Méthodes Numériques et Modélisation

Fondements de l'intelligence artificielle et applications aux sciences atmosphériques

CLASSIFICATION

- Associer à chaque donnée un label (étiquette) parmi un ensemble de labels possibles
- Classification binaire
 - Deux classes -> on peut faire un "est-ce X" oui ou non
- Classification multiclasse
 - Plusieurs méthodes
 - Binaire pour chaque classe
 - "vrai" multiclasse -> probabilité générale
- Cas particuliers
 - Classification multilabel
 - Une donnée peut appartenir à plusieurs classes
 - Détection d'objets
 - Classer des éléments d'une image (et pas toute l'image)
 - Segmentation
 - Chaque pixel de l'image sera classé (puis associés)

Classification

Prédire une classe (qualitative, discrète)

ALGORITHMES POUR LA CLASSIFICATION SUPERVISÉE

Plusieurs algorithmes:

- ☐ Arbre de décision
- ☐ Forêts aléatoires
- ☐ XGBoost
- ☐ KNN (K Nearest Neighbors)
- ☐ Classification naïve bayésienne
- ☐ Régression logistique
- ☐Machine à vecteurs de support (SVM)
- ☐ Réseau de neurones

Arbres de Décision

Bases

- Méthode de classification simple
- Méthode supervisée (données étiquetées)
- Comparable à un enchainement de « questions » (conditions) if – else

Dois-je prendre un parapluie?

 La méthode cherche l'ordre des « questions » de manière à minimiser la taille de l'arbre

Arbres de Décision en Python

Méthode de classification

from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier()

L'opération « fit » réalise l'entraînement du modèle (« training » ou « fitting »)

clf.fit (x_train[feature_names], y_train[target])

Données d'entrainement (training features)

Classes (target) pour les données de training

Création de **l'objet** qui contiendra notre **arbre de décision**. C'est lui qu'on va manipuler pour créer l'arbre et l'utiliser.

> Pour l'entrainement, l'opération « **fit** » a besoin de deux **DataFrames** ...

y_pred = clf.predict(x_test[feature_names])

Données de test (testing features)

Une fois entraîné, le modèle peut être **testé**, puis utilisé pour la **classification**...

Exemple

Créer le DataFrame de training

```
feature_names = ['Chance Rain', 'UV Index']
target = 'Umbrella'
```

Créer son objet DecisionTreeClassifier

```
clf = DecisionTreeClassifier()
```

• Entrainer son modèle

```
clf.fit ( dfUmbrella[feature_names] , dfUmbrella[target] )
```

• Tester son modèle

```
y_pred = clf.predict(x_test)
print (y_pred)
```

[False True]

Arbres de Décision en Python

- Comment visualiser son modèle ?
 - L'arbre de décision créé peut être visualisé

Mode texte

export_text

from sklearn.tree import export_text

print (texte)

Mode graphique (MatPlot) plot_tree

from sklearn.tree import plot_tree

```
plot tree(clf,
  feature_names=feature names,
  class_names=
                                                       Chance Rain <= 0.55
     ['Non','Oui'],
                                                          samples = 5
                                                          value = [2, 3]
                                                          class = Oui
  fontsize=10)
                                     UV Index <= 7.0
                                      gini = 0.444
                                                                              samples = 2
                                       samples = 3
                                                                              value = [0, 2]
                                      value = [2, 1]
class = Non
                    gini = 0.0
                   samples = 2
                                                          samples = 1
                   value = [2, 0]
                                                          value = [0, 1]
                   class = Non
```

Arbres de Décision en Python

- Quelle est l'importance de chaque feature ?
 - Certains features peuvent contribuer plus à la décision que d'autres
 - On peut connaitre le niveau d'importance des features dans un l'arbre entrainé
 - Attribut feature_importances_

Création d'un DataFrame avec les features et leur importance (juste pour visualiser plus facilement) Chaque **feature** va avoir un niveau d'**importance** entre 0 et 1.

	feature_names	importance
0	Chance Rain	0.44444
1	UV Index	0.555556

L'importance indique le niveau d'influence d'une variable dans la décision

Où s'arrêter?

