

$Z' \rightarrow \mu\mu$ and Alignment/Misalignment

Jim Pivarski

Texas A&M University

27 August, 2010

► Tracker Alignment

- basic procedures have been mature since CRAFT
- studying weak modes through vertex constraints, invariant mass constraints, and comparison of collisions to cosmics
- \blacktriangleright discovered 10's of $\mu \rm m$ bows/kinks in sensors; adding non-rigid alignment parameters to fit them

Muon Alignment

- relative tracker/muon position established with track-based method, in good agreement with survey measurements
- track-based and hardware DT alignments are producing similar results: largest discrepancy is a 4 mm twist from one end of the barrel with respect to the other (13 m apart)

hardware barrel geometry used in offline reprocessing

 CSC alignment pieced together from beam-halo tracks, hardware disk-bending measurements, and tracks from the tracker to find the disks: mostly orthogonal measurements

- ▶ 50 pb⁻¹ scenario:
 - tracker: randomly misaligned by throwing Gaussian deviates
 - muon: simulated cosmic-ray followed by collisions alignment using real algorithms on Monte Carlo samples
- STARTUP used in current MC productions:
 - tracker: simulated cosmic-ray alignment using real algorithms
 - ▶ muon: simulated cosmic-ray alignment using real algorithms
 - weakly constrained modes in the real alignment are weakly constrained in this Monte Carlo scenario, but won't necessarily drift in the same direction with the same magnitude
- Tracker weak mode scenarios:
 - ▶ nine systematic distortions of an ideal tracker for studying the effects of potential weak modes on analyses

- ▶ IDEAL geometry is too optimistic, but a well-defined state of the system: resolution can't get any better than this
- ► STARTUP is a rough guide for how bad the geometry could be
 - uncertainties in geometry are primarily systematic
 - if we could identify the shape and magnitude of the errors, we would correct them in the real-data geometry
 - okay for planning analyses: "statistical reach with misalignment is X," but not for doing analyses "we compared IDEAL and STARTUP, so our uncertainty from alignment is X" (unless X is sub-dominant)
- ► An analysis driven by misalignment uncertainties may need to do tests with special geometries, produced using the latest information from alignment studies (example in this talk)

- ► Smearing ("high multipole moments"): some misalignment uncertainties are tightly localized; in any reasonable binning of physics quantities, their effect merely broadens the distribution
 - can be modeled in a misalignment scenario because patches of η , ϕ space form a statistical ensemble
 - examples: statistical errors, bows and kinks of tracker sensors, CSC chamber position uncertainties derived from comparison with photogrammetry
- ▶ Skewing ("low multipole moments"): others are uncertainties about large-scale twists or stretching of the system (tracker and muon); this biases distributions or smears them in a way that depends on kinematics
 - similar to "cosmic variance" in cosmology: only one sky
 - examples: Z-expansion and other weak modes of the tracker. twist uncertainty of muon barrel from the single comparison between track-based and hardware alignments

Example: muon barrel twist

Jim Pivarski 6/15

- Tracker alignment procedure is purely track-based, but in the muon system we have track-based (TB) and hardware (HW)
- ► The two methods independently "found" the muon chambers

 Diagram shows differences between geometries as exaggerated displacements in a wheel end-view:

▶ But the remaining differences are significant: see next page

Example: muon barrel twist

mm

DT wheel +2 $\delta x = (-2.5 \pm 2.1)$ mm

- ▶ 5-chamber groups from wheel −2 to wheel +2 seem to be coherently rotated: about 4 mm end-to-end
- barrel also compressed in z by about 4 mm end-to-end (less relevant for physics)
- $ightharpoonup \mathcal{O}(1.3 \text{ mm})$ individual-chamber variations

Histograms of $r\phi$ (local x) TB-minus-HW differences, separated by wheel

- ► 5-chamber groups from wheel −2 to wheel +2 seem to be coherently rotated: about 4 mm end-to-end
- ▶ barrel also compressed in z by about 4 mm end-to-end (less relevant for physics)
- $ightharpoonup \mathcal{O}(1.3 \text{ mm})$ individual-chamber variations
- Same trends in all four stations (if from the tracker, it would grow with radius)

- ► On the next few pages, I'll show the effect of this possible systematic misalignment on Z'
- Express its effect on curvature $\kappa = q/p_T$, which is both meaningful for physics and easy to relate to alignment errors:

$$\Delta\kappa\propto\Delta(r\phi)$$
 at a specified radius

In barrel station 1 (4.2 m from beamline), $\Delta\kappa \approx 0.1 \frac{c/\text{TeV}}{\text{mm}} \, \Delta(r\phi)$

 Studied the effect by twisting the IDEAL barrel geometry (no misalignment in endcap)

Example: muon barrel twist

 ${\sf Jim\ Pivarski} \quad 10/15$

Example: muon barrel twist Jim Pivarski 11/15

- ▶ In this plot, color scale is average $\Delta \kappa$ in c/TeV (we get to see the bias, but not the width of the distribution)
- ▶ Lines are contours of the 2-D fit result (bilinear ansatz)

