

Phase Diagrams for Ceramists

1969 Supplement

**Ernest M. Levin,
Carl R. Robbins and
Howard F. McMurdie**

Compiled at the National Bureau of Standards

Margie K. Reser, *Editor*

SECOND PRINTING 1985

© Copyright, 1969, by
The American Ceramic Society
65 Ceramic Drive, Columbus, Ohio 43214

Printed in U.S.A.

ISBN 0-916094-05-7

$\text{Al}_2\text{O}_3\text{-La}_2\text{O}_3$ FIG. 2340.—System $\text{Al}_2\text{O}_3\text{-La}_2\text{O}_3$.

I. A. Bondar and N. V. Vinogradova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, No. 5, 785 (1964); Edward T. Fritsche and Lowell G. Tensmeyer, *J. Am. Ceram. Soc.*, 50 [3] 167 (1967), also report an $\text{La}_2\text{O}_3\text{-}11\text{Al}_2\text{O}_3$ compound that melts congruently at 1995°C.

 $\text{Al}_2\text{O}_3\text{-Nd}_2\text{O}_3$ FIG. 2342.—System $\text{Al}_2\text{O}_3\text{-Nd}_2\text{O}_3$.

N. A. Toropov and T. P. Kiseleva, *Zh. Neorgan. Khim.*, 6 [10] 2353 (1961); *Russ. J. Inorg. Chem. (English Transl.)*, 1193 (1961).

FIG. 2341.—System $\text{Al}_2\text{O}_3\text{-LaAlO}_3$. Compound composition of β is in the range $\text{Na}_2\text{O}\text{-}10\text{Al}_2\text{O}_3$ (1:10) to $\text{Na}_2\text{O}\text{-}12\text{Al}_2\text{O}_3$ (1:12).

Pham Huu Thanh; Ph.D. Thesis, Sci. Faculty Univ. of Lyon, June, 1965; p. 77 (Order No. 357); Maurice Rolin and Pham Huu Thanh, *Rev. Hautes Temp. Refractaires*, 2 [2] 184 (1965).

 $\text{Al}_2\text{O}_3\text{-Sc}_2\text{O}_3$ FIG. 2343.—System $\text{Al}_2\text{O}_3\text{-Sc}_2\text{O}_3$. R ss = solid solution phase.

N. A. Toropov and V. A. Vasil'eva, *Dokl. Akad. Nauk SSSR*, 152 [6] 1379 (1963).

$\text{Al}_2\text{O}_3-\text{Y}_2\text{O}_3$ FIG. 2344.—System $\text{Al}_2\text{O}_3-\text{Y}_2\text{O}_3$.

N. A. Toropov, I. A. Bondar, F. Ya. Galakhov, X. S. Nikogosyan, and N. V. Vinogradova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, No. 7, 1162 (1964).

 $\text{Al}_2\text{O}_3-\text{SiO}_2$

FIG. 2345.—P-T diagram for the system $\text{Al}_2\text{O}_3-\text{SiO}_2$. Kyanite-sillimanite inversion was accomplished hydrothermally.

R. C. Newton, *Science*, 151 [3715] 1223 (1966).

FIG. 2346.—System $\text{Al}_2\text{O}_3-\text{SiO}_2$ showing kyanite-sillimanite equilibrium boundary; tentative.

S. W. Richardson, P. M. Bell, and M. C. Gilbert, *Carnegie Inst. Washington, Yearbook*, 65, 248 (1966).

FIG. 2347.—System $\text{Al}_2\text{O}_3-\text{SiO}_2$ at high temperatures and pressures; deduced.

R. C. DeVries, *J. Am. Ceram. Soc.*, 47 [5] 236 (1964).

BEST AVAILABLE COPY

$\text{Cr}_2\text{O}_3\text{-Nd}_2\text{O}_3$ FIG. 2361.—System $\text{Cr}_2\text{O}_3\text{-Nd}_2\text{O}_3$.

V. N. Pavlikov and S. G. Tresvyatskii, *Zh. Neorgan. Khim.*, 11 [6] 1442 (1966); *Russ. J. Inorg. Chem. (English Transl.)*, 771 (1966).

 $\text{Dy}_2\text{O}_3\text{-SiO}_2$ FIG. 2362.—System $\text{Dy}_2\text{O}_3\text{-SiO}_2$.

N. A. Toropov, F. Ya. Galakhov, and S. F. Konovalova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, No. 8, 1368 (1961); *Bull. Acad. Sci. USSR, Div. Chem. Sci. (English Transl.)*, 1275 (1961).

 $\text{Dy}_2\text{O}_3\text{-ZrO}_2$ FIG. 2363.—System $\text{Dy}_2\text{O}_3\text{-ZrO}_2$, subsolidus; proposed. B = rare-earth oxide type, C₁ and C₂ = cubic phases, and H₂ and H₃ = hexagonal phases.

Monique Perez y Jorba, *Ann. Chim. (Paris)*, 7, 509 (1962).

