文章编号 1005-6408(2003)01-0030-07

复杂性问题研究实践与认识论、方法论反思

李世 ①

摘 要 概述笔者从事两项复杂性问题研究的认识与实践: 一是辩证唯物论认识论的指导作用与系统科学的中介作用,不容忽视; 二是在预测和控制某些复杂系统行为的研究中,还原论与整体论结合的 一个切入点和一种有效形式,是典型信息法。

关键词 复杂性研究;实践;辩证唯物论;认识论;方法论;典型信息法

中图分类号 N 941. 4; B 023

文献标识码 A

0 前言

面对世纪之交一股强劲的否定辩证唯物主义世界观的思潮^[1],钱学森申明:"我们的从定性到定量综合集成法是建筑在《实践论》的基础上的","从定性到定量综合集成法的工作过程是以《矛盾论》为指导思想的"^[2]。钱学森出于对辩证唯物论普遍真理性^[3]的切身体验与坚定信念,在复杂性研究中身体力行,在新的历史条件下融会中西文化并有所发展,功在当代中国,并将惠及后人。

笔者从钱学森学术观点中受到教益。本文论述在力学与地质学交叉的工程技术层次上,两个复杂性问题研究的实践及反思,凡涉及个人和专业,均尽量简略,以说明认识论、方法论问题为限。

1 当代隧道工程两个科技难题的初步 解决概述

1.1 两个科学技术难题

1.1.1 科技难题之一: 岩石力学分析预测往往与实际情况相差很远

隧道工程地质条件复杂多变,在施工中人为扰动下,大量因素随机动态相互作用,尚无定量描述之可能。围岩一支护系统是一种开放的复杂巨系统^[4~6](本文通称复杂系统)。图1表示出在一个横断面上,隧道围岩地质、力学参数逐点变化的典型实例^②。

20世纪七、八十年代,中国大规模推广应用隧道工程奥地利新方法(New Austrian Tunnelling Method, 简称新奥法),提高了地下工程的安全性和经济性。新奥法通过量测隧道周边围岩的变形,观测与控制围岩稳定性,是先进的系统、控制、信息思想的一种应用,但只适用于量测围岩变形的特定隧道,开挖前或其它隧道均不适用。几十年来,岩石力学围岩稳定性分析预测,往往与实际情况相差较远。如小浪底地下厂房设计,清华大学与河海大学分析预测结果相反^③,且均不符实际。各国地下工程技术规范,均以经验性工程类比法为主;理论分析列于末位,现代科学面临尴尬。

钱学森指出: 凡现在不能用还原论方法处理的或不宜用还原论方法处理的问题, 而要用或宜用新的科学方法处理的问题, 都是复杂性问题^[7]。 围岩稳定性分析预测属于复杂性问题应无疑义。

① 男、1932年生、总参工程兵第四设计研究院高级工程师、中国科学院工程地质力学开放实验室客座研究员、100850 北京

② 铁道部科学研究院铁道建筑研究所, 南岭隧道进口试验段第四、五段现场试验总结, 1984, 10

③ 黄河水利委员会勘测规划设计研究院. 小浪底水利枢纽地下厂房支护设计报告. 1994. 9

1.1.2 科技难题之二: 隧道施工初期缺乏围岩稳定性的定量判据

在隧道开挖支护初期,国内外新奥法围岩变形监测都没有稳定性定量判据,塌方事故仍然较多。例如,大瑶山铁路隧道开挖 10 km 时,已发生高度 1 m ~ 9 m 的中小型塌方 29 处,平均每公里近 3 处; [8] ① 军都山隧道工程 1985 年间发生大小塌方 21 次,塌方处理占总工时达 40% [9];《日本隧道标准规范及解释》总结各国新奥法技术现状,指出:应用围岩变形量测判别围岩稳定性时,"想用数值表示常常是很难的" [10]。现存问题:①判据均来自既往工程,与当时工程的地质条件无具体联系;②判据与当前的施工状况无具体联系;③判据仅为变形或变形速率判据,实效不好。

图 1 南岭隧道试验段围岩特征图

1.2 解决问题的思路方法——典型信息法

1.2.1 科学技术条件

20世纪40年代诞生的三项科学技术——系统科学、电子计算机和新奥法,发展到80年代初,已经为突破还原论思维的藩篱、解决岩石力学上述技术难题准备了必要的前提条件[11]。

