CSci 423 Homework 7

Due: 1:00 pm, Wednesday, 10/31 Eric Shih

- 1. (20 points) Problem 2.30 (a) and (d) on page 131.
 - a) Use the pumping lemma to show that the following language is not context free:

$$A = \{0^n 1^n 0^n 1^n | n \ge 0\}$$

Assume A is context free. The pumping lemma applies. Let p be the pumping length. Let string $s = 0^p 1^p 0^p 1^p \in A$ and |s| > p with s = uvxyz, |vy| > 0 and |vxy| < p and $\forall i > 0$, $uv^i xy^i z \in A$.

Pumping s, all blocks must be equal in length or a p' that is different from p will result, rendering $s \notin A$. Therefore, $\forall i \geq 0$, $uv^i x y^i z \in A$ is true if and only if none of the ps change or ps change in $0^p 1^p 0^p 1^p$. Since |vy| > 0 and $|vxy| \leq p$ the substring vxy can be:

- 1. one type of symbol, 0 or 1, and a maximum length of p.
- 2. at most 2 types of symbols, 0 or 1, no matter where vxy spans $0^p 1^p 0^p 1^p$.

Therefore, when i = 0, and s = uxz, there will be one or two ps and $s \notin A$. This is a contradiction, proving that A is not context free.

- d) Use the pumping lemma to show that the following language is not context free:
 - $B = \{t_1 \# t_2 \# \dots \# t_k | k \ge 2, eacht_i \in \{a, b\} *, andt_i = t_i forsomei \ne j\}$

Assume *B* is context free. The pumping lemma applies. Let *p* be the pumping length. Let string $s = a^p b^p \# a^p b^p \in B$ and $|s| \ge p$ with s = uvxyz, |vy| > 0 and $|vxy| \le p$ and $\forall i \ge 0$, $uv^i x y^i z \in B$. Let i = 0:

- Case 1: vxy is contained in the first a^pb^p . With $s = uv^0xy^0z$, there are fewer symbols on the left of the # than on the right. Thus $s \notin B$.
- Case 2.1: If either v or y contains the # symbol, than we can pump s down to uv^0xy^0z , which will not contain the # symbol and hence will not be in L
- Case 2.2: If x contains the # symbol v is a substring of 1^p , and y is a substring of 0^p (since $|vxy| \le p$). Pumping s down to uv^0xy^0z reduces either the number of ones in t_1 or the number of zeros in t_2 or both. As a result, $t_1 \ne t_2$ for uv^0xy^0z , so the string is not in L.
 - Case 3: Similar to case 1, vxy is contained in the second a^pb^p . With $s = uv^0xy^0z$, there will be fewer symbols on the right of the # than on the left. Thus $s \notin B$.

Since within each case $s \notin B$, there is a contradiction, proving that B is not context free.

2. (10 points) Problem 2.32 on page 131. (Hint: The following selection of s won't work: $s = 1^p 2^p 3^p 4^p$. Try other block orders.)

Assume *C* is context free. The pumping lemma applies. Let *p* be the pumping length. Let string $s = 1^p 3^p 2^p 4^p \in C$ and $|s| \ge p$ with s = uvxyz, |vy| > 0 and $|vxy| \le p$ and $\forall i \ge 0$, $uv^i x y^i z \in C$. Let i = 0:

- Case 1: vxy is within 1^p , 2^p , 3^p , or 4^p . With $s = uv^0xy^0z$, there could be a p' that does not have equal number of values. Thus making $s \notin C$.
- Case 2: vxy spans $1 \rightarrow 3$, $3 \rightarrow 2$, or $2 \rightarrow 4$. $1 \rightarrow 3$ would cause a different number of 1sthan2s as well as 3sand4s. $3 \rightarrow 2$ would cause a different number of 3sthan4s as well as 2sthan1s. $2 \rightarrow 4$ would cause a different number of 2sthan1s and 4sthan3s. Thus however the string is separated, $s \notin C$.

Since all cases result in $s \notin C$, there is a contradiction, proving that C is not context free.

- 3. (10 points) Problem 2.42 on page 131. (Hint: $s=1^{p+1}\#1^{p+2}\#...\#1^{3p}$).u Assume Y is context free. The pumping lemma applies. Let p be the pumping length. Let string $s=1^{p+1}\#1^{p+2}\#...\#1^{3p}\in Y$ and $|s|\geq p$ with s=uvxyz, |vy|>0 and $|vxy|\leq p$ and $\forall i\geq 0$, $uv^ixy^iz\in C$. Let i=2 for Case 1, i=0 for Case 2, and i=3 for Case 3:
- Case 1: If v or y contains only 1s, is within a block of 1s, or is along two sets of 1s from 1^{p+1} to 1^{2p-1} . Since |vxy| is bound by |p| and |vy| > 0, uv^2xy^2z will be reproduced again in a t_j . Thus making $s \notin Y$.
- Case 2: If v or y contains only 1s, is within a block of 1s, or is along two sets of 1s from 1^{2p} to 1^{3p} . Since |vxy| is bound by |p| and |vxy| > 0, uv^0xy^0z will be reproduced again in a t_i . Thus making $s \notin Y$.
- Case 3: If v or y contains a #. If there is only a # in v or y it would repeat correctly after 3 iterations, but after 3 iterations, that number would be repeated in the next block of 1s. Thus making $s \notin Y$.

Since all cases result in $s \notin Y$, there is a contradiction, proving that Y is not context free.