

planetmath.org

Math for the people, by the people.

proof of 5-lemma

Canonical name ProofOf5lemma

Date of creation 2013-03-22 14:53:17 Last modified on 2013-03-22 14:53:17

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 6

Author bwebste (988)

Entry type Proof

Classification msc 18G35

First, assume that we are in modules over a ring (this is the most commonly used setting anyways).

The method of proof is what is usually called diagram-chasing.

Let a be in the kernel of γ_3 . Then $d(\gamma_3(a)) = \gamma_4(da) = 0$, and γ_4 is injective, so da = 0. By exactness, a = da' for some $a' \in A_4$. Now, $d(\gamma_2 a') = \gamma_3 a = 0$, so $\gamma_2 a' = db$, and by the surjectivity of γ_1 , $b = \gamma_1 a''$. $da''' = \gamma_2^{-1} d\gamma_1(a'') = a'$. Thus, $a = d^2 a'' = 0$. So, γ_3 is an injection.

Now, assume b is not in the image of γ_3 . $db \neq 0$, so $a' = \gamma_4^{-1}db \neq 0$. $\gamma_5 da' = d^2b = 0$, and γ_5 is injective, so da' = 0, and there exists an a'' such that da'' = a'. Thus, $d(b - \gamma_3 a'') = 0$. So there is an α such that $d\gamma_2 \alpha = b - \gamma_3 a''$. Thus, $\gamma_3 (a'' + d\alpha) = b$. Thus, γ_3 is surjective.

This actually implies the result for all abelian categories, since by the http://planetmath.org/MitchellsEmbeddingTheoremFreyd embedding theorem, any abelian category is equivalent to a subcategory of modules over a ring. This trick is necessary since the trick above required us to have a notion of elements in the objects of our category, one which doesn't always make sense. The 5-lemma can be proved directly, but the proof is just less enlightening than the one above.