

09-29-00 A

UTILITY PATENT APPLICATION TRANSMITTAL
(Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
BMID9975US

Total Pages in this Submission
64

09/28/00
 JC913 U.S. PTO

09/28/00
 JC639 U.S. PTO

TO THE ASSISTANT COMMISSIONER FOR PATENTS

Box Patent Application
 Washington, D.C. 20231

Transmitted herewith for filing under 35 U.S.C. 111(a) and 37 C.F.R. 1.53(b) is a new utility patent application for an invention entitled:

PROCESS FOR THE RECOMBINANT PRODUCTION OF HOLO-CITRATE LYASE

and invented by:

Michael BOTT, Peter DIMROTH and Karin SCHNEIDER

If a **CONTINUATION APPLICATION**, check appropriate box and supply the requisite information:

Continuation Divisional Continuation-in-part (CIP) of prior application No.:

Which is a:

Continuation Divisional Continuation-in-part (CIP) of prior application No.:

Which is a:

Continuation Divisional Continuation-in-part (CIP) of prior application No.:

Enclosed are:

Application Elements

1. Filing fee as calculated and transmitted as described below
2. Specification having 27 pages and including the following:
 - a. Descriptive Title of the Invention
 - b. Cross References to Related Applications (*if applicable*)
 - c. Statement Regarding Federally-sponsored Research/Development (*if applicable*)
 - d. Reference to Microfiche Appendix (*if applicable*)
 - e. Background of the Invention
 - f. Brief Summary of the Invention
 - g. Brief Description of the Drawings (*if drawings filed*)
 - h. Detailed Description
 - i. Claim(s) as Classified Below
 - j. Abstract of the Disclosure

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
BMID9975US

Total Pages in this Submission
64

Application Elements (Continued)

3. Drawing(s) (when necessary as prescribed by 35 USC 113)
 - a. Formal Number of Sheets _____
 - b. Informal Number of Sheets 2
4. Oath or Declaration
 - a. Newly executed (original or copy) Unexecuted
 - b. Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional application only)
 - c. With Power of Attorney Without Power of Attorney
 - d. DELETION OF INVENTOR(S)
Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. 1.63(d)(2) and 1.33(b).
5. Incorporation By Reference (usable if Box 4b is checked)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
6. Computer Program in Microfiche (Appendix)
7. Nucleotide and/or Amino Acid Sequence Submission (if applicable, all must be included)
 - a. Paper Copy
 - b. Computer Readable Copy (identical to computer copy)
 - c. Statement Verifying Identical Paper and Computer Readable Copy

Accompanying Application Parts

8. Assignment Papers (cover sheet & document(s))
9. 37 CFR 3.73(B) Statement (when there is an assignee)
10. English Translation Document (if applicable)
11. Information Disclosure Statement/PTO-1449 Copies of IDS Citations
12. Preliminary Amendment (to follow)
13. Acknowledgment postcard
14. Certificate of Mailing

First Class Express Mail (Specify Label No.): EL315020614US

UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
BMID9975US

Total Pages in this Submission
64

Accompanying Application Parts (Continued)

15. Certified Copy of Priority Document(s) (if foreign priority is claimed)
16. Additional Enclosures (please identify below):

General Appointment of Representative for U.S. Patent and Trademark Office Matters.

Fee Calculation and Transmittal

CLAIMS AS FILED

For	#Filed	#Allowed	#Extra	Rate	Fee
Total Claims		- 20 =	0	x \$18.00	\$0.00
Indep. Claims		- 3 =	0	x \$78.00	\$0.00
Multiple Dependent Claims (check if applicable)					\$0.00
				BASIC FEE	\$0.00
OTHER FEE (specify purpose)					\$0.00
				TOTAL FILING FEE	\$0.00

A check in the amount of _____ to cover the filing fee is enclosed.

The Commissioner is hereby authorized to charge and credit Deposit Account No. _____ as described below. A duplicate copy of this sheet is enclosed.

- Charge the amount of _____ as filing fee.
- Credit any overpayment.
- Charge any additional filing fees required under 37 C.F.R. 1.16 and 1.17.
- Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311(b).

Signature

Kenneth J. Waite, Reg. No. 45,189
Roche Diagnostics Corporation
9115 Hague Road, Bldg. D
P.O. Box 50457
Indianapolis, IN 46250-0457
Telephone No.: (317) 576-3104
Facsimile No.: (317) 576-2883

Dated: September 28, 2000

cc:

CERTIFICATE OF MAILING BY "EXPRESS MAIL" (37 CFR 1.10)

Applicant(s): **Michael BOTT, et al.**

Docket No.

BMID9975US

09/67265 PTO

09/28/00

Serial No.
To Be Assigned

Filing Date

Examiner
To Be Assigned

Group Art Unit
To Be Assigned

PROCESS FOR THE RECOMBINANT PRODUCTION OF HOLO-CITRATE LYASE

I he

Utility Patent Application

(Identify type of correspondence)

is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 in an envelope addressed to: The Assistant Commissioner for Patents, Washington, D.C. 20231 on September 28, 2000.

(Date)

Rose Edwards

(Typed or Printed Name of Person Mailing Correspondence)

Rose Edwards

(Signature of Person Mailing Correspondence)

EL315020614US

(*"Express Mail" Mailing Label Number*)

Note: Each paper must have its own certificate of mailing.

Process for the recombinant production of holo-citrate lyase

The enzyme citrate lyase (EC4.1.3.6) is regarded as a key enzyme of anaerobic citrate degradation and can accordingly be isolated from a number of different prokaryotic cells. The enzyme catalyses the cleavage of citrate into acetate and oxaloacetate. Furthermore it is known that the enzyme complex of the citrate lyase enzyme that has been best examined to date from *Klebsiella pneumoniae* (formally: *Klebsiella aerogenes*) is composed of six copies of each of three different subunits and namely an α , β and γ subunit, of a molecular weight of about 550,000 Dalton. In addition it is known that the catalytically active centre is located in the α and β subunit, whereas the γ subunit has the binding site for the prosthetic group 2'-(5"phosphoribosyl)-3'-dephospho CoA. This prosthetic group is bound to the serine residue 14 via a phosphodiester bond.

The citrate lyase enzyme is required in high purity for most applications which are primarily for clinical chemistry and food analysis. Hence the aim is to overproduce the enzyme in an active form in certain host cells by recombinant methods and to isolate it from these cells. Such a process has not yet been described or made known in other ways. Hence citrate lyase is nowadays usually isolated from *Klebsiella pneumoniae* cells which had been cultured under anaerobic conditions using citrate as the only carbon and energy source. The citrate lyase genes from *Klebsiella pneumoniae* have been

cloned and sequenced (M. Bott and P. Dimroth, Mol. Microbiol. Vol. 14, 347-356 (1994)). These genes are part of the citC operon which is composed of the five genes citCDEFG. The citC gene codes for citrate lyase ligase which catalyses the formation of an acetyl thioester. The genes citD, citE and citF code for the gamma, beta and alpha subunit of citrate lyase. The protein coded by citG is involved in the biosynthesis of the prosthetic group. Furthermore it is known that the citC operon is induced in the absence of oxygen and in the presence of citrate and Na^+ ions; moreover the expression is strongly dependent on the citA/citB regulation system (M. Bott et al., Mol. Microbiol. Vol. 18, 533-546 (1995); M. Meyer et al., J. Mol. Biol. Vol. 269, 719-731 (1997)).

Expression of the genes coding for citrate lyase from *Klebsiella pneumoniae* which would preferably be carried out in prokaryotic cells such as *E. coli* for practical reasons, results in an inactive but nevertheless soluble form of the enzyme (M. Bott and P. Dimroth, Mol. Microbiol. Vol. 14, 347-356 (1994)). The recombinant apo-citrate lyase enzyme can be activated to form the holo-enzyme by subsequent addition of acetyl coenzyme A which is known as a substituent for the acetyl thioester of the native prosthetic group 2'-(5"-phosphoribosyl)-3'-dephospho CoA. However, such an additional activation measure is complicated and laborious. Moreover the necessity to add acetyl CoA is unsuitable for the commercial distribution of citrate lyase or the apo form since the substance decomposes when stored for long periods at 4°C.

Hence the object of the invention is to provide a recombinant, soluble and at the same time active holo-

citrate lyase which eliminates the disadvantages of the known methods.

The object is achieved by a process for the production of a protein with citrate lyase activity by expressing a suitable plasmid in a host organisms whereby the plasmid contains the information of a gene cluster composed of at least six genes and an inducible promoter. The genes comprising the gene cluster code for certain subunits of the protein with citrate lyase activity and/or for a component which participates in the biosynthesis of the complete enzyme. In particular a suitable plasmid contains the genes citC, citD, citE, citF, citG and a DNA fragment that can for example be obtained from E. coli which is located between the genes citF and citG on the E. coli citrate lyase gene cluster. The genes citD, citE and citF code for the corresponding γ , β and α subunits of the enzyme and have molecular weights of about 11,000 Dalton, 32,000 Dalton and 55,000 Dalton. According to the invention it is preferred that one of the genes represents a DNA fragment which codes for a protein containing the motif G(A)-R-L-X-D-L(I)-D-V. A corresponding DNA fragment is particularly preferred which codes for a protein with a molecular weight of about 20,000 Dalton.

In addition it has proven to be advantageous when one gene and optionally a further gene fused to the first gene of the genes comprising the gene cluster is derived from a different organism than the other genes. In particular it has proven to be advantageous when the DNA fragment citX or genes homologous to citX located between citF and citG on the E. coli citrate lyase gene cluster are derived from E. coli, Klebsiella pneumoniae, Haemophilus influenzae or Leuconostoc mesenteroides and

when one or several of the other genes are derived from the microorganism that is specific for the isolated protein having citrate lyase activity which is for example Klebsiella pneumoniae. In Haemophilus influenza, Leuconostoc mesenteroides (S. Bekal et al., J. Bacteriol. Vol. 180, 647-654 (1998)) and Leuconostoc paramesenteroides (M. Martin et al., FEMS Microbiol. Lett. Vol. 174, 231-238 (1999)) the genes citX and citG occur in a fused form. Thus corresponding fusion genes contain the information of two genes. The resulting proteins have a molecular weight of about 52,000 Dalton, have the activities of *E. coli* CitX and CitG and are thus bifunctional. In the absence of the citX gene or of a gene homologous to citG or of a corresponding citX fusion gene, only the low-molecular apo form (MW 12,000 Dalton, SDS-PAGE) but not the holo form of citrate lyase (MW 14,500 Dalton, SDS-PAGE) could be detected after expression.

