UWO CS2214

Tutorial #2

Problem 1 Let x be a real number. Prove the following identities:

1.
$$\lceil -x \rceil = -|x|$$

$$2. |-x| = -[x]$$

Solution 1

1. Assume first that x is an integer n. Then we have

$$\lceil -x \rceil = \lceil -n \rceil = -n = -\lfloor n \rfloor = -\lfloor x \rfloor.$$

If x is not an integer, then there exist an integer n and $0 < \varepsilon < 1$ so that $x = n + \varepsilon$ holds. In this case, we have

2. Assume first that x is an integer n. Then we have

$$|-x| = |-n| = -n = -\lceil n \rceil = -\lceil x \rceil.$$

If x is not an integer, then exist an integer n and $0 < \varepsilon < 1$ so that $x = n + \varepsilon$ holds. In this case, we have

Problem 2 Let x be a real number and n be an integer. Prove the following identities:

1.
$$\lceil x+n \rceil = \lceil x \rceil + n$$

$$2. |x| = |x| + n$$

Solution 2

1. There exist an integer m and $0 \le \varepsilon < 1$ so that $x = m + \varepsilon$ holds. Then, we have

$$\lceil x+n \rceil = \lceil (m+n)+\varepsilon \rceil = m+n = \lceil m+\varepsilon \rceil + n = \lceil x \rceil.$$

2. The proof is similar to that of the previous claim.

Problem 3 Which of the functions f below is injective? surjective? When f is bijective, determine its inverse

1.
$$f_1: \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z} \\ x & \longmapsto & x+2 \end{array}$$

$$2. \ f_2: \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z} \\ x & \longmapsto & x^2 - 1 \end{array}$$

$$3. f_3: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \longmapsto & \frac{x+2}{3} \end{array}$$

$$4. \ f_4: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \longmapsto & \lceil x \rceil \end{array}$$

Solution 3

- 1. f_1 is injective since $f_1(x_1) = f_1(x_1)$ implies $x_1 = x_2$. f_1 is surjective and the inverse function of f_1 is: $f_1^{-1}: \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{Z} \\ y & \longmapsto & y-2 \end{array}$
- 2. f_2 is not injective since $f_1(1) = 0 = f_1(-1)$. f_2 is not injective since -2 has no pre-image by f_2 . Indeed $-2 = x^2 1$ has no solution in \mathbb{Z} (and even in \mathbb{R}).
- 3. f_3 is injective since $f_3(x_1) = f_3(x_1)$ implies $x_1 = x_2$. f_3 is surjective as the pre-image of y is 3y 2.
- 4. f_4 is not injective since $f_4(\sqrt{2}) = 2 = f_1(2)$. f_4 is not injective since $\sqrt{2}$ has no pre-image by f_4 .