

Lower Mississippi Region Comprehensive Study

DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited

Appendix T Plan Formulation 1974

This appendix is one of a series of 22 documents comprising the complete Lower Mississippi Region Comprehensive Study. A list of the documents is shown below.

Main Report

Appendixes

Appendix	Description	Appendix	Description
A	History of Study	K	M and I Water Supply
В	Economics	L	Water Quality and Pollution
С	Regional Climatology Hydrology & Geology	М	Health Aspects
D	Inventory of Facilities	N	Recreation
E	Flood Problems	0	Coastal and Estuarine Resources
F	Land Resources	P	Archeological and Historical Resources
G	Related Mineral Resources	Q	Fish and Wildlife
Н	Irrigation	R	Power
I	Agricultural Land	S	Sediment and Erosion
	Drainage	T	Plan Formulation
J	Navigation	U	The Environment

CONTAINS COLOR PLATES: ALL DOS COMMUNICACIONES WILL DE IN BLACK AND WASTE

PLAN FORMULATION.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY.

Pendix T.

Approved for public release; Distribution Unlimited

PREPARED UNDER THE SUPERVISION OF
THE LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY
COORDINATING COMMITTEE

410 262

LB

This report was prepared at field level by the Lower Mississippi Region Comprehensive Study Coordinating Committee and is subject to review by interested Federal agencies at the departmental level, by Governors of the affected States, and by the Water Resources Council prior to its transmittal to the President of the United States for his review and ultimate transmittal to the Congress for its consideration.

TABLE OF CONTENTS

APPENDIX T PLAN FORMULATION

																								Page No.	
Tab	ures les tographs .		•			•				:					:	•	:	:	:	:			•	x xi xxii	
INT	RODUCTION										•									•			•	1	
P	urpose and	Scop	e						•															1	
P	lanning Con	cept	S	and	l S	tu	ıdy	Oi	Þjε	ect	iv	res												2	
M	ultiobjecti	ves						•															•	4	
P	lanning Pol	icie	es	and	l C	on	st	ra	int	ts														6	
C	oordination	١																	•					8	
P	ublic Invol	veme	ent																					8	
R	elationship	to	Ot	her	· A	pp	en	di	(es	; .														8	
P	resentation	of	Da	ta																				9	
THE	REGION .																							11	
A:	rea of Stud	v .																						11	
	Location a																							11	
	Planning D																							11	
	Climate.																					•	•	12	
	Physiograp																					•		12	
																						•	•	12	
	Major Stre																								
	Forests.																	•	•	•	•	•	•	16	
	Economy .		•		•	•	•	•	•	•		•	•	•	•	•	•	•	٠	•	•			16	
	The People																							16	

Page No.	_
Economy and Economic Projections	
General	
Population	
Employment	
Production	
Earnings and Income	
Agriculture	
Forestry	
Mining	
Electric Power	
Manufacturing	
Recreation	
Service Industries	
Resource Availability	
General	
Water Resources	
Land Resources 41	
Resource Use and Future Needs	
Water Withdrawals 45	
Municipal Water Supply	
Industrial Water Supply 47	
Rural Domestic Water Supply 50	
Thermoelectric Power Water Supply 54	

								Page No.
Irrigation Water Supply								57
Mineral Water Supply								59
Fish and Wildlife Water Supply .								63
Commercial Fisheries Water Supply							•	64
Summary of Water Supply Needs								69
Water Surface Area								80
Recreation								80
Sport Fishing		•		•				84
Environmental Quality								86
Summary of Water Surface Needs		•		•		•		86
Land Area								95
Cropland								96
Pasture								101
Forest Lands								106
Other Lands								108
Urban and Built-up Lands								110
Commercial Fish Farming								112
Recreation Lands								115
Fish and Wildlife Land								118
Mineral Lands								123
Environmental Quality Lands								125
Summary of Land Needs								129

						Page No.
Related Problems						139
Flood Damage						139
Sediment and Erosion						147
Excessive Wetness					•	153
Water Quality						157
Navigation						163
Hydropower						172
Coastal and Estuarine						172
Archeology and History						176
Health Aspects						180
Alternatives						183
General						183
Screening of Alternatives						183
Water Supply						187
Water Surface Area						189
Land Area						189
Related Problems						189
PLAN FORMULATION RATIONALE AND METHODOLOGY			•			195
General						195
Single-objective Programs - Unique Featur	res					197
National Income Program						197
Regional Development Program						197
Environmental Quality Program						197

Pa	ge No.
Water Withdrawal Balance and Plan Development	198
General	198
Municipal Water Supply	198
Industrial Water Supply	200
Thermal Water Supply	200
Irrigation Water Supply	200
Other Agricultural Water Supply	200
Commercial Fisheries Water Supply	201
Mineral Water Supply	201
Water Surface Balance and Plan Development	202
Land Use Allocation and Plan Development	203
Wildlife Lands	205
Recreation Lands	205
Environmental Quality Components	207
Archeological and Historical Resources	207
Other Need and Problem Categories Not Directly Related	
to Resource Allocation	208
General	208
Flood Control	208
Principal Streams	208
Upstream Watersheds	208
Sediment and Erosion	208
Excessive Wetness	209
Land Treatment	209

									Page No.
Water Quality									209
Navigation									210
Hydropower									211
Coastal and Estuarine									211
Health Aspects									212
THE FRAMEWORK PROGRAM		•	•				•		213
General									213
National Income Program									215
Resource Use									215
Water Withdrawals									215
Water Surface Area									221
Land Area									224
Recreation Plan									250
Fish and Wildlife Plan									266
Environmental Quality Plan									270
Problem Amelioration									271
Flood Control									271
Sediment and Erosion									285
Drainage									289
Water Quality Management .									293
Navigation									297
Hydropower									298
Other Program A Components									304

						Page No.
Summary of National Income Program						304
Program Costs						304
General						304
Total Program Costs						333
Regional Development Program						335
Resource Use and Problem Amelioration .						335
Water Withdrawal						335
Water Surface Area	•					335
Land Area						341
Plans						341
Summary of Regional Development Program						365
Program Costs			•			375
Environmental Quality Program						378
Resource Use						378
General						378
Land Allocation						378
Water Quality		•				393
Problem Amelioration						393
Flood Control						393
Summary of Environmental Quality Program						399
Program Costs						399
Program Impacts						406
General						406

							Page No.
Water Withdrawal							406
Land Development							411
Problem Amelioration	•						411
Recommended Framework Program							413
General							413
Resource Use							413
Water Withdrawal							413
Water Surface Area							413
Land Area							414
Recreation, Fish and Wildlife, and Environme Quality	nt •	al •					428
Problem Amelioration							428
Coastal and Estuarine							428
Archeology and History							439
Health Aspects							441
Summary of Recommended Program				•			444
Program Costs	•						444
Scheduling and Implementation							451
DATA DEFICIENCIES AND NEED FOR ADDITIONAL STUDIES							457
D. A.							157
Data	•	•	•	•	•	•	457
Climatologic Data			•		•		457
Meterologic Data						•	458
Hydrologic Data							458

														Page No.
Drainage Areas														458
Streamflow and Stage														459
Flow Velocity														460
Water Use Data														460
Water Quality Data														460
Studies														461
General Investigations														461
Traditional Studies														461
Urban Studies												•		461
Waste Water Management Studies					•									461
Special Continuing Authorities														473
Navigation														473
Flood Control														473
Flood Plain Information Studies														474
Other Special Studies														475
Studies Underway														475
Studies Needed														475
CONCLUSIONS AND RECOMMENDATIONS														481
Conclusions	•	•	•	•	•	•	•	•	•	•	•	•	•	481
Recommendations														484

LIST OF FIGURES

No.		Pag	e No.
1	Lower Mississippi Region Comprehensive Study Organization Chart		3
2	Regional Map		13
3	Present and Projected Regional Population by WRPA		24
4	Watershed Area and Runoff Diagram		35
5	Regional Water Supply Withdrawals and Consumption		73
6	Water Surface Area Needs for Recreation and Environmental Quality		91
7	Present Use and Projected Need for Land		137
8	Regional Sediment and Erosion Problems and Damages		152
9	Sediment and Erosion Damages (by WRPA)	٠	154
10	Land Drainage Needs (by WRPA)		156
11	Projected BOD Waste Loads and 1970 Treatment by WRPA		165
12	Waterborne Commerce, Lower Mississippi Region		169
13	Waterborne Commerce, Waterways, Lower Mississippi Region		170
14	Waterborne Commerce, Ports, Lower Mississippi Region		171
15	Sample Water Allocation Schematic		199
16	Land Resource Plan Formulation Schematic, Lower Mississip Region	pi 	206
17	Regional Water Quality Plan, Program A, Lower Mississippi Region		296
18	Special Treatment of Channel Alteration, Environmental Quality Program		398

LIST OF TABLES

No.		Pag	ge	No.
1	Economic Profile Summary for Lower Mississippi Region .			22
2	Earnings by Major Industries in Lower Mississippi Region	1.		26
3	Mean Annual Discharge, 1973 Conditions, Lower Mississipp Region	oi •		36
4	Dry Weather Low-Flow Summary, Lower Mississippi Region.			37
5	Water Surface Availability, Lower Mississippi Region			38
6	Existing Storage in Impoundments, Lower Mississippi Region			39
7	Available Ground-Water Resource, Lower Mississippi Regio	on		41
8	Land Use, 1970, Lower Mississippi Region			42
9	Capability of Agricultural Land, Lower Mississippi Regio	on		43
10	Municipal Water Use, 1970, Lower Mississippi Region			46
11	Summary of Present Use and Future Municipal Water Withdrawal Needs, Lower Mississippi Region			48
12	Industrial Water Use, 1970, Lower Mississippi Region			49
13	Summary of Present Use and Future Industrial Water Withdrawal Needs, Lower Mississippi Region			51
14	Rural Domestic Water Use, 1970, Lower Mississippi Region	n.		52
15	Summary of Present Use and Future Rural Domestic Water Withdrawal Needs, Lower Mississippi Region			53
16	Thermoelectric Power Production Cooling Water Use in 19 Lower Mississippi Region	70,		55
17	Summary of Present Use and Future Thermoelectric Power Production Cooling Water Withdrawal Requirements, Lower Mississippi Region	•	•	56
18	Irrigation, Livestock and Poultry Water Use in 1970, Lower Mississippi Region.			58

No.	Pag	ge No.
19	Summary of Present Use and Future Irrigation and Other Agricultural Water Withdrawal Requirements, Lower Mississippi Region	60
20	Water Use for Mineral Production, 1970, Lower Mississippi Region	61
21	Summary of 1970 Use and Future Water Withdrawal Needs for Minerals, Lower Mississippi Region	62
22	Fish and Wildlife Water Use, 1970, Lower Mississippi Region	63
23	Summary of Present Use and Future Fish and Wildlife Water Withdrawal Needs, Lower Mississippi Region	65
24	Commercial Fish Production and Water Use, 1970, Lower Mississippi Region	68
25	Summary of Present and Future Fish Production Requirements, Lower Mississippi Region	70
26	Summary of 1970 Use and Future Water Supply Withdrawal Needs for Commercial Fish Production, Lower Mississippi Region	71
27	Summary of Present and Projected Water Withdrawals by Category, Lower Mississippi Region	72
28	Summary of Present and Projected Water Withdrawals by WRPA, Lower Mississippi Region	75
29	Water Withdrawals and Consumption, National Income Objective and Environmental Quality Objective, Lower Mississippi Region	76
30	Water Withdrawals and Consumption, Regional Development Objective, Lower Mississippi Region	78
31	1970 Need and Resource Availability, Water Dependent Recreation, Lower Mississippi Region	81
32	Future Needs, Water Surface for Water Dependent Recreation, Lower Mississippi Region	83

No.		Pag	e No.
33	Sport Fishing Summary, 1970 Use of Existing Habitat, Lower Mississippi Region	•	85
34	Summary of Future Sport Fishing Needs, Lower Mississippi Region	•	87
35	Summary of Future Sport Fishing Habitat Needs, Lower Mississippi Region		88
36	Summary of Water Surface Area Needs for Natural Environment Quality, Lower Mississippi Region	ntal •	89
3 7	Summary of Water Surface Needs, National Income and Region Development Objectives, Lower Mississippi Region		93
38	Summary of Water Surface Area Needs, Environmental Quality Objective, Lower Mississippi Region		94
39	Cropland Distribution, 1970, Lower Mississippi Region		97
40	Production Requirements for Selected Crops Related to Foodand Fiber, Program A, Lower Mississippi Region		98
41	Future Cropland Needs, Lower Mississippi Region		100
42	Lands Used for Pasture in 1970, Lower Mississippi Region.		101
43	Production Requirements for Beef and Veal, and Milk Products, Program A, Lower Mississippi Region		103
44	Future Pastureland Needs, Program A, Lower Mississippi Region		104
45	Future Pastureland Needs, Program B, Lower Mississippi Region		105
46	Forest Lands in Lower Mississippi Region, 1970	•	107
47	Future Forest Land Needs, Lower Mississippi Region		109
48	Present Use and Future Needs for Other Lands, Lower Mississippi Region		111
49	Urban and Built-Up Land in the Lower Mississippi Region, 1970		112

No.		Pag	ge No.
50	Future Needs for Urban and Built-Up Lands, Lower Mississippi Region		113
51	Commercial Fish Farming Land Use, 1970, Lower Mississippi Region		114
52	Future Land Needs for Commercial Fish Farming, Lower Mississippi Region	•	116
53	Status of Recreation Lands in the Lower Mississippi Region, 1970		119
54	Future Land Needs for Outdoor Recreation, Lower Mississipp Region	pi •	119
55	Lands Dedicated to Wildlife Habitat, 1970, Lower Mississippi Region		121
56	Future Wildlife Habitat Needs, Lower Mississippi Region .		122
57	Mineral Land Use, 1970, Lower Mississippi Region	•	124
58	Future Mineral Land Needs, Lower Mississippi Region		125
59	Summary of Land Areas Needed for Environmental Quality Purposes, Lower Mississippi Region		126
60	Summary of Land Use in 1970 and Future Land Needs, Lower Mississippi Region		130
61	Summary of Future Land Needs, National Income Objective, Lower Mississippi Region		131
62	Summary of Land Needs, Regional Development Objective, Lower Mississippi Region		132
63	Summary of Land Needs, Environmental Quality Objective, Lower Mississippi Region		133
64	Comparison of Selected Land Needs and the Land Base, Lower Mississippi Region	r	136
65	Damage Appraisal - 1973 Flood, Lower Mississippi Region .		141

LIST OF TABLES

No.		Page	e No.
66	Remaining Flood Problems, 1970 Conditions, Lower Mississippi Region		146
67	Future Flood Damages, Lower Mississippi Region		148
68	Sediment and Erosion Problems and Damages in 1970, Lower Mississippi Region		150
69	Future Sediment and Erosion Problems and Damages, Lower Mississippi Region		151
70	Excessive Wetness Problems, 1970, Lower Mississippi Regio	on	155
71	Future Land Drainage Needs, Lower Mississippi Region		157
72	Status of Treatment, Biodegradable Wastes and Bacteria, 1970, Lower Mississippi Region		160
73	Recognized Non-BOD Pollutants Entering the Mississippi River in Louisiana, 1972, Lower Mississippi Region		161
74	Projected Daily Biodegradable Waste Loads, Lower Mississippi Region		164
75	1970 Waterborne Commerce, Lower Mississippi Region		167
76	Projected Waterborne Commerce, Lower Mississippi Region	•	168
77	Existing Hydroelectric Plants in 1970, Lower Mississippi Region		172
78	Peak Load Demands for Electric Power, Lower Mississippi Region		173
79	Summary of Needs, Coastal and Estuarine Zone, Lower Mississippi Region		176
80	Regional Historic Resources, 1973, Lower Mississippi Region		177
81	Future Archeological Needs, Lower Mississippi Region		179
82	Future Historical Needs, Lower Mississippi Region	•	181
83	Summary of Future Health Aspects Needs, Lower Mississippi Region	i •	182

No.	<u>Pa</u>	ge No	÷
84	Potential Solutions to Resource Problems and Needs, Lower . Mississippi Region	184	
85	Land Treatment Measures, Lower Mississippi Region	188	
86	Land Use Priorities, Lower Mississippi Region	203	
87	Primary Land Use and Multiple Uses, Lower Mississippi Region	204	
88	Water Withdrawal Plan, Program A, Lower Mississippi Region.	216	
89	Program A Measures for Meeting Water Withdrawal Needs, Lower Mississippi Region	219	
90	Effectiveness of Water Withdrawal Plan, Program A, Lower Mississippi Region	220	
91	Summary Analysis of Net Needs for Man-Made Water Surface, National Income Objective, Lower Mississippi Region	222	
92	Development Potential for Large Water, Lower Mississippi Region	223	,
93	Water Surface Area Plan, National Income Objective, Lower Mississippi Region	225	į
94	Program A Measures Used to Meet Water Surface Area Needs, Lower Mississippi Region	226	,
95	Effectiveness of Water Surface Area Plan, Program A, Lower Mississippi Region	229	J
96	Land Use Plan, Program A, Lower Mississippi Region	230	ľ
97	Program A Measures Used to Meet Land Area Needs, Lower Mississippi Region	247	
98	Effectiveness of Land Use Plan, Program A, Lower Mississippi Region	251	
99	Recreation Plan, National Income Objective, Lower Mississippi Region	263	5

No.		Page	No.
100	Effectiveness of Recreation Plan, National Income Objective, Lower Mississippi Region		266
101	Fish and Wildlife Plan, National Income Objective, Lower Mississippi Region		267
102	Effectiveness of Fish and Wildlife Plan, National Income Objective, Lower Mississippi Region		269
103	Lands Designated for Primary Use as Environmental Quality Components, National Income Program, Lower Mississippi Region		270
104	Environmental Quality Plan, National Income Objective, Lower Mississippi Region		272
105	Effectiveness of Environmental Quality Plan, National Income Objective, Lower Mississippi Region		275
106	Flood Control Plan, Structural Measures, Program A, Lower Mississippi Region		277
107	Flood Control Plan, Non-Structural Measures, Program A, Lower Mississippi Region		281
108	Average Annual Flood Damages Prevented (\$1,000) by Flood Control Plan, National Income Objective, Lower Mississippi Region		283
109	Residual Average Annual Flood Damages, With Flood Contro Plan in Place, National Income Objective, Lower Mississippi Region	1	284
110	Effectiveness of Flood Control Plan, National Income Program, Lower Mississippi Region		285
111	Sediment and Erosion Plan, National Income Objective, Low Mississippi Region	wer	287
112	Plan Effectiveness, Sediment and Erosion Plan, National Income Program, Lower Mississippi Region		290
113	Drainage Plan, National Income Objective, Lower Mississin Region	ppi	291

No.	Page	e No.
114	Plan Effectiveness, Drainage Plan, National Income Objective, Lower Mississippi Region	292
115	Water Quality Plan, Program A, Lower Mississippi Region	294
116	Navigation Plan, Program A, Lower Mississippi Region	299
117	Potential Hydroelectric Projects in Power Market Area with Output Marketable in Lower Mississippi Region	302
118	Summary of Existing and Potential Hydroelectric Projects, Lower Mississippi Region	303
119	Other Program A Component Plans, Lower Mississippi Region .	305
120	Program A Composition, Lower Mississippi Region	307
121	Estimated Program Costs, National Income Objective, Lower Mississippi Region	311
122	Federal Cost Sharing Percentages, Lower Mississippi Region.	332
123	Water Withdrawal Plan, Program B, Lower Mississippi Region.	336
124	Summary Analysis of Net Needs for Man-Made Water Surface, Regional Development Objective, Lower Mississippi Region.	339
125	Water Surface Area Plan, Regional Development Objective, Lower Mississippi Region	340
126	Land Use Allocation for Regional Development, Lower Mississippi Region	342
127	Recreation Plan, Regional Development Objective, Lower Mississippi Region	354
128	Fish and Wildlife Plan, Regional Development Objective, Lower Mississippi Region	358
129	Flood Control Plan, Structural Measures, Regional Development Programs, Lower Mississippi Region	360
130	Average Annual Flood Damages Prevented (\$1,000) by Flood Control Plan, Regional Development Objective, Lower Mississippi Region	363

LIST OF TABLES

No.		Page	No.
131	Residual Average Annual Flood Damages (\$1,000) with Flood Control Plan in Place, Regional Development Objective, Lower Mississippi Region	i	364
132	Effectiveness of Flood Control Plan, Regional Development Program, Lower Mississippi Region		365
133	Drainage Plan, Regional Development Objective, Lower Mississippi Region		366
134	Water Quality Plan, Program B, Lower Mississippi Region		367
135	Navigation Plan, Program B, Lower Mississippi Region		369
136	Program B Composition, Lower Mississippi Region		371
137	Estimated Program Costs, Regional Summary, Regional Development Objective	•	376
138	Land Use Plan, Environmental Quality Program, Lower Mississippi Region		379
139	Land Designated for Exclusive Use as Environmental Quality Components, Environmental Quality Program, Lower Mississippi Region	У	391
140	Environmental Quality Program, Measures Used to Meet Land Area Needs, Lower Mississippi Region		394
141	Water Quality Plan, Environmental Quality Program, Lower Mississippi Region		395
142	Environmental Quality Program Composition, Lower Mississippi Region	•	400
143	Estimated Program Costs, Regional Summary, Environmental Quality Objective, Lower Mississippi Region	•	404
144	Dissolved Solids at Selected Locations in Waters of the Lower Mississippi Region	•	407
145	Impact of Resource Development on Cropland and Pasture Required to Meet Agricultural Production, Lower Mississippi Region		412

No.		Pag	e No.
146	Land Use Plan, Recommended Program, Lower Mississippi Region		415
147	Lands Designated for Exclusive Use as Environmental Quality Components, Recommended Program, Lower Mississippi Region		429
148	Environmental Quality Plan, Recommended Program, Lower Mississippi Region		433
149	Listing of Recommended Plans for Problem Amelioration, Lower Mississippi Region		437
150	Plan for Coastal and Estuarine Zone - All Programs, Low Mississippi Region	er 	438
151	Recommended Plan for Preservation, Restoration, and Maintenance of Archeological and Historical Resources Lower Mississippi Region	,	440
152	Recommended Expansion of Water Supply Programs, Lower Mississippi Region		442
153	Recommended Establishment of Vector Abatement Districts Lower Mississippi Region	, 	443
154	Recommended Program Composition, Lower Mississippi Regi	on .	445
155	Estimated Program Costs, Recommended Program, Lower Mississippi Region		449
156	Funding Schedule for Recommended Framework Program, Low Mississippi Region	er 	453
157	Funding Schedule for Alternative Programs, Lower Mississippi Region		454
158	Percentage of Recommended Framework Program Cost for Ma Features, Lower Mississippi Region	in ••	455
159	Authorized Traditional Type General Investigation Surveys, Lower Mississippi Region		462

No.		Pa	ge No.
160	Needs for Future Traditional Type General Investigation Surveys, Lower Mississippi Region		468
161	Needs for Future Urban Studies, Lower Mississippi Region		472
162	Needs for Future Waste Management Studies, Lower Mississippi Region		472
163	Current Flood Control Studies Under Authority of Section 205 of the 1948 Flood Control Act, as amended, Lower Mississippi Region	•	473
164	Need for Future Flood Control Studies Under Authority of Section 205 of the 1948 Flood Control Act, as amended, Lower Mississippi Region		474
165	Needs for Future Flood Plain Information Studies, Lower Mississippi Region		474

PHOTOGRAPHS

The photographs in this appendix were furnished by:

	Page No.
U. S. Army Corps of Engineers	13 15 19 27 29 30 34 46 47 59 66 82 96 110 115 120 140 142 166 174
U. S. Department of Agriculture	
Soil Conservation Service	20 28 44 57 67 84 95 99 102 108 123 149 153
Forest Service	5 13 32 117

PHOTOGRAPHS (Cont'd)

	Page No.
U. S. Department of Interior	
Geological Survey	40 50
Bureau of Sport Fisheries and Wildlife	106
National Park Service	178
Mississippi Power and Light Company	54
State of Arkansas	64 90
National Aeronautics and Space Administration, MTF	129
State of Mississippi	158
Uncredited	xxiv 18 21

The Lower Mississippi Region has its beginning at the confluence of two mighty rivers, the Ohio and the Upper Mississippi.

INTRODUCTION

The Mississippi River, fed by the Missouri and Ohio Rivers and other large tributaries, is one of many natural endowments that make the Lower Mississippi Region a leader among the Nation's agricultural areas. With less than 3 percent of the land area of the continental United States, the region accounted for 7 percent of the Nation's total 1968 agricultural earnings. In 1970 crops harvested from 15.6 million acres made the alluvial valley one of the most productive areas in the United States. Further, the region is potentially one of the great industrial areas in the country due to a relative abundance of labor and an almost unlimited supply of good quality water. Thus, the region is expected to grow in population and affluence throughout the next 50-year period.

This growth will come rather slowly at first, with less than a 10 percent increase in population during the next decade. Thereafter, accelerated growth is foreseen and the Water Resources Council has predicted a regional population of 10.2 million by the year 2020. However, if regional growth rates equal the national average, the 2020 population foreseen by the Coordinating Committee will be 11.7 million persons. This greater population is predicted to have nearly eight times the personal income and five times the per capita purchasing power of the population of the 1970's.

Along with increases in population and affluence, needs for water and related land resources will increase substantially over the next 50 years. This appendix addresses the problem of developing a rational program of judicious management of the region's water and related land resources that will satisfy as many as possible of the region's diverse needs between now and the year 2020.

The term "plan" as used herein refers to any of several complete component parts (such as the water quality plan) of the "programs" which are the output of this Type 1, comprehensive, or framework study.

PURPOSE AND SCOPE

The purpose of this appendix is to outline the scope and substance of alternative programs designed to serve as a guide for the conservation, use, and development of the region's water and related land resources. The programs outline the means by which projected local, regional, and national water-related needs and problems can be satisfied, within limitations.

The formulated plans and programs presented herein are based on Plans and programs of readily available information. Plans are that had weal analyses and broad appraisals of readily available information. Planning judgment was exercised in those elements of the program that had weak statistical qualifications. The probable nature, extent, cost, and scheduling of plans which provide solutions to the various problems are displayed for the years 1980, 2000, and 2020. The views of the public as expressed in public meetings conducted at various locations throughout the study area have been considered in arriving at recommended solutions.

PLANNING CONCEPTS AND STUDY OBJECTIVES

The Lower Mississippi Region Comprehensive Study, the nucleus of which is described in this appendix, was conducted largely in accordance with the concepts postulated in: (1) Senate Document No. 97, (2) Principles and Standards for Planning Water and Related Land Resources, and (3) Guidelines for Framework Studies dated October 1967, as amended by Water Resources Council policy statement dated 22 July 1970. Legislation Senate Document 97 provided the basic national policy. These guidelines require that Federal, State, local, and private viewpoints be duly considered in formulating broad programs for meeting the needs and desires of the people, whether such programs involve development or nondevelopment, or are capable of implementation at the Federal, State, or local level.

To guide the overall conduct of the study, a Coordinating Committee was organized with representatives from 10 Federal agencies and 7 States. The Mississippi River Commission chaired that committee. Accomplishment of the work through various subcommittees was a joint responsibility of the States and Federal agencies. Chairmanship of the committees and subcommittees operating under the Coordinating Committee was as shown in figure 1.

Primary activities included (1) establishment of economic and demographic parameters, (2) translation of those parameters into needs for land and water resources, (3) identification of related resource problems and needs, (4) assessment of resource capabilities, (5) investigation of alternative solutions to the region's problems and needs, and (6) formulation of programs to guide future water and land resource conservation management and development toward satisfaction of many of those problems and needs. The output of the study is intended to provide a base from which further detailed problem-oriented planning can begin.

1/ The Principles and Standards for Planning Water and Related Land Resources, as adopted in September 1973, postdate the formative stages of the Comprehensive Study. Hence, there are some elements of the study that do not follow the adopted Principles and Standards in their entirety.

MULTIOBJECTIVES

At the outset of the study the Coordinating Committee adopted the specific national objectives presented in "Procedures for Evaluation of Water and Related Land Resource Projects, June 1969," a special task force report to the Water Resources Council. These objectives were: (1) National Income, (2) Regional Development, (3) Environmental Quality, and (4) Social Well-being. Social Well-being was dismissed as an explicit study objective in the fall of 1971, but was adopted as the over-riding determinant in the other three objectives.

National Income

The National Income Objective is achieved through increases in the Nation's output of goods and services. Investments under this objective continue so long as unit social and economic returns exceed unit costs. The program formulated herein for the National Income objective, Program A, is based on projections contained in Appendix B, Economics.

Regional Development

The program formulated under this objective (Program B) is directed to the satisfaction of needs and the solution of problems accompanying specified conditions of accelerated economic growth within the region. Projections under the Regional Development objective are consistent with the assumption that the Lower Mississippi Region has sufficient potential to grow at a rate equal to the national average. Basic parameters for Program B are also contained in Appendix B, Economics.

Environmental Quality

This objective reflects the human concern for preservation and improvement of our natural surroundings in harmony with the socioeconomic environment. In formulating a plan for this objective, Program A components were included to the extent that they do not materially conflict with nature. Economic parameters were not developed for the Environmental Quality Objective.

Environmentally significant features such as this scenic stream received maximum consideration in the formulation.

PLANNING POLICIES AND CONSTRAINTS

Plan formulation was guided by the following policies, assumptions, and constraints:

- a. The region will experience economic growth compatible with national economic objectives.
- b. All formulated programs must be complete in themselves and capable of implementation. This means they must be socially, politically, and financially feasible.
- c. Studies leading to programs should not involve basic data generation. Program alternatives will not be analyzed for economic justification. However, recommended measures are required to have a reasonable chance for economic justification should such analysis be made. Selection of alternatives will be made on the basis of practicality with least-cost a primary consideration. Estimates will be derived by general relations, calculated approximations, available data, and judgment.
- d. Framework program costs will be limited to those most apt to be borne by the public sector. Accordingly, costs for acquisition of land will be displayed for recreation, fish and wildlife, and environmental components, whereas no land acquisition costs will be included for agriculture and forestry production. However, public sector costs for more intensive management if utilized as an alternative measure will be displayed where appropriate.
- e. The Environmental Quality Program shall include basic components for satisfaction of environmental needs. Both the National Income and Regional Development Programs will contain components which enhance the region's natural environment to the extent that this can be done without materially detracting from the single objective being stressed.
- f. Quantification and satisfaction of needs will be limited to the following categories:
 - (1) Agriculture
 - (2) Forestry
 - (3) Electric Power
 - (4) Fish and Wildlife
 - (5) Flood Damage
 - (6) Irrigation

- (7) Drainage
- (8) Water Supply
- (9) Navigation
- (10) Recreation
- (11) Water Quality
- (12) Environment
- (13) Minerals
- (14) Coastal and Estuarine Resources
- (15) Archeological and Historical Resources
- (16) Sediment and Erosion
- (17) Health Aspects
- g. Plan formulation will be supported primarily by data contained in other appendixes. In certain cases, additional or updated information may be used, and other data may be revised or re-scaled as appropriate. Such additions and/or revisions, when of significant import, will be clearly noted and explained.
- h. Multiple-use, multiple-objective concepts will be considered in the formulation.
- i. Programs will be formulated individually for each of 10 water resource planning areas (see page 11) except where optimum solutions transgress boundaries, in which case two or more areas will be formulated concurrently.
- j. The regional program will be a composite of individual WRPA plans.
- k. Programs will be presented for the years 1980, 2000, and 2020.
- 1. Only existing interregional transfers will be considered. Future depletions in areas draining into the Lower Mississippi Region will be accounted for in the assessment of water availability.
- m. Current Federal policy and Public Law 92-500 (Water Quality Act Amendments of 1972) will be primary constraints in formulation of the water-quality plan.
 - n. Well-being of people will be the over-riding consideration.

COORDINATION

Preparation of this appendix was the responsibility of the Plan Formulation Committee, with the work delegated to a Plan Formulation Task Force with membership open to the 10 Federal agencies and 7 States participating in the study. State inputs were directed primarily at developing environmental program components and the public involvement aspects of the study.

PUBLIC INVOLVEMENT

The public's needs and desires as perceived by the plan formulators were duly considered in formulating the plans and programs described herein. This input was obtained by way of a public involvement program composed of public meetings and attitudinal surveys, supplemented by informational brochures and news releases.

The first phase of the program involved public orientation. A movie depicting planning objectives and categories of need was shown. Information was collected on which study objectives the public considered appropriate and the first informational brochure was distributed. Public response varied depending upon the political atmosphere and institutional arrangements within each State. A computer analysis of the results obtained indicated a consensus in favor of continued economic growth and increased tourism.

The second phase of the program provided for further exchange between the public and study managers. Information on natural resource related needs was displayed by way of 35 mm. slides with accompanying narrative. Additional data were gathered from a comprehensive questionnaire structured to obtain an indication of needs the public considered important. A second informational brochure was circulated. The result of this portion of the program substantiated the earlier consensus for resource and industrial development, but with the proviso that a quality natural environment be maintained for future generations. A detailed discussion of the public involvement program, including participation by the various States, can be found in Appendix A, History of Study.

RELATIONSHIP TO OTHER APPENDIXES

The basic data appendixes - Economics; Regional Climatology, Hydrology and Geology; Inventory of Facilities; and Land Resources provided the base from which plan formulation was begun. Land Resources, while serving as a basic data document, also served as a functional appendix by showing land acreage requirements for satisfaction of food and fiber needs.

Functional or needs appendixes, such as Municipal and Industrial Water Supply, Water Quality and Pollution, et al, were limited in scope to quantifying resource related problems and needs. This appendix presents a summary of needs in terms of relative management efficiencies implicit in their quantification, and categorical adjustments resulting from a common base. It also presents alternative measures and costs, and describes the integration of pertinent elements into single-objective programs and a recommended program for the Lower Mississippi Region.

The Summary Report presents an abstract of the recommended program.

PRESENTATION OF DATA

Following this introductory section is a detailed description of the study area which contains data on resource availability, status of development, future needs and problems, and alternatives for satisfying those problems and needs. The third section presents plan formulation rationale and methodology specifically oriented to the unique features of each of the single-objective programs and the recommended program for the region. A discussion of the framework program, its cost, and scheduling and implementation follows. Needs for additional studies are presented in the next-to-last section, and the conclusions and recommendations of the Coordinating Committee are summarized in the final section. Throughout the appendix, the discussion highlights significant features of each of the 10 WRPA's, pointing out special problems and needs.

THE REGION

AREA OF STUDY

Location and Size

The Lower Mississippi Region lies in portions of seven States. Its northern extremity at Cairo, Illinois, is about 600 miles (954 miles traveling the Mississippi River) inland from the Gulf of Mexico. It averages 170 miles in width (figure 2). Included in this 102,400 square mile area is the entire drainage basin of the Mississippi below its confluence with the Ohio River, except for portions of the Arkansas, Red, and White River subbasins above the backwater limits of the design flood for the 'Mississippi River and Tributaries Project.' Also included are the flood-protected area at Cairo, Illinois, the Ouachita, Boeuf, and Tensas Basins in Arkansas, and the Louisiana coastal area which drains into the Gulf between the Pearl and Sabine River divides.

Planning Divisions

Resource problems and needs are many and varied. Some apply to the region as a whole, but most do not lend themselves to solution on a regional basis. Study of the area was simplified by subdividing it into 10 Water Resource Planning Areas (WRPA's) as follows:

- WRPA 1 The main stem of the Mississippi River, extending to and including the levees or to the river's top bank where levees do not exist.
- WRPA 2 The St. Francis Basin, St. Johns-New Madrid Floodway, Lower White and Bayou Meto Basins, including the Arkansas River below Pine Bluff, Arkansas.
- WRPA 3 The drainage basins in west Kentucky, west Tennessee, and extreme northern Mississippi, and the Cairo, Illinois, area.
 - WRPA 4 The Yazoo River Basin.
- WRPA 5 The Ouachita River Basin, and the Red River below Hot Wells, Louisiana.
 - WRPA 6 The Boeuf and Tensas River Basins.
- WRPA 7 The Big Black River Basin and basins of southwest Mississippi streams that drain into the Mississippi River.

WRPA 8 - The Baton Rouge area, including the drainage area of streams that flow into Lake Pontchartrain except for the Tchefuncta River and streams to the east.

WRPA 9 - The Louisiana coastal area from the east limits of the Atchafalaya Floodway to the east hydrologic boundary of the Sabine River Basin.

WRPA 10 - The New Orleans area, including the Tchefuncta River area, and the area east of the Atchafalaya Floodway.

Climate

This is a humid subtropical region with occasional dry spells that have been of damaging duration less than a half-dozen times since 1935. Precipitation averages from 50 to 60 inches a year, temperatures vary from a low of 48° F. for the average January to 80° F. for the average July, and the frost-free growing season lasts from 182 days in the north to 353 days in the south. The lesser rainfall amounts and shorter growing season are both typical of the northern part of the region, as are recorded temperature extremes of -26° F. and 112° F.

Minor amounts of snow and sleet contribute to the yearly precipitation, with average snowfall ranging from 12 inches in Missouri to less than 1 inch in central and southern Louisiana. Freezing rain and glaze occur rarely but can have severe impacts, as in the winter of 1972-1973 when power and communication lines were damaged in northern Mississippi. Hail occurs periodically but seldom causes measurable damage. Tornados, hurricanes, and tropical storms occasionally cause severe damage in various sections of the region.

Physiography

Land forms, as illustrated in figure 2, range from the nearly flat alluvial valley of the Mississippi River, to the rugged relief of the Ouachita and Ozark Mountains in Arkansas and Missouri, respectively, to the saltwater marshlands of the Gulf Coast. The alluvial valley, covering roughly one-third of the region's area, is by far the most significant of these land forms. It separates the remaining two-thirds of the region, 60 percent to the west and 40 percent to the east.

Major Streams

North America's greatest river - the Mississippi - has long been a major factor in the economic development of the Lower Mississippi Region. The total area drained by the river covers more than 1,245,000 square miles and includes all or parts of 31 States and two Canadian

provinces. Water from as far east as New York and as far west as Montana flows in the lower river. As the main stem of a major network of over 12,000 miles of navigable inland waterways, it is of great importance to the expanding commerce of mid-America. Its abundant reservoir of water and its strategic economic location have attracted many vital industries and enhance the region's potential for agricultural and industrial growth.

The Lower Mississippi River drains 41 percent of the conterminous United States.

Interior drainage from about 49,700 square miles flows into the Mississippi River through major tributary streams. Most of the region's remaining area drains through the Ouachita, Boeuf, and Tensas Basins to the Red River, thence into the Atchafalaya River which empties into the Gulf. The Calcasieu, Mermentau, and Vermilion Rivers west of the Atchafalaya River in WRPA 9 and minor drainage basins in WRPA 10 also empty directly into the Gulf. The Amite, Tickfaw, Natalbany, Tangipahoa, and Tchefuncta Rivers in WRPA 8 contribute water to the Gulf by way of Lake Pontchartrain.

Major streams tributary to the Mississippi River are the St. Francis River in Arkansas and Missouri, the White and Arkansas Rivers in Arkansas, and the Yazoo River in Mississippi. The Arkansas, White, and Red Rivers contribute a considerable amount of flow into the Lower Mississippi Region itself.

Forests

Almost 30 million acres, or nearly half of the region, are covered with forests. Oak-gum-cypress forests located in the Mississippi River Delta and along the major and minor tributaries are the most plentiful, comprising about 30 percent of the forested area. Closely associated with the oak-gum-cypress type are elm-ash-cottonwood forests. The next most plentiful forests are comprised of stands of oak-hickory on the higher ridges and mountains. Loblolly-shortleaf pine and oak-pine forests grow throughout the region and longleaf-slash pine forests are found along the coastal plains of Mississippi and Louisiana.

Economy

According to the 1970 census, the Lower Mississippi Region and its eight Standard Metropolitan Statistical Areas (SMSA's) had a population of 6,293,000, with about 60 percent classified as urban. Projections indicate that the urban percentage will increase to 76 percent by 2020. Regional employment during the past 40 years has been steadily shifting from agricultural to nonagricultural, and this trend is expected to continue until only about 2.5 percent of the work force is in agriculture. Conversely, manufacturing employment has tripled in the past 40 years and will continue to expand its share of the total work force. These trends are causing a heavy migration of workers and their families from rural to urban areas. Major nonagricultural industries include petroleum, textile, chemical, and a large group of service-oriented activities.

The People

Early explorers and settlers found in this region an exciting new frontier. The fertile alluvial valley invited crop experimentation and resource exploitation. A substantial fish and game population attracted numerous trappers, hunters, and fishermen, while the river itself provided a major transportation link between settlements along the river and between these settlements and European markets.

Two major factors set the early course of development. First, the European settlers were mainly dependent upon water transportation, and were influenced by the river to the extent that the site for the city of New Orleans was selected solely for the purpose of gaining (and

later controlling) access to the river for transportation. Second, the settlers relied primarily on agriculture for their livelihood. Cultivation of the soil began with settlement, spreading from its embryonic stages in the lower reaches of the alluvial valley to occupy most of the region. Today agriculture is joined by industry in sustaining the region's economy. Both influence the culture and lifestyle of its inhabitants.

The present culture reflects the influence of several groups, including native Indian tribes and French, Spanish, and German settlers. Most notable among the European influences are those originating from early French-speaking settlers, best illustrated in the contemporary land divisions, life-styles, names, speech, and cuisine that are characteristic of Louisiana.

The influence of the Negro is equally evident. The exploitation of this human resource helped sustain the region's lavish plantation economy of the early 1800's, and it was this ethnic group that contributed many unique styles of music and dance which prevail today. The sound of a trumpet wailing the blues - first heard on Beale Street in Memphis where the blues were born and reaching its culmination on Basin Street in New Orleans - is now heard round the world.

In the sparsely populated areas of the Ouachita Mountains in Arkansas, there is a deep-rooted "mountain" culture having its distinctive background and customs. The proud people of the Ouachitas carry on a culture and speak a language reminiscent of 18th Century England.

Various religions are established in the region. Protestant faiths, the result of resettlement by immigrants from the eastern seaboard, generally dominate except in southern Louisiana and certain areas along the Mississippi River where the Roman Catholic faith, a manifestation of French and Spanish influences, is the most widespread.

Onetime jazz and gambling mecca, Beale Street in Memphis, Tennessee, shows no trace of its colorful past.

Local chefs stir a steaming pot of jambalaya - chicken, rice, onions, and seasonings - at the 1970 Jambalaya Festival in Gonzales, Louisiana.

ECONOMY AND ECONOMIC PROJECTIONS

General

The regional economy founded upon the agricultural productivity of the alluvial valley is being balanced by expansion in various industrial sectors, especially manufacturing and minerals. Such expansion and diversification have not detracted from the importance of the highly productive agricultural industry, but have altered the economic base, with manufacturing and minerals now leading agriculture in terms of output.

Along the banks of the Mississippi River between Baton Rouge and New Orleans are over 100 industrial plants having a total value of \$8 billion. The largest oil refinery in the United States is located at Baton Rouge, as are several chemical plants producing a variety of related commodities. Southern areas of the region are underlain by extensive oil and gas fields as well as vast deposits of salt and sulfur. Metallic minerals are produced in northwest areas and nonmetallic minerals other than salt and sulfur are extracted from all areas of the region.

Many industrial plants locate on the Mississippi River to take advantage of river transportation and an abundant water supply.

This is one of the major food and fiber producing areas in the Nation. Its output includes a variety of high yielding crops and forest species, livestock, and livestock products. The thriving economy is largely due to a bountiful water supply, abundant labor pool, and water transport system provided by the Mississippi River.

Cotton, once king of the region's crops, is still important to the agricultural economy.

Forecasts of an expanding nonagricultural employment base vis-a-vis a shrinking agricultural employment base are largely the outgrowth of huge gains in agricultural technology and inflationary pressures for higher income-producing industries. By the year 2020 agricultural employment is expected to fall to half the 1970 level, yet agricultural output is expected to at least double. During the same period, manufacturing employment is projected to double, and the production of manufactured goods is predicted to increase by a factor of 10. Accompanying demographic changes are expected to follow past trends, which show that the urban-rural population balance has shifted from the 57-43 percent split of 20 years ago to the current split of 60-40 percent. A large portion of the current rural population commutes to work in urban manufacturing centers, and this trend is expected to continue.

Significant aspects of the historical and projected trends and changes in the economic base are discussed in the following paragraphs. Economic parameters like population, employment, and earnings are discussed individually and in terms of their potential impact on the regional economy. Table 1 presents regional economic parameters, both historical and projected, for Programs A (National Income) and B (Regional Development).

Population

Between 1970 and 2020 the regional population will grow 62 percent under Program A projections or 85 percent under Program B projections. This compares to a projected 96 percent increase in the national population. The area's recorded 1970 population was 6.3 million. Projected populations are 10.2 and 11.7 million by 2020 under Programs A and B, respectively. Urban centers such as Memphis (WRPA 3), Baton Rouge (WRPA 8), and New Orleans (WRPA 10) are expected to sustain the highest population growth rates.

Presently, 6 out of every 10 people in the region live in urban areas such as New Orleans, Louisiana.

Table 1 - Economic Profile Summary for Lower Mississippi Region $\frac{1}{2}$

	Data	for Indicated Years	
Parameter	1950	1960	1968
Population (1 July)2/			
Program A	5,545,348	5,826,287	6,293,977
Urban	2,384,500	3,087,932	3,588,3433/
Rural	3,160,848	2,738,355	$2,612,096\overline{3}/$
Program B	5,545,348	5,826,287	6,293,977
Urban	2,384,500	3,087,932	$3,588,343\frac{3}{2}$
Rural	3,160,848	2,738,355	2,612,0963/
Personal Income4/			
Program A	7,267,311	9,701,464	15,402,808
Program B	-	-	-
Per Capita ⁴ /	1,311	1,655	2,447
Program A Program B	1,511	1,033	2,44/
Earnings4/			
Total, Program A	5,908,523	7,919,503	12,280,220
Total, Program B			
Per Worker, Program A4/	3,224	4,226	5,550
Per Worker, Program B	5,224	4,220	5,330
rer worker, rrogram b			
Employment			
Total Program A	1,832,672	1,873,933	2,212,522
Agricultural	569,900	296,079	231,648
Manufacturing	255,527	322,926	387,356
Total Program B	•		
Agricultural			
Manufacturing		•	
Gross Manufacturing Product 4/			
Total Program A			4,186,000
Total Program B			
Grand Form Manhatine Dogaine 4/			
Gross Farm Marketing Receipts 4/ Program A			$2,145,000\frac{5}{}$
Program B			2,143,000-
riogiam b			

^{1/} Program A forecasts are based on OBERS projections as approved by the U.S. Water Resources Council; Program B forecasts reflect a regional employment growth rate equal to the national rate. Methodology for both programs is explained in the section on methodology at the end of Appendix B, Economics.

2/ U.S. Bureau of Census figures show the 1970 population of the Lower Mississippi Region as 6,293,233.

Table 1 - Economic Profile Summary for Lower Mississippi Region $\frac{1}{2}$ (Cont'd)

	Data	for Indicated Year	
Parameter Parameter (1 July) 2/	1980	2000	2020
Program A	6,741,000	8,156,000	10.196,000
Urban	4,314,240	5,709,200	7,748,960
Rural	2,426,760 7,825,000	2,446,800 9,188,000	2,447,040 11,655,000
Program B Urban	5,008,000	6,431,600	8,857,800
Rural	2,817,000	2,756,400	2,797,200
Personal Income4/			
Program A	24,201,000	54,500,000	123,128,000
Program B	26,533,000	63,032,000	145,221,000
Per Capita ⁴ /			
Program A	3,590	6,682	12,076
Program B	3,700	6,980	12,570
Earnings 4/			
Total, Program A	19,003,000	42,028,000	93,758,000
Total, Program B	20,834,000	48,607,000	110,580,000
Per Worker, Program A4/	7,865	13,813	23,937
Per Worker, Program B	7,865	13,813	23,937
Employment			
Total Program A	2,416,000	3,043,000	3,917,000
Agricultural	135,000	103,000	101,000
Manufacturing	484,000 2,649,000	629,000 3,519,000	803,000 4,620,000
Total Program B Agricultural	137,000	112,000	110,000
Manufacturing	531,000	728,000	948,000
Green Manufacturing Product 4/			
Gross Manufacturing Product 4/ Total Program A	7,027,000	16,666,000	37,979,000
Total Program B	7,764,000	19,275,000	44,793,000
Gross Farm Marketing Receipts4/			
Program A	2,770,000	3,284,000	3,841,000
Program B	2,770,000	3,540,000	4,150,000

^{5/} Extrapolated using 1960 and 1980 figures.
4/ Personal income, earnings, gross manufacturing product, and gross farm marketing receipt values are given in thousands of 1967 dollars; per capita income and per worker earnings values are given in 1967 dollars. 1970 data.

Figure 3 shows both 1970 and 2020 population by WRPA's and allows a quick comparison of relative growth.

REGIONAL POPULATION GROWTH

WRPA POPULATION GROWTH

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

REGIONAL AND WRPA POPULATION GROWTH

Employment

Approximately 35 percent of the region's population was employed during the 1960's. This proportion is projected to gradually increase, with the year 2020 percentages placed at 38 and 40 percent under Programs A and B, respectively (compared to 41 percent for the Nation). Thus, by 2020 the 1968 employment of 2.2 million will reach 3.9 million under Program A, or 4.6 million under Program B.

Production

Economic output is expected to expand steadily during the next 50 years. Agricultural production will double, petroleum output will quadruple, and manufacturing will expand tenfold. Especially important is the projection that chemical industry output in the year 2020 will be 15 to 18 times greater than it was in 1968.

Earnings and Income

Historic productivity per worker has increased at an average annual rate of 3 percent. Study forecasts of anticipated technological advancement indicate that the future rate will be the same. A phenomenal increase in average earnings per worker can be expected - from \$5,550 in 1968 to \$23,937 by 2020, based on the equivalent dollar purchasing power existing in 1967.

Total earnings of workers in the region, when the increased productivity per worker and higher employment ratio are evaluated, will expand in terms of 1967 dollars from \$12 billion in 1968 to about \$100 billion by 2020. The significance of such increase on earnings by the major industries is summarized in table 2.

When translated to a per capita basis, this means that the average per capita income (in 1967 dollars) will rise from \$2,447 in 1968 to more than \$12,000 in 2020 under either Program A or B. (If measured in 1973 dollars, this means that the average income of a family of four in the region will approach \$65,000 by 2020.)

Agriculture

In 1949 there were over 430,000 farms in the region, averaging only 80 acres in size; by 1970 the number had declined to 140,000, with the average size increasing to over 200 acres. Expectations are that the number will continue to decline with a corresponding increase in size.

Table 2 - Earnings by Major Industries in Lower Mississippi Region $\underline{1}/$

	1050			Indicated Ye		2020
Industry	1950	1959	1968	1980	2000	2020
Total, Program A Total, Program B	5,908,523	7,919,503	12,280,220	19,003,000 20,834,000	42,028,000 48,607,000	93,758,000 110,580,000
Per Worker Program A Program B	3,224	4,226	5,550	7,865 7,865	13,813 13,813	23,937 23,937
Agriculture Program A Program B	1,272,921	1,115,692		1,011,000 1,109,000		2,236,000 2,638,000
Forestry & Fisheries Program A Program B	25,986	18,886	19,012	27,000 30,000	52,000 60,000	93,000 110,000
Mining Program A Program B	137,298	344,697	450,991	636,000 697,000	955,000 1,104,000	1,348,000 1,590,000
Manufacturing Program A Program B	977,238	1,431,140	2,550,755	4,104,000 4,499,000	9,159,000 10,593,000	20,105,000 23,712,000
Food & Kindred Products Program A Program B	181,017	236,574	317,722	369,000 405,000	558,000 645,000	
Textile Mill Products Program A Program B	29,202	31,659	49,121	86,000 94,000	175,000 203,000	347,000 409,000
Chemical & Allied Products Program A Program B	87 , 638	165,523	296,534	528,000 579,000	1,304,000 1,508,000	3,015,000 3,556,000
Paper & Allied Products Program A Program B	76,694 	129,903	193,640	311,000 341,000	667,000 772,000	1,434,000 1,691,000
Petroleum Refining Program A Program B	93,798	123,659	151,855	206,000 226,000	356,000 412,000	618,000 729,000
Primary Metals Program A Program B	8,685	44,828	74,192	100,000 110,000	173,000 200,000	294,000 347,000
Other Manufacturing Program A Program B	500,204	698,994	1,467,691	2,504,000 2,744,000	5,926,000 6,853,000	13,499,000 15,921,000
All Other Program A Program B	3,495,080	5,009,088	8,027,375	13,225,000 14,499,000		69,976,000 82,531,000

Program A from OBERS data. All earnings except per worker earnings are given in thousands of 1967 dollars; per worker earnings are given in 1967 dollars.

Crops now account for 83 percent of marketing receipts, and live-stock and livestock products comprise the remainder. Soybeans, cotton, rice, hay, and corn collectively used 93 percent of the harvested acreage in 1970.

Total crop and livestock output is projected to increase steadily in future years in spite of fewer agricultural workers. Major increases in production are forecast for soybeans, wheat, and rice.

Livestock and livestock products are a major agricultural enterprise in the region.

Since nearly 64 percent of the surface area of the region was classed as suitable for agricultural crop use in 1970, the potential exists for even greater production increases than are projected, should needs arise.

Forestry

Forests and their products have always played an important role in the development of this area. In 1970, 29.6 million acres, or nearly 45 percent of the region, was forested even though a loss of 7 percent of the forest land acreage has occurred since 1949. The loss would have been greater without reforestation practices; WRPA's 3, 5, and 7, for example, have actually shown an increase in forest acreage.

The wood products industry is an important part of the regional economy.

Some 860 million cubic feet of industrial roundwood were harvested from the forestland in 1970. Over half of this was softwood - mainly pine. Pulpwood and sawlogs accounted for over 70 percent of the harvest. In terms of volume of wood processed, sawlogs led the product list and pulpwood rated second.

Industrial consumption of 558 million cubic feet of roundwood in 1970 will increase to 1.3 billion cubic feet by 2020. Total wood consumption by the region's pulp paper and allied products industry is expected to expand fivefold, with WRPA 5 remaining the most important pulpwood-producing area. The need for lumber in the United States is projected to increase some 22 percent between 1962 and 1985; and the included need for plywood and veneer is predicted to double. The Lower Mississippi Region, presently realizing but half of its timber growing potential, is expected to supply an increasing share of this future market. Its timber resource will thus become increasingly important in meeting growing national needs.

Mining

In 1969 regional mineral production accounted for a substantial part of the Nation's liquid and gaseous fuels - specifically, 34 percent of the natural gas output, 31 percent of the natural gas liquids, and 25 percent of the petroleum. Furthermore, the region contributed one-fifth of the Nation's lead and bromine, one-third of its salt, and two-thirds of its sulfur. The total mineral production in the region was valued at \$4.7 billion (in 1967 dollars) up from \$1.3 billion in 1956, a dramatic increase of 260 percent in 13 years!

Drilling for offshore oil.

The value of regional mineral fuels output is expected to increase between 100 and 200 percent by 2020. Value of metallic minerals will double, while that of nonmetallic minerals will triple or quadruple. Much of the sharp increase in nonmetallic mineral output is attributable to an expected upturn in salt and sulfur production in the coastal area.

Electric Power

In the 10-year period ending in 1965, demands for peak electric power in the region's power market area increased at a compound annual growth rate of 10.9 percent. This rate is estimated to decrease gradually to 7.9 percent between 1980 and 1990. Current industrial energy use is by far the largest in terms of classified sales and will represent half of total area requirements by the year 1990. Power requirements in 1980 and 1990 will be met principally by thermal power plants, both fossil and nuclear fueled. At present, 95 percent of the fuel for thermal generation in the region's market area is natural gas, and the other 5 percent is coal. It is expected the fuel mix in 1990 will be about 46 percent natural gas, 43 percent nuclear, and 10 percent coal. Future electric power supplies available to the region are expected to be sufficient to support the anticipated level of economic growth.

Blakely Mountain Power Plant, Ouachita River, Arkansas (WRPA 5).

Manufacturing

Although manufacturing is relatively less important to the regional economy than to the national economy, its regional importance is increasing. In 1968 manufacturing earnings of \$2.6 million (1967 dollars) comprised 21 percent of total regional earnings (up 4.2 percent in

20 years). Nationally, the figure was 29 percent. The region's share of the national manufacturing earnings increased from 1.3 percent to 1.6 percent between 1950 and 1968.

Six manufacturing industries contributed more to the 1968 regional economy than they did to the national economy. These industries accounted for about 56 percent of total manufacturing earnings. In terms of individual contributions to that percentage, they ranked as follows: Food and kindred products (12.7); lumber and furniture (11.9); chemicals (11.6); paper and allied products (7.6); apparel (6.6); and petroleum refining (6.0).

Manufacturing activity is unevenly distributed among the WRPA's. The Memphis area (WRPA 3) accounted for 29 percent of total 1968 regional manufacturing; the Ouachita area (WRPA 5) had 13 percent; the New Orleans area (WRPA 10) contributed 18 percent; and the Baton Rouge area (WRPA 8) produced 10 percent. Other areas varied from 1 percent (WRPA 6) to 8 percent (WRPA 4).

Recreation

Regional personal expenditures for vacations and other outings jumped from \$350 million to \$600 million annually during the 1960's. Projected increases in per capita purchasing power and more leisure time are expected to intensify the need for recreational services and facilities. A unique opportunity exists for extensive development of communities oriented to water recreation. In recent years, more industries have been locating in areas that have easy access to outdoor recreational sites.

Service Industries

Increased productivity per worker and increased per capita incomes will greatly expand the demand for services. During recent decades, expansion in the service or noncommodity industries has been at a higher rate than the strictly commodity-producing industries. By 1960 two-thirds of all employment in the region as well as in the Nation was in the noncommodity area.

Forecasts are that employment and earnings in the service industries will grow at a slightly higher rate than in manufacturing. Specifically, earnings by 2020 will expand 11 times in the service industries as compared to 8 times in manufacturing.

Swimming is a popular outdoor recreational activity for children and adults throughout the region.

RESOURCE AVAILABILITY

General

The Lower Mississippi Region can be considered water-rich. It not only receives abundant rainfall that replenishes ground water and feeds its many interior streams and lakes, but also has vast untapped ground-water reserves. Moreover, there is tremendous inflow to the region from the huge drainage system of the Upper Mississippi River and tributaries and from the Arkansas, White, and Red Rivers. However, the fact that the region has been endowed with a plentiful supply of water does not mean that it is without management problems. A major thrust of this appendix is aimed at highlighting these problems and formulating measures for their solution.

The region has a total area of over 65 million acres, including nearly 3 million acres of surface water. Almost all of the region's resources of flowing water, surface water, and land are suitable for one or more uses.

Water Resources

Surface Water

The region's water supply is derived from precipitation, streamflow from external sources, and man-induced or natural ground-water discharges from aquifers both within and outside the region. Water not consumed within the study area ultimately flows into the Gulf of Mexico or returns to the atmosphere by evaporation or transpiration.

Volume. Annual precipitation averages about 52 inches, with lesser amounts in the northern part of the region and greater amounts along the Gulf coast. Slightly over two-thirds of all regional precipitation either infiltrates the soil or returns directly to the atmosphere through evapotranspiration. However, a yearly average of 16.4 inches reaches the surface water supply in the form of runoff. This amount of runoff is equivalent to a mean annual discharge of nearly 80,000 m.g.d. An additional 292,000 m.g.d. is contributed to the region from the Upper Mississippi and Ohio tributary basins and about 62,000 m.g.d. is contributed from the Arkansas, Red, and White Rivers from their drainages outside the region. Thus, the region's combined mean annual inflow amounts to about 434,000 m.g.d. Surface water losses due to various consumptive uses, namely ground-water recharge and evapotranspiration, are balanced by additions from ground-water withdrawals or natural discharges to the extent that the measured mean annual outflow to the Gulf is about 433,000 m.g.d. The difference between inflow and measured outflow is accounted for by unmeasured discharges to the Gulf through salt and brackish marshes along the coast (primarily WRPA's 9 and 10).

Figure 4 schematically illustrates the regional stream system, giving drainage areas in square miles and related discharges in c.f.s. Flow rates are given in c.f.s. because this is the common practice. A conversion to m.g.d. can easily be made by multiplying the flow in c.f.s. by 0.646.

Water supply from rivers and streams varies considerably when considered on the basis of percent of time a given flow is available. Only a small part of this flow can be stored for use; and due to the probable dislocations of the resource with respect to possible points of need for some water uses, a more stringent examination of flows within each planning area is required to assess the practical useability of the streamflow. The reliability of streamflow is an important factor in its evaluation as a source for meeting any specified withdrawal need. Failure of supply criteria is normally based on dry weather flows. These are low flows of a stream for a specified duration of time. Failure criteria are usually expressed in terms of the lowest mean 7-day discharge with a recurrence interval of either 30 years (7-day Q30) or 10 years (7-day Q10). The longer interval is normally used in planning withdrawals for critical uses such as municipal water supply. The 10-year period is used in stream pollution analyses. Table 3 provides a comparison of flow versus percent of time available by planning area and for the region. Table 4 provides low-flow information for each planning area and the region.

The region discharges an average of 433,000 million gallons of water per day into the Gulf of Mexico. Approximately two-thirds of this flow is discharged through the Mississippi River.

Table 3 - Mean Annual Discharge, 1973 Conditions, Lower Mississippi Region

	Area Square	Mean	Flows in Are	a (c.f.s.) ce in Percent	of Time
WRPA	Miles	Annua1	80	90	95
1	2,435	453,0001/	260,0001/	200,0001/	170,0001/
2	16,723	19,7702/	5,8982/	$4,635^{2/}$	3,999 <u>2</u> /
3	10,653	13,810	2,412	1,996	1,761
4	13,355	17,670	5,550	3,590	2,490
5	20,413	20,4403/	2,7503/	$1,690\frac{3}{}$	1,2453/
6	5,520	6,350	580	349	255
7	6,574	7,740	870	677	596
8	5,705	5,700	1,700	1,500	1,400
9	13,297	$14,500\frac{4}{}$	4,6004/	$3,300\frac{4}{}$	2,6004/
Atchafal River Ou		186,500	72,800	52,000	41,600
10	7,729	11,400	2,600	1,400	800
The Region	F102,404	ows Generated 123,950	26,960	19,137	15,146
	Measured Flo	ws Thru Region 671,100	341,700	258,200	216,400

 $[\]underline{1}/$ Flow for Mississippi River at mouth including inflows into the area from other areas.

^{2/} Does not include contributions from Arkansas and White River Basins above backwater effects of Mississippi River.

^{3/} Does not include flows from WRPA 6.

^{4/} Does not include contributions from Red River Basin above backwater effects of Mississippi River, or flows generated within Atchafalaya Floodway.

Table 4 - Dry Weather Low-Flow Summary, Lower Mississippi Region

	7-day Q30 (m.g.d.)	58,884	4,853	701	653	1,137	28	187	437	160	84	67,154
Total	7-day (10 (m.g.d.)	71,174	5,819	811	795	1,564	81	213	491	187	95	81,230
to Region	7-day Q30 (m.g.d.)	58,815 <u>3</u> /	4,2584/	,	ī	743 <u>5/</u>	1	1	,	1		63,816
Tributary	7-day Q ₁₀ 7-day Q ₃ (m. g.d.) (m. g.d.)	$71,096\overline{3}/$	$5,113\frac{4}{}$	1	1	$1,034^{5/}$	1	ı	1	1	1	77,243
ating Region	7-day Q30 (m.g.d.)	7769	595	701	653	394	58	187	437	$160^{6}/$	84	3,558
Originating Within Region	7-day Q10 7 (m.g.d.)	7.8	706	811	795	530	81	213	491	$187\overline{6}/$	95	3,987
Area	Square Mile	2,435	16,723	10,653	13,355	20,413	5,520	6,574	5,705	13,297	7,729	102,404
	WRPA	$1\frac{1}{2}$	7	23	4	2	9	7	∞	6	10	LMR

1/ The flow in warm.

Z/ Estimated.

Z/ Flow from upper Arkansas and White Basins.

Z/ Flow from upper Red River Basin.

Z/ Flow from upper Red River Basin.

Z/ Flow from upper Red River which is made up of flows included in WRPA's 1, 5, and 6

(including flows entering the region in the Red River).

Areal Distribution. The region's surface water resource covers a total of 3,067,000 acres. This includes 1,082,000 acres of large lakes (500 acres or more in size) within WRPA's 2 through 10, 1,148,000 acres distributed among small lakes (40 acres or greater but less than 500 acres in size) and streams having a width of one-eighth mile or greater, which includes the Mississippi River and its oxbow lakes. The remaining 837,000 acres of water surface, classified as small water, includes lakes between 2 and 40 acres in size and streams less than one-eighth mile wide. Some of the lakes are large man-made reservoirs; two were formed by an earthquake, and numerous others are oxbow lakes formed naturally by meandering rivers. Almost all of the region's water surface is suitable for certain recreation activities, fishing, and wild-life habitat. Much of the surface water serves commercial navigation purposes. About 474,000 acres of lakes and streams with waters of good quality enhance the environment of the region, and the entire length of the Mississippi River is highly valued as an environmental quality resource.

Table 5 provides a breakdown of the surface water resource by planning area.

Table 5 - Water Surface Availability, Lower Mississippi Region

		Water Surface (1,000 acres)	
WRPA	Large Water	Small Water	Total
1	368		368
2	91	98	189
3	40	32	72
4	74	133	207
5	175	76	251
6	32	40	72
7	38	56	94
8	73	45	118
9	400	138	538
10	939	219	1,158
LMR	2,230	837	3,067

The region has 29 major reservoirs (individual storage capacity at least 5,000 acre-feet) with a combined storage capacity approaching 10 million acre-feet. About 7 million acre-feet of this total storage, which will yield nearly 6,300 m.g.d., can be controlled for specific uses. Table 6 summarizes the existing storage capability of these reservoirs. The effects of this storage on streamflow are reflected in preceding discharge data.

The region contains numerous sites which have a potential for development of additional storage. However, due to the area's terrain features, only a small portion of total streamflow can be economically impounded. Total dependable yield from all potential impoundment sites is somewhere in the range of 7,000 to 10,000 c.f.s., or approximately 4,500 to 6,500 m.g.d.

Table 6 - Existing Storage in Impoundments, Lower Mississippi Region

WRPA	Total Storage (Ac-ft.)
1	<u>.</u>
2	582,000
3	6,000
4	4,092,600
5	4,799,100
6	20,500
7	0
8	0
9	39,600
10	0
LMR	9,539,800

Ground Water

Aquifers containing fresh ground water underlie the entire region except for part of the coastal area of Louisiana and a small area in central Louisiana. About 80 percent of these aquifers are capable of yielding large volumes of fresh water. Highest yields can be obtained from sand and gravel alluvial and terrace deposits of Quaternary age. Yields of several thousand gallons of water per minute are not uncommon. Wells provide most of the public and industrial water supplies in the region because ground water of good quality is generally available where needed.

Test drilling in one of the region's fresh water aquifers.

In a few localized areas, ground-water demands have exceeded or are approaching the economically practicable limit of available supply, but in most of the region the water-supply potential is several times larger than present requirements. The region's total dependable ground-water supply is conservatively estimated at about 16,000 million gallons per day. This estimate is based on withdrawals consistent with economically and environmentally acceptable water-level declines.

Table 7 shows estimated yield of the ground-water resource on a WRPA basis. Yields from WRPA 1 are included with adjacent WRPA totals.

Table 7 - Available Ground-water Resource, Lower Mississippi Region

WRPA	Non-Artesian Aquifers (m.g.d.)	Artesian Aquifers 1/(m.g.d.)	$(\underbrace{\mathtt{m.g.d.}}_{Total})$
2	3,155	661	3,816
3	370	769	1,139
4	1,720	343	2,063
5	2,495	249	2,744
6	1,932	55	1,987
7	116	155	271
8	414	540	954
9	595	2,014	2,609
10	46	310	356
Tota1	10,843	5,096	15,939

^{1/} Based on flow-through produced by hydraulic gradient resulting from an average drawdown of 200 feet during a 50-year period.

Land Resources

General

The lands of the Lower Mississippi Region can support a diverse range of land-dependent activities. Much of this capability is directly related to the region's abundant precipitation and climate. Bumper dryland crops are consistently produced on its rich delta soils without requiring irrigation projects. Forty-seven percent of the region is forested, with both fast-growing pine and high quality bottom-land hardwoods covering extensive tracts. The region's land cover supports a bountiful and diverse wildlife resource, some species of which are more numerous today than they were prior to the region's first European visitors. Natural landscape features vary from broad prairie-like alluvial plains to gently undulating pastured hills to steep wooded slopes of

low mountain ranges. Land use is perhaps the best indicator of the state of development of the land resource. In 1970, 62,471,000 acres of the region's area supported land uses while 3,067,000 acres were covered by water. About 43 percent of the land portion of the study area was used primarily for growing crops and raising livestock and an additional 14 percent, although forested, was also used for grazing livestock. There were over 2 million acres occupied by towns and cities, with the largest urban centers located on the banks of the Mississippi River. Table 8 gives a breakdown of current land uses in the region.

Table 8 - Land Use, 1970, Lower Mississippi Region

Land Classification	Land Purpose 1/	l Use <u>Acres</u>	Percent of Region's Land
Cropland	A,WL	17,343,000	28
Permanent Pasture	A,WL,R	6,782,000	11
Pastured Cropland	A,WL,R	2,871,000	4
Pastured Forest	FP,A,WL,R	(4,207,000)	
Forests	FP,WL,R	29,637,000 <u>2/</u>	47
Other	A,WL,CF,MP, EQ,MS,R	3,506,0003/	6
Urban and Built-up	RSD,CML,I,T, R,EQ	2,332,000	_4
Total Lands		62,471,000	100

^{1/} A, agricultural production; WL, wildlife habitat; R, recreation; EQ, environmental quality; CF, commercial fisheries; MP, minerals production; MS, miscellaneous uses; RSD, residential; CML, commercial; I, industrial; T, transportation facilities; FP, Forest products.

Includes pastured forests.1,287,000 acres counted in agricultural land base.

Agricultural Capability

The agricultural capability of the region's resource is a function of soil properties and other factors that vary geographically. Based on such factors, comparable land areas have been grouped by standard capability classifications, using the Conservation Needs Inventory developed by the Soil Conservation Service, USDA. Within the total agricultural land base of 57.9 million acres, there are about 36 million acres of Class I, II, and III lands suited for use as regularly cultivated cropland, pasture, forests, range, and wildlife food production and cover, with only minimal limitations. An additional 5.5 million acres of Class IV lands are suited to the same uses, but their crop yields are usually low and only two or three crop types may be successfully grown. Class IV lands are considered unsuitable for regular or every-year cultivation. About 7.8 million acres of marginal land in Classes V and VI are not well suited to cultivation but are better able to support uses such as pasture, range, forests, and wildlife food production and cover. Similarly, there are 6.8 million acres of Class VII land that are considered unsuitable for cultivation and pasture. These lands were used for grazing, forest, or wildlife food production and cover in 1970. The remaining 1.6 million acres of agricultural land fall within Class VIII and are considered best suited for recreation, wildlife, or esthetic purposes. A breakdown of the agricultural land resource base by capability is presented in table 9.

Table 9 - Capability of Agricultural Land, Lower Mississippi Region

Classification 1/	Acreage	Excluded Use 2/
Classes I through III	36,125,232	None.
Class IV	5,546,830	None, except number of crop types severely limited and productivity lower.
Classes V and VI	7,816,003	Cultivation.
Class VII	6,804,858	Cultivation, Improved pasture.
Class VIII	1,627,077	Cultivation, Pasture, Range, Grazing.
Total	57,920,000	

^{1/} For definition, see Appendix F.

2/ By virtue of capability.

On-farm ponds less than 2 acres are included in the land resource base. The above farm is typical of many in the region.

RESOURCE USE AND FUTURE NEEDS

Present (1970) resource use and future needs for water and related land resources in the Lower Mississippi Region are discussed in this section. Consistent with the main theme of the appendix, the discussion is tailored to four broad categorizations: (1) water withdrawals or supply, (2) water surface area, (3) land area, and (4) related problems. The future needs in each category are summarized for both Program A (National Income) and Program B (Regional Development).

Water Withdrawals

In 1970 nearly 20 billion gallons of water per day (19,767 m.g.d.) - enough to serve the requirements of 250 cities the size of Tulsa, Oklahoma - were withdrawn from this region's surface and ground-water supplies for various uses. Of the total withdrawals, 8 billion gallons per day (8,194 m.g.d.) were consumptively used. The 1970 use and projected needs for 1980, 2000, and 2020 are discussed first by individual use categories and then summarized for the region.

Municipal Water Supply

Present Status. In 1970 nearly 5 million people (over 70 percent of the region's population) were served by the region's municipal water supply systems. These systems, including rural water districts, supplied water to cities, towns, and nearby rural areas for commercial, residential, and industrial purposes, as summarized in table 10. Total municipal use exclusive of municipally supplied industrial water was nearly 620 m.g.d. About 230 m.g.d. were consumed. Two-thirds of the withdrawals were ground water, which is generally of good quality and requires little treatment. Some surface storage was used, but most of the remaining withdrawals were from the Mississippi River. The surface water normally requires more treatment before use than does ground water. In addition to chlorination, aeration, and iron removal (normal treatment practices for ground water), coagulation, sedimentation, filtration, taste and odor removal, and sterilization were often required.

For the most part, all municipal water supply needs were satisfied without noticeable shortages in 1970. However, there were some isolated problems unrelated to resource availability. The water supply pumping system in some small urban centers such as Dyersburg, Tennessee, had insufficient capacity to meet peak demands. Land subsidence and saltwater intrusion is taking place in portions of WRPA's 8 and 9 where significant drawdown of aquifers is occurring due to ground-water withdrawals.

Future Needs. In the next 50 years municipal water supply requirements are expected to increase faster than population growth for two reasons: (1) An upward trend in the per capita use rate is foreseen,

Table 10 - Municipal Water Use, 1970, Lower Mississippi Region

	1970 Withdraw	mal (m.g.d.)
WRPA	Ground Water	Surface Water
2	32.7	2.1
3	141.8	0.0
4	53.8	0.0
5	37.5	16.8
6	7.5	0.6
7	12.0	0.0
8	54.5	0.7
9	65.1	6.9
10	5.8	178.9
LMR	410.7	206.0

In 1970 over 70 percent of the region's population was served by municipal water supply systems such as this facility at Vicksburg, Mississippi. In the future a higher percentage of the region's residents will rely on such systems for water supply.

and (2) Past shifts from individual rural wells to municipal systems or organized rural systems are likely to continue. Table 11 provides a summary of present use and future municipal water withdrawal needs and estimated consumption by WRPA for Programs A and B.

Industrial Water Supply

Present Status. As the region's leading water user in 1970, industry withdrew in excess of 5,000 m.g.d. for various manufacturing processes. Petroleum refining - requiring more water than any other manufacturing activity - and the allied chemical industry were concentrated in the southern WRPA's of 8, 9, and 10. Paper and allied products industries, also heavy users of water, were more widely dispersed. Their biggest withdrawals were in WRPA's 5 and 7. Most of the water withdrawals for food and kindred products were in WRPA's 2, 3, 9, and 10. Industries using less significant amounts of water were those processing textiles and those extracting and processing metals (primarily in WRPA 2).

In 1970 industries withdrew more water from the region's supplies than any other user. Most water used was taken from the Mississippi River.

Table 11 - Summary of Present Use and Future Municipal Water Withdrawal Needs, Lower Mississippi Region (m.g.d.)

	0261		Prooram	1980	1	200	0.	2020	50
WRPA	Withdrawal	Consumption		Withdrawal	Consumption	Withdrawal	Consumption	Withdrawal	Consumption
~	34.8	12.9	ВВ	40.1	14.7	56.6	21.2 23.6	82.6 96.1	30.9 35.9
ю	141.8	52.7	BBA	175.7 192.9	64.6	278.1 316.0	103.3	408.8	152.3 176.8
4	53.8	20.0	BB	65.7	24.2 26.4	89.8 101.8	33.4	123.7 140.4	46.1
is.	54.3	20.2	ВВ	65.9	24.2 25.8	89.8 101.9	33.4 37.9	133.8 152.2	49.9 56.8
9	8.1	3.0	BA	9.1	3.4	11.4	4.4	14.7	5.5
-	12.0	4.5	ВВ	15.3	5.6	22.1 25.7	8.2 9.5	32.8	12.2 14.3
∞	55.2	20.5	A	72.1	26.5 28.6	108.6 121.5	40.4 45.2	157.5	58.8
6	72.0	26.8	A	92.0	33.7 36.2	126.2 142.9	47.0	167.7	62.5
10	184.7	68.4	ВВ	220.3	81.1 87.5	310.1	115.3	428.2 485.9	159.7
IMR	616.7	229.0	В	756.2 818.4	278.0 301.1	1,092.7	406.4	1,549.8	577.9 660.8

About 85 percent of the water used by industry in 1970 was taken from surface sources, primarily the Mississippi River. Nearly 1,060 m.g.d., or roughly 20 percent, of this withdrawal was from brackish sources.

In WRPA's 8, 9, and 10 in Louisiana are concentrated major waterusing industries. It is these areas that accounted for almost 90 percent of the total industrial withdrawals in 1970.

Table 12 shows 1970 industrial water use for the region by MRPA and source of withdrawal. Consumptive use was about 36 percent of withdrawals and there were no reported shortages of water, even though supplies were not always available from the cheapest or most preferred source.

Table 12 - Industrial Water Use, 1970, Lower Mississippi Region

	Water W	ithdrawals	(m.g d.) ace Water
WRPA	Groundwater	Fresh	Brackish
2	33.7	5.1	-
3	94.6	3.5	-
4	49.1	37.5	
5	119.3	87.4	-
6	28.4	33.1	<u>-</u>
7	73.1	0.5	-
8	159.3	1,352.2	2.7
9	237.8	39.4	1,024.3
10	26.3	1,981.6	30.9
MR	821.6	3,540.3	1,057.9

Future Needs. Because of the vast supplies of water available for industrial use and because of the water transportation system, regional economic growth is predicted to increase dramatically in future years.

Percentagewise, the expected increases in water supply requirements are greatest in the chemical industry, followed by the paper and allied products group. Collectively, the industrial water use of 1970 is foreseen to increase eight or nine times by the year 2020. Program A projections point to the lesser increase. The region's 1970 industrial water use, future withdrawal needs, and estimated consumption by WRPA are summarized in table 13.

Rural Domestic Water Supply

Most water used by rural residents in 1970 was withdrawn from wells such as the one shown above. In the future, an increasingly higher percentage of rural water supply needs will be satisfied by municipal systems or organized rural water districts.

Present Status. Water counted as withdrawals for rural domestic use in 1970 amounted to almost 122 m.g.d. Most of this water came from individual wells, but a sizable segment of the rural population was served by the extension of municipal water systems or by rural water districts. About 27 percent of the region's population obtained domestic

Table 13 - Summary of Present Use and Future Industrial Water Withdrawal Needs, Lower Mississippi Region (m.g.d.)

	15	1970		19	1980	2000	00	20	2020
WRPA	Withdrawal	Withdrawal Consumption	Program	Withdrawal	Withdrawal Consumption	Withdrawal	Withdrawal Consumption	Withdrawal	Withdrawal Consumption
7	38.8	15.1	В	58.3	23.5	142.8	57.2	332.0 391.2	132.9
ю	98.1	14.6	ВВ	149.5 163.8	22.2	351.2 398.1	52.0 58.6	800.6	118.5
4	86.6	7.1	ВА	135.5 148.6	9.9	320.4	21.6	729.3	46.6
ĸ	206.7	68.2	ВА	307.4	101.0	683.9	224.5 266.5	1,497.8	486.0 589.0
9	61.5	6.5	ВВ	71.3	8.3	135.9	17.1	261.3	35.0 41.2
1	73.6	0.9	ВВ	105.5	10.1	235.0 263.0	24.3	509.1 575.1	55.3
∞	1,514.2	386.7	ВВ	2,261.3 2,480.2	627.5 687.8	5,668.5	1,771.6 2,049.1	13,840.9 16,322.3	4,487.1 5,292.0
6	1,301.5	230.7	ВВ	2,047.4 2,244.8	347.8 381.3	4,745.0 5,486.6	771.7	10,780.8 12,714.3	1,676.7
10	2,038.8	110.6	ВВ	3,072.1 3,367.1	157.7	7,707.8	359.2 415.3	18,426.5 21,731.4	805.1 949.2
LMR	5,419.8	845.5	ВВ	8,208.3	1,308.0	19,990.5 23,112.6	3,299.2 3,821.0	47,178.3 55,648.5	7,843.2 9,257.4

water supplies from individual wells in 1970. Table 14 provides pertinent information on the present rural domestic water use. The rural population given in the table is about 27 percent of the total population of the region. The indicated water use is all consumptive.

Table 14 - Rural Domestic Water Use, 1970, Lower Mississippi Region

WRPA	<u>Total</u>	Rural Population Supplied by Individual Wells	Water Use (m.g.d.)
2	376,000	309,000	24.7
3	377,000	241,000	22.7
4	402,000	271,000	21.7
5	419,000	201,000	16.1
6	115,000	84,000	6.7
7	111,000	65,000	5.2
8	230,000	118,000	4.5
9	314,000	247,000	16.8
10	222,000	159,000	3.5
LMR	2,566,000	1,695,000	121.9

Future Needs. A general decline in rural domestic water needs is expected but there will be some deviation from this trend. The decline will result from a continuous shift of rural population to urban areas and the continued development of rural public water supply systems (counted as municipal systems). Withdrawals to meet the rural domestic water needs in 2020 are predicted to average between 70 and 80 m.g.d. This is 34 to 39 percent less than the 1970 withdrawals for this use and less than 1 percent of the combined projected 2020 withdrawals for municipal, industrial, and thermoelectric power uses. Present use and future rural domestic water supply needs are summarized in table 15.

Table 15 - Summary of Present Use and Future Rural Domestic Water Withdrawal Needs, Lower Mississippi Region

	Existing 1/	2/	Future Water Withdrawals, m.g.d.
WRPA	(1970) Use $\frac{1}{}$	Program 2/	1980 2000 2020
2	24.7	A B	20.6 16.0 10.6 22.3 17.7 12.2
3	22.7	A B	20.0 14.3 11.9 22.0 16.2 13.9
4	21.7	A B	18.9 14.7 11.1 20.6 16.7 12.6
5	16.1	A B	14.4 12.2 5.5 15.3 13.9 6.3
6	6.7	A B	5.2 3.9 2.7 5.6 4.0 2.9
7	5.2	A B	4.6 3.4 1.9 5.1 4.0 2.2
8	4.5	A B	4.9 6.1 8.4 5.3 6.9 9.5
9	16.8	A B	15.1 14.7 14.7 16.1 16.7 16.5
10	3.5	A B	5.4 6.2 5.1 5.8 7.0 5.7
LMR	121.9	A B	109.1 91.5 71.9 118.1 103.1 81.8

^{1/} All 1970 withdrawals for rural domestic purposes were considered to be consumptively used. The same applies to future withdrawals for this purpose.

2/ Program A, National Income; Program B, Regional Development.

Thermoelectric Power Water Supply

Present Status. Thermoelectric power production in 1970 ranked third in use of the region's water, with withdrawals of over 4,500 m.g.d. Practically all (98 percent) of these withdrawals were taken from surface sources, which included both fresh and brackish water, and were used almost totally for once-through cooling. Only about 3 percent was consumed as boiler make-up water. For dissipation of heat, plants used once-through cooling, cooling towers, cooling ponds, or some combination of these. There were no reported shortages of cooling water. Table 16 provides data on thermal plants in the region, their water use, and their 1970 source of supply.

Power generation required vast amounts of cooling water in 1970. This need for cooling water will more than quadruple in the next 50 years.

Future Needs. Thermoelectric water use requirements are expected to increase 417 percent under Program A growth rates or 488 percent under Program B growth rates by the year 2020. The increase in future requirements varies considerably among WRPA's, with some exhibiting relatively great increases while others show no gains by 1980. Table 17 contains data on present withdrawals, future needs, and consumption for thermoelectric power generation.

Table 16 - Thermoelectric Power Production Cooling Water Use in 1970, Lower Mississippi Region

	Ground Water	Water	Surfac	Surface Water	Total	.a.l
WRPA	Number of Plants	Withdrawals (m.g.d.)	Number of Plants	Withdrawals (m.g.d.)	Number of Plants	Withdrawals (m.g.d.)
2_7	100	5.0	451	394.0	7	399.0
2	1	ı	1	430.0	1	430.0
4	2	25.0	2	280.0	7	305.0
2_1	1	0.3	4	1,070.7	2	1,071.0
9	1	1	-	0.33/	ı	0.3
7	1	1.0	•	ı	1	1.0
8	1	0.6	1	579.4	2	588.4
6	9	0.6	2	327.5	သ	336.5
10	8	21.0	2	1,385.4	∞	1,406.4
IMR	20	70.3	20	4,467.3	40	4,537.6

1/ Includes plants put into operation soon after 1970. $\frac{2}{3}$ Includes plants using combination of groundwater and surface water. $\frac{3}{3}$ City of Rayville, Louisiana, power plant.

Table 17 - Summary of Present Use and Future Thermoelectric Power Production Cooling Water Withdrawal Requirements, Lower Mississippi Region

WRPA	19 Withdrawal	1970	Program	Nithdrawal	1980 1 Consumption	Withdrawal	hater USC, m.g.u. 2000 hdrawal Consumption	2020 Withdrawal Co)20 Consumption
2	399.0	2.5	A B	399.0	2.5	641.5	7.7		12.1
10	430.0	0.9	B	549.9	8.9 9.9	1,565.6	18.7	1,981.6 2,300.5	31.3
4	305.0	2.7	ВВ	995.2	10.6	995.2	10.6	1,107.3	14.7
ro	1,071.0	8.6	A	1,071.0	9.8	2,905.2 3,294.5	34.6	3,441.6 3,916.5	54.3
9	0.3	0.3	BA	82.3	0.9	547.8	6.9	649.8	10.3
7	1.0	9.0	A	55.9	0.5	397.6 462.8	5.2	473.2	8.7
∞	588.4	38.0	A B	1,257.7	46.5	4,747.1 5,316.8	64.3	5,634.0	92.8 105.3
6	336.5	22.0	A	651.1	26.3	2,520.1 2,856.8	30.6	3,180.1 3,582.3	58.4
10	1,406.4	84.0	A B	2,058.8	105.6	5,184.8	105.6	6,229.2	105.6
MR	4,537.6	165.9	A B	7,120.9	211.6 217.2	19,504.9	283.8	23,463.2 26,678.7	387.0 440.0

Irrigation Water Supply

Present Status. In 1970, 2.4 million acres of cropland were being irrigated in the region. This amounted to about 15 percent of the 15.6 million acres harvested that year, but only about 6 percent of the region's Class I through IV agricultural lands on which irrigation could be used as a viable management option. Roughly 60 percent of the 4,828 m.g.d. withdrawn were used in the production of rice, the only crop grown in the region which required irrigation. Soybeans, cotton, corn, hay and vegetable crops, and a small amount of pasture collectively accounted for the other 40 percent. Irrigation was not essential to the production of these crops, but was applied in order to increase unit production. Water is currently used for irrigation in all planning areas, but the greatest volumes are withdrawn in WRPA's 2 and 9 - the region's major rice-producing areas. About 70 percent of the irrigation water came from ground water, with the remainder taken from surface sources, primarily streamflow. There was no widespread irrigation water shortage. However, water tables in some areas have declined to the extent that careful management of ground water is required to insure adequate future supplies from that source, particularly in WRPA 2 in the Grand Prairie region and to a lesser extent west of Crowley's Ridge. In portions of the coastal area along the Gulf there has been some saltwater encroachment in both ground water and surface water, but this has not caused any widespread discontinuation of irrigation practices.

Rice irrigation is essential to meeting food and fiber requirements. Crops other than rice are irrigated on a supplemental basis.

The watering of livestock and poultry, classified as other agricultural water use in Appendix H, required about 50 m.g.d. in 1970. Surface water, primarily on-farm stock ponds, provided about 60 percent of the water used for this purpose. The remainder was derived from ground water.

Water used for irrigation and watering of livestock and poultry in 1970 is shown by WRPA in table 18.

Table 18 - Irrigation, Livestock and Poultry Water Use in 1970, Lower Mississippi Region

		W	ater Use	(m.g.d.)			
			Crop	s	Livesto	ock and Pou	ultry
WRPA	Area Irrigated (Acres)	Ground Water	Surface Water	Total	Ground Water	Surface Water	Total
2 3	1,417,828	2,114.0	373.1	2,487.1	2.0	3.3	5.3
	14,763	4.3	24.4	28.7	2.0	6.3	8.3
4	157,223	171.7	124.3	296.0	3.4	5.2	8.6
5	212,587	245.0	120.6	365.6	3.7	3.7	7.4
6	77,261	116.0	36.6	152.6	2.6	1.1	3.7
7	4,281	2.2	3.2	5.4	1.4	2.2	3.6
8	1,056	1.2	0.3	1.5	2.2	2.8	5.0
9	507,135	713.6	773.0	1,486.6	2.4	4.4	6.8
10	1,634	2.0	2.4	4.4	0.3	0.6	0.9
LMR	2,393,768	3,370.0	1,457.9	4,827.9	20.0	29.6	49.6

Future Needs. In order for the region to produce its share of the Nation's future food and fiber output, water must be available for growing those crops (rice and vegetables) which will not consistently produce satisfactory yields without irrigation. In 1970 nearly 1 million acres of the region's land were used for growing these crops, while 1.4 million additional acres were irrigated as a supplemental management practice. Acreages requiring irrigation are expected to show a slight decline to 1980 and a steady increase thereafter to 2020 for both Programs A and B, whereas acreages supplementally irrigated are expected to show a steady increase throughout the study period, resulting in an almost constant requirement for irrigation water to 1980 and a steady increase thereafter.

Livestock and poultry populations in the region will increase significantly over the next 50 years, with water use for this purpose more than doubling by 2020 for both programs.

Table 19 contains a summary of present use and future water needs for irrigation and livestock and poultry, along with corresponding irrigated acreages for Programs A and B for the 1980, 2000, and 2020 time frames. The expressed needs for supplemental irrigation should not be interpreted as absolute needs relative to food and fiber production requirements. However, they are considered indicative of future needs to minimize the risk of crop losses associated with year-to-year variation in moisture availability. They are further indicative of the potential for economic efficiency gains possible through supplemental irrigation.

Mineral Water Supply

Present Status. Water withdrawals are made by the minerals industry for petroleum drilling and secondary recovery operations (oil field flooding); mining sulfur by the Frasch process (liquifying sulfur for ease of removal); metallic mineral ore washing; and for production of

The use of brackish surface water for petroleum drilling constitutes one of the largest uses of water by the minerals industry.

Table 19 - Summary of Present Use and Future Irrigation and Other Agricultural Water Withdrawal Requirements, Lower Mississippi Region

Category	1970 Acres W (1,000) (m	70 Water (m.g.d.)	Program	19 Acres (1,000)	1980 Acres Water 1/ (1,000) (m.g.d.)	2000 Acres Wa (1,300) (m.	00 Water 1/ (m.g.d.)	Acres (1,000) (n	20 Water 1/ (m.g.d.)
Irrigation									
Essential	995	2,917	А	912	2,525	993	2,720	1,087	2,953
Supplemental	1,399	1,911	A	1,658	2,322	1,823	2,516	1,915	2,651
Subtotal	2,394	4,828	А	2,570	4,847	2,816	5,236	3,002	5,604
Essential			В	914	2,526	1,131	2,960		3,303
Supplemental			В	1,732	2,395	2,038	2,815		3,101
Subtotal			В	2,646	4,921	3,169	5,775	3,591	6,404
Livestock and Poultry	ry	20	А		61		80		107
			В		61		98		115
TOTALS		4,878	A		4,880		5,318		5,714
			В		4,985		5,864		6,567

Withdrawals may not agree exactly with Appendix H, due to conversion from acre-feet to m.g.d., rounding of numbers, and other minor adjustments required in water balance. 1

nonmetallic minerals, cement, and salt. Most petroleum and sulfur related use occurs in WRPA's 9 and 10, while other nonmetallic mineral production is distributed throughout the region. Metallic mineral production is concentrated in WRPA's 2 and 5. The estimated 1970 water withdrawn for mineral use was in excess of 600 m.g.d., mostly from brackish sources. Consumption was about 25 percent of the total water withdrawal. There were no shortages of water for this use in the region in 1970. Table 20 provides data on 1970 mineral water use.

Table 20 - Water Use for Mineral Production, 1970, Lower Mississippi Region

		Water Wi	thdrawals, m.g.d.	·	
		d Water		ce Water	
WRPA	Fresh	Brackish	Fresh	Brackish	Total
2	4.0	- 1-	-	-	4.0
3	0.7	•	<u>-</u>		0.7
4	0.3	-	0.8	-	1.1
5	45.5	-	9.5	-	55.0
6	6.3		0.8	-	7.1
7	3.2	-	0.5	-	3.7
8	-	12.0	15.8	•	27.8
9	-		18.0	254.0	272.0
10			48.0	182.9	230.9
LMR	60.0	12.0	93.4	436.9	602.3

Future Needs. Mineral production in the region is expected to double under Program A growth rates, or almost quadruple under Program B growth rates by the year 2020. The most rapid growth will be experienced in the metallic minerals sector of the industry. Future water needs for the minerals industry, shown in table 21, are expected to about triple under Program A growth rates or to be almost five times the 1970 use under Program B growth rates by 2020.

Table 21 - Summary of 1970 Use and Future Water Withdrawal Needs for Minerals, Lower Mississippi Region.

WRPA	1970 Use	Use	Program	Nithdrawal	1980	20 Withdrawal	2000 1 Consumption	Withdrawal	2020 1 Consumption
7	4.0	9.0	BA	5.0	. 0.7	5.2	0.7	5.3	8.0
23	0.7	0.3	ВВ	0.9	0.4	1.4	0.5	2.1	0.7
4	1.1	0.5	ВВ	1.1	0.5	1.3	0.6	1.6	0.7
S	55.0	∞ ∞	B A	79.4 91.4	11.2	82.0 116.7	14.5	90.1	18.4 25.6
9	7.1	2.0	ВВ	7.6	2.4	11.7	3.5	16.0	4.6
7	3.7	3.6	ВВ	5.1	4.6	6.7	6.5	8.8	8.6
∞	27.8	7.5	ВВ	39.9 44.9	11.3	74.2 93.0	22.0	112.7	34.9 43.9
6	272.0	44.0	A B	426.2	65.5 71.6	723.0 753.8	119.4	1,036.3	179.1 211.3
10	230.9	85.1	P A B	302.2	122.7	440.9	204.6	598.5	305.0
LMR	602.3	152.4	ВВ	867.0	219.3 298.6	1,346.4	372.3 633.8	1,871.4 2,913.7	552.8

1/ Withdrawals in m.g.d.

Fish and Wildlife Water Supply

Present Status. Water withdrawn in 1970 for fish and wildlife purposes amounted to over 3,300 m.g.d., with about 20 percent being from ground water and 80 percent from surface water. Consumption amounted to nearly 2,900 m.g.d. Withdrawals were used to maintain water levels in management areas for mast producing green tree reservoirs and duck resting areas, and to replenish lakes for sport fishing. Fish and wildlife use is the region's second largest consumptive use. Withdrawals were greatest in WRPA 10, which accounted for 56 percent of the total 1970 withdrawals. Other major withdrawals were made in planning areas 9, 2, and 5, with minor withdrawals in each of the remaining WRPA's. Table 22 provides pertinent WRPA data on 1970 withdrawals.

Table 22 - Fish and Wildlife Water Use, 1970, Lower Mississippi Region

		Water Withdrawals,	(m.g.d.)	
WRPA	Surface	Ground	Total	
2	145.0	435.0	580.0	
3	8.2	24.8	33.0	
4	15.5	15.5	31.0	
5	241.3	12.7	254.0	
6	63.6	3.4	67.0	
7	2.5	2.5	5.0	
8	2.0	1.0	3.0	
9	363.0	121.0	484.0	
10	1,843.0	2.0	1,845.0	
LMR	2,684.1	617.9	3,302.0	

Future Needs. Future water withdrawal needs for fish and wildlife are related to an increasing population of sportsmen dependent in part upon existing and future management areas. Because this population can vary in size without affecting the form or operation of management areas, future water withdrawal needs are considered to be identical for both the A and B Programs. Needs for fish and wildlife water

withdrawals are expected to increase from a current use of about 3,300 m.g.d. to about 4,500 m.g.d. by the year 2020, a 36 percent increase. Consumption based on present experience is estimated to be about 80 percent of withdrawals. Table 23 provides withdrawal and consumptive use data for future fish and wildlife water needs in the Lower Mississippi Region.

Water withdrawals are used to flood bottomland hardwoods such as the above to maintain "greentree reservoirs" for waterfowl management.

Commercial Fisheries Water Supply
Fishes harvested from the region's waters comprise three categories:
(1) marine and estuarine fishes, (2) catfish and crayfish, and (3) wild fishes.

Marine and estuarine fishes are taken when of harvestable age. Included are the euryhaline species that can survive either in saltwater or freshwater and that characteristically enter inland fresh water areas for spawning purposes. Fishes and shellfishes in the catfish and crayfish category include only those raised in the agriculture industry. Wild fishes are those caught for commercial purposes in freshwater streams and lakes.

Table 23 - Summary of Present Use and Future Fish and Wildlife Water Withdrawal Needs, Lower Mississippi Region (m.g.d.)

	15	1970		19	1980	20	2000	2020	20
WRPA	Withdrawal	Consumption	Program	Withdrawal	Consumption	Withdrawal	Consumption	Withdrawal	Consumption
2	580	371	A & B	630	405	740	482	850	260
3	33	32	A & B	92	70	162	77	248	77
4	31	23	A & B	53	40	83	59	117	82
Ŋ	254	174	A & B	285	196	345	236	407	280
9	29	46	A & B	75	51	91	63	108	92
7	S	4	A & B	7	S	13	10	18	14
8	3	3	A & B	2	4	∞	9	12	6
6	484	399	A & B	557	443	745	573	865	636
10	1,845	1,844	A & B	1,845	1,844	1,847	1,846	1,848	1,847
IMR	3,302	2,896		3,533	3,058	4,034	3,352	4,473	3,581

Commercial production of estuarine species such as oysters will decline in the future unless measures are undertaken such as reduction of estuarine pollution or addition of fresh water.

Present Status. The 1970 harvest of marine and estuarine fishes from the coastal fishery in WRPA's 9 and 10 was 1.2 billion pounds. There were no water withdrawals to aid the fishery. Water inflow to the estuaries generally came from tributary basin runoff, except in the case of diversions from the Mississippi River to the Atchafalaya River in WRPA 9.

The current production of the estuarine fishery is considered to be near maximum capability of the estuarine zone, considering multiple use of the coastal area.

Commercial harvest from the region's wild fishery produced about 25.3 million pounds of fish in 1970. The catch was rather evenly distributed between the planning areas. WRPA 9 was the leading producer with 5.5 million pounds, while WRPA 7 produced only 0.6 million pounds. A declining trend in the annual fishery harvest has leveled off in recent years. Most rivers and streams and some of the larger lakes contribute to this resource. No water withdrawals were required in 1970 to sustain the region's wild fishery.

Water being pumped into an artificial pond used for commercial production of catfish. Note harvesting operation.

Fish farming is a significant industry in the study area. Catfish farms are located throughout, with the greater 1970 concentrations in WRPA's 2, 9, and 4. Crayfish are raised mostly in the coastal area in WRPA's 9 and 10, generally as an off-season or rotational adjunct to rice production. In 1970 the fish farming industry's water withdrawals amounted to nearly 290 m.g.d., about 57 percent from ground water and the remainder from lakes and streams. Consumption was roughly 95 percent of withdrawals.

Total commercial fish production and water used in the production of catfish and crayfish in 1970 are provided in table 24.

Table 24 - Commercial Fish Production and Water Use, 1970, Lower Mississippi Region

	Product	ion (1,000		1970	Water Us	se $(m.g.d.)^{1/2}$
WRPA	Marine & Estuarine	Wild Fisheries	Catfish & Crayfish	Withd Ground	rawals	Consumption
2	0	6,037	10,435	40.0	59.9	94.9
3	0	1,398	391	3.7	0.0	3.5
4	0	2,301	7,369	56.5	14.1	67.1
5	0	3,487	2,748	15.7	6.7	21.3
6	0	1,059	1,213	6.1	2.6	8.3
7	0	612	587	4.5	1.1	5.3
8	0	1,102	896	1.0	0.9	1.8
9	869,673	5,492	11,978	33.8	33.0	63.5
10	353,846	3,741	2,383	3.0	4.5	7.1
LMR	1,223,519	25,229	38,000	164.3	122.8	272.8

TOTAL WITHDRAWALS - 287.1

Future Needs. Consistent with study assumptions, the region's marine and estuarine fishery is considered to be producing at near maximum capability. However, this capability could be increased either by reducing estuarine pollution and/or adding fresh water which would also aid in salinity control. It is estimated that the amount of fresh water needed between 1980 and 2020 to supplement natural inflows for salinity control in the estuaries would be roughly 57,000 c.f.s. (about 36,900 m.g.d.). This much additional fresh water would enhance the estuarine productive capabilities sufficiently to offset losses that will occur from natural and man-made causes including future mineral extraction, and will allow a continued harvest of marine and estuarine fishes at the 1970 level beyond 1980.

Future harvests of wild fishes from the region have not been predicted inasmuch as no freshwater withdrawals are required for this

^{1/} Withdrawals were made for the protection of catfish and crayfish only.

fishery. However, it will be necessary to maintain the quality and regimen of the region's rivers and streams to allow the continued harvesting of edible fishes.

There is foreseen a continued demand for all the catfish and crayfish the region's fish farming industry can produce. Future fish production requirements estimated for this study are given in table 25. A detailed discussion of the region's fisheries is contained in Appendix Q, Fish and Wildlife.

Future water supply needs for catfish and crayfish farming reflect feasible production increases. Therefore, water withdrawal needs will increase from the 1970 use of 290 m.g.d. to 1,030 m.g.d. by the year 2020. Table 26 provides a summary of the future water needs for commercial fisheries.

Summary of Water Supply Needs

Table 27 presents a regional summary of 1970 withdrawals, projected withdrawals, and consumption by water use category. Major use categories are industrial, irrigation, thermal, and fish and wildlife. These four uses accounted for over 90 percent of all water withdrawn from the region's surface and ground-water supply. By 2020 they are expected to account for 94 percent of all withdrawals, with industry using 5 out of every 9 gallons withdrawn. Withdrawals of cooling water for thermal power plants are expected to increase about fivefold. Consumption associated with these major uses is predicted to decline from the present 40 percent of combined withdrawals to only 20 percent in 2020. Rural domestic water use, reflecting decreasing rural population and greater dependence on centralized water distribution systems, will be the only use category to exhibit a decline in future decades. Figure 5 illustrates withdrawals and consumption graphically.

Table 28 gives a breakdown of regional withdrawals and consumption by WRPA.

In 1970 WRPA's 2, 9, and 10 led the region's planning areas in the amount of water used for various purposes, collectively withdrawing 2 out of every 3 gallons taken from the region's water supplies. Projections indicate that WRPA's 8, 9, and 10 in south Louisiana will account for increasingly larger shares of total water withdrawals. These three areas are projected to account for over three-fourths of the total regional water use in 2020 because of expected industrial expansion, with some industries requiring as much as a tenfold increase in water.

Tables 29 and 30 contain more detailed breakdowns of the region's water withdrawals, present and future, for the three study objectives.

Table 25 - Summary of Present and Future Fish Production Requirements, Lower Mississippi Region

	Existing Production, 1000 lbs.	roduction	1000 lbs.		1980		ish Production 2000	Future Fish Production, 1000 lbs. 1/2000	1bs. 1/2020	101
WRPA	Marine & Estuarine	Wild	Catfish & Crayfish	Program	Catfish &	Total	Catfish & Crayfish	Total	Catfish &	Total
2	0	6,037	10,435	A & B	13,513	19,550	19,669	25,706	25,826	31,863
3	0	1,398	391	A & B	691	2,089	1,291	2,689	1,891	3,289
4	0	2,301	7,369	AGB	12,913	15,214	24,000	26,301	35,087	37,388
Ŋ	0	3,487	2,748	A & B	4,878	8,365	8,739	12,226	13,000	16,487
9	0	1,059	1,213	A & B	3,070	4,129	6,583	7,642	10,196	11,255
7	0	612	287	A & B	878	1,590	1,761	2,373	2,543	3,155
∞	0	1,102	968	A & B	1,356	2,458	1,878	2,980	2,200	3,302
6	869,673	5,492	11,978	A & B	17,161	892,326	22,726	168,768	168,62	902,056
10	353,846	3,741	2,383	A & B	2,883	360,470	3,683	361,270	4,483	362,070
ĹMR	1,223,519	25,229	38,000	A & B	57,443 1	1,306,191	90,330	1,339,078	125,117	1,373,865

1/25,519 lbs./yr. Wild fisheries production constant at 1,223,519 lbs./yr.

Table 26 - Summary of 1970 Use and Future Water Supply Withdrawal Needs for Commercial Fish Production, Lower Mississippi Region<u>1</u>/

1

						Water Needs, m.g.d.	s, m.g.d.		
	1970	1970 Use		1980	0	2000	0	2020	
WRPA	Withdrawal	Consumption	Program	Withdrawal	Consumption	Withdrawal	Consumption	Withdrawal	Consumption
2	6.66	94.9	A & B	130.0	117.0	188.0	169.2	247.0	222.3
23	3.7	3.5	A & B	9.9	0.9	12.4	11.1	18.1	16.2
4	9.07	67.1	A & B	123.6	111.2	229.8	206.8	336.0	302.4
2	22.4	21.3	A & B	40.8	36.7	77.8	70.0	118.6	106.7
9	8.7	8.3	A & B	24.6	22.1	56.3	50.7	88.1	79.3
7	5.6	5.3	A & B	9.4	8.5	16.9	15.2	24.4	22.0
∞	1.9	1.8	A & B	4.4	4.0	9.4	8.5	14.4	13.0
6	8.99	63.5	A & B	85.8	77.2	123.8	111.4	161.7	145.5
10	7.5	7.1	A & B	10.4	9.4	16.1	14.5	21.9	19.7
IMR	287.1	272.8	A & B	435.6	392.1	730.5	657.4	1,030.2	927.1

Need for water supply to Marine and Estuarine fisheries 36,900 m.g.d. held constant over time WRPA 10 = 28,000 and WRPA 9 = 8,900 (not included in above tabulation). 1/

Table 27 - Summary of Present and Projected Water Withdrawals by Category, Lower Mississippi Region

		15	1970	1	1980	20	2000	2(2020
Use1/	Objective 2/	W3/	C4/	W3/	C4/	W3/	C4/	W3/	C4/
u micipal	ВВ	616.7	229.0	756.2 818.4	278.0	1,092.7	406.4	1,549.8	577.9
Industrial	BB	5,419.8 5,419.8	846.0 846.0	8,208.3	1,308.2	19,990.5	3,299.2	47,178.3	7,843.2
Rural Domestic	ВВ	121.9	121.9	109.1	109.1	91.5	91.5	71.9	71.9
lhermal	N N	4,537.6	165.9	7,120.9	211.6	19,504.9 21,831.0	283.8	23,463.2 26,678.7	387.0
frrigation	ВВ	4,827.9	3,460.2 3,460.2	4,847.1	3,490.7	5,236.2 5,775.5	3,797.1 4,191.2	5,603.7	4,062.8
Other Agriculture	ВА	49.6 49.6	49.6 49.6	60.7	60.7	80.5	80.5	106.3	106.3
Commercial Fishing ⁵ /	ВВ	287.1 287.1	272.8	435.6	392.1 392.1	730.5	657.4	1,031.2	927.1
finerals	ВА	602.3	152.4	867.0	219.5 298.6	1,346.4	372.3 633.8	1,871.4 2,913.7	552.8
Fish and Wildlife	₹ £	3,302.0 3,302.0	2,896.0	3,533.0	3,058.0	4,034.0 4,034.0	3,352.0	4,473.0	3,581.0 3,581.0
LVR.	B	19,764.9 19,764.9	8,193.8	25,937.9 27,578.1	9,127.7	52,107.2 58,821.4	12,340.2 13,608.4	85,348.8 99,115.3	18,110.0 20,790.7

1/ Includes brackish water in some categories.
2/ National Income Objective, A; Negional Development Objective, B.
3/ Withdrawals in million gallons per day (mgd).
4/ Consumption in million gallons per day (mgd).
5/ Does not include 36,900 m.g.d. of Mississippi River diversion required for estuarine salinity control.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

WATER SUPPLY WITHDRAWALS AND CONSUMPTION

FIGURE 5

Table 28 - Summary of Present and Projected Water Withdrawals by WRPA, Lower Mississippj Region $\frac{1}{2}$

Obj	Objective 2/	1970 W3/	970 C47	19 W3/	1980 C4/	2000 W3/	000 C4/	20 W3/	2020 C4/
A		3,672.5	2,391.9	3,841.1	2,482.2 2,549.4	4,540.3	2,818.5 3,047.1	5,192.6	3,146.1
7.11	- m	767.0	161.6	1,061.2	256.6 268.6	2,485.2 2,794.0	355.4	3,592.9	503.7
~ -	- m	874.2 874.2	369.9	1,780.3	505.1 515.5	2,146.5 2,324.6	655.8	2,866.7 3,265.9	834.3 929.9
	7 8	2,052.3	7.609	2,303.3	740.2	4,708.3 5,321.1	1,026.0	6,267.3	1,449.6
4 11		315.6	190.9	469.0 499.5	239.9	1,067.6	307.6	1,373.6	390.2
	₹ 8	115.1	37.4	222.7	56.9	717.0	92.7	1,093.0	143.8 158.2
7.1	- ~	2,201.5 2,201.5	465.5	3,664.6	742.1 807.9	10,643.5 12,130.3	1,938.4 2,237.6	19,804.4 23,111.8	4,726.3
H	- ~	4,042.4	1,757.4	5,067.6	1,774.6	10,276.6	2,487.6 2,704.3	17,590.6 20,125.0	3,661.4
	B A	5,722.1	2,206.5	7,523.0 8,183.2	2,331.8 2,425.1	15,522.6 17,856.8	2,658.0 2,968.7	27,567.9 32,669.8	3,254.4 3,913.6
	A	19,767.2 19,767.2	8,190.8 8,190.8	25,932.8 27,578.1	9,129.4 9,451.6	52,107.6 58,826.8	12,340.0 13,608.1	85,349.0 99,115.5	18,109.8 20,790.2

1/ Does not include water needed for estuarine salinity control. 2/ Lational Income Objective, A; Regional Development Objective, B. 3/ Withdrawals in million gallons per day (mgd). 4/ Consumption in million gallons per day (mgd). 5/ Includes brackish water.

Table 29 - Water Withdrawals & Consumption, National Income Objective and Environmental Quality Objective, Lower Mississippi Region

Planning		Muni	cipal	Indu	strial	Rural I	omestic	The	rmal	Irrig	ation
Area	Year	<u>₩</u> 1/	c2/	w <u>1</u> /	c2/	WĪ/	c2/	<u>w</u> ±/	c2/	w1/	c2/
WRPA 2	1970	34.8	12.9	38.8	15.5	24.7	24.7	399.0	2.5	2,486.0	1.864
	1980	40.1	14.7	58.3	23.5	20.6	20.6	399.0	2.5	2,552.0	1,891.
	2000	56.6	21.2	142.8	57.2	16.0	16.0	641.5	7.7	2,741.1	2,055.8
	2020	82.6	30.9	332.0	132.9	10.6	10.6	766.4	12.1	2,887.5	2,165.6
WRPA 3	1970	141.8	52.7	98.1	14.6	22.7	22.7	430.0	6.0	28.7	21.5
	1980	175.7	64.6	149.5	22.2	20.0	20.0	549.9	8.9	72.6	54.5
	2000	278.1	103.3	351.2	52.0	14.3	14.3	1,565.6	18.7	86.9	65.2
	2020	408.8	152.3	800.6	118.5	11.9	11.9	1,981.6	31.3	104.1	78.1
JRPA 4	1970	53.8	20.0	86.6	7.1	21.7	21.7	305.0	2.7	296.0	219.
	1980	65.7	24.2	135.5	9.9	18.9	18.9	995.2	10.6	376.6	279
	2000	89.8	33.4	320.4	21.6	14.7	14.7	995.2	10.6	398.3	295.1
	2020	123.7	46.1	729.3	46.6	11.1	11.1	1,107.3	14.7	421.2	312.1
WRPA 5	1970	54.3	20.2	206.7	68.2	16.1	16.1	1,071.0	9.8	365.6	283.9
	1980	65.9	24.2	307.4	101.0	14.4	14.4	1,071.0	9.8	434.8	337.8
	2000	89.8	33.4	683.9	224.5	12.2	12.2	2,905.2	34.6	500.2	388.6
	2020	133.8	49.9	1,497.8	486.0	5.5	5.5	3,441.6	54.3	556.6	432.
VRPA 6	1970	8.1	3.0	61.5	6.5	6.7	6.7	0.3	0.3	152.0	114.
	1980	9.1	3.4	71.3	8.3	5.2	5.2	82.3	0.9	189.3	142.
	2000	11.4	4.2	135.9	17.1	3.9	3.9	547.8	6.5	203.5	152.
	2020	14.7	5.5	261.3	35.0	2.7	2.7	649.8	10.3	224.8	168.
MRPA 7	1970	12.0	4.5	73.6	6.0	5.2	5.2	1.0	0.6	5.4	4.0
	1980	15.3	5.6	105.5	10.1	4.6	4.6	55.9	0.6	15.8	13.
	2000	22.1	8.2	235.0	24.3	3.4	3.4	397.6	5.2	16.3	13.
	2020	32.8	12.2	509.1	55.3	1.9	1.9	473.2	7.5	16.8	14.
VRPA 8	1970	55.2	20.5	1,514.2	386.7	4.5	4.5	588.4	35.3	1.5	1.
	1980	72.1	26.5	2,261.3	627.6	4.9	4.9	1,257.7	46.5	13.5	11.
	2000	108.6	40.4	5,668.5	1,771.6	6.1	6.1	4,747.1	64.3	13.9	11.
	5050	157.5	58.8	13,840.9	4,487.1	8.4	8.4	5,634.0	92.8	+.4	12.2
IRPA 9	1970	72.0	26.7	1,301.5	230.7	16.8	16.8	336.5	21.9	1,486.6	948.
	1980	92.0	33.7	2,047.4	347.9	15.1	15.1	651.1	26.3	1,184.8	756.
	2000	126.2	47.0	4,745.0	771.7	14.7	14.7	2,520.1	30.6	1,267.8	808.
	2020	167.7	62.5	10,780.8	1,676.7	14.7	14.7	3,180.1	58.4	1,369.7	873.
VRPA 10	1970	184.7	68.5	2,038.8	110.7	3.5	3.5	1,406.4	84.0	4.4	2.
	1980	220.3	81.1	3,072.1	157.7	5.4	5.4	2,058.8	105.6	7.7	4.
	2000	310.1	115.3	7,707.8	359.2	6.2	6.2	5,184.8	105.6	8.2	5.
	2020	4 2 8.2	159.7	18,426.5	805.1	5.1	5.1	6,229.2	105.6	8.6	5.
REGION	1970	616.7	229.0	5,419.8	846.0	121.9	121.9	4,537.6	163.1	4,827.9	3,460.
	1980	756.2	278.0	8,208.3	1,308.2	109.1	109.1	7,120.9	211.7	4,847.1	3,490.
	2000	1,092.7	406.4	19,990.5	3,299.2	91.5	91.5	19,504.9	283.8	5,236.2	3,797
	2020	1,549.8	577.9	47,178.3	7,843.2	71.9	71.9	23,463.2	387.0	5,603.7	4,062.8

Withdrawals in million gallons per day (m.g.d.)
Consumption in million gallons per day (m.g.d.)

Table 29 - Water Withdrawals & Consumption, National Income Objective and Environmental Quality Objective, Lower Mississippi Region (Cont'd)

n: .		Othe.	r Agri.	Com.	Fishing	Min	erals	Fish &	Wildlife	To	tals
Planning Area	Year	44/	2/	<u>₩</u> 2/		w1/	c2/	MT	c2/	w1/	c2/
WRPA 2	1970	5.3	5.3	99.9	94.9	4.0	0.6	580.0	371.0	3,672.5	2,391.9
	1980	6.7	6.7	129.4	117.0	5.0	0.7	630.0	405.0	3,841.1	2,482.
	2000	8.7	8.7	188.	169.2	5.2	0.7	740.0	482.0	4,540.3	2,818.
	2020	10.9	10.9	247.	222.3	5.3	0.8	850.0	560.0	5,192.6	3,146.1
WRPA 3	1970	8.3	8.3	3.7	3.5	0.7	0.3	33.0	32.0	767.0	161.6
	1980	10.0	10.0	6.6	6.0	0.9	0.4	76.0	70.0	1,061.2	256.6
	2000	13.3	13.3	12.4	11.1	1.4	0.5	162.0	77.0	2,485.2	355.4
	5050	17.7	17.7	18.1	16.2	2.1	0.7	248.0	77.0	3,592.9	503.7
WRPA 4	1970	8.6	8.6	70.6	67.1	1.1	0.5	31.0	23.0	874.2	369.9
	1980	10.7	10.7	123.6	111.2	1.1	0.5	53.0	40.0	1,780.3	505.1
	2000	14.0	14.0	229.8	206.8	1.3	0.6	83.0	59.0	2,146.5	655.8
	2020	18.6	18.6	336.9	302.4	1.6	0.7	117.0	82.0	2,866.7	834.3
WRPA 5	1970	7.4	7.4	22.4	21.3	55.0	8.8	254.0	174.0	2,052.3	609.7
	1980	9.1	9.1	40.8	36.7	74.9	11.2	285.0	196.0	2,303.3	740.2
	2000	12.2	12.2	77.8	70.0	82.0	14.5	345.0	236.0	4,708.3	1,026.0
	2020	16.3	16.3	118.6	106.7	90.1	18.4	407.0	280.0	6,267.3	1,449.6
WRPA 6	1970	3.7	3.7	8.7	8.3	7.1	2.0	67.0	46.0	315.6	190.9
	1980	4.6	4.6	24.6	22.1	7.6	2.4	75.0	51.0	469.0	239.9
	2000	6.1	6.1	56.3	50.7	11.7	3.5	91.0	63.0	1,067.6	307.6
	5050	8.2	8.2	88.1	79.3	16.0	4.6	108.0	76.0	1,373.6	390.2
WRPA 7	1970	3.6	3.6	5.6	5.3	3.7	3.6	5.0	4.0	115.1	37.4
	1980	4.5	4.5	9.4	8.5	4.7	4.6	7.0	5.0	222.7	56.9
	2000	6.0	6.0	16.9	15.2	6.7	6.5	13.0	10.0	717.0	92.7
	2020	8.0	8.0	24.4	22.0	8.8	8.6	18.0	14.0	1,093.0	143.8
WRPA 8	1970	5.0	5.0	1.9	1.8	27.8	7.4	3.0	3.0	2,201.5	465.5
	1980	5.8	5.8	4.4	4.0	39.9	11.3	5.0	4.0	3,664.6	742.1
	2000	7.7	7.7	9.4	8.5	74.2	22.0	8.0	6.0	10,643.5	1,938.4
	2020	10.1	10.1	14.4	13.0	112.7	34.9	12.0	9.0	19,804.4	4,726.3
WRPA 9	1970	6.8	6.8	66.8	63.5	272.0	44.0	484.0	399.0	4,042.4	1,757.4
	1980	8.2	8.2	85.8	77.2	426.2	67.2	557.0	443.0	5,067.6	1,774.6
	2000	11.0	11.0	123.8	111.4	723.0	119.3	745.0	573.0	10,276.6	2,487.6
	2020	14.6	14.6	161.7	145.5	1,036.3	179.1	865.0	636.0	17,590.6	3,661.4
WRPA 10	1970	0.9	0.9	7.5	7.1	230.9	85.0	1,845.0	1,844.0	5,722.1	2,206.5
	1980	1.1	1.1	10.4	9.4	302.2	122.6	1,845.0	1,844.0	7,523.0	2,331.8
	2000	1.5	1.5	16.1	14.5	440.9	204.5	1,847.0	1,846.0	15,522.6	2,658.0
	2020	1.9	1.9	21.9	19.7	598.5	304.8	1,848.0	1,847.0	27,567.9	3,254.4
Region	1970	49.6	49.6	287.1	272.8	602.3	152.2	3.302.0	2,896.0	19.767.2	8,190.8
WERTON	1980	60.7	60.7	435.0	392.1	862.5	220.9	3,533.0	3,058.0	25,932.8	9,129.4
	2000	80.5	80.5	730.9	657.4	1,346.4	372.1	4.034.0	3,352.0	52,107.6	12,340.0
	2020	106.3	106.3	1,031.4	927.1	1.871.4	552.6	4,473.0	3,581.0	85.349.0	18,109.8
	2020	200.5	200.3	1,031.4	101.2	1,012.4	1,2.0	7,715.0	3,,02.0	-2,5-7.0	,,

withdrawals in million gallons per day (m.g.d.)
Consumption in million gallons per day (m.g.d.)

Table 30 - Water Withdrawals & Consumption, Regional Development Objective, Lower Mississippi Region

		Muni	cipal	Indu	strial	Rural D	omestic	The	rmal	Irrig	ation
Planning Area	Year	w <u>1</u> /	c <u>2</u> /	W ₁	c <u>2</u> /	w1/	c2/	w1/	c2/	WL	c2/
WRPA 2	1970	34.8	12.9	38.8	15.5	24.7	24.7	399.0	2.5	2,487.1	1,864.5
	1980	43.1	15.8	64.0	25.6	22.3	22.3	399.0	2.5	2,605.0	1,953.8
	2000	63.4	23.6	164.8	65.8	17.7	17.7	718.5	8.6	3,027.6	2,270.7
	2020	96.1	35.9	391.2	156.4	12.2	12.2	889.	14.0	3,341.2	2,505.9
WRPA 3	1970	141.8	52.7	98.	14.6			430.0	6.0	28.7	21.5
	1980	192.9	71.0	163.8	24.1	22.0	22.0	633.6	9.9	73.6	55.2
	2000	316.0	117.5	398.1	58.6	16.2	16.2	1,780.0	21.2	93.4	70.1
	2020	474.5	176.8	944.	139.6	13.9	13.9	2,300.5	36.3	114.4	85.8
WRPA 4	1970	53.8	20.0	86.6	7.1	21.7	21.7	305.0	2.7	296.0	219.2
	1980	71.9	26.4	148.6	10.9	20.6	20.6	995.2	10.6	384.0	284.5
	2000	101.8	27.8	370.6	25.1	16.7	16.7	1,045.4	12.5	460.8	341.4
	2020	140.4	52.4	859.7	54.9	12.6	12.6	1,257.9	19.8	519.4	384.9
WRPA 5	1970	54.3	20.2	206.7	68.2	16.1	16.1	1,071.0	9.8	365.6	283.9
	1980	70.0	25.8	345.9	115.3	15.3	15.3	1,071.0	9.8	437.0	339.5
	2000	101.9	37.9	808.5	266.5	13.9	13.9	3,294.5	39.3	549.7	427.1
	2020	152.2	56.8	1,803.5	589.0	6.3	6.3	3,916.5	61.8	622.0	483.3
WRPA 6	1970	8.1	3.0	61.5	6.5	6.7	6.7	0.3	0.3	152.6	114.4
	1980	9.8	3.6	78.9	9.3	5.6	5.6	97.1	1.0	195.3	146.5
	2000	11.9	4.4	157.2	19.8	4.0	4.0	575.1	6.9	222.6	167.0
	2020	16.2	6.1	306.8	41.2	2.9	2.9	713.5	11.3	254.9	191.2
WRPA 7	1970	12.0	4.5	73.6	6.0	5.2	5.2	1.0	0.6	5.4	4.6
	1980	17.0	6.2	114.9	10.5	5.1	5.1	73.6	0.8	16.6	14.1
	2000	25.7	9.5	263.0	25.5	4.0	4.0	462.8	3.7	20.3	17.5
	2020	38.3	14.3	575.1	57.6	2.2	2.2	554.1	8.7	23.9	20.3
WRPA 8	1970	55.2	20.5	1,514.2	386.7	4.5	4.5	588.4	35.3	1.5	1.3
	1980	77.7	28.6	2,480.2	687.8	5.3	5.3	1,396.1	48.0	14.1	12.0
	2000	121.5	45.2	6,548.8	2,049.1	6.9	6.9	5,316.8	72.0	17.7	15.0
	2020	178.8	66.7	16,322.3	5,292.0	9.5	9.5	6,394.7	105.3	21.8	18.5
WRPA 9	1970	72.0	26.7	1,301.5	230.7	16.8	16.8	336.5	21.9	1,486.6	948.0
	1980	98.2	36.2	2,244.8	381.3	16.1	16.1	718.3	27.1	1,187.6	757.7
	2000	142.9	53.3	5,486.6	895.3	16.7	16.7	2,856.8	34.6	1,367.9	872.7
	2020	188.9	70.6	12,714.3	1,977.5	16.5	16.5	3,582.3	65.8	1,483.6	946.5
WRPA 10	1970	184.7	68.5	2,038.8	110.7	3.5	3.5	1,406.4	84.0	4.4	2.8
	1980	237.8	87.5	3,367.1	172.8	5.8	5.8	2,242.0	107.5	7.9	5.0
	2000	345.9	128.7	8.915.0	415.3	7.0	7.0	5,781.1	107.5	15.5	9.9
	2020	485.9	181.2	21,731.4	949.2	5.7	5.7	7,070.1	118.0	22.7	14.5
REGION	1970	616.7	229.0	5,419.8	846.0	121.9	121.9	4,537.6	163.1	4,827.9	3,460.2
	1980	818.4	301.1	9,008.2	1,437.6	118.1	118.1	7,625.9	217.2	4,921.1	3,568.3
	2000	1,231.0	457.9	23,112.6	3,821.0	103.1	103.1	21,831.0	306.3	5,775.5	4,191.2
	2020	1,771.3	660.8	55,648.5	9,257.4	81.8	81.8	26,678.7	441.0	6,403.9	4,650.9

^{1/} Withdrawals in million gallons per day (m.g.d.)
2/ Consumption in million gallons per day (m.g.d.)

Table 30 - Water Withdrawals & Consumption, Regional Development Objective, Lower Mississippi Region (Cont'd)

		Other	r Agri.	Com.	Fishing	Min	nerals	Fish &	Wildlife	To	tals
Planning Area	Year	₩ <u>1</u> /	c2/	W _T	<u>c2/</u>	M _T	c2/	w±/	c3/	wł/	c2/
WRPA 2	1970	5.3	5.3	99.9	94.9	4.0	0.6	580.0	371.0	3,672.5	2,391.9
	1980	6.7	6.7	129.4	117.0	5.7	0.7	630.0	405.0	3,905.4	2,549.4
	2000	8.7	8.7	188.4	169.2	6.1	0.8	740.0	482.0	4,935.2	3,047.1
	2020	10.9	10.9	247.3	222.3	6.5	0.9	850.0	560.0	5,844.5	3,518.5
WRPA 3	1970	8.3	8.3	3.7	3.5	0.7	0.3	33.0	32.0	767.0	161.6
	1980	10.0	10.0	6.6	6.0	1.0	0.4	76.0	70.0	1,179.5	268.6
	2000	14.3	14.3	12.4	11.1	1.6	0.6	162.0	77.0	2,794.0	386.6
	2020	19.0	19.0	18.1	16.2	2.3	0.8	248.0	77.0	4,134.9	565.4
WRPA 4	1970	8.6	8.6	70.6	67.1	1.1	0.5	31.0	23.0	874.2	369.9
	1980	10.7	10.7	123.6	111.2	1.2	0.6	53.0	40.0	1,808.8	515.5
	2000	15.0	15.0	229.8	206.8	1.5	0.7	83.0	59.0	2.324.6	715.0
	2020	20.0	20.0	336.9	302.4	2.0	0.9	117.0	82.0	3,265.9	929.9
WRPA 5	1970	7.4	7.4	22.4	21.3	55.0	8.8	254.0	174.0	2,052.3	609.7
	1980	9.1	9.1	40.8	36.7	91.4	12.9	285.0	196.0	2,365.5	760.4
	2000	13.1	13.1	77.8	70.0	116.7	18.6	345.0	236.0	5,321.1	1,122.4
	2020	17.5	17.5	118.6	106.7	144.1	25.6	407.0	280.0	7,187.7	1,627.0
WRPA 6	1970	3.7	3.7	8.7	8.3	7.1	2.0	67.0	46.0	315.6	190.9
	1980	4.6	4.6	24.6	22.1	8.6	2.9	75.0	51.0	499.5	246.6
	2000	6.6	6.6	56.3	50.7	14.8	4.7	91.0	63.0	1,139.5	327.1
	5050	8.8	8.8	88.1	79.3	21.3	6.9	108.0	76.0	1,520.5	423.7
WRPA 7	1970	3.6	3.6	5.6	5.3	3.7	3.6	5.0	4.0	115.1	37.4
	1980	4.5	4.5	9.4	8.5	5.1	5.0	7.0	5.0	253.2	59.7
	2000	6.4	6.4	16.9	15.2	7.9	7.7	13.0	10.0	820.0	99.3
	2020	8.5	8.5	24.4	22.0	10.9	10.6	18.0	14.0	1,255.4	158.2
WRPA 8	1970	5.0	5.0	1.9	1.8	27.8	7.4	3.0	3.0	2,201.5	465.5
	1980	5.8	5.8	4.4	4.0	44.9	12.4	5.0	4.0	4,033.3	807.9
	2000	8.2	8.2	9.4	8.5	93.0	26.7	8.0	6.0	12,130.3	2,237.6
	2020	10.8	,10.8	14.4	13.0	147.5	43.9	12.0	9.0	23,111.8	5,568.7
WRPA 9	1970	6.8	6.8	66.8	63.5	272.0	44.0	484.0	399.0	4,042.4	1,757.4
	1980	8.2	8.2	85.8	77.2	433.7	71.6	557.0	443.0	5,349.7	1,818.4
	2000	11.8	11.8	123.8	111.4	753.8	135.5	745.0	573.0	11,505.3	2,704.3
	5050	15.6	15.6	161.7	145.5	1,097.1	211.2	865.0	636.0	20,125.0	4,085.2
WRPA 10	1970	0.9	0.9	7.5	7.1	230.9	85.0	1,845.0	1,844.0	5,722.1	2,206.5
	1980	1.1	1.1	10.4	9.4	466.1	192.0	1,845.0	1,844.0	8,183.2	2,425.1
	5000	1.6	1.6	16.1	14.5	927.6	438.2	1,847.0	1,846.0	17,856.8	2,968.7
	5050	2.1	2.1	21.9	19.7	1,482.0	776.2	1,848.0	1,847.0	32,669.8	3,913.6
Region	1970	49.6	49.6	287.1	272.8	602.3	152.2	3,302.0	2,896.0	19,762.7	8,190.8
	1980	60.7	60.7	435.0	392.1	1,057.7	298.5	3,533.0	3,058.0	27,578.1	9,451.6
	2000	85.7	85.7	730.9	657.4	1,923.0	633.5	4,034.0	3,352.0	58,826.8	13,608.1
	5050	113.2	113.2	1,031.4	927.1	2,913.7	1,077.0	4,473.0	3,581.0	99,115.5	20,790.2

Withdrawais in million gallons per day (m.g.d.)
Consumption in million gallons per day (m.g.d.)

Water Surface Area

Water areas in the Lower Mississippi Region provide opportunities for swimming, boating, water skiing, and many other recreational activities. They also provide fish and wildlife habitat, and their scenic qualities and other attributes enhance the environmental quality of the study area.

Water surface area needs are categorized as follows:

LARGE WATER - Large lakes with more than 500 acres of surface area, small lakes between 40 and 500 acres in size, and all rivers and streams averaging one-eighth of a mile and more in width.

SMALL WATER - Small lakes and ponds less than 40 acres in size and all streams averaging less than one-eighth of a mile in width.

STREAMS - Reaches of certain rivers and streams with unique or special attributes which make them worthy of maintenance in a specified state as an inheritance for future generations. The basic measurement unit is miles, but conversion to acres is made in some instances to allow comparison with other water areas in compatible units.

Recreation

Present Status. Long summers and mild winters help to make outdoor recreation activities a popular pastime on and around lakes in the region. Such water bodies cover 2.2 million acres of the region's area. Nearly 800,000 acres of large lakes are located in coastal areas (WRPA's 8, 9, and 10). Small lakes are dispersed regionwide. Most of this large water is suitable for intensive recreational activity, as evidenced by nearly 68 million user days in 1970.

