

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 26 921.1

Anmeldetag:

17. Juni 2002

Anmelder/inhaber:

BAYER AKTIENGESELLSCHAFT, Leverkusen/DE

Bezeichnung:

Antibakterielle Amid-Makrozyklen

IPC:

C 07 D, A 61 K

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 03. April 2003 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Faust

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

ntibakterielle Amid-Makrozyklen

Die Erfindung betrifft antibakterielle Amid-Makrozyklen und Verfahren zu ihrer lerstellung sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behanding und/oder Prophylaxe von Krankheiten, insbesondere von bakteriellen Infekonen.

1 US 3,452,136, Dissertation R. U. Meyer, Universität Stuttgart, Deutschland 1991, Dissertation V. Leitenberger, Universität Stuttgart, Deutschland 1991, Synthesis 1992), (10), 1025-30, J. Chem. Soc., Perkin Trans. 1 (1992), (1), 123-30, J. Chem. oc., Chem. Commun. (1991), (10), 744, Synthesis (1991), (5), 409-13, J. Chem. oc., Chem. Commun. (1991), (5), 275-7, J. Antibiot. (1985), 38(11), 1462-8, J. Intibiot. (1985), 38(11), 1453-61, wird der Naturstoff selber, Biphenomycin B (R¹, 2 gleich Wasserstoff, R³, R⁴, R⁷, R⁸ und R⁹ gleich Wasserstoff, R³ gleich 3-Amino-hydroxy-prop-1-yl und Carboxyl statt C(O)NR⁵R⁶) als antibakteriell wirksam eschrieben.

hirality (1995), 7(4), 181-92, J. Antibiot. (1991), 44(6), 674-7, J. Am. Chem. Soc. 1989), 111(19), 7323-7, J. Am. Chem. Soc. (1989), 111(19), 7328-33, J. Org. Chem. 1987), 52(24), 5435-7, Anal. Biochem. (1987), 165(1), 108-13, J. Org. Chem. 1985), 50(8), 1341-2, J. Antibiot. (1993), 46(3), C-2, J. Antibiot. (1993), 46(1), 35-40, Synthesis (1992), (12), 1248-54, Appl. Environ. Microbiol. (1992), 58(12), 879-8, J. Chem. Soc., Chem. Commun. (1992), (13), 951-3 beschreiben einen strukrell verwandten Naturstoff, Biphenomycin A, der am Makrozyklus eine weitere ubstitution mit einer Hydroxygruppe aufweist.

Die Naturstoffe entsprechen hinsichtlich ihrer Eigenschaften nicht den Anfordeungen, die an antibakterielle Arzneimittel gestellt werden. Auf dem Markt sind zwar trukturell andersartige antibakteriell wirkende Mittel vorhanden, es kann aber egelmäßig zu einer Resistenzentwicklung kommen. Neue Mittel für eine gute und zirksamere Therapie sind daher wünschenswert.

Eine Aufgabe der vorliegenden Erfindung ist es daher, neue und alternative Verbindungen mit gleicher oder verbesserter antibakterieller Wirkung zur Behandlung von bakteriellen Erkrankungen bei Menschen und Tieren zur Verfügung zu stellen.

Überraschenderweise wurde gefunden, dass Derivate dieser Verbindungsklasse, worin die Carboxylgruppe des Naturstoffs gegen eine Amidgruppe ausgetauscht wird, antibakteriell wirksam sind.

Gegenstand der vorliegenden Erfindung sind daher Verbindungen der Formel

worin

15 R¹ gleich Wass Heterocyclyl

gleich Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Alkylcarbonyl, Arylcarbonyl, Heterocyclylcarbonyl, Heteroarylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Arylsulfonyl, Heterocyclylsulfonyl, Heteroarylsulfonyl oder ein carbonylgebundener Aminosäurerest ist,

20

25

5

10

wobei R¹ substituiert sein kann mit 0 bis 3 Substituenten R¹⁻¹, wobei die Substituenten R¹⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Cyano, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy und Carboxyl,

R² gleich Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl,

wobei R² außer Wasserstoff substituiert sein kann mit 0 bis 3 Substituenten R²⁻¹, wobei die Substituenten R²⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy und Carboxyl,

oder

 \mathbb{R}^3

R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Heterocyclus bilden, der substituiert sein kann mit 0 bis 3 Substituenten R¹⁻², wobei die Substituenten R¹⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl und Aminocarbonyl,

20

25

30

5

10

15

gleich Wasserstoff, Alkyl oder die Seitengruppe einer Aminosäure ist, worin Alkyl substituiert sein kann mit 0 bis 3 Substituenten R³⁻¹, wobei die Substituenten R³⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

worin Cycloalkyl, Aryl, Heteroaryl und Heterocyclyl substituiert sein können mit 0 bis 2 Substituenten R³⁻², wobei die Substituenten R³⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Nitro, Cyano, Amino und Dialkylamino.

und worin eine oder mehrere freie Aminogruppen in der Seitengruppe der Aminosäure mit Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Alkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Heterocyclylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Arylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Arylsulfonyl, Heterocyclylsulfonyl oder Heteroarylsulfonyl substituiert sein können,

R³ gleich Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl ist,

oder

- R³ und R³ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen Ring bilden, der ein Stickstoffatom enthalten kann und der substituiert sein kann mit 0 bis 3 Substituenten R³-³, wobei die Substituenten R³-³ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Cyano, Methyl, Ethyl, Trifluormethyl, Nitro, Amino, Alkylamino, Dialkylamino, Hydroxy und Alkoxy,
- R⁴ gleich Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl ist,
- gleich Wasserstoff, Alkyl, Alkenyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl oder ein amingebundener Aminosäurerest ist,
 wobei R⁵ substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻¹, wobei die
 Substituenten R⁵⁻¹ unabhängig voneinander ausgewählt werden aus der
 Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy,
 Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminosulfonyl,
 Alkylaminosulfonyl, Dialkylaminosulfonyl, Arylaminosulfonyl, Hetero-

cyclylaminosulfonyl, Heteroarylaminosulfonyl, Aminocarbonylamino, Hydroxycarbonylamino und Alkoxycarbonylamino,

wobei R⁵⁻¹ im Falle von Aryl substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻², wobei die Substituenten R⁵⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Cyano, Amino, Alkylamino und Dialkylamino,

R⁶ gleich Wasserstoff, Alkyl, Alkenyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl oder ein amingebundener Aminosäurerest ist,

wobei R⁶ substituiert sein kann mit 0 bis 3 Substituenten R⁶⁻¹, wobei die Substituenten R⁶⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Aminosulfonyl, Alkylaminosulfonyl, Dialkylaminosulfonyl, Arylaminosulfonyl, Heterocyclylaminosulfonyl, Heteroarylaminosulfonyl, Aminocarbonylamino, Hydroxycarbonylamino und Alkoxycarbonylamino,

20 oder

5

10

15

25

30

R⁵ und R⁶ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Heterocyclus bilden, der substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻⁶, wobei die Substituenten R⁵⁻⁶ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, halogeniertes Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Aminosulfonyl, Alkylaminosulfonyl, Dialkylaminosulfonyl, Arylaminosulfonyl, Heterocyclylaminosulfonyl, Heteroarylaminosulfonyl und Aminocarbonylamino,

10

15

20

- R⁷ gleich Wasserstoff, C₁-C₆-Alkyl, Alkylcarbonyl oder C₃-C₈-Cycloalkyl ist,
- R⁸ gleich Wasserstoff, C₁-C₆-Alkyl, Alkylcarbonyl oder C₃-C₈-Cycloalkyl ist,
- R⁹ gleich Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl ist.

Die erfindungsgemäßen Verbindungen können auch in Form ihrer Salze, Solvate oder Solvate der Salze vorliegen.

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung betrifft deshalb die Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von Enantiomeren und/oder Diastereomeren lassen sich durch bekannte Verfahren wie Chromatographie an chiraler Phase oder Kristallisation mit chiralen Aminen die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren.

Die Erfindung betrifft in Abhängigkeit von der Struktur der Verbindungen auch Tautomere der Verbindungen.

Als <u>Salze</u> sind im Rahmen der Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure.

15

. 20

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclo-hexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabiethylamin, Arginin, Lysin, Ethylendiamin und Methylpiperidin.

Als <u>Solvate</u> werden im Rahmen der Erfindung solche Formen der Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt.

Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:

Alkyl sowie die Alkylteile in Substituenten wie Alkoxy, Mono- und Dialkylamino, Alkylsulfonyl umfassen lineares und verzweigtes Alkyl, z.B. C_1 - C_{12} -, insbesondere C_1 - C_6 - und C_1 - C_4 -Alkyl.

C₁-C₆-Alkyl umfasst Methyl, Ethyl, n- und i-Propyl, n-, i-, sek.- und tert.-Butyl, n-Pentyl, Isopentyl, Neopentyl, Hexyl,

25 C₁-C₄-Alkyl umfasst Methyl, Ethyl, n- und i-Propyl, n-, i-, sek.- und tert.-Butyl,

Alkenyl umfasst lineares und verzweigtes C_2 - C_{12} -, insbesondere C_2 - C_6 - und C_2 - C_4 -Alkenyl, wie z.B. Vinyl, Allyl, Prop-1-en-1-yl, Isopropenyl, But-1-enyle, But-2-enyle, Buta-1.2-dienyle, Buta-1.3-dienyle.

Cycloalkyl umfasst polycyclische gesättigte Kohlenwasserstoffreste mit bis zu 14 Kohlenstoffatomen, nämlich monocyclisches C₃-C₁₂-, vorzugsweise C₃-C₈-Alkyl, insbesondere C₃-C₆-Alkyl wie z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Und polycyclisches Alkyl, d.h. vorzugsweise bicyclisches und tricyclisches, gegebenenfalls spirocyclisches C₇-C₁₄-Alkyl, wie z.B. Bicyclo[2.2.1]-hept-1-yl, Bicyclo[2.2.1]-hept-2-yl, Bicyclo[2.2.1]-hept-7-yl, Bicyclo[2.2.2]-oct-2-yl, Bicyclo[3.2.2]-non-2-yl und Adamantyl.

Aryl steht im Rahmen der Erfindung für einen aromatischen Rest mit vorzugsweise 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.

Alkoxy steht im Rahmen der Erfindung vorzugsweise für einen geradkettigen oder verzweigten Alkoxyrest insbesondere mit 1 bis 6, 1 bis 4 bzw. 1 bis 3 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 3 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy, t-Butoxy, n-Pentoxy und n-Hexoxy.

Alkoxycarbonyl steht im Rahmen der Erfindung vorzugsweise für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen, der über eine Carbonylgruppe verknüpft ist. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl und t-Butoxycarbonyl.

Monoalkylamino steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkylsubstituenten, der vorzugsweise 1 bis 6, 1 bis 4 bzw. 1 bis 2 Kohlenstoffatome aufweist. Bevorzugt ist ein geradkettiger oder verzweigter Monoalkylamino-Rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methylamino, Ethylamino, n-Propylamino, Isopropylamino, t-Butylamino, n-Pentylamino und n-Hexylamino.

20

15

25

Dialkylamino steht im Rahmen der Erfindung für eine Amino-Gruppe mit zwei gleichen oder verschiedenen geradkettigen oder verzweigten Alkylsubstituenten, die vorzugsweise jeweils 1 bis 6, 1 bis 4 bzw. 1 bis 2 Kohlenstoffatome aufweisen. Bevorzugt sind geradkettige oder verzweigte Dialkylamino-Reste mit jeweils 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: N,N-Dimethylamino, N,N-Diethylamino, N-Ethyl-N-methylamino, N-Methyl-N-n-propylamino, N-Isopropyl-N-n-propylamino, N-t-Butyl-N-methylamino, N-Ethyl-N-n-pentylamino und N-n-Hexyl-N-methylamino.

10

15

5

Mono- oder Dialkylaminocarbonyl steht im Rahmen der Erfindung für eine Amino-Gruppe, die über eine Carbonylgruppe verknüpft ist und die einen geradkettigen oder verzweigten bzw. zwei gleiche oder verschiedene geradkettige oder verzweigte Alkylsubstituenten mit vorzugsweise jeweils 1 bis 4 bzw. 1 bis 2 Kohlenstoffatomen aufweist. Beispielhaft und vorzugsweise seien genannt: Methylaminocarbonyl, Ethylaminocarbonyl, Isopropylaminocarbonyl, t-Butylaminocarbonyl, N,N-Dimethylaminocarbonyl, N,N-Diethylaminocarbonyl, N-Ethyl-N-methylaminocarbonyl und N-t-Butyl-N-methylaminocarbonyl.

20

Alkylcarbonylamino (Acylamino) steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkanoylsubstituenten, der vorzugsweise 1 bis 6, 1 bis 4 bzw. 1 bis 2 Kohlenstoffatome aufweist und über die Carbonylgruppe verknüpft ist. Bevorzugt ist ein Monoacylamino-Rest mit 1 bis 2 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Formamido, Acetamido, Propionamido, n-Butyramido und Pivaloylamido.

25

30

Heterocyclyl (Heterocyclus) steht für einen mono- oder polycyclischen, heterocyclischen Rest mit 4 bis 10 Ringatomen und bis zu 3, vorzugsweise 1 Heteroatomen bzw. Heterogruppen aus der Reihe N, O, S, SO, SO₂. 4- bis 8-gliedriges, insbesondere 5- bis 6-gliedriges Heterocyclyl ist bevorzugt. Mono- oder bicyclisches Heterocyclyl ist bevorzugt ist monocyclisches Heterocyclyl.

Als Heteroatome sind N und O bevorzugt. Die Heterocyclyl-Reste können gesättigt oder teilweise ungesättigt sein. Gesättigte Heterocyclyl-Reste sind bevorzugt. Die Heterocyclylreste können über ein Kohlenstoffatom oder ein Heteroatom gebunden sein. Besonders bevorzugt sind 5- bis 6-gliedrige, monocyclische gesättigte Heterocyclylreste mit bis zu zwei Heteroatomen aus der Reihe O, N und S. Beispielsweise und vorzugsweise seien genannt: Oxetan-3-yl, Pyrrolidin-2-yl, Pyrrolidin-3-yl, Pyrrolinyl, Tetrahydrofuranyl, Tetrahydrothienyl, Pyranyl, Piperidinyl, Thiopyranyl, Morpholinyl, Perhydroazepinyl. Ein Stickstoff-Heterocyclylring ist dabei ein Heterocyclus, der als Heteroatome nur Stickstoffatome aufweist.

10

15

5

Heteroaryl steht für einen aromatischen, mono- oder bicyclischen Rest mit 5 bis 10 Ringatomen und bis zu 5 Heteroatomen aus der Reihe S, O und/oder N. Bevorzugt sind 5- bis 6-gliedrige Heteroaryle mit bis zu 4 Heteroatomen. Der Heteroarylrest kann über ein Kohlenstoff- oder Heteroatom gebunden sein. Beispielsweise und vorzugsweise seien genannt: Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl, Imidazolyl, Pyridyl, Pyrimidyl, Pyridazinyl, Indolyl, Indazolyl, Benzofuranyl, Benzothiophenyl, Chinolinyl, Isochinolinyl.

20

Alkoxycarbonylamino steht im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkoxycarbonylsubstituenten, der vorzugsweise im Alkoxyrest 1 bis 6 bzw. 1 bis 4 Kohlenstoffatome aufweist und über die Carbonylgruppe verknüpft ist. Bevorzugt ist ein Alkoxycarbonylamino-Rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonylamino, Ethoxycarbonylamino, n-Propoxycarbonylamino und t-Butoxycarbonylamino.

25

Aminosulfonyl steht für eine -S(O)₂NH₂-Gruppe. Dementsprechend sind Alkylaminosulfonyl, Dialkylaminosulfonyl, Arylaminosulfonyl, Heterocyclylaminosulfonyl und Heteroarylaminosulfonyl an der Aminogruppe mit den entsprechenden Resten substituiert, d.h. Alkyl, Aryl etc.

Halogen schließt im Rahmen der Erfindung Fluor, Chlor, Brom und Iod ein. Bevorzugt sind Fluor oder Chlor.

Unter der Seitengruppe einer Aminosäure wird im Rahmen der Erfindung derjenige organische Rest eines α -Aminosäuremoleküls verstanden, der an das α -Kohlenstoffatom der Aminosäure gebunden ist. Bevorzugt sind dabei die Reste natürlich vorkommender α -Aminosäuren in der L- oder in der D-Konfiguration, insbesondere natürlich vorkommende α -Aminosäuren in der natürlichen L-Konfiguration.

