Various lecture notes

Pedro Núñez

22nd October 2019

Contents

- 21.10.19

1	[CM] Talk 1 (Johan Commelin): Condensed Sets - 21.10.19	1
	1.1 Recollections on sheaves on sites	2
	1.2 Compactly generated topological spaces	3
2	[LT] Lecture 1 - 22.10.19	4
1	[CM] Talk 1 (Johan Commelin): Condensed Se	\mathbf{ts}

Motivation: topological abelian groups do not form an abelian category.

Example 1.1. $\mathbb{R}_{disc} \to \mathbb{R}$ is epi and mono, but not iso.

Another motivation is coherent duality:

Theorem 1.2. Let $f: X \to Y$ be a proper or quasi-projective morphism of Noetherian schemes of finite Krull dimension. Then there exists a right adjoint $f^!$ to the derived direct image functor $f_! = Rf_* : \mathcal{D}^b(\mathfrak{QC}oh(X)) \to \mathcal{D}^b(\mathfrak{QC}oh(Y))$.

At some point analytic rings will come up. We will then look at the category of solid modules, in which the 6-functor formalism works nicer than in the classical setting (e.g. when $f_!$ is not defined in the classical setting, $f_!$ takes non-discrete values in the condensed settings, which are "not there" in the classical setting).

Definition 1.3. Proétale site of a point, denoted $*_{pro\acute{e}t}$, is the category of profinite sets with finite jointly surjective families of continuous maps as covers. A *condensed set* (resp. group, ring, ...) is a sheaf of sets (resp.

groups, rings, ...) on $*_{pro\acute{e}t}$. We denote by Cond(\mathfrak{C}) the category of condensed objects of a category \mathfrak{C} .

Definition 1.4. A condensed set (resp. group, ring, ...) is a contravariant functor X from $*_{pro\acute{e}t}$ to the category of sets (resp. groups, rings, ...) such that

- i) $X(\varnothing) = *$.
- ii) For all profinite sets S_1 and S_2 the natural map

$$X(S_1 \sqcup S_2) \to X(S_1) \times X(S_2)$$

is an isomorphism.

iii) For any surjection of profinite sets $f \colon S' \twoheadrightarrow S$ we get an induced 1 isomorphism

$$X(S) \to \{x \in X(S') \mid \pi_1^*(x) = \pi_2^*(x) \in X(S' \times_S S')\}$$

We will call X(*) the underlying object in \mathcal{C} of a condensed object.

Remark 1.5. We will use T for topological spaces vs. X, Y for condensed sets, as opposed to Scholze's mixing of those notations.

1.1 Recollections on sheaves on sites

Let F be a presheaf on a site, which is just a contravariant functor to whatever category in which our sheaves are gonna take values. If $U = \bigcup_i U_i$ is an open cover, the topological sheaf axiom could be phrased as: F(U) is an equalizer of the diagram

$$\prod_{i} F(u_i) \rightrightarrows \prod_{i,j} F(U_i \cap U_j).$$

Note that $U_i \cap U_j$ is just the fiber product of the two inclusions.

Definition 1.6 (Coverage). See definition 2.1 in nCat.

Definition 1.7. F a presheaf on \mathbb{C} . A collection $(s_i) \in \prod_i F(U_i)$ for $\{f_i \colon U_i \to U\}$ a covering is called a *matching family* if for all $h \colon V \to U$ we have $g^*(s_i) = h^*(s_j)$ for g and h in the diagram

¹Since the pullback diagram is commutative, the image of X(f) is indeed induces a morphism as claimed.

$$\begin{array}{ccc}
V & \xrightarrow{h} & U_j \\
\downarrow^g & & \downarrow^{f_j} \\
U_i & \xrightarrow{f_i} & U
\end{array}$$

Definition 1.8. F is a sheaf with respect to $\{U_i \to U\}$ if for all matching families (s_i) there exists a unique $s \in F(U)$ such that $f_i^*(s) = s_i$. We say that F is a *sheaf* if it is a sheaf for all covering families.

Remark 1.9. A sheaf of abelian groups is just a commutative group object in the category of sheaves of sets.

