Let V be a vector space over a field F. Then the **dual** of V is defined as

$$V^* = \operatorname{Hom}(V, F).$$

For some basis $B = \{v_1, ..., v_n\}$, the **dual basis** is defined as

$$B^* = \{v_1^*, ..., v_n^*\}.$$

Let $T:V\to W$ be a linear transformation. Then the dual map is given as

$$T^*: W^* \to V^*$$

where

$$T^*(\alpha) = \alpha \circ T$$

for some $\alpha \in W^*$.

Definition 1. Let V be a vector space and $U \subseteq V$. Then

$$U^{\perp} = \{ a \in V^* \mid \alpha(u) = 0 \,\forall \, u \in U \}.$$

Theorem 1.

$$\dim U + \dim U^{\perp} = \dim V = \dim U^*$$

Theorem 2. Let $T: V \to W$ be a linear transformation. Then

$$\ker T^{\perp} = \operatorname{Im} T^*$$

and

$$\operatorname{Im} T^{\perp} = \ker T^*.$$

Then T is injective iff T^* is surjective, and T^* is injective iff T is surjective.

Proof. To prove this theorem, we will rely on the proof that $\operatorname{Im} T^* \subseteq \ker T^{\perp}$ and that $\ker T^* \subseteq \operatorname{Im} T^{\perp}$. (The proof os the latter is left as an exercise.)

By definition, $T:V\to W$ and $T^*:W^*\to V^*$. Let $\alpha\in\operatorname{Im} T^*$; we want to show that $\alpha\in\ker T^\perp$. Then

$$a \in \operatorname{Im} T^* \to \alpha = T^*(\beta), \beta \in W^*.$$

Let $v \in \ker T$:

$$\alpha(v) = T^*(\beta)(v)$$

$$= \beta(T(v))$$

$$= \beta(0)$$

$$= 0$$

Therefore $\alpha(v) = 0$ for all $v \in \ker T$ and the proof is complete.

(We will assume here that it has been proven that $\ker T^* \subseteq \operatorname{Im} T^{\perp}$.)

Therefore,

$$\dim\operatorname{Im} T^*\leq\dim\ker T^\perp$$

and

$$\dim \ker T^* \leq \dim \operatorname{Im} T^{\perp}.$$

Then

$$\dim\operatorname{Im} T^* + \dim\ker T^* = \dim W^*$$

$$\leq \dim\ker T^{\perp} + \dim\operatorname{Im} T^{\perp}$$

$$= (\dim V - \dim\ker T) + (\dim W - \dim\operatorname{Im} T)$$

$$= \dim V + \dim W - (\dim\ker T + \dim\operatorname{Im} T)$$

$$= \dim V + \dim W - \dim W$$

$$= \dim W$$

Then, since $\dim W^* = \dim W$, $\dim \operatorname{Im} T^* = \dim \ker T^{\perp}$ and $\dim \ker T^* = \dim \operatorname{Im} T^{\perp}$ and the proof is complete.

Definition 2 (Transpose). Let $T: V \to V$ be a linear transformation from a vector space V to itself. Let $B = (v_1, ..., v_n)$ be an ordered basis of V. Let $T \cong M_T \in F^{n \times n}$, where

$$M_T = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}.$$

Let $T^*: V^* \to V^*$ be the dual map, and let $B^* = (v_1^*, ..., v_n^*)$ be the dual basis of B. Then $T^* \cong M_{T^*} \in F^{n \times n}$ as above, where

$$M_{T^*} = \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{bmatrix}.$$

Then
$$a_{ij} = (T_{v_j})_i = v_i^*(T_{v_j})$$
 and $b_{ij} = (T^*(v_j^*))_i = T^*(v_j^*)(v_i) = v_j^*(Tv_i) = a_{ji}$. Therefore, $b_{ij} = a_{ji}$

and M_{T^*} is defined as the transpose of M_T , where

$$B = \begin{bmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{bmatrix} = A^T.$$

Let

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \cong T : V \to V$$

with the columns of A denoted $A_1..., A_n$. Then if T is injective, this is equivalent to saying $A_1, ..., A_n$ are linearly independent. If T is surjective, this is equivalent to saying $A_1, ..., A_n$ are spanning.

As above, if $T \cong A$, then $T^* \cong A^T = B$. Then the columns of B are equal to the rows of B. Then, since T is injective iff T^* is surjective, if the columns of A are linearly independent, the rows of A must be spanning, and if the rows of A are linearly independent, the columns of A are spanning.