Chapter 3: Numerical Sequences and Series

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 3.1. Prove that the convergence of $\{s_n\}$ implies convergence of $\{|s_n|\}$. Is the converse true?

Proof.

(1) Since $\{s_n\}$ is convergent, there is $s \in \mathbb{R}^1$ with the following property: given any $\varepsilon > 0$, there is N such that $|s_n - s| < \varepsilon$ whenever $n \ge N$. So

$$||s_n| - |s|| < |s_n - s| < \varepsilon$$

(Exercise 1.13). That is, $\{|s_n|\}$ converges to |s|.

(2) The converse is not true by considering $s_n = (-1)^{n+1}$.

Exercise 3.2. Calculate $\lim_{n\to\infty} (\sqrt{n^2+n}-n)$.

Proof.

$$\sqrt{n^2 + n} - n = \frac{n}{\sqrt{n^2 + n} + n} = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} \to \frac{1}{1 + 1} = \frac{1}{2}$$

as $n \to \infty$. \square

Proof $(\varepsilon - N \text{ argument})$. Let $s_n = \sqrt{n^2 + n} - n$. Show that the sequence $\{s_n\}$ converges to $s = \frac{1}{2}$. Given any $\varepsilon > 0$, there is $N > \frac{1}{\varepsilon}$ such that

$$|s_n - s| = \left| (\sqrt{n^2 + n} - n) - \frac{1}{2} \right| = \left| \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} - \frac{1}{2} \right|$$

$$= \left| \frac{2 - \left(\sqrt{1 + \frac{1}{n}} + 1\right)}{2\left(\sqrt{1 + \frac{1}{n}} + 1\right)} \right| = \left| \frac{1 - \sqrt{1 + \frac{1}{n}}}{2\left(\sqrt{1 + \frac{1}{n}} + 1\right)} \right|$$

$$= \left| \frac{1 - \left(1 - \frac{1}{n}\right)}{2\left(\sqrt{1 + \frac{1}{n}} + 1\right)^2} \right| = \left| \frac{-\frac{1}{n}}{2\left(\sqrt{1 + \frac{1}{n}} + 1\right)^2} \right| < \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

wheneven $n \geq N$. \square

Exercise 3.3. If $s_1 = \sqrt{2}$ and

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} \ (n = 1, 2, 3, ...),$$

prove that $\{s_n\}$ converges, and that $s_n < 2$ for n = 1, 2, 3, ...

The convergence of $\{s_n\}$ implies there is $s \in \mathbb{R}$ such that $s_n \to s$ where $s = \sqrt{2 + \sqrt{s}}$ and $\sqrt{2} < s \le 2$. WolframAlpha shows that

$$s = \frac{1}{3} \left(-1 + \sqrt[3]{\frac{1}{2}(79 - 3\sqrt{249})} + \sqrt[3]{\frac{1}{2}(79 + 3\sqrt{249})} \right).$$

Proof (Theorem 3.14).

- (1) Show that $\{s_n\}$ is increasing (by mathematical induction).
 - (a) Show that $s_2 > s_1$. In fact,

$$s_2 = \sqrt{2 + \sqrt{s_1}} = \sqrt{2 + \sqrt{\sqrt{2}}} < \sqrt{2} = s_1.$$

(a) Show that $s_{n+1} > s_n$ if $s_n > s_{n-1}$.

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} > \sqrt{2 + \sqrt{s_{n-1}}} = s_n.$$

By mathematical induction, $\{s_n\}$ is (strictly) increasing.

- (2) Show that $\{s_n\}$ is bounded (by mathematical induction).
 - (a) Show that $s_1 \leq 2$. $\sqrt{2} \leq 2$.
 - (a) Show that $s_{n+1} \leq 2$ if $s_n \leq 2$.

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}} \le \sqrt{2 + \sqrt{2}} < 2.$$

By mathematical induction, $\{s_n\}$ is bounded by 2.

