Libraria Calculosis

Liam Gardner

November 17, 2020

Contents

1	Approximating $\sqrt{95}$ Using Newton's Method	2
	1.0.1 If Newton's method converges, does it always converge to a root?	2
2	Derivatives of Inverse Functions	3
	Theorem: Inverse Function Theorem	3
	2.0.1 Proof sketch	3
	2.0.2 Testing Inverse Function Theorem	3
	2.0.3 Derivative of $\ln(x)$	3
	2.0.4 Derivative of Inverse Trig Functions	3
3	Implicit Differentiation	5
	3.1 Example	6
4	Logarithmic Differentiation	7
	4.0.1 Example 1	7
	4.0.2 Example 2	7
5	Extrema	8
	Theorem: Local Extrema Theorem	8
	5.0.1 proof	8
	5.0.2 Converse	8
	5.1 Finding Global Extrema	9
	5.1.1 Example	9
6	The Mean Value Theorem	10
U	Theorem: Rolle's Theorem	10
	6.0.1 Proof	10
	Theorem: The Mean Value Theorem	10
	6.0.2 Proof	10
	6.0.3 Examples	11
	6.1 Applications of MVT	11
	Theorem: The Constant Function Theorem	11
		11
	Theorem: Uniqueness of Antiderivatives	
	·	
	6.1.2 Proof	11
	6.1.3 Notation	11
	Theorem: Increasing/Decreasing Function Theorem	12
	6.1.4 Proof of (1)	12
	6.1.5 Converses	12
	6.2 Functions with Bounded Derivatives	12
	Theorem: Bounded Derivative Theorem	
	6.2.1 Example	
	6.3 Comparing Functions Using Derivatives	
	6.3.1 Proof of (3)	13

Approximating $\sqrt{95}$ Using Newton's Method

Let $f(x) = x^2 - 95$, then f'(x) = 2x. Newton's Update Function then produces

$$x - \frac{f(x)}{f'(x)}$$

$$= x \frac{x^2 - 95}{2x}$$

$$= \frac{2x^2}{2x} - \frac{x^2 - 95}{2x}$$

$$= \frac{x^2 + 95}{2x}$$

Thus, we can define a recursive sequence $x_{n+1} = \frac{x_n^2 + 95}{2x_n}$. Using a starting point of $x_0 = 10$, since $\sqrt{95}$ is close to $\sqrt{100} = 10$. we get the following

$$\begin{array}{|c|c|c|c|}
\hline
x_0 & 10 \\
x_1 & 9.75 \\
x_2 & 9.764764
\end{array}$$

Notice that even for x_2 , we get an approximation correct to 6 digits.

1.0.1 If Newton's method converges, does it always converge to a root?

Another way of phrasing this is if $\{x_n\} \to L$, is f(L) = 0?.

Since the sequence is convergent, we can replace x_{n+1} and x_n with L, and solve $L = L - \frac{f(L)}{f'(L)}$ which implies that f(L) = 0. Therefore, if Newton's Method converges, we're guaranteed that it converges to a root.

Derivatives of Inverse Functions

We still haven't seen $\frac{\mathrm{d}}{\mathrm{dx}}[\ln(x)]$. Our goal is to relate the derivative of a function with the derivative of its inverse. Given a function f(x), we can define the linearization at a point a as \mathcal{L}_a^f . Then, if we invert the linearization function, we get $\left(\mathcal{L}_a^f\right)^{-1} = a + \frac{1}{f'(a)}(x - f(a))$. If we take a point f(a) = b, then we get that $a = f^{-1}(b)$. Thus $\left(\mathcal{L}_a^f\right)^{-1} = f^{-1}(b) + \frac{x-b}{f'(f^{-1}(b))}$. Therefore, we know that the inverse linearization of f(x) at a point x = a, is the same as $\mathcal{L}_b^{f^{-1}}$. That is to say, the inverse linearization of a function at a point a is the same as the linearization of the inverse function at a point f(a). Thus, $\mathcal{L}_b^{f^{-1}} = f^{-1}(b) + \frac{\mathrm{d}}{\mathrm{dx}}\left[f^{-1}\right]|_{x=b} \cdot (x-b)$. Thus, by equality we know that $\frac{\mathrm{d}}{\mathrm{dx}}\left[f^{-1}\right]|_{x=b} = \frac{1}{f'(f^{-1}(b))}$

