Lineare Algebra I

Gebhard Böckle

 $Winter semester~2015/16 \\ get ext~von~eurer~Mitstudent in.$

Inhaltsverzeichnis

U	Aussagemogik	2
1	Mengen, Abbildungen, vollständige Induktion1.1 Verkettung (/Komposition) von Abbildungen	
2	Gruppen und Körper 2.1 Primkörper	9 10
3	Vektorräume und Unterobjekte 3.1 Unterobjekte	13 13
4	Erezeugendensysteme, lineare Unabhängigkeit und Basen	16
5	Matrizen und Gauß-Elimination 5.1 Anwendung von Matrizen	20 20
6	Strukturerhaltende Abbildungen (Morphismen) 6.1 Isomorphie von Vektorräumen	24 28
7	Darstellungsmatrizen (lineare Abbildungen) 7.1 Eigenschaften von Basiswechselmatrizen	30 32
8	Dualräume und lineare Funktionale 8.1 Die duale Abbildung	34 36
9	Lineare Gleichungssysteme	38
10	Determinanten 10.1 Die Determinante einer quadratischen Matrix	42 44 45
11	Das Charakteristische Polynom und Eigenwerte	47
12	Euklidische und unitäre Vektorräume	51

0 Aussagenlogik

Auch in der Mathematik ist die Sprache die Grundlage von allem. Die Sprache der Mathematik besteht aus $\underline{Aussagen}$. Aussagen sind Sätze, denen man das Prädikat $\underline{wahr(w)}$ oder $\underline{falsch(f)}$ zuordnen kann. Das nennt man den Wahrheitsgehalt der Aussage.

Beachte: Sätze oder Alltagssprache sind oft keine Aussagen ("Wie ist das Wetter heute?")

Oft wird von $\underline{Axiomen}$ (Grundaussagen) ausgegangen. Aus diesen kann man nach bestimmten Regeln neue Aussagen bilden.

Um diese Regeln einzuführen, verwenden wir Definitionen (Vereinbarungen).

 $\underline{Definition~0.1:}$ Seien A und B Aussagen. Dann sind folgende Sätze Aussagen: a) $\neg A$ "nicht A" (die Negation von A)

b) $A \wedge B$ "A und B"

c) $A \vee B$ "A oder B" (einschließendes oder)

Der Wahrheitsgehalt dieser Aussagen ist durch Wahrheitstabellen beschrieben.

A	$\neg A$
w	f
f	W

A	B	$A \wedge B$	$A \lor B$
w	w	W	W
w	f	f	w
f	w	f	w
f	f	f	f

Bsp: A: 3 ist eine Primzahl (w)

 $\neg A$: 3 ist keine Primzahl (f)

<u>Vorsicht</u>: B: alle Primzahlen sind ungerade (f)

 $\neg B$: nicht alle Primzahlen sind ungerade (w) oder: wenigstens eine Primzahl ist gerade (w)

 $falschist: \neg B$: keine Primzahl ist ungerade (f)

Definition 0.2: Sind A und B Aussagen, so auch folgende Sätze:

- d) $A \Rightarrow B$ "A impliziert Böder äus A folge Böder "wenn A gilt, dann auch B"
- e) $A \Leftrightarrow B$ "A ist äquivalent zu B "oder" A gilt genau dann, wenn B gilt"

Die zugehörige Wertetabellen:

A	B	$A \Rightarrow B$	$A \Leftrightarrow B$
W	W	W	w
W	f	f	f
f	w	W	f
f	f	W	w

! Merke: · Aus einer falschen Aussage folgt alles.

 \cdot "Man kann Implikationen und Äquivalenzen mit Wahrheitstafeln nachprüfen", (im Sinn der folgenden Prposition..)

Proposition 0.3 : Für Aussagen A, B, C gelten:

- i) $(A \wedge B) \Leftrightarrow (B \wedge A)$; $(A \vee B) \Leftrightarrow (B \vee A)$, d.h. ündünd öderßind *kommutativ*.
- ii) $(A \wedge B) \wedge C \Leftrightarrow A \wedge (B \wedge C)$; $(A \vee B) \vee C \Leftrightarrow A \vee (B \vee C)$, d.h. ündünd öderßind assoziativ.
- iii) $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C); A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C) \ (Distributivität)$
- iv) $\neg(\neg A) \Leftrightarrow A$
- v) $\neg (A \lor B) \Leftrightarrow (\neg A) \land (\neg B); \neg (A \land B) \Leftrightarrow (\neg A) \lor (\neg B) (deMorgansche Regel)$

Beweis (zum Teil):

	A	B	$A \wedge B$	$B \wedge A$
	w	W	W	W
i) 1. Teil	w	f	f	f
	f	w	f	f
	f	f	f	f

	W	W	W	
1. Teil	w	f	w	
	ſ			

A	B	$A \vee B$	$\neg (A \lor B)$	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$
w	W	W	f	f	f	f
w	f	w	f	f	w	f
\mathbf{f}	W	w	f	W	f	f
f	f	f	w	w	w	W

Alles Übrige mit Wahrheitstafeln.

Proposition 0.4: Für Aussagen A und B gelten:

- \overline{i} $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$
- ii) $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A) \ (Kontraposition)$
- iii) $\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B \ (W\overline{iderspruchsbew}eis)$

Interpretation: ii) Um zu zeigen, dass B aus A folgt, kann man alternativ zeigen, dass aus $\neg B$ die Aussage $\neg A$ folgt.

iii) Um $A \Rightarrow B$ zu zeigen, kann man wie folgt vorgehen: A gelte und man nimmt an, dass B falsch ist und dann folgt $\neg(A \Rightarrow B)$ ist falsch, dann folgt $A \Rightarrow B$) gilt. (Widerspruchsbeweis)

Proposition 0.5 Für Aussagen A, B und C gelten:

- i) $(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$
- ii) $(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A))$

Beweis: Wahrheitstafeln.

Interpretation: ii) sagt: gehe in 2 Schritten vor, um \Leftrightarrow nachzuweisen!

v)

$$Beweis\ von\ 0.4ii): (A \Rightarrow B) \Leftrightarrow \neg A \lor B \Leftrightarrow B \lor \neg A \Leftrightarrow \neg (\neg B) \lor (\neg A) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

1 Mengen, Abbildungen, vollständige Induktion

Wir werden in dieser Vorlesung mit einem "naiven" Mengenbegriff arbeiten.

 $\underline{Georg\ Cantor(Ende\ 19.Jhd.)}$: Eine \underline{Menge} ist eine Zusammenfassung von Objekten unseres Denkens. Diese Objekte heißen $\underline{Elemente}$ von M.

 $x \in M$ bedeutet "x ist Element von M.

Bemerkung: endliche Mengen werden oft durch eine Aufzählung ihrer Elemente angegeben.

· viele Mengen sind durch ein Bildungsgesetz definiert.

 $Beispiel: \{0, 1, 2, ..., 100\}$

 $\overline{\mathbb{N}} = \{1, 2, 3, ...\}$ (Natürliche Zahlen)

 $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$ (natürliche Zahlen und die Null)

 $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ (ganze Zahlen)

 $\mathbb{Q} = \{ \frac{a}{b} | a, b \in \mathbb{Z}, \ b \neq 0 \}$ (Menge der rationalen Zahlen)

 \mathbb{R} =relle Zahlen (siehe Analysis)

 $\emptyset = \{\}$ (leere Menge)

 $\mathbb{P} = \{ x \in \mathbb{N} | x \text{ ist } Primzahl \} = \{ 2, 3, 5, 7, \dots \}$

Seien heute im Weiteren M, N Mengen.

Definition 1.1 : a) $x \in M : \Leftrightarrow x$ liegt nicht in $M (\Leftrightarrow \neg(x \in M))$.

b) $N \subseteq M :\Leftrightarrow \text{Jedes Element } x \in N \text{ liegt auch in } M.$

Man sagt: "N ist Teilmenge von M "oder"M ist Obermenge von N".

c) $N \subset M :\Leftrightarrow N \subseteq M \text{ und } N \neq M$

 $\ddot{U}bung: M = N \Leftrightarrow (M \subseteq N \land N \subseteq M).$

 $Beispiel: \mathbb{P} \subset \mathbb{N}$

Definition 1.2 : a) $M \cap N := \{x | x \in M \land x \in N\}$ $M \cap N$ heißt Durchschnitt von M und N.

- $\overline{\mathbf{b}}$) $M \cup N := \{x | x \in M \lor x \in N\}$ "Vereinigung von M und N."
- c) $M \setminus N := \{x | x \in M \land x \notin N\}$ "Differenz von M und N" ("M ohne N)
- d) M und N heißen $disjunkt : \Leftrightarrow M \cap N = \emptyset$
- e) Sind M und N disjunkt, so schreibt man auch $M \dot{\cup} N$ für $M \cup N$ ("disjunkte Vereinigung")

Beispiel:
$$\mathbb{P} \cap \{1, ..., 10\} = \{2, 3, 5, 7\}, \{1, ..., 10\} \setminus \mathbb{P} = \{1, 4, 6, 8, 9, 10\}$$

 $Beachte: i) \Rightarrow, \Leftrightarrow, \Leftarrow, :\Leftrightarrow stehen zwischen Aussagen.$

ii) =, := stehen zwischen Mengen oder zwischen Elementen.

 $\underline{Definition\ 1.3}$: a) Für $m\in M$ und $n\in N$ bezeichnet der Ausdruck (m,n) das geordnete Paar mit 1. $\underline{Eintrag\ m,\ 2.}$ $\underline{Eintrag\ m}$.

b) Das Mengenprodukt von M und N ist $M \times N = \{(m, n) | m \in M, n \in N\}$

 $Beispiel: \mathbb{R} \times \mathbb{R} = \{(a,b)|a,b \in \mathbb{R}\}\$ -Punkte der Ebene" $\supseteq [0,1] \times [0,2]\ ([a,b] = \{x \in \mathbb{R}|a \subseteq x \subseteq b\})$

<u>Definition 1.4</u> Sei $k \in \mathbb{N}$: a) Ein k-Tupel ist eine geordnete Aufzählung $(m_1, ..., m_k)$ von Objekten $m_1, ..., m_k$ b) Sind $M_1, ..., M_k$ Mengen, so ist ihr Mengenprodukt $M_1 \times ... \times M_k = \{(m_1, ..., m_k) | m_1 \in M_1, ..., m_k \in M_k\}$

c) Man schreibt M^k für $M \times ... \times M$ (k Faktoren)

 $Beispiel: \mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ "Punkte im Raum"

Definition 1.5: i) Eine Abbildung ist ein Tripel (M, N, f) bestehend aus Mengen M, dem Definitionsbereich, und N, dem Wertebereich, und einer Abbildungsvorschrift f, die jedem $m \in M$ ein Element $f(m) \in N$ zuordnet.

Andere Notation: $f: M \to N, m \mapsto f(m) = n$

- $f: M \to N$
- $M \xrightarrow{f} N$
- $\cdot f$
- ii) Der Graph einer Abbildung $f: M \to N$ ist $Graph(f) := \{(m, f(m)) | m \in M\} \subseteq M \times N$

Beispiel: Ist die Menge eine beliebige Menge, so ist $id_M: M \to M, m \mapsto m$ die identische Abbildung.

Sei im Weiteren $f: M \to N$ eine Abbildung.

Definition 1.6: i) Für $U \subseteq M$ sei $f(U) := \{f(m) | m \in U\}$ das Bild von U unter f.

 $\overline{\text{ii)}}$ Für $V \subseteq N$ sei $f^{-1}(V) := \{m \in M | f(m) \in V\}$ das Urbild von V unter f.

Definition 1.7 i) f heißt injektiv : \Leftrightarrow für jedes $n \in N$ enthält $f^{-1}(\{n\})$ höchstens ein Element.

- ii) f heißt $surjektiv :\Leftrightarrow f\overline{ur} \text{ jedes } n \in N$ enthält $f^{-1}(\{n\})$ mindestens ein Element.
- iii) f heißt $\overline{bijektiv}$: \Leftrightarrow für jedes $n \in N$ enthält $f^{-1}(\{n\})$ genau ein Element.

<u>Lemma 1.8</u> a) f ist injektiv: \Leftrightarrow (für alle $m, m' \in M$ gilt: $f(m) = f(m') \Rightarrow m = m'$)

- b) f ist surjektiv $\Leftrightarrow f(M) = N$
- c) f ist bijektiv $\Leftrightarrow f$ ist injektiv und surjektiv

<u>Einschub</u>: Notation: $\forall n \in N$: bedeutet "für alle $n \in N$ giltöder "für jedes $n \in N$ gilt"

- $\exists n \in \mathbb{N}$: bedeutet "es existiert ein $n \in \mathbb{N}$, so dass"
- $\exists n \in \mathbb{N} : \text{bedeutet "es gibt genau ein } n \in \mathbb{N}, \text{ so dass"}$

Beweis: c) Eine Menge enthält genau ein Element, genau dann, wenn sie mindestens ein Element enthält und höchstens ein Element enthält.

f injektiv und surjektiv : $\Leftrightarrow \forall n \in N : f^{-1}(\{n\})$ enthält mindestens und höchstens ein Element $\Leftrightarrow \forall n \in N :$ $f^{-1}(\{n\})$ enthält genau ein Element $\Leftrightarrow f$ ist bijektiv

- a) " \Rightarrow ": Sei f injektiv. Seien $m, m' \in M$ und gelte f(m) = f(m'). Setze $n := f(m) \Rightarrow m, m' \in f^{-1}(\{n\}) \Rightarrow$, da f inj.: m = m', da $f^{-1}(\{n\})$ höchstens einelementig ist.
- "\(\sigma\)" ("Widerspruchsbeweis"): Gelte die rechte Seite der Aussage a)

Annahme: f ist nicht injektiv, d.h. $\exists n \in N : f^{-1}(\{n\})$ enthält nicht kein oder ein Element, d.h. $\exists n \in N :$ $\exists m,m'\in M: f^{-1}(\{n\})\ni m,m' \text{ und } m\neq m'$

Aber: wegen Aussage rechts: f(m) = f(m') = n impliziert m = m'! Widerspruch zur Annahme!

D.h. die Annahme muss falsch sein. Folglich sit f injektiv.

b) $f(M) = N \Leftrightarrow f(M) \supseteq N$ (Bemerkung: $f(M) \subseteq N$ gilt immer) $\Leftrightarrow \forall n \in N : n \in f(M) = \{f(m) | m \in M\}$ $M\} \Leftrightarrow \forall n \in \mathbb{N} : \exists m \in \mathbb{M} : n = f(m) \Leftrightarrow \forall n \in \mathbb{N} : \exists m \in \mathbb{M} : m \in f^{-1}(\{n\}) \Leftrightarrow \forall n \in \mathbb{N} : f^{-1}(\{n\}) \neq \emptyset \Leftrightarrow f$ surjektiv

Seien weiterhin M, N Mengen und $f: M \to N$ eine Abbildung.

Bemerkung: i) Für jedes $N \exists !$ Abbildung: $\emptyset \to N$

ii) Falls $M \neq \emptyset$, so existiert keine Abbildung: $M \rightarrow \emptyset$

1.1 Verkettung (/Komposition) von Abbildungen

<u>Definition 1.9</u>: Sei $g:L\to M$ eine weitere Abbildung. Die Verkettung "f nach g"ist die Abbildung $f\circ g:L\to N, x\mapsto (f\circ g)(x):=f(g(x))$

 $\underline{Lemma\ 1.10}$: Sei $h:K\to L$ eine weitere Abbildung. Dann gilt $(f\circ g)\circ h=f\circ (g\circ h)$ als Abbildung: $K\to N$

<u>Beweis</u>: Es ist nur zu zeigen, dass die Abbildungsvorschriften dieselben sind:

Sei
$$x \in K$$
: $((f \circ g) \circ h)(x) = (f \circ g)(h(x)) = f(g(h(x))) = f((g \circ h)(x)) = (f \circ (f \circ h))(x)$

 $\ddot{U}bung:$ Für $V\subseteq N$ gilt: $(f\circ g)^{-1}(V)=g^{-1}(f^{-1}(V))$

<u>Lemma 1.11</u>: a) f, g injektiv $\Rightarrow f \circ g$ injektiv

- b) f, g surjektiv $\Rightarrow f \circ g$ surjektiv
- c) $f \circ g$ injektiv $\Rightarrow g$ injektiv
- d) $f \circ g$ surjektiv $\Rightarrow f$ surjektiv

<u>Beweis</u>: c) Seien $x_1, x_2 \in L$ und gelte $g(x_1) = g(x_2)$. $\underline{zz}: x_1 = x_2$

Dazu wende
$$f$$
 an: $(f \circ g)(x_1) = f(g(x_1)) = f(g(x_2)) = (f \circ g)(x_2 \Rightarrow (\text{da } f \circ g \text{ inj.}) \ x_1 = x_2$

d) \underline{zz} : f surjektiv. Sei $n \in N$ \underline{zz} : $\exists m \in M : f(m) = n$

Wissen:
$$f \circ g$$
 surjektiv $\Rightarrow \exists l \in L$ mit $n = (f \circ g)(l) = (f(g(l)))$. Wähle $m := g(l) \Rightarrow n = f(m)$

<u>Satz 1.12</u>: Sei $f: M \to N$ eine bijektive Abbildung. Dann existiert genau eine Abbildung $\tilde{f}: N \to M$, mit (\circledast) $\tilde{f} \circ f = id_M$ und $f \circ \tilde{f} = id_N$. Man schreib f^{-1} für \tilde{f} und nennt f^{-1} die zu f inverse Abbildung.

<u>Beweis</u>: <u>Konstruktion</u>: Sei $n \in N \stackrel{fbij}{\Rightarrow} f^{-1}(\{n\})$ ist einelementig. Definiere $\tilde{f}(n)$ so, dass $\{\tilde{f}(n) = f^{-1}(\{n\}) \rightarrow \text{erhalten}: \tilde{f}: N \rightarrow M$

nun: $\underline{\circledast nachweisen}$: Sei $m \in M$. $\tilde{f}(f(m)) = m$. Sei nun $n \in N$: $f(\tilde{f}(n)) = n$

Eindeutigkeit von
$$\tilde{f}$$
: Sei $g: N \to M$ eine Abbildung und $f \circ g = id_N \wedge g \circ f = id_M$. Dann: $\tilde{f} = \tilde{f} \circ id_N = \tilde{f} \circ (f \circ g) = (\tilde{f} \circ f) \circ g \stackrel{\circledast}{=} id_M \circ g = g$

 $Bemerkung: Gilt \circledast f und \tilde{f}$, so sind beide bijektiv.

<u>Induktion</u>: Man kann die natürlichen Zahlen durch folgende Axiome (nach Peano) beschreiben:

- (P1) \mathbb{N}_0 hat ein ausgezeichnetes Element, die Null.
- (P2) Es gibt eine Abbildung $\nu: \mathbb{N}_0 \to \mathbb{N}_0, n \mapsto \nu(n)$ ($\nu(n)$ der Nachfolger von n)
- (P3) $0 \notin \nu(\mathbb{N}_0)$ ("0 hat keinen Vorgänger")
- (P4) ν ist injektiv
- (P5) Ist $N \subseteq \mathbb{N}_0$ mit $0 \in N$ und $\nu(N) \subseteq N$, so gilt $N = \mathbb{N}_0$

Man definiert: $1 := \nu(0), 2 := \nu(1) = \nu(\nu(0)), ...$

Satz 1.13(Induktionsprinzip): Sei A(n) eine Aussage für jedes $n \in \mathbb{N}_0$, so dass gilt:

- a) A(n) ist wahr
- b) Ist A(n) wahr, so ist $A(\nu(n))$ wahr

Dann gilt A(n) für alle $n \in \mathbb{N}_0$

Beweis: Definiere
$$N := \{n \in \mathbb{N}_0 | A(n) \text{ ist wahr }\} \ \underline{zz} : N = \mathbb{N}_0$$
 wegen a) und b) gelten: $0 \in N$ und $\nu(N) \subseteq N \Rightarrow N = \mathbb{N}_0$

<u>Bemerkung</u>: i) Man kann "rekursiv" für alle $m \in \mathbb{N}_0$ eine Abbildung $m + \mathbb{N}_0 \to \mathbb{N}_0, a \mapsto m \cdot a$ $(m \cdot 0 = 0, m \cdot \nu(n) = m + m \cdot n)$

Definition 1.14 a) Eine Relation auf einer Menge M ist eine Teilmenge $R \subseteq M \times M$

- b) An Stelle $(x, y) \in R$ schreibt man oft xRy
- c) Eine Relation $R \subseteq M \times M$ heißt Totalordnung, schreibe " \leq "
- i) $\forall m \in M : m \leq m$
- ii) $\forall m, m' \in M : m \leq m' \text{ und } m' \leq m \Rightarrow m = m'$
- iii) $\forall m, m' \in M : m \leq m' \text{ oder } m' \leq m$
- iv) $\forall m, m', m'' : m \leq m' \text{ und } m' \leq m'' \Rightarrow m \leq m''$
- d) Definiere Relation \leq auf \mathbb{N}_0 durch: $m \leq m' \Leftrightarrow \exists m \in \mathbb{N}_0 : m' = n + m$

 $Proposition : \leq \text{aus d}$) ist eine Totalordnung auf \mathbb{N}_0

1.2 Mächtigkeit (Kardinalität) von Mengen

Für $n \in \mathbb{N}$ sei $\{1, ..., n\} = \{x \in \mathbb{N} | 1 \le x \le n\}$

<u>Satz 1.15</u> Ist $f: \{1, ..., n\} \rightarrow \{1, ..., m\}$ eine Bijektion, so gilt n = m.

<u>Beweis</u>: Induktion über $n \in \mathbb{N}$

n=1 (Induktions-Anfang): $f(\{1,...,n\})=f(\{1\})=\{f(1)\}\stackrel{f\ surj.}{=}\{1,...,m\}\Rightarrow m=1$ $n\mapsto n+1$ (Induktions-Schritt): Gelte die Aussage für ein beliebiges, aber festes $n\in\mathbb{N}$. Zeige nun, sie gilt auch für n+1:

Sei $f:\{1,...,n+1\} \to \{1,...,m\}$ bij. Sei m'=f(n+1), definiere $g:\{1,...,m\} \to \{1,...,m\}.$

$$i \mapsto \begin{cases} i & \text{für } i \neq m, m' \\ m & \text{für } i = m' \\ m' & \text{für } i = m \end{cases}$$

Prüfe: g bijektiv, $g \circ f$ ist bijektiv, $g \circ f(n+1) = m, m > 1 \Rightarrow h : \{1, ..., n\} \rightarrow \{1, ..., m-1\}, i \mapsto g \circ f(i)$ ist bijektiv $\stackrel{IV}{\Rightarrow} m-1 = n \Rightarrow m = n+1$

Proposition - Definition 1.16: Für eine Menge M gilt genau eine der folgenden 3 Aussagen:

- a) $M = \emptyset$
- b) $\exists n \in \mathbb{N} : \exists \text{bijektive Abbildung } f : \{1, ..., n\} \to M$
- c) es gilt weder a) noch b)

Im Fall b) ist die Zahl $n \in \mathbb{N}$ eindeutig.

Die Kardinalität (oder Mächtigkeit) von
$$M$$
 ist $|M| := \begin{cases} 0 & \text{falls } M = \emptyset \\ n & \text{falls b) gilt} \end{cases}$
 ∞ falls c) gilt

M heißt endlich, falls a) oder b) gilt.

<u>Beweis: zz:</u> i) a) und b) schließen sich gegenseitig aus.

- ii) n in b) ist eindeutig.
- i) Falls $M=\emptyset$, so existiert keine Abbildung $N\to M=\emptyset$ für $N\neq\emptyset\Rightarrow$ b) gilt nicht.
- ii) Seine $\{1,...,n\} \xrightarrow{f} M$ und $\{1,...,m\} \xrightarrow{g} M$ beide bijektiv. $\Rightarrow g^{-1} \circ f : \{1,...,n\} \to \{1,...,m\}$ ist bijektiv. $\Rightarrow n = m$.

<u>Fakten</u>: a) Sei $f: M \to N$ bijektiv. Dann gilt |M| = |N|

b) Sei $f: \{1, ..., m\} \rightarrow \{1, ..., n\}$ eine Abbildung:

- i) $n = m \Rightarrow f$ bijektiv
- ii) $n < m \Rightarrow f$ nicht injektiv
- iii) $n > m \Rightarrow f$ nicht surjektiv
- c) Sind M und N disjunkt, so gilt $|M \dot{\cup} N| = |M| + |N|$ (unter der Vereinbarung $\infty +_{=} \infty$; $+\infty = \infty$) (oder setze voraus: M, N sind beide endlich)
- d) Ist M endlich und $N \subset M$, so ist N endlich und |N| < |M|
- e) $|\mathbb{N}_0| = \infty$
- f) M,N endlich: $|M \cup N| = |M| + |N| |N \cap M|$

Definition: Ist M eine Menge, so heißt $P(M):=\{N|N\subseteq M\}$ die Potenzmenge von M.

Beispiel: $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{2,1\}\}$

 \underline{Satz} : M endlich $\Rightarrow |P(M)| = 2^{|M|}$

2 Gruppen und Körper

<u>Definition 2.1</u>: Eine <u>Gruppe</u> ist ein Tripel (G, e, \odot) bestehend aus eine Menge G, einem Element $e \in G$ und einer Abbildung $\odot : G \times G \to G$ (einer Verknüpfung), sodass gelten:

- G1) (Assoziativität) $\forall g \in G : g \odot e = g$
- G2) (Rechtseins) $\forall g \in G : \exists h \in G : g \odot e = g$
- G3) (Rechtsinverses) $\forall g \in G : \exists h \in G : g \odot h = e$

Gilt zusätzlich G4) (Kommutativität) $\forall g, h \in G : g \odot h = h \odot g$: so heißt G abelsche Gruppe.

Wir schreiben oft G für (G, e, \odot) . e heißt neutrales Element oder (kurz) Eins von G.

Beispiel: a) $(\mathbb{Z}, 0, +)$ ist eine abelsche Gruppe. Das bedeutet: $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, (a, b) \mapsto a + b$

$$\forall a, b, c \in \mathbb{Z} : G1) \ (a+b) + c = a + (b+c)$$

- G2) a + 0 = a
- G3) $\forall a \in \mathbb{Z} : \exists a' \in \mathbb{Z} : a + a' = 0 \text{ (schreibe } -a \text{ für } a)$
- G4) a + b = b + a
- b) $(\mathbb{R}, 0, +)$ ist eine abelsche Gruppe.
- c) $(\mathbb{R}^n, \underline{0}, +)$ ist eine abelsche Gruppe fr $\underline{0} = (0, ..., 0)$ (n-Tupel): $(a_1, ..., a_n) + (b_1, ..., b_n) := (a_1 + b_1, ..., a_n + b_n)$
- d) Sei $\mathbb{R}^x = \mathbb{R} \setminus \{0\}$, dann ist $(\mathbb{R}^x, 1, \cdot)$ eine abelsche Gruppe.
- e) $(\{\pm 1\}, 1, \cdot)$ ist eine abelsche Gruppe.

Verknüpfungstafel: $\begin{bmatrix} \cdot & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$

Definition : F"ur eine Menge M definiere $Bij(M) := \{f : M \to M | f \text{ ist bijektiv}\}$

Proposition 2.3: $(Bij(M), id_M, \circ)$ ist eine Gruppe. (\circ ist Verkettung von Abbildungen)

<u>Beweis</u>: G1 gilt: $(f \circ g) \circ h = f \circ (g \circ h)$ gilt $\forall f, g, h \in Bij(M)$ nach Lemma 1.10.

G2: $f \circ id_M = f \ \forall f \in Bij(M)$

G3: Satz
$$1.12 \Rightarrow f \circ f^{-1} = id_M$$

 $\underline{Definition\ 2.4:}$ Für $n\in\mathbb{N}$ sei $S_n:=Bij(\{1,...,n\}).$ S_n heißt auch $\underline{Gruppe\ der\ Permutationen}$ von $\{1,...,n\}.$

 $\ddot{U}bung: i) |M| \geq 3 \Rightarrow \text{Die Gruppe } Bij(M) \text{ ist nicht abelsch.}$

ii) M endlich, |M| = n. Dann: $|Bij(M)| = n! = 1 \cdot 2 \cdot \dots \cdot n$

Proposition 2.5 : Für eine Gruppe (G, e, \odot) gelten:

- a) $g \odot h = e \Rightarrow h \odot g = e$ für $g, h \in G$
- b) $\forall g \in G : e \odot g = g$
- c) $\forall g \in G : \exists ! h \in G \text{ mit } g \odot h = e \text{ (Schreibe später } g^{-1} \text{ anstelle von diesem eindeutigen } h; g^{-1} \text{ heißt invers zu } g)$
- d) e ist das einzige Element von G, sodass G2 und G3 gelten.
- e) $\forall g,h \in G$ gilt: die Gleichung $g \odot x = h$ hat eine eindeutige Lösung, nämlich $x = g^{-1} \odot h$

- b) Sei h rechtsinvers zu g, d.h. $g\odot h=e$, dann gilt: $e\odot g=(g\odot h)\odot g\stackrel{G1}{=}g\odot (h\odot g)\stackrel{a)}{=}g\odot e\stackrel{G2}{=}g$
- c) Seine h, h' rechtsinvers zu g. zz : h = h'

Dazu: $g \stackrel{G2}{=} h \odot e \stackrel{G3}{=} h \odot (g \odot h') \stackrel{G1}{=} (h \odot g) \odot h') \stackrel{a)}{=} e \odot h' \stackrel{b)}{=} h'$

d) Seine $e, e' \in G$ Elemente für die G2 und G3 gilt: $e \stackrel{G2}{=} e \odot e' \stackrel{b)}{=} e'$

e) $g^{-1} \odot h \ ist \ L\ddot{o}sung : g \odot (g^{-1} \odot h) \stackrel{G1}{=} (g \odot g^{-1} \odot h \stackrel{G3}{=} e \odot h \stackrel{b)}{=} h$

 $\exists ! \ L\ddot{o}osung : Gelte \ g \odot x = g \odot x' (= h)$. Verknüpfe von links mit g^{-1} . Nun folgt mit G1 und G2 und b), dass x = x'.

