Risk-averse Distributional Reinforcement Learning A CVaR optimization approach

Silvestr Stanko¹

¹Department of Computer Science Czech Technical University

Wednesday 30th May, 2018

Outline

Outline

Motivation

128 ## 60255

124 ## 60255

124 ## 60255

124 ## 1221

122 ## 1236 ## 12151

125 ## 1236 ## 12151

125 ## 1236 ## 12151

126 ## 1255 ## 1255 ## 1255

126 ## 1255 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126 ## 1255

126

Figure: Robotics

Figure: Finance

Figure: Al safety

Ultimate goals of Al

General Al

- Learning from experience
- Learning tabula rasa
- Beyond purpose-specific AI
- Beyond human-level performance

Safe Al

- Avoiding catastrophic events
- Robust to environment changes or adversaries

Reinforcement Learning

Recent successes

Figure: Atari games

Figure: Go

Markov Decision Processes

Definition

An MDP is a 5-tuple $\mathcal{M} = (\mathcal{X}, \mathcal{A}, R, P, \gamma)$, where

- ullet $\mathcal X$ is the state space
- ullet ${\cal A}$ is the action space
- R(x, a) is a random variable representing the reward generated by being in state x and selecting action a
- $P(\cdot|x,a)$ is the transition probability distribution
- $\gamma \in [0,1)$ is a discount factor

Markov Decision Process - example

Reinforcement Learning - Goal

Definition

 $Z^{\pi}(x_t)$ Is a random variable representing the discounted reward along a trajectory generated by the MDP by following the policy π , starting at state x_t .

$$Z^{\pi}(x_t) = \sum_{t=0}^{\infty} \gamma^t R(x_t, \pi(x_t))$$

Reinforcement Learning goals

Our goal is to find a globally optimal policy π^*

$$\pi^* = \arg\max_{\pi} \exp Z^{\pi}(x_0)$$

Potential problems

Problems

- Solutions must avoid catastrophic events and be safe
- ullet RL is sample inefficient o expensive training
- Solutions must be **robust** to small model changes

Solution

Instead of maximizing the expected reward, focus on other criteria that take into account the **risk** of the potential reward.

Risk

Definition

Risk is the potential of gaining or losing something of value.

Risk-averse: disinclined or reluctant to take risks

Risk-neutral: indifferent to or balanced with respect to risk.

Risk-seeking: inclined or eager to take risks

Example

Choose between recieving:

- \$100 in 100% cases
- 2 \$200 in 50% cases and \$0 in 50% cases
- **3** \$10,000 in 1% cases and \$0 in 99% cases

Measuring Risk

Value-at-Risk (VaR)

- Easy to understand
- Historically the most used risk-measure
- Undesirable computational properties
- Does not differentiate between large and catastrophic losses

Definition

Let Z be a random variable representing reward, with cumulative distribution function $F(z) = \mathbb{P}(Z \leq z)$. The Value-at-Risk at confidence level $\alpha \in (0,1)$ is the α -quantile of Z, i.e.

$$VaR_{\alpha}(Z) = F^{-1}(\alpha) = \inf \{z | \alpha \le F(z)\}$$

Measuring Risk

Conditional Value-at-Risk (CVaR)

- Good computational properties
- ullet Basel Committee on Banking Supervision: VaR o CVaR
- Equivalent to robustness

Definition

The Conditional Value-at-Risk (CVaR) at confidence level $\alpha \in (0,1)$ is defined as the expected reward of outcomes worse than the α -quantile (VaR $_{\alpha}$):

$$\mathsf{CVaR}_{\alpha}(Z) = \frac{1}{\alpha} \int_0^{\alpha} F_Z^{-1}(\beta) \mathsf{d}\beta = \frac{1}{\alpha} \int_0^{\alpha} \mathsf{VaR}_{\beta}(Z) \mathsf{d}\beta$$