10

15

5

Hierzu zählen beispielsweise Wasserstoff (Glycin), Methyl (Alanin), Propan-2-yl (Valin), 2-Methyl-propan-1-yl (Leucin), 1-Methyl-propan-1-yl (Isoleucin), eine (3-Indolyl)-methylgruppe (Tryptophan), eine Benzylgruppe (Phenylalanin), eine Methylthioethylgruppe (Methionin), Hydroxymethyl (Serin), p-Hydroxybenzyl (Tyrosin), 1-Hydroxy-ethan-1-yl (Threonin), Mercaptomethyl (Cystein), Carbamoylmethyl (Asparagin), Carbamoylethyl (Glutamin), Carboxymethyl (Asparagin-säure), Carboxyethyl (Glutaminsäure), 4-Aminobutan-1-yl (Lysin), 3-Guanidinopropan-1-yl (Arginin), Imidazol-4-ylmethyl (Histidin), 3-Ureidopropan-1-yl (Citrullin), Mercaptoethyl (Homocystein), Hydroxyethyl (Homoserin), 4-Amino-3-hydroxybutan-1-yl (Hydroxylysin), 3-Amino-propan-1-yl (Ornithin).

20

Carbonylgebundener Aminosäurerest steht für einen Aminosäurerest, der über die Carbonylgruppe der Aminosäure-Säurefunktion gebunden ist. Bevorzugt sind dabei α -Aminosäuren in der L- oder in der D-Konfiguration, insbesondere natürlich vorkommende α -Aminosäuren in der natürlichen L-Konfiguration, z.B. Glycin (\mathbb{R}^{1-1} gleich Aminomethylcarbonyl), L-Alanin (\mathbb{R}^{1-1} gleich (S)-(+)-2-Aminopropylcarbonyl), L-Prolin (\mathbb{R}^{1-1} gleich (S)-(-)-Pyrrolidin-2-carbonyl).

30

25

Amingebundener Aminosäurerest steht für einen Aminosäurerest, der über die Aminogruppe der Aminosäure gebunden ist. Bevorzugt sind dabei α -Aminosäuren in der L- oder in der D-Konfiguration, insbesondere natürlich vorkommende α -

10

15

20

25

30

Aminosäuren in der natürlichen L-Konfiguration, z.B. Glycin (R⁵ gleich Carboxylmethyl), Alanin (R⁵ gleich 1-Carboxylethyl).

Unter Aminoschutzgruppen werden im Rahmen der vorliegenden Erfindung solche organischen Reste verstanden, mit denen Aminogruppen vorübergehend gegen den Angriff von Reagenzien geschützt werden können, so dass Reaktionen wie Oxidation, Reduktion, Substitution und Kondensation nur an den gewünschten (ungeschützten) Stellen stattfinden. Sie sind für die Dauer des Schutzes unter allen Bedingungen der durchzuführenden Reaktionen und Reinigungsoperationen stabil und wieder unter milden Bedingungen selektiv und mit hoher Ausbeute abspaltbar (Römpp Lexikon Chemie – Version 2.0, Stuttgart/New York: Georg Thieme Verlag 1999; T. W. Greene, P. G. Wuts, Protective Groups in Organic Synthesis, 3rd ed., John Wiley, New York, 1999)

Bevorzugt sind hierbei Oxycarbonylderivative wie Carbamate und insbesondere die folgenden Gruppen: Benzyloxycarbonyl, 4-Brom-benzyloxycarbonyl, 2-Chlorbenzyloxycarbonyl, 3-Chlor-benzyloxycarbonyl, Dichlorbenzyloxycarbonyl, 3,4-Dimethoxybenzyloxycyrbonyl, 3,5-Dimethoxybenzyloxycarbonyl, 2,4-Dimethoxybenzyloxycarbonyl, 4-Methoxybenzyloxycarbonyl, 4-Nitrobenzyloxycarbhonyl, 2-Nitrobenzyloxycarbonyl, 2-Nitro-4,5-dimethoxybenzyloxycarbonyl, 3,4,5-Trimethoxybenzyloxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, Butoxycarbonyl, Isobutoxycarbonyl, tert-Butoxycarbonyl, Pentoxycarbonyl, Isopentoxycarbonyl, Hexoxycarbonyl, Cyclohexoxycarbonnyl, Octoxycarbonyl, 2-Ethylhexoxycarbonyl, 2-Iodhexoxycarbonyl, 2-Bromethoxycarbonyl, 2-Chlorethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, 2,2,2-Trichlor-tertbutoxycarbonyl, Bis-(4-methoxyphenyl)methoxycarbonyl, Phenacyloxycarbonyl, 2-Trimethylsilylethoxycarbonyl, Phenacyloxycarbonyl, 2-Trimethylsilylethoxycarbonyl, 2-(Di-n-butyl-methyl-silyl)ethoxycarbonyl, phenylsilylethoxycarbonyl, 2-(Dimethyl-tert-butylsilyl)ethoxycarbonyl, Methyloxycarbonyl, Vniyloxycarbonyl, Allyloxycarbonyl, Phenoxycarbonyl, Tolyloxycarbonyl, 2,4-Dinitrophenoxycarbonyl, 4-Nitrophenoxycarbonyl, 2,4,5-Trichlorphenoxycarbonyl, Naphthyloxycarboyl, Fluorenyl-9-methoxycarbonyl, Valeroyl, Isovaleroyl, Butyryl, Ethylthiocarbonyl, Methylthiocarbonyl, Butylthiocarbonyl, Methylthiocarbonyl, Methylaminocarbonyl, Benzylthiocarbonyl, Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl, iso-Propylaminocarbonyl, Formyl, Acetyl, Propionyl, Pivaloyl, 2-Chloracetyl, 2-Bromacetyl, 2-Iodacetyl, 2,2,2-Trifluoracetyl, 2,2,2-Trichloracetyl, Benzoyl, 4-Chlorbenzoyl, 4-Methoxybenzoyl, 4-Nitro-benzyl, 4-Nitrobenzoyl, Naphthylcarbonyl, Phenoxyacetyl, Adamantyl-carbonyl, Dicyclohexylphosphoryl, Diphenyl-phosphoryl, Dibenzylphosphoryl, Di-(4-nitrobenzyl)-phophoryl, Phenoxypheylphosphoryl, Diethylphosphinyl, Diphenyl-phosphinyl, Phthaloyl, Phthalimido oder Benzyloxymethylen.

Besonders bevorzugt sind *tert*-Butyloxycarbonyl (Boc), 9-Fluorenylmethyloxycarbonyl (FMOC), Benzyloxycarbonyl (Cbz- / Z-) und Allyloxycarbonyl (Aloc).

15 Ein Symbol * an einer Bindung bedeutet die Verknüpfungsstelle im Molekül.

Bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I),

20 worin

25

30

10

R¹ gleich Wasserstoff, Alkyl, Aryl, Heteroaryl, Heterocyclyl, Alkylcarbonyl, Arylcarbonyl, Heterocyclylcarbonyl, Heteroarylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Arylsulfonyl, Heterocyclylsulfonyl, Heteroarylsulfonyl oder ein carbonylgebundener Aminosäurerest ist,

wobei R¹ substituiert sein kann mit 0 bis 3 Substituenten R¹⁻¹, wobei die Substituenten R¹⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy,

Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy und Carboxyl,

R² gleich Wasserstoff oder Alkyl,

wobei R² außer Wasserstoff substituiert sein kann mit 0 bis 3 Substituenten R²⁻¹, wobei die Substituenten R²⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Amino, Alkylamino und Dialkylamino.

1O oder

R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Heterocyclus bilden, der substituiert sein kann mit 0 bis 2 Substituenten R¹⁻², wobei die Substituenten R¹⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl und Aminocarbonyl,

gleich Wasserstoff, Alkyl oder die Seitengruppe einer Aminosäure ist, worin Alkyl substituiert sein kann mit 0 bis 3 Substituenten R³⁻¹, wobei die Substituenten R³⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Trifluormethyl, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

worin Cycloalkyl, Aryl, Heteroaryl und Heterocyclyl substituiert sein können mit 0 bis 2 Substituenten R³⁻², wobei die Substituenten R³⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl und Amino,

und worin freie Aminogruppen in der Seitengruppe der Aminosäure mit Alkyl, Alkenyl, Cycloalkyl, Alkylcarbonyl, Arylcarbonyl, Heteroaryl-

15

5

20

25

carbonyl, Heterocyclylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Arylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Heterocyclylsulfonyl, Heterocyclylsulfonyl, substituiert sein können,

5

R³ gleich Wasserstoff oder C₁-C₆-Alkyl ist,

oder

 \mathbb{R}^5 .

10

R⁴ gleich Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl ist,

15

gleich Wasserstoff, Alkyl, Alkenyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl oder ein amingebundener Aminosäurerest ist,
wobei R⁵ substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻¹, wobei die Substituenten R⁵⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl,

20

R⁶ gleich Wasserstoff, Alkyl oder Cycloalkyl,

Alkylaminocarbonyl und Dialkylaminocarbonyl,

oder

25

R⁵ und R⁶ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Heterocyclus bilden, der substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻⁶, wobei die Substituenten R⁵⁻⁶ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, halogeniertes Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

	\cdot
R ⁷	gleich Wasserstoff oder C ₁ -C ₆ -Alkyl ist,
R ⁸	gleich Wasserstoff oder C ₁ -C ₆ -Alkyl ist,
R ⁹	gleich Wasserstoff oder C ₁ -C ₆ -Alkyl ist.
	zugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der einen Formel (I),
worin	
R ¹	gleich Wasserstoff, Alkyl, Alkylcarbonyl, Arylcarbonyl, Heterocyclylcarbonyl, Heteroarylcarbonyl, Alkoxycarbonyl oder ein carbonylgebundener Aminosäurerest ist,
	wobei R ¹ substituiert sein kann mit 0 bis 2 Substituenten R ¹⁻¹ , wobei die Substituenten R ¹⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Amino, Alkylamino, Dialkylamino, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy und Alkoxy,
R ²	gleich Wasserstoff oder Methyl,

R³ gleich Aminocarbonylmethyl, 3-Aminopropyl, 2-Hydroxy-3-aminopropyl, 3-Guanidinopropyl, 2-Aminocarbonylethyl, 2-Hydroxycarbonylethyl, 4-Aminobutyl, Hydroxymethyl, 2-Hydroxyethyl, 4-Amino-3-hydroxybutan-1-yl, und worin freie Aminogruppen in der Seitengruppe der Aminosäure mit Alkyl, Alkenyl, C₃-C₆-Cycloalkyl, Alkylcarbonyl, Phenylcarbonyl, 5- bis 6-gliedriges Heterocyclylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylamino-

carbonyl, Phenylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Arylsulfonyl, 5- bis 6-gliedriges Heterocyclylsulfonyl, 5- bis 6-gliedriges Heteroarylsulfonyl substituiert sein können,

gleich Wasserstoff ist,

gleich Wasserstoff oder Methyl ist,

gleich Wasserstoff, Alkyl, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl oder ein amingebundener Aminosäurerest ist,

wobei für den Fall, dass R⁵ gleich Alkyl, C₃-C₆-Cycloalkyl oder 5- bis 6-gliedriges Heterocyclyl ist, dieses substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻², wobei die Substituenten R⁵⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Alkyl, Trifluormethyl, Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

und

wobei für den Fall, dass R⁵ gleich Phenyl oder 5- bis 6-gliedriges Heteroaryl ist, dieses substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻³, wobei die Substituenten R⁵⁻³ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Trifluormethoxy, Amiro, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxy-carbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

und

wobei für den Fall, dass R⁵ gleich amingebundener Aminosäurerest, dieser substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻⁴, wobei die Substituenten R⁵⁻⁴ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend

aus Halogen, Trifluormethyl, Trifluormethoxy, Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

R⁶ gleich Wasserstoff, Alkyl oder C₃-C₆-Cycloalkyl,

oder

5

10

15

20

25

30

R⁵ und R⁶ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen Heterocyclus bilden, der substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻⁶, wobei die Substituenten R⁵⁻⁶ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, halogeniertes Phenyl, 5- bis 6-gliedriges Heteroaryl, Hydroxy, Alkoxy, Carboxyl und Aminocarbonyl,

R⁷ gleich Wasserstoff,

R.8 gleich Wasserstoff,

R⁹ gleich Wasserstoff oder Methyl.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

R¹ gleich Alkylcarbonyl, Phenylcarbonyl, 5- bis 6-gliedriges Heterocyclylcarbonyl, 5- bis 6-gliedriges Heteroarylcarbonyl oder Alkoxycarbonyl.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

R² gleich Wasserstoff.

5

10

15

20

25

30

 \mathbb{R}^{5}

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

gleich die Seitengruppe einer Aminosäure, insbesondere 3-Aminopropyl oder 2-Hydroxy-3-aminopropyl ist,
worin freie Aminogruppen in der Seitengruppe der Aminosäure mit Alkyl,
Alkylcarbonyl, Phenylcarbonyl oder Alkoxycarbonyl substituiert sein können.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

R³ gleich Wasserstoff.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

R⁴ gleich Wasserstoff.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

gleich Wasserstoff, Alkyl, C3-C6-Cycloalkyl, Phenyl, 5- bis 6-gliedriges

Heteroaryl, 5- bis 6-gliedriges Heterocyclyl oder ein amingebundener Aminosäurerest ist,
wobei für den Fall, dass R⁵ gleich Alkyl, C₃-C₆-Cycloalkyl oder 5- bis 6gliedriges Heterocyclyl, dieses substituiert sein kann mit 0 bis 2 Substituenten
R⁵⁻², wobei die Substituenten R⁵⁻² unabhängig voneinander ausgewählt
werden aus der Gruppe bestehend aus Trifluormethyl, Amino, Alkylamino,
Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis

6-gliedriges Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

und

wobei für den Fall, dass R⁵ gleich amingebundener Aminosäurerest, dieser substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻⁴, wobei die Substituenten R⁵⁻⁴ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Hydroxy, Alkoxy, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl.

10

.2

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

R⁶ gleich Wasserstoff oder Methyl.

15

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

20

R⁵ und R⁶ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen Heterocyclus bilden, der substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻⁶, wobei die Substituenten R⁵⁻⁶ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, halogeniertes Phenyl, 5- bis 6-gliedriges Heteroaryl, Hydroxy, Alkoxy, Carboxyl und Aminocarbonyl.

25

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

R⁷ gleich Wasserstoff.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

R⁸ gleich Wasserstoff.

5

10

15

20

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der allgemeinen Formel (I), worin

R⁹ gleich Wasserstoff.

Bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen, welche die Formel (I') aufweisen:

$$R^{1}R^{2}N$$

$$R^{1}R^{2}N$$

$$R^{1}R^{2}N$$

$$R^{3}R^{4}$$

$$R^{4}$$

worin R¹ bis R⁹ wie oben definiert sind.

Die Erfindung betrifft weiterhin Verfahren zur Herstellung der Verbindungen der Formel (I) beziehungsweise ihre Salze, dadurch gekennzeichnet, dass Verbindungen der Formel (II)

$$^{8}RO$$
 OR^{7}
 $R^{1}R^{2}N$
 OR^{3}
 R^{3}
 R^{4}
 OR^{10}
 OR^{10}
 OR^{10}
 OR^{10}

worin R¹ bis R⁴ und R⁷ bis R⁹ die oben angegebene Bedeutung haben und R¹⁰ für Wasserstoff steht, wobei diese (II) gegebenenfalls in aktivierter Form (Acyldonor) vorliegen können,

mit Verbindungen der Formel (III)

5

10

15

20

25

$$H-NR^5R^6$$
 (III)

worin R⁵ und R⁶ die oben angegebene Bedeutung haben, umgesetzt werden.

Gegebenenfalls wird vor der Umsetzung von Verbindungen der Formel (II), worin die Reste R¹ bis R⁴ und R7 bis R9 die oben angegebene Bedeutung haben und R¹0 für Wasserstoff steht, mit Verbindungen der Formel (III) die Blockierung reaktiver Funktionalitäten (z.B. freie Aminofunktionen) in Verbindungen der Formel (II) vorgenommen. Dies geschieht nach Standardverfahren der Schutzgruppenchemie. Bevorzugt sind säurelabile Schutzgruppen an R¹ (oder R²), oder als Substituenten in den Resten R³ und R³, insbesondere bevorzugt sind Boc und tert.-Butyl. Reaktive Funktionalitäten in den Resten R⁵ und R⁶ von Verbindungen der Formel (III) werden bereits geschützt mit in die Synthese eingebracht, bevorzugt sind säurelabile Schutzgruppen (z.B. tert.-Butyl, Boc). Nach erfolgter Umsetzung zu Verbindungen der Formel (I) können die Schutzgruppen durch Entschützungsreaktion abgespalten werden. Dies geschieht nach Standardverfahren der Schutzgruppenchemie. Bevorzugt sind Entschützungsreaktionen unter sauren Bedingungen.

Stellt z.B. \mathbb{R}^2 in Verbindungen der Formel (I) eine selektiv abspaltbare Schutzgruppe dar, kann nach Entschützung (z.B. nach Hydrogenolyse im Fall $\mathbb{R}^2 = \mathbb{Z}$) die freigelegte Aminofunktion ($\mathbb{R}^2 = \mathbb{H}$) mit dem gewünschten Substituenten \mathbb{R}^2 funktionalisiert werden.