新奥法的历史性贡献在于:首次提出以量测洞室周边两点间距离的变化,作为观察和控制围岩整体稳定性的依据。围岩变形是在开挖、支护的扰动下,围岩内无法观测的、难以计数的各点的应变增量,在洞周点对空间域与时间域的积分。从系统科学角度观察,围岩变形是将整个系统的信息,集中起来提供给我们高层次的、可观和可控的宏观量;围岩变形是大量难以定量描述的状态变量的动态相互作用下,形成的序参量。[12] 对于从整体上认识与有效处理复杂系统问题,对于系统科学、信息科学研究,新奥法均有典型意义。

改革开放以来,中国人学习西方先进的科学技术如饥似渴,恭谨勤劳;在不同围岩类别中先后出现了典型性的新奥法工程——原位测试工作量比国外多几倍甚至几十倍,搞得比较深透,从而涌现出特征信息相对充分的、代表性良好的、罕见的典型工程。从还原论与整体论结合的方法论角度观察,在中国隧道工程的复杂性问题研究中,典型信息源的出现,是一个特有的信息资源优势。

1.2.2 典型类比分析法 ——在隧道设计阶段, 有效 预测施工中围岩稳定性的原则和方法

岩石力学与工程界公认: 为了大幅度提高岩石力学理论分析的可靠性, 必须解决岩体力学输入参数与本构模型两大前沿课题。[13] 这是一个主要矛盾。这一主要矛盾的主要方面何在? 按照机械唯物论观念, 主要方面在"物质技术条件"。只有对围岩中大量因素及其耦合相互作用逐一试验、研究, 精确地、定量地查明本构关系及参数值之后, 才能解决分析预测的可靠性问题; 虽然这是遥遥无期的, 但是走这条路, 不会有风险, 而且似乎"学术水平高"。 按照辩证唯物论的观点, 分析预测应以接近实际、满足工程实用精度为原则; 在一定的物质条件下, 人的因素起决定作用; 主要矛盾的主要方面, 不是地质条件及施工因素如何复杂, 而在于研究者的认识和方法是否符合客观实际; 走这条路风险大, 但有利于科学技术进步。

20世纪80年代初, 笔者总结国内外新奥法工 程类比法支护设计的成功经验, 并基于从事围岩分 类的实践经验与理论思考,提出经验性假设 1: 按照 围岩类别的不同, 为围岩稳定数值分析提供概略的 工程地质条件, 其有效性应与工程类比法相近; 又根 据笔者从事新奥法典型工程围岩变形监测的实践经 验, 在力学与地学结合的基础上, 引入社会科学的典 型方法、控制论灰箱方法和系统分析方法,进一步提 出经验性假设 2: 用典型工程原位测试资料的典型 (典型断面与典型时刻的)信息,为同类围岩中的一 般隧道工程提供典型化的、概略定量的地质条件:用 这样的典型信息拟合理论分析模型(岩石力学二维 线性弹性分析程序),用于同类围岩一般工程时,其 分析结果在同一典型时刻应该也是接近实际的。典 型信息、分类与类比、理论分析三者的有机结合、 就是典型类比分析法。其应用形式是 BM P 程序系

① 铁道部隧道工程局. 大瑶山长大铁路隧道修建新技术. 1998. 121~ 125

⇒表示用典型工程资料建模的通道; $^{\rightarrow}$ 表示同类围岩隧道工程专用分析通道; $P_{i}(\lambda H/L)$ 表示不同侧压系数 λ 和洞室高跨比(H/L)条件下等效的锚喷支护法向支护抗力

图 2 典型类比分析法及其三个组成部分的相互关系

统。典型类比分析法的三个组成部分及其相互关系见图 $2^{[4]}$

1.2.3 变形速率比值判据——在隧道施工初期,即时判断围岩稳定性的定量判据

笔者提出"变形速率比值判据"经验性假设及其依据: ①围岩变形速率来自当前工程对象的新奥法监控量测资料, 正好反映了当前工程的地质条件与施工状况; ②根据牛顿运动定律, 围岩稳定与否的决定因素是变形加速度(并以现有变形值判据为辅); ③前后两次实测围岩变形速率的比值, 反映了变形速率的增减倾向, 正好是变形加速度的一种表现形式; ④围岩变形趋于稳定时, 变形速率比值的阈值的确定是技术难点。解决方法是典型信息法: 选取典型工程围岩变形监测中, 曾经以经验方法多次预报险情, 并已化险为夷的典型资料, 进行统计分析得出。其有效性有待演绎证明。