Table 31 gives a resume of water-dependent recreation in 1970, allowing comparison of resource needs and resource availability. Although 1970 use figures were unavailable in terms of acreages, region and WRPA acreage needs were estimated based on space standards and national participation rates in activities such as water skiing, boating, canoeing, and sailing, which require water bodies of 40 acres or more in size. For purposes of recreation a distinction is made between lakes 40 to 500 acres in size and lakes over 500 acres, collectively large water. Some needs for swimming were also satisfied by these large water areas. The table clearly shows that WRPA 3 had less water surface than was needed in 1970. Assuming the estimated needs are a close approximation of 1970 use, the WRPA 3 residents, primarily Memphians, spent a considerable amount of time and money on travel to large lakes in other WRPA's. It appears likely that some of that travel was to WRPA 5, a distance of at least 200 miles. In terms of the 1970 net needs for lakes between 40 and 500 acres in size, WRPA's 3, 4, 5, and 8 had significantly less small water than required. Recreationists seeking small lake experiences in WRPA 8 probably satisfied

Table 31 - Need and Resource Availability, Water Dependent Recreation, 1970, Lower Mississippi Region

Lakes Large Lakes2/ Small Lakes3/ Total Lakes Total Lakes Total Lakes Large Lakes2/ Total Lakes 59 22 69 91 0 18 4 36 40 36 59 49 25 74 0 67 175 4/ 175 0 18 10 22 32 0 15 23 15 38 0 51 51 52 73 0 70 316 84 400 0 72 432 507 939 0 73 1,082 1,148 2,230 0		Recreation Days	Surfac	Gross Need Surface Area (1,000 acres)	acres)	Ava	Available Resource 1/	e <u>1</u> /		Net Need	
6,737,000 20 39 59 22 69 34 0 13,524,000 20 39 59 22 69 91 0 6,854,000 40 78 118 4 56 40 56 8,854,000 20 39 59 59 49 74 6 1,682,000 26 42 67 175 4/2 175 9 1,682,000 6 12 18 10 22 32 9 1,682,000 5 10 15 51 53 9 8,046,000 17 34 51 51 73 9 14,069,000 24 46 70 316 84 400 9 67,652,000 41 81 122 57 939 9	RPA		Large Lakes2/	Small Lakes3/	Total Lakes		Small Lakes3/	Total Lakes	Large Lakes 2	/ Small Lakes J Total Lakes	Total Lakes
6,737,000 20 39 59 22 69 91 113,524,000 40 78 118 4 36 40 6,854,000 20 39 59 49 25 40 8,835,000 26 41 67 175 4/ 175 1,682,000 6 12 18 10 22 32 1,682,000 17 34 51 53 15 38 8,046,000 17 46 70 316 84 400 14,069,000 41 81 122 432 507 939 67,652,000 199 380 579 1,082 1,148 2,230	1	0	0	0	0	368	0	368	0	0	0
13,524,000 40 78 118 4 36 40 6,854,000 20 39 59 49 25 74 8,835,000 26 41 67 175 4/ 175 2,025,000 6 12 18 10 22 32 1,682,000 5 10 15 23 15 38 5,880,000 17 34 51 51 22 73 8,046,000 24 46 70 316 84 400 14,069,000 41 81 122 432 57 939 67,652,000 199 380 579 1,082 1,148 2,230	2	6,737,000	20	39	59	22	69	91	0	0	0
6,854,000 20 39 59 49 25 8,835,000 26 42 67 175 4/ 2,025,000 6 12 18 10 22 1,682,000 17 34 51 51 22 8,046,000 24 46 70 316 84 14,069,000 41 81 122 432 507 67,652,000 199 380 579 1,082 1,148 2,		13,524,000	40	78	118	4	36	40	36	42	78
8,835,000 26 42 67 175 4/s 2,025,000 6 12 18 10 22 1,682,000 5 10 15 23 15 5,880,000 17 34 51 22 8,046,000 24 46 70 316 84 14,069,000 41 81 122 432 507 67,652,000 199 380 579 1,082 1,148 2,		6,854,000	20	39	59	49	25	74	0	14	0
2,025,000 6 12 18 10 22 1,682,000 5 10 15 23 15 5,880,000 17 34 51 51 22 8,046,000 24 46 70 316 84 14,069,000 41 81 122 432 507 67,652,000 199 380 579 1,082 1,148 2.		8,835,000	26	41	29	175	4	175	0	41	0
1,682,000 5 10 15 23 15 5,880,000 17 34 51 51 22 8,046,000 24 46 70 316 84 14,069,000 41 81 122 432 507 67,652,000 199 380 579 1,082 1,148 2.		2,025,000	9	175	18	10	22	32	0	0	0
\$,880,000 17 34 51 51 22 8,046,000 24 46 70 316 84 14,069,000 41 81 122 432 507 67,652,000 199 380 579 1,082 1,148 2.		1,682,000	S	10	15	23	15	38	0	0	0
8,046,000 24 46 70 316 84 14,069,000 41 81 122 452 507 67,652,000 199 380 579 1,082 1,148 2.		5,880,000	17	34	51	51	22	73	0	12	0
14,069,000 41 81 122 452 507 67,652,000 199 380 579 1,082 1,148 2.		8,046,000	24	46	70	316	84	400	0	0	0
67,652,000 199 380 579 1,082 1,148		14,069,000	41	81	122	432	507	939	0	0	0
		67,652,000	199	380	579	1,082	1,148	2,230	0	0	0

|/ Includes stream areas. | Lakes having more than 500 acres of surface area. | Lakes having more than 500 acres in size. | Less than 1,000 acres.

their needs in bordering WRPA's without significant travel, but no reasonable supply of small lakes existed to satisfy the deficits in WRPA's 3, 4, and 5. Due to the aforementioned lack of detailed use data for 1970, an assessment could not be made of needs satisfaction through intra-regional travel.

Future Needs. Significant increases in population, per capita income, and leisure time during the study's 50-year time frame will generate major increases in water-oriented recreation needs. While population is expected to about double, the recreation needs will almost triple by the year 2020 for both Programs A and B. Most of the increase in needs will be centered in or near the region's major metropolitan centers in WRPA's 3, 8, 9, and 10. Table 32 provides a summary of future recreation needs for water surface area.

The demand for quality outdoor recreation sites will increase greatly in the future.

Table 32 - Future Needs, Water Surface for Water Dependent Recreation,
Lower Mississippi Region

				Needs 1,	000 Acres 1/		
			Progra	am A		Program	
WRPA ²	Year	Large 3/	Small Lake 4/	Total Water Surface	Large Lake 3/	Small Lake4/	Total Water Surface
2	1980	41	67	108	44	73	117
	2000 2020	65 103	97 143	162 246	74 122	111 170	185 292
3	1980	92	153	245	102	169	271
	2000 2020	182 333	271 461	453 794	210 394	313 549	523 943
4	1980 2000	41 67	69 109	110 176	45 77	76 115	121 192
	2020	107	149	256	124	173	297
5	1980 2000	56 95	92 142	148 237	60 110	99 163	159 273
	2020	157	217	374	182	253	435
6	1980 2000	12 17	19 26	31 43	13 18	21 27	34 45
	2020	25	36	61	28	39	67
7	1980 2000	11 18	17 25	28 43	12 21	19 30	31 51
	2020	28	39	67	34	48	82
8	1980 2000	40 75	67 112	107 187	44 85	72 126	116 211
	2020	130	180	310	150	210	360
9	1980 2000	50 82	83 122	133 204	54 94	89 141	143 235
	2020	129	180	309	147	206	353
10	1980 2000	96 178	160 264	256 442	104 202	173 301	277 503
	2020	309	428	737	357	499	856
LMR	1980 2000	439 779	727 1,168	1,166 1,947	478 891	791 1,327	1,269 2,218
	2020	1,321	1,833	3,154	1,538	2,147	3,685

^{1/} Gross needs.
2/ Needs are not expressed for WRPA 1 since it is considered to have no resident population.
3/ Lakes with more than 500 acres of surface area.
4/ Lakes between 40 and 499 acres in size.

Sport Fishing

Present Status. Sport fishing is a popular leisure time activity among study area residents. The region's lakes, ponds, streams, and estuaries constitute a fishery resource which accommodated an estimated 27.8 million angler-days of usage in 1970. About 40 percent of this usage was attributable to fishing in lakes; the remainder was equally divided among ponds, streams, and estuaries. Total resource availability far exceeded use in 1970, except in the case of fully utilized streams. Problems in accommodating sport fishermen on streams and ponds stemmed largely from inadequate public access. Furthermore, in some areas streams were so polluted they could not be fished.

Sport fishing is a popular leisure time activity in the region.

Table 33 gives a summary of the 1970 availability and use of the region's sport fishing resource.

Future Needs. Total need for all types of sport fishing is expected to about double by the year 2020 for both Programs A and B.

Table 33 - Sport Fishing Surmary, 1970 Use of Existing Habitat, Lower Mississippi Region

		SHIPSTY	Existing nabled (1,000 Actes)	Contract DOD'	1	CORPLI	rat caba	Hant at Capability (1,000 August Days)	TOT BEET	174757	Habite	T Need	Habitat Need, 1970 (1,000 Auglet-Days	Angier	AV-
MRPA	Lakes	Ponds	Estuaries	Streams4/	Total	Lakes	Ponds	Estuaries 5/Streams	Streams	Total	Lakes	Ponds	Estuaries / Streams	Streams	Total
न्	368	0	0	17	368	12,144	0	0	0	12,144	0	0	0	0	0
~	189	52	0	1,203	241	6,237	1,040	0	882	8,159	1,190	521	146	769	2,626
2	72	104	0	822	176	2,376	2,080	0	603	5,059	2,389	1,045	294	1,543	5,271
4	207	52	0	1,100	261	6,831	1,080	0	908	8,717	1,211	530	149	782	2,672
ıs	251	89	0	1,931	319	8,283	1,360	0	1,415	11,058	1,561	683	214	1,008	3,466
9	72	16	0	536	88	2,376	320	0	393	3,089	358	157	54	231	800
7	94	14	0	450	108	3,102	280	0	330	3,712	297	130	45	192	664
00	118	46	0	400	164	3,894	920	0	293	5,107	1,039	454	827	671	2,991
6	538	62	545	928	1,145	17,754	1,240	3,270	089	22,944	1,421	622	959	918	3,617
10	1,158	108	2,736	329	4,002	38,214	2,160	16,416	241	57,031	2,486	1,087	2,637	1,605	7,815
ZW.	3,067	524	3,281	7,6998/	6,872	101,211	10,480	989,61	5,643	137,020	11,952	5,229	5,022	7,719	23,922

निर्मातिकारिक

This habitat is only partially available to the public for fishing.

Total given in Appendix Q disaggregated to specific habitat types and WMPA's based on use rates established in Appendix Q.

Bata on actual 1970 use unavailable.

Stream habitat given in miles, not included in total.

Anglers in WMPA's without estuarine habitat used available habitat in WMPA's 9 and 10.

No needs expressed for WMPA 1 since it has no resident population.

No needs expressed for WMPA 1 since it has no resident population.

Although the Mississippl River in WMPA 1 is not considered suitable for a quality stream fishing as of 1970. Program components, as water quality control, will make more streams suitable in the future.

Table 34 provides a summary of future sport fishing needs expressed in angler-days for the region. Habitat required to meet those needs is shown in table 35.

Environmental Quality

Present Status. Water bodies identified as significant environmental quality components comprise about 446,000 acres of surface area in lakes and about 28,000 acres of surface area in 2,362 miles of rivers and streams. They include natural lakes, rivers, and streams of notable scenic beauty and high aesthetic value. Almost one out of every 3 miles of environmentally significant rivers and streams has been named in enacted or pending scenic rivers legislation of the States; and 98 percent of the lake acreage is presently under some form of protective ownership or management. However, legal access to many scenic lakes is inadequate to permit full enjoyment of their environmental quality attributes. Moreover, their sparsely developed shorelines, now largely covered with bottom-land hardwoods, are subject to alteration at any time that economic conditions warrant timber removal to make open space for agricultural developments, or to provide raw material for industry.

Future Needs. Primary needs relative to significant water surface areas are to maintain or enhance existing environmental quality attributes and to assure public access to the areas. A large unique physiographic feature (Crowley's Ridge) in WRPA 2 could be environmentally enhanced by the creation of numerous small lakes, totaling 10,000 acres of surface area.

Table 36 provides a summary of environmental quality water surface needs, an estimate of that portion under adequate control, and net needs.

Summary of Water Surface Needs

Water surface area needs are summarized by use category in tables 37 and 38. The recreation, fish and wildlife, and environmental quality needs are not additive because they can be mutually satisfied through multi-use of the resources. Thus, only the largest needs are given in the column of total needs.

The Environmental Quality Objective needs, summarized in table 38, include the Environmental Quality components and the needs for Recreation and Fish and Wildlife developed in connection with Program A.

Regional needs for water surface area are shown graphically on figure 6.

Table 34 - Summary of Future Sports Fishing Needs, Lower Mississippi Region

				OGRAM A Angler Days				OGRAM B ngler Days	
IRPA	Year	Lakes1/		Estuaries ³ /	Streams	Lakes1/		Estuaries3/	Stream
2	1980	1,203	526	148	771	1,292	565	159	834
	2000	1,334	584	164	862	1,495	654	184	965
	2020	1,572	688	193	1,015	1,829	800	225	1,181
3	1980	2,726	1,193	335	1,760	2,994	1,310	368	1,933
	2000	3,717	1,626	457	2,401	4,226	1,849	520	2,729
	2020	5,079	2,222	625	3,280	5,898	2,580	725	3,809
4	1980	1,222	535	150	790	1,334	584	164	861
	2000	1,368	598	168	883	1,551	679	191	1,002
	2020	1,637	716	201	1,057	1,861	814	229	1,202
5	1980	1,650	722	226	1,066	1,754	767	240	1,133
	2000	1,948	852	266	1,258	2,209	966	302	1,426
	2020	2,392	1,047	326	1,545	2,723	1,191	370	1,758
6	1980	345	151	52	223	368	161	55	237
	2000	349	153	52	226	367	160	55	237
	2020	382	167	57	246	419	183	63	271
7	1980	312	136	47	201	345	151	52	223
	2000	357	156	54	231	416	182	62	268
	2020	429	188	64	277	502	220	75	324
8	1980	1,190	521	947	769	1,283	561	1,021	828
	2000	1,526	668	1,214	986	1,709	74 8	1,360	1,103
	2020	1,984	868	1,579	1,281	2,251	985	1,791	1,454
9	1980	1,482	648	684	957	1,586	694	732	1,024
	2000	1,677	734	774	1,083	1,899	831	876	1,227
	2020	1,965	860	906	1,269	2,209	967	1,019	1,427
10	1980	2,846	1,245	3,019	1,838	3,071	1,344	3,258	1,983
	2000	3,637	1,591	3,858	2,349	4,056	1,775	4,303	2,619
	2020	4,717	2,064	5,004	3,046	5,352	2,341	5,678	3,457
LMR	1980	12,976	5,677	5,608	8,375	14,027	6,137	6,049	9,056
	2000	15,913	6,962	7,007	10,279	17,928	7,844	7,853	11,576
	2020	20,157	8,820	8,955	13,016	23,044	10,081	10,175	14,883

^{1/} All lakes larger than 2 acres in size,
2/ Less than 2 acres in size,
3/ Needs expressed for WRPA's 2 through 8 Needs expressed for WRPA's 2 through 8 must be satisfied through use of available resource in WRPA's 9 and 10.

Table 35 - Summary of Future Sport Fishing Habitat Needs, Lower Mississippi Region

				OGRAM A			P	ROGRAM B	
			,000 Acre		(Miles)		000 Acres		(Miles)
WRPA	Year	Lakes 1/	Ponds 4/	Estuaries 3/	Streams	Lakes 1/	Ponds 2/	Estuaries3/	Streams
2	1980	36	26	25	1,052	39	28	25	1,137
	2000	40	29	27	1,176	45	33	27	1,316
	2020	48	34	32	1,385	55	40	32	1,611
3	1980	83	60	56	2,401	91	66	61	2,637
	2000	113	81	76	3,275	128	92	87	3,723
	2020	154	111	104	4,474	179	129	121	5,196
4	1980	37	27	25	1,077	40	29	27	1,174
	2000	41	30	28	1,204	47	34	32	1,366
	2020	50	36	33	1,442	56	41	38	1,639
5	1980	50	36	41	1,454	53	38	40	1,545
	2000	59	43	44	1,716	67	48	50	1,945
	2020	72	52	54	2,107	83	60	61	2,398
6	1980	10	8	9	304	11	8	9	323
	2000	11	8	9	308	11	8	9	323
	2020	12	8	9	335	13	9	9	369
7	1980	9	7	8	274	10	8	9	304
	2000	11	8	9	315	13	9	10	365
	2020	13	9	11	377	15	11	12	442
8	1980	36	26	158	1,049	39	28	170	1,129
	2000	46	33	202	1,345	52	37	227	1,504
	2020	60	43	263	1,740	68	49	298	1,983
9	1980	45	32	114	1,305	48	35	122	1,396
	2000	51	37	129	1,477	57	42	146	1,673
	2020	60	43	151	1,731	67	48	170	1,946
10	1980	86	62	503	2,507	93	67	543	2,705
	2000	110	80	643	3,204	123	89	717	3,572
	2020	143	103	834	4,155	162	117	946	4,716
LMR	1980	393	284	939	11,423	424	307	1,006	12,350
	2000	482	349	1,167	14,020	543	392	1,305	15,787
	2020	612	439	1,491	17,746	698	504	1,687	20,300

^{1/} All lakes larger than 2 acres in size.
2/ Less than 2 acres in size.
3/ Needs expressed for WRPA's 2 through 8 must be satisfied through use of available resource in WRPA's 9 and 10.

Table 36 - Summary of Water Surface Area Needs for Natural Environmental Quality, Lower Mississippi Region 1/

		S	MALL WATER	SMALL WATER (1,000 Acres)			LARGE WATER (1,000 Acres)	R (1,000	Acres)			
	Scenic R	Scenic Rivers & Streams	treams		Lakes			Lakes		TOTAL	TOTAL (1,000 Acres)	(sa)
WRPA	Gross Need	Supply	Net Need	Gross Need	Supply	Net Need	Gross Need	Supply	Net Need	Gross Need	Supply	Net Need
1	0	0	0	0	0	0	40	36	4	40	36	4
7	4	0	4	10	0	10	9	S	1	20	S	15
2	7	1	9	0	0	0	344/	334/	14/	41	34	7
4	0	0	0	0	0	0	20	17	м	20	17	23
S	7	4	2	0	0	0	345/	336/	1	41	37	4
9	0	0	0	0	0	0	6	∞	1	6	œ	1
7	ъ	0	10	0	0	0	∞	7	1	11	7	4
80	4	2	2	0	0	0	19	19	0	65	63	2
6	2	1	1	0	0	0	110	110	0	112	1111	1
10	1	1	0	0	0	0	124	124	0	125	125	0
LMR	28	6	19	10	0	10	446	434	12	484	443	41

1/ Needs are for 1980 and constant for succeeding years.
2/ Between 2 and 40 acres in size.
4/ Also serves as unique geological and ecological systems.
5/ Of this, 31,000 acres also serve as unique ecological systems.
6/ Of this, 30,000 acres also serve as unique ecological systems.

The Ouachita River in WRPA 5 is one of numerous scenic streams that deserve special recognition and protection because of their natural environmental quality attributes.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

WATER SURFACE AREA NEEDS FOR RECREATION AND ENVIRONMENTIAL QUALITY

Table 37 - Summary of Water Surface Needs, National Income and Regional Development Objectives, Lower Mississippi Region

Part		Regional Development Objective	
The control of the		Ponds Fish and	Streams Streams Fish and
- - - - - - - - - - - - - - - - - - - -	(1,000 Ac.) (1,000 Ac.)	(1,000 Ac.) (1,000 Ac.)	
108 36 108 26 162 36 102 29 145 183 245 29 453 113 453 81 453 1154 794 111 110 37 110 27 116 37 110 27 126 50 256 36 256 36 257 36 31 8 36 43 43 11 43 8 45 11 43 8 45 11 43 8 47 12 61 8 47 12 61 8 47 12 61 8 45 13 45 3 47 14 57 3 48 47 52 44 50 18 6 45 18 45			
245 83 245 60 453 113 455 81 453 113 455 81 110 37 110 27 176 50 256 36 256 50 148 36 148 50 148 36 237 52 43 43 43 11 43 8 43 11 45 8 67 13 67 9 107 56 187 35 107 46 187 35 110 40 310 45 110 40 310 45 110 40 310 45 110 40 310 45 110 40 30 45 120 40 30 45 120 40 30 45 120	117 39	117 28	1,137
	185 45	185 33	1,316
	292 55	292 40	1,611
110 37 110 27 286 50 256 36 176 30 36 36 148 50 148 36 237 527 45 45 31 10 31 8 43 11 43 8 43 11 43 8 45 11 43 8 67 13 67 9 107 36 107 56 1187 45 187 35 1187 45 187 35 1187 46 187 35 1188 46 187 35 204 310 45 30 215 145 30 45 215 141 442 80 442 180 45 142 214 143 737 103 214	271 91	271 66	2,637
	523 128	523 92	3,723
	943 179	943 129	5,196
148 50 148 36 237 59 237 43 31 10 31 8 43 11 43 8 43 11 45 8 43 11 45 8 67 13 67 9 107 36 107 56 107 46 187 35 113 46 187 35 204 51 204 37 204 51 204 37 204 51 204 37 309 60 309 43 442 11 442 80 442 187 143 144 1,947 482 1,947 349	121 40	121 29	1,174
	192 47	192 34	1,366
	297 56	297 41	1,639
31 10 31 8 43 11 43 8 60 12 61 8 28 9 28 7 43 13 67 9 107 36 107 9 1187 46 187 35 1187 46 187 35 125 46 187 35 204 310 43 32 204 31 30 43 256 86 256 62 442 18 737 103 737 143 142 80 1,947 482 1,1,166 284 1,947 482 1,947 349	159 53	159 38	1,545
	273 67	273 48	1,945
	435 83	435 60	2,398
28 9 28 7 43 11 45 8 67 13 67 9 107 36 107 36 1187 35 310 45 135 45 187 35 204 51 204 37 205 60 309 45 256 86 256 62 442 110 442 80 1,166 395 1,166 284 1,947 482 1,947 349	34 11	34 8	323
	45 11	45 8	323
	67 13	67 9	369
107 36 107 26 187 46 187 35 153 46 187 35 204 51 204 35 204 51 204 37 209 60 309 43 256 86 256 62 442 110 442 80 737 143 737 103 1,947 482 1,947 349	31 10	31 8	304
	51 13	51 9	365
	82 15	82 11	442
135 45 133 32 204 51 204 37 209 60 309 45 256 86 256 62 442 110 442 80 737 143 737 103 1,166 395 1,166 284 1,947 482 1,947 349	116 39	116 28	1,129
	211 52	211 37	1,504
	360 68	360 49	1,983
256 86 256 62 442 110 442 80 737 143 737 105 1,166 393 1,166 284 1,947 349	145 48 235 57 353 67	145 35 235 42 353 48	1,396 1,673 1,946
1,166 395 1,166 284 1,947 482 1,947 349	277 93 503 123 856 162	277 67 503 89 856 117	2,705 3,572 4,716
3,154 612 3,154 439	1,269 424	1,269 307	12,350
	2,218 545	2,218 392	15,787
	3,685 698	3,685 504	20,300

Need is for water surface 40 acres and larger, could be satisfied either by lakes, rivers, or large streams. $\frac{1}{2}$ Needs were not developed for WRDA 1, but WRDA 1's resources may satisfy needs.

Table 58 - Summary of Water Surface Area Needs, Environmental Quality Objective, Lower Mississippi Region

Location	Time Frame	Recreation 1/	Fish and Wildlife (1,000 Ac.)	Lakes Natural Environmental Quality Components (1,000 Ac.)	Total (1,000 Ac.)	Ponds Fish and Wildlife (1,000 Ac.)	Rivers and Streams Natural Environmental Fit Quality Components Wi (1,000 Ac.) (Miles) (M	and Stre	Fish and Wildlife (Miles)	Total (MiTes)	Estuaries Fish and Wildlife (1,000 Ac.)
	1980 2000 2020			44 04 04	40 40 40						
	1980 2000 2020	108 162 246	36 36 40	16 16 16	108 162 246	26 29 34	च च च	367 367 3 67	1,052 1,176 1,385	1,052 1,176 1,385	25 27 32
	1980 2000 2020	24S 453 794	83 113 154	중동동	245 453 794	60 81 111	~ ~ ~	570 570 570	2,401 3,275 4,474	2,401 3,275 4,474	56 76 104
	1980 2000 2020	110 176 256	37 41 50	20 20 20	110 176 256	27 30 36	000	000	1,077 1,204 1,442	1,077 1,204 1,442	25 28 33
	1980 2000 2020	148 237 374	50 59 72	3.5 2.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	148 237 374	36 43 52	~~~	547 547 547	1,454 1,716 2,107	1,454 1,716 2,107	54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	1980 2000 2020	31 43 61	10 11 12	5 5 6	31 43 61	∞ ∞ ∞	000	t t	304 308 335	304 308 335	666
	1980 2000 2020	28 43 67	9 11 13	x x x	28 43 67	८ ∞6	ююю	266 266 266	274 315 377	274 315 377	8 9 11
	1980 2000 2020	107 187 310	36 46 60	19 19 19	107 187 310	26 33 43	বৰৰ	342 342 342	1,049 1,345 1,740	1,049 1,345 1,740	158 202 263
	1980 2000 2020	133 204 309	45 51 60	110 110 110	153 204 309	32 57 43	иии	179 179 179	1,305 1,477 1,731	1,305 1,477 1,731	114 129 151
	1980 2000 2020	256 442 737	86 110 143	124 124 124	256 442 737	62 80 103		06 06	2,507 3,204 4,155	2,507 3,204 4,155	503 643 834
	1980 2000 2020	1,166 1,947 3,154	393 482 612	434 434 434	1,206 1,987 3,194	284 349 439	28 28 2 28 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	2,362 2,362 2,362	11,423 14,020 17,746	11,423 14,020 17,746	939 1,167 1,491

1/Need is for water surface 40 acres and larger could be satisfied by lakes, rivers, or large streams.
2/Recreation and Fish and Wildlife Needs were not developed for NRPA I but that area's resource may satisfy needs.

Land Area

More than ever before, land today is called upon to satisfy a multiplicity of competing needs. This competition will intensify with population growth and increasing demands for food and fiber, minerals, industrial products, and recreation sites. Because land use capability is limited, it is imperative that all needs expressed in plan formulation be in terms of commensurate management levels for each land use so that every acre can be efficiently utilized.

The region's finite land resource must be managed so as to satisfy as many as possible of the demands in competition for it.

Land needs presented in the various appendixes span a wide range of management levels. Each land use need has therefore been critically analyzed as a preliminary step to land use allocation and some needs have been adjusted to achieve overall compatibility among identified land needs. These adjustments are discussed in the subsequent narrative.

Land areas are herein classified cropland, permanent pasture, pastured cropland, forest land (including pastured forests), transportation,

urban and built-up lands, mineral lands, recreation lands, fish and wildlife lands, environmental quality lands, and other lands which include not only tracts of agricultural lands unavoidable idle as a part of the cropland mix, but also miscellaneous lands, rural roads, nonforested public lands, and the like. Croplands, pasturelands, and forest lands are used not only for food and fiber production, but also for wildlife purposes. Both open lands and forest lands are used for recreation and environmental quality purposes. Urban and built-up lands are used for residential, commercial, and industrial purposes. They are also used for recreation and environmental quality purposes and include transportation facilities. Other lands are used for a variety of purposes, including fish and wildlife habitat (wetlands), commercial fish farming, and minerals production.

Some lands presently serve several uses. Proper planning for the future involves allocating land so as to serve even more purposes while maintaining diversity.

Present status. In 1970 cropland in the region totaled 17,343,000 acres, or nearly half of the regional land suitable for continuous croping. Approximately 15.6 million acres were harvested and produced

\$1.8 billion in crop marketing receipts. The harvest included 4.3 mil lion bales of cotton, 182 million bushels of soybeans, 91 million bushels of rice, 39 million bushels of corn, 11 million bushels of wheat, 8 million tons of sugarcane, and substantial quantities of other commodities such as food and feed grains, tobacco, sorghum, peanuts, peas, potatoes, and hay. In addition, truck farms have steadily increased their output of vegetables and other fresh farm products in recent years to serve rapidly expanding urban centers in the region. Table 39 shows regional cropland distribution as of 1970.

Table 39 - Cropland Distribution, 1970, Lower Mississippi Region

WRPA	Cropland1/(1,000 Ac.)	Distribution (Percent)
1	188	1
2	6,192	36
3	2,206	13
4	3,314	19
5	732	4
6	1,908	11
7	337	2
8	329	2
9	1,827	10
10	310	2
LMR	17,343	100

^{1/} Data from Conservation Needs Inventory; includes idle cropland.

Future Needs. Regionwide food and fiber production requirements based on 1972 OBERS projections are expected to more than double by year 2020. Satisfaction of these production goals consistent with the satisfaction of competing resource needs will require that land be put into crop production, and further require that agricultural yields be

increased through water resources and land developments such as flood control, drainage, irrigation, and land treatment. Table 40 illustrates the increase in Program A production requirements for the region's major crops. Table 41 summarizes future cropland needs.

The needs expressed herein for cropland represent the amount of land which, in the absence of post-1970 resource development for flood control, agricultural drainage, or supplemental irrigation, must be used for crop production if the region is to contribute at the minimum cost its required share of the Nation's future food and fiber. The methodology for calculating cropland needs (Appendix F, Land Resources) embodies the assumption that the 1970 level of resource development will (with one exception) be maintained throughout the study period, and that major crop enterprises will shift to their least-cost location within limits of land capabilities. The exception is that cropland needs for rice production reflect additional resource development for irrigation essential to that crop. Thus, the expressed future cropland acreages are not land use projections, but rather lands required to produce specified amounts of food and fiber at the minimum cost consistent with soil and resource development restraints. This approach results in quantified cropland needs which are conservative by virtue of the fact that nearly complete mobility of land use is not realistic and is unlikely to prevail. Even supposing that owners are amenable to such changes in land use, in the time frames required, educational considerations alone would preclude attainment of maximum efficiency for many years.

Table 40 - Production Requirements for Selected Crops Related to Food and Fiber, Program A, Lower Mississippi Region

Commodity	Unit of Measurement	1970 Production (1000's)	2020 <u>1</u> / Production Requirements
Cotton	Bale	4,317	4,580
Soybeans	Bushe1	182,109	488,828
Rice	Bushe1	91,495	162,426
Corn	Bushe1	38,851	35,428
Wheat	Bushe1	10,889	67,980
Sugarcane	Ton	8,291	19,109

^{1/ 1972} OBERS data

Soybeans, the number one crop in the region in 1970, accounted for over one-half the total cropland harvested that year.

Hay is a principal crop in the region, ranking behind soybeans, cotton, and rice in number of acres harvested in 1970.

Table 41 - Future Cropland Needs, Lower Mississippi Region $\underline{1}/$

WRPA	Program	1970 ^{2/} Use	Futur 1980	re Need (1,000 2000	Acres)3/ 2020	
		(1,000 Acres)				
1	A B	188	188 188	188 188	188 188	
2	A B	6,192	7,201 7,201	7,618 8,142	7,761 8,216	
3	A B	2,206	2,094 2,094	2,170 2,285	2,346 2,459	
4	A B	3,314	3,545 3,545	4,274 4,662	4,457 4,904	
5	A B	732	592 592	560 625	569 626	
6	A B	1,908	2,225 2,225	2,374 2,566	2,637 2,778	
7	A B	337	197 197	147 170	104 130	
8	A B	329	217 217	170 204	193 216	
9	A B	1,827	2,673 2,673	2,623 2,772	2,578 2,814	
10	A B	310	271 271	250 276	242 265	
LMR	A B	17,343	19,203 19,203	20,374 21,890	21,075 22,596	

^{1/} Based on 1972 OBERS data. See table 50, Appendix F, Land Resources

 $\frac{2}{2}$ / Includes 1,702,000 acres of idle cropland.

Harvested cropland only. Idle cropland for 1980, 2000, and 2020 is included in "other lands" category.

Pasture

Present Status. Nearly 14 million acres of the region's land were pastured in 1970. Of this, 2,871,000 acres were pastured cropland (not included in previously discussed cropland use or needs), 6,782,000 acres were permanent pasture, and 4,207,000 acres were pastured forests. This pasturage supported production of 5,521,700 head of livestock, primarily cattle, calves, and milk cows. WRPA 5 in Arkansas and Louisiana was the leading livestock producer in terms of livestock marketing receipts and in terms of pasture acreage, but ranked fourth in terms of cattle and calves. The bulk of WRPA 5's marketing receipts were from poultry and poultry products. WRPA 4 ranked first in number of cattle and calves, third in livestock marketing receipts, and fourth in pasture acreage. Table 42 provides a summary of pasture land distribution as of 1970.

Table 42 - Lands Used for Pasture in 1970, Lower Mississippi Region

Planning Area	Pastured Cropland (1970 Use Permanent Pasture (1,000 Acres)	Pastured Forests	TOTAL	Distribution (Percent)
1	30	32	135	197	1
2	380	693	365	1,438	11
3	746	929	297	1,972	14
4	326	943	587	1,856	13
5	239	982	947	2,168	16
6	118	494	117	729	5
7	180	941	694	1,815	13
8	54	655	650	1,359	10
9	749	911	383	2,043	15
10	49	202	32	283	2
LMR	2,871	6,782	4,207	13,860	100

pastured cropland

permanent pasture

pastured forests

The three types of pasture lands found in the region are shown above.

Future Needs. Increased production of meat and dairy products and other foodstuffs will be required to feed the future population of the region and the Nation. Needs for beef and veal will increase sharply, almost doubling between 1970 and 1980, and further increasing to about 3.5 times today's production levels in 2020. Need for milk products in 2020 will have increased to about one and one-half today's production levels. Program B requirements are about 7 percent higher than for Program A. Table 43 displays production requirements for Program A. Pastureland acreage requirements are shown in tables 44 and 45, as Appendix F needs and "adjusted" needs. Acreage needs for pastureland presented in the Land Resources Appendix are based on an extension of historical trends, whereas the adjusted figures represent a nearoptimum level of management. Livestock production has been a secondary poorly managed agricultural enterprise in the region except for registered cattle herds. Consequently, adjustment of these needs was required. Proper management practices such as seeding, fertilization, clipping, and proper cattle/acre ratio, were considered in arriving at percentage factors for reducing needed acreages to those levels shown as adjusted needs. This adjustment tends to reconcile pasture needs with those for cropland according to a common management base. Adjustments were made across the board to pastured cropland, permanent pasture, and pastured forests, for both Programs A and B by multiplying the 1980, 2000, and 2020 Appendix F figures by 85, 65, and 50 percent, respectively.

Total regional pastureland needs are expected to be about one and one-half times larger than 1970 use by the year 2000, with still further increases by 2020.

Table 43 - Production Requirements for Beef and Veal, and Milk Products, Program A, Lower Mississippi Region

	Production Requirement	ents, 1000's 1bs. <u>1</u> /
Year	Beef and Veal2/	Milk Products
1970	883,504	1,364,944
1980	1,604,822	1,450,000
2000	2,264,531	1,757,500
2020	3,141,474	2,121,300

^{1/ 1972} OBERS data

^{2/} Net Liveweight

Table 44 - Future Pastureland Needs, Program A, Lower Mississippi Region

		Pastured	Cropland		t Pasture		Forests	Total Pa	isture
WRPA	Year	$\frac{\text{Appx } F^{1/}}{(1,000)}$	Adjusted Acres)	$\frac{\text{Appx } F^{1/2}}{(1,000)}$	Adjusted Acres)	$\frac{\text{Appx } F^{\frac{1}{2}}}{(1,000)}$	Adjusted Acres)		Adjusted Acres)
1	1980	30	30	32	32	135	135	197	197
	2000	30	30	32	32	135	135	197	197
	2020	30	30	32	32	135	135	197	197
2	1980	589	501	370	314	526	447	1,485	1,262
	2000	775	504	491	319	698	454	1,964	1,277
	2020	1,028	514	652	326	927	464	2,607	1,304
3	1980	1,314	1,117	589	501	546	464	2,449	2,082
	2000	1,876	1,219	847	551	787	512	3,510	2,282
	2020	2,628	1,314	1,166	583	1,102	551	4,896	2,448
4	1980	680	578	2,140	1,819	1,262	1,073	4,082	3,470
	2000	1,062	690	3,185	2,070	1,975	1,284	6,222	4,044
	2020	1,519	760	4,558	2,279	2,856	1,428	8,933	4,467
5	1980	658	559	1,007	856	1,233	1,048	2,898	2,463
	2000	895	582	1,356	881	1,677	1,090	3,928	2,553
	2020	1,215	608	1,842	921	2,279	1,140	5,336	2,669
6	1980	234	199	550	468	263	224	1,047	891
	2000	320	208	753	489	360	234	1,433	931
	2020	438	219	1,030	515	493	246	1,961	980
7	1980	371	315	1,198	1,018	1,472	1,251	3,041	2,584
	2000	547	356	1,786	1,161	2,196	1,427	4,529	2,944
	2020	782	392	2,557	1,278	3,130	1,565	6,470	3,235
8	1980	411	349	691	587	724	615	1,826	1,551
	2000	565	367	947	616	1,002	651	2,514	1,634
	2020	782	391	1,299	650	1,375	688	3,456	1,729
9	1980	1,548	1,316	1,261	1,072	796	677	3,605	3,065
	2000	2,128	1,383	1,733	1,126	1,094	711	4,955	3,220
	2020	2,899	1,450	2,357	1,178	1,502	751	6,758	3,379
10	1980	106	90	347	295	69	59	522	444
	2000	146	95	474	308	95	62	715	465
	2020	200	100	649	324	130	65	979	489
LMR	1980	5,941	5,054	8,185	6,962	7,026	5,993	21,152	18,009
	2000	8,344	5,434	11,604	7,553	11,019	6,560	30,967	19,547
	2020	11,522	5,778	16,142	8,086	13,929	7,033	41,593	20,897

^{1/} Based on common mix factor applied to total pasture acreage.
2/ Appendix F, Land Resources, Table 52.

Table 45 - Future Pastureland Needs, Program B, Lower Mississippi Region

		Pastured	Cropland	Permanent	t Pasture	Pastured	Forests	Total Pas	
WRPA	Year	$\frac{\text{Appx F}^{1/}}{(1,000)}$	Adjusted Acres)	Appx $F^{1/2}$ (1,000	Adjusted Acres)	Appx $F^{1/2}$ (1,000	Adjusted Acres)	$\frac{\text{Appx } F^{2/4}}{(1,000)}$	Adjusted Acres)
1	1980	30	30	32	32	135	135	197	197
	2000	30	30	32	32	135	135	197	197
	2020	30	30	32	32	135	135	197	197
2									
2	1980	589	501	370	314	526	447	1,485	1,262
	2000	822	534	521	339	741	482	2,084	1,355
	2020	1,104	552	700	350	995	498	2,799	1,400
3	1980	1,314	1,117	589	501	546	464	2,449	2,082
	2000	2,016	1,310	894	581	845	549	3,755	2,440
	2020	2,822	1,411	1,252	626	1,184	592	5,258	2,629
4	1980	680	578	2,140	1,819	1,262	1,073	4,082	3,470
	2000	1,141	742	3,422	2,224	2,121	1,379	6,684	4,345
	2020	1,632	816	4,895	2,448	3,067	1,533	9,594	4,797
5	1980	658	559	1,007	856	1,233	1,048	2,898	2,463
	2000	961	625	1,456	946	1,802	1,171	4,219	2,742
	2020	1,305	653	1,978	989	2,447	1,224	5,730	2,866
6	1980	234	199	550	468	263	224	1,047	891
	2000	344	224	809	526	387	252	1,540	1,000
	2020	470	235	1,106	553	529	264	2,105	1,050
7	1980	371	315	1,198	1,018	1,472	1,251	3,041	2,586
	2000	587	382	1,919	1,247	2,359	1,533	4,865	3,163
	2020	840	420	2,745	1,372	3,362	1,681	6,947	3,473
8	1980	411	349	691	587	724	615	1,826	1,551
	2000	607	395	1,017	661	1,076	699	2,700	1,755
	2020	840	420	1,395	698	1,477	739	3,712	1,857
9	1980	1,548	1,316	1,261	1,072	796	677	3,605	3,065
	2000	2,286	1,486	1,861	1,210	1,176	764	5,323	3,460
	2020	3,113	1,556	2,531	1,265	1,612	806	7,256	3,627
10	1980	106	90	347	295	69	59	522	444
	2000	157	102	509	331	102	66	768	499
	2020	215	107	697	349	140	70	1,052	526
LMR	1980	5,941	5,054	8,185	6,962	7,026	5,993	21,152	18,009
	2000	8,951	5,830	12,440	8,097	10,744	7,030	32,135	20,957
	2020	12,371	6,200	17,331	8,682	14,948	7,542	44,650	22,424

^{1/} Based on common mix factor applied to total pasture acreage.
2/ Appendix F, Land Resources, Table 52.

Forest Lands

Present Status. In 1970 forests occupied 29,637,000 acres, or nearly half of the total land area in the region. All but 45,000 acres was commercial forest land that supported about 27 billion cubic feet of growing stock. In recent history, there has been a steady conversion of forest acreage to other agricultural uses. Since 1959 the region's total forested acreage has declined an average of 230,000 acres per year. However, the trend has varied among the planning areas, with the greatest decreases in WRPA's 2 and 6, while slight increases have occurred in WRPA's 3, 5, and 7. Table 46 summarizes the present (1970) forested acreage and its distribution in the region.

The major forest types are longleaf-slash pine, loblolly-shortleaf pine, oak-pine, oak-hickory, oak-gum-cypress, and elm-ash-cottonwood. The oak-gum-cypress group, better known as bottom-land hardwoods, is the most plentiful type. Bottom-land hardwoods are located in the Mississippi River Delta and along the region's streams, both in the delta and upland areas, comprising about 30 percent of the total forests in the region.

The oak-gum-cypress (bottomland hardwoods) is the most common forest type in the region.

Table 46 - Forest Lands in Lower Mississippi Region, 1970

$\frac{\text{WRPA}}{\text{(1,000 Acres)}} \frac{\text{Forest Land}^{1}}{\text{(Percent)}}$ 1 879 3	1
1 879 3	
2 2,634 9	
3 2,310 8	
4 3,222 11	
5 10,228 35	
6 831 3	
7 2,509 8	
2,265 7	
9 3,442 12	
LMR 29,637 100	

^{1/} Includes pastured forests.

Future Needs. The requirements for wood and wood products are expected to more than triple by the year 2020. This increase will cause a concomitant increase in the need for forest lands. This need as shown in Appendix F is overstated when viewed within the plan formulation framework that calls for mutually efficient levels of management on all lands. With future management steadily increasing to a level of near 'maximum efficiency of use" of the forest lands, it is estimated that most of the need for timber products in the year 2020 can be met with production from approximately 21.6 million acres, or a little less than half the acreage needs shown in Appendix F for Program A, and on 24.1 million acres using Program B criteria. Transitive production gains from the increased management for forest products would, of course, be less. The adjustment in forest acreage, the result of a WRPA-by-WRPA analysis of productive potential made by forestry experts, varied dramatically throughout the region, depending on a complex interrelationship of many factors. For this reason, no meaningful across-theboard adjusting factor could be determined. Future forest-land needs

for wood production as shown in Appendix F and as adjusted are summarized in table 47 for both Programs A and B.

Other Lands

Present Status. In 1970, 3,506,000 acres of the region's lands were classed as other land. Such lands generally include farmsteads, rural farm roads, feed lots, levees, drainage ditches and ditch banks, fence and hedge rows, rural residences, investment tracts, coastal dunes, and mineral lands. They also include certain specific tracts such as 500,000 acres of marshlands not used for grazing in WRPA 9, 1,552,000 acres of marshland not used for grazing in WRPA 10, 81,000 acres of unforested Federal land in WRPA 5, and 41,000 acres of unforested Federal land in WRPA 10.

Farmsteads and rural farm roads are included in the category "other lands."

Future Needs. Other lands are a unique mix of miscellaneous agricultural and nonagricultural rural lands. Use of and future needs for other lands are keyed to specifically identified land uses. Regional needs for other lands are expected to increase to 1980 as a result of bringing an additional 4 million acres or more into food and fiber production. Thereafter, a steady decline is expected as a result of new

Table 47 - Future Forest Land Needs, Lower Mississippi Region

	m:	Progr		Progr	
WRPA	Time Frame	Appx F	,000 Acres Adjusted1/	Appx F	,000 Acres Adjusted
1	1980	879	879	879	879
	2000	879	879	879	879
	2020	879	879	879	879
2	1980	2,989	1,781	3,153	1,878
	2000	2,609	1,193	2,896	1,324
	2020	2,731	957	3,086	1,081
3	1980	3,495	1,721	3,845	1,892
	2000	2,862	1,423	3,205	1,593
	2020	3,066	1,019	3,465	1,152
4	1980	4,660	2,337	5,033	2,522
7	2000	3,934	1,880	4,406	2,106
	2020	4,326	1,431	4,888	1,616
5	1980	14,071	10,069	14,915	10,668
3	2000	17,273	10,779	19,173	11,965
	2020	19,194	10,956	21,305	12,161
6	1980	1,469	994	1,513	1,024
U	2000	1,605	905	1,701	959
	2020	1,834	881	1,981	952
7	1980	3,296	1,940	3,626	2,133
,	2000	3,475	1,848	3,962	2,106
	2020	3,589	1,797	4,199	2,102
8	1980	3,268	2,170	3,529	2,342
U	2000	3,539	2,176	3,999	2,461
	2020	3,810	2,226	4,305	2,515
9	1980	4,446	1,846	4,757	1,973
,	2000	4,780	1,405	5,258	1,545
	2020	5,135	1,018	5,700	1,130
10	1980	1,553	740	1,677	799
	2000	1,684	537	1,886	601
	2020	1,439	457	1,626	517
I R	1980	40,126	24,477	42,927	26,110
	2000	42,640	23,025	42,927	25,539
	2020	46,003	21,621	51,434	24,105

Adjusted acres reflects total management for maximum wood production efficiency.

farm efficiencies and the conversion of presently idle agricultural lands to productive uses.

WRPA variations in future needs for other lands are, in some cases, attributable to differences in the makeup of agricultural activities. In other cases they are more attributable to the relative constancy of certain component lands, as in the case of the large acreages of marshlands in WRPA's 9 and 10.

Table 48 is a summary of present use and future needs for this land.

Urban and Built-up Lands

Present Status. In 1970 there were 379 cities and towns of 1,000 or more population in the Lower Mississippi Region. These, along with numerous smaller communities and their associated transportation facilities such as highways, airports, etc., occupied about 2.3 million acres of land. Cities and towns with 2,500 or more inhabitants housed a total urban population of 3,734,123. The remaining 2,559,110 people of the region lived in numerous smaller rural towns and communities, or occupied rural farm and nonfarm residences. The 1970 urban and built-up lands are summarized by WRPA in table 49.

Skyline of Memphis, Tennessee, one of several urban centers on the Mississippi River.

Table 48 - Present Use and Future Needs for Other Lands, Lower Mississippi Region

	1070		1/
WRPA	1970 Use	Time Frame	e Needs <u>1</u> / Area
<u></u>	(1,000 Acres)	Time Trans	(1,000 Acres)
1	62	1980	62
		2000	62
		2020	62
2	247	1980	379
		2000	253
		2020	174
3	200	1980	392
		2000	379
		2020	354
4	207	1980	253
		2000	230
		2020	163
5	192	1980	202
		2000	180
		2020	137
6	32	1980	95
		2000	102
		2020	115
7	30	1980	68
		2000	49
		2020	12
8	48	1980	59
		2000	47
		2020	21
9	807	1980	734
		2000	752
		2020	787
10	1,681	1980	1,671
		2000	1,664
		2020	1,653
LMR	3,506	1980	3,915
	, , , , , , , , , , , , , , , , , , , ,	2000	3,718
		2020	3,478

^{1/} Includes idle cropland whereas 1970 use column does not.

Table 49 - Urban and Built-up Land in the Lower Mississippi Region, 1970

WRPA 1	Urban and Built-up (1,000 Acres	Lands
2	367	
3	355	
4	328	
5	440	
6	78	
7	116	
8	182	
9	236	
10	230	
LMR	2,332	

Future Needs. By the year 2020, population of the Lower Mississippi Region is expected to increase to 10,196,000, or to about 1.6 times the 1970 population under Program A projections. For Program B, population is expected to increase to 11,655,000, or about 1.9 times the present population. Concurrent with the population increase and a tenfold increase in industry, the urban-rural balance is expected to shift from 1970's 60 percent urban (places with population of 2,500 or more) to 76 percent urban in 2020. These two parameters represent a substantial aggregate growth in the future needs for land. Table 50 provides a summary of future urban and built-up land needs. Land occupied by urban and built-up areas is expected to be about one and one-half times present such use with Program A growth rates, and about 1.75 times using Program B growth rates.

Commercial Fish Farming

Present Status. About 38 million pounds of catfish and crawfish were produced in the region in 1970 in shallow man-made ponds that collectively occupied 46,000 acres of land. Because the water surface area

Table 50 - Future Needs for Urban and Built-Up Lands, Lower Mississippi Region

<u>WRPA</u>	Time Frame	Program A Need (1,000 Acres)	Program B Need (1,000 Acres)
1	1980	0	0
	2000	0	0
	2020	0	0
2	1980	378	392
	2000	396	448
	2020	459	541
3	1980	401	439
	2000	536	612
	2020	724	843
4	1980	335	357
	2000	361	408
	2020	426	485
5	1980	458	487
	2000	532	605
	2020	647	736
6	1980	79	79
	2000	79	82
	2020	80	88
7	1980	121	133
	2000	136	158
	2020	151	188
8	1980	206	222
	2000	260	292
	2020	3 33	380
9	1980	243	260
	2000	271	307
	2020	314	352
10	1980	260	280
	2000	327	365
	2020	419	476
LMR	1980	2,481	2,649
	2000	2,898	3,277
	2020	3,553	4,089

of these ponds is incidental to fish production, and does not lend itself to multiple use, the areal requirements for commercial fish farming are expressed in terms of land area rather than water surface. Water withdrawal requirements are included in the previous discussions of water needs. Table 51 shows the distribution of the 1970 use of land for commercial fish farming.

Table 51 - Commercial Fish Farming Land Use, 1970, Lower Mississippi Region

WRPA 1	1970 Land Use (1,000 Ac.) 0	Distribution (Percent)
2	16.0	. 35
3	0.6	1
4	11.3	25
5	3.6	8
6	1.4	3
7	0.9	2
8	0.3	1/
9	10.7	23
10	1.2	3
LMR	46.0	100

^{1/} Less than 1 percent.

Future Needs. Commercial fish production is expected to increase more than threefold by the year 2020. This increase applies to both Programs A and B growth rates because future demands under either program exceed the maximum reasonable productivity as now forecasted for commercial fish farming. The expected production from catfish and crawfish farming is discussed in the previous water withdrawal needs summary and in Appendix Q, Fish and Wildlife. Land requirements for

commercial fish farming in 2020 as summarized in table 52 are 3.5 times the 1970 use of land for this purpose.

Land requirements for commercial fish farming are expected to increase greatly in the future.

Recreation Lands

Present Status. There were nearly 100,000 acres of the region's land in a state of development suitable for outdoor recreation in 1970. These lands supported 577 million user-days of various land-dependent recreation activities. Of the total, 16,000 acres were Class A lands, 32,000 acres were Class B lands, and 51,000 acres were Class C lands. (In Appendix N, Recreation, these lands are termed Category A, B, and C lands.) Class A or Category A lands are highly developed areas in or near population concentrations and are high-density use areas. Class B lands are within a reasonable driving time from population concentrations, are of a lower intensity use than Class A lands, and have limited developments. Class C lands are more wilderness-oriented with little or no recreation development, and location with respect to population is not a major consideration. There are no current regional statistics on actual use of these lands, but estimates place 1970 needs

Table 52 - Future Land Needs for Commercial Fish Farming, Lower Mississippi Region

<u>WRPA</u>	<u>Year</u>	Land Needs All Programs (1,000 Acres)
1	1980 2000 2020	0 0 0
2	1980 2000 2020	21 30 40
3	1980 2000 2020	1 2 3
4	1980 2000 2020	20 37 54
5	1980 2000 2020	6 12 18
6	1980 2000 2020	4 9 14
7	1980 2000 2020	1 3 4
8	1980 2000 2020	1 1 2
9	1980 2000 2020	14 20 26
10	1980 2000 2020	2 3 3
LMR	1980 2000 2020	70 117 164

for developed areas at 182,000 acres. In addition to the nearly 100,000 acres of developed recreation lands, there were 1.1 million acres of land under suitable ownership for recreation, but most of these lands had limited access and no development, and most fell within the category of Class C lands.

High quality recreation lands, such as this camping and picnicking area in one of the region's national forests, are often located in areas remote from population concentrations.

Ignoring land classes, there are enough lands available for development to satisfy short term recreation needs on a regional basis. However, major Classes A and B resource inadequacies exist on a WRPA basis due to poor resource distribution relative to population concentrations and due to a lack of development on available acreages.

The most pronounced overcrowding of developed recreation lands presently occurs in and near the major metropolitan areas of New Orleans and Memphis. These cities account for about one-fourth of the region's people, but only 11 percent of the lands developed for recreation are contained in their respective planning areas, 10 and 3.

Table 53 contains a summary of present undeveloped and developed recreation lands, by class, in the region.

Future Needs. Outdoor recreation needs are a function of population, income, and leisure time, each of which is expected to increase substantially over the next 50 years. The 1970 population is expected to increase 1.6 or 1.9 times under Programs A and B growth rates, respectively, by the year 2020. Likewise, per capita income is expected to increase about five times under both programs. Leisure time is expected to increase due to higher incomes and increased worker productivity.

Problems in providing adequate recreation facilities for the increasing population will be compounded by a continued shift of people from rural areas and small towns to major metropolitan centers. This shift in urban-rural population balance will tend to increase present disparities in the distribution of the Classes A and B recreation lands with respect to centers of demand. Future outdoor recreation needs are summarized in table 54. A total of 497,000 acres of developed recreation land will be needed under Program A growth rates by the year 2020; and about 580,000 acres will be needed under Program B growth rates.

Fish and Wildlife Land

Present Status. Wildlife range over most of the land area in the region and migratory waterfowl depend upon the wetlands and water bodies for resting areas. Approximately 12.9 million acres, or 21 percent, of the region's lands are dedicated in varying degrees to wildlife and waterfowl management. These lands are available to the public for hunting purposes. They consist of State and Federal forests, public game preserves and refuges, public hunting areas, and privately owned lands which are available for hunting purposes. The status of these lands will probably not change in this regard within the study time frame. Slightly over 2 million acres of the total are completely controlled by State or Federal interests either by ownership or firm leasing arrangements.

Open and wooded wetlands in the Lower Mississippi Region make an important contribution to maintaining migratory waterfowl populations, being the primary wintering area for the bulk of the Mississippi flyway population. Migratory waterfowl not only satisfy national needs, but also international needs, the importance of which are recognized by treaties.

Wildlife management on public lands has become a highly effective measure in providing game for public hunting and in conserving wildlife populations as an inheritance for future generations. Because of this management, there are now more deer in the region than are thought to have existed at any other time. Also, previously decimated species, such as the American alligator, are being reintroduced to parts of the region.

Table 53 - Status of Recreation Lands in Lower Mississippi Region, 1970

	Unde	eveloped Supply	(1,000 Acres)				ecreation (1,000	Acres)
WRPA	Class A	Class B	Class C	Total	Class A	Class B	Class C	Total
12/	0	0	0	0	0	0	0	0
2	32.6 3/	27.0	39.74/	99.3	6.1	14.1	0.6	20.8
3	9.8 4/	$39.9^{4/}$	9.2	58.9	2.9	4.7	0.2	7.8
4	4.2	$13.8^{4/}$	264.0	282.0	0.8	1.9	26.0	28.7
5	18.9 4/	16.5	341.2	376.6	2.6	4.5	23.8	30.9
6	6.1 4/	16.14/	0.0	22.2	0.5	0.7	0.0	1.2
7	3.0 4/	38.84/	210.0	251.8	0.4	0.7	0.1	1.2
8	2.4 4/	5.7	0.0	8.1	0.5	1.7	0.0	2.2
9	1.3	10.8	7,8	19.9	1.3	1,9	0.2	3.4
10	2.0	6.3	0.1	8.4	1,3	1.7	0.0	3.0
LMR	80.3	174.9	872.0	1,127.2	16.4	31.9	50.9	99.2

^{1/} Lands in public ownership suitable for recreation use and/or development and use. Location may not be suitable, however.
2/ Included in bordering WMPA's.
3/ Location unsuitable
4/ Location partially unsuitable.

Table 54 - Future Land Needs for Outdoor Recreation, Lower Mississippi

			Program A	(1,000 Acres)				Program B (1,000 Acres)					
WRPA	Time Frame	Class A	Class B	Class C	Total	Class A	Class B	Class	Total				
-					22.8	7.1	15.1	0.6	23.3				
2	1980	7.1	15.1	0.6		9.6	16.6	0.8	27.0				
	2000	8.4	15.1	0.7	24.2	14.4	24.8	1.1	40.3				
	2020	12.1	20.8	0.9	33.8	14.4	24.0	1.1	30.40				
	No.		23.8	1.2	38.8	15.3	26.3	1.3	42.9				
3	1980	13.8			65.9	27.2	46.8	2.2	76.2				
	2000	23.5	40.5	1.9	109.2	46.4	80.0	3.5	129,9				
	2020	39.0	67.2	3.0	109.2	40.4	00.0	510					
	1980	3.8	6.2	26.0	36.0	4.2	6.8	26.1	37,1				
4		5.4	8.8	32.1	46.3	6.3	10.2	36.9	53.4				
	2000	8.0	13.0	45.5	66.5	9.3	15.2	52.8	77.3				
	2020	8.0	10.0	40.0				23.8	41.6				
5	1980	6.1	10.5	23.8	40.4	6.6	11.2						
2	2000	9.1	15,5	31.5	56.1	10.4	17.8	36.3	64.5				
	2020	13.5	23.1	46.9	83.5	15.8	26.9	54.7	97.4				
	2020	15.5											
6	1980	1.7	3.0	0.2	4.9	1.9	3.2	0.2	5.3				
0	2000	2.2	3.8	0.2	6.2	2.4	4.1	0.2	6.7				
	2020	2.9	5.1	0.2	8.2	3.3	5.7	0.3	9.3				
	2020					1.8	3.0	0.1	4.9				
7	1980	1.6	2.7	0.1	4.4		4.6	0.2	7.5				
	2000	2.2	3.9	0.2	6.3	2.7		0.3	11.0				
	2020	3.3	5.7	0.3	9.3	3.9	6.8	0.5	11.0				
			10.7	0.5	16.9	6.5	11.3	0.6	18.4				
- 8	1980	6.0	10.4		27.0	11.0	18.9	0.9	30.8				
	2000	9.6	16.6	0.8	42.8	17.7	30.5	1.3	49.				
	2020	15.3	26.3	1.2	42.0	1/1/	50.0	***					
		7.5	12.9	0.6	21.0	8.1	13.9	0.7	22.7				
9	1980		18.3	0.9	29.8	12.2	21.0	1.0	34				
	2000	10.6	26.0	1.1	42.2	17.4	29.9	1.3	48.0				
	2020	15.1	20,0	1.1	42.12	*****							
10	1980	14.4	24.9	1.2	40.5	15.6	27.0	1.3	43.9				
10	2000	23.0	39,6	1.8	64.4	26.1	45.0	2.1	73.				
		36.3	62,4	2.7	101.4	42.1	72.6	3.2	117.5				
	2020	36.3	02.4	4.17									
	****	62,0	109.5	54.2	225.7	67.6	117.8	54.7	240 . 373.				
MR	1980		161.5	70.1	326.2	107.9	185.0	80.6	5/3.				
	2000	94.0 145.5	249.6	101.8	496.9	170.3	292.4	118.5	581				

^{1/} WAPA I has no expressed need since there is assumed to be no population in that area.

Future fish and wildlife habitat needs will far exceed available resources in most parts of the region. Better management of the resources will help to reduce this disparity.

Hunters today make up a smaller portion of the regional population than they did in years past, but their absolute numbers have increased. They have more income and leisure time, and are exerting more pressure on the wildlife and waterfowl resource than ever before. Problems in meeting the needs of these sportsmen stem from continuing losses of wildlife habitat and from a general lack of access to areas providing such habitat for hunting. Statistics indicate that present waterfowl populations are using nearly all available habitat while the waterfowl population has been generally well below expected or target population. Some of the most productive wildlife lands in the region, the bottomland hardwoods, are being cleared at a rapid rate, and regional wildlife populations will eventually be reduced.

Those lands which are considered a part of the firm supply of productive wildlife habitat and public hunting lands are summarized in table 55. Firm supply is defined as that portion of the resource currently used for needs satisfaction and not likely to change status over the period of study.

Table 55 - Lands Dedicated to Wildlife Habitat, 1970, Lower Mississippi Region

		Firm Supply (1,000 Acres)	
WRPA	Public1/	Private	Total
1	131	0	131
2	517	738	1,255
3	195	2,973	3,168
4	307	927	1,234
5	871	1,396	2,267
6	52	0	52
7	271	278	549
8	5	964	969
9	829	1,060	1,889
10	188	1,172	1,360
LMR	3,366	9,508	12,874

 $[\]underline{1}/$ Some 2 million acres of this total are primary use fish and wildlife lands.

Future Needs. Here again, as in the case of outdoor recreationists, a growing population of hunters with higher incomes and more leisure time will increase regional needs for huntable game and waterfowl. Table 56 provides a summary of the future wildlife habitat needs as shown in Appendix Q and as adjusted to a common management base for compatibility with other land uses. Future needs for wildlife habitat as shown in the Fish and Wildlife Appendix are based on an inefficiently managed resource. Therefore, the needs in this category, as in pastureland and forests, were adjusted to reflect an efficient level of management. Such adjustment resulted in a reduction in need of about 30 percent. However, even the adjusted habitat requirements reflect a need for 70 to 80 percent of the region's total land area by 2020. The magnitude of the needs poses an even greater problem when the mix of habitat types and needs are examined on a WRPA basis. For example, there is a regional habitat need in 2020 under Program B for 30,522,000

Table 56 - Future Wildlife Habitat Needs, Lower Mississippi Region

WRPA	Time	Progr	am A	Progr	am B
	Frame	Appx Q	Adjusted	Appx Q	Adjusted
		(1,000	Acres)	(1,000	Acres)
2	1980	3,698	2,589	3,973	2,781
	2000	4,103	2,872	4,591	3,214
	2020	4,832	3,382	5,538	3,877
3	1980	8,380	5,866	9,198	6,469
	2000	11,416	7,991	12,987	9,091
	2020	15,609	10,926	18,109	12,676
4	1980	3,756	2,629	4,102	2,871
	2000	4,202	2,941	4,762	3,333
	2020	5,033	3,523	5,649	3,954
5	1980	5,070	3,549	5,390	3,773
	2000	5,986	4,190	6,786	4,750
	2020	7,348	5,144	8,363	5,854
6	1980	1,061	743	1,131	792
	2000	1,074	752	1,131	792
	2020	1,171	820	1,283	898
7	1980	964	675	1,060	742
	2000	1,099	769	1,278	895
	2020	1,321	925	1,543	1,080
8	1980	3,658	2,561	3,941	2,759
	2000	4,687	3,281	5,243	3,670
	2020	6,096	4,267	6,916	4,841
9	1980	4,503	3,152	5,818	3,373
	2000	5,091	3,564	5,767	4,037
	2020	5,972	4,180	6,709	4,696
10	1980	8,639	6,047	9,329	6,530
	2000	11,046	7,732	12,278	8,595
	2020	14,319	10,023	16,259	11,381
LMR	1980	39,729	27,811	42,942	30,059
	2000	48,704	34,092	54,823	38,376
	2020	61,701	43,190	70,369	49,258

acres of bottom-land hardwoods, nearly half of the region's area, or roughly three times the hardwoods which exist today. The 2020 Program B unadjusted need for habitat in WRPA 3, as another example, is 12,937,000 acres, which is nearly twice the total area in WRPA 3. The expressed need for bottom-land hardwoods habitat alone in this WRPA is over 7 million acres.

Mineral Lands

Present Status. In 1970, mineral production land in the region totaled 67,000 acres. About 40 percent of this acreage was used in connection with metallic and nonmetallic minerals production in WRPA 2, with much of the use in stone, sand, and gravel open-pit mining operations. An additional 20 percent of the total mineral production land was in WRPA 10, and was about evenly divided between production of oil and natural gas and nonmetallic minerals - primarily sulfur, salt, and construction materials. As shown in table 57, some land was used in all WRPA's for mineral production in 1970.

Measures need to be taken to restore topography and vegetation of strip mining lands. The lands above will be reclaimed by planting lespedeza and pine.

Table 57 - Mineral Land Use, 1970, Lower Mississippi Region

											_
WRPA1/	2	3	4	5	6	7	8	9	10	LMR	
<u>Use (1,000 Ac.)</u>	26	2	3	8	2	1	4	7	14	67	

1/ Lands used in WRPA 1 are included in bordering WRPA's.

Future Needs. Needs for all mineral commodities are expected to increase dramatically over the next 50 years. The total value of production will double under Program A growth rates, and almost quadruple under Program B growth rates. Aggregate mineral land needs in 2020 are expected to be about 2.7 times present use under Program A and about 3.8 times present use for Program B. WRPA's 2, 10, and 9 will remain the major mineral producing areas in the region, collectively accounting for 80 percent of the total in 2020. Table 58 summarizes future land area needs for mineral production.

Table 58 - Future Mineral Land Needs, Lower Mississippi Region

			Need (1,0	00 Acres)		
		Program A			Program B	
WRPA	1980	2000	2020	1980	2000	2020
2	35	56	87	40	71	118
3	4	9	14	4	9	14
4	3	4	5	4	6	7
5	9	9	10	10	12	15
6	2	3	4	2	3	5
7	1	1	1	1	1	2
8	5	6	8	5	7	9
9	11	16	24	11	18	26
10	_17	23	_30	24	40	_57
LMR	87	127	183	101	167	253

Environmental Quality Lands

Present Status and Needs. There are 12,283,000 acres of rural land in the region known to possess special environmental quality attributes. These lands are composed of near-wilderness areas, wetlands, unique geological features, unique botanical areas, unique ecological systems, beaches and shores, bottom-land hardwood forests, and lands bordering scenic lakes, river, and streams as itemized below:

Component	Acres
Near-Wilderness	659,000
Wetlands	1,030,000
Unique geological systems	850,000
Unique ecological systems	174,000
Beaches and shores	176,000
Bottom-land hardwood forests	10,851,000
Lands bordering scenic lakes and streams	144,000

Some of these acreage totals fall within more than one category of environmental quality needs and are therefore double counted. The double counting is identified in the gross need column in table 59. Only 7,316,000 acres of the environmentally significant rural lands are expected to remain in their present status during the entire study period. These are summarized as available supply in table 59. This means that special treatment will be required to preserve the remaining 4,967,000 acres (net needs) as an inheritance for future generations.

In addition to the rural lands, there are 13,000 acres of environmentally significant open and green space in urban areas. These need to be maintained and an additional 108,000 acres of open and green space needs to be created in urban areas.

Table 59 - Summary of Land Areas Needed for Environmental Quality Purposes, Lower Mississippi Region

				Gr	oss Needs (1	,000 Acres)-/		Other A	reco s	
lanning Area & and Classification	Scenic Rivers	Lakes	Wilderness Areas	Wetlands	Botanical	000 Acres) 1/2 Inique Systems Geological	Ecological	Wooded	Open	<u>Total</u>
RPA 1 Bottomland Hardwood Forest		6						873		879
RPA 2	10	1	$\frac{24\frac{2}{4}}{20\frac{4}{4}}$			(91)3/	120	965	-	1,128
Bottomland Hardwood Forest Other Forest	18	-	204/	-		3304/		-		350 158
Pasture	-	-	-	-		1574/	1		8	8
Urban						100			8	1,644
Total	18	1	44	-		487	121	965	0	1,044
RPA 3	28	1		64				703		796
Bottomland Hardwood Forest Urban	-	-						-	3.4	34
Total	28	1	-	64	-			703	34	850
RPA 4							10			1,148
Bottomland Hardwood Forest	-	2	. 5			ī	10	1,131	-	1
Other Forest	-	-						-	8	8
Urban			-	-		1	10	1,131	8	1,157
Total	-	2				1	10	1,151		.,
RPA 5 Bottomland Hardwood Forest	28	1	15			2	20	2,296		2,362
Other Forest	-		10			20		-	13	30 13
Urban	-	-							_	-
Total	28	1	25			22	20	2,296	13	2,405
NRPA 6		1						755	-	- 750
Bettomland Hardwood Forest Urban		-	-		1511 - 155				2	
Miscellaneous	-	-	-		5/	-			-	-
Total		1			5/			755	2	75
VRPA 7								100		49
Bottomland Hardwood Forest	1.3	1	20		-		3	462		1
Other Forest	-	-	10					-	1	
Urban Miscellaneous						1				
Total	13	1	30		-	1	3	462	1	51.
WRPA 8								74.0		98
Bottomland Hardwood Forest	17	1	7 -		2	200	-	968		20
Other Forest	-				-			-		
Pasture Urban									12	1
Miscellaneous	-				5	-		-	-	-
Total	17	1		-	. 2	203		968	12	1,20
WRPA 9				6/ 966	7/	3		343		1,32
Bottomland Hardwood Forest	9			2 966	- 5			-	-	
Other Forest Urban					-				12 16	
Miscellaneous					500	-			-	-
Total	9		(555)	966	500) 6		343	28	1,8
WRPA 10								962		97
Bottomland Hardwood Forest	4						-			
Other Forest Urban						-			31 160	10
Miscellaneous						5/	-		-	Contract of
Total	4		4 -			1 5/		962	191	1,10
Region Bottomland Hardwood Forest	117	. 2	1 64	1,030	,	. 7	153	9,458		10,8
Bottomland Hardwood Forest Other Forest	11/	-	100			551		-		51
Pasture						. 158	1		121	1.
Urban	-				50	0 4			176	6
Miscellaneous	-				_			0.400	297	12,4
Total	117	7 2	1 104	1.03	50.	3 720	154	9,458	237	12,4

Table \$9 - Summary of Land Areas Needed for Environmental Quality Purposes, Lower Mississippi Region (Cont'd)

					1970 Supply	(1,000 Acres				
Planning Area &	Scenic		Wilderness			Unique System			Areas	
Land Classification	Rivers	Lakes	Areas	Wetlands	Botanical	Geological	Ecological	Wooded	Open	Tota
WRPA 1 Bottomland Hardwood Forest		.0						0		
NRPA 2 Bottomland Hardwood Forest	0	0	94/			(41)3/	54	67		1.3
Other Forest	-	-	0		-	1554/				13
Pasture		-				0	Y (
Urban			-		-				7	-
Total	0	0	9			155	54	07		.25
WRPA 3 Bottomland Hardwood Forest Urban	3	0		11				117	- 3	13
Total	3	0	-	11	-			117	3	13
NRPA 4										
Bottomland Hardwood Forest		0	0		-		0	947		94
Other Forest				-		0	-		-	
Urban				-					0	-
Total	-	0	0.		10111111	0	0	947	. 0	9.
WRPA 5										
Bottomland Hardwood Forest	14	0	0		-	.0	15	1,901	-	1,93
Other Forest	-	-	0	-	-	-			0	
Urban		-				-			-	
Total	14	0	0			. 0	15	1,901		1,9
VRPA 6										
Bottomland Hardwood Forest	-	0	-					609	0	6
Urban Miscellaneous	-		-		5/					
Total	-	0			5/			609	0	6
			-		127			002		
WRPA 7 Bottomland Hardwood Forest	0	0	0				0	407		4
Other Forest		-	- 0				-			
Urban				-	-				. 0	
Miscellaneous	-	-	-			0				-
Total	0	0.	0	-	-	0	0	407		4
VRPA 8										
Bottomland Hardwood Forest	8	0	-		-	0	-	792		
Other Forest	-			-	0	0		-		
Pasture Urban						0			1	
Miscellaneous					5/				-	
Total	- 8	0		-	0	0		792	1	
RPA 9	6	0	(453) 6	7538	/ 0			321		1,0
Bottomland Hardwood Forest Other Forest	-		(+55)-	/33=	5/			364		.,.
Orban		-					-		1	
Miscellaneous	-			-	300	0	-	-	- 0	- 3
Total	6	0	(453)	753	300	0		321	7	1,3
NRPA 10										
Bottomland Hardwood Forest	.4	0	-			-		776	-	- 1
Other Forest	-				0		e de la companya de l	-	1	
Urban						6.7			41	
Miscellaneous Total	4	0			0	5/		776	42	-
	•	O				2/			71.00	
Region Bottomland Hardwood Forest	35	0	9	764		0	69	5,937		6,1
Other Forest	-	-	0		0	155		.,	-	
Pasture			-			0	0		-	
Urban	-						-	-	13	
Miscellaneous	-				300	0		-	47	
Total	35	0	9	764	300	155	69	5,937	60	7.3

^{1/} through 7/ see page 126 $\overline{8}/$ 335,000 acres qualify as botanical systems.

Table 59 - Summary of Land Areas Needed for Environmental Quality Purposes, Lower Mississippi Region (Cont'd)

			to		Net Need	is (1,000 Acre	25)			
lanning Area & and Classification	Scenic Rivers	Lakes	Wilderness Areas	Wetlands	Botanical	is (1,000 Acre Inique System Geological	s Ecological	Other Wooded	Areas Open	Total
RPA 1										
Bottomland Hardwood Forest		6						873	*	875
RPA 2 Bottomland Hardwood Forest	18	1	159/ 20			(50)3/	0.0	898		998
Other Forest	-		203/			17547				193
Pasture	-		-			1574/	1		-	158
Urban					-				1	
Total	18	1	35	-	-	332	67	898	1	1,352
RPA 3										
Bottomland Hardwood Forest Urban	25	1		53				586	31	565
Tota1	25	1	-	53				586	31	696
RPA 4										
Bottomland Hardwood Forest	-	2	5	-			10	184	-	201
Other Forest			-			1		-		
Urban			-				-		- 8	- 8
Total	-	2	5			1	10	184	8	216
RPA 5	14	1				2	5	395		432
Bottomland Hardwood Forest Other Forest	14	1	15 10			20	3	252		30
Urban			10					-	13	13
Total	14	1	25		-	22	5	395	15	473
RPA 6										
Bottomland Hardwood Forest	-	1			-			146	-	147
Urban	-		-	-		-		-	2	1
Miscellaneous					5/	-			-	5
Total		1	-	-	5/			146		141
RPA 7										
Bottomland Hardwood Forest	13	1	20	-			3	55	-	92
Other Forest	-	-	10		-				-	10
Urban Miscellaneous	-	- 3	-	-	-	1		-	1	1
		-	-	****	name or a		-			
Total	13	1	20			1	3	55	1	104
RPA 8 Bottomland Hardwood Forest	9	1				2		176		188
Other Forest		1			2	200		110	-	202
Pasture	-		-	-	-	1		-	-	
Urban		-	-		-		-		11	11
Miscellaneous	-		-	-	5/	-	-	-		-
Total	9	1	-		2	203		176	11	40.
RPA 9			(100.6/	21310)/			17		244
Bottomland Hardwood Forest	3	3	(102) 6 /	213-	E/	3		22		
Other Forest Urban					5/					1
Miscellaneous		-			200	3			$\frac{11}{10}$ 11/	213
Total	3	3	(102)	213	200	6	-	22	21	468
RPA 10										
Bottomland Hardwood Forest	0	4						186	-	190
Other Forest	-	-			1			-	-	
Urban	-	-					**		119 <u>11</u> /	3(
Miscellaneous	-			-		5/	-		11911/	_ 119
Total	0	4			1	5/		186	149	340
egion Bottomland Hardwood Forest										
Bottomland Hardwood Forest	80	30	55	266	- 1	. 7	84	3,514		4,036
Other Forest			40		3	396		-	*	439
Pasture				1-5		158	1		108	159
Urban Miscellaneous					200	4		1 1 1	129	333
PRINCELEGRICULE		a contract of		AND DESCRIPTION OF THE PARTY OF	200		-		1.40	
Total	80	30	95	266	203	565	85	3,514	237	5,07

If through // see page 126.

5/ see page 127.

9/ 20,000 acres qualify as ecological systems.

10/ 51,000 acres qualify as botanical systems.

11/ Beaches and shores.

Most of the lands possessing special environmental quality attributes are found in bottomland hardwood forests such as this.

Summary of Land Needs

The region's land use configuration of 1970 and future needs for land by category and primary objective are recapitulated in table 60. Tables 61, 62, and 63 provide future needs information on a WRPA basis for each objective.

High priority land needs for food and fiber production and for transportation, urban and built-up purposes will exceed the land resource base of the region before the year 2000. The total 1980 Program A need of 62,092,000 acres for these land uses is only 379,000 acres less than the total land resource of the region. The 1980 Program B need is 63,893,000 acres, which makes for a resource deficiency of 1,422,000 acres. By the year 2020, these primary land use needs will have increased to 63,591,000 acres under Program A growth rates for a resource deficiency of 1,120,000 acres, or to a total of 69,150,000 acres under Program B projections for a resource deficiency of 6,679,000 acres. The Environmental Quality Program needs fall between those for Programs A and B, being closer to Program A.

Table 64 summarizes the total primary land needs for each objective on a WRPA basis. Exclusive use environmental quality component acreages are counted in the primary needs for that objective. On figure 7 is shown the relative differences between 1970 land use and 2020 land needs.

Table 60 - Summary of Land Use in 1970 and Future Land Needs, Lower Mississippi Region

			se and Nee	ds (1,000 A	res)
Category	Objective 1/	1970 Use 2/	Futu 1980	re Need (Ad 2000	2020 2020
Cropland	NI, EQ RD	17,343	19,203 19,203	20,374 21,890	21,075 22,596
Pastured Cropland	NI, EQ	2,871	5,054 5,054	5,434 5,830	5,778 6,200
Permanent Pasture	NI, EQ	6,782	6,962 6,962	7,553 8,097	8,086 8,682
Pastured Forests3/	NI, EQ	4,207=	5,993 <u>3/</u> 5,993	$6,560\frac{3}{7,030}$	7,033 <u>3.</u> / 7,542
Other4/	NI, EQ RD	3,506	3,915 3,915	3,718 3,718	3,478 3,478
Forestland	NI, EQ RD	29,637	24,477 26,110	23,025 25,539	21,621 24,105
Transportation, Urban & Built-up	NI, EQ	2,332	2,481 2,649	2,898 3,277	3,553 4,089
Tota1	NI, EQ	62,4715/	62,092 63,893	63,002 67,955	63,591 69,150
Recreation	NI, EQ RD	99	226 240	326 374	497 581
Fish & Wildlife	NI, EQ	12,874 /	27,811 30,059	34,092 38,376	43,190 49,258
Minerals	NI, EQ	67	87 101	127 167	183 253
Fish Farming	NI, EQ	46	70 70	117 117	164 164
Environmental	NI, EQ, RD	-	12,404	12,404	12,404

^{1/} NI-National Income; RD-Regional Development; EQ-Environmental Quality.

^{2/} The study's base definition of land use is that presented in Appendix F, Land Resources, which contains only the first seven categories listed below plus large and small water areas. These categories collectively account for the entire aerial extent of the region. This does not mean that other listed categories of land use are not also primary users of the region's lands now or that they will discontinue being primary users in the future.

^{3/} Included in Forestland acreage.
4/ Includes 2,052,000 acres of marshlands in WRPA's 9 and 10.
5/ An additional 3,067,000 acres of the region are in water areas.
6/ 2,021,394 acres of this total were primary use fish and wildlife lands in 1970.

Table 61 - Summary of Future Land Needs, National Income Objective, Lower Mississippi Region

	1	Minerals	00 00	35 56 87	4 6 41	15 4 12	660	284		\$ 0.0	11 16 24	V K 0	3.7.2
	-										777	23	87 127 183
		Wildlife	0000	2,589	5,866 7,991 10,926	2,629 2,941 3,523	3,549 4,190 5,144	743 752 820	675 769 925	2,561 3,281 4,267	3,152 3,564 4,180	6,047 7,732 10,023	27,811 34,092 43,190
	Other	Recreation	0000	25 24 34	39 66 109	36 46 67	40 56 84	N O 80	496	17 27 43	21 30 42	41 64 101	226 326 497
		Commercial Fish Farming	000	21 30 40	357	20 37 54	6 12 18	4 9 14	п к 4	2	75 70 70 70 70	пин	70 117 164
res)		Transportation tation Urban G Built-up	000	378 396 459	401 536 724	335 361 426	458 532 647	79 79 80	121 136 151	206 260 333	243 271 314	260 327 419	2,481 2,898 3,553
(1,000 Acres)		Forestland	879 879 879	1,781 1,193 957	1,721 1,423 1,019	2,337 1,880 1,431	10,069 10,779 10,956	994 905 881	1,940 1,848 1,797	2,170 2,176 2,226	1,846 1,405 1,018	740 537 457	24,477 23,025 21,621
		Permanent Pasture	32 32 32	314 319 326	501 551 583	1,819 2,070 2,279	856 881 921	468 489 515	1,018 1,161 1,278	587 616 650	1,072 1,126 1,178	295 308 324	6,962 7,553 8,086
	iber	Pastured Forests	135 135 135	447 454 464	464 512 551	1,073 1,284 1,428	1,048 1,090 1,140	224 234 246	1,251 1,427 1,565	615 651 688	677 711 751	59 62 65	5,993 6,560 7,033
	Food and Fiber	Pastured Cropland	30 30 30	501 504 514	1,117 1,219 1,314	578 690 760	559 582 608	199 208 219	315 356 392	349 367 391	1,316 1,383 1,450	90 95 100	5,054 5,434 5,778
		Other Agricultural	62 62 62	379 253 174	392 379 354	253 230 163	202 180 137	95 102 115	68 49 12	59 47 21	734 752 787	1,671 1,664 1,653	3,915 3,718 3,478
		Cropland	188 188 188	7,201 7,618 7,761	2,094 2,170 2,346	3,545 4,274 4,457	592 560 569	2,225 2,374 2,637	197 147 104	217 170 193	2,673 2,623 2,578	271 250 24 2	19,203 20,374 21,075
		Time	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020
		WRPA	-	7	n	4	S	9	7	∞	on.	10	LVR

1/ Included in Forestland.
2/ No needs are generated within WRPA I but the WRPA satisfies needs in other areas.
3/ Included in adjoining WRPA's.

Table 62 - Summary of Future Land Needs, Regional Development Objective, Lower Mississippi Region

				-		(1,000	O Acres	s				
			FC	Food and Fiber	er				0	Other		
WRPA	Time	Cropland	Other Agricultural	Pastured Cropland	Pastured Forests	Permanent Pasture	Forestland	Transpor- tation, Urban & Built-up	Commercial Fish Farming	Recreation	Wildlife	Minerals
-	1980 2000 2020	188 188 188	62 62 62	30 30 30	135 135 135	32 32 32	879 879 879	000	000	0 0 0	7700	्ट्री २०
74	1980 2000 2020	7,201 8,142 8,216	379 253 174	501 534 552	447 482 498	314 339 350	1,878 1,324 1,081	392 448 541	21 30 40	23 27 40	2,781 3,214 3,877	40 71 118
2	1980 2000 2020	2,094 2,285 2,459	392 379 354	1,117 1,310 1,411	464 549 592	501 581 626	1,892 1,593 1,152	439 612 843	3 2 1	43 76 130	6,439 9,091 12,676	4 6 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4	1980 2000 2020	3,545 4,662 4,904	253 230 163	578 742 816	1,073 1,379 1,533	1,819 2,224 2,448	2,522 2,106 1,616	357 408 485	20 37 54	37 53 77	2,871 3,333 3,954	497
S	1980 2000 2020	592 625 626	202 180 137	559 625 653	1,048 1,171 1,224	856 946 989	10,668 11,965 12,161	487 605 736	6 12 18	42 65 97	3,773 4,750 5,854	10 12 15
0	1980 2000 2020	2,225 2,566 2,778	95 102 115	199 224 235	224 252 264	468 526 553	1,024 959 952	79 82 88	4 9 14	27.6	792 792 898	288
7	1980 2000 2020	197 170 130	68 49 12	315 382 420	1,251 1,533 1,681	1,018 1,247 1,372	2,153 2,106 2,102	133 158 188	4 3 1	5 8 11	742 895 1,080	5 1 1
œ	1980 2000 2020	217 204 216	59 47 21	349 395 420	615 699 739	587 661 698	2,342 2,461 2,515	222 292 380		18 31 50	2,759 3,670 4,841	87.6
ō	1980 2000 2020	2,673 2,772 2,814	734 752 787	1,316 1,486 1,556	677 764 806	1,072	1,973 1,545 1,130	260 307 352	14 20 26	23 34 49	3,373 4,037 4,696	11 18 26
10	1980 2000 2020	271 276 265	1,671 1,664 1,653	90 102 107	59 66 70	295 331 349	799 601 517	280 365 476	288	44 73 118	6,530 8,595 11,381	24 40 57
LMR	1980 2000 2020	19,203 21,890 22,596	3,915 3,718 3,478	5,054 5,830 6,200	5,993 7,030 7,542	6,962 8,097 8,682	26,110 25,539 24,105	2,649 3,277 4,089	70 117 164	240 374 581	30,059 38,376 49,258	101 167 253

1/ Included in forestland. 2/ No need is generated within WRPA 1, but the WRPA satisfies needs in adjacent areas. $\overline{3}$ / Included in adjoining WRPA's.

Table 63 - Summary of Future Land Needs, Environmental Quality Objective, Lower Mississippi Region

			EHVI	ronmental Quali	ty (1,000 ACI	Total	EQ
ann i	/m·	11-1	Permanent		2.1	EQ	Exclusive
NRPA,	Time	Urban	Pasture	Forests	Other	Lands	Use
1	1980	0	0	879	0	879	0
	2000	0	0	879	0	879	0
	2020	0	0	879	0	879	0
2	1980	8	$158(1)^{\frac{1}{2}}$	1,478(120)	0	1,644	121
-	2000	8	158(1)	1,478(120)	0		
						1,644	121
	2020	8	158(1)	1,478(120)	0	1,644	121
3	1980	34	0	796(1)	0	830	1
	2000	34	0	796(1)	0	830	1
	2020	34	0	796(1)	0	830	1
4	1980	8	0	1,149(15)	0	1,157	15
7	2000	8	0	1,149(15)	0	1,157	15
		8	0				
	2020	8	U	1,149(15)	0	1,157	15
5	1980	13	0	2,392(30)	0	2,405	30
	2000	13	0	2,392(30)	0	2,405	30
	2020	13	0	2,392(30)	0	2,405	30
6	1980	2	0	756	0	758	0
	2000	2	0	756	0	758	0
	2020	2	0	756	0	758	0
7	1980	1	0	509(30)	1(1)	511	31
,	2000	1	Ö	509 (30)	1(1)	511	31
	2020	1	0	509 (30)	1(1)	511	31
	2020	1	O	309 (30)	1(1)	311	31
8	1980	12	1(1)	1,190(2)	0	1,203	3
	2000	12	1(1)	1,190(2)	0	1,203	3
	2020	12	1(1)	1,190(2)	0	1,203	3
9	1980	12	0	1,324(555)	$519\frac{2}{3}$	1,855	5552
	2000	12	0	1,324(555)	5192	1,855	555
	2020	12	0	1,324(555)	5192/	1,855	5552
10	1980	31	0	971(1)	160	1,162	1
10	2000	31	0	971(1)	160	1,162	î
	2020	31	0	971(1)	160	1,162	î
LMD	1980	121	159(2)	11,444(754)	$680(1)\frac{2}{3}$	12,404	757
LMK						12,404	
	2000	121	159(2)	11,444(754)	$680(1)\frac{2}{2}$	12,404	757
	2020	121	159(2)	11,444(754)	680(1)=/	12,404	757

Table 63 - Summary of Future Land Needs, Environmental Quality Objective, Lower Mississippi Region (Cont'd)

			Other	Pastured	Pastured	Permanent	
WRPA	/Time	Cropland	<u>Agricultural</u>	Cropland	Forests3/	Pasture	Forestland
1	1980	188	62	30	135	32	879
	2000	188	62	30	135	32	879
	2020	188	62	30	135	32	879
2	1980	7,201	379	501	447	314	1,781
	2000	7,618	253	504	454	319	1,193
	2020	7,761	174	514	464	326	957
3	1980	2,094	392	1,117	464	501	1,721
	2000	2,170	379	1,219	512	551	1,423
	2020	2,346	354	1,314	551	583	1,019
4	1980	3,545	253	578	1,073	1,819	2,337
	2000	4,274	230	690	1,284	2,070	1,880
	2020	4,457	163	760	1,428	2,279	1,431
5	1980	592	202	559	1,048	856	10,069
	2000	560	180	582	1,090	881	10,779
	2020	569	137	608	1,140	921	10,956
6	1980	2,225	95	199	224	468	994
	2000	2,374	102	208	234	489	905
	2020	2,637	115	219	246	515	881
7	1980	197	68	315	1,251	1.018	1,940
	2000	147	49	356	1,427	1,161	1,848
	2020	104	12	392	1,565	1,278	1,797
8	1980	217	59	349	615	587	2,170
	2000	170	47	367	651	616	2,176
	2020	193	21	391	688	650	2,226
9	1980	2,673	734	1,316	677	1,072	1,846
	2000	2,623	752	1,383	711	1,126	1,405
	2020	2,578	787	1,450	751	1,178	1,018
10	1980	271	1,671	90	59	295	740
	2000	250	1,664	95	62	308	537
	2020	242	1,653	100	65	324	457
MR	1980	19,203	3,915	5,054	5,993	6,962	22,499
	2000	20,374	3,718	5,434	6,560	7,553	23,025
	2020	21,075	3,478	5,778	7,033	8,086	21,621

Table 63 - Summary of Future Land Needs, Environmental Quality Objective, Lower Mississippi Region (Cont'd)

			Othe	r (1,000 Acres)		
WRPA	/Time	Transporta- tion, Urban & Built-up	Commercial Fish Farming	Recreation	Wildlife	Minerals
1	1980	0	0	04/	<u>04/</u>	0
	2000 2020	0	0	0	0	0
2	1980	378	21	23	2,589	35
	2000	396	30	24	2,872	56
	2020	459	40	34	3,382	87
3	1980	401	1	39	5,866	4
	2000	536	2	66	7,991	9
	2020	724	3	109	10,926	14
4	1980	335	20	36	2,629	3
	2000	361	37	46	2,941	4
	2020	426	54	67	3,523	5
5	1980	458	6	40	3,549	9
	2000	532	12	56	4,190	9
	2020	647	18	84	5,144	10
6	1980	79	4	5	743	2 3
	2000	79	9	6	752	
	2020	80	14	8	820	4
7	1980	121	1	4	675	1
	2000	136	3	6	769	1
	2020	151	4	9	925	1
8	1980	206	1	17	2,561	5
	2000	260	1	27	3,281	6
	2020	333	2	43	4,267	8
9	1980	243	14	21	3,152	11
	2000	271	20	30	3,564	16
	2020	134	26	42	4,180	24
10	1980	260	2 3	41	6,047	17
	2000	327	3	64	7,732	23
	2020	419	3	101	10,023	30
MR	1980	2,481	70	226	27,811	87
	2000	2,898	117	326	34,092	127
	2020	3,553	164	497	43,190	183

^{1/} Parenthesis (1) denote exclusive use.
2/ 500,000 acres are unforestable marshland and are included in primary land
 use "other."
3/ Included in Forestland.
4/ No need is generated within WRPA 1 but the WRPA satisfies needs in adjacent areas.
5/ Included in adjoining WRPA's.

Table 64 - Comparison of Selected Land Needs and the Land Base, Lower Mississippi Region

				Total Needs	
WRPA	Time Frame	Actual Land Area (1,000 Acres)	NI <u>1/</u> Program	RD 1/ Program (1,000 Acres)	EQ <u>2/</u> Program
1	1980 2000 2020	1,191	1,191 1,191 1,191	1,191 1,191 1,191	1,191 1,191 1,191
2	1980 2000 2020	10,513	10,554 10,283 10,191	10,665 11,040 10,914	10,675 10,404 10,312
3	1980 2000 2020	6,746	6,226 6,278 6,752	6,435 6,760 6,845	6,227 6,279 6,753
4	1980 2000 2020	8,340	8,867 9,505 9,516	9 074 10,372 10,432	8,882 9,520 9,531
5	1980 2000 2020	12,813	12,736 13,514 13,838	13,364 14,946 15,302	12,766 13,544 13,868
6	1980 2000 2020	3,461	4,060 4,157 4,447	4,090 4,459 4,721	4,060 4,157 4,447
7	1980 2000 2020	4,113	3,659 3,697 3,734	3,864 4,112 4,224	3,690 3,728 3,765
8	1980 2000 2020	3,533	3,588 3,636 3,814	3,776 4,060 4,250	3,591 3,639 3,817
9	1980 2000 2020	7,972	7,884 7,560 7,325	8,028 8,072 7,904	8,439 8,115 7,880
10	1980 2000 2020	3,789	3,327 3,181 3,195	3,406 3,339 3,367	3,328 3,182 3,195
LMR	1980 2000 2020	62,471	62,092 63,002 63,591	63,893 68,351 69,150	62,849 63,759 64,348

^{1/} Needs for cropland; pasture; forests; other agriculture; and transportation, urban and built-up.
2/ Includes categories in footnote 1, plus lands needed for environmental quality

components.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

PRESENT USE AND PROJECTED NEED FOR LAND

FIGURE 7

Related Problems

Flood Damage

General. The socioeconomic environment implicit in the preceding expression of resource needs is one relatively safe for human habitation and increased economic growth. Vital ingredients of that environment are measures to control floods - the most frequent natural catastrophe to be visited upon this region.

The frequency and severity of flooding are somewhat easier to understand when the following facts are considered:

- 1. The region is the major outlet for drainage of 41 percent of the 48 contiguous States of the United States and parts of two Canadian provinces. All of the runoff from major river basins, such as the Missouri and Upper Mississippi, the Ohio including the Tennessee and others, and the Arkansas, White, and Red Rivers, flows into the Lower Mississippi Region.
- 2. The region has a humid subtropical climate with an average of about 52 inches of precipitation per year. Intense rainfall often occurs during short periods.
- 3. About one-half of the region's land is in flood plain areas, primarily in the Mississippi River alluvial valley, which is relatively flat with only a slight gulfward slope. The soils which make up this flood plain are largely composed of impermeable materials such as fatty clays and the water table is near ground surface, resulting in limited infiltration and high rainfall-rumoff relationships.

Devastating floods resulting in the evacuation and displacement of thousands of people, hundreds of millions in dollar damages to homes and public, commercial, and industrial developments, and severe losses to the region's farmers have occurred several times in this century. The most recent flood reached its peak in 1973, with continuing high water into 1974. It was not as great as the record flood of 1927, but it caused nearly \$760 million in damages, made thousands homeless for an extended period, and accounted for 28 deaths. Its overall impact on the national economy is difficult to quantify precisely, but in a period of food shortages and rising prices the flood losses had a significant adverse economic effect.

The region's main line of defense against such disasters is the Mississippi River and Tributaries (MR&T) Project, presently less than 50 percent complete. The tremendous dollar damages and human suffering experienced in 1973 would have been magnified nearly 18 times without the Project, which prevented nearly \$13 billion in damages. No estimate of lives saved in 1973 can be made, but the project's worth in this regard is implicit in that seven times as many people perished during the flood which occurred in the absence of the Project in 1927. Table 65

provides a summary of losses due to the 1973 flood and an estimate of what the losses would have been without existing flood control. The table clearly shows that nearly all regional damages prevented were attributable to the MR&T Project.

Tidal flooding in WRPA 10 resulting from Hurricane Betsy in 1965.

Present Status. Flood control works considered to be in place in the region include 3,780 miles of levees and floodwalls, 11,555 miles of channel improvements, 37 pumping plants, numerous large and small reservoirs with a combined flood storage capacity of more than 6 million acrefeet, four hurricane protection projects, and a vigorous nonstructural program which includes 55 flood plain information reports either completed or underway, localized flood hazard data, floodway evaluations, and land treatment applied to more than 19 million acres of rural lands. The non-structural program further includes flood forecasting services of the National Weather Service, with a forecast center at Slidell, Louisiana and District Offices at six locations, provides a river and flood forecast service for the entire region. Hurricane storm surge, and storm tide forecasts for the coastal section are provided by the New Orleans Weather Service Forecast Center.

Because of the study's adopted definition of completed works - "developments completed, under construction, or funded for construction as of Fiscal Year 1973" - the four major hurricane protection projects

Table 65 - Damage Appraisal - 1973 Flood, Lower Mississippi Region

Damage Category	With Existing Projects	Estimated Damages (\$1,000)1. Without Projects	,000) <u>1/</u> Prevented by Projects
Agricultural Crop Livestock Buildings, equipment, § supplies Other (farm roads, fences, drainage, etc.)	326,138	1,135,911	809,773
	6,848	31,425	24,577
	21,845	68,004	46,159
	40,333	111,498	71,165
Urban Property - private Residential Commercial	33,346	3,211,276	3,177,930
	9,805	1,831,700	1,821,895
Property - public	2,310	592,715	590,405
Utilities	9,342	270,173	260,831
Business losses	161,878	4,742,822	4,580,944
Other	15,287	1,315,000	1,299,713
Rerouting of traffic Evacuation, dislocation, & rehabilitation Roads, bridges, utilities, etc. Flood fighting Federal property	18,563	161,437	142,874
	21,249	214,693	193,444
	16,184	141,326	125,142
	40,033	99,990	59,957
	34,867	29,794	-5,073
Total for Region	758,028	13,957,764	13,199,736
Total for MR&T Project only	724,600	13,517,500	12,792,900

1/ Navigation damages not included.

The extensive system of levees along the Lower Mississippi River protects thousands of acres of agricultural, industrial, and urban lands.

Floodwater being discharged over the spillway of Enid Reservoir (WRPA 4) during 1973 flood.

The Bonnet Carré floodway protects the city of New Orleans and delta area below by diverting floodwater from the Mississippi River to Lake Pontchartrain whenever the flow in the river exceeds the safe capacity of the leveed river channel.

and a substantial portion of the MR&T Project were considered in place. In fact, these flood control projects are far from complete, with scheduled completion dates running to 1985 and, in some instances, beyond that date. A large backlog of construction on these projects must be overcome before the scope and degree of protection assumed as a base condition for assessment of both current and future flood damages will actually exist. Because of the complexity of these long-range continuing projects and their importance to the region, further elaboration is warranted.

The MR&T Project can be divided into three major elements: (1) the Mississippi River levee system including the Mississippi River levees and floodways, (2) Mississippi River channel improvement, and (3) tributary works.

The Mississippi River levee system and floodways element includes more than 2,200 miles of levees and floodwalls including the Birds Point-New Madrid, Atchafalaya, Morganza, and Bonnet Carré floodway levees. All floodways are operational, though considerable construction remains, especially in the Atchafalaya floodway, to insure sufficient flowcarrying capacity. All except 28.3 miles of the levees and floodwalls are in place, but various reaches of levee totaling over 800 miles are considerably below full grade and section. The levee and floodwall system is comprised of about 1,518 miles of main levees. This includes levees in the lower reaches of the Yazoo River. It also includes 7 miles of floodwalls along the Mississippi River. There are an additional 671 miles of levees and floodwalls along the various floodways and along the lower reaches of the Arkansas and Red Rivers. Floodway levees serve to contain diverted flows within a specified channel when excess floodwaters are diverted past critical reaches of the Mississippi River. The Arkansas and Red River levees and the Yazoo basin levees protect landward areas against Mississippi River backwater.

The entire levee system of the MR&T Project was considered complete in the flood damage assessment although design protection is not yet provided. Thus, there is no protection against the Project Design Flood or equivalent events, and the potential for flood losses is far greater than that reflected in the damage assessment. The critical importance of completing this feature of the MR&T Project is recognized in the flood control plans.

The channel improvement feature serves several important functions. It helps maintain the alignment and flood carrying capacity of the river channel and further helps protect the levee system. It also provides a navigable channel for the Nation's busiest inland waterway. Construction and maintenance work consists of concrete revetments, dikes, cutoffs, and dredging at various locations along approximately 954 miles of

channel. As in the case of the levees, this element was assumed to be complete. In reality, the existing channel dimensions and alignment are less than required to fulfill project objectives. Until this feature and the levee portion of the MR&T Project are completed, the flood situation in the Valley must be considered critical.

The third major element in the MR&T Project consists of works in basins tributary to the Mississippi River. Authorized works in the tributary feature include 1,666 miles of levees, 4,947 miles of channels, 25 major pumping plants with a total capacity of 30,087 c.f.s. (including the 12,000 c.f.s. W. G. Huxtable Pumping Plant, one of the world's largest, now under construction in the St. Francis Basin in WRPA 2), and five major reservoirs with total flood control storage of 4,391,800 acre-feet. As of 1973 there were 2,775 miles of channel improvement, 1,135 miles of levees, and 18 pumping plants with a total pumping capacity of 19,107 c.f.s. completed or nearing completion. All authorized MR&T reservoirs are complete. Tributary works in the MR&T Project yet to be constructed consist of 2,172 miles of channel improvement, 531 miles of levees, and seven pumping plants with a total capacity of 10,980 c.f.s. The tributary features are as important to the individual basins as the main stem features are to the Lower Mississippi Valley. Most damages associated with remaining tributary flood control works are reflected in the damage assessment.

Hurricane protection projects, major non-MR&T reservoirs, and many local protection projects make up the remainder of the existing flood control works in the region and consist of a total of 450 miles of levees, 7,826 (excluding Mississippi River) miles of improved channel (mostly PL 566 projects), 19 pumping plants with a total capacity of 8,516 c.f.s., and numerous small floodwater retarding structures having a total storage of 664,100 acre-feet.

Four major hurricane protection projects in the coastal area are designed to protect densely populated areas in the southern portion of the region, including the intensely developed areas of metropolitan New Orleans, Morgan City, Larose to Golden Meadow, Louisiana, and urban areas in the lower delta below New Orleans to Venice, Louisiana, from tidal and hurricane induced flooding. These projects though technically complete if the study definition of existing projects is literally applied, are far from complete; and those components actually in place at this time provide protection to only a small part of the total area to be protected upon their completion. This means that the assessed damages in the coastal planning areas (particularly in WRPA 10) are understated in terms of the damage potential that actually exists.

In upstream watersheds many PL 566 projects which are assumed to be in place in the damage assessment have not been completed. This makes the stated upstream watershed damages considerably less than the true damage potential.

The major non-MR&T tributary basin projects were assumed to be in a condition of completion which very nearly approximates actual conditions. Therefore, the assessments of "headwater" damage potential on principal reaches in those areas are realistic for both present and future conditions. Included in this category are three existing major reservoirs which provide flood relief on the Ouachita, Caddo, and Little Missouri Rivers in the Ouachita Basin. These reservoirs collectively have the potential to store 972,400 acre-feet of floodwater.

Many local protection projects consisting of levees, channel improvements, pumping plants, and small flood-water retarding structures have also been constructed over the years. These projects, though individually limited in size and scope, nonetheless play an important role in the safety of the region's inhabitants and in the protection of the region's economic structure.

Much has been and is being accomplished in the field of flood control and other forms of flood plain management. Yet, much remains to be done. About half of the total land area in the region is subject to flooding and experiences about \$212 million average annual flood damages; about 67 percent of that damage potential is agricultural, about 19 percent is urban, and the remainder is in all other categories of flood damage. Most of the damage (about 85 percent) is the result of headwater flooding on major tributary streams and in upstream watersheds. Tidal flooding in the coastal area constitutes the source of about 58 percent of the urban damages in the region.

WRPA 10, which contains the metropolitan New Orleans area, has by far the greatest urban flood damage potential in the region, primarily due to susceptibility to hurricane-induced tidal flooding. WRPA 3, which contains Memphis, Tennessee, has the second largest urban damage potential, most of which is due to headwater floods on principal streams in the area. Table 66 provides a summary of remaining flood problems in the region.

Future Damages

In the agricultural areas, average annual flood damages estimated on the basis of 1970 conditions are \$144 million. Projected to the year 2020, these damages are \$250 million based on the national income economic growth rates and \$262 million based on regional development growth rates. The increase is due largely to expected future gains in crop yields and, to a lesser extent, the expected placement of additional acres of flood plain lands into agricultural production.

Urban and built-up average annual damages - estimated at \$40 million in 1970 - are projected to \$152 million in 2020 with national income growth rates or \$160 million with regional development economic growth. The increases are indicative of expected growth in urban development combined with expected upward trends in the value of damageable assets in the susceptible area.

Table 66- Remaining Flood Problems, 1970 Conditions, Lower Mississippi Region

			Pr	Principal Streams	reams	2000	do	sams the control of t	tersheds	44,000)		Total	1	
WRPA	Principal Streams	Upstream Watersheds	Agri.	Urban & Built-Up	Other	Total	Agri.	Urban § Built-Up	Other	Total	Agri.	Urban \$ Built Up	Other	Total
l Headwater Backwater	1,190		2,800	20	416	3,236					2,800	20	416	3,236
2 Headwater Backwater	4,858	2,616	20,129	1,402	3,873	25,404	29,232	140	4,330	33,702	49,361	1,542	8,203	59,106
3 Headwater Backwater	1,173	8 28 4	4,610	6,973 95	552	12,135	5,444	1,262	1,776	8,482	10,054	8,235	2,528	20,617
4 Headwater Backwater	2,048	1,877	9,220	1,105	4,617	14,942	17,506	-	1,910	19,417	26,726 1,579	1,106	6,527	34,359
5 Headwater Backwater	1,481	2,667	2,622	994	1,854	5,470	11,534	II s	1,495	13,144	14,156	1,109	3,349	18,614
6 Headwater Backwater	1,033	2,425	2,794	89	674	3,536	13,854	21	582	14,457	16,648	88	1,256	17,993
7 Headwater Backwater	290 81	487	442 239	1,091	150	1,683	2,427	£2 ,	710	3,150	2,869	1,104	860	4,833
8 Haadwater Backwater Tidal	1,017 61 296	1,029	142	847	1.0	996 19	2,967	808	241	4,316	5,109	1,655	\$48 6	5,512 19
9 Headwater Backwater Tidal	2,720 822 1,915	4,879	589 64 223	0.19	224	1,432 64 5,292	8,973	7	1 . ,	9,125	9,562 64 223	0660	535	10,557 64 5,292
10 Headwater Fidal	2,254	2,621	15 362	39 21,239	2,637	24,238	4,518	637	11	5,296	4,553	976	2,637	5,353
REGION TOTALS Headwater Backwater Tidal	S 16,062 3,380 4,465	19,429	43,363 3,926 585	13,158 S21 23,171	12,370 949 3,777	68,891 5,396 27,553	96,455	3,038	11,596	111,089	3,926 5,926 585	16,196 521 23,171	23,966 949 3,777	179,980 5,396 27,533
and Total	Grand Total (Not Additive) 19,429	ve) 19, 429	47,874	36.850	12 006	101 030	200							

Annual damages accruing to other types of development not falling into either the urban or agricultural categories were estimated at \$29 million in 1970. These damages will increase about threefold under conditions expected in the year 2020.

Total average annual damage potential in the Lower Mississippi Region is expected to more than double by the year 2020 to about \$490 million under national income growth rates or \$513 million under regional development economic growth rates.

These damage estimates represent the region's potential for flood damage in the absence of any additional structural or nonstructural solutions beyond those described as existing projects in the preceding discussion of Present Status. It bears repeating that the estimates are based on the assumption that many substantial major flood control works are complete when in fact those improvements are far from complete. The large backlog of construction on these projects must be overcome before the scope and degree of flood protection assumed to exist as a base condition for assessment of remaining flood damages will actually exist. Table 67 provides a summary of future flood damages by WRPA and by source of flooding which will exist with attainment of both the national income (Program A) and regional development (Program B) rates of growth.

Sediment and Erosion.

Present Status. In 1970 approximately 19.3 million acres of land and 17,073 miles of stream banks were affected by erosion in the region. The extent of this erosion, measured in tons of sediment produced, amounted to 132.6 million tons. The average rate of erosion was 6.9 tons per acre, with a high of 13.3 tons per acre in WRPA 3 and a low of 0.8 tons per acre in WRPA 1. Average annual damages from erosion amounted to nearly \$14.9 million in 1970, with more than half occurring in WRPA 3. Land use on the eroding acreages included 19 percent cropland, 17 percent grassland, 62 percent woodland, and 2 percent other. Table 68 summarizes sediment and erosion problems and damages occurring in 1970 in the Lower Mississippi Region.

Future Needs. To maintain the present productive level of the land base, prevent deterioration, and validate the unit productive crop yields used in this study will require that sediment and erosion problems be kept within tolerable limits. Future changes in land use and management practices are expected to cause a slight reduction in the extent of erosion, in terms of both acres affected and tons of sediment produced. However, in the absence of additional measures to prevent erosion, the average annual damages in the region are expected to increase by 83 percent and 90 percent between 1970 and 2020 under the National Income and Regional Development Objectives, respectively, due to higher value crops. A summary of projected problems and future needs for erosion protection is given in table 69. Figure 8 depicts graphically the present status and future regional need for sediment

Table 67 - Future Flood Damages, Lower Mississippi Region

	Total	4,423 4,962 5,754	81,022 99,998 130,544	29,115 44,391 68,756	50,019 65,283 82,254	25,717 34,654 43,406	24,558 31,058 36,849	7,138 9,601 13,158	$6,540\frac{1}{9},698\frac{1}{14},598\frac{1}{1}$	16,0591/20,1741/20,1921/2	40,7521/62,3651/93,4341/	285,343 <u>1</u> / 382,184 <u>1</u> / 512,945 <u>1</u> /
n B	Streams	000	692 854 959	636 1,025 1,699	2,556 3,649 4,046	1,998 2,842 3,578	000	686 835 950	$\frac{291}{361}$	$\frac{3,7651}{4,5451}$ $\frac{4,5451}{5,5151}$	$\frac{34,3151}{53,4831}$ $\frac{82,1661}{1}$	44,6771/67,2691/98,9601/
Program	Principal Streams Headwater Backwa	4,423 4,962 5,754	38,151 42,030 56,508	17,957 27,948 45,070	18,437 24,113 32,132	6,314 7,791 9,835	4,559 5,087 5,272	1,861 2,774 4,084	1,318 2,078 3,410	1,824 2,168 2,547	75 118 168	94,919 119,069 164,780
Average Annual Damages Inc to Flooding (\$1,000)	Upstream	000	42,179 57,114 73,077	10,522 15,418 21,987	29,026 37,521 46,076	17,405 24,021 29,993	19,999 25,971 31,577	4,591 5,992 8,124	5,193 7,584 11,141	10,470 13,461 16,130	6,362 8,764 11,100	145,747 195,846 249,205
nual Damages Du	Total	3,929 4,470 5,119	79,378 95,584 124,284	29,081 43,334 66,903	49,383 60,694 75,475	25,489 32,170 41,339	24,337 28,636 33,871	7,093 9,149 12,426	6,5171/9,4991/14,3581/14	$\frac{16,0151}{19,7991}$ $\frac{23,5351}{23,5351}$	$40,740\frac{1}{8951}$ 61,8951/ 92,8791/	$281,962\frac{1}{365,230\frac{1}{1}}$ $490,189\frac{1}{1}$
A	Streams Backwater	000	698 853 960	632 1,013 1,678	2,542 3,246 3,594	1,988 2,636 3,322	000	657 751 849	291/ 361/ 47 <u>1</u> /	3,7651/ 4,5451/ 5,5151/	34,3151/ 53,4831/ 82,1661/	$44,626$ $66,5631/$ $98,131\overline{1}/$
Program	Principal Headwater	3,929 4,470 5,119	36,643 41,058 54,082	17,940 27,359 43,901	17,827 21,936 28,382	6,152 7,248 9,066	4,357 4,611 4,766	1,845 2,476 3,595	1,318 2,078 3,410	1,824 2,168 2,547	75 118 168	91,910 113,522 155,036
	Upstream Watersheds	500	42,037 53,673 69,242	10,509 14,962 21,324	29,014 35,512 43,499	17,349 22,286 28,951	19,980 24,025 29,105	4,591 5,922 7,982	5,170 7,385 10,901	10,426 13,086 15,473	6,350 8,294 10,545	145,426 185,145 237,022
	Time Frame	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020
	WRPA	1	7	ю	4	in	9	7	œ	6	10	IMR

1/ Includes tidal flooding.

Over 11,000 miles of the region's streams were affected by erosion in 1970.

Approximately 133 million tons of valuable topsoil were lost to erosion in 1970.

Table 68 - Sediment and Erosion Problems and Damages in 1970, Lower Mississippi Region

		Land	Land Area Affected by Erosion	by Erosion		Lenoth of			Extent	Extent of Erosion			Average
WRPA	Sheet	Gully Erosion (Thous	Floodplain Scour	Roadbank Erosion f Acres	rotal s)	Streambank Erosion (Miles)	Sheet	Gully Erosion (Th	Floodplain Scour o u s a n d s	Roadbank Erosion o f T	Streambank _{1/} Erosion on s)	Total	Annual Damages (\$1,000)
1	28.6	0	0	0	28.6	486	22.8	0	0	0	0	22.8	
2	1,760.0	9.4	0	4.5	1,773.9	1,093	11,220.1	2,858.1	0	1,296.4	2,015.3	17,389.9	904.5
3	3,572.4	118.2	0	11.6	3,701.6	2,877	29,800.9	17,479.7	0	1,416.4	450.5	49,147.5	7,728.2
4	2,868.4	9.1	9.0	8.2	2,886.3	2,767	15,107.2	998.2	12.1	675.9	4,624.5	21,417.9	2,722.8
S	5,552.2	0.4	0	11.4	5,564.0	638	8,340.6	87.4	0	347.7	578.0	9,353.7	508.6
9	247.4	0	0	1.6	248.9	992	451.3	1.2	0	9.9	1,874.5	2,333.6	358.9
7	2,500.0	10.8	0.5	5.0	2,516.3	1,432	13,899.0	1,184,5	9.4	499.5	4,443.7	20,036.1	1.539.7
8	1,213.6	5.7	0.2	2.2	1,221.7	820	7,705.5	646.3	4,1	212.2	1,259.5	9,827.6	975.2
6	1,143.7	0	2.7	5.6	1,152.0	149	1,813.0	0	340.7	0.2	19.5	2,173.4	47.0
10	132.5	0.2	0	0.5	133.2	45	708.1	19.9	0.7	41.2	110.2	880.1	66.4
Region Total	19,018.8	153.8	4.0	50.0	19,226.7	11,073	89,068.5	23,275.3	367.0	4,496.1	15,375.7	132,582.6	14,851.3

1/ Erosion problems on the main stem of the Mississippi River are handled in conjunction with the Mississippi River and Tributaries Project and are therefore excluded,

Table 69 - Future Sediment and Erosion Problems and Damages, Lower Mississippi Region

18) se												0.5	-		2.7	500	0 -7	101	7	
Annual Damages R.D.	Objective (\$1,000)	2	1,024.7	5,774.8	2,037.8	73.4	17,906.7		1,159.3	12,212.4	748.0	2,241.1	121.0	22,734.9		1,229.	4,887.5	2,476.	209.	28,312.7	
Average Am	Objective (\$1,000)	Z	1,024.7	3,774.8	2,037.8	64.1	17,805.2		1,078.2	11,851.1	553.7	2,202.0	104.9	21,865.9		1,141.9	781.8	2,413.1	178.1	27,298.1	
	Total		22.8 14,814.0 38,456.7	19,688.4	17,631.1	1,907.7	112,483.3		22.8 12,814.9	29,454.6 18,160.6	8,047.6	16,082.6	1,560.1	96,539.4		22.8	16,676.2	15,073.3	1,363.3	84,372.5	
	Streambank Erosion	ons)	2,015.3	4,624.5	4,443.7	19.5	15,375.7		2,015.3	4,624.5	1,874.5	1,259.5	19.5	15,375.8		2,015.3	4,624.5	4,443.7	1,259.5	15,375.9	
of Erosion	Roadbank Eros ion	of To	511.0	268.6	198.9	15.0	2,236.8		326.4	649,9	90.6	123.6	8.4	1,419.5		230.9	118.8	97.9	0.2	1,032.3	
Extent o	Floodplain Scour	ousands	000	0.0	7.40	197.7	210.7		00	0.9	00	4.7	191.4	204.4		000	0.0	9.4.0	2.0 191.4 0.2	204.1	
	Gully Erosion	(Th	2,067.9	719.8	857.7	13.2	16,568.9		1,264.9	8,804.8	39.3	533.5	7.4	11,386.7		1,143.0	397.1	475.4	249.3	8,631.9	
	Sheet Erosion		22.8	7,840.2	12,126.1	6,622.3 1,690.3 536.6	78,091.2		22.8	19,549.3	7,339.7	10,977.1	1,349.0	68,153.0		8,180.1	6,672.5	10,051.7	5,636.7 1,152.2 282.3	59,128.3	
Length of	Streambank	(Miles)	486 1,093	2,767	1,432	820 149 45	11,073		1,093	2,877	638	1,432	149	11,973		1,093	2,767	1,432	820 149 45	11,073	
	Total	s)	28.6	5,222.8	2,444.4	1,182.6 1,120.2 121.3	18,853.4		28.6	3,539.1	5,389.0	2,431.4	1,056.9	18,357.5		28.6	5,233.5	2,407.5	1,159.3 1,011.9 92.4	17,869.6	
v Frosion	Roadbank	Acre	04.0	8.1.3	5.0	5.6	47.5		0	7.8	11.2	5.0	0.4	44.7		4.1	7.6	4.9	2.2 5.6 0.3	42.4	
Area Affected by Fresion	Floodplain	ands of	010	0.3	0.0	2.7	3.3		0	0.3	0 0	0.2	2.7	3.3		0 1 0	0.3	0.0	2.7	3.3	
I and Av		Thous	0.6	9.0	10.7	0.2	130.4		9.2	8.9	4.0	10.7	0.1	111.5		9.1	8.8 9.4	0 10.6	5.5 0.1	96.2	
	Sheet	1980	28.6	2,865.6	223.1	1,174.6 1,111.9 120.6	18,672.2	2 0 0 0	28.6	3,456.0	5,377.4	2,415.5	1,048.5	18,198.0	2020	28.6	5,272.1	154.3	1,151.5 1,003.6 92.0	17,727,71	
	WRPA		777	v 4 m	91	8 0 10	Region Total		17	ю 4	15 6	r 0	9 01	Region Total		1 7 7	o 4 ∩	91	8 9 10	Region Total	

REGIONAL SEDIMENT AND EROSION PROBLEMS AND DAMAGES

and erosion control in terms of areas affected, total erosion, and total regional damages for 1970 and 2020. Figure 9 shows a breakdown of dollar damages by WRPA. If existing land treatment measures to control sediment and erosion are not continued, nor additional measures undertaken, the productive capability of the region will have to be reduced accordingly.

Excessive Wetness

General. Excessive wetness in or near the root zone of agricultural crops presents a constantly changing resource problem. Requirements for drainage vary due to a complex interrelationship between several factors including climate, cropping patterns, tillage practices, plant tolerance to water, and the particular configuration of drainage practices in effect at any given time. An acre of land may produce a bumper crop one year and no crop the next, depending upon the prevailing mix of these factors. Agricultural land has been classified by the Soil Conservation Service in their Conservation Needs Inventory as "with a wetness problem" when conditions of soil moisture or surface water impose limitations to certain potential uses. All lands so classified do not require drainage in any given year, but the same acre could require some alternative drainage practice in several consecutive years, depending upon land use.

Excessive wetness causes significant production loss on valuable cropland.

SEDIMENT AND EROSION DAMAGES

Present Status. In 1970 a total of 33.8 million acres of the region's agricultural land was classified according to the Conservation Needs Inventory as having a wetness problem. Land use on this acreage was 42 percent crops, 41 percent forest, 8 percent pasture, and 9 percent other. Land use and 1970 drainage configuration were such that only 8.4 million acres were in a wetness condition which caused losses to agricultural production. The remaining 25.4 million acres of excessively wet acreage included 17.0 million acres of forest land and other land that did not need to be drained and 8.4 million acres of cropland and pasture that had already been drained. Losses on the undrained agricultural lands were limited to crops and pasture, with affected acres composed of 8 million acres in crops and 400,000 acres in pasture. A breakdown of these acres by WRPA is given in table 70.

Table 70 - Excessive Wetness Problems, 1970, Lower Mississippi Region

				_						
				WRI	PA					
Land Use	2	3	4 (Thou	5 usand	6 Acres)	7	8	9	10	Region Total
Cropland Pasture	3,250	330 0	1,426	235 39	912 116	98 <u>0</u>	64 48	1,552 215	111 21	7,978 439
Total	3,250	330	1,426	274	1,028	98	112	1,767	132	8,417

Nearly 40 percent of the region's acreage suffering losses due to inadequate drainage in 1970 was located in WRPA 2. Significant acreages in this category were also found in WRPA's 4, 6, and 9, with corresponding percentages of the total problem of 17 percent, 12 percent, and 9 percent, respectively.

Future Needs. Future wetness problems are expected to continue to cause significant production losses to crops and pasture. The inadequately drained open lands used for cropland and pasture are projected to increase from 8.4 million acres in 1970 to 10.2 million acres in 1980, to 11.1 million acres in 2000, to 11.7 million acres in the year 2020. WRPA 2 is expected to experience nearly one-third of all drainage problems throughout the study period. It is important to recognize that should future land use patterns change, so will the needs for drainage. Table 71 summarizes future needs consistent with future acreages allocated to cropland and pasture. Figure 10 illustrates the 1970 and excected 2020 acreages requiring drainage by WRPA.

The expressed needs represent the acreages on which gains in economic efficiency could be realized through drainage improvements.

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

LAND DRAINAGE NEEDS

Of the indicated regional acreages, only 1.3 million acres in 1980, 3.9 million acres in 2000, and 6.5 million acres in the year 2020 are considered absolute needs for food and fiber requirements.

Table 71 - Future Land Drainage Needs, Lower Mississippi Region

					WRP	Α				
Land Use	2	3	4	5	6	7	8	9	10	Region Total
		(M i 1	1 i o	n s	o f	Acr	es)		10001
1980										
Cropland	3.37	0.52	1.91	0.45	1.01	0.37	0.11	1.74	0.12	9.60
Pasture	-	0	0.02	0.06	0.12	0.01	0.07	0.26	0.04	0.58
Total	3.37	0.52	1.93	0.51	1.13	0.38	0.18	2.00	0.16	10.18
2000										
Cropland	3.62	0.57	2.04	0.55	1.07	0.33	$0.10 \\ 0.10$	1.87	$0.12 \\ 0.07$	10.27 .79
Pasture	0	0	0.02	0.07	0.12					
Total	3.62	0.57	2.06	0.62	1.19	0.41	0.20	2.20	0.19	11.06
2020										10.50
Cropland Pasture	3.69 0.01	$0.59 \\ 0.03$	2.17	0.61	1.13 0.12	0.34	$0.11 \\ 0.12$	1.93	$0.13 \\ 0.10$	10.70 1.04
Tota1	3.70	0.62	2.21	0.72	1.25	0.44	0.23	2.34	0.23	11.74

Water Quality

Present Status. Waters in the study area are considered good for most uses. However, notable exceptions do exist, usually as a result of waste discharges, agricultural chemicals, salt-water intrusion from the Gulf of Mexico, localized mineral deposits, or unregulated underground disposal of wastes. East of the Mississippi River, the region's water is generally soft and low in mineral content, with hardness as calcium carbonate usually less than 50 milligrams per liter. West of the river, hardness and dissolved-solids content varies drastically with concentrations generally increasing from north to south. In the uppermost portion of the study area, total dissolved solids range between 100 and 350 milligrams per liter, while in the coastal area concentrations range up to 18,000 milligrams per liter. Brine from oil field

waste and saltwater intrusion from the Gulf of Mexico primarily account for the high dissolved solids in that area. Bacteriological quality, although variable, generally reflects the density of urban, industrial, or agricultural development. The greatest contributions to bacterial pollution come from domestic-waste discharges, primarily those from municipalities.

Oil spills are one of many non-BOD pollutants that cause serious problems in many parts of the region.

Water quality records of at least a 3-year duration are available at some 460 monitoring stations in the region. Federal and State agencies operate these stations to obtain basic data necessary for assessing the quality of water from surface and underground supplies. Data gathered to date provide a satisfactory basis for assessment of certain aspects of water quality, but are inadequate for a meaningful analysis of inorganic pollutants and their effects.

Waste loads generated in the region receive varying degrees of treatment. As of 1970, there were 315 sewered communities of 1,000 or

more inhabitants in the study area, 295 of which operated sewage treatment plants. Secondary treatment was provided at 268 locations while primary treatment was provided at 25 locations. Only slightly more than 40 percent of the region's population was served by these facilities. Average levels of treatment of municipal wastes varied by State from 50 to 80 percent BOD5 removal, while industrial treatment in terms of percent BOD5 removal was roughly 55 percent regionwide. Removal of harmful bacteria as a component of conventional treatment varied drastically by State, ranging from 5 percent in Missouri to 100 percent in Tennessee. Bacterial pollution was most pronounced in WRPA's 3 and 10 in 1970 in the Memphis and New Orleans areas.

A fairly reliable compilation of data are available covering municipal waste treatment facilities, but similar data for industry are scarce. Studies for Appendix L, Water Quality and Pollution, investigated the region's pollution problems only insofar as existing data and reports would permit. This methodology produced a good assessment of biodegradable wastes from sewered communities, agricultural pursuits, and the 1,059 industries in the region known to produce biodegradable wastes. Problems of bacterial pollution are also adequately addressed in Appendix L. However, because of insufficient data for quantifying the discharge of non-BOD wastes (i.e.; thermal wastes, heavy metals, nutrients, toxics, odor, color, phenolics, pH, and oil and grease), the problem caused by these pollutants, though recognized as being quite serious, was addressed only in broad general terms. Table 72 gives the status of treatment of biodegradable wastes and bacteria as of 1970.

Recent unpublished and published reports by the Environmental Protection Agency regarding the problem caused by industrial pollutants discharged to the Mississippi River in Louisiana recognize complex and often highly concentrated non-BOD wastes from numerous industries. Pollutants and related problems noted included temperature, heavy metals, taste and odor, chemical oxygen demand, organic chemicals, pH, and oil and grease. Between St. Francisville and Venice, Louisiana, 60 industries discharge such pollutants into a reach of the river which serves as raw water supply for 40 utilities serving some 1.5 million of the region's residents. Heavy metals, nutrients, toxics, and odor and color causing substances were present in discharges from the industrialized Baton Rouge-New Orleans area. Heavy metals such as cadmium, chromium, copper, lead, mercury, and zinc were regularly discharged in large quantities. Table 73 presents a summary of recognized non-BOD pollutant discharges.

A survey of fishermen and wholesale fish dealers, made in conjunction with the above study, revealed that fish caught in the river below Baton Rouge were not saleable because of off-flavors in their flesh. Six organic chemicals found in trace amounts in treated water supplies at two locations have been shown to induce histo-pathological changes in animals in chronic toxicity studies. Three organic chemicals found in treated water supplies at two locations have been shown to be carcinogenic (cancer producing).

Table 72 - Status of Treatment, Biodegradable Wastes and Bacteria, 1970, Lower Mississippi Region

		D1	anning Are	a	
Waste Discharge and Treatment	WRPA 2	WRPA 3	WRPA 4	WRPA 5	WRPA 6
Municipal and Industrial	00.0	500.7	170 6	0.00 1	101 0
Total Waste Load (1,000# BOD ₅) Existing Treatment (Percent)	90.9	508.3	139.6	899.1	181.0
Municipal	80.0	79.0	50.0	66.0	58.0
Industrial	55.0	55.0	55.0	55.0	55.0
Waste Load Removed by Existing					
Treatment (1,000# BOD ₅)	63.5	226.5	74.5	502.4	99.0
Net Waste Load to Region's	25.	201.0			
Waters (1,000# BOD ₅)	27.4	281.8	65.1	396.7	81.1
Agricultural					
Total Waste Load (1,000# BOD _c)	577.0	824.0	894.0	1060.0	370.0
Assimilated by Land Disposal					
or other Means (1,000# BOD ₅)	552.7	785.1	862.8	1008.9	361.0
Net Waste Load to Region's	21.7		-1.2		0.0
Waters (1,000# BOD ₅)	24.3	38.9	31.2	51.1	9.0
Bacterial					
Flow Containing Harmful Bacteria					
(m.g.d.)	37.6	115.0	40.3	36.0	6.1
Treatment Level (percent)	10.0	24.0	30.0	53.0	75.0
Flow Adequately Treated (m.g.d.)	3.5	27.3	12.1	19.0	4.6
Remaining Flow with Bacterial	7.4 1	07.7	20 2	17.0	. 1 -
Problem (m.g.d.)	34.1	87.7	28.2	17.0	1.5
	WRPA 7	WRPA 8	WRPA 9	WRPA 10	Region
Municipal and Industrial					
Total Waste Load (1,000# BOD _E)	186.7	404.4	486.1	705.5	3601.6
Existing Treatment (percent)					
Municipal	50.0	50.0	50.0	50.0	N/A
Industrial	55.0	55.0	55.0	55.0	N/A
Waste Load Removed by Existing	102.7	220 1	267 7	701 7	1077 0
Treatment (1,000# BOD ₅) Net Waste Load to Region's	102.3	220.1	263.3	381.3	1933.8
Waters (1,000# BOD _c)	84.4	184.3	222.8	324.2	1667.8
5					
Agricultural					
Total Waste Load (1,000# BOD ₅)	462.0	522.0	682.0	91.0	5482.0
Assimilated by Land Disposal	117 2	100.7	659.1	88.1	5260 6
or other Means (1,000# BOD ₅)	443.2	499.7	039.1	00.1	5260.6
Net Waste Load to Region's Waters (1,000# BOD ₅)	18.8	22.3	22.9	2.9	221.4
(1,000 3005)					
Bacterial					
Flow Containing Harmful Bacteria		77	FO. 4	170	511.0
(m.g.d.)	6.4	33.6	59.4	179.6	514.0
Treatment Level (percent)	30.0	75.0 25.2	75.0 44.5	75.0 134.7	N/A 272.8
Flow Adequately Treated (m.g.d.) Remaining Flow with Bacterial	1.9	43.4	44.3	134.7	2/2.0
Problem (m.g.d.)	4.5	8.4	14.9	44.9	241.2
(8				and the second	

Table 73 - Recognized non-BOD Pollutants Entering the Mississippi River in Louisiana, 1972, Lower Mississippi Region

Pollutant	Location (WRPA)	No. Plants Discharging	Amount Discharged	Allowable Maximum 1/
Excessive Temperature	10	Numerous	124° F. Max.	96.8° F.
Heavy Metals	8 & 10	42	5#/day or more each plant	Varies
Lead	8 & 10	21	5#/day or more each plant	Varies
Chromium	8 & 10	29	5#/day or more each plant	Varies
Zinc	8 & 10	29	5#/day or more each plant	Varies
Cadmium	8 & 10	8	5#/day or more each plant	Varies
Arsenic	8 & 10	5	5#/day or more each plant	Varies
Cyanide	8 & 10	5	Measurable Amounts	Varies
Phenolics	8 & 10	17	10# or more/ day each plant	Varies
13 Organic Chemicals	8 & 10	7	Trace Amts.	Varies
44 Organic Chemicals	8 & 10	10	Trace Amts.	Varies
Chemical Oxygen Demand	8 & 10	15	40,000# or more/day/ plant	Varies
Organic Carbon	8 & 10	10	20,000# or more/day/ plant	Varies
Total Solids	8 & 10	32	50,000# or more/day/ plant	Varies
Volatile Solids	8 & 10	26	25,000# or more/day/ plant	Varies
Odors	8 & 10	60	Discernable	Varies

 $[\]overline{1/}$ Allowable maximums vary among individual dischargers, based on type of industry and on quantity of discharge.

As a result of requirements by the State of Louisiana and/or by the Refuse Act Permit Program of the Corps of Engineers and the Environmental Protection Agency, many industries have initiated waste abatement programs.

Similar data are not available for other industrial areas in the region. A logical conclusion, however, would be that similar problems exist regionwide, making nonbiodegradable wastes clearly as serious a water quality problem in the study area as are biodegradable and bacterial problems. The total regional water pollution problem was placed in proper perspective though by including total cost of cleanup based on an update of available estimates of cost.

Serious water quality problems in the region are generally the result of waste loads generated in large metropolitan areas and industrial complexes, but loads of lesser magnitude also cause problems when streams, which normally assimilate these wastes, reach critically low or zero flow condition. In addition to municipalities and industries, other point source pollutants are contributed by feedlots and other agricultural activities, navigation (including oil spills), and mineral extraction.

While not as clearly defined as these point source loads, untreated wastes generated by recreationists also contribute to water quality degradation. Areas such as lakes, which provide a high quality boating experience, are often severely degraded from this source alone.

Oil pollution caused by accidental spills, fires, leaks, and illegal discharges to both fresh and marine waters is a significant problem, particularly in the southern portion of the region where extensive oil and natural gas operations exist. An associated problem is the improper disposal of oil-field brines. Extremely high dissolved solid concentrations have been experienced as a direct result of oil-field brine contamination.

Untreated or inadequately treated municipal and industrial wastes have created water quality problems in reaches of several of the region's streams, including the Mississippi, Arkansas, Ouachita, Calcasieu, and Vermilion Rivers and Bayou Teche. These problems include one or more of the following: high concentrations of bacteria, low dissolved oxygen content, unsavory tastes and odors, extensive sludge beds, low aesthetic values, excessive temperature increases, and increases in concentration of toxic materials, nutrients, and heavy metals. Several of the region's lakes are similarly polluted. Most prominent problems exist in Lakes Pontchartrain, Maurepas, and Verret in the coastal WRPA's, in Arkabutla, Enid, Sardis, and Tchula Lakes in Mississippi, and in Catahoula Lake in Arkansas.