5

10

15

20

25

30

Zur Überführung der Verbindungen (II) in die aktivierte Form (Acyldonor) sind beispielsweise Carbodiimide wie z.B. N,N'-Diethyl-, N,N,'-Dipropyl-, N,N'-Diiso-N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid Hydrochlorid (EDC) (gegebenenfalls in Gegenwart von Pentafluorphenol (PFP)), N-Cyclohexylcarbodiimid-N'-propyloxymethyl-Polystyrol Carbodiimid) oder Carbonylverbindungen wie Carbonyldiimidazol, oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfat oder 2-tert.-Butyl-5-methyl-isoxazolium-perchlorat, oder Acylaminoverbindungen wie 2-Ethoxy-1ethoxycarbonyl-1,2-dihydrochinolin, oder Propanphosphonsäureanhydrid, oder Isobutylchloroformat, oder Bis-(2-oxo-3-oxazolidinyl)-phosphorylchlorid oder Benzotriazolyloxy-tri(dimethylamino)phosphoniumhexafluorophosphat, oder O-(Benzotriazol-1-yl)-N,N,N',N'-tetra-methyluronium-hexafluorophosphat (HBTU), 2-(2-Oxo-1-(2H)-pyridyl)-1,1,3,3-tetramethyluroniumtetrafluoro-borat (TPTU) oder O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyl-uroniumhexafluorophosphat (HATU), oder Benzotriazol-1-yloxytris(dimethylamino)-phosphoniumhexafluoro-phosphat (BOP), oder Mischungen aus diesen mit Basen, gegebenenfalls in Gegenwart von Kupplungsadditiven wie 1-Hydroxybenzotriazol (HOBt), geeignet.

Basen sind beispielsweise Alkalicarbonate, wie z.B. Natrium- oder Kaliumcarbonat, oder -hydrogencarbonat, oder organische Basen wie Trialkylamine z.B. Triethylamin, N-Methylmorpholin, N-Methylpiperidin, 4-Dimethylaminopyridin oder Diisopropylethylamin.

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoffe wie Benzol, Toluol, Tetrahydrofuran, Dioxan, Acetonitril oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind wasserfreies Dichlormethan und Dimethylformamid.

Bevorzugt ist die Aktivierung mit O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyl-uroniumhexafluorophosphat (HATU) in Dimethylformamid.

Die Verbindungen der Formel (III) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

10

15

5

Die Verbindungen der Formel (II) sind bekannt, können hergestellt werden, indem Verbindungen der Formel (II), worin R¹ bis R⁴ und R⁻ bis Rૃ die oben angegebene Bedeutung haben und R¹0 für Benzyl (alternativ für Alkyl, z.B. Methyl oder Ethyl) steht, gespalten werden. Diese Esterspaltung erfolgt im Fall von R¹0 Benzyl vorzugsweise mit Wasserstoff in Gegenwart von Palladium auf Kohle. Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoff wie Tetrahydrofuran, Dioxan, Dimethylformamid oder Alkohole (bevorzugt sind Methanol, Ethanol und Isopropanol), gegebenenfalls in Gegenwart von Säure mit einem oder mehreren Säureäquivalenten. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind Ameisensäure in Ethanol, wässrige Essigsäure und THF.

20

25

30

Alternativ können die Ester (R¹⁰ = Benzyl, Alkyl) auch durch basische Hydrolyse in die entsprechenden Carbonsäuren gespalten werden. Als Basen werden bevorzugt wässriges Lithium- oder Natriumhydroxid eingesetzt. Als Lösemittel eignen sich hierbei organische Lösemittel, die teilweise oder unbegrenzt mit Wasser mischbar sind. Hierzu gehören Alkohole (bevorzugt sind Methanol und Ethanol), Tetrahydrofuran, Dioxan und Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind Methanol, Tetrahydrofuran und Dimethylformamid.

Schema 1: Synthese der Ausführungsbeispiele

5

Die Verbindungen der Formel (II), worin R¹ bis R⁴ und R⁷ bis R⁹ die oben angegebene Bedeutung haben und R¹⁰ für Benzyl oder Alkyl steht, können hergestellt werden, indem Verbindungen der Formel (IV)

worin R¹ bis R⁴ und R⁷ bis R¹⁰ die oben angegebene Bedeutung haben, R¹¹ Wasserstoff und R¹² Wasserstoff bedeuten, wobei diese gegebenenfalls in aktivierter Form vorliegen, unter Peptidkupplung zyklisiert werden. Alternativ kann ein mehrstufiger Prozess bei Verbindungen der Formel (IV), worin R¹ bis R⁴ und R⁷ bis R¹⁰ die oben angegebene Bedeutung haben, R¹¹ nach Aktivierung Pentafluorphenol

bedeutet und R¹² eine Aminschutzgruppe (bevorzugt Boc) bedeutet, aus Schutzgruppenabspaltung der Aminschutzgruppe (zu R¹² gleich Wasserstoff) und Zyklisierung unter basischen Bedingungen bei der Synthese Verwendung finden.

5

10

15

20

25

30

Zur Überführung der Verbindungen in die aktivierte Form sind beispielsweise Carbodiimide wie z.B. N,N'-Diethyl-, N,N,'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydrochlorid (EDC) (gegebenenfalls in Gegenwart von Pentafluorphenol (PFP)), N-Cyclohexylcarbodiimid-N'-propyloxymethyl-Polystyrol (PS-Carbodiimid) oder Carbonylverbindungen wie Carbonyldiimidazol, oder 1,2-Oxazolium verbindungen wie 2-Ethyl-5phenyl-1,2-oxazolium-3-sulfat oder 2-tert.-Butyl-5-methyl-isoxazolium-perchlorat, oder Acylaminoverbindungen wie 2-Ethoxy-1-ethoxycarbonyl-1,2-dihydrochinolin, oder Propanphosphonsäureanhydrid, oder Isobutylchloxoformat, oder Bis-(2-oxo-3oxazolidinyl)-phosphorylchlorid oder Benzotriazolyloxy-tri(dimethylamino)phosphoniumhexafluorophosphat, oder O-(Benzotriazol-1-y1)-N,N,N',N'-tetra-methyluronium-hexafluorophosphat (HBTU), 2-(2-Oxo-1-(2H)-pyridyl)-1,1,3,3-tetramethyluroniumtetrafluoro-borat (TPTU) oder O-(7-Azabenzo triazol-1-yl)-N,N,N',N'-tetramethyl-uroniumhexafluorophosphat (HATU), oder Benzotriazol-1-yloxytris(dimethylamino)-phosphoniumhexafluoro-phosphat (BOP), oder Mischungen aus diesen mit Basen, gegebenenfalls in Gegenwart von 1-Hydroxybenztriazol (HOBt), geeignet.

Basen sind beispielsweise Alkalicarbonate, wie z.B. Natrium- oder Kaliumcarbonat, oder -hydrogencarbonat, oder bevorzugt organische Basen wie Trialkylamine z.B. Triethylamin, N-Methylmorpholin, N-Methylpiperidin, 4-Dimethylaminopyridin oder Diisopropylethylamin.

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoffe wie Benzol, Toluol, Tetrahydrofuran, Dioxan, Dimethylformamid oder Acetonitril. Ebenso ist es mög-

lich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind Dichlormethan und Dimethylformamid.

Besonders bevorzugt ist die Aktivierung in Form eines Pentafluorphenylesters ($R^{11} = C_6F_5$) und anschließendem basenkatalysierten Ringschluss.

Die Verbindungen der Formel (IV) sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (IV), worin R¹ bis R⁴ und R⁷ bis R¹⁰ und R¹² die oben angegebene Bedeutung haben und R¹¹ eine Silylschutzgruppe, insbesondere 2-(Trimethylsilyl)-ethyl bedeutet, mit Fluorid, insbesondere mit Tetrabutylammoniumfluorid umgesetzt werden.

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan, Kohlenwasserstoffe wie Benzol, Toluol, Tetrahydrofuran, Dioxan und Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Bevorzugte Lösungsmittel sind Tetrahydrofuran und Dimethylformamid.

Verbindungen der Formel (IV), worin R¹ bis R⁴ und R⁷ bis R¹⁰ und R¹² die oben angegebene Bedeutung haben und R¹¹ eine Silylschutzgruppe, insbesondere 2-(Trimethylsilyl)-ethyl bedeutet, sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (V)

$$^{8}RO$$
 OR^{7}
 $R^{1}R^{2}N$
 OR^{10}
 R^{13}
 R^{4}
 OR^{10}
 $R^{1}RO$
 R^{1}

. 5

10

15

worin R¹, R², R⁴, R⁷; R⁸, R¹⁰ und R¹² die oben angegebene Bedeutung haben, R¹¹ eine Silylschutzgruppe und R¹³ Wasserstoff bedeutet, mit Verbindungen der Formel (VI)

$$R^{12}$$
 OH (VI),

worin R³, R³ und R⁹ die oben angegebene Bedeutung haben und R¹² eine Aminoschutzgruppe (insbesondere Boc) bedeutet, wobei diese gegebenenfalls in aktivierter Form vorliegen können, umgesetzt werden.

5

10

15

25

Zur Überführung der Verbindungen in die aktivierte Form sind beispielsweise Carbodiimide wie z.B. N,N'-Diethyl-, N,N,'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid Hydrochlorid (EDC) (gegebenenfalls in Gegenwart von Pentafluorphenol (PFP)), N-Cyclohexylcarbodiimid-N'-propyloxymethyl-Polystyrol (PS-Carbodiimid) oder Carbonylverbindungen wie Carbonyldiimidazol, oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5phenyl-1,2-oxazolium-3-sulfat oder 2-tert.-Butyl-5-methyl-isoxazolium-perchlorat, oder Acylaminoverbindungen wie 2-Ethoxy-1-ethoxycarbonyl-1,2-dihydrochinolin, oder Propanphosphonsäureanhydrid, oder Isobutylchloroformat, oder Bis-(2-oxo-3oxazolidinyl)-phosphorylchlorid oder Benzotriazolyloxy-tri(dimethylamino)phosphoniumhexafluorophosphat, oder O-(Benzotriazol-1-yl)-N,N,N',N'-tetra-methyluronium-hexafluorophosphat (HBTU), 2-(2-Oxo-1-(2H)-pyridyl)-1,1,3,3-tetramethyluroniumtetrafluoro-borat (TPTU) oder O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyl-uroniumhexafluorophosphat (HATU), oder Benzotriazol-1-yloxytris(dimethylamino)-phosphoniumhexafluoro-phosphat (BOP), oder Mischungen aus diesen mit Basen, gegebenenfalls unter Zusatz von Kupplungsadditiven wie 1-Hydroxybenzotriazol (HOBt), geeignet.

Basen sind beispielsweise Alkalicarbonate, wie z.B. Natrium- oder Kaliumcarbonat, oder -hydrogencarbonat, oder bevorzugt organische Basen wie Trialkylamine z.B. Triethylamin, N-Methylmorpholin, N-Methylpiperidin, 4-Dimethylaminopyridin oder Diisopropylethylamin.

5

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoffe wie Benzol, Toluol, Acetonitril, Tetrahydrofuran, Dioxan oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind wasserfreies Dichlormethan und Dimethylformamid.

10

Besonders bevorzugt ist die Umsetzung in Gegenwart von HATU und N,N-Diisopropylethylamin.

15

Verbindungen der Formel (VI) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

20

25 '

Verbindungen der Formel (V) beziehungsweise ihre Salze (z.B. Hydrochloride), worin R¹, R², R⁴, R⁷; R⁸, R¹⁰ die oben angegebene Bedeutung haben, R¹¹ eine Silylschutzgruppe und R¹³ Wasserstoff bedeutet, sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (V), worin R¹, R², R⁴, R⁷; R⁸, R¹⁰ die oben angegebene Bedeutung haben, R¹¹ eine Silylschutzgruppe und R¹³ eine Aminoschutzgruppe, insbesondere Boc bedeutet, an R¹³ entschützt werden. Dies geschieht nach Standardverfahren der Schutzgruppenchemie, im Falle von R¹³ gleich Boc bevorzugt mit Chlorwasserstoff in Dioxan.

$${}^{8}RO \longrightarrow OR^{7} \longrightarrow {}^{8}RO \longrightarrow OR^{7} \longrightarrow {}^{8}RO \longrightarrow OR^{7} \longrightarrow {}^{13}RN \longrightarrow CO_{2}R^{10} \longrightarrow {}^{10}R^{9} \longrightarrow {}^{12}RN \longrightarrow OR^{7} \longrightarrow {}^{12}RN \longrightarrow OR^{7} \longrightarrow {}^{12}RN \longrightarrow OR^{7} \longrightarrow {}^{12}RN \longrightarrow OR^{7} \longrightarrow {}^{12}RN \longrightarrow {}^{12}RN$$

Schema 2: Synthese geschützter Derivate von Biphenomycin

Verbindungen der Formel (V), worin R¹, R², R⁴, R⁷, R⁸, R¹⁰ und R¹² die oben angegebene Bedeutung haben, R¹¹ eine Silylschutzgruppe und R¹³ eine Aminoschutzgruppe bedeuten, sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (VII),

worin R⁴ und R⁷ die oben angegebene Bedeutung haben, R¹⁰ Benzyl und Alkyl, sowie R¹³ eine Aminoschutzgruppe (bevorzugt Boc) bedeutet, mit Verbindungen der Formel (VIII),

5

$$^{6}RO$$
 $^{2}R-N$
 ^{1}O
 11
 ^{1}O
 11
 ^{1}O
 11
 ^{1}O

10

worin R¹, R² und R⁸ die oben angegebene Bedeutung haben und R¹¹ eine Silylschutzgruppe, insbesondere 2-(Trimethylsilyl)-ethyl bedeutet, umgesetzt werden. Die Umsetzung, bekannt als Suzuki Reaktion (*Synlett* 1992, 207-210; *Chem. Rev.* 1995, 95, 2457-2483), erfolgt in Gegenwart von Palladium-Katalysatoren und einer Base, bevorzugt in Gegenwart von Bis(diphenylphosphino)ferrocen-palladium(II)chlorid und Caesiumcarbonat.

15

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Kohlenwasserstoffe wie Benzol, Toluol, Tetrahydrofuran, Dioxan, Dimethylformamid und Dimethylsulfoxid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind Dimethylformamid und Dimethylsulfoxid.

20

25

Verbindungen der Formel (VII) sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (VII), welche an Stelle des Boratoms einen Iodsubstituenten aufweisen, mit Bis(pinacolato)diboron umgesetzt werden. Diese Umsetzung, bekannt als spezielle Variante der Suzuki Reaktion (*J. Org. Chem.* 1995, 7508-7510; *Tetrahedron Lett.*, 1997, 3841-3844), erfolgt in Gegenwart von Palladium-Katalysatoren und einer Base, bevorzugt in Gegenwart von Bis(diphenylphosphino)ferrocen-palladium(II)chlorid und von Kaliumacetat.

10

15

20

25

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Kohlenwasserstoffe wie Benzol, Toluol, Tetrahydrofuran, Dioxan, Dimethylformamid und Dimethylsulfoxid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind Dimethylformamid und Dimethylsulfoxid.

Verbindungen der Formel (VII), welche an Stelle des Boratoms einen Iodsubstituenten aufweisen, worin R⁴ und R⁷ die oben angegebene Bedeutung haben, R¹⁰ Benzyl und R¹³ eine Aminoschutzgruppe bedeuteten, sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (IX), welche an Stelle des Boratoms einen Iodsubstituenten aufweisen, worin die freie Carboxylatfunktion nach Aktivierung mit ¹⁰R-OH (bevorzugt Benzylalkohol, Allylalkohol und niedere aliphatische Alkohole) in Gegenwart von 4-Dimethylaminopyridin umgesetzt werden.

Zur Überführung der Carbonsäuren in die aktivierte Form sind beispielsweise Carbodiimide wie z.B. N,N'-Diethyl-, N,N,'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydrochlorid (EDC) N-Cyclohexylcarbodiimid-N'-propyloxymethyl-Polystyrol (PS-Carbodiimid) oder Carbonylverbindungen wie Carbonyldiimidazol geeignet.

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoffe wie Benzol, Toluol, Acetonitril, Tetrahydrofuran, Dioxan oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind wasserfreies Dichlormethan und Acetonitril.

30 Bevorzugt sind Umsetzungen mit Aktivierung durch EDC oder DIC in absolutem Acetonitril oder Dichlormethan bei tiefer Temperatur (-10°C).

Verbindungen der Formel (VIII), worin R¹,R² und R⁸ die oben angegebene Bedeutung haben, R¹¹ eine Silylschutzgruppe bedeutetet, sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (IX), worin die freie Carboxylatfunktion nach Aktivierung mit ¹¹R-OH (bevorzugt 2-Trimethylsilylethaniol) in Gegenwart von 4-Dimethylaminopyridin umgesetzt werden.

Zur Überführung der Carbonsäuren in die aktivierte Form sind beispielsweise Carbodiimide wie z.B. N,N'-Diethyl-, N,N,'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydrochlorid (EDC) N-Cyclohexylcarbodiimid-N'-propyloxymethyl-Polystyrol (PS-Carbodiimid) oder Carbonylverbindungen wie Carbonyldiimidazol geeignet.

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlen wasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoffe wie Bernzol, Toluol, Acetonitril, Tetrahydrofuran, Dioxan oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind wasserfreies Dichlormethan und Acetonitril.

