

Projekt: MSS54 Modul:

Seite 1 von 7

MSS54 Tankentlüftung

	Abteilung	Datum	Name	Filename
Bearbeiter		05.12.04		6

Projekt: MSS54 Modul:

Seite 2 von 7

Inl	naltsverz	zeichnis: (automatisch aus Kapitelüberschriften)	
1.	Relativer	Öffnungsquerschnitt	.3
		Absolute Öffnungsquerschnitt	
	1.2.	Minimaler Öffnungsquerschnitt	.3
	1.3.	Maximale Öffnungsquerschnitt	.3
	1.4.	Relative Öffnungsquerschnitt	.3

	Abteilung	Datum	Name	Filename
Bearbeiter		05.12.04		6

Projekt: MSS54 Modul:

Seite 3 von 7

1. ALLGEMEINES

Die Tankentlüftung geschieht über das Tankentlüftungsventil das pulweitenmoduliert angesteuert wird.

Die Periodendauer des Ventiles beträgt 105 msec, die Auflösung 3,21 usec.

Es gibt eine **Spülphase** in der der AKF gespült wird und es gibt **eine Lern- oder Grundadaptionsphase** in der die Lambdaadaption aktiv ist und das TEV geschlossen ist.

1.1. EINSCHALTBEDINGUNGEN

Das aller erste Mal kommt man in die Spülphase, wenn tmot > K_TE_TMOT und Lambdaregler aktiv (B_LAx) oder tl > KL_TE_N_TL und Lambdareglerfaktor la_f_reglerx > K_TE_LA_MIN ist.

1.2. SPUELPHASE

Aus der Spülphase kommt man nach Ablauf der Spuelzeit in die Grundadationsphase.

te_t_spuel > K_TE_T_SPUEL_MIN + K_TE_T_SPULE

oder

(B_HFM_FEHLER und tl < KL_TE_N_TL)

oder

te_t_spuel > K_TE_SPUEL_MIN und teax_f > K_TEA_FMAX

In der Spülphase gibt es 4 weitere Zustände zwischen denen je nach Situation gewechselt wird.

Das Öffnen und Schließen des Ventils geschieht über den Ventilfaktor te_f_ventil, der über verschieden Rampen rauf und runter gefahren wird.

Wichtig: Die Ventilöffnungsdauer wird bei einem positivem Sprung über einen Tiefpaß mit der Zeitkonstante K_TE_TVTE_TAU gefiltert.

Das Ventil startet bei der minimalen Öffnungsdauer von K_TE_TV_MIN und wird unterhalb dieser sofort auf 0 gesetzt.

1.2.1 ADAPTION

Während der Spülphase wird die Lambdaadation ausgeschaltet und die Tankentlüftungsadaption übernimmt dessen Funktion und sorgt dafür das der Lambdaregler wieder um 1,0 regelt. Die Tankentlüftungsadaption läuft nur bei aktiver Lambdaregelung.

Der Adaptionsfaktor wird abgregelt mit der RAMPE K_TEA_AB_SA wenn, B_SA oder

	Abteilung	Datum	Name	Filename
Bearbeiter		05.12.04		6

Projekt: MSS54 Modul:

Seite 4 von 7

B_HFM_FEHLER oder B_TE_DS2 oder B_SLP_DS2

Der Adaptionsfaktor wird abgregelt mit der RAMPE K_TEA_AB_TL_SCH wenn, tl > KL_TE_N_TL

Der Adaptionsfaktor wird abgregelt mit der RAMPE K_TEA_AB_TLLA wenn, tl < KL TE N TL und !B LA

Der Adaptionsfaktor wird abgregelt mit der RAMPE K_TEA_AB_LERN wenn, man die Spülphase verläßt.

Der Adaptionsfaktor wird wie folgt berechnet:

teax_f = teax_f + (1,0 - la_f_reglerx) / K_TEA_TAU2

Der Adaptionsfaktor wird begrenzt auf K_TEA_FMIN und K_TEA_FMAX.

1.2.2 ZUSTAND: B_TE_NORM

Dieser Zustand ist der normale Zustand der Tankentlüftung.

Ventilsteuerung:

In diesem Zustand wird das Tastverhältnis für die Ventilansteuerung aus dem KF_TE_N_TL_TVTE errechnet oder bei B_LL aus der Konstante K_TE_TVTE_LL.

Das Ventil wird bis zu diesem Wert über den Faktor te_f_ventil mit der Rampe K_TE_AUF aufgeregelt.

Dannach wird dieser Faktor te_f_ventil mit der RAMPE K_TE_AUF1 aufgeregelt, jedoch nur bis entweder der Tankentlüftungsadaptionfaktor den Wert K_TEA_FMIN1 unterschreitet oder der Faktor te_f_ventil den Endwert von K_TE_F_VENTIL_MAX erreicht hat.

