

Prüfbericht-Nr.: Test report No.:	50083881 001	Auftrags-Nr.: Order No.:	164091918	Seite 1 von 24 Page 1 of 24
Kunden-Referenz-Nr.: Client reference No.:	N/A	Auftragsdatum: Order date.:	27.04.2017	
Auftraggeber: Client:	Leedarson Lighting Co., Leedarson Industrial Park 363900 P.R. China		e, Changtai, Zhangz	zhou, Fujian
Prüfgegenstand: Test item:	5.8G Motion & Photon Inte	egrated LED Lamp		
Bezeichnung / Typ-Nr.: Identification / Type No.:	6Zy-A806ST-Q1M (y may	be A~Z for different er	nclosure appearanc	e design)
Auftrags-Inhalt: Order content:	FCC approval			
Prüfgrundlage: Test specification:	CFR47 FCC Part 15: Subp CFR47 FCC Part 15: Subp CFR47 FCC Part 15: Subp CFR47 FCC Part 15: Subp CFR47 FCC Part 15: Subp FCC KDB Publication 447	part C Section 15.207 part C Section 15.209 part C Section 15.107 part C Section 15.109		
Wareneingangsdatum: Date of receipt:	02.05.2017		-	
Prüfmuster-Nr.: Test sample No.:	A000537527-001 A000537527-002			
Prüfzeitraum: Testing period:	17.05.2017 - 23.05.2017			
Ort der Prüfung: Place of testing:	Accurate Technology Co., Ltd Shenzhen Academy of Metro and Quality Inspection	l l		
Prüflaboratorium: Testing laboratory:	TÜV Rheinland (Shenzher Co., Ltd.	1)		
Prüfergebnis*: Test result*:	Pass			
geprüft von I tested by:		kontrolliert von	I reviewed by:	
	Hex Con		() ve	-).42
07.06.2017 A	lex Lan / Project Engineer	07.06.2017	Owen Tian / Tech	nical Certifier
Datum Name/St Date Name/Po	0	Datum <i>Date</i>	Name/Stellung Name/Position	Unterschrift Signature
Sonstiges I Other:	For model difference in	nformation refer to claus	se 3 ₈ 1.	
FCC ID: 2AB2Q6ZY-A806	SST-Q1M			
Zustand des Prüfgegens Condition of the test item	standes bei Anlieferung: at delivery:		ständig und unbesc elete and undamage	•
Legende: 1 = sehr gut P(ass) = entspricht o.g. l Legend: 1 = very good P(ass) = passed a.m. tes	2 = good 3 = satisfactory	nicht o.g. Prüfgrundlage(n) test specifications(s)	4 = ausreichend N/A = nicht anwendbar 4 = sufficient N/A = not applicable	5 = mangelhalt N/T = nicht geteste 5 = poor N/T = not tested
Dieser Prüfbericht bezi	eht sich nur auf das o.g. Prüf		enehmigung der Prü rwendung eines Prü	

This test report only relates to the a.m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark.

Produkte

Products

Prüfbericht - Nr.: 50083881 001

Test Report No.

Seite 2 von 24 Page 2 of 24

Test Summary

5.1.1 ANTENNA REQUIREMENT

RESULT: Pass

5.1.2 FIELD STRENGTH OF FUNDAMENTAL AND HARMONICS

RESULT: Pass

5.1.3 BANDWIDTH

RESULT: Pass

5.1.4 RADIATED SPURIOUS EMISSIONS OUTSIDE BAND

RESULT: Pass

5.1.5 CONDUCTED EMISSION

RESULT: Pass

5.1.6 RADIATED EMISSION

RESULT: Pass

6.1.1 ELECTROMAGNETIC FIELDS

RESULT: Pass

50083881 001 Prüfbericht - Nr.: Test Report No.