20

5

10

15

Bevorzugt sind Umsetzungen mit Aktivierung durch EDC oder DIC in absolutem Acetonitril oder Dichlormethan bei tiefer Temperatur (– 10°C).

25

Carbonsäuren der Formel (IX) worin R¹, R², R⁸ die oben angegebene Bedeutung haben sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (IX), worin R¹ und R⁸ die oben angegebene Bedeutung haben, R¹³ eine Aminoschutzgruppe, insbesondere Boc bedeutet, an R¹³ entschützt werden. Dies geschieht nach Standardverfahren der Schutzgruppenchemie, im Falle von R¹³ gleich Boc bevorzugterweise mit Chlorwasserstoff in Dioxan oder mit Triflouressigsäure in Dichlormethan in Gegenwart geringer Mengen Wasser. Das erhaltene freie Amin (in Form eines Salzes, vorzugsweise Hydrochlorid oder

10

15

20

Triflouracetat) wird mit R²-X, worin R² die oben angegebene Bedeutung hat und X für eine für eine Abgangsgruppe steht, in Gegenwart einer Base in inerten Lösungsmitteln umgesetzt, gegebenenfalls in Gegenwart von Kaliumiodid, bevorzugt in einem Temperaturbereich von 0°C über Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck um. Bevorzugt für X sind Mesylat, Tosylat, Succimat oder Halogen, wobei für Halogen Chlor, Brom oder Iod bevorzugt ist.

Basen sind beispielsweise Alkalicarbonate, wie z.B. Natrium- oder Kaliumcarbonat, oder -hydrogencarbonat, oder organische Basen wie Trialkylamine z.B. Triethylamin, N-Methylpiperidin, 4-Dimethylaminopyridin oder Diisopropylethylamin.

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoffe wie Benzol, Toluol, Acetonitril, Tetrahydrofuran, Dioxan, Aceton oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind Dimethylformamid und Dichlormethan.

Schema 3: Synthese von Biphenyl-bisaminosäurederivaten

R² kann optional eine Schutzgruppe (z.B. Z, d.h. Benzyloxycarbonyl) darstellen.

Enantiomerenreine Verbindungen der Formel (IX), worin R⁴ und R⁷ beziehungsweise R¹ und R⁸ die oben angegebene Bedeutung haben, und R¹³ eine Aminoschutzgruppe bedeutet (vorzugsweise Boc), sind bekannt, können aus racemischen Vorläufern nach bekannten Verfahren wie z.B. Kristallisation mit chiralen Aminbasen oder durch Chromatograpie an chiralen, stationären Phasen erhalten werden.

Verbindungen der Formel (IX), worin R⁴ und R⁷ beziehungsweise R¹ und R⁸ die oben angegebene Bedeutung haben, und R¹³ eine Aminoschutzgruppe bedeutet (vorzugsweise Boc), sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (X),

$$^{7}RO$$
 \downarrow
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13
 13

15

20

5

10

worin R⁴ und R⁷ beziehungsweise R¹ und R⁸ die oben angegebene Bedeutung haben, R¹³ eine Aminoschutzgruppe bedeutet und R¹⁴ Alkyl (besonders bevorzugt Ethyl) bedeutet, decarboxyliert werden. Diese Reaktion findet bevorzugt in basischem Medium in einem Wasser-Ethanol-Gemisch statt.

Verbindungen der Formel (X) sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (XII),

10

15

25

worin R⁷ beziehungsweise R⁸ die oben angegebene Bedeutung haben, mit Verbindungen der Formel (XI),

$$R^{13} - N - COOR^{14}$$
 $R^{13} - N - COOR^{14}$ (XI)

worin R⁴ beziehungsweise R¹ die oben angegebene Bedeutung hat, R¹³ eine Aminoschutzgruppe bedeutet und R¹⁴ Alkyl (bevorzugt Ethyl), bedeutet, umgesetzt werden. Diese Reaktion findet bevorzugt mit Alkalialkoholat in Alkohol, besonders mit Natriumethylat in Ethanol statt.

Verbindungen der Formel (XII) sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (XII), welche an Stelle des Bromsubstituenten eine Hydroxygruppe aufweisen, mit Phosphortribromid umgesetzt werden. Bevorzugt findet die Reaktion in Toluol statt.

Verbindungen der Formel (XII), welche an Stelle des Bromsubstituenten eine Hydroxygruppe aufweisen, sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem Verbindungen der Formel (XII), welche an Stelle des Bromsubstituenten eine Oxogruppe aufweisen, reduziert werden. Die Reduktion findet bevorzugt mit Diisobutylaluminiumhydrid-Lösung in Dichlormethan unter nachfolgender Zugabe einer gesättigten Kaliumnatriumtartrat-Lösung statt.

Verbindungen der Formel (XII), welche an Stelle des Bromsubstituenten eine Oxogruppe aufweisen, sind bekannt, können analog bekannten Verfahren hergestellt werden oder indem 2-Hydroxy-5-iod-benzaldehyd mit Verbindungen der Formel (XI)

10

15

20

30

worin R⁷ beziehungsweise R⁸ die oben angegebene Bedeutung haben und X für eine Abgangsgruppe steht, in inerten Lösungsmitteln umgesetzt werden, gegebenenfalls in Gegenwart einer Base, gegebenenfalls in Gegenwart von Kaliumiodid, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck um. Bevorzugt für X sind Mesylat, Tosylat oder Halogen, wobei für Halogen Chlor, Brom oder Iod bevorzugt sind.

Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan oder 1,2-Dichlorethan, Ether wie Dioxan, Tetrahydrofuran oder 1,2-Dimethoxyethan, oder andere Lösemittel wie Aceton, Dimethylformamid, Dimethylacetamid, 2-Butanon oder Acetonitril, bevorzugt Tetrahydrofuran, Methylenchlorid, Aceton, 2-Butanon, Acetonitril, Dimethylformamid oder 1,2-Dimethoxyethan. Bevorzugt ist Dimethylformamid.

Basen sind beispielsweise Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder Natrium- oder Kaliummethanolat, oder Natrium- oder Kaliumethanolat oder Kalium-tert.-butylat, oder Amide wie Natriumamid, Lithium-bischtrimethylsilyl)amid oder Lithiumdiisopropylamid, oder metallorganische Verbindungen wie Butyllithium oder Phenyllithium, tertiäre Aminbasen wie Triethylamin oder Diisopropylethylamin, oder andere Basen wie Natriumhydrid, DBU, bevorzugt Kalium-tert.-butylat, Cäsiumcarbonat, DBU, Natriumhydrid, Kaliumcarbonat oder Natriumcarbonat. Bevorzugt ist Kaliumcarbonat.

Verbindungen der Formel (XIII) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Die Herstellung der erfindungsgemäßen Verbindungen kann durch folgendes Syntheseschema verdeutlicht werden. Hierbei ist der besseren Übersichtlichkeit halber die in der Beschreibung verwendete lateinische Nummerierung beibehalten,

15

20

das Schema zeigt jedoch teilweise spezielle Ausführungsformen, insbesondere R¹⁴ in (XI) gleich Ethyl und R¹³ gleich Boc.

OH OH
$$R^{7.8}$$
— X $OR^{8.7}$ O

Schema 4: Synthese von Phenylalaninderivaten

Die erfindungsgemäßen Verbindungen zeigen ein nicht vorhersehbares, wertvolles pharmakologisches und pharmakokinetisches Wirkspektrum.

Sie eignen sich daher zur Verwendung als Arzneimittel zur Behandlung und/oder Prophylaxe von Krankheiten bei Menschen und Tieren.

Die erfindungsgemäßen Verbindungen können aufgrund ihrer pharmakologischen Eigenschaften allein oder in Kombination mit anderen Wirkstoffen zur Behandlung und/oder Prävention von Infektionskrankheiten, insbesondere von bakteriellen Infektionen, eingesetzt werden.

Beispielsweise können lokale und/oder systemische Erkrankungen behandelt und/oder verhindert werden, die durch die folgenden Erreger oder durch Mischungen der folgenden Erreger verursacht werden:

Gram-positive Kokken, z.B. Staphylokokken (Staph. aureus, Staph. epidermidis) und Streptokokken (Strept. agalactiae, Strept. faecalis, Strept. pneumoniae, Strept. pyogenes); gram-negative Kokken (neisseria gonorrhoeae) sowie gram-negative Stäbchen wie Enterobakteriaceen, z.B. Escherichia coli, Hämophilus influenzae, Citrobacter (Citrob. freundii, Citrob. divernis), Salmonella und Shigella; ferner Klebsiellen (Klebs. pneumoniae, Klebs. oxytocy), Enterobacter (Ent. aerogenes, Ent. agglomerans), Hafnia, Serratia (Serr. marcescens), Proteus (Pr. mirabilis, Pr. rettgeri, Pr. vulgaris), Providencia, Yersinia, sowie die Gattung Acinetobacter. Darüber hinaus umfaßt das antibakterielle Spektrum die Gattung Pseudomonas (Ps. aeruginosa, Ps. maltophilia) sowie strikt anaerobe Bakterien wie z.B. Bacteroides fragilis, Vertreter der Gattung Peptococcus, Peptostreptococcus sowie die Gattung Clostridium; ferner Mykoplasmen (M. pneumoniae, M. hominis, M. urealyticum) sowie Mykobakterien, z.B. Mycobacterium tuberculosis.

Die obige Aufzählung von Erregern ist lediglich beispielhaft und keineswegs beschränkend aufzufassen. Als Krankheiten, die durch die genannten Erreger oder Mischinfektionen verursacht und durch die erfindungsgemäßen topisch anwendbaren Zubereitungen verhindert, gebessert oder geheilt werden können, seien beispielsweise genannt:

20

5

10

15

Infektionskrankheiten beim Menschen wie z. B. septische Infektionen, Knochen- und Gelenkinfektionen, Hautinfektionen, postoperative Wundinfektionen, Abszesse, Phlegmone, Wundinfektionen, infizierte Verbrennungen, Brandwunden, Infektionen im Mundbereich, Infektionen nach Zahnoperationen, septische Arthritis, Mastitis, Tonsillitis, Genital-Infektionen und Augeninfektionen.

25

Außer beim Menschen können bakterielle Infektionen auch bei anderen Spezies behandelt werden. Beispielhaft seien genannt:

30

Schwein: Coli-diarrhoe, Enterotoxamie, Sepsis, Dysenterie, Salmonellose, Metritis-Mastitis-Agalaktiae-Syndrom, Mastitis;

10

15

20

25

30

Wiederkäuer (Rind, Schaf, Ziege): Diarrhoe, Sepsis, Bronchopneumonie, Salmonellose, Pasteurellose, Mykoplasmose, Genitalinfektionen;

Pferd: Bronchopneumonien, Fohlenlähme, puerperale und postpuerperale Infektionen, Salmonellose;

Hund und Katze: Bronchopneumonie, Diarrhoe, Dermatitis, Otitis, Harnwegsinfekte, Prostatitis;

Geflügel (Huhn, Pute, Wachtel, Taube, Ziervögel und andere): Mycoplasmose, E. coli-Infektionen, chronische Luftwegserkrankungen, Salmonellose, Pasteurellose, Psittakose.

Ebenso können bakterielle Erkrankungen bei der Aufzucht und Haltung von Nutzund Zierfischen behandelt werden, wobei sich das antibakterielle Spektrum über die vorher genannten Erreger hinaus auf weitere Erreger wie z.B. Pasteurella, Brucella, Campylobacter, Listeria, Erysipelothris, Corynebakterien, Borellia, Treponema, Nocardia, Rikettsie, Yersinia, erweitert.

Die vorliegende Erfindung betrifft weiterhin Verbindungen der allgemeinen Formel (I) zur Bekämpfung von Erkrankungen, insbesondere bakterieller Erkrankungen, Arzneimittel, enthaltend Verbindungen der allgemeinen Formel (I) und Hilfsstoffe sowie die Verwendung von Verbindungen der allgemeinen Formel (I) zur Herstellung eines Arzneimittels zur Behandlung von bakteriellen Erkrankungen.

Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, vorzugsweise zusammen mit einem oder mehreren pharmakologisch unbedenklichen Hilfs- oder Trägerstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.

Der Wirkstoff kann systemisch und/oder lokal wirken. Zu diesem Zweck kann er auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, transdermal, conjunctival, otisch oder als Implantat.

Für diese Applikationswege kann der Wirkstoff in geeigneten Applikationsformen verabreicht werden.

Für die orale Applikation eignen sich bekannte, den Wirkstoff schnell und/oder modifiziert abgebende Applikationsformen, wie z.B. Tabletten (nicht überzogene sowie überzogene Tabletten, z.B. mit magensaftresistenten Überzüge versehene Tabletten oder Filmtabletten), Kapseln, Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Lösungen und Aerosole.

10

.5

Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (intramuskulär, subcutan, intracutan, percutan, oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten und sterilen Pulvern.

. 20

15

Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen/-lösungen, Sprays; lingual, sublingual oder buccal zu applizierende Tabletten oder Kapseln, Suppositorien, Ohren- und Augen-präparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, Milch, Pasten, Streupuder oder Implantate.

25

30

Die Wirkstoffe können in an sich bekannter Weise in die angeführten Applikationsformen überführt werden. Dies geschieht unter Verwendung inerter nichttoxischer, pharmazeutisch geeigneter Hilfsstoffe. Hierzu zählen u.a. Trägerstoffe (z.B. mikrokristalline Cellulose), Lösungsmittel (z.B. flüssige Polyethylenglycole), Emulgatoren (z.B. Natriumdodecylsulfat), Dispergiermittel (z.B. Polyvinylpyrrolidon), synthetische und natürliche Biopolymere (z.B. Albumin), Stabilisatoren (z.B.

Antioxidantien wie Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie Eisenoxide) oder Geschmacks- und/oder Geruchskorrigentien.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 5 bis 250 mg/kg Körpergewicht je 24 h zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Menge etwa 5 bis 100 mg/kg Körpergewicht je 24 h.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.

20

15

5

10

A. Beispiele

Verwendete Abkürzungen:

Aloc

Allyloxycarbonyl

aq.

Wässrig

Bn

Benzyl^{*}

Boc

tert.-Butoxycarbonyl

CDCl₃

Chloroform

CH

Cyclohexan

đ

dublett (im ¹H-NMR)

dd

Dublett von dublett

DCM

Dichlormethan

DCC

Dicyclohexylcarbodiimid

DIC

Diisopropylcarbodiimid

DCM

Dichlormethan

DMSO

Dimethylsulfoxid

DMAP

4-N,N-Dimethylaminopyridin

d. Th.

der Theorie

EDC

N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid x HCl

EE

Ethylacetat (Essigsäureethylester)

ESI

Elektrospray-Ionisation (bei MS)

ges.

gesättigt

HATU

O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-

hexafluorphosphat

HBTU

O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-

hexafluorphosphat

HOBt

1-Hydroxy-1H-benzotriazol x H₂O

h

Stunde(n)

HPLC

Hochdruck-, Hochleistungsflüssigchromatographie

LC-MS

Flüssigchromatographie-gekoppelte Massenspektroskopie

m

multiplett (im ¹H-NMR)

min Min

MS Massenspektroskopie

MeOH Methanol

NMR Kernresonanzspektroskopie

MTBE Methyl-tert.-butylether

Pd/C Palladium/Kohle

proz. Prozent

q quartett (im ¹H-NMR)

R_f Retentions index (bei DC)

RT Raumtemperatur

R_t Retentionszeit (bei HPLC)

s singulett (im ¹H-NMR)

t triplett (im ¹H-NMR)

TBS tert.-Butyldimethylsilyl

THF Tetrahydrofuran

TMSE 2-(Trimethylsilyl)-ethyl

TPTU 2-(2-Oxo-1(2H)-pyridyl)-1,1,3,3-

tetramethyluroniumtetrafluoroborat

Allgemeine Methoden LC-MS und HPLC:

HPLC-Parameter:

 $10\%A \rightarrow 6.5 \min 10\%A$

- Methode 1: Säule: Kromasil C18, L-R Temperatur: 30°C, Fluss = 0.75 mlmin⁻¹, Eluent: A = 0.01 M HClO₄, $B = CH_3CN$, Gradient: $\rightarrow 0.5$ min 98% $A \rightarrow 4.5$ min
- Methode 2: Säule: Kromasil C18 60*2, L-R Temperatur: 30°C, Fluss = 0.75 mlmin

Methode 3: Säule: Kromasil C18 60*2, L-R Temperatur: 30°C, Fluss = 0.75 mlmin¹, Eluent: A = 0.005 M HClO₄, $B = CH_3CN$, Gradient: $\rightarrow 0.5$ min 98% $A \rightarrow 4.5$ min $10\% A \rightarrow 6.5$ min 10% A

Methode 4: Säule: Symmetry C18 2.1x150 mm, Säulenofen: 50°C, Fluss = 0.6 mlmin⁻¹, Eluent: A = 0.6 g 30%ige HCl/ 1 Wasser, B = CH₃CN, Gradient: 0.0 min 90%A → 4.0 min 10%A → 9 min 10%A

