COMPILANDO CONOCIMIENTO

Análisis Vectorial

CÁLCULO

Alan Enrique Ontiveros Salazar

Enero 2018

Índice general

Ι	Sistemas de Coordenadass			2
1.	Coc	ordena	das Polares (r, θ)	3
	1.1.	Vector	res Base	4
		1.1.1.	Ideas sobre esos Vectores Base	4
		1.1.2.	Cambio de Base con Canónicas	5
		1.1.3.	Matriz de Cambio de Base con Canónicas	5
		1.1.4.	Derivación de Vectores Unitarios	6
		1.1.5.	Derivación con respecto al tiempo $\frac{d \hat{r}}{dt}$	7

Parte I Sistemas de Coordenadass

Capítulo 1

Coordenadas Polares (r, θ)

1.1. Vectores Base

Sea \vec{r} nuestro vector que va desde el origen del plano X-Y hasta el Punto A, lo vamos a llamar un vector de posición:

Los vectores base, así como en coordenadas rectangulares $(\hat{\pmb{i}}, \hat{\pmb{j}})$ son dos vectores que denotaremos como: $\hat{\pmb{r}}, \hat{\pmb{\theta}}$.

Podemos entonces decir que el vector de posición tiene la magnitud igual a la distancia radial r y tiene una dirección igual a \hat{r} . Por lo tanto podemos decir que:

$$\vec{r} = r \cdot e_r \tag{1.1}$$

1.1.1. Ideas sobre esos Vectores Base

Estos vectores base son bastante diferente a lo que tu verías en los vectores base de la base rectangulas, nuestros queridos amigos (\hat{i}, \hat{j}) pues sin importar de que vector estemos hablando, los vectores base con siempre los mismo. Esto no pasa en la Base Polar.

1.1.2. Cambio de Base con Canónicas

Tenemos una propiedad muy importante que nos dice que:

•
$$\hat{\boldsymbol{r}} = \cos(\theta) \, \hat{\boldsymbol{i}} + \sin(\theta) \, \hat{\boldsymbol{j}}$$

$$\hat{\boldsymbol{\theta}} = -\sin(\theta)\,\hat{\boldsymbol{i}} + \cos(\theta)\,\hat{\boldsymbol{j}}$$

Y también que:

•
$$\hat{\boldsymbol{i}} = \cos(\theta) \,\hat{\boldsymbol{r}} - \sin(\theta) \,\hat{\boldsymbol{\theta}}$$

$$\hat{\boldsymbol{j}} = \sin(\theta)\,\hat{\boldsymbol{r}} + \cos(\theta)\,\hat{\boldsymbol{\theta}}$$

1.1.3. Matriz de Cambio de Base con Canónicas

Tenemos una propiedad muy importante que nos dice que:

$$\begin{pmatrix} r \\ \theta \end{pmatrix} = \begin{pmatrix} \cos(\theta) & + \sin(\theta) \\ -\sin(\theta) & + \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 (1.2)

Y también que:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos(\theta) & + & -\sin(\theta) \\ \sin(\theta) & + & \cos(\theta) \end{pmatrix} \begin{pmatrix} r \\ \theta \end{pmatrix}$$
 (1.3)

1.1.4. Derivación de Vectores Unitarios

$$\frac{d \hat{r}}{dr} = \vec{0}$$

Ideas:

Ahora nota que no importa cuanto cambia r en el vector (r, θ) , el vector unitario \hat{r} no cambia por mas que r cambie, por lo tanto es el cero vector.

Esto también se comprueba pues:

$$\frac{d\,\hat{\boldsymbol{r}}}{dr} = \frac{d\,\cos\left(\theta\right)\,\hat{\boldsymbol{i}} + \sin\left(\theta\right)\,\hat{\boldsymbol{j}}}{dr} = \vec{0}$$

$$\frac{d \, \hat{\boldsymbol{\theta}}}{dr} = \vec{0}$$

Ideas:

Ahora nota que no importa cuanto cambia r en el vector (r, θ) , el vector unitario $\hat{\boldsymbol{\theta}}$ no cambia por mas que r cambie, por lo tanto es el cero vector.

