Guía 5: Paradigma de Godel

Idea

- La idea es partir de un conjunto inicial de funciones muy simples y obviamente Σ efectivamente computables, y luego obtener nuevas funciones Σ -efectivamente
 computables usando constructores que preservan la computabilidad efectiva
- Las funciones Σ -recursivas son las que se obtienen iterando el uso de estos constructores, partiendo del conjunto inicial $\{Suc, Pred, C_0^{0,0}, C_{\varepsilon}^{0,0}\} \cup \{d_a: a \in \Sigma\} \cup \{p_j^{n,m}: 1 \leq j \leq n+m\}$
- Los constructores que se usarán (y conservan computabilidad efectiva) serán:
 - Composición
 - Recursión primitiva
 - Minimización de predicados totales
- Una función es Σ -recursiva primitiva si se obtiene a partir del conjunto inicial usando solo composición y recursión primitiva

Composición

- Definición:
 - Dadas funciones Σ -mixtas f, f_1, \ldots, f_r con $r \geq 1$, diremos que $f \circ [f_1, \ldots, f_r]$ es obtenida por composición a partir de las funciones f, f_1, \ldots, f_r
- Lemas:
 - Σ -mixta: Sean f, f_1, \ldots, f_r funciones Σ -mixtas con $r \geq 1$ y $f \circ [f_1, \ldots, f_r] \neq \emptyset$, entonces $\exists n, m, k, l \in \omega, s \in \{\#, *\}$ tales que:
 - r = n + m
 - f es de tipo (n, m, s)
 - f_i es de tipo (k, l, #) para $1 \le i \le n$
 - f_i es de tipo (k,l,*) para $n+1\leq i\leq r$ Y además, $f\circ [f_1,\ldots,f_r]$ es Σ -mixta de tipo (k,l,s) con:
 - $ullet \ D_{f \circ [f_1,..,f_r]} = \{(ec{x},ec{a}) \in \cap_{i=1}^r D_{f_i} : (f_1(ec{x},ec{a}),\ldots,f_r(ec{x},ec{a})) \in D_f \}$
 - $ullet f\circ [f_1,\ldots,f_r](ec x,ec a)=f(f_1(ec x,ec a),\ldots,f_r(ec x,ec a))$
 - Conservación de computabilidad efectiva: Si f, f_1, \ldots, f_r son Σ -efectivamente computables, entonces $f \circ [f_1, \ldots, f_r]$ también lo es

Recursión primitiva

Conjuntos rectangulares

Definición:

- Sea Σ un alfabeto finito, un conjunto Σ -mixto S es llamado *rectangular* si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con $S_i \subseteq \omega$ y $L_j \subseteq \Sigma^*$.
- Lemas:
 - Sea $S\subseteq\omega imes\Sigma^*$, entonces S es $rectangular\Leftrightarrow si~(x,\alpha),(y,\beta)\in S$, entonces $(x,\beta)\in S$

Variable numérica - Valores numéricos

Definición: sean f, g funciones dadas por:

$$f: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m o \omega$$

$$g: \omega \times \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$$

con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ conjuntos no vacíos, entonces existe una única función $R: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$ tal que:

$$R(0, \vec{x}, \vec{\alpha}) = f(\vec{x}, \vec{\alpha})$$

$$R(t+1,\vec{x},\vec{lpha}) = g(R(t,\vec{x},\vec{lpha}),t,\vec{x},\vec{lpha})$$

- Llamaremos R(f,g) a esta función y diremos que R(f,g) es obtenida por recursión primitiva a partir de f y g
- Lemas:
 - Conservación de computabilidad efectiva: Si f, g son Σ -efectivamente computables, entonces R(f,g) también lo es

Variable numérica - Valores alfabéticos

Definición: sean f, g funciones dadas por:

$$f: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$$

$$g: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \Sigma^*$$

con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ conjuntos no vacíos, entonces existe una única función $R(f,g): \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$ tal que:

$$R(f,g)(0,\vec{x},\vec{lpha})=f(\vec{x},\vec{lpha})$$

$$R(f,g)(t+1,\vec{x},\vec{lpha})=g(t,\vec{x},\vec{lpha},R(f,g)(t,\vec{x},\vec{lpha}))$$

- Llamaremos R(f,g) a esta función y diremos que R(f,g) es obtenida por recursión primitiva a partir de f y g
- Lemas:
 - Conservación de computabilidad efectiva: Si f,g son Σ -efectivamente computables, entonces R(f,g) también lo es

