强化学习

第三讲: 动态规划

教师: 赵冬斌 朱圆恒 张启超

中国科学院大学 中国科学院自动化研究所

上一节课回顾

- 马尔可夫性
- 马尔可夫过程
- 马尔可夫奖励过程
- ■马尔可夫决策过程
- 策略与价值
- 最优化原理
- MDPs 扩展

$$V_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$
$$\pi_*(s) = \arg \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$

$$\begin{aligned} Q_*(s, a) &= \mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a \max_{a'} Q_*(s', a') \\ \pi_*(s) &= \arg\max_a Q_*(s, a) \end{aligned}$$

- 求解贝尔曼最优方程需要:
 - 1 求解非线性算子 max
 - 2 模型已知
 - 3 足够的计算空间

动态规划

动态规划 Dynamic Programming, DP

动态规划

通过把原问题分解为相对简单的子问题来求解复杂问题的方法

- 将复杂的问题分解为相对简单的子问题
- 求解子问题
- 根据子问题的解得出原问题解

DP 的两个适用条件

- 最优子结构性质: 问题最优解包含子问题的解也是子问题的 最优解
 - 也就是满足最优化原理,将问题划分成子问题
- 2 子问题重叠性质:使用递归算法自顶向下对问题进行求解, 每次产生的子问题并不总是新问题
 - 子问题重复出现多次
 - 保存子问题的首次计算结果, 再次需要时直接使用

DP 的两个适用条件

- 最优子结构性质:问题最优解包含子问题的解也是子问题的 最优解
 - 也就是满足最优化原理,将问题划分成子问题
- 2 子问题重叠性质:使用递归算法自顶向下对问题进行求解, 每次产生的子问题并不总是新问题
 - 子问题重复出现多次
 - 保存子问题的首次计算结果, 再次需要时直接使用
- 马尔可夫决策过程是满足以上两个属性
 - 贝尔曼方程具有递归形式
 - 价值函数可以保存和重复利用

价值迭代

$$V_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$

- lacksquare 贝尔曼最优方程的难点在于求解的 V_* 同时存在于非线性等式两边
- 价值迭代的基本思路:

$$V_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$

$$V(s')$$

- lacksquare 贝尔曼最优方程的难点在于求解的 V_* 同时存在于非线性等式两边
- 价值迭代的基本思路:
 - \blacksquare 对 V_* 定义一个估计函数 V

$$V_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$
$$V'(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V(s') \right)$$

- lacksquare 贝尔曼最优方程的难点在于求解的 V_* 同时存在于非线性等 式两边
- 价值迭代的基本思路:
 - 1 对 V_* 定义一个估计函数 V
 - 2 将估计函数代入方程右边,等式左边得到一个新函数 V
 - $\mathbf{3}$ V' 是对 V_* 更为准确的估计

$$V_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$
$$V'(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V(s') \right)$$

- lacksquare 贝尔曼最优方程的难点在于求解的 V_* 同时存在于非线性等式两边
- 价值迭代的基本思路:
 - 1 对 V_* 定义一个估计函数 V
 - 2 将估计函数代入方程右边,等式左边得到一个新函数 V
 - V 是对 V_* 更为准确的估计
 - 4 将 V 代入右式继续上述过程

价值迭代流程

1: 初始化一个函数 V_1 (e.g. $V_1(s) = 0, \forall s \in \mathcal{S}$)

2: **loop**

3: 根据已知的 V_k 计算一个新的函数

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_k(s') \right), \forall s \in \mathcal{S}$$

4: $k \leftarrow k+1$

5: end loop

价值迭代流程

1: 初始化一个函数 V_1 (e.g. $V_1(s) = 0, \forall s \in \mathcal{S}$)

2: **loop**

3: 根据已知的 V_k 计算一个新的函数

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_k(s') \right), \forall s \in \mathcal{S}$$

4: $k \leftarrow k+1$

5: end loop

收敛定理

$$\lim_{k \to \infty} V_k = V_*$$

$$v_{k+1}(s) \leftrightarrow s$$

$$a$$

$$v_{k}(s') \leftrightarrow s'$$

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_k(s') \right)$$

矩阵形式:
$$V_{k+1} = \max_{a \in \mathcal{A}} (\mathcal{R}^a + \gamma \mathcal{P}^a \mathcal{V}_k)$$

价值迭代算子

• 价值迭代定义一个以函数作为输入的算子 T, 对给定的函数 V_k 计算新的函数

$$V_{k+1}(s) = [\mathcal{T}(V_k)](s)$$

$$= \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_k(s') \right)$$

- T 称为 价值迭代算子
- 贝尔曼最优方程写成

$$V_*(s) = [\mathcal{T}(V_*)](s)$$

$$= \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$

价值迭代收敛性, $\gamma < 1$

■ **无穷范数** ∞ -norm: 用 $\mathbf{x} = (x_1, x_2, ..., x_n)$ 表示函数 x 在有限集合上各个元素的取值。函数的无穷范数等于

$$||x||_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$$

收缩算子

对于任意两个函数 f, g, 如果两个函数的误差经过一个算子 T 后被缩小, 那么算子称为<u>收缩算子</u> (contracting operator)

$$\|\mathcal{T}(f-g)\|_{\infty} < \|f-g\|_{\infty}$$

■ 定理: γ < 1 时, 价值迭代算子是一个收缩算子</p>

证明

$$\begin{split} & \left| \left[\mathcal{T}(u) \right](s) - \left[\mathcal{T}(v) \right](s) \right|, \quad \forall s \in \mathcal{S} \\ & = \left| \max_{a_1} \left(\mathcal{R}^{a_1} + \gamma \sum_{s'} \mathcal{P}^{a_1}_{ss'} u(s') \right) - \max_{a_2} \left(\mathcal{R}^{a_2} + \gamma \sum_{s'} \mathcal{P}^{a_2}_{ss'} v(s') \right) \right| \\ & \leq \max_{a} \left| \left(\mathcal{R}^a + \gamma \sum_{s'} \mathcal{P}^a_{ss'} u(s') \right) - \left(\mathcal{R}^a + \gamma \sum_{s'} \mathcal{P}^a_{ss'} v(s') \right) \right| \\ & = \gamma \max_{a} \left| \sum_{s'} \mathcal{P}^a_{ss'} \left(u(s') - v(s') \right) \right| \end{split}$$