Value-at-Risk, Conditional Value-at-Risk

Risk

Risk

Conditional Value-at-Risk as an optimal point

Definition

$$\mathsf{CVaR}_{lpha}(Z) = \max_{s} \left\{ \frac{1}{lpha} \mathbb{E}\left[(Z - s)^{-} \right] + s \right\}$$

where $(x)^- = \min(x, 0)$ and in the optimal point it holds that $s^* = VaR_{\alpha}(Z)$

$$\mathsf{CVaR}_{lpha}(\mathsf{Z}) = rac{1}{lpha} \mathbb{E}\left[(\mathsf{Z} - \mathsf{VaR}_{lpha}(\mathsf{Z}))^{-} \right] + \mathsf{VaR}_{lpha}(\mathsf{Z})$$

it's dual is

$$\begin{aligned} \mathsf{CVaR}_{\alpha}(Z) &= \min_{\xi \in \mathcal{U}_{\mathsf{CVaR}}(\alpha, p(\cdot))} \mathbb{E}_{\xi}[Z] \\ \mathcal{U}_{\mathsf{CVaR}}(\alpha, p(\cdot)) &= \left\{ \xi : \xi(z) \in \left[0, \frac{1}{\alpha}\right], \int \xi(z) p(z) \mathrm{d}z = 1 \right\} \end{aligned}$$

Risk-averse Reinforcement Learning - goals

Definition

 $Z^{\pi}(x_t)$ Is a random variable representing the discounted reward along a trajectory generated by the MDP by following the policy π , starting at state x_t .

$$Z^{\pi}(x_t) = \sum_{t=0}^{\infty} \gamma^t R(x_t, \pi(x_t))$$

Reinforcement Learning with CVaR

For a given α , our goal is to find a globally optimal policy π^*

$$\pi^* = \arg\max_{\pi} CVaR_{\alpha}(Z^{\pi}(x_0))$$

Risk-averse Reinforcement Learning - example

Figure: Greedy agent

Figure: Risk-averse agent

Outline

Value Iteration

Definition

Value function V(x) represents the expected return when starting in state x and following the optimal policy π^* thereafter.

Value Iteration

Initialize $V_0(x)$ for each state (arbitrary value, e.g. 0). Update each state:

$$V_{k+1}(x) = \max_{a} \left[R(x, a) + \gamma \sum_{x'} p(x'|x, a) V_k(x') \right]$$

Repeat.

The algorithm converges to the optimal policy π^* : $\lim_{k o \infty} V_k(x) = V(x)$

Value Iteration with CVaR

Theorem (CVaR decomposition)

The conditional CVaR under policy π obeys the following decomposition:

$$\mathit{CVaR}_{\alpha}\left(\mathit{Z}^{\pi}(x,\mathit{a})\right) = \min_{\xi \in \mathcal{U}_{\mathit{CVaR}}(\alpha,p(\cdot|x,\mathit{a}))} \sum_{x'} p(x'|x,\mathit{a}) \xi(x') \mathit{CVaR}_{\xi(x')\alpha}\left(\mathit{Z}^{\pi}(x')\right)$$

CVaR Value Iteration

Theorem (CVaR Value Iteration)

The following Bellman operator is a contraction:

$$\mathbf{T}C(x,y) = \max_{a} \left[R(x,a) + \gamma \min_{\xi} \sum_{x'} p(x'|x,a) \xi(x') C(x',y \xi(x')) \right]$$

The operator T describes the following relationship:

$$TCVaR_y(Z(x)) = \max_{a} \left[R(x, a) + \gamma CVaR_y(Z(x')) \right]$$
$$x' \sim p(\cdot|x, a)$$

Linear interpolation

Computing operator T s intractable, as the state-space is continuous. A solution would be to approximate the operator with linear interpolation.

Theorem

The function $lpha extsf{CVaR}_lpha$ is convex. The operator $extsf{T}_\mathcal{I}$ is a contraction.

$$\mathcal{I}_{x}[C](y) = y_{i}C(x, y_{i}) + \frac{y_{i+1}C(x, y_{i+1}) - y_{i}C(x, y_{i})}{y_{i+1} - y_{i}}(y - y_{i})$$

$$\mathbf{T}_{\mathcal{I}}C(x,y) = \max_{a} \left[R(x,a) + \gamma \min_{\xi} \sum_{x'} p(x'|x,a) \frac{\mathcal{I}_{x'}[C](y\xi(x'))}{y} \right]$$

This iteration can be formulated and solved as a linear program.