Seite 3 von 24 Page 3 of 24

	Contents	
1	GENERAL REMARKS	4
1.1	COMPLEMENTARY MATERIALS	4
2	TEST SITES	4
2.1	TEST FACILITIES	4
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS	5
2.3	TRACEABILITY	7
2.4	CALIBRATION	7
2.5	MEASUREMENT UNCERTAINTY	7
2.6	LOCATION OF ORIGINAL DATA	7
2.7	STATUS OF FACILITY USED FOR TESTING	7
3	GENERAL PRODUCT INFORMATION	8
3.1	PRODUCT FUNCTION AND INTENDED USE	8
3.2	RATINGS AND SYSTEM DETAILS	8
3.3	INDEPENDENT OPERATION MODES	9
3.4	NOISE GENERATING AND NOISE SUPPRESSING PARTS	9
3.5	SUBMITTED DOCUMENTS	9
4	TEST SET-UP AND OPERATION MODES	10
4.1	PRINCIPLE OF CONFIGURATION SELECTION	10
4.2	TEST OPERATION AND TEST SOFTWARE	10
4.3	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	10
4.4	COUNTERMEASURES TO ACHIEVE EMC COMPLIANCE	10
4.5	TEST SETUP DIAGRAM	11
5	TEST RESULTS	13
5.1	TRANSMITTER REQUIREMENT & TEST SUITES	
5.1 5.1		
<i>5.1</i>	1.3 Bandwidth	15
5.1		
5.1 5.1		
6	SAFETY HUMAN EXPOSURE	19
6.1	RADIO FREQUENCY EXPOSURE COMPLIANCE	19
6.1	1.1 Electromagnetic Fields	19
7	PHOTOGRAPHS OF THE TEST SET-UP	20
8	LIST OF TABLES	24
9	LIST OF PHOTOGRAPHS	24

Prüfbericht - Nr.: 50083881 001 Test Report No.

Seite 4 von 24 Page 4 of 24

1 General Remarks

1.1 Complementary Materials

All attachments are integral parts of this test report. This applies especially to the following appendix:

Appendix A: Test Results

2 Test Sites

2.1 Test Facilities

Accurate Technology Co., Ltd.

F1, Bldg. A, Changyuan New Material Port Keyuan Rd., Science & Industry Park, Nanshan Shenzhen, 518057, P.R. China

Shenzhen Academy of Metrology and Quality Inspection

NETC Building, No. 4 Tongfa Rd., Xili, Nanshan, Shenzhen, China

The tests at the test sites have been conducted under the supervision of a TÜV engineer.

Prüfbericht - Nr.: 50083881 001

Test Report No.

Seite 5 von 24 Page 5 of 24

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Radio Spectrum Test (ATC)									
Equipment	Manufacturer	Model No.	Serial No.	Cal. Until					
Spectrum Analyzer R&S		FSV40	101495	2018-01-06					
Radiated Emission & Spurious Emission (ATC)									
Equipment	Manufacturer	nufacturer Model No. Serial No.							
Spectrum Analyzer	R&S	FSV40	101495	2018-01-06					
Test Receiver	R&S	ESCS30	100307	2018-01-06					
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	2018-01-09					
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	2018-01-09					
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	2018-01-09					
RF Switching Unit+PreAMP	Compliance Direction	RSU-M2	38322	2018-01-06					
Pre-Amplifier	R&S	CBLU11835 40-01	3791	2018-01-06					
50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	2018-01-06					
RF Coaxial Cable	SUHNER	N-3m	No.8	2018-01-06					
RF Coaxial Cable	RESENBERGER	N-3.5m	No.9	2018-01-06					
RF Coaxial Cable	SUHNER	N-6m	No.10	2018-01-06					
RF Coaxial Cable	RESENBERGER	N-12m	No.11	2018-01-06					
50_ Coaxial Switch	Anritsu Corp	MP59B 6200283933		2018-01-06					
Conducted Emissio	n (ATC)								
Equipment	Manufacturer	Model No.	Serial No.	Cal. Until					
Test Receiver	Rohde & Schwarz	ESCS30	100307	2018-01-06					
L.I.S.N.	Schwarzbeck	NLSK8126	8126431	2018-01-06					
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100815	2018-01-06					
50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283933	2018-01-06					
Voltage Probe	Schwarzbeck	TK9416	N/A	2018-01-09					
RF Current Probe	Rohde & Schwarz	EZ-17	100048	2018-01-09					
8-Wire Impedance Stabilisation Network	Schwarzbeck	CAT5 8158	8158-0035	2018-01-06					
RF Coaxial Cable	Suhner	N-2m	No.2	2018-01-06					

Prüfbericht - Nr.: 50083881 001 Test Report No.									
·	T	T	T						
RF Coaxial Cable	Suhner	N-2m	No.3	2018-01-06					
RF Coaxial Cable	RF Coaxial Cable Suhner		N-2m No.14						
Spurious Emissio	Spurious Emissions (SMQ) (for 26.5 - 40GHz)								
Equipment	Manufacturer	Model No.	Serial No.	Cal. Until					
EMI Receiver	Rohde & Schwarz	ESCI3	SB9058/05	2018-05-01					
EMI Receiver	EMI Receiver Rohde & Schwarz Horn Antenna Rohde & Schwarz		SB8501/09	2018-05-13					
Horn Antenna			SB8501/12	2018-05-13					

Products

 Prüfbericht - Nr.:
 50083881 001
 Seite 7 von 24

 Test Report No.
 Page 7 of 24

2.3 Traceability

All measurement equipment calibrations are traceable to NIM (National Institute of Metrology) or where calibration is performed in other countries, to equivalent nationally recognized standards organizations.

