Lecture II

Identification of Key Causal Regulators in Gene Networks

Bin Zhang, PhD Jun Zhu, PhD

Department of Genetics & Genomic Sciences
Icahn Institute of Genomics and Multiscale Biology
Icahn School of Medicine at Mount Sinai, New York, USA

Email: bin.zhang@mssm.edu

Web: http://research.mssm.edu/multiscalenetwork

Basic Network Concepts

- Node
- Link
 - Directed or undirected
 - Weighted or unweighted

- degree, outdegree, indegree
- Centrality (http://en.wikipedia.org/wiki/Centrality)
 - degree, betweenness, closeness, eigenvector (PageRank)
- Module
 - a group of highly interacting nodes

What can we know from networks?

Multiple Scales of Gene Networks

Multiscale Gene Network Analysis

Key Driver Analysis

Dynamic Neighborhood Search (DNS)

Input

- a set of nodes (G)
- a directed/undirected network (N)

Procedure

- Generate a sub-network N_G, defined as the set of nodes in N that are no more than h-layers away from the nodes in G.
- Search the h-layer neighborhood (h=1,..,H) for each gene in N_G (HLN_{g,h}) for the optimal h*, such that

$$ES_{h^*}=\max(ES_{h,g}) \ \forall g \in N_g, h \in \{1..H\}$$
 where $ES_{h,g}$ is the computed enrichment statistic for $HLN_{g,h}$

- A node becomes a candidate driver if its HLN is significantly enriched for the nodes in G
- Candidate drivers without any parent node (i.e., root nodes in directed networks) are designated as global drivers and the rest are local drivers.

Enrichment Test

Static Neighborhood Search (SNS)

Input

- a set of nodes (G)
- a directed/undirected network (N)

Procedure

- Compute the size of the h-layer neighborhood (HLN) for each node.
- Let μ be the sizes of HLNs and d be the out-degrees for all the nodes
- Nodes with HLN sizes greater than $\overline{\mu} + \sigma(\mu)$ are considered as candidate drivers
- Candidate drivers without any parent node (i.e., root nodes in directed networks) are designated as global drivers and the rest are local drivers.
- Promote hub nodes nodes with out-degrees above $\overline{d} + 2\sigma(d)$ as global drivers

Application I: Key Drivers of eQTL Hotspots

- A genotypic and expression data from a yeast cross of 112 segregants constructed from the BY and RM strains of S. cerevisiae
- Expression quantitative trait loci (eQTL) analysis identified 13 chromosomal regions harboring a large number of eQTL, i.e., eQTL hot spots.
- A Bayesian network reconstructed by integrating genotypic, gene expression, protein-protein interaction and transcription factor binding site (TFBS) data remains the most predictive (Zhu J, Zhang B et al., Nat Genet 2008)
- We apply DNS to identify key drivers of the eQTL hotspots, as oppose to the original static search.

Key Drivers of eQTL Hotspots

eQTL	Hotspot	Hotspot base-pair	the original KDA	KDA L1	KDA L2	KDA L3	
			(Zhu, Zhang et al.				
hotspot	chr.	position	2008)				
2	2	560000	TBS1, TOS1, ARA1,	TBS1, ARA1, CSH1,	TBS1, TOS1, ARA1,	TBS1, TOS1, ARA1,	
			CSH1, SUP45, CNS1,	SUP45, CNS1,	CSH1, SUP45, CNS1,	CSH1, SUP45, CNS1,	
			AMN1	PWP2	ENP2, NOP7	NMD3, RPF1	
4	3	1.00E+05	LEU2, ILV6, NFS1,	LEU2, BAP2, OAC1	BAP2, LEU2, OAC1,	LEU2, BAP2, OAC1,	
			CIT2, MATALPHA1		RTG3	RTG3	
5	3	230000	MATALPHA1				
6	5	130000	URA3	URA3	URA3	URA3	
7	8	130000	GPA1	GPA1	GPA1	GPA1	
8	12	680000	HAP1	HAP1	HAP1	HAP1	Ī
9	12	107000	YRF1-4, YRF1-5,	YRF1-4	YRF1-4	YRF1-4	Ī
			YLR464W				
11	14	503000	SAL1, TOP2	SAL1, RSM24,	SAL1, RSM24, RSM25,	SAL1, RSM24, RSM25,	Ĭ
				RSM25	MRPL3	MRPL3	
12	15	180000	PHM7	TFS1, PHM7, TKL2,	PHM7, TFS1, YGR043C,	PHM7, TFS1, YGR043C,	L
					HXT7, TKL2, GDB1,	PIL1, TKL2, HXT7,	
				YGR052W	YGR052W	YGR052W, GDB1	
10	13	70000		GCV1	GCV1	GCV1	1
13	15	590000		ATP5	ATP20	ATP5, ATP20]

New Key Drivers for eQTL Hotspot 11

- SAL1 is the only one predicted by the original approach
- KDA identified three new regulators, RSM24, RSM25 and MRPL3
- 98 genes on the Hotspot 11 are the downstream of SAL1 (p<7e-95)
- 142 genes on the Hotspot 11 are the downstream of RSM25 (p<1.42e-114)

Key Drivers of eQTL Hotspot 12

- PHM7 is the only regulator identified by the original approach.
- KDA uncovered 6 new regulators.
- The neighborhoods of TFS1, YGR043C, TKL2 and YGR052W are more significantly enriched for the genes links to the hot spot than that of PHM7.

