Phrase-based Statistical Machine Translation

Ulrich Germann, University of Edinburgh September 16, 2016

(Lecture on decoding algorithm, B Pouliquen, Gian course, Varanasi)
Original slides available at
http://ufal.mff.cuni.cz/mtm16/files/14-phrase-based-smt-ulrich-germann.pdf

Decoding

based on slides originally by P. Koehn, edited by M. Huck (and possibly others)

Given the model, find the best translation

$$e_{best} = \operatorname{argmax}_e p(e \,|\, f)$$

We use the "Viterbi approximation"

$$(a, e)_{best} = \operatorname{argmax}_{(a, e)} p(a, e | f)$$

- This is a search problem a big one.
 - Dynamic programming
 - Approximation (beam search)
 - Model restrictions (reordering)

Decoding

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary_	not	give	aslap		to	the	_witch_ green	green_ witch
	no				to the		-	
	did_not_give				ne.			
			sl	ap		the	witch	

- many different ways to *segment* the input sentence into phrases
- many different ways to *translate* each phrase

Maria	no	dio	una	bofetada	a	la	bruja	verde	
<u>Mary</u>	not _did_not _no	give	aslapslapslap		tothe		<u>witch</u> <u>green</u> green witch		
	did_no	did not give		to the					
	slap				the witch				

- Start with empty hypothesis
 - e: no English words
 - f: no foreign words covered
 - p: probability 1

Maria	no	dio	una	bofetada	a	la	bruja	verde
Mary	not did_not no	give	aslap a_slap		tothe		witch_ green	_green_ witch
	did_no				to the			
slap					the witch			

- Pick translation option
- Create hypothesis
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534

• Add another *hypothesis*

• Further hypothesis expansion

- ... until all foreign words covered
 - find best hypothesis that covers all foreign words
 - backtrack to read off translation

Adding more hypothesis \Rightarrow *Explosion* of search space

• Different paths to the same partial translation

- Different paths to the same partial translation
- ⇒ Combine paths
 - drop weaker path
 - keep pointer from weaker path (for lattice generation)

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last n-1 English words match (matters for language model)
 - foreign word coverage vectors match (affects future path)

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last n-1 English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
- ⇒ Combine paths

Beam Search

heuristically discard weak hypotheses early

- it is better to organize hypotheses in stacks (actually: priority queues), e.g. by
 - same foreign words covered
 - same number of foreign words covered
- compare hypotheses in stacks, discard bad ones
 - histogram pruning: keep top k hypotheses in each stack (e.g., k=100)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)

Hypothesis Stacks

- Organization of hypotheses into stacks
 - here: based on *number of foreign words* translated
 - during translation all hypotheses from one stack are expanded
 - expanded hypotheses are placed into stacks

Comparing Hypotheses

• Comparing hypotheses with same number of foreign words covered

- Hypothesis that covers easy part of sentence is preferred
- ⇒ Need to consider future cost of uncovered parts

Future Cost Estimation

Step 1: estimate future cost for each translation option

- look up translation model cost
- estimate language model cost (no prior context)
- ignore reordering model cost
- \Rightarrow LM * TM = p(to) * p(the|to) * p(to the|a la)

Future Cost Estimation

Step 2: find cheapest cost (highest probability) among translation options

Future Cost Estimation

Step 3: Find *lowest future cost* for each possible span

- Cost of translation option for that span, or
- Sum of costs of covering subspans
- ⇒ Pre-compute future costs, bottom up., via dynamic programming.

Future Cost Estimation: Application

- Use future cost estimates when pruning hypotheses
- For each uncovered continuous span:
 - look up future costs for each maximal contiguous uncovered span
 - add to actually accumulated cost for translation option for pruning

Limits on Reordering

- Reordering may be limited
 - Monotone translation: No reordering at all
 - ullet Only phrase movements of at most d words
- Reordering limits speed up search (polynomial instead of exponential)
- Current reordering models are weak, so limits *improve* translation quality

Word Lattice Generation

- Search graph can be easily converted into a word lattice
 - can be further mined for N-best lists
 - ⇒ enables reranking approaches
 - \Rightarrow enables discriminative training

Sample N-Best List

• Simple N-best list:

					_
Translation	Reordering	LM	TM	WordPenalty	Score
this is a small house	0	-27.0908	-1.83258	-5	-28.9234
this is a little house	0	-28.1791	-1.83258	-5	-30.0117
it is a small house	0	-27.108	-3.21888	-5	-30.3268
it is a little house	0	-28.1963	-3.21888	-5	-31.4152
this is an small house	0	-31.7294	-1.83258	-5	-33.562
it is an small house	0	-32.3094	-3.21888	-5	-35.5283
this is an little house	0	-33.7639	-1.83258	-5	-35.5965
this is a house small	-3	-31.4851	-1.83258	-5	-36.3176
this is a house little	-3	-31.5689	-1.83258	-5	-36.4015
it is an little house	0	-34.3439	-3.21888	-5	-37.5628
it is a house small	-3	-31.5022	-3.21888	-5	-37.7211
this is an house small	-3	-32.8999	-1.83258	-5	-37.7325
it is a house little	-3	-31.586	-3.21888	-5	-37.8049
this is an house little	-3	-32.9837	-1.83258	-5	-37.8163
the house is a little	-7	-28.5107	-2.52573	-5	-38.0364
the is a small house	0	-35.6899	-2.52573	-5	-38.2156
is it a little house	-4	-30.3603	-3.91202	-5	-38.2723
the house is a small	-7	-28.7683	-2.52573	-5	-38.294
it 's a small house	0	-34.8557	-3.91202	-5	-38.7677
this house is a little	-7	-28.0443	-3.91202	-5	-38.9563
it 's a little house	0	-35.1446	-3.91202	-5	-39.0566
this house is a small	-7	-28.3018	-3.91202	-5	-39.2139

Summary

- Left-to-right decoding as search
- Hypothesis recombination
- Pruning
- Future cost estimation
- Word lattices and *n*-best lists