Notation: a) Wir schreiben meist i) G statt (G, e, \odot)

- ii) · statt \odot , z.B: $gh = g \cdot h = g \odot h$
- iii) Falls G abelsch ist: schreibe + statt \odot , dann auch -g statt g^{-1}

iii) Falls
$$G$$
 abelsch ist: schreibe $+$ statt \odot , dann auch $-g$ statt g^{-1} b) Sei $a \in G$ und $n \in \mathbb{Z}$, schreibe a^n für
$$\begin{cases} a \cdot \dots \cdot a & \text{falls } n > 0 \\ a^{-1} \cdot \dots \cdot a^{-1} & \text{falls } n < 0 \\ e & \text{falls } n = 0 \end{cases}$$

Falls $\odot = +$, so gilt $n \cdot a$ statt a^n

 $\ddot{U}bunq$: Für alle $m, n \in \mathbb{Z}$ gilt $a^m \cdot a^n = a^{m+n}$

Definition 2.6: Ein Körper ist ein Quintupel $(K,0,1,+,\cdot)$, oder einfach K, bestehend aus einer Menge K, Elementen $0,1 \in K$ und Verknüpfungen $+, \cdot : K \times K \to K$, so dass gelten:

- K1) (K, 0, +) ist eine abelsche Gruppe.
- K2) $(K \setminus \{0\}, 1, \cdot)$ ist eine abelsche Gruppe.
- K3) (Distributivgesetz) $\forall a, b, c \in K : (a+b) \cdot c = a \cdot c + b \cdot c$

 $Beispiel: (\mathbb{R}, 0, 1, +, \cdot)$ ist ein Körper; $(\mathbb{Q}, 0, 1, +, \cdot)$ ist ein Körper; $(\mathbb{Z}, 0, 1, +, \cdot)$ ist kein Körper; $(\mathbb{F}_2, 0, 1, +, \cdot)$ ist ein Körper für $\mathbb{F}_2 = \{0, 1\}$

$+_{\mathbb{F}_2}$	0	1
0	0	1
1	1	0

Lemma 2.7 : Für einen Körper K gelten: a) $0 \neq 1$

- b) $\forall x \in K : 0 \cdot x = x \cdot 0 = 0$
- c) $\forall x \in K : 1 \cdot x = x \cdot 1 = x$
- d) $\forall a, b \in K : a \cdot b = b \cdot a$

<u>Beweis</u>: a) $1 \in K \setminus \{0\} \Rightarrow 0 \neq 1$

- b) $0 \cdot x \stackrel{K1}{=} (0+0) \cdot x \stackrel{K3}{=} 0 \cdot x + 0 \cdot x \stackrel{addiere-(0 \cdot x)}{\Rightarrow} 0 = 0 \cdot x. \ x \cdot 0 = 0 \text{ ist analog.}$
- c) Falls $x \neq 0$: verwende $K2 \Rightarrow 1 \cdot x = x \cdot 1 = x$. Falls x = 0: wende b) an.
- d) Falls $a \neq 0 \neq b$: wende K2 an. Falls $a = 0 \lor b = 0$, wende b) an.

<u>Notation</u>: Manchmal schreiben wir $0_K, 1_K, +_K, \cdot_K$ an Stelle von $0, 1, +, \cdot$ (analog für Gruppen).

2.1Primkörper

Ziel: zu jeder Primzahl p existiert ein Körper mit p Elementen. (später: Körper ist eindeutig) Definition 2.8: Sei $n \in \mathbb{N}$. Eine <u>Restklasse</u> modulo n ist eine Teilmenge $m \subseteq \mathbb{Z}$, so dass gelten:

- i) $\forall a, b \in M$: n teilt b-a
- ii) $\forall a \in M : \forall b \in \mathbb{Z} : (n \text{ teilt } (b-a) \Rightarrow b \in M)$
- iii) $M = \emptyset$

Die Elemente von M
 heißen Vertreter von M.

Notation: Schreibe "n|x" für "n teilt x"

· Für Restklassen M,N modulo n seien $M\oplus N:=\{a+b|a\in M,b\in N\}$ und $M\odot N:=\{a\cdot b+k\cdot n|a\in M,b\in N \text{ und }k\in \mathbb{Z}\}$

 $\underline{Satz\ 2.9}$: Sei $n\in\mathbb{N}$. Schreibe "Restklasse "für "Restklasse modulo n". a) Je 2 Restklassen M,N sind disjunkt oder identisch.

- b) Jedes $x \in \mathbb{Z}$ liegt in der Restklasse $x + n \cdot \mathbb{Z} := \{x + n \cdot k | k \in \mathbb{Z}\}$
- c) Es gibt genau n Restklassen (modulo n)
- d) Sind M, N Restklassen, so auch $M \oplus N$ und $M \odot N$
- e) Sei \mathbb{Z}/n die Menge aller Restklassen. Dann ist $(\mathbb{Z}/n, 0 + n \cdot \mathbb{Z}, \oplus)$ eine abelsche Gruppe.
- f) Ist n Primzahl, so ist $(\mathbb{Z}/n, 0 + n \cdot \mathbb{Z}, 1 + n \cdot \mathbb{Z}, \oplus, \odot)$ ein Körper.

 $\underline{Korollar\ 2.10}$: Zu jeder Primzahl p gibt es einen Körper mit p Elementen.

<u>Beispiel</u>: Restklassen modulo 3 (n = 3):

$$\overline{0} = 0 + 3 \cdot \mathbb{Z} = \{..., -6, -3, 0, 3, 6, ...\}$$

$$\overline{1} = 1 + 3 \cdot \mathbb{Z} = \{..., -5, -2, 1, 4, 7, ...\}$$

$$\overline{2} = 2 + 3 \cdot \mathbb{Z} = \{..., -4, -1, 2, 5, 8, ...\}$$

+	$\overline{0}$	1	$\overline{2}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	$\overline{0}$	$\overline{1}$

<u>Beweis</u>: a) $zz: M \cap N \neq \emptyset \Rightarrow M = N$.

Sei
$$x \in M \cap N$$
. $N \subseteq M$: Sei $y \in N \stackrel{i) \text{ für } N}{\Rightarrow} n|y-x \stackrel{ii) \text{ für } M}{\Rightarrow} y \in M$

 $M \subseteq N$: analog.

b) \underline{zz} : $M := x + n \cdot \mathbb{Z}$ ist Restklasse.

Denn: iii): $x \in M \Rightarrow M \neq \emptyset$

- i): Seien $a = x + k \cdot n, b = x + l \cdot n \in M (k, l \in \mathbb{Z}) \Rightarrow b a = (l k) \cdot n$. Wird von n geteilt.
- ii): Seien $a = x + k \cdot n \in M$ und $b \in \mathbb{Z}$, so dass n|b-a. D.h: $b-a = l \cdot n$ für $l \in \mathbb{Z} \Rightarrow b = a + l \cdot n = x + (k+l) \cdot n \in M$
- c) Behauptung: Jede Restklasse M enthält ein eindeutiges Element aus $\{0,...,n-1\} \ni x$

 $\underline{Existenz\ von\ x}$: Sei $y \in M \Rightarrow y + n \cdot |y| \in M \cap \mathbb{N}_0$, denn $y + n \cdot |y| \ge y + |y| \ge 0$. Sei nun $y \in M \cap \mathbb{N}_0$ ein kleinstes Element. (ÜB 2)

Behauptung: $0 \le y \le n-1$, sonst bilde y-n. Dies Führt zu Widerspruch.

Eindeutigkeit: Seien $x, x' \in M$ mit $0 \le x \le x' \le n - 1$ \underline{zz} : x' = x

Wissen:
$$0 \le x' - x = k \cdot n \le n - 1$$
 für ein $k \in \mathbb{Z} \Rightarrow 0 \le k < 1 \Rightarrow k = 0 \Rightarrow x' = x$

 $\underline{Behauptung}$: 1b) \Rightarrow Die Abbildung, die einer Restklasse M (modulo n) das eindeutige element in $M \cap \{0, ..., n-1\}$ zuordnet, ist eine Bijektion: $\{Restklassen\} \rightarrow \{0, ..., n-1\}$, d.h. c) gilt.

d) Wissen; nach c) und b), dass alle Restklassen die Form $x + n \cdot \mathbb{Z}$ haben (für ein $x \in \{0, ..., n-1\}$)

 $\ddot{U}bung: \cdot (a+n \cdot \mathbb{Z}) \oplus (b+n \cdot \mathbb{Z} = (a+b) + n \cdot \mathbb{Z} \circledast$

$$\cdot (a + n \cdot \mathbb{Z} \odot (b + n \cdot \mathbb{Z}) = a \cdot b + n \cdot \mathbb{Z} \circledast \circledast$$

- e) $\underline{z.B.:} 0 + n \cdot \mathbb{Z}$ ist die Eins. $(a + n \cdot \mathbb{Z}) \oplus (0 + n \cdot \mathbb{Z}) \stackrel{\circledast}{=} (a + (-a)) + n \cdot \mathbb{Z} = 0 + n \cdot \mathbb{Z}$
- f) Assoziativität, Kommutativität von 0 mit (***), Distributivgesetz mit (**) und (***) (und verwende Gesetze für \mathbb{Z})

<u>Bleibt zz</u>: Für $a \in \{1, ..., n-1\} \exists b \in \{0, ..., n-1\} \text{ mit } a+n \cdot \mathbb{Z} \odot b+n \cdot \mathbb{Z} = 1+n \cdot \mathbb{Z}.$

Dazu zeigen wir: $f_a: \mathbb{Z}/n \to \mathbb{Z}/n, M \mapsto M \odot (a+n \cdot \mathbb{Z})$ ist surjektiv.

Aus den Übungen wissen wir: Sei X eine endliche Menge, $f: X \to X$ injektiv $\Rightarrow f$ ist surjektiv. Wir zeigen: f_a ist injektiv!

Seien $x+n\cdot\mathbb{Z}$, $x'+n\cdot\mathbb{Z}$ Restklassen mit $(x+n\cdot\mathbb{Z})\odot(a+n\cdot\mathbb{Z})=(x'+n\cdot\mathbb{Z})\odot(a+n\cdot\mathbb{Z})=a\cdot x'+n\cdot\mathbb{Z}\Rightarrow a\cdot x, a\cdot x'$ sind in derselben Restklasse $\Rightarrow n|(a\cdot x'-a\cdot x)=a\cdot (x'-x)$ und da n eine Primzahl ist $\Rightarrow n|a$ oder

 $n|x'-x \stackrel{0 < a < n}{\Rightarrow} n|x'-x \Rightarrow x', x$ in derselben Restklasse.

 $Definition\ 2.10: p \in \mathbb{N}$ heißt $\underline{Primzahl}: \Leftrightarrow p > 1$ und die einzigen Teiler aus \mathbb{N} von p sind 1 und p.

<u>Satz 2.11</u>: p Primzahl $\Rightarrow (\forall a, b \in \mathbb{Z} : p|a \cdot b \Rightarrow p|a \vee p|b)$

<u>Lemma 2.12(Übung)</u>: Sei $\{0\} \subset M \subseteq \mathbb{Z}$, sodass gilt: $\forall a, a' \in M$ gilt $a \pm a' \in M$. Dann folgt: a) Es gilt $M = m \cdot \mathbb{Z} (= \{m \cdot x | x \in \mathbb{Z}\})$, wobei m das kleinste Element in $M \cap \mathbb{N}$ ist (und $\neq \emptyset$) b) Falls $M \supseteq p \cdot \mathbb{Z}$ für p eine Primzahl $\Rightarrow M = \mathbb{Z} \vee M = p \cdot \mathbb{Z}$

<u>Beweis des Satzes mit Lemma</u>: Seien $a, b \in \mathbb{Z}$ mit $p|a \cdot b$. Gelte nun $p \times b$. Betrachte $M := \{x \in \mathbb{Z} | pteiltx \cdot b\}$ $Pr\ddot{u}fe: \forall x, x' \in M: x \pm x' \in M \text{ und } p \cdot \mathbb{Z} \subseteq M$. Aus dem Lemma folgt nun: $M = \mathbb{Z} \text{ oder } M = p \cdot \mathbb{Z}$

Falls $M = p \cdot \mathbb{Z} : \stackrel{a \in M}{\Rightarrow} \exists k \in \mathbb{Z} : a = p \cdot k$, d.h. p|a.

Falls $M = \mathbb{Z} \stackrel{1 \in M}{\Rightarrow} p$ teilt $1 \cdot b = b$!Widerspruch!

<u>Definition 2.13</u>: a) Eine Relation $R \subseteq M \times M$ (auf M) heißt $\underline{\ddot{A}quivalenz relation} :\Leftrightarrow i) <math>\forall x \in M : xRx$ (reflexiv)

- ii) $\forall x, y \in M : xRy \Leftrightarrow yRx$ (symmetrisch)
- iii) $\forall x, y, z \in M : xRy \text{ und } yRz \Rightarrow xRz \text{ (transitiv)}$

 $(xRy \text{ bedeutet } (x,y) \in R)$

- b) Schreibe $x/\sim y$ für xRy, falls R Äquivalenzrelation.
- c) Die Äquivalenzklasse $x \in M$ ist $[x] := \{y \in M | x\tilde{y}\}$
- d) $M/R := M/\sim := \{[x]|x \in M\}$ heißt Menge der Äquivalenzklassen.

 $\underline{Beispiel}$: Sei $M=\mathbb{Z}$. Dann ist $R_n=\{(x,y)\in\mathbb{Z}^2|n\ teilt\ x-y\}\ (n\in\mathbb{N})$ ist eine Äquivalenzrelation auf \mathbb{Z} . Äquivalenzklassen zu R_n sind die Restklassen modulo n.

 $\underline{Satz:} \ (\mathbb{C}, 0_{\mathbb{C}}, 1_{\mathbb{C}}, +_{\mathbb{C}}, \cdot_{\mathbb{C}}) \ \text{ist ein K\"{o}rper. Der} \ \underline{K\"{o}rper\ der\ komplexen\ Zahlen}. \ \underline{Hinweis:} \ (a,b) \cdot_{\mathbb{C}} \ (a-b) = (a^2+b^2,0) \ \text{und} \ (r,0) \cdot_{\mathbb{C}} \ (c,d) = (r \cdot c, r \cdot d)$

Notation: Oft schreibt man i für (0,1) und $a+b \cdot i$ für (a,b)

- · Man identifiziert (oft) $a \in \mathbb{R}$ mit $a + 0 \cdot i = (a, 0) \in \mathbb{C} \Rightarrow \mathbb{R} \subseteq \mathbb{C}$
- $\exists x \in \mathbb{C} \text{ mit } x^2 = -1_{\mathbb{C}} : \text{denn } i^2 = (0,1) \cdot (0,1) = (0 \cdot 0 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -(1,0) = -1_{\mathbb{C}}$

3 Vektorräume und Unterobjekte

<u>Definition 3.1</u>: Sei $(K, 0_K, 1_K, +_K, \cdot_K)$ ein Körper. Ein <u>Vektorraum</u> (VR) über K, oder ein K - VR, ist ein Quadrupel $(V, 0_V, +V, \cdot_V)$ bestehend aus einer Menge V (Menge der Vektoren), einem Element $0_V \in V$ (Nullvektor) und Verknüpfungen $+_V : V \times V \to V, (v, w) \mapsto v + w; \cdot_V : K \times V \to V, (\lambda, v) \mapsto \lambda \cdot_V v$, sodass gelten: V1: $(V, 0_V, +_V)$ ist eine abelsche Gruppe.

V2: (Assoziativität von \cdot_V) $\forall \lambda, \mu \in K : \forall v \in V : (\lambda \cdot_K \mu) \cdot_V v = \lambda \cdot_V (\mu \cdot_V v)$

V3: (Distributivgesetze) $\cdot \forall \lambda, \mu \in K : \forall v \in V : (\lambda +_V \mu) \cdot_V v = \lambda \cdot_V v +_V \mu \cdot_V v$

 $\forall \lambda \in K : \forall v, w \in V : \lambda \cdot v(v +_V w) = \lambda \cdot_V v +_V \lambda \cdot_V w$

V4: $\forall v \in V : 1_K \cdot_V v = v$

<u>Notation</u>: · ab nun meist +, · statt +_K, ·_K oder +_V, ·_V und λv statt $\lambda \cdot v$. Multiplikation bindet enger als Addition ("Punkt vor Strich").

<u>Lemma 3.2</u>: Sei K ein Körper und V ein K-VR. Dann gelten $\forall v \in V, \forall \lambda \in K$: a) $0_K \cdot_V v = 0_V$

- b) $\lambda \cdot_V 0_V = 0_V$
- c) $\lambda \cdot_V v = 0 \Rightarrow \lambda = 0_K \cdot_V v = 0_V$
- d) $(-1) \cdot_V v = -v$

<u>Beweis</u>: a) $0_K \cdot_V v = (0_K + 0_K) \cdot_V v \stackrel{V3}{=} 0_K \cdot_V v +_V 0_K \cdot_V v$ Addiere $-(0_K \cdot_V v)$ und erhalte: $0_V = \dots = 0_K \cdot_V v$ b) wie a).

c) Gelte $\lambda \cdot_V v = 0_V$ und $\lambda \neq 0_K$. Multipliziere mit λ^{-1} : $0_V \stackrel{b)}{=} \lambda^{-1} \cdot_V 0_V = \lambda^{-1} \cdot_V (\lambda \cdot_V v) \stackrel{V2}{=} (\lambda^{-1} \cdot_K \lambda) \cdot_V v = 1_K \cdot v \stackrel{V4}{=} v$

d) Übung. \Box

<u>Beispiel</u>: Sei K ein Körper. 0) $V = \{0_V\}, +_V$ und \cdot_V die einzig möglichen Verknüpfungen $\to \underline{Null} - VR$. $\overline{1}$ $(K^n, \underline{0}, +, \cdot)$ $(n \in \mathbb{N})$ ist ein K - VR für $\underline{0} = (0_K, ..., 0_K)$ (n-Tupel)

 $(\lambda_1,...,\lambda_n) + (\mu_1,...,\mu_n) := (\lambda_1 + \mu_1,...,\lambda_n + \mu_n)$

 $\lambda \cdot (\mu_1, ..., \mu_n) = (\lambda \cdot \mu_1, ..., \lambda \cdot \mu_n)$ für $\lambda, \mu \in K$

 $Pr\ddot{u}fe: V1: (K^n, \underline{0}, +)$ ist abelsche Gruppe (gilt, da K0, +) ist abelsche Gruppe)

 $\begin{aligned} & \text{V2: } (\lambda \cdot \mu)(\nu_1, ..., \nu_n) \overset{Def.}{=} ((\lambda \cdot \mu) \cdot \nu_1, ..., (\lambda \cdot \mu) \cdot \nu_n) = (\lambda \cdot (\mu \cdot \nu_1, ..., \lambda \cdot (\mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \cdot ((\mu \cdot \nu_1, ..., \mu \cdot \nu_n)) \overset{Def.}{=} \lambda \overset{De$

V4 und V3 analog.

Demnächst: $(K^m, 0, +, \cdot) \oplus (K^n, 0, +, \cdot)^n = (K^{m+n}, 0, +, \cdot)$

3.1 Unterobjekte

 $\underline{Definition\ 3.3:} \ \text{Sei}\ (G,e,\cdot_G) \ \text{eine Gruppe}\ H\subseteq G \ \text{heißt}\ \underline{Untergruppe}\ :\Leftrightarrow i)\ e\in H \ \text{und}\ ii)\ \forall g,h\in H:$

<u>Lemma 3.4</u>: Sei $H \subseteq G$ eine Untergruppe. Dann gelten a) $\forall h \in H : h^{-1} \in H$

- b) $\forall g, h \in H : (g \cdot_g h) \in H$
- c) (H, e, \cdot_G) ist eine Gruppe.

<u>Beweis</u>: a) Sei $h \in H$. Wegen $e \in H$, folgt aus ii): $h^{-1} \cdot_G e = h^{-1} \in H$

- b) Seien $g, h \in H \stackrel{a)}{\Rightarrow} g^{-1} \in H, h \in H \stackrel{ii)}{\Rightarrow} (g^{-1})^{-1} \cdot h = (g \cdot h) \in H$
- c) Aus b) folgt: H ist abgeschlossen unter \cdot_G , d.h. " \cdot ": $H \times H \to H, (g,h) \mapsto g \cdot_G h$ ist wohldefiniert.

Axiome: G1 gilt in G, d.h. $\forall g,h,k\in G: (g\cdot h)\cdot k=g\cdot (h\cdot k)\overset{H\subseteq G}{\Rightarrow} \forall g,h,k\in H: (g\cdot h)\cdot k=g\cdot (h\cdot k).$

- G2) $g \cdot e = g \forall g \in G \stackrel{H \subseteq G}{\Rightarrow} h \cdot e = h \forall h \in H$
- G3) (Rechtsinverses) Wurde in a) gezeigt.

 \underline{Merke} : Axiome, die nur den Allquantor (\forall) enthalten, "vererben sichäuf Teilmengen. Für \exists geht das nicht! Das muss man prüfen!

Beispiel: 0) Ist G eine Gruppe, so ist $H:=\{e\}\subseteq G$ eine Untergruppe.

- 1) Ist G eine geliebige Gruppe, so ist $g \in G$ bel. $\Rightarrow H = \{g^n | n \in \mathbb{Z}\} \subseteq G$ ist Untergruppe.
- 2) $\{\sigma \in S_n | \sigma(n) = n\} \subseteq S_n$ ist Untergruppe (und " = " S_{n-1})

<u>Notation</u>: Sei $f: M \to N$ eine Abbildung und $L \subseteq M$. Die Einschränkung $f|_L$ von f auf (dem Teildefinitionsbereich) L ist die Abbildung $f|_L: L \to f(L), l \mapsto f(l)$

 $Beispiel: H \subseteq G \text{ Untergruppe} \Rightarrow G|_{H \times H}: H \times H \to H$

<u>Definition 3.5</u>: Sei $(K,0,1,+,\cdot)$ ein Körper. $L\subseteq K$ heißt <u>Unterkörper</u> \Leftrightarrow i) L ist Untergruppe von (K,0,+) und ii) $L\setminus\{0\}$ ist Untergruppe von $(K\setminus\{0\},1,\cdot)$

<u>Proposition 3.6</u>: Ist $L \subseteq K$ ein Unterkörper, so gelten: a) $+_K(L \times L) = L$ (oder $L +_K L = L$) und $+_K(L \times L) = L$ (oder $L \cdot_K L = L$)

b) $(L, 0, 1, +_L|_{L \times L}, \cdot_K|_{L \times L})$ ist ein Körper.

<u>Beweis</u>: a) Verwende Lemma 3.4 für $(K,0,+),(K\setminus\{0\},1,\cdot)$ und $\forall l\in L:0\cdot l=l\cdot 0=0$

b) Axiome K1,K2 folgen aus Lemma 3.4. Distributivgesetze in L: Vererben sich von K nach L.

 $Beispiel: \mathbb{Q} \subseteq \mathbb{R}$ und $\mathbb{R} \subseteq \mathbb{C}$ sind Unterkörper.

 $Beispiel: 0) \{0_V\} \subseteq V$ ist ein Untervektorraum.

1) Für $u \in V$ ist $\{\lambda \cdot v | \lambda \in K\}$ ein Untervektorraum (verwende $0 \cdot v = 0$ und V2 und V3))

Proposition 3.8: Seien K ein Körper, V ein K - VR, $U \subseteq V$ ein Untervektorraum. Dann gelten:

- a) $+_V(U \times U) = U$ und $\cdot_V(K \times U) = U$
- b) $(U, 0, +_V|_{U \times U}, \cdot_V|_{K \times U})$ ist ein K VR

<u>Beweis</u>: a) $+_V$: es genügt zu zeigen: $(U, 0, +_V|_{U\times U})$ ist eine abelsche Gruppe. Dazu genügt zu zeigen: $U\subseteq V$ und ((V, 0, +)) ist eine Untergruppe.

Dazu: $u, v \in U \stackrel{ii)}{\Rightarrow} (-1) \cdot u = -u, v \in U \stackrel{iii)}{\Rightarrow} ((-u) + v) \in U \text{ und } 0 \in U \text{ wegen i)}.$

 \cdot_V : folgt aus ii) (und i)).

b) V1 wurde im Beweis von a) gezeigt. zu V2-V4: Axiome enthalten nur " \forall " \Rightarrow Sie vererben sich auf U. \square

Proposition 3.9 : Seien K ein Körper, V ein K-VR, $U,W\subseteq V$ Untervektorräume. Dann gelten:

- $\overline{a)\ U \cap W}$ ist ein UVR von V
- b) $U + W = \{u + w | u \in U, w \in W\}$ ist ein UVR von V

c) $U \cup W$ ist ein UVR $\Leftrightarrow U \subseteq W$ oder $W \subseteq U$

 $\frac{Beweis(nur\ b):}{\text{ii})+\text{iii}): \text{Seien}\ v, v' \in U+w, \text{d.h.}\ v=u+w, v'=u'+w' \text{ mit } u, u' \in U, w, w' \in W \Rightarrow v+v'=(u+w)+(u'+w')=(u+u')+(w+w') \in U+W. \text{ Sei } \lambda \in K, \text{ dann: } \lambda \cdot v=\lambda(u+w)=\lambda \cdot u+\lambda \cdot w \in U+W$

4 Erezeugendensysteme, lineare Unabhängigkeit und Basen

<u>Notation</u>: Sei $u \in \mathbb{N}$, für i = 1, ..., n, sei $e_i = (0, ..., 0, 1, 0, ..., 0) \in K^n$, so dass die 1 an *i*-ter Stelle steht.

Lemma 4.1 :
$$\forall v \in K^n : \exists! \lambda_1, ..., \lambda_n \in K$$
mit $v = \sum_{i=1}^n \lambda_i \cdot e_i$

$$\underline{Beweis} : \text{Seien } \lambda_1,...,\lambda_n \ \in \ K \ \text{und} \ w := \sum_{i=1}^n \lambda_i \cdot (0,...,0,1,0,...,0) \ = \ \sum_{i=1}^n (0,...,0,\lambda_i,0,...,0) \ = \ (\lambda_1,...,\lambda_n).$$

Sei
$$v = (\mu_1, ..., \mu_n) \in K^n$$
 beliebig, dann: $v = \sum_{i=1}^n \lambda_i e_i \stackrel{\circledast}{\Leftrightarrow} (\mu_1, ..., \mu_n) = (\lambda_1, ..., \lambda_n) \Leftrightarrow \forall i = 1, ..., n : \lambda_i = \mu_i$

Im weiteren seien K ein Körper und V ein K - VR.

 $\underline{Definition\ 4.2:} \ \text{a)}\ v \in V \ \text{heißt}\ \underline{Linear kombination} \ (\text{LK}) \ \text{von}\ v_1,...,v_n \in V : \Leftrightarrow \exists \lambda_1,...,\lambda_n \in K \ \text{mit}$ $v = \sum_{i=1}^n \lambda_i v_i$

- b) Für $S \subseteq V$: v heißt LK aus $S : \Leftrightarrow \exists n \in \mathbb{N}, \exists v_1, ..., v_n \in S$. v ist LK von $v_1, ..., v_n$. $L(S) := \{v \in V | v \text{ ist } LK \text{ aus } S\} = \text{die } \underline{lineare \, H\"{u}lle} \text{ von } S$.
- c) $S \subseteq V$ heißt Erzeugendensystem (ES) $\Leftrightarrow V = L(S)$
- d) V heißt endlich erzeugt $\Leftrightarrow \exists S \subseteq V$ endlich: V = L(S)
- e) $L(\emptyset) := \{0\}$

 $Beispiel: K^n = L(\{e_1, ..., e_n\}) \leftarrow \text{in Lemma 4.1}$

 $\underline{Lemma~4.3:}$ Sei Vein K-VR,~Kein Körper und seien $S;T\subseteq V,$ dann gilt:

- a) $0 \in L(S)$, $S \subseteq L(S)$
- b) Ist $U \subseteq V$ ein UVR, so gilt L(U) = U
- c) $T \subseteq S \Rightarrow L(T) \subseteq L(S)$
- d) L(S) ist ein UVR
- e) L(S) ist der kleinste UVR von V, der S enthält.
- f) $L(S \cup T) = L(S) + L(T)$
- g) L(L(S)) = L(S)

<u>Beweis</u>: a) Falls $S = \emptyset \stackrel{Def.}{\Rightarrow} L(S) = \{\emptyset\} \ni 0, \ \emptyset = S \subseteq L(S).$

Falls $S \neq \emptyset$: Für jedes $v \in S$ sind $0 \cdot v, 1 \cdot v$ LK aus $S \Rightarrow 0, v \in L(S) \Rightarrow 0 \subseteq L(S), S \subseteq L(S)$

b) $U \subseteq L(U)$: gilt nach a).