Methode 5: MHZ-2Q, Instrument Micromass Quattro LCZ

Säule Symmetry C18, 50 mm x 2.1 mm, 3.5 μ m, Temperatur: 40°C, Fluss = 0.5 mlmin⁻¹, Eluent A = CH₃CN + 0.1% Ameisensäure, Eluent B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 10% A \rightarrow 4 min 90% A \rightarrow 6 min 90% A

Methode 6: MHZ-2P, Instrument Micromass Platform LCZ

Säule Symmetry C18, 50 mm x 2.1 mm, 3.5 μm, Temperatur: 40°C, Fluss = 0.5 mlmin⁻¹, Eluent A = CH₃CN + 0.1% Ameisensäure, Eluent B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 10% A → 4 min 90% A → 6 min 90% A

Methode 7: MHZ-7Q, Instrument Micromass Quattro LCZ

Säule Symmetry C18, 50 mm x 2.1 mm, 3.5 μ m, Temperatur: 40°C, Fluss = 0.5 mlmin⁻¹, Eluent A = CH₃CN + 0.1% Ameisensäure, Eluent B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 5% A \rightarrow 1 min 5% A \rightarrow 5 min 90% A \rightarrow 6 min 90% A

25 Methode 8:

10

20

Säule: 250*4 mm, Kromasil 100, C-18, 5μm temp. = 40°C, Fluss: 1 ml/min., Wellenlänge 210 nm, Acetonitril 15% und 0.2 %ige Perchlorsäure 85%

Methode 9 (LCMS): SMKL-ZQ-2 Instrument: Waters Alliance 2790 LC
Säule: Symmetry C18, 50mm x 2.1, 3.5μm; Eluent A: Wasser + 0.1% Ameisensäure,
Eluent B: Acetonitril + 0.1% Ameisensäure; Gradient: 0.0min 5% B → 5.0min
10%B → 6.0min 10%B; Temperatur: 50°C, Fluss: 1.0ml/min, UV-Detektion: 210nm

Methode 10: ZMD Waters

Säule : Inertsil ODS3 50 mm x 2.1 mm, 3 µm, Temperatur: 40°C, Fluss = 0.5 mlmin 1, Eluent A = Wasser + 0.05 % Ameisensäure, Eluent B= Acetonitril + 0.05 % Ameisensäure, Gradient: 0.0 min 5% B \rightarrow 12 min \rightarrow 100 % B \rightarrow 15 min 100% B

10

Methode 11: MAT 900, Finnigan MAT, Bremen

Säule: X-terra 50mm x 2.1 mm, 2.5 μ m, Temperatur: 25°C, Fluss = 0.5 mlmin⁻¹, Eluent A = Wasser + 0.01 % Ameisensäure, Eluent B= Acetonitril + 0.01 % Ameisensäure, Gradient: 0.0 min 10 % B \rightarrow 15 min \rightarrow 90 % B \rightarrow 30 min 90% B

15

Methode 12: TSQ 7000, Finnigan MAT, Bremen

Säule: Inertsil ODS3 50 mm x 2.1 mm, 3 μ m, Temperatur: 25°C, Fluss = 0.5 ml/min, Eluent A = Wasser + 0.05 % Ameisensäure, Eluent B= Acetonitril + 0.05 % Ameisensäure, Gradient: 0.0 min 15% B \rightarrow 15 min \rightarrow 100 % B \rightarrow 30 min 100% B

20

Methode 13: 7 Tesla Apex II mit externer Elektrospray-Ionenquelle, Bruker Daltronics

Säule: X-terra C18 50 mm x 2.1 mm, 2.5 μ m, Temperatur: 25°C, Fluss = 0.5 ml/min, Eluent A = Wasser + 0.1 % Ameisensäure, Eluent B= Acetonitril + 0.1 % Ameisensäure, Gradient: 0.0 min 5% B \rightarrow 13 min \rightarrow 100 % B \rightarrow 15 min 100% B.

25

30

Methode 14:

Säule: X-TerraTM der Firma Waters, RP₈, 5 μm, 3.9×150 mm Start: 95% A, 5% B; 12 min: 5% A, 95% B. Laufmittel A: Wasser + 0.01% TFA; Laufmittel B: CH₃CN + 0.01% TFA. Flussrate: 1.2 ml/min.

Chemische Synthese der Beispiele

Synthese der Ausgangsverbindungen:

5 Synthese von substituierten Phenylalaninderivaten am Beispiel von (-)-3-(2-Benzyloxy-5-iodophenyl)-2(S)-tert-butoxycarbonylamino-propionsäure [(-)-6A]

Synthese von geschützten Biphenyl-bisaminosäuren am Beispiel von 2(S)-Benzyloxycarbonylamino-3-[4,4'-bis-benzyloxy-3'-(2(S)-benzyloxycarbonyl-2(S)-tert-butoxycarbonyl-amino-ethyl)-biphenyl-3-yl]-propionsäure-2(S)-trimethylsilanyl-ethylester (12A)

Synthese geschützter Hydroxyornithinderivate am Beispiel von 5-Benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-(tert-butyldimethylsilyloxy)-pentansäure (14A)

Synthese geschützter Biphenomycin-Derivate am Beispiel von (8S,11S,14S)-14[(tert-Butoxycarbonyl)amino]-11-{(2R)-3-[(tert-butoxycarbonyl)amino]-2hydroxypropyl}-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-8-carbonsäure (21A)

Ausgangsverbindungen

Beispiel 1A

5

10

15

20

2-Hydroxy-5-iod-benzaldehyd

OH O

Zu einer Lösung von 188 g (1.54 mol) Salicylaldehyd in 1 l wasserfreiem Dichlormethan in einem ausgeheizten Kolben wird eine Lösung von 250 g (1.54 mol) Iodchlorid in 600 ml wasserfreiem Dichlormethan unter Argon über 2 h zugetropft. Nach 3 Tagen Rühren bei RT wird eine gesättigte wässrige Natriumsulfit-Lösung unter kräftigem Rühren hinzugegeben. Die organische Phase wird abgetrennt, einmal mit Wasser und gesättigter wässriger Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Das Lösungsmittel wird eingedampft und der Rückstand aus Essigsäureethylester umkristallisiert. Man erhält 216 g (57% d. Th.) des Produktes.

LC-ESI-MS (Methode 10): m/z = 246 (M-H).

¹H-NMR (400 MHz, CDCl₃): $\delta = 6.7$ (d, 1H), 7.77 (dd, 1H), 7.85 (d, 1H), 9.83 (s, 1H), 10.95 (s, 1H).

Beispiel 2A

2-Benzyloxy-5-iodbenzaldehyd

Zu einer Lösung von 100 g (0.40 mol) 2-Hydroxy-5-iodbenzaldehyd (1A) in 1.5 l Dimethylformamid werden 67.2 g (0.48 mol) Kaliumcarbonat und nach wenigen *Min* 51 ml (0.44 mol) Benzylchlorid hinzugegeben. Das Reaktionsgemisch wird 24 h bei 120°C unter Rückfluss gerührt. Nach weiteren 24 h Rühren bei RT und Zugabe von 1.5 l Wasser kristallisiert ein Feststoff aus. Der Niederschlag wird abgesaugt, zweimal mit Wasser gewaschen und im Vakuum getrocknet. Der Feststoff wird aus 230 ml Ethanol umkristallisiert. Man erhält 122.9 g (90% d. Th.) des Produktes. LC-ESI-MS (Methode 10): m/z = 338 (M+H)⁺.

¹H-NMR (400 MHz, CDCl₃): $\delta = 5.18$ (s, 2H), 6.84 (d, 1H), 7.33-7.45 (m, 5H), 7.78 (dd, 1H), 8.12 (d, 1H), 10.4 (s, 1H).

Beispiel 3A

(2-Benzyloxy-5-iod-phenyl)-methanol

15

20

25

5

10

Zu einer auf 0°C gekühlten Lösung von 33.98 g (100.5 mmol) 2-Benzyloxy-5-iodbenzaldehyd (2A) in 200 ml Dichlormethan werden 100 ml einer 1 M Diisobutylaluminiumhydrid-Lösung in Dichlormethan zugegeben. Nach 2 h Rühren bei 0°C wird unter Kühlung eine gesättigte Kaliumnatriumtartrat-Lösung hinzugegeben (stark exotherme Reaktion) und das Reaktionsgemisch 2 h weiter gerührt. Nach Abtrennung der Phasen wird die organische Phase zweimal mit Wasser und einmal mit gesättigter wässriger Natriumchlorid-Lösung gewaschen und über Natriumsulfat getrocknet. Das Lösungsmittel wird im Vakuum abgedampft. Man erhält 31.8 g (93% d. Th.) des Produktes.

¹H-NMR (400 MHz, CDCl₃): $\delta = 2.17$ (t, 1H), 4.68 (d, 2H), 5.1 (s, 2H), 6.72 (d, 1H), 7.32–7.42 (m, 5H), 7.54 (dd, 1H), 7.63 (d, 1H).

Beispiel 4A

1-Benzyloxy-2-bromomethyl-4-iodbenzol

5

. 10.

Zu einer Lösung von 35 g (103 mmol) (2-Benzyloxy-5-iod-phenyl)-methanol (3A) in 350 ml Toluol werden bei 40°C 3.3 ml (35 mmol) Phosphortribromid hinzugetropft. Innerhalb von 15 min wird die Temperatur des Reaktionsgemisches auf 100°C erhöht und weitere 10 min bei dieser Temperatur gerührt. Nach Abkühlung werden die beiden Phasen getrennt. Die organische Phase wird zweimal mit destilliertem Wasser und einmal mit gesättigter wässriger Natriumchlorid-Lösung gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und eingedampft. Die Ausbeute beträgt 41 g (99% d. Th.).

15 1 H-NMR (300 MHz, CDCl₃): $\delta = 4.45$ (s, 2H), 5.06 (s, 2H), 7.30 (m, 8H).

Beispiel 5A

2-(2-Benzyloxy-5-iod-benzyl)-2-tert-butoxycarbonylamino-malonsäure-

diethylester

20

Zu einer Lösung von 28 g (101.7 mmol) 2-[N-(tert-Butoxycarbonyl)amino]malonsäure-diethylester und 7.9 ml (101.7 mmol) Natriumethylat in 300 ml Ethanol

werden 41 g (101.7 mmol) von 1-Benzyloxy-2-bromomethyl-4-iodbenzol (4A) hinzugegeben. Nach 3 h Rühren bei RT saugt man das ausgefallene Produkt ab. Nach Trocknung im Vakuum werden 55 g (90% d. Th.) isoliert.

1H-NMR (400 MHz, CDCl₃): δ = 1.12 (t, 6 H), 1.46 (s, 9H), 3.68 (s, 2H), 3.8-3.9 (m, 2H), 4.15-4.25 (m, 2H), 5.0 (s, 2H), 5.7 (s, 1H), 6.58 (d, 1H), 7.28-7.4 (m, 6H), 7.4 (dd, 1H).

Beispiel 6A

(+/-)-3-(2-Benzyloxy-5-iod-phenyl)-2-tert-butoxycarbonylamino-propionsäure

Zu einer Suspension von 58 g (97 mmol) 2-(2-Benzyloxy-5-iod-benzyl)-2-tert-butoxycarbonylamino-malonsäurediethylester (5A) in 800 ml eines Gemisches von Ethanol und Wasser (7:3) werden 400 ml 1 N Natronlauge hinzugegeben. Nach 3 h unter Rückfluss wird der pH-Wert der Reaktionsmischung nach Abkühlung auf Raumtemperatur mit konz. Salzsäure auf ca. pH 2 eingestellt. Die Reaktionsmischung wird eingedampft. Der Rückstand wird in MTBE und Wasser aufgenommen. Die wässrige Phase wird dreimal mit MTBE extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und eingeengt. Nach Trocknung im Vakuum erhält man 47 g (97% d. Th.) des Produkts.

¹H-NMR (400 MHz, DMSO): δ = 1.32 (s, 9H), 2.68 (dd, 1H), 3.18 (dd, 1H), 4.25 (m, 1H), 5.15 (s, 2H), 6.88 (d, 1 H), 7.08 (d, 1H), 7.30-7.40 (m, 3 H), 7.45-7.55 (m, 3 H).

10

15

20

Beispiel (-)-6A

3-(2-Benzyloxy-5-iod-phenyl)-2(S)-tert-butoxycarbonylamino-propionsäure

Das Racemat 6A [(+/-)-3-(2-Benzyloxy-5-iod-phenyl)-2(S)-tert-butoxycarbonyl-amino-propionsäure] wird an einer chiralen stationären Kieselgelphase, basierend auf dem Selektor aus Poly(N-Methacryloyl-L-Leucin-dicyclopropylmethylamid), mit einem Gemisch aus *i*-Hexan/Ethylacetat als Elutionsmittel getrennt. Das zuerst eluierte Enantiomer (98.9% ee) ist in Dichlormethan rechtsdrehend ($[\alpha]$ D²¹: +3.0°, c = 0.54, CH₂Cl₂) und entspricht dem (R)-Enantiomer (+)-6A, wie durch Einkristall-röntgenstrukturanalyse bestimmt wurde. Die Reinheit des zweiten, linksdrehenden

Beispiel 7A

3-(2-Benzyloxy-5-iod-phenyl)-2(S)-tert-butoxycarbonylamino-propionsäure benzylester

Enantiomers (-)-6A, d.h. des (S)-Enantiomers, beträgt > 99% ee.

20

5

10

15

Unter Argon werden 10 g (20.11 mmol) (-)-3-(2-Benzyloxy-5-iod-phenyl)-2(S)-tert-butoxycarbonylamino-propionsäure [(-)-6A] in 200 ml Acetonitril gelöst. Dazu werden 246 mg (2.01 mmol) 4-Dimethylaminopyridin und 4.16 ml (40.22 mmol)

Benzylalkohol hinzugefügt. Die Mischung wird auf -10°C abgekühlt und mit 4.63 g (24.13 mmol) EDC versetzt. Man lässt alles langsam auf RT kommen und mührt über Nacht. Nach ca. 16 h wird das Gemisch im Vakuum einrotiert und der Rückstand säulenchromatographisch an Silicagel (Laufmittel: Dichlormethan) gereinigt. Ausbeute: 10.65 g (88% d. Th.).

HPLC (Methode 3): $R_t = 6.03$ min; LC/MS (Methode 9): $R_t = 4.70$ min.

MS (DCI): $m/z = 605 (M+NH_4)^{\dagger}$.

¹H-NMR (200 MHz, CDCl₃): $\delta = 1.38$ (s, 9H), 2.97 (dd, 1H), 3.12 (dd., 1LH), 4.50-4.70 (m, 1H), 5.00-5.10 (m, 4H), 5.22 (d, 1H), 6.64 (d, 1H), 7.28-7.36 (m, 5H).

Beispiel 8A

3-[2-Benzyloxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl_-2(S)-tert-butoxycarbonylamino-propionsäurebenzylester

Zu einer Lösung von 10.30 g (17.53 mol) 3-(2-Benzyloxy-5-iod-phenyl)—2(S)-tert-butoxycarbonylamino-propionsäurebenzylester (7A) in 70 ml DMSO werden 5.15 g (52.60 mmol) Kaliumacetat zugegeben. Die Mischung wird deoxygeniert, indem durch die kräftig gerührte Lösung 15 min lang Argon durchgeleitet wird. Dann werden 5.17 g (20.16 mmol) Bis(pinacolato)diboran und 515 mg (O-70 mmol) Bis(diphenylphosphino)ferrocenpalladium(II)chlorid zugegeben. Unter leichtem Argonstrom wird nun auf 80°C erhitzt und nach 6 h wieder abgekühlt. Die Mischung wird säulenchromatographisch an Silicagel (Laufmittel: Dichlormetham) gereinigt. Vorhandene Reste an DMSO werden per Kugelrohrdestillation abgetrennt. Der

Rückstand wird erneut säulenchromatographisch an Silicagel (Laufmittel: Cyclohexan:Ethylacetat 4:1) gereinigt. Ausbeute: 8.15 g (79% d. Th.).

HPLC (Methode 3): $R_t = 6.26$ min; LC/MS (Methode 6): $R_t = 5.93$ und 6.09 min. MS (EI): m/z = 588 (M+H)⁺.

¹H-NMR (200 MHz, CDCl₃): δ = 1.26 (s, 6H), 1.33 (s, 9H), 1.36 (s, 6H), 2.91-3.10 (m, 1H), 3.12-3.28 (m, 1H), 4.49-4.68 (m, 1H), 5.O5 (dd, 2H), 5.11 (dd, 2H), 5.30 (d, 1H), 6.90 (d, 1H), 7.27-7.37 (m, 7H), 7.38-7.42 (m, 3H), 7.55-7.62 (m, 1H), 7.67 (dd, 1H).

