# DCC Bremsmodul

# 1 Eigenschaften

- Das Modul ist gleichwertig mit dem Modul BM1, Ref. 22600 von Lenz.
- Ermöglicht das schrittweise Anhalten und Wiederanfahren von Zügen, die in einer DCC-Umgebung fahren.
- Maximaler Strom von 3A
- DCC-Bremsmodul mit ABC-Technologie nur mit bestimmten Decodern kompatibel (siehe Abschnitt 3)
- 3 Schraublöcher für eine einfache Montage.



# 2 Anwendungen

- Automatisches Anhalten eines Konvois vor einem Signal.
- Pendelbetrieb (bei kompatiblen Decodern)
- Kantone
- Automatischer Stopp, wenn der Weiche nicht richtig positioniert ist.
- · Automatischer Halt am Bahnhof.

## 3 Kompatibilität

**Achtung:** Dieses Modul funktioniert nur im digitalen Modus und ist nur mit Decodern kompatibel, die die ABC-Technologie unterstützen. Die Tabelle 1 enthält eine nicht erschöpfende Liste von Decodern, die die ABC-Technologie unterstützen.

| Marke | Kompatibler Decoder     | Hersteller-Referenz                   |
|-------|-------------------------|---------------------------------------|
|       | Gold maxi               | 10440                                 |
|       | GOLD+ NEM652            | 10433-01                              |
|       | GOLD+ mini NEM651       | 10411-01                              |
|       | GOLD+ mini wired        | 10410-01                              |
|       | Silver+ NEM652          | 10331-01                              |
| Lenz  | Silver+ direct          | 10330-01                              |
|       | Silver+ 21              | 10321-01                              |
|       | Silver+ Plux12          | 10312-01                              |
|       | Silver+ mini NEM651     | 10311-01 / 10311-02                   |
|       | Silver+ mini wired      | 10310-01                              |
|       | Standard+ V2            | 10231-02                              |
| ESU   | LokPilot V4 / V5        | Alle LokPilot V4 und V5               |
| 130   | LokSound V4 / V5        | Alle LokSound v4 und V5               |
|       |                         | MX620, MX620N, MX620R, MX620F         |
|       | Miniatur-Dekoder        | MX618N18,MX621, MX621N, MX621R        |
|       |                         | MX621, FMX622, MX622R, MX622F, MX622N |
|       |                         | MX63, MX63R, MX63F, MX63T             |
|       | HO-Dekoder              | MX623, MX623R, MX623F, MX623P12       |
|       |                         | MX630, MX630R, MX630F, MX630P16       |
|       | Dünne HO-Dekoder        | MX64, MX64R, MX64F, MX64T             |
| zimo  |                         | MX64H, MX64HR, MX64HF, MX64V          |
|       |                         | MX631, MX631R, MX631F, MX631D, MX631C |
|       | HO-Hochleistungsdekoder | MX632, MX632R, MX632D, MX632C, MX632V |
|       |                         | MX632W, MX632VD, MX632WD              |
|       |                         | MX633, MX633R, MX633F, MX633P22       |
|       | Miniatur-Tondecoder     | MX648, MX648R, MX648F, MX648P16       |
|       | Williatur-Tolldecoder   | MX646, MX646R, MX646F, MX646N, MX646L |
|       | HO-Sounddecoder         | MX645, MX645R, MX645F, MX645P16       |
|       | TIO Journauecouer       | MX645P22, MX644D, MX644C              |

Table 1 - Kompatible Decoder

# 4 Technische Daten

| Spezifikation                   | Einheit | Wert         |
|---------------------------------|---------|--------------|
| Maximaler Dauerstrom            | Α       | 3            |
| Maximaler Spitzenstrom (8,3 ms) | А       | 100          |
| Abmessungen                     | mm      | 25 * 20 * 13 |
| Gewicht                         | g       | 3.1          |

Table 2 - Spezifikationen

## 5 Verwenden Sie

Durch die Erzeugung einer Asymmetrie im DCC-Signal ermöglicht dieses Modul kompatiblen Decodern, Bereiche der Verlangsamung oder Abschaltung zu erkennen und entsprechend zu reagieren.

Die Einrichtung dieses Moduls erfolgt in zwei Schritten: Einbau und Verdrahtung des Moduls und Konfiguration des/der Decoder(s).

