AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1

1 - 10. (Canceled)

1	11. (Currently Amended) A communications system for providing bi-
2	directional data communications on a backplane wherein the backplane includes a
3	communications channel, the system comprising:
4	a first transmitter module, coupled to the communications channel, to
5	encode a first user data stream into a first coded data stream and transmit the first
6	coded data stream through the communications channel, the first transmitter
7	module includes equalization circuitry having at least one tap wherein the tap
8	includes an adjustable coefficient;
9	a first receiver module, coupled to the communications channel, to receive
10	the first coded data stream and to decode the first coded data stream into the first
11	user data stream, wherein the first receiver module determines information which
12	is representative of the adjustable coefficient of the tap;
13	a back channel, coupled to the first transmitter module and the first
14	receiver module, to provide back channel data from the first receiver module to
15	the first transmitter module wherein the back channel data includes information
16	representative of the adjustable coefficient; and
17	an adjustment mechanism in the first transmitter module, wherein while
18	the first coded data stream is being transmitted from the first transmitter module

9	to the first rec	eiver module the adjustment mechanism is configured to		
20	dynamically			
21		determine an adjustment coefficient for the adjustable tap based on		
22	inform	nation from the back channel and		
23		apply the adjustment coefficient to adjust the tap.		
1	12.	(Previously Presented) The communications system of claim 11		
2	wherein the b	ack channel is external from the communications channel.		
1	13.	(Previously Presented) The communications system of claim 11		
2	wherein the back channel is a shelf software loop.			
1	14.	(Previously Presented) The communications system of claim 13		
2	wherein the sl	helf software loop interrogates the first transmitter module and the		
3	first receiver i	module before providing information representative of the adjustable		
4	coefficient.			
1	15.	(Previously Presented) The communications system of claim 11		
2	wherein the b	ack channel is physically separate from the communications		
3	channel.			
1	16.	(Previously Presented) The communications system of claim 15		
2	wherein the ba	ack channel includes a software link that coordinates		
3	communication	ons of information representative of the adjustable coefficient		
4	between the fi	irst receiver module and the first transmitter module.		

	· · · · · · · · · · · · · · · · · · ·		
2	wherein the back channel is incorporated into the bi-directional data		
3	communications on the backplane.		
1	18. (Previously Presented) The communications system of claim 17		
2	further including:		
3	a second transmitter module, coupled to the communications channel,		
4	wherein the second transmitter module encodes a second user data stream and the		
5	back channel data into the second coded data stream and transmits the second		
6	coded data stream through the communications channel; and		
7	a second receiver module, coupled to the first transmitter module, to		
8	receive the second coded data stream and decode the second coded data stream		
9	into the second user data stream and the back channel data.		
1	19. (Currently Amended) A communications system for providing bi-		
2	directional data communications on a backplane wherein the backplane includes a		
3	communications channel, the system comprising:		
4	a first transmitter module, coupled to the communications channel, to		
5	encode a first user data stream into a first coded data stream and transmit the first		
6	coded data stream through the communications channel, the first transmitter		
7	module includes an adaptive transmit equalizer;		
8	a first receiver module, coupled to the communications channel, to receive		
9	the first coded data stream and to decode the first coded data stream into the user		
10	data stream, wherein the first receiver module determines information which is		
11	representative of at least one operating parameter of the adaptive transmit		
12	equalizer;		

(Previously Presented) The communications system of claim 11

a second transmitter module, coupled to a back channel, to transmit the

17.

1

13

14

adaptive transmit equalizer to the first transmitter module via the back channel;		
<u>and</u>		
an adjustment mechanism in the first transmitter module, wherein while		
the first coded data stream is being transmitted from the first transmitter module		
to the first receiver module, the adjustment mechanism is configured to		
dynamically		
determine an adjustment coefficient for the adjustable tap based on		
information from the back channel and		
apply the adjustment coefficient to adjust the adjustable tap.		
20. (Previously Presented) The communications system of claim 19		
wherein the back channel is external from the communications channel.		
21. (Previously Presented) The communications system of claim 19		
wherein the back channel is a shelf software loop.		
22. (Previously Presented) The communications system of claim 21		
wherein the shelf software loop interrogates the first transmitter module and the		
first receiver module before providing information representative of the adjustable		
coefficient.		
23. (Previously Presented) The communications system of claim 19		
wherein the back channel is physically separate from the communications		
channel.		

wherein the back channel includes a software link that coordinates

(Previously Presented) The communications system of claim 23

24.

1

2

- 3 communications of information representative of the adjustable coefficient
- 4 between the first receiver module and the first transmitter module.
 - 25. (Previously Presented) The communications system of claim 19
- 2 wherein the back channel is incorporated into the bi-directional data
- 3 communications on the backplane and wherein the system further includes a
- 4 second receiver module, coupled to the first transmitter module, to receive a
- 5 second coded data stream, from the second transmitter module, and to decode the
- $6\,$ $\,$ second coded data stream into second user data stream and the information which
- 7 is representative of the at least one operating parameter of the adaptive transmit
- 8 equalizer to the first transmitter module via the back channel.