МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ЦЕНТЪР ЗА ОЦЕНЯВАНЕ В ПРЕДУЧИЛИЩНОТО И УЧИЛИЩНОТО ОБРАЗОВАНИЕ

НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – X клас, 16.06.2023 г.

Време за работа – 90 минути

B) 99

Γ) 100

4. Ако x_1 и x_2 са корени на уравнението $2x^2-3x-4=0$, то стойността на израза $(x_1x_2)^2-(x_1+x_2)$ е:

- A) $-\frac{11}{2}$
- Б) $\frac{3}{2}$
- B) $\frac{5}{2}$
- Γ) $\frac{11}{2}$

5. Решенията на неравенството $\frac{(x-4)(x+1)}{x+4} \le 0$ са:

- A) $x \in (-\infty; -4) \cup [-1; 4]$
- Б) x ∈ (-4; -1] ∪ [4; +∞)
- B) $x \in [-1; 4]$
- $\Gamma) \ x \in (-\infty; -4] \cup [-1; \ 4]$

6. Най-голямата стойност на функцията $f(x) = -\frac{1}{2}x^2 + 2x - 1$ е:

- A) -1
- Б) 1
- B) 2
- Γ) 5

7. Стойността на израза $\frac{\sin 30^{\circ} + \cos 60^{\circ}}{\cos^2 90^{\circ} - 1}$ е:

- A) $-\sqrt{3}$
- Б) –1
- B) $-\frac{\sqrt{3}}{4}$
- Γ) $-\frac{1}{4}$

8. Числата x-2, x и x+6, взети в този ред, са последователни членове на геометрична прогресия при стойност на x равна на:

- A) -3
- Б) 2
- B) 3
- Γ) 9

9. На чертежа през точка A, външна за окръжност k, са построени допирателната AD и секущата AC, която пресича окръжността в точка B. Ако $AB=2\,\mathrm{cm}$ и $BC=6\,\mathrm{cm}$, дължината на AD е:

- Б) $2\sqrt{3}$ cm
- B) 4 cm
- Γ) $3\sqrt{2}$ cm

10. Даден е ΔABC със страни AB=4 cm , AC=2 cm и $\ll BAC=120^{\circ}$. Дължината на страната BC е:

- A) $2\sqrt{7}$ cm
- Б) $2\sqrt{5}$ cm
- B) $3\sqrt{2}$ cm
- Γ) $2\sqrt{3}$ cm

11. В правоъгълния ΔABC пета̀та на височината към хипотенузата я дели на отсечки с дължини 4 ст и 1 ст. Лицето на триъгълника е:

- A) 4 cm²
- Б) 5 cm²
- B) 6 cm²
- Γ) 8 cm²

12. Детска пързалка с височина 3 m е укрепена с вертикален стълб CT, както е показано на чертежа. Ако AT: TH=3:2, височината на стълба CT е:

13. В балкански шампионат по гимнастика участват 20 спортисти от три държави: 8 от Румъния, 7 от Гърция и останалите са от България. Редът на представянето им се определя с жребий. Вероятността български гимнастик да стартира първи, е:

A)
$$\frac{3}{4}$$

Б)
$$\frac{2}{5}$$

B)
$$\frac{1}{4}$$

$$\Gamma$$
) $\frac{1}{5}$

14. В една фирма работят 7 работници със заплати по 1250 лв., 2 специалисти – със заплати по 1820 лв. и един ръководител – със заплата 2360 лв. Средната заплата във фирмата е:

А) 1250 лв.

Б) 1475 лв.

В) 1810 лв.

Г) 1820 лв.

15. Прав кръгов конус има височина 12 ст и образуваща 13 ст. Обемът на конуса е:

A) $300\pi \text{ cm}^3$

B) $100\pi \text{ cm}^3$

 Γ) 40π cm³

<u>Пълните решения с необходимите обосновки на задачите 16. и 17. запишете в листа за</u> отговори на указаните за това места!

