Machine Learning in Graphics and Vision

Prof. Dr.-Ing. Andreas Geiger

Autonomous Vision Group MPI-IS / University of Tübingen

July 26, 2018

Lecture: Self-Driving Cars (WS 18/19)

COMPUTER SCIENCE

Computational Systems Biology of Infections

Algorithmen der Bioinformatik

Kommunikationsnetze

Lernbasierte Computer Vision

Home

People

Research

Publications

Teaching

Lecture: Self-Driving Cars

Theses

Data Science & Analytics

Neuronale Informationsverarbeitung

Kognitive Systeme

Cognitive Modeling

Computergrafik

Symbolisches Rechnen

Human-Computer Interaction

Lecture: Self-Driving Cars

Content

This new course will give an introduction to self-driving cars. The course covers topics in perception, planning, control and end-to-end driving, amongst others.

Lecturer

Prof. Dr. Andreas Geiger 🗷

TAs

tbd

Lecture Dates

Wintersemester 2018

Exam Dates

→ tbd

Overview

- → SWS: 2 V + 2 Ü
- → 6 ECTS
- → Veranstaltungsnummer: INF

News

→ Please enroll in ILIAS at the beginning of the semester.

Exercises

By continuous and active participation in the weekly exercises, students may obtain a 0.3 bonus on the final grade, when passing the exam. To qualify for this bonus, the student must successfully solve 60% of the assigned homework problems which will be determined by grading the submitted homework solutions.

Overview

Structured Prediction I

- ► Graphical Models: Factor Graphs
- ► Inference: Belief Propagation

Structured Prediction II

- ► Stereo & Optical Flow
- ► Multi-view Reconstruction

Structured Prediction III

- ► Parameter Estimation
- ▶ Deep Structured Models

Materials

- ► Nowozin, Lampert: Structured Learning and Prediction in Computer Vision Foundations and Trends in Computer Graphics and Vision, Volume 6, Number 3-4
- ▶ http://www.nowozin.net/sebastian/cvpr2012tutorial/

Factor Graph

Factor Graph

Given a function

$$f(x_1,\ldots,x_n)=\prod_i f_i(\mathcal{X}_i)$$

the **factor graph (FG)** has a **square node** for each factor $f_i(\mathcal{X}_i)$ and a **circle node** for each variable x_j . We typically specify this factorization up to a normalization constant

$$p(x_1,\ldots,x_n) = \frac{1}{Z} \prod_i f_i(\mathcal{X}_i)$$

when representing a distribution $p(\cdot)$.

6

Example

► Factor Graph:

► Distribution:

$$p(x) = \frac{1}{Z} f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

► Consider a branching graph:

with factors

$$f_1(a,b)f_2(b,c,d)f_3(c)f_4(d,e)f_5(d)$$

► How to find marginal p(a,b)?

8

► Idea: compute messages

$$p(a,b) = \frac{1}{Z} f_1(a,b) \underbrace{\sum_{c,d,e} f_2(b,c,d) f_3(c) f_5(d) f_4(d,e)}_{\mu_{f_2 \to b}(b)}$$

$$\mu_{f_2 \to b}(b) = \sum_{c,d} f_2(b,c,d) f_3(c) f_5(d) \sum_e f_4(d,e)$$

$$p(a,b) = \frac{1}{Z} f_1(a,b) \sum_{\substack{c,d,e \\ \mu_{f_2 \to b}(b)}} f_2(b,c,d) f_3(c) f_5(d) f_4(d,e)$$

$$\mu_{f_2 \to b}(b) = \sum_{c,d} f_2(b,c,d) \mu_{c \to f_2}(c) \mu_{d \to f_2}(d)$$

► Here (repeated from last slide):

$$\mu_{f_2 \to b}(b) = \sum_{c,d} f_2(b,c,d) \mu_{c \to f_2}(c) \mu_{d \to f_2}(d)$$

► More general:

$$\mu_{f \to x}(x) = \sum_{\mathcal{X}_f \setminus x} f(\mathcal{X}_f) \prod_{y \in \{ne(f) \setminus x\}} \mu_{y \to f}(y)$$