Esto también se comprueba pues:

$$\frac{d\,\hat{\boldsymbol{r}}}{dr} = \frac{d\,-\sin\left(\theta\right)\,\hat{\boldsymbol{i}} + \cos\left(\theta\right)\,\hat{\boldsymbol{j}}}{dr} = \vec{0}$$

$$\frac{d \hat{r}}{d\theta} = \hat{\theta}$$

Ideas:

Esta idea es bastante fácil de demostrar usando la base rectangular:

$$\frac{d \hat{r}}{d\theta} = \frac{d \cos(\theta) \hat{i} + \sin(\theta) \hat{j}}{d\theta}$$
$$= \frac{d \cos(\theta) \hat{i} + \frac{d \sin(\theta)}{d\theta} \hat{j}}{d\theta} \hat{i} + \frac{d \sin(\theta) \hat{j}}{d\theta} \hat{j}$$
$$= -\sin(\theta) \hat{i} + \cos(\theta) \hat{j} = \hat{\theta}$$

$$lacksquare rac{d\ \hat{m{ heta}}}{d heta} = -m{\hat{r}}$$

Ideas:

Esta idea es bastante fácil de demostrar usando la base rectangular:

$$\begin{split} \frac{d\,\hat{\boldsymbol{r}}}{d\theta} &= \frac{d\,-\sin\left(\theta\right)\hat{\boldsymbol{i}} + \cos\left(\theta\right)\hat{\boldsymbol{j}}}{d\theta} \\ &= \frac{d\,-\sin\left(\theta\right)}{d\theta}\hat{\boldsymbol{i}} + \frac{d\,\cos\left(\theta\right)}{d\theta}\hat{\boldsymbol{j}} \\ &= -\cos\left(\theta\right)\hat{\boldsymbol{i}} + -\sin\left(\theta\right)\hat{\boldsymbol{j}} &= -\hat{\boldsymbol{r}} \end{split}$$

1.1.5. Derivación con respecto al tiempo $\frac{d \hat{r}}{dt}$

Supongase que tenemos un vector de posición \vec{r} que se mueve libremente con respecto al tiempo en todas las direcciones posibles, entonces tenemos que:

Ideas:

Sea $\vec{r} = r\hat{r}$ entonces podemos decir que:

$$\frac{d\vec{r}}{dt} = \frac{d}{dx}tr\hat{r}$$

$$= r\frac{d\hat{r}}{dt} + \frac{dr}{dt}\hat{r}$$
(1.4)

Y ahora recuerda que:

$$\begin{split} \frac{d}{dt} &= \frac{d}{dx} t \left(\cos \left(\theta \right) \hat{\pmb{i}} + \sin \left(\theta \right) \hat{\pmb{j}} \right) & \text{La forma de colocar a } \hat{\pmb{r}} \text{ en coord. rectangulares} \\ &= \left(-\sin \left(\theta \right) \hat{\pmb{i}} + \cos \left(\theta \right) \hat{\pmb{j}} \right) \frac{d}{dt} & \text{Derivamos como siempre} \\ &= \hat{\pmb{\theta}} \frac{d}{dt} & \text{Recuerda que ya demostramos esto} \end{split}$$

Por lo tanto tenemos que:

$$\frac{d\vec{r}}{dt} = \frac{d}{dx}tr\hat{r}$$

$$= r\frac{d\hat{r}}{dt} + \frac{dr}{dt}\hat{r}$$

$$= r\hat{\theta}\frac{d\theta}{dt} + \frac{dr}{dt}\hat{r}$$

$$= \left(r\frac{d\theta}{dt}\right)\hat{\theta} + \frac{dr}{dt}\hat{r}$$
(1.5)