OLLSCOIL NA hÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

SUMMER EXAMINATIONS, 2009

B.E. DEGREE (ELECTRICAL)

CONTROL ENGINEERING EE4002

Professor C. Delabie Professor P. Murphy Dr. G. Lightbody

Time allowed: 3 hours

Answer *four* questions All questions carry equal marks

The use of departmental approved non-programmable calculators is permitted

1.

(a) Consider the following closed-loop system, where the sample time is T,

Fig. 1.1: Discrete-time control system

Sketch the response for the continuous signal y(t) for a unit step in the setpoint r(t).

[5 marks]

(b) Derive Tustins's transformation.

A certain continuous controller C(s) has been designed,

$$C(s) = \frac{M(s)}{E(s)} = \frac{1}{s+a}$$

Use Tustin's transformation to develop a difference equation representation of this controller for implementation on a digital computer with sample-time T.

By comparison with the matched-pole-zero method, derive the following first-order Padé approximation,

$$e^{-aT} \approx \frac{1 - \frac{Ta}{2}}{1 + \frac{Ta}{2}}$$

[8 Marks]

(c) A certain SISO discrete-time process has input u(k) and output y(k). The response of this system to a unit step input is given in Fig. 1.2.

Fig. 1.2: Discrete-time unit step response

Determine an expression for the discrete time transfer function Y(z)/U(z).

The discrete-time step response is commonly used in predictive control to provide a predictive model of the process. If we are currently at the kth sampling instant, then show from Fig. 1.2, that the output prediction over the next four steps into the future can be written as,

$$\begin{bmatrix} y(k+1) \\ y(k+2) \\ y(k+3) \\ y(k+4) \end{bmatrix} = \begin{bmatrix} h_1 & 0 & 0 & 0 \\ h_2 - h_1 & h_1 & 0 & 0 \\ h_3 - h_2 & h_2 - h_1 & h_1 & 0 \\ h_4 - h_3 & h_3 - h_2 & h_2 - h_1 & h_1 \end{bmatrix} \begin{bmatrix} u(k) \\ u(k+1) \\ u(k+2) \\ u(k+3) \end{bmatrix} + \underbrace{y}_f(k).$$

Where the vector $\underline{y}_f(k)$ contains the free response, caused by control actions in the past (before the current k^{th} sampling instant).

The desired setpoint over the next four samples is,

$$\underline{r}(k) = [r(k+1) \quad r(k+2) \quad r(k+3) \quad r(k+4)]^T$$
.

Determine (without actually solving) a mathematical expression for the vector of controls $\underline{u}(k) = [u(k) \ u(k+1) \ u(k+2) \ u(k+3)]^T$ that will drive the process output exactly to the setpoint over the next four samples.

[12 Marks]

2. (a) A certain digital controller has been designed as:

$$D(z) = \frac{K(z-\alpha)}{z^2(z-\beta)(z-\gamma)}$$

Show how this controller could be realised using four delay blocks.

[5 Marks]

(b) Consider the following closed-loop discrete-time process,

Fig. 2.1: Closed-loop Discrete Time Process

Show that the following Kalman controller could be designed for this process:

$$D(z) = \frac{1 - \sum_{i=1}^{n} a_i z^{-i}}{\sum_{j=1}^{m} b_j (1 - z^{-d-j})}$$

Sketch the closed-loop response for both the controller output sequence m(k) and the process output c(k), for a unit-step in the setpoint signal r(k).

What are the key benefits and potential drawbacks of this controller design method?

[12 Marks]

(c) A closed-loop position control scheme for a single-link robotic manipulator is shown below. The controller gain K is designed in the continuous domain to achieve some desired closed-loop performance.

Fig. 2.2: Closed-loop motor speed control

By use of root-locus plots, show how the closed-loop dynamic performance for the digital implementation of this controller may be very different from that designed for in the continuous domain. The sample time is T=0.1 seconds.

[8 marks]

In order to emphasise more recent information, "forgetting" can be incorporated within the least squares algorithm. A common choice for the least squares cost function over N valid test points is then:

$$J\left(\hat{\underline{\theta}}(k)\right) = \sum_{i=0}^{N-1} \lambda^{i} e(k-i)^{2}$$

Where, the forgetting factor $\lambda \le 1$, and e(k) is the prediction error.

