

PROJEKTOWANIE MODELI ŁĄCZENIA ŹRÓDEŁ DANYCH

PROJEKT

Model Ekonometryczny

Inżynieria i analiza danych

Dawid Stachiewicz Grupa Lab 05

Nr indeksu: 173218

Spis treści

1.	Wstęp	3
	1.1 Dane użyte w modelu	3
2.	Stworzenie Modelu	4
	Eliminacja zmiennych Quasi – Stałych.	4
3.	Metoda Hellwiga	5
4.	Weryfikacja modelu	8
	Współczynnik dopasowania modelu	8
	Współczynnik zbieżności	8
	Współczynnik wyrazistości	9
	Test T-Studenta	9
	Badanie Koincydencji	0
	Błąd Standardowy	0
5.	Testowanie reszt badanego modelu	1
	Test symetrii składnika losowego.	1
	Test Shapiro – Wilka	2
	Test Serii Durbina – Watsona – badanie korelacji składników losowych 1	3
6.	Test Jaeque – Bera	4
7.	Współczynnik współliniowości – VIF1	5
8.	Podsumowanie	6

1. Wstęp

W ramach projektu zamierzam opracować model ekonometryczny, który będzie analizował zależność między liczbą osób trenujących piłkę nożną w sekcjach sportowych a czynnikami takimi jak liczba osób trenujących piłkę ręczną, siatkówkę, a także liczba klubów sportowych, trenerów, instruktorów oraz prowadzących zajęcia sportowe. Dane zostaną przedstawione w ujęciu rocznym, a wielkość próby wynosi 12 obserwacji.

1.1 Dane użyte w modelu

_								
	Rok	у	x1	X2	х3	х4	x5	х6
	1999	202312	29045	42275	7 256	7015	16237	0
	2000	220114	30366	48558	8 009	7409	14892	0
	2001	235767	30684	53745	8 698	8061	15165	8868
	2002	246211	31413	58448	8798	8232	14846	9485
	2004	285038	32733	78468	9888	8754	16773	10910
	2006	356384	41505	111790	12983	10556	21373	13808
	2008	353126	42205	112657	13411	11108	22570	13746
	2010	382847	40251	99435	13278	12352	23063	11215
	2012	382847	37378	93934	14307	14527	24393	10601
	2014	396168	37023	89557	14009	15739	24046	9212
	2016	452369	40117	86548	14858	24652	21103	8761
	2018	460369	38292	76482	14772	28047	19458	8041

Zmienna objaśniana (y) – ilość osób ćwiczących piłkę nożną w sekcjach sportowych w Polsce Potencjalne zmienne objaśniające:

- > x1 ilość osób ćwiczących piłkę ręczną w sekcjach sportowych w Polsce
- > x2 ilość osób ćwiczących siatkówkę w sekcjach sportowych w Polsce
- > x3 ilość klubów sportowych w Polsce
- > x4 ilość trenerów w Polsce
- > x5 ilość instrukotorów w Polsce
- > x6 ilość Prowadzących zajęcia sportowe w Polsce

2. Stworzenie Modelu

Eliminacja zmiennych Quasi – Stałych.

Zmienne objaśniające powinny charakteryzować się

- Wysoką zmiennością
- Silną korelacją z Y
- Słabą korelacją z innymi zmiennymi objaśniającymi

Aby znaleźć najlepsze zmienne, które wejdą do modelu posłużyłem się metodą eliminacji zmiennych quasi – stałych.

W celu skorzystania z tej metody niezbędne będzie obliczenie odchylenia standardowego oraz

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

średniej:

Gdzie,

xi- wartość i-tego punktu w zbiorze danych

 \bar{x} - wartość średnia całego zbioru danych

n- Liczność próby

Po dokonaniu obliczeń, czyli podzieleniu odchylenia standardowego przez średnią otrzymujemy wartość. Jeśli jest ona większa bądź równa podanej wartości krytycznej, zmienna wchodzi do modelu, w innym wypadku zmienna zostaje odrzucona.

