

Working with Sequences

Advanced ML with TensorFlow on GCP

End-to-End Lab on Structured Data ML

Production ML Systems

Image Classification Models

Sequence Models

Recommendation Systems

Recall: CNNs as feature extractors

Sequences are another common and important domain

Learn how to...

Define what sequence data is

Prepare sequence data for modeling

Apply classical approaches to sequence modeling

What is a sequence?

Temperature (F)	•••	Pressure (mBar)	Order
45		1105	1
62		976	2

Predicting coin flips

Value	Time
heads	9:01:05am
tails	9:01:18am
heads	9:01:24am

Is this sequence data?

- A. Yes
- B. No

Predicting coin flips

Value	Time
heads	9:01:05am
tails	9:01:18am
heads	9:01:24am

Is this sequence data?

- A. Yes
- B. No

Coin flips

What about natural language?

Is this sequence data?

- A. Yes
- B. No

Word	Order
The	1
language	2
spoken	3
in	4
France	5
is	6

What about natural language?

Is this sequence data?

A. Yes

B. No

Word	Order
The	1
language	2
spoken	3
in	4
France	5
is	6

Can we treat image data as a sequence?

Pixel RGB value	Pixel position
[255,255,0]	[0,0]
[255,0,255]	[0,1]
•••	

Images and traditional sequences are still similar in one respect

Movies are sequences

Types of sequence models

What sort of problem is translation?

What sort of problem is translation?

What sort of problem is image captioning?

Two hockey players are fighting over the puck.

What sort of problem is image captioning?

Two hockey players are fighting over the puck.

What sort of problem is Smart Reply?

What sort of problem is Smart Reply?

What about "Predict the next X" models?

Recommended videos to watch:

Migrating your data warehouse to Google BigQuery: Lessons Google Cloud Platform 5.6K views

Adding Machine Learning to your applications Google Cloud Platform 21K views

What about "Predict the next X" models?

Recommended videos to watch:

Migrating your data warehouse to Google BigQuery: Lessons Google Cloud Platform 5.6K views

Adding Machine Learning to your applications Google Cloud Platform 21K views

Many possible models!

Sequence-to-one

2

Observing events as a sequence

Temperature (F)	 Pressure (mBar)	Ordering Feature
45	 1105	1
62	 976	2

Observing events as a sequence

Quiz: How many rows will there be in our training set?

Quiz: How many rows will there be in our training set?

Quiz: How many rows will there be in our training set?

Price 10 minutes prior	•••	Price 1 minute prior	Price
t _o		t ₉	t ₁₀
t ₁		t ₁₀	t ₁₁
t_2	•••	t ₁₁	t ₁₂
•••	• • •	•••	•••
t seqlen-10		t seqlen-1	t seqlen

What's a good size for our sliding window?

Autocorrelation graphs can reveal dependencies

Raw sequence data versus Time

Quiz: Sometimes dependencies are known

Assuming that:

- 1. You knew the data were periodic.
- 2. Rotation speed and water pressure were constant.
- 3. The sprinkler completed 1 rotation/minute.

What would be a good choice for sliding window length?

- A. 1 minute
- B. 30 seconds
- C. 2 minutes
- D. As long as possible

Quiz: Sometimes dependencies are known

Assuming that:

- 1. You knew the data were periodic.
- 2. Rotation speed and water pressure were constant.
- 3. The sprinkler completed 1 rotation/minute.

What would be a good choice for sliding window length?

- A. 1 minute
- B. 30 seconds
- C. 2 minutes
- D. As long as possible

First try a linear model

Generating synthetic sequence data

```
def create_time_series():
    freq = (np.random.random()*0.5) + 0.1 # 0.1 to 0.6
    ampl = np.random.random() + 0.5 # 0.5 to 1.5
# -0.3 to +0.3 uniformly distributed
    noise = [np.random.random()*0.3 for i in xrange(SEQ_LEN)]
    x = np.sin(np.arange(0,SEQ_LEN) * freq) * ampl + noise
    return x
```


Real-world sequences are more complicated

Each file consists of a comma-delimited string

```
def to_csv(filename, N):
    with open(filename, 'w') as ofp:
    for lineno in xrange(0, N):
        seq = create_time_series()
        line = ",".join(map(str, seq))
        ofp.write(line + '\n')
```

```
train.csv
0.13,0.52,0.76,0.71,0.63,0.29,0.15,-0.23,-0.34,-0.38
0.27,0.32,0.63,0.63,0.8,0.75,0.63,0.23,0.18,-0.23
0.3,0.49,0.87,1.08,1.17,1.25,1.46,1.52,1.65,1.46
```