$$(Triangle Inequality)$$

$$\leq \gamma \|u - v\|_{\infty} \qquad (\gamma < 1)$$

$$\Rightarrow \|\mathcal{T}(u-v)\|_{\infty} < \|u-v\|_{\infty}$$

■ 所以 T 是一个收缩算子

■ 从任意初始价值函数 V_1 出发,经过价值迭代计算的新函数 V_{k+1} 与最优价值函数之间的误差

$$||V_{k+1} - V_*||_{\infty} = ||\mathcal{T}V_k - \mathcal{T}V_*||_{\infty}$$

■ 从任意初始价值函数 V_1 出发,经过价值迭代计算的新函数 V_{k+1} 与最优价值函数之间的误差

$$||V_{k+1} - V_*||_{\infty} = ||\mathcal{T}V_k - \mathcal{T}V_*||_{\infty}$$

 $\leq \gamma ||V_k - V_*||_{\infty}$

■ 从任意初始价值函数 V_1 出发,经过价值迭代计算的新函数 V_{k+1} 与最优价值函数之间的误差

$$||V_{k+1} - V_*||_{\infty} = ||\mathcal{T}V_k - \mathcal{T}V_*||_{\infty}$$

$$\leq \gamma ||V_k - V_*||_{\infty}$$

$$\vdots$$

$$\leq \gamma^k ||V_1 - V_*||_{\infty}$$

价值迭代收敛性, $\gamma = 1$

- $\gamma = 1$ 时 T 不再是收缩的, 需要其它的证明方法. 大体思路:
 - 1 当初始函数 $V_1 \leq V_*$ 时, 价值迭代结果是单调递增的 $V_1 \leq V_2 \leq \cdots \leq V_k \leq V_*$
 - 2 当初始函数 $V_1 \geq V_*$ 时, 价值迭代结果是单调递减的 $V_1 \geq V_2 \geq \cdots \geq V_k \geq V_*$
 - 3 对于任意形状的初始函数 V_1 , 额外构造两个函数 $\underline{V}_1 = \min\{V_*, V_1\}$, $\overline{V}_1 = \max\{V_*, V_1\}$, 分别对三个初始函数进行价值迭代,每代结果都有 $\underline{V}_k \leq V_k \leq \overline{V}_k$, 所以 $V_k \to V_*$
- 有兴趣的同学参考
 - 1 Tamimi, A.A., F.L. Lewis, and M.A. Khalaf, Discrete-Time Nonlinear HJB Solution Using Approximate Dynamic Programming: Convergence Proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2008. 38(4): p. 943–949.
 - 2 Bertsekas, D.P., Value and Policy Iterations in Optimal Control and Adaptive Dynamic Programming. IEEE Transactions on Neural Networks and Learning Systems, 2017. 28(3): p. 500-509.

举例: 扫地机器人

- S: $\{S_1, S_2, \ldots, S_7\}$
- \blacksquare \mathcal{A} : $\{A_{left}, A_{right}\}$
- \mathcal{R} : $\mathcal{R}(S_1) = +1, \mathcal{R}(S_7) = +10, \mathcal{R}(S_i) = 0$
- G_0 : $r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$
- $\gamma = 0.7$

状态转移

$$s = S_2, \dots, S_6$$

$$\mathcal{P}^{a}_{ss'} = \begin{cases} 0.8 & (a = A_{left}, s' = s - 1) || (a = A_{right}, s' = s + 1) \\ 0.1 & s' = s \\ 0.1 & (a = A_{left}, s' = s + 1) || (a = A_{right}, s' = s - 1) \end{cases}$$

$$s = S_1$$

$$\mathcal{P}_{S_1,S_1}^{A_{left}} = 0.9, \ \mathcal{P}_{S_1,S_2}^{A_{left}} = 0.1$$

$$\mathcal{P}_{S_1,S_1}^{A_{right}} = 0.2, \ \mathcal{P}_{S_1,S_2}^{A_{right}} = 0.8$$

$$\bullet$$
 $s = S_7$

$$\mathcal{P}_{S_7,S_6}^{A_{left}} = 0.8, \ \mathcal{P}_{S_7,S_7}^{A_{left}} = 0.2$$

$$\mathcal{P}_{S_7,S_6}^{A_{right}} = 0.1, \ \mathcal{P}_{S_7,S_7}^{A_{right}} = 0.9$$

■ 初始化 $V_1(s) = 0$

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

■ 第
$$k = 1$$
 次迭代 $S_i \in \{S_2, \dots, S_6\}$.

$$V_2(S_j) = \max \left\{ \begin{array}{l} \mathcal{R}(S_j) + \gamma \left(\begin{array}{l} \mathcal{P}^{left}_{S_j,S_{j-1}} V_1(S_{j-1}) + \\ \mathcal{P}^{left}_{S_j,S_j} V_1(S_j) + \\ \mathcal{P}^{left}_{S_j,S_{j+1}} V_1(S_{j+1}) \end{array} \right) \quad \text{a=left} \\ \mathcal{R}(S_j) + \gamma \left(\begin{array}{l} \mathcal{P}^{right}_{S_j,S_{j-1}} V_1(S_{j-1}) + \\ \mathcal{P}^{right}_{S_j,S_j} V_1(S_j) + \\ \mathcal{P}^{right}_{S_j,S_i} V_1(S_{j+1}) \end{array} \right) \quad \text{a=right} \end{array} \right.$$

$$Y_1(S_{j+1})$$
 / $Y_1(S_{j-1})+$

$$\mathcal{R}(S_j) + \gamma \left(\begin{array}{c} \mathcal{P}_{S_j,S_j}^{right} V_1 \\ \mathcal{P}_{S_i,S_{i+1}}^{right} \end{array} \right)$$

$$\mathbf{a} = \mathsf{right}$$

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

$$V_2(S_j) = \max \left\{ \begin{array}{l} 0 + 0.7 \left(\begin{array}{c} 0.8 * 0 + \\ 0.1 * 0 + \\ 0.1 * 0 \end{array} \right) & \text{a=left} \\ 0 + 0.7 \left(\begin{array}{c} 0.1 * 0 + \\ 0.1 * 0 + \\ 0.8 * 0 \end{array} \right) & \text{a = right} \end{array} \right.$$

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

■ 第 k = 1 次迭代 3 S_1 .

$$V_2(S_1) = \max \left\{ \begin{array}{l} \mathcal{R}(S_1) + \gamma \left(\begin{array}{l} \mathcal{P}_{S_1,S_1}^{left} \, V_1(S_1) + \\ \mathcal{P}_{S_1,S_2}^{left} \, V_1(S_2) \end{array} \right) \qquad \text{a=left} \\ \mathcal{R}(S_1) + \gamma \left(\begin{array}{l} \mathcal{P}_{S_1,S_1}^{right} \, V_1(S_1) + \\ \mathcal{P}_{S_1,S_2}^{right} \, V_1(S_2) \end{array} \right) \qquad \text{a= right} \end{array} \right.$$