Beispiel 9A

10

15

2(S)-Amino-3-(2-benzyloxy-5-iodo-phenyl)-propionsäure Hydrochlorid

12 g (24.13 mmol) 3-(2-Benzyloxy-5-iodo-pheny-1)-2(S)-tert-butoxycarbonylamino-propionsäure [(-)-6A] werden unter Argon in 60 ml 4 M Salzsäure-Lösung in Dioxan gegeben und 2 h bei RT gerührt. Die Reaktionslösung wird eingeengt und im Hochvakuum getrocknet. Ausbeute: 10.47 g (100 % d. Th.).

HPLC (Methode 3): $R_t = 4.10 \text{ min.}$

20 MS (EI): $m/z = 398 (M+H-HCl)^{+}$.

¹H-NMR (200 MHz, CDCl₃): δ = 3.17-3.31 (m, 1H), 3.33-3.47 (m, 1H), 4.22 (t, 1H), 5.13 (s, 2H), 6.69 (d, 1 H), 7.24-7.40 (m, 2H), 7.41-7.45 (m, 2 H), 7.48 (d, 1 H), 7.52 (d, 1H), 7.60 (d, 1H), 8.66 (bs, 2H).

Beispiel 10A

2(S)-Benzyloxycarbonylamino-3-(2-benzyloxy-5-iod-phenyl)-propionsäure

5

. 10

Eine Lösung aus 10.46 g (24.13 mmol) 2(S)-Amino-3-(2-benzyloxy-5-iodo-phenyl)propionsäure Hydrochlorid (9A) in DMF wird mit 9.25 ml (53.09 mol) N,N-Diisopropylethylamin versetzt. Dazu gibt man 6.615 g (26.54 mmol) N-(Benzyloxycarbonyl)succinimid (Z-OSuc) zu. Die resultierende Lösung wird über Nacht gerührt und dann im Vakuum einrotiert. Der Rückstand wird in Dichlormethan aufgenommen und jeweils zweimal mit 0.1 N Salzsäurelösung und gesättigter wässriger Natriumchlorid-Lösung ausgeschüttelt. Die organische Phase wird getrocknet, filtriert und eingeengt. Die Mischung wird durch Säulenchromatographie an Silicagel (Laufmittel: Cyclohexan/Diethylether 9:1 bis 8:2) gereinigt. Ausbeute: 8.30 g (65% d. Th.).

15

20

HPLC (Methode 3): $R_t = 5.01 \text{ min.}$

MS (EI): $m/z = 532 (M+H)^{+}$.

 1 H-NMR (200 MHz, DMSO): $\delta = 3.14-3.3$ (m, 2 H), 4.25-4.45 (m, 1H), 4.97 (s, 2H), 5.14 (s, 2H), 6.88 (d, 1 H), 7.20-7.56 (m, 12 H), 7.62 (d, 1 H), 12.73 (bs, 1H).

Beispiel 11A

5

10

15

2(S)-Benzyloxycarbonylamino-3-(2-benzyloxy-5-iod-phenyl)-propionsäure-(2-trimethylsilyl)-ethylester

8.35 g (15.7 mmol) 2(S)-Benzyloxycarbonylamino-3-(2-benzyloxy-5-iod-phenyl)-propionsäure (10A) werden in 150 ml THF vorgelegt und mit 2.14 g (18.07 mmol) 2-Trimethylsilylethanol und 250 mg (2.04 mmol) 4-Dimethylaminopyridin versetzt. Die Mischung wird auf 0° abgekühlt und mit 2.38 g 2.95 ml (18.86 mmol) N,N-Diisopropylcarboddiimid, gelöst in 40 ml THF, versetzt. Es wird über Nacht bei RT gerührt und zur Aufarbeitung im Vakuum einrotiert. Der Rückstand wird in Dichlormethan aufgenommen und jeweils zweimal mit 0.1 N Salzsäurelösung und gesättigter wässriger Natriumchlorid-Lösung ausgeschüttelt. Die organische Phase wird getrocknet, filtriert und eingeengt. Die Mischung wird säulenchromatographisch (Silicagel, Laufmittel: Cyclohexan/Diethylether 9:1 bis 8:2) gereinigt. Ausbeute: 8.2 g (83% d. Th.).

HPLC (Methode 3): $R_t = 6.42 \text{ min}$

MS (EI): $m/z = 532 (M+H)^{+}$.

¹H-NMR (300 MHz, CDCl₃): δ = 0.01 (s, 9H), 0.88 (t, 2H), 2.96 (dd, 1H₁), 3.13 (dd, 1H₁), 4.04-4.17 (m, 2H), 4.51-4.62 (m, 1H), 4.95-5.05 (m, 4H), 5.44 (d, 1 H₁), 6.64 (d, 1H), 7.25-7.33 (m, 7 H), 7.37 (dd, 4H), 7.45 (dd, 1H).

Beispiel 12A

5

10

15

20

25

2(S)-Benzyloxycarbonylamino-3-[4,4'-bis-benzyloxy-3'-(2(S)-benzyloxy-carbonyl-2-*tert*-butoxycarbonylamino-ethyl)-biphenyl-3-yl]-propionsäure-2-(trimethylsilyl)-ethylester

Methode A:

Zu einer Lösung von 0.316 g (0.5 mmol) 2(S)-Benzyloxycarbonylamino-3-(2-benzyloxy-5-iod-phenyl)-propionsäure-(2-trimethylsilyl)-ethylester (11A) in 2.5 ml entgastem DMF werden unter Argon bei RT 45.8 mg (0.05 mmol) Bis(diphenylphosphino)ferrocen-palladium(II)chlorid (PdCl₂(dppf)) und 0.325 g Cäsiumcarbonat (1.0 mmol) hinzugegeben. Das Reaktionsgemisch wird auf 40°C erhitzt. Innerhalb von 30 min wird eine Lösung von 0.294 g (0.5 mmol) 3-[2-Benzyloxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-2(S)-tert-

butoxycarbonylamino-propionsäurebenzylester (8A) in 2.5 ml entgastem DMF zugetropft. Das Reaktionsgemisch wird 4 h bei 40°C und weitere 2 h bei 50°C gerührt. Das Lösungsmittel wird eingedampft und der Rückstand in Essigsäureethylester aufgenommen. Die organische Phase wird zweimal mit Wasser ausgeschüttelt, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird durch Kieselgelchromatographie mit Dichlormethan/Essigsäureethylester (30/1) gereinigt. Man erhält 0.320 g (66% d. Th.) des Produktes.

¹H-NMR (400 MHz, CDCl₃): δ = -0.2 (s, 9H), 0.88 (t, 2 H), 1.35 (s, 9H), 3.05-3.15 (m, 2H), 3.2-3.27 (m, 2H), 4.04-4.22 (m, 2H), 4.55-4.68 (m, 2H), 4.95-5.17 (m, 8H), 5.38 (d, 1H), 5.61 (d, 1H), 6.92 (t, 2H), 7.18-7.40 (m, 20H), 7.45 (t, 4H).

Methode B:

Eine Lösung von 6.99 g (11.06 mmol) 2(S)-Benzyloxycarbonylamino-3-(2benzyloxy-5-iod-phenyl)-propionsäure-(2-trimethylsi1yl)-ethylester (11A) und 6.50 g 3-[2-Benzyloxy-5-(4,4,5,5-tetram-ethyl-[1,3,2]dioxaborolan-2-yl)-(11.06)mmol) phenyl]-2(S)-tert-butoxycarbonylamino-propionsäurebenzylester (8A) in 40 ml DMF wird entgast, indem Argon durchgeleitet wird (ca. 30 min). Anschliessend gibt man 812 mmol) Bis(diphenylphosphino)ferrocen-palladium(II)chlorid (1.11)mg (PdCl₂(dppf)) und 7.21 g (22.13 mmol) Cäsiumcarbonat dazu. Das Reaktionsgemisch wird mit Argon leicht überströmt und für 2.5 h auf 80°C erhitzt. Die Mischung wird abgekühlt und säulenchromatographisch an Silicagel (Laufmittel: Cyclohexan/Ethylacetat 7:3) gereinigt. Vor der kompletten Einengung zur Trockne wird die Mischung mit Diisopropylether versetzt. Die entstandenen Kristalle werden abgesaugt und im Hochvakuum getrocknet. Ausbeute: 6.54 g (61% d. Th.).

HPLC (Methode 3): $R_t = 7.65 \text{ min}$

MS (EI): m/z = 987 (M+Na), 965 (M+H)⁺.

¹H-NMR (200 MHz, CDCl₃): $\delta = 0.00$ (s, 9H), 0.9O (t, 2 H), 1.37 (s, 9H), 3.02-3.35 (m, 4H) 4.06-4.25 (m, 2H), 4.55-4.73 (m, 2H), 4.98-5.18 (m, 8H), 5.40 (d, 1H), 5.63 (d, 1H), 6.88-7.00 (m, 2H), 7.19-7.39 (m, 20H), 7.42-7.53 (m, 4H).

Beispiel 13A

 N^a -(tert-Butoxycarbonyl)- N^ϵ (benzyloxycarbonyl)-(2S,4R)-hydroxyornithin-lacton

Eine Lösung von 7.60 g (17.3 mmol 5-Benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-hydroxy-pentansäure-tert-butylester (Darstellung beschrieben in Org. Lett., 2001, 3, 20, 3153-3155) in 516 ml Dichlormethan und

516 ml Trifluoressigsäure wird 2 h bei RT gerührt. Das Lösungsmittel wird eingedampft. Das zurückbleibende Rohprodukt wird in 2.6 l wasserfreiem Methanol gelöst und unter Rühren bei 0°C werden 6.3 g (28.8 mmol) Di-tert-Butyldicarbonat und 7.3 ml (52.43 mmol) Triethylamin hinzugegeben. Nach 15 h wird die Reaktionslösung eingedampft und der Rückstand in 1 l Essigsäureethylester aufgenommen. Nach Trennung der Phasen wird die organische Phase zweimal mit einer 5% Zitronensäure-Lösung, zweimal mit Wasser und einmal mit gesättigter wässriger Natriumchlorid-Lösung ausgeschüttelt, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird durch Kieselgelchromatographie mit Toluol/Aceton (5/1) gereinigt. Man erhält 4.92 g (78% d. Th.) des Produktes.

LC-HR-FT-ICR-MS (Methode13): ber. für $C_{18}H_{28}N_3O_6$ (M+NH₄)⁺ 382.19726 gef. 382.19703.

¹H-NMR (400 MHz, CDCl₃): δ = 1.45 (s, 9H), 2.3-2.4 (m,1H), 2.45-2.55 (m, 1H), 3.3-3.4 (m, 1H), 3.5-3.6 (m, 1H), 4.17-4.28 (m, 1H), 4.7-4.8 (m,1H), 5.0-5.15 (m, 4H), 7.3-7.4 (m, 5H).

Beispiel 14A

10

15

20

25

5-Benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-(tert-butyl-dimethyl-silanyloxy)-pentansäure

Zu einer Lösung von 0.73 g (2 mmol) N^a -(tert-Butoxycarbonyl)- N^c (benzyloxycarbonyl)-(2S,4R)-hydroxyornithinlacton (13A) in 50 ml 1,4-Dioxan werden bei 0°C 2 ml 1 M Natronlauge hinzugegeben. Die Reaktionslösung wird 2 h gerührt und dann eingedampft. Der Rückstand wird in 50 ml Dichlormethan aufgenommen. Zu dieser Lösung werden 1.12 ml (8 mmol) Triethylamin hinzugegeben und nach einer

kurzen Zeit 1.38 ml (6 mmol) Trifluormethansulfonsäure-tert-butyl-dimethyl-silylester zugetropft. Nach 3 h Rühren bei RT wird das Reaktionsgemisch mit Dichlormethan verdünnt. Die organische Phase wird mit 1 N Natriumbicarbonat-Lösung gewaschen, über Natriumsulfat getrocknet und eingedampft. Das Rohprodukt wird in 7.4 ml 1,4-Dioxan gelöst und mit 36.2 ml 0.1 N Natronlauge versetzt. Nach 3 h Rühren bei RT wird die Reaktionslösung eingedampft und der Rückstand in Wasser und Essigsäureethylester aufgenommen. Die organische Phase wird dreimal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und eingedampft. Man erhält 0.90 g (90% d. Th.) des Produktes.

LC-ESI-MS (Methode 11): m/z = 497 (M+H)⁺, 519 (M+Na)⁺, 993 (2M+H)⁺. ¹H-NMR (400 MHz, d₆-DMSO): $\delta = 0.7$ (s, 3H), 0.8 (s, 3H), 0.92 (s, 9H), 1.38 (s, 9H), 1.5-1.63 (m, 1H), 1.75-1.9 (m, 1H), 2.95-3.18 (m, 2H), 3.6-3.72 (m, 1H), 3.85-3.98 (m, 1H), 4.92-5.08 (m, 2H), 6.23 (d, 1H), 7.22-7.4 (m, 5H).

15

10

5

Beispiel 15A

3-[3'-(2(S)-Amino-2-benzyloxycarbonyl-ethyl)-4,4'-bis-benzyloxy-biphenyl-3-yl]-2(S)-benzyloxycarbonylamino-propionsäure 2-(trimethylsilyl)-ethylester Hydrochlorid

BnO OBn

ZHN
$$O$$
 H_2N CO_2Bn

TMSEO X HCl

20

25

Zu einer auf 0°C gekühlten Lösung von 2.65 g (2.75 mmol) 2(S)-Benzyloxycarbonylamino-3-[4,4'-bis-benzyloxy-3'-(2(S)-benzyloxycarbonyl-2-tert-butoxy-carbonylamino-ethyl)-biphenyl-3-yl]-propionsäure-2-(trimethylsilyl)-ethylester (12A) in 50 ml wasserfreiem Dioxan werden 50 ml einer 4 M Salzsäure-Dioxan-Lösung über ca. 20 min hinzugegeben. Nach 3 h Rühren wird die Reaktionslösung

eingedampft und im Hochvakuum getrocknet. Gesamtausbeute entspricht 100% d. Th..

HPLC (Methode 3): $R_t = 5.96 \text{ min.}$

MS (EI): $m/z = 865 (M+H)^{+}$.

Beispiel 16A

 $2(S)-[5-Benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-(tert-butyldimethylsilyloxy)-pentanoylamino]-3-\{4,4'-bis-benzyloxy-3'-[2(S)-benzyloxycarbonylamino-2-(2-trimethylsilyl-ethoxycarbonyl)-ethyl]-biphenyl-3-yl}-propionsäurebenzylester$

Zu einer auf 0°C gekühlten Lösung von 0.520 g (0.58 mmol) 3-[3'-(2(S)-Amino-2-benzyloxycarbonyl-ethyl)-4,4'-bis-benzyloxy-biphenyl-3-yl]-2(S)-benzyloxy-carbonyl-amino-propionsäure-(2-trimethylsilyl)-ethylester Hydrochlorid (15A) und 0.287 g (0.58 mmol) 5-Benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-(tert-butyldimethylsilyloxy)-pentansäure (14A) in 7.3 ml wasserfreiem DMF wurden 0.219 g (0.58 mmol) HATU und 0.082 g (0.63 mmol) N,N-Diiso-propylethylamin hinzugegeben. Nach 30 min Rühren bei 0°C werden zusätzliche 0.164 g (1.26 mmol) N,N-Diisopropylethylamin hinzugegeben. Das Reaktionsgemisch wird 15 h bei RT gerührt. Das Lösungsmittel wird dann eingedampft und der Rückstand in Essigsäureethylester aufgenommen. Die organische Phase wird dreimal mit Wasser und einmal mit gesättigter wässriger Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird

,

10

5

15

20

durch Kieselgelchromatographie mit Dichlormethan/Essigsäureethylester (Gradient 30/1→20/1→10/1) gereinigt. Man erhält 533 mg (66% d. Th.) des Produktes.

LC-ESI-MS (Methode 12): m/z = 1342 (M+H)⁺, 1365 (M+Na)⁺.

5 Beispiel 17A

2(S)-Benzyloxycarbonylamino-3-{4,4'-bis-benzyloxy-3'-[2(S)-benzyloxy-carbonyl-2-(5-benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-hydroxy-pentanoylamino)-ethyl]-biphenyl-3-yl}-propionsäure

Methode A:

10

15

20

25

Zu einer Lösung von 0.360 g (0.27 mmol) 2(S)-[5-Benzyloxycarbonylarnino-2(S)tert-butoxycarbonylamino-4(R)-(tert-butyldimethylsilyloxy)-pentanoylamino]-3{4,4'-bis-benzyloxy-3'-[2(S)-benzyloxycarbonylamino-2-(2-trimethylsilyl-ethoxycarbonyl)-ethyl]-biphenyl-3-yl}-propionsäurebenzylester (16A) in 22.5 ml wasserfreiem DMF werden 0.80 ml einer 1.0 M Lösung von Tetrabutylammoniumfluorid in
THF hinzugegeben. Nach 1 h Rühren bei RT wird das Reaktionsgemisch auf 0°C
gekühlt und mit Wasser versetzt. Nach Zugabe von Essigsäureethylester werden die
Phasen getrennt. Die organische Phase wird mit einer 1.0 M Lösung Kaliumhydrogensulfat gewaschen, über Natriumsulfat getrocknet und eingedampft. Man
erhält 0.331 g des Rohproduktes. Das Rohprodukt wird ohne weitere Reinigung
umgesetzt.

