Assignment2

May 28, 2022

Perform Comparative evaluation of Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machine classifier. Use diabetes and hear disease datasets

0.1 Loading the Required Libaries

```
[1]: import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.metrics import plot_confusion_matrix
from sklearn import model_selection
import matplotlib.pyplot as plt
import warnings

warnings.filterwarnings('ignore')
%matplotlib inline
```

1 Using Diabetes Dataset

Reading the CSV File as a Pandas DataFrame

```
[2]: df = pd.read_csv('data/diabetes.csv')
```

Checking the first few rows

```
[3]: df.head()
```

[3]:	Pregnancies	Glucose	${ t BloodPressure}$	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

DiabetesPedigreeFunction Age Outcome

0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

Plotting the Bar Graph of Target Class

```
[4]: df['Outcome'].value_counts().plot(kind='bar')
plt.title('Bar Plot of Target Class')
```

[4]: Text(0.5, 1.0, 'Bar Plot of Target Class')

Checking if there is null values in the dataset

[5]:	<pre>df.isna().sum()</pre>								
[5]:	Pregnancies	0							
	Glucose	0							
	BloodPressure	0							
	SkinThickness	0							
	Insulin	0							
	BMI	0							
	DiabetesPedigreeFunction	0							
	Age	0							

Outcome 0 dtype: int64

There are no an null values in the dataset

Train Test Split

```
[6]: X = df.drop(columns=['Outcome'],axis=1)
y = df['Outcome']
```

```
[7]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.

$\text{\text{\text}}_2$, random_state=0)
```

A helper function that runs all the machine models and gives the evaluation matrices as output

```
[8]: def run_exps(X_train, y_train, X_test, y_test):
         dfs = []
         # Defining the Models and adding them to a list
         models = [
             ('NaiveBayes', GaussianNB()),
             ('DecisionTree', DecisionTreeClassifier()),
             ('RandomForest', RandomForestClassifier()),
             ('SVM', SVC())
         ]
         results = []
         names = []
         scoring = ['accuracy', 'precision', 'recall', 'f1']
         target_names = ['0','1']
         # Looping through Each Model in the list and making prediction to qet_{\sqcup}
      \rightarrow evaluation matrices
         for name, model in models:
             kfold = model_selection.KFold(n_splits=5, shuffle=True, random_state=0)
             cv_results = model_selection.cross_validate(model, X_train, y_train, u
      ⇔cv=kfold, scoring=scoring)
             clf = model.fit(X_train, y_train)
             y_pred = clf.predict(X_test)
             print("############"")
             print(name)
             print(classification_report(y_test, y_pred, target_names=target_names))
             plot_confusion_matrix(clf, X_test, y_test)
             plt.title(name)
             results.append(cv_results)
             names.append(name)
             this_df = pd.DataFrame(cv_results)
             this_df['model'] = name
             dfs.append(this_df)
             final = pd.concat(dfs, ignore_index=True)
```

return final

[9]: r_df = run_exps(X_train,y_train,X_test,y_test)

NaiveBayes				
J	precision	recall	f1-score	suppor
0	0.84	0.87	0.85	10
1	0.67	0.62	0.64	4
accuracy			0.79	15
macro avg	0.76	0.74	0.75	15
weighted avg	0.79	0.79	0.79	15
###########	#######			
DecisionTree				
	precision	recall	f1-score	suppor
0	0.86	0.79	0.83	10
1	0.60	0.70	0.65	4
accuracy			0.77	15
macro avg	0.73	0.75	0.74	15
weighted avg	0.78	0.77	0.77	15
############	+#######			
########### RandomForest	########			
	####### precision	recall	f1-score	suppor
		recall	f1-score	suppor
RandomForest	precision			10
RandomForest 0	precision 0.83	0.89	0.86	10 4
RandomForest 0 1	precision 0.83	0.89	0.86 0.64	
RandomForest 0 1 accuracy macro avg	precision 0.83 0.70	0.89 0.60	0.86 0.64 0.80	10 4 15
RandomForest 0 1 accuracy	0.83 0.70 0.77 0.79	0.89 0.60 0.74	0.86 0.64 0.80 0.75	10 4 15
RandomForest 0 1 accuracy macro avg weighted avg	0.83 0.70 0.77 0.79	0.89 0.60 0.74	0.86 0.64 0.80 0.75	10 4 15 15
RandomForest 0 1 accuracy macro avg weighted avg	0.83 0.70 0.77 0.79	0.89 0.60 0.74	0.86 0.64 0.80 0.75 0.79	10 4 15 15
RandomForest 0 1 accuracy macro avg weighted avg	0.83 0.70 0.77 0.79	0.89 0.60 0.74 0.80	0.86 0.64 0.80 0.75 0.79	10 4 15 15 15 suppor
RandomForest 0 1 accuracy macro avg weighted avg ############## SVM	0.83 0.70 0.77 0.79	0.89 0.60 0.74 0.80	0.86 0.64 0.80 0.75 0.79	10 4 15 15 15 suppor
RandomForest 0 1 accuracy macro avg weighted avg ############# SVM 0	0.83 0.70 0.77 0.79 *###### precision 0.81	0.89 0.60 0.74 0.80 recall	0.86 0.64 0.80 0.75 0.79	10 4 15 15 15 suppor
RandomForest 0 1 accuracy macro avg weighted avg ############ SVM 0 1	0.83 0.70 0.77 0.79 *###### precision 0.81	0.89 0.60 0.74 0.80 recall	0.86 0.64 0.80 0.75 0.79 f1-score 0.86 0.60	10 4 15