Variable alfabética - Valores numéricos

- Definiciones:
 - Familia Σ -indexada de funciones: Dado un alfabeto Σ , una familia Σ -indexada de funciones es una función $\mathcal G$ tal que $D_{\mathcal G}=\Sigma$ y $\forall a\in D_{\mathcal G}, \mathcal G(a)$ es una función
 - Si $\mathcal G$ es una familia Σ -indexada de funciones, entonces para $a\in \Sigma$ escribiremos $\mathcal G_a$ en lugar de $\mathcal G(a)$
 - Recursión primitiva: Sea Σ un alfabeto finito, y sean f una función y \mathcal{G} una familia Σ -indexada de funciones tales que:

$$f: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$$

$$\mathcal{G}_a:\omega imes S_1 imes \ldots imes S_n imes L_1 imes \ldots imes L_m imes \Sigma^* o \omega$$

para cada $a\in \Sigma$, y con $S_i\subseteq \omega$ y $L_i\subseteq \Sigma^*$ conjuntos no vacíos, entonces definimos

$$R(f,\mathcal{G}): S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \omega$$

$$R(f,\mathcal{G})(\vec{x},\vec{lpha},arepsilon)=f(\vec{x},\vec{lpha})$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha)$$

- Diremos que $R(f,\mathcal{G})$ es obtenida por recursión primitiva a partir de f y \mathcal{G}
- Lemas:
 - Conservación de computabilidad efectiva: Si f y cada \mathcal{G}_a son Σ -efectivamente computables, entonces $R(f,\mathcal{G})$ también lo es

Variable alfabética - Valores alfabéticos

- Definición:
 - Sea Σ un alfabeto finito, y sean f una función y \mathcal{G} una familia Σ -indexada de funciones tales que:

$$f: S_1 { imes} \ldots { imes} S_n { imes} L_1 { imes} \ldots { imes} L_m o \Sigma^*$$

$$\mathcal{G}_a: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \times \Sigma^* \to \Sigma^*$$

para cada $a \in \Sigma$, y con $S_i \subseteq \omega$ y $L_i \subseteq \Sigma^*$ conjuntos no vacíos, entonces definimos

$$R(f,\mathcal{G}): S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \Sigma^*$$

$$R(f,\mathcal{G})(\vec{x},\vec{lpha},arepsilon)=f(\vec{x},\vec{lpha})$$

$$R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(\vec{x},\vec{\alpha},\alpha,R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha))$$

- Diremos que $R(f,\mathcal{G})$ es obtenida por recursión primitiva a partir de f y \mathcal{G}
- Lemas:

• Conservación de computabilidad efectiva: Si f y cada \mathcal{G}_a son Σ -efectivamente computables, entonces $R(f,\mathcal{G})$ también lo es

Funciones Σ -recursivas primitivas

• *Definición*: Dados los conjuntos $PR_0^\Sigma \subseteq PR_1^\Sigma \subseteq \ldots \subseteq PR^\Sigma$ definidos como

$$egin{aligned} PR_0^\Sigma =& \{Suc, Pred, C_0^{0,0}, C_arepsilon^{0,0}\} \cup \{d_a: a \in \Sigma\} \cup \{p_j^{n,m}: 1 \leq j \leq n+m\} \ \\ PR_{k+1}^\Sigma =& PR_k^\Sigma \cup \{f \circ [f_1, \ldots, f_r]: f, f_1, \ldots, f_r \in PR_k^\Sigma, r \geq 1\} \ & \cup \{R(f, \mathcal{G}): f, \mathcal{G}_a \in PR_k^\Sigma orall a \in \Sigma\} \cup \{R(f, g): f, g \in PR_k^\Sigma\} \ \\ PR^\Sigma =& \bigcup_{k \in \omega} PR_k^\Sigma \end{aligned}$$

Diremos que una función es llamada Σ -recursiva primitiva (Σ -p.r.) si pertenece a PR^{Σ}

- Proposiciones:
 - Computabilidad efectiva: Si $f \in PR^{\Sigma}$, entonces f es Σ -efectivamente computable
- Lemas:
 - Ejemplos de funciones Σ -p.r.:
 - Operaciones numéricas:

•
$$\lambda xy[x+y] \in PR^{\Sigma}$$

$$ullet \ \lambda xy[x\cdot y]\in PR^\Sigma$$

$$ullet \lambda x[x!] \in PR^\Sigma$$

$$\bullet \ \ \lambda xy[x^y] \in PR^\Sigma$$

$$\bullet \ \ \lambda xy[\dot{x-y}] \in PR^{\Sigma}$$

$$ullet \ \lambda xy[max(x,y)] \in PR^\Sigma$$

$$\bullet \ \ \lambda xy[x=y] \in PR^{\Sigma}$$

$$\bullet \ \ \lambda xy[x\leq y]\in PR^{\Sigma}$$

Operaciones de palabras

$$\bullet \ \ \lambda\alpha\beta[\alpha\beta]\in PR^\Sigma$$

$$ullet$$
 $\lambda lpha[|lpha|] \in PR^\Sigma$

$$\bullet \ \lambda t \alpha[\alpha^t] \in PR^\Sigma$$

•
$$\lambda lpha eta [lpha = eta] \in PR^\Sigma$$

- Otras:
 - ullet $\emptyset \in PR^{\Sigma}$

$$\bullet \ \, \forall n,m,k \in \omega,\alpha \in \Sigma^*; C^{n,m}_k, C^{n,m}_\alpha \in PR^\Sigma$$

- Si \leq es un orden total sobre Σ , entonces $s^{\leq}, \#^{\leq}, *^{\leq} \in PR^{\Sigma}$
- Operaciones lógicas entre predicados: Si P,Q son predicados Σ -p.r. con igual dominio, entonces $P \wedge Q, P \vee Q, \neg P$ son Σ -p.r. también.