- **16.** А) Решете уравнението $\sqrt{3x+4} \sqrt{x} = 2$
- Б) Решете системата $\begin{vmatrix} 2x y = 3 \\ 2x^2 y^2 = 7 \end{vmatrix}$
- В) Едната страна на правоъгълен парцел е с 20 m по-дълга от другата. Колко метра мрежа са необходими за неговото заграждане, ако площта му е 525 m²?
- **17.** В $\triangle ABC$ със страни $AC = BC = 4\sqrt{5}$ cm, $CD(D \in AB)$ е височина и AD = 4 cm. Намерете:
- A) лицето на ΔABC ;
- Б) радиуса на вписаната в $\triangle ABC$ окръжност;
- В) радиуса на описаната около ΔABC окръжност;
- Γ) дължината на ъглополовящата OL в ΔBOD , където точка O е центърът на описаната около ΔABC окръжност.

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ЦЕНТЪР ЗА ОЦЕНЯВАНЕ В ПРЕДУЧИЛИЩНОТО И УЧИЛИЩНОТО ОБРАЗОВАНИЕ

НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – X клас, 16 юни 2023 г.

Ключ с верните отговори

№ на	Отговор	Брой точки
задача 1	Γ	4
2	Б	4
3	В	4
4	В	4
5	A	4
6	Б	4
7	Б	4
8	В	4
9	В	4
10	A	4
11	Б	4
12	Γ	4
13	В	4
14	Б	4
15	В	4
16 A)	$x_1 = 0, \ x_2 = 4$	6 точки
16 Б)	(2; 1) и (4; 5)	6 точки
16 B)	За заграждането на парцела са необходими 100 m мрежа.	8 точки
17 A)	$S_{\Delta ABC} = 32 \text{ cm}^2$	5 точки
17 Б)	$r = 2\left(\sqrt{5} - 1\right) \text{ cm}$	5 точки
17 B)	R = 5 cm	4 точки
17 Γ)	$OL = \frac{3}{2}\sqrt{5}$ cm	6 точки

Предложените решения на задачи с номера 16. и 17. са примерни. Всяко друго вярно и пълно решение се оценява с максимален брой точки. При оценяване на непълно решение, различно от предложените, се присъждат точки според получените междинни резултати.

Задача 16. Примерно решение:

A)
$$\sqrt{3x+4} - \sqrt{x} = 2$$
 $DM: x \in [0; +\infty)$
 $\sqrt{3x+4} = 2 + \sqrt{x}$
 $(\sqrt{3x+4})^2 = (2 + \sqrt{x})^2$
 $3x+4 = 4 + 4\sqrt{x} + x$
 $2x = 4\sqrt{x} \mid : 2$
 $(x)^2 = (2\sqrt{x})^2$
 $x^2 - 4x = 0$
 $x(x-4) = 0$
 $x_1 = 0, x_2 = 4$

С проверка установяваме, че и двата корена са решение на уравнението.

Б) Изразяваме у от първото уравнение и заместваме във второто.

$$\begin{vmatrix} 2x - y = 3 \rightarrow y = 2x - 3 \\ 2x^2 - y^2 = 7 \end{vmatrix}$$

$$2x^2 - (2x - 3)^2 = 7$$

$$2x^2 - (4x^2 - 12x + 9) = 7$$

$$2x^2 - 4x^2 + 12x - 9 - 7 = 0$$

$$-2x^2 + 12x - 16 = 0 \mid : (-2)$$

$$x^2 - 6x + 8 = 0 \quad \text{с корени } x_1 = 2, \quad x_2 = 4.$$

$$\begin{vmatrix} x = 2 \\ y = 2x - 3 \end{vmatrix} \quad \begin{vmatrix} x = 4 \\ y = 2x - 3 \end{vmatrix}$$

$$\begin{vmatrix} x = 2 \\ y = 2.2 - 3 \end{vmatrix} \quad \begin{vmatrix} x = 4 \\ y = 2.4 - 3 \end{vmatrix}$$

$$\begin{vmatrix} x_1 = 2 \\ y_1 = 1 \end{vmatrix} \quad \begin{vmatrix} x_2 = 4 \\ y_2 = 5 \end{vmatrix}$$

Решенията на системата са: (2; 1) и (4; 5).