Theorem: Inverse Function Theorem

If f is an invertible function on [c,d], differentiable on (c,d), and that $f'(a) \neq 0$, then f^{-1} is differentiable at x = f(a) with the derivative $\frac{\mathrm{d}}{\mathrm{dx}} \left[f^{-1} \right]|_{x=b} = \frac{1}{f'(f^{-1}(b))}$. Along with that $\left(\mathcal{L}_a^f \right)^{-1} = \mathcal{L}_{f(a)}^{f^{-1}}$

2.0.1 Proof sketch

If f is an invertible function, then $f(f^{-1}(x)) = x$. Thus, since they're equal $\frac{d}{dx} [f(f^{-1}(x))] = \frac{d}{dx} [x]$

$$\frac{\mathrm{d}}{\mathrm{dx}} \left[f(f^{-1}(x)) \right] = f'(f^{-1}(x)) \cdot \frac{\mathrm{d}}{\mathrm{dx}} \left[f^{-1}(x) \right] = 1$$
$$\frac{\mathrm{d}}{\mathrm{dx}} \left[f^{-1}(x) \right] = \frac{1}{f'(f^{-1}(x))}$$

QED

2.0.2 Testing Inverse Function Theorem

Let $f(x) = x^5$, then $f^{-1}(x) = \sqrt[5]{x} = x^{\frac{1}{5}}$. Thus, we know that $\frac{d}{dx} \left[f^{-1}(x) \right] = \frac{1}{5} x^{-4} 5 = \frac{1}{5 \cdot \sqrt[5]{x^4}}$. Using IFT, we get that the derivative is $\frac{1}{f'(f^{-1}(x))} = \frac{1}{5(f^{-1}(x))^4} = \frac{1}{5(x)^{\frac{4}{5}}}$

2.0.3 Derivative of ln(x)

Using IFT, we can now calculate the derivative of ln(x).

$$\frac{\mathrm{d}}{\mathrm{dx}} \left[\ln(x) \right] = \frac{1}{f'(f^{-1}(x))} = \frac{1}{e^{\ln(x)}} = \frac{1}{x}$$

Furthermore, we can generalize this to know that $\frac{d}{dx} [\log_a(x)] = \frac{1}{x \ln(a)}$

2.0.4 Derivative of Inverse Trig Functions

We know that $\frac{d}{dx}[\sin(x)] = \cos(x)$.

$$\frac{\mathrm{d}}{\mathrm{dx}}\left[\arcsin x\right] = \frac{1}{\cos(\arcsin(x))}$$

Let $\theta = \arcsin(x)$, then $\sin(\theta) = x$. Using a triangle with a hypotenuse of 1 and an opposite side to θ of x. Then by the pythagorean theorem, we know the final side a can be found as $a = \sqrt{1-x^2}$. Thus, $\cos(\arcsin(x)) = \cos(\theta) = \sqrt{1-x^2}$

Therefore, the derivative of the $\arcsin(x)$ function is $\frac{1}{\sqrt{1-x^2}}$. Similarly, $\frac{d}{dx} \left[\arccos(x)\right] = \frac{-1}{\sqrt{1-x^2}}$ and $\frac{d}{dx} \left[\arctan(x)\right] = \frac{1}{x^2+1}$.

Implicit Differentiation

We understand how to take the derivative of explicitly defined functions, as in y = f(x). However, there are ways to differentiate implicitly defined functions, such as $x^2 + y^2 = 1$. That expression implicitly defines two functions. An implicit function is an equation where y is a function of x, thus we can (poorly) rewrite the equation for the unit circle as $x^2 + f(x)^2 = 1$.

