الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

الديوان الوطي درسعانات والمسابلات 2016 : دورة

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة :علوم تجريبية

اختبار في مادة : العلوم الفيزيائية المحات و 30د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمرين الأول: (3.5 نقطة)

 $.25^{\circ}C$ المحاليل مأخوذة عند الدرجة

لإزالة الطبقة الكلسية المترسبة على جدران أدوات الطهي المنزلية يمكن استعمال منظف تجاري لمسحوق حمض السولفاميك القوي ذي الصيغة الكيميائية HSO_3NH_2 والذي نرمز له اختصارا (p%).

المحلول على المحلول (S_A) لحمض السولفاميك ذي التركيز $V=100\,m$ و يحتوي الكتلة $V=100\,m$ من المسحوق التجاري لحمض السولفاميك. $m=0.9\,g$

أ- أكتب معادلة انحلال الحمض HA في الماء.

 (S_A) النجريبي المناسب لعملية تحضير المحلول التجريبي المناسب العملية البروتوكول التجريبي

لمعايرة المحلول ($S_{\scriptscriptstyle A}$) نأخذ منه حجما $V_{\scriptscriptstyle A}=20\,m$ ونضيف له -2

من الماء المقطر، و باستعمال التركيب التجريبي المبين بالشكل – 1 نعايره بواسطة محلول هيدروكسيد 80~mL الصوديوم ($Na^+(aq) + OH^-(aq)$) ذي التركيز المولي $C_B = 0,1~mol.~L^{-1}$ نبلغ نقطة التكافؤ عند إضافة . $pH_E = 7$ من محلول هيدروكسيد الصوديوم ويكون $PH_E = 7$ من محلول هيدروكسيد الصوديوم ويكون $V_{BE} = 15,3~mL$

أ- تعرف على أسماء العناصر المرقمة في الشكل-1.

ب- اكتب معادلة تفاعل المعايرة.

. المُذابة في هذا المحلول. (S_A) ، ثم استنتج الكتلة m_A للحمض M المُذابة في هذا المحلول.

د- احسب النقاوة (p%) للمنظف التجاري.

 $M = 97 \ g. \ mol^{-1}$ HA تُعطى الكتلة المولية للحمض

التمرين الثاني: (4.5 نقطة)

لأجل إجراء دراسة حركية للتحول الكيميائي التام والبطيء بين محلول يود البوتاسيوم ($K^+(aq) + I^-(aq)$) والماء الأكسجيني $H_2O_2(aq)$ لهما نفس التركيز المولي $C = 0.1 \, \text{mol} / L$ وعند نفس درجة الحرارة المزيجين التالبين:

 $(K^{+}(aq) + I^{-}(aq))$ من $H_{2}O_{2}(aq)$ و $H_{2}O_{3}(aq)$ من $4 \; \text{mL}$ المزيج الأول

 $(K^{+}(aq) + I^{-}(aq))$ من $H_{2}O_{2}(aq)$ و $H_{2}O_{2}(aq)$ من 2 mL : المزيج الثاني

نضيف لكل مزيج كمية من الماء المقطر وقطرات من حمض الكبريت المركز، فيصبح حجم المزيج التفاعلي لكل منهما $V=60~\mathrm{mL}$. يُنَمُذَجُ التحول الحادث في كل مزيج بالمعادلة الكيميائية التالية:

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = I_2(aq) + 2H_2O(l)$$

- 1- اكتب المعادلتين النصفيتين للأكسدة والارجاع، ثم استتج الثنائيتين (ox/red) المشاركتين في التفاعل.
- 2 أ احسب كمية المادة الابتدائية للمتفاعلات في كل مزيج.
 ب انشئ جدول التقدم للتفاعل الحادث في المزيج الأول.
 - 3 البيانان (1) و (2) في الشكل 2 يمثلان على الترتيب
 تطور تركيز ثنائي اليود المتشكل في كل مزيج بدلالة الزمن.
 - أ احسب تركيز ثنائي اليود المتشكل في الحالة النهائية
 في المزيج الأول.
 - ب استنتج من البيان (1) تركيز ثنائي اليود المتشكل في اللحظة $t=30~{
 m min}$.
- ج هل يتوقف التفاعل في المزيج(1) عند $t=30~{
 m min}$ علل.
- 4 1 1 اوجد عبارة السرعة الحجمية لتشكل ثنائي اليود بدلالة التركيز [I_2] .

 $t=10~{
m min}$ عند اللحظة $t=10~{
m min}$ عند المزيجين عند المرعة الحجمية للتفاعل في كلا المزيجين

التمرين الثالث: (04 نقاط)

 $M(H)=1\ g\ .\ mol^{-1}$ ، $M(C)=12\ g\ .\ mol^{-1}$ ، $N_A=6{,}023{\times}10^{23}mol^{-1}$: المعطيات

النواة	^{94}Sr	^{140}Xe	$^{235}\!U$
طاقة الربط E_l (MeV)	807,46	1160	1745,6

تسببت حادثة تشرنوبيل سنة 1986 في تلويث الأرض والغلاف الجوي بسبب زيادة تركيز العناصر المشعّة مثل السيزيوم $\frac{137}{55}$ و نصف عمر $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{135}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ هو $\frac{134}{55}$ عمل السيزيوم الناجم عن هذه الحادثة الذي يمكن أن يتواجد إلى يومنا هذا (سنة 2016) ؟ علّل.

 eta^- يعطي تفكك السيزيوم $^{137}_{55} C_S$ الإشعاع $^{-2}$

أ- اكتب معادلة التحول النووي الحادث مبينا النواة الناتجة من بين الأنوية التالية:

$$^{134}_{55}Cs$$
 $^{131}_{53}I$ $^{137}_{56}Ba$

بالمتغيرات الآتية: -4 بالمتغيرات الآتية: -4 بالمتغيرات الآتية:

الكمية الابتدائية للنظير المشع – درجة الحرارة والضغط.

