Exercises

- 1. Let $A \subset X$. If d is a metric for the topology of X, show that $d \mid A \times A$ is a metric for the subspace topology on A.
- 2. Let X and Y be metric spaces with metrics d_X and d_Y , respectively. Let $f: X \to Y$ have the property that for every pair of points x_1, x_2 of X,

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2).$$

Show that f is an imbedding. It is called an *isometric imbedding* of X in Y.

- 3. Let X_n be a metric space with metric d_n , for $n \in \mathbb{Z}_+$.
 - (a) Show that

$$\rho(x, y) = \max\{d_1(x_1, y_1), \dots, d_n(x_n, y_n)\}\$$

is a metric for the product space $X_1 \times \cdots \times X_n$.

134 Topological Spaces and Continuous Functions

Ch. 2

(b) Let $d_i = \min\{d_i, 1\}$. Show that

$$D(x, y) = \sup\{\bar{d}_i(x_i, y_i)/i\}$$

is a metric for the product space $\prod X_i$.

- 4. Show that R_ℓ and the ordered square satisfy the first countability axiom. (This result does not, of course, imply that they are metrizable.)
- 5. Theorem. Let $x_n \to x$ and $y_n \to y$ in the space \mathbb{R} . Then

$$x_n + y_n \rightarrow x + y,$$

 $x_n - y_n \rightarrow x - y,$
 $x_n y_n \rightarrow xy,$

and provided that each $y_n \neq 0$ and $y \neq 0$,

$$x_n/y_n \to x/y$$
.

[Hint: Apply Lemma 21.4; recall from the exercises of §19 that if $x_n \to x$ and $y_n \to y$, then $x_n \times y_n \to x \times y$.]

6. Define $f_n: [0,1] \to \mathbb{R}$ by the equation $f_n(x) = x^n$. Show that the sequence $(f_n(x))$ converges for each $x \in [0,1]$, but that the sequence (f_n) does not converge uniformly.

verge unitoritity

- 7. Let X be a set, and let $f_n: X \to \mathbb{R}$ be a sequence of functions. Let $\bar{\rho}$ be the uniform metric on the space \mathbb{R}^X . Show that the sequence (f_n) converges uniformly to the function $f: X \to \mathbb{R}$ if and only if the sequence (f_n) converges to f as elements of the metric space $(\mathbb{R}^X, \bar{\rho})$.
- **8.** Let X be a topological space and let Y be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions. Let x_n be a sequence of points of X converging to x. Show that if the sequence (f_n) converges uniformly to f, then $(f_n(x_n))$ converges to f(x).
- 9. Let $f_n: \mathbb{R} \to \mathbb{R}$ be the function

$$f_n(x) = \frac{1}{n^3[x - (1/n)]^2 + 1}.$$

See Figure 21.1. Let $f : \mathbb{R} \to \mathbb{R}$ be the zero function.

- (a) Show that $f_n(x) \to f(x)$ for each $x \in \mathbb{R}$.
- (b) Show that f_n does not converge uniformly to f. (This shows that the converse of Theorem 21.6 does not hold; the limit function f may be continuous even though the convergence is not uniform.)
- 10. Using the closed set formulation of continuity (Theorem 18.1), show that the following are closed subsets of R²:

$$A = \{x \times y \mid xy = 1\},\$$

$$S^{1} = \{x \times y \mid x^{2} + y^{2} = 1\},\$$

$$B^{2} = \{x \times y \mid x^{2} + y^{2} \le 1\}.$$

§21

The Metric Topology (continued)

135

Figure 21.1

Figure 21.1

The set B^2 is called the (closed) unit ball in \mathbb{R}^2 .

- 11. Prove the following standard facts about infinite series:
 - (a) Show that if (s_n) is a bounded sequence of real numbers and $s_n \le s_{n+1}$ for each n, then (s_n) converges.
 - (b) Let (a_n) be a sequence of real numbers; define

$$s_n = \sum_{i=1}^n a_i.$$

If $s_n \to s$, we say that the *infinite series*

$$\sum_{i=1}^{\infty} a_i$$

converges to s also. Show that if $\sum a_i$ converges to s and $\sum b_i$ converges to t, then $\sum (ca_i + b_i)$ converges to cs + t.