Linear interpolation

Original Contributions

Faster CVaR Value Iteration

- Polynomial → linear time.
- Formally proved for increasing, unbounded distributions.
- Experimentally verified for general distributions.

CVaR Q-learning

- Sampling version of CVaR Value Iteration.
- Based on the distributional approach.
- Experimentally verified.

Oistributional Policy improvement

- Proved monotonic improvement for distributional RL.
- ullet Used as a heuristic for extracting π^* from CVaR Q-learning.

Deep CVaR Q-learning

- TD update \rightarrow loss function.
- Experimentally verified in a deep learning context.

CVaR VI computational complexity

Problem

- CVaR Value Iteration requires computing a Linear Program for each state and atom.
- LP computation is slow

Solution

CVaR Value Iteration with quantile representation.

$\alpha \text{CVaR}_{\alpha}$ describes a quantile function

Lemma

Any discrete distribution has a piece-wise linear $\alpha \text{CVaR}_{\alpha}$ function. Similarly, any a piece-wise linear $\alpha \text{CVaR}_{\alpha}$ function can be seen as representing a certain discrete distribution.

$$\alpha\mathsf{CVaR}_\alpha\Rightarrow\mathsf{VaR}$$

$$\frac{\partial}{\partial \alpha} \alpha \mathsf{CVaR}_{\alpha}(Z) = \frac{\partial}{\partial \alpha} \int_{0}^{\alpha} \mathit{VaR}_{\beta}(Z) d\beta = \mathit{VaR}_{\alpha}(Z)$$

$$\alpha \mathsf{CVaR}_{\alpha} \Leftarrow \mathsf{VaR}$$

$$\alpha \mathsf{CVaR}_{\alpha}(Z) = \int_{0}^{\alpha} \mathit{VaR}_{\beta}(Z) \mathsf{d}\beta$$

Next state CVaR computation

Next state CVaR computation

Linear-time Computation

Theorem

Solution to minimization problem

$$\min_{\xi \in \mathcal{U}_{\textit{CVaR}}(\alpha, p(\cdot|x, \textbf{\textit{a}}))} \sum_{x'} p(x'|x, \textbf{\textit{a}}) \xi(x') \textit{CVaR}_{\xi(x')\alpha} \left(Z^{\pi}(x') \right)$$

can be computed by setting

$$\xi(x') = \frac{F_{Z(x')}(F_{Z(x,a)}^{-1}(\alpha))}{\alpha}$$

The computational complexity is $O(n \cdot m)$ where n is the number of transition states and m is the number of atoms.

Proved for increasing unbounded distributions

CVaR Value Iteration - Experiments

Outline

Q-learning

Problem

- In practice, we often don't have access to the transition probabilities p(x'|x,a)
- We need to learn through direct interaction with the environment.

Solution

Q-learning: Sampling version of Value Iteration.

Q-learning

Value Iteration

$$Q(x, a) \leftarrow TQ(x, a)$$

$$Q(x, a) \leftarrow R(x, a) + \gamma \sum_{x'} p(x'|x, a) \max_{a'} Q(x', a')$$

Q-learning

$$Q(x, a) \leftarrow (1 - \beta)Q(x, a) + \beta TQ(x, a)$$

$$Q(x, a) \leftarrow (1 - \beta)Q(x, a) + \beta \left[R(x, a) + \gamma \max_{a'} Q(x', a') \right]$$

CVaR estimation

Requirements:

- Store a single value
- Expected value of updates is CVaR

Recursive CVaR Estimation

$$V_{t+1} = V_t + \beta_t \left[1 - \frac{1}{\alpha} \mathbb{1}_{(V_t \ge r)} \right]$$

$$C_{t+1} = (1 - \beta_t) C_t + \beta_t \left[V_t + \frac{1}{\alpha} (r - V_t)^{-} \right]$$

CVaR Q-learning

Pseudocode

- Sample a transition x, a, x', r
- Create a target distribution d
- Sample from the target distribution
- Update current estimates of VaR and CVaR towards the sample

Improvement

- Sample from target distribution
- Update proportionally to the target distribution

