PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY ARKUSZ II

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania 4 – 6) i czy dołączony jest do niego nośnik danych – podpisany *DANE*. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- Jeśli rozwiązaniem zadania lub jego części jest program komputerowy, to umieść w katalogu (folderze) oznaczonym Twoim numerem PESEL wszystkie utworzone przez siebie pliki w wersji źródłowej.
- 4. Pliki oddawane do oceny nazwij dokładnie tak, jak polecono w treści zadań lub zapisz pod nazwami (wraz z rozszerzeniem zgodnym z zadeklarowanym oprogramowaniem), jakie podajesz w arkuszu egzaminacyjnym. Pliki o innych nazwach nie będą sprawdzane przez egzaminatorów.
- 5. Przed upływem czasu przeznaczonego na egzamin zapisz w katalogu (folderze) oznaczonym Twoim numerem PESEL ostateczną wersję plików stanowiących rozwiązania zadań.

STYCZEŃ 2011

WVRDANF.

WIDKARE.
(środowisko)
(kompilator)
(program użytkowy)

Czas pracy: 150 minut

Liczba punktów do uzyskania: 30

PESEL

Organizatorzy:

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

Zadanie 4. Organizationally Unique Identifier (10 pkt)

W pliku *oui.txt* zapisano wybrane informacje na temat: organizacji, znanych światowych firm, korporacji międzynarodowych, którym przydzielono OUI (ang. Organizationally Unique Identifier). Identyfikator zapisano w dwóch notacjach systemu szesnastkowego oznaczonych w pliku jako **hex** oraz **base 16.**

Identyfikator OUI stanowi pierwsze 24 bity z 48 bitowego adresu interfejsu sieciowego MAC (Media Access Control) zapisanego w systemie szesnastkowym.

Wykonaj polecenia dotyczące danych zapisanych w pliku *oui.txt*:

- a) Oblicz, jaki procent wszystkich zarejestrowanych adresów MAC w UNITED STATES stanowią rejestracje firmy Cisco. Podaj wynik w zaokrągleniu do dwóch cyfr po przecinku.
- b) Utwórz wykres słupkowy liczby rejestracji dla tych państw, dla których ta liczba zawiera się w zakresie od 10 do 20.
- c) Zamień wszystkie identyfikatory OUI dla Japonii (JAPAN) podane w pliku w notacji base 16 na liczbę w systemie o podstawie 10 (dziesiątkowym).

Oo oceny oddajesz pliki o nazwach:	Do oceny oddajesz j
tu wpisz nazwę(y) pliku/plików	
awierajacy(e) rozwiazanie(a) zadania.	zawieraiacy(e) rozw

Punktacja:

Wypełnia egzaminator	Podpunkt:	a)	b)	c)	Razem
	Maksymalna liczba punktów:	3	3	4	10
	Uzyskana liczba punktów:				

Organizatorzy:

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

Zadanie 5. Przedsiębiorstwo rolne (10 pkt)

Specjalistyczne przedsiębiorstwo rolne hoduje w chlewni 500 sztuk trzody chlewnej. Zwierzęta są rozmieszczone w numerowanych kojcach. Każde z nich ma, zgodnie z przepisami, swój unikatowy kolczyk. Dane każdego zwierzęcia znajdują się w pliku *swinie.txt*. Przedsiębiorstwo zatrudnia 10 chlewniowych (*chlewniowi.txt*). Każdy z nich opiekuje się kilkoma kojcami. Jednym kojcem opiekuje się tylko jeden chlewniowy. Informacje o przydziale kojców znajdują się w pliku *przydziały.txt*. Dokładne nazwy ras świń wraz z identyfikatorami ras znajdują się w pliku *rasy.txt*.

- a) Policz, ile jest świń w poszczególnych kojcach i oblicz jaka jest średnia waga świni w kojcu (z dokładnością do 1 kg).
- b) Policz, iloma kojcami opiekuje się każdy z chlewniowych.
- c) Firma prowadzi ranking chlewniowych. O miejscu w rankingu decyduje średni wskaźnik przyrostu masy podopiecznych świń. Wskaźnik taki (dla pojedynczej świni) definiowany jest jako iloraz masy świni i jej wieku w dniach. Oblicz dla każdego chlewniowego wartość tego wskaźnika z dokładnością do czterech miejsc po przecinku i uporządkuj listę chlewniowych nierosnąco względem wartości tego wskaźnika.

Do oceny oddajesz pliki o nazwach:
tu wpisz nazwę(y) pliku/plików
zawierający(e) komputerową realizację Twoich obliczeń.

Punktacja:

Wypełnia egzaminator	Podpunkt:	a)	b)	c)	Razem
	Maksymalna liczba punktów:	2	1	7	10
	Uzyskana liczba punktów:				

Zadanie 6. Liczby p-podobne (10 pkt)

Dziesiętna dodatnia liczba całkowita n jest **p-podobna**, gdzie p jest liczba całkowita i $2 \le p \le 10$, jeśli suma jej cyfr jest równa sumie jej cyfr w reprezentacji przy podstawie p. Jedna i druga suma są obliczane w systemie dziesiętnym. Na przykład,

Liczba 21 jest 2-podobna, bo

 $21 = (10101)_2 i$

$$2 + 1 = 1 + 0 + 1 + 0 + 1 = 3$$

Liczba 23 jest 3-podobna, bo

$$23 = (212)_3$$
 i $2 + 3 = 2 + 1 + 2 = 5$

Zauważ, że każda liczba *n* jest 10-podobna, bo np. $57 = (57)_{10}$

a) Podaj specyfikację problemu, polegającego na sprawdzeniu, czy dla danych dwóch liczb n i p

spełniających powyższe warunki, liczba n jest p-podobna.

b) Opisz algorytm i zapisz w wybranym przez siebie języku programowania, dla specyfikacji podanej w części a). Sprawdź działanie swojego programu na danych podanych w treści zadania.

Do oceny oddajesz pliki o nazwach:

tu wpisz nazwę(y) pliku/plików

zawierający(e) komputerową realizację rozwiązania zadania.

Organizatorzy:

Polskie Towarzystwo Informatyczne Oddział Kujawsko-Pomorski Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

c) Podaj, ile operacji arytmetycznych (np. takich, jak dzielenie całkowite czy obliczanie reszty) w zależności od wartości danych *n* i *p*, wykonuje Twój algorytm. Uzasadnij swoją odpowiedź.

Punktacja:

Wypełnia egzaminator	Podpunkt:	a)	b)	c)	Razem
	Maksymalna liczba punktów:	1	5	4	10
	Uzyskana liczba punktów:				

