# Optimal Transport for Machine Learning

#### Aude Genevay

CEREMADE - Université Paris Dauphine INRIA - Mokaplan project-team DMA - Ecole Normale Supérieure

Rentrée de l'équipe d'analyse - DMA - 3 Octobre 2017

Joint work with F. Bach, M.Cuturi, G. Peyré

### Recurrent issue in ML: Comparing probability distributions



Figure 1: Many objects can be viewed as probability distributions (courtesy of M. Cuturi)

### Optimal Transport and the Wasserstein Distance



- Optimal Transport : find coupling that minimizes total cost of moving  $\mu$  to  $\nu$  whith unit cost function c
- Constrained problem : coupling has fixed marginals
- Minimal cost of moving  $\mu$  to  $\nu$ (e.g. solution of the OT problem) is called the **Wasserstein distance** (it's an actual distance!)

### OT for ML problems



Figure 2: OT gives a natural framework for distances between probability distributions that takes geometry into account (courtesy of M. Cuturi)

### Optimal Transport

Two positive Radon measures  $\mu$  on  $\mathcal X$  and  $\nu$  on  $\mathcal Y$  of mass 1 Cost c(x,y) to move a unit of mass from x to y Set of couplings with marginals  $\mu$  and  $\nu$   $\Pi(\mu,\nu)\stackrel{\mathrm{def.}}{=} \{\pi \in \mathcal M^1_+(\mathcal X \times \mathcal Y) \mid \pi(A \times \mathcal Y) = \mu(A), \pi(\mathcal X \times B) = \nu(B)\}$ 

What's the coupling that minimizes the total cost?





#### Kantorovitch Formulation of OT

The optimal overall cost for transporting  $\mu$  to  $\nu$  is given by

$$W(\mu, \mathbf{v}) = \min_{\pi \in \Pi(\mu, \mathbf{v})} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y)$$
 (\mathcal{P}\_\varepsilon)

### Kantorovitch Formulation of OT

The optimal overall cost for transporting  $\mu$  to  $\nu$  is given by

$$W_{\varepsilon}(\mu, \underline{\nu}) = \min_{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\pi(x, y) + \varepsilon \operatorname{\mathsf{KL}}(\pi | \mu \otimes \underline{\nu}) \tag{$\mathcal{P}_{\varepsilon}$}$$

where

$$\mathsf{KL}(\pi|\mu\otimes 
u) \stackrel{\mathsf{def.}}{=} \int_{\mathcal{X} imes \mathcal{V}} ig( \logig( rac{\mathrm{d}\pi}{\mathrm{d}\mu\mathrm{d}
u}(x,y) ig) - 1 ig) \mathrm{d}\pi(x,y)$$

### Entropy!

- Basically: Adding an entropic regularization smoothes the constraint
- Makes the problem easier :
  - yields an unconstrained dual problem
  - discrete case can be solved efficiently with alternate maximizations on the dual variables: Sinkhorn's algorithm (more on that later)
- For ML applications, regularized Wasserstein is better than standard one
- In high dimension, helps avoiding overfitting

### Reminder on convex duality

Primal problem:

$$\min_{x}$$
  $f(x)$   
subject to  $h_{i}(x) = 0$  for  $i = 1...m$ 

Lagrange dual function:

$$g(\lambda) = \min_{x} f(x) + \sum_{i=1}^{m} \lambda_{i} h_{i}(x)$$

Dual problem:

$$\max_{\lambda} g(\lambda)$$

Under good assumptions, both problems are equivalent.