:- ينشطر اليورانيوم U^{235} و فق المعادلة النووية التالية:

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{Z}Sr + ^{140}_{54}Xe + X^{1}_{0}n$$

Z و X أ حدّد قيمة كل من العددين

ب- ما هي النواة الأكثر استقرارا من بين النواتين الناتجتين عن هذا الانشطار النووي ؟ علل.

m=1~mg من اليورانيوم m=1~mg من اليورانيوم m=1~mg من اليورانيوم

 $m=1\ mg$ المحررة من انشطار الكتلة C_4H_{10} الواجب حرقها لانتاج نفس الطاقة المحررة من انشطار الكتلة C_4H_{10} من اليورانيوم C_4H_{10} علما أن $1\ mol$ من اليورانيوم C_4H_{10} من عام أن $1\ mol$ من اليورانيوم C_4H_{10} ماذا تستنتج؟

التمرين الرابع: (04 نقاط)

$$v_0 = 10 \; m.s^{-1}$$
 ، $g = 10 \; m.s^{-2}$:المعطيات

بإحدى الحصص التدريبية لكرة القدم استقبل اللاعب كرة من زميله فقذفها برأسه نحو المرمى بغية تسجيل هدف. غادرت الكرة رأسه في اللحظة t=0 من النقطة t=0 من النقطة t=0 من النقطة t=0 من النقطة t=0 من الأفق. تقع النقطة t=0 على الارتفاع الشاقولي المتعامد مع مستوي المرمى ويصنع حاملها زاوية t=0 مع الأفق. تقع النقطة t=0 على الارتفاع t=0 من سطح الأرض، كما هو موضح بالشكلt=0.

1- بإهمال أبعاد الكرة وتأثير الهواء عليها، وبتطبيق القانون الثاني لنيوتن على الكرة في المعلم السطحي الأرضى (Ox, Oy) أوجد ما يلى:

$$x\left(t\right)$$
 و $x\left(t\right)$ و $x\left(t\right)$ و أ- المعادلتين الزمنيتين $y=f\left(x\right)$ معادلة المسار

ج- قيمة سرعة مركز عطالة الكرة عند الذروة.

2- يبعد خط التهديف عن اللاعب بالمسافة

$$L=2,44~m$$
 وارتفاع المرمى هو $d=10~m$

أ- اكتب الشرط الذي يجب أن يحققه كل من x و y لكي يسجل الهدف مباشرة إثر هذه الرأسية؟ y برّر إجابتك.

التمرين التجريبي: (04 نقاط)

نركب الدارة الكهربائية الموضحة بالشكل-4، والمؤلفة من:

- مولد كهربائي للتوتر الثابت E .
- . C مكثفة غير مشحونة سعتها
- ناقلين أوميين مقاومتيهما $R_1=1k\Omega$ عير معلومة.
 - $\cdot K$ قاطعة كهربائية –

نوصل الدارة الكهربائية براسم اهتزاز مهبطي ذي ذاكرة كما هو موضح على الشكل-4 ثم نغلق القاطعة K في اللحظة t=0 ثم نغلق القاطعة والمحالمة المحالمة المحال

المنحنيين البيانيين (a) و (b) (الشكل-5).

- 1- ارفق كل منحنى بالمدخل الموافق له مع التبرير.
- $i\left(t\right)$ اكتب المعادلة التفاضلية التي تحققها الشدة -2 للتيار الكهربائي في الدارة.
- I_0 المار في الدارة. I_0 التيار الأعظمي المار في الدارة.
- الناقل الأومي R_2 بدلالة R_1 ، و R_2 الناقل الأومي R_2 بدلالة الناقل الأومي R_2 بدلالة الناقل الأومي R_2 بدلالة الناقل الأومي R_2
 - من على البيانين، استنتج قيمة كل من -5 اعتمادا على البيانين، R_2 ، I_0 ، E

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (04 نقاط)

 $(Na^+(aq) + OH^-(aq))$ مع محلول هيدروكسيد الصوديوم نقاعل غاز ثنائي الكلور $Cl_2(g)$ مع محلول هيدروكسيد الصوديوم بتحول كيميائي تام يُنَمَّذَ $\dot{\sigma}$ بمعادلة التفاعل التالية:

$$Cl_2(g) + 2 OH^-(aq) = ClO^-(aq) + Cl^-(aq) + H_2O(l)$$

الكاور في الشرطين النظاميين اللازم (Chl) بأنها توافق عدد لترات غاز ثنائي الكلور في الشرطين النظاميين اللازم استعمالها لتحضير لتر واحد من ماء جافيل. بين أن: $\mathbf{Chl} = \mathbf{C}_0.\mathbf{V}_{M}$

حيث $V_{\rm M} = 22.4 \; {\rm L.mol}^{-1}$ هو الحجم المولى للغاز و $V_{\rm M} = 22.4 \; {\rm L.mol}^{-1}$

 $^{\circ}$ CIO تركيزه المولي بشوارد الهيبوكلوريت $^{\circ}$ CIO من ماء جافيل المحفوظ عند درجة الحرارة $^{\circ}$ C تركيزه المولي بشوارد الهيبوكلوريت $^{\circ}$ CIO ونضيف إليها كمية كافية من يود $^{\circ}$ Co ونمدّدها 4 مرات ليصبح تركيزه المولي $^{\circ}$ C1. نأخذ منها حجما $^{\circ}$ C1 ونضيف إليها كمية كافية من يود