Odchylenie Standardowe		4582 874	23018 13	2779,23651	65/6 032	3565.76	1272 912
Średnia				11688,91667			
Vi		13%	29%	24%	50%	18%	49%
Wartość krytyczna	20%	odpada	zostaje	zostaje	zostaje	odpada	zostaje

Przyjmujemy współczynnik zmienności na poziomie 20%. Oznacza to, że do modelu uwzględniamy jedynie te zmienne, których współczynnik zmienności wynosi co najmniej 20%. W naszym przypadku do modelu zostały zakwalifikowane zmienne: x2, x3, x4 oraz x6.

Po zastosowaniu metody quasi – stałych model wygląda następująco:

$$Y = \propto_0 + \propto_2 x_2 + \propto_3 x_3 + \propto_4 x_4 + \propto_6 x_6$$

Jak widać do modelu zakwalifikowały się cztery zmienne co przedstawia poniższa tabelka.

Rok	у	X2	х3	х4	хб
1999	202312	42275	7 256	7015	0
2000	220114	48558	8 009	7409	0
2001	235767	53745	8 698	8061	8868
2002	246211	58448	8798	8232	9485
2004	285038	78468	9888	8754	10910
2006	356384	111790	12983	10556	13808
2008	353126	112657	13411	11108	13746
2010	382847	99435	13278	12352	11215
2012	382847	93934	14307	14527	10601
2014	396168	89557	14009	15739	9212
2016	452369	86548	14858	24652	8761
2018	460369	76482	14772	28047	8041

3. Metoda Hellwiga

Do wyznaczenia najlepszych zmiennych objaśniających dla zadanego modelu wykorzystam metodę Hellwiga. W tym procesie konieczne będzie skonstruowanie macierzy korelacji, uwzględniającej zależności pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi. Aby uprościć obliczenia, opracowany został moduł korelacji, który wspiera ten etap analizy.

	y	X2	x3	x4	х6	
у	1					
X2	0,711271	1				
х3	0,97762	0,81199233	1			
x4	0,875968	0,30946901	0,776524	1		
хб	0,525391	0,83655503	0,613675	0,17335	1	
Modu	ł Korelacji:					
	у	X2	<i>x</i> 3	x4	хб	
у	1	0,71127106	0,97762	0,875968	0,525391	
X2	0,711271	1	0,811992	0,309469	0,836555	
х3	0,97762	0,81199233	1	0,776524	0,613675	
x4	0,875968	0,30946901	0,776524	1	0,17335	

W kolejnym etapie przeprowadzono wyznaczenie możliwych kombinacji zmiennych. W tym celu zastosowano macierz zero-jedynkową, która umożliwiła reprezentację i analizę różnych zestawień zmiennych objaśniających.

49	Wyznaczenie k	ombinacji (macierz zero-j	edynkowa)		
50	X2	x3	x4	хб	Kombinacje
51 C1		1	0	0	0 X2
52 C2		0	1	0	0 X3
53 C3		0	0	1	0 X4
54 C4		0	0	0	1 X6
55 C5		1	1	0	0 X2,X3
56 C6		1	0	1	0 X2,X4
57 C7		1	0	0	1 X2,X6
58 C8		0	1	1	0 X3,X4
59 C9		0	1	0	1 X3,X6
60 C10		0	0	1	1 X4,X6
61 C11		1	1	1	0 X2,X3,X4
52 C12		1	1	0	1 X2,X3,X6
63 C13		1	0	1	1 X2,X4,X6
64 C14		0	1	1	1 X3,X4,X6
65 C15		1	1	1	1 X2,X3,X4,X6

W kolejnym kroku obliczono wartości dla poszczególnych kombinacji zmiennych, bazując na wcześniej utworzonej macierzy zero-jedynkowej. Dzięki temu możliwe było określenie wpływu różnych zestawień zmiennych na analizowany model.