► Here (repeated from last slide):

$$\mu_{d \to f_2}(d) = \mu_{f_5 \to d}(d) \mu_{f_4 \to d}(d)$$

► General:

$$\mu_{x \to f}(x) = \prod_{g \in \{ne(x) \setminus f\}} \mu_{g \to x}(x)$$

Log Representation

- ▶ Work with log-messages instead $\lambda = \log \mu$
- ► Factor-to-variable messages

$$\mu_{f \to x}(x) = \sum_{\mathcal{X}_f \setminus x} f(\mathcal{X}_f) \prod_{y \in \{ne(f) \setminus x\}} \mu_{y \to f}(y)$$

then become

$$\lambda_{f \to x}(x) = \log \left(\sum_{\mathcal{X}_f \setminus x} f(\mathcal{X}_f) \exp \left[\sum_{y \in \{ne(f) \setminus x\}} \lambda_{y \to f}(y) \right] \right)$$

Sum-Product Belief Propagation

- ► **Goal:** Compute marginals of distribution
- ► Factor-to-variable messages:

$$\lambda_{f \to x}(x) = \log \left(\sum_{\mathcal{X}_f \setminus x} f(\mathcal{X}_f) \exp \left\{ \sum_{y \in \{ne(f) \setminus x\}} \lambda_{y \to f}(y) \right\} \right)$$
(1)

Variable-to-factor messages:

$$\lambda_{x \to f}(x) = \sum_{g \in \{ne(x) \setminus f\}} \lambda_{g \to x}(x) \qquad (2)$$

- $ightharpoonup \sum_{\mathcal{X}_f \setminus x} :$ Summation over all states of $\mathcal{X}_f \setminus x$ (Eq. 1)
- $ightharpoonup \sum_{y \in \{ne(f) \setminus x\}} / \sum_{g \in \{ne(x) \setminus f\}}$: Summation over all incoming messages / factors
- lacktriangledown To avoid large values, subtract mean from $\lambda_{x o f}(x)$ after message update (Eq. 2)

Max-Product Belief Propagationn

- ► Goal: Find most likely state (MAP state)
- ► Factor-to-variable messages:

$$\lambda_{f \to x}(x) = \max_{\mathcal{X}_f \setminus x} \left[\log f(\mathcal{X}_f) + \sum_{y \in \{ne(f) \setminus x\}} \lambda_{y \to f}(y) \right]$$
 (3)

Variable-to-factor messages:

$$\lambda_{x \to f}(x) = \sum_{g \in \{ne(x) \setminus f\}} \lambda_{g \to x}(x) \qquad (2)$$

- $ightharpoonup \max_{\mathcal{X}_f \setminus x} :$ Maximization over all states of $\mathcal{X}_f \setminus x$ (Eq. 3)
- $ightharpoonup \sum_{y \in \{ne(f) \setminus x\}} / \sum_{g \in \{ne(x) \setminus f\}}$: Summation over all incoming messages / factors
- ▶ To avoid large values, subtract mean from $\lambda_{x\to f}(x)$ after message update (Eq. 2)

Readout

Read off marginal or MAP state at each variable:

- ► Similar to variable-to-factor messages
- ► However: summing over **all** incoming messages

$$p(x) = \exp\{\lambda(x)\} / \sum_{x} \exp\{\lambda(x)\}$$
 (4)
$$x^* = \operatorname*{argmax}_{x} \sum_{g \in \{ne(x)\}} \lambda_{g \to x}(x)$$
 (5) with
$$\lambda(x) = \sum_{g \in \{ne(x)\}} \lambda_{g \to x}(x)$$

Inference Algorithm Overview

Belief Propagation Algorithm

- ► Input: variables and factors
- ► Allocate all messages
- ► Initialize the message log values to 0 (=uniform distribution)
- ► For N iterations do
 - ► Update all factor-to-variable messages (Eq. 1 or Eq. 3)
 - ► Update all variable-to-factor messages (Eq. 2)
 - ► Normalize all variable-to-factor messages:

$$\mu_{x \to f}(x) \leftarrow \mu_{x \to f}(x) - \text{mean}\left(\mu_{x \to f}(x)\right)$$

► Read off marginal or MAP state at each variable (Eq. 4 or Eq. 5)

Example 1

$$p(x) = \frac{1}{Z} f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

$$= \frac{1}{Z} \exp \{ \log (f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)) \}$$

$$= \frac{1}{Z} \exp \{ \log f_a(x_1, x_2) + \log f_b(x_1, x_2) + \log f_c(x_2, x_3) + \log f_d(x_3) \}$$

$$= \frac{1}{Z} \exp \{ \psi_a(x_1, x_2) + \psi_b(x_1, x_2) + \psi_c(x_2, x_3) + \psi_d(x_3) \}$$