Agricultural waste has been the cause of numerous fish-kills throughout the region. The over-use of pesticides and herbicides and their ultimate transport to the region's waters by way of surface runoff is a continuous problem because of extensive agricultural development. Also associated with agriculture is the enrichment of water by runoff containing fertilizers.

In addition to organic waste-loads, problems stemming from the other pollutants mentioned above are expected to increase significantly. The bacterial problem is expected to be roughly two and one half times as serious regionwide by 2020 as at present. WRPA's 8 and 10 are expected to pose the most serious problem of bacterial pollution, while WRPA 6 will be least troublesome.

Future water quality in the region will be affected mainly by several economic activities directly tied to a predicted increase in population. Economic indicators point to increases in industrial expansion, agricultural production, and recreational activity. All will be accompanied by corresponding increases in the generation of waste products. Looking ahead to 1980 and beyond to 2000 and 2020, these indicators provide the basis for (1) projecting the quantity and location of wastes, (2) determining the means to preserve water quality, and (3) formulating adequate water quality management programs.

Future Needs. Projected organic waste loads are presented in table 74. Figure 11 illustrates biodegradable waste problems and needs graphically.

A need exists for additional data gathering studies and research on the amount and seriousness of all pollutants regionwide. A comprehensive water quality improvement program should be initiated covering all municipal, industrial, and agricultural pollution sources and present methods and effectiveness of waste-water treatment. Additional data are also needed on stream and lake water quality. This more detailed pollution source inventory and water quality surveillance system would establish a base-line record for all major streams and lakes. Moreover, it would provide more information for determining major patterns of pollution under present conditions and for making broad predictions of future water quality conditions under projected changes in population and economic activity. The program should include studies and research projects related specifically to the topics discussed in this report's final section.

Navigation

Present Status. In 1970 one out of every seven tons of the Nation's waterborne commerce was moved on the waterways and through ports in the Lower Mississippi Region. Important commodities moved were petroleum and petroleum products, industrial chemicals, grain and grain products, iron and steel products, nonmetallic minerals, and unprocessed marine shells. On a ton-mile basis, the region's 84 billion ton-miles of traffic amounted to a little over one-fourth of the United States total. Most of the movement was on the Mississippi River and the Intracoastal Waterway. A generalized breakdown of the region's 1970 waterborne commerce, based on detailed information from Appendix J, Navigation, is presented in table 75. Details on the regional waterways and ports that handled this commerce can be found in Appendix D, Inventory of Facilities.

Table 74 - Projected Daily Biodegradable Waste Loads, Lower Mississippi Region

leeds (10)	2020	249 289	2,243 2,345	467 553	3,406 4,082	488	720 864	1,883 2,248	1,406 1,693	2,561 3,066	13,413
Remaining Needs (1,000 #BOD ₅)	2000	133 157	1,089	238 280	1,562	223 272	338 405	844 1,028	712 864	1,250	6,383 7,641
R.	1980	71 80	501 569	130	689	106	156 179	370 425	359 410	580	2,957
Removed By Existing Treatment	1970	64 64	226 226	74 74	502 502	100 100	103 103	220 220	263 263	381 381	34 34
Remov Existing	19		2		2 2	1	1	2 2	2 2	88	1,934 1,934
ds D _S)	2020	313 353	2,469 2,571	541 627	3,908	588	823 967	2,103 2,468	1,669	2,942 3,447	15,347
Gross Needs (1,000 #BOD ₅)	2000	197 221	1,315	312 354	2,064 2,376	323 372	441 508	1,064	975	1,631 1,917	8,317 9,575
	1980	135 144	727 795	204 219	1,191	206	259	590 645	622 673	961	4,891
	Objective	NI -EQ RD	NI -EQ RD	NI -EQ RD	NI -EQ RD	NI -EQ RD	NI -EQ RD	NI -EQ RD	NI-EQ RD	NI -EQ RD	NI -EQ RD
	WRPA	7	ы	4	ľ	9	7	∞	6	10	$LMR_1/$

1/ Regional totals will not match addition of WRPA totals exactly due to rounding.

PROJECTED WASTE LOADS

Waterways and ports in the region moved a large portion of the Nation's commerce in 1970.

Table 75 - 1970 Waterborne Commerce, Lower Mississippi Region

	$(Mi11\overline{i})$	aterways on Ton-mi	les)	(Ports (Million Short Tons)				
WRPA	Shallow Draft1/	Deep Draft2/	<u>Total</u>	<u>Inland</u>	Coast- wise	Foreign	Total		
1	58,421	12,556	70,977	-	-				
2	324	0	324	7	0	0	7		
3	0	0	0	10	0	0	10		
4	25	0	25	6	0	0	6		
5	81	0	81	1	0	0	1		
6	0	0	0	2	0	0	2		
7	0	0	0	1	0	0	1		
8	1,014	0	1,014	22	10	14	46		
9	8,486	172	8,658	17	3	2	22		
10	2,774	173	2,947	60	_31	32	123		
LMR	71,125	12,901	84,026	126	44	48	218		

^{1/} Includes commerce on the Mississippi, Arkansas, White, Yazoo, Ouachita, Black, Atchafalaya, and Vermilion Rivers, and on the Gulf Intracoastal Waterway and other smaller waterways, including numerous bayous in WRPA's 9 and 10.

Includes commerce on the Mississippi River below Baton Rouge, Louisiana, the Atchafalaya River between Morgan City, Louisiana, and the Gulf, and on the Calcasieu River.

Future Needs. Based on Program A projections, the regional waterway system in the year 2020 will be required to accommodate almost 400 billion ton-miles of traffic if the National Income objective is achieved. Realization of the Regional Development objective for 2020 will require the movement of about 500 billion ton-miles of traffic. Projections of waterborne commerce in the region are summarized in table 76. The relative magnitude of the 1970 and 2020 traffic is illustrated in figure 12. Figures 13 and 14 depict predicted needs for waterways and ports by WRPA.

Table 76 - Projected Waterborne Commerce, Lower Mississippi Region

	Fons)	Total		9,274 18,263 34,961	14,776 29,239 55,172	12,074 26,094 43,992	2,441 4,347 7,943	3,962 5,411 9,670	1,934 6,061 8,617	67,909 137,997 285,606	55,300 65,879 131,786	177,351 323,519 622,664	323,021 616,840 1,200,411
	Ports (Thousand Short Tons	Foreign		000	000	12 26 44	000	900	5 16 22	20,350 41,219 83,584	2,899 5,670 11,318	45,389 85,797 167,828	
	rts (Thous	Coast- wise		000	000	000	000	000	000	14,236 26,751 52,708	4,986 9,753 19,467	45,686 80,005 150,995	64,908 116,509 223,170
Program B	Por	Inland	1 1 1	9,274 18,263 34,961	14,776 29,239 55,172	12,062 26,068 43,948	2,441 4,347 7,943	3,962 5,411 9,670	1,929 6,045 8,595	53,323 70,027 149,314	25,415 50,452 101,001	86,276 157,717 303,841	189,458 367,603 714,415
	Ton-Miles)	Total	104,621 206,325 422,349	451 795 1,238	000	237 623 1,015	230 438 847	000	000	1,624 3,457 7,540	13,683 29,036 56,899	4,507 8,576 16,861	125,354 249,250 506,750
	Waterways (Million Ton-Miles	Deep Draft	18,163 34,452 67,952	000	000	000	000	000	000	000	257 505 2,474	360 732 1,518	18,781 35,689 71,944
	Waterways	Shallow Draft	86,458 171,873 354,397	451 795 1,238	000	237 623 1,015	230 438 847	000	0 0	1,624 3,457 7,540	13,426 28,531 54,425	4,147 7,844 15,343	106,573 213,561 434,806
	(suo)	Total		8,609 15,881 29,734	12,197 23,708 45,007	9,519 22,562 37,299	2,227 3,759 6,735	3,614 4,705 8,199	1,764 5,241 7,307	61,869 119,877 209,398	30,593 57,256 122,364	162,900 268,440 474,671	294,561 511,283 930,461
	and Short Tons)	Foreign	1.1.1	0 0	000	11 23 37	000	000	4 14 19	18,903 33,305 61,440	2,664 4,927 9,647	42,960 72,858 130,676	64,542 111,127 201,819
	Ports (Thousand	Coast- wise		000	000	000	000	000	000	12,723 21,032 38,468	4,582 8,474 16,592	40,752 64,812 112,101	58,057 94,318 167,161
Program A		Inland	1 1 1	8,609 15,881 29,734	12,197 23,708 45,007	9,508 22,539 37,262	2,227 3,759 6,735	3,614 4,705 8,199	1,760 5,227 7,288	30,243 55,540 109,490	23,347 43,855 86,125	79,188 130,770 231,894	170,693 305,984 561,734
	Ton-Miles	Total	96,012 170,502 319,210	420 694 1,195	000	216 539 861	210 379 720	000	000	1,516 3,086 6,536	12,574 23,872 48,563	4,249 7,709 14,888	115,198 206,781 391,974
	Waterways (Million	Deep	16,729 28,236 51,092	000	000	000	000	000	000	000	236 439 2,111	332 609 1,138	17,297 29,284 54,341
	Waterways	Shallow	79,283 142,266 268,118	420 694 1,195	000	216 539 861	210 379 720	000	0 0	1,516 3,086 6,536	12,338 23,433 46,453	3,917 7,100 13,750	97,901 177,497 337,633
		Time	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020
		WRPA	-	7	3	4	i.	9	7	∞	6	10	LMR

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

WATERBORNE COMMERCE LOWER MISSISSIPPI REGION

369 SIFIED	LOWER LOWER 1974	MISSISS MISSISS	SIPPI R	EGION C	OMPREHE OMPREHE	NSIVE S	STUDY C	OORDINA APPENDI	X T. PL	F/G 8/c ANE	6 TC(U)	
3 of 6			P2 (1) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11	CONTROL OF THE PARTY OF T	MINNA MODULI		, mil.	(description)		
	le le	Tipodi Mari		West of the second	- 100 mm	ESTATION INCLUSION INCLUSION INCLUSION INCLUSION INCLUSION			michios Galeria Description Galeria	Militaria	MENT CONTROL OF THE PARTY OF TH	1000
		ESTIMATE PARTY AND PARTY A	(1000000 (10000000000000000000000000000			PL N			CONTROL OF THE PARTY OF THE PAR	Constant Constant Constant Constant	MATERIAL PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSO	
200		原語意 第66章					12115000 10 10 13	EXAMPLE AND ADDRESS OF THE PARTY OF T				
					5.00 5.00	A THE PART OF THE	W. 1111	A ((1))		\$ 100 \$ 100		
				THE PARTY OF THE P			H. LA H. A.A. H. A.A. H. A.A.	Philip Philip Philip Philip	in a fi		The state of the s	Internation of the second
San	Sept.		Manager Programmer Annaham Programmer Progra	(abbjana)	The second	Lateral Addition	I I I I I I I I I I I I I I I I I I I					

WATERBORNE COMMERCE, WATERWAYS

FIGURE 13

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

WATERBORNE COMMERCE , PORTS

Hydropower

Present Status. In December 1970 there were four on-the-line hydroelectric power plants in operation in the Lower Mississippi Region. Table 77 contains a listing of these plants.

Table 77 - Existing Hydroelectric Plants in 1970, Lower Mississippi Region

Plant	Stream	Location	State	Installed Capacity (MW)	Dependable Capacity (MW)	Minimum Annual Energy (GWh)
Blakely Mountain Carpenter Remmel Narrows	Ouachita Ouachita R. Ouachita R. Little Mo. R.	WRPA 5 WRPA 5 WRPA 5 WRPA 5	Ark. Ark. Ark. Ark.	75.0 56.0 9.3 25.5	75.0 56.0 10.0 21.0	139.2 76.6 43.0 18.4
		То	tal	165.8	162.0	277.2

Although Appendix R, Power, provides no breakdown of use by source of generation, during 1970 the region's peak load demand was 15.1 million kilowatts while its energy requirements were 71.2 billion kilowatt-hours. Approximately 51.0 billion kilowatt-hours of energy were generated within the region in 1970 and hydro plants generated only about 0.3 billion kilowatt hours, or about 0.6 percent of this total.

Future Needs. By the year 2020 the need for electric power in the Lower Mississippi Region is expected to increase about nine times over 1970 use for Program A and nearly 10 times if the Program B objective is achieved. In 1970 hydropower accounted for only 0.65 percent of all electrical energy generated in the region. Because the study area contains very few sites amenable to hydropower development, this percentage will decline throughout the next 50 years. Yet a continuing need will exist for all hydropower which can be economically developed in the region. Table 78 presents future needs for electric power.

Coastal and Estuarine

Present Status. The coastal and estuarine zone can be described as being in a current state of general deterioration. In the last 250 years, the construction of works to control devastating floods and to provide for dependable navigation has increasingly restricted the overflow of the Mississippi River, thereby depriving the zone of nourishing sediments. Through natural subsidence and erosion, the zone is yielding to the sea a part of the sediments deposited by repeated

Table 78 - Peak Load Demands for Electric Power, Lower Mississippi Region

WRPA1/	Year	National Income Program (Megawatts)	Regional Development Program (Megawatts)
2	1970	592	592
	1980	1,023	1,099
	2000	2,936	3,288
	2020	5,013	5,815
3	1970	2,597	2,597
	1980	4,009	4,402
	2000	7,442	8,462
	2020	13,461	15,628
4	1970	701	701
	1980	1,220	1,331
	2000	4,253	4,823
	2020	7,301	8,294
5	1970	2,573	2,573
	1980	4,595	4,884
	2000	13,440	15,241
	2020	22,991	26,163
6	1970	453	453
	1980	943	1,006
	2000	2,527	2,653
	2020	4,284	4,704
7	1970	364	364
	1980	723	799
	2000	1,816	2,114
	2020	3,089	3,618
8	1970	2,090	2,090
	1980	4,221	4,550
	2000	14,398	16,126
	2020	25,235	28,642
9	1970	1,256	1,256
	1980	2,600	2,782
	2000	7,900	8,943
	2020	13,300	14,949
10	1970	4,428	4,428
	1980	8,158	8,802
	2000	21,863	24,377
	2020	36,859	41,835
Region	1970	15,054	15,054
	1980	27,492	29,655
	2000	76,575	86,027
	2020	131,533	149,648

^{1/} Capacity and energy for any WRPA may be associated with WRPA 1.

overflow during centuries of time. The zone is also undergoing change from man-made canals built in connection with development of the petroleum and fishing industries. These canals not only provide avenues for the intrusion of saltwater, but their bank lines are subject to wave attack. All together, man-made changes are altering the basic character of the coastal and estuarine zone, particularly in the productivity of fish and wildlife.

Rice-growing lands above Lake Charles, Louisiana, are protected from salt-water intrusion by the Calcasieu River Salt-Water Barrier.

Future Needs. Needs in the coastal and estuarine zone were developed within limitations of data collected largely for other purposes. Satisfaction of stated needs will enhance the productivity of fish and wildlife in the zone by maintenance of adequate salinity conditions and management of water levels. Providing required Mississippi River flows will also enhance the physical condition of the zone itself by preventing shore erosion and reducing land losses. Since a condition as close to equilibrium as possible is the objective in the estuarine zone, needs are identical for all time frames and study objectives.

(1) Land Building Needs - The source of material for land building in the coastal zone has been sediment transported by the Mississippi River and its distributaries. Now confined by levees, however, the Mississippi River discharges most of its transported sediment into the deep water of the Gulf of Mexico. An estimated 16.5 square miles of marshland in the coastal and estuarine zone are being lost each year from the combined effects of subsidence, erosion, compaction, organic decay, and the various works of man.

The relationship between river flow and sediment transport in the Mississippi River is reasonably well known. For this reason, as well as to facilitate resource allocation in compatible terms, the need for land building is expressed in Appendix O, Coastal and Estuarine, in terms of riverflow. The expressed need is for delivery of 352,200 m.g.d. of sediment laden water to strategic locations in the estuarine zone.

(2) Salinity Alteration Needs - Water salinities in the coastal and estuarine zone have been characterized by relative stability, particularly with respect to the transition from fresh to saline zones and by gradual salinity change during and after floods. However, the construction of levees and the extensive channelization of the marsh for navigation, drainage, and mineral exploration and production have provided avenues for the intrusion of saltwater, which has resulted in a long-term trend toward increased water salinities in certain areas of the marshes

Optimum conditions for commercial and sport fishes productivity in the zone can be achieved in problem areas by the maintenance during spring, summer, and fall of the 15 parts per thousand (p.p.t.) mean salinity isohaline at the location shown on figure 3, Appendix O. A second condition favoring wildlife productivity is maintenance of water salinities not exceeding 15 p.p.t. at the saline-brackish marsh contact (a line, also shown in figure 3 of Appendix O) at least 5 percent of the time. These requirements dictate supplemental water needs throughout the year in the Calcasieu Lake area in WRPA 9, and during fall and winter at several locations in WRPA 10. Overall coastal zone needs for salinity control, based on average annual requirements, are estimated at 36,900 m.g.d. Of this amount, 28,000 m.g.d., and 8,900 m.g.d., are needed in WRPA's 10 and 9, respectively. No requirements for salinity control exist in WRPA 8.

(3) Water Level Management Needs - Estuarine productivity in the coastal and estuarine zone is dependent upon a pattern of cyclical change in water levels. Supplemental flows, beyond that available from runoff, are required at two locations in the zone. In the Grand and White Lake area in WRPA 9, a minimum water level of 2 inches above the marsh floor is needed during the period August through May to promote growth of desirable plants for enhancement of wildlife productivity. In the Atchafalaya Floodway, supplemental water is needed to optimize fish and wildlife production. The requirement is equal to the optimum flow minus the minimum flow normally available. These two purposes require an average annual flow which amounts to 59,600 m.g.d.

(4) Shoreline Erosion Control Needs - For many years after the Mississippi moved to its present location, floodwaters and sediments were widely dispersed throughout the coastal zone by overbank flows of the Mississippi River through its distributaries. With the confinement of the Mississippi River and its main distributary, the Atchafalaya River, the only areas now receiving appreciable sediments are the Mississippi Delta and the Atchafalaya Bay areas. Deprived of the freshening effects of overflows, the shoreline is now eroding from the combined effects of wind, tidal action, and waves.

Five separate areas in WRPA 10, totaling 10.1 miles of shoreline, are undergoing critical erosion, and protection of these shorelines constitutes a need in the coastal and estuarine zone.

The following table summarizes the coastal and estuarine needs.

Table 79 - Summary of Needs, Coastal and Estuarine Zone, Lower Mississippi Region

WRPA	Land 1/ Building (m.g.d.)	Salinity Alteration (m.g.d.)	Water Level Management (m.g.d.)	Protection Needs (Miles)	
9	14,900	8,900	59,600	0	
10	337,300	28,000	0	10.1	
Total	352,200	36,900	59,600	10.1	

^{1/} The land building need for maintaining a dynamic near equilibrium in land loss-land gain in the entire coastal zone expressed in terms of Mississippi River flow is shown. The land building need for the entire zone prorated to WRPA's based on land loss in individual WRPA's is also shown.

Archeology and History

Present Status - Archeology. Archeologists have found convincing evidence that man has lived throughout the Lower Mississippi Region for thousands of years. The total number of sites of his occupancy are unknown, but more than 5,000 sites have been recorded to date and are believed to represent but a small fraction of the total. Sufficient archeological work has been done on 64 percent of the recorded sites to provide an estimate of the total number of sites of man's occupancy, and to roughly place the sequence of his cultural and temporal development in the region. Some 100 sites have been excavated but less than one dozen have been extensively investigated.

Present Status - History. As of 1970 there were 237 historic sites within the confines of the Lower Mississippi Region recognized as significant from a historical standpoint. The listing includes battle-grounds, historic dwelling places, legendary sites, natural landscape features, roads, trails, waterways, cemeteries, machines and man-made structures, cultural sites and festivals, and those archeological sites listed on the National Register of Historic Places. Sites listed on the Register or designated as National Historic Landmarks numbered 176 in 1970, and an additional 61 were recognized as historic assets by States of the region. Inventory surveys conducted during 1973 catalogued an additional 2,171 significant historic sites regionwide. Table 80 gives a WRPA resume of the status of recognized regional historic sites as of 1973.

Table 80 - Regional Historic Resources, 1973, Lower Mississippi Region

WRPA			er of Sites			
	Total Inventorie	ed Total Mar	oped Total	on Nat	ional	Register1/
2	611	41		28	(14)	
3	188	24		17	(3)	
4	272	27		26	(6)	
5	396	28		12	(0)	
6	71	6		1	(1)	
7	407	32		29	(7)	
8	266	24		18	(0)	
9	86	20		11	(1)	
10	111	35		34	(1)	
LMR	2,408	237		176	(33)	

^{1/} Number in parentheses indicates archeological sites included in Register listing.

D'Evereux, in Natchez, Mississippi, is but one example of the many lovely antebellum mansions in the region.

Future Needs - Archeology. Although archeologists are able to make informed estimates of man's historic activities in the region, huge knowledge gaps exist on specifics of cultural and temporal sequences and the geographical extent of his occupancy. There is no area in the region that is considered well known archeologically at this time, considering the kinds and amounts of work required to satisfactorily describe the history of other areas in the country which have received extensive attention. Consequently, future needs are heavily oriented to completion of extensive surveys of archeological sites by 1980 with highest priorities on the survey of sites threatened by development activities. Table 81 displays needs for the years 1980 and 2000. The 2020 time frame is omitted because there is no way to predict work required beyond the year 2000 until the results of needed surveys are analyzed.

Future Needs - History. The region's most pressing historical resource need is to accurately determine through comprehensive survey the total number of significant historical sites in existence in the region. Those sites which, after cursory examination, appear to possess

Table 81 - Future Archeological Needs, Lower Mississippi Region

Area	Need Category	Time Fr By 1980	rame By 2000
WRPA 1			
	Included in adjacent WRPA totals		
WRPA 2			
8-2000 sq mi	Intensive Survey	Complete	
Unit	Sites Tested	74 18	322
	Sites Excavated	18	76
WRPA 3			
5-2000 sq mi	Intensive Survey	Complete	
Unit	Sites Tested	45	201
	Sites Excavated	10	45
WRPA 4			
6 1/2-2000 sq mi	Intensive Survey	Complete 61 14	
Unit	Sites Tested	61	261
	Sites Excavated	14	58
WRPA 5			
10-2000 sq mi	Intensive Survey	Complete	
Unit	Sites Tested	90 21	390
	Sites Excavated	21	90
WRPA 6			
2-2000 sq mi	Intensive Survey	Complete	
Unit	Sites Tested	20	81 18
	Sites Excavated	4	18
WRPA 7			
3-2000 sq mi	Intensive Survey	Complete	
Unit	Sites Tested	28	120
	Sites Excavated	6	27
WRPA 8			
3-2000 sq mi	Intensive Survey Sites Tested	Complete	
Unit			121
	Sites Excavated	6	28
WRPA 9			
6-2000 sq mi	Intensive Survey Sites Tested	Complete	
Unit		54	234 54
	Sites Excavated	12	54
WRPA 10			
3-2000 sq mi	Intensive Survey	Complete	
Unit	Sites Tested	27 6	118 29
	Sites Excavated	6	29
Region			
48 Units of	Intensive Survey	Complete	
2000 sq mi	Sites Tested	426	1,848
	Sites Excavated	97	425

attributes of significant value should be placed on a National or State Register to insure their integrity until further investigation can prove their merits or cause their subsequent removal from the register. This intensive survey should be completed by 1980.

Future needs were categorized by State Historians as those sites worthy of structural restoration; those which should be placed on registers as special district, structures or sites; historic roads or trails; and cemeteries. A number of interpretive markers are also recommended to explain to residents and tourists the significance of various historic resources. Historic structures are man-made structures such as an old court house, plantation, or bridge; historic districts refer to areas of the region where significant pages in the story were written, such as the Beale Street section in Memphis or the city of Vicksburg, head-quarters for southern troops during the Civil War; historic sites are specific locations where history was made, such as Davy Crockett's cabin in Tennessee; historic markers serve to tell the story to residents and visitors; and roads, trails, and cemeteries are self-explanatory.

It should be recognized that when specific numbers are attached to need categories prior to completion of comprehensive surveys, they are subject to change which in some instances might be drastic. Nevertheless, such an endeavor serves to form a basis for the program measures which are included in the recommended program and although highly judgmental are essential to formulation of a comprehensive program. Future historical needs are displayed in table 82.

Health Aspects.

Present Status. Water often carries pathogenic, or disease causing, organisms. Consumption of such water has led to serious epidemics in past years and can still do so. Although there have been no widespread epidemics in recent history in the region, there continues to be a significant incidence of waterborne disease. In the period 1960 through 1970 over 24,000 cases of waterborne-type disease were recorded, 8 percent of all reported cases in the United States. The potential for catastrophic epidemics remains a constant threat. Chronic illnesses which may result from use of water containing certain chemicals, such as mercury, have also become a matter of concern in recent years.

In general, drinking water supplies of the region are of good quality and require little treatment. There are constant dangers to some surface supplies however, the most significant ones being municipal waste discharges, agricultural runoff, and toxic material spills. A constant surveillance of drinking water supplies must be maintained.

Water, in addition to carrying disease organisms, often provides the breeding environment for insects which carry and transmit disease. There were over 3,000 reported cases of vector-borne diseases, including malaria, encephalitis, and others in the 1960-1970 period.

Table 82 - Future Historical Needs, Lower Mississippi Region

	rs 2020	20	152	150	300	204	06	235	230	276	1687
	Markers 2000 20	20	145	20	190	124	75	140	130	156	1060
	1980	35	82	10	80	34	20	35	30	36	392
	es 2020	-	58	20	0	П	75	12	0	0	167
	Cemeteries	7	65	7.5	61	-	20	13	7	C1	211
	Cemeteri 1980 2000	-	45	20	0	0	25	9	~1	-	100
	i.1s 2020	9	44	0	4	2	10	ю	1	7	31
	g Trails 2000 2020	7	16	~1	10	7	7	7	7	2	44
	Roads & Trails 1980 2000 2020	∞	10	4	0	0	i.c	3	0	0	26
	2020	1115	90	100	154	15	15	28	23	4200	4770
Restoration	0f Structures 1980 2000 2020	06	7.0	45	131	10	10	99	32	2730	3174
Res	0f 8 1980	35	45	12	75	2.1	20	28	15	268	519
ric Places 1/	2020	142	27	2	152	26	15	ıs	0	0	569
		122	33	1.2	171	16	20	19	0	0	393
	1980	102	80	20	151	11	20	∞	0	21	454
Histo	2020	23	16	1	2	0	25	9	2	2	27
tate Re	Districts	4	11	2	2	П	10	4	4	7	40
	Di 1980	5	6	7	7	1	4	7	7	-	28
	2020 2020	345	722	220	325	25	100	88	200	1075	3107
	Structures 0 2000 2020	270	405	100	250	31	100	110	100	2900	4264
	St 1980	140	1115	35	150	18	100	22	70	300	1983
	WRPA	01	23	4	in	9	-	∞	6	10	LMR

Vesources in subcategories listed hereunder should be added to National or State Register of Historic Places in timeframes indicated until further investigation can verify or disclaim their merits as significant historic resources.

Tremendous strides have been made in control of vector-borne diseases through water resource developments and pesticide application. The region once contained great areas of swampland. Floods occurred over vast areas, leaving thousands of pools which were an ideal breeding ground for mosquitos and other disease transmitting insects. Malaria and yellow fever were major public health problems up until the early forties. Water resources development in the form of flood control and drainage, and application of controversial DDT are directly responsible for the reduction in vector problems in the region.

Natural swamps, sluggish streams, lake margins, salt marshes, and residual ponding from periodic major floods, along with irrigated rice fields in southwestern Louisiana and the Grand Prairie of Arkansas, are the sources of most of the remaining vector-borne disease problems in the region.

Future Needs. Regional health needs are centered around continued surveillance and treatment of public drinking water supplies, elimination of disease-related surface water pollution, provision of adequate public sanitation facilities in high density water oriented recreation areas, and institution of comprehensive vector control programs. Table 83 summarizes regional needs by State.

Table 83 - Summary of Future Health Aspects Needs, Lower Mississippi Region

State	Year	Category of Need	Number 1/
Arkansas	1980	State Drinking Water Program	1
	1980	Vector Abatement Districts	9
	2000	Vector Abatement Districts	16
Kentucky	1980	State Drinking Water Program	1
Louisiana	1980	State Drinking Water Program	1
	1980	Vector Abatement Districts	30
	2000	Vector Abatement Districts	32
Mississippi	1980	State Drinking Water Program	1
	1980	Vector Abatement Districts	10
	2000	Vector Abatement Districts	16
Missouri	1980	State Drinking Water Program	1
Tennessee	1980	State Drinking Water Program	1
	1980	Vector Abatement Districts	1
	2000	Vector Abatement Districts	3

^{1/} Total number of districts to be operating by specified year.

ALTERNATIVES

General

One of the preliminary steps in formulating water and related land resource plans and programs was to identify and array a wide range of solutions to the region's water and related land resource problems and needs. Alternative solutions were then investigated to the degree necessary to make a reasonable decision on their practicability, based on available information and the judgment of professional planners. Accordingly, some alternatives received only superficial consideration, whereas others were investigated in depth. For instance, effluent component reclamation as a water quality alternative was given only cursory examination because the state of the art has not progressed to the point where this alternative can be evaluated on an equal footing with other options. Conversely, the tried and proven alternative of conventional waste treatment for water quality control was given heavy consideration. A listing of all options considered as possible solutions to the region's problems related to water and land resources is given in table 84.

Screening of Alternatives

In the screening alternatives, a few were eliminated because of legal or political considerations, some were discarded on the basis of financial constraints, and others were set aside due to a lack of public acceptance or a paucity of information. Some screening was done in making basic assumptions preliminary to or during the analysis leading to compilation of certain appendixes, as in navigation. Table 82 may appear incomplete for this reason. The reader is referred to the individual appendixes in such cases. As a particular example of how the screening process was carried out, consider water supply. Inasmuch as the region possesses an ample supply of whater which generally requires only good management to satisfy all needs, the serious investigation of only a limited number of conventional alternatives was necessary. However, should compacts be perfected allowing for diversion of significant quantities of water out of the region, such as to the High Plains of Texas and New Mexico, a more stringent investigation of other listed alternatives, such as weather modification, rationing, desalination, or recycling, may become necessary.

More intensive resources management is also conspicuously absent from table 84. The reason for this is because resource needs presented in the separate appendixes are not all expressed in terms of equal management efficiency. Using such needs without adjustment would result in an inefficient allocation of the region's resource base because needs controlled by a range of management levels would be competing on equal footing for the resource base. In order to alleviate this problem, all needs were reduced to compatible, common management levels before resource allocation was begun. The previous section contains a detailed discussion of how needs were so scaled.

Table 84 - Potential Solutions to Resource Problems and Needs, Lower Mississippi Region

Resource Requirement

Potential Solutions

Water

Withdrawals

Municipal
Industrial
Rural Domestic
Irrigation
Livestock and Poultry
Minerals
Thermoelectric Power
Commercial Fishing
Fish and Wildlife
Coastal and Estuarine

Surface Water Development 1/Additional Surface Storage Ground Water Development Ground Water Recharge Inter-region Diversion Intra-region Diversion Water Salvage 1/Desalinization Weather Modification Water Conservation 3/

Surface Area

Recreation
Fish and Wildlife (Sport Fishing)
Environmental

Lake and Pond Construction Raise Existing Lake Levels Access Development Facilities Development

Land Area

Cropland Compasture Protest Land Law Urban and Built-up Recreation Prish and Wildlife Minerals Commercial Fishing (Catfish & Crawfish)

Conversion of Land-Use Purchase Easements Land-Use Regulation Subsidy Purchase and Re-sell Access Development Facility Development

Water and Land Resource Related Problems

Flood Damage

Environmental

Reservoir Storage Channelization Levees and Floodwalls Pumping Plants Channel Stabilization

Table 84 - Potential Solutions to Resource Problems and Needs, Lower Mississippi Region (Cont'd)

Resource Requirement

Potential Solutions

Water and Land Resource Related Problems (cont'd)

Zoning and Regulation Warning and Evacuation Flood Proofing Watershed Land Treatment Diversion of Flood Flows Flood Insurance

Sediment and Erosion

Bank Stabilization Sediment Control Structures 4/ Watershed Management 5/ Revegetation

Excessive Wetness

On-Farm Drains Channelization Watershed Management 6/

Water Quality

5-Day BOD
Bacteria
Thermal
Oil and Grease
Toxics
Turbidity
Heavy Metals
Foam
Phenols
Dyes
Ammonia
Sulfite Waste Liquors
Pickling Liquors
Iron
Inorganic Compounds

Secondary Waste Treatment
Advanced Waste Treatment
Underground Disposal
Assimilation //
Mechanical Reaeration
Effluent Component Reclamation
Increased Industrial Efficiency
Control of Sediment and Erosion
Disinfection
Sprinkler Irrigation
Lagooning
Incineration
Cooling Towers and Cooling Ponds
Pesticide Control
Fertilizer Management Program
Land Spreading

Table 84 - Potential Solutions to Resource Problems and Needs, Lower Mississippi Region (Cont'd)

Resource Requirement

Potential Solutions

Water and Land Resource Related Problems (cont'd)

Navigation Canelizati

Canelization (Locks and Dams)

Shallow-Draft Channels Deep-Draft Channels

Locks

Ports and Wharves (Harbors)

Superport

Recreation, Fish and Wildlife Access Development

Facilities Development

Hydroelectric Power Run-of-River Plants

Reservoirs

Coastal and Estuarine Locks, Salinity Control Structures,

and related levees and channels

for water diversion

Spillway Gate Modification for

water diversion Bank Stabilization

Aesthetics

<u>8</u>/

Archeological Purchase Historical Easement

Unique Biological Systems Purchase and Re-sell

Unique Botanical Systems
Unique Ecological Systems
Subsidy
Land-Use Regulation

Unique Geological Systems Scenic Rivers and Streams

Lakes

Wilderness Areas Urban-Oriented Open and Green Space

Bottom-land Hardwoods

Beaches and Shores

Wetlands

Health Aspects

Water Quality Improvement

Vector Control

Emergency Preparedness

Table 84 - Potential Solutions to Resource Problems and Needs. Lower Mississippi Region (Cont'd)

Development of existing surface waters without additional storage.

Reclamation and re-use of treated wastewater

Reduced water use through metering and pricing, development control, rationing, public education, facilities repair or replacement, elimination of wasteful uses, evaporation reduction, and increading irrigation efficiency and cropping so as to reduce water requirements for a given level of production.

Contour farming, ditch checks, and reservoirs (Physical Measures). Non-physical land treatment measures such as changing cropping patterns, changing land use or improving existing practices.

6/ Includes all land treatment measures, as changing cropping patterns,

which will facilitate use of lands with high wetness. 7/ Includes diversion of wasteload to stream, diversion of stream to

wasteload, releases from reservoir storage, and natural assimilative

capacity of streams.

All options for satisfaction of aesthetic needs are aimed at preservation, enhancement, restoration, creation, or otherwise managing the region's aesthetic resources for the enjoyment of future generations.

In this appendix land treatment is not handled as a category of need, but rather as an alternative to alleviation of problems of flooding, excessive wetness, and sediment and erosion. In formulating the various plans and programs, land treatment is freely employed as an alternative to allow optimum utilization of the region's land base. Data regarding the extent to which it was utilized in solving the abovementioned problems can be found in a later section dealing with the framework program (pages 213 to 456).

Land treatment is nearly always used in conjunction with the primary agricultural land categories of cropland, pastureland, and forest land. Table 85 lists all alternative land treatment measures considered in the formulation.

Water Supply

The region's water resources, either by virtue of supplies generated in-basin or from inflows into the region, are ample to satisfy all foreseeable requirements after considering maximum possible depletions in upstream or adjacent regions. Therefore, the more exotic water supply alternatives of water salvage, desalination, weather modification, and water conservation received little or no consideration after the initial screening of potential solutions. Distributional inequities that exist can best be satisfied by using the more conventional options of surface water development, additional reservoir storage, ground-water development, intra-regional diversion, or inter-regional diversion.

Land Use	Alternative Measures
Cropland	Residue and annual cover
	Sod in rotation
	Contouring
	Stripping, terracing, or diversions
	Permanent cover
	Drainage systems
	Irrigation water management 2/
Pasture land	Protection from over-grazing
	Plant cover improvement
	Brush control
	Reestablishment of plant cover
	Land use changes
Forest land	Establishment of timber stands
	Improvement of timber stands
	Forage improvement and management
	Reduction or elimination of grazing
	Fire protection
	Insect protection
	Disease protection

^{1/} Changing from cropland to permanent grass or forest.

^{2/} Improved management practices on lands being irrigated.

as in the case of an already perfected compact between the States of Texas and Louisiana. This anticipated diversion will probably be required by the year 2000 to allay serious water shortages in the Lake Charles, Louisiana, area. Ground-water development in the Lake Charles area is already to the point where extensive aquifer drawdown is occurring, and saltwater intrusion is expected to be an ever-increasing problem. This inter-regional water diversion is considered the most economical solution to this problem because the Sabine River along the Louisiana-Texas State line is a water supply source nearer to the point of need than is water from the next closest regional source, the Atchafalaya River.

Water Surface Area

Water surface area needs involve maintaining existing water areas for wildlife propagation or sport fishing, and the creation of water surfaces for outdoor recreation pursuits such as swimming, boating, and water skiing. Existing shallow water fish and wildlife areas can be maintained with relative ease since adequate ground or surface water supplies generally exist in economic proximity to points of need throughout the study area. Diversions from these water sources were retained as viable alternatives after the initial screening process.

Two alternatives considered for creation of additional water surface areas for recreation were (1) raising existing lake levels, and (2) constructing new impoundments. The first alternative was viewed as having only minimal application because of the nature of the recreation need (swimming, boating, and water skiing) and its location in the region. Because of topographic considerations, additional surface areas generally cannot be economically attained by this method, either because the depth to land area flooded ratio is excessively small or because the ratio of increased depth to new water surface area gained is excessively large. For these reasons, creation of new reservoirs was normally viewed as the most viable alternative for satisfying projected needs for recreation water surface areas.

Land Area

Land use needs, reflecting compatible management levels, were matched to resource capability on a priority basis. (See Plan Formulation Rationale and Methodology, page 195.) Formulated land-use conversions conformed to adopted priorities. All listed alternatives other than land-use conversions and purchase and resell were viewed as viable for satisfaction of needs providing lower priority uses remain multipleuse with land uses having higher priority.

Related Problems

Flood Damage Reduction. All listed alternatives for flood damage reduction were considered appropriate and were retained for possible application in specific locations throughout the region. Zoning, regulation, and flood proofing were not viewed as viable alternatives for reducing agricultural (crop and pasture) flood damages.

They were, however, viewed as appropriate and viable measures for mitigating urban damages, wherever such damages occur in the region.

Sediment and Erosion. All listed alternatives were retained for further consideration and possible application for control of this problem.

Water Quality. Appendix L, Water Quality and Pollution, presents quantified needs relative to biodegradable and bacterial pollutants. Nonorganic wastes are described only in very general terms because of their complexity, their variable composition industry by industry, and because of a paucity of information regarding their quantification. Thus, the alternatives listed in table 82 for satisfaction of non-BOD5 pollutant needs were screened to eliminate all but heat assimilation devices, such as cooling towers and cooling ponds, already in use in the region. After screening, waste treatment, assimilation, mechanical reaeration, disinfection, lagooning, and land spreading were retained as alternatives for further consideration in satisfying biodegradable and bacterial pollutant needs. Control of sediment and erosion was retained as a means of reducing suspended matter.

Effluent Component Reclamation has been used with success in various parts of the United States. Examples are (1) spray irrigation of agricultural land with sewage treatment plant effluent, and (2) industrial re-use of waste waters from petrochemical processes. This type of wastewater management is in its infancy, however, and quantitative decision making data is almost nonexistent. Establishing suitable generalized cost curves for effluent component reclamation is beyond the scope of this study. This alternative was eliminated in the initial screening for these reasons. Underground disposal was not considered a reliable alternative because it does not apply to organic waste, it is illegal in some States, and its costs are excessive in other limited applications.

Dilution by diversion of streamflow to waste loads was found to be an expensive alternative because high pumping costs were encountered in many of its possible applications. However, it was found to be a viable solution in a few instances.

The reverse procedure, dilution by diversion of the waste load to the streams, was found to be expensive if the distance exceeded 5 miles.

Natural assimilative capacity of the region's streams was considered to have no cost; however, stream standards were considered in imposing limitations on this alternative.

Mechanical reaeration of streamflow to increase oxidation of waste was considered a viable alternative only after effluent treatment.

Dilution by release of water from impoundments was considered feasible only when multi-use could be made of a reservoir.

Secondary treatment was considered to be the minimum acceptable level of treatment. For purposes of this study, secondary treatment was defined as 90 percent BOD_5 removal for municipal systems and 96 percent BOD_5 removal for industrial systems. At those locations where the expected waste loading with secondary treatment degrades stream water quality below State water quality standards, the alternative of advanced waste treatment was used. This level of treatment was defined as 98 percent BOD5 removal for both municipal and industrial wastes.

Bacteria control in water is accomplished by disinfection which may be obtained by several methods, including:

- (1) Chlorine
- (2) Iodine
- (3) Bromine
- (4) Ozone
- (5) Potassium Permanganate
- (6) Hydrogen Peroxide
- (7) Heat
- (8) Light
- (9) Metal Ions
- (10) Alkalis and Acids
- (11) Surface-Active Chemicals

Only chlorination has been used in the United States since 1890. It is now widely accepted and employed in a vast majority of existing treatment facilities, and is the only method listed that is both efficient and inexpensive. Therefore, chlorination is the chosen alternative. Its beneficial side effects include:

- (1) The control of undesirable growths such as algae.
- (2) Improvement of coagulation and grease separation.
- (3) Control of odors in water and sludge.
- (4) Prevention of anaerobic conditions in collection and treatment facilities.
- (5) Conversion of cyanides to cyanates in alkaline waste.

- (6) Destruction of hydrogen sulfide, thus offering protection against corrosion.
- (7) Reduction of immediate oxygen requirements of returned activated sludge and of digested liquor.
- (8) Reduction of BOD of waste water.

In spite of insufficient quantitative data on the discharge of non-BOD5 pollutants, a general assessment was made of the region's total water pollution problem. This was considered an absolute necessity due to the conviction of the plan formulators that non-BOD5 pollutants are apt to pose by far the greatest threat to future water quality in the Lower Mississippi Region. In this context some of the other water quality alternatives presented in table 84 are discussed in the narrative covering the recommended plan.

Navigation. Alternative modes of cargo movement were considered beyond the scope of a Type 1 study in the preparation of Appendix J, Navigation. It was assumed instead that the quantified tonnages, based on historical trends and expert opinion, represented those which would move only by water transport in the future. Then it became a matter simply of determining which development configuration, composed of some combination of the listed alternative measures, could most efficiently move the predetermined amount of cargo.

Hydropower. The run-of-the-river option for hydropower generation was investigated in detail as part of the "West Texas and Eastern New Mexico Water Import Study" and was found to be infeasible as an alternative means of generating power because of a lack of suitable sites for such power generation within the study area. This option was therefore dropped during screening, leaving reservoir construction as the only viable means of increasing the region's hydropower output.

Coastal and Estuarine. All listed alternatives were considered appropriate and were retained after initial screening for possible application at specific locations in the coastal zone.

Aesthetics - (Archeology, History and Natural Environment). All listed options for maintaining and enhancing the aesthetic qualities of the region except purchase and resell were retained after initial screening. Purchasing of significant aesthetic areas was considered only to the extent that such areas could not otherwise be preserved or maintained under the multiple-use concept. Land-use regulation was viewed as a good alternative only in areas marginally likely to change status without some preventive action.

Health Aspects. Satisfaction of any or all the requirements of the Water Quality Act Amendments of 1972 results in satisfaction of some portion of the region's health needs. Water quality can be improved through treatment of water supplies and treatment of wastes. Disinfection

with chlorine or another suitable chemical for bacteria control is the recommended program alternative, not only for the reason stated earlier, but also because of its significance as a health measure. Vector abatement programs and emergency preparedness programs are also considered viable alternative ways in which the health of the region's residents can be safeguarded and improved.

PLAN FORMULATION RATIONALE AND METHODOLOGY

GENERAL

In this study, plan formulation is directed to three broad planning objectives: National Income, Regional Development, and Environmental Quality. The formulation philosophy required that a physically, economically, and socially feasible alternative framework program be developed for each objective within legal and institutional limitations. Hence, each program is flexible enough to allow decision-makers a wide range of alternatives from which to choose. Each single-objective program, such as National Income, is fully responsive to its primary objective without neglecting the other two objectives. Programs for the different objectives are thus quite similar in content. The recommended multi-objective program adheres to the same fundamental philosophy as the single-objective programs with one major difference - it also contains elements most desired by the public insofar as those desires could be interpreted.

The general steps followed in developing alternate single-objective programs and the recommended framework program are summarized in the following five basic steps:

- Step 1. Analyze resource demands and problems in light of resource availability, determine needs based on compatible levels of resource management, and categorize needs by resource type and use. When two or more demands for the same resource are competitive, set priorities; when complementary, account for multi-use.
- Step 2. Identify alternative solutions to needs and problems, conduct a preliminary screening, and apply the least-cost single-purpose solution to the highest priority need.
- Step 3. Identify viable and efficient multipurpose solutions, and modify single-purpose plans accordingly.
- Step 4. Review plans defined to this point, account for all additional constraints, resolve conflicts, and blend into single-objective programs.
- $\frac{\text{Step 5.}}{\text{as flood control}}$. Assess and discuss the impacts of major program components, such as flood control, on other components of the programs.
- Step 6. Combine single-objective programs into the recommended multiple-objective regional framework program, adjust after impact analysis, and develop a schedule for implementation.

In the formulation process outlined above, all demands on a given resource are identified regardless of the concerned private or public entity or the investment-management requirements for needs satisfaction. This allows a complete and impartial comparison of needs with a resource and provides a true assessment of the adequacy of that resource. However, only those needs satisfaction measures which fall within the purview of the public sector are translated into the costed program. The total program includes private sector management options which are assumed to materialize by time frame so that the land and water area allocations will satisfy needs in an efficient manner. Public sector costs are broken into Federal and non-Federal costs. Non-Federal costs do not account for private investment required in meeting future needs $\overline{associated}$ with the private sector.

Resource needs or problems were identified and plans formulated on a WRPA basis, except where practical to work with smaller geographical delineations such as river basins, county groupings, and other areas of lesser scope within WRPA's. The smaller area plans and WRPA plans were then integrated with allowances for intra-planning area needs satisfaction to form the regional programs to meet needs in the target years 1980, 2000, and 2020. Regional planning took into consideration the external influences that development of a planning area's resources may have on adjacent physical systems, including ground-water resources, streamflows, water quality, and the natural environment. It also took into consideration the interrelationship of socioeconomic influences among planning areas. Among the most obvious of these influences is the relationship between WRPA 1 (Mississippi River) and the other WRPA's. Economic growth in some WRPA's has been largely dependent upon the enormous water supply and transportation system afforded by the Mississippi River, and the ability of man to control the devastating floods and meandering of the river and its tributaries. Although the interrelationships between most WRPA's are not as pronounced as those between the Mississippi River and directly adjacent WRPA's, consideration of these factors was nonetheless essential to development of the regional framework program.

Special facets of plan formulation, including deviations in the described rationale and general methodology, are presented in the following paragraphs along with a more detailed description of methods used by resource need group and problem category.

SINGLE-OBJECTIVE PROGRAMS - UNIQUE FEATURES

National Income Program

Plan formulation for the National Income Objective involved development of a regional program to meet needs associated with one set of projections for economic and demographic growth in the Nation. The target level of growth, referred to as Program A in Appendix B, Economics, is that which can reasonably be expected in light of historical growth trends of the region relative to national growth trends. Thus, implementation of a program responsive to those growth levels should not represent a disproportionate share of regional investment by the Federal Government at the expense of other regions in the Nation, provided historic investment levels continue.

After plans were formulated to meet specifically defined National Income needs, such as municipal water supply, natural environmental quality components were added to enhance the plan.

Regional Development Program

This program is keyed to an exclusive set of regional projections for economic and demographic growth. The regional development projections parallel those in the National Income set, except that regional growth is accelerated to approximately equal the average national rate of growth. Viewed within the constraints imposed by a limited national budget, this program would require a disproportionate share of investment relative to that in other regions. Natural environmental quality components were again added to the basic plan to make it more comprehensive.

Environmental Quality Program

A radical departure from normal plan formulation methodology was required to be responsive to this objective. A comprehensive listing of natural environmental components was first developed for each planning area. Initially conceived by environmental specialists, these lists were expanded and modified by the States and the plan formulators. and adopted as the nucleus of the plan. The level of economic development chosen by environmental specialists as the most desirable in keeping with the environmental objective was the same as that projected for the National Income Objective. Accordingly, National Income Objective needs for basic resource use and control categories, such as municipal and industrial water supply, were adopted as the Environmental Quality Objective needs for those water-use categories. Environmental quality plans were then formulated in a like manner for other objectives, with two notable exceptions: (1) the emphasis and priorities were shifted to the natural environmental quality of the region, and (2) in the case of water quality, tertiary treatment of wastes by 1980 was required in lieu of the less stringent secondary treatment required under the National Income and Regional Development water-quality programs.

WATER WITHDRAWAL BALANCE AND PLAN DEVELOPMENT

General

The primary rationale employed in formulation of a plan to meet water withdrawal requirements dictated that the highest priority need be fully satisfied at the cheapest cost, with each successively lower priority need being satisfied by the remaining cheapest source(s), until all needs were satisfied or until the available resource was exhausted. In order to translate this rationale into a workable plan, alternative sources (ground water, streamflow, or surface storage) were identified and a rough unit cost of withdrawal from each source was estimated. The costs were generally unit annual equivalent amounts that included annual treatment (quality), operation, and maintenance. These costs were used because the initial investment costs of some alternatives were misleading. Priorities were established for each category of water use and the highest priority use was assigned the cheapest source of water. These priorities closely parallel those for land because of the distinct interrelationship between the utilization of water and land (see pages 203 to 207 for a discussion of land use priorities).

In the water balance, each withdrawal was reduced by the amount of consumptive use and the net return flow was added to the low streamflow so that an accounting of the remaining water resource was available for the next category of need. The water balance is schematically represented in figure 15. Where streamflow was considered as an applicable alternative water source, the maximum flow considered available for municipal, rural domestic, industrial, and thermal cooling uses was generally limited to the one in 30-year, 7-day low flow. For all other uses a less stringent failure criteria, the one in 10-year, 7-day low flow, was generally adopted. The WRPA's were divided into water balance subareas so that localized problems could be better identified. Water supply plans were developed utilizing alternative sources and measures as single use only. These plans were then refined for incorporation of more efficient, multi-use measures. There were adequate water resources within the region to meet future needs, although in one instance it proved to be cheaper to import water under the terms of an existing compact than to divert water intraregionally.

Municipal Water Supply

Municipal water supply was assigned highest priority for needs satisfaction from the available water resource. Alternative sources were ground water, streamflow, and surface storage with selection by least cost solution method. Costs of ground water included well and well pump costs and treatment plant costs. Streamflow diversion costs included the costs of reservoirs, intake, pumping plants, pipelines, and treatment plants.

YEAR 2020-WRPA 9

* Unusable Return Flows

Lower Mississippi Region
Comprehensive Framework Study
SAMPLE WATER ALLOCATION SCHEMATIC
1970 Fagure 15

Industrial Water Supply

Industrial self-supplied water is not normally an area of public investment, but needs for this use were included in the water balance to determine the adequacy of the resource and the sources of water used by industry so a source would not be unknowingly oversubscribed by a succeeding water user. Some industrial water needs can be satisfied by brackish water. The costs of alternatives for industrial water were calculated employing a methodology similar to that used for municipal water supply.

Thermal Water Supply

Water required for cooling in conventional thermal electric power plants is considered to be a private investment problem, but the needs are included in the water balance because this purpose represents a major water use in the region. Most of the future increases in thermopower production will be met by plants located adjacent to the Mississippi River, where a large quantity of water is available. Some existing plants use surface supplies other than the river. Other plants utilize ground water coupled with cooling towers and ponds. The existing source of supply for these plants was found to be adequate for future withdrawals and was not displayed in the water balance. Adequacy and location of source, rather than costs of alternatives, were the primary determinants in allocating water to meet this need. Similarly, source of supply controlled the location of future power plants.

Irrigation Water Supply

Irrigation is the largest consumptive use of water in the region, ranks third in water withdrawals, and has a major impact in the water balance. The alternative sources of supply considered for meeting this category of need were ground water, streamflow diversion, and surface storage. Costs associated with ground-water use included well and pump costs. Costs associated with surface water included intakes, transmission facilities - either pipelines or open channels - and pump facilities. No treatment costs were estimated.

Other Agricultural Water Supply

The water supply for livestock and poultry categorized as other agricultural water is a relatively small requirement and the needs are widely dispersed. This need is normally a private concern and would probably be met by ground water and/or surface storage in the form of small on-farm stock ponds. These were the only alternative sources given serious consideration. Costs of ground water include well and pumping facilities and surface storage costs are based on a unit acrefoot cost for small farm ponds.

Commercial Fisheries Water Supply

The withdrawal of water for fish and wildlife purposes is normally for the artificial flooding of waterfowl areas. The needs represent the second largest consumptive use of water in the region. Water withdrawals for this purpose now come from both ground water and streamflow. However, all three alternative sources of water, ground water, streamflow, and surface storage were considered. The unit costs of these alternatives are the same as for commercial fisheries and do not include treatment costs.

Mineral Water Supply

The water requirements for minerals primarily consist of water used to flood oil fields, a process whereby water is induced into individual oil wells. The oil, which is the less dense of the two mediums, rises above the water, reducing pumping heads and costs; and additional oil, which the well might not normally reach, is produced. There are other less significant mineral uses of water such as gravel washing and quarrying of cut stone. The sources for mineral water use were: ground water and streamflow, which could be either brackish or fresh, and surface storage. Costs of the measures required to procure water from each of the alternate sources were calculated similarly to costs for other uses.

WATER SURFACE BALANCE AND PLAN DEVELOPMENT

Needs for water surface areas include recreation, fish and wildlife, and aesthetic purposes, or natural environmental components such as lakes of outstanding natural beauty. Multiple use of existing lakes satisfies all or portions of these needs and such multi-use is assumed to prevail throughout the period of study. When a deficit arises, additional surface may be provided. The deficit may be offset by utilization of water areas in other WRPA's, or it may go unsatisfied. A regional accounting of available and potential water surface areas was made by planning areas. Water areas which are proposed to satisfy problems relating to navigation, flood control, water supply, and hydropower were incorporated. Surpluses and deficits were noted. WRPA's with surpluses were examined to determine the extent to which they are capable of satisfying needs in another WRPA. Allocation of surpluses to satisfaction of needs elsewhere in the region was based upon general approximations and consideration of the distance and driving time separating surpluses from points of need. Alternatives considered in order to meet needed water surface areas were: (1) raising existing lake levels, (2) creating impoundments for the express purpose of satisfying water surface area needs, and (3) intensifying management of existing areas. Each alternative was checked for physical applicability and appropriateness, and the least costly alternative was selected. A constraining condition was that lakes created expressly for water surface area be included only to satisfy in-WRPA needs.

Where existing resources were capable of satisfying water surface area needs, but were not in a satisfactory ownership or control condition to contribute to needs satisfaction, appropriate alternative means of insuring such ownership or control were investigated and the least costly was utilized. Options included purchase, easements, and subsidies. Due recognition was made of the fact that in some States lake bottoms and thus the lakes themselves are already in public ownership. In such cases, only control of shorelines was needed to insure satisfaction of certain water surface area needs.

LAND USE ALLOCATION AND PLAN DEVELOPMENT

High priority land uses largely determine the character and appearance of the land resource. The admixture of these uses therefore can provide an important clue as to what the physical appearance of the region will be in future years. Primary land uses include urban and built-up, cropland, pasture, other, and forest land. They also include recreation areas and fish and wildlife management areas, and natural environmental quality components which must be treated as primary uses when viewed in terms of the Environmental Quality Objective. These components include unique ecological and botanical systems, wilderness areas, and so forth. Table 86 shows the priority ranking assigned the various categories of need by Program. The ranking was established by consensus among planning experts after careful consideration of the study objectives.

Table 86 - Land Use Priorities, Lower Mississippi Region

Use	N	umerical Rank	ing
Category	Program A	Program B	Program C
Urban and Built-up	1	1	1
Recreation - Class A	2	2	2
Minerals	3	3	4
Other	4	4	5
Recreation - Class B	5	5	6
Food Products	6	6	7
Forest Products	7	7	8
Fish and Wildlife	8	8	9
Recreation - Class C	9	9	10
Natural EQ Components	10	10	3

Many of the land uses are overlapping, as in the case of cropland and pasture areas providing wildlife food and cover. Table 87 provides a listing of primary land uses and their included uses.

Land-use allocations were made in order to determine the adequacy of the land base with respect to demands upon it, and to identify the magnitude of land-use programs calling for public controls, via investments. As a first step, priorities were established within the primary land-use categories, based on expressed public preference but tempered by judgment of experienced planners. Then lands were allocated according to need, sometimes combining several compatible uses on the same lands. The allocation continued with each successively lower priority need having access to remaining lands until the resource was exhausted.

Table 87 - Primary Land Use and Multiple Uses, Lower Mississippi $_{\mbox{\scriptsize Region}}$

Primary Use	Included Use
Urban and Built-up	Recreation - Class A, urban open and green space, and some mineral lands.
Cropland	Wildlife habitat for cropland edges, and some mineral lands.
Pasture	Part of recreation - Class B lands, wildlife requirements for open lands, and some mineral lands.
Forests	Wildlife habitat, recreation - Class B and C lands, some mineral lands, pastured forest, natural environmental quality compenents, watershed protection.
Water Areas	Though not readily defined as a land use, must be included in any land allocation. Uses given under section on water surface needs in this appendix.
Recreation (Class A)	Open and green space for environmental quality purposes.
Fish and Wildlife	Class C recreation, some timber production.
Natural Environmental Quality Components (exclusive use items only)	Consists of unique ecosystems, botanical systems, wilderness areas, and other defined environmental use categories.

The allocation process also considered other characteristics of land, such as agricultural productivity, habitat potential for more intensive management, etc., so that the capability of the available lands could be assessed. The allocation process is illustrated in figure 16. Alternatives and costs were not identified for all of the land-use groups. Only those that are likely to pose public investment problems required specific identification, cost comparison, and selection of alternative measures.

Wildlife Lands

Lands suitable for wildlife purposes include cropland and pasture edges, wetlands, and forests divided into specific cover types as: bottom-land hardwoods, upland hardwoods, pine-hardwoods, and pine. Identified needs for wildlife habitat and hunting lands were only partially satisfied by the allocation of available lands suitable for that purpose. The tremendous expressed need for wildlife lands could not be met by allocating the available resource, even when aided by multi-use of lands allocated to higher priority-needs. After consultation with wildlife specialists, however, it was agreed that with intensive management of wildlife lands these needs could be scaled down by 30 percent to allow comparison with other competing uses on a compatible management base. Alternative means of public control of lands for wildlife were considered, including fee purchase, easements, and subsidies to landowners.

In formulating the land-use plan for satisfaction of fish and wild-life needs, it could not reasonably be assumed that shifts in needs for specific forest types such as bottom-land hardwoods, upland hardwoods, pine-hardwoods, and pine forests will occur. Nor could it reasonably be assumed that a satisfactory balance in the future mix of these habitat types will be attained without specific formulation by category. Nevertheless, it was necessary to formulate the plan without the benefit of a fully categorical allocation of forest land. Thus, in the formulated plan only the needs for bottom-land hardwood forest and the composite needs for other forests are compared with the available forests in these two categories.

Recreation Lands

Recreation land needs are expressed in three distinct types:
(1) Class A lands - intensively managed and developed in or near urban areas. These recreation lands are multi-use with urban and built-up inasmuch as the urban and built-up category of land use is based on a mix which includes open and green space, parks, etc. (2) Class B lands - less managed and developed in a mix of forests and open space (may be multi-use with mixed forests and open lands such as pasture or unused cleared lands), and (3) Class C lands - forested, rough areas with minimal development and management.

FIGURE 16

Since these areas comprise only very small acreages and all may be multi-use with the other broad-use categories, there was no difficulty insofar as availability of land resources for recreation was concerned.

Environmental Quality Components

Lands needed for environmental quality purposes consist of areas of particular geological, botanical, biological, or ecological significance; beaches and shores; bottom-land hardwood areas; wilderness areas; wetlands; and shorelines of streams, lakes, bays, and estuaries. Many such areas serve multi-uses and concurrently satisfy needs not only for environmental quality, but also for recreation, fish and wildlife habitat, selective timber harvest, and/or other primary uses. However, some of these areas are by their very nature exclusive of any other use. Each of the region's identified environmental quality components was described in terms of acres of land or water and those areas located and analyzed to determine appropriate alternative means and respective costs of control.

Archeological and Historical Resources

Program components for archeological and historical resources were formulated in a manner similar to that employed for other esthetic items, except that lands were not acquired. Archeological sites were counted in the various States, and narratives were written by archeologists to justify the need to explore, excavate, or otherwise investigate or control certain sites or groups of sites by future time frame. Historical resources were similarly identified and placed in the context of needs by future years. Needs data and justification are presented in Appendix P, Archeological and Historical Resources.

Program components were then budgeted for only those costs which fall in the public sector, using rough approximations of cost for intensive surveys, site testing, and site excavation, based on previous costs for similar work. Lands required in connection with management of archeological and historical resources were an insignificant part of the total land base and were generally absorbed in "other" lands, or considered multi-use with primary uses. Unit costs described above were considered to include allowance for satisfactory site control.

OTHER NEED AND PROBLEM CATEGORIES NOT DIRECTLY RELATED TO RESOURCE ALLOCATION

General

Other problems and needs not directly related to primary resource allocation are Water Quality, Navigation, Flood Damages, Excessive Wetness, Sediment and Erosion, Hydropower, Coastal and Estuarine, and Health Aspects. Each of these items was formulated in a different manner. Land treatment was considered a management practice for satisfying needs in several of the above categories.

Flood Control

Principal Streams

Flood problems on principal streams were identified on a stream basis and expressed as acres subject to flooding and accompanying monetary losses. Alternative means of damage prevention were considered for each problem area. The more practical alternatives were quantified as miles of levees, number and size of pumping plants, miles of channel enlargement, reservoir storage, etc., and costs were estimated using generalized cost curves. Those problems great enough to make the least costly alternative solution appear practical in terms of a reasonable chance of economic feasibility and overall implementability were selected for remedial treatment at the appropriate time frame. Flood-plain management is included for all urban areas regardless of whether or not structural programs are developed.

Upstream Watersheds

Flood problems in upstream areas were identified in watersheds of 250,000 acres or less on a watershed-by-watershed basis and expressed as acres subject to flooding and projected flood damages. Alternatives for damage prevention included installation of economically feasible watershed projects. Such projects involve land treatment and structural programs of reservoir storage, channel developments, levees, and pumping plants. Costs were estimated by using generalized cost curves and assuming the least costly alternative solution in terms of probable economic feasibility and possible implementation. Flood-plain management was included for all urban areas in upstream watersheds regardless of economic feasibility of the upstream projects.

Sediment and Erosion

Sediment and erosion problems were identified by hydrologic subareas within WRPA's. These problems were expressed in terms of acres of land area affected by erosion, miles of streambank erosion, and annual tons of sediment as a measure of extent of erosion, and were related to average annual damages for 1980, 2000, and 2020. The more practical alternative means of damage prevention were proper use and treatment of the land, land-use adjustments, and streambank protection by both mechanical and vegetative means. The costs of streambank protection were based on the severity of the problem and an average cost per mile for installation of appropriate measures. The remaining sediment and erosion costs were included in costs of other needed land-treatment measures.

Excessive Wetness

Drainage problems were identified by acres of land use, land resource areas, and hydrologic subareas within WRPA's. Projected needs were based on land use expected to prevail in 1980, 2000, and 2020. It was assumed that no forest lands would require drainage in the future. Alternative means of meeting drainage needs were considered. The more practical of these alternatives were installation of on-farm drains and intrafarm drainage improvements for crop and pasture lands with this problem. Land treatment was another practical measure used. Drainage costs were estimated on a per-acre basis for recommended improvements using generalized cost curves.

Land Treatment

Land treatment is regarded as a management practice which relates to primary uses of land or as a complementary measure to satisfaction of flood control, drainage, or sediment and erosion problems. Therefore, a need for future land treatment is not recognized in a functional appendix. The framework programs contain land-treatment components and costs quantified after land-use allocations were completed, and an assessment made of such measures to optimize returns from allocated primary uses of lands. A discussion of status of land treatment as of 1970 can be found in Appendix F, Land Resources.

Water Quality

The projected organic waste loads, expressed as pounds of 5-day biochemical oxygen demand (BOD5), were identified for each sewered community of 1,000 or more population. Municipal and industrial loadings were calculated and analyzed separately throughout the formulation process. When an industry having a large projected waste load was identified outside communities of 1,000 or more, it was also included in the analysis. The net loads to the receiving streams were then determined by subtracting the estimated existing treatment capacity in each WRPA. Waste load receiving streams were identified and the 1-in-10-year 7-day low streamflow estimated. This flow was used to estimate the organic waste load assimilative capacity of the stream, which was employed in formulation of the plans as one alternative means of satisfying the waste problem.

Water quality plan formulation was done in a manner to allow selection of any level of organic waste treatment at any of the planning time frames and to allow ready identification of the costs of that selection. In order to do this, three basic plans were identified under each objective. Each basic plan was formulated so as to meet State stream standards for minimum dissolved oxygen (D.O.) content. The first plan was the least-cost plan, consisting of use of the natural low streamflow assimilative capacity, up to the State standards (D.O.) followed by secondary treatment (municipal - 90 percent BOD5 removal, industrial -96 percent BOD, removal) as required, and then employing mechanical reaeration. No treatment was applied unless streams could not assimilate the waste load. The second plan employed uniform secondary treatment, followed by assimilative streamflow capacity and then mechanical reaeration. The third and final plan consisted of uniform advanced waste treatment (98 percent BODs removal for both municipalities and industry) followed by streamflow assimilative capacity and then mechanical reaeration as required. These primary, or staging, plans provided the data for any mix of a range of treatment levels and attendant costs. Data were then readily available for identification of measures and costs to (1) meet State stream standards on a least-cost basis; (2) meet requirements of the 1972 Water Quality Act, which calls for uniform secondary treatment by the 1980 time frame, and uniform advanced treatment (to the highest "reasonable" treatment level technically feasible) by the 2000 and 2020 time frames; or (3) provide uniform advanced treatment by 1980. Unit average annual equivalent costs and unit investment costs of treatment were based on recently constructed treatment plants. Areas having potential for large regional treatment systems were identified and an appropriate lower unit annual cost was utilized. Costs were developed for municipal and industrial plants.

Bacterial problems for each area were quantified for future time frames.

Nonbiodegradable and exotic pollutants could not be adequately quantified due to insufficient data. Dissolved solids are not expected to cause significant regional problems in the next 50 years, even though there is a possibility of some dissolved solids problems due to upstream consumptive uses. This aspect of the pollution problem is discussed in detail on pages 406 to 410. General order of magnitude costs are identified herein for satisfying water quality needs associated with pollutants other than ${\rm BOD}_5$ and bacteria based on a judgmental update of "Cost of Clean Water."

Navigation

Navigation needs expressed as ton-miles for waterways and tons for harbors were developed on a WRPA basis. The need was defined as that volume of commerce which is best suited to a waterborne mode of transport. Each WRPA was examined, and the most reasonable waterways identified and most efficient harbor sites located, based on previous and current detailed surveys and the judgment of experienced navigation

planning specialists. The alternative measures were listed as increased efficiency of existing waterways, additional and/or replacement locks on canalized waterways, new canalized waterways, and expansion of existing harbors and creation of new harbors. The costs of each applicable alternative were estimated and the least costly was selected.

Hydropower

The region imported nearly 30 percent of all power it consumed in 1970, while hydroelectric generators accounted for less than 1.0 percent of all electric energy generated within the region. The nature of hydroelectric power makes it an extremely desirable component of any well-designed power-generation system. Inasmuch as the region possesses a very limited number of economically feasible sites amenable to hydropower development, it was assumed that all sites which can be developed are needed whenever they can be brought on the line.

Existing and potential reservoirs and pumped storage sites suitable for new or increased hydropower production were identified on the basis of judgment, taking into account the head, available flow, volume of storage, and any restrictive operation rules.

The energy potential and value of marketable power at each site was estimated utilizing rule of thumb assumptions for plant factors, installed and dependable capacity, average annual energy, and pumped storage limitations. Rough cost estimates for development of each site were also made.

The potential sites were then screened to identify those which merited inclusion in the programs. Sites were selected that had an estimated benefit to cost ratio of 0.8 or more, a minimum installed capacity of 25 megawatts for conventional hydropower plants, or 300 megawatts for pumped storage projects.

Coastal and Estuarine

The water and related land-resource problems and needs in the coastal and estuarine zone of WRPA's 8, 9, and 10 span the entire spectrum of problem and need categories investigated in the inland planning areas. In addition, they include certain problems and needs unique to coastal areas. As a practical matter to avoid duplication in reporting on and formulation for the coastal area's problems and needs, those that relate directly to water supply, water quality, recreation, fish and wildlife, flood control, natural environment, and other functional resource needs were considered under those functional headings. In the Coastal and Estuarine Appendix, attention was focused on specific needs for salinity control and/or water level management and control of land losses. The latter category involves land loss due

to shoreline erosion, channelization and related erosion, and land subsidence. Plans for solving these problems and needs were formulated separately.

The procedure used in formulating plans for satisfying these needs deviated very little from the method explicated in the "General" paragraph, page 195. A specific plan formulated from identified alternatives included solutions such as locks, control structures, and related channels and levees for the diversion of water for salinity control. It also included similar solutions for land building and water level management, and measures for erosion control at selected sites. The singleobjective, a first-cut plan, was modified for multiple-purpose, multipleuse of resources, and melded with other plans to satisfy competing demands on the resource. Where conflicts in resource use arose, compatible alternatives, although more costly, were sought and where applicable substituted in the plan. When alternatives did not exist, an evaluation was made of competing demands and the resource committed to that demand which had the least impact on the well-being of the people of the area. The plan, as modified by these considerations, was incorporated into the framework programs for the region.

Health Aspects

Problems related to health were expressed in Appendix M, Health Aspects, in terms of needs for State Drinking water programs and vector abatement districts by time frame. These future needs were costevaluated on the basis of historic expenditures as a base and included in the recommended framework program as State or public sector costs.

THE FRAMEWORK PROGRAM

GENERAL

The Framework Program is intended to serve as a guide for future action programs and continued planning. It is a blend of three single-objective programs. To understand the how and why of the program an understanding of its evolution is essential.

The base for all plan formulation was founded upon the economic and demographic parameters developed in Appendix B, Economics, for two of the Study's objectives: National Income (Program A) and Regional Development (Program B); and upon the quantification of natural environmental quality needs summarized in Appendix U. The cornerstone for the recommended program was molded from a WRPA-by-WRPA translation of the Program A and Program B parameters into single-objective water and land resource needs (see functional appendixes) unconstrained by budgetary, legal, or institutional considerations. Resource problems, such as flood control and water quality were recognized as existing concurrently. Separate sets of plans for the satisfaction of these problems and needs were then expressed as single-use plans, multiple-use plans, and multiplepurpose plans. Each step in the process took into consideration ways in which to pyramid the region's finite resources to satisfy the land and water needs for each planning area, consistent with its own special features.

In the absence of a unique set of economic and demographic parameters for the Environmental Quality Objective, the Appendix U needs oriented strictly to the natural environment were used as the planning nucleus for developing a third set of single-use, multiple-use, multiplepurpose plans on a WRPA basis. Plans thus defined for each objective were then grouped in three program sets, each emphasizing one of the three objectives without neglecting the others. To accomplish this, components from the National Income Objective set were added to those from the Environmental Quality Objective set insofar as the addition did not materially detract from the primary objective. Similarly, components from the Environmental Quality Objective set were added to the other sets. Constraints were then taken into account to complete the three programs in compliance with the requirement imposed by the Principles and Standards that all formulated programs be complete, realistic, implementable, and capable of adoption, though oriented to a specific national objective.

The completed product of the formulation exercise, the Coordinating Committee's recommended program, is a blend of the three single-objective programs in a multi-purpose, multi-objective program best suited, in the judgment of the Coordinating Committee, to serve as a guide for the future management of the water resources of the Lower Mississippi Region.

The alternate programs - National Income (Program A), Regional Development (Program B), and Environmental Quality - each provide a complete and implementable alternative framework for future development, management, and preservation of the region's land and water resources. These alternate programs, presented separately, are composed of three basic parts: plans for resource use; plans for problem amelioration (problems and needs not directly dependent on a resource allocation); and plans for public investment. Program measures for satisfying health, archeological and historical, and coastal and estuarine needs are identical for the alternate programs and the recommended program, and in the interest of avoiding unnecessary repetition are discussed in detail only in the section covering the recommended program.

Plans for resource use, including a description of proposed measures and their effectiveness relative to needs satisfaction, are presented under the major categories of water withdrawals, water surface area, and land area. The water available for withdrawals is a function of water generated by precipitation in the region, and of fluctuations in flows into the region from outside sources. Existing interregional water compacts and their influence on water availability are assumed to remain static during the study period. The water-surface area can be increased, but only at the expense of the land resource base. Plans for recreation, fish and wildlife, and environmental quality involve more than one category of resource use and are individually summarized just prior to the presentation of plans for problem amelioration.

NATIONAL INCOME PROGRAM

The National Income Program (Program A) is directed to efficiently increasing the output of goods and services, and raising the standard of living. Specific measures have been incorporated to preserve selected environmental quality attributes of the region.

Resource Use

Water Withdrawals

Though the study area is rich in supplies of both ground and surface water and has the capability to satisfy a ten- to twenty-fold increase in current requirements, supplies of suitable quality are not always available when and where needed. Thus the water resource must be managed so supplies of adequate quantity and quality can be delivered to each point of need in the future. The water-withdrawal plan for the National Income Program is presented in table 88. The plan indicates how the existing supply should be used and suggests management options for the future. The plan is based on the allocation of water supplies to satisfaction of needs on a least-cost basis consistent with study priorities wherein highest priority uses are assigned the cheapest water. Priorities within the water withdrawal plan (left to right on table 86) generally parallel adopted land-use priorities - urban oriented; economic preference; environmentally oriented - each successive category assigned a more expensive water supply.

The plan requires that some water users shift to new sources of supply in future years as local supplies fall short of needs and as higher priority uses require more water. Water supply problems presently exist or will manifest themselves in the future at several locations in the study area. The plan includes measures to solve these distributional problems (table 89).

In WRPA 9 the interregional diversion of up to 450 m.g.d. of Sabine River water by pumping plants and pipelines will be required to satisfy industrial needs presently supplied by ground water. About half of this Sabine River water will be required by the year 2000. Aside from this diversion, private sector intra-regional transfers of Atchafalaya River water amounting to about 568 m.g.d. and 2,796 m.g.d. will be required to satisfy 2020 needs for industrial and thermoelectric water, respectively, in WRPA 9. Intra-region transfer of 538 m.g.d. of Atchafalaya River water would also be required to satisfy year 2020 needs for irrigation and mineral production water in WRPA 9. Water supply storage near the point of use will be required in WRPA 5 to meet municipal and industrial needs which will exceed present supplies as early as the year 1980. Diversion utilizing a pumping station and distribution channels in WRPA 2 is included in the 1980-2000 time frame to provide for

le 88 - Water Mitndrawal Plan, Program A, Lower Mississippi Region 1/

Press Branchish Storage Intra-Segion Inter-Segion Intra-Segion Inter-Segion Inte	Breakli		Brockle	6.3 12.6 6.9 112	7.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33.45	# 99 9 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0000 0000 0000 0000 000	38.08 38.08		944 9500 0000 0000 0546 0000 000
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	# 19 19 19 19 19 19 19 19 19 19 19 19 19	000 0000 0000 0000 000	28.56 38.06 38 38.06 38 38 38 38 38 38 38 38 38 38 38 38 38		्यं ००० ०००० ०००० ००५ ००० ००००
13.75 14.75 15	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	00 0000 0000 0000 0000 000	50 50 50 50 50 50 50 50 50 50 50 50 50 5		व्ययः १००० ०००० ०.४५६ ०००० ०००
1.50	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0000 0000 0000 0000 000	8851888 0.001888 0.001888 0.001888 0.00188 0.0		9 14 1 0000 0000 05 14 0000 000
137-5 146.2	문 설립 전 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	0000 0000 0000 0000 000	26.00 27.00 27.00 28		भूति भूति भूति
3.7.5	# 9 # 9 # 9 # 5 # 5 # 5 # 5 # 5 # 5 # 5	00 0000 0000 0000 000	255.2.2 265.6.2 275.7.7 275.9.3 275.9 2		944 00 0000 0246 0000 000
13.7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0 0000 0000 0000 000	800.6 49.1 173.6 173.7 173.7 173.6 131.4 131.4 141.4 141.4 141.4		9 114 9 144 9 0000 0 000
146.6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0000 0000 0000 000	9.1 173-5 275-7 124-8 335-9 335-9 28-4 131-4 131-4		०००० ०९५७ ०००० ००० भूति
1, 1, 1, 2, 2, 3, 4, 1, 1, 1, 2, 3, 3, 3, 4, 1, 1, 1, 2, 3, 3, 4, 1, 1, 1, 2, 3, 3, 4, 1, 1, 1, 2, 3, 3, 3, 4, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	5.64 5.64	000 0000 000	73-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5		943 000 0548 0000 000
13.45.45 647.4 647.4 647.4 13.40 13.50	5.46.8 17.6.8 18.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	00 0000 0000 000	173.6 175.7 124.8 124.8 134.6 177.6 177.6		9 11 1. 9 11 1. 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
647.4 95.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 79 78 78 78 78 78 78 78 78 78 78 78 78 78	0000 0000 000	119-3 128-8 385-9 38-4 37-4 131-4		0 7 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13.5.1	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	000 0000 000	124.8 345.9 736.9 737.4 131.4		2.48. 2.48. 2.48. 2.48.
133.9 33.1 33.9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	488 888 488 488 488 488 488 488 488 488	00 9000 000	345.9 36.9 4.4.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		118 0000 000 118 0000 000
33.4 63.5 63.9 60.5	2222 42229 4223	0000 000	28.4 37.4 13.4 13.4		0000 000
133-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	63.5 6.95 6.90 6.00	000 000	37.4 131.4 73.1		000 000
1.57.3 0.59 0.59 0.59 0.59 0.59 1.352.2 1.352.2 1.352.3 1.353.4 1.552.3 1	63.3 6.9.9 6.5	00 000	72.6		00 000
1.352-2 1.3	6.69.9	0 000	131.4		0 000
1.382.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5	000	73.1		000
6.5.4 6.5.4 1.352.2 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.5 1.4972.3 1.4972.5 1.4972.3 1.4		00	17.74		00
1,352.2 1,352.2 1,352.2 1,352.2 1,353.2 1,353.1 1,354.2 1,354.2 1,355.3 1,355.	, o (3		0.000		
1,352.2 4,973.3 13,40 1,503.9 1,503.5 1,008.3 1,008	3-9-2	0	179.9		0
13,030.9 13,	1,352.2	3.0	0.651		0
1,4,973.5 1,4,973.5 1,008.3 1,008.3 1,008.3 1,008.3 1,008.3 1,008.3 1,008.3 1,008.3 1,008.3 1,008.3 1,008.3 1,009.3	1,707.3	5.0	549.0		0
13.0 1.024.3 0 0 0 0 0 1.024.3 15.0 1.024.3 0 292.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13,030.9	32.0	778.0	0 778.0	
135.1 1.00%.3 0 292.0 0 0 0 1 1.00%.3 0 1.00%.3 0 1.00%.3 0 1.00%.3 0 1.00%.3 0 1.00%.3 0 1.00%.3 0 1.00%.3 0 1.00%.3 0 1.00%.3 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	39.0	0		238.0	0 238.0
1,981-7 31-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	123.1	569.0	311.0		311.0
1,281.7 1,690.5 1,690.5 1,690.5 1,090.5 1,090.3 1,090.3 1,090.3 1,090.3 1,090.3 1,090.3 1,090.3 1,090.3 1,090.3 1,090.3 1,090.0 1,090.3 1,090.	160.5	528.0		1,050.0	0 1,050.0
2.727.1 31.0 0 0 0 0 0 0 0 0 17,289.1 31.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,981.7	0		26.0	0 26.0
7,266.8 31.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,727.1	16.0	0.862		0
3.533.4 1.055.3 0 0 0 13.4 1.055.3 35.3 95.3 0 0 0 13.4 1.055.3 173.9 292.0 0 0 13.4 173.9 292.0 0 0 13.4 173.9 17	17,840.5	254.0	301.0	301.0	
3,531.4 1,055.3 0 0 0 4,740.8 1,055.3 35.3 0 0 12,855.2 1,055.3 133.9 292.0 0 32,402.9 1,055.3 172.0 450.0 560.0					
12, 95.2 1,055.3 172.6 450.0 568.0 32,402.9 1,055.3 1,72.6 450.0	3,531.4	3.0		1.629	1.629
32,402.9 1,055.3 172.6 450.0 560.0	4, (40.0	820.0		0 380 0	11 1 3 780 0
	32,402.9	7,814.0	715.5	15.8 4,715.5	15.8

able 88 - Water Withdrawal Flan, Program A, Lower Mississippi Fegion 1/ (Cont'd)

Trumsfer Street Street Street															
1970 5.0 1.996.2 23.11. 23.00 23.11. 23.00 23.11. 23.00 23.11. 23.00 23.11. 23.00 23.11. 2	NEA/T	ine France	Fresh	Brackish	Fresh	Surface Brackish Stream	Intra-Region Transfer	Fresh	Fresh	Storage	Intra-Region Transfer	Ground	Surface Fresh Stream	Ground	Surface Fresh Stream
1970 1988 200 1988 200 1988 200	CV.	1970	0.0	0.0	0.0	00	0.0	2,114.0	271-3	101.8	0	8.0	7.5	0.04	58.6
1,270 1,265 1,26		2000	0.0	0	636.5	0	0	1,918.2	213.1	839.8	0	7.5	0.0	26.0	0.0/
1970 2000 2000 2000 2000 2000 2000 2000 2		2030	5.0	0	761.4	0	0	1,918.2	559.5	8.653	350.0	2.0	2.0	28	197.0
1970 1970	3	1970	0	0	433.0	0	0	£.4	24. 49	C		0	6.9		(
1970 25.0 1,265.6 0 0 267.7 150.4 150.		1980	0	0	6.646	0	0	72.6	0	0	000	0.00			00
1970 1970 1970-2 1970-2 1970 1971-2 1970 1970-2 1970 1970-2 19		2000	0	0	1,565.6	0	0	6.98	0	0	0	0.0	4.5	10.01	00
1970 25.0		25	0	0	1,981.6	0	0	28.7	75.4	0	0	15.1	5.6	18.1	00
1960 1960		1970	25.0	0	280.0	C	0	171.7	90 1	0	4	3 "	1		
1970 1, 1970		1980	25.0	0	970.2	0	00	217.9	2000	00	0 0	4.	2.6	2000	14.1
1970 0.3 0.1 0.0 0.2		2000	85.0	0	970.2	0	0	230.2	. 89	5 0	00		0 0	200	C.4.
1970 0.3 1,070-7 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 180-6 0 2845-0 2865-0 2		2030	25.0	0	1,082.3	0	0	244.0	177.2	0	0 0	7.0	11.6	868.9	67.1
1990 0.3 0.10077 0.2 0.10077 0.2 0.2 0.10077 0.2	5	1970	0.3	0	1.070.7	0	C	245.0	130.6	c	c		0.0		
19.00 19.45 19.00 19.45 19.4		1980	0.3	0	1.070.7	0		2000	100 1	0.0	0 0		1.0	12.0	.00
1970 19.0 19.4 19.5		2000	14.41	0	2,890.8	0	0	342.2	1.80	00		n.a	2.0	0.0	16.3
1970 0 0 0 0 0 0 0 0 0		2020	19.0	0	3,452.6	0	0	379.9	176.7	0	0	9.3	10.0	83.1	35.5
1970 1.0	9	1970	0	C	0.3		0	116.0	2 25	c					
2000 2000		1980	00	0 0	A CA	0 0	0 0	110.0	0.07	0 0	0	0.0	1.1	6.1	5.6
1970 1-0 59.59 0 170.1 54.7 0 170.1 54.7 0 120.0		2000	0	0	547.8	0 0	00	1545.	0.00	0 0	0	9	000	17.2	*
1770 1.0 55.9 0 0 13.0 2.8		2020	0	0	8.649	0	0	170.1	27.45	00	0 0	mir ou m	n. v	39.4	6.97
1990		1.070									>	1.0	7	1.10	*:02
1970 1.0 4.0 1.2	_	080	0.7	00	0 0 0	0 0	0 (2.5	C4 C	0	0	1.4	2.2	4.5	1.1
2020 2020 2020 2020 2020 2020 2020 202		2000	00	00	307.6	00	000	13.0	6.0	0 (0	1.8	2.7	7.5	1.9
1970 1.0 8.0 173.4 0 1.2 0.3		2020	0	00	473.2	00	00	2.5.0	7.4	0 0	00	4.0	9 a	13.5	4.00
1.00 1.00	a	1000							1			3.6	;	19.0	ň.,
100 100	,	080	1.0	0.0	1.616	0	0	1.2	e.0	0	0	2.5	2.8	1.0	6.0
1770 9.0 377.5 575.6 9.0 1.5 12.9 9.0 1770 9.0 9.1 375.5 9.2 2.135.6 9.0 173.6 1770 9.0 9.0 9.15.5 9.0 9.15.6 9.0 1770 22.0 9.0 9.15.5 9.0 9.15.6 9.0 1770 22.0 9.0 9.0 9.0 9.0 1770 22.0 9.0 9.0 9.0 1770 22.0 9.0 9.0 1770 22.0 9.0 9.0 1770 22.0 9.0 9.0 1770 9.0 9.0 9.0 1770 9.0 9.0 9.0 1770 9.0 9.0 9.0 1770 9.0 9.0 9.0 1770 9.0 9.0 9.0 1770 9.0 9.0 1770 9.0 9.0 9.0 1770 9.0 1770 9.0		2000	0.1	0.09	1 1 1 1 1	00	0 0		12.0	0.0	0	2.0	0.8	1.0	4.0
1970 9.0 0 377.5 0 266.6 M 1.007.0 177.8 0 0 2.135.6 M 2.007.0 177.8 0 0 175.5 0 2.135.6 M 2.007.0 177.8 0 0 175.5 0 0 2.135.6 M 2.007.0 177.8 0 0 177.7 0 0 177.7 0 0 177.7 0 0 177.7 0 0 177.7 0 0 177.7 0 0 177.7 0 0 177.7		2020	1.0	72.0	5,561.0	00	0.0	1.5	12.9	00	0 0	2.0	5.1	0.0	4.5
2000 5.0 175.5 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.6 3 1,007.0 177.8 0 2,135.9 1,007.0 177.8 0 2	6	1970	0.6	C	327.5	C	C	713.6	0 544						
2000 9.0 0 375.5 0 2.135.6 3 785.0 177.7 0 2.135.6 3 785.0 177.7 0 0 2.135.6 3 785.0 177.7 0 0 2.135.6 3 785.0 177.7 0 0 2.105.0 177.7 0 0		1980	3.0	0	375.5	0	266.6 3	1.007.0	177.8	0 0	00	at c	# 0	33.0	33.0
1970 21.0 1,881.4 1140.0 2,195.6 27 785.0 177.7 0 1,95.6 27 785.0 177.7 0 1,95.6 27 785.0 177.7 0 1,95.6 27 1,95.6		2000	0.6	0	375.5	0	2,135.6 3	888.0	177.8	0	202.0	11.0	00	96.00	23.0
1970 21.0 67.0 1,241.4 144.0 0 2.0 2.4 0 2.0 2.4 0 2.0 2		2020	0.6	0	375.5	0	2,795.6 3/	726.0	1.77.1	0	0.994	14.6	0	128.7	33.0
22.0 67.0 1,886.6 1444.0 0 1.4 6.3 0 0 1.4 6.3 0 0 1.4 6.5 0 1.4 6.5 0 1.4 6.5 0 0 1.4 6.5	01	0261	21.0	0	1.241.4	144.0	0	2.0	4.5	C			7		
21.0 387.0 4,652.8 144.0 0 1.4 6.8 0 21.0 494.0 5,570.2 144.0 0 1.4 7.2 62.3 63.0 6.565.0 144.0 266.6 5,665.7 95.4 233.0 77.4 64.7 16.702.9 144.0 266.6 5,655.7 788.9 289.8		1980	21.0	67.0	1,826.8	14.0	0	1.4	6.3	00	000	5.0	0.0	0.0	
21.0 494.0 5,570.2 144.0 0 1.4 7.2 0 66.3 80 4,233.3 144.0 266.5 5,650.0 1,356.1 101.8 61.3 83.0 6,596.0 144.0 266.6 5,650.7 995.4 233.0 15.4 64.0 16,702.9 144.0 24,35.0 5,650.7 786.9 29.9		5000	21.0	387.0	4,632.8	144.0	0	1.4	6.8	0	00	00	1.5	0.0	
66.3 8.0 4,353.3 144.0 0 3,370.0 1,356.1 101.8 66.5 5,068.7 945.4 23.5 77.4 447.0 16,702.9 144.0 2,135.5 1,655.5 788.9 259.8		2020	21.0	0.464	5,570.2	144.0	0	1.4	7.2	0	0	00	20.1	2.0	18.9
61.3 83.0 6,566.0 144.0 266.6 3,668.7 949.4 235.0 77.4 447.0 16,702.9 144.0 21,35.6 3,659.5 788.9 259.8	egion	1970	62.3	8.0	4,323.3	144.0	0	3,370.0	1,356.1	101.8	c	0 00	7 00	. 75.	0 40.
75.4 447.0 16.702.9 144.0 2.135.6 3.635.5 788.9 259.8		1980	61.3	83.0	6,566.0	144.0	566.6	3,668.7	47.540	233.0	0 0	30.0	0.60	267 6	16.8.1
Section of the sectio		2000	15.4	0.744	16,702.9	144.0	2,135.6	5.635.5	788.9	259.8	640.0	47.5	1 2	4777 5	282 0
000.0 200.0 19,0[7.0 1,044.0 5,95.0 1,044.6 539.0		5050	0.08	566.0	19,877.6	144.0	2,795.6	5,483.3	1.044.6	259.8	816.0	5.65.3	0.03	634.0	2000

Table 88 - Water Withdrawal Plan, Program A, Lower Mississippi Region $\underline{1}/$ (Cont'd)

	1	×	MINBRAL	so		FISH &	FISH & WILDLIFE				101	ALS		
		Ground	100	Surface	Section 1	Ground	Surface	Ground	pur			Surface	907	
RPA/Time Frame	Fresh	Brackish	Stream	Stream	Transfer	Fresh	Stream	Fresh	Brackish	Stream	Stream	Storage	Transfer	Intra-region Transfer
2 1970	0.4	0	0	0	0	435.0	145.0	2,698.3	0	873.5	0	9.101	0	0
1980	2.0	0	0	0	0 0	B.21	187.2	2,547.1	0	1,061.6	0	233.0	0	00.035
3000	5.3	00	00	00	00	136.5	550.0	2,890.6	00	1,977.3	00	259.8	00	350.0
1000	0.7	c	0	0	C	26.0	0	R doc	c	4 87	c	0	c	c
200		00	00		00	9.0	0.00	503 3	000	1.004	0 0	0 0	00	00
3000	7:1	0	0	00	00	149.0	13.0	200	00	1.582.0	00	00	00	00
3050	1.0	0	1.4	0	0	187.4	9.09	1,468.3	0	2,124.6	0	0	0	0
1970	0.3	0	9.0	0	0	15.5	15.5	397.0	0	4.777.4	0	0	0	0
1980	0.3	0	0.8	0	0	26.5	26.5	531.6	0	1.248.7	0	0	0	0
3000	0.3	00	1.3	00	90	28.5	58.5	764.2	00	1,382.3	00	00	00	00
	4				0		1							
1970	40.0	00	0.00	00	00	1.71	241.3	0.064	0 0	1,556.1	0 0	0	0 0	00
863	2009	00	10.01	00	00	27.0	20.00 B 100	1.00	00	0.610,1	0	0.101	0 0	
3030	76.0	00	14.1	00	00	20.5	386.8	1,443.3	00	4,635.6	00	188.4	0	00
-	2. 7		8	0		7	4 19	0		0		0		
1370	200	0.0	0.0	00	2 0	* 0	0.00	0.77.7	0.0	130.0	0 0	0.0	0 0	0 0
865	10.01	00	1.3	00	0 0	0.4	A 4.58	263.5	0 0	245.0	00	00	00	00
888	14.2	0		00	00	5.5	102.5	MO2.3	00	971.3	00	0	00	00
-	0	0	0	0	0	C	0			0		(0
000	4.1	00	0.0	00	00	3.5	3.5	154.4	00	68.3	00	00	00	00
0000	5.8	0	6.0	0	0	6.5	6.5	237.6	0	4.074	0	0	0	0
2020	7.6	0	1.2	0	0	0.6	0.6	267.4	0	825.6	0	0	0	0
8 1970	0	12.0	15.8	0	0	1.0	5.0	224.2	23.0	1,954.4	0	0	0	0
961	0	16.0	23.9	0	0	1.0	0.4	634.4	37.0	2,993.1	0	0	0,	0
3000	00	3.00	78.7	00	00	0.0	0.11	952.7	97.0	9,741.3	00	00	00	00
0161 6	0	0	18.0	254.0	0	121.0	363.0	1,199.6	0	1,564.8	1,278.3	0	0	0
1980	0	144.2	18.0	254.0	10.0	18.0	363.0	1,682.2	733.2	1,097.3	1,278.3	0	0	276.6
3000	00	692.3	18.0	24.0	12.0	502.0	363.0	2,056.8	3,144.0	1,134.6	1,278.3	00	450.0	5,576.6
0701 01	0	0	0.84	182.9	0	5.0	1.843.0	3 69	O	5.300.6	157.9	0	a	0
	0	47.3	72.0	182.9	0	2.0	1.843.0	1.18.5	130.3	6,696.3	357.9	0	0	0
3000	0	142.0	116.0	182.9	0	0.5	1,845.0	346.3	616.0	14,200.4	357.9	0	0	0
2020	٥	257.6	150.0	162.9	0	5.0	1,846.0	355.2	1,005.6	25,849.2	357.9	0	0	0
Region 1970	0.08	12.0	4.56	436.9	0 1	618.1	2,683.9	5,654.3	23.0	12,344.8	1,636.2	101.8	0	0
0061	80.00	S	6.121	430.9	10.0	155.8	2,111.2	7,200.8	5.006	15,504.0	1,636.2	344.6	0 000	2/0.0
3030	104.1	9,000	274.5	4.00.0	25.0	982.1	3,010.0	9,123.0	3,657.0	54, CLS. 0	1,030.2	404.0	0.084	6, 160.0
									100011	21,000				

All withdrawis are in mid.

| Measure includes any register safers storage.
| Measure includes any register does not include use of Mississippi River water by adjacent WEBA's (included under the category "Fresh Stream").
| Diversion water adds to fresh stream supply.

Table 89 - Program A Measures for Meeting Water Withdrawal Needs, Lower Mississippi Region

	Pro	gram Measures	
WRPA	1980	2000	2020
1	None	None	None
2	None ¹ /	Pumping station and distribution channels to supply 350 m.g.d. irrigation water.	None
3	None	None	None
4	None	None	None
5	Storage reservoir to supply 175.0 m.g.d. municipal and industrial water.2/	None	None
6	None	None	None
7	None	None	None
8	None	None	None
9	Pumping plants and pipelines to supply 267 m.g.d. thermo-electric water and 10 m.g.d. mineral production water.	Pumping plants and pipelines to supply 1869 m.g.d. thermo-electric water, 29 m.g.d. mineral production water, 202 m.g.d. irrigation water and 292 m.g.d. industrial water.	Pumping plants and pipelines to supply 660 m.g.d. thermo-electric water, 33 m.g.d. mineral production water, 264 m.g.d. irrigation water and 726 m.g.d. industrial water.
10	None	None	None

1/ Private storage of irrigation water expected to satisfy needs. No

federally constructed projects proposed.

2/ Reservoir sized to satisfy 2020 municipal and industrial water need because of nature of topography in WRPA 5. Storage includes 83.2 m.g.d. for use within the region and 91.8 m.g.d. for use outside the region. Requirements for 105.2 m.g.d. within the region in the year 2020 to be satisfied through use of existing DeGray Reservoir.

irrigation withdrawals presently supplied by ground water. (Authorization for the improvement of the Grand Prairie region and Bayou Meto basin - WRPA 2 - for flood control and drainage and the provision of an agricultural water supply is contained in the Flood Control Act approved 17 May 1950 in accordance with a plan presented in House Document 255, Eighty-first Congress, 1st Session. Pertinent data on the authorized plan and on considered modification thereto are given in House Document 308, Eighty-eighth Congress, 2nd Session.)

Water withdrawn but not consumed must be returned to the system in such quality that it will be suitable for reuse at downstream points in the system. At the same time, it must not unduly damage terrestrial or aquatic ecosystems. This does not mean that return waters must be potable upon discharge; rather, they must be of such quality so as not to require an unreasonable amount of treatment by the next user.

The effectiveness of the water withdrawal plan in terms of needs met through implementation of program measures and other prudent use of the water resource, is summarized in table 90. As shown, all water withdrawal needs in the region can be met by the plan.

Table 90 - Effectiveness of Water Withdrawal Plan, Program A, Lower Mississippi Region

Water Resources Planning Area	Time Frame	Withdrawal Category	Percent of Needs Met
A11	A11	Municipal	100
A11	A11	Industrial	100
A11	A11	Rural Domestic	100
A11	A11	Thermoelectric	100
A11	A11	Irrigation	100
A11	A11	Other Agricultural	100
A11	A11	Commercial Fisheries	100
A11	A11	Minerals	100
A11	A11	Fish and Wildlife	100

Water Surface Area

The three basic needs for water surface areas - recreation, fish and wildlife, and the natural environment - can be mutually satisfied by multi-use of existing water areas and by multi-use of water surface provided by storage for flood control, water supply, hydropower, and navigation. Nearly 100 percent of expressed needs are for water bodies of 40 acres or more in size, or large water areas shown in the future land plan. Exceptions are the fish and wildlife needs for ponds which are less than 40 acres in size and for streams, some of which are counted as small water. However, suitable streams cannot be created and the region's ponds are more than adequate to meet all foreseeable needs. Therefore, the future water plan consists of an increasing large water surface area and a constant small water surface area. It is recognized that small pends will probably continue to be constructed, primarily for stock watering purposes, but the increase cannot be reasonably estimated and will not be great enough to materially affect land use plans. Some small water surface may be provided by catfish and crayfish farming operations but that water surface is impermanent, single-use, is included in the land use plan as a land requirement, and therefore is not included here. Significant aspects of the analysis leading to the formulated water surface area plan for the region are displayed in table 91.

As discussed in the Methodology section, the first step in the process involved an analysis of gross needs and net needs for recreation, fish and wildlife, and environmental water surface areas in light of existing impoundments and their ability to satisfy needs on a multi-use, inter-WRPA basis. From the analysis, it was concluded that the regional supply of water surface areas is sufficient to meet all needs for fish and wildlife and all environmental needs, except for a need to create 10,000 acres of lakes in WRPA 2. It was further concluded that the existing supply of water surface areas and potential multi-purpose reservoir developments are collectively inadequate to meet future water needs for water oriented recreation. Large deficits in water surface for recreation are in the offing in all planning areas except WRPA's 9 and 10. The greatest deficiency is expected in planning area 3. WRPA's 2 and 4 will face significant deficiencies in both large and small lakes in future years, whereas planning areas 5, 6, 7, and 8 will face deficits in small lakes in various time frames and a minor need for additional large lakes will arise in WRPA 6 between the years 2000 and 2020.

Water surface areas are regionally adequate to meet expected fish and wildlife needs, provided a WRPA 3 deficit can be met by surpluses in adjoining WRPA's. Such surpluses are adequate to meet the deficit, but a study assumption that internal WRPA needs for fishing can be met by external resources may be invalidated if the region's future populace lacks the means to travel 50 to 100 miles to fish. Hence, some portion of the fishing needs may remain unsatisfied. Ponds are adequate in terms of both total surface area and distribution to meet all foreseeable needs. However, only about 10 percent of the ponds are open to

Table 91 - Summary Analysis of Net Needs for Man-Made Water Surface, NI Objective, Lower Mississippi Region

						리	(1,000 Acres)							
				Fis	25	iva	Water Surface By-Product of Storage Requirements	By-Produ	ct of St	orage Requ	irements	larope	Jaroest Not Need or	
		Recreation	ation	Wild	Wildlife		Large Lakes	kes		Sma	Small Lakes	Sum of	Sum of By-Products	2
Planning Area/Time	rea/Time	Large	Small Lakes	Lakes	Ponds 1/	Flood	Navigation	wer	Water Supply	Flood	Environmental Quality 0	Large	Small Lukes	Total
WRPA 2	1980 2000 2020	0 27 64	0 26 72	000	000	000	000	0 17 17 17 17 17 17 17 17 17 17 17 17 17	ાંબુર્ગુર	22 23 23	10 10 10	0 72 64	33 33 72	33 60 136
WRPA 3	1980 2000 2020	71 161 312	114 233 423	र्वितृत	000	444	000	000	000	44 65 82	000	71 161 312	114 233 423	185 394 735
WRPA 4	1980 2000 2020	0 7	14 83 123	000	000	000	(149.5) (149.5) (149.5)	4 4 4 4	000	6 8 10	500	14 14 47	14 83 123	28 97 170
WRPA 5	1980 2000 2020	000	0 0 106	000	000	26 50 50	000	0 (20) <u>4/</u> (20) <u>4/</u>	$(14)\frac{4}{1}$	32 54 46	000	26 50 50	32 34 106	58 84 156
WRPA 6	1980 2000 2020	004	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000	000	000	000	000	000	000	000	30 °	0 2 12	0 5 7 10 10 10
WRPA 7	1980 2000 2020	000	0 4 23	000	000	000	000	888	000	55 70 70	000	0 88 88	55 70 70	55 158 158
WRPA 8	1980 2000 2020	000	0 0 78	000	000	900	000	000	000	15 37 42	000	000	15 37 78	15 37 78
WRPA 9	1980 2000 2020	000	000	000	000	000	000	000	2 88 88 88	000	000	2 38 88	990	24.88.88
WRPA 10	1980 2000 2020	000	000	000	000	000	000	000	0 1 8	0 777	000	° 1 8	0 2 2	0 3 0
LMR	1980 2000 2020	71 195 427	128 348 837	000	000	28 52 52 52	(1.5) (1.5) (1.5)	14 116(20) 116(20)	2) 39) 96	175 239 276	10 10 10	113 375 657	263 494 886	376 873 1,547

Pond resource more than adequate in all MiDAA's, nowever, public does not have access to 90% of the needed pond areas.

In reality, MIDAA 3 has 1980, 2000, 4 2020 deficits of 5, 12, 4 24 thousand acres, respectively. Assumption that this WUDA need can be transferred, assisted by regional supplies, may not be entirely true.

Included in power pool (milti-use with power production).

Included in PC pool water surface.

There will be private storage development in WUDA 2 for irrigation purposes but no identified water surface data available.

No conflict between EQ & Mr exists in this case, therefore included in NI Objective.

त्राह्म विक्रिक्त

public use. The program relies upon private actions stimulated by public educational measures to increase the number of ponds available.

The natural environmental quality needs for water surfaces can all be met within the National Income Objective water-surface plan. These needs are, with one exception, selected lakes and streams which already exist and were for the most part formed by nature. The one exception is the need for creation of 10,000 acres of lakes on Crowley's Ridge in WRPA 2.

Included in the analysis of needs was a listing of potential impoundments (of suitable size with capability to satisfy needs for recreation, fish and wildlife, and environmental purposes) to be created as the result of program components for satisfaction of flood control, water supply, navigation, and hydropower requirements. These surface areas were listed as water surface byproducts of storage requirements in table 91. The last three columns in table 91 reflect the future need for additional water surface and include that water surface which would be created by added storage facilities as programmed for flood control, water supply, hydropower, etc.

Potential for surface water development by WRPA was the final step in developing a preliminary water surface area plan. This potential, which is based on an inventory of reasonable reservoir sites, is displayed in table 92.

Table 92 - Development Potential for Large Water Surface, Lower Mississippi Region

		1,000 Acres	
WRPA	Large Lakes	Small Lakes	Total
1			
2	14	99	113
3	158	511	669
4	14	146	160
5	50	230	280
6	0	15	15
7	88	70	158
8	0	155	155
9	140	0	140
10	14	2	16
LMR	478	1,228	1,706

The water surface area plan for the National Income Objective is presented in table 93. This plan permits the full satisfaction of all identified water surface area needs for environmental quality purposes. It will also permit, with one exception, the satisfaction of all water surface area needs for fish and wildlife. In WRPA 3 net needs for fish and wildlife will have to be satisfied from neighboring WRPA surplus resources, provided that access points are developed and measures instituted to insure public use of certain areas. The proposed additions to the region's large water areas, although limited by development potential, amount to 1.3 million acres and can provide for the satisfaction of a significant portion of the recreation needs. Because of the region's limited development potential, there is no practical solution for meeting all the recreation needs expected to accrue in WRPA's 2, 3, and 8 by the year 2000, nor for meeting the additional 2000-2020 needs foreseen in those WRPA's and in WRPA's 4 and 6. The water surface plan includes no provision for creating small water areas, bearing in mind that present acreages are already adequate to fulfill all foreseeable needs, and that small ponds (primarily for stock watering and fishing) will probably continue to be constructed. A summary of Program A measures for satisfying water surface needs is given in table 94.

In some cases, the total WRPA potential for additional water surface over and above that created for some other purpose was not used because it was not considered appropriate to provide additional single-purpose development of water surface in WRPA's other than where theneed exists. Non-Federal public agencies are not likely to make the large investment required to provide facilities to meet another area or State need. Table 95 summarizes the effectiveness of the water surface area plan in terms of needs met.

Land Area

Table 96 summarizes present land use and shows the prospective land use for satisfying Program A needs through the year 2020. The plan is consistent with adopted study priorities for land use allocation. The National Income Program does not include an action plan for insuring the availability of private sector acreages to satisfy urban and built-up needs or food and fiber needs. It does, however, contain an action plan for insuring that lands are made available for recreation, fish and wildlife, and for environmental quality purposes insofar as multiple-use of the land resource can serve these purposes without detracting materially from the satisfaction of urban and built-up needs or from the satisfaction of higher priority needs for food and fiber production.

Urban and Built-up. Regional acreages allocated to urban and built-up expansion increase 50 percent between 1970 and 2020. The subregional increases vary from a maximum of over 100 percent in WRPA 3 to less than 3 percent in WRPA 6. These increases will require the conversion of some existing cropland, pastureland, and forest areas to urban and built-up use. This conversion will in turn necessitate the clearing of additional forest areas to meet cropland and pasture needs.

Table 93 - Water Surface Area Plan, NI Objective, Lower Mississippi Region

	Total Water	274 288 327	361 567 757	289 358 398	\$77 \$03 \$75	88 8001	163 266 266	179 201 242	602 638 688	1,275 1,278 1,285	3,976Z/ 4,457Z/ 4,906Z/
	s)4/ Subtotal	52 52 52	104	ままま	333	16 16 16	크크크	999	9999	117 117 117	255
	Ponds (1,000 Acres) 4/2 Proposed Addition Sub	000	000	000	000	000	000	000	000	000	000
	Fonds Existing 5	52	104	45	8	91	1,4	9	70	711	533
	Subtotal	888	322	133 133 135	76 76 76	333	222	333	1,38 8,51 1,38	5 5 5 5 5 5	857
	Small Water (1,000 Acres) Described Froposed Sting Addition Subtot	000	000	000	000	000	000	000	000	000	000
	Small Wat	%	25	133	92.	9	96	\$	138	21.9	8.37
	Total Large Water	124 138 177	225 431 621	102	233 259 331	843	1,883	88 110 151	402 438 488	939 942 949	2,606L/ 3,087L/ 3,536L/
	Subtotal	102 102 141	150 269 459	39 108 148	35 45 106	88\$	70 85 85	37 59 100	ಹೆಹೆಹೆ	507 509 509	1,043
	Small Lakes2/ Proposed Addition	33 0 68	114 1190	45 69 40 40	32 22	0 57	256 150	15 22 41	J	980	265 231 392
Large Water (1,000 Acres)	Sr Existing 2/	69	95	52	0	35	15	22	ŧ	204	780
rge Water (Subtotal	888	75 162 162	999	201 225 225	10 10 10	23	はなば	318 354 404	#32 #33 #40	1,195
La	Large Lakes 1/ Proposed	30	875/ 0	00	00 0	9000	9880	g.,	2,9,10	0 1 1	113 250 57
	La Existing 2	82		64	175	10	£	g	316	432	1,062
	WRPA Time Frame	1980 2000 2020	1,980 2000 2020	1,980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1960 2000 2020	1980 2000 2020
	WRPA/T	CV.	n	4	5	9	7	Ø	0	10	LMR

Liekes between to and 499 acres.

Liekes between to and 499 acres.

Anter aurize average between 2 and 39 acres in size.

Mister aurize average than 2 acres in size. Counted as land area and included in the "other" category of land use.

Mister aurize bother and man avaide water bodies (reservoirs and ponds) in place or under construction as of 1 July 1973.

Proposed addition limited by development potential of ARPA.

Includes 366,000 acres in Mississippi River (WRPA.).

Table On - Fronten A. Menures Uned to Nett Matter Surface Area Seeds, Lower Mististiph Healon

Figh and Wildife Fish and Wildife Revironmental quality Revironmental quality Revironmental quality Revironmental quality Revironmental quality Revironmental quality	None None None Hoperet and improve access to 1,203 miles of fishing strengs, promote public access to 50,000 acres of ponds. Construct, operate and maintain 10,000 acres of small lames; control and restore 9,420 acres of land to preserve 17 miles of sends triver; regulate land-use on 12,500 acres to preserve 20 miles of sends triver; regulate land-use of protect 17,100 acres to preserve 20 miles of sends trivers; of maintain and amprove subsidy to protect 2,175 acres of spanishing access to 822 miles of fishing strengs; provide landownes access to 802 miles of fishing strengs; provide indownes access to 60,000 acres of ponds. Purchase 2,100 acres to preserve 19 miles of scenic rivers; provide middowne subsidy on 2,500 acres of ponds. Purchase and referest 400 acres to preserve 300 miles of scenic rivers; purchase 100 acres purchase and referest 400 acres to preserve acenic lakes. Construct 14,000 acres of semall lakes.	Time Frame and incremental iragina Menaures 1,000-2,000 None Construct, operate and maintain 14,000 acres of inversible provide maintain 14,000 acres of inversible in 1,900 time frame; provide maintaine of small lakes required in 1,900 time frame for environmental quality. Maintain 1970-1950 menaures and promote public access to additional 5,000 acres of ponds. Operate and maintain 1970-1950 menaures; construct operate and maintain additional 57,000 acres of large lakes and 1,9,000 acres of small lakes. Maintain 1970-1950 menaures and promote public access to additional 21,000 acres of ponds. Maintain 1970-1950 menaures of ponds. Maintain 1970-1950 menaures Maintain additional 1970-1950 menaures Maintain additional 1970-1950 menaures Maintain additional 1970-1950 menaures	None Operate and maintain 1989-2000 mensures, construct, operate and maintain 1989-2000 mensures, construct, lakes. Maintain 1970-2000 mensures and promote public access to additional 25,000 acres of ponds. Operate and maintain 1970-1980 mensures; construct, special and maintain 1970-2000 mensures; construct, special and maintain additional 1970-2000 mensures; construct, operate and maintain additional 1970-2000 mensures. Maintain 1970-1980 mensures Maintain 1970-1980 mensures Maintain 1970-1980 mensures
Fish and Wildlife	Protect and improve access to 1,100 miles of fining strenms; promote public access to $Z7,000$ acres of ponds.	Maintain 1370-1350 measures and promote public access to additional 3,000 acres of ponds.	Maintain 1970-2000 mensures and promote public access to additional 0,000 scree of ponds.

Sable 3: - Describes I. Manufalant Road vo Mant Marter State Anna Mant Mante Manter States Manter (Part 1)

Water Resources		Time Frame and Incremental Program Measures	
Planning Area and Need Category	1970-1980	1,980-2000	2000-2020
WRPA 4 (Cont'd) Environmental Quality	Provide subsidy on $\psi_{i}/\gamma 0$ acres to preserve sparely developed shorelines of scenic lakes.	Maintain 1970-1980 mensures	Maintain 1970-1980 mensures.
WERATION	Construct, operate and maintain 32,000 acres of small lakes.	Operate and maintain 1970-1980 measures; construct, operate and maintain additional 94,000 acres of small lakes.	Operate and maintain 1970-2000 measures; construct, operate and maintain additional 105,000 acres of small lakes.
Fish and Wildlife	Protect and improve access to 1,931 miles of fishing streams, promote public access to 36,000 acres of ponds.	Maintain 1970-1985 measures and promote public access to additional 7,000 acres of ponds.	Maintain 1970-2000 measures and promote public access to additional 9,000 acres of ponds.
Environmental quality	Acquire easement on 14,242 acres to protect 234 miles of sento rivers; purches - 530 acres and provide 1, andower subsidy on plow acres to protect sparsely developed shorelines of scente lakes.	Maintain 1970-1980 mensures.	Maintain 1970-1980 measures.
Recreation	None	Construct, operate and maintain 2,000 acres of small lakes.	Operate and maintain 1980-2000 measures; construct, operate and maintain additional 10,000 acres of mult lakes.
Fish and Wildlife	Protect and improve access to 536 miles of fishing streims; promote public access to 5,000 acres of ponds.	Maintain 1970-1980 measures.	Maintain 1970-1980 measures.
Environmental quality	Provide landowner subsidy on 1,305 acres to protect sparsely developed shoreline of scenic lakes.	Malntain 1970-1980 measures.	Maintain 1970-1980 measures.
WRPA 7 Recreation	None	Provide for multi-use of reservoir(s) required for flood control in 1970-1980 time frame.	Provide for multi-use of reservoir(s) required for flood control in 1970-2000 time frame.
Fish and Wildlife	Protect and improve access to 450 miles of fishing streams; promote public access to 7,000 acres of ponds.	Mulatain 1970-1980 measures and promote public access to additional 1,000 acres of ponds.	Maintain 1970-2000 mensures and promote gablic access to additional 1,000 acres of ponds.
Environmental quality	Acquire essement on 13,000 acres to preserve 266 miles of scenic rivers, provide subsidy on 365 acres to protect sparsely developed shorelines of scenic laces.	Maintain1970-1980 menaures.	Maintain 1970-1989 membures.

Cabita Ga . Describe A Management Plant to Read Market Resident Meetin Mondin. Lower Wilnight for Con-

ABLER RESOURCES		THE FIGURE WITH THE PROPERTY AND PROPERTY.	
Need Category	1970-1980	260-2000	2000-5050
Mra 8 Mermation	None	Note	Construct, operate and maintain 36,000 acres of small lakes for single purpose recreation and 5,000 acres of multi-purpose lakes for recreation and flood control.
Fish and Wildlife	Protect and improve access to 400 miles of fishing streams; promote public access to 25,000 acres of ponds.	Maintain 1970-1980 measures, promote public access to additional $7,000$ acres of ponds.	Maintain 1970-2000 mensures; promote public access to additional 10,000 acres of ponds.
Savironmental Quality	Acquire essement on 9,155 acres to preserve 169 whice of search or frors; provide landowner subsidy on 500 acres to protect sparsely developed shore-line of scente lakes.	Maintain 1970-1980 mensures.	Maintain 1970-1980 mensures.
Recreation	None	None	None
Fish and Wildlife	Protect and improve access to 900 miles of fishing streams; promote public access to 30,000 acres of ponds.	Maintain 1970-1980 messures; promote public access to additional 5,000 acres of ponds.	Maintain 1970-2000 mensures; promote public access to additional 6,000 acres of ponds.
Environmental quality	Acquire ensement on 5,070 acres to preserve scenic rivers; purches (10 acres and provide landowner subsidy on 5,450 acres to protect sparsely develop- ed shorelines of scenic lakes.	Maintain 1970-1980 mensures.	Maintain 1970-2000 measures.
Recreation	None	None	None
Fish and Widlife	Protect and improve access to 369 miles of fishing streams, promote public access to $62,000$ acres of ponds.	Maintain 1970-1980 mensures; promote public access to additional 18,000 acres of ponds.	Maintain 1970-2000 mensures; promote public access to additional 23,000 acres of ponds.
Environmental quality	Provide landowner subsidy on 4,405 scres to protect sparsely developed shorelines of scenic lakes.	Maintain 1970-1980 measures.	Maintan 1970-1980 mensures.

Table 95 - Effectiveness of Water Surface Area Plan, Program A, Lower Mississippi Region

Water Resources		1970-1980			T	ime Frame	Time Frame and Percent of Gross Needs Met 1980-2000	ent of Gr	oss Needs	Met		2000-2020			
	Large	Small	Total	Ponds	Streams	Large	Small	Total	Ponds	Streams	Large	Small	Total	Ponds	Streams
PA 2 Recreation Fish and Wildlife Environmental Quality	8	8 ' '	,88	. 81.	1001	8''	8	, 800	100	1001	8.,	100	100	100	872/ 100
PA 3 Recreation Fish and Wildlife Environmental Quality	9, ,	8	100.00	, 8,	100 to 10	6	8	100.	. 81 .	2552	18 ' '	8	100	.8.	182/
PA 4 Recreation Fish and Wildlife Environmental Quality	001	8	, 88	' 00 '	1001	8	8	. 88	100	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	87	001	100	. 8 .	763/ 001
PA 5 Recreation Fish and Wildlife Environmental Quality	8	8	.88	.8.	1001	8 ' '	8 ' '	100	100	100	8	8''	100	. 8 .	256 100
PA 6 Recreation Fish and Wildlife Environmental quality	8	8 ' '	, 88	'8'	1000	8 ' '	100	, 88	. 001	1001	8.'	90'''	100	. 8 .	1001
PA 7 Recreation Fish and Wildlife Environmental Quality	8'''	8	, 88	. 8 .	10001	8	8	. 88	. 8 .	1001	8 , ,	90 ' '	, 801	. 8 .	1007
PA 8 Recreation Fish and Wildlife Environmental Quality	8 ' '	8	, 88	.8.	382/	8	8	, 88	. 81 .	308	8	001	. 88	, 8 ,	23.2
PA 9 Recreation Fish and Wildlife Environmental Quality	8	8	. 88	.8.	7.3 100	8	8''	, 000	. 80.	632 100	8 , ,	001	, 800	.8.	512/ 100
PA 10 Recreation Fish and Wildlife Environmental quality	8	8	, 88	.8.	13/2/	8 ' '	8	.88	. 8 .	100	8	100	, 800	. 81	-88 100

1/ Stream resources surplus to inter-WRM needs could satisfy indeterminate percentage of unset needs.
2/ Additional indeterminate percentage of needs can be satisfied by fishing on the Mississippi River in WRM 1.
3/ Assuming that lakes surplus to needs in bordering WRM's can satisfy WRM 3 needs.

