Homework 1

A PREPRINT

Dan Chang*

Department of Mechanical Engineering University of Wisconsin Madison

November 2, 2020

1 Problem A

Figure 1: Problem A (a)

^{*}ychang253@wisc.edu

(b)	why n*	EN?
	A= 7	all eigenvalues of A are equal
		p(a) are concentric cirdes
		eigenvalues are the sam p
	the number	, of teverious Krequired to reach a desire
	to levance	of teverions Krequired to reach a desired $E \times 100$ (E) JK
	- distinct	eigenvalues Nd SN it doesn'te ally produces exact solution. but it doesn'te N to Peach a tolevance &
	- W rdeally produces exact solution. but	
	reguire	e N to Hach a tolerance E

Figure 2: Problem A (b) i.

Figure 3: Problem A (b) ii.

Figure 4: Problem A (c)

A d)
$$P_{n+1} = Y_{n+1} + \beta_n P_n$$

 $= Y_n - \alpha_n A P_n + \beta_n P_n$
 $= P_n - \beta_{n+1} P_{n-1} - \alpha_n A P_n + \beta_n P_n$
 $= (1+\beta_n) P_n - \alpha_n A P_n - \beta_{n+1} P_{n-1}$

Figure 5: Problem A (d)

Figure 6: Problem A (e)

Figure 7: Problem A (f) i. and ii.

Figure 8: Problem A (f) iii. and iv.

Figure 9: Problem A (g) i.

Figure 10: Problem A (g) ii.

Figure 11: Problem A (g) iii.

Figure 12: Problem A (g) iv. and v.

2 Problem B

The smallest value of N is 100 to make sure the uniform norm within 10^{-2} .

Double click HW2.exe in the folder of HW2/x64/Release. Two function, ErrorOfLinearInterpolation and ErrorVsGridSpacing2DWave, will be executed. Then result will be displayed on screen, shown as Figure 13. (Github repository is https://github.com/ychang253/HW2.git)

```
Problem B, N=100 , Error =0.00965511

Error beteen grid =511 and 1023 is 3.23242e-05

Error beteen grid =255 and 1023 is 0.000167077

Error beteen grid =127 and 1023 is 0.00074921
```

Figure 13: Screen output

3 Problem C

3.1 (a)

For $n+1 \geq 2$.

$$U_{i,j}^{n+1} = 2U_{i,j}^{n} - U_{i,j}^{n-1} + \frac{\Delta t^{2}}{h^{2}} (U_{i-1,j}^{n} + U_{i+1,j}^{n} + U_{i,j-1}^{n} + U_{i,j+1}^{n} - 4U_{i,j}^{n})$$

For n+1=1. To know $U_{i,j}^{-1}$ by the relation: $\frac{U_{i,j}^{1}-U_{i,j}^{-1}}{2\Delta t}=f(x)f(y)$. Then the $U_{i,j}^{1}$ can be determined.

$$U_{i,j}^{1} = U_{i,j}^{0} + f(x)f(y)\Delta t + \frac{\Delta t^{2}}{2h^{2}}(U_{i-1,j}^{0} + U_{i+1,j}^{0} + U_{i,j-1}^{0} + U_{i,j+1}^{0} - 4U_{i,j}^{0})$$

Comparing to the result of reference grid 1023×1023 at time = 1 sec, the log-log plot of the error vs. grid spacing is shown as Figure 14. The slope is close to 2 meaning current method is second-order accurate. Simulation result of time = 1 s is shown as Figure 15.

Figure 14: Error vs. Grid spacing

Figure 15: Simulation result at time=1s

3.2 (b)

$$y''(t) = \lambda y$$

$$y^{n+1} - (2 + \lambda \Delta t^2)y^n + y^{n-1} = 0$$

$$\rho^2 - (2 + \lambda \Delta t^2)\rho + 1 = 0$$

$$\rho = (1 + \frac{\lambda \Delta t^2}{2}) \pm \sqrt{(1 + \frac{\lambda \Delta t^2}{2})^2 - 1}$$

If we want $|\rho| \le 1$, then $\operatorname{Im}((1+\frac{\lambda\Delta t^2}{2})) = 0$ and $-1 \le \operatorname{Re}((1+\frac{\lambda\Delta t^2}{2})) \le 1$, and finally we can get $-4 \le \lambda\Delta t^2 \le 0$. Plot in complex plane is shown as Figure 16.