▶ Log factors: $\psi_i(x_i) = \log f_i(x_i)$

Example 2: Image Denoising

► Factor representation:

$$p(x) \propto \prod_{i=1}^{100} f_i(x_i) \prod_{i \sim j} f_{ij}(x_i, x_j)$$

- ▶ Variables: $x_1, ..., x_{100} \in \{0, 1\}$
- ▶ Unary factors: $f_i(x_i)$
- ► Pairwise factors: $f_{ij}(x_i, x_j)$

Example 2: Image Denoising

► Factor representation:

$$p(x) \propto \exp\left\{\sum_{i=1}^{100} \log f_i(x_i) \sum_{i \sim j} \log f_{ij}(x_i, x_j)\right\}$$

- ▶ Variables: $x_1, ..., x_{100} \in \{0, 1\}$
- ▶ Unary factors: $f_i(x_i)$
- ► Pairwise factors: $f_{ij}(x_i, x_j)$

Example 2: Image Denoising

► Log-linear representation:

$$p(x) \propto \exp \left\{ \sum_{i=1}^{100} \psi_i(x_i) + \alpha \sum_{i \sim j} \psi_{ij}(x_i, x_j) \right\}$$

- ▶ Factors $f(\cdot)$ become potentials $\psi(\cdot)$ in log-representation
- ▶ Unary potentials: $\psi_i(x_i) = [x_i = o_i]$ with observation $o_i \in \{0, 1\}$
- ▶ Pairwise potentials: $\psi_{ij}(x_i, x_j) = [x_i = x_j]$
- ▶ Parameter α controls strength of prior how to choose α ? Learn from data!

Factor Graph: Inference vs. Learning

$$p(x_1, \dots, x_{100}) = \frac{1}{Z} \exp \left\{ \sum_{i=1}^{100} \psi_i(x_i) + \alpha \sum_{i \sim j} \psi_{ij}(x_i, x_j) \right\}$$

- ► So far: Inference
 - ► Marginal distributions: $p(x_i) = \sum_{x \setminus x_i} p(x_1, \dots x_{100})$
 - \blacktriangleright MAP solution: $x_1^*,\ldots,x_{100}^*=\operatorname{argmax}_{x_1,\ldots,x_{100}}p(x_1,\ldots x_{100})$
- Now: Learning
 - ▶ Estimate parameters (here: α) from dataset

Conditional Random Fields

Markov Random Field:

$$p(x) = \frac{1}{Z} \exp \left\{ \sum_{i=1}^{100} \psi_i(x_i) + \alpha \sum_{i \sim j} \psi_{ij}(x_i, x_j) \right\}$$

lacktriangleright Reason about output variables $x \in \mathcal{X}$ given one particular model instantiation

Structured Output Learning:

$$f: \mathcal{X} \to \mathcal{Y}$$

- ▶ Inputs $x \in \mathcal{X}$ can be any kind of objects
- ▶ Outputs $y \in \mathcal{Y}$ are complex (structured) objects
 - ► images, text, parse trees, folds of a protein, computer programs, ...

Conditional Random Fields

Markov Random Field:

$$p(x) = \frac{1}{Z} \exp \left\{ \sum_{i=1}^{100} \psi_i(x_i) + \alpha \sum_{i \sim j} \psi_{ij}(x_i, x_j) \right\}$$

lacktriangleright Reason about output variables $x \in \mathcal{X}$ given one particular model instantiation

Conditional Random Field:

$$p(y|x, w) = \frac{1}{Z} \exp \left\{ \sum_{i=1}^{100} \psi_i(x, y_i) + \alpha \sum_{i \sim j} \psi_{ij}(x, y_i, y_j) \right\}$$

- ▶ Make conditioning of variables y on data x and parameters w explicit (here $w = \alpha$)
- ▶ MRF notation: outputs $x \in \mathcal{X} \Rightarrow$ CRF notation: inputs $x \in \mathcal{X}$, outputs $y \in \mathcal{Y}$
- ▶ Learning: Estimate w from dataset $\mathcal{D} = \{(x^1, y^1), \dots, (x^N, y^N)\}$

Conditional Random Fields

Conditional Random Field - General Form:

$$p(y|x, w) = \frac{1}{Z(x, w)} \exp \left\{ \langle w, \psi(x, y) \rangle \right\}$$

- ► Feature function: $\psi(x,y): \mathcal{X} \times \mathbb{R}^M \to \mathbb{R}^K$
- ▶ Parameter vector: $w \in \mathbb{R}^K$ (M: num. output nodes, K: dim. feat. space)
- ▶ Partition function: $Z(x, w) = \sum_{y \in \mathcal{Y}} \exp \{\langle w, \psi(x, y) \rangle\}$
- ▶ Note: much more flexible than just a single α parameter!
- ▶ Learning: Estimate w from dataset $\mathcal{D} = \{(x^1, y^1), \dots, (x^N, y^N)\}$
- ▶ GM specifies decomposition of ψ into potentials (=log factors) ψ_f :

$$\psi(x,y) = \left(\psi_f(x,y_f), \dots, \psi_{|\mathcal{F}|}(x,y_{|\mathcal{F}|})\right)$$

