# Chapter 2: Summarizing data

Introductory Statistics for Engineering Experimentation

Peter R. Nelson, Marie Coffin and Karen A.F. Copeland

Slides by Douglas Bates

### Outline

2.1 Simple graphical techniques

#### Section 2.1: Univariate data

- Graphs can
  - summarize the data
  - show typical and atypical values
  - highlight relationships between variables
  - show how the data are spread out, which we call the distribution of the data
- Often we observe multiple characteristics on each experimental run or observation. We call such data multivariate. If we only observe one characteristic we say the data are univariate.
- Typical plots of univariate, numeric data are histograms (histogram) or density plots (densityplot), box-and-whisker plots (bwplot) and dotplots (dotplot). (Names in parentheses are the names of the corresponding R function from the lattice package.)

#### The railcar data

- Example 2.1.1 describes the railcar data, which are 53 observations of the number of days that a customer holds a rail car after delivery. The authors say the data are in a file named railcar.txt. We will use the dataset called railcar from the EngrExpt package for R.
- All of the data sets are described in Appendix A, starting on page 424. When you start R you should attach the EngrExpt package, using library(EngrExpt). To check on the form of a data set use, e.g., str(railcar), and compare the result to the description in Appendix A.

```
> library(EngrExpt)
> str(railcar)
'data.frame': 53 obs. of 1 variable:
$ days: int 4 42 4 4 3 5 5 5 3 7 ...
```

# Histograms

- A histogram is a simple bar chart of the number of observations in each of a set of adjacent, constant-width intervals.
- It was popular in the days when all graphics, and most calculations, needed to be done by hand. It shows the distribution of the data (see the comments in example 2.1.1).



### Creating a histogram

- The text gives a description of creating a histogram by hand.
- In R, you can use the histogram function. The plot on the previous slide was created with
  - > histogram(~days, railcar)
- There are several optional arguments for the histogram function. To create a plot like Figure 2.1 we specify the break points for the intervals (argument breaks) and also change the label on the x-axis (argument xlab).

```
> histogram(~days, railcar, breaks = seq(2, 44,
+ 3), xlab = "Days")
```

# Histogram like Figure 2.1



# Density plots

- This topic is not covered in the text. It requires more sophisticated software than they were using.
- Notice that the histogram shape depends on the somewhat arbitrary choice of intervals.
- If we are interested in the shape of the distribution of the observations we can use an alternative called a density plot.
- Without going in to details, an empirical density plot centers a narrow, "bell-curve" density at each observed data point and sums the result. The version in R also adds a "rug" with the original data values plotted as points and jittered vertically (so you can see multiple data points with the same value).
- > densityplot(~days, railcar, xlab = "Days")

# Density plot of the rail data.



The

skewness of this plot indicates that we may want to consider the logarithm of the days.



# Density plot of the rail data (logarithmic scale).



The

skewness of this plot indicates that we may want to consider the logarithm of the days.