 $L(S)\subseteq U\text{: Seien }v_1,...,v_n\in U, \lambda_1,...,\lambda_n\in K\overset{ii)\;von\;UVR}{\Rightarrow}\lambda_1\cdot v_1,...,\lambda_n\cdot v_n\in U\overset{iii)\;von\;UVR}{\Rightarrow}\lambda_1v_1+\lambda_2v_2\in U; \\ \lambda_1v_1+\lambda_2v_2+\lambda_3v_3\in U\;...\;(\text{Induktion})\to \lambda_1v_1+...+\lambda_nv_n\in U$

c) Ubung

d) $\overline{0 \in L(S)}$ nach a); Seien $v = \lambda_1 v_1 + ... + \lambda_n v_n, w = \mu_1 w_1 + ... + \mu_m w_m \in L(S)$ mit $\lambda_1, ..., \lambda_n, \mu_1, ..., \mu_m \in K, v_1, ..., v_n, w_1, ..., w_m \in L(S) \Rightarrow v + w = \lambda_1 v_1 + ... + \lambda_n v_n + \mu_1 w_1 + ... + \mu_m w_m \in L(S)$. Analog $\lambda \cdot v = (\lambda \cdot \lambda_1) v_1 + ... + (\lambda \cdot \lambda_n) v_n \in L(S)$

e) <u>zz</u>: \forall Untervektorräume $U \subseteq V$ mit $S \subseteq U$ gilt $U \supseteq L(S)$

Starte mit $S \subseteq U$. Wende L(.) an. $\stackrel{c)}{\Rightarrow} L(S) \subseteq L(U) \stackrel{b)}{=} U$ f).g): $\ddot{U}bung$

f),g): $\underline{\ddot{U}bung}$

Definition 4.4 : Sei $S \subseteq V$. a) S heißt linear unabhängig : $\Leftrightarrow \exists v \in S : v \in L(S \setminus \{v\})$

- b) S heißt linear unabhängig (l.u.) : $\Leftrightarrow \neg (S \text{ linear abhängig (l.a.)})$
- c) S heißt Basis von $V :\Leftrightarrow S$ ist l.u. und V = L(S), d.h. S ist Erzeugendensystem von V.

Beispiel: 1) Sei
$$S = \{V\} \subseteq V$$
: S l.a. $\Leftrightarrow v \in L(\emptyset) = \{\} \Leftrightarrow v = 0$
2) Sei $S = \{(1,1,0), (1,0,1), (0,1,1)\} \subseteq \mathbb{R}^3$. Beh: S ist l.u.

z.B.: Annahme: $(1,1,0) \in L(\{(1,0,1),(0,1,1)\})$ D.h. $\exists \lambda, \mu \in \mathbb{R} : (1,1,0) = \mu(1,0,1) + \lambda(0,1,1) = (\mu, \lambda, \mu + \lambda) \Rightarrow \lambda = 1 = \mu \land \lambda + \mu = 0$! Widerspruch!

 $\underline{Lemma\ 4.5}$: Für $S\subseteq V$ sind äquivalent:

a) S ist l.u.

b) Für alle paarweise verschiedenen Vektoren $v_1,...,v_n\in S$ $(n\in\mathbb{N}$ beliebig) und $\lambda_1,...,\lambda_n\in K$ gilt: $\sum_{i=1}^n\lambda_iv_i=0\Rightarrow \lambda_1=...=\lambda_n=0$

i=1 c) Jeder Vektor $w \in L(S)$ ist eine eindeute LK aus S, d.h. sind $v_1, ..., v_n \in S$ paarweise verschieden und gelten $w = \lambda_1 v_1 + ... + \lambda_n v_n = \mu_1 v_1 + ... + \mu_n v_n$ (für alle Skalare $\mu_i, \lambda_i \in K$), so gilt: $\lambda_i = \mu_1 \wedge ... \wedge \mu_n = \lambda_n$

 $\underline{Beweis: c) \Rightarrow b):} \text{ Wende c) an auf } 0 = \sum_{i=1}^{n} \lambda_i v_i = 0 \cdot v_1 + \ldots + 0 \cdot v_n \stackrel{c)}{\Rightarrow} \lambda_1 = \ldots = \lambda_n = 0$ $\underline{b) \Rightarrow a):} \text{ wir zeigen: } \neg a) \Rightarrow \neg b): \text{ Sei } v_0 \in S, \text{ so dass } v_0 \in L(S \setminus \{v_0\}), \text{ d.h. } \exists v_1, \ldots, v_n \in S \setminus \{v_0\} \text{ paarweise } v_0 \in S, \text{ so dass } v_0 \in L(S \setminus \{v_0\}), \text{ d.h. } \exists v_1, \ldots, v_n \in S \setminus \{v_0\} \text{ paarweise } v_0 \in S, \text{ so dass } v_0 \in S, \text{ so da$

 $\underline{b}) \Rightarrow \underline{a})$: wir zeigen: $\neg a) \Rightarrow \neg b$): Sei $v_0 \in S$, so dass $v_0 \in L(S \setminus \{v_0\})$, d.h. $\exists v_1, ..., v_n \in S \setminus \{v_0\}$ paarweise verschieden und $\exists \lambda_1, ..., \lambda_n \in K$ mit $v_0 = \sum_{i=1}^n \lambda_i v_i \Rightarrow (-1) \cdot v_0 + \lambda_1 v_1 + ... + \lambda_n v_n = 0$. Widerspruch zu b).

 $\underline{a)\Rightarrow c):} \text{ Zeige } \neg c) \Rightarrow \neg a): \text{ Gelte } w = \sum_{i=1}^n \lambda_i v_i = \sum_{i=1}^n \mu_i v_i \text{ (mit } \lambda_i, \mu_i, v_i \text{ wie in c)) und } \exists i_0 \text{ mit } \lambda_{i_0} \neq \mu_{i_0}.$

Dann gilt: $(\lambda_{i_0} - \mu_{i_0}) \cdot v_{i_0} = \sum_{i=1, i \neq i_0}^n (\mu_i - \lambda_i) \cdot v_i$. Wir wissen: $\lambda_{i_0} - \mu_{i_0} \neq 0$ (in K). Multipliziere mit

$$\frac{1}{\lambda_{i_0} - \mu_{i_0}} : v_{i_0} = \sum_{i=1}^n \sum_{i \neq 0}^n \left(\frac{\mu_i - \lambda_i}{\lambda_{i_0} - \mu_{i_0}} \right) \cdot v_i \in L(S \setminus \{v\}), \text{ d.h. } \neg a)$$

<u>Korollar 4.6</u>: $S \subseteq V$ ist Basis \Leftrightarrow Jeder Bektor $v \in V$ ist eindeutige LK aus S

 $\underbrace{Beweis:}_{\square}S\subseteq V \text{ ist Basis} \Leftrightarrow S \text{ ist l.u. und } L(S)=V \overset{4.5 \wedge V=L(S)}{\Leftrightarrow} \text{Jedes } v \in V \text{ ist eindeutige LK aus } S.$

<u>Korollar 4.7</u>: Sei $S = \{e_1, ..., e_n\} \subseteq K^n$ mit $e_i = (0, ..., 0, 1, 0, ..., 0) \in K^n$, wobei die 1 an *i*-ter Stelle steht. Dann ist nach Lemma 4.1 S eine Basis von K^n . Bezeichnung: $\{e_1, ..., e_n\}$ heißt <u>Standardbasis</u> von K^n .

<u>Korollar 4.8</u>: Jedes endlich ES $S \subseteq V$ enthält eine Basis $B \subseteq S$ von V.

 \underline{Beweis} : Sei $E := \{T \subseteq S | T \text{ ist ES von } V\}$. $E \neq \emptyset$, denn $S \in E$. S ist endlich \Rightarrow alle $T \subseteq S$ sind endlich. Wähle $T \subseteq E$ mit kleinster Kardinalität.

Beh: T ist Basis von V. \underline{zz} : T ist l.u.

Sonst $(T \text{ l.a.}) \exists v \in T \text{ mit } v \in L(T \setminus \{v\}) (\Rightarrow L(\{v\}) \subseteq L(T \setminus \{v\})) \Rightarrow L(T \setminus \{v\}) = L(T \setminus \{v\}) + l(\{v\}) \stackrel{Lemma 4.3}{=} L(T \setminus \{v\}) = L(T) = V.$ Aber: $|T \setminus \{v\}| < |T|$, d.h. Widerspruch zur Wahl von T.

<u>Lemma 4.9</u>: Sei $S \subseteq V$ l.u. und $v \notin L(S) \Rightarrow S \cup \{v\}$ ist l.u.

<u>Beweis</u>: Annahme: $S \cup \{v\}$ ist l.a. $\Rightarrow \exists$ Vektoren $v_1, ..., v_n \in S$ paarweise verschieden und $\lambda, \lambda_1, ..., \lambda_n$ mit $0 = \lambda \cdot v + \lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n$ und nicht $\lambda = \lambda_1 = ... = \lambda_n = 0$!

Fall 1: $\lambda = 0 \stackrel{Sl,u}{\Rightarrow} \lambda_1 = \dots = \lambda_n = 0 \underline{|Widerspruch|}$

Fall 2: $\lambda \neq 0 \Rightarrow v = (-\frac{\lambda_1}{\lambda}) \cdot v_1 + \dots + (-\frac{\lambda_n}{\lambda}) \cdot v_n \in L(S)$ ist ein Widerspruch zur Voraussetzung $v \notin L(S)$

<u>Satz 4.10(Austauschsatz von Steinitz)</u>: Sei $T \subseteq V$ ein ES und $S \subseteq V$ l.u. mit $|S| < \infty$. Dann $\exists \tilde{T} \subseteq T$ mit $|\tilde{T}| = |S|$, so dass $(T \setminus \tilde{T}) \cup S$ ein ES von V.

Korollar 4.11 : Sei V endlich erzeugt und $S \subseteq V$ l.u., dann gilt:

- a) Für jedes ES T von V gilt: $|T| \geq |S|$ und insbesondere gilt $|S| < \infty$
- b) Je zwei Basen von V haben dieselbe Kardinalität

<u>Beweis von Korollar</u>: Sei nur S endlich. Dazu sei $T \subseteq V$ ein endliches ES mit m = |T|. <u>Steinitz</u>: Annahme $|S| > m \Rightarrow \exists S_0 \subseteq S$ mit $|S_0| = m + 1$ und S_0 l.u.

<u>Steinitz</u>: $\exists \tilde{T} \subseteq T \text{ mit } |\tilde{T}| = |S_0| \text{ und } ... \Rightarrow |S_0| = |\tilde{T}| \leq |T| = m !Widerspruch!$

zu a): es ist noch zu zeigen: Ist T ein unendliches ES von V, so gilt: $|T| \ge |S|$. Dies folgt aus $|T| = \infty > |S|$

b) Seien T, T' Basen von $V \Rightarrow T, T'$ l.u. $\stackrel{a)}{\Rightarrow} T, T'$ endlich. Nun: T ist ES $\wedge T'$ ist l.u. $\stackrel{a)}{\Rightarrow} |T| \geq |T'|$; T' ist ES $\wedge T$ ist l.u. $\stackrel{a)}{\Rightarrow} |T'| \geq |T| \Rightarrow |T| = |T'| (< \infty)$

 $\underline{Definition} : \text{Elemente } x_1, ..., x_n \text{ einer Menge } X \text{ heißen } \underline{paarweise verschieden} : \Leftrightarrow \forall i \neq j : x_i \neq x_j (\Leftrightarrow |\{x_1, ..., x_n\}| = n$

 $\underline{Bemerkung}$: 4.10 und 4.11 gelten auch für $|S|=\infty$ bzw. V nicht endlich erzeugt. Benötigt Äuswahlaxiom und ünendliche Mächtigkeit".

<u>Beweis von 4.10</u>: 1) Beh: Sei $U \subseteq V$ ein UVR, $T \subseteq V$ ein ES, $v \in V \setminus U$. Dann gilt: $\exists t \in T \setminus U$, so dass $T \setminus \{t\} \cup \{v\}$ ein ES ist. Denn: Schreibe $v = \sum_{i=1}^{n} \lambda_i t_i$ mit $t_1, ..., t_n \in T, \lambda_i \in K$ und $t_1, ..., t_n$ seien paarwei-

se verschieden und alle $\lambda_i \neq 0 (v \neq 0)$. Ein $t_{i_0} \notin U$, sonst LK $\in U$, aber $v \notin U \stackrel{\lambda_{i_0}}{\Rightarrow} t_{i_0} = \frac{1}{\lambda_{i_0}} \cdot v + \sum_{i=1, i \neq i_0}^{n} (\frac{-\lambda_i}{\lambda_{i_0}})$.

 $t_i \in L(T \setminus \{t_{i_0}\} \cup \{v\}) \Rightarrow T \subseteq L(T \setminus \{t_{i_0}\} \cup \{v\}) \Rightarrow V = L(T) \subseteq L(T \setminus \{t_{i_0}\} \cup \{v\}) \subseteq V$

2) Induktion über N := |S|. (Der Fall $n = 0, S = \emptyset$ ist klar).

 $n\mapsto n+1$: Gelte 4.10 für alle $S'\subseteq V$ l.u. mit |S'|=n. Sei $S\subseteq V$ l.u. mit |S|=n+1. Schreibe $S=S'\cup\{v\}$ mit |S'|=n Induktionsvoraussetzung: $\exists T'\subseteq T$ mit |T'|=n und $T\setminus T'\cup S'$ ist ES von V. Wende 1) auf $v\in V\setminus L(S)$ an, denn S ist l.u. $\stackrel{1}{\Rightarrow}\exists t\in T\setminus T'\cup S'\setminus L(S)$ mit $X=T\setminus T'\cup S'\setminus\{t\}\cup\{v\}$ ist ES. Wegen $t\notin L(S)$ gilt $t\notin S'$, d.h. $t\in T\setminus T'\Rightarrow X=T\setminus (T'\cup\{t\})\cup (S'\cup\{v\})$. Nenne nun $T'\cup\{t\}=:\tilde{T}$ und $S'\cup\{s\}=:S$.

 $\underline{Definition\ 4.12:}$ a) Sei V ein endlich erzeugter K-VR. Ist $T\subseteq V$ eine Basis, sod efiniert man $\dim_K V:=|T|$ als die $\underline{Dimension}$ von V.

b) Ist V ein K - VR ohne endliches ES, so setze $dim_K V = \infty$

<u>Notation</u>: Ist K aus dem Kontext klar, so schreibe dimV statt dim_kV .

 $Warnung: dim_{\mathbb{C}}\mathbb{C} = 1 \text{ aber } dim_{\mathbb{R}}\mathbb{C} = 2.$

 $\overline{Sprechweise}$: Ein K-VR heißt endlich-dimensional: $\Leftrightarrow dim_K V < \infty (\Leftrightarrow V \text{ ist endlich erzeugter } K-VR)$

<u>Korollar 4.13</u>: Sei V ein endlich-dimensionaler K - VR, $T \subseteq V$ ein ES, $S \subseteq V$ l.u. Dann gelten:

- a) $|S| \leq dimV$ und $(|S| = dimV \Leftrightarrow S \text{ ist Basis von } V)$
- b) |T| > dimV und $(|T| = dimV \Leftrightarrow T \text{ ist Basis von } V)$

<u>Beweis</u>: Übung. linke Hälfte aus Kor.4.11, rechte Hälft: Satz von Steinitz.

Satz 4.14(Basisergänzungssatz) : Sei V ein endlich-dimensionaler K - VR. Sei $S \subseteq V$ l.u. Dann gilt: $\exists S' \subseteq V, S \subseteq S'$ und S' ist Basis von V. (d.h. Elemente von $S' \setminus S$ ergänzen S zu eine Basis).

 \underline{Beweis} : Sei $S'\supseteq S$ l.u. und von maximaler Kardinalität (Wissen: S' l.u. $\Rightarrow |S'|\le dimV$). Annahme: $L(S)\subset V\Rightarrow \exists v\in V, v\notin L(S)\stackrel{Lemma\ 4.9}{\Rightarrow}S'\cup \{v\}\ \text{ist l.u.}\ \underline{!Widerspruch!},\ \text{denn:}\ |S'\cup \{v\}|=|S'|+1>|S'|,$ aber S' hat maximale Kardinalität.

 $Korollar 4.15(\ddot{U})$: Sei V ein K - VR und $d \in \mathbb{N}$. Gelte $|S| \leq d$ für alle $S \subseteq V$ l.u. Dann gilt: $dimV \leq d$.

Beweis: Mit derselben Idee wie in 4.14.

<u>Korollar 4.16</u>: Sei V ein endlich-dimensionaler K - VR und $W \subseteq V$ ein UVR. Dann gelten:

- a) $dimW \leq dimV$
- b) $dimW = dimV \Rightarrow W = V$
- c) Jede Basis von W lässt sich zu einer Basis von V ergänzen.

<u>Beweis</u>: c) folgt aus 4.14, a) folgt aus 4.13, weil Basis von W ist l.u. und in V. b) ist 4.13 a) 2. Teil.

Erinnerung: Seien M,N endliche Mengen. Dann $|M\cup N|=|M|+|N|-|M\cap N|$

Satz 4.17(Dimensionsformel für Untervektorräume) : Seien V ein endlich-dimensionaler K-VR und $U,W\subseteq \overline{V}$ UVR'e, dann gilt: $dim(U+W)=dimU+dimW-dim(U\cap W)$

 \underline{Beweis} : Sei $dimV < \infty \stackrel{4.16}{\Rightarrow} U + W, U, W, U \cap W \subseteq V$ sind endlich-dimensional. Sei B_0 Basis von $U \cap W$. Egänze zu Basis $B_1 \supseteq B_0$ von U. Ergänze zu Basis $B_2 \supseteq B_0$ von W. Behauptung: i) $B_1 \cap B_2 = B_0$ ii) $B_1 \cup B_0$ ist ES von U + W iii) $B_1 \cup B_2 (= B_1 \cup B_2 \setminus B_0)$ ist l.u.

Die Behauptung impliziert: $dim(U+W) \stackrel{ii) \wedge iii)}{=} |B_1 \cup B_2| \stackrel{Erinn.}{=} |B_1| + |B_2| - |B_1 \wedge B_2| \stackrel{i)}{=} dimU + dimW - dim(U \cap W).$

- i) Sei $b \in B_1 \cap B_2 \supseteq B_0 \stackrel{B_1 \, l.u.}{\Rightarrow} B_0 \cup \{b\}$ l.u. $\subseteq B_1$ und $\subseteq B_2 \Rightarrow B_0 \cup \{b\}$ ist l.u. von $L(B_1)$ und $L(B_2) \Rightarrow B_0 \cup \{b\} \subseteq U \cap W$ ist l.u. $\Rightarrow |B_0 \cup \{b\}| \le dim U \cap W = |B_0| \Rightarrow b \in B_0$
- ii) $U + W = L(B_1) + L(B_2) = L(B_1 \cup B_2) \Rightarrow B_1 \cup B_2$ ist ES von U + W.
- iii) $B_1 \cup B_2$ ist l.u., denn: Seien $\lambda_b, b \in B_2 \cup B_1$ Elemente aus V mit $\circledast \sum_{b \in B_1 \cup B_2} \lambda_b \cdot b = 0$ <u>zz</u>: alle $\lambda_b = 0$

$$\circledast \Rightarrow \sum_{b \in B_1} \lambda_b \cdot b = \sum_{b \in B_2 \setminus B_1} (-\lambda_b) \cdot b =: w \Rightarrow w \in W \cap U \stackrel{w \in L(B_0) \wedge B_1 \ l.u.}{\Rightarrow} \lambda_w = 0 \ \forall b \in B_1 \setminus B_0 \ (\text{linke Seite})$$

$$\stackrel{\circledast}{\Rightarrow} \sum_{b \in B_0} \lambda_b \cdot b = 0 \stackrel{B_0 \mid l.u.}{\Rightarrow} \lambda_b = 0 \ \forall b \in B_0, \text{ d.h. } \lambda_b = 0 \ \forall b \in B_1 \setminus B_0 \cup B_2 \setminus B_0 \cup B_0 = B_1 \cup B_2$$

<u>Notation</u>: K Körper, V ein K - VR, $V_1, ..., v_n \in V$ sind k.u. (bzw. eine Basis) : $\Leftrightarrow \{v_1..., v_n\} \subseteq V$ ist l.u. (bzw. Basis) und $v_1, ..., v_n$ sind paarweise verschieden.

 $\underline{Bemerkung}: v_1, ..., v_n \in V \text{ sind l.u.} \Leftrightarrow 1) \ \forall i = 1...n: v_i \notin L(\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_n\}) \Leftrightarrow 2) \ \forall \lambda_1, ..., \lambda_n \in K: (\sum_{i=1}^n \lambda_i v_i = 0 \Rightarrow \lambda_1 = ... = \lambda_n = 0)$

5 Matrizen und Gauß-Elimination

Sei K ein Körper, $m,n\in\mathbb{N}$

 $\underline{Definition\ 5.1:}$ a) Eine mxn-Matrix A über K ist eine Tabelle mit m Zeilen und n Spalten und Einträgen aus K:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \ddots & \ddots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1} & \dots & \dots & a_{mn} \end{pmatrix}$$

- b) Der Eintrag a_{ij} heißt Matrixkoeffizient an der Stelle (i,j)
- c) Die Menge aller mxn-Matrizen ist $M_{mxn}(K)$
- d) Eine 1xn-Matrix heßt Zeilenvektor der Länge n ($a_1 \quad a_2 \quad \dots \quad a_n$). $Z_n(K) := M_{1xn}(K)$. Eine mx1-Matrix

heißt Spaltenvektor der Länge
$$m$$
 $\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}$. $V_m(K) = M_{mx1}(K)$

e) Für
$$A = (a_{ij})$$
 aus a) heißt $(a_{i1} \dots a_{in})$ die *i*-te Zeile von A $(i = 1...m)$. Für $j = 1...n$ heißt $\begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$ der j -te Spaltenvektor von A .

$$\underline{Bemerkung}: Z_n(K)" = "K^n((a_1...a_n)) \widehat{=} (a_1,...,a_n))$$

$$\underline{Definition\ 5.2:} \text{ Für } A = (a_{ij}) \in M_{exm}(K), B = (b_{jk}) \in M_{mxn}(K) \text{ definiert man } A \cdot B = (c_{ik})_{\substack{i=1...l \\ k=1...n}} \in M_{exn}(K) \text{ durch } c_{ik} := \sum_{j=1}^{m} a_{ij} \cdot b_{jk}. \text{ D.h. } c_{ik} \text{ berechnet sich aus Zeile } i \text{ von } A \text{ und Spalte } k \text{ von } B : c_{ik} = 0$$

$$(a_{i1} \dots a_{im}) \cdot \begin{pmatrix} b_{1k} \\ \vdots \\ b_{mk} \end{pmatrix} = a_{i1} \cdot b_{1k} + a_{i2} \cdot b_{2k} + a_{im} \cdot b_{mk}$$

$$\underline{Beispiel:} \begin{pmatrix} 1 & -3 & 2 \\ 3 & -5 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 \\ 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 7 \\ 1 & 12 \end{pmatrix} c_{12} = \begin{pmatrix} 1 & -3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

<u>Bemerkung</u>: $A \cdot B$ für $A \in M_{exm_1}(K), B \in M_{m_2xn}(K)$ ist nicht definiert, falls $m_1 \neq m_2$.

5.1 Anwendung von Matrizen

Gegeben: $S = \{w_1, ..., w_m\} \subseteq K^n$

Finde a) "einfache Basis "von L(S) b) eine maximale l.u. Teilmenge $S' \subseteq S$

Gegeben
$$S$$
 wie oben, definiere $A := \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix}$, d.h. i -te Zeile von A ist der Vektor w_i (als Zeilenvektor)

<u>Definition 5.3:</u> a) $A = (a_{ij}) \in M_{mxn}(K)$ ist in <u>Zeilenstufenform</u> (ZSF) : $\Leftrightarrow \exists r \in \{0, ..., m\}, \exists 1 \leq j_1 < j_2 < \cdots < j_r \leq n$, so dass für i > r und $j \in \{1...n\}$ gilt $a_{ij} = 0$ und für $i \in \{1...r\}$ gilt $a_{ij_i} \neq 0$ und $a_{ij} = 0$ für $1 < j < j_i$

b) A wie in a) heißt <u>reduzierte Zeilenstufenform</u> (red. ZSF) : \Leftrightarrow A hat ZSF (wie in a)) und Pivot-Elemente $a_{ij_i}, i = 1...r$, sind 1 und $a_{kj_i} = 0$ für $k \neq i$ ($i \in \{1...r\}, k \in \{1...m\}$)

$$\underline{Beispiel:} \begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 4 & 0 \end{pmatrix} \text{ hat ZSF. } \begin{pmatrix} 1 & 2 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \text{ hat reduzierte ZSF (für } K = \mathbb{R})$$

 $\underline{Lemma\ 5.4}$: Sei $A\in M_{mxn}(K)$ mit Zeilen $w_1,...,w_m$ aus K^n . Ist A in ZSF mit r Zeilen $\neq \underline{0}(\underline{0}=(0...0))$, so ist $w_1,...,w_r$ eine Basis von $L(\{w_1,...,w_m\})$

 $Beweis: \ddot{U}$

 $\underline{Gauß - Elimination}$: Überführt eine beliebige mxn-Matrix durch "elementare Zeilentransformationen" E1-E3 (s.u.) in reduzierte ZSF.

Definition 5.5: E1-E3 sind wie folgt definiert: E1) Vertausche zwei Zeilen der Matrix.

- E2) Addition des Vielfachen einer Zeile zu einer anderen.
- E3) Multiplikation einer Zeile mit einem Skalar $\lambda \in K \setminus \{0\}$

$$\underline{Beispiel}:\begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & 0 \end{pmatrix} \xrightarrow{E1} \begin{pmatrix} 1 & 1 & 0 \\ 2 & 3 & 0 \end{pmatrix} \xrightarrow{E2} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{E3} \begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

<u>Lemma 5.6</u>: Seien $A, \tilde{A} \in M_{mxn}(K)$ mit Zeilen $w_1, ..., w_m$ bzw. $\tilde{w}_1, ..., \tilde{w}_m$. Entsteht \tilde{A} aus A durch wiederholtes Anwenden von E1,E2,E3, so gilt $L(\{w_1, ..., w_m\}) = L(\{\tilde{w}_1, ..., \tilde{w}_m\})$ \circledast

 \underline{Beweis} : Induktion über die Anzahl der Anwendungen von E1,E2,E3, es genügt zz: \circledast gilt beim einmaligem Anwenden von E1,E2 oder E3.

zu E1: Vertauschen zweier Zeilen führt zu $S=\tilde{S}.$ Die Zeilen insgesamt sind dieselben Mengen.

zu E2: z.B. Addiere λ · Zeile i zu Zeile $j \neq i$. $\tilde{w}_k = w_k$ für $k \neq j$, $\tilde{w}_j = w_j + \lambda \cdot w_i (i \neq j) \Rightarrow \tilde{S} \subseteq L(S) \Rightarrow L(\tilde{S}) \subseteq L(L(S)) = L(S)$. umgekehrt: $w_k = \tilde{w}_k$ für $k \neq j, w_j = \tilde{w}_j - \lambda \tilde{w}_i$, wie eben $S \subseteq L(\tilde{S}) \Rightarrow L(S) = L(\tilde{S})$..., E3) analog.

 $\underline{Satz\ 5.7}$: Jede Matrix $A \in M_{mxn}(K)$ lässt sich durch endlich viele Anwendungen von E1 und E2 (bzw. E1-E3) in (reduzierte) ZSF überführen; durch den Gauß-Algorithmus.

<u>Beweis zu Satz 5.7</u>: Gauß-Algorithmus nur für ZSF mit Induktion über m. m = 1 ist klar. $m \mapsto m + 1$: Fall 1: alle $a_{ij_i} = 0$.