Table 96 - Land Use Plan, Program A, Lower Mississippi Region

Open Land Transportation, Urban and Built-up Food and Fiber Cropland 188.0					
Need Category (1,000 Acres) 1980 2000 2020			A11	located Futu	ire
Open Land Transportation, Urban and Built-up Food and Fiber Cropland 188.0 188.0 188.0 188.0 188.0 30.0				Use (1,000	Acres)
Open Land Transportation, Urban and Built-up Food and Fiber Cropland 188.0 188.0 30.	Need Category	(1,000 Acres)	1980	2000	2020
Transportation, Urban and Built-up Food and Fiber Cropland 188.0 188.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	WRPA 1				
Urban and Built-up Food and Fiber Cropland 188.0 188.0 188.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0					
Cropland	Urban and Built-up		-		-
Pastured Cropland 30.0 50.0 30.0 50.0 50.0 Permanent Pasture 32.0 32.0 32.0 32.0 32.0 Other 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0					
Permanent Pasture				188.0	188.0
Other Commercial Fisheries Minerals Recreation Class A Class B Fish and Wildlife (Cropland) (Pastureland) (Wetlands) Environmental Quality Forest Land Food and Fiber Forest Products, et al. Animal Roughage (Pasture) 1/(135.0) (135.0) (135.0) (368.0) Recreation Class B Class C Fish and Wildlife2/ Fish and Wildlife2/ Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Lake Shores1/ Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas					
Commercial Fisheries Minerals Recreation Class A Class B Fish and Wildlife (Cropland) (Pastureland) (Wetlands) Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/(135.0) (135.0) (135.0) (368.0) Recreation Class B Class C Fish and Wildlife 2/(151.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems Lake Shores 1/(879.0) (879.0) (879.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas					
Minerals Recreation Class A Class B Fish and Wildlife (Cropland) (Pastureland) (Wetlands) Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/ (135.0) (135.0) (135.0) (368.0 Recreation Class B Class C Fish and Wildlife2/ (131.1) (131.1) (131.1) (131.1 Environmental Quality Botanical Systems Rettomland Hardwood Areas 1/ (879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems Ceological Systems Lake Shores 1/ Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas		62.0	62.0	62.0	62.0
Recreation Class A Class B Fish and Wildlife (Cropland) Cropland) Cropland Class B Class B Class C Cropland Class B Class C Cropland Class B Class C Cropland Crop		~	-	-	-
Class B Fish and Wildlife (Cropland) (Pastureland) (Wetlands) Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/(135.0) (135.0) (135.0) (368.0) Recreation Class B Class C Fish and Wildlife2/(131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Sy		-	-		-
Class B Fish and Wildlife (Cropland) (Pastureland) (Wetlands) Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/(135.0) (135.0) (135.0) (368.0 Recreation Class B Class C Fish and Wildlife 2/(131.1) (131.1) (131.1) (131.1 Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems Ceological Systems Ceological Systems Ceological Systems Usake Shores 1/(879.0) (879.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas					
Fish and Wildlife (Cropland) (Pastureland) (Wetlands) Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/(135.0) (135.0) (135.0) (368.0) Recreation Class B Class C Fish and Wildlife 2/(131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Ceological Systems Ceological Systems Ceological Systems Lake Shores 1/(131.1) (131.1) (131.1) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas			-		-
(Cropland) (Pastureland) (Wetlands) Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/(135.0) (135.0) (135.0) (368.0 Recreation Class B Class C Fish and Wildlife2/ (131.1) (131.1) (131.1) (131.1 Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Lake Shores 1/(Scenic River Banks) Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas Small Water Areas		~	-		-
(Pastureland) (Wetlands) Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/(135.0) (135.0) (135.0) (368.0 Recreation Class B Class C Fish and Wildlife2/ (131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Lake Shores 1/(Scenic River Banks) Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas Small Water Areas					
Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879		-	-		_
Environmental Quality Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 (368.0 Animal Roughage (Pasture) 1/ (135.0) (135.0) (135.0) (368.0 Recreation Class B Class C Fish and Wildlife2/ (131.1) (131.1) (131.1) (131.1 (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/ (879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems Ceological Systems Lake Shores 1/ (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas 368.0 368.0 368.0 368.0 368.0 368.0 368.0 368.0		~	-	-	-
Forest Land Food and Fiber Forest Products, et al. 879.0 879.0 879.0 (368.0 Animal Roughage (Pasture) 1/ (135.0) (135.0) (135.0) (368.0 Recreation Class B Class C Fish and Wildlife2/ (131.1) (131.1) (131.1) (131.1 (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/ (879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems Ceological Systems Lake Shores 1/ (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas 368.0 368.0 368.0 368.0 368.0 Small Water Areas		-	-	-	
Food and Fiber Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/(135.0) (135.0) (135.0) (368.0) Recreation Class B Class C Fish and Wildlife2/(131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems Lake Shores 1/(879.0) (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas	Environmental Quality	· ·	-		
Forest Products, et al. 879.0 879.0 879.0 879.0 Animal Roughage (Pasture) 1/ (135.0) (135.0) (135.0) (368.0) Recreation Class B Class C Fish and Wildlife2/ (131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/ (879.0) (879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems	Forest Land				
Animal Roughage (Pasture) 1/ (135.0) (135.0) (368.0 Recreation Class B Class C Fish and Wildlife2/ (131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/ (879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Lake Shores 1/ (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas 1/ (879.0)	Food and Fiber				
Animal Roughage (Pasture) (135.0) (135.0) (135.0) (308.0) Recreation Class B Class C Fish and Wildlife (131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas (1879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems Lake Shores (1980.0) (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas	Forest Products, et al. ,	, 879.0	879.0		879.0
Recreation Class B Class C Fish and Wildlife ² / Environmental Quality Botanical Systems Bottomland Hardwood Areas ¹ / Ecological Systems Ceological Systems Lake Shores ¹ / Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas	Animal Roughage (Pasture)	(135.0)	(135.0)	(135.0)	(368.0)
Class B Class C Fish and Wildlife ² / Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Lake Shores 1/(800.0) (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas					
Class C Fish and Wildlife2/ (131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas1/ (879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Lake Shores1/ (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas 368.0 368.0 368.0 368.0 Small Water Areas		-	-	-	-
Fish and Wildlife (131.1) (131.1) (131.1) (131.1) Environmental Quality Botanical Systems Bottomland Hardwood Areas (879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Lake Shores (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas		-	-	-	-
Environmental Quality Botanical Systems Bottomland Hardwood Areas 1/(879.0) (879.0) (879.0) (879.0) Ecological Systems Geological Systems Lake Shores 1/(6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas	Fish and Wildlife ²	(131.1)	(131.1)	(131.1)	(131.1)
Botanical Systems Bottomland Hardwood Areas 1/ (879.0) (879.0) (879.0) (879.0) Ecological Systems Ceological Systems Lake Shores 1/ (6.0) (6.0) (6.0) Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas	Environmental Quality				
Ecological Systems Geological Systems Lake Shores	Rotanical Systems				
Ecological Systems Geological Systems Lake Shores	Bottomland Hardwood Areas	(879.0)	(879.0)	(879.0)	(879.0)
Geological Systems Lake Shores		-	-	-	-
Lake Shores 1/ Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas Small Water Areas		-	-	-	-
Scenic River Banks Wetlands Wilderness Areas Land Covered by Water Large Water Areas Small Water Areas Small Water Areas	Lake Shores1/	-	(6.0)	(6.0)	(6.0)
Wetlands Wilderness Areas Land Covered by Water Large Water Areas 368.0 368.0 368.0 368.0 Small Water Areas		-	-	-	-
Wilderness Areas Land Covered by Water Large Water Areas 368.0 368.0 368.0 368.0 Small Water Areas		-	-	-	-
Large Water Areas 368.0 368.0 368.0 368.0 368.0		-			-
Large Water Areas 368.0 368.0 368.0 368.0 368.0	Land Covered by Water				
Small Water Areas		368.0	368.0	368.0	368.0
		-	-	+	-
		1,559.0	1,559.0	1,559.0	1,559.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources			located Fut	
Planning Area and	1970 Land	Use Land	Use (1,000	Acres)
Need Category	(1,000 Ac	res) 1980	2000	2020 -
WRPA 2				
Open Land				
Transportation,				
Urban and Built-up	367.0	378.0	396.0	459.0
Food and Fiber				
Cropland	6,192.0	7,201.0	7,618.0	7,761.0
Pastured Cropland	380.0	501.0	504.0	514.0
Permanent Pasture	693.0	314.0	319.0	326.0
Other	247.0	379.0	253.0	174.0
Commercial Fisheries3/	(16.0)	(21.0)	(30.0)	(40.0)
Minerals3/	(26.0)	(35.0)	(56.0)	(87.0)
Recreation				
Class A4/	(6.1)	(7.1)	(8.4)	(12.1)
Class B5/	(7.1)	(7.5)	(7.5)	(10.4)
Fish and Wildlife				
(Cropland) 6/	-	(288.0)	(319.0)	(375.0)
(Pastureland) 5/	-	(123.0)	(137.0)	(161.0)
(Wetlands)3/	-	(101.0)	(101.0)	(101.0)
Environmental Quality				
Open and Green Space	(6.1)	(8.0)	(8.0)	(8.0)
Ecological Systems 8/		1.0	1.0	1.0
Geological Systems 5/		(157.0)	(157.0)	(157.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	2.634.0	1,706.0	1,375.0	1,192.0
Animal Roughage (Pasture	1/(365.0)	(447.0)	(454.0)	(775.0)
Recreation) ()			
Class B1/	(7.0)	(7.6)	(7.6)	(10.4)
Class CI/	(0.6)	(0.6)	(0.7)	(0.9)
Fish and Wildlife2/	(280.5)	(381.0)	(444.6)	(535.3)
Environmental Quality				
Bottomland Hardwood				
Areasl/	(1,128.0)	(690.0)	(530.0)	(444.0)
Ecological Systems 1		(120.0)	(120.0)	(120.0)
Geological Systems 1/		(350.0)	(350.0)	(350.0)
Lake Shores 1/		(1,0)	(1.0)	(1,0)
Scenic River Banks1/		(18.0)	(18.0)	(18.0)
Wilderness Areas1/		(44.0)	(44.0)	(44.0)
Land Covered by Water				
Large Water Areas	91.0	124.0	138.0	177.0
Small Water Areas	98.0	98.0	98.0	98.0
Total Area, WRPA 2	10,702.0	10,702.0	10,702.0	10,702.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources		A11	ocated Fut	ure
Planning Area and	1970 Land U	Jse Land	Use (1,000	Acres)
Need Category	(1,000 Acre	es) 198 0	2000	2020
WRPA 3				
Open Land				
Transportation,				
Urban and Built-up	355.0	401.0	536.0	724.0
Food and Fiber				
Cropland	2,206.0	2,094.0	2,170.0	2,346.0
Pastured Cropland	746.0	1,117.0	1,219.0	1,314.0
Permanent Pasture	929.0	501.0	551.0	583.0
Other 3/	200.0	392.0	379.0	354.0
Commercial Fisheries3/	(0,6)	(1.0)	(2.0)	(3.0)
Minerals 2/	(2.0)	(4.0)	(9.0)	(14.0)
Recreation	(2.0)	(17.0)	(25.5)	(70.0)
Class A4/	(2.9)	(13.8)	(23.5)	(39.0)
Class B5/	(2.4)	(11.9)	(20.2)	(33.6)
Fish and Wildlife		((53.0)	(000 0)	(1 214 0)
$(Cropland) \frac{6}{}$		(652.0)	(890.0)	(1,214.0)
(Pastureland)5/		(279.0)	(380.0)	(520.0)
(Wetlands) <u>3</u> /	(2.0)	(41.0)	(41.0)	(41.0)
Environmental Quality /	(2.9)	(34.0)	(34.0)	(34.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	2,310.0	2,056.0	1,500.0	844.0
Animal Roughage (Pasture) 1/	(297.0)	(464.0)	(921.0)	(551.0)
Recreation				
Class B1/	(2.3)	(11.9)	(20.3)	(33.6)
Class C1/	(0.2)	(1.2)	(1.9)	(3.0)
Fish and Wildlife ² /	(186.3)	(228.1)	(266.2)	(320.5)
Environmental Quality			(505.0)	£444 03
Bottomland Hardwood Areas 1/	(796.0)	(700.0)	(503.0)	(444.0)
Lake Shores 1/		(1.0)	(1.0)	(1.0)
Scenic River Banks1/		(28.0)	(28.0)	(28.0)
Wetlands1/		(64.0)	(64.0)	(64.0)
Land Covered by Water		225	171 0	621.0
Large Water Areas	40.0	225.0	431.0	32.0
Small Water Areas	32.0	32.0	32.0	32.0
Total Area, WRPA 3	6,818.0	6,818.0	6,818.0	6,818.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (cont'd)

		Use (1,000	Acres)
(1,000 Acre	es) <u>1980</u>	2000	2020
328.0	335.0	361.0	426.0
3,314.0		4,274.0	4,391.0
326.0	578.0	526.0	495.0
943.0	1,819.0	1,505.0	1,482.0
207.0	253.0	230.0	163.0
(11.3)	(20.0)	(37.0)	(54.0)
			(5.0)
(0.8)	(3.8)	(5.4)	(8.0)
			(6.5)
()	()	()	(, , ,
-	(292.0)	(327.0)	(391.0)
			(167.0)
-			(97.0)
(0.8)	(8.0)	(8.0)	(8.0)
3 222 0	1 782 0	1 347 0	1,246.0
(587.0)			(800.0)
(307.0)	(1,073.0)	(0/3.0)	(800.0)
(0, 0)	(7.1)	(1.4)	(6.5)
			(45.5)
(105.4)	(257.0)	(300.0)	(361.9)
(1 110 0)	(0.47 0)	(0.17 0)	(0.17 0)
(1,148.0)			(947.0)
			(10.0)
			(1.0)
			(2.0)
	(5.0)	(5.0)	(5.0)
	102.0	171.0	211.0
133.0	133.0	133.0	133.0
8,547.0	8,547.0	8,547.0	8,547.0
	328.0 3,314.0 326.0 943.0 207.0 (11.3) (3.0) (0.8) (1.0) (0.8) 3,222.0 (587.0) (0.9) (26.0) (165.4) 74.0 133.0	328.0 335.0 3,314.0 3,545.0 326.0 578.0 943.0 1,819.0 207.0 (253.0 (11.3) (20.0) (3.0) (3.0) (0.8) (3.8) (1.0) (3.1) - (292.0) - (125.0) - (97.0) (0.8) (8.0) (3,222.0 1,782.0 (587.0) (1,073.0) (0.9) (3.1) (26.0) (26.0) (165.4) (257.6) (1,148.0) (947.0) (1.0) (2.0) (5.0) 74.0 102.0 133.0 133.0	328.0 335.0 361.0 3,314.0 3,545.0 4,274.0 326.0 578.0 526.0 943.0 1,819.0 1,505.0 207.0 253.0 230.0 (11.3) (20.0) (37.0) (3.0) (3.0) (4.0) (0.8) (3.8) (5.4) (1.0) (3.1) (4.4) - (292.0) (327.0) - (125.0) (140.0) - (97.0) (97.0) (0.8) (8.0) (8.0) (3,222.0 1,782.0 1,347.0 (587.0) (1,073.0) (875.0) (0.9) (3.1) (4.4) (26.0) (26.0) (32.1) (165.4) (257.6) (300.6) (1,148.0) (947.0) (10.0) (10.0) (10.0) (10.0) (10.0) (2.0) (5.0) (5.0) (5.0) (5.0)

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources Planning Area and	1970 Land 1		located Fut	
Need Category	(1,000 Acre		2000	2020
WRPA 5	(-,		====	
Open Land				
Transportation,				
Urban and Built-up	440.0	458.0	532.0	647.0
Food and Fiber				
Crop1and	732.0	736.0	844.0	1,116.0
Pastured Cropland	239.0	621.0	653.0	690.0
Permanent Pasture	982.0	856.0	902.0	968.0
Other	192.0	262.0	247.0	217.0
Commercial Fisheries 3/	(3.6)	(6.0)	(12.0)	(18.0)
Minerale 2/	(8.0)	(9.0)	(9.0)	(10.0)
Recreation				
Class A ⁴ / Class B ² /	(2.6)	(6.1)	(9.1)	(13.5)
	(2.3)	(5.2)	(7.7)	(11.5)
Fish and Wildlife		(
(Cropland) 6/		(394.0)	(467.0)	(572.0)
(Pastureland) 5/	(2.0)	(169.0)	(200.0)	(245.0)
Environmental Quality7/	(2.6)	(13.0)	(13.0)	(13.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	10.228.0	9.831.0	9,551.0	9,019.0
Food and Fiber Forest Products, et al. Animal Roughage (Pasture) Recreation	(947.0)	(1.048.0)	(1.090.0)	(1,515.0)
Recreation				
Class B 1/	(2.2)	(5.3)	(7.5)	(11.6)
Class C $\overline{1}$ /	(23.8)	(23.8)	(31.5)	(46.9)
Fish and Wildlife				
Management, Areas, etc.2/	(258.4)		(422.3)	(508.5)
Wetlands 1/	-	(531.0)	(723.0)	(791.0)
Environmental Quality	/	(2.201.0)	(2 2/2 2)	
Bottomland Hardwood Areas 1/	(2,362.0)	(2,284.0)	(2,262.0)	(2,171.0)
Ecological Systems 1/		(20.0)	(20.0)	(20.0)
Geological Systems 1/		(22.0)	(22.0)	(22.0)
Lake Shores 1/		(1.0)	(1.0)	(1.0)
Scenic River Banks1/		(28.0)	(28.0)	(28.0)
Wilderness Areas $\frac{1}{2}$		(25.0)	(25.0)	(25.0)
Land Covered by Water				
Land Covered by Water Large Water Areas	175.0	233.0	259.0	331.0
Small Water Areas	76.0	76.0		
Shall water Areas	70.0	70.0	70.0	70.0
Total Area, WRPA 5	13.064.0	13,064.0	13,064.0	13,064.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources Planning Area and			located Futi	
Need Category	1970 Land Us (1,000 Acres	ie Land 1980	Use (1,000 2000	
	(1,000 Acres	1960	2000	2020
WRPA 6				
Open Land				
Transportation,				
Urban and Built-up	78.0	79.0	79.0	80.0
Food and Fiber				
Cropland	1,908.0	2,090.0	2,090.0	2,090.0
Pastured Cropland	118.0	137.0	137.0	137.0
Permanent Pasture	494.0	468.0	468.0	468.0
Other	32.0	35.0	35.0	35.0
Commercial Fisheries3/	(1.4)	(4.0)	(9.0)	(14.0)
Minerals ³ /	(2.0)	(2.0)	(3.0)	(4.0)
Recreation,				
Class A ⁴ /	(0.5)	(1.7)	(2.2)	(2.9)
Class B5/	(0.4)	(1.5)	(1.9)	(2.5)
Fish and Wildlife				
$(Cropland)^{6}$	-	(83.0)	(83.0)	(91.0)
(Pastureland) 5/	-	(35.0)	(36.0)	(39.0)
Environmental Quality				
Open and Green Space 7/	(0.5)	(2.0)	(2.0)	(2.0)
Botanical Systems 8/		1.0	1.0	1.0
Forest Land				
Food and Fiber				
Forest Products, et al.	, 831.0	652.0	650.0	639.0
Animal Roughage (Pasture) 1/	(117.0)	(224.0)	(234.0)	(415.0)
Recreation				
Class B1/	(0.3)	(1.5)	(1.9)	(2.6)
Class C1/	(0.0)	(0.2)	(0.2)	(0.2)
Fish and Wildlife				
Management Areas, etc.2/	(45.2)	(70.2)	(81.9)	(98.6)
Wetlands1/	-	(85.0)	(85.0)	(85.0)
Environmental Quality	,			
Bottomland Hardwood Areas 1/	(756.0)	(609.0)	(609.0)	(609.0)
Land Covered by Water				
Large Water Areas	32.0	32.0	34.0	44.0
Small Water Areas	40.0	40.0	40.0	40.0
Total Area, WRPA 6	3,533.0	3,533.0	3,533.0	3,533.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources Planning Area and	1070 1 1 11		located Fut	
Need Category	1970 Land U		Use (1,000	
WRPA 7	(1,000 Acre:	s) <u>1980</u>	2000	2020
Open Land				
Transportation,				
Urban and Built-up	116.0	121.0	136.0	151.0
Food and Fiber				
Cropland	337.0	197.0	147.0	170.0
Pastured Cropland	180.0	315.0	520.0	657.0
Permanent Pasture	941.0	1,018.0	1,726.0	2,075.0
Other	30.0	68.0	49.0	12.0
Commercial Fisheries 3/	(0.9)	(1.0)	(3.0)	(4.0)
Minerals ³ /	(1.0)	(1.0)	(1.0)	(1.0)
Recreation	(2.0)	(1.0)	(1.0)	(2.0)
Class A ⁴ /	(0.4)	(1.6)	(2.2)	(3.3)
Class B5/	(0.4)	(1.3)	(1.9)	
Fish and Wildlife	(0)	(1.0)	(1.0)	(2.0)
(Cropland)6/	_	(74.0)	(85.0)	(103.0)
$(Pasture 1 and) \frac{5}{}$	_	(32.0)	(36.0)	(44.0)
Environmental Quality 7/	(0.4)	(1.0)	(1.0)	(1.0)
Forest Land				
Food and Fiber	2,509.0	2 770 0	1 777 0	900 0
Forest Products, et al.	4,509.0			890.0
Animal Roughage (Pasture)	(694.0)	(1,251.0)	(895.0)	(580.0)
Recreation	(0.7)	(1.1)	(2.0)	(2.0)
Class B	(0.3)	(1.4)	(2.0)	(2.9)
Class C	(0.1)	(0.1)	(0.2)	(0.3)
Fish and Wildlife	(71.0)	(104 0)	(121 4)	(146 1)
Management Areas, etc.2/	(74.0)	(104.0)	(121.4)	
Wetlands 1/		(49.0)	(49.0)	(49.0)
Environmental Quality	(500.0)	(167.0)	(407.0)	(407.0)
Bottomland Hardwood Areas	(500.0)	(463.0)	(407.0)	(407.0)
Ecological Systems 1/		(3.0)	(3.0)	(3.0)
Geological Systems 1/		(1.0)	(1.0)	(1.0)
Lake Shores 1/		(1.0)	(1.0)	(1.0)
Scenic River Banks 1/		(13.0)	(13.0)	(13.0)
Wilderness Areas1/		(30.0)	(30.0)	(30.0)
Land Covered by Water				
Large Water Areas	38.0	93.0	196.0	196.0
Small Water Areas	56.0	56.0	56.0	56.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (Cont'd)

Water Resources Planning Area and	1970 Land Use		ocated Futu Use (1,000	
	(1,000 Acres)		2000	2020
WRPA 8				
Open Land				
Transportation,	102.0	206.0	260 0	777 0
Urban and Build-up	182.0	200.0	260.0	333.0
Food and Fiber	329.0	217.0	170.0	193.0
Cropland Pastured Cropland	54.0	349.0	367.0	391.0
Permanent Pasture	655.0	587.0	616.0	650.0
Other	48.0	59.0	47.0	21.0
Commercial Fisheries3/	(0.3)	(1.0)	(1.0)	(2.0)
Minerals3/	(4.0)	(5.0)	(6.0)	(8.0)
Recreation	(1.0)	(3.0)	(0.0)	(0.0)
Class A4/	(0.5)	(6.0)	(9.6)	(15.3)
Class B5/	(0.9)	(5.2)	(8.3)	(13.1)
Fish and Wildlife		(, , ,		
(Cropland)6/		(217.0)	(170.0)	(193.0)
(Pastureland) 5/	-	(122.0)	(156.0)	(262.0)
Environmental Quality				
Open and Green Space7/	(0.5)	(12.0)	(12.0)	(12.0)
Botanical Systems 8/	-	1.0	1.0	1.0
Geological Systems5/	-	(1.0)	(1.0)	(1.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	2,265.0	2,099.0	2,035.0	1,866.0
Animal roughage (Pasture)1			(1,183.0)	(1,213.0)
Recreation,				
Class B_{1}^{1}	(0.8)	(5.2)	(8.3)	(13.2)
Class C1/	(0.0)	(0.5)	(0.8)	(1.2)
Fish and Wildlife				
Management Areas, etc. 2/	(5.0)	(19.0)		(26.7)
Wetlands1/	-	(144.0)	(190.0)	(395.0)
Environmental Quality		(2.0)	(2.0)	(2.0)
Botanical Systems 1/	/ (000 0)	(2.0)	(2.0)	(2.0)
Bottomland Hardwood Areasl	/ (988.0)	(916.0) (202.0)	(888.0)	(814.0) (202.0)
Geological Systems <u>1</u> / Lake Shores1/		(202.0)	(1.0)	(1.0)
Scenic River Banks1/		(17.0)	(17.0)	(17.0)
Scenic River banks1/		(17.0)	(17.0)	(17.0)
Land Covered by Water				
Large Water Areas	73.0	88.0	110.0	151.0
Small Water Areas	45.0	45.0	45.0	45.0
Total Area, WRPA 8	3,651.0	3,651.0	3,651.0	3,651.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (Cont'd)

Water Resources				
Planning Area and	1070 1 1 11		ocated Futu	
Need Category	1970 Land Use		Use (1,000	
•	(1,000 Acres)	1980	2000	2020
WRPA 9				
Open Land				
Transportation,				
Urban and Built-up	236.0	243.0	271.0	314.0
Food and Fiber				
Cropland	1,827.0	2,673.0	2,623.0	2,578.0
Pastured Cropland	749.0	1,316.0	1,383.0	1,450.0
Permanent Pasture	911.0	1,072.0	1,126.0	1,178.0
Other	807.0	734.0	752.0	787.0
Commercial Fisheries3/	(10.7)	(14.0)	(20.0)	(26.0)
Minerals3/	(7.0)	(11.0)	(16.0)	(24.0)
Recreation				
Class A4/	(1.3)	(7.5)	(10.6)	(15.1)
Class B5/	(1.0)	(6.4)	(9.1)	(13.0)
Fish and Wildlife				
(Cropland)6/	-	(829.0)	(1,216.0)	(1,636.0)
(Pastureland) 5/		(153.0)	(172.0)	(202.0)
(Wetlands)3/	-	(144.0)	(162.0)	(190.0)
EnvironmentaT Quality				
Open and Green Space7/	(1.3)	(12.0)	(12.0)	(12.0)
Beaches and Shores3/		(16.0)	(16.0)	(16.0)
Botanical Systems3/	-	(500.0)	(500.0)	(500.0)
Geological Systems3/		(3.0)	(3.0)	(3.0)
F I 1				
Forest Land				
Food and Fiber	3 442 0	1 032 0	1,779.0	1,577.0
Forest Products, et al.	3,442.0	1,932.0		(751.0)
Animal roughage (Pasture Recreation	1/(303.0)	(677.0)	(711.0)	(731.0)
Class B 1/	(0.9)	(6.5)	(9.2)	(13.0)
Class C 1/	(0.3)	(0.6)	(0.9)	(1.1)
Fish and Wildlife2/	(690.2)	(717.2)	(836.9)	(1,007.7)
Environmental Quality	(030.2)	(111.2)	(030.3)	(1,007.7)
Botanical Systems1/		(290.0)	(290.0)	(290.0)
Bottomland Hardwood		(250.0)	(230.0)	(220.0)
Areas1/	(1,324.0)	(1,080.0)	(1.080.0)	(1,080.0)
Geological Systems1/	(1,024.0)	(3.0)	(3.0)	(3.0)
Lake Shores1/		(3.0)	(3.0)	(3.0)
Scenic River Banks1/		(9.0)	(9.0)	(9.0)
Wetlands1/		(121.0)	(121.0)	(121.0)
Wilderness Areasl/		(555.0)	(555.0)	(555.0)
Wilderness Areasi,		(333.0)	(555.0)	(555.0)
Land Coursed by Water				
Land Covered by Water	400 0	402.0	179 D	100 0
Large Water Areas	400.0	402.0	438.0	488.0
Small Water Areas	138.0	138.0	138.0	138.0
Total Area, WRPA 9	8,510.0	8,510.0	8,510.0	8,510.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (Cont'd)

Water Resources				
Planning Area and	1070 1 1 11-		ocated Futu	
Need Category	1970 Land Use (1,000 Acres)	1980	Use (1,000 . 2000	
	(1,000 ACTES)	1900	2000	2020
WRPA 10				
Open Land				
Transportation,				
Urban and Built-up	230.0	260.0	327.0	419.0
Food and Fiber				
Cropland	310.0	271.0	250.0	242.0
Pastured Cropland	49.0	90.0	95.0	100.0
Permanent Pasture	202.0	295.0	308.0	324.0
Other -	1,681.0	1,671.0	1,664.0	1,653.0
Commercial Fisheries 3/	(1.2)	(2.0)	(3.0)	(3.0)
Minerals 3/	(14.0)	(17.0)	(23.0)	(30.0)
Recreation	(2)	(1)	(20.0)	(00.0)
Class A4/	(1.3)	(14.4)	(23.0)	(36.3)
Class B <u>5</u> /	(0.9)	(12.4)	(19.8)	
Fish and Wildlife	(0.5)	(12.4)	(15.0)	(31.2)
(Cropland) 6/		(271.0)	(250.0)	(242.0)
(Pastureland) 5/		(291.0)	(372.0)	(424.0)
(Wetlands)3/		(275.0)	(353.0)	(530.0)
Environmental Quality	(1.2)	(71 0)	(71 0)	(71 0)
Open and Green Space 7/	(1.3)		(31.0)	
Beaches and Snores3/		(160.0)	(160.0)	(160.0)
Forest Land				
Food and Fiber	-	-	-	-
Forest Products, et al.		1,202.0		
Animal roughage (Pasture)	1/ (32.0)	(59.0)	(62.0)	(65.0)
Recreation				
Class B 1/	(0.8)	(12.5)	(19.8)	(31.2)
Class C I/	(0.0)	(1.2)	(1.8)	(2.7)
Fish and Wildlife2/			(229.1)	(275.8)
Environmental QuaTity		,		
Botanical Systems1/		(1.0)	(1.0)	(1.0)
Bottomland Hardwood Areas	(970.0)	(885.0)	(841.0)	(780.0)
Lake Shores1/	(0,0.0)	(4.0)	(4.0)	(4.0)
Scenic River Banks 1/		(4.0)	(4.0)	(4.0)
Land Covered by Water				
Land Covered by Water	939.0	939.0	942.0	949.0
Large Water Areas				
Small Water Areas	219.0	219.0	219.0	219.0
Total Area, WRPA 10	4,947.0	4,947.0	4,947.0	4,947.0

Table 96 - Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources	1070 1 1		llocated Fut	
Planning Area and	1970 Land		d Use (1,000	
Need Category	(1,000 Acı	res) 1980	2000	2020
WRPA's 1 through 10				
Open Land				
Transportation				
Urban and Built-up	2,332.0	2,481.0	2,898.0	3,553.0
Food and Fiber				
Cropland	17,343.0	19,203.0	20,374.0	21,075.0
Pastured Cropland	2,871.0	5,054.0	5,434.0	5,778.0
Permanent Pasture	6,782.0	6,962.0	7,553.0	8,086.0
Other	3,506.0	3,915.0	3,718.0	3,478.0
Commercial Fisheries 3/	(46.0)	(70.0)		(164.0)
Minerals3/	(67.0)	(87.0)	(127.0)	(183.0)
Recreation Class A ⁴ /				
Class A4/	(16.4)	(62.0)	(94.0)	(145.5)
Class B5/	(16.0)	(54.5)	(80.8)	(124.6)
Fish and Wildlife				
(Cropland) 6/		(3,100.0)	(3,807.0)	(4,817.0)
(Pastureland)5/		(1,329.0)	(1,629.0)	(2,064.0)
(Wetlands) <u>5</u> /		(658.0)	(754.0)	(959.0)
Environmental Quality _,				
Open and Green Space 1	(16.4)	(122.0)	(122.0)	(122.0)
Beaches and Shores3/		(176.0)	(176.0)	(176.0)
Botanical Systems	-	(502.0)	9/ (502.0)9	(502.0)
Ecological Systems8/	-	1.0	1.0	1.0
Geological Systems		(161.0)	(161.0)	(161.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	29,637.0	24,477.0		18,192.0
Animal Roughage (Pasture	(4,207.0)	(5,993.0)	(6,560.0)	(7,033.0)
Recreation				
Class B	(15.9)	(55.0)		(125.0)
Class C	(50.9)	(54.2)	(70.1)	(101.8)
Fish and Wildlife	,			
Management Areas, etc. 1/	(2,021.4)	(2,466.4)	(2,856.2)	(3,418.2)
Wetlands1/	-	(809.0)	(1,047.0)	(1,320.0)
Environmental Quality				
Botanical Systems 1/		(293.0)	(293.0)	(293.0)
Bottomland Hardwood Area	$as \frac{1}{(10,852.0)}$	(9,453.0)	(8,946.0)	(8,402.0)
Ecological Systems 1/		(153.0)	(153.0)	(153.0)
Geological Systems 1/		(579.0)		(579.0)
Lake Shores 1/		(20.0)	(20.0)	(20.0)
Scenic River Banks1/		(117.0)		(117.0)
Wetlands1/		(185.0)		(185.0)
Wilderness Areas 1/		(659.0)		(659.0)
Land Covered by Water				
Large Water Areas	2,230.0	2,606.0	3,087.0	3,536.0
		837.0	837.0	837.0
Small Water Areas	837.0		037.0	557.0
Total Area, LMR	65,538.0	65,538.0	65,538.0	65,538.0

- 1/ Multiple-use land. Counted in forest products acreage.
- 2/ Primary use for fish and wildlife. Counted in forest products acreage.
- 3/ Multiple-use land. Counted in other open land acreage.
- 4/ Primary use for recreation. Counted in transportation, urban and built-up acreage.
- 5/ Multiple-use land counted in permanent pasture acreage.
- 6/ Multiple-use land. Counted in cropland acreage.
- Multiple-use with Class A recreation land. Counted in transportation, urban and built-up acreage.
- 8/ Exclusive use for environmental quality purposes. Not counted elsewhere.
- 9/ Exclusive use on 2,000 acres for environmental quality purposes. Remaining 500,000 acres are multiple-use and counted in other open land acreage.

Part of the land allocated to urban and built-up uses is required for recreation and environmental quality purposes. Regionally, such lands in the year 2020 amount to 145,500 acres, or 4 percent of the total urban and built-up acreage. On a WRPA basis, the urban lands allocated to multiple-use for recreation and environmental quality vary from a minimum of 3,000 acres in WRPA's 6 and 7 to a maximum of 39,000 acres in WRPA 3, wherein lies the city of Memphis, Tennessee. In WRPA 10, needs for open and green space in the city of New Orleans, Louisiana, account largely for the allocation of 36,000 acres of recreation land in that area in the year 2020.

Cropland. Cropland acreages as allocated in table 96 will maintain a slight steady increase (less than 1 percent per year) throughout the 50-year period of study. Yields will increase also and will sustain the region's doubling population. This is due in part to foreseeable improvements in agricultural technology and land management, and in part to shifts in land use. Individual WRPA's will exhibit slight changes, some increasing and others decreasing moderately. The needed increases in cropland can be achieved in most WRPA's by the intra-WRPA conversion of other types of open land or forest lands suitable for continuous cropping (Land Classes I through IV). The lands most likely to be converted are the forest lands, except for unusual cases where diminishing future needs for some types of open land will permit shifts from those lands. In WRPA's 2 and 3, for example, predicted needs for permanent pasture will decrease 379,000 and 428,000 acres, respectively, between now and 1980, thereby allowing a major shift from pastureland to cropland. Lesser shifts of the same sort will be possible in WRPA's 5, 6, and 8 in 1980. Beyond 1980, however, needs for pastureland will continually increase throughout the region and there will be no pastureland readily available for conversion to cropland (assuming that pastureland needs will be met).

Of further significance in the cropland allocation is the anomaly that cropland use in WRPA 6 cannot reasonably be increased after 1980 due to physical, economical, and environmental constraints associated with forest land conversion. This means that there will be a cropland deficit in WRPA 6 beginning in 1980. But this deficit disappears when WRPA's 5 and 6 are viewed as a single planning entity, allowing a combined allocation to cropland equaling the combined need. Cropland deficits in WRPA 4 can be similarly offset by using the available land resources in WRPA 7. Hence, the cropland allocation for the National Income Program is such that all WRPA needs for all time frames can be satisfied.

The multiple-use of lands allocated to crop production will be required throughout the study period, not only to satisfy food and fiber needs, but also to satisfy needs for wildlife oriented recreation. In WRPA's 8 and 10 the multi-needs for cropland will outgrow the cropland resource before the year 1980. This does not mean that there will be a cropland shortage in those areas. It does mean, however, that wildlife

oriented recreation needs for cropland in Louisiana will have to be satisfied on a State-wide basis, with resources west of the Mississippi River (in WRPA's 5, 6, and 9) contributing to the satisfaction of needs that arise in the southeastern part of the State.

Pastureland. Pastured cropland, permanent pasture, and pastured forest should collectively increase 51 percent over the study period with most WRPA's following the regional trend. This takes into account the atypical short-term decrease in permanent pasture in some WRPA's. The future need for pastured forest (table 44, page 104) can be satisfied on a regional basis on lands allocated to satisfaction of forest products needs. The forest resource has the capability to provide required livestock reoughage throughout the period of study but, as with cropland, it will be necessary to intensify forest pasturage in certain WRPA's to offset pasture deficits which will surface in WRPA's 4 and 7 in the late 1900's and continue thereafter. WRPA 3 forest resources can satisfy the initial deficit in WRPA 4; however, to satisfy the 2020 need will require a shift to WRPA's 1, 2, and 6. Similarly, WRPA 8 can satisfy the initial deficit in WRPA 7, but satisfaction of the 2020 need will require shifts to WRPA's 1 and 5 as well as additional shifts to WRPA 8. On a regional basis, the pasturage of about 1 out of every 3 acres of forest land will be required to satisfy needs in the year 2020. No special action is planned to insure either the continued pasturage of forest lands or the above described shifts in pastured forest. The shifts are reflected, however, in the land allocations given in table 96.

Also reflected in table 96 is the multiple-use of pasturelands for satisfying recreation and wildlife needs. Such use will apply to about one-fourth of the region's combined permanent pasture and pastured cropland in the year 2020, with the heaviest pressure on the resources being exerted in southeastern Louisiana in WRPA 10. There, intrastate rather than intra-WRPA resource use will be required for needs satisfaction on multiple-use pasturelands. In other WRPA's, this problem is not expected to arise because multiple-use requirements for pasture in the year 2020 generally amount to less than 30 percent of the WRPA pastureland allocations and range downward to as low as 2 percent in WRPA 7.

Other Land. Regionwide, "other" lands will decline only 1 percent between 1970 and 2020. Individual WRPA's, however, exhibit wide fluctuations - from minus 60 percent to plus 77 percent. The increases will occur only in WRPA's 3, 5, and 6. Within the other lands in all WRPA's are multiple-use acreages allocated to the satisfaction of needs for commercial fisheries and minerals production. Also included in some WRPA's are wetlands that contribute to needs satisfaction for fish and wildlife. Further included are beaches and shores, botanical systems, and geological systems that contribute to the environmental quality of the region. The multiple-use acreages are identified in table 96.

Forest land. Allocated forest acreages will decline by 10.4 million acres due to the allocation of lands to satisfy high priority needs. All

WRPA's will contribute to the regional loss. In WRPA 4 the forest land acreage in 2020 will be composed of the now existing public forests, stands of bottom-land hardwoods that cannot be cleared because of economic restraints, ownership arrangements, or other reasons, and certain tracts of other forests (upland hardwood, pine-hardwood, pine, etc.) covering lands that cannot reasonably be converted to cropland or other primary uses due to underlying soil properties or other limiting factors. The same type of condition will exist in WRPA 6 within the next decade.

The allocated 19.2 million acres of forest in the region in the year 2020 will occupy about 1 out of every 3 acres of the region's land and will equal 89 percent of the forest land needed at that time in the food and fiber account. Deficits will occur in six WRPA's. These deficits will average 634,000 acres per WRPA and will range from a minimum of 175,000 acres in WRPA 3 to a maximum of 1.9 million acres in WRPA 5. The planning areas with adequate forest land to satisfy their own future needs are WRPA's 1, 2, 9, and 10.

While recognizing the potential of forest resources in WRPA's 2, 9, and 10 to allay to some extent the regional deficit depicted for the year 2020, it should also be recognized that the deficit may, in fact, be overstated or imaginary. This is because the land allocation shown in table 94 does not fully reflect the impact of future water resources developments in the region. Such developments, including flood control and drainage projects, will help provide for satisfaction of the region's agricultural production requirements on less than the allocated acreage, thereby allowing the allocation of more acreage to forest. This matter is discussed in more detail in a later section of the appendix.

Another matter of importance in the forest-land allocation centers around the need for multiple-use of wooded areas to satisfy not only the requirements for timber products but also the requirements for recreation, fish and wildlife habitat, and environmental quality. Recreational use of the forest land is expected to increase from 109,000 acres in 1980 to 227,000 acres in the year 2020. Primary use of the forests for fish and wildlife purposes is likewise expected to increase. In 1970 approximately 2 million acres of forest were used primarily for fish and wildlife. The allocated primary-use acreage for this purpose in the year 2020 amounts to 3.4 million acres, with the remaining 15.8 million acres to serve fish and wildlife purposes on an ancillary basis. In terms of environmental quality, the regional allocation of forest land will permit the satisfaction of needs for approximately 9 million acres of land having unique botanical, ecological, geological, or other significant environmental features.

Commercial Fisheries Land and Mineral Land. As mentioned before, lands for commercial fisheries and minerals production are multiple-use with other land uses; as such, they were identified but not treated separately in the land allocation. Needs for commercial fisheries lands are expected to be satisfied through the use of the allocated open lands,

such as cropland and pastures. Likewise, it is expected that mineral needs will be satisfied through the use of lands allocated to urban and built-up, cropland, pasture, forest, and "other" lands, following the premise that minerals are where you find them and their extraction often does not displace other uses, as in the case of oil wells located in areas used primarily for permanent pasture. Some types of minerals extraction such as sand and gravel operations do materially detract from other uses of the land, but by and large the acreages required for all types of mineral extraction and for commercial fisheries are relatively insignificant when considered in light of the region's total land resource. More specifically, such acreages in the year 2020 will amount to only 347,000 acres, or about one-half of 1 percent of the regional land.

Recreation Land. Of the total of 498,000 acres of land allocated to recreation use in the year 2020, only 146,000 are viewed as being used primarily for recreation purposes. These are the Class A lands located in urban areas. They will serve environmental quality purposes as well as recreation purposes. The remaining 352,000 acres of land allocated to recreation purposes consist of the Class B and Class C lands. Class B lands in the allocation are equally divided between open lands and forested areas, and Class C lands are located entirely in forested areas.

Fish and Wildlife Land. To meet future needs for wildlife oriented recreation will require that multiple-use of the region's open lands (cropland, pasture, etc.) be increased from 4.4 million acres in 1980 to 6.9 million acres in the year 2020. Similarly, the satisfaction of needs for waterfowl habitat and hunting in the year 2020 will require the increasing multiple-use of wetlands, with 2.3 million acres being used in the year 2020. In the case of big game and upland game hunting and habitat requirements, the multiple-use of all the region's forests will be required by 1980. During the 1970's, about one-half million acres of forests will be added to the acreage used primarily for fish and wildlife. Nearly an additional million acres will be added by the year 2020.

Environmental Quality Land. Lands viewed as significant from an environmental quality standpoint comprise 12.4 million acres, or 20 percent of the total land area of the region. All but 960,000 acres of these lands are located in forested areas, consisting of 10.9 million acres of bottom-land hardwood forests and 594,000 acres of other forest types. The nonforested areas include significant geological features associated with 158,000 acres of pastureland and 3,000 acres of other open land. They also include 500,000 acres of botanical systems, 176,000 acres of beaches and shores, 122,000 acres or urban open and green space, and 1,000 acres of significant ecological systems.

While most of these lands will remain available for the enjoyment of future generations throughout the study period, positive measures

will be required to protect certain areas. Such measures (see table 97) are an integral part of the National Income Program.

Land Covered by Water. Regionwide, large water acreage (lakes in excess of 40 acres in size) will increase roughly 58 percent, while small water acreage (lakes 2 acres to 40 acres in size) will increase an undetermined amount during the study period. The large water acreages are appropriately deducted from the land-resource base prior to allocation for forest requirements because of the capability of these water areas to satisfy a multiplicity of uses such as recreation, fish and wildlife, flood control, land treatment, sediment and erosion control, irrigation, navigation, and aesthetics. Future additions to small water areas will be mostly in the form of farm ponds constructed in pastureland areas. Such additions will require insignificant amounts of land relative to other uses, and have not been explicitly identified in the land allocation.

Land Use Measures. As stated at the outset of this discussion, Program A measures for future land use are limited to those necessary to insure the availability of land for recreation, fish and wildlife, and environmental quality purposes. A summary of the measures is given in table 97.

Effectiveness of Land Use Plan. The use of the land resources as summarized earlier in table 96 will provide for the regional satisfaction of all needs for urban and built-up space and for food and fiber production through the year 1980. At the same time, it will provide for the satisfaction of all needs for recreation and fish and wildlife, and all needs for environmental quality purposes, except for a minor portion of bottom-land hardwood forests that are specified as needs under the environmental quality objective. Beyond 1980, however, the allocation of lands to completely satisfy high priority needs for food and fiber production and related activities on open lands, will cause a widening disparity between forest availability and forest needs.

In the case of forest lands specified as needed for fish and wild-life purposes, all needs for wildlife management areas, etc., can be met throughout the study period. However, the post-1980 disparity between total forest resource needs and availability will reach 14.8 million acres by the year 2020. To completely satisfy the expressed fish and wildlife needs for forest land, even with intensive management of all woodlands, would require not only the preservation of every forested acre now existing in the region, but also the conversion to forest land of an additional 4.4 million acres of land needed for food and fiber production or other high priority purposes.

Expressed needs for forest lands to meet food and fiber production requirements exceed the allocated acreage by 1.4 million acres in year 2000, and 2.4 million acres in the year 2020. However, these apparent deficits should be offset by the beneficial impacts of future water

Table 97 - Progrum A, Mensures Used to Meet Land Area Needs, Lower Mississippi Region

Water Resources		Time Frame and Incremental Program Measures	
Planning Area and Need Category	1970-1980	1980-20007	/ <u>fozoz-oooz</u>
ARPA 2 Recreation Class A2 Class B3 Class C4	Acquire, develop and maintain 1,000 acres. Acquire, develop and maintain 1,000 acres. None	Acquire, develop and maintain 1,300 acres. None. Acquire, provide access, and maintain 100 acres.	Acquire, develop and maintain 3,700 acres. Acquire, develop and maintain 5,700 acres. Acquire, provide access, and maintain 200 acres.
Fish and Wildlife	Purchase and maintain 64,000 acres; acquire easements and maintain $40,000$ acres.	Purchase and maintain 63,600 acres.	Purchase and maintain 90,700 acres.
Environmental Quality	Purchase and maintain 1,000 acres of pasture, purchase and maintain 2,000 acres of forest, and regulate land use on 4,000 acres of forest to preserve ecological systems.	Maintain 1970-1980 measures.	Maintain 1980-2000 measures.
HRPA 3 Recreation Class A2/ Class B2/ Class Ct/	Provide access, develop and maintain 7,600 acres; acquire, develop and maintain 3,300 acres. Provide access, develop and maintain 16,300 acres; acquire, develop and maintain 1,600 acres. Provide access and maintain 1,000 acres.	Provide access, develop and maintain 6,800 acres; acquire, develop and maintain 2,900 acres. Provide access, develop and maintain 15,900 acres; acquire, develop and maintain 1,800 acres. Provide access and maintain 700 acres.	Provide access, develop and maintain 10,900 acres; acquire, develop and maintain 4,600 acres provide access, develop and maintain 17,800 acres; acquire, develop and maintain 18,900 acres. Provide access and maintain 1,100 acres.
Fish and Wildlife	Purchase and maintain 57,200 acres.	Purchase and maintain 38,100 acres.	Purchase and maintain 54,300 acres.
Environmental quality	Purchase and maintain 20,200 acres of urban land.	Maintain 1970-1980 measures.	Maintain 1970-1980 measures.
WHEA 4 Recreation Class A2/ Class B3/ Class C4/	Provide access, develop and maintain 2,400 acres; acquire, develop and maintain 600 acres. Provide access, develop and maintain 5,400 acres; acquire, develop and maintain 900 acres.	Provide access, develop and maintain 1,300 acres; acquire, develop and maintain 300 acres. Provide access, develop and maintain 2,100 acres; acquire, develop and maintain 500 acres. Provide access and maintain 5,600 acres.	Provide access, develop and maintain 500 acres, acquire, develop and maintain 2,100 acres. Provide access, develop and maintain 5,400 acres, acquire, develop and maintain 600 acres. Provide access and maintain 15,400 acres.
Fish and Wildlife	Purchase and maintain 92,200 acres.	Purchase and maintain 43,000 acres.	Purchase and maintain 61,300 acres.
Environmental quality	Furchase and maintain 4,500 acres of urban land; purchase and maintain 4,000 acres of bottomiand hardwood forest to preserve ecological systems.	Maintain 1970-1980 measures.	Maintain 1970-1980 measures.

Table 97 . Program A, Measures Used to Meet Land Area Needs, Lower Mississippi Region (Cont'd)

Aster Resources		Time Frame and Incremental Program Measures	
Need Category	1970-1980	√±0005-006€1	/T0202-0002
Recreating Class A2 Class B3 Class b4 Class b4	Provide access, develop and maintain 2,500 acres; acquire, develop and maintain 1,000 acres. Provide access, develop and maintain 5,400 acres; acquire, develop and maintain 600 acres.	Provide access, develop and maintain 2,100 acres; acquire, develop and maintain 900 acres. Provide access, develop and maintain 4,500 acres; acquire, develop and maintain 500 acres. Provide access and maintain 7,700 acres.	Provide access, develop and maintain 3,000 acres; acquire, develop and maintain 1,400 acres. Frovide access, develop and maintain 5,600 acres, acquire, develop and maintain 1,000 acres. Provide access and maintain 15,400 acres.
Fish and Wildlife	Purchase and maintain 103,500 acres.	Purchase and maintain 60,400 acres.	Purchase and maintain 86,200 acres
Environmental quality	Purchase and maintain 6,900 acres of urban land; purchase and maintain 5,000 acres of bottomland hardwood forest to preserve ecological systems.	Maintain 1970-1980 measures.	Maintain 1970-1980 measures.
Hereution Class A2	Provide access, develop and maintain 1,100 acres;	Provide access, develop and maintain 400 acres; ac-	Provide access, develop and maintain 700 acres.
Class B3/	acquire, develop and maintain 100 acres. Provide access, develop and maintain 2,100 acres; acquire, develop and maintain 200 acres. Acquire, provide access and maintain 200 acres.	quire, develop and maintain 100 acres. Frowide access, develop and maintain 800 acres. None.	Provide access, develop and maintain 1,100 acres; acquire, develop and maintain 200 acres.
Fish and Wildlife	Purchase and maintain 25,000 acres.	Furchase and maintain 11,700 acres.	Purchase and maintain 16,700 acres.
Environmental quality	Purchase and maintain 500 acres of urban land; purchase and maintain 100 acres to preserve botanical system.	Maintain 1970-1940 measures.	Maintain 1970-1980 measures.
HAPA T Recreetlong Class A 2 Class B 3 Class Class Class C 4 Class	Provide access, develop and maintain 1,100 acres; acquire, develop and maintain 100 acres. Provide access, develop and maintain 1,500 acres; acquire, develop and maintain 200 acres.	Provide access, develop and maintain 600 scres. Provide access, develop and maintain 1,100 scres; acquire, develop and maintain 100 acres. Provide access and maintain 100 acres.	Provide access, develop and maintain 1,000 acres; acquire, develop and maintain 100 acres. Provide access, develop and maintain 200 acres acquire, develop and maintain 200 acres. Provide access and maintain 200 acres.
Fish and Wildlife	Purchase and maintain 30,000 acres.	Purchase and maintain 17,400 acres.	Purchase and maintain 24,700 acres.
Environmental quality	Purchase and maintain 10,000 acres of bottomiand hardwood forest to preserve ecological systems.	Maintain 1970-1980 measures.	Maintain 1970-1980 mensures.

Table 97 - Program A, Meusures Used to Meet Land Area Needs, Lower Mississippi Region (Cont'd)

Water Resources		Time frame and incremental frogram measures	
Meed Category	1970-1980	1980-20004/	2000-20207
ARPA 8 Recreation Class A2	Develop and maintain 100 acres; provide access, develop and maintain 2,400 acres; acquire, develop	Acquire, develop and maintain 3,600 acres.	Acquire, develop and maintain 5,700 acres.
Class B3/	and maintain 3,000 acres. Provide access, develop and maintain 5,700 acres;	Acquire, develop and maintain 6,200 acres.	Acquire, develop and maintain 9,700 acres.
Class &	acquire, develop and maintain 3,000 acres. Acquire, provide access and maintain 500 acres.	Acquire, provide access and maintain 300 acres.	Acquire, provide access and maintain 400 acres.
Fish and Wildlife	Purchase and maintain 14,000 acres.	Purchase and maintain 3,200 acres.	Purchase and maintain 4,500 acres.
Environmental Quality	Purchase and maintain 6,000 acres of urban land; purchase and maintain 100 acres, and provide land-owner subsidy on 1,800 acres to preserve botanical systems.	Maintain 1970-1980 measures.	Maintain 1970-1980 measures.
WRPA 2 Recreation Class A2/	Develop and maintain 200 acres; provide access, develop and maintain 1,300 acres; acquire, develop	Acquire, develop and maintain 3,100 scres.	Acquire, develop and maintain 4,500 acres.
Class B3/	and maintain 4,700 acres. Provide access, develop and maintain 10,800 acres;	Acquire, develop and maintain 5,400 acres.	Acquire, develop and maintain 7,700 acres.
Class Ct	acquire, develop and maintain AOO acres. Provide access and maintain 400 acres.	Provide access and maintain 300 acres.	Provide access and maintain 200 acres.
Fish and Wildlife	Purchase and maintain 27,000 acres.	Purchase and maintain 119,700 acres.	Purchase and maintain 170,600 acres.
Environmental quality	Purchase and maintain $4,500$ acres of urban land; acquire essement on $5,000$ acres of bottomland hardwood forest to preserve vetlands.	Maintain 1970-1980 measures.	Maintain 1970-1980 measures.
Regreation			
Class A2	Develop and maintain 100 acres; provide access, develop and maintain 2,000 acres; acquire, develop	Acquire, develop and maintain 8,600 acres.	Acquire, develop and maintain 15,300 acres.
Class B3/	Provide access, develop and maintain 6,300 acres;	Acquire, develop and maintain 14,700 acres.	Acquire, develop and maintain 22,800 acres.
Class ch/	additive, person, and maintain 10,00 acres; acquire, provide access and maintain 100 acres; acquire, provide access and maintain 1,100 acres.	Acquire, provide access and maintain 600 acres.	Acquire, provide access and maintain 900 acres.
Fish and Wildlife	Purchase and maintain 11,000 acres.	Purchase and maintain 32,800 acres.	Purchase and maintain 46,700 acres.
Environmental quality	Purchase and maintain 16,600 acres of urban land; purchase and maintain 1,000 acres of bottomland hardwood forest to preserve botanical systems.	Maintain 1970-1980 measures.	Maintain 1970-1980 measures.

Where not specified, measures in addition to those listed include operation and maintenance of facilities developed in previous time frames.
 Urban land.
 Divided equally between open land and forest land.
 Porest land.

resources developments, as discussed on page 411. It is estimated that such development would reduce needs for the allocated open lands (table 96) by 1.5 and 2.5 million acres in the years 2000 and 2020, respectively. Reallocation of these acreages to forest land would, in turn, provide for complete satisfaction of food and fiber needs throughout the study period. Table 98 gives a WRPA breakdown of the land needs that can be satisfied within the land use allocation.

Fruition of the National Income Program is in many ways contingent upon efficient management of the region's land resources. Even with an active educational program, and changes in present institutional arrangements, farmers are not likely to change management practices to allow short-term attainment of required crop production on the allocated acreages. However, irrigation as an intensified management practice (not included in the cropland budgeting model), as discussed in the water withdrawal plan, will tend to partly offset this and other inefficiencies. Additionally, flood control and drainage programs will help to increase agricultural production by reducing flood losses, thereby further balancing the time lag in realization of the sought for cropping pattern. Adjustments in the land use plan which stem from further development for flood control and related measures are displayed and discussed in a later section dealing with program impacts (pages 406 to 412). Allocations in some land-use categories other than cropland were based on needs adjusted to reflect near optimum land management levels for comparability with the cropland model assumptions. Indeed, efficient management of all agricultural land (including forest land) is essential if required production levels are to be reached.

Recreation Plan

The National Income plan for recreation provides for satisfaction of future needs for both water and land areas. The plan is summarized in table 99. It includes measures which provide maximum site development of existing areas as well as acquisition of additional areas. The plan provides for: (1) maximum utilization of the region's existing 1.9 million acres of water areas in accessible locations and otherwise suitable for use by recreationists; (2) recreation use of about 257,000 acres of water surface that will be created primarily for flood control, power, water supply, or some other purpose; (3) more intensive use of 190,900 acres of the region's lands either by provision of facilities or access and facilities; (4) acquisition and development of 206,300 acres of land expressly for recreation development; and (5) creation of 766,000 acres of new water surface expressly for recreational purposes.

The National Income recreation plan has the capability of satisfying needs as demonstrated in table 100. Where less than 100 percent of the recreation needs are met within the plan, there are physical constraints imposed by the limited potential for developing lakes larger than 500 acres in size. These physical constraints could not be overcome.

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region

Water Resources Planning Area and	Percent	of Need Sat	isfied1/
Need Category	1980	2000	2020
IRPA 1			
Open Land			
Transportation,			
Urban and Built-up			-
Food and Fiber			
Cropland	100	100	100
Pastured Cropland	100	100	100
Permanent Pasture	100	100	100
Other	100	100	100
Commercial Fisheries	- 1	-	-
Minerals	-	-	-
Recreation			
Class A	Series 2 2 2 4 4	-	-
Class B	- 1	2	-
Fish and Wildlife			
(Cropland)	_	-	-
(Pastureland)		2	_
(Wetlands)	1775 - 28	-	_
Environmental Quality	-	-	
Forest Land			
Food and Fiber			
Forest Products, et al.	100	100	1002/
Animal Roughage (pasture)	100	100	2734
Recreation			
Class B		-	-
Class C	-	-	-
Fish and Wildlife	100	100	100
Environmental Quality			
Bottomland Hardwood Areas	100	100	100
Lake Shores	100	100	100
Land Covered by Water			
Large Water Areas	100	100	100
Small Water Areas			

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources	D	a C Na= 1 C +	: a C: a 1
Planning Area and	-	of Need Sat	
Need Category	1980	2000	2020
WRPA 2			
Open Land			
Transportation,			
Urban and Built-up	100	100	100
Food and Fiber			
Cropland	100	100	100
Pastured Cropland	100	100	100
Permanent Pasture	100	100	1-0
Other	100	100	100
Commercial Fisheries	100	100	100
Minerals	100	100	100
Recreation,			
Class A	100	100	100
Class B ³ /	100	100	100
Fish and Wildlife			
(Cropland)	100	100	100
(Pastureland)	100	100	100
(Wetlands) 4/	69	63	53
Environmental Quality 3/			
Open and Green Space 3/	100	100	100
Ecological Systems 3/	100	100	100
Geological Systems	100	100	100
Forest Land			
Food and Fiber			
Forest Products, et al.	96	115	124
Animal Roughage (pasture)	100	100	167
Recreation,			
Class B ³ / ₇	100	100	100
Class C ^{3/}	100	100	100
Fish and Wildlife			
Total Woodland Habitatz/	84	61	45
Management Areas, etc.	100	100	100
Environmental Quality			
Bottomland Hardwood, Areas	61	47	39
Ecological Systems	100	100	100
	100	100	100
Geological Systems Lake Shores	100	100	100
Scenic River Banks 3/	100	100	100
Wilderness Areas	100	100	100
Land Covered by Water			
Large Water Areas	100	92	80
Small Water Areas	100	100	100

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Planning Area and Need Category WRPA 3 Open Land Transportation, Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)	Percent 1980	of Need Satis	<u>2020</u>
Open Land Transportation, Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)	1980	2000	2020
Open Land Transportation, Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)			
Transportation, Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)			
Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)			
Food and Fiber Cropland Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)			
Cropland Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)	100	100	100
Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)			
Permanent Pasture Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)	100	100	100
Other Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)	100	100	100
Commercial Fisheries Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)	100	100	100
Minerals Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)	100	100	100
Recreation Class A3/ Class B3/ Fish and Wildlife (Cropland)	100	100	100
Class A <u>3</u> / Class B <u>3</u> / Fish and Wildlife (Cropland)	100	100	100
Class B 3 / Fish and Wildlife (Cropland)			
Fish and \overline{W} ildlife (Cropland)	100	100	100
(Cropland)	100	100	100
	100	100	100
(Pastureland)	100	100	100
(Wetlands)4/	12	9	7
EnvironmentaT Quality3/	100	100	100
Forest Land			
Food and Fiber			
Forest Products, et al.	119	105	83
Animal Roughage (pasture)	100	180	100
Recreation			
Class B3/	100	100	100
Class $\overline{C3}$ /	100	100	100
Fish and \overline{W} ildlife			
Total Woodland Habitat	45	24	10
Management Areas, etc.	100	100	100
Environmental Quality			
Bottomland Hardwood Areas	88	63	56
Lake Shores3/	100	100	100
Scenic River Banks3/	100	100	100
Wetlands	100	100	100
Land Covered by Water			
Large Water Areas 3/	100	20	81
Small Water Areas		99	0.1

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources			
Planning Area and	Percen	t of Need Sati	sfied
Need Category	1980	2000	2020
WRPA 4			
Open Land			
Transportation,			
Urban and Built-up	100	100	100
Food and Fiber			1.1
Cropland	100	100	994/
Pastured Cropland	100	764/	654/
Permanent Pasture	100	734/	654/
Other	100	100	100
Commercial Fisheries	100	100	100
Minerals	100	100	100
Recreation,			
Class A ³ /	100	100	100
Class B3/	100	100	100
Fish and Wildlife			
(Cropland)	100	100	100
(Pastureland)	100	100	100
(Wetlands) 4/	65	58	49
Environmental Quality3/	100	100	100
Forest Land			
Food and Fiber			
Forest Products, et al.	76	72	87
Animal Roughage (Pasture)	100	68	56
Recreation,			
Class B3/	100	100	100
Class $C_3^{3/}$	100	100	100
Fish and Wildlife			
Total Woodland Habitat_,	86	58	45
Management Areas, etc.3/	100	100	100
Environmental Quality			
Bottomland Hardwood Areas	82	82	82
Ecological Systems <u>3</u> /	100	100	100
Lake Shores	100	100	100
Wilderness Areas	100	100	100
Land Covered by Water			
Large Water Areas3/	100	100	87
Small Water Areas	100	100	100

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources			
Planning Area and		t of Need Sat	isfied
Need Category	1980	2000	2020
WRPA 5			
Open Land			
Transportation,			
Urban and Built-up	100	100	100
Food and Fiber			
Cropland ² /	124	151	196
Pastured Cropland3/	111	112	113
Permanent Pasture Other ² /	100	1022/	1052/
	130	137	158
Commercial Fisheries	100	100	100
Minerals	100	100	100
Recreation Class A ⁵ /	100	100	100
Class B3/	100	100	100
Fish and Wildlife	100	100	100
(Cropland)	100	100	100
(Pastureland)	100	100	100
Environmental Quality3/	100	100	100
Forest Land			
Food and Fiber			
Forest Products, et al.	98	98	82
Animal Roughage (Pasture)	100	100	133
Recreation,			
Class B ₃ /	100	100	100
Class C3/	100	100	100
Fish and Wildlife			
Total Woodland Habitat	353	291	224
Management Areas, etc.3/	100	100	100
Wetlands3/	267	305	272
Environmental Quality	0.6	0.7	20
Bottomland Hardwood Areas	96	93	88
Ecological Systems 2/	100	100	100
Geological Systems	100	100	100
Lake Shores 3/	100	100	100
Scenic River Banks 3/	100	100	100
Wilderness Areas <u>3</u> /	100	100	100
Land Covered by Water			
Large Water Areas	100	100	100
Small Water Areas	100	100	200

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Planning Area and Need Category Percent of Need Satisfied 1980 2000 2020 2020	Water Resources	Dangen	t of Nood Coti	cfiel
Open Land				
Open Land Transportation, Urban and Built-up 100 100 100 Food and Fiber Cropland4/ 94 88 79 Cropland4/ 69 66 65 Permanent Pasture 100 964/ 914 Other4/ 37 34 30 Commercial Fisheries 100 100 100 Minerals 100 100 100 Recreation 100 100 100 Class A3/ 100 100 100 Class B3/ 100 100 100 Fish and Wildlife 100 100 100 Environmental Quality 0pen and Green Space3/ 100 100 100 Botanical Systems3/ 100 100 100 100 Forest Land Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 100 Recreation 100 100 100 Class B3/	Need Category	1980	2000	2020
Transportation, Urban and Built-up Food and Fiber Cropland4/ 94 88 79 Pastured Cropland4/ 69 66 65 Permanent Pasture 100 964/ 914 Other4/ 37 34 30 Commercial Fisheries 100 100 100 Minerals 100 100 100 Recreation Class A5/ 100 100 100 100 Class B3/ 100 100 100 100 Fish and Wildlife (Cropland) 100 100 100 Environmental Quality Open and Green Space3/ 100 100 100 Botanical Systems3/ 100 100 100 Forest Land Food and Fiber Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 100 Recreation Class B2/ 100 100 100 100 Fish and Wildlife Total Woodland Habitat Management Areas, etc.3/ 100 100 100 Fish and Wildlife Total Woodland Habitat Management Areas, etc.3/ 100 100 100 Wetlands3/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas	WRPA 6			
Urban and Built-up Food and Fiber Cropland4/ Pastured Cropland4/ Pastured Cropland4/ Other1/ Other1/ Other2/ Other3/ Commercial Fisheries 100 Minerals 100 Recreation Class A5/ Cropland) Cropland1 Cropland1 Incolumnts Inc				
Food and Fiber Croplandd 94 88 79 Pastured Croplandd 96 66 63 Permanent Pasture 100 96d 914 Otherd 37 34 30 Commercial Fisheries 100 100 100 100 Minerals 100 100 100 100 Recreation Class A3/ 100 100 100 100 Class B5/ 100 100 100 100 Environmental Quality Open and Green Space 3/ 100 100 100 Botanical Systems 3/ 100 100 100 Forest Land Food and Fiber Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 100 Recreation Class B3/ 100 100 100 100 Fish and Wildlife Total Woodland Habitat 112 110 99 Management Areas, etc. 3/ 100 100 100 Wetlands 9/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 100 93				
Cropland 4/		100	100	100
Pastured Cropland ^{4/} 69 66 63 Permanent Pasture 100 964/ 914 Other ^{4/} 37 34 30 Commercial Fisheries 100 100 100 Minerals 100 100 100 100 Recreation Class A ^{3/} 100 100 100 100 Class B ^{3/} 100 100 100 100 Fish and Wildlife (Cropland) 100 100 100 100 Environmental Quality Open and Green Space ^{3/} 100 100 100 100 Botanical Systems ^{3/} 100 100 100 100 Forest Land Food and Fiber Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 169 Recreation Class B ^{3/} 100 100 100 169 Recreation Class B ^{3/} 100 100 100 100 Fish and Wildlife Total Woodland Habitat Total Woodland Habitat Total Woodland Habitat Total Woodland Habitat Selection Management Areas, etc. 3/ 100 100 100 Wetlands ^{3/} 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas		2.4	0.0	-
Permanent Pasture 0ther 100 964/ 914 0ther 1/57 34 30 Commercial Fisheries 100 100 100 100 Minerals 100 100 100 100 100 Recreation 100 100 100 100 100 100 100 100 100 10	Cropland*/			
Other 4/	Pastured Cropland4/		66	
Commercial Fisheries	Permanent Pasture			
Minerals Recreation Class A ³ / Class B ³ / Fish and Wildlife (Cropland) (Pastureland) Environmental Quality Open and Green Space 3/ Animal Roughage (Pasture) Class B ³ / Total Woodland Habitat Total Woodland Habitat Total Woodland Habitat Management Areas, etc. 3/ Environmental Quality Oliminal Roughage (Pasture) Total Covered by Water Large Water Areas 100 100 100 100 100 100 100 1				
Recreation Class A3 /				
Class A3/ Class B3/ Class B3/ Cropland) Environmental Quality Open and Green Space 3/ Animal Roughage (Pasture) Class B3/ Class B3/ Animal Roughage (Pasture) Class B3/ Class C3/ Fish and Wildlife Total Woodland Habitat Total Woodland Habitat Management Areas, etc. 3/ Environmental Quality Class C3/ Environmental Quality Bottomland Hardwood Areas Too 100 100 100 100 100 100 100 10		100	100	100
Class B3/ 100 100 100 100 Fish and Wildlife (Cropland) 100 100 100 100 (Pastureland) 100 100 100 100 Environmental Quality Open and Green Space3/ 100 100 100 100 100 100 100 100 100 10				
Fish and Wildlife (Cropland) 100 100 100 (Pastureland) 100 100 100 Environmental Quality Open and Green Space 3/ 100 100 100 Botanical Systems 3/ 100 100 100 Forest Land Food and Fiber Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 169 Recreation Class B3/ 100 100 100 100 Class C3/ 100 100 100 100 Fish and Wildlife Total Woodland Habitat 112 110 99 Management Areas, etc. 3/ 100 100 100 Wetlands 3/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas				
(Cropland) 100 100 100 100 (Pastureland) 100 100 100 100 Environmental Quality 100 100 100 100 Botanical Systems 3/ 100 100 100 100 Forest Land 65 72 72 72 Animal Roughage (Pasture) 100 100 169 Recreation 100 100 100 100 Class B3/ 100 100 100 100 Fish and Wildlife 112 110 99 Management Areas, etc.3/ 100 100 100 Wetlands3/ 202 202 185 Environmental Quality 81 81 81 Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 100	The state of the s	100	100	100
(Pastureland) 100 100 100 Environmental Quality 100 100 100 Open and Green Space3/ 100 100 100 Botanical Systems3/ 100 100 100 Forest Land 65 72 72 Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 169 Recreation 100 100 100 Class B3/ 100 100 100 Class C3/ 100 100 100 Fish and Wildlife 112 110 99 Management Areas, etc.3/ 100 100 100 Wetlands3/ 202 202 185 Environmental Quality 81 81 81 Bottomland Hardwood Areas 81 81 81 Land Covered by Water 100 100 100 93				
Environmental Quality Open and Green Space 3/ Botanical Systems 3/ Forest Land Food and Fiber Forest Products, et al. Animal Roughage (Pasture) Class B 3/ Class C 3/ Bish and Wildlife Total Woodland Habitat Management Areas, etc. 3/ Environmental Quality Bottomland Hardwood Areas Land Covered by Water Large Water Areas 100 100 100 100 100 100 100 1				
Open and Green Space 3/Botanical Systems 3/		100	100	100
Botanical Systems 100 100 100 100				
Forest Land Food and Fiber Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 169 Recreation Class B ² / ₂ 100 100 100 Class C ³ / ₂ 100 100 100 Fish and Wildlife Total Woodland Habitat Management Areas, etc. 3/ 100 100 100 Wetlands 3/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93				
Food and Fiber Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 169 Recreation Class B ² / ₂ 100 100 100 Class C ² / ₂ 100 100 100 Fish and Wildlife Total Woodland Habitat Management Areas, etc. 3/ 100 100 100 Wetlands 3/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93	Botanical Systems <u>3</u> /	100	100	100
Forest Products, et al. 65 72 72 Animal Roughage (Pasture) 100 100 169 Recreation Class B ² / ₂ 100 100 100 Class C ² / ₂ 100 100 100 Fish and Wildlife Total Woodland Habitat 112 110 99 Management Areas, etc. 3/ 100 100 100 Wetlands 2/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93				
Animal Roughage (Pasture) 100 100 169 Recreation Class B ³ / Class C ³ / 100 100 100 Fish and Wildlife Total Woodland Habitat Management Areas, etc. 3/ Wetlands 3/ Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93				7.2
Recreation Class B ³ / Class C ³ / 100 100 100 100 Fish and Wildlife Total Woodland Habitat Management Areas, etc. 3/ Environmental Quality Bottomland Hardwood Areas Land Covered by Water Large Water Areas 100 100 100 100 100 100 100 100 100 1		7.5		
Class B ³ / _{Class C³/₂ 100 100 100 100 Class C³/₂ 100 100 100 100 Fish and Wildlife Total Woodland Habitat 112 110 99 Management Areas, etc. 3/ 100 100 100 100 Wetlands 3/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 81 Land Covered by Water Large Water Areas 100 100 93}		100	100	169
Class C3/ 100 100 100 Fish and Wildlife Total Woodland Habitat 112 110 99 Management Areas, etc.3/ 100 100 100 Wetlands3/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93		100	100	100
Fish and Wildlife Total Woodland Habitat Management Areas, etc. 3/ 100 100 100 Wetlands 3/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93				
Total Woodland Habitat 112 110 99 Management Areas, etc.3/ 100 100 100 Wetlands3/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93		100	100	100
Management Areas, etc.3/ 100 100 100 Wetlands3/ 202 202 185 Environmental Quality 81 81 81 Bottomland Hardwood Areas 81 81 81 Land Covered by Water 100 100 93		110	110	00
Wetlands 2/ 202 202 185 Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93	Total Woodland Habitat			
Environmental Quality Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93	Management Areas, etc.			
Bottomland Hardwood Areas 81 81 81 Land Covered by Water Large Water Areas 100 100 93		202	202	185
Land Covered by Water Large Water Areas 100 100 93		0.1	0.1	0.7
Large Water Areas 100 100 93	Bottomland Hardwood Areas	81	81	81
Small Water Areas 100 100 100			100	
	Small Water Areas	100	100	100

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

WRPA 7 Open Land Transportation, Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other	Percent of 980 100 100 100 100 100 100 100	100 100 1462/ 1492/ 100 100	100 163 ² / ₁₆₈ 2/ ₁₀₀ 100 100 100
WRPA 7 Open Land Transportation, Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other	100 100 100 100 100 100 100	100 100 1462/ 1492/ 100 100	100 1632/ 1682/ 1622/ 100 100
Open Land Transportation, Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other	100 100 100 100 100 100 100	100 1462/ 149 <u>2</u> / 100 100	1632/ 1682/ 1622/ 100 100
Transportation, Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other	100 100 100 100 100 100 100	100 1462/ 149 <u>2</u> / 100 100	1632/ 1682/ 1622/ 100 100
Urban and Built-up Food and Fiber Cropland Pastured Cropland Permanent Pasture Other	100 100 100 100 100 100 100	100 1462/ 149 <u>2</u> / 100 100	1632/ 1682/ 1622/ 100 100
Food and Fiber Cropland Pastured Cropland Permanent Pasture Other	100 100 100 100 100 100 100	100 1462/ 149 <u>2</u> / 100 100	1632/ 1682/ 1622/ 100 100
Cropland Pastured Cropland Permanent Pasture Other	100 100 100 100 100	146 <u>2</u> / 149 <u>2</u> / 100 100 100	$168\frac{Z}{1622}/$ 100 100
Pastured Cropland Permanent Pasture Other	100 100 100 100 100	146 <u>2</u> / 149 <u>2</u> / 100 100 100	$168\frac{Z}{1622}/$ 100 100
Permanent Pasture Other	100 100 100 100	149 <u>2</u> / 100 100 100	162 <u>2</u> / 100 100
Other	100 100 100	100 100 100	100 100
	100 100	100 100	100
Commercial Fisheries	100	100	
			1/1/1
	100	100	100
Recreation	100		100
- /	100	100	100
	100	100	100
Fish and Wildlife	100	100	100
	100	100	100
	100	100	100
Environmental Quality3/	100	100	100
Forest Land			
Food and Fiber			
Forest Products, et al.	121	75	50
	100	634/	374/
Recreation			
Class $B_{\frac{3}{2}}$	100	100	100
	100	100	100
Fish and Wildlife			
Total Woodland Habitat	441	228	123
Management Areas, etc.3/	100	100	100
	126	111	92
Environmental Quality			
Bottomland Hardwood Areas	93	81	81
Ecological Systems <u>3</u> /	100	100	100
	100	100	100
	100	100	100
	100	100	100
Wilderness Areas <u>3</u> /	100	100	100
Land Covered by Water			
	100	100	100
Small Water Areas	100	100	100

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources			
Planning Area and		of Need Sati	
Need Category	1980	2000	2020
WRPA 8			
Open Land			
Transportation,			
Urban and Built-up	100	100	100
Food and Fiber			
Cropland	100	100	100
Pastured Cropland	100	100	100
Permanent Pasture	100	100	100
Other	100	100	100
Commercial Fisheries	100	100	100
Minerals	100	100	100
Recreation	100	100	100
Class A	100	100	100
Class B	100	100	100
Fish and Wildlife	100	100	100
(Cropland)	100	100	100
(Pastureland)	100	100	129.
Environmental Quality	100	100	100
Open and Green Space 3/	100 100	100 100	100
Botanical Systems 5/	100	100	100 100
Geological Systems	100	100	100
Forest Land			
Food and Fiber			
Forest Products, et al.	97	94	84
Animal Roughage (Pasture)	100	182^{2}	176
Recreation			
Class B	100	100	100
Class C	100	100	100
Fish and Wildlife			
Total Woodland Habitat,	104	79	56
Management Areas, etc.3/	100	100	100
Wetlands	100	$103\frac{2}{}$	165
Environmental Quality			
Botanical Systems 5/	100	100	100
Bottomland Hardwood Areas	93	90	82
Geological Systems	100	100	100
Lake Shores 3/	100	100	100
Scenic River Banks $\frac{3}{}$	100	100	100
Land Covered by Water			
Large Water Areas	100	100	100
	100	100	100

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources			
Planning Area and		t of Need Sat	
Need Category	1980	2000	2020
RPA 9			
Open Land			
Transportation,			
Urban and Built-up	100	100	100
Food and Fiber			
Crop1and	100	100	100
Pastured Cropland	100	100	100
Permanent Pasture	100	100	100
Other	100	100	100
Commercial Fisheries	100	100	100
Minerals	100	100	100
Recreation.			
Class A3/	100	100	100
Class B3/	100	100	100
Fish and Wildlife	100	100	100
(Cropland)	100	100	100
(Pastureland)	100	100	100
(Wetlands)	100	100	100
Environmental Quality	140	100	100
Open and Green Space3/	100	100	100
	100	100	100
Beaches and Shores			
Botanical Systems	100 100	100	100
Geological Systems	100	100	100
Forest Land			
Food and Fiber	105	127	100
Forest Products, et al.	105 100	127 100	155 100
Animal Roughage (Pasture)	100	100	100
Recreation	100	100	100
Class B	10.0	100	100
Class C	100	100	100
Fish and Wildlife		67	40
Total Woodland Habitat	77	63	48
Management Areas, etc.	100	100	100
Environmental Quality	100	100	100
Botanical Systems	100	100	100
Bottomland Hardwood Areas	82	82	82
Geological Systems	100	100	100
Lake Shores 3/	100	100	100
Scenic River Banks3/	100	100	100
Wetlands ³ /	100	100	100
Wilderness Areas 3/	100	100	100
Land Covered by Water	100	100	100
Large Water Areas3/	100	100	100
Small Water Areas	100	100	100

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources			
Planning Area and		t of Need Sat	
Need Category	1980	2000	2020
WRPA 10			
Open Land			
Transportation,			
Urban and Built-up	100	100	100
Food and Fiber			
Cropland	100	100	100
Pastured Cropland	100	100	100
Permanent Pasture	100	100	100
Other	100	100	100
Commercial Fisheries	100	100	100
Minerals	100	100	100
Recreation,			
Class $A_{\frac{3}{2}}$	100	100	100
Class $B_{\underline{3}}$	100	100	100
Fish and Wildlife			
(Cropland)	100	100	100
(Pastureland)	100	100	88
(Wetlands)	100	100	116
Environmental Quality			
Open and Green Space3/	100	100	100
Beaches and Shores	100	100	100
Forest Land			
Food and Fiber			
Forest Products, et al.	162	213	228
Animal Roughage (Pasture)	100	100	100
Recreation			
Class $B_{\underline{3}}$	100	100	100
Class C <u>3</u> /	100	100	100
Fish and Wildlife			
Total Woodland Habitat,	25	19	13
Management Areas, etc.3/	100	100	100
Environmental Quality			
Botanical Systems3/	100	100	100
Bottomland Hardwood Areas	91	87	80
Lake Shores 3/	100	100	100
Scenic River Banks ³ /	100	100	100
Lands Covered by Water			
Large Water Areas3/	100	100	100

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

Water Resources	P	C. N 1 C	
Planning Area and		of Need Sat	
Need Category	1980	2000	2020
WRPA's 1 - 10			
Open Land			
Transportation,			
Urban and Built-up	100	100	100
Food and Fiber			
Cropland	100	100	100
Pastured Cropland	100	100	100
Permanent Pasture	100	100	100
Other	100	100	100
Commercial Fisheries	100	100	100
Minerals	100	100	100
Recreation,	100	100	100
Class A3/	100	100	100
Class B <u>5</u> /	100	100	100
Fish and Wildlife		100	100
(Cropland)	100	100	100
(Pastureland)	100	100	100
(Wetlands)	100	100	100
Environmental Quality 3/	100	100	100
Open and Green Space 5/	100	100	100
Beaches and Shores	100	100	100
Botanical Systems	100	100	100
Ecological Systems	100	100	100
Geological Systems	100	100	100
Forest Land			
Food and Fiber			
Forest Products, et al.	100	94	89
Animal Roughage (Pasture)	100	100	100
Recreation	* 0.0	100	
Class B	100	100	100
Class C	100	100	100
Fish and Wildlife	110	0.1	-,
Total Woodland Habitat	112	81	56
Management Areas, etc.	100	100	100
Wetlands	100	100	100
Environmental Quality	100	100	200
Botanical Systems	100	100	100
Bottomland Hardwood Areas	89	84	78
Ecological Systems	100	100	100
Geological Systems	100	100	100
Lake Shores	100	100	100
Scenic River Banks -	100	100	100
Wetlands	100	100	100
Wilderness Areas	100	100	100
Land Covered by Water	100	100	100
Large Water Areas	100 100	100 100	100 100
Small Water Areas	100	100	100

Table 98 - Effectiveness of Land Use Plan, Program A, Lower Mississippi Region (cont'd)

- $\underline{1}/$ Percentages based on ratio of land allocated (or available) to land
- Land Resources allocated in part to satisfy portion of needs in border-
- ing WRPA's.

 3/ Program measures required for all or part of needs satisfaction.

 4/ Remaining needs met on a regional basis by allocation of land resources in bordering WRPA's.

Table 99 - Recreation Plan, National Income Objective, Lower Mississippi Region

Company Comp						11			1	Water Areas	eas				10.		1
Approximate			Large R	Secrettion La	kes (1,000 Ac	F(sax			1			Small Recre	ation Lakes	1,000 Acres	5,5		1
Mark Seconds March Seconds					Nec	ds Satisf	action3/						Need	is Satisfact	(Lion)		-
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	RPA/Time Frame			Intra-WRPA Use5/	Inter-WRPA Commuting6/	Single Purpose	Multi- Purpose			antiable desource		Intra-WRPA Use5/	Inter-WRPA Commuting	New Reser Construct Single Purpose	rvoir tion Multi- Purpose	Sub- total	Total
1,000		55	19 103	222	19 16 17	000	040	010	₹ %%	69	67 143	269	000	075	53.0	083	97
1,000	3 1980	*	28 28 EEE	4 75 162	71 17 17	960	000	17 89 0	92 179 179	*	153 271 461	36 150	maa	58.5	\$ 7 T	458	153 161 161
1,400	4 1980 2000 2020	64	14 19 101	328	°aa	000	022	011	75±	52	607	55 gg 80	811	96.7 a	900	163	664
1,400	5 1980 2000 2020	175	882	38 S T Z T Z T Z T Z T Z T Z T Z T Z T Z T	000	000	000	000	38.25	•	98 142 217	ગેં <u>ઝ</u> ેં	25.0	008	009	0000	92 142 217
1,950 23 11 11 12 0 0 0 16 18 15 17 17 17 17 17 17 17	6 1980 2000 3020	10	37.72	0 00 01	2 2 11	000	000	000	12 21 21	88	288	5,83	000	0 0 0	000	0 5 7 0 10	288
1,950 51 46 46 51 51 51 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 57 52 52	7 1980	23	138	11 18 23	000	000	000	000	188	15	25.88	9571 998 61	077	000	0 4 61	0 4 67	7.88
11980 146 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		12	353	3 4 4	035	000	000	000	355	83	67 112 180	25.50	488	००४	000	0 0 87	67 112 180
1980 432 36 96 0 0 0 96 507 160 160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		316	2885	3888	000	000	000	000	888	₫	85 122 180	835 1825 1805	000	000	000	000	83 182 180
1360 1,082 4.99 330 38 69 2 71 4.99 780 727 532 67 78 50 128 200 200 200 1719 560 75 87 21 108 763 1,166 788 160 170 50 220 200 200 1.321 933 140 0 7 7 1,1080 1,833 1,163 181 362 127 489		# 35	8621	86.66	000	000	000	000	309	507	36. 36. 36. 36.	3333	000	000	000	000	348
The same of the sa		1,082	439 179 1.321	933	38	69 69	2 12 2	108	439 763 1,080	780	727 1,168 1,833	532 788 1,163	67 160 181	78 170 362	882	128 220 489	1,168 1,168 1,833

COUR EVER

Water bodies larger than 500 acres.
Water bodies between 40 and 500 acres.
Water bodies between 40 and 500 acres.
Program A measure for needs satisfaction consist of new construction. Associated public investments include costs of single-purpose recreation reservoirs and appropriate portion of costs of mining reservoirs.
Limited by development potential of region (See table 102)
Lincides use of reservoirs constructed in previous time periods.
Commuting to lakes in other WRN's having surpluses of large water.

Table 99 - Recreation Plan, Mational Income Objective, Lower Mississippi Region (Cont'd)

		-		TOPRE MECIES	necreation takes (1,000 Acres)	2000	7.	1	-	-		A.A.	-
					Needs	Needs Satisfaction	/çuo				Class A Land	Class A Land (1,000 Acres)	
RPA/TI	ARPA/Time Prume	Available Resource	Resource	Intra-WRPA Use2	Later	New Reservoir Construction Single Mult Purpose Purp	rvoir ction Multi- Purpose	Sub- total	Total	Existing Development	Proposed Access & 8	Proposed Development ess & Acquisition 2	Subtotal 10
c.	2000	75	108	88	2.60	om	37.0	09	108	6.1	0.0	1.0	7.1
	2020		9#2 5#8	131	19	4.5	1	# 6	981		0.0	5.7	12.1
2	1980	9	245	3 %	9 5	139	3 %	185	245	6.5	7.6	5.5	13.8
	3030		3.5	157	61	173	17	33	9		10.9	¥.9.	39.0
*	1980	4/	110	8	30	80	9	7.7	110	9.0	2.4	9.0	3.8
	2000		256	88 35 3	27	19	0.0	92	176		2.5	200	4.0
						,	,					1	2
1	000	175	148	947	0	0 (0	0	148	2.6	2.5	1.0	6.1
	900		237	175	200	0 9	0 4	0 9	237		2.1	6.0	9.1
	99		374	175	33	8	9	907	3/4		3.0	1.4	13.5
9	1980	32	3	59	2	0	0	0	31	0.5	1.1	0.1	1.7
	5000		43	35	6	5	0	cv	e 7		4.0	0.1	5.5
	2020		19	ŧ	13	10	0	10	2.5		0.7	0.0	6.9
7	1980	æ	28	28	0	0	0	0	28	4.0	1.1	0.1	1.6
	2000		54	38	1	0	1	4	1		0.0	0.0	2.2
	2020		19	24	9	0	19	61	19		1.0	0.1	3.3
8	1980	73	107	73	34	0	0	0	107	0.5	2.5	3.0	0.9
	2000		187	73	114	0 9	0 24	0 82	187		0.0	5.6	9.6
c	1080	004		1 33							, 42/		
	2000	3	133	200	0 0	0 0	00	0 0	200	1.3	1	•	5.5
	2020		309	309	00	00	00	00	309		000	5:4	15.1
10	1980	636	556	526	0	0	0	O	958	1.3	2,113/	11.0	14.4
	3000	***	445	244	0	0	0	0	244		0.0	8.6	23.0
	2030		757	737	0	0	0	0	737		0.0	13.3	36.3
ME	1980	1,862	1.166	852	105	147	52	36	1.166	16.4	80.8	8.45	0.09
	5000		1.947	1,368	235	257	77	328	1.931		11.2	8.02	3
	3030		3,154	2,096	321	362	134	84	2,913		16.1	35.4	145.5

Public owned lands developed and used for recreation in 1970.

Jincremental developes to public owned ands at suitable locations.

Jincremental developes to the located ands at suitable locations.

Journal public acquisition and development of privately owned land suitable for recreation development and use.

Journal public acquisition and development of privately owned land suitable-use for environmental quality.

Journal at the recreation development by time frames. Lands are multiple-use for environmental quality.

Journal of the recreation development of the frames. Acquire access and develop 2,000 scres.

Journal of the recreation development of the frame access. Acquire access and develop 2,000 scres.

Table 99 - Recreation Plan, Mational Income Objective, Lower Mississippi Region (Cont'd)

		Class B Land (1,000 Acres)	(1,000 Acres)		CLuss		C Land (1,000 Acres)		-	otal Recreation	Total Recreation Land (1,000 Acres)	
		1	Nevel opment			Proposed	Development			Propose	Proposed Development	
ARPA/Time Frame	Development I	Fac	littles & & Pacilities 2/	Subtotal	Development 1/	Only 8	Only 8 & Access9/	Subtotal 10	Development	Pacilities	& Facilities 2	Total 10
10go	14.1	0	1.0	15.1	0.6	0.0	0.0	9.0	20.8	0.0	5.0	22.8
3000	****	0.0	0.0	15.1		0.0	0.1	7.0		0.0	1.4	24.2
2020		0.0	5.7	80.8		0.0	0.5	6.0		0.0	9.6	33.8
- OBo		. 7.	α -	8	0.0	0 [00	0	7.8	0.40	5.1	37.8
2000		2007	2 0	2 9		0.7	0	0.1		23.4	7.4	6259
2050		7.8	18.9	67.2		1.1	0.0	3.0		19.8	23.5	109.5
ogo		4	0	6.9	*	0.0	0.0	5.50	29.5	5.8	1.5	\$6.9
2000	4.3	• -	6.0	8.8		9:0	0.0	15.7		0.6	0.8	16.3
2030		4.5	0.8	13.0		13.4	0.0	45.5		17.3	5.9	6.99
		4 .	40	300	A 20	0	000	8 .0	6 9	7.9	1.6	40.4
1300	··		9 9	15.5	63.6	7.7	0.0	1.5	1:25	14.3	1.4	56.1
2020		9.9	1.0	23.1		15.4	0.0	6.94		25.0	2.4	85.5
					4	0	0 0	0	0	0	9.0	4
000	0.0	- · · ·		0.00	0:0	000	0.0	0.0	***	1.5	0.1	6.2
3050		1.1	0.5	5.1		0.0	0.0	0.5		1.8	0.5	8.5
		0	0		- 0	0	0	10	0	0	0.3	4.4
000		0.7	2.0		1:0		0.0	0.5		1.8	0.1	6.3
2020		1.6	0.5	5.1		0.1	0.0	0.3		2.7	0.3	9.3
ogo	1. 1		0	4 01	0.0	0.0	0.5	0.5	5.5	8.2	6.9	16.9
2000		0.0	6.5	16.6		0.0	0.0	9.0		0.0	10.1	27.0
2020		0.0	7.6	26.3		0.0	4.0	1.2		0.0	15.8	#5.E
1980	6.1	10.8	0.2	12.9	0.5	4.0	0.0	9.0	4.5	12.7	6.4	2.0
2000		0.0	5.4	18.3		0.3	0.0	6.0		n.0	20.5	29.8
2020		0.0	7.7	56.0		0.5	0.0	11		0.6	3,21	*
1980	1.7	6.3	16.9	6.42	0.0	0.1	1.1	1.2	3.0	8.5	29.0	10.
2000		0.0	L. 4.2	9.69		0.0	0.0	1.8		0.00	57.0	101.4
5750		0.0	0.33	•		2:	6:0					
1900	31.9	51.8	24.8	108.5	53.4	1.5	1.8	54.7	2.66	74.1	4.12	256.2
2000		7	29.5	166.1		24.5	0.1	10.1		90.00	104.9	20.00

Public owned lands developed and used for recreation in 19/0.

J incremental development of bublic owned lands as table locations.

J incremental development of privately owned land as sixtable for recreation development and use.

Jo Gummlasive recreation development by time frames. Lands are multiple-use for soutrommental quality.

Table 100 -Effectiveness of Recreation Plan, National Income Objective, Lower Mississippi Region

Need Category	WRPA	Time Frame	Percent of Need Met
Land			
Class A Class B Class C	A11 A11 A11	A11 A11 A11	100 100 100
Water			
Large Lakes	A11 2 3 4 - 10 2 3 4 5 6 7 - 10	1980 2000 2000 2000 2020 2020 2020 2020 2	100 80 98 100 51 54 69 100 84
Small Lakes	A11	A11	100

Fish and Wildlife Plan

The Program A Fish and Wildlife Plan summarized in table 101 is aimed at satisfying as many as possible of the region's hunting and fishing needs. Plan measures include easements and fee purchase which will increase primary use wildlife lands more than 1.4 million acres over the next 50 years. Furthermore, the plan includes provisions to promote access to another 25 million acres of land and to nearly all of the region's 500,000 acres of water areas less than 2 acres in size (ponds) by way of a public education program. Measures are also included to insure diversion of 4,473 m.g.d. of the region's ground and surface waters for propagation of fish and wildlife. The plan for the coastal and estuarine area includes additional measures of benefit to fish and wildlife. That plan is directed at maintaining the productive capacity of the estuarine zone at the 1970 level of production and is discussed following plans for problem amelioration. Additional fish and wildlife enhancement measures are included in the agricultural sector. Production of catfish and crayfish as an adjunct to agriculture satisfies a small portion of the region's fishing need, but no assessment of needs satisfied by that private sector activity is made herein. If the Program A Fish and Wildlife Plan is realized in full, its effectiveness in meeting needs will be as shown on table 102.

Table 101 - Fish and Wildlife Plan, Mational Income Objective, Lower Mississippi Region

-	Acres)	Total	87 96 114	199 270 369	89 99 119	127 146 178	27 28 29	24 28 25	220 281 366	191 21.7 254	833 1,080	1,615 1,998 2,542
	Total Water Surface Area (1,000 Acres)	Inter-MRDA Commuting	5.2.2.5	67 50 69	5.55	41 3 10	600	8 - 7	158 44 61	000	000	353 103 152
-	r Surface	Intra- WRPA	62 7 15	152 21 30	\$ ∠ si	86 16 22	1 1 1 18	16 3	62 17 24	191 26 37	651 182 247	1,282 280 392
-	Total Wate	Available Resource	241	176	361	319	∞ ∞	108	164	1,145	4,002	6,872
	-	Cumulative	25 27 32	56 76 104	25 25 35 35 35 35 35 35 35 35 35 35 35 35 35	442	တက္	8 9 11	158 202 263	114 129 151	505 643 854	939 1,167 1,491
	00 Acres) 1/	thie Intra- Inter-WWD Commuting	25.2.5	28 28 28 28	2000	15 01	0.00	$\infty \rightarrow c_1$	158 44 10	000	000	322 73 111
	ries (1,0	Intra- I	000	000	000	000	0.00	000	000	114 15 22	505 140 191	617 155 213
	Estua	Available/ Resource-	0	0	0	0	0	0	0	\$45	2,736	3,281
as as	s) 1/	Cumulative	26 29 34	821	27 50 56	36 52 52	∞ ∞ ∞	r 8 8	26 55 43	32 37 43	62 80 103	284 349 439
Water Surface Areas	Ponds (1,000 Acres)-	Incremental	26 3	50 21 30	27 3	30	x00	-11	26 7 10	57.50-0	62 23	284 65 90
Water	Ponds	Available 1 Resource2/	25	104	54	89.0	10	14	94	97	108	524
			50 54 54 48 50 84	85 11.5 154	24.3	59 23	222	6 11 2	36 46 60	45 51 60	86 110 143	392 482 612
	Lakes (1,000 Acres) 1/	Incremental Use Intra- Inter-WRFA Cumulative WRPA Commuting Use	000	11 50 11	000	000	000	000	000	000	000	30 41
	es (1,00	Increme Intra- 1 WRPA C	9 + 8	72 0 0	15 4 g	B 2 13	1 1 10	di Mini	36	A 0 0	86 24 35	381 60 89
	Lak	Available Resource2/	189	27	202	197	71	3.	118	558	1,158	3,067
		WRPA/Time Frame	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020
-		WRPA/	rs	15	**	ia	0	-	∞	o.	10	IM.

// No public investment involved. // Based on 1970 conditions.

Table 101. Fish and Wildlife Plan, National Income Objective, Lower Mississippi Region (Cont'd)

	Water Surface	face Areas						Land Areas							
	Stream Access &	Cumilative	Primary 1	Primary Use Wildlife Lands (1,000 Incremental Additions 4/	ands (1,000 Additions 4/	Acres) 3/	Secondar	y Use Wild	Secondary Use Wildlife Lands (1,000 Acres) 1/	1,000 Acr	es) 1/	Tot	Total Wildlife Lands (1,000 Acres)	Lands (1,0	00 Acres)
WRPA/Time Frame		Wit	21	Open Land	Forest	Subtotal	Cropland	Pasture	Wetlands	Forests	Subtotal	Land	Wetlands	Forests	Total
2 1980	1,203		280.5	3.5	100.5	584.5	288.0	119.5	101.07	1525.0	1853.5	411.0	101.0	1706.0	2218.0
2020	1,203	850			200.7	538.8	375.0	157.5	101.07	656.7	1290,2	536.0	101.0	1192.0	1829.0
3 1980 2000 2020	8 8 2 2 2 3 3 8 3 3 3 3 3 3 3 3 3 3 3 3	70 122 248	186.3	15.4	41.8 38.1 54.5	245.5 281.0 535.9	652.0 890.0 1214.0	263.6 364.0 504.6	20.20	1827.9 1233.8 523.5	2807.5 2552.4 2306.1	931.0 1270.0 1734.0	0.45 0.40 0.40	2056.0 1500.0 844.0	3051.0 2834.0 2642.0
4 1980 2000 2020	1,100	83 117	165.4	000	92.2 43.0 61.3	257.0 500.6 501.9	292.0 327.0 391.0	125.0 140.0 167.0	97.0 ⁷ / _{97.0}	1524.4 1046.4 884.1	2038.4 1610.4 1539.1	417.0 467.0 558.0	97.0 97.0 97.0	1782.0 1547.0 1246.0	2296.0 1911.0 1901.0
5 1980 2000 2020	1,931	285 545 407	258.4	000	105.5 60.4 86.2	361.9 422.3 508.5	394.0 467.0 572.0	169.0 200.0 245.0	531.0 723.0 791.0	6906.1 9152.7 8514.5	8000.1 10,522.7 10,122.5	563.0 667.0 817.0	531.0 723.0 791.0	7268.0 9555.0 9025.0	8562.0 10,945.0 10,651.0
6 1980 2000 2020	530 530 536	75 91 108	45.2	000	25.0 11.7 16.7	70.2 81.9 98.6	85.0 85.0 91.0	35.0 36.0 39.0	85.0 85.0 85.0	580.8 567.1 559.4	783.8 771.1 754.4	118.0 119.0 130.0	85.0 85.0 85.0	651.0 649.0 658.0	854.0 855.0 855.0
7 1980 2000 2020	450 450 450	15.7	74.0	000	30.0 17.4 24.7	104.0 121.4 146.1	24.0 85.0 105.0	\$2.0 36.0 44.0	49.0 49.0 ₇ /	2235.0 1255.6 743.9	2590.0 1425.6 939.9	106.0 121.0 147.0	49.0 49.0	2559.0 1577.0 890.0	2494.0 1547.0 1086.0
8 1980 2000 2020	400 400 400	o a c	5.0	000	14.0 5.2 4.5	19.0 22.2 26.7	217.07 170.05 193.02	122.0 156.0 262.0	144.0 190.0 395.0	2080.0 2012.8 1859.5	2503.0 2528.8 2689.3	526.0 455.0	144.0 190.0 395.0	2099.0 2055.0 1866.0	2582.0 2551.0 2716.0
9 1980 2000 2020	928 928 928	145 80.5	690.2	000	27.0 119.7 170.8	717.2 836.9 1007.7	829.0 1216.0 1636.0	153.0 172.0 202.0	144.0 162.0 190.0	1214.8 942.1 569.3	2540.8 2492.1 2597.3	982.0 1588.0 1838.0	144.0 162.0 190.0	1952.0 1779.0 1577.0	3058.0 3529.0 3605.0
10 1980 2000 2020	329 329 329	1, 845 1,	185.3	000	11.0 32.8 46.7	196.3 229.1 275.8	250.07	291.0 372.0 ₇ 424.0 <u>7</u> /	275.0 353.0 530.0	1005.7 912.9 765.2	1842.7 1887.9 1961.2	562.0 622.0 666.0	275.0 353.0 530.0	1202.0 1142.0 1041.0	2039.0 2117.0 2257.0
LMR 1980 2000 2020	7,699	3,533 4,034 4,173	2021.48/	18.9	445.0 389.9 561.9	2485.2 2875.1 3437.0	3100.0 3807.0 4817.0	1510.1 1610.1 2045.1	1467.0 1801.0 2279.0	19,447.78 18,781.88 15,777.9	25,324.8 25,999.9 24,919.0	4429.0 5436.0 6881.0	1467.0 1801.0 2279.0	21,914.0 21,638.0 19,196.0	27,810.0 28,875.0 28,356.0

5/ Composed primarity of wildlife management areas. Existing areas are heavily wended and counted entirely as forest land.
7/ Public acquisition through ensement or fee title.
5/ Public investment based on provision one access point for every 10 miles of stream.
6/ Kithdrands to maintain water levels in management areas for must producing green free reservoirs and duck resting areas, and to replenish lakes for aport fishing. Costs of pumping and diversion ficilities included in public investment costs for Program A.
1. Linted researce capability requires inter-MPA commuting for needs satisfaction.
5/ Includes forest land in NUTA 1.

The effectiveness of the fish and wildlife plan relative to providing for forest habitat and stream fisheries habitat is more a function of resource capability than a function of the proposed measures. Because of this, the indicated degree of effectiveness or ineffectiveness of the plan is governed by the imbalance between resource needs and resource availability.

Table 102- Effectiveness of Fish and Wildlife Plan, National Income Objective, Lower Mississippi Region

Need Category	WRPA	Time Frame	Percent of Need Met
Land			
Open Land	$A11\frac{1}{2}$	A11	100
Wetlands	A111/	A11	100
Forest land	A11	1980	100
rorest raid		2000-2020	61-45
	2 3	2000-2020	24-10
	1	2000-2020	58-45
	4 5	2000-2020	100
	6	2000-2020	100-99
	7	2000-2020	100-33
	8	2000-2020	79-56
	9	2000-2020	63-48
	10	2000-2020	19-13
Water Surface Area			
Lakes	$A11\frac{1}{}$	A11	100
Ponds	A11.	A11	100
Estuaries	$A11\frac{1}{2}$	A11	100
Streams		1980-2020	100-87
	2 3	1980-2020	34-18
		1980-2020	100-76
	4 5	1980-2020	100-92
		1980-2020	100
	6 7	1980-2020	100
	8	1980-2020	38-23
	9	1980-2020	71-54
	10	1980-2020	13-8
Water Withdrawals	A11	A11	100

^{1/} Inter-WRPA commuting required for needs satisfaction.

Environmental Quality Plan

The National Income plan for environmental quality centers around land and water areas whose aesthetic qualities or other attributes make them worthy of preservation for the enjoyment of future generations. Specific areas that fall within this category include the 35,000 acres of land and water areas listed in table 103. These areas can be reserved for primary use for environmental quality purposes without materially detracting from the satisfaction of high priority needs for food and fiber production. Thus they have been included as components of the National Income Program. In addition, the National Income Program includes positive measures to protect scenic rivers and lakes and to provide for needed open and green space in urban areas. The plan is summarized in table 104. Its effectiveness, in terms of the percentage of total environmental quality needs satisfied is given in table 105.

Table 103 - Lands Designated for Primary Use as Environmental Quality Components, National Income Program, Lower Mississippi Region

WRPA	Feature	Land Area	Existing Use	Environmental Quality Attribute(s)
1	None	-	-	-
2	Grand Prairie Dismal Swamp Dark Cypress Swamp Arnet Shutin Mill Stream Shutin	1,000 2,000 2,000 1,000 1,000	Pasture Forest $\underline{1}$ / Forest $\underline{1}$ /	Ecological System Ecological System Ecological System Ecological System Ecological System
3	Reelfoot Lake	400	Fish and Wildlife	Scenic natural lake with unique eco- logical and geo- logical features
	Murphys Pond	100	Fish and Wildlife	Scenic lake, unique ecological area
	Open Lake	500	Fish and Wildlife	Scenic lake, unique ecological area
4	Ashland Brake Beckham Brake Gayden Brake Eagle Brake	1,000 1,000 1,100 900	Forest $\frac{1}{1}$ / Forest $\frac{1}{1}$ / Forest $\frac{1}{1}$ /	Ecological System Ecological System Ecological System Ecological System
5	Seven Devils Swamp	5,000	Forest1/	Ecological System, Wilderness Area

Table 103 - Lands Designated for Primary Use as Environmental Quality Components, National Income Program, Lower Mississippi Region (Cont'd)

<u>WRPA</u>	<u>Feature</u>	Land Area	Existing Primary Use	Environmental Quality Attribute(s)
6	None	-	-	-
7	Foster Lake area on Buffalo River Grand Gulf area	5,000 5,000	Forest $\underline{1}/$ Forest $\underline{\underline{1}}/$	Wilderness Area Wilderness Area
8	Port Hudson Chipola Clio Spruce Pine Stands in	100 50 500	"other" Forest $\frac{2}{3}$ /	Botanical System Botanical System Botanical System
	Livingston and Tangipahoa Parishes Pine Stand in	1,000	Forest	Botanical System
	St. Helena Parish	50	Forest4/	Botanical System
9	Atchafalaya Floodway	5,000	Forest1/	Wilderness Area and Wetlands
10	Avondale Spruce Pine Stand in	200	Forest1/	Botanical System
	St. Tammany Parish	800	Forest1/	Botanical System
Total	1and	34,700		

^{1/} Bottomland hardwood forest.

Problem Amelioration

Flood Control

The National Income Program flood control plan contains three basic components: (1) completion of the present backlog of works already under construction, including the immediate raising and strengthening of the Mississippi River Levees System and the expeditious completion

 $[\]frac{1}{2}$ / Pines.

^{3/} Virgin cypress.

^{4/} Old very large loblolly pine stand with typical pine climax understory.

				Resour	ce Use (1.0	00 Acres)				
Water Resources		1980				000			2020	
Planning Area and Resource Feature	Primary U Establish	se	Secondary Use	Total Use		Secondary Use	Total Use	Primary Use	Secondary Use	Total Use
WRPA 1										
Land										
Bottomland Hardwood Forest Lake Shorelines		6.01/	873.0	873,0 6,0	6.0	873.0	873.0 6.0	6.0	873.0	873.0 6.0
Total Land	-	6.0	873.0	879.0	6.0	873.0	879.0	6.0	873.0	879.0
Water Surface Area										
Lakes Scenic Rivers	36.0	4.0		40.0	40.0	-	40.0	40.0	-	40.0
Total Water Surface	36.0		40.0	40.0	-	40.0	40.0	-	40.0	40.0
WRPA 2										
MCA 2										
Land Bottomland Hardwood Forests		_	507.0	507.0		347.0	347.0		261.0	261.0
Ecological Systems		7.01/	114.0	121.0	7.0	114.0	121.0	7.0	114.0	121.0
Geological Systems			507.0	507.0	- 1.0	507.0	507.0	* 1.0	507.0	507.0
Lake Shorelines Open and Green Space(Urban)		1.01/	7.0	1.0	0.03/	8.0	1.0 8.0	0.03/	8.0	8.0
Scenic River Banks	-	18.0I/	-	18.0	18.0	-	18.0	18.0	-	18.0
Wilderness Areas		-	44.0	44.0		44.0	44.0	-	44.0	44.0
Total Land		27.0	1,179.0	1,206.0	26.0	1,020.0	1,046.0	26.0	934.0	960.0
Water Surface Area							16.0	16.0		16.0
Lakes Scenic Rivers	5.0	11.0 4.0	-	16.0 4.0	16.0 4.0	-	16.0 4.0	4.0		4.0
Total Water Surface	5.0	15.0	-	20.0	20.0		20.0	20.0	-	20.0
WRPA 3										
Land										
Bottomland Hardwood Forests	-	* 1/	607.0	607.0	-	410.0	410.0		351.0	351.0
Lake Shorelines		$\begin{array}{c} 1.0\frac{1}{2}/\\ 31.0\frac{2}{2}/\\ 25.0\frac{1}{2}/\end{array}$	3.0	1.0 34.0	1.0	23.5	1.0 34.0	1.03/	34.0	1.0 34.0
Open and Green Space(Urban) Scenic River Banks	3.0	25.0I/	5.0	28.0	25.0	3.0	25.0	25.0	3.0	28.0
Wetlands	-	-	64.0	64.0		64.0	64.0		64.0	64.0
Total tand	3.0	57.0	674.0	734.0	36.5	500.5	534.0	26.0	452.0	478.0
Total Land	5.0	57.0	0/4.0	7,54,0	30.3	500.5	554.0	40.0	452.0	470.0
Water Surface Area				71.0			71.0	24.0		71.0
Lakes Scenic Rivers	33.0 1.0	1.0 6.0		34.0 7.0	34.0 7.0	-	34.0 7.0	34.0 7.0	-	34.0 7.0
			-							
Total Water Surface	34.0	7.0	4/6/2	41.0	41.0		41.0	41.0		41.0
WRPA 4										
<u>land</u>			000 0	VET 15 15		070.0	070.0		070.0	930.0
Bottomland Hardwood Forests Ecological Systems		4.01/	930.0	930.0 10.0	4.0	930.0	930.0 10.0	4.0	930.0	10.0
Geological Systems			1.0	1.0	-	1.0	1.0		1.0	1.0
Lake Storelines	-	2.01/		2.0	2.03/	-	2.0	2.0	-	2.0
Open and Green Space(Urban) Wilderness Areas		8.02/	5.0	8.0 5.0	2.62	5.4	8.0 5.0	- 2/	8.0 5.0	8.0 5.0
Total Land	-	14.0	942.0	956.0	8.6	947.4	956.0	6.0	950.0	956.0
Water Surface Area										
Lakes	17.0	3.0	-	20.0	20.0		20.0	20.0	*	20.0
Scenic Rivers			-			-	*		-	
	17.0	3.0		20.0	20.0	-	20.0	20.0	-	20.0

Table 104 - Environmental Quality Plan, National Income Objective, Lower Mississippi Region (Cont'd)

			Resource	e Use (1	,000 Acres)					
Water Resources		1980				2000			2020	
Planning Area and Resource Feature	Primary Us Established		Secondary Use	Total	Primary Use	Secondary Use	Total Use	Primary Use	Secondary Use	Total Use
NRPA 5										
Land Bottomland Hardwood Forests Ecological Systems Geological Systems Lake Shorelines Open and Green Space(Urban) Scenic River Banks Wilderness Areas	14.0	1.0½/ 13.0½/ 14.0¼/ 5.0½/	2,392.0 . 20.0 22.0 . 20.0	2,392.0 20.0 22.0 1.0 13.0 28.0 25.0	1.0 3.93/ 28.0 5.0	2,325.0 20.0 22.0 - 9.1 - 20.0	2,323.0 20.0 22.0 1.0 13.0 28.0 25.0	$ \begin{array}{c} 1.0 \\ 3/\\ 28.0 \\ 5.0 \end{array} $	2,190.0 20.0 22.0 13.0 20.0	2,190.0 20.0 22.0 1.0 13.0 28.0 25.0
Total Land	14.0	33.0	2,454.0	2,501.0	37.9	2,394.1	2,432.0	34.0	2,265.0	2,299.0
Water Surface Area Lakes Scenic Rivers	33.0 4.0	1.0	:	34.0	34.0 7.0	-	34.0	34.0	:	34.0
Total Water Surface	37.0	4.0	*	41.0	41.0		41.0	41.0		41.0
WRPA 6										
Land Bottomland Hardwood Forests Lake Shorelines Open and Green Space(Urban)		$\frac{1.0\frac{1}{2}}{2.0\frac{2}{2}}$	608.0	608.0 1.0 2.0	1.0	608.0	608.0 1.0 2.0	1.0	2.0	608.0 1.0 2.0
Total Land	-	5.0	608.0	611.0	1.0	610.0	611.0	1.0	610.0	611.0
Water Surface Area Lakes Scenic Rivers	8.0	1.0		9.0	9.0		9.0	9.0		9.0
Total Water Surface	8.0	1.0	-	9.0	9.0	-	9.0	9.0	-	9.0
WRPA 7										
Land Bottomland Hardwood Forest Ecological Systems Geological Systems Lake Shorelines Open and Green Space(Urban) Scenic River Banks Wilderness Areas		1.0½/ 1.0½/ 13.0½/ 10.0½/	425.0 5.0 1.0	425.0 3.0 1.0 1.0 1.0 30.0	1.0 3/ 13.0 10.0	369.0 3.0 1.0 1.0 20.0	369.0 5.0 1.0 1.0 1.0 13.0 30.0	1.0 3/ 13.0 10.0	369.0 3.0 1.0 1.0 20.0	369.0 3.0 1.0 1.0 13.0 30.0
Total Land		25.0	449.0	474.0	24.0	394.0	418.0	24.0	394,0	410.0
Water Surface Area Lakes Scenic Rivers	7.0	1.0 3.0		8,0 3,0	8.0 3.0		8.0 3.0	8.0 3.0	- :	8.0
Total Water Surface	7.0	4.0	-	11.0	11.0	-	11.0	11.0	-	11.0
WRPA 8										
Land Botanical Systems Bottomland Hardwood Forests Geological Systems Lake Shorelines Open and Green Space(Urban) Scenic River Banks	8.0	$\begin{array}{c} 1.7\frac{1}{2} \\ -1.0\frac{1}{2} \\ 11.0\frac{1}{2} \\ 9.0\frac{1}{2} \end{array}$	0.3 896.0 203.0	896.0 203.0 1.0	1.7 - 1.0 2.4 17.0	0.3 868.0 203.0 9.6	2.0 868.0 203.0 1.0 12.0 17.0	1.7 1.0 17.0	0.3 794.0 203.0 / 12.0	2.6 794.6 203.6 1.6 12.6 17.6
Total Land	8.0	22.7	1,100.3	1,131.0	22.1	1,080.9	1,103.0	19.7	1,009,3	1,029.0
Water Surface Area Lakes Scenic Rivers	61.0 2.0	2.0		61.0 4.0	61.0 4.0		61.0		:	61.
Total Water Surface	63.0	2.0		65.0	65.0	-	65.0	65.0		65.

Table 104 - Environmental Quality Plan, National Income Objective, Lower Mississippi Region (Cont'd)

			Resource	000 (1	,000 Acres)					
Water Resources		1980				2000			2020	
Planning Area and Resource Feature	Primary Use Established	New	Secondary Use	Total Use	Primary Use	Use Use	Total Use	Primary Use	Secondary Use	Tota Use
RPA 9										
Land										
Beaches and Shores	6.0	-	10.0	16.0	6.0	10.0	16.0	6.0	10.0	16.
Botanical Systems	533.0	-	257.0	790.0	533.0	257.0	790.0	533.0	257.0	790.
Bottomland Hardwood Forests	-	-	99.0	99.0	-	99.0	99.0	-	99.0	99.
Geological Systems Lake Shorelines		$3.0\frac{1}{2}$	6.0	6.0 3.0	3.0	6.0	5.0	3.0	6.0	3.
Open and Green Space (Urban)		11 0=/	1.0	12.0	3/	12.0	12.0	3/	12.0	12
Scenic River Banks	6.0	3.01/	- "	9.0	9.0		9.0	9.0	-	9.
Wetlands	67.0	_	54.0	121.0	67.0	54.0	121.0	67.0	54.0	121.
Wilderness Areas		5.01/	550.0	555.0	5.0	550.0	555.0	5.0	550.0	555.
Total Land	612.0	22.0	977.0	1,611.0	623.0	988.0	1,611.0	623.0	988.0	1,611.
Water Surface Area	110.0			110.0	110.0		110.0	110.0		110.
Lakes Scenic Rivers	1.0	1.0		2.0	2.0		2.0	2.0		2.
Scenic Rivers	1,0	1,0	-	2.0	2.0	-	2.0			
Total Water Surface	111.0	1.0	-	112.0	112.0		112.0	112.0	-	112.
RPA 10										
Land										
Beaches and Shores	41.0	- 1/	119.0	160.0	41.0	119.0	160.0	41.0	119.0	160.
Botanical Systems	-	1.01/	-	1.0	1.0	-	1.0	1.0	-	1.
Bottomland Hardwood Forests	-	$4.0\frac{1}{2}$	877.0	877.0		833.0	833.0		772.0	772.
Lake Shorelines		30.02/	1.0	4.0 31.0	4.0 8.03/	23.0	31.0	4.0	31.0	4. 31.
Open and Green Space(Urban) Scenic River Banks	4.0	-	- 1.0	4.0	4.0	- 20.0	4.0	4.0	- 31.0	4.
Total Land	45.0	35.0	997.0	1,077.0	58.0	975.0	1,033.0	50.0	922.0	972.
Water Surface Area										
Lakes	124.0	-		124.0	124.0		124.0	124.0		124.
Scenic Rivers	1.0	_		1.0	1.0		1.0	1.0		1.
Total Water Surface	125.0	-		125.0	125.0	-	125.0	125.0	-	125.
RPA'S 1 through 10										
Land			130.0	177. 0	17.0	120.0	177.0	100.00	120.0	12/
Beaches and shores Botanical Systems	47.0 533.0	2.7	129.0 258.3	176.0 794.0	47.0 535.7	129.0 258.3	176.0 794.0	47.0 535.7	129.0 258.3	176 794
Bottomland Hardwood Forest	333.0		8,214.0		-	7,660.0	7,660.0	333.	7,247.0	7,247
Ecological Systems	-	11.0	143.0	154.0	11.0	143.0	154.0	11.0	143.0	154
Geological Systems	-	-	740.0	740.0	-	740.0	740.0	-	740.0	740.
Lake Shorelines		21.0		21.0	21.0	/17 /	21.0	21.0		21.
Open and Green Space(Urban) Scenic River Banks	35.0	108.0 82.0	13.0	121.0 117.0	27.43/ 117.0	93.6	121.0 117.0	117.0	121.0	121.
Wetlands	67.0	02.0	118.0	185.0	67.0	118.0	185.0	67.0	118.0	185.
Wilderness Areas	-	20.0	639.0	659.0	20.0	639.0	659.0	20.0	639.0	659.
Total Land	682.0	244.7	10,254.3	11,181.0	846.1	9,780.9	10,627.0	818.7	9,395.3	10,214.
Water Surface Area										
Lakes	384.0	22.0	*	406.0	406.0	-	406.0	406.0	-	406.
Scenic Rivers	9.0	19.0		28.0	28.0		28.0	28.0		28.
	393.0	41.0		434.0	434.0		434.0	434.0		434.

^{1/} Public investment required between 1970 and 1980; operation and maintenance required thereafter.
2/ Land multi-use for environmental quality purposes and Class A recreation purposes. Public investment allocated to both purposes.
3/ Primary use shifts with the development of open and green space for recreation purposes.

Table 105 - Effectiveness of Environmental Quality Plan, National Income Objective, Lower Mississippi Region

1	Scenic Rivers		100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100
	Water Surface Sceni Lakes River	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100
	Wilderness Areas I		20 20 20	1 1 1	000	33 33 33	1 1 1	33 33 33			
	Wetlands	1.1.1		17 17 17				4 1 1	1 1 1	55 55 55	1 1 1
	Scenic River Banks		100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100
	Open and Green Space1/	1 1 1	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100
let	Lake Shorelines	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100	100 100 100
Percent of Needs Met	Geological Systems	1 1 1	31.23	1 (1	000	000	1 1 1	000	000	000	f f f
Perc	Ecological Systems	1 ((===		40 40 40	75 75 75		000		1.1.1	* * *
	Bottomland Hardwood Forests	000	122	16 16 16	88 8 82 7 83 7 84 8	82 82 82 82	8 8 8 8 8	81 81 81	81 81 81	82 82 82 82	80 80 80 80
	Botanical Systems				1 1 1		1 1 i	1 1 1	88.55	67 67 67	100 100 100
	Beaches and Shores							1 1 1	i i i	3.88	26 26 26
	WRPA/Time Frame	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020
	WRPA/T	-	74	ю	4	in	9	r.	∞	6	10

1/ Urban Only

of the channel improvement feature of the MR&T Project, and accelerated completion of other works including hurricane protection works in the coastal area and the existing backlog of upstream watershed projects; (2) construction of authorized and proposed new works within the time frames identified on table 106; and (3) expansion of governmental flood plain information activities and development and implementation of appropriate local controls to govern the growth of damageable property in flood plains.

Completion of Project Backlog, Completion of the present backlog of flood control works now under construction in the Lower Mississippi Region is the most pressing water resources task facing the region. These projects must be completed in order to get to the conditions variously described herein as "existing projects," "remaining flood problems," or "present status." Though many of the main stem Mississippi River flood control works are in place, much work remains to be done on both the levee system and the channel improvement features of the MR&T Project. It was determined, based on the data available from major discharges and high stages of the 1973 flood that a total of more than 800 miles of levees along the Mississippi River, in tributary areas, and in the Atchafalaya Floodway will have to be built from 1 to 6 feet higher than originally planned to protect the Valley from the project design flood. This is due to a loss in channel capacity because of the dynamic nature of the River, its persistent tendency to meander, instabilities introduced by the earlier cutoff program, and incomplete bank stabilization works, and other hydraulic phenomena. All mainline Mississippi River and Atchafalaya Floodway levees should be constructed to full grade and section as soon as possible. The levees protect millions of people, hundreds of towns and cities, and billions of dollars worth of developments. Any failure of the system would be catastrophic and a major failure would result in a disaster of staggering proportions. The valley, with its contents, must be made safe from the largest reasonable flood which might occur on the Mississippi River. Were such a flood to occur now, as it very nearly did in 1927, 1937, 1950, and 1973, the presently constructed system would suffer a major failure, the results of which the region and the Nation can ill afford. The National Income Program flood control plan includes components allowing for the timely completion of all remaining work on the MR&T Project by the year 1985. The plan calls for completion of the Mississippi River levee system in 5 years because of its criticality.

The major hurricane protection projects in the coastal area must also be brought to an expeditious completion. These projects will provide protection from tidal flooding and hurricane storm waters to the densely populated and intensely developed centers in the region's coastal area. The disastrous hurricanes, Betsy in 1965 and Camille in 1969, caused well in excess of \$100 million in damages to areas which will be protected upon completion of the hurricane protection projects. The potential for hurricane induced damage in the region is far greater

Table 106-Flood Control Plan, Structural Measures, Program A, Lower Mississippi Region

			Reservoir	- Floo	d Control	Stores		Channa	1 Improvem	ent		Levees	
			neservoir		-Feet)	Storage		Channe	(Miles)	ent		(Miles)	
RPA/	Time Frame	Number	Storage	Prop	Storage	To Number	Storage	Authorized	Proposed	Total	Authorized	Proposed	Total
1	1980	0	0	0	0	0	0	1/	0	1/	2/	0	2/
	2000	0	0	0	0	0	0	_	0			0	
	2020 TOTAL	0	00	00	00	00	00		00			00	
2	1980	0	0	0	0	0	0	604.1	37.5	641.6	0	5.9	5
	2000	0	0	0	0	0	0	497.6	120.4	618.0	9.7	0	9
	2020	0	9	00	0	00	0	122.0	218.0	340.0	0	0	0
	TOTAL	ō	0	0		0	ō	1,223.7	375.9	1,599.6	9.7	5.9	15
3	1980	0	0	1 0	18,000	1 0	18,000	215.3	76.7 51.7	292.0	7.7	0	169
	2020	0			0		0	0	96.9	96.9	0	0	109
	TOTAL	ō	9	0	18,000	0	18,000	215.3	225.3	440.6	7.7	169.2	176
	1980	0	0	0	0	0		338.3	590.0	928.3	356.4	3.0	359
	2000	0	0	0	0	0		45.4	162.7 605.0	208.1 605.0	14.3	62.3 82.5	76 82
	TOTAL	9	8	0	ö	00		383.7	1,357.7	1,741.4	370.7	147.8	518
	1980	10	239,000	1	211,000	11	450,000	66.0	3.0	69.0	83.0	69.9	152
	2000	0	0	1	80,000	1	80,000	0	242.9	242.9	59.0	129.7	188
	2020 TOTAL	0	239,000	0/2	291,000	0 12	530,000	66.0	307.9	373.9	142.0	2.0	343
,	1980	0	0	0	0	0	0	266.7	0	266.7	0	0	C
	2000	0	0	0	0	0	0	0	159.6	159.6	0	1.5	1
	2020 TOTAL	0	00	00	00	0	00	266.7	105.0 264.6	105.0 531.3	0 0	0	1
	1980	0	0	0	0	0	0	0	12.0	12.0	0	12.4	12
	2000	0	0	0	0	0	0	0	0	0	0	7.0	3
	2020 TOTAL	00	00	00	0	0	0	00	0 12.0	12.0	0	6.0 25.4	25
	1980	0	0	0	0	0	0	0	6.0	6.0	0	0	
	2000	0	0	0	0	0	0	0	3.0	3.0	0	0	(
	2020 TOTAL	0	0	00	00	00	0	0	$\frac{3.0}{12.0}$	12.0	0 0	10.5	10
	1980 2000	0	0	0	0	0	0	83.0	80.0	163.0	0	13.5	13
	2020	0	00	00	0	0	00	0	0	0	0	62.0	68
	TOTAL	ō	ō	ō	ō	ō	ō	83.0	80.0	163.0	ō	89.4	89
	1980 2000	0	0	0	0	0	0	0	0	0	0	20.03/ 61.6	20 61
	2000	0	0	0							0	44.0	144
	TOTAL	ō	00	00	0	00	00	9	00	00	ō	125.6	125
R	1980	10	239,000	2	229,000	12	468,000	1,573.4	805.2	2,378.6	447.1	124.7	571
	2000	0	0	1	80,000	0	80,000	543.0 122.0	740.3	1,283.3	83.0	445.2 207.0	528
	TOTAL	10	239,000	<u>o</u> 3	309,000	13	548,000	2,238.4	2,635.4	1,211.9 4,873.8	530.1	776.9	1,30

Continuing long-term construction, Main stem-Mississippi River, underway.

Eight hundred miles of levee to be raised to grade and section; 28.3 miles yet to be constructed in Mississippi River Levee and Floodway System.

In addition, 7.6 miles of vegetated sand-dune and 1/2 mile jetty proposed for vicinity of Grand Isle hurricane protection.

Table 106 - Flood Control Flan, Structural Measures, Program A, Lower Mississippi Region (Cont'd)

				Frinci	oal Streams				Upstre	am Watershed	s 2)
		Pumpin	g Stations			Other 2/ Diversion	Low Flow		dwater arding	Channel Improvement	s Other
WRPA/	Time Frame	Authorized	Proposed	Total	<u>Locks</u> <u>Proposed</u>	Structures Authorized	Structures Authorized	Stru	ctures posed Storage	(Miles) Proposed	Proposed
1	1980	0	0	0	0	0	0	0	0	0	0
	2000	0	0	0	0	0	0	0	0	0	0
	2020 TOTAL	00	0	00	00	0	00	0	00	0	000
2	1980	2	3	- 5	0	0	0	268	148,612	4,878	6/
	2000	0	3	3	0	0	0	G	0	130	6/
	2020 TOTAL	0 2	9	9	0	0	00	_5	11,241	95	مودده
				0	U	0	0	273	159,853	5,103	9/
3	1980 2000	6	2	7 2	0	0	0	201	244,400	660	5/
	2020					0	0	120	133,916	454	9
	TOTAL	96	<u>o</u>	9	00	0	Ö	413	99,070 477,386	269 1,383	Colored Colore
4	1980	0	1	1	0	0	0	53	41,594	3,674	0
	2000	0	9	9	0	0	0	16	18,146	18	0
	TOTAL	00	$\frac{9}{19}$	$\frac{9}{19}$	0	00	00	12	10,866	1,146 4,838	90
5	1980	1	2	3	0	0	0	116	209,219	389	6/
	2000	0	6	6	0	0	0	5	15,400	146	9
	2020 TOTAL	0	1/9	$\frac{1}{10}$	0	00	0	50 168	101,037 325,656	301 836	6/
6	1980	1	Q	1	0	O	0	0	0	2,026	
	2000	0	1	1	0	0	0	0	0	125	6/
	2020 TOTAL	0 1	0	0/2	Ω 0	00	00	9	0	2,351	6/
7	1980	0	1	1	0	0	0	284	423,335	1,157	0
	2000	0	5	2	0	0	0	94	141,543	163	o
	2020 TOTAL	00	0 3	<u>o</u>	00	00	00	378	564,878	0	0
8	1980									1,320	ō
0	2000	0	0	0	0	0	0	55	104,224	983	1 Pumping Plan
	2020					0		98 12	169,374	368	0
	TOTAL	0	55	2/2	00	ō	00	165	$\frac{36,753}{310,351}$	1,351	1 Pumping Flan
9	1980	0	0	0	0	1	1	0	0	2,875	6 Water Contr
	2020	0	0	0	2	0	0	0	0	511	0
	TOTAL	00	0	00	2	0	0	00	9	3,386	6 Water Contr
10	1980	0	5	5	0	0	0	0	0	505	100 Wtr Cntrl S
	2000	0	17	17	5	0	0	3	13,111	344	50 Miles of Le
	TOTAL	00	25	25	9 5	00	0	0 3	13,111	889	Above
MR	1980	11	11	22	0	1	1		,171,384	17,147	
	2000	1	39	40	7	0	0	333	491,490	2,459	(Above)
	TOTAL	0 12	15 65	15 77	07	0	0	1.481 1	258,967	1,851	

^{4/} Authorized projects in upstream watersheds are counted as "existing" projects and are not shown here.
5/ Frimarily for hurricane protection. Other hurricane protection measures included in levees, channels, and pump plants.
5/ Unspecified number of water control structures.

than anything experienced in the past because of increased industrial and municipal growth in hurricane-prone areas. If the hurricane protection projects are not brought to a timely conclusion, there is a reasonable probability that the worst is yet to come.

Numerous smaller local protection projects in the region must also be brought to a speedy completion. Many of these projects will provide protection from urban flooding to small cities and towns.

In addition, some 60 small watershed projects must be expeditiously completed. These projects will lessen flood damages in upstream areas and, like many other flood control improvements, are designed to be multi-use with other types of output contributing to a general betterment of the regional welfare and economic enhancement.

Authorized and Proposed New Works. Completion of the backlog of projects in the Lower Mississippi Region will by no means solve the flood problems of the region. The rapid completion of those projects is necessary just to bring the level of damages down to those identified in Present Status and Future Needs and as described in more detail in Appendix E, Flood Problems.

The region is still faced with the problem of over \$212 million in average annual flood damages. This damage potential, about equally divided between principal streams and upstream watersheds, will continue to grow until by the year 2020 an average annual flood damage level of roughly \$490 million is expected. Half of that damage can and should be alleviated by economically feasible and workable structural solutions. In fact, much of the work required is presently authorized as shown on table 106. This authorized work is a compilation of projects which have not been funded for construction, and projects with lengthy construction schedules which, though technically classed as "under construction," actually will not be in place and providing the designed protection for 10 years or more, depending on future rates of funding. These projects include the St. Francis Basin Project, the Yazoo Basin Project, the Larto Lake to Jonesville Projects, the Cache River-Bayou DeView Project, the West Tennessee Tributaries Project, the West Kentucky Tributaries Project, and others. The authorized, unconstructed works in the Lower Mississippi Region consist of 10 reservoirs with a total flood control storage of 239,000 acre-feet, 2,238 miles of channel, improvement, 530 miles of levees, and 10 major pumping stations all associated with principal streams. Most of the work should be funded and constructed at a rate commensurate with completion by 1980 as shown in table 106. The remainder of the authorized work should be completed by 1985, except for the 122 miles of channel improvement (L'Anguille River, WRPA 2) shown in the 2020 time frame. Of the authorized works 530.1 miles of levees, 2,172 miles of channel improvement, and seven pumping plants with a total capacity of 10,980 c.f.s. are included in the aforementioned MR&T Project. These works should also be completed not later than 1985 (again excepting

the 122 miles of channel improvement shown in 2020). The authorized, unconstructed works constitute about one half of the tabulated structural flood control plan for principal streams.

The remainder of the structural component of the flood control plan consists of improvements needed and which appear to be economically feasible. These works are listed as "proposed" on table 104. Three major reservoirs having a total flood control storage capacity of 309,000 acre-feet, 2,635 miles of channel improvement, 782 miles of new levees, and 68 major pumping plants and miscellaneous works for hurricane protection are included in the plan for principal stream improvements by the year 2020. Much of this work is currently under a more detailed phase of study which could lead to authorization within a few years, and some will be authorized before this study is completed. The remainder must be studied in more detail and, if found to be justified, should be authorized and subsequently constructed by the time frames indicated in table 106. Most of the proposed work on principal streams in all but the coastal planning areas (WRPA's 8, 9, and 10) is for reduction of damages due to headwater flooding on principal tributaries in the region. The proposed work in the coastal areas is primarily a combination of hurricane protection projects and headwater flood protection projects. Improvements to principal streams will not only aid in flood damage reduction along principal streams but will also help relieve upstream watershed flood problems since principal streams serve as the outlets for those watersheds. The upstream watersheds contain about half of the total flood damage potential in the Lower Mississippi Region and about two-thirds of the agricultural damages. In order to relieve as much of the problem as is estimated to be economically feasible, a total of 1,461 flood-water retarding reservoirs with a total flood control storage of 1,922,000 acre-feet, 21,457 miles of channel improvement, about 60 miles of levees, one pumping plant, and a large but undetermined number of water control structures are needed by the year 2020. These upstream watershed improvements, which represent the bulk of the regional flood control plan, should be studied in more detail, authorized, and constructed by the time frames indicated on table 106.

Nonstructural Measures. Nonstructural measures in the plan consist of land treatment, provision of technical assistance, and general watershed management for all rural agricultural areas, and for technical assistance and flood plain information reports necessary to proper flood plain management in all urban and built-up areas, regardless of whether or not structural measures are included for those areas. Forty-three urban areas have been or are in the process of being provided with flood plain information reports and an additional sixty-eight urban areas are programmed for reports. Readily identifiable elements of the nonstructural program are summarized in table 107. In addition to those, flood forecast services, and hurricane, storm surge, and storm tide forecast programs have been valuable assets over the past few years and these programs will undoubtedly continue.

Table 107 - Flood Control Plan, Non-Structural Measures, Program A, Lower Mississippi Region

		Land Treatment	Rural-Built up Floodplain	Watershed	Floodpl Informa Repor	tion
WRPA	Time Frame	Assistance (Acres)1/	Management (Acres)	Management (Acres)	Complete or Underway	Planned
1	1980 2000 2020 TOTAL	0 0 0 0	0 0 0 0 0	0 0 0 0	2/	2/
2	1980 2000 2020 TOTAL	5,192,000 3,508,000 4,004,000 10,704,000	2,236,510 86,813 91,700 2,415,023	$8,034,240 \\ 291,200 \\ 411,200 \\ 8,736,640$	6	22
3	1980 2000 2020 TOTAL	2,219,000 2,466,000 2,678,000 7,363,000	293,353 111,401 114,643 519,397	1,928,704 918,208 668,480 3,515,392	14	O
4	1980 2000 2020 TOTAL	3,118,000 3,570,000 3,768,000 10,456,000	1,369,963 23,524 305,190 1,698,677	4,737,222 130,720 970,355 5,838,297	4	5
5	1980 2000 2020 TOTAL	3,334,000 3,595,000 4,062,000 10,991,000	663,829 87,238 503,462 1,254,529	1,750,432 161,600 1,283,136 3,175,168	9	5
6	1980 2000 2020 TOTAL	1,251,000 1,407,000 1,528,000 4,180,000	1,464,492 111,315 0 1,575,807	1,876,224 517,056 0 2,193,280	0	1
7	1980 2000 2020 TOTAL	1,126,000 1,195,000 1,379,000 3,700,000	348,050 59,911 0 407,961	2,690,048 1,018,048 0 3,708,096	1	1
8	1980 2000 2020 TOTAL	831,000 793,000 868,000 2,492,000	734,254 218,464 17,490 970,208	1,504,512 1,225,088 443,520 3,173,120	3	8
9	1980 2000 2020 TOTAL	1,850,200 2,087,700 2,211,600 6,149,500	1,809,952 468,606 0 2,278,558	3,025,152 797,120 0 3,822,272	4	16
10	1980 2000 2020 TOTAL	666,000 630,000 544,000 1,840,000	337,083 334,850 41,715 713,654	669,248 530,304 41,728 1,241,280	2	4
LMR	1980 2000 2020 TOTAL	17,587,200 19,311,700 21,042,600 57,941,500	9,257,486 1,502,128 1,074,200 11,835,814	26,195,782 5,389,344 3,818,419 35,403,545	43	68

I/ Non-critical areas only. Critical area treatment is included in sediment and erosion programs.
2/ Are included in adjacent WRPA.

One of the most effective nonstructural solutions to urban flood plain growth problems is the flood insurance program which requires effective zoning to prevent additional damageable growth in flood plains. In this regard, however, it is important to recognize that the vast Alluvial Valley flood plain would be submersed in its entirety if the River were allowed to spread out in time of flood without any confinement. It is therefore not comparable to most other flood plains. The River does not need to inundate a flood plain 25 to 80 miles wide. Moreover, long established urban and agricultural activity in this rich land area must be assured of every right to continue to grow and prosper.

The plan requires that local interests appropriately utilize flood plain information supplied by the various Federal agencies and vigorously pursue a program of intelligent management of the region's flood plains. Yet, a nonstructural program cannot solve existing flood problems, nor can it solve most of the future problems since damages increase largely because of expected increases in yields in rural agricultural areas and increased value of developments already in flood plains. Both the non-structural and structural components of the flood control plan are essential to a viable regional economy and the public health and welfare.

Plan Effectiveness. If implemented as described, the flood control plan will prevent \$113.6 million or about 40 percent of the expected average annual flood damage levels in 1980, \$184.8 million or 49 percent in 2000, and \$258.7 or 50 percent in 2020. It is worthwhile to note that these are average annual damages prevented, based on flood protection conditions as of 1970. Assuming a straight line relationship from time frame to time frame, in the study period 1970 to 2020 total damages prevented by the plan will amount to nearly \$8 billion, a significant reduction in waste of resources not only to the region but also to the Nation. Table 108 provides a detailed breakdown of average annual damages which would be prevented with the plan fully implemented. These damages prevented are those which would result from implementation of the plan shown in table 106 only. Were the damages to be prevented by completion of the backlog of projects included, the estimates would be greatly increased.

The estimate of average annual damages which would still exist even with the plan in place is shown in table 109. Hopefully, as more detailed studies are conducted and as nonstructural flood plain management is exercised, the residual damages can be further decreased.

The flood control plan as presently formulated will eliminate 45 percent of the region's urban damages and about 57 percent of agricultural and other damages. The large remaining urban damage potential is principally due to hurricane-induced tidal flooding in coastal areas where additional hurricane protection works (levees, interior drainage facilities, etc.) over and above those in the plan and those already under construction cannot be economically justified in the foreseeable future. The efficiency of the plan is shown by planning area in table 110.

Table 108 - Average Annual Flood Damages Prevented (\$1,000) by Flood Control Plan, 1/ National Income Objective, Lower Mississippi Region

		1980		Frm	Frmcipal Streams	cuns	-	2020	-		1980		Upstre	Upstream Watersheds	heds		2020	
A.P.Y	WRFA Urban	Non-Urban	Total	Urban	Non-Urban Total	Total	Urban	Non-Urban Total	Total	Urban	Non-Urban	Total	Urban	Non-Urban	Total	Urban	Non-Urban	Total
~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r.r	804	6,577	7,381	3,450	3,450 13,468	16,918	7,877	7,877 16,143	24,020	10	3 26,406	26,409	9	36,088	36,094	10	10 47,325	47,335
10	5,331	1,340	4,671	7,520	2,805	10,325	15,384	15,384 5,719	17,103	1,140	1,140 2,827	3,967	2,134	5.505	7,639	5,368	9,181	14,549
**	299	9,415	10,077	1,568	13,387	14,955	2,244	18,958	21,202	7	1 15,830	15,831	2	19,475	19,477	7	28,171	28,175
irī.	556	1,675	2,231	988	4,204	5,192	1,546	5,304	0,850	82	9,604	989,6	231	13,085	13,316	458	16,872	17,310
9	-	784	785	47	1,609	1,656	55	1,883	1,938	0	12,793	12,793	50	16,281	16,331	86	19,680	19,778
~	17	188	205	421	219	640	573	255	828	0	2,744	2,744	33	3,920	3,953	61	5,284	5,345
20	0	18	18	33	2.1	54	293	32	325	889	1,964	2,853	1,955	3,607	5,562	3,485	5,064	8,549
o	400	354	800	1,219	392	1,611	2,147	505	2,652	42	5,317	5,359	94	7,481	7,575	169	8,796	8,965
10	1,141	0	1,141	5,582	0	5,582	10,418	0	10,418	801	1,606	2,407	1,411	3,742	5,153	2,449	4,409	6,858
LMR	876,9	20,331	27,309	20,828	36,105	56,933	38,537	38,537 46,799	85,336	2,958	79,091	82,049	5.916	109,184,115,100	115,100		12,082 144,782	156,864

1/ As shown in table 106 only. Completion of entire backlog of projects now under construction will greatly increase the above.

Table 109 - Residual Average Annual Flood Damages (\$1,000), with Flood Control Plan in Place, National Income Objective, Lower Mississippi Region

	Total	5,119	52,929	35,252	36,098	17,179	12,155	6,253	5,484	11,918	75,603	247,990
2020	Watersheds	0	21,907	6,775	15,324	11,641	9,327	2,637	2,352	6,508	3,687	80,158
Dringing	Streams	5,119	31,022	28,477	10,774	5,538	2,828	3,616	3,132	5,410	71,916	167,832
	Total	4,470	42,572	25,370	26,262	13,662	10,649	4,556	5,885	10,613	51,160	193,197
2000 Thist ream	Watersheds	0	17,579	7,323	16,035	8,970	7,694	1,969	1,823	5,511	3,141	70,045
Principal	Streams	4,470	24,993	18,047	10,227	4,692	2,955	2,587	2,060	5,102	48,019	123,602
	Total	3,929	45,588	20,446	23,545	13,552	10,759	4,144	3,646	9,856	37,192	172,657
1980	Watersheds	0	15,628	6,542	13,183	7,663	7,187	1,847	2,317	2,067	3,943	63,377
Princinal	IS I	3,929	29,960	13,904	10,362	5,889	3,572	2,297	1,329	4,789	33,249	109,280
Planning	Area	1	2	23	4	S	9	7	∞	6	10	LMR

Table 110 - Effectiveness of Flood Control Plan, National Income Program, Lower Mississippi Region

WRPA	Damages Prevent Urban (Percen	
1	·	-
2	86	53
3	44	54
4	74	65
5	69	58
6	45	65
7	22	58
8	55	68
9	49	49
10	16	37
LMR	46	57

Sediment and Erosion

The control of erosion at its source is essential to maintaining the production potential of the region's cropland and pastureland. Furthermore, it is the key to alleviating subsequent problems of turbidity and suspended matter in the region's rivers and streams and of damaging sediment deposits on agricultural and other lands. Hence, the sediment and erosion plan for the National Income Program is composed of probable feasible measures for controlling the loss of topsoil from open areas with critical erosion problems, and for controlling the erosion of roadbanks and streambanks. The basic ingredient of the plan is the conversion of critically eroding open lands to vegetation, along with technical assistance to landowners. This ingredient combined with the stabilization of about 11,300 miles of roadbanks and 2,100 miles of streambanks (excluding the main stem of the Mississippi River in WRPA 1) will take care of the most critical regional needs for sediment and erosion control through the year 2020.

The sediment and erosion problem in WRPA 1 is nearly 100 percent the result of bank caving along the main stem of the Mississippi River although some minor amount of eroded material is also contributed from sheet erosion affecting 29,000 acres in the batture area. Control of sediment and erosion is a significant and integral part of the channel improvement feature of the continuing Mississippi River and Tributaries Project even though alleviation of this problem is not addressed per se; rather, it is a windfall benefit of works to maintain channel depths for navigation and works to insure the integrity of the flood control features of the project. The Channel Improvement Feature of the Mississippi River and Tributaries Project requires continued adequate funding to see it to a timely completion. No new investment is required to solve the sediment and erosion problem of WRPA 1, which represents only 6 percent of the total regional problem. Thus, WRPA 1 is omitted from the following plan. Funding requirements are discussed in a later. section dealing with total investments (pages 303 to 334).

The WRPA composition of the plan is given in table 111. To achieve the maximum contribution to the National Income objective, the primary thrust of the plan is directed to reclamation of approximately 1.4 million acres by replanting forests, grasses, and legumes in critically eroding areas. The mix of revegetation measures varies from over 70 percent reforestation and 30 percent planting of grasses and legumes in WRPA 6 to about 40 percent reforestation and 60 percent grasses and legumes in WRPA 3, with a regional average split of about 52 percent reforestation and 48 percent planting to grasses and legumes. Major emphasis is on WRPA's such as 3, 4, and 7, where lands marginal for cropping were historically cleared and planted, only to be abandoned when landowners failed to realize the economic returns envisioned. Revegetation as a plan measure is limited almost exclusively to areas subject to sheet erosion; an insignificant amount of revegetation may be applied to the reclamation of areas subject to other types of erosion. About 4 percent of the regional acreage with a foreseeable erosion problem in the year 1980 can be reclaimed through revegetation measures. This percentage can be increased to nearly 7 percent by the year 2000 and to almost 8 percent by the year 2020.