2.4 Calibration

Equipment requiring calibration is calibrated periodically by the manufacturer or according to manufacturer's specifications. Additionally all equipment is verified for proper performance on a regular basics using in house standards or comparisons.

2.5 Measurement Uncertainty

The estimated combined standard uncertainty for radiated emissions and conducted emissions measurements as below table

Item	Extended Uncertainty		
Radiated Emission (9kHz-30MHz)	Field strength (dBµV/m)	U=3.08dB, k=2, σ=95%	
Radiated Emission (30-1000MHz)	Field strength (dBµV/m)	U=4.42dB, k=2, σ=95%	
Radiated Emission (above 1000MHz)	Field strength (dBµV/m)	U=4.06dB, k=2, σ=95%	
Radio Spectrum		± 0.60 dB	
Ambient Temperature		25 °C	
Relative Humidity		56 %	
Atmospheric Pressure		101 kPa	

2.6 Location of Original Data

The original copies of all test data taken during actual testing were attached at Appendix A of this report and delivered to the applicant. A copy has been retained in the TÜV Rheinland (Shenzhen) file for certification follow-up purposes.

2.7 Status of Facility Used for Testing

The Accurate Technology Co., Ltd. Test facility located at F1, Bldg. A, Changyuan New Material Port Keyuan Rd., Science & Industry Park, Nanshan Shenzhen, 518057, P.R. China is listed on the US Federal Communications Commission list of facilities approved to perform measurements.

 Prüfbericht - Nr.:
 50083881 001
 Seite 8 von 24

 Test Report No.
 Page 8 of 24

3 General Product Information

3.1 Product Function and Intended Use

The EUT is a microwave sensor LED lamp, and it operates at 5.8GHz ISM frequency band.

All models are identical in function, circuit design and components employed except different appearance of enclosure.

For details refer to the User Manual, Technical Description and Circuit Diagram.

3.2 Ratings and System Details

Table 2: Technical Specification of Transmitter

Technical Specification	Value
Kind of Equipment	5.8G Motion & Photon Integrated LED Lamp
Type Designation	6Zy-A806ST-Q1M (y may be A~Z for different enclosure appearance design)
FCC ID	2AB2Q6ZY-A806ST-Q1M
Operating Voltage	AC 120V, 60Hz, 9W
Testing Voltage	AC 120V, 60Hz
Operating Frequency	5750-5850 MHz
Modulation	Un-modulated Carrier
Antenna type	Integral antenna
Antenna Gain	1dBi

Produkte

Products

Prüfbericht - Nr.: 50083881 001

Test Report No.

Seite 9 von 24 Page 9 of 24

3.3 Independent Operation Modes

The basic operation modes are:

- A. On, wireless transmitting mode
- B. On, lighting
- C. Off

3.4 Noise Generating and Noise Suppressing Parts

Refer to Circuit Diagram for further details.

3.5 Submitted Documents

- Application Form
- Block Diagram
- FCC Label and Location
- Model Difference Letter

- Circuit Diagram
- Operation Description
- User Manual

Products

Products

 Prüfbericht - Nr.:
 50083881 001
 Seite 10 von 24

 Test Report No.
 Page 10 of 24

4 Test Set-up and Operation Modes

4.1 Principle of Configuration Selection

Radio Spectrum: The equipment under test (EUT) was configured at its highest power output in order to measure its highest possible radiation and conducted level. The test modes were adapted accordingly in reference to the instructions for use.

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use.

4.2 Test Operation and Test Software

Test operation refers to test setup in chapter 5. All testing were performed according to the procedures in ANSI C63.4: 2014 and ANSI C63.10: 2013

According to clause 3.1, all models have been pretested and only the worst case with 6ZB-A806ST-Q1M was reported.

4.3 Special Accessories and Auxiliary Equipment

None.

4.4 Countermeasures to Achieve EMC Compliance

The test sample which has been tested contained the noise suppression parts as described in the Technical Construction File (TCF).

No additional measures were employed to achieve compliance.

Prüfbericht - Nr.: 50083881 001

Seite 11 von 24 Page 11 of 24

Test Report No.

4.5 Test Setup Diagram

Diagram of Measurement Configuration for Radiation Test (Below 1GHz)

Diagram of Measurement Configuration for Radiation Test (Above 1GHz)

Produkte

Products

Prüfbericht - Nr.: 50083881 001

Seite 12 von 24 Page 12 of 24

Test Report No.