Example: muon barrel twist Jim Pivarski 12/15

- ▶ Effect on Z' mass (quantity of interest is $(m_{\text{refit}} m_{\text{gen}})/m_{\text{gen}})$
- Key variables: $(\eta_{\text{lead}} \eta_{\text{sublead}})$ and q_{lead}

▶ 1-D distributions for Z' with $|\eta| < 1$, $m_{Z'} = 1.1$, 2, 3 TeV/ c^2

 Naturally, the tracker and muon alignment groups will continue their studies to improve resolutions and reduce uncertainties about biases

Physics-level tests

- \triangleright Split cosmics: compare κ of top and bottom halves of a reconstructed cosmic ray
 - ▶ CRAFT-08 with $p_T > 200 \text{ GeV}/c$ was sensitive to 0.6 c/TeV
 - relaxing impact parameter cuts and larger cosmics samples could increase reach to 0.1 c/TeV or better...
 - twist would show up as $\Delta \kappa = (0.13 \ c/\text{TeV}) \cot \theta$
- ightharpoonup Cosmics endpoint: distribution of cosmic rays ightharpoonup 0 as $\kappa
 ightharpoonup$ 0, so offset of the minimum of the distribution in κ indicates a bias
 - CRAFT-08 sensitive to 0.05 c/TeV
 - \triangleright can it be binned in cot θ ?
- ▶ Z mass constraint: most collisions tracks with $p_T > 200 \text{ GeV}/c$ come from boosted Z; starts to be sensitive at about 1 fb⁻¹ (backups)

- First, a question: will a detector resolution (or bounds on detector resolutions) be assumed in the peak-search fit?
 - ▶ if yes, then we need to minimize *uncertainty* in resolution
 - ▶ in either case, resolution must be made as narrow as possible
- Suppose that we still have a several-fold ambiguity, such as TB versus HW in the barrel (two distinct possibilities)
 - we could model the difference in MC with specialized scenarios, like I showed here, to understand the consequences of choosing the wrong one
 - this could be a systematic uncertainty
 - we could search for peaks with both real-data geometries, though that would reduce the statistical significance of the result in a complicated way
- Opinions?

- Most important issues in alignment to be aware of:
 - while local misalignments (smearing) are under control, the possibility of global distortions (skewing) is still significant
 - MC scenarios cannot encapsulate the latter
 - ▶ independent alignments in muon barrel differ by a systematic distortion, a twist and a Z-compression
 - we can quantify the error introduced by choosing the wrong one, but that's a systematic uncertainty, not a resolution
 - ▶ to know the resolution, we need to resolve the discrepancies between TB and HW alignment methods or measure it with physics-level tests
- ► How this relates to the Z' analysis workflow depends on whether the peak-search fit assumes knowledge of detector resolution or not

Backup: resolutions from Z

Jim Pivarski 16/15

- ▶ Track momentum scale and resolutions can be determined from $Z \to \mu\mu$ (AN-2010/059), but how sensitive is this technique to the muons relevant for Z'?
- ▶ The good news: most $p_T > 200 \text{ GeV}/c$ muons come from Z (below: 1 fb⁻¹ Zmumu_M20_CTEQ66-powheg GlobalMuons, both in plateau region of HLT_Mu9; gen-level MC@NLO looks the same)

- negligible background from Drell-Yan
- ansatz simplifies to Voigt with known mass and Lorentzian width
- only parameter: detector resolution
- ► IDEAL: 2.0 \pm 0.6 GeV/ c^2
- STARTUP: 3.4 \pm 1.0 GeV/ c^2

▶ Mass resolution (σ_m) depends primarily on resolution of muon momentum magnitudes (σ_{p_1}) and σ_{p_2} for leading (1) and sub-leading (2)

$${\sigma_m}^2 = {\sigma_{p_1}}^2 \left(\frac{\partial m}{\partial p_1} \right)^2 + {\sigma_{p_2}}^2 \left(\frac{\partial m}{\partial p_2} \right)^2 + \text{other parameters}$$

- ▶ Best to do deconvolution, but resolution of p_1 dominates because $\sigma_{p_1} \left| \frac{\partial m}{\partial p_1} \right| \gg \sigma_{p_2} \left| \frac{\partial m}{\partial p_2} \right| \text{ (because } \sigma_{p_1} \gg \sigma_{p_2} \text{)}$
- $ightharpoonup \frac{\partial m}{\partial p_1}$ is 0.05–0.20 (plot on right), so

uncertainty in σ_m	uncertainty in σ_{p_1}
0.6 GeV/ c^2	~4.6 GeV/ <i>c</i>
$1.0~{ m GeV}/c^2$	\sim 7.6 GeV/ c

Uncertainty in σ_{p_1} is about the same as σ_{p_1}

▶ 1 fb⁻¹ is just barely sensitive to σ_{p_1} (can be used as a sanity check)

