Galois Fields GF(q)

Qi Zhang

Aarhus University School of Engieering

20/02, 2014

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 1 / 25

1 Polynomials over Binary Fields

- **2** Construction of a Galois Field $GF(2^m)$
- 3 Property of Extended Galois Fields

4 Minimal Polynomial

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 2 / 25

Polynomials over Binary Fields

■ A polynomial f(X) defined over GF(2) is of the form:

$$f(X) = f_0 + f_1 X + f_2 X^2 + \ldots + f_n X^n$$

where,

- The coefficients f_i are either 0 or 1:
- The highest exponent of the variable X is called the degree of the polynomial;
- There are 2^n polynomial of degree n.
- e.g.,

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 3 / 25

Operation of polynomial

- Polynomial addition and multiplication are done using operations modulo 2;
- It follows communicative, associative and distributive laws.
- The division is of the form:

$$f(X) = q(X)g(X) + r(X)$$

where.

- \blacksquare q(X) represents quotient polynomial,
- r(X) represents remainder polynomial.

Factor polynomial

- **Definition B.1**: If $f(\alpha) = 0$, an element of the field, α , is a zero or a root of polynomial f(X). When α is a root of f(X), the polynomial f(X) has a factor polynomial $X \alpha$.
- **Example**: $\alpha = 1$ is the root of the polynomial $f(X) = 1 + X^2 + X^3 + X^4$, proof X + 1 is a factor of this polynomial.

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 5 / 25

Irreducible polynomial

- **Definition B.2**: A polynomial p(X) defined over GF(2), of degree m, is said to be *irreducible*, if p(X) has no factor polynomials over GF(2) of degree higher than zero and lower than m.
- **Example**: proof that the polynomial $1 + X + X^2$ is an irreducible polynomial.
- A: This polynomial of degree 2 has no factor polynomials of degree 1, such as X and X + 1.
- **Property**: An irreducible polynomial over binary field GF(2), of degree m, is a factor polynomial $X^{2^m-1} + 1$.
 - e.g., the polynomial $1 + X + X^2$ is the factor polynomial of $X^3 + 1$.

Primitive polynomial

- We have known an irreducible polynomial $p_i(X)$ of degree m is a factor polynomial of $X^n + 1$, $n = 2^m 1$. If $p_i(X)$ is not a factor of any other polynomials of the form $X^n + 1$, where $1 \le n < 2^m 1$, then $p_i(X)$ is called *primitive* polynomial.
- **Example**: Verify $X^4 + X + 1$ is a primitive polynomial.
- Hint:
 - Verify $X^4 + X + 1$ is an irreducible polynomial;
 - Verify $X^4 + X + 1$ is not a factor of $X^n + 1$, $1 \le n < 15$;
- Note: A primitive polynomial must be an irreducible polynomial; however, an irreducible polynomial is not necessary to be a primitive polynomial.

An interesting property...

Polynomial over GF(2):

$$(X+1)^2 = X^2 + X + X + 1 = X^2 + 1$$

 $(X+1)^4 = (X^2+1)^2 = X^4 + X^2 + X^2 + 1 = X^4 + 1$
 $(X+1)^8 = (X^4+1)^2 = X^8 + X^4 + X^4 + 1 = X^8 + 1$
 $\vdots = \vdots$

■ **Property**: Polynomial over GF(2), there is

$$(f(X))^{2^l} = f(X^{2^l})$$

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 8 / 25

Construction of a Galois Fields $GF(2^m)$

• An extended Galois Field contains not only the binary elements 0 or 1 but also the element α and its powers. The operation of elements follows:

$$0\alpha = \alpha 0 = 0$$

$$1\alpha = \alpha 1 = \alpha$$

$$\alpha^2 = \alpha \alpha, \quad \alpha^3 = \alpha \alpha^2$$

$$\alpha^i \alpha^j = \alpha^{i+j} = \alpha^j \alpha^i$$

• So a set of 2^m finite elements:

$$F = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{2^m - 2}\}\$$

• According to the finite field property, there is $\alpha^{2^m-1}=1$.

Question: How to construct such a field?

Construction of a Galois Field $GF(2^m)$

Recall the property of a primitive polynomial...

