Assignment #2, Total: 10 pts

Name: NetID:

Chapter 4. Diodes

1. (0.5 pts) Assuming that the diodes in the circuits are *ideal*, find the values of the labeled voltage and current.

2. (2 pts) Design a zener regulator circuit using a 7.5-V zener specified at 10 mA. The zener has an incremental resistance $r_z = 30~\Omega$ and a knee current of 0.5 mA. The

regulator operates from a 10-V supply and delivers a nominal current of 5 mA to the load.

- (a) What is the value of R you have chosen?
- (b) What is the output voltage when both the supply is 10% high and the load is removed?
- (c) What is the largest load current that can be delivered while the zener operates at a current no lower than the knee current while the supply is 10% low?

Chapter 5. MOS Field-Effect Transistors (MOSFETs)

3. (1 pt) The PMOS transistor in the circuit has $V_t = -0.5$ V, $\mu_p C_{ox} = 100 \,\mu\text{A/V}^2$, L = 0.18 μm , and λ = 0. Find the values required for W and R in order to establish a drain current of 160 μA and a voltage V_D of 0.8 V.

4. (1 pt) For a particular MOSFET operating in the saturation region at a constant v_{GS} , i_D is found to be 200 μ A for v_{DS} = 1 V and 205 μ A for v_{DS} = 1.5 V. Find the values of r_o , V_A , and λ .

Chapter 6. Bipolar Junction Transistors (BJTs)

5. (1 pt) In the circuit shown in the figure, the power supplies are ± 3 V and the voltage at the emitter was measured and found to be -0.7 V. If β = 50, find I_E, I_B, I_C, and V_C.

Chapter 7. Transistor Amplifiers

6. (1 pt) A designer wants to create a BJT amplifier with a gm of 20 mA/V and a base input resistance of 4000 Ω or more. What collector-bias current should she choose? What is the minimum β she can tolerate for the transistor used?

- 7. (1.5 pt) Consider the amplifier of the following circuit: V_{DD} = 5 V, R_D = 24 k Ω , (W/L) = 1 mA/V², and V_t = 1 V.
 - (a) Find the coordinates of the two end points of the saturation-region segment of the amplifier transfer characteristic, that is, points A and B.
 - (b) If the amplifier is biased to operate with an overdrive voltage V_{OV} of 0.5 V, find the coordinates of the bias point Q on the transfer characteristic. Also, find the value of I_{D} and of the incremental gain A_{v} at the bias point.

- 8. (2 pts) The following figure shows a discrete-circuit amplifier. The input signal v_{sig} is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite). All capacitors behave as short circuits for signals and as open circuits for dc.
 - (a) If the transistor has $V_t = 1$ V, and $k_n = 4$ mA/V², verify that the bias circuit establishes $V_{GS} = 1.5$ V, $I_D = 0.5$ mA, and $V_D = +7.0$ V. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters.
 - (b) Find gm and r_o if $V_A = 100$ V.
 - (c) Find R_{in} , v_{gs}/v_{sig} , v_o/v_{gs} , and v_o/v_{sig} .