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

■ 第
$$k=1$$
 次迭代 3 S_1 , $V_2(S_1)=1$

$$V_2(S_1) = \max \left\{ \begin{array}{ll} 1 + 0.7 \left(\begin{array}{c} 0.9 * 0 + \\ 0.1 * 0 \end{array} \right) & \text{a=left} \\ \\ 1 + 0.7 \left(\begin{array}{c} 0.2 * 0 + \\ 0.8 * 0 \end{array} \right) & \text{a} = \text{right} \end{array} \right.$$

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

- 第 *k* = 1 次迭代
 - 4 S_7 ,

$$V_2(S_7) = \max \left\{ \begin{array}{l} \mathcal{R}(S_7) + \gamma \left(\begin{array}{c} \mathcal{P}_{S_7,S_6}^{left} V_1(S_6) + \\ \mathcal{P}_{S_7,S_7}^{left} V_1(S_7) \end{array} \right) \qquad \text{a=left} \\ \mathcal{R}(S_7) + \gamma \left(\begin{array}{c} \mathcal{P}_{S_7,S_6}^{right} V_1(S_6) + \\ \mathcal{P}_{S_7,S_7}^{right} V_1(S_7) \end{array} \right) \qquad \text{a = right} \end{array} \right.$$

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

4
$$S_7$$
, $V_2(S_7) = 10$

$$V_2(S_7) = \max \left\{ \begin{array}{ll} 10 + 0.7 \left(\begin{array}{c} 0.8*0+ \\ 0.2*0 \end{array} \right) & \text{a=left} \\ \\ 10 + 0.7 \left(\begin{array}{c} 0.1*0+ \\ 0.9*0 \end{array} \right) & \text{a} = \text{right} \end{array} \right.$$

价值迭代结果

V_k	S_1	S_2	S_3	S_4	S_5	S_6	S_7
k = 1	0	0	0	0	0	0	0
k=2	1	0	0	0	0	0	10

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

1
$$S_j \in \{S_2, \dots, S_6\},$$

$$V_3(S_j) = \max \left\{ \begin{array}{l} \mathcal{R}(S_j) + \gamma \left(\begin{array}{l} \mathcal{P}^{left}_{S_j,S_{j-1}} V_2(S_{j-1}) + \\ \mathcal{P}^{left}_{S_j,S_j} V_2(S_j) + \\ \mathcal{P}^{left}_{S_j,S_{j+1}} V_2(S_{j+1}) \end{array} \right) \quad \text{a=left} \\ \mathcal{R}(S_j) + \gamma \left(\begin{array}{l} \mathcal{P}^{right}_{S_j,S_{j-1}} V_2(S_{j-1}) + \\ \mathcal{P}^{right}_{S_j,S_j} V_2(S_j) + \\ \mathcal{P}^{right}_{S_j,S_j} V_2(S_j) + \\ \mathcal{P}^{right}_{S_j,S_j} V_2(S_{j+1}) \end{array} \right) \quad \text{a = right}$$

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

- 第 k = 2 次迭代
 - 2 S_1 ,

$$V_3(S_1) = \max \left\{ \begin{array}{l} \mathcal{R}(S_1) + \gamma \left(\begin{array}{c} \mathcal{P}_{S_1,S_1}^{left} V_2(S_1) + \\ \mathcal{P}_{S_1,S_2}^{left} V_2(S_2) \end{array} \right) \qquad \text{a=left} \\ \mathcal{R}(S_1) + \gamma \left(\begin{array}{c} \mathcal{P}_{S_1,S_1}^{right} V_2(S_1) + \\ \mathcal{P}_{S_1,S_2}^{right} V_2(S_2) \end{array} \right) \qquad \text{a = right} \end{array} \right.$$

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

- 第 k = 2 次迭代
 - 3 S_7 ,

$$V_3(S_7) = \max \left\{ \begin{array}{l} \mathcal{R}(S_7) + \gamma \left(\begin{array}{c} \mathcal{P}_{S_7,S_6}^{left} V_2(S_6) + \\ \mathcal{P}_{S_7,S_7}^{left} V_2(S_7) \end{array} \right) \qquad \text{a=left} \\ \mathcal{R}(S_7) + \gamma \left(\begin{array}{c} \mathcal{P}_{S_7,S_6}^{right} V_2(S_6) + \\ \mathcal{P}_{S_7,S_7}^{right} V_2(S_7) \end{array} \right) \qquad \text{a = right} \end{array} \right.$$

$$\begin{split} V_2(S_1) &= \max \left\{ \begin{array}{l} 1 + 0.7 \left(0.9 * 1 + 0.1 * 0 \right) & a = left \\ 1 + 0.7 \left(0.2 * 1 + 0.8 * 0 \right) & a = right \end{array} \right. = 1.63 \\ \\ V_2(S_2) &= \max \left\{ \begin{array}{l} 0 + 0.7 \left(0.8 * 1 + 0.1 * 0 + 0.1 * 0 \right) & a = left \\ 0 + 0.7 \left(0.1 * 1 + 0.1 * 0 + 0.8 * 0 \right) & a = right \end{array} \right. = 0.56 \\ \\ V_2(S_3, \dots, S_5) &= \max \left\{ \begin{array}{l} 0 + 0.7 \left(0.8 * 0 + 0.1 * 0 + 0.1 * 0 \right) & a = left \\ 0 + 0.7 \left(0.1 * 0 + 0.1 * 0 + 0.8 * 0 \right) & a = right \end{array} \right. = 0 \\ \\ V_2(S_6) &= \max \left\{ \begin{array}{l} 0 + 0.7 \left(0.8 * 0 + 0.1 * 0 + 0.1 * 10 \right) & a = left \\ 0 + 0.7 \left(0.1 * 0 + 0.1 * 0 + 0.8 * 10 \right) & a = right \end{array} \right. = 5.6 \\ \\ V_2(S_7) &= \max \left\{ \begin{array}{l} 10 + 0.7 \left(0.8 * 0 + 0.2 * 10 \right) & a = left \\ 10 + 0.7 \left(0.1 * 0 + 0.9 * 10 \right) & a = right \end{array} \right. = 16.3 \end{split}$$

价值迭代结果

V_k	S_1	S_2	S_3	S_4	S_5	S_6	S_7
k = 1	0	0	0	0	0	0	0
k=2	1	0	0	0	0	0	10
k = 3	1.63	0.56	0	0	0	5.6	16.3

