ALGORITHMS & DATA STRUCTURE

October 25th

PLAN FOR TODAY

- Bonus Exercises
- Recap on Sorting

EXERCISE 4.2

(a)
$$T(\lambda) = \lambda$$
, $T(n) = 4T(\frac{h}{2}) + 2n$, $T(n) = 3n^{2} - 2n(4)$
That tiber $k = (\log_{2}h)$, $n = 2^{n}$
 $(k = 0)$ $T(2^{0}) = T(\lambda) = \lambda$ with (*) $T(2^{0}) = 3 \cdot (2^{0}) - 2 \cdot 2^{0}$
 $= 3 - 2 = 1$
(It) (*) gill fix ein (belicbiges) $k \in \mathbb{N}$
(13) $k \rightarrow k + \lambda$
 $T(2^{k+\lambda}) = 4T(2^{k}) + 2 \cdot 2^{k+\lambda}$
 $= 4(3 \cdot 2^{k} - 2^{k+\lambda}) + 2$
 $= 3 \cdot 2^{k+1} - 4 \cdot 2^{k+\lambda} + 2 \cdot 2^{k+\lambda}$
 $= 3 \cdot 2^{k+1} - 4 \cdot 2^{k+\lambda}$

Theorem 1 (Master theorem). Let a, C > 0 and $b \ge 0$ be constants and $T : \mathbb{N} \to \mathbb{R}^+$ a function such that for all even $n \in \mathbb{N}$,

$$T(n) \leq aT(n/2) + Cn^{b}$$
. Therefore $T(n) = 2T(\frac{h}{2}) + c$.

Then for all $n = 2^k$, $k \in \mathbb{N}$,

• If
$$b > \log_2 a$$
, $T(n) \le O(n^b)$.

• If
$$b = \log_2 a$$
, $T(n) \le O(n^{\log_2 a} \cdot \log n)$. $b = 1$

• If
$$b < \log_2 a$$
, $T(n) \le O(n^{\log_2 a})$.

If the function T is increasing, then the condition $n = 2^k$ can be dropped. If (1) holds with "=", then we may replace O with Θ in the conclusion.

$$T(n) = 5$$

$$T(n) = T(\frac{h}{2}) + \frac{3}{2}n$$

$$T(n) = 3n + 2 \quad (4x)$$

$$L = \log_2 h \quad , n = 2$$

```
Algorithm 3 g(n)

if n>1 then

for i=1,\ldots,4 do

g(n/2)

for i=1,\ldots,n/2 do

for j=1,\ldots,7n do

f()

else

for i=1,\ldots,4 do

f()
```

$$\begin{array}{c} \text{for } i=1,\ldots,4\,\text{do} \\ f(i) \end{array}$$

$$\begin{array}{c} \text{(4)} \quad =0 \\ \text{(4)} \quad =0 \\ \text{(4)} \quad =0 \\ \text{(4)} \quad =0 \\ \text{(5)} \end{array}$$

$$\begin{array}{c} \text{(4)} \quad =0 \\ \text{(4)} \quad =0 \\ \text{(1)} \quad =0 \\ \text{(1)} \quad =0 \\ \text{(1)} \quad =0 \\ \text{(2)} \quad =0 \\ \text{(2)} \quad =0 \\ \text{(2)} \quad =0 \\ \text{(3)} \quad =0 \\ \text{(4)} \quad =0 \\ \text{(5)} \quad =0 \\ \text{(4)} \quad =0 \\ \text{(5)} \quad =0 \\ \text{(6)} \quad =0 \\ \text{(1)} \quad =0 \\ \text{(1)} \quad =0 \\ \text{(2)} \quad =0 \\ \text{(2)} \quad =0 \\ \text{(2)} \quad =0 \\ \text{(2)} \quad =0 \\ \text{(3)} \quad =0 \\ \text{(4)} \quad =0 \\ \text{(4)} \quad =0 \\ \text{(5)} \quad =0 \\ \text{(5)} \quad =0 \\ \text{(6)} \quad =0$$

T(1) = 4

T(n) = 7 m logh + 4h (4)

EXERCISE 4.4

Algorithm 4 ExchangeSort(A)

$$\begin{array}{c} \textbf{for } 1 \leq i \leq n \textbf{ do} \\ \textbf{for } i+1 \leq j \leq n \textbf{ do} \\ \textbf{if } A[j] < A[i] \textbf{ then} \\ T \leftarrow A[j] \\ A[j] \leftarrow A[i] \\ A[i] \leftarrow T \\ \textbf{return } A \end{array}$$

$$|\nu \cup (\nu)|$$

$$|\nu \cup (i)| = \sum_{i=1}^{n} |\nu \cup (i+i)|$$

INU(N) => A sortiert ist

INV(i): die Weinste i

Elemente von A sind
in dic ersten i

Positionen, aufsteigend
sortiert.

