Laurea Specialistica in Ingegneria Informatica

SICUREZZA NELLE RETI

Appello del 12 febbraio 2011

Nome e Cognome	Matricola

ESERCIZIO 1 Punti:10

Lo schema di cifratura RSA e la sua relazione con il problema della fattorizzazione.

ESERCIZIO 2 punti: 10

In un sistema cliente servitore, si consideri il seguente protocollo di autenticazione tra il server S ed un cliente C:

M1 C \rightarrow S:	"Hello", C	Legenda
M2 S \rightarrow C:	$\mathcal{C}_{A}(S)$	a. $C_A(S)$ denota il certificato rilasciato al server S dall'autorità A di cui S e C si fidano (si assuma che la chiave pubblica di A sia ben nota);
$M3 C \rightarrow S$	$\mathcal{P}_{S}(K, C), \mathcal{E}_{K}(n)$	b. $\mathcal{P}_S(x)$ denota la cifratura della quantità x con la chiave pubblica di S ;
Wis C 75.		c. K denota una chiave segreta generata da C ad ogni nuova sessione;
M4 S \rightarrow C:	n	d. $\mathcal{E}_{K}(x)$ denota la cifratura della quantità x con la chiave simmetrica K ;
M5 C \rightarrow S:	$\mathcal{E}_K(C,PWD)$	e. <i>n</i> denota un numero random generato da C ad ogni nuova sessione; ed infine
M6 S \rightarrow C:	$\mathcal{E}_{K}(\text{``OK''})$	f. PWD denota la password di C memorizzata sul server S.

Domanda a. Al termine del protocollo, il cliente C può ritenere di stare effettivamente interagendo con il server S? Motivare la risposta.

Domanda b. Al termine del protocollo, il server *S* può ritenere di stare effettivamente interagendo con il cliente *C*? Motivare la risposta.

Domanda c. Al termine del protocollo, la chiave K può essere utilizzata per garantire la segretezza della sessione tra S e C. Motivare questa affermazione rispetto alla presenza di un avversario passivo.

ESERCIZIO 3 punti:10

Con riferimento al sistema Kerberos, il candidato illustri il protocollo base, discuta le ipotesi sotto le quali il protocollo di autenticazione è sicuro, discuta il dimensionamento delle finestre temporali.