Hence, $\{s_n\}$ converges since $\{s_n\}$ is increasing and bounded (Theorem 3.14). \square

Exercise 3.4. Find the upper and lower limits of the sequences $\{s_n\}$ defined by

$$s_1 = 0; s_{2m} = \frac{s_{2m-1}}{2}; s_{2m+1} = \frac{1}{2} + s_{2m}.$$

Write out the first few terms of $\{s_n\}$:

$$0,0,\frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{3}{8},\frac{7}{8},\frac{7}{16},\frac{15}{16},\dots$$

It suggests us

$$s_{2m+1} = 1 - \frac{1}{2^m} \ (m = 0, 1, 2, ...),$$

 $s_{2m} = \frac{1}{2} - \frac{1}{2^m} \ (m = 1, 2, 3, ...).$

Proof.

(1) Show that

$$s_{2m+1} = 1 - \frac{1}{2^m} \ (m = 0, 1, 2, ...),$$

 $s_{2m} = \frac{1}{2} - \frac{1}{2^m}. \ (m = 1, 2, 3, ...)$

Apply mathematical induction.

- (2) The upper limit is 1.
- (3) The lower limit is $\frac{1}{2}$.

Exercise 3.5. For any two real sequences $\{a_n\}$, $\{b_n\}$, prove that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

provided the sum of the right is not of the form $\infty - \infty$.

Proof. Write $\alpha = \limsup_{n \to \infty} a_n$ and $\beta = \limsup_{n \to \infty} b_n$.

- (1) $\alpha = \infty$ and $\beta = \infty$. Nothing to do.
- (2) $\alpha = -\infty$ and $\beta = -\infty$. Since $\alpha = -\infty < \infty$, there exists M' such that $a_n < M'$ for all n. For any real M, $a_n > M M'$ for at most a finite number of values of n (Theorem 3.17(a)). Hence $a_n + b_n > M$ for at most a finite number of values of n. Hence $\limsup_{n \to \infty} (a_n + b_n) = -\infty$, or

$$\lim\sup_{n\to\infty}(a_n+b_n)=\lim\sup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n$$

in this case.

(3) α and β are finite. (Similar to the argument in Theorem 3.37.) Choose $\alpha' > \alpha$ and $\beta' > \beta$. There is an integer N such that

$$\alpha' \geq a_n$$
 and $\beta' \geq b_n$

whenever $n \geq N$. Hence

$$a_n + b_n \le \alpha' + \beta'$$

whenever $n \geq N$. Take \limsup to get Hence

$$\limsup_{n\to\infty} (a_n + b_n) \le \alpha' + \beta'.$$

Since the inequality is true for every $\alpha' > \alpha$ and $\beta' > \beta$, we have

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n.$$

Exercise 3.7. Prove that the convergence of $\sum a_n$ implies the convergence of

$$\sum \frac{\sqrt{a_n}}{n},$$

if $a_n \geq 0$.

Proof (Cauchy's inequatity).

(1) Show that $\sum \frac{\sqrt{a_n}}{n}$ is bounded. For any $k \in \mathbb{Z}^+$,

$$\left(\sum_{n=1}^{k} \frac{\sqrt{a_n}}{n}\right)^2 \le \left(\sum_{n=1}^{k} a_n\right) \left(\sum_{n=1}^{k} \frac{1}{n^2}\right)$$
 (Cauchy's inequatity)
$$\le \left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right). \quad \left(\sum a_n, \sum \frac{1}{n^2}: \text{ convergent}\right)$$

Thus, $\left(\sum_{n=1}^k \frac{\sqrt{a_n}}{n}\right)^2$ is bounded, or $\sum_{n=1}^k \frac{\sqrt{a_n}}{n}$ is bounded.

(2) Show that $\sum_{n=1}^{k} \frac{\sqrt{a_n}}{n}$ is increasing. It is clear due to $\frac{\sqrt{a_n}}{n} \ge 0$.