Roadbank stabilization measures are limited in application to 80 percent of the erosion problem areas because it is impossible to get full participation by the public in carrying out roadbank stabilization practices. Hence, the Sediment and Erosion Plan calls for measures to stabilize 11,330 miles of the region's 14,162 miles of roadbanks (42,487 acres) needing treatment for erosion. Of this, 4,500 miles are included in the 1980 time frame. An additional 4,000 miles are included as a year 2000 measure, and the remaining 25 percent are included in the year 2020.

Measures directed at control of streambank erosion, excluding the Mississippi River main stem, include structural measures such as contour farming, ditch checks, and reservoirs to retard erosion causing runoff.

Table 111 - Sediment and Brosion Plan, NI Objective, Lower Mississippi Region .

		Fore	sts	Grasses an	d Legumes	To	tal	Roadside E Control (M	
WRPA/	Time Frame	Incremental	Cumulative	Incremental	Cumulative	Incremental	Cumulative	Incremental	Cumulative
2	1980	36,700	36,700	27,800	27,800	64,500	64,500	441	441
	2000	14,600	51,300	15,000	42,800	29,600	94,100	386	827
	2020	9,700	61,000	10,000	52,800	19,700	113,800	275	1,102
3	1980	117,600	117,600	175,700	175,700	293,300	293,300	554	554
	2000	47,000	164,600	100,500	276,200	147,500	440,800	485	1,039
	2020	31,400	196,000	17,400	293,600	48,800	489,600	346	1,385
4	1980	154,200	154,200	81,900	81,900	236,100	236,100	806	806
	2000	61,700	215,900	65,800	147,700	127,500	363,600	705	1,511
	2020	41,100	257,000	29,400	177,100	70,500	434,100	503	2,014
5	1980	26,400	26,400	25,400	25,400	51,800	51,800	1,174	1,174
	2000	10,600	37,000	6,400	31,800	17,000	68,800	1,028	2,202
	2020	7,000	44,000	4,500	56,100	11,300	80,100	734	2,936
6	1980	6,100	6,100	2,200	2,200	8,500	8,500	165	165
	2000	2,300	8,400	900	5,100	3,200	11,500	145	310
	2020	1,600	10,000	600	3,700	2,200	13,700	103	413
7	1980	76,100	76,100	59,800	59,800	135,900	135,900	524	524
	2000	30,500	106,600	10,600	70,400	41,100	177,000	458	982
	2020	20,400	127,000	7,000	77,400	27,400	204,400	327	1,309
8	1980	10,900	10,900	10,300	10,000	20,900	20,900	232	232
	2000	4,300	15,200	1,400	1,400	5,700	26,600	203	435
	2020	2,800	18,000	700	12,100	3,500	30,100	145	580
9	1980	5,400	5,400	2,500	2,500	7,900	7,900	599	599
	2000	2,400	7,800	1,100	3,600	3,500	11,400	524	1,123
	5050	1,200	9,000	400	4,000	1,600	13,000	374	1,497
10	1980	3,100	3,100	900	900	4,000	4,000	38	38
	2000	900	4,000	200	1,100	1,100	5,100	33	71
	2020	0	4,000	0	1,100	0	5,100	23	94
LMR	1980	436,500	436,500	386,200	386,200	822,700	822,700	4,533	4,533
	2000	174,300	610,800	201,900	588,100	376,200	1,198,900	3,967	8,500
	2020	115,200	726,000	69,800	657,900	185,000	1,385,900	2,830	11,330

^{1/} Treatment and technical assistance in addition to that existing in 1970. Excludes main stem, Mississippi River.

Table 111 - Sediment and Erosion Flan, NI Objective, Lower Mississippi Region (Cont'd)

			Streamba	nk Erosion Co	ntrol (Miles)1/		Total Mi Roadbank	
		Upstream w	atersheds	Principal	Reaches	Subto	otal	Stream	
WRPA/	Fime Frame	Incremental	Cumulative	Incremental	Cumulative	Incremental	Cumulative	Incremental	Cumulative
2	1980	68	68	60	60	128	128	569	569
	2000	41	109	8	68	49	177	435	1,004
	2020	27	1,56	9	77	36	213	311	1,315
3	1980	348	348	21	21	369	369	923	923
	2000	208	556	14	35	555	591	707	1,630
	2020	139	695	15	48	152	743	498	2,128
4	1980	238	238	28	28	266	266	1,072	1,072
	2000	143	381	48	76	191	457	896	1,968
	2020	95	476	48	124	143	600	646	2,614
5	1980	76	76	0	0	76	76	1,250	1,250
	2000	45	121	5	5	50	126	1,078	2,328
	2020	30	151	5	10	35	161	769	3,097
6	1980	42	42	0	0	42	42	207	207
	2000	26	68	11	11	57	79	182	389
	2020	17	85	11	22	28	107	151	520
7	1980	106	106	0	0	106	106	630	630
	2000	64	170	3	3 5	67	175	525	1,155
	2020	42	212	2	5	1414	217	371	1,526
8	1980	40	40	0	0	40	40	272	272
	2000	24	64	0	0	24	64	227	499
	2020	16	80	0	0	16	80	161	660
9	1980	- 8	8	0	0	8	8	607	607
	2000	3	11	0	0	3	11	527	1,134
	2020	4	15	0	0	4	15	378	1,512
10	1980	2	2	0	0	2	2	40	40
	2000	1	3	0	0	1	3 4	34	74
	2020	1	4	0	0	1	4	24	98
LMR	1980	928	928	109	109	1,037	1,037	5,570	5,570
	2000	555	1,483	89	198	644	1,681	4,611	10,181
	2020	371	1,854	88	286	459	2,140	3,289	13,470

¹ Treatment and technical assistance in addition to that existing in 1970. Excludes main stem, Mississippi River.

Such measures applied to problem areas in both upstream watersheds and along principal streams will collectively control streambank erosion on 7 percent of the problem streams in 1980, 12 percent in 2000, and 15 percent in the year 2020. An additional plan component which is used in conjunction with all of the above measures throughout the region is watershed management in the form of land treatment measures such as changing cropping patterns, changing land cover crops, and improving existing tillage practices.

By implementing the plan, damages from sediment and erosion could be reduced by an average of nearly \$7 million per year to 1980, slightly over \$13 million per year between 1980 and 2000, and nearly \$20 million per year for the period 2000 to 2020. These figures represent roughly 38, 60, and 72 percent overall effectiveness of the sediment and erosion plan for 1980, 2000, and 2020, respectively, when compared to predicted damages of \$17.8 million, \$21.9 million, and \$27.3 million, respectively. Effectiveness of the plan by WRPA is given in table 112. It is estimated that the land treatment measures, though less than 100 percent effective in solving the sediment and erosion problems, will satisfactorily support the agricultural production estimates. However, continued surveillance of the effectiveness of the land treatment measures will be required to substantiate these estimates.

Drainage

The orderly removal of excess surface water from cropland and pastureland will be required in future years to improve agricultural production efficiency, thereby helping to increase yields to meet expanding food and fiber needs. The drainage plan for the National Income Program includes over 21,000 miles of on-farm ditches, nearly 13,000 miles of secondary ditches, and approximately 9,500 miles of project channels for drainage. The plan also calls for improved row arrangement, field diversion terraces, and similar watershed management practices (land treatment) to enhance the production potential of agricultural lands with a drainage problem.

The recommended drainage measures summarized in table 113 will solve 55 percent of identified regional drainage problems through the year 2020. On-farm drains comprised of V and W ditches and secondary ditches account for 35 percent; these combined with watershed management increase the percentage to 50 percent; when project channels are added to complete the plan, it provides for satisfactory removal of excess water from 6.5 million acres of the region's nearly 12 million acres predicted to have a drainage problem in 2020.

The plan places major emphasis on drainage of agricultural lands in WRPA's such as 2, which are the region's prime crop producers. Plan effectiveness varies widely by WRPA, with a low of 3 percent in WRPA 3 in 1980 and a high of 80 percent in WRPA 5 in 2020. Table 114 gives a summary of needs met by the drainage plan. Of the identified regional needs, 13 percent can be met in 1980, 35 percent in 2000, and 55 percent in the year 2020.

Table 112 - Plan Effectiveness, Sediment and Erosion Plan, Regional Development Program, Lower Mississippi Region

WRPA	Time Frame	Ave	erage Annual Da	amages1/	
		Total (\$1,000)	Prevented by Plan (\$1,000)	Remaining Damages (\$1,000)	Plan Effectiveness (Percent)
2	1970 1980 2000	905 1,025 1,159	391 713	634 446	38 62
	2020	1,230	946	284	77
3	1970 1980 2000 2020	7,728 8,846 12,212	3,364 7,234	5,482 4,978	38 59
		16,612	11,713	4,899	71
4	1970 1980 2000 2020	2,723 3,775 4,440 4,888	1,470 2,734 3,683	2,305 1,706 1,205	39 62 75
5	1970 1980	509 633	225	408	36
	2000 2020	748 813	419 620	329 193	56 76
6	1970 1980	359 488	195	293	40
	2000 2020	598 692	354 509	2 44 183	59 74
7	1970 1980 2000 2020	1,540 2,038 2,241 2,476	783 1,361 1,810	293 880 666	38 61 73
8	1970 1980 2000 2020	975 969 1,153 1,340	373 695 973	596 458 367	38 60 73
9	1970 1980 2000 2020	47 74 121 209	23 68 150	51 53 59	31 56 72
10	1970 1980 2000 2020	66 60 61 53	24 37 42	36 24 11	40 61 79
MR	1970 1980 2000 2020	14,851 17,906 22,735 28,313	6,848 13,615 20,446	11,058 9,120 7,867	38 60 72

^{1/} Cumulative by time period. Sediment and erosion damages in WRPA 1 are discussed in conjunction with the MR&T Project.

Tablell3 . Drainage Plan, NI Objective, Lower Mississippi Region

				On Farm Drains (Miles	ns (Miles)			Drotoot Channels for	and a form	Total Drugge	ra fne	Materehad Management	Management
		V and W	Ditches	Secondary	Secondary Ditches	Subtotal	otal	Drainage (Miles)	Miles)	and Channels	nnels	(Ac.	(Acres)
WRPA/Time Frame	Frame	Incremental	Cumulative	Incremental	Cumulative	Incremental	Cumulative	Incremental	Cumulative	Incremental	Cumulative		Incremental Cumulative
400	1980	1,580	1,580	1,890	2,850 4,740	2,530 5,060 5,050	2,530 7,590 12,640	2,400	2,400	4,930 5,080 5,120	4,930 10,010 15,130	948,500	1,422,700
a a a	1980 2000 2020	000 000 110	60 160 270	388	100 100 160	100 160 170	100 260 430	383	120 180 180 180	140 240 230	140 380 610	16,100 32,200 32,300	16,100 48,300 80,600
- aaa	1980 2000 2020	980 1,960 1,940	8, 980 0,940 0,880	600 1,170 1,160	600 1,770 2,930	1,580	1,580 4,710 7,810	2,460	2,460	4,040 3,130 3,100	4,040 7,170 10,270	294,900 589,800 589,800	294,900 884,700 1,474,500
-	198c 2000 2020	370 750 710	570 1,120 1,830	220 1450 1450	220 670 1,110	590 1,200 1,150	2,940	320 110 220	320 4.30 650	910	2,220 2,520 3,590	229,100 229,100	114,600 343,700 572,800
400	2980 2020 2020	950 850	1,300	280 520 500	280 800 1,300	720 1,380 1,350	720 2,100 3,450	140 0	920	1,460	1,460 3,020 4,370	265,400	131,700 595,100 658,500
-	1980	8 0.041	80 210 350	288	250 220 220	130 210 230	130 340 570	82 g o	280 320 320	410 250 230	410 660 890	21,400	21,400 64,200 107,000
400	1980 2000 2020	70 140 140	70 210 350	388	130 220 220	110 230 230	340 570	160 0	2888	540 590 830	540 930 1,160	20,800 41,600 41,600	20,800 62,400 104,000
6	1980 2000 2020	630 1,270 1,250	630 1,900 3,150	380 770 750	380 1,150 1,900	2,040	1,010	1,200	1,200	2,210	2,210	196,800 393,500 393,600	196,800 590,300 985,900
10 10	2000	150 150 150	240 390 390	50 100 100	250	130 260 250	05.5 05.9 05.9 05.9	160	300 +600	1,430 1,430 2,900	430 850 1,140	25,800 51,700 51,600	25,800 77,500 129,100
EMI TO CO	1980 2000 2020	8,530	4,290 12,820 21,270	2,610 5,140 5,080	2,610	6,900	6,900	8,170 950 390	8,170 9,120 9,510	15,070 14,620 13,920	15,070 29,690 43,610	1,296,400 2,592,500 2,592,700	1,296,400 3,888,900 6,481,600

1) Messures additional to those existing in 1970.
2) Devinage channels included in Flood Control Flan for upstream watersheds.

Table 114, Plan Effectiveness, Drainage Plan, NI Objective, Lower Mississippi Region

WRPA/	WRPA/Time Frame	Drainage Needs1/ (1,000 Acres)	On Farm Drains	Need Met Dy Proposed Drainage Measures (1,000 Acres) On Farm Drains Watershed Management Plus Project	On Farm Drains Plus Watershed Management Plus Project Channels	Plan Effectiveness 2/ (Percent)
7	1980	3,370	147	213	474	14
	2000	3,620	441	640	1,423	39
	2020	3,700	735	1,067	2,371	64
ы	1980	520	9	11	16	3
	2000	570	27	33	48	8
	2020	620	43	53	81	13
4	1980	1,930	80	121	295	15
	2000	2,060	239	363	885	43
	2020	2,210	413	634	1,474	67
S	1980	510	45	60	114	22
	2000	620	137	182	344	55
	2020	720	235	309	573	80
9	1980	1,130	38	57	132	12
	2000	1,190	115	170	395	33
	2020	1,250	191	283	658	53
7	1980	380	15	17	21	6
	2000	410	45	51	64	16
	2020	440	75	86	107	24
20	1980	180	9	12	21	12
	200 0	200	28	36	62	31
	2020	230	47	60	104	45
6	1980	2,000	112	150	197	10
	2000	2,200	325	449	590	27
	2020	2,340	531	738	984	42
10	1980 2000 2020	160 190 230	. 8 E	5 16 26	26 78 129	16 41 56
IMR	19 80 2000 2020	10,180 11,060 11,740	458 1,365 2,283	046 1,940 3,256	1,296 3,889 6,481	13 35 55

1/ See Appendix I, Agricultural Land Drainage
2/ Plan is 100 percent effective in all WWA's and all time frames in terms of meeting absolute needs for food and fiber production.

Water Quality Management.

The water quality plan included in the National Income Program is displayed in table 115 and is presented graphically in figure 17. The plan deals specifically with the problems of biodegradable organic wastes and bacteria, and with solutions judged technically feasible at this time. It deals only generally with other pollutants such as thermal wastes, nutrients, toxics, dissolved solids, and exotics.

In view of the fact that guidance for major features of the Federal Water Quality Act Amendments of 1972 concerning "best practicable treatment currently available" and "best available treatment economically achievable" has not yet been published by the Environmental Protection Agency and because of the treatment backlog in existence in the Lower Mississippi Region, it is unrealistic from a physical construction standpoint to expect all municipalities to realize secondary treatment by July 1, 1977. Accordingly, the water quality plan is considered as complying with the 1972 Federal Water Quality Act Amendments in line with the current interpretation being given that Act by allowing for the highest possible level of treatment in the shortest possible time span. utilizing a range of options which include not only treatment but also assimilation and reaeration, while also taking into account State Stream Standards and physical and budgetary constraints. All of these considerations result in attainment of secondary treatment somewhat later than specified in the 1972 Act.

The primary requirement for the Program A water quality plan is that all municipalities attain secondary treatment by 1980, advanced treatment by 2000, and continued advanced treatment through 2020. Industries are required to attain equivalent levels of treatment. Lacking guidance to the contrary, these equivalent levels of treatment are considered to be "Best Practicable Control Technology Currently Available" in the short term and "Best Available Technology Economically Achievable" in the longer range picture. These levels of 5-day BOD reduction are 96 percent corresponding with advanced waste treatment, (96 percent reduction in $\rm BOD_5$ for municipalities), respectively.

Where these levels of treatment do not provide an effluent whose 5-day BOD can be assimilated by receiving streams without violation of stream standards, treatment and assimilation are supplemented by mechanical reaeration. This option is used in all WRPA's except 7. It is used to satisfy 11,000 and 13,000 pounds of BOD5 in WRPA's 6 and 10, respectively, in the year 2020. In all the other planning areas, in all time frames, it is used to remove less than 10,000 pounds. Chlorination is included in all time frames and is applied to all municipal waste discharges in sufficient strength to prevent problems from pathological bacteria.

Non-BOD pollutants were not quantified because of a dearth of information and rampant contradictions that surfaced in attempts to address the subject in specific terms. Data on alternatives and costs of treatment for these pollutants were catalogued, but a meaningful program

Table 115 - Water Quality Plan, Program A, Lower Mississippi Region

Municipal and Industrial Organic Waters

Change C	Figure F					Municipal			-		Ind	Industriul		
1900, 1900	Budge Existing Proposed Sarvage Machinitor Budge Budge Budge Machinitor Budge Bu		Gross		BOD, Removal	(1,000 lbs.)		Remaining	Gross		BOD Remova.	(1,000 ibs.)		Remaining
4.5. 114 1.5 <th>4.5. 314 1.5<th>4</th><th>Loading (1,000 lbs</th><th>Existing Trestment</th><th>Proposed 2</th><th>Stream Assimilation 2</th><th>Mechanical Reservation</th><th>Load (1,000 lbs.)</th><th>BOD₅ Loading (1,000 lbs.)</th><th>Existing Treatment1/</th><th>Proposed Treatment</th><th>Stream</th><th>Mechanical</th><th>BOD₅ Load (1,000 lbs.)</th></th>	4.5. 314 1.5 <th>4</th> <th>Loading (1,000 lbs</th> <th>Existing Trestment</th> <th>Proposed 2</th> <th>Stream Assimilation 2</th> <th>Mechanical Reservation</th> <th>Load (1,000 lbs.)</th> <th>BOD₅ Loading (1,000 lbs.)</th> <th>Existing Treatment1/</th> <th>Proposed Treatment</th> <th>Stream</th> <th>Mechanical</th> <th>BOD₅ Load (1,000 lbs.)</th>	4	Loading (1,000 lbs	Existing Trestment	Proposed 2	Stream Assimilation 2	Mechanical Reservation	Load (1,000 lbs.)	BOD ₅ Loading (1,000 lbs.)	Existing Treatment1/	Proposed Treatment	Stream	Mechanical	BOD ₅ Load (1,000 lbs.)
1,	1,		C4 C6	74	71.0	7-	OI -	00	4.5 78	ৱ ৱ	23.		0 -	00
1989 1989	19		17.	7.7	66		1	0	151	ನ	128	-		0
1,	# 5.55		193	*	140	18	1	0	84	192	281	1.3	,	0
11	11.		88 59 9 59	まま	362	4 1-	٦0	00	1,999	192	1,765	13 26	* 0	00
13 13 13 13 14 15 15 15 15 15 15 15	100							c	0.5	13	42			0
1,	17. 17.	0	53	53	52	.	-1 0	00	in a	7.5	0 0		-	00
1,046 4,66 5,66 5,67 1,046 4,96 1,046 4,96 1,047 1,047	136 46 56 2 1,046 456 1,046 456 1,046 456 1,136 17 1 166 166 16 1	20	255	7 27	72	403	00	00	382	22	383	7 1-		00
106	106	C	7.0	3	8	5	2	0	1.046	450	267	55	1	0
15	15		108	9	Cig		-	0	1.867	456	1.491	19	-	0
18	18		146	2 9	38	+ cu	0	0	5,045	450	3,148	150	N	0
1	1	-	12	æ	7		0	0	179	95	81	0	9	0
10	10		200	ac		C	-	0	291	26	15.7	0	5	0
10	10		2.1	α	12	00		0	646	92	14	0	10	0
1	1	-	10	4	5	-	0	0	226	8	118	6	0	0
16	1,		7.1	*	. 0	0	0	0	397	66	290	00	0	0
56 23 59 6 0 506 157 294 175	56 23 23 29 6 0 508 137 755 175		18	4	13	1	0	0	165	8	651	15	0	0
15	15		8%	23	59	9	0	0	508	161	\$2	11	0	0
115 23 69 2 1 1 0 1,347 131 1310 55 0 1 1 1 1 1 1,110 55 0 1 1 1 1 1 1,110 55 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	115 23 69 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		₫	23	65	2	0.	0	25	197	735	16	0 0	0 0
115	115		115	53	60	2	,	5	14.1	161	7, (10	35	>)
115	115 4,0 72 2 1 0 1,485 223 1,529 9 12 222 92 109 19 2 0 1,355 289 1,019 14 3 392 92 294 5 1 0 1,355 289 1,019 14 3 397 92 294 5 1 0 2,940 2,940 2,019 29 3 398 313 315 746 16 16 0 6,986 1,650 2,117 70 24 4,95 313 1,112 25 5 0 1,950 11,636 1,650 37 4,455 313 1,112 25 5 0 1,950 11,636 1,650 37 5 5 5 5 5 5 5 5 5 5		8	3	3	7	7	0	90%	223	569	7	7	0
144	144 46 100 3 1 0 1,445 222 1,239 9 12 222 92 204 5 1 0 1 2 0 1,455 20 1,039 14 20 1		115	9	72	. ~	-	0	827	223	593	2	6	0
222 92 109 19 2 0 736 289 428 17 2 302 92 204 5 1 0 1,355 289 1,019 14 3 397 92 297 7 1 0 2,940 289 1,019 14 3 783 313 395 64 11 0 5,940 1,600 2,117 90 21 1,031 313 746 16 6 6,996 1,600 5,176 76 24	222 92 109 19 2 0 736 289 428 17 2 92 29 204 5 1 0 1,355 289 1,039 14 3 397 64 11 0 3,948 1,60 2,117 90 21 1,631 313 746 16 6 0 6,498 1,60 5,176 76 24 1,455 313 1,112 25 5 0 13,491 1,600 11,636 1,96 37	-	1	3	100	~	7	0	1,485	223	1,239	6	12	0
302 92 204 5 1 0 1,255 289 1,019 14 3 397 92 297 7 1 0 2,940 1,660 2,117 90 21 1,63 313 395 64 11 0 6,940 1,660 2,117 90 21 1,631 313 746 16 0 6,950 1,760 5,176 76 24	302 92 204 5 1 0 1,255 289 1,009 14 3 397 92 297 7 1 0 2,940 289 2,119 29 3 1,63 313 376 64 1 0 5,040 1,650 2,117 90 21 1,65 313 746 16 0 6,696 1,650 5,176 76 24 1,455 313 1,112 25 5 0 15,491 1,650 11,636 1,96 37		222	35	109	19	cv	0	736	289	428	17	c.	0
783 313 395 64 11 0 5,946 289 2,219 29 3 7 1,000 1,000 2,117 90 21 1,001 1,001 1,000 2,117 90 21 1,001 1,001 1,000 2,117 90 21 1,001	1971 92 297 7 1 0 2,940 289 2,127 29 3 1,051 313 766 16 0 5,986 1,650 2,117 70 22 1,051 313 766 16 0 1,590 1,550 5,176 76 24 1,455 313 1,112 25 5 0 13,451 1,560 11,636 15,636 37		×05	00	304		7	0	1,325	583	1,019	14	~	0
783 313 355 64 11 0 3,848 1,650 2,177 30 21 1,061 1,661 2,177 30 21 1,061 313 746 16 6 0 6,896 1,650 5,176 76 24	783 313 3195 64 11 0 5,848 1,650 2,117 30 21 1,001 1,001 313 746 16 6 0 6,896 1,620 5,176 76 24 1,405 313 1,112 25 5 0 1,540 11,630 11,630 13,0		165	18	297	1	7	0	2,540	589	2,219	53		0
1,081 313 746 16 6 0 6,895 1,550 5,176 76 24	1,081 313 746 16 6 0 6,095 1,650 5,176 76 24 1,455 313 1,112 25 5 0 1,5,451 1,650 11,638 156 37	0	783	313	395	\$	11	0	5,848	1,620	2,117	8	12	0
	1,455 313 1,112 25 5 0 15,451 1,040 11,050 170 5/	-	1,081	313	146	91	9	0	6,896	1,520	5,176	92	54	0

I Treatment levels as of 1970.

System according treatment to achieve 30 percent BOD, removal by 1950, and advanced treatment to achieve 36 percent removal by 2000, with centinued 36 percent removal through 2020.

A setablished expectly of receiving stream at point sources of efficient discharges.

Sometinued associatory treatment to achieve 36 percent BOD, removal (equivalent to 30 percent for manicipalities) by 1950, and advance treatment to achieve 36 percent removal by 2000, with continued 36 percent removal by 2000.

Table 115- Water quality Plan, Program A, Lower Mississippi Region (cont'd)

	Other Pollutants	वोवोवो	नोनोनो	नोनोनो	नोनोनो	नोनोन	नोनोनो	नोनोनो	वोवोवो	नोनोनो	नोनोन
Bacteriological Mastes	Unchlorinated Discharge	000	000	000	000	000	000	000	000	000	000
	Proposed Chlorination	8.56.5 8.26.5	113.8 189.5 280.9	45.6 63.4 88.8	8.45 8.40	2.1 5.0 5.0	6.1 8.9 13.3	20.4 144.3 76.3	32.4 61.6 99.0	74.1	359.2 604.6 925.4
	Existing Proposition (mgd) Existing Propositional Chlorina	222	27.3 27.3 27.3	000	19.0	9.09	666	5.65	111	134.7	284.7 7.455
	Bacterial Effluent Discharge	+0.58	216.8	4.9.6 4.7.6 92.8	85.0 85.0 1.0	6.7 9.0 9.0	8.0 10.8 15.2	45.6 69.5 101.5	76.9 106.1 143.5	272.7 350.0	669.3 1.190.1
Agricultural Organic Astes	Femalning ECD5 Discharge	000	000	000	000	000	000	000	000	000	000
	Proposed Treatment 2	87 F 94	58 75	62.4	98 69 91	4 49	ম বঞ্জ	表목국	8 23	m = in	4 £ £
	Potential Discharge To Streams	28 55 58	185	67-3	98 911	17 SI	043	₹ % 3	18 TH	M.# IN	\$ 2.5 \$ 2.5 \$ 2.5
Agricultural	Land Assimilation (1,000 lb.)	0.858	175 493 214	282 568 1,042	292 (59 1,353	843	11.4 305 554 554	8 5 5 4	14.9 420 777	186	1,290 2,500 6,404
	Land AS	252	785 785 785	888	1,009	ब्ब्द	iii	888	659	888	18.3
	Gross Bob wastes2/ (1,000 lbs.)	717 950 1,265	8.1.1 8.5.1.1 4.8.5.1.1	1,123	1,367	4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	980 779 779 779	925 1,082 1,082	834 1,112 1,476	300	6,415 9,106 10,116
	FA Time Frame	2000	2000	2000	0000	7,000 7,000 7,000 7,000	2000 2000 2000 2000	0000	2002	2020	2000

y organic washes from livestock and positive factualing both point sources and non-point sources.

Organic washe disposit as of 1700 washe methods as direct land supplication, entered also and are a combination of these.

Organic washe disposit as of 1700 washe methods as direct land supplication, the restead of the source of political point sources of political and are a complexitied to the source of political as a complexity of the source of political as a rate which will provide nationate that can be fally utilized by the crops.

Organic and the source of the source of the political as a rate which will provide nationate that can be fally utilized by the crops.

Freedomst seed as of 1270, application of engine has freedom and are confined by the crops.

Freedomst of incognic sections fact that are found that one confined by the crops.

Freedomst seed as of 1270, and source source of the crops of the crops of incognic sections and the crops of incognic sections.

MUNICIPAL AND INDUSTRIAL ORGANIC WASTES

AGRICULTURAL ORGANIC WASTES YEAR 1980 YEAR 2000

REGIONAL WATER QUALITY

NATIONAL INCOME OBJECTIVE

POINT SOURCE DISCHARGE TO STREAMS. SECONDARY TREATMENT EQUIVALENT TO PROPOSED MUNICIPAL AND INDUSTRIAL WASTE TREATMENT REQUIRED. * * * POINT SOURCE DISCHARGE

PLAN

component for satisfaction of such needs obviously could not be developed. To generalize on pollutants as myriad and complex as non-BOD pollutants is to oversimplify, but the present state of the art permits no other recourse. In recognition of the need to place the total regional water pollution problem in the proper perspective, there is included herein (page 333) an assessment of general order costs involved in ameliorating this problem. These estimates were derived from data in the EPA publications, "The Cost of Clean Water," "The Economics of Clean Water," and "Industrial Pollution of the Mississippi River in Louisiana," freely applying approximations and judgment. Implementation of the National Income Objective water quality plan can satisfy all recognized 5-day BOD and bacterial pollutant loadings for all study time frames as indicated in the "remaining BOD₅ load" and "unchlorinated discharge" columns on table 115.

The region presently generates a total waste load of some 2 million pounds of 5-day BOD greater than is being treated or assimilated by land or water. The National Income Objective water quality plan contains measures designed to eliminate this backlog by year 1980 by a combination of measures including additional treatment, continued assimilation of agricultural wastes by land disposal (methods in use include direct land application, aerated lagoon-irrigation systems, holding tanks, or some combination of these), the use of the region's streams for assimilation where this can be done without violating dissolved oxygen requirements contained in State Stream Stream Standards and, to a limited extent, mechanical reaeration, to handle the minor amount of BOD5 remaining after application of all other measures. Even though elimination of the water quality backlog detracts somewhat from maximization of the gross national product, it is nonetheless included as a Program A measure in recognition of national policy. Stream assimilation was allowed to vary by all time frames utilizing up to the total assimilative capacity of receiving streams before mechanical reaeration was applied to remaining loads. One constraining condition was, however, that once reaeration was used that same level was maintained through the next time period unless the particular planning area involved showed a consistent drop in need for this option. This was because reaeration involves physical measures of some sort and it is unrealistic to put these works on line in one period, abandon them the next, and add them again in the third time period. This adjustment involved only a very minor change in the mix of measures.

Navigation

In 1970 a little over one-fourth of the Nation's waterborne commerce moved through some part of the 3,418 miles of channels, 20 locks, 17 ports, and related facilities that made up the navigation system of the Lower Mississippi Region. The regional traffic amounted to 84 billion ton-miles during that year and is predicted to increase to 392 billion ton-miles by the year 2020. To meet the future needs for increased waterborne commerce in the region will require not only the improvement and expansion of existing navigation facilities, but also the construction of new facilities. The Congress has already authorized the improvement of 1,221 miles of the existing channels, the construction of 138 miles

of new channels, the rehabilitation of two existing locks, and the construction of one new lock; but even further additions will be required to fulfill the region's long term navigation needs.

The navigation plan summarized for the National Income Objective in table 116 calls for the continued operation and maintenance of the existing projects and timely construction of the authorized improvements, and proposes feasible additions thereto. The proposed additions include the enlargement of 942 miles of existing channels and the construction of 415 miles of new channels. The plan provides for the rehabilitation or replacement of six old locks, the construction of new locks at 10 locations, the expansion of 14 existing ports and the construction of 21 new ports. The provision of these facilities and a superport in the Gulf Coast area, together with the already existing and authorized navigation projects, will satisfy all identified regional navigation needs through the year 2020. About half of the proposed new facilities, including the superport, are required for needs satisfaction through the year 1980. The remainder fall within the category of long-term requirements.

Hydropower

The hydropower plan for the National Income Objective consists primarily of (1) the continued utilization of peak power produced by existing regional hydroelectric plants which provide a portion of the total hydroelectric energy generated in the power market area in which the Lower Mississippi Region is located and (2) the provision of all additional feasible hydroelectric power which can be developed in the Lower Mississippi Region. As outlined in Appendix R, as of 1970 the power market area contained 28 such plants, including four that are within the hydrologic boundary of the Lower Mississippi Region. The dependable capacity of the regional plants is 162,000 kilowatts, or 8 percent of the combined dependable hydroelectric plant capacity (1,939,500 kilowatts) of the market area.

Aside from existing plant facilities in the power market area, there are eight additional hydroelectric power plants under construction or definitely proposed within the market area. These scheduled plants have a combined dependable capacity of 1,022,600 kilowatts, and are expected to be in service by 1980. This means that by the end of 1980 the total dependable hydroelectric capacity in the power market area will amount to nearly 3,000 megawatts. There is no firm plan for additional plants beyond 1980.

Load forecasts and projected patterns of generation for the power market area indicate that the existing and scheduled hydropower facilities combined with existing and scheduled fuel-electric generating capacity (see Appendix R for details on fuel-electric generating capacity) will meet all foreseeable market area needs through year 1990. However, the nature of future loads indicates that all conventional hydroelectric power that can feasibly be developed within the region and substantial quantities of pumped storage capacity can be marketed in the power area.

298

Table 116 - Navigation Plan, Program A, Lower Mississippi Region

	Navigation Locks	Authorized ² /	0	0	0	-	0	0	0	0	1(1)	1(1)	3(2)
	Navig	Existing Aut	0	4	0	0	±	0	0	CV.	4	9	8
		Total Ex	720 720 720	528 528 528	000	189 189 189	351 351 352	000	000	273 273 273	705 720 720	984 984 186	3,252 3,267 3,267
	hannels	Proposed2/	000	000	000	000	000	000	000	000	84(84) 270(255) 0	97(97) 188(188) 0	381(181) 458(443) 0
	Shallow Draft Channels	Authorized2/	718(718)	0	0	163(163)	0	0	o	0	238(238)	182(96)	1,301(1,215)
Navigation Waterways (Miles)		Existing1	720	328	0	189	351	0	0	273	705	000	2,966
1on Wate	-	Total	272 272 273	000	000	000	000	000	000	000	30.00	133	\$ \$ \$ \$
Navigat	annels	Proposed 2	228(228) 0 0	000	000	000	000	000	000	000	6(6) 34(34) 200	50(50)	284 (284) 34 (34) 200
	Deep Draft Channels	Author1zed2/	0	0	0	0	0	0	0	0	3(3)	55(3)	58(6)
		Existing1/	the	0	0	0	0	0	0	0	100	81	452
		ARPA/Time Frame	2000	2000	1980	1980	1980	1980	1980	1,980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020
		WRPA/TIE	4	CV.	n	.	~	9	7	90	•	10	EAST.

1/ Active Federal projects and projects under construction as of 1970. Does not include existing private port facilities or existing Federal projects on which matherance has been discontinued.
2/ Includes both mew facilities and improvement of existing facilities. Total given first, with improvement indicated in parentheses. Proposed facilities are additional to existing and authorized facilities.

Table 116 - Navigation Plan, Program A, Lower Mississippi Region (Cont'd)

		Mavigation Locks	Locks			Navi	gation Po	Navigation Ports (Number)			
		(Number)			Deep Draft	t			Shallow Draft	raft	
WRPA/T	WRPA/Time Frame	Proposed2/	Total	Existing	Authorized	Proposed2/	Total	Existing1/	Authorized2/	Proposed2/	Total
-	1980 2000 2020	000	000	ৌ	ત્ર	ননন	ননন	7	ો	ননন	ગગગ
N	1980 2000 2020	000	444	0	•	000	000	.	0	$^{2(1)}_{6(1)}$	2011
m	1980 2000 2020	000	000	0	0	000	000	м	0	0 1 (1)	mmm
4	1,980 2000 2020	400	વિવસ	0	0	000	000	n	0	7(3) 1(1) 2(2)	
~	1980 2000 2020	N00	999	0	0	000	000	7	0	5 2(1) 2	9~6
9	1980 2000 2020	000	000	0	•	000	000	7	0	3(1)	๓๓๓
7	1980 2000 2020	000	000	0	0	000	000	1	0	0 1(1) 0	~~~
00	1980 2000 2020	0 2(1) 1	ณ ๆ 🛨	н	0	000		0	0	000	000
٥	1980 2000 2020	2(T) 5(T) 0	000	CU	0	000	લા લા લા	CI	0	000	000
07	1980 2000 2020	2(1) 3(2)	~00	, • -	0	000		0	0	000	000
8	1980 2000 2020	6(3) +(2) +(3)	% & #	***	0	गे.००	<i>च्रेच्रेच्</i> र	13	0	18(6) 11(5) 6(3)	బ్ఞ

3/ Mississippi River ports listed with WRPA ports. 4/ Includes superport in Gulf Coast area.

Potential hydroelectric projects in the overall power market area and outside the confines of the Lower Mississippi Region include 20 conventional projects and 6 pumped storage projects with a combined dependable capacity of 5,062 megawatts. The output of these potential projects can be marketed within the region through interconnected operations in the power market area. Of these projects, the potential output from two conventional and three pumped storage projects might be available in 1980, with the output from the others possibly available in 1990. A summary of these projects is given in table 117.

Terrain features within the hydrologic confines of the region limit the hydroelectric power development potential mostly to expansion of existing projects. One exception is the DeGray project, Caddo River, Arkansas, under construction as of December 31, 1970, with a dependable capacity of 68.0 megawatts. An already planned addition thereto will increase this capacity to 108.0 kilowatts. Similar additions, totaling 34.6 MV at the Carpenter and Remmel projects, are being studies by their owner, Arkansas Power and Light Company, as a condition to renewing license No. 271 with the Federal Power Commission. Other such additions include 25.5 MW of potential capacity at Federal projects; 18 MW at the Sardis project on Little Tallahatchie River in Mississippi, and 7.5 MW at the Wappapello project on the St. Francis River, Missouri. Beyond these potential additions the recognized potential for interregional development of new hydropower projects is limited to only three sites Benton, Saline River, Arkansas; Rowland Church, St. Francis River, Missouri; and Youngton, Black River, Mississippi. The potential output of these projects is summarized in table 118, which gives a WRPA breakdown of the region's existing and potential hydroelectric power projects.

In view of the current energy crisis and the uncertainty of future energy requirements, the potential marketable additions to the Carpenter, Remmel, DeGray, Sardis, and Wappapello projects are included as 1980 components of the hydropower plan for the National Income Objective. In doing so, it is recognized that this may be a somewhat unrealistic timeframe for planning and developing these additions. The Rowland Church, Benton, and Youngton projects are included as plan components for the year 2000. The Youngton project is included with no apparent economic justification at this time. Future conditions regarding the criticality of need for electric power may require analysis of hydropower development using a criterion other than the benefit-cost analysis. Thus, the Youngton project, as well as the other projects proposed for 2000, could be considered for earlier development.

No meaningful assessment of the effectiveness of the region's hydroelectric power development in meeting future needs could be made because of the complex interrelationship between all power sources and marketing procedures in the power market area of which the Lower Mississippi Region is only a part.

Table 117 - Potential Hydroelectric Projects in Power Market Area with Output Marketable in Lower Mississippi Region1/

Project	Stream	State	Dependable Capacity
Conventional - by 1980			(MW)
Wolf Bayou	White R.	Arkansas	180
Kaw	Arkansas R.	Oklahoma	25
Total			205
Pumped Storage - by 1980			
Optimus	White R.	Arkansas	500
Petit Jean	Arkansas R.	Arkansas	561
Tuskahoma Total	Kiamichi R.	Oklahoma	$\frac{1,000}{2,001}$
Total			2,061
Conventional - by 1990			
Grandview	Kings R.	Arkansas	18
Galena	James R.	Missouri	43
Bell Foley	Strawberry R.	Arkansas	24
Gainesville	Red R.	Oklahoma	50
Dougherty	Washita R.	Oklahoma	25 20
Durwood	Washita R.	Oklahoma Oklahoma	52
Denison	Red R.	Oklahoma	19
Tuskahoma	Kiamichi R. Kiamichi R.	Oklahoma	90
Upper Antlers Buck Creek	Kiamichi R.	Oklahoma	12
Hugo	Kiamichi R.	Oklahoma	50
Pine Creek	Little R.	Oklahoma	86
Lukfata	Glover Cr.	Oklahoma	35
Sherwood	Mountain Fork	Oklahoma	103
Hartley	Cossatot R.	Arkansas	14
Carthage	Sabine R.	Texas	16
State Line	Sabine R.	LaTex.	134
Bon Wier	Sabine R.	LaTex.	20
Total			811
Pumped Storage - by 1990			
Mu11aday	White R.	Arkansas	485
Boktukola	Mountain Fork	Oklahoma	1,000
Sherwood	Mountain Fork	Oklahoma	500
Total			1,985

^{1/} Projects located outside boundary of Lower Mississippi Region.

Table 118- Summary of Existing and Potential Hydroelectric Projects, Lower Mississippi Region

Total Capacity (AM)	0.0	70.6	0.0	18.0	50.0 75.0 84.0 108.0 25.5 15.9	0.0	80.08	0.0	0.0	0.0	534.5
Potential Additional Capacity (MM)	0.0	70.6	0.0	18.0	50.0 0.0 28.0 108.0 0.0	0.0	80.0	0.0	0.0	0.0	368.7
Minimum Annual Energy (GWh)	0.0	0.0	0.0	0.0	0 139.2 76.6 0.0 18.4 43.0	0.0	0.0	0.0	0.0	0.0	277.2
Existing Capacity stalled Dependable (MM)	0.0	0.0	0.0	0.0	0 75.0 56.0 0.0 21.0	0.0	0.0	0.0	0.0	0.0	162.0
Existing Installed (MM)	0.0	0.0	0.0	0.0	0 75.0 56.0 0.0 25.5	0.0	0.0	0.0	0.0	0.0	165.8
State		Mo.		Miss.	Ark. Ark. Ark.		Miss.				
Stream		St. Francis River St. Francis River		Little Tallahatchie R.	Saline R. Ouachita R. Ouachita R. Caddo R. Little Mo. R.		Big Black R.				
Project		Rowland Church Wappapello	0	dis	Benton Blakely Mountain Carpenter DeGray Narrows	ie	Youngton	e.	e	0	
	None	Row1 Wapp	None	Sardis	Ben B La Car De(Nar Rem	None	You	None	None	None	

Other Program A Components

As stated in the introduction to this section, detailed discussion of program components for satisfaction of the expressed needs in the coastal and estuarine zone and for archeological and historical resources and health aspects is included only in the section covering the recommended program since program components in these areas are identical for all programs. Table 119 summarizes plans for these categories to complete the National Income Program. Environmental aspects of these plans are discussed under the Recommended Program.

Need for Additional Studies

The need for additional studies is identical for all programs and is discussed in detail in a section following the recommended framework program (pages 457 to 476).

Summary of the National Income Program

Table 120 is a summary of Program A. It gives a consolidation of outputs from the plans previously discussed in detail. Units are given incrementally for the time spans: present to 1980, 1981-2000, and 2001-2020; 50-year totals are given for each subarea and the region. Program components cover the entire spectrum - from works already authorized to long range studies or research where serious data deficiencies exist.

While no specific program measures (such as purchase or control of lands to insure agricultural use) are included for meeting projected food and fiber needs on the region's forest lands, croplands, and grazing lands, the program allocates sufficient lands to allow satisfaction of these needs. Specific action components of the program involve public investments and are directed toward satisfying, in the most economical manner possible, the region's water supply needs and food and fiber needs; toward solving as many as possible of the region's flood control, agricultural land drainage, irrigation, land treatment, water quality, navigation, health aspects, coastal and estuarine, and archeological and historical problems and needs; and toward satisfying as many as possible of the region's needs for recreation, fish and wildlife, and natural environmental quality. Additional studies are also an important part of the program. A detailed discussion of this need which is identical for all programs can be found in the major section entitled "Data Deficiencies and Need for Additional Studies." The program places primary emphasis on the National Income criterion but is also responsive to regional development and environmental quality considerations.

Program Costs

General

In table 121, estimated costs for the National Income Program are summarized by major program features, categories of resource use, and

Table 119-Other Program A Component Plans, Lower Mississippi Region

Plan					
Coastal and Estuarine	stuarine				
WRPA Timeframe	rame		Measure1/	Purpose	Amount 2/
9 2000		ct 10 low ol structu	Construct 10 low flow weirs I control structure and I navigation lock	Water level management and land building Salinity Control	89,800 c.f.s.3/
10 1980 2000 2020	60 Sank St. 5 mile 0 3 control 0 42 miles struct	unk Stabilization w 5 miles of channel control structures i miles of channel, structures § 70 mi	Bank Stabilization works, I control structure, 10 mules of levee, 5 miles of channel 3 control structures, 50 miles of levee § 25 miles of channel 42 miles of channel at medification of spillway gates, 4 control structures § 70 miles of levee	contr	01 1,500 c.f.s. § 10.1 miles 6,800 c.f.s. 172,600 c.f.s.
To Health Aspects	otal Mississi	ppi River	Total Mississippi River Flow Required - 1,500 c.f.s. in 1980, 96,600 c.f.s. in 2000, and 172,600 c.f.s. in 2020.	in 2000, and 172,600 c.f.s. in 2020.	
WRPA	State	Time Frame		Purpose	Number 4/
2, 5, 8, 6	Arkansas	1980	State Drinking Water Program Vector Abatement Districts Vector Abatement Districts	The purpose of all Health Aspects measures is for the protection of the public's health and general welfare.	1 9 16
3	Kentucky	1980	State Drinking Water Program		1
5, 6, 8, 9 & 10	Louisiana	1980	State Drinking Water Program Vector Abatement Districts Vector Abatement Districts		30 32
4, 7, 6, 8	Mississippi	1980	State Drinking Water Program Vector Abatement Districts Vector Abatement Districts		1 10 16
2	Missouri	1980	State Drinking Water Program		1
м	Tennessee	1980	State Drinking Water Program Vector Abatement Districts Vector Abatement Districts		3 1 1
IMR		1980	State Drinking Water Programs Vector Abatement Districts Vector Abatement Districts		6 50 67

Description of these measures, designated to enhance the estuarine environment, is given on pages 428 through 439.

As explained later, all coastal and estuarine needs except shoreline protection can best be expressed in terms of Mississippi River flow. An equivalent flow - the control structure and mavigation lock will provide salinity control.

Cumulative by time period. मिलाला

Table 119 - Other Program A Component Plans, Lower Mississippi Region (Cont'd)

						-									_		01
	ated	,				ive S		20	152	150	300	204	75	255	230	276	1,67.
	Excav	70007	76 58 58 58 27 28 28	54 29 425		Interpretive	0001	20	145	20	190	124	50	140	130	156	367 1,035 1,672
	To Be					Int	000	35	82	10	80	34	25	35	30	36	367
	f Sites	01				2020	0707	7	28	20	0	-	30	12	0	0	183
	Number of Sites To Be Excavated	1980	18 10 14 21 4 4 6 6	117 6 97		Cemeteries		-	65	75	7	1	75	13	2	7	230
	SI.					Ceme		-	45	20	0	0	50	0	\sim i	7	125
						E		9	4	0	4	7	10	10	-		31
	sted					Roads & Trails		7	16	7	53	-	7	4	2	74	44
	Number of Sites To De tested	0007	222 201 201 390 81 120 121	118 1,848		Roads		∞	21	4	10	0	LC.	10	0	0	97
	Sites					K		115	06	100	154	15	15	820	2.3	4,200	,770
	per of	1980	74 45 60 20 20 27 27	27 27 426		tio		06	20	45	131	10	10	99	25	2,730 4	5,174 4,770
	Num					St. Resi		35	45	12	75	21	20	28	15	268 2	519 3
						3000	0.00	142	27	7	152	79	15	ıs	0	0	369
	1980					1 1		122	33	12	174	16	20	19	0	0	396
	Intensive Surveys To Be Complete by 1980					Be Added To Federal or State Register		701	80	50	151	Π	20	∞	0	7	454
	Comple					al or Sta	-1	53	91		21	0	25	9	2	2	57
	10 Be		3 2 7 2 8 8 3 3 5 8 8	48		To Federal		7	11	C1	c1	1	10	4	++	7	40
	Survey					Dist	0007	10	6	2	7	7	4	7	2		28
	nsive					Be Add	1980	10	~1	0	ın	2	0	00	0	10	
	Inte					res To	7070	345	722	220	325	32	100	88	200	1,07	3,10
						Resources To Structures	7007	270	403	100	250	5.1	100	110	100	300 2,900 1,075	2,003 4,284 3,107
ZS				LMR 6/	1		1380	140	1,115	35	150	38	100	55	7.0	300	2,003
Plan Archeology	WRPA		NW4W0F80	10 III	HISTORY	***************************************	MRPA	7	5	4	LO.	9	1	∞	6	10	LAR

5/ Includes those in previous time period. 6/ In addition to the needs shown, there is a need to complete a comprehensive regionwide historic survey by 1980.

Table 120 - Program A Composition, Lower Mississippi Region

	Water	Somety (mod		Water Surf	ace Area			Land	(1,000 Acres) Natural	
lanning Area Time Frame	Municipal	Supply (mgd Fish & Wildlife	Total	Recreation (1,000 Acres)	Fish & Wildlife (Miles)1/	Natural Environment (1,000 Acres)	Recreation4/	Fish & Wildlife	Natural Environment	Total
RPA_1 1970-1980	0.0	0.0	0.0	0.0	3/	4.0	0.0 0.0		6.0	6_0 0.0
1980-2000 2000-2020	0.0	0.0	0.0	0.0	37	0.0	0.0	0.0	0.0	0.0
Total	0.0	0.0	θ , θ	0.0		4.0	0.0		t). II	6.0
VBPA 2 1970-1980 1980-2000 2000-2020	5.3 16.5 26.0	50.0 110.0 110.0	$186.5\frac{2}{1}$ $153.3\frac{2}{1}$ 136.0	0.0 3.0 45.0	1203.0 0.0 0.0	15.0 0.0 0.0	1.0 1.4 9.6	104.0 63.6 90.7	26.1 0.0 0.0	297.4 65.0 106.3
Total	47.8	270.0	475.82/	48.0	1205.0	15.0	15.0	258.3	26.1	297.4
NPA 3 1970-1980 1980-2000 2000-2020	33.9 102.4 130.7	43.0 86.0 86.0	76.9 188.4 216.7	139.0 185.0 173.0	822.0 0.0 0.0	7.0 0.8 0.0	50,0 28,1 43,3	56.2 38.1 54.3	53.7½/ 0.0 0.0	139.9 66.2 97.6
Total	267.0	215.0	482.0	497.0	822.0	7.0	101.4	148.6	53.7	
WRPA 4 1970-1980 1980-2000 2000-2020	11.9 24.1 33.9	22.0 30.0 34.0	33.9 54.1 67.9	8.0 67.0 38.0	1100.0 d.0 0.0	3.0 0.0 0.0	7,3 9,8 20,2	92.2 43.0 61.3	13.4 0.0 0.0	112.9 52.8 81.5
Total	69.9	86.0	155.9	113.0	1100.0	3.0	37.3	190.5	13.4	247.2
WRPA 5 1970-1980 11980-2000 2000-2020	11.6 23.9 44.0	31.0 60.0 62.0	42.6 83.9 106.0	0.0 0.0 60.0	1931.0 0.0 0.0	4.0 0.0 0.0	9.5 15.7 27.4	103.5 60.4 86.2	32.0 ⁵ / 0.0 0.0	145.0 76.1 113.6
Total	79.5	153.0	232.5	60.0	1931.0	4.0	52.6	250.1	32.0	334.7
MRPA 6 1970-1980 1980-2000 2000-2020	1,0 2,3 3,3	8.0 16.0 17.0	9.0 18.3 20.3	0.0 2.0 10.0	536.0 0.0 0.0	1.0 0.0 0.0	3.7 1.3 2.0	25.0 11.7 16.7	2.9 ⁵ / 0.0 0.0	31.6 13.0 18.7
Total	6.0	42.0	47,0	12.0	536.0	1.0	7.0	53.4	2.9	63.3
WRPA 7 1970-1980 1980-2000 2000-2020	3,3 6,8 10,7	2.0 6.0 5.0	5.3 12.8 15.7	0.0 0.0 0.0	450.0 0.0 0.0	4.0 0.0 0.0	3.2 1.9 3.0	30.0 17.4 24.7	24.9 ⁵ / 0.0 0.0	58.1 19.3 27.7
Total	20.8	13.0	33,8	0.0	450.0	4.0	8.1	72.1	24.9	105.1
WRPA 8 1970-1980 1980-2000 2000-2020	16.9 36.5 48.9	2.0 3.0 4.0	18.9 39.5 52.9	0.0 0.0 36.0	400.0 0.0 0.0	2.0 0.0 0.0	14.7 10.1 15.8	14.0 3.2 4.5	19.7 <u>5</u> / 0.0 0.0	48.4 13.3 20.3
Total	102.3	9.0	111.3	36.0	400.0	2.0	40,6	21,7	19.7	82.0
WRPA 9 1970-1980 1980-2000 2000-2020	20.0 54.2 41.5	73.0 188.0 120.0	93.0 ₂ 424.2 5 425.5	0.0 0.0 0.0	928.0 0.0 0.0	1.0 0.0 0.0	17.6 8.8 12.4	27.0 119.7 170.8	17.3 ⁵ / 0.0 0.0	61.9 128.5 183.2
Total	95.7	381.0	942.72	7 0.0	928.0	1.0	38.8	317.5	17,3	373.6
WRPA-10 1970-1980 1980-2000 2000-2020	35.6 89.8 118.1	0.0 2.0 1.0	35.6 91.8 119.1	0.0 0.0 0.0	329.0 0.0 0.0	0.0 0.0 0.0	37.5 23.9 57.0	11.0 32.8 40.7	24.0 <u>5</u> / 0.0 0.0	72.5 56.7 83.7
Total	243.5	3.0	247.0	0.0	329.0		98,4	90.5	24.0	212.9
Region 1970-1980 1980-2000 2000-2020	139.5 336.5 457.1	231.0 501.0 439.0	501.72 1000.32 1100.1	147.0 257.0 362.0	7699.0 0.0 0.0	41.0 0.0 0.0	125.5 101.0 170.7	463.9 389.9 501.9	220.0 0.0 0.0	809.4 490.9 732.6
Total	933.1	1171.0	2728.12		7699.0	41.0	397.2	1415.7	220.0	2032.9

^{1/} Stream miles.
2/ Includes irrigation withdrawals.
3/ Includes irrigation withdrawals.
4/ Includes irrigation withdrawals.
5/ The main stem of the Mississippi River is not considered quality stream fishing in the fish and wildlife context involved here. However, access is provided (though no mileage is given) and costs are included in the program (shared equally by recreation) for this access which will make the Mississippi River available to residents of adjoining WHGM's for limited fishing and recreation activities.
4/ OperIgns Natural Environmental Quality acreage in some WFPA's. Double counting has been eliminated in cost tables.
5/ Provides all or part of Class A recreation lands for 2000 and 2020.

Table 120 - Program A Composition, Lower Mississippi Region (Cont'd)

	1 1	Sediment a	nd Erosion Co	ntrol	Drainag Watershed	<u>c</u>	Secondary	Advance	Quality Cont	Bacteria ₈
Tanning Area Time Frame	Treatment (1000 Acres)	Streambanks (Miles)	Roadbanks (Miles	(Miles)	Management (1000 Acres)	(Miles)	Treatment (1000 lb. BOD ₅)	Treatment (1000 lb. BOD ₅)	Other 7/ (1000 lb. BOD ₅)	Control * (mgd)
RPA 1 1970-1980 1980-2000 2000-2020	0 0 0	0 0 0	0 0 0	0 0	0 0 0		0 0 0	0 0 0	0 0 0	0 0
Total	0	0		0		0	0	-0	0	- 0
RPA 2 1970-1980 1980-2000 2000-2020	3256.5 3597.6 4023.7	128 49 36	441 386 273	569 435 311	474.3 948.4 948.5	4930.0 5080.0 5120.0	14.0 0 0	0 38.0 69.0	5.0 1.0 2.0	39.9 16.6 26.3
Total	10,877.8	213	1102	1315	2371.2	15,130.0				82,8
WRPA 3 1970-1980 1980-2000 2000-2020	2512.3 2613.5 2726.8	369 222 152	554 485 346	923 707 498	16.1 32.2 32.3	140.0 240.0 230.0	140.0 0 0	0 249.0 362.0	19.0 0 7.0	113.8 75.7 91.4
Total	7852.6	743	1385	2128	80,6	610.0				280.9
WRPA 4 1970-1980 1980-2000 2000-2020	3354.1 3697.5 3838.5	266 191 143	806 705 503	1072 896 646	294.9 589.8 589.8	4040.0 3130.0 3100.0	25.0 0 0	0 47.0 72.0	5.0 1.0 2.0	45.6 17.8 25.4
Total	10,890.1	600	2014	2614	1474.5	10,270.0				88.8
WRPA 5 1970-1980 1980-2000 2000-2020	3385.8 3612.0 4073.3	76 50 33	1174 1028 734	1250 1078 769	114.6 229.1 229.1	910.0 1310.0 1370.0	26.0 0 0	0 60.0 98.0	7.0 2.0 2.0	24.8 14.3 24.9
Total	11,071.1	161	2936	3097	572.8	3590.6				64.0
WPPA 6 1970-1980 1980-2000 2000-2020	1259.3 1410.2 1530.2	42 37 28	105 145 103	207 182 131	131.7 263.4 265.4	1460.0 1560.0 1350.0	6.0 0 0	0 9.0 12.0	2.0 1.0 1.0	2.1 1.2 1.7
Total	4199.7	107	413	520	058.5	4370.0				
WRPA 7 1970-1980 1980-2000 2000-2020	1261.9 1236.1 1406.4	106 67 44	524 458 327	630 525 371	21.4 42.8 42.8	410.0 250.0 230.0	5.0	9.0 13.0	1.0 0 1.0	6.1 2.8 4.4
Total	3904.4	217	1309	1526	107.0	890.0				13.3
WPPA 8 1970-1980 1980-2000 2000-2020	851.9 798.7 871.5	46 24 16	232 203 145	272 227 161	20.8 41.6 41.6	540.0 390.0 230.0	29.0 0 0	0 \$9.0 89.0	6.0 2.0 3.0	20.4 23.9 52.0
Total	2522.1	80	580	660	104.0	1160.0	-			76.3
WRPA 9 1970-1980 1980-2000 2000-2020	1857.9 2091.5 2213.6	8 3 4	599 524 374	607 527 378	196.8 393.5 393.6	2210.0 2240.0 2000.0	40.0 0 0	72.0 100.0	10.0 5.0 4.0	32,4 29,2 31,4
Total	6163.0	15	1497	1,512	983.9	6450.0	-			99.0
WRPA 10 1970-1980 1980-2000 2000-2020	670.0 631.1 544.0	2 1 1	38 33 23	40 34 24	25.8 51.7 51.6	450.0 420.0 290.0	109.0 0 0	204,0 297,0	21.0 6.0 8.0	74.1 63.9 77.3
Total	1845,1	4	94	98	129.1	1140.0				215.3
Region 1970-1980 1980-2000 2000-2020	18,409.7 19,688.2 21,228.0	1,037 644 459	4533 3967 2830	5,570 4,611 3,289	1296,4 2592,5 2592,7	15,070.0 14,620.0 13,920.0	394.0 0 0	747.0 1112.0	76.0 21.0 30.0	359.2 245.4 320.8
Total	59,325.9	2,140	11,330	13,470	6481.6	45,610.0				925.4

Table 120 - Program A Composition, Lower Mississippi Region (Cont'd)

Planning Area & Time Frame WRPA 1	Levees (Miles)	Channels (Miles)	rincipal Re Number	Storage	Plants Plants	Channels	Retard Number	Upstream wa ing Dams Storage	Floodplain	watershed
WRPA 1 1970-1980 1980-2000 2000-2020	(Miles)	(Miles)	Minner							
1970-1980 1980-2000 2000-2020				(1000 Acre-Ft.)	(Number)	(Miles)	Stanter	Storage (1000 Acre-Ft.)	(1000 Acres)	Management (1000 Acres
1980-2000 2000-2020										
2000-2020	0	0	0	0	0	0	0			0
Total	0	0	0	0	0	0	0	0	a	
	0	0		0	0	0		0	0	
ARPA 2										
1970-1980	5.9	641.6	0	0	5	4,878	268	149	2,250	8,034
1980-2000	9.7	618.0			5	130	0 5	0	87 92	291 411
2000-2020	.0	340.0	0	0.	0	95				
Total	15.6	1599.6	0	Ü	8	5,103	273	160	2,415	8,736
WRPA 3				19	7	660	201	244	293	1,929
1970-1980 1980-2000	7.7	292.0 51.7	1 0	18	2	454	120	134	111	918
2000-2020	0	96.9	0		0	269	92	99	115	068
Total	176.9	440.6	1	18	9	1,383	413	477	519	3,515
RPA 4									1 250	4
1970-1980	359.4	928.3	0	0	1 9	3,674	53 16	42 18	1,370	4,737 131
1980-2000 2000-2020	76.6 82.5	208.1 605.0	0	0	9	1,140	12	11	305	970
Total	518.5	1741.4	0	0	19	4,838	81	21	1,099	5,838
VRPA 5										
1970-1980	152.9	69.0	11	450	3	389	116	209	664	1,730
1980-2000 2000-2020	188.7	242.9 62.0	1 0	80	0	146 301	50	15 101	87 504	162 1,283
Total	343.6	373.9	12	530	1.0	836	168	325	1,255	3,175
RPA 6										
1970-1980	0	266.7	0	0	1	2,026			1,465	1,876
1980-2000 2000-2020	1.5	159.6 105.0	0	0	1 0	325 0	0	0	111	317
Total	1.5	531.3	0	0	2	2,351			1,576	2,193
VRPA 7										
1970-1980	12.4	12.0	0		1	1,157	284	423	348 60	2,690
1980~2000 2000~2020	7.0	0	0 G	0	2 0	163	94	142	0.0	1,018
Total	25.4	12.0	0	0	3	1,320	378	50.5	408	3,708
		14.0	0							
RPA 8 1970-1980	0	6.0		0		983	55	104	734	1,505
1980-2000	0	3.0	0		0 2	368	98 12	169 37	219 17	1,225
2000-2020	10.5	3.0	0		2	1,351	165	310	970	3,173
Total	10.5	17.0	0			1,000	100			
NRPA 9 1970-1980	13.5	163.0	0		0	2,875	0		1,810	3,025
1980-2000	13.9	0	0		0	511	0	0	469	797
2000-2020	62.0 89.4	165.0		0	U	3,386	0	0	2,279	3,822
Total	59.4	103.0				0,000			-,-	
WRPA 10 1970-1980	20.0	0	0	0	5	505	0	0	337	669
1980-2000 2000-2020	61,6 44,0	0	0	0	17	344 40	3 0	13 0	335 42	530 42
Total	125.6	0	0	0	25	889	3	13	714	1,241
Region 1970-1980	571.8	2378.6	12	468	22 40	17,147 2,459	977 333	1,171 491	9,258 1,502	26,196
1980-2000 2000-2020	528.2 207.0	1283.3 1211.9	1 0	80 0	15	1,851	171	259	1,074	5,389 3,819
Total	1307.0	4873.8	13	548	27	21,457	1,481	1,921	11,834	35,404

Table 120 - Program A Composition, Lower Mississippi Region (Cont'd)

	Chann	Navigati els (Mile	on Facilit	ies			Coastal	Archeological	Public
Planning Area & Time Frame	Deep Draft	Shallow Draft	Total	Harbors	Locks (Number)	Production (Mw)	& Estuarine	4 Historical	Health
WRPA 1 1970-1980	288.0	0	288.0	0	0	0		9/	10/
1970-1980 1980-2000 2000-2020	0 0	0	0	0	0	0		9/ 9/ 9/	10/ 10/ 10/
Total	288.0	0	288.0	0	0	0		2/	10/
WRPA 2 1970-1980		200.0	200.0	2	0	7.5	0	9/	10/
1970-1980 1980-2000 2000-2020	0	200.0	0 0	6	0	70.6	0	5/ 5/	10/
Total	0	200.0	200.0	9	0.	78.1		9/	10/
WRPA 3 1970-1980								07	
1970-1980 1980-2000		0	0	1	0			9/ 9/ <u>9</u> /	10/ 10/ 10/
2000-2020	0	0	0	Ü	0	0		2/	10/
Total	.0	0		2	0			2/	10/
WRPA 4	0			-	1	18.0		9/	10/
1970-1980 1980-2000		0		1				5/ 5/ 5/	10/ 10/ 10/
2000-2020	0			2		0			
Total		0		10	1	18.0	0	9/	10/
WRPA 5 1970-1980				5	- 2.	40.0		9/ 9/	10/
1980-2000		0		2 2	0	50.0		9/	10/ 10/
2000-2020									10/
Total	0			9	2	90.0	0	2/	10)
WRPA 6 1970-1960			0	3	0	0		9/	10/
1980-2000 2000-2020	0		0	0	0	0	0	9/	10/
Total	0		0	4				9/	10/
WRPA 7									
1970-1980		0		0				9/ 9/ 9/	10/ 10/ 10/
1980-2000 2000-2020	0	0		0				2/	10/
Total	0		0	1	-0			9/	10/
WRPA S									107
1970-1980 1980-2000	0	0		0	0 2	0	11/ 11/ 11/	9/	10/ 10/ 10/
2000-2020	0	0			1		11/	9/	10/
Total	0	0			3		11/		10/
WRPA 9		91.0	90.5		2		11/	97	10/
1970-1980 1980-2000	6.5 34.0	84.0 270.0	304.0		2		11/ 11/ 11/	9/ 9/ 9/	10/ 10/ 10/
2000-2020	200.0		200.0		0			2/	10/
Total	240.5	354.0	594.5		4		11/		
WRPA 10 1970-1980	50.0	97.0	147.0	0	1	. 0	11/	9/	19/
1980-2000 2000-2020		188.0	188.0	0	3		11	9/ 9/ 9/	19/ 10/ 10/
Total	50.0				0		11/	9/	10/
Region 1970-1980	344.5	381.0	725.5	18	6	65.5 120.6	<u> </u>	9/ 9/	10/ 10/ 10/
1980-2000 2000-2020	34.0 200.0	458.0	492.0 200.0	5	4	0	11/	9/	10
Total	978.5		1417,5		16	186,1	11/	9/	10/
							reservation, re	storation and ma	intenance of

^{5/} Composed of surveying, testing and excavating archeological sites, and preservation, restoration and maintenance of historic resources. See Recommended Program Composition (table 154).

10/ Composed of public drinking water programs and vector abatement districts at state level. See Recommended Program Composition (table 154).

11/ Composed of measures for salinity control, shoreline erosion control, and water level management. See Recommended Program Composition (table 154).

Table 121 - Estimated Frogram Costs, National Income Objective (All costs in \$1,000)

						REGIONA	REGIONAL SUMMARI					
			1971-1980	0		-	-		1980-2000	- 1.		-
Feature	Federal	Investment Non-Federal	Ann. Federal	Annual O&M	Investment	Totals O&M	Federal	nvestment Non-Federal	Federal N	Non-Federal	To Investment	Totals
Water Supply	19,834	19,832	9	11,955	39,666	12,575	126,626	\$ 30	3,512	25,854	180,830	39,366
Municipal Irrigation Fish and Wildlife	(16,577) (0) (3,257)	(16,576) (0) (3,2%)	33§	(0) (0) (0) (0) (0)	(33,153) (0) (6,513)	(11,336) (0) (1,239)	(44,707) (75,286) (6,633)	(2,864) (2,864) (6,633)	(1,988) (1,988)	(3,706) (3,604) (1,544)	(89,414) (78,150) (13,200)	(20,706) (5,572) (3,088)
water Surface	385,849	168,215	0	4,779	190,455	4,779	326,614	148,012	0	8,110	474,626	8,110
Recreation Small wher Sarem Access Strem Access Fish and Wildlife Matural Environment	(139,884) (231,699) (2,075) (5,050) (7,141)	(139,883) (14,067) (2,075) (5,050) (7,140)	33333	(2,082) (1,084) (457) (1,010) (146)	(279,767) (245,766) (4,150) (10,100) (14,281)	(2,082) (1,084) (4,57) (1,010) (146)	(147,993) (178,600) (443) (508) (0)	(147,093) (412) (507) (0)	00000	(4,26) (2,098) (5,8) (1,112) (14,6)	(24,186) (178,680) (1,015) (1,015)	(4,216, (2,098) (5,098) (1,112) (146)
Lands	606,825	2,905,836	₩6,753	148,827	3,514,661	95,580	361,008	361,007	85,396	69,032	722,015	174,430
Recreation Fish and Wildlife Natural Environment	(463,800) (132,455) (12,570)	(463,800) (14,717) (2,427,319)	(46,743) (0) (10)	(46,742) (1,932) (153)	(927,600) (147,172) (2,439,889)	(95,485) (1,932) (163)	(292,775) (66,233) (0)	(292,775) (66,232) (0)	(85, 388) (0) (10)	(85, 387) (3,492) (153)	(585,550) (136,465) (0)	(170,775) (3,492) (163,
Flood Control & Related Problems	1,049,108	597,224	3,805	12,583	1,646,332	16,529	520,270	590,602	6,763	26,013	1,110,872	32,920
Flood Control Principal Reaches Upstream Land Treatment	(530, 348) (292, 444) (31, 890)	(33, 654) (76, 891) (47, 891)	(3,83) (0) (0)	(620) (905,44) (0)	(563,802) (369,335) (451,604)	(4,014) (4,568) (6,568)	(313,214) (93,583) (36,354)	(42,044) (22,917) (459,100)	(3,13)	(\$5,43) (\$0)	(115, 258) (116, 500) (495, 454)	(6,953) (5,313) (0)
Sediment and Erosion Critical Land Treatment Streumbank Roadbanks	(34,797) (42,043) (1,842)	(17, 501)	(555)	(1,303)	(52,098) (42,343) (2,833)	(0) (2,055) (85)	(17,622) (41,797) (1,611)	(8,701) (8,73)	(0) (1,610) (0)	(c) (2,403) (159)	(26,383) (41,976) (2,479)	(o) (4,013) (159)
Drainage Autershed Munagement Channels	(1,04.3)	(19,818) (28,675)	33	(4,173) (1,634)	(20,861)	(4,173) (1,634)	(2,811)	(53,413)	<u></u>	(15,417)	((56,224)	(15,417)
Mater Quality and Pollution	171,819	72,898	0	3,233	244,717	5,233	452,836	153,744	0	3,734	996,580	3,734
Municipal Waste Treatment Bacteria Control	(0) (0)	(57,273) (15,625)	<u>@</u>	(2,756)	(229,092) (15,625)	(475) (2,7 %)	(452,836) (0)	(150,95)	<u></u>	(3,272)	(603,781)	(3,272)
Navigation	614,529	38,461	13,698	1111	712,990	13,809	147,879	32,437	17,313	181	180,316	34,51
Hydropover	19,189	0	254	0	19,189	462	121,055	0	1,807	0	121,055	1,807
Constal and Estuarine	3,900	1,900	0	36	5,800	90	10,500	10,500	0	189	21,000	166
Historical and archeological	19,143	19,147	0	0	38,295	0	63,478	63,478	0	0	126,956	0
Benth	0	0	0	5,402	0	5,402	0	0	0	9,336	0	9,336
TOTALS	2,829,201	3,885,513	65,130	926,30	00,920 0,775,114	152,137	152,137 4,130,200	1,413,704	114,793	162,429	162,429 3,544,250	277,363

Table 121 - Estimated Program Costs, Metional Income Objective (All costs in \$1,000) (Cont'd)

					מייים במייים במייים בייים	1000			-
			2001-2020	1	-			Total Program	6
Penture	Federal	Investment Non-Pederal	Pederal	Annusi Och	Investment	1	Federal	Non-Federal T	Total
Jater Supply	112,305	140,071	4,201	41,455	198,276	45,656	258,665	160,107	418,772
Municipal Irrigation Fish and Wildlife	(76, 324) (26, 368) (9, 613)	(76,325) (132) (9,614)	(0) (1,968) (2,233)	(33,480) (5,743) (2,232)	(152,649) (26,400) (19,227)	(33,480) (7,711) (4,465)	(137,608) (101,554) (19,503)	(13,60 8) (2,996) (19,503)	(275,216) (104,550) (39,006)
Jater Surface	253,941	253,941	0	12,122	507,882	12,122	966,404	570,169	1,536,573
Recreation Small acter Jarge Actor Stream Access Fish and Alidite Maturul Environment	(253,021) (9) (375) (545) (0)	(255,021) (0) (375) (545) (0)	33333	(#0,6) (2,09) (6,5) (1,22) (341)	(506,042) (0) (1,030) (0,030)	(8,044) (2,098) (61,52) (1,22) (1,22)	(539,998) (410,299) (2,863) (6,103) (7,141)	(539, 997) (14, 067) (2, 862) (6, 102) (7, 141)	(1,079,995) (424,366) (5,725) (12,205) (14,282)
Lands	653,157	653,158	154,150	160,009	1,306,315	951,418	1,622,990	3,920,001	5,542,991
Recreation Fish and Widlife Matural Environment	(975,875) (97,282) (0)	(975,875) (97,883) (0)	(154,140) (0) (10)	(154,140) (5,716) (153)	(1,111,750) (194,365) (0)	(50 6, 280) (5,716) (163)	(1, 312,450) (297,970) (12,570)	(1,312,450) (180,232) (2,427,319)	(2,624,900) (476,202) (2,439,889)
Flood Control & Related Problems	655,885	607,815	8,921	43,020	896,356	52,084	1,857,917	1,795,641	3,653,560
Flood Control Principal Reaches Upstream	(137,839) (55,25) (41,756)	(12,128) (13,347) (501,886)	6,3 (9) (9) (9)	(980) (5,770) (0)	(149,967) (68,562) (543,642)	(7,216) (5,770) (0)	(981,401) (441,242) (110,000)	(87,626) (113,155) (1,380,780)	(87,626) (1,069,027) (113,155) (554,297) (1,430,780) (1,430,780)
Sediment and broader Critical Land Treatment Streambank Roadbanks	(6,839) (35,853) (1,150)	(3,407) (120) (619)	(2,665)	(3,000)	(10,246) (35,925) (1,769)	(0) (5,665) (212)	(59,258) (119,693) (4,003)	(29,469) (599) (2,478)	(88,727) (120,234) (7,081)
Unitable Watershed Management Channels	(3,938) (5,949)	(74,821)	<u>©</u> @	(31,169)	(78,759) (7,436)	(31,169) (1,909)	(7,792)	(148,052) (33,462)	(155,844)
Water quality and Pollution	303,554	105,019	0	104,4	408,573	104,4	928,209	331,661	1,259,870
Municipal Waste Treatment Bacteria Control	(303,554)	(101,185) (3,834)	<u>©</u>	(3,845)	(404,739) (3,834)	(3,845)	(928,209)	(309,403)	(22,25) (1,237,612)
Mavigation	564,625	167,360	22,877	182	731,985	23,059	1,327,032	298,258	1,625,290
Hydropower	9	3	1,807	0	0	1,80,1	140,041	0	140,244
Constal and Estuarine	120,000	120,000	0	1,716	240,000	1,716	134,400	132,400	266,800
Historical and Archeological	22,800	22,790	0	0	45,590	0	105,426	105,415	210,841
Health	0	0	0	11,723	0	11,723	0	0	0
TOTALS	2,318,821	2,016,154	956'161	274,634	4,334,977	466,590	7,341,287	7,313,652	7,313,652 14,654,940

Table 121 - Estimated Program Costs, National Income Objective (All costs in \$1,000) (Cont d)

Federal Environment 74 14100 27,00 Front A Archeological 11	Investment	0861-1761	0961					1981-3000	Service .		
Federal 74 100 100 100 100 100 100 100 1	ives	A ment			-	-	-	100	-	Contract of the last of the la	
al Environment Line Draft Chuncle cul & Arthrological		Pederal	Annual O&M	Totals	\$70 \$70	Pedera	Investment Non-Federal	Federal Non-	Non-Federal	Totale	10
Jon Dieft Channels cal & Archeological	947	0	0	1,497	9	0	0	0	9	٥	9
est & Archeologicul	9,000	7,000	0	36,000	7,000	0	0	7,000	0	0	7,000
	TIT	0	0	225	0	608	608	0	0	1,618	0
	0	0	27	0	27	0	0	0	27	0	12
TOTALS 27,800	4,877	3,000	97	51,119	010'/	90	609	7,000	55	1,618	7,000
		2001-2020	050				Total Indestment				
Feature Feature	Investment al Non-Federal	Federal	Non-Federal	Totals	3	Pederal	Costs (\$1,000) Non-Federal	Total			
Lands Natural Environment	0	0	٥	0	9	647	8412	1,497			
Navigation Deep Draft Channels	0	7,000	0	0	7,100	27,000	9,000	36,000			
Historical & Archeological	0	0	0	0	0	986	88	1,840			
Heat ta	0	0	8	0	55	0	0	٥			
TOTALS	0	7,000	19	0	7,061	28,669	10,668	39,337			

Table 121 - Estimated Program Costs, National Income Objective (All costs in \$1,000) (Cont'd)

			19	1971-1980					1981-2000	000		
Feature	Rederal	Investment Non-Federal	Federal	Non-Federal	Investment	100	Federal	Investment Non-Federal	Federal	Non-Federal	Investment	1
dater Supply	2,435	2,433	164	933	4,868	1,097	58,845	6,393	2,181	3,263	65,238	5,444
Municipal Irrigation	(562)	(\$(0)	<u></u>	((63)	(1, 189)	(69)	(55, 550)	(5,758)	(0)	(1,962)	(3,101)	(1,082)
Fish and wildlife	(1,640)	(1,639)	(107)	(104)	(3,279)	(326)	(5,0%)	(5,093)	(513)	(223)	(4,187)	(Q , q)
Auter Surface	36,653	36,650	0	625	53,303	629	5,576	47	117	639	5,650	783
Recreation Small Water	(18,421)	(18,421)	03	(560)	(36,842)	(360)	(0)	93	(0)	(360)	(6)	(360)
Large Water Stream Access Figh and Wildlife	(86) (86)	(362)	<u> </u>	(25)	(525)	<u> </u>	(3) (3) (3) (3) (4)	323	<u></u> [66	(S)	(75)	(1/3)
Matural Environment	(1,141,7)	(7,140)	(0)	(146)	(14,281)	(941)	(0)	<u>(a)</u>	(0)	(146)	(0)	(1#6)
Punde	34,414	17,799	1,200	1,668	52,213	5,868	21,705	21,705	2,257	2.980	43,410	5,237
Recreation Fish and Wildlife Matural Environment	(9,750) (23,754) (910)	(9,750) (2,639) (5,410)	(1,200)	(1,300) (4,30) (36) (36)	(19, 500) (26, 393) (6, 320)	(2,400) (4,50) (36)	(10,575) (11,130) (0)	(11,130) (11,130) (0)	(2,257) (0) (0)	(2,2%) (6%) (5%)	(21,150) (22,260) (0)	(4,515) (468) (36)
Flood Control & Related Problems	198,769	119,547	153	4, 380	318,316	4,533	111,452	115,315	349	8,926	226,767	9,215
Flood Control Frincipal Reaches Upstream	(73,931) (76,442) (7,038)	(8,221) (17,558) (76,606)	300	(0) (0) (0)	(82,152) (94,000) (83,644)	(2,149) (0)	(93,642) (5,475) (6,293)	(6,548) (1,460) (86,718)	(232)	(417) (27,175) (0)	(100,190) (6,935) (95,011)	(2,175) (2,175) (0)
Sediment and Erosion Critical Land Treatment Streambank	(9,4,9) (3,821) (179)	(F)	<u> </u>	() () () () () () () () () () () () () ((3,616) (3,839) (376)	(15°C) (15°C) (8°C)	(1,217) (1,337) (1,57)	(36) (11) (48)	(0)	(E.5)	(1,817) (1,348) (241)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drainage Watershed Management Channels	(979)	(7, 210) (8,640)	33	(1,518)	(45,200)	(1,518) (480)	(S88) (S88)	(19,822)	<u>6</u>	(3,691)	(20,865)	(5,691) (484)
Water quality and Pollution	7,022	3,886	0	339	10,908	539	24,824	8,559	0	363	33, 383	363
Municipal wate Treatment Bacteria Control	(0)	(2,35)	33	(600)	(9,362)	(689)	(24,824) (0)	(8,275)	<u></u>	(45) (318)	(33,099)	(45)
Mavigation	182,500	6,100	35	110	188,600	870	3,100	055	1,210	170	3,650	1,380
Mydropower	3,953	0	8	0	3,953	8	36,300	0	8,	0	36,300	84
Historical and Archeological	3,989	3,989	0	0	7,378	0	11,177	11,177	0	0	22,354	0
Sen th	0	0	0	530	0	530	0	0	0	1,078	0	1,078
TOTALS	459,734	180,404	2,357	8,585	640,139	10,94	262,979	163,773	6,631	17,419	456,752	24,050

Table 121 - Estimated Frogram Costs, National Income Objective (All costs in \$1,000) Cont'd

			2001-2020	020			Tota	Total Investment	
Feature	Federal	Investment Non-Federal	Federal	Non-Federal	Totals	. T	Federal	Non-Federal	Total
Anter Supply	5,297	5,296	5,269	3,845	10,595	6,114	925,99	14,123	80,699
Municipal Irrigation Fish and Widlife	(2,329) (0) (2,966)	(2, 329) (0) (2, 367)	(1,968) (301)	(1,577)	(4,658) (0) (5,935)	(1,577) (3,936) (601)	(4,675) (55,200) (6,701)	(4,673) (2,750) (6,700)	(9.3kg)
Water Surface	414,15	27,474	144	1,037	846,42	1,181	59,703	54,198	113,901
Recreation Small After Sarem Access Fish and Wildlife Natural Environment	(27,419) (9) (37) (18) (0)	(27,419) (0) (38) (17) (0)	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	(54, 838) (75) (75) (85) (0)	6.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	(45,840) (5,500) (338) (884) (7,141)	(45,840) (0) (337) (881) (7,140)	(91,680) (5,500) (675) (14,281)
Structo	68,623	68,622	7,533	8,617	137,245	16,150	124,742	108,126	232,868
Recretion Fish and Wildlife Natural Environment	(52,750) (15,873) (0)	(52,750) (15,872) (0)	(7,533) (0) (0)	(7,532) (1,047) (38)	(31,745) (31,745) (0)	(15,065) (1,047) (38)	(73,075) (50,757) (910)	(73,075) (29,641) (5,410)	(146,150) (80,398) (6,320)
Flood Control & Related Problems	50,368	124,224	416	14,899	174,592	15,315	360,589	359,086	719,675
Flood Control Frincipal Reaches Upstream Land Treatment	(34,965) (1,180) (9,865)	(0) (189) (25,26)	3 00	(2,193) (2,193) (0)	(34,965) (1,569) (105,389)	(2,195) (0)	(82,538) (83,097) (25,154)	(14,769) (19,207) (258,890)	(102, 307) (102, 304) (284, 044)
Oritical Land Treatment Streambank Rodbanks	(0,009) (1,009) (112)	<u>§</u> £8	(0) (132) (0)	(0) (178) (23)	(1,210) (1,016) (172)	(SE) (SE)	(6,167) (6,167) (844)	(2,197) (36) (241)	(5,83) (28,83)
Unitariase Astershed Management Channels	(1,461)	(27,750)	<u>©</u>	(11,533)	(29,211)	(11,533)	(2,883)	(54,782)	(57,665)
Anter Quality and Pollution	25,102	8,720	0	944	33,822	844	846,94	21,165	78,113
Municipal Waste Treatment Bacteria Control	(25,102) (0)	(8, 367)	<u>©</u>	(88)	(33,469)	(38) (88)	(56,948)	(18,982)	(75,930) (2,183)
Navigation	98	20	1,214	171	100	1,385	185,680	6,670	192,350
Bydropover	0	0	8,	0	0	064	30,253	0	30,253
Historical and Archeological	5,075	5,075	0	0	10,150	0	20,241	20,241	10,482
Beath	0	0	0	1,534	0	1,534	0	0	0
TUTALS	182,019	239,431	12,066	30,551	421,450	42,617	904,732	583,609	383,609 1,488,341

Table 121 - Estimated Program Costs, National Lacome Objective (All Costs in \$1,000) Cont'd

Supply 1,135 4,135 4,135	Non-Federal Federal	derail	Investment Odb	Federal	Al Non-Pederal	Federal	Annual Oct	Investment	3
1.00 1.00		3,218 8	8,270 3,255	8,704	8,704	63	5,023	17,408	5,086
Surface 265,113 59,513 11,114		(3,1 8 2) (7) (9) (7) (9) (9) (1)	(2,5%) (3,182) (0) (0) (25) (25)	(8,080) (0) (624)	(8,080) (0) (624)	<u> </u>	(4, %1) (0) (62)	(16,160) (0) (1,248)	(*, %1) (0) (125)
## 100		1,141 322	322,626 1,851	242,876	97.169	1,580	2,294	312,652	3,874
102,059 528,270 102,059 102,059 102,059 102,059 102,050 102,	85	(\$\frac{4}{2}\)	(203, 600) (203, 600) (203, 600) (203) (203) (203) (203) (203) (203) (203) (203) (203) (203)	(69,626) (175,100) (175,100) (155) (155)	(0) (0) (1) (1) (1) (1)	(1,58) (1,58) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(2,067) (0) (75) (152) (0)	(139, 252) (173,100) (150) (150) (150) (0)	(2,067) (1,580) (1,580) (152) (0)
(17,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,475) (77,24)		8,482 626	626, 329 16,642	67,343	67,342	15,678	16,151	134,685	31,829
(68,007) (11,131) (14,242) (14,243) (14,243) (14,243) (14,243) (14,243) (14,243) (14,243) (12,006) (12,223) (12) (12) (12) (12) (12) (12) (12) (12		(8,160) (165) (165) (15) (15)	(154,950) (16,320) (24,425) (291) (446,954) (31)	(60,675) (6,668) (0)	(6,675) (6,667) (0)	(15,678) (0) (0)	(15,677) (\$\frac{4}{4}\sqrt{31})	(121, 350) (13, 335) (0)	(31,355) (4,35) (31)
(15, 131) (15, 134) (14, 24) (15, 68) (15, 68) (17, 7) (140) (140) (160) (160) (17, 78) (170) (170) (180) (1,533 243	243,205 2,128	90,336	73,366	1,025	2, 393	163,702	3,418
(15,622) (17,733) (140) (140) (140) (140) (121) (122) (121) (120) (170)		(781) (88) (6) (6)	(75, 398) (756) (68, 391) (556) (55, 768) (0)	(36,621) (29,570) (5,160)	(3,215) (7,656) (56,924)	<u>§</u>	(1 <i>97</i>) (815) (0)	(39,856) (37,226) (62,090)	(1,162) (815) (0)
(61) (704) (77,224 (77,224) (9) 5,000 0		(0) (669) (14 (10)	(0) (34.5) (0) (10) (10) (10)	(8,745) (8,745) (197)	(4,281) (83) (106)	<u> </u>	(0) (1,116) (19)	(12,871) (8,828) (303)	(0) (1,176) (91)
57,224 (57,224) (0) 5,000 0		<u>3</u> 0	(322) (64) (880) (6)	(89)	(749) (352)	<u>©</u>	(222)	(788)	(352)
(%2,724) (0) 5,000 0 0		985	19,289 586	148,769	400,00	0	747	199,073	744
5,000		(50) (76) (536) (22)	(76,298) (50) (2,991) (536)	(0)	(49,589) (715)	<u></u> <u> </u>	(72)	(198,358)	(72) (672)
0 0 101,5		1 6	7 000,9	900	100	95	п	004	19
5,101		0	0	0	0	0	0	0	0
		0 10	0 100,01	10,366	10,366	0	0	20,732	0
Bealth 0 0		159	0 159	0	0	0	385	0	385
TOTALS 594,641 701,279 9,5		15,120 1,295,920	,920 24,628	568,694	846,675	18,402	27,001	848,652	45,403

Table 121 - Estimated Frogram Costs, National Income Objective (All Costs in \$1,000) Cont'd

arms and	Inve	Investment	Annu Federal	Annual O&M	Totals	18 ONEN	Federal	Costs (\$1,000) Non-Federal	Total
Witer Supply	10,820	10,819	104	7,309	21,639	7,413	23,659	23,658	47,317
Municipul Irrigation Fish and Alidate	(9,781) (0) (1,039)	(9,781) (0) (1,038)	(\$\frac{1}{2}\)	(7,205) (0) (104)	(19,562) (0) (7,072)	(7,205) (0) (208)	(21,634) (0) (2,025)	(21,634) (0) (2,024)	(43,268) (0) (4,049)
dater Surface	114,416	114,416	1,580	4,167	228,832	5,747	620,405	243,705	864,110
Recreation Smill Acter Table Acter Targe since Targe s	(114,266) (0) (75) (75) (0)	(114,286) (15) (15) (15) (15) (15) (15)	(1,580 (0)000 (0)0000	(6, 2, 3) (6, 2, 3) (6, 2, 3) (6, 2, 3) (6, 3,	(228,532) (0) (150) (150) (150)	(5.90) (1.580) (167) (167) (0)	(242,420) (376,700) (450) (835)	(242,420) (0) (450) (835) (0)	(1,670) (376,700) (376,700) (1,670) (0)
Lands	144,127	144,128	31,440	32,131	288,255	63,571	513,529	735,740	1,049,269
Secretion Fish and Alidife Natural Environment	(134,625) (9,502) (0)	(134,625) (9,503) (0)	(31,440) (0) (0)	(31,140) (660) (31)	(269,250) (19,005) (0)	(62,880) (660) (31)	(272,775) (38,152) (2,602)	(272,775) (18,613) (444,352)	(545,550) (56,765) (446,954)
Flood Control & Related Problems	46,319	72,106	1,078	3,067	118,425	4,145	1991,162	230,008	525,332
Flood Control Frincipul Renches Upstresm 2/ Land Trettment	(28,475) (28,414) (6,328)	(686) (7,513) (61,516)	900	(181) (116) (0)	(3,163) (35,927) (67,844)	(4,195) (971) (0)	(107,163) (112,132) (16,176)	(15,234) (29,412) (169,520)	(122, 397) (141, 544) (165, 702)
Sedument, and Eroston Oritical Land Treatment Streambank Roadbanks	(1,884.1) (5,967) (041)	£82	<u>eg</u> e	(0, 5%) (1, 5%) (86)	(2,829) (6,023) (216)	(0) (0) (00) (00)	(26, 090) (29, 257) (562)	(13,019) (279) (205)	(39,115) (39,536) (36,536)
Autoroped Management Channels	(35) (7) (7)	(1,048)	<u></u>	(##3) (36)	(1,103)	(##3) (36)	(3,168)	(2,103)	(3,960)
Water quality and Pollution	92,355	31,517	0	768	123,872	768	238,348	103,866	402,234
Municipal Whate Treatment Bacteria Control	(92,353)	(30,785)	(0)	(96)	(123,140) (752)	(96)	(296, 348)	(99,448) (4,438)	(397,796) (4,438)
Mavigation	0	0	96	77	0	19	5,300	1,100	6,400
Нудгоромет	0	0	0	0	0	0	0	0	0
Historical and Archeological	6,400	9,400	0	0	12,800	0	23,867	21,866	43,733
Health		069	0	695	0	269	0	0	
TOTALS	414,437	579,380	34,238	48,145	793,883	82,403	1,577,772	1,360,623 2,938,395	2,938,395

Table 121 - Estimated Program Costs, Mational Income Objective (All costs in \$1,000) Cont'd

			1971	1971-1980					1981-2000	2000	6	1
Feature	Federal	Investment Non-Federal	Federal	Non-Federal	Investment	100 MEN	Federal	Non-Federal	Federal	Non-Federal	Investment	1
dater Supply	1,695	1,695	16	2,156	3, 390	2,172	0,940	2,938	92	2,960	5,878	2,986
Municipul Irrigition Fish and Wildlife	(1,591) (0) (104)	(1,591) (0) (104)	<u> </u>	(2,1½) (0) (16)	(3,182) (0) (208)	(2,1 <u>5</u>) (0) (32)	(2,785) (0) (155)	(2,78¥) (0) (15¥)	<u>3</u> 08	(2,935) (0) (25)	(65, 569) (0) (965)	(2,935) (0) (51)
Water Surface	126.6	6,925	0	297	19,852	297	54,510	54,510	0	\$66	109,020	\$
Recreation Small state Large Witer Stream Access Fish and Wildlife Matural Environment	(9,881) (9,881) (8,81) (8,11) (8,11) (9,11)	(9,00) (0) (1,57) (1,57) (0)	<u> </u>	(11) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	(18,012) (0) (375) (1,465) (0)	£68330	(54, 45) (0) (37) (86) (0)	(54,435) (0) (38) (38) (37)	<u> </u>	(\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$) (\$)	(108,870) (0) (75) (75) (0)	£ 5.50 £ 5.00 £
Lands	60,386	369,506	3,360	5,738	329,892	7,098	524,62	29,475	5,705	6,255	58,950	11,960
Recreation Fish and Wildlife Matural Environment	(35,100) (24,615) (671)	(35,100) (2,735) (231,671)	39 9	(36) (36) (36)	(70,200) (27,350) (232,342)	(6,720 (369) (9)	(21,950) (7,525) (0)	(21,950) (7,525) (0)	(5,705) (0) (0)	(5,705) (541) (9)	(43,900) (15,050) (9)	(11,410) (541) (9)
Flood Control & Related Problems	412,175	91,284	2,191	2,253	368,959	444,4	78,853	93,384	3,349	5,081	172,237	8,430
Flood Control Frincipal Reaches Upstream! Land Treatment	(188,287) (21,431) (6,254)	(382) (7,020) (65,837)	(1,778) (0) (0)	(287) (172) (0)	(188,669) (28,451) (72,091)	(2,065) (172) (0)	(41,221) (2,704) (7,440)	(1, 309) (429) (76, 281)	(2,207) (0) (0)	(287) (186) (0)	(42,530) (3,133) (83,721)	(2, 4%) (186) (0)
Setiment and Erosion Critical Land Treatment Streambank Roadbanks	(8,444) (15,286) (328)	(4,216) (69) (176)	<u> </u>	9 3 3 3 3 3	(12,660) (16,355) (504)	(0) (756) (15)	(5,724) (20,828) (287)	(2,843) (41) (154)	(1,1\frac{(0)}{(0)} (0)	(0) (6,5) (85)	(8,567) (20,869) (441)	(1,691) (1,691) (38)
Drainige Watershed Management Channels	(36,408)	(4,482) (9,102)	<u>©</u>	(364) (492)	(4,718) (45,510)	(94t) (492)	(6) (0)	(12, 327) (0)	<u></u>	(3,539)	(12, <i>9</i> 76) (0)	(3,539)
water quality and Pollution	11,036	924.6	0	382	16,512	395	27,365	8,₩2	0	4.30	36,807	430
Municipul Waste Treatment Bacteria Control	(0) (0)	(3,679)	<u>©</u>	(59)	(14,715)	(59)	(27,365)	(9,12) (52)	<u>©</u>	(52)	(36,486) (321)	(52)
Mavigation	142,729	11,341	1,671	0	154,070	1,871	1,120	160	1,971	0	1,280	1,971
Hydropover	12,636	0	3	0	12,636	8	0	0	8	0	0	3
Historical and Archeological	1,309	1,309	0	0	2,618	0	7,286	7,286	0	0	14,572	0
Health	0	0	0		0	8	0	0	0	1,937	0	1,937
TOTALS	517,392	350,536	7,498	608,6	907,928	17,307	501,549	197,195	ш'п	17,658	398,744	28,769

Table 121 - Estimated Program Costs, Mational Income Objective (All costs in \$1,000) Cont d

	-		2001	2001-2020	To	Totals		Cost \$1,000	
Penture	Federal	Investment.	Federa!	Non-Federal	Investment	100	Federal	Non-Federal	Total
Agter Supply	4,296	1,297	36	4,116	6,593	4,152	8,931	8,930	17,861
Municipal Irrigation Pish and Wildlife	(a) (a) (b) (c) (c) (c) (c)	(*,0%) (0) (203)	©	(4,081) (0) (35)	(8,188) (0) (4,05)	(4,081) (0) (71)	(8,470) (0) (461)	(8,469) (0) (461)	(16, 939) (0) (922)
Water Surface	97,478	31,476	0	1,404	456,59	1,404,1	95,915	95,911	191,826
Recretion Small Aster Large Mater Large Mater Stream Access Fits and Alidife Matural Environment	3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3333 3	(1,18 (5) (52) (161) (0)	(62,804) (0) (15) (15) (0)	(1,19 (0) (161) (0) (161) (0)	(94, 44, 35) (0) (265) (869) (0)	(6) (6) (8) (8) (8)	(189,686) (0). (525) (1,615)
'Ands	49,478	174,64	10,630	11,425	98,955	22,055	139,339	348,458	161,797
Recreation Fish and wildlife Natural Environment	(38,750) (10,728)	(38,750) (10,727) (0)	(0) (0) (0)	(6) (98) (6)	(21,455) (21,455) (0)	(21,260) (786) (9)	(95,800) (42,868) (671)	(95,800) (20,987) (231,671)	(191,600) (63,855) (232,342)
Flood Control & Related Problems	100,721	498,66	4,728	9,066	200,585	13,794	457,248	284,532	741,780
Flood Control Principal Reaches Upstream 1/ Land Treatment	(57, 323) (11, 599) (6, 440)	(0) (5,199) (77,881)	(2,858) (0) (0)	(2,087) (392) (0)	(57,323) (14,738) (86,321)	(3,145) (392) (0)	(286,831) (35,734) (22,134)	(1,691) (10,648) (219,999)	(286,522) (46,382) (242,133)
Sediment and Broslon Critical Land Treatment Streambank	(2,788) (19,459) (204)	(1,389) (27) (011)	(0) (1,870) (0)	(38) (38) (38)	(4,177) (4,166) (418)	(2,555) (36)	(16,956) (56,573) (819)	(8,448) (157) (440)	(25,404) (56,710) (1,259)
Drainage Watershed Management Channels	(906)	(17,258)	33	(7,172)	(18,166)	(7,172)	(1,793)	(34,067)	(35,860)
Water Quality and Pollution	471,13	7,437	0	505	28,611	50%	59,575	22, 355	81,930
Municipal Waste Treatment Bacteria Control	(4/1,12) (0)	(7,058)	<u>©</u>	(55) (9 11)	(28,232)	(E) (#(6)	(59,575)	(19,858)	(79,433)
Navigation	0,240	380	2,171	0	2,560	2,171	146,089	11,821	157,910
Hydropowez	0	0	3	0	0	3	12,636	0	12,636
Historical and Archeological	970	970	0	0	1,940	0	9,565	9,565	19,130
Bealth	0	0	0	2,566	0	2,566	0	0	0
200	210, 357	193,641	17,625	29,082	HO4,198	46,707	953,536	781,572	1,710,870

Table 121 - Estimated Frogram Costs, National Income Objective (All costs in \$1,000) Cont'd

			1971-1980	0.74			-		1981	1961-2000		1
eature	Federal	Investment Non-Federal	Federal	Non-Federal	Investment	HONO.	Federal	Investment Non-Pederal	Federal No	Non-Federal	Investment	Totals nt Oak
water Supply	1,712	1,711	102	2,271	5,423	2,373	3,148	5,147	124	0,090	6,295	3,214
Municipul Irrigation Fish and Wildlife	(1,569) (0) (143)	(0) (0) (241)	(102)	(2,169) (0) (102)	(3,138) (0) (285)	(2,169) (0) (204)	(2,899) (0) (249)	(2,898) (0) (249)	(7,51)	(2,967) (0) (123)	(5, 797) (0) (8¢4)	(2,967) (0) (247)
Water Surface	46,505	32,371	0	768	78,776	768	99	99	0	8.55	8	835
Recreation Small atter Large witer Stream Access Fish and Wildlife Matural Environment	(17,640) (28,099) (38) (628)	(17,840) (14,671) (572) (627) (0)	00000	(580) (651) (651) (651)	(35,280) (42,166) (75) (1,255) (0)	(2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	33233	(3.5) (3.6) (3.6) (3.6) (3.6) (3.6)	33333	. (885) (472) (124) (124) (0)	(6.50) (9.50) (9.55) (9.55)	(295) (374) (451) (151) (0)
rands	78,625	425,788	3,753	4,179	504,413	7,932	49,095	46,095	7,673	8,341	98,190	16,014
Recreation Fish and Wildlife Matural Environment	(46,500) (30,191) (1,934)	(46,500) (3,355) (375,933)	<u>3</u> 03	(3,750) (414) (15)	(93,000) (33,546) (377,867)	(7,500) (414) (18)	(38,525) (10,570) (0)	(38,525) (10,570) (0)	(7,670)	(7,670) (656) (15)	(77,050) (21,140) (0)	(15,340) (656) (15)
Flood Control & Related Problems	122,374	112,194	280	699	234,568	578	76,976	126,775	199	1,863	203,751	2,530
Flood Control Frincipal Reches Upstream 1/ Lond Treatment	(80,958) (27,139) (4,669)	(826) (4,408) (102,515)	300	(53)	(81,784) (31,667) (107,184)	(55)	(63,154) (2,640) (5,179)	(8,569) (625) (111,760)	9 00	(0)	(71,723) (3,265) (110,939)	(586)
Critical Land Treatment Streambank Roadbunks	(1, 323) (2,232) (477)	(942) (23) (257)	333	(E25)	(2,865) (2,255) (734)	(113)	(552) (3,121) (418)	(272) (13) (225)	() () () () () () () () () () () () () ((0) (180) (41)	(824) (3,134) (645)	(6) 261) (41)
Watershed Management Channels	(4,813)	(1,960) (1,203)	<u></u>	(£1.5) (64.5)	(2,063) (6,016)	(1 13) (1 13) (1 13)	(258)	(4,897) (414)	<u>©</u>	(1,444) (36)	(5,155) (2,068)	(1,44)
dater quality and Pollution	10,240	4,818	0	324	15,058	324	32,680	11,109	0	358	43,789	358
Municipal Waste Treatment Bacteria Control	(0),240)	(3,413)	33	(70)	(13,653)	(70)	(52,680)	(10,893)	<u></u>	(68)	(45,573)	(68)
Navigation	009'96	1,800	1,351	0	99,400	1,351	6,133	2,982	1,5%	0	9,115	1,596
Hydropover	2,600	0	114	0	2,600	114	11,875	0	214	0	11,875	415
Historical and Archeological	2,882	2,882	0	0	3,170	0	11,741	11,741	0	0	23,482	0
He of th	0	0	0	445	0	445	0	0	0	1,006	0	1,006
TOTALS	362,438	581,564	2,600	8,672	944,002	14,272	192,128	205,329	10,274	15,493	397,457	25,767

Table 121 - Estimated Program Costs, Matienal Income Objective (All costs in \$1,000) Cont'd

	Inve	Investment	Annual Ou	Annual OLM	Totals	16	Con	Costs (\$1,000)	
Peature	Federal	Non-Feder .1	Pederul.	Non-Federal	Investment	3	Pederal	Non-Federal	Total
Water Supply	5,337	5,336	150	4,553	10,673	₩,703	10,197	\$1,01	20,391
Municipul Irrigation Fish and Wildlife	(5,073) (0) (34)	(5,072) (0) (264)	(150 (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(404,44) (0) (149)	(10,145) (0) (528)	(36°) (36°) (38°)	(9,541) (0) (656)	(9,539) (0) (559)	(0) (0) (115,11)
dater Surface	196.4	44,365	0	1,566	88,732	1,566	91,252	77,216	168,468
Recreation Small wiver Large water Stream Access Flah and Wildlife Maturi Environment	(5) (103) (103) (104)	(#, 286) (572) (1022) (502) (502) (502)	33333	(987) (375) (271) (271) (0)	(88, \$52) (0) (75) (20) (20) (20)	(58) (58) (58) (58) (58) (58) (6)	(62,181) (26,099) (1113) (859) (0)	(62,181) (14,067) (112) (856) (0)	(124, 362) (42, 166) (225) (1, 715) (0)
Lands	70,235	70.235	13,953	14,966	140,470	28,919	197,955	545,118	743,073
Recreation Fish and Wildlife Matural Environment	(55,150) (15,065) (0)	(55,150) (15,065) (0)	£3,8 8.53	(13,950) (1,001) (15)	(110, 100) (30, 170) (0)	(27,900) (1,001) (18)	(140,175) (55,846) (1,934)	(140,175) (29,010) (375,933)	(84,856) (84,856) (377,867)
Flood Control & Related Problems	27,501	138,716	151	3,465	166,217	4,222	226,851	377,685	604,536
Flood Control Principal Reaches Upstream I/ Land Treatment	(10,648) (5,843)	(933) (1,851) (127,898)	360	(0) (0) (0) (0)	(4, 926) (12, 499) (133, 741)	(595) (169) (0)	(148,105) (40,487) (15,691)	(10, 328) (4,944) (342, 173)	(158,433) (47,431) (357,864)
Sediment and Erosion Critical Land Treatment Streambank Rosdbanke	(369) (2,680) (298)	(181) (9) (161)	(0) (0) (0)	(55) (58) (28)	(2,689) (459)	(58) (55)	(2,844) (8,033) (1,193)	(1,395) (45) (643)	(4,239) (8,078) (1,836)
Druinige Watershed Management Channels	(361)	(6,856) (627)	<u>©</u>	(2,887)	(7,217) (4,136)	(2,887) (130)	(9,776)	(13,713)	(14,435)
Water Quality and Pollution	27,931	6,665	0	924	37,596	#59e	70,851	25,592	36,443
Municipal Waste Treatment Bacteria Control	(27,931) (0)	(9,310)	<u>©</u>	(245) (349)	(37,241)	(77) (348)	(70,851)	(23,616) (1,976)	(94,467) (1,976)
Navigation	042,2	020	1,7%	0	2,500	1,736	105,973	5,102	111,075
Hydropover	0	0	214	0	0	218	34,475	0	14,475
Historical and Archeological	3,000	3,000	0	0	9,000	0	17,623	17,623	35,246
Health	0	0	0	1,572	0	1,572	0	0	0
5 17 80	180 611	1009 1100	000 00	0.1 - 1.0	Ric out	Brd ca	771 357	1 058 530 1 203 307	1 200 2007

Table 121 - Estimated Frogram Costs, National Income Objective (All costs in \$1,000) Cont'd

			1971			1			1981			
Feature	Federal	Investment ral Non-Federal	Federal N	Non-Federal	Investment	100	Federal	Investment ral Non-Federal	Federal N	Non-Federal	Investment	Totals nt O&M
Water Supply	223	222	12	345	\$ 1	690	352	351	33	124	703	9
Municipal Irrigation Fish and Wildlife	(36)	(185) (0) (37)	€	(35) (2) (3) (3)	(57) (6) (4)	(315) (0) (34)	<u> </u>	(86.)	33g	(382)	(571) (0) (132)	(395) (0) (65)
Water Surface	591	§	0	118	1,180	118	1,674	1,674	0	154	3,348	1,5
Recreation Small sitter Large witer Stream Access Fish and Wildlife Notural Environment	33893	00860	33333	33333	0000000	33 3 33	£0530	(1) (4) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	33333	89350	(3,188) (0) (75) (85) (0)	83858
Sport	15,489	100,80	3 €	24.5	83,490	1,782	4,748	4,747	1,160	1,309	6,495	2,469
Recreation Fish and wildlife Matural Environment	(8,650) (6,736) (103)	(8,650) (749) (58,602)	9 00	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(17, 300 (7, 485) (58, 705)	(1,680) (100) (2)	(2,700) (2,048) (0)	(2,700) (2,047) (0)	(1,18 (0) (0) (0)	(1,160) (147) (2)	(5,400) (4,095) (0)	(2,520) (147) (2)
Flood Control & Related Problems	125,327	37,950	393	1,084	134,277	1,477	27,862	16,127	629	2,357	63,989	2,986
Flood Control Principal Reaches Upstream 1/Land Treaming	(64,775) (18,290) (2,273)	(324) (6,951) (25,989)	300	(495) (0)	(65,099) (25,241) (26,262)	(393) (492) (0)	(16, 307) (1, 968) (2, 694)	(62) (85) (29,007)	<u>ჭ</u> ©©	0 7 50	(16, 369) (2,831) (31,701)	(554)
Critical Land Treatment Streambanks Roadbanks	(51.75) (67.00) (67.00)	3 39	333	<u> </u>	(259 (404) (103)	<u>ම</u> ිමිම	(5,86) (59) (59)	99 98 98	(100 c) (100 c) (100 c)	<u> </u>	(3,987)	(S)(S)(S)
Watershed Management Channels	(10,242)	(2,002)	<u>©</u>	(#5) (148)	(2,107) (12,802)	(421) (148)	(2,491)	(5,505)	<u>©</u>	(1,580)	(5,795) (3,114)	(1,580)
Water quality and Pollution	2,843	1,426	0	87	692,4	18	5,160	1,745	0	93	6,905	35
Municipal Waste Treatment Bacteria Control	(2,843) (0)	(874) (874)	<u></u> 33	(37)	(3,791)	(§ § §	(5,160)	(1,720)	<u></u>	(\$ 5)	(6,880)	(36) (36)
Mavigation	3,690	1,560	OH.C	0	5,250	340	0	0	340	0	0	340
Rydropover	0	0	0	0	0	0	0	0	0	0	0	0
Historical and archeological	7,866	1,800	3	0	3,732	0	3,762	3,762	5	0	4254)	0
Health	0	0	0	642	0	642	0	0	0	953	0	953
TOTALS	121,029	111,614	1,600	3,215	232,643	4,815	43,558	904,84	2,162	5,293	48,18	7,455

Table 121 - Estimated Program Costs, National Income Objective (All costs in \$1,000) Contid

	The state of the s	Tours trans	2001 - 2020	920	Potale	-		Total Investment	ent
esture	Federal	Non-Federal	Federal	Non-Federal	Investment	M790	Federal	Non-Federal	Total
Auter Supply	694	184	9	645	916	589	1,064	1,060	2,124
Municipul Irrigation Fish and Widlife	(6) (8) (8)	(406) (0) (82)	333	(6) (6) (9) (8)	(811) (0) (165)	(509) (0) (08)	(878) (0) (186)	(875) (0) (185)	(1,753) (0) (1,753)
dater Surface	8,095	8,095	0	279	16,190	612	10,360	10,358	20,718
Recreation Small witer Large Water Stream Access Fish and Wildlife Natural Environment	(7, 97 (9) (9) (9) (9) (9) (9) (9)	(7, 970) (9) (0) (025) (0)	88888	000000000000000000000000000000000000000	(15,940) (0) (0) (250) (0)	§000000 000000000000000000000000000000	(6,564) (3,564) (3,644) (3,644)	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	(19,128) (0) (000) (000) (000) (0)
ands	7,473	7,472	1,615	1,8,1	14,945	3,446	27,710	80,220	107,930
Recreation Fish and Wildlife Natural Environment	(4,550) (2,923) (0)	(4,550) (2,922) (0)	(1,615)	(1,615) (214) (2)	(9,100) (5,845) (0)	(3,230) (214) (2)	(15,900) (11,707) (103)	(15,900) (5,718) (58,602)	(31,800) (17,425) (58,705)
Flood Control & Related Problems	12,780	38,870	892	3,990	51,650	4,819	137,969	112,947	249,916
Flood Control. Principal Reaches Upstream 1/ Land Treatment	(5,306) (0) (3,081)	(0) (0) (711,48)	(64) (66)	(0) (0)	(5,306) (0) (34,198)	(4.93) (554) (0)	(86, 388) (20, 258) (8, 048)	(386) (7,814) (86,113)	(86,774) (28,072) (94,161)
Sediment and Erosion Oritical Land Treatment Streumbanks Roadbanks	(3,898) (42)	(82)	(336)	<u>6</u>	(69) (9) (64)	(377.)	(8,283) (168)	(8) (8)	(429) (8,291) (258)
Drainage Hatershed Management Channels	(90 1)	(7,707,7)	<u></u>	(3,203)	(8,113)	(3,203)	(12,733)	(15,214) (3,183)	(16,015)
dater Quality and Pollution	2,185	757	0	107	2,942	107	10,188	3,928	14,116
Municipal Waste Treatment Bacteria Control	(2,185)	(728)	<u>©</u>	(35)	(2,913)	(35)	(10,188)	(3,396)	(13,584)
Navigation	1,545	330	044	0	1,875	044	5,235	1,890	7,125
Rydropower	0	0	0	0	0	0	0	0	0
Historical and Archeological	3,000	3,000	0	0	6,000	0	8,628	8,628	17,256
Bealth	0	0	0	1,006	0	1,006	0	0	0
DOTALS	35,567	110,68	2,924	7,762	94.578	10.686	200,154	219.031	419.185

Table 121 - Setimated Frogram Costs, National Income Objective (All Costs in \$1,000) Cont'd

			1971	1971-1980					1961	1981-2000		
Feature	Federal	Investment eral Non-Federal	Federa!	Annual Och	Totals Investment	ALS OWN	Pede rul	Investment	Pede ral	Annual Oder	Totals	NI OWN
dater Supply	101	1403	2	11.4	907	614	1,152	1,151	4	189	2,303	169
Municipal Irrigation Fish and Wildlife	(382)	(391) (0) (12)	<u>300</u>	(475) (0) (2)	(783) (0) (24)	£0€	(1,125) (0) (27)	(1,125) (0) (36)	<u> </u>	\$ 0.3 8	(2,2%) (0) (53)	300
Water Surface	29,350	29,349	0	454	58,699	454	6,715	8,713	0	93	17,428	\$8.
Recreation Small Atter Lings Witer Stream Access Fish and Wildlife Matural Environment	(28, 975) (0) (75) (300) (0)	(38,94) (0) (75) (0) (00) (0)	33333	£03380	(94,72) (0) (0,41) (0,63) (0,03)	(5.55) (5.55) (6.55) (6.55) (7	(6,6,8) (9,6,9) (8,6,9) (9,6,9	(8,639) (50) (57) (57) (57)	33333	<u>ଞ୍</u> ଟୁତନ୍ତିକୃତ	(17, 278) (0) (75) (27) (27) (0)	<u>ଞ୍</u> ଟିତ୍ରି ଞ୍ ତ
Lands	19,757	19,057	870	586	58,814	1,863	8,720	8,720	1,438	1,630	17,440	3,068
Mecreation Fish and Wildlife Matural Environment	(8,900) (8,100) (2,757)	(8,900) (900) (755,257)	(200)	(965) (120) (8)	(17,800) (9,000) (32,014)	(1,730) (120) (13)	(5,675) (3,045) (0)	(5,675) (3,045) (0)	(1,433 (5)	(1,432) (190) (8)	(11, 350) (6,090) (0)	(2,865) (190) (13)
Flood Control & Related Problems	72,746	45,356	33	× 58	118,102	659	27,444	37,631	135	£	65,075	1,080
Flood Control Frincipal Reaches Upstream 1/ Land Treament Land Treament	(10,100) (50,075) (1,625)	(1,000) (9,372) (31,174)	300	©(60E)	(59,447) (32,799)	(33)	(3,519) (17,546) (1,850)	(391) (3,147) (32,383)	300	(o) (o) (o) (o)	(3,910) (20,693) (34,233)	<u>8</u> 69
Critical Land Treatment Streambanks Roudbanks	(5,544) (2,931) (213)	(2,759) (30) (115)	<u> </u>	(10)	(8, 303) (2, 961) (328)	(10) (10) (10)	(1,273) (2,704) (186)	(6,8) (1,8) (100)	<u>0</u> 0000	(0) (237) (18)	(1,911) (2,722) (286)	(0) (279) (18)
Watershed Management Channels	(2,240)	(3 16)	<u>©</u>	(73) (56)	(364) (2,800)	(38)	(35) (35)	(874) (80)	33	(257) (42)	(00 0)	(257) (45)
Water quality and Pollution	2,066	1,018	0	65	3,084	65	5,250	1,806	0	69	7,056	69
Municipal Waste Treatment Bacteria Control	(2,066)	(686)	<u>©</u>	38	(2,754) (330)	38	(5,250)	(1,7%)	<u>©</u>	(2) (67)	(36)	(2)
Navigation	0	0	0	0	0	0	9,146	1,235	100	0	10,381	100
Hydropover	0	0	0	0	0	0	82,880	0	1,043	0	82,880	1,043
Historical and Archeological	813	813	0	0	1,626	0	3,772	3,771	0	0	7,543	0
Health	0	0	0	7	0	3	0	0	0	88	0	88
TOTALS	125,136	115,996	808	2,620	241,132	3,525	147,079	63,027	2,720	4,002	210,106	6,722
						1		1000	211			

Pable 121 - Estimated Program Costs, National Income Objective (All Costs in \$1,000) Cont'd

WRPA 7 (Cont'd)

	nve	Investment	Annual OGM	O.S.	Totals		-	Cost (\$1,000	
Feature	Federal.	Non-Federal	Federal	Non-Federal	Investment	3	Federal	Non-Federik	Total
dater Supply	1,107	1,106	9	1,019	2,21,5	1,025	2,665	2,660	5,323
Municipal Irrigation Fish and Wildlife	(1,076) (0) (13)	(1,075)	<u>5</u>	(1,01.3) (0) (6)	(2,151) (0) (62)	(1,013)	(2,593) (0) (70)	(2,591) (0) (69)	(5,184) (0) (139)
Ater Surface	75	75	0	597	150	265	38,140	36,137	76,277
Recreation Small where Large Water Stream Access Fish and Wildlife Natural Envisorment	00590	33 8 23	33333	£0880	99559	£23500	(37,614) (0) (150) (376) (9)	(37.613) (150) (37.613) (37.613) (9)	(75,227) (9) (300) (750) (0)
Lands	13,298	13,297	2,385	2,677	56,595	5,062	41,775	470,13	102,849
Recreation Fish and Wildlife Matural Environment	(8, <i>97</i> 5) (4, <i>52</i> 3) (0)	(8, 975) (4, 522) (0)	(2, 38)	(2, 380) (289) (8)	(17,950) (8,645) (0)	(4,780) (289) (1,5)	(23,550) (15,468) (2,757)	(83,550) (8,267) (29,257)	(47,100) (23,735) (32,014)
Flood Control & Melated Problems	6,435	40,903	180	1,268	47,338	1,448	106,625	123,890	230,515
Flood Control Frincipal Reaches Upstream 1/ Land Treatment	(1,147) (0) (2,131)	(34,046)	800	(662) (662)	(1,274) (0) (141,197)	8 8 8 8 8 8 8	(14,766) (67,621) (5,626)	(12,518) (12,519) (102,603)	(16,284) (80,140) (108,229)
Sediment and Erosion Critical Land Treatment Streambunks Foodbanks	(845) (2,095) (133)	(423) (12) (71)	<u>3</u> 33	(%) (%) (%) (%)	(1,268) (2,107) (204)	38 38 30	(7,662) (7,730) (532)	(3,820) (60) (286)	(11,482) (7,790) (818)
Drainage Watershed Management Channels	3 0	(1,224)	<u>33</u>	(514) (49)	(1,288)	(514) (64)	(2,560)	(2,444)	(2,572)
dater quality and Pollution	3,431	1,217	0	ま	4,648	₹	10,747	140,4	14,788
Municipal Waste Treatment Bacteria Control	(3,4,11)	(1,144) (73)	33	(8)	(4,575) (75)	(3)	(10,747)	(3,582)	(14, 329)
Navigation	0	0	100	0	0	100	9,146	1,235	10,381
Hydropover	0	0	1,043	0	0	1,043	82,880	0	82,880
Historical and Archeological	975	375	0	0	1,950	0	5,560	5,559	и,п9
Bealth	0	0	0	175	0	175	0	0	0
1000	108 36	57.573	4.714	5. R20	82,894	45.5	297,536	236,596	534,132

Table 121 - Estimated Program Costs, National Income Objective (All costs in \$1,000) Cont'd

			197	1971-1980					1961	91		
Pesture	Federal	Non-Federal	Pedera.	Non-Federal	Investment	at Odd	Federal.	Non-Federal	Federal N	Non-Federal	Investment	18
water Supply	1,079	1,078	89	338	2,157	3	3,421	3,450	61	1,050	6,841	1,069
Municipal Irrigation Fish and Widlife	(1,971) (9) (8)	(1,071) (0) (7)	339	368	(2,142) (0) (15)	(38)	(5) (9) (19)	(3,402) (0) (18)	998 988	(1,0,2) (0) (18)	(6,804) (0) (37)	(0,032)
Water Surface	8,169	6,169	0	112	16,338	277	11,278	11,278	0	654	22,556	459
Recreation Smill witer Surge Water Stream Access Fish and Wildlife Maturi Environment	(444.77) (90) (80) (80) (80) (90)	(**.47) (0) (0) (0) (0) (0)	33333	(§ (§ (§ (§ (§ (§ (§ (§ (§ (§ (§ (§ (§ ((0) (0) (0) (0) (0) (0) (0)	80830	(1) (2) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(11,178) (0,0) (0,0) (0,0)	33333	\$ 0.8 d	(22, 32)	8 8 8 8 8 8 8 8 8
Lands	956'59	346,716	5,295	5,360	412,672	10,653	36,085	36,685	10,705	10,786	73,370	21,491
Recreation Fish and Widlife Matural Environment	(60,425) (4,770) (761)	(55,425) (550) (285,761)	300 8,8 9	5 86.53 86.53	(120,850) (5,500) (266,522)	(10, 285) (56) (12)	(36,125) (560) (0)	(36,125) (560) (0)	(10,705)	(10,705) (69) (12)	(72,250) (1,120) (0)	(21, \$10) (69) (12)
Flood Control & Related Problems	29,558	31,387	,	415	646.09	614	30,090	29,251	9	75.5	156,65	761
Flood Control Principal Peaches Upstream 1/	(19,0%) (19,0%) (1,142)	(80) (5,613) (23,595)	€00	0 0 0 0 0 0 0	(005) (05, 369) (24, 737)	£225 (6)	(65) (75,319) (405,1)	(550) (5,220) (22,241)	999	(S)(S)(S)	(30,539)	(3,6)
Sealment and Arcelon Critical Land Treatment Streambanks Reedbanks	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	SEE S	333	38€	(442) (145) (145)	383 383	(1,91) (1,917) (82)	933 933	333	(0.57.7)	(162) (1,027) (1,1)	0.55
Unitinge Autershed Management Channels	(450,65)	(316)	33	(67) (86)	(7,568)	(67) (88)	(46)	(869) (563)	<u></u>	(250)	(915)	(250)
dater quality and rollution	13,661	698,5	0	256	19,550	556	39,450	13,470	0	330	52,920	9
Municipal Waste Treatment Bacteria Control	(13,661)	(4, 553)	<u></u>	(19)	(18,214)	(19) (755)	(0)	(13,150) (320)	<u>6</u> 0	(262)	(52,600)	(262)
Navigation	0	0	0	0	0	0	13,900	7.50	170	0	14,630	170
Aydropover	0	0	0	0	0	0	0	0	0	0	0	0
Historical and Archeological	1,148	1,148	0	0	2,236	0	4,317	4,316	0	0	8,633	0
Health	0	0	0	645	.0	649	0	0	0	98	0	8
TOTALS	119,571	18.387	5,305	7,285	513,958	12,590	139,731	99,150	10,902	14,528	238,861	25,230

Table 121 - Estimated Frogram Costs, National Income Objective (All costs in \$1,000) Cont'd

	9701	Investment	Annati	Annual Own	Totals		Coc	Cost (\$1,000)	
Feature	Federal	Non-Federal	Federal	Non-Federal	Investment	O&M	Federal	Non-Federal	Total
Hater Supply	6,460	654'9	4.	1,981	12,919	2,015	10,960	10,957	21,917
Municipal Irrigation Fish and Widlife	(6,426) (0) (4E)	(6,486) (0) (33)	333	5.9 (3.0 (3.0 (3.0 (3.0 (3.0 (3.0 (3.0 (3.0	(12,852) (0) (67)	(1,948) (0) (67)	(10,899) (0) (61)	(10,899) (0) (58)	(81,798) (9) (911)
Water Surface	87,8,8	87,838	0	881	55,676	983	47,285	51,285	\$,570
Recreation Small wher Large Water Large Water Strong Access Fish and Alddife Natural Endrogent	(8,7,75)	(8) (8) (8) (8) (8) (8) (8) (8)	33333	60893 60830	65,43 66,93	(678) (121) (121) (121) (121)	(46, 230) (0) (450) (00) (0)	(56,23) (56,23) (665)	(92,460) (93) (1,210) (0)
Tands	63,888	63,087	19,215	19,314	127,775	98,529	166,529	447,288	613,817
Recreation Fish and Wildlife Natural Environment	(65,100) (788) (0)	(65,100) (787) (0)	(19,215)	(19,215) (87) (12)	(1.575) (1,575) (0)	(38,430) (87) (12)	(159,650) (6,118) (761)	(159,650) (1,877) (265,751)	(319, 300) (7, 995) (286, 522)
Flood Control & Related Problems	10,240	38,108	15	1,066	38,348	1,117	70,478	38,746	159,224
Flood Control Francipal Feaches Upstreim 1/ Lind Treatment	(5.550) (5.574) (1.474)	(1,700) (595) (24,585)	300	<u> </u>	(6, 230) (3, 369) (35, 938)	(200)	(5,690) (48,399) (3,817)	(2,030) (11,428) (70,361)	(7,650) (59,817) (74,178)
Sediment and Erosion Critical Land Treatment Streambanks Roadbanks	(65) (57) (59)	333 333 333 333 333 333 333 333 333 33	333	(E1) (E1) (E1)	\$ 3 3	(E.E.)	(615) (5,388) (235)	(28c) (34) (1-6)	(196) (3,428) (363)
Drilnige Antershed Manigement Channels	<u></u>	(1,27)	33	(118)	(1,281)	(118)	(10, 307)	(2,077)	(10, 984)
Witer quality and Pollution	27,856	659,6	0	004	57,815	004	80,967	29,018	109,985
Municipal Waste Treatment Bacteria Control	(27,8%)	(9,285)	<u>@@</u>	(35)	(37,141) (472)	(35)	(80,367) (0)	(26,988)	(107,955)
Navigation	57,000	3,000	370	0	000'09	370	70,900	5,730	74,630
Hydropower	0	0	0	0	0	0	0	0	0
Historical and Archeological	1,775	1,775	0	0	3,590	0	7,240	7,239	14,479
Health	0	0	0	1,020	0	1,020	0	0	0
alvava.	195,057	140,726	19,670	299*92	335,785	44,332	454,359	634,263	1,088,622

Table 121 - Estimated Program Costs, National Income Objective (all costs in \$1,000) Cont'd

	eval.	Investment	1971-1980	0.00 M	Totals	9	Investment	stment	Anna	1981-2000 Applied 068	- L	24.5
Festure	Federal	Non-Federal	Federal	201	Investment	M3	Pederal	Non-Federal	Federal	Non-Federal	Investment	N. S.
Aster Supply	2,212	2,212	592	949	454,4	911	26,081	606'9	1,057	3,724	53,790	4,781
Municipal Irrigation Fish and Alidife	(0) (0) (388)	(1,260)	3983 (865)	3 (0.3)	(2,520) (0) (1,904)	(625)	(30,402) (20,086) (3,393)	(3,402) (114) (3,393)	(0) (0) (1,057)	(1,651) (1,656) (1,057)	(6,804) (20,200) (6,786)	(1,031) (1,636) (2,114)
Anter Surface	730	730	0	186	1,460	186	0	0	0	198	0	186
Recreation Jania Atter Large Atter Stream Access Fin and Wildlife Matura Environment	33833	<u> </u>	33333	33833	33 33 33 33 33 33	33333 3333	33333	33333	33333	3 3 3 3 3 3 3 3 3 3	30000	33 <u>3</u> 33
Lunds	81,853	332,054	5.4.5	6,058	105,524	12,001	51,848	51,847	10,583	11,177	103,695	21,760
Recreation Fish and Wildlife Natural Environment	(71,150) (9,136) (1,367)	(71,150)	3 33	(108) (108) (101)	(142, 300) (10, 373) (361, 234)	(11,880) (108) (13)	(%, %) (%) (%) (%) (%)	(5) (5) (5) (5) (5)	.0. 903	(10,580)	(0) (41,8%) (0)	(21,160) (587) (13)
Flood Control & Related Problems	71,855	52,213	36	1,449	124,068	1,541	18,996	41,693	189	3,145	69,09	3,334
Flood Control Principal Reaches Upstremmi Land Treatment	(31,450) (21,445) (3,011)	(5,6%) (9,75)	800	<u> </u>	(37,100) (31,218) (32,953)	889	(8,500) (3,855) (3,399)	(1,700) (1,733) (30,183)	(1893)	(0) (0)	(10,200) (5,588) (33,582)	(981) (917) (0)
Sediment and Erosion Critical Land Treatment StreamCanks Foodbanks		£03	333	38 <u>3</u>	(223) (42) (374)	33 <u>3</u>	(69) (16) (213)	(33) (0) (115)	333	<u>338</u>	(102) (16) (328)	<u>e</u>
Drainage Watershed Management Channels	(14.8)	(2,804)	<u></u>		(2,952)	(5.80 (5.80)	(384)	(049)	<u>©</u>	(2,125) (280)	(7,673)	(2,125)
water quality and Follution	11,02	9,373	0	362	29,850	362	79,460	15,889	0	629	62,349	659
Municipal Waste Treatment Bacteria Control	(20,477)	(6,826) (2,547)	<u></u>	(975) (978)	(7,303)	(910)	(16,460) (0)	(15,486)	3	(98)	(61,946)	(145)
Navigation	16,470	3,010	OHC	0	19,480	940	72,500	19,790	2,450	0	92,290	2,450
Hydropover	0	0	0	0	0	0	0	0	0	0	0	0
Coustil and Estuarine	0	0	0	0	0	0	2,500	2,500	0	30	2,000	30
Historical and Archeological	1,181	1,181	0	0	2,362	0	6,652	6,653	0	0	13,305	0
dealth	0	0	0	3,395	0	1, 195	0	0	0	2,062	0	2,062
	Brz 401	400,775	0,640	10,296	595,551	16,936	225,837	145,281	14.279	20,953	371,118	35,63

Table 121 - Estimated Program Costs, National Income Objective (All costs in \$1,000) Cont'd

WRPA 9 (Cont.d)

			2001	2001-2020	Totals		Tota	Total Investment Cost (\$1,000)	
Feature	Federal	Non-Federal	Federal	Non-Federal	Investment	OF.	Federal	Non-Federal	Total
Water Supply	37,299	11,163	1,553	7,161	48,462	8,714	66, 392	30,384	86,676
Municipul Irrigation Fish and Mildlife	(6,048) (26,268) (4,983)	(6,048) (1,32) (4,983)	(0) (0) (1,554)	(1,834) (3,775) (1,552)	(12,096) (26,400) (9,906)	(1.834) (3,775) (3,105)	(10,710) (46,354) (9,38)	(10,710) (246) (9,328)	(21,420) (46,500) (18,656)
Water Surface	0	0	0	186	0	196	7,30	/30	1,460
Recreation Small state: Large sate: Large sate: Stream Access Pign and Wildlife Matural Envisorment	<u> </u>	33333	<u> </u>	000000	33333	©© § §©	00880	00890	(1,000)
Lands	80,690	80,690	17,865	18,540	161,380	35,803	214,391	464,591	676,362
Recreation Fish and Middife Matural Environment	(50,800) (0,8,800) (0)	(29.890) (29,890) (0)	(17.86 (17.86 (1.86)	(17,260) (1,270) (10)	(101,600) (59,780) (0)	(34,520) (1,270) (13)	(152,850) (60,174) (1,357)	(152,850) (51,874) (259,867)	(205,700) (112,048) (261,234)
Flood Control & Related Problems	14,048	056.44	307	5,813	9,938	9,620	104,899	1,38,856	243,755
Flood Control Principal Renches Upstream! Land Treatment	(9,700) (0) (3,605)	(2,480) (0) (32,113)	(397)	(0) (0) (0)	(0) (0) (35,718)	(307) (97) (0)	(49,650) (25,300) (10,015)	(9,830) (11,506) (92,238)	(59,480) (36,806) (102,253)
Sediment and Erosion Critical Land Trestment Streambanks Rosdbanks	8 38 8 38 8 38 8 38 8 38 8 38 8 38 8 38	(51)	333	<u>338</u>	\$ 1 m	©∃ ®	(60 gg)	(15) (15) (15) (15) (15)	(375) (979) (969)
Drilange Watershed Minigement Channels	999	(10,260)	<u></u>	(4,285) (280)	(10,800)	(4,2 8 5) (280)	(17,970)	(20, 353)	(22,400)
Water quality and Pollution	26,900	9,505	0	732	36,405	732	93,837	34,767	128,604
Municipal Auste Treatment Bucteria Control	(26,900)	(8,367)	00	(100) (632)	(35,867)	(100)	(93,837)	(3,488)	(125,116)
Navigation	006'129*	162,660	(,140	2	040,040	041.)	570,950	165,460	762,410
Rydropower	0	0	0	0	0	0	0	0	0
Constal and Estuarine	7,500	7,500	0	98	15,000	98	10,000	10,000	20,000
Historical and Archeological	900	800	0	0	1,600	0	8,633	8,634	17,267
Heal th	0	0	0	2,189	0	2,189	0	0	0
TOTALS	655,217	317,268	26,263	34,201	972.485	494,09	1,075,832	863,322	863,322 2,939,154

Table 121 - Estimated Program Costs, National Income Objective (All costs in \$1,000) Cont'd

			1	d								
	Inv	Investment	LALLA ANDUM	Annual Oth	Totale	1	Investment	tment	Annus 06	7000	Totale	1
Feature	Federal	Non-Federal	Federal	201	Investment	8	Federal	Non-Federal	Federal	1	Investment	100
dater Supply	2.94	3,5	0	1,579	11,882	1,579	21,187	21,186	90	5,627	42,373	5,635
Municipal Irrigation Fish and Wildlife	(5, %) (1, %) (1, %)	₹. ₹. €.	333	(0,579) (0) (0)	(11,882)	(1,579) (0) (0)	(21,179) (0) (8)	(21,179) (9) (7)	<u> </u>	(5,680)	(#2, 358) (0) (15)	(5,680)
dater Surface	915	915	0	18,	1,830	183	1,506	1,506	0	241	3,012	241
Recreation Small state Large state Stream access Fibs and Wildlife Matural Environment	33333 33333	\$335 \$355 \$355 \$355 \$355 \$355 \$355 \$355	£2333	©©§330	(1,000) (1,000) (2,000)	33833 33833	3 30889	(1) (2) (3) (3) (3) (3) (3) (3) (4) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	33333	£08200	(2,612) (9) (280) (280) (280) (0)	900000
Linds	149,538	861,898	17,335	17,400	1,031,436	34,735	91,390	91,390	30,300	30,396	182,780	965,09
Regression Figh and Wild'ife Matura, Environment	(145,850) (2,9 70) (715)	(145,850) (550) (735,718)	(17,335) (0) (0)	(17,335) (#) (22)	(291,700) (3,300) (736,436)	(34,670) (44) (21)	(85,650) (5,740) (0)	(85,650) (5,740) (0)	(30,200)	(30,200) (175) (21)	(171, 300) (11, 480) (0)	(60,400) (175) (21)
Flood Control & Related Problems	21,795	22,100	3	349	43,895	413	57,673	37,062	412	\$69	\$,735	1,106
Flood Control Principal Reaches Upstream! Land Treament Settment and Ression	(12,360) (5,718) (1,196)	(5,640) (1,893) (13,050)	₹00	(141) (59) (0)	(18,000) (5,611) (14,246)	(59)	(49,600) (4,506) (1,126)	(20,000) (1,784) (13,604)	(412)	(141) (141) (0)	(69,600) (6,290) (14,732)	555. 14.00 10.00 1
Crifical Land Treatment Streambank Receibinks	(E)	<u>338</u>	333	555	(109) (92) (34)	555	333 333	338	333	£3£	897 897 897	3E3
Attershed Management Channels	(4, 320)	(395)	<u>©</u>	(8 ₅) (60)	(413) (5,400)	(8) (8)	(2,304)	(1,080)	<u> </u>	(370)	(1,137)	(36)
Water quality and Pollution	47,252	18,945	0	638	66,197	638	122,879	614,14	0	728	164,298	3.5
Municipal Waste Treatment Bacteria Control	(47,252)	(15,750) (5,195)	<u>©</u>	(53)	(63,002)	(53)	(0)	(40,960)	<u>©</u>	(73)	(163,839)	(73)
Mavigation	139,540	04,650	2,030	0	204,190	2,030	41,680	6,890	2,430	0	MB, 570	2,420
Hydropower	0	0	0	0	0	0	0	0	0	0	0	0
Constal and Estuarine	3,900	1,900	0	36	5,800	36	8,000	8,000	0	136	16,000	136
Historical and Archeological	347	74.8	0	0	1,496	0	3,596	3,597	0	0	7,193	0
Hewith	0	0	0	550	0	550	0	0	0	98	0	98
TOTALS	369,659	160,166	19,459	20,735	1,366,726	40,164	347,911	211,050	33,040	38,662	558,961	72,702

Table 121 - Estimated Program Costs, Mational Income Objective (All Costs in \$1,000) Cont'd

	Investment	tment	S-1005 Annual	2001-2020 Annual 06M	Totals		CO	Costs (\$1,000)	
Feature	Federal	Non-Federal	Federal	Non-Federal	Investment	3	Federal	Non-Federal	Total
Water Supply	401,14	401,14	11	10,920	82,208	10,931	(8,232	68,231	136,465
Municipal Irrigation Fish and Wildlife	(41,093) (0) (11)	(60,14) (0) (11)	£66	(10,909) (0) (11)	(82,186) (0) (22)	(10, 909) (0) (22)	(68,213) (0) (19)	(68,21 ₅) (0) (18)	(1.36, 4. 26) (0) (3.7)
dater Surface	500	900	0	281	004	281	2,621	2,621	5,242
Recreation Small wheer Large wheer Stream Access Plan and Middic	<u> </u>	<u> </u>	33333	(£2) (£2) (£2) (£3) (£3) (£3) (£3) (£3) (£3) (£3) (£3	33 <u>8</u> 3	(g) (c) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g	(1,38) (3,58) (3,50) (3	(1. 3 06) (0) (600) (715) (0)	(2,612) (1,200) (1,430) (1,430)
Lands	155,348	155,347	50,118	90,500	310,695	100,618	396,276	1,128,635	1,524,911
Recreation Fish and Wildlife Natural Environment	(147,175) (8,175) (0)	(147,175) (8,172) (0)	(50,118) (0) (0)	(56,117) (362) (21)	(294, 350) (16, 345) (0)	(100,235) (362) (21)	(578,675) (16,885) (718)	(578,675) (14,242) (7.5,718)	(757,350) (31,125) (736,436)
Flood Control & Related Problems	20,123	50,075	376	1,028	861,04	1,604	99, 591	79,237	178,828
Flood Control Frincipal Mesches Upstream	(18,400) (0) (1,014)	(6,200) (0) (12,224)	(576)	(0) (141) (141)	(24,600) (0) (13,238)	(544) (9)	(80, 500) (6, 224) (3, 336)	(31,840) (3,677) (36,878)	(112,200) (111,901) (42,216)
Sediment and Erosion Critical Land Treatment Streambank Roadbanks	333	333	999	232	9	333	(95) (181) (59)	3 08	(88.5) (98.98)
Drilnige Witershed Minigement Chinnels	(976)	(1,501)	<u>©</u>	(626)	(1,580) (720)	(626) (107)	(157)	(2,973)	(3,130)
water quality and Pollution	76,621	26,541	0	957	103,162	937	246,752	86,905	133,057
Municipal Waste Treatment Bacteria Control	(0)	(1,001)	33	36	(102,161)	(97)	(246,752)	(82,250)	(329,002)
Navigation	13,540	210	2,590	0	14,250	2,590	001.401	72,250	010,/02
Hydropover	0	0	0	0	0	0	0	0	0
Constal and Estaurine	112,500	112,500	0	1,636	555,000	1,030	124,400	122,400	240,800
Historical and Archeological	900	800	0	0	1,600	0	5,244	5,145	10,289
Health	0	0	0	416	0	476	0	0	0
TOTALS	420,236	357,277	53,295	96,216	(17,51.5	119,511	1,137,776	1,565,454	c, 703,200

major problem area components. All costs represent the most current available data applicable to the study area expressed in January 1972 dollars and have not been adjusted or discounted by time periods. Totals represent either a summation of the costs of the cheapest combination of alternative measures which best satisfy background needs or the cost of the most pragmatic solution to a problem. As explained in 'Methodology,' estimating procedures involved many generalizations and judgmental approximations and are intended to indicate order of magnitude costs only.