According to the invention prokaryotes as well as eukaryotes have proven to be suitable as the host organism. The fact that a soluble active citrate lyase can now be produced in prokaryotes such as e.g. *E. coli* in a simple manner and in adequate yields without additional activation measures is a major advantage.

Hence it was possible to show that by cloning the entire *E. coli* citCDEFXG gene cluster under the control of an inducible promoter such as e.g. the lac, lac UV5, T5, tac or T7 promoter, an active enzyme can be expressed having citrate lyase activity even under non-oxygen limiting conditions. Cell extracts containing appropriate expression plasmids result in citrate lyase activities of about 4 to 5 U/mg protein in the cell-free extract whereas cells without recombinant citrate lyase

have no citrate lyase activity when grown aerobically.

In addition the invention concerns the simultaneous expression of the citCDEFG gene cluster from *Klebsiella pneumoniae* and of the citX gene obtainable from *E. coli* by which means it is possible to obtain a corresponding citrate lyase in an active form even in prokaryotes and in particular in *E. coli*.

By this means it was possible to achieve an activity of about 8 U/mg total protein in a cell-free extract under aerobic growth conditions.

The holo-enzyme is purified by methods known to a person skilled in the art. About 100 to 120 µg soluble protein with citrate lyase activity can be obtained from about 1 g of cells (wet weight) using the process according to the invention. The protein determination was carried out according to P.K. Smith et al., *Anal. Biochem.* Vol. 150, 76-85 (1985) using ovalbumin as a standard. The specific activity of the citrate lyase is ca. 70 U/ml protein (M. Single and P.A. Srere, *J. Biol. Chem.* Vol. 251 (10), 2911-2615 (1976)). The activity of the holo-enzyme that can be obtained by the process according to the invention is thus ca. 0.5 to 3-fold higher than the activity that was achieved with acetyl CoA and apo-citrate lyase.

Hence the process according to the invention provides for the first time a recombinant protein with improved citrate lyase activity that is both soluble and active.

Furthermore the invention concerns a test kit for the determination of citric acid which is composed

DRAFT/PATENT PAPER

essentially of the following components: a protein obtainable by the process according to the invention with citrate lyase activity, at least one protein with hydrogen-transferring activity, nicotinamide-adenine dinucleotide or an appropriate derivative in a reduced form and optionally suitable stabilizers, activators and/or substances to avoid or reduce interferences i.e. components or reactions which mask or interfere with the actual reaction as well as suitable buffer solutions. In particular L-malate dehydrogenase and L-lactate dehydrogenase come into consideration as proteins with hydrogen-transferring activity. Those substances, additives or measures which help to avoid or at least to delay the degradation of a property or activity that is important for the determination are in principle suitable as stabilizers. Especially when only small amounts of sample material are available or if the samples are very dilute it can be advantageous to add activators.

An additional subject matter of the invention is the use of the recombinant soluble protein with citrate lyase activity to determine citric acid in clinical chemistry, food analysis and as a purity test for cosmetics. In clinical chemistry a corresponding enzymatic test is used primarily to examine fertility and for therapeutic monitoring of patients with kidney stones. In food analysis the most important application is analysis of wines and fruit juices.

The enzymatic method is based on the cleavage of citrate by the enzyme citrate lyase in the presence of Mg^{2+} ions to form oxaloacetate and acetate. In the presence of hydrogen-transferring enzymes such as L-malate dehydrogenase and L-lactate dehydrogenase, oxaloacetate

and its decarboxylation product pyruvate are reduced by reduced NADH or NADPH to form L-malate and L-lactate. The amount of NADH or NADPH is proportional to the amount of citrate and is measured at 334 nm, 340 nm or 365 nm.

Hence the invention also concerns a corresponding test kit for the determination of citric acid which, apart from suitable buffer solutions, contains a recombinant protein with citrate lyase activity, one or several hydrogen-transferring enzymes and a nicotinamide adenine dinucleotide or a corresponding derivative in a reduced form and optionally suitable stabilizers such as thiol reagents.

Figure legends

Figure 1:

A: Function of the various subunits in a reaction catalysed by citrate lyase and activation of the enzyme by citrate lyase ligase. HS-R denotes a prosthetic group.

B. Structure of the prosthetic group of citrate lyase 2'-(5"-phosphoribosyl)-3'-phospho-CoA.

Figure 2:

Citrate lyase gene cluster from *Klebsiella pneumoniae* (K.p.), *Escherichia coli* (E.c.) *Haemophilus influenzae* (H.i.) and *Leuconostoc mesenteroides* (L.m.). Gene sequences that are homologous to *E. coli* citX are shown by the light grey shading.

INFORMATION FOR SEQ ID NO. 1:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 36 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

5' - CCCTCTAGAGAACAAACATTGTTGCAAATCGATAAC - 3'

INFORMATION FOR SEQ ID NO. 2:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 38 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

5' - CCGCGAATTCTTAGTCCACATGGCGAGAACATCGGCCAG - 3'

INFORMATION FOR SEQ ID NO. 3:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 5484 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

1 GAACAACATT CGTTGCAAAT CGATAACAAAC ATGCACCTTC AGGATACTAT
 rstart citc
51 TTATTATGTT CGGCAATGAT ATTTTCACCC GCGTAAAACG TTCAGAAAAT
101 AAAAAAAATGG CGGAAATCGC CCAATTCTG CATGAAAATG ATTTGAGCGT
151 TGACACCACA GTCGAAGTAT TTATTACCGT AACCCCGCGAT GAAAAGCTTA
201 TCGCGTGCAGG TGGAAATTGCC GGAAATATTA TTAAATGCGT TGCTATCAGT
251 GAATCCGTCC GCGGTGAAGG ACTGGCGCTG ACATTAGCCA CTGAATTGAT
301 AAACCTCGCC TATGAGCGGC ACAGCACGCA TCTGTTTATT TATACCAAAA
351 CCGAATACGA GGGCGCTGTT CGCCAGTGCAG GTTTTCCAC GCTGACCAGC
401 GTACCCGGCG TGATGGTGCT GATGGAAAAC AGCGCCACGC GACTGAAACG
451 CTATGCCGAA TCGCTGAAAA AATTTCGTCA TCCAGGGAAC AAGATTGGCT
501 GCATTGTGAT GAAAGCCAAT CCCTTTACGA ATGGTCACCG TTATCTGATT
551 CAACAGGCTG CGGCACAGTG CGACTGGTTG CATCTGTTT TAGTCAAAGA
601 AGATTCTTCA CGCTTCCCCCT ATGAAGACCG GCTGGATTG GTGTTAAAAG
651 GCACCGCCGA TATTCCACGC CTGACTGTGC ATCGTGGCTC CGAATACATC
701 ATCTCCCGCG CTACGTTCCC TTGCTACTTC ATTAAAGAAC AGAGCGTCAT
751 TAACCATTGT TACACCGAAA TTGATCTGAA GATTTCCGT CAGTACCTCG
801 CTCCCCGCGCT GGGTGTAACT CACCGCTTTG TCGGTACTGA ACCCTTTGT
851 CGCGTTACCG CCCAGTACAA CCAGGATATG CGCTACTGGC TGGAAACGCC
901 GACTATCTCC GCACCGCCCA TCGAACTGGT TGAAATTGAG CGGCTGCGTT