Fall 2: Sei j_1 der kleinste Index einer Spalte $\neq \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$. Sei $i \in \{1...m\}$, so dass $a_{ij_1} \neq 0$. Vertausche Zeilen 1

und
$$i$$
. So erhalten wir die Matrix $\tilde{A} = \begin{pmatrix} 0 & \dots & 0 & \tilde{a}_{1j_1} & \dots & * \\ \vdots & \dots & \vdots & * & \dots & \vdots \\ \vdots & \dots & \vdots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & * & \dots & * \end{pmatrix}$ Für $i = 2...m$. Addiere $\left(-\frac{\tilde{a}_{ij_1}}{\tilde{a}_{1j_1}}\right)$ · Zeile 1 zu Zeile i (E2) \rightarrow Wir erhalten: $\tilde{B} = \begin{pmatrix} 0 & \dots & 0 & \tilde{a}_{1j_1} & * & \dots & * \\ \vdots & \dots & \vdots & 0 & \vdots & \dots & \vdots \\ \vdots & \dots & \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & 0 & * & \dots & * \end{pmatrix}$ Sei B die $(m-1)xn$ -Matrix bestehend

aus den Zeilen 2...m von \tilde{B} . Wende Induktionsvoraussetzung an, d.h. Gauß-Algorithmus für B. Beachte: Algorithmus für B erhält Nullen der Einträge (i,j) i=2...m, $j=1...j_1$

 $Beispiel: K = \mathbb{Q}$

$$\begin{pmatrix}
0 & 3 & 3 \\
2 & 4 & 7 \\
1 & 2 & 5
\end{pmatrix}
\longleftrightarrow
\begin{pmatrix}
1 & 2 & 5 \\
2 & 4 & 7 \\
0 & 3 & 3
\end{pmatrix}
\longleftrightarrow
\begin{pmatrix}
1 & 2 & 5 \\
0 & 0 & -3 \\
0 & 3 & 3
\end{pmatrix}
\longleftrightarrow
\begin{pmatrix}
1 & 2 & 5 \\
0 & 3 & 3 \\
0 & 0 & -3
\end{pmatrix}
\begin{vmatrix}
\cdot \frac{1}{3} \\
\cdot -\frac{1}{3}
\end{vmatrix}$$

$$\rightsquigarrow
\begin{pmatrix}
1 & 2 & 5 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\longleftrightarrow
\begin{pmatrix}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\longleftrightarrow
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

<u>Proposition 5.8</u>: Seien $A, \tilde{A} \in M_{mxn}(K)$ mit Zeilen $w_1, ..., w_m$ bzw. $\tilde{w}_1, ..., \tilde{w}_m$. Sei \tilde{A} in ZSF, entsanden aus A durch den Algorithmus im obigen Beweis.

Dann gelten: a) $\tilde{w}_1,...,\tilde{w}_r$ ist Basis von $L(\{w_1,...,w_m\})$ für r=Anzahl der Zeilen $\neq (0...0)$ in \tilde{A} .

b) Seien $i_1...i_r$ die Nummern der Zeilen, die unter Anwendung von E1 in die Zeilen 1, ..., r getauscht wurden. Dann sind $w_{i_1},...,w_{i_r}$ eine Basis von $L(\{w_1,...,w_m\})$

Beweis: a) Lemma 5.4 + Lemma 5.6

b) Skizze: Führe Algorithmus durch. Danach streiche alle Zeilen bis auf $i_1, ..., i_r$ in A, und die entsprechenden Zeilen in den Matrizen "zwischen "A und \tilde{A} . Man beobachtet, dass die Zeilen $\tilde{w}_1, ..., \tilde{w}_r$ Linearkombinationen von $w_{i1}, ..., w_{ir}$ sind.

Beispiel:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 2 & 4 \end{pmatrix} \xleftarrow{-2}_{+}^{-2} \xrightarrow{-1} \cdots \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xleftarrow{} \cdots \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$r = 2 \Rightarrow \{ \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = w_1 \text{ und } w_3 = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \} \text{ ist Basis von } L(\{w_1, w_2, w_3\})$$

 $A \in M_{mxn}(K)$ haben Zeilen $w_1, ..., w_m$ und Spalten $v_1, ..., v_n$.

Definition 5.9: a) $L(\{w_1,...,w_m\}) \subseteq Z_m(K)$ heißt <u>Zeilenraum</u> von A.

- $\overline{\mathbf{b}}) \ dim(L(\{w_1,...,w_m\})) \ \text{heißt} \ Zeilenrang \ \text{von} \ A.$
- c) $L(\{v_1,...,v_n\}) \subseteq V_n(K)$ heißt Spaltenraum von A.
- d) $dim(L(\{v_1,...,v_n\}))$ heißt $Spa\overline{ltenrang \text{ von }} A$.

Demnächst: Spaltenrang A = Zeilenrang A

<u>Proposition 5.10</u>: (schon gezeigt!) a) Der Zeilenrang von $A \in M_{mxn}(K)$ ist unverändert (invariant) unter Anwendung von E1,E2,E3.

b) Der	Zeilenrang ist	die maximale	Anzahl linear u	ınabhängiger	Vektoren unte	$w_1,, w_m$.	

6 Strukturerhaltende Abbildungen (Morphismen)

 $Definition 6.1 : Seien (G, e_G, \circ_G)$ und (H, e_H, \circ_H) Gruppen. Eine Abbildung $\varphi : G \to H$ heißt Gruppenhomomorphismus $\Leftrightarrow \forall g_1, g_2 \in G : \varphi(g_1 \circ_G g_2) = \varphi(g_1) \circ_H \varphi(g_2)$

<u>Lemma 6.2</u>: a) Sei $\varphi: G \to H$ ein Gruppenhomomorphismus, dann gelten:

- i) $\varphi(e_G) = e_H$ ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$
- b) Sind $\varphi_1:G_1\to G_2$ und $\varphi_2:G_2\to G_3$ Gruppenhomomorphismen, so auch $\varphi_2\circ\varphi_1:G_1\to G_3$

 $\underline{Beweis:} \text{ a) i) } \varphi(e_G) = \varphi(e_G \circ_G e_G) \overset{Homom.}{=} \varphi(e_G) \circ_H \varphi(e_G) \text{ Verknüpfe mit } \varphi(e_G)^{-1} (\in H) \Rightarrow e_H = \varphi(e_G)$

- ii) $\varphi(g^{-1}) \circ_H \varphi(g) \stackrel{Homom.}{=} \varphi(g^{-1} \circ_G g) = \varphi(e_G) = e_H$ und $\varphi(g)^{-1}$ ist die eindeutige Lösung von $x \circ g$ $\varphi(g) \stackrel{Lemma \ 2.5}{=} e_H$
- b) Übung.

Definition 6.12: Seien $(K, 0_K, 1_K, +_K, \cdot_K)$ und $(L, 0_L, 1_L, +_L, \cdot_L)$ Körper. Eine Abbildung $\varphi: L \to L$ heißt Körperhomomorphismus : \Leftrightarrow i) $\forall x, y \in K : \varphi(x +_K y) = \varphi(x) +_L \varphi(y)$

- ii) $\forall x, y \in K : \varphi(x \cdot_K y) = \varphi(x) \cdot_L \varphi(y)$
- iii) $\varphi(1_K) = 1_L$

Lemma 6.13: (folgt aus 6.2) Für einen Körperhomomorphismus $\varphi: K \to L$ gelten: i) $\varphi(0_K) = 0_L$

- ii) $\varphi(-x) = -\varphi(x) \ \forall x \in K$
- iii) $\varphi(x^{-1}) = \varphi(x)^{-1} \, \forall x \in K \setminus \{0\}$

Beispiel: Folgende Abbildungen sind Körperhomomorphismen: a) $\mathbb{Q} \to \mathbb{R}, q \mapsto q$

- b) $\mathbb{R} \to \mathbb{C}, r \mapsto (r, 0)$
- c) $\mathbb{C} \to \mathbb{C}, z = (a, b) \mapsto \overline{z} := (a, -b)$

Beispiel: Sei G eine Gruppe und $\mathbb{Q}^x = \mathbb{Q} \setminus \{0\}$. Folgende Abbildungen sind Gruppenhomomorphismen: a) $\overline{id}_G: G \to G, g \mapsto g$

- b) $(\{e_G\}, e_G, \circ_G) \to G, e_G \mapsto e_G$
- c) $(\mathbb{Q}^x, 1, \cdot) \to (\{\pm 1\}, 1, \cdot), q \mapsto \begin{cases} +1 & q > 0 \\ -1 & q < 0 \end{cases}$
- d) $(\mathbb{Z},0,+) \to (\mathbb{Z}/n,\overline{(0)},\overline{+})$ ist ein Gruppenhomomorphismus.

Nächstes Ziel: Der Vorzeichenhomomorphismus $sgn: S_n = Bij(\{1...n\}) \to (\{\pm 1\}, 1, \cdot) \ n \in \mathbb{N}$

 $\underline{Notation}: \text{ Schreibe } \sigma \in S_n \text{ als } \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \text{ (Wertetabelle)}$ $\underline{Beispiel}: \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$

 $\underline{Definition\ 6.3: \ \text{Die}\ Menge\ der\ Fehlst \"{a}nde}}_{\sigma(i)>\sigma(j)\}.\ l(\sigma):=|\overline{F_{\sigma}}|:=\underline{Zahl\ der\ Fehlst \"{a}nde}}.$ (Fst.) von $\sigma\in S_n$ ist $F_{\sigma}:=\{(i,j)|1\leq i< j\leq n\ \text{und}\ substitute{1.5cm}$

<u>Satz 6.4</u>: Die Vorzeichenfunktion $\sigma: S_n \to \{\pm 1\}, \sigma \mapsto (-1)^{l(\sigma)}$ ist ein Gruppenhomomorphismus.

Beispiel: $l(\sigma) = 1 + 1 + 1 = 3$, $F_{\sigma} = \{(1, 2), (1, 4), (3, 4)\}$

<u>Beispiel</u>: i) $\sigma \in S_n$ gegeben durch $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 6 & 4 & 5 & 3 & 7 \end{pmatrix}$ $F_{\sigma 1} = \{(i,j)|i< j\} = \{(3,4), (3,5), (3,6), (4,6), (5,6)\}$

ii)
$$sgn(id) = (-1)^{l(id)} = (-1)^{|F_{id}|} = 1$$

Definition 6.5 : a) $\sigma \in S_n$ heißt $Transposition : \Leftrightarrow \sigma$ genau 2 Elemente aus $\{1...n\}$ vertauscht.

b) Für
$$1 \le i < j \le n$$
 definiert man die Transposition $\tau_{(i,j)} \in S_n$ durch $\tau_{(i,j)}(k) := \begin{cases} k & \text{falls } k \ne i, j \\ j & \text{falls } k = i \\ i & \text{falls } k = j \end{cases}$

c) Die $\tau_{(i,i+1)} \in S_n$ heißen Nachbartranspositionen.

Bemerkung: i) $\sigma_1 = \tau_{(3,6)}$

ii) Ist $\tau \in S_n$ eine Transposition $\Rightarrow \tau^2 = \tau \cdot \tau = id$, denn $\tau = \tau_{(i,j)}, \ 1 \le i < j \le n$.

$$\tau_{(i,j)} \cdot \tau_{(i,j)}(k) = \tau_{(i,j)}(\tau_{(i,j)}(k)) = \begin{cases} \tau_{(i,j)}(k) & \text{falls } \tau_{(i,j)}(k) \neq i, j = k \neq i, j \\ j & \text{falls } \tau_{(i,j)}(k) = i = k = j \\ i & \text{falls } \tau_{(i,j)}(k) = j = k = i \end{cases} = \begin{cases} k & k \neq i, j \\ j & k = j = id \\ i & k = i \end{cases}$$

<u>Lemma 6.6</u>: Zu $\sigma \in S_n \setminus \{id\}$ gibt es Transpositionen $\tau_1, ..., \tau_k$ mit $k \leq n-1$, so dass $\sigma = \tau_1 \circ \tau_2 \circ ... \circ \tau_k$

<u>Beweis</u>: Induktion über n: n=1 gilt, denn $S_1 \setminus \{id\} = \emptyset$

$$\underline{n \leadsto n+1} : \text{Sei } \sigma \in S_{n+1} \setminus \{id\} \text{ Fall 1: } \sigma(n+1) = n+1 \text{ und } \tilde{\sigma} := \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \in S_n \setminus \{id\}$$

$$\tilde{\sigma} = \tilde{\tau}_1 \circ \tilde{\tau}_2 \circ \dots \circ \tilde{\tau}_k \text{ mit } k \leq n-1, \, \tau_l \text{'s sind Transpositionen aus } S_n. \, \tilde{\tau}_l := \begin{pmatrix} 1 & 2 & \dots & n & n+1 \\ \tilde{\tau}_l(1) & \tilde{\tau}_l(2) & \dots & \tilde{\tau}_l(n) & n+1 \end{pmatrix} \in \tilde{\sigma}_l$$

 S_{n+1} und es gilt $\sigma = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k, \ k \leq (n+1) - 2$

Fall 2: $\sigma(n+1) \neq n+1 \rightsquigarrow \tau = \tau_{(\sigma(n+q),n+1)} \in S_{n+1}$

 $S_{n+1}\ni\tilde{\sigma}:=\tau\circ\sigma\Rightarrow\tilde{\sigma}=\begin{pmatrix}1&2&\dots&n&n+1\\\tilde{\sigma}(1)&\tilde{\sigma}(2)&\dots&\tilde{\sigma}(n)&n+1\end{pmatrix}. \text{ Auf }\tilde{\sigma} \text{ wenden wir den gerade bewiesenen Fall }1\text{ an: i) }\tau\circ\sigma=\tilde{\sigma}=\tau_1\circ\dots\circ\tau_k \text{ mit }k\leq n-1\mid\tau\cdot_\Rightarrow\tau\circ\tau\circ\sigma=\tau\circ\tau_1\circ\dots\circ\tau_k, \ \sigma=\tau\circ\tau_1\circ\dots\circ\tau_k\\k+1\leq (n+1)-1, \text{ was zu zeigen war. oder ii) }\tau\circ\sigma=\tilde{\sigma}=id\leadsto\sigma=\tau$

$$\underline{Beispiel}: \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} \leadsto \tau_{(1,4)} \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}. \ \tau_{(1,3)} \circ \tau_{(2,4)} \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$

Bemerkung: $\tau_{(1,2)} \circ \tau_{(1,3)} \circ \tau_{(2,4)} \circ \sigma = id \Rightarrow \sigma = \tau_{(2,4)} \circ \tau_{(1,3)} \circ \tau_{(1,2)}$

 $\ddot{U}bung$ 6.7 : Jede Transposition ist eine Verkettung von Nachbartranspositionen.

<u>Beispiel</u>: $\tau_{(1,3)} = \tau_{(1,2)} \circ \tau_{(2,3)} \circ \tau_{(1,2)}$

<u>Korollar 6.8</u>: (zu Lemma 6.6 und 6.7) Jedes $\sigma \in S_n$ ist ein Produkt von Nachbartranspositionen.

Lemma 6.9: Für
$$\sigma \in S_n$$
 und $1 \le i \le n-1$ gilt $l(\sigma \circ \tau_{(i,i+1)}) = \begin{cases} l(\sigma) - 1 & \text{falls } (i, i+1) \text{ Fst. von } \sigma \Leftrightarrow \sigma(i) > \sigma(i+1) \\ l(\sigma) + 1 & \text{falls } (i, i+1) \text{ kein Fst. von } \sigma \Leftrightarrow \sigma(i) < \sigma(i+1) \end{cases}$

$$\underline{Beweis}: \text{Schreibe } \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \leadsto \tilde{\sigma} = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \leadsto \tilde{\sigma} = \begin{pmatrix} 1 & 2 & 3 & \dots & i-1 & i & i+1 & i+2 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(i-1) & \sigma(i+1) & \sigma(i) & \sigma(i+2) & \dots & \sigma(n) \end{pmatrix}. \text{ Vergleiche } F_{\sigma} \text{ mit } F_{\tilde{\sigma}}. \text{ Seien } k, l : 1 \leqslant k \leqslant l \leqslant n$$

a) $\{k,l\} \cap \{i,i+1\} = \emptyset : (k,l)$ Fst. von $\sigma \Leftrightarrow (k,i+1)$ Fst. von $\tilde{\sigma}$

b) $\overline{l \in \{i, i+1\}, k < i:}$ (k, i) Fst. von $\sigma \Leftrightarrow \sigma(k) > \sigma(i) = \tilde{\sigma}(i+1) \Leftrightarrow (k, i+1)$ Fst. von $\tilde{\sigma}$, d.h. (k, i) Fst. von $\sigma \Leftrightarrow (k, i+1)$

Fst. von $\tilde{\sigma}$ und (k, i + 1) Fst. von $\sigma \Leftrightarrow (k, i)$ Fst. von $\tilde{\sigma}$

- c) $k \in \{i, i+1\}, l > i+1$: analog zu b).
- d) $\overline{(k,l) = (i,i+1) : (i,i+1)}$ Fst. von $\sigma \Leftrightarrow \tilde{\sigma}(i+1) = \sigma(i) > \sigma(i+1) = \tilde{\sigma}(i) \Leftrightarrow (i,i+1)$ ist kein Fst. von $\tilde{\sigma}$, d.h. bis auf (k,l) = (i,i+1), ist die Anzahl von Fehlständen von σ gleich der Anzahl von Fehlständen von $\tilde{\sigma}$. Dann bleibt (k,l) = (i,i+1) zu untersuchen.

- (i, i+1) Fst. von $\sigma \Rightarrow$ ist kein Fst. von $\tilde{\sigma} \Rightarrow l(\tilde{\sigma}) = l(\sigma) = -1$
- (i, i+1) kein Fst. von $\sigma \Rightarrow$ ist Fs. von $\tilde{\sigma} \Rightarrow l(\tilde{\sigma}) = l(\sigma) + 1$

<u>Korollar 6.10</u>: (Ü) σ , i wie im Lemma. Dann ist $sgn(\sigma \circ \tau_{(i,i+1)}) = -sgn(\sigma)$

<u>Lemma 6.11</u>: (Ü) $\forall \sigma \in S_n, \forall \tau_1, ..., \tau_m$ Nachbartranspositionen ist $sgn(\sigma \circ \tau_1 \circ ... \circ \tau_m) = sgn(\sigma) \cdot (-1)^m (= sgn(\sigma) \cdot sgn(\tau_1 \circ ... \circ \tau_m))$

<u>Beweis zu Satz 6.4</u>: Seien $\sigma, \sigma' \in S_n$ <u>zz</u>: $sgn(\sigma \circ \sigma') \stackrel{!}{=} sgn(\sigma) \circ sgn(\sigma')$ Schreibe σ' als Produkt (Verkettung) von Nachbartranspositionen. $\sigma' = \tau_1 \circ ... \circ \tau_m$, dann gilt $sgn(\sigma \circ \sigma') = sgn(\sigma \circ \tau_1 \circ ... \circ \tau_m) = sgn(\sigma) \cdot sgn(\sigma')$

Die Menge der (K)-linearen Abbildungen von V nach W bezeichnet man mit Lin(V,W) bzw. $(Lin_K(V,W))$.

<u>Facts</u>: 0) $f: V \to W$ linear $\Rightarrow f(0_V) = 0_W$

- 1) $id_V: V \to V$ ist linear.
- 2) Sind $f: U \to V$ und $g: V \to W$ lineare Abbildungen, so auch $g \circ f: U \to W$
- 3) Ist $f: V \to W$ linear und $U \subseteq V$ ein UVR, so ist $f|_U: U \to W$ linear.

<u>Lemma 6.15</u>: Sei $f: V \to W$ linear. Dann gilt für $n \in \mathbb{N}$, für $\lambda_1, ..., \lambda_n \in K, v_1, ..., v_n \in V: f(\sum_{i=1}^n \lambda_i v_i = \sum_{i=1}^n \lambda_i f(v_i)$

Beweis: Induktion über n: n = 1 ist klar wegen ii).

$$\underline{n \mapsto n+1} : f(\sum_{i=1}^{n+1} \lambda_i v_i) = f(\sum_{i=1}^{n} \lambda_i v_i + \lambda_{n+1} v_{n+1}) \stackrel{i)}{=} f(\sum_{i=1}^{n} \lambda_i v_i) + f(\lambda_{n+1} v_{n+1}) \stackrel{Ind.Vor.}{=} \sum_{i=1}^{n} \lambda_i f(v_i) + \lambda_{n+1} f(v_{n+1}) - \sum_{i=1}^{n} \lambda_i v_i = f(\sum_{i=1}^{n} \lambda_i v_i) = f$$

Bemerkung: $f: V \to W$ ist linear $\Leftrightarrow \forall \lambda \in K, \forall v_1, v_2 \in V: f(\lambda v_1 + v_2) = \lambda \cdot f(v_1) + f(v_2)$

<u>Korollar 6.16</u>: (Ü) Sei $f: V \to W$ linear und $S \subseteq V$. Dann gilt: f(L(S)) = L(f(S))

<u>Beispiel 6.17</u>: Sei W ein K-VR, seine $w_1, ..., w_n \in W$ beliebig. Dann definiert $(\lambda_1, ..., \lambda_n) \mapsto \sum_{i=1}^n \lambda_i w_i$ die eindeutige lineare Abbildung $f: K^n \to W$ mit $f(e_i) = w_i$

Beweis: z.B.:
$$f(\nu \cdot (\lambda_1, ..., \lambda_n) + (\mu_1, ..., \mu_n)) = f((\nu \lambda_1 + \mu_1, ..., \nu \lambda_n + \mu_n)) \stackrel{Def.}{=} \sum_{i=1}^n (\nu \cdot \lambda_i + \mu_i) \cdot w_i = \nu \cdot \sum_{i=1}^n \lambda_i w_i + \sum_{i=1}^n \mu_i w_i = \nu f(...) + f(...)$$

<u>Lemma 6.18</u>: Seien V, W VR'e, M eine Menge. Dann gelten: a) Abb(M, W) ist ein K-VR durch $f+g: M \to W, m \mapsto f(m) + g(m), \lambda \cdot f: M \to W, m \mapsto \lambda \cdot f(m)$ für $f, g: M \to W$ und $\lambda \in K$.

b) $Lin(V, W) \subseteq Abb(V, W)$ ist ein UVR. (Ü)

 $\underline{Lemma~6.19}$: Sei $f:V\to W$ linear, seien $U\subseteq V$ und $X\subseteq W$ UVR'e. Dann gelten: a) $f(U)\subseteq W$ ist UVR

b) $f^{-1}(X) \subseteq V$ ist UVR

Beweis: a)
$$f(U) = f(L(U)) \stackrel{6.16}{=} L(f(U)) \subseteq W$$
 ist UVR. b) Ü.

<u>Definition 6.20</u>: Für eine lineare Abbildung $f: V \to W$ ist $Kern(f) := f^{-1}(\{0\}) = \{v \in V | f(v) = 0\}$ der <u>Kern</u> von f und Bild(f) = f(V) das Bild von f.

 \underline{Fact} : $Kern(f) \subseteq V$ und $Bild(f) \subseteq W$ sind UVR'e.

<u>Lemma 6.21</u>: Für eine lineare Abbildung $f: V \to W$ gelten: a) f surjektiv $\Leftrightarrow Bild(f) = W$ b) f injektiv $\Leftrightarrow Kern(f) = \{0\}$

<u>Beweis</u>: (nur b)) $f:(V,0,+)\to (W,0,+)$ als Homom. von Gruppen. In Übung 24: $Kern(f)=\{0\}\Leftrightarrow f$ injektiv.

 $Definition 6.22 : Sei f : V \to W$ eine lineare Abbildung. f heißt $Monomorphismus : \Leftrightarrow Kern(f) = \{0\}$

- $\overline{\text{b)} Endomorphis}mus :\Leftrightarrow Bild(f) = W$
- c) $Isomorphismus :\Leftrightarrow f$ ist Monom. $\land f$ ist Epim. $\Leftrightarrow f$ ist linear und bijektiv.

Satz 6.23(Dimensions formel f "ur lineare Abbildungen): Sei $f:V\to W$ eine lineare Abbildung und sei V endlich-dimensional. Dann gelten: a) Bild(f) ist endlich-dimensional

- b) dimKern(f) + dimBild(f) = dimV
- c) f ist Monomorphismus $\Leftrightarrow dimBild(f) = dimV$ (aus b) und 6.21)

 $\underline{Beweis}: Kern(f) \subseteq V$ ist UVR $\stackrel{4.16}{\Rightarrow} dim Kern(f) \leq dim V < \infty$. Wähle Basis B_0 von Kern(f); ergänze durch $C \subseteq V$ zu Basis $B_0 \cup C$ von V. Schreibe $C = \{w_1, ..., w_m\}$ mit m = |C|.

Behauptung 1: $f(w_1), ..., f(w_m)$ sind l.u. (in W). Seien dazu $\lambda_1, ..., \lambda_m \in K$ (bel.), so dass gilt: $0 = \sum_{i=1}^n \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i) \Rightarrow v := \sum_{i=1}^m \lambda_i w_i \in Kern(f) = L(B_0) \Rightarrow \exists \mu_b \in K : \sum_{b \in B_0} \mu_b \cdot b = v \Rightarrow 0 = \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i w_i \in Kern(f) = L(B_0) \Rightarrow \exists \mu_b \in K : \sum_{b \in B_0} \mu_b \cdot b = v \Rightarrow 0 = \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f(\sum_{i=1}^m \lambda_i w_i)) \Rightarrow v := \sum_{i=1}^m \lambda_i f(w_i \stackrel{6.15}{=} f$

$$v - v = \sum_{i=1}^{m} \lambda_i w_i + \sum_{b \in B_0} (-\mu_b) \cdot b \overset{B_0 \dot{\cup} C}{\Rightarrow} \overset{\text{Basis}}{\Rightarrow} \lambda_i = 0 \text{ für } i = 1...m \text{ (und alle } \mu_b = 0) \Rightarrow \text{Behauptung 1.}$$

Behauptung 2: $\{f(w_1)...f(w_m)\}$ ist ES von Bild(f), denn: $Bild(f) = f(L(B_0 \cup C)) = L(f(B_0) \cup f(C)) = L(f(B_0 \cup C)) = L(f(C)) = L(f(W_1),...,f(W_m)\}$.

$$\underline{Beh.1} \wedge \underline{Beh.2} \Rightarrow f(w_1), ..., f(w_m)$$
 ist Basis von $Bild(f) \Rightarrow dimBild(f) = m \Rightarrow a$)
zu b): $dimBild(f) + dimKern(f) = |C| + |B_0| = |C \cup B_0| = dimV$

 $\underline{Satz\: 6.26}$: Gelte $dimV=dimW<\infty,$ dann sind für $f\in Lin(V,W)$ äquivalent:

- a) f ist ein Monomorphismus
- b) f ist ein Epimorphismus
- c) f ist ein Isomorphismus

Definition 6.27: a) Eine lineare Abbildung $f: V \to V$ heißt Endomorphismus

- b) Ein bijektiver Endomorphismus heißt Automorphismus
- c) End(V) = Lin(V, V) und $Aut(V) = \{ \overline{f \in End(V) | f \text{ ist bijektiv}} \}$.

<u>Korollar 6.28</u>: Sei V ein endlich-dimensionaler VR. Dann sind für $f \in End(V)$ äquivalent:

- a) f ist Monomorphismus
- b) f ist Epimorphismus
- c) f ist Isomorphismus ($\Leftrightarrow f$ ist Automorphismus)

6.1 Isomorphie von Vektorräumen

 $Definition \ 6.24 : K-VR'e \ V \ und \ W \ heißen \ isomorph \ (schreibe \ V \simeq W) : \Leftrightarrow \exists \ Isomorphismus \ f \in Lin(V,W).$

 $\ddot{U}bung\ 6.35:$ i) Ist f Isom. $f:V\to W$, so ist $f^{-1}:W\to V$ K-linearer Isom.

- ii) Die Verkettung von Isomorphismen ist ein Isomorphismus.
- iii) $f: V \to W$ ist Isom. $\Leftrightarrow \exists g \in Lin(V, W)$ mit $f \circ g = id_W \land g \circ f = id_V$
- iv) Isomorphie ist eine Äquivalenzrelation auf der Menge aller VR'e.

Sei K ein Körper, V ein K-VR und endlich-dimensional.

 $\underline{Definition~6.29:}$ a) eine $\underline{geordnete~Basis}$ von V ist ein Tupel $\underline{B}=(b-1,...,b_n)\in V^n$, so dass $b_1,...,b_n$ eine \underline{Basis} von V.

b) Für \underline{B} aus a) definiere die Abbildung ${}^{\iota}\underline{B}:V_n(K)\to V:\begin{pmatrix}\lambda_1\\ \vdots\\ \lambda_n\end{pmatrix}\mapsto\sum\lambda_ib_i$

 $\underline{Proposition\ 6.30:} \text{ Ist } \underline{B} \text{ geordnete Basis von } V, \text{ so ist } {}^{\iota}\underline{B} \text{ ein Isomorphismus. } {}^{\iota}\underline{B}: V_n(K) \to V, \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \mapsto$

 $\sum_{i=1}^{n} \lambda_i b_i \text{ ein VR-Isomorphismus.}$

<u>Beweis</u>: 'B wohldefiniert und linear: siehe Bsp. 6.17.

 ${}^{\iota}\underline{B}$ bijektiv: nach Kor.4.6: Ist $b_1,...,b_n$ Basis von V, so gibt es $\forall v \in V : \exists !(\lambda_1,...,\lambda_n) \in K^n$ mit $v = \sum_{i=1}^n \lambda_i b_i$

 $\underline{Beachte:} \ {}^{\iota}\underline{B}(e_i) = b_i \ \text{für } e_1, ..., e_n \ \text{Standardbasis von } V_n(K), \ e_i = \begin{pmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ \text{wobei die 1 an i-ter Stelle steht.}$

<u>Korollar 6.31</u>: Seien V,W endlich-dimensionale UVR'e über K. Dann gilt: a) $dimV=n\Rightarrow V\simeq V_n(K)$ (vermöge $\iota\underline{B}$ aus 6.30 für geordnete Basis \underline{B} von V)

b) $dimV = dimW \Leftrightarrow V \simeq W$

Beweis zu b): " \Rightarrow ": Sei $n = dimV = dimW < \infty \stackrel{a)}{\Rightarrow} V \simeq V_n(K) \simeq W$. Nun: \simeq ist eine Äquivalenzrelation. " \Leftarrow ": Wähle Isomorphismus $f: V \to W$. Dimensionsformel ("für f"): dimV = dimKern(f) + dimBild(f) = 0 + dimW

<u>Lemma 6.32</u>: (Ü) Seien V, W VR'e über K. Sei $\underline{B} = (b_1, ..., b_n)$ geordnete Basis von V und sei $(w_1, ..., w_n)$ ein Tupel von Vektoren aus W. Dann gelten: a) $\exists ! f \in Lin(V, W)$ mit $(f(b_i) = w_i \text{ für } i = 1...n$ b) Ist $w_1, ..., w_n$ Basis von W, so ist f aus a) ein Isomorphismus.