Diagram of Measurement Configuration for Mains Conduction Measurement

Diagram of Measurement Configuration for Conducted Transmitter Measurement

 Prüfbericht - Nr.:
 50083881 001
 Seite 13 von 24

 Test Report No.
 Page 13 of 24

5 Test Results

5.1 Transmitter Requirement & Test Suites

5.1.1 Antenna Requirement

RESULT: Pass

Test Specification

Test standard : FCC Part 15.203

According to the manufacturer declared, the EUT has a integral antenna, the directional gain of antenna is 1 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Therefore the EUT is considered sufficient to comply with the provision.

Refer to EUT Photo for further details.

Produkte

Products

 Prüfbericht - Nr.:
 50083881 001
 Seite 14 von 24

 Test Report No.
 Page 14 of 24

5.1.2 Field Strength of Fundamental and Harmonics

RESULT: Pass

Test Specification

Test standard : FCC Part 15.249(a)
Basic standard : ANSI C63.10: 2013
Limits : FCC Part 15.249(a)

Kind of test site : 3m Semi-anechoic Chamber

Test Setup

Date of testing : 23.05.2017
Input voltage : AC 120V, 60Hz

Operation mode : A
Ambient temperature : 23°C
Relative humidity : 48 %
Atmospheric pressure : 101 kPa

For the measurement records, refer to the appendix A.

Produkte

Products

 Prüfbericht - Nr.:
 50083881 001
 Seite 15 von 24

 Test Report No.
 Page 15 of 24

5.1.3 Bandwidth

RESULT: Pass

Test Specification

Test standard : FCC Part 15.215

Basic standard : ANSI C63.10: 2013

Kind of test site : Shielded Room

Test Setup

Date of testing : 23.05.2017 Input voltage : AC 120V, 60Hz

Operation mode : A1

Ambient temperature : 23 °C

Relative humidity : 48 %

Atmospheric pressure : 101 kPa

Table 3: Test Result of 20dB Bandwidth

Operation Frequency Range (MHz)	Flow (MHz)	Fhigh (MHz)	Verdict
5750-5850	5799.09696	5812.90304	Pass

Remark: This product use Doppler Effect wireless technology and operates at 5.8GHz ISM frequency band, due to the special technology, the operation frequency of this product will automatically drift, and the above test data are the worst mode.

 Prüfbericht - Nr.:
 50083881 001
 Seite 16 von 24

 Test Report No.
 Page 16 of 24

5.1.4 Radiated spurious emissions outside band

RESULT: Pass

Test Specification

Test standard : FCC Part 15.209 (a)

FCC Part 15.249 (a)

Basic standard : ANSI C63.10: 2013

Limits : FCC Part 15.249

Kind of test site : 3m Semi-anechoic Chamber

Test Setup

Date of testing : 22.05.2017 ~ 23.05.2017

Input voltage : AC 120V, 60Hz

Operation mode : A

Ambient temperature : 23 °C

Relative humidity : 48 %

Atmospheric pressure : 101 kPa

For the measurement records, refer to the appendix $\ensuremath{\mathsf{A}}.$

 Prüfbericht - Nr.:
 50083881 001
 Seite 17 von 24

 Test Report No.
 Page 17 of 24

5.1.5 Conducted Emission

RESULT: Pass

Test Specification

Test standard : FCC Part 15.107(a) & FCC Part 15.207(a)

Basic standard : ANSI C63.4: 2014

Frequency range : 0.15 - 30 MHz

Limits : FCC Part 15.107(a) & FCC Part 15.207(a)

Kind of test site : Shielded Room

Test Setup

Date of testing : 17.05.2017 Input voltage : AC 120V, 60Hz

Operation mode : A, B

Earthing : Not connected

Ambient temperature : $23 \, ^{\circ}\text{C}$ Relative humidity : $48 \, ^{\circ}$ Atmospheric pressure : $101 \, \text{kPa}$

For the measurement records, refer to the Appendix A.

 Prüfbericht - Nr.:
 50083881 001
 Seite 18 von 24

 Test Report No.
 Page 18 of 24

5.1.6 Radiated Emission

RESULT: Pass

Test Specification

Test standard : FCC Part 15.109(a) & FCC Part 15.209(a)

Basic standard : ANSI C63.4: 2014 Frequency range : 30 - 6000MHz

Classification : Class B

Limits : FCC Part 15.109(a) & FCC Part 15.209(a)

Kind of test site : 3m Semi-anechoic Chamber

Test Setup

Date of testing : 23.05.2017 Input voltage : AC 120V, 60Hz

Operation mode : B

Earthing : Not connected

Ambient temperature : $23 \,^{\circ}\text{C}$ Relative humidity : $48 \,^{\circ}\text{M}$ Atmospheric pressure : $101 \,^{\circ}\text{kPa}$

For the measurement records, refer to the Appendix A.