To take the derivative of an implicit function, we take the derivative of both sides

$$\frac{d}{dx} [x^2 + y^2 = 1]$$

$$\implies \frac{d}{dx} [x^2 + y^2] = \frac{d}{dx} [1]$$

$$\implies \frac{d}{dx} [x^2] + \frac{d}{dx} [y^2] = 0$$

$$\implies 2x + 2y \frac{dy}{dx} = 0$$

$$\implies \frac{dy}{dx} = \frac{-x}{y}$$

Often with implicitly defined functions, the result of differentiation will also be implicit.

If we wanted to know the slope(s) of the unit circle when $x=\frac{1}{2}$, we can that the two points we get are

$$\left(\frac{1}{2}\right)^2 + y^2 = 1$$

$$\implies y^2 = \frac{3}{4}$$

$$\implies y = \sqrt{\frac{3}{4}} = \frac{\pm\sqrt{3}}{2}$$

From this, we can use the implicit derivative on both points to get

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{-1}{\sqrt{3}}$$

$$\frac{dy}{dx} = \frac{\frac{1}{2}}{\frac{-\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$

Thus, we see that the two slopes of the unit circle at $x = \frac{1}{2}$ are $\frac{\pm 1}{\sqrt{3}}$.

Figure 3.1: Slopes of the unit circle at $x = \frac{1}{2}$

Trying this again using $x^2 + y^2 = -1$, we see that the implicit derivative is the same as $x^2 + y^2 = 1$, however, the derivative doesn't actually make sense, as the sum of two squares is always nonnegative. Thus, $x^2 + y^2 = -1$ does not define a function in \mathbb{R}^2 , as there are no pairs of real numbers (x, y) that satisfy $x^2 + y^2 = -1$.

Similarly, the relation 2x = x defines a point rather than a function, and thus differentiating doesn't yield anything reasonable, as the result is 2 = 1.

3.1 Example

Find
$$\frac{dy}{dx}$$
 if $x^3y^5 + 3x = 8y^3 + 1$

$$\frac{d}{dx} \left[x^3y^5 + 3x = 8y^3 + 1 \right]$$

$$\Rightarrow \frac{d}{dx} \left[x^3y^5 + 3x \right] = 24y^2 \frac{dy}{dx}$$

$$\Rightarrow \frac{d}{dx} \left[x^3y^5 \right] + 3 = 24y^2 \frac{dy}{dx}$$

$$\Rightarrow 3x^2y^5 + 5y^4x^3 \frac{dy}{dx} + 3 = 24y^2 \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} \left(5x^3y^4 - 24y^2 \right) = -3x^2y^5 - 3$$

$$\Rightarrow \frac{dy}{dx} = \frac{-3x^2y^5 - 3}{5x^3y^4 - 24y^2}$$

Logarithmic Differentiation

Logarithmic Differentiation is a trick in which you take the natural logarithm of both sides before implicit differentiation.

Differentiation with a logarithm gives means of dealing with things like $y = f(x)^{g(x)}$. Along with that, since $\ln(ab) = \ln(a) + \ln(b)$, using logarithmic differentiation allows us to skip using the product rule.

4.0.1 Example 1

Find $\frac{dy}{dx}$ for $y = x^x$

$$y = x^{x}$$

$$\Rightarrow \ln(y) = \ln(x^{x})$$

$$\Rightarrow \ln(y) = x \ln(x)$$

$$\Rightarrow \frac{d}{dx} [\ln(y) = x \ln(x)]$$

$$\Rightarrow \frac{d}{dx} [\ln(y)] = \frac{d}{dx} [x \ln(x)]$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \ln(x) + 1$$

$$\Rightarrow \frac{dy}{dx} = y (\ln(x) + 1)$$

Since the original function was defined explicitly, the derivative should be explicitly defined as well, thus we substitute $y = x^x$ to get