1.3 两个假设的演绎证明与典型实例

1.3.1 在隧道设计阶段,预测施工中围岩稳定性的验证

1989年一1991年,本院举办3期"典型类比分析法BMP程序"讲习班。119个单位自带隧道工程实例149个,经应用验证满意率平均93.6%,军内外用户已100以上,经验性统计可信度不小于0.9,满足工程实用精度要求。1995年总参乐种部组织

技术鉴定认为: 研究成果总体上达到国际先进水平,在五个特点方面居于国际领先地位。1994年、1998年两次发表于国际影响较大的期刊, [14,15] 1998年列入国家军事使用标准。[4]下面是一个国际知名的典型工程实例。

二摊水电站导流隧洞施工中设计复核: 该隧洞是当时世界最大的导流隧洞,施工中软岩坍塌与硬岩岩爆同时存在,地质条件复杂。1991年9月27日德国最大的建筑承包商(菲利普一霍尔兹曼公司)提出:该导流洞软弱围岩区段,原设计初期支护围岩不稳定,建议增设预应力锚索,限11月1日执行。设计院收到通知时,用常规方法已无法完成设计复核,当时估计增加造价数以千万元计。该院工程师童建文使用典型类比分析法 BMP程序,几天内将有关分析计算复核完毕。结果表明:德商的经验性岩体力学参数不符合二摊实际,支持原设计的合理性。据此,二摊水电开发公司否定了承包商的建议。导流隧洞按原设计施工,于1993年12月建成通水,至今运行正常。[4]

1.3.2 隧道施工中,即时判断围岩稳定性的验证

1992年笔者提出变形速率比值判据假设,^[16] 1996年发表于国际影响较大的期刊,^[17]经工程验证, 1998年列入国家军用使用标准; 1999年提出数理统计的定量判据,^[4]总参兵种部组织技术鉴定认 为: 研究指导思想方面居于国际领先地位, 是一项创新。下面是一个典型工程实例。

猫山隧道施工中正反两方面的演绎证明: 广东省西部沿海高速公路猫山隧道地质复杂, 跨度大。施工中两次出现险情, 围岩即将失稳, 施工单位应用变形速率比值判据提出预报, 及时加固处理, 均已化险为夷; 但是 2[#] 洞 7+ 210 断面施工中, 应用变形速率比值判据提出险情预报后, 因设计、监理各方认识不一, 被迫中止应用。 1999 年 7 月 9 日 20 时该断面发生高 17 m~ 24 m, 长 14 m, 体积达 720 m³ 的大塌方。耗资一百余万元, 历时两个多月方才处理完毕①。猫山隧道施工中正反两方面的验证, 为变形速率比值判据的科学合理性, 提供了严格的演绎证明。

- 2 复杂性问题研究实践中的认识论、 方法论反思
- 2.1 复杂性问题能否有效处理, 取决于认识是否符合客观实际。

围岩一支护系统作为一种复杂系统, 具有信息不完全(零碎不全)、不确定、不一致(易有错觉)的本质特征, 因而难以仅仅"根据这样的材料造出正确的概念理论来"。^[3] 这是其分析预测可信度低的客观根据。

新奥法创始人之一, 国际岩石力学学会首任主席 Müller L 对岩石力学界的状况曾有如下评述: "在这个领域内, 所谓的科学家中大多数走的偏重假设、过于学院式的道路, 把数学模型弄得过分理想化和系统化, 过分强调计算的精确性, 而且还盲目相信自己的成果, 却不考虑所使用的参数的代表性经常是成问题的, 也不考虑地质条件本身的复杂性和多样性"。[18] 这一权威论述表明: 岩石力学界复杂性难题长期难以解决的主观原因, 正是囿于还原论思维方式, 认识脱离实际。

