

Heterogeneous Catalytic Transfer Hydrogenation and Its Relation to Other Methods for Reduction of Organic Compounds

ROBERT A. W. JOHNSTONE* and ANNA H. WILBY

The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 3BX, U.K.

TAN D. ENTWISTLE

Shell Research Limited, Sittingbourne, Kent, ME9 8AG, U.K.

Received March 13, 1984 (Revised Manuscript Received November 10, 1984)

Contents

I. Introduction	120
II. Other Methods of Addition of Hydrogen	131
A. Addition of Electrons Followed by Protons (Electron Transfer)	131
B. Addition of Hydride Ion (Hydride Transfer)	132
C. Addition of Hydrogen Atoms	133
III. Catalytic Hydrogen-Transfer Reduction	134
A. Catalyst Types	134
1. Homogeneous Catalysts	134
2. Heterogeneous Catalysts	135
3. Continued Changes from Homogeneous to Heterogeneous Catalysts	136
4. Organic Catalysts	138
B. Hydrogen Donors	139
1. Homogeneous Catalysts	139
2. Heterogeneous Catalysts	140
C. Influence of Temperature on Catalytic Hydrogen-Transfer Reduction	141
1. Homogeneous Systems	141
2. Heterogeneous Systems	142
D. Influence of Solvent on Catalytic Transfer Reduction	143
1. Homogeneous Systems	143
2. Heterogeneous Systems	144
IV. Mechanisms of Heterogeneous Catalytic Transfer Reduction	144
V. Catalytic Transfer Reduction of Specific Functional Groups	150
A. Alkenes	150
B. Alkynes	153
C. Arenes	154
D. Nitroarenes	155
E. Nitroalkenes	155
F. Azo Compounds	158
G. Ketones and Aldehydes	158
H. Nitriles	160
I. Azides	160
VI. Hydrogenolysis	160
A. C-N Bonds	160
B. C-O Bonds	160
1. Aromatic	160

2. Aromatic	164
C. C-S Bonds	166
D. C-Halogen Bonds	166
E: N-N Bonds	167

I. Introduction

Reduction of organic compounds is important synthetically both in the laboratory and in industry. There are many methods of effecting reduction which may or may not lead to hydrogenation, but in this review only processes leading to the addition of hydrogen or replacement of a functional group by hydrogen will be considered. Further, this review will be concerned mostly with those processes that can be effected by heterogeneous catalysis using molecules other than molecular hydrogen as the source of hydrogen. Reduction of organic functional groups can be categorized into (i) addition of hydrogen to unsaturated groups as, for example, in the reduction of ketones to alcohols and (ii) addition of hydrogen across single bonds leading to cleavage of functional groups (hydrogenolysis). Removal of oxygen as a reductive process, as in the deoxygenation of oxiranes to alkenes, will not be discussed.

Of all the methods available for addition of hydrogen to organic compounds, heterogeneous catalytic transfer reactions have been relatively underutilized. This lack of popularity can be traced to the relatively meager success of much of the earlier research which suggested that the technique was of only limited scope and could provide only modest yields of products. The early pioneering work by Braude¹ was largely ignored because of poor yields and long reaction times, but the situation has changed considerably following the appearance² of a stimulating review and the introduction of greater catalyst loadings and different hydrogen donors.³ Another reason for the underutilization of transfer reduction has been the very successful exploitation of molecular hydrogen and hydrides for reduction of organic compounds.

