

RD-R177 776 FASINEX (FRONTAL AIR-SEA INTERACTION EXPERIMENT JANUARY 1/2  
- JUNE 1986) CRUI. (U) WOODS HOLE OCEANOGRAPHIC  
INSTITUTION MA N J PENNINGTON ET AL. OCT 86 WHOI-86-36

UNCLASSIFIED N00014-84-C-0134

F/G 8/3

ML





MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS-1963-A

(2)

# FASINEX

*(Frontal Air-Sea Interaction Experiment)*

AD-A177 776



## Cruise Summaries for FASINEX Phase Two

R/V Oceanus Cruise 175  
R/V Endeavor Cruise 141

FILE COPY

Nancy J. Pennington  
Robert A. Weller

October 1986

FASINEX Technical Report #14

This document has been approved  
for public release and does not  
contain recommendations or conclusions  
of the National Oceanic and Atmospheric  
Administration.

DTIC  
ELECTED  
MAR 06 1987  
S E D

87 3 6 012

**WHOI-86-36**

**F A S I N E X**  
Frontal Air-Sea Interaction Experiment  
(January - June 1986)

**Cruise Summaries for FASINEX Phase Two**

**R/V OCEANUS    Cruise 175**  
**R/V ENDEAVOR    Cruise 141**

**by**

**Nancy J. Pennington  
Robert A. Weller**

**Woods Hole Oceanographic Institution  
Woods Hole, Massachusetts 02543**

**October 1986**

**FASINEX Technical Report #14**

**Funding was provided by the Office of Naval Research  
under contract No. N00014-84-C-0134, NR 083-400.**

**Reproduction in whole or in part is permitted for any purpose of the  
United States Government. This report should be cited as:  
Woods Hole Oceanog. Inst. Tech. Rept. WHOI-86-36.**

**Approved for publication; distribution unlimited.**

**Approved for Distribution:**

*Robert C. Beardsley*  
\_\_\_\_\_  
**Robert C. Beardsley, Chairman  
Department of Physical Oceanography**

**Abstract**

The Frontal Air-Sea Interaction Experiment (FASINEX) was a study of the response of the upper ocean to atmospheric forcing in the vicinity of an oceanic front in the subtropical convergence zone southwest of Bermuda, the response of the lower atmosphere in that vicinity to the oceanic front, and the associated two-way interaction between ocean and atmosphere. FASINEX began in the winter (January 1986), concluded in the early summer (June 1986) and included an intensive period in February and March. The experiment took place in the vicinity of 27°N, 70°W where sea-surface-temperature fronts are climatologically common.

Measurements were made from buoys, ships, aircraft and spacecraft. This report summarizes the shipboard work done on R/V OCEANUS and R/V ENDEAVOR during Phase Two, the dual ship/multi-aircraft measurement period. The two ships worked individually, jointly and as ground truth for the aircraft during the month. Each ship carried specialized instrumentation for measuring oceanographic and meteorological parameters. Information describing the sampling strategy, station positions and times are included. This report contains summaries of the data collected and some preliminary results.

|                    |                                     |
|--------------------|-------------------------------------|
| Accession For      |                                     |
| NTIS GRA&I         | <input checked="" type="checkbox"/> |
| DTIC TAB           | <input checked="" type="checkbox"/> |
| Unannounced        | <input type="checkbox"/>            |
| Justification      | <input type="checkbox"/>            |
| By _____           |                                     |
| Distribution/      |                                     |
| Availability Codes |                                     |
| Dist               | Avail and/or<br>Special             |
| A-1                |                                     |



**Table of Contents**

|                                                        | <b>Page</b> |
|--------------------------------------------------------|-------------|
| I. Introduction                                        | 7           |
| II. OCEANUS Cruise Narrative                           | 14          |
| a. Summary                                             |             |
| b. Schedule overview and list of science party         |             |
| c. Chronological log                                   |             |
| III. Moored Array                                      | 20          |
| IV. XBT Surveys                                        | 26          |
| V. Underway Sampling                                   |             |
| a. Oceanographic                                       | 29          |
| b. Meteorological                                      | 34          |
| VI. CTD Surveys                                        | 100         |
| VII. Vertical Current Meter Data                       | 103         |
| VIII. Real Time Profiler Data                          | 111         |
| IX. SeaSoar                                            | 119         |
| X. SIO Doppler                                         | 125         |
| XI. SIO Drifters                                       | 129         |
| XII. Radar                                             | 134         |
| XIII. AVHRR                                            | 138         |
| XIV. ENDEAVOR Cruise Narrative/CTD Surveys/XBT Surveys | 141         |
| XV. Fine and Micro-Structure Profiling                 | 153         |
| XVI. EPSONDE                                           | 161         |
| XVII. WOTAN DRIFTER                                    | 165         |
| Acknowledgements                                       | 168         |
| Appendix A. Year-Day Conversion Table                  | 171         |
| Appendix B. Mooring Designations                       | 173         |

## I. Introduction

The Frontal Air-Sea Interaction Experiment (FASINEX) (see Stage and Weller, Bulletin of the American Met. Soc., Vol 66, No.12, 1985 and Vol 67, No. 1, 1986 for further detail on the background scientific objectives, and the experimental plan of FASINEX) was planned to investigate local air-sea interaction processes at an oceanic front. North of about 25°N in the mid-Atlantic Ocean the prevailing westerly winds tend to carry the surface water to the south. South of about 25°N the trade winds carry surface water to the north. In the region southwest of Bermuda the cooler water from the north meets the warmer water from the south, a series of oceanic fronts are formed. The fronts are marked at the surface by abrupt changes in sea surface temperature. The surface temperature may change by as much as 3°C in less than a kilometer. Associated with these fronts are surface currents with speeds of approximately 1.5 knots.

The FASINEX field experiment began on January 7, 1986 when R/V KNORR sailed on cruise 119. This was designated FASINEX Phase One, the mooring deployment cruise. Once a sea surface temperature front was located by satellite imagery and an extensive XBT survey, the mooring instrumentation was set, and began recording and telemetering data. Meteorological and oceanographic logs were maintained. Phase Two immediately followed the one month deployment cruise. R/V OCEANUS and R/V ENDEAVOR returned to the FASINEX area to make oceanographic and meteorological measurements for approximately another month. During this time period, six aircraft including the NRL P3, NASA C-130, NCAR Electra, NASA P3, NOAA P3, and NASA Electra completed 41 flights measuring atmospheric and oceanic conditions. Phase Three, the mooring recovery cruise, KNORR 123, returned to the FASINEX area in early June 1986. The instrumentation that recorded data on station for the six month period was retrieved. Meteorological and oceanographic logs were again maintained. The field program ended with the ship returning to Woods Hole. The Phase Two cruises are summarized in this report. The summary of Phases One and Three is WHOI Report #86-35 (FASINEX Document #13). Figure One shows an artist's concept of the mooring array bracketing a frontal feature and the joint work of the ships and aircraft during the one month of intensive scientific measurements.

The overall goals of the ship and aircraft scientists during FASINEX were:

1. To describe the horizontal and vertical structures of the oceanic and atmospheric boundary layers in the region in and around an oceanic front.
2. To investigate the relation between structures found on each side of the air-sea interface.
3. To study the physical processes associated with air-sea interaction in the vicinity of an oceanic front.

During Phase Two, the ships and aircraft worked jointly to measure with high resolution, over a limited time, the temporal and spatial variability of a frontal feature and investigate the processes acting within the front. The ships primary goal was to observe and characterize the three dimensional

and across frontal features. The meteorological goals were to collect sections (radiosonde and atmospheric sounder) perpendicular and parallel to the front, and to make stress measurements in the vicinity of the moored array; both these efforts were done in conjunction with the aircraft flights. This report will summarize only the shipboard work done during Phase Two.

Scientific goals dictated that the field work during Phase Two focus on an oceanic front, so the area of interest shifted to the position of a nearby front rather than remain at the moorings set during Phase One. The frontal feature studied was the same one that moved northeast from the central mooring array. At the conclusion of Phase Two, a final survey south to the mooring array area showed that another front had moved into the area. The characteristics of this front were very different from the original front located in the same area. (Throughout the six month experiment, frontal features moved through the central array. This is clear from the SST signal seen by the buoy instrumentation.)

A brief description of the instrumentation on both ships and its capabilities will serve as an overview of the oceanographic and meteorological parameters measured during Phase Two. Within this report, participant summaries are included when available.

OCEANUS surveyed the frontal region with an underway Doppler Log. SST and velocity profiles were collected for all but 2 days of the 26 days the ship was in the FASINEX region. Continuous SST was measured by the ship's SAIL (Serial ASCII Interface Loop) system. A thermosalinograph also continuously recorded surface temperature and salinity. Fifteen minute buckets were taken as part of an underway oceanographic watch. Hourly salinity samples were taken. For approximately 17 days of the cruise the SeaSoar gathered temperature, salinity and oxygen data in a range from 30-350 m while the ship steamed at 8 kts. This instrument output a real time display and with software on board a large scale picture of the front was available with 24 hours of the survey. A real time profiler (RTP) section was made across the front. The profiler measured u,v and w components of velocity along with temperature and conductivity. Two forms of drifters were used on OCEANUS. Neutrally buoyant drifting Vertical Current Meters (VCM) which measured pressure, temperature and turns (allowing for a vertical displacement calculation) and Scripps' surface and 50 m drogued drifters which measured surface and nearsurface currents. CTD stations were taken in the vicinity of the moorings as a last task of the cruise before the ship headed back to Woods Hole. Radiosondes were taken as part of Ken Davidson's meteorological program on both ships.

ENDEAVOR gathered oceanographic data with two profilers. A newly designed free fall microprofiler made 39 dives. The instrument measured temperature, conductivity and pressure (using a standard CTD unit), small scale temperature, conductivity and velocity with special microstructure probes, fine scale velocity variations with acoustic current meters and accelerometers. EPSONDE, another small scale profiler operated in a tethered free fall mode, transmitting its measured parameters to the surface using a kelvar multiconductor line. This instrument completed 39 stations, doing multiple profiles at each position. It measured microstructure velocity fluctuations, temperature gradient microstructure and mean temperature,

conductivity and pressure. XBT surveys were run to locate the front. A total of 70 CTD stations were completed, including a section in conjunction with an overpass by GEOSAT. A WOTAN (Wind observation through Ambient Noise) drifting mooring was deployed 12 times. It carried four different transducers to measure acoustic backscatter and a WOTAN measuring bubble clouds. Underway meteorological data was collected using the ship's SAIL system. A Doppler log operated during part of the cruise.

Although this is a cruise/data report for the shipboard work, the timing of the aircraft overflights is included. Most flight days the joint work required the ships' positioning themselves on opposite sides of the front and heading into the wind measuring meteorological data for ground truth. Communication was maintained with VHF radios when the aircraft were in the FASINEX area.

Total Flights: 41

|              |    |
|--------------|----|
| NRL P3       | 12 |
| NASA C130    | 11 |
| NCAR Electra | 7  |
| NASA P3      | 5  |
| NOAA P3      | 4  |
| NASA Electra | 2  |

Feb 10 NRL P3

|    |                                                         |
|----|---------------------------------------------------------|
| 14 | NRL P3                                                  |
| 16 | NRL P3, NCAR Electra, NOAA P3                           |
| 17 | NRL P3, NCAR Electra, NOAA P3                           |
| 18 | NRL P3, NCAR Electra, NASA C130, NASA P3                |
| 20 | NCAR Electra, NASA C130, NASA P3, NASA Electra, NOAA P3 |
| 21 | NCAR Electra, NASA C130, NASA P3, NASA Electra, NOAA P3 |
| 22 | NASA C130                                               |
| 24 | NCAR Electra, NASA C130, NASA P3                        |
| 25 | NRL P3, NCAR Electra                                    |
| 26 | NRL P3, NASA C130, NASA P3                              |

Mar 1 NRL P3, NASA C130

|   |                   |
|---|-------------------|
| 3 | NRL P3, NASA C130 |
| 5 | NRL P3, NASA C130 |
| 7 | NRL P3, NASA C130 |
| 8 | NASA C130         |
| 9 | NRL P3            |

Communication was maintained via two one hour sessions daily on the ATS system. Charlie Eriksen manned the FASINEX office at the Bermuda Biological Station for the month long Phase Two. Aircraft scientists, based in Bermuda at the Naval Airstation, either relayed information through Charlie or coordinated flight plans with the ships during the evening FASINEX hour by stopping by the office to discuss upcoming flights with the ships. This allowed for daily updates of the field work.

The numerous sampling patterns used by the two ships and six aircraft allowed for many different data sets to be gathered under different oceanographic and atmospheric conditions during the field program. Until data sets are shared and intercomparisons made, it will be difficult to draw a conclusion of the overall success of the experiment, but because of the variability of the oceanographic and atmospheric conditions, the successful coordination among the aircraft with their complex joint work and with the ships, and the data return from the instrumentation on the ships, aircraft and buoys, the field program accomplished all the tasks scheduled.

The FASINEX area was designated to be a four by five degree box southwest of Bermuda. The coordinates are  $25^{\circ}$  to  $30^{\circ}$  North and  $72^{\circ}$  to  $68^{\circ}$  West. Two charts are used in this data report. FASINEX Total Area (Figure 2) includes the East Coast and Bermuda to identify the area of the western Atlantic. Area 1 (Figure 3) is an expanded scale of one section of the Total Area chosen to include all the oceanographic and meteorological sampling done by the ships involved in all three phases of FASINEX. A solid square identifies the central mooring array location at approximately  $27^{\circ}$ N,  $70^{\circ}$ W.

The fronts seen in the AVHRR images and the underway oceanographic sampling make up the Figure 3 composite plot. The front locations for January 6-7 and January 21-22 were taken from AVHRR images. Bucket temperature data from the OCEANUS 175 radiator pattern were used for the February 15 front location. The locations for the February 27 and March 4 frontal positions were also taken from the 15 minute bucket temperatures on OCEANUS.



Figure 1. Artist's conception of frontal regions during Phase One, the mooring work (lower), and Phase Two, the intensive scientific period (upper).

**FASINEX Total Area****Figure 2**

### FASINEX Frontal Positions



Figure 3: Area 1 showing Frontal Positions.

## II. Cruise Narrative - OCEANUS 175

## a. Summary

OCEANUS sailed on February 5, 1986 for Bermuda to rendezvous with ENDEAVOR and several members of the KNORR (Phase One) scientific party. Because of steering problems, she returned to Woods Hole and was delayed three days while repairs were completed. She departed again on February 8 and arrived at St Georges, Bermuda on February 11. Scientists on board during the transit set up the main lab and tested instrumentation. When the ship arrived at the dock, the party transferring from KNORR immediately loaded their gear, so the ship was ready to sail early on the February 12. Due to a delay of an air-shipped IC for a computer on ENDEAVOR, the OCEANUS did not sail until 1900.

A watch was started at 1600 on February 13. The oceanographic underway log that was maintained during the cruise included time, LORAN C latitude and longitude, bucket sea surface temperature (SST), SAIL SST, and towed fish SST. During specific times, thermosalinograph SST and SeaSoar mixed layer depth and temperature were recorded. A half hour meteorological log including time, LORAN C latitude and longitude, wind speed and direction, barometric pressure, and dew point (wet and dry bulb temperatures) was maintained throughout the cruise.

The ship arrived in the FASINEX area where ENDEAVOR had located a strong frontal feature late on February 13. This location was approximately 60 miles north of the moored array. Because of rough seas and high winds, the SeaSoar was deployed to run a survey down south to box in the moored array looking for any features that might be present but did not show on the satellite imagery. This survey took 48 hours. During that time the first overpass of the NRL P3 took place. The SeaSoar was hauled just before rendezvousing with ENDEAVOR on February 15 to transfer some XBTs, the computer IC chip and some data.

Balloon launches began on February 13. OCEANUS and ENDEAVOR alternated launching radiosondes. Five to seven balloons were launched each day between the two ships, with additional launches on aircraft days.

On February 16 at 1413, a second SeaSoar survey began while the ENDEAVOR tow-yoed in the front. An eight leg radiator pattern was run to locate the front and measure its scale and orientation. This survey continued until February 20. At that time a bucket survey was started to locate the front for deployment of the SIO drifters and the VCMs. For five days, SIO drifters and VCMs were tracked. Three different deployments of the expendable drifters were made. Each deployment consisted of eight instruments, four surface and four 50 meter drogues. The VCMs were deployed twice. The first 50 hour experiment involved two instruments ballasted to 140 and 90m. The second deployment involved three VCMs ballasted to 150, 95, and 175m. The VCMs were recovered by 2000 on February 25.

During the drifter/VCM tracking, ENDEAVOR and OCEANUS rendezvoused on February 26. Six members of the ENDEAVOR scientific party, came aboard for a meeting to discuss the work completed and plans for the final week and a half.

Joint shipboard work was scheduled for the remainder of the cruises. SeaSoar was again deployed at 2000 on February 26. A diamond shaped pattern enclosing a sharp front was begun, while ENDEAVOR steamed parallel inside the diamond. This survey ran for only six hours, until ENDEAVOR reported that the front had moved farther east. OCEANUS still surveying with the SeaSoar steamed south to box in the mooring array finishing the pattern at 0800 March 1. An RTP section was started, but after three stations was aborted because of rough seas and high winds. Once again the SeaSoar was launched at 1600. During the next 36 hours, the mate reported 15-18 foot seas, and wind gusts to 50 kts with the ship taking 30° rolls while SeaSoar continued an elongated box survey. During this time, ENDEAVOR was hove-to after tow-yoing and microstructure profiling inside the box of OCEANUS' survey.

With the weather improving, an RTP survey was begun on March 4. This survey ran south-southwest to north-northeast. Fourteen stations were completed crossing the front. XBTs were done in conjunction with the RTP survey.

The buoys set during Phase One in the vicinity of 27°N, 70°W telemetered position and meteorological data. One of the buoys F10 had an intermittent problem and infrequently updated its position. Because of the length of time the buoys were to remain on station, this position information was very important for monitoring purposes. The decision was made to borrow a spare ARGOS transmitter from ENDEAVOR, to use on Buoy D in the mooring array. (A third and final rendezvous took place to pass the transmitter over.) On March 6, the OCEANUS returned to the central array to install this duplicate transmitter. While down south in the mooring area, all the buoys were visually checked. SeaSoar was deployed the final time to survey a box around the moorings on March 6. A frontal feature with unique salinity characteristics was mapped. Six CTD stations were taken in the area of the moorings before the ship headed back to Woods Hole. OCEANUS left the FASINEX area on March 9 ending FASINEX Phase Two. The ship returned to Woods Hole on March 12.

**b. Schedule Overview**

|                 |                                                                    |
|-----------------|--------------------------------------------------------------------|
| 5 February 1986 | Depart for Bermuda/<br>Return to Woods Hole with steering problems |
| 8 February      | Depart for Bermuda                                                 |
| 11 February     | Arrive Bermuda                                                     |
| 12 February     | Depart St. Georges Bermuda                                         |
| 13 February     | Arrive FASINEX area                                                |
| 8 March         | Depart FASINEX area                                                |
| 12 March        | Arrive Woods Hole                                                  |

**Science Party - Woods Hole to Bermuda**

1. Pollard, Raymond, Co-Chief Scientist, IOS
2. Regier, Lloyd, Co-Chief Scientist, SIO
3. Smithers, John, Scientific Officer, IOS
4. Jackson, Christopher, Computer Specialist, NERC
5. Lewis, Derek, Computer Engineer, NERC
6. Potter, Kay, Computer Programmer, NERC
7. Lind, Richard, Research Meteorologist, UW
8. Vaucher, Chris, Technician, NPGS
9. Spencer, Eric, Safety Officer, WHOI

**Science Party - FASINEX Phase Two**

1. Waller, Robert, Chief Scientist, WHOI
2. Pollard, Raymond, Scientist, IOS
3. Regier, Lloyd, Scientist, SIO
4. Davidson, Ken, Scientist, NPGS
5. Payne, Richard, Research Associate, WHOI
6. Dean, Jerome, Research Specialist, WHOI
7. Pennington, Nancy, Sr. Research Assistant, WHOI
8. Light, Christina, Research Assistant, WHOI
9. Guest, Brian, Research Assistant, WHOI
10. Smithers, John, Scientific officer, IOS
11. Lewis, Derek, Computer Engineer, NERC
12. Dufor, James, Development Engineer, SIO

|      |                                               |
|------|-----------------------------------------------|
| WHOI | Woods Hole Oceanographic Institution          |
| IOS  | Institute of Oceanographic Sciences, England  |
| SIO  | Scripps Institution of Oceanography           |
| NPGS | Naval Postgraduate School                     |
| UW   | University of Washington                      |
| NERC | Natural Environment Research Council, England |

## c. Chronological Log for OCEANUS 175

Feb 05 Depart Woods Hole/Return with Steering Problems

08 Depart Woods Hole for Bermuda

11 Arrive St. Georges, Bermuda

12 Depart St. George's, Bermuda for FASINEX Area

13 1600 Launch SeaSoar

14

15 Transfer equipment to ENDEAVOR  
Meteorological calibration between ships

16

17

18 Recover SeaSoar 1200  
Deploy SeaSoar 1600

19

20 Recover SeaSoar 0400  
Deploy SCRIPPS Drifters Deploy VCMs  
Tracking

21

22 Recover/Deploy VCMs

23 ENDEAVOR Party aboard

24

25 Deploy SeaSoar 1600      Recover VCMs

26

27

28

Mar 01 Recover SeaSoar 0400

cont.

- Mar 01      RTP #1-#3  
                Deploy SeaSoar 1300  
  
02      Recover SeaSoar 2130  
                Deploy SeaSoar 2330  
  
03  
04      Recover SeaSoar 0900  
                RTP #4-#7  
  
05      RTP #8-#14  
                ENDEAVOR rendezvous for transmitter  
06      Check Buoys D, B, C  
                Install Buoy D transmitter  
                Deploy SeaSoar  
  
07  
08      Recover SeaSoar 0900  
                CTD Stations #1-#5  
09      CTD Station #6  
                Woods Hole transit  
10  
11  
12      Arrive Woods Hole



Figure II-1: Cruise track.

### III. FASINEX Moored Array

The oceanic front is a three-dimensional feature with temporal as well as spatial variability. In contrast to the aircraft and ship operations, which provided high resolution views over a limited time, the moored array used self-contained surface and subsurface instruments to obtain a longer running view from a small number of fixed locations. Over the 6-month period the fronts moved through the center of the moored array so that moored instruments returned observations from a variety of environments (in the front, out of the front; under various meteorological conditions) as well as during the transition from winter, when the SST jump is large, to summer, when the SST signal associated with the front fades.

The 6-month array was composed of surface moorings and PCM moorings. The longer duration moorings set by Brink in October 1984 were subsurface moorings.

Phases One and Three of FASINEX consisted mainly of mooring work, with some additional survey work. A summary of the mooring cruises, KNORR 119, the deployment cruise and KNORR 123, the recovery cruise is available in another data report, WHOI Technical Report 86-35 (FASINEX Report #13).

The data from the moored array will be presented in a later data report.

Figure III-1

FASINEX Mooring Schematics

Figure III-2

Anchor Positions of Moorings

Table III-1

GPS/LORAN C Positions of Anchors

Figure III-3

Phase Two Time Period Wind Data from F6

(Davidson 3-day expanded scale plots)

FASINEX

Figure III-1: FASINEX Mooring Schematics.

## FASINEX Mooring Anchor Positions



**Figure III-2: Anchor Positions of Moorings.**

## GPS ANCHOR POSITIONS

| FASINEX Designation | Visible Identifier | Lat/Lon                  | WHOI Mooring # |
|---------------------|--------------------|--------------------------|----------------|
| F2                  | A                  | 27°18.95'N<br>70°05.86'W | 845            |
| F3                  |                    | 27°05.34'N<br>69°42.75'W | PCM-1          |
| F4                  | C                  | 27°05.35'N<br>69°50.30'W | 846            |
| F5                  |                    | 26°58.58'N<br>69°50.40'W | PCM-2          |
| F6                  | B                  | 27°12.59'N<br>69°58.48'W | 847            |
| F7                  |                    | 27°12.53'N<br>69°51.03'W | PCM-3          |
| F8                  | E                  | 26°58.66'N<br>69°43.19'W | 848            |
| F9                  |                    | 27°05.45'N<br>69°58.33'W | PCM-4          |
| F10                 | D                  | 27°19.63'N<br>69°42.52'W | 849            |

## Ken Brink's two year subsurface moorings (LORAN C positions)

|     |                          |     |
|-----|--------------------------|-----|
| F1  | 27°58.90'N<br>69°58.80'W | 829 |
| F12 | 25°29.10'N<br>70°00.70'W | 830 |

Table III-1: GPS/LORAN C Positions of Anchors.



**Figure III-3:** Phase Two Time Period Wind Data from F6 (Davidson 3-day expanded scale plots).



**Figure III-3 (Continued)**

**IV. FASINEX XBT Data**

During Phase Two, one XBT section was completed on OCEANUS. The survey was taken in conjunction with the RTP stations which ran from the south to the north crossing the front at approximately  $29^{\circ} 04.09'N$   $67^{\circ}53.49'W$  on March 4-5.

The data were plotted on a strip chart recorder, but due to a malfunction only several profiles were written to a Bathysystem Recorder cassette.

Figure IV-1      Total XBT Pattern  
Table IV-1      XBT Time and Position

(See RTP temperature section - XBT/RTP used for data set.)

**FASINEX Oceanus 175 XBT Section**

Figure IV-1: Total XBT Pattern.

## OCEANUS 175 XBT STATIONS

| XBT# | TIME | DAY/MONTH | LATITUDE | LONGITUDE |
|------|------|-----------|----------|-----------|
| 1    | 1337 | 1 Mar     | 28°12.10 | 68°23.10  |
| 2    | 1435 | 1 Mar     | 28°12.17 | 68°22.96  |
| 3    | 1508 | 1 Mar     | 28°14.68 | 68°24.15  |
| 4    | 1627 | 4 Mar     | 28°16.43 | 68°17.16  |
| 5    | 1641 | 4 Mar     | 28°18.17 | 68°16.77  |
| 6    | 1825 | 4 Mar     | 28°21.19 | 68°15.00  |
| 7    | 1839 | 4 Mar     | 28°22.93 | 68°14.78  |
| 8    | 2024 | 4 Mar     | 28°27.01 | 68°12.81  |
| 9    | 2030 | 4 Mar     | 28°27.63 | 68°12.78  |
| 10   | 2145 | 4 Mar     | 28°30.59 | 68°11.28  |
| 11   | 0009 | 5 Mar     | 28°36.05 | 68°08.20  |
| 12   | 0015 | 5 Mar     | 28°36.89 | 68°08.06  |
| 13   | 0222 | 5 Mar     | 28°38.66 | 68°06.75  |
| 14   | 0244 | 5 Mar     | 28°41.48 | 68°06.93  |
| 15   | 0440 | 5 Mar     | 28°43.52 | 68°04.85  |
| 16   | 0458 | 5 Mar     | 28°45.88 | 68°03.70  |
| 17   | 0635 | 5 Mar     | 28°48.51 | 68°02.15  |
| 18   | 0651 | 5 Mar     | 28°50.84 | 68°01.39  |
| 19   | 0834 | 5 Mar     | 28°52.30 | 67°59.45  |
| 20   | 0855 | 5 Mar     | 28°55.23 | 67°58.83  |
| 21   | 1114 | 5 Mar     | 28°55.83 | 67°55.29  |
| 22   | 1132 | 5 Mar     | 28°58.55 | 67°57.04  |
| 23   | 1144 | 5 Mar     | 29°00.08 | 67°57.85  |
| 24   | 1333 | 5 Mar     | 29°00.18 | 67°54.77  |
| 25   | 1339 | 5 Mar     | 29°00.96 | 67°54.86  |
| 26   | 1533 | 5 Mar     | 29°04.68 | 67°54.80  |
| 27   | 1700 | 5 Mar     | 29°06.56 | 67°52.28  |
| 28   | 1720 | 5 Mar     | 29°09.29 | 67°52.36  |
| 29   | 1906 | 5 Mar     | 29°11.87 | 67°50.65  |
| 30   | 1922 | 5 Mar     | 29°14.11 | 67°50.56  |

Table IV-1: XBT Time and Positions.

## V. FASINEX Underway Sampling

### a. Oceanographic Log

An oceanographic log was recorded at 15 minute intervals on OCEANUS 175 for the 25 days the ship worked in the frontal area. The variables logged were time, LORAN C latitude and longitude, sea surface temperature from buckets (SST), SAIL SST, and towed fish SST. Thermosalinograph temperature was logger along with SeaSoar mixed layer temperature for specific time periods. The LORAN C data were stored to an IBM AT using floppy disks. The SAIL and towed fish data were stored every minute on Apple IIe floppy disks. The underway towed sensor was a modified XBT probe.

- |             |                                                           |
|-------------|-----------------------------------------------------------|
| Figure Va-1 | Contoured Bucket Temperatures Across the Front            |
| Figure Va-2 | Contoured Salinity Across the Front                       |
| Figure Va-3 | Bucket, Towed Fish and SAIL Temperature Comparative Plots |
| Table Va-1  | Example of 15 Minute Oceanographic Log                    |



Figure Va-1. Temperature Contours from Bucket Samples.

OCEANUS 175  
13-20 FEB



Figure Va-2. Salinity Contours from Bucket Samples



**Figure Va-3: Bucket, Towed Fish and SAIL Temperature Comparative Plots.**

## OCEANUS 175 UNDERWAY LOG

| Date | Time | Latitude | Longitude | Fish | Bucket | SAIL  | T/S | Mixed Layer Temp | Mixed Layer Time |
|------|------|----------|-----------|------|--------|-------|-----|------------------|------------------|
| 2/13 | 1600 | 30°07.94 | 67°43.24  | -    | 21.6   | 26.40 |     |                  |                  |
| 2/13 | 1615 | 30°06.55 | 67°45.14  | -    | 21.7   | 26.44 |     |                  |                  |
| 2/13 | 1630 | 30°04.76 | 67°47.74  | -    | 22.0   | 26.72 |     |                  |                  |
| 2/13 | 1645 | 30°02.95 | 67°50.54  | -    | 22.0   | 26.43 |     |                  |                  |
| 2/13 | 1700 | 30°01.06 | 67°53.03  | 22.5 | 22.0   | 26.91 |     |                  |                  |
| 2/13 | 1715 | 29°59.11 | 67°55.79  | -    | 22.0   | 27.1  |     |                  |                  |
| 2/13 | 1730 | 29°57.24 | 67°58.53  | -    | 22.5   | 27.29 |     |                  |                  |
| 2/13 | 1745 | 29°55.37 | 68°01.07  | -    | 22.6   | 22.4  |     |                  |                  |
| 2/13 | 1800 | 29°53.58 | 68°03.84  | 22.5 | 22.7   | 27.6  |     |                  |                  |
| 2/13 | 1815 | 29°51.79 | 68°06.50  | 22.5 | 22.7   | 27.6  |     |                  |                  |
| 2/13 | 1830 | 29°50.00 | 68°09.03  | 22.4 | 22.6   | 27.58 |     |                  |                  |
| 2/13 | 1845 | 29°48.20 | 68°11.91  | 22.2 | 22.4   | 27.29 |     |                  |                  |
| 2/13 | 1900 | 29°46.43 | 68°14.45  | 22.1 | 22.3   | 27.20 |     |                  |                  |
| 2/13 | 1915 | 29°44.64 | 68°17.16  | 22.0 | 22.2   | 27.14 |     |                  |                  |
| 2/13 | 1930 | 29°42.78 | 68°19.89  | 21.8 | 22.0   | 27.04 |     |                  |                  |
| 2/13 | 1945 | 29°40.93 | 68°22.52  | 21.9 | 22.1   | 27.07 |     |                  |                  |
| 2/13 | 2000 |          |           |      |        |       |     |                  |                  |
| 2/13 | 2015 |          |           |      |        |       |     |                  |                  |
| 2/13 | 2030 | 29°35.60 | 68°30.15  | 21.7 | 21.9   | 26.75 |     |                  |                  |
| 2/13 | 2045 | 29°33.67 | 68°32.86  | 21.5 | 21.9   | 26.72 |     |                  |                  |
| 2/13 | 2100 | 29°31.80 | 68°35.34  | 21.6 | 21.9   | 21.65 |     |                  |                  |
| 2/13 | 2115 | 29°30.07 | 68°37.79  | -    | 21.7   | 21.43 |     |                  |                  |
| 2/13 | 2130 | 29°28.11 | 68°40.42  | -    | 21.7   | 21.46 |     |                  |                  |
| 2/13 | 2145 | 29°26.30 | 68°42.88  | -    | 21.8   | 21.46 |     |                  |                  |
| 2/13 | 2200 | 29°24.47 | 68°45.40  | -    | 21.8   | 21.56 |     |                  |                  |
| 2/13 | 2215 | 29°22.87 | 68°48.09  | -    | 21.75  | 21.53 |     |                  |                  |
| 2/13 | 2230 | 29°21.15 | 68°50.94  | 21.5 | 21.8   | 21.53 |     |                  |                  |
| 2/13 | 2245 | 29°19.58 | 68°53.45  | 21.6 | 21.9   | 21.69 |     |                  |                  |
| 2/13 | 2300 | 29°17.88 | 68°55.87  | 22.4 | 22.8   | 22.41 |     |                  |                  |
| 2/13 | 2315 | 29°17.97 | 68°56.88  | 22.5 | 22.8   | 22.59 |     |                  |                  |
| 2/13 | 2330 | 29°18.40 | 68°58.08  | 22.5 | 22.8   | 22.59 |     |                  |                  |
| 2/13 | 2345 | 29°18.87 | 68°59.22  | 22.6 | 22.8   | 22.66 |     |                  |                  |
| 2/14 | 0000 | 29°18.06 | 69°00.33  | 22.6 | 22.9   | 22.63 |     |                  |                  |
| 2/14 | 0015 | 29°16.91 | 69°01.66  | 23.2 | 23.0   | 22.97 |     |                  |                  |
| 2/14 | 0030 | 29°15.78 | 69°03.04  | 23.4 | 23.3   | 23.12 |     |                  |                  |
| 2/14 | 0045 | 29°14.77 | 69°04.42  | 23.4 | 23.4   | 23.15 |     |                  |                  |
| 2/14 | 0100 | 29°13.73 | 69°06.04  | 23.5 | 23.4   | 23.19 |     |                  |                  |
| 2/14 | 0115 | 29°12.63 | 69°07.71  | 23.5 | 23.5   | 23.22 |     |                  |                  |
| 2/14 | 0130 | 29°11.55 | 69°09.43  | 23.2 | 23.4   | 23.25 |     |                  |                  |
| 2/14 | 0145 | 29°10.50 | 69°11.13  | 23.2 | 23.4   | 23.22 |     |                  |                  |
| 2/14 | 0200 | 29°09.43 | 69°12.81  | 23.2 | 23.4   | 23.25 |     |                  |                  |
| 2/14 | 0215 | 29°08.40 | 69°14.58  | 23.2 | 23.5   | 23.25 |     |                  |                  |
| 2/14 | 0230 | 29°07.40 | 69°16.36  | 23.2 | 23.5   | 23.25 |     |                  |                  |
| 2/14 | 0245 | 29°06.34 | 69°18.00  | 23.2 | 23.5   | 23.25 |     |                  |                  |
| 2/14 | 0300 | 29°05.33 | 69°19.76  | 23.2 | 23.5   | 23.25 |     |                  |                  |
| 2/14 | 0315 | 29°04.31 | 69°21.76  | 23.2 | 23.4   | 23.22 |     |                  |                  |
| 2/14 | 0345 | 29°04.57 | 69°23.99  | 23.1 | 23.2   | 23.09 |     |                  |                  |

Table Va-1: Example of 15 Minute Oceanographic Log.

## V. FASINEX Underway Sampling

### b. Meteorological Log

Ken Davidson coordinated a met program on both OCEANUS and ENDEAVOR during FASINEX Phase Two. Using met sensors mounted on a bow mast, data were gathered and logged to floppies. Manual observations were also taken every half hour. Radiosondes were launched from both ships alternating on a four hour schedule, with several additional radiosondes launched on aircraft overflight days. SODAR data was also collected on the two ships. The plots included in this section are for both ships. Each three-day data section shows synoptic weather maps with wind arrow, OCEANUS variables, ENDEAVOR variables, joint radiosonde locations and radiosonde data.

#### Davidson Description of Measurements

1. Due to system failure/performance the following measurements were not made, except for short periods at the beginning, on the ENDEAVOR

Aerosol

Humidity variance (Lyman- $\alpha$ )

SODAR

2. Temperature and humidity on the OCEANUS will only be available from point measurements every 1/2 hour. The SAIL system was judged to be in error for both of these.

3. OCEANUS relative wind direction at 5 minute intervals will be available from the SAIL System when the relative wind was from 300 clockwise to 060. Otherwise, relative wind direction will be obtained from point measurements every 1/2 hour.

4. The OCEANUS SODAR operated throughout except for 36 hours due to enclosure damage. However, its range did not extend to the inversion that was above 1 km. Hence the OCEANUS SODAR will not yield much information of continuous evaluation of inversion.

Dick Payne was in charge of an hourly meteorological log on OCEANUS 175. The variables logged were time, LORAN C latitude and longitude, wind speed and direction, wet and dry bulb temperatures, barometric pressure, wave height and direction, cloud cover and type.

Figure Vb-1

Davidson 3-Day Expanded Meteorological Plots  
from Payne's Data to Match KNORR Data Set  
(see WHOI report 86-35, FASINEX report #13)

Table Vb-1

Shipboard Meteorological Measurements

Figure Vb-2

Radiosonde Launch Positions

Table Vb-2

Radiosonde Launch Times and Locations

Figure Vb-3

Payne's Meteorological Plot for OCEANUS 175

Table Vb-3

Hourly Meteorological Log

**Participant Summary:****K. B. Katsaros and R. J. Lind ,  
University of Washington Field Program Summary**

Our objective was to measure surface radiation fluxes from R/V ENDEAVOR and R/V OCEANUS during Phase Two of FASINEX. It is hoped that these data will allow analysis of the radiation balance and associated feedback mechanisms at work across the oceanic front.

Identical sensors were deployed on ENDEAVOR and OCEANUS. These included: an Eppley Precision Spectral Pyranometer (model PSP) measuring shortwave irradiance in the frequency band from 0.28 to 2.8 micrometers, an Eppley (model PSP) pyranometer measuring shortwave irradiance in the frequency band from 0.7 to 2.8 micrometers and an Eppley Precision Infrared Radiometer (model PIR) measuring longwave irradiance in the frequency band from 3.0 to 50 micrometers.

Sensors on ENDEAVOR were gimbal mounted on top of a WHOI cargo container located on the port side between midship and the stern. Exposure was excellent with only the ship's mast obstructing the skyward hemisphere at a distance of 15 meters. Continuous monitoring by NPS personnel assured proper cleaning and reported that the sensors were maintained at, or very near horizontal in all sea conditions. Data recording of sensor output was continuous during Phase Two of FASINEX.

Sensors on OCEANUS were fix mounted on top of a bow mast. Exposure was excellent except for the close proximity of a wind sensor also mounted on top of the mast. Our intent was to gimbal mount the sensors, but the accelerations at the tip of the mast were too large to use our simple gravity system. Sensors were cleaned whenever the mast was lowered. A set of four photocells with different diffusers and filters were deployed to compare with the Eppley PSP measuring shortwave irradiance in the 0.7 to 2.8 micrometer wavelength band. Work is beginning on development of an algorithm to remotely determine cloud liquid water content from the combined measurements of shortwave irradiance and photocells (DeVault and Katsaros, 1983). The recording system experienced some data losses during the cruise. Data gaps appear on Feb. 11,12,13,14,16,23,26, and Mar. 1,2,3. Where required, data from models (verified on data from the rest of FASINEX) will make the data set from OCEANUS complete.

Our data from FASINEX is now being processed and results, except for model interpolation, should be ready in August. Data will be in the form of hourly and daily averages. These data will include measured shortwave and longwave irradiance and calculations of shortwave exitance (by method outlined in Payne, 1972) and longwave exitance (from measurements of sea surface temperature).

The investigators wish to thank all of the participants for their cooperation and accommodation during the field phase of FASINEX.

**References:**

- DeVault, J.E. and K. B. Katsaros, 1983: Remote determination of cloud liquid water path from bandwidth limited shortwave measurements. *J. Atmos. Sci.*, 40, 655-685.
- Lind, R.J. and K. B. Katsaros, 1982: A model of longwave irradiance for use with surface observations. *J. Appl. Met.*, 21, 1015-1023.
- Payne, R. E., 1972: Albedo of the sea surface. *J. Atmos. Sci.*, 29, 959-970.



**Figure Vb-1:** Davidson 3-Day Expanded Meteorological Plots from Payne's Data to Match KNORR Data Set (see WHOI Report 86-35, FASINEX Report #13).