- Critère d'arrêt
 - Par défaut, les algorithmes ne s'arrêtent que lorsque une feuille est pure ou ne contient qu'un seul enregistrement
 - Cela mène souvent au surapprentissage
 - Il est possible de changer le critère
 - Profondeur maximale (max depth)
 - Nombre minimal d'enregistrements d'un nœud pour le couper (min samples split)
 - Nombre minimal d'enregistrements dans une feille (min_samples_leaf)
 - Nombre maximal de feuilles (max leaf nodes)
 - ...

Résumé Arbres de Décision

Avantages:

- > Facilement interprétables
- Complexité algorithmique faible
- > Très facile à transposer sur un programme (suite de if-then-else)

Inconvénients:

- > Hypothèse de non-corrélation entre attributs
 - les nœuds ne peuvent tester qu'un seul attribut
- > Impossibilité de classer un nouvel exemple dont certains attributs sont inconnus ou imprécis
- > Tombe facilement dans le cas du **sur-apprentissage**

Mais pourquoi un seul arbre?

- La répartition des données train/test a une grande influence sur les arbres de décision
 - Répartition ≠ → Arbre ≠ → Qualité ≠
- Pourquoi ne générer qu'un seul arbre ?

```
6 |--- age <= 8.50

| |--- passengerClass_2nd <= 0.50

| | |--- passengerClass_1st <= 0.50

| | | |--- age <= 0.38

| | | | |--- class: 0.0

| | | |--- age > 0.38

| | | | |--- class: 1.0

| | |--- passengerClass_1st > 0.50

| | |--- class: 1.0

| |--- class: 1.0

| |--- age > 8.50
```

MÉTHODES ENSEMBLISTES

Where do data scientists go camping?

In random forests

- Méthodes proposant de combiner plusieurs modèles
 - Objectif : compenser les erreurs et réduire le sur-apprentissage

Bagging

- Agréger plusieurs modèles d'un même algorithme
- Modèles créés par ≠ sousensembles des données
- Sous-ensembles choisis aléatoirement
- Prédiction par vote ou moyenne des prédictions

Boosting

- Agréger plusieurs modèles d'un même algorithme
- Modèles créés en ordre
- Sous-ensembles ≠ des données
- Données choisies en fonction des prédictions précédentes : ↑ erreur ↑ probabilité d'être choisi
- Prédiction par vote ou moyenne des prédictions

Stacking

- Modèles ≠ provenant d'algorithmes ≠
- Même ensemble des données, mais algo ≠
- Prédiction hiérarchique : les prédictions des modèles alimentent un métamodèle, qui les agrège

M2 Atmosphère/ Climat

RANDOM FOREST

- Random Forest
 - Méthode ensembliste de type « Bagging »
 - Créer plusieurs arbres, chacun à partir d'un sous-ensemble des données différents (choix aléatoire)
 - Prédiction : moyenne des prédictions des modèles
 - Il est possible d'accéder à chaque arbre individuellement

Random Forest en Python

Bibliothèque des méthodes ensemblistes

Méthode de classification

from sklearn.ensemble import RandomForestClassifier

Nombre d'arbres (estimateurs) à créer

foret = RandomForestClassifier (n_estimators=50)

Entraînement du modèle

foret.fit (X_train, Y_train)

Données d'entrainement (features X et target Y)

pred_foret = foret.predict (X_test)

Usage de la forêt pour la prédiction (classification)

Données de test (testing features)

Création de **l'objet** qui contiendra notre **forêt**.

Option (reproductibilité) : random_state = 42

XGBOOST (EXTREME GRADIENT BOOST)

- XGBoost
 - Méthode ensembliste de type « Boosting »
 - Très populaire, souvent plus efficace que les réseaux de neurones pour les données tabulaires
 - Créer plusieurs arbres, séquentiellement
 - Chaque fois, les données sont choisies afin de maximiser la classification des résultats erronés
 - Prédiction : par vote (majorité) ou moyenne des prédictions des modèles

M2 Atmosphère/ Climat

Autres algorithmes

L'ALGORITHME KNN (K-NEAREST NEIGNBORS)

- Regarder la classe des *k* exemples les plus proches de l'individu à classer, ensuite lui affecter la classe majoritaire
- ➤ Proches ???
- ➤ On dit que deux individus sont (+|-) proches s'il y a une (petite | grande) distance entre eux
 - > À nous de décider comment calculer cette distance

> Se base sur le proverbe:

"Dis moi qui tu fréquentes, je te dirais qui tu es!"

