CSE 311: Data Communication

Instructor:

Dr. Md. Monirul Islam

- Bandwidth
 - Channel Bandwidth

Signal bandwidth

- Bandwidth
 - Channel Bandwidth
 - Range of frequencies that a channel can transmit
 - Ex: if transmit 0-5 kHz frequencies, Channel bandwidth B = 5 kHz

Signal bandwidth

- Bandwidth
 - Channel Bandwidth
 - Range of frequencies that a channel can transmit
 - Ex: if transmit 0-5 kHz frequencies, Channel bandwidth B = 5 kHz

- Signal bandwidth
 - Maximum frequency that is available in a signal

- Bandwidth
 - Channel Bandwidth
 - Range of frequencies that a channel can transmit
 - Ex: if transmit 0-5 kHz frequencies, Channel bandwidth B = 5 kHz

- Signal bandwidth
 - Maximum frequency that is available in a signal

- Bandwidth
 - Channel Bandwidth
 - Range of frequencies that a channel can transmit
 - Ex: if transmit 0-5 kHz frequencies, Channel bandwidth B = 5 kHz

- Signal bandwidth
 - Maximum frequency that is available in a signal

- Bandwidth
 - Channel Bandwidth
 - Range of frequencies that a channel can transmit
 - Ex: if transmit 0-5 kHz frequencies, Channel bandwidth B = 5 kHz

A complex signal with multiple frequencies

- Frequency
 - Change in signal values
 - Faster change in values means higher frequencies
 - High frequency signals
 - Sports/battle scene
 - Low frequency signals
 - News/sleeping animal videos

Frequency

 Compressing in time, increases frequency, means higher channel Bandwidth

Frequency

 Compressing in time, increases frequency, means higher channel Bandwidth

Frequency

Compressing in time, increases frequency, means higher channel
 Bandwidth

Frequency

Compressing in time, increases frequency, means higher channel
 Bandwidth

Duration = 0.05 sec,

Frequency =2.5/0.05=50 Hz

More transmission speed requires channel with higher bandwidth

 More transmission speed requires channel with higher bandwidth

 More transmission speed requires channel with higher bandwidth

More transmission speed requires channel with higher bandwidth

More transmission speed requires channel with higher bandwidth

- Signal Power, P_s
 - Dual role
 - Higher Quality
 - Less channel bandwidth

Analog to Digital Conversion of Message/Signal

- Detection is easy when A >> noise
- Usually A >> 5-10 times of noise


```
Signal Power, P_s \infty Amplitude, A
=> Increase in A means increase in P_S
```

SNR = Signal / Noise

- Signal Power, P_s for higher quality
 - P_s++ -> SNR++
 - maintains minimum SNR for longer distance
 - Higher SNR means
 - more noise immunity
 - easier detection of pulses

- Signal Power, P_s needs less channel bandwidth
 - Higher signal P_s eases the channel

- Signal Power, P_s needs less channel bandwidth
 - Higher signal P_s eases the channel
 - Shannon's limit on channel capacity

$$C = B \log_2(1 + SNR) bit/s$$

- Signal Power, P_s needs less channel bandwidth
 - Higher signal P_s eases the channel
 - Shannon's limit on channel capacity

$$C = B \log_2(1 + SNR) bit/s$$

What happens if $SNR = \infty$?

 Assume, these 2 signals need to be transmitted

Baseband signal 1

Baseband signal 2

- Assume, these 2 signals need to be transmitted
 - 2 different channels?

Baseband signal 1

Baseband signal 2

- Assume, these 2 signals need to be transmitted
 - Even, channel bandwidth and signal bandwidth may NOT match!!

Baseband signal 1

Baseband signal 2

- Assume, these 2 signals need to be transmitted
 - 2 different channels?

Baseband signal 1

Solution is modulation

Baseband signal 2

Channel & signal Characteristics: modulation

Use carrier signal to shift these
 2 signals to different frequency
 positions

Baseband signal 1

Baseband signal 2

Channel & signal Characteristics: modulation

Use carrier signal to shift these
 2 signals to different frequency
 positions

Channel & signal Characteristics: modulation

 other examples of modulation (shown in time domain)

 other examples of modulation (shown in time domain)

Baseband signal

Carrier signal

Modulated signal

Frequency modulation (FM)

 other examples of modulation (shown in time domain)

Amplitude modulation (AM)

- Phase modulation (PM)
- Changes phase angle of the signal

- Speech signal characteristics
 - Frequency range: 100 3000 Hz
 - Wavelength 100 to 3000 km
 - requires impractically large antenna

- 10 MHz carrier signal characteristics
 - Wavelength 30 m
 - requires antenna of size 3m

Use carrier signal to shift these
 2 signals in different frequency
 positions

Use carrier signal to shift these
 2 signals in different frequency
 positions

also called Frequency division multiplexing (FDM) $G(\omega)$

Baseband

signal 1

Baseband signal 2

 $G(\omega)$

 $G(\omega)$

After modulation:

- Time division multiplexing (TDM)
 - Interleave pulses from different signals in time domain signal

- Time division multiplexing (TDM)
 - Interleave pulses from different signals in time domain signal

- Done at the receiving end
 - Bandpass filter separates appropriate signal
 - Makes necessary corrections for amplitude, frequency and phase changes