价值迭代结果

V_k	S_1	S_2	S_3	S_4	S_5	S_6	S_7
k = 1	0	0	0	0	0	0	0
k=2	1	0	0	0	0	0	10
k = 3	1.63	0.56	0	0	0	5.6	16.3
k=4	2.0661	0.952	0.3136	0	3.136	9.52	20.661
k=5	2.3683	1.2456	0.5550	1.7781	5.5507	12.4561	23.6828
k = 6	2.5792	92 1.4523 1.1218 3.27		3.2717	7.4884	14.5229	25.7921
:	:	:	:	:	:	i.	:
k = 26	3.3063	3.2040	4.9096	7.7550	12.2673	19.4052	30.6951
k = 27	3.3073	3.2051	4.9108	7.7562	12.2684	19.4063	30.6963

- V函数一直在变化
- 变化误差小于一定阈值认为已经收敛

$$\begin{aligned} v_{27}(S_1) &= \max \left\{ \begin{array}{l} 1 + 0.7 \left(0.9 * 3.3073 + 0.1 * 3.2051\right) & a = left \\ 1 + 0.7 \left(0.2 * 3.3073 + 0.8 * 3.2051\right) & a = right \end{array} \right. \\ v_{27}(S_2) &= \max \left\{ \begin{array}{l} 0 + 0.7 \left(0.8 * 3.3073 + 0.1 * 3.2051 + 0.1 * 4.9108\right) & a = left \\ 0 + 0.7 \left(0.1 * 3.3073 + 0.1 * 3.2051 + 0.8 * 4.9108\right) & a = right \end{array} \right. \\ v_{27}(S_3) &= \max \left\{ \begin{array}{l} 0 + 0.7 \left(0.8 * 3.2051 + 0.1 * 4.9108 + 0.1 * 7.7562\right) & a = left \\ 0 + 0.7 \left(0.1 * 3.2051 + 0.1 * 4.9108 + 0.1 * 7.7562\right) & a = left \\ 0 + 0.7 \left(0.1 * 3.2051 + 0.1 * 4.9108 + 0.8 * 7.7562\right) & a = right \end{array} \right. \\ v_{27}(S_4) &= \max \left\{ \begin{array}{l} 0 + 0.7 \left(0.8 * 4.9108 + 0.1 * 7.7562 + 0.1 * 12.2684\right) & a = left \\ 0 + 0.7 \left(0.1 * 4.9108 + 0.1 * 7.7562 + 0.8 * 12.2684\right) & a = right \end{array} \right. \\ v_{27}(S_5) &= \max \left\{ \begin{array}{l} 0 + 0.7 \left(0.8 * 7.7562 + 0.1 * 12.2684 + 0.1 * 19.4063\right) & a = left \\ 0 + 0.7 \left(0.1 * 7.7562 + 0.1 * 12.2684 + 0.8 * 19.4063\right) & a = right \end{array} \right. \\ v_{27}(S_6) &= \max \left\{ \begin{array}{l} 0 + 0.7 \left(0.8 * 12.2684 + 0.1 * 19.4063 + 0.1 * 30.6963\right) & a = left \\ 0 + 0.7 \left(0.1 * 12.2684 + 0.1 * 19.4063 + 0.8 * 30.6963\right) & a = right \end{array} \right. \\ v_{27}(S_7) &= \max \left\{ \begin{array}{l} 10 + 0.7 \left(0.8 * 19.4063 + 0.2 * 30.6963\right) & a = left \\ 10 + 0.7 \left(0.1 * 19.4063 + 0.9 * 30.6963\right) & a = right \end{array} \right. \\ v_{27}(S_7) &= \max \left\{ \begin{array}{l} 10 + 0.7 \left(0.8 * 19.4063 + 0.2 * 30.6963\right) & a = left \\ 10 + 0.7 \left(0.1 * 19.4063 + 0.9 * 30.6963\right) & a = right \end{array} \right. \right. \\ v_{27}(S_7) &= \max \left\{ \begin{array}{l} 10 + 0.7 \left(0.8 * 19.4063 + 0.2 * 30.6963\right) & a = left \\ 10 + 0.7 \left(0.1 * 19.4063 + 0.9 * 30.6963\right) & a = right \end{array} \right. \right. \\ v_{27}(S_7) &= \max \left\{ \begin{array}{l} 10 + 0.7 \left(0.8 * 19.4063 + 0.2 * 30.6963\right) & a = left \\ 10 + 0.7 \left(0.1 * 19.4063 + 0.9 * 30.6963\right) & a = right \end{array} \right. \right. \\ v_{27}(S_7) &= \max \left\{ \begin{array}{l} 10 + 0.7 \left(0.1 * 19.4063 + 0.9 * 30.6963\right) & a = right \end{array} \right. \right. \\ v_{27}(S_7) &= \min \left\{ \begin{array}{l} 10 + 0.7 \left(0.1 * 19.4063 + 0.9 * 30.6963\right) & a = right \end{array} \right. \right. \\ v_{27}(S_7) &= \min \left\{ \begin{array}{l} 10 + 0.7 \left(0.1 * 19.4063 + 0.9 * 30.6963\right) & a = right \end{array} \right. \right. \\ v_{27}(S_7) &= \min \left\{ \begin{array}{l} 10 + 0.7 \left(0.1 * 19.4063 + 0.9 * 30.6963\right) & a = right \end{array} \right. \right. \\ v_{27}(S_7) &= \min \left\{ \begin{array}{l} 10 + 0.7 \left(0.1 * 19.4063$$

$$\pi_*(a|s) = \left\{ \begin{array}{ll} 1 & \text{ if } a = \arg\max_a \left(\mathcal{R}^a_s + \gamma \sum_{s'} \mathcal{P}^a_{ss'} \, V_*(s')\right) \\ 0 & \text{ otherwise} \end{array} \right.$$

■ 价值迭代找到的最优策略

	S_1	S_2	S_3	S_4	S_5	S_6	S_7
π^*	left	right	right	right	right	right	right

策略迭代

■ 价值迭代: 迭代价值函数, 最优策略从收敛的价值函数提取

$$V_1 \to V_2 \to \cdots \to V_\infty = V_* \to \pi_*$$

■ 价值迭代: 迭代价值函数, 最优策略从收敛的价值函数提取

$$V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_{\infty} = V_* \rightarrow \pi_*$$

■ 我们也可以迭代策略,策略收敛到最优策略 (策略迭代)

$$\pi_1 \to \pi_2 \to \cdots \to \pi_\infty = \pi_*$$

■ 价值迭代: 迭代价值函数, 最优策略从收敛的价值函数提取

$$V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_{\infty} = V_* \rightarrow \pi_*$$