### Dual formulation of OT

$$W(\mu, \nu) = \max_{\mathbf{u} \in \mathcal{C}(\mathcal{X}), \mathbf{v} \in \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} \mathbf{u}(\mathbf{x}) d\mu(\mathbf{x}) + \int_{\mathcal{Y}} \mathbf{v}(\mathbf{y}) d\nu(\mathbf{y}) - \iota_{\mathcal{U}_{\varepsilon}}(\mathbf{u}, \mathbf{v}) \ (\mathcal{D}_{\varepsilon})$$

where the constraint set  $U_c$  is defined by

$$\textit{U}_\textit{C} \stackrel{\text{\tiny def.}}{=} \{(\textit{u}, \textit{v}) \in \mathcal{C}(\mathcal{X}) \times \mathcal{C}(\mathcal{Y}) \; ; \; \forall (x, y) \in \mathcal{X} \times \mathcal{Y}, \textit{u}(x) + \textit{v}(y) \leq \textit{c}(x, y) \}$$

# Dual formulation of OT (with entropy)

$$W_{\varepsilon}(\mu, \frac{\mathbf{v}}{\mathbf{v}}) = \max_{\mathbf{u} \in \mathcal{C}(\mathcal{X}), \mathbf{v} \in \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} \mathbf{u}(x) d\mu(x) + \int_{\mathcal{Y}} \mathbf{v}(y) d\nu(y) - \iota_{U_{\varepsilon}}^{\varepsilon}(\mathbf{u}, \frac{\mathbf{v}}{\mathbf{v}})$$

and the smoothed indicator is

$$\iota_{U_c}^{\varepsilon}(\underline{u},\underline{v}) \stackrel{\text{def.}}{=} \varepsilon \int_{\mathcal{X} \times \mathcal{V}} \exp(\frac{\underline{u}(x) + \underline{v}(y) - c(x,y)}{\varepsilon}) d\mu(x) d\underline{v}(y)$$

### Semi-Dual formulation of OT

The dual problem is convex in u and v. We fix v and minimize over u.

### Semi-Dual formulation of OT

The dual problem is convex in u and v. We fix v and minimize over u. This yields :

$$u(x) \stackrel{\text{def.}}{=} \min_{y \in \mathcal{Y}} c(x, y) - v(y)$$

### Semi-Dual formulation of OT

The dual problem is convex in u and v. We fix v and minimize over u. This yields :

$$u(x) \stackrel{\text{def.}}{=} \min_{y \in \mathcal{Y}} c(x, y) - v(y)$$

Plugging back in the dual:

$$W_{\varepsilon}(\mu, \nu) = \max_{\mathbf{v} \in \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} \min_{y \in \mathcal{Y}} \left( c(x, y) - \mathbf{v}(y) \right) d\mu(x) + \int_{\mathcal{Y}} \mathbf{v}(y) d\nu(y) - \varepsilon$$
$$= \max_{\mathbf{v} \in \mathcal{C}(\mathcal{Y})} \mathbb{E}_{\mu} \left[ \min_{y \in \mathcal{Y}} \left( c(x, y) - \mathbf{v}(y) \right) + \int_{\mathcal{Y}} \mathbf{v}(y) d\nu(y) - \varepsilon \right]$$

### Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v. We fix v and minimize over u.

# Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v. We fix v and minimize over u. This yields :

$$u(x) \stackrel{\text{def.}}{=} -\varepsilon \log \left( \int_{\mathcal{Y}} \exp(\frac{\mathbf{v}(y) - c(x, y)}{\varepsilon}) d\mathbf{v}(y) \right)$$

### Semi-Dual formulation of OT (with entropy)

The dual problem is convex in u and v. We fix v and minimize over u. This yields :

$$u(x) \stackrel{\text{\tiny def.}}{=} -\varepsilon \log \left( \int_{\mathcal{Y}} \exp(\frac{v(y) - c(x, y)}{\varepsilon}) d\nu(y) \right)$$

Plugging back in the dual:

$$W_{\varepsilon}(\mu, \nu) = \max_{\mathbf{v} \in \mathcal{C}(\mathcal{Y})} \int_{\mathcal{X}} -\varepsilon \log \left( \int_{\mathcal{Y}} \exp(\frac{\mathbf{v}(y) - c(x, y)}{\varepsilon}) d\nu(y) \right) d\mu(y)$$

$$+ \int_{\mathcal{Y}} \mathbf{v}(y) d\nu(y) - \varepsilon$$

$$= \max_{\mathbf{v} \in \mathcal{C}(\mathcal{Y})} \mathbb{E}_{\mu} \left[ -\varepsilon \log \left( \int_{\mathcal{Y}} \exp(\frac{\mathbf{v}(y) - c(x, y)}{\varepsilon}) \right) + \int_{\mathcal{Y}} \mathbf{v}(y) d\nu(y) - \varepsilon \right]$$