(i) Derive in full, the following least-squares algorithm with forgetting, for the identification of the parameters $\underline{\hat{\theta}}(k)$, of a discrete-time transfer function. Here $\Phi(k)$ is a matrix of input and output data, and the vector $\underline{y}(k)$ contains N valid samples of the process output, up to the current k^{th} sample, $\underline{y}(k)$.

$$\hat{\underline{\boldsymbol{\theta}}}(k) = \left(\boldsymbol{\Phi}(k)^T \boldsymbol{\Lambda}_N \boldsymbol{\Phi}(k)\right)^{-1} \boldsymbol{\Phi}(k)^T \boldsymbol{\Lambda}_N \underline{\boldsymbol{Y}}(k)$$

Where the weighting matrix for N valid points is the diagonal matrix, defined as:

$$\Lambda_{N} = \begin{bmatrix}
\lambda^{N-1} & 0 & \cdots & 0 & 0 \\
0 & \ddots & & & 0 \\
0 & & \lambda^{2} & & \vdots \\
\vdots & & & \lambda & 0 \\
0 & 0 & \cdots & 0 & 1
\end{bmatrix}$$

[13 Marks]

(ii) If a square matrix P(k) is now defined as $P(k) = (\Phi(k)^T \Lambda_N \Phi(k))^{-1}$, derive the following update equation for $P^{-1}(k+1)$ from process data up to the $(k+1)^{th}$ sample, where the vector $\underline{\psi}(k+1)$ contains process input and output data sampled up to the $(k+1)^{th}$ sample,

$$P^{-1}(k+1) = \lambda P^{-1}(k) + \psi(k+1)\psi^{T}(k+1)$$

use Householders Matrix Inversion Lemma,

$$(A+BCD)^{-1}=A^{-1}-A^{-1}B(C^{-1}+DA^{-1}B)^{-1}DA^{-1},$$

to derive the following update equation:

$$P(k+1) = \frac{1}{\lambda} \left[P(k) - \frac{P(k)\underline{\psi}(k+1)\underline{\psi}^{T}(k+1)P(k)}{\lambda + \underline{\psi}^{T}(k+1)P(k)\underline{\psi}(k+1)} \right].$$

[12 Marks]

4.(a) A certain second-order SISO process can be modelled as:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Determine the transfer function of this process, G(s)=Y(s)/U(s).

Is this system representation controllable and observable?

[7 Marks]

(b) Consider the following state-space equation,

$$\frac{d}{dt}\underline{x}(t) = A\underline{x}(t) + B\underline{u}(t).$$

Develop fully the following solution for the state trajectory x(t),

$$\underline{x}(t) = e^{At} \left(\underline{x}(0) + \int_{0}^{t} e^{-A\tau} B\underline{u}(\tau) d\tau \right),$$

where x(0) is the initial state, and e^{At} is the matrix exponential.

If the sample time T is small, and a Zero-order-Hold is assumed on the input, derive the following discrete-time approximation of this process,

$$\frac{\Delta \underline{x}(k+1)}{T} = A\underline{x}(k) + B\underline{u}(k)$$

where,

$$\Delta \underline{x}(k+1) = \underline{x}(k+1) - \underline{x}(k)$$

[9 Marks]

(c) A classical control scheme for a general DC motor based positioning system is shown in Fig. 4.1.

Fig. 4.1: Closed-loop position control system

Here the following PD controller C(s) is used;

$$C(s) = K_C(s+z).$$

The setpoint is usually constant. Use the state-space design method to provide the following design equations for the PD controller:

$$z = \frac{\alpha^2 \tau}{2\alpha \tau - 1}$$
$$K_C = \frac{2\alpha \tau - 1}{K}$$

Here the desired closed loop poles are both placed at $s = -\alpha$, where, $\frac{1}{2\tau} \le \alpha \le \frac{1}{\tau}$

[9 Marks]

(a) Consider the following Nth order open-loop process with a single input u(t), a single output y(t) and a single unmeasured disturbance d(t),

$$\frac{d}{dt}\underline{x}(t) = A\underline{x}(t) + Bu(t) + Ed(t)$$
$$y(t) = C\underline{x}(t).$$

If there is no measurement of the disturbance, but it is known that, $\lim_{t\to\infty}d(t)=d_{\infty}$, show that the steady state estimation error vector, for a Luenberger observer is:

$$\underline{e}_{ss} = \lim_{t \to \infty} (\underline{x}(t) - \underline{\hat{x}}(t)) = -(A - GC)^{-1} Ed_{\infty},$$

where G is the Luenberger observer gain matrix.