■ 我们也可以迭代策略,策略收敛到最优策略 (策略迭代)

$$\pi_1 \to \pi_2 \to \cdots \to \pi_\infty = \pi_*$$

■ 中间过程会对策略计算它的价值

$$\pi_1 \to (V_{\pi_1}) \to \pi_2 \to (V_{\pi_2}) \to \cdots \to \pi_*$$

■ 策略 π 是状态到动作的一种分布

$$\pi(a|s) = \mathbb{P}[a_t = a|s_t = s]$$

■ 策略的价值 $V_{\pi}(s)$ 定义为从状态 s 出发, 在策略 π 作用下的期望回报

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$$

■ 贝尔曼期望方程

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

■ 矩阵形式

$$\mathcal{V}_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi}(\mathcal{V}_{\pi})$$

■ 方程的解

$$\mathcal{V}_{\pi} = (I - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

举例: 扫地机器人

■ 随机策略:机器人在所有位置上以相同的概率向左或向右移动

$$\pi(left|s) = 0.5, \quad \pi(right|s) = 0.5$$

 $\blacksquare S_1 \to S_1$

$$\mathcal{P}_{S_1,S_1}^{\pi} = \pi(left|S_1)\mathcal{P}_{S_1,S_1}^{left} + \pi(right|S_1)\mathcal{P}_{S_1,S_1}^{right}$$
$$= 0.5 * 0.9 + 0.5 * 0.2 = 0.55$$

■ 在随机策略下, 机器人的状态转移矩阵

$$\mathcal{P}^{\pi} = \begin{bmatrix} \mathcal{P}^{\pi}_{S_{1},S_{1}} & \dots & \mathcal{P}^{\pi}_{S_{1},S_{n}} \\ \vdots & \dots & \vdots \\ \mathcal{P}^{\pi}_{S_{n},S_{1}} & \dots & \mathcal{P}^{\pi}_{S_{n},S_{n}} \end{bmatrix}$$

$$= \begin{bmatrix} 0.55 & 0.45 & 0 & 0 & 0 & 0 & 0 \\ 0.45 & 0.1 & 0.45 & 0 & 0 & 0 & 0 \\ 0 & 0.45 & 0.1 & 0.45 & 0 & 0 & 0 \\ 0 & 0 & 0.45 & 0.1 & 0.45 & 0 & 0 \\ 0 & 0 & 0 & 0.45 & 0.1 & 0.45 & 0 \\ 0 & 0 & 0 & 0 & 0.45 & 0.1 & 0.45 \\ 0 & 0 & 0 & 0 & 0 & 0.45 & 0.1 & 0.45 \end{bmatrix}$$

- \mathfrak{Z} \mathfrak{B} : $\mathcal{R}(S_1) = +1, \mathcal{R}(S_7) = +10, \mathcal{R}(S_2) = \cdots = \mathcal{R}(S_6) = 0$
- $\mathbf{R}^{\pi} = [1, 0, 0, 0, 0, 0, 10]^{T}$
- 随机策略的价值函数

$$\mathcal{V}_{\pi} = (I - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi} = \begin{bmatrix} 2.1322 \\ 0.9883 \\ 0.7856 \\ 1.3311 \\ 3.1443 \\ 7.9520 \\ 20.3332 \end{bmatrix}$$

提升策略

■ 最优策略是由 V* 根据如下公式提取

$$\pi_*(s) = \mathbf{\mathcal{G}}(V_*) = \arg\max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$

提升策略

■ 最优策略是由 V* 根据如下公式提取

$$\pi_*(s) = \mathbf{\mathcal{G}}(V_*) = \arg\max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$

■ 同样的思路,从已知策略的价值 V_{π} 提取出 贪心策略

$$\pi'(s) = \mathcal{G}(V_{\pi}) = \arg\max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s')\right)$$

策略迭代

- 1: 给定一个初始策略 π_1 , k=1
- 2: loop
- 3: $\frac{$ 策略评估}{V_{\pi_k}} policy evaluation: 对当前策略 π_k 计算它的价值函数

$$V_{\pi_k}(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \dots | s_t = s, a_t \sim \pi_k(s_t)]$$
$$= \sum_a \pi_k(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_{\pi_k}(s')\right)$$

4: $_{\textstyle \hat{\mathbf{K}}}$ multiple policy improvement: 根据 V_{π_k} 提取贪心策略

$$\pi_{k+1}(s) = \arg\max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_{\pi_k}(s') \right)$$

- 5: $k \leftarrow k+1$
- 6: end loop

策略迭代收敛性

- 考虑确定性的策略 $a = \pi(s)$
- 从已知的策略价值 $V_{\pi}(s)$ 提取贪心策略

$$\begin{aligned} \pi'(s) &= \arg\max_{a \in \mathcal{A}} (\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_{\pi}(s')) \\ &= \arg\max_{a \in \mathcal{A}} Q_{\pi}(s, a) \end{aligned}$$

■ 上述过程提升了 s 的一步期望回报

$$Q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} Q_{\pi}(s, a) \ge Q_{\pi}(s, \pi(s)) = V_{\pi}(s)$$

■ 展开得到

$$V_{\pi}(s_{t}) \leq Q_{\pi}(s_{t}, \pi'(s_{t}))$$

$$= \mathbb{E}[r_{t+1} + \gamma V_{\pi}(s_{t+1}) | a_{t} = \pi'(s_{t}), a_{k} = \pi(s_{k}), k > t]$$

$$= \mathcal{R}(s_{t}, \pi'(s_{t})) + \gamma \sum_{s_{t+1}} \mathcal{P}_{s_{t}s_{t+1}}^{\pi'} V_{\pi}(s_{t+1})$$

其中
$$\mathcal{P}_{s_t,s_{t+1}}^{\pi'} = \mathbb{P}[s_{t+1}|s_t, a_t = \pi'(s_t)]$$

■ 继续对 $V_{\pi}(s_{t+1})$ 重复策略提升

$$V_{\pi}(s_{t}) \leq \mathcal{R}(s_{t}, \pi'(s_{t})) + \gamma \sum_{s_{t+1}} \mathcal{P}_{s_{t}s_{t+1}}^{\pi'} V_{\pi}(s_{t+1})$$

$$\leq \mathcal{R}(s_{t}, \pi'(s_{t})) + \gamma \sum_{s_{t+1}} \mathcal{P}_{s_{t}s_{t+1}}^{\pi'} \Big[\mathcal{R}(s_{t+1}, \pi'(s_{t+1})) + \gamma \sum_{s_{t+1}} \mathcal{P}_{s_{t+1}s_{t+2}}^{\pi'} V_{\pi}(s_{t+2}) \Big]$$

$$\vdots$$

$$\leq \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \dots | a_{k} = \pi'(s_{k}), k \geq t]$$

$$= V_{\pi'}(s_{t})$$

- ■新的策略优于旧的策略
- 上述结论同样适用于随机策略

- $V_{\pi_1} \leq V_{\pi_2} \leq \cdots \leq V_{\pi_k} \leq V_*$, 单调递增有上界,所以收敛
- 当策略不再变化时

$$\pi_{\infty}(s) = \arg \max_{a \in \mathcal{A}} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} V_{\pi_{\infty}}(s') \right)$$

