$12n_{0116} \ (K12n_{0116})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.49041 \times 10^{48} u^{40} - 1.63923 \times 10^{48} u^{39} + \dots + 4.94994 \times 10^{48} b + 1.35928 \times 10^{48}, \\ -1.49041 \times 10^{48} u^{40} - 1.63923 \times 10^{48} u^{39} + \dots + 4.94994 \times 10^{48} a + 1.35928 \times 10^{48}, \ u^{41} + 2u^{40} + \dots - u - 1^{49} u^{49} + 1.4 u^{49} + 1.4 u^{49} u^{49} + 1.4 u^{49} u^{49}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 47 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -1.49 \times 10^{48} u^{40} - 1.64 \times 10^{48} u^{39} + \dots + 4.95 \times 10^{48} b + 1.36 \times 10^{48}, \ -1.49 \times 10^{48} u^{40} - 1.64 \times 10^{48} u^{39} + \dots + 4.95 \times 10^{48} a + 1.36 \times 10^{48}, \ u^{41} + 2u^{40} + \dots - u - 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.301096u^{40} + 0.331162u^{39} + \dots + 2.34511u - 0.274605 \\ 0.301096u^{40} + 0.331162u^{39} + \dots + 3.34511u - 0.274605 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.501619u^{40} - 0.639447u^{39} + \dots + 0.896473u + 0.455440 \\ -0.458393u^{40} - 0.639616u^{39} + \dots + 0.799469u + 0.637044 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.205384u^{40} - 0.351951u^{39} + \dots + 0.606975u + 1.47006 \\ -0.559530u^{40} - 0.970963u^{39} + \dots + 1.39792u + 1.11199 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.301096u^{40} + 0.331162u^{39} + \dots + 2.34511u - 0.274605 \\ 0.0224886u^{40} - 0.0444496u^{39} + \dots + 3.31504u - 0.00357471 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.110835u^{40} - 0.0229094u^{39} + \dots + 0.661642u + 1.00084 \\ -0.390784u^{40} - 0.662356u^{39} + \dots + 0.661642u + 1.00084 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.257870u^{40} + 0.331331u^{39} + \dots + 2.44211u - 0.456209 \\ 0.313467u^{40} + 0.443108u^{39} + \dots + 3.39872u - 0.542830 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.659770u^{40} - 1.09530u^{39} + \dots + 1.32120u + 1.69134 \\ -0.119568u^{40} + 0.0303721u^{39} + \dots - 0.186514u - 1.02623 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.501619u^{40} + 0.639447u^{39} + \dots - 0.896473u - 0.455440 \\ -0.390784u^{40} - 0.662356u^{39} + \dots + 0.661642u + 1.00084 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4.91398u^{40} 6.25021u^{39} + \cdots 14.4903u + 31.2535$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{41} + 47u^{40} + \dots + 296u + 1$
c_{2}, c_{4}	$u^{41} - 7u^{40} + \dots - 12u + 1$
c_3, c_6	$u^{41} + 7u^{40} + \dots + 640u - 64$
c_5, c_9	$u^{41} + 2u^{40} + \dots - u - 1$
c_7, c_8, c_{11}	$u^{41} + 2u^{40} + \dots + u + 1$
c_{10}, c_{12}	$u^{41} - 2u^{40} + \dots - 47u + 17$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{41} - 99y^{40} + \dots + 111528y - 1$
c_2, c_4	$y^{41} - 47y^{40} + \dots + 296y - 1$
c_3, c_6	$y^{41} + 39y^{40} + \dots + 90112y - 4096$
c_5, c_9	$y^{41} + 42y^{39} + \dots + 7y - 1$
c_7, c_8, c_{11}	$y^{41} + 36y^{40} + \dots + 7y - 1$
c_{10}, c_{12}	$y^{41} - 12y^{40} + \dots - 2041y - 289$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.546127 + 0.811291I		
a = 0.743645 - 1.202480I	-4.83591 - 7.62929I	1.63110 + 8.21040I
b = 0.197518 - 0.391191I		
u = -0.546127 - 0.811291I		
a = 0.743645 + 1.202480I	-4.83591 + 7.62929I	1.63110 - 8.21040I
b = 0.197518 + 0.391191I		
u = 0.559771 + 0.753240I		
a = -0.624352 - 1.085930I	0.18158 + 4.25829I	7.22708 - 8.04646I
b = -0.064581 - 0.332685I		
u = 0.559771 - 0.753240I		
a = -0.624352 + 1.085930I	0.18158 - 4.25829I	7.22708 + 8.04646I
b = -0.064581 + 0.332685I		
u = -0.664122 + 0.603424I		
a = 0.468587 - 0.663053I	-2.14123 - 1.43316I	6.02200 + 3.64151I
b = -0.195535 - 0.059628I		
u = -0.664122 - 0.603424I		
a = 0.468587 + 0.663053I	-2.14123 + 1.43316I	6.02200 - 3.64151I
b = -0.195535 + 0.059628I		
u = 0.350975 + 0.790999I		