7 Darstellungsmatrizen (lineare Abbildungen)

 $\underline{Spezialfall}$: Sei $e_1,...,e_n \in V_n(K)$ die Standardbasis. Für $f \in Lin(V_n(K),V_m(K))$ definiere $Mat(f) := \overline{(f(e_1)...f(e_n))} \in M_{mxn}(K)$

<u>Lemma 7.1</u>: a) $Mat: Lin(V_n(K), V_m(K)) \to M_{mxn}(K), f \mapsto Mat(f)$ ist ein VR-Isomorphismus.

b)
$$\forall \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in V_n(K) \text{ gilt } f(\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}) = Mat(f) \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in V_m(K)$$
c) Es gilt $A = Mat(f) \Leftrightarrow \forall \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in V_n(K) : f(\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}) = A \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$

<u>Beweis</u>: a) i) Mat ist linear: Seien $f, g \in Lin(V_n(K), V_m(K))$. Mat(f+g) hat j-te Spalte $(f+g)(e_j) = f(e_j) + g(e_j)$. Mat(f) + Mat(g) hat j-te Spalte $f(e_j) + g(e_j)$. analog $\lambda \cdot f$

- ii) Mat injektiv: wegen 6.32 ist f eindeutig bestimmt.
- iii) Mat surjektiv: wegen 6.32(/6.17) eindeutige lineare Abbildung.

b)
$$f\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = f(\sum_{i=1}^n \lambda_i e_i) \stackrel{f \ lin.}{=} \sum_{i=1}^n \lambda_i f(e_i) = ((f(e_1)...f(e_n)) \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = Mat(f) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

c) " \Rightarrow " ist b). " \Leftarrow " $A \cdot \Box$ ist lineare Abbildung. (Übung, siehe unten). $A \cdot e_j$ =Spalte von $A = A \cdot e_j = f(e_i)$ =Spalte j von Mat(f)

$$\underline{Beispiel: V_n(K) \to V_m(K) \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_5 \end{pmatrix}} \mapsto \sum \lambda_i w_i. \text{ Dann: } Mat(f) = \begin{pmatrix} w_1 & \dots & w_n \end{pmatrix} (w_i \in V_m(K))$$

 $\underbrace{Korollar\ 7.2\ (\text{Verkettungsregel für}\ Mat):}_{\text{gilt:}\ Mat(g\circ f)=Mat(g)\cdot Mat(f)} \text{Für lineare Abbildungen}\ f:V_n(K)\to V_m(K), g:V_m(K)\to V_l(K)$

<u>Korollar 7.3</u>: $dimLin(V_n(K), V_m(K)) = dimM_{mxn}(K) = m \cdot n$

Beweis:
$$Lin(V_n(K), V_m(K)) \stackrel{7.1a)}{\simeq} M_{mxn}(K) \simeq Abb(\{1...m\} \times \{1...n\}, K) \leftarrow \text{hat Dimension } n \cdot m. \text{ Nun:}$$

<u>Lemma 7.4</u>: (Ü) Seien U, V, W, X K-VR'e und $f: W \to X$ und $h: U \to V$ lineare Abbildungen. Dann gelten: a) $l_f: Lin(V, W) \to Lin(V, X), g \mapsto f \circ g$ ist lineare Abbildung.

- b) $r_h: Lin(V, W) \to Lin(U, W), g \mapsto g \circ h$ ist lineare Abbildung.
- c) Ist f ein Isom., so auch l_f
- d) Ist h ein Isom., so auch r_h

<u>Korollar 7.5</u>: Für $A, A' \in M_{mxn}(K), B, B' \in M_{exm}(K)$ gelten: a) $(B + B') \cdot A = B \cdot A + B' \cdot A$ b) $B \cdot (A + A') = B \cdot A + B \cdot A'$

c) Für $\lambda \in K : \lambda \cdot (B \cdot A) = (\lambda \cdot B) \cdot A = B \cdot (\lambda \cdot A)$

<u>Beweis</u>: z.B. a) wähle $g, g' \in Lin(V_m(K), V_l(K)), h \in Lin(V_n(K), V_m(K)), so dass <math>Mat(g) = B; Mat(G') = B$ $B', Mat(h) = A \overset{7.4b)}{\Rightarrow} (g+g') \circ h = g \circ h + g' \circ h \overset{Matlin.}{\Rightarrow} Mat((g+g') \circ h) = Mat(g \circ h) + Mat(g' \circ h) \overset{7.2}{\Rightarrow} Mat(h) = Mat(h) + Mat(h$ $Mat(g+g') \cdot Mat(h) = Mat(g) \cdot Mat(h) + Mat(g') \cdot Mat(h)$

Allgemeiner Fall ("Darstellungsmatrizen"): Seien V,W K-VR'e mit geordneten Basen $\underline{B}=(b_1,...,b_n)$

$$V \longrightarrow f \longrightarrow W \longrightarrow f(b_j)$$

 $V_n(K)$ $\uparrow^{\iota} \underline{C}$ $\downarrow^{\iota} \underline{C}$ $\downarrow^{\iota} \underline{C}$ $\downarrow^{\iota} \underline{C}$ $\downarrow^{\iota} \underline{C}$ $\downarrow^{\iota} \underline{C}$ bzw. $\underline{C} = (c_1, ..., c_m)$. Für $f: V \to W$ betrachte

<u>Lemma 7.6</u>: Die folgenden Abbildungen sind VR-Isomorphismen: a) $Lin(V, W) \to Lin(V_n(K), V_m(K)), f \mapsto^{\iota}$

von f bezüglich \underline{B} und \underline{C})

<u>Beweis</u>: a) Anwendung von 7.4c) und d); beachte ${}^{\iota}\underline{B}, {}^{\iota}\underline{C}^{-1}$ sind Isomorphismen.

b) $Mat_{\overline{B}}^{\underline{C}}$ ist die Verkettung der VR-Isomorphismen.

 $Korollar 7.7 : dimLin(V, W) = dimV \cdot dimW$ falls V und W endlich-dimensionale K-VR'e.

 $Direkte\ Beschreibung\ von\ Mat_{\overline{B}}^{\underline{C}}(f): \ \text{Für}\ j = 1...n\ \text{liegt}\ f(B_j) \in L(\{c_1,...,c_m\}) \overset{\underline{C}\ Basis}{\Rightarrow} \ \exists ! (a_{1j},...,a_{mj}) \overset{\underline{C}\ Basis}{\Rightarrow} \ \exists ! (a_{1j},...,a_{mj})$ K^m mit $f(b_j) = \sum_{i=1}^m a_{ij} \cdot c_i$

 $\underline{Proposition\ 7.8:}\ Mat_{\underline{B}}^{\underline{C}}(f) = (a_{ij})_{\substack{i=1...m\\i=1...n}} \in M_{mxn}(K)$

 $\underline{Beweis}: \text{Spalte } j \text{ von } Mat({}^{\iota}\underline{C}^{-1} \circ f \circ {}^{\iota}\underline{B}) \text{ } (=Mat^{\underline{C}}_{\underline{B}}(f)) = ({}^{\iota}\underline{C}^{-1} \circ f \circ {}^{\iota}\underline{B}(e_j) = {}^{\iota}\underline{C}^{-1}(f(b_j)) = \text{der Spalten-Partial}(f(b_j)) = (f(b_j)) = (f(b_$

vektor
$$\begin{pmatrix} \mu_1 \\ \vdots \\ \mu_m \end{pmatrix} \in V_m(K)$$
 mit ${}^{\iota}\underline{C} \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_m \end{pmatrix} = \sum_{i=1}^m \mu_i c_i = f(b_j) \stackrel{\underline{C} \ Basis}{\Rightarrow} \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_m \end{pmatrix} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} = \text{Spalte } j \text{ von } A.$

 $\underline{Bemerkung}$: a) Sind \underline{E}_n und \underline{E}_m die Standardbasen von $V_n(K)$ bzw. $V_m(K)$, so gilt: $Mat = Mat \frac{E_m}{E_n}$ b) Formale Schreibweise in (7.8): $(f(b_1)...f(b_n)) = f(\underline{B} = \underline{C} \cdot A \ (A = Mat_{\overline{B}}(f))$

Proposition 7.9 (Verkettung von Darstellungsmatrizen): Seien V, W, X K-VR'e und endlich-dimensional, mit geordneten Basen \underline{B} von V,\underline{C} von W,\underline{D} von X. Dann gilt für $f\in Lin(V,W)$ und $g\in Lin(W,X)$: $\circledast \circledast = Mat_{\overline{B}}^{\underline{D}}(g \circ f) = Mat_{\overline{C}}^{\underline{D}}(g) \cdot Mat_{\overline{B}}^{\underline{C}}(f) = \circledast$

"Formaler Beweis" : Schreibe $A=Mat_{B}^{\underline{C}}(f), A'=Mat_{C}^{\underline{D}}(g)$

$$f(B) = \underline{C} \cdot A \overset{g \ anw.}{\Rightarrow} "g(f(\underline{B})) = g(\underline{C} \cdot A) \overset{\ddot{U}}{=} g(\underline{C}) \cdot A \overset{7.8}{\Rightarrow} Mat_{\underline{B}}^{\underline{D}}(g \circ f) = A' \cdot A \qquad \qquad \Box$$

 $\underline{Spezialfall}: V = W$ endlich-dimensionale VR'e mit Basen \underline{B} und \underline{C} von V. Dann heißt $Mat_{\underline{B}}^{\underline{C}}(id_V) =: A$ $\underline{Basiswechselmatrix}$ (von \underline{B} nach \underline{C}).

Proposition 7.10: Sei
$$n = dimV$$
. Schreibe $v \in V$ als $v = \sum_{i=1}^{n} \lambda_i b_i = \sum_{i=1}^{n} \mu_i c_i$. Dann gilt: $A \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$

$$\underline{Beweis} : \text{Schreibe } v = \begin{pmatrix} b_1 & \dots & b_n \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \text{ (formal). Form gilt: } \underline{B} = id_V(\underline{B} = Mat_{\underline{B}}^{\underline{C}}(id_V) \cdot \underline{C} = \underline{C} \cdot A \Rightarrow$$

$$v = \underline{B} \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \underline{C} \cdot (A \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}) = \underline{C} \cdot \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} \stackrel{\underline{C} \ Basis}{\Rightarrow} A \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$$

 $\underline{Bemerkung}$: Koordinatn (bzw. Koeffizienten) von v sind Spaltenvektoren. Geordnete Basen sind "Zeilen-Tupel".

7.1 Eigenschaften von Basiswechselmatrizen

<u>Proposition 7.11</u>: Für $A \in M_{nxn}(K)$ (quadratische Matrix), sind äquivalent: a) Spaltenrang(A) = n b) $l_A : V_n(K) \to V_n(K), v \mapsto A \cdot v$ ist Isom.

c) $\exists A' \in M_{nxn}(K) : A \cdot A' = 1_n$

d)
$$\exists A' \in M_{nxn}(K) : A' \cdot A = 1_n \text{ für } 1_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} \in M_{nxn}(K).$$

Die Matrizen in c),d) sind eindeutig und dieselben.

b)
$$\Rightarrow$$
 c) \land d): l_A Isom. $\Rightarrow \exists g \in Lin(V_n(K), V_n(K)) : g \circ l_A = id_{V_n(K)} = l_A \circ g \stackrel{Mat\,anw.}{\Rightarrow} Mat(g) \cdot Mat(l_A) \stackrel{7.2}{=} Mat(id_{V_n(K)}) = l_n = A \cdot Mat(g) = A \cdot A' = A' \cdot A$

d) \Rightarrow b): Aus d) folgt: $l_{A'} \circ l_A = l_{1n} = id_{V_n(K)} \Rightarrow \text{inj.} \Rightarrow l_A \text{ ist injektiv, d.h. ein Monom.} \stackrel{l_A Endom.}{\Rightarrow} l_A \text{ ist Isom., d.h. b) gilt. c)} \Rightarrow$ b) ist analog.

Zusatz: Eindeutigkeit von A' folgt aus b) \Rightarrow c) \land d), denn $A' = Mat(l_a^{-1})$ und l_A^{-1} ist eindeutig.

 $Definition 7.12 : i) A \in M_{nxn}(K)$ heißt $\underline{invertierbar} \Leftrightarrow a)-d)$ aus 7.11 gelten.

- ii) Schreibe A^{-1} für die Matrix A' aus c) (oder d)).
- iii) $GL_n(K) := \{A \in M_{nxn}(K) | A \text{ ist invertierbar} \}$

 \underline{ddotU} : $(GL_n(K), 1_n, \cdot)$ ist eine Gruppe, nicht abelsch für $n \geq 2$

<u>Satz 7.13</u>: Sei $\underline{C} = (c_1, ..., c_n)$ geordnete Basis von V. Dann gilt:

- a) Für \underline{B} eine geordnete Basis von V ist $Mat_{\underline{B}}^{\underline{C}}(id_V) \in GL_n(K)$
- b) Für $A \in GL_n(K)$ ist $\underline{C} \cdot A =: \underline{B}$ eine geordnete Basis von V.
- $(\ddot{\mathbf{U}})$ c) $GL_n(K) \to \{\text{geordnete Basen von } V\}, A \mapsto \underline{C} \cdot A \text{ ist eine Bijektion.}$

<u>Lemma 7.14</u>: Seien V,W endlich-dimensionale K-VR'e mit geordneten Basen \underline{B} und \underline{C} und $f:V\to W$

linearer Isom. Dann ist $\operatorname{Mat}_{\overline{B}}^{\underline{C}}(f)$ invertierbar.

$$\underline{Beweis:} \text{ Sei } n = dimV = dimW. \ Mat_{\underline{B}}^{\underline{C}}(f) \in M_{nxn}(K) \text{ und } Mat_{\underline{C}}^{\underline{B}}(f^{-1}) \cdot Mat_{\underline{B}}^{\underline{C}}(f) \stackrel{7.9}{=} Mat_{\underline{B}}^{\underline{B}}(f^{-1} \circ f) = Mat_{\underline{B}}^{\underline{B}}(id_V) = 1_n$$

8 Dualräume und lineare Funktionale

Sei V ein VR über K, K ein Körper.

Motivation: Ein UVR $U \subseteq V$ lässt sich auf (mindestens) 2 Arten beschreiben:

- a) Als lineare Hülle einer Teilmenge $S \subseteq V$
- b) Falls $V = V_n(K)$ und $a_i = (a_{i1}, ..., a_{in}) \in Z_n(K), i = 1...m$, so ist die <u>Nullstellenmenge</u> linearer Gleichungen $\{v \in V_n(K) | a_i \cdot v = 0, i = 1...m\} \subseteq V$ ein UVR.

 $Definition: i) V^* := Lin_K(V, K)$ heißt $\underline{Dualraum}$ von V

ii) Die Elemente $\xi \in V^*$ heißen lineare Funktionale (Linearformen).

 V^* übernimmt "Funktion" von $Z_n(K)$ im Vergleich zu $V_n(K)$: Ist $S^* \subseteq V^*$, so ist $\{v \in V | \xi(v) = 0 \ \forall \xi \in S^*\} \subseteq V$ ein UVR.

 $Nachbemerkung\ zu\ Mat_{\overline{B}}^{\underline{C}}\ und\ GL_n(K): i)$ Ess gibt keine Standard-Definition von $Mat_{\overline{B}}^{\underline{C}}:$ Vorsicht!

 $\overline{\text{ii)} \ \underline{Bsp:} \ V = W = V_n(K). \ \underline{E} = (e_1, ..., e_n) \ \text{Standardbasis}, \underline{B} = (b_1, ..., b_n) \ \text{beliebige Basis} \ A = Mat_{\underline{B}}(id_V) = ?$

Spalte
$$j$$
 von $A = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix}$ erfüllt: $b_j = id_V(b_j) = \sum_{i=1}^n a_{ij} \cdot e_i = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix}$, d.h. $A = (b_1...b_n)$. Frage nun:

 $Mat_{\overline{E}}^{\underline{B}}(id_V) = ??? = A^{-1} \leftarrow \text{ in 3. VL!}$

 $\underline{zu\ Dualr\"{a}umen}: Proposition\ 8.2: a)\ V^*$ ist ein VR über $K, (denn\ V^* = Lin_K(V,K))$

- b) $dimV < \infty \Rightarrow \overline{dimV^* = dimV}$
- c) $(V_n(K))^* = Lin(V_n(K), V_1(K)) \stackrel{Mat}{\to} Mat_{1xn}(K) = Z_n(K)$ ist ein Isom.

<u>Beweis</u>: b) $dimV^* = dim(Lin(V, K)) \stackrel{7,7}{=} dim_K V \cdot dim_K K = dimV \cdot 1$

c) Folgt direkt aus 7.1

Funktional zu Zeilenvektor $z = (a_1...a_n) \in Z_n(K)$ unter 8,2c)?

Sei
$$\xi \in V^*$$
 beliebig und $e_1...e_n$ Standardbasis von $V_n(K) \Rightarrow Mat(\xi) = (\xi(e_1)...\xi(e_n)) \Rightarrow \xi(\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}) =$

$$\xi\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right) \stackrel{\xi \ lin.}{=} \sum_{i=1}^{n} \lambda_{i} \xi\left(e_{i}\right) \stackrel{falls \ Mat(\xi)=z}{=} \sum_{i=1}^{n} \lambda_{i} a_{i} = (a_{1}...a_{n}) \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{pmatrix}$$

Sei $\underline{B} = (b_1, ..., b_n)$ geordnete Basis von $V \Rightarrow$ für $i = 1...n \exists !$ lineare Abbildung $b_i^* : V \to K$, so dass $b_j \mapsto \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$

<u>Lemma 6.25</u>: Bsp: Ist $e_1...e_n$ Standardbasis von $V_n(K)$, so gilt: $e_i^* = (0...010...0)$

Proposition 8.3: $\underline{B}^* := (b_1^*, ..., b_n^*)$ ist Basis von V^* , die <u>Dualbasis</u> zu $\underline{B} = (b_1, ..., b_n)$ (Basis von V)

<u>Beweis</u>: $dimV^* = n$, nach 8.2a) \Rightarrow genügt zz: $b_1^*, ..., b_n^*$ sind l.u.

Seien $\lambda_1, ..., \lambda_n \in K$, so dass $\xi = \sum_{i=1}^n \lambda_i b_i^* = 0$ (d.h. ξ ist die Null-Abbildung). Berechne $0 = \xi(b_j) = 0$

$$\sum_{i=1}^{n} \lambda_i b_i^*(b_j) = \lambda_j \cdot 1 + 0 + \dots + 0 \Rightarrow \text{alle } \lambda_j = 0$$

Definition 8.4: Der Bidualraum von V ist $V^{**} := (V^*)^*$.

$$K; (a_1...a_n) \mapsto (a_1...a_n) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \Rightarrow \text{Bidual von } V_n(K) \simeq \text{Dual von } Z_n(K) \simeq V_n(K)$$

 $\underline{Satz\ 8.5}: (\ddot{\mathbb{U}})$ Sei $b_V: V \to Lin(V^*, K) = V^{**}, v \mapsto (b_V(v): \xi \in V^* \mapsto \xi(v))$. Dann gelten: a) $b_V(v)$ ist in der Tat linear.

- b) $b_V: V \to V^{**}$ ist linear.
- c) Gilt $dim < \infty$, so ist b_V ein Isom.

Definition~8.6: Seien $S\subseteq V$ und $T\subseteq V^*$ Teilmengen. Definiere $Am(S)=\{\xi\in V^*|\xi(v)=0:\forall v\in S^*\}$ \overline{S} ; $Null(T) := \{v \in V | \xi(v) = 0 : \forall \xi \in T\}$ als Annulator von S bzw. Nullraum von T.

$$\underline{Bsp}: U := L(\{\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}\}) \subseteq V_3(K) \Rightarrow Ann(U) = L(\{(1 \quad 1 \quad 1)\}) \subseteq Z_3(K). \text{ Sei } \xi = ((\lambda_1 \quad \lambda_2 \quad \lambda_3)),$$

benötigen
$$\xi \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = 0$$
 und $\xi \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 0$

<u>Lemma 8.7</u>: (Ü) a) $Ann(S) \subseteq V^*$ und $Null(T) \subseteq V$ sind UVR'e.

- b) $S' \subseteq S \subseteq V \Rightarrow Ann(S') \supseteq Ann(S)$, analog für $T' \subseteq T \subseteq V^* : Null(T') \supseteq Null(T)$
- c) Ann(S) = Ann(L(S)) und Null(T) = Null(L(T))

 $\underline{Beweis: z.B.:}$ a) Teil 2: $\underline{Behauptung: Null(T)}$ ist UVR von V.

- i) $0 \in Null(T)$, denn $\xi(0) = 0 \ \forall \xi \in V^*$
- ii) Seien $v, w \in Null(T)$ und $\lambda \in K$. Sei $\xi \in T$ beliebig. $Dann\ gilt: \xi(\lambda \cdot v + w) = \lambda \cdot \xi(v) + \xi(w) = 0 + 0 \Rightarrow$ $(\lambda \cdot v + w) \in Null(T)$

$$V \supseteq Null(X)$$

Sei $X\subseteq V^*$. Gelte $dimV<\infty$. Wir haben: $\begin{array}{ccc} V&\supseteq&Null(X)\\b_V\downarrow&&&\text{dann gilt: }X\subseteq V^*.\\V^{**}&\supseteq&Ann(X) \end{array}$

$$V^{**} \supseteq Ann(X)$$

<u>Lemma 8.8</u>: Gelte $dimV < \infty$. Sei $X \subseteq V^*$. Dann gilt: a) $b_V(Null(X)) = Ann(X)$

b) $b_V|_{Null(X)}: Null(X) \to Ann(X)$ ist Isom.

<u>Beweis</u>: a): $Ann(X) = \{w \in V^{**} | w(\xi) = 0 \ \forall \xi \in X\}. \ (b_V : V \to V^{**} \text{ ist Isom., also bijektiv}) \Rightarrow w = b_V(v)$ für eindeutiges $v \in V$ \Rightarrow $Ann(X) = \{b_V(v)|v \in V, (b_V(v))(\xi) = 0 \ \forall \xi \in X\} = \{b_V(v)|v \in V, \xi(v) = 0 \ \forall \xi \in X\}$ X} = $b_V(\{v \in V | \xi(v) = 0 \ \forall \xi \in X\})$

b) Abbildung surjektiv nach a). Abbildung ist Einschränkung der injektiven Abbildung b_V , also injektiv. \square

Satz 8.9 (Dimensionsformeln für Nullraum und Annulator): Gelte $dimV < \infty$. Seien $U \subseteq V$ und $X \subseteq V^*$ UVR'e. Dann gilt:

- a) dimU + dimAnn(U) = dimV
- b) $dimX + dim(Null(X)) = dimV (= dimV^*)$
- c) Null(Ann(U)) = U
- d) Ann(Null(X)) = X

<u>Beweis</u>: a) Sei $\underline{B} = (b_1, ..., b_n)$ geordnete Basis von V, so dass $S = \{b_1, ..., b_m\}$ eine Basis von U (Basis-Ergänzungssatz). Sei $\underline{B}^* = (b_1^*, ..., b_n^*)$ die Dualbasis zu \underline{B} (von V^*).

<u>Behauptung</u>: $T = \{b_{m+1}^*, ..., b_n^*\}$ ist Basis von Ann(U):

 $\overline{1.\text{Schritt: }Ann}(U) = Ann(S), \text{ denn 8.7c}): Ann(S) = Ann(L(S))$

2. Schritt: Schreibe $\xi \in V^*$ als $\xi = \sum_{j=1}^n \mu_j \cdot b_j^*$

$$\xi \in Ann(U) = Ann(S) \Leftrightarrow \forall i = 1...m : \xi(b_i) = 0 \Leftrightarrow \forall i = 1...m : 0 = \sum_{i=1}^{n} \mu_j \cdot b_j^*(b_i) = \mu_i \Leftrightarrow \mu_1 = \cdots = \mu_m = 0$$

 $0 \Leftrightarrow \xi \in L(\{b_{m+1}^*, b_n^*\})$. D.h. T ist ES von Ann(U). T ist l.u., denn T ist Teilmenge der Basis $b_1^*, ..., b_n^*$

 $\underline{Beh.} \Rightarrow dimU + dimAnn(U) = |S| + |T| = m + (n - m) = n = dimV$

- b) aus a) folgt: $dimX + dimAnn(X) = dimV^* = dimV$
- c) Wie in a) zeigt man: $\{b_{m+1}^*,...,b_n^*\}$ ist Basis von $Ann(U) \Rightarrow \{b_1,...,b_m\}$ ist Basis von Null(Ann(U))

8.1 Die duale Abbildung

Sei $f: V \to W$ eine lineare Abbildung. Ist $\xi: W \to K$ ein lineares Funktional, so auch $\xi \circ f: V \to K$.

<u>Lemma 8.10</u>: $f^*: W^* \to V^*, \xi \mapsto f^*(\xi) := \xi \circ f$ ist lineare Abbildung.

$$\underline{Beweis:} \text{ zz: } \forall \lambda \in K, \forall \xi, \eta \in W^*: f^*(\lambda \cdot \xi + n) \stackrel{!}{=} \lambda \cdot f^*(\xi) + f^*(\eta) \text{ linke Seite} = f^*(\lambda \cdot \xi + \eta) = (\lambda \cdot \xi + \eta) \circ f \stackrel{7.4}{=} \lambda \cdot (\xi \circ f) + \eta \circ f = \text{rechte Seite}.$$

 $Definition 8.11: f^*$ heißt die zu f duale Abbildung.

 $\underline{Lemma~8.12}$: Für $f\in Lin(V,W)$ und $g\in Lin(W,X)$ gilt $(g\circ f)^*=f^*\circ g^*$

$$\underline{Beweis}: \mathrm{Sei}\ \xi \in X^*.\ \mathrm{Dann}\ \mathrm{gilt}: (g \circ f)^*(\xi) \stackrel{Def.}{=} \xi \circ (g \circ f) = (\xi \circ g) \circ f \stackrel{Def.}{=} f^*(\xi \circ g) \stackrel{Def.}{=} f^*(g^*(\xi)) = (f^* \circ g^*)(\xi) \ \Box$$

 $\underline{Darstellungsmatrix\ von\ f^*: \underline{Definition\ 8.13:}} \underbrace{Definition\ 8.13:} \underbrace{Sei\ A = (a_{ij})_{j=1...m}^{i=1...m} \in M_{mxn}(K)}. \ Definiere\ \tilde{a}_{ij} = a_{ji}\ \text{für}$ $\underline{substacki = 1...mj = 1...n.} \ Dann\ heißt\ A^t := (\tilde{a}_{ij})_{j=1...m}^{i=1...m}\ \text{die\ zu}\ A\ transponierte\ Matrix}$

$$\underline{Bsp:} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

 $\underline{Lemma~8.14}$: Seien $\underline{B}=(b_1,...,b_n)$ bzw. $\underline{C}=(c_1,...,c_m)$ geordnete Basen von V bzw. W mit Dualbasen \underline{B}^* von V^* und \underline{C}^* von W^* . Dann gilt für $f\in Lin(V,W): \tilde{A}=Mat^{\underline{B}^*}_{C^*}(f^*)=(Mat^{\underline{C}}_{\underline{B}}(f))^t=A^t$

Beweis:
$$A = (a_{ij})_{j=1...m}^{i=1...m}$$
 erfüllt: $f(b_j) = \sum_{k=1}^{m} a_{kj} \cdot c_k$ für $j = 1...n$. $\tilde{A} = (\tilde{a}_{ij})_{j=1...m}^{i=1...n}$ erfüllt: $f^*(c_i^*) = \sum_{k=1}^{n} \tilde{a}_{ki} \cdot b_k^*$ für $i = 1...m$. Wende c_i^* an: $c_i^*(f(b_j)) = \sum_{k=1}^{m} a_{kj} \cdot c_i^*(c_k) = a_{ij} + 0 + ... + 0$. Wende $f^*(c_i^*)$ auf b_j an: $f^*(c_i^*)(b_j) = c_i^*(f(b_j))$

<u>Korollar 8.15</u>: Für $A \in M_{mxn}(K)$ und $B \in M_{exm}(K)$ gilt: $(B \cdot A)^t = A^t \cdot B^t$

<u>Beweis</u>: 1. Möglichkeit: Matrixeinträge vergleichen (Indexschlacht)

2. Sei \underline{E} die Standardbasis von $V_?(K)$ für $? \in \{l,m,n\}$. Sei $l_A: V_n(K) \to V_m(K), v \mapsto A \cdot v$ und $l_B: V_m(K) \to V_l(K), w \mapsto B \cdot w$. Dann gilt: $A = Mat^m_{\underline{E}_n}(l_A)$. $B = Mat^{\underline{E}_n}_{\underline{E}_m}(l_B)$, $B \cdot A = Mat^{\underline{E}_l}_{\underline{E}_n}(l_B \circ l_A) \Rightarrow (B \cdot A)^t = (Mat^{\underline{E}_l}_{\underline{E}_n}(l_B \circ l_A))^t = Mat^{\underline{E}_n^*}_{\underline{E}_n^*}((l_B \circ l_A)^*) \stackrel{8.10}{=} Mat^{\underline{E}_n^*}_{\underline{E}_n^*}(l_A^* \circ l_B^*) \stackrel{7.9}{=} Mat^{\underline{E}_n^*}_{\underline{E}_n^*}(l_B^* \stackrel{8.10}{=} A^t \cdot B^t)$

<u>Satz 8.16</u>: Für endlich-dimensionale VR'e V, W und $f \in Lin(V, W)$ gelten: a) $Bild(F) = Null(Kern(f^*))$

- b) Bild(*=Ann(Kern(f)))
- c) $dimBild(f) = dimBild(f^*)$

 $\underline{Vorbereitung:}\underline{Lemma~8.17:}$ Unter den Voraussetzungen von 8.16 sei: $f^*:W^*\to V^*$ dual zu f und $f^{**}:V^{**}\to W^{**}$ dual zu f^* .