DÉCOUPAGE EN ENSEMBLE D'ENTRAINEMENT / TEST

	X (features	s)	Y (labe	l)		
Customer	Age	Income	No. credit cards	Loyal		Features	Labels
John 🧣	35	35K	3	No			
Rachel M	22	50K	2	Yes	Training Set	X_train	y_train
Hannah	63	200K	1	No			
Tom 🥻	59	170K	1	No	Test Set	X_test	y tost
Nellie 🔭	25	40K	4	Yes			y_test

L'ALGORITHME KNN (K-NEAREST NEIGHBORS)

Customer	Age	Income	No. credit cards	Loyal
John 🧣	35	35K	3	No
Rachel 1	22	50K	2	Yes
Hannah 🎉	63	200K	1	No
Tom	59	170K	1	No
Nellie 🔑	25	40K	4	Yes
David	37	50K	2	?

Distance (David, indiv i)

Distance (David, John) = $\sqrt{[(35-37)^2+(35-50)^2+(3-2)^2]}$ = **15,16**

Distance (David, Rachel) = $\sqrt{[(22-37)^2+(50-50)^2+(2-2)^2]}$ = **15**

Distance (David, Hannah) = $\sqrt{[(63-37)^2+(200-50)^2+(1-2)^2]}$ = **152,16**

Distance (David, Tom) = $\sqrt{[(59-37)^2+(170-50)^2+(1-2)^2]}$ = **122**

Distance (David, Nellie) = $\sqrt{[(25-37)^2+(40-50)^2+(4-2)^2]}$ = **15,74**

L'algorithme KNN (K-Nearest Neighbors)

Classification Naïve Bayésienne

- Cet algorithme utilise la probabilité de la répartition des données entre Règle de Bayes : différentes classes
 - La méthode est dite "naïve" car elle suppose que les variables sont indépendantes
 - Ça reste néanmoins une méthode très performante
- Ex : prédire le sexe selon la taille d'un individu

$$P(C_k|x) = \frac{P(x \mid C_k) * P(C_k)}{P(x)}$$

$$P(C_H|\ 1.68) = \frac{P(1.68 \mid C_H) \ *P(C_H)}{P(1.68)}$$

Métriques de qualité

COMMENT ÉVALUER UN MODÈLE?

- Dans une classification, on veut savoir si notre modèle fait bien son boulot
- Dans le cas d'une classification binaire, on peut faire usage d'une matrice de confusion

Ex : est-ce que la valeur X appartient à la classe "1" ?

		Classe réelle		
		-	+	
Classe	-	True N egatives (vrais négatifs)	False Negatives (faux négatifs)	
prédite	+	False Positives (faux positifs)	True Positives (vrais positifs)	

	Nom du cas	Abréviation	Description
?	Vrai positif	VP	La donnée appartient à la classe "1" et a été prédite comme tel
	Vrai négatif	VN	La donnée appartient à la classe "0" et a été prédite comme tel
	Faux positif	FP	La donnée appartient à la classe "0" mais a été prédite comme classe "1" -> Erreur type 1
Faux négatif		FN	La donnée appartient à la classe "1" mais a été prédite comme classe "0" -> Erreur type 2

M2 Atmosphère/ Climat

IMPACT D'UNE ERREUR

- On voit qu'il y a deux types d'erreur dans une classification binaire
- Erreur type 1 faux positif
- Erreur type 2 faux négatif
- En général, une erreur type 1 est moins grave qu'une type 2
- Ex : recherche d'une maladie
 - En cas de faux-positif, les tests cliniques / médecin permettront de vérifier la présence de la maladie
 - En cas de faux-négatif, le patient est renvoyé sans traitement
- Ex : recherche de défauts dans une chaîne de montage
 - FP -> la pièce est écartée puis sera recyclée/jetée
 - FN -> le produit aura une pièce défectueuse

COMMENT ÉVALUER UN MODÈLE?