CVaR Q-learning

CVaR Q-learning: Uniform case

- 1: **input:** x, a, x', r
- 2: **for** each *i* **do**
- 3: $C(x', y_i) = \max_{a'} C(x', a', y_i)$
- 4: end for
- 5: $\mathbf{d} = \text{extractDistribution}(C(x', \cdot), \mathbf{y})$
- 6: **for** each *i*, *i* **do**
- 7: $V(x, a, y_i) = V(x, a, y_i) + \beta \left[1 \frac{1}{y_i} \mathbb{1}_{(V(x, a, y_i) \ge r + \gamma d_j)}\right]$
- 8: $C(x, a, y_i) = (1 \beta)C(x, a, y_i) + \beta \left[V(x, a, y_i) + \frac{1}{y_i}(r + \gamma d_j V(x, a, y_i))^{-}\right]$
- 9: end for

CVaR Q-learning

CVaR Q-learning: General case

- 1: **input:** x, a, x', r
- 2: for each i do
- 3: $C(x', y_i) = \max_{a'} C(x', a', y_i)$
- 4: end for
- 5: $\mathbf{d} = \text{extractDistribution}(C(x', \cdot), \mathbf{y})$
- 6: **for** each *i* **do**
- 7: $V(x, a, y_i) = V(x, a, y_i) + \beta \mathbb{E}_j \left[1 \frac{1}{y_i} \mathbb{1}_{(V(x, a, y_i) \ge r + \gamma d_j)} \right]$
- 8: $C(x, a, y_i) = (1 \beta)C(x, a, y_i) + \beta \mathbb{E}_j \left[V(x, a, y_i) + \frac{1}{y_i} (r + \gamma d_j V(x, a, y_i))^{-} \right]$
- 9: end for

Optimal policy extraction

Standard RL: Optimal policy

$$\pi^*(x) = \arg\max_a Q(x, a)$$

CVaR VI: Optimal policy

$$\pi^*(x_0) = \arg\max_{a} C(x, a, \alpha)$$

$$\pi^*(x_1) = \arg\max_{a} C(x_1, a, \alpha \xi^*(x_0))$$

$$\vdots$$

$$\pi^*(x_t) = \arg\max_{a} C(x_t, a, y_{t-1} \xi^*(x_{t-1}))$$

Optimal policy extraction

Problem

- To compute y_t , we would need to know ξ^* .
- To compute ξ^* , we would need to know the probability of transitions p(x'|x,a)

Solution

• Use transition reward to compute the next-state y

Distributional Policy Improvement

CVaR primal definition:

$$\mathsf{CVaR}_{lpha}(Z) = \max_{s} \left\{ \frac{1}{lpha} \mathbb{E} \left[(Z - s)^{-} \right] + s \right\}$$

Our goal can then be rewritten as

$$\max_{\pi} \mathsf{CVaR}_{\alpha}(Z^{\pi}) = \max_{\pi} \max_{s} \frac{1}{\alpha} \mathbb{E}\left[(Z^{\pi} - s)^{-} \right] + s$$

Recall: The primal solution is equivalent to $VaR_{\alpha}(Z)$ Idea: If we knew the value $s^* = VaR_{\Omega}(Z)$ in advance, we could simplify the problem to maximize only

$$\max_{\pi} \mathsf{CVaR}_{\alpha}(Z^{\pi}) = \max_{\pi} \frac{1}{\alpha} \mathbb{E}\left[(Z^{\pi} - s^*)^{-} \right] + s^*$$

Distributional Policy Improvement

Policy Improvement

- **1** Maximize $\frac{1}{\alpha}\mathbb{E}\left[(Z^{\pi}(x_0)-s)^{-}\right]+s$ w.r.t. s while keeping π fixed.
- ② Maximize $\frac{1}{\alpha}\mathbb{E}\left[(Z^{\pi}(x_0)-s)^{-}\right]+s$ w.r.t. π while keeping s fixed.
- **3** Recompute $\text{CVaR}_{\alpha}(Z^{\pi^*})$ where π^* is the new policy.