البوتاسيوم ($(K^+(aq)+I^-(aq))$ في وسط حمضي، فيتشكل ثنائي اليود ($I_2(aq)$ وفق تفاعل تام يُنمذَجُ بالمعادلة التالية:

$$ClO^{^{-}}(aq) + 2I^{^{-}}(aq) + 2H_3O^{^{+}}(aq) = I_2(aq) + Cl^{^{-}}(aq) + 3H_2O(l)$$

نعاير ثنائي اليود المتشكل في نهاية التفاعل بمحلول ثيوكبريتات الصوديوم ((aq) + $S_2O_3^{2-}$ (aq)) تركيزه بالشوارد $C_2=10^{-1}$ mol . L^{-1} هو $S_2O_3^{2-}$ بوجود كاشف ملون (صمغ النشا أوالتيودان) فيكون حجم ثيوكبريتات . $V_E=20$ mL

 $(S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq))$ و $(I_2(aq)/I^-(aq))$: نعطى الثنائيتين (ox/red) الداخلتين في تفاعل المعايرة :

أ - اكتب المعادلتين النصفيتين للأكسدة والإرجاع ثم
 معادلة التفاعل أكسدة -إرجاع المُنمذِجْ لتحول المعايرة.

$$C_1 = \frac{C_2.V_E}{2V_1}$$
: بين أن

 C_0 و Chl جـ احسب C_1 ثم استنتج

3- يتفكك ماء جافيل وفق تحول تام وبطيء، معادلته

$$2CIO^{-}(aq) = 2CI^{-}(aq) + O_{2}(g)$$
 : الكيميائية

يمثل الشكل-1 المنحنيين البيانيين لتغيرات تركيز شوارد

-CIO بدلالة الزمن الناتجين عن المتابعة الزمنية

لتطور عينتين من ماء جافيل حضرتا بنفس الدرجة الكلورومترية للعينة (A) عند درجتي الحرارة $^{\circ}$ C بالنسبة للعينة (1) و $^{\circ}$ C بالنسبة للعينة (2). العينتان حديثتا الصنع عند اللحظة $^{\circ}$ C و $^{\circ}$ C بالنسبة للعينة (2).

أ - استتج بيانيا التركيز الإبتدائي للعينتين (1) و (2) بالشوارد -CIO.

هل العينة (A) السابقة حديثة الصنع ؟

ب - اكتب عبارة السرعة الحجمية لإختفاء الشوارد CIO، ثم أحسب قيمتها في اللحظة t=50 jours بالنسبة لكل عينة. قارن بين القيمتين، ماذا تستتنج ؟

ج – ما هي النتيجة التي نستخلصها من هذه الدراسة للحفاظ على ماء جافيل لمدة أطول ؟

التمرين الثاني: (04 نقاط)

 $_6$ C ; $_5$ B ; $_4$ Be ; $_3$ Li : المعطيات $N_A=6,02\times 10^{23}~{
m mol}^{-1}$, $1~an=365,25~{
m jours}$ نواة البيريليوم 4 Be هي نواة مشعة تصدر الاشعاع 4 Be وينتج عن تفككها نواة 4 X .

Z و Z. التب معادلة التفكك النووي محددا قيمتي A و B. -1 و B.

-2 مكنت المتابعة الزمنية لتطور الكتلة m لعينة من البيريليوم كتلتها الابتدائية m_0 من رسم المنحنى البياني الموضح بالشكل-2.

أ- اكتب عبارة قانون التناقص الإشعاعي بدلالة

. λ (عدد الأنوية الابتدائية) وثابت التفكك λ

ب- استنتج عبارة الكتلة m(t) للعينة المتبقية من البيريليوم عند اللحظة m بدلالة m (الكتلة الابتدائية للعينة) وثابت التفكك λ .

 λ ثم اوجد عبارته بدلالة ثابت التفكك $t_{1/2}$ ثم اوجد عبارته بدلالة ثابت التفكك $t_{1/2}$

 $^{-1}$ عين بيانيا زمن نصف عمر البيريليوم واستنتج قيمة ثابت التفكك λ بالوحدة

t=1 année عند الأنوية المتفككة عند

 $A = 1.06 \times 10^{15} \; \mathrm{Bg}$ فوجدنا بواسطة عداد جيجر النشاطية A لعينة من البيرليوم 10 فوجدنا

أ- احسب الكتلة m للبيريليوم 10 المتسببة في هذه النشاطية.

 $m_0 = 4g$ مر هذه العينة إذا علمت أن كتلة البيريليوم الابتدائية هي

التمرين الثالث: (04 نقاط)

 n_1 نتكون من n_1 مول n_1 نتكون من n_1 مول من حمض الإيثانويك CH_3COOH و n_2 مول من كحول صيغته العامة C_3H_7OH و قطرات من حمض الكبريت المركز. سمحت الدراسة التجريبية لتطور التفاعل الحادث برسم المنحنيين (1) و (2) الممثلين بالشكل -3

يمثل المنحنى(1) تغيرات كمية مادة الكحول بدلالة التقدم x . يمثل المنحنى(2) تغيرات كمية مادة الحمض بدلالة التقدم x .

أ - اكتب معادلة التفاعل المُنَمذِج للتحول الحادث.

ب - انشئ جدول التقدم لهذا التفاعل.

ج - احسب قيمة نسبة التقدم النهائي $au_{
m f}$ للتفاعل.