a = -0.39756 - 1.62860I	-6.73300 + 0.22938I	-2.25086 - 2.33731I
b = -0.046582 - 0.837603I		
u = 0.350975 - 0.790999I		
a = -0.39756 + 1.62860I	-6.73300 - 0.22938I	-2.25086 + 2.33731I
b = -0.046582 + 0.837603I		
u = 0.087719 + 0.850756I		
a = -0.12108 - 2.10269I	-8.03114 + 3.86698I	-3.56668 - 3.96784I
b = -0.033358 - 1.251940I		
u = 0.087719 - 0.850756I		
a = -0.12108 + 2.10269I	-8.03114 - 3.86698I	-3.56668 + 3.96784I
b = -0.033358 + 1.251940I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.445566 + 0.616611I		
a = 0.112439 - 1.137990I	-1.53709 - 1.40851I	1.34634 + 3.01002I
b = -0.333128 - 0.521377I		
u = -0.445566 - 0.616611I		
a = 0.112439 + 1.137990I	-1.53709 + 1.40851I	1.34634 - 3.01002I
b = -0.333128 + 0.521377I		
u = -0.090722 + 0.752674I		
a = 0.05605 - 1.99845I	-2.86548 - 1.28813I	1.16839 + 4.84793I
b = -0.034673 - 1.245770I		
u = -0.090722 - 0.752674I		
a = 0.05605 + 1.99845I	-2.86548 + 1.28813I	1.16839 - 4.84793I
b = -0.034673 + 1.245770I		
u = -0.527293 + 0.436682I		
a = -0.973519 - 0.176954I	-4.01492 + 3.79256I	2.77393 - 0.06472I
b = -1.50081 + 0.25973I		
u = -0.527293 - 0.436682I		
a = -0.973519 + 0.176954I	-4.01492 - 3.79256I	2.77393 + 0.06472I
b = -1.50081 - 0.25973I		
u = 0.468495 + 0.464998I		
a = 0.622134 - 0.271062I	0.599224 - 0.610593I	8.50615 - 0.01136I
b = 1.090630 + 0.193936I		
u = 0.468495 - 0.464998I		
a = 0.622134 + 0.271062I	0.599224 + 0.610593I	8.50615 + 0.01136I
b = 1.090630 - 0.193936I		
u = -0.325958 + 0.548034I		
a = -0.267538 + 0.084708I	-2.79420 - 2.18222I	4.51636 + 3.99594I
b = -0.593496 + 0.632743I		
u = -0.325958 - 0.548034I		
a = -0.267538 - 0.084708I	-2.79420 + 2.18222I	4.51636 - 3.99594I
b = -0.593496 - 0.632743I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.397250 + 0.182037I		
a = -0.506275 - 0.004273I	2.57061 + 4.43167I	14.03660 + 0.I
b = 0.890974 + 0.177764I		
u = 1.397250 - 0.182037I		
a = -0.506275 + 0.004273I	2.57061 - 4.43167I	14.03660 + 0.I
b = 0.890974 - 0.177764I		
u = -1.41231		
a = 0.496036	6.54065	18.5250
b = -0.916272		
u = 0.487776 + 0.155470I		
a = 2.02925 - 0.39422I	-4.99926 + 2.47497I	10.9995 - 16.9397I
b = 2.51703 - 0.23875I		
u = 0.487776 - 0.155470I		
a = 2.02925 + 0.39422I	-4.99926 - 2.47497I	10.9995 + 16.9397I
b = 2.51703 + 0.23875I		
u = 0.497461		
a = -0.110298	0.683544	14.8150
b = 0.387162		
u = -1.05090 + 1.14678I		
a = 0.504687 + 0.968425I	-11.9065 - 13.7324I	0
b = -0.54621 + 2.11520I		
u = -1.05090 - 1.14678I		
a = 0.504687 - 0.968425I	-11.9065 + 13.7324I	0
b = -0.54621 - 2.11520I		
u = 1.05595 + 1.16152I		
a = -0.501764 + 0.917028I	-6.55369 + 9.57234I	0
b = 0.55418 + 2.07855I		
u = 1.05595 - 1.16152I		
a = -0.501764 - 0.917028I	-6.55369 - 9.57234I	0
b = 0.55418 - 2.07855I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.10127 + 1.14227I		
a = -0.673483 + 0.861835I	-16.5464 + 4.1585I	0
b = 0.42779 + 2.00411I		
u = 1.10127 - 1.14227I		
a = -0.673483 - 0.861835I	-16.5464 - 4.1585I	0
b = 0.42779 - 2.00411I		
u = -1.07763 + 1.17451I		
a = 0.535143 + 0.849624I	-8.52808 - 4.96231I	0
b = -0.54248 + 2.02413I		
u = -1.07763 - 1.17451I		
a = 0.535143 - 0.849624I	-8.52808 + 4.96231I	0
b = -0.54248 - 2.02413I		
u = -1.16301 + 1.12527I		
a = 0.754065 + 0.641582I	-11.60780 + 5.44383I	0
b = -0.40895 + 1.76685I		
u = -1.16301 - 1.12527I		
a = 0.754065 - 0.641582I	-11.60780 - 5.44383I	0
b = -0.40895 - 1.76685I		
u = -0.373875		
a = -2.77728	-0.771990	64.9410
b = -3.15116		
u = -1.13639 + 1.17348I		
a = 0.623222 + 0.717077I	-8.37413 - 3.52292I	0
b = -0.51317 + 1.89056I		
u = -1.13639 - 1.17348I		
a = 0.623222 - 0.717077I	-8.37413 + 3.52292I	0
b = -0.51317 - 1.89056I		
u = 1.16288 + 1.15013I		
a = -0.687885 + 0.655673I	-6.27214 - 1.18033I	0
b = 0.47499 + 1.80580I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.16288 - 1.15013I		
a = -0.687885 - 0.655673I	-6.27214 + 1.18033I	0
b = 0.47499 - 1.80580I		

II.
