INSTITUTE OF TECHNOLOGICAL STUDIES OF BIZERTE

AY: 2024-2025 EXAM | **AI-ECUE322**

Jan. 2025

M2-S3: Dept. of Electrical Engineering

Teacher: A. Mhamdi Time Limit: $1\frac{1}{2}$ h

This document contains 7 pages numbered from 1/7 to 7/7. As soon as it is handed over to you, make sure it is complete. The 2 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **1** A handwritten double-sided A4 sheet is permitted.
- **2** Any electronic material, except basic calculator, is prohibited.
- **Mysterious or unsupported answers** will not receive full credit.
- **9 Round results** to the nearest thousandth (i.e., third digit after the decimal point).
- **6** Task №2: Each correct answer will grant a mark with no negative scoring.

Task Nº1

You are given a single-channel input image, a convolutional filter (kernel), and a bias term. Your task is to compute the output of a convolution operation followed by the application of an activation function and a pooling operation.

• Input Image (3): A 4×4 grayscale image:

$$\mathfrak{I} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 3 & 1 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix}$$

• Filter (Kernel) (K): A 2×2 kernel:

$$\mathsf{K} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

- Activation Function: ReLU (Rectified Linear Unit)
- Pooling Operation: Max pooling with a 2×2 window and a stride of 2.
- (a) (3 points) Compute the output of the convolution operation with stride 1 and no

padding. The formula for convolution is:

$$O_{i,j} = \sum_{n=1}^{2} \sum_{m=1}^{2} I_{i+n-1, j+m-1} \cdot K_{n, m} + b$$

We compute the convolution output (0) for each valid position of the 2×2 kernel on the 4×4 input image. With a stride of 1 and no padding, the output size is 3×3 .

$$O = \begin{bmatrix} O_{1,1} & O_{1,2} & O_{1,3} \\ O_{2,1} & O_{2,2} & O_{2,3} \\ O_{3,1} & O_{3,2} & O_{3,3} \end{bmatrix}$$

Where:

$$O_{1,1} = (1)(1) + (2)(-1) + (3)(0) + (1)(1) + 1 = 1 - 2 + 0 + 1 + 1 = 1$$

$$O_{1,2} = (2)(1) + (0)(-1) + (1)(0) + (2)(1) + 1 = 2 + 0 + 0 + 2 + 1 = 5$$

$$O_{1,3} = (0)(1) + (1)(-1) + (2)(0) + (2)(1) + 1 = 0 - 1 + 0 + 2 + 1 = 2$$

Similarly, compute for all positions:

$$\mathbf{Q} = \begin{bmatrix} 1 & 5 & 2 \\ 4 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix}$$

(b) (2 points) Apply the ReLU activation function to the convolution output.

The ReLU activation function is defined by:

$$ReLU(x) = max(0, x)$$

Activated output:

$$O_{\mathsf{ReLU}} \ = \ \begin{bmatrix} \mathsf{max}(0,1) & \mathsf{max}(0,5) & \mathsf{max}(0,2) \\ \mathsf{max}(0,4) & \mathsf{max}(0,1) & \mathsf{max}(0,1) \\ \mathsf{max}(0,3) & \mathsf{max}(0,1) & \mathsf{max}(0,3) \end{bmatrix} \ = \ \begin{bmatrix} 1 & 5 & 2 \\ 4 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix}$$

(c) (2 points) Perform max pooling with a 2×2 window and a stride of 2 on the activated output.

Pooling regions:

① Top-left region:

$$\begin{bmatrix} 1 & 5 \\ 4 & 1 \end{bmatrix}, \quad \text{Max: } 5$$

② Top-right region:

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, Max: 2

3 Bottom-left region:

$$\begin{bmatrix} 3 & 1 \end{bmatrix}$$
, Max: 3

4 Bottom-right region:

$$\begin{bmatrix} 3 \end{bmatrix}$$
, Max: 3

Final pooled output:

$$O_{\mathsf{pool}} = \begin{bmatrix} 5 & 2 \\ 3 & 3 \end{bmatrix}$$

	AY: 2024-2025	Full Name:		
	M2-S3: Dept. of Electrical Engineering EXAM AI-ECUE322	ID: Class: Room: Time Limit:		
			$1\frac{1}{2}$ h	
	Jan. 2025 Teacher: A. Mhamdi			
	reacher: A. Mhainui			
- ≺				
	Answ	ER SHEET)		
Tas	sk Nº2		Second 1 (13 points)	
	(a) $(\frac{1}{2}$ point) What is the purpose of the	! symbol at the e	nd of a function name in Julia?	
	\bigcirc It indicates the function return	rns a Boolean val	ue	
	$\sqrt{}$ It is purely a convention indi	cating that the fu	nction modifies its arguments	
	 It enforces immutability on full 	unction inputs		
	 It performs element-wise ope 	erations		
	(b) $(\frac{1}{2}$ point) Which layer type is typically	used to extract l	ocal features in a CNN?	
	√ Convolutional layer			
	O Pooling layer			
	Fully connected layer			
	Activation layer			
	(c) $(\frac{1}{2}$ point) When applying a horizontal	l flip to an input	image (mirroring), which of the	
	following statements is true about a sta	andard CNN's abil	ity to recognize the same object?	
		ecognize the flip	ped image since the features are	
	now in different positions			
	•		t as well as the original because	
	CNNs are naturally invariant t			
	during training data augment	_	ge if horizontal flipping was used	
			the same accuracy because con-	
	volution operations are horize			
	(d) $(\frac{1}{2}$ point) What is the main difference			
	ditional autoencoders?	JOHN COIL VAIIALIN	onal nationicodolo (VNLS) and tra-	
		ons, while tradit	ional autoencoders use nonlinear	
	transformations			