Parameter Estimation

Goal: Maximize likelihood of outputs x conditioned on inputs y wrt. w:

$$w^* = \operatorname*{argmax}_{w \in \mathbb{R}^K} p(y|x,w) \quad \text{with} \quad p(y|x,w) = \prod_{n=1}^N p(y^n|x^n,w)$$

This is equivalent to minimizing the negative conditional log-likelihood:

$$w^* = \operatorname*{argmin}_{w \in \mathbb{R}^K} \mathcal{L}(w)$$
 with $\mathcal{L}(w) = -\sum_{n=1}^N \log p(y^n|x^n, w)$

Parameter Estimation

Goal: Minimize negative conditional log-likelihood $\mathcal{L}(w)$

$$w^* = \operatorname*{argmin}_{w \in \mathbb{R}^K} \mathcal{L}(w)$$

$$\begin{split} \mathcal{L}(w) &= -\sum_{n=1}^{N} \log p(y^n|x^n, w) \\ &= -\sum_{n=1}^{N} \left[\log \frac{1}{Z(x^n, w)} \exp \left\{ \langle w, \psi(x^n, y^n) \rangle \right\} \right] \\ &= -\sum_{n=1}^{N} \left[-\log Z(x^n, w) + \langle w, \psi(x^n, y^n) \rangle \right] \\ &= -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right] \end{split}$$

Optimization

Gradient Descent:

- ▶ Pick step size η , tolerance ϵ
- ► Initialize $w^0 = 0$
- ▶ Repeat until $||v|| < \epsilon$
 - $\mathbf{v} = \nabla_w \mathcal{L}(w)$

Alternatives:

- ▶ Conjugate gradient
- ► L-BFGS
- ► All require gradient!

Gradient of Negative Conditional Log-Likelihood

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^{n}, y^{n}) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^{n}, y) \rangle \right\} \right]$$

$$\nabla_{w} \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^{n}, y^{n}) - \frac{\sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^{n}, y) \rangle \right\} \psi(x^{n}, y)}{\sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^{n}, y) \rangle \right\}} \right]$$

$$= -\sum_{n=1}^{N} \left[\psi(x^{n}, y^{n}) - \sum_{y \in \mathcal{Y}} \frac{\exp \left\{ \langle w, \psi(x^{n}, y) \rangle \right\}}{\sum_{y' \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^{n}, y') \rangle \right\}} \psi(x^{n}, y) \right]$$

$$= -\sum_{n=1}^{N} \left[\psi(x^{n}, y^{n}) - \sum_{y \in \mathcal{Y}} p(y|x^{n}, w)\psi(x^{n}, y) \right]$$

$$= -\sum_{n=1}^{N} \left[\psi(x^{n}, y^{n}) - \mathbb{E}_{y \sim p(y|x^{n}, w)} \psi(x^{n}, y) \right]$$

Gradient of Negative Conditional Log-Likelihood

$$\nabla_{w} \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^{n}, y^{n}) - \mathbb{E}_{y \sim p(y|x^{n}, w)} \psi(x^{n}, y) \right]$$

When is $\mathcal{L}(w)$ minimal?

$$\mathbb{E}_{y \sim p(y|x^n, w)} \psi(x^n, y) = \psi(x^n, y^n) \Rightarrow \nabla_w \mathcal{L}(w) = 0$$

▶ Interpretation: we aim at **expectation matching**: $\mathbb{E}_{y \sim p} \psi(x, y) = \psi(x, y^{\text{obs}})$, but discriminatively: only for $x \in \{x^1, \dots, x^N\}$

Note:

- ▶ Hessian is pos. definite $\Rightarrow \mathcal{L}(w)$ convex $\Rightarrow \nabla_w \mathcal{L}(w) = 0$ implies global optimum!
- ▶ Only true as p(y|x, w) is log-linear in $w \in \mathbb{R}^K$

Computational Complexity

Tasks for gradient descent with line search:

- ▶ Evaluate $\mathcal{L}(w)$
- ► Compute $v = \nabla_w \mathcal{L}(w)$

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right]$$

$$\nabla_w \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^n, y^n) - \sum_{y \in \mathcal{Y}} p(y|x^n, w) \psi(x^n, y) \right]$$

Problem: \mathcal{Y} is typically very (exponentially) large!