Getting the Average of Each Matrices from K-Fold CV of each Model

```
[10]: r_df.groupby('model').mean().reset_index()
[10]:
                                               test_accuracy
                model
                        fit_time
                                  score_time
                                                               test_precision
      0
         DecisionTree
                        0.004315
                                     0.004933
                                                     0.698707
                                                                      0.585716
      1
           NaiveBayes
                                                                      0.669703
                        0.004870
                                     0.007758
                                                     0.747621
      2
         RandomForest
                        0.186305
                                     0.019301
                                                     0.750846
                                                                      0.687880
      3
                   SVM
                        0.011196
                                     0.008482
                                                     0.741090
                                                                      0.710155
         test_recall
                        test_f1
      0
            0.558024
                       0.565386
      1
            0.600590
                       0.632148
      2
            0.568713
                       0.621267
      3
            0.470610
                       0.564164
```

From the above results we can say that RandomForest is the best model on the basis of accuracy.

2 Using Heart Disease Dataset

Reading the CSV File as a Pandas DataFrame

```
[11]: df = pd.read_csv('data/heart.csv')
```

Checking First few rows of the dataset

```
[12]: df.head()
```

[12]:	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	\
0	52	1	0	125	212	0	1	168	0	1.0	2	
1	. 53	1	0	140	203	1	0	155	1	3.1	0	
2	70	1	0	145	174	0	1	125	1	2.6	0	
3	61	1	0	148	203	0	1	161	0	0.0	2	
4	62	0	0	138	294	1	1	106	0	1.9	1	

```
target
        thal
   ca
0
     2
             3
                       0
             3
                       0
1
     0
2
             3
                       0
     0
3
     1
             3
                       0
     3
             2
                       0
```

Converting the sex feature to categorical

```
[13]: df['sex'] = df['sex'].astype('category')
```

Checking for missing values in the dataset

```
[14]: df.isna().sum()
[14]: age
                   0
      sex
                   0
                   0
      ср
      trestbps
                   0
      chol
      fbs
                   0
      restecg
                   0
      thalach
                   0
      exang
                   0
      oldpeak
                   0
                   0
      slope
      ca
      thal
      target
      dtype: int64
```

There is no missing values in the dataset

```
[15]: df['target'].value_counts().plot(kind='bar')
plt.title('Bar Graph of Target Values')
plt.show()
```


Train Test Split

```
[16]: X = df.drop(columns=['target'])
      y = df['target']
[17]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.
       →3,random_state=0)
     Calling the Helper Function
[18]: r_df = run_exps(X_train,y_train,X_test,y_test)
     ###################
     NaiveBayes
                    precision
                               recall f1-score
                                                     support
                 0
                         0.85
                                   0.81
                                              0.83
                                                         145
                 1
                         0.84
                                   0.87
                                              0.86
                                                         163
                                              0.84
                                                         308
         accuracy
                                              0.84
                                                         308
        macro avg
                         0.84
                                   0.84
                                   0.84
                                              0.84
                                                         308
     weighted avg
                         0.84
     ######################
     DecisionTree
                   precision
                                 recall f1-score
                                                     support
                 0
                                    1.00
                                              1.00
                                                         145
                         1.00
                 1
                         1.00
                                              1.00
                                    1.00
                                                         163
                                              1.00
                                                         308
         accuracy
                         1.00
                                    1.00
                                              1.00
                                                         308
        macro avg
     weighted avg
                         1.00
                                    1.00
                                              1.00
                                                         308
     #####################
     RandomForest
                    precision
                                 recall f1-score
                                                     support
                 0
                         0.98
                                    1.00
                                              0.99
                                                         145
                 1
                         1.00
                                   0.98
                                              0.99
                                                         163
                                              0.99
                                                         308
         accuracy
                         0.99
                                   0.99
                                              0.99
                                                         308
        macro avg
     weighted avg
                         0.99
                                   0.99
                                              0.99
                                                         308
```

precision recall f1-score support

0 0.75 0.70 0.73 145

#######################

SVM

1	0.75	0.79	0.77	163
accuracy			0.75	308
macro avg	0.75	0.75	0.75	308
weighted avg	0.75	0.75	0.75	308

Getting Average score from K-Fold CV result for each model

```
[19]:
     r_df.groupby('model').mean().reset_index()
[19]:
                                             test_accuracy
                model
                       fit_time
                                  score_time
                                                              test_precision
         DecisionTree
                       0.003666
                                    0.004892
                                                    0.972067
                                                                    0.976604
      0
      1
           NaiveBayes
                       0.004914
                                    0.006603
                                                    0.811694
                                                                    0.796276
      2
         RandomForest
                                    0.021173
                                                    0.969279
                                                                    0.973574
                       0.193031
      3
                  SVM 0.019332
                                    0.011124
                                                    0.694610
                                                                    0.685327
         test_recall
                       test_f1
      0
            0.965967
                      0.971049
      1
            0.842783
                      0.818564
      2
            0.962835
                      0.967949
            0.742913
      3
                      0.710625
```

From the result above we can say that Random Forest is the best model as the values of accuracy, precision and recall is the highest.