	DO NOT WRITE ANYTHING HERE
≫ <	
	/ MATE importance a markability dispuis value in the labour annual value and disipu
	$\sqrt{}$ VAEs introduce a probability distribution in the latent space, while traditional autoencoders do not
	 VAEs are only applicable to image data, while traditional autoencoders can handle any type of data
	 VAEs include reconstruction loss in their loss function, while traditional autoer coders do not
	(e) $(^1\!/_{\!2}$ point) What are the two main components of the loss function used to train VAEs?
	$\sqrt{}$ Reconstruction loss and KL divergence
	 Mean squared error and cross-entropy
	Binary cross-entropy and cosine similarity
	Euclidean distance and Manhattan distance
	(f) $(1\!/_{\!2}$ point) Which of the following statements about VAEs is true?
	O VAEs can only generate new data points from previously seen examples
	O VAEs learn the distribution of input data but cannot generate new samples
	$\sqrt{\mbox{VAEs}}$ can generate new, previously unseen data points by sampling from th latent space
	O VAEs always produce blurry images
	(g) $(\frac{1}{2}$ point) Which component of a GAN is responsible for generating synthetic samples? \checkmark Generator \bigcirc Discriminator \bigcirc Encoder \bigcirc Decoder
	(h) $(\frac{1}{2}$ point) How does the generator component in a GAN learn to generate realistic samples?
	By minimizing the loss function of the discriminator
	By maximizing the loss function of the discriminator
	A By minimizing the loss function of the generator

 \bigcirc By maximizing the loss function of the generator

(i) $(\frac{1}{2}$ point) What is the purpose of tokenization in NLP?

 $\sqrt{}$ Breaking text into words or phrases

 \bigcirc Identifying parts of speech

O Removing stop words

O Analyzing sentiment

<
(j) $\binom{1}{2}$ point) What is stemming in NLP?
$\sqrt{}$ Reducing words to their base or root form
 Assigning sentiment scores to words
Analyzing grammatical structure
 Identifying named entities
(k) $(\frac{1}{2}$ point) What is the primary purpose of transfer learning?
To train models from scratch for every task
$\sqrt{}$ To leverage pre-trained models for new tasks
To improve model performance on small datasets
To reduce computational costs
(I) $(\frac{1}{2}$ point) Which part of a pre-trained neural network is usually fine-tuned in transfe
learning?
Only the input layer
Only the output layer
○ All layers
$\sqrt{}$ Only the last few layers
(m) $(\frac{1}{2}$ point) What is the primary goal of reinforcement learning?
 To minimize the loss function
$\sqrt{}$ To maximize cumulative rewards over time
To reduce the number of features
○ To generate labeled data
(n) $(^1\!/_{\!2}$ point) Which component in reinforcement learning is responsible for learning?
○ Environment √ Agent ○ Policy ○ Reward
(o) $(^1\!/_{\!2}$ point) What does the term "environment" refer to in reinforcement learning?
The training data
$\sqrt{}$ The external system with which the agent interacts
A type of algorithm
The loss function

DO NOT WRITE ANYTHING HERE

(p) $(\frac{1}{2}$ point) What is the purpose of rewards in reinforcement learning?

DO NOT WRITE ANYTHING HERE O The total number of actions taken $\sqrt{\ }$ A signal given to the agent to indicate how good or bad an action is O The loss value of the agent's model ○ The final state of the environment (q) $(\frac{1}{2}$ point) What does the term "policy" mean in reinforcement learning? O The function that maps actions to rewards $\sqrt{\ }$ The strategy that defines how the agent selects actions The model used to predict future states O The algorithm used to update the environment (r) $(\frac{1}{2}$ point) Which command creates a copy of an existing Git repository? \bigcirc git copy $\sqrt{\text{git clone}}$ \bigcirc git replace \bigcirc git move (s) $(\frac{1}{2}$ point) The "_____" command is a convenient way to set configuration options for defining the behavior of the repository, user information, and preferences. \bigcirc git head \bigcirc git conflict \bigcirc git status \checkmark git config (t) $(\frac{1}{2}$ point) The files that can be committed are present in Git's "_____" area. (u) $(\frac{1}{2}$ point) A head is nothing but a reference to the last commit object of a branch. $\sqrt{\text{Yes}}$ \bigcirc No \bigcirc Can not say (v) $(\frac{1}{2}$ point) What is Docker used for? (w) $(\frac{1}{2}$ point) Which of the following is a keyword of Docker? ○ Develop ○ Ship ○ Run √ All of the previous (x) $(\frac{1}{2}$ point) What is a Dockerfile used for? ○ Building a container ○ Running a container ✓ Creating an image (y) ($\frac{1}{2}$ point) Which command is used to build a new image from a Dockerfile and a "context"? ○ docker pull ○ docker run √ docker build ○ docker commit

JAN. 2025 END OF EXAM PAGE 7/7

(z) $(\frac{1}{2}$ point) What is a Docker registry used for?

Running Docker containersDeleting Docker imagesBuilding Docker images

 $\sqrt{}$ Storing and distributing Docker images