■ 满足贝尔曼最优方程

$$V_{\pi_{\infty}}(s) = \sum_{a} \pi_{\infty}(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi_{\infty}}(s') \right)$$
$$= \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi_{\infty}}(s') \right)$$

■ 因此 $V_{\pi_{\infty}} = V_*, \pi_{\infty} = \pi_*$

举例: 扫地机器人

1
$$\pi_1(left|s) = 0.5, \quad \pi_1(right|s) = 0.5$$

$$V_{\pi_1} = [2.132, 0.988, 0.786, 1.331, 3.144, 7.952, 20.333]^T$$

$$3 \pi_2(s) = \arg\max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_{\pi_1}(s') \right)$$

$$\pi_2(S_1) = \arg\max \left\{ \begin{array}{l} 1+0.7 \left(0.9*2.1322+0.1*0.9883\right) & a = left \\ 1+0.7 \left(0.2*2.1322+0.8*0.9883\right) & a = right \end{array} \right.$$

$$\pi_2(S_2) = \arg\max \left\{ \begin{array}{l} 0+0.7 \left(0.8*2.1322+0.1*0.9883+0.1*0.7856\right) & a = left \\ 0+0.7 \left(0.1*2.1322+0.1*0.9883+0.8*0.7856\right) & a = left \\ 0+0.7 \left(0.1*2.1322+0.1*0.9883+0.8*0.7856\right) & a = right \end{array} \right.$$

$$\pi_2(S_3) = \arg\max \left\{ \begin{array}{l} 0+0.7 \left(0.8*0.9883+0.1*0.7856+0.1*1.3311\right) & a = left \\ 0+0.7 \left(0.1*0.9883+0.1*0.7856+0.8*1.3311\right) & a = right \end{array} \right.$$

$$\pi_2(S_4) = \arg\max \left\{ \begin{array}{l} 0+0.7 \left(0.8*0.7856+0.1*1.3311+0.1*3.1443\right) & a = left \\ 0+0.7 \left(0.1*0.7856+0.1*1.3311+0.1*3.1443\right) & a = right \end{array} \right.$$

$$\pi_2(S_5) = \arg\max \left\{ \begin{array}{l} 0+0.7 \left(0.8*0.7856+0.1*1.3311+0.1*3.1443\right) & a = right \\ 0+0.7 \left(0.1*0.7856+0.1*1.3311+0.8*3.1443\right) & a = right \end{array} \right.$$

$$\pi_2(S_5) = \arg\max \left\{ \begin{array}{l} 0+0.7 \left(0.8*1.3311+0.1*3.1443+0.1*7.9520\right) & a = left \\ 0+0.7 \left(0.1*1.3311+0.1*3.1443+0.8*7.9520\right) & a = right \end{array} \right.$$

$$\pi_2(S_6) = \arg\max \left\{ \begin{array}{l} 0+0.7 \left(0.8*3.1443+0.1*7.9520+0.1*20.3332\right) & a = left \\ 0+0.7 \left(0.1*3.1443+0.1*7.9520+0.8*20.3332\right) & a = left \\ 0+0.7 \left(0.1*3.1443+0.1*7.9520+0.8*20.3332\right) & a = left \\ 10+0.7 \left(0.1*7.9520+0.9*20.3332\right) & a = left \\ 10+0.7 \left(0.1*7.9520+0.9*20.3332\right) & a = right \end{array} \right.$$

策略迭代结果

π_k	1	2	3	4
S_1	left(0.5)/right(0.5)	left	left	left
S_2	left(0.5)/right(0.5)	left	right	right
S_3	left(0.5)/right(0.5)	right	right	right
S_4	left(0.5)/right(0.5)	right	right	right
S_5	left(0.5)/right(0.5)	right	right	right
S_6	left(0.5)/right(0.5)	right	right	right
S_7	left(0.5)/right(0.5)	right	right	right
V_{π_k}	1	2	3	
S_1	2.1322	3.1279	3.3096	
S_2	0.9883	2.2476	3.2078	
S_3	0.7856	4.8376	4.9135	
S_4	1.3311	7.7529	7.7589	
S_5	3.1443	12.2707	12.2712	
S_6	7.9520	19.4090	19.4091	
S_7	20.3332	30.6990	30.6990	

价值迭代结果

价值函数和对应的贪心策略

V_k	1	2	3	4	5	6	7	8	9	 27
S_1	0	1	1.63	2.066	2.368	2.579	2.727	2.831	2.908	3.307
S_2	0	0	0.56	0.952	1.246	1.452	1.624	1.781	1.905	3.205
S_3	0	0	0	0.314	0.555	1.122	2.012	2.775	3.361	4.911
S_4	0	0	0	0	1.778	3.272	4.501	5.432	6.112	7.756
S_5	0	0	0	3.136	5.551	7.488	8.886	9.888	10.598	12.268
S_6	0	0	5.6	9.52	12.456	14.523	15.984	17.010	17.729	19.406
S_7	0	0	16.3	20.661	23.683	25.792	27.266	28.296	29.017	30.696
π_k	1	2	3	4	5	6	7	8	9	 27
S_1	right	left	left	left	left	left	left	left	left	left
S_2	right	left	left	left	left	left	left	left	right	right
S_3	right	right	left	left	right	right	right	right	right	right
S_4	right	right	right	right	right	right	right	right	right	right
S_5	right	right	right	right	right	right	right	right	right	right
S_6	right	right	right	right	right	right	right	right	right	right
S_7	right	right	right	right	right	right	right	right	right	right

■ 价值迭代

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{k}(s') \right)$$

■ 策略迭代

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$
$$\pi'(s) = \arg \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

■ 价值迭代

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_k(s') \right)$$

■ 只在收敛得到 V_{*} 后计算 π^{*}, 中间过程不产生策略

■ 策略迭代

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$
$$\pi'(s) = \arg \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

 \blacksquare 每次迭代开始时给定一个 π, 结束时产生一个新 π'

■ 价值迭代

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_k(s') \right)$$

- 只在收敛得到 V_{*} 后计算 π^{*}, 中间过程不产生策略
- 涉及赋值操作, 计算量小, $\mathcal{O}(|\mathcal{S}|^2|\mathcal{A}|)$
- 策略迭代

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$
$$\pi'(s) = \arg \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