66								
67	Wyznaczanie indywidualnyc	h h_sj i Integralnych H_j wska	źników pojemości info	rmacyjnej	(na podsta	awie macierzy	zero-jedyi	nkowej)
68	h_sj	X2	x3	х4	х6	Н		
69	C1	0,505906515	0	0	0	0,505906515		
70	C2	0	0,955740293	0	0	0,955740293		
71	C3	0	0	0,767321	0	0,767320525		
72	C4	0	0	0	0,276036	0,276035718		
73	C5	0,279199037	0,527452724	0	0	0,806651761		
74	C6	0,386344777	0	0,585978	0	0,972323153		
75	C7	0,275464937	0	0	0,150301	0,425765751		
76	C8	0	0,537983347	0,431922	0	0,969905772		
77	C9	0	0,592275416	0	0,17106	0,763335662		
78	C10	0	0	0,653957	0,235254	0,889211433		
79	C11	0,238470767	0,369223213	0,367844	0	0,975538236		
80	C12	0,191012825	0,394011209	0	0,112657	0,697681077		
81	C13	0,235741308	0	0,517474	0,137338	0,890553157		
82	C14	0	0,399857979	0,393523	0,154467	0,947847708		
83	C15	0,171028977	0,29846442	0,339621	0,105213	0,91432785		
84								

Po obliczeniu H, wyniki zostały posortowane w kolejności malejącej, aby ułatwić wybór optymalnego zestawu zmiennych objaśniających dla modelu.

Н	
0,975538	C11
0,972323	C6
0,969906	C8
0,95574	C2
0,947848	C14
0,914328	C15
0,890553	C13
0,889211	C10
0,806652	C5
0,767321	C3
0,763336	C9
0,697681	C12
0,505907	C1
0,425766	C7
0,276036	C4

Jak wynika z analizy, najodpowiedniejszym zbiorem zmiennych objaśniających okazał się zbiór C11, który obejmuje zmienne x2, x3 oraz x4. Na podstawie powyższych obliczeń został wyznaczony nowy model:

$$Y = \alpha_0 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4$$

Dane, na podstawie których będą prowadzone dalsze obliczenia, przedstawiają się następująco:

86	Rok	у	X2	х3	х4
87	1999	202312	42275	7 256	7015
88	2000	220114	48558	8 009	7409
89	2001	235767	53745	8 698	8061
90	2002	246211	58448	8798	8232
91	2004	285038	78468	9888	8754
92	2006	356384	111790	12983	10556
93	2008	353126	112657	13411	11108
94	2010	382847	99435	13278	12352
95	2012	382847	93934	14307	14527
96	2014	396168	89557	14009	15739
97	2016	452369	86548	14858	24652
98	2018	460369	76482	14772	28047

4. Weryfikacja modelu

Współczynnik dopasowania modelu

Współczynnik ten wskazuje, jaka część wariancji zmiennej objaśnianej jest wyjaśniana przez korelacje ze zmiennymi uwzględnionymi w modelu.

$$R^2:=rac{\sum\limits_{i=1}^n(\hat{y}_i-\overline{y})^2}{\sum\limits_{i=1}^n(y_i-\overline{y})^2}\geqslant 0,$$

W przypadku badanego modelu wyniki są następujące:

104 Statystyki regre	esji
105 Wielokrotność R	0,995927625
106 R kwadrat	0,991871835
107 Dopasowany R kwadrat	0,988823773
108 Błąd standardowy	9533,306718
109 Obserwacje	12
110	

W tym przypadku współczynnik determinacji R^2 osiąga bardzo wysoką wartość, wynoszącą ponad 99%. Oznacza to, że model w dużym stopniu wyjaśnia zmienność zmiennej objaśnianej.

Współczynnik zbieżności

Jest to dopełnienie współczynnika determinacji R²

$$\varphi^2 = 1 - R^2$$

Ten współczynnik wskazuje, jaka część zaobserwowanej zmienności zmiennej objaśnianej w próbie nie jest wyjaśniana przez model.