Dann gelten: a) Im Diagramm $b_V \downarrow W$ $b_W \circ f = f^{**} \circ b_V$ $V^{**} \stackrel{f^{**}}{\rightarrow} W^{**}$

- b) (Ü) Für $Kern(f) \subseteq V$ und $Kern(f^{**}) \subseteq V^{**}$ gilt: $b_V|_{Kern(f)} : Kern(f) \to Kern(f^{**})$ ist ein Isom.
- c) (Ü) Analog ist $b_W|_{Bild(f)}: Bild(f) \to Bild(f^{**})$ ein Isom.

 $\underline{Beweis:} \text{ a) zz: } \forall \xi \in W^*: \forall v \in V: ((b_W \circ f)(v))(\xi) \stackrel{!}{=} ((f^{**} \circ b_V)(v))(\xi). \text{ linke Seite} = (b_W(f(v))(\xi) \stackrel{Def.}{=} \xi(f(v)). \text{ rechte Seite} = (f^{**}(b_V(v))(\xi) = (b_V(v) \circ f^*)(\xi) = b_V(v)(f^*(\xi)) = (f^*(\xi))(v) = (\xi \circ f)(v) = \xi(f(v)) \square$

 $\underline{Beweis\ zu\ 8.16:} \text{ a) "} \subseteq \text{" : Sei } f(v) \in Bild(f), \text{ d.h. } v \in V, \text{ zz: } f(v) \in Null(Kern(f^*)), \text{ also zz: } \forall \xi \in Kern(f^*): \xi(f(v)) = 0!, \text{ aber: } \xi(f(v)) = (\xi \circ f)(v) = (f^*(\xi))(v) \overset{\xi \in Kern(f^*)}{=} 0(v) = 0$

- c) " \leq ": $dimBild(f) \leq dimNull(Kern(f^*)) \stackrel{Satz \ 8.9:}{=} dimV^* dimKern(f^*) \stackrel{Satz \ 6.23:}{d} imBild(f^*)$
- b) " \subseteq ": Analog zu a).
- c) " \leq " folgt: $dimBild(f) = dim(Null(Kern(f))) \stackrel{a)\subseteq}{\Rightarrow} Bild(f) = Null(Kern(f^*))$ (da " \subseteq " bekannt).

b) " \supset ": wie a) " \supset ".

Definition 8.18: Für $f \in Lin(V, W)$, definiere den Rang von f als Rang(f) := dimBild(f)

 $\underline{Bemerkung}: \text{Für } f \in Lin(V_n(K), V_m(K)) \text{ mit } A = Mat(f) \text{ gilt } Rang(f) = \text{Spaltenrang}(A), \text{ denn der Spaltenraum von } A = L(\{A \cdot e_1, ..., A \cdot e_n\}) = L(\{f(e_1), ..., f(e_n)\}) = f(L(\{e_1, ..., e_n\})) = f(V_n(K)) = Bild(f)$

 $\underline{Korollar~8.19}$: Für $A \in M_{mxn}(K)$ gilt Spaltenrang(A)=Zeilenrang(A). (in Zukunft schreiben wir nur noch RangA).

 $\underline{Beweis}: \operatorname{Spaltenrang}(A) \overset{Bem}{=} \operatorname{Rang}(l_A) = \dim Bild(l_A) \overset{8.18}{=} \dim Bild(l_a^*) = \operatorname{Spaltenrang}(A^t) = \operatorname{Zeilenrang}(A)$

9 Lineare Gleichungssysteme

 $Definition 9.1 : Ein Lineares Gleichungssystem (LGS) in m Gleichungen und n Variablen <math>x_1, ..., x_n$ (über

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1+\cdots+a_{2n}x_n=b_2\\ \vdots\\ a_{m1}x_1+\cdots+a_{mn}x_n=b_m$ = \circledast mit $b_i,a_{ij}\in K$ für i=1...m,j=1...n. Das LGS heißt K) ist ein Schema:

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

 $\underline{homogen} \Leftrightarrow b_1 = \cdots = b_m = 0$, sonst $\underline{inhomogen}$. Der $\underline{L\"osungsraum}$ von \circledast ist $\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix} \in V_n(K) | \text{ die } \right\}$

Gleichungen \circledast sind erfüllt für $x_1, ..., x_n$.

sei
$$A = (a_{ij})_{j=1...n}^{i=1...m} \in M_{mxn}(K)$$
, sei $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in V_m(K)$. Dann gilt: \circledast ist äquivalent zu $A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = b$

 $Definition 9.2 : \mathbb{L}(A,b) = \{x \in V_n(K) | A \cdot x = b\} \text{ heißt } L\ddot{o}sungsraum \text{ von } \circledast. \text{ Sei } l_A : V_n(K) \to V_m(K), v \mapsto v_m(K) = v_m(K) \text{ for } l_A : V_n(K) \to v_m(K), v \mapsto v_m(K) = v_m(K) \text{ for } l_A : V_n(K) \to v_m(K) \text{ for } l_A : V_n($ $A \cdot v$ und seien $z_1, ..., z_m \in Z_n(K)$ die Zeilen von A ($z_i = i$ -te Zeile)

<u>Satz 9.3</u>: a) Ist \circledast homogen, so gelten: $\mathbb{L}(A,0) \stackrel{i)}{=} Kern(l_A) \stackrel{ii)}{=} Null(\{z_1,...,z_m\})$

- iii) $dim \mathbb{L}(A, 0) = n Rang(A) = n dim L(\{z_1, ..., z_n\})$
- b) Sei & beliebig (im Allgemeinen homogen). Dann gelten:
- i) \circledast hat Lösung $\Leftrightarrow Rang(A) = Rang(A|b)$
- ii) Ist $x_0 \in \mathbb{L}(A, b)$, so gilt $\mathbb{L}(A, b) = \{x + x_0 | x \in \mathbb{L}(A, 0)\}$

Notation: Wir schreiben A|b für die um die Spalte b verlängerte Matrix A.

<u>Beweis</u>: a) i) $\mathbb{L}(A,0) = \{x \in V_n(K) | A \cdot x = 0\} = Kern(l_A)$

- ii) Definition von $Null(\{z_1, ..., z_n\}) = \{v \in V_n(K) | z_i \cdot v = 0 \text{ für } i = 1...m\}$
- iii) $dim \mathbb{L}(A, 0) \stackrel{i)}{=} dim Kern(l_A) = dim V_n(K) dim Bild(l_A) = n Rang(A)$. $Null(\{z_1, ..., z_n\}) = Null(L(\{z_1, ..., z_n\}))$. Nun Dimensionsformel für Nullraum. b) i) \circledast hat Lösung $\Leftrightarrow \exists x_1,...,x_n \in K$ mit $x_1a_1+...+x_na_n=b$ für $a_1...a_n$ die Spalten von $A \Leftrightarrow b \in A$
- $L(\{a_1,...,a_n\}) = \operatorname{Spaltenraum}(A) \Leftrightarrow \operatorname{Spaltenraum}(A|b) = \operatorname{Spaltenraum}(A) \Leftrightarrow \operatorname{Rang}(A|b) = \operatorname{Rang}(A)$
- iii) zz: $x \in \mathbb{L}(A,0) \Leftrightarrow x + x_0 \in \mathbb{L}(A,b)$
- " \Rightarrow " $A \cdot (x + x_0) = A \cdot x + A \cdot x_0 = A \cdot x + b = b$ falls $x \in \mathbb{L}(A, 0)$

"
$$\Leftarrow$$
 " $A \cdot x = A \cdot (x + x_0 - x_0) = A \cdot (x + x_0) - A \cdot x_0 = b - b = 0$, falls $x + x_0 \in \mathbb{L}(A, b)$

<u>Korollar 9.4</u>: Falls RangA = n. Dann gelten:

- i) $\mathbb{L}(A,0) = \{0\} (\subseteq V_n(K)) \text{ und } |\mathbb{L}(A,b)| \le 1 \,\forall b \in V_m(K)$
- ii) Falls zusätzlich m=n, so gilt: $|\mathbb{L}(A,b)|=1 \ \forall b \in V_n(K)=V_m(K)$

Beweis: i) Folgt aus
$$dim \mathbb{L}(A,0) = n - Rang A = n - n = 0$$
 und 9.3b) für $\mathbb{L}(A,b)$

ii) Falls
$$m = n$$
: $n = Spaltenrang(A) \le Spaltenrang(A|b) \le n = Spaltenrang(A)$

<u>Lemma 9.5</u>: (Ü) a) Für $C \in GL_m(K)$ gilt: $\mathbb{L}(C \cdot A, C \cdot b) = \mathbb{L}(A, b)$

b) Elementare Zeilentransformationen angewandt auf A (oder A|b) lassen sich durch Linksmultiplikation $C \cdot A$ (oder $C \cdot (A|b)$) für elementare Matrizen in $GL_n(K)$ beschreiben.

 $Bsp: K = \mathbb{R}$

I $Rang(A|b_1) = 3 \ge Rang(A) \Rightarrow \mathbb{L}(A,b_1) = \emptyset$

II $Rang(A|b_2) = 2 = Rang(A) \Rightarrow \mathbb{L}(A, b_2) \neq \emptyset$

$$\Rightarrow \text{L\"{o}sung finden in II:} \begin{pmatrix} 1 & 0 & 1 & | & 4 \\ 0 & 1 & 1 & | & -\frac{1}{2} \end{pmatrix} \text{ eine L\"{o}sung } \begin{pmatrix} 4 \\ -\frac{1}{2} \\ 0 \end{pmatrix} = x_0; \mathbb{L}(-\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}) = L(\left\{\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}\right\})$$

$$\Rightarrow \mathbb{L}(A, b_2) = \left\{ \begin{pmatrix} 4 \\ -\frac{1}{2} \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\} \lambda \in \mathbb{R}$$

<u>Lemma 9.6</u>: Gelte Rang(A) = n für $A \in M_{nxn}(K)$. Ist $(1_n|B)$ die reduzierte ZSF aus dem Gauß-Algorithmus zu $(A|1_n)$, so gilt $B=A^{-1}$

<u>Beweis</u>: i) $Rang(A) = n \Rightarrow red$. ZSF zu A aus Gauß-Algorithmus ist $1_n \rightarrow wende$ Gauß auf $(A|1_n)$ an: erhalte red. ZSF der Form $(1_n|B)$

ii) Nach
$$9.5 \exists C \in GL_n(K)$$
 mit $C(A|1_n) = (1_n|B) \Rightarrow C \cdot A = 1_n$ und $C \cdot 1_n = B$, d.h. $B \cdot A = 1_n \overset{A \ quadratisch}{\Rightarrow} B = A^{-1}$

alternativ:
$$(A|1_n)$$
 codiert das simultane LGS $A \cdot x_1 = e_1, ..., A \cdot x_n = e_n \Rightarrow (x_1, ..., x_n) = A^{-1}$

Nachtrag: Sei $C \in M_{nxn}(K)$. Dann gilt: C invertierbar $\Leftrightarrow C^t$ invertierbar. Beweis 1. Lösung: C invertierbar $\Leftrightarrow Spaltenrang(C) = n \Leftrightarrow Zeilenrang(C^t) = n \Leftrightarrow (C^t)$

2. Lösung: C invertierbar $\Leftrightarrow D \in M_{nxn}(K)$ mit $C \cdot D = 1_n \Rightarrow D^t \cdot C^t = (C \cdot D)^t = 1_n \Rightarrow C^t$ invertierbar.

Man kann auch elementare Spaltentrans formationen definieren:

- E1') Vertausche 2 Spalten
- E2') Addiere Vielfaches einer Spalte zu einer anderen.
- E3') Multiplikation einer Spalte mit Skalar $\lambda \neq 0$
- \rightarrow damit kann man reduzierte Spaltenstufenform von Matrizen erhalten. (red.SSF)

Lemma 9.5: Elementare Spaltentransformationen lassen sich durch Rechtsmultiplikation mit invertierbaren Matrizen beschreiben.

Warnung: Spaltenoperationen änderen die Lösungsräume LGS!

Definition 9.7(Ähnlichkeit und Äquivalenz): a) $A, A' \in M_{mxn}(K)$ heißen äquivalent. (schreibe $A \sim A'$): \Leftrightarrow $\exists B \in GL_n(K), C \in GL_m(K) \text{ mit } A' = C \cdot A \cdot B$

b) $A, A' \in M_{nxn}(K)$ heißen $\underline{\ddot{a}hnlich}(\text{schreibe } A \approx A') \Leftrightarrow \exists B \in GL_n(K) \text{ mit } A' = B^{-1} \cdot A \cdot B$

 $\ddot{U}bung$: Ähnlichkeit definiert eine Äquivalenzrelation auf $M_{nxn}(K)$ und Äquivalenz definiert eine Äquivalenzrelation auf $\overline{M_{mxn}}(K)$

$$\underline{Satz\ 9.8:} \ \text{Seien}\ A, A' \in M_{mxn}(K). \ \text{Dann gelten: a)}\ A \sim \begin{pmatrix} 1_r & \vdots & 0 \\ \dots & \dots & \dots \\ 0 & \vdots & 0 \end{pmatrix} \in M_{mxn}(K) \ \text{für}\ r = Rang(A)$$

b) $A \sim A' \Leftrightarrow Rang(A) = Rang(A')$

<u>Beweis</u>: a) Äquivalenz bleibt erhalten unter elementaren Zeilen- und Spaltentransformationen (Lemma

$$9.5,9.5'). \ A \overset{Gauss}{\leadsto} A'' = \begin{pmatrix} 0 & \dots & 0 & 1 & X & \dots & \dots & X \\ 0 & \dots & \dots & 0 & 1 & X & \dots & \dots & X \\ \vdots & \vdots \\ 0 & \dots & \dots & \dots & 0 & 1 & X & \dots & X \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots & 0 \end{pmatrix}$$

b) " \Leftarrow " folgt aus a). " \Rightarrow " Ü.

 $Rang(C \cdot A) = Rang(A) = Rang(A \cdot B)$ für B, C invertierbar, d.h. in Äquivalenzklassen ist der Rang konstant.

<u>Korollar 9.9</u>: Jede Matrix aus $GL_n(K)$, d.h. jede Matrix in $M_{nxn}(K)$ mit Rang = n ist ein Produkt von Elementarmatrizen.

Proposition 9.10 (Interpretation von Ähnlichkeit und Äquivalenz): Seien V, W VR'e (über K) mit geordneten Basen $\underline{B} = (b_1, ..., b_n)$ bzw. $\underline{C} = (c_1, ..., c_m)$. Dann gilt:

- a) Sei $f \in Lin(V, W)$ und $A = Mat_B^C(f) \in M_{mxn}(K)$. Dann gilt: $A' \sim A$ (für $A' \in M_{mxn}(K)$) $\Leftrightarrow \exists \text{Basen}$ $\underline{B}',\underline{C}'$ von V bzw. $W\colon A'=Mat^{\underline{C}'}_{\underline{B}'}(f)$
- b) Sei $f \in End(V)$ und sei $A = Mat_{\underline{B}}(f) \in M_{nxn}(K)$. $A' \approx A$ (für $A' \in M_{nxn}(K)$) $\Leftrightarrow \exists$ Basen \underline{B}' von V $mit A' = Mat_{B'}^{\underline{B'}}(f).$

Bemerkung: Normalformen unter Ähnlichkeit sind nicht so leicht zu erhalten, siehe dann in LA2: über

$$\mathbb{C}$$
: Jordanform zu A . Für "einfache" A : erhalte "einfache "Normalfform $A \approx \begin{pmatrix} d_1 & 0 \\ & \ddots & \\ 0 & d_n \end{pmatrix}, d_i \in K$ für \underline{B}'

Basis aus "Eigenvektoren".

 $\underline{Beweis\ zu\ 9.10:}\ \mathrm{Verkettungsformel}\colon Mat^{\underline{C'}}_{\underline{B'}}(f) = Mat^{\underline{C'}}_{\underline{C}}(id_W) \cdot Mat^{\underline{C}}_{\underline{B}}(f) \cdot Mat^{\underline{B}}_{\underline{B'}}(id_V)$

" \Rightarrow ": Jede invertierbare Matrix definiert Basiswechselmatrix, z.B.: Sei $D \in GL_m(K)$, definiere $\underline{C} :=$ $\underline{C} \cdot D^{-1} \Rightarrow \underline{C} = \underline{C'} \cdot D$ und daher $Mat_{\underline{C}}^{\underline{C'}}(id_V) = D$

c) Spezialfall von Beweis von a) für $W=V,\underline{C}"=\underline{B}"$ und " $\underline{C}'="\underline{B}',$ denn: $(Mat^{\underline{B}'}_{B'}(id_V))^{-1}=Mat^{\underline{B}'}_{B}(id_V)$

weitere Anwendungen des Gauß-Algorithmus:

Finde Basis zu i) $X = L(\{z_1, ..., z_m\}) \subseteq Z_n(K)$ zu gegebenen $z_1, ..., z_m \in Z_n(K)$

ii) $U = L(\{v_1, ..., v_n\}) \subseteq V_m(K)$ zu gegebenen $v_1, ..., v_n \in V_m(K)$

iii) $Kern(l_A)$ zu $l_A: V_n(K) \to V_m(K), v \mapsto A \cdot v; A \in M_{mxn}(K)$

- iv) $Bild(l_A)$ zu $l_A:V_n(K)\to V_m(K), v\mapsto A\cdot v; A\in M_{mxn}(K)$
- v) U + W für $W = L(\{w_1, ..., w_s\}) \subseteq V_n(K), U$ wie oben, $w_j \in V_n(K)$
- vi) $Null(X) \subseteq V_n(K)$
- vii) $Ann(U) \subseteq Z_m(K)$
- viii) $U \cap W \subseteq V_n(K)$

Nochmals zu i): Sei \tilde{A} die red. ZSF zu $A = (v_1|...|v_n) \in M_{nxn}(K)$. Seien $1 \leq j_1 < j_2 < \cdots < j_r \leq n$ die Indizes der Pivotspalten von \tilde{A} . $\Rightarrow \{v_{j_1}, v_{j_2}, ..., v_{j_r}\}$ ist Basis von U = Spaltenraum(A).

10 Determinanten

Definition 10.1: Seien V, W K-VR'e, $n \in \mathbb{N}$. a) $f: V^n = V \times \cdots \times V \to W$ heißt $n-linear: \Leftrightarrow f$ ist in jedem Argument linear : $\Leftrightarrow \forall j = 1...n \forall (v_1,...,v_{n-1}) \in V^{n-1}$ ist die Abbildung $V \to W, v \mapsto$ $f(v_1, ..., v_{j-1}, v, v_j, ..., v_{n-1})$ linear.

- b) Eine n-lineare Abbildung $f: V^n \to W$ heißt $n-linearform :\Leftrightarrow W = K$
- c) Ist $f:V^n\to W$ n-linear, so heißt f <u>alternierend</u> : $\Leftrightarrow \forall (v_1,...,v_n)\in V$ gilt: $v_i=v_j$ für ein Paar $1 \le i < j \le n$, so dass $f(v_1, ..., v_n) = 0$
- d) $Lin_n(V, W)$ sei die Menge aller n-linearen Abbildungen $f: V^n \to W$
- e) $Alt_n(V,W)$ sei die Menge aller alternierenden Abbildungen $f:V^n\to W$

<u>Lemma 10.2</u>: (Ü) $Alt(V, W) \subseteq Lin_n(V, W)$ sind UVR'e von $Abb(V^n, W)$ <u>Motivation</u>: Sei $V = \mathbb{R}^n$ zu $(v_1, ..., v_n) \in V^n$. Sei $PE(v_1, ..., v_n) = \{\sum_{i=1}^n \lambda_i \cdot v_i | 0 \le \lambda_i \le 1 \forall i = 1...n \}$ das zugeörige Parallelepided (n = 3 Spat, n = 2 Parallelegramm)

gesucht: a) Eine Abbildung $D_{\underline{E}}: V^n \to \mathbb{R}$ mit $D_{\underline{E}}(v_1,...,v_n) =$ "orientiertes" Volumen von $PE(v_1,...,v_n)$ $\overline{\text{b}}$) Eine Abbildung $det: End_{\mathbb{R}}(\mathbb{R}^n) \to \mathbb{R}$, so dass für jede \mathbb{R} -lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$ der Wert det(f)die Volumenänderung unter f misst, d.h. $D_{\underline{E}}(f(v_1),...,f(v_n)) = det(f) \cdot D_{\underline{E}}(v_1,...,v_n) = \pm Volumen(PE(f(v_1),...,f(v_n)))$ $\forall (v_1, ..., v_n) \in V^n$

Eigenschaften von $D_E: (n-2)$ i) $D_E(\lambda \cdot v_1, v_2) = \lambda \cdot D_E(v_1, v_2) = D_E(v_1, \lambda \cdot v_2)$

- ii) $D_{\underline{E}}(v_1 + w_1, v_2) = D_{\underline{E}}(v_1, v_2) + D_{\underline{E}}(w_1, v_2)$ analog im 2. Argument.
- iii) $D_{\underline{E}}(v,v) = 0$. Allgemeines $n: D_{\underline{E}} \in Alt_n(\mathbb{R}^n,\mathbb{R})$

Wiederholung: K ein Körper. Charakteristik von K ist $Char(K) := min\{n \in \mathbb{N} | 1_K + ... + 1_K = 0_K\},$ wobei: $min\emptyset := 0$

In Ü: $Char(K) \neq 0 \Rightarrow Char(K)$ ist Primzahl!

<u>Lemma 10.3</u>: Seien V, W K-VR'e und $f \in Lin_n(V, W)$ a) $f \in Alt_n(V, W) \Rightarrow \circledast \forall \sigma \in S_n : \forall (v_1, ..., v_n) \in V^n$: $f(v_{\sigma(1)}, ..., v_{\sigma(n)}) = sgn(\sigma) \cdot f(v_1, ..., v_n)$

b) Falls $Char(K) \neq 2$, so gilt $Alt_n(V, W) = \{ f \in Lin_n(V, W) | f \text{ erfullt } \circledast \}$

<u>Beweis</u>: a) Ü: Es genügt \circledast für Nachbartranspositionen zu zeigen. (S_n wird erzeugt durch Nachbartranspositionen). Sei also $\sigma = \tau_{(i,i+1)}$ für $i \in \{1,...,n-1\}$ $\underline{zz}: f(v_1,...,v_{i-1},v_{i+1},v_i,v_{i+2},...,v_n) = (-1)$. $f(v_1, ..., v_{i-1}, v_i, v_{i+1}, ..., v_n)$. Fixiere $v_1, ..., v_{i-1}, v_{i+2}, ..., v_n$. Setze $g(v, w) = f(v_1, ..., v_{i-1}, v, w, v_{i+2}, ..., v_n)$. g 2-linear (bilinear), da f n-linear. g ist alternierend, d.h. $\forall v \in V : g(v, v) = 0$, denn f ist alternierend. $\underline{zz} : g(v,w) = -g(w,v) := \overset{g \; altern.}{=} \; g(v+w,v+w) \overset{g \; 2-lin.}{=} \; g(v,v+w) + g(w,v+w) \overset{g \; 2-lin.}{=} \; g(v,v) + g(v,w) + g$

$$\underline{zz} : g(v, w) = -g(w, v) := g(v + w, v + w) = g(v, v + w) + g(w, v + w) = g(v, v) + g(v, w) + g(w, v) + g(w, v) + g(w, v) = g(v, w) + g(w, v) = g(v, w)$$

b) Sei $(v_1, ..., v_n) \in V^n$ mit $v_i = v_j$ und $1 \le i < j \le n$. f erfüllt \circledast .

 \underline{zz} : $Char(K) \neq 2 \Rightarrow f(v_1,...,v_n) = 0$

Dazu: Sei
$$\sigma = \tau_{(i,j)} : f(v_1, ..., v_n) = f_{\sigma(1)}, ..., v_{\sigma(n)}) = sgn(\tau_{(i,j)}) \cdot f(v_1, ..., v_n) \Rightarrow 2 \cdot f(v_1, ..., v_n) = 0$$

$$\stackrel{Char(k) \neq 2}{\Rightarrow} f(v_1, ..., v_n) = 0$$

<u>Lemma 10.4</u>: Sei $\underline{B}=(b_1,...,b_n)$ Basis von V, für $(v_1,...,v_n)\in V^n$. Schreibe $v_i=\sum_{i=1}^n\lambda_{ij}b_j$ für eindeutige $\lambda_{ij} \in K$. Dann gilt:

a) Für
$$f_1Lin_n(V, W)$$
 gilt: $f(v_1, ..., v_n) = \sum_{j_1=1}^n \sum_{j_2=1}^n ... \sum_{j_n=1}^n \lambda_{1_{j_1}} \lambda_{2_{j_2}} ... \lambda_{n_{j_n}} f(b_{j_1}, ..., b_{j_n})$

a) Für
$$f_1Lin_n(V, W)$$
 gilt: $f(v_1, ..., v_n) = \sum_{j_1=1}^n \sum_{j_2=1}^n ... \sum_{j_n=1}^n \lambda_{1_{j1}} \lambda_{2_{j2}} ... \lambda_{n_{jn}} f(b_{j1}, ..., b_{jn})$
b) Für $f \in Alt_n(V, W)$ gilt: $f(v_1, ..., v_n) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_n \sigma(n) \cdot sgn(\sigma) f(b_1, ..., b_n)$

<u>Beweis</u>: a) Verwende n-Linearität in allen Argumenten, z.B.: $f(v_1, ..., v_{i-1}, \sum_{j=1}^n \lambda_i j_i f(v_1, ..., v_{i-1}, b_j, v_{i+1}, ..., v_n)$

b) f alternierend $\Rightarrow f(b_{i1},...,b_{in}) = 0$, falls $j_1,...,j_n$ nicht paarweise verschieden sind! Falls $j_1,...,j_n$ paarweise verschieden $\Rightarrow \{1,...,n\} \rightarrow \{1,...,n\}$ ist Permutation und erhalten so alle Permutationen in S_n genau 1mal! Schreibe $j_1 = \sigma(1), ..., j_n = \sigma(n)$ für $\sigma \in S_n \Rightarrow f(v_1, ..., v_n) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(1) \lambda_2 \sigma(2) ... \lambda_n \sigma(n) f(b_{\sigma(1)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(n) f(b_{\sigma(n)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(n) f(b_{\sigma(n)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(n) f(b_{\sigma(n)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(n) f(b_{\sigma(n)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(n) f(b_{\sigma(n)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(n) f(b_{\sigma(n)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(n) f(b_{\sigma(n)}, ..., b_{\sigma(n)}) = \sum_{\sigma \in S_n} \lambda_1 \sigma(n) f(b_{\sigma(n)},$ $sgn(\sigma)f(b_1,...,b_n)$

 $Lemma\ 10.4\frac{1}{2}$: Sei $A_n := Kern(sgn: S_n \to \{\pm 1\} \text{ und sei } \tau \in S_n \text{ eine Transposition und } n \geq 2.$ Dann (Ü!): i) $A_n \to A_n \cdot \tau, \sigma \mapsto \sigma \cdot \tau$ ist bijektiv.

- ii) $S_n = A_n \dot{\cup} A_n \cdot \tau$
- iii) $|S_n| = n!, |A_n| = \frac{1}{2}n!$

<u>Korollar 10.5</u>: Sei $\underline{B}=(b_1,...,b_n)$ Basis von V. Für $(v_1,...,v_n)\in V^n$ definiere $(\lambda_{ij})\in M_{nxn}(K)$ durch $\sum_{i=1}^{n} \lambda_{ij} \cdot b_j = v_i. \text{ Dann:}$

- a) $D_{\underline{B}}: V^n \to K, (v_1, ..., v_n) \mapsto \sum_{\sigma \in S_n} sgn(\sigma) \lambda_{1\sigma(1)} ... \lambda_{n\sigma(n)}$ liegt in $Alt_n(V, K)$ b) $D_{\underline{B}}$ ist Basis des K-VR $Alt_n(V, K)$ und $D_{\underline{B}}(b_1, ..., b_n) = 1 \rightsquigarrow$ Lösung der 1. Frage der Motivation zu Kapitel 10.