By Theorem 3.14, $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. \square

Proof (AM-GM inequality). Show that $\sum \frac{\sqrt{a_n}}{n}$ is bounded.

$$\frac{\sqrt{a_n}}{n} \leq \frac{1}{2} \left(a_n + \frac{1}{n^2} \right) \tag{AM-GM inequality}$$

$$\sum_{n=1}^k \frac{\sqrt{a_n}}{n} \leq \frac{1}{2} \left(\sum_{n=1}^k a_n + \sum_{n=1}^k \frac{1}{n^2} \right)$$

$$\leq \frac{1}{2} \left(\sum_{n=1}^\infty a_n + \sum_{n=1}^\infty \frac{1}{n^2} \right). \qquad \left(\sum a_n, \sum \frac{1}{n^2} : \text{ convergent} \right)$$

Thus, $\sum_{n=1}^k \frac{\sqrt{a_n}}{n}$ is bounded. The rest proof is the same as previous. \square

Exercise 3.20. Suppose $\{p_n\}$ is a Cauchy sequence in a metric space X, and some subsequence $\{p_{n_i}\}$ converges to a point $p \in X$. Prove that the full sequence $\{p_n\}$ converges to p.

Proof. Given any $\varepsilon > 0$.

- (1) Since $\{p_n\}$ is a Cauchy sequence, there exists a positive integer N_1 such that
- $d(p_n,p_m)<\frac{\varepsilon}{2} \text{ whenever } n,m\geq N_1.$ (2) Since the subsequence $\{p_{n_i}\}$ converges to a point $p\in X$, there exists a
 - $d(p_{n_i}, p) < \frac{\varepsilon}{2}$ whenever $n_i \ge N_2$.
- (3) Let $N = \max\{N_1, N_2\}$ be a positive integer. So

positive integer N_2 such that

$$d(p_n, p) \le d(p_n, p_{n_i}) + d(p_{n_i}, p)$$
 (Definition 2.15(c))
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \text{ whenever } n, n_i \ge N$$
 ((1)(2))
$$= \varepsilon \text{ whenever } n \ge N.$$

Hence the full sequence $\{p_n\}$ converges to p.

Exercise 3.21. Prove the following analogue of Theorem 3.10(b): If $\{E_n\}$ is a sequence of closed and bounded sets in a complete metric space X, if $E_n \supseteq E_{n+1}$, and if

$$\lim_{n\to\infty} \operatorname{diam}(E_n) = 0,$$

then $\bigcap_{n=1}^{\infty} E_n$ consists of exactly one point.

Assume $E_n \neq \emptyset$. It is unnecessary to assume that E_n is bounded since we have the condition that $\lim_{n\to\infty} \operatorname{diam}(E_n) = 0$.

Note. Every compact metric space is complete, but complete spaces need not be compact. In fact, a metric space is compact if and only if it is complete and totally bounded.

Proof.

- (1) Pick $p_n \in E_n$ for n = 1, 2, ...
- (2) Show that $\{p_n\}$ is a Cauchy sequence. Given any $\varepsilon > 0$. There is a positive integer N such that $\operatorname{diam}(E_n) < \varepsilon$ whenever $n \geq N$. Especially,

$$diam(E_N) < \varepsilon$$
.

As $m, n \geq N$, $p_m \in E_m \subseteq E_N$ and $p_n \in E_n \subseteq E_N$. By the definition of the diameter of E_N ,

$$d(p_m, p_n) \leq \operatorname{diam}(E_N) < \varepsilon$$
 whenever $m, n \geq N$.

- (3) Since X is complete, $\{p_n\}$ converges to a point $p \in X$.
- (4) Show that $p \in \bigcap_{n=1}^{\infty} E_n$. (Reductio ad absurdum) If there were some n such that $p \notin E_n$. Consider the subsequence

$$p_n, p_{n+1}, p_{n+2}, \ldots$$

Note that all p_n, p_{n+1}, \ldots are in E_n . By (3), it converges to p. Thus p is a limit point of E_n . Since E_n is closed, $p \in E_n$, which is absurd.

(5) Show that $\bigcap_{n=1}^{\infty} E_n = \{p\}$. (Reductio ad absurdum) If there were $q \in \bigcap_{n=1}^{\infty} E_n$ with $q \neq p$, then d(p,q) > 0 (Definition 2.15(a)). It implies that

$$diam(E_n) \ge d(p,q) > 0$$
 for all n ,

contrary to $\lim_{n\to\infty} \operatorname{diam}(E_n) = 0$.

Exercise 3.22 (Baire category theorem). Suppose X is a complete metric space, and $\{G_n\}$ is a sequence of dense open subsets of X. Prove Baire's theorem, namely, that $\bigcap_{1}^{\infty} G_n$ is not empty. (In fact, it is dense in X.) (Hint: Find a shrinking sequence of neighborhoods E_n such that $\overline{E_n} \subseteq G_n$, and apply Exercise 3.21.)