Statystyki regresji	
Wielokrotność R	0,995928
R kwadrat	0,991872
Dopasowany R kwadrat	0,988824
Błąd standardowy	9533,307
Obserwacje	12
Wspólczynnik Determinacji	0,008128

Przy badanym modelu współczynnik ten wynosi : 0,008128.

Współczynnik wyrazistości

Współczynnik ten mówi o tym jaką część średniej wartości zmiennej Y stanowi jej odchylenie standardowe reszt dla modelu.

W przypadku analizowanego modelu wartość współczynnika wyrazistości wynosi 3%. Jest to stosunkowo niewielka wartość, co pozwala stwierdzić, że model charakteryzuje się dobrą jakością dopasowania.

Test T-Studenta

- **Hipoteza zerowa (H0):** α=0 parametr stojący przy zmiennej jest statystycznie nieistotny.
- **Hipoteza alternatywna (H1):** α≠0 parametr stojący przy zmiennej jest statystycznie istotny.

Hipoteza zerowa (H0: α = 0) oznacza, że parametr stojący przy danej zmiennej jest statystycznie nieistotny.		Parametry t2 oraz t3 przekraczają wartość krytyczną, co oznacza, że zmienne objaśniające x3 i x4 mają istotny wpływ na zmianę objaśniana					
		T Stat Kryt	2,262157				
x4	5,451052006	1,36813713	3,984288	0,004037418			
x3	16,68735937	5,249953828	3,178573	0,01302543			
X2	0,552099254	0,420022706	1,314451	0,225126751			
	Współczynniki	Błąd standardowy	t Stat	Wartość-p			

Parametry **t2** oraz **t3** przewyższają wartość krytyczną, co wskazuje, że zmienne objaśniające **x3** oraz **x4** mają istotny wpływ na zmienną objaśnianą.

Badanie Koincydencji

					1			merytoryc arametrów	
	у		zynniki	Współc	x4	x3	X2	у	Rok
	1	У	21208,05	Przecięcie	7015	7 256	42275	202312	1999
	0,711271	X2	0,552099	X2	7409	8 009	48558	220114	2000
	0,97762	x3	16,68736	x3	8061	8 698	53745	235767	2001
	0,875968	x4	5,451052	x4	8232	8798	58448	246211	2002
					8754	9888	78468	285038	2004
070207	są zgodne, co	v3 i v4	nnych x2	Znaki zmie	10556	12983	111790	356384	2006
	arametrów mo		-		11108	13411	112657	353126	2008
		_		_	12352	13278	99435	382847	2010
	prawidłowo wskazują kierunek zależności pomię		14527	14307	93934	382847	2012		
	zmienną objaśnianą a zmiennymi objaśniającymi x2,x3 i x4, zgodnie z zależnościami wynikającymi danych empirycznych.			15739	14009	89557	396168	2014	
ającymi				24652	14858	86548	452369	2016	
	ycznych.	n empir	danyo		28047	14772	76482	460369	2018

Znaki wszystkich zmiennych są zgodne, co oznacza, że uzyskane wartości parametrów modelu prawidłowo wskazują kierunek zależności pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi **x2**, **x3** oraz **x4**.

Błąd Standardowy

Statystyki regresji	
Wielokrotność R	0,995928
R kwadrat	0,991872
Dopasowany R kwadrat	0,988824
Błąd standardowy	9533,307
Obserwacje	12
Wspólczynnik Determinacji	0,008128

W analizowanym modelu błąd standardowy jest stosunkowo duży, co może sugerować, że model charakteryzuje się niską precyzją i może być mało wiarygodny w przewidywaniu zmiennej objaśnianej.

5. Testowanie reszt badanego modelu

Wykres składników resztowych ułożony w kolejności rosnącej

Test symetrii składnika losowego.