复杂性问题未能有效处理,原因在于认识不符合客观实际。外因通过内因而起作用。

2.2 在信息网络时代研究与解决复杂性问题,亲身实践依然必不可少。

在当代科学研究中,信息网络简易快捷,已是不可或缺的技术手段。但是,世界经济、科学、国防实

力的竞争日益激烈,当前科学技术前沿任一难题,都不可能企图在网上找到关键性的数据资料,从而轻易解决。

开放的复杂巨系统的本质特征似应如钱学森指出的:"从可观测的整体系统到子系统,层次很多,中间的层次又不认识;甚至连有几个层次也不清楚"。^[5] 既然连有几个层次也不清楚,以细分、单向因果关系试验与分析为特点的还原论方法,单纯的逻辑思维与间接经验均已无能为力;"只有在亲身参加变革现实的实践的斗争中,才能暴露那种或那些事物的本质而理解它们"。^[3] 从"亲身实践"到"理解本质",从而实现还原论与整体论的结合,这是一种理解、体验、形成假设与演绎证明的过程。因此,对复杂性研究来说,否认实践与直接经验,一切都无从谈起。

典型信息法的研究,源于笔者在 20 号工程实践中对其原位测试资料典型性的深刻理解,以及"没有力学分析,就没有隧道工程的科学预见"的切身体验。^[4]如果没有这种理解和体验,没有信念,怎么会下决心提出假说,并多年坚持演绎证明呢?!

2.3 研究复杂性问题,必须以系统科学为中介环节,才能抓住主要矛盾的主要方面,找出解决问题的途径。

"事物的性质,主要地是由取得支配地位的矛盾的主要方面所规定的","承认总的历史发展中是物质的东西决定精神的东西,但是同时又承认而且必须承认精神的东西的反作用"。^[19] 隧道工程主要问题在于对地质条件(与相应的施工因素)复杂性缺乏定量描述^[11,20]岩石力学与工程界曾受上述两个难题困扰多年。典型类比分析法实践证明,关键不是地质条件、施工因素如何复杂,而是研究者的思想是否符合实际,是否真正抓住了复杂性问题主要矛盾的主要方面。正如毛主席指出的:"万千的学问家和实行家,不懂得这种方法,结果如堕烟海,找不到中心,也就找不到解决矛盾的方法"。^[19] 在这里,体现出毛泽东思想对研究与解决复杂性问题的威力。

中国人历来长于整体观察, 拙于还原分析。研究与解决复杂性问题, 科学技术基础必须宽广坚实。这就是说, 师从西方学习还原论方法, 必须勤恳老实, 充分掌握当代一切可能应用的科学技术精华, 知其然并知其所以然, 为我所用; 在研究指导思想上,

必须从整体上把握,以系统科学为中介环节,^[21]用系统方法处理,^[22]中西互补融合,方才有可能另辟蹊径、后来居上。

20世纪80年代,笔者结合隧道工程实际,学习与应用系统科学原理和方法,指出围岩稳定分析三个基本环节(建模、输入、输出)上传统方法的不合理性,并阐明了三条指导原则:①由于围岩稳定分析的机理和参数都不大清楚,应属复杂系统中的灰箱,合理的建模原则不是传统的、对应于白箱的理论分析,而是经验分析与理论分析结合;②对于复杂系统的控制原则,不是集中控制,而是分层控制;相应地,合理的输入方式不是传统的、"平等的"多参数输入,而是模式输入与多参数输入结合;③根据复杂系统与精确描述不相容原理,对于输出结果的合理要求,不是传统的可供精确定量使用,而是定性规律符合实际,可供概略定量使用。

只有应用系统科学原理和方法, 阐明围岩稳定分析的三条基本原则, 切实解决中介问题之后, 典型类比分析法方才有坚实的理论依据; 不仅增强了用户在工程中试用和验证的信心, 而且从实用方法和经验层次的水平上产生一个飞跃, 名正言顺地自立于国内外学术之林。[11]

2.4 "发现典型信息,拟合尚不完善的理论分析模型"为特点的典型信息法,是从特殊到一般的认识过程的、解决主要矛盾的、突然涌现的一个切入点;在一定条件下,典型信息法是整体论与还原论结合的一种有效形式。

典型是群体中具有充分代表性的个体^①。人类社会古往今来有效处理的复杂系统问题不计其数。中国传统的象数思维方式,往往首先找出最具典型性事物为代表,这就是"取象";^[4,23]毛泽东领导中国革命与建设事业,从"兴国调查"到"工业学大庆",离不开"周密调查"的典型方法;现代天文学、地质学、生物学等复杂系统问题研究,均不乏典型方法起关键作用的实例^[4,24]。

复杂性研究中发现典型信息的过程,就是外源信息与内源信息结合的过程,^[25]并在这一过程中逐渐集中到典型信息点有所突破;这正是研究者认识能力、综合素质的激发和体现。正如钱学森指出的:"创造性的思维,在开始时是模糊的,到处搜索,但在思维的网络中,总有一点突然变得清晰了,模糊的概

