莫烦PYTHON 教程▼ 关于我 赞助 大家说

有趣的机器学习

切换成 优酷 视频

(Chrome无法播放优酷? 网址框输入"chrome://plugins/", 勾选允许 Flash Player. 实在不行? 请点击这里)

晚上十点开始的副业收入 - 一份特别收入,每晚十点准时开始

每周都有至少一笔收入自动打入你的账户,无需工作一天,睡觉时都在赚钱 转到 cwziyouren.com

《上一个

下一个 »

莫烦PYTHON 教程▼ 关于我 赞助 大家说

批标准化 (Batch Normalization)

作者: Morvan 编辑: Morvan

- 学习资料:
 - Tensorflow 使用 Batch normalization

今天我们会来聊聊批标准化 Batch Normalization.

注: 本文不会涉及太多数学推导. 大家可以在很多其他地方找到优秀的数学推导文章.

普通数据标准化

Batch Normalization, 批标准化, 和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在之前 Normalization 的简介视频中我们一提到, 具有统一规格的数据, 能让机器学习更容易学习到数据之中的规律.

每层都做标准化

莫烦PYTHON 教程 ▼ 关于我 赞助 大家说

在神经网络中,数据分布对训练会产生影响. 比如某个神经元 \times 的值为1,某个 Weights 的初始值为 0.1,这样后一层神经元计算结果就是 Wx = 0.1;又或者 X = 20,这样 WX 的结果就为 2.现在还不能看出什么问题,但是,当我们加上一层激励函数,激活这个 WX 值的时候,问题就来了. 如果使用 像 tanh 的激励函数, WX 的激活值就变成了 \sim 0.1 和 \sim 1,接近于 1 的部已经处在了 激励函数的饱和阶段,也就是如果 X 无论再怎么扩大, tanh 激励函数输出值也还是 接近1. 换句话说,神经网络在初始阶段已经不对那些比较大的 X 特征范围 敏感了. 这样很糟糕,想象我轻轻拍自己的感觉和重重打自己的感觉居然没什么差别,这就证明我的感官系统失效了. 当然我们是可以用之前提到的对数据做 normalization 预处理,使得输入的 X 变化范围不会太大,让输入值经过激励函数的敏感部分. 但刚刚这个不敏感问题不仅仅发生在神经网络的输入层,而且在隐藏层中也经常会发生.

只是时候 x 换到了隐藏层当中, 我们能不能对隐藏层的输入结果进行像之前那样的 normalization 处理呢?答案是可以的, 因为大牛们发明了一种技术, 叫做 batch normalization, 正是处理这种情况.

莫烦PYTHON 教程▼ 关于我 赞助 大家说

Batch normalization 的 batch 是批数据, 把数据分成小批小批进行 stochastic gradient descent. 而且在每批数据进行前向传递 forward propagation 的时候, 对每一层都进行 normalization 的处理,

BN 效果

Batch normalization 也可以被看做一个层面. 在一层层的添加神经网络的时候, 我们先有数据 X, 再添加全连接层, 全连接层的计算结果会经过 激励函数 成为下一层的输入, 接着重复之前的操作. Batch Normalization (BN) 就被添加在每一个全连接和激励函数之间.

之前说过, 计算结果在进入激励函数前的值很重要, 如果我们不单单看一个值, 我们可以说, 计算结果值的分布对于激励函数很重要. 对于数据值大多分布在这个区间的数据, 才能进行更有效的传递. 对比这两个在激活之前的值的分布. 上者没有进行

莫烦PYTHON 教程▼ 关于我 赞助 大家说

没有 normalize 的数据 使用 tanh 激活以后, 激活值大部分都分布到了饱和阶段, 也就是大部分的激活值不是-1, 就是1, 而 normalize 以后, 大部分的激活值在每个分布区间都还有存在. 再将这个激活后的分布传递到下一层神经网络进行后续计算, 每个区间都有分布的这一种对于神经网络就会更加有价值. Batch normalization 不仅仅 normalize 了一下数据, 他还进行了反 normalize 的手续. 为什么要这样呢?

BN 算法

我们引入一些 batch normalization 的公式. 这三步就是我们在刚刚一直说的 normalization 工序, 但是公式的后面还有一个反向操作, 将 normalize 后的数据再扩展 和平移. 原来这是为了让神经网络自己去学着使用和修改这个扩展参数 gamma, 和 平移参数 β , 这样神经网络就能自己慢慢琢磨出前面的 normalization 操作到底有没有起到优化的作用, 如果没有起到作用, 我就使用 gamma 和 belt 来抵消一些 normalization 的操作.

最后我们来看看一张神经网络训练到最后, 代表了每层输出值的结果的分布图. 这样我们就能一眼看出 Batch normalization 的功效啦. 让每一层的值在有效的范围内传递下去.

如果你觉得这篇文章或视频对你的学习很有帮助,请你也分享它,让它能再次帮助到更多的需要学习的人.

莫烦没有正式的经济来源,如果你也想支持 **莫烦Python** 并看到更好的教学内容,请拉倒屏幕最下方,赞助他一点点,作为鼓励他继续开源的动力.

«上一个 下一个»

2017/4/10

莫烦PYTHON 教程▼ 关于我 赞助 大家说

使用社交网站账户登录	或使用来必力便捷评论		
	邮件	写	评论
总评论数 5		按时间	可正序
谢谢您的回答,训	漠中的鱼 2017年3月21日 · 已分享的SNS(1) 练出来的参数是在caffemodel里吗? E的参数是weight和bias吗、刚接触不太懂,	望指教!	
0		0	0
莫大神,BN那四个	漠中的鱼 2017年3月20日 · 已分享的SNS(1) 个公式里的参数应该去哪里找? 函数的MATLAB版本,有点不太会写,望大	神指点。谢谢!	
1		0	0
-)2017年3月20日 >漠中的鱼 里面的参数都是 train 出来的,不	用手动调	
0		0	0
(نن	IE 2017年3月8日 rmalization能减少overfitting吗?		
1		0	0
-	,2017年3月8日 ME 好像是有一定的 regularization 的作用,	,就像 dropout 那样,	
因为它没那么强	烈的 depend on 一个固定的结构.		

司

2017/4/10 莫烦 Python

莫烦PYTHON 教程▼ 关于我 赞助 大家说

支持 让教学变得更优秀

点我 赞助 莫烦

关注我的动向:

Youtube频道 优酷频道 Github 微博

Email: morvanzhou@hotmail.com

© 2016 morvanzhou.github.io. All Rights Reserved