 Dans le cas d'une classification multiclasse, on peut également faire usage d'une matrice de confusion

Ceci permet de voir combien d'éléments sont classées chaque classe

```
1 print(confusion_matrix(y_test, ypred))
2
[[23  0  0]
[ 0  19  0]
[ 0  1  17]]
```


M2 Atmosphère/ Climat

Indicateurs dérivés de la Matrice de Confusion

- Accuracy : un pourcentage à maximiser
 - Désigne la proportion des prédictions correctes effectuées par le modèle

- Sur une classification multiclasse, l'Accuracy est calculé en prenant la somme des bonnes prédictions (diagonale) divisé par le nombre de cas.
- Il n'y a pas une valeur Accuracy de référence. Selon le cas, 60% peut être bon (ex : identifier des clients avec potentiel d'investissement), alors que dans d'autres cas il faut cherche le 99,99% (identification de piétons dans une voiture autonome)
 - Note: en français la traduction la plus proche serait "précision", mais il y a une autre métrique precision.

Certains travaux utilisent "justesse" ou "exactitude", mais c'est Accuracy qui reste le plus répandu

Indicateurs dérivés de la Matrice de Confusion

- La métrique Accuracy a trois défauts majeurs:
- 1. Ne donne aucune information sur les erreurs commises
 - L'impact n'est pas le même si c'est type 1 ou type 2
- 2. Peu informative si les classes sont déséquilibrées
 - 1. Ex : détection de défauts où seulement 1% des pièces sont défectueuses
 - 2. Accuracy 99% -> soit il détecte une partie des défauts (type 2), soit il considère que toutes sont bonnes (type 1)
- 3. Accuracy 100% -> quasiment impossible, à se méfier !
 - 1. Suraprentissage?
 - 2. Données val/test trop proches des données train?
 - 3. Des informations qui "fuitent" la classe?

RAPPEL ET PRÉCISION

- Le rappel (Recall) est l'un des critères permettant d'évaluer la sensibilité du modèle
 - Proportion de la classe X détectée vraiment

$$Rappel = \frac{nombre\ de\ vrai\ positifs}{Nombre\ de\ vrai\ positifs + faux\ n\'egatifs} = \frac{TP}{TP + FN}$$

- Un grand recall indique que presque tous les éléments de la classe cible ont été détectés
- Plus le recall est grand, moins d'erreurs de type 2 (faux négatifs), qui sont les plus graves
- La précision (Precision) indique la proportion de vrais positifs dans l'ensemble de positifs détectés $Precision = \frac{nombre\ de\ vrai\ positifs}{Nombre\ de\ vrai\ positifs + faux\ positifs} = \frac{TP}{TP + FP}$
 - Permet d'estimer le pourcentage d'erreurs de type 1

Rappel et Précision dans SKLearn

ScikitLearn a deux fonctions pour ça: recall_score() et precision_score()
 sklearn.metrics.recall_score(test_y, pred_y)
 > 0.96292929299
 sklearn.metrics.precision_score(test_y, pred_y)
 > 0.972222222222

- Par défaut, ça ne marche que sur le cas binaire (paramètre "average=binary" par défaut)
- Pour le multiclass, on doit indiquer comment les métriques sont calculées
 - average=micro : calcule la métrique au niveau global, avec le nombre total de FP et FN
 - average=macro : calcule la métrique pour chaque classe puis fait une moyenne arithmétique
 - average=weighted : la moyenne des classes est pondérée par rapport à leur "importance" (# de valeurs)
 - average=none : calcule la métrique pour chaque classe puis les affiche individuellement
- Il y a aussi une fonction classification_report() qui imprime les différentes variations