- (c) Prove the *comparison test* for infinite series: If $|a_i| \le b_i$ for each i, and if the series $\sum b_i$ converges, then the series $\sum a_i$ converges. [Hint: Show that the series $\sum |a_i|$ and $\sum c_i$ converge, where $c_i = |a_i| + a_i$.]
- (d) Given a sequence of functions $f_n: X \to \mathbb{R}$, let

$$s_n(x) = \sum_{i=1}^n f_i(x).$$

Prove the Weierstrass M-test for uniform convergence: If $|f_i(x)| \le M_i$ for all $x \in X$ and all i, and if the series $\sum M_i$ converges, then the sequence (s_n) converges uniformly to a function s. [Hint: Let $r_n = \sum_{i=n+1}^{\infty} M_i$. Show that if k > n, then $|s_k(x) - s_n(x)| \le r_n$; conclude that $|s(x) - s_n(x)| \le r_n$.]

12. Prove continuity of the algebraic operations on \mathbb{R} , as follows: Use the metric d(a,b) = |a-b| on \mathbb{R} and the metric on \mathbb{R}^2 given by the equation

$$\rho((x, y), (x_0, y_0)) = \max\{|x - x_0|, |y - y_0|\}.$$

136 Topological Spaces and Continuous Functions

Ch. 2

(a) Show that addition is continuous. [Hint: Given ϵ , let $\delta = \epsilon/2$ and note that

$$d(x+y,x_0+y_0) \le |x-x_0| + |y-y_0|.$$

(b) Show that multiplication is continuous. [Hint: Given (x_0, y_0) and $0 < \epsilon < 1$, let

$$3\delta = \epsilon/(|x_0| + |y_0| + 1)$$

and note that

$$d(xy, x_0y_0) \le |x_0||y - y_0| + |y_0||x - x_0| + |x - x_0||y - y_0|.$$

- (c) Show that the operation of taking reciprocals is a continuous map from $\mathbb{R} \{0\}$ to \mathbb{R} . [Hint: Show the inverse image of the interval (a, b) is open. Consider five cases, according as a and b are positive, negative, or zero.]
- (d) Show that the subtraction and quotient operations are continuous.

*§22 The Quotient Topology

Unlike the topologies we have already considered in this chapter, the quotient topology is not a natural generalization of something you have already studied in analysis. Nevertheless, it is easy enough to motivate. One motivation comes from geometry, where one often has occasion to use "cut-and-paste" techniques to construct such geometric objects as surfaces. The torus (surface of a doughnut), for example, can be constructed by taking a rectangle and "pasting" its edges together appropriately, as in Figure 22.1. And the sphere (surface of a ball) can be constructed by taking a disc and collapsing its entire boundary to a single point; see Figure 22.2. Formalizing these constructions involves the concept of quotient topology.

Exercises

§22

- 1. Check the details of Example 3.
- (a) Let p: X → Y be a continuous map. Show that if there is a continuous map
 f: Y → X such that p ∘ f equals the identity map of Y, then p is a quotient
 map.
 - (b) If $A \subset X$, a *retraction* of X onto A is a continuous map $r: X \to A$ such that r(a) = a for each $a \in A$. Show that a retraction is a quotient map.

*Supplementary Exercises: Topological Groups

145

- 3. Let $\pi_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be projection on the first coordinate. Let A be the subspace of $\mathbb{R} \times \mathbb{R}$ consisting of all points $x \times y$ for which either $x \ge 0$ or y = 0 (or both); let $q : A \to \mathbb{R}$ be obtained by restricting π_1 . Show that q is a quotient map that is neither open nor closed.
- 4. (a) Define an equivalence relation on the plane $X = \mathbb{R}^2$ as follows:

$$x_0 \times y_0 \sim x_1 \times y_1$$
 if $x_0 + y_0^2 = x_1 + y_1^2$.

Let X^* be the corresponding quotient space. It is homeomorphic to a familiar space; what is it? [Hint: Set $g(x \times y) = x + y^2$.]

(b) Repeat (a) for the equivalence relation

$$x_0 \times y_0 \sim x_1 \times y_1$$
 if $x_0^2 + y_0^2 = x_1^2 + y_1^2$.

- 5. Let $p: X \to Y$ be an open map. Show that if A is open in X, then the map $q: A \to p(A)$ obtained by restricting p is an open map.
- 6. Recall that \mathbb{R}_K denotes the real line in the K-topology. (See §13.) Let Y be the quotient space obtained from \mathbb{R}_K by collapsing the set K to a point; let $p: \mathbb{R}_K \to Y$ be the quotient map.
 - (a) Show that Y satisfies the T_1 axiom, but is not Hausdorff.
 - (b) Show that $p \times p : \mathbb{R}_K \times \mathbb{R}_K \to Y \times Y$ is not a quotient map. [Hint: The diagonal is not closed in $Y \times Y$, but its inverse image is closed in $\mathbb{R}_K \times \mathbb{R}_K$.]