Theorem 1.10. If C is a site, then Ab(C) is an abelian category.

Definition 1.11. An additive category is a category in which the hom-sets are endowed with an abelian group structure in a way that makes composition bilinear and such that finite biproducts exist.

Recall Grothendieck's axioms: AB1) Every morphism has a kernel and a cokernel. AB2) For every $f \colon A \to B$, the natural map $\operatorname{coim}(f) \to \operatorname{im} f$ is an iso. AB3) All colimit exist. AB4) AB3) + arbitrary direct sums are exact. AB5) AB3) + arbitrary filtered colimits are exact. AB6) AB3) + J an index set, $\forall j \in J$ a filtered category (think of directed set) I_j , functors $M \colon I_j \to \mathbb{C}$, then

$$\lim_{(i_j \in I_j)_j} \prod_j M_{i_j} \to \prod_{j \in J} \varinjlim_{i_j \in I_j} M_{i_j}$$

Theorem 1.12. \mathcal{C} a site. Then $\mathcal{A}b(\mathcal{C})$ satisfies AB3), AB4), AB5) and AB6).

In fact, our case is even nicer:

Theorem 1.13. Cond(Ab) in addition satisfies AB6) and AB4*).

1.2 Compactly generated topological spaces

Definition 1.14. A topological space T is called *compactly generated* if any function $f: T \to T'$ is continuous as soon as the composite $S \to T \to T'$ is continuous for all maps $S \to T$ where S is compact and Hausdorff. See also nCat.

The inclusion functor $\mathfrak{CG} \hookrightarrow \mathfrak{I}op$ has a right adjoint $(-)^{cg}$. If T is any topological space, then the topology on T^{cg} is the finest topology on T such

that $\sqcup_{S\to T} S \to T$ is continuous, where S ranges over all compact Hausdorff spaces.

Let T be a topological space. We view T as a presheaf on $*_{pro\acute{e}t}$ by setting $T(S) = \operatorname{Hom}_{\mathcal{T}op}(S,T)$ for all profinite sets S. We denote this by \underline{T} . Claim: \underline{T} is a sheaf.

- i) The first condition $\underline{T}(\emptyset) = *$ is true, because there is exactly one morphism from the empty set to any topological space.
- ii) $\underline{T}(S_1 \sqcup S_2) = \underline{T}(S_1) \times \underline{T}(S_2)$ by universal property of disjoint union.
- iii) For any surjection S' B we get an isomorphism

$$\underline{T}(S) \to \{x \in \underline{T}(S') \mid \pi_1^*(x) = \pi_2^*(x) \in \underline{T}(S' \times_S S')\}$$

Since $\Im op \to \operatorname{Cond}(\operatorname{Set})$ preserves products, group objects are preserved, so it maps topological groups to condensed groups etc.

Proposition 1.15. i) This functor is faithful and fully faithful when restricted to the full subcategory of compactly generated spaces.

ii) It admits a left adjoint $X \mapsto X(*)_{top}$ where $X(*)_{top}$ gets the quotient topology of $\sqcup_{S \to X} S \to X(*)$ as above. The counit $I(*)_{top} \to T$ agrees with $T^{cg} \to T$.

Coming back to our original example:

Example 1.16. $\mathbb{R}_{disc} \to \mathbb{R}$ can be seen in the condensed world as $\underline{\mathbb{R}_{disc}} \to \underline{\mathbb{R}}$, i.e. from locally constant functions to continuous functions. This is still a mono, but now it is not an epi. The cokernel Q can be described as $Q(S) = \{S \to \mathbb{R} \text{ continuous }\}/\{S \to \mathbb{R} \text{ locally constant }\}$. Note in particular that the underlying set of Q is just *, reflecting the fact that the cokernel was trivial in the classical setting.

2 [LT] Lecture 1 - 22.10.19

Today: big picture.

An algebraic variety is the solution set of a family of polynomial equations in \mathbb{C}^n . For example, if f(x, y, z, t) = xy - tz, then

$$\mathbb{V}(f) = \{(x, y, z, t) \in \mathbb{C}^4 \mid xy - tz = 0\}$$

is an algebraic variety in \mathbb{C}^4 . Another example would be the parabola $\{y-x^2=0\}\subseteq\mathbb{C}^2$.