VaR-based Policy Improvement

Theorem

Let π be a fixed policy, $\alpha \in (0,1]$. By following policy π' from the following algorithm, we will improve $CVaR_{\alpha}(Z)$ in expectation:

$$CVaR_{lpha}(Z^{\pi}) \leq CVaR_{lpha}(Z^{\pi'})$$

VaR-based Policy Improvement

$$a = \arg \max_{a} \operatorname{CVaR}_{\alpha}(Z(x_0, a))$$

 $s = \operatorname{VaR}_{\alpha}(Z(x_0, a))$
Take action a observe x r

Take action a, observe x, r

while
$$x$$
 is not terminal **do**

$$a = \arg\max_{a} \mathbb{E} \left[(Z(x, a) - s)^{-} \right]$$

Take action a, observe x, r

end while

VaR-based heuristic

Problem

When using quantile discretization, we don't have access to the exact VaR.

Solution

Use linear interpolation as a heuristic.

CVaR Q-learning - Experiments

Outline

Approximate Q-learning

Problem

Q-learning is intractable for large state spaces.

Solution

Use approximate Q-learning.

- Formulate CVaR Q-learning update as a minimizing argument
- Use methods of convex optimization to find the optimal point

TD update \rightarrow loss function

Standard RL

$$Q(x, a) = (1 - \beta)Q(x, a) + \beta T Q(x, a)$$

$$\downarrow$$

$$\min_{\theta} \mathbb{E}\left[\left(Q_{\theta}(x, a) - T Q(x, a)\right)^{2}\right]$$

CVaR RL

$$V(x, a, y_i) = V(x, a, y_i) + \beta \mathbb{E}_{j} \left[1 - \frac{1}{y_i} \mathbb{1}_{(V(x, a, y_i) \ge \mathcal{T} d_j)} \right]$$

$$C(x, a, y_i) = (1 - \beta)C(x, a, y_i) + \beta \mathbb{E}_{j} \left[V(x, a, y_i) + \frac{1}{y_i} (r + \gamma d_j - V(x, a, y_i))^{-} \right]$$

$$\downarrow$$
????

Quantile loss

TD update \rightarrow loss function

VaR loss

$$\mathcal{L}_{\mathsf{VaR}} = \sum_{i=1}^{N} \mathop{\mathbb{E}}_{j} \left[(r + \gamma d_{j} - V_{i}(x, a))(y_{j} - \mathbb{1}_{(V_{i}(x, a) \geq r + \gamma d_{j})}) \right]$$

CVaR loss

$$\mathcal{L}_{\mathsf{CVaR}} = \sum_{i=1}^{N} \underset{j}{\mathbb{E}} \left[\left(V_i(x, a) + \frac{1}{y_i} \left(r + \gamma d_j - V_i(x, a) \right)^- - C_i(x, a) \right)^2 \right]$$

$$\mathcal{L} = \mathop{\mathbb{E}}\left[\mathcal{L}_{\mathsf{VaR}} + \mathcal{L}_{\mathsf{CVaR}}\right]$$

Deep CVaR Q-learning

- Model: Convolutional Neural Network
 - **1** Input: $84 \times 84 \times 4$
 - 2 Convolution: $8 \times 8 \times 32$ (stride 4)
 - 3 Convolution: $4 \times 4 \times 64$ (stride 2)
 - **4** Convolution: $3 \times 3 \times 32$ (stride 1)
 - Fully connected: 256 hidden units
 - **Output**: $|A| \times 100$
- Replay Memory
- Target network C'
- Optimizer: Adam (Stochastic Gradient Descent)

Deep CVaR Q-learning - Experiments

• Video: $\alpha = 1$

2 Video: $\alpha = 0.3$

Summary

Faster CVaR Value Iteration

- Polynomial \rightarrow linear time.
- Formally proved for increasing, unbounded distributions.
- Experimentally verified for general distributions.

CVaR Q-learning

- Sampling version of CVaR Value Iteration.
- Based on the distributional approach.
- Experimentally verified.

Oistributional Policy improvement

- Proved monotonic improvement for distributional RL.
- Used as a heuristic for extracting π^* from CVaR Q-learning.

Deep CVaR Q-learning

- TD update \rightarrow loss function.
- Experimentally verified in a deep learning context.

Future work

Theory

- CVaR Value Iteration General equivalence proof
- Q-learning convergence proof

Practice

- Larger state spaces
- Practical problems (e.g. finance)