- ▶ Binary image segmentation: $|\mathcal{Y}| = 2^{640 \times 480} \approx 10^{92475}$
- \blacktriangleright We must use the structure in \mathcal{Y} , or we are lost!

Computational Complexity

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right]$$

$$\nabla_w \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^n, y^n) - \sum_{y \in \mathcal{Y}} p(y|x^n, w) \psi(x^n, y) \right]$$

Computational complexity: $O(ND^MK)$

- ▶ N: number of samples in dataset (\approx 100 to 1,000,000)
- ▶ M: number of output nodes (\approx 100 to 1,000,000)
- ▶ D: maximal number of labels per output node (\approx 2 to 100)
- ► *K*: dimensionality of feature space

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right]$$

$$\nabla_w \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^n, y^n) - \sum_{y \in \mathcal{Y}} p(y|x^n, w) \psi(x^n, y) \right]$$

Computational complexity: $O(ND^{M}K)$

- ▶ N: number of samples in dataset (\approx 100 to 1,000,000)
- ▶ M: number of output nodes (\approx 100 to 1,000,000)
- ▶ D: maximal number of labels per output node (\approx 2 to 100)
- ► *K*: dimensionality of feature space

Probabilistic Inference to the Rescue

Remember: in a graphical model, features decompose as follows

$$\psi(x,y) = \left(\psi_f(x,y_f), \dots, \psi_{|\mathcal{F}|}(x,y_{|\mathcal{F}|})\right)$$

Thus:

$$\sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} = \sum_{y \in \mathcal{Y}} \exp \left\{ \sum_{f \in \mathcal{F}} \langle w_f, \psi_f(x^n, y_f) \rangle \right\}$$
$$= \sum_{y \in \mathcal{Y}} \prod_{f \in \mathcal{F}} \underbrace{\exp \left\{ \langle w_f, \psi_f(x^n, y_f) \rangle \right\}}_{\text{factor } f(\cdot)}$$

 Can be efficiently calculated/approximated using message passing (run unnormalized sum-product BP, sum over any unnormalized marginal)

Probabilistic Inference to the Rescue

Furthermore:

$$\sum_{y \in \mathcal{Y}} p(y|x^n, w) \psi(x^n, y) = \mathbb{E}_{y \sim p(y|x^n, w)} \sum_{f \in \mathcal{F}} \psi_f(x^n, y_f)$$

$$= \sum_{f \in \mathcal{F}} \mathbb{E}_{y \sim p(y|x^n, w)} \psi_f(x^n, y_f)$$

$$= \sum_{f \in \mathcal{F}} \mathbb{E}_{y_f \sim p(y_f|x^n, w)} \psi_f(x^n, y_f)$$

$$= \sum_{f \in \mathcal{F}} \sum_{y_f \in \mathcal{Y}_f} \underbrace{p(y_f|x^n, w)}_{\text{marginal}} \psi_f(x^n, y_f)$$

- $ightharpoonup |\mathcal{F}|$: number of factors, D: max. number of labels, F: order of largest factor
- ► Marginals can be calculated efficiently in polynomial time (e.g., with BP)

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right]$$

$$\nabla_w \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^n, y^n) - \sum_{y \in \mathcal{Y}} p(y|x^n, w) \psi(x^n, y) \right]$$

Computational complexity: $O(ND^MK) \rightarrow O(N|\mathcal{F}|D^FK)$

- ▶ N: number of samples in dataset (\approx 100 to 1,000,000)
- ▶ M: number of output nodes (\approx 100 to 1,000,000)
- ▶ D: maximal number of labels per output node (\approx 2 to 100)
- \blacktriangleright K: dim. of feature space, $|\mathcal{F}|$: number of factors, F: order of largest factor

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right]$$

$$\nabla_w \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^n, y^n) - \sum_{y \in \mathcal{Y}} p(y|x^n, w) \psi(x^n, y) \right]$$

Computational complexity: $O(N|\mathcal{F}|D^FK)$

- ▶ N: number of samples in dataset (\approx 100 to 1,000,000)
- ▶ M: number of output nodes (\approx 100 to 1,000,000)
- ▶ D: maximal number of labels per output node (\approx 2 to 100)
- \blacktriangleright K: dim. of feature space, $|\mathcal{F}|$: number of factors, F: order of largest factor

Large Datasets

ightharpoonup Processing all N training samples for one gradient update is slow

How can we estimate parameters efficiently?