$$\frac{\mathrm{dy}}{\mathrm{dx}} = x^x \left(\ln(x) + 1 \right)$$

4.0.2 Example 2

Find
$$\frac{dy}{dx}$$
 for $y = \frac{\sin(x)e^x x^3}{\ln(x)}$

$$y = \frac{\sin(x)e^x x^3}{\ln(x)}$$

$$\ln(y) = \ln\left(\frac{\sin(x)e^x x^3}{\ln(x)}\right)$$

$$\implies \ln(y) = \ln(\sin(x)) + \ln(e^x) + \ln(x^3) - \ln(\ln(x))$$

$$\implies \ln(y) = \ln(\sin(x)) + 3\ln(x) - \ln(\ln(x)) + x$$

$$\implies \frac{d}{dx} \left[\ln(y) = \ln(\sin(x)) + 3\ln(x) - \ln(\ln(x)) + x\right]$$

$$\implies \frac{1}{y} \frac{dy}{dx} = \frac{\cos(x)}{\sin(x)} + \frac{3}{x} + 1 - \frac{1}{x\ln(x)}$$

$$\implies \frac{dy}{dx} = y \left(\frac{\cos(x)}{\sin(x)} + \frac{3}{x} + 1 - \frac{1}{x\ln(x)}\right)$$

Extrema

defⁿ: A point c is a local maximum of a function f if there exists an open interval \mathcal{I} containing the point c such that $f(x) \leq f(c) \forall x \in \mathcal{I}$. Similarly, c is a local minimum if $f(x) \geq f(c) \forall x \in \mathcal{I}$. If $f: \mathbb{R} \to \mathcal{I}$ then c is a global extrema. Thus, all global extrema are also local extrema. It is also true that many local extrema can exist

Figure 5.1: Examples of local and global extrema

Theorem: Local Extrema Theorem

If c is a local extrema and f'(c) exists, then we know f'(c) = 0.

5.0.1 proof

Notice that if c is a local min of f, we can define a new function g(x) = -f(x) and thus c is a local max of g. Now, suppose WLOG suppose c is a local max of f. Therefore, there exists an open interval $\mathcal{I} = (a, b)$ containing c, such that $f(x) \leq f(c) \forall x \in \mathcal{I}$. Furthermore, suppose that f'(c) exists. Therefore, the following is true:

$$f(c) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h}$$

If h > 0 but is small enough that a < c + h < b then we know that $f(c+h) \le f(c)$ because c is a max of f in the interval \mathcal{I} . Therefore, we get that $\frac{f(c+h)-f(x)}{h} \le 0$ and thus $f'(c) \le 0$

If h < 0 but small ehough that a < c + h < b then we know that $\frac{f(c+h) - f(c)}{h} \ge 0$ since division by a negative flips the inequality sign. Therefore, we get that $f'(c) \ge 0$

Therefore, since $f'(c) \leq 0$ and $f'(c) \geq 0$ we get that f'(c) = 0

QED

5.0.2 Converse

Consider $f(x) = x^3$. Notice now that $f'(x) = 3x^2$ and thus f'(0) = 0, and f(0) isn't a local extrema. Therefore, the converse isn't true. If we also look at f(x) = |x|, we know that f(0) is a global min, however the derivative at x = 0 doesn't exist, and thus the theorem doesn't apply.

Finding Global Extrema 5.1

 def^n : A point c is a critical point of f'(c) = 0 or f'(c) doesn't exist.

Let's say that all max/mins occur at critical points. Combining this with the extreme value theorem gives us an algorithm for finding extrema.

Consider a differentiable function f on the closed interval [a,b]. To find all global extrema, we do the following:

- 1. find all critical points of f on [a, b], let C be the set of all x-values of critical points.
- 2. Evaluate f(a), f(b) and $f(c) \forall c \in \mathcal{C}$.
- 3. Choose the biggest and smallest values of f(a), f(b) and $f(c) \forall c \in \mathcal{C}$ The biggest is the global max, and the smallest is the global min.