Products

 Prüfbericht - Nr.:
 50083881 001
 Seite 19 von 24

 Test Report No.
 Page 19 of 24

6 Safety Human Exposure

6.1 Radio Frequency Exposure Compliance

6.1.1 Electromagnetic Fields

RESULT: Pass

Test Specification

Test standard : FCC KDB Publication 447498 v06

Measurement Record:

The separation distance of the lamp should be 50mm. The measured maximum peak output power of the lamp is 91.79dBuV/m≈-3.44dBm, which is far below the SAR exclusion threshold level 62 mW (Appendix A, SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and ≤50 mm), hence the EUT is excluded from SAR evaluation according to FCC KDB publication 447498 D01: Mobile and Portable RF Exposure. Guidance v06.

Produkte

Products		
Prüfbericht - Nr.: Test Report No.	50083881 001	Seite 24 von 24 Page 24 of 24
8 List of Table	es	
Table 2: Technical Specif	Measurement Equipmentication of Transmitter	8
9 List of Photo	ographs	
Photograph 2: Set-up for Photograph 3: Set-up for Photograph 4: Set-up for Photograph 5: Set-up for Photograph 6: Set-up for Photograph 7: Set-up for	Radiated Spurious Emission (9kHz ~ 30MHz)	20 21 21 22 22

Page 1 of 24

Produkte

Products

Appendix A

APPENDIX A	
APPENDIX A.1: FIELD STRENGTH OF FUNDAMENTAL, HARMONICS AND SPURIOUS EMISSION	
9KHz - 30MHz	
30MHz - 1GHz	
1GHz - 18GHz	
18GHz - 26.5GHz	9
26.5GHz - 40GHz	11
APPENDIX A.2: TEST PLOTS OF BAND EDGE (RADIATED)	13
APPENDIX A.3: TEST PLOTS OF CONDUCTED EMISSION	
Mode A	
Mode B	
APPENDIX A.4: TEST PLOTS OF RADIATED EMISSION	21
Mode B	21

Produkte Products

Page 2 of 24

Appendix A.1: Field Strength of Fundamental, Harmonics and Spurious Emission 9KHz - 30MHz

ACCURATE TECHNOLOGY CO., LTD.

FCC Class B 3M Radiated

5.8G Motion & Photon Integrated LED Lamp M/N:6ZB-A806ST-Q1M Manufacturer:

Leedarson Lighting Co., Ltd.

Operating Condition: TX
Test Site: 2# Chamber
Operator: Apple Operator: Apple
Test Specification: AC 120V/60Hz Comment: X Start of Test: 2017-05-23 /

SCAN TABLE: "LFRE Fin"
Short Description:
Start Stop Step Detector Meas.
Frequency Frequency Width
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s
150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s IF Transducer Bandw. 200 Hz 9 kHz 200 Hz 1516M 1516M

Produkte Products

Page 3 of 24

ACCURATE TECHNOLOGY CO., LTD.

FCC Class B 3M Radiated

5.8G Motion & Photon Integrated LED Lamp M/N:6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Operating Condition: TX
Test Site: 2# Chamber
Operator: Apple Operator: Apple
Test Specification: AC 120V/60Hz

Comment: Start of Test: 2017-05-23 /

Transducer

SCAN TABLE: "LFRE Fin"
Short Description:
Start Stop Step Detector Meas. IF Transcription:
Frequency Frequency Width Time Bandw.
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M

Produkte Products

Page 4 of 24

ACCURATE TECHNOLOGY CO., LTD.

FCC Class B 3M Radiated

5.8G Motion & Photon Integrated LED Lamp M/N:6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Operating Condition: TX
Test Site: 2# Chamber
Operator: Apple Operator: Apple
Test Specification: AC 120V/60Hz

Comment: Start of Test: 2017-05-23 /

Transducer

SCAN TABLE: "LFRE Fin"
Short Description:
Start Stop Step Detector Meas. IF Transcription:
Frequency Frequency Width Time Bandw.
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M

Site: 2# Chamber

Produkte Products

Page 5 of 24

30MHz - 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Tel:+86-0755-26503290 na Fax:+86-0755-26503396

Job No.: Apple #176

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode: TX

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

Polarization: Horizontal Power Source: AC 120V/60Hz

Date: 17/05/23/

Time:

Engineer Signature: Apple

Distance: 3m

									limit1:	_
60										
50										
40						/1./M	wħ,	V. A.		
30				- A	7			A. WWW	M. Mallood	n January Bara
20	was frage frage frage	MAN MAN		/	√					
10 0.0		794								
	30.000 40	50 60 70	80			30	0 400	0 500	600 70	00 1000.0 MHz
	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
T	118.6014	42.81	-13.05	29.76	43.50	-13.74	QP			
\dashv	187.7530	42.40	-12.52	29.88	43.50	-13.62	QP			
\rightarrow	259.2338	47.56	-10.49	37.07	46.00	-8.93	QP			
- 1										
\dashv	303.5437	46.28	-8.96	37.32	46.00	-8.68	QP			

Produkte Products

Page 6 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Vertical

Standard: FCC Class B 3M Radiated Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode:

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

Power Source: AC 120V/60Hz

Date: 17/05/23/

Time:

Engineer Signature: Apple

Distance: 3m

Site: 2# Chamber Tel:+86-0755-26503290

Produkte Products

Page 7 of 24

1GHz - 18GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

n,P.R.China Fax:+86-0755-26503396
Polarization: Horizontal

Power Source: AC 120V/60Hz Date: 17/05/23/

Time:

Engineer Signature: Apple

Distance: 3m

Job No.: Apple #178

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode: TX

Model: 6ZB-A806ST-Q1M

11606.568

17409.709

17409.710

5

6

26.29

-15.35

-13.47

20.39

62.79

62.91

46.68

47.44

49.44

54.00

54.00

74.00

-7.32

-6.56

-24.56

AVG

AVG

peak

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

Produkte Products

Page 8 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

lob No.: Apple #177 Polarization: Vertical

Standard: FCC Class B 3M Radiated Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode: TX

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

Power Source: AC 120V/60Hz

Date: 17/05/23/

Time:

Engineer Signature: Apple

Distance: 3m

									limit1:	_
100	,									
100	,					,				
90						\$				
80								ļļ		
70										
60									2	5
50									- 8	may who was a w
40					Augmen	AN MANAGEMENT	malyan	Parkens for so	May Markey .	
30	Carlotte and the second	the transfer of the state of th		manual plans	ALVANA THE STATE OF THE STATE O					
30										
	ո			3000	F000					
20.		20			5000	6000 7	7000 8000 9	3000		18000.0 MHz
	1000.000	20	000	3000						
_		Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	Freq.	Reading	Factor	Result		Margin (dB) -22.21	Detector			Remark
_	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	(dBuV/m)	(dB)	Detector			Remark
_	Freq. (MHz) 5802.944 5802.944 11605.976	Reading (dBuV/m) 83.69	Factor (dB) 8.10	Result (dBuV/m) 91.79	(dBuV/m) 114.00	(dB) -22.21	peak AVG			Remark
_	Freq. (MHz) 5802.944	Reading (dBuV/m) 83.69 81.53	Factor (dB) 8.10 8.10	Result (dBuV/m) 91.79 89.63	(dBuV/m) 114.00 94.00	(dB) -22.21 -4.37	peak AVG peak AVG			Remark

Site: 2# Chamber

Produkte Products

Page 9 of 24

18GHz - 26.5GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

eyuan Rd, n,P.R.China Tel:+86-0755-26503290 Fax:+86-0755-26503396 Polarization: Horizontal

Power Source: AC 120V/60Hz Date: 17/05/23/

Time:

Engineer Signature: Apple

Distance: 3m

Job No.: Apple #185

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode: TX

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

Produkte Products

Page 10 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Apple #184

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode: TX

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

Date: 17/05/23/

Time:

Engineer Signature: Apple

Distance: 3m

Produkte

Page 11 of 24 **Products**

26.5GHz - 40GHz

1/1 EMI Sweep(3)

Radiated Emission

EUT Information

5.8G Motion & Photon Integrated LED Lamp TX EUT Model Name:

Operation mode:

Test Voltage: AC 120V/60Hz

Comment: Model: 6ZB-A806ST-Q1M

Common Information

SMQ EMC Lab. Test Site:

Environment Conditions:

Antenna Polarization:

Horizontal

Operator Name: Comment:

FCC Electric Field Strength 26.5-40GHz

2017-5-22 16:30:33

Produkte

Page 12 of 24 **Products**

> EMI Sweep(3) 1/1

Radiated Emission

EUT Information

5.8G Motion & Photon Integrated LED Lamp TX EUT Model Name:

Operation mode:

AC 120V/60Hz Test Voltage:

Comment: Model: 6ZB-A806ST-Q1M

Common Information

SMQ EMC Lab. Test Site:

Environment Conditions:

Antenna Polarization:

Operator Name: Comment:

Vertical

FCC Electric Field Strength 26.5-40GHz

2017-5-22 16:44:59

Site: 2# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Produkte Products

Page 13 of 24

Appendix A.2: Test Plots of Band Edge (Radiated)

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization: Horizontal

Power Source: AC 120V/60Hz Date: 17/05/23/

Time:

Engineer Signature: PEI

Distance: 3m

Standard: FCC (Band Edge) Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode:

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

No.	Freq. (MHz)	Reading (dBuV/m)		Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
3	863.0562	28.65	1.82	30.47	46.00	-15.53	QP			
1	5724.520	44.71	7.65	52.36	74.00	-21.64	peak			
2	5724.520	34.49	7.65	42.14	54.00	-11.86	AVG			

Produkte Products

Page 14 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Vertical Standard: FCC (Band Edge)

Test item: Radiation Test Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode:

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

Power Source: AC 120V/60Hz

Date: 17/05/23/

Time:

Engineer Signature: PEI

Distance: 3m

	No.	Freq. (MHz)	Reading (dBuV/m)		Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	2	5724.520	34.49	7.65	42.14	54.00	-11.86	AVG			
	1	5704.210	42.97	7.53	50.50	74.00	-23.50	peak			
I	2	5704.210	32.98	7.53	40.51	54.00	-13.49	AVG			

Produkte Products

Page 15 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC (Band Edge) Test item: Radiation Test Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode:

Note:

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Polarization: Horizontal Power Source: AC 120V/60Hz

Date: 17/05/23/ Time:

Engineer Signature: PEI

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
2	5866.740	34.03	8.31	42.34	54.00	-11.66	AVG			
1	5855.820	43.96	8.27	52.23	74.00	-21.77	peak			
2	5855.820	34.03	8.27	42.30	54.00	-11.70	AVG			

Produkte Products

Page 16 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Vertical Power Source: AC 120V/60Hz

Standard: FCC (Band Edge) Test item: Radiation Test Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode:

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Engineer Signature: PEI Distance: 3m

Time:

Date: 17/05/23/

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
2	5704.210	32.98	7.53	40.51	54.00	-13.49	AVG			
1	5866.740	44.18	8.31	52.49	74.00	-21.51	peak			
2	5866.740	34.03	8.31	42.34	54.00	-11.66	AVG			

Page 17 of 24

Appendix A.3: Test Plots of Conducted Emission

Mode A

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

5.8G Motion & Photon Integrated LED Lamp M/N:6ZB-A806ST-Q1M $\,$

Manufacturer: Leedarson Lighting Co., Ltd.

Operating Condition: TX

Test Site: 1#Shielding Room
Operator: PING

Test Specification: L 120V/60Hz
Comment: Mains Port
Start of Test: 5/17/2017 /

SCAN TABLE: "V 9K-30MHz fin"
Short Description: __SUB_STD_VTERM2 1.70
Start Stop Step Detector Meas.
Frequency Frequency Width Time
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s Detector Meas. IF Transducer Bandw.

200 Hz NSLK8126 2008

Average 150.0 kHz 30.0 MHz 5.0 kHz

QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "T-0517-06_fin"

5	/17/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.170000	57.90	10.5	65	7.1	QP	L1	GND
	0.225000	49.40	10.6	63	13.2	QP	L1	GND
	0.915000	23.60	10.8	56	32.4	QP	L1	GND
	17.740000	29.40	11.4	60	30.6	OP	L1	GND

MEASUREMENT RESULT: "T-0517-06_fin2"

5/17/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000 0.225000 0.960000 17.740000	43.90 32.70 10.00 17.40	10.5 10.6 10.8	55 53 46 50	11.1 19.9 36.0 32.6		L1 L1 L1	GND GND GND GND

Page 18 of 24

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 C

5.8G Motion & Photon Integrated LED Lamp M/N:6ZB-A806ST-Q1M EUT:

Manufacturer: Leedarson Lighting Co., Ltd.