Conjuntos Σ -recursivos primitivos

- Definición:
 - Un conjunto Σ -mixto $S\subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivo primitivo si su función característica $\chi_S^{\omega^n \times \Sigma^{*m}}$ es Σ -p.r.
 - Notar que $\chi_S^{\omega^n imes \Sigma^{*m}} = \lambda ec{x} ec{lpha}[(ec{x}, ec{lpha}) \in S]$
- Lemas:
 - Si $S_1,S_2\subseteq\omega^n imes\Sigma^{*m}$ son Σ -p.r., entonces $S_1\cup S_2,S_1\cap S_2,S_1-S_2$ son Σ -p.r. también
 - Si $S \subseteq \omega^n \times \Sigma^{*m}$ es *finito*, entonces S es Σ -p.r.
 - Conjunto rectangular Σ -p.r.: Sean $S_1,\ldots,S_n\in\omega,L_1,\ldots,L_m\in\Sigma^*$ conjuntos no vacíos, entonces $S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m$ es Σ -p.r. $\Leftrightarrow S_1,\ldots,S_n,L_1,\ldots,L_m$ son Σ -p.r.
 - Σ -p.r. para función restringida: Sea $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to O$ que es Σ -p.r. (con $O\in\{\omega,\Sigma^*\}$), si $S\subseteq D_f$ es Σ -p.r., entonces $f|_S$ es Σ -p.r. también
 - Definición: Dada una función f y un conjunto $S\subseteq D_f$, usaremos $f|_S$ para denotar la restricción de f al conjunto S, es decir, $f|_S=f\cap (S\times I_f)$. Notar que $D_{f|_S}=S$ y $f|_S(e)=f(e)\forall e\in S$.
 - Sean $O \in \{\omega, \Sigma^*\}$ y $n, m \in \omega$, si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -p.r., entonces existe una función Σ -p.r. $\bar{f}: \omega^n \times \Sigma^{*m} \to O$ tal que $f = \bar{f}|_{D_f}$
- Proposiciones:
 - Relación Conjunto/Función Σ -p.r.: Un conjunto S es Σ -p.r. si y solo si S es el dominio de alguna función Σ -p.r.

Lema de división por casos para funciones Σ -p.r.

• Observación: Si $f_i:D_f\to O \forall i=1,\ldots,k$ son funciones tales que $\forall i\neq j,D_{f_i}\cap D_{f_j}=\emptyset$, entonces $f_1\cup\ldots\cup f_k$ es la función dada por

$$D_{f_1} \cup \ldots \cup D_{f_k} o O$$

$$e
ightarrow egin{cases} f_1(e) & ext{si } e \in D_{f_1} \ dots & dots \ f_k(e) & ext{si } e \in D_{f_k} \end{cases}$$

- Lema: Sean $O \in \{\omega, \Sigma^{*m}\}$ y $n, m \in \omega$, y supongamos que $f_i: D_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O \forall i=1,\ldots,k$ son Σ -p.r. tales que $\forall i \neq j, D_{f_i} \cap D_{f_j} = \emptyset$. Entonces $f_1 \cup \ldots \cup f_k$ es Σ -p.r.
- Consejo: Si se quiere usar este lema para probar que una función f es Σ -p.r., entonces primero hay que definir las funciones f_1,\ldots,f_k tales que $\forall i\neq j,D_{f_i}\cap D_{f_j}=\emptyset$ y $f=f_1\cup\ldots\cup f_k$ y luego comenzar a probar y ver si algo es o no Σ -p.r.
 - Determinar el k, es decir, la cantidad de casos en la descripción de f.
 - Para cada caso de la descripción de f, asociar un subconjunto del dominio de f el cual sea justamente definido por la propiedad correspondiente (tener en cuenta que debe ser subconjunto y una descripción puede no usar todas las variables)

- Notar que los subconjuntos S_1,\dots,S_k definidos deben ser disjuntos de a pares y, unidos, deben dar el dominio de f
- Para cada i defina f_i de la siguiente manera:
 - Dominio de f_i es S_i
 - Regla de f_i dada por la regla de describe f para el caso i-ésimo
- En general, suele suceder que f_i es la restricción a S_i de una función con dominio más amplio. Por ello, a veces se prueba entonces que tanto dicha función como S_i son Σ -p.r., resultando así, por lema, que f_i es Σ -p.r.
- *Ejemplo*: Con esto, se puede probar que $\lambda i \alpha[[\alpha]_i]$ es Σ -p.r.