Documentação Shield BitDogLab

1. Introdução

O Shield BitDogLab foi projetado para ampliar significativamente as funcionalidades da placa BitDogLab. Com foco em versatilidade, este Shield oferece expansão de entradas e saídas digitais e analógicas, controle de motores DC, facilidade de programação via conversor USB-TTL, e suporte a prototipagem rápida com mini protoboard integrada. Além disso, inclui um relé de 5V, ideal para acionamento de cargas externas com segurança e isolamento.

2. Objetivo

Este Shield tem como principais objetivos:

- Expandir o número de portas de entrada e saída, utilizando os Cis CD4051 (multiplexador analógico/digital) e PCF8574P (expansor I/O via I2C);
- Facilitar a gravação e comunicação serial com a BitDogLab por meio de um conversor TTL para USB (UART1);
- Controlar motores DC através do driver L293D integrado;
- Acionar cargas externas com um relé de 5V, permitindo controle de dispositivos AC/DC com segurança;
- Oferecer alimentação estável de 3.3V e 5V por meio de reguladores de tensão.
- Proporcionar espaço para prototipagem rápida com uma mini protoboard incorporada ao Shield.

4. Pinos Utilizados

Conexões principais:

Função	Componente	Pinos Utilizados
Comunicação I2C	PCF8574P	SDA / SCL (Jumper da placa BitDogLab)
Multiplexador	CD4051	GP04 (entrada analógica), GP18, GP19, GP20 (seletores)
Driver de motor	L293D	P0 a P7 do PCF8574P
Acionamento de relé	Relé 5V	Controlado pelo pino GP17
Comunicação Serial	Conversor USB- TTL	GP08 (TX), GP09 (RX) (UART1)

5. Alimentação

O Shield oferece duas tensões de operação (3.3V e 5V) a partir de reguladores de tensão, garantindo estabilidade para diferentes dispositivos.

- 3.3V: Alimentação da própria BitDogLab e sensores compatíveis.
- 5V: Recomendado para motores, relés e dispositivos de maior consumo.

Para alimentar a BitDogLab diretamente pelo Shield, é necessário jumpear a saída de alimentação do Shield para os pinos GND e 5VSYS da placa BitDogLab. Isso permite que toda a alimentação seja fornecida pelo Shield, dispensando outras fontes externas.

6. Diagrama esquemático

Observação:

Os pinos +5v e +3.3v são alimentados pelo circuito da Shield e os pinos 5v e 3.3v são alimentados pela placa BitDogLab.

O PCF8574P está configurado no endereço I2C 0x20, conforme o esquemático.

7. Lista de componentes

Lista	Quantidade	Componente	Descrição
1	6	100nF	Capacitor Cerâmico
2	4	100uF	Capacitor eletrolítico
3	3	1N4004	Diodo
4	1	DC005	Conector Jack P4
5	4	HDR-F_2.54_1x7P	Barra Pino Fêmea 7P
6	1	2.54-1*4P母	Barra Pino Fêmea 4P
7	1	PM254V-11-03-H85	Barra Pino Fêmea 3P
8	1	PM254V-12-08-H85	Barra Pino Fêmea Dupla 4P
9	3	LED_TH-R_3mm	LED 3mm
10	1	2.54-1*8P母环保	Barra Pino Fêmea 8P
11	1	2.54-1*6P母	Barra Pino Fêmea 6P
12	1	BC547B	Transistor NPN
13	5	10kΩ	Resistor
14	2	1kΩ	Resistor
15	1	SRD-05VDC-SL-C	Rele 5V
16	1	LM1086T-3.3	Regulador de Tensão 3.3v com Corrente máxima de saída: 1.5 A
17	1	LM1086T-5.0	Regulador de Tensão 5v com Corrente máxima de saída: 1.5 A
18	1	PCF8574P	Expansor de I/O (entradas e saídas) via I2C
19	2	L293D	Driver de ponte H dupla
20	5	KF301-5.0-2P	Conector Borne 2 Saídas
21	1	CD4051BE	Multiplexador/demultiplexador analógico de 8 canais
22	1	KF301-5.0-3P	Conector Borne 3 Saídas

8. Layout

Placa visão superior

Placa visão inferior

Observações:

- A camada superior (Top Layer) possui uma malha de 5V, enquanto a camada inferior (Bottom Layer) contém a malha de GND (aterramento).
- As trilhas que alimentam o relé possuem largura de 2 mm, dimensionadas para suportar correntes de até 5 A.
- A trilha de alimentação de 3,3V tem 1 mm de largura, adequada para correntes de até 2 A.
- As trilhas entre o CI L293D e os motores também são de 1 mm, com capacidade para até 2 A.
- As trilhas de sinal/dados têm 0,25 mm de largura, apropriadas para correntes de até 0,5 A.