

planetmath.org

Math for the people, by the people.

equivalent condition for being a fundamental system of entourages

 ${\bf Canonical\ name} \quad {\bf Equivalent Condition For Being A Fundamental System Of Entourages}$

Date of creation 2013-03-22 16:30:02 Last modified on 2013-03-22 16:30:02

Owner mps (409) Last modified by mps (409)

Numerical id 5

Author mps (409) Entry type Derivation Classification msc 54E15 **Lemma.** Let X be a set and let \mathcal{B} be a nonempty family of subsets of $X \times X$. Then \mathcal{B} is a fundamental system of entourages of a uniformity on X if and only if it satisfies the following axioms.

- (B1) If $S, T \in \mathcal{B}$, then $S \cap T$ contains an element of \mathcal{B} .
- (B2) Each element of \mathcal{B} contains the diagonal $\Delta(X)$.
- (B3) For any $S \in \mathcal{B}$, the inverse relation of S contains an element of \mathcal{B} .
- (B4) For any $S \in \mathcal{B}$, there is an element $T \in \mathcal{B}$ such that the relational composition $T \circ T$ is contained in S.

Proof. Suppose \mathcal{B} is a fundamental system of entourages for a uniformity \mathcal{U} . Verification of axiom (B2) is immediate, since $\mathcal{B} \subseteq \mathcal{U}$ and each entourage is already required to contain the diagonal of X. We will prove that \mathcal{B} satisfies (B1); the proofs that (B3) and (B4) hold are analogous.

Let S, T be entourages in $\mathcal{B} \subseteq \mathcal{U}$. Since \mathcal{U} is closed under binary intersections, $S \cap T \in \mathcal{U}$. By the definition of fundamental system of entourages, since $S \cap T \in \mathcal{U}$, there exists an entourage $B \in \mathcal{B}$ such that $B \subseteq S \cap T$. Thus \mathcal{B} satisfies axioms (B1) through (B4).

To prove the converse, define a family of subsets of $X \times X$ by

$$\mathcal{U} = \{ S \subseteq X \times X \colon B \subseteq S \text{ for some } B \in \mathcal{B} \}.$$

By construction, each element of \mathcal{U} contains an element of \mathcal{B} , so all that remains is to show that \mathcal{U} is a uniformity. Suppose T is a subset of $X \times X$ that contains an element $S \in \mathcal{U}$. By the definition of \mathcal{U} , there exists some $B \in \mathcal{B}$ such that $B \subseteq S$. Since $S \subseteq T$, it follows that $B \subseteq T$, so T satisfies the requirement for membership in \mathcal{U} . Thus \mathcal{U} is closed under taking supersets. The remaining axioms for a uniformity follow directly from the appropriate axioms for the fundamental system of entourages by applying the axiom we have just checked. Hence \mathcal{B} is a fundamental system of entourages for a uniformity on X.