In comparison with catalytic reduction using molecular hydrogen, transfer reduction using hydrogen donors has real and potential advantages. Molecular hydrogen, a gas of low molecular weight and therefore high diffusibility, is easily ignited and presents considerable hazards, particularly on the large scale; the use of hydrogen donors obviates these difficulties in that no gas

04-AUG-04 10:10

DE-PPG SIPSY

+0241427655

T-887 P.002/003 F-697

Heterogeneous Catalyst: Transfer Hydrogenation

Chemical Reviews, 1985, Vol. 85, No. 2 139

SCHEME XIV

B. Hydrogen Donors

7. Homogeneous Catalysis

Although homogeneous and heterogeneous catalysts can utilize common types of compounds as hydrogen donors, it is more often the case that different types of compounds are favored in the two systems. The more active hydrogen donors for homogeneous catalysis appear to be principally alcohols, hydroaromatics, cyclic ethers, and occasionally formic and ascorbic acids whereas, for heterogeneous catalysis, the more widely used donors tend to be hydrazine, formic acid and formates, phosphinic acid and phosphinates, indoline, and cyclohexene. There is no clear division between the two types, but some of the hydrogen donors which are active for heterogeneous catalysts are water-soluble inorganic salts and cannot be used with many homogeneous catalysts. More recently, trialkylsilanes and trialkyltannanes have proved to be good hydrogen donors in both homo- and heterogeneous catalysis.⁴⁰ Whereas tri-n-butyltannane reduced α,β -unsaturated aldehydes in methanol under fairly drastic conditions,²⁰³ in the presence of $\text{Pd}(\text{PPh}_3)_4$ and a promotor, the reduction can be achieved in 10 min at room temperature.⁴⁰

Of the alcohols, secondary ones have proved to be the best hydrogen donors and it is the hydrogen on the carbon attached to the hydroxyl (α -hydrogen) which is transferred in the first reductive step. Tertiary alcohols having no α -hydrogen atoms are not hydrogen donors and under the influence of catalysts, tend to condense to form ethers or to eliminate water to form alkenes.⁷¹ Primary alcohols may or may not be good hydrogen donors and form a special case which is discussed more fully below.

Secondary alcohols in the presence of a homogeneous catalyst, but in the absence of a hydrogen acceptor may react in one of five principal modes viz., by dehydrogenation, dehydration, reductive coupling, disproportionation, and hydrogenglycolysis (equations a-d, respectively); where a second type of alcohol is involved, a reaction (e) similar to (d) may occur.^{103,127} In the presence of a suitable hydrogen acceptor, reaction (a) usually occurs with the hydrogen being transferred to the acceptor, but not of course as the molecular hydrogen of reaction (a), and the secondary alcohol is transformed into a ketone.

An α -hydrogen of a primary alcohol is less likely than that of a secondary alcohol to react as a hydride species, because of the smaller electron-releasing inductive effect of one alkyl group as against two. Nevertheless, ethanol

SCHEME XV

and 1-propanol have been used successfully for the transfer reduction of carboboranes²⁰⁴ aldehydes,¹¹⁰ alkynes,¹¹⁷ dienes,¹²¹ and alkenes.¹¹⁸ Benzyl alcohol is active in the reduction of double bonds in unsaturated ketones,¹¹⁸ acids and esters,^{77,95} and cycloalkenes,¹¹⁸ and in the reduction of aldehydes to alcohols.^{76,110} Even so, primary alcohols may not be rewarding as hydrogen donors because aldehydes, the products of their dehydrogenation, act as catalyst poisons. Also, aldehydes when complexed to some homogeneous catalyst systems are decarbonylated so that CO becomes a ligand which may inactivate the catalyst (Scheme XV).^{67,110,121,205} In some catalyst systems in which ethanol or benzyl alcohol have been used successfully as hydrogen donors, attempts to detect such carbonyl complexes were unsuccessful.¹¹⁶ There are reports of the resistance of aldehydes to decarbonylation¹¹⁰ and, in contrast, others in which the aldehydes are decarbonylated to give a new active catalyst as a result of incorporation of the CO as a ligand.²⁰⁰