د - احسب ثابت التوازن K للتفاعل ثم حدد صنف الكحول المستخدم.

ه - كيف يمكن تحسين مردود تشكل الأستر في هذا التفاعل ؟

pH مترية لمعايرة كمية المادة n للحمض المتبقي في -2 بعد بلوغ حالة التوازن وتبريد المزيج مكنت المتابعة الـ pH مترية لمعايرة كمية المادة C=0.5mol/L تركيزه المولي $Na^+(aq)+OH^-(aq)$ من استخراج المعلومة الآتية:

عند إضافة الحجم $V=10 \mathrm{mL}$ من محلول هيدروكسيد الصوديوم تكون قيمة $V=10 \mathrm{mL}$

 $K_e = 10^{-14}$ عند درجة الحرارة 25° C – الجداء الشاردي للماء

pKa = 4.8 هو CH_3COOH/CH_3COO^- هو – ثابت الحموضة للثنائية

أ - اكتب معادلة التفاعل المُنَمْذِجْ للتحول الحادث.

ب- احسب قيمة n.

 K_e و K_a بدلالة K_a و بارة ثابت التوازن

د - احسب قيمة K ، ماذا تستتج ؟

التمرين الرابع: (04 نقاط)

لغرض دراسة تطور التوتر الكهربائي بين طرفي مكثفة نركب الدارة الكهربائية الموضحة بالشكل-4.

تتكون هذه الدارة من مولد للتوتر الثابت ${
m E}$ ، ناقل أومي مقاومته ${
m R}$ = 10 k Ω و بادلة

نضع البادلة في الوضع(1) إلى غاية بلوغ النظام الدائم، ثم نغير البادلة إلى الوضع(2) في اللحظة t=0.

2 - بين أن المعادلة التفاضلية التي يحققها التوتر الكهربائي

بين طرفي المكثفة في هذه الدارة تُعطى بالشكل: U_c

$$U_c + \frac{1}{\alpha} \frac{dU_c}{dt} = 0$$

-3 إذا كان حل هذه المعادلة التفاضلية من الشكل:

اوجد عبارتي الثابتين A و α بدلالة $U_c=A\mathrm{e}^{-lpha \mathrm{t}}$

.Е , С . R

بدلالة lnU_c المنحنى البياني لتغيرات -5 المنحنى البياني التغيرات t الزمن t

. $lnU_c=\mathbf{f}(\mathbf{t})$ أ – استنتج بيانيا عبارة الدالة

. E و C ، α المطابقة مع العلاقة النظرية الموافقة للمنحنى المتنتج قيم كل من و C ، α

5. احسب الطاقة المحولة إلى الناقل الأومي عند اللحظة $\tau=2.5$ ، ماذا تستنتج ؟ حيث τ هو ثابت الزمن المميز للدارة.

التمرين التجريبي: (04 نقاط)

 $g = 10 \text{ m/s}^2$ نعتبر

يتحرك جسم (S) نعتبره نقطيا كتاته m=900g على مسار مستقيم AB مائل عن الأفق بزاوية $\alpha=35^\circ$ كما هو موضح بالشكل-6.

ينطلق الجسم من النقطة A دون سرعة ابتدائية.

باستعمال تجهيز مناسب ننجز التسجيل المتعاقب لمواضع الجسم أثناء حركته على المسار AB فنحصل على النتائج المدونة في الجدول الآتي:

الموضع		G_1							
t (s) اللحظة	0.00	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.64
x(cm) الفاصلة	0.0	1,5	6,0	13,5	24,0	37,5	54,0	73,5	96,0

ينطبق الموضع G_0 على النقطة A و ينطبق الموضع G_8 على النقطة B ، والمدة التي تفصل بين تسجيلين متتاليين $\tau = 80 \, \mathrm{ms}$.

. G_6 ، G_5 ، G_4 ، G_3 ، G_2 عند المواضع عند السرعة اللحظية للجسم عند المواضع – أ – ا

ب - اوجد قيمة تسارعه عند المواضع G₅ ، G₄ ، G₃ .

ج - استنج طبیعة حرکته.

2 - باهمال قوى الاحتكاك المؤثرة على الجسم (S):

أ – مثل القوى المطبقة على الجسم (S).

بتطبيق القانون الثاني لنيوتن في المعلم السطحي الأرضي الذي نعتبره غاليليا، أوجد عبارة التسارع (a)
 لمركز عطالة الجسم ثم أحسب قيمته.

ج - قارن بين هذه القيمة النظرية للتسارع وقيمته التجريبية الموجودة سابقا، ماذا تستنتج ؟

. \vec{f} ثابتة في الشدة ومعاكسة لجهة الحركة. \vec{f} ثابتة في الشدة ومعاكسة لجهة الحركة.

. \overrightarrow{f} أ – احسب شدة القوة

ب - باستخدام مبدأ إنحفاظ الطاقة أوجد قيمة سرعة الجسم عند النقطة B .