В) Означаваме ширината b на парцела с x, x > 0.

Тогава дължината му ще бъде a = x + 20.

От формулата S = a.b получаваме уравнението x(x+20) = 525.

Решаваме уравнението $x^2 + 20x - 525 = 0 \Rightarrow x_1 = 15$, $x_2 = -35$.

Тъй като x > 0, следователно b = 15 m.

Тогава дължината на парцела е a = 35 m.

Намираме обиколката на парцела, която е P = 2(a+b) = 2(35+15) = 100 m.

Извод: За заграждането на парцела са необходими 100 m мрежа.

Задача 17. Примерно решение:

А) $\triangle ABC$ е равнобедрен $\Rightarrow AB = 8$ cm.

Прилагаме Питагорова теорема за ΔADC :

$$DC^2 = AC^2 - AD^2 \Rightarrow DC^2 = (4\sqrt{5})^2 - 4^2 \Rightarrow DC^2 = 64$$

\Rightarrow DC = 8 cm

$$S_{\Delta ABC} = \frac{1}{2} AB.DC = \frac{1}{2}.8.8 = 32 \text{ cm}^2$$

3

Б) Прилагаме формулата $S = p \cdot r$ за $\triangle ABC$:

$$p = \frac{AB + AC + BC}{2} = \frac{8 + 2.4\sqrt{5}}{2} = 4 + 4\sqrt{5} \text{ cm}$$

$$r = \frac{S}{p} \Rightarrow r = \frac{32}{4 + 4\sqrt{5}} \Rightarrow r = 2(\sqrt{5} - 1) \text{ cm}.$$

В) **Първи начин:** Прилагаме формулата $S = \frac{a.b.c}{4R}$ за ΔABC :

$$R = \frac{a.b.c}{4S} \Rightarrow R = \frac{4\sqrt{5}.4\sqrt{5}.8}{4.32} \Rightarrow R = 5 \text{ cm}.$$

Втори начин: Изразяваме
$$\sin \angle DAC = \frac{DC}{AC} \Rightarrow \sin \angle DAC = \frac{8}{4\sqrt{5}} \Rightarrow \sin \angle DAC = \frac{2}{\sqrt{5}}$$
.

Прилагаме синусова теорема за
$$\triangle ABC$$
: $R = \frac{BC}{2\sin \angle DAC} = \frac{4\sqrt{5}}{2 \cdot \frac{2}{\sqrt{5}}} = 5 \text{ cm}$.

 Γ) Прилагаме Питагорова теорема за ΔBDO :

$$OD^2 = OB^2 - DB^2 \Rightarrow OD^2 = 5^2 - 4^2 \Rightarrow OD^2 = 9 \Rightarrow OD = 3 \text{ cm}$$

Прилагаме свойството на ъглополовящата за ΔODB : $\frac{OD}{OB} = \frac{DL}{LB} \Rightarrow \frac{3}{5} = \frac{DL}{BL}$.

Ако
$$DL = 3x$$
, то $BL = 5x$.

$$DL + BL = 4$$

$$3x + 5x = 4 \Rightarrow x = \frac{1}{2}$$

$$\Rightarrow DL = \frac{3}{2}$$
 cm, $BL = \frac{5}{2}$ cm.

Първи начин: Прилагаме формулата за ъглополовящата в ΔODB

$$OL^2 = OD.OB - DL.BL \Rightarrow OL^2 = 3.5 - \frac{3.5}{2.2} = \frac{45}{4} \Rightarrow OL = \frac{3}{2}\sqrt{5}$$
 cm.

Втори начин: Прилагаме Питагорова теорема за ΔODL

$$OL^2 = OD^2 + DL^2$$

$$OL^2 = 3^2 + \left(\frac{3}{2}\right)^2$$

$$OL^2 = 9 + \frac{9}{4}$$

$$OL^2 = \frac{45}{4} \Rightarrow OL = \frac{3}{2}\sqrt{5}$$
 cm.