MAT217 HW 11 Due Tues. Apr. 30, 2013

- 1. Let V be a vector space and $f \in Sym(V, \mathbb{F})$. If W is a subspace of V such that $V = W \oplus N(f)$, show that f_W , the restriction of f to W, is non-degenerate.
- 2. Let V be a vector space over \mathbb{F} with characteristic not equal to 2. Show that if V is finite dimensional and W is a subspace such that the restriction f_W of $f \in Sym(V, \mathbb{F})$ to W is non-degenerate, then $V = W \oplus W^{\perp_f}$. Here W^{\perp_f} is defined as

$$W^{\perp_f} = \{ v \in V : f(v, w) = 0 \text{ for all } w \in W \}$$
.

Hint. Use induction on dim W.

- 3. Let V be a vector space of dimension $n < \infty$ and $f \in Sym(V, \mathbb{F})$ be non-degenerate.
 - (a) Show that any orthogonal (relative to f) set of nonzero vectors

$$\{v_1,\ldots,v_n\}\subset V$$

is a basis for V.

- (b) A linear $T: V \to V$ is called orthogonal relative to f if f(T(v), T(w)) = f(v, w) for all $v, w \in V$. Show that if T is orthogonal then it is invertible.
- (c) For any $g \in Bil(V, \mathbb{F})$ and linear $U: V \to V$ we can define $g_U: V \times V \to \mathbb{F}$ by

$$g_U(v,w) = g(U(v),U(w))$$
.

Show that $g_U \in Bil(V, \mathbb{F})$. Given a basis B of V, how do we express the matrix of g_U relative to that of g? Use this to find the determinant of any T that is orthogonal relative to f.

(d) Show that the orthogonal group

$$O(f) = \{T \in L(V,V) : T \text{ is orthogonal relative to } f\}$$

is, in fact, a group under composition.

- 4. Let V be a finite-dimensional \mathbb{F} -vector space such that $\operatorname{char}(\mathbb{F}) \neq 2$. If f is a skew-symmetric bilinear form on V (that is, f(v, w) = -f(w, v) for all $v, w \in V$) can one find a basis B of V such that $[f]_B^B$ is diagonal?
- 5. Let f be a symmetric bilinear form on \mathbb{R}^n .
 - (a) Show that

$$f_H((v, w), (x, y)) := f(v, x) + f(w, y) - if(v, y) + if(w, x)$$

defines a Hermitian form on \mathbb{C}^n . (Here we are writing (v, w) for the vector v + iw as in last homework.)

- (b) Show that $N(f_H) = \operatorname{Span}(\iota(N(f)))$, where ι is the embedding $\iota(v) = (v, 0)$.
- (c) Show that if f is an inner product then so is f_H .
- 6. For the matrix A below, find an invertible matrix S such that S^tAS is diagonal:

$$\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 0 & 1 & 2 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right).$$

- 7. (From Hoffman-Kunze) Let V be a finite dimensional vector space over \mathbb{C} .
 - (a) Show that $Sym(V, \mathbb{C})$ is a subspace of $Bil(V, \mathbb{C})$.
 - (b) Find the dimension of $Sym(V, \mathbb{C})$.
- 8. Let A be a symmetric matrix in $M_{n,n}(\mathbb{R})$.
 - (a) A is called positive-definite if $Av \cdot v > 0$ for all nonzero $v \in \mathbb{R}^n$. (Here \cdot is the standard dot-product.) Show that A is positive-definite if and only if there exists an invertible $B \in M_{n,n}(\mathbb{R})$ such that $A = B^t B$.
 - (b) A is called positive semi-definite if $Av \cdot v \geq 0$ for all $v \in \mathbb{R}^n$. Formulate a similar result to the above for such A.
- 9. (From Hoffman-Kunze) Let V be a finite-dimensional vector space over \mathbb{C} with $f,g \in Sym(V,\mathbb{C})$. Show that there is an invertible $T:V\to V$ such that f(T(v),T(w))=g(v,w) for all $v,w\in V$ if and only if f and g have the same rank. Is the same statement true over \mathbb{R} ?
- 10. Let $(V, \langle \cdot, \cdot \rangle)$ be a real inner product space.
 - (a) Define $\|\cdot\|: V \to \mathbb{R}$ by

$$||v|| = \sqrt{\langle v, v \rangle} .$$

Show that for $v, w \in V$,

$$|\langle v, w \rangle| \le ||v|| ||w||.$$

- (b) Show that $\|\cdot\|$ is a norm on V.
- (c) Show that there exists an orthonormal basis B of V.
- 11. (From Hoffman-Kunze) Let V be the vector space of all $n \times n$ matrices over \mathbb{C} , with the inner product $\langle A, B \rangle = Tr(AB^*)$. Find the orthogonal complement of the subspace of diagonal matrices. Here B^* is the conjugate transpose.

2