We can think of $\mathbb{V}(f)$ as a family of varieties parametrized by the variable t. For t=1 we get the equation xy-z=0 in \mathbb{C}^3 . We can perform a change of coordinates $(x,y)\mapsto (x+iy,x-iy)$ to turn our equation into $x^2+y^2=z$. For z=0, the variety $X_0=\{x^2+y^2=0\}$ has an ordinary double point at the origin [picture: cone] (a.k.a. node if we think of X_0 as a curve². These are a particularly nice kind of singularities³. For $z\neq 0$ we get the equation xy-1=0. This is a ruled surface X_z [picture: chimeny of nuclear plant with a loop γ at its base]. As $z\mapsto 0$, the central loop γ contract to the ordinary double point. We have a projection $\pi\colon \mathbb{V}(f)\to\mathbb{C}$, and Ehresmann's lemma tells us that for all disk $D\subseteq\mathbb{C}$ not containing 0 we have $\pi^{-1}(D)\cong D\times X_{z_0}$ for any $z_0\in D$.

Global picture: given an arbitrary nonsingular alg. variety $X \subseteq \mathbb{C}^n$, can we find a map $\pi \colon X \to \mathbb{C}$ such that the fibres X_t are nonsingular for all but finitely many $t \in \mathbb{C}$ and such that the singular fibres have at worst ODP singularities?

Problem: we are missing information "at infinity", e.g. $y=x^2$ versus xy=1. The solution is to replace \mathbb{C}^n by \mathbb{CP}^n .

Let $X \subseteq \mathbb{P}^n$ be a nonsingular projective variety.

Theorem 2.1. There exists a family $(H_t)_{t \in \mathbb{CP}^1}$ of hyperplanes in \mathbb{CP}^n such that

- 1. $X \subseteq \bigcup_t H_t$.
- 2. $X_t = X \cap H_t$ is nonsingular except for finitely many "critical values" of t.
- 3. X_t has ODP singularities for each critical value t.

We call $(X_t)_t$ a Lefschetz pencil. We get a rational map $X \mapsto \mathbb{CP}^1$ sending $x \mapsto t$ whenever $x \in X_t$. This is not well-defined at $x \in \cap_t X_t$, but we can arrange for $(X_t)_t$ so that $\cap_t X_t = X_0 \cap X_\infty$. Blowing-up a suitable subvariety of X we get maps $\tilde{X} \xrightarrow{\pi} \mathbb{CP}^1$ and $\tilde{X} \to X$ as we wanted. [picture A]

Some applications:

Theorem 2.2 (Lefschetz Hyperplane theorem). $X \subseteq Y \subseteq \mathbb{CP}^N$ nonsingular varieties with X a hypersurface in the n-dimensional variety Y, then

$$H_*(X) \to H_*(Y)$$

²These are 1-dimensional complex varieties, so topologically they are surfaces.

³Singularities will appear naturally while studying the topology of algebraic varieties.

is an isomorphism for * < n - 1 and a surjection for * = n - 1.

In particular, if $Y = \mathbb{CP}^n$, we have

$$H_*(\mathbb{CP}^n) = \mathbb{Z}$$
 if * is even or 0 otherwise.

If $X\subseteq\mathbb{CP}^n$ is a nonsingular hypersurface, then its homology will be that of projective sapce on all digrees other than n-1. Its n-1 homology will depend on the variety, e.g. the ODP (trivial 1-homology) vs the ruled surface (with γ non trivial on 1-homology) of before.

Example 2.3 (Lefschetz pencil). X elliptic curve in \mathbb{CP}^2 given by $y^2 = x(x-1)(x-\lambda)$ for $\lambda \neq 0$. $L = \mathbb{CP}^1 \subseteq \mathbb{CP}^2$. $P \in \mathbb{CP}^1 \setminus (X \cup L)$. We get $X \xrightarrow{\pi} \mathbb{CP}^1$ once we choose a square root of $x(x-1)(x-\lambda)$. [Picture B]

References