 $\text{Dy}_2\text{O}_3\text{-V}_2\text{O}_5$ FIG. 2364.—System DyVO_4 showing univariant P-T curve for the transition: zircon-type \rightleftharpoons scheelite-type structure.

V. S. Stubican and Rustum Roy, *J. Appl. Phys.*, 34 [7] 1888 (1963).

 $\text{Er}_2\text{O}_3\text{-SiO}_2$ FIG. 2365.—System $\text{Er}_2\text{O}_3\text{-SiO}_2$.

N. A. Toropov, F. Ya. Galakhov, and S. F. Konovalova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, No. 8, 1370 (1961); *Bull. Acad. Sci. USSR, Div. Chem. Sci. (English Transl.)*, 1275 (1961).

 $\text{Ga}_2\text{O}_3\text{-SiO}_2$ FIG. 2366.—System $\text{Ga}_2\text{O}_3\text{-SiO}_2$. See Fig. 341 for diagram showing liquid immiscibility.

N. A. Toropov, *Trans. Intern. Ceram. Congr.*, 7th, London, 1960, p. 437.

$\text{Gd}_2\text{O}_3\text{-ZrO}_2$ (concl.)

FIG. 2370.—System $\text{ZrO}_2\text{-Gd}_2\text{O}_3$ showing monoclinic (M) \rightarrow tetragonal (tet) inversion of ZrO_2 .

Jean Lefèvre, *Ann. Chim. (Paris)*, 8 [1-2] 128 (1963).

 $\text{La}_2\text{O}_3\text{-HfO}_2$

FIG. 2371.—System $\text{La}_2\text{O}_3\text{-HfO}_2$.

L. N. Komissarova, Wang Kênh-shih, V. I. Spitsyn, and Yu. P. Simanov, *Zh. Neorgan. Khim.*, 9 [3] 693 (1964); *Russ. J. Inorg. Chem. (English Transl.)*, 385 (1964).

 $\text{La}_2\text{O}_3\text{-SiO}_2$

FIG. 2372.—System $\text{La}_2\text{O}_3\text{-SiO}_2$. Oxide ratios of compounds are given as $\text{La}_2\text{O}_3:\text{SiO}_2$.

N. A. Toropov, I. A. Bondar, and F. Ya. Galakhov, *Trans. Intern. Ceram. Congr.*, 8th, Copenhagen, 1962, p. 87; N. A. Toropov and I. A. Bondar, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, 5, 740 (1961).

$\text{La}_2\text{O}_3-\text{TiO}_2$ FIG. 2373.—System $\text{La}_2\text{O}_3-\text{TiO}_2$.

J. B. MacChesney and H. A. Sauer, *J. Am. Ceram. Soc.*, 45 [9] 419 (1962).

 $\text{La}_2\text{O}_3-\text{ZrO}_2$ FIG. 2374.—System $\text{La}_2\text{O}_3-\text{ZrO}_2$; proposed. A = rare-earth oxide type, C_1 = cubic phase, and P = cubic pyrochlore phase.

Monique Perez y Jorba, *Ann. Chim. (Paris)*, 7, 509 (1962).

 $\text{Ln}_2\text{O}_3-\text{As}_2\text{O}_5$ FIG. 2376.—System LnAsO_4 showing univariant P-T curves for the transition: zircon-type \rightleftharpoons scheelite-type structure for rare-earth atoms with odd atomic numbers.

V. S. Stubican and Rustum Roy, *J. Appl. Phys.*, 34 [7] 1888 (1963).

FIG. 2375.—System $\text{ZrO}_2-\text{La}_2\text{O}_3$ showing monoclinic (M) \rightarrow tetragonal (tet) inversion of ZrO_2 .

Jean Lefèvre, *Ann. Chim. (Paris)*, 8 [1-2] 128 (1963).

$\text{Nd}_2\text{O}_3-\text{SiO}_2$ (concl.)

FIG. 2381.—System $\text{Nd}_2\text{O}_3-\text{SiO}_2$. Oxide ratios of compounds are given as $\text{Nd}_2\text{O}_3:\text{SiO}_2$.

N. A. Toropov, *Trans. Intern. Ceram. Congr.*, 7th, London, 1960, p. 440.

FIG. 2382.—System $\text{Nd}_2\text{O}_3-\text{ZrO}_2$; proposed. A = rare-earth oxide type, C_1 = cubic phase, and P = cubic pyrochlore phase.

FIG. 2383.—System $\text{Nd}_2\text{O}_3-\text{ZrO}_2$ showing phase transformations. 1 = monoclinic ss based on ZrO_2 , 2 = tetragonal ss based on ZrO_2 , 3 = monoclinic ss + tetragonal ss + cubic ss, 4 = tetragonal ss + cubic ss, 5 = monoclinic ss + cubic ss of pyrochlore type, 6 = cubic ss of the pyrochlore type, 7 = cubic ss of the pyrochlore type + tetragonal ss based on neodymium oxide, 8 = hexagonal ss based on neodymium oxide, 9 = cubic (Mn_2O_3 type) ss + cubic (pyrochlore type) ss, and 10 = cubic (Mn_2O_3 type) ss + hexagonal ss.