951 ACCAGGAGAT GCCGATATCC GCTCCCGGG TACGTCAACT GCTGGCGAAA
1001 AACGATCTCA CGGCTATCGC GCCGCTGGTC CCTGCAGTCA CGCTGCATTA
1051 TTTGCAGAAC CTGCTTGAGC ACTCCCGCCA GGACCGGGCA GCTCGTCAAA
1101 AGACCCCCGC ATGAGAAACA GGTGAAAAAT GAAAATAAAC CAGCCCGCCG
1151 TTGCAAGGCAC CCTTGAGTCT GGGGATGTGA TGATACGCAT CGCCCCACTC
1201 GATACGCAGG ATATCGACCT GCAAATCAAT AGCAGCGTTG AGAACAGTT
1251 TGGCGATGCA ATTGCAACCA CCATTCTGGA CGTTCTCGCC CGCTACAACG
1301 TGGCGGGCGT ACAGCTGAAT GTGGATGACA AAGGCGCACT GGACTGCATT
1351 TTACGTGCAC GACTGGAAGC CCTGCTGGCA CGCGCCAGCG GTATCCGGC
1401 TCTGCCATGG GAGGATTGCC AATGATTCC GCTTCGCTGC AACAACGTA
1451 AACTCGCACC CGCCGCAGCA TGTTGTTGT GCCTGGTGC AATGCCCGA
1501 TGGTCAGCAA CTCCCTTCATC TACCCGGCTG ATGCCCTGAT GTTTGACCTC
1551 GAAGACTCCG TAGCATTGCG TGAAAAAAGAC ACCGCCCGCC GCATGGTTA
1601 CCACCGCCTG CAACATCCGC TGTATCGCGA TATTGAAACC ATTGTGCGTG
1651 TCAACGCGCT GGATTCCGAA TGGGGTGTGA ACGACCTGG AGCCGTCGTT
1701 CGCGGTGGTG CGGACGTTGT GCGTCTGCCG AAAACCGATA CCGCTCAGGA
1751 TGTTCTGGAT ATTGAAAAAG AGATCCTGCG TATCGAAAAA GCCTGTGGTC
1801 GTGAACCCGG CAGCACCGGC CTGCTGGCGG CGATTGAATC TCCGCTGGGG
1851 ATTACCCCGC CAGTGGAAAT CGCTCACGCT TCCGAGCGTT TGATCGGTAT
1901 CGCCCTCGGT GCAGAAGACT ATGTGCGCAA CCTGCGTACA AACGCTCCC
1951 CGGAAGGAAC TGAACCTGCTG TTCCGACGCT GTTCCATTTC GCAGGCCGCG
2001 CGCTCTGCGG GTATTCAAGGC GTTCGATACC GTCTATTCCG ACGCTAACAA
2051 CGAAGCCGGA TTTCTGCAAG AAGCCGCCA CATCAAACAG CTGGGCTTTG
2101 ACGGCAAATC GCTGATCAAC CCGCGTCAGA TTGATCTGCT GCACAAACCTC
2151 TACGCACCGA CCCAGAAAGA AGTGGATCAC GCCCGCCGCG TCGTAGAAGC
2201 CGCTGAAGCC GCCGCTCGCG AAGGCCCTCGG CGTGGTTTCC CTGAACGGCA
2251 AGATGGTGGA CGGTCCGGTT ATCGATCGCG CCCGTCTGGT
2301 GCAGAACCTT CCGGCATCCG CGAAGAATAA GGCAATCAAATG GTGATGGACG ATGACGCCAGA
2351 AAATTGAACA ATCTCAACGA CAAGAACGGG TAGCGGCCTG GAATCGTCGC
2401 GCTGAATGCG ATCTTGCCTG TTTCCAGAAC TCGCCAAAGC AAACCTACCA
2451 GGCTGAAAAA GCGCGCGATC GCAAACGTG CGCCAACCTG GAAGAACGCA
2501 TTCGTCGCTC TGGTTTACAG GACGGCATGA CGGTTTCCCTT CCATCACGCT
2551 TTCCGTGGCG GTGACCTGAC CGTCAATATG GTGATGGACG TCATCGCAGA
2601 GATGGGCTTT AAAAACCTGA CCCTGGCGTC CAGCTCCCTG AGTGATTGCC
2651 ATGCGCCGCT GGTAGAACAC ATTGCCAGG GCGTGGTTAC CCGCATTAT
2701 ACCTCCGGCC TCGGTGGTCC ACTGGCGGAA GAGATCTCCC GTGGTCTGCT
2751 GGCAGAACCG GTGCAGATCC ACTCTCACGG CGGTCGTGTG CATCTGGTAC
2801 AGAGCGCGA ACTGAATATC GACGTGGCTT TCCTCGCGT CCCGTCCGT
2851 GATGAATTG GATAATGCCA CGGCTACACC GGTAAAGCCT GCTGCAGCTC
2901 CCTCGGCTAT GCAATAGTTG ATGCCGACAA CGCAAAACAG GTCGTGATGC
2951 TTACCGAAGA ACTGCTGCC TATCCGCATA ATCCGGCAAG CATTGAGCAA
3001 GATCAGGTTG ATTGATCGT CAAAGTTGAC CGCGTTGGCG ATGCTGCAA
3051 AATCGGGCCT GGCACCGACCC GTATGACAC TAACCCGCGC GAACTGCTTA
3101 TTGCCCCGTAG CGCTGCAGGAT GTGATTGTCA ACTCTGGCTA CTTCAAAGAA
3151 GGTTTCTCCA TGCAAAACCGG CACCGCGGGC GCATCGCTGG CGGTAACCCG
3201 TTTCCCTGGAA GACAAAATGC GTAGCCGCGA TATTGCGGCC GACTTCGCC
3251 TTGGCGGTAT TACCGCGACG ATGGTTGACC TGCACGAAAA AGGTCTGATC
3301 CGCAAACTGC TGGATGTGCA GAGCTTGAC AGCCATGCTG CGCAATCGCT
3351 GGCCCCGTAAC CCCAATCACA TCGAAATCAG CGCCAACCGAG TACGCTAACT

3401 GGGGTTCGAA AGGCGCATCG GTTGATCGTC TCGACGTGGT GGTACTGAGC
3451 GCGCTGGAAA TTGACACCCA GTTCAACGTT AACGTGCTGA CCGGCTCTGA
3501 CGGCGTACTG CGTGGTCTT CCGGTGGTCA CTGCGATACC GCGATTGCCT
3551 CTGCGCTTTC CATCATCGTC GCGCCGCTGG TACGCGGTGCG TATTCCGACT
3601 CTGGTGGATA ACGTACTGAC CTGCATCACC CCAGGCTCCA GTGTCGATAT
3651 TCTGGTCACA GACCACGGTA TCGCAGTTAA CCCGGCACGT CCGGAACCTGG
3701 CAGAACGCTC GCAGGAAGCG GGCATTAAAG TGTTTCCAT TGAGTGGCTG
3751 CGCGAACGTG CGCGTCTGCT GACCGGTGAA CCACAGCCGA TTGAATTAC
3801 AGACCGCGTC GTTGCCTGTT TGCCTTACCG CGATGGCTCG GTGATCGATG
stop citF, start citX
3851 TTGTGCATCA GGTGAAGGAA TAAGCCATGC ACCTGCTTCC TGAACTCGCC
3901 AGCCACCATG CCGTATCAAT TCCCGAGCTG CTCGTCAGCC GGGATGAAAG
3951 GCAAGCACGG CAACACGTCT GGCTCAAGCG CCATCCTGTT CCACTGGTCT
4001 CCTTTACCGT GTTGCCTGCCT GGGCCGATTA AAGACAGCGA GGTACACCGC
4051 CGAATTTTA ATCATGGCGT GACAGCCTTG CGTGCCTTAG CCGCAAAACA
4101 GGGCTGGCAA ATTCAAGGAGC AGGCTGCACT GGTTTCCGCC AGCGGGCCGG
4151 AGGGCATGTT GAGCATTGCCC GCCCCGGCTC GCGACCTCAA GTCGCCACC
4201 ATTGAGCTTG AACATAGTCA TCCTCTCGGG CGGTTATGGG ATATCGATGT
4251 CCTGACGCCA GAAGGCGAAA TTCTCTCCCG CGCGACTAT TCACTGCCGC
4301 CTCGCCGCTG CCTGTTGTGC GAACAAAGCG CAGCCGTCTG CGCGCGTGG
4351 AAAACCCATC AACTGACCGA TTTACTCAAC CGCATGGAGG CACTGCTGAA
stop citX, start citG
4401 CGATGTCGAT GCCTGCAACG TCAACTAAAA CCACAAAGCT TGCGACGTCA
start citG
4451 TTAATCGATG AGTACGCCCT GCTGGGCTGG CGCGCCATGC TGACTGAAGT
4501 CAATCTGTCA CCGAAACCAAG GCCTCGTGGA TCGCATTAAC TGCCTGCGC
4551 ACAAAAGATAT GGGCGCTGGAA GATTTCACC GCAGCGCGCT GCGATTTCAG
4601 GGCTGGCTAC CCCGTTTCAT TGAATTGGT GCCTGTAGTG CGGAAATGGC
4651 ACCAGAAGCG GTACTCCACG GATTACGCCA AATTGGTATG GCTTGCAG
4701 GTGATATGTT CCGCGCCACT GCGGGCGTAA ACACCGATAA AGGCAGCATT
4751 TTTTCTTCTAG GGCTGCTATG TGCGGCAATT GGCGCTTGC TTCAACTCAA
4801 CCAACCGGTA ACGCCAACAA CCGTTGTTC TACGGCGGCA AGTTTCTGCC
4851 GTGGCCTGAC CGATCGCGAA CTGCGTACCA ATAATTCAAG ACTGACGGCA
4901 GGTCAACGGT TGTACCAACA GCTTGGCCTT ACCGGCGCAC GCGGTGAAGC
4951 CGAAGCGGGT TATCCACTGG TGATCAATCA CGCCTTGCAG CATTACCTCA
5001 CTCTGCTGGA TCAGGGGTTA GATCCTGAAC TGGCATTGCT CGATAACCTTG
5051 CTCCTACTGA TGGCGATCAA CGCGATACC AACGTTGCAT CGCGCGGTGG
5101 CGAGGGGGGC CTGCGCTGGC TACAGCGCGA GGCGAAACAA TTATTGCAA
5151 AAGGGGGCAT TCGAACCCCC GCCGATCTCG ATTATCTCCG GCAGTCGAC
5201 AGGGAGTGT A TCGAACGAAA TCTCAGTCCA GGCGCAGTG CTGACCTACT
stop citG, start citT
5251 GATCCTTACC TGGTTTTAG CACAGATTAA ATTATTAAAG CACTTGATAA
start citT
5301 ATTTGGAAAT ATTAATTTTC GGAGAACCCG TATGTCTTTA GCAAAAGATA
5351 ATATATGGAA ACTATTGGCC CCACTGGTGG TGATGGGTGT CATGTTCTT
5401 ATCCCTGTCC CCGACGGTAT GCCGCCGCAG GCATGGCATT ACTTCGCTGT
5451 GTTGTGGCA ATGATTGTGCG GCATGATCCT CGAG

INFORMATION FOR SEQ ID NO. 4:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 33 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

5' - AAATTCATATGCACCTGCTTCCTGAACTCGCC - 3'

INFORMATION FOR SEQ ID NO. 5:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 36 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

5' - GGGCCCCTCGAGTTAGTTGACGTTGCAGGCATCGAC - 3'

INFORMATION FOR SEQ ID NO. 6:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 553 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

1 ATGCACCTGC TTCCCTGAAC T CGCCAGCCAC CATGCGGTAT CAATTCCCGA
51 GCTGCTCGTC AGCCGGGATG AAAGGCAAGC ACGGCAACAC GTCTGGCTCA
101 AGGCCATCC TGTTCCACTG GTCTCCTTTA CCGTGGTTGC GCCTGGGCCG
151 ATTAAGACA GCGAGGTCAC ACGCCGAATT TTTAATCATG GCGTGACAGC
201 CTTGCGTGCC TTAGCCGCAA AACAGGGCTG GCAAATTCAAG GAGCAGGCTG
251 CACTGGTTTC CGCCAGCGGG CCGGAGGGCA TGTTGAGCAT TGCCGCCCG
301 GCTCGCGACC TCAAGCTCGC CACCATTGAG CTTGAACATA GTCATCCTCT
351 CGGGCGGTTA TGGGATATCG ATGTCCTGAC GCCCAGGGC GAAATTCTCT
401 CCCGCCGCGA CTATTCACTG CCGCCTCGCC GCTGCCTGTT GTGCGAACAA
451 AGCCGAGCCG TCTGCGCGCG TGGAAAAACC CATCAACTGA CCGATTACT
501 CAACCGCATG GAGGCAGTGC TGAACGATGT CGATGCCTGC AACGTCAACT
551 AA