率分布突然变得很集中了,这就是创造,就是智慧,就是智能"。^[26]

典型信息法与一般典型方法的区别在于: 典型信息法用于研究与处理当代某些复杂性(系统)问题; 典型信息法中的典型, 是该群体中在给定方面具有充分的、定量的特征信息, 因而具有充分代表性的个体(系统); 用典型信息拟合简化的理论分析模型, 并经演绎证明与修正, 即可有效应用于同类一般个体, 并有一定的可信度。

典型信息法的应用,是形象思维与逻辑思维相结合,从感性认识到理性认识的过程。在这里,"去粗取精"指的是:在信息不完全、不确定的系统群体之中,找出在给定方面信息相对完全、确定的典型个体。"去伪存真"指的是:从群体信息不一致(有错觉的表面现象)之中,找出典型个体在给定方面相对一致的典型信息。"由此及彼"指的是:发现典型个体的典型信息,即可集中反映尚处于模糊状态的、此类群体的本质特征。"由表及里"指的是:掌握了典型信息,并用以拟合适当的理论分析模型,即可由此深入认识与反映同类系统在给定方面的全体、本质和内部联系。同时也表明:发现某一个体具备典型形象的条件,也就是对同类事物相似的形象特征作出概括,属于形象思维的高级阶段。[27]

某项复杂性研究如果具备"发现典型信息,并作为切入点"的条件,在认识上即如高屋建瓴,总揽全局;在实践上即如执牛耳,纲举目张。困扰国内外数十年的两个科技难题在中国的初步解决都是如此,似非偶然(由于篇幅所限,其他学者在解决科技重大难题中,与笔者不谋而合的、相近的"典型信息"实践经验,以及笔者初步解决另外三个科技难题的实例,均未论及)。复杂性研究中的典型信息的涌现,是形象思维与逻辑思维相结合的一种创造性思维。在一定条件下,典型信息法似为钱学森指出的:"从事物整体关系的'形象'上抓事物的机理,这是科学研究中创新的老道理"[28]之中一种可操作的方法,是还原论与整体论结合的一种有效形式。

钱学森曾经指出:"在研究复杂的巨系统中,我们也要引用统计方法,才能透彻地看到局部到整体的过渡,才能避开不必要的细节,把握住主要的现象"。^[29]总结复杂性问题研究中典型信息法的实践经验,我们是否也可以这样认识:在对某些复杂系统

在特定时刻(或阶段)的行为作预测和控制的研究中,我们也要引用典型信息法,才能透彻地看到个体到群体的过渡,避开不必要的细节,把握住主要的现象。

2.5 典型信息法是一种经验性假设,但演绎证明只能减小而不能消除不确定性。

由典型信息源获取的信息,以分类和类比作桥梁,应用于同类一般个体(系统)的典型信息法,是一种或然性原理,实质是一种经验性假设。如果典型信息源的认识属于同行公认,代表性好,所用分类与类比属于科学分类和因果类比,用以拟合的理论分析模型科学合理、简明实用,那么,这样的经验性假说类比应用于同类个体时,为"真"的可能性较大,并可用数理统计方法得出类似于置信概率区间的、经验性的可信度。

钱学森 1995 年 1 月给笔者的信强调: "总之, 对开放的复杂巨系统而言,'典型'有重要意义, 应该重视, 是专家意见; 但又不能死抱着不放, 那就一定会犯错误"。[30] 在钱老来信启发下, 笔者认识到: 事物的复杂性没有穷尽, 而典型信息总是特定条件下的产物, 既有特定的代表性的一面, 在应用到更大范围时又必有局限性的另一面。 再者, 任何复杂系统都是一个动态发展过程, 而典型信息法, 或者是特定时刻的产物(如典型类比分析法), 或者是特定时刻的产物(如典型类比分析法), 或者是特定的产物(如变形速率比值判别法), 在应用中必须谨慎从事, 如果误认为已经掌握确定性真理, 一成不变盲目套用, 必然会失败。钱老来信指出了复杂性研究中有普遍意义的一个问题。

近 20 年来, 笔者从事演绎证明坚持以下原则: ①阶段性, 由浅入深依次进行: 既往工程实测资料验证, 研究者重点工程试用验证, 用户广泛工程应用验证; ②彻底性, 为了经得起时间和历史的检验, 必须坚持"放手发动群众"的原则, 把程序和方法交给隧道工程界广大工程技术人员, 由他们自主地应用和