#### We consider 2 frameworks:

• Semi-Discrete :  $\mu$  is continuous and  $\nu = \sum_{j=1}^M \nu_i \delta y_j$  The optimization problem is

$$\max_{\mathbf{v} \in \mathbb{R}^M} \mathbb{E}_{\mu} \left[ -\varepsilon \log \left( \sum_{j=1}^M \exp(\frac{\mathbf{v}(y_j) - c(x, y_j)}{\varepsilon}) \right) + \sum_{j=1}^M \mathbf{v}(y_j) \mathbf{v}_j - \varepsilon \right]$$

We consider 2 frameworks:

• Semi-Discrete :  $\mu$  is continuous and  $\nu = \sum_{j=1}^M \nu_i \delta y_j$  The optimization problem is

$$\max_{\mathbf{v} \in \mathbb{R}^M} \mathbb{E}_{\mu} \left[ -\varepsilon \log \left( \sum_{j=1}^M \exp(\frac{\mathbf{v}(y_j) - c(x, y_j)}{\varepsilon}) \right) + \sum_{j=1}^M \mathbf{v}(y_j) \nu_j - \varepsilon \right]$$

• Discrete :  $\mu = \sum_{i=1}^{N} \mu_i \delta x_i$  and  $\nu = \sum_{j=1}^{M} \nu_i \delta y_j$  The optimization problem is

$$\max_{\mathbf{v} \in \mathbb{R}^M} \sum_{i=1}^N \Bigg[ -\varepsilon \log \left( \sum_{j=1}^M \exp(\frac{\mathbf{v}(y_j) - c(x_i, y_j)}{\varepsilon}) \right) + \sum_{j=1}^M \mathbf{v}(y_j) \mathbf{v}_j - \varepsilon \Bigg] \mu_i$$

### Stochastic Optimization

#### Computing the full gradient is

ullet Hard in the semi-discrete setting (even impossible if we don't know  $\mu$  explicitly)

### Stochastic Optimization

#### Computing the full gradient is

- Hard in the semi-discrete setting (even impossible if we don't know  $\mu$  explicitly)
- Very costly in the discrete case since we need to compute N gradients and sum them.

The idea of stochastic optimization is to use approximate gradients so that each iteration is inexpensive.

### Stochastic Optimization I

- Goal: maximize  $H_{\varepsilon}(\mathbf{v}) = \mathbb{E}_{\mu} [h_{\varepsilon}(X, \mathbf{v})]$  over  $\mathbf{v}$  in  $\mathbb{R}^{M}$ .
- Standard gradient ascent :

$$\mathbf{v}^{(k)} = \mathbf{v}^{(k-1)} + \nabla_{\mathbf{v}} H_{\varepsilon}(\mathbf{v}^{(k-1)})$$

- The whole gradient  $\nabla_{\nu}H_{\varepsilon}(\nu)$  is too costly/complicated to compute
- Idea : Sample x from  $\mu$  and use  $\nabla_v h_{\varepsilon}(x, v)$  as a proxy for the full gradient in the gradient ascent.

### Stochastic Optimization II

### Algorithm 1 Averaged SGD

```
Input: C
Output: v
v \leftarrow \mathbb{O}_{M}, \ \bar{v} \leftarrow v
for k = 1, 2, \dots do
\text{Sample } x_{k} \text{ from } \mu
v \leftarrow v + \frac{C}{\sqrt{k}} \nabla_{v} h_{\varepsilon}(x_{k}, v) \quad \text{(gradient ascent step)}
\bar{v} \leftarrow \frac{1}{k} v + \frac{k-1}{k} \bar{v} \quad \text{(averaging)}
end for
```

