Chapter 2 Application Layer

Yaxiong Xie

Department of Computer Science and Engineering University at Buffalo, SUNY

James F. Kurose | Keith W. Ross COMPUTER A TOP-DOWN APPROACH P

Computer Networking: A Top-Down Approach

8th edition n Jim Kurose, Keith Ross Pearson, 2020

Application layer: overview

- Principles of network applications
- socket programming with UDP and TCP
- Web and HTTP
- E-mail, SMTP, IMAP

- The Domain Name System DNS
- P2P applications
- video streaming and content distribution networks

E-mail

Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP

User Agent

- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, iPhone mail client
- outgoing, incoming messages stored on server

E-mail: mail servers

mail servers:

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages

SMTP protocol between mail servers to send email messages

- client: sending mail server
- "server": receiving mail server

E-mail: mail servers

SMTP protocol between mail servers to send email messages

Two widely adopted paradigm

Server-Client Mode

P2P Mode

E-mail: mail servers

SMTP protocol between mail servers to send email messages

- client: sending mail server
- server: receiving mail server

Scenario: Alice sends e-mail to Bob

- 1) Alice uses UA to compose e-mail message "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server using SMTP; message placed in message queue
- client side of SMTP at mail server opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

SMTP RFC (5321)

- uses TCP to reliably transfer email messages from client (mail server initiating connection) to server, port 25
 - direct transfer: sending server (acting like client) to receiving server
- three phases of transfer
 - SMTP handshaking (greeting)
 - SMTP transfer of messages
 - SMTP closure
- command/response interaction (like HTTP)
 - commands: ASCII text
 - response: status code and phrase

Sample SMTP interaction

S: 220 hamburger.edu

SMTP: observations

comparison with HTTP:

- HTTP: client pull
- SMTP: client push
- both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own response message
- SMTP: multiple objects sent in multipart message

- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCII
- SMTP server uses CRLF.CRLF to determine end of message

Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 5321 (like RFC 7231 defines HTTP)

RFC 2822 defines *syntax* for e-mail message itself (like HTML defines syntax for web documents)

- header lines, e.g.,
 - To:
 - From:
 - Subject:

these lines, within the body of the email message area different from SMTP MAIL FROM:, RCPT TO: commands!

Body: the "message", ASCII characters only

Retrieving email: mail access protocols

- SMTP: delivery/storage of e-mail messages to receiver's server
- mail access protocol: retrieval from server
 - IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP provides retrieval, deletion, folders of stored messages on server
- HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on top of SMTP (to send), IMAP (or POP) to retrieve e-mail messages

Application Layer: Overview

- Principles of network applications
- Web and HTTP
- E-mail, SMTP, IMAP
- The Domain Name System DNS

- P2P applications
- video streaming and content distribution networks
- socket programming with UDP and TCP

DNS: Domain Name System

people: many identifiers:

SSN, name, passport #

Internet hosts, routers:

- IP address (32 bit, e.g. 12.115.66.89) used for addressing datagrams
- "name", e.g., cs.umass.edu used by humans

Q: how to map between IP address and name, and vice versa?

Domain Name System (DNS):

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, DNS servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network's "edge"

DNS: services, structure

DNS services:

- hostname-to-IP-address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

Q: Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: doesn't scale!

- Comcast DNS servers alone: 600B DNS queries/day
- Akamai DNS servers alone:2.2T DNS queries/day

Thinking about the DNS

humongous distributed database:

• ~ billion records, each simple

handles many trillions of queries/day:

- many more reads than writes
- performance matters: almost every Internet transaction interacts with DNS - msecs count!

organizationally, physically decentralized:

 millions of different organizations responsible for their records

"bulletproof": reliability, security

DNS: a distributed, hierarchical database

Client wants IP address for www.amazon.com; 1st approximation:

- client queries root server to find .com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

 official, contact-of-last-resort by name servers that can not resolve name

DNS: root name servers

- official, contact-of-last-resort by name servers that can not resolve name
- incredibly important Internet function
 - Internet couldn't function without it!
 - DNSSEC provides security (authentication, message integrity)
- ICANN (Internet Corporation for Assigned Names and Numbers) manages root DNS domain

13 logical root name "servers" worldwide each "server" replicated many times (~200 servers in US)

Top-Level Domain, and authoritative servers

Top-Level Domain (TLD) servers:

- responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all top-level country domains, e.g.: .cn, .uk, .fr, .ca, .jp
- Network Solutions: authoritative registry for .com, .net TLD

Educause: .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name servers

- when host makes DNS query, it is sent to its local DNS server
 - Local DNS server returns reply, answering:
 - from its local cache of recent name-to-address translation pairs (possibly out of date!)
 - forwarding request into DNS hierarchy for resolution
 - each ISP has local DNS name server; to find yours:
 - MacOS: % scutil --dns
 - Windows: >ipconfig /all
- local DNS server doesn't strictly belong to hierarchy

DNS name resolution: iterated query

Example: host at engineering.nyu.edu wants IP address for gaia.cs.umass.edu

Iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

dns.cs.umass.edu

DNS name resolution: recursive query

Example: host at engineering.nyu.edu wants IP address for gaia.cs.umass.edu

Recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

Caching DNS Information

- once (any) name server learns mapping, it caches mapping, and immediately returns a cached mapping in response to a query
 - caching improves response time
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
- cached entries may be out-of-date
 - if the named host changes IP address, may not be known Internetwide until all TTLs expire!
 - best-effort name-to-address translation!

Getting your info into the DNS

example: new startup "Network Utopia"

- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts info into .com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)
```

create authoritative server locally with IP address 212.212.212.1

Q: Does DNS use UDP or TCP?

DNS security

DDoS attacks

- bombard root servers with traffic
 - not successful to date
 - traffic filtering
 - local DNS servers cache IPs of TLD servers, allowing root server bypass
- bombard TLD servers
 - potentially more dangerous

Spoofing attacks

- intercept DNS queries, returning bogus replies
 - DNS cache poisoning
 - RFC 4033: DNSSEC authentication services