5.1.1Example

Find the max/min of $f(x) = e^{x^3 - 2x^2 - 7x}$ on [0, 4] Finding critical points: We know that $\frac{df}{dx}$ is defined everywhere, and thus there will be no places on the

interval where the derivative is undefined. By the chain rule we know $\frac{df}{dx} = e^{x^3 - 2x^2 - 7x}(3x^2 - 4x - 7)$. Since $e^{p(x)}$ will never be zero, we know that $\frac{\mathrm{df}}{\mathrm{dx}}$ will be zero only when the quadratic term is 0. Since the quadratic factors to (x+1)(3x-7), and since we know that $-1 \notin [0,4]$, we know that the only critical point will be $\frac{7}{3}$.

$$\left\{ f(0), f(4), f\left(\frac{7}{3}\right) \right\} = \left\{ 1, e^4, e^{\frac{-392}{27}} \right\}$$

From here, we can see that the global max and min are given by the points $(4, e^4)$, $(\frac{7}{3}, e^{\frac{-392}{27}})$. Therefore, the global max is 4 and the global min is $\frac{7}{3}$.

This topic will be revisited upon the genesis of the curve sketching unit.

The Mean Value Theorem

Theorem: Rolle's Theorem

If f is a continuous function on [a,b] and differentiable on (a,b), and if 0 = f(a) = f(b), then $\exists c \in (a,b)$ such that f'(c) = 0.

6.0.1 Proof

Suppose that f is continuous on [a,b] and differentiable on (a,b) with f(a)=f(b)=0.

Case 1

 $\exists x_0 \in (a_b)$ with $f(x_0) > 0$. The Extreme Value Theorem, shows that f(x) achieves a max value on [a, b]. We know that the maximum point $c \in (a, b)$ is thus not at the endpoints. Hence, since f'(c) exists, by the Local Extrema Theorem we know that f'(c) = 0.

Case 2

 $\exists x_0 \in (a,b)$ with $f(x_0) < 0$. The Extreme Value Theorem shows that f(x) achieves a min value on [a,b]. We know that the minimum point $c \in (a,b)$ is thus not at the endpoints. Hence, since f'(c) exists, by the Local Extrema Theorem we know that f'(c) = 0.

Case 3

 $f:[a,b]\to 0$, hence $f':(a,b)\to 0$ and thus there are lots of choices for c.

Theorem: The Mean Value Theorem

Suppose f is continuous on [a, b] and differentiable on (a, b). Then, $\exists c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. Rolle's Theorem is a special case of Mean Value Theorem.

6.0.2 **Proof**

Let $h(x) = f(x) - f(a) - \left(\frac{f(b) - f(a)}{b - a}\right)(x - a)$. Notice that h(a) = h(b) = 0. Since h is continuous on [a, b] and differentiable on (a, b). Thus, since the conditions of Rolle's Theorem are met, we know that $\exists c \in (a, b)$ such that h'(c) = 0.

$$\frac{\mathrm{d}}{\mathrm{dx}} [h'(x)] |_{x=c} = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

Therefore, we get that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

6.0.3 Examples

Find all points c that satisfy the mean value theorem for $f(x) = x^3 + 2x^2 - x$ on [-1, 2]

By MVT we know that $f'(c) = \frac{f(2) - f(-1)}{2 - (-1)} = \frac{14 - 2}{3} = 4$. Therefore, there is a point c where the derivative is equal to 4. $f'(x) = 3x^2 + 4x - 1$

$$f'(x) = 3x^2 + 4x - 1 = c$$
$$x = \frac{-4 \pm \sqrt{76}}{6}$$

Since $\frac{-4-\sqrt{76}}{6} \notin [-1,2]$, we know that it is not a proper value of c. Therefore, the only value of c for this interval is $c = \frac{\sqrt{76}-4}{6}$

Suppose that a function f is continuous and differentiable everywhere. Furthermore, suppose f has two roots. Then show f' has at least one root

Let a, b be distinct roots of f, then f(a) = f(b) = 0. Thus, by Rolle's Theorem, we know that $\exists c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a} = 0$ and thus there is at least one root of f'.

6.1 Applications of MVT

Defⁿ: A function F is called an antiderivative of f is $F'(x) = f(x) \forall x \in \mathbb{R}$ $F(x) = \frac{x^2}{2}$ is an antiderivative of f(x), since $F'(x) = \frac{2x}{2} = x = f(x)$

Theorem: The Constant Function Theorem

If $f'(x) = 0 \ \forall x \in \mathcal{I}$ then $f(x) = c \ \forall x \in \mathcal{I}$.