- cost of each iteration M
- convergence rate  $O(1/\sqrt{(k)})$

### Discrete OT: Sinkhorn's Algorithm I

### State-of-the-art: Sinkhorn's Algorithm

- Two equivalent views
  - ▶ Alternate projections on the constraints of the primal
  - ► Alternate minimizations on the dual
- Iterates  $a \stackrel{\text{def.}}{=} \exp(\frac{u}{\varepsilon})$  and  $b \stackrel{\text{def.}}{=} \exp(\frac{v}{\varepsilon})$ :  $\begin{cases} a = \frac{1}{K(b \odot \nu)} \\ b = \frac{1}{K^T(a \odot \mu)} \end{cases}$  where  $K \stackrel{\text{def.}}{=} \exp\frac{-\mathbf{c}}{\varepsilon}$  and  $\odot$  is coordinatewise vector multiplication.
- Linear convergence of the iterates to the optimizers

### Discrete OT: Sinkhorn's Algorithm II

#### Algorithm 2 Sinkhorn

Output: 
$$\mathbf{v}$$
  $\mathbf{b} \leftarrow \mathbb{1}_J$  for  $k=1,2,\ldots$  do  $\mathbf{a} \leftarrow \frac{\mathbb{1}_J}{K(\nu \odot \mathbf{b})}$   $\mathbf{b} \leftarrow \frac{\mathbb{1}_J}{K^\top (\mu \odot \mathbf{a})}$  end for  $\mathbf{v} \leftarrow \varepsilon \log(\mathbf{b})$ 

 $\Rightarrow$  Implies matrix vector multiplications at each iteration : cost  $I \times J$  per iteration

### Stochastic Optimization: Case of a Finite Sum I

When  $\mu$  is also a discrete measure, we are minimizing a finite sum of N functionals :

$$\max_{\mathbf{v} \in \mathbb{R}^M} \sum_{i=1}^N \left[ -\varepsilon \log \left( \sum_{j=1}^M \exp(\frac{\mathbf{v}(y_j) - c(x_i, y_j)}{\varepsilon}) \right) + \sum_{j=1}^M \mathbf{v}(y_j) \mathbf{v}_j - \varepsilon \right] \mu_i$$

### Stochastic Optimization: Case of a Finite Sum II

A more efficient stochastic algorithm consists in using an average of the past gradients as a proxy for the full gradient :

- At iteration k, an index i is drawn. Its gradient  $\nabla_{v} h_{\varepsilon}(x_{i}, v^{(k)})$  is updated in the vector of partial gradients (vector with N entries kept in memory).
- The average gradient is updated accordingly, and used in a step of the gradient ascent

### Stochastic Optimization: Case of a Finite Sum III

### Algorithm 3 SAG for Discrete OT

```
Input: C
Output: \mathbf{v}
\mathbf{v} \leftarrow \mathbb{O}_M, \mathbf{d} \leftarrow \mathbb{O}_J, \forall i, \mathbf{g}_i \leftarrow \mathbb{O}_M
for k = 1, 2, \dots do
Sample i \in \{1, 2, \dots, I\} uniform.
\mathbf{d} \leftarrow \mathbf{d} - \mathbf{g}_i
\mathbf{g}_i \leftarrow \mu_i \nabla_{\mathbf{v}} \bar{h}_{\varepsilon}(\mathbf{x}_i, \mathbf{v})
\mathbf{d} \leftarrow \mathbf{d} + \mathbf{g}_i; \mathbf{v} \leftarrow \mathbf{v} + C\mathbf{d}
end for
```

- cost of each iteration M
- convergence rate O(1/k)

### Stochastic Optimization: Case of a Finite Sum IV

 $\Rightarrow$  Slower convergence rate than Sinkhorn but *online* algorithm, better for (very) large-scale problems

# Numerical Results for Word Mover's Distance (Discrete OT)



Figure 3: Results for the computation of 595 pairwise word mover's distances between 35 very large corpora of text, each represented as a cloud of I = 20,000 word embeddings.

# Numerical Results for Density Fitting (Semi-discrete OT)



Figure 4: (a) Plot of  $\|\mathbf{v}_k - \mathbf{v}_0^\star\|_2 / \|\mathbf{v}_0^\star\|_2$  as a function of k, for SGD and different values of  $\varepsilon$  ( $\varepsilon = 0$  being un-regularized). (b) Plot of  $\|\mathbf{v}_k - \mathbf{v}_\varepsilon^\star\|_2 / \|\mathbf{v}_\varepsilon^\star\|_2$  averaged over 40 runs as a function of k, for SGD and SAG with different number N of samples, for regularized OT using  $\varepsilon = 10^{-2}$ .