A primitive polynomial $p_i(X)$ over GF(2) of degree m, is a factor of polynomial $X^{2^m-1}+1$. Assuming α is the root of the primitive polynomial $p_i(X)$, then $p_i(\alpha)=0$. There is

$$X^{2^{m}-1} + 1 = p_i(X)q(X)$$

 $\alpha^{2^{m}-1} + 1 = p_i(\alpha)q(\alpha) = 0$
 $\alpha^{2^{m}-1} = 1$

Let's look at

$$\alpha^i \alpha^j = \alpha^{i+j}$$

■ If $i + j \ge 2^m - 1$, there is $i + j = (2^m - 1) + r$, $0 \le r < 2^m - 1$, then

$$\alpha^{i}\alpha^{j} = \alpha^{i+j} = \alpha^{(2^{m}-1)+r} = \alpha^{r}$$

11 / 25

Qi Zhang (ASE) Galois Fields GF(q)

- **Example B.1**: Construct a GF(2^3) based on primitive polynomial $p_i(X) = 1 + X + X^3$.
- **Solution**: Assuming $p_i(X)$ has root α , there is $p_i(\alpha) = 1 + \alpha + \alpha^3 = 0$, then $\alpha^3 = 1 + \alpha$

Element	poly. rep.	vector rep.
0	0	0 0 0
1	1	100
α	α	0 1 0
$ \alpha^2 $ $ \alpha^3 $ $ \alpha^4 $ $ \alpha^5 $ $ \alpha^6 $	α^2	0 0 1
$lpha^{3}$	$1 + \alpha$	1 1 0
α^4	$\alpha + \alpha^2$	0 1 1
$lpha^{5}$	$1 + \alpha + \alpha^2$	111
$lpha^{6}$	1 $+\alpha^2$	101

- Polynomials defined over GF(2) can have roots that belong to an extended field $GF(2^m)$;
- It is similar as in the case of a polynomial defined over a set of real numbers, which can have roots are complex numbers outside of the set of real number.
 - e.g. the polynomial $p(X) = 1 + X^3 + X^4$ is irreducible over GF(2) since it has no roots in GF(2), however, it has four roots in the extended Galois Field GF(2^4).

- Question: How to find the four roots of the polynomial $p(X) = 1 + X^3 + X^4$ in the extended Galois Field GF(2⁴)?
 - Intuitively, we can substitute all the elements of a $GF(2^4)$ into the polynomial $p(X) = 1 + X^3 + X^4$, to check if p(X) = 0.

- **Theorem B.1**: Let f(X) be a polynomial defined over GF(2). If an element β of the extended Galois Field $GF(2^m)$ is root of the polynomial f(X), then for any positive integer $l \geq 0$, β^{2^l} is also a root of the polynomial f(X).
 - Recall there is an interesting property:

$$(f(X))^{2^l}=f(X^{2^l})$$

So

$$(f(\beta))^{2'} = (0)^{2'} = f(\beta^{2'}) = 0$$

■ The element $\beta^{2'}$ is called the conjugate of β .

- **Example B.3**: The polynomial $p(X) = 1 + X^3 + X^4$ defined over GF(2) has α^7 as one of the roots in the the extended Galois Field $GF(2^4)$ which is generated by the primitive polynomial $p_i(X) = 1 + X + X^4$. To find the other three roots in this extended Galois Field $GF(2^4)$.
- Solution:

$$\begin{split} I &= 1 &: (\alpha^7)^2 = \alpha^{14} \\ I &= 2 &: (\alpha^7)^4 = \alpha^{28} = \alpha^{15} \cdot \alpha^{13} = \alpha^{13} \\ I &= 3 &: (\alpha^7)^8 = \alpha^{56} = \alpha^{3 \times 15} \cdot \alpha^{11} = \alpha^{11} \\ I &= 4 &: (\alpha^7)^{16} = \alpha^{112} = \alpha^{7 \times 15} \cdot \alpha^7 = \alpha^7 \end{split}$$

- So the other three roots are α^{14} , α^{13} , α^{11} .
- We can also verify that

$$p(X) = 1 + X^{3} + X^{4}$$

$$= (X + \alpha^{7})(X + \alpha^{11})(X + \alpha^{13})(X + \alpha^{14})$$

$$= X^{4} + X^{3} + 1$$
AARHUS UNIVERSITET INCENDENCIANCIEN

- In the example B.3, the root $\beta = \alpha^7$ can satisfy $\beta^{2^m-1} = \beta^{15} = (\alpha^7)^{15} = \alpha^0 = 1$ (note β is an element of $\mathsf{GF}(2^4)$).
- Equivalently, $\beta^{2^m-1} + 1 = 0$.
- So β can be regarded as a root of the polynomial $X^{2^m-1}+1=0$.
- Since the degree of the polynomial $X^{2^m-1} + 1$ is $2^m 1$, the $2^m 1$ non-zero elements of $GF(2^m)$ are all roots of $X^{2^m-1} + 1$.
- Since the zero element of the $GF(2^m)$ is a root of the polynomial X, we can say the elements of the $GF(2^m)$ are all the roots of the polynomial $X^{2^m} + X$

Definition of minimal polynomial

- **Definition B.3**: Among the polynomials defined over GF(2) has β as a root, a polynomial $\phi(X)$ has the minimum degree. We call the polynomial $\phi(X)$ is the minimal polynomial of β . e.g.,
 - The minimal polynomial of element 0 is X;
 - The minimal polynomial of element 1 is 1 + X.
 - As polynomial $\phi(X)$ has β as a root, there is $\phi(\beta) = 0$
- Note: Remember the minimal polynomial of β $\phi(X)$ is defined over GF(2).