Fig. Vb-1 (Cont)

11 FEB FASINEX 1986 ENDEAVOR

13 FEB

END  
OCE  
END  
1204  
1714  
1845  
13  
,13  
13  
12  
3



13 FEB



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



14 FEB  
Fig Vb-1 (Cont)

FASINEX 1986 OCEANUS

16 FEB



14 FEB  
Fig Vb-1 (Cont)

FASINEX 1986 ENDEAVOR

16 FEB

FASINEX RADIOSONDES  
14 FEB - 16 FEB



Fig Vb-1 (Cont)

|    |    |      |     |
|----|----|------|-----|
| 1  | 14 | 18   | END |
| 2  | 14 | 1245 | END |
| 3  | 14 | 1500 | END |
| 4  | 14 | 1502 | OCE |
| 5  | 14 | 2345 | END |
| 6  | 15 | 545  | OCE |
| 7  | 15 | 1207 | END |
| 8  | 15 | 1800 | END |
| 9  | 16 | 43   | END |
| 10 | 16 | 603  | END |
| 11 | 16 | 731  | OCE |
| 12 | 16 | 1259 | END |
| 13 | 16 | 1933 | OCE |
| 14 | 16 | 2358 | END |
| 15 | 16 | 2358 | OCE |



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont) 17 FEB

FASINEX 1986 OCEANUS

19 FEB



Fig Vb-1 (Cont)

17 FEB

FASINEX 1986 ENDEAVOR

19 FEB

FASINEX RADIOSONDES

17 FEB - 19 FEB



**Fig Vb-1 (Cont)**



Fig Vb-1 (Cont)



**Fig Vb-1 (Cont)**



20 FEB

FASINEX 1986 OCEANUS

22 FEB

Fig Vb-1 (Cont)

52



20 FEB

FASINEX 1986 ENDEAVOR

22 FEB

Fig Vb-1 (Cont)

FASINEX RADIOSONDES

20 FEB - 22 FEB



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont) 23 FEB

FASINEX 1986 OCEANUS

25 FEB



23 FEB

FASINEX 1986 ENDEAVOR

25 FEB

Fig Vb-1 (Cont)

## FASINEX RADIOSONDES

23 FEB - 25 FEB



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont) 26 FEB

FASINEX 1986 OCEANUS

28 FEB



26 FEB

FASINEX 1986 ENDEAVOR

28 FEB

Fig Vb-1 (Cont)

FASINEX RADIOSONDES

26 FEB - 28 FEB



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)

FASINEX 1986 OCEANUS

03 MAR



01 MAR  
Fig Vb-1 (Cont)

FASINEX 1986 ENDEAVOR

03 MAR

FASINEX RADIOSONDES  
01 MAR - 03 MAR



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)



Fig Vb-1 (Cont) 04 MAR

FASINEX 1986 OCEANUS

06 MAR



Fig Vb-1 (Cont)

## FASINEX RADIOSONDES

04 MAR - 06 MAR



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)





Fig Vb-1 (Cont)

07 MAR

FASINEX 1986 OCEANUS

09 MAR



Fig Vb-1 (Cont)

FASINEX 1986 ENDEAVOR

FASINEX RADIOSONDES  
07 MAR - 09 MAR



Fig Vb-1 (Cont)



Fig Vb-1 (Cont)

FASINEX RADIOSONDES

10 MAR



Fig Vb-1 (Cont)

TABLE Vb-1

**Naval Postgraduate School and University of Washington  
Shipboard Meteorological Measurements**

**Measurements on Endeavor only except those indicated by \*.**  
**\*Indicates measurements on both Endeavor and Oceanus.**

| <u>Measurements</u>                              | <u>Sensor/System</u>                             | <u>Endeavor<br/>and Oceanus<br/>Frequency</u> |
|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| Radiation (down)                                 | Long/short wave radiometers<br>(U of Washington) | Continuous                                    |
| Sea Surface Temperature                          | Floating thermister                              | Continuous                                    |
| Mean Surface layer:<br>*Wind (speed, direction)  | Cup anemometer, bivane                           | Continuous                                    |
| Temperature                                      | Resistance thermometer                           | Continuous                                    |
| Humidity                                         | Cool mirror                                      | Continuous                                    |
| Aerosols                                         | Optical counters<br>(.3 to 300 $\mu\text{m}$ )   | Continuous                                    |
| *Turbulent Kinetic<br>Energy Dissipation<br>Rate | Hot film and miniature cups                      | Continuous                                    |
| Humidity Variance<br>Dissipation Rate            | Lyman- $\alpha$                                  | Continuous                                    |
| *Inversion Height                                | SODAR                                            | Continuous                                    |
| *Temperature, Humidity,<br>and Wind Profiles     | Radiosonde<br>(LORAN-C Omega)                    | 2 to 6/day                                    |

# FASINEX Oceanus & Endeavor Radiosondes



**Figure Vb-2: Radiosonde Station Positions.**

| SAS    |      |          |                   |
|--------|------|----------|-------------------|
| DATE   | TIME | SHIP     | LOC               |
| 860213 | 1204 | ENDEAVOR | 69 59.13 28 11.22 |
|        | 1714 | OCEANUS  | 68 01.47 29 59.32 |
|        | 1845 | ENDEAVOR | 70 09.01 27 42.26 |
| 860214 | 0018 | ENDEAVOR | 70 30.05 28 04.67 |
|        | 1245 | ENDEAVOR | 71 00.10 28 08.30 |
|        | 1510 | ENDEAVOR | 70 58.32 28 17.96 |
|        | 1502 | OCEANUS  | 69 35.13 27 53.93 |
| 860215 | 2345 | ENDEAVOR | 70 45.57 27 52.99 |
|        | 0545 | OCEANUS  | 70 02.09 26 39.35 |
|        | 1207 | ENDEAVOR | 70 23.31 28 03.75 |
| 860216 | 1800 | ENDEAVOR | 70 28.51 28 12.38 |
|        | 0043 | ENDEAVOR | 70 14.29 28 08.03 |
|        | 0603 | ENDEAVOR | 70 27.01 28 14.38 |
| 860217 | 0731 | OCEANUS  | 70 17.39 27 57.80 |
|        | 1259 | ENDEAVOR | 70 28.07 28 07.39 |
|        | 1933 | OCEANUS  | 69 35.54 27 56.54 |
| 860218 | 2358 | ENDEAVOR | 70 26.94 28 13.86 |
|        | 0049 | OCEANUS  | 69 37.66 27 24.04 |
|        | 0548 | OCEANUS  | 70 05.40 28 02.31 |
| 860219 | 1200 | OCEANUS  | 70 25.72 28 41.39 |
|        | 1459 | ENDEAVOR | 70 27.71 28 22.99 |
|        | 1621 | OCEANUS  | 70 29.03 28 26.81 |
| 860220 | 1826 | ENDEAVOR | 70 15.38 26 04.59 |
|        | 0045 | OCEANUS  | 70 25.38 26 35.92 |
|        | 0603 | ENDEAVOR | 70 27.97 28 33.97 |
| 860221 | 1212 | OCEANUS  | 69 32.79 27 59.76 |
|        | 1215 | OCEANUS  | 70 11.11 29 45.57 |
|        | 1757 | ENDEAVOR | 70 34.58 28 49.43 |
| 860222 | 2027 | ENDEAVOR | 70 23.53 28 27.37 |
|        | 2334 | OCEANUS  | 70 44.21 28 32.86 |
|        | 0000 | OCEANUS  | 70 42.97 29 28.46 |
| 860223 | 0645 | OCEANUS  | 70 26.81 28 33.56 |
|        | 1211 | ENDEAVOR | 70 07.10 28 29.11 |
|        | 1441 | OCEANUS  | 70 04.78 28 13.83 |
| 860224 | 1507 | ENDEAVOR | 69 57.75 28 50.03 |
|        | 1854 | ENDEAVOR | 69 53.26 28 49.03 |
|        | 2023 | OCEANUS  | 69 59.12 28 12.43 |
| 860225 | 0052 | ENDEAVOR | 69 56.15 28 08.54 |
|        | 1216 | ENDEAVOR | 69 51.76 28 13.52 |
|        | 1515 | OCEANUS  | 69 55.77 28 52.47 |
| 860226 | 1915 | OCEANUS  | 69 56.90 28 59.45 |
|        | 1952 | ENDEAVOR | 70 02.33 28 11.17 |
|        | 0000 | ENDEAVOR | 70 08.97 28 16.42 |
| 860227 | 0612 | OCEANUS  | 69 26.19 28 10.94 |
|        | 1201 | ENDEAVOR | 68 53.62 28 30.80 |
|        | 1825 | OCEANUS  | 69 47.84 28 13.19 |
| 860228 | 1919 | ENDEAVOR | 69 19.05 28 18.03 |
|        | 0000 | ENDEAVOR | 69 23.01 28 23.11 |
|        | 0516 | OCEANUS  | 69 43.86 28 11.17 |
| 860229 | 1201 | ENDEAVOR | 69 38.11 28 02.33 |
|        | 2027 | ENDEAVOR | 69 41.65 28 02.23 |

Table Vb-2: Radiosonde Launch Times and Locations.

| SAS    |      |          |          |          |
|--------|------|----------|----------|----------|
| DATE   | TIME | SHIP     | LOC      |          |
| 860224 | 0001 | ENDEAVOR | 69 39.06 | 28 01.19 |
|        | 0545 | OCEANUS  | 69 28.86 | 28 10.58 |
|        | 1359 | OCEANUS  | 69 50.73 | 28 14.46 |
|        | 1413 | ENDEAVOR | 69 48.43 | 27 55.41 |
|        | 1832 | ENDEAVOR | 69 47.29 | 27 52.28 |
|        | 2020 | OCEANUS  | 69 35.10 | 28 15.82 |
|        | 2356 | ENDEAVOR | 69 24.61 | 28 03.90 |
| 860225 | 0601 | OCEANUS  | 69 24.55 | 28 10.97 |
|        | 1230 | ENDEAVOR | 69 35.23 | 28 29.52 |
|        | 1343 | ENDEAVOR | 69 39.81 | 28 27.29 |
|        | 1759 | ENDEAVOR | 69 30.40 | 28 22.79 |
|        | 2233 | OCEANUS  | 69 21.94 | 28 16.19 |
| 860226 | 0008 | ENDEAVOR | 69 12.33 | 28 11.75 |
|        | 1150 | ENDEAVOR | 69 23.00 | 28 15.21 |
|        | 1402 | OCEANUS  | 69 16.18 | 27 59.98 |
|        | 1325 | OCEANUS  | 69 26.38 | 27 40.36 |
|        | 2306 | ENDEAVOR | 69 43.80 | 27 27.35 |
| 860227 | 0315 | ENDEAVOR | 69 43.94 | 27 09.06 |
|        | 0557 | OCEANUS  | 69 48.25 | 26 35.02 |
|        | 1213 | ENDEAVOR | 69 48.66 | 26 55.91 |
|        | 1826 | ENDEAVOR | 69 50.62 | 27 00.17 |
|        | 2357 | OCEANUS  | 69 48.58 | 27 09.05 |
| 860228 | 0016 | OCEANUS  | 70 08.60 | 28 41.90 |
|        | 0549 | OCEANUS  | 69 22.50 | 28 49.08 |
|        | 1156 | OCEANUS  | 68 25.35 | 28 48.61 |
|        | 1400 | ENDEAVOR | 68 41.37 | 28 10.54 |
|        | 1748 | OCEANUS  | 68 24.42 | 28 26.24 |
|        | 2351 | ENDEAVOR | 68 31.40 | 28 32.70 |
| 860301 | 0554 | OCEANUS  | 69 15.22 | 28 21.31 |
|        | 1414 | ENDEAVOR | 68 23.59 | 28 22.91 |
| 860302 | 0008 | ENDEAVOR | 68 24.54 | 28 07.01 |
|        | 0554 | OCEANUS  | 68 24.66 | 28 58.81 |
|        | 1449 | ENDEAVOR | 68 53.95 | 28 08.76 |
|        | 1806 | ENDEAVOR | 69 02.73 | 28 10.55 |
| 860303 | 0010 | ENDEAVOR | 69 04.83 | 23 12.56 |
|        | 0558 | OCEANUS  | 68 34.19 | 24 46.46 |
|        | 1157 | ENDEAVOR | 68 20.10 | 23 46.70 |
|        | 1520 | ENDEAVOR | 68 28.22 | 28 57.64 |
|        | 2054 | ENDEAVOR | 68 27.82 | 28 38.64 |
|        | 2210 | OCEANUS  | 68 34.80 | 28 37.87 |
|        | 2359 | ENDEAVOR | 68 29.85 | 28 57.48 |
| 860304 | 0557 | OCEANUS  | 68 14.71 | 28 36.52 |
|        | 1114 | ENDEAVOR | 67 57.68 | 28 48.56 |
|        | 1156 | ENDEAVOR | 67 59.86 | 28 44.93 |
|        | 1310 | ENDEAVOR | 68 01.15 | 28 38.68 |
|        | 1926 | OCEANUS  | 68 14.29 | 28 23.36 |
|        | 2348 | OCEANUS  | 68 08.31 | 28 33.42 |
| 860305 | 0014 | ENDEAVOR | 68 03.72 | 28 29.44 |
|        | 0542 | OCEANUS  | 68 03.56 | 28 46.17 |
|        | 0616 | ENDEAVOR | 67 51.10 | 28 53.00 |
|        | 0952 | OCEANUS  | 67 57.23 | 28 54.86 |
|        | 1331 | OCEANUS  | 67 54.77 | 29 00.13 |
|        | 1752 | OCEANUS  | 67 50.41 | 29 14.12 |
|        | 2054 | ENDEAVOR | 67 46.56 | 29 42.65 |
| 860306 | 0005 | ENDEAVOR | 67 39.44 | 28 50.15 |
|        | 0602 | OCEANUS  | 68 34.00 | 28 06.60 |
|        | 1151 | OCEANUS  | 69 17.30 | 27 17.70 |
|        | 1226 | ENDEAVOR | 67 35.44 | 28 48.04 |
|        | 1757 | OCEANUS  | 69 46.84 | 27 05.61 |
|        | 2001 | ENDEAVOR | 67 30.19 | 28 42.00 |

Table Vb-2 (Cont)

| SAS    |      |          |                   |
|--------|------|----------|-------------------|
| DATE   | TIME | SHIP     | LOC               |
| 860307 | 0011 | OCEANUS  | 69 33-98 27 08-04 |
|        | 0014 | ENDEAVOR | 69 33-67 28 08-03 |
|        | 0551 | OCEANUS  | 70 04-76 26 54-37 |
|        | 0606 | ENDEAVOR | 69 27-18 28 59-12 |
|        | 1346 | OCEANUS  | 69 33-96 27 18-29 |
|        | 1609 | OCEANUS  | 69 34-04 27 00-52 |
|        | 1807 | OCEANUS  | 69 33-73 26 54-14 |
| 860308 | 2726 | OCEANUS  | 70 02-42 26 54-08 |
|        | 0025 | OCEANUS  | 70 22-06 27 22-57 |
|        | 0611 | OCEANUS  | 69 33-99 27 04-78 |
|        | 1216 | OCEANUS  | 69 33-21 26 27-90 |
|        | 1756 | OCEANUS  | 70 35-57 26 54-97 |
| 860309 | 2358 | OCEANUS  | 69 35-37 27 07-88 |
|        | 0637 | OCEANUS  | 69 33-79 27 22-50 |
|        | 1223 | OCEANUS  | 69 33-60 28 19-30 |
| 860310 | 1849 | OCEANUS  | 69 43-72 29 40-40 |
|        | 0036 | OCEANUS  | 69 49-57 30 57-14 |
|        | 0612 | OCEANUS  | 69 56-28 32 10-46 |
|        | 1144 | OCEANUS  | 70 14-51 34 21-94 |
|        | 1740 | OCEANUS  | 70 16-51 34 38-44 |

Table Vb-2 (Cont)



Figure Vb-3: Payne's Meteorological Plot for OCEANUS 125.

## OCEANUS CRUISE 173 MANUAL NET OBSERVATIONS

## NOTES ON PARAMETERS:

1. Date - Month/day
2. Time - UTC, hours
3. Lat and Long - Positions are from Internav Loran receiver.
4. WS,WD - True wind speed and direction derived from apparent wind speed and direction and ship course and speed. Direction is direction from which meteorological convention.
5. AT - Dry bulb air temperature, from Asman psychrometer, thermometer divisions are 0.2C.
6. RH - Relative humidity computed from wet and dry bulb temperatures from Asman by equations and constants in Smithsonian Meteorological Tables.
7. ABS HUM - Absolute humidity in kg/m<sup>3</sup>.
8. SST - Sea surface temperature (C) from bucket.
9. BP - Barometric pressure (mb) from bow MR for 2/14 0000Z to 2/21 1730Z. The remaining values are from the bridge corrected to agree with the bow MR.
10. CLOUD - Cloud observations. The four digits are: total octants covered, cloud type for low, medium and high clouds.
11. WAVES - The four two digit numbers are: sea wave period and height, predominant swell direction and height. Heights in feet, direc. 'on in 10s of degrees.
12. SC,SS - Ship's course and speed (kt) from gyro and ship's speed log.
13. AD,AS - Apparent wind direction and speed. AD is from bridge readout of ship's wind vane. AS is whichever was considered the best value at the time of observation: ship's anemometer, SAIL anemometer, Davidsen cups on mast or, if cups not operational, Davidsen hot wire anemometer on mast. AS in kts. If SC,SS,AD,AS are all 0 then WS and WD are linearly interpolated values.
14. TW - Wet bulb temperature (C). If this 0 then AT,RH,AM are linearly interpolated values.

=====

| DATE | TIME          | LAT | LONG  | WS   | WD  | AT   | RH   | ABS HUM    | SST  | BP     | CLOUD | WAVES | SC   | SS  | AD  | AS  | TW   |      |      |
|------|---------------|-----|-------|------|-----|------|------|------------|------|--------|-------|-------|------|-----|-----|-----|------|------|------|
| 2/14 | 0 29 18.04    | 69  | 0.33  | 12.6 | 292 | 20.4 | 67.4 | 0.11082-01 | 22.9 | 1013.4 |       |       | 240  | 8   | 40  | 30  | 16.2 |      |      |
| 2/14 | 100 29 13.73  | 69  | 6.04  | 11.9 | 243 | 20.3 | 56.2 | 0.9768-02  | 23.4 | 1016.1 |       |       | 230  | 9   | 10  | 32  | 14.7 |      |      |
| 2/14 | 200 29 9.43   | 69  | 12.82 | 14.9 | 313 | 19.4 | 70.5 | 0.11082-01 | 23.4 | 1016.3 |       |       | 240  | 8   | 60  | 32  | 15.7 |      |      |
| 2/14 | 300 29 5.33   | 69  | 19.76 | 13.2 | 301 | 19.1 | 73.7 | 0.11082-01 | 23.5 | 1017.1 |       |       | 240  | 8   | 50  | 34  | 15.8 |      |      |
| 2/14 | 400 29 3.14   | 69  | 23.98 | 13.6 | 298 | 18.0 | 66.4 | 0.10182-01 | 23.1 | 1018.8 |       |       | 330  | 2   | 330 | 32  | 14.0 |      |      |
| 2/14 | 500 29 8.76   | 69  | 29.84 | 15.8 | 324 | 17.7 | 68.3 | 0.10382-01 | 23.6 | 1018.8 |       |       | 230  | 8   | 60  | 31  | 0.0  |      |      |
| 2/14 | 600 28 39.36  | 69  | 35.88 | 13.2 | 323 | 17.5 | 70.2 | 0.10482-01 | 22.1 | 1019.2 |       |       | 230  | 7   | 60  | 30  | 14.0 |      |      |
| 2/14 | 700 28 32.43  | 69  | 39.71 | 9.9  | 311 | 17.2 | 68.5 | 0.10082-01 | 21.4 | 1020.3 |       |       | 200  | 7   | 90  | 18  | 0.0  |      |      |
| 2/14 | 800 28 45.04  | 69  | 42.09 | 5.3  | 182 | 16.9 | 66.8 | 0.95082-02 | 21.8 | 1020.3 |       |       | 200  | 8   | 350 | 18  | 0.0  |      |      |
| 2/14 | 900 28 37.66  | 69  | 44.48 | 8.3  | 270 | 16.6 | 65.1 | 0.91382-02 | 21.8 | 1021.0 |       |       | 0    | 0   | 0   | 0   | 0.0  |      |      |
| 2/14 | 1000 28 30.27 | 69  | 46.86 | 11.2 | 357 | 16.3 | 63.4 | 0.87282-02 | 21.1 | 1021.4 |       |       | 190  | 8   | 160 | 14  | 12.2 |      |      |
| 2/14 | 1100 28 22.73 | 69  | 47.19 | 7.7  | 339 | 17.1 | 62.6 | 0.90282-02 | 21.1 | 1022.0 | 7     | 2 08  | 6    | 160 | 8   | 230 | 8    | 12.8 |      |
| 2/14 | 1200 28 15.62 | 69  | 49.00 | 8.7  | 2   | 16.8 | 59.6 | 0.84382-02 | 21.4 | 1023.1 |       | 2 04  | 8    | 160 | 8   | 220 | 10   | 12.2 |      |
| 2/14 | 1300 28 8.53  | 69  | 41.38 | 5.9  | 16  | 17.8 | 57.5 | 0.84382-02 | 21.6 | 1023.2 | 1     | 2 04  | 7    | 160 | 8   | 260 | 7    | 12.8 |      |
| 2/14 | 1400 27 39.84 | 69  | 37.77 | 6.3  | 19  | 18.6 | 50.5 | 0.79482-02 | 21.3 | 1023.3 | 4     | 1     | 2 24 | 10  | 160 | 8   | 260  | 8    | 12.6 |
| 2/14 | 1500 27 34.42 | 69  | 35.39 | 5.5  | 11  | 19.2 | 52.2 | 0.84982-02 | 21.6 | 1023.7 | 1     | 3     | 2 34 | 10  | 160 | 7   | 230  | 6    | 13.3 |
| 2/14 | 1600 27 47.81 | 69  | 33.07 | 8.0  | 354 | 19.6 | 55.9 | 0.93182-02 | 23.4 | 1023.3 | 4     | 2 34  | 9    | 160 | 8   | 210 | 8    | 14.1 |      |
| 2/14 | 1700 27 40.40 | 69  | 32.80 | 7.3  | 21  | 20.1 | 59.7 | 0.10282-01 | 23.3 | 1023.0 | 6     | 2 34  | 9    | 160 | 7   | 230 | 8    | 15.0 |      |
| 2/14 | 1800 27 32.90 | 69  | 32.30 | 5.1  | 73  | 20.3 | 58.4 | 0.10182-01 | 23.4 | 1022.4 | 8     |       | 180  | 8   | 300 | 11  | 19.0 |      |      |
| 2/14 | 1900 27 26.51 | 69  | 32.23 | 6.7  | 50  | 19.9 | 52.4 | 0.89882-02 | 23.4 | 1022.0 | 2     |       | 170  | 8   | 300 | 10  | 13.9 |      |      |
| 2/14 | 2000 27 19.69 | 69  | 30.67 | 7.0  | 66  | 19.8 | 57.0 | 0.90682-02 | 23.3 | 1021.4 | 8     |       | 170  | 8   | 290 | 14  | 14.4 |      |      |
| 2/14 | 2100 27 12.17 | 69  | 21.36 | 7.4  | 78  | 19.9 | 56.3 | 0.93582-02 | 23.5 | 1021.2 | 4     |       | 180  | 8   | 290 | 13  | 14.4 |      |      |
| 2/14 | 2200 27 5.00  | 69  | 32.48 | 6.3  | 83  | 20.0 | 52.6 | 0.89882-02 | 23.5 | 1021.1 | 41    | 1 32  | 10   | 6   | 180 | 8   | 300  | 14   | 14.0 |
| 2/14 | 2300 26 36.37 | 69  | 32.64 | 6.0  | 98  | 20.7 | 57.4 | 0.10282-01 | 23.5 | 1021.2 | 4     | 1 32  | 10   | 5   | 180 | 8   | 310  | 13   | 13.2 |
| 2/15 | 0 26 31.11    | 69  | 32.07 | 7.4  | 66  | 21.2 | 60.4 | 0.11082-01 | 24.0 | 1020.8 |       |       | 170  | 8   | 290 | 13  | 16.0 |      |      |
| 2/15 | 100 26 44.03  | 69  | 31.33 | 6.4  | 90  | 21.1 | 59.3 | 0.10882-01 | 24.0 | 1021.0 |       |       | 170  | 8   | 310 | 16  | 13.8 |      |      |
| 2/15 | 200 26 37.09  | 69  | 30.86 | 5.1  | 89  | 21.0 | 57.0 | 0.10382-01 | 24.1 | 1021.6 |       |       | 270  | 8   | 180 | 2   | 13.4 |      |      |
| 2/15 | 300 26 37.19  | 69  | 30.74 | 4.6  | 116 | 21.3 | 50.3 | 0.11182-01 | 24.0 | 1021.3 |       |       | 270  | 8   | 270 | 4   | 16.1 |      |      |
| 2/15 | 400 26 37.70  | 69  | 47.04 | 5.3  | 109 | 21.3 | 58.2 | 0.12382-01 | 24.0 | 1021.9 |       |       | 270  | 8   | 240 | 6   | 17.0 |      |      |
| 2/15 | 500 26 37.93  | 69  | 36.02 | 4.4  | 173 | 21.6 | 41.6 | 0.11382-01 | 23.7 | 1020.2 |       |       | 270  | 8   | 310 | 11  | 16.5 |      |      |
| 2/15 | 600 26 34.22  | 70  | 4.20  | 5.3  | 169 | 21.4 | 66.9 | 0.12382-01 | 23.3 | 1021.9 | 3     |       | 270  | 8   | 300 | 12  | 17.0 |      |      |
| 2/15 | 700 26 43.38  | 70  | 8.34  | 3.1  | 170 | 21.5 | 64.6 | 0.12082-01 | 23.5 | 1021.8 |       |       | 0    | 8   | 30  | 2   | 16.8 |      |      |
| 2/15 | 800 26 49.12  | 70  | 7.78  | 4.4  | 200 | 21.3 | 74.2 | 0.13082-01 | 23.5 | 1021.8 |       |       | 0    | 8   | 270 | 3   | 18.0 |      |      |
| 2/15 | 900 26 37.24  | 70  | 8.11  | 4.2  | 209 | 21.8 | 70.3 | 0.13382-01 | 23.6 | 1021.8 |       |       | 0    | 7   | 270 | 4   | 17.8 |      |      |
| 2/15 | 1000 27 5.04  | 70  | 7.49  | 3.7  | 226 | 21.6 | 71.9 | 0.13182-01 | 23.7 | 1021.7 | 9     |       | 0    | 8   | 300 | 6   | 17.6 |      |      |
| 2/15 | 1100 27 12.00 | 70  | 6.97  | 7.0  | 236 | 21.6 | 71.9 | 0.13482-01 | 23.5 | 1021.8 | 3     | 1 33  | 9    | 4   | 0   | 8   | 290  | 14   | 17.8 |
| 2/15 | 1200 27 20.99 | 70  | 6.68  | 6.2  | 226 | 21.5 | 71.8 | 0.13382-01 | 23.5 | 1021.7 | 9     | 1 33  | 9    | 4   | 0   | 8   | 270  | 9    | 17.7 |
| 2/15 | 1300 27 29.06 | 70  | 6.12  | 6.7  | 214 | 21.6 | 71.1 | 0.13382-01 | 23.6 | 1021.7 | 4     | 1 33  | 9    | 3   | 0   | 8   | 230  | 8    | 17.7 |
| 2/15 | 1400 27 37.23 | 70  | 6.06  | 6.3  | 203 | 21.7 | 72.8 | 0.13782-01 | 23.5 | 1021.6 | 8     | 1     | 3    | 0   | 8   | 240 | 6    | 18.0 |      |
| 2/15 | 1500 27 43.27 | 70  | 5.00  | 7.1  | 209 | 22.0 | 70.7 | 0.13582-01 | 23.6 | 1021.6 | 2     | 2     | 3    | 0   | 8   | 240 | 8    | 18.0 |      |
| 2/15 | 1600 27 53.14 | 70  | 3.09  | 8.1  | 222 | 22.4 | 69.0 | 0.14282-01 | 23.4 | 1021.6 | 2     | 2     | 3    | 0   | 8   | 230 | 11   | 19.0 |      |
| 2/15 | 1700 28 0.91  | 70  | 3.83  | 9.9  | 200 | 22.4 | 68.0 | 0.13382-01 | 23.5 | 1021.4 | 2     |       | 180  | 8   | 240 | 14  | 18.0 |      |      |
| 2/15 | 1800 28 8.76  | 70  | 2.80  | 10.4 | 218 | 20.2 | 67.8 | 0.13182-01 | 23.1 | 1021.8 |       |       | 180  | 8   | 230 | 16  | 0.0  |      |      |
| 2/15 | 1900 28 13.29 | 70  | 6.32  | 14.5 | 218 | 22.0 | 67.6 | 0.12982-01 | 23.1 | 1021.9 | 2     |       | 240  | 2   | 340 | 30  | 17.6 |      |      |
| 2/15 | 2000 28 12.33 | 70  | 6.61  | 18.0 | 309 | 22.8 | 65.4 | 0.13082-01 | 20.7 | 1021.9 | 1     |       | 330  | 0   | 340 | 35  | 18.0 |      |      |
| 2/15 | 2100 28 13.74 | 70  | 4.33  | 14.9 | 232 | 22.8 | 65.3 | 0.13782-01 | 23.1 | 1021.2 |       |       | 20   | 6   | 230 | 24  | 0.0  |      |      |
| 2/15 | 2200 28 12.16 | 70  | 9.69  | 14.9 | 249 | 22.8 | 71.3 | 0.14182-01 | 21.1 | 1021.8 | 2     | 2 23  | 6    | 6   | 230 | 6   | 33   | 18.8 |      |
| 2/15 | 2300 28 10.62 | 70  | 12.85 | 13.9 | 239 | 22.6 | 69.6 | 0.13082-01 | 23.1 | 1021.4 | 2     | 2 20  | 5    | 6   | 270 | 2   | 350  | 29   | 18.4 |
| 2/15 | 0 28 10.69    | 70  | 13.00 | 9.8  | 200 | 20.4 | 74.1 | 0.13982-01 | 23.3 | 1021.3 |       |       | 270  | 3   | 0   | 22  | 17.0 |      |      |
| 2/15 | 100 28 10.93  | 70  | 13.90 | 8.4  | 224 | 20.7 | 78.6 | 0.13982-01 | 23.3 | 1021.4 | 1     |       | 200  | 6   | 20  | 20  | 17.8 |      |      |
| 2/15 | 200 28 10.44  | 70  | 17.90 | 8.1  | 321 | 21.0 | 74.6 | 0.13382-01 | 21.1 | 1021.4 | 8     |       | 270  | 4   | 50  | 18  | 17.6 |      |      |
| 2/15 | 300 28 1.82   | 70  | 17.12 | 8.9  | 133 | 21.0 | 73.8 | 0.13382-01 | 23.4 | 1021.5 | 9     |       | 180  | 9   | 130 | 10  | 17.5 |      |      |
| 2/15 | 400 27 54.46  | 70  | 16.94 | 7.7  | 329 | 21.3 | 72.6 | 0.13382-01 | 23.3 | 1021.6 | 7     | 2 30  | 6    | 330 | 1   | 0   | 16   | 17.8 |      |
| 2/15 | 500 27 53.40  | 70  | 17.07 | 7.7  | 319 | 21.5 | 66.2 | 0.13382-01 | 23.3 | 1021.5 | 7     |       | 330  | 1   | 0   | 16  | 17.0 |      |      |
| 2/15 | 600 27 36.69  | 70  | 17.36 | 6.7  | 229 | 21.2 | 62.0 | 0.11382-01 | 23.5 | 1021.5 | 9     |       | 330  | 2   | 0   | 19  | 16.2 |      |      |
| 2/15 | 700 27 37.37  | 70  | 17.30 | 8.2  | 239 | 21.2 | 60.4 | 0.11082-01 | 23.1 | 1021.3 |       |       | 330  | 1   | 330 | 17  | 16.0 |      |      |
| 2/15 | 800 27 34.24  | 70  | 17.69 | 7.7  | 329 | 21.0 | 57.9 | 0.10482-01 | 23.1 | 1021.7 | 1     |       | 330  | 1   | 0   | 16  | 15.5 |      |      |

Table Vb-3 (Cont)

| DATE | TIME | LAT      | LONG     | WS   | WD  | AT   | RH   | ABS HUM   | BST  | BP     | CLOUD | WAVES | SC  | SS  | AD  | AS  | TW   |      |
|------|------|----------|----------|------|-----|------|------|-----------|------|--------|-------|-------|-----|-----|-----|-----|------|------|
| 2/16 | 1000 | 27 59.91 | 70 17.47 | 9.3  | 331 | 19.4 | 53.4 | 0.879E-02 | 23.0 | 1017.7 |       |       | 330 | 1   | 20  | 19  | 13.6 |      |
| 2/16 | 1030 | 28 0.42  | 70 17.66 | 7.7  | 341 | 19.6 | 52.9 | 0.880E-02 | 23.0 | 1017.8 | 1     | 1 30  | 4   | 330 | 2   | 10  | 17   | 13.7 |
| 2/16 | 1100 | 28 0.85  | 70 17.90 | 8.5  | 14  | 19.3 | 62.8 | 0.103E-01 | 23.1 | 1018.3 | 1     | 1 30  | 3   | 330 | 2   | 40  | 18   | 14.7 |
| 2/16 | 1130 | 28 1.27  | 70 18.15 | 8.3  | 331 | 19.1 | 64.3 | 0.104E-01 | 23.1 | 1018.6 | 1     | 1 30  | 3   | 340 | 2   | 10  | 18   | 14.7 |
| 2/16 | 1200 | 28 1.97  | 70 18.47 | 7.7  | 1   | 19.3 | 54.8 | 0.897E-02 | 23.2 | 1019.2 | 1     | 1 32  | 5   | 350 | 2   | 10  | 17   | 13.7 |
| 2/16 | 1230 | 28 2.57  | 70 18.19 | 7.8  | 12  | 19.3 | 47.3 | 0.783E-02 | 23.2 | 1020.0 | 1     | 1 32  | 3   | 350 | 2   | 20  | 17   | 12.9 |
| 2/16 | 1300 | 28 4.04  | 70 13.47 | 6.7  | 12  | 19.5 | 59.0 | 0.977E-02 | 23.2 | 1019.8 | 1     | 1 34  | 5   | 70  | 12  | 330 | 22   | 14.4 |
| 2/16 | 1330 | 28 5.77  | 70 6.79  | 6.4  | 19  | 19.3 | 57.7 | 0.934E-02 | 22.4 | 1020.5 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/16 | 1400 | 28 4.11  | 70 4.62  | 6.1  | 25  | 19.4 | 56.4 | 0.930E-02 | 22.8 | 1021.1 | 1     | 1 32  | 5   | 150 | 5   | 260 | 10   | 14.0 |
| 2/16 | 1430 | 28 3.79  | 70 4.87  | 8.4  | 14  | 19.9 | 55.9 | 0.945E-02 | 22.9 | 1021.5 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/16 | 1500 | 28 5.31  | 69 36.53 | 10.7 | 357 | 20.3 | 55.3 | 0.959E-02 | 22.5 | 1021.8 | 1     | 3 00  | 5   | 65  | 8   | 310 | 25   | 14.6 |
| 2/16 | 1530 | 28 7.19  | 69 37.55 | 9.6  | 9   | 20.1 | 56.6 | 0.970E-02 | 21.0 | 1022.2 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/16 | 1600 | 28 9.02  | 69 47.18 | 8.5  | 16  | 19.9 | 57.9 | 0.981E-02 | 21.0 | 1022.5 | 1     | 3 00  | 4   | 60  | 8   | 330 | 23   | 14.6 |
| 2/16 | 1630 | 28 10.83 | 69 43.02 | 3.0  | 359 | 20.3 | 54.0 | 0.948E-02 | 21.1 | 1022.1 |       |       | 60  | 8   | 335 | 12  | 14.6 |      |
| 2/16 | 1700 | 28 12.71 | 69 38.99 | 7.0  | 53  | 20.0 | 52.6 | 0.896E-02 | 21.4 | 1021.9 | 1     | 3     | 4   | 180 | 8   | 270 | 11   | 14.0 |
| 2/16 | 1730 | 28 12.20 | 69 35.38 | 7.0  | 56  | 20.0 | 52.6 | 0.896E-02 | 21.3 | 1021.7 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/16 | 1800 | 28 8.27  | 69 34.91 | 6.9  | 58  | 20.2 | 53.2 | 0.951E-02 | 21.4 | 1021.5 | 1     | 2     | 190 | 9   | 270 | 10  | 14.5 |      |
| 2/16 | 1830 | 28 4.51  | 69 34.71 | 7.7  | 34  | 20.0 | 62.0 | 0.106E-01 | 23.0 | 1021.6 |       |       | 195 | 8   | 220 | 8   | 15.2 |      |
| 2/16 | 1900 | 28 0.81  | 69 35.09 | 5.7  | 26  | 20.2 | 57.5 | 0.992E-02 | 23.4 | 1021.4 | 1     | 1     | 4   | 190 | 8   | 230 | 4    | 14.8 |
| 2/16 | 1930 | 27 35.76 | 69 35.38 | 6.0  | 29  | 20.3 | 57.7 | 0.100E-01 | 23.3 | 1021.3 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/16 | 2000 | 27 53.35 | 69 35.56 | 6.3  | 32  | 20.4 | 57.8 | 0.101E-01 | 23.3 | 1021.6 | 1     | 1     | 4   | 180 | 8   | 250 | 7    | 15.0 |
| 2/16 | 2030 | 27 49.45 | 69 35.85 | 7.2  | 41  | 20.5 | 58.7 | 0.103E-01 | 23.2 | 1021.7 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/16 | 2100 | 27 44.72 | 69 36.10 | 8.0  | 49  | 20.6 | 59.6 | 0.105E-01 | 23.1 | 1021.8 | 1     | 1     | 4   | 180 | 8   | 260 | 12   | 15.4 |
| 2/16 | 2130 | 27 42.00 | 69 36.06 | 7.6  | 57  | 21.0 | 59.7 | 0.108E-01 | 23.3 | 1021.7 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/16 | 2200 | 27 38.10 | 69 35.84 | 7.2  | 65  | 21.3 | 59.7 | 0.110E-01 | 23.4 | 1022.3 | 2     | 2 09  | 3   | 180 | 8   | 280 | 13   | 16.0 |
| 2/16 | 2230 | 27 34.24 | 69 35.68 | 7.7  | 63  | 21.3 | 62.4 | 0.115E-01 | 23.4 | 1022.3 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/16 | 2300 | 27 30.42 | 69 35.37 | 8.3  | 60  | 21.3 | 63.1 | 0.119E-01 | 23.3 | 1022.3 | 2     | 2 09  | 3   | 180 | 8   | 270 | 14   | 16.7 |
| 2/16 | 2330 | 27 26.72 | 69 35.88 | 6.1  | 78  | 21.3 | 59.4 | 0.109E-01 | 23.3 | 1022.6 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 0    | 27 24.07 | 69 37.86 | 3.8  | 95  | 21.3 | 53.6 | 0.984E-02 | 23.5 | 1022.9 | 1     |       | 270 | 8   | 310 | 1   | 15.2 |      |
| 2/17 | 30   | 27 24.50 | 69 42.25 | 4.6  | 95  | 21.3 | 54.2 | 0.100E-01 | 23.4 | 1023.1 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 100  | 27 35.31 | 69 46.63 | 5.4  | 95  | 21.6 | 54.8 | 0.102E-01 | 23.5 | 1023.3 | 1     |       | 0   | 7   | 60  | 12  | 15.6 |      |
| 2/17 | 130  | 27 29.36 | 69 46.56 | 6.1  | 79  | 21.6 | 58.5 | 0.109E-01 | 23.3 | 1023.2 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 200  | 27 33.46 | 69 46.10 | 6.7  | 63  | 21.5 | 62.2 | 0.115E-01 | 23.4 | 1023.0 | 1     |       | 0   | 8   | 40  | 18  | 16.5 |      |
| 2/17 | 230  | 27 37.37 | 69 45.54 | 7.3  | 68  | 21.6 | 62.7 | 0.117E-01 | 23.5 | 1023.1 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 300  | 27 41.28 | 69 45.24 | 7.8  | 73  | 21.7 | 63.2 | 0.119E-01 | 23.4 | 1023.3 | 1     |       | 0   | 8   | 50  | 19  | 16.8 |      |
| 2/17 | 330  | 27 45.29 | 69 44.80 | 7.3  | 83  | 21.5 | 62.7 | 0.117E-01 | 23.2 | 1023.4 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 400  | 27 49.04 | 69 44.91 | 6.7  | 92  | 21.4 | 62.1 | 0.115E-01 | 22.9 | 1023.5 |       |       | 0   | 8   | 60  | 15  | 16.4 |      |
| 2/17 | 430  | 27 52.67 | 69 47.72 | 6.5  | 88  | 21.2 | 58.8 | 0.112E-01 | 23.0 | 1023.4 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 500  | 27 56.54 | 69 45.12 | 6.3  | 84  | 21.0 | 55.5 | 0.100E-01 | 23.1 | 1023.3 |       |       | 350 | 8   | 60  | 14  | 15.2 |      |
| 2/17 | 530  | 28 0.29  | 69 45.21 | 6.7  | 82  | 21.0 | 54.8 | 0.987E-02 | 23.1 | 1023.3 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 600  | 28 4.22  | 69 45.27 | 7.1  | 79  | 21.0 | 54.0 | 0.974E-02 | 23.2 | 1023.2 |       |       | 350 | 8   | 60  | 16  | 15.0 |      |
| 2/17 | 630  | 28 7.79  | 69 44.93 | 6.4  | 69  | 21.0 | 55.5 | 0.100E-01 | 23.0 | 1023.0 |       |       | 350 | 8   | 50  | 16  | 15.2 |      |
| 2/17 | 700  | 28 11.45 | 69 44.44 | 7.9  | 89  | 21.0 | 55.5 | 0.100E-01 | 22.9 | 1022.8 |       |       | 350 | 8   | 70  | 16  | 15.2 |      |
| 2/17 | 730  | 28 14.91 | 69 44.32 | 7.7  | 91  | 21.0 | 57.8 | 0.104E-01 | 22.0 | 1022.9 |       |       | 340 | 8   | 80  | 14  | 15.3 |      |
| 2/17 | 800  | 28 18.56 | 69 45.35 | 6.1  | 89  | 20.8 | 56.7 | 0.101E-01 | 21.1 | 1022.8 |       |       | 340 | 8   | 70  | 12  | 15.2 |      |
| 2/17 | 830  | 28 22.15 | 69 46.17 | 6.3  | 94  | 20.8 | 58.3 | 0.104E-01 | 21.1 | 1022.3 |       |       | 0   | 8   | 60  | 14  | 15.4 |      |
| 2/17 | 900  | 28 25.97 | 69 46.12 | 6.7  | 92  | 20.8 | 56.7 | 0.101E-01 | 21.1 | 1022.7 |       |       | 0   | 8   | 60  | 15  | 15.2 |      |
| 2/17 | 930  | 28 29.49 | 69 45.82 | 5.8  | 97  | 20.5 | 57.1 | 0.100E-01 | 21.0 | 1022.8 |       |       | 0   | 8   | 60  | 13  | 15.0 |      |
| 2/17 | 1000 | 28 30.28 | 69 49.82 | 5.7  | 39  | 19.1 | 64.2 | 0.104E-01 | 21.0 | 1023.2 |       |       | 270 | 8   | 180 | 3   | 14.7 |      |
| 2/17 | 1030 | 28 30.41 | 69 54.50 | 7.3  | 86  | 19.6 | 67.6 | 0.113E-01 | 21.2 | 1024.1 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 1100 | 28 27.08 | 69 55.84 | 8.8  | 83  | 20.0 | 71.0 | 0.121E-01 | 21.0 | 1023.2 | 4     |       | 180 | 8   | 290 | 18  | 16.3 |      |
| 2/17 | 1130 | 28 23.16 | 69 55.97 | 7.6  | 91  | 20.2 | 69.6 | 0.120E-01 | 20.9 | 1023.6 | 6     | 1 09  | 3   | 180 | 8   | 300 | 17   | 16.3 |
| 2/17 | 1200 | 28 29.38 | 69 56.29 | 8.0  | 93  | 21.4 | 64.4 | 0.119E-01 | 20.8 | 1023.6 | 6     | 1 09  | 3   | 180 | 8   | 300 | 18   | 16.7 |
| 2/17 | 1230 | 28 15.37 | 69 55.69 | 9.0  | 96  | 21.1 | 64.9 | 0.118E-01 | 21.0 | 1023.9 | 8     | 1 09  | 3   | 180 | 8   | 300 | 20   | 16.5 |
| 2/17 | 1300 | 28 11.55 | 69 54.86 | 10.4 | 99  | 21.1 | 63.7 | 0.119E-01 | 23.1 | 1023.5 | 8     | 1 09  | 3   | 180 | 8   | 300 | 23   | 16.6 |
| 2/17 | 1330 | 28 7.94  | 69 55.06 | 9.7  | 106 | 22.0 | 60.3 | 0.116E-01 | 23.2 | 1023.8 | 1     | 1 09  | 3   | 200 | 8   | 290 | 20   | 16.7 |
| 2/17 | 1400 | 28 4.31  | 69 55.83 | 10.4 | 99  | 22.2 | 64.6 | 0.125E-01 | 23.3 | 1023.9 | 1     | 3 01  | 3   | 180 | 8   | 300 | 23   | 17.4 |
| 2/17 | 1430 | 28 0.77  | 69 55.78 | 11.1 | 89  | 22.7 | 61.3 | 0.122E-01 | 23.3 | 1024.2 | 1     | 3 01  | 5   | 180 | 8   | 290 | 23   | 17.4 |
| 2/17 | 1500 | 27 56.96 | 69 55.81 | 11.3 | 95  | 22.7 | 63.6 | 0.127E-01 | 23.5 | 1024.1 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |
| 2/17 | 1530 | 27 53.25 | 69 55.72 | 11.4 | 101 | 22.7 | 63.9 | 0.131E-01 | 23.5 | 1024.0 | 1     | 4 01  | 3   | 180 | 8   | 300 | 25   | 18.0 |
| 2/17 | 1600 | 27 49.65 | 69 55.64 | 8.8  | 108 | 23.0 | 58.0 | 0.117E-01 | 23.4 | 1024.2 | 1     | 4 01  | 3   | 180 | 8   | 310 | 21   | 17.2 |
| 2/17 | 1630 | 27 45.00 | 69 55.80 | 9.0  | 96  | 22.5 | 59.8 | 0.117E-01 | 23.3 | 1023.6 | 1     | 4 10  | 3   | 180 | 8   | 300 | 20   | 17.0 |
| 2/17 | 1700 | 27 41.65 | 69 55.65 | 9.2  | 100 | 22.6 | 60.5 | 0.119E-01 | 23.3 | 1023.5 | 1     | 4 10  | 5   | 170 | 8   | 310 | 22   | 17.2 |
| 2/17 | 1730 | 27 37.66 | 69 55.60 | 8.3  | 107 | 22.4 | 61.8 | 0.121E-01 | 23.4 | 1023.1 | 1     | 3 10  | 4   | 180 | 8   | 310 | 20   | 17.2 |
| 2/17 | 1800 | 27 33.17 | 69 55.83 | 8.3  | 107 | 22.2 | 61.5 | 0.119E-01 | 23.4 | 1022.6 | 1     | 3 10  | 4   | 180 | 8   | 310 | 20   | 17.0 |
| 2/17 | 1830 | 27 31.35 | 69 55.62 | 8.3  | 107 | 22.4 | 62.3 | 0.122E-01 | 23.4 | 1022.4 | 1     | 3 10  | 4</ |     |     |     |      |      |