- 每次迭代开始时给定一个 π, 结束时产生一个新 π'
- 求解方程, 计算量大, 矩阵求逆 $\mathcal{O}(|\mathcal{S}|^3)$, 策略提升 $\mathcal{O}(|\mathcal{S}|^2|\mathcal{A}|)$

■ 价值迭代

$$V_{k+1}(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_k(s') \right)$$

- 只在收敛得到 V_{*} 后计算 π^{*}, 中间过程不产生策略
- 涉及赋值操作, 计算量小, O(|S|²|A|)
- 通常迭代次数多
- 策略迭代

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$
$$\pi'(s) = \arg \max_{a} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

- \blacksquare 每次迭代开始时给定一个 π , 结束时产生一个新 π'
- 求解方程, 计算量大, 矩阵求逆 $\mathcal{O}(|\mathcal{S}|^3)$, 策略提升 $\mathcal{O}(|\mathcal{S}|^2|\mathcal{A}|)$
- 通常迭代次数少

价值迭代次数上限

$$||V_k - V_*||_{\infty} \le \gamma^{k-1} ||V_1 - V_*||_{\infty}$$

- 假设初始 $V_1(s) = 0, \forall s \in \mathcal{S}$
- 收敛阈值 ϵ , 即 $\|V_k V_*\|_{\infty} \le \epsilon$ 时认为收敛到 V_*

$$\gamma^{k-1} \| V_1 - V_* \|_{\infty} \le \epsilon$$

$$\Rightarrow k \ge 1 + \log_{\gamma} \frac{\epsilon}{\| V_* \|_{\infty}}$$

■ e.g. $\max V_*(s) = 10, \gamma = 0.95, \epsilon = 0.001, k \ge 180.56$

策略迭代次数上限

- 策略迭代收敛时策略不再变化
- 迭代的次数不超过 MDP 的最大 (确定性) 策略数量

$$\pi_1 \to \pi_2 \to \cdots \to \pi_k = \pi_*$$

$$k \le |\mathcal{A}|^{|\mathcal{S}|}$$

■ e.g.
$$|\mathcal{A}| = 2, |\mathcal{S}| = 10, k \le 2^{10} = 1024$$

策略迭代次数上限

- 策略迭代收敛时策略不再变化
- 迭代的次数不超过 MDP 的最大 (确定性) 策略数量

$$\pi_1 \to \pi_2 \to \cdots \to \pi_k = \pi_*$$

$$k \le |\mathcal{A}|^{|\mathcal{S}|}$$

■ e.g.
$$|\mathcal{A}| = 2$$
, $|\mathcal{S}| = 10$, $k \le 2^{10} = 1024$

动态规划总结

$$V_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a V_*(s') \right)$$

- 动态规划: 价值迭代/策略迭代
 - 通过迭代有效求解原始问题中非线性 max 算子
 - 依赖系统模型 R, P
 - 足够的计算空间记录每个状态的函数值
 - 价值迭代 V(s)
 - 策略迭代 $V_{\pi}(s)$, $\pi(s)$

■ 同样可以将动态规划用于基于动作 -价值函数的贝尔曼最优 方程

$$Q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a \max_{a'} Q_*(s', a')$$

- 基于 Q 函数的价值迭代
 - $lacksymbol{\bullet}$ 初始化 Q_1 , (e.g. $Q_1(s,a)=0, \forall s\in\mathcal{S}, \forall a\in\mathcal{A}$)
 - 迭代计算新的 Q 函数

$$Q_{k+1}(s, a) = \mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a \max_{a'} Q_k(s', a')$$

49 / 66

■ 同样可以将动态规划用于基于动作 -价值函数的贝尔曼最优 方程

$$Q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s'} \mathcal{P}_{ss'}^a \max_{a'} Q_*(s', a')$$

- 基于 Q 函数的策略迭代
 - 给定一个策略 π₁
 - 策略评估: 计算 π_k 的动作 -价值函数

$$Q_{\pi_k}(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \sum_{a' \in \mathcal{A}} \pi_k(a'|s') Q_{\pi_k}(s', a')$$

■ 策略提升: 根据 Q_{π_k} 提取出新的策略

$$\pi_{k+1}(s) = \arg\max_{a \in \mathcal{A}} Q_{\pi_k}(s, a)$$

迭代策略评估

策略评估

■ 计算给定策略的价值, 求解贝尔曼期望方程

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

■ 矩阵形式求解

$$\mathcal{V}_{\pi} = \left(I - \gamma \mathcal{P}^{\pi}\right)^{-1} \mathcal{R}^{\pi}$$

■ 不足: 矩阵求逆, O(|S|³)

1 矩阵很大: 计算量大

2 矩阵稀疏:结果不一定准确

策略评估

■ 计算给定策略的价值, 求解贝尔曼期望方程

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s'} \mathcal{P}_{ss'}^{a} V_{\pi}(s') \right)$$

■ 矩阵形式求解

$$\mathcal{V}_{\pi} = \left(I - \gamma \mathcal{P}^{\pi}\right)^{-1} \mathcal{R}^{\pi}$$

不足: 矩阵求逆, O(|S|³)

1 矩阵很大: 计算量大

2 矩阵稀疏:结果不一定准确

- 满足动态规划条件
 - 原问题包含子问题
 - 子问题重复出现
- ■可以使用迭代方法求解

迭代策略评估

■ 初始化一个价值函数 V₁

$$V_{l+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_l(s') \right)$$

 \blacksquare 收敛到真实价值函数 V_{π}

迭代策略评估收敛性

■ 定义贝尔曼期望算子 T^π

$$\mathcal{T}^{\pi}(v) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v$$

ullet 该算子是 γ -收缩的, 经过该算子两个函数的距离变为原来的 γ 倍

$$\|\mathcal{T}^{\pi}(u) - \mathcal{T}^{\pi}(v)\|_{\infty} = \|(\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} u) - (\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v)\|_{\infty}$$

$$= \|\gamma \mathcal{P}^{\pi}(u - v)\|_{\infty}$$

$$\leq \|\gamma \mathcal{P}^{\pi}\|u - v\|_{\infty}\|_{\infty}$$

$$\leq \gamma \|u - v\|_{\infty}$$

 \blacksquare 所以迭代策略评估收敛到 V_{π}

举例: 扫地机器人

■ 机器人在所有位置上以相同的概率向左或向右移动

$$\pi(left|s) = 0.5, \quad \pi(right|s) = 0.5$$

■ 矩阵求解价值函数

 $V_{\pi} = [2.1322, 0.9883, 0.7856, 1.3311, 3.1443, 7.9520, 20.3332]^{T}$

迭代策略评估计算结果

V_l	S_1	S_2	S_3	S_4	S_5	S_6	S_7
l=1	0	0	0	0	0	0	0
l=2	1	0	0	0	0	0	10
l=3	1.385	0.315	0	0	0	3.15	13.85
l=4	1.6324	0.4583	0.0992	0	0.9922	4.5832	16.3245
l=5	1.7729	0.5776	0.1513	0.3438	1.5132	5.7756	17.7287
l=6	1.8645	0.6465	0.3008	0.5484	2.0335	6.4655	18.6448
:	:	:	:	:	:	:	:
l = 22	2.1298	0.9858	0.7829	1.3282	3.1411	7.9487	20.3297
l = 23	2.1305	0.9865	0.7837	1.3290	3.1421	7.9497	20.3308
v_{π}	2.1322	0.9883	0.7856	1.3311	3.1443	7.9520	20.3332