- ► Simplify model to make gradient updates faster ⇒ results get worse
- ► Train model on subsampled dataset ⇒ ignores information
- ► Parallelize across CPUs/GPUs ⇒ bottlenecks, doesn't save computation
- ► Stochastic gradient descent

Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent:

- Keep maximizing $p(w|\mathcal{D})$
- ► In each gradient step:
 - ▶ Create random subset $\mathcal{D}' \subset \mathcal{D}$ (typically $1 \leq \mathcal{D}' \leq 64$)
 - Follow approximate gradient:

$$\nabla_w \approx -\sum_{(x^n, y^n) \in \mathcal{D}'} \left[\psi(x^n, y^n) - \mathbb{E}_{y \sim p(y|x^n, w)} \psi(x^n, y) \right]$$

Comments:

- lacktriangle Line search no longer possible \Rightarrow extra hyper-parameter η
- ▶ SGD converges to $\operatorname{argmin}_{w} \mathcal{L}(w)$! (if η chosen right)
- SGD needs more iterations, but each one is faster
- ► See also: Bottou & Bousquet: The Tradeoffs of Large Scale Learning, NIPS 2007

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right]$$

$$\nabla_w \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^n, y^n) - \sum_{y \in \mathcal{Y}} p(y|x^n, w) \psi(x^n, y) \right]$$

Computational complexity: $O(N|\mathcal{F}|D^FK)$

- ▶ N: number of samples in dataset (\approx 100 to 1,000,000)
- ▶ M: number of output nodes (\approx 100 to 1,000,000)
- ▶ D: maximal number of labels per output node (\approx 2 to 100)
- \blacktriangleright K: dim. of feature space, $|\mathcal{F}|$: number of factors, F: order of largest factor

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^{n}, y^{n}) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^{n}, y) \rangle \right\} \right]$$

$$\nabla_{w} \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^{n}, y^{n}) - \sum_{y \in \mathcal{Y}} p(y|x^{n}, w) \psi(x^{n}, y) \right]$$

Computational complexity: $O(N|\mathcal{F}|D^FK)$

- ▶ N: number of samples in dataset (\approx 100 to 1,000,000)
- ▶ M: number of output nodes (\approx 100 to 1,000,000)
- ▶ D: maximal number of labels per output node (\approx 2 to 100)
- ▶ K: dim. of feature space, $|\mathcal{F}|$: number of factors, F: order of largest factor

Semantic Segmentation:

- $\psi_i(x, y_i) \in \mathbb{R}^{\approx 1000}$: local image features (e.g., bag of words) • $\langle w_i, \psi_i(x, y_i) \rangle$: local classifier (like logistic regression)
- ▶ $\psi_{i,j}(y_i,y_j) = [y_i = y_j] \in \mathbb{R}^1$: test for same label $\rightarrow \langle w_{i,j}, \psi_{i,j}(y_i,y_j) \rangle$: penalizer for label changes (if $w_{ij} > 0$)
- lacktriangledown combined: $\operatorname{argmax}_y p(y|x,w)$ is smoothed version of local cues

original

local classification

local + smoothness

Handwriting Recognition:

- $\psi_i(x,y_i) \in \mathbb{R}^{\approx 1000}$: image representation (e.g., pixels, gradients) • $\langle w_i, \psi_i(x,y_i) \rangle$: local classifier for letters
- $\psi_{i,j}(y_i, y_j) \in \mathbb{R}^{26 \times 26}$: letter/letter indicator $\rightarrow \langle w_{i,j}, \psi_{i,j}(y_i, y_j) \rangle$: encourage/suppress letter combinations
- lacktriangleright Combined: $\operatorname{argmax}_y p(y|x,w)$ is "corrected" version of local cues

Pose Estimation:

- $\psi_i(x, y_i) \in \mathbb{R}^{\approx 1000}$: image representation (e.g., HoG)
 - $\rightarrow \langle w_i, \psi_i(x, y_i) \rangle$: local confidence map
- ullet $\psi_{i,j}(y_i,y_j)=\operatorname{fit}(y_i,y_j)\in\mathbb{R}^1$: test for geometric fit
 - $\rightarrow \langle w_{i,j}, \psi_{i,j}(y_i, y_j) \rangle$: penalizer for unrealistic poses
- lacktriangle Combined: $\operatorname{argmax}_y p(y|x,w)$ is sanitized version of local cues

original

local classification

local + geometry

Typical feature functions for CRFs in computer vision:

- ▶ Unary terms $\psi_i(x,y_i)$: local representation, high-dimensional $\rightarrow \langle w_i, \psi_i(x,y_i) \rangle$: local classifier
- ▶ Pairwise terms $\psi_{i,j}(y_i,y_j)$: prior knowledge, typically low-dimensional $\rightarrow \langle w_{i,j}, \psi_{i,j}(y_i,y_j) \rangle$: penalize inconsistencies
- lacktriangle Pairwise terms sometimes also depend on x: $\psi_{i,j}(x,y_i,y_j)$

Learning adjusts parameters:

- ▶ Unary weights w_i : learn local linear classifiers
- lacktriangle Pairwise weights $w_{i,j}$: learn importance of smoothing/penalization
- ightharpoonup argmax $_y p(y|x,w)$ is cleaned up version of local prediction

Piece-wise Training

Sometimes, training the entire model at once is not easy:

- ► If terms depend on parameters in non-linear fashion
- ► If feature representations are high-dimensional, learning can be very slow

Alternative: Piece-wise Training

- ▶ Pre-train classifiers $p(y_i|x)$; set $\psi_i(x,y_i) = \log p(y_i|x) \in \mathbb{R}$
- ▶ Learn one-dimensional weight per classifier: $\langle w_i, \psi_i(x, y_i) \rangle$

Advantage:

- ► Lower dimensional feature vector during training/inference → faster
- ▶ $\log p(y_i|x)$ can be stronger classifiers, e.g., non-linear SVMs, CNNs, ...

Disadvantage

► If local classifiers are bad, CRF training cannot fix this

Summary

Given:

- ▶ Training set $\mathcal{D} = \{(x^1, y^1), \dots, (x^N, y^N)\}$ with $(x^n, y^n) \stackrel{\text{i.i.d.}}{\sim} d(x, y)$
- ▶ Feature function: $\psi(x,y): \mathcal{X} \times \mathbb{R}^M \to \mathbb{R}^K$

Task:

▶ Find parameter vector w such that $p(y|x,w) = \frac{1}{Z(x,w)} \exp\left\{\langle w, \psi(x,y) \rangle\right\} \approx d(y|x)$

Minimize negative conditional log-likelihood:

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right]$$

- ► Convex optimization problem → gradient descent works
- ► Training needs repeated runs of probabilistic inference, faster is better

Summary

Gradient of negative conditional log-likelihood:

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\langle w, \psi(x^n, y^n) \rangle - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \langle w, \psi(x^n, y) \rangle \right\} \right]$$

Problem	Solution	Method
$ \mathcal{Y} $ too large	exploit structure	belief propagation
N too large	mini-batches	stochastic gradient descent
K too large	trained ψ	piece-wise training

Motivation

Log-Linear Models:

$$p(y|x, w) = \frac{1}{Z(x, w)} \exp \left\{ \langle w, \psi(x, y) \rangle \right\}$$

- lacktriangle Log-linear in the parameters $w\Rightarrow$ features must do all the heavy lifting
- Only linear combination of features is learned

Deep Structured Models:

$$p(y|x, w) = \frac{1}{Z(x, w)} \exp \{\psi(x, y, w)\}$$

- lacktriangleright Potential functions directly parametrized via w
- ightharpoonup Results in a much more flexible model (ψ can represent, e.g., a neural network)

Deep Structured Models

Negative Log-Likelihood and its Gradient:

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^{n}, y^{n}, \mathbf{w}) - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \psi(x^{n}, y, \mathbf{w}) \right\} \right]$$

$$\nabla_{w} \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\nabla_{\mathbf{w}} \psi(x^{n}, y^{n}, \mathbf{w}) - \sum_{y \in \mathcal{Y}} p(y|x^{n}, \mathbf{w}) \nabla_{\mathbf{w}} \psi(x^{n}, y, \mathbf{w}) \right]$$

- ► Similar form as for log-linear models
- ► Differences to log-linear model highlighted in red

Deep Structured Models

Negative Log-Likelihood and its Gradient:

$$\mathcal{L}(w) = -\sum_{n=1}^{N} \left[\psi(x^n, y^n, w) - \log \sum_{y \in \mathcal{Y}} \exp \left\{ \psi(x^n, y, w) \right\} \right]$$

$$\nabla_w \mathcal{L}(w) = -\sum_{n=1}^{N} \left[\nabla_w \psi(x^n, y^n, w) - \sum_{y \in \mathcal{Y}} p(y|x^n, w) \nabla_w \psi(x^n, y, w) \right]$$

► Again, sums can be efficiently computed as features decompose

$$\psi(x, y, w) = \sum_{f \in \mathcal{F}} \psi_f(x, y_f, w)$$

lacktriangle Let us now represent $\psi_f(x,y_f,w)$ using deep neural networks

Deep Structured Models

Algorithm:

- ► Forward pass to compute $\psi_f(x, y_f, w)$
- ▶ Backward pass to obtain gradients $\nabla_w \psi(x^n, y, w)$
- Compute marginals using message passing
- ▶ Update parameters w

What is the problem with this approach?