验证; ③随时准备修正错误, 在工程应用验证中, 可能发现典型性的工程实例, 也必然会发现一些前所未料的失误或问题; 这是复杂性研究中应有之义, 必须公开承认, 在用户监督帮助下逐步加以解决。复杂性研究的本质特征, 需要这种完全、彻底的实事求是态度。

2.6 研究中矛盾重重, 内外交困; 充分发挥主观能动性, 不断克服自身认识的局限性, 群策群力, 方才可能有所进展。

人的主观能动性,不仅表现为积极地认识世界和改造世界,而且表现在对认识活动的"自我意识"与"自我控制"(认识活动、情感活动、意志活动)上。[31]

复杂性研究是在未知领域的探索。应用基础理 论研究,应用技术研究,技术开发研究,三者难免交 叉、反复: 此类研究前途未卜, 举步维艰, 在现有科技 体制下往往难以申请课题: 一者科研工作量和难度 均难以预计, 二者探索也可能失败。理论探讨、实践 证明小有所成,论文退稿远多于发表,往往直到在国 际有影响的期刊打开局面,方才可能有所好转;因不 合还原论常规, 时常为学术界主流的某些人士所不 容。为了普及应用以便严格验证,一方面转让软件 只能象征性收费,一方面又必须请地质、计算机专业 高层次人员协作(如研制便捷的人机界面);由于本 项研究偏重前者, 虽能团结奋斗于一时, 终因不能给 参与者以必要的物质利益,而难以为继。总之,在 "西方中心论"尚居科学技术界主流地位的现实条件 下, 从事还原论与整体论结合的复杂性研究, 有人言 之可畏, 无名利之可期, 没有长期坐冷板凳的思想准 备, 很难坚持下去。既然难免长期处于边缘地位, 用 辩证唯物论认识论指导复杂性研究,力求减少失误 的同时,不断地克服自身认识的局限性,自觉地对自 身的认识活动、情感活动、意志活动进行自我控制、 显然是十分必要的。

致谢 笔者自觉涉足复杂性研究,始于参加钱学森先生创建的系统学讨论班,其间得到钱老两次来函指导帮助;得益于参加北京大学"现代科学与哲学研究中心"组织的多次学术研讨会,与"天地生人学术讲座"活动;认识论反思,始于十年前冯国瑞先生在系统学讨论班中的启发与热忱帮助;典型信息法概念与方法的认识,先后在与王承树、罗先汉、钱七虎、钱学敏、冯国瑞、苗东升、卢明森、赵光武、于景元、徐道一、宋正海、刘长林、任振球、褚德莹、马蔼乃、赵少奎等先生的交流中得到启发和帮助,谨此一并致谢。

参考文献

- 1 黄楠森. 钱学森与辩证唯物主义. 见: 宋 健主编. 钱学森科学贡献暨学术思想研讨会论文集. 北京: 中国科学技术出版社, 2001, 48~53
- 2 钱学森. 1991年8月12日致于景元的信. 见: 王寿云, 于景元, 戴汝为等. 开放的复杂巨系统. 杭州: 浙江科学技术出版社, 1996. 278