Celem tego testu jest ocena trafności przyjętej postaci analitycznej modelu. W ramach analizy wykorzystano następujące dane:

5			Bad	anie Symetrycznoś	ci			
7	e(y-y')	Jeśli > 0 to 1						
8	-1558,65	0		Liczność Próby	Liczba Reszt Doda	itnich	Wartość Stat.	
9	-1938,79	0		12	5		0,585540044	
10	-4201,2	0						
11	1045,409	1		Spośród składników resztowych 5 jest dodatnich.				
12	7784,711	1			ila testu symetrii. p	_		
13	-736,513	0		_	owinna mieścić się	-		
14	-14624,4	0			zba reszt znajduje	-	, . , .	
15	17834,81	1		_	reszt można uznać:		-	
16	-8155,42	0						
17	5948,276	1						
18	1057,748	1						
19	-2456,03	0						

Liczba dodatnich reszt mieści się w wyznaczonym przedziale, co pozwala stwierdzić, że wektor reszt jest symetryczny.

Test Shapiro – Wilka

Celem tego testu jest weryfikacja normalności rozkładu składnika losowego.

- **Hipoteza zerowa (H0):** Składnik losowy ma rozkład normalny.
- Hipoteza alternatywna (H1): Składnik losowy nie ma rozkładu normalnego.

		Te	st Shapiro	Wilka				
i	e(y-y')	U Rosnąco	U Malejąc	o a_i	ai*(Um-Ur)	(Ui-śrU)^2		
7	-14624,3538	-1,878792201	2,2912401	7 0,5475	2,28309272	3,5298601		
9	-8155,420258	-1,04772766	1,0001026	2 0,3325	0,68090357	1,0977332		
3	-4201,202356	-0,539728889	0,7641756	5 0,2347	0,30602639	0,2913073		
12	-2456,029301	-0,315526331	0,1358890	3 0,1586	0,07159448	0,0995569		
2	-1938,787011	-0,249076162	0,134303	8 0,0922	0,03534763	0,0620389		
1	-1558,651301	-0,200240089	-0,094619	9 0,0303	0,00320029	0,0400961		
6	-736,5132266	-0,094619928	-0,200240	1	0	0,0089529		
4	1045,40902	0,134303802	-0,249076	2	0	0,0180375		
11	1057,74826	0,135889025	-0,315526	3	0	0,0184658		
10	5948,276238	0,764175646	-0,539728	9	0	0,5839644		
5	7784,711088	1,000102615	-1,047727	7	0	1,0002052		
8	17834,81265	2,291240172	-1,878792	2	0	5,2497815		
					3,38016508	12		
	Średnia	Odch.STD						
	-7,27596E-12	7783,91234		337 . (/1	. 1		4.	-
	W	0,952126333		wartosc kr	ytyczna odc		one wynos	31
	n	12	0,859.				bentuczna	40
	alfa	0,05	Ponieważ W nie należy do obszaru krytycz nie ma podstaw do odrzucenia hipotezy zero					
	Wart. Kryt	0,859	111	normalności rozkładu składnika losoweg				
	Obszar Krytyczny	(0;0,859>						

Obliczona wartość **W** nie mieści się w obszarze krytycznym, co oznacza, że nie ma podstaw do odrzucenia hipotezy zerowej. Tym samym można stwierdzić, że składnik losowy ma rozkład normalny.

Test Serii Durbina – Watsona – badanie korelacji składników losowych Dane użyte do przeprowadzenia testu:

e(y-y')	e-1	et-e(t-1)
-1558,6513		
-1938,787	-1558,65	-380,136
-4201,2024	-1938,79	-2262,42
1045,40902	-4201,2	5246,611
7784,71109	1045,409	6739,302
-736,51323	7784,711	-8521,22
-14624,354	-736,513	-13887,8
17834,8126	-14624,4	32459,17
-8155,4203	17834,81	-25990,2
5948,27624	-8155,42	14103,7
1057,74826	5948,276	-4890,53
-2456,0293	1057,748	-3513,78
	-2456,03	

Wartość krytyczną dla tego rozkładu odczytuje się z tablic, przyjmując poziom istotności testu $\alpha = 0.05$, liczbę obserwacji n = 12, oraz liczbę zmiennych objaśniających k = 3.