Figure 16: Stability region

3.3 (c)

Method of line

$$U'(t) = AU(t)$$

Since A is 2D Laplacian, $Max(\lambda_A) = \frac{-8}{\Delta x^2}$, conbinate with result from (a), then CFL condition $\frac{\Delta t}{\Delta x} \leq \sqrt{\frac{1}{2}}$ is obtained.

3.4 (d)

$$U^n = e^{i(k_1 j_1 \Delta x + k_2 j_2 \Delta x - \omega n \Delta t)}$$

$$\frac{4}{\Delta t^2}\sin^2(\frac{\omega\Delta t}{2}) = \frac{4}{\Delta x^2}(\sin^2(\frac{k_1\Delta x}{2}) + \sin^2(\frac{k_2\Delta x}{2}))$$

$$\sin^2(\frac{\omega\Delta t}{2}) = \frac{\Delta t^2}{\Delta x^2} (\sin^2(\frac{k_1\Delta x}{2}) + \sin^2(\frac{k_2\Delta x}{2}))$$

For real ω , right hand side must less than 1, so $\frac{2\Delta t^2}{\Delta x^2} \leq 1$. Finally, CFL condition $\frac{\Delta t}{\Delta x} \leq \sqrt{\frac{1}{2}}$ is the same as result from (b).

3.5 (e)

$$u_{tt} + \frac{1}{12}\Delta t^2 u_{tttt} + O(\Delta t^4) = u_{xx} + \frac{1}{12}\Delta x^2 u_{xxxx} + u_{yy} + \frac{1}{12}\Delta x^2 u_{yyyy} + O(\Delta x^4)$$

$$u_{tttt} = u_{xxxx} + u_{yyyy} + 2u_{xxyy}$$

Modified equation will be:

$$u_{tt} = u_{xx} + u_{yy} + \frac{1}{12}(\Delta x^2 - \Delta t^2)(u_{xxxx} + u_{yyyy}) - \frac{1}{6}\Delta t^2 u_{xxyy}$$

Fourier series : If $u_{tt} = u_{xx}$, then $\hat{u}_{tt}(\xi,t) = -\xi^2 \hat{u}(\xi,t)$ and $\hat{u}(\xi,t) = e^{-i\xi t} \hat{u}_0(\xi,t)$. If $u_{tt} = u_{xxxx}$, then $\hat{u}_{tt}(\xi,t) = -\xi^4 \hat{u}(\xi,t)$ and $\hat{u}(\xi,t) = e^{-i\xi^2 t} \hat{u}_0(\xi,t)$.

Since modified equation u_{tt} is a combination of u_{xx} and u_{xxx} , then the solution will be in this form

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{u}_0(\xi,t) e^{-i\xi(x - (a_1 + a_2\xi)t)}$$

 $\omega = (a_1 + a_2 \xi)$ is real, which mean the equation is dispersive.

4 Problem D

$$U_{i,j}^{n+1} = 2U_{i,j}^n - U_{i,j}^{n-1} + \Delta t^2 A U^n$$

$$U_{i,j}^{n+1} = (2I + \Delta t^2 A)U^n - U_{i,j}^{n-1} = B(\Delta t)U^n - U_{i,j}^{n-1}$$

Consider the LTE $U_{i,j}^{n+1} = B(\Delta t)U^n - U_{i,j}^{n-1} + \Delta t^2 \tau^n$ and $E^n = U^n - u^n$, then $E^n = B^n E^0 - \Delta t^2 \sum_{m=1}^N B^{n-m} \tau^{m-1}$.

$$||E||^n \le ||B||^n ||E_0|| + \Delta t^2 \sum_{m=1}^N ||B||^{n-m} ||\tau^{m-1}||$$

Weak-stability

$$\|E\|^n \leq C_T \|E_0\| + \Delta t^2 N C_T \max \lVert \tau^{m-1}\rVert$$

 $E_0 \rightarrow 0$ if initial condition is well handled, and $\tau \rightarrow 0$ if $\Delta t \rightarrow 0$