► Very slow as inference in GM is required for every gradient update

Alternatives

- ► Interleave learning and inference [Chen et al., ICML 2015]
- ▶ But still only applicable to very small scale problems

Inference Unrolling

Idea:

- ► Consider inference as sequence of small computations
- "Unroll" a fixed number of inference iterations and consider as RNN
- ► Compute gradients, e.g., using automatic differentiation

Warning:

- ► Now: empirical risk minimization
- ► Thus purely deterministic approach, giving up probabilistic viewpoint
- ► But often fast enough for efficient training in deep models
- ► Effectively integrates structure of the problem into architecture of the network
- ► Can be thought of as a form of regularization (hard constraint)

Inference Unrolling

Automatic Differentiation

Idea:

► Rewrite complicated function as composition of simple functions:

$$f = f_0 \circ f_1 \circ \cdots \circ f_n$$

- ► Each simple function f_k has a simple derivative
- ▶ Use chain rule: $\frac{\partial f_0}{\partial f_1} \frac{\partial f_1}{\partial f_2} \dots \frac{\partial f_n}{\partial x}$
- ► Example:

$$f(x,y) = \cos(x)\sin(y) + \frac{x}{y}$$

Computation Graph:

http://www.columbia.edu/~ahd2125/post/2015/12/5/

Conditional Random Fields

Conditional Random Fields

as Recurrent Neural Networks

[Zheng et al., ICCV 2015]

Conditional Random Fields as Recurrent Neural Networks

$$E(\mathbf{x}) = \sum_{i} \psi_u(x_i) + \sum_{i < j} \psi_p(x_i, x_j), \tag{1}$$

$$\psi_p(x_i, x_j) = \mu(x_i, x_j) \sum_{m=1}^{M} w^{(m)} k_G^{(m)}(\mathbf{f}_i, \mathbf{f}_j), \quad (2)$$

Algorithm 1 Mean-field in dense CRFs [29], broken down to common CNN operations.

to common CNN operations.
$$Q_i(l) \leftarrow \frac{1}{Z_i} \exp\left(U_i(l)\right) \text{ for all } i \qquad \qquad \text{Initialization}$$

$$\text{while not converged do}$$

$$\tilde{Q}_i^{(m)}(l) \leftarrow \sum_{j \neq i} k^{(m)}(\mathbf{f}_i, \mathbf{f}_j)Q_j(l) \text{ for all } m \qquad \qquad \qquad \qquad \text{Message Passing}$$

$$\tilde{Q}_i(l) \leftarrow \sum_{m} w^{(m)} \tilde{Q}_i^{(m)}(l) \qquad \qquad \qquad \text{Weighting Filter Outputs}$$

$$\hat{Q}_i(l) \leftarrow \sum_{l' \in \mathcal{L}} \mu(l, l') \tilde{Q}_i(l') \qquad \qquad \qquad \text{Compatibility Transform}$$

$$\tilde{Q}_i(l) \leftarrow U_i(l) - \hat{Q}_i(l) \qquad \qquad \qquad \text{Adding Unary Potentials}$$

$$Q_i \leftarrow \frac{1}{Z_i} \exp\left(\check{Q}_i(l)\right) \qquad \qquad \text{Normalizing}$$
end while

Conditional Random Fields as Recurrent Neural Networks

with Ray Potentials

[Paschalidou, Ulusoy, Schmitt, van Gool & Geiger, CVPR 2018]

Distribution over voxel occupancies:

$$p(\mathbf{o}) = \frac{1}{Z} \prod_{i \in \mathcal{X}} \underbrace{\varphi_i(o_i)}_{\text{unary}} \prod_{r \in \mathcal{R}} \underbrace{\psi_r(\mathbf{o}_r)}_{\text{ray}}$$

$$\varphi_i(o_i) = \gamma^{o_i} (1 - \gamma)^{1 - o_i}$$

$$\psi_r(\mathbf{o}_r) = \sum_{i=1}^{N_r} o_i^r \prod_{j < i} (1 - o_j^r) s_i^r$$

Corresponding factor graph:

