



# Chapitre 6: Exemples de programmation

UE Projet Informatique 2 - Programmation C#





# Intérêt du chapitre

- Comment programmer des choses simples?
  - Trier
  - Accéder aux fichiers
  - Créer des jeux







## **Objectifs**

- Utiliser les techniques fondamentales de programmation dans des cas courants
  - Mettre en œuvre les algorithmes standards de tri
  - Crypter des données sauvegardées
  - Accéder aux fichiers
  - Créer des jeux





## **Sommaire**

- I) Organisation de la mémoire
- II) Exemples de tri
- III) cryptographie
- IV) Accès aux fichiers textes
- V) Accès aux fichiers binaires
- VI) Exemples de jeux simples





#### Généralités

- Au sein d'une application, la mémoire disponible est découpée en deux grandes zones :
  - La pile (en anglais stack)
  - Le tas (en anglais heap)





#### La pile

- La pile est une zone mémoire gérée automatiquement par le compilateur.
- C'est la zone par défaut d'allocation des variables
  - compilateur va automatiquement réserver de la mémoire dans la pile pour cette dernière
  - limitée en taille
  - il est important qu'il puisse libérer cette mémoire le plus tôt possible





#### Le tas

- l'utilisation du tas doit être faite explicitement par le programmeur par l'utilisation de l'allocation dynamique
  - Cela peut être fait manuellement avec des pointeurs nus ou par des objets (instruction new)
  - Cette zone est virtuellement illimitée
    - tant qu'il y a de la mémoire de libre, on peut créer des objets dedans





#### Exemple

- L'espace mémoire utilisé par une donnée de type valeur est affecté à la pile
- Pour les types références les données réelles du type sont stockées dans le tas et un pointeur vers ces données est stocké dans la pile





## Exemple de tri



#### Généralités

- Un algorithme de tri permet d'organiser une collection d'objets selon une relation d'ordre déterminée
- La collection à trier est souvent donnée sous forme de tableau ou sous forme de liste
  - afin de permettre l'accès direct aux différents éléments de la collection



## Exemple de tri



#### Tri par sélection ou tri par extraction

```
8
    procédure tri_selection(par reference tableau d'entiers t)
5
       n \leftarrow longueur_tableau(t)
        pour i de 0 à n - 2
          min \leftarrow i
9
3
          pour j de i + 1 à n - 1
             si t[j] < t[min], alors min \leftarrow j
          fin pour
          si min ≠ i, alors permuter(t[i],t[min])
        fin pour
     fin procédure
```





#### Programme Tri par sélection

- Ecrire un programme qui demande en entrée un liste de nombres entiers séparés par des espaces et qui retourne la liste de nombre triée
- Astuces
  - Utilisé Split()

```
Saisissez un suite de nombre separé par des espaces :
12 8 5
Voici les nombres dans l'ordre
5 8 12
```



## Exemple de tri



#### Tri à bulles

tri bulles optimise(par reference Tableau d'entiers T)

```
pour i allant de taille de T - 1 à 1
  tableau_trié := vrai
  pour j allant de 0 à i - 1
    si T[j+1] < T[j]
       permuter(T[j+1], T[j])
       tableau_trié := faux
    fin si
  fin pour
  si tableau_trié
    sortir procédure
  fin si
```







#### Programme Tri bulle

- Ecrire un programme qui prend en ligne de commande un liste de nombres entiers séparés par des espaces et qui retourne la liste de nombre triée
- Astuces

– Ensuite Projet -> Propriétés -> Déboguer->Arguments



## **Cryptographie**



#### cryptage XOR

- Espace de nom : System.Security.Cryptography
- système de cryptage basique
  - facile à implémenter
  - La fonction de cryptage est identique à la fonction de décryptage
- Il tient son nom de l'opérateur logique XOR "OU exclusif".

| Lettres                                      | M        | E        | S        | S        | A        | G        | E        |
|----------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| Codes ASCII                                  | 77       | 69       | 83       | 83       | 65       | 71       | 69       |
| Binaire                                      | 01001101 | 01000101 | 01010011 | 01010011 | 01000001 | 01000111 | 01000101 |
| Message en<br>binaire                        | 01001101 | 01000101 | 01010011 | 01010011 | 01000001 | 01000111 | 01000101 |
| Clé en binaire<br>(répétée si<br>nécessaire) | 01000011 | 01001100 | 01000101 | 01000011 | 01001100 | 01000101 | 01000011 |
| Message crypté<br>en binaire                 | 00001110 | 00001001 | 00010110 | 00010000 | 00001101 | 00000010 | 00000110 |





#### Programme de modification de mot de passe

- On doit écrire un programme
  - qui demande votre ancien mot de passe
  - Si il correspond au mot enregistré dans les paramètres
    - Vous demande le nouveau mot de passe et l'enregistre
- Construire l'algorithme
- Ecrire une fonction crypto()
- Utilisez le cryptage xor pour l'enregistrement du mot de passe
  - Utilisez Properties.Settings.Default



#### Accès aux fichiers textes



#### Généralités

- Les principales fonctions sont définies dans System.IO:
  - Classe File, Directory
    - Fournit des méthodes statiques pour gérer les fichiers
    - Copy(); Exist()
  - StreamReader(String)
    - Initialise une nouvelle instance de la classe
       StreamReader pour le nom de fichier spécifié
    - Read(); ReadLine(); ReadToEnd();
    - Close();





#### Programme afficher un fichier texte

- On doit écrire un programme qui prend le nom d'un fichier en argument de la ligne de commande et qui affiche son contenu
- Construire l'algorithme
- Ecrire le programme



## Accès aux fichiers binaires



#### Généralités

- FileStream (au lieu de StreamReader)
  - Méthode Read(), ReadByte(), Write(), Seek()
  - Propriété Position





#### Programme calculer le checksum d'un fichier binaire

- On doit écrire un programme qui prend le nom d'un fichier en argument de la ligne de commande et qui affiche la valeur de son checksum
  - Construire l'algorithme
  - Ecrire le programme
  - Intégrer la gestion des erreurs (fichier non trouve, etc)
- Astuces
  - Utiliser MD5.ComputeHash de System.Security.Cryptography



## Exemples de jeux simples



#### Le morpion

- Le jeu du morpion ou tic-tac-toe
  - consiste à aligner des ronds ou des croix en ligne,
     colonne ou diagonale sur un plateau de 3x3 cases
  - Le premier joueur qui aligne ses pions a gagné







#### Programme le jeu de MORPION

- Quelques indications
  - Le tableau dispose de deux dimensions, 3x3
  - Il faut au sein d'une boucle permuter les joueurs.
  - Si une position est déjà occupée, il faut de nouveau poser la question
  - Après chaque coup, il faut vérifier toutes les lignes, colonnes et diagonales
  - Si une ligne, colonne, diagonale est complète, on sort de la boucle
  - En cas de victoire, il faut indiquer quel pion (x, o) a gagné
  - Il faut gérer le match nul : neuf tours et personne n'a gagné
  - Copier le code source depuis le support de cours
  - Modifier le code source afin de jouer contre l'ordinateur
    - L'ordinateur prend la place du joueur x et cherche une position libre dans le tableau de façon aléatoire



#### Travaux de recherche



#### Chercher le fonctionnement des éléments suivants

- Tri par insertion
- Tri rapide
- Cryptographie DES
- Jeu des tours de Hanoï





## Conclusion...

Il y a tant à coder...

"Don't tell me the sky's the limit when there are footprints on the moon."

- Paul Brandt