# Density Fitting: A natural semi-discrete OT problem I

- Data  $(y_1, \ldots, y_N) \in \mathcal{X}$
- Empirical measure  $\nu = \frac{1}{N} \sum_{i=1}^{N} \delta_{y_i}$
- Parametric model :  $\mu_{\theta} = g_{\theta\sharp} \xi$
- ullet is a reference measure on the latent space  ${\mathcal Z}$
- $g_{\theta}: \mathcal{Z} \to \mathcal{X}$  from latent space to data space
- i.e. a sample x from the generative model is obtained by  $x=g_{\theta}(z)$  were  $z\sim \xi$
- Goal : find  $\hat{\theta} = \arg\min_{\theta} \mathcal{L}(\mu_{\theta}, \nu)$  where  $\mathcal{L}$  is a loss on measures.

# Density Fitting: A natural semi-discrete OT problem II

#### The Wasserstein Distance is a natural candidate for $\mathcal{L}!$

- because of its good geometrical properties
- but also because the usual maximum likelihood framework using  $\mathcal{L} = -\sum_j \log \frac{d\mu_\theta}{dx}(y_j)$  can't be used (not defined for singular measures without a density wrt a reference measure )

### Density Fitting with the Wasserstein Distance



Figure 5: Illustration of the Minimum Kantorovitch Estimation

# Density Fitting with the Wasserstein Distance "Formally"

- Solve  $\min_{\theta} E(\theta)$ where  $E(\theta) = \mathcal{W}_c(\mu_{\theta}, \nu) = \min_{\Pi(\xi, \nu)} \int_{\mathcal{Z}, \mathcal{X}} c(g_{\theta}(z), x) d\pi(z, x)$
- gradient reads  $\nabla E(\theta) = \int_{\mathcal{Z} \times \mathcal{X}} (\partial_{\theta} g_{\theta}(z))^{\top} (\nabla_{1} c(g_{\theta}(z), y) d\pi(z, y))$  where  $\pi$  is a minimizer of  $\mathcal{W}_{c}$
- intractable in pratice, need an approximation

### Approximating the gradient?

- Actually, rather than approximating the gradient approximate the distance
- Minibatches :  $\hat{E}(\theta)$ 
  - ▶ sample  $x_1, ..., x_m$  from  $\mu_{\theta}$
  - use empirical Wasserstein distance  $\mathcal{W}(\hat{\mu}_{\theta}, \nu)$  where  $\hat{\mu}_{\theta} = \frac{1}{N} \sum_{i=1}^{m} \delta_{x_i}$
- ullet Regularize (with entropy) and use Sinkhorn's algorithm :  $\hat{\mathcal{E}}_L( heta)$ 
  - state of the art approximation algorithm for discrete OT
  - each step simple matrix/vector multiplication
  - compute L steps of the algorithm
  - use this as a proxy for  $\mathcal{W}(\hat{\mu}_{\theta}, \mathbf{\nu})$
- Compute exact gradient of  $\hat{E}_L(\theta)$  with autodiff (in tensorflow)

# The Inference Algorithm in Practice



Figure 6: Scheme of the inference prodecure

# Numerical Results: a toy example



Figure 7: Fitting ellipses (centers and covariance matrices) to the IRIS dataset

#### Numerical Results on MNIST



Figure 8: Manifolds in the latent space for various parameters

#### Conclusion

- Similar frameworks: WGAN (Arjovsky et al.) / VEGAN (Bousquet et al.)
- Competing concept: Cramer-GAN (Bellemare et al.) using MMD (Maximum Mean Discrepency) kernel-based distance instead of Wasserstein distance
- Actually, when using regularized Wasserstein
  - $\varepsilon \to 0$  : standard OT
  - $\varepsilon \to \infty$  : MMD
- ullet Ongoing work to explore the effects of interpolating between both with arepsilon in-between