Table Vb-3 (Cont)

| DATE | TIME | LAT      | LONG     | WS   | WD  | AT   | RH   | ABS HUM   | SST  | RF           | CLOUD | WAVES | SC  | SS  | AD  | AS  | TW   |      |
|------|------|----------|----------|------|-----|------|------|-----------|------|--------------|-------|-------|-----|-----|-----|-----|------|------|
| 2/18 | 500  | 28 35.28 | 70 5.90  | 8.9  | 127 | 21.8 | 76.1 | 0.144E-01 | 21.2 | 1021.0       |       |       | 0   | 8   | 100 | 14  | 18.5 |      |
| 2/18 | 530  | 28 39.15 | 70 5.80  | 9.0  | 143 | 21.6 | 78.4 | 0.146E-01 | 21.2 | 1020.9       |       |       | 0   | 8   | 120 | 12  | 18.6 |      |
| 2/18 | 600  | 28 44.72 | 70 6.00  | 8.5  | 127 | 21.5 | 78.3 | 0.145E-01 | 21.1 | 1020.5       |       |       | 350 | 8   | 110 | 12  | 18.5 |      |
| 2/18 | 630  | 28 40.74 | 70 5.81  | 8.0  | 120 | 21.5 | 77.5 | 0.144E-01 | 20.6 | 1020.0       |       |       | 350 | 8   | 100 | 12  | 18.4 |      |
| 2/18 | 700  | 28 51.94 | 70 5.92  | 8.1  | 128 | 21.5 | 78.3 | 0.145E-01 | 21.0 | 1020.0       |       |       | 350 | 8   | 110 | 11  | 18.5 |      |
| 2/18 | 730  | 28 54.61 | 70 6.26  | 8.5  | 134 | 21.4 | 78.3 | 0.144E-01 | 21.1 | 1019.9       |       |       | 350 | 8   | 120 | 11  | 18.4 |      |
| 2/18 | 800  | 28 55.02 | 70 10.04 | 6.3  | 122 | 21.4 | 80.0 | 0.148E-01 | 20.9 | 1019.2       |       |       | 270 | 8   | 250 | 7   | 18.6 |      |
| 2/18 | 830  | 28 53.73 | 70 15.59 | 8.0  | 135 | 21.5 | 80.9 | 0.150E-01 | 21.0 | 1018.8 1     |       |       | 180 | 8   | 330 | 22  | 18.8 |      |
| 2/18 | 900  | 28 51.79 | 70 15.36 | 8.6  | 122 | 21.5 | 82.6 | 0.153E-01 | 21.4 | 1018.5       |       |       | 180 | 8   | 320 | 22  | 19.0 |      |
| 2/18 | 930  | 28 47.98 | 70 15.67 | 7.0  | 132 | 21.4 | 90.4 | 0.167E-01 | 21.6 | 1018.5       |       |       | 180 | 8   | 330 | 20  | 19.8 |      |
| 2/18 | 1000 | 28 44.07 | 70 15.54 | 8.0  | 135 | 22.1 | 79.7 | 0.153E-01 | 21.6 | 1018.5       |       |       | 180 | 8   | 330 | 22  | 19.2 |      |
| 2/18 | 1030 | 28 39.92 | 70 15.67 | 7.5  | 134 | 21.9 | 76.2 | 0.145E-01 | 21.4 | 1018.4       |       |       | 180 | 8   | 330 | 21  | 18.6 |      |
| 2/18 | 1100 | 28 35.68 | 70 15.84 | 7.1  | 148 | 22.2 | 74.9 | 0.144E-01 | 21.1 | 1018.5 1 9 2 |       |       | 0   | 180 | 8   | 340 | 21   | 18.7 |
| 2/18 | 1130 | 28 31.93 | 70 15.79 | 6.5  | 131 | 22.1 | 75.6 | 0.145E-01 | 21.0 | 1018.6 6 6   | 2     |       | 0   | 180 | 8   | 330 | 19   | 18.7 |
| 2/18 | 1200 | 28 28.12 | 70 16.20 | 7.1  | 148 | 22.2 | 75.7 | 0.146E-01 | 21.0 | 1018.5 6     | 3     |       | 0   | 180 | 8   | 340 | 21   | 18.8 |
| 2/18 | 1230 | 28 24.19 | 70 16.07 | 6.6  | 147 | 22.5 | 72.0 | 0.140E-01 | 21.1 | 1018.6 6 6   | 3     |       | 0   | 180 | 8   | 340 | 20   | 18.5 |
| 2/18 | 1300 | 28 21.62 | 70 15.99 | 8.9  | 155 | 22.7 | 71.4 | 0.142E-01 | 21.1 | 1019.1 6 6   | 3     |       | 0   | 180 | 4   | 340 | 21   | 18.7 |
| 2/18 | 1330 | 28 18.21 | 70 16.03 | 9.5  | 137 | 23.2 | 67.2 | 0.137E-01 | 22.1 | 1018.9 5 7 3 | 3     |       | 0   | 180 | 8   | 330 | 23   | 18.6 |
| 2/18 | 1400 | 28 15.16 | 70 16.14 | 9.6  | 148 | 23.3 | 71.2 | 0.146E-01 | 22.6 | 1019.0 178 3 | 3     |       | 0   | 180 | 5   | 335 | 23   | 19.2 |
| 2/18 | 1430 | 28 11.63 | 70 15.62 | 9.1  | 151 | 23.4 | 71.3 | 0.147E-01 | 22.8 | 1019.0 178 3 | 3     |       | 0   | 180 | 8   | 340 | 25   | 19.3 |
| 2/18 | 1500 | 28 7.77  | 70 15.42 | 9.8  | 144 | 23.6 | 69.2 | 0.144E-01 | 23.2 | 1019.0 17 4  |       |       | 0   | 180 | 8   | 335 | 26   | 19.2 |
| 2/18 | 1530 | 28 4.07  | 70 15.38 | 10.4 | 140 | 24.2 | 72.0 | 0.155E-01 | 23.4 | 1018.7 2 8 4 |       |       | 0   | 180 | 7   | 330 | 26   | 20.1 |
| 2/18 | 1600 | 28 0.04  | 70 15.95 | 8.5  | 141 | 24.4 | 69.2 | 0.151E-01 | 23.4 | 1018.6 2 8 4 |       |       | 0   | 185 | 8   | 330 | 23   | 19.9 |
| 2/18 | 1630 | 27 59.24 | 70 16.13 | 8.6  | 150 | 24.3 | 70.7 | 0.153E-01 | 23.4 | 1018.1       |       |       | 0   | 0   | 0   | 0   | 0    | 0    |
| 2/18 | 1700 | 27 58.77 | 70 15.95 | 8.7  | 160 | 24.2 | 72.1 | 0.155E-01 | 23.4 | 1017.7 2 2   | 4     |       | 0   | 0   | 0   | 0   | 0    | 20.1 |
| 2/18 | 1730 | 27 58.65 | 70 15.95 | 8.8  | 169 | 24.0 | 72.0 | 0.155E-01 | 23.2 | 1017.5 7     | 4     |       | 3   | 170 | 1   | 0   | 18   | 20.0 |
| 2/18 | 1800 | 27 58.42 | 70 16.02 | 4.7  | 147 | 23.4 | 73.6 | 0.152E-01 | 23.1 | 1017.6 3     | 1     |       | 3   | 170 | 1   | 340 | 10   | 19.6 |
| 2/18 | 1830 | 27 58.33 | 70 15.88 | 5.2  | 159 | 23.2 | 79.8 | 0.163E-01 | 23.2 | 1017.1 3     | 1 18  |       | 3   | 170 | 1   | 350 | 11   | 20.2 |
| 2/18 | 1900 | 27 58.41 | 70 15.60 | 6.7  | 139 | 22.5 | 85.0 | 0.167E-01 | 23.3 | 1016.5 3     |       |       | 150 | 1   | 350 | 14  | 20.2 |      |
| 2/18 | 1930 | 27 58.49 | 70 15.31 | 5.7  | 139 | 23.4 | 84.9 | 0.175E-01 | 23.3 | 1016.3 3     |       |       | 150 | 1   | 350 | 12  | 21.0 |      |
| 2/18 | 2000 | 27 58.55 | 70 14.97 | 5.7  | 149 | 23.0 | 87.9 | 0.177E-01 | 23.3 | 1016.3 3     |       |       | 150 | 1   | 0   | 12  | 21.0 |      |
| 2/18 | 2030 | 27 58.12 | 70 14.28 | 9.0  | 137 | 22.8 | 85.3 | 0.170E-01 | 23.4 | 1015.8       |       |       | 0   | 0   | 0   | 0   | 0    | 0    |
| 2/18 | 2100 | 27 56.23 | 70 13.71 | 12.2 | 124 | 22.6 | 82.6 | 0.163E-01 | 23.5 | 1015.4 8     |       |       | 190 | 8   | 310 | 26  | 20.0 |      |
| 2/18 | 2130 | 27 52.88 | 70 14.71 | 7.6  | 129 | 22.6 | 86.0 | 0.170E-01 | 23.5 | 1015.8 7     | 2 16  |       | 4   | 190 | 8   | 320 | 20   | 20.4 |
| 2/18 | 2200 | 27 49.46 | 70 13.68 | 6.6  | 147 | 23.3 | 81.0 | 0.167E-01 | 23.5 | 1015.3 7     | 3 16  |       | 4   | 180 | 8   | 340 | 20   | 20.5 |
| 2/18 | 2230 | 27 45.85 | 70 15.83 | 7.8  | 217 | 22.4 | 81.6 | 0.159E-01 | 23.5 | 1016.1 7     | 3 16  |       | 4   | 180 | 8   | 25  | 22   | 19.7 |
| 2/18 | 2300 | 27 42.26 | 70 15.92 | 7.0  | 132 | 22.5 | 82.5 | 0.162E-01 | 23.4 | 1015.5 7     | 3 16  |       | 4   | 180 | 8   | 330 | 20   | 19.9 |
| 2/18 | 2330 | 27 38.60 | 70 15.72 | 2.9  | 103 | 22.3 | 83.2 | 0.162E-01 | 23.4 | 1016.0 7     |       |       | 180 | 8   | 330 | 11  | 19.8 |      |
| 2/19 | 0    | 27 35.30 | 70 15.69 | 6.1  | 180 | 22.6 | 86.6 | 0.170E-01 | 23.6 | 1015.8       |       |       | 230 | 8   | 330 | 18  | 20.4 |      |
| 2/19 | 30   | 27 35.02 | 70 19.59 | 7.7  | 192 | 22.5 | 85.1 | 0.167E-01 | 23.5 | 1015.8       |       |       | 270 | 9   | 310 | 19  | 20.2 |      |
| 2/19 | 100  | 27 35.78 | 70 23.85 | 6.9  | 192 | 23.1 | 87.2 | 0.177E-01 | 23.6 | 1016.1 2     |       |       | 270 | 8   | 310 | 17  | 21.0 |      |
| 2/19 | 130  | 27 38.43 | 70 26.45 | 5.2  | 189 | 23.2 | 88.1 | 0.180E-01 | 23.6 | 1016.2 2     |       |       | 0   | 9   | 240 | 2   | 21.2 |      |
| 2/19 | 200  | 27 42.88 | 70 26.20 | 4.5  | 184 | 23.3 | 86.5 | 0.177E-01 | 23.6 | 1016.2 2     |       |       | 0   | 8   | 220 | 1   | 21.1 |      |
| 2/19 | 230  | 27 47.47 | 70 25.91 | 5.7  | 184 | 23.4 | 84.9 | 0.175E-01 | 23.4 | 1016.0 2     |       |       | 350 | 8   | 230 | 4   | 21.0 |      |
| 2/19 | 300  | 27 51.72 | 70 26.30 | 4.7  | 180 | 23.3 | 86.3 | 0.177E-01 | 23.2 | 1015.5 2     |       |       | 350 | 8   | 240 | 2   | 21.1 |      |
| 2/19 | 330  | 27 55.82 | 70 26.28 | 7.1  | 188 | 23.3 | 86.5 | 0.177E-01 | 23.2 | 1015.3 2     |       |       | 0   | 8   | 200 | 6   | 21.1 |      |
| 2/19 | 400  | 27 59.77 | 70 26.29 | 6.5  | 191 | 23.2 | 87.2 | 0.178E-01 | 23.2 | 1015.0 7     |       |       | 0   | 8   | 210 | 5   | 21.1 |      |
| 2/19 | 430  | 28 3.78  | 70 26.78 | 6.1  | 186 | 23.2 | 86.4 | 0.176E-01 | 23.3 | 1014.5 7     |       |       | 0   | 8   | 200 | 4   | 21.0 |      |
| 2/19 | 500  | 28 3.56  | 70 27.26 | 11.3 | 196 | 21.0 | 86.6 | 0.156E-01 | 23.3 | 1013.9 7     |       |       | 10  | 8   | 190 | 14  | 19.0 |      |
| 2/19 | 530  | 28 9.16  | 70 27.74 | 10.2 | 195 | 21.3 | 86.6 | 0.159E-01 | 23.1 | 1013.7       |       |       | 0   | 0   | 0   | 0   | 0    | 0    |
| 2/19 | 600  | 28 14.16 | 70 28.22 | 9.1  | 194 | 21.5 | 87.0 | 0.161E-01 | 23.0 | 1013.6       |       |       | 0   | 0   | 0   | 0   | 0    | 0    |
| 2/19 | 630  | 28 20.36 | 70 28.70 | 8.0  | 193 | 21.8 | 87.0 | 0.164E-01 | 22.9 | 1013.4 53    |       |       | 340 | 8   | 240 | 10  | 19.8 |      |
| 2/19 | 700  | 28 23.39 | 70 28.49 | 6.7  | 194 | 22.0 | 87.3 | 0.167E-01 | 22.9 | 1012.7 3     |       |       | 340 | 8   | 250 | 8   | 20.0 |      |
| 2/19 | 730  | 28 27.01 | 70 28.41 | 7.4  | 207 | 22.2 | 84.9 | 0.164E-01 | 22.9 | 1012.4       |       |       | 0   | 0   | 0   | 0   | 0    | 0    |
| 2/19 | 800  | 28 30.62 | 70 28.32 | 8.0  | 219 | 22.4 | 82.5 | 0.161E-01 | 22.4 | 1012.2       |       |       | 350 | 8   | 260 | 12  | 19.8 |      |
| 2/19 | 830  | 28 33.57 | 70 25.86 | 7.4  | 248 | 22.2 | 84.0 | 0.162E-01 | 21.8 | 1012.3 2     |       |       | 350 | 8   | 290 | 15  | 19.8 |      |
| 2/19 | 900  | 28 37.28 | 70 26.26 | 7.7  | 238 | 22.0 | 87.3 | 0.167E-01 | 21.8 | 1012.3       |       |       | 350 | 8   | 280 | 14  | 20.0 |      |
| 2/19 | 930  | 28 41.16 | 70 26.16 | 7.9  | 228 | 22.0 | 87.3 | 0.167E-01 | 22.4 | 1012.2       |       |       | 350 | 8   | 270 | 13  | 20.0 |      |
| 2/19 | 1000 | 28 44.92 | 70 25.88 | 7.4  | 248 | 21.7 | 85.4 | 0.160E-01 | 20.9 | 1012.3       |       |       | 350 | 8   | 290 | 15  | 19.5 |      |
| 2/19 | 1030 | 28 48.73 | 70 25.73 | 6.6  | 243 | 21.7 | 86.2 | 0.162E-01 | 21.2 | 1012.6       |       |       | 350 | 8   | 290 | 13  | 19.6 |      |
| 2/19 | 1100 | 28 52.46 | 70 25.77 | 7.3  | 234 | 22.1 | 82.3 | 0.158E-01 | 21.0 | 1012.8 5     |       |       | 310 | 8   | 310 | 18  | 19.3 |      |
| 2/19 | 1130 | 28 52.76 | 70 25.54 | 5.6  | 225 | 22.0 | 78.9 | 0.150E-01 | 21.1 | 1012.4 6     |       |       | 260 | 8   | 340 | 18  | 19.0 |      |
| 2/19 | 1200 | 28 52.28 | 70 33.86 | 6.2  | 229 | 22.0 | 78.9 | 0.150E-01 | 21.0 | 1012.4 6     |       |       | 230 | 8   | 0   | 20  | 19.0 |      |
| 2/19 | 1230 | 28 46.85 | 70 34.56 | 6.2  | 235 | 22.4 | 77.3 | 0.151E-01 | 21.1 | 1012.9 6     | 2     |       | 190 | 8   | 40  | 17  | 19.2 |      |
| 2/19 | 1300 | 28 45.04 | 70 34.77 | 7.3  | 255 | 22.7 | 77.0 | 0.153E-01 | 21.9 | 1013.5 4     | 2     |       | 180 | 8   | 50  | 18  | 19.4 |      |
| 2/19 | 1330 | 28 25.64 | 70 34.88 | 6.7  | 272 |      |      |           |      |              |       |       |     |     |     |     |      |      |

Table Vb-3 (Cont)

| DATE | TIME    | LAT   | LONG     | WS   | WD  | AT   | RH   | ABN MM    | SST  | BP     | CLOUD | WAVES | SC  | SS  | AD  | AS  | TW   |      |      |      |
|------|---------|-------|----------|------|-----|------|------|-----------|------|--------|-------|-------|-----|-----|-----|-----|------|------|------|------|
| 2/20 | 0 28    | 31.76 | 70 43.11 | 4.4  | 227 | 21.9 | 81.3 | 0.154E-01 | 22.1 | 1012.3 | 1     |       | 350 | 8   | 295 | 8   | 19.2 |      |      |      |
| 2/20 | 30 28   | 35.79 | 70 43.54 | 4.6  | 196 | 21.7 | 82.0 | 0.155E-01 | 22.3 | 1012.4 | 1     |       | 350 | 8   | 270 | 4   | 19.2 |      |      |      |
| 2/20 | 100 28  | 39.59 | 70 43.57 | 4.6  | 189 | 21.7 | 82.0 | 0.155E-01 | 22.0 | 1012.1 | 2     |       | 350 | 8   | 260 | 3   | 19.2 |      |      |      |
| 2/20 | 130 28  | 43.31 | 70 43.46 | 4.0  | 206 | 21.9 | 79.6 | 0.151E-01 | 22.1 | 1012.2 | 2     |       | 350 | 8   | 290 | 5   | 19.0 |      |      |      |
| 2/20 | 200 28  | 47.50 | 70 44.21 | 4.1  | 229 | 21.8 | 82.0 | 0.155E-01 | 22.0 | 1012.2 | 2     |       | 350 | 8   | 300 | 8   | 19.2 |      |      |      |
| 2/20 | 230 28  | 50.33 | 70 42.49 | 3.0  | 220 | 21.8 | 80.4 | 0.152E-01 | 21.8 | 1012.1 | 2     |       | 120 | 8   | 40  | 9   | 19.0 |      |      |      |
| 2/20 | 300 28  | 48.55 | 70 38.23 | 5.1  | 224 | 21.9 | 78.6 | 0.149E-01 | 22.3 | 1011.9 | 2     |       | 120 | 8   | 60  | 11  | 18.9 |      |      |      |
| 2/20 | 330 28  | 46.69 | 70 34.02 | 4.7  | 211 | 21.9 | 78.8 | 0.149E-01 | 22.3 | 1011.6 | 25    |       | 120 | 8   | 50  | 12  | 18.9 |      |      |      |
| 2/20 | 400 28  | 44.72 | 70 29.55 | 5.8  | 217 | 22.0 | 78.9 | 0.150E-01 | 22.2 | 1010.9 | 25    |       | 120 | 8   | 60  | 13  | 19.0 |      |      |      |
| 2/20 | 430 28  | 42.62 | 70 25.26 | 5.1  | 224 | 22.2 | 77.4 | 0.149E-01 | 22.2 | 1011.1 | 13    |       | 120 | 8   | 60  | 11  | 19.0 |      |      |      |
| 2/20 | 500 28  | 40.47 | 70 21.01 | 6.3  | 214 | 21.8 | 82.1 | 0.153E-01 | 22.2 | 1010.8 | 13    |       | 120 | 8   | 60  | 14  | 19.2 |      |      |      |
| 2/20 | 530 28  | 38.26 | 70 16.53 | 6.0  | 216 | 21.9 | 81.0 | 0.154E-01 | 22.1 | 1010.5 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |      |      |
| 2/20 | 600 28  | 36.21 | 70 12.02 | 5.8  | 218 | 21.9 | 80.0 | 0.152E-01 | 22.1 | 1010.3 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |      |      |
| 2/20 | 615 28  | 35.32 | 70 10.83 | 5.3  | 220 | 22.0 | 78.9 | 0.151E-01 | 21.7 | 1010.0 | 12    | 2     | 120 | 8   | 60  | 12  | 19.0 |      |      |      |
| 2/20 | 630 28  | 34.47 | 70 8.77  | 5.7  | 214 | 22.0 | 78.9 | 0.151E-01 | 21.7 | 1009.8 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |      |      |
| 2/20 | 700 28  | 32.64 | 70 4.08  | 5.8  | 207 | 22.0 | 78.9 | 0.151E-01 | 21.8 | 1009.5 | 1     | 2     | 110 | 8   | 60  | 13  | 19.0 |      |      |      |
| 2/20 | 730 28  | 30.14 | 70 0.97  | 4.7  | 219 | 21.8 | 83.8 | 0.150E-01 | 21.7 | 1009.5 | 5     | 2     | 110 | 8   | 60  | 10  | 19.4 |      |      |      |
| 2/20 | 800 28  | 29.16 | 69 56.70 | 6.0  | 232 | 21.8 | 83.8 | 0.150E-01 | 21.1 | 1009.2 | 5     | 2     | 110 | 8   | 80  | 10  | 19.4 |      |      |      |
| 2/20 | 830 28  | 27.56 | 69 55.44 | 5.2  | 221 | 21.5 | 82.7 | 0.153E-01 | 21.1 | 1008.8 | 5     | 2     | 4   | 210 | 2   | 10  | 12   | 19.0 |      |      |
| 2/20 | 900 28  | 26.25 | 69 56.25 | 4.1  | 220 | 21.6 | 81.9 | 0.153E-01 | 21.1 | 1008.5 | 5     | 2     | 4   | 180 | 8   | 20  | 15   | 19.0 |      |      |
| 2/20 | 930 28  | 20.80 | 69 55.86 | 6.6  | 212 | 21.6 | 80.4 | 0.152E-01 | 21.1 | 1008.4 | 5     |       | 180 | 8   | 20  | 20  | 19.0 |      |      |      |
| 2/20 | 1000 28 | 17.80 | 69 55.76 | 6.3  | 196 | 22.2 | 75.8 | 0.146E-01 | 21.1 | 1008.7 |       |       | 180 | 8   | 10  | 20  | 18.8 |      |      |      |
| 2/20 | 1030 28 | 14.00 | 69 55.06 | 6.8  | 196 | 22.2 | 72.0 | 0.140E-01 | 22.0 | 1008.9 | 17    |       | 180 | 8   | 10  | 21  | 18.5 |      |      |      |
| 2/20 | 1100 28 | 11.93 | 69 54.86 | 8.1  | 200 | 22.6 | 77.0 | 0.152E-01 | 23.0 | 1008.8 | 1 2   | 2 00  | 8   | 3   | 270 | 12  | 320  | 23   | 19.3 |      |
| 2/20 | 1130 28 | 12.19 | 70 2.33  | 10.3 | 200 | 23.0 | 75.7 | 0.153E-01 | 22.9 | 1008.8 | 1 2   | 2     | 270 | 12  | 315 | 27  | 19.3 |      |      |      |
| 2/20 | 1200 28 | 13.52 | 70 6.00  | 9.3  | 207 | 22.6 | 77.0 | 0.152E-01 | 22.1 | 1009.2 | 19    | 2     | 0   | 6   | 220 | 13  | 19.3 |      |      |      |
| 2/20 | 1230 28 | 16.27 | 70 3.01  | 11.5 | 205 | 22.6 | 77.8 | 0.153E-01 | 22.5 | 1009.5 | 22    | 2     | 250 | 3   | 220 | 20  | 19.4 |      |      |      |
| 2/20 | 1300 28 | 18.68 | 70 4.10  | 10.6 | 206 | 22.6 | 77.0 | 0.152E-01 | 22.3 | 1009.5 | 22    | 3     | 250 | 2   | 220 | 19  | 19.3 |      |      |      |
| 2/20 | 1330 28 | 17.07 | 70 3.27  | 10.4 | 223 | 22.6 | 77.0 | 0.152E-01 | 22.4 | 1008.9 | 29    | 3     | 180 | 5   | 35  | 24  | 19.3 |      |      |      |
| 2/20 | 1400 28 | 14.33 | 70 2.68  | 9.3  | 224 | 22.8 | 76.3 | 0.152E-01 | 22.6 | 1009.2 | 17    | 3     | 225 | 2   | 0   | 20  | 19.4 |      |      |      |
| 2/20 | 1430 28 | 13.85 | 70 3.75  | 9.4  | 228 | 23.1 | 74.6 | 0.151E-01 | 22.7 | 1008.9 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |      |      |
| 2/20 | 1500 28 | 12.85 | 70 4.97  | 9.5  | 232 | 23.3 | 72.9 | 0.149E-01 | 22.8 | 1008.6 | 12    | 3     | 190 | 8   | 30  | 23  | 19.4 |      |      |      |
| 2/20 | 1530 28 | 8.83  | 70 3.21  | 12.0 | 248 | 23.2 | 72.0 | 0.147E-01 | 23.3 | 1008.7 | 7     | 3     | 160 | 13  | 60  | 27  | 19.2 |      |      |      |
| 2/20 | 1600 28 | 3.26  | 69 59.47 | 12.0 | 248 | 23.2 | 72.1 | 0.148E-01 | 23.3 | 1007.9 | 7     | 6     | 160 | 13  | 60  | 27  | 19.3 |      |      |      |
| 2/20 | 1630 27 | 57.40 | 69 55.99 | 12.0 | 248 | 23.2 | 75.1 | 0.153E-01 | 23.5 | 1007.6 | 7     | 5     | 160 | 13  | 60  | 27  | 19.6 |      |      |      |
| 2/20 | 1700 27 | 56.45 | 69 55.48 | 11.3 | 259 | 23.0 | 79.7 | 0.161E-01 | 23.4 | 1007.1 | 72    | 5     | 250 | 1   | 350 | 23  | 20.0 |      |      |      |
| 2/20 | 1730 27 | 36.38 | 69 55.43 | 16.0 | 239 | 23.0 | 82.3 | 0.148E-01 | 23.4 | 1007.0 | 72    | 5     | 230 | 1   | 350 | 32  | 18.3 |      |      |      |
| 2/20 | 1800 27 | 55.30 | 69 55.30 | 11.9 | 239 | 19.8 | 87.6 | 0.148E-01 | 23.1 | 1007.2 | 7     | 6     | 230 | 1   | 350 | 34  | 18.0 |      |      |      |
| 2/20 | 1830 27 | 58.19 | 69 56.46 | 15.3 | 261 | 20.0 | 81.3 | 0.143E-01 | 23.2 | 1005.8 | 74    | 6     | 350 | 12  | 310 | 36  | 18.2 |      |      |      |
| 2/20 | 1900 28 | 0.79  | 9 57.74  | 13.5 | 246 | 21.0 | 90.2 | 0.163E-01 | 23.3 | 1005.3 | 86    | 5     | 330 | 12  | 300 | 30  | 19.4 |      |      |      |
| 2/20 | 1930 28 | 5.10  | 70 0.46  | 10.6 | 225 | 22.0 | 75.5 | 0.151E-01 | 23.0 | 1005.1 | 86    | 5     | 0   | 6   | 240 | 17  | 19.3 |      |      |      |
| 2/20 | 2000 28 | 8.81  | 69 59.74 | 8.3  | 248 | 23.0 | 79.7 | 0.161E-01 | 23.0 | 1005.3 | 86    | 5     | 0   | 6   | 270 | 13  | 20.0 |      |      |      |
| 2/20 | 2030 28 | 11.78 | 69 58.69 | 10.3 | 253 | 23.3 | 72.2 | 0.148E-01 | 22.8 | 1005.3 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |      |      |
| 2/20 | 2100 28 | 12.44 | 70 0.36  | 12.6 | 257 | 23.5 | 64.7 | 0.134E-01 | 22.6 | 1005.3 | 1     | 5     | 210 | 8   | 320 | 30  | 18.3 |      |      |      |
| 2/20 | 2130 28 | 14.77 | 70 2.09  | 13.4 | 264 | 23.2 | 72.0 | 0.147E-01 | 22.5 | 1005.8 | 2     | 5     | 240 | 8   | 300 | 29  | 19.2 |      |      |      |
| 2/20 | 2200 28 | 14.02 | 69 58.43 | 13.3 | 268 | 22.5 | 70.5 | 0.136E-02 | 22.0 | 1006.7 | 2     | 6     | 110 | 8   | 130 | 19  | 18.4 |      |      |      |
| 2/20 | 2230 28 | 12.85 | 69 55.33 | 10.7 | 272 | 22.8 | 70.0 | 0.140E-01 | 21.1 | 1006.6 | 26    | 5     | 110 | 3   | 160 | 18  | 18.6 |      |      |      |
| 2/20 | 2300 28 | 12.09 | 69 53.33 | 13.4 | 279 | 22.8 | 65.4 | 0.131E-01 | 22.0 | 1006.3 | 2     | 5     | 260 | 7   | 0   | 33  | 18.0 |      |      |      |
| 2/20 | 2330 28 | 13.38 | 69 52.05 | 14.1 | 296 | 22.2 | 74.4 | 0.136E-01 | 21.5 | 1006.8 | 21    | 2     | 90  | 10  | 220 | 19  | 18.2 |      |      |      |
| 2/21 | 0 28    | 12.96 | 69 46.64 | 12.2 | 296 | 22.4 | 67.3 | 0.131E-01 | 22.0 | 1007.1 | 1     |       | 270 | 8   | 20  | 31  | 17.9 |      |      |      |
| 2/21 | 30 28   | 13.02 | 69 30.43 | 10.6 | 297 | 22.0 | 70.8 | 0.135E-01 | 21.5 | 1007.3 | 1     |       | 270 | 8   | 20  | 28  | 18.0 |      |      |      |
| 2/21 | 100 28  | 12.94 | 69 34.00 | 9.0  | 291 | 21.6 | 72.6 | 0.134E-01 | 21.4 | 1007.3 | 1     |       | 270 | 8   | 13  | 23  | 17.8 |      |      |      |
| 2/21 | 130 28  | 12.86 | 69 37.56 | 9.8  | 263 | 21.8 | 71.4 | 0.135E-01 | 22.0 | 1007.4 | 1     |       | 270 | 6   | 10  | 25  | 17.9 |      |      |      |
| 2/21 | 200 28  | 13.19 | 70 0.05  | 7.3  | 290 | 22.2 | 69.4 | 0.134E-01 | 22.1 | 1007.7 | 1     |       | 320 | 7   | 340 | 21  | 18.0 |      |      |      |
| 2/21 | 230 28  | 14.80 | 69 38.84 | 6.7  | 309 | 21.3 | 74.3 | 0.136E-01 | 21.6 | 1008.3 | 2     |       | 310 | 6   | 0   | 19  | 18.0 |      |      |      |
| 2/21 | 300 28  | 17.21 | 69 38.09 | 9.8  | 302 | 21.6 | 70.4 | 0.131E-01 | 20.6 | 1007.9 | 1     |       | 0   | 9   | 320 | 25  | 17.6 |      |      |      |
| 2/21 | 330 28  | 21.29 | 69 37.70 | 10.6 | 303 | 20.8 | 72.8 | 0.130E-01 | 20.3 | 1008.1 | 1     |       | 0   | 9   | 320 | 27  | 17.2 |      |      |      |
| 2/21 | 400 28  | 25.05 | 69 37.66 | 8.8  | 300 | 21.0 | 72.2 | 0.130E-01 | 21.6 | 1008.1 | 1     |       | 0   | 9   | 320 | 23  | 17.3 |      |      |      |
| 2/21 | 430 28  | 28.30 | 69 37.74 | 9.8  | 306 | 20.6 | 73.6 | 0.133E-01 | 21.7 | 1008.4 |       |       | 0   | 0   | 0   | 0   | 0.0  |      |      |      |
| 2/21 | 500 28  | 24.34 | 69 37.37 | 10.8 | 311 | 20.2 | 79.0 | 0.136E-01 | 21.6 | 1008.6 | 1     |       | 170 | 9   | 120 | 13  | 17.4 |      |      |      |
| 2/21 | 530 28  | 18.60 | 69 35.88 | 10.3 | 313 | 20.3 | 78.3 | 0.134E-01 | 21.1 | 1008.2 | 2     |       | 210 | 9   | 80  | 20  | 17.4 |      |      |      |
| 2/21 | 600 28  | 15.33 | 69 38.16 | 9.3  | 321 | 19.5 | 83.6 | 0.142E-01 | 21.2 | 1008.2 | 2     | 2     | 27  | 8   | 3   | 310 | 2    | 10   | 20   | 17.3 |
| 2/21 | 630 28  | 15.24 | 69 38.62 | 9.8  | 320 | 20.8 | 77.8 | 0.139E-01 | 21.3 | 1008.3 | 2     | 2     | 27  | 8   | 3   | 310 | 1    | 10   | 20   | 17.8 |
| 2/21 | 700 28  | 16.67 | 69 38.31 | 11.7 | 317 | 20.8 | 79.5 | 0.142E-01 | 21.2 | 1008.3 | 2     | 2     | 27  | 8   | 3   | 320 | 4    | 130  | 20   | 18.0 |
| 2/21 | 730 28  | 13.67 | 69 37.94 | 12.4 | 327 | 20.7 | 84.4 | 0.130E-01 | 21.1 | 1009.1 | 2     | 2     | 27  | 8   | 3   | 320 | 3    | 140  | 20   | 18.3 |
| 2/21 | 800 28  | 12.68 | 69 37.94 | 12.2 | 346 | 2    |      |           |      |        |       |       |     |     |     |     |      |      |      |      |

Table Vb-3 (Cont)

| DATE | TIME | LAT      | LONG     | WE  | WD  | AT   | RH     | AMS MM    | SST  | BP     | CLOUD | WAVES | SC  | SS  | AD  | AS  | TW   |      |      |
|------|------|----------|----------|-----|-----|------|--------|-----------|------|--------|-------|-------|-----|-----|-----|-----|------|------|------|
| 2/21 | 1900 | 28 58.97 | 69 56.20 | 7.8 | 31  | 20.7 | 70.2   | 0.124E-01 | 21.7 | 1013.4 | 1     | 5     | 20  | 1   | 30  | 16  | 16.8 |      |      |
| 2/21 | 1930 | 28 59.87 | 69 56.86 | 6.8 | 62  | 21.0 | 71.3   | 0.129E-01 | 21.7 | 1012.9 | 1     | 4     | 20  | 1   | 40  | 14  | 17.2 |      |      |
| 2/21 | 2000 | 28 55.51 | 69 56.15 | 9.1 | 64  | 21.5 | 72.6   | 0.135E-01 | 21.3 | 1012.9 | 1     | 4     | 170 | 11  | 290 | 18  | 17.8 |      |      |
| 2/21 | 2030 | 28 50.63 | 69 55.23 | 8.2 | 39  | 20.8 | 73.2   | 0.134E-01 | 21.2 | 1013.4 | 1     | 3     | 170 | 11  | 290 | 16  | 17.3 |      |      |
| 2/21 | 2100 | 28 43.48 | 69 54.03 | 7.9 | 57  | 21.0 | 69.7   | 0.126E-01 | 21.1 | 1013.4 | 1     | 3     | 170 | 11  | 290 | 15  | 17.0 |      |      |
| 2/21 | 2130 | 28 40.51 | 69 52.84 | 7.3 | 67  | 21.2 | 69.9   | 0.127E-01 | 21.8 | 1013.8 | 1     | 3 30  | 6   | 6   | 170 | 11  | 300  | 16   | 17.2 |
| 2/21 | 2200 | 28 35.58 | 69 57.51 | 7.6 | 42  | 21.4 | 69.3   | 0.126E-01 | 21.9 | 1014.5 | 1     | 2 02  | 4   | 4   | 170 | 11  | 280  | 12   | 17.3 |
| 2/21 | 2230 | 28 30.11 | 69 50.62 | 6.6 | 61  | 21.2 | 70.7   | 0.129E-01 | 21.8 | 1014.4 | 2     | 2 02  | 10  | 4   | 170 | 11  | 300  | 14   | 17.3 |
| 2/21 | 2300 | 28 24.90 | 69 49.88 | 9.4 | 45  | 21.1 | 71.3   | 0.129E-01 | 21.3 | 1015.0 | 2     | 1 02  | 10  | 4   | 170 | 11  | 300  | 10   | 17.2 |
| 2/21 | 2330 | 28 19.32 | 69 48.93 | 5.4 | 45  | 21.2 | 68.2   | 0.124E-01 | 21.4 | 1015.3 | 1     |       | 170 | 11  | 300 | 10  | 17.0 |      |      |
| 2/22 | 0    | 28 15.11 | 69 48.17 | 4.4 | 34  | 21.1 | 68.9   | 0.125E-01 | 21.2 | 1015.7 | 1     |       | 170 | 6   | 270 | 6   | 17.0 |      |      |
| 2/22 | 30   | 28 12.23 | 69 48.13 | 5.4 | 49  | 21.1 | 71.4   | 0.129E-01 | 22.5 | 1015.9 |       |       | 200 | 6   | 240 | 6   | 17.3 |      |      |
| 2/22 | 100  | 28 9.59  | 69 48.33 | 6.1 | 47  | 21.0 | 71.3   | 0.129E-01 | 22.9 | 1016.2 | 1     |       | 200 | 6   | 230 | 7   | 17.2 |      |      |
| 2/22 | 130  | 28 8.92  | 69 50.14 | 3.7 | 66  | 21.0 | 72.1   | 0.130E-01 | 23.0 | 1016.3 | 1     |       | 320 | 6   | 60  | 8   | 17.3 |      |      |
| 2/22 | 200  | 28 11.01 | 69 51.44 | 3.9 | 49  | 21.1 | 73.0   | 0.132E-01 | 22.8 | 1016.5 |       |       | 270 | 6   | 110 | 8   | 17.3 |      |      |
| 2/22 | 230  | 28 11.09 | 69 53.96 | 3.1 | 80  | 20.9 | 70.3   | 0.126E-01 | 22.7 | 1016.6 |       |       | 300 | 6   | 70  | 4   | 17.0 |      |      |
| 2/22 | 300  | 28 13.15 | 69 54.38 | 5.1 | 49  | 20.8 | 67.0   | 0.119E-01 | 22.7 | 1016.6 |       |       | 50  | 8   | 0   | 18  | 16.5 |      |      |
| 2/22 | 330  | 28 16.03 | 69 50.19 | 4.1 | 49  | 20.7 | 71.8   | 0.127E-01 | 22.2 | 1016.4 |       |       | 50  | 11  | 0   | 19  | 17.0 |      |      |
| 2/22 | 400  | 28 19.38 | 69 45.68 | 5.3 | 56  | 20.8 | 73.5   | 0.131E-01 | 22.1 | 1015.9 |       |       | 140 | 11  | 320 | 16  | 17.3 |      |      |
| 2/22 | 430  | 28 15.93 | 69 41.42 | 4.6 | 58  | 20.8 | 71.9   | 0.128E-01 | 22.1 | 1015.7 |       |       | 130 | 11  | 320 | 14  | 17.1 |      |      |
| 2/22 | 500  | 28 11.44 | 69 37.57 | 4.0 | 44  | 21.0 | 73.7   | 0.133E-01 | 22.3 | 1015.3 | 1     |       | 150 | 10  | 320 | 12  | 17.3 |      |      |
| 2/22 | 530  | 28 8.96  | 69 33.55 | 3.1 | 63  | 21.0 | 69.8   | 0.126E-01 | 23.0 | 1015.2 | 1     |       | 130 | 10  | 330 | 12  | 17.0 |      |      |
| 2/22 | 600  | 28 0.18  | 69 26.50 | 2.6 | 59  | 21.5 | 67.0   | 0.124E-01 | 23.2 | 1015.2 | 1     |       | 60  | 10  | 0   | 15  | 17.1 |      |      |
| 2/22 | 630  | 28 12.78 | 69 23.79 | 2.8 | 78  | 20.6 | 73.0   | 0.132E-01 | 23.2 | 1015.2 | 1     |       | 50  | 10  | 10  | 15  | 17.3 |      |      |
| 2/22 | 700  | 28 16.34 | 69 18.95 | 2.3 | 82  | 20.5 | 73.8   | 0.133E-01 | 23.1 | 1014.8 | 1     |       | 50  | 10  | 10  | 14  | 17.3 |      |      |
| 2/22 | 730  | 28 20.70 | 69 18.03 | 5.1 | 83  | 20.8 | 71.9   | 0.128E-01 | 22.9 | 1015.5 | 1     |       | 310 | 11  | 60  | 8   | 17.1 |      |      |
| 2/22 | 800  | 28 24.84 | 69 21.80 | 2.3 | 38  | 20.6 | 72.5   | 0.128E-01 | 21.1 | 1015.3 | 1     |       | 180 | 11  | 340 | 8   | 17.0 |      |      |
| 2/22 | 830  | 28 30.03 | 69 21.54 | 1.8 | 23  | 21.0 | 68.0   | 0.123E-01 | 22.3 | 1015.5 | 1     |       | 180 | 11  | 350 | 8   | 16.8 |      |      |
| 2/22 | 900  | 28 15.29 | 69 20.92 | 1.1 | 96  | 21.2 | 69.0   | 0.126E-01 | 23.0 | 1015.2 | 1     |       | 220 | 11  | 350 | 10  | 17.1 |      |      |
| 2/22 | 930  | 28 15.95 | 69 19.82 | 2.3 | 341 | 21.4 | 67.6   | 0.125E-01 | 23.1 | 1015.2 | 1     |       | 40  | 8   | 340 | 11  | 17.1 |      |      |
| 2/22 | 1000 | 28 20.23 | 69 15.51 | 4.3 | 17  | 20.8 | 71.9   | 0.128E-01 | 23.0 | 1015.5 | 1     |       | 40  | 10  | 350 | 18  | 17.1 |      |      |
| 2/22 | 1030 | 28 24.32 | 69 11.03 | 5.7 | 3   | 30.8 | 71.9   | 0.128E-01 | 23.0 | 1015.3 | 1     | 2     | 3   | 40  | 9   | 340 | 19   | 17.1 |      |
| 2/22 | 1100 | 28 27.52 | 69 9.33  | 6.6 | 161 | 20.4 | 74.8   | 0.130E-01 | 22.6 | 1016.0 | 1     | 2 04  | 5   | 270 | 11  | 300 | 14   | 17.1 |      |
| 2/22 | 1130 | 28 37.04 | 69 14.09 | 3.0 | 10  | 20.4 | 73.2   | 0.128E-01 | 21.7 | 1016.2 | 1     | 2 04  | 9   | 5   | 270 | 8   | 40   | 9    | 16.9 |
| 2/22 | 1200 | 28 28.26 | 69 18.93 | 2.1 | 14  | 20.5 | 71.6   | 0.126E-01 | 21.3 | 1016.6 | 1     | 2 04  | 9   | 6   | 270 | 8   | 30   | 8    | 16.8 |
| 2/22 | 1230 | 28 26.93 | 69 21.59 | 1.9 | 352 | 20.5 | 69.1   | 0.121E-01 | 21.2 | 1017.0 | 1     | 2 04  | 9   | 5   | 200 | 8   | 20   | 5    | 16.5 |
| 2/22 | 1300 | 28 22.74 | 69 24.03 | 3.4 | 12  | 20.7 | 71.8   | 0.127E-01 | 21.2 | 1017.1 |       | 1 04  | 9   | 5   | 220 | 11  | 30   | 6    | 17.0 |
| 2/22 | 1330 | 28 20.77 | 69 29.18 | 2.8 | 3   | 20.0 | 77.0   | 0.131E-01 | 21.3 | 1017.3 |       | 1 04  | 9   | 5   | 250 | 11  | 30   | 10   | 17.0 |
| 2/22 | 1400 | 28 18.79 | 69 33.92 | 3.7 | 335 | 20.5 | 73.6   | 0.133E-01 | 21.3 | 1017.4 |       | 1 04  | 9   | 5   | 150 | 11  | 350  | 4    | 17.3 |
| 2/22 | 1430 | 28 14.09 | 69 30.59 | 5.4 | 23  | 20.7 | 74.3   | 0.132E-01 | 21.3 | 1017.7 |       | 1 04  | 9   | 5   | 150 | 11  | 300  | 10   | 17.3 |
| 2/22 | 1500 | 28 11.12 | 69 30.80 | 3.7 | 15  | 20.7 | 73.4   | 0.130E-01 | 22.8 | 1017.8 |       | 1 04  | 9   | 5   | 250 | 11  | 40   | 9    | 17.2 |
| 2/22 | 1530 | 28 9.70  | 69 35.53 | 3.7 | 31  | 20.8 | 71.9   | 0.128E-01 | 22.9 | 1017.7 |       | 1 04  | 9   | 5   | 250 | 11  | 40   | 7    | 17.1 |
| 2/22 | 1600 | 28 8.50  | 69 39.43 | 3.2 | 347 | 21.0 | 70.4   | 0.127E-01 | 23.0 | 1017.6 |       | 1 04  | 9   | 4   | 250 | 6   | 50   | 8    | 17.1 |
| 2/22 | 1630 | 28 8.03  | 69 41.91 | 3.7 | 46  | 21.3 | 70.1   | 0.130E-01 | 23.1 | 1017.4 |       | 1 04  | 9   | 4   | 270 | 6   | 80   | 5    | 17.3 |
| 2/22 | 1700 | 28 8.26  | 69 43.96 | 1.0 | 119 | 21.2 | 68.2   | 0.124E-01 | 23.2 | 1016.7 |       | 1 04  | 9   | 4   | 300 | 6   | 0    | 4    | 17.0 |
| 2/22 | 1730 | 28 10.18 | 69 46.03 | 1.0 | 119 | 21.0 | 69.6   | 0.126E-01 | 23.2 | 1016.2 |       | 1 04  | 9   | 3   | 300 | 6   | 0    | 4    | 17.0 |
| 2/22 | 1800 | 28 10.36 | 69 48.10 | 1.4 | 143 | 21.2 | 69.8   | 0.127E-01 | 23.3 | 1015.7 |       | 1 04  | 9   | 3   | 0   | 11  | 10   | 9    | 17.2 |
| 2/22 | 1830 | 28 13.85 | 69 47.72 | 1.0 | 94  | 21.0 | 69.6   | 0.126E-01 | 22.1 | 1015.7 |       | 1 04  | 9   | 3   | 0   | 11  | 10   | 11   | 17.0 |
| 2/22 | 1900 | 28 13.96 | 69 47.63 | 1.9 | 131 | 21.1 | 68.9   | 0.125E-01 | 21.9 | 1015.7 |       | 1 04  | 9   | 3   | 90  | 11  | 10   | 14   | 17.0 |
| 2/22 | 1930 | 28 13.63 | 69 42.13 | 1.0 | 99  | 21.1 | 67.3   | 0.122E-01 | 22.1 | 1015.7 |       | 1 04  | 9   | 3   | 100 | 3   | 0    | 5    | 16.8 |
| 2/22 | 2000 | 28 11.76 | 69 41.70 | 1.9 | 120 | 21.3 | 68.2   | 0.123E-01 | 23.4 | 1015.7 | 2     | 04    | 8   | 3   | 210 | 1   | 290  | 3    | 17.0 |
| 2/22 | 2030 | 28 11.71 | 69 46.63 | 2.3 | 128 | 22.3 | 63.4   | 0.124E-01 | 23.4 | 1015.7 | 2     | 04    | 8   | 3   | 270 | 11  | 340  | 8    | 17.3 |
| 2/22 | 2100 | 28 11.87 | 69 45.37 | 2.1 | 113 | 22.3 | 63.0   | 0.125E-01 | 23.1 | 1015.7 | 2     | 04    | 8   | 3   | 100 | 0   | 0    | 0    | 0    |
| 2/22 | 2130 | 28 11.84 | 69 44.52 | 1.9 | 99  | 22.0 | 66.3   | 0.127E-01 | 23.3 | 1015.7 | 1     | 04    | 8   | 3   | 340 | 0   | 0    | 0    | 0    |
| 2/22 | 2200 | 28 11.82 | 69 43.86 | 1.7 | 84  | 21.8 | 68.1   | 0.128E-01 | 23.2 | 1015.7 | 1     | 04    | 8   | 2   | 0   | 0   | 0    | 3    | 17.3 |
| 2/22 | 2230 | 28 11.67 | 69 44.31 | 1.5 | 69  | 21.4 | 68.4   | 0.126E-01 | 23.0 | 1015.9 | 1     | 04    | 8   | 2   | 250 | 3   | 0    | 0    | 17.2 |
| 2/22 | 2300 | 28 11.06 | 69 44.78 | 2.1 | 99  | 21.3 | 69.9   | 0.128E-01 | 23.0 | 1016.0 | 1     | 04    | 8   | 2   | 140 | 0   | 320  | 4    | 17.3 |
| 2/23 | 0    | 28 13.85 | 69 37.30 | 2.1 | 89  | 20.9 | 74.5   | 0.124E-01 | 21.7 | 1015.9 | 1     |       | 320 | 11  | 20  | 9   | 17.3 |      |      |
| 2/23 | 30   | 28 16.48 | 69 42.00 | 4.0 | 104 | 20.8 | 78.6   | 0.140E-01 | 21.3 | 1016.2 | 1     |       | 270 | 11  | 330 | 4   | 17.9 |      |      |
| 2/23 | 100  | 28 13.64 | 69 47.57 | 2.1 | 179 | 20.8 | 78.6   | 0.140E-01 | 21.5 | 1016.2 | 1     |       | 180 | 11  | 0   | 15  | 17.9 |      |      |
| 2/23 | 130  | 28 12.54 | 69 46.20 | 2.2 | 144 | 21.3 | 67.5   | 0.124E-01 | 22.9 | 1016.6 | 1     |       | 120 | 6   | 10  | 10  | 17.0 |      |      |
| 2/23 | 200  | 28 10.87 | 69 40.33 | 2.6 | 119 | 21.3 | 73.2   | 0.134E-01 | 23.1 | 1016.6 | 1     |       | 120 | 6   | 0   | 11  | 17.7 |      |      |
| 2/23 | 230  | 28 8.89  | 69 36.70 | 3.9 | 148 | 21.3 | 70.7   | 0.130E-01 | 23.1 | 1016.7 | 1     |       | 280 | 7   | 290 | 6   | 17.4 |      |      |
| 2/23 | 300  | 28 8.34  | 69 39.35 | 4.3 | 134 | 21.8 | 68.1   | 0.128E-01 | 23.1 | 1016.7 | 1     |       | 270 | 7   | 280 | 6   | 17.3 |      |      |
| 2/23 | 330  | 28 8.59  | 69 42.21 | 4.4 | 144 | 21.6 | 70.2</ |           |      |        |       |       |     |     |     |     |      |      |      |

