MATH 552 Homework Set 3*

Problem 1.12.4bd In each case, sketch the closure of the set:

- (b) $|\operatorname{Re} z| < |z|$
- (d) $Re(z^2) > 0$

Solution.

(b) |Re z| < |z| everywhere except when z is a real number:

The closure is shown with the interior in red and the boundary in blue.

(d) Let z = x + yi. Then, $z^2 = x^2 - y^2 + 2xyi$, and $Re(z^2) = x^2 - y^2$. $Re(z^2) > 0$, so $y^2 < x^2$:

The closure is shown with the interior in red and the boundary in blue.

Problem 2.14.8b Sketch the region onto which the sector $r \le 1, 0 \le \theta \le \pi/4$ is mapped by the transformation $w = z^3$.

Solution. The magnitude of any point in this interval will be cubed, so any r in [0,1] will stay in [0,1]. The angle will be multiplied by 3, so $[0, \pi/4]$ is transformed to $[0, 3\pi/4]$.

The sector is mapped to the region shown above.

Problem 2.18.11b Show that when

$$T(z) = \frac{az+b}{cz+d} \qquad (ad-bc \neq 0),$$

$$\lim_{z \to \infty} T(z) = \frac{a}{c} \text{ and } \lim_{z \to -d/c} T(z) = \infty \text{ if } c \neq 0.$$

Solution.

By Theorem 2.17.2,

$$\lim_{z \to 0} T\left(\frac{1}{z}\right) = \frac{a}{c} \implies \lim_{z \to \infty} T(z) = \frac{a}{c}.$$

$$T\left(\frac{1}{z}\right) = \frac{\frac{a}{z} + b}{\frac{c}{z} + d} \qquad \text{(substituting } z = \frac{1}{z}\text{)}$$

$$T\left(\frac{1}{z}\right) = \frac{\frac{a+bz}{z}}{\frac{c+dz}{z}} \qquad \text{(rearranging)}$$

$$T\left(\frac{1}{z}\right) = \frac{a+bz}{c+dz} \qquad \text{(using } \frac{z}{z} = 1 \text{ (not interested in } z = 0\text{))}$$

$$\lim_{z \to 0} \frac{a+bz}{c+dz} = \frac{a}{c} \qquad \text{(direct substitution)}$$

$$\lim_{z \to \infty} T(z) = \frac{a}{c} \qquad \text{(using the theorem)}$$

By Theorem 2.17.1,

$$\lim_{z \to -d/c} \frac{1}{T(z)} = 0 \implies \lim_{z \to -d/c} T(z) = \infty.$$

$$\frac{1}{T(z)} = \frac{1}{\frac{az+b}{cz+d}}$$

$$\frac{1}{T(z)} = \frac{cz+d}{az+b}$$

$$\lim_{z \to -d/c} \frac{cz+d}{az+b} = \frac{c\left(-\frac{d}{c}\right)+d}{a\left(-\frac{d}{c}\right)+b}$$

$$\lim_{z \to -d/c} \frac{cz+d}{az+b} = \frac{-d+d}{-\frac{ad}{c}+b}$$

$$\lim_{z \to -d/c} \frac{cz+d}{az+b} = -\frac{0}{\frac{ad-bc}{c}}$$

$$\lim_{z \to -d/c} \frac{cz+d}{az+b} = \frac{0}{ad-bc}$$

$$\lim_{z \to -d/c} \frac{cz+d}{az+b} = 0$$
(when $ad-bc \neq 0$, which is specified in the domain)
$$\lim_{z \to -d/c} T(z) = \infty$$
(by the theorem)

Problem Supplemental A Show how the mapping $w = e^z$ transforms the box $-1 \le x \le 1, -\ln 2 \le y \le \ln 3$. Here \ln denotes the real natural logarithm.

Solution. Let z=x+iy. Then, $w=e^xe^{iy}$, and the rectangle will be mapped to a polar rectangle. As shown below, r will be restricted to $[e^{-1},e]$ and θ will be restricted to $[-\ln 2,\ln 3]$. This is because the e^x factor affects the magnitude of a complex number in polar form, and the e^{iy} factor affects the angle, with the angle being equal to y.