Austrittsbedingungen:

Aus dem Zustand B_TE_NORM tritt man aus in den Zustand

a.) B_TE_SA bei Schubabschalten B_SA

b.) B_TE_LIMIT, wenn tmot < K_TE_TMOT tl < KL_TE_N_TL und !B_LA la_f_reglerx < K_TE_LA_MIN

1.2.3 ZUSTAND: B_TE_SA

	Abteilung	Datum	Name	Filename
Bearbeiter		05.12.04		6

Projekt: MSS54 Modul:

Seite 5 von 7

Dieser Zustand wird bei Schubanschalten angenommen.

Ventilsteuerung:

In diesem Zustand wird das Ventil sofort geschlossen in dem der Faktor te_f_ventil auf 0 gesetzt wird.

Austrittsbedingungen:

Aus dem Zustand B_TE_SA tritt man aus in den Zustand

a.) B_TE_NACH_SA wenn !B_SA

1.2.4 ZUSTAND: B_TE_NACH_SA

Dieser Zustand wird nach einer Schubphase angenommen.

Ventilsteuerung:

In diesem Zustand wird das Tastverhältnis für die Ventilansteuerung aus dem KF_TE_N_TL_TVTE errechnet oder bei B_LL aus der Konstante K_TE_TVTE_LL.

Das Ventil wird bis zu diesem Wert über den Faktor te_f_ventil mit der Rampe K_TE_AUF aufgeregelt.

Dannach wird dieser Faktor te_f_ventil mit der RAMPE K_TE_AUF1 aufgeregelt, jedoch nur bis entweder der Tankentlüftungsadaptionfaktor den Wert K_TEA_FMIN1 unterschreitet oder der Faktor te_f_ventil den Endwert von K_TE_F_VENTIL_MAX erreicht hat.

Austrittsbedingungen:

Aus dem Zustand B_TE_NACH_SA tritt man aus in den Zustand

b.) B_TE_SA bei Schubabschalten (= B_SA)

1.2.5 ZUSTAND: B_TE_LIMIT

Dieser Zustand ist die Grenzwertregelung, d. h. der AKF ist so voll, daß der Lambdaregler den Grenzwert K_TE_LA_MIN unterschreiten würde.

Ventilsteuerung:

In diesem Zustand wird das Ventil über den Faktor te_f_ventil mit der Rampe K_TE_LIMIT abgeregelt.

	Abteilung	Datum	Name	Filename
Bearbeiter		05.12.04		6

Projekt: MSS54 Modul:

Seite 6 von 7

Austrittsbedingungen:

Aus dem Zustand B_TE_LIMIT tritt man aus in den Zustand

a.) B_TE_NORM wenn tmot > K_TE_TMOT und (tl > KL_TE_N_TL oder B_LA) und la_f_reglerx > K_TE_LA_MIN

b.) B_TE_SA bei Schubabschalten (= B_SA)

1.3. LERN- ODER GRUNDADAPTIONSPHASE

Nach Ablauf der Spuelzeit gelangt man in die Grundadaptionsphase. Es wird die Lambdadaption wieder freigegeben, wenn das Ventil ganz geschlossen ist und die allgemeinen Lambdadaptionsbedingungen gültig sind (siehe Lambdadaption).

Ventilsteuerung:

In diesem Zustand wird das Ventil über den Faktor te_f_ventil mit der Rampe K_TE_ZU_LERN abgeregelt.

Austrittsbedingungen:

Aus dem Zustand B_TE_LERN tritt man aus in den Zustand

a.) B_TE_SPUEL wenn te_t_lern > K_TE_T_LERN

2. VIRTUELLES VERGESSEN DER ADAPTION UND DER VENTILÖFFNUNGSDAUER

Jedesmal, wenn der Adaptionsfaktor vergessen werden soll, wird auch virtueller Vergessenfaktor tea_f_virtuell über eine langsame Rampe K_TEA_AB_VIRTUELL abgeregelt.

Nachdem die Bedingungen für Vergessen nicht mehr erfüllt sind, wird für den Adaptionswert ein Startwert wie folgt berechnet:

teax_f = 1,0 + (teax_f_start -1,0) * tea_f_virtuell

wobei teax_f_start der Wert vor der Vergessenphase war.

Nachdem die Bedingungen für Vergessen nicht mehr erfüllt sind, wird für den Ventilfaktor te_f_ventil ein Startwert wie folgt berechnet:

te_f_ventil = te_f_ventil_start * tea_f_virtuell

	Abteilung	Datum	Name	Filename
Bearbeiter		05.12.04		6

Projekt: MSS54 Modul:

Seite 7 von 7

wobei te_f_ventil_start der Wert vor der Vergessenphase war.

	Abteilung	Datum	Name	Filename
Bearbeiter		05.12.04		6