An indication of the Federal and non-Federal share of costs summarized by each of the Study's three time frames in terms of total investment and annual O&M is also included. O&M costs are cumulative and represent the annual amount at the last year of each time span, whereas investments are in terms of incremental amounts and are therefore additive over the 50-year period of study. Table 122 lists the approximate Federal cost sharing percentages used in arriving at the allocation to Federal and non-Federal interests. The percentages are based on information presently available and judgment, and may vary in the future. All categories are not included in the listing because an across-the-board cost-sharing criterion applied to a summation of costed measures, each having a unique Federal-non-Federal cost relationship as in navigation, is meaningless.

Table 122 - Federal Cost Sharing Percentages, Lower Mississippi Region

Program Component	Federal Cost Sharing (Percent)
Municipal Water Supply	50
Municipal Waste Treatment	75
Recreation - Small Water Areas	50
Recreation - Large Water Areas	75
Sediment and Erosion	
Roadbanks	65
Streambanks	99+
Coastal and Estuarine	50
Land Treatment	67
Drainage - Channels	80
Hydropower	100
Flood Control	
Principal Streams	90
Upstream Reaches	80
Archeology and History	50
Health Aspects	50
Irrigation (WRPA 2 only)	40
Environmental	27

It is important to recognize that the funding schedule presented in the next major section deals not only with new investments, but also with total investment requirements which take into account ongoing agency programs as defined above.

Total Program Costs

Realization of the total program to 1980 will cost the Federal Government \$2.8 billion and non-Federal public entities an additional \$3.9 billion. Annual operation and maintenance costs will amount to \$65 million Federal and \$87 million non-Federal.

By far the most expensive component of the program relates to provision of land and water areas for environmental quality purposes. Satisfaction of this need requires that certain land areas, through purchase or other means, remain in their present state. It further requires that some lands provide sites for creation of water areas or open and green space in juxtaposition to urban centers. Provision of these areas will require a total short-term investment of over \$2.4 billion (mostly non-Federal public costs). Delay of this investment beyond 1980 is not recommended because the irreversible loss of environmental items could occur at any time during the study period. Annual operation and maintenance costs, nearly all non-Federal, would average \$309,000.

Flood control and solution of related problems, with the exception of water quality, will cost \$1.6 billion to 1980, an additional \$1.1 billion to the year 2000, and another \$0.9 billion to the year 2020, amounting to a total 50-year cost of \$3.7 billion, with a regional average split of roughly 50 percent Federal and 50 percent non-Federal. Non-Federal public interests will bear the brunt (nearly 80 percent) of the operation and maintenance cost for works aimed at problem solutions with annual charges increasing from \$16.4 million per year to 1980 to \$33 million per year in 2000 and \$51.9 million per year in 2020. Flood control will require the greatest outlay of capital with a total 50-year cost of nearly \$1.1 billion on the region's principal streams and an additional \$554 million in upstream watersheds. Almost as much money will be required to solve regional problems by utilizing land treatment as a measure in the solution of flood control, sediment and erosion, and drainage problems. This measure will require a budget of nearly \$1.6 billion over the next 50 years.

Significant costs must also be borne if regional navigation needs are to be met as programmed. Over the next 50 years, improvement of the region's shallow and deep draft navigation channels, harbors, and locks will cost \$1.6 billion (\$1.3 billion Federal and \$0.3 billion non-Federal) with nearly half of the bill due in the Study's first time span. An additional \$13.8 million, nearly all Federal cost, will be required annually to 1980 for operation and maintenance of the new navigation works. This cost will increase steadily to \$17.5 million per year in 2000 and to \$23.1 million in 2020.

Water quality and pollution costs to be borne in the public sector for conventional municipal waste treatment and bacteria control will amount to \$245 million to 1980, an additional \$607 million to the year 2000, and another \$409 million between 2000 and 2020 for a total investment of nearly \$1.3 billion for the 50-year period of study. Seventy-five percent of all municipal treatment costs will be borne by the Federal Government, while the total cost for bacterial control is charged to non-Federal interests.

Costs for elimination of the region's water quality problems from pollutants other than biodegradable wastes are of substantially greater magnitude than are the public sector costs herein displayed for conventional waste treatment for control of 5-day BOD and bacteria. In 1970 the estimated regional cost of installation of treatment works with the capability to satisfactorily ameliorate the non-BOD₅ problem was in excess of \$1.5 billion. Works needed included collecting sewers, separation of sanitary and storm sewers, industrial pollutants (including inorganic chemicals), industrial cooling, sediment, and other natural pollutants. Operation and maintenance of these works was estimated at an additional \$0.6 million yearly. Substantial increases in these costs are to be expected, especially operation and maintenance costs, as the region becomes more highly industrialized in the future. These estimations, though gross approximations, serve to illustrate the pressing need to (1) satisfactorily define the full range of pollutants, present or future, in the region's waters, and (2) design the proper regional scheme of control and prevention of all pollutants.

Provision of water and land areas and facilities development for recreation and fish and wildlife purposes will require an outlay of \$4.2 billion over the 50-year time span of the study. In excess of \$2.6 billion of the total represents the cost of purchasing Class A recreation areas in urban centers.

Satisfaction of needs in the coastal and estuarine zone primarily by the utilization of flows diverted by economically feasible means from the Mississippi River below New Orleans, Louisiana, will cost nearly \$267 million for the period of study. The bulk of this cost will manifest itself during the 2001 to 2020 time period.

Less significant program costs will accrue as the result of providing water supplies for municipal, irrigation, and fish and wildlife purposes (\$419 million to 2020), for hydropower development (\$140 million to 2020), archeological and historical aspects (\$211 million to 2020), and a lesser amount for health aspects considerations.

Costs for studies and data gathering were not estimated even though an impressive array of needs for studies were quantified. It is expected that a continuation of ongoing agency and State budget appropriations will be sufficient to defray the cost of studies, while special grant funds will aid in research and compilation of additional needed planning data.

REGIONAL DEVELOPMENT PROGRAM

Capital investments in water and related land resource facilities not only contribute to the National Income objective, but also can promote the regional economy by helping to provide a more diversified regional economic base, increased regional income and employment, and improved income distribution and quality of services within the region. The extent to which such investments or other measures might serve as inducements to regional development has not been evaluated for this study, nor have specific action plans been formulated for stimulating the regional economy. However, an attempt has been made to develop a program (Program B) and component plans responsive to conditions that might prevail should the short-term regional economy be accelerated to a growth rate equal to the national average, with equivalent long-range sustainment.

The plans that follow are directed to satisfaction of the designated Program B needs summarized in the previous section of this appendix. Because of their similarity to the National Income plans, only abbreviated information is presented here in the interest of avoiding unnecessary repetition. The lack of formulated action plans for stimulating regional development is a result of realigning some of the study's initial planning concepts outdated by the "Principles and Standards" adopted by the Water Resources Council in late 1973.

Resource Use and Problem Amelioration

Water Withdrawals

Priorities for water use and withdrawals under regional development objectives would parallel those of the National Income Program, except that quantities would be larger in all planning areas in all time frames. The measures used to meet withdrawal needs under the National Income Program could be increased in scale to meet the regional development needs. The type and magnitude of the withdrawals required for regional development are given in table 123.

Water Surface Area

Problems facing the region in fulfilling National Income objective needs for water surface areas would be compounded under a regional development program. By comparing the information in table 124 with that in table 91, it can be seen that regional development needs for the year 2020 exceed the National Income needs by almost 750,000 acres. The needs for small water areas could be fulfilled through intensive resource development, using the same type measures employed for the National Income Program. Those for large water areas could not be met in WRPA's 2, 3, 4, or 6 because of the limited development potential in those areas (see table 90). Table 125 summarizes the extent to which water surface areas could be developed to satisfy as much as possible of the regional development needs.

Table 123 - Water Withdrawal Plan, Program B, Lower Mississippi Region 1/

	×	MUNICIPAL	AL				INDUSTRIAL	IAL			RURAL	THEF	THERMOELECTRIC
	Ground	Sur	Surface	Ground	pur			Surface			Ground	Ground	pur
WRPA/Time Frame	Fresh	Stream	Storage	Fresh	Brackish	Fresh	Brackish	Storage	Inter-Region Transfer 2	Intra-Region Transfer	Fresh	Fresh	Brackish
WRPA 2 15		0	0	38.8	0	0	0	0	0	0	24.7	9.0	0
78	2.53	00	00	3	0 0	0 (0	0	0	0	22.3	0.0	0
K		00	00	391.2	00	00	00	00	00	00	17.7	5.0	00
MRP. P. 10	8 tat 000	0	c	G.									
3	1980	0 0	00	163.6	50	0 0	0 0	0 0	00	00	19.3	00	0 0
i Ri	000	0	0	2.86.	00	0	00	00	00	00	, k	00	00
×		0	0	761.4	0	102.9	0	0	00	0	13.9	0	00
JARPA 1		0	C	1.54	C								
	1980	0	0	81.3	0	2.10	0.0	3 0	0.0	0 0	200	0.00	
38		0	0	200.7	0	169.9	0	0	0	0	10.7	0.00	
×		0	0	6.104	0	457.8	0	0	0	0	12.6	25.0	0
WRPA 5 19		16.8	0	119.3	0	87.4	0	0	0	0	16.1	0.3	c
77		17.6	6.3	163.3	0	4.78	0	95.2	0	0	15.3	0.0	0
8 8	2000 64.7	36.1	17.11	417.0	0	257.6	0	133.9	0	0	13.9	17.1	0
4		39.5	15.8	002.5	0	746.4	0	172.6	0	0	6.3	55.5	0
4RPA 6 19		9.0	0	28.4	0	33.1	0	0	0	0	6.7	0	0
25.8		1.0	0	37.0	0	6.14	0	0	0	0	9.6	0	0
3 8	2020	1.2	00	143.8	00	163.0	00	00	00	00	3 0	00	00
2 1995		C											
_	1980	00	000	1.6.1	00	0.0	00	00	0 0	0 0	5.5	0	0
8		0	0	169.4	00	93.6	00	0	0 0	00	7.7	00	00
8		0	0	169.4	0	1.504	0	0	0	0	0.0	0	0
WRPA 8 19		1.0	C	159.0	0.5	0.055 1	C	0	0		1		a
		1.0	0	539.0	0.00	1.936.1	0	00	00	00	0 1	0.0	0.0
8 8	2000 120.5	1.0	00	0.107	15.0	5,832.8	0.0	00	0.0	0	0.0	1.0	68.0
			,	2007	2.20	5.03(16))	>	0	3.5	1.0	0.10
WRPA 9 19	1970 65.0	6.9	0	238.0	0	39.0	1,024.3	0	0	0	16.8	9.0	0
38		200	00	285.0	0.047	150.6	1,024.3	0 0	0 -8-	0	16.1	0.6	0
8 8		6.9	00	1,164.0	9,062.0	167.0	1,024.3	43.0	450.0	804.03/	10.7	0.0	00
WHPA 10 19		0.621	0	56.0	0	1,981.7	31.0	0	0	0	3.5	21.0	0
7.5		0.622	0	302.0	20.0	3,014.1	31.0	0	0	0	5.8	81.0	83.0
8 8	2020 22.9	130.0	00	302.0	106.0	21,093.4	31.0 1.0	00	00	00	7.0	0.12	680.0
No. Morrido				-									
-	980 557.0	255.2	0.0	1.789.4	3.0	3,525.4 4,455.6 4,455.4	1,055.3	000	00	00	118.5	61.3	0.8
20			11.11	3,030.6	3,440.0	15,067.7	1,055.3	133.9	385.0	0	103.1	78.1	516.0
S			15.8	4,972.2	9,405.0	38,746.5	1,055.3	215.6	450.0	804.0	81.8	83.5	661.0

1/ All withdrawnis are in agd.
2/ Heasure includes any required surface storage.
3/ Intra-Region Transfer does not include use of Mississippi River water by adjacent WRPA's (included under the category "Fresh Stream")

Table 123 - Water Mithdrawal Flan, Frogram B, Lower Mississippi Region (cont'd)

Presh Presh Surface In	Surface Street			Surface Brincisc British Intra-legion Fresh Surface Intra-legion	Street
Triminfection Treeh Surface Triminfection Triminfect	Triansleegion Press	Triming Trees Surface Triming Trees Surface Triming Trees Surface Triming	Triming Ground Fresh Surface Intra-legion Fresh Storage Triming Trim	Triming Treeh Storing Triming Treeh Storing Triming Treeh Storing Triming	Triansfer Tria
Fresh Surface Surfac	Press. Surface Circ. Press. Surface Circ. Press. Circ.	Fresh Street St	Pround Presh Surface Infr-feefon Presh Surface Presh Pre	Fresh Surface Intr-Seption Surface S	Stream Surface Stream Str
### Surface Street Surface	Fresh Surface Intra-fegion Greek Surface Sur	Press	Press	Presh Surface Count Surface Surface	Section Street
20 10 10 10 10 10 10 10 10 10 10 10 10 10	Surface Storage 101.8 203.9 209.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8 259.8	Surfice Intr-legiton Stormal S	Storage Trinsfer Storage Storage Storage Trinsfer Storage Trinsfer Storage Trinsfer Storage Trinsfer Storage	Surface Surf	Storing Present Pres
	10tr-1. Region 1 10tr-1	Trinsfer Second Signature Second Signature Second Se	Trinfer Fresh Surface Trinfer Fresh Street	Trinfer Product Prod	Trinsfer Street
Transfer (1971) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 21	100 100	Press Surface Press Pr	Press Pres	Press Pres
	Ground Presh 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-		######################################	Street S	Surface Surf
President Pres	Press Pres		Bras	Brackielt 000 000 000 000 000 000 000 0	

Table 123 - Water Withdrawal Flan, Program B, Lower Mississippi Region (cont'd)

		Surface	ace.	Ground		Surface		Ground	nd			Surface	ao:	
SPA/Time Frame	e France	Stream	Storage	Fresh	Stream	Storage	Intra-Region Transfer	Fresh	Bruckish	Fresh	Brackish	Storage	Inter-Region Transfer	Intra-Region Transfer
	1970	0	0	435.0	145.0	0	0	2,698.3	0	873.5	0	101.8	0	
-40	1960	00	0.0	434.2	195.8	0	0	2,602.3	0	1,070.6	0	233.0	0	
* (4	3030	0.0	00	65.5.0 E.O.S.	682.6	127.1	00	2,034.4	0 0	2.205.7	00	259.8	00	350.0
	1990		0	0 36	æ			× 1		1.000				2000
	0,00		0	0.00	0.0	00	0 0	0.160	0 0	+00.	00	0 0	0	0
, vu	2000	00	0	149.0	13.0	00	00	937.79	00	1.795.0	o c	00	00	
cu	3030	0	0	147.5	100.5	0	0	1,457.2	0	2,677.8	0	0	00	, (
-	1970	0	0	15.5	15.5	0	C	397.0	0	4.774	c	c	0	
	1,900	0	0	86.5	86.5	0	0	551.2	0	1.257.6	0	0 0	00	
SW.	2000	0	0	41.5	41.5	0	0	843.0	0	1,481.6	0	0	0	
4	20:20	0	0	59.5	50.5	0	0	1,216.9	0	2,048.1	0	0	0	0
	1970	0	0	12.7	241.3	0	0	495.8	0	1,556.7	0	0	0	0
4	1360	0	o	14.2	270.8	0	0	643.8	0	1,620.2	0	101.5	0	
w f	2000	0 0	0 0	17.2	327.8	0	0	1,061.4	0	4,114.7	0	145.0	0	
•	2020	0	0	80.5	300.0	0	0	1,660.7	0	5,338.6	0	188.4	0	0
-	1370	0	0	3.4	63.6	0	0	177.0	0	138.7	0	0	0	0
7	1980	0	0	3.8	71.2	0	0	230.1	0	269.4	0	0	0	0
a ff	2000	00	0 0	9 4	208.2	00	00	316.8	00	822.7	00	0 0	0 (
	0303	,	,		(1))	0	2.5	0	1,0/0,1		0	0	0
	1970	0 0	00	2.5	5.5	0	0	104.1	0	11.0	0	0	0	0
4 (1)	2000	000	00	0.00	0.0	00	٥ د	201.5	00	95.3	0 0	0 1	0	0
· cu	3030	00	00	0.6	0.6	00	00	272.5	00	982.9	00	00	00	
1 1	1970	0	0	1.0	8.0	0	0	224.2	23.0	1.954.4	O	0	C	
1	1960	0	0	1.0	0.4	0	0	630.5	41.0	3,361.9	0	0	0	
4 (4	2000	00	00	1.0	11.0	00	٥٥	837.9	115.0	21,993.0	00	00	00	00
	0267	254.0	0	121.0	369.0	0	q	1 197.6		1 564 B	0.000			
-	1380	254.0	13.0	194.0	363.0	0	00	1,678.4	893.7	1.180.6	1,278.3	33.0	000	36c B
· W ()	3000	0.452	52.0	382.0	363.0	00	000	2,002.3	3,748.8	1,124.5	1,278.3	52.0	385.0	2,914.5
•	coco	0.40	7.	3/3.0	303.0	0	163.0	6,100,5	9,791.0	1,137.0	1,276.3	1.9.1	450.0	4,721.8
0	0261	182.9	00	5.0	1,843.0	0	00	63.5	0	5,300.6	357.9	0	0	0
40	888	180.0	00	000	1,045.0	00	00	34.0	200.2	7,195.1	357.9	0 :	0	0
· ··	2020	182.9	0	5.0	1,846.0	00	00	358.0	1,914.1	30,039.8	357.9	00	00	00
- action	1000	6.36.0	c	618.1	0 683 0	c	0	e dels a	0 10	O will one	100	0 101		
	1980	436.9	13.0	747.2	2,785.8	00	00	7,385.7	222.0	16,545.0	1,030.2	107.6	00	0 8 8 8
cu	2000	4.36.9	52.0	8.7.68	3,136.2	0	0	9,291.7	4,978.5	:8.81 3. 3	1,636.2	456.8	385.0	1,264.1
414	3030	436.9	96.1	0 299	2 550 0	1 6,000	162 0	11 Pers 11	1	1000				

Table 124 - Summary Analysis of Net Needs for Man-Made Water Surface, RD Objective, Lower Mississippi Region

Property Property							Net Ne	Net Needs (1,000 Acres)	res)						
The color of the			Recrea	ation	Fish	a e	Wa	ter Surface by Large Lake	y-Product	of Stor	age Requ	irements 11 Lakes	Largest Sum o	Remaining A	Net Need
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diamino A	nea /Dime	Large	Small Lakes	Lakes	Ponds 1/			01		Flood	Environmental Quality6/	Lakes	Small	Total
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Flaming A	and the		-		-	-	-		4/		01	0	33	53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	0	0	0	0	0	01/	57	07	3,5	40	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1980	0 1	90	0	0	0	0	1.4	(TO	57	07	G 00	66	182
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2000	50	000	0	0	0	0	14	0	57	10	70	,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0707	00	25							11	0	81	131	212
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1000	8.1	131	9	0	2	0	0	00	1 9	0	189	275	464
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WRPA 5	2000	189	275	17	0	7	0 0	00		82	0	373	511	884
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2020	373	511	32	0	7	0			1				0.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						4	0	(1102/		0	9	0	14	25	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	arpps d	1980	0	35	0	0	0	(4(41)		0	00	0	17	88	105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2000	17	88	0	0	00	(14)		0	10	0	64	140	017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2020	64	146	0	0		-(47)						6	OX LI
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						c	96		0			0	20	25	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WRPA 5	1980	0	0	0	0.0	02		(20)3/			0	20	40.0	276
2020 0 230 0 <td></td> <td>2000</td> <td>0</td> <td>0</td> <td>0</td> <td>00</td> <td>000</td> <td></td> <td>(20) 2/</td> <td></td> <td></td> <td>0</td> <td>20</td> <td>067</td> <td>7/7</td>		2000	0	0	0	00	000		(20) 2/			0	20	067	7/7
6 1980 0		2020	0	230	0	0	30		(22)					0	0
6 1980 0					9	0	0		0	0	0	0	0	0	2 14
2000 0 5 0	WRPA 6	1980	0	0	0	00	0 0		0	0	0	0	0	0.1	0.0
2020 7 43 9 0 0 0 0 88 0 70 0 88 70 80 88 70 80 80 70 80 70 80 70		2000	0		0	00			0	0	0	0		CT	1
7 1980 0 0 0 0 0 0 55 0 55 0 0 88 70 2020 0 11 0 0 0 0 0 0 88 70 2020 0 0 0 0 0 0 0 88 70 2020 0 0 0 0 0 0 0 0 155 0 0 155 0 0 155 0		2020	7	13	n	2								20	27
7 1980 0 10 88 0 70 0 88 70 89 70 89 70 89 70 89 70 89 70 70 70 70 70 70 70 <td></td> <td></td> <td></td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>55</td> <td>0</td> <td>0 0</td> <td>20</td> <td>158</td>				4	0	0	0		0	0	55	0	0 0	20	158
2000 0 11 0 0 0 0 88 0 70 0 85 70 2020 0 0 0 0 0 0 15 0 0 155 8 1986 0 0 0 0 0 0 0 155 0 0 155 2000 0 <td>WRPA 7</td> <td>1980</td> <td>0</td> <td>0</td> <td>0.0</td> <td>00</td> <td></td> <td></td> <td>88</td> <td>0</td> <td>70</td> <td>0</td> <td>00 0</td> <td>100</td> <td>855</td>	WRPA 7	1980	0	0	0.0	00			88	0	70	0	00 0	100	855
2020 0 29 0 0 15 0 0 15 8 1980 0 0 0 0 0 0 0 0 15 0 0 155 0 0 155 0 0 155 0		2000	0	11	00	0 0	0		88	0	20	0	99		
8 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2020	0	67	0								0	10	15
8 1980 0 0 0 0 0 0 0 0 0 0 0 155 0 0 0 155 0 0 155 0 0 0 155 0 0 0 155 0 0 0 155 0 0 0 155 0 0 0 155 0 0 0 0				0	0	U	0		0	0	15	0 0	00	27	37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WRPA 8	1980	0	0 0	00	2	0		0	0	57	0.0	00	155	355
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2000	0 0	100	0	0	0		0	0	74				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2020	0	133								•	1	0	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	0	0	0	3		0	17	00	00	80	0	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WRPA 9	1980	0 0	00	0	0	9		0	08	0	0 0	140	0	140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2000	0	0.0	0	0)		0	140	0		7.40		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2020	0	0									6	U	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0	-				0	7	00		14	c1	16
2020 0 0 0 0 0 0 14 2 0 150 301 2020 0 0 0 0 14 2 0 150 301 1980 81 166 6 0 28 (14) 14 9 175 10 150 301 2000 241 417 17 0 52 (14) 116(20) 168 276 10 819 1,528 2000 527 1,185 35 0 52 (14) 116(20) 168 276 10 819 1,528	WRPA 10	1980	0.0	0.0	0				0	14	40		1.4	2	10
2020 81 166 6 0 28 (14) 14 9 175 10 150 301 1980 81 166 6 0 52 (14) 116(20) 108 239 10 475 549 2000 524 417 17 0 52 (14) 116(20) 168 276 10 819 1,228 2020 527 1,185 32 0 52 (14) 116(20) 168 276 10 819 1,228		2000		00	0				0	14	7				
1980 81 166 6 0 28 (14) 14 9 172 549 475 549 2000 241 417 17 0 52 (14) 116(20) 108 239 10 475 549 3020 527 1,185 52 0 52 (14) 116(20) 168 276 10 819 1,228		2070	0										130	301	451
1980 241 417 17 0 52 (14) 116(20) 168 276 10 819 1,228		1000	0	166	9		7		14		0.72		475	549	1,022
527 1.185 52 0 52 (14) 110(20) 100	IME	1980	741	417	17		25		110(276		819	1,228	2,047
1,750		0007	537	1 185	32		is.		Tiori						-

Fond resource more than adequate in all WRPA's, however, public does not have access to 90% of the needed pond areas. Included in power pool (multi-use with power production).
Included in FC pool water surface.
There will be private storage development in WRPA 2 for irrigation purposes but no identified water surface data available. No conflict between EQARD exists in this case, therefore included in RD Program.

मालकारा

Table 125 - Water Surface Area Plan, AD Objective, Lower Mississippi Region

												566
	1	Hater	288 327	361	388	475 475	383	8,883	201	6538	1,275	3,9767
	(sax	Subtotal	222	101	たたた	333	16 16 16	222	333	29 29	711 711 711	533 533 533
	Ponds (1,000 Acres) 4/	Proposed	000	000	000	000	000	000	000	000	000	000
	Ponds	Existing 5/	52	104	₹	8	16	14	3	62	711	533
	res)3/	Subtotal	888	222	133 133 133	555	333	222	333	138 138	65 65 65 75 85 85 85 85 85 85 85 85 85 85 85 85 85	837 837 837
	Small Water (1,000 Acres)3/	Proposed Addition	000	000	000	000	000	000	000	000	000	000
	Small Wate	Existing 5/	%	85	133	92	3	*	54	138	219	837
1	Total	Large	124 145 204	252 473 709	123 176 234	233 259 455	35 54	288	88 110 228	649 540	955 955 955	2,661 <u>T</u> 3,197 <u>T</u> 3,936 <u>T</u>
		Subtotal	102 109 168	167 311 547	8 H H	33,4	22 25 37	5.8.8	37 59 177	ಹಹಹ	503	1,081 1,329 2,008
19	Small Lakes	Proposed Addition	35	131 144 2369	35 536 586	32	350	15%	15 22 1186	g	200	301 248 679
Large Water (1,000 Acres)	S	Sxisting	6	36	52	0	22	15	55	ಪೆ	507	780
'ge Water (Subtotal	888	85 162 162	555	201 225 225	000	E E E	***	38.3 436.33 456.33	454 454 444 444 444 444 444 444 444 444	1,212
a.	Large Lakes 1	Proposed	910	100 o	9300	850	g	,988 989 9	J	-58	120	888
	.3	Existing	22		64	175	10	23	ß	316	432	1,082
		APPA/Time Frame	1980 2000 2020	1980 2000 2020	1980 2000 2020	1.980 2000 2020	20000	1980 2000 2020	1980 2000 2020	2020	1980 2000 2020	1980 2000 2020
		FPA/T	o.	m	a	0	9	7	Φ	6	10	EWE!

या व्याप्त विकास

Lakes towering more than 500 acres.
Lakes between 40 and 499 acres in size.

Water surface areas between 2 and 39 acres in size.

Water surface areas less than 2 acres in size. Counted as land area and included in the "other" category of land use.

Water water bodies and man-made water bodies (reservoirs and ponds) in place or under construction as of 1 July 1973.

Proposed addition limited by development potential of WRPA.

Includes 368,000 acres in Mississiphi Hiver (ARPA.).

Land Areas

A regional composite of present land use and feasible future use for satisfying as much as possible of the regional development needs through the year 2020 is given in table 126. The given allocation would permit the satisfaction of all regional development needs for open land, but regional development needs for timber production and fish and wild-life habitat would not be met with the forest land that would be retained. Conversely, retention of the needed forest lands would preclude satisfaction of the open land needs. Obviously, then, the constraint imposed by limited resources would deter achievement of the study's Regional Development objective, and it seems reasonable to expect that the economical growth of the region will continue at a rate somewhat less than the national average.

Plans

Plans developed for recreation, fish and wildlife, environmental quality, and for problem amelioration under the study's Regional Development objective are summarized in the nine tables that follow, bearing in mind the absence of an explicit Regional Development objective in the Council's latest "Principles and Standards for Planning Water and Related Land Resources." Pertinent differences between the Regional Development plans and National Income plans are outlined in the following paragraphs.

Recreation. The recreation plan developed for the Regional Development objective is given in table 127. The initial phase (1970-1980) of the plan provides for the recreation use of 13,000 acres of land and 103,000 acres of water surface area not included in the National Income plan. Between 1980 and 2000, the Regional Development plan provides for recreation use of an additional 343,000 acres of land and 2.1 million acres of water surface area. This compares to additions of 279,000 and 1.7 million acres of land and water, respectively, under the National Income Program.

All of the short-term Regional Development needs could be met within the plan, but there would be long-range deficits in large lakes needed for recreation purposes. These deficits, as in the case of those within the National Income plan, would occur in WRPA's 2, e, and 4, due to the limited potential for developing large lakes (over 500 acres in size) in those areas.

Fish and Wildlife. To meet expressed regional development needs for fish and wildlife would require, among other things, that the region's existing 29.6 million acres of forest remain intact, and that an additional 9.2 million acres of land now used for other purposes be converted to forests by the year 2020. It follows, then, that satisfaction of the fish and wildlife needs for forest land would leave but 23.6 million acres of open land in 2020. This amounts to only a little

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region

Water Resources	1070 1 1 11		ocated Futu	
Planning Area and Need Category	1970 Land Use (1,000 Acres)	1980	Use (1,000 . 2000	2020
WRPA 1				
Open Land				
Transportation				
Urban and Built-up	-	-	-	-
Food and Fiber				
Cropland	188.0	188.0	188.0	188.0
Pastured Cropland	30.0	30.0	30.0	30.0
Permanent Pasture	32.0	32.0	32.0	32.0
Other	62.0	62.0	62.0	62.0
Commercial Fisheries	-	-	-	-
Minerals		-	-	-
Recreation				
Class A	-	-	-	
Class B	-	-	-	-
Fish and Wildlife				
(Cropland)	-	-	-	-
(Pastureland)	-	-	-	-
(Wetlands)	-	-	-	-
Environmental Quality	-		-	
Forest Land				
Food and Fiber				
Forest Products, et al.	879.0	879.0	879.0	
Animal Roughage (Pasture)1	/ (135.0)	(135.0)	(368.0)	(368.0
Recreation				
Class B	-	-	-	-
Class C		-	-	-
Fish and Wildlife2/	(131.1)	(131.1)	(131.1)	(131.1
Environmental Quality				
Botanical Systems				
Bottomland Hardwood Areasl	/ (879.0)	(879.0)	(879.0)	(879.0
Ecological Systems	-	-	-	-
Geological Systems		-	-	-
Lake Shores1/	-	(6.0)	(6.0)	(6.0
Scenic River Banks	-	-	-	-
Wetlands		-	-	
Wilderness Areas	-		-	
Land Covered by Water				
Large Water Areas	368.0	368.0	368.0	368.0
Small Water Areas		-	-	-
Total Area, WRPA 1	1,559.0	1,559.0	1,559.0	1,559.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (Cont'd)

Open Land Transportation, Urban and Built-up 567.0 392.0 448.0 541.0 Food and Fiber Cropland 6,192.0 7,201.0 7,849.0 7,757.0 Pastured Cropland 380.0 501.0 534.0 552.0 Other 247.0 379.0 255.0 177.0 Commercial Fisheries3/ (16.0) (21.0) (30.0) (40.0) Minerals5/ (20.0) (40.0) (71.0) (30.0) (40.0) Minerals5/ (20.0) (40.0) (71.0) (9.6) (14.4) Class A4/ (6.1) (7.1) (9.6) (14.4) Class B5/ (7.1) (7.5) (8.3) (12.4) Fish and Wildlife (Cropland)6/ - (309.0) (357.0) (395.0) (Pastureland)5/ - (152.0) (155.0) (168.0) (Wetlands)3/ - (101.0) (101.0) (101.0) Environmental Quality 0 (8.0) (8.0)	Water Resources			ocated Futu	
Open Land Transportation, Urban and Built-up 307.0 392.0 448.0 541.0 Food and Fiber Cropland 580.0 501.0 534.0 552.0 Pastured Cropland 380.0 501.0 534.0 552.0 Other 247.0 379.0 255.0 174.0 Commercial Fisheries3/ (16.0) (21.0) (30.0) (40.0) Minerals3/ (20.0) (40.0) (71.1) (118.0) Recreation Class A4/ (6.1) (7.1) (9.6) (14.4) Class B5/ (7.1) (7.5) (8.3) (12.4) Fish and Wildlife (Cropland)6/ (20.0) (30.0) (357.0) (395.0) (40.0) (
Open Land Transportation, Urban and Built-up 567.0 392.0 448.0 541.0 Food and Fiber Cropland 6,192.0 7,201.0 7,849.0 7,757.0 Pastured Cropland 380.0 501.0 534.0 552.0 Other 247.0 379.0 255.0 177.0 Commercial Fisheries3/ (16.0) (21.0) (30.0) (40.0) Minerals5/ (20.0) (40.0) (71.0) (30.0) (40.0) Minerals5/ (20.0) (40.0) (71.0) (9.6) (14.4) Class A4/ (6.1) (7.1) (9.6) (14.4) Class B5/ (7.1) (7.5) (8.3) (12.4) Fish and Wildlife (Cropland)6/ - (309.0) (357.0) (395.0) (Pastureland)5/ - (152.0) (155.0) (168.0) (Wetlands)3/ - (101.0) (101.0) (101.0) Environmental Quality 0 (8.0) (8.0)	Need Category	(1,000 Acres)	1980	2000	2020
Transportation, Urban and Built-up	WRPA 2				
Urban and Built-up	Open Land				
Food and Fiber Cropland Cropland Cropland Fisher Cropland Food of the Cr	Transportation,				
Cropland 6,192.0 7,201.0 7,849.0 7,757.0 Pastured Cropland 380.0 501.0 534.0 552.0 0 ther 247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 255.0 174.0 (247.0 379.0 379.0 (247.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0 379.0	Urban and Built-up	367.0	392.0	448.0	541.0
Pastured Cropland 380.0 501.0 534.0 552.0 Permanent Pasture 093.0 314.0 539.0 350.0 174.0 Other 247.0 379.0 253.0 174.0 Commercial Fisheries3/ (16.0) (21.0) (30.0) (40.0) Minerals3/ (20.0) (40.0) (71.0) (118.0) Recreation Class A4/ (6.1) (7.1) (9.6) (14.4) Class B5/ (77.1) (7.5) (8.3) (12.4) Fish and Wildlife (Cropland)6/ - (509.0) (357.0) (393.0) (40.0) (Wetlands)3/ - (101.0) (101.0) (101.0) (101.0) Environmental Quality Open and Green Space7/ (6.1) (8.0) (8.0) (8.0) Ecological Systems3/ (157.0) (157.0) (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,654.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture)1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class C1/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (610.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems1/ (350.0) (250.0) (250.0) (250.0) (250.0) (250.0) Lake Shores1/ (10.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) (18.0) (18.0) Wildemess Areas1/ (44.0) (30.0) (30.0) (30.0) Cond Class Mail Water Areas 98.0 98.0 98.0 98.0 98.0 70.0 (10.0) (10.702.0) (10.702.0) (10.702.0)	Food and Fiber				
Permanent Pasture 693.0 514.0 339.0 550.0 Other 247.0 379.0 253.0 174.0 Minerals3/ (20.0) (21.0) (30.0) (40.0) Minerals3/ (20.0) (40.0) (71.0) (118.0) Recreation Class A4/ (0.1) (7.1) (9.6) (14.4) Class B5/ (7.1) (7.5) (8.3) (12.4) Fish and Wildlife (Cropland)6/ (Pastureland)5/ (152.0) (153.0) (108.0) (Wetlands)3/ (108.0) (Wetlands)3/ (108.0) (108.0) (109.0) (101.0) (101.0) (101.0) Environmental Quality Open and Green Space7/ (0.1) (8.0) (8.0) (8.0) (8.0) Ecological Systems8/ (1.57.0) (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture)1/ (305.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CI/ (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.0) (600.1) Ecological Systems1/ (350.0) (250.0) (250.0) Ecological Systems1/ (350.0) (250.0) (250.0) (250.0) Ecological Systems1/ (350.0) (2					
Other Commercial Fisheries 3/ (16.0) (21.0) (30.0) (40.0) Minerals 3/ (20.0) (40.0) (71.0) (118.0) Recreation Class A4/ (6.1) (7.1) (9.6) (14.4) Class B5/ (7.1) (7.5) (8.3) (12.4) Fish and Wildlife (Cropland) 6/ - (309.0) (357.0) (395.0) (Wetlands) 3/ - (132.0) (155.0) (168.0) (Wetlands) 3/ - (101.0) (101.0) (101.0) Environmental Quality Open and Green Space 7/ (6.1) (8.0) (8.0) Ecological Systems 8/ 1.0 1.0 1.0 1.0 Geological Systems 8/ (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture) 1/ (305.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife 2/ (280.5) (381.0) (474.6) (610.1) Environmental Quality J Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (500.0) Ecological Systems 1/ (350.0) (250.0) (230.0) Lake Shores 1/ (1.0) (1.0) (1.0) (1.0) Scenic River Banks 1/ (1.0) (1.0) (1.0) (1.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0					
Commercial Fisheries3/ (16.0) (21.0) (30.0) (40.0) Minerals3/ (20.0) (40.0) (71.0) (118.0) Recreation Class A4/ (6.1) (7.1) (9.6) (14.4) Class B5/ (77.1) (7.5) (8.3) (12.4) Fish and Wildlife (Cropland)6/ - (309.0) (357.0) (395.0) (Pastureland)5/ - (132.0) (155.0) (168.0) (Wetlands)3/ - (101.0) (101.0) (101.0) Environmental Quality Open and Green Space7/ (6.1) (8.0) (8.0) (8.0) Ecological Systems8/ 1.0 1.0 1.0 1.0 Geological Systems5/ (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture)1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.8) (1.1) Environmental Quality Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (560.0) Ecological Systems1/ (350.0) (250.0) (250.0) Geological Systems1/ (350.0) (250.0) (250.0) Lake Shores1/ (1.0) (1.0) (1.0) Wilderness Areas1/ (18.0) (18.0) (18.0) Wilderness Areas1/ (18.0) (18.0) (18.0) Small Water Areas 98.0 98.0 98.0 98.0					
Minerals3/ Recreation Class A4/ Class B5/ (7:1) (7.1) (9.6) (14.4) Class B5/ (7:1) (7.5) (8.3) (12.4) Fish and Wildlife (Cropland)6/ (Pastureland)5/ (Wetlands)3/ Environmental Quality Open and Green Space7/ Open and Fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) Recreation Class B1/ Class B1/ Class B1/ Class CT/ Environmental Quality Open and Fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) Forest Land Food will fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,654.0 (157.0) (157.0) (157.0) (157.0) Recreation Class B1/ (7.0) (7.6) (8.5) (12.4) Class CT/ (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (447.0) (609.0) (574.0) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems1/ (350.0) (250.0) (250.0) (250.0) Geological Systems1/ (350.0) (250.0) (250.0) (250.0) Lake Shores1/ (10.0) (1.0) (1.0) Lake Shores1/ (10.0) (10.0) (10.0) Lake Shores1/ (10.0) (10.0) (10.0) Lake Shores1/ (10.0) (10.0) (10.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0					
Recreation Class A4/ Class B5/ Cropland) 6/ Cropland) 6/ Cropland) 5/ (Pastureland) 5/ (Wetlands) 3/ Environmental Quality Open and Green Space7/ Geological Systems5/ Animal Roughage (Pasture) 1/ Class B1/ Class B1/ Class C1/ Class C1/ Environmental Quality Open and Green Space7/ Animal Roughage (Pasture) 1/ Class C1/ Class C1/ Class C1/ Class C1/ Environmental Quality Open and Green Space7/ Animal Roughage (Pasture) 1/ Class C1/ Cl					
Class A4/ Class B5/ Cross B6/ Cross B5/ Cross B6/ Cross B5/ Cross B6/ Cross B5/ Cross B6/ Cross	_	(26.0)	(40.0)	(71.0)	(118.0)
Class B5/				70 T	(11.1)
Fish and Wildlife (Cropland) 6/ - (309.0) (357.0) (393.0) (Pastureland) 5/ - (132.0) (153.0) (168.0) (Wetlands) 3/ - (101.0) (101.0) (101.0) Environmental Quality Open and Green Space 7/ (0.1) (8.0) (8.0) (8.0) Ecological Systems 8/ 1.0 1.0 1.0 1.0 Geological Systems 5/ (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture) 1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife 2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (560.0) Ecological Systems 1/ (120.0) (90.0) (80.0) Geological Systems 1/ (120.0) (90.0) (80.0) Geological Systems 1/ (120.0) (10.0) (10.0) Lake Shores 1/ (18.0) (18.0) (18.0) Wilderness Areas 1/ (18.0) (18.0) (18.0) Wilderness Areas 1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0					
(Cropland) 6/ (Pastureland) 5/ (Wetlands) 3/ - (309.0) (357.0) (353.0) (168.0) (Wetlands) 3/ Environmental Quality Open and Green Space 7/ (6.1) (8.0) (8.0) (8.0) Open and Green Space 7/ (6.1) (8.0) (8.0) (8.0) Ecological Systems 8/ Geological Systems 5/ (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,654.0 (1,692.0 (1,035.0 (1,025.0)) Animal Roughage (Pasture) 1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ Class C1/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife 2/ (280.5) (381.0) (474.6) (316.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (560.0) Ecological Systems 1/ Geological Systems 1/ Scenic River Banks 1/ Wilderness Areas 1/ (120.0) (10.0) (10.0) (10.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0 10,702.0		(7.1)	(7.5)	(8.3)	(12.4)
(Pastureland) 5/ (Wetlands) 3/ - (132.0) (153.0) (168.0) (Wetlands) 3/ - (101.0) (101.0) (101.0) (101.0) Environmental Quality Open and Green Space7/ (6.1) (8.0) (1.0)			(700 0)	(257 0)	(707 0)
(Wetlands) 3/ - (101.0) (101.0) (101.0) Environmental Quality Open and Green Space 7/ (6.1) (8.0) (8.0) (8.0) Ecological Systems 8/ Geological Systems 5/ 1.0 1.0 1.0 Forest Land 1.0 1.0 1.0 1.0 Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture) 1/ (365.0) (447.0) (609.0) (574.0) Recreation (7.0) (7.6) (8.3) (12.4) Class B1/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (310.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (560.0) Ecological Systems1/ (350.0) (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) (18.0) Wilderness Areas1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas (98.0) 98.0 98.0 98.0 <					
Environmental Quality Open and Green Space 7/ (6.1) (8.0) (8.0) (8.0) Ecological Systems 8/ 1.0 1.0 1.0 Geological Systems 5/ (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture) 1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife 2/ (280.5) (381.0) (474.0) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems 1/ (120.0) (90.0) (80.0) Geological Systems 1/ (120.0) (90.0) (230.0) Lake Shores 1/ (1.0) (1.0) (1.0) Scenic River Banks 1/ (18.0) (18.0) (18.0) Wilderness Areas 1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0					
Open and Green Space7/ (6.1) (8.0) (8.0) (8.0) Ecological Systems8/ 1.0 1.0 1.0 1.0 (157.0) Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture)1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) (500.0)			(101.0)	(101.0)	(101.0)
Ecological Systems 8/ Geological Systems 5/ (157.0) (157.0) (157.0) (157.0) Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture) 1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems 1/ (120.0) (90.0) (80.0) Geological Systems 1/ (350.0) (250.0) (230.0) Lake Shores 1/ (1.0) (1.0) (1.0) Scenic River Banks 1/ (18.0) (18.0) (18.0) Wilderness Areas 1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0		(6.1)	(0 M)	(0.0)	(0 0)
Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture)1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (560.0) Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) Wildemess Areas1/ (44.0) (30.0) (30.0) (30.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0		(0.1)			
Forest Land Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture)1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) Wildemess Areas1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0					
Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture)]/ (305.0) (447.0) (609.0) (574.0) Recreation Class Bl/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) Wilderness Areas1/ (44.0) (50.0) (50.0) (50.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0	Geological Systems 3/		(137.0)	(137.0)	(137.0)
Food and Fiber Forest Products, et al. 2,634.0 1,692.0 1,035.0 1,025.0 Animal Roughage (Pasture)]/ (305.0) (447.0) (609.0) (574.0) Recreation Class Bl/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) Wilderness Areas1/ (44.0) (50.0) (50.0) (50.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0	Forest Land				
Forest Products, et al. 2,634.0					
Animal Roughage (Pasture) 1/ (365.0) (447.0) (609.0) (574.0) Recreation Class B1/ (7.0) (7.6) (8.3) (12.4) Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) Wilderness Areas1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0	Forest Products, et al.	2,634.0	1,692.0	1,035.0	1,025.0
Recreation Class B1/ Class CT/ Class CT/ (0.6) (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems1/ Geological Systems1/ Geological Systems1/ Scenic River Banks1/ Wilderness Areas1/ Land Covered by Water Large Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0	Animal Roughage (Pasture)	1/ (365.0)	(447.0)	(609.0)	(574.0)
Class CT/ (0.6) (0.6) (0.8) (1.1) Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) Ecological Systems1/ (120.0) (90.0) (230.0) Lake Shores1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) Wilderness Areas1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas 91.0 124.0 145.0 204.0 Small Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0					
Fish and Wildlife2/ (280.5) (381.0) (474.6) (616.1) Environmental Quality 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (560.0) Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) Wilderness Areas1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas 91.0 124.0 145.0 204.0 Small Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0	Class B1/	(7.0)	(7.6)	(8.3)	(12.4)
Environmental QuaTity 1/ Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (560.0) Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) Wilderness Areas1/ (44.0) (30.0) (30.0) Land Covered by Water Large Water Areas 91.0 124.0 145.0 204.0 Small Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0		(0.6)	(0.6)	(0.8)	(1.1)
Bottomland Hardwood Areas (1,128.0) (690.0) (390.0) (360.0) (560.0) Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems I/ (350.0) (250.0) (230.0) (230.0) Lake Shores I/ (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) (18.0) (30.0) (30.0) Ulderness Areas I/ (44.0) (50.0) (30.0) (30.0) Land Covered by Water Large Water Areas 91.0 124.0 145.0 204.0 Small Water Areas 98.0 98.0 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0		(280.5)	(381.0)	(474.6)	(616.1)
Ecological Systems1/ (120.0) (90.0) (80.0) Geological Systems1/ (350.0) (250.0) (230.0) Lake Shores1/ (1.0) (1.0) (1.0) (1.0) Scenic River Banks1/ (18.0) (18.0) (18.0) (18.0) Wilderness Areas1/ (44.0) (50.0) (50.0) (50.0) Land Covered by Water 124.0 145.0 204.0 Small Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0 10,702.0					
Geological Systems I/ Lake Shores I/ Scenic River Banks I/ Wilderness Areas I/ Land Covered by Water Large Water Areas Small Water Areas Small Water Areas Total Area, WRPA 2 Geological Systems I/ (150.0) (250.0) (230.0) (1.0) (1.0) (1.0) (18.0) (18.0) (18.0) (30.0) 18.0) (30.0) 19.00 124.0 145.0 204.0 98.0 98.0 98.0 98.0	Bottomland Hardwood Areas	(1,128.0)		(390.0)	(360.0)
Lake Shores1/Scenic River Banks1/Wilderness Areas1/Wilderness Areas1/Wilderness Areas1/Wilderness Areas1/Wilderness Areas1/Wilderness Areas (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) Land Covered by Water Large Water Areas Small Water Areas 91.0 124.0 145.0 204.0 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0 10,702.0	Ecological Systems1/		(120.0)	(90.0)	(80.0)
Scenic River Banks1/ Wilderness Areas1/ (18.0) (44.0) (18.0) (30.0) (18.0) (30.0) (18.0) (30.0) (18.0) (30.0) (18.0) (30.0) (18.0) (30.0) (18.0) (30.0) (20.0) (30.0) (30.0	Geological Systems 1/		(350.0)		
Wilderness Areas1/ (44.0) (50.0) (30.0) Land Covered by Water Large Water Areas Small Water Areas 91.0 124.0 145.0 204.0 Small Water Areas 98.0 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0 10,702.0	Lake Shores 1/				
Land Covered by Water Large Water Areas 91.0 124.0 145.0 204.0 Small Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0 10,702.0	Scenic River Banks1/				
Large Water Areas 91.0 124.0 145.0 204.0 Small Water Areas 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0 10,702.0	Wilderness Areas1/		(44.0)	(30.0)	(30,0)
Small Water Areas 98.0 98.0 98.0 98.0 98.0 Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0					
Total Area, WRPA 2 10,702.0 10,702.0 10,702.0 10,702.0	Large Water Areas	91.0	124.0		
	Small Water Areas	98.0	98.0	98.0	98.0
	Total Area, WRPA 2	10.702.0	10.702.0	10,702.0	10,702.0
		343			

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (Cont'd)

Water Resources Planning Area and Need Category	1970 Land Use (1,000 Acres)	Land	ocated Futu Use (1,000 2000	
WRPA 3				
Open Land				
Transportation,				
Urban and Built-up	355.0	439.0	612.0	843.0
Food and Fiber				
Cropland	2,206.0	2,094.0	2,404.0	2,459.0
Pastured Cropland	746.0	1,117.0	1,323.0	1,411.0
Permanent Pasture	929.0	501.0	639.0	626.0
Other	200.0	392.0	384.0	354.0
Commercial Fisheries3/	(0.6)	(1.0)	(2.0)	(3.0)
Minerals3/	(2.0)	(4.0)	(9.0)	(14.0)
Recreation				
Class A4/	(2.9)	(15.3)	(27.2)	(46.4)
Class B5/	(2.4)	(13.2)	(23.4)	(40.0)
Fish and Wildlife				
(Cropland)6/		(715.0)		(1,409.0)
(Pastureland) 5/			(433.0)	(604.0)
(Wetlands)3/	•	(41.0)	(41.0)	(41.0)
Environmental Quality7/	(2.9)	(34.0)	(34.0)	(34.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	2.301.0	1,991.0	951.0	384.0
Animal Roughage (Pasture		(464.0)	(549.0)	(230.0)
Recreation	2 (,)	()	(3.3.0)	(-00.0)
Class B1/	(2.3)	(13.1)	(23.4)	(40.0)
Class CI/	(0.2)	(1.3)	(2.2)	(3.5)
Fish and Wildlife2/	(186.3)	(228.1)	(284.1)	(368.9)
Environmental Quality	(200,0)	(===,=)	(==:,=)	(000.0)
Bottomland Hardwood Area	s1/ (796.0)	(700.0)	(320.0)	(200.0)
Lake Shores1/	=======================================	(1.0)	(1.0)	(1.0)
Scenic River Banks1/		(28.0)	(28.0)	(28.0)
Wetlands1/		(64.0)	(64.0)	(64.0)
Land Covered by Water				
Large Water Areas	40.0	252.0	473.0	709.0
Small Water Areas	32.0	32.0	32.0	32.0
Total Area, WRPA 3	6,818.0	6,818.0	6,818.0	6,818.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (cont'd)

Water Resources Planning Area and	1970 Land Use		ocated Futu Use (1,000	
Need Category	(1,000 Acres)	1980	2000	2020
WRPA 4				
Open Land				
Transportation,				
Urban and Built-up	328.0	357.0	408.0	485.0
Food and Fiber				
Cropland	3,314.0	3,545.0	3,883.0	3,804.0
Pastured Cropland	326.0	578.0	658.0	645.0
Permanent Pasture	943.0	1,819.0	1,843.0	1,870.0
Other	207.0	253.0	199.0	130.0
Commercial Fisheries3/	(11.3)	(20.0)	(37.0)	(54.0)
Minerals3/	(3.0)	(4.0)	(6.0)	(7.0)
Recreation				
Class A4/	(0.8)	(4.2)	(6.3)	(9.3)
Class B5/	(1.0)	(3.4)	(5.1)	(7.6)
Fish and Wildlife				
(Cropland)6/	-	(318.0)	(371.0)	(444.0)
(Pastureland)5/	-	(136.0)	(159.0)	(190.0)
(Wetlands)3/		(97.0)	(97.0)	(97.0)
EnvironmentaT Quality7/	(0.8)	(8.0)	(8.0)	(8.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	3,222.0	1,739.0	1,247.0	1,246.0
Animal Roughage (Pasture) 1/	(587.0)	(1.073.0)	(748.0)	(800.0)
Recreation	(00, 10)	(1,0,0,0)	(,,,,,,,	(000.0)
Class B1/	(0.9)	(3.4)	(5.1)	(7.6)
Class CI/	(26.0)	(26.1)	(36.9)	(52.8)
Fish and Wildlife2/	(165.4)	(257.6)	(320.9)	(416.6)
Environmental Quality 1/	(200.)	()	()	(,
Bottomland Hardwood Areas	(1.148.0)	(947.0)	(947.0)	(947.0)
Ecological Systems1/	(-,	(10.0)	(10.0)	(10.0)
Geological Systems I/		(1.0)	(1.0)	(1.0)
Lake Shores 1/		(2.0)	(2.0)	(2.0)
Wilderness Āreas <u>1</u> /		(5.0)	(5.0)	(5.0)
Land Covered by Water				
Large Water Areas	74.0	123.0	176.0	234.0
Small Water Areas	133.0	133.0	133.0	133.0
Total Area, WRPA 4	8,547.0	8,547.0	8,547.0	8,547.0
rotal Area, mar 4	0,547.0	0,047.0	0,547.0	3,317.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (cont'd)

N. A D			leasted Dit	
Water Resources	1970 Land Use		located Fut	
Planning Area and Need Category	(1,000 Acres)		Use (1,000 2000	2020
Need Category	(1,000 Acres)	1500		2020
WRPA 5				
Open Land				
Transportation	440.0	487.0	605.0	736.0
Urban and Built-up	440.0	407.0	003.0	730.0
Food and Fiber	732.0	797.0	1,460.0	2,387.0
Cropland Pastured Cropland	239.0	567.0	668.0	836.0
Permanent Pasture	982.0	887.0	1,071.0	1,356.0
Other	192.0	215.0	205.0	267.0
Commercial Fisheries3/	(3.6)	(6.0)	(12.0)	(18.0)
Minerals3/	(8.0)	(10.0)	(12.0)	(15.0)
Recreation	(0.0)	(10.0)	(2-1-)	()
Class A4/	(2.6)	(6.6)	(10.4)	(15.8)
Class B5/	(2.3)	(5.6)	(8.9)	(13.5)
Fish and Wildlife				
(Cropland) 6/	-	(419.0)	(528.0)	(650.0)
(Pastureland) 5/	-	(180.0)	(226.0)	(279.0)
Environmental Quality7/	(2.6)	(13.0)	(13.0)	(13.0)
Famast Land				
Food and Fiber				
Forest Products, et al.	10 228 0	9,802.0	8,720.0	6,951.0
Animal Roughage (Pasture) 1	(947.0)	(1.048.0)	(1,880.0)	(2.907.0)
Recreation	(347.0)	(1,040.0)	(1,000.0)	(2,20,.0)
Class B 1/	(2.2)	(5.6)	(8.9)	(13.4)
Class C 1/	(23.8)	(23.8)	(36.3)	(54.7)
Fish and Wildlife	(=)			
Management Areas, etc.2/	(258.4)	(361.9)	(450.8)	(585.2)
Wetlands1/	-	(605.0)	(791.0)	(791.0)
Environmental Quality 1/				
Bottomland Hardwood Areas	(2,362.0)	(2,284.0)	(2,180.0)	(1,931.0)
Ecological Systems1/		(20.0)	(20.0)	(20.0)
Geological Systems 1/		(22.0)	(22.0)	(22.0)
Lake Shores 1/		(1.0)	(1.0)	(1.0)
Scenic River Banks 1/		(28.0)	(28.0)	(28.0)
Wilderness Areas 1/		(25.0)	(25.0)	(25.0)
Land Covered by Water				
Large Water Areas	175.0	233.0	259.0	455.0
Small Water Areas	76.0	76.0	76.0	76.0
Total Area, WRPA 5	13,064.0	13,064.0	13,064.0	13,064.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (cont'd)

Water Resources			located Fut	
Planning Area and	1970 Land Use (1,000 Acres)		Use (1,000	
Need Category	(1,000 Acres)	1980	2000	2020
WRPA 6				
Open Land				
Transportation,				
Urban and Built-up	78.0	79.0	82.0	88.0
Food and Fiber				
Cropland	1,908.0	2,020.0	2,044.0	2,039.0
Pastured Cropland	118.0	191.0	191.0	190.0
Permanent Pasture	494.0	437.0	409.0	408.0
Other	32.0	82.0	82.0	82.0
Commercial Fisheries3/	(1.4)	(4.0)	(9.0)	(14.0)
Minerals3/	(2.0)	(2.0)	(3.0)	(5.0)
Recreation				
Class A4/	(0.5)	(1.9)	(2.4)	(3.3)
Class B5/	(0.4)	(1.6)	(2.1)	(2.9)
Fish and Wildlife				
(Cropland)6/		(88.0)	(88.0)	(100.0)
(Pastureland) 5/		(38.0)	(38.0)	(43.0)
Environmental Quality				
Open and Green Space7/	(0.5)	(2.0)	(2.0)	(2.0)
Botanical Systems		1.0	1.0	1.0
Forest Land				
Food and Fiber				
Forest Products, et al.	831.0	651.0	649.0	638.0
Animal Roughage(Pasture)1/		(224.0)	(390.0)	(415.0)
Recreation				
Class B1/	(0.3)	(1.6)	(2.0)	(2.8)
Class CT/	(0.0)	(0.2)	(0.2)	(0.3)
Fish and Wildlife				
Management Areas, etc.2/	(45.2)	(70.2)	(87.4)	(113.5)
Wetlands1/	- 1	(85.0)	(85.0)	(85.0)
Environmental Quality	/ (756 0)	(600 0)		(600.0)
Bottomland Hardwood Areas	/ (756.0)	(609.0)	(609.0)	(609.0)
Land Covered by Water				
Large Water Areas	32.0	32.0	35.0	47.0
Small Water Areas	40.0	40.0	40.0	40.0
Total Area, WRPA 6	3,533.0	3,533.0	3,533.0	3,533.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (Cont'd)

Water Resources Planning Area and	1070 Land Ha		located Fut	The state of the s
Need Category	1970 Land Use (1,000 Acres)		Use (1,000 2000	2020
WRPA 7				
Open Land				
Transportation,				
Urban and Built-up	116.0	133.0	158.0	188.0
Food and Fiber				
Cropland	337.0	197.0	711.0	618.0
Pastured Cropland	180.0	315.0	440.0	495.0
Permanent Pasture	941.0	1,018.0	1,512.0	1,629.0
Other	30.0	68.0	70.0	27.0
Commercial Fisheries3/	(0.9)	(1.0)	(3.0)	(4.0)
Minerals3/ Recreation	(1.0)	(1.0)	(1.0)	(2.0)
Class A4/	(0.4)	(1.8)	(2.7)	(3.9)
Class B5/	(0.4)	(1.5)	(2.3)	(3.4)
Fish and Wildlife	(0.4)	(1.3)	(2.3)	(3.4)
(Cropland) 6/		(83.0)	(99.0)	(120.0)
(Pastureland) 5/		(35.0)	(43.0)	(51.0)
Environmental Quality7/	(0.4)	(1.0)	(1.0)	(1.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	2,509.0	2,327.0	1,064.0	998.0
Animal Roughage (Pasture)		(1.251.0)	(638.0)	(580.0)
Recreation				
Class B	(0.3)	(1.5)	(2.3)	(3.4)
Class C	(0.1)	(0.1)	(0,2)	(0.3)
Fish and Wildlife				
Management Areas, etc.2/	(74.0)	(104.0)	(129.6)	(168.2)
Wetlands1/	•	(49.0)	(49.0)	(49.0)
Environmental Quality	1 / (500 0)	(467.0)	(107.0)	(107.0)
Bottomalnd Hardwood Areas	51/ (500.0)	(463.0)	(407.0)	(407.0)
Ecological Systems 1/		(3.0) (1.0)	(3.0) (1.0)	(3.0) (1.0)
Geological Systems <u>l/</u> Lake Shoresl/		(1.0)	(1.0)	(1.0)
Scenic River Banks1/		(13.0)	(13.0)	(13.0)
Wilderness Areas1/		(30.0)	(30.0)	(30.0)
Land Covered by Water				
Large Water Areas	38.0	93.0	196.0	196.0
Small Water Areas	56.0	56.0	56.0	56.0
Total Area, WPPA 7	4,207.0	4,207.0	4,207.0	4,207.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (Cont'd)

Water Resources	1070 1 1 11		located Fut	
Planning Area and Need Category	1970 Land Use (1,000 Acres)	1980	Use (1,000 2000	2020
	(1,000 Acres)	1300	2000	2020
WRPA 8				
Open Land				
Transportation,	1			
Urban and Built-up	182.0	222.0	292.0	380.0
Food and Fiber	720 0	21.7		
Cropland	329.0	217.0	323.0	405.0
Pastured Cropland	54.0	349.0	408.0	449.0
Permanent Pasture	655.0	587.0	719.0	797.0
Other	48.0	59.0	52.0	27.0
Commercial Fisheries3/	(0.3)	(1.0)	(1.0)	(2.0
Minerals3/	(4.0)	(5.0)	(7.0)	(9.0)
Recreation	(0.5)	((5)	(11 0)	(3.7. 7)
Class A4/	(0.5)	(6.5)	(11.0)	(17.7)
Class B5/	(0.9)	(5.7)	(9.5)	(15.3)
Fish and Wildlife		(217.0)	(727 0)	(105.0
(Cropland) 6/		(217.0)	(323.0)	(405.0
(Pastureland) 5/		(132.0)	(175.0)	(230.0)
Environmental Quality	(0.5)	(12.0)	(12.0)	(12.0
Open and Green Space7/	(0.5)	(12.0)	(12.0)	(12.0)
Botanical Systems8/	-	1.0	1.0	1.0
Geological Systems <u>5</u> /		(1.0)	(1.0)	(1.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	2,265.0		1,701.0	
Animal Roughage (Pasture) 1	(650.0)	(615.0)	(1,018.0)	(792.0)
Recreation				
Class B1/	(0.8)	(5.6)	(9.4)	(15.2)
Class C1/	(0.0)	(0.6)	(0.9)	(1.3)
Fish and Wildlife	(5.0)	(10.0)	(27 5)	
Management Areas, etc.2/	(5.0)	(19.0)	(23.7)	(30.7)
Wetlands1/		(155.0)	(207.0)	(395.0)
Environmental Quality		(2.0)	(2 0)	(2.0)
Botanical Systems 1/	1 / (000 0)	(2.0)	(2.0)	(2.0)
Bottomland Hardwood Areas	1/ (988.0)	(916.0)	(800.0)	(800.0)
Geological Systems1/		(202.0)	(202.0)	(202.0
Lake Shores1/		(1.0)	(1.0)	(1.0)
Scenic River Banks1/		(17.0)	(17.0)	(17.0)
Land Covered by Water				
Large Water Areas	73.0	88.0	110.0	228.0
Small Water Areas	45.0	45.0	45.0	45.0
Total Area MDDA 9	3 651 0	3 651 0	3 6F1 0	3 6E1 0
Total Area, WRPA 8	3,651.0	3,651.0	3,651.0	3,651.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (Cont'd)

			4	
Water Resources Planning Area and Need Category	1970 Land Use (1,000 Acres)		located Fut Use (1,000 2000	
WRPA 9				
2				
Open Land Transportation,				
Urban and Built-up	236.0	245.0	262.0	352 0
Food and Fiber	230.0	243.0	202.0	352.0
Cropland	1.827.0	2,673.0	2,752.0	2,674.0
Pastured Cropland	749.0	1,316.0	1,476.0	1,485.0
Permanent Pasture	911.0	1,072.0	1,202.0	1,265.0
Other	807.0	654.0	747.0	702.0
Commercial Fisheries3/	(10.7)	(14.0)	(20.0)	(26.0)
Minerals3/	(7.0)	(11.0)	(18.0)	(26.0)
Recreation		,		
Class A4/	(1.3)	(8.1)	(12.2)	(17.4)
Class B5/	(1.0)	(7.0)	(10.5)	(15.0)
Fish and Wildlife				
(Cropland)6/	~	(932.0)	(1,206.0)	(1,675.0)
(Pastureland) 5/	~	(162.0)	(195.0)	(318.0)
.(Wetlands)3/	-	(154.0)	(260.0)	(533.0)
Environmenta \(\text{Quality} \)				
Open and Green Space7/	(1.3)	(12.0)	(12.0)	(12.0)
Beaches and Shores3/	-	(16.0)	(16.0)	(16.0)
Botanical Systems3/	-	(500.0)	(500.0)	(500.0)
Geological Systems <u>3</u> /		(3.0)	(3.0)	(3.0)
Forest Land	*			
Food and Fiber				
Forest Products, et al.	3,442.0	1,910.0	1,408.0	1,354.0
Animal Roughage (Pasture) 1		(677.0)	(764.0)	(806.0)
Recreation				
Class B 1/	(0.9)	(6.9)	(10.5)	(14.9)
Class C 1/	(0.2)	(0.7)	(1.0)	(1.3)
Fish and Wildlife2/	(690.2)	(717.2)	(893.4)	(1,159.8)
Environmental Quality				
Botanical Systems1/ 1/		(290.0)	(290.0)	(290.0)
Bottomland Hardwood Areas	(1,324.0)	(1,080.0)	(1,080.0)	(1,080.0)
Geological Systems1/	-	(3.0)	(3.0)	(3.0)
Lake Shores1/	•	(3.0)	(3.0)	(3.0)
Scenic River Banks1/	-	(9.0)	(9.0)	(9.0)
Wetlands1/	-	(121.0)	(121.0)	(121.0)
Wilderness Areas <u>1</u> /		(555.0)	(555.0)	(555.0)
Land Covered by Water				
Large Water Areas	400.0	407.0	480.0	540.0
Small Water Areas	138.0	138.0	138.0	138.0
Total Area, WRPA 9	8,510.0	8,510.0	8,510.0	8,510.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (Cont'd)

Water Resources Planing Area and Need Category	1970 Land Use (1,000 Acres)		Use (1,000	
	(1,000 ACTES)	1980	2000	2020
WRPA 10				
Open Land				
Transportation,				
Urban and Built-up	230.0	280.0	365.0	476.0
Food and Fiber	770 0	271 0	256.0	205.0
Cropland	310.0	271.0	276.0	265.0
Pastured Cropland	49.0	90.0	102.0	107.0
Permanent Pasture	202.0	295.0	331.0	349.0
Other	1,681.0	1,671.0	1,664.0	1,653.0
Commercial Fisheries3/	(1.2)	(2.0)	(3.0)	(3.0)
Minerals3/	(14.0)	(24.0)	(40.0)	(57.0)
Recreation				
Class A4/	(1.3)	(15.6)	(26.1)	(42.1)
Class B5/	(0.9)	(13.5)	(22.5)	(36.3)
Fish and Wildlife				
(Cropland)6/	-	(271.0)	(276.0)	(265.0)
(Pastureland) 5/	-	(314.0)	(415.0)	(456.0)
(Wetlands)3/	-	(297.0)	(392.0)	(518.0)
Environmental Quality				
Open and Green Space7/	(1.3)	(31.0)	(31.0)	(31.0)
Beaches and Shores3/	-	(160.0)	(160.0)	(160.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	1,317.0	1,180.0	1,035.0	923.0
Animal Roughage (Pasture)	1/ (32.0)	(59.0)	(66.0)	(70.0)
Recreation				
Class B1/	(0.8)	(13.5)	(22.5)	(36.3)
Class CI/	(0.0)	(1.3)	(2.1)	(3.2)
Fish and Wildlife2/	(185.3)	(196.3)	(244.6)	(317.3)
Environmental Quality				
Botanical Systems1/		(1.0)	(1.0)	(1.0)
Bottomland Hardwood Area	s1/ (970.0)	(885.0)	(780.0)	(780.0)
Lake Shores1/		(4.0)	(4.0)	(4.0)
Scenic River Banks 1/		(4.0)	(4.0)	(4.0)
Land Covered by Water				
Large Water Areas	939.0	941.0	955.0	955.0
Small Water Areas	219.0	219.0	219.0	219.0
Total Area, WRPA 10	4,947.0	4,947.0	4,947.0	4,947.0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (cont'd)

Water Resources Planning Area and Need Category	1970 Land II (1,000 Acre	se Land	located Fut Use (1,000 2000	
WRPA's 1 through 10				
A I - 1				
Open Land				
Transportation, Urban and Built-up	2,332.0	2,649.0	3,277.0	1 000 0
Food and Fiber	2,332.0	2,049.0	3,4//.0	4,089.0
Cropland	17,343.0	19,203.0	21,890.0	22,596.0
Pastured Cropland	2,871.0	5,054.0	5,830.0	6,200.0
Permanent Pasture	6,782.0	6,962.0	8,097.0	8,682.0
Other	3,506.0	3,915.0	3,718.0	3,478.0
Commercial Fisheries3/	(46.0)	(70.0)	(117.0)	(164.0)
Minerals3/	(67.0)	(101.0)	(167.0)	(253.0)
Recreation	(0,.0)	(20110)	(20, 10)	(200.0)
Class A4/	(16.4)	(67.6)	(107.9)	(170.3)
Class B5/	(16.0)	(58.9)	(92.5)	(146.2)
Fish and Wildlife			()	(
(Cropland)6/		(3,352.0)	(4,259.0)	(5,461.0)
(Pastureland) 5/		(1,436.0)	(1,837.0)	(2,339.0)
(Wetlands)3/		(690.0)	(891.0)	(1,290.0)
EnvironmentaT Quality				
Open and Green Space7/	(16.4)	(122.0)	(122.0)	(122.0)
Beaches and Shores3/	-	(176.0)	(176.0)	(176.0)
Botanical Systems	-	(501.0)9		
Ecological Systems8/	-	1.0	1.0	1.0
Geological Systems		(161.0)	(161.0)	(161.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	29.637.0	24,254.0	18,689.0	15,717.0
Animal Roughage (Pasture)	1/(4,207.0)	(5.993.0)	(7,030.0)	
Recreation	- ` '			
Class B	(15.9)	(58.9)	(92.5)	(146.2)
Class C	(50.9)	(54.7)	(80.6)	(118.5)
Fish and Wildlife				
Management Areas, etc.1/	(2,021.4)	(2,466.4)	(3,040.2)	(3,907.4)
Wetlands1/		(894.0)	(1,132.0)	(1,320.0)
Environmental Quality				
Botanical Systems 1/ 1/		(293.0)	(293,0)	(293.0)
Bottomland Hardwood Area	s(10,852.0)	(9,453.0)	(8,392.0)	(7,820.0)
Ecological Systems1/		(153.0)	(123.0)	(113.0)
Geological Systems1/		(579.0)	(479.0)	(459.0)
Lake Shores1/		(20.0)	(20.0)	(20.0)
Scenic River Banks1/		(117.0)	(117.0)	(117.0)
Wetlands1/		(185.0)	(185.0)	(185.0)
Wilderness Areas1/		(659.0)	(645.0)	(645.0)
Land Covered by Water				
Large Water Areas	2,230.0	2,661.0	3,197.0	3,936.0
Small Water Areas	837.0	837.0	837.0	837.0
Total Area, LMR	65,538.0	65,538.0	65,538.0	65.538.0
rocal moa, min	00,000.0	05,550,0	00,000.0	00,000,0

Table 126 - Land Use Allocation for Regional Development, Lower Mississippi Region (Cont'd)

1/ Multiple-use land. Counted in forest products acreage.

Primary use for fish and wildlife. Counted in forest products acreage.
 Multiple-use land. Counted in other open land acreage.

4/ Primary use for recreation. Counted in transportation, urban and built-up acreage.

5/ Multiple-use land counted in permanent pasture acreage.
6/ Multiple-use land. Counted in cropland acreage.
7/ Multiple-use with Class A recreation land. Counted in transportation,

urban and built-up acreage.

8/ Exclusive use for environmental quality purposes. Not counted elsewhere.

9/ Exclusive use on 2,000 acres for environmental quality purposes.
Remaining 500,000 acres are multiple-use and counted in other open land

Table 127 - Recreation Plan, Regional Development Objective, Lower Mississippi Region (cont'd)

			Total Recrea	Total Recreation Lakes (1,000 Acres)	1,000 Acre	8)						
				Needs	Needs Satisfaction3	10n3/				Class A Land	Class A Land (1,000 Acres)	
RPA/Time Frame		Available Resource Resource Needed	Intra-WRPA Use2	Inter-WRPA Commuting	New Reserve Construction Single Multi- Purpose Purpose	New Reservoir Construction ie Multi- ose Purpose	Sub-	Total	Existing Development1/	Proposed Access & Facilities	Proposed Development Acquisition Acquisition Acquisition Allities A Facilities 2	Subtotal
1980	ಷ	117	2 2 2 3 1 5 4 1	26 18 19	0 17 98	0 77	046	117 163 223	6.1	0000	1.0 2.5 4.8	7.7
2000 2000 2000 2000	3	E 23.€	040 252 473	91 91 94	908 808 818	¥ ដ ដ	212 221 236	271 492 728	5.9	8.7 8.5 13.5	5.5	27.2 27.2 4.64.4
2000	2	121 192 297	47 109 177	51 51 51 51	52.53	9 7 8	283 Z	121 189 247	0.8	2.7	5.00	9.66
8 800	175	275 275 4.55	159 175 175	० श्रु	००कु	009	230	273 273 435	5.6	0.50	000	6.6 10.4 15.8
2005 2020 2020	S.	45. 67.	444	20.00	0#1	000	041	45 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	6.5	4.500	000	9.4.5.5
9000 8000 8000 8000	6	448	788	15	000	0 15 0 50	9 2 9	448	4.0	1.0 9.0	1.000	2.6
2000	73	2116 360	55 55 57	2.1.38 5.11	000	००३	0 0	116 211 360	0.5	2.5 0.0 0.0	9.05	6.5
2000	004	235 255 255	245 235 355	000	000	000	000	143 255 353	5.3	9.00 0.0		8.1 13.5 18.7
10 1980 2000 2020	656	F 38	277 503 856	000	000	000	000	277 503 856	1.3	Zo.00	12.5 10.5 16.0	15.6 26.1 42.1
2000 2000 2020	1,862	1,269 2,218 . 685	1,508	103 295 295	273 273	5,38,52	255	1,269	16.4	23.8	26.9	67.1

Table 127 - Recreation Plan, Regional Development Objective, Lower Mississippi Region

.

		Large	Large Recreation Lakes (1,000 Acres) -	akes (1,000	cres -	-		-	-	-	Smill Recry	Recreation Lakes (1,000 Acres)	1,000 Acre	6/2	-	1
				Nee	Needs Satisfaction	Laction		1				Nee	Needs Satisfaction	Lion		
ARPA/Time Prume	Available Resource	Resource	Intra-WRPA Use2	Inter-WRE	Single Purpose	Construction e Multi- S e Purpose t	ub-	Total	Available Resource	Resource	Intra-WRPA Use2	Inter-WRPA Commuting	Single Purpose	Construction Multi- Be Purpose	Sub- total	Total
2 1980	82	₹ 252 125 2 ‡ £	% 8 8	25 10 17	000	040	040	ZXE	69	75 111 170	69 601	.≇ N N	078	22.0	03.60	27. 111. 170
2000	*	202 240 394	4 80 g	1.7 1.7 1.7	5t.º	000	177	102 179 179	98	169 21.5 5 4 9	36 167 311	24 (24 (24	87 123 219	∄ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	### 9% 87 # 78 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	169 242 243
0002 2000 2000 2000 2000	\$	\$ E 451	993	°==	000	040	040	まささ	82	76 115 173	78311	21.0	232	900	247	76 115 173
2000	272	3 011 8	80 110 175	001	000	000	000	08 110 182	0	26. 25.	7730	083	0048	009	5300	8.55
2020	10	788	0 0 0 0	78 87	000	000	000	28.8	22	2 F 82	28.82	040	041	000	041	25.82
2000	53	य त क	222	0 0 11	000	000	000	224	15	2,88	761 771 77	044	000	038	028	2,08€
2000	¤	\$ 8°3	3 22	o # 66	000	000	000	\$ 65 K	23	72 126 210		104 35	००४	009	0 0 155	126
2000	316	去去芸	2.8.5	000	000	000	000	ままな	3	\$ 1 8	1997 15141 2067	000	000	000	000	8 38
10 1980 2000 2020		104 202 357	104 202 357	000	000	000	000	104 382 357	507	173 100 499	173 201 264	000	000	000	000	5.00
LMR 1980 2000 2020	1,082	478 891 1,538	1,024	388	6T 0	N 80 0	81 105 0	835 1,204	£	1,327	15.85 48.45 418.41	3 65 65	116 265 265	2882	358	191

where bodies larger than 500 acres.

Where bodies larger than 500 acres.

Where bodies between 40 and 500 acres.

Frager and 500 acres set sail faction consist of new construction. Associated public investments include costs of single-purpose recreation reservoirs and appropriate portion of costs of mality-purpose reservoirs.

Instead by development preservoirs constructed in previous time periods.

Instead by development preservoirs constructed in previous time periods.

Committing to lakes in other Wild's invined surpluses of large water. Includes acceptable to which large large lakes. निवर्ध हिल्ल

Table 127 - Recreation Plan, Regional Development Objective, Lower Mississippi Region (cont'd)

							LA	ND ARE	A S				
		-	Class B Land (1,000 Acres)	1,000 Acres)		Clas	Class C Land (1,000 Acres)	,000 Acres)		H	otal Recreation	Total Recreation Land (1,000 Acres)	
WRPA/T	VRPA/Time Frume	Existing Development	Proposed I	Proposed Development cess & Acquisition lities & Facilities	Subtotal	Existing Development1/	Access Only?	Proposed Development cress Acquisition only?	Subtotal 4	Existing Development1/	Access & Facilities2/	Proposed Development & Acquistion, Accessies	WHPA Total
co	1960	14.1	0.0	1.0	15.1	9.0	0.0	0.0	9.0	20.8	0.0	5.0	85.08
	2000		0.0	1.5	16.6		0.0	0.2	9.0		0.0	2.3	27.0
	3050		0.0	8.5	8.4.8		0.0	0.3	1.1		0.0	13.3	6.04
	1960	4.7	19.4	2.5	36.3	0.2	1.1	0.0		4	0 00	0	0 04
,	2000		18.5	2.0	16.8		6.0	0.0	200	2	27.72		46.94
	2020		6.63	3.3	90.0		1.3	0.0	3.5		1	0.6	129.9
.1	1980	6.1	5.9	1.0	6.8	36.5	0.0	0.0	592	0.00	4	1.7	3 6
	2000		2.7	2.0	10.2		10.4	0.0	6.9		2.4		2.1.2
	2020		0.4	1.0	15.2		15.9	0.0	52.8		19.9	0.4	77.3
5	1980	4.5	1.9	0.0	11.2	23.8	0.0	0.0	87.8	6.0	10.7	0.0	4
	2000		9.9	0.0	17.8		12.5	0.0	36.3		22.9	0:0	5
	2020		9.1	0.0	6.92		18.4	0.0	7.7		32.9	0.0	4.16
9	1980	7.0	2.5	0.0	3.5	0.0	0.0	0.2	9.5	1.2	0	0.5	5.3
	5000		6.0	0.0	4.1		0.0	0.0	0.5		1.4	0.0	6.7
	3030		1.6	0.0	5.7		0.0	0.1	0.3		2.5	0.1	9.3
7	1900	0.7	2.1	0.5	0.0	0.1	0.0	0.0	0.1	1.2	4.	0.4	0.4
	2000		1.4	0.5	9.4		0.1	0.0	0.5		3.4	0.0	7.5
	2020		5.0	0.5	6.8		0.1	0.0	0.3		5.9	9.0	0.11
89	1980	1.7	5.7	6.0	11.3	0.0	0.0	9.0	9.0	2.2	8.1	8.1	18.4
	2000		0.0	9.7.	18.9 5.0		0.0	5.0	6.0		0.0	12.4	8.00
	2000						2:	•	7:7		0.0	10.(49.5
6	1980	1.9	10.8	1.2	15.9	0.2	6.0	0.0	7.0	3.4	12.6	6.7	22.1
	3000		0.0	7.8	21.0		5.0	0.0	1.0		0.0	12.5	35.5
	Sas		2	6.5	6.63		2.0	0.0	1.3		0.0	14.1	6.64
10	1980	1.7	6.3	19.0	27.0	0.0	0.1	1.2	1.3	3.0	8.4	32.5	43.9
	3000		0.0	18.0	12.6		0.0	0.8	2.1		0.0	29.5	73.2
											2	i	6:177
2	1980	5.4	57.4	28.3	117.6	51.4	1.6	2.0	55.0	2.3	82.8	57.2	239.7
	2020		9.99	8.09	238.2		36.0	1.9	118.4		105.2	104.5	588.5

over half the 45 million acres of open land needed for transportation, urban and built-up purposes, and for food and fiber production. But long-range conflicts between open land-forest land needs will arise regardless of program objectives, and land-use priorities must be considered here and elsewhere in formulating future resource development plans and programs for the region.

In following the land-use priorities adopted for this study, the open land requirements for food and fiber production, and the like, would be met despite undesirable losses in forest land. This means that 14 million acres of forest land would be converted to open land to meet the high priority Regional Development needs. Hence, only 40 percent of the total forest land needs for fish and wildlife habitat could be satisfied in the year 2020. On the other hand, all fish and wildlife needs for cropland, pastureland, and wetland habitat and all needs for water surface areas and water withdrawals could be met throughout the study period.

The fish and wildlife plan adopted for the Regional Development objective is summarized in table 128. The plan provides for the acquisition of 1.9 million acres of forest land to be used primarily for fish and wildlife purposes. It also provides for access to 7,700 miles of fishing streams and for water withdrawals necessary to maintain water levels in wildlife management areas for mast-producing green tree reservoirs and duck resting areas.

Environmental Quality. The environmental quality plan for the Regional Development Program is identical to the plan developed for the National Income Program (see table 104). It provides for the creation of open and green space in urban areas, the protection of scenic rivers and streams, and the preservation of certain areas with unusual ecological attributes or wilderness characteristics.

Flood Control. The flood control plan for the regional development objective (table 129) consists of the three basic components described in the National Income Program:

- 1. Expeditious completion of the backlog of ongoing projects which (though considered as complete) lack a great deal of work;
- 2. Construction of authorized and proposed improvements as shown in table 129; and
- 3. Expansion of flood plain information activities, and development and implementation of appropriate local controls to govern the growth of damageable development in flood plains.

Program B differs from Program A to the extent that construction of authorized flood control works would be accelerated. Many proposed

Table 128 - Fish and Wildlife Plan, Regional Development Objective, Lower Mississippi Region

		Tari		es (1,000 Acres)1/		Ponds (1,000 Acres)	OO Acres I		Estuaries	Estuaries (1,000 Acres	Acres 1		Total Wate	er Surfac	Total Water Surface Area (1.000 Acres	Acres
RPA/Time Frum	N. C.	Available Resource	12 41	Incremental Use atra- Inter-WRPA UPA Commuting	Cumulative Use	Available Resource 2/	le Incremental C	Cumulative Use	Available Resource	1421	Incremental Use tres Inter-WRPA RPA Commuting	Cumulative	Available	Incremental Intra- Inta	Inter-WRPA Commuting	Total Use
288	2000	189	200	000	55.53	×	8 vr	& 23	0	000	52 5	55 25	241	111	500	92 105 127
7	1980 2000 2020	2	500	25 52 52	91 128 179	401	385	8 8 8 3 3	٥	000	288	324	176	85.55 5.72	57 27 97	28.53
# N N A	98.00	105	3-0	000	378	*	800	847	0	000	525	28 3 2	361	69 12 16	820	\$ 6031
~ ×	9800	251	55 14 19	000	55.0	8	38 10 12	233 3	0	000	∄ ² 01	# # # # # # # # # # # # # # # # # # #	611	24.8	3 79	152 159 197
9	98.00.00	72	3°°	000	333	97	∞04	ω ω <i>γ</i>	•	000	000	222	8	600	000	883
**************************************	9800	*	0 2 2	000	13 10	1	80 H Ø	867	0	000	8 4 8	8 6 111	108	844	80 11 03	844
288	1980 2000 2020	118	39 15 16	000	A 38	3	82 6 21	28 27 493/	0	000	843 543	158 202 263	164	28 82 62	% \$33	25 25 82 29 29 82
288	888	81.5	300	000	9 15 15	38	52 - 9	533	545	114 15	000	129	1,145	191	000	197 228 266
28.8	888	1,158	282	000	95 123 162	108	67 22 28 28	67 89 1173/	2,736	503 146 191	000	8 9 8 2 2 4 8	4,002	961 258 258	000	665 855 1,115
288	888	5,067	10¢ 85	3 E A	3.58 3.48 3.69	\$5 ,	307 85 112	307	3,281	617 155 21.3	322 73 111	939 1,167 1,491	6,872	1,329	341 110 162	2,102

1/No public investment involved.
2/ Based on 1970 conditions.
3/ includes use of ponds expected to be constructed by private interests between 1970 and 2020.

Table 128 - Fish and Wildlife Flan, Regional Development Objective, Lower Mississippi Region (cont'd)

		Cumulative	Ce views						Land Areas	Land Areas						
		Stream	Cumulative	Primar	y Use Wildlife	e Lands (1,0	00 Acres 4	Secondar	ry Use Will	Uife Lands	1,000 4	L(sal	Total	Fotal Wildlife Lands (1,000 Acres)	unds (1,00	O Acres
TRPA/	HPA/Time Prus	ine)		Exieting	Incremental Additions 2 Comulative open Land Forest Subtotal	Forest A	Subtotal	Cropland Pa	Pasture	Wetlands	Poreste	Subtotal	Land Land	Wetlands	Poreste	Total
CV	2000	1,85	97.69	280.5	500	100.5 141.4	478.2 619.6	39.0 357.0 395.0	128.5 149.5 164.5	101.01 101.01 10.101	1312.0 \$40.5 540.9	1850.5 1147.8 999.4	\$10.0 \$61.0	0.101 0.101 0.101	1695.0 1015.0 957.0	2235.0 1626.0 1619.0
~	2000	98.88 82.22 82.23	76 246 246	186.3	15.4	\$5.0 \$5.0 \$5.0 \$5.0	245.5 299.5 304.5	715.0	291.6 417.6 588.6	333	1762.9 666.9 15.1	28.33.5 20.56.7	1022.0 1445.0 2013.0	333	1991.0 951.0 98.0	2458.0
4	2000	801,1	55 111	165.4	000	92.2 63.3 95.7	257.6 320.9 416.6	371.0	136.0	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1481.4 925.1 829.4	2032.4 1552.1 1560.4	634.0	97.0 97.0 97.0	1739.0 1246.0 1246.0	2290.0 1873.0 1977.0
~	2000	1,91,1	285. 545. 	2.8.4	000	103.5 88.9 134.4	161.9 430.8 585.2	\$28.0 528.0 650.0	286.0 279.0	605.0 791.07 791.02/	8851.2 8275.2 6369.8	10,055.1 9616.2 8089.8	599.0 724.0	605.0 791.0 791.0	9215.0 8724.0 6955.0	10,417,0 10,269.0 8675.0
0	2000	5.56 5.56 5.56	8.4.81	45.5	000	25.0 17.2 26.1	70.2 87.4	100.00 100.00 100.00	0.85.0 0.54	85.0 85.0 85.0	\$61.8 \$62.6 \$25.5	792.8 773.6 753.5	126.0 126.0 143.0	85.0 85.0 85.0	652.0 650.0 639.0	963.0 961.0
-	9000	2000	7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	74.0	000	25.6 25.6 38.6	104.0	85.0 180.0	55.0 51.0	0.64 0.64 10.64	934.4	2390.0 1125.4 999.8	118.0	69.0 69.0	2327.0 1064.0	2494.0 1255.0 1168.0
10	2000	809	iva d	5.0	000	24.0 7.4 7.0	29.0	227.08 323.08 505.03	1,75.0	155.0 207.02 595.04	2065.0 1673.3 1289.3	2569.0 2378.3 2319.3	349.0 498.0 635.0	155.0 207.0 395.0	20 84 .0 1697.0 1,520.0	2588.0 2402.0 2350.0
•	2000	928 928 928	7.52 7.45 865	690.2	800	27.0 176.2 266.4	717.2 893.4 1159.8	932.0 1206.0 1675.0	162.0 195.0 318.0	2560.0 2660.0 533.0	1192.8 514.6 109.2	2440.8 2175.6 2635.2	1094.0 1401.0 1995.0	286.0 286.0 533.0	1910.0 1408.0 1269.0	3069.0 3069.0 3795.0
01	2020	55 56 56 56 57	1, 48 5.49 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	185.3	000	11.0 #8.3 72.7	186.5 2.54.6 3.1712	271.08 276.08 265.08	14.0 415.0 456.0I	297.0 392.0 518.0	7.885.7 7.88.7 5.88.7	1865.7 1873.4 1837.7	585.0 691.0 721.0	297.0 398.0 518.0	1180.0 1035.0 916.0	2062.0 2118.0 2155.0
3	2000	7,699 7,699 7,699	5,533 4,034 4,473	2021.49	18.9	445.0 573.8 867.2	2485.3 3059.1 3926.3	3352.0 4259.0 5461.0	1417.1 1818.1 2,20.1	15 8 0 2023.0 2610.0	21,201.72 15,628.72 11,605.62	21, 201. 72/27, 573.6 15, 628. 72/23, 747.7 11, 605.62/21, 271.8	4788.0 6096.0 7800.0	1584.0 2023.0 2610.0	23,668.0 18,669.0 15,513.0	30.059.0 25,931.0 25,067.0

Composed primarity of Widdlife management arrads. Existing areas are beavily wooded and counted entirely as forest land.

Fublic sequisition through essents from scenes point for every lo mise of atreas.

Fublic investment beased on grown scenes point for every lo mise of atreas.

Fublic investment beased on grown scenes point for mest producing green tree reservoirs and duck resting areas, and to replenish lakes for aport flahing.

Costs of pumps and diversion facilities included in public investment costs for Program B.

Initiated reasonre capability requires inter-WiRA Commuting for needs satisfaction. एष्ट एएएए

Table 129 - Flood Control Plan, Structural Measures, Regional Development Program, Lower Mississippi Region

		Au+1-	Reservoir	(Acre	od Control		otal	(M:	Improvement lles) XGRAM Proposed	Total			Total
IRPA,	Time Frame	Number		Number	Storage	Number		Authorized	Proposed	Total	Authorized	Proposed	Total
1	1980	0	0	0	0	0	0	1/	0	1/	2/	0	2
	2000	0	O.	0	0	0	0	_	0	~	_	0	_
	TOTAL	0	000	00	00	00	0		0			00	
2	1980	0	0	0	0	0	0	702.5	54.9	757.4	0	5.9	5.
	2000	0	0	0	0	0	0	399.2	181.0	580.2	9.7	0	9.
	2020 TOTAL	00	00	0	90	00	0	1,223.7	375.9	262.0	9.7	5.9	15.
	1980	0	0	1	18,000	1	18,000	215.3	102.9	318.2	7.7	46.9	54.
	2000	0	0	0	0	0	0	0	71.7	71.7	0	122.3	122.
	2020 TOTAL	00	0	0	18,000	0	18,000	215.3	50.7 225.3	440.6	<u>0</u> 7.7	169.2	176.
	1960	0	0	0	0	0	0	338.3	590.0	928.3	356.4	3.0	359.
	2000	0	0	0	0	0	0	45.4	177.7	223.1	14.3	141.8	156.
	2020 T OTAL	00	0	00	0	0	0	383.7	590.0 1,357.7	590.0 1,741.4	370.7	144.8	515.
	1980	10	239,000	1	211,000	11	450,000	66.0	3.0	69.0	78.0	74.9	152.
	2000	0	0	i	80,000	1	80,000	0	258.9	258.9	59.0	129,7	188.
	2020 TOTAL	10	239,000	010	291,000	0	530,000	66.0	307.9	373.9	137.0	206.6	343.
5	1980	0	0	0	0	0	0	266.7	0	266.7	0	0	0
	2000	0	0	0	0	0	0	0	264.6	264.6	0	0	1.
	TOTAL	90	0	0	9	5	0	266.7	264.6	531.3	00	1.5	0
7	1980 2000	0	0	0	0	0	0	0	12.0	12.0	0	12.4	12.
	2020	0	0	0	0	0	0	0	0	0	0	7.0	7.1
	TOTAL	Olo	9	0	9	0	0	0	12.0	12.0	<u>0</u>	30.4	30.
3	1980 2000	0	0	0	0	0	0	0	6.0	6.0	0	0	0
	2020			0		0			3.0	3.0		10.5	10.
	TOTAL	00	00	0	9	ō	0	00	12.0	12.0	00	10.5	10.
,	1980 2000	0	0	0	0	0	0	83.0	80,0	163.0	0	13.5	13.
	5000	0	0	0		0	0	0	0	0	0	13.9	62.
	TOTAL	00	ŏ	0	0	0	ö	83.0	80.0	163.0	0	89.4	89.
0	1980 2000	0	0	0	0	0	0	0	0	0	0	20.02	20.0 61.0
	2020	0				0	0	0		0	0	44.0	44.
	TOTAL	ō	9	00	0	ō	ō	ō	00	ō	ōo	125.6	125.
MR	1980 2000	10	239,000	2	229,000	12	468,000 80,000	1,671.8		2,320.6	442.1 83.0	176.6 477.8	618.°
	2020		0		0,000	0	0	122.0	829.7		03.0	129.5	
	TOTAL	10	239,000	9	309,000	13	548,000	2,238.4	829.7 2,635.4	951.7 4,673.8	525.1	783.9	129.

Ontinuing long-term construction, Main-stem Mississippi River, underway.

Bight hundred miles of levee to be raised to grade and section; 28.3 miles yet to be constructed in Mississippi River Levee and Floodway System.

Junaddition, 7.6 miles of vegetated sand-dune and 1/2 mile jetty proposed for vicinity of Grand Isle hurricane protection.

Table 129 - Flood Control Plan, Structural Measures, Regional Development Frogram, Lower Mississippi Region (cont'd)

											SHEDS4/
/RPA/	Time Frame		GRAM Proposed	Total	Locks Proposed	Other Diversion Structures Authorized	Structures	Ret	dwater arding ctures posed	Channel Improvemen (Miles) Proposed	ts Other Proposed
								Number	Storage		
1	1980	0	o	0	0	0	0	0	0	0	0
	2000	0	0	•	0	0	0	0	0	0	0
	2020	00	0	0	0	0	00	0	0	0	0 0
	TOTAL	ō	ō	ō	0	ō	ō	0	0	0	0
2	1980	2	3	5	0	0	0	268	148,612	4.878	6/
	2000	0	3	3	0	0	o	0	0	130	6/
	2020	0 2	9	8	0	0	9	5	11,241	95	900
	TOTAL	2	5	8	ō	ō	ō	273	159,853	5,103	6/
3	1980	6	1	7	0	0	0	201	244,400	660	6/
	2000	0	2	2	0	0	0	120	133,916	454	6/
	2020	0	0 3	0	0	0	0	92 413	99,070 477, 38 6	269	6/
	TOTAL	6	3	9	ō	5	٥	413	477,386	1,383	6/ 6/ 6/
4	1980	0	1	1	0	0	0	53	41,594	3,674	0
	2000	0	18	18	0	0	0	16	18,146	18	0
	2020	0	0	0	0	0	0	12	10,866	1,146	0 0
	TOTAL	ō	19	19	ō	ō	ō	81	70,606	4,838	ō
5	1980	1	2	3	0	0	0	116	209,219	389	6/
	2000	0	6	6	0	0	0	2	15,400	146	6/0
	2020	0	1 9	1	0	0	0	50 168	101,037	301 836	σ
	TOTAL	ī	9	10	σ	σ	σ	168	325,656	836	6/
6	1980	1	0	1	0	0	0	0	0	2,026	6/
	2000	0	1	1	0	0	0	0	0	325	Ō
	2020	0	0	0	0	0	00	0	0	0	0
	TOTAL	1	1	2	0	0	0	ō	ō	2,351	6/
7	1980	0	1	1	0	0	0	284	423,335	1,157	0
	2000	0	2	2	0	0	0	94	141,543	163	0
	2020	00	0 3	0	00	00	00	378	671 990	0	9
	TOTAL	· ·	3	3	0	0	0	3/0	564,878	1,320	O
8	1980	0	0	0	0	0	0	55	104,224	983	l Pumping Plant
	2000	0	0	0	0	0	0	98	169,374	368	0
	2020	9	2 2	2	00	0	00	165	36,753	, 0	0
	TOTAL	· ·	-	2	0	0	0	165	310,351	1,351	l Pumping Plant
9	1980	0	0	0	0	1	1	0	0		6 Water Control Stru
	2000	0	0	0	0	2	0	0	0	511	0
	2020 TOTAL	0	0	9	2	<u>o</u>	0	8	0		Water Control Stru
				-							
10	1980	0	5 17	17	0 5	0	0	3	13,111	505 344	100 Water Control St 50 Miles Levees
	2020				C	0	0		13,111	344	0 Miles Levees
	TOTAL	00	3 25	3 25	<u>o</u> 5	9	9	<u>0</u>	13,111	889	Above
C R	1980	10	13	23	0	1	1	977	1,171,384	17,147	
-21	2000	0	49	49	7	ō	0	333	491,490	2,459	(See above)
	2020	0	6	6		0	0	171	258,967 1,921,841	1,851	(
	TOTAL	10	68	78	9	<u><u><u></u></u></u>	1 1	,481	1 921 AV	21,457	

Authorized projects in upstream watersheds are counted as "existing" projects and are not shown here.

Frimarily for hurricame protection. Other hurricame protection measures included in levees, channels, and pump plants.

Unspecified number of water control structures.

improvements would be justified in the 1980-2000 time frame as opposed to the 2000-2020 time frame under Program A; and some projects proposed for the 1980-2000 time frames under Program A are shifted to the 1970-1980 time period. These shifts are viewed as a direct result of an increase in economic acitivity foreseen under the Regional Development objective. They could also be viewed as major contributors to achievement of the desired regional development levels of economic productivity and employment. This is because projects which would become feasible at an earlier date under the Regional Development Program would allow otherwise lost capital to move into the expansion sector, creating more employment, income, and a higher standard of living in this region. Damages prevented by the program, residual damages, and program effectiveness are shown in tables 130, 131, and 132, respectively.

Sediment and Erosion. Plans for the control of sediment and erosion problems are the same for both the National Income and Regional Development Programs. This matter is discussed on pages 285 through 288, and the sediment and erosion plan is summarized in table 111.

<u>Drainage</u>. The drainage plan for the Regional Development Program employs the same measures as the National Income Program. However, it requires more intensive watershed management, more on-farm drains, and more project channels for drainage. The Regional Development plan is summarized in table 133.

Water Quality Management. The water quality plan developed for the Regional Development objective is summarized in table 134. The plan components parallel those adopted for the National Income Program, but are scaled larger to handle the municipal, industrial, and agricultural waste loadings expected under conditions of accelerated regional development.

Navigation. The navigation plan for the Regional Development Program differs from the National Income Program only to the extent that the timing for the proposed rehabilitation of existing locks and construction of new locks in WRPA's 8, 9, and 10 has been accelerated. The Regional Development plan is given in table 135.

Hydropower. The hydropower plan for the Regional Development objective is identical to the National Income plan discussed on pages 298 through 303. The nature of future power loads indicates that all conventional hydroelectric power that can feasibly be developed within the region under either program can be marketed in the power area of which the region is a part.

Other Program B Components. Coastal and estuarine, archeological and historical, and health aspects plans are common to the Regional Development Program and the alternative programs. These plans are discussed in detail in connection with the recommended framework program (see pages 428 through 443).

Table 130 - Average Annual Flood Bunages Prevented (\$1,000) by Flood Control Plan, L/ Regional Revelopment Objective, Lower Mississippi Region

		1000		Prin	Principal Streams	suns		0000		-	1000		Upstru	Upstream Watersheds	1		2020	
WRPA	Urban	WRPA Urban Non-Urban	Total		Urban Non-Urban Total	Total	Urban	Urban Non-Urban Total Urban Non-Urban Total	Total	Urban	Non-Urban	Total	Orban	Orban Non-Urban Total	Total	Urban	I Urban Non-Urban I	Total
-	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
2	1,751	7,645	9,396	4,103	14,776	18,879	18,879 8,924	17,339	26,263	М	26,496	26,499 6	9	38,490	38,496	10	50,064	50,074
10	4,445	1,749	6,194	8,056	3,108	11,164	11,164 15,900	3,891	19,791 1,156	1,156	2,844	4,000 2,161	2,161	868,5	8,059	8,059 5,447	9,518	14,965
4	869	699,6	10,367	10,367 1,718	15,479	17,197	17,197 2,506	21,337	23,843	-	15,832	15,833	C1	20,575	20,577	4	29,849	29,853
is.	599	1,685	2,284	2,284 1,121	4,526	5,647	5,647 1,779	5,684	7,463	84	199,6	9,745	234	14,025	14,259	447	17,344	17,791
9	1	812	813	49	1,906	1,955	28	2,078	2,136	0	12,804	12,804	54	17,602	17,656	104	21,357	21,461
7	19	191	210	485	239	724	999	282	944	0	2,744	2,744 33	33	3,967	4,000	62	5,378	5,440
90	0	18	18	33	21	54	293	31	324	006	1,967	2,867	2,867 2,011	3,700	5,711	5,711 3,607	5,142	8,749
6	466	354	800	800 1,219	392	1,611	1,611 2,147	505	2,652	20	5,331	5,381 109	109	7,682	7,791	201	9,150	9,351
10	1,141	0	1,141	1,141 5,582	0	5,582	10,418	0	10,418	810	1,607	2,417	1,457	3,974	5,431	5,431 2,536	4,665	7,201
LMR	LMR 9,120	22,103	31,223	31,223 22,366	40,447	62,813 42,687	42,687	51,147	95,854 5,004	3,004	79,286	82,290	290,9	82,290 6,067 115,913	121,980 12,418	12,418	152,467	164,885
								Section Sectio					The second second		-	-	manual communications	-

1/ As shown in table 127 only. Completion of entire backlog of projects now under construction not reflected in figures.

Table 131 - Residual Average Annual Flood Damages (\$1,000), with Flood Control Plan in Place, Regional Development Objective, Lower Mississippi Region

-	Total	5,754	54,207	34,000	28,558	18,152	13,252	6,774	5,525	12,189	75,815	254,226
2020	Watersheds	0	23,003	7,022	16,223	12,202	10,116	2,684	2,392	6,779	3,899	84,520
20	Streams Watershed	5,754	31,204	26,978	12,335	5,950	3,136	4,090	3,133	5,410	71,916	169,906
	Total	4,962	42,623	25,168	27,509	14,748	11,447	4,877	3,933	10,772	51,352	197,391
2000	Watersheds	0	18,618	7,359	16,944	9,762	8,315	1,992	1,873	5,670	3,333	73,866
Daile	Streams	4,962	24,005	17,809	10,565	4,986	3,132	2,885	2,060	5,102	48,019	123,525
	Total	4,423	45,127	18,921	23,819	13,688	10,941	4,184	3,655	9,878	37,194	171,830
1980	Upstream	0	15,680	6,522	13,193	7,660	7,195	1,847	2,326	5,089	3,945	63,457
Designation	Streams	4,423	29,447	12,399	10,626	6,028	3,746	2,337	1,329	4,789	33,249	108,373
Diamina	Area	1	2	23	4	2	9	7	×	6	10	LMR

Table 132- Effectiveness of Flood Control Plan, Regional Development Program, Lower Mississippi Region

<u>WRPA</u>	Damages Prevente Urban (Percent	Non-Urban
1	-	-
2	85	54
3	49	54
4	76	65
5	64	58
6	44	64
7	22	57
8	57	68
9	49	50
10	16	38
LMR	48	58

Summary of Regional Development Program

A composite of the plans that make up the Regional Development Program is given in table 136. The included plans are as stated earlier, not intended to induce regional development; they are merely responsive to identified resource development needs that could arise therefrom. Hence, the Regional Development Program is in essence a large-scale version of the National Income Program.

Table 133- Drainage Plan, ED Objective, Lower Mississippi Region

			On Farm Drains (Miles	ins (Miles)								
WRPA/Time Frame	V and W Di	Oumulative	Secondary Incremental	Secondary Ditches remental Cumulative	Subtotal Incremental (Cumulative	Project Channels for Drainage (Miles) 2/ Incremental Cumulat	Miles	Total Drains and Channels Incremental Cumu	Orains annels Cumulative	Watershed Management (Acres) Incremental Cumulati	Management res) Cumulative
2 1980 2000 2020	3,470	1,730	1,040 2,080 2,080	1,040 3,120 5,200	2,770 5,550 5,550	2,770 8,320 13,870	2,630	2,630 2,650 2,720	5,400 5,570 5,620	5,400 10,970 16,590	519,700 1,039,400 1,039,400	519,700 1,559 100 2,598,500
3 1980 2000 2000 2000	70 150 150	220 370	¥88	45 135 225	245 240 240 240	115 355 595	50 100 100 100	250	165 340 340	165 505 845	22,000 43,900	22,000 65,900 109,900
4 1980 2000 2020	2,300	1,160 3,460 5,760	700 1,380 1,380	2,080 3,460	3,680	1,860 5,540 9,220	2,870	2,870 2,870 2,870	4,730 3,680 3,680	4,730 8,410 12,090	346,900 693,900 693,800	346,900 1,040,800 1,734,600
2020	398 777 750	390 1,160 1,910	240 660 660 660	240 700 1,160	630 1,230 1,210	630 1,860 3,070	320 120 230 230	380 644 6460 6440 6440	950 1,350 1,430	2,300 3,730	237,900	119,000 356,900 594,900
6 1980 2000 2020	540 1,060 1,070	540 1,600 2,670	330 640 640	330 970 1,610	870 1,700 1,710	870 2,570 4,280	910	910 1,130 1,130	1,780	1,780 3,700 3,410	163,600 327,300 327,400	163,600 490,900 818,300
7 1980 2000 2020	100 170 180	100 270 450	000 011 011	00 00 00 00 00 00 00 00 00 00 00 00 00	28 28 28 28 28 28	160 140 730	370	370 430	530 340 290	530 870 1,160	28,300	28,300 84,900 141,500
8 19 8 0 2000 2020	140 140 150	80 220 370	288	230 E 230	130 230 240	130	230	530 730 730	6660 430 240	660 1,090 1,330	25,100 50,200 50,200	25,100 75,300 125,500
9 1980 2000 2020	740 1,460 1,450	2,200	880 880 880	1,340	2,350	1,190	1,400	1,400	2,590 2,600 2,330	2,590 5,190 7,520	228,700 457,300 457,400	228,700 686,000 1,143,400
10 1980 2000 2020	8,81 171 171	825	00 110 100 100	170 270	290 270	150	350 170 40	350 500 500 500	500 460 310	500 960 1,270	29, 200 58, 200 58, 300	29,200 87,400 145,700
2000 2020	4,900 9,700 9,690	24,2900 24,2900	2,975 5,850 5,830	2,975 8,825 14,655	7,875 15,550 15,520	7,875 23,425 38,945	9,430 1,140 430	9,430 10,570 11,000	17,305 16,690 15,950	17,305 33,995 49,945	1,482,500 2,964,700 2,965,100	1,482,500 4,447,200 7,412,300

Wessures additional to those existing in 1970.
Drainage channels included in Flood Control Plan for upstream watersheds.

Table 134 - Water Quality Plan, Program B, Lower Mississippi Region

Municipal and Industrial Organic Wastes

	Treatment Proposed Stream Mechanical Load Mechanical Load Mechanical Mechanica		Gross		BOD, Remon	BOD ₅ Removal (1,000 lbs.)		Remaining	Gross		BOD ₅ Remova	BOD ₅ Removal (1,000 lbs.)		Remaining
4.5 118 3 (1,000, 10s.) (1,000, 10s.) 2	### 158	Ine Frame	Loading	sting	Proposed	Stream Assimilation 3/	Mechanical Reservation	Load	Loading	Existing Treatment1/	Proposed Trestment4/	Stream Assimilation2/	Mechanical	Load
	4.5 6.6 1. 6.9 6.9	1080	(1,000 158.)		80		0	(1,000 158.)	(1,000 lbs.)	22	28	o	o	(1,000 156.)
### 256	4.3 4.4 4.6 1.1 1.0 1.1 1.0 1.1 1.0 1.1 <td>3000</td> <td>3 8</td> <td></td> <td>9</td> <td></td> <td>0</td> <td>0</td> <td>89</td> <td>53</td> <td>98</td> <td>O</td> <td>0</td> <td>0</td>	3000	3 8		9		0	0	89	53	98	O	0	0
44 157 158 138 138 138 148 158 148 158 148	44 157 19 158 138 138 138 158	3030	132		8	2	1	0	169	22	147	1	0	0
10 10 10 10 10 10 10 10	19	1980	211	4.	151	19	1	0	685	192	3.38	80	-	0
Secondary Seco	March Marc	5000	328	*	988	. 9	0	0	1.109	192	868	15	4	0
10 12 12 12 12 13 14 14 15 14 15 14 15 15	1986 1986 1987	2020	194	*	455	89	0	0	2,023	192	1,796	56	6	0
10	10	1980	92	53	50	2		0	155	51	38	4	1	0
10 25 26 27 10 10 10 10 10 10 10 1	10 25 66 12 1 0 451 51 362 17 1 1 1 1 1 1 1 1	3000	.8	23	55		. ~	0	224	27	168			0
1,522 4,6	94. 46. 34. 5. 2.157.7 456. 5/79.9 456. 5/79.9 456. 5/79.9 456. 5/79.9 456. 5/79.9 456. 5/79.9 456. 5/79.9 457. 5/79.9 5	2020	110	23.	*	2	-	0	451	27	382	17	-	0
12	122 46	1980	đ	*	25	2	Q	0	1,153	954	672	78	1	0
167 66 1116 2 1 1 0 1,250 1450 3,799 145 3,799	15	3000	135	*	77		1	0	2.157	954	1.678	25	-	0
137 88 77 1 1 1 0 1 1 1 9 92 96 96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	3030	167	9	118			0	4,290	954	3,789	£4		0
1	17													
13	13	1980	17	8	7	1	7	0	136	92	R.	0	9	0
23 8 14 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 8 14 0 1 0 646 972 543 0 111 111	3000	19	90	10	0	7	0	338	35	241	0	5	0
11	11	2020	23	00	17	0	1	0	949	8	543	0	п	0
13.1	13	1080	17		4		C	0	247	8	1.48	10	0	o
10 10 10 10 10 10 10 10	62 83 32 7 0 0 593 993 766 16 0 62 83 32 7 0 0 1,150 197 343 16 0 131 83 105 2 0 0 2,150 197 343 16 0 130 40 13 7 4 17 2,093 38 0 130 40 13 0 2,154 197 2,093 38 0 130 40 1 1,174 2,23 1,493 18 0 130 40 1 1 0 1,717 223 1,493 19 15 131 40 1 1 0 1,717 223 1,493 10 15 144 36 36 1 0 1,733 289 4,93 18 2 144 36	200	15	1	11				450	8	351			0 0
62 23 36 17 343 18 0 134 23 16 0 1,150 197 343 18 0 135 105 2 0 0 2,154 197 343 18 0 36 40 15 2 1 4 12 12 1 2	62 23 32 7 0 0 1,130 137 343 18 0 134 23 23 2 0 0 1,130 137 2,039 18 0 34 13 4 2 34 17 2,039 38 0 35 40 116 2 1 0 1,177 223 1,499 10 12 150 40 11 0 1,717 223 1,499 10 15 21 20 84 283 1,499 10 15 21 34 2 1,793 289 1,279 17 21 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 <td>2020</td> <td>8</td> <td></td> <td>91</td> <td>00</td> <td>00</td> <td>00</td> <td>803</td> <td>28</td> <td>186</td> <td>16</td> <td>00</td> <td>00</td>	2020	8		91	00	00	00	803	28	186	16	00	00
13	94 23 23 69 2 0 1,150 197 905 18 0 131 25 105 2 0 2,294 197 905 18 0 130 40 118 2 1 0 5,21 223 1,499 10 17 7 1 <td>1980</td> <td>62</td> <td>23</td> <td>55</td> <td>7</td> <td>0</td> <td>0</td> <td>558</td> <td>197</td> <td>343</td> <td>18</td> <td>0</td> <td>0</td>	1980	62	23	55	7	0	0	558	197	343	18	0	0
131 23 105 3 1 0 0 2,234 137 2,039 36 0 0 1,234 137 2,039 36 0 0 1,234 137 2,039 36 0 0 0 1,234 137 2,039 36 0 0 0 1,234 137 2,039 36 0 0 0 1,234 137 2,039 36 0 0 0 1,234 137 2,034 137 2	131 23 105 3 0 0 2,724 157 2,059 36 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000	1	2 6	209	-0		0	138	107	500	85		
96 40 45 7 4 12 130 40 45 7 4 12 130 40 13 1 0 131 23 130 40 13 1 0 1,777 223 1,499 10 15 239 92 124 2 1 0 1,555 289 1,99 10 15 444 92 145 6 1 0 2,997 289 2,671 34 3 444 93 13 0 1,529 1,620 2,499 3 3 1,537 33 921 1 3 6,250 2 2 2	96 40 45 7 4 0 551 223 312 4 12 130 40 13 2 1 0 1,747 223 778 7	2020	131	282	105	m	00	00	5,25	197	2,059	38	00	00
150 60 116 3 1 1 0 1,777 223 1,724 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150 160 118 2 1 0 1,147 223 724 7 7 7 7 7 7 7 7 7	080	*	9	54	7	.4	C	551	555	212	.4	12	c
162 162 164 154	162 164	300	2 2	2 9	87	- 01	-		1.50	203	124			
239 92 124 21 2 0 1,555 29 1,627 1,6	239 922 1244 21 2 0 604 269 495 13 2 1	3030	162	3	118	. ~		0	1.747	223	1.499	10	15	0
239 992 124 21 2 0 1,535 289 1,227 17 2 2 1 1,535 289 1,227 17 2 2 1 1 0 1,535 289 2,671 34 3 3 3 3 3 3 449 69 13 0 4,219 1,620 6,780 992 23 1,537 313 921 1,630 6,780 992 23	273 92 774 21 2 0 644 289 455 18 2 18 2 18 18 2 18 18 18 18 18 18 18 18 18 18 18 18 18					,								
377 92 779 5 1 0 1,535 289 1,527 17 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	377 92 279 5 1 0 1,535 289 1,227 17 2 1 0 1,535 289 1,527 17 34 3 3 1 0 1,535 18 1,630 5,240 86 23 1,555 1,5	1980	239	35	124	21	CV	0	408	583	495	18	5	0
844 313 449 69 13 0 4,219 1,620 2,430 86 23 1,537 313 921 18 5 0 7,992 1,630 6,260 92 20	Units 92 34.3 6 1 0 2,997 coy 2,011 54 3 844 31.3 440 69 13 0 4,219 1,620 2,430 86 23 1,257 31.3 921 18 5 0 7,992 1,620 6,430 96 23 1,650 31.3 921 18 5 0 7,550 1,620 13,672 187 41 1,650 31.3 1,309 28 6 0 15,550 1,620 13,672 187 41	2000	377	35	612	500	-	0 (1,535	593	1,227	17	2	0
844 313 449 69 13 0 4,219 1,620 2,430 86 23 1,657 313 92 1,650 6,750 92 20	844 313 449 69 13 0 4,219 1,620 2,430 86 23 1,557 313 921 18 5 0 7,992 1,630 6,760 92 20 1,557 1,650 13,672 1,670 13,672 13,672 1,670 13,672 13	2050	1	35	343	D	1	0	2,997	593	2,671	34	~	0
1,557 313 921 18 5 0 7,592 1,650 6,250 92 50	1,557 313 921 18 5 0 7,992 1,650 6,250 92 50 1,656 313 1,399 28 6 0 15,550 1,650 13,672 187 41	1980	118	343	644	69	13	0	4,219	1,620	2,490	88	23	0
	1,656 313 1,309 26 6 0 15,550 1,650 13,672 167 41	2000	1,257	313	921	18	2	0	7,992	1,620	6,260	25.5	8	0

Introducent level as of 1970.

2 Concentional econdary treatment to achieve 90 percent 800, removal by 1980, and advanced treatment to achieve 98 percent removal by 2000, with continued 98 percent removal through 2000.

3 Assimilative expectly of removal to solute of efficient discharges.

4 Concentional econdary treatment to achieve 96 percent 800, removal (equivalent to 90 percent for manicipalities) by 1980, and advance treatment to achieve 98 percent removal by 2000, with continued 96 percent removal through 2000.

Table 134- Water Quality Plan, Program B, Lower Mississippi Region (cont'd)

	Other Pollutants	नोनोन	नोनोनो	न्रोनेन	नोनोनो	333	3 <u>3</u> 3	नेविवि	明	333	333
	Unchlorinated Discharge	(Pa) 000	000	000	000	000	000	000	000	900	000
Inorganic Wastes gical Wastes	ol (mgd) Proposed	43.8 97.2	127.5 218.8 329.9	50.4 72.5 101.2	4.5.5 4.5.5	3.7	7.0	83.9 52.6 90.2	37.3 75.5 116.3	98.7 169.4 261.4	410.3 713.9 1093.4
Inorganic Wa Bacteriological Wastes	Bacteria Control (mgd) Existing Propo	3.55	27.3 27.3 27.3	0.00	19.0	9999	9.1.9	33.2	**************************************	134.7 134.7 134.7	264.7 264.7 264.7
	Bacterial Effluent Discharge	(med.) 46.9 67.3 100.7	154.8 246.1 357.2	54.4 76.5 105.2	4.94 62.9 4.46	7.3 8.3 10.5	8.9 12.6 17.8	49.1 77.8 115.4	81.8 120.0 160.8	225.4 304.1 396.1	675.0 978.6 1358.1
	Remaining BOD, Discharge	(1,000 1bs.)	000	000	000	000	000	000	000	000	000
	Proposed Treatment 2/	(1,000 lbs.) 28 40 52	3 38	35 57 67	38.85	128	S 25.25	ನಿಸಿತ	284	800	264 372 487
Agricultural Organic Wastes	Potential Discharge 8/	(1,000 lbs.) 26 40 52	438	812.72	388	128	នុឌាវា	तं के द	438	minio	264 372 487
Agricultural	daste Assimilation (1,000 lbs.)	130 417 751	175 589 1,040	221 674 1,184	292 889 1,527	8,89	1114 361 627	888	664 688	188	1,290 4,138 7,262
	Waste Ass (1,0 Existing 6/	553 553 553	785 785 785	888 863 863	1,009	25 26 26 26	555 111	888	659 659 659	888	5,26 25,26 26,26
	Gross BOD ₅ Wastes 2/	711 1,010 1,356	1,004	1,588	1,367	29 65 289 289	580 837 1,113	622 886 1,167	834 1,1588	211 191 172	6,815 9,771 13,010
	ARPA/Time Frume	2 1980	0202 0000 2020	1,980 2000 2000 2000	5 1980 2000 2020	6 1.980 2000 2020	7 1980 2000 2020	8 1980 2000 2020	9 1980	0202 2000 2020	LMR 1980 2000 2020

Versinic waste from livestock and poultry including both point sources and non-point sources.

Versinic waste disposal as of 1970 by such machine that spiritual points are the second as direct inadappitation. Frequent in the second of MI Program measures.

Version of 1970 by such methods of the Program measures.

Version of 1970 by such consistent as equivalent point sources of pollution. Frequent consisting surface waters are equivalent point sources of pollution as a rate which will provide nutrients that can be fully utilized by the crops.

Version is a second of the second of the second plan. Treatment of other pollutions for the second in sections and erosion plan. Treatment of other pollutions for the second in section and erosion plan.

368

Table 135 - Navigation Plan, Program B, Lover Mississippi Region

Locks		Authorized2/	0	0	0	н	0	0	0	0	1(1)	(1)7	3(2)
Navigation	(Number)	Rxisting 1/ A	0	4	0	•	æ	•	•	α	#	9	50
1	-	Total	720 720 720	528 528 528	000	189 189 189	351 351 351	000	000	273 273 273	705 720 720	389	3,252 3,267 3,267
	annels	Proposed 2/	000	800	000	000	000	000	000	000	84(84) 270(255) 0	97(97) 188(188) 0	381(181) 458(443) 0
	Shallow Draft Channels	Authorized2/	718(718)	o	0	163(163)	0	0	0	0	238(238)	182(%)	1,301(1,215)
		Existing	720	328	0	189	351	0	0	273	705	90	2,966
(8)	1	Total	257 272 273	000	000	000	000	000	000	000	888	133 133 133	504 504 504 504
erways (Mile	nnels	Proposed 2/	228(228) 0 0	000	000	000	000	000	000	000	6(6) 34(34) 200	50(50)	284 (284) 34 (34) 300
Navigation Waterways (Miles)	Deep Draft Channels	Author1zed2/	0	0	0	0	0	0	0	0	3(3)	55(3)	(9)85
		Existing1/	142	0	•	•	0	0	0	0	81	81	452
		WRPA/Time Frame	1,980 2000 2020	1,980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1,980 2000 2020	1,980 2000 2020	1,980 2000 2020	1,980 2000 2020	2000
		WRPA/T1	٦	CV.	m	4	5	9	7	æ	٥	10	LMR

1/ Active Federal projects and projects under construction as of 1970. Does not include existing private port facilities or Federal projects on which maintenance has been discontinued.
2/ Includes both new facilities and improvement of exhsting facilities. Total given first, with improvement indicated in parentheses. Proposed facilities are additional to existing and authorized facilities.

Table 135 - Mavigation Plan, Program B, Lower Mississippi Region (cont'd)

1	1	Total	233	2011	מממ		916	mmm		000	000	000	824 8
	Draft	Proposed 2/ T	ગેજોજો	2(1) 6(1) 1	3000	7(3)	2(1)	3(1)	0 1(1)	000	000	000	18(6) 11(5) 6(3)
	Shallow Draft	Authorized 2/	<u>~</u>	0	0	0	٥	0	0	0	0	0	0
Navigation Ports (Number)		Existing 1/	7	#	m	m	-	1	1	0	0	0	£1
tion Por		Total	ভালুভা	000	000	000	000	000	000	ааа	લા લા લા		न्रेन्स्रेन्
Naviga		Proposed 2/	ગુર્ખેણ	000	000	000	000	000	000	000	000	000	मे
	Deep Draft	Authorized2/) a	0	0	0	0	0	•	0	0	0	0
		Existing 1/	الا	0	0	0	0	0	0	7	~	1	4
	Locks	Total	000	# # #	000	010101	000	000	000	N##	000	-00	222
	Mavigation Locks (Number)	Proposed 3/	000	000	000	400	000	000	000	3(1)	3(1)	$\begin{array}{c} 1 \\ 4(2) \\ 1(1) \end{array}$	7(1) 8(4) 1(1)
		WRPA/Time Frame	1980 2000 2020	1980 2000 2000 2000	2000 2000 2000 2000	1980 2000 2000 2000	1980 2000 2020	1980 2000 2020	1,980 2000 2000 2000	1,980 2000 2020	1980 2000 2020	1980 2000 3020	1980 2000 2020
		WRPA/	-	CV	m	4	2	9	7	90	•	10	LAR

Mississippi Hiver ports listed with WRPA ports. Up Includes superport in Gulf Coast area.

Table 136 - Program B Composition, Lower Mississippi Region

	Water	Supply (mgd)		Wate	r Surface Ar	ea		Land (1,00	0 Acres)	
Planning Area & Time Frame	Municipal	Fish & Wildlife	Total	Recreation (1,000 Acres)	Fish 4 Wildlife (Miles)1/	Natural Environment (1,000 Acres)	Recreation	Fish 4 Wildlife	Natural Environment	Total
WRPA 1 1970-1980	0.0	0.0	0.0	0.0	3/	4.0	0.0	0.0	6.0	6.0
1980-2000 2000-2020	0.0	0.0	0.0	0.0	3/ 3/ 3/	0.0	0.0	0.0	0.0	0.0
Total	0.0	0.0	0.0	0.0	3/	4.0	0.0	0.0	6.0	0.
WRPA 2 1970-1980			100 -2/	0.0	1205.0	15.0	2.0	104.0	26.1	132,
1970-1980 1980-2000 2000-2020	8.3 20.3 32.7	50.0 110.0 110.0	189.52/ 157.12/ 142.7	17.0 58.0	0.0	0.0	4.7 13.3	93.7 141.4	0.0	98. 154.
Total	61,3	270.0	489.32/	75.0	1203.0	15.0	20.0	339,1	26.1	385.
WRPA 3								67.)	53.34/	145.
1970-1980 1980-2000	51.1 123.1	43.0 86.0	94.1 209.1	166.0 200.0	822.0	7.0	35.1 29.7	57.2 56.0	0.0	85.
2000-2020	158.5	86.0	244.5	219.0	0.0	0.0	48.0	84.8	0.0 53.3	137.
Total	332.7	215.0	547.7	585,0	822.0	7.0	112.8	198.0	55.5	304.
WRFA 4 1970-1980	18.1	22.0	40.1	29.0	1100.0	3.0	8.3	92.2	13.3	113.
1980 - 2000 2000 - 2020	29.9 38.6	30.0 34.0	59.9 72.6	52.0 55.0	0.0	0.0	15.3 20.9	63.3 95.7	0.0	78. 116.
Z000-2020 Total	86.6	86.0	172.6	136.0	1100.0	3.0	44.5	251,2	15.3	309.
WRPA 5									33.04/	147
1970-1980 1980-2000	15.7 31.9	31.0 60.0	46.7 91.9	0.0	1931.0	4.0	10.7 22.9	103.5 88.9	0.0	111
2000-2020	50.3	62.0	112.3	184.0	0.0	0.0	32.9	134,4 326,8	33.0	167 426
Total	97.9	153.0	250.9	184.0	1931.0	4.0	66.5	320.0	33,0	420
WRPA 6 1970-1980	1.7	8.0	9.7	0.0	536.0	1.0	4.1	25.0 17.2	3.04	32.
1980-2000	2.1	10.0	18.1 21.3	4.0 11.0	0.0	0.0	1.4 2.6	17.2 26.1	0.0	18 28
2000-2020 Total	4.3	17.0 41.0	40.1	15.0	536.0	1.0	0.1	68.3	3.0	79
WRPA 7									24.94	
1970-1980 1980-2000	5.0 8.7	2.0 6.0	7.0 14.7	0.0	450.0	4.0 0.0	3.7	30,0 25,6	0.0	58 28 41
2000-2020	12,6	5.0	17.6	0.0	0.0	0.0	3.1	38.6	0.0 24.9	128
Total	26.3	13.0		0.0	450.0	4.0	9.4	94.2	24.5	140
WRPA 8 1970-1980	22,5	2,0	24.5	0.0	400.0	2.0	16.2	14.0	19.14	45
1980-2000	43.8	3.0	46.8	0.0 36.0	0.0	0.0	7.9 12.0	4.7 7.0	0.0	12
2000-2020 Total	57.3 123.6	4.0 9.0	61.3	36.0	400.0	2.0	36.1	25.7	19.1	80
WRPA 9								27. 0	16.54	6.
1970-1980 1980-2000	26.2 44.7	73.0 188.0	99.2 434.7	0.0	928.0	1.0	19.3	176.2	0.0	180
2000-2020	46.0	120.0	430.0	0.0	0.0	0.0	9.2	265.4	0.0	275 523
Total	116.9	381.0	963.9	0.0	928.0	1.0	35.9	409.0		
WRPA 10 1970-1980	53.1	0.0	53.1	0.0	329.0	0.0	40.9		22.74	1 7
1980-2000	108.1 140.0	2.0 1.0	110.1 141.0	0.0	0.0	0.0	18.8 28.7	48.3 72.7	0.0	10
2000-2020 Total	301.2	3.0	304.2	0.0	329.0	0.0	88.4		22,7	24.
Region 1970-1980				2/ 1000 0	7699.0	41.0	140,3	463.9	217.8	82
1970-1980 1980-2000	201.7 412.6	231.0 501.0	563.94 1142.44	273.0	0.0	0.0	110,2	573.9	0.0	68
2000-2020	540.3	439.0	1243.3	563.0	0.0	0.0	170.7	867.1 1904.9	217.8	254
Total	1154.6	1171.0	2949.6	1031.0	7699.0	41.0	421,2	100/410	43/40	0.54

[|] Stream miles.
| Includes irrigation withdrawals.
| Includes irrigation withdrawals.
| Includes irrigation withdrawals.
| The main stem of the Mississippi River is not considered quality stream fishing in the fish and wildlife context involved here.
| However, access is provided (though no mileage is given) and costs are included in the program (shared equality by recreation)
| for this access which will make the Mississippi River available to residents of adjoining WRPA's for limited fishing and recreation activities.
| Provides all or part of Class A recreation lands for 2000 and 2020.