INFORMATION FOR SEQ ID NO. 7:

SEQUENCE CHARACTERISTICS:

- (A) LENGTH : 5593 base pairs
- (B) TYPE : nucleic acid
- (C) STRANDNESS : single
- (D) TOPOLOGY : linear

1 TTAATTAACA ACATAAAAAC CATAAAGCCA ATTAAGCCAC GAGAAAAACT GTGACTTAAA
61 TACAAGAAC ATCAGCCGAA CGCTGGCGAA ATACAGTTCG TTTTGAAATG ACGAAGCGCT
 Start citC₆
121 AAAAAATGAC ACTGATATTAA AAACGCGTTC AGCTATTAAA AGATAAACCG CGGCGAGAGG
181 CGATCGATCG GTTCTCCGC CAGCATCAAC TGTCGTTAGA GGCCGACTGC GAAATGGCGA
241 TTATCGCCGA GTATCAGCAG CGGCTGGTCG GCTGCGGTGC TATCGCCGGC AATGTGCTGA
301 AATGCATCGC CATCGATCCC TCGCTGCAGG GGGAGGGGCT GAGCCTTAAA TTACTGACCG
361 AGCTCCTGAC GCTGGCTAT GAGCTGGGC GCAGCGAACT GTTTTTGTTTC ACTAAACCTT
421 GCAATGCCGC GTTATTTCC GGCGCCGGCT TCTGGCCGAT AGCCCAGGCG GGCAGCCGCG
481 CCGTGCTAAT GGAAAATAGC CGCGAACCGC TGACTCGTTA CTGTCGACAG CTGGCGATGT
541 ACCGTCAAGCC GGGAAAGAAA ATCGGCGCTA TCGTGATGAA TGCTAATCCA TTCACCCCTG
601 GCCACCGCTG GTTGGTAGAA CAGGCGGCCA GCCAGTGCAG CTGGCTGCAT CTGTTGTGG
661 TCAAAGAAGA TGCCTCTGC TTTCTATC ACCATCGCTT CAAGCTCATT GAACAGGGGA
721 TTACCGGCAT CGATAAGGTG ACGCTGCATC CCGGTTCGGC GTATCTGATC TCGCGGGCGA
781 CGTTCCCCGG CTATTCTCTG AAAGAGCAGG GGGTGGTTGA TGACTGCCAC AGCCAGATTG
841 ACCTGCAGCT CTTCCGCGAG CGCCTGGCCC CGCGCGTGCAG GATTACCCAT CGCTTTGTCG
901 GCACCGAGCC GCTGTGTCCC CTGACCCGTA ATTACAACCA GCGCATGAAG TCACTACTGG
961 AAGCGCCAGG CGACCGCGCCG CCCATTGAAG TAGTTGAGCT TGCGCGAATC GAAAAAAATG
1021 GTGGACCCGT GTCGGCTCTCC CGAGTGCAGG AACTCTATCG ACAGCGCAAC TGGCAGCGG
1081 TCGCGCGCT GGTACCGCCG GGAACCCCTCT CTTTCTGAT GCAACTGGCG GAAAGCGAAC
 Stop citC₁ **Start citD₁**
1141 ATCAAACCGC CTGATTTATA CGCCCTAACT AAGGATTTTC CCCTATGGAA ATGAAGATTG
1201 ACGCCCTGGC CGGCACGCTG GAGTCCAGCG ATGTGATGGT CAGGATTGGA CCCGCGGCCGC
1261 AGCCGGGCAT TCAGCTGGAA ATCGACAGCA TTGTGAAACCA ACAGTTTGGC GCTGCATTG
1321 AGCAGGTAGT GAGAGAAACG CTGGCTCAGC TTGGCGTGAA ACAGGCCAAC GTGGTGGTCG
1381 ATGATAAAAGG CGCGCTGGAA TGTGTTTGC GAGCTCGCGT ACAGGCCGCG GCGCTGCCGC
 Stop citD₁ **Start citE**
1441 CGGCGCAACA GACCCAATTAA CAATGGAGCC AGCTATGAAA CCACGTCGCA GTATGTTGTT
 Start citE
1501 CATCCCTGGC GCCAATGCCG CCATGTTAAG CACGTCATTG GTCTACGGCG CTGATGCTGT
1561 GATGTTGAC CTGGAAAGATG CCGTTTCGCT GCGCGAGAAA GATACCGCTC GTCTGCTGGT
1621 GTATCAGGCG CTGCAGCCTC CACTGTATCA GGATATCGAA ACCGTTGGC GTATTAACCC
1681 GCTAAATACC CCGTTGGTC TGGCCGATCT GGAAGCCGTG GTTCCGTGCGG GCGTGGATAT
1741 GGTGCGTCTG CCGAAAACCG ACAGCAAAGA AGATATCCAT GAGCTGGAAG CGCATGTTGA
1801 GCGGATTGAA CGCGAGTGCAG GCCGGGAAGT GGGCAGCACC AAGTTAATGG CGGCGATCGA
1861 GTCGGCGCTG GGCCTGGTGA ACGGCTGGGA AATCGCCCGC GCCAGCCCGC GTCTGGCGGC
1921 GATCGCGCTG GCGGCCCTCG ATTACGTTGAT GGATATGGGC ACCTCCCGCG GCGACGGTAC
1981 TGAACGTTTC TACGCCCGCT GCGCTGTACT GCATGCCGCC CGCGTTGCCG GCATGCCGC
2041 CTATGACGTG GTGTGGTCGG ATATCAATAA TGAAGAGGGC TTCTGGCGG AAGCGAATCT
2101 GGCAAAAAAC CTCGGCTTTA ACGGCAAATC GTGGTTAAC CCACCGACAAA TTGAACCTCCT
2161 GCATCAGGTC TATGCCCGCA CGCGCAAAGA GGTGCGATCAC GCGCTGGAAG TGATTGCCGC
2221 GGCGGAAGAA GCCGAAACGC GAGGTCTGGG TGTGGTATCG CTGAAACGGCA AGATGATCGA
2281 TGGACCGATT ATCGACCATG CTCGCAAAGT GGTGGCGCTC TCGGCTTCCG GTATTGCTGA

	Stop	citE		Start	citF	
2341	TTAAGGGGAA	TAAGATGAAA	GAGACAGTAG	CAATGCTTAA	TCAGCAGTAC	GTGATGCCGA
2401	ATGGACTGAC	ACCTTATGCC	GGCGTAACGG	CGAAAAGTCC	CTGGCTGGCG	AGTGAGAGCG
2461	AAAAGCGCCA	GCGCAAAATC	TGCGATTCGC	TGAAACGGC	AATCCGTCGC	TCCGGCCTGC
2521	AAAACGGCAT	GACCATCTCG	TTTCACCACG	CGTTTCGCGG	CGGTGACAAA	GTCGTCAATA
2581	TGGTAGTGGC	GAAGCTGGCG	GAAATGGGTT	TTCGCGATCT	CACCTGGCG	TCCAGTTCGC
2641	TGATCGACGC	CCACTGGCCG	CTGATCGAGC	ATATTAAAAA	TGGCGTGATC	CGCCAGATCT
2701	ACACCTCCGG	CCTGCGCGC	AAGTTGGGCG	AGGAGATCTC	CGCCGGTTA	ATGGAAAACC
2761	CGGTGCAGAT	CCACTCCCAC	GGCGGTCGCG	TACAGCTGAT	TCAAAGCGGC	GAGCTGTCGA
2821	TTGATGTCGC	GTTTCTCGGC	GTTCCCTTGCT	GGCATGAGTT	TGGCAACGCC	AACGGCTTTA
2881	GCGGTAAATC	ACGCTGCGGT	TCTCTGGGCT	ACGCGCGCGT	CGATGCCGAG	CACGCTAAAT
2941	GCGTGGTGCT	GCTCACCGAA	GAGTGGGTGG	ATTATCCTAA	CTATCCGGCC	AGTATTGCC
3001	AGGATCAGGT	GGATCTGATA	GTCCAGGTAG	ATGAAGTCGG	CGATCCGCAA	AAAATTACCG
3061	CGGGTGCCAT	CCGCTGACC	AGCAACCCGC	GCGAGCTGCT	GATGCCCGC	CAGGCGCGA
3121	AAGTCGTTGA	GCACCTCCGGT	TACTTTAAAG	AGGGTTTCTC	GCTGCAGACC	GGTACCGGCG
3181	GCGCCTCGCT	GGCAGTAACT	CGCTTCCTTG	AAGATAAAAT	GCGCCGTAAC	GGCATTACCG
3241	CCAGCTTCGG	CCTCGGCGGT	ATCACCGGGA	CGATGGTCCA	TTTGCACGAA	AAAGGGTTGA
3301	TCAAAACGCT	GCTCGATACC	CAGTCCTTCG	ATGGTACGCC	GGCGCGTTCG	CTGGCGCAGA
3361	ACCCGAACCA	TGTGAGATC	TCCACCAATC	AGTATGCCAG	CCCAGGCTCC	AAAGGCGCCT
3421	CCTGCGAGCG	CTTAAACGTG	GTGATGCTCA	GCGCGCTGGA	AATTGATATC	GACTTTAACG
3481	TTAACGTGAT	GACCGGTTCT	AACGGTGTGC	TGCGCGGGGGC	GTCCGGTGGC	CATAGCGATA
3541	CCGCCGCCGG	TGCGGATTTC	ACCATTATTA	CCGCGCCGTT	AGTTCGCGGGC	CGTATTCCCT
3601	GCGTCGTGGA	AAAGGGTCTG	ACCCGCGTCA	CGCCGGGGGC	CAGCGTGGAT	GTGCTGGTCA
3661	CTGACCACGG	CATTGCGGTC	AACCCGGCAC	GTCAGGACCT	GATCGACAAAT	TTGCGCAGCG
3721	CAGGCATTCC	GCTGATGACC	ATTGAGGAAC	TGCAAGCAGCG	TGCTGAGCTG	TTGACTGGCA
3781	AGCCGCAGCC	GATCGAATT	ACCGATCGGG	TGGTGGCGGT	GGTGCCTAT	CGCGACGGTT
				Stop		citF
	Start					
3841	CGGTCATCGA	TGTGATTCTG	CAGGTAAAAA	ACAGCGACTA	AACGCAGAGG	GGAAAGGCCA
				citG		
3901	TGAGCGACGT	GTAAATTAAT	CCTGCGCGTG	TGCGGCGCGT	GAAGCCACTG	AGTGCCGAAG
3961	AGGTGGTCAG	CGCGGTAGAG	CGCGCGCTGT	TGACCGAAGT	TCGCCTGACC	CCAAAGCCCG
4021	GGTTGGTGG	TATTCTAAC	GCTGGCGCGC	ACTGGGATAT	GGATCTGGCC	TCGTTTGAGG
4081	CCAGCACCGC	GGTGGTGGCT	CCGTGGATGG	AGAAATTTT	CATCATGGC	CACGATACTG
4141	CGGCGGTGCG	GCCGGAGCAG	GTATTGATGA	TGCTGCGCCC	GGTAGGGATG	GCCTGTGAGA
4201	ACGATATGCT	GGAGGCCACC	GGCGGGGGTGA	ATACCCATCG	CGGGCGATC	TTCGCTTTG
4261	GCCTGCTCAG	CGCGCGGGCG	GGCAGGCTGG	TGTCGAAAGG	TGAGCCGATA	GAGCAGCACC
4321	GGCTTTCGCA	CCAGGGTGGCG	CGCTTCTGTC	GGGGCATGGT	TATGCAGGAG	TTGTCTCTG
4381	CTGGCGGGGA	ACGGCTCAGT	AAAGGCAGG	CTCATTTCT	ACGCTATGGT	CTCTCCGGGG
4441	CCCGCGGCAG	GGCGGAGAGC	GGTTTCCGTA	CGGTGCGTAC	CCAGGCCATG	CCAGCTTTA
4501	CCCGCATGAT	GGAAGAGACC	GGCGACAGTA	ATCTGGCGCT	ACTGCAAACC	CTGCTGCATC
4561	TGATGGCGTG	GAATGATGAC	ACCAACCTGG	TCTCGCGCGG	CGGGCTTGCC	GGGCTGAAC
4621	TTGTCCAGCA	GGAGGCGCAG	CGACTGCTGT	GGCAGGGCGG	CGTGCCTGGCG	GACGGCGGGC
4681	TGGAGGCGCT	GCGACAGTTT	GACGATGAGC	TGATTGCCCG	CCATCTCAGC	CCTGGCGGCA
4741	GCGCCGATCT	GTTGGCGGTG	ACCTGGTTT	TATCCGCGTT	TCCCGCCGGC	GCGCTTTCC
				Stop		citG
4801	CGCTGTAACC	CACTGCAATA	CCGCCTTCGC	CCGCACTGTA	CGGGCGAGGG	CGCCATCATT
4861	AGCCTTCCCG	GTTGTCATCC	GGTAAACACG	GAATCGCGGC	ACAATCGTAT	AGTTTTACT
4921	GATATCGTCC	GCCGTTTGTC	ATAAATTCT	AATTATCGGC	GTTTTGAGT	AGCGGCCCGC
4981	TGACGGGCTG	GTTACTCTGA	AAACAATT	CGTAATGTTA	ACAAAAGAGA	ATAGCTATGC
5041	ATGATGCACA	AATCCGCGTG	GCCATCGCCG	GGCGGGGGCGG	CCGGATGGGA	CGCCAGTTAA
5101	TTCAGGCTGC	ATTGCAAGATG	GAAGGGCGTGG	CGCTGGCGCG	GGCGCTGGAG	CGCGAAGGGT
5161	CAAGCCTGGT	GGGCAGCGAC	GCCGGCGAGC	TGGCGGGCGC	CGGCAAAGCG	GGCGTGCAGCG

5221	TGCAGAGCCAG	CCTGGCGGCC	GTAAAAGATG	ATTCGACGT	GTTGATCGAT	TTTACCCGCC
5281	CGGAAGGCAC	GCTGAACCAT	CTGGCGTTT	GCCGCGAGCA	CGGCAAAGGG	ATGGTCATCG
5341	GCACCACCGG	TTTGACGAC	GCTGGCAAAC	AGGCGATTG	CGATGCCGCG	CAGGACATTG
5401	CCATTGTCTT	CGCCGCTAAC	TTTAGCGTTG	GCGTCAATGT	CCTGTTGAAG	CTGCTGGAGA
5461	AGGCGGCGAA	GGTGATGGGC	GACTATACCG	ACATCGAAAT	TATCGAAGCG	CACCACCGGC
5521	ATAAAAGTGG	TGCGCCGTCA	GGCACCGCGC	TGGCGATGGG	CGAAGCGATC	GCCGGGGCAT
5581	TGAACAAAGA	TCT				

The invention is further elucidated by the following examples:

Example 1:

Cell culture

The following strains and plasmids were used: *E. coli* DH5 α or BL21 (DE3) (F.W. Studiar and B.A. Moffatt, *J. Mol. Biol.* Vol. 189, 113-130 (1986)) and pACYC184 (A.C.Y. Chang et al., *J. Bacteriol.* Vol. 134, 1141-1156 (1978)). The *E. coli* cells were routinely cultured in Luria Bertani (LB) medium at 37°C according to J. Sambrook et al., *Molecular Cloning. A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (2nd Edition 1989). Antibiotics were added at the following final concentrations: 200 μ g/ml ampicillin, 50 μ g/ml chloroamphenicol and 50 μ g/ml kanamycin. The *E. coli* strain DH5 α was used as the host organism for the cloning. The *E. coli* BL21 (DE3) cells which contain the phage T7 polymerase gene under the control of a lacUV5 promoter (F.W. Studier and B.A. Moffatt, *supra*) served as a host for the expression of the target genes of pT7-7 and pET derivatives. The cultures for the expression were prepared as follows. After centrifugation (3000 g, 8 min) of a preculture of 40 ml which had been incubated overnight at 37°C, the cells were resuspended in 20 ml fresh LB medium. The cell suspension was subsequently

used to inoculate 2 L of the same medium which contained appropriate antibiotics and the culture was incubated at 37°C in a shaker (180 rpm). When the OD₆₀₀ reached a value between 0.5 and 0.8, the expression of the target genes was induced by adding IPTG (isopropyl-β-D-thiogalactoside) at a final concentration of 1 mM and the culture was incubated for a further 3 hours at 37°C in a shaker (180 rpm). Subsequently the cells were harvested by centrifugation (30 min at 3000 g), washed once with 20 ml 50 mM potassium phosphate, pH 7.0, 1 mM MgCl₂ and stored at -20°C.

Example 2:

Isolation of the genes and gene cluster

For the construction of the expression plasmid which contains the *E. coli* citCDEFXG gene cluster, a 6.9 kb fragment from the chromosomal DNA of *E. coli* was amplified by means of PCR with the primers eccl-for (SEQ ID NO.1) and ec-citT-rev (SEQ ID NO.2) using the Expand High Fidelity PCR System from Roche Diagnostics. The 6.9 kb PCR fragment which additionally contains the citT gene (K.M. Pos et al., J. Bacteriol. Vol. 180, 4160-4165 (1998)), was cleaved with the restriction endonucleases XbaI and Xhol and the resulting 5.5 kb fragment (SEQ ID NO.3) and an expression vector that was also linearized correspondingly such as pKK177-3Hb, pKKT5, pUC18, pT7, pET24b were separated on an agarose gel and the appropriate bands were isolated (QIAEX kit from the Diagen Company). Subsequently the PCR fragment and the vector fragment were ligated together using T4 DNA ligase. For this 1 μl (20 ng) vector fragment and 3 μl (100 ng) PCR fragment, 1 μl 10 x ligase buffer (Maniatis et al., 1989 B.27), 1 μl T4 DNA ligase, 4 μl sterile redistilled H₂O were pipetted, carefully mixed

and incubated overnight at 16°C. The insert obtained from the PCR starts 55 bp before the citC start codon and ends 203 bp downstream of the citG stop codon.

For the construction of the expression plasmid which contains the citX gene from *E. coli* (SEQ ID NO.3), the citX gene was amplified by PCR from the chromosomal DNA with the primers ec-citX-for (SEQ ID NO.4) and ec-citX-rev (SEQ ID NO.5) using the Pfu DNA polymerase (Stratagene). The start codon is part of an NdeI restriction endonuclease cleavage site and a XhoI restriction endonuclease cleavage site is located directly behind the stop codon. After digestion of the PCR product with NdeI and XhoI, the resulting 555 bp DNA fragment (SEQ ID NO.6) was ligated into appropriately linearized expression vectors (as described above).

The construction of the expression plasmid which contains the citCDEFG gene cluster of *Klebsiella pneumoniae* is described in M. Bott and P. Dimroth, Molecular Microbiology Vol. 14 (2), 347-356 (1994). The sequence of the citCDEFG gene cluster is shown in SEQ ID NO.7.

Example 3:

Transformation of the various expression plasmids in various *E. coli* expression strains

Competent cells of various *E. coli* strains were prepared according to the method of Hanahan (J. Mol. Biol. Vol. 166, 557 ff. (1983)). 200 µl of cells prepared in this manner were mixed with 20 ng of the corresponding expression plasmids. After 30 minutes incubation on ice, a heat shock was carried out (90 sec. at 42°C).

Subsequently the cells were transferred to 1 ml LB medium and incubated for 1 hour at 37°C for the phenotypic expression. Aliquots of this transformation mixture were plated on LB plates containing the appropriate antibiotic as a selection marker and incubated for 15 hours at 37°C.

Example 4:

Expression of the various target genes

After centrifugation (3000 g, 8 min) of 40 ml preculture which had been grown overnight at 37°C, the cell pellet was resuspended in 20 ml fresh LB medium. The cell suspension was then used to inoculate 2 l LB medium containing the appropriate antibiotics. This cell culture was incubated at 37°C in a shaker (180 rpm). The expression of the target genes was induced at an optical density (measured at 600 nm) of 0.5 - 0.8 by adding 1 mM isopropyl- β -D-thiogalactoside (IPTG, final concentration) and the cultures were incubated for a further 3 hours at 37°C and 180 rpm. Afterwards the cells were harvested by centrifugation (30 min. at 3000 g), washed once in 20 ml 50 mM potassium phosphate, pH 7.0 and frozen at -20°C.

For the cell extract preparation, 1 g cells (wet weight) were resuspended in 4 ml cold 50 mM potassium phosphate, 1 mM MgCl₂ pH 7.0. After adding a protease inhibitor cocktail (Roche Diagnostics) and DNaseI to a final concentration of 25 mg/ml, the cells were lysed by a three-fold passage in a French press at 108 Mpa. Intact cells and cell debris were removed by centrifugation (30 min. at 27,000 g). The cell-free supernatant was separated from the membrane fraction by ultracentrifugation (1 h at 150,000 g) and the resulting

cell extract can then be used directly for enzymatic studies and for protein purification.

Example 5:

Citrate lyase activity test

The citrate lyase activity was measured at 25°C in a spectrophotometric test coupled with malate dehydrogenase from Roche Diagnostics. The test mixture contained in a final volume of 1 ml 50 mM glycylglycine pH 7.9, 5 mM potassium citrate, 2 mM ZnCl₂, 0.5 mM NADH, 30 U malate dehydrogenase (Roche Diagnostics) and 10 μ l or 20 μ l cell extract. The oxidation of NADH was measured in a spectrophotometer at 365 nm ($\epsilon = 3.4 \text{ mM}^{-1} \text{ cm}^{-1}$). One enzyme unit (unit) is defined as 1 μ mol citrate which is degraded per minute to acetate and oxaloacetate.

SEQUENCE LISTING

<110> Roche Diagnostics GmbH

<120> Process for the recombinant production of holo-citrate lyase

<130> 523400EP

<140>

<141>

<160> 7

<170> PatentIn Ver. 2.1

<210> 1

<211> 36

<212> DNA

<213> E. coli

<400> 1

ccctctagag aacaacattc gttgcaaatac gataac

36

<210> 2

<211> 38

<212> DNA

<213> E. coli

<400> 2

ccgcgaattc ttagttccac atggcgagaa tcggccag

38

<210> 3

<211> 5484

<212> DNA

<213> E. coli

<400> 3

gaacaacatt cgttgcaaat cgataacaac atgcacccatc aggataactat ttattatgtt 60
cgcaatgat atttcaccc gcgtaaaacg ttcagaaaaat aaaaaaatgg cgaaatcgc 120
ccaaattccgt catgaaaatg atttgagcgt tgacaccaca gtcgaagtat ttattaccgt 180
aacccgcgtat gaaaagctta tcgcgtgcgg tggattgcc ggaatattta ttaaatgcgt 240
tgctatcaat gaatccgtcc gcgggtgaagg actggcgctg acattagcca ctgaattgtat 300
aaacctcgcc tatgagcggc acagcacgca tctgtttatt tataccaaaa ccgaatacga 360
ggcgctgttc cgccagtgcg gttttccac gctgaccagc gtacccggcg tgatgtgct 420
gatggaaaac agcgccacgc gactgaaacg ctatgccgaa tcgctgaaaa aatttgcgtca 480
tccaggaaac aagattggct gcattgtat gaacgccaat ccctttacga atggtcacccg 540
ttatctgatt caacaggctg cggcacagtgc gactggtttgcatctgtttt tagtcaaaga 600
agattcttca cgcttccct atgaagaccg gctggatttg gtgttaaaag gcaccggccga 660
tattccacgc ctgactgtgc atcgtggctc cgaatacacatc atctcccgcg ctacgttccc 720
ttgctacttc attaaagaac agagcgtcat taaccattgt tacaccgaaa ttgatctgaa 780
gattttccgt cagtacctcg ctcccgct ggggtgtaact caccgctttg tcggtaactg 840
acccttttgt cgcggttaccg cccagtcacaa ccaggatatg cgctactggc tggaaacgcc 900
gactatctcc gcaccgccccca tcgaactggt tgaaattgag cggtcgctt accaggagat 960

gcccataatcc gcttccccggg tacgtcaact gctggcgaaa aacgatctca cggtatcg 1020
ggccgtggc cctgcagtc cgcgtcatta tttgcagaac ctgcttgagc actcccccca 1080
ggacgcggca gctcgtaaa agaccccccgc atgagaaaca ggtaaaaat gaaaataaac 1140
cagccccccg ttgcaggcac cttgagtc gggatgtga tgatacgcac ccccccaactc 1200
gatacgcagg atatcgaccc gcaaatcaat agcagcggt agaaacagtt tgccgtatgc 1260
attcgcacca ccattctgga cgttctcgcc cgctacaacg tgccggcggt acagctgaat 1320
gtcgatgaca aaggcgact ggactgcatt ttacgtgcac gacttggaaac cctgctggca 1380
cgcccgccagcg gtatccccggc tctgccatgg gaggattgcc aatgattcc gttcgtctgc 1440
aacaacgtaa aactcgacc cgcgcagca tggtgtttgt gcctggtgcc aatgcccgcg 1500
tggtcagcaa ctccattcatc taccggctg atgcctgtat gttgacccctc gaagactccg 1560
tagcattgcg tgaaaaagac accggcccgcc gcatggttta ccacgcgtg caacatcccg 1620
tgtatcgcga tattgaaacc attgtgcgtg tcaacgcgtc ggattccgaa tgggtgttta 1680
acgacccgtga agccgtcggt cgcgggtgt cggacgttgt gcgtctgccc aaaaccgata 1740
ccgctcagga tggtctggat attgaaaaaa agatcctgcg tatacgaaaaa gcctgtggtc 1800
gtgaaccggg cagcaccggc ctgctggcg gattgaatc tccgctgggg attacccgcg 1860
cagtggaaat cgctcacgct tccgagcggt tgatcggtat cgcctcggt gcagaagact 1920
atgtgcgcaa cctgcgtaca gaacgctccc cggaaaggaac tgaactgctg ttcgcacgct 1980
gttccatttt gcaggcccgcc cgctctgcgg gtattcaggc gttcgatacc gtctattccg 2040
acgctaacaa cgaagccggc ttctgcaag aagccggcca catcaaacag ctgggttttgc 2100
acggcaaatac gctgtatcaac cccgcgtcaga ttgatctgct gcacaacctc tacgcaccga 2160
cccagaaaaga agtggatcac gcccgcgcg tcgtagaagc cgctgaagcc gccgctcgcc 2220
aaggcctcggt cgtggtttcc ctgaacggca agatgtgga cggtcccggtt atcgatcgcc 2280
cccgtctggt gctctcccggt gcagaacttt cggcatccg cgaagaataaa gcaatcaaaa 2340
atgacgcaga aaattgaaca atctcaacga caagaacggg tagccgcctg gaatcgctgc 2400
gctgaatgcg atcttgcgcg tttccagaac tcgccaaagc aaacatcca gggtaaaaaa 2460
gcgcgcgatc gcaaaactgtg cgccaacctg gaagaagcga ttcgtcgctc tggttacag 2520
gacggcatga cgggttccctt ccatcacgct ttccgtggcg gtgacctgac cgtcaatatgc 2580
gtgatggacg tcatcgccaa gatggcttt aaaaacctga ccctggcgctc cagctccctg 2640
agtgattgcc atgcgcgcgt ggtagaacac attcgcagg gcgtggttac ccgcattttat 2700
acctccggcc tgcgtggtcc actggcgaa gagatctccc gtgtctgt ggcagaaccg 2760
gtgcagatcc actctcacgg cggcgtgtg catctgtac agagcggcga actgaatatc 2820
gacgtggctt tcctcgccgt cccgtctgt gatgaattcg gtaatgc当地 cgctacacc 2880
ggtaaagcct gctgcggctc cctcggtat gcaatagtt atgcccacaa cggaaaacacg 2940
gtcgtgtatgc ttaccgaaga actgctgcct tatccgcata atccggcaag cattgagcaa 3000
gatcagggtt atttgcgtt caaagttgac cgcgtggcg atgctgcaaa aatcgccgtc 3060
ggcgcgaccc gttgaccac taacccgcgc gaaactgtta ttgcccgtat cgctcggtat 3120
gtgattgtca actctggcta cttaaaagaa gtttctcca tgcaaacccg caccggccggc 3180
gcatacgctgg cggtaacccg tttctggaa gacaaaatgc gtagcccgaa tattcgccgc 3240
gacttcgccc ttggcggtat taccgcgacg atggttgacc tgacgaaaaa aggtctgatc 3300
cgccaaactgc tggatgtgca gagctttgac agccatgcgt cgcaatcgct ggcccgtaac 3360
cccaatcaca tcgaaatcag cgccaacccag tacgctaact ggggttcgaa aggcgcacatcg 3420
gttgatcgtc tcgacgtgg ggtactgagc ggcgtggaaa ttgacaccca gttcaacacgt 3480
aacgtgctga cggctctga cggcgtactg cgtggtgctt ccgggtgtca ctgcgatacc 3540
gcgattgcct ctgcgttcc catcatcgac ggcggctgg tacgcggctg tattccgact 3600
ctgggtggata acgtactgac ctgcacatcacc ccaggctcca gtgtcgatata tctggtcaca 3660
gaccacggta tcgcagttaa cccggcacgt ccggaaactgg cagaacgtct gcagggacgg 3720
ggcattaaag tggttccat tgagtggctg cgcgaacgtg cgcgtctgt gaccgggtgaa 3780
ccacagccga ttgaattcac agaccgcgtc gttgcccgtt tgccgttaccg cgatggctcg 3840
gtgatcgatg ttgtgcata ggtgaaggaa taagccatgc acctgtctcc tgaactcgcc 3900
agccaccatg cggtatcaat tcccgagctg ctcgtcagcc gggatgaaag gcaagcaccgg 3960
caacacgtct ggctcaagcg ccattctgtt ccactgggt ctttacccgt ggttgcgcct 4020
ggggccgatta aagacagcga ggtcacacgc cgaattttta atcatggcgat gacagccttg 4080
cggtcccttag cgcacaaaca gggctggcaa attcaggagc aggctgcact ggttccgccc 4140

```

agcggggccgg agggcatgtt gaggcattgcc gccccggctc gcgacctcaa gctcgccacc 4200
attgagcttg aacatagtc a tcctctcggt cggttatggg atatcgatgt cctgacgccc 4260
gaaggcgaaa ttctctcccg ccgcgactat tcactgccgc ctcggcgctg cctgttgtc 4320
gaacaaagcg cagccgtctg cgccgctgga aaaacccatc aactgaccga tttactcaac 4380
cgcatggagg cactgctgaa cgatgtcgat gcctgcaacg tcaactaaaa ccacaaaagct 4440
tgcgacgtca ttaatcgatg agtacgccc gctgggctgg cgcgcattgc tgactgaagt 4500
caatctgtca ccgaaaccag gcctcgtgga tcgcattaaac tgcggtgccg acaaagatat 4560
ggcgctggaa gatttccacc gcagcgcgc ggcgattcag ggctggctac cccgtttcat 4620
tgaatttggt gcctgttagt cgaaaaatggc accagaagcg gtactccacg gattacgccc 4680
aattggatag gtttgcgaag gtatatatgtt ccgcgccact gcgggcgtaa acacgcataa 4740
aggcagcatt ttttctttag ggctgctatg tgccgcaatt ggccgttgc ttcaactcaa 4800
ccaaaccggta acgccaacaa ccgttggttc tacggcggca agtttctgcc gtggcctgac 4860
cgatcgcgaa ctgcgtacca ataattcaca actgacggca ggtcaacggt tgtaccaaca 4920
gcttggcctt accggcgac ggggtgaagc cgaagcggt tatccactgg tgatcaatca 4980
cgcccttgccg cattacctca ctctgctgga tcaggggtt gatcctgaac tggcattgct 5040
cgataacctg ctcctactga tggcgatcaa cggcgatacc aacgttgcatt cgccgggtgg 5100
cgaggggggc ctgcgttgc tacagcgcga ggcgaaaca ttattgcaaa aaggggggcat 5160
tcgaaccccc gccgatctcg attatctccg gcagttcgac agggagtgta tcgaacgaaa 5220
tctcagtcca ggcggcagtg ctgacctact gatccttacc tggtttttag cacagattta 5280
attatctaag cacttgataa atttggaaat attaattttc ggagaacccg tatgtcttta 5340
gcaaaagata atatatgaa actattggcc ccactggtgg tcatgggtgt catgtttctt 5400
atccctgtcc ccgacggtat gcccggcga gcatggcatt acttcgctgt gtttggca 5460
atgattgtcg gcatgatctt cgag 5484

```

<210> 4
<211> 33
<212> DNA
<213> *E. coli*

<400> 4
aaatttcata tgcacctgct tcctgaactc gcc

33

<210> 5
<211> 36
<212> DNA
<213> *E. coli*

<400> 5
ggggcccccctcg aqtttagttqa cgttqcagqc atcgac

36

<210> 6
<211> 552
<212> DNA
<213> *E. coli*

```

<400> 6
atgcacctgc ttcctgaact cgccagccac catgcgtat caattccga gctgctcg 60
agccggatg aaaggcaagc acggcaacac gtctggctca agcgccatcc tgttccactg 120
gtctccttta ccgtggttgc gcctggccg attaaagaca gcgaggtcac acgccaatt 180
ttaaatcatg gcgtgacagc ctgcgtgcc tttagccgcaa aacagggctg gcaaattcag 240
gagcaggctg cactggttc cgccagcggg ccggagggca tggtagcat tgccgccccg 300
gctcgcgacc tcaagctcgc caccattgag cttgaacata gtcatcctct cggcggtta 360
tggatatcg atgtcctqac qccccgaaggc gaaattctct cccgccccgca ctattcaactg 420

```

ccgcctcgcc gctgcctgtt gtgcgaacaa agcgagccg tctgcgcgcg tggaaaaacc 480
catcaactga ccgatttact caaccgcacg gaggcactgc tgaacatgtt cgatgcctgc 540
aacgtcaact aa 552

<210> 7

<211> 5593

<212> DNA

<213> Klebsiella pneumoniae

<400> 7

ttaattaaca acataaaaaac cataaagcca attaagccac gagaacttact gtgacttaaa 60
tacaagaatc catagccaa cgctggcgaa atacagttcg ttttggaaatg acgaagcgct 120
aaaaaatgac actgatatta aaacgcgttc agctattaaa agataaaaccg cggcgagagg 180
cgatcgatcg gtttctccgc cagcatcaac tgctgttaga ggcgcactgc gaaatggcga 240
ttatcgccga gtatcagcag cggctgtcg gctgcgggtgc tattcgccggc aatgtgctga 300
aatgcatcgc catcgatccc tcgctgcagg gggagggct gaggcttaaa ttactgaccg 360
agctcctgac gctggcctat gagctgggc gcagcgaact gttttgttc actaaacatt 420
gcaatgccgc gttatttcc ggcgcggct tctggccgat agcccaggcg ggcgaccgcg 480
ccgtgctaattt gaaaaatagc cgcgaacggc tgactcgatc ctgtcgacag ctggcgatgt 540
accgtcagcc gggaaagaaaa atcggcgcta tcgtgtatgaa tgctaattcca ttcaccctcg 600
gccaccgctg gttgttagaa caggcgccca gccagtgcga ctggctgcat ctgtttgtgg 660
tcaaagaaga tgcgtcctgc ttttcctatc acgatcgatc caagctcattt gaacagggga 720
ttaccggcat cgataagggtg acgctgcattc cccgttccgc gtatctgatc tcgcggggcga 780
cgttcccccgg ctatttcctg aaagagcagg ggggtgttga tgactgcccac agccagattg 840
acctgcagct cttccgcgag cgcctggccc cggcgctgca gattaccat cgctttgtcg 900
gcaccggagcc gctgtgtccc ctgacccgta attacaacca ggcgcatttgc tcactactgg 960
aagcgccagg cgacgcgcgcg cccatttgcg tagttgagct tgccgcattt gaaaaaatg 1020
gtggaccgcgt gtcggcctcc cgagtgcgcg aactctatcg acagcgcaac tggcaggcgg 1080
tcgcggcgct ggttccgcgc atcaaaccgc ctgattttata cgccttaact aaggattttc ccctatggaa atgaagattg 1140
gatgttccgcgc ggttccgcgc atgtgtatggt caggttggaa cccgcggcgc 1200
acgcctggc cggcgcgcgt gatgttccgcgc atgtgtatggt caggttggaa cccgcggcgc 1260
agccgggcat tcagctggaa atcgacacgc ttgttggaa acagtttggc gctgcgattt 1320
agcaggtagt gagagaaaacg ctggctcagc ttggcgtgaa acaggccaaac gtgggtggcg 1380
atgataaaagg cgccgtggaa tgggttttgc gagctcgctt acaggccgcg ggcgcgtcg 1440
cgccgcacaaca gacccaaatta caatggagcc agctatgaaa ccacgtcgca gtatgttgg 1500
catccctggc gccaatgcgc gcatgttaag cacgtcattt gtctacggcg ctgtatgtgt 1560
gatgttgcac ctggaaagatg cgcgttgcgctt ggcgcgagaaa gataccgctc gtctgtgtt 1620
gtatcaggcg ctgcagcatc cactgtatca gatgtatcgaa accgtgggtgc gtattaaacc 1680
gctaaatacc ccgtttggtc tggccgatct ggaagccgtg gttcgtcgcc gcgtggatat 1740
ggtgcgtctg ccgaaaacgc gcccggaaatg ggcgcgacc aagttaatgg cggcgatcga 1800
gcggattgaa cgcgagtgcg gtcggcgctg ggcgtggtaa acgcgggtggaa aatcgccgc gtcggccgc 1860
gatcgccgtg gcccgttgc tgaactgttc tacggccgt gatgttggc acctccgcg ggcacggta 1920
ctatgacgtg gtgtggtcgg ggcggaaaac ctcggcttta acggcaaattt gttggtaac ccacgcacaaa ttgaactcct 1980
gcatcaggc tatggcccgaa cgcgcaaaaga ggtcgatcac ggcgttggaa tgattggccgc 2040
ggcggaaagaa gccgaaacgc gaggctggg tgggtatcg ctgaacggca agatgatcga 2280
tgaccgcatt atcgaccatg ctcgcaaaatg ggtggcgctc tcggcttccg gtattcgatg 2340
ttaaggggaa taagatgaaa gagacagtag caatgcttaa tcagcgttac gtatgcccga 2400
atggactgac accttatgcc ggcgttaacgg cgaaaatgtcc ctggctggcg agtggagagcg 2460
aaaagcgcca gcgcaaaatc tgcgattcgc tggaaacggc aatccgtcgc tccggcctgc 2520
aaaacggcat gaccatctcg tttcaccacg cggttgcggg cggtgacaaa gtcgtcaata 2580

5' → 3' 3' ← 5'
tgtagtggc gaagctggcg gaaatgggtt ttcgcgatct caccctggcg tccagttcgc 2640
tgatcgacgc ccactggccg ctgatcgagc atattaaaaa tggcgtgatc cgccagatct 2700
acacccctccgg cctgcgcggc aagttggcg aggagatctc cgccgggtta atggaaaacc 2760
cggtgcagat ccactcccac ggcggtcgcg tacagctgat tcaaagcggc gagctgtcga 2820
ttgatgtcgc gtttctggc gttccttgct gcgatgagtt tggcaacgccc aacggcttta 2880
gcgttataatc acgctgcggt tctctggct acgcgcgcgt cgatgcccggag cacgttataat 2940
gcgtgggtct gctcaccgaa gagttgggtgg attatcctaa ctatccggcc agtattgccc 3000
aggatcaggat ggatctgata gtccaggtag atgaagtccg cgatccgcaaa aaaatttaccg 3060
cgggtgccat ccgtctgacc agcaaccgc gcgagctgt gatcgcccgc caggcggcga 3120
aagtctgtga gcactccggt tactttaaag agggtttctc gtcgcagacc ggtacccggc 3180
gcccctcgct ggcagtaact cgcttcctt aagataaaaat gcccgttaac ggcatttaccg 3240
ccagcttcgg cctccggcgtt atcaccggga cgatggtcga tttgcacgaa aaagggttga 3300
tcaaaaacgct gctcgatacc cagtccttcg atggtgacgc ggcgcgttcg ctggcgcaga 3360
acccgaacca tgcgagatc tccaccaatc agtatgcac cccgggctcc aaaggcgcct 3420
cctgcgagcg cttaaacgtg gtgatgctca ggcgcgttgcg aattgatata gactttaacg 3480
ttaacgtgat gaccggttct aacgggtgtc tgccgcggggc gtccgggtggc catagcgata 3540
ccgcccggcgg tgcgatttg accattatta cccgcgcgtt agttcgcggc cgtattccct 3600
gcgtcggtgg aaagggtctg aacccgcgtca cgccgggggc cagcgtggat gtgcgtggta 3660
ctgaccacgg cattcggtc aacccggcac gtcaggacat gatcgacaat ttgcgcagcg 3720
caggcattcc gctgatgacc attgagaaac tgcaagcgcg tgctgagctg ttgactggca 3780
agccgcagcc gatcgatttcc accgatcggtt tggtggcggt ggtgcgtat cgcgcacgg 3840
cggtcatcgat tgcgtattcgat caggtaaaaa acagcgacta aacgcagagg ggaaaggcca 3900
tgagcgacgt gttaattaaat cctgcgcgtg tgccgcgcgt gaaaggactg agtgcgcgaag 3960
agggtgtcaag cgccgttagag cgcgcgtgt tgaccgaatg tcgcctgacc ccaaagcccg 4020
ggttgggtggaa tattcgtaac gctggcgcgc actggatat ggatctggcc tcgtttgagg 4080
ccagcaccgc ggtgggtggct ccgtggatgg agaaattttt catcatgggc cacgatactg 4140
cggcggtcgc gccggagcag gtattgtga tgctgcgcgc gtagggatg gcctgtgaga 4200
acgatatgtc ggagggccacc ggcgggggtga ataccatcg cggggcgatc ttgcgttttgc 4260
gcctgctca ggcggcggcg ggcaggctgg tgtcgaaagg tgagccgata gagcagcacc 4320
ggctttgcga ccaggtggcg cgcttctgtc gcggcatggg tatgcaggag ttgtcttctg 4380
ctggcggggg acggctcaatg aaaggcgagg ctcattttct acgctatggt ctctccgggg 4440
cccgccggcga ggcggagagc ggtttctgtc ccgtgcgtac ccaggccatg ccagtcttta 4500
cccgcatgat ggaagagacc ggcgacagta atctggcgct actgcaaaacc ctgctgcata 4560
tgatggcggtg gaatgatgac accaacctgg tctcgccgg cggcttgcc gggctgaact 4620
ttgtccagca ggaggcgcag cgactgtgt ggcagggggg cgtgcgtggcg gacggcgggc 4680
tggaggcgct ggcacagttt gacgatgagc tgattgccc ccattctcagc cctggcgca 4740
gcgcgcgtt gttggcggtg acctgggtt tatccgcgtt tccgcggc ggcgtttcc 4800
cgctgttaacc cactgcaata ccgccttcgc ccgcactgtt ccggcgaggcc cgccatcatt 4860
agccttcccg gttgtcatcc ggttaaacacg gaatcgccgg acaatcgat agttttact 4920
gatatcgatcc gccgtttgtc ataaatttttct attatcggt gttttgagttt agcggcccg 4980
tgacggctg gttactctga aaacaattta cgtaatgtt aaaaaagaga atagctatgc 5040
atgatgcaca aatccgcgtg gccatcgccg ggcggggggcc ccggatgggca cgccagttaa 5100
ttcaggctgc attgcagatg gaaggcgtgg cgctggcgcc ggcgcgtggag cgcaagggt 5160
caagcctggt gggcagcgcac ggcggcggc tggcgccggc cggcaaaagcg ggcgtcgccg 5220
tgcagagcag cctggcgccg gtaaaagatg atttcgacgt gttgatcgat ttacccgccc 5280
cgaaaggcac gctgaaccat ctggcggtt gccgcgagca cggcaaaagggt atggtcatcg 5340
gcaccaccgg ttttgcacgc gctggcaaac aggcgattcg cgatgcgcgc caggacattg 5400
ccattgtctt cgccgctaac ttttagcggtt ggcgtcaatgt cctgttgaag ctgcgtggaga 5460
aggcggcgaa ggtgatgggc gactataccg acatcgaaat tattcgaaagcg caccaccggc 5520
ataaaagtggta tgcgcgtca ggcaccgcgc tggcgatggg cgaagcgatc gccggggcat 5580
tgaacaaaga tct

Claims

1. Process for the production of a protein with citrate lyase activity by expressing a suitable plasmid in a host organism and isolating the protein in an active form, wherein the plasmid contains the information from a gene cluster composed of at least six genes and an inducible promoter.
2. Process as claimed in claim 1, wherein the genes code for certain subunits of the protein having citrate lyase activity and/or for components that contribute to the biosynthesis of the complete enzyme.
3. Process as claimed in one of the claims 1 or 2, wherein the plasmid contains the genes citC, citD, citE, citF, citG and a DNA fragment obtainable from *E. coli* that is located between citF and citG on the *E. coli* citrate lyase gene cluster.
4. Process as claimed in claim 3, wherein the DNA fragment codes for a 20 kDa protein.
5. Process as claimed in claim 3 or 4, wherein the DNA fragment codes for a protein containing the motif G(A)-R-L-X-D-L(I)-D-V.

6. Process as claimed in one of the claims 1 to 5, wherein at least one gene is obtainable from *E. coli*, *Haemophilus influenzae*, *Klebsiella pneumoniae* or *Leuconostoc mesenteroides*.
7. Process as claimed in one of the claims 1 to 6, wherein at least four genes are derived from the microorganism that is specific for the isolated protein with citrate lyase activity.
8. Process as claimed in claim 7, wherein it is *Klebsiella pneumoniae*.
9. Process as claimed in one of the claims 1 to 8, wherein the host organism is a eukaryotic or prokaryotic microorganism.
10. Process as claimed in claim 9, wherein it is *E. coli*.
11. Process as claimed in one of the claims 1 to 10, wherein the expression occurs under aerobic conditions.
12. Recombinant soluble protein with citrate lyase activity and a molecular weight of about 14,000 to 15,000 Dalton obtainable by a process as claimed in one of the claims 1 to 11.
13. Test kit for the determination of citric acid which comprises essentially the following components

- (a) a protein with citrate lyase activity obtainable according to one of the claims 1 to 11,
- (b) at least one protein with hydrogen-transferring activity
- (c) nicotinamide adenine dinucleotide or a corresponding derivative in a reduced form and
- (d) optionally suitable stabilizers, activators and/or substances to avoid or reduce interferences, and buffer solutions.

14. Test kit as claimed in claim 13, wherein L-malate dehydrogenase and optionally L-lactate dehydrogenase are used as the hydrogen-transferring enzymes.

15. Use of the enzyme obtainable according to claims 1 to 11 to determine citric acid.

Abstract

Process for the production of a protein with citrate lyase activity by expressing a suitable plasmid in a host organism and isolating the protein in an active form, wherein the plasmid contains the information from a gene cluster composed of at least six genes and an inducible promoter. Furthermore the invention concerns the use of the recombinant enzyme and a corresponding test kit for the determination of citric acid.

HS-R-ACP

A

B

Fig. 2

Docket No.
BMID9975US

Declaration and Power of Attorney For Patent Application

English Language Declaration

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled
PROCESS FOR THE RECOMBINANT PRODUCTION OF HOLO-CITRATE LYASE

the specification of which

(check one)

is attached hereto.

was filed on _____ as United States Application No. or PCT International

Application Number _____

and was amended on _____

(if applicable)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Section 119(a)-(d) or Section 365(b) of any foreign application(s) for patent or inventor's certificate, or Section 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate or PCT International application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

Priority Not Claimed _____

99119404.4	Europe	30 September 1999	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>
_____	_____	_____	<input type="checkbox"/>
_____	_____	_____	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/>
_____	_____	_____	<input type="checkbox"/>
_____	_____	_____	<input type="checkbox"/>

I hereby claim the benefit under 35 U.S.C. Section 119(e) of any United States provisional application(s) listed below:

(Application Serial No.)

(Filing Date)

(Application Serial No.)

(Filing Date)

(Application Serial No.)

(Filing Date)

I hereby claim the benefit under 35 U. S. C. Section 120 of any United States application(s), or Section 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. Section 112, I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, C. F. R., Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application:

(Application Serial No.)

(Filing Date)

(Status)

(patented, pending, abandoned)

(Application Serial No.)

(Filing Date)

(Status)

(patented, pending, abandoned)

(Application Serial No.)

(Filing Date)

(Status)

(patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. *(list name and registration number)*

Kenneth J. Waite, Reg. No. 45,189
D. Michael Young, Reg. No. 33,819
Brent A. Harris, Reg. No. 39,215
Marilyn L. Amick, Reg. No. 30,444
Jill Lynn Woodburn, Reg. No. 39,874

Send Correspondence to: **Kenneth J. Waite**
Roche Diagnostics Corporation
9115 Hague Road, Bldg. D, P.O. Box 50457
Indianapolis, IN 46250-0457

Direct Telephone Calls to: *(name and telephone number)*
Kenneth J. Waite, Telephone No. (317) 576-3104

Full name of sole or first inventor BOTT, Michael	Date
Sole or first inventor's signature	
Residence Heinsberger Strasse 2, D-52428 Juelich, Germany	
Citizenship German	
Post Office Address (same as residence)	

Full name of second inventor, if any DIMROTH, Peter	Date
Second inventor's signature	
Residence Irisweg 3, CH-8700 Kuesnacht, Switzerland	
Citizenship German	
Post Office Address (same as residence)	

Full name of third inventor, if any SCHNEIDER, Karin	Date
Third inventor's signature	
Residence Altwiesenstrasse 64, CH-8051 Zuerich, Switzerland	
Citizenship Swiss	
Post Office Address (same as residence)	

Full name of fourth inventor, if any	Date
Fourth inventor's signature	
Residence	
Citizenship	
Post Office Address	

Full name of fifth inventor, if any	Date
Fifth inventor's signature	
Residence	
Citizenship	
Post Office Address	

Full name of sixth inventor, if any	Date
Sixth inventor's signature	
Residence	
Citizenship	
Post Office Address	