V. B. Glushkova, I. A. Davtyan, and È. K. Keler, *Izv. Akad. Nauk SSSR, Neorgan. Materialy*, 1 [11] 1955 (1965); *Russ. J. Inorg. Materials (English Transl.)*, 1772 (1965).

FIG. 2384.—System $\text{Sc}_2\text{O}_3-\text{SiO}_2$.

N. A. Toropov and V. A. Vasil'eva, *Zh. Neorgan. Khim.*, 7 [8] 1938 (1962); *Russ. J. Inorg. Chem. (English Transl.)*, 1002 (1962).

$\text{Sc}_2\text{O}_3-\text{ZrO}_2$

FIG. 2385.—System $\text{ScO}_{1.5}-\text{ZrO}_2$; subsolidus.
Jean Lefèvre, *Ann. Chim. (Paris)*, 8 [1-2] 138 (1963).

 $\text{Sm}_2\text{O}_3-\text{SiO}_2$

FIG. 2386.—System $\text{Sm}_2\text{O}_3-\text{SiO}_2$. Oxidé ratios of compounds given as $\text{Sm}_2\text{O}_3:\text{SiO}_2$.

N. A. Toropov, *Trans. Intern. Ceram. Congr.*, 7th London, 1960, p. 439; N. A. Toropov and I. A. Bon-dar, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, No. 8, 1372 (1961); *Bull. Acad. Sci. USSR, Div. Chem. Sci. (English Transl.)*, 1279 (1961).

 $\text{Sm}_2\text{O}_3-\text{ZrO}_2$

FIG. 2387.—System $\text{Sm}_2\text{O}_3-\text{ZrO}_2$, subsolidus; proposed. A and B = rare-earth oxide types, C₁ and C₂ = cubic phase, and P = cubic pyrochlore phase.

Monique Perez y Jorba, *Ann. Chim. (Paris)*, 7, 509 (1962).

$\text{Y}_2\text{O}_3-\text{SiO}_2$ FIG. 2388.—System $\text{Y}_2\text{O}_3-\text{SiO}_2$. Oxide ratios of compounds are given as $\text{Y}_2\text{O}_3:\text{SiO}_2$.

N. A. Toropov, *Trans. Intern. Ceram. Congr.*, 7th, London, 1960, p. 438; N. A. Toropov and I. A. Bondar, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, 4, 547 (1961).

 $\text{Y}_2\text{O}_3-\text{ThO}_2$ FIG. 2389.—System $\text{VO}_{1.5}-\text{ThO}_2$.

E. C. Subbarao, P. H. Sutter, and J. Hrizo, *J. Am. Ceram. Soc.*, 48 [9] 445 (1965).

 $\text{Y}_2\text{O}_3-\text{ZrO}_2$ FIG. 2390.—System $\text{Y}_2\text{O}_3-\text{ZrO}_2$ showing compound $\text{Y}_2\text{Zr}_2\text{O}_7$. c = cubic, mon = monoclinic, and tet = tetragonal.

F. Fu-kang, A. K. Kuznetsov, and E. K. Keler, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, No. 4, 601 (1963).

$\text{Yb}_2\text{O}_3-\text{SiO}_2$ FIG. 2391.—System $\text{Yb}_2\text{O}_3-\text{SiO}_2$. Oxide ratios of compounds given as $\text{Yb}_2\text{O}_3:\text{SiO}_2$.

N. A. Toropov, I. A. Bondar, and F. Ya. Galakhov, *Trans. Intern. Ceram. Congr.*, 8th Copenhagen, 1962, p. 87; N. A. Toropov and I. A. Bondar, *Izv. Akad. Nauk SSSR, Otd. Khim. Nauk*, No. 8, 1372 (1961); *Bull. Acad. Sci. USSR, Div. Chem. Sci. (English Transl.)*, 1280 (1961).

 $\text{GeO}_2-\text{SiO}_2$ $\text{Yb}_2\text{O}_3-\text{ZrO}_2$ FIG. 2392.—System $\text{Yb}_2\text{O}_3-\text{ZrO}_2$, subsolidus; proposed. C_1 and C_2 = cubic phases, H_1 = rhombohedral phase, and H_2 and H_3 = hexagonal phases.

Monique Perez y Jorba, *Ann. Chim. (Paris)*, 7, 509 (1962).

BEST AVAILABLE COPY

FIG. 2393.—System $\text{SiO}_2-\text{GeO}_2$ showing pressure-composition diagrams at 450°C (solid line) and 500°C (dashed line).

W. S. Miller, F. Dachille, E. C. Shafer, and Rustum Roy, *Am. Mineralogist*, 48, 1027 (1963).