Operating Condition: TX

Test Site: 1#Shielding Room

Operator: PING

Test Specification: N 120V/60Hz Comment: Mains Port Start of Test: 5/17/2017 /

___SUB_STD_VTERM2 1.70

SCAN TABLE: "V 9K-30MHz fin"
Short Description: Start Stop Step

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008 Average 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "T-0517-05 fin"

5/17/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	57.90	10.5	65	7.1	QP	N	GND
0.225000	49.20	10.6	63	13.4	QP	N	GND
0.915000	23.00	10.8	56	33.0	QP	N	GND
17.995000	23.70	11.4	60	36.3	OP	N	GND

MEASUREMENT RESULT: "T-0517-05 fin2"

5/17/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	44.20	10.5	55	10.8	AV	N	GND
0.225000	32.90	10.6	53	19.7	AV	N	GND
1.125000	9.80	10.9	46	36.2	AV	N	GND
17.545000	14.80	11.4	50	35.2	AV	N	GND

Appendix A

50083881 001

Produkte Products

Page 19 of 24

Mode B

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 B

5.8G Motion & Photon Integrated LED Lamp M/N:6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Operating Condition: On

Test Site: 1#Shielding Room Operator: PING

Test Specification: L 120V/60Hz Comment: Mains Port Start of Test: 5/17/2017 /

SCAN TABLE: "V 9K-30MHz fin"
Short Description: SUI Start Stop Step _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average
QuasiPeak 1.0 s 9 kHz NSLK8126 2008 150.0 kHz 30.0 MHz 5.0 kHz

Average

MEASUREMENT RESULT: "T-0517-06 fin"

5/17/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	57.90	10.5	65	7.1	QP	L1	GND
0.225000	49.40	10.6	63	13.2	QP	L1	GND
0.915000	23.60	10.8	56	32.4	QP	L1	GND
17 740000	29 40	11 4	60	30 6	OP	T.1	GND

MEASUREMENT RESULT: "T-0517-06_fin2"

5/17/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	43.90	10.5	55	11.1	AV	L1	GND
0.225000	32.70	10.6	53	19.9	AV	L1	GND
0.960000	10.00	10.8	46	36.0	AV	L1	GND
17.740000	17.40	11.4	50	32.6	AV	L1	GND

Appendix A

Produkte Products

Page 20 of 24

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: 5.8G Motion & Photon Integrated LED Lamp M/N:6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Operating Condition: On

Test Site: 1#Shielding Room

Operator: PING

Test Specification: N 120V/60Hz Comment: Mains Port Start of Test: 5/17/2017 /

SUB_STD_VTERM2 1.70

SCAN TABLE: "V 9K-30MHz fin"
Short Description: Start Stop Step Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "T-0517-05 fin"

5/17/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	57.90	10.5	65	7.1	QP	N	GND
0.225000	49.20	10.6	63	13.4	QP	N	GND
0.915000	23.00	10.8	56	33.0	QP	N	GND
17.995000	23.70	11.4	60	36.3	QP	N	GND

MEASUREMENT RESULT: "T-0517-05 fin2"

5/17/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000	44.20	10.5	55	10.8	AV	N	GND
0.225000	32.90	10.6	53	19.7	AV	N	GND
1.125000	9.80	10.9	46	36.2	AV	N	GND
17.545000	14.80	11.4	50	35.2	AV	N	GND

Produkte Page 21 of 24 **Products**

Appendix A.4: Test Plots of Radiated Emission

Mode B

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 17/05/23/ Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp Engineer Signature: Apple

Distance: 3m Mode:

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	Remark
3	296.1836	47.92	-9.09	38.83	57.00	-18.17	peak			
1	126.3286	43.85	-13.67	30.18	43.50	-13.32	QP			
2	187.0958	43.23	-12.53	30.70	43.50	-12.80	QP			
3	252.0627	49.40	-10.54	38.86	46.00	-7.14	QP			
4	304.6099	48.41	-8.93	39.48	46.00	-6.52	QP			
5	385.2805	47.96	-6.91	41.05	46.00	-4.95	QP			

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Produkte Products

Page 22 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 17/05/23/ Time:

Engineer Signature: Apple

Distance: 3m

Joh No : Apple #174

Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode: On

Model: 6ZB-A806ST-Q1M

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

3

4

258.3264

513.6331

46.44

43.30

-10.49

-4.01

35.95

39.29

46.00

46.00

-10.05

-6.71

QP

QP

Produkte Products

Page 23 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: 5.8G Motion & Photon Integrated LED Lamp

Mode:

6ZB-A806ST-Q1M Model:

Manufacturer: Leedarson Lighting Co., Ltd.

Note:

Polarization: Horizontal Power Source: AC 120V/60Hz

Date: 17/05/23/

Time:

Engineer Signature: Apple

Distance: 3m

Produkte Products

Page 24 of 24

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Polarization: Vertical

Date: 17/05/23/

Power Source: AC 120V/60Hz

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

No.	Freq. (MHz)	Reading (dBuV/m)		Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	5914.609	31.61	8.46	40.07	74.00	-33.93	peak			
2	5914.609	25.28	8.46	33.74	54.00	-20.26	AVG			