CMPE 58Z - Introduction to Biometrics Assignment 1 Spring 2020

ID: 2014400066

Name: Sadullah Gültekin

E-mail: sadullahgultekin@gmail.com

DATASET 1

EER and EER Threshold, FAR/FRR values:

EER	3.65%	EER Threshold	-78.9798
FRR	35.93%	at FAR point	%0.1
FRR	12.13%	at FAR point	%1
FRR	1.06%	at FAR point	%10

For given dataset, I created 10000 numbers between the minimum and maximum data element. Then calculated FRR and FAR values for each of them for different thresholds. There is a possibility of not finding the optimum threshold where FAR and FRR values are equal. So I calculated the difference between FAR and FRR values for each threshold, then get the absolute value of each result. Minimum of these results is my EER value.

DATASET 2

EER and EER Threshold, FAR/FRR values:

EER	2.31%	EER Threshold	0.7000
FRR	56.02%	at FAR point	%0.1
FRR	10.06%	at FAR point	%1
FRR	0.06%	at FAR point	%10

For given dataset, I created 10000 numbers between the minimum and maximum data element. Then calculated FRR and FAR values for each of them. There is a possibility of not finding the optimum threshold where FAR and FRR values are equal. So I calculate the difference between FAR and FRR values for each threshold, then get the absolute value of each result. Minimum of these results is my EER value.

DATASET 3

EER and EER Threshold, FAR/FRR values:

EER	11.69%	EER Threshold	0.5780
FRR	94.75%	at FAR point	%0.1
FRR	69.20%	at FAR point	%1
FRR	14.64%	at FAR point	%10

For given dataset, I created 10000 numbers between the minimum and maximum data element. Then calculated FRR and FAR values for each of them. There is a possibility of not finding the optimum threshold where FAR and FRR values are equal. So I calculate the difference between FAR and FRR values for each threshold, then get the absolute value of each result. Minimum of these results is my EER value.

DATASET 4

EER and EER Threshold, FAR/FRR values:

EER	1.09%	EER Threshold	0.5868
FRR	97.13%	at FAR point	%0.1
FRR	1.57%	at FAR point	%1
FRR	%0	at FAR point	%10

For given dataset, I created 10000 numbers between the minimum and maximum data element. Then calculated FRR and FAR values for each of them. There is a possibility of not finding the optimum threshold where FAR and FRR values are equal. So I calculate the difference between FAR and FRR values for each threshold, then get the absolute value of each result. Minimum of these results is my EER value.