Lecture Notes by Jonathan Alcaraz (UCR)

Topology

Math 205A Fall 2017

Based on Lectures by

Dr. Frederick Willhelm University of California, Riverside

Lecture 1 28 Sep 2017

Introduction

This course is about the abstraction of continuity.

A subset $O \subseteq \mathbb{R}$ is said to be *open* if for every point $x \in O$, there is a value $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq O$.

This idea of openness in Euclidean space can be used to define continuity of functions on Euclidean space.

A function $f: \mathbb{R}^n \to \mathbb{R}$ is *continuous* if for any open $O \subseteq \mathbb{R}$, $f^{-1}(O)$ is open in \mathbb{R}^n .

One could prove that this definition is equivalet to the standard ε - δ definition of continuity on Euclidean space.

Point-Set Topology

Definition 1.1 Let X be a set. A collection \mathcal{T} of subsets of X is called a *topology* on X if

- (i) \emptyset and X are in \mathcal{T} ;
- (ii) Any union of elements of \mathcal{T} is in \mathcal{T} ;
- (iii) The intersection of finitely many elements of \mathcal{T} is in \mathcal{T} .

A set together with a topology \mathcal{T} is called a *topological space* denoted (X, \mathcal{T}) (or just X if the topology is understood). Elements of \mathcal{T} are said to be *open sets in* X.

Example

- The discrete topology on a set is simply the collection of all subsets.
- The *indiscrete topology* on a set X is the most trivial topolgy, $\{\emptyset, X\}$.

Definition 1.2 If \mathcal{T}_1 and \mathcal{T}_2 are topologies on the same set with the property $\mathcal{T}_1 \subseteq \mathcal{T}_2$, then \mathcal{T}_2 is said to be *finer* than \mathcal{T}_1 . If neither $\mathcal{T}_1 \subseteq \mathcal{T}_2$ nor $\mathcal{T}_2 \subseteq \mathcal{T}_1$, these topologies are said to be *incomparable*.

Definition 1.3 A function $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ is called *continuous* if $f^{-1}(V)\in\mathcal{T}$ for every $V\in\mathcal{T}'$, that is, the preimage of open sets are open. A *homeomorphism* is a bijective continuous function whose inverse is continuous.

The Fundamental Question of Topology Given two topological spaces, determine if they are homeomorphic.