- $|V_l V_{\pi}|$ 不断减小, 但误差一直存在
- 当误差小于一定阈值后认为收敛

广义策略迭代

- 考虑使用 迭代策略评估的策略迭代 过程
 - 策略提升: 已知策略价值 V_{π_k} , 提取贪心策略 π_{k+1}

$$\pi_{k+1}(s) = \arg\max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_{\pi_k}(s') \right)$$

$$\pi_{k+1} = \mathcal{G}(V_{\pi_k})$$

■ 迭代策略评估: 以 $V_0 = V_{\pi_k}$ 作为初始价值函数,做 无限次 迭代策略评估, 计算 π_{k+1} 的价值 $V_{\pi_{k+1}}$

$$V_{l+1}(s) = \sum_{a \in \mathcal{A}} \pi_{k+1}(a|s) \Big(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_l(s') \Big)$$

$$V_{\pi_{k+1}} = \left(\mathcal{T}^{\pi_{k+1}}\right)^{\infty} (V_{\pi_k})$$

■ 价值迭代拆解成两个步骤:

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_k(s') \right)$$

■ 根据 Vk 提取贪心策略

$$\pi_{k+1} = \mathcal{G}(V_k)$$

■ 对 V_k 做 一次 迭代策略评估 $(T^{\pi_{k+1}}$ 算子)

$$V_{k+1} = \mathcal{T}^{\pi_{k+1}}(V_k)$$

■ 价值迭代拆解成两个步骤:

$$V_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_k(s') \right)$$

■ 根据 Vk 提取贪心策略

$$\pi_{k+1} = \mathcal{G}(V_k)$$

■ 对 V_k 做 一次 选代策略评估 $(T^{\pi_{k+1}}$ 算子)

$$V_{k+1} = \mathcal{T}^{\pi_{k+1}}(V_k)$$

在无限次和一次之间, 是否可以存在只做 n 次的迭代评估?

广义策略迭代 Generalized Policy Iteration

1: 给定一个价值函数 V_1 . k=1

2: loop

3: 策略提升:根据 V_k 提取贪心策略

$$\pi_{k+1}(s) = \arg\max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_k(s') \right)$$

4: <u>迭代策略评估</u>: 令 $V_{k,1}=V_k$,做 n 次 $T^{\pi_{k+1}}$ 迭代策略评估 for $l=1,\ldots,n$

$$V_{k,l+1}(s) = \sum_{a \in \mathcal{A}} \pi_{k+1}(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a V_{k,l}(s') \right)$$

$$V_{k+1} = V_{k,n+1}$$

5: $k \leftarrow k+1$

6: end loop

GPI 收敛性

- $\blacksquare k \to \infty, V_k \to V_*$
- 但是 GPI 即不具有 γ-收缩性, 也不满足单调性
- 理论分析比价值迭代和策略迭代更加复杂
- 具体收敛定理参考
 - B. Scherrer, M. Ghavamzadeh, V. Gabillon, et al. Approximate modified policy iteration, in Proceedings of the 29th International Coference on International Conference on Machine Learning. Omnipress, 2012, pp. 1889–1896.

维数灾

动态规划计算复杂度

- 价值迭代: 寻找最优价值函数
 - lacksquare $\mathcal{O}(\mathcal{S}^2\mathcal{A})$ per iteration
- 策略评估: 固定策略, 计算价值
 - lacksquare $\mathcal{O}(\mathcal{S}^3)$
- 策略迭代: 寻找最优策略 (策略评估 + 策略提升)
 - lacksquare $\mathcal{O}(\mathcal{S}^3+\mathcal{S}^2\mathcal{A})$ per iteration

维数灾

- 动态规划的计算复杂度与状态数量呈 多项式关系
- 但是许多问题拥有巨大的状态数量, e.g. 与状态维数呈指数型增长
- Bellman 称之为维数灾 "the curse of dimensionality"
- 通常情况,传统动态规划只能解决几百万个状态以下的问题
- 在未来的课程里我们会介绍如何解决大规划或连续空间的 MDPs 问题

价值迭代
$$V_{k+1}(s) = \max_{a} \left(\frac{\mathcal{R}_{s}^{a}}{\mathcal{R}_{s}^{a}} + \gamma \sum_{s'} \frac{\mathcal{P}_{ss'}^{a}}{\mathcal{V}_{k}(s')} \right)$$
 策略评估
$$V_{\pi}(s) = \sum_{a} \pi(a|s) \left(\frac{\mathcal{R}_{s}^{a}}{\mathcal{R}_{s}^{a}} + \gamma \sum_{s'} \frac{\mathcal{P}_{ss'}^{a}}{\mathcal{V}_{s}(s')} \right)$$
 贪心策略
$$\pi'(s) = \arg\max_{a} \left(\frac{\mathcal{R}_{s}^{a}}{\mathcal{R}_{s}^{a}} + \gamma \sum_{s'} \frac{\mathcal{P}_{ss'}^{a}}{\mathcal{V}_{ss'}} V(s') \right)$$

■ 动态规划要求

- 模型已知: 奖励函数 R 和状态转移函数 P
- 更新繁琐:每次迭代即使是更新一个状态的价值也要遍历整个 后继状态和动作空间

基于样本更新

- 使用智能体从环境观测的 <u>样本奖励和状态转移</u> $\langle s_t, a_t, r_{t+1}, s_{t+1} \rangle$ 更新价值或策略
- 好处包括:
 - 无模型: 不需要预先 MDP 的模型信息
 - 只在样本点上更新, 避免更新整个状态空间, 解决维数灾问题
 - lacksquare 每次更新的计算量是固定, 与后继的状态空间 $n=|\mathcal{S}|$ 无关

总结

动态规划

价值迭代

策略迭代

迭代策略评估

广义策略迭代

维数灾