Table 136 - Program B Composition, Lower Mississippi Region (Cont'd)

		Sediment an	nd Erosion Co	ontrol	Drain	age	Munici	pal Water Qu	ality Contr	Io
Planning Area & Time Frame	Treatment 6/ (I,000 Acres)	Streambanks (Miles)	Roadbanks (Miles)	Total (Miles)	Watershed Management (1,000 Acres)	Channels (Miles)	Treatment (1000 1b.) BOD ₅	Advance Treatment (1000 lb.) BOD ₅	Other 7/ (1000 lb.)	Control-
WRPA 1										
1970-1980 1980-2000 2000-2020	0.0 0.0 0.0	0	0 0	0 0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0
Total	0.0	.0	0	D	0.0	0.0	0.0	0.0	0.0	0.0
RPA 2										
1970-1980 1980-2000 2000-2020	3958.5 4323.6 4732.7	128 49 36	441 386 275	569 435 311	519.7 1039.4 1039.4	5400.0 5570.0 5620.0	18.0 0 0	48.0 86.0	5.0 1.0 3.0	43.4 20.4 33.4
Total	13,014.8	213	1102	1315	2598.5	16,590.0	-	-		97.2
VRPA 3										
1970-1980 1980-2000	2936.3 3043.5 3371.8	369 222 152	554 485	923 707 498	22.0 43.9	165.0 340.0	157.0 0 0	288.0 425.0	20.0 6.0 8.0	127.5 91.3 111.1
2000-2020 Total	9351.6	743	346 1385	2128	44.0 109.9	340.0 845.0	-	425.0	5.0	529.9
com a d										
WRPA 4 1970-1980 1980-2000 2000-2020	3986.1 4304.5 4670.5	266 191 143	806 705 503	1072 896 646	346.9 693.9 693.8	4730.0 3680.0 3680.0	Z9.0 0 0	0 55.0 84.0	6.0 2.0 3.0	50.4 22.1 28.7
Total	12,961.1	600	2014	2614	1734.6	12,090.0	-	04.0	2.0	101.2
WRPA 5										
1970-1980 1980-2000 2000-2020	3578.8 3770.0 4273.3	76 50 35	1174 1028 734	1250 1078 769	119.0 237.9 238.0	950.0 1350.0 1430.0	31.0 0 0	74.0 118.0	7.0 2.0 3.0	27.4 19.5 28.5
Total	11,604.1	161	2936	3097	594.9	3730.0	-	110.0	2.0	75.4
mn										
WRPA 6 1970-1980 1980-2000 2000-2020	1509.3 1626.2 1813.2	42 37 28	165 145 103	207 182 131	131.7 263.4 263.4	1460.0 1560.0 1350.0	7.0	0 10.0 14.0	2.0 1.0 1.0	2.7 1.0 2.2
Total	4948.7	107	413	520	658.5	4370.0	-	-	-	5.9
WRPA 7										
1970-1980 1980-2000 2000-2020	1445.9 1393.1 1590.4	106 67 44	524 458 327	630 525 371	21.4 42.8 42.8	410.0 250.0 250.0	6.0	11.0 16.0	1.0 0 1.0	7.0 3.7 5.2
Total	4434.4	217	1309	1526	107.0	890.0	-	-	-	15.9
WRPA S										
1970-1980 1980-2000 2000-2020	920.9 927.7 1092.5	40 24 16	232 203 145	272 227 161	20.8 41.6 41.6	540.0 390.0 230.0	32.0 0	69.0 105.0	7.0 2.0 3.0	23.9 28.7 37.6
Total	2941.1	80	580	650	104.0	1160.0		100.0	-	90.2
WRPA 9										
1970-1980 1980-2000 2000-2020	2449.9 2586.5 2972.6	8 3 4	599 524 374	1079 811 566	196.8 393.5 393.6	2210.0 2240.0 2000.0	45.0 0 0	87.0 118.0	11.0 3.0 4.0	37.3 38.2 40.8
Total	8009.0	15	1497	2456	983.9	6450.0		110.0	4.0	116.3
WRPA 10										
1970-1980 1980-2000 2000-2020	819.0 879.1 912.0	2 1 1	38 33 23	40 34 24	25.8 51.7	430.0 420.0 290.0	124.0 0 0	279.0 343.0	23.0 6.0 9.0	90.7 78.7 92.0
Total	2610.1	4	94	98	51.6 129.1	1140.0	-	343.0	-	261.4
Region										
Region 1970-1980 1980-2000	21,604.7 22,836.2 25,434.0	1,037 644 459	4533 3967 2830	6042 4895 3477	1296.4 2592.5 2592.7	15,070.0 14,620.0 13,920.0	449.0 0 0	921.0 1309.0	82.0 23.0 34.0	410.3 303.6 379.5
2000-2020										

^{6/} Includes land treatment to reduce flood runoff and critical area treatment to reduce sediment and erosion. 7/ Includes mechanical reservation and stream assimilation.
8/ Chlorination.

Table 136 - Program B Composition, Lower Mississippi Region (Cont'd)

			Principal	Reaches	LOOD	CONTR		Unstream	Watersheds	
Planning Area			Rese	rvoirs	Pumping		Retard	ing Dams	Floodplain	Watershed
Time Frame	(Miles)	(Miles)	Number	Storage (1000 Acre-Ft.)	(Number)	Channels (Miles	Number	Storage (1000 Acre-Pt.)	Management (1000 Acres)	Munagement
VRPA 1										
1970-1980	0.0	0.0	0							
1980-2000	0.0	0.0	0			0		0	D.	
2000-2020	0.0	0.0				.0			.0.	
Total	0.0	0.0					0			
RPA 2 1370-1980										
	5.9	041.6	.0	0		4,878	268	149	2,236	8,034
1980-2000 2000-2020	9.7	518.0 340.0				130 95			87	291
Total	15.6	1599.6			8	5,103	273	11 160	92 2,415	411 8,736
	1010					V,110		100	2,410	0,130
VRPA 5 1970-1980	7.7	292.0	1	18				244		1 020
1980-2000	169.2	51.7	Ô	0		660 454	201 120	244 134	293 111	1,929 918
2000-2020	0	96.9			0	269	92	99	115	558
Total	176.9	440.6	1	18	9	1,383	413	477	519	3,515
RPA 4										
1970-1980	359.4	928.3			1	3,674		42	1,370	4,737
1980-2000	76.6	208.1			9	18	16	18	24	131
2000-2020	82.5	005.0			. 9	1,146	1.2	11	305	970
Total	518.5	1741.4	0		19	4,838	81	71	1,699	5,838
RPA 5										
1970-1980	152.9	69.0	- 11	450		589	116	209	004	1,730
1980-2000 2000-2020	188.7 2.0	242.9 62.0	1 0	80	6	146 301	50	15	87	162
Total	343.6	373.9	12	530	10	836	168	101 325	504 1,255	1,283
RPA to					411		100	020	1,233	3,113
1970-1980		266.7			1	2,026			1,465	1,876
1980-2000	1.5	159.6	0		i	325			111	317
2000-2020	0	105.0	0	0	0	0	0	0	0	0
Total	1.5	531.3	0:	0	2	2,351	0		1,576	2,193
RPA 7										
1970-1980	12.4	12.0			1	1,157	284	423	348	2,690
1980 - 2000 2000 - 2020	7.0 6.0	0			2	163	94	142	60	1,018
Total	25.4	12.0	0			1,320	378	565	408	7 700
	20.1	44.0				1,020	3/0		405	3,708
RPA 8 1970-1980		6.0				983		104	734	+ cnc
1980-2000		3.0				368	98	109	219	1,505 1,225
2000-2020	10.5	3.0			2		12	37	17	443
Total	10.5	12.0			2	1,351	165	510	970	3,173
RPA 9										
1970-1980	13.5	163.0				2,875			1,810	3,025
1980-2000 2000-2020	13.9 62.0				0	511			469	
Total	89.4	163.0				3,386	0		2,279	3,822
RPA 10									1820	,
1970-1980	20.0	0	0		5 17	505		6	337	569
1980-2000	61.6		0			344	3	13	335	
2000-2020 Total	44.0	0	0	0	3	40	0	0	42	42
Total	125.6	0	U	0	25	889	3	13	714	1,241
egion 1970-1980	571.8	2378.6	12	468	22	17 147	977	1 121	W 150	76 100
1980-2000	528.2	1283.3	1	80	40	17,147 2,459	333	1,171	9,258 1,502	26,196 5,389
2000-2020	207.0	1211.9			15	1,851	171	259	1,074	3,819
Total	1307.0	4873.8	13	548		12,437	1.481	1.921	11,834	35,404
							2,402	4,000	11,000	00,404

Table 15o - Program B Composition, Lower Mississippi Region (Cont'd)

		Naviga annels (M) Shallow	ition Faci	lities					
Planning Area & Time Frame	Deep Draft	Shallow Draft	Total	Harbors (Number)	Locks (Number)	Hydropower Production (MW)	Coastal & Estuarine	Archeological & Historical	Public Health
WRPA 1 1970-1980	288.0		288.0						10/
1980 - 2000 2000 - 2020	0			0				9/ 9/ 9/	10/ 10/ 10/
Total	288.0		288.0					9/	10/
WRPA 2 1970-1980		200.0	200.0	2		7.5		9/	10/
1980-2000 2000-2020		0	0	to 1	0	70.6		9/ 9/	10/ 10/ 10/
Total	0	200.0	200.0	9	0	78.1		9/	10/
WRPA 3				1					
1970-1980 1980-2000				1 0				9/	10/
2000-2020 Total			0	2					10/ 10/ 10/ 10/
WRPA 4									
1970 - 1980 1980 - 2000	0		0	7. I	0	18.0		9/ 9/ 9/	10/ 10/ 10/
2000-2020 Total		0.		10	0	18.0	0	9/	10/
WRPA 5				1.0	*	10.0			
1970-1980 1980-2000	0			5 2	2	40.0 50.0		9/ 9/ 9/	10/ 10/ 10/
2000-2020		0		- 2		0		9/	10/
Total	0			9	2	90.0	0	9/	10/
WRPA 6 1970-1980	0					0	0	9/	10/ 10/ 10/
1980-2000 2000-2020	0		0	0	0		0	9/ 9/	
Total		0		4		0		9/	10/
WRPA 7 1970-1980	0						0	9/	10/
1980-2000 2000-2020		0		1 0			0	9/ 9/ 9/	10/ 10/ 10/
Total				1	.0		0	9/	10/
WRPA 8 1970-1980						0	11/	9/	10/
1980-2000 2000-2020				0	2	0	11/ 11/ 11/	9/ 9/ 9/	10/ 10/
Total	0		0		3		11/	9/	10/
WRPA 9		24.0			-		117	0/	10/
1970-1980 1980-2000	6.5 34.0	84.0 270.0 0	90.5	0	2 2 0		11/	9/ 9/ 9/	10/ 10/ 10/
2000-2020 Total	200.0	354.0	200.0	0	4	0	11/	9/	10/
WRPA 10									
1970-1980 1980-2000	50.0	97.0 188.0	147.0 188.0		1 2		11/ 11/ 11/	9/ 9/ <u>9/</u>	10/ 10/ 10/
2000-2020 Total	50.0	285.0	335.0		5	0	11/ 11/	9/	10/
Region 1970-1980 1980-2000	344.5 34.0	381.0 458.0	725.5 492.0	18 11	6	65.5 120.0	-11/ 11/ 11/	9/ 9/ 9/	10/ 10/ 10/
2000-2020	200.0		200.0	6 35	4 16	186.1	11/	<u>9</u> /	10/
Total	578.5	839.0	1417.5		10	100.1	11/	2)	317

Composed of surveying, testing and excavating archeological sites, and preservation, restoration and maintenance of historic resources. See Recommended Program Composition (table 154).

10/ Composed of public drinking water programs and vector abatement districts at state level. See Recommended Program Composition (table 154).

11/ Composed of measures for salinity control, shoreline erosion control, and water level management. See Recommended Program Composition (table 154).

Program Costs

Estimated costs for the Regional Development Program are summarized in table 137. The estimates are expressed in terms of January 1972 dollars, without adjustment or discounting by time periods. The allocation of costs between Federal and non-Federal interests is in accordance with the percentages used for the National Income Program (see table 122). Certain flood control features of the ongoing Mississippi River and Tributaries Project are included in the costs, as in the case of the National Income Program.

The total investment cost of the Regional Development Program is estimated at \$16.6 billion, of which half is Federal cost and half is non-Federal. Average annual operation and maintenance costs are estimated at \$395 million.

Table 137 - Estimated Program Costs, Regional Summary, Regional Development Objective

			1971-1980	1,980		-			1981-2000	5000		-
Feature	Federal	Investment eral Non-Federal	Federal	Non-Federal	Investment	WW SEW	Federal Non-F	Non-Federal	Federal	Non-Federal	Investment	8
Water Supply	28,614	25,841	652	14,091	54,455	14,743	160,850	65,037	4,170	32,921	225,887	37,091
Municipul Irrigation Fish and Wildlife	(22,664) (2,786) (3,164)	(22,664) (14) (3,163)	(o) (o) (652)	(13,213) (227) (651)	(45, 328) (2,800) (6,327)	(13,213) (227) (1,303)	(55,699) (98,781) (6,370)	(55, 699) (2, 969) (6, 369)	(1, 268) (2, 202)	(24,976) (5,743) (2,202)	(111,398) (101,750) (12,739)	(24, 976) (7, 711) (4, 404)
Water Surface	1440,826	195,592	810	4,429	636,418	5,239	99,569	157,066	1,724	9,900	466,635	8,624
Recreation Small water Large Aater Strem Access Fish and Wildlic Matural Environment	(167,161) (259,299) (2,075) (5,150) (7,141)	(167,160) (14,067) (2,075) (5,150) (7,140)	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(2,462) (374) (415) (1,032) (146)	(334, 321) (273, 366) (4, 150) (10, 300) (14, 281)	(2,462) (1,184) (415) (1,032) (146)	(155, 228) (152,500) (413) (428) (0)	(156, 227) (6) (412) (427) (9)	(0) (1,774) (0) (0) (0) (0)	(4,766) (574) (574) (4,08) (1,116) (146)	(312,455) (152,500) (825) (855) (0)	(4,7e6) (2,098) (4,98) (1,116) (146)
Lands	728,964	2,981,877	53,313	55,387	3,710,841	108,700	040,684	040,684	103,625	107,995	978,080	211,620
Recreation Fish and Wildlife Natural Environment	(583,900) (132,455) (12,609)	(583,900) (14,717) (2,383,260)	(53,303) (0) (10)	(53, 302) (1, 932) (153)	(1,167,800) (147,172) (2,395,869)	(106,605) (1,932) (163)	(388,625) (100,415) (0)	(388,625) (100,415) (0)	(103,615) (0) (10)	(103,615) (4,227) (153)	(777,250) (200,830) (0)	(207,230) (4,227) (163)
Flood Control & Related Problems	1,073,207	673,904	3,805	14,719	1,747,081	18,524	552,453	628,339	6,994	31,481	1,231,792	38,475
Flood Control Principal Seaches Upstream Lond Treatment	(530, 348) (292, 444) (38, 237)	(33,454) (76,891) (483,860)	(3,253)	(4,568) (4,568) (0)	(565,802) (369,335) (522,097)	(4,014) (4,568) (0)	(336,291) (93,583) (42,074)	(42,236) (22,917) (531,383)	(5, 384.) (0) (0)	(1,042) (5,313) (0)	(378,527) (116,500) (573,457)	(6,426) (5,313) (0)
Seament and Erosion Critical Land Treatment Streambank Rowdbanke	(34,797) (42,043) (1,842)	(17,301) (300) (991)	(0) (552) (0)	(1,503) (1,503) (85)	(52,098) (42,315) (2,833)	(2,055) (85)	(17,622) (41,797) (1,611)	(8,761) (179) (866)	(0,610) (0,610) (0)	(2, 4 03) (159)	(26, 383) (41, 976) (2, 479)	(0) (4,013) (159)
Drainage Watershed Management Channels	(1,479)	(28,102) (33,005)	33	(5,916)	(29,581)	(5,916) (1,886)	(3,634)	(69,034)	<u></u>	(20,450)	(72,668) (19,802)	(20,450)
water quality and Pollution	195,685	81,402	0	3,379	277,087	3,379	572,642	194,541	Q	64,079	767,183	640.4
Municipal Waste Treatment Bacteria Control	(195,685)	(65,228) (16,174)	<u></u>	(2,873)	(260,913)	(506)	(572,642)	(190,881) (3,660)	00	(522)	(763,523) (3,660)	(3,557)
Navigation	621,309	98,803	13,868	111	720,112	13,979	209,739	15,687	17,683	181	924,445	17,864
Hydropower	19,189	0	254	0	19,189	254	121,055	0	1,807	0	121,055	1,807
Constal and Estuarine	3,900	1,900	0	36	5,800	36	10,500	10,500	0	166	21,000	166
Historical and Archeological	19,148	19,147	0	0	38,295	0	63,478	63,478	0	0	126,956	0
Health	0	0	0	5,402	0	5,402	0	0	0	9,336	0	9,336
TOTALS	3,130,842	4,078,466	72,702	97,554	7,209,278	170,256	2,489,326	1,694,688	136,003	193,059	4,184,014	329,062

Table 137 - Estimated Program Costs, Regional Summarry, Regional Development Objective (Cont'd)

	-		2001-2020				To	Total Program	
Feature	Federal	Investment Non-Federal	Federal	Non-Federal	Investment	188	Federal	Investment Cost (\$1,000)	Total
Water Supply	167,664	108,957	6,399	55,205	276,621	61,604	357,127	199,836	556,963
Municipal Irrigation Fish and Wildlife	(93,988) (59,003) (14,673)	(93,988) (297) (14,672)	(1,968) (4,431)	(40,229) (10,546) (4,430)	(187,976) (59,300) (29,345)	(40,229) (12,514) (8,861)	(172,351) (160,570) (24,206)	(172,351) (3,280) (24,205)	(344,702) (163,850) (48,411)
Water Surface	443,831	443,831	1,724	13,786	887,662	15,510	1,194,226	796,489	1,990,715
Recreation Small state Jarge Witer Others Acces Fish and Middlife Natural Environment	(442,901) (375) (560) (500) (500)	(44,2,301) (0) (375) (561) (0)	01,724,0 (0,000) (0,000)	(11,464) (374) (573) (1,529) (146)	(885,802) (0) (750) (1,121) (0)	(11,464) (2,098) (2,098) (1,229) (1,229)	(411,799) (2,863) (6,138) (7,141)	(766, 288) (14, 067) (2, 862) (6, 138) (7, 140)	(1,532,578) (425,866) (5,725) (12,276) (14,281)
Triads	846,485	846,485	188,897	196,737	1,692,970	385,634	2,064,489	4,317,402	6,381,891
Recretion Fish and Widife Natural Environment	(694,725) (151,760) (0)	(694,725) (151,760) (0)	(188,887) (0) (10)	(188,888) (7,696) (153)	(1,389,450) (303,520) (0)	(377,775) (7,696) (163)	(1,667,250) (384,630) (12,609)	(1,667,250) (266,892) (2,383,260)	(3,334,500) (651,522) (2,395,869)
Flood Control & Related Problems	274,786	736,000	14,308	52,609	1,010,786	66,917	1,900,446	2,089,243	3,989,689
Flood Control Frincipal Reaches Unstream Land Teathert Sediment and Erosion	(115,342) (55,215) (48,767)	(12,036) (13,347) (610,431)	(11,643)	(1,101) (5,770) (0)	(127,378) (68,562) (659,198)	(12,744) (5,770) (0)	(981,981) (441,242) (129,078)	(87,726) (113,155) (1,625,674)	(1,069,707) (554,397) (1,754,752)
Critical Land Treatment Streambank Hondbinks Procedurks	(6,339) (35,853) (1,150)	(3,407) (120) (619)	(0) (0) (0) (0)	(3,000) (212)	(10,246) (35,973) (1,769)	(0) (5,665) (212)	(59, 258) (119, 693) (4, 603)	(29,469) (599) (2,478)	(98,727) (120,292) (7,081)
Autorshed Management Chunnels	(4,967) (6,653)	(94, 377)	<u>66</u>	(2,319)	(99, 344) (8, 316)	(40,319) (2,207)	(10,080)	(191,513) (38,629)	(201,593)
Water quality and Pollution	324,475	112,248	0	016.4	436,723	4,970	1,092,802	386,191	1,480,993
Municipal Waste Treatment Bacteria Control	(324,475)	(108,158)	<u></u>	(622)	(432,633)	(622) (4,348)	(1,092,802)	(364,267)	(1,457,069)
Nevigation	502,765	901,491	23,047	182	178,990	23,229	1,333,813	298,596	1,632,409
Hydropover	0	0	1,807	0	0	1,807	140,244	0	140,244
Constal and Estuarine	120,000	120,000	0	1,716	240,000	1,716	134,400	132,400	266,800
Historical and Archeological	22,800	22,790	0	0	45,590	0	105,426	105,415	210,841
Hear th	0	0	0	11,723	0	11,723	0	0	0
TOTALS	2,702,806	2,554,417	236,182	336,928	5,257,223	573,110	8,322,973	8,327,572	16,650,545

ENVIRONMENTAL QUALITY PROGRAM

Resource Use

General

Because Program A economic forecasts were adopted for the Environmental Quality objective, the National Income and Environmental Quality Programs are quite similar in content. They differ in only three significant respects: (1) land allocation, (2) flood control, and (3) water quality control. All other component plans are identical, as are the measures which make up those plans. Accordingly, only the land, flood control, and water quality plans are presented and discussed in the following narrative, after which the total Environmental Quality Program is displayed in tabular form (table 142).

Land Allocation

The land plan for this program is aimed at satisfying on a first priority basis recognized needs for preserving the environmental quality of significant natural land forms, water bodies, and forests. Accordingly, the plan (table 138) seeks the primary use of some 12.4 million acres for environmental quality purposes. Included are 756,000 acres scattered throughout the region in near-wilderness areas, rare ecological, botanical, and geological systems and lake shores. These are designated for exclusive use to maintain their environmental character. They cannot be used for any purpose other than fish and wildlife habitat.

Nearly 75 percent of the designated exclusive-use lands are located in WRPA 9 in the Atchafalaya River Basin below Krotz Springs, Louisiana. This area is now nationally significant because of its value as a bottom-land hardwood forest, a wetland area, a wilderness area, and a haven for fish and wildlife. Sixteen percent of the exclusive-use environmental acreage is situated in bottom-land hardwood forests in the Lower Arkansas and the Lower White River Basins of WRPA 2. The rest are located within small tracts of open land and forests in the other WRPA's. Lands reserved exclusively for satisfaction of environmental needs are listed by WRPA in table 139.

Aside from the designated exclusive items, the plan seeks to preserve the environmental quality of 11.6 million acres while allowing, under controlled conditions, multiple use for timber production, pasturage, recreation, and fish and wildlife. This restriction detracts somewhat from the land's ability to provide maximum returns for some secondary uses, but no attempt was made to measure these effects.

Some 7.3 million acres of the region's environmentally significant land areas are already considered to be in firm supply; i.e., not likely to change status over the next 50 years. Preservation of the remaining

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region

Water Resources	1970	A11	ocated Fut	ure
Planning Area and			Use (1,000	
Need Category	(1,000 Acre		2000	2020
WRPA 1				
Open Land	312.0	312.0	312.0	312.0
Environmental Quality	-	-	-	-
Transportation,				
Urban and Built-up			-	-
Food and Fiber				
Cropland	(188.0)		(188.0)	(188.0)
Pastured Cropland	(30.0)	(30.0)	(30.0) (32.0)	(30.0)
Permanent Pasture	(32.0)	(32.0)	(32.0)	(32.0)
Other	(62.0)	(62.0)	(62.0)	(62.0)
Commercial Fisheries	-	-	-	-
Minerals	-	-	-	-
Recreation				
Class A	-	-	-	
Class B		-	-	
Fish and Wildlife				
(Cropland)		-		
(Pastureland)	-	-	-	-
(Wetlands)	-	-	-	-
Forest Land	879.0	879.0	879.0	879.0
Environmental Quality	0,2.0	0,2.0	0.2.0	0,2,0
Botanical Systems		- 1	_	
Bottomland Hardwoods 1/	(879.0)	(879.0)	(879.0)	(879.0)
Lake Shores ² /	-	(6.0)		(6.0)
Ecological Systems	-	-	-	-
Geological Systems	-	-		-
Scenic River Banks	-	-	-	
Wetlands	-	-	-	_
Wilderness Areas		-	-	-
Food and Fiber				
Forest Products, et al. Animal Roughage (Pasture	_ (879.0)	(879.0)	(879.0)	(879.0)
Animal Roughage (Pasture	$\frac{3}{(135.0)}$	(135.0)		
Recreation				
Class B	-	-	-	-
Class C	-		-	-
Fish and Wildlife4/	(131.1)	(131.1)	(131.1)	(131.1)
Land Covered by Water				
Large Water Areas	368.0	368.0	368.0	368.0
Small Water Areas	-	-	-	-
Total Area, WRPA 1	1,559.0	1,559.0	1,559.0	1,559.0

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Resources	1970	111	control Fra	
Planning Area and	Land Use		ocated Fut	
Need Category		Land	Use (1,000	
Need Category	(1,000 Acr	es) <u>1980</u>	2000	2020
WRPA 2				
Open Land Environmental Quality	7,879.0	8,653.0	8,639.0	8,600.0
Open and Green Space 5	(6.1)	(8.0)	(8.0)	(8 0)
Ecological Systems 7	(0.1)	(1.0)	(8.0) (1.0)	(8.0)
Geological Systems 7		(1.0)	(1.0)	(1.0) (157.0)
Transportation,		(137.0)	(137.0)	(137.0)
Urban and Built-up	(367.0)	(378.0)	(396.0)	(459.0)
Food and Fiber	(307.0)	(370.0)	(330.0)	(433.0)
Cropland	(6,192.0)	(7.097.0)	(7,222.0)	(7,199.0)
Pastured Cropland	(380.0)	(494.0)	(478.0)	(478.0)
Permanent Pasture	(693.0)	(309.0)	(302.0)	(302.0)
Other	(247.0	(374.0)	(240.0)	(161.0)
Commercial Fisheries8/	(16.0)	(21.0)	(30.0)	(40.0)
Minara1-0/	(26.0)	(35.0)	(56.0)	(87.0)
Recreation Class A	(20.0)	(33.0)	(30.0)	(67.0)
Class Ag	(6.1)	(7.1)	(8.4)	(12.1)
Class B8/	(7.1)	(7.1)		(10.4)
Fish and Wildlife	(7.1)	(7.3)	(7.3)	(10.4)
$(Crop1and)\frac{10}{11}$		(288.0)	(319.0)	(375.0)
(Pasture land) 11/		(123.0)	(137.0)	(161.0)
(Wetlands) 8		(101.0)	(101.0)	(101.0)
(wettands)=		(101.0)	(101.0)	
Forest Land	2,634.0	1,827.0	1,827.0	1,827.0
Environmental Quality				
Bottomland Hardwoods 1	(1,128.0)	(1,128.0)	(1,128.0)	(1,128.0)
Lake Shores	-	(1.0)	(1.0)	(1.0)
Scenic River Banks,2/	-	(18.0)	(18.0)	(18.0)
Wilderness Areas 4	-	(24.0)	(24.0)	(24.0)
Ecological Systems 6/	-	(120.0)		(120.0)
Geological Systems1/	-	(350.0)	(350.0)	(350.0)
Food and Fiber				
Forest Products, et al.	(2,634.0)	(1,707.0)	(1,707.0)	(1,707.0)
Animal Roughage (Pasture)3/(365.0)	(447.0)	(454.0)	
Recreation				
Class B3/	(7.0)	(7.6)	(7.6)	(10.4)
Class C3/	(0.6)	(0.6)	(0.7)	(0.9)
Fish and Wildlife ⁴	(280.5)	(381.0)	(444.6)	(535.3)
	190 0	222.0	236.0	275.0
Land Covered by Water	189.0			(177.0)
Large Water Areas	(91.0)	(124.0)	(138.0)	(98.0)
Small Water Areas	(98.0)	(98.0)		
Total Area, WRPA 2	10,702.0	10,702.0	10,702.0	10,702.0

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Resources Planning Area and Need Category	1970 Land Use (1,000 Acres	Land U	Jse (1,000 2000	
WRPA 3				
Open Land Environmental Quality 5/ Transportation,	4,436.0 (2.9)		4,840.0 (34.0)	4,650.0 (34.0)
Urban and Built-up Food and Fiber	(355.0)	(401.0)	(536.0)	(724.0)
Cropland Pastured Cropland Permanent Pasture Other Commercial Fisheries Minerals Recreation	(2,206.0) (746.0) (929.0) (200.0) (0.6) (2.0)	(1,117.0) (501.0) (392.0) (1.0)	(2,162.0) (1,215.0) (549.0) (378.0) (2.0) (9.0)	(1,123.0) (498.0) (302.0) (3.0)
Class A ⁹ / Class B <u>8</u> /	(2.9) (2.4)	(13.8) (11.9)	(23.5) (20.2)	(39.0) (33.6)
Fish and Wildlife (Cropland) 10/ (Pastureland) 11/ (Wetlands)	-	(652.0) (279.0) (41.0)		(1,214.0) (520.0) (41.0)
Forest Land	2,310.0	2,056.0	1,515.0	1,515.0
Environmental Quality Bottomland Hardwoods 1/ Lake Shores 6/ Scenic River Banks 2/ Wetlands 2/ Food and Fiber	(796.0)	(796.0) (1.0) (28.0) (64.0)	(796.0) (1.0) (28.0) (64.0)	(796.0) (1.0) (28.0) (64.0)
Food and Fiber Forest Products, et al. Animal Roughage (Pasture	(2,310.0) e)3/(297.0)		(1,514.0) (921.0)	
Recreation Class B ² / Class C ³ / Fish and Wildlife ⁴ /	(2.3) (0.2) (186.3)	(11.9) (1.2) (228.1)	(20.3) (1.9) (266.2)	(33.6) (3.0) (320.5)
Land Covered by Water Large Water Areas Small Water Areas	72.0 (40.0) (32.0)	257.0 (225.0) (32.0)	(431.0)	
Total Area, WRPA 3	6,818.0	6,818.0	6,818.0	6,818.0

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

1070	411	- 1 F 4	
(1,000 Acres	1980	2000	2020
5,118.0	5,878.0	5,809.0	5,769.0
			(8.0)
(328.0)	(335.0)	(361.0)	(426.0)
(3,314.0)	(3,172.0)		(3,109.0)
(326.0)	(517.0)	(518.0)	(530.0)
(243.0)	(1,628.0)	(1,552.0)	(1,590.0)
(207.0)	(226.0)		(114.0)
(11.3)	(20.0)	(37.0)	(54.0)
(3.0)	(3.0)	(4.0)	(5.0)
			(8.0)
(1.0)	(3.1)	(4.4)	(6.5)
		(=0= a)	(201)
7			(391.0)
			(167.0)
_	(97.0)	(97.0)	(97.0)
3.222.0	2.434.0	2.434.0	2,434.0
0,	-,	-,	,
(1.148.0)	(1.148.0)	(1.148.0)	(1.148.0)
-	(2.0)	(2.0)	
-	(5.0)	(5.0)	(5.0)
- 1	(10.0)	(10.0)	(10.0)
	(1.0)	(1.0)	(1.0)
(3,222.0)		(2,419.0)	(2,419.0)
e)의(587.0)	(1,073.0)	(875.0)	(800.0)
			(6.5)
			(45.5)
(165.4)	(257.6)	(300.6)	(361.9)
207.0	235.0	304.0	344.0
		(171.0)	(211.0)
(-00,0)	(,,
8,547.0	8,547.0	8,547.0	8,547.0
	5,118.0 (0.8) (328.0) (3,314.0) (326.0) (243.0) (207.0) (11.3) (3.0) (0.8) (1.0) 	Land Use (1,000 Acres) Land (1,000 Acres) 1980 5,118.0 5,878.0 (0.8) (8.0) (328.0) (335.0) (3,314.0) (3,172.0) (326.0) (517.0) (243.0) (1,628.0) (207.0) (226.0) (3.0) (0.8) (3.0) (3.0) (0.8) (3.8) (1.0) (3.1) - (292.0) (125.0) (97.0) 5,222.0 2,434.0 (1,148.0) (1,148.0) (2.0) (5.0) - (5.0) (10.0) (1.0) (3,222.0) (2,419.0) (2.0) (1.0) (1,148.0) (1,073.0) (0.9) (3.1) (26.0) (26.0) (165.4) (257.6) 207.0 235.0 (74.0) (102.0) (133.0)	Land Use (1,000 Acres) Land Use (1,000 1980 2000 5,118.0 (0.8) 5,878.0 (8.0) (0.8) (8.0) (328.0) (335.0) (3314.0) (3,172.0) (326.0) (517.0) (243.0) (1,628.0) (1,552.0) (207.0) (213.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.0) (3.1) (4.4) - (292.0) (327.0) (125.0) (140.0) (97.0) (97.0) 3,222.0 2,434.0 2,434.0 (1,148.0) (1,148.0) (1,148.0) (1,0) (10.0) (10.0) (20) (2.0) (2.0) <t< td=""></t<>

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Deaman	1070	111		
Water Resources	1970	0.750,000	ocated Futur	
Planning Area and	Land Use		Use (1,000 A	
Need Category	(1,000 ACT	1980	2000	2020
WRPA 5				
Open Land	2,585.0	3,157.0	4,911.0	6,754.0
Environmental Quality5/	(2.6)	(13.0)	(13.0)	(13.0)
Transportation,				
Urban and Built-up	(440.0)	(458.0)	(532.0)	(647.0)
Food and Fiber				
Cropland	(732.0)	(970.0)	(2,404.0)	(3,504.0)
Pastured Cropland	(239.0)	(591.0)	(653.0)	(930.0)
Permanent Pasture	(982.0)	(919.0)	(1,065.0)	(1,358.0)
Other	(192.0)	(219.0)	(257.0)	(315.0)
Commercial Fisheries 8/	(3.6)	(6.0)	(12.0)	(18.0)
Minerals <u>8</u> /	(8.0)	(9.0)	(9.0)	(10.0)
Recreation				
Class A ⁹ /	(2.6)	(6.1)	(9.1)	(13.5)
Class B ⁸ /	(2.3)	(5.2)		(11.5)
Fish and Wildlife				
$(Cropland) \frac{10}{11}$	-	(394.0)	(467.0)	(572.0)
$(Pasture1and)\frac{11}{}$		(169.0)	(200.0)	(245.0)
Forest Land	10,228.0	9,598.0	7.818.0	5,903.0
Environmental Quality 1/				
Bottomland Hardwoods 1	(2,362.0)	(2,362.0)	(2,362.0)	(2,362.0)
Lake Shores=/	-	(1.0)	(1.0)	(1.0)
Ecological Systems 6/2/	-	(20.0)	(20.0)	(20.0)
Scenic River Banks ⁴	-	(28.0)	(28.0)	(28.0)
Geological Systems 1/	-	(22.0)	(22.0)	(22.0)
Wilderness Areas 0/	-	(10.0)	(10.0)	(10.0)
Food and Fiber				
Forest Products, et al.	(10,228.0)	(9,567.0)	(7,787.0)	(5,872.0)
Animal Roughage (Pastur	(947.0)	(1,048.0)	(1,090.0)	(1,515.0)
Recreation				
Class B3/	(2.2)	(5.3)	(7.5)	(11.6)
Class C <u>3</u> /	(23.8)	(23.8)	(31.5)	(46.9)
Fish and Wildlife				
Management Areas, etc.	$\frac{1}{258.4}$	(361.9)	(422.3)	(508.5)
Wetlands3/	-	(531.0)	(723.0)	(791.0)
Land Covered by Water	251.0	309.0	335.0	(407.0)
Large Water Areas	(175.0)			(331.0)
Small Water Areas	(76.0)	(76.0)	(76.0)	(76.0)
omail water Areas	(70.0)	(70.0)	(10.0)	(70.0)
Total Area, WRPA 5	13,064.0	13,064.0	13,064.0	13,064.0

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Begginger	1070		1 17 .				
Water Resources	1970		Allocated Future				
Planning Area and	Land Use	Land l	Jse (1,000	Acres)			
Need Category	(1,000 Acres	1980	2000	2020			
WRPA 6							
Open Land	2,630.0	2,698.0	2,696.0	2,686.0			
Environmental Quality Open and Green Space5/ Unique Geological and	(0.5)	(2.0)	(2.0)	(2.0)			
Botanical Systems12/	-	(1.0)	(1.0)	(1.0)			
Transportation, Urban and Built-up Food and Fiber	(78.0)	(79.0)	(79.0)	(80.0)			
Crop1and	(1,908.0)	(1,951.0)	(1,958.0)	(1.970.0)			
Pastured Cropland	(118.0)	(174.0)	(171.0)	(164.0)			
Permanent Pasture	(494.0)	(410.0)	(403.0)	(385.0)			
Other	(32.0)	(83.0)	(84.0)	(86.0)			
Commercial Fisheries8/	(1.4)	(4.0)	(9.0)	(14.0)			
Minerals 8/	(2.0)	(2.0)	(3.0)	(4.0)			
Recreation	(2.0)	(2.0)	(3.0)	(1.0)			
Class A ⁹ /	(0.5)	(1.7)	(2.2)	(2.9)			
Class B8/		(1.7)	(1.9)	(2.5)			
Fish and Wildlife	(0.4)	(1.3)	(1.5)	(2.3)			
(Cropland) 10/		(07.0)	(97 0)	(01 0)			
(Croprand) 10/	-	(83.0)	(83.0)	(91.0)			
(Pastureland) 11/		(35.0)	(36.0)	(39.0)			
Forest Land Environmental Quality	831.0	763.0	763.0	763.0			
Bottomland Hardwoods 1/ Food and Fiber	(756.0)	(756.0)	(756.0)	(756.0)			
Forest Products, et al.	(831.0)	(763.0)	(763.0)	(763.0)			
Animal Roughage (Pasture)	3/(117.0)	(224.0)	(234.0)	(415.0)			
Recreation	,_ (-1)	()	()				
Class B3/	(0.3)	(1.5)	(1.9)	(2.6)			
Class C3/	(0.0)	(0.2)	(0.2)	(0.2)			
Fish and Wildlife	(0.0)	(0.2)	(0.2)	(0.2)			
Management, Areas, etc.4/	(45.2)	(70.2)	(81.9)	(98.6)			
Wetlands2	(43.2)	(85.0)	(85.0)	(85.0)			
we craids =		(05.0)	(03.0)	(05.0)			
Land Covered by Water	72.0	72.0	74.0	84.0			
Large Water Areas	(32.0)	(32.0)	(34.0)	(44.0)			
Small Water Areas	(40.0)	(40.0)	(40.0)	(40.0)			
Small water Areas	(40.0)	(40.0)	(40.0)	(40.0)			
Total Area, WRPA 6	3,533.0	3,533.0	3,533.0	3,533.0			

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Resources	1970			
Planning Area and	Land Use			
Need Category	(1,000 Acres	7 1980	2000	2020
WRPA 7				
MAPA /				
Open Land	1,604.0	2,371.0	2,269.0	2,269.0
Environmental Quality	.,001.0	,	,	,
Open and Green Space 5/	(0.4)	(1.0)	(1.0)	(1.0)
Geological Systems6/	()	(1.0)		
Transportation,		(1.0)	(1.0)	(1.0)
Urban and Built-up	(116.0)	(121.0)	(136.0)	(151.0)
Food and Fiber	(110.0)	(121.0)	(130.0)	(131.0)
Cropland	(337.0)	(570 0)	(183.0)	(127 0)
				,
Pastured Cropland	(180.0)	(376.0)		
Permanent Pasture	(941.0)		(1,446.0)	
Other	(30.0)	(95.0)	(61.0)	
Commercial Fisheries8/	(0.9)	(1.0)	(3.0)	
Minerals8/	(1.0)	(1.0)	(1.0)	(1.0)
Recreation				
Class A9/	(0.4)	(1.6)	(2.2)	(3.3)
Class B8/	(0.4)	(1.3)	(1.9)	(2.8)
Fish and Wildlife				
(Cropland) 10/	_	(74.0)	(85.0)	(103.0)
(Pastureland) 11/		(32.0)		
Forest Land	2,509.0	1.687.0	1.686.0	1.686.0
Environmental Quality				
Bottomland Hardwoods1/	(500.0)	(500.0)	(500.0)	(500.0)
Lake Shores2/	()	(1.0)	(1.0)	(1.0)
Scenic River Banks2/		(13.0)	(13.0)	(13.0)
Ecological Systems 6/		(3.0)	(3.0)	(3.0)
Wilderness Areas6/		(27.0)		
Food and Fiber		(27.0)	(27.0)	(27.0)
	(2 500 0)	(1 654 0)	(1 657 0)	(1 653 0)
Forest Products, et al.			(1,653.0)	
Animal Roughage(Pasture)	5/ (694.0)	(1,251.0)	(895.0)	(580.0)
Recreation				(2.2)
Class B3/	(0.3)	(1.4)	(2.0)	(2.9)
Class C3/	(0.1)	(0.1)	(0.2)	(0.3)
Fish and Wildlife				
Management Areas, etc.4/	(74.0)	(104.0)	(121.4)	(146.1)
Wetlands2/	-	(49.0)	(49.0)	(49.0)
Land Covered by Water	94.0	149.0	252.0	252.0
Large Water Areas	(38.0)	(93.0)	(196.0)	(196.0)
Small Water Areas	(56.0)	(56.0)	(56.0)	(56.0)
Total Area, WRPA 7	4,207.0	4,207.0	4,207.0	4,207.0

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Resources Planning Area and	1970 Land Use		Allocated Future Land Use (1,000 Acres)				
	(1,000 Acres)	1980	2000	2020			
WRPA 8							
Open Land	1,268.0	1,419.0	1,796.0	2,193.0			
Environmental Quality	(0.5)	(12.0)	(12.03	(12.0)			
Open and Green Space ⁵ /	(0.5)	(12.0)	(12.0)	(12.0)			
Geological Systems Transportation,		(1.0)	(1.0)	(1.0)			
Urban and Built-up	(182.0)	(206.0)	(260.0)	(333.0)			
Food and Fiber	(====)						
Crop1 and	(329.0)	(217.0)	(218.0)	(286.0)			
Pastured Cropland	(54.0)	(349.0)	(470.0)	(579.0)			
Permanent Pasture	(655.0)	(587.0)	(788.0)	(963.0)			
Other	(48.0)	(58.0)	(58.0)	(30.0)			
Commercial Fisheries8/	(0.3)	(1.0)	(1.0)	(2.0)			
Minerals8/	(4.0)	(5.0)	(6.0)	(8.0)			
Recreation,		64 03	(0. ()	(15 =)			
Class A9/	(0.5)	(6.0)	(9.6)	(15.3)			
Class B <u>10</u> /	(0.9)	(5.2)	(8.3)	(13.1)			
Fish and Wildlife		(217 0)	(170 03	(102.0)			
(Cropland) 11/		(217.0)	(170.0)	(193.0)			
(Pastureland) 11/		(122.0)	(156.0)	(262.0)			
Forest Land	2,265.0	2,099.0	1,700.0	1,262.0			
Environmental Quality 1/	(000 0)	(000 0)	(000 0)	(988.0)			
Bottomland Hardwoods	(988.0)	(988.0)	(988.0) (1.0)	(1.0)			
Lake Shores ² /		(1.0) (17.0)	(17.0)	(17.0)			
Scenic River Banks ²		(2.0)	(2.0)	(2.0)			
Botanical Systems 6/ Geological Systems 1/		(2.0)	(200.0)	(200.0)			
Food and Fiber	_	(203.0)	(200.0)	(200.0)			
Forest Products, et al.	(2 265 0)	(2.098.0)	(1,699.0)	(1.261.0)			
Animal Roughage (Pasture			(1,183.0)				
Recreation,							
Class B3/	(0.8)	(5.2)	(8.3)	(13.2)			
Class C ³ /	(0.0)	(0.5)	(0.8)	(1.2)			
Fish and Wildlife							
Management Areas, etc.4/	(5.0)	(19.0)	(22.2)	(26.7)			
Wetlands3/	-	(144.0)	(190.0)	(395.0)			
Land Cayanad by Watar	118.0	133.0	155.0	196.0			
Land Covered by Water Large Water Areas	(73.0)	(88.0)	(110.0)	(151.0)			
Small Water Areas	(45.0)	(45.0)	(45.0)	(45.0)			
Small water Areas	(43.0)	(45.0)	(10.0)	()			
Total Area, WRPA 8	3,651.0	3,651.0	3,651.0	3,651.0			

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Resources Planning Area and Need Category	1970 Land Use (1,000 Acres	Land U		cated Future se (1,000 Acres) 2000 2020		
WRPA 9						
Open Land	4,530.0	6,038.0	6,063.0	6,013.0		
Environmental Quality Open and Green Space 5/	(1.3)	(12.0)	(12.0)	(12.0)		
Beaches and Shores	-	(16.0)	(16.0)	(16.0)		
Botanical Systems 12/		(500.0)	(500.0)	(500.0)		
Geological Systems 12/		(3.0)	(3.0)	(3.0)		
Transportation,						
Urban and Built-up	(236.0)	(243.0)	(271.0)	(314.0)		
Food and Fiber	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Cropland .	(1,827.0)	(2,673.0)	(2,583.0)			
Pastured Cropland	(749.0)	(1,316.0)	(1,361.0)			
Permanent Pasture	(911.0)	(1,072.0)	(1,108.0)			
Other	(807.0)	(734.0)	(740.0)	(748.0)		
Commercial Fisheries 8/	(10.7) (7.0)	(14.0)	(20.0)	(26.0)		
Minerals Arcreation,	(7.0)	(11.0)	(16.0)	(24.0)		
Class A	(1.3)	(7.5)	(10.6)	(15.1)		
Class B8/	(1.0)	(6.4)	(9.1)	(13.0)		
Fish and Wildlife	(2.0)	(0)	(5.1)	(20.0)		
$(Cropland)\frac{10}{}$		(829.0)	(1,216.0)	(1,636.0)		
(Pastureland) 11/		(153.0)	(172.0)	(202.0)		
$(\text{Wetlands}) \frac{8}{}$		(144.0)	(162.0)	(190.0)		
Forest Land	3,442.0	1,932.0	1,871.0	1,871.0		
Environmental Quality 1/	(1 724 0)	(1 724 0)	(1 724 0)	(1 721 0)		
Bottomland Hardwoods 1/	(1,324.0)	(1,324.0)		(1,324.0)		
Geological Systems 2/		(3.0) (3.0)	(3.0) (3.0)	(3.0) (3.0)		
Scenic River Banks ²		(9.0)	(9.0)	(9.0)		
Wetlands ² /		(121.0)	(121.0)	(121.0)		
Wilderness Areas 6/		(555.0)	(555.0)	(555.0)		
Food and Fiber						
Forest Products, et al.	(3,442.0)	(1,376.0)	(1,315.0)	(1,315.0)		
Animal Roughage (Pastur	$e)^{5/}(383.0)$	(677.0)	(711.0)	(751.0)		
Recreation,						
Class $B_{\frac{3}{4}}$	(0.9)	(6.5)	(9.2)	(13.0)		
Class C ³ /	(0.2)	(0.6)	(0.9)	(1.1)		
Fish and Wildlife ⁴	(690.2)	(717.2)	(836.9)	(1,007.7)		
Land Covered by Water	538.0	540.0	576.0	626.0		
Large Water Areas	(400.0)	(402.0)	(438.0)	(488.0)		
Small Water Areas	(138.0)	(138.0)	(138.0)	(138.0)		
Total Area, WRPA 9	8,510.0	8,510.0	8,510.0	8,510.0		

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Resources	1970	A11	Allocated Future				
Planning Area and	Land Use		Land Use (1,000 Acres)				
Need Category	(1,000 Acres		2000	2020			
Need Category	(1,000 ACTES	1360	2000	2020			
WRPA 10							
Open Land	2,472.0	2,587.0	2,644.0	2,727.0			
Environmental Quality							
Open and Green Space 5/	(1.3)	(31.0)					
Beaches and Shores 12/		(160.0)	(160.0)	(160.0)			
Transportation,	(270 0)	(2(0,0)	(727 0)	(110 0)			
Urban and Built-up	(230.0)	(260.0)	(327.0)	(419.0)			
Food and Fiber	(710 0)	(271 0)	(250 0)	(241 0)			
Cropland	(310.0)	(271.0)	(250.0)	(241.0)			
Pastured Cropland	(49.0)	(90.0)					
Permanent Pasture	(202.0)	(295.0)		(322.0)			
Other Commercial Fisheries 8/	(1,681.0)		(1,664.0)				
Minerals ⁸	(1.2)	(2.0)					
	(14.0)	(17.0)	(23.0)	(30.0)			
Recreation Class A	(1.3)	(14.4)	(23.0)	(36.3)			
Class B8/	(0.9)	(12.4)					
Fish and Wildlife	(0.3)	(12.4)	(13.0)	(31.2)			
Fish and Wildlife (Cropland) 10/		(271.0)	(250.0)	(242.0)			
(Pastureland) 11/		(291.0)					
(Wetlands)		(275.0)					
(We crands) =		(273.0)	(333.0)	(550.0)			
Forest Land	1,317.0	1,202.0	1,142.0	1,052.0			
Environmental Quality 1/							
Bottomland Hardwoods 1	(970.0)	(970.0)	(970.0)	(970.0)			
Lake Shores		(4.0)	(4.0)	(4.0)			
Scenic River Banks ²	Laws - year	(4.0)	(4.0)	(4.0)			
Botanical Systems 6/		(1.0)	(1.0)	= (1.0)			
Food and Fiber	(1 717 0)	(1 201 0)	(1 111 0)	(1 051 0)			
Forest Products, et al. Animal Roughage (Pastur	3(1,517.0)	(1,201.0)	(1,141.0)	(1,051.0)			
Animal Roughage (Pastur	e) = (32.0)	(59.0)	(62.0)	(65.0)			
Recreation	(0, 0)	(12 5)	(10.0)	(71 2)			
Class B3/ Class C3/	(0.8)	(12.5)					
Fish and Wildlife 4/	(0.0)	(1.2)	(1.8)	(2.7)			
rish and wildlife—	(103.3)	(190.3)	(229.1)	(275.8)			
Land Covered by Water	1,158.0	1.158.0	1,161.0	1,168.0			
Large Water Areas	(939.0)	(939.0)	(942.0)	(949.0)			
8	(219.0)						
	(-2.0)	()	()				
Total Area, WRPA 10	4,947.0	4,947.0	4,947.0	4,947.0			

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

Water Resources	1970		ocated Futu	
Planning Area and	Land Use		Use (1,000)	
Need Category	(1,000 Acre	es) <u>1980</u>	2000	2020
WRPA's 1 through 10				
Open Land Environmental Quality	32,834.0	37,618.0	39,979.0	41,973.0
Environmental Quality Open and Green Space 5/	(16.4)	(122.0)	(122.0)	(122.0
Beaches and Shores	-	(176.0)	(176.0)	(176.0
Botanical Systems 13	-	(501.0)	(501.0)	(501.0
Ecological Systems		(1.0)	(1.0)	(1.0
Geological Systems 14/	-	(161.0)	(161.0)	(161.0
Transportation,				
Urban and Built-up	(2,332.0)	(2,481.0)	(2,898.0)	(3,553.0)
Food and Fiber	(17 -17 0)	((22 ==1 2)	
Cropland	(17,343.0)	(19,203.0)	(20,374.0)	(21,075.0
Pastured Cropland Permanent Pasture	(2,871.0)	(5,054.0)	(5,434.0)	(5,778.0
Other	(6,782.0)	(6,962.0)	(7,553.0)	(8,086.0
Commercial Fisheries 8/	(3,506.0)	(3,914.0) (70.0)	(3,716.0) (117.0)	(3,477.0 (164.0
Minerals Pisheries	(67.0)	(87.0)	(127.0)	(183.0
Recreation,	(07.0)	(07.0)	(127.0)	(103.0
Class A ⁹ /.	(16.4)	(62.0)	(94.0)	(145.5
Class B8/	(16.0)	(54.5)	(80.8)	(124.6
Fish and Wildlife	(22.0)			
$(Cropland) \frac{10}{11}$		(3,100.0)	(3,870.0)	(4,817.0
(Pastureland) 11/		(1,329.0)	(1,629.0)	(2,064.0)
(Wetlands)8/		(658.0)	(754.0)	(959.0)
Forest Land	29,637.0	24,477.0	21,635.0	19,192.0
Environmental Quality				
Bottomland Hardwoods 1	(10,852.0)	(10,852.0)		(10,852.0)
Ecological Systems 6/		(153.0)	(153.0)	3
Geological Systems 15/ Lake Shores 15		(579.0)	(579.0)	
Lake Shores 2/		(20.0)	(20.0)	
Scenic River Banks ² Wetlands		(117.0) (185.0)	(117.0) (185.0)	
Wilderness Areas 1/		(644.0)	(644.0)	
Food and Fiber		(044.0)	(044.0)	(044.0
Forest Products, et al.	(29 637 0)	(23, 719, 0)	(20.887.0	(18,434.0)
Animal Roughage (Pasture	$\frac{3}{4}$.207.0)	(5.993.0)		(7,033.0
	, – (1,207.0)	(0,000.0)	(0,000.0	(.,
Recreation Class B5/	(15.9)		(81.3)	
Class C <u>3</u> /	(50.9)	(54.2)	(70.1)	(101.8)
Fish and Wildlife	(2 021 1)	(2 466 4)	(2 056 2	(3 /10 2
Management Areas, etc.4/ Wetlands4/	(2,021.4)	(2,466.4) (809.0)	(2,856.2) (1,047.0)	(3,418.2)
Land Covered by Water	3,067.0	3,443.0	3,924.0	4,373.0
Large Water Areas	(2,230.0)	(2,606.0)	(3,08.0)	(3,536.0)
Small Water Areas	(837.0)		(837.0)	
Total Area, LMR	65,538.0	65,538.0	65,538.0	65,538.0

Table 138 - Land Use Plan, Environmental Quality Program, Lower Mississippi Region (cont'd)

1/	Primary	use	for	environmental	quality.	Counted	in	forest	products
	acreage								

^{.2/} Primary use for environmental quality. Counted in bottom-land hardwoods.

- 7/ .Primary use for environmental quality. Counted in permanent pasture acreage as multiple-use.
- 8/ Multiple-use land. Counted in other open land acreage categories.
- 9/ Multiple-use with urban open and green space. Counted in transportation, urban and built-up acreage.

- 10/ Multiple-use land. Counted in cropland acreage.

 11/ Multiple-use land. Counted in permanent pasture acreage.

 12/ Primary use for environmental quality purposes. Counted in Other category.
- See WRPA's 8 and 9.
- 14/ See WRPA's 2, 8, and 9.
- 15/ See WRPA Summaries.

^{3/} Multiple-use land. Counted in forest products acreage.

^{4/} Primary use for fish and wildlife. Counted in forest products acreage.

Primary use for environmental quality, with multiple-use for Class A recreation land. Counted in transportation, urban and built-up acreages.

^{6/} Exclusive use for environmental quality purposes.

Table 139 - Lands Designated for Exclusive Use as Environmental Quality Components, Environmental Quality Program Lower Mississippi Region

WRPA		and Area 000 Acres)	Existing Use	Environmental Quality Attribute(s)
1	None			
2	White River Batture Lands Lower Arkansas Lands Lower White River Lower Arkansas River Grand Prairie	$\begin{array}{c} 60.0 \frac{1}{40.0} \\ 40.0 \\ 10.0 \\ 10.0 \frac{1}{10.0} \end{array}$	Forest ² / Forest ² / Forest ² / Pasture	Ecological System Ecological System Wilderness Area Wilderness Area Ecological System
	Subtotal	121.0		
3	Reelfoot Lake	0.4	Fish & Wildlife	Scenic Lake and Ecological System
	Murphy's Pond	0.1	Fish & Wildlife	Scenic Lake and Ecological System
	Open Lake	0.5	Fish & Wildlife	Scenic Lake and Ecological System
	Subtota1	1.0		Beerogreen system
4	Sharkey Bayou Mathews Brake Dutch Brake Blue Lake Brake Ashland Brake Beckham Brake Gayden Brake Eagle Brake Alcorn Brake McIntyre Lake Area Delta National Forest	2.5 0.7 0.7 0.8 1.0 1.1 0.9 0.8 0.4	Forest 2/ Forest 3/ Forest 3/ Forest 3/ Forest 4/ Forest 5/ Forest	Ecological System
5	Subtotal Seven Devils Swamp Felsenthal Basin Dismal Swamp Subtotal	$ \begin{array}{c} 14.9 \\ 20.0 $	Forest $\frac{2}{4}$ / Forest $\frac{2}{4}$ /	Wilderness Area Wilderness Area Wilderness Area

Table 139 - Lands Designated for Exclusive Use as Environmental Quality Components, Environmental Quality Program, Lower Mississippi Region (cont'd)

WRPA		and Area 000 Acres)	Existing Use	Environmental Quality Attribute(s)
6	None	-		-
7	Buffalo River Foster Lake Area Buffalo River	3.0	Forest ² /	Ecological System
	Foster Lake Area Loess Bluff Hills	7.0	Forest ² /	Wilderness Area
	near Vicksburg Grand Gulf Area Homochitto National	1.0 10.0	Forest 2/	Geological System Wilderness Area
	Forest	10.0	Forest	Wilderness Area
	Subtotal	31.0		
8	Port Hudson St. Helena Parish	0.1 0.1	"Other" Forest	Botanical System Botanical System
	Clio-Livingston Parish Spruce Pine Stands		Forest ² /	Botanical System
	Livingston and Tar gipahoa Parishes Waterfalls Bayou Sara The Plains	1.0 0.1 0.2 0.5	Forest Pasture Pasture	Botanical System Geological System Geological System Geological System
	Subtotal	2.5		
9	Atchafalaya Floodway	555.0 ¹ /	Forest ² /	Wilderness ^{4/}
10	Avondale	0.2	Forest	Botanical System
	Spruce Pine Stands St. Tammany Parish		Forest	Botanical System
	Subtotal	1.0		
	Total	756.4		

^{1/} Includes lands expected to remain in their present status during 50-year study period. Such lands are counted in existing supply and no program measures or costs are required for their preservation.

^{2/} Bottom-land hardwood forests.

 $[\]overline{3}$ / Also classified as ecological system.

^{4/} Also classified as wetland area.

5.1 million acres will require positive short-term (1970-1980) measures to insure their continued availability for the enjoyment of future generations. Proposed measures range from purchase to land-use regulation, and are displayed in table 140 by WRPA. Measures required for recreation and fish and wildlife purposes are identical to those used in Program A, and to avoid duplication are not repeated here. Similarly, since environmental needs manifest themselves in the short-range time frame (1970-1980) and are identical throughout the study period, incremental measures beyond 1980 involve only operation and maintenance of previously instituted measures and are not repeated.

Water Quality

The Environmental Quality Program water quality plan calls for acvanced waste treatment for all 5-day BOD wastes in municipal and industrial waste discharges by 1980 and continued treatment at that level through the year 2020. It also stipulates that all point source 5-day BOD pollutants from the agricultural sector be assimilated by application of these wastes to productive cropland at a rate which can be fully utilized by crops, as in the National Income Program. All discharges containing harmful bacteria will be adequately chlorinated to eliminate the threat from pathogenic organisms. In spite of the high level of treatment specified, the plan calls upon the natural assimilative capacity of the region's streams to dilute a small amount of biodegradable wastes not handled by treatment. A minor amount of remaining waste load in critical stream reaches will also be handled by reaeration, but this option will be applied almost exclusively to industrial waste loads. The water quality plan is summarized in table 141.

Problem Amelioration

Flood Control

The Environmental Quality Program component for flood control is the same as that for the National Income Program except that structural solutions would receive special treatment. Such treatment would of necessity be determined during the course of more detailed studies of specific problems in order to resolve as many as possible of the conflicts between items of environmental significance and flood control which might surface. Such conflicts could not be precisely identified herein due to the study's scope, which precludes assembly of specific flood control measure locations and natural environmental component locations relative to each other. The type of add-ons to structural flood problem solutions which might be defined in more detailed studies are described generally as follows:

Reservoirs. Lakes created by the construction of dams for flood control and other purposes normally constitute positive and significant extrinsic values relative to the environmental quality of an area.

 ${\it Table 140-Environmental Quality Program, Measures Used to Meet Land Area Needs, Lower Mississippi Region}$

KRPA	1 tem	Purpose an Exclusive Use (1,000 acres)	Primary Use	Acreage in EQ Program (1,000 acres)	Selected Measure and Remarks
1	Bottom-land hardwoods		879	879	Easement on entire hardwood forest in WPPA 1 (6,000 acres are lake shores).
2	Open and green space		8	1	Purchase 900 acres and maintain as urban open and green space. Remainder is multiple-use Class A recreation land.
	Unique ecological system Unique geological system	1	507	352	Purchase 1,000 acres of virgin prairie in the Grand Prairie Region. Purchase 157,000 acres of pasture land and 195,000 acres of forest land on Crowley's Ridge. Remaining 155,000 acres are in firm supply.
	Bottom-land hardwoods Unique ecological		1,008	917	Land-use regulation on 917,000 acres. Remainder is in firm supply.
	system	100		61	Land-use regulation on 60,000 acres in White River batture lands and 1,000 acres in Lower Arkansas River Basin. Remainder in firm supply.
	Wilderness areas	20		20	Land-use regulation on 10,000 acres in White River Basin and 10,000 acres in Arkansas Basin
3	Open and green space		34	29	Purchase 29,000 acres and maintain as urban open and green space. Remainder is multiple-use Class A recreation land and in scenic rivers and streams lands.
	Bottom-land hardwoods Lake shores	1	795	666	Subsidy on 664,000; Purchase 2,000 acres; Remainder in firm supply. Purchase and referest 400 acres; Purchase 100 acres; and subsidize 500 acres.
4	Open and green space Bottom-land hardwoods		.8 1,133	8 201	Purchase 8,000 acres and maintain as urban open and green space. Subsidire 186,100 acres: Purchase 9,900 acres, and apply land-use regulation to 5,000 acres.
	Unique ecosystems	10			Included above as purchased acreage.
	Wilderness area Unique geological system	S	1	1	Included above as lands secured by land-use regulation. Purchase 1,055 acres of delta bluff hills.
5	Open and green space		13	13	Purchase 13,000 acres and maintain as urban open and green space,
	Bottom-land hardwoods Wilderness Area	10	2,361	432 10	Subsidy on 451,500 acres and purchase 700 acres. Purchase 5,000 acres in Felsenthal Busin; 5,000 acres in Dismal Swamp.
	Ecological system - Wilderness area	20		20	5,000 acres purchased above, 15,000 acres in firm supply.
6	Open and green space Bottom-land hardwoods		2 756	2 147	Purchase 2,000 acres and maintain as urban open and green space. Purchase 38,700 acres; Subsidize 108,500.
2	Open and green space		1	1	Purchase 1,000 acres and maintain as urban open and green space.
	Bottom-land hardwoods	20	479	92	Purchase 20,000 acres as wilderness areas, Subsidize 72,000 acres. Purchase 1,000 acres of Loess bluffs near Vicksburg.
	Bhique geological system Wilderness area	10		10	Secure 10,000 acres of Homochite National Forest as Wilderness Area by land-use regulation.
8	Open and green space		12	11	Purchase 11,000 acres and maintain as urban open and green space. Remainder is multiple-use class A recreation land.
	Unique botanical system	2		2	Purchase 100 acres in East Baton Rouge Parish and subsidize 1,600 acres in Helena, Livingston, and Tangipahoa Parishes
	Unique geological system Bottom-land hardwoods	1	200 988	201 188	Purchase 750 acres in various locations; Land-use regulation on 200,000 acres. Subsidy.
9	Open and green space		12	11	Purchase 11,000 acres and maintain as urban open and green space. Remainder is multiple-use Class A recreation land.
	Bottom-land hardwoods	213	1,324	244	Easement on 244,000 acres to insure the integrity of the 966,000 acre Atchafala Floodway as a Wilderness area, wetlands, and unique botanical system.
	Unique geological system		306	213	Subsidize 213,000 acres to maintain system. Remainder in firm supply.
10	Open and green space		31		Purchase 50,000 acres and maintain as urban open and green space. Remainder is multiple-use Class A recreation land.
	Bottom-land hardwoods Beaches and shores		970 160	190 119	Subsidire 190,000 acres. Remainder is in firm supply. Subsidire 119,000 acres to control 1,032 miles of shoreline. Remaining 354 miles of shoreline (41,000 acres) are in firm supply.
	Unique botanical system	1		1	Purchase 1,000 acres.
	IMR totals	415	11,989	5,075	

Table 141 - Mater Quality Plan, Environmental Quality Frogram, Lower Mississippi Region

		Remaining	Load (1,000 lbs.)	000	000	000	000	000	000	000	000	000	000
Municipal and Industrial Organic Wastes Industrial			Mechanical Reaeration	0 11 11	4 4 8		H H (V	10	000	000	- 6 SI	ณกก	ត់កំព
	Industrial		Stream Assimilation 3/	0 4 4	E E E 8	4 m r	22 19 37	000	9.80 tJ	17 16 38	F-10-05	74 65	25.58
Municipal a			Proposed	24 55 128	281 760 1,765	56 139 323	567 1,391 3,148	194	290 290 651	294 735 11,718	269 593 1,239	428 1,019 2,219	2,118 5,176 11,638
			Existing Treatment 1/	ನ ನ ನ	192 192 192	22.22	#26 #56 #56	888	888	197 197 197	223 223 823 823	289 289 289	1,620
		Gross	Loading (1,000 lbs.)	45 78 151	969 1,991	112 194 382	1,046	279 291 549	226 397 765	508 948 1,947	506 827 1,465	1,325	3,848 6,896 13,451
		Remaining BOD.	Load (1,000 1bs.)	000	000	000	000	000	000	000	000	000	000
			Mechanical Reaeration	010	000	000	000	000	000	000	000	000	044
	Municipal	,000 lbs.)	Stream Assimilation 3/		400	A 01	64 64 63	000	000	000	own	± 000	19 19 25
	Muni	BOD ₅ Removal (1,000 lbs.)	Proposed Preutment2/	118 37 69	155 249 362	52 1.4 2.5	43%	8 10 13	964	828	50 101	126 204 297	158 748 1,116
		BQ	Existing Treatment	\$. \$.	ಸ್ಪೆಸ್ಟ್	ឧឧឧ	333	@ @ @	444	222	233	888	232
		Gross	Loading (1,000 lbs.)	62 82 114	193 288 403	27.2	79 106 146	91 18 51	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	835	853	222 302 397	783 1,081 1,455
			ARPA/Time Frame	1,980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980 2000 2020	1980	1980	1980	1980 2000 2020	1,980
			WRPA	cu	m	*	in	10	1	(1)	8	10	Š

Treatment level as of 1970.
Conventions defined treatment to active 99 percent BOD, percent discusses. As percent removal through 2020.
Assimilative captured treatment to active 96 percent BOD, percent discusses. Operant for manicipalities) by 1980, and advance treatment to achieve 98 percent removal through 2020. जिल्ला

Table 141 - Auter Quality Plan, Environmental Quality Program, Lower Mississippl Region (Cont'd)

		Other Pollutants	नोटोटी	चोचोचो	नेनेन	3333	नेनेन	बोबोबो	चोचोच	नोनोन	बोबोबो	313
Inorganic Wastes		Unchlorinated Discharge (mgd)	900	000	000	000	000	000	000	000	000	000
	Bacteriological Mastes	rol (mgd) Proposed Chlorination	88.8 8.8	113.8 189.5 280.9	45.6 63.4 88.8	24.8 39.1 64.0	8.5 5.0 5.0	6.1 8.9 13.0	20.4 4.4.3 76.3	32.4 61.6 99.0	74.1 138.0 215.3	359.2 604.6 925.4
	Bacteriolo	Bacteria Control (mgd) Existing Propose Chlorination Chlorinat	333	27.3 27.3	000	19.0 19.0 19.0	999	1.9 1.9 9.1	88.8.	141 555		264.7 264.7 264.7
		Bacterial Effluent Discharge (mgd)	4.5.4 6.0.0 86.3.4	141.1 216.8 308.2	49.6 67.4 92.8	43.8 58.1 83.0	2.00	8.0 10.8 15.2	45.6 69.5 101.5	76.9 106.1 143.5	208.8 272.7 350.0	623.9 869.3 1,190.1
	Romertoring	r	000	000	000	000	000	000	000	000	000	000
		Proposed Treatment 3/	2 1 8 1 1 8 4 8	# 8 S	55. 57. 50.5	66 89 119	11 14 18	8 4.9	\$ 25.4	8 23	W # W	28. 28. 24.
Arricaltural Organic Wastes		Potential Discharge 70 Streams 8/ (1,000 lbs.)	82 728	18.E	65	99 89 119	11 14 14 18	2 H.3	ಹೆ ಇತ	8 23	744	264 345 451
Acrienttur		Lund Assimilation (1,000 1b.)	0.00	175 495 914	2568 1,042	292 759 1,253	843	305 505 554	884	±84 148 148 148 148 148 148 148 148 148 1	13 82 Eq.	3,200
		Lund Assimi (1,000 1 Existing6/F	252	785 785 785	888	1,009	200	333	2000	669	888	848 848
	Gross	80D Austes2/ (1,000 lbs.)	717 950 1,265 1	1,004	1,478	1,367	462 619 828	580 77.9 1,037	825 1,067	894, 1,112 1,478	112 150 200	6,815 9,106 12,116
		ARPA/Time Frame	1,380 2000 2020	0002	1,360	2000	2000	1,980 2000 2020	2000	2000	2000	1 y80 2000 2020
		ARP.	o)			100	0	-	10	ON.	9	S.

Organic wastes from livestock and poultry including both point sources and non-point sources.

Sugaint waste appears are of 1700 by some methods as direct hand application, serviced ingon-irrigation systems, holding tanks, or some combination of these. Sugaint wastes in small without no 1970 disposal by this method. As a subjected instantiation on land arene in equivalent point sources of polintion.

Treatment commission of the application of soild wastes to productive reported at a rate which will provide nutrients that one be fully utilized by the crops. Therefront commission of 1970, and eventon plant. Therefrom to discount and eventon plant. Therefront of increase and section plant. The provider pollutuants (thermal wastes, heavy metals, nutrients, toxics, odor, odors, phenolice, pH, oil and grease, dissolved soilds, etc.) unspecified due to a lack of data.

Where unique intrinsic environmental values would be destroyed by reservoir construction, the relative worth of the values - environmental and otherwise - would somehow have to be weighed and one or the other possibly foregone.

Channel Alterations. This type of flood control measure is particularly applicable to flood problems in the flat alluvial valley and is, in many cases, the most practicable solution to flood problems. On the other hand, it is probably the most odious solution to environmentalists. As in the case of reservoirs, the relative values of both the problem amelioration measures and affected environmental quality components would have to be considered before any decision is reached. Special treatment of channel alterations to mitigate adverse effects on the natural environment might include one or more of the following:

- 1. Channels could be excavated along irregular alignment where allowable and appropriate.
- 2. Channel excavation could be limited to one side only, and could be alternated from bank to bank through fairly short reaches. This would allow some woodlands to remain along flood control channels, providing shade for the altered stream and preserving some of its scenic quality.
- 3. In cleared areas excavated materials could be appropriately placed and planted with suitable cover to achieve desired effects. However, the entire stretch of both banks would not be vegetated due to the need for maintenance areas.
- 4. On streams with little normal flow or where low flow would be reduced to an intolerable level by channels, low water weirs could be constructed to regulate water levels.
- 5. Leveed floodways could be constructed in lieu of channel improvement where feasible and acceptable.
- 6. Where cutoffs or channel straightening is required, and soil conditions and design velocities permit, high-level flood channels could be constructed, allowing the old channel to carry low flows and to continue to carry a portion of flood flows, as shown in figure 18.

Levees. The decision to build levees when construction would interfere with a natural environmental quality component would be made as described for reservoirs and channels. Clearing would be limited and trees or other vegetation reestablished as appropriate.

Pumping Plants. Pumping stations could be architecturally designed to blend with surroundings.

PLAN

PROFILE

LOWER MISSISSIPPI REGION COMPREHENSIVE STUDY

SPECIAL TREATMENT OF CHANNEL ALTERATION ENVIRONMENTAL QUALITY PROGRAM

It must be recognized, however, that special treatment of structural solutions to flood problems would cause a <u>major</u> increase in the costs of the flood control program.

Since the basic flood control plan is the same for the Environmental Quality Program as the National Income Program, the tabular data are not repeated. The reader is referred to tables 106 through 110 in the National Income Program summary.

Summary of Environmental Quality Program

A composite of the plans that collectively make up the Environmental Quality Program is given in table 142. Coastal and estuarine, archeological and historical, and health aspects plans are included.

Program Costs

Estimated costs for the Environmental Quality Program are summarized in table 143. Estimates are expressed in terms of January 1972 dollars, without adjustment or discounting by time periods. The allocation of costs between Federal and non-Federal interests is in accordance with the percentages used for the National Income Program (see table 122, page 331). Certain flood control features of the ongoing Mississippi River and Tributaries Project are included in the costs, as in the case of the National Income Program.

The total investment cost of the Environmental Quality Program is estimated at \$15.3 billion, of which \$7.5 billion is Federal cost and \$7.8 billion is non-Federal. Average annual operation and maintenance costs are estimated at \$331 million.

Table 142 - Environmental Quality Program Composition, Lower Mississippi Region

	Water S	upply (mgd)		Water Surfac					(1,000 Acres)	
Planning Area 5 Time Frame	Municipal	Fish & Wildlife	Total	Recreation (1,000 Acres)	Fish 4 Wildlife (Miles)1/	Natural Environment (1,000 Acres)	Recreation4/	Fish 4 Wildlife	Natural Environment	Total
VRPA 1 1970-1980										
1970-1980 1980-2000	0.0	0.0	0.0	0.0	3/	4.0	0.0	0.0	879.0 0.0	0.0
2000-2020	0.0	0.0	0.0	0.0	3/ 3/ 3/	0.0	0.0	0.0	0.0	0.0
Total	0.0	0.0	0.0	0.0	3/	4.0	0.0	0.0	879.0	0.0
RPA 2										
1970-1980	5.3	50.0	186.52/	0.0	1205.0	15.0	1.5	104.0	1352.0	297.4
1980-2000	16.5	110.0	153,35	3.0	0.0	0.0	0.4	63.6	0.0	65.0
2000-2020	26.0	110.0	136.04	45.0	0.0	0.0	9.6	90.7	0.0	100.3
Total	47.8	270.0	475.8=	48.0	1203.0	15.0	11.1	258.3	1352.0	297.4
RPA 3									5/	
1970-1980	53.9	43.0	76.9	139.0	822.0	7.0	20.1	56.2 38.1	696.0 ⁵ /	139.9
1980 - 2000 2000 - 2020	102.4 130.7	86.0 86.0	188,4 216,7	185.0 173.0	0.0	0.0	17.4 32.8	54.3	0.0	97.6
Total	267.0	215.0	482.0	497.0	822.0	7.0	78.3	148.6	696.0	303.7
	201.0	210.0	102,0		020.0					
NRPA 4 1970-1980	11.9	22.0	33,9	8.0	1100.0	3.0	4.3	92.2	210.0	112.9
1970-1980	24.1	30.0	54.1	67.0	0.0	0.0	8.7	43.0	0.0	52.8
2000-2020	33.9	34.0	67.9	38.0	0.0	0.0	17.0	61.3	0.0	81.5
Total	69.9	86.0	155.9	113.0	1100.0	5.0	30.6	190.5	210.0	247,2
RPA 5										
1970-1980	11.6	31.0	42.6	0.0	1931.0	4.0	0.0	105.5	475.05/	145.0
1980-2000	23.9	60.0	83.9	0.0	0.0	0.0	12.4	69.4	0.0	76.1
2000-2020	44.0	62.0	106.0	0.00	0.0	0.0	25.5	80.2	0.0	113.6
Total	79.5	153.0	232.5	60.0	1931.0	4.0	41.7	250.1	475.0	334.7
VRPA 6					*** 0		2.7	25 0	149.05/	71.6
1970-1980 1980-2000	1.0 2.3	8.0 16.0	9.0 18.3	0.0	536.0	1.0	2.3 1.0	25.0 11.7	0.0	31.6 13.0
2000-2020	3.3	17.0	20.3	10.0	0.0	0.0	- 2.0	16.7	0.0	18.7
Total	6.6	41.0	47.6	12.0	536.0	1.0	5.3	53.4	149.0	63.3
VRPA 7										
1970-1980	3.3	2.0	5.3	0.0	450.0	4.0	2.6	30.0	104.0	58.1
1980-2000	6.8	6.0	12.8	0.0	0.0	0.0	1.9	17.4	0.0	19.5
2000-2020	10.7	5.0	15.7	0.0	0.0	0.0	3.0 7.4	24.7	0.0	27.7
Total	20.8	13.0	33.8	0.0	450.0	4.0	7.4	72.1	104.0	105.1
VRPA 8			2.00		100.0	2.0	0.3	14.0	402.05/	48.4
1970-1980 1980-2000	16.9 36.5	2.0 3.0	18.9 39.5	0.0	400.0	2.0	9.2	3.2	0.0	13.3
2000-2020	48.9	4.0	52.9	36.0	0.0	0.0	11.4	4.5	0.0	20.3
Total	102.3	9.0	111.3	36.0	400.0	2.0	29.1	21.7	402.0	82.0
VRPA 9										
1970-1980	20.0	73.0	93.0-7	0.0	928.0	1.0	11.4	27.0	468.05/	61.9
1980-2000	34.2	188.0	424.27	0.0	0.0	0.0	5.7	119.7	0.0	128.5
2000-2020	41.5	120.0	425.55	0.0	0.0	0.0	11.0	170.8	0.0	183.2
Total	95.7	381.0	942.74	0.0	928.0	1.0	28.1	317.5	468.0	375.0
RPA 10								**	340.05/	70.0
1970-1980 1980-2000	35.6 89.8	0.0	35.6 91.8	0.0	329.0	0.0	24.4 15.3	11.0 32.8	0.0	72.5 56.7
2000-2020	118.1	1.0	119.1	0.0	0.0	0.0	29.0	46.7	0.0	83.7
Total	243.5	3.0	247.0	0.0	329.0	0.0	68.7	90.5	340.0	212.9
Region										
Region 1970-1980	139.5	231.0	501.74 1066.34	147.0	7699.0	41.0	81.8	463.9	5075.0	809.4
1980-2000	350.5	501.0	1006.34	257.0	0.0	0.0	69.3	389.9	0.0	490.9
2000-2020	457.1	439.0	1160.12/	362.0	0.0	0.0	141.2	561.9	0.0	732.0
Total	933.1	1171.0	2728.12/	766.0	7699.0	41.0	292.3	1415.7	5075.0	2032.9

[|] Stream miles. | Includes irrigation withdrawals. | Includes irrigation withdrawals. | Includes irrigation withdrawals. | The main stem of the Mississippi River is not considered quality stream fishing in the fish and wildlife context involved here. However, access is provided (though no mileage is given) and costs are included in the program (shared equally by recreation) for this access which will make the Mississippi River available to residents of adjoining NBOA's for limited fishing and recreation activities. | Overlaps Natural Environmental Quality acreage in some NBOA's, Bouble counting has been eliminated in cost tables. | Provides all or part of Class A recreation lands for 2000 and 2020.

Table 142 - Environmental Quality Program Composition, Lower Mississippi Region (Cont'd)

Planning Area & Time Frame WRPA 1 1970-1980 1980-2000 2000-2020 Total WRPA 2 1970-1980 1980-2000 2000-2020 Total WRPA 3 1970-1980 1980-2000 2000-2020 Total WRPA 4 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020 Total		Princ	ipal Reach		lood Contr	0.4		Upstream Wa	tersheds	
% Time Frame WRPA 1 1970-1980 1980-2000 2000-2020 Total WRPA 2 1970-1980 1980-2000 2000-2020 Total WRPA 3 1970-1980 1980-2000 2000-2020 Total WRPA 4 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020 Total			Res	ervoirs	Pumping		Retard	ing lams	Finoinlain	Watershed
1970-1980 1980-2000 2000-2020 Yotal WRPA 2 1970-1980 1980-2000 2000-2020 Total WRPA 3 1970-1980 1980-2000 2000-2020 Total WRPA 4 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020	(Miles)	(Miles)	Number	Storage (1000 Acre-Ft.)	Plants	Channels (Miles)	Number	Storage (1000 Acre-Ft	Management .)(1000 Acres)	Management (1000 Acres
1970-1980 1980-2000 2000-2020 Yotal WRPA 2 1970-1980 1980-2000 2000-2020 Total WRPA 3 1970-1980 1980-2000 2000-2020 Total WRPA 4 1980-2000 2000-2020 Total WRPA 4 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020										
2000-2020 Total WRPA 2 WRPA 2 1980-1980 1980-2000 2000-2020 Total WRPA 3 1970-1980 1980-2000 2000-2020 Total WRPA 4 1970-1980 1980-2000 2000-2020 Total WRPA 4 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 2000-2020	0	0	0.	0	0	0	0	0	0	0
Total WRPA 2 1970-1980 1980-2000 2000-2020 Total WRPA 3 1970-1980 1980-2000 2000-2020 Total WRPA 4 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 1980-2000 2000-2020	0	0	0	0	0	0	. 0	0	.0	0
WRPA 2 1970-1980 1980-2000 2000-2020 Total WRPA 3 1970-1980 1980-2000 2000-2020 Total WRPA 4 1970-1980 1980-2000 2000-2020 Total WRPA 5 1970-1980 1980-2000 1980-2000 1980-2000 1980-2000	0	0	. 0	.0	0				0	0
1970-1980 1980-2000 2000-2020 Total RRPA 3 1970-1980 1980-2000 2000-2020 Total RRPA 4 1970-1980 1980-2000 2000-2020 Total	0	0	0			0	.0	0	0	0
1980-2000 2000-2020 Total 1970-1980 1980-2000 2000-2020 Total 1980-2000 2000-2020 Total 1980-2000 1980-2000 1980-2000 1980-2000 1980-2000 1980-2000 2000-2020										
2000-2020 Total SRPA 5 1970-1980 1980-2000 2000-2020 Total SRPA 4 1970-1980 1980-2000 2000-2020 Total SRPA 5 1970-1980 1980-2000 2000-2020	5.9 9.7	641.6	0	0	5 3	4,878 130	268	149	2,236	8,034
Total RPA 3 19°0-1980 1980-2000 2000-2020 Total RPA 4 19°0-1980 1980-2000 2000-2020 Total RPA 5 19°0-1980 1980-2000 1980-2000 1980-2000 2000-2020	9.0	340.0	0	0	0	95		11	92	411
19°0-1980 1980-2000 2000-2020 Total RPA 4 19°0-1980 1980-2000 2000-2020 Total RPA 5 19°0-1980 1980-2000 1980-2000 2000-2020	15.6	1599.6	0		8	5,103	273	160	2,415	8,736
19*0-1980 1980-2000 2000-2020 Total RPA 4 19*0-1980 19*0-2000 2000-2020 Total RPA 5 19*0-1980 19*0-2020										
1980-2000 2000-2020 Total NRPA 4 1970-1980 1980-2000 2000-2020 Total SRPA 5 1970-1980 1980-2000 2000-2020	7.7	292.0	1	18	7	660	201	244	293	1,929
Total 1970-1980 1980-2000 2000-2020 Total TRPA 5 1970-1980 1980-2000 2000-2020	169.2	51.7	Ô	0	2	454	120	134	111	918
RPA 4 1970-1980 1980-2000 2000-2020 Total RPA 5 1970-1980 1980-2000 2000-2020	0	96.9	0	Ø	0	269	92	99	115	668
1970-1980 1980-2000 2000-2020 Total YRPA 5 1970-1980 1980-2000 2000-2020	176.9	440.6	1	18	9	1,383	413	477	519	3,515
1980-2000 2000-2020 Total RPA 5 1970-1980 1980-2000 2000-2020										
2000-2020 Total RPA 5 1970-1980 1980-2000 2000-2020	359.4	928.3	0	0	1	3,674	53	42	1,370	4,737
Total (RPA 5 1970-1980 1980-2000 2000-2020	76.6 82.5	208.1 605.0	0	0	9	18 1,146	16 12	18 11	24 305	131 970
RPA 5 1970-1980 1980-2000 2000-2020	518.5	1741.4	0	0	19	4,838	81	71	1,699	5,838
1970-1980 1980-2000 2000-2020	510.5	11.4214			1.0	4,000	01		2,000	0,000
1980-2000 2000-2020	152.9	69.0	11	450	3	389	116	209	004	1,730
2000-2020	118.7	242.9	1	80	6	146	2	15	87	162
Total	2.0	62.0	Û	0	I	301	50	101	504	1,283
	343.6	373.9	12	530	10	836	168	325	1,255	3,175
RPA 6										
1970-1980	0 -	266.7	0	0	1	2,026			1,465	1,876
1980-2000 2000-2020	1.5	159.6	0	0	0	325 0	0	0	111	317
Total	1.5	531.3	0	0	2	2,351		0	1,576	2,193
RPA 7										
1970-1980	12.4	12.0			1	1,157	284	423	348	2,690
1980-2000	7.0	0	0	0	2	163	94	142	50	1,018
2000-2020	6.0	0	0	0	0					
Total	25.4	12.0	0		3	1,320	378		408	5,708
RPA 8 1970-1980	0	6.0		0		983	55	104	734	
1980-2000	0	5.0	0	0		368	98	169	219	1,505 1,225
2000-2020	10.5	3.0	0	0	2	0	12	37	17	443
Total	10.5	12.0	0	0	2	1,351	165	310	970	3,173
RPA 9										
1970-1980	13.5	163.0	0	0	0	2,875	0		1,810	3,025
1980-2000 2000-2020	13.9 62.0	0	0	0	0	511		0	469	
Total	89.4	163.0	0	0	0	3,386	0	0	2,279	3,822
RPA 10						,				
1970-1980		0		0	5	505				569
1980-2000	20.0	0	0	0	17	344	3	13		
2000-2020	61.6					40			42	42
Total	61.6 44.0		0		34-					
tegion 1970-1980	61.6		0	0	25	889	3	13	714	1,241
1980-2000	61.6 44.0 125.6	0	0	0						
2000-2020	61.6 44.0 125.6 571.8	2378.6	12		25 22 40	17,147	977 333	13 1,171 491	9,258 1,502	26,196
Total	61.6 44.0 125.6	0	0	0 468	22		977	1,171		

Table 142 - Environmental Quality Program Composition, Lower Mississippi Region (Cont'd)

		Sediment a	nd Erosion Co	ntrol	Draina	je	Ma	nicipal Water		ntrol
Planning Area & Time Frame	Treatment 6/ (1000 Acres)	Streambanks (Miles)	Roadbanks (Miles)	Total (Miles)	Watershed Management (1000 Acres)	Channels (Miles)	Treatment (1000 lb. BOD ₅)	Advance Treatment (1000 lb. BOD ₅)	Other ^{7/} (1000 lb. BOD ₅)	Bacteria Control- (mgd)
WRPA_1 1970-1980	0		0	0						
1980-2000 2000-2020	0	0	0	0	0 0		0			
Total	0	0	- 0	.0.	0					
WRPA 2 1970-1980 1980-2000 2000-2020	3256.5 3597.6 4023.7	128 49 36	441 586 275	569 435 511	474.3 948.4 948.5	4930.0 5080.0 5120.0	18.0	0 37.0 69.0	1.0 2.0 2.0	39,9 10.6 26,3
Total	10,877.8	213	1102	1315	2371.2	15,130.0				81.8
WRPA 3 1970-1980 1980-2000	2512.3 2613.5	369 222	554 485	925 707	16.1 32.2	140.0 240.0	155.0	249.0	4.0 5.0	113.8 75.7
2000-2020 Total	2726.8 7852.6	152 743	340 1385	498 2128	32.3 80.6	230.0 610.0		362.0	7.0	91.4 280.9
WRPA 4										
1970-1980 1980-2000 2000-2020	3354.1 3697.5 3838.5	266 191 143	806 705 503	1072 896 646	294.9 589.8 589.8	4040.0 5130.0 3100.0	29.0 0 0	47.0 72.0	1.0 1.0 2.0	45.0 17.8 25.4
Total	10,890.1	600	2014	2614	1474.5	10,270.0				88,8
WRPA 5 1970-1980 1980-2000 2000-2020	3385.8 3612.0 4073.3	76 50 35	1174 1028 734	1250 1078 769	114.6 229.1 229.1	910.0 1310.0 1370.0	51.0	0 60.0 98.0	2.0 2.0 2.0	24.8 14.3 24.9
Total	11,071.1	161	2936	3097	572.8	3590.0				64.0
WRPA 6										
1970-1980 1980-2000 2000-2020	1259.3 1410.2 1530.2	42 37 28	165 145 103	207 182 131	131.7 263.4 263.4	1460.0 1560.0 1350.0	8.0 0 0	10.0 13.0	9.0 9.0 0.0	2.1 1.2 1.7
Total	4199.7	107	413	520	658.5	4370.0				5.0
WRPA 7 1970-1980 1980-2000 2000-2020	1261.9 1236.1 1406.4	106 67 44	524 458 327	630 525 371	21.4 42.8 42.8	410.0 250.0 230.0	0.0 0 0	9.0 14.0	0.0 0.0 0.0	6,1 2,8 4,4
Total	3904.4	217	1309	1526	107.0	890.0				13.3
WRPA 8 1970-1980 1980-2000 2000-2020	851.9 798.7 871.5	40 24 10	232 203 145	272 227 161	20.8 41.6 41.6	540.0 390.0 230.0	35.0 0 0	0 59.0 90.0	0.0 2.0 3.0	20.4 23.9 32.0
Total	2522.1	80	580	660	104.0	1160.0				76.3
WRPA 9 1970-1980 1980-2000 2000-2020	1857.9 2091.5 2213.6	8 3 4	599 524 374	1079 811 566	196.8 393.5 393.6	2210.0 2240.0 2000.0	50.0	73.0 101.0	0.0 2.0 3.0	32.4 29.2 37.4
Total	0163.0	15	1497	2456	985,9	6450.0				
WRPA 10 1970-1980 1980-2000 2000-2020	670.0 631.1 544.0	2 1 1	38 33 23	40 34 24	25.8 51.7 51.6	430.0 420.0 290.0	126.0	204.0 297.0	4.0 6.0 9.0	74.1 63.9 77.3
Total	1845,1	4	94	98	129.1	1140.0				215,3
Region 1970-1980 1980-2000 2000-2020	18,409.7 19,688.2 21,228.0	1,037 644 459	4533 2967 2830	6042 4895 3477	1296,4 2592,5 2592,7	15,070.0 14,620.0 13,920.0	458.0 0 0	748.0 1110.0	12.0 20.0 26.0	359.2 245.4 320.8
Total	59,325,9	2,140	11,330	14,414	6481.6	43,610.0				925.4

^{6/} Includes land treatment to reduce flood runoff and critical area treatment to reduce sediment and erosion.
7/ Includes mechanical reperation and stream assimilation.
8/ Chlorination.

Table 142 - Environmental Quality Program Composition, Lower Mississippi Region (Cont'd)

Disarius to	Cara	Navigat nnels (Mi	ion Facil les)	ities					
Planning Area & Time Frame	Deep Draft	Shallow Draft	Total	Harbors (Number)	Locks (Number)	Production (MW)	Coastal & Estuarine	Archeological & Historical	Public Health
WRPA 1									
1970-1980 1980-2000	288.0	0	288.0	0	0	0			1
2000-2020	0	0	0	0	0		0	9/ 9/ 9/	I
Total	288.0	0	288.0	0	0	0		9)	1
WRPA 2									
1970-1980	0	200.0	200.0	2	0	7.5		9/	16
1980=2000 2000-2020	0	0	0	6	0	70.6	0	7/	Î
Total	0	200.0	200.0	1 9	0	78.1	0	9/	1
		200.0	200.0			/0.1		9/	1
WRPA 3 1970-1980	0			1	Ð				
1980-2000	0	0	.0	1	0		0	9/	17
2000-2020	0	0	-0		0			9/ 9/	19 19 19
Total	0	Ú		2	. 0	0		9/	11
WRPA 4									
1970-1980 1980-2000	0	0	0	7	1 0	18.0		9/	10
2000-2020	0	0	0	2	6		0	9/ 9/ 9/	10
Total	0	0	0	10	1	18.0		9/	10
WRPA 5									
1970-1980	0	0	0	5	2	40.0	0	9/	10
1980-2000 2000-2020	0	0	0	2 2	0	50.0		9/ 9/ 9/	10 10 10
Total	0	0	0	9	2	90.0	0	<u>9/</u> <u>9/</u>	10
NRPA 6								-	
1970-1980	0	0	0	3	0		0	9/	10
1980-2000 2000-2020	0	0	0	Ü	U	Ü	L.	<u> </u>	10
Total	0	0	0	1 4	0	0	0	2/	10 10
							0	9/	11
NRPA 7 1970-1980		0	0		0	0			
1980-2000	0	0	0	1	0	0		9/	10
2000-2020	0	0	0	0	0			2/ 2/ 3/	10
Total	.0	0	0	1	0	0		9/	10
VRPA 8									
1970-1980 1980-2000	0	0	0	0	0 2		11/	9/	10
2000-2020	0	0	Ö		1		11/ 11/ 11/	9/ 9/ 9/	10 10 10
Total	.0	0	0	0	3	0	11/	2/	10
RPA 9									-
1970-1980	6.5	84.0	90.5	0	2 2		11/	9/	10
1980-2000 2000-2020	34.0 200.0	270.0	304.0 200.0	0.0			11/ 11/ 11/	9/ 5/ 9/	10
Total	240.5	354.0	594.5	0	0		11/	2/	10
RPA 10	777.550.6		arenit word		,		11/	9/	10
1970-1980	50.0	97.0	147.0	0	1		13.	97	3.0
1980-2000	0	188.0	188.0	0	2 3	0	11/	9/ 9/ 9/	10 10 10
2000-2020 Total	50.0	0 285.0	0	0		0	11/		10
	50.0	200.0	335.0	0	6		11/	9/	10
egion 1970-1980	344.5	381.0	725 5	10					
1980-2000	34.0	458.0	725.5 492.0	18 11	0	65.5 120.6	11/	9/	10
2000-2020	200.0	0	200.0	6	4	0	11/ 11/	9/ 9/ 9/	10
Total	578.5	839.0	1417.5	35	16	186.1	11/		10

Composed of surveying, testing and excavating archeological sites, and preservation, restoration and maintenance of historic resources. See Recommended Program Composition (table 154).
 Composed of public drinking water programs and vector abatement districts at state level. See Recommended Program Composition (table 154).
 Composed of measures for salinity control, shoreline erosion control, and water level management. See Recommended Program Composition (table 154).

Table 143 - Batimated Program Costs, Regional Summary, Environmental Quality Objective (All costs in \$1,000)

			1971-1980	1980					1980-2000	000	E	
Feature	Federal	Investment Federal Non-Federal	Federal	Annual O&M	Investment	Totals Oak	Federal Non-	Non-Federal	Federal	Non-Federal	Investment	West of
Water Supply	19,834	19,832	620	11,955	39,066	12,575	126,626	54,204	3,512	25,854	180,830	59,366
Municipal Irrigation Esta and Wildlife	(16,577) (0) (3,257)	(16,576) (0) (3,256)	© (%)	(0) (0) (0) (619)	(33,153) (0) (6,513)	(11,336) (0) (1,239)	(44,707) (75,28c) (6,633)	(44,707) (2,864) (6,633)	5,5 (5,68) (5,54) (6,54)	(20,706) (3,604) (1,544)	(89,414) (78,150) (13,266)	(20,706) (5,572) (3,088)
Water Surface	385,849	168,215	0	4,7779	490,468	4,779	326,614	148,012	0	8,110	474,626	8,110
Recreation Saall Water Large Water Stream Access Fish and Middle Maturi Environment	(139,884) (231,699) (2,075) (5,050) (7,141)	(139,883) (14,067) (2,075) (5,050) (7,140)	33333	(2,082) (1,084) (4,57) (1,010) (1,616)	(279,767) (245,766) (4,150) (10,100) (14,281)	(2,082) (1,084) (415) (1,010) (146)	(147,093) (178,600) (413) (508) (0)	(147,093) (0) (412) (507) (0)	33333	(4,216) (2,098) (5,098) (1,112) (146)	(294,186) (178,600) (1,015) (1,015)	(4,216) (2,098) (538) (1,112) (146)
Lands	769,493	3,375,747	46,883	51,392	4,145,240	98,275	361,008	361,007	85,528	91,597	722,015	177,125
Recreation Fish and Wildlife Metern! Environment	(463,800) (132,455) (173,238)	(463,800) (14,717) (2,897,230)	(46,743) (0) (140)	(46,742) (1,932) (2,718)	(927,600) (147,172) (3,070,408)	(93,485) (1,932) (2,858)	(<i>68</i> , <i>233</i>) (68, <i>233</i>)	(392,775) (68,232) (0)	(85, 388) (0) (140)	(85, 387) (3, 492) (2, 718)	(585,550) (136,465) (0)	(170,775) (3,492) (2,858)
Flood Control & Related Problems	1,049,108	591,224	3,805	12,583	1,646,332	16,388	520,270	590,602	6,763	26,016	1,110,872	32,779
Flood Control Principal Reaches Upstrem Land Treatment	(530, 348) (292, 444) (31, 890)	(33,454) (76,891) (419,794)	(3,253)	(629) (4,568) (0)	(563,802) (369,335) (451,684)	(3,873) (4,568) (0)	(313,214) (93,583) (36,354)	(42,044) (22,917) (459,100)	(5,153) (0) (0)	(5,313) (6,313) (0)	(355,258) (116,500) (495,454)	(6,053) (5,313) (0)
Sediment and Erosion Critical Land Treatment Streambank Roadbanks	(34, 797) (42, 043) (1, 942)	(17, 301) (380) (991)	(0) (552) (0)	(0) (1,503) (85)	(52,098) (42,343) (2,833)	(0) (2,055) (85)	(17,622) (41,797) (1,611)	(8,761) (179) (868)	(0) (1,610) (0)	(2,403) (2,403) (159)	(26, 383) (41, 976) (2, 479)	(0) (4,013) (159)
Drainage Watershed Management Channels	(114,701)	(19,818) (28,675)	<u>©</u>	(4,173) (1,634)	(20,861)	(4,173) (1,634)	(2,811)	(53,413)	<u></u>	(15,417) (1,824)	(56,224) (16,598)	(15,417) (1,824)
Water Quality and Pollution	381,506	142,793	(0)	3,144	524,299	3,144	243,149	83,849	0	3,734	326,998	3,734
Municipal Waste Treatment Bacteria Control	(381,506)	(127,168) (15,625)	<u>©</u>	(3%)	(508,674)	(386)	(243,149) (0)	(81,050)	<u></u>	(462)	(324,199) (2,799)	(3,272)
Navigation	614,529	98,461	13,698	111	712,990	13,809	147,879	32,437	17,313	181	180,316	14,494
Hydropower	19,189	0	254	0	19,189	254	121,055	0	1,807	0	121,055	1,807
Constal and Estuarine	3,900	1,900	0	36	5,800	36	10,500	10,500	0	166	21,000	166
Historical and Archeological	19,148	19,147	0	0	38,295	0	63,478	63,478	0	0	126,956	0
Bealth	0	0	0	5,402	0	5,402	0	0	0	9,336	0	9,336
TOTALS	3,262,556	4,423,319	65,260	89,402	7,685,875	154,662	1,920,579	1,344,089	114,923	164,994	3,264,668	719,917

Table 143 - Betimated Program Costs, Regional Summary, Environmental Quality Objective (All costs in \$1,000) (Cont'd)

			2001	2001-2020				Total Program	and.
Feature	Federal	Investment al Non-Federal	Federal N	Non-Federal	Investment	Totals	Federal	Investment Cost (\$1,000)	(\$1,000)
Water Supply	112,205	86,071	4,201	41,455	198,276	959,64	258,665	160,107	418,772
Municipal Irrigation Fish and Wildlife	(76,324) (26,268) (9,613)	(76, 325) (132) (9,614)	(1,968) (2,233)	(33,480) (5,743) (2,232)	(152,649) (26,400) (19,227)	(33,480) (7,711) (4,465)	(137,608) (101,554) (19,503)	(13,608) (2,996) (19,503)	(275,216) (104,550) (39,006)
Water Surface	253,941	253,941	0	12,122	507,882	12,122	104,996	570,169	1,536,573
Recreation Sault Atter Large Atter Stream Access Fish and Middlife Natural Environment	(253,021) (0) (375) (545) (0)	(253,021) (0) (375) (545) (0)	33333	(8,044) (2,098) (613) (1,221) (146)	(506,042) (0) (750) (1,090)	(8,044) (2,098) (613) (1,221) (140)	(539, 998) (410, 299) (2, 863) (6, 103) (7, 141)	(539,997) (14,067) (2,862) (6,102) (1,141)	(1,079,995) (424,366) (5,725) (12,205) (14,282)
Lands	653,157	653,158	154,280	162,574	1,306,315	316,854	1,783,658	4,389,912	6,173,570
Recreation Fish and Wildlife Natural Environment	(555,875) (97,282) (0)	(555,875) (97,283) (0)	(154,140)	(154,140) (5,716) (2,718	(1,111,750) (194,565) (0)	(308,280) (5,716) (2,858)	(1,312,450) (297,970) (173,238)	(1,312,450) (180,232) (2,897,230)	(2,624,900) (478,202) (3,070,468)
Flood Control & Related Froblems	288,539	607,815	8,921	43,020	896,354	51,941	1,657,917	1,79,041	5,075,270
Flood Control Frincipal Reaches Unistream Unistream Unid Treakment	(137,839) (55,215) (41,756)	(12,128) (13,347) (501,886)	(6,256) (0) (0)	(960) (5,770) (0)	(149, 967) (68, 562) (543, 642)	(5,776) (5,770) (0)	(981,401) (441,242) (110,000)	(87,626) (1,069,027) (15,155) (254,397) (1,380,780) (1,490,780)	(1,069,027) (554,397) (1,490,780)
Oritical Land Treatment Streambank Rodbanks	(6,839) (35,853) (1,150)	(3,407) (120) (619)	(2,665) (0)	(3,000) (3,000) (212)	(10,246) (35,973) (1,769)	(5,665) (212)	(59.258) (119,693) (4,603)	(29,469) (599) (2,478)	(120, 292) (1,081)
Fire The Mangement Chanels	(3,938)	(74,821) (1,487)	<u>©</u>	(31,169) (1,909)	(78,759)	(31,169) (1,909)	(1,33,928)	(148,052) (33,482)	(155,844)
Water quality and Follution	303,554	105,019	0	104,4	408,573	704,4	928,209	331,661	1,259,870
Municipal Asste Treatment Bacteria Control	(303,554)	(101,185)	33	(3,845)	(404,739) (3,834)	(3,845)	(928, 209)	(309,403) (22,258)	(1,237,612) (22,258)
Navigation	564,625	167,360	22,877	182	731,985	23,059	1,327,032	298,258	1,625,290
Hydropover	0	0	1,807	0	0	1,807	140,244	0	140,244
Coastal and Estarine	120,000	120,000	0	1,716	240,000	1,716	134,400	132,400	266,800
Historical and Archeological	22,800	22,730	0	0	45,590	0	105,426	105,415	210,841
Health	0	0	0	11,723	0	11,723	0	0	0
TOTALS	2,318,821	2,016,154	192,086	277,199	4,334,975	469,285	7,501,955	7,783,563	7,783,563 15,285,518

PROGRAM IMPACTS

General

The individual effectiveness of program components in meeting functional needs has been previously discussed in detail. This section provides an analysis of the interaction of component impacts, assuming certain recommended measures will be implemented in the future. The objective is to determine if adjustments in resource allocation for the recommended program are appropriate.

Water depletions through water withdrawals and consumptive use impact upon water quality. These impacts can be measured in terms of changes in the concentration of certain water quality parameters, such as total dissolved solids (TDS), but they cannot easily be translated into a reallocation of water. The impacts of land development are largely environmental, and therefore intuitive to a high degree. It is virtually impossible to resolve some land-use conflicts, as in the case of a single unit of land needed for both crops (food production and income for the farmer) and forests (wildlife habitat and hunting experience for those who make their livelihood elsewhere). Water quality measures produce aesthetic impacts but, again, these are largely untranslatable into adjustments in resource allocation. Implementation of plans for problem amelioration, such as flood control, drainage, and sediment and erosion, however, produce direct and measurable impacts.

Water Withdrawals

Water withdrawals can have a direct effect on the quality of the resource. This occurs when consumptive uses cause increased salt levels in return flows, or when noncomsumptive uses involve the addition of inorganic pollutants in the form of dissolved solids, or salts, to return flows. In either case, total dissolved solids in the receiving body of water are increased.

Unfortunately, a regular coordinated program of surface water sampling in the Lower Mississippi Region is only now in the process of implementation. Data for this study therefore consisted mostly of sporadic sampling by many State and Federal agencies during the last two decades. Nevertheless, some apparently valid generalizations regarding total dissolved solids (or, in some measure, an indication of non-BOD pollutants) can be made.

Table 144 is a compilation of data presented in Appendix L, Water Quality and Pollution. It gives fairly comprehensive coverage of both maximum and minimum concentrations of dissolved solids in the region's surface waters, although some values had to be estimated from another

Table 144 - Dissolved Solids at Selected Locations in Waters of the Lower Mississippi Region

	WRPA 1				WRPA: 3		
Stream Sampling Station	Date Collection	Mean Dischargel/ (cfs)	Dissolved Solids2/ (mg/I)	Stream Sampling Station	Date Collection	New Discharge 1/ (crs)	Dissolved Solids 2 (mg/l)
Mississippi River at Hickman, Ky.	9-13-69 9-24-69	197,000 65,000	310 262	Mayfield Cr. at Lovelaceville, Kentucky	9-12-61 8-5-61	16 21	77 60
Mississippi River near Vicksburg, Mississippi	10-18-61 11-17-61	311,000 535,000	242 216	South Fork of the Forked Deer River	12-17-64 0-11-08	738 136	74 36
Mississippi River near St. Francis- ville, Louisiana	11-11/20-63 2-11/19-57	137,000	342 111	at Jackson, Tonnessee North Fork of the	3-10-65	48.6	
dississippi River at Luling Ferry, Louisiana	12-21/31-65 3-21/31-64		341 126	Forked Deer River at Trenton. Termessee	10-14-64		29
tississippi River it New Orleans,	11-7/67 1-5-68		272 178	Hatchie River at Bollver, Tennessee	6-11-68	425	76
ouisiana	WRPA 2			Hatchie River Mile 100.1 (Bolivar)	6-7-62 10-18-62	1,620 391	290 88
ot. Francis River near Fredricktown, dissouri	2-4-63 3-11-63		155 86	Hatchie River Mile 109.3	6-6-62 10-10-62		572 52
St. Francis River at St. Francis, Arkansas	11-13-69 5-12-70	218 5,880	146 74	Wolf River at Rossville, Tennessee	4-27-67 12-10-65	3,010 185	79 30
St. Francis River at Lake City,	8-28-58 4-30-58	977 6,210	132 78	Wolf River at Raleigh, Tennessee	7-19-64	272	25
rkansas					KEPA	4	
Right Hand Chute of Little River at Riverdale, Arkansas	5-11/20-59 1-26/31-59	1,029 5,167	288 81	Yaroo River at Greenwood, Mississippi	9-29-00 4-12-65	171 18,600	87 35
Deft Hand Chute of Little River at Lepanto, Arkansas	10-27-65			Sunflower River at Sunflower, Mississippi	6-28-67 1-6-67		
t. Francis River loodway near arked Tree,	4-29-58 8-20-58	8,720 2,520	156 101	Yazoe River at Redwood, Mississippi	11-1-01 5-22-02		174 45
Orkansas					KRPA		
St. Francis River at Marked Tree, Arkansas	12-18-69 6-19-70	219	275 92	Ouachita River at Monroe, Louisima	10-10/18-54 5-21/31-58	3,870 90,600	2,860 35
t. Francis River t Parkin, Arkansas	8-27-58 5-7-58	1,880 9,390	227 59	Bayon DeLoutre on Thirt Road Just South of Arkansas	10-25-56 11-22-56		8,420 2,970
t. Francis River ear Riverfront, rkansas	8-27-58 5-7-58	1,790 15,600	150 88	Bayou DeLoutre near Laran, Louisiana	0 - 21 - 58 5 - 20 - 58	1,150	2,300
hite River t De Valls Uuff, Arkansas	10-30-69 5-01-70	8,020 66,900	159 94	Bayou DeLoutre at DeLoutre,	5-4-58		
rkansas River t Little Rock rkansas <u>3</u> /	11-28/29-53 3-3-57	8,600 29,200	2,400 105	Louisiana Hayou DeLoutre near Sterlington,	b-4-b8		138
rkansas River t Lock and Dam o, 6 below Little ock, Arkansas	9-09-70 4-20-70	10,100 135,000	403 476	Louisiana Bayou D'Arbonne at Homer, Louisiana	11-26-63 2-27-64		80 35
rkansas River t Dam No. 2	9-15-70 3-24-70		E342 E151	Bayou D'Arbonne near Dubach, Louistana	11-18-53 5-14-54	0:04 3,400	2,370 46
ayou Meto near tuttgart, Ark- as	6-24-70 3-24-70	25 1,250	E98 E40	Bayou D'Arbonne near Farmers- ville, Louisiana	6-29-60 12-21-59		330 78

Table 144 - Dissolved Solids at Selected Locations in Waters of the Lower Mississippi Region (cont'd)

	WRPA 5 (Con	(b')		WRPA 8 (Cont'd)					
Stream Sampling Station	Date Collection	Mean Discharge 1/ (cfs)	Dissolved Solids 2/ (mg/1)	Stream Sampling Date Dischar Station Collection (cfs)	gel/ Dissolved Solids (mg/l)				
ayou D'Arbonne mear Monroe, couisiana	6-4-48		66	Amite River near 6-4-68 581 Denham Springs, 2-27-68 636 Louisiana					
ittle River ear Rochelle, ouisiana	11-2-65 4-18-08	9,420	18,300 58	Amite River near 3-31-65 Port Vincent, 9-24-68 Louisiana	371 49				
ittle River near Pollock, ouisiana	8-25-64 3-25-64		12,600 37	Amite River at S.H. 11-14-67 22 near Maurepas, Louisiana	305				
Red River near Hosston, Louisiana	8-15/20-64 4-26/30-64	3,940 73,100	1,130 117	Amite River Diversion 11-14-67 Channel near St. Paul, Louisiana	100				
Red River at Alexandria,	10-11/20-56 7-1/9-53	1,660 96,570	1,130 91	Calcasieu River 9-17-68 4	4 37				
	WRPA 6			near Hineston, Louisiana					
Boeuf River near ArkLa. State Line	11-21-67 11-19-57	35 13,100	454 48	Calcasieu River 5-1-68 117 near Glenmora, 6-1-60 3					
Bayou Macon on State Hwy.2 near Oak Grove, Louisiana	10-25-56 11-23-56		225 175	Louislana Calcasieu River Minimum 58-05 Oakdale Bridge, Maximum 58-05 Louislana	E22 E180				
Boeuf River near Girard, Louisiana	11-15-57 4-6-57	72 1,290	628 43	Calcasieu River 10-30-67 30 near Oberlin, 1-29-68 147					
Tensas River at Tendal, Louisiana	11-21-67 3-5-57	8.8 342	409 58	Louisiana Calcasieu River 10-50-67 93					
Bayou Macon near Kilbourne, Louisiana	12-6-67 5-22-58	4,220	323 56	near Kinder, 9-9-08 116 Louisiana Minimum 58-05 Maximum 58-05	60 73 E29 E291				
Bayou Macon near Delhi, Louisiana	9-8-54 5-23-53	56.4 3,420	348 59	Calcasieu River 4-21/30-49 near lake Charles, Louisiana	E19				
Tensas River at Clayton, Louisiana	9-3-68 5-23-68 WRPA 7		256 82	Calcasieu River Minimum 58-05 Moss Bluff (now Maximum 58-05 at US 171 Bridge)	E25 E4339				
Big Black River at Pickins, Mississippi	5-18-65 8-24-65	173 281	68 51	Louidians Mermentau River 6-10-53 at Mermentau, Louisiana	E52				
Big Black River near Port Gibson Mississippi	10-19-61 8-29-62		256 142	Mermentau River Minimum 2/ 59-65 at US 90, L. Maximum 2/ 59-65 Louisiana	E03 E836				
Homochitto River at Rosetta, Mississippi	4-4-67 6-6-67	367 371	62 38	Mermentau River 12-14/15-49 at lake Arthur, 10-21/27-50 Louistanu	E39 E642				
	WRPA 8			Bayou Nezpique 3-28-68 15	40 31				
Tangipahoa River at Tangipahoa, Louisiana	11-28-67	290	39	near basile, Louisiana	29 110				
Tangipahoa River at Robert,	3-1-68 7-17-68	824 317	36 36	Bayou Des Canne 3-28-68 near Eunice, Louisiana Bayou Teche at 3-27-68 11	20 65				
Louisiana Tangipahoa River near Ponchatoula	1-21/31-64 4-25/5-2-64	1,170 5,910	56 23	Armandville, 11-10-55 1 Louisiana	70 E159				
Louisiana Amite River near Darlington,	6-22-68 2-28-68	270 352	38 31	Bayou Teche at Minimum 58-65 Breaux Bridge, Maximum 58-65 Louislama Bayou Teche at 9-2-58	E67				
Louisiana Amite River at Magnolia, Louisiana	11-9-06		33	Morbinham, Louisiana					

Table 144 - Dissolved Solids at Selected Locations in Waters of the Lower Mississippi Region (cont'd)

	WRPA 9	Cont's		
Stream Sampling Station	Date Collection		Mean Discharge 1/ (cfs)	Dissolved Solids2 (mg/l)
Bayou Teche at Olivier, Louisiana	9-2-58			2.85
Bayou Teche at Franklin, Louisiana	Alinimum Maximum	58-05 58-05		E125 E088
Bayou Boeuf near Alexandria at Kincad Bridge, Louisiana	8-7-57			E33
Vermilion River at lafayette, Louisiana	4-5-44			E188
Vermilion River at Lafayette Airport Bridge, Louisiana	Minimum Maximum	58-65 58-65		E85 E0139
Vermilion River at Abbeville, Louisiana	5-20-53 S -2-53			E43 E307
Vermilion River at sancker Ferry near Abbeville, Louisiana	3-18/21/24 25/30-49 9-9/19-51	/		E151 E0078
Vermilion River at Perry Bridge, Louisiana	Minimum Maximum	58-05 58-05		E23 E1341
Atchafalaya River at Simmesport, Louisiana	4-18-53 9-17-52			E159 E330
	Miniman Maximum 0-1/10-53 2-11/20-53	58-45 58-65		E167 E627 E129 E322
(Intracoastal Waterway) Bayou Bouef near Morgan City, Louisiana	5-20-56			E333
	WRUPA IU			
Bayou LaFourche at Donaldsonville, Louisiana	1-19-59 2-27-59		200 208	278 192
sayou LaFourche at Thibodaux, Louisiana	1-16-59 7-28-59			458 161
Bayou LaFourche at Thibodaux, Louisiana	8+3-50 3-21-50			229 170
Bayou Lafourche at Lockport, Louisiana	3-21-56			170
Bayou LaFourche at Valentine, Louisiana	9-23-59 2-27-59			1,060
Bayou LaFourche at Cut-Off, Louisiana	6-23-60 10-27-59			538 276
Bayou Terretonne at Houma, Louisiana	1-16-59 10-28-58			372 140
Old intercoastal Waterway at Lock- port, Louisiana	4-14-50 8-4-50			398 229

Stream Sampling Station	Date Collection	Mean Discharge1/ (cfs)	Dissolved Solids2 (mg/1)
Old Intercoastal Canal near Bourg, Louisiana	8-4-50 3-21-50		260 224
Intercoastal Water- way, at Houma, Louisiana	8-19-60 10-27-59		305 254
Old Intercoastal Canal at Gayoso, Louisiana	4-25-50 3-21-56		269 206

Where no discharge value is given, hone was recorded for the sample.

2/ Where a dissolved solids value is preceded by an E, it means the value was not recorded and was calculated by multiplying specific conductance by 0.65.

3/ Before construction of the Arkansas River navigation project.

parameter (see table footnotes). The very low concentrations of dissolved solids associated with low discharge values tend to indicate a dissolved solids content approaching that of ground water, which generally makes up base flows (as in the sample of 6-28-67 from the Sunflower River at Sunflower, Mississippi, WRPA 4). On the other hand, very high concentrations of dissolved solids associated with a nearly constant mean discharge with low TDS at another sampling (as in the Calcasieu River Moss Bluff - now at U.S. 171 Bridge - Louisiana, WRPA 9) generally indicate a discharge of man-made wastes.

One conclusion to be drawn from the sampling displayed in table 137 is that, outside of some isolated areas, the surface waters in the Lower Mississippi Region are generally good when viewed in terms of the TDS parameter. Only in very rare instances do low mean discharges, usually ground water, produce undesirably high concentrations of dissolved solids. In order to assess future conditions then, it becomes appropriate to look at what can be expected in the way of increases in TDS in the region's waters, not only from sources inside the region as a result of programmed development, but also from outside sources.

The sampling at Hickman, Kentucky, and other locations on the main stem of the Mississippi River indicates no high concentrations of TDS for nearly a 10-year period. These samplings include inflows from all major tributaries to the Mississippi. Examining flows in tributary streams reveals that only WRPA 5 produces low flows with consistently high TDS content.

Federal policy now requires that those who withdraw water from the Nation's surface supplies be held responsible to insure that their return flows have at least as good quality as the withdrawals. This policy (nondegradation), in and of itself, cannot solve dissolved solid problems. Many consumptive uses, such as reservoir and pond evaporation and irrigation, consume water and leave salts to return to streams uncontrolled by the user and, in many cases, incapable of being measured by a regulatory agency. The policy of nondegradation applied to dissolved solids is therefore considered unrealistic in many States. The Lower Mississippi Region, because of its terminal position on the river, is subject to potential problems from dissolved solids, but it is highly unlikely that such problems will be of significant consequence during this century despite the further development expected.

About the only areas where salt concentrations are apt to cause isolated problems are those where significant irrigation projects are expected to continue into the future, as in WRPA 9, where water supplies, both ground and surface, are apt to contain relatively high salt concentrations in the future due to salt-water intrusion. Similar problems are not expected to emerge in WRPA 2, where water quality from the White River is generally low in salt content and will replace ground water as the source of supply for the irrigation of rice and other crops.

Land Development

The most apparent, if not the most significant, impact of development of the region's lands for satisfaction of high priority needs will be a decrease in forested acreage. This may be either good or bad, depending upon a particular viewpoint. Over the 50-year period of study, the satisfaction of land needs for transportaion, urban and built-up, Class A and Class B recreation, minerals, food products, and other agricultural purposes may necessitate the clearing of more than 7.9 million acres of the region's forest lands (10.4 million acres in the absence of future resource development). In spite of this loss in acreage of growing stock, the forest industry, through better management, can expext to achieve required production levels. However, wildlife habitat will suffer. Even without any reduction in forested acreages, expressed needs for wildlife habitat in 2020 exceed present forests by 4.4 million acres. Land clearing for development could increase the deficit to 12.3 million acres (14.8 million acres without future resource development). This does not necessarily mean that hunter participation rates will have to decline, but it does indicate future hunting trips will produce increasingly less game and less sportsman satisfaction. As an ameliorative measure, all need for primary use wildlife management areas will be met by the program.

Other impacts of future land development include increasing flood damages caused by continued development in the region's flood prone areas and the planting of higher value crops. Further short-term effects of land clearing will be increased erosion, increased needs for drainage measures, and increased sediment loads. These effects are expected to be such that dollar damages experienced in 2020 will be roughly the same as at present, even with the full flood control, sediment, erosion, and drainage plans in place.

Problem Amelioration

Inasmuch as program components for the amelioration or elimination of problems have a direct and measurable effect on agricultural production capability, these collective effects can be translated into equivalent acreages of agricultural land. It is thus possible to scale down acreages allocated to agricultural production after assessing the effects of implementation of proposed flood control, drainage, sediment, erosion, and irrigation plans.

To compare with and without program conditions, an analysis was made utilizing a computer model to Analyze Development Effects (ADE). This model was designed by the Economic Research Service to analyze agricultural development possibilities for the base year and for future time frames. ADE allocates a basin's land resources to required production of specified levels of crop output consistent with any specified

level of resource development. In assessing the effects of the formulated plans for resource development, the model run was adjusted so as to translate agricultural damages prevented, and other benefits, into equivalent acreages of agricultural land. This exercise indicated that adjustments on the order of those shown in table 145 can be made and still allow the region's agricultural lands to meet production requirements. Appropriate adjustments have been incorporated into the recommended framework program which is presented in the next section.

Table 145 - Impact of Resource Development on Cropland and Pasture Required to Meet Agricultural Production, Lower Mississippi Region

Program	Year	Land Required Without Resource Development	(1,000 Acres) 1/ With Resource Development	Difference (1,000 Acres)
A	1970 1980 2000 2020	31,219 33,361 34,939	26,996 30,835 31,869 32,431	384 1,492 2,508
В	1970 1980 2000 2020	31,219 35,817 37,478	26,996 30,835 33,773 34,716	384 2,044 2,762

^{1/} Cropland, pastured cropland, and permanent pasture.

RECOMMENDED FRAMEWORK PROGRAM

General

The National Income Program, as amended in this section, is recommended as the framework for future conservation, development, and use of the water and related land resources of the Lower Mississippi Region. Component plans center around the efficient and timely solution of resource problems and needs in harmony with the preservation of important environmental quality features. No specific action plans for stimulating the regional economy are recommended because current national objectives and apparently limited land resource capabilities of the region tend to dictate otherwise.

Resource Use

Water Withdrawals

To assure that the region's water supplies are available for future delivery when and where needed will require development and use of the water resources in general accord with the water withdrawal plan and measures summarized in tables 88 and 89, pages 216 and 219, respectively. That plan, though specifically directed to the satisfaction of needs identified with the National Income Program, is flexible and permits appropriate scaling based on specific authorization studies that would be required for future implementation. As presently scaled, the plan would provide for complete satisfaction of all foreseeable Program A water withdrawal needs through the year 2020.

Water Surface Area

The water surface area plan recommended by the Coordinating Committee is concerned with the conservation, development, and use of the region's existing lakes, ponds, and streams. It is further concerned with the creation of both large and small impoundments.

Existing water bodies, though they cover one out of every 21 acres of the total area of the region, have limited capacity for satisfying future needs for water-oriented recreation, such as boating, swimming, and water skiing. If these recreation needs multiply in line with historic growth trends, their satisfaction will require an increase of 1.3 million acres in the existing supply of water surface areas. This increase takes into account the potential for inter-WRPA commuting by recreationists and the potential for multiple use of reservoirs constructed for flood control, power, water supply, and other purposes (see table 91, page 222, for summary analysis of net needs for man-made water surface-national income objective).

Approximately 81 percent of the required increase in water surface area would be obtainable through the construction of new reservoirs. The remainder (241,000 acres) is unlikely to be provided because of topographic conditions that limit the recognized potential for developing large lakes in the region (see table 92, page 223, for summary of water surface area development potential).

To provide for satisfaction of the region's future needs for water surface areas, the National Income Plan summarized in tables 93 and 94, pages 225 and 226, respectively, is recommended for adoption. Development in general accord with that plan would completely fulfill the 50-year needs for fishing lakes and ponds, and for small recreation lakes (40 to 500 acres in size), and would fulfill to the extent physically possible the needs for recreation lakes of a size larger than 500 acres.

Land Area

The land-use plan for the recommended program is summarized in table 146. It differs from the similar plan for the National Income Program due to incorporated adjustments for the potential impacts of flood control, drainage, supplemental irrigation, and other resource developments which contribute to increased food and fiber production. The adjustments were made in open pasture and forest land. No adjustments were made in the cropland allocation because changing world conditions dictate otherwise.

Regional acreage needs for cropland are believed to be underestimated, and the lands allocated to meet the crop portion of food and fiber requirements, though equal to the expressed need, may prove to be inadequate even with continued water resources development. While the analysis of land needs was correctly and conscientiously done, the exogenously imposed crop production requirements and other seemingly valid assumptions that went into the cropland budgeting model appear to be almost totally invalid in 1974. This condition is reflected in a current price structure that is exerting strong pressures for increased agricultural land use and concomitant water resource development.