LC-ESI-MS (Methode 10): $m/z = 1129 (M+H)^{+}$.

LC-HR-FT-ICR-MS: ber. für $C_{65}H_{69}N_4O_{14}$ (M+H)⁺ 1129.48048 gef. 1129.48 **1** 23.

Methode B:

5

10

15

Zu einer Lösung von 800 mg (0.6 mmol) 2(S)-[5-Benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-(tert-butyldimethylsilyloxy)-pentanoylamino]-3-{4,4'-bis-benzyloxy-3'-[2(S)-benzyloxycarbonylamino-2-(2-trimethylsilyl-ethoxy-carbonyl)-ethyl]-biphenyl-3-yl}-propionsäurebenzylester (16A) in 26 ml absolutem DMF werden bei RT tropfenweise 1,8 ml 1N Tetrabutylammoniumfluorid in THF hinzugegeben. Nach 25 min bei RT wird auf 0°C gekühlt und mit viel Eiswasser versetzt. Es wird sofort mit Ethylacetat und etwas 1N Salzsäure-Lösung versetzt. Die organische Phase mit MgSO₄ getrocknet, eingeengt und 1 h im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt. LC-MS (ESI): m/z = 1129 (M+H)⁺.

Beispiel 18A

2(S)-(5-Benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-hydroxy-pentanoylamino)-3-[4,4'-bis-benzyloxy-3'-(2(S)-benzyloxycarbonylamino-2-pentafluorophenyloxycarbonyl-ethyl)-biphenyl-3-yl]-propionsäure benzyl ester

20 Methode A:

Zu einer auf -25°C gekühlten Lösung von 104 mg (92 µmol) 2(S)-Benzyloxycarbonylamino-3-{4,4'-bis-benzyloxy-3'-[2(S)-benzyloxycarbonyl-2-(5-benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-hydroxy-pentanoyl-amino)-ethyl]-biphenyl-3-yl}-propionsäure (17A, Rohgemisch) in 3 ml Dichlor-

methan werden unter Argon 90 mg Pentafluorphenol (0.49 mmol), in wenig Dichlormethan gelöst, 1.1 mg 4-Dimethylaminopyridin (10 μM) und 19.4 mg (0.10 mmol) EDC hinzugegeben. Nach 15 h Rühren wird das Reaktionsgemisch eingeengt. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

LC-ESI-MS (Methode 11): $m/z = 1217 (M+Na)^{+}$, 1295 $(M+H)^{+}$. LC-HR-FT-ICR-MS: ber. für $C_{71}H_{68}F_{5}N_{4}O_{14} (M+H)^{+}$ 1295.46467 gef. 1295.46430.

Methode B:

5

15

20

691 mg (Rohgemisch, ca. 0.6 mmol) 2(S)-Benzyloxycarbonylamino-3-{4,4'-bis-benzyloxy-3'-[2(S)-benzyloxycarbonyl-2-(5-benzyloxycarbonylamino-2(S)-tert-butoxycarbonylamino-4(R)-hydroxy-pentanoylamino)-ethyl]-biphenyl-3-yl}-propionsäure (17A) werden in 25 ml Dichlormethan vorgelegt und mit 547.6 mg (2.98 mmol) Pentafluorphenol, gelöst in 6 ml Dichlormethan, versetzt. Man fügt 7.3 mg (0.06 mmol) DMAP hinzu und kühlt auf -25°C (EtOH/CO₂ Bad). Bei -25°C werden 148 mg (0.774 mmol) EDC hinzugefügt. Die Mischung erwärmt sich über Nacht langsam auf RT. Die Reaktionsmischung wird im Vakuum eingeengt und im Hochvakuum kurz getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

LC-MS: m/z (ESI) = 1295 $(M+H)^+$.

Beispiel 19A

5,17-Bis-benzyloxy-14(S)-benzyloxycarbonylamino-11(S)-(3-benzyloxycarbonylamino-2(R)-hydroxy-propyl)-10,13-dioxo-9,12-diaza-tricyclo $[14.3.1.1^{2,6}]$ -henicosa-1(19),2,4,6(21),16(20),17-hexan-8(S)-carbonsäurebenzylester

25

Methode A:

5

10

15

20

25

30

Zu einer Lösung von 119.3 mg 2(S)-(5-Benzyloxycarbonylamino-2(S)-tertbutoxycarbonylamino-4(R)-hydroxy-pentanoylamino)-3-[4,4'-bis-benzyloxy-3'-(2(S)benzyloxycarbonylamino-2-pentafluorophenyloxycarbonyl-ethyl)-biphenyl-3-yl]propionsäurebenzylester (18A, als Rohprodukt) in 2.7 ml 1,4-Dioxan werden 4 ml einer 4 M Salzsäure-Lösung in 1,4-Dioxan hinzugegeben. Bis zum Reaktionsende werden weitere 1.5 ml 4 M Salzsäure-Lösung in 1,4-Dioxan zugegeben. Die Reaktionslösung wird eingedampft und zweimal mit Chloroform codestilliert. Das Rohprodukt (LC-HR-FT-ICR-MS, Methode 13: ber. für C₆₆H₆₀F₅N₄O₁₂ (M+H)⁺ 1195.41224 gef. 1195.41419) wird in 100 ml Chloroform gelöst und über 3 h zu einer sehr gut gerührten Suspension von 200 ml Chloroform und 100 ml gesättigter wässriger Natriumhydrogencarbonat Lösung hinzugetropft. Die Reaktionsmischung wird 2 h kräftig gerührt. Nach Trennung der zwei Phasen wird die wässrige Phase mit Chloroform extrahiert. Die vereinigten organischen Phasen werden mit 5% wässriger Zitronensäure-Lösung gewaschen, über Magnesiumsulfat getrocknet und zur Trockne eingedampft. Das Rohprodukt wird mit Acetonitril gewaschen und im Hochvakuum getrocknet.

LC-ESI-MS (Methode11): $m/z = 1011 (M+H)^{+}$.

¹H-NMR (400 MHz, d₆-DMSO): δ = 1.53-1.64 (m, 1H), 1.72-1.83 (m, 1H), 2.85-3.0 (m, 3H), 3.0-3.12 (m, 1H), 3.4-3.5 (m, 1H), 3.58-3.68 (m, 1H), 4.48-4.57 (m, 1H), 4.7 (d, 1H, J= 5 Hz), 4.73-4.86 (m, 2H), 4.86-5.03 (m, 4 H), 5.07-5.25 (m, 6H), 6.32 (d, 1H, J= 7.5 Hz), 7.0-7.13 (m, 4H), 7.21-7.41 (m, 18H), 7.41-7.5 (m, 9H), 8.8 (d, 1H, J= 9.2 Hz), 8.9 (d, 1H, J= 9.5 Hz).

Methode B:

Circa 0.595 mmol 2(S)-(5-Benzyloxycarbonylamino-2(S)-tert-butoxycarbonyl-amino-4(R)-hydroxy-pentanoylamino)-3-[4,4'-bis-benzyloxy-3'-(2(S)-benzyloxy-carbonyl-amino-2-pentafluorophenyloxycarbonyl-ethyl)-biphenyl-3-yl]-propion-säure-benzylester (18A, Rohprodukt) werden in 8 ml Dioxan gelöst und dann bei 0°C mit 16 ml 4 N Salzsäure-Lösung in Dioxan tropfenweise versetzt. Nach 45 min

olgt erneute Zugabe von 6 ml 4 N Salzsäure-Lösung in Dioxan und nach 15 min haals 8 ml. Die Mischung wird 30 min bei 0°C gerührt, bevor die aktionslösung schonend eingeengt, mit Chloroform codestilliert (2x) und kurz im chvakuum getrocknet wird. Das Rohprodukt (732 mg, 059 mmol) wird in 1000 Chloroform gelöst und tropfenweise mit einer Lösung von 6 ml Triethylamin in ml Chloroform versetzt. Es wird über Nacht bei RT gerührt. Zur Aufarbeitung das Gemisch schonend im Vakuum einrotiert und der Rückstand in Acetonitril rührt. Die entstandene Kristalle werden abgesaugt, mit Acetonitril gewaschen und Hochvakuum getrocknet. Ausbeute: 360 mg (60 % d. Th.).

 $3 \text{ (EI): } m/z = 1011 \text{ (M+H)}^+.$

LC (Methode 3): $R_t = 5.59 \text{ min.}$

NMR (400 MHz, d₆-DMSO): $\delta = 1.52-1.65$ (m, 1H), 1.73-1.84 (m, 1 1 3 2.82-1 (m, 3H), 3.02-3.11 (m, 1H), 3.46 (s, 1H), 3.57-3.68 (m, 1H), 4.47-4.56 (m, 1H), 4.73-4.85 (m, 2H), 4.88-5.00 (m, 4 H), 5.09 (s, 2H), 5.14-5.20 (m,), 6.29 (d, 1H), 7.00-7.11 (m, 4H), 7.21-7.40 (m, 20H), 7.41-7.48 (m, 9H1), 8.77 (d,), 8.87 (d, 1H).

ispiel 20A

(S)-Amino-11(S)-(3-amino-2(R)-hydroxy-propyl)-5,17-dihydroxy-10, 1 3—dioxo-2-diaza-tricyclo[14.3.1.1^{2,6}]henicosa-1(19),2,4,6(21),16(20),17-hexan-8(S)—bonsäure Dihydrochlorid
iphenomycin B Dihydrochlorid)

Methode A:

. 5

10

15

20

25

30

Eine Lösung von 10 mg (9.9 μM) 5,17-Bis-benzyloxy-14(S)-benzyloxy-carbonylamino-11(S)-(3-benzyloxycarbonylamino-2(R)-hydroxy-propyl)-10,13-dioxo-9,12-diaza-tricyclo[14.3.1.1^{2,6}]henicosa-1(19),2,4,6(21),16(20),17-hexan-8(S)-carbonsäurebenzylester (19A) und 50 μl Ameisensäure in 10 ml Ethanol wird in Gegenwart von 10 mg Pd/C über 16 h unter Wasserstoff bei Normaldruck kräftig gerührt. Die Reaktionslösung wird eingedampft, der Rückstand in 1 N Salzsäure-Lösung aufgenommen und filtriert. Das Rohprodukt wird über eine RP 18 Kartusche mit Acetonitril/Wasser gereinigt. Man erhält 2 mg (42.8% d. Th.) des Produktes.

LC-ESI-MS (Methode 11): $m/z = 473 (M+H)^{+}$.

¹H-NMR (400 MHz, d₆-DMSO): $\delta = 1.85$ -1.98 (m, 1H), 2-02-2.12 (m, 1H), 2.82 (dd, 1H, J= 11 Hz, J= 16.3 Hz), 2.95 (dd, 1H, J= 2.9 Hz, J= 10 Hz), 3.2 (dt, 2H, J= 2.5 Hz, J= 12.8 Hz), 3.52 (d, 1H, J= 4.8 Hz), 3.62 (dd, 1H, J= 4.9 Hz, J= 15.1 Hz), 3.9 (t, 1H, J= 10 Hz), 4.48 (s, 1H), 4.67 (d, 1H, J= 11 Hz), 6.98 (dd, 2H, J= 2 Hz, J= 8.1 Hz), 7.02 (d, 1H, J= 2 Hz), 7.36 (s, 1H), 7.4 (d, 1H, J= 8.3 Hz), 7.47 (dd, 1H, J= 8.3 Hz).

Methode B:

Es werden 200 mg (0.20 mmol) 5,17-Bis-benzyloxy-14(S)-benzyloxycarbonylamino-11(S)-(3-benzyloxycarbonylamino-2(R)-hydroxy-propyl)-10,13-dioxo-9,12-diaza-tricyclo [14.3.1.1^{2,6}]henicosa-1(19),2,4,6(21),16(20),17-hexan-8(S)-carbonsäure-benzylester (19A) in einem Gemisch aus 220 ml Essigsäure/Wasser/Ethanol 4:1:1 gegeben (Ethanol kann durch THF substituiert werden). Dazu gibt man 73 mg 10 %ige Palladium/Kohle (10 % Pd/C) und hydriert anschliessend 15 h bei Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert und das Filtrat im Vakuum einrotiert. Der Rückstand wird mit 4.95 ml 0.1 N wässriger Salzsäure versetzt und eingeengt. Man verührt den Rückstand mit 10 ml Diethylether und dekantiert ab. Der zurückgebliebene Feststoff wird im Hochvakuum getrocknet. Ausbeute: 103 mg (95 % d. Th.).

HPLC (Methode 3): $R_t = 3.04$ min; LC/MS (Methode 6): $R_t = 0.38$ min MS (EI): m/z = 473 (M+H-2HCl)⁺.

¹H-NMR (400 MHz, D₂O): δ = 2.06-2.20 (m, 1H), 2.74-2.89 (m, 1H), 2.94-3.05 (m, 1H), 3.12-3.25 (m, 2H), 3.53 (d, 1H), 3.61-3.72 (m, 1H), 3.97-4.07 (m, 1H), 4.53 (s, 1H), 4.61 (d, 1H), 4.76-4.91 (m, 12 H), 7.01-7.05 (m, 2H), 7.07 (s, 1H), 7.40-7.45 (m, 2H), 7.51 (d, 1H).

5

Beispiel 21A

 $(8S,11S,14S)-14-[(Tert-butoxycarbonyl)amino]-11-\{(2R)-3-[(tert-butoxy-carbonyl)amino]-2-hydroxypropyl\}-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo [14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-8-carbonsäure$

10

15

Methode A:

5.2 mg (9.5 μmol) 14(S)-Amino-11(S)-(3-amino-2(R)-hydroxy-propyl)-5,17-di-hydroxy-10,13-dioxo-9,12-diaza-tricyclo[14.3.1.1^{2,6}]henicosa-1(19),2,4,6(21),16 (20),17-hexan-8(S)-carbonsäure Dihydrochlorid (20A) werden unter Argon in trockenem Methanol (p.a., 0.5 ml) gelöst. Unter starkem Rühren werden bei Raumtemperatur zunächst eine wäßrige NaHCO₃-Lösung (1 M, 100 μL) und dann eine methanolische Lösung von Di-tert.-butylcarbonat (0.1 M, 570 μl, 57 μmol) zugetropft. Nach etwa 1-2 Tagen ist vollständiger Umsatz erreicht. Das Reaktionsgemisch wird im Vakuum eingedampft und im Hochvakuum getrocknet. Das erhaltene Rohprodukt wird durch Gelchromatographie [Sephadex LH-20; MeOH/1 M NaHCO₃ (1:0.0001)] aufgereinigt. Das Produkt erhält man mit 5.3 mg (83% d. Th.).

20

HPLC/UV-Vis (Methode 14) $R_t = 7.4 \text{ min}$; $H_2\text{O/CH}_3\text{CN} + 0.01\% \text{ TFA [4:6]}$): λ_{max} (qualitativ) = ~193 nm(s), 206 (sh), 269 (m), ~284 (sh).

LC-ESI-MS m/z (%) = 673 (100) (M + H)⁺, 573 (90). LC-HR-FT-ICR-MS ber. für $C_{33}H_{44}N_4O_{11}$ [M+H]⁺ 673.3079 gef. 673.3082.

Methode B:

50 mg (0.09 mmol) 14(S)-Amino-11(S)-(3-amino-2(R)-hydroxy-propyl)-5,17-di-hydroxy-10,13-dioxo-9,12-diaza-tricyclo[14.3.1.1^{2,6}]henicosa-1(19),2,4,6(21),16 (20),17-hexan-8(S)-carbonsäure Dihydrochlorid (20A) werden in einem Gemisch vom 8 ml Methanol/Wasser (9:1) vorgelegt. Dazu gibt man 1 ml 1 N Natriumhydrogen-carbonatlösung und anschließend 80 mg (0.37 mmol) Di-tert-butyldicarbonat in 2 ml Methanol/Wasser (9:1). Es wird über Nacht bei RT gerührt. Die Lösung wird zur Aufarbeitung mit 60 ml Ethylacetat und 30 ml Wasser versetzt. Die organische Phase wird einmal mit 0.1 normaler Salzsäure gewaschen, getrocknet und im Vakuum einrotiert. Ausbeute: 49 mg (79 % d. Th.).

LC/MS (Methode 9): $R_t = 2.56 \text{ min.}$

MS (EI): $m/z = 673 (M+H)^{+}$.

Ausführungsbeispiele

Die Synthese von Ausführungsbeispielen kann ausgehend von partiell geschützten Biphenomycin-Derivaten (wie z.B. 21A) erfolgen.