- 3 毛泽东. 实践论. 见: 毛泽东选集(第一卷). 北京: 人民出版社, 1991. 282~ 298
- 4 李世 ,赵玉绂,徐复安等.隧道支护设计新论——典型类比分析法应用和理论.北京;科学出版社,1999.48~80,140~144,554
- 5 钱学森.再谈开放的复杂巨系统. 见: 钱学森, 黄秉维, 竺可桢等著. 论地理科学. 杭州: 浙江教育出版社. 1994. 164~ 171
- 6 李世 ,吴向阳,尚彦军.地下工程半经验半理论设计方法的理论基础——围岩一支护系统是一种开放的复杂巨系统.岩石力学与工程学报,2002,21(3):299~304
- 7 于景元. 开放的复杂巨系统及其方法论. 见: 王寿云, 于景元. 戴汝为等. 开放的复杂巨系统. 1996, 31~75
- 8 李华晔. 国内外地下洞室建设与地质灾害综述. 见: 中国岩石力学与工程学会第五次学术大会论文集. 北京: 中国科学技术出版社, 1998. 66~ 67
- 9 孙广忠. 工程地质与地质工程. 北京: 地震出版社, 1993. 20, 130
- 10 [日] 土木学会. 日本隧道标准规范(山岭篇)及解释(1986 改订版). 关宝树等译. 成都: 西南交通大学出版社, 1988. 138~ 143
- 11 李世 . 隧道围岩稳定系统分析. 北京: 中国铁道出版社, 1991. 11~18
- 12 姜 璐. 系统的自组织. 见: 许国志主编. 系统科学. 上海: 上海科技教育出版社, 2000. 173~ 202
- 13 孙 钧. 世纪之交的岩石力学研究. 中国岩石力学与工程学会第五次学术大会论文集. 北京: 中国科学技术出版社, 1998. 1~16
- 14 Li S. Application of Rock Mechanics Principles to Tunnelling in China. Int J Rock Mech Min Sci & Geomech Abstr, 1994, 31(6): 749~754
- 15 Li S. Wu X, Ma F. Application of Precedent Type Analysis (PTA) in the Construction of Ertan Hydro-Electric Station, China. Int J Rock M ech M in Sci, 1998, 35(6): 787~ 795
- 16 李世 . 围岩一支护动态系统稳定性判据——变形速度比值判别法. 水电站设计, 1992, 8(3): 20~25
- 17 Li S. An Empirical Hypothesis of Deformation Ratio Criterion. Roch Mech Rock Engne, 1996, 29(2): 63~72
- 18 [西德] Müller L. 工程地质学和岩石力学在隧道掘进中的作用. 郑秉仁, 孙家福译. 见: 地质矿产部水文地质工程公司, 地质矿产部情报研究所编. 国外工程地质研究. 北京: 地质出版社, 1986, 286~296
- 19 毛泽东. 矛盾论. 见: 毛泽东选集(第一卷). 北京: 人民出版社, 1991. 299~340
- 20 [西德] Müller L. 岩石力学. 李世平, 冯振海, 周文安等译. 北京: 煤炭工业出版社, 1981. 1~2
- 21 冯国瑞. 系统论、信息论、控制论与马克思主义认识论. 北京: 北京大学出版社, 1991. 184~206, 316, 327
- 22 苗东升. 系统科学精要. 北京: 中国人民大学出版社, 1998. 3~16
- 23 徐道一. 周易科学观. 北京: 地震出版社, 1992. 10~17
- 24 李世 ,尚彦军.典型信息方法简说.见:中国人工智能学会编.中国人工智能进展.北京:邮电大学出版社,2001.175~178
- 25 冯国瑞. 思维信息加工与认识发展过程. 见: 赵江武主编. 思维科学研究. 北京: 中国人民大学出版社,1999. 564~580
- 26 汪成为. 春雨润物细无声——记钱学森在信息领域方面对我的指导. 见宋 健主编. 钱学森科学贡献暨学术思想研讨会论文集. 北京: 中国科学技术出版社, 2001. 59~64
- 27 卢明森. 思维奥秘探索——思维学导引. 北京:北京农业大学出版社, 1994. 242~ 301
- 28 钱学敏. 科学与艺术相辅相成综合创新. 见: 北京大学现代科学与哲学研究中心编. 钱学森与现代科学技术. 北京: 人民出版社, 2001. 344~376
- 29 钱学森. 系统科学、思维科学与人体科学. 见: 钱学森. 科学的艺术与艺术的科学. 北京: 人民文学出版社, 1994. 1~22
- 30 钱学森. 1995 年 1 月 25 日致李世 的信. 见: 钱学森. 创建系统学. 太原: 山西科学技术出版社, 2001. 514~ 515
- 31 赵光武. 思维科学与能动反映论. 见: 赵光武主编. 思维科学研究. 北京: 中国人民大学出版社, 1999. 580~ 596

Complexity Research Practice and Some Considerations on Theory of Knowledge and Methodology

Li Shihui

(The 4th Design and Researth Institute of the Engineer Corps, H. Qs of the General Staff of PLA)

Abstract This paper sums up author's understanding and practice on the research of two complexity problems, there is two focal points: ①The guiding role of dialectical materialist theory of knowledge and the medium role of systems science should not be ignored; ② In some cases, typical information method is an important juneture for the combination of reductionism and holism, and an effective form to predict and control the action of a complex system.

Key words complexity research; practice; dialectical materialism; theory of knowledge; methodology; typical information method