انتهى الموضوع الثاني

العلامة		عناصر الإجابة الموضوع 01					
مجموع	مجزأة						
		التمرين الأول: (3,5 ن)					
		اً – أحمعادلة انحلال الحمض (HA) في الماء:					
	0.50	$HA(aq) + H_2O(l) = A^-(aq) + H_3O^+(aq)$					
		- البرتوكول التجريبي: * ذكر الوسائل و المواد الكيميائية المستعملة. (أو شكل توضيحي إن أمكن). * خطوات العمل: $-$ وزن الكتلة $m=0.9$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$					
1.00	0.70						
	0.50						
		و ضع الكتلة m في حوجلة عيارية $(100mL)$ بها كمية من الماء المقطر ، المزج ، إتمام الحجم إلى خط العيار ، ثم سد الحوجلة و رجها لمجانسة المحلول المحضر .					
		2- أ- أسماء العناصر:					
	050	متر . 2 محلول حمض السولفاميك. -1					
	030	3- مخلاط مغناطیسي. 4- سحاحة. 5- محلول هیدروکسید الصودیوم.					
	0.50	ملاحظة: (0.25 لإجابتين صحيحتين و 0.50 لأربع إجابات صحيحة)					
2.50	$0.50 \\ 0.25$	$H_3 O^+(aq) + OH^-(aq) = 2H_2 O(l)$ ب- معادلة تفاعل المعايرة: $O_1 O_2 O_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$					
	0.25	$C_A.V_A=C_b.V_{bE}$. و منه: $n_A=n_{bE}$ عند التكافؤ و $n_A=n_{bE}$ عند التكافؤ و $C_A.V_A=C_b.V_{bE}$. $C_A.V_A=C_b.V_{bE}$. $C_A.V_A=C_b.V_{bE}$					
	0.25	$C_A = 5C_A' = 7.65 \times 10^{-2} mol.L^{-1}$ ومنه: $C_A = \frac{C_b.V_{bE}}{V_A'} = 1.53 \times 10^{-2} mol.L^{-1}$					
	$0.25 \\ 0.25$	$C_{A}.V_{A} = C_{b}.V_{be} o C_{A} = \frac{0.1 \times 15,3}{20}$ أو $m = C_{A}.M.V = 0,74$ و كثلة الحمض:					
		C_{Λ} = 7,65 $ imes$ 10 $^{-2}$ mol. L^{-1} \cdot $p\simeq 82\%$ إذن: $m'=0,82$ 0					
	0.25	$\frac{1}{m} = 0.02$					
		التمرين الثاني: (4,5 ن)					
	0.25	$2I_{(aq)}^- = I_{2(aq)} + 2\overline{e}$: المعادلتان النصفيتان : المعادلتان النصفيتان					
1.00	0.25 0.25	$H_2O_{2(aq)} + 2H_{(aq)}^+ + 2\bar{e} = 2 H_2O_{(\ell)}$					
	0.25	$H_2O_{2(aq)}$ / $H_2O_{(\ell)}$ ، $I_{2(aq)}$ / $I_{(aq)}^ :$ ox / red الثنائيتان					
	0.25	$n(I_{(aq)}^{-}) = 0.1 \times 36 \times 10^{-3} = 3.6 \text{ mmol}$: المزيج الأول : $n(I_{(aq)}^{-}) = 0.1 \times 36 \times 10^{-3} = 3.6 \text{ mmol}$					
	0.25	$n (H_2 O_{2(aq)}) = 0.1 \times 4 \times 10^{-3} = 0.4 \text{ mmol}$					
	0.25	$n \ (\ ext{I}_{(aq)}^-) = 0.1 \ imes \ 20 \ imes \ 10^{-3} = 2 \ ext{mmol}$ المزيج الثاني :					
	0.25	$n (H_2 O_{2(aq)}) = 0.1 \times 2 \times 10^{-3} = 0.2 \text{ mmol}$					
1.25		ب- جدول التقدم: (يقبل الجدول بالعبارات الحرفية لكميات المادة)					
	$2I_{(aq)}^- + H_2O_{2(aq)} + 2H_{(aq)}^+ = I_{2(aq)} + H_2O_{(\ell)}$						
	0.25	كميات المادة بـ (mmol) النقدم حالة الجملة					
	0.25	الحالة الابتدائية 0					
		95.					
		الحالة النهائية x_{max} 3,6 - 2 x_{max} 0,4 - x_{max} x_{max}					