Suma kwadratów różnic	2307959373
Suma kwadratów reszt	727071496
n	12
k	3
DI	0,66
Du	1,86
Stat. DW	3,17432245
DW*	0,82567755

Wartość statystyki Durbin-Watsona (DW) przekracza 1,86, co prowadzi do weryfikacji hipotezy alternatywnej, zakładającej ujemną korelację reszt. Aby to zweryfikować, konieczne jest obliczenie statystyki **DW***.

Do tego celu wykorzystujemy odpowiedni wzór.

$$DW *= 4 - DW$$

Statystyka **DW*** znajduje się w przedziale **(0,66;1,86)**, co oznacza, że leży w obszarze niekonkluzywnym. W związku z tym konieczne jest zastosowanie innego testu statystycznego w celu weryfikacji założeń modelu.

6. Test Jaeque – Bera

Test służy do weryfikacji normalności rozkładu odchyleń losowych

Dane użyte w teście:

				_
e(y-y')	e^2	e^3	e^4	
-1558,65	2429393,879	-3786577932	5,90195E+12	
-1938,79	3758895,075	-7287696948	1,41293E+13	
-4201,2	17650101,24	-7,4152E+10	3,11526E+14	
1045,409	1092880,019	1142506630	1,19439E+12	
7784,711	60601726,72	4,71767E+11	3,67257E+15	
-736,513	542451,7329	-399522876	2,94254E+11	
-14624,4	213871724	-3,1277E+12	4,57411E+16	
17834,81	318080542,1	5,67291E+12	1,01175E+17	
-8155,42	66510879,59	-5,4242E+11	4,4237E+15	
5948,276	35381990,21	2,10462E+11	1,25189E+15	
1057,748	1118831,381	1183441946	1,25178E+12	
-2456,03	6032079,926	-1,4815E+10	3,6386E+13	

Aby przeprowadzić test Jarque'a-Bery, konieczne było zgromadzenie następujących parametrów:

- Suma e^2 , e^3 , e^4 , $(e^4)^2$
- Liczność próby (n),
- Wartość kurtozy,
- Współczynnik skośności (w),
- Wartość k.

5	SUMA	727071495,9	2,58686E+12	1,56635E+17
5				
7	SUMA e4^2			2,45346E+34
3	n			12
9	Kurtoza			0,52515203
þ	w			4,2975E-57
ı	k			1,20787E-60
2	JB			4,5
3	rozkład chi^2			5,991464547

Wartość statystyki testu Jarque'a-Bery (JB) jest mniejsza od wartości krytycznej odczytanej z tablic, co oznacza, że nie ma podstaw do odrzucenia hipotezy zerowej. Tym samym można przyjąć, że odchylenia losowe w modelu mają rozkład normalny.

7. Współczynnik współliniowości – VIF

Współczynnik ten jest stosowany w analizie regresji wielorakiej i służy do identyfikacji współliniowości predyktorów, pomagając wykryć przypadki, w których współczynnik determinacji może być sztucznie zawyżony.

Interpretacja współczynnika VIF:

- VIF = 1: brak współliniowości predyktorów, model jest dobrze dopasowany.
- 1 < VIF < 10: występuje niewielka współliniowość predyktorów; warto rozważyć zmianę modelu.
- VIF > 10: występuje silna współliniowość predyktorów; należy usunąć jedną ze zmiennych z modelu.