$$I_2^u = \langle -u^5 + u^4 + 3u^3 - 2u^2 + b - u - 1, \ -u^5 + u^4 + 3u^3 - 2u^2 + a - 2u - 1, \ u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{4} - 3u^{3} + 2u^{2} + 2u + 1 \\ u^{5} - u^{4} - 3u^{3} + 2u^{2} + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - u^{4} - 3u^{3} + 2u^{2} + 2u + 1 \\ u^{5} - u^{4} - 3u^{3} + 2u^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} - u^{4} - 3u^{3} + 2u^{2} + 2u + 1 \\ u^{5} - u^{4} - 3u^{3} + 2u^{2} + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} + 2u^{3} + u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-7u^5 + 3u^4 + 19u^3 5u^2 8u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_3, c_6	u^6
C4	$(u+1)^6$
<i>C</i> ₅	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
c_7, c_8	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$
c_9, c_{10}, c_{12}	$u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1$
c_{11}	$u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_6	y^6
c_5, c_9, c_{10} c_{12}	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$
c_7, c_8, c_{11}	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.493180 + 0.575288I		
a = -0.858925 - 1.001920I	-4.60518 - 1.97241I	3.78159 + 4.50121I
b = -0.36575 - 1.57721I		
u = -0.493180 - 0.575288I		
a = -0.858925 + 1.001920I	-4.60518 + 1.97241I	3.78159 - 4.50121I
b = -0.36575 + 1.57721I		
u = 0.483672		
a = 2.06752	-0.906083	-8.91030
b = 1.58384		
u = 1.52087 + 0.16310I		
a = 0.650045 - 0.069710I	2.05064 + 4.59213I	-0.56679 - 5.39767I
b = -0.870821 - 0.232805I		
u = 1.52087 - 0.16310I		
a = 0.650045 + 0.069710I	2.05064 - 4.59213I	-0.56679 + 5.39767I
b = -0.870821 + 0.232805I		
u = -1.53904		
a = -0.649754	6.01515	2.48070
b = 0.889289		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{41} + 47u^{40} + \dots + 296u + 1)$
c_2	$((u-1)^6)(u^{41} - 7u^{40} + \dots - 12u + 1)$
c_3, c_6	$u^6(u^{41} + 7u^{40} + \dots + 640u - 64)$
C_4	$((u+1)^6)(u^{41} - 7u^{40} + \dots - 12u + 1)$
<i>C</i> ₅	$ (u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1)(u^{41} + 2u^{40} + \dots - u - 1) $
c_{7}, c_{8}	$(u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1)(u^{41} + 2u^{40} + \dots + u + 1)$
<i>c</i> ₉	$(u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1)(u^{41} + 2u^{40} + \dots - u - 1)$
c_{10}, c_{12}	$ (u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1)(u^{41} - 2u^{40} + \dots - 47u + 17) $
c_{11}	$(u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1)(u^{41} + 2u^{40} + \dots + u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{41} - 99y^{40} + \dots + 111528y - 1)$
c_2, c_4	$((y-1)^6)(y^{41} - 47y^{40} + \dots + 296y - 1)$
c_3, c_6	$y^6(y^{41} + 39y^{40} + \dots + 90112y - 4096)$
c_5, c_9	$(y^6 - 7y^5 + \dots - 5y + 1)(y^{41} + 42y^{39} + \dots + 7y - 1)$
c_7, c_8, c_{11}	$(y^6 + 5y^5 + \dots - 5y + 1)(y^{41} + 36y^{40} + \dots + 7y - 1)$
c_{10}, c_{12}	$(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)$ $\cdot (y^{41} - 12y^{40} + \dots - 2041y - 289)$