المدة: 03 ساعات و نصف

العلامة		عناصر الإجابة
مجموع	مجزأة	المحاصر الإجابات
	0.25 0.25	$[I_2]_f = \frac{n(I_2)_f}{V_T} = \frac{x_{\text{max}}}{V_T}$ $[I_2]_f = \frac{0.4}{0.06} = 6.67 \text{ mmol/L}$: I_2 انترکیز النهائي:
1.25	0.25	I_2 = 6,2 mmol/L من البيان $t=30\mathrm{min}$
1.23	0.25 0.25	ج – التفاعل لم يتوقف عند هذه اللحظة لأن : $I_2 _{30} < [I_2]_{30}$
	0.25	$\mathbf{v}_{vol} = \frac{1}{V} \frac{dn(I_2)}{dt} \Rightarrow \mathbf{v}_{vol} = \frac{d[I_2]}{dt}$: السرعة الحجمية :
1.00	0.25	
1.00	0.25	$v_{vol1}=0,24~ m mmol.min^{-1}.L^{-1}$ ب $v_{vol2}=0,12~ m mmol.min^{-1}.L^{-1}$ ب $v_{vol2}=0,12~ m mmol.min^{-1}.L^{-1}$
	0.25	نلاحظ السرعة الحجمية للتفاعل في المزيج (1) اكبر منها في المزيج (2).
		نستنتج أن سرعة التفاعل تتزايد بتزايد التراكيز الابتدائية للمتفاعلات.
		التمرين الثالث: (4,0 ن)
	0.25	au تحسب المدة الزمنية $ au$ 5 لكل عنصر حيث $ au$ االمدة الزمنية تاك عنصر عيث $ au$:
	0.25	نجد بالنسبة للسيزيوم 137 $ ightharpoons 216.4 ightharpoons 216.4 مسنة أو عدد الانوية في اللحظة t=30~ans$
0.75	0.20	بالنسبة للسيزيوم 134 → 14.4 سنة
	0.25	الفاصل الزمني بين الحادثة و 2016 هو 30 سنة ومنه: 35^{134}_{55} يختفي تماما ويبقى 37^{137}_{55} في الطبيعة .
0.70	0.25	$^{137}_{55}Cs ightarrow ^{137}_{56}Ba+eta^-$ أ- معادلة التفكك - eta
0.50	0.25	ب- نصف العمر لا يتعلق بدرجة الحرارة ولا بالكمية الابتدائية للعنصر المشع.
		Z و Z :
	$0.25 \\ 0.25$	$Z=38$ ، $x\!=\!2$ بتطبيق قانوني الانحفاظ نجد:
	·	ب- النواة الأكثر استقرارا :
	0.25	$\frac{E_{l}}{A} {140 \times e} = 8,28 \frac{MeV}{nucl\acute{e}on} \qquad {^{`}}\frac{E_{l}}{A} {94 \times r} = 8,59 \frac{MeV}{nucl\acute{e}on}$
2.75	$0.25 \\ 0.25$	A $nucteon$ A $nucteon$ A $nucteon$ $uucteon$ A $uucteon$
2.73	0.25	$\frac{1}{A}(3r) > \frac{1}{A}(Xe) = 38b \cdot 35 \cdot 36 \cdot 36 \cdot 36 \cdot 36 \cdot 36 \cdot 36 \cdot 36$
	0.25	$E_{lib} = E_l ({}^{94}Sr) + E_l ({}^{140}Xe) - E_l ({}^{235}U) = 221,86MeV : E'_{lib}$
	0.25	$E'_{lib} = E_{lib} \times N = E_{lib} \times \frac{m.N_A}{M} = 5,686 \times 10^{20} MeV = 9,09 \times 10^4 kJ$
	0.25	الموافقة: M د- كتلة $(C_4 H_{10})$ الموافقة:
	0.25	$1 \ mol(C_4 \ H_{10}) \rightarrow 58 \ g \rightarrow 1126 \ kJ$ $m(C_4 \ H_{10}) = 4,682 \ kg$
	0.25	$m \rightarrow 9.09 \times 10^4 kJ$

المدة: 03 ساعات و نصف

العلامة		عناصر الإجابة
مجموع	مجزأة	حاصر ، مِجب
	0.25	التمرين الرابع: (4 ن) $y(t) = x(t)$ المعادلات الزمنية $x(t) = x(t)$ الجملة المدروسة: الكرة، في مرجع سطحي أرضي الذي نعتبره غاليليا.
	0.25	$\overrightarrow{P}=m.\overrightarrow{a}$: أي $\overrightarrow{F}_{ext}=m.\overrightarrow{a}$: بتطبيق القانون الثاني لنيوتن
	0.25	$\begin{cases} a_x = \frac{dv_x}{dt} = 0 \\ a_y = \frac{dv_y}{dt} = -g \end{cases} \Rightarrow \begin{cases} v_x = v_0 \cos \alpha \\ v_y = -g t + v_0 \sin \alpha \end{cases}$: $\frac{dv_y}{dt} = 0$
3.00	0.50	فنجد: $\begin{cases} x(t) = 5\sqrt{3} \ t \\ y(t) = -5.t^2 + 5.t + 2 \end{cases}$
	0.50	
	0.50 0.25	$y = -\frac{1}{15} \cdot x^2 + 0.58 \cdot x + 2$: $y = f(x)$
	0.25	$v_s = v_x = v_0 \cos \alpha = 8,66 \ m. \ s^{-1}$ ومنه: $v_y = 0$
1.00	0.25	$0 < y < L$ يجب $x \geq d$ الشروط هي: لما $x \geq d$
	$0.25 \\ 0.25$	m y = 1,11 m $<$ L = 2.44 m
	0.25	النتيجة: لقد سجل اللاعب الهدف بهذه الرأسية.
		التمرين التجريبي: (4,0 ن)
	0.50	$u_{R_2} = 0 \iff i = 0$ المدخل y_1 : يوافق المنحنى (b) . لأنه عند بلوغ النظام الدائم، يكون $u_{R_2} = 0$
0.75	0.50 0.25	المدخل y ₂ يوافق المنحنى (a). (يمنح 0.25 للتبرير) وتقبل الإجابات الصحيحة الأخرى
		$i\left(t\right)$ المعادلة التفاضلية للتيار ($i\left(t\right)$
1.00	0.25	$E = u_{R_1}(t) + u_{R_2}(t) + u_{C}(t)$ بتطبیق قانون جمع التوترات: (۱)
1.00	0.25	$\frac{di(t)}{dt} + \frac{1}{(R_1 + R_2)C}i(t) = 0$ و بالاشتقاق نجد: $E = (R_1 + R_2)i(t) + u_C(t)$
	0.50	$(R_1 + R_2)$ ن I_0 عبارة -3
0.50	0.25 0.25	\cdot $I_0=rac{E}{R_1+R_2}$: و منه $E=ig(R_1+R_2ig)$. $I_0:$ عند اللحظة $t=0$
0.25	0.25	$u_{R_2}(0) = R_2 I_0 = R_2 \frac{E}{R_1 + R_2}$: $u_{R_2}(t)$ عبارة $= -4$
1.50	0.25 0.25 0.25 0.25 0.25 0.25	: بیانیا: C و R_2 (R_2) R_2 (R_2