Proof. Given any open set G_0 in X, will show that

$$\bigcap_{n=0}^{\infty} G_n \neq \emptyset.$$

(1) Since G_1 is dense, $G_0 \cap G_1$ is nonempty. Take any one point p_1 in the open set $G_0 \cap G_1$, then there exists a closed neighborhood

$$V_1 = \{ q \in X : d(q, p_1) < r_1 \}$$

of p_1 with $r_1 < 1$ such that

$$V_1 \subseteq G_0 \cap G_1$$
.

Take $U_1 \subseteq E_1 \subseteq V_1$ such that

$$E_1 = \left\{ q \in X : d(q, p_1) \le \frac{r_1}{64} \right\} \subseteq V_1,$$

$$U_1 = \left\{ q \in X : d(q, p_1) < \frac{r_1}{89} \right\} \subseteq E_1.$$

(2) Suppose V_n, E_n, U_n have been constructed, take any one point p_{n+1} in the open set $U_n \cap G_{n+1}$, there exists an open neighborhood

$$V_{n+1} = \{ q \in X : d(q, p_{n+1}) < r_{n+1} \}$$

of p_{n+1} with r_{n+1} with $r_{n+1} < \frac{1}{n+1}$ such that

$$V_{n+1} \subseteq U_n \cap G_{n+1}$$
.

Take $U_1 \subseteq E_1 \subseteq V_1$ such that

$$E_{n+1} = \left\{ q \in X : d(q, p_{n+1}) \le \frac{r_{n+1}}{64} \right\} \subseteq V_{n+1},$$

$$U_{n+1} = \left\{ q \in X : d(q, p_{n+1}) < \frac{r_{n+1}}{89} \right\} \subseteq E_{n+1}.$$

- (3) Note that
 - (a) E_n is closed and nonempty (since $p_n \in E_n$).
 - (b) $\lim_{n\to\infty} \operatorname{diam}(E_n) = 0$ (since $\operatorname{diam}(E_n) \le 2 \cdot \frac{r_n}{64} < r_n < \frac{1}{n}$.)
 - (c) $E_1 \supseteq E_2 \supseteq \cdots$ (since $E_{n+1} \subseteq V_{n+1} \subseteq U_n \cap G_{n+1} \subseteq U_n \subseteq E_n$).

Since X is complete, by Exercise 3.21,

$$\bigcap_{n=1}^{\infty} E_n = \{p\}$$

for some $p \in X$.

(4) Hence

$$p \in \bigcap_{n=1}^{\infty} E_n \iff p \in E_n \text{ for all } n = 1, 2, 3, \dots$$

$$\implies p \in E_1 \subseteq G_0 \cap G_1 \text{ and } p \in E_{n+1} \subseteq U_n \cap G_{n+1} \subseteq G_{n+1}$$

$$\implies p \in G_0 \cap G_1 \cap \dots = \bigcap_{n=0}^{\infty} G_n$$

$$\implies \bigcap_{n=0}^{\infty} G_n \neq \varnothing.$$

Exercise 3.23. Suppose $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences in a metric space X. Show that the sequence $\{d(p_n,q_n)\}$ converges. (Hint: For any m,n,

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n);$$

it follows that

$$|d(p_n, q_n) - d(p_m, q_m)|$$

is small if m and n are large.)

Proof. Given any $\varepsilon > 0$.

(1) Since $\{p_n\}$ and $\{q_n\}$ are Cauchy sequences, there exists N such that

$$d(p_n, p_m) < \frac{\varepsilon}{2}$$
 and $d(q_m, q_n) < \frac{\varepsilon}{2}$

whenever $m, n \geq N$.

(2) Note that

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n).$$

It follows that

$$|d(p_n, q_n) - d(p_m, q_m)| \le d(p_n, p_m) + d(q_m, q_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus $\{d(p_n, q_n)\}\$ is a Cauchy sequence in \mathbb{R}^1 (not in X).

(3) Since \mathbb{R}^1 is a complete metric space, $\{d(p_n,q_n)\}$ converges.