#### 5.1 Einbau und Verdrahtung des Moduls

Hinweis: Für einen optimalen und sicheren Betrieb muss dieses Modul mit einer Mindestquerschnittsfläche von 0,2mm² verdrahtet werden.

Das Modul muss wie in Abbildung 1 dargestellt verdrahtet werden. Der Schalter ist optional. Damit kann das Modul umgangen werden, um den angehaltenen Zug manuell wieder in Gang zu setzen.



Figure 1 – Schaltplan für eine schaltergesteuerte Stoppzone.

- Wenn die Schalter geöffnet sind oder einfach kein Schalter vorhanden ist, wird ein Signal auf der rechten Schiene des Haltebereichs ausgegeben, und jede Maschine mit einem kompatiblen und konfigurierten Decoder führt einen Stoppvorgang aus.
- Wenn der Schalter geschlossen ist, wird im Haltestellenbereich kein Signal übertragen, so dass kein Zug in diesem Bereich halten kann. Wenn ein Zug im Haltestellenbereich angehalten wurde, wird er schrittweise wieder angefahren.

**Hinweis:** Der Schalter kann durch ein Relais, einen Endschalter oder ein anderes System mit einer Schaltleistung von mindestens 1 A ersetzt werden.

### 5.2 Decoder-Konfiguration

Um das von diesem Modul ausgegebene ABC-Signal zu erkennen, müssen die Decoder entsprechend konfiguriert werden. Die Tabelle eftab:cv zeigt die CVs, mit denen das Verhalten des Decoders in Bezug auf das ABC-Signal aktiviert oder verändert werden kann.

In jedem Fall müssen Sie die ABC-Funktion des Decoders aktivieren, damit Ihre Züge auf das Signal dieses Moduls reagieren können.

| Marke | CV  | bit | Funktion                                                     |  |  |
|-------|-----|-----|--------------------------------------------------------------|--|--|
|       |     | 0   | Konstanter Bremsweg aktiviert                                |  |  |
|       | 51  | 1   | ABC aktiviert                                                |  |  |
|       |     | 2   | Richtungsabhängigkeit von ABC ist ausgeschaltet              |  |  |
| Lenz  |     | 3   | Pendelbetrieb ohne Zwischenhalt aktivieren                   |  |  |
|       |     | 4   | Pendelbetrieb mit Zwischenhalt aktivieren                    |  |  |
|       | 52  | -   | Bremsweg bei aktiviertem konstanten Bremsweg                 |  |  |
|       | 54  | -   | Aufenthaltsdauer bei Pendelbetrieb, 1 bis 256 Sekunden       |  |  |
| ESU   | 27  | 0   | Aktivierung des ABC in der herkömmlichen Fahrtrichtung       |  |  |
|       |     | 1   | Aktivierung von ABC in umgekehrter Richtung                  |  |  |
|       | 134 | -   | Erkennungsschwelle ABC                                       |  |  |
|       | 254 | -   | Konstanter Bremsweg                                          |  |  |
|       | 27  | 0   | Aktivierung des ABC in der herkömmlichen Fahrtrichtung       |  |  |
|       |     | 1   | Aktivierung von ABC in umgekehrter Richtung                  |  |  |
| zimo  | 134 | -   | Erkennungsschwelle ABC                                       |  |  |
| Zimo  | 140 | 0   | Aktivierung der Funktion des konstanten Bremswegs            |  |  |
|       | 141 | -   | Konstanter Bremsweg                                          |  |  |
|       | 142 | -   | Hochgeschwindigkeits-Kompensation der ABC-Erkennungsschwelle |  |  |

Table 3 – CV für ABC

Hinweis: Wenn der Manövriermodus oder der reduzierte Fahrmodus aktiviert ist, ignoriert der Decoder die ABC-Signale.

# 6 Abmessungen



Figure 2 – Abmessungen des Anschlagmoduls (alle Maße in mm).

# 7 Kontakt und Service

Für weitere Informationen wenden Sie sich bitte an contact@lectix.fr.

# 8 Revision History

| Revision | Date     | Author(s) | Description              |
|----------|----------|-----------|--------------------------|
| 1.0.0    | 01.05.21 | TFC       | Erstellung des Dokuments |