<u>Korollar 10.6</u>: $d \in Alt_n(V,K) \setminus \{0\}$, und $n = dimV, (b_1,...,b_n) \in V^n$. Dann gilt: $(b_1,...,b_n)$ ist Basis von $V \Leftrightarrow d(b_1, ..., b_n) \neq 0$

 \underline{Beweis} : " \Rightarrow " : Sei $(b_1,...,b_n)$ Basis \Rightarrow $d=d(b_1,...,b_n)\cdot D_B$ (siehe obiger Beweis). Wissen $d,D_B\neq$ " \Leftarrow ": $(\ddot{\mathbf{U}})$ $f \in Alt_n(V, W)$ und $v_1, ..., v_n$ l.a. $\Rightarrow f(v_1, ..., v_n) = 0$ (also $d(b_1, ..., b_n) \neq 0 \Rightarrow b_1, ..., b_n$ sind l.u.)

Definition 10.7: Für $d \in Alt_n(V,K)$ sind $f \in Lin(U,V)$. Definiere $f^{\circ}(d): U^n \to K, (u_1,...,u_n) \mapsto$ $d(f(u_1), ..., f(u_n))$

Bemerkung: $f^{\circ}(D_B)(v_1,...,v_n) = D_B(f(v_1),...,f(v_n)) = ... \cdot D_B(v_1,...,v_n)$

<u>Lemma 10.8</u>: a) $f^{\circ}(d) \in Alt_n(U,K) \forall d \in Alt_n(V,K)$

- b) $f^{\circ}: Alt_n(V,K) \to Alt_n(U,K), d \mapsto f^{\circ}(d)$ ist linear.
- c) Ist $g: X \to U$ linear, so gilt: $g^{\circ}(f^{\circ}(d)) = (f \circ g)^{\circ}(d)$

<u>Beweis</u>: a) $f^{\circ}(d)$ n-linear, denn: Seien $u_1, ..., u_{i-1}, u_{i+1}, ..., u_n \in U$ fest. $u \in U$ variabel. $\Rightarrow u \mapsto f()$ und $v \mapsto d(f(u_1), ..., f(u_{i-1}), v, f(u_{i+1}), ..., f(u_n))$ sind linear \Rightarrow deren Verkettung: $u \mapsto d(f(u_1), ..., f(u_{i-1}), f(u), f(u_{i+1}), ..., f(u_n))$ d.h. $u \mapsto (f^{\circ}(d))(u_1, ..., u_{i-1}, u, u_{i+1}, ..., u_n)$ ist lienar. alternierend: Seien $u_1,...,u_n \in U$ mit $u_i=u_j$ für ein Paar $1 \leq i < j \leq n \Rightarrow f(u_1),...,f(u_n) \in V$ und $f(u_i) = f(u_j) \Rightarrow 0 = d(f(u_1), ..., f(u_n)) = (f^{\circ}(d))(u_1, ..., u_n)$ b),c) Ü.

<u>Korollar 10.9</u>: Gelte $dimV = n \Rightarrow \text{Für } f \in End(V) \text{ und } d \in Alt_n(V, K) \setminus \{0\}$ gelten:

- a) $f^{\circ}(d) \in Alt_n(V, K) = K \cdot d$, d.h. $\exists ! \lambda_f \in K \text{ mit } \lambda_f \cdot d$
- b) λ_f ist unabhängig von d.

Definition 10.10: Die <u>Determinante</u> von $f \in End(V)$ ist $det(f) := \lambda_f$, d.h. $det : End_K(V) \to K$

<u>Beweis</u>: a) $f^{\circ}(d) \in Alt_n(V, K)$ nach 10.8. $d \neq 0 \Rightarrow d \in Alt_n(V, K)$ ist Basis nach 10.5 \Rightarrow erhalte eindeutiges $\lambda \cdot f$

b) Sei
$$d \in Alt_n(V, K) \setminus \{0\}$$
 beliebig $\Rightarrow \exists \mu \in K : d' = \mu \cdot d \Rightarrow f^{\circ}(d') = f^{\circ}(\mu \cdot d) \stackrel{f^{\circ} lin.}{=} \mu \cdot f^{\circ}(d) \stackrel{a)}{=} \mu \cdot \lambda_f \cdot d = \lambda_f \cdot d'$

<u>Proposition 10.11</u>: Sei $\underline{B} = (b_1, ..., b_n)$ geordnete Basis von V, seien $f, g \in End(V)$ und $\lambda \in K$. Dann gelten: a) $det(f \circ g) = det(f) \cdot det(g)$

- b) $det(f) = D_{\underline{B}}(f(b_1), ..., f(b_n))$
- c) $det(\lambda \cdot f) = \lambda^n \cdot det(f)$
- d) $f \in Aut(V) \Leftrightarrow det(f) \neq 0$
- e) $det|_{Aut(V)}: Aut(V) \to K$ ist Gruppenhomom.

Beachte: b) $\Rightarrow det(id_V) = 1$, e) $\Rightarrow det(f^{-1}) = det(f)^{-1}$

10.1 Die Determinante einer quadratischen Matrix

Zu
$$A = (a_{ij}) \in M_{nxn}(K)$$
 betrachte $f = l_{A^t} : V_n(K) \to V_n(K), v \mapsto A^t \cdot v$

 $Definition 10.12 : det(A) := |A| := det(l_{A^t} \text{ heißt } \underline{Determinante} \text{ von } A.$

$$\frac{Proposition \ 10.13:}{\text{b)} \ det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot a_{1\sigma(1)}...a_{n\sigma(n)}}$$
 Es gelten: a)
$$\det(AB) = \det(A) \cdot \det(B) \text{ für } A, B \in M_{nxn}(K)$$

 $\underline{Bemerkung}$: Im weiteren und auch zuvor: Σ =Standardbasis von $V_n(K)$ (Spaltenvektoren) und \underline{E}^* ist Dualbasis von $Z_n(K)$.

$$\underline{Lemma\ 10.14:} \text{ Seien } z_1,...,z_n \text{ die Zeilen von } A. \text{ Dann gilt } \det \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = D_{\underline{E}}*(z_1,...,z_n), \text{ insbesondere ist}$$

$$(z_1,...,z_n)\mapsto det \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$
 alternierend und (K-)n-linear.

 $Korollar\ 10.15$: Entsteht \tilde{A} aus A durch anwenden von E1-E3 (Zeilentransformationen) so gilt:

$$det(\tilde{A}) = \begin{cases} -det(A) & \text{für E1 (vertausche verschiedene Zeilen)} \\ det(A) & \text{für E2} \\ \lambda \cdot det(A) & \text{für E3 (Mult. 1Zeile mit } \lambda \neq 0) \end{cases}$$

 \underline{Beweis} : a) Tausche Zeile i mit Zeile $j, i \neq j$. Sei $\tau = \tau_{(i,j)}$. Dann gilt: $\det(\tilde{A}) = D_{\underline{E}^*}(z_1, ..., z_i + z_j \cdot \mu, ..., z_n) = D_{\underline{E}^*}(z_1, ..., z_n) = (-1) \cdot \det(A)$

b) E2: Addiere Zeile $j \cdot \mu$ zu Zeile i. $det(\tilde{A}) = D_{\underline{E}^*}(z_1, ..., z_i + z_j \cdot \mu, ..., z_n) = D_{\underline{E}^*}(z_1, ..., z_n) + D_{\underline{E}^*}(z_1, ..., z_i, ..., z_j,, z_n) \cdot \mu = det(A)$ etc.

<u>Korollar 10.16</u>: Für $A \in M_{nxn}(K)$ gilt $|A^t| = |A|$

<u>Beweis</u>: 1) Die Aussage gilt für elementare Matrizen. (wegen 10.15) z.B: $det(S^{(i,j)}) = -1 = det(S^{(j,i)^t})$ oder $(S^{(i,j)^t} = S^{(i,j)}!$ Analog für übrige $A_{\lambda}^{(i,j)}$ bzw. $M_{\lambda}^{(i)}$. Beachte $det(A_{\lambda}^{(i,j)}) \stackrel{10.15}{=} 1$ (E2 in 10.15) 2) Falls A in $GL_n(K)$, schreibe $A = A_1 \cdot \ldots \cdot A_5$ mit A_i elementar. $det(A^t) = det(A_5^t \cdot A_{5-1}^t \cdot \ldots \cdot A_1^t) = det(A_5^t \cdot A_{5-1}^t \cdot \ldots \cdot A_1^t)$

2) Falls A in $GL_n(K)$, schreibe $A = A_1 \cdot \ldots \cdot A_5$ mit A_i elementar. $\det(A^t) = \det(A_5^t \cdot A_{5-1}^t \cdot \ldots \cdot A_1^t) = \det(A_5^t) \cdot \ldots \cdot \det(A_1^t) \stackrel{1)}{=} \det(A_1) \cdot \ldots \cdot \det(A_5) = \det(A)$

3) Für $A \in M_{nxn}(K) \setminus GL_n(K) :\Rightarrow A$ und A^t haben nicht vollen Rang $\Rightarrow l_{A^{\circ}}, l_A$ nicht invertierbar $\Rightarrow det(A) = det(l_{A^t}) = 0 = det(l_A) = det(A^t)$

<u>Korollar 10.17</u>: (Ü) a) $V^n \to K, (v_1, ..., v_n) \mapsto det(v_1, ..., v_n)$ ist in $Alt_n(V_n(K), K)$

b) Analogen zu 10.15 gilt für elementare Spaltentransformationen.

c) (wie im Bsp.)
$$det \begin{pmatrix} a_1 & * \\ & \ddots & \\ 0 & & a_n \end{pmatrix} = a_1 \cdot \dots \cdot a_n \text{ (auch falls ein } a_i = 0!)$$

10.2 Laplace-Entwicklung

Für $A \in M_{nxn}(K)$ und $i, j \in \{1, ..., n\}$. Sei $A_{i,j} \in M_{n-1xn-1}(K)$ die durch Streichen von Zeile i und Spalte j entstehende Matrix.

<u>Lemma 10.18</u>: (Ü) Sei $A \in M_{nxn}(K)$ mit Zeile i von der Form $(0 \dots 0 \ 1 \ 0 \dots 0) \Rightarrow det(A) = (-1)^{i+j} det(A_{i,j})$

<u>Satz 10.19 Laplace'scher Entwicklungssatz</u>: Für $i, j \in \{1, ..., n\}$ gelten a) $det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} |A_{ij}|$ (Zeilenentwicklung)

b) $det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} |A_{ij}|$ (Spaltenentwicklung)

 $\underline{Beweis:} \text{ nur a): Sei } A = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \ (z_1 \text{ ist Zeile } l \text{ von } A) \Rightarrow |A| = D_{\underline{E}^*}(z_1,...,z_{i-1},\sum_{j=1}^n a_{ij} \cdot e_j^*,z_{i+1},...,z_n) = \sum_{j=1}^n a_{ij} \cdot e_j^*$

$$\sum_{j=1}^{n} a_{ij} \cdot D_{\underline{E}^*}(z_1, ..., z_{i-1}, e_j^*, z_{i+1}, ..., z_n) = \sum_{j=1}^{n} a_{ij} | \circledast_j | \stackrel{\ddot{U}}{=} \sum_{j=1}^{n} (-1)^{i+j} |A_{ij}| \cdot a_{ij}$$

<u>Korollar 10.20</u>: Für $k \neq i$ gilt $\sum_{i=1}^{n} a_{kj}(-1)^{i+j} det(A_{i,j}) = 0$

$$\underline{Beweis:} \text{ Schreibe } A = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}, \text{ d.h. } z_j = \text{Zeile } l \text{ von } A. \text{ } det \begin{pmatrix} z_1 \\ \vdots \\ z_{i-1} \\ z_k \\ z_{i+1} \\ \vdots \\ z_n \end{pmatrix} = \sum_{j=1}^n a_{kj} (-1)^{i+j} det(A_{i,j}). \text{ Zeile } i = \text{Zeile } l$$

$$k \text{ (und } k \neq i) \text{ und } Z_n(K)^n \to K, (w_1, ..., w_n) \mapsto \det \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \text{ ist alternierend.}$$

 $\underline{Definition\ 10.21:} \text{Für}\ A \in M_{nxn}(K) \text{ sei die } \underline{Adjunkte} Adj(A) \in M_{nxn}(K) \text{ die Matrix } ((-1)^{i+j}det(A_{j,i}))_{i,j=1...n}$

<u>Satz 10.22</u>: $A \cdot Adj(A) = det(A) \cdot 1_n$. Gilt also $det(A) \neq 0$, so erhält man $A^{-1} = \frac{1}{det(A)} \cdot Adj(A)$

Korollar 10.23 (Regel von Cramer): Sei $A \in M_{nxn}(K)$ mit Spalten $a_1, ..., a_n \in V_n(K)$. Sei $b \in V_n(K)$. Falls $det(A) \neq 0$, so gelten: a) $|\mathbb{L}(A, b)| = 1$

b) Ist
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 die Lösung aus a), so gilt $x_i = \frac{\det(a_1 \dots a_{i-1} b a_{i+1} \dots a_n)}{\det(a_1 \dots a_n)}$

Beweis: a)
$$det(A) \neq 0 \Rightarrow Rang(A) = n \stackrel{9.4b}{\Rightarrow} |\mathbb{L}(A,b)| = 1$$

b) $A \cdot x = b$ bedeutet: $x_1 a_1 + x_2 a_2 + ... + x_n a_n = b \circledast \Rightarrow det(a_1 ... a_{i-1} b a_{i+1} ... a_n) = \sum_{j=1}^n x_j det(a_1 ... a_{i-1} a_j a_{i+1} ... a_n) = x_i \cdot 0 + ... + 0 x_{i-1} + x_j \cdot det(A) + 0 + ... + 0$

Proposition 10.24: Sei V K-VR mit geordneter Basis $\underline{B}=(b_1,...,b_n)$ und sei $f\in End(V)$. Dann gilt: $\overline{det(f) = det(Mat_{\overline{B}}^{\underline{B}}(f))}$

 $\underline{Korollar\; 10.25:}$ a) $det(Mat^{\underline{B}}_{\underline{B}}(f))$ ist unabhängig von $\underline{B}.$ (Klar!)

b) Ähnliche Matrizen haben dieselbe Determinante. (Klar!) (Ü)

 $\underbrace{P \in weis \ 10.24 :}_{V} \ \text{Betrachte} \quad \underbrace{V} \quad \xrightarrow{f} \quad V \\ V_n(K) \quad \xrightarrow{g} \quad \bigvee^{\iota} \underline{B}^{-1} \quad \text{und beachte} \ d := ({}^{\iota}\underline{B}^{-1})^{\circ}(D_{\underline{E}}) \in Alt_n(V,K).$ $V_n(K) \quad \xrightarrow{g} \quad V_n(K)$ $1) \ \det(f) = \det(g) : \det(g) \cdot D_{\underline{E}} = g^{\circ}(D_{\underline{E}}) = ({}^{\iota}\underline{B}^{-1} \circ f \circ {}^{\iota}\underline{B})^{\circ}(D_{\underline{E}}) = {}^{\iota} \underline{B}^{\circ} \circ f^{\circ} \circ ({}^{\iota}\underline{B}^{-1})^{\circ}(D_{\underline{E}}) = {}^{\iota} \underline{B}^{\circ} \circ f^{\circ}(d) = {}^{\iota}\underline{B}^{\circ}(\det(f) \cdot d) = \det(f) \cdot {}^{\iota} \underline{B}^{\circ}({}^{\iota}\underline{B}^{-1})^{\circ}(D_{\underline{E}}) = \det(f) \cdot D_{\underline{E}}$

- 2) Sei $A := Mat\underline{\underline{B}}(f) = Mat(g)$, so dass $g = l_A$. Dann $det(A) = det(A^t) = det(l_{(A^t)^t}) = det(l_A) = det(g) = det(g)$ det(f)

11 Das Charakteristische Polynom und Eigenwerte

Sei K ein Körper.

Definition 11.1: a) Ein Polynom über K ist eine Folge $(a_n)_{n>0}$ mit $a_n \in K$. $\forall n \text{ und } \exists n_0 : \forall n \geq n_0 : a_n = 0$ $\overline{\mathbf{b}}) P = (0, 0, 0, \dots)$ heißt Nullpolynom (schreibe P = 0)

c) Für Polynome $P = (a_n)_{n \ge 0}$ und $Q = (b_n)_{n \ge 0}$ über K seien $P + Q := (a_n + b_n)_{n \ge 0}$. $P \cdot Q := (\sum_{k=0}^n a_k \cdot b_{n-k})_{n \ge 0}$

$$\underline{Grad}P := \begin{cases} -\infty & P = 0 \\ max\{n \in \mathbb{N}_0 | a_n \neq 0\} & P \neq 0 \end{cases}$$
Falls $P \neq 0$ nenne $a_{Grad}P$ den $\underline{Leitkoeffizienten}$ von P , nenne P $\underline{normiert}$, wenn $\underline{Leitkoeffizient=1}$.

d) Schreibe K[T] für die Menge aller Polynome über K (in den Variablen $T) \rightsquigarrow$ alternative Notation für $(a_n)_{n\geq 0}$ ist $\sum_{n\geq 0} a_n T^n = a_0 + a_1 T + \dots + a_m T^m$

 $Bemerkung: (K[T], 0, 1, +, \cdot) \ (1 = (1, 0, 0, ..., 0))$ ist ein Ring: Es gelten Axiome eines Körpers, bis auf Elemente in $K[T] \setminus \{0\}$ müssen kein Inverses bezüglich · haben.

 $\underline{Definition\ 11.2:}\ \mathrm{Sei}\ P\ =\ (a_n)\ \in\ K[T]\ \mathrm{a)}\ P(.)\ :\ K\ \to\ K, \lambda\ \mapsto\ \sum_{n\geq 0}a_n\lambda^n\ \mathrm{heißt}\ \underline{Auswertungsabbildung}$ zu P.

b) $\lambda \in K$ heißt <u>Nullstelle</u> von $P : \Leftrightarrow P(\lambda) = 0$

<u>Lemma 11.3</u>: (Ü) seien P,Q (Polynome) $\in K[T]$ und $\lambda \in K$. Dann: a) $(P+Q)(\lambda) = P(\lambda) + Q(\lambda)$

- b) $GradP \cdot Q = GradP + GradQ$, hierbei gelte $-\infty + x = x + (-\infty) = -\infty + (-\infty) = -\infty \ (x \in \mathbb{N}_0)$
- c) $P \cdot Q = 0 \Leftrightarrow P = 0 \lor Q = 0$
- d) $\exists ! \text{Polynom } S \in K[T], \text{ so dass } P = (T \lambda) \cdot S + P(\lambda)$
- e) $GradP > GradQ \Rightarrow$ Leitkoeffizient von P + Q = Leitkoeffizient von P.

Bemerkung: Polynom
division gilt für Polynome P,Q beliebig.

<u>Satz 11.4</u>: Sei $P \in K[T] \setminus \{0\}$. Dann existiert $k \in \mathbb{N}_0, \lambda_1, ..., \lambda_k \in K$ paarweise verschieden, $n_1, ..., n_k \in \mathbb{N}$ und $Q \in K[T]$, so dass $P = Q \cdot \prod_{j=1}^{k} (T - \lambda_j)^{n_j}$ und Q hat keine Nullstelle in K. Dabei ist Q eindeutig und $(\lambda_1 n_1), ..., (\lambda_k n_k)$ sind eindeutig bis auf Permutationen.

 $Definition 11.5: n_i$ heißt Vielfachheit der Nullstellen λ_i .

<u>Beweis</u>: Existenz: Indukton über GradP. GradP = $0 \Rightarrow P = a_0 = Q, k = 0.$ $n = GradP, n \mapsto n + 1 : P$ hat keine Nullstellen in $K \Rightarrow Q := P, k = 0$.

Fall: P hat Nullstellen in K, diese seien $\lambda \stackrel{11.3}{\Rightarrow} P = (T - \lambda) \cdot P_1 + 0$ für eindeutiges Polynom P_1 vom Gradn. Nun Ind. Vor: auf P_1 anwenden und sauber "Buch halten". Eindeutigkeit; (Ü)

<u>Korollar 11.5</u>: a) Sei $P \in K[T] \setminus \{0\}$. Dann ist die Zahl der Nullstellen von P in K höchstens GradP. b) Ist K ein unendlicher Körper, so gibt für $P,Q\in K[T]:P=Q\Leftrightarrow P(.)=Q(.)(\Leftrightarrow P(\lambda)=Q(\lambda)\forall \lambda\in K)$

<u>Beweis</u>: a) Schreibe $P = Q \cdot \prod_{i=1}^k (T - \lambda_i)^{k_i}$ wie in 11.4 \Rightarrow Nullstellen von P sind $\lambda_1, ..., \lambda_k$ und $GradP = (T - \lambda_i)^{k_i}$ $\begin{aligned} &GradQ + \sum_{i=1}^k n_i \geq 0 + \sum_{i=1}^k 1 = k = &\text{Anzahl der Nullstellen.} \\ &\text{b) } P = Q \Leftrightarrow P - Q = 0. \text{ Also zz: } P = 0 \Leftrightarrow P(.) \text{ ist die Nullabbildung.} \end{aligned}$

" \Rightarrow "Klar." \Leftarrow "Annahme: $P \neq 0 \stackrel{a)}{\Rightarrow} P$ hat höchstens GradP Nullstellen. Andererseits: $P = Nullabbildung. \Rightarrow$ alle Elemente von K sind Nullstellen von $P \Rightarrow |K| \leq GradP$ ist Widerspruch zu K unendlich.

Bemerkung: Gilt $GradP, GradQ \leq n$ und |K| > n, so folgt $P = Q \Leftrightarrow P(.) = Q(.)$ Eventuell in LA 2: $L[T] \to Abb(K, K), p \mapsto p(.)$ ist ein Ringhomomorphismus.

Satz 11.7: (ohne Beweis) a) C ist algebraisch abgeschlossen (auch in Funktheo 1)

- b) Jeder Körper ist Unterkörper eines algebraisch abgeschlossenen Körpers
- c) Jeder algebraisch abgeschlossene Körper ist unendlich.

$$\underline{Definition\ 11.12\ \text{Charakteristisches\ Polynom}):}\ \text{Sei}\ V\ \text{ein\ K-VR\ mit\ Basis}\ \underline{B}, f\in End(V), A=Mat\underline{\underline{B}}(f).$$

$$\underline{Definiere\ P_{ij}:=\begin{cases} T-a_{ii} & i=j\\ -a_{ij} & i\neq j \end{cases}}\ \text{in}\ K[T]\ \text{und}\ P_f:=P_A:=\sum_{\sigma\in S_n}sgn(\sigma)\cdot P_{1\sigma(1)}\cdot\ldots\cdot p_{n\sigma(n)}\overset{11.3e}{\Rightarrow}\ GradP_f=\text{Grad}$$

von Summand für $\sigma = id = n$ und Leitkoeffizient von P_f =Leitkoeffizient von $sgn(\sigma) \cdot P_{11} \cdot ... \cdot P_{nn}$ =Leitkoeffizient von $1 \cdot (T - a_{11}) \cdot ... \cdot (T - a_{nn}) = 1$

b)
$$P_{ij}(\lambda)$$
 =Koeffizient an (i,j) von $C := Mat_{\underline{B}}^{\underline{B}}(\lambda \cdot id_V - f) = \lambda \cdot Mat_{\underline{B}}^{\underline{B}}(id_V) - Mat_{\underline{B}}^{\underline{B}}(f) \stackrel{11,3}{\Rightarrow} P_f(\lambda) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot P_{1\sigma(1)}(\lambda) \cdot \ldots \cdot P_{n\sigma(n)}(\lambda) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot c_{1\sigma(1)} \cdot \ldots \cdot c_{n\sigma(n)} \stackrel{Leibniz}{=} det(C) = det(\lambda id_V - f)$

 $\sum_{\sigma \in S_n} sgn(\sigma) \cdot P_{1\sigma(1)}(\lambda) \cdot \dots \cdot P_{n\sigma(n)}(\lambda) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot c_{1\sigma(1)} \cdot \dots \cdot c_{n\sigma(n)} \stackrel{Leibniz}{=} det(C) = det(\lambda id_V - f)$ c) Beweis nur für K mit |K| > n. Nach b) und a): $P_f \in K[T]$, GradP = n und $P_f(\lambda) = det(\lambda \cdot id_V - f) \forall \lambda \in K$.
Sei jetzt $A' = Mat_{\underline{B'}}^{\underline{B'}}(f)$ bezüglich Basis $\underline{B'}$ von $V \stackrel{a),b}{\Rightarrow} P_{A'} \in K[T]$, $GradP_{A'} = n$, $P_{A'}(\lambda) = det(\lambda id_V - f) \forall \lambda \in K \Rightarrow P_f(\lambda) = P_{A'}(\lambda) \forall \lambda \in K \ (|K| \ge n + 1)$ und $GradP_{A'} = GradP_f = n \Rightarrow P_{A'} = P_f$

d) Folgt aus b) und 10.4, da $\lambda \cdot id_V - f \in End(V)$ ist invertierbar $\Leftrightarrow det(\lambda id_V - f) \neq 0 \stackrel{b)}{\Leftrightarrow} P_f(\lambda) \neq 0$

Berechnung von P_f : Berechne allgemeine Formel von $P_f(\lambda)$ für $\lambda \in K$ beliebig (unter der Annahme, dass \overline{K} unendlich ist) mit Gauß (oder Sarrus oder...). Ersetze λ durch T. Tatsächlich berechne direkt mit T. $P_f(\lambda) = det(\lambda i d_V - f)!$

Definition 11.15: Sei V ein VR der Dimension $n \in \mathbb{N}, f \in End(V)$. $v \in V$ heißt Eigenvektor zu $f \Leftrightarrow v \neq 0, \exists \lambda \in K \text{ mit } f(v) = \lambda \cdot v$

$$\underline{Definition\ 11.16:} \ \text{a)}\ A = (a_{ij}) \in M_{nxn}(K) \ \text{heißt}\ \underline{Diagonal matrix} \Leftrightarrow a_{ij} = 0 \\ \forall i \neq j \Leftrightarrow A = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{nn} \end{pmatrix}$$

b) $f \in End(V)$ heißt $diagonalisierbar \Leftrightarrow \exists Basis \underline{B} \text{ von } V$, so dass $Mat_{\overline{B}}^{\underline{B}}(f)$ ist Diagonalmatrix.

<u>Satz 11.17</u>: $f \in End(V)$ ist diagonalisierbar $\Leftrightarrow V$ besitzt Basis <u>B</u> aus Eigenvektoren.

$$\underline{Beweis:} \text{ "} \Rightarrow \text{" sei } \underline{B} \text{ Basis, so dass } Mat^{\underline{B}}_{\underline{B}}(f) = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \text{ gilt } (\lambda_1,...,\lambda_n \in K) \Rightarrow \text{Betrachte } i\text{-te}$$

Spalte $\Rightarrow f(b_i) = \lambda_i b_i$, da $b_i \neq 0$, haben Basis aus Eigenvektoren.

" \Leftarrow " Sei $\underline{B} = (b_1, ..., b_n)$ Basis aus Eigenvektoren. Gelte $f(b_i) = \lambda_i b_i$ für geeignetes $\lambda_i \in K \Rightarrow Mat_B^{\underline{B}}(f) = h_i b_i$

$$\begin{pmatrix} \lambda_1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & 0 & \vdots & \vdots \\ \vdots & \vdots & \lambda_i & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & \lambda_n \end{pmatrix} \text{ ist Diagonal matrix.}$$

<u>Beachte</u>: i) $v \in V$ ist Eigenvektor $\Leftrightarrow v \neq 0 \land \exists \lambda \in K$. $f(v) = \lambda \cdot id_V(v) \Leftrightarrow v \neq 0 \land \exists \lambda \in K$ mit

 $(\lambda \cdot id_V - f)(v) = 0 \Leftrightarrow \exists \lambda \neq 0 : v \in Kern(\lambda id_V - f) \setminus \{0\}$

ii) $Kern(\lambda id_V - f) \supset \{0\} \Leftrightarrow \lambda \cdot id_V - f$ kein Monomorphismus $\Leftrightarrow \lambda id_V - f$ ist nicht invertierbar $\Leftrightarrow 0 =$ $det(\lambda id_V - f) = P_f(\lambda)$

<u>Lemma 11.18</u>: a) $v \in V$ ist EV zu $f \Rightarrow \exists !$ EW λ von f mit $f(v) = \lambda \cdot v$

b) Ist λ ein EW von f in K, so existiert ein EV v zu f mit $f(v) = \lambda \cdot v$

 $Definition 11.19: E_f(\lambda) := \{v \in V | f(v) = \lambda v\} = Kern(\lambda id_V - f) \text{ heißt } Eigenraum \text{ zu } \lambda \in K$

Bemerkung: a) $E_f(\lambda) \supset \{0\} \Leftrightarrow \lambda \text{ ist EW zu } f$

- b) Menge aller EV'en zu $f = \lambda \in K$, $\stackrel{\circ}{EW}$ zu f ($E_f(\lambda) \setminus \{0\}$) \Rightarrow Bestimmung aller EV'en: i) Berechne P_f
- ii) Berechne die Nullstellen von P_f in K.
- iii) $\forall EV'e\lambda$ von f berechne $Kern(\lambda id_V f)$

 $Definition 11.20: \mu_f(\lambda) := Vielfachheit von \lambda$ als Nullstelle von P_f

Bemerkung: $\mu_f(\lambda) = 0$ falls λ kein EW zu f, sonst: $1 \le \mu_f(\lambda) \le n$

<u>Lemma 11.21</u>: $dim E_f(\lambda) \leq \mu_f(\lambda)$

Satz 11.22 : Für $f \in End(V)$. V endlich-dimensionaler K-VR, sind äquivalent:

- a) f ist diagonalisierbar
- b) i) P_f zerfällt in Linearfaktoren (in $K[T]) \wedge$ ii) \forall EW λ von f gilt $dim E_f(\lambda) = \mu_f(\lambda)$
- c) $\sum_{\lambda \in K} dim E_f(\lambda) = dim V$

 $Definition 11.23: a) UVR'eU_1, ..., U_k von V heißen l.u. : \Leftrightarrow \forall (u_1, ..., u_k) \in U_1 \times ... \times U_k: u_1 + ... u_k = u_1 + ... u_k$ $0 \Rightarrow (u_1, ..., u_k) = (0, ..., 0)$. in Diesem Fall schreiben wir $U_1 \oplus U_2 \oplus ... \oplus U_k$ für $L(U_1 \cup U_2 \cup \cup U_k)$

b) UVR'e $U_1,...,U_k$ von V bilden Zerlegung von $V\Leftrightarrow U_1,...,U_k$ sind k.u. und $U_1\oplus...\oplus U_k=V$

 $Bemerkung: Sind\ u_1,...,u_n\in V\ \text{l.u.}, \text{ so sind } U_1=K\cdot u_1,...,U_k=K\cdot u_k\ \text{l.u.}$ Bilden $u_1,...,u_k$ Basis von V, so bilden $K \cdot u_1, ..., K \cdot u_k$ eine Zerlegung von V.