Creating an input function

```
def read dataset(filename, mode, batch size=512):
    def input fn():
        def decode csv(row):
            # row is a string tensor containing the contents of one row
            features = tf.decode csv(row, record defaults=DEFAULTS)
            # string tensor -> list of 50 rank 0 float tensors
            label = features.pop() # remove last feature and use as label
            features = tf.stack(features) # list of rank 0 tensors -> single rank 1 tensor
            return {TIMESERIES COL: features}, label
       # Create list of file names that match "glob" pattern (i.e. data file *.csv)
        dataset = tf.data.Dataset.list files(filename)
       # Read in data from files
        dataset = dataset.flat map(tf.data.TextLineDataset)
       # Parse text lines as comma-separated values (CSV)
        dataset = dataset.map(decode csv)
    return input fn
```


Compare model performance

```
eval_metric_ops = {
    "RMSE": rmse,
    "RMSE_same_as_last": same_as_last_benchmark(features, labels),
}

# RMSE when predicting same as last value
def same_as_last_benchmark(features, labels):
    predictions = features[TIMESERIES_COL][:,-1] # last value in input sequence
    return tf.metrics.root_mean_squared_error(labels, predictions)
```


Defining a linear model for time series prediction

```
def linear_model(features, mode, params):
   X = features[TIMESERIES_COL]
   predictions = tf.layers.dense(X, 1, activation=None)
   return predictions
```


Lab

Using linear models for sequences

In this lab you will be creating a linear model by completing the TODO steps in the model.py in your lab notebook.

Sometimes, it's important that models capture aspects of the real world

Regularization can constrain for sparsity.

Constrain the weights for better performance

Autoregressive ARMA models use moving averages

$$X_t = c + \sum_{i=1}^p \varphi_i X_{t-1} + \varepsilon_t$$

Defining a DNN model for time series prediction

```
def dnn_model(features, mode, params):
  X = features[TIMESERIES_COL]
  h1 = tf.layers.dense(X, 10, activation=tf.nn.relu)
  h2 = tf.layers.dense(h1, 3, activation=tf.nn.relu)
  predictions = tf.layers.dense(h2, 1, activation=None)
  return predictions
```


Lab

Using DNNs for sequences

In this lab you will be using TensorFlow Hub to create re-usable embeddings.

Locality is important for images and sequences

Quiz: Which convolution filters would be highly active at t = 4?

- A. [.5, .5, .5, .5]
- B. [.33, -.67, .33]
- C. [1.2, 1.0, .75, 1.0]
- D. [1.2, 1.0, -.75, 1.0]

Choose all that could apply.

Quiz: Which convolution filters would be highly active at t = 4?

Choose all that could apply.

Convolutional filters are pattern matchers

Quiz: Of those that were active, which is more specific?

Quiz: Of those that were active, which is more specific?

- A. [.5, .5, .5, .5]
- B. [.33, -.67, .33]
- C. [1.2, 1.0, .75, 1.0]
- D. [1.2, 1.0, -.75, 1.0]

CNNs learn a hierarchy of features

Detecting two quick drops

Steps in applying a convolution

- Flatten the input sequence.
- 2 Use conv1d to apply a number of filters to the sequence.
- 3 Use max_pooling1d to add some spatial invariance and downscaling.
- 4 Flatten the resulting output into a sequence.
- Send it through a fully connected layer with the appropriate output node.

Applying convolutions in TensorFlow

```
def cnn model(features, mode, params):
 X = tf.reshape(features[TIMESERIES COL], [-1, N INPUTS, 1]) # ?x10x1
 c1 = tf.layers.max pooling1d(
         tf.layers.conv1d(X, filters=N_INPUTS//2,
                          kernel size=3, strides=1, # ?x10x5
                          padding='same', activation=tf.nn.relu),
         pool_size=2, strides=2
       ) # ?x5x5
 outlen = (N INPUTS//2) * (N INPUTS//2)
  c1flat = tf.reshape(c1, [-1, outlen])
 h1 = tf.layers.dense(c1flat, 3, activation=tf.nn.relu)
 return tf.layers.dense(h1, 1, activation=None)
```


Lab

Using CNNs for sequences

In this lab you will complete TODOs in model.py for a CNN model.

Why didn't our CNN do much better than our DNN?

The limitations of CNNs

Handling variable length inputs and outputs

Handling variable length inputs and outputs

Cutting and padding

2 Bagging

Example: Predicting oil prices

Hour	Price
1	2
2	4
3	6
4	8
5	10
•••	

4 Hours Prior	3 Hours Prior	2 Hours Prior	1 Hour Prior	Label
2	4	6	8	10
•••	•••	•••	•••	•••

$$w = \left[\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right]$$

How do we handle a shorter input?

4 Hours	3 Hours	2 Hours	1 Hour	
Prior	Prior	Prior	Prior	
3	6	9		

Padding

Pad	3 Hours	2 Hours	1 Hour
	Prior	Prior	Prior
0	6	9	12

$$w = \begin{bmatrix} \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3} \end{bmatrix}$$

$$w = \left| \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3} \right|$$

Bagging is an alternative to padding

Order can be very important...

The

cat

sat

on

the

mat

The

mat

sat

on

=

the

cat

??

cloud.google.com