6.1.1 Proof

Let \mathcal{I} be some interval, then suppose $f'(x) = 0 \ \forall x \in \mathcal{I}$. Note that f is continuous on \mathcal{I} . Let $x_1, x_2 \in \mathcal{I}$ where $x_1 \neq x_2$. Then, let $f(x_1) = k$. By the Mean Value Theorem, $\exists c \in (x_1, x_2)$ such that $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. Since $(x_1, x_2) \subseteq \mathcal{I}$, we know that f'(c) = 0 and thus $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0 \implies f(x_2) - f(x_1) = 0 \implies f(x_2) = f(x_1) = k$.

Since both x_1 and x_2 were arbitrary, we conclude that $f(x) = k \ \forall x \in \mathcal{I}$

Theorem: Uniqueness of Antiderivatives

Antiderivatives are not unique, since if we take F(x) = h(x) + c and f(x) = h'(x) then $F'(x) = h'(x) = f(x) \forall c \in \mathbb{R}$. However, outside of adding constants, antiderivatives are unique (although it is not straightforward). This can be shown using the Mean Value Theorem.

If $f'(x) = g'(x) \ \forall x \in \mathcal{I}$, and thus f(x) and g(x) are antiderivatives of the same function, then $\exists k \in \mathbb{R}$ such that $f(x) = g(x) + k \ \forall x \in \mathcal{I}$.

6.1.2 Proof

Let h(x) = f(x) - g(x) and thus $h'(x) = f'(x) - g'(x) = 0 \ \forall x \in \mathcal{I}$. Hence, by The Constant Function Theorem, $\exists k \in \mathbb{R}$ such that $h(x) = k \ \forall x \in \mathcal{I}$. Therefore, $h(x) = f(x) - g(x) = k \ \forall k \in \mathcal{I} \implies f(x) = g(x) + k \ \forall x \in \mathcal{I}$.

6.1.3 Notation

The family of antiderivatives for a function f(x) is denoted as follows, where f(x) is referred to as the "integrand" and the dx is referred to as the "variable of integration".

$$F(x) = \int f(x) \, \mathrm{d}x$$

As an example, $\int x^2 dx = \frac{x^2}{2}$

Theorem: Increasing/Decreasing Function Theorem

Let \mathcal{I} be some interval with $x_1, x_2 \in \mathcal{I}$ where $x_1 < x_2$.

- 1. If $f'(x) > 0 \,\forall x \in \mathcal{I}$ then, $f(x_2) > f(x_1)$ and we say f is increasing on \mathcal{I}
- 2. If $f'(x) \ge 0 \,\forall x \in \mathcal{I}$ then, $f(x_2) \ge f(x_1)$ and we say f is non-decreasing on \mathcal{I}
- 3. If $f'(x) < 0 \forall x \in \mathcal{I}$ then, $f(x_2) < f(x_1)$ then we say f is decreasing on \mathcal{I}
- 4. If $f'(x) \leq 0 \,\forall x \in \mathcal{I}$ then, $f(x_2) \leq f(x_1)$ and we say f is non-increasing on \mathcal{I}

6.1.4 Proof of (1)

Let \mathcal{I} be an interval such that $x_1 < x_2 \in \mathcal{I}$. Suppose that $f'(x) > 0 \,\forall x \in \mathcal{I}$. Since f' exists, we know that f is continuous $\forall x \in \mathcal{I}$. We can thus apply The Mean Value Theorem to $[x_1, x_2]$.

 $\exists c \in (x_1, x_2)$ such that $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$. Since we know f'(c) > 0 and $x_2 - x_1 > 0$, we know that $f(x_2) - f(x_1) > 0$. Thus, f is increasing over \mathcal{I} .

6.1.5 Converses

The converse of (2) and (4) are true (if f(x) is non-increasing/non-decreasing on \mathcal{I} then $f'(x) > 0 \,\forall x \in \mathcal{I}$). The converse of (1) and (3) are false. Consider $f(x) = x^3$. Where $f(x_2) > f(x_1) \forall x_2 > x_1$ However, f'(0) = 0.

6.2 Functions with Bounded Derivatives

What information can we derive from a function f if we know the bounds of $\frac{df}{dx}$?

Suppose $m \le \frac{\mathrm{df}}{\mathrm{dx}} \le M \ \forall x \in (a,b)$. If f is continuous on [a,b] then we can use Mean Value Theorem. Let $x \in (a,b)$. Applying MVT we get $\exists c \in (a,x)$ with $f'(c) = \frac{f(x) - f(a)}{x-a}$.

$$m \le f'(c) = \frac{f(x) - f(a)}{x - a} \le M$$

$$m(x-a) < f(x) - f(a) < M(x-a)$$

$$f(a) + m(x - a) \le f(x) \le f(a) + M(x - a)$$

This implies that f(x) is bounded between two lines.

Theorem: Bounded Derivative Theorem

If a function f is continuous on ${}_b^a\mathcal{I}_o$ and differentiable on ${}_b^a\mathcal{I}_c$ with $m \leq f'(x) \leq M \ \forall x \in {}_b^a\mathcal{I}_o$ then $f(a) + m(x-a) \leq f(x) \leq f(a) + M(x-a) \ \forall x \in {}_b^a\mathcal{I}_c$.

6.2.1 Example

Show that $\ln(3) \in \left[\frac{7-e}{4}, \frac{3}{e}\right]$

Let $f(x) = \ln(x)$. Hence, $f'(x) = \frac{1}{x}$. We need to bound f'(x) to use the theorem. Thus, we need some interval ${}_b^a \mathcal{I}_c$ with a < 3 < b. We also need f(a) to be easily computable. If we take a = e then $\ln(a) = 1$. and 1 < 3. Since we don't need f(b) to be easily computable, we can take b = 4.

Note that $\frac{d}{dx} \left[\frac{1}{x} \right] = \frac{-1}{x^2}$. Thus, from the Increasing Function Theorem we know that f'(x) is decreasing. Thus, $f'(4) \le f'(x) \le f'(e)$. Since the derivative can be bound between $\frac{1}{4}$ and $\frac{1}{e}$, the natural choice for a range would be $f'(x) \in \left[\frac{1}{4}, \frac{1}{e} \right]$.

$$f(a) + m(x - a) \le f(x) \le f(a) + M(x - a)$$

$$1 + \frac{1}{4}(x - e) \le f(x) \le f(a) + \frac{1}{e}(x - a)$$

$$1 + \frac{1}{4}(3 - e) \le f(x) \le 1 + \frac{1}{e}(x - e)$$

$$\frac{7 - e}{4} \le f(x) \le \frac{3}{e}$$

QED

Check out the example in the textbook that uses Bounded Derivative Theorem to show the following;

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

6.3 Comparing Functions Using Derivatives

Suppose f and g are continuous at x = a and f(a) = g(a)

- 1. If $f'(x) < g'(x) \ \forall x > a \ \text{then} \ f(x) < g(x) \ \forall x > a$
- 2. If $f'(x) > g'(x) \ \forall x > a \ \text{then} \ f(x) > g(x) \ \forall x > a$
- 3. If $f'(x) \le g'(x) \ \forall x > a \text{ then } f(x) \le g(x) \ \forall x > a$
- 4. If $f'(x) \ge g'(x) \ \forall x > a \text{ then } f(x) \ge g(x) \ \forall x > a$

6.3.1 Proof of (3)

Suppose f and g are continuous at x = a with f(a) = g(a) and $f'(x) \le g'(x) \ \forall x > a$.

Let h(x) = f(x) - g(x). Then h(a) = f(a) - g(a) = 0. Let x > a, h'(x) = f'(x) - g'(x). By the hypothesis, we know that when x > a that $f'(x) \le g'(x)$, thus, by the Decreasing Function Theorem. Hence, $h(x) \le 0 \implies f(x) - g(x) \le 0 \implies f(x) \le g(x) \ \forall x > a$.