المدة: **03** ساعات و نصف العلامة

مه	العلا	00 - 11 1 1 11 11-			
مجموع	مجزأة	عناصر الإجابة الموضوع 02			
		التمرين الأول: (4,0 ن)			
	0.25	$^{\circ}\mathrm{Chl} = \mathrm{V}\;(\mathrm{Cl}_2) = \mathrm{n}(\mathrm{Cl}_2).\mathrm{V}_{\mathrm{M}}$.1 لدينا من التعريف: .1			
0.70	0.25	$n(Cl_2) = n(ClO^-) = C_0.V$; $V=1L \rightarrow {}^{\circ}Chl = C_0.V_M$			
0.50		2 . أ . معادلة تفاعل المعايرة :			
	0.25	$2S_2O_3^{-2} = S_4O_6^{-2} + 2e^-$: م.ن للأكسدة			
	0.25	م.ن للإرجاع : عا الإرجاع : الإرجاع الم.ن للإرجاع الم.ن للإرجاع الم.ن ال			
	0.25	$2S_2O_3^{-2}(aq) + I_2(aq) = S_4O_6^{-2}(aq) + 2I^-(aq)$ عادلة تفاعل الأكسدة . إرجاع			
	0.25	$ extbf{C}_1 = rac{C_2. extbf{V}_{ ext{E}}}{2 extbf{V}_1} \;\; \Leftarrow \;\; rac{n(extbf{S}_2 extbf{O}_3^{-2})}{2} = rac{n(I_2)}{1} \;\;\; : $ ب عند التكافؤ يتحقق			
1.75	$0.25 \\ 0.25$	$C_0 = 4 C_1 = 2 \text{ mol.L}^{-1}$ ثم $C_1 = 0.5 \text{ mol.L}^{-1}$.			
	0.25	°Chl = 2x22.4= 44.8°			
	0.25	$[CIO^-]_0 = 2.15 \text{ mol/L}$:1- من الشكل الشكل من الشكل الم			
	0.25	العينةA ليست حديثة الصنع			
	0.25	ب . عبارة السرعة الحجمية لاختفاء شوارد الهيبوكلوريت CIO^- : $V_v(CIO^-) = -\frac{1}{V}\frac{\mathrm{dn}(CIO^-)}{\mathrm{dt}} = -\frac{d[CIO^-]}{dt}$			
		عند اللحظة t = 50 jour عند اللحظة			
	0.25	من المنحنى - 1: $V_{vol}(ClO^-)_{(20C^\circ)} = 7.33 \times 10^{-3} mol/(L.Jour)$ تقبل النتائج ضمن المجال: $V_{vol}(ClO^-)_{(20C^\circ)} = 7.33 \times 10^{-3} mol/(L.Jour)$ من المنحنى - 1: $V_{vol}(ClO^-)_{(20C^\circ)} = 7.33 \times 10^{-3} mol/(L.Jour)$			
1.75	0.25	$V_{v1} = [0.5, 7.5].10$ unite $V_{vol}(CIO^-)_{(40C^\circ)} = 15 \times 10^{-3} \text{mol/(L.Jour)} : 2 - 0.00$ at $V_{v2} = [14; 16].10^{-3}$ unité			
	0.25	الإستنتاج: يكون تفكك ماء جافيل أسرع بارتفاع درجة الحرارة.			
	0.25	ج- النصيحة : يحفظ ماء جافيل في مكان بارد.			
		التمرين الثاني: (4,0 نقطة)			
0.70	0.25	$^{10}_{4}{ m Be} ightarrow ^{10}_{5}{ m B} + ^{0}_{-1}{ m e}$ 1 – كتابة المعادلة:			
0.50	0.25	$^1_0 ext{n} ightarrow ^{1}_{1} ext{p} + ^{0}_{-1} ext{e}: $ الجسيم eta^- ناتج عن تحول نيوترون إلى بروتون حسب المعادلة			
	0.25	$N=N_0e^{-\lambda t}$: أ – العبارة -2			
0.75		ب - نعوض کل من N و N_0 باستعمال القانون N_A نحصل علی			
0176	0.50	$m(t)=m_0$ منه $rac{m}{M}.N_A=rac{m_0}{M}N_Ae^{-\lambda t}$			
	0.25	3- أ- زمن نصف العمر: هي المدة الزمنية اللازمة لتفكك نصف عدد الأنوية (كتلة) الابتدائية للعينة المشعة.			
	0.50	$t = t_{1/2} \Rightarrow m = \frac{m_0}{2}$; $\frac{m_0}{2} = m_0 e^{-\lambda t_{1/2}}$ $\Rightarrow t_{1/2} = \frac{\ln 2}{\lambda}$			
	0.25	$t_{1/2}=0$,5 ans : من البيان $m=rac{4}{2}=2$ g الدينا: $t=t_{1/2}$ لما البيان لما $t=t_{1/2}$			
2.25	0.25	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.69}{0.5 \times 365,25 \times 24 \times 3600} = 4.37. \ 10^{-8} \ \text{s}^{-1}$			
	$t_{1/2} = 0.5 \times 365,25 \times 24 \times 3600$ $m=1$ g من البيان الكتلة المتقككة $t=1$ année لأنوية المتقككة $t=1$				

عناصر الإجابة

المدة: 03 ساعات و نصف

العلامة

العارمة		عناصر الإجابة						
مجموع	مجزأة							
	0.25	تقبل الاجابة حسابيا باستعمال العلاقة النظرية						
	0.50	$m_d=4-1=3~{ m g}$ الكتلة المتفككة : $m_d=4-1=3~{ m g}$						
	0.50	$N_d = \frac{m_d}{M} N_A$ $N_d = \frac{3}{10} \times 6,02 \times 10^{23} = 1,806 \times 10^{23} \text{ noyaux}$						
	0.25	141	$A = \lambda N = 3$	$\lambda \stackrel{m.N_A}{\longrightarrow} m = \frac{A}{2}$	$\frac{4.M}{N_A}$, m = 0,4 g	-i -4		
0.50	0.25			1-1	A A			
	0.23	. ,			عمر العينة: بالاسقاط على ال			
		$t = \frac{inm_0 - 1}{\lambda}$	$\frac{\ln m}{}$; $t = 609,84$	9 jours = 1,67 an	$:$ هو $\leftarrow m(t) = m_0$	$e^{-\lambda t}$		
					(ita: 4 0)	2.1121 ·		
					ە: (4,0 نقطة)			
		CH			•	1 – أ – معادلة		
	0.25	CH ₁	,,		$OO-C_3H_7(1) + H_2O(1)$	smil i s		
		- 71 71	رات الحرفية لكميات المادة		· · · · · · · · · · · · · · · · · · ·	ب - جدول التقد		
		الحالة	· · · · · · · · · · · · · · · · · · ·	T ()	$CH_3COO-C_3H_7(1)$	- '/		
	0.25	الابتدائية	0,05	0,08	0	0		
	0.25	الانتقالية	0.05 - x	0.08 - x	x	x		
	0.25	النهائية	0,01	0,04	0,04	0,04		
1.75	$0.25 \\ 0.25$	$ au_f = \frac{x_f}{x_{max}} = \frac{0.04}{0.05} = 0.8$ $x_f = 0.04 \text{ mol}:$ ج - نسبة النقدم النهائي عن البيان من البيان $x_f = 0.05 \text{ mol}$						
	$0.25 \\ 0.25$	$x_{max} = 0.05$ $x_{max} = 0.05$ mol $x_{max} = 0.05$ التوازن :						
			[CH ₃ COO – C ₃ F	H7],[H2O],				
	0.50	K =	[CH ₃ COOH] _f	$\frac{\text{C}_3\text{H}_7\text{OH}}{\text{C}_3\text{H}_7\text{OH}} = \frac{1}{(0.05)^{1/2}}$	$\frac{{x_f}^2}{5 - x_f)(0.08 - x_f)} = 4$			
	0.25	ىنف الكحول: أولى		•				
	0.25	ي -		و /أو — اضا	دود التفاعل: - نزع الماء	ه – لتحسين مرد		
	0.25		3	, 3/3	_			
	0.25	C	2 – أ – معادلة تفاعل المعايرة : (CH-COOH(20) + OH-(20) – CH-COO-(20) + H-O()					
			$CH_3COOH(aq) + OH^-(aq) = CH_3COO^-(aq) + H_2O(L)$					
	0.25	. v _E –	. $V_E = 2V = 20mL$ \leftarrow يمثل $V_B = 2V = 20mL$ \leftarrow ϕ					
1.25	0.25	$n(CH^-) = n(OH^-) = C.V_E = 0.01 \text{ mol}$						
	0.25	$K = \frac{\left[CH_3COOH \right]}{\left[CH_3COOH \right]}$	O \int_{f} $H_{3}O^{+}$	$=\frac{K_a}{K} \rightarrow K=10^{(4)}$	$pK_e - pK_a$ = 1.6.10 ⁹	ج – تفاعل تام		
	0.25	$[CH_3COOH]_I$	$\left[HO^{-}\right]_{f}\left[H_{3}O^{+}\right]$	K_{e}	\Rightarrow	تفاعل تام		
	0.23							
		التمرين الرابع: (4,0 نقطة)						
0.50	0.50	المبين في الدارة سالبة (i<0) لأن جهته عكس الجهة الإصطلاحية.						
	0.25		$U_{\rm C}+U_{\rm R}=0$: بتطبيق قانون جمع التوترات : $U_{\rm C}$: بتطبيق قانون جمع التوترات : $U_{\rm C}$					
0.75	0.50				$\leftarrow \text{Uc} + \text{RC} \frac{\text{dU}_c}{\text{dt}} :$			
	0.50			RC dt	dt	Ŭ		

المدة: 03 ساعات و نصف

$\frac{1}{RC}$ بتعویض				
RC				
4 – أ – من				
ب – الع				
بالمطابقة نج				
5- حساب ال				
5) $\approx \frac{1}{2}CE^2$				
نستنتج أن الط				
التمرين التج				
1 – أ – حسا				
بتطبير				
ب – إي				
بتطبيق العلاق				
ج – بما				
2 - أ - تمث				
ب - بتطبيق ←				
$\sum \vec{F} \operatorname{ext} = m. \overrightarrow{a_G} \Rightarrow \vec{P} + \vec{R} = m \vec{a}$ $a = 5.74 \text{m.s}^{-2} \qquad \qquad a = \text{g.sin}\alpha : \Rightarrow$				
نجد. 100 نلاحظ أر				
$\sum \vec{F} \operatorname{ext} = m. \overrightarrow{a_G} \Rightarrow \vec{P} + \vec{R} + \vec{f} = m \vec{a} \qquad -1 - 3$ $f = \operatorname{m} (\operatorname{g.sin} \alpha - a) = \operatorname{m} (\operatorname{a_{th}} - \operatorname{a_{exp}}) ; f = 0.94 \mathrm{N}$ $i \neq 0.94 \mathrm{N}$				
ب- بتطبیق ه				
,02 m/s				
ة اراد الم				