Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 3

Soluções do Exame Final (22 de junho de 2017)

- 1. (a) O domínio de f é o conjunto $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 > \beta^2\}$. As curvas de nível $k \in \mathbb{R}$ de f são $\{(x,y) \in D : x^2 + y^2 = e^k + \beta^2\}$ (circunferências centradas na origem e raio $\sqrt{e^k + \beta^2}$).
 - (b) Uma equação do plano tangente ao gráfico de f no ponto $(2\beta,0)$ é

$$\frac{4}{3\beta} x - z - \frac{8}{3} + \ln(3\beta^2) = 0.$$

- 2. Os pontos críticos de f são: (0,0); (1,-1); (-1,1). Os pontos (1,-1) e (-1,1) são maximizantes locais (em ambos os casos o menor principal de segunda ordem é positivo, enquanto que o menor de primeira ordem é negativo). O ponto (0,0) é um ponto de sela (apesar do estudo do hessiano ser inconclusivo, podemos concluir seguindo uma análise direta: f(0,0)=0, mas na vizinhança de (0,0) temos, por exemplo, $f(x,x)=-2x^4<0$ e $f(x,0)=x(1-x^3)>0$ se 0< x<1).
- 3. O máximo é $f(0, \sqrt{3}, \sqrt{3}) = 3\sqrt{3}$ e o mínimo é $f(0, -\sqrt{3}, -\sqrt{3}) = -3\sqrt{3}$.
- 4. (a) $y = -\ln(C e^x)$, C > 0;
 - (b) $x^3y^2 + e^{xy} = C$, $C \in \mathbb{R}$;
 - (c) $y = C_1 + (C_2 + C_3 x) e^{-x} + \frac{\cos x}{2}, \quad C_1, C_2, C_3 \in \mathbb{R}.$
- 5. $y = (2t^2 3)e^{-2t}$
- 6. (a) O domínio de convergência é] -7/2, -5/2]. A série converge absolutamente no intervalo] -7/2, -5/2[e converge simplesmente em x=-5/2.

1

- (b) $f(x) = -2\ln(7+2x)$, $x \in]-7/2, -5/2]$.
- 7. Aplicar o Critério de Weierstrass...
- 8. $\sum_{n=1}^{\infty} \frac{8}{\pi(2n-1)} \operatorname{sen}((2n-1)x).$