NAME: PRIYANSHU MANOHAR PATIL , DIV: A, BRANCH: EXTC, ROLLNO.: 55

df

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
df.plot(kind = 'area',alpha =0.1,stacked = False)
```

<AxesSubplot:>

df.plot.scatter(x='sepal_length',y = 'sepal_width')

df.plot.scatter(x='sepal_length',y = 'petal_length', c='sepal_length')

df.plot.scatter(x='sepal_width',y = 'petal_width')

<AxesSubplot:xlabel='sepal_width', ylabel='petal_width'>

 $\label{length',y='petal_length', c='sepal_width',s=df['sepal_length']*10} df.plot.scatter(x='sepal_length',y='petal_length', c='sepal_width',s=df['sepal_length']*10} df.plot.scatter(x='sepal_length',y='petal_length', c='sepal_width',s=df['sepal_length']*10} df.plot.scatter(x='sepal_length',y='petal_length', c='sepal_width',s=df['sepal_length']*10} df.plot.scatter(x='sepal_length',y='petal_length', c='sepal_width',s=df['sepal_length']*10} df.plot.scatter(x='sepal_length',y='petal_length', c='sepal_width',s=df['sepal_length']*10} df.plot.scatter(x='sepal_length',y='petal_length', c='sepal_width',s=df['sepal_length']*10} df.plot.scatter(x='sepal_length',y='petal_length',y='petal_length', c='sepal_width',s=df['sepal_length']*10} df.plot.scatter(x='sepal_length',y='petal_length',y$

df.plot.hexbin(x='sepal_length',y='petal_length', gridsize=10,cmap="viridis")

from mpl_toolkits import mplot3d

$$x = np.linspace(-1,6,30)$$

```
y=np.linspace(-1,6,30)
у
     array([-1.
                      , -0.75862069, -0.51724138, -0.27586207, -0.03448276,
            0.20689655, 0.44827586, 0.68965517, 0.93103448, 1.17241379,
            1.4137931 , 1.65517241 , 1.89655172 , 2.13793103 , 2.37931034 ,
            2.62068966, 2.86206897, 3.10344828, 3.34482759, 3.5862069,
            3.82758621, 4.06896552, 4.31034483, 4.55172414, 4.79310345,
            5.03448276, 5.27586207, 5.51724138, 5.75862069, 6.
                                                                          ])
z = x+y
def sin_fun(x,y):
   return np.sin(np.sqrt(x**2+y**2))
z = sin_fun(x,y)
ax = plt.axes(projection = '3d')
ax.plot3D(x,y,z)
```

[<mpl_toolkits.mplot3d.art3d.Line3D at 0x294b15e34f0>]


```
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel("z")

Text(0.11410640661270852, 0.015287359751546225, 'z')

ax = plt.axes(projection = '3d')
ax.plot3D(df['sepal_length'],df['petal_length'],df['petal_width'])
ax.set_xlabel('sepal_length')
ax.set_ylabel('petal_length')
ax.set_zlabel("sepal_width")
```

Text(0.5, 0, 'sepal_width')

df.plot(figsize=(20,10))

df.iloc[50:70].plot(kind = 'bar',figsize=(10,10))

<AxesSubplot:>

df.iloc[50:70].plot(kind = 'barh',figsize=(10,10))

df.plot(kind='hist', figsize=(10,10))

<AxesSubplot:ylabel='Frequency'>

df

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

df['petal_length'].plot(kind='hist',figsize=(10,10))

<AxesSubplot:ylabel='Frequency'>

df.hist(figsize=(20,10), color='#50DBB4', alpha=0.6)

```
array([[<AxesSubplot:title={'center':'sepal_length'}>,
          <AxesSubplot:title={'center':'sepal_width'}>],
        [<AxesSubplot:title={'center':'petal_length'}>,
          <AxesSubplot:title={'center':'petal_width'}>]], dtype=object)
                         sepal_length
                                                                                              sepal_width
                                                                     35
25
                                                                     30
20
                                                                     25
15
                                                                     20
                                                                     15
10
                                                                     10
 5
                                                                                             3.0
                         petal_length
                                                                                              petal_width
35
30
                                                                      30
25
20
                                                                     20
15
10
                                                                     10
 5
 0
                                                                                           1.0
```

import cufflinks as cf
cf.go_offline()

df

		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
df.ip	lot()					

df.iplot(x='sepal_length', y='sepal_width', kind='scatter', mode = 'markers')

df.iplot(x='sepal_length', y='sepal_width', size = 'sepal_length',kind='bubble')

df.iplot(x='sepal_length', y='sepal_width', z = 'petal_length',size = 'sepal_length',kind=

df1 = sns.load_dataset('tips')

df1

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

df1.iplot(x='total_bill',y='tip', kind = 'scatter', mode ='markers')

sns.relplot(x='total_bill', y='tip', data = df1, hue = 'size')

<seaborn.axisgrid.FacetGrid at 0x294b41dd730>

df1

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2

df1['smoker'].value_counts()

No 151 Yes 93

Name: smoker, dtype: int64

sns.relplot(x='total_bill', y='tip', data = df1, col = 'sex')

sns.relplot(x='total_bill', y='tip', data = df1, col = 'time')

<seaborn.axisgrid.FacetGrid at 0x294b1a33370>

sns.relplot(x='sepal_length', y='sepal_width', data = df, col = 'species')

sns.relplot(x='total_bill', y='tip', data=df1, col='day')

sns.catplot(x='day', y='total_bill', data=df1)

<seaborn.axisgrid.FacetGrid at 0x294b4b96160>

sns.pairplot(df1)

df.scatter_matrix()

df1 = sns.load_dataset('tips')

sns.jointplot(x=df1.total_bill, y=df1.tip)

<seaborn.axisgrid.JointGrid at 0x294b6cd3ee0>

sns.pairplot(df1)

sns.regplot(x=df1.total_bill, y=df1.tip)
sns.set(rc={'figure.figsize':(20,10)})

df1

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
import plotly.express as px
fig = px.scatter(df1, x="total_bill", y="tip", color = "time")
fig.show()
```

```
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
fig.show()
```

```
import plotly.express as px
fig = px.bar(df1, y="total_bill", x="sex", color = "smoker",barmode = "group")
fig.show()
```

Colab paid products - Cancel contracts here

✓ 8s completed at 9:30 PM

×