Beispiel 1

10

tert-Butyl-(2R)-3-[(8S,11S,14S)-8-(aminocarbonyl)-14-[(tert-butoxycarbonyl)-amino]-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-11-yl]-2-hydroxypropylcarbamat

Methode A:

4.1 mg (6.1 μmol) (8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-{(2R)-3-[(tert-butoxycarbonyl)amino]-2-hydroxypropyl}-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-8-carbonsäure (Beispiel 21A) werden unter Argonschutzgasatmosphäre in trockenem N,N-Dimethylformamid (p.a., 0.5 ml) gelöst. Nach Zugabe von festem Natriumdisulfit (6.1 μmol) wird bei RT eine frisch zubereitete Lösung von Diisopropylethylamin (7.9 mg, 61 μmol), Ammoniumchlorid (1.6 mg, 30 μmol) und HATU (4.6 mg, 12.2 μmol) in Dimethylformamid (0.5 ml, Lösung A) zugetropft. Bis zum vollständigen Eduktumsatz muss Lösung A noch zweifach zugegeben werden (nach 1.5 h Reaktionszeit und nach 2 h Reaktionszeit). Man rührt weitere 20 min und bricht die Reaktion dann durch Zugabe von Wasser (0.5 ml) ab. Das Reaktionsgemisch wird eingefroren und anschließend gefriergetrocknet. Das erhaltene Rohprodukt wird durch Gelchromatographie [Sephadex LH-20; MeOH/AcOH (1:0.0001) dotiert mit Natriumdisulfit] aufgereinigt. Das Produkt erhält man in hoher Reinheit (> 98%) als farblosen Feststoff (2.2 mg, 52% d.Th.).

HPLC/UV-Vis R_t (Methode 14) = 7.06 min; (H₂O/CH₃CN + 0.01% TFA [4:6]): λ_{max} (qualitativ) = ~202 nm (s), 268 (m), ~285 (sh).

LC-HR-FT-ICR-MS (Methode 13) ber. für $C_{33}H_{46}N_5O_{10}$ [M+H]⁺ 672,3239 gef. 672.3239.

Methode B:

Unter Argon werden 49 mg (0.07 mmol) (8S,11S,14S)-14-[(Tert-butoxy-carbonyl)amino]-11-{(2R)-3-[(tert-butoxycarbonyl)amino]-2-hydroxypropyl}-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,-5,16,18-hexan-8-carbonsäure (Beispiel 21A) in 1 ml DMF gelöst und auf 0°C abgekühlt. Dazu gibt man 42 mg (0.11 mmol) HATU hinzu und lässt 10 min bei 0°C nachrühren. 1.46 ml (0.73 mmol) einer 0.5 molaren Ammoniaklösung in Dioxan werden zugetropft und über Nacht bei RT gerührt. Nach ca. 18 h werden die gleichen Mengen an Reagenzien noch einmal dazu gegeben. Nach 3 Tagen wird das Gemisch

im Vakuum einrotiert und mittels RP-HPLC präparativ gereinigt. Ausbeute: 16 mg (33 % d. Th.).

HPLC (Methode 3): $R_t = 3.83$ min.

Beispiel 2

(8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-8-carbonsäureamid Dihydrochlorid

Methode A:

Zu einer Lösung von 2.15 mg (3.2 µmol) tert-Butyl-(2R)-3-[(8S,11S,14S)-8-(amino-carbonyl)-14-[(tert-butoxycarbonyl)amino]-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-11-yl]-2-hydroxy-propyl-carbamat (Beispiel 1) in trockenem Dioxan (p.a., 1.0 ml) wird unter Argon eine 4 M Lösung von Salzsäuregas in Dioxan (1.0 ml) zugetropft. Nach ca. 30 min ist vollständiger Umsatz erreicht. Das Reaktionsgemisch wird eingefroren und mittels Gefriertrocknung von Lösungsmitteln befreit. Die Aufreinigung erfolgt durch Gelchromatographie [Sephadex LH-20; MeOH/konz. HCl (1:0.0001) dotiert mit Natriumdisulfit], wobei das Produkt in hoher Reinheit (> 98%) als farbloser Schaum (1.4 mg, 80%-d. Th.) erhalten wird.

HPLC/UV-Vis R_t (Methode 14) = 3.09 min; (H₂O/CH₃CN + 0.01% TFA [7:3]): λ_{max} (qualitativ) = ~204 nm (s), 269 (m), ~285 (sh).

¹H NMR (CD₃OD, 500 MHz) δ 1.79 (ddd, 1 H, J = 13.6, 9.2, 5.9 Hz), 1.99 (ddd, 1 H, J = 13.6, 9.6, 4.0 Hz), 2.82 (dd, 1 H, J = 12.8, 9.6 Hz), 2.87 (dd, 1 H, J = 17.1,

12.1 Hz), 3.04 (dd, 1 H, J = 12.8, 2.9 Hz), 3.11 (dd, 1 H, J = 14.8, 3.0 Hz), 3.38 (dd, 1 H, J = 16.9, 1.9 Hz), 3.57 (dd, 1 H, J = 11.7, 5.4 Hz), 3.92 (,,tt", 1 H, J = 9.4, 3.5 Hz), 4.23 (dd, 1 H, J = 4.9, 3.0 Hz), ~4.90 (m, 1 H), ~4.91 (m, 1 H), 6.79 (d, 1 H, J = 8.3 Hz), 6.85 (d, 1 H, J = 8.4 Hz), 7.10 (d, 1 H, J = 2.3 Hz), 7.25 (dd, 1 H, J = 8.3, 2.3 Hz), 7.36 (dd, 1 H, J = 8.5, 2.4 Hz), 7.44 (d, 1 H, J = 2.1 Hz).

¹³C NMR (CD₃OD, 125.5 MHz) δ 30.3, 30.8, 39.5, 45.4, 50.6, 53.8, 55.3, 65.3, 115.6, 116.3, 120.8, 125.3, 126.2, 126.8, 127.0, 130.9, 132.7, 133.5, 155.0, 155.7, 168.4, 172.8, 177.0.

LC-HR-FT-ICR-MS (Methode 13) ber. für $C_{23}H_{30}N_5O_6$ [M+H]⁺ 472.2191 gef. 472.2191.

Methode B:

10

15

20

25

Unter Argon werden 14.8 mg (0.02 mmol) tert-Butyl-(2R)-3-[(8S,11S,14S)-8-(aminocarbonyl)-14-[(tert-butoxycarbonyl)amino]-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-11-yl]-2-hydroxy-propylcarbamat (Beispiel 1) in 0.5 ml Dioxan vorgelegt. Die Mischung wird auf 0°C abgekühlt und mit 0.8 ml 4 M Salzsäurelösung in Dioxan tropfenweise versetzt. Nach 45 min wird das Gemisch im Vakuum einrotiert und der Rückstand noch 2 mal mit Dioxan aufgenommen und erneut im Vakuum einrotiert. Das Produkt wird am Hochvakuum getrocknet. Ausbeute 12 mg (100 % d. Th.).

HPLC (Methode 8): $R_t = 4.87 \text{ min.}$

MS (EI): $m/z = 472 (M+H-2HC1)^{+}$.

¹H-NMR (400 MHz, D₂O): δ = 0.58-0.67 (m, 2H), 1.65-1.86 (m, 3H), 1.88-1.98 (m, 1H), 2.03-2.13 (m, 1H), 2.87-3.02 (m, 4H), 3.09-3.19 (m, 2H), 3.38 (d, 1H), 3.59-3.69 (m, 2H), 3.88-3.96 (m, 1H), 4.46-4.51 (m, 1 H), 4.85-5.01 (m, 5H), 6.98 (dd, 2H), 7.05 (dd, 1H), 7.36 (s, 1H), 7.43 (dd, 1H), 7.50 (dd, 1H).

Beispiel 3

10

15

 $tert\text{-Butyl-}(2R)\text{-}3\text{-}[(8S,11S,14S)\text{-}8\text{-}[(benzylamino)carbonyl]\text{-}14\text{-}[(tert\text{-butoxy-carbonyl})amino]\text{-}5,17\text{-}dihydroxy\text{-}10,13\text{-}dioxo\text{-}9,12\text{-}diazatricyclo}[14.3.1.12,6]\text{-}henicosa\text{-}1(20),2(21),3,5,16,18\text{-}hexan\text{-}11\text{-}yl]\text{-}2\text{-}hydroxypropylcarbamat}$

Zu einer auf 0°C gekühlten Lösung von 7 mg (0.01 mmol) ((8S,11S,14S)-14-[(tert-butoxycarbonyl)amino]-11-{(2R)-3-[(tert-butoxycarbonyl)amino]-2-hydroxypropyl}-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,-5,16,18-hexan-8-carbonsäure (Beispiel 21A) in 0.5 ml absolutem DMF werden unter Argon 7.9 mg (0.021 mmol) HATU zugegeben. Nach 10 min bei 0°C werden 2.3 mg (0.021 mmol) Benzylamin zugeben, und es wird über Nacht bei RT gerührt. Die Reaktionsmischung wird im Vakuum eingeengt und der Rückstand mittels präparativer RP-HPLC getrennt. Ausbeute: 1.5 mg (18.9 % d. Th.). LC/MS (Methode 6): $R_t = 4.4 \, \text{min}$ (90%).

MS (ESI-pos): $m/z = 785 (M+Na)^+$, 762 $(M+H)^+$.

Beispiel 4

(8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-N-benzyl-5,17-di-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-8-carboxamid

Zu einer Lösung von tert-Butyl-(2R)-3-[(8S, 11S,14S)-8-[(benzylamino)carbonyl]-14-[(tert-butoxycarbonyl)amino]-5,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo-[14.3.1.12,6]henicosa-1(20),2(21),3,5,16,18-hexan-11-yl]-2-hydroxypropylcarbamat (Beispiel 3) in 0.5 ml 1,4-Dioxan werden unter Eiskühlung 0.5 ml 4N Salzsäure-Lösung in Dioxan getropft. Die Eiskühlung wird entfernt und die Mischung wird 2 h bei RT gerührt, bevor im Vakuum eingeeen gt und im Hochvakuum getrocknet wird. Der Rückstand wird in einem Gemisch von Dichlormethan und Methanol aufgenommen und die Lösungsmittel über Nacht abgedampft.

LC/MS (Methode 7): $R_t = 2.02 \min (100 \%)$;

MS (ESI-pos): $m/z = 562 (M+H-2HCl)^{+}$.

B. Bewertung der physiologischen Wirksamkeit

Die in vitro-Wirkung der erfindungsgemäßen Verbindungen kann in folgenden Assays gezeigt werden:

In vitro Transkription-Translation mit E. coli Extrakten

Zur Herstellung eines S30-Extraktes werden logarithmisch wachsende *Escherichia coli* MRE 600 (M. Müller; University Freiburg) geerntet, gewaschen und wie beschrieben für den *in vitro* Transkriptions-Translations-Test eingesetzt (Müller, M. and Blobel, G. Proc Natl Acad Sci U S A (1984) 81, pp.7421-7425).

Dem Reaktionsmix des *in vitro* Transkriptions-Translations-Tests werden zusätzlich 1 μl cAMP (11,25 mg/ml) je 50 μl Reaktionsmix zugegeben. Der Testansatz beträgt 105 μl, wobei 5 μl der zu testenden Substanz in 5%igem DMSO vorgelegt werden. Als Transkriptionsmatrize werden 1 μg/100μl Ansatz des Plasmides pBESTLuc (Promega, Deutschland) verwendet. Nach Inkubation für 60 min bei 30°C werden 50 μl Luziferinlösung (20 mM Tricine, 2,67 mM MgSO4, 0,1 mM EDTA, 33,3 mM DTT pH 7,8, 270 μM CoA, 470 μM Luziferin, 530 μM ATP) zugegeben und die entstehende Biolumineszenz für 1 Minute in einem Luminometer gemessen. Als IC₅₀ wird die Konzentration eines Inhibitors angegeben, die zu einer 50%igen Inhibition der Translation von Firefly Luziferase führt.

20.

5

10

10

15

20

25

30

In vitro Transkription-Translation mit S. aureus Extrakten

Konstruktion eines S. aureus Luziferase Reporterplasmids

Zur Konstruktion eines Reporterplasmids, welches in einem in vitro Transkriptions-Translations-Assay aus S. aureus verwendet werden kann, wird das Plasmid pBESTluc (Promega Corporation, USA) verwendet. Der in diesem Plasmid vor der Firefly Luziferase vorhandene E. coli tac Promoter wird gegen den capA1 Promoter mit entsprechender Shine-Dalgarno Sequence aus S. aureus ausgetauscht. Dazu werden die Primer **CAPFor** 5'-CGGCC-TGGAAAACAAGAAAGGAAAATAGGAGGTTTATATGGAAGACGCCA-3' und CAPRev 5'-GTCATCGTCGGGAAGACCTG-3' verwendet. Der Primer CAPFor enthält den capA1 Promotor, die Ribosomenbindestelle und die 5'-Region des Luziferase Gens. Nach PCR unter Verwendung von pBESTluc als Template kann ein PCR-Produkt isoliert werden, welches das Firefly Luziferase Gen mit dem fusionierten capA1 Promotor enthält. Dieses wird nach einer Restriktion mit ClaI und HindIII in den ebenfalls mit ClaI und HindIII verdauten Vektor pBESTluc ligiert. Das entstandene Plasmid pla kann in E. coli repliziert werden und als Template im S. aureus in vitro Transkriptions-Translations-Test verwendet werden.

Herstellung von S30 Extrakten aus S. aureus

Sechs Liter BHI Medium werden mit einer 250 ml Übernachtkultur eines S. aureus Stammes inokuliert und bei 37°C bis zu einer OD600nm von 2-4 wachsen gelassen. Die Zellen werden durch Zentrifugation geerntet und in 500 ml kaltem Puffer A (10 mM Tris-acetat, pH 8,0, 14 mM Mg-acetat, 1 mM DTT, 1 M KCl) gewaschen. Nach erneutem Abzentrifugieren werden die Zellen in 250 ml kaltem Puffer A mit 50 mM KCl gewaschen und die erhaltenen Pellets bei –20°C für 60 min eingefroren. Die Pellets werden in 30 bis 60 min auf Eis aufgetaut und bis zu einem Gesamtvolumen von 99 ml in Puffer B (10 mM Tris-acetat, pH 8,0, 20 mM Mg-acetat, 1 mM DTT, 50 mM KCl) aufgenommen. Je 1,5 ml Lysostaphin (0,8 mg/ml) in Puffer B werden

10

15

20

25 ·

30

in 3 vorgekühlte Zentrifugenbecher vorgelegt und mit je 33 ml der Zellsuspension vermischt. Die Proben werden für 45 bis 60 min bei 37°C unter gelegentlichem Schütteln inkubiert, bevor 150 µl einer 0,5 M DTT Lösung zugesetzt werden. Die lysierten Zellen werden bei 30.000 x g 30 min bei 4°C abzentrifugiert. Das Zellpellet wird nach Aufnahme in Puffer B unter den gleichen Bedingungen nochmals zentrifugiert und die gesammelten Überstände werden vereinigt. Die Überstände werden nochmals unter gleichen Bedingungen zentrifugiert und zu den oberen 2/3 des Überstandes werden 0,25 Volumen Puffer C (670 mM Tris-acetat, pH 8,0, 20 mM Mg-acetat, 7 mM Na₃-Phosphoenolpyruvat, 7 mM DTT, 5,5 mM ATP, 70 μM Aminosäuren (complete von Promega), 75 μg Pyruvatkinase Deutschland)/ml gegeben. Die Proben werden für 30 min bei 37°C inkubiert. Die Überstände werden über Nacht bei 4°C gegen 21 Dialysepuffer (10 mM Tris-acetat, pH 8,0, 14 mM Mg-acetat, 1 mM DTT, 60 mM K-acetat) mit einem Pufferwechsel in einem Dialyseschlauch mit 3500 Da Ausschluss dialysiert. Das Dialysat wird auf eine Proteinkonzentration von etwa 10 mg/ml konzentriert, indem der Dialyseschlauch mit kaltem PEG 8000 Pulver (Sigma, Deutschland) bei 4°C bedeckt wird. Die S30 Extrakte können aliquotiert bei -70°C gelagert werden.

Bestimmung der IC₅₀ im S. aureus in vitro Transcriptions-Translations-Assay

Die Inhibition der Proteinbiosynthese der Verbindungen kann in einem *in vitro* Transkriptions-Translations-Assay gezeigt werden. Der Assay beruht auf der zellfreien Transkription und Translation von Firefly Luziferase unter Verwendung des Reporterplasmids p1a als Template und aus *S. aureus* gewonnenen zellfreien S30 Extrakten. Die Aktivität der entstandenen Luziferase kann durch Lumineszenzmessung nachgewiesen werden.

Die Menge an einzusetzenden S30 Extrakt bzw. Plasmid pla muss für jede Präparation erneut ausgetestet werden, um eine optimale Konzentration im Test zu gewährleisten. 3 µl der zu testenden Substanz gelöst in 5% DMSO werden in eine MTP vorgelegt. Anschließend werden 10 µl einer geeignet konzentrierten Plasmidlösung pla zugegeben. Anschließend werden 46 µl eines Gemisches aus

10

15

20

25

30

23 μl Premix (500 mM K-acetat, 87,5 mM Tris-acetat, pH 8,0, 67,5 mM Ammoniumacetat, 5 mM DTT, 50 μg Folsäure/ml, 87,5 mg PEG 8000/