The cropland acreage needs, defined in Appendix F, are a theoretical minimum assuming a high degree of mobility land use; i.e., that, in general, each type of crop will gravitate to the best land for that crop, and that highly efficient management will be universally practiced. In actuality, farmers are currently putting as much of their land holdings into crop production as physically possible, subject only to constraints of financing and availability of mechanized farm equipment. In addition, the future regional production requirements imposed by OBERS assume a constant export of agricultural products from about 1980 to 2020, when all evidence is to the contrary. The fact that the United States agricultural industry is much more efficient than that of most other areas of the world, coupled with the large highly productive land resource base of this Nation, place it in a most favorable position for increasing

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region

Water Resources	1970 Land Use		located Futu Use (1,000	
Planning Area and Need Category	(1,000 Acres)		2000	2020
	(1,000 1,010)	1200		
WRPA 1				
Open Land				
Transportation,				
Urban and Built-up		-	-	1
Food and Fiber				
Cropland	188.0	188.0	188.0	188.0
Pastured Cropland	30.0	30.0	30.0	30.0
Permanent Pasture	32.0	32.0	32.0	32.0
Other	62.0	62.0	62.0	62.0
Commercial Fisheries	-	-	-	-
Minerals	-	-	-	-
Recreation				
Class A	-	-	-	
Class B		-		
Fish and Wildlife				
(Cropland)	-	-	-	-
(Pastureland)	-	-	-	-
(Wetlands)				
Environmental Quality	-		-	-
Forest Land				
Food and Fiber				
Forest Products, et al.	879.0	879.0	879.0	879.0
Animal Roughage (Pasture)	$\frac{1}{(135.0)}$	(135.0)	(135.0)	(368.0)
Recreation	, ()	()	(/	,
Class B		_	-	-
Class C		-	_	-
Fish and Wildlife ²	(131.1)	(131.1)	(131.0)	(131.0)
Environmental Quality	()	(
Botanical Systems				_
Bottomland Hardwoods1/	(879.0)	(879.0)	(879.0)	(879.0)
Ecological Systems	-	-	-	- 1
Geological Systems		_	_	_
Lake Shores 1	_	(6.0)	(6.0)	(6.0)
Scenic River Banks		-	-	-
Wetlands		1002		_
Wilderness Areas	-	-	-	-
Land Covered by Water				
Large Water Areas	368.0	368.0	368.0	368.0
Small Water Areas	-	-	-	-
Total Area, WRPA 1	1,559.0	1 559 0	1,559.0	1.559.0
Total Alea, mich 1	1,000.0	1,000.0	1,000.0	2,000.0

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources			A1	located Fu	ture
Planning Area and	1970 Land	Use	Land	Use (1,000	Acres)
Need Category	(1,000 Acr	es)	1980	2000	2020
WRPA 2					
Open Land					
Transportation,					
Urban and Built-up	367.0	37	78.0	396.0	459.0
Food and Fiber					
Cropland	6,192.0	7.20	01.0	7,618.0	7,761.0
Pastured Cropland	380.0		76.0	442.0	420.0
Permanent Pasture	693.0	30	0.80	284.0	267.0
Other	247.0		79.0	253.0	174.0
Commercial Fisheries3/	(16.0)		21.0)	(30.0)	(40.0)
Minerals <u>3</u> /	(26.0)		35.0)	(56.0)	(87.0)
Recreation,	(,		,	()	()
Class A4/	(6.1)		(7.1)	(8.4)	(12.1)
Class B5/	(7.1)		(7.5)	(7.5)	(10.4)
Fish and Wildlife	(, , -)	1		(, , ,)	(,
$(Cropland)\frac{6}{5}$		(28	38.0)	(319.0)	(375.0)
(Pastureland) 5/	_		23.0)	(137.0)	(161.0)
(Wetlands)3/	-		01.0)	(101.0)	(101.0)
Environmental Quality 7/					,
Open and Green Spage 7/	(6.1)		(8.0)	(8.0)	(8.0)
Ecological Systems 8/			1.0	1.0	1.0
Geological Systems 5/		(15	57.0)	(157.0)	(157.0)
Forest Land					
Food and Fiber	2,634.0	1.60	97.0	1,432.0	1,305.0
Forest Products, et al.	17(365 0)		17.0)	(454.0)	
Animal Roughage (Pasture Recreation	(303.0)	(4.	+7.0)	(434.0)	(773.0)
Class B1/	(7.0)		(7.6)	(7.6)	(10.4)
Class C1/	(0.6)		(0.6)	(0.7)	(0.9)
Fish and Wildlife ² /	(280.5)		31.0)	(444.6)	
Environmental Quality	(200.5)	(50	31.0)	(444.0)	(333.3)
Bottomland Hardwoods 1	(1,128.0)	(6	70.0)	(510.0)	(424.0)
Ecological Systems 1	(1,120.0)		0.0)	(100.0)	(100.0)
Ecological Systems 8/			10.0)	(10.0)	(10.0)
Geological Systems 1			30.0)	(330.0)	(330.0)
Lake Shores			(1.0)	(1.0)	(1.0)
Scenic River Banks1/			18.0)	(18.0)	(18.0)
Wilderness Areas8/			50.0)	(30.0)	(30.0)
Land Covered by Water			,		
Large Water Areas	91.0	12	24.0	138.0	177.0
Small Water Areas	98.0		98.0	98.0	98.0
Total Area, WRPA 2	10,702.0		02.0	10,702.0	10,702.0
	,	,	COLUMN TO THE REAL PROPERTY.	,	,

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

1070 1 3 1			
(1,000 ACT	1980	2000	2020
355.0	401.0	536.0	724.0
2,206.0	2,094.0	2,170.0	2,346.0
746.0	1,062.0	1,069.0	1,075.0
929.0	491.0	490.0	477.0
200.0	392.0	379.0	354.0
(0.6)	(1.0)	(2.0)	(3.0)
(2.0)	(4.0)	(9.0)	(14.0)
(2.9)	(13.8)	(23.5)	(39.0)
(2.4)		(20.2)	(33.6)
	(652.0)	(890.0)	(1,214.0)
	(279.0)	(380.0)	(520.0)
_	(41.0)	(41.0)	(41.0)
(2.9)	(34.0)	(34.0)	(34.0)
2.310.0	2.120.0	1.710.0	1,188.0
(297.0)	,	•	(551.0)
(,	(,	()	()
(2.3)	(11.9)	(20.3)	(33.6)
			(3.0)
			(320.5)
(200.0)	(220.1)	(200.2)	(020.0)
(796.0)	(699.0)	(502.0)	(443.0)
(,			1.0
			(28.0)
	(64.0)	(64.0)	(64.0)
40.0	225.0	431.0	621.0
			32.0
02.0	02.0	32.0	02.0
6,818.0	6,818.0	6,818.0	6,818.0
	(1,000 Acres 355.0 2,206.0 746.0 929.0 200.0 (0.6) (2.0) (2.9) (2.4) (2.9) 2,310.0 (297.0) (2.3) (0.2) (186.3) (796.0)	1970 Land Use 1980 355.0 401.0 2,206.0 2,094.0 746.0 1,062.0 929.0 491.0 200.0 392.0 (0.6) (1.0) (2.0) (4.0) (2.9) (13.8) (2.4) (11.9) - (652.0) (279.0) - (41.0) (2.9) (34.0) 2,310.0 2,120.0 (404.0) (2.3) (11.9) (0.2) (1.2) (186.3) (228.1) (796.0) (699.0) 1.0 (28.0) (64.0) 40.0 225.0 32.0 32.0	(1,000 Acres) 1980 2000 355.0 401.0 536.0 2,206.0 2,094.0 2,170.0 746.0 1,062.0 1,069.0 929.0 491.0 490.0 200.0 392.0 379.0 (0.6) (1.0) (2.0) (2.0) (4.0) (9.0) (2.9) (13.8) (23.5) (2.4) (11.9) (20.2) - (652.0) (890.0) - (279.0) (380.0) - (41.0) (41.0) (2.9) (34.0) (34.0) (2.9) (34.0) (34.0) (2.9) (34.0) (34.0) (2.9) (34.0) (34.0) (2.9) (34.0) (50.0) (2.3) (11.9) (20.3) (0.2) (1.2) (1.9) (186.3) (228.1) (266.2) (796.0) (699.0) (502.0) 1.0 (28.0) (64.0) 40.0 225.0 431.0 32.0 </td

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

	1970 Land U		llocated Future d Use (1,000 Acres)		
Need Category	(1,000 Acre	s) <u>1980</u>	2000	2020	
WRPA 4					
Open Land					
Transportation,					
Urban and Built-up	328.0	335.0	361.0	426.0	
Food and Fiber					
Cropland	3,314.0	3,545.0	4,274.0	4,423.0	
Pastured Cropland	326.0	550.0	511.0	486.0	
Permanent Pasture	943.0	1,783.0	1,520.0	1,459.0	
Other	207.0	253.0	230.0	163.0	
Commercial Fisheries 3	(11.3)	(20.0)	(37.0)	(54.0)	
Minerals2/	(3.0)	(3.0)	(4.0)	(5.0)	
Recreation,					
Class A4/	(0.8)	(3.8)	(5.4)	(8.0)	
Class B5/	(1.0)	(3.1)	(4.4)	(6.5)	
Fish and Wildlife					
(Cropland) 6/		(292.0)	(327.0)	(391.0)	
(Pastureland) ⁵ /		(125.0)	(140.0)	(167.0)	
(Wetlands)≥/	-	(97.0)	(97.0)	(97.0)	
Environmental Quality 7	(0.8)	(8.0)	(8.0)	(8.0)	
Forest Land					
Food and Fiber					
Forest Products, et al.	3,222.0	1,830.0	1,331.0	1,230.0	
Animal Roughage (Pastur	(587.0)	(1.073.0)	(875.0)	(800.0	
Recreation,					
Class BI/	(0.9)	(3.1)	(4.4)	(6.5)	
Class C1/	(26.0)	(26.0)	(32.1)	(45.5)	
Fish and Wildlife ² /	(165.4)	(257.6)	(300.6)	(361.9	
Environmental Quality	()				
Bottomland Hardwoods 1	(1,148.0)	(932.0)	(932.0)	(932.0)	
Ecological Systems 8/		10.0	10.0	10.0	
Geological Systems ⁸ /		1.0	1.0	1.0	
Lake Shores 1/		(2.0)	(2.0)	(2.0)	
Wilderness Areas ⁸ /		5.0	5.0	5.0	
Land Covered by Water					
Large Water Areas	74.0	102.0	171.0	211.0	
Small Water Areas	133.0	133.0	133.0	133.0	
Small mater meas	133.0	100.0	133.0	155.0	
Total Area, WRPA 4	8,547.0	8,547.0	8,547.0	8,547.0	

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources	Allocated Future				
Planning Area and Need Category	1970 Land U		Use (1,000 2000	2020	
WRPA 5	(1,000 ACT	1500	2000	2020	
Open Land					
Transportation,	1.10.0	150.0	572.0		
Urban and Built-up	440.0	458.0	532.0	647.0	
Food and Fiber	772 0	755 0	701.0	1 010 0	
Cropland	732.0	755.0	794.0	1,019.0	
Pastured Cropland	239.0	607.0	568.0	564.0	
Permanent Pasture	982.0	854.0	801.0	793.0	
Other	192.0	257.0	235.0	203.0	
Commercial Fisheries 3/	(3.6)	(6.0)	(12.0)	(18.0)	
Minerals 2	(8.0)	(9.0)	(9.0)	(10.0)	
Recreation	(2.6)	66.13	(0.1)	(17 5)	
Class A ⁴ /	(2.6)	(6.1)	(9.1)	(13.5)	
Class B2/	(2.3)	(5.2)	(7.7)	(11.5)	
Fish and Wildlife		(701 0)	(167.0)	(572 0)	
$(Cropland)^{\frac{1}{2}}$		(394.0)	(467.0)	(572.0)	
(Pastureland) 5/		(169.0)	(200.0)	(245.0)	
Environmental Quality 4	(2.6)	(13.0)	(13.0)	(13.0)	
Forest Land					
Food and Fiber					
Forest Products, et al.	,10,228.0	9,777.0	9,756.0	9,388.0	
Animal Roughage (Pasture) 1	(947.0)	(1,048.0)	(1,090.0		
Recreation,					
Class B1/	(2.2)	(5.3)	(7.5)	(11.6)	
Class C1/	(23.8)	(23.8)	(31.5)	(46.9)	
Fish and Wildlife					
Management Areas, etc.2	(258.4)	(361.9)	(422.3)	(508.5)	
Wetlands⊥⁄	-	(531.0)	(723.0)	(791.0)	
Environmental Quality					
Bottomland Hardwoods	(2,362.0)	(2,269.0)	(2,247.0)	(2,156.0)	
Ecological Systems 1/		(15.0)	(15.0)	(15.0)	
Ecological Systems 8/		5.0	5.0	5.0	
Geological Systems 8/		22.0	22.0	22.0	
Lake Shores 1/		(1.0)	(1.0)	(1.0)	
Scenic River Banks		(28.0)	(28.0)	(28.0)	
Wilderness Areas 2/		(20.0)	(20.0)	(20.0)	
Land Covered by Water					
Large Water Areas	175.0	233.0	255.0		
Small Water Areas	76.0	76.0	76.0	76.0	
Total Area, WRPA 5	13,064.0	13,064.0	13,064.0	13,064.0	

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources			located Futi	
	1970 Land Us		Use (1,000	
Need Category	(1,000 Acres	1980	2000	2020
WRPA 6				
Open Land				
Transportation,			70.0	00.0
Urban and Built-up	78.0	79.0	79.0	80.0
Food and Fiber				
Cropland	1,908.0	2,100.0	2,140.0	2,187.0
Pastured Cropland	118.0	132.0	124.0	112.0
Permanent Pasture	494.0	458.0	419.0	382.0
Other	32.0	40.0	47.0	49.0
Commercial Fisheries 3	(1.4)	(4.0)	(9.0)	(14.0)
Minerals <u>5</u> /	(2.0)	(2.0)	(3.0)	(4.0)
Recreation				
Class A4/	(0.5)	(1.7)	(2.2)	(2.9)
Class B5/	(0.4)	(1.5)	(1.9)	(2.5)
Fish and Wildlife				
(Cropland) b		(83.0)	(83.0)	(91.0)
(Pastureland) ⁵∕	-	(35.0)	(36.0)	(39.0)
Environmental Quality				
Open and Green Space	(0.5)	(2.0)	(2.0)	(2.0)
Forest Land				
Food and Fiber				
Forest Products, et al. 1	, 831.0	652.0	650.0	639.0
Animal Roughage (Pasture)	(117.0)	(224.0)	(234.0)	(415.0)
Recreation,				
Class B ₁ /	(0.3)	(1.5)	(1.9)	(2.6)
Class C1/	(0.0)	(0.2)	(0.2)	(0.2)
Fish and Wildlife				
Management Areas, etc.2/	(45.2)	(70.2)	(81.9)	(98.6)
Wetlands1/	-	(85.0)	(85.0)	(85.0)
Environmental Quality				
Bottomland Hardwoods1/	(756.0)	(609.0)	(609.0)	(609.0)
Land Covered by Water				
Large Water Areas	32.0	32.0	34.0	44.0
Small Water Areas	40.0	40.0	40.0	40.0
Total Area, WRPA 6	3,533.0	3,533.0	3,533.0	3,533.0

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources	Allocated Future 1970 Land Use Land Use (1,000 Acres)					
Planning Area and Need Category	1970 Land U (1,000 Acre		2000	2020		
Need category	(1,000 ACTE	1500	2000	2020		
WRPA 7						
Open Land						
Transportation,						
Urban and Built-up	116.0	121.0	136.0	151.0		
Food and Fiber						
Cropland	337.0	197.0	147.0	138.0		
Pastured Cropland	180.0	300.0	406.0	455.0		
Permanent Pasture	941.0	998.0	1,356.0	1,453.0		
Other 3/	30.0	68.0	49.0	12.0		
Commercial Fisheries 3/	(0.9)	(1.0)	(3.0)	(4.0)		
Minerals 2/	(1.0)	(1.0)	(1.0)	(1.0)		
Recreation	(0.4)	(1 ()	(2.2)	(7.7)		
Class A ⁴ /	(0.4)	(1.6)	(2.2)	(3.3)		
Class B5/	(0.4)	(1.3)	(1.9)	(2.8)		
Fish and Wildlife		(71.0)	(05 0)	(107 0)		
(Crop1 and) 6/	-	(74.0)	(85.0)	(103.0)		
(Pastureland) ^{5/} Environmental Quality ^{7/}	(0.4)	(32.0) (1.0)	(36.0) (1.0)	(44.0) (1.0)		
Forest Land						
Food and Fiber						
Forest Products, et al.	2,509.0					
Animal Roughage (Pasture)	<u>-</u> / (694.0)	(1,251.0)	(895.0)	(580.0)		
Recreation			(2 2)	(2.0)		
Class B	(0.3)	(1.4)	(2.0)	(2.9)		
Class C	(0.1)	(0.1)	(0.2)	(0.3)		
Fish and Wildlife	(74.0)	(101.0)	(121 1)	(146 1)		
Management Areas, etc.2/	(74.0)	(104.0)	(121.4)	(146.1)		
Wetlands 1/		(49.0)	(49.0)	(49.0)		
Environmental Quality Bottomland Hardwoods 1/	(500.0)	(442.0)	(386.0)	(386.0)		
Ecological Systems	(300.0)	3.0	3.0	3.0		
Geological Systems 8/		1.0	1.0	1.0		
Lake Shores 1		(1.0)	(1.0)	(1.0)		
Scenic River Banks 1/		(13.0)	(13.0)	(13.0)		
Wilderness Areas		27.0	27.0	27.0		
Land Covered by Water						
Large Water Areas	38.0	93.0	196.0	196.0		
Small Water Areas	56.0	56.0	56.0	56.0		
Charle Harris Harris	50.0	00.0	00.0			
Total Area, WRPA 7	4,207.0	4,207.0	4,207.0	4,207.0		

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources Planning Area and	1070 Land Ha		located Fut	
Need Category	1970 Land Us (1,000 Acres		1 Use (1,000 2000	2020
WRPA 8				
Open Land				
Transportation,				
Urban and Built-up	182.0	206.0	260.0	333.0
Food and Fiber				
Cropland	329.0	217.0	170.0	193.0
Pastured Cropland	54.0	332.0	322.0	320.0
Permanent Pasture	655.0	576.0	548.0	532.0
Other	48.0	59.0	47.0	21.0
Commercial Fisheries3/	(0.3)	(1.0)	(1.0)	(2.0)
Minerals2/	(4.0)	(5.0)	(6.0)	(8.0)
Recreation				
CIGOS I	(0.5)	(6.0)	(9.6)	(15.3)
Class B5/	(0.9)	(5.2)	(8.3)	(13.1)
Fish and WildLife				(20,2)
$(Cropland)^{6}$	-	(217.0)	(170.0)	(193.0)
(Pastureland) ⁵ /	-	(122.0)	(156.0)	(262.0)
Environmental Quality		(,	(100.0)	(202.0)
Open and Green Spage7/	(0.5)	(12.0)	(12.0)	(12.0)
Botanical Systems 8/	-	0.1	0.1	0.1
Geological Systems 8/	-	0.8	0.8	0.8
Forest Land				
Food and Fiber				
Forest Products, et al.	2.265.0	2,123.8	2,144.8	2,051.8
Animal Roughage (Pasture)	1/(650.0)	(615.0)	(1,183.0)	(1,213.0)
Recreation	_ (050.0)	(010.0)	(1,100.0)	(1,110.0)
Class B	(0.8)	(5.2)	(8.3)	(13.2)
Class C	(0.0)	(0.5)	(0.8)	(1.2)
Fish and Wildlife	(0.0)	(0.0)	(0.0)	(1.5)
Management, Areas, etc.2/	(5.0)	(19.0)	(22.2)	(26.7)
Wetlands 1	(3.0)	(144.0)	(190.0)	(395.0)
Environmental Quality		(144.0)	(150.0)	(330.0)
Botanical Systems 8/		1.6	1.6	1.6
Bottomland Hardwoods 1	(988.0)	(913.8)	(885.8)	(811.8)
Geological Systems 1	(300.0)	(200.0)	(200.0)	(200.0)
Geological Systems8/		1.7	1.7	1.7
Lake Shores 1/		(1.0)	(1.0)	(1.0)
Scenic River Banks 1/		(17.0)	(17.0)	(17.0)
Land Covered by Water				
	77.0	00 0	110.0	151.0
Large Water Areas	73.0	88.0	110.0	151.0
Small Water Areas	45.0	45.0	45.0	45.0

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources Planning Area and	1970 Land Use		located Fut Use (1,000	
Need Category	(1,000 Acres		2000	2020
WRPA 9				
Open Land				
Transportation,				
Urban and Built-up	236.0	243.0	271.0	314.0
Food and Fiber				
Cropland		2,635.0	2,623.0	2,578.0
Pastured Cropland		1,232.0	1,214.0	1,186.0
Permanent Pasture		1,036.0	1,002.0	965.0
Other 3/	807.0	734.0	752.0	787.0
Commercial Fisheries 3/	(10.7)	(14.0)	(20.0)	(26.0)
Minerals ² /	(7.0)	(11.0)	(16.0)	(24.0)
Recreation Class A ⁴ / ₅ /	(1.7)	(7.5)	(10 ()	(15 1)
Class B5	(1.3)	(7.5)	(10.6)	(15.1)
Fish and Wildlife	(1.0)	(6.4)	(9.1)	(13.0)
(Cropland)		(829.0)	(1 216 0)	(1 676 0)
(Pastureland) 5/		(323.0) (153.0)	(1,216.0) (172.0)	(1,636.0) (202.0)
(Wetlands)		(133.0) (144.0)	(162.0)	(190.0)
Environmental Quality		(144.0)	(102.0)	(150.0)
Open and Green Space 2/	(1.3)	(12.0)	(12.0)	(12.0)
Beaches and Shores 3/	-	(16.0)	(16.0)	(16.0)
Botanical Systems 37	-	(500.0)	(500.0)	(500.0)
Geological Systems ⁸ /	-	2.6	2.6	2.6
Forest Land				
Food and Fiber				
Forest Products, et al.	, 3,442.0	1,925.4	1,907.4	1,889.4
Animal Roughage (Pasture))1/(383.0)	(677.0)	(711.0)	(751.0)
Recreation	(0, 0)		(0.2)	(17 0)
Class B	(0.9)	(6.5)	(9.2)	(13.0)
Class C Fish and Wildlife ² /	(0.2)	(0.6)	(0.9)	(1.1)
	(690.2)	(717.2)	(836.9)	(1,007.7)
Environmental Quality Botanical Systems 1/2		(233.0)	(233.0)	(233.0)
Botanical Systems 8		57.0	57.0	57.0
Bottomland Hardwoods	(1,324.0)	(918.0)	(918.0)	(918.0)
Geological Systems	-	3.0	3.0	3.0
Lake Shores 1	-	(3.0)	(3.0)	(3.0)
Scenic River Banks 1	-	(9.0)	(9.0)	(9.0)
Wetlands 1	-	(121.0)	(121.0)	(121.0)
Wilderness Areas 1/		(453.0)	(453.0)	(453.0)
Wilderness Areas 8/		102.0	102.0	102.0
Land Covered by Water				
Large Water Areas	400.0	402.0	438.0	488.0
Small Water Areas	138.0	138.0	138.0	138.0
Total Area, WRPA 9	8,510.0	8,510.0	8,510.0	8,510.0

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources	1070 L 1 Ha		located Futi	
Planning Area and	1970 Land Us		Use (1,000	
Need Category	(1,000 Acres	1980	2000	2020
WRPA 10				
Open Land				
Transportation,				
Urban and Built-up	230.0	260.0	327.0	419.0
Food and Fiber				
Cropland	310.0	271.0	250.0	242.0
Pastured Cropland	49.0	86.0	83.0	82.0
Permanent Pasture	202.0	289.0	274.0	266.0
Other	1,681.0	1,671.0	1,664.0	1,653.0
Commercial Fisheries3/	(1.2)	(2.0)	(3.0)	(3.0)
Minerals3/	(14.0)	(17.0)	(23.0)	(30.0)
Recreation,				
Class A4/	(1.3)	(14.4)	(23.0)	(36.3)
Class B5/	(0.9)	(12.4)	(19.8)	(31.2)
Fish and Wildlife				
(Cropland) ⁶ / ₅ /		(271.0)	(250.0)	(242.0)
(Pastureland) ⁵ /	-	(291.0)	(372.0)	(424.0)
(Wetlands) 3/	-	(275.0)	(353.0)	(530.0)
Environmental Quality				
Open and Green Space	(1.3)	(31.0)	(31.0)	(31.0)
Beaches and Shores3/		(160.0)	(160.0)	(160.0)
Forest Land				
Food and Fiber				
Forest Products, et al.	1,317.0	1,211.0		1,116.0
Animal Roughage (Pasture	$)\pm /$ (32.0)	(59.0)	(62.0)	(65.0)
Recreation	(0.0)	(12 5)	(10 0)	(71 2)
Class B	(0.8)	(12.5)	(19.8)	(31.2)
Class C	(0.0)	(1.2)	(1.8)	(2.7)
Fish and Wildlife2/	(185.3)	(196.3)	(229.1)	(275.8)
Environmental Quality,				
Botanical Systems 1/	(0.50.00)	1.0	1.0	1.0
Bottomland Hardwoods 1/	(970.0)	(885.0)	(841.0)	(780.0)
Lake Shores 1/	•	(4.0)	(4.0)	(4.0)
Scenic River Banks	-	(4.0)	(4.0)	(4.0)
Land Covered by Water				
Large Water Areas	939.0	939.0	942.0	949.0
Small Water AReas	219.0	219.0	219.0	219.0
Total Area, WRPA 10	4,947.0	4,947.0	4,947.0	4,947.0

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources		A1	located Fut	ure
Planning Area and	1970 Land		Use (1,000	Acres)
Need Category	(1,000 Acr	es) <u>1980</u>	2000	2020
WRPA's 1 through 10				
Open Land				
Transportation.				
Urban and Built-up	2,332.0	2,481.0	2,898.0	3.553.0
Food and Fiber			,	
Cropland	17,343.0	19,203.0	20,374.0	21,075.0
Pastured Cropland	2,871.0	4,807.0	4,769.0	4,730.0
Permanent Pasture	6,782.0	6,825.0	6,726.0	6,626.0
Other	3,506.0	3,915.0	3,718.0	3,478.0
Commercial Fisheries 3/	(46.0)	(70.0)	(117.0)	(164.0)
Minerals ⁵ /	(67.0)	(87.0)	(127.0)	(183.0)
Recreation,				
Class A=/	(16.4)	(62.0)	(94.0)	(145.5)
Class B5/	(16.0)	(54.5)	(80.8)	(124.6)
Fish and Wildlife				
$(Cropland)^{0}/$	-	(3,100.0)	(3,807.0)	(4,817.0)
(Pasture land) 5/		(1,329.0)	(1,629.0)	(2,064.0)
(Wetlands) 3/	-	(658.0)	(754.0)	(959.0)
Environmental Quality 7,				
Open and Green Space	(16.4)	(122.0)	(122.0)	(122.0)
Beaches and Shores		(176.0)	(176.0)	(176.0)
Botanical Systems 5/	-	(500.0)	(500.0)	(500.0)
Botanical Systems 8/	-	0.1	0.1	0.1
Ecological Systems 8/	-	1.0	1.0	1.0
Geological Systems 5/	-	(157.0)	(157.0)	(157.0)
Geological Systems 8/	-	3.4	3.4	3.4
Forest Land				
Food and Fiber				
Forest Products, et al.	29,637.0	24,558.2	22,827.2	21,401.2
Animal Roughage (Pasture)		(5,993.0)	(6,560.0)	(7,033.0)
Recreation				
Class B1/	(15.9)	(55.0)	(81.3)	(125.0)
Class C1/	(50.9)	(54.2)	(70.1)	(101.8)
Fish and Wildlife				
Management Areas, etc.2/	(2,021.4)	(2,466.4)	(2,856.2)	(3,418.2)
Wetlands 1/	-	(809.0)	(1,047.0)	(1,320.0)

Table 146 - Land Use Plan, Recommended Program, Lower Mississippi Region (cont'd)

Water Resources		Al	located Fut	ure
Planning Area and	1970 Land	Use Land	Use (1,000	Acres)
Need Category	(1,000 Acr		2000	2020
WRPA's 1 through 10 (cont'd)				
Environmental Quality				
Botanical Systems 1		(293.0)	(293.0)	(293.0)
Botanical Systems 8/	-	59.6		59.6
Bottomland Hardwoods 1	(10,852.0)	(9,147.8)	(8,640.8)	(8.096.8)
Ecological Systems	- 1	(115.0)	(115.0)	(115.0)
Ecological Systems 8/	-	28.0	28.0	28.0
Geological Systems 1/2	-	(530.0)	(530.0)	(530.0)
Geological Systems 8/	-	28.7	28.7	28.7
Lake Shores 1/	-	(19.0)	(19.0)	(19.0)
Lake Shores 8/	-	1.0	1.0	1.0
Scenic River Banks1/		(117.0)	(117.0)	(117.0)
Wetlands 1/		(185.0)		(185.0)
Wilderness Areas 1		(453.0)	(453.0)	(453.0)
Wilderness Areas <u>8</u> /	-	184.0	184.0	184.0
Land Covered by Water				
Large Water Areas	2,230.0	2,606.0	3,083.0	3,532.0
Small Water Areas	837.0	837.0	837.0	837.0
Total Area, LMR	65,538.0	65,538.0	65,538.0	65,538.0

Multiple-use land. Counted in forest products acreage.

Primary use for fish and wildlife. Counted in forest products acreage.

 $\frac{\frac{1}{2}}{\frac{3}{4}}$ Multiple-use land. Counted in other open land acreage. Primary use for recreation. Counted in transportation, urban and built-up acreage.

Multiple-use land counted in pasture acreage. Multiple-use land. Counted in cropland acreage.

Multiple-use with Class A recreation land. Counted in transportation, urban and built-up acreage. Exclusive use for environmental quality purposes. Not counted

elsewhere.

export of food and fiber to the rest of the world - a world suffering from shortages of food for a rapidly expanding population. Furthermore, all indications are that it will be necessary to continue the export of agricultural products in large quantities in order to maintain a favorable international balance of payments. In summary, it is highly likely that this Nation's crop production - a substantial part of which will continue to come from the Lower Mississippi Region - will be called upon to meet an ever-increasing share of the world's food needs, and that the future cropland needs herein defined on a lesser criteria are understated. Because of this, any reduction in acreages allocated to cropland would be irresponsible. Instead of the normal consideration given to reduction of cropland acreage which can be achieved by implementation of flood control, drainage, supplemental irrigation, and other plans, it must be concluded that implementation of those programs is imperative to at least partially offset serious inadequacies in the region's capability to produce food and fiber consistent with current conditions.

However, reductions can be made in pasture land allocations without materially affecting attainment of the region's food and fiber production goals. In evaluating the impacts of future water resource developments for the National Income Program, it was determined that 0.4, 1.5, and 2.5 million acres of open agricultural land could be reallocated to other uses in the years 1980, 2000, and 2020, respectively. Adjustments in open pasture land and forest acreages for the Recommended Program have been made accordingly.

The entire reduction has been made in the open pasture lands category for three reasons: (1) open pasture lands reallocated to forest land can still be pastured, with about 2 acres of managed pastured forests having the productive capability of 1 acre of open pasture. Thus, the exchange of 2.5 million acres of permanent pasture and pastured cropland for pastured forest is equivalent to reducing the region's productive pasture capability by only 1.25 million acres, or about 15 percent; (2) the "efficiency of use" implicit in the basic open pasture land needs takes into account the use of management techniques such as clipping, seeding, and fertilization, with no allowance for feed lots as an additional management tool. The use of feed lots is common in other beef-producing areas of the country. If this practice should spread to the Lower Mississippi Region, it could help to offset the loss of 1.25 million equivalent acres of permanent pasture; and (3) some increased efficiency in food production from permanent and wooded pasture will no doubt result from the various development plans for flood control, drainage, land treatment, etc., that are an essential part of the recommended program.

Food and fiber production requirements for pasture should be met on the reduced acreage so that remaining forest-land acreage will be greater. The increase in forests will allow satisfaction of other needs, such as wildlife habitat, recreation, and timber production. The result is a more desirable environmental and ecological balance which adds diversity to the land allocation for the recommended program.

Recreation, Fish and Wildlife, and Environmental Quality

The plans recommended for the satisfaction of recreation and fish and wildlife needs are summarized in the discussion of the National Income Program (pages 250 through 269). Table 99 provides details on the WRPA composition of the recreation plan; details on the fish and wildlife plan are given in table 101. The recommended plan for environmental quality provides for the regulated use of 1.3 million acres of land, of which 305,400 acres are designated for exclusive use for this purpose. The exclusive use acreages are listed by WRPA and environmental feature in table 147. They are denoted by parentheses in table 148, which gives a summary of the environmental quality plan.

Within the context of the recommended program, exclusive use for environmental quality purposes would not only preclude the clearing of forest lands for agricultural, urban, and other purposes, but would also preclude the use of those lands for timber production. However, it should not be interpreted as precluding temporary overflows for flood control or other beneficial purposes, as in the case of lands in the Atchafalaya floodway.

Problem Amelioration

Plans recommended for flood control, sediment and erosion control, land drainage, water quality control, navigation, and power are directed to the solution of problems evaluated for the National Income Program. The plans are detailed elsewhere. Table 149 gives a listing of these individual plans, with cross references to their locations in earlier sections of this appendix. Plans for the coastal and estuarine zone, plans associated with archeological and historical resources, and plans dealing with health aspects do not vary with program objective. These components of the recommended program components have only been mentioned in connection with the alternative program; details reserved for presentation in this section are given below.

Coastal and Estuarine

The coastal and estuarine plan, identical for all formulated programs, consists of measures having a reasonable possibility of being implemented in the prescribed time frames. The measures favor the improvement of the coastal and estuarine environment because they are designed to enhance the productivity of fish and wildlife by alleviating land loss, preventing salinity intrusion, preventing shoreline erosion, and establishing adequate water levels.

Solutions to the region's coastal and estuarine problems, as relates to these parameters, have been the subject of intensive research. The most recent study is scheduled for completion in calendar year 1975. As postulated in these studies and supported in the Coastal and Estuarine Appendix, solutions to problems in the region's estuarine zone (1) must be approached on a coastal-wide basis, and (2) all needs, with the exception of those relating to shoreline erosion, can best be be expressed in terms of Mississippi River flows. In general, the costs

Table 147 - Lands Designated for Exclusive Use as Environmental Quality Components, Recommended Program, Lower Mississippi Region

WRPA	<u>Feature</u>	Land Area (Acres)	Existing Classification	Environmental Quality Attribute(s)
1	None	-		-
2	Grand Prairie Dismal Swamp Dark Cypress Swamp Arnet Shutin Mill Stream Shutin Crowley's Ridge Lower White River	1,000 4,000 4,000 1,000 1,000 20,000 10,000	Pasture Forest Forest Forest Forest Forest Forest Forest	Ecological System Ecological System Ecological System Ecological System Ecological System Wilderness Area Wilderness Area
	Subtotal	41,000		
3	Reelfoot Lake	400	Fish & Wildlife	Scenic natural lake with unique eco- logical and geo- logical features
	Murphy's Pond	100	Fish & Wildlife	Scenic lake and unique ecological
	Open Lake	500	Fish & Wildlife	system Scenic lake and unique ecological system
	Subtota1	1,000		
4	Sharkey Bayou Area Mathews Brake Dutch Brake Blue Lake Brake Ashland Brake Beckham Brake Gayden Brake Eagle Brake Alcorn Brake McIntyre Lake Area Delta National Forest Delta Bluff Hills	2,500 700 700 800 1,000 1,000 1,100 900 800 400 5,000 1,100	Forest 1/ Forest 1/	Ecological System Wilderness Area Geological System
	Subtota1	16,000		

Table 147 - Lands Designated for Exclusive Use as Environmental Quality Components, Recommended Program, Lower Mississippi Region (cont'd)

WRPA	Feature	Land Area (Acres)	Existing Classification	Environmental Quality Attribute(s)
5	Seven Devil's Swamp	5,000	Forest1/	Ecological System and Wilderness Area
	Diamond Mine in Pike County, Ark. Magnet Cove Crater	500 7,000	Forest Forest	Geologic System Geologic System
	Caney Salt Mine near Winnfield, La.	300	Forest	Geologic System
	Winnfield Marble Rock Quarry Mosley's Bluff along	300	Forest	Geologic System
	Bayou D'Arbonne in Union Parish, La. Sicily Island, Cata-	1,600	Forest	Geologic System
	houla Parish, La. Chalk Deposit below	10,000	Forest	Geologic System
	Columbia, La. Salt Springs,	100	Forest	Geologic System
	Catahoula Lake Bunker Hill - Grand-	100	Forest	Geologic System
	view Bluff, above Danville, La. Rock Outcropping,	290	Forest	Geologic System
	Ouachita River Jordan Mountain,	50	Forest	Geologic System
	Bienville Parish, L Driscoll Mountain,	a. 500	Forest	Geologic System
	Bienville Parish, L Waterfall, Grant	a. 500	Forest	Geologic System
	Parish, La. Monelo Gap on Red Riv Bluff Banks on	20 er 100	Forest Forest	Geologic System Geologic System
	Ouachita River Felsenthal Basin Dismal Swamp Ouachita National	200 5,000 5,000	Forest 1/ Forest 1/	Geologic System Wilderness Area Wilderness Area
	Forest Kisahatchie National	5,000	Forest	Wilderness Area
	Forest	5,000	Forest	Wilderness Area
	Subtotal	46,560		

Table 147 - Lands Designated for Exclusive Use as Environmental Quality Components, Recommended Program, Lower Mississippi Region (cont'd)

WRPA	<u>Feature</u>	Land Area (Acres)	Existing Classification	Environmental Quality Attribute(s)
6	None	-	•	
7	Foster Lake Area on Buffalo River Loess Bluff Hills near	3,000	Forest1/	Ecological System
	Vicksburg, Miss.	1,000	Forest1/	Geologic System
	Foster Lake Area on Buffalo River Grand Gulf Homochitto National	7,000 10,000	Forest $\frac{1}{2}$	Wilderness Area Wilderness Area
		10,000	Forest	Wilderness Area
	Subtotal	31,000		
8	Port Hudson - East Baton Rouge Parish, La. Chipola Area and Pine	100	"Other"	Botanical System
	Stands - St. Helena Parish, La.	100	Forest	Botanical System
	Clio-Livingston Parish, La. Spruce Pine Stands in Livingston and Tan-	500	Forest1/	Botanical System
	gipaho Parishes, La. Waterfalls - vicinity	1,000	Forest	Botanical System
	of Pond, Miss. Bayou Sara - Percy Blu The Plains	50 ff 200 500	Pasture Pasture Pasture	Geological System Geological System Geological System
	Bluff near Hatchers Quarters Fluker's Gorge Tar Pits - Feliciana	100 500	Forest $\frac{1}{\underline{I}}$	Geological System Geological System
	Parish, La. Bluffs and Slump Block	500 s	Forest1/	Geological System
	overlooking Missis- sippi River	500	Forest1/	Geological System
	Prehistoric Logs - Eas Baton Rouge Parish, La.	100	Forest $\frac{1}{}$	Geological System
	Subtotal	4,150		

Table 147 - Lands Designated for Exclusive Use as Environmental Quality Components, Recommended Program, Lower Mississippi Region (cont'd)

WRPA	Feature	Land Area (Acres)	Existing Classification	Environmental Quality Attribute(s)
9	Sangamar Beach Ridge Atchafalaya Floodway Morganza Floodway Chenier Au Tigre Avery Island Jefferson Island Belle Isle Pecan Island Grand Chenier Barrier Beach in Cameron Parish, La. Hot Wells, near Alexandria, La. Bell Chaney Springs Weeks Isle Cote Blanche	42,000 15,000 500 500 100 50 50	Forest 1/ Forest 1/ Forest 1/ Forest 1/ 'Other''	Geological System Wilderness Area Wetlands Wetlands Geological System
	Pomme de Terre	600	'Other'	Geological System
	Subtotal	164,600		
10	Avondale Spruce Pine Stand in St. Tammany	200	Forest	Botanical System
	Parish, La.	800	Forest	Botanical System
	Subtotal	1,000		
	Tota1	305,400		

^{1/} Bottom-land hardwood forest.

Table 148 - Environmental quality Plan, Recommended Frogram, Lower Mississippi Negton

		9			Resource Use	Resource Use (1,000 Acres)	(93		808	
Resource Feature	Primary Usel		Secondary	Total	Primary	Secondary	Total Use	Prim ry Use	Secondary	Total
WRPA 1										
Land Bottomland Hardwood Forests Lake Shorelines	٠.١	. 0.9	873.0	873.0	0.6	873.0	6.0	. 0.9	873.0	873.0
Total Land	:	0.9	873.0	0.678	6.0	873.0	0.678	0.9	875.0	879.0
Water Surface Area Lakes Scento Rivers	36.0	0.1	' '	0.04	0.0	' '	0.0	0.0		0.0
Total Water Surface	36.0	0.4	•	0.04	0.04		0.04	0.04		0.04
WRPA 2										
Bottomiand Bardwood Forests Footogies, Systems	0.0	0.0	541.0	541.0	0.0	381.0	381.0	0.0	295.0	295.0
Geological Systems		332.0	0.0	0.784	0.784		1,487.0		0.0	1.0
Open and Green Space (Urban)		9.5	7.0	0.0	700	8.0	0.0	0.03/	8.0	0.80
Scenic River Banks Wilderness Areas	8.0	13.0(30.0)	0.0 (0.	40.0(30.0)	1	0.0	40.0(30.0)	-1	0.0	40.0(30.0)
Total Land	0.602	14)0.644	0.842 (0.14)0.644	1,206.0(41.0)	657.0(41.0)	0.686	1,046.0(41.0)	(0.14)0.759	303.0	(0.14)0.096
Water Surface Area Likes Scente Rivers	5.0	11.0	• •	16.0	16.0		16.0	16.0		16.0
Total Water Surface	5.0	15.0	٠	50.0	90.0		20.0	30.0	,	50.0
WHPA 3										
Land Bottomland Hardwood Forests	0.0	0.0	0.700	0.700	0.0	410.0	410.0	0.0	351.0	351.0
Lake Shorelines Open and Green Space (Urban)	.,	1.0(1.0)	3.0	34.0	10.52	23.5	34.0	0.00	0.45	200
Scenic River Banks Wetlands	11.0	23.0	0.0	0.00	0.01	0.0	0.01	0.01	0.0	0.43
Total Land	14.0	110.0(1.0)	0) 610.0	734.0(1.0)	103.5(1.0)	433.5	557.0(1.0)	95.0(1.0)	385.0	478.0
Mater Surface Area Lakes Scento Rivers	33.0	1.0		0.4.0	7.0	' '	7.0	34.0	(0.4.0
Total dater Surface	0.40	7.0	,	41.0	41.0		41.0	41.0		61.0
			-			-	-			

Pable 148 - Environmental quality Plan, Recommended Program, Lower Mississippi Region (Cont'd)

Planing Area and Second Ferture Alband Buttoming Birdwood Forests Foological Systems Foological Systems					VOVE	0000			2000	
Land Bettamind Europeod Forests Scological Systems Geological Systems	Frimary Usel		Secondary	Total	Primary Use	Secondary	Total	Primary Use	Secondary Use	Total
Land Bottomiand Burdwood Forests Reological Systems Gool carries Surfaces										
Geological Sustams	0.0	9.9(9.9)	930.0	930.0	0.0	930.0	9,0,0	0.0	9,0.0	950.0
Course of Breeze	0.0	1.1(1.1)		1.1(1.1)	1.1(1.1)	0.0	1.1(1.1)	1.1(1.1)	0.0	1.1(1.1)
Ones not Green Space (Hrban)	0.0	8.05/		0.0	2.0.5	1 2 3	000	2.0	1 0	0.0
*11derness Areas	0.0	5.0(5.0)	0.0	5.0(5.0)	5.0(5.0)	0.0	5.0(5.0)	5.0(5,0)	0.0	5.0(5.0)
Total Land	0.0	26.0(16.0)	0.006 (956.0(16.0)	80.6(16.0)	935.4	956.0(16.0)	18.0	9.8.0	956.0(16.0)
Water Surface Area										
Scenic Rivers	17.0	3.0	• •	50.0	30.0		20.0	20.0		20.0
Total Auter Surface	0.71	5.0		50.0	20.0		80.0	20.0		50.0
JEPA 2										
Lund										
Bottomiand Bardwood Forests Scological Systems	15.0	5.0(5.0)	2,20	2,208.4	20.0(5.0)	2,186.4	20.0(5.0)	20.0(5.0)	2,095.4	2,095.4
Geological Systems	0.0	21.6(21.6)	0.0	21.6(21.6)		0.0	21.6(21.6)	21.6(21.6)	0.0	21.6(21.6)
Open and Green Space (Urban)	,	13.03/		13.0		9.1	13.0	0.00	13.0	13.0
Scenic River Binks	0.0	20.0(20.0)	0.0	26.0	20.0(20.0)	0.0	20.0(20.0)	26.0	,	28.0
Total Land	59.0	74.6(46.6) 2,208.4	2,208.4	2,312.0(46.6)	94.5(46.6)	2,195.5	2,290.0(46.6)	90.6(46.6)	2,108.4	2,199,0(46.6)
later Surface Area	0 00			4	4		-	-		
Scenic Rivers	1.0	0.0	' '	7.0	7.0		7.0	2.01	1	7:0
Total Auter Surface	37.0	0.4	,	41.0	41.0		41.0	41.0		41.0
ARPA 6										
France			. 0	* 0 * /						
Bottomiand Bardwood Forests Lake Shorelines	0.0	1.00,	0.909	1.0	1.0	0.800	1.0	1.0	0.809	0.0909
Open and Green Space (Urban)		2.05	-	2.0	0.03/	5.0	2.0	0.00	8.0	2.0
Total Land	0.0	3.0	0.809	0.119	1.0	0.019	0.119	1.0	0.019	611.0
Auter Surfice Area	0.8	1.0		9.0	0		0.0	0.0		0 0
Scenic Rivers	: '	.	-	:	2: 1	1	2 1	1	'	2.1
Total Water, Surface	8.0	1.0		0.6	9.0	٠	0.6	0.6		0.6

Table 148 - Snairommental quality Plan, Recommended Frogram, Lower Mississippi Region (Cont'd)

witter Resources		1.7600.1				0000	-		10000	
Planning Area and Resource Feature	Established New	Nev Nev	Secondary	Potal Use	Primary	Secondary	Total Use	Primary Use	Secondary	Total
ARPA T										
Tripd										
Bottomind Hardwood Forest	0.0	0.0	428.0	428.0		572.0	372.0		372.0	372.0
Ecological Systems	0.0	2.0(3.0)	0.0	3.0(3.0)		0.0	3.0(3.0)		0.0	3.0(3.0)
Geological Systems	0.0	1.0(1.0)	0.0	1.0(1.0)		0.0	1.0(1.0)		0.0	1.0(1.0)
Oren and Green States (Heban)		1.05/		0.1	1.0		0.7	1.0		0.7
Scenic Siver Bunks		13.0		13.0		2.1	13.0	30.5	0.1	0.7
Allderness Areas	0.0	(0.75)0.15	0.0	27.0(27.0)	27.0(27.0)	0.0	27.0(27.0)	27.0(27.0)	0.0	27.0(27.0)
Total Land	0.0	46.0(31.0)	428.0	474.0(31.0)	45.0(31.0)	573.0	418.0(31.0)	45.0(31.0)	373.0	418.0(41.0)
6 C C C C C C C C C C C C C C C C C C C										
Likes	7.0	1.0		8.0	8.0	,	8.0	8.0	•	0.8
Scenic Rivers	1	0.7	'	0.0	5.0	1	0.5	0.7	1	0.7
Total Auter Surface	7.0	0.4		11.0	11.0		11.0	11.0	ř	11.0
ARPA 8										
purr										
Botanical Systems	0.2	1.7(1.7)	0.0	1.9(1.7)	1.9(1.7)	0.0	1.9(1.7)	1.9(1.7)	0.0	1.9(1.7)
Bottom and Hardwood Forests	0.0	0.0	9.968	9.96.6	0.0	968.6	968.6	0.0	9.462	9.4.0
Lake Shore thes		202.5(2.5)	0.0	202.5(2.5)	202.5(2.5)	0.0	202.5(2.5)	202.5(2.5)	0.0	202.5(2.5)
Open and Green Space (Urban)		20.11	0.1	12.0	S. 5	0	0.00	0.03/	1001	0.0
Scenic River Banks	8.0	9.0	. '	17.0	17.0	1	17.0	17.0	1	17.0
Total Land	8.2	225.2(4.2)	9.768	1,131.0(4.2)	224.8(14.2)	878.2	1,103.0(4.2)	222.4(4.2)	806.6	1,029.0
Atten Surface Too										
Likes	61.0		,	0.19	61.0		0 19	61.0		0 19
Scenic Rivers	0.0	8.0		4.0	4.0	1	4.0	4.0	'	100
Total Auter Surface	63.0	2.0		65.0	65.0		65.0	0.69		65.0
ARPA 9										
Land Beaches and Shores	0	0	4							
Botanical Systems	533.0	57.0(57.0)	0.0	50 0(57 0)		0.0	16.0			16.0
Bottomland Hardwood Forests	0.0	0.0	521.0	521.0	0.0	621.0	52.0(57.0)	0	0.0	590.0(57.0)
Geological Systems	0.0	5.6(5.6)	0.0	5.6(5.6)		0.0	5.6(5.6)			5.6(5.6)
Open and Green Space (Urban)		3.0	10	0.0		. 001	0.50			0.5
Scenic River Binks	6.0	3.0		0.6	0.0		0.50		15.0	12.0
Wetlinds	0.79	32.4	0.0	4.66	4.66	0.0	4.66		0.0	2.66
		100000000000000000000000000000000000000	225.0	222.0(106.0)	100000	423.0	202.0(102.0)	105.0(105.0)	423.0	555.0(102.0)
Total Land	612.0	224.0	775.0	(9.491)0.119(1	625.0	786.0	1,611.0(164.6)	825.0	786.0	1,611.0(164.6)
Agter Surface Area										
Scanlo Ricere	110.0			110.0	110.0		110.0	110.0	,	110.0
0.70	0.1	1.0	.	8.0	8.0		5.0	5.0	1	5.0
Total Auter Surface	111.0	1.0		112.0	112.0	,	112.0	112.0		0 611

Table 148 - Environmental Quality Plan, Recommended Progra, Lover Mississippi Region (Cont'd)

					Resource Use (1,000 A res)	e (1,000 A	res)			
Water Resources Planning Area and Resource Feature	Primary Use Established	Use1/ sed Nev	Secondary Use	/ Total Use	Primary Use	2000 Secondary Use	otal Use	Primary Use	Secondary Use	Total
WRPA 10										
Land Beaches and Shores	41.0	119.0	0.0	160.0	160.0	0.0	160.0	160.0	0.0	160.0
Bottomland Hardwood Forests	0.0	1.0(1.0)	877.0	1.0(1.0)	1.0(1.0)	8,3.0	1.0(1.0)	1.0(1.0)	772.0	1.0(1.0)
Lake Shorelines Open and Green Space (Urban) Scenic River Banks	1 10.4	150.0g	1.0	4 4 0 0 0	0.0.4	23.0	0.0.0 0.0.0	0.0.4	0.16	4 1 4 0 0 0 0
Total Land	45.0	151	878.0	1,077.0	177.0(1.0)	856.0	1,033.0	169.0(1.0)	803.0	972.0
Water Surface Area Lakes Scenic Rivers	124.0	1		124.0	124.0	' '	124.0	124.0		124.0
Total Water Surface	125.0			125.0	125.0		125.0	125.0		125.0
ARPA'S 1 through 10										
Land Beaches and shores	17.0	129.0	0.0	176.0	0.921	9	0 92.1	0 961	0	0 %.
Botanical Systems Rottomland Handwood Forests	533.2		0.0	592.9(59.7)	592.9(59.7)	0.0	592.9(59.7)	592.9(59.7)	-	592.9(59.7)
Ecological Systems	8	Ψ,	0.0	143.9(28.9)	145.9(28.9)	-	143.9(28.9)	145.9(28.9)	ž	143.9(28.9)
Geological Systems Lake Shorelines	155.0	563.8(31.8)	0.0	718.8(51.8)	718.8(31.8)	0.0	718.8(31.8)	718.8(51.8)	0.0	718.8(51.8)
Open and Green Space (Urban)		108.0	13.0	121.0	21.12	93.6	121.0	0.03	121.0	121.0
Scenic Miver Banks Wetlands	78.0	85.4	0.0	117.0	117.0	0.0	117.0	117.0	0.0	117.0
Allderness Areas	2.0	185.0(184.0)	453.0	647.0(184.0)	194.0(184.0)	4	647.0(184.0)	194.0(184.0) 453.0	453.0	647.0(184.0)
Total Land	917.2	1,317.8(305.4)	8756.0	10,991.0(505.4) 2154.4(305.4)8329.6	21,54.4(305.4	9.62591	10,484.0(305.4) 2127.0(305.4)7896.0	4.305,0.7215	0.9697(10,113.0(305.4)
Water Surface Area Lakes Scenic Rivers	0.00	22.0		28.0	,606.0 28.0		0.06.0	28.0	' ']	28.0
Total dater Surface	393.0	41.0	٠	4,34.0	434.0		0.454	4.4.0		4.54.0

| Public investment required for new use between 1970 and 1980; operation and maintenance required thereafter. Established use consists of acreages expected to remain in their present condition. Acreages designated for exclusive use me given in parantheses.

| Indicatable for environmental quality purposes and Class A recention purposes. Pablic investment allocated to both purposes.
| Friancy use shifts with the development of open and green space for recreation purposes.

>

Table 149 - Listing of Recommended Plans for Problem Amelioriation, Lower Mississippi Region

	Location	in Report
<u>Plan</u>	Table No.	Page No.
Flood Control		
Structural	106	277
Nonstructural	107	281
Sediment and Erosion	111	287
Land Drainage	113	291
Water Quality Control	115	294
Navigation	116	299
Hydropower	118	303

of diversion works are extremely high, particularly when land cuts over long distances are involved. Because of these high costs, and because other higher priority needs for water, such as municipal and industrial water supply and navigation, preclude the diversion of water from the Mississippi River except in certain reaches and in less than desired quantities, only measures involving the transfer of available water to strategic areas in proximity to the Mississippi River or its distributary, the Atchafalaya River, are included in the plan. An additional constraint dictated by these conditions requires the land-building needs occurring in WRPA 9 be offset as much as possible by diversions to areas in WRPA 10, located near the Mississippi River below New Orleans.

The coastal and estuarine plan is outlined in table 150. Measures in the 1980 time frame include 10.1 miles of bank stabilization works for control of shoreline erosion and one salinity control structure, 10 miles of levee, and 5 miles of channel work for salinity alteration and land-building in WRPA 10. Measures scheduled for addition to the plan in 2000 include water saving devices; such as, 10 low flow weirs for water level management and land-building in the Atchafalaya Basin in WRPA 9, and three additional control structures, 50 miles of levee, and 25 miles of channel to add to the previous works for salinity control and land-building in Plaquemines Parish, Louisiana, WRPA 10. Measures to be added to the plan by the year 2020 include construction of five additional control structures; one navigation lock; one spillway gate modification; 42 miles of channel; and 70 miles of levee. These measures would satisfy additional needs for salinity control and land-building in WRPA's 9 and 10. The plan calls for a total diversion of nearly 271,000 c.f.s. (approximately 175,000 m.g.d.) of Mississippi River flow, while all other higher priority needs are simultaneously satisfied.

Table 150 - Plan for Coastal and Estuarine Zone - All Programs, Lower Mississippi Region

QUANTITY OF NEED SATISFIED		10.1 mi.	1,500 c.f.s.		89,800 c.f.s.	6,800 c.f.s.	96,600 c.f.s.		13,800 c. f. s. 4/	17,700 c.f.s.	66,400 c.f.s.	88,500 c.f.s. 5/	186,400 c.f.s.
MEASURES	r	10.1 mi. of bk. stab. works 1 contr. struc., 10 mi.lev.	q 3 III. CII.		10 low flow weirs	5 contr. struc., 5- mi. lev. § 25 mi. ch.			1 contr. struc. § nav. lock	7 mi. ch. § spillway gates modif.	3 contr. struc., 30 mi.lev. § 15 mi.ch.	1 contr. struc. 40 mi. lev. § 20 mi. ch.	
PURPOSE 1/	·	EP SC&LB			WLMGLB	SCELB		1	SC	SCELB	EB EB	LBGSC	
DESCRIPTION LOCATION	,	Gr. Isle, Gr. Terre Isle Rigoletts & Lk. Pontchratrain (2 Locations) E. of Miss.R., vic. of Bohemia, La.	otal		Atchafalaya Basin	Myrtle Grove & Homeplace - w. of Miss. R. & Scarsdale - e. of Miss. R.	otal		Lower Calcasieu Lake	Bonnet Carre to Lakes Pontchartrain & Borgne	E of Miss. R. below Bohemia- 3 sites	W. of Miss. R. below Triumph, La. 4 sites	otal
WRFA 1980	658	10	Region Total	8 2000	C1	10	Region Total	8 2020	6	10			Region Total

1/ EP - Erosion Protection, SC - Salinity Control, IB - Land Building, WIM - Water Level Management.

2/ Unsatisfied - 2,400 c.f.s. for water level management, and 274,300 c.f.s. for land building.

3/ All needs for salinity alteration, land building, and water level management are expressed in terms of Mississippi River Flow, as explained in Appendix 0, Coastal and Estuarine.

4/ The structural measures will obviate the need for diverting this flow.

5/ Also provides 17,300 c.f.s. for salinity control.

By the year 2020, the plan satisfies all of the need for salinity control, 97 percent of the need for water level management, and 50 percent of the requirement for land-building. The diversion of 43,300 c.f.s.½/ for salinity control and 89,800 c.f.s. for water level management would also serve to meet a part (133,100 c.f.s.) of the flow required for land-building, and an additional 137,600 c.f.s. would be provided for this purpose. No practical alternatives exist to obtain the quantities of water required to meet the remaining needs (274,300 c.f.s. for land-building and 2,400 c.f.s. for water level management).

In the plan, the diversion of Mississippi River flows for enhancing the productivity of the estuarine zone is precluded during periods of extreme low flow. Points of diversion are located far enough upstream of the Head of Passes to be immune to the effects of river enlargement work currently proposed for that area.

Archeology and History

The recommended program seeks not only the well-being of future generations, but also the commemoration of ages past. The legacy includes thousands of archeological and historical sites, some well preserved, some in disrepair, others yet unknown. Needs have been expressed for intensive short-term archeological surveys of the entire region, for testing almost 2,000 sites, and for excavating about one out of every four sites tested. Needs have likewise been expressed for registering, marking, and restoring several thousand historic structures, and for marking and maintaining historic sites, roads and trails, and cemeteries. Repletion will require positive actions by both public and private interests. Plans for satisfying all the identified needs for preserving, restoring, and maintaining the archeological and historical resources are summarized in table 151.

The archeological portion of the plan calls for surveys blanketing the region by the year 1980, with sites threatened by development activities receiving first priority. It also calls for testing and excavating 426 and 97 sites, respectively, by the year 1980. Between the years 1980 and 2000, the plan requires the excavation of an additional 328 sites out of 1,422 sites to be tested. Site testing and excavation work required beyond the year 2000 cannot be predicted without the results of the short-term surveys. Hence, the scope of the extremely long-range site work is not specified in the plan.

Included in the historical portion of the plan are 9,354 structures, all of which should be added to the National or State register of Historic Places, and most of which will require some amount of restorative work by the year 2020. Also included are 125 and 1,216 historic districts and sites, respectively, which should be added to the register.

^{1/} The need for an additional 13,800 c.f.s. for salinity control in WRPA 9 would be met through structural improvements, without effecting an actual transfer of water.

Table 151 - Recommended Plan for Preservation, Restoration and Maintenance of Archeological and distorical Resources, Lower Mississippi Region

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Time Frame	Surveys	Archeologic Resources	Sources	Registration of Historic Places Structures Districts Sites	Of Historic Districts	Places 1/	Structures	of Roads	Cemeteries	Markers
48 338 33	370-1980	00	#2	18	31	m.	102	35	00 1	1	35
228 22	2000-2020	00	ş .	9.	345	* m	145	3.57	-0	4 82	22
228 22	Total	8	322	92	755	07	366	140	2	8	135
28 22	970-1980	5	45	10	1,115	6	98	.54	3	*	82
22	2000-2020	.00	93.	35.	122	191	27.23	28	16 4	58	145 152
577	Total	5	301	54	2,240	36	041	505	23	168	379
77	9000	7	13	41	36	0	9		4	8	01
K	960-2000	000	8.	44 (888	v (v .4	230	4 1 201	+ N O	858	383
	Total	9	361	93	355	5	3	157	9	115	210
51	1970-1980	000	88	z 6 9	250	J (N	151	131	mm	00	88
R	000-5050	0			325	Cu.	155	1.51		0	300
	Total	10	280	8	725	æ	7/1	9. S	10	C4	570
338	1970-1980	N00	83.	* * .	8 7 8	770	198	437	0 11 01	0	* 2 2
	Total	N	81	18	121	2	53	9	8	8	362
338	1970-1980 1980-2000 2000-2020	400	88.	97.	888	⇒ 58	885	833	2 7 01	848	25 50 75
	Total	4	130	27	300	39	85	\$	55	150	215
228	1970-1980 1980-2000 2000-2020	moo	530	98.	25088	OEN	8000	222	n. + n	6 13 12	35 140 235
	Total		121	98	253	12	32	142	10	35	410
228	1970-1980 1980-2000 2000-2020	900	₹ 80	75	5 000	n e n	000	288	001	000	150 230 30
	Total	9	234	*	370	30	0	70	2	4	38
10 19 19 19 19 19	1970-1980 1980-2000 2000-2020	m00	₽8.	53.	300 2,900 1,075	100	N O O	268 6,730 6,300	081	100	36 156 276
	Total	2	118	82	4,275	5	cv.	7,198	3	e	894
22.88	1970-1980 1980-2000 2000-2020	\$ 00	1,422	338	2,003 4,284 3,107	2188	\$86	3,174	% \$\$	125 236 183	367 1,035 1,672
	Total	3	1,848	455	9,394	125	1,219	8,463	101	115	3,074

1) National or State Register of Historic Places.

Interpretive markers will be required at many of these places. They will also be required at some of the 101 roads and trails and the 478 cemeteries that would be protected and maintained as part of the plan.

Health Aspects

As discussed in Appendix M, the improvement of the human health environment in the Lower Mississippi Region is dependent upon actions by State Health Agencies in Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. Recommended actions for satisfying the identified health aspects needs are:

- 1. Improvement of the epidemiology programs of the State Departments of Health through the development of consistent local contracts and increased emphasis on water and vector-borne diseases.
- 2. Expansion of water supply programs for the State Departments of Health to provide essential surveillance and technical assistance to all water systems in the region. Recommended levels of expansion are summarized in table 152.
- 3. Improvement of measures for protecting drinking water supplies that are subject to contamination from municipal, industrial, and agricultural waste discharges.
- 4. Planning in Arkansas, Louisiana, and Mississippi directed to assistance and action for protecting water supply systems in the event of natural disasters.
- 5. Revision of water quality criteria for certain recreation waters in Arkansas, Kentucky, Louisiana, Mississippi, and Tennessee. Revision should apply to all cases where water-contact recreation is a primary use of the water resource, and should be based on the fecal coliform parameter as recommended in NTAC Water Quality Criteria.
- 6. Development of comprehensive State programs to protect the health of water-contact recreationists. Such programs should include systematic water quality monitoring and enforcement powers at the State level to restrict public usage of unsafe waters.
- 7. Improvement of vector control programs at the State level to direct disease vector surveillance in Arkansas, Kentucky, Louisiana, and Missouri.
- 8. Revision of enabling legislation in Mississippi and Tennessee to permit the establishment and operation of vector abatement districts in those States.
- 9. Establishment of 50 vector abatement districts in the region by 1980, with the establishment of an additional 17 districts by the

year 2020. These districts are needed in Arkansas, Tennessee, Mississippi, and Louisiana; none are needed in the Kentucky, Missouri, or Illinois portions of the region. Recommended vector abatement districts are summarized in table 153.

Table 152 - Recommended Expansion of Water Supply Programs, Lower Mississippi Region

State Department	19	980		000		020
of Health	Staff1	Budget (\$1,000)	Staff-	Budget (\$1,000)	Staff-	1/ _{Budget} (\$1,000)
Arkansas2/	4	300	8	600	16	1,200
Kentucky ^{3/}	5	400	10	800	20	1,600
Louisiana <u>4</u> /	4	300	8	600	16	1,200
Mississippi <u>5</u> /	4	300	8	600	16	1,200
Missouri <u>6</u> /	3	500	6	1,000	12	2,000
Tennessee ⁷ /	5	400	10	800	20	1,600

1/ Multiple of staff level existing in 1970.

3/ Includes about 3 percent of WRPA 1 and 11 percent of WRPA 3.

WRPA 4, all of WRPA 7, and 19 percent of WRPA 8.

Z/ Includes about 16 percent of WRPA 1, 70 percent of WRPA 2, 63 percent of WRPA 5, and 26 percent of WRPA 6.

Includes about 45 percent of WRPA 1, 37 percent of WRPA 5, 74 percent of WRPA 6, 81 percent of WRPA 8, all of WRPA 9, and all of WRPA 10.

Includes about 22 percent of WRPA 1, 11 percent of WRPA 3, all of

^{6/} Includes about 5 percent of WRPA 1 and 30 percent of WRPA 2. 7/ Includes about 8 percent of WRPA 1 and 78 percent of WRPA 3.

Table 153 - Recommended Establishment of Vector Abatement Districts, Lower Mississippi Region

e and Number of Vec ng Area 1980 200		Districts Total
	2020	Total
as		
5 2	2	9
$\frac{4}{5}$	<u>0</u>	
Total 9 5	2	16
ana		
0 0		2
6 0 8 6 0		6
$\begin{pmatrix} 8 & 6 & 0 \\ 9 & 13 & 0 \end{pmatrix}$		13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5
Total 30 0	2	32
sippi		
10 3	3	16
see		
1 1	. 1	3
1		
X 1 5 2	2	Q
3 1 1		9 3
10 3	3	16
4 3	2	9
6 0		6
6 0		6
13 0		13 5
5 0	0	5
50 9	8	67

Summary of Recommended Program

The Recommended Framework Program comprising component plans from the National Income and Environmental Quality Program is summarized in table 154. The land-use component of the program is scaled under assumed conditions of continued water and related land resources development. This means that the flood control, sediment and erosion control, land treatment and manangement, and drainage components are essential program ingredients for meeting future requirements, not only for food and fiber production, but also for fish and wildlife, environmental quality, and other purposes.

Program Costs

Estimated costs for the Recommended Program are summarized in table 155. The estimates are in terms of January 1972 dollars, without adjustment or discounting by time periods. The allocation of costs between Federal and non-Federal interests is in accordance with the percentages used for the alternate programs (table 122). Similarly, certain flood control features of the ongoing Mississippi River and Tributaries Project are included in the costs, as in the case of the alternate program.

The total public investment cost of the Recommended Program is estimated at \$14.8 billion, of which \$7.4 billion is Federal cost and \$7.4 billion is non-Federal. Average annual operation and maintenance costs are estimated at \$329 million.

Table 154 - Recommended Program Composition, Lower Mississippi Region

	Water	r Supply (mg	(d)	Water Surfac				Land (1,	000 Acres)	
Planning Area & Time Frame	Municipal	Fish 4 Wildlife	Total	Recreation (1,000 Acres)	Fish & Wildlife (Miles)1/	Natural Environment (1,000 Acres)	Recreation4/	Fish & Wildlife	Natural Environment 5/	Tota1
VRPA 1 1970-1980	0.0	0.0	0.0	0.0	3/	4.0	0.0	0.0	6.0	6.0
1980 - 2000 2000 - 2020	0.0	0.0	0.0	0.0	3/ 3/ 3/	0.0	0.0	0.0	0.0	0.0
Total	0.0	0.0	0.0	0.0	3/	4.0	0.0	0.0	6.0	6.
RPA 2 1970-1980 1980-2000 2000-2020	5.3 16.5 26.0	50.0 110.0 110.0	$186.5\frac{2}{2}$ $153.3\frac{2}{2}$ $136.0\frac{2}{2}$	0.0 3.0 45.0	1203.0 0.0 0.0	15.0 0.0 0.0	2.0 1.4 9.6	104.0 63.6 90.7	448.0 0.0 0.0	554.1 65.1
Total	47.8	270.0	475.82/		1203.0	15.0	13.0	258.3	448.0	719.
TRPA 3 1970-1980 1980-2000 2000-2020	33.9 102.4 130.7	43.0 86.0 86.0	76.9 188.4 216.7	139.0 185.0 173.0	822.0 0.0 0.0	7.0 0.0 0.0	30.0 28.1 43.3	50.2 38.1 54.3	106.7 ⁶ / 0.0 0.0	192. 66. 97.
Total	267.0	215.0	482.0	497.0	822.0	7.0	101.4	148.6	106.7	356.
TRPA 4 1970-1980 1980-2000 2000-2020	11.9 24.1 33.9	22.0 30.0 34.0	33.9 54.1 67.9	8.0 67.0 38.0	1100.0 0.0 0.0	3.0 0.0 0.0	7.3 9.8 20.2	92.2 43.0 61.3	25.4 0.0 0.0	124. 52. 81.
Total	69.9	86.0	155.9	113.0	1100.0	3.0	37.3	196.5	25.4	259.
VRPA_5 1970-1980 1980-2000 2000-2020	11.6 23.9 44.0	31.0 60.0 62.0	42.6 83.9 106.0	0.0 0.0 00.0	1931.0 0.0 0.0	4.0 0.0 0.0	9.5 15.7 27.4	103.5 60.4 86.2	73.6 ⁶ / 0.0 0.0	186. 76. 113.
Total	79.5	153.0	232.5	60.0	1931.0	4.0	52.6	250.1	73.6	376.
RPA 6 1970-1980 1980-2000 2000-2020	1.0 2.3 3.3	8.0 16.0 17.0	9.0 18.3 20.3	0.0 2.0 10.0	536.0 0.0 0.0	1.0 0.0 0.0	3.7 1.3 2,0	25.0 11.7 16.7	2.9 <u>6/</u> 0.0 0.0	31. 13. 18.
Total	6.6	41.0	47.6	12.0	536.0	1.0	7.0	53.4	2.9	63.
NRPA 7 1970-1980 1980-2000 2000-2020	3.3 6.8 10.7	2.0 6.0 5.0	5.3 12.8 15.7 33.8	0.0 0.0 0.0	450.0 0.0 0.0 450.0	4.0 0.0 0.0 4.0	3.2 1.9 3.0 8.1	30.0 17.4 24.7 72.1	45.9 ⁶ / 0.0 0.0 0.0 45.9	79. 19. 27.
Total	20.8	13.0	33.8	0.0	450.0	4.0	0.1		40.0	
XRPA 8 1970-1980 1980-2000 2000-2020	16.9 36.5 48.9	2.0 3.0 4.0	18.9 39.5 52.9	0.0 0.0 36.0	400.0 0.0 0.0	2.0 0.0 0.0	14.7 10.1 15.8	14.0 3.2 4.5	222.2 <u>6/</u> 0.0 0.0	250. 13. 20.
Total	102.3	9.0	111.3	36.0	400.0	2.0	40.6	21.7	222.2	284
MRPA 9 1970-1980 1980-2000 2000-2020	20.0 34.2 41.5	73.0 188.0 120.0	93.0 424.2 <u>2</u> 425.5 <u>2</u>		928.0 0.0 0.0	1.0 0.0 0.0	17.6 8.8 12.4 38.8	27.0 119.7 170.8 317.5	219.3 ⁶ / 0.0 0.0 219.3	263 128, 183, 575,
Total	95.7	381.0	942.75	0.0	928.0	1.0	30.0	31.73	-1.5.0	2.4
RPA 10 1970-1980 1980-2000 2000-2020 Total	35.6 89.8 118.1 243.5	0.0 2.0 1.0 3.0	35.6 91.8 119.1 247.0	0.0 0.0 0.0	329.0 0.0 0.0 329.0	0.0 0.0 0.0	37.5 23.9 37.0 98.4	11.0 32.8 46.7 90.5	145.0 ⁶ / 0.0 0.0 145.0	191 56 83 331
	243.3									
Region 1970-1980 1980-2000 2000-2020	139.5 336.5 457.1	231.0 501.0 439.0	501.72 1066.35 1160.12	257.0 362.0	7 6 99.0 0.0 0.0	41.0 0.0 0.0	125.5 101.0 170.7 397.2	463.9 389.9 561.9	1293,0 0.0 0.0 1293,0	1882 490 732 3105
Total	933.1	1171.0	2728.1=	766.0	7699.0	41.0	397.2	1413.	kennell	3,810,0

I Stream miles.

Includes irrigation withdrawals.

The main stem of the Mississippi River is not considered quality stream fishing in the fish and wildlife context involved here.

However, access is provided (though no mileage is given) and costs are included in the program (shared equally by recreation) for this access which will make the Mississippi River available to residents of adjoining WMPA's for limited fishing and recreation activities.

The provides all invironmental Quality acreage in some WMPA's. Double counting has been eliminated in cost tables.

Excludes urban open and green space provided through the acquisition of Class A recreation lands in 1970-1980 time frame.

Provides all or part of Class A recreation lands for 2000 and 2020.

Table 154 - Recommended Program Composition, Lower Mississippi Region (Cont'd)

					Flood	Control				
		Prin	cipal Rea	ches				Upstream Wat	ersheds Floodplain	Watershed
Tanning Area Time Frame	Levees (Miles)	Channels (Miles)	Number	Storage (1000 Acre-Ft	Pumping Plants)(Number)	Channels (Miles)	Number	Storage (1000 Acre-Ft.)	Management	Management (1000 Acres
VRPA 1										
1970-1980	0	0	. 0			0	.0	0	0	0
1980 - 2000 2000 - 2020	0	0	0	0	0	0	0		0	0
Total		0	0	0.	0		0	O	0	0
RPA 2 1970-1980	5.9	641.6	0	0	5	4,878 130	268	149	2,236	8,034 291
1980-2000 2000-2020	9.7	618.0 340.0	0	0	3 0	95	5	11	92	411
Total	15.6	1599.6			8	5,103	273	160	2,415	8,730
RPA 3										
1970-1980	7.7	292.0	1	18	7	660 454	201	244 134	293 111	1,929
1980-2000 2000-2020	169.2	51.7 96.9	0		0	269	120 92	99	115	668
Total	176.9	440.6	1	18	9	1,383	413	477	519	3,515
	1.0.0	440.00								
WRPA 4 1970-1980	359.4	928.3		0	1	3,674		42	1,370	4,737
1980-2000	76.6	208.1	0	0	9	18 1,146	16 12	18 11	24 305	131 970
2000-2020	82.5	605.0	0	0	19	4,838	81	71	1,699	5,838
Total	518.5	1741.4	U	0	1.7	4,000	0.4		.,	
WRPA 5		69.0	11	450	3	389	116	209	004	1,730
1970-1980 1980-2000	152.9 188.7	242.9	1	80	0	146		15	87	102
2000-2020	2.0	62.0		0	1	301		101	504	1,283
Total	343.0	373.9	12	530	10	836	168		1,255	2,1/2
WRPA to					1	2,020			1,465	1,876
1970-1980 1980-2000	1.5	266.7 159.6	0	0	1	325	0	0	111	317
2000-2020	0	105.0	0	.0		0	0	0	0	0
Total	1.5	531.3	0	0	2	2,351			1,576	2,193
WRPA 7			0	0	1	1,157	284	423	548	2,690
1970-1980 1980-2000	12.4	12.0	0	0	2	163	94	142	60	1,018
2000-2020	6.0	0	0			0			0	0
Total	25.4	12.0	0			1,520	378	565	408	3,708
WRPA 8						983		104	734	1,505
1970-1980 1980-2000		5.0	0	0		308	98	169	219	1,225
2000-2020	10.5	3.0	0		2		12	37	17	443
Total	10.5	12.0	0	0	. 2	1,351	105	310	970	5,173
WRPA 9						2 455		0	1,810	5.025
1970-1980 1980-2000	13.5 13.9	163.0		0		2,875 511	0	0	469	3,025 797
2000-2020	62.0	163.0	0	0	0	- 0	0	0	2,279	0
Total	89.4	163.0	0			3,386	0	0	2,279	3,822
WRPA 10									337	669
1970-1980 1980-2000	20.0	0	0		5 17	S05 344	0 3	13	335	530
2000-2020	44.0	0	0		3	40		0	42	42
Total	125.6	0.	0		.25	889	3	13	714	1,244
Region							0.00	1 171	0.250	26,196
1970-1980 1980-2000	571.8 528.2	2378.6 1283.3	12	468 80	22 40	17,147 2,459	977 333	1,171 491	9,258 1,502	5,389
1980-2000 2000-2020	207.0	1211.9	Ů	0	15	1,851	171	259	1,074	3,819
Total	1307.0	4873.8	13	548	77	21,457	1,481	1,921	11,834	35,404

Table 154 - Recommended Program Composition, Lower Mississippi Region (Cont'd)

that are a second		Sediment ar	nd Erosion Co	ontrol	Draina	ge	Munici	al Water Qua	lity Contro	1
Planning Area & Time Frame	Treatment = (1000 Acres)	Streambanks (Miles)	Roadbanks (Miles)	(Miles)	Management (1000 Acres)	Channels (Miles)	Treatment (1000 lb. BOD ₅)	Advance Treatment (1000 1b. BOD ₅)	Other 8/ (1000 lb. BOD ₅)	Bacteria Gontrol - (mgd)
WRPA_1										
1970-1980 1980-2000	0	0	0	0	0	0		0	0	0
2000-2020	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0		0	0	0	0
WRPA 2										
1970-1980	3256.5	128	441	569	474.3	4930.0	14.0	0	5.0	39.9
1980-2000	3597.6	49	386	435	948.4	5080.0	0	38.0	1.0	10.0
2000-2020	4023.7	36	275	311	948.5	5120.0	0	69.0	2.0	26.3
Total	10,877.8	213	1102	1315	2371.2	15,130.0	-			82.8
WRPA 3										
1970-1980	2512.3	369	554	923	16.1	140.0	140.0	0	19.0	113.8
1980-2000 2000-2020	2613.5 2726.8	222 152	485 346	707 498	32.2 32.3	240.0	0	249.0 362.0	7.0	75.7 91.4
Total	7852.6	743	1385	2128	80.6	610.0		302.0		280.9
	1034.0	7.43	1.000	2120	00.0	010.0				200,2
WRPA 4	7754.1	266	806	1050	201.0	1010.0	25.0		5.0	
1970-1980 1980-2000	3354.1 3697.5	191	705	1072 896	294.9 589.8	4040.0 3130.0	25.0	47.0	1.0	45.6 17.8
2000-2020	3838.5	143	503	646	589.8	3100.0	0	72.0	2.0	25.4
Total	10,890.1	600	2014	2614	1474.5	10,270.0				88.8
WRPA 5										
1970-1980	3385.8	76	1174	1250	114.6	910.0	26.0	0	7.0	24.8
1980-2000	3612.0	50	1028	1078	229.1	1310.0	0	60.0	2.0	14.3
2000-2020	4073.3	35	734	769	229.1	1370.0	0	98.0	2.0	24.9
Total	11,071.1	161	2936	3097	572.8	3590.0	-			64.0
WRPA 6										
1970-1980	1259.3	42	165	207	131.7	1460.0	6.0	0	2.0	2.1
1980-2000 2000-2020	1410.2 1530.2	37 28	145 103	182 131	263.4 263.4	1560.0 1350.0	0	9.0 12.0	1.0	1.2
Total	4199.7	107	413	520	658.5	4370.0				5.0
		•••		250						
WRPA 7 1970-1980	1261.9	106	524	630	21.4	410.0	5.0	- 0	1.0	6.1
1980-2000	1256.1	67	458	525	42.8	250.0	0	9.0	0	2,8
2000-2020	1406.4	44	327	371	42.8	250.0	G	13.0	1.0	4.4
Total	3904.4	217	1309	1526	107.0	890.0				13.3
WRPA 8										
1970-1980	851.9	40	232	272	20.8	540.0	29.0	0	6.0	20.4
1980-2000 2000-2020	798.7 871.5	24 16	203 145	227	41.6 41.6	390.0 230.0	0	59.0 89.0	2.0 3.0	23.9 32.0
		80	580	161	104.0		0	39.0	3.0	
Total	2522.1	80	280	660	104.0	1160.0				76.3
WRPA 9			****				10.0			
1970-1980 1980-2000	1857.9 2091.5	8 3	599 524	1079 811	196.8 393.5	2210.0 2240.0	40.0	72.0	10.0 3.0	52.4 29.2
2000-2020	2213.6	4	374	566	393.6	2000.0	0	100.0	4.0	37.4
Total	6163.0	15	1497	2456	983.9	6450.0		4		99.0
WRPA 10										
1970-1980	670.0	2	38	40	25.8	430.0	190.0	0	21.0	74.1
1980-2000	631.1	1	33	34	51.7	420.0	0	204.0	6.0	63.9
2000-2020	544.0	1	23	24	51.6	290.0	0	297.0	8.0	77.3
Total	1845.1	4	94	98	129.1	1140.0				215.3
Region	10 100 -		1000		1200	15 070 0	201.2			
1970-1980 1980-2000	18,409.7 19,688.2	1,037	4533 3967	5570 4611	1296.4 2592.5	15,070.0 14,620.0	394.0	747.0	76.0 21.0	359.2 245.4
	24 770 0	459	2830		2592.7	13,920.0	0	1112.0	30.0	320.8
2000-2020	21,228.0	439	2000	3289	2004.	10,000.0		****	20.0	

^{7/} Includes land treatment to reduce flood runoff and critical area treatment to reduce sediment and erosion.
8/ Includes mechanical reaeration and stream assimilation.
9/ Chlorination.

Table 154 - Recommended Program Composition, Lower Mississippi Region (Cont'd)

Diamina Amar	Channe	els (Miles	ation Fac	ilities						
Planning Area & Time Frame	Deep Draft	Shallow Draft	Total	Harbors (Number)	Locks (Number)	Production (Mw)	Coastal & Estuarine	Archeological & Historical	Public Health	
WRPA 1										
1970-1980 1980-2000	288.0	0	288.0	0	0		0	9/	10/	
2000-2020	0	0	.0	0	0	0	0	5	10/ 10/	
Total	288.0	0	288.0	0		0		9/	10/	
WRPA 2										
1970-1980	0	200.0	200.0	2	0	7.5	0		107	
1980-2000 2000-2020	0	0	0		0	70.6	0	9/	10/ 10/ 10/	
Total	0	200.0	200.0	1 9	0	0		<u>9</u> /		
		200.0	200.0	,		78.1	.0	9/	10/	
WRPA 3 1970-1980	0		0	1						
1980-2000	0	0	0	i	0	0		9/	10/	
2000-2020	0	0.			0			5/ 5/	10/	
Total	0	- 0	0	2		0	0	9/	10/	
WRPA 4										
1970-1980 1980-2000	0	0	0	7	1 0	18.0		9/ 9/ 9/	10/ 10/	
2000-2020	0	0	0	2	0	0	0	9/	10/	
Total	0	0	0	10	1	18.0	0	9/	10/-	
WRPA 5										
1970-1980	0	0	0	S	-2	40.0		9/	107	
1980-2000 2000-2020	0	0	0	2 2	. 0	50.0		9/	10/ 10/	
Total	0	0	0	9		90.0		9/		
					-	50.0		9/	10/	
WRPA 6 1970-1980	U	U	U	3			9	9/	400	
1980-2000		0	0	ő	Ü	0	0	3/	10/	
2000-2020	0	0		1	0			9/	10/	
Total	0	0		4		0	0	2/	10/	
WRPA 7										
1970-1980 1980-2000	0	0	0	0				9/	10/	
2000-2020	0	ő.	0	Û				9/ 9/	10/ 10/	
Total	0		0	1				9/	10/	
WRPA 8									-	
19/0-1980	0	0	0		0		11/	9/	10/	
1980-2000 2000-2020	0	0	0	0	2		11/	9/ 9/	10/ 10/ 10/	
Total	0	0		0	3	0	<u>II</u> /	2/ 9/	10/	
							14/	2	10/	
WRPA 9 1970-1980	0.5	84.0	90.5		2	0			10/	
1980-2000	34.0	270.0	304.0	Ü	2		11/ 11/ 11/	0.7	10	
2000-2020	200.0		200.0		0			9/	10/	
Total	240.5	354.0	594.5		4	0	11/		10/	
NRPA 10										
1970-1980 1980-2000	50.0	97.0 188.0	147.0 188.0	0	1	0	11/	9/	10/	
2000-2020	0	0	0	0	3	0	11/	3 /	10/	
Total	50.0	285.0	335.0		6	0	11/	9/	10/	
Region										
Region 1970-1980	344.5	381.0	725.5	18	6	65.5	11/	9/ 9/	10/	
1980-2000 2000-2020	34.0 200.0	458.0	492.0 200.0	11	6 4	120.6	11/	9/	10/	
Total	578.5	839.0	1417.5	35	16	186.1	11/	9/	10/	
1.0000			141.12		10	100,1	11/		10/	

^{5/} Composed of surveying, testing and excavating archeological sites, and preservation, restoration and maintenance of historic resources.
11/ Composed of public drinking water programs and vector abatement districts at state level.
11/ Composed of measures for salinity control, shoreline erosion control, and water level management.

Table 155 - Estimated Program Costs, Recommended Frogram, Lover Mississippi Region

		F 4			ment (\$1,000 Non-Federa			Total	
	Natural	Federal		Natural	ion-rederaç		Natural		
Planning Area & Time Frame	Environment	Other2/	Subtotal	Environment	Other ²	Subtotal	Environment1	Other	Total
WRPA 1			ner Ban	748	9,111	9,859	1,497	36,222	37,719
1970-1980	749	27,111 809	27,860	(+0	809	809	0	1,618	1,018
1980-2000	0	009	ω9	- 0	0	0	· ·	. 0	
Total	749	27,920	28,669	748	9,920	10,668	1,497	37,840	39,337
WRPA 2		ber em	486,235	39,050	167,854	206,904	73,601	619,538	693,139
1970-1980	34,551	451,684	262,979	39,000	163,773	163,773	0	420,752	426,752
1980-2000	0	182.019	182,019	0	239,431	239,431	. 0	1,467,740	1,541,341
Total	34,551	182,019 890,682	931,233	39,050	239,431 571,058	610,108	73,601	1,467,740	1,541,341
WRPA 3				NAME OF BRIDE	506 007	201 156	450,686	848,966	1,299,652
1970-1980	4,468	592,039	569,507	446,218	256,927	703,145 279,958	450,000	848,652	848,652
1980-2000	0	568,694	568,694	0	379,386	379,386		793,823	193,823
2000-2020 Total	4,468	414,437 1,575,170	1,579,638	146,218	916,271	1,362,489	1,50,686	2,491,441	2,942,127
WRPA 4				470 (4)	V = 0 000		222 608	675,586	909,194
1970-1980	1,304	516,721	518,025	232,304	158,865	391,169 197,195	233,608	398,744	398,744
1980-2000	0	201,549	201,549	0	197,195	197,197		404.198	404,198
2000-2020 Total	1,304	928,627	210,357 929,931	232,304	193,841 549,901	782,205	233,608	1,478,528	1,712,136
WRPA 5							-Do Ben	566,135	266 200
1970-1900	3,430	360,504	303,934	377, 429	205,631	583,060	380,859	397,457	397,45
1980-2000	0	192,128	192,128	0	205,329	205,329		452,248	452,24
2000-2020 Total	3,430	733,243	180,611 736,673	377,429	271,637 682,597	1,000,026	380,859	1,415,840	1,790,690
WREA 6								177 775	
1970-1980	103	120,926	121,029	58,602	53,012	111,614 48,406	58,705	173,938 91,964	91,904
1980-2000	0	43,558	43,558	0	48,406	59,011		DL 578	94.576
2000-2020 Total	103	35,567 200,051	35,567 200,154	58,602	59,011 160,429	219,031	58,705	94,578 360,480	94,570 419,185
WRPA_7									
1970-1960	3,807	122,379	126,186	30,307	86,739	117,040	34,114	209,118	243,232
1980-2000	0	147,079	147,070	0	63,007	63,027	0	210,106	210,104
2000-2020 Total	3,807	25, 321	25, 22	30,307	57,573 207,339	57,573 237,646	34,114	82,894 502,116	62,894 536,232
WRPA 8									
1970-1960	1,096	116,810	119,900	286,096	108,525	394,722	287,132	227,430	514,62
1980-2000	0	139,731	139,731	0	99,150	99,150		238,661	238,881
2000-2020 Total	1,096	195,057	195,057 454,694	286,096	140,726 348,502	634,598	287,192	802,100	1,089,29
WRPA 9									
1970-1900	16,764	193,411	210,195	275,284	140,906	416,190	292,066	334,317	626,36
1980-2000	0	225,837	225,637	0	145,281	145,281	9	371,118 972,485	371,110 972,48
2000-2020 Total	16,784	1,074,465	1,091,249	275,284	317,266 603,455	317,268 878,739	292,068	1,677,920	1,969,98
WRFA 10									
1970-1980	12,016	368,911	380,927	747,016	261,379	1,000,395	759,012	556,961	1,389,32
1960-2000	0	347,911	347,911	0	211,090	211,050	0	111,212	777,94
2000-2020 Total	12,016	1,137,050	1,149,074	747,016	557,677	357, 277 1,576,782	759,032	1,960,704	2,143,19
Region									C Ross we
1970-1980	78,308	2,872,496	2,950,804	2,493,054	1,449,050	3,942,104	2,571,502	4,321,546	6,892,90
1980-2000	0	2,130,275	2,130,275		1,413,978	1,413,978		3,544,253	3,544,25
2000-2020	0	2,318,822	2,318,822	- U	4,879,178	2,016,150 7,372,232	2 22 22	4,334,972 12,200,771	14,77-,13
Total	76,306	7,321,593	7,399,901	2,493,054	4,013,110	(13/5/6)6	4,211,304		-49/11-9-3

[|] Program Costs for 1) Natural Environment Lands and 2) Natural Environment Water Surface required in ARCs 2.
| Includes all other Program Costs for Mater Surface and Lands, for Mater Supply, Flood Control and Selected Problems, Mater quality and Pollution, Navigation, Mydropower, Costsia and Estuarine, Mistorical and Archeological, and Health. See table 121.

Table 15) - Estimated Program Costs, Recommended Program, Lower Mississippi Region (Cont'd)

			annusi	Operation, Mainte		rement			
		Federal			n-Federal			Total	
Planning Area & Time Frame	Natural Environment1/	Other ² /	Subtotal	Natural Environment	Other	Subtotal	Natural Environment	Others	Total
RPA 1									
1970-1960	0	7,000	7,000	6	177	18			7,016
1980-2000	0	7,000	7,000		27				
2000-2020	ō	7,000	7,000	6		61			7,06
RPA 2									
1970-1980	31	2,357	2, 386	574	0,401	0,975		10,750	24, 20,
1980-2000	31	6,631	6,062	574	17, =33	17,009		23,000	499
2000-2020	31	12,066	12,097	574	30,367	30,940		4-,453	43,030
RPA <u>3</u> 1970-1980									
1970-1980	.0	9,508	9,508		15,089	15,142		24,597	24,05
1980-2000	0	18,402	18,402	53	20,970	27,025		42,574	45,42
2000-2020	0	34,258	34,258		NUZZIA	48,107		82,372	82,42
RPA 4 1970-1980		12 LUID	7 (0)	12	0.000	4,812		17,296	17, 31
1980-2000	3	7,498	7,501		9,800				
2000-2020	3	11,111	17,628	12	29,073	17,661	15	40,098	46,77
RPA 5									
1970-1980	13	5,597	5,610		8,657	8,681	.9	19,254	14,29
1980-2000	13	10,271	10,284	26	15,478	15,504	39	22,149	25,78
5000-5050	iš	16,867	16,880	26	26,233	26,509	39	43,400	43,43
RPA 6									
1970-1980	0	1,600	1,600	0	3,215	3,219	0	4,815	4,61
1980-2000	0	2,162	2,162	0	5,293	5,295	0	7,455	7,45
2000-2020	0	2,924	2,924	0	7,762	7,762		10,686	10,000
RPA 7									
1970-1980	13	900	91.5	10	2,612	2,022	23	3,244	3+73
1980-2000	13	2,715	2,728	10	3+994	4,004		0,709	0,75
2000-2020	13	3,701	3,714	10	5,810	5,820	63	9,511	9,53
RPA 8									
1970-1980	0	5,305	5,305	114	7,275	7,387	114	12,578	10,0%
1980-2000		10,902	10,902	114	14,316	14,430	114	25,218	25,330
2000-2020	0	19,670	19,670	114	24,650	24,764	114	44,520	44,43
IRPA 9 1970-1980	68							12 000	10.000
		6,637	6,705	44	10,286	10,330	112	16,923	17,03
1980-2000	68	14,276	بابان و با	**	20,943	20,987	112	35,219	35,333
2000-2020	68	26,260	26,328	44	34,191	34,235	112	60,451	60,56
RPA 10 1970-1980	0	19,429	19,429	88	20,714	20,602	86	40,143	40,23
1980-2000	0	33,040		86	10,641	20,002	50	71,081	-71,76
2000-2020	0	53,295	33,040 53,295	88	06,195	60,283	. 56	119,490	119,578
Region									
1970-1980	128	65.831	65,959	927	86,059	86,986	1,055	151,890	152,945
1980-2000	128	116,510	116,638	927	160,546	161,473	1.055	277,056	278,111
2000-2020	128	193,666	193,794	927	272,750	273,677	1,055	466,416	467,473

Scheduling and Implementation

Using broad-scale analyses of water and related land resources availability, problems, and needs as a basis for study, the foregoing sections of this appendix describe a flexible framework of plans and programs outlining the probable nature, extent, cost, and timing of possible measures for needs satisfaction and problem amelioration through the year 2020. The alternative plans and programs, directed to improvements in the quality of life through maximum contributions to the objectives of national income and environmental quality are intended to serve as a guide to all local, State, and Federal interests directly concerned with conservation, development, and use of the resources. It is anticipated that any of the plans or programs selected as a basis for further detailed study will be subjected to a period of public review, and that public support of the plan or some appropriate derivative thereof will be obtained before scheduling and implementation are undertaken.

The framework program recommended by the Coordinating Committee is one that appears capable of fulfilling the region's future water needs in line with current national, State, and local objectives. Implementation of the program will require judicious planning, coordination, and funding, and will require immediate action to accelerate ongoing programs for water resources and related land development, especially the flood control programs currently underway.

Though the region is blessed with an abundance of water, excellent agricultural land, and other natural resources, it has historically been a slow growth center of the Nation. Part of this slowness of economic growth can be directly attributed to the harassment of floods which presently affect well over half the total area of the region despite the concerted and substantial flood control efforts of the past four decades. The most recent reminder of this problem is the disastrous 1973 flood that not only drove hundreds of people from their homes, but also purloined from the Nation's pocketbook several billion dollars in the form of property damages, clean-up operations, and the like.

The region's main line of defense against future disasters from flooding on the main stem and principal streams is the 'Mississippi River and Tributaries Project.' This project, authorized in 1928, is still less than 50 percent complete, partly because of the complexity of the problems and the magnitude of the developments necessary to solve them, and partly because of funding constraints over the years. To implement completion of this project as scheduled will require an increase in current appropriations to approximately \$300 million per year. This would markedly advance the completion date expected under present funding levels; but, even then, the full benefits of the project could not be realized until the mid-1980's. Acceleration of both this project

and a current backlog of related works in upstream watersheds is most critical to the framework program because the fulfillment of many future needs of the region is dependent upon the adequate and timely provision of flood control. Funding requirements for accelerating the related functional programs could not be determined from available data for this study.

Excluding the appropriations necessary to continue and accelerate ongoing Federal programs (except for certain features of the Mississippi River and Tributaries Project), the funding schedule necessary to implement the recommended framework program for the region is summarized in table 156. This schedule calls for average annual short-term (1970-1980) expenditures of about \$842 million, of which \$295 million would consist of Federal investments in water and related land resources developments. This is about one and one-third times the present level of Federal funding. Present levels of non-Federal investments have not been determined. It can only be assumed that substantial increases will be required, as in the case of the Federal investments. For comparative purposes, the estimated funding requirement for alternative singleobjective framework programs - National Income, Regional Development, and Environmental Quality - are summarized in table 157. The approximate percentages of funds required for main features of the recommended program and alternative programs through the year 2020 are given in table 158.

Provided that the necessary funds can be made available for the continuation of current programs and for the recommended framework program additions, specific authorization studies will be required before actual implementation of the program measures. Such studies will be required for all program components that are not currently authorized. Included in the authorized category are the MR&T Project, some projects for hurricane protection, several upstream watershed projects for flood control, and improvements to the system of navigation channels and locks in Louisiana. Proposed additions to these projects will require future authorization studies. Examples of projects and measures that will require specific authorization studies include proposed reservoirs; land acquisition for recreation, fish and wildlife, and environmental quality purposes; sediment and erosion control measures; drainage measures; and waste-treatment facilities for water quality control.

Where program measures are unlikely to be fully implemented within existing legal and institutional constraints, some changes may be required in Federal and State legislation to permit needs satisfaction. Cases in point include the proposals for subsidizing landowners, acquiring easements or otherwise regulating land-use practices to preserve the environmental quality values of lakes and streams, and to protect wildlife habitat values of certain land areas. They also include proposals for Federal participation in the development of single-purpose reservoirs for recreation.

Table 156 - Funding Schedule for Recommended Framework Program, Lower Mississippi Region

Public Investor	Funds 1970-1980	Required (\$1,0 1980-2000	000,000) 2000-2020
Fubile investor	1370 1300	1500 2000	2000 2020
Federal Total Investment Annual Investment Annual Operation, Maintenance and	2,951 295	2,130 107	2,319 116
Replacement	66	117	194
Total Federal ^{2/}	361	224	310
Non-Federal Total Investment Annual Investment Annual Operation,	3,942 394	1,414 71	2,016 101
Maintenance and Replacement	87	161	274
Total Non-Federal ^{2/}	481	232	375
Grand Total ^{2/}	842	456	685

^{1/} Total investment averaged over time period. 2/ Average annual appropriation required.

Table 157 - Funding Schedule for Alternative Programs, Lower Mississippi Region

1 1 61							
11ity 2000-20	2,319	192	308	2,016	277	578	989
Environmental Quality 1970-80 1980-2000 2000	1,921 96	115	211	1,344	165	252	443
Envi ron 1970-80	3,263	65	391	4,423	88	531	922
000,000) pment 2000-20	2,70 3 135	236	391	2,554	337	465	836
Funds Required (\$1,000,000) Regional Development 1970-80 1980-2000 2000-20	2,489	136	260	1,695	193	278	558
unds Requ Region 1970-80	3,132 313	73	376	4,078 408	98	206	882
00-20	2,319	192	308	2,016	275	576	684
National Income -80 1980-2000 20	2,130	115	221	1,414	162	232	453
Nat 1970-80	2,829	65	348	3,884 388	87	475	822
Public Investor	Federal Total Investment Annual Investment / Annual Operation,	Maintenance q Replacement	Total Federal 2/	Non-Federal Total Investment Annual Investment!/ Annual Operation,	Maintenance & Replacement	Total Non-Federal2/	Grand Total $\frac{2}{}$

1/ Total investment averaged over time period. 2/ Average annual appropriation required.

Table 158 - Percentage of Recommended Framework Program Cost for Main Features, Lower Mississippi Region

	National	Regional	f Program Cost Environmental	
Feature	Income	Development	Quality	Recommended
Municipal Water Supply	1.9	2.1	1.8	1.9
Irrigation	0.7	1.0	0.7	0.7
Flood Control	21.2	20.3	20.5	21.1
Related Land Programs	3.7	3.7	3.5	3.7
Water Quality & Pollution	8.6	8.9	8.2	8.5
Navigation	11.1	9.8	10.6	11.0
Hydropower	1.0	0.8	0.9	0.9
Coastal & Estuarine	1.8	1.6	1.7	1.8
Recreation	28.2	31.8	27.0	28.0
Fish & Wildlife	3.6	4.3	3.5	3.6
Environmental Quality	16.8	14.4	20.2	17.4
Historical & Archeological	1.4	1.3	1.4	1.4
Health Aspects	0	0	0	0
	100.0	100.0	100.0	100.0

A further important consideration in implementing the program is the need for increased public awareness of the problems and increased public involvement in solving them. In particular, there is a need for accelerating educational programs to encourage agriculturalists to better match crops to land capability so that program acreages allocated to cropland can produce the regional share of the Nation's food and fiber. Active educational programs are needed also to promote public access to small ponds that can help meet the region's future needs for fishing.

DATA DEFICIENCIES AND NEED FOR ADDITIONAL STUDIES

DATA

During the conduct of the Lower Mississippi Region Comprehensive Study, several basic data deficiencies were noted. These deficiencies should be corrected through more intensive and systematic data collection and additional studies.

Indeed, the developing awareness of ecological values and the ramifications of environmental conservation programs dictate added study and research. Maximum land and water resource utilization is becoming increasingly important and attention should be devoted to a higher degree of resolution of diurnal changes and to statistical analysis of these short term effects on plant and animal life. Further use of satellite imagery is one tool which will permit better documentation of current land and estuarine uses and to develop optimum practices in the future.

Climatologic Data

A need exists for a better definition of microscale variations of the many parameters that collectively determine the climate of the Lower Mississippi Region. Instrumentation and data acquisition efforts should be directed to specific study areas. The very large urban areas, in particular, present gradual climatic changes in temperature and rainfall and other indices such as solar insolation, radiation, air pollution, etc., that are presently not well enough documented to permit reliable projections.

The Arkansas-Mississippi delta area and, to a lesser degree, the deltas of North Louisiana and the Missouri Boot Heel section comprise very important land areas manipulated through extensive crop management procedures and irrigation practices. This is being done with a very minimum of instrumental monitoring. Such monitoring is a prerequisite to meaningful research and should be expanded.

For river and flood forecasting, more data and research is required relative to evapotranspiration and soil moisture, and additional solar radiation measurements are desirable to increase the output accuracy of the Hydrologic Conceptual Model being adopted by the National Weather Service.

One other area of concern, in terms of geological history, is that climatic records are extremely short. Additional benchmark stations,

at sites relatively unaffected by man-made modifications of any sort, are required to assure a continuum of basic data acquisition that will constitute authentic, correlative climatic records. A step in this direction is the recently authorized climatic benchmark station to be established in the near future in the vicinity of Jackson, Tennessee. Data from that station will complement data from the other Lower Mississippi Region benchmark station established in 1968 at the Calhoun Experiment Station near Calhoun, Louisiana.

Meteorologic Data

Many of the data requirements for climatology have a parallel in the meteorology field. This is to be expected because many meteorological forecasting techniques and dynamic models have been largely dependent on climatic data. Furthermore, procedures for State and zone forecasts, and weather warnings of tornados, hurricanes, and floods in the study area, utilize climatic data to a large extent.

There is a need for satellite imagery with a higher degree of resolution for severe weather and hurricane monitoring and forecasting. More sophisticated radars with improved rainfall intensity evaluation are a requirement, and research is essential for greater accuracy in quantitative precipitation forecasts. Automation of data acquisition networks, both for land and offshore data buoys, are needed for timely acquisition of data that will permit prompt severe weather, tropical storm, and hurricane warnings to be issued. Additional tide gages as well as wave recorders for coastal areas and for inland bodies of water such as Lake Pontchartrain are needed to furnish data for research and study leading to development of more accurate storm surge and storm tide forecasts for the coastal areas of the Lower Mississippi Region study area.

Regional investigations need to be instituted to better define the parameters, the orographic and geophysical or areal effects, and other pertinent factors that make up the weather in the Lower Mississippi Basin under similar synoptic and upper air systems. The investigations should take into account local idiosyncrasies such as pollution sources, local wind pattern, small scale orographic features, and effects of local topography.

Hydrologic Data

Drainage Areas

One of the basic parameters in making a hydrologic study regarding low or flood frequency analysis, rainfall-rumoff correlations, or design of structures to retard or control flows is the size of the drainage area of the basin being studied. The drainage areas of most streams in the Lower Mississippi Region are derived only at gaging stations for

which data can be obtained from stage or discharge publications of the Corps of Engineers and USGS. However, the gaging site data are not always suitable for hydrologic studies of certain ungaged reaches of streams on which projects may be considered.

The drainage area information presented in the 1971 publication entitled "Drainage Area of Louisiana Streams" completed by the USGS and Louisiana Department of Public Works was a great aid in the comprehensive study. Additional drainage area publications are needed to cover the remaining areas of the Lower Mississippi Region.

Streamflow and Stage

Additional surface water data are needed to overcome deficiencies encountered during conduct of hydrologic studies.

The network of gaging stations shown in figure 52 of Appendix C, Regional Hydrology, Climatology and Geology, provides general coverage of hydrologic conditions over the entire region. However, there is a great deficiency of streamflow data for tributary streams with small drainage areas, especially in the upper reaches of the Mississippi River tributaries. Runoff characteristics of both large and small basins should be gaged to define the low, mean, and peak flows under various climatologic and topographic conditions.

In order to achieve a better understanding of the principles of flow patterns in the coastal area, more streamflow gaging stations should be developed. Very few discharge stations are included in the coastal areas, and determination of mean flows generated with WRPA's 8, 9, and 10 was a particular problem in the preparation of data for this study.

The data collected at gaging stations where discharge records are obtained by use of a water-stage recorder and a stage-discharge relationship, combined with intermittent discharge measurements, are sufficient for use in computing peak flow, low flow frequency, and duration data. Other data collected at crest-stage gage and peak flow measurement stations are useful but are insufficient for computing low flow frequency or duration data. In general, there is a lack of low flow data especially in the smaller drainage basins where changes in land-use patterns and climate could appreciably affect low flows. Low flow frequency information is of particular importance in providing a basis for the design of water supply reservoirs and systems for disposal, irrigation, and fish and wildlife propagation. The USGS system of placing daily discharge data in digital storage for later use in computing specific statistical information from these data should be expanded to include all streamflow and stage gaging stations within the region.

Studies using streamflow and stage data should attempt to further determine the effects of climatic, topographic, and man-made changes on streamflow characteristics of major basins. The effects of land-use

changes, agricultural practices, watershed protection measures, and the effects of urbanization on streamflow characteristics and natural basin runoff should be evaluated.

Flow Velocity

Few time of travel investigations have been undertaken and completed on streams in the Lower Mississippi Region. Those completed for streams in WRPA 7 are the only ones published to date. The remainder of such data used in this study were derived from preliminary sources. On some streams, flow velocities were derived for rather high flows. The most important time of travel data is that derived for condition of low flow. Time of travel information should be derived for the Mississippi River and its main tributary streams. Investigations should also be undertaken on small streams which may be affected by pollution from any source. The time of travel data should be determined for various river stages and for various stations along the stream so that a realistic evaluation of the capacity of the stream to assimilate waste at all ranges of flow can be established. Time of travel investigations during periods of flooding would be useful in determining the effect that channel improvement projects have on stream velocities and times of concentration, and on peak flows generated in the basins.

Water Use Data

Adequate information on water use is basic to the development of plans and programs for management of the region's water and related resources. The use of water has a pronounced effect on the supply and demand relationship because some uses deplete the supply while others do not. The amount of water diverted from the region's streams is of great importance; of equal importance is the amount returned directly or indirectly to the source of supply and the quality after use.

A particular problem encountered during the comprehensive study related to withdrawal and consumption of water by the power industry. Data compiled by one agency disagreed widely with data used by another agency. Inventories of the amount of water diverted from the region's streams and the amount consumed should be made by more systematic and standardized methods with responsibility for collection of the water-use data delegated to a single agency to avoid misinterpretation and duplication of effort.

Water Quality Data

A critical need exists to establish criteria for quantification of accurate water quality data covering a full range of pollutants, especially stressing non-BOD constituents such as heavy metals, temperature, odor, color, phenolics, nutrients, toxics, insecticides and pesticides, dissolved solids, and exotics.

STUDIES

Studies pertaining to the management, development, and use of the water and related land resources of the Lower Mississippi Region range from this comprehensive framework study to special studies of specific problem areas. More than 60 studies of varying type and scope are currently underway and should generally be completed within the 1970-1980 time frame. In addition to these, others are needed to provide basic planning data and sufficiently detailed information for future authorization of specific water resource developments.

There is under consideration a reconnaissance level (Level B) study for the State of Mississippi to identify and recommend plans and programs to be pursued by Federal, State, and local entities, and to provide a basis for subsequent implementation studies. The state-wide study would cover all of WRPA's 4 and 7 and small portions of WRPA's 3 and 8 in the Lower Mississippi Region.

General Investigations

Traditional Studies

Authorized Federal agency feasibility studies for the purpose of project authorization or development of plan implementation in the region include numerous single purpose and multipurpose studies. The authorized studies are summarized by planning area and study purpose in table 159. Needs for future studies are summarized in like manner in table 160.

Urban Studies

Studies for the purpose of formulating programs to solve specific urban water problems and to serve as a catalyst for solving other related urban problems have been authorized for the Pine Bluff Metropolitan Area in Arkansas (WRPA 5), the New Orleans-Baton Rouge Metropolitan Area in Louisiana (WRPA's 9 and 10), and the Memphis Metropolitan Area in Tennessee, Arkansas, and Mississippi. Both the Pine Bluff and New Orleans-Baton Rouge studies are underway, with estimated completion in 1977. Needs for additional urban studies are summarized by WRPA in table 161.

Waste Water Management Studies

Studies for the purpose of formulating programs to solve urban waste water problems and to serve as a catalyst for solving other related urban problems are needed in WRPA's 4 and 5. These needs are summarized in table 162.

Table 159 - Authorized Traditional Type General Investigation Surveys, Lower Mississippi Region

Remarks	Study underway. Completion not scheduled.	Study underway, Estimated completion 1975. Not started.	Study underway. Completion not scheduled. Not started.	Not started.	Study underway. Purposes include flood control, water supply, and fish and wildlife. Estimated completion 1975.	St St	Study underway. Purposes include navigation, power, fish and wildlife, and recreation.
Study Purpose and Location	Navigation Navigation Mississippi River, Baton Rouge to Natchez, La. and Miss.	Flood Control Eight Mile Creek, Ark. Laconia Circle, Ark.	Mississippi River, Phillips Co., Ark. St. Francis River, Ark. Fish and Wildlife	St. Francis River, Ark. and Mo.	Bayou Meto Basin, Ark.	St. Francis River below Wappapello, Mo. and Ark. St. John's Bayou and New Madrid Floodway, Mo.	White River Navigation to Batesville, Ark.

Table 159 - Authorized Traditional Type General Investigation Surveys, Lower Mississippi Region

•		
ont'd)		

WRPA 3

Study Purpose and Location

Flood Control
Columbus to Hickman, Ky.
East Bank Levees, Tenn. and Ky.
Wickliffe to Columbus, Ky.

Multi-Purpose Bayou DuChien, Ky. Hatchie River and Tributaries, Tenn. and Miss. Mississippi River at Memphis, Tenn.

Nonconnah Creek, Tenn.

Obion and Forked Deer Rivers and Tributaries, Tenn. and Ky. Wolf, Loosahatchie Rivers and Nonconnah Creek, Ky.

Remarks

Study underway. Completion not scheduled.

Completion not scheduled.

Study underway.

Not started.

Study underway. Purposes include flood control, recreation, and fish and wildlife. Completion not scheduled.

Study inactive. Purposes include flood control, recreation, and fish and wildlife.
Study underway. Purposes include navigation

and recreation. Estimated completion 1975. Study underway. Purposes include flood control, fish and wildlife, and recreation. Estimated completion 1974.

completion 1974.
Study underway. Purposes include flood control, fish and wildlife, recreation, water quality, water supply, and drainage. Estimated completion 1976.

Study underway. Purposes include flood control, fish and wildlife, and recreation. Completion not scheduled.

Table 159 - Authorized Traditional Type General Investigation Surveys, Lower Mississippi Region (Cont'd)

Remarks		Study underway. Estimated completion 1975.	Study underway. Purposes include flood control, power, fish and wildlife, drainage, irrigation, recreation, navigation, water supply, and water quality. Estimated completion 1978.		Study inactive.	Study inactive. Purposes include flood control,
Study Purpose and Location	WRPA 4	Navigation Vicksburg Harbor, Miss.	Yazoo Basin, Miss.	WRPA 5	Flood Control Columbia, La.	Multi-Purpose Little Missouri River Basin

Saline River, Ark.

Ouachita Basin

Study inactive. Purposes include flood control, power, recreation, fish and wildlife, water

supply, and water quality.
Study underway. Purposes include flood control, power, fish and wildlife, navigation, irriga-

Table 159 - Authorized Traditional Type General Investigation Surveys, Lower Mississippi Region (Cont'd)

Study Purpose and Location	Remarks
WRPA 6	
Navigation Lake Providence, La.	Study underway. Estimated completion 1977.
WRPA 7	No studies authorized.
WRPA 8	
Flood Control Amite River and Tributaries, La.	Study inactive.
Navigation Bayou Manchac and Amite River, La.	Study inactive.
Louisiana Coastal Area	Study underway. Covers coastal areas in WRPA's 8, 9, and 10. Purposes include hurricane protection, land building, and other purposes. Estimated completion 1979.
WRPA 9	
Flood Control Rapides, Boeuf, Cocodrie, La.	Study underway. Estimated completion 1975.
Catahoula - Charenton, La. Catahoula - Charenton, La. Culf Intracoastal Waterway High Level Crossing, La.	Study underway. Estimated completion 1975. Study underway. Covers areas in WRPA 10. Estimated completion 1976.

Table 159 - Authorized Traditional Type General Investigation Surveys, Lower Mississippi Region (Cont'd)

Table 159 - Authorized Traditional Type General Investigation Surveys, Lower Mississippi Region (Cont'd)

Remarks		Study underway. Purposes include flood control and shore protection. Estimated	Study underway. Purposes include flood control and hurricane protection. Estimated	Study underway. Estimated completion 1977.
Study Purpose and Location	WRPA 10 (Cont'd)	Multi-Purpose Lake Pontchartrain - North Shore, La.	West Bank of Mississippi River at and in the vicinity of New Orleans, La.	Bank Stabilization Barataria Bay Waterway (Dupre Cut), La.

Table 160 - Needs for Future Traditional Type General Investigation Surveys, Lower Mississippi Region

Remarks
1 Location
y Purpose and
Stud

WRPA 1

Multi-Purpose Mississippi River Floodway, Cairo to Gulf

Purposes include recreation and fish and wildlife.

Purposes include flood control, recreation,

power, and others.
Purposes include fish and wildlife and

recreation.
Purposes include irrigation and others.
Purposes include fish and wildlife, recreation, and irrigation.

WRPA 2

Multi-Purpose St. Francis Basin, Ark.

Bayou Des Arc, Ark.

Srand Prairie Review, Ark. Horseshoe Lake, Ark.

WRPA 3

Flood Control
Horn Lake, Miss.
Navigation
Mississippi River, West. Tenn.

468

Table 160 - Needs for Future Traditional Type General Investigation Surveys, Lower Mississippi Region (cont'd)

Remarks			Purposes include flood control, recreation, fish and wildlife, and water quality.
Study Purpose and Location	WRDA 5	Flood Control Lower Red, Black, and Tensas Rivers, La. Multi-Purnose	Larto Lake-Saline Lake Area, La.

WRPA 7

	Miss.
	River,
Multi-Purpose	Homochito River-Buffalo

Comprehensive study to include investigation of bank caving in these river basins.

Flood Control Amite River near Denham Springs, La. Navigation Bayou Sorrel Lock, La. Port Allen Lock, La.

WRPA 9

Flood Control
Bayou Latenache, La.
Navigation
Bayou Boeuf, La.
Freshwater Bayou, La.
Vermilion River, La.

WRPA 8

Table 160 - Needs for Future Traditional Type General Investigation Surveys, Lower Mississippi Region (cont'd)

Study Purpose and Location

Remarks

WRPA 9 (Cont'd)

Multi-Purpose Cameron-Creole, La. Louisiana Intracoastal Seaway

Lower Calcasieu River Basin, La.

Purposes include flood control and hurricane protection.
Purposes include navigation and fish and

wildlife.
Purposes include flood control, navigation,
water supply, hurricane protection, salt-water
intrusion, and fish and wildlife.

WRPA 10

Navigation
Bayou Bonfouca Waterway,
Empire to the Gulf, La.
Hurricane Protection
Boutte and Vicinity, La.
Buras-Port Sulphur, La.
Lafitte and Vicinity, La.
Larose to Golden Meadow, La.
Westwego and Vicinity, La.

Table 160 - Needs for Future Traditional Type General Investigation Surveys, Lower Mississippi Region (cont'd)

Remarks		Purposes include flood control and hurricane	protection. Purposes include hurricane protection and	Water supply. Purposes include hurricane protection and	Purposes include hurricane protection and flood control.
Study Purpose and Location	WRPA 10 (Cont'd)	Multi-Purpose Bayou Chinchuba-Castine, La.	Houma and vicinity, La.	Morgan City and vicinity, La.	Slidell and vicinity, La.

Table 161 - Needs for Future Urban Studies, Lower Mississippi Region

Study Location	Time Frame
WRPA 3	
Jackson-Madison Co., Tenn.	1970-1980
WRPA 4	
Greenwood, Mississippi Greenwood, Mississippi	1970-1980 1980-2000
WRPA 5	
Monroe, Louisiana	1980 - 2000
WRPA 9	
Alexandria Metropolitan Area, La. Lafayette Metropolitan Area, La. Lake Charles Metropolitan Area, La.	1970-1980 1970-1980 1980-2000

Table 162 - Needs for Future Waste Water Management Studies, Lower Mississippi Region

Study Location	Time Frame	
WRPA 4		
New Albany, Miss. Vicksburg, Miss.	1980-2000 1980-2000	
WRPA 5		
Camden-Calion Area, Ark. Hot Springs, Arkadelphia Area, La.	1980-2000 1980-2000	

Special Continuing Authorities

Navigation

Four studies in the Lower Mississippi Region are being conducted under authority of Section 107 of the 1960 River and Harbor Act, as amended. These include: (1) Caruthersville, Missouri, in WRPA 2, (2) Mississippi River below Commerce, Missouri, in WRPA 2, (3) Rosedale Harbor, Mississippi, in WRPA 4, and (4) Bayou Barataria, Bayou Perot, Louisiana, in WRPA 10. Estimated completion of the first three studies is 1974, the other 1975.

Flood Control

Eleven ongoing flood control studies are being conducted under authority of Section 205 of the 1948 Flood Control Act, as amended. The ongoing Section 205 studies are summarized in table 163. Needs for future studies under that authority are given in table 164.

Table 163 - Current Flood Control Studies Under Authority of Section 205 of the 1948 Flood Control Act, as Amended, Lower Mississippi Region

Study Location	Estimated Completion
WRPA 2	
Drinkwater Sewer, Mo. Inter-River D.D., Mo. Jonesboro, Ark. Long Lake, Ark. Martin's Branch, Ark.	1975 1974 1975 1974 1975
WRPA 3	
Huntingdon, Tenn. North Fork Big Creek, Tenn. Southaven, Miss.	1974 1975 1975
WRPA 4	
East Bank, Yazoo City, Miss., Mile 73 Hatcher Bayou and Durden Creek, Miss. Lead Bayou, Miss.	1974 1975 1974

Table 164 - Need for Future Flood Control Studies Under Authority of Section 205 of the 1948 Flood Control Act, as Amended, Lower Mississippi Region

Study Location	Time Frame
WRPA 3	
Cowpen Creek, Miss.	1970 - 1980
WRPA 8	
Bayou Gross Tete - Bayou Portage, La. New River near Gonzales, La. Tickfaw, Nantalbany, Ponchatoula	1970 - 1980 1980 - 2000
Rivers, La.	2000-2020
WRPA 9	
Calcasieu River near Oakdale, La.	1970-1980

Flood Plain Information Studies

The delineation of flood problems, including descriptions of the extent, depth, probability, and duration of historic and potential floods, is currently needed for 68 communities in the region. A WRPA summary of these communities is given in table 165.

Table 165 - Needs for Future Flood Plain Information Studies, Lower Mississippi Region

Communities	Planning Area (WRPA)									
	2	3	4	5	6	7	8	9	10	Region
Total Number	22	6	5	5	1	1	8	16	4	68

Needs for Flood Plain Information Studies in addition to those listed will probably arise in the future. Related flood insurance studies should be made throughout the region as the need arises for such studies.

Other Special Studies

Studies Underway

Flood Control. Special studies underway in connection with the ongoing Mississippi River and Tributaries Project include: (1) a drainage study for Craighead and Green Counties, Arkansas, in WRPA 2, (2) a levee study in the vicinity of Tiptonville, Tennessee, in WRPA 3, and (3) an analysis aimed at defining stage increases on the Mississippi River as a result of operation of pumping plants which are a part of the tributary flood control feature of the MR&T Project (tentative conclusions are that stage increases are insignificant). Estimated completion of both studies is 1975. A special flood control study of Fifteen Mile Bayou, Arkansas, in WRPA 2, should be completed about 1974.

Coastal and Estuarine. Two authorized studies, the Atchafalaya Water and Land Resources Study and the Louisiana Coastal Area Study, listed on table 159, may lead to the authorization of projects for the solution of the water and related land resources problems affecting the Louisiana Coastal Zone and the Atchafalaya Basin. The results of these studies and others already completed in this important portion of the Lower Mississippi Region should be consolidated into one report and kept current by updating once every 5 years. Continued emphasis should be placed on ways in which the productive capacity of the estuaries can be maintained at the highest level possible concomitant with continued mineral extraction and its attendant development.

Dam Safety. An inventory of dams in Louisiana and Mississippi is underway. Estimated completion of the inventory is 1975.

Strip Mining. A study of strip mining and associated water pollution in the Lower Mississippi Region is in progress. The study should be completed in 1974.

Studies Needed

Flood Control. A drainage study is needed at Portageville Bay, Missouri, in WRPA 2, in connection with the ongoing Mississippi River and Tributaries Project.

Irrigation. A specific study should be directed at determining best application time for irrigation water in the region and development of more efficient irrigation systems. The study should investigate specific land classification parameters such as Sodium-Absorption Ratio and Hydraulic Conductivity, and should evaluate the region's water supplies for irrigation suitability. In addition, the study should assess the overall impact of irrigation on water quality and, as a lesser objective, it should develop methods of improving weather forecasting as it might prove beneficial to irrigation.

Water Quality. A study should be undertaken and oriented toward pointing the way for specific State-Federal actions to quantify inorganic

pollutants, define ways in which public funds can be used most advantageously to supply cost sharing for pollution abatement works, establish definitive continuing water quality monitoring systems, recommend practical measures to insure the maintenance of clean water, and recommend legal, social, and institutional changes needed to insure attainment of the above. Specific subjects which should be investigated include:

- 1. Municipal waste source inventory that includes data on population served, design flow, plant efficiency data, and bacteriological controls. Also included should be a listing of industries that discharge to municipal sewers.
- 2. Industrial waste source inventory that includes four-digit SIC classification, number of employees, general manufacturing processes, commodities produced, quantity of discharge, and designation of discharge point (municipal sewer, receiving stream, etc.).
- 3. Agricultural waste source inventory that includes feed lots, irrigation return flows, rural sanitation, pesticides, fertilizers, and erosion.
- 4. Water quality monitoring on a long-term continuous basis at key locations on streams, lakes (reservoirs), and coastal waters.
- 5. Cost analyses of waste treatment practices and levels of treatment attainable by the various treatment practices.
- 6. Research into the applicability and feasibility of water quality control through effluent component reclamation, increased industrial efficiency, and other means of lessening industrial effluent concentrations.
- 7. Research into sediment transport relative to agricultural chemicals and fertilizers, how these pollutants adhere to soil particles, time of travel, and effects on downstream water quality.

Sediment and Erosion Control. More detailed studies of the effects of changes in streamflow patterns on the sedimentation of streams in the region should be made. The chief sources of erosion should be identified, and estimates of the quantities of sediment yields from each source should be derived. This information will be of great value in formulating measures to reduce or control sediment and erosion in streams and in the planning of future channel modification, flood control, and navigation projects.

Ground Water. Ground-water investigations are needed throughout the region to accurately define the potential yield of all aquifers. Although present ground-water withdrawals in most areas can be increased, the practical limits of development must be determined for better planning and management. Reconnaissance studies are needed to better define the

areal extent, hydraulic characteristics, potential yield, quality of water, and the effects of withdrawals on all aquifers. Detailed studies are needed in present and potential areas of large withdrawal to avoid problems of inadvertent local overdevelopment of ground water. Other objectives of such investigations should include:

- 1. Studies for a better understanding of the ground-water/surface-water relationship to permit evaluation of the effects of a changing environment.
- 2. The effects of changes in vegetation resulting from urbanization and land clearing for farming on evapotranspiration, infiltration, runoff, and ground-water discharge need to be studied. How changes in these parameters affect the potential ground-water yield in the region should be assessed.
- 3. Work relating to the practicability of artificial ground-water recharge of shallow aquifers should be continued and should be expanded in scope to include all aquifers. Investigations should include methods of recharge by flooding as well as injection through wells and should, as a joint effort with water quality studies, address the possibility, practicability, and feasibility of underground disposal of wastes.
- 4. Investigations to determine the potential yield of saline ground water should be continued in more detail in those areas where initial studies have been made and studies are needed for the remainder of the region. The feasibility of mixing saline and fresh water to increase the supply of potable water should be determined.
- 5. The Quaternary alluvial and terrace deposits warrant special attention as the primary source of ground water in the region, accounting for about two-thirds of the potential supply. The aquifers in the Quaternary deposits are adaptable to an annual cycle of withdrawal and replenishment. Withdrawals may be made up to the limit of the average annual recharge. Investigations are needed to define the recharge rate (including variations by area and conditions of precipitation), the effects of withdrawals on streamflow, and the effects on the ecology of the region.

Land Use, General. An accurate expression of land use is needed especially as regards lands covered by lakes, ponds, and streams. Satellite mapping should provide the base for accurate land use definition.

Rampant contradiction exists between State, Federal, and other agency information concerning large water areas throughout the region. Nearly every publication gives a different surface area for these water bodies.

There is presently no inventory of ponds in the region. Ponds are a significant resource for fish and wildlife and to some extent recreation as it relates to fishing. A study should be conducted not only to inventory the region's ponds, but also to investigate ownership with a primary objective of outlining ways in which more ponds can be made available for use by fishermen and recreationists.

As with ponds, there exists no accurate data on the region's streams. It appears that there are as many as 89,400 miles of streams throughout the region, but very little is known about them. A stream inventory should be made to determine the following stream characteristics:

- 1. Whether a stream is natural or has been modified by man. If the stream was modified, the inventory should show the extent of the modification.
- 2. Stream data, including stream width, depth, and length, and streambank vegetation should be generally described for a strip approximately 200 feet wide adjacent to each bank. Other parameters which should be studied are stream water quality, accessibility of the stream for use by the public, and aesthetic qualities of the stream.
- 3. The land-use investigation should be assigned a single agency, but should be a coordinated effort. At the present time, several States are in the early stages of development of land-use plans, but each has its own system for classifying land use. All State efforts should be coordinated and a standard system of land-use classifications should be adopted regionwide. The study should also accurately define ownership of the region's lands and expand on this framework study regarding means of making lands available to simultaneously satisfy multiple needs as food and fiber, recreation, fish and wildlife, and aesthetics.

Land Use, Main Stem Mississippi River. A comprehensive land-use plan is needed for the lands lying adjacent to the main stem of the Mississippi River in WRPA 1. A study with this objective should be started immediately to determine the possibility of establishing a national park and multi-purpose recreation area along the river from St. Louis to New Orleans, with special emphasis on designing intensive use recreation areas in proximity to the region's major population centers. The study's primary objective should be the formulation of a comprehensive coordinated land-use plan by a single agency, to be coordinated with the States and cities along the river, taking due cognizance of all studies and investigations which have been made to date by Federal and State agencies. The study should include information similar to that available on the Upper Mississippi River.

Land Use, Forests. Studies are needed of means to implement an analytic system for continuous inventory of the forest resources within the region, with emphasis on forest conditions. present production, and

potential production. This study could be an element in the overall land-use study discussed above. Such a system should provide the following information on the effects of clearing forest lands:

- 1. How land clearing affects the ability of the region's forest industries to sustain themselves now and in the future, and how the regional economy will be affected should land clearing continue.
- 2. How land clearing relates to flooding within the region, specifically whether flood problems are aggravated thereby and how much.
- 3. How clearing affects the environment, specifically investigating parameters such as wind velocity, temperature, wildlife, carrying capacity, soil and water loss, and regenerative capacity of the forest.

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The Lower Mississippi Region has adequate natural resources to support substantial economic growth. Projections for the period 1970-2020 indicate that regional population will increase 62 percent; employment will increase 77 percent, and average earnings per worker will increase 331 percent; agricultural production will double, petroleum output will quadruple, and manufacturing will expand tenfold. In line with this growth, there will be increasing demands upon the water and related land resources of the region. The major needs and problems are concerned with water supplies for municipal, industrial, thermoelectric power generation, energy production, and irrigation; and developments for navigation, flood control, land treatment and management, fish and wildlife habitat, and water-oriented outdoor recreation.

The water supply problems are related mostly to resource distribution, rather than availability. As requirements increase, careful planning will be required to insure the availability of supplies when and where needed. The maintenance of water supplies for manufacturing purposes will be especially important to the economic growth of the region. The maintenance and improvement of navigation facilities will be similarly important.

The existing navigation system in the Lower Mississippi Region is a major asset to the economic stability of the Nation. It is indispensable to the movement of inland waterways commerce to and from the heartland of the Nation, and provides a major outlet to world markets. The second ranked port facility in the United States is located within the region at New Orleans, Louisiana, and in 1970 one out of every seven tons of the Nation's waterborne commerce was moved on waterways and through ports in the region. In terms of ton-miles of traffic, this amounted to a little over one-fourth of the United States total that year. Waterborne commerce tonnages forecast for the years 1980 and 2020 will be about 138 and 467 percent, respectively, of 1970 levels.

This region currently supplies from one-fourth to one-third of the Nation's energy in the form of petroleum, natural gas, and natural gas liquids. The continued and careful development of these and other forms of energy (electric power) will become increasingly important as energy requirements increase and available resources dwindle. Development of energy sources must continue, but such development must also incorporate measures which minimize adverse environmental impacts.

Extensive flood control improvements have been made in the Lower Mississippi Region, but flooding still is and will continue to be a

serious problem. Average annual flood damages to urban and built-up developments alone, are estimated at \$40 million, based on 1970 conditions. These damages occur in densely populated urban areas such as New Orleans, Louisiana, and Memphis, Tennessee, as well as numerous smaller cities and communities. Average annual damages which occur in the outlying rural areas are estimated at \$172 million. In terms of the total problem, approximately half the entire area within the Lower Mississippi Region is subject to flooding. Most of the flood-prone lands are used for crop production and pasture; and unless additional measures are undertaken, extensive flood damages on principal streams and in upstream watersheds will increasingly hamper the region's capability to produce the food and fiber essential to the economy and wellbeing of the region and Nation.

The Coordinating Committee is confident that the region will be called upon to supply a greater portion of the Nation's food in the future. Moreover, world conditions in 1974 - vastly different from those at the beginning of the study - indicate that exports of agricultural products beyond 1980 will probably increase at a greater rate than that assumed for this study. To meet this increased need for food will require continued and accelerated planning for flood control and other resource development measures to ameliorate the major agricultural losses attributable to flooding. It will further require continued institution of land treatment and drainage measures, sediment and erosion control measures, and the use of supplemental irrigation.

A major portion of the region's structural measures for flood control include levees and floodwalls, channel improvements, pumping stations, and reservoirs constructed in connection with the Mississippi River and Tributaries Project. This project alone prevented an estimated \$13 billion in flood damages in 1973, even though the overall project was less than 50 percent complete. The damages prevented in 1973 were more than 6 1/2 times the amount of funds expended on this project to that time. However, more than \$700 million in damages still occurred. Accelerated completion of this project and upstream watershed projects, will be a critical factor in maintaining the region's capability to supply food and fiber, petroleum products, and other items of commerce. Until this critical project is complete, the region has no protection against the project design flood, and the potential for a disastrous flood event will continue to exist. Without question, flood control on the Mississippi River and tributaries is the region's most pressing problem.

The discharge of raw or inadequately treated municipal and industrial wastes is seriously degrading the quality of water in some reaches of the Mississippi River and its tributaries. There are also problems from nonpoint sources of agricultural pollution and nonbiodegradable wastes discharged to streams. If these problems are to be satisfactorily solved, there must be a regionwide water quality program that includes orderly and sustained monitoring, increased levels of waste

treatment, increased efficiency in the operation of treatment facilities, and increased enforcement of State stream standards. The nature and magnitude of pollution problems associated with nonbiodegradable wastes must be better defined, and adequate control measures devised.

Conversion of land to satisfy urban requirements, cropland and pasture needs, and other needs related to predominately open land areas, will infringe upon the satisfaction of needs for forested wildlife habitat. Some forested areas can be restricted to primary use for wildlife habitat, but most will have to be carefully managed under multiple-use sustained yield principles to satisfy both wildlife and food and fiber requirements of the region.

Demand for water dependent and water-oriented recreation opportunities on lakes and reservoirs large enough for boating, water skiing, and the like will exceed available supplies within the near future. Part of those demands can be met through more intensive use of existing lakes and reservoirs, and multiple-use of reservoirs that will be created for flood control, water supply, power, or some other purpose, and part can be met through the construction of single-purpose recreation projects. But even then, there is limited potential for developing large lakes in the region, and some of the needs will go unmet unless recreationists are willing to accept a far lesser quality water recreation experience than assumed for this investigation, or to substitute other recreation experiences.

Many opportunities for the enhancement, conservation, and preservation of environmental values, coastal and estuarine resources, archeological resources, and public health exist in the region. These opportunities are recognized in the comprehensive framework program and timely implementation of that program can contribute substantially to meeting the requirements of the region as foreseen at this time. However, it must be recognized that the framework program is based on long-range assumptions and projections, and that periodic reviews and updating at appropriate intervals will be required to keep it abreast of future changes in national, State, and local conditions.

Implementation of the framework program in an effective manner will require coordinated and expeditious action at all levels of governemnt and the private sector. It will require further detailed studies of sufficient scope to provide the basis for authorization of specific projects, and it will require meaningful and sustained local, State and Federal financial support. In some areas, new legislative support will also be required.

RECOMMENDATIONS

In light of study findings, the Coordinating Committee recommends:

- 1. That the comprehensive program summarized in table 154 and discussed in this appendix be adopted as the framework for the development, management, and beneficial use of the water and related land resources of the Lower Mississippì Region.
- 2. That this report be the base document for further detailed authorization reports covering component plans of the framework program.
- 3. That Federal, State, and local plans and programs be implemented as necessary to support the economic growth projected for the National Income Objective and to make contributions to the Environmental Quality Objective. Special emphasis should be given to the satisfaction of needs for food and fiber, flood control, water supply, inland navigation, sediment and erosion control, land drainage, fish and wild-life conservation and enhancement, outdoor recreation and water quality control, and for enhancement, conservation, and preservation of environmental values, archeological and historical resources, and public health.
- 4. That ongoing studies and projects for management and development of the region's water and related land resources be expeditiously funded to completion and accelerated wherever possible.
- 5. That plans for improving navigation waterways and port facilities to meet short-terms transportation needs associated with projected economic growth be expedited.
- 6. That satisfaction of future needs of the mineral industry, especially those for petroleum, natural gas, and natural gas liquids, be given high priority through the provision of (1) reasonable access to mineral sources for both exploration and development purposes, (2) dependable water supplies based upon competitive principles, and (3) policies and programs encouraging domestic minerals development, supported by meaningful research efforts, and with due consideration to long range social and environmental impacts.
- 7. That studies be accelerated to locate potential energy sources, to determine new locations for electric power plants and transmission facilities, and to devise new technologies for blending developments for energy generation with the natural environment.
- 8. That mining activities incorporate such measures as are necessary to control the discharge of pollutants into streams and, in the case of surface mining, provide measures to restore the topography and

vegetation of excavated areas to original conditions, insofar as possible, upon cessation of the mining activities.

- 9. That presently authorized flood control projects for principal streams and upstream watersheds be accelerated to meet short-term needs, with special emphasis on accelerated completion of the Mississippi River and Tributaries Project.
- 10. That flood plain information studies be accelerated, and that joint action be taken by Federal, State, and local agencies to establish and implement appropriate flood plain management programs.
- 11. That the water quality improvement plan for the region be implemented with high priority. This plan seeks solutions to present water quality problems and includes measures to alleviate the effects of additional development to the extent practicable. Recognizing that the formulated water quality plan is incomplete in that the region's most serious water quality problem, that of pollutants other than 5-day BOD and bacteria, is not included for reasons explained herein, an accelerated effort should be made to satisfactorily formulate a total water quality plan for the Lower Mississippi Region.
- 12. That Federal and State programs to solve water pollution problems be adequately funded; techniques for achieving higher levels of wastewater treatment be improved; State stream quality standards be enforced; measures be developed for controlling non-point sources of agricultural pollution; and that non-BOD pollutants be studied in sufficient detail to define the magnitude of the problem and devise adequate control measures.
- 13. That an extensive land use and capability analysis employing satellite photographs and/or other techniques be made to accurately define current use and enhance prospects for achieving the best future use of the region's land resources.
- 14. That a land management program be pursued for purposes of coordinating future land uses, matching land use to land capability, and instituting proper land treatment and protection measures. Land treatment and management, sediment and erosion control, and land drainage programs should be accelerated to preserve and enhance the productive capacity of the land resource base.
- 15. That studies of presently irrigated lands and potentially irrigable land be refined in sufficient detail to insure proper management and best use of the region's land and water resources for future developments.
- 16. That effective land-use policy and planning be implemented to insure preservation of urban open and green space, unique natural areas,

archeological and historical resources, scenic rivers, streams and lakes, and to insure the protection of fish and wildlife, including rare and endangered species.

- 17. That development of improved plant and crop species, fertilizers, and disease control be continued; that management practices such as clipping, proper cattle/acre ratio, and supplemental irrigation be continued; and that the use of feed lots be increased to help meet beef and veal production requirements.
- 18. That intensive forest management including timber stand improvement practices, increased protection from insects, fire and disease, and improved forest product utilization be accelerated.
- 19. That regionwide information and education programs be initiated to make all governmental agencies, private organizations, and individual citizens aware of the problems and needs in water and related land resources, so that coordinated action in regard to planning, development, and protection of all the region's natural resources can be attained. Special consideration should be given to educating landowners to the need for allowing cropping patterns to change so as to approach maximum production from each acre under cultivation; making more on-farm ponds available to the general public for fishing purposes; and for allowing the general public better access to scenic areas, to private lands for hunting and recreation, and to other multiple-use areas.
- 20. That continued emphasis be placed on formulation of improved policies and procedures for evaluating the feasibility of water and related land resource developments, for evaluating associated environmental aspects, and for reducing the time lag between authorization and implementation of feasible water and related land resource developments.
- 21. That reservoirs for flood control, power, water supply, and related purposes be designed and operated to provide maximum multipleuse within the reservoir basin and to provide optimum downstream benefits; that these provisions be enhanced through periodic review and updating of reservoir operations; and that single-purpose reservoirs for recreation be constructed to meet needs associated with the projected economic growth.
- 22. That sufficient land area and water supply be managed to satisfy primary use needs for fish and wildlife purposes; and that additional land areas and water supply be managed in such a manner as to yield maximum fish and wildlife benefits, but not to the exclusion of other compatible or complementary uses.
- 23. That environmental control programs be developed at all levels of government to support present programs which protect the public against health hazards from air, water, and vector-borne diseases.

- 24. That a study be made to determine the adequacy of Federal and State laws and policies to carry out needed water resource programs and make recommendations concerning new legislation and policies that may be required. Special consideration should be given to legislation and policies concerning plaintiff requirements, legal responsibility, and bonding requirements in environmental disputes.
- 25. That the additional data collection and studies discussed in this appendix be made as soon as practicable by appropriate entities to provide a more comprehensive data bank from which more effective detailed planning can be done.
- 26. That the well-being of the people remain the principal criterion in formulating specific project proposals for management of the region's resources.
- 27. That each of the affected and concerned Federal and non-Federal agencies make periodic review and update of the program components for which it is or may be, under law, assigned responsibility to maintain the framework outlined herein as a viable planning tool in light of changing regional and national priorities.
- 28. That components of the framework program be evaluated and implemented in a comprehensive, coordinated, and timely manner with due regard to the multi-objectives, system of accounts, and other criteria defined in the Water Resources Council's Principles and Standards published in the Federal Register, September 10, 1973.
- 29. That implementation of the framework program be funded at a level commensurate with needs.