LE SCORE F1

- Le F1-score fait la moyenne harmonique entre precision et recall
 - Permet d'éviter les pièges de l'accuracy
 - Favorise les cas où nous avons une haute precision et haute recall

$$F1 = 2 * \frac{precision * rappel}{precision + rappel}$$

SENSIBILITÉ ET SPÉCIFICITÉ

- Beaucoup moins utilisés, nous avons aussi d'autres métriques pour des cas spéciaux (médecine, par exemple)
- La sensibilité est la capacité à prédire la classe positive quand c'est effectivement le cas
 - Formule similaire au **recall**
- La spécificité est la capacité à donner un résultat négatif pour un cas négatif

$$Sensibilité = \frac{TP}{TP + FN}$$

$$Sp\acute{e}cificit\acute{e} = \frac{TN}{TN + FP}$$

- Si l'un des deux indicateurs est faible, alors le modèle n'est pas fiable
 - Une sensibilité faible ne permet pas de décider sur un résultat positif
 - Une spécificité faible ne permet pas de décider sur un résultat négatif
- Ex : un test de grossesse de pharmacie a une forte sensibilité mais une faible spécificité
 - Un résultat positif est presque sûr l'indice d'une grossesse
 - Un résultat négatif n'est pas garanti, des tests complémentaires peuvent être nécessaires

LA COURBE ROC ET L'AUC

- Souvent, les modèles estiment une probabilité d'appartenance à une classe :
 - Ex Titanic : passager 33 -> Survie 76%, Décès 24%
 - En ScikitLearn, on utilise la fonction predict proba() au lieu de predict()
- En générale, la matrice de confusion utilise un seuil 0,5
 - Valeurs supérieures à 0,5 sont classés positivement, sinon négativement
- Lors du déploiement du modèle, on peut choisir des seuils différents en fonction des erreurs à minimiser
- La courbe ROC permet de visualiser l'impact des différents seuils
- Pour tracer la courbe ROC on a besoin de :
 - Le taux de vrais positifs (TPR) -> le rappel
 - Le taux de faux positifs (FPR) -> 1-specificité
- Idéalement, la courbe devrait monter rapidement pour avoir un fort TPR e un faible FPR
- L'AUC (Area Under Curve) est la surface sous la courbe
 - Idéalement la valeur serait 1, permet de comparer différents curves ROC indépendamment du seuil

QUELLE MÉTRIQUE FAVORISER?

- Tout dépend de l'objectif
- Une banque qui veut détecter des fraudes voudra un modèle qui n'en laisse passer rien
 - Quitte à avoir des suspicions, contacter le client et se tromper
- Une messagerie pourra laisser passer quelques spams mais devra éviter au maximum de classer en tant que spam un mail qui n'en n'est pas un
- Un algorithme de reconnaissance de cancer à partir de grains de beauté préférera se tromper et détecter un cancer
 - Le patient aura donc un examen supplémentaire ou un retrait du grain de beauté
 - C'est préférable au fait de laisser passer de véritables cancers

Quels algorithmes de classifications?

Plusieurs autres modèles de classification se prêtent au jeu

```
sklearn.linear model.HuberRegressor
sklearn.neighbors.RadiusNeighborsRegressor
sklearn.neural network.MLPRegressor
sklearn.tree.DecisionTreeRegressor
sklearn.tree.ExtraTreeRegressor
sklearn.neighbors.KNeighborsRegressor
sklearn.ensemble.AdaBoostRegressor
sklearn.ensemble.BaggingRegressor
sklearn.ensemble.ExtraTreesRegressor
sklearn.ensemble.GradientBoostingRegressor
sklearn.ensemble.HistGradientBoostingRegressor
sklearn.ensemble.StackingRegressor
sklearn.ensemble.VotingRegressor
```


EN RÉSUMÉ...

- On a commencé à regarder des algorithmes de classification
- Il n'y a pas un algorithme meilleur que l'autre
 - Ça dépend des jeux de données
 - Ça dépend des métriques qu'on veut favoriser
- Dans le prochain cours nous allons regarder plus en détail d'autres algorithme, notamment les réseaux de neurones

QUELQUES EXERCICES

- Ouvrir lien suivant et suivre les liens des exercices
 - https://tinyurl.com/yrcpunv8
 - ou
 - https://github.com/lsteffenel/M2Atmo_et_Climat/blob/main/README.md

Cela vous amènera dans un environnement Google Colab

M2 Atmosphère/ Climat