

Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
category

Subject

Investigation of RNA metabolism using pulseR

Uvarovskii Aleksei 1,2*, Christoph Dieterich 1,2

- ¹ Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology Department of Internal Medicine III University Hospital Heidelberg, Im Neuenheimer Feld 669 69120 Heidelberg, and ² German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669 69120 Heidelberg
- *To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX: revised on XXXXX: accepted on XXXXX

Abstract

Motivation: Results: Availability: Contact: alexey.mipt@gmail.com Supplementary information: Supplementary data are available at *Bioinformatics* online.

1 Introduction

2 Methods

First-order reaction kinetics is one of simplified models, which can help to describe RNA dynamics *in vivo*[?]. Given

- \bullet constant synthesis rate s and
- degradation rate d,

RNA concentration r follows the ordinary differential equation

$$\dot{r} = s - dr,\tag{1}$$

where \dot{r} stands for the time derivative of the r[?].

During synthesis, a new RNA molecule incorporates labelled uridine bases[?]. For zero initial condition $r_L(0)=0$, the solution is

$$r_{\rm L}(t) = \frac{s}{d} \left(1 - e^{-dt} \right). \tag{2}$$

With time, the labelled fraction tends to the steady state level of concentration μ , $\lim_{t\to\infty} r_{\rm L}(t)=\frac{s}{d}=\mu$. In contrast, the unlabelled molecules are only being degraded during the *pulse*-experiment. Hence, assuming initial level of unlabelled RNA to be the steady-state one, $r_U=\mu$, the the amount of unlabelled fraction at a time t is

$$r_{\rm U}(t) = \mu e^{-dt}.\tag{3}$$

The example model includes only two parameters and does not consider RNA maturation and existence of several isoforms. For more complex approaches we refer to [?].

For completeness we provide the formulas, which describe expression levels for *chase*-experiments. In this case, we assume that no synthesis of

labelled RNA occurs after labelling period t_L :

$$r_{\rm T} = \mu \tag{4}$$

$$r_{\rm L} = \mu \left(1 - e^{-dt_{\rm L}} \right) e^{-dt_{\rm C}} \tag{5}$$

$$r_{\rm L} = \mu \left(1 - \left(1 - e^{-dt_{\rm L}} \right) e^{-dt_{\rm C}} \right),\tag{6}$$

where $t_{\rm C}$ stands for the longitude of the chase period.

3 Results

4 Discussion

5 Conclusion

Acknowledgements

Funding

References

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

