\$\$\qdef\dif{\mathrm{d}}\$\$ \$\$\qdef\pardif#1#2{\frac{\partial #1}{\partial #2}}\$\$

Mathematics for physics

Differentiation and partial differentiation

Lagrange multiplier

1. If there is a condition \$ g(\bm{x})=c\mathrm{\quad where\quad}c\mathrm{\ \ is\ constant} \\$\$ on a variable $\bm{x} = (x_1, \ldots, x_n)$, find the extrema of $f(\bm{x})$. Here, assume that both functions f, g\$ belong to C^1 .

► Answer

Under the condition $g(\m{x})$, a infinitely small variations in variables $\dif \m{x}$ satisfies equation: $\$ nabla $\dif \m{x}$, a infinitely small variations in variables $\dif \m{x}$ satisfies equation: $\$ nabla $\dif \m{x}$ conditions in variables can be describe as follows: $\$ begin{aligned} \dif f &= \nabla f\cdot\dif\bm{x}\ &= \sum_{i=1}^n n\geq f\{f\{x_i\}\dif x_i\ &= \sum_{i=1}^n -1}\pardif\{f\} \ &= \sum_{i=1}^n -1}\dif x_i \ &= \sum_{i=1}^n -1}\dif x_i

Therefore, the extrema of a function $f(\bm{x})$ subject to constraints $g(\bm{x}) = c$ can be obtained by solving the extrema problem for $tide{f} = f - \ambda g$.