Dane wykorzystane w analizie współczynnika VIF oraz uzyskane wyniki:

		V2	2	4	
	У	X2	x3	x4	
	202312	42275	7 256	7015	
	220114	48558	8 009	7409	
	235767	53745	8 698	8061	
	246211	58448	8798	8232	
	285038	78468	9888	8754	
	356384	111790	12983	10556	
	353126	112657	13411	11108	
	382847	99435	13278	12352	
	382847	93934	14307	14527	
	396168	89557	14009	15739	
	452369	86548	14858	24652	
	460369	76482	14772	28047	
		Wy	ystępuje si	Ina	
VIE vo	20 20274	współlinie	owość pred	dyktórów,	
VIF_x2	29,38374	należy	usunąć z n	nodelu	
			zmienną		
		Wystę	puje niezr	naczna	
		współlinie	owość pred	dyktorów,	
VIF_x3	5,354274	warto	rozważyć z	mianę	
			modelu		
		W	ystępuje si	Ina	
		współliniowość predyktorów			
VIF_x4	22,54245	należy usunąć z modelu			
		zmienną			

Na podstawie przeprowadzonego badania stwierdzono, że zaleca się usunięcie zmiennych x2 oraz x4 z modelu, a także dokonanie modyfikacji w zakresie modelowania zmiennej x3.

8. Podsumowanie

Po przeprowadzeniu szczegółowych testów i analiz modelu ekonometrycznego uzyskano następujące wyniki oraz wnioski:

- 1. Normalność rozkładu składnika losowego: Przeprowadzone testy, w tym test Jarque'a-Bery oraz Shapiro-Wilka, wykazały, że składnik losowy oraz odchylenia losowe w modelu charakteryzują się rozkładem normalnym. Brak podstaw do odrzucenia hipotez zerowych w tych testach sugeruje, że model spełnia założenia dotyczące normalności rozkładu reszt, co jest kluczowe dla poprawności wnioskowania statystycznego. Dodatkowo, analiza symetrii reszt wskazała, że wektor reszt jest symetryczny, co dodatkowo wspiera trafność przyjętej postaci analitycznej modelu.
- 2. **Autokorelacja reszt**: Weryfikacja autokorelacji składników losowych za pomocą testu Durbin-Watsona była niejednoznaczna. Statystyka **DW*** znalazła się w obszarze niekonkluzywnym, co oznacza, że nie można jednoznacznie potwierdzić ani wykluczyć obecności autokorelacji w modelu. W związku z tym konieczne jest zastosowanie dodatkowych testów lub metod, aby rozstrzygnąć ten problem.
- 3. **Błąd standardowy modelu**: Duża wartość błędu standardowego wskazuje, że model może być zawodny i niezbyt dokładny w przewidywaniu zmiennej objaśnianej. Oznacza to, że mimo wysokiego współczynnika determinacji ($R^2 > 99\%$), istnieją istotne problemy z precyzją oszacowań parametrów.
- 4. **Współliniowość zmiennych objaśniających**: Analiza współczynnika VIF ujawniła silną współliniowość pomiędzy zmiennymi objaśniającymi **x2** i **x4**. W takich przypadkach zaleca się usunięcie jednej lub obu tych zmiennych, aby poprawić stabilność modelu. Jednocześnie wyniki wskazują na potrzebę modyfikacji sposobu uwzględnienia zmiennej **x3**, która również może przyczyniać się do problemów z wiarygodnością oszacowań.
- 5. **Jakość modelu i jego założenia**: Chociaż niektóre założenia modelu, takie jak normalność reszt, zostały spełnione, brak jednoznacznego rozstrzygnięcia w kwestii autokorelacji oraz obecność współliniowości zmiennych objaśniających wpływają negatywnie na jakość wyników. Te problemy mogą prowadzić do błędnych oszacowań parametrów, co obniża wiarygodność modelu.

Podsumowując, chociaż model posiada pewne pozytywne cechy, takie jak zgodność z rozkładem normalnym reszt, istnieją istotne problemy techniczne, które należałoby rozwiązać, aby poprawić jego użyteczność i wiarygodność w analizach.