Application II: Inflammatome Driver Genes

Disease	Model	Species	Tissue profiled	# of Cases	# of Controls	# of Total Arrays
Asthma	OVA	Mouse	Lung	5	4	9
COPD	IL-1b Tg	Mouse	Lung	5	3	8
Fibrosis	TGFb Tg	Mouse	Lung	4	4	8
Atherosclerosis	ApoE KO HFD	Mouse	Aorta	3	3	6
Diabetes	db/db	Mouse	Adipose	3	3	6
Diabetes	db/db	Mouse	Islet	5	5	10
Obesity	ob/ob	Mouse	Adipose	3	3	6
Multiple	LPS	Rat	Liver	4	4	8
Stroke	MCAO	Rat	Brain	4	4	8
Neuropathic pain	Chung	Rat	DRG	4	4	8
Inflammation pain	CGN	Rat	Skin	4	5	9
Sarcopenia	Aged vs. Young	Rat	Muscle	5	5	10

Consistency of up- and down-regulated genes in 12 disease models.

Up-regulated	Accumulated # of gene	Down-regulated	Accumulated # of gene
All 12 models	83	All 12 models	36
>= 11 models	303	>= 11 models	171
>= 10 models	614	>= 10 models	412
>= 9 models	939	>= 9 models	639
>= 8 models	1,193	>= 8 models	810
>= 7 models	1,357	>= 7 models	925

Gene Ontology Categories enriched in the Inflammatome Signature.

Similar Set: Up-regulated	Expectation	Overlap	Set	Similar Set: Down-regulated	Expectation	Overlap	Set
inflammatory response	4.76E-61	208	704	transmission of nerve impulse	3.32E-11	78	639
leukocyte activation	2.13E-32	164	704	Valine, leucine & isoleucine degradation	1.34E-08	18	42
regulation of immune response	1.44E-25	84	260	carboxylic acid metabolic process	4.03E-06	68	661
cytokine production	6.10E-18	85	335	cofactor metabolic process	1.30E-05	31	198
Chemotaxis	4.97E-16	74	284	generation precursor metabolites/energy	9.18E-05	57	554
humoral immune response	3.25E-14	69	271	fatty acid catabolic process	0.000122	16	65

Wang IM*, **Zhang B*** et al. (2012) Systems Analysis of Eleven Rodent Disease Models Reveals an Inflammatome Signature and Key Drivers. *Molecular Systems Biology* 8:594

Inflammatome Networks in Human Liver and Adipose

Inflammatome Signature and Drivers versus MGI Phenotype Database

Group	No. of genes	No. of gene tested in the MGI phenotype	No. of genes with MGI phenotype(s)	% tested genes with phenotype(s)
		database		
top 55 key drivers	55	19	14	73.7
key drivers	151	44	28	63.6
local drivers	212	57	33	57.9
non-drivers	2098	609	239	39.2

Mouse Genome Informatics database (MGI; ftp://ftp.informatics.jax.org/pub/reports/index.html#pheno)

Application III: Drivers of Cancer Genomic Alterations

>Tumor outcome:

Average smoothed E

- Good: free metastasis for >=5 years
- Bad: metastasis for < 5 years
- ➤ 109 recurrent regions of inferred CNV identified from 4 data sets

recurrent regions of ICNV on 20

Tran L and Zhang B et al. (2011) Inferring Causal Genomic Alterations in Breast Cancer.... BMC Systems Biology 5(121)

Causal Network of Breast Cancer Metastasis

TPX2 AURKA GINS2 COX4NB TIMM17A ACBD3 TK1 NUP93 BIRC5 KARS NIP7 CIAPIN1 ARF1 SAP30BP UBE2S ARHGDIA RNASEH2A SLC9A3R1 MRPS7 PUF60 NOL11 CDC45L YTHDF1 DHX38 HIST1H2BF SLC25A19 HIST1H2BE HIST1H2BH ATP6V1C1 MTDH YWHAZ

ERBB2

Validation of Causal Drivers

Application IV:

Key Driver Genes of Alzheimer's Disease

Zhang B et al. (2013) Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer's Disease. *Cell* 153(3):707-720

Relevance of the Predicted Drivers to AD

- The 13 well known AD susceptibility genes (Bertram, McQueen et al. 2007)
- Seven (7) of the 13 known AD susceptibility genes were included in the multi-tissue network
- Three (3) of the 7 genes, CST3,PSEN1 and TF, are the predicted drivers, representing a 5.5-fold enrichment (P=1.06e-3) while the rest four are not drivers, i.e., they are underrepresented in the non-driver genes (0.62 fold-enrichment, P=0.99).
- The predicted drivers are 9 times more likely to be the known AD susceptibility genes than the non-driver genes.

Validation of TYROBP Networks

Summary

- An algorithm (KDA) was developed to identify key drivers of biological networks based on various centrality measurements
- Key regulators predicted by KDA appear to be biologically more important than non-drivers
- Many key regulators predicted by KDA have been validated at various stages in complex human diseases
- More comprehensive network analysis methods need be explored to further understand the complexity of biological networks and their underlying biology

Acknowledgements

Sage Bionetworks

- Justin Guinney
- Dave A Henderson

Multiscale Network Modeling Laboratory

http://research.mssm.edu/multiscalenetwork

Dr. Bin Zhang (PI) Assoc, Professor

Cancer Multiscale Network Inference Infectious **Network Characterization** Diseases

Neurodegenerative Diseases

Prediction/Classification

Openings for

Postdoctoral Fellow & Senior Scientist Positions in Computational Neuroscience & Cancer Biology

http://research.mssm.edu/multisc alenetwork/Opportunities.html

Group Members

Dr. Christian Forst **Assist. Professor**

Obesity

Diabetes

Dr. Yongzhong Zhao **Senior Scientist**

Dr. Xiandong Lin Scientist

Dr. Won-min Song **Postdoc Fellow**

Igor Katsyv PhD Student

Andrew McKenzie PhD Student

Stay Connected with Us!

@IcahnInstitute