[6 marks]

(b) Consider the following ball-on-beam apparatus consisting of a rigid beam, free to rotate in one plane about its central pivot. A servo-motor is used to rotate the beam. There are two parallel guide rails, on which a steel ball sits.

Fig. 5.1: Ball-on-Beam Apparatus

Two sensors are available. The first is a simple rotary potentiometer that is used to provide a measure of the beam angle $\theta(t)$. The second sensor provides a measurement of the ball position x(t), using the wire guide rails as a linear potentiometer.

The servo-motor dynamics are so fast that the rotation of the beam can be described by the following first-order differential equation:

$$\frac{d\theta(t)}{dt} = Kv(t).$$

The gains of the linear and rotary potentiometers are K_x and K_θ respectively

If the moment of inertia, about the axis of rotation, of the ball of mass m and radius r, is $J=^2/_5 mr^2$, basic rotational mechanics yields the following expression for the linear acceleration:

$$\frac{d^2x}{dt^2} = 7\theta(t).$$

- (i) Assume first that all the states of this third order model are available and that the gain K=5Vrad⁻¹s. Design a state-space position controller, that will meet the following specifications.
 - Zero steady-state error for a constant desired ball position
 - Closed-loop poles are selected to ensure second-order dominance.
 - In response to a step change in the desired ball position, the peak overshoot in ball position is specified to be 15%, and the settling time is specified as $Ts_{2\%} = 2$ seconds.

[10 marks]

(ii) If we note that there is a decoupling of the beam dynamics from the ball dynamics, it is possible to build a simplified second-order observer to estimate the ball velocity from just the potentiometer output voltages $v_x(t)$ and $v_{\theta}(t)$.

The potentiometer gains are $K_x = 2V/m$ and $K_\theta = 1V/radian$.

Design a second-order Luenberger Observer to provide an estimate of the ball velocity for use in the controller designed in part ii) above.

[9 marks]

(a) A certain process can be modelled by the transfer function:

6.

$$G(s) = \frac{Y(s)}{U(s)} = \frac{K(1 + s\tau_1)}{(1 + s\tau_2)(1 + s\tau_3)}$$

Develop fully a simulation diagram for the Observer Canonical representation of this process.

[5 Marks]

(b) Consider the following N^{th} order open-loop process, with single input u(t), single output y(t), and state-vector $\underline{x}(t)$,

$$\frac{d}{dt}\underline{x}(t) = A\underline{x}(t) + Bu(t)$$
$$y(t) = Cx(t)$$

The state vector is not measured directly, but is estimated as $\hat{\underline{x}}(t)$ using a full-state Luenberger observer with estimator gain matrix G.

The following control-law is utilised, where r(t) is the setpoint signal.

$$u(t) = -K\,\hat{x}(t) + Nr(t)$$

(i) Develop fully the following representation of the closed loop system,

$$\frac{d}{dt} \left[\frac{\underline{x}(t)}{\underline{e}(t)} \right] = \left[\frac{A - BK}{0} \mid \frac{BK}{A - GC} \right] \left[\frac{\underline{x}(t)}{\underline{e}(t)} \right] + \left[\frac{BN}{\underline{0}} \right] r(t)$$

where the estimation error $\underline{e}(t)$ is defined as, $e(t) = x(t) - \hat{x}(t)$

Use this representation to explain the "Separation Principle", and how this principle is applied in state-space control design.

[10 Marks]

(ii) Show that the closed-loop system could be represented by the following classical T,Q,S realisation.

Fig. 6.1: Classical T,Q,S representation of closed-loop system

Where Q(s), T(s) and S(s) are polynomials in s.

If Q(s) is,

$$Q(s) = \det(sI - A + GC + BK)$$

Determine expressions for the feedback polynomial S(s) and the pre-filter polynomial T(s).

[10 Marks]