Diols, some primary and some secondary, have been used as hydrogen donors even though they yielded aldehydes by dehydrogenation. Ethane-1,2-diol, cyclohexane-1,2-diol, hexane-1,6-diol, and butane-2,3-diol have been utilized in the catalytic transfer reduction of alkenes to alkanes^{103,105,106,116,140} and of ketones to alcohols.²⁰⁷ Similarly, polyols such as furanoses, pyranoses, and poly(glycol alcohol) have been employed to reduce unsaturated ketones to saturated ketones,^{76,78,51,97,167,208,209} and α,β -unsaturated acids to saturated acids.²⁵ In the absence of a hydrogen-acceptor substrate, sugars undergo mutual oxidation/reduction to give, in place of two aldehyde groups, an alcohol and a lactone.^{97,209} The best hydrogen donors among the sugars have been found to be glucoses or glucosides having an arrangement of three *cis*-hydroxyl groups which provide the best coordination to the catalytic metal.^{76,122,208}

Despite the use of a variety of alcohols, 2-propanol remains the most popular donor, because of its simplicity, cheapness, availability, and the ease of removal of both it and its dehydrogenation product, acetone, from reaction systems. The mechanism of hydrogen transfer from 2-propanol to a ketone substrate using the catalyst, $\text{RhCl}(\text{PPh}_3)_3$, has been very extensively investigated so that most details of the mechanism are clear.²¹⁰ A synergist for this reaction is potassium hydroxide which is believed to be effective by removing a proton from the reacting complex during part of the catalytic cycle. Certainly, many other homogeneous catalyst systems using an alcohol as the hydrogen donor^{74,83,95,211-213} appear to need base (KOH) for their activity. Scheme XVI indicates how this synergistic activity may arise by promoting the transfer of a hydride ion from an alkoxyl radical onto an adjoining coordinated ketone. Despite this careful work, the full mechanistic details of general catalytic transfer reduction are not understood completely. Kinetic studies to compare the transfer reduction of cycloalkanes and aldehydes with $\text{RuH}_2(\text{PPh}_3)_4$ as catalyst and 2-propanol as hydrogen

BEST AVAILABLE COPY

146 Chemical Review, 1965, Vol. 85, No. 2

SCHEME XVI

donor revealed a large kinetic isotope effect in the reduction of alkenes,¹¹³ (transfer of hydrogen being the rate-limiting step) and no isotope effect with aldehydes.¹¹⁰ This result does not invalidate the overall view of this type of hydrogen transfer, since it probably reflects only the different timing of certain steps of the whole reaction of cycloalkenes as compared with aldehydes.

Of other kinds of hydrogen-donors that have been used, some mention should be made of cyclic ethers like dioxane^{114,115} and dihydrofuran¹¹⁶ and of aldehydes¹¹⁰ and formic acid.^{104,116} Hydroaromatic compounds, which may be conveniently dehydrogenated to aromatic compounds, have been used widely as hydrogen donors. For example, most functional groups can be reduced by using tetrahydroquinoline, piperidine, pyrrolidine, and indoline (ref 72, 105, 107, 109, 114, 128, 140, 141) and the hydrocarbons, indan and tetralin have served to reduce aldehydes to alcohols (ref 75, 110, 142). Aromatization is not necessarily the driving force of these reactions because, although indoline is dehydrogenated to indole in these reactions,^{140,141} piperidine does not yield pyridine.¹¹¹ The effects of these hydrogen donors are not uniform so that successful use of one donor in one situation does not imply its success in another. Aldehydes can be reduced to alcohols in high yields using RuH₂(PPh₃)₄ at 140 °C with 2,5-dihydrofuran or 2-propanol as hydrogen-donor,¹¹⁰ but the same donors with RhCl₃ at 120 °C were ineffective in reducing nitrobenzene to aniline.⁷²

Some leading references to the use of the above hydrogen donors in catalytic transfer reduction are given in Table III.