5 soutient ist

EXERCISE 4.5

Naive O(hlogn)

$$T(\Lambda) = \Lambda$$

$$T(\lambda n) = T(\lambda n - \Lambda) + C$$

$$T(2n) = T(2n-1) + C$$

= $T(2n-1) + 2\tilde{c}$

SORTING, PART II

WHICH OF THE FOLLOWING ARE TRUE?

• There is no sorting algorithm with worst case complexity better than O(n log n) FACらこせ!

• The lower bound for sorting in the general case is $\Omega(n \log n)$ ω AHL

• There are comparison based sorting algorithms with complexity $\Theta(n \log n)$ ωAHR , Herge Sort, HeapSort

• The complexity of QuickSort is O(n log n) FAUSCH

WHICH OF THE FOLLOWING ARE TRUE?

 There is no sorting algorithm with worst case complexity better than O(n log n)

• The lower bound for sorting in the general case is $\Omega(n \log n)$

• There are comparison based sorting algorithms with complexity $\Theta(n \log n)$

The complexity of QuickSort is O(n log n)

BUCKET SONT (N)

LOWER BOUND $\Omega(n \log n)$

- This holds for comparison based sorting, aka the general case.
- For some special cases, faster algorithms exist.

$$A = A_1 ... A_n$$
, $A \in \{0,1\}$ $\forall i \in \{1,...n\}$

Counter $\neq 0$

Counter $\neq 0$

Counter $\Rightarrow 0$

Counter $\Rightarrow 0$

Return $(n-counter)$ Os $\bigoplus (counter)$ 15

MERGE SORT

$$T(h) = 2 T(\frac{h}{2}) + ch$$

DISCLAIMER: ALGORITHMS VS DATA STRUCTURES (Array, Ciste, Min/Mex Heap)

Binary Search on Array

$$T(x) = C$$

$$T(x) = T(\frac{h}{2}) + C$$

Binary Search on List

$$T(N) = C$$

$$T(N) = T(\frac{h}{2}) + C \cdot n$$

$$O(N)$$

HEAP SORT

5 5

Fi, i= 1 ... h

O(n) selection sot Finde i-te aleinste Element = 0 (log n) Heap Soul-Vertausch es i so dass der i-te aleinste Element in die richtige Position ist

- Lugaritmische Hähe

_ Geben einen hnoten, alle "descendants" sind 5.

Finde den Minimum O(1)
Entferne des Minimum O(log n)
Gegeber h Flemente, beue ein Heep O(n logn)

Das folgende Array enthält die Elemente eines in üblicher Form gespeicherten Min-Heaps. Entfernen Sie das minimale Element aus dem Heap, stellen Sie die Heap-Bedingung wieder her, und geben Sie das resultierende Array an.

Min-Heap: Draw the Min-Heap that is obtained when inserting into an empty heap the keys 8, 3, 2, 7, 4, 1 in this order.

QUICK SORT

- (7) In place
- (se) in worst-case

 (se) unwahrscheinlich"

a) Gegeben sei das folgende Array, das nach einem Quicksort-Aufteilungsschritt entstanden ist. Welcher Schlüssel wurde als Pivotelement verwendet? Markieren Sie *alle* möglichen Kandidaten.

<i>J</i> .	X	X		×	×		X	×
1	4	3	5	7	6	8	10	9
1	2	3	4	5	6	7	8	9

Execute the pivot step of the sorting algorithm Quicksort on the given array (in-situ, i.e., without an auxiliary array). Use the rightmost element of the array as the pivot element.

25	12	83	2	58	68	19	34	47	99	37	56	41
کے	Ī							<u> </u>				

TRADE-OFF SEARCHING/ SORTING

CINEAR STANCH

BINARY SEARCH