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 18 / 25

Theorem B.2: The minimal polynomial of an element of β of a Galois Field $GF(2^m)$ is an irreducible polynomial.

- Suppose the minimal polynomial of element β , $\phi(X)$, is not irreducible.
- Then $\phi(X)$ can be expressed as a product of two other polynomials $\phi(X) = \phi_1(X)\phi_2(X).$
- As $\phi(\beta) = \phi_1(\beta)\phi_2(\beta) = 0$, either $\phi_1(\beta) = 0$ or $\phi_2(\beta) = 0$.
- It is contradictory with the fact that $\phi(X)$ is of the minimum degree.

Galois Fields GF(q) 20/02, 2014 19 / 25

Theorem B.3: For a given polynomial f(X) defined over GF(2), and $\phi(X)$ being the minimal polynomial of β , if β is also a root of f(X), $\phi(X)$ must be a factor polynomial of f(X).

- As f(X) has root β , $f(\beta) = 0$.
- As $\phi(X)$ is the minimal polynomial of β , $\phi(\beta) = 0$.
- If $\phi(X)$ is not a factor polynomial of f(X), then $f(X) = q(X)\phi(X) + r(X)$ and $r(X) \neq 0$. Thus $f(\beta) = q(\beta)\phi(\beta) + r(\beta) = 0$.
- As $q(\beta)\phi(\beta) = 0$, $r(\beta)$ must be equal to 0, Thus it is contradictory to the assumption of $r(X) \neq 0$.
- So $\phi(X)$ must a factor polynomial of f(X).

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 20 / 25

Theorem B.4: The minimal polynomial $\phi(X)$ of the element β of the Galois Field $GF(2^m)$ is a factor of $X^{2^m} + X$.

- We know all the elements of $GF(2^m)$ are the roots of the polynomial $X^{2^m} + X$, hence, $\beta^{2^m} + \beta = 0$.
- Since $\phi(X)$ is the minimal polynomial of the element β , $\phi(\beta) = 0$.
- According to Theorem B.3, we can conclude that $\phi(X)$ is a factor of $X^{2^m} + X$.

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 21 / 25

Theorem B.5: Let f(X) be an irreducible polynomial defined over GF(2), $\phi(X)$ is the minimal polynomial of an element β of the Galois field GF(2^m). If $f(\beta) = 0$, then $f(X) = \phi(X)$.

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 22 / 25

Theorem B.6: Let $\phi(X)$ be the minimal polynomial of the element β of the Galois Field $GF(2^m)$, the let e be the smallest non -zero integer number for $\beta^{2^e} = \beta$, then the minimal polynomial of β is

$$\phi(X) = \prod_{l=0}^{e-1} (X + \beta^{2^l})$$

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 23 / 25

Construct minimal polynomials

- **Example B.4**: Determine the minimal polynomial $\phi(X)$ of $\beta = \alpha^7$ in $GF(2^4)$ which is generated by primitive polynomial $p_i(X) = 1 + X + X^4$.
- Solution:
 - Find the conjugate roots of $\beta=\alpha^7$. As we know the conjugate roots are $\beta^2=\alpha^{14}$, $\beta^{2^2}=\alpha^{13}$, $\beta^{2^3}=\alpha^{11}$ are also the roots of the polynomial for which $\beta=\alpha^7$ is a root.
 - Since $\beta^{2^e} = \beta^{16} = (\alpha^7)^{16} = \alpha^7 = \beta$, then e = 4.
 - lacksquare So according to the Theorem B.6, the minimal polynomial of β is

$$\phi(X) = (X + \alpha^7)(X + \alpha^{11})(X + \alpha^{13})(X + \alpha^{14})$$

= $X^4 + X^3 + 1$

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 24 / 25

Construct minimal polynomials

- **Example**: Find the minimal polynomial of all the elements of the Galois field $GF(2^4)$ generated by $p_i(X) = 1 + X + X^4$.
- Solution guide:
 - Step 1. Generate the Galois field $GF(2^4)$ based on $p_i(X)$.
 - Step 2. Find the groups of the conjugate roots.
 - Step 3. Apply Theorem B.6 to construct the minimal polynomial of each elements.

Qi Zhang (ASE) Galois Fields GF(q) 20/02, 2014 25 / 25