2. Heterogenous Catalysis

Some of the best hydrogen donors for heterogeneous catalytic transfer hydrogenation comprise of simple molecules such as cyclohexene, 1,4-cyclohexadiene, hydrazine, formic acid and formates, phosphinic acid and phosphinates, phosphorous acid and phosphites, and sodium tetrahydroborate (see Table IV). Generally, these donors are used with noble-metal catalysts (either finely divided or supported on carriers), but, sometimes with other metals such as copper and nickel, often for use at higher temperatures. With the noble metals, particularly Pd, Pt, and Rh these hydrogen donors give up hydrogen to the substrate under mild conditions with reaction temperatures rarely exceeding 100 °C. After giving up their hydrogen, the other reaction products from the hydrogen donors are frequently easily removable from the reaction system. Thus, formic acid exhibits two modes of decomposition¹¹⁴ and may give CO₂ or CO as its non-hydrogen containing side products, depending on the catalyst used. Similarly, hydrazine decomposes to give either

Johnstone, Wilby and Entwistle

TABLE III. References to Hydrogen Donors Used in Homogeneous Catalytic Transfer Hydrogenation.

hydrogen donor	ref
cyclohexene	72, 75, 109
indan	142
tetralin	75, 110, 290
indoline	72, 104, 105, 107, 109, 114, 140, 141
tetrahydroquinoline	107, 114, 140, 141
dihydrofuran	73, 110
dioxane	69, 82
ethanol	115, 117, 124, 204
propan-2-ol	67, 78, 74, 75, 98, 99, 105, 110, 113, 115, 122, 205, 210-213, 230-233
pentan-2-ol	118, 234
2-methoxyethanol	285
benzyl alcohol	71, 75, 84, 95, 115
tert-butylfuranol	295
stearols	102
1,2-ethanediol	118, 207
2,3-butanediol	106, 140
1,3-cyclohexanediol	105, 108, 140
polyvinyl alcohol	79
ascorbic acid	210
sugars	76, 78, 81, 90, 97, 105, 106, 208, 209
phenols	119
formic acid	296, 297

TABLE IV. References to the Commoner Hydrogen Donors Used in Heterogeneous Catalytic Transfer Hydrogenation

hydrogen donor	ref
cyclohexane	47, 70, 167, 170, 173, 181, 184, 185, 186, 189, 226, 235, 288
cyclohexadiene	126, 281
limonene	70, 154
ethanol	177
propan-2-ol	187, 175, 177
benzyl alcohol	166
benzhydrol	127
hydroquinone	289
sugars	182
indoline	47, 70
N-benzyldimine	178
formic acid	47, 70, 128, 214, 201
formates	128, 129, 180, 225
phosphinic acid	128, 184
sodium phosphinate	128, 145, 170, 192
sodium tetrahydroborate	47
hydrazine	152, 171, 174, 193

nitrogen or ammonia together with hydrogen, but phosphinic acid (hypophosphorous acid) is normally oxidized to phosphorous acid by water in giving up its hydrogen, rather than undergoing decomposition. The mode of reaction of formic acid or hydrazine depends markedly on conditions of temperature, pressure, and type of catalyst. For example, in the gas phase over a copper catalyst, formic acid decomposes through the formate anion whereas, with nickel, it decomposes via an anhydride.^{114,115} The different modes of decomposition of hydrazine are revealed by the types of functional groups that can be reduced with this hydrogen-donor.¹¹⁶ The decomposition of hydrazine over metals such as Pd tends to yield mostly hydrogen and nitrogen and can lead to hydrogenolysis of C—O bonds^{174,192} or reduction of nitro groups^{152,171} whereas its decomposition with oxidizing agents tends to produce diimide initially. The decomposition of hydrazine via diimide is characterized by the fact that diimide adds hydrogen to symmetrical (nonpolar) double bonds like those found in alkynes and alkenes, but not polar bonds like carbonyl.²⁰ The mode of decomposition of tetrahydroborates with catalysts is obscure. Although nitro compounds are not reduced directly by sodium tetra-

BEST AVAILABLE COPY