Table Vb-3 (Cont)

| DATE | TIME | LAT | LONG  | WS | WD    | AT   | RH  | AMS  | NHM  | SST       | BP   | CLOUD  | WAVES | SC   | SS | AD  | AS    | TW        |                |               |
|------|------|-----|-------|----|-------|------|-----|------|------|-----------|------|--------|-------|------|----|-----|-------|-----------|----------------|---------------|
| 2/23 | 1400 | 28  | 5.33  | 69 | 35.83 | 5.9  | 162 | 22.5 | 73.3 | 0.144E-01 | 23.4 | 1013.8 | 3     | 04   | 8  | 1   | 140   | 14        | 10 23 18.8     |               |
| 2/23 | 1430 | 28  | 3.62  | 69 | 34.64 | 7.0  | 157 | 22.5 | 73.1 | 0.143E-01 | 23.6 | 1013.7 |       |      | 0  | 0   | 0     | 0 0 0 0.0 |                |               |
| 2/23 | 1500 | 28  | 3.74  | 69 | 34.19 | 8.0  | 152 | 22.4 | 72.6 | 0.142E-01 | 23.4 | 1013.6 |       |      | 0  | 0   | 0     | 0 0 0 0.0 |                |               |
| 2/23 | 1530 | 28  | 9.92  | 69 | 33.07 | 9.1  | 147 | 22.4 | 72.2 | 0.140E-01 | 23.0 | 1013.5 |       |      | 0  | 0   | 0     | 0 0 0 0.0 |                |               |
| 2/23 | 1600 | 28  | 10.31 | 69 | 33.58 | 10.1 | 142 | 22.3 | 71.7 | 0.139E-01 | 21.8 | 1013.3 | 3     |      |    |     |       | 210       | 3 300 21 18.4  |               |
| 2/23 | 1630 | 28  | 9.65  | 69 | 34.09 | 7.3  | 108 | 22.9 | 70.8 | 0.142E-01 | 22.9 | 1014.9 | 2     |      |    |     |       | 270       | 3 290 15 18.8  |               |
| 2/23 | 1700 | 28  | 10.16 | 69 | 34.57 | 6.9  | 134 | 23.0 | 70.9 | 0.143E-01 | 21.6 | 1013.2 |       |      | 0  | 4   | 120   | 11 18.9   |                |               |
| 2/23 | 1730 | 28  | 10.99 | 69 | 34.00 | 6.2  | 159 | 23.0 | 71.7 | 0.145E-01 | 21.6 | 1014.6 | 2     | 06   | 4  | 230 | 0 320 | 12 19.0   |                |               |
| 2/23 | 1800 | 28  | 11.16 | 69 | 33.90 | 9.3  | 209 | 24.0 | 65.1 | 0.139E-01 | 21.5 | 1014.3 | 2     | 06   | 3  | 280 | 0 290 | 18 19.0   |                |               |
| 2/23 | 1830 | 28  | 10.95 | 69 | 33.97 | 8.0  | 206 | 23.5 | 72.1 | 0.150E-01 | 21.5 | 1013.8 | 2     | 06   | 3  | 270 | 1 300 | 16 19.5   |                |               |
| 2/23 | 1900 | 28  | 10.83 | 69 | 33.62 | 3.1  | 159 | 23.2 | 74.2 | 0.151E-01 | 21.3 | 1013.8 | 2     | 2 06 | 3  | 140 | 10    | 0 16 19.5 |                |               |
| 2/23 | 1930 | 28  | 10.36 | 69 | 32.97 | 6.6  | 211 | 23.1 | 74.9 | 0.152E-01 | 21.6 | 1013.4 | 2     |      |    |     |       | 140       | 3 60 14 19.5   |               |
| 2/23 | 2000 | 28  | 9.50  | 69 | 31.28 | 8.4  | 220 | 23.6 | 75.4 | 0.157E-01 | 22.6 | 1013.1 | 2     |      |    |     |       | 140       | 3 70 17 20.0   |               |
| 2/23 | 2030 | 28  | 9.51  | 69 | 29.80 | 8.8  | 239 | 23.5 | 76.1 | 0.156E-01 | 22.9 | 1013.4 | 2     |      |    |     |       | 120       | 0 120 17 20.0  |               |
| 2/23 | 2100 | 28  | 10.16 | 69 | 29.61 | 8.3  | 226 | 23.7 | 67.0 | 0.141E-01 | 22.1 | 1013.0 | 2     |      |    |     |       | 240       | 6 350 22 19.0  |               |
| 2/23 | 2130 | 28  | 9.19  | 69 | 30.17 | 9.3  | 229 | 23.7 | 64.8 | 0.136E-01 | 22.8 | 1013.4 | 2     |      |    |     |       | 130       | 0 100 18 18.7  |               |
| 2/23 | 2200 | 28  | 8.93  | 69 | 29.93 | 7.8  | 228 | 23.5 | 69.9 | 0.145E-01 | 23.0 | 1013.4 | 2     | 2 20 | 8  | 3   |       |           | 240            | 3 350 18 19.2 |
| 2/23 | 2230 | 28  | 8.93  | 69 | 30.34 | 8.9  | 220 | 23.3 | 65.9 | 0.135E-01 | 23.0 | 1013.4 | 4     | 2 20 | 8  | 3   |       |           | 3 300          | 18 18.3       |
| 2/23 | 2300 | 28  | 10.05 | 69 | 30.96 | 7.1  | 229 | 22.9 | 69.9 | 0.134E-01 | 21.7 | 1013.8 | 4     | 2 20 |    | 3   |       |           | 3 300          | 15 18.3       |
| 2/23 | 2330 | 28  | 10.10 | 69 | 31.51 | 8.4  | 224 | 22.8 | 68.4 | 0.136E-01 | 21.3 | 1013.8 | 1     |      |    |     |       | 3 250     | 3 340 21 18.4  |               |
| 2/24 | 0    | 28  | 9.95  | 69 | 33.14 | 7.9  | 196 | 22.8 | 70.7 | 0.141E-01 | 21.7 | 1013.9 | 1     |      |    |     |       | 3 90      | 7 80 15 18.7   |               |
| 2/24 | 30   | 28  | 9.39  | 69 | 31.23 | 7.8  | 242 | 22.8 | 71.3 | 0.143E-01 | 21.8 | 1014.1 | 1     |      |    |     |       | 2 140     | 6 80 15 18.8   |               |
| 2/24 | 100  | 28  | 10.40 | 69 | 27.75 | 3.1  | 227 | 22.8 | 76.2 | 0.152E-01 | 22.0 | 1014.4 | 1     |      |    |     |       | 2 40      | 3 190 7 19.4   |               |
| 2/24 | 130  | 28  | 9.59  | 69 | 27.15 | 7.8  | 227 | 23.0 | 71.7 | 0.145E-01 | 22.3 | 1014.1 | 1     |      |    |     |       | 2 240     | 4 350 19 19.0  |               |
| 2/24 | 200  | 28  | 9.94  | 69 | 27.35 | 7.2  | 232 | 22.8 | 77.0 | 0.154E-01 | 22.3 | 1014.0 | 5     |      |    |     |       | 2 300     | 10 320 20 19.5 |               |
| 2/24 | 230  | 28  | 12.31 | 69 | 31.75 | 5.8  | 246 | 22.5 | 77.6 | 0.152E-01 | 21.4 | 1014.1 | 2     |      |    |     |       | 2 230     | 7 10 18 19.3   |               |
| 2/24 | 300  | 28  | 10.51 | 69 | 31.16 | 6.7  | 247 | 22.3 | 80.7 | 0.157E-01 | 21.3 | 1014.4 | 5     |      |    |     |       | 2 100     | 7 120 8 19.3   |               |
| 2/24 | 330  | 28  | 9.39  | 69 | 30.79 | 6.2  | 81  | 22.8 | 77.8 | 0.135E-01 | 21.4 | 1014.0 | 5     |      |    |     |       | 2 140     | 6 320 16 19.6  |               |
| 2/24 | 400  | 28  | 8.19  | 69 | 29.02 | 8.1  | 232 | 22.3 | 79.2 | 0.135E-01 | 21.9 | 1013.9 | 5     |      |    |     |       | 2 40      | 6 200 10 19.5  |               |
| 2/24 | 430  | 28  | 10.43 | 69 | 29.34 | 3.7  | 229 | 22.3 | 81.3 | 0.136E-01 | 21.3 | 1013.7 | 5     |      |    |     |       | 2 230     | 6 0 17 19.6    |               |
| 2/24 | 500  | 28  | 8.72  | 69 | 30.85 | 3.1  | 226 | 22.9 | 79.3 | 0.160E-01 | 21.3 | 1013.7 | 5     |      |    |     |       | 2 90      | 6 100 7 19.9   |               |
| 2/24 | 530  | 28  | 9.65  | 69 | 27.75 | 7.7  | 229 | 22.4 | 81.6 | 0.139E-01 | 21.6 | 1013.3 | 1     |      |    |     |       | 2 310     | 6 300 17 19.7  |               |
| 2/24 | 600  | 28  | 9.60  | 69 | 29.39 | 7.0  | 211 | 22.8 | 81.1 | 0.162E-01 | 21.3 | 1012.9 | 1     |      |    |     |       | 2 240     | 6 340 19 20.0  |               |
| 2/24 | 630  | 28  | 8.93  | 69 | 29.05 | 6.8  | 221 | 22.2 | 85.7 | 0.165E-01 | 21.4 | 1012.9 | 1     |      |    |     |       | 2 90      | 7 100 10 20.0  |               |
| 2/24 | 700  | 28  | 9.97  | 69 | 28.62 | 5.3  | 212 | 22.5 | 85.9 | 0.169E-01 | 21.3 | 1012.4 | 1     |      |    |     |       | 2 260     | 6 330 15 20.3  |               |
| 2/24 | 730  | 28  | 9.00  | 69 | 29.55 | 4.6  | 219 | 22.4 | 85.0 | 0.166E-01 | 21.4 | 1012.4 | 5     |      |    |     |       | 2 90      | 7 80 7 20.1    |               |
| 2/24 | 800  | 28  | 9.75  | 69 | 27.81 | 5.2  | 227 | 22.2 | 85.7 | 0.165E-01 | 21.4 | 1012.6 | 5     |      |    |     |       | 2 290     | 6 320 14 20.0  |               |
| 2/24 | 830  | 28  | 9.15  | 69 | 30.15 | 4.0  | 230 | 22.2 | 89.1 | 0.172E-01 | 21.4 | 1012.9 | 5     |      |    |     |       | 2 90      | 6 90 3 20.4    |               |
| 2/24 | 900  | 28  | 9.31  | 69 | 26.49 | 8.7  | 222 | 22.2 | 85.7 | 0.163E-01 | 21.4 | 1012.4 | 5     |      |    |     |       | 2 300     | 6 300 19 20.0  |               |
| 2/24 | 930  | 28  | 10.91 | 69 | 29.15 | 5.7  | 224 | 22.4 | 84.1 | 0.164E-01 | 21.4 | 1012.4 | 2     |      |    |     |       | 2 240     | 6 350 17 20.0  |               |
| 2/24 | 1000 | 28  | 9.47  | 69 | 28.28 | 8.1  | 217 | 22.8 | 82.7 | 0.165E-01 | 21.3 | 1013.4 | 1     |      |    |     |       | 2 300     | 7 300 18 20.2  |               |
| 2/24 | 1030 | 28  | 9.72  | 69 | 35.32 | 7.2  | 202 | 21.8 | 88.0 | 0.164E-01 | 21.3 | 1012.2 | 3     |      |    |     |       | 2 270     | 10 320 20 19.9 |               |
| 2/24 | 1100 | 28  | 8.43  | 69 | 37.83 | 7.7  | 204 | 22.2 | 85.7 | 0.163E-01 | 22.3 | 1012.3 | 3     |      |    |     |       | 2 240     | 10 340 24 20.0 |               |
| 2/24 | 1130 | 28  | 6.24  | 69 | 42.05 | 10.1 | 194 | 22.3 | 90.0 | 0.173E-01 | 23.1 | 1013.0 | 5     |      |    |     |       | 2 270     | 6 300 22 20.6  |               |
| 2/24 | 1200 | 28  | 6.26  | 69 | 45.44 | 9.6  | 205 | 22.3 | 85.9 | 0.169E-01 | 23.3 | 1013.1 | 3     |      |    |     |       | 2 270     | 6 310 22 20.3  |               |
| 2/24 | 1230 | 28  | 7.16  | 69 | 46.34 | 7.7  | 202 | 22.7 | 84.3 | 0.167E-01 | 23.3 | 1013.5 |       |      |    |     |       | 0         | 0 0 0 0.0      |               |
| 2/24 | 1300 | 28  | 11.20 | 69 | 45.84 | 5.7  | 199 | 22.0 | 82.7 | 0.165E-01 | 23.4 | 1014.0 | 9     |      |    |     |       | 2         | 0 9 250 4 20.2 |               |
| 2/24 | 1330 | 28  | 14.60 | 69 | 44.15 | 8.8  | 221 | 23.3 | 84.8 | 0.174E-01 | 23.2 | 1014.2 | 5     |      |    |     |       | 2 90      | 9 100 13 20.9  |               |
| 2/24 | 1400 | 28  | 14.46 | 69 | 40.75 | 8.2  | 224 | 23.3 | 83.6 | 0.168E-01 | 23.0 | 1014.2 | 2     |      |    |     |       | 2 90      | 7 110 12 20.4  |               |
| 2/24 | 1430 | 28  | 14.03 | 69 | 36.42 | 8.5  | 206 | 22.8 | 86.1 | 0.172E-01 | 22.5 | 1014.3 | 9     |      |    |     |       | 2 90      | 10 80 13 20.6  |               |
| 2/24 | 1500 | 28  | 12.36 | 69 | 31.53 | 6.6  | 206 | 22.8 | 84.4 | 0.168E-01 | 21.8 | 1014.4 | 9     |      |    |     |       | 3 150     | 2 50 14 20.4   |               |
| 2/24 | 1530 | 28  | 10.89 | 69 | 33.52 | 8.0  | 212 | 23.0 | 86.2 | 0.174E-01 | 22.0 | 1014.0 | 9     |      |    |     |       | 240       | 6 340 21 20.8  |               |
| 2/24 | 1600 | 28  | 9.91  | 69 | 35.10 | 5.8  | 203 | 23.4 | 78.3 | 0.162E-01 | 22.0 | 1013.8 | 7     |      |    |     |       | 320       | 5 270 10 20.2  |               |
| 2/24 | 1630 | 28  | 11.62 | 69 | 36.89 | 9.5  | 204 | 23.5 | 80.8 | 0.168E-01 | 22.3 | 1013.4 | 7     |      |    |     |       | 280       | 2 290 19 20.6  |               |
| 2/24 | 1700 | 28  | 12.83 | 69 | 36.15 | 8.8  | 219 | 23.8 | 77.7 | 0.164E-01 | 22.8 | 1013.1 | 7     |      |    |     |       | 40        | 3 180 12 20.3  |               |
| 2/24 | 1730 | 28  | 14.38 | 69 | 34.90 | 8.2  | 189 | 22.2 | 87.4 | 0.169E-01 | 22.3 | 1011.9 | 7     |      |    |     |       | 200       | 1 350 17 20.2  |               |
| 2/24 | 1800 | 28  | 14.13 | 69 | 35.12 | 10.3 | 239 | 23.2 | 83.1 | 0.169E-01 | 22.3 | 1011.9 | 7     |      |    |     |       | 240       | 0 0 20 20.6    |               |
| 2/24 | 1830 | 28  | 12.97 | 69 | 33.18 | 7.3  | 231 | 23.1 | 85.3 | 0.173E-01 | 21.9 | 1011.5 | 2     |      |    |     |       | 120       | 10 70 14 20.8  |               |
| 2/24 | 1900 | 28  | 10.62 | 69 | 32.18 | 8.4  | 223 | 23.7 | 86.2 | 0.173E-01 | 21.7 | 1011.0 | 237   |      |    |     |       | 240       | 10 350 26 21.0 |               |
| 2/24 | 1930 | 28  | 8.94  | 69 | 36.96 | 11.6 | 214 | 23.2 | 84.7 | 0.173E-01 | 22.1 | 1010.8 | 2     |      |    |     |       | 320       | 10 280 22 20.8 |               |
| 2/24 | 2000 | 28  | 12.97 | 69 | 36.35 | 9.9  | 224 | 23.2 | 86.4 | 0.176E-01 | 22.3 | 1011.0 | 7     |      |    |     |       | 20        | 10 210 10 22.0 |               |
| 2/24 | 2030 | 28  | 15.76 | 69 | 34.61 | 10.0 | 219 | 23.2 | 87.2 | 0.178E-01 | 22.3 | 1010.5 | 7     |      |    |     |       | 160       | 10 40 26 21.1  |               |
| 2/24 | 2100 | 28  | 11.05 | 69 | 32.87 | 10.7 | 233 | 22.8 | 85.3 | 0.170E-01 | 23.0 | 1010.8 | 7     |      |    |     |       |           |                |               |

Table Vb-3 (Cont)

| DATE | TIME | LAT | LONG  | WS | WD    | AT   | RH  | ABS HUM | SST  | BP        | CLOUD | WAVES  | SC | SS  | AD  | AS  | TW  |      |      |
|------|------|-----|-------|----|-------|------|-----|---------|------|-----------|-------|--------|----|-----|-----|-----|-----|------|------|
| 2/25 | 800  | 28  | 6.30  | 69 | 28.99 | 12.3 | 209 | 22.2    | 87.5 | 0.169E-01 | 21.5  | 1003.3 | 5  | 70  | 9   | 120 | 18  | 20.2 |      |
| 2/25 | 830  | 28  | 7.72  | 69 | 24.60 | 10.9 | 229 | 22.7    | 90.4 | 0.179E-01 | 22.2  | 1005.3 | 5  | 120 | 7   | 90  | 20  | 21.0 |      |
| 2/25 | 900  | 28  | 6.97  | 69 | 22.95 | 11.6 | 245 | 22.6    | 85.3 | 0.170E-01 | 22.9  | 1004.9 | 5  | 220 | 6   | 20  | 28  | 20.5 |      |
| 2/25 | 930  | 28  | 6.62  | 69 | 26.28 | 13.9 | 220 | 22.5    | 86.8 | 0.170E-01 | 22.0  | 1004.4 | 5  | 270 | 7   | 320 | 32  | 20.4 |      |
| 2/25 | 1000 | 28  | 7.17  | 69 | 27.61 | 10.8 | 214 | 22.7    | 87.0 | 0.173E-01 | 21.3  | 1004.3 | 5  | 65  | 9   | 130 | 14  | 20.6 |      |
| 2/25 | 1030 | 28  | 7.93  | 69 | 24.31 | 5.7  | 273 | 21.2    | 95.7 | 0.175E-01 | 22.5  | 1004.2 | 5  | 120 | 9   | 100 | 5   | 20.2 |      |
| 2/25 | 1100 | 28  | 7.05  | 69 | 25.18 | 11.1 | 213 | 22.6    | 89.5 | 0.177E-01 | 22.8  | 1003.7 | 7  | 3   | 240 | 7   | 340 | 28   | 20.8 |
| 2/25 | 1130 | 28  | 6.16  | 69 | 26.05 | 10.0 | 243 | 19.8    | 80.6 | 0.149E-01 | 22.1  | 1004.1 | 9  | 4   | 270 | 6   | 340 | 25   | 18.1 |
| 2/25 | 1200 | 28  | 5.06  | 69 | 29.11 | 10.9 | 254 | 21.1    | 91.2 | 0.165E-01 | 21.4  | 1003.6 | 9  | 4   | 215 | 7   | 30  | 27   | 19.6 |
| 2/25 | 1230 | 28  | 5.50  | 69 | 25.30 | 13.2 | 231 | 21.3    | 91.3 | 0.167E-01 | 22.2  | 1003.8 | 9  | 3   | 65  | 9   | 160 | 17   | 19.8 |
| 2/25 | 1300 | 28  | 8.02  | 69 | 24.14 | 13.7 | 235 | 20.4    | 89.8 | 0.157E-01 | 22.0  | 1003.6 | 5  | 5   | 270 | 4   | 330 | 30   | 18.8 |
| 2/25 | 1330 | 28  | 8.26  | 69 | 26.00 | 12.0 | 221 | 21.4    | 90.5 | 0.167E-01 | 22.4  | 1003.3 | 5  | 5   | 290 | 4   | 300 | 25   | 19.8 |
| 2/25 | 1400 | 28  | 9.06  | 69 | 27.37 | 12.8 | 237 | 21.5    | 87.0 | 0.161E-01 | 22.5  | 1003.5 | 5  | 5   | 110 | 8   | 110 | 21   | 19.5 |
| 2/25 | 1430 | 28  | 6.49  | 69 | 24.32 | 9.8  | 241 | 22.0    | 82.2 | 0.157E-01 | 22.3  | 1003.4 | 5  | 5   | 140 | 7   | 80  | 19   | 19.4 |
| 2/25 | 1500 | 28  | 4.49  | 69 | 24.45 | 8.0  | 241 | 22.1    | 86.6 | 0.166E-01 | 22.5  | 1003.2 | 5  | 5   | 270 | 7   | 340 | 22   | 20.0 |
| 2/25 | 1530 | 28  | 3.52  | 69 | 28.04 | 8.9  | 228 | 22.7    | 81.1 | 0.161E-01 | 22.0  | 1002.9 | 5  | 6   | 270 | 7   | 330 | 23   | 19.9 |
| 2/25 | 1600 | 28  | 3.35  | 69 | 22.30 | 11.8 | 269 | 22.2    | 85.8 | 0.165E-01 | 22.2  | 1003.0 | 5  | 5   | 90  | 8   | 180 | 15   | 20.0 |
| 2/25 | 1630 | 28  | 3.39  | 69 | 24.34 | 9.2  | 271 | 22.6    | 79.4 | 0.157E-01 | 22.8  | 1002.3 | 5  | 4   | 0   | 6   | 290 | 19   | 19.6 |
| 2/25 | 1700 | 28  | 4.24  | 69 | 24.35 | 10.3 | 269 | 22.9    | 72.5 | 0.145E-01 | 22.7  | 1003.4 | 5  | 4   | 160 | 0   | 110 | 20   | 19.0 |
| 2/25 | 1730 | 28  | 4.26  | 69 | 30.41 | 9.9  | 255 | 23.1    | 63.6 | 0.129E-01 | 22.4  | 1002.3 | 13 | 4   | 270 | 8   | 350 | 27   | 18.0 |
| 2/25 | 1800 | 28  | 3.03  | 69 | 30.37 | 8.8  | 241 | 23.5    | 68.5 | 0.142E-01 | 22.4  | 1002.0 | 13 | 5   | 220 | 1   | 20  | 18   | 19.0 |
| 2/25 | 1830 | 28  | 3.56  | 69 | 29.52 | 11.2 | 256 | 22.9    | 72.5 | 0.145E-01 | 22.4  | 1001.6 | 13 | 5   | 50  | 8   | 220 | 15   | 19.0 |
| 2/25 | 1900 | 28  | 5.12  | 69 | 26.66 | 10.7 | 257 | 22.8    | 69.3 | 0.138E-01 | 22.4  | 1001.6 | 23 | 5   | 50  | 7   | 220 | 15   | 18.5 |
| 2/25 | 1930 | 28  | 7.05  | 69 | 25.08 | 11.5 | 252 | 23.2    | 70.5 | 0.144E-01 | 22.5  | 1001.6 | 23 | 5   | 220 | 2   | 30  | 24   | 19.0 |
| 2/25 | 2000 | 28  | 7.04  | 69 | 25.82 | 12.5 | 250 | 22.9    | 72.5 | 0.145E-01 | 22.4  | 1001.1 | 23 | 5   | 350 | 4   | 270 | 24   | 19.0 |
| 2/25 | 2030 | 28  | 8.02  | 69 | 26.30 | 12.5 | 230 | 22.6    | 74.8 | 0.149E-01 | 22.3  | 1000.9 | 23 | 5   | 340 | 8   | 270 | 23   | 19.2 |
| 2/25 | 2100 | 28  | 11.99 | 69 | 26.46 | 9.9  | 263 | 20.2    | 84.4 | 0.145E-01 | 22.6  | 1001.1 | 33 | 5   | 10  | 8   | 280 | 19   | 18.0 |
| 2/25 | 2130 | 28  | 15.56 | 69 | 26.11 | 12.1 | 261 | 21.0    | 83.5 | 0.147E-01 | 22.7  | 1001.1 | 53 | 5   | 350 | 8   | 290 | 25   | 18.4 |
| 2/25 | 2200 | 28  | 19.04 | 69 | 25.82 | 13.6 | 292 | 20.5    | 80.2 | 0.141E-01 | 22.5  | 1001.7 | 58 | 6   | 135 | 8   | 150 | 23   | 17.8 |
| 2/25 | 2230 | 28  | 16.57 | 69 | 22.33 | 11.7 | 291 | 20.7    | 79.3 | 0.141E-01 | 22.7  | 1001.9 | 5  | 6   | 125 | 8   | 160 | 15   | 17.9 |
| 2/25 | 2300 | 28  | 13.81 | 69 | 18.84 | 12.5 | 289 | 20.6    | 72.7 | 0.128E-01 | 22.7  | 1002.3 | 5  | 6   | 130 | 8   | 150 | 17   | 17.0 |
| 2/25 | 2330 | 28  | 10.92 | 69 | 15.35 | 10.9 | 33  | 20.6    | 72.7 | 0.128E-01 | 22.7  | 1002.7 | 5  | 5   | 135 | 8   | 280 | 21   | 17.0 |
| 2/26 | 0    | 28  | 7.99  | 69 | 12.64 | 8.8  | 16  | 20.5    | 70.1 | 0.123E-01 | 23.3  | 1002.8 | 5  | 5   | 135 | 8   | 270 | 15   | 16.6 |
| 2/26 | 30   | 28  | 5.24  | 69 | 9.14  | 11.3 | 281 | 20.5    | 70.1 | 0.123E-01 | 23.4  | 1002.7 | 1  | 1   | 140 | 8   | 130 | 16   | 16.6 |
| 2/26 | 100  | 28  | 2.26  | 69 | 5.95  | 10.3 | 281 | 20.7    | 71.1 | 0.126E-01 | 23.4  | 1003.0 | 5  | 5   | 45  | 8   | 260 | 17   | 16.9 |
| 2/26 | 130  | 28  | 3.38  | 69 | 1.91  | 10.8 | 297 | 20.4    | 85.4 | 0.149E-01 | 23.4  | 1003.2 | 5  | 5   | 60  | 8   | 260 | 18   | 18.3 |
| 2/26 | 200  | 28  | 6.43  | 68 | 59.13 | 8.9  | 277 | 20.7    | 67.7 | 0.120E-01 | 23.3  | 1003.4 | 5  | 5   | 45  | 8   | 260 | 14   | 16.5 |
| 2/26 | 230  | 28  | 9.33  | 68 | 55.65 | 10.4 | 297 | 20.1    | 76.4 | 0.131E-01 | 23.5  | 1003.4 | 5  | 5   | 40  | 8   | 280 | 20   | 17.0 |
| 2/26 | 300  | 28  | 12.58 | 68 | 52.44 | 8.3  | 275 | 20.7    | 69.5 | 0.123E-01 | 23.4  | 1003.1 | 5  | 5   | 35  | 8   | 270 | 14   | 16.7 |
| 2/26 | 330  | 28  | 15.58 | 68 | 48.96 | 11.6 | 279 | 20.7    | 67.9 | 0.120E-01 | 23.3  | 1002.9 | 5  | 5   | 30  | 8   | 270 | 21   | 16.5 |
| 2/26 | 400  | 28  | 19.01 | 68 | 46.01 | 12.1 | 260 | 20.2    | 68.2 | 0.117E-01 | 23.1  | 1002.4 | 5  | 5   | 300 | 8   | 330 | 30   | 16.1 |
| 2/26 | 430  | 28  | 21.67 | 68 | 48.19 | 12.6 | 264 | 20.4    | 65.2 | 0.114E-01 | 22.7  | 1001.9 | 5  | 5   | 290 | 7   | 340 | 31   | 15.9 |
| 2/26 | 500  | 28  | 23.83 | 68 | 31.16 | 12.7 | 273 | 19.5    | 73.3 | 0.121E-01 | 21.3  | 1002.0 | 5  | 5   | 300 | 8   | 340 | 32   | 16.1 |
| 2/26 | 530  | 28  | 26.11 | 68 | 34.01 | 13.1 | 270 | 19.0    | 74.6 | 0.120E-01 | 21.1  | 1002.0 | 5  | 5   | 310 | 8   | 330 | 32   | 15.8 |
| 2/26 | 600  | 28  | 28.53 | 68 | 56.78 | 12.7 | 282 | 18.5    | 76.3 | 0.119E-01 | 21.4  | 1001.8 | 5  | 5   | 0   | 0   | 0   | 0    | 0    |
| 2/26 | 630  | 28  | 30.85 | 68 | 59.91 | 12.2 | 293 | 17.9    | 78.0 | 0.118E-01 | 21.8  | 1001.6 | 5  | 5   | 320 | 8   | 340 | 31   | 15.2 |
| 2/26 | 700  | 28  | 33.34 | 69 | 2.46  | 13.7 | 284 | 17.4    | 75.8 | 0.111E-01 | 22.0  | 1001.6 | 5  | 5   | 310 | 8   | 340 | 34   | 14.3 |
| 2/26 | 730  | 28  | 34.17 | 69 | 5.61  | 13.5 | 293 | 17.0    | 81.0 | 0.116E-01 | 22.0  | 1002.0 | 5  | 6   | 230 | 9   | 50  | 35   | 14.7 |
| 2/26 | 800  | 28  | 31.44 | 69 | 8.66  | 17.9 | 311 | 16.5    | 96.5 | 0.134E-01 | 21.7  | 1002.5 | 7  | 7   | 240 | 8   | 60  | 38   | 15.8 |
| 2/26 | 830  | 28  | 28.17 | 69 | 14.01 | 14.5 | 312 | 16.6    | 6.0  | 0.000E+00 | 21.9  | 1003.0 | 7  | 7   | 240 | 7   | 60  | 31   | 0.0  |
| 2/26 | 900  | 28  | 27.08 | 69 | 15.43 | 13.9 | 314 | 16.7    | 84.6 | 0.119E-01 | 22.0  | 1003.4 | 7  | 7   | 240 | 8   | 60  | 30   | 14.8 |
| 2/26 | 930  | 28  | 23.01 | 69 | 17.77 | 15.1 | 294 | 17.4    | 75.7 | 0.111E-01 | 21.8  | 1004.4 | 5  | 7   | 210 | 8   | 70  | 31   | 14.5 |
| 2/26 | 1000 | 28  | 21.46 | 69 | 20.69 | 15.9 | 308 | 17.2    | 82.1 | 0.119E-01 | 22.0  | 1005.1 | 5  | 6   | 235 | 8   | 60  | 34   | 15.0 |
| 2/26 | 1030 | 28  | 17.71 | 69 | 23.33 | 12.8 | 308 | 17.7    | 67.1 | 0.100E-01 | 22.2  | 1005.1 | 5  | 6   | 135 | 8   | 170 | 17   | 13.8 |
| 2/26 | 1100 | 28  | 16.40 | 69 | 21.89 | 17.0 | 314 | 18.1    | 60.7 | 0.926E-02 | 22.2  | 1006.1 | 7  | 6   | 135 | 8   | 180 | 25   | 13.4 |
| 2/26 | 1130 | 28  | 13.52 | 69 | 18.43 | 12.3 | 303 | 17.5    | 69.3 | 0.102E-01 | 22.5  | 1006.9 | 2  | 6   | 130 | 8   | 170 | 16   | 13.9 |
| 2/26 | 1200 | 28  | 11.07 | 69 | 18.07 | 11.3 | 305 | 17.6    | 66.6 | 0.985E-02 | 22.2  | 1006.7 | 2  | 6   | 130 | 8   | 180 | 14   | 13.6 |
| 2/26 | 1230 | 28  | 5.97  | 69 | 10.15 | 11.4 | 24  | 17.7    | 74.2 | 0.111E-01 | 23.2  | 1007.2 | 2  | 7   | 125 | 8   | 280 | 22   | 14.6 |
| 2/26 | 1300 | 28  | 5.03  | 69 | 10.90 | 17.8 | 316 | 17.6    | 78.6 | 0.117E-01 | 23.2  | 1007.9 | 8  | 8   | 225 | 7   | 80  | 35   | 15.0 |
| 2/26 | 1330 | 28  | 2.63  | 69 | 13.27 | 19.1 | 289 | 17.9    | 67.9 | 0.102E-02 | 23.1  | 1008.4 | 5  | 8   | 220 | 7   | 60  | 40   | 14.0 |
| 2/26 | 1400 | 28  | 0.23  | 69 | 15.72 | 17.5 | 279 | 18.9    | 60.8 | 0.973E-02 | 23.0  | 1008.6 | 1  | 9   | 220 | 7   | 50  | 38   | 14.1 |
| 2/26 | 1430 | 27  | 57.93 | 69 | 18.33 | 14.6 | 308 | 18.3    | 71.2 | 0.110E-01 | 23.3  | 1009.2 | 5  | 10  | 225 | 7   | 70  | 30   | 14.8 |
| 2/26 | 1500 | 27  | 55.43 | 69 | 21.26 | 17.7 | 293 | 18.1    | 70.1 |           |       |        |    |     |     |     |     |      |      |

Table Vb-3 (Cont)

|      | DATE | TIME     | LAT      | LONG | WS  | WD   | AT   | RH        | AMS  | HUM    | SST | BP   | CLOUD | WAVES | SC  | SS  | AD   | AS   | TW |   |
|------|------|----------|----------|------|-----|------|------|-----------|------|--------|-----|------|-------|-------|-----|-----|------|------|----|---|
| 2/27 | 300  | 26 38.34 | 69 29.65 | 3.0  | 280 | 19.2 | 46.1 | 0.750E-02 | 23.5 | 1014.7 | 1   | 1 28 | 3     | 180   | 8   | 40  | 9    | 12.5 |    |   |
| 2/27 | 330  | 26 34.48 | 69 30.00 | 3.1  | 269 | 19.2 | 46.1 | 0.750E-02 | 24.0 | 1014.7 | 5   | 28   | 3     | 270   | 7   | 0   | 13   | 12.5 |    |   |
| 2/27 | 400  | 26 33.45 | 69 33.71 | 1.5  | 269 | 19.3 | 53.2 | 0.871E-02 | 24.1 | 1014.6 | 5   | 28   | 3     | 270   | 7   | 0   | 10   | 13.5 |    |   |
| 2/27 | 430  | 26 34.23 | 69 37.47 | 1.5  | 279 | 19.8 | 51.6 | 0.869E-02 | 24.3 | 1014.8 | 5   | 28   | 3     | 280   | 8   | 0   | 11   | 13.7 |    |   |
| 2/27 | 500  | 26 34.73 | 69 41.60 | 1.4  | 169 | 19.8 | 50.1 | 0.843E-02 | 24.1 | 1014.8 | 5   | 270  | 8     | 340   | 8   | 13  | 13.5 |      |    |   |
| 2/27 | 530  | 26 34.89 | 69 45.65 | 2.8  | 159 | 20.0 | 51.1 | 0.871E-02 | 24.2 | 1014.3 | 5   | 270  | 8     | 320   | 8   | 13  | 8    |      |    |   |
| 2/27 | 600  | 26 34.86 | 69 49.50 | 2.9  | 183 | 20.0 | 51.1 | 0.872E-02 | 24.3 | 1013.4 | 5   | 260  | 8     | 330   | 11  | 13  | 8    |      |    |   |
| 2/27 | 630  | 26 35.08 | 69 54.27 | 3.2  | 213 | 20.2 | 53.0 | 0.913E-02 | 24.3 | 1013.4 | 5   | 260  | 8     | 340   | 13  | 14  | 2    |      |    |   |
| 2/27 | 700  | 26 34.70 | 69 57.76 | 2.3  | 201 | 20.3 | 54.6 | 0.947E-02 | 24.2 | 1013.4 | 5   | 260  | 8     | 340   | 11  | 14  | 5    |      |    |   |
| 2/27 | 730  | 26 34.61 | 70 1.76  | 2.7  | 208 | 20.2 | 55.3 | 0.953E-02 | 24.0 | 1012.9 | 5   | 260  | 8     | 340   | 12  | 14  | 5    |      |    |   |
| 2/27 | 800  | 26 34.32 | 70 6.08  | 2.3  | 201 | 20.4 | 51.0 | 0.889E-02 | 22.8 | 1012.9 | 5   | 260  | 8     | 340   | 11  | 11  | 1.1  |      |    |   |
| 2/27 | 830  | 26 33.29 | 70 9.62  | 4.6  | 206 | 20.0 | 58.9 | 0.100E-01 | 24.0 | 1012.9 | 5   | 0    | 8     | 270   | 4   | 14  | 8    |      |    |   |
| 2/27 | 900  | 26 39.35 | 70 8.88  | 2.1  | 236 | 20.0 | 52.7 | 0.898E-02 | 24.0 | 1013.2 | 5   | 10   | 8     | 330   | 6   | 14  | 0    |      |    |   |
| 2/27 | 930  | 26 45.09 | 70 8.46  | 4.4  | 200 | 20.0 | 56.5 | 0.964E-02 | 24.0 | 1013.1 | 5   | 1 32 | 9     | 3     | 0   | 8   | 270  | 3    | 14 | 5 |
| 2/27 | 1000 | 26 47.19 | 70 8.57  | 3.8  | 242 | 19.9 | 54.8 | 0.929E-02 | 24.0 | 1013.3 | 5   | 1 32 | 9     | 3     | 355 | 8   | 290  | 11   | 14 | 2 |
| 2/27 | 1030 | 26 51.22 | 70 8.73  | 8.0  | 229 | 19.8 | 53.9 | 0.909E-02 | 24.0 | 1013.0 | 5   | 1 32 | 9     | 3     | 0   | 8   | 260  | 12   | 14 | 0 |
| 2/27 | 1100 | 26 55.36 | 70 8.68  | 6.7  | 207 | 19.9 | 54.1 | 0.916E-02 | 23.8 | 1013.2 | 1   | 1 32 | 9     | 3     | 0   | 8   | 240  | 7    | 14 | 1 |
| 2/27 | 1130 | 26 59.47 | 70 8.58  | 7.6  | 215 | 20.0 | 60.5 | 0.103E-01 | 23.8 | 1013.1 | 1   | 1 32 | 9     | 3     | 0   | 7   | 240  | 10   | 15 | 0 |
| 2/27 | 1200 | 27 3.36  | 70 8.97  | 6.5  | 191 | 20.2 | 55.2 | 0.952E-02 | 23.7 | 1013.8 | 1   | 1 33 | 9     | 5     | 0   | 8   | 210  | 5    | 14 | 5 |
| 2/27 | 1230 | 27 7.78  | 70 8.38  | 8.4  | 207 | 20.4 | 57.8 | 0.101E-01 | 23.5 | 1014.0 | 1   | 1 33 | 9     | 5     | 0   | 8   | 230  | 10   | 15 | 0 |
| 2/27 | 1300 | 27 11.68 | 70 7.98  | 6.3  | 205 | 20.4 | 54.0 | 0.941E-02 | 23.7 | 1014.3 | 1   | 1 33 | 9     | 5     | 0   | 8   | 240  | 6    | 14 | 5 |
| 2/27 | 1330 | 27 15.66 | 70 8.00  | 7.2  | 179 | 20.3 | 55.4 | 0.960E-02 | 23.5 | 1014.4 | 1   | 1 33 | 9     | 4     | 0   | 8   | 180  | 6    | 14 | 6 |
| 2/27 | 1400 | 27 19.62 | 70 7.90  | 7.3  | 198 | 20.7 | 57.5 | 0.102E-01 | 23.4 | 1014.1 | 4   | 1 33 | 9     | 4     | 0   | 8   | 220  | 7    | 15 | 2 |
| 2/27 | 1430 | 27 23.59 | 70 7.88  | 6.1  | 198 | 20.9 | 63.9 | 0.115E-01 | 23.3 | 1014.1 | 4   | 1 35 | 9     | 4     | 0   | 8   | 230  | 5    | 16 | 2 |
| 2/27 | 1500 | 27 27.47 | 70 7.86  | 8.0  | 184 | 20.9 | 60.0 | 0.108E-01 | 23.4 | 1014.3 | 5   | 2 35 | 9     | 4     | 350 | 8   | 210  | 6    | 15 | 7 |
| 2/27 | 1530 | 27 31.46 | 70 8.04  | 7.3  | 193 | 21.0 | 58.2 | 0.105E-01 | 23.5 | 1014.0 | 0   | 0    | 0     | 0     | 0   | 0   | 0    | 0    | 0  |   |
| 2/27 | 1600 | 27 35.31 | 70 8.29  | 6.5  | 201 | 21.0 | 56.3 | 0.102E-01 | 23.3 | 1013.8 | 5   | 2 35 | 4     | 0     | 8   | 230 | 6    | 15   | 3  |   |
| 2/27 | 1630 | 27 39.34 | 70 8.38  | 7.2  | 194 | 21.0 | 61.7 | 0.111E-01 | 23.4 | 1013.9 | 5   | 2 35 | 4     | 10    | 8   | 190 | 6    | 16   | 0  |   |
| 2/27 | 1700 | 27 43.33 | 70 7.80  | 9.2  | 213 | 21.2 | 61.9 | 0.113E-01 | 23.1 | 1013.8 | 2   | 2 35 | 4     | 10    | 8   | 220 | 11   | 16   | 2  |   |
| 2/27 | 1730 | 27 47.35 | 70 7.84  | 9.9  | 227 | 21.2 | 55.1 | 0.101E-01 | 23.0 | 1013.4 | 2   | 3 33 | 4     | 0     | 8   | 250 | 15   | 15   | 3  |   |
| 2/27 | 1800 | 27 51.36 | 70 7.82  | 11.9 | 222 | 21.2 | 63.5 | 0.116E-01 | 23.0 | 1012.9 | 2   | 3 33 | 4     | 0     | 8   | 240 | 18   | 16   | 4  |   |
| 2/27 | 1830 | 27 55.35 | 70 7.90  | 12.2 | 193 | 21.2 | 62.8 | 0.114E-01 | 23.0 | 1011.9 | 2   | 4 30 | 4     | 0     | 8   | 200 | 16   | 16   | 3  |   |
| 2/27 | 1900 | 27 59.29 | 70 7.87  | 8.5  | 215 | 21.8 | 62.7 | 0.116E-01 | 23.0 | 1011.9 | 2   | 4 30 | 4     | 0     | 8   | 240 | 11   | 16   | 8  |   |
| 2/27 | 1930 | 28 3.29  | 70 7.75  | 9.9  | 218 | 21.8 | 60.4 | 0.114E-01 | 23.1 | 1011.5 | 2   | 4 30 | 4     | 0     | 8   | 240 | 14   | 16   | 5  |   |
| 2/27 | 2000 | 28 7.26  | 70 7.75  | 10.7 | 205 | 22.0 | 59.2 | 0.113E-01 | 23.0 | 1011.0 | 2   | 4 30 | 4     | 0     | 8   | 220 | 14   | 16   | 3  |   |
| 2/27 | 2030 | 28 11.30 | 70 7.77  | 10.7 | 195 | 22.0 | 61.4 | 0.117E-01 | 23.0 | 1011.0 | 2   | 3 30 | 4     | 350   | 8   | 220 | 14   | 16   | 8  |   |
| 2/27 | 2100 | 28 15.33 | 70 7.83  | 11.2 | 196 | 21.4 | 63.8 | 0.118E-01 | 23.0 | 1011.2 | 1   | 4 30 | 2     | 350   | 8   | 220 | 15   | 16   | 6  |   |
| 2/27 | 2130 | 28 19.37 | 70 7.94  | 10.4 | 209 | 21.8 | 65.0 | 0.123E-01 | 23.3 | 1011.0 | 1   | 4    | 350   | 8     | 240 | 15  | 17   | 1    |    |   |
| 2/27 | 2200 | 28 23.36 | 70 7.80  | 12.7 | 197 | 21.8 | 64.2 | 0.121E-01 | 22.9 | 1011.0 | 1   | 4    | 350   | 8     | 220 | 18  | 17   | 0    |    |   |
| 2/27 | 2230 | 28 27.28 | 70 7.68  | 11.3 | 203 | 21.8 | 68.9 | 0.130E-01 | 22.8 | 1010.8 | 1   | 4    | 350   | 8     | 230 | 18  | 17   | 6    |    |   |
| 2/27 | 2300 | 28 31.32 | 70 7.87  | 9.0  | 206 | 21.6 | 65.6 | 0.122E-01 | 22.6 | 1010.9 | 1   | 4    | 350   | 8     | 240 | 12  | 17   | 0    |    |   |
| 2/27 | 2330 | 28 35.42 | 70 8.10  | 10.9 | 210 | 21.5 | 65.5 | 0.121E-01 | 22.5 | 1011.0 | 0   | 350  | 8     | 240   | 16  | 16  | 9    |      |    |   |
| 2/28 | 0    | 28 39.10 | 70 8.35  | 9.9  | 208 | 21.7 | 63.4 | 0.119E-01 | 22.6 | 1010.9 | 0   | 350  | 8     | 240   | 14  | 16  | 8    |      |    |   |
| 2/28 | 30   | 28 43.65 | 70 8.42  | 9.0  | 219 | 21.5 | 67.0 | 0.124E-01 | 22.9 | 1011.2 | 0   | 355  | 8     | 250   | 13  | 17  | 1    |      |    |   |
| 2/28 | 100  | 28 47.74 | 70 8.58  | 8.4  | 221 | 21.7 | 64.1 | 0.120E-01 | 22.9 | 1011.1 | 1   | 350  | 8     | 260   | 13  | 16  | 9    |      |    |   |
| 2/28 | 130  | 28 49.02 | 70 4.70  | 10.7 | 223 | 21.7 | 66.5 | 0.125E-01 | 22.9 | 1011.1 | 1   | 90   | 9     | 110   | 16  | 17  | 2    |      |    |   |
| 2/28 | 200  | 28 49.02 | 69 59.65 | 9.4  | 224 | 21.7 | 64.1 | 0.120E-01 | 22.8 | 1011.1 | 1   | 90   | 8     | 110   | 14  | 16  | 9    |      |    |   |
| 2/28 | 230  | 28 48.90 | 69 55.00 | 10.9 | 220 | 21.5 | 60.0 | 0.111E-01 | 22.5 | 1011.5 | 0   | 90   | 8     | 110   | 17  | 16  | 2    |      |    |   |
| 2/28 | 300  | 28 48.56 | 69 49.50 | 10.4 | 230 | 21.6 | 65.6 | 0.122E-01 | 22.2 | 1011.5 | 0   | 90   | 8     | 120   | 15  | 17  | 0    |      |    |   |
| 2/28 | 330  | 28 48.46 | 69 44.83 | 11.8 | 219 | 21.3 | 70.8 | 0.130E-01 | 21.0 | 1011.6 | 1   | 90   | 8     | 110   | 19  | 17  | 4    |      |    |   |
| 2/28 | 400  | 28 48.64 | 69 39.99 | 10.9 | 210 | 21.3 | 71.6 | 0.131E-01 | 20.9 | 1011.9 | 1   | 80   | 8     | 110   | 17  | 17  | 3    |      |    |   |
| 2/28 | 430  | 28 48.86 | 69 35.13 | 10.3 | 213 | 21.2 | 72.3 | 0.132E-01 | 21.0 | 1012.0 | 1   | 90   | 8     | 100   | 17  | 17  | 5    |      |    |   |
| 2/28 | 500  | 28 48.93 | 69 30.28 | 10.4 | 220 | 21.5 | 72.6 | 0.135E-01 | 21.0 | 1012.4 | 1   | 90   | 8     | 120   | 15  | 17  | 8    |      |    |   |
| 2/28 | 530  | 28 49.09 | 69 25.57 | 10.9 | 210 | 21.5 | 74.2 | 0.138E-01 | 21.0 | 1012.4 | 3   | 80   | 8     | 110   | 17  | 18  | 0    |      |    |   |
| 2/28 | 600  | 28 49.02 | 69 20.82 | 11.4 | 209 | 21.8 | 69.7 | 0.132E-01 | 21.0 | 1011.9 | 3   | 80   | 8     | 110   | 18  | 17  | 7    |      |    |   |
| 2/28 | 630  | 28 48.97 | 69 15.97 | 9.0  | 223 | 21.6 | 76.0 | 0.142E-01 | 21.0 | 1011.9 | 3   | 90   | 8     | 110   | 13  | 18  | 3    |      |    |   |
| 2/28 | 700  | 28 48.88 | 69 11.01 | 12.4 | 226 | 22.0 | 73.0 | 0.141E-01 | 21.0 | 1011.9 | 3   | 90   | 8     | 120   | 19  | 18  | 4    |      |    |   |
| 2/28 | 730  | 28 48.86 | 69 6.13  | 10.9 | 229 | 22.0 | 80.5 | 0.154E-01 | 21.3 | 1011.9 | 3   | 90   | 8     | 120   | 16  | 19  | 2    |      |    |   |
| 2/28 | 800  | 28 49.43 | 69 1.31  | 10.6 | 223 | 22.0 | 78.8 | 0.150E-01 | 21.5 | 1011.9 | 3   | 90   | 8     | 123   | 15  | 19  | 0    |      |    |   |
| 2/28 | 830  | 28 49.23 | 68 56.23 | 9.0  | 233 | 22.2 | 77.3 | 0.149E-01 | 21.5 | 1012.0 | 2   | 90   | 7     | 120   | 12  | 19  | 0    |      |    |   |
| 2/28 | 900  | 28 49.17 | 68 51.30 | 9.2  | 206 | 22.5 | 73.6 | 0.144E-01 | 21.5 | 1012.0 | 2   | 90   | 8     | 90    | 16  | 18  | 8    |      |    |   |
| 2/28 | 930  | 28 48.92 | 68 46.37 | 8.3  | 219 | 22.2 | 77.3 | 0.149E-01 | 21.5 | 1012.4 | 2   | 100  | 8     | 90    | 14  | 19  | 0    |      |    |   |
| 2/28 | 1000 | 28 48.65 | 68 41.68 | 8.5  | 234 | 21.7 | 82.3 | 0.160E-01 | 21.5 | 1012.6 | 1   | 3    | 90    | 8     | 120 | 11  | 18   | 9    |    |   |
| 2/28 | 1030 | 28 48.70 | 68 36.82 | 10.1 | 203 | 22.3 | 82.4 | 0         |      |        |     |      |       |       |     |     |      |      |    |   |

Table Vb-3 (Cont.)

|      | DATE | TIME     | LAT      | LONG | WS  | WD   | AT     | RH        | ABS HUM | SST    | RF   | CLOUD | WAVES | SC  | SS    | AD      | AS      | TW |
|------|------|----------|----------|------|-----|------|--------|-----------|---------|--------|------|-------|-------|-----|-------|---------|---------|----|
| 2/28 | 2200 | 28 28.77 | 68 34.90 | 8.7  | 169 | 23.1 | 88.0   | 0.179E-01 | 22.8    | 1014.1 | 15   | 2 28  | 8     | 3   | 355   | 8 170   | 9 21.1  |    |
| 2/28 | 2230 | 28 32.48 | 68 34.71 | 9.7  | 169 | 23.1 | 88.8   | 0.180E-01 | 22.9    | 1013.9 | 1    | 2 29  | 8     | 3   | 355   | 8 170   | 11 21.2 |    |
| 2/28 | 2300 | 28 36.03 | 68 34.32 | 9.1  | 163 | 23.1 | 92.3   | 0.187E-01 | 22.9    | 1014.1 | 1    | 2 29  | 8     | 3   | 355   | 8 160   | 10 21.6 |    |
| 2/28 | 2330 | 28 39.59 | 68 34.26 | 9.8  | 159 | 23.2 | 90.6   | 0.185E-01 | 22.9    | 1013.7 |      |       |       |     | 340   | 8 180   | 11 21.5 |    |
| 3/ 1 | 0    | 28 43.39 | 68 34.83 | 10.2 | 160 | 23.2 | 89.7   | 0.183E-01 | 22.8    | 1013.7 |      |       |       |     | 350   | 8 165   | 12 21.4 |    |
| 3/ 1 | 30   | 28 44.54 | 68 31.07 | 9.2  | 149 | 23.0 | 92.2   | 0.186E-01 | 22.3    | 1013.6 |      |       |       |     | 80    | 8 50    | 22 21.5 |    |
| 3/ 1 | 100  | 28 44.64 | 68 26.10 | 9.0  | 173 | 23.3 | 89.8   | 0.184E-01 | 21.8    | 1013.7 |      |       |       |     | 90    | 8 60    | 20 21.5 |    |
| 3/ 1 | 130  | 28 44.66 | 68 21.66 | 9.0  | 173 | 22.0 | 97.0   | 0.185E-01 | 21.3    | 1014.0 |      |       |       |     | 90    | 8 60    | 20 21.1 |    |
| 3/ 1 | 200  | 28 44.61 | 68 16.73 | 8.5  | 174 | 22.6 | 92.0   | 0.181E-01 | 21.4    | 1013.9 |      |       |       |     | 90    | 8 60    | 19 21.1 |    |
| 3/ 1 | 230  | 28 42.84 | 68 15.00 | 9.3  | 176 | 22.4 | 96.3   | 0.188E-01 | 21.2    | 1014.2 |      |       |       |     | 190   | 6 350   | 24 21.4 |    |
| 3/ 1 | 300  | 28 39.36 | 68 14.93 | 7.7  | 169 | 23.0 | 92.2   | 0.186E-01 | 21.2    | 1013.7 |      |       |       |     | 170   | 7 0     | 22 21.5 |    |
| 3/ 1 | 330  | 28 36.20 | 68 14.62 | 9.8  | 169 | 22.9 | 94.8   | 0.190E-01 | 21.3    | 1013.9 |      |       |       |     | 170   | 6 0     | 25 21.7 |    |
| 3/ 1 | 400  | 28 33.01 | 68 14.40 | 8.5  | 162 | 22.8 | 92.1   | 0.184E-01 | 21.6    | 1013.8 |      |       |       |     | 190   | 6 340   | 22 21.3 |    |
| 3/ 1 | 430  | 28 29.96 | 68 14.32 | 9.1  | 157 | 23.2 | 92.3   | 0.188E-01 | 22.4    | 1013.8 |      |       |       |     | 185   | 7 340   | 24 21.7 |    |
| 3/ 1 | 500  | 28 27.12 | 68 14.32 | 9.9  | 176 | 23.0 | 86.2   | 0.174E-01 | 23.1    | 1013.6 |      |       |       |     | 190   | 7 350   | 26 20.8 |    |
| 3/ 1 | 530  | 28 23.98 | 68 14.53 | 10.1 | 152 | 23.2 | 89.7   | 0.183E-01 | 23.1    | 1013.6 |      |       |       |     | 180   | 7 340   | 26 21.4 |    |
| 3/ 1 | 600  | 28 20.84 | 68 14.73 | 7.2  | 189 | 23.4 | 89.0   | 0.184E-01 | 23.0    | 1013.4 |      |       |       |     | 190   | 7 0     | 21 21.5 |    |
| 3/ 1 | 630  | 28 17.70 | 68 14.94 | 9.6  | 157 | 23.3 | 90.7   | 0.186E-01 | 22.8    | 1012.9 |      |       |       |     | 185   | 7 340   | 25 21.6 |    |
| 3/ 1 | 700  | 28 14.51 | 68 14.81 | 9.1  | 152 | 23.3 | 89.8   | 0.184E-01 | 22.8    | 1012.1 |      |       |       |     | 180   | 7 340   | 24 21.5 |    |
| 3/ 1 | 730  | 28 11.29 | 68 14.64 | 10.4 | 166 | 23.4 | 93.3   | 0.193E-01 | 22.9    | 1011.9 |      |       |       |     | 180   | 7 350   | 27 22.0 |    |
| 3/ 1 | 800  | 28 8.98  | 68 14.40 | 9.8  | 164 | 23.4 | 93.3   | 0.193E-01 | 23.0    | 1011.5 | 3 18 | 8     | 3     | 175 | 0 350 | 19 22.0 |         |    |
| 3/ 1 | 830  | 28 9.05  | 68 14.36 | 9.8  | 169 | 23.2 | 95.8   | 0.195E-01 | 23.0    | 1011.3 | 3 18 | 8     | 3     | 180 | 1 350 | 20 22.1 |         |    |
| 3/ 1 | 900  | 28 9.24  | 68 17.99 | 14.0 | 169 | 23.3 | 95.0   | 0.195E-01 | 22.8    | 1010.8 |      |       |       |     | 260   | 10 290  | 29 22.1 |    |
| 3/ 1 | 930  | 28 8.72  | 68 22.91 | 12.6 | 155 | 23.2 | 97.6   | 0.199E-01 | 23.1    | 1010.5 |      |       |       |     | 250   | 11 290  | 26 22.3 |    |
| 3/ 1 | 1000 | 28 8.81  | 68 23.94 | 10.8 | 159 | 23.0 | 0100.2 | 0.202E-01 | 22.8    | 1010.3 | 3    | 3     |       |     | 260   | 0 260   | 21 22.4 |    |
| 3/ 1 | 1030 | 28 9.54  | 68 24.21 | 11.3 | 169 | 23.1 | 99.3   | 0.202E-01 | 22.8    | 1010.7 | 5    | 3     |       |     | 280   | 0 250   | 22 22.4 |    |
| 3/ 1 | 1100 | 28 9.95  | 68 23.61 | 10.8 | 169 | 23.1 | 99.3   | 0.202E-01 | 22.8    | 1010.3 | 15   | 3     |       |     | 270   | 0 260   | 21 22.4 |    |
| 3/ 1 | 1130 | 28 10.54 | 68 23.65 | 11.8 | 164 | 23.2 | 98.5   | 0.201E-01 | 22.8    | 1010.3 | 8    | 3     |       |     | 275   | 0 230   | 23 22.4 |    |
| 3/ 1 | 1200 | 28 11.20 | 68 23.59 | 11.3 | 159 | 23.2 | 97.6   | 0.199E-01 | 22.4    | 1010.7 | 18   | 3     |       |     | 260   | 0 260   | 22 22.3 |    |
| 3/ 1 | 1230 | 28 11.77 | 68 23.29 | 7.2  | 189 | 23.3 | 94.1   | 0.193E-01 | 22.8    | 1010.4 | 7    | 3     |       |     | 270   | 0 280   | 14 22.0 |    |
| 3/ 1 | 1300 | 28 12.17 | 68 23.23 | 11.3 | 175 | 23.4 | 94.2   | 0.194E-01 | 22.8    | 1010.5 | 7    | 4     |       |     | 165   | 1 10    | 23 22.1 |    |
| 3/ 1 | 1330 | 28 12.10 | 68 23.10 | 11.9 | 164 | 23.5 | 92.5   | 0.192E-01 | 22.8    | 1010.5 | 7    | 4     |       |     | 175   | 1 350   | 24 22.0 |    |
| 3/ 1 | 1400 | 28 12.06 | 68 22.91 | 12.4 | 164 | 24.2 | 90.4   | 0.195E-01 | 22.8    | 1010.3 | 5    | 4     |       |     | 175   | 0 350   | 24 22.4 |    |
| 3/ 1 | 1430 | 28 12.17 | 68 22.96 | 13.4 | 174 | 24.2 | 90.4   | 0.195E-01 | 22.8    | 1010.2 | 5    | 4     |       |     | 175   | 0 0     | 26 22.4 |    |
| 3/ 1 | 1500 | 28 14.41 | 68 24.20 | 14.2 | 163 | 23.8 | 91.9   | 0.194E-01 | 22.9    | 1010.1 | 5    | 4     |       |     | 330   | 9 200   | 19 22.2 |    |
| 3/ 1 | 1530 | 28 14.74 | 68 24.14 | 13.9 | 174 | 24.3 | 89.7   | 0.194E-01 | 22.9    | 1009.6 | 5    | 5     |       |     | 175   | 0 0     | 27 22.4 |    |
| 3/ 1 | 1600 | 28 14.68 | 68 28.89 | 14.4 | 179 | 23.0 | 85.3   | 0.192E-01 | 22.9    | 1009.1 | 7    | 5     |       |     | 180   | 1 0     | 29 22.5 |    |
| 3/ 1 | 1630 | 28 14.52 | 68 23.42 | 15.5 | 175 | 25.2 | 85.4   | 0.194E-01 | 22.8    | 1008.9 | 7    | 6     |       |     | 170   | 1 5     | 31 22.7 |    |
| 3/ 1 | 1700 | 28 13.72 | 68 22.85 | 16.5 | 174 | 24.6 | 88.2   | 0.194E-01 | 22.9    | 1008.2 | 4    | 6     |       |     | 175   | 3 0     | 35 22.5 |    |
| 3/ 1 | 1730 | 28 11.49 | 68 22.39 | 17.2 | 161 | 24.4 | 89.7   | 0.196E-01 | 22.9    | 1007.2 | 4    | 6     |       |     | 185   | 6 340   | 39 22.5 |    |
| 3/ 1 | 1800 | 28 9.59  | 68 23.21 | 16.9 | 170 | 24.4 | 89.8   | 0.196E-01 | 22.8    | 1006.5 | 4    | 6     |       |     | 205   | 5 330   | 37 22.5 |    |
| 3/ 1 | 1830 | 28 7.34  | 68 24.14 | 15.6 | 157 | 24.2 | 91.3   | 0.197E-01 | 22.9    | 1011.1 | 7    | 7     |       |     | 180   | 4 340   | 34 22.5 |    |
| 3/ 1 | 1900 | 28 6.19  | 68 26.23 | 14.6 | 171 | 23.2 | 90.7   | 0.185E-01 | 22.8    | 1005.3 | 7    | 7     |       |     | 235   | 7 290   | 30 21.5 |    |
| 3/ 1 | 1930 | 28 6.11  | 68 30.09 | 19.4 | 165 | 23.3 | 91.6   | 0.188E-01 | 22.8    | 1005.3 | 7    | 9     |       |     | 260   | 7 295   | 40 21.7 |    |
| 3/ 1 | 2000 | 28 6.14  | 68 33.39 | 18.3 | 182 | 23.3 | 92.3   | 0.190E-01 | 22.9    | 1004.4 | 7    | 9     |       |     | 260   | 5 290   | 37 21.8 |    |
| 3/ 1 | 2030 | 28 8.36  | 68 34.60 | 16.3 | 206 | 23.4 | 93.4   | 0.193E-01 | 23.0    | 1005.3 | 7    | 6     |       |     | 355   | 7 220   | 26 22.3 |    |
| 3/ 1 | 2100 | 28 11.86 | 68 34.55 | 15.0 | 217 | 22.6 | 91.2   | 0.180E-01 | 23.0    | 1005.3 | 7    | 8     |       |     | 350   | 7 240   | 25 21.0 |    |
| 3/ 1 | 2130 | 28 15.53 | 68 34.40 | 21.6 | 178 | 22.3 | 85.0   | 0.165E-01 | 23.0    | 1005.3 | 7    | 8     |       |     | 350   | 7 190   | 35 20.0 |    |
| 3/ 1 | 2200 | 28 18.93 | 68 34.42 | 16.3 | 191 | 23.2 | 87.3   | 0.178E-01 | 23.1    | 1004.4 | 7    | 10    |       |     | 340   | 7 220   | 26 21.1 |    |
| 3/ 1 | 2230 | 28 22.44 | 68 34.66 | 21.9 | 231 | 22.2 | 84.9   | 0.164E-01 | 22.9    | 1004.9 | 7    | 10    |       |     | 340   | 6 260   | 41 19.9 |    |
| 3/ 1 | 2300 | 28 25.79 | 68 34.81 | 15.0 | 200 | 22.6 | 90.3   | 0.178E-01 | 22.7    | 1004.4 | 7    | 10    |       |     | 340   | 6 230   | 25 20.9 |    |
| 3/ 1 | 2330 | 28 29.06 | 68 34.62 | 17.3 | 225 | 22.5 | 89.9   | 0.176E-01 | 22.4    | 1004.7 | 12   |       |       |     | 345   | 6 250   | 31 0.0  |    |
| 3/ 2 | 0    | 28 32.24 | 68 34.96 | 16.3 | 249 | 23.3 | 89.6   | 0.174E-01 | 22.3    | 1005.0 |      |       |       |     | 350   | 6 270   | 31 0.0  |    |
| 3/ 2 | 30   | 28 35.04 | 68 34.58 | 15.7 | 248 | 22.2 | 89.2   | 0.172E-01 | 23.8    | 1004.7 |      |       |       |     | 340   | 6 280   | 31 20.4 |    |
| 3/ 2 | 100  | 28 37.13 | 68 34.31 | 13.2 | 268 | 21.9 | 83.8   | 0.159E-01 | 22.9    | 1004.9 |      |       |       |     | 340   | 6 300   | 28 19.5 |    |
| 3/ 2 | 130  | 28 40.79 | 68 34.43 | 11.6 | 256 | 21.2 | 85.0   | 0.155E-01 | 23.0    | 1005.6 |      |       |       |     | 330   | 6 300   | 35 19.0 |    |
| 3/ 2 | 200  | 28 43.59 | 68 34.46 | 16.9 | 262 | 20.9 | 81.4   | 0.146E-01 | 22.9    | 1005.7 |      |       |       |     | 330   | 5 300   | 35 18.3 |    |
| 3/ 2 | 230  | 28 46.50 | 68 34.58 | 15.7 | 249 | 20.4 | 86.2   | 0.150E-01 | 22.4    | 1005.9 |      |       |       |     | 330   | 6 290   | 32 18.4 |    |
| 3/ 2 | 300  | 28 49.46 | 68 34.80 | 15.3 | 238 | 20.1 | 81.9   | 0.144E-01 | 22.5    | 1005.8 |      |       |       |     | 340   | 6 270   | 29 18.0 |    |
| 3/ 2 | 330  | 28 52.48 | 68 34.35 | 19.8 | 236 | 19.8 | 86.7   | 0.146E-01 | 21.4    | 1005.8 |      |       |       |     | 345   | 6 280   | 39 17.9 |    |
| 3/ 2 | 400  | 28 55.18 | 68 34.38 | 17.3 | 239 | 20.4 | 70.0   | 0.122E-01 | 21.3    | 1005.8 |      |       |       |     | 340   | 6 270   | 33 16.5 |    |
| 3/ 2 | 430  | 28 58.03 | 68 35.10 | 17.6 | 255 | 20.2 | 79.9   | 0.138E-01 | 21.3    | 1005.3 |      |       |       |     | 100   | 7 150   | 28 17.3 |    |
| 3/ 2 | 500  | 28 59.12 | 68 32.04 | 16.3 | 233 | 20.2 | 71.4   | 0.123E-01 | 21.4    | 1005.3 |      |       |       |     | 85    | 7 140   | 26 16.5 |    |
| 3/ 2 | 530  | 28 58.92 | 68 27.50 | 16.5 | 229 | 20.2 | 78.2   | 0.139E-01 | 21.4    | 1004.9 |      |       |       |     | 90    | 7 130   | 27 17.3 |    |
| 3/ 2 | 600  | 28 58.89 | 68 24.30 | 19.4 | 253 | 20.2 | 75.7   | 0.130E-01 | 22.4    | 1004.9 |      |       |       |     | 90    | 6 160   | 32 17.0 |    |
| 3/ 2 | 630  | 28 58.08 | 68 20.26 | 17.9 | 231 | 20.2 | 75.7   | 0.130E-01 | 22.6    | 1004.9 |      |       | </    |     |       |         |         |    |

Table Vb-3 (Cont)

| DATE | TIME          | LAT      | LONG     | WS   | WD   | AT   | RH        | ABS HUM   | SST    | BP     | CLOUD | WAVES | SC  | SS  | AD  | AS   | TW   |      |
|------|---------------|----------|----------|------|------|------|-----------|-----------|--------|--------|-------|-------|-----|-----|-----|------|------|------|
| 3/ 2 | 1700          | 28 12.45 | 68 20.36 | 13.0 | 282  | 20.2 | 63.2      | 0.109E-01 | 22.8   | 1011.3 | 2     | 18    | 265 | 5   | 15  | 30   | 15.5 |      |
| 3/ 2 | 1730          | 28 12.44 | 68 23.31 | 14.9 | 265  | 20.4 | 57.9      | 0.101E-01 | 22.8   | 1011.0 | 2     | 10    | 260 | 5   | 3   | 34   | 15.0 |      |
| 3/ 2 | 1800          | 28 12.30 | 68 26.27 | 12.9 | 269  | 20.3 | 59.3      | 0.103E-01 | 22.8   | 1011.1 | 2     | 12    | 270 | 5   | 0   | 30   | 15.1 |      |
| 3/ 2 | 1830          | 28 11.30 | 68 28.98 | 10.9 | 268  | 20.3 | 59.3      | 0.103E-01 | 22.8   | 1011.1 | 2     | 15    | 280 | 4   | 350 | 25   | 15.1 |      |
| 3/ 2 | 1900          | 28 12.26 | 68 31.73 | 12.4 | 276  | 20.2 | 63.2      | 0.109E-01 | 22.9   | 1011.2 | 2     | 15    | 270 | 5   | 3   | 29   | 15.5 |      |
| 3/ 2 | 1930          | 28 12.96 | 68 34.49 | 14.4 | 283  | 20.2 | 61.6      | 0.106E-01 | 22.9   | 1011.0 | 2     | 15    | 0   | 6   | 295 | 30   | 15.3 |      |
| 3/ 2 | 2000          | 28 16.38 | 68 34.42 | 11.5 | 274  | 20.2 | 56.8      | 0.980E-02 | 22.9   | 1011.9 | 2     | 15    | 350 | 7   | 300 | 25   | 14.7 |      |
| 3/ 2 | 2030          | 28 20.03 | 68 34.42 | 9.4  | 282  | 20.2 | 55.3      | 0.933E-02 | 22.6   | 1011.9 | 2     | 13    | 350 | 7   | 310 | 22   | 14.5 |      |
| 3/ 2 | 2100          | 28 23.50 | 68 34.59 | 12.8 | 274  | 19.0 | 67.5      | 0.109E-01 | 22.1   | 1011.9 | 2     | 12    | 345 | 5   | 300 | 27   | 15.0 |      |
| 3/ 2 | 2130          | 28 26.57 | 68 34.99 | 14.6 | 276  | 19.0 | 65.0      | 0.103E-01 | 22.6   | 1012.4 | 2     | 10    | 0   | 7   | 290 | 30   | 14.7 |      |
| 3/ 2 | 2200          | 28 29.80 | 68 34.63 | 12.1 | 273  | 19.1 | 70.2      | 0.114E-01 | 22.7   | 1013.1 | 2     | 10    | 0   | 7   | 290 | 23   | 15.4 |      |
| 3/ 2 | 2230          | 28 33.06 | 68 34.39 | 9.4  | 287  | 18.9 | 64.9      | 0.104E-01 | 22.6   | 1013.5 | 2     | 8     | 355 | 7   | 310 | 22   | 14.6 |      |
| 3/ 2 | 2300          | 28 36.51 | 68 34.51 | 10.4 | 284  | 18.8 | 66.4      | 0.106E-01 | 22.6   | 1013.6 | 2     | 8     | 350 | 7   | 310 | 24   | 14.7 |      |
| 3/ 3 | 0 28 42.59    | 68 34.54 | 12.1     | 272  | 18.3 | 73.7 | 0.114E-01 | 22.4      | 1014.1 |        |       | 345   | 6   | 300 | 26  | 15.1 |      |      |
| 3/ 3 | 30 28 45.49   | 68 34.72 | 9.4      | 257  | 18.0 | 65.5 | 0.993E-02 | 21.3      | 1015.1 |        |       | 340   | 7   | 310 | 26  | 14.8 |      |      |
| 3/ 3 | 100 28 48.72  | 68 34.59 | 11.2     | 274  | 17.9 | 69.9 | 0.105E-01 | 21.1      | 1015.1 |        |       | 345   | 7   | 305 | 25  | 14.3 |      |      |
| 3/ 3 | 130 28 51.04  | 68 35.08 | 9.9      | 331  | 17.8 | 67.9 | 0.102E-01 | 21.0      | 1015.4 |        |       | 290   | 1   | 40  | 20  | 14.0 |      |      |
| 3/ 3 | 200 28 51.02  | 68 35.52 | 10.3     | 300  | 17.7 | 66.9 | 0.998E-02 | 21.0      | 1015.6 |        |       | 290   | 2   | 10  | 22  | 13.8 |      |      |
| 3/ 3 | 230 28 51.08  | 68 35.97 | 9.8      | 296  | 17.6 | 67.0 | 0.101E-01 | 21.0      | 1015.9 |        |       | 285   | 2   | 10  | 21  | 13.9 |      |      |
| 3/ 3 | 300 28 51.18  | 68 36.65 | 9.3      | 307  | 17.8 | 67.0 | 0.101E-01 | 21.0      | 1016.0 |        |       | 285   | 2   | 20  | 20  | 13.9 |      |      |
| 3/ 3 | 330 28 51.40  | 68 37.40 | 9.0      | 315  | 17.8 | 59.2 | 0.889E-02 | 21.1      | 1015.9 |        |       | 285   | 4   | 25  | 21  | 13.0 |      |      |
| 3/ 3 | 400 28 51.94  | 68 38.82 | 7.9      | 301  | 17.5 | 60.5 | 0.893E-02 | 21.4      | 1016.2 |        |       | 180   | 8   | 90  | 13  | 12.9 |      |      |
| 3/ 3 | 430 28 48.70  | 38 38.55 | 11.7     | 291  | 17.2 | 70.8 | 0.103E-01 | 22.9      | 1016.7 |        |       | 170   | 8   | 100 | 20  | 13.8 |      |      |
| 3/ 3 | 500 28 44.95  | 68 37.23 | 9.9      | 302  | 17.4 | 65.6 | 0.963E-02 | 22.6      | 1016.7 | 5      |       | 170   | 8   | 110 | 15  | 13.4 |      |      |
| 3/ 3 | 530 28 42.73  | 68 34.46 | 8.0      | 284  | 17.8 | 63.5 | 0.953E-02 | 22.6      | 1016.7 | 5      |       | 355   | 7   | 310 | 19  | 13.5 |      |      |
| 3/ 3 | 600 28 46.48  | 68 33.91 | 7.8      | 281  | 18.1 | 63.9 | 0.976E-02 | 22.5      | 1016.8 | 5      |       | 355   | 8   | 310 | 19  | 13.8 |      |      |
| 3/ 3 | 630 28 50.12  | 68 33.13 | 8.9      | 294  | 17.6 | 60.9 | 0.913E-02 | 21.6      | 1015.9 | 5      |       | 350   | 7   | 320 | 22  | 13.2 |      |      |
| 3/ 3 | 700 28 53.57  | 68 33.24 | 7.9      | 282  | 17.8 | 59.2 | 0.889E-02 | 21.1      | 1015.7 | 5      |       | 340   | 7   | 320 | 20  | 13.0 |      |      |
| 3/ 3 | 730 28 57.00  | 68 34.04 | 8.5      | 286  | 17.4 | 57.8 | 0.848E-02 | 21.0      | 1015.7 | 5      |       | 330   | 8   | 330 | 23  | 12.5 |      |      |
| 3/ 3 | 800 28 59.35  | 68 32.83 | 11.3     | 306  | 17.4 | 59.5 | 0.873E-02 | 20.9      | 1017.1 |        |       | 95    | 9   | 230 | 15  | 12.7 |      |      |
| 3/ 3 | 830 28 58.70  | 68 26.83 | 9.0      | 286  | 17.4 | 62.1 | 0.911E-02 | 20.9      | 1017.1 | 5      |       | 90    | 8   | 210 | 10  | 13.0 |      |      |
| 3/ 3 | 900 28 58.85  | 68 21.80 | 6.7      | 287  | 17.6 | 61.5 | 0.913E-02 | 21.1      | 1017.1 | 5      |       | 80    | 8   | 240 | 7   | 13.1 |      |      |
| 3/ 3 | 930 28 59.11  | 68 16.87 | 6.0      | 327  | 17.5 | 59.7 | 0.880E-02 | 21.2      | 1017.1 | 5      |       | 90    | 8   | 280 | 10  | 12.8 |      |      |
| 3/ 3 | 1000 28 56.84 | 68 14.09 | 4.4      | 304  | 17.5 | 58.0 | 0.855E-02 | 21.2      | 1016.7 | 5      | 2     | 190   | 8   | 60  | 9   | 12.6 |      |      |
| 3/ 3 | 1030 28 52.96 | 68 14.64 | 5.1      | 302  | 17.8 | 55.0 | 0.826E-02 | 21.2      | 1016.9 | 5      | 2     | 31    | 3   | 190 | 8   | 65   | 10   | 12.5 |
| 3/ 3 | 1100 28 48.85 | 68 14.36 | 8.3      | 299  | 17.9 | 53.5 | 0.808E-02 | 22.5      | 1016.7 | 5      | 2     | 31    | 3   | 180 | 8   | 90   | 14   | 12.4 |
| 3/ 3 | 1130 28 44.88 | 68 14.34 | 5.1      | 299  | 17.9 | 52.7 | 0.795E-02 | 21.1      | 1017.9 | 5      | 2     | 31    | 3   | 195 | 8   | 60   | 11   | 12.3 |
| 3/ 3 | 1200 28 40.97 | 68 14.66 | 6.6      | 313  | 18.1 | 56.2 | 0.859E-02 | 22.0      | 1018.4 | 5      | 2     | 31    | 3   | 185 | 8   | 90   | 10   | 12.9 |
| 3/ 3 | 1230 28 37.02 | 68 14.60 | 5.8      | 319  | 18.1 | 52.9 | 0.809E-02 | 22.3      | 1019.0 | 5      | 2     | 31    | 3   | 185 | 8   | 90   | 8    | 12.5 |
| 3/ 3 | 1300 28 33.01 | 68 14.55 | 4.4      | 294  | 18.3 | 49.2 | 0.760E-02 | 22.5      | 1019.3 | 5      | 2     | 31    | 3   | 180 | 8   | 60   | 9    | 12.2 |
| 3/ 3 | 1330 28 29.05 | 68 14.62 | 4.4      | 307  | 18.5 | 53.5 | 0.837E-02 | 22.6      | 1019.5 | 5      | 2     | 31    | 3   | 185 | 8   | 65   | 8    | 12.9 |
| 3/ 3 | 1400 28 25.04 | 68 14.39 | 3.9      | 306  | 18.5 | 49.5 | 0.774E-02 | 22.6      | 1019.8 | 5      | 2     | 2     | 2   | 180 | 8   | 60   | 7    | 12.4 |
| 3/ 3 | 1430 28 21.01 | 68 14.46 | 4.7      | 304  | 18.6 | 53.6 | 0.844E-02 | 22.8      | 1020.2 | 5      | 2     | 2     | 2   | 180 | 8   | 70   | 8    | 13.0 |
| 3/ 3 | 1500 28 17.17 | 68 14.35 | 5.4      | 295  | 18.5 | 52.7 | 0.824E-02 | 22.6      | 1020.2 | 5      | 2     | 2     | 2   | 180 | 8   | 70   | 10   | 12.8 |
| 3/ 3 | 1530 28 13.15 | 68 14.30 | 5.3      | 324  | 18.5 | 54.3 | 0.849E-02 | 22.7      | 1020.2 | 5      | 2     | 2     | 2   | 195 | 8   | 80   | 8    | 13.0 |
| 3/ 3 | 1600 28 9.36  | 68 14.47 | 4.7      | 309  | 19.0 | 57.5 | 0.923E-02 | 22.6      | 1020.0 | 5      | 2     | 2     | 2   | 170 | 8   | 80   | 6    | 13.8 |
| 3/ 3 | 1630 28 8.49  | 68 17.93 | 2.6      | 264  | 19.2 | 49.8 | 0.811E-02 | 22.6      | 1020.0 | 1      | 2     | 31    | 2   | 265 | 8   | 0    | 13   | 13.0 |
| 3/ 3 | 1700 28 8.56  | 68 22.38 | 2.6      | 264  | 19.2 | 52.9 | 0.862E-02 | 22.6      | 1019.5 | 1      | 2     | 30    | 4   | 265 | 8   | 0    | 13   | 13.4 |
| 3/ 3 | 1730 28 8.59  | 68 26.51 | 4.0      | 321  | 19.4 | 54.8 | 0.903E-02 | 22.7      | 1019.5 | 1      | 2     | 29    | 4   | 265 | 7   | 30   | 13   | 13.8 |
| 3/ 3 | 1800 28 8.55  | 68 30.64 | 2.7      | 290  | 19.3 | 54.7 | 0.895E-02 | 22.7      | 1019.0 | 1      | 2     | 29    | 5   | 265 | 8   | 10   | 13   | 13.7 |
| 3/ 3 | 1830 28 9.32  | 68 34.57 | 3.3      | 286  | 19.2 | 53.7 | 0.875E-02 | 22.7      | 1019.0 | 1      | 2     | 29    | 5   | 355 | 8   | 330  | 12   | 13.5 |
| 3/ 3 | 1900 28 13.21 | 68 34.49 | 3.3      | 261  | 18.8 | 52.4 | 0.833E-02 | 22.7      | 1018.5 | 1      | 1     | 30    | 4   | 355 | 8   | 320  | 10   | 13.0 |
| 3/ 3 | 1930 28 17.18 | 68 34.66 | 4.0      | 248  | 19.0 | 51.9 | 0.835E-02 | 22.7      | 1019.0 | 1      | 1     | 3     | 350 | 8   | 310 | 10   | 13.1 |      |
| 3/ 3 | 2000 28 21.12 | 68 34.33 | 3.0      | 254  | 19.1 | 52.0 | 0.842E-02 | 22.8      | 1019.5 | 1      | 1     | 34    | 4   | 355 | 8   | 320  | 9    | 13.2 |
| 3/ 3 | 2030 28 24.95 | 68 34.62 | 2.6      | 267  | 19.2 | 53.7 | 0.875E-02 | 22.6      | 1019.5 | 1      | 1     | 34    | 4   | 350 | 8   | 330  | 10   | 13.5 |
| 3/ 3 | 2100 28 28.69 | 68 34.85 | 3.7      | 242  | 19.2 | 51.4 | 0.836E-02 | 22.6      | 1019.5 | 1      | 1     | 34    | 3   | 350 | 8   | 310  | 9    | 13.2 |
| 3/ 3 | 2130 28 32.43 | 68 34.69 | 2.7      | 229  | 19.2 | 54.5 | 0.888E-02 | 22.6      | 1019.5 | 1      | 1     | 34    | 3   | 350 | 8   | 320  | 7    | 13.6 |
| 3/ 3 | 2200 28 36.22 | 68 34.89 | 3.3      | 256  | 19.2 | 53.5 | 0.901E-02 | 22.7      | 1019.6 | 1      | 1     | 1     | 3   | 350 | 8   | 320  | 10   | 13.7 |
| 3/ 3 | 2230 28 40.13 | 68 34.78 | 0.8      | 222  | 18.6 | 52.9 | 0.831E-02 | 22.6      | 1019.6 | 1      | 1     | 1     | 3   | 355 | 8   | 350  | 7    | 12.9 |
| 3/ 3 | 2300 28 41.21 | 68 34.76 | 4.4      | 253  | 18.6 | 53.7 | 0.844E-02 | 22.4      | 1019.8 | 5      |       | 350   | 8   | 310 | 11  | 13.0 |      |      |
| 3/ 3 | 2330 28 48.13 | 68 34.68 | 3.7      | 271  | 18.4 | 55.0 | 0.855E-02 | 22.4      | 1020.1 |        |       | 350   | 7   | 320 | 11  | 13.0 |      |      |
| 3/ 4 | 0 28 52.15    | 68 14.71 | 2.0      | 273  | 18.6 | 53.7 | 0.844E-02 | 22.5      | 1020.0 |        |       | 355   | 4   | 320 | 8   | 13.0 |      |      |
| 3/ 4 | 30 28 55.14   | 68 34.62 | 3.3      | 261  | 18.6 | 54.5 | 0.856E-02 | 22.4      | 1020.2 |        |       | 355   | 8   | 320 | 10  | 13.1 |      |      |
| 3/ 4 | 100 28 59.12  | 68 33.64 | 2.6      | 274  | 18.6 | 53.6 | 0.844E-02 | 22.4      | 1020.2 |        |       | 95    | 9   | 0   | 4   | 13.0 |      |      |
| 3/ 4 | 130 28 58.94  | 68 29.00 | 1.4      | 238  | 18.6 | 53.6 | 0.869E-02 | 22.4      | 1020.2 |        |       | 90    | 6   | 20  | 4   | 13.2 |      |      |
| 3/ 4 | 200 28 58.95  | 68 24.35 | 2.3      | 25   |      |      |           |           |        |        |       |       |     |     |     |      |      |      |

Table Vb-3 (Cont)

| DATE | TIME | LAT | LONG  | WS | WD    | AT   | RN  | ABS HUM | SST  | RF        | CLOUD | WAVES  | SC  | SS  | AD  | AS          | TW                |
|------|------|-----|-------|----|-------|------|-----|---------|------|-----------|-------|--------|-----|-----|-----|-------------|-------------------|
| 3/ 4 | 1200 | 28  | 8.61  | 68 | 31.09 | 4.6  | 208 | 20.1    | 51.9 | 0.890E-02 | 22.3  | 1020.2 | 1   | 3   | 265 | 8           | 330 15 14.0       |
| 3/ 4 | 1230 | 28  | 8.57  | 68 | 34.93 | 6.5  | 215 | 20.1    | 53.8 | 0.936E-02 | 22.7  | 1020.2 | 7   | 1   | 290 | 7           | 310 16 14.5       |
| 3/ 4 | 1300 | 28  | 10.44 | 68 | 34.96 | 6.1  | 203 | 20.3    | 56.8 | 0.963E-02 | 22.7  | 1020.4 | 17  | 1   | 40  | 2           | 160 10 14.8       |
| 3/ 4 | 1330 | 28  | 11.10 | 68 | 33.64 | 4.7  | 218 | 21.3    | 58.1 | 0.107E-01 | 22.7  | 1020.6 | 17  | 1   | 80  | 12          | 30 8 15.8         |
| 3/ 4 | 1400 | 28  | 12.63 | 68 | 26.32 | 5.0  | 232 | 20.6    | 58.4 | 0.993E-02 | 22.7  | 1020.7 | 17  | 1   | 80  | 14          | 40 7 15.0         |
| 3/ 4 | 1430 | 28  | 13.55 | 68 | 19.33 | 5.1  | 220 | 20.5    | 57.8 | 0.101E-01 | 22.7  | 1020.7 | 31  | 1   | 100 | 2           | 210 9 15.1        |
| 3/ 4 | 1500 | 28  | 13.58 | 68 | 18.73 | 5.7  | 204 | 20.7    | 59.7 | 0.104E-01 | 22.7  | 1020.4 | 21  | 1   | 135 | 0           | 70 11 15.5        |
| 3/ 4 | 1530 | 28  | 13.67 | 68 | 18.25 | 6.5  | 203 | 20.8    | 56.7 | 0.101E-01 | 22.7  | 1020.2 | 32  | 1   | 140 | 1           | 60 13 15.2        |
| 3/ 4 | 1600 | 28  | 13.76 | 68 | 17.71 | 5.9  | 204 | 20.8    | 61.4 | 0.109E-01 | 22.7  | 1020.2 | 12  | 1   | 140 | 1           | 60 12 15.8        |
| 3/ 4 | 1630 | 28  | 17.34 | 68 | 16.98 | 6.1  | 194 | 21.2    | 61.8 | 0.113E-01 | 22.7  | 1020.4 | 112 | 1   | 0   | 11          | 0 11 16.2         |
| 3/ 4 | 1700 | 28  | 18.22 | 68 | 16.47 | 6.2  | 184 | 21.2    | 64.2 | 0.117E-01 | 22.7  | 1019.8 | 172 | 1   | 145 | 0           | 40 12 16.5        |
| 3/ 4 | 1730 | 28  | 18.25 | 68 | 16.14 | 5.7  | 209 | 21.8    | 60.3 | 0.114E-01 | 22.8  | 1019.5 | 172 | 1   | 145 | 0           | 65 11 16.5        |
| 3/ 4 | 1800 | 28  | 18.43 | 68 | 15.87 | 5.1  | 179 | 21.8    | 56.5 | 0.107E-01 | 22.7  | 1019.0 | 172 | 1   | 120 | 0           | 60 10 16.0        |
| 3/ 4 | 1830 | 28  | 22.34 | 68 | 15.00 | 6.7  | 179 | 21.4    | 59.0 | 0.109E-01 | 22.8  | 1018.5 | 172 | 1   | 120 | 0           | 60 13 16.0        |
| 3/ 4 | 1900 | 28  | 23.09 | 68 | 14.49 | 6.2  | 189 | 21.6    | 56.3 | 0.105E-01 | 22.8  | 1018.4 | 172 | 1   | 130 | 0           | 60 12 15.8        |
| 3/ 4 | 1930 | 28  | 23.39 | 68 | 14.08 | 6.7  | 194 | 21.4    | 59.0 | 0.109E-01 | 22.8  | 1018.5 | 272 | 1   | 135 | 0           | 60 13 16.0        |
| 3/ 4 | 2000 | 28  | 23.64 | 68 | 13.80 | 5.7  | 198 | 22.6    | 55.4 | 0.109E-01 | 22.7  | 1018.1 | 272 | 1   | 10  | 10          | 240 2 16.5        |
| 3/ 4 | 2030 | 28  | 27.58 | 68 | 12.78 | 5.4  | 220 | 21.8    | 56.5 | 0.107E-01 | 22.8  | 1018.5 | 272 | 1   | 345 | 1           | 240 10 16.0       |
| 3/ 4 | 2100 | 28  | 27.98 | 68 | 12.51 | 5.6  | 192 | 21.5    | 58.4 | 0.108E-01 | 22.8  | 1018.5 | 2 2 | 1   | 345 | 1           | 210 10 16.0       |
| 3/ 4 | 2130 | 28  | 28.36 | 68 | 12.25 | 4.1  | 189 | 21.3    | 62.2 | 0.113E-01 | 22.7  | 1018.5 | 1 2 | 1   | 310 | 0           | 240 8 16.5        |
| 3/ 4 | 2200 | 28  | 30.74 | 68 | 11.26 | 5.9  | 204 | 22.0    | 59.0 | 0.113E-01 | 22.8  | 1018.0 | 1 1 | 2   | 10  | 10          | 250 3 16.5        |
| 3/ 4 | 2230 | 28  | 32.67 | 68 | 9.92  | 6.2  | 194 | 21.6    | 64.7 | 0.121E-01 | 22.3  | 1018.1 | 2 1 | 1   | 155 | 0           | 40 12 16.9        |
| 3/ 4 | 2300 | 28  | 32.97 | 68 | 9.42  | 5.7  | 179 | 21.5    | 67.7 | 0.126E-01 | 22.3  | 1017.9 | 3 1 | 1   | 120 | 0           | 60 11 17.2        |
| 3/ 4 | 2330 | 28  | 33.12 | 68 | 8.31  | 6.7  | 179 | 21.8    | 65.7 | 0.124E-01 | 22.6  | 1017.9 |     |     | 120 | 0           | 60 13 17.2        |
| 3/ 5 | 0    | 28  | 34.62 | 68 | 8.18  | 6.5  | 191 | 21.6    | 61.6 | 0.115E-01 | 22.6  | 1018.5 |     |     | 350 | 10          | 250 5 16.5        |
| 3/ 5 | 30   | 28  | 37.01 | 68 | 8.11  | 7.   | 179 | 22.0    | 69.0 | 0.132E-01 | 22.6  | 1018.5 |     |     | 120 | 0           | 60 15 17.8        |
| 3/ 5 | 100  | 28  | 36.97 | 68 | 7.57  | 6.7  | 194 | 21.9    | 65.8 | 0.123E-01 | 22.7  | 1018.4 |     |     | 185 | 0           | 10 13 17.3        |
| 3/ 5 | 130  | 28  | 36.88 | 68 | 7.11  | 6.2  | 199 | 21.9    | 65.0 | 0.123E-01 | 22.6  | 1018.5 |     |     | 190 | 0           | 10 12 17.2        |
| 3/ 5 | 200  | 28  | 36.60 | 68 | 6.48  | 6.7  | 200 | 21.7    | 64.0 | 0.120E-01 | 22.6  | 1018.4 |     |     | 190 | 1           | 10 14 16.9        |
| 3/ 5 | 230  | 28  | 39.64 | 68 | 6.38  | 6.6  | 208 | 21.6    | 69.4 | 0.130E-01 | 22.7  | 1018.5 |     |     | 350 | 10          | 270 8 17.5        |
| 3/ 5 | 300  | 28  | 41.49 | 68 | 7.22  | 6.7  | 199 | 21.8    | 68.0 | 0.128E-01 | 22.6  | 1017.7 |     |     | 200 | 1           | 0 14 17.5         |
| 3/ 5 | 330  | 28  | 41.49 | 68 | 6.84  | 7.2  | 188 | 21.8    | 67.3 | 0.127E-01 | 22.6  | 1017.5 |     |     | 210 | 1           | 340 15 17.4       |
| 3/ 5 | 400  | 28  | 41.54 | 68 | 6.59  | 9.3  | 199 | 21.8    | 68.0 | 0.128E-01 | 22.5  | 1017.7 |     |     | 210 | 0           | 350 18 17.5       |
| 3/ 5 | 430  | 28  | 42.04 | 68 | 6.11  | 10.2 | 189 | 21.4    | 72.4 | 0.134E-01 | 22.5  | 1017.6 | 3   | 30  | 10  | 140 11 17.7 |                   |
| 3/ 5 | 500  | 28  | 45.94 | 68 | 3.97  | 8.9  | 177 | 21.3    | 75.6 | 0.139E-01 | 22.5  | 1017.1 | 5   | 1   | 230 | 1           | 310 18 18.0       |
| 3/ 5 | 530  | 28  | 46.09 | 68 | 3.83  | 8.8  | 178 | 21.3    | 70.9 | 0.132E-01 | 22.6  | 1016.5 |     |     | 210 | 1           | 330 18 17.6       |
| 3/ 5 | 600  | 28  | 46.27 | 68 | 3.93  | 9.3  | 174 | 21.5    | 75.8 | 0.141E-01 | 22.6  | 1015.7 |     |     | 215 | 0           | 320 18 18.2       |
| 3/ 5 | 630  | 28  | 47.76 | 68 | 2.81  | 10.1 | 174 | 21.4    | 74.9 | 0.138E-01 | 22.6  | 1015.7 |     |     | 5   | 10          | 160 10 18.0       |
| 3/ 5 | 700  | 28  | 50.66 | 68 | 1.17  | 8.8  | 163 | 21.7    | 76.9 | 0.144E-01 | 22.5  | 1015.2 |     |     | 195 | 1           | 330 18 18.5       |
| 3/ 5 | 730  | 28  | 50.67 | 68 | 1.01  | 8.2  | 179 | 21.6    | 77.6 | 0.145E-01 | 22.5  | 1014.8 | 5   | 3   | 190 | 0           | 350 16 18.5       |
| 3/ 5 | 800  | 28  | 50.56 | 68 | 0.32  | 8.2  | 179 | 21.8    | 77.0 | 0.145E-01 | 22.5  | 1014.3 | 5   | 3   | 200 | 0           | 340 16 18.6       |
| 3/ 5 | 830  | 28  | 51.69 | 67 | 39.57 | 10.3 | 179 | 21.6    | 83.5 | 0.136E-01 | 22.5  | 1013.8 | 5   | 3   | 10  | 170         | 10 19.2           |
| 3/ 5 | 900  | 28  | 55.22 | 67 | 38.82 | 8.2  | 164 | 21.8    | 82.0 | 0.153E-01 | 22.5  | 1013.6 | 5   | 150 | 0   | 15 16 19.2  |                   |
| 3/ 5 | 930  | 28  | 55.00 | 67 | 37.86 | 7.7  | 169 | 22.0    | 81.3 | 0.153E-01 | 22.5  | 1013.4 | 5   | 180 | 0   | 350 15 19.3 |                   |
| 3/ 5 | 1000 | 28  | 54.82 | 67 | 36.89 | 8.2  | 179 | 21.5    | 88.7 | 0.165E-01 | 22.4  | 1013.5 | 1   | 3   | 180 | 0           | 0 16 19.7         |
| 3/ 5 | 1030 | 28  | 54.47 | 67 | 36.01 | 6.7  | 179 | 21.6    | 81.0 | 0.162E-01 | 22.5  | 1013.5 | 7   | 1   | 180 | 0           | 0 13 19.6         |
| 3/ 5 | 1100 | 28  | 54.05 | 67 | 55.03 | 9.2  | 178 | 21.2    | 92.0 | 0.168E-01 | 22.5  | 1013.5 | 5   | 2   | 340 | 10          | 220 9 19.8        |
| 3/ 5 | 1130 | 28  | 58.19 | 67 | 56.94 | 8.4  | 172 | 21.7    | 90.6 | 0.170E-01 | 22.4  | 1013.1 | 5   | 3   | 330 | 10          | 230 8 20.1        |
| 3/ 5 | 1200 | 28  | 59.90 | 67 | 57.03 | 7.7  | 204 | 22.1    | 97.9 | 0.188E-01 | 22.5  | 1012.8 | 5   | 3   | 180 | 0           | 25 15 21.3        |
| 3/ 5 | 1230 | 28  | 59.51 | 67 | 55.83 | 8.8  | 184 | 22.0    | 91.6 | 0.173E-01 | 22.5  | 1012.8 | 5   | 3   | 195 | 0           | 350 17 20.5       |
| 3/ 5 | 1300 | 28  | 59.26 | 67 | 55.22 | 9.3  | 189 | 22.~    | 84.5 | 0.170E-01 | 22.5  | 1013.1 | 5   | 3   | 190 | 0           | 0 18 20.5         |
| 3/ 5 | 1330 | 28  | 59.82 | 67 | 54.86 | 4.1  | 189 | 22.7    | 81.0 | 0.161E-01 | 22.5  | 1012.9 | 42  | 3   | 350 | 0           | 200 8 19.9        |
| 3/ 5 | 1400 | 29  | 4.05  | 67 | 55.24 | 8.0  | 185 | 22.5    | 88.6 | 0.174E-01 | 22.5  | 1013.1 | 5   | 3   | 345 | 5           | 210 11 20.6       |
| 3/ 5 | 1430 | 29  | 4.29  | 67 | 54.67 | 10.3 | 184 | 23.2    | 86.4 | 0.176E-01 | 22.4  | 1012.7 | 5   | 3   | 195 | 1           | 350 21 21.0       |
| 3/ 5 | 1500 | 29  | 3.88  | 67 | 53.96 | 9.3  | 184 | 23.8    | 75.6 | 0.159E-01 | 22.5  | 1012.3 | 5   | 3   | 195 | 1           | 350 19 20.2       |
| 3/ 5 | 1530 | 29  | 9.45  | 67 | 54.75 | 10.9 | 198 | 22.8    | 88.6 | 0.177E-01 | 22.5  | 1012.4 | 5   | 4   | 220 | 2           | 340 23 20.9       |
| 3/ 5 | 1600 | 29  | 4.38  | 67 | 51.67 | 11.9 | 240 | 23.2    | 86.4 | 0.176E-01 | 22.4  | 1011.7 | 8   | 4   | 200 | 1           | 10 23 21.0        |
| 3/ 5 | 1630 | 29  | 4.13  | 67 | 53.56 | 10.8 | 199 | 23.2    | 87.2 | 0.178E-01 | 22.4  | 1011.0 | 8   | 4   | 24  | 4           | 200 1 22 21.1     |
| 3/ 5 | 1700 | 29  | 6.38  | 67 | 52.66 | 17.0 | 197 | 22.6    | 88.5 | 0.175E-01 | 22.2  | 1011.0 | 8   | 5   | 24  | 4           | 355 9 210 25 20.7 |
| 3/ 5 | 1730 | 29  | 9.34  | 67 | 52.28 | 12.4 | 219 | 23.4    | 80.0 | 0.165E-01 | 21.2  | 1010.5 | 5   | 5   | 24  | 4           | 220 1 25 20.4     |
| 3/ 5 | 1800 | 29  | 9.16  | 67 | 52.03 | 11.3 | 224 | 23.2    | 82.3 | 0.168E-01 | 21.3  | 1010.8 | 5   | 5   | 23  | 4           | 225 1 0 23 20.5   |
| 3/ 5 | 1830 | 29  | 8.84  | 67 | 51.67 | 11.9 | 240 | 22.5    | 83.4 | 0.164E-01 | 21.6  | 1010.1 | 67  | 4   | 23  | 4           | 220 1 20 24 20.0  |
| 3/ 5 | 1900 | 29  | 10.93 | 67 | 50.77 | 12.9 | 246 | 22.5    | 81.7 | 0.160E-01 | 21.3  | 1010.1 | 67  | 4   | 24  | 2           | 0 10 270 23 19.8  |
| 3/ 5 | 1930 | 29  | 14.07 | 67 | 50.41 | 11.8 | 239 | 22.7    | 79.4 | 0.158E-01 | 21.6  | 1010.1 | 472 | 3   | 27  | 6           | 240 0 0 23 19.7   |
| 3/ 5 | 2000 | 29  | 14.10 | 67 | 50.32 | 12.4 | 249 | 22.6    | 74.5 | 0.147E-01 | 21.6  | 1010.1 | 372 | 3   | 27  | 6           | 240 0 10 24 19.0  |
| 3/ 5 | 2030 | 29  | 13.89 | 67 | 50.42 | 13.4 | 254 | 22.5    | 72.8 | 0.1       |       |        |     |     |     |             |                   |

Table Vb-3 (Cont)

|      | DATE | TIME     | LAT      | LONG | WS  | WD   | AT   | RH        | ABS HUM | SST    | RF | CLOUD | WAVES | SC  | SS  | AD  | AS  | TW   |      |
|------|------|----------|----------|------|-----|------|------|-----------|---------|--------|----|-------|-------|-----|-----|-----|-----|------|------|
| 3/ 6 | 700  | 27 58.10 | 68 40.04 | 3.6  | 308 | 20.0 | 66.1 | 0.113E-01 | 23.3    | 1016.7 |    |       |       | 220 | 12  | 30  | 14  | 15.7 |      |
| 3/ 6 | 730  | 27 54.18 | 68 44.22 | 5.0  | 340 | 20.0 | 66.9 | 0.114E-01 | 23.7    | 1015.9 |    |       |       | 220 | 12  | 50  | 11  | 15.8 |      |
| 3/ 6 | 800  | 27 50.09 | 68 48.27 | 3.7  | 337 | 20.0 | 67.7 | 0.115E-01 | 23.7    | 1016.0 |    |       |       | 220 | 11  | 40  | 10  | 15.9 |      |
| 3/ 6 | 830  | 27 46.00 | 68 52.20 | 2.4  | 310 | 20.0 | 62.8 | 0.107E-01 | 23.5    | 1016.7 |    |       |       | 220 | 10  | 23  | 11  | 15.3 |      |
| 3/ 6 | 900  | 27 42.80 | 68 56.31 | 4.3  | 317 | 20.2 | 65.5 | 0.113E-01 | 23.5    | 1016.2 |    |       |       | 220 | 11  | 40  | 13  | 15.8 |      |
| 3/ 6 | 930  | 27 38.12 | 69 0.42  | 2.3  | 1   | 20.2 | 66.3 | 0.114E-01 | 23.0    | 1015.7 |    |       |       | 220 | 11  | 20  | 8   | 15.9 |      |
| 3/ 6 | 1000 | 27 33.91 | 69 4.12  | 0.0  | 148 | 20.2 | 62.3 | 0.107E-01 | 23.1    | 1016.5 | 1  | 32    | 3     | 210 | 11  | 0   | 11  | 15.4 |      |
| 3/ 6 | 1030 | 27 29.57 | 69 7.24  | 1.6  | 161 | 20.2 | 59.9 | 0.103E-01 | 23.4    | 1016.7 | 4  | 1     | 32    | 3   | 215 | 12  | 350 | 14   | 15.1 |
| 3/ 6 | 1100 | 27 25.28 | 69 10.72 | 1.2  | 144 | 20.4 | 58.6 | 0.102E-01 | 23.4    | 1016.9 | 4  | 1     | 32    | 3   | 215 | 12  | 350 | 13   | 15.1 |
| 3/ 6 | 1130 | 27 21.02 | 69 14.61 | 1.6  | 161 | 20.6 | 57.3 | 0.101E-01 | 23.5    | 1017.5 | 4  | 1     | 32    | 3   | 215 | 12  | 350 | 14   | 15.1 |
| 3/ 6 | 1200 | 27 16.64 | 69 17.86 | 1.4  | 73  | 20.4 | 61.7 | 0.108E-01 | 23.5    | 1017.4 | 1  | 28    | 3     | 215 | 12  | 350 | 10  | 15.3 |      |
| 3/ 6 | 1230 | 27 16.99 | 69 23.49 | 1.8  | 212 | 20.6 | 56.5 | 0.996E-02 | 23.7    | 1017.6 | 4  | 1     | 28    | 3   | 275 | 10  | 345 | 12   | 15.0 |
| 3/ 6 | 1300 | 27 18.08 | 69 29.27 | 0.5  | 84  | 19.9 | 59.5 | 0.101E-01 | 23.7    | 1018.0 | 5  | 1     | 28    | 3   | 265 | 12  | 0   | 11   | 14.8 |
| 3/ 6 | 1330 | 27 18.50 | 69 34.82 | 2.1  | 199 | 20.3 | 58.4 | 0.101E-01 | 23.9    | 1018.3 | 1  | 28    | 3     | 270 | 9   | 340 | 11  | 15.0 |      |
| 3/ 6 | 1400 | 27 18.91 | 69 40.26 | 2.7  | 159 | 20.5 | 55.6 | 0.974E-02 | 23.6    | 1018.4 | 1  | 28    | 3     | 265 | 10  | 330 | 10  | 14.8 |      |
| 3/ 6 | 1430 | 27 18.86 | 69 45.48 | 2.7  | 183 | 20.8 | 55.2 | 0.985E-02 | 23.7    | 1018.3 | 1  | 28    | 3     | 235 | 7   | 330 | 10  | 15.0 |      |
| 3/ 6 | 1500 | 27 18.41 | 69 51.09 | 4.0  | 140 | 20.9 | 63.9 | 0.113E-01 | 23.8    | 1018.1 | 1  | 28    | 3     | 265 | 12  | 320 | 10  | 16.2 |      |
| 3/ 6 | 1530 | 27 18.38 | 69 57.43 | 6.0  | 163 | 21.3 | 59.7 | 0.110E-01 | 23.9    | 1017.7 | 1  | 28    | 3     | 265 | 12  | 310 | 13  | 16.0 |      |
| 3/ 6 | 1600 | 27 18.52 | 70 2.78  | 4.2  | 167 | 21.1 | 58.7 | 0.106E-01 | 24.0    | 1017.6 | 1  | 28    | 3     | 265 | 1   | 270 | 8   | 15.7 |      |
| 3/ 6 | 1630 | 27 15.55 | 69 59.21 | 3.6  | 185 | 21.5 | 61.5 | 0.114E-01 | 24.0    | 1017.6 | 1  | 28    | 3     | 130 | 12  | 20  | 17  | 16.4 |      |
| 3/ 6 | 1700 | 27 12.11 | 69 55.55 | 5.7  | 160 | 22.0 | 61.3 | 0.117E-01 | 24.0    | 1016.7 | 1  | 28    | 3     | 145 | 6   | 10  | 17  | 16.8 |      |
| 3/ 6 | 1730 | 27 8.56  | 69 51.62 | 5.0  | 173 | 22.2 | 60.1 | 0.116E-01 | 24.0    | 1015.8 | 1  | 28    | 3     | 130 | 12  | 20  | 20  | 16.8 |      |
| 3/ 6 | 1800 | 27 5.33  | 69 46.35 | 5.7  | 164 | 22.5 | 61.9 | 0.122E-01 | 23.9    | 1015.7 | 1  | 26    | 3     | 165 | 5   | 0   | 16  | 17.3 |      |
| 3/ 6 | 1830 | 27 8.97  | 69 43.49 | 6.0  | 185 | 22.2 | 64.6 | 0.125E-01 | 24.0    | 1015.7 | 1  | 26    | 3     | 25  | 11  | 90  | 4   | 17.4 |      |
| 3/ 6 | 1900 | 27 13.90 | 69 40.49 | 6.0  | 180 | 22.2 | 63.8 | 0.123E-01 | 24.0    | 1015.7 | 1  | 26    | 3     | 20  | 11  | 90  | 4   | 17.3 |      |
| 3/ 6 | 1930 | 27 18.90 | 69 37.98 | 7.3  | 206 | 22.2 | 63.3 | 0.123E-01 | 24.0    | 1015.7 | 1  | 26    | 3     | 305 | 2   | 270 | 14  | 17.3 |      |
| 3/ 6 | 2000 | 27 19.07 | 69 37.95 | 8.2  | 219 | 22.3 | 68.6 | 0.133E-01 | 24.0    | 1015.2 | 1  | 26    | 3     | 220 | 2   | 0   | 18  | 18.0 |      |
| 3/ 6 | 2030 | 27 19.23 | 69 38.01 | 5.7  | 239 | 22.2 | 65.4 | 0.126E-01 | 24.0    | 1015.7 | 1  | 26    | 3     | 340 | 0   | 260 | 11  | 17.5 |      |
| 3/ 6 | 2100 | 27 19.82 | 69 38.39 | 9.3  | 224 | 22.2 | 61.6 | 0.119E-01 | 24.0    | 1015.7 | 1  | 26    | 3     | 45  | 10  | 180 | 8   | 17.0 |      |
| 3/ 6 | 2130 | 27 22.11 | 69 34.92 | 7.6  | 227 | 22.2 | 65.4 | 0.126E-01 | 23.8    | 1015.7 | 1  | 26    | 3     | 180 | 3   | 40  | 17  | 17.5 |      |
| 3/ 6 | 2200 | 27 21.58 | 69 33.77 | 6.5  | 220 | 22.1 | 64.5 | 0.124E-01 | 23.9    | 1015.0 | 1  | 2     | 2     | 185 | 3   | 30  | 19  | 17.3 |      |
| 3/ 6 | 2230 | 27 19.27 | 69 33.92 | 7.1  | 216 | 21.9 | 73.0 | 0.138E-01 | 23.8    | 1015.0 | 1  | 2     | 2     | 185 | 8   | 20  | 21  | 18.2 |      |
| 3/ 6 | 2300 | 27 15.87 | 69 33.97 | 7.6  | 210 | 22.2 | 69.3 | 0.134E-01 | 23.8    | 1014.6 | 1  | 2     | 2     | 180 | 8   | 20  | 22  | 18.0 |      |
| 3/ 6 | 2330 | 27 12.57 | 69 33.76 | 7.1  | 221 | 22.2 | 68.3 | 0.132E-01 | 24.0    | 1015.1 | 1  | 2     | 2     | 190 | 8   | 20  | 23  | 17.9 |      |
| 3/ 7 | 0    | 27 9.25  | 69 34.22 | 8.8  | 230 | 22.7 | 70.6 | 0.140E-01 | 24.2    | 1015.6 |    |       |       | 180 | 8   | 35  | 23  | 18.6 |      |
| 3/ 7 | 30   | 27 6.20  | 69 34.06 | 8.3  | 241 | 22.8 | 68.3 | 0.136E-01 | 24.2    | 1015.7 |    |       |       | 190 | 8   | 35  | 23  | 18.4 |      |
| 3/ 7 | 100  | 27 2.58  | 69 34.03 | 8.5  | 233 | 22.9 | 70.8 | 0.142E-01 | 24.1    | 1015.8 |    |       |       | 190 | 8   | 30  | 23  | 18.8 |      |
| 3/ 7 | 130  | 26 58.89 | 69 33.97 | 8.1  | 210 | 23.2 | 71.1 | 0.145E-01 | 24.3    | 1015.9 |    |       |       | 180 | 8   | 20  | 23  | 19.1 |      |
| 3/ 7 | 200  | 26 55.42 | 69 34.12 | 8.6  | 200 | 23.2 | 70.3 | 0.143E-01 | 24.3    | 1016.3 |    |       |       | 230 | 0   | 340 | 24  | 19.0 |      |
| 3/ 7 | 230  | 26 54.04 | 69 36.92 | 8.8  | 228 | 23.3 | 68.1 | 0.140E-01 | 24.3    | 1016.4 |    |       |       | 265 | 8   | 335 | 24  | 18.8 |      |
| 3/ 7 | 300  | 26 54.01 | 69 40.54 | 7.1  | 233 | 23.4 | 65.2 | 0.134E-01 | 24.5    | 1016.1 |    |       |       | 265 | 8   | 340 | 23  | 18.5 |      |
| 3/ 7 | 330  | 26 54.03 | 69 44.25 | 7.5  | 219 | 23.1 | 70.2 | 0.142E-01 | 24.4    | 1016.0 |    |       |       | 265 | 8   | 330 | 23  | 18.4 |      |
| 3/ 7 | 400  | 26 54.09 | 69 48.13 | 5.4  | 238 | 23.2 | 67.2 | 0.137E-01 | 24.4    | 1015.7 |    |       |       | 265 | 8   | 345 | 19  | 18.6 |      |
| 3/ 7 | 430  | 26 54.11 | 69 51.99 | 6.5  | 216 | 23.2 | 70.3 | 0.143E-01 | 24.3    | 1015.8 |    |       |       | 265 | 8   | 330 | 19  | 18.6 |      |
| 3/ 7 | 500  | 26 54.14 | 69 55.74 | 6.1  | 215 | 23.2 | 74.2 | 0.151E-01 | 24.3    | 1015.7 |    |       |       | 265 | 8   | 330 | 19  | 18.6 |      |
| 3/ 7 | 530  | 26 54.23 | 69 59.85 | 7.0  | 217 | 23.2 | 75.0 | 0.153E-01 | 24.3    | 1015.7 |    |       |       | 265 | 8   | 330 | 20  | 19.0 |      |
| 3/ 7 | 600  | 26 54.25 | 70 3.87  | 7.5  | 214 | 23.0 | 79.0 | 0.161E-01 | 24.1    | 1015.6 |    |       |       | 260 | 8   | 330 | 21  | 19.0 |      |
| 3/ 7 | 630  | 26 57.10 | 70 5.29  | 5.8  | 219 | 23.0 | 80.4 | 0.162E-01 | 24.1    | 1014.8 |    |       |       | 255 | 8   | 270 | 0   | 18   |      |
| 3/ 7 | 700  | 27 1.45  | 70 5.61  | 8.1  | 244 | 23.0 | 79.6 | 0.161E-01 | 23.9    | 1014.6 |    |       |       | 155 | 8   | 280 | 0   | 18   |      |
| 3/ 7 | 730  | 27 5.34  | 70 5.40  | 7.2  | 217 | 22.6 | 82.6 | 0.163E-01 | 23.6    | 1014.3 |    |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 800  | 27 9.45  | 70 5.55  | 9.7  | 204 | 22.5 | 87.6 | 0.172E-01 | 23.6    | 1013.9 |    |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 830  | 27 13.42 | 70 5.65  | 10.8 | 223 | 22.4 | 86.7 | 0.169E-01 | 23.8    | 1014.4 |    |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 900  | 27 17.37 | 70 5.34  | 8.5  | 222 | 22.3 | 83.2 | 0.161E-01 | 23.7    | 1014.0 |    |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 930  | 27 21.16 | 70 5.46  | 6.7  | 219 | 22.3 | 83.7 | 0.164E-01 | 23.8    | 1014.1 |    |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1000 | 27 22.71 | 70 2.05  | 6.7  | 227 | 22.0 | 91.0 | 0.175E-01 | 23.7    | 1014.1 |    |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1030 | 27 22.77 | 69 57.91 | 7.7  | 239 | 22.6 | 79.3 | 0.156E-01 | 23.5    | 1015.1 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1100 | 27 22.54 | 69 53.75 | 6.9  | 221 | 22.6 | 83.4 | 0.163E-01 | 23.5    | 1014.6 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1130 | 27 22.83 | 69 49.79 | 6.7  | 227 | 22.6 | 81.7 | 0.161E-01 | 23.6    | 1014.3 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1200 | 27 22.67 | 69 45.40 | 5.7  | 243 | 22.7 | 80.2 | 0.159E-01 | 23.6    | 1013.5 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1230 | 27 22.66 | 69 40.79 | 5.9  | 230 | 22.8 | 82.7 | 0.163E-01 | 23.5    | 1013.4 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1300 | 27 22.74 | 69 36.15 | 4.9  | 242 | 23.4 | 84.8 | 0.173E-01 | 23.7    | 1013.1 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1330 | 27 20.38 | 69 33.93 | 3.6  | 222 | 22.9 | 81.2 | 0.163E-01 | 23.8    | 1013.1 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1400 | 27 16.53 | 69 34.08 | 5.1  | 211 | 23.0 | 83.7 | 0.169E-01 | 23.6    | 1013.1 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1430 | 27 13.07 | 69 34.02 | 5.9  | 238 | 23.0 | 78.8 | 0.159E-01 | 23.6    | 1013.1 | 2  |       |       | 0   | 28  | 0   | 0   | 0    |      |
| 3/ 7 | 1500 | 27 9.46  | 69 34.02 | 4.7  | 281 | 22.8 | 81.1 | 0.162E-01 | 23      |        |    |       |       |     |     |     |     |      |      |

RD-R177 776 FRSINEX (FRONTAL AIR-SEA INTERACTION EXPERIMENT JANUARY 2/2  
- JUNE 1986) CRUI. (U) WOODS HOLE OCEANOGRAPHIC  
INSTITUTION MA N J PENNINGTON ET AL OCT 86 WHOI-86-36

UNCLASSIFIED NO0014-84-C-0134

F/G 8/3

ML





MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS-1963-A

Table Vb-3 (Cont.)

|     | DATE | TIME     | LAT      | LONG  | WS    | WD   | AT   | RH   | AMS       | NHM       | SST    | ZP     | CLOUD | WAVES | SC  | SS  | AD  | AS   | TW   |      |
|-----|------|----------|----------|-------|-------|------|------|------|-----------|-----------|--------|--------|-------|-------|-----|-----|-----|------|------|------|
| 3/8 | 300  | 27 22.39 | 69       | 40.96 | 5.4   | 273  | 22.1 | 65.3 | 0.123E-01 | 23.7      | 1016.8 |        |       |       | 85  | 8   | 220 | 3    | 17.4 |      |
| 3/8 | 350  | 27 22.48 | 69       | 36.75 | 6.3   | 280  | 22.1 | 66.8 | 0.120E-01 | 23.3      | 1016.8 |        |       |       | 85  | 8   | 220 | 3    | 17.6 |      |
| 3/8 | 400  | 27 20.99 | 69       | 33.76 | 4.0   | 292  | 22.0 | 66.7 | 0.127E-01 | 23.3      | 1017.6 |        |       |       | 190 | 8   | 50  | 10   | 17.5 |      |
| 3/8 | 430  | 27 17.22 | 69       | 33.97 | 5.5   | 283  | 22.1 | 65.4 | 0.126E-01 | 23.7      | 1016.8 |        |       |       | 185 | 8   | 60  | 12   | 17.5 |      |
| 3/8 | 500  | 27 13.65 | 69       | 33.79 | 4.7   | 281  | 22.3 | 67.7 | 0.131E-01 | 24.0      | 1017.6 |        |       |       | 190 | 8   | 50  | 12   | 17.8 |      |
| 3/8 | 530  | 27 10.19 | 69       | 33.83 | 4.9   | 281  | 22.2 | 65.4 | 0.126E-01 | 24.3      | 1017.1 |        |       |       | 0   | 0   | 0   | 0    | 17.5 |      |
| 3/8 | 600  | 27 6.63  | 69       | 34.01 | 5.1   | 281  | 22.2 | 63.1 | 0.122E-01 | 24.3      | 1016.8 |        |       |       | 185 | 8   | 55  | 12   | 17.2 |      |
| 3/8 | 630  | 27 3.10  | 69       | 34.33 | 4.7   | 285  | 22.2 | 67.7 | 0.131E-01 | 24.3      | 1016.7 |        |       |       | 185 | 8   | 55  | 11   | 17.8 |      |
| 3/8 | 700  | 26 59.49 | 69       | 34.39 | 5.5   | 273  | 22.1 | 70.8 | 0.137E-01 | 24.3      | 1017.0 |        |       |       | 175 | 8   | 60  | 12   | 18.2 |      |
| 3/8 | 730  | 26 53.73 | 69       | 34.13 | 4.7   | 271  | 22.2 | 66.9 | 0.129E-01 | 24.3      | 1016.7 |        |       |       | 180 | 8   | 50  | 12   | 17.7 |      |
| 3/8 | 800  | 26 52.25 | 69       | 35.26 | 6.3   | 304  | 22.3 | 68.6 | 0.133E-01 | 24.2      | 1016.7 |        |       |       | 210 | 8   | 60  | 14   | 18.0 |      |
| 3/8 | 830  | 26 49.07 | 69       | 37.40 | 6.3   | 304  | 22.3 | 66.2 | 0.129E-01 | 24.3      | 1016.7 |        |       |       | 210 | 8   | 60  | 14   | 17.7 |      |
| 3/8 | 900  | 26 45.94 | 69       | 39.63 | 6.3   | 299  | 22.3 | 68.6 | 0.133E-01 | 24.4      | 1017.6 |        |       |       | 205 | 8   | 60  | 14   | 18.0 |      |
| 3/8 | 930  | 26 42.76 | 69       | 41.84 | 4.7   | 296  | 22.4 | 64.0 | 0.125E-01 | 24.5      | 1017.6 |        |       |       | 205 | 8   | 50  | 12   | 17.5 |      |
| 3/8 | 1000 | 26 39.36 | 69       | 43.67 | 5.1   | 292  | 22.2 | 67.7 | 0.131E-01 | 24.4      | 1017.7 | 1      | 1     | 32    | 3   | 205 | 8   | 50   | 13   | 17.8 |
| 3/8 | 1030 | 26 36.24 | 69       | 45.95 | 3.3   | 296  | 22.3 | 65.5 | 0.127E-01 | 24.4      | 1018.1 | 1      | 1     | 32    | 3   | 205 | 8   | 40   | 10   | 17.6 |
| 3/8 | 1100 | 26 32.91 | 69       | 47.90 | 4.4   | 281  | 22.9 | 63.1 | 0.127E-01 | 24.3      | 1018.4 | 1      | 1     | 32    | 3   | 205 | 8   | 40   | 13   | 17.8 |
| 3/8 | 1130 | 26 29.92 | 69       | 30.56 | 4.7   | 291  | 22.7 | 64.4 | 0.128E-01 | 24.5      | 1018.6 | 1      | 1     | 32    | 3   | 200 | 8   | 50   | 12   | 17.8 |
| 3/8 | 1200 | 26 28.30 | 69       | 31.11 | 5.7   | 283  | 22.8 | 62.2 | 0.124E-01 | 24.6      | 1019.0 | 2      | 1     | 32    | 3   | 190 | 1   | 90   | 11   | 17.6 |
| 3/8 | 1230 | 26 27.97 | 69       | 31.15 | 5.1   | 289  | 22.9 | 61.6 | 0.124E-01 | 24.5      | 1019.6 | 4      | 1     | 32    | 4   | 230 | 0   | 60   | 10   | 17.6 |
| 3/8 | 1300 | 26 27.83 | 69       | 32.02 | 5.2   | 295  | 22.6 | 62.7 | 0.124E-01 | 24.5      | 1020.2 | 4      | 1     | 32    | 4   | 290 | 2   | 5    | 12   | 17.5 |
| 3/8 | 1330 | 26 28.04 | 69       | 32.88 | 7.2   | 294  | 22.6 | 62.7 | 0.124E-01 | 24.5      | 1020.3 | 2      | 1     | 32    | 4   | 235 | 0   | 60   | 14   | 17.5 |
| 3/8 | 1400 | 26 27.81 | 69       | 32.86 | 5.1   | 299  | 22.7 | 58.4 | 0.116E-01 | 24.5      | 1020.8 | 4      | 1     | 32    | 4   | 220 | 0   | 80   | 10   | 17.0 |
| 3/8 | 1430 | 26 27.66 | 69       | 53.09 | 5.7   | 334  | 22.6 | 57.0 | 0.114E-01 | 24.5      | 1021.0 | 4      | 1     | 32    | 5   | 235 | 0   | 100  | 11   | 16.9 |
| 3/8 | 1500 | 26 29.97 | 69       | 34.57 | 7.4   | 322  | 22.9 | 60.1 | 0.121E-01 | 24.5      | 1020.9 | 1      | 1     | 32    | 5   | 340 | 11  | 350  | 23   | 17.4 |
| 3/8 | 1530 | 26 35.77 | 69       | 37.19 | 5.4   | 312  | 22.8 | 62.9 | 0.126E-01 | 24.5      | 1021.1 |        | 2     | 32    | 5   | 335 | 13  | 350  | 23   | 17.7 |
| 3/8 | 1600 | 26 42.06 | 69       | 39.97 | 5.7   | 334  | 23.2 | 59.0 | 0.120E-01 | 24.5      | 1021.6 |        | 2     | 32    | 5   | 335 | 13  | 0    | 24   | 17.5 |
| 3/8 | 1630 | 26 48.30 | 70       | 2.76  | 7.0   | 295  | 23.0 | 55.1 | 0.111E-01 | 24.4      | 1021.3 |        | 3     | 33    | 4   | 335 | 13  | 340  | 25   | 16.8 |
| 3/8 | 1700 | 26 54.18 | 70       | 5.44  | 5.7   | 314  | 22.5 | 57.4 | 0.113E-01 | 24.3      | 1021.9 |        | 3     | 33    | 3   | 315 | 0   | 0    | 11   | 16.7 |
| 3/8 | 1730 | 26 54.69 | 70       | 5.58  | 5.0   | 281  | 22.4 | 54.3 | 0.106E-01 | 24.4      | 1022.1 |        | 3     | 34    | 3   | 65  | 1   | 220  | 9    | 16.2 |
| 3/8 | 1800 | 26 54.97 | 70       | 5.57  | 5.6   | 347  | 22.3 | 57.1 | 0.111E-01 | 24.6      | 1021.4 |        | 3     | 34    | 3   | 140 | 1   | 210  | 10   | 16.5 |
| 3/8 | 1830 | 26 55.06 | 70       | 5.27  | 7.2   | 344  | 22.5 | 59.6 | 0.117E-01 | 24.5      | 1021.4 |        | 3     | 34    | 3   | 95  | 14  | 305  | 16   | 17.0 |
| 3/8 | 1900 | 26 54.77 | 69       | 58.21 | 7.2   | 334  | 22.5 | 58.1 | 0.114E-01 | 24.5      | 1021.2 |        | 3     | 34    | 3   | 95  | 14  | 300  | 14   | 16.8 |
| 3/8 | 1930 | 26 54.32 | 69       | 31.10 | 8.1   | 339  | 22.2 | 63.8 | 0.123E-01 | 24.5      | 1021.4 |        | 3     | 34    | 3   | 90  | 14  | 300  | 17   | 17.3 |
| 3/8 | 2000 | 26 54.39 | 69       | 43.92 | 7.8   | 336  | 22.4 | 60.2 | 0.118E-01 | 24.4      | 1021.4 |        | 3     | 34    | 3   | 90  | 14  | 300  | 16   | 17.0 |
| 3/8 | 2030 | 26 54.67 | 69       | 37.24 | 6.3   | 349  | 22.2 | 61.5 | 0.119E-01 | 24.4      | 1021.4 |        | 3     | 34    | 3   | 100 | 14  | 310  | 15   | 17.0 |
| 3/8 | 2100 | 26 53.93 | 69       | 34.14 | 4.6   | 349  | 22.4 | 60.2 | 0.118E-01 | 24.5      | 1021.9 |        | 2     | 34    | 2   | 350 | 1   | 0    | 10   | 17.0 |
| 3/8 | 2130 | 26 54.08 | 69       | 34.28 | 7.2   | 319  | 22.3 | 59.3 | 0.115E-01 | 24.4      | 1021.9 |        | 2     | 30    | 0   | 290 | 14  | 16.8 |      |      |
| 3/8 | 2200 | 26 54.04 | 69       | 34.27 | 6.7   | 334  | 22.5 | 55.9 | 0.110E-01 | 24.3      | 1022.1 |        | 2     | 3     | 335 | 0   | 0   | 13   | 16.5 |      |
| 3/8 | 2230 | 26 56.62 | 69       | 37.96 | 6.1   | 336  | 22.2 | 66.1 | 0.128E-01 | 24.2      | 1022.1 |        | 2     | 3     | 305 | 13  | 15  | 24   | 17.6 |      |
| 3/8 | 2300 | 27 0.81  | 69       | 42.60 | 6.0   | 352  | 22.1 | 56.8 | 0.109E-01 | 24.0      | 1022.3 |        |       |       | 310 | 13  | 20  | 23   | 16.3 |      |
| 3/8 | 2330 | 27 5.31  | 69       | 47.44 | 5.1   | 356  | 21.6 | 59.2 | 0.111E-01 | 24.3      | 1022.9 |        |       |       | 310 | 13  | 20  | 21   | 16.2 |      |
| 3/9 | 0    | 27       | 7.85     | 69    | 50.37 | 6.2  | 349  | 21.7 | 65.5      | 0.123E-01 | 24.2   | 1023.3 |       |       |     | 260 | 0   | 90   | 12   | 17.1 |
| 3/9 | 30   | 27       | 7.74     | 69    | 30.14 | 6.2  | 4    | 22.1 | 65.9      | 0.127E-01 | 24.2   | 1023.6 |       |       |     | 265 | 0   | 100  | 12   | 17.5 |
| 3/9 | 9    | 100      | 27 7.83  | 69    | 30.15 | 7.3  | 12   | 21.7 | 64.7      | 0.121E-01 | 24.2   | 1023.9 |       |       |     | 330 | 1   | 40   | 15   | 17.0 |
| 3/9 | 9    | 130      | 27 11.35 | 69    | 53.59 | 11.2 | 12   | 21.3 | 63.2      | 0.153E-01 | 24.2   | 1023.7 |       |       |     | 310 | 13  | 40   | 30   | 18.9 |
| 3/9 | 9    | 200      | 27 16.22 | 69    | 58.55 | 9.9  | 28   | 21.1 | 76.2      | 0.138E-01 | 24.2   | 1023.9 |       |       |     | 315 | 13  | 45   | 26   | 17.9 |
| 3/9 | 9    | 230      | 27 21.87 | 70    | 4.44  | 10.3 | 22   | 20.9 | 76.9      | 0.138E-01 | 23.6   | 1024.3 |       |       |     | 310 | 13  | 45   | 27   | 17.8 |
| 3/9 | 9    | 300      | 27 22.98 | 70    | 5.46  | 9.8  | 35   | 20.2 | 72.8      | 0.126E-01 | 23.7   | 1025.0 |       |       |     | 30  | 1   | 5    | 20   | 16.7 |
| 3/9 | 9    | 330      | 27 22.94 | 70    | 5.45  | 10.9 | 23   | 19.3 | 79.9      | 0.131E-01 | 23.7   | 1025.0 |       |       |     | 65  | 1   | 320  | 22   | 16.7 |
| 3/9 | 9    | 400      | 27 22.78 | 70    | 5.55  | 9.8  | 14   | 20.2 | 76.2      | 0.131E-01 | 23.6   | 1025.2 |       |       |     | 295 | 0   | 80   | 19   | 17.1 |
| 3/9 | 9    | 430      | 27 22.66 | 70    | 2.15  | 11.3 | 13   | 20.2 | 75.4      | 0.130E-01 | 23.5   | 1025.2 |       |       |     | 90  | 13  | 310  | 28   | 17.0 |
| 3/9 | 9    | 500      | 27 22.43 | 69    | 54.49 | 11.8 | 14   | 20.2 | 75.4      | 0.130E-01 | 23.9   | 1025.2 |       |       |     | 90  | 13  | 310  | 29   | 17.0 |
| 3/9 | 9    | 530      | 27 22.30 | 69    | 46.90 | 10.2 | 20   | 20.0 | 72.6      | 0.124E-01 | 23.9   | 1025.2 |       |       |     | 85  | 13  | 320  | 28   | 16.5 |
| 3/9 | 9    | 600      | 27 22.36 | 69    | 39.41 | 8.8  | 24   | 19.8 | 74.2      | 0.125E-01 | 23.5   | 1025.2 |       |       |     | 85  | 13  | 325  | 26   | 16.5 |
| 3/9 | 9    | 630      | 27 22.51 | 69    | 33.87 | 8.8  | 4    | 20.0 | 72.6      | 0.124E-02 | 23.5   | 1025.2 |       |       |     | 5   | 0   | 17   | 16.5 |      |
| 3/9 | 9    | 700      | 27 22.40 | 69    | 33.56 | 8.2  | 14   | 19.7 | 68.9      | 0.116E-01 | 23.5   | 1025.2 |       |       |     | 350 | 0   | 25   | 16   | 15.8 |
| 3/9 | 9    | 730      | 27 22.45 | 69    | 33.83 | 9.3  | 6    | 19.6 | 71.4      | 0.119E-01 | 23.5   | 1025.2 |       |       |     | 345 | 1   | 20   | 19   | 16.0 |
| 3/9 | 9    | 800      | 27 23.04 | 69    | 34.21 | 9.5  | 18   | 19.5 | 72.1      | 0.120E-01 | 23.4   | 1025.2 |       |       |     | 355 | 10  | 15   | 28   | 16.0 |
| 3/9 | 9    | 830      | 27 29.04 | 69    | 33.87 | 9.0  | 13   | 19.2 | 76.2      | 0.124E-01 | 23.3   | 1025.2 |       |       |     | 355 | 14  | 10   | 31   | 16.2 |
| 3/9 | 9    | 900      | 27 35.56 | 69    | 34.17 | 8.6  | 20   | 19.0 | 67.3      | 0.108E-01 | 22.5   | 1025.2 |       |       |     | 355 | 12  | 15   | 28   | 15.0 |
| 3/9 | 9    | 930      | 27 41.96 | 69    | 34.58 | 9.1  | 20   | 18.6 | 72.1      | 0.113E-01 | 22.4   | 1026.1 |       |       |     | 355 | 13  | 15   | 30   | 15.2 |
| 3/9 | 9    | 1000</   |          |       |       |      |      |      |           |           |        |        |       |       |     |     |     |      |      |      |

**VI. OCEANUS Phase Two CTD Stations**

Raymond Pollard, IOS completed six CTD stations in the vicinity of the central mooring array during FASINEX Phase Two. A complete summary of the work including times, positions, plots and listings are presented in FASINEX Technical Report #11, SeaSoar CTD Surveys during FASINEX in Appendix A.

Reference IOS Technical Report: Pollard, R.T., Read, J.F. & Smithers, J.  
1986 SeaSoar CTD Surveys during FASINEX.  
Institute of Oceanographic Sciences,  
Report, No. 230, 111pp.

Figure VI-1      CTD Station Locations  
Table VI-1      CTD Station Information Table

**FASINEX Oceanus 175 CTD Stations**

Figure VI-1: CTD Station Locations.

## FASINEX CTD STATIONS - OCEANUS 175

| Station | (GMT)<br>Time | 1986    | INTERNAV Positions |           |     | Comments                                 |
|---------|---------------|---------|--------------------|-----------|-----|------------------------------------------|
|         |               |         | Latitude           | Longitude |     |                                          |
| 1       | 1400          | 8 March | 26 27.81           | 69 52.86  |     | South of Central Array                   |
| 2       | 1702          | 8 March | 26 54.18           | 70 05.44  |     | Lower southwest corner<br>of mooring box |
| 3       | 2043          | 8 March | 26 54.07           | 69 34.21  | F8  |                                          |
| 4       | 2345          | 8 March | 27 07.62           | 69 50.13  |     | Midway between F6 & F4                   |
| 5       | 0408          | 9 March | 27 22.76           | 70 05.44  | F2  |                                          |
| 6       | 0628          | 9 March | 27 22.51           | 69 33.87  | F10 |                                          |

Table VI-1: CTD Station Information.

## VII. Vertical Current Meter (VCM) Data

VCMs are neutrally buoyant, free-floating instruments which are ballasted to sink to a predetermined depth. While floating at that depth the instrument makes measurements of the vertical velocity relative to itself, of pressure, and of temperature.

Relative vertical current is sensed by an array of vanes mounted axially around the float. Because the float compressibility is less than that of water, vertical motions in the water generate relative vertical flow past the vanes causing the entire float to rotate. This rotation is sensed relative to an internal compass. The sum of the pressure change (float vertical motion) and the rotation of the float (flow relative to the float) is a measure of total vertical water displacement, with a resolution of about 2 cm.

The VCM includes an AMF acoustic release receiver and a release of WHOI design. On command from the ship, or on preset command from an internal timer, the float drops a 900 gm weight and returns to the surface for recovery. A flashing light turns on at release time, and the "ping" rate doubles to confirm release.

Two VCM experiments were carried out during Phase Two on OCEANUS. The first dual experiment had a VCM ballasted to 140m and one ballasted to 90m. This is a 60 hour data set. The second deployment included three VCMs ballasted to 150, 95, and 175 m. This is a 48 hour data set.

Lloyd Regier's surface and 50 m drogued drifters were deployed and tracked at approximately the same time as the VCM work.

Some preliminary data are presented.

- Figure VII-1      Schematic of VCM
- Figure VII-2      Area 1 Drift Tracks
- Figure VII-3      Expanded Scale Drift Tracks of VCM 2 and 4
- Figure VII-4      Expanded Scale Drift Tracks of VCM 2, 4 and 5
- Table VII-1      VCM Drift Information
- Figure VII-5      Displacement Plots for VCM 2 and 4 - Deployment 1
- Figure VII-6      Displacement Plots for VCM 2, 4 and 5 - Deployment 2



**Figure VII-1:** Schematic of VCM.

**FASINEX Oceanus 175 VCM Drift Tracks**

Figure VII-2: Area 1 Drift Tracks.



Figure VII-3: Expanded Scale Drift Tracks of VCM 2 and 4.



Figure VII-4: Expanded Scale Drift Track of VCM 2, 4 and 5.

OC175

| VCM<br>Drop # | Nominal<br>Depth | Data<br>Hours | Start<br>Time (Z) | End<br>Time (Z)   | Comment | Deployment<br>Latitude | Position<br>Longitude | Retrieval<br>Latitude | Position<br>Longitude |
|---------------|------------------|---------------|-------------------|-------------------|---------|------------------------|-----------------------|-----------------------|-----------------------|
| 1             | 140 m            | 56.8          | 20 Feb 86<br>1400 | 23 Feb 86<br>0450 | VCM #2  | 28°14.33'              | 70°02.68'             | 28°07.83'             | 69°43.76'             |
| 2             | 90 m             | 57.78         | 20 Feb 86<br>1403 | 23 Feb 86<br>0550 | VCM #4  | 28°14.33'              | 70°02.68'             | 28°09.73'             | 69°44.98'             |
| 3             | 150 m            | 42.7          | 23 Feb 86<br>1606 | 25 Feb 86<br>1649 | VCM #2  | 28°10.04'              | 69°33.67'             | 28°04.25'             | 69°24.23'             |
| 4             | 95 m             | 43.4          | 23 Feb 86<br>1650 | 25 Feb 86<br>1812 | VCM #4  | 28°09.77'              | 69°34.49'             | 28°02.87'             | 69°30.53'             |
| 5             | 175 m            | 44.95         | 23 Feb 86<br>1650 | 25 Feb 86<br>1947 | VCM #5  | 28°11.08'              | 69°34.02'             | 28°06.84'             | 69°25.31'             |

Table VII-1: VCM Drift Information.



Figure VII-5. Displacement Plots of VCM 2 and 4.



Figure VII-6. Displacement Plots of VCMs 2, 4, and 5.

### VIII. Real Time Profiler Data

The RTP directly measures vertical velocities as well as horizontal velocities, temperature, and conductivity. Two velocity sensors, consisting of two cosine-response propellor assemblies are mounted at right angles on the RTP with the axis of rotation of one propeller assembly on each sensor oriented vertically. A fin attached to the pressure case that houses the electronics orients the instrument with respect to the mean flow so that the velocity sensors are upstream of the pressure housing. Two vertically oriented propeller assemblies produce redundant vertical velocity measurements. The two horizontally oriented propeller assemblies measure orthogonal components of velocity, which, together with the heading from the compass in the instrument, can be transformed into the east and north components of horizontal velocity. In addition, the instrument is fitted with an external temperature sensor, a conductivity sensor, a pressure sensor, and two accelerometers that sensed tilt. All other data from the RTP are both recorded internally and transmitted in digital format up the cable every 14 seconds.

An RTP section was completed across a front during Phase Two. The stations consisted of a profile to approximately 300m. Stations one to three were part of an aborted section. Stations four to 17 worked across the front from warm to cold on March 4-5.

Figure VIII-1  
Figure VIII-2  
Table VIII-1  
Figure VIII-3  
Figure VIII-4  
Figure VIII-5  
Figure VIII-6

Schematic of RTP  
RTP Station Positions  
RTP Station Information  
RTP Temperature Sections  
RTP Salinity Section  
RTP Sigma T Section  
3-D Velocity Sticks from Warm and Cold Side of Front



Figure VIII-1: Schematic of RTP.

**FASINEX Oceanus 175 RTP Stations**

Figure VIII-2: RTP Station Positions.

## OCEANUS 175 Real Time Profiler (RTP)

| Station No. | Start Time (Z) | End Time (Z) | Deployment Latitude | Position Longitude | Retrieval Latitude | Position Longitude | Drop Nos. | Max Depth (m) |
|-------------|----------------|--------------|---------------------|--------------------|--------------------|--------------------|-----------|---------------|
| 1           | 1106 1 Mar     | 1242 1 Mar   | 28°10.06'           | 68°23.57'          | 28°12.02'          | 68°23.09'          | 1         | 275           |
| 2           | 1308 1 Mar     | 1436 1 Mar   | 28°12.09'           | 68°23.06'          | 28°12.16'          | 68°22.79'          | 1         | 295           |
| 3           | 1525 1 Mar     | 1626 1 Mar   | 28°14.75'           | 68°24.18'          | 28°14.52'          | 68°23.42'          | 1         | 173           |
| 4           | 1439 4 Mar     | 1607 4 Mar   | 28°13.64'           | 68°19.22'          | 28°13.78'          | 68°17.59'          | 1<br>2    | 300<br>20     |
| 5           | 1643 4 Mar     | 1803 4 Mar   | 28°18.17'           | 68°16.80'          | 28°18.40'          | 68°15.60'          | 1         | 300           |
| 6           | 1842 4 Mar     | 1958 4 Mar   | 28°23.02'           | 68°14.85'          | 28°23.60'          | 68°13.73'          | 1         | 300           |
| 7           | 2034 4 Mar     | 2143 4 Mar   | 28°27.61'           | 68°12.90'          | 28°28.51'          | 68°11.99'          | 1         | 300           |
| 8           | 2233 4 Mar     | 2348 4 Mar   | 28°32.67'           | 68°09.92'          | 28°33.37'          | 68°08.22'          | 1         | 300           |
| 9           | 0022 5 Mar     | 0207 5 Mar   | 28°37.00'           | 68°08.15'          | 28°36.55'          | 68°06.57'          | 1         | 300           |
| 10          | 0205 5 Mar     | 0417 5 Mar   | 28°41.52'           | 68°07.33'          | 28°41.59'          | 68°06.49'          | 1         | 300           |
| 11          | 0503 5 Mar     | 0602 5 Mar   | 28°45.94'           | 68°03.97'          | 28°46.27'          | 68°03.93'          | 1         | 300           |
| 12          | 0659 5 Mar     | 0815 5 Mar   | 28°50.66'           | 68°01.17'          | 28°50.56'          | 68°00.27'          | 1         | 300           |
| 13          | 0920 5 Mar     | 1055 5 Mar   | 28°55.22'           | 67°58.82'          | 28°54.18'          | 67°55.28'          | 1         | 300           |
| 14          | 1149 5 Mar     | 1316 5 Mar   | 29°00.06'           | 67°54.74'          | 28°59.05'          | 67°54.78'          | 1         | 293           |
| 15          | 1539 5 Mar     | 1638 5 Mar   | 29°04.58'           | 67°54.64'          | 29°04.09'          | 67°53.49'          | 1         | 250           |
| 16          | 1726 5 Mar     | 1839 5 Mar   | 29°09.34'           | 67°52.10'          | 29°08.68'          | 67°51.53'          | 1         | 300           |
| 17          | 1926 5 Mar     | 2047 5 Mar   | 29°14.08'           | 67°50.29'          | 29°13.71'          | 67°50.44'          | 1         | 300           |

Table VIII-1: RTP Station Information.



Figure VIII-3: RTP Temperature Sections.



Figure VIII-4: RTP Salinity Section.



Figure VIII-5: RTP Sigma T Section.



Figure VIII-6: 3-D Velocity Sticks from Warm and Cold Side of Front.

## IX. SeaSoar

### Towed SeaSoar sections in FASINEX

The Institute of Oceanographic Science's SeaSoar, with faired cable, shallow Neil Brown Instrument Systems CTD instruments, and full NERC shipboard computing facilities was used on R.V. OCEANUS during FASINEX Phase Two. With CTD casts to over 350m at 1 to 2 Km intervals while underway at 8-9 knots, close spaced CTD sections were obtained along and across fronts. The data were calibrated, corrected, plotted and contoured on board ship to provide smoothed (reduced internal wave noise) sections with a few km resolution of temperature, salinity, density and hence pressure gradients and geostrophic velocity shear, within hours of data collection. Temperature/salinity diagrams were used to identify water masses, origins and mixing rates.

### SeaSoar specification and capabilities

The SeaSoar (Figure IX-1) is a modified version of the Canadian Batfish (Dessureault, 1976), enlarged to carry a Neil Brown Instrument Systems CTD. The adjustable wings are hydraulically powered by a propellor at the back of the vehicle. A ship speed greater than 5 knots is needed to develop full power. At lower speeds, wing response is sluggish and depth control consequently poor. A speed of 8-9 knots is optimal. Ten knots is possible, but increasing cable tensions reduce the maximum depth and cycling rate.

In automatic mode, the deck unit generates a sawtooth pressure signal (with operator set minimum and maximum depths, rate of ascent and rate of descent). A servo-control compares the CTD pressure signal with the sawtooth function and adjusts the wing angle to match the two. Deviations from a straight line during ascent or descent are generally less than 2 dbar.

Maximum ascent and descent angles are about 1:5 (much greater than frontal slopes of order 1:50 or less). With 600 m of Fathom faired cable, a maximum depth of over 360 m is attainable, giving a horizontal distance between minimum depths of about 3 Km, i.e. a profile (up or down) on average every 1.5 Km. These separations can be reduced by reducing the depth range.

Shipboard data analysis allows profiles and contoured sections to be produced within 3 to 6 hours of data collection.

A data report summarizing the SeaSoar participation is available. It is FASINEX Technical Report #11, SeaSoar CTD Surveys during FASINEX.

Reference IOS Technical Report: Pollard, R.T., Read, J.F. & Smithers, J. 1986  
 SeaSoar CTD Surveys during FASINEX.  
 Institute of Oceanographic Sciences,  
 Report, No. 230, 111pp.

- |             |                                          |
|-------------|------------------------------------------|
| Figure IX-1 | SeaSoar Schematic                        |
| Figure IX-2 | SeaSoar Mooring Survey #1 February 13-18 |
| Figure IX-3 | SeaSoar Radiator Pattern February 18-20  |
| Figure IX-4 | SeaSoar Box Patterns February 25-March 4 |
| Figure IX-5 | SeaSoar Mooring Survey #3 March 6-8      |



Figure IX-1: SeaSoar Schematic.

**FASINEX Oceanus 175 SeaSoar Mooring Box 1**

Figure IX-2: SeaSoar Mooring Survey #1 February 13-18.

**FASINEX Oceanus 175 SeaSoar Radiator**

**Figure IX-3: SeaSoar Radiator Pattern February 18-20.**

**FASINEX Oceanus 175 SeaSoar Boxes**

- A. Aborted Pattern due to rough seas
- B. Mooring Box 2
- C. Boxing in front found March 2-3

Figure IX-4: SeaSoar Box Patterns February 25-March 4.



Figure IX-5: SeaSoar Mooring Survey #3 March 6-8.

**Participant Summary:****X. Doppler Acoustic Current Profiles**  
**Lloyd Regier**

The Doppler current profiler on OCEANUS operated nearly continuously throughout FASINEX. Reliable data returns were obtained from 20 meters depth to about 200 meters throughout the experiment. Due to equipment failures and operator errors there are several time gaps in the data.

14 Feb 1257Z  
04 Mar 0033  
05 Mar 0222  
0559  
1119  
06 Mar 1959  
2058  
11 Mar 1145

We have yet to edit the LORAN-C fixes and are thus unable to compute the current profiles relative to the earth. A crude estimate of the ship velocity relative to the earth may be obtained from a vertical average of the profiles of water velocity relative to the ship. Plots of currents relative to this average will have the same vertical structure as that of currents measured relative to the earth but will not accurately reveal the horizontal structure of the currents. The horizontal shears of currents can only be obtained from the true currents relative to the earth.

The contour map shows the behavior versus depth and along-track distance of the North and East components of current in cm/sec relative to the vertical averaged discussed above. The plot covers 400 kilometers of ship track and shows currents from 20 to 200 meters depth. The along-track distance is in kilometers traveled through the water; the ship odometer is reset to zero at each of the data gaps shown above. The vertical lines show the along-track ship position at each hour; each line is labeled with the day-of-year and GMT time. Also shown are the ship's heading and water temperature at 5 meters depth as functions of along-track distances.

**Figure X-1** Total Ships Track of OC 175 - Doppler Data  
**Figure X-2** Doppler Section Feb 16 1300 - Feb 17 1800  
**Figure X-3** Position of 400 Kilometer Section



Figure X-1: Total Ships Track of OC 175 - Doppler Data.



Figure X-2. Doppler Section February 16 1300 - February 17 1800.

**FASINEX Oceanus 175 Doppler Section**

Figure X-3: Position of 400 Kilometer Section.

**Participant Summary:****XI. Lagrangian Drifters Deployed from R. V. OCEANUS**  
**Lloyd Regier and Russ Davis**

Radio-tracked drifters were deployed from OCEANUS in three groups. Each group consisted of eight drifters, four drogued at 1 meter depth and four at 50 meters. The buoys were deployed in pairs, one deep and one shallow, with two pairs on either side of the front. Each buoy measured water temperature at a depth of 1 meter. The accompanying figures show the observed trajectories of those buoys which were trackable. Arrows show the direction of motion away from the deployment position. "D" denotes a 50 meter drogue and "S" denotes a 1 meter surface drifter. The year-day and GMT time of launch and final positions are shown on the trajectory plots. The reduction of the temperature data is ongoing.

- Figure XI-1      SIO Drifter Deployments on Expanded scale chart**  
**Figure XI-2      SIO Drifter Deployment #1**  
**Figure XI-3      SIO Drifter Deployment #2**  
**Figure XI-4      SIO Drifter Deployment #3**

**FASINEX Oceanus 175 SIO Drifters**

Figure XI-1: SIO Drifter Deployments on Expanded Scale Chart.

Deployment #1



Figure XI-2. SIO Drifter Deployment #1.

## DEPLOYMENT #2



**Figure XI-3.** SIO Drifter Deployment #2.



**Figure XI-4.** SIO Drifter Deployment #3.

**Participant Summary:****XII. Shipboard Marine Radar Estimates of Wind Stress and Momentum Flux during FASINEX**  
**Dennis B. Trizna****OBJECTIVES:**

The objectives of our FASINEX participation are: (1) to better understand the scattering mechanisms responsible for low grazing angle sea scatter statistics by comparison with high quality in-situ measurements of wind stress and momentum flux; (2) to determine the effects on the marine radar sea scatter due to the sea surface temperature change associated with the thermal front, in concert with similar measurements made by the airborne active and passive remote sensors; (3) to develop empirical relationships between radar sea scatter statistics and the individual contributions to momentum flux which have been hypothesized based upon previous preliminary experiments.

In the FASINEX experiment, we are utilizing the marine radars on board the participating ships, the KNORR and the OCEANUS, for the measurement of low grazing angle sea scatter. Based upon previous measurements made aboard NOAA ships, a correlation was shown to exist between parameters of the cumulative distribution function of the normalized sea surface radar cross section (NRCS) and wind and wave conditions. This type of measurement appears to distinguish between sources of scatter due to small scale surface features generated by the wind, such as capillary waves, and more robust surface features generated by wave-wave interactions, such as breaking waves.

**PRELIMINARY RESULTS:**

Although some hardware difficulties were encountered on board the KNORR during the second leg of deployment of the buoy array, a sizable amount of X- and S-band radar data was successfully deployed aboard the OCEANUS and X-band data were collected for the entire cruise, resulting in 648 hourly files of data. In addition, photographs of the sea surface were taken by the met watch during daylight hours, from which white-cap coverage will be extracted. Professor Edward Monahan, University of Connecticut, has been contracted to analyze these data under internal NRL 6.1 core funds which recently came available.

First-pass processing of radar data statistics has been accomplished, producing azimuthal angle distributions of mean radar sea echo power levels. An example of such an azimuthal distribution is shown in Figure XII-1. A wide variety of angular widths of the mean echo distribution was observed, presumably associated with variation in the directional ocean wave spectrum angular spread.

Time histories of peak mean radar echo and direction from consecutive hourly angular distributions were also determined, as a preliminary catalogue of the data. Temporal variation of the echo with time, assumed to be

associated with wind speed variation, is quite dramatic, with a response faster than we had anticipated, indicating rapid rises in sea echo levels shorter than the hourly collections employed. Plots of peak mean signal power received and direction of the maximum radar return for two different 36-hour periods of time from aboard the OCEANUS are shown in Figure XII-2. Although these first-look results appear promising, radar calibration remains to be done before data analysis can proceed, currently scheduled for June. In addition, surface truth of sea surface temperature must be available before calibration of radar returns with the front can be made.

The second aspect of the experiment, the imaging of the ocean waves using a different data acquisition system, had a hardware failure several days into the KNORR cruise, allowing just three images to be collected. However, of the three images collected aboard the KNORR, one shows unusual sea echo distributions in range and azimuth. This image was presumably collected in the vicinity of the front, because of the observed spatial inhomogeneity. Final correlation will depend upon surface truth records from the KNORR.

Radar Propagation Staff, Radar Division  
Naval Research Laboratory - Code 5303  
Washington, D. C. 20375  
(202) 767-2003

Figure XII-1      Azimuthal Angle Distribution  
Figure XII-2      Peak Mean Signal Power Received and Direction of Maximum Return



Figure XII-1: Azimuthal Angle Distribution.



Figure XII-2: Peak Mean Signal Power Received and Direction of Maximum Return.

## XII. AVHRR

During FASINEX Phase Two, a NEARSS (Northeastern Area Remote Sensing System) was set up at the Bermuda Biological Station office to receive AVHRR (Advance Very High Resolution Radiometer) satellite images. Using the ATS system, just as set up on KNORR, during Phase One, the images were processed at URI and sent via the Miami Vax to Bermuda.

Both the OCEANUS and ENDEAVOR had fax machines aboard. The plan had been to transmit frequent AVHRR images to the ships to help locate and track the front during the intensive scientific period. Unfortunately, the cloud cover was heavy much of the time. The fax machines did not work on OCEANUS and barely worked on ENDEAVOR. The NEARSS computer also suffered a damaged disk.

ENDEAVOR was able to receive satellite imagery via INMARSAT. This information was transferred to OCEANUS via the VHF radio when the ships were working closely together.

Peter Cornillon, having returned to URI for Phase Two, knowing the difficulty with transmissions to the ships digitized some AVHRR images and sent them to the ships via telemail whenever possible. This information was plotted up on the ships. With this means of mapping the frontal regions, along with the specific locations of frontal crossing seen from the aircraft, and the real time SST, the ships were able to coordinate their activities to survey along, across, or in the frontal regions.





**Participant Summary:**

XIV.                   CRUISE REPORT: ENDEAVOR 141  
 February 5 - March 11, 1986  
 A Component of FASINEX

Raymond W. Schmitt  
 Woods Hole Oceanographic Institution  
 April 15, 1986

**PROJECT:** EN-141 was a part of the FASINEX field program. Its goal was to examine the joint response of the atmosphere and ocean to the presence of the Subtropical Convergence Front.

**SCHEDULE:**

|                             |   |                   |
|-----------------------------|---|-------------------|
| Depart Norfolk, Virginia    | - | February 5, 1986  |
| Arrive St. Georges, Bermuda | - | February 8, 1986  |
| Depart St. Georges          | - | February 11, 1986 |
| Arrive Woods Hole, Mass.    | - | March 10, 1986    |

**REGION OF INVESTIGATION:**

Western North Atlantic, Southwest of Bermuda.

**FUNDING / PRINCIPAL INVESTIGATORS:**

NSF:OCE 86-015336 / R. W. Schmitt and J. M. Toole

**SCIENTIFIC PARTY (BERMUDA - WOODS HOLE):**

|                            |      |                       |
|----------------------------|------|-----------------------|
| Dr. Raymond W. Schmitt     | WHOI | Co-Chief Scientist    |
| Dr. Neil S. Oakey          | BIO  | Co-Chief Scientist    |
| Dr. John M. Toole          | WHOI | Scientist             |
| Dr. Richard L. Koehler     | "    | Elec. Engineer        |
| Ms. Mary Woodgate-Jones    | "    | Research Associate    |
| Ms. Siobhan Knutel         | "    | Research Assistant    |
| Mr. Richard Krishfield     | "    | Research Assistant    |
| Mr. Jack Dellibovi         | "    | Electronic Technician |
| Dr. William Large          | NCAR | Scientist             |
| Mr. Peter Pozdnekoff       | BIO  | Marine Technician     |
| Mr. Bruce Wile             | "    | Marine Technician     |
| Mr. Stephan Borrman        | NPS  | Research Technician   |
| Mr. Christopher A. Vaucher | "    | Meteorologist         |
| Mr. Paul Johnson           | IOS  | Marine Technician     |
| Mr. Svein Vagle            | "    | Graduate Student      |
| Mr. David Nelson           | URI  | Marine Technician     |

**PURPOSE:**

To study the physical structure of the Subtropical Convergence Front, using a ship mounted acoustic Doppler profiler, CTD and XBT surveys, and a new fine- and microstructure profiler (Schmitt/Toole). To examine spatial and temporal variability in upper ocean mixing rates (Oakey). To survey the characteristics of the atmospheric boundary layer near the front (Large, Borrman, Vaucher). To study wave breaking with acoustical and optical techniques (Johnson, Vagle).

**CRUISE NARRATIVE:**

The first leg of EN-141 was a transit from Norfolk Va. to St. Georges, Bermuda. Many of the scientists joined the ship in Norfolk in order to set up gear during the transit to Bermuda. Several technicians participated in the transit leg in order to test new data acquisition systems. During this leg word was received that the OCEANUS would be delayed getting to Bermuda, so that there was time for further testing. During the transit, four test CTD stations were done as well as two wire-lowered tests of the fine- and microstructure profiler. ENDEAVOR arrived in Bermuda at 1340 local time on Saturday, Feb. 8.

Additional science gear was aboard the OCEANUS, and the FASINEX plan called for joint work between ENDEAVOR and OCEANUS, so it was essential to wait for the arrival of the other ship. Departure was delayed from Monday morning to Tuesday afternoon. The arrival of the OCEANUS Tuesday morning initiated a very busy time for all concerned, as gear was transferred between the ships and instruments were set up, checked and secured. ENDEAVOR left St. Georges at 1700 local time and rounded the south side of Bermuda into 30 knot winds and heavy seas. OCEANUS departed a day later, in part because some chips for the repair of N. Oakey's computer were late arriving at the airport. These components were later transferred between the ships at sea. The heavy seas caused some discomfort amongst the scientific party, but since the FASINEX working area was two days steam from Bermuda, people were able to get acclimated before intensive work began.

Our first activity upon reaching the FASINEX area ( $28^{\circ}$  N,  $70^{\circ}$  W) was to locate the front. Our initial survey area was near the moored array so we were unable to deploy XBTs. Using the acoustic Doppler current profiler and surface temperature and salinity observations, we were able to locate a very sharp front. It had a temperature contrast of  $1.5 - 2.0$  deg. C, and a very pronounced shear on the warm (south) side of the front. We shifted our survey to the west and north in order to map the front, which had moved north of the moored array. When far enough from the array we began to deploy XBTs at 15 min. intervals. After two XBT sections we performed two CTD sections, all of them oriented north - south.

Throughout the cruise we had regular balloon launchings (Rawinsondes) at 0000, 1200 and 1800 hrs (GMT). There was also continuous measurement of meteorological parameters from a mast at the bow. An acoustic Sodar was used to measure wind profiles; this instrument eventually failed due to wave damage. Underway oceanographic measurements included acoustic Doppler currents, sea surface temperatures and conductivities. At times a drifting buoy (WOTAN) was deployed during daylight hours, for optical and acoustical studies of breaking waves and bubble formation. Microstructure measurements were made in the upper ocean with a loosely tethered profiler (EPSONDE) and the new free-fall fine- and microstructure profiler was deployed to greater depths (1000

m). For several hours during "Aircraft" days the ship would heave-to, bow to the wind, for intercomparisons between ship mounted and aircraft-born sensors. We found that we could profitably use the ship time with a mix of morning EPSONDE and profiler deployments, setting of the WOTAN drifter, meteorological station keeping from 1130-1530, afternoon profiler drops and EPSONDE work into the evening. Nights were then spent on surveys or tow-yo sections across the front.

Three times during the cruise we rendezvoused with the OCEANUS. The first time was to transfer some XBTs and computer chips from OCEANUS to ENDEAVOR by using a heaving line. This occurred at 1610 local on Feb. 15. The second meeting occurred from 1020 to 1435 on Feb. 23; six ENDEAVOR scientists visited the OCEANUS for scientific discussions. The final meeting occurred at 1830 on March 5 and involved the transfer of an ARGOS transmitter to the OCEANUS to repair a defective unit on one of the moorings. This was accomplished by casting over a buoyant package which the OCEANUS retrieved.

Our frontal surveys included close work with the OCEANUS during two periods. The first joint survey was a small diamond pattern in which the ENDEAVOR steamed parallel to the OCEANUS, 5 miles inside her track. This occurred from 1830 local on Feb. 25 to 0800 on Feb. 26. During the second period OCEANUS steamed a large rectangular box elongated in the north-south direction. Our intent was to do CTD tow-yo work at night and fine- and microstructure profiling during the day, but heavy weather forced us to stop work and heave to, from 1530 on March 1 to 1915 on March 2. The heartier souls on the OCEANUS were able to keep working with the towed "BATFISH". By the time we were permitted to work again, it was clear that the front was moving out of the survey box, so we continued with our mode of tracking the front at night and making microstructure profiles during the day.

Our final station was a deep CTD cast for calibration purposes at  $29^{\circ}50'N$ ,  $68^{\circ}00'W$  at 0900 on Mar. 7. Forecasts of heavy weather caused us to leave the area slightly earlier than planned, since it was important to have sufficient time to unload the ship in Woods Hole before it returned to Narragansett. Our northward progress was slowed to 6 knots at times but we did manage to tie up in Woods Hole at 1100 on March 10. Hard work by the science party and crew cleared the ship of gear by 1030 the next morning, when she set sail for Narragansett.

- Figure XIV-1 ENDEAVOR 141 Cruise Track
- Figure XIV-2 ENDEAVOR 141 CTD Station Positions
- Table XIV-1 CTD Station Log
- Figure XIV-3 ENDEAVOR 141 XBT Positions
- Table XIV-2 XBT Log



Figure XIV-1: ENDEAVOR 141 Cruise Track.

# FASINEX Endeavor 141 CTD Stations



**Figure XIV-2:** ENDEAVOR 141 CTD Station Positions.

146  
 TABLE XIV-1  
 EN-141 CTD STATION LOG

| CTD # | YEAR DAY | START TIME<br>GMT | NORTH LATITUDE<br>(deg. min.) | WEST LONGITUDE<br>(deg. min.) | MAX. PRESS.<br>(db) | COMMENTS   |
|-------|----------|-------------------|-------------------------------|-------------------------------|---------------------|------------|
| 1     | 37       | 1945              | 35 14.50                      | 71 42.90                      | 3821                | CTD 7      |
| 2     | 38       | 1539              | 33 44.20                      | 68 13.70                      | 3005                | CTD 8      |
| 3     | 38       | 1850              | 33 36.20                      | 67 57.00                      | 4137                | CTD 7      |
| 4     | 38       | 2304              | 33 21.80                      | 67 28.80                      | 2658                | CTD 9      |
| 5     | 44       | 1904              | 27 44.30                      | 70 9.60                       | 1009                | CTD 7      |
| 6     | 45       | 1620              | 28 20.30                      | 70 45.30                      | 1405                | CTD 9      |
| 7     | 45       | 1754              | 28 15.20                      | 70 44.85                      | 1215                |            |
| 8     | 45       | 1921              | 28 10.20                      | 70 44.75                      | 1207                |            |
| 9     | 45       | 2057              | 28 5.20                       | 70 45.00                      | 1205                |            |
| 10    | 45       | 2225              | 28 0.00                       | 70 44.80                      | 1195                |            |
| 11    | 46       | 6                 | 27 55.20                      | 70 44.80                      | 1213                |            |
| 12    | 46       | 133               | 27 50.10                      | 70 44.90                      | 1203                |            |
| 13    | 46       | 334               | 27 45.20                      | 70 44.90                      | 1201                |            |
| 14    | 46       | 552               | 27 45.05                      | 70 30.10                      | 1203                |            |
| 15    | 46       | 719               | 27 49.80                      | 70 29.80                      | 1209                |            |
| 16    | 46       | 855               | 27 54.90                      | 70 30.00                      | 1189                |            |
| 17    | 46       | 1025              | 27 59.60                      | 70 29.95                      | 1183                |            |
| 18    | 46       | 1204              | 28 4.95                       | 70 30.10                      | 1207                |            |
| 19    | 46       | 1320              | 28 9.90                       | 70 30.00                      | 1207                |            |
| 20    | 46       | 1652              | 28 14.70                      | 70 29.75                      | 1213                |            |
| 21    | 47       | 1151              | 28 10.74                      | 70 31.02                      | 457                 | Tow-yo     |
| 22    | 47       | 2228              | 28 15.00                      | 70 30.10                      | 3513                |            |
| 23    | 48       | 54                | 28 15.78                      | 70 29.52                      | 407                 | Tow-yo     |
| 24    | 48       | 2300              | 28 20.20                      | 70 28.10                      | 3993                |            |
| 25    | 49       | 323               | 28 0.20                       | 70 29.80                      | 1201                | CTD 7      |
| 26    | 49       | 442               | 28 5.00                       | 70 29.90                      | 1201                |            |
| 27    | 49       | 557               | 28 10.10                      | 70 29.90                      | 1199                |            |
| 28    | 49       | 712               | 28 14.70                      | 70 29.90                      | 1199                |            |
| 29    | 49       | 830               | 28 20.10                      | 70 29.90                      | 1203                |            |
| 30    | 49       | 958               | 28 25.10                      | 70 29.85                      | 1201                |            |
| 31    | 49       | 1509              | 28 30.50                      | 70 29.40                      | 1201                |            |
| 32    | 49       | 1826              | 28 35.90                      | 70 25.90                      | 1205                |            |
| 33    | 50       | 101               | 28 36.60                      | 70 28.50                      | 1203                | CTD 9      |
| 34    | 50       | 429               | 29 0.30                       | 70 9.10                       | 5539                | GEOSAT     |
| 35    | 50       | 835               | 28 50.00                      | 70 14.80                      | 5543                | SECTION    |
| 36    | 50       | 1306              | 28 39.60                      | 70 18.80                      | 5525                | "          |
| 37    | 50       | 1657              | 28 29.80                      | 70 25.00                      | 5533                | "          |
| 38    | 50       | 2139              | 28 19.90                      | 70 29.40                      | 5535                | "          |
| 39    | 51       | 131               | 28 10.00                      | 70 33.80                      | 5527                | "          |
| 40    | 51       | 528               | 27 59.90                      | 70 39.00                      | 5517                | "          |
| 41    | 51       | 1803              | 28 51.60                      | 69 54.50                      | 1205                |            |
| 42    | 52       | 129               | 28 11.82                      | 69 55.14                      | 405                 | Tow-yo (7) |
| 43    | 54       | 138               | 28 16.98                      | 69 40.02                      | 399                 | Tow-yo (7) |
| 44    | 55       | 642               | 27 34.80                      | 69 40.10                      | 1209                | CTD 9      |
| 45    | 55       | 802               | 27 40.00                      | 69 40.10                      | 1205                |            |
| 46    | 55       | 925               | 27 44.90                      | 69 40.20                      | 1193                |            |
| 47    | 55       | 1044              | 27 49.80                      | 69 40.20                      | 1183                |            |
| 48    | 55       | 1203              | 27 54.90                      | 69 40.10                      | 1205                |            |

|    |    |      |          |          |      |        |   |
|----|----|------|----------|----------|------|--------|---|
| 49 | 56 | 1452 | 28 29.75 | 69 44.85 | 3505 | CTD    | 7 |
| 50 | 57 | 1813 | 27 50.10 | 69 45.20 | 1205 | CTD    | 9 |
| 51 | 57 | 2013 | 27 40.00 | 69 45.70 | 1189 |        |   |
| 52 | 57 | 2219 | 27 30.40 | 69 45.20 | 1193 |        |   |
| 53 | 58 | 57   | 27 19.90 | 69 45.50 | 1209 |        |   |
| 54 | 58 | 329  | 27 10.10 | 69 45.60 | 5553 |        |   |
| 55 | 58 | 804  | 26 59.70 | 69 44.60 | 1203 |        |   |
| 56 | 58 | 952  | 26 49.90 | 69 44.90 | 1193 |        |   |
| 57 | 59 | 2310 | 28 35.10 | 68 32.80 | 1195 | CTD    | 7 |
| 58 | 60 | 312  | 28 19.90 | 68 33.00 | 1209 |        |   |
| 59 | 60 | 703  | 28 20.00 | 68 24.70 | 1201 |        |   |
| 60 | 60 | 703  | 28 29.90 | 68 24.80 | 1205 |        |   |
| 61 | 60 | 1506 | 28 25.40 | 68 23.70 | 1203 |        |   |
| 62 | 60 | 1722 | 28 20.00 | 68 25.00 | 1203 |        |   |
| 63 | 62 | 309  | 28 10.00 | 68 30.30 | 1205 |        |   |
| 64 | 62 | 502  | 28 19.90 | 68 29.90 | 1217 |        |   |
| 65 | 62 | 709  | 28 29.90 | 68 30.00 | 1203 |        |   |
| 66 | 62 | 913  | 28 40.00 | 68 30.10 | 1217 |        |   |
| 67 | 62 | 1108 | 28 50.20 | 68 30.20 | 1211 |        |   |
| 68 | 62 | 1313 | 28 59.90 | 68 29.90 | 1209 |        |   |
| 69 | 65 | 30   | 28 49.30 | 67 41.10 | 400  | Tow-yo |   |
| 70 | 66 | 1256 | 29 49.70 | 68 0.60  | 4803 |        |   |

## FASINEX Endeavor 141 XBT Total Pattern



Figure XIV-3: ENDEAVOR 141 XBT Positions.

TABLE XIV-2  
EN-141 XBT LOG

| XBT # | YEAR | TIME | NORTH LATITUDE<br>(deg. min.) | WEST LONGITUDE<br>(deg. min.) | XBT SURF.<br>TEMP. (deg.C) | BUCKET TEMP.<br>(deg.C) | SURFACE SALINITY<br>(PPT) |
|-------|------|------|-------------------------------|-------------------------------|----------------------------|-------------------------|---------------------------|
| 1     | 45   | 332  | 28 22.96                      | 70 45.37                      | 21.140                     | 21.2                    | 36.647                    |
| 2     | 45   | 349  | 28 19.24                      | 70 45.90                      | 21.099                     | 21.3                    | 36.634                    |
| 3     | 45   | 359  | 28 17.52                      | 70 45.63                      | 21.004                     | 21.4                    | 36.610                    |
| 4     | 45   | 414  | 28 14.77                      | 70 44.93                      | 21.017                     | 21.0                    | 36.003                    |
| 5     | 45   | 428  | 28 12.35                      | 70 44.84                      | 20.748                     | 21.0                    |                           |
| 6     | 45   | 459  | 28 9.06                       | 70 45.06                      | 21.126                     | 21.4                    | 36.605                    |
| 7     | 45   | 513  | 28 6.42                       | 70 45.03                      | 21.485                     | 21.5                    | 36.619                    |
| 8     | 45   | 528  | 28 3.67                       | 70 44.99                      | 22.821                     | 21.5                    | 36.685                    |
| 9     | 45   | 543  | 28 1.20                       | 70 44.84                      | 23.455                     | 23.2                    | 36.677                    |
| 10    | 45   | 559  | 27 58.46                      | 70 44.30                      | 23.455                     | 23.4                    | 36.663                    |
| 11    | 45   | 614  | 27 55.66                      | 70 44.16                      | 23.593                     | 22.7                    | 36.649                    |
| 12    | 45   | 635  | 27 51.90                      | 70 44.04                      | 23.332                     | 23.5                    | 36.637                    |
| 13    | 45   | 643  | 27 50.60                      | 70 44.10                      | 23.348                     | 21.8                    | 36.661                    |
| 14    | 45   | 658  | 27 48.84                      | 70 45.48                      | 23.075                     | 23.0                    | 36.655                    |
| 15    | 45   | 713  | 27 46.18                      | 70 45.10                      | 23.332                     | 23.3                    | 36.650                    |
| 16    | 45   | 855  | 27 45.63                      | 71 0.12                       | 22.970                     | 23.1                    | 36.710                    |
| 17    | 45   | 915  | 27 48.30                      | 71 0.18                       | 22.970                     | 23.0                    | 36.656                    |
| 18    | 45   | 935  | 27 51.54                      | 71 0.99                       | 23.045                     | 23.2                    | 36.648                    |
| 19    | 45   | 1000 | 27 54.54                      | 71 0.84                       | 23.181                     | 23.2                    | 36.662                    |
| 20    | 45   | 1020 | 27 56.61                      | 71 0.78                       | 23.166                     | 23.2                    | 36.665                    |
| 21    | 45   | 1040 | 27 56.10                      | 71 0.30                       | 23.120                     | 23.0                    | 36.670                    |
| 22    | 45   | 1100 | 27 58.53                      | 71 0.69                       | 23.060                     | 23.1                    | 36.673                    |
| 23    | 45   | 1120 | 28 1.92                       | 71 1.26                       | 22.925                     | 22.9                    | 36.669                    |
| 24    | 45   | 1140 | 28 3.96                       | 71 1.14                       | 22.806                     | 22.8                    | 36.665                    |
| 25    | 45   | 12 0 | 28 6.00                       | 71 1.02                       | 22.540                     | 22.7                    | 36.663                    |
| 26    | 45   | 1220 | 28 8.22                       | 71 0.90                       | 22.077                     | 22.4                    | 36.645                    |
| 27    | 45   | 13 0 | 28 11.44                      | 71 1.26                       | 21.236                     | 21.5                    | 36.617                    |
| 28    | 45   | 14 1 | 28 11.56                      | 71 2.34                       | 21.236                     | 21.4                    |                           |
| 29    | 45   | 1419 | 28 14.31                      | 71 2.28                       | 21.167                     | 21.4                    |                           |
| 30    | 45   | 1441 | 28 17.74                      | 71 1.94                       | 20.977                     | 21.0                    |                           |
| 31    | 45   | 15 1 | 28 19.75                      | 71 0.79                       | 20.788                     | 21.0                    |                           |
| 32    | 51   | 9 2  | 28 4.51                       | 70 35.49                      | 23.060                     | 23.3                    | 36.878                    |
| 33    | 51   | 919  | 28 6.94                       | 70 33.57                      | 22.925                     | 23.3                    | 36.683                    |
| 34    | 51   | 932  | 28 8.96                       | 70 31.74                      | 22.970                     | 23.2                    | 36.693                    |
| 35    | 51   | 951  | 28 11.92                      | 70 29.08                      | 22.895                     | 23.1                    | 36.676                    |
| 36    | 51   | 10 1 | 28 13.41                      | 70 27.88                      | 22.806                     | 23.1                    | 36.670                    |
| 37    | 51   | 1014 | 28 15.34                      | 70 26.39                      | 22.806                     | 23.0                    | 36.661                    |
| 38    | 51   | 1029 | 28 17.64                      | 70 24.30                      | 22.673                     | 22.9                    | 36.660                    |
| 39    | 51   | 1045 | 28 20.13                      | 70 22.03                      | 22.599                     | 22.9                    | 36.656                    |
| 40    | 51   | 11 0 | 28 22.32                      | 70 20.01                      | 22.717                     | 22.9                    | 36.657                    |
| 41    | 51   | 1115 | 28 24.74                      | 70 17.81                      | 22.658                     | 22.8                    | 36.665                    |
| 42    | 51   | 1130 | 28 26.96                      | 70 15.74                      | 22.408                     | 22.7                    | 36.658                    |
| 43    | 51   | 1145 | 28 29.20                      | 70 13.73                      | 21.443                     | 21.7                    | 36.632                    |
| 44    | 51   | 1159 | 28 31.25                      | 70 11.78                      | 21.360                     | 21.7                    | 36.641                    |
| 45    | 51   | 1215 | 28 32.26                      | 70 8.86                       | 21.415                     | 21.7                    | 36.640                    |
| 46    | 51   | 1231 | 28 34.95                      | 70 6.96                       | 21.415                     | 21.8                    | 36.642                    |
| 47    | 51   | 1245 | 28 37.26                      | 70 5.34                       | 21.652                     | 21.8                    | 36.640                    |
| 48    | 51   | 13 1 | 28 38.69                      | 70 3.55                       | 21.638                     | 21.9                    | 36.640                    |

|     |    |      |    |       |    |       |        |      |        |
|-----|----|------|----|-------|----|-------|--------|------|--------|
| 49  | 51 | 1315 | 28 | 42.28 | 70 | 1.44  | 21.778 | 22.0 | 36.643 |
| 50  | 51 | 1330 | 28 | 44.82 | 70 | 0.06  | 21.666 | 22.0 | 36.661 |
| 51  | 56 | 315  | 28 | 6.00  | 69 | 29.10 | 22.380 | 22.7 | 36.675 |
| 52  | 56 | 344  | 28 | 8.94  | 69 | 31.32 | 21.373 | 21.7 | 36.693 |
| 54  | 56 | 4 1  | 28 | 12.36 | 69 | 31.20 | 21.977 | 22.2 | 36.665 |
| 55  | 56 | 418  | 28 | 15.60 | 69 | 31.38 | 22.249 | 22.5 | 36.657 |
| 56  | 56 | 430  | 28 | 17.95 | 69 | 31.25 | 22.206 | 22.6 | 36.649 |
| 57  | 56 | 444  | 28 | 20.80 | 69 | 31.10 | 22.482 | 22.9 | 36.652 |
| 58  | 56 | 459  | 28 | 23.58 | 69 | 30.95 | 22.482 | 22.8 | 36.662 |
| 59  | 56 | 514  | 28 | 26.53 | 69 | 30.79 | 22.540 | 22.7 | 36.677 |
| 60  | 56 | 529  | 28 | 28.68 | 69 | 30.24 | 22.702 | 22.9 | 36.681 |
| 61  | 56 | 544  | 28 | 30.82 | 69 | 29.75 | 22.658 | 22.9 | 36.700 |
| 62  | 56 | 559  | 28 | 33.59 | 69 | 29.59 | 22.453 | 22.7 | 36.685 |
| 63  | 56 | 614  | 28 | 36.36 | 69 | 29.52 | 22.278 | 22.5 | 36.687 |
| 64  | 56 | 630  | 28 | 40.06 | 69 | 29.14 | 22.063 | 22.3 | 36.663 |
| 65  | 56 | 644  | 28 | 42.64 | 69 | 28.99 | 22.220 | 22.5 | 36.669 |
| 66  | 56 | 7 0  | 28 | 45.65 | 69 | 29.14 | 21.877 | 22.2 | 36.665 |
| 67  | 56 | 714  | 28 | 48.24 | 69 | 29.28 | 21.485 | 21.7 | 36.647 |
| 68  | 56 | 729  | 28 | 50.64 | 69 | 29.22 | 21.004 | 21.3 | 36.640 |
| 69  | 56 | 745  | 28 | 53.61 | 69 | 29.73 | 21.031 | 21.3 | 36.642 |
| 70  | 56 | 758  | 28 | 55.12 | 69 | 30.79 | 20.896 | 21.1 | 36.618 |
| 71  | 56 | 816  | 28 | 55.14 | 69 | 33.96 | 20.748 | 21.1 | 36.610 |
| 72  | 56 | 829  | 28 | 55.13 | 69 | 36.14 | 20.991 | 21.4 | 36.658 |
| 73  | 56 | 844  | 28 | 55.03 | 69 | 38.73 | 21.004 | 21.4 | 36.637 |
| 74  | 56 | 9 1  | 28 | 53.27 | 69 | 40.19 | 20.991 | 21.3 | 36.631 |
| 75  | 56 | 919  | 28 | 50.16 | 69 | 40.14 | 21.457 | 21.7 | 36.642 |
| 76  | 56 | 930  | 28 | 48.41 | 69 | 40.19 | 21.963 | 22.0 | 36.196 |
| 77  | 56 | 944  | 28 | 46.00 | 69 | 40.20 | 21.778 | 22.2 | 36.647 |
| 78  | 56 | 10 3 | 28 | 43.36 | 69 | 41.24 | 22.467 | 22.7 | 36.661 |
| 79  | 56 | 1015 | 28 | 41.51 | 69 | 41.06 | 22.263 | 22.8 | 36.670 |
| 80  | 56 | 1029 | 28 | 39.31 | 69 | 40.84 | 22.555 | 22.8 | 36.683 |
| 81  | 56 | 1045 | 28 | 37.08 | 69 | 40.56 | 22.496 | 22.8 | 36.665 |
| 82  | 56 | 1058 | 28 | 35.20 | 69 | 40.30 | 22.453 | 22.7 | 36.655 |
| 83  | 56 | 1112 | 28 | 33.14 | 69 | 40.20 | 22.162 | 22.4 | 36.670 |
| 84  | 56 | 1129 | 28 | 30.91 | 69 | 40.14 | 22.063 | 22.4 | 36.667 |
| 85  | 56 | 20 6 | 28 | 22.70 | 69 | 35.84 | 22.526 | 22.7 | 36.666 |
| 86  | 56 | 2031 | 28 | 22.51 | 69 | 33.45 | 21.991 | 22.4 | 36.678 |
| 87  | 56 | 2044 | 28 | 22.58 | 69 | 30.61 | 22.613 | 22.5 | 36.674 |
| 88  | 56 | 21 1 | 28 | 22.70 | 69 | 26.76 | 22.263 | 22.3 | 36.523 |
| 89  | 56 | 2113 | 28 | 23.25 | 69 | 24.06 | 22.613 | 22.8 | 36.654 |
| 90  | 56 | 2130 | 28 | 22.86 | 69 | 20.28 | 22.687 | 22.7 | 36.656 |
| 91  | 56 | 2144 | 28 | 22.98 | 69 | 19.08 | 22.569 | 22.7 | 36.660 |
| 92  | 56 | 2158 | 28 | 22.90 | 69 | 21.12 | 22.599 | 22.6 | 36.642 |
| 93  | 56 | 2214 | 28 | 22.20 | 69 | 23.44 | 22.628 | 22.8 | 36.659 |
| 94  | 56 | 2228 | 28 | 21.26 | 69 | 23.68 | 22.540 | 22.8 | 36.659 |
| 95  | 56 | 2245 | 28 | 20.95 | 69 | 21.67 | 22.613 | 22.6 | 36.668 |
| 96  | 56 | 23 0 | 28 | 20.16 | 69 | 20.58 | 22.555 | 22.7 | 36.663 |
| 97  | 56 | 2313 | 28 | 18.12 | 69 | 18.26 | 22.526 | 22.7 | 36.647 |
| 98  | 56 | 2329 | 28 | 16.61 | 69 | 16.42 | 22.453 | 22.7 | 36.661 |
| 99  | 56 | 2344 | 28 | 15.34 | 69 | 14.77 | 22.365 | 22.4 | 36.678 |
| 100 | 57 | 0 1  | 28 | 14.35 | 69 | 13.98 | 22.191 | 22.4 | 36.675 |
| 101 | 57 | 014  | 28 | 13.23 | 69 | 12.24 | 22.599 | 22.8 | 36.652 |
| 102 | 57 | 029  | 28 | 12.29 | 69 | 11.30 | 22.910 | 23.1 | 36.647 |
| 103 | 57 | 044  | 28 | 10.93 | 69 | 10.74 | 22.925 | 23.2 | 36.669 |
| 104 | 57 | 1 0  | 28 | 9.84  | 69 | 9.82  | 23.060 | 23.4 | 36.597 |

|     |    |      |    |       |    |       |        |      |        |
|-----|----|------|----|-------|----|-------|--------|------|--------|
| 105 | 57 | 115  | 28 | 9.72  | 69 | 8.10  | 23.135 | 23.3 | 36.609 |
| 106 | 57 | 130  | 28 | 10.92 | 69 | 6.78  | 23.195 | 23.3 | 36.600 |
| 107 | 57 | 145  | 28 | 11.85 | 69 | 5.76  | 23.060 | 23.3 | 36.603 |
| 108 | 57 | 159  | 28 | 12.66 | 69 | 4.80  | 23.150 | 23.3 | 36.612 |
| 109 | 57 | 215  | 28 | 13.69 | 69 | 3.83  | 23.150 | 23.3 | 36.629 |
| 110 | 57 | 231  | 28 | 14.54 | 69 | 2.92  | 22.985 | 23.3 | 36.639 |
| 111 | 57 | 244  | 28 | 15.00 | 69 | 1.62  | 22.940 | 23.2 | 36.648 |
| 112 | 57 | 3 0  | 28 | 15.90 | 69 | 0.72  | 22.985 | 23.2 | 36.639 |
| 113 | 57 | 314  | 28 | 16.81 | 69 | 0.07  | 22.821 | 23.1 | 36.640 |
| 114 | 57 | 329  | 28 | 17.82 | 68 | 59.49 | 22.673 | 23.1 | 36.667 |
| 115 | 57 | 344  | 28 | 18.81 | 68 | 58.98 | 22.702 | 23.0 | 36.660 |
| 116 | 57 | 359  | 28 | 19.79 | 68 | 58.59 | 22.555 | 22.8 | 36.683 |
| 117 | 57 | 413  | 28 | 20.36 | 68 | 58.81 | 21.877 | 22.1 | 36.637 |
| 118 | 57 | 429  | 28 | 20.83 | 68 | 59.62 | 21.485 | 21.8 | 36.647 |
| 119 | 57 | 444  | 28 | 22.14 | 68 | 57.72 | 21.250 | 21.6 | 36.658 |
| 120 | 57 | 458  | 28 | 22.44 | 68 | 58.26 | 21.332 | 21.5 | 36.648 |
| 121 | 57 | 512  | 28 | 22.32 | 68 | 59.94 | 21.388 | 21.5 | 36.655 |
| 122 | 57 | 528  | 28 | 22.55 | 69 | 0.90  | 21.388 | 21.6 | 36.640 |
| 123 | 57 | 548  | 28 | 23.24 | 69 | 2.06  | 21.568 | 21.7 | 36.653 |
| 124 | 57 | 6 1  | 28 | 24.02 | 69 | 3.04  | 21.680 | 21.9 | 36.653 |
| 125 | 57 | 614  | 28 | 24.84 | 69 | 3.78  | 21.764 | 22.0 | 36.655 |
| 126 | 57 | 630  | 28 | 25.86 | 69 | 4.88  | 21.806 | 22.1 | 36.659 |
| 127 | 57 | 644  | 28 | 27.10 | 69 | 6.08  | 21.906 | 22.2 | 36.679 |
| 128 | 57 | 659  | 28 | 28.54 | 69 | 7.14  | 21.694 | 22.1 | 36.687 |
| 129 | 57 | 715  | 28 | 30.00 | 69 | 8.04  | 21.652 | 22.0 | 36.716 |
| 130 | 57 | 730  | 28 | 30.28 | 69 | 8.80  | 21.666 | 21.9 | 36.670 |
| 131 | 57 | 744  | 28 | 29.14 | 69 | 8.93  | 21.849 | 22.0 | 36.767 |
| 132 | 57 | 759  | 28 | 27.91 | 69 | 9.05  | 21.736 | 22.0 | 36.747 |
| 133 | 57 | 815  | 28 | 26.04 | 69 | 10.82 | 21.835 | 22.1 | 36.692 |
| 134 | 57 | 830  | 28 | 25.36 | 69 | 12.03 | 22.005 | 22.2 | 36.678 |
| 135 | 57 | 843  | 28 | 24.66 | 69 | 13.68 | 22.063 | 22.3 | 36.669 |
| 136 | 57 | 859  | 28 | 23.81 | 69 | 15.78 | 22.365 | 22.6 | 36.695 |
| 137 | 57 | 913  | 28 | 22.72 | 69 | 17.42 | 22.365 | 22.7 | 36.751 |
| 138 | 57 | 928  | 28 | 20.94 | 69 | 18.90 | 22.453 | 22.6 | 36.675 |
| 139 | 57 | 946  | 28 | 19.54 | 69 | 20.79 | 22.365 | 22.6 | 36.691 |
| 140 | 57 | 10 0 | 28 | 18.30 | 69 | 22.01 | 22.423 | 22.6 | 36.663 |
| 141 | 64 | 129  | 28 | 39.64 | 67 | 43.72 | 22.177 | 22.5 | 36.700 |
| 142 | 64 | 145  | 28 | 39.08 | 67 | 59.46 | 22.336 | 22.5 | 36.704 |
| 143 | 64 | 2 2  | 28 | 42.29 | 67 | 59.27 | 22.162 | 22.5 | 36.683 |
| 144 | 64 | 229  | 28 | 47.24 | 67 | 59.28 | 22.394 | 22.6 | 36.676 |
| 145 | 64 | 244  | 28 | 50.10 | 67 | 59.34 | 22.292 | 22.5 | 36.685 |
| 146 | 64 | 259  | 28 | 52.68 | 67 | 59.46 | 22.365 | 22.5 | 36.684 |
| 147 | 64 | 314  | 28 | 55.43 | 67 | 59.36 | 22.249 | 22.4 | 36.689 |
| 148 | 64 | 329  | 28 | 57.31 | 67 | 59.16 | 21.948 | 22.2 | 36.684 |
| 149 | 64 | 4 1  | 29 | 3.03  | 67 | 59.40 | 20.936 | 21.2 | 36.693 |
| 150 | 64 | 414  | 29 | 2.30  | 68 | 0.78  | 21.004 | 21.2 | 36.669 |
| 151 | 64 | 429  | 29 | 0.06  | 68 | 2.85  | 22.134 | 21.2 | 36.696 |
| 152 | 64 | 443  | 28 | 58.44 | 68 | 4.50  | 22.162 | 21.3 | 36.712 |
| 153 | 64 | 459  | 28 | 56.30 | 68 | 5.95  | 22.249 | 22.4 | 36.729 |
| 154 | 64 | 515  | 28 | 55.95 | 68 | 2.79  | 22.148 | 22.4 | 36.699 |
| 155 | 64 | 531  | 28 | 55.80 | 67 | 59.04 | 22.105 | 22.4 | 36.726 |
| 156 | 64 | 545  | 28 | 55.74 | 67 | 55.94 | 21.208 | 21.6 | 36.688 |
| 157 | 64 | 559  | 28 | 55.56 | 67 | 52.70 | 21.250 | 21.4 | 36.680 |
| 158 | 64 | 614  | 28 | 54.42 | 67 | 52.68 | 21.154 | 21.4 | 36.694 |
| 159 | 64 | 629  | 28 | 52.63 | 67 | 54.41 | 21.638 | 21.9 | 36.692 |

|      |    |      |          |          |        |      |        |
|------|----|------|----------|----------|--------|------|--------|
| 160  | 64 | 644  | 28 50.83 | 67 56.74 | 22.249 | 22.4 | 36.716 |
| 161  | 64 | 659  | 28 50.45 | 67 54.38 | 22.148 | 22.4 | 36.694 |
| 162  | 64 | 715  | 28 50.28 | 67 50.32 | 21.429 | 21.5 | 36.679 |
| 163  | 64 | 729  | 28 50.22 | 67 46.88 | 21.263 | 21.5 | 36.693 |
| 164  | 64 | 745  | 28 48.36 | 67 45.46 | 21.236 | 21.4 | 36.686 |
| 165  | 64 | 8 0  | 28 46.27 | 67 47.47 | 21.099 | 21.6 | 36.661 |
| 166  | 64 | 815  | 28 44.12 | 67 49.54 | 22.091 | 22.4 | 36.680 |
| 167  | 64 | 829  | 28 42.64 | 67 49.70 | 22.220 | 22.4 | 36.677 |
| 168  | 64 | 846  | 28 43.10 | 67 45.32 | 21.540 | 21.4 | 36.673 |
| 169  | 64 | 9 0  | 28 43.34 | 67 42.05 | 20.775 | 20.9 | 36.649 |
| 170  | 65 | 11 5 | 28 46.32 | 67 45.74 | 22.235 | 22.4 |        |
| 171  | 65 | 1120 | 28 48.48 | 67 43.42 | 22.091 | 22.4 |        |
| 172  | 65 | 1132 | 28 49.94 | 67 41.42 | 22.120 | 22.4 |        |
| 173  | 65 | 1143 | 28 51.42 | 67 39.40 | 22.048 | 22.2 |        |
| 174  | 65 | 1153 | 28 52.62 | 67 37.80 | 21.195 | 21.4 |        |
| 175  | 65 | 2315 | 28 40.74 | 67 23.76 | 21.017 | 21.4 | 36.703 |
| 176  | 65 | 2328 | 28 42.32 | 67 21.32 | 21.250 | 21.4 | 36.705 |
| 177  | 65 | 2343 | 28 41.40 | 67 19.68 | 21.126 | 21.3 | 36.682 |
| 178  | 66 | 0 1  | 28 38.78 | 67 19.35 | 21.126 | 21.4 | 36.687 |
| 179  | 66 | 015  | 28 37.27 | 67 19.01 | 21.208 | 21.5 | 36.682 |
| 180  | 66 | 030  | 28 34.73 | 67 18.70 | 21.126 | 21.3 | 36.676 |
| 181  | 66 | 044  | 28 32.20 | 67 18.40 | 21.086 | 21.3 | 36.679 |
| 182  | 66 | 059  | 28 29.58 | 67 17.98 | 21.457 | 21.7 |        |
| 183  | 66 | 115  | 28 26.73 | 67 17.96 | 21.934 | 22.3 | 36.706 |
| 184  | 66 | 130  | 28 24.58 | 67 18.29 | 22.249 | 22.4 | 36.742 |
| 185  | 66 | 147  | 28 26.22 | 67 20.42 | 22.134 | 22.4 | 36.696 |
| 186  | 66 | 216  | 28 29.96 | 67 24.22 | 22.091 | 22.4 | 36.706 |
| 187  | 66 | 230  | 28 32.12 | 67 24.88 | 22.206 | 22.4 | 36.692 |
| 188  | 66 | 244  | 28 34.52 | 67 24.08 | 22.177 | 22.3 | 36.699 |
| 189  | 66 | 3 1  | 26 53.02 | 63 16.62 | 22.005 | 22.2 | 36.715 |
| 190  | 66 | 315  | 28 39.21 | 67 22.23 | 21.610 | 21.8 | 36.732 |
| 191  | 66 | 331  | 28 40.62 | 67 22.50 | 21.181 | 21.2 | 36.706 |
| 192  | 66 | 343  | 28 39.06 | 67 23.82 | 22.134 | 22.3 | 36.699 |
| 193  | 66 | 359  | 28 37.26 | 67 25.52 | 22.235 | 22.4 | 36.698 |
| 194  | 66 | 414  | 28 38.67 | 67 27.15 | 22.220 | 22.4 | 36.687 |
| 195  | 66 | 429  | 28 40.23 | 67 28.74 | 22.220 | 22.4 | 36.724 |
| 196  | 66 | 444  | 28 42.15 | 67 28.77 | 22.134 | 22.4 | 36.707 |
| 197  | 66 | 459  | 28 44.49 | 67 28.53 | 22.220 | 22.5 | 36.694 |
| 198  | 66 | 514  | 28 46.87 | 67 28.63 | 22.322 | 22.5 | 36.700 |
| 199  | 66 | 529  | 28 49.04 | 67 28.79 | 22.380 | 22.5 | 36.695 |
| 200  | 66 | 543  | 28 51.14 | 67 29.00 | 22.105 | 22.4 | 36.694 |
| 201  | 66 | 559  | 28 51.66 | 67 29.40 | 22.278 | 22.4 | 36.684 |
| 202  | 66 | 614  | 28 52.02 | 67 29.50 | 22.336 | 22.4 | 36.676 |
| 202B | 66 | 628  | 28 54.21 | 67 29.71 | 22.019 | 22.4 | 36.696 |
| 203  | 66 | 644  | 28 56.70 | 67 29.94 | 21.963 | 22.2 | 36.696 |
| 204  | 66 | 659  | 28 58.82 | 67 30.00 | 21.638 | 21.8 | 36.700 |

**Participant Summary:****XV. FINE- AND MICROSTRUCTURE PROFILING DURING FASINEX**

Raymond W. Schmitt and John M. Toole  
Woods Hole Oceanographic Institution  
April 30, 1986

**Project Objectives:**

The FASINEX cruise of the R/V ENDEAVOR was the first use of a new free-fall fine- and microstructure profiler developed at WHOI with DoD and ONR support. The experimental goal was to study the detailed velocity structure of the front, inertial wave climatology, and mixing processes which occur in and around the front.

**Vessel:**

R/V ENDEAVOR, February 11 - March 10, 1986

**Scientific Party Involved:**

|                   |                 |
|-------------------|-----------------|
| Dr. R. W. Schmitt | Chief Scientist |
| Dr. J. M. Toole   | Scientist       |
| Dr. R. L. Koehler | Engineer        |
| Mr. J. Dellibovi  | Technician      |

**Narrative:**

This cruise culminated an intensive two year effort to construct a new fine- and microstructure profiler which incorporates a variety of sensors into one computer-controlled instrument. Profiler features include: full ocean depth capability, computer control of sampling, data storage and operations, four megabytes of solid state memory, and commercially available sensors. The finescale sensors include a CTD, acoustic velocimeter, accelerometers and compass, all sampled at 10 Hz. The microstructure sensors included downward directed fast temperature and conductivity probes, two airfoil shear probes, and wing mounted fast conductivity probes which sample a helical path as the rotating instrument falls through the water. The microstructure sensors are sampled at 200 Hz. The 5 m long cylindrical instrument is launched and deployed with a specially designed cradle which lifts the profiler out of the water, tilts it to a horizontal position and allows it to be moved along rails mounted on the deck. (Figure 1)

All gear for the profiler was loaded aboard ENDEAVOR in Norfolk, Va., Feb. 3-5, 1986. Toole, Koehler and Dellibovi participated in the Norfolk - Bermuda transit in order to test the profiler. This was done with two wire lowerings on Feb. 6 and 8. The instrument was opened for testing and examination in Bermuda; then closed up before we left port. A substantial battery and the use of low power components insured that there would be minimal opening of the instrument at sea. We were able to get 36 dives, all but three to 1000 m, with a single battery pack. An additional three dives were collected after battery replacement. The only other time the instrument was opened was to change gain settings on

the accelerometers. This type of trouble free performance is remarkable for the first use of an instrument and reflects the high quality of the design and workmanship that went into the instrument and the thorough pre-cruise trouble-shooting.

Our sampling strategy was to profile as close as possible to deployments of "EPSONDE", Dr. Neil Oakey's microstructure instrument. A typical station constituted 3-5 EPSONDE casts to 200 m and one profiler dive to 1000 m. We usually attempted to occupy 3 or 4 stations across the front during daylight hours; however, the weather, other FASINEX logistical requirements, and emergencies sometimes prevented complete transects. As many as 5 profiles were made in one day. Two dives were recovered in early morning darkness; these recoveries were risky because of the difficulty in judging distances between profiler and ship. Nevertheless, nighttime operations do appear feasible under good weather conditions. During the cruise there were occasional impacts between the profiler and the ship. Damage to the profiler was minimal, however, because all of the delicate sensors were well below the depth of the bilge keel on ENDEAVOR. The handling rig allowed us to work in a moderate sea state (winds to 20 knots), and one recovery was made in 35 knot winds.

Because of Neil Oakey's participation on this cruise we were able to implement use of the airfoil shear probes developed by T. Osborn. These were used on a total of 10 dives. We found that the profiler had a certain amount of vibrational noise near 60 hz, marginally above the geophysical shear cutoff, which should be eliminated with appropriate filtering of the data. Strong mixing events were quite apparent in the raw record and attempts to isolate the probes from body vibrations were moderately successful in later dives.

The times, deployment and recovery locations, ENDEAVOR event numbers, pressure ranges of fine- and microstructure data recording, and the microsensors used on the various dives are given in Table 1. Acoustic transponders for instrument tracking were tested at two stations but they failed to respond reliably to the signals from the profiler. We will have to use a different type of transponder in future experiments. Dives 19, 20, and 21 were made near Profiling Current Meter (PCM) moorings of C. Eriksen, near the times when the PCM would be making its excursion. These will allow us to intercompare velocity profiles, which is very useful for checking data analysis schemes.

Several exciting features were sampled by the profiler near the FASINEX front. Preliminary data processing conducted on the cruise yielded estimates of the ocean temperature, salinity and east and north velocity profiles versus pressure. Such profiles were available about 2 hours after a dive was completed. Accompanying these data are the microscale quantities of temperature, conductivity and shear. Dive 17 (Figure XV-3) sampled a particularly energetic, short vertical scale internal wave at about 200 m depth

on the warm side of the front. The velocity vector in this feature is seen to rotate clockwise with depth, suggesting a downward propagating near-inertial wave. Strong microstructure activity at the depth of this feature was observed by both the profiler and EPSONDE. Later in the cruise a set of profiles from the warm side of the front revealed a series of well mixed layers stacked in the vertical (Dive 34, Fig XV-4). The surface mixed layer was roughly 75 m deep with a temperature near 22.5 C. Below was found a second weakly stratified zone some 100 m thick with a temperature near 21.2 C. This thermostad could be traced to the surface mixed layer on the cold side of the front. Still deeper was the 18 C thermostad. The velocity profile through the two layers was quite remarkable. Each layer appeared to exhibit slab-like flow with shear zones at the steps between layers. Energetic microstructure was observed in these shear zones. A short time series at this site revealed time dependency to the flow, possibly near-inertial oscillations.

FASINEX was thus a highly successful first cruise for the profiler. The large number of deployments were obtained in spite of frequent episodes of bad weather and the other shipboard activities that were conducted. We are now looking forward to the analysis phase of the experiment and collaborative work with Neil Oakey and the other FASINEX investigators.

#### Acknowledgments:

The primary engineers working on the new profiler were R. Koehler, E. Mellinger and K. Doherty. They were assisted by K. Fairhurst, K. Wannop, M. Woodward and J. Dellibovi. T. Danforth, K. Prada and T. Sgouros and M. Woodgate-Jones helped to develop software. A. Martin assisted with the Micro-VAX computer. Neil Oakey provided the airfoil shear probes and advice on their electronics. The development of such a complex device as this was no small task and all concerned are thanked for their contributions. We acknowledge the Captain and crew of ENDEAVOR for their ship handling. The profiler was developed with funds from the DoD Instrumentation Program and the Office of Naval Research.

#### Captions:

Figure XV-1. Schematic of Microstructure Profiler

Figure XV-2. Microstructure profiler drop sites

Table XV-1. The dive numbers, ENDEAVOR event numbers, the 1986 year day and the deployment and retrieval times and positions, for the fine- and microstructure profiler. Also shown are the pressure ranges for the recording of fine and microstructure variables. The microstructure sensors are coded as: T = nose fast temperature, C = nose fast conductivity, S = shear probes, W = wing fast conductivities.

Figure XV-3. Profiles of Temperature (deg. C), Salinity (ppt), and the North and East components of velocity (m/s), for Dive 17.

Figure XV-4. Profiles of Temperature (deg. C), Salinity (ppt), and the North and East components of velocity (m/s), for Dive 34.



Figure XV-1: Schematic of Microstructure Profiler.

**FASINEX Endeavor 141 Microprofiler Dives**

Figure XV-2: Microstructure Profiler Drop Sites.

TABLE XV-1

EN - 141  
FINE- AND MICROPROFILER DIVES

| DIV<br># | EV<br># | '86<br>DAY | TIME<br>GMT | DEPLOY      |              |             |              | TIME<br>GMT | RETRIEVE    |              |             |              | FINE<br>MAX<br>PRES | MICRO |          |          | COMMENT |
|----------|---------|------------|-------------|-------------|--------------|-------------|--------------|-------------|-------------|--------------|-------------|--------------|---------------------|-------|----------|----------|---------|
|          |         |            |             | LAT.<br>deg | LONG.<br>min | LAT.<br>deg | LONG.<br>min |             | LAT.<br>deg | LONG.<br>min | LAT.<br>deg | LONG.<br>min |                     | SENS  | P<br>MIN | P<br>MAX |         |
| A        | -       | 37         | 2100        | 35 15.6     | 71 43.2      | 2125        | 35 15.6      | 71 43.2     | 100         | TC           | 25          | 100          | Wire                |       |          |          |         |
| B        | -       | 39         | 1430        | 32 14.0     | 64 37.8      | 1540        | 32 14.3      | 64 38.0     | 1000        | TC           | 25          | 1000         | Wire                |       |          |          |         |
| 1        | 7       | 44         | 1833        | 27 42.3     | 70 09.0      | 1930        | 27 44.4      | 70 09.6     | 500         | TC           | 25          | 500          | Zodiac              |       |          |          |         |
| 2        | 86      | 47         | 1725        | 28 07.6     | 70 33.3      | 1820        | 28 07.6      | 70 32.1     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 3        | 92      | 47         | 2043        | 28 11.5     | 70 30.8      | 2149        | 28 11.2      | 70 30.8     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 4        | 103     | 48         | 1358        | 28 09.0     | 70 34.2      | 1508        | 28 09.0      | 70 34.1     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 5        | 107     | 48         | 1658        | 28 06.0     | 70 29.9      | 1800        | 28 06.0      | 70 29.9     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 6        | 111     | 43         | 2100        | 28 20.9     | 70 30.1      | 2154        | 28 20.2      | 70 29.2     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 7        | 128     | 49         | 1050        | 28 25.0     | 70 28.7      | 1155        | 28 24.6      | 70 28.1     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 8        | 136     | 49         | 1532        | 28 30.6     | 70 30.3      | 1620        | 28 30.6      | 70 30.3     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 9        | 140     | 49         | 1858        | 28 35.7     | 70 25.8      | 2000        | 28 36.3      | 70 25.8     | 520         | TC           | 25          | 520          | Bln snag            |       |          |          |         |
| 10       | 159     | 50         | 1935        | 28 29.4     | 70 24.9      | 2035        | 28 29.4      | 70 24.9     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 11       | 194     | 51         | 1900        | 28 50.9     | 69 53.8      | 1942        | 28 50.8      | 69 53.6     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 12       | 213     | 53         | 1620        | 28 20.9     | 69 25.6      | 1710        | 28 21.5      | 69 24.9     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 14       | 218     | 53         | 2110        | 28 18.4     | 69 14.8      | 2206        | 28 18.6      | 69 15.4     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 15       | 227     | 54         | 1305        | 28 05.2     | 69 37.5      | 1354        | 28 04.5      | 69 38.2     | 1000        | TCS          | 25          | 500          | Trnsrndr            |       |          |          |         |
| 16       | 230     | 54         | 1523        | 28 06.8     | 69 38.2      | 1625        | 28 08.0      | 69 38.2     | 1000        | TCS          | 25          | 500          | Bln Snag            |       |          |          |         |
| 17       | 248     | 55         | 1419        | 27 57.7     | 69 50.6      | 1508        | 28 57.5      | 69 49.6     | 1000        | TCS          | 25          | 500          |                     |       |          |          |         |
| 18       | 255     | 55         | 2101        | 28 00.0     | 69 40.0      | 2155        | 27 59.8      | 69 40.8     | 250         | TCS          | 25          | 250          | Con Short           |       |          |          |         |
| 19       | 377     | 58         | 1213        | 26 58.1     | 69 49.5      | 1303        | 26 58.4      | 69 49.6     | 1000        | TC           | 25          | 1000         | F5                  |       |          |          |         |
| 20       | 381     | 58         | 1612        | 27 04.7     | 69 42.8      | 1705        | 27 04.7      | 69 42.8     | 1000        | TC           | 25          | 1000         | F3                  |       |          |          |         |
| 21       | 387     | 58         | 2036        | 27 05.5     | 69 58.2      | 2125        | 27 05.7      | 69 58.3     | 1000        | TC           | 25          | 1000         | F9                  |       |          |          |         |
| 22       | 396     | 59         | 1640        | 28 25.6     | 68 33.5      | 1736        | 28 25.4      | 68 33.7     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 23       | 399     | 59         | 2010        | 28 30.0     | 68 35.0      | 2107        | 28 28.6      | 68 34.0     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 24       | 412     | 60         | 0909        | 28 34.8     | 68 24.8      | 1000        | 28 33.8      | 68 24.9     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 25       | 416     | 60         | 1217        | 28 28.3     | 68 20.9      | 1304        | 28 31.1      | 68 23.3     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 26       | 442     | 62         | 1347        | 28 59.8     | 68 29.3      | 1445        | 28 59.2      | 68 28.6     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 27       | 449     | 62         | 1735        | 28 49.6     | 68 28.7      | 1427        | 28 49.6      | 68 28.7     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 28       | 451     | 62         | 1950        | 28 41.2     | 68 30.3      | 2050        | 28 41.3      | 68 28.8     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 29       | 458     | 63         | 1014        | 28 50.8     | 67 59.9      | 1120        | 28 50.6      | 67 59.1     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 30       | 462     | 63         | 1301        | 28 41.5     | 68 03.8      | 1340        | 28 41.0      | 68 02.9     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 31       | 468     | 63         | 1618        | 28 32.9     | 68 06.3      | 1705        | 28 32.7      | 68 05.6     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 32       | 473     | 63         | 1850        | 28 23.1     | 68 11.9      | 1938        | 28 23.2      | 68 12.0     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 33       | 478     | 63         | 2135        | 28 14.5     | 68 20.0      | 2225        | 28 14.7      | 68 19.9     | 1000        | TC           | 25          | 1000         |                     |       |          |          |         |
| 34       | 516     | 64         | 1035        | 28 45.9     | 67 56.4      | 1130        | 28 46.4      | 67 56.2     | 1000        | TCS          | 25          | 500          |                     |       |          |          |         |
| 35       | 522     | 64         | 1415        | 28 45.0     | 67 53.0      | 1513        | 28 44.3      | 67 53.7     | 1000        | TCS          | 25          | 500          |                     |       |          |          |         |
| 36       | 526     | 64         | 1650        | 28 44.6     | 67 50.6      | 1745        | 28 44.3      | 67 49.6     | 1000        | TCS          | 25          | 500          |                     |       |          |          |         |
| 37       | 543     | 65         | 1416        | 28 48.0     | 67 36.0      | 1500        | 28 48.0      | 67 35.5     | 500         | TCSW         | 25          | 500          |                     |       |          |          |         |
| 38       | 546     | 65         | 1717        | 28 45.2     | 67 32.4      | 1754        | 28 45.2      | 67 32.3     | 500         | TCSW         | 25          | 500          |                     |       |          |          |         |
| 39       | 549     | 65         | 2008        | 28 45.1     | 67 32.3      | 2050        | 28 43.8      | 67 31.7     | 500         | TCSW         | 25          | 500          | Trnsrndr            |       |          |          |         |



Figure XV-3: Profiles of Temperature (deg. C), Salinity (ppt), and the North and East components of velocity (m/s), for Dive 17.



Figure XV-4: Profiles of Temperature (deg. C), Salinity (ppt), and the North and East components of velocity (m/s), for Dive 34.

**Participant Summary:****XVI. EPSONDE Microstructure Profiling During FASINEX**  
**N. S. Oakey, Bedford Institute of Oceanography****Project Objectives:**

The FASINEX cruise of the R/V ENDEAVOR provided an opportunity to examine the spatial and temporal variability of microstructure in the upper few hundred meters of an oceanic front in response to atmospheric forcing. Data are to be analyzed to provide estimates of vertical eddy diffusivity, dissipation and  $\chi_T$  as a function of depth at, and near, a front.

**Vessel:** R/V ENDEAVOR, February 11-March 10, 1986

**Scientific Party Involved:**

|                   |                 |
|-------------------|-----------------|
| Dr. N. S. Oakey   | Chief Scientist |
| Mr. P. Pozdnekoff | Technician      |
| Mr. B. Wile       | Technician      |

**Narrative:**

This cruise used the tethered free fall instrument EPSONDE developed at the Bedford Institute of Oceanography by N. Oakey over the past three years. EPSONDE has been used in three major cruises prior to FASINEX, but was upgraded to include a CTD for the FASINEX study. EPSONDE consists of a tethered free fall vehicle, handling system and computer data logger used to measure microstructure to dissipation scales. The instrument has two airfoil shear probes, a thin film thermometer, fast thermistor (FP07), a CTD using a strain gauge pressure transducer, Neil Brown 3 cm conductivity cell and an FP14 thermistor. A variety of engineering measurements, such as tilt, are also recorded. For the microstructure sensors, both the time varying and the derivative signal are recorded to increase dynamic range. Sensor channels are multiplexed at a rate of 256 HZ and submultiplexed at 1/2 speed or 1/8 speed, depending on the sensor capability. A 12-Bit digitizer is used with range selection for conductivity, temperature and pressure. A USART pair is used to telemetry the data (at 38.4 K baud) from the EPSONDE profiling vehicle through a Kevlar four conductor wire to the surface. A deck unit reconstructs parallel data words with ID bits and synchronizing bits for data logging on a computer. The deck unit also reconstructs analog signals for viewing in real time on multichannel analog recorders. The computer used to log data is an INTEL 310/40R, but during FASINEX it failed before the cruise started and an EAGLE-PC was used. The system also includes a winch, sheave-block, capstan system for handling the Kevlar wire without damage.

The equipment was loaded on the R/V ENDEAVOR in Norfolk, Virginia, February 3-5, 1986. Oakey, Pozdnekoff and Wile participated in the Norfolk-Bermuda transit, though no over-the-side tests were done. All systems were thoroughly bench tested and operational.

A major setback occurred in Bermuda when the principal computer (INTEL 310) failed. (It was repaired at the chip level aboard ship, but only very near the end of the experiment.) Data were recorded on an EAGLE-PC computer, but the quality of the data was reduced by signal loss during disk writes. Because of the small disk available, and difficulty in storing on streamer tapes, the quantity of data was also reduced.

A second setback occurred in the first station when the bilge keel intercepted EPSONDE and destroyed all sensors except conductivity. These were replaced with spares and the instrument fitted with a probe guard manufactured on the ENDEAVOR by the Chief Engineer. Thanks to his efforts, the danger of damaging probes was very reduced and, in fact, did not happen again. The guard ring, however, probably increased the vehicle vibration noise.

The only other problem experienced was related to slip rings and related data telemetry, which failed two or three times. This problem has never occurred before, and no spare slip rings were in our supplies which required rebuilding the ones we had. No problems were experienced with the winch, capstan or sheave-block.

During the experiment 39 stations were attempted with a total of 157 profiles, most to deeper than 200 m. These were at various positions with respect to the front, and they are listed in the EPSONDE STATION LOG (Table XIX-1) at the end.

For analysis, data were transferred from the streamer tape medium used on the EAGLE-PC to the streamer tape medium used on the INTEL 310 system. Because of the differences in formats, this could only be done efficiently by developing a special data link between the two machines. This job, done after the equipment returned to the Bedford Institute, required several weeks. There has been no attempt to date to do spectral analysis of the data to obtain  $\epsilon$  and  $X_T$ . This will be done starting this fall.

Several stations were done simultaneously with the Fine and Microstructure Profiler (Schmitt and Toole), and it is hoped that data from both instruments may be compared.

The FASINEX study thus provided a significant number of microstructure profiles at and near an oceanic front. The data appears to be of high enough quality that meaningful estimates of  $\epsilon$  and  $X_T$  may be made and used to examine frontal mixing processes.

#### Acknowledgements:

We would like to thank the Captain, Chief Engineer and crew of the R/V ENDEAVOR for their assistance during operations. A particular thank-you is also directed to the URI marine technicians, who were instrumental in repairing our computer.

Figure XVI-1      EPSONDE Profile Positions  
Table XVI-1      EPSONDE Profile Information

## FASINEX Endeavor 141 EPSONDE Profiles



Figure XVI-1: EPSONDE Profile Positions.

TABLE XVI-1

## EPSOMIDE STATION LOG

PASIMEX FEBRUARY-MARCH 1986

| STATION | DAY | HOUR<br>GMT | EN141<br>EVENT    | LAT.<br>ON | LONG.<br>OW | PROFILES | DEPTH<br>(m) | COMMENTS                                      |
|---------|-----|-------------|-------------------|------------|-------------|----------|--------------|-----------------------------------------------|
| 1       | 46  | 1502        | 75                | 28°09.4'   | 70°27.3'    | 2        | 55           | Broke sensors on Bilge keel.                  |
| 2       | 47  | 1846        | 88                | 28°07.9'   | 70°33.0'    | 1        | 200          |                                               |
| 3       | 48  | 1225        | 101               | 28°10.8'   | 70°29.2'    | 6        | 200          | Noisy on way up.                              |
| 4       | 48  | 1600        | 105               | 28°05.4'   | 70°30.2'    | 4        | 225          | Noisy data.                                   |
| 5       | 49  | 1340        | 132               | 28°30.2'   | 70°30.3'    | 6        | 250          |                                               |
| 6       | 49  | 2156        | 145               | 28°35.0'   | 70°29.6'    | 12       | 250          |                                               |
| 7       | 52  | 1145        | 200               | 28°17.3'   | 69°54.9'    | 4        | 260          |                                               |
| 8       | 52  | 2130        | 206               | 28°24.0'   | 70°03.7'    | 4        | 240          | Cold side of front.                           |
| 9       | 52  | 2250        | 207               | 28°20.4'   | 70°08.6'    | 4        | 240          | At the front.                                 |
| 10      | 53  | 0032        | 209               | 28°15.9'   | 70°12.8'    | 4        | 240          | Warm side of front.                           |
| 11      | 53  | 1545        | 212               | 28°20.6'   | 69°25.6'    | 4        | 240          | Cold side of front.                           |
| 12      | 53  | 1745        | 215               | 28°18.6'   | 69°22.7'    | 4        | 240          | In front.                                     |
| 13      | 53  | 2020        | 217               | 28°17.5'   | 69°15.9'    | 4        | 220          | Warm side of front.                           |
| 14      | 54  | 1145        | 225               | 28°05.1'   | 69°39.6'    | 8        | 240          | Warm side of front.                           |
| 15      | 55  | 0040        | 235               | 28°08.4'   | 69°39.5'    | 10       | 150          |                                               |
| 16      | 55  | 1515        | 250               | 27°57.5'   | 69°49.6'    | 5        | 260          | Long way from front.                          |
| 17      | 55  | 2305        | 257               | 28°04.9'   | 69°29.6'    | 5        | 180          |                                               |
| 18      | 56  | 0056        | 259               | 28°12.6'   | 69°23.4'    | 2        | 290          | Lost signal during 2nd profile.               |
| 19      | 56  | -           |                   |            |             |          |              | Aborted bad Slip Rings.                       |
| 20      | 58  | 1310        | 380               | 26°58.4'   | 69°49.6'    | 2        | 250          | Poor data; data lost.                         |
| 21      | 58  | 2140        | 389               | 27°07.7'   | 69°58.2'    | 4        | 230          |                                               |
| 22      | 59  | 1756        | 397               | 28°24.8'   | 68°32.2'    | 4        | 230          |                                               |
| 23      | 59  | 1932        | 398               | 28°29.9'   | 68°34.6'    | 4        | 250          |                                               |
| 24      | 59  | 2215        | 401               | 28°34.9'   | 68°34.4'    | 4        | 260          |                                               |
| 25      | 60  | 0205        | 405               | 28°20.1'   | 68°35.4'    | 4        | 220          | South on warm side of front.                  |
| 26      | 60  | 1123        | 414               | 28°28.9'   | 68°23.0'    | 4        | 240          |                                               |
| 27      | 60  | 1412        | 419               | 28°25.0'   | 68°24.5'    | 2        | 200          |                                               |
| 28      | 62  | 1500        | 446               | 28°59.8'   | 68°29.4'    | 4        | 260          | Cold side of front.                           |
| 29      | 62  | 1700        | 448               | 28°49.5'   | 68°28.3'    | 4        | 240          | Just on warm side of front.                   |
| 30      | 62  | 1940        | 453               | 28°41.5'   | 68°28.3'    | 4        | 240          | Warm side of front.                           |
| 31      | 63  | 1350        | 466               | 28°41.1'   | 68°03.2'    | 4        | 240          | Just on warm side of front.                   |
| 32      | 63  | 1545        | 467               | 28°32.2'   | 68°08.3'    | 4        | 260          | 10 miles further into warm side.              |
| 33      | 63  | 1828        | 472               | 28°23.2'   | 68°12.2'    | 4        | 260          | Warm side far from front.                     |
| 34      | 63  | 2044        | 476               | 28°13.8'   | 68°17.8'    | 4        | 250          |                                               |
| 35      | 64  | 1145        | 519               | 28°46.4'   | 67°56.0'    | 4        | 260          |                                               |
| 36      | 64  | 1418        | 521<br>524<br>528 | 28°44.7'   | 67°53.1'    | 5        | 240          | Drifting stn., 1 or 2 drops at 1 hr. spacing. |
| 37      | 65  | 1255        | -                 | 28°51.6'   | 67°37.8'    | 1        | 200          | Bad wire angle - astern                       |
| 38      | 65  | 1325        | -                 |            |             |          |              | Aborted too near ship.                        |
| 39      | 65  | 2230        | 552               | 28°39.1'   | 67°25.7'    | 1        | 240          | Aborted, wire astern.                         |

**Participant Summary:****XVII. The "WOTAN Drifter"**  
Sven Vagle, IOS, Canada

This part of FASINEX has to be described as a complete success even though we had some minor technical problems. During the four weeks on the R/V ENDEAVOR we had twelve deployments with an average deployment time of seven hours, which is well over the number of hours we had been allocated before the cruise. We had one deployment at the front, four deployments on the north (cold) side, six deployments on the south (warm) side of the front, and one deployment at  $26^{\circ} 52.4N$ ,  $69^{\circ} 44.1W$  near the FASINEX mooring containing a 13 channel WOTAN instrument.

We experienced a wide range of weather conditions. During the time the drifter was deployed we had weather conditions ranging from calm sea, no wind, to wind speeds reaching 15 m/s and quite high seas. The amount of precipitation was not as much as one would have hoped but we should have some data from periods when it was raining.

We obtained acoustic backscatter data using four different transducers (28 kHz, 50 kHz, 88 kHz and 200 kHz) from a depth of 24 meters looking up. In addition to this we recorded the ambient sound with two different instruments. One was a broad band ambient sound instrument recording continuously the whole frequency band from 100-40,000 Hz. The other instrument was a Sea Data Corporation WOTAN (Wind Observation Through Ambient Noise) recorder recording 13 channels with narrow band filters entered at 3.0, 4.3, 5.3, 6.5, 8.0, 9.3, 10.8, 12.5, 14.5, 16.8, 19.5 and 25.0 kHz with a sampling interval of 0.87 second. We have more than 75 hours worth of, mostly good, data.

We observed bubble clouds reaching as far as 8-10 meters below the surface during the most windy conditions (12-15 m/s).

As far as the surface wave spectrum is concerned it looks like we might be able to get some useful information out of our echo-sounder data. A computer program has been written to model the vertical motion of the instruments at the end of the rubber cord. The preliminary results suggest that the instrument motion is very small compared to the surface wave motion. Therefore we may be able to obtain wave spectra estimates.

We look forward to the possibility of comparing our measurements with the directional wave spectra obtained by one of the aircraft.

**Figure XVII-1**  
**Table XVII-1****WOTAN Deployment Positions**  
**WOTAN Deployment/Recovery Information**

## FASINEX Endeavor 141 WOTAN Deployments



Figure XVII-1: WOTAN Deployment Positions.

TABLE XVII-1

| Deployment Number | Date | Deployment Position<br>Latitude | Deployment Position<br>Longitude | Recovery Position<br>Latitude | Recovery Position<br>Longitude | Deployment Time(GMT) | Recovery Time(GMT) | Drift Dir. | Drift Dist. | Drift Speed |
|-------------------|------|---------------------------------|----------------------------------|-------------------------------|--------------------------------|----------------------|--------------------|------------|-------------|-------------|
| 1 #               | 15/2 | 28 08.5N                        | 70 28.1W                         | 28 09.1N                      | 70 15.8W                       | 14:35                | 23:05              | 087°       | 11 nm       | 1.34 kn.    |
| 2 \$              | 17/2 | 28 10.4N                        | 70 34.2W                         | 28 11.2N                      | 70 36.6W                       | 11:37                | 19:43              | 294°       | 2.3nm       | 0.28 kn.    |
| 3 *               | 18/2 | 28 29.8N                        | 70 24.9W                         | 28 31.7N                      | 70 24.4W                       | 12:49                | 21:05              | 012        | 2.0         | 0.24        |
| 4 *               | 20/2 | 28 44.9N                        | 70 00.1W                         | 28 43.4N                      | 69 54.1W                       | 13:41                | 20:53              | 106        | 5.4         | 0.76        |
| 5 *               | 22/2 | 28 25.3N                        | 69 24.8W                         | 28 27.2N                      | 69 22.5W                       | 15:06                | 23:25              | 045        | 2.7         | 0.33        |
| 6 \$              | 23/2 | 28 04.0N                        | 69 45.1W                         | 28 00.5N                      | 69 36.0W                       | 11:11                | 22:50              | 114        | 8.4         | 0.72        |
| 7 \$              | 24/2 | 27 56.0N                        | 69 45.2W                         | 27 52.7N                      | 69 43.2W                       | 13:28                | 19:45              | 151        | 3.7         | 0.59        |
| 8 *               | 25/2 | 28 30.2N                        | 69 39.6W                         | 28 25.4N                      | 69 37.5W                       | 13:21                | 17:51              | 155        | 5.3         | 1.18        |
| 9 %               | 27/2 | 26 57.4N                        | 69 44.1W                         | 28 58.6N                      | 69 42.6W                       | 11:26                | 18:10              | 048        | 1.8         | 0.31        |
| 10\$              | 4/3  | 28 32.8N                        | 68 07.6W                         | 28 33.6N                      | 68 03.5W                       | 17:10                | 00:50              | 076        | 3.7         | 0.49        |
| 11\$              | 5/3  | 28 49.8N                        | 67 57.8W                         | 28 47.0N                      | 67 47.8W                       | 13:35                | 20:35              | 107        | 9.2         | 1.31        |
| 12\$              | 6/3  | 28 47.2N                        | 67 34.7W                         | 28 40.6N                      | 67 27.6W                       | 15:35                | 21:42              | 136        | 9.1         | 1.52        |

General information about the drifter. Deployments marked with a # were deployments at the front. Deployments marked with a \$ were at the warm(south) side of the front, and deployments marked with a \* were at the cold(north) side of the front. The deployment marked with a % (Number 9) was a deployment close to a FASINEX mooring containing a WOTAN instrument.



### Acknowledgements

The work done on these cruises was successful, in part, due to the cooperation and skill of the crew of R/V OCEANUS and R/V ENDEAVOR. Funding for the work summarized here was provided by the Office of Naval Research, Contract N00014-84-C-0134 (R. Weller), Contract N000014-85-C-0104 (L. Regier and R. Davis), Contract N00014-86-G-0023 (R. Pollard), Contract N00014-86-WR-24027 (K. Davidson) and by the National Science Foundation, Contract NSF:OCE 86-015336 (R. Schmitt and J. Toole).

We thank Paul Eden who assisted us throughout the cruises with the Applied Technology Satellite (ATS) system. His help and input, almost daily, allowed for a successful communication link for KNORR during the Phases One and Three mooring cruises and between the ships and the Bermuda Biological Station office, where the aircraft scientists were able to pass their flight schedules and observations to the ships during Phase Two.

Cdr. Frank Bub handled the weather forecasting for the aircraft and ships during Phase Two. Some data were input from the ships and along with the Naval Airstation meteorological data, Cdr. Bub prepared a briefing each evening for the aircraft scientists and sent out a report on telemail to the ships. His time and effort was greatly appreciated.

Our thanks to Mary Ann Lucas for her assistance with many tedious aspects of the typing, editing and data processing of the data sets for all the field work included in this document and for her help with the final preparation of this document.



## Appendix A: FASINEX Julian Day Conversion Table

The FASINEX field program began in January 1986 and concluded late in June 1986. Several of the data sets have a Julian Day time base. This table is a conversion table from calendar days to Julian Days.

|             |             |             |             |             |             |
|-------------|-------------|-------------|-------------|-------------|-------------|
| Jan 1 - 001 | Feb 1 - 032 | Mar 1 - 060 | Apr 1 - 091 | May 1 - 121 | Jun 1 - 152 |
| 2 - 002     | 2 - 033     | 2 - 061     | 2 - 092     | 2 - 122     | 2 - 153     |
| 3 - 003     | 3 - 034     | 3 - 062     | 3 - 093     | 3 - 123     | 3 - 154     |
| 4 - 004     | 4 - 035     | 4 - 063     | 4 - 094     | 4 - 124     | 4 - 155     |
| 5 - 005     | 5 - 036     | 5 - 064     | 5 - 095     | 5 - 125     | 5 - 156     |
| 6 - 006     | 6 - 037     | 6 - 065     | 6 - 096     | 6 - 126     | 6 - 157     |
| 7 - 007     | 7 - 038     | 7 - 066     | 7 - 097     | 7 - 127     | 7 - 158     |
| 8 - 008     | 8 - 039     | 8 - 067     | 8 - 098     | 8 - 128     | 8 - 159     |
| 9 - 009     | 9 - 040     | 9 - 068     | 9 - 099     | 9 - 129     | 9 - 160     |
| 10 - 010    | 10 - 041    | 10 - 069    | 10 - 100    | 10 - 130    | 10 - 161    |
| 11 - 011    | 11 - 042    | 11 - 070    | 11 - 101    | 11 - 131    | 11 - 162    |
| 12 - 012    | 12 - 043    | 12 - 071    | 12 - 102    | 12 - 132    | 12 - 163    |
| 13 - 013    | 13 - 044    | 13 - 072    | 13 - 103    | 13 - 133    | 13 - 164    |
| 14 - 014    | 14 - 045    | 14 - 073    | 14 - 104    | 14 - 134    | 14 - 165    |
| 15 - 015    | 15 - 046    | 15 - 074    | 15 - 105    | 15 - 135    | 15 - 166    |
| 16 - 016    | 16 - 047    | 16 - 075    | 16 - 106    | 16 - 136    | 16 - 167    |
| 17 - 017    | 17 - 048    | 17 - 076    | 17 - 107    | 17 - 137    | 17 - 168    |
| 18 - 018    | 18 - 049    | 18 - 077    | 18 - 108    | 18 - 138    | 18 - 169    |
| 19 - 019    | 19 - 050    | 19 - 078    | 19 - 109    | 19 - 139    | 19 - 170    |
| 20 - 020    | 20 - 051    | 20 - 079    | 20 - 110    | 20 - 140    | 20 - 171    |
| 21 - 021    | 21 - 052    | 21 - 080    | 21 - 111    | 21 - 141    | 21 - 172    |
| 22 - 022    | 22 - 053    | 22 - 081    | 22 - 112    | 22 - 142    | 22 - 173    |
| 23 - 023    | 23 - 054    | 23 - 082    | 23 - 113    | 23 - 143    | 23 - 174    |
| 24 - 024    | 24 - 055    | 24 - 083    | 24 - 114    | 24 - 144    | 24 - 175    |
| 25 - 025    | 25 - 056    | 25 - 084    | 25 - 115    | 25 - 145    | 25 - 176    |
| 26 - 026    | 26 - 057    | 26 - 085    | 26 - 116    | 26 - 146    | 26 - 177    |
| 27 - 027    | 27 - 058    | 27 - 086    | 27 - 117    | 27 - 147    | 27 - 178    |
| 28 - 028    | 28 - 059    | 28 - 087    | 28 - 118    | 28 - 148    | 28 - 179    |
| 29 - 029    |             | 29 - 088    | 29 - 119    | 29 - 149    | 29 - 180    |
| 30 - 030    |             | 30 - 089    | 30 - 120    | 30 - 150    | 30 - 181    |
| 31 - 031    |             | 31 - 090    |             | 31 - 151    |             |



### Appendix B: Mooring Designations

The FASINEX moorings have several different designations. FASINEX identified each mooring with a letter and number. There was a WHOI Buoy Group designation. There was a buoy identifier. And there was an ARGOS transmitter number. Of the eleven moorings, there were three different types of mooring. The following table summarizes the above-mentioned information:

| DESIGNATION       | F1                | F2                | F3                | F4                | F5                | F6                | F7                | F8                | F9                | F10               | F12               |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| FASINEX           |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| WHOI Mooring      | 829               | 845               | -                 | 846               | -                 | 847               | -                 | 848               | -                 | 849               | 830               |
| Buoy Identifier   |                   | A                 | PGH-1             | C                 | PGH-2             | S                 | PGH-3             | E                 | PGH-4             | D                 |                   |
| ARGOS #           | 6430              |                   |                   | 6432              |                   | 6431              |                   | 6434              |                   | 6433              |                   |
| Mooring Type      | subsurface        | surface           | near-surface      | surface           | near-surface      | surface           | near-surface      | surface           | near-surface      | surface           | subsurface        |
| Latitude          | 27°58.90          | 27°18.95          | 27°05.34          | 27°05.35          | 26°58.58          | 27°12.59          | 27°12.53          | 26°58.66          | 27°05.45          | 27°19.63          | 25°29.10          |
| Longitude         | 69°58.80          | 70°05.86          | 69°42.73          | 69°50.30          | 69°50.40          | 69°58.48          | 69°51.03          | 69°43.19          | 69°50.33          | 69°42.52          | 70°00.70          |
| Deployment        | 28 Oct 84<br>2238 | 15 Jan 86<br>2020 | 17 Jan 86<br>1811 | 16 Jan 86<br>1947 | 16 Jan 86<br>1840 | 26 Jan 86<br>1713 | 28 Jan 86<br>1832 | 27 Jan 86<br>1748 | 29 Jan 86<br>1806 | 1 Feb 86<br>1801  | 29 Oct 84<br>1724 |
| Recovery          | 18 Jun 86<br>1721 | 14 Jun 86<br>0950 | 16 Jun 86<br>1352 | 15 Jun 86<br>2133 | 16 Jun 86<br>2011 | 14 Jun 86<br>2151 | 17 Jun 86<br>1108 | 15 Jun 86<br>1333 | Lost              | 10 Jun 86<br>0543 | 13 Jun 86<br>1957 |
| Data Days         | 598               | 150               | 150               | 150               | 149               | 139               | 139               | 139               | 0                 | 103               | 592               |
| Instrument Depths |                   | met               | 20                | met               | 20                | met               | 20                | met               | 20                | met               |                   |
|                   |                   | 10                |                   | 10                |                   | 10                |                   | 10                |                   | 10                |                   |
|                   |                   | 20                |                   | 20                |                   | 20                |                   | 20                |                   | 20                |                   |
|                   |                   | 30                |                   | 30                |                   | 30                |                   | 30                |                   | 30                |                   |
|                   |                   | 40                |                   | 40                |                   | 40                |                   | 40                |                   | 40                |                   |
|                   |                   | 50                |                   | 50                |                   | 50                |                   | 50                |                   | 50                |                   |
|                   |                   | 120               | ↓                 | 120               | ↓                 | 120               | ↓                 | 120               | ↓                 | 120               |                   |
|                   | 225               | 160               | 200               | 160               | 200               | 160               | 200               | 160               | 200               | 160               | 225               |
|                   | 325               |                   |                   |                   |                   |                   |                   |                   |                   |                   | 325               |
|                   | 550               |                   |                   |                   |                   |                   |                   |                   |                   |                   | 550               |
|                   | 625               |                   |                   |                   |                   |                   |                   |                   |                   |                   | 625               |
|                   | 700               | 700               |                   | 700               |                   | 700               |                   | 700               |                   | 700               | 700               |
|                   | 1100              |                   |                   | 1000              |                   |                   |                   | 1000              |                   |                   | 1100              |
|                   | 4100              |                   |                   | 4000              |                   |                   |                   | 4000              |                   |                   | 4100              |

All times are UTC.



## DOCUMENT LIBRARY

November 21, 1986

### Distribution List for Technical Report Exchange

Institute of Marine Sciences Library  
University of Alaska  
O'Neill Building  
905 Koyukuk Ave., North  
Fairbanks, AK

Attn: Stella Sanchez-Wade  
Documents Section  
Scripps Institution of Oceanography  
Library, Mail Code C-075C  
La Jolla, CA 92093

Hancock Library of Biology & Oceanography  
Alan Hancock Laboratory  
University of Southern California  
University Park  
Los Angeles, CA 90089-0371

Gifts & Exchanges  
Library  
Bedford Institute of Oceanography  
P.O. Box 1006  
Dartmouth, NS, B2Y 4A2, CANADA

Office of the International  
Ice Patrol  
c/o Coast Guard R & D Center  
Avery Point  
Groton, CT 06340

Library  
Physical Oceanographic Laboratory  
Nova University  
8000 N. Ocean Drive  
Dania, FL 33304

NOAA/EDIS Miami Library Center  
4301 Rickenbacker Causeway  
Miami, FL 33149

Library  
Skidaway Institute of Oceanography  
P.O. Box 13687  
Savannah, GA 31416

Institute of Geophysics  
University of Hawaii  
Library Room 252  
2525 Correa Road  
Honolulu, HI 96822

Library  
Chesapeake Bay Institute  
4800 Atwell Road  
Shady Side, MD 20876

MIT Libraries  
Serial Journal Room 14E-210  
Cambridge, MA 02139

Director, Ralph M. Parsons Laboratory  
Room 48-311  
MIT  
Cambridge, MA 02139

Marine Resources Information Center  
Bldg. E38-320  
MIT  
Cambridge, MA 02139

Library  
Lamont-Doherty Geological Observatory  
Colombia University  
Palisades, NY 10964

Library  
Serials Department  
Oregon State University  
Corvallis, OR 97331

Pell Marine Science Library  
University of Rhode Island  
Narragansett Bay Campus  
Narragansett, RI 02882

Working Collection  
Texas A&M University  
Dept. of Oceanography  
College Station, TX 77843

Library  
Virginia Institute of Marine Science  
Gloucester Point, VA 23062

Fisheries-Oceanography Library  
151 Oceanography Teaching Bldg.  
University of Washington  
Seattle, WA 98195

Library  
R.S.M.A.S.  
University of Miami  
4600 Rickenbacker Causeway  
Miami, FL 33149

Maury Oceanographic Library  
Naval Oceanographic Office  
Bay St. Louis  
NSTL, MS 39522-5001  
ATTN: Code 4601

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |                                                                                             |                                       |                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|
| <b>REPORT DOCUMENTATION PAGE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  | <b>1. REPORT NO.</b><br><b>WHOI-86-36</b>                                                   | <b>2.</b>                             | <b>3. Recipient's Accession No.</b><br><b>AD-A177776</b> |
| <b>4. Title and Subtitle</b><br><b>FASINEX Frontal Air-Sea Interaction Experiment (January - June 1986)</b><br><b>Cruise Summaries for FASINEX Phase Two</b><br><b>R/V OCEANUS Cruise 175 R/V ENDEAVOR Cruise 141</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  | <b>5. Report Date</b><br><b>September 1986</b>                                              |                                       |                                                          |
| <b>7. Author(s)</b><br><b>Nancy J. Pennington, Robert A. Weller</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  | <b>8. Performing Organization Rep't. No.</b><br><b>WHOI-86-36</b>                           |                                       |                                                          |
| <b>9. Performing Organization Name and Address</b><br><b>Woods Hole Oceanographic Institution</b><br><b>Woods Hole, Massachusetts 02543</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | <b>10. Project/Tech/Work Unit No.</b>                                                       |                                       |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  | <b>11. Contract(C) or Grant(G) No.</b><br><b>(C) N00014-84-C-0134,</b><br><b>NR 083-400</b> |                                       |                                                          |
| <b>12. Sponsoring Organization Name and Address</b><br><b>Office of Naval Research</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  | <b>13. Type of Report &amp; Period Covered</b><br><b>Technical Report</b>                   |                                       |                                                          |
| <b>14.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |                                                                                             |                                       |                                                          |
| <b>15. Supplementary Notes</b><br><br>This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-86-36.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |                                                                                             |                                       |                                                          |
| <b>16. Abstract (Limit: 200 words)</b><br><br>The Frontal Air-Sea Interaction Experiment (FASINEX) was a study of the response of the upper ocean to atmospheric forcing in the vicinity of an oceanic front in the subtropical convergence zone southwest of Bermuda, the response of the lower atmosphere in that vicinity to the oceanic front, and the associated two-way interaction between ocean and atmosphere. FASINEX began in the winter (January 1986), concluded in the early summer (June 1986) and included an intensive period in February and March. The experiment took place in the vicinity of 27°N, 70°W where sea-surface-temperature fronts are climatologically common.<br><br>Measurements were made from buoys, ships, aircraft and spacecraft. This report summarizes the shipboard work done on R/V OCEANUS and R/V ENDEAVOR during Phase Two, the dual ship/multi-aircraft measurement period. The two ships worked individually, jointly and as ground truth for the aircraft during the month. Each ship carried specialized instrumentation for measuring oceanographic and meteorological parameters. Information describing the sampling strategy, station positions and times are included. This report contains summaries of the data collected and some preliminary results. |  |                                                                                             |                                       |                                                          |
| <b>17. Document Analysis a. Descriptors</b><br><b>1. air-sea interaction</b><br><b>2. FASINEX</b><br><b>3. oceanic front</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                                                                             |                                       |                                                          |
| <b>b. Identifiers/Open-Ended Terms</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                                                                                             |                                       |                                                          |
| <b>c. COSATI Field/Group</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                                                                             |                                       |                                                          |
| <b>18. Availability Statement:</b><br><br><b>Approved for publication; distribution unlimited.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | <b>19. Security Class (This Report)</b><br><b>UNCLASSIFIED</b>                              | <b>21. No. of Pages</b><br><b>174</b> |                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  | <b>20. Security Class (This Page)</b>                                                       | <b>22. Price</b>                      |                                                          |

END

4 - 87

DTIC