<u>Lemma 11.24</u>: Seien $U_1,...,U_k$ l.u. UVR'e von V, sei B_i Basis von $U_i,i=1...k$. Dann gelten:

- a) $B_1, ..., B_k$ sind paarweise disjunkt und $B = \bigcup_{i=1}^k B_i$ ist Basis von $U_1 \oplus ... \oplus U_k$
- b) Bilden $U_1, ..., U_k$ eine Zerlegung von V, so ist B (aus a)) Basis von V.

Beweis: b) folgt direkt aus a) under der Definition von Zerlegung.

a) B ist ES von $U_1 \oplus ... \oplus U_k$: Denn $L(U_1 \cup ... \cup U_k) = L(B_1 \cup ... \cup B_k)$. B ist l.u. (und B_i paarweise disjunkt): Gelte $0 = \sum_{b \in B_i} \lambda_b \cdot b = 0$ für $i = 1...k \Rightarrow \lambda_b = 0 \forall b \in B_i \forall i = 1...k \Rightarrow 0$

Behauptung.

 $\underline{Korollar\ 11.25}$: Seien $U_1,...,U_k$ l.u. UVR'e von V. Dann gelten:

- a) $dim U_1 \oplus ... \oplus U_k = \sum_{i=1}^k dim U_i$ (denn $|B| = \sum_{i=1}^k |B_i|$ im Lemma)
- b) $U_1, ..., U_k$ bilden Zerlegung von $V \Leftrightarrow \sum_{i=1}^k dim U_i = dim V$

<u>Lemma 11.26</u>: Für $f \in End(V)$ $(dimV < \infty)$ seien $\lambda_1, ..., \lambda_k \in K$ paarweise verschiedene Eigenwerte von f. Dann sind $E_f(\lambda_1), ..., E_f(\lambda_k)$ l.u. UVR'e von V.

<u>Beachte</u>: $f_i|_{E_f(\lambda_1)\oplus...\oplus E_f(\lambda_k)}$ ist surjektive lineare Abbildung. $E_f(\lambda_1)\oplus...\oplus E_f(\lambda_k)\to E_f(\lambda_i)$

 $\underline{Beweis\ von\ Satz:}\ a) \Rightarrow b)$: Wähle $\underline{B}\ Basis\ von\ V\ mit\ Mat_{\underline{B}}(f) = \begin{pmatrix} \mu_1 & 0 \\ & \ddots & \\ 0 & & \mu_n \end{pmatrix}$. Umordnen der $\mu_i \Rightarrow$

 $Mat_{\underline{B}}(f) = Diag(\lambda_1, ..., \lambda_1, \lambda_2, ..., \lambda_k, ..., \lambda_k)$ wobei $\lambda_1, ..., \lambda_k$ paarweise verschieden. n_i =Vielfachheit mit der λ_i in der Diagonalmatrix auftritt und $n_1 + ... + n_k = n$

$$\Rightarrow P_f = \det \begin{pmatrix} T - \lambda_1 & & & \\ & \ddots & & \\ & & T - \lambda_1 & & \\ & & & \ddots & \\ & & & & T - \lambda_k & \\ & & & & \ddots & \\ & & & & & T - \lambda_k \end{pmatrix} = (T - \lambda_1)^{n_1} \cdot \dots \cdot (T - \lambda_k)^{n_k} \Rightarrow \mu_f(\lambda_i) = n_i$$

zerfällt in Linearfaktoren und $E_f(\lambda) = Kern(Diag(\lambda_i - \lambda_1, ..., \lambda_i - \lambda_1, ..., \lambda_i - \lambda_{i-1}, \lambda_i - \lambda_{i-1}, 0, ..., 0, Einträge <math>\neq 0$). $\Rightarrow dim E_f(\lambda) = \mu_f(\lambda_i \, \forall i = 1...k)$

b)
$$\Rightarrow$$
c): $\sum_{\lambda \in K} dim E_f(\lambda) = \sum_{\lambda \in K} dim E_f(\lambda) = \sum_{i=1}^k \mu_f(\lambda_i) = Grad P_f = dim V$ c) \Rightarrow a): Seien $\lambda_1, ..., \lambda_n$ die paarweise verschiedenen EW'e von f . Sei B_i Basis von $E_f(\lambda_i)$. c) $\Rightarrow \sum_i dim(E_f(\lambda_i) = \sum_{i=1}^k \mu_i (\lambda_i) = \sum_{i=1}^k \mu_i (\lambda_i$

c) \Rightarrow a): Seien $\lambda_1, ..., \lambda_n$ die paarweise verschiedenen EW'e von f. Sei B_i Basis von $E_f(\lambda_i)$. c) $\Rightarrow \sum dim(E_f(\lambda_i) = dimV$. 11.26: $\Rightarrow E_f(\lambda_1), ..., E_f(\lambda_k)$ sind l.u. $\stackrel{11.25}{\Rightarrow} v = E_f(\lambda_1) \oplus ... \oplus E_f(\lambda_k)$ und 11.24: $B = B_1 \dot{\cup} B_2 \dot{\cup} ... \dot{\cup} B_k$ ist Basis von V von EV'en zu $f \Rightarrow f$ diagonalisierbar.

Bemerkung: $det(f - \lambda \cdot id_V) = (-1)^{dimV} \cdot det(\lambda \cdot id_v - f)$

 $\underline{Bemerkung:} \text{ Es gilt stets } \sum_{\lambda \in K} dim E_f(\lambda) \leq dim V \text{ (zu 11.22). Denn: } \sum_{\lambda \in K} dim E_f(\lambda) \leq \sum_{\lambda \in K} \mu_f(\lambda) = \sum_{\lambda \in K} \mu_f(\lambda) \leq Grad(P_f) = dim V$

<u>Korollar 11.27</u>: Für $f \in End(V)$ ($dimV < \infty$) gilt: Hat f dimV verschiedene Eigenwerte, so ist f diagonalisierbar.

<u>Beweis</u>: Ist $\lambda \in K$ ein EW zu f, so gilt $dimE_f(\lambda) \geq 1 \Rightarrow \sum_{\lambda \in K} dimE_f(\lambda) \geq \sum_{\lambda \in K} 1 \geq dimV \Rightarrow f$ ist diagonalisierbar.

12 Euklidische und unitäre Vektorräume

Sei $K \in \{\mathbb{R}, \mathbb{C}\}$. Ziel: Zusatzstruktur eines Skalarproduktes auf einem K-VR \leadsto anschaulich: Können Längen und Winkel "messen".

 $Wiederholung: \mathbb{R} \subseteq \mathbb{C} = \mathbb{R} + i \cdot \mathbb{R}$ identifiziere $a \in \mathbb{R}$ mit $a + i \cdot 0 \in \mathbb{C}$

 $\overline{\cdot : \mathbb{C} \to \mathbb{C}, z = a + i \cdot b} \mapsto \overline{z} = a - i \cdot b$ ist komplexe Konjugation, wobei $\mathbb{R} = \{z \in \mathbb{C} | \overline{z} = z\}$

Für $z = a + i \cdot b$, mit $a, b \in \mathbb{R}$. i) $|z| = \sqrt{a^2 + b^2}$ und $|z|^2 = z \cdot \overline{z}$

- ii) $|z| = 0 \Leftrightarrow z = 0$
- iii) $Re(z):=a=\frac{1}{2}(z+\overline{z})$ und $Im(z):=b=\frac{1}{2i}(z-\overline{z})$

<u>Lemma 12.1 :</u> (Ü) Seien $z, w \in \mathbb{C}$ beliebig, dann gilt: a) $|z \cdot w| = |z| \cdot |w|$

- b) Ist $\underline{arg(z)}$ der Winkel zwischen z und $\mathbb{R}_{\geq 0}$, so gilt $arg(z \cdot w) = arg(z) + arg(w) \begin{cases} 0 & arg(z) \neq arg(w) < 2\pi \\ 2\pi & arg(z) \neq arg(w) \geq 2\pi \end{cases}$
- c) $\forall z \in \mathbb{C} \exists \lambda \in \mathbb{C} \text{ mit } |\lambda| = 1, \text{ so dass } |z| = \lambda \cdot z \text{ (falls } z \neq 0 : \lambda = \frac{\overline{z}}{|z|})$

 $\underline{Definition\ 12.2: \text{Seien}\ V, W\ \text{K-VR'e},\ K\in\{\mathbb{R},\mathbb{C}\}.\ \text{Eine Abbildung}\ f:V\to K\ \text{heißt}\ \underline{c-linear}:\Leftrightarrow \forall v_1,v_2\in V\ \text{und}\ \lambda\in K: f(v_1+v_2)=f(v_1)+f(v_2)\land f(\lambda\cdot v_1)=\overline{\lambda}\cdot f(v_1)$

Bemerkung: Für $K = \mathbb{R}$ gilt linear=c-linear.

Definition 12.3 : Sei V ein K-VR. Eine Abbildung $\langle .,. \rangle$: $V \times V \to K, (v,w) \mapsto \langle v,w \rangle$ heißt:

- a) symmetrische Bilinearform (SBF), falls $K = \mathbb{R}$; <u>Hermitesche Form</u> (HF) falls $K = \mathbb{C}$ sofern gelten:
- (S- $\overline{\text{H-1}}$): $\forall w \in V \text{ ist } V \to K, v \mapsto \langle v, w \rangle$ linear
- (S-H-2): $\forall v \in V \text{ ist } V \to K, w \mapsto \langle v, w \rangle \text{ c-linear}$
- (S-H-3) $\forall v, w \in V : \langle v, w \rangle = \overline{\langle v, w \rangle}$
- b) $Skalarprodukt \Leftrightarrow <.,.>$ ist SBF bzw. HF und es gilt $(P) \ \forall v \in V \setminus \{0\} : < v,v> \in \mathbb{R}_{>0} = \{r \in \mathbb{R} | r > 0\}$
- c) Ist $\langle .,. \rangle$ ein Skalarprodukt auf V, so heißt $(V, \langle .,. \rangle)$ <u>Euklidischer</u> $(K = \mathbb{R})$ bzw. <u>unitärer</u> $(K = \mathbb{C})$ Vektorraum. Falls $dimV < \infty$, nennen wir $(V, \langle .,. \rangle)$ einen endlich-dimensionalen <u>Hilbertraum</u> (HR).

 $Beispiel: V = V_n(K), <..., >: V_n(K) \times V_n(K) \to K, (v, w) \mapsto v^t \cdot \overline{w}$ ist ein Skalarprodukt.

Sei im weiteren stets (V, < .,.>) ein unitärer/Euklidischer Vektorraum.

Definition 12.4 : a) Für $v \in V$ heißt $||v|| = \sqrt{\langle v, v \rangle}$ die Normlänge von V.

- b) Ist (V, < .,. >) ein Euklidischer Vektorraum und sind $u, w \in V \setminus \{0\}$, so heißt $\varphi \in [0, \pi]$ der <u>Winkel</u> zwischen v und $w \Leftrightarrow cos\varphi = \frac{< v, w>}{||v||.||w||} \in [-1, 1]$
- c) $v, w \in V$ heißen orthogonal $\Leftrightarrow \langle v, w \rangle = 0$

Lemma 12.5 : Für $v, w \in V$ und $\lambda \in K$ gelten: a) $||\lambda \cdot v|| = |\lambda| \cdot ||v||$

- b) $v = 0 \Leftrightarrow ||v|| = 0$
- c) $v \neq 0 \Rightarrow ||\frac{1}{||v||} \cdot v|| = 1$
- d) $||v \pm w||^2 = ||v||^2 + ||w||^2 \pm 2 \cdot Re < v, w >$

 $\underline{Beweis:} \text{ a) } ||\lambda \cdot v|| = \sqrt{<\lambda v, \lambda v>} \overset{SH1}{=} \sqrt{\lambda < v, \lambda v>} \overset{SH2}{=} \sqrt{\lambda \overline{\lambda} < v, v>} = \sqrt{|\lambda|^2 ||v||^2} = |\lambda|||v||$

- b) folgt aus (P) und < 0, 0 >= 0
- c) folgt aus a) und b)
- d) $||v \pm w||^2 = \langle v \pm w, v \pm w \rangle$ $\stackrel{SH1,SH2}{=} \langle v, v \rangle \pm \langle v, w \rangle \pm \langle w, v \rangle + \langle w, w \rangle = ||v||^2 + ||w||^2 \pm (\langle v, w \rangle + \overline{\langle v, w \rangle}) = ||v||^2 + ||w||^2 \pm 2 \cdot Re \langle v, w \rangle$

 $Satz\ 12.6:$ a) (Cauchy-Schwartz-Ungleichung): $\forall v, w \in V: |\langle v, w \rangle| \leq ||v|| \cdot ||w||$

b) (Dreiecksungleichung) $\forall v, w \in V : ||v + w|| \le ||v|| + ||w||$

a) Falls $\langle v, w \rangle = 0 \Rightarrow$ Aussage klar. Im weiteren $\langle v, w \rangle \neq 0 \Rightarrow v, w \neq 0 \Rightarrow ||v||, ||w|| > 0$. Dividiere Ungleichung durch $||v|| \cdot ||w|| (> 0) \Rightarrow \frac{|\langle v, w \rangle|}{||v|| \cdot ||w||} \leq 1 \Rightarrow |\langle \frac{1}{||v||} \cdot v, \frac{1}{||w||} \cdot w \rangle | \leq 1 \Rightarrow \underline{zz} : \forall v, w \in V \text{ mit } ||v|| = ||w|| = 1 \text{ gilt } |\langle v, w \rangle| \leq 1$.

Wähle $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$, so dass $\lambda \cdot < v, w > = |< v, w > | \in \mathbb{R}_{\geq 0}$, d.h. $|< v, w > | = < \lambda \cdot v, w > = Re < \lambda \cdot v, w > \Rightarrow 0 \le ||\lambda \cdot v - w||^2 = ||\lambda \cdot v||^2 - 2 \cdot Re < \lambda v, w > + ||w||^2 \Rightarrow 2|< v, w > | = 2 \cdot Re < \lambda v, w > \le ||v||^2 + ||w||^2 = 2 \Rightarrow |< v, w > | \le 1$

 $\frac{Proposition \ 12.8:}{\sum\limits_{i=1}^{n}\lambda_{i}b_{i}, w = \sum\limits_{i=1}^{n}\mu_{i}b_{i}), \text{ so gilt } < v, w > = (\lambda_{1},...,\lambda_{n}) \cdot Mat_{\underline{B}}(<..,>)(\overline{\mu_{1}},...,\overline{\mu_{n}})^{t}}$

 $\underline{Beweis:} < \sum_{i=1}^{n} \lambda_i b_i, \sum_{j=1}^{n} \mu_j b_j > = \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \overline{\mu_j} < b_i, b_j > = \text{rechte Seite.}$

<u>Definition 12.9</u>: Sei $A = (a_j) \in M_{nxn}(K)$. a) A heißt $\underline{symmetrisch} : \Leftrightarrow A = A^t (\Leftrightarrow a_{ij} = a_{ji}, \forall i, j \in \{1...n\})$ b) $\overline{A} = (\overline{a}_{ij}) \in M_{nxn}(K), A^* = A^{-t} (\Rightarrow A^* = A^t \text{ falls } K = \mathbb{R})$ c) A heißt $\underline{hermitesch} \Leftrightarrow A = A^*$

 $\underline{Beispiel}: \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$ ist hermitesch, nicht symmetrisch.

 $\underline{Proposition\ 12.10:} \text{ Sei V ein K-VR mit Basis } \underline{B} = (b_1, ..., b_n). \text{ Dann ist die folgende Abbildung wohl-definiert und bijektiv: } \{<.,.>: V \times V \to K | <.,.> \text{ eine } HF \} \to \{A \in M_{nxn}(K) | A = A^* \}, <.,.> \mapsto Mat_{\underline{B}}(<.,.>).$

Umkehrabbildung:
$$(\langle .,. \rangle): (\sum \lambda_i b_i, \sum \mu_j b_j) \mapsto (\lambda_1, ..., \lambda_n) \cdot A \cdot \begin{pmatrix} \overline{\mu_1} \\ \vdots \\ \overline{\mu_n} \end{pmatrix}) \leftarrow A$$

<u>Beweis</u>: (Ü) wohl-definiert: \underline{zz} : $\underline{Mat}_{\underline{B}}(<.,.>)$ ist hermitesch!

<u>Proposition 12.11</u>: Sei V ein K-VR mit Basis $\underline{B} = (b_1, ..., b_n)$. Sei $(a_{ij} \in M_{nxn}(K)$ hermitesch. Dann gilt: $\langle ..., ... \rangle_A$ ist Skalarprodukt $\Leftrightarrow \forall k = 1, ..., n$ gilt $det((a_{ij})_{i,j=1...k}) \in \mathbb{R}_{\geq 0}$

<u>Lemma 12.12</u>: Sei V ein VR über K mit Basen $\underline{B} = (b_1, ..., b_n)$ und \underline{C} und sei < .,. > SBF/HF und sei $T := Mat_{\underline{B}}^{\underline{C}}(id_V)$, dann gilt: $Mat_{\underline{B}}(< .,. >) = T^t \cdot Mat_{\underline{C}}(< .,. >) \cdot \overline{T}$

<u>Beweis</u>: Schreibe $v, w \in V$ als $v = (b_1, ..., b_n) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \sum \lambda_i b_i, w = (b_1, ..., b_n) \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \underline{mu}$. Definition

von $T: \underline{B} = \underline{C} \cdot T \Rightarrow v = \underline{B} \cdot \underline{\lambda} = \underline{C} \cdot (T \cdot \underline{\lambda}, w = \underline{B} \cdot \underline{\mu} = \underline{C} \cdot (T \cdot \underline{\mu}), \text{ d.h. } v, w \text{ haben die Koordinaten } T \cdot \underline{\lambda} \text{ bzw. } T \cdot \mu \text{ bezüglich } \underline{C}.$

Wir erhalten: $\langle v, w \rangle = \underline{\lambda}^t \cdot Mat_{\underline{B}}(\langle .,. \rangle) \cdot \underline{\overline{\mu}} \text{ und } \langle v, w \rangle = (T \cdot \lambda)^t \cdot Mat_{\underline{C}}(\langle .,. \rangle) \cdot (T \cdot \underline{\mu}) = (\lambda^t (T^t Mat_{\underline{C}}(\langle .,. \rangle) \overline{T}) \underline{\overline{\mu}}) \Rightarrow \text{Behauptung.}$

 $\underline{Lemma\ 12.13:}\ (\ddot{\mathbf{U}})\ \det(\overline{A}) = \overline{\det(A)}\ \mathrm{für}\ A \in M_{nxn}(K)$

<u>Korollar 12.14</u>: (Ü) Unter den Voraussetzungen von 12.12 gilt: $det(Mat_{\underline{B}}(<.,.>)) = det(Mat_{\underline{C}}(<.,.>)) \cdot |det(T)|^2$

 $Bemerkung: det(Mat_B(<.,.>))$ heißt $\underline{Diskriminante}$ von <.,.> bezüglich \underline{B} .

Sei ab nun (V, < ., .>) ein endlich-dimensionaler Hilbertraum.

Definition 12.15: Vektoren $v_1, ..., v_r \in V$ heißen i) orthogonal $\Leftrightarrow \forall i \neq j : v_i \perp v_j (: \Leftrightarrow < v_i, v_j >= 0)$

- ii) <u>orthonormal</u>: $\Leftrightarrow v_1, ..., v_r$ sind orthogonal und $||v_i|| = 1$ für i = 1...r
- iii) Orthonormalbasis (ONB): $\Leftrightarrow v_1, ..., v_r$ sind orthonormal und bilden Basis.

 $\underline{Lemma\ 12.16:} \text{ Ist } \underline{C} \text{ eine Basis von } V, \text{ so gilt: } \underline{C} \text{ ist ONB} \Leftrightarrow \forall i,j \in \{1...n\} : \langle c_i,c_j \rangle = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases} \Leftrightarrow Mat_C(\langle .,. \rangle) = 1_n$

<u>Lemma 12.17</u>: Sind $v_1, ..., v_r \in V$ orthonormal, so sind sie l.u.

<u>Beweis</u>: Setze an: $\sum_{i=1}^{r} \lambda_i v_i = 0$ für $\lambda_1, ..., \lambda_r \in K$ (zz:alle $\lambda_i = 0$). Bilde $\langle .., v_j \rangle : 0 = \sum_{i=1}^{r} \lambda_i \langle v_i, v_j \rangle = \lambda_j \Rightarrow$ Behauptung.

 $\underline{Lemma\ 12.18\ (\text{Gram-Schmidt-Verfahren}):}\ \text{Sei}\ \underline{B}=(b_1,...,b_n)\ \text{Bassi von }V.\ \text{Definiere rekursiv:}\ c_i':=b_i-\sum_{j=1}^{i-1} < b_i, c_j > \cdot c_j\ \text{und}\ c_j = \frac{1}{||c_i'||} \cdot c_i'\ \text{für }i=1...n.\ \text{Dann sind }c_1,...,c_n\ \text{wohl-definiert und bilden ONB von }V.$

Korollar 12.19: Jeder endlich-dimensionale HR besitzt eine ONB.

<u>Korollar 12.20</u>: Ist <u>B</u> Basis von V, so gilt $det(Mat_B(<.,.>)) \in \mathbb{R}_{\geq 0}$

<u>Korollar 12.21</u>: Voraussetzungen wie in 12.20. Sei $A := Mat_{\underline{B}}(\langle .,. \rangle) =: (a_{ij})$. Dann gilt $det((a_{ij})_{i,j=1...k}) \in \mathbb{R}_{\geq 0} \ \forall k = 1...n$

 $\underline{Beweis:} \text{ Definiere } V_k := L(\{b_1,...,b_k\}) \subseteq V \text{ (UVR)}, <.,.>_k := <.,.>|_{V_k \times V_k} : V_k \times V_k \to K$

 $(\ddot{\mathbf{U}}) < .,.>_k \text{Skalarprodukt auf } V_k.$

Sei
$$\underline{B}_k = (b_1, ..., b_k)$$
 von $V_k \Rightarrow Mat_{\underline{B}_k}(\langle ..., \cdot \rangle_k) = (a_{ij})_{i,j=1...k} \Rightarrow \text{Behauptung.}$

<u>Beweis von 12.18</u>: Induktion über $i \in \{1...n\}$ zeige: $c_i' \neq 0, c_1, ..., c_i$ sind orthonormal, bilden ONB von $L(\{b_1, ..., b_i\}) =: V_i$ (UVR von V)

IA: i=1: $c'_1 = b_1 \neq 0$ (da <u>B</u> Basis). $c_1 = \frac{1}{||b_1||} \cdot b_1 \Rightarrow ||c_1|| = 1$ und c_1 ist ONB von V_1

IS: $i \mapsto i+1$: $c'_{i+1} = b_{i+1} - \sum_{j=1}^{i} \langle b_{i+1}, c_j \rangle \cdot c_j$. Falls $c'_{i+1} = 0$, so folgt $b_{i+1} \in L(\{c_1, ..., c_n\}) \stackrel{IV}{=} L(\{b_1, ..., b_i\}) = 0$

 V_i . Widerspruch zu $b_1, ..., b_n$ l.u.!

 \Rightarrow wir können c_{i+1} bilden.

Orthonormalität? $\langle c_{i+1}, c_{i+1} \rangle = 1$ nach Def. $\langle c_j, c'_j \rangle = \begin{cases} 1 & j=j' \\ 0 & j \neq j' \end{cases}$ für $1 \leq j, j' \leq i$ nach IV. Nun: für

$$1 \le j' \le i :< c'_{i+1}, c_j > = < b_{i+1}, c'_j > -\sum_{j=1}^{i} < b_{i+1}, c_j > \cdot < c_j, c'_j > = < b_{i+1}, c'_j > - < b_{i+1}, c'_j > < c_j, c'_j > = < b_{i+1}, c'_j > - < b_{i+1}, c$$

0. D.h. $c'_{i+1} \perp c_j$ für j=1...i, d.h. $c_1,...,c_{i+1}$ sind orthonormal in $V_{i+1} \Rightarrow c_1,...,c_{i+1}$ ist Basis von V_{i+1}

<u>Beweis von 12.11</u>: Sei V ein K-VR mit Basis $\underline{B} = \{b_1, ..., b_n\}$, erfülle $A = (a_{ij}) \in M_{nxn}(K)$ die Bedingung der rechten Seite von 12.11. Sei $< .,. > := < .,. >_{A,B}$, d.h. $< \sum_{i=1}^n \lambda_i b_i, \sum_{j=1}^n \mu_j b_j > = \sum_{i,j=1}^n \lambda_i \overline{\mu_i} a_{ij}$.

Induktion über n = dimV: IA: n=1: $A = (a_{11} \text{ mit } a_{11} \in \mathbb{R}_{\geq 0}$. Neue Basis $c_1 := \frac{1}{\sqrt{a_{11}}} b_1 \Rightarrow Mat_{\underline{C}}(<.,.>) = (1) \Rightarrow <.,.>$ ist positiv definit.

IS: $n \mapsto n+1$: IV \Rightarrow Für $V_n := L(\{b_1, ..., b_n\})$ ist $< ... > |_{V_n \times V_n} : V_n \times V_n \to K$ ist positiv definit.

Denn: $Mat_{(b_1,...,b_n)}(\langle ..., \rangle_n) = (a_{ij})_{i,j=1...n} (\Rightarrow \text{K\"onnen IV anwenden})$

Wähle ONB $c_1, ..., c_n$ von V_n , ergänze durch $c_{n+1} := b_{n+1}$ zu Basis von V.

Basiswechsel:
$$Mat_{\underline{C}}(<.,.>) = \begin{pmatrix} 1 & 0 & a_{1,n+1} \\ & \ddots & & \vdots \\ 0 & 1 & \vdots \\ a'_{n+1,1} & \dots & a_{n+1,n+1} \end{pmatrix} =: A'.$$
 Wissen: $A' = T^t \cdot A \cdot \overline{T}$ für $T \in CL_{\underline{C}}(X) \times (A')^* = A' \cdot (A + A')^* = A' \cdot (A$

 $GL_{n+1}(K) \Rightarrow (A')^* = A'$ (d.h. A' ist hermitesch)

Alternativ: <.,.> ist HF bzw. SBF \Rightarrow Darstellungsmatrix ist hermitesch. A' hermitesche \Rightarrow $a'_{n+1,n+1} \in \mathbb{R}$ und $a'_{n+1,i} = \overline{a'_{i,n+1}}$ für i = 1...n + 1

Induktion mit Laplace (Ü): $det(A') = a'_{n+1,m+1} - \sum_{i=1}^{n} |a_{n+1,j}|^2$

Sei
$$v = \sum_{i=1}^{n+1} \lambda_i c_i \Rightarrow \langle v, v \rangle = (\lambda_1, ..., \lambda_{n+1}) A' \begin{pmatrix} \frac{j-1}{\lambda_1} \\ \vdots \\ \overline{\lambda_{n+1}} \end{pmatrix} = \sum_{i=1}^{n} |\lambda_i|^2 + a'_{n+1,n+1} |\lambda_{n+1}|^2 + \sum_{i=1}^{n} (\lambda_{n+1} \overline{\lambda_i} a_{n+1,i} + a'_{n+1,n+1} |\lambda_{n+1}|^2 + a'_{n+1,n+1} |\lambda_{n+1}|^2 + \sum_{i=1}^{n} (\lambda_{n+1} \overline{\lambda_i} a_{n+1,i} + a'_{n+1,n+1} |\lambda_{n+1}|^2 + a$$

$$\lambda_i \overline{\lambda_{n+1}} \overline{a_{n+1,i}}) = \sum_{i=1}^n |\lambda_i + \lambda_{n+1} a_{n+1,i}| = 0 \text{ für } i = 1...n \text{ und } |\lambda_{n+1}| = 0 \Leftrightarrow \lambda_1 = ... = \lambda_{n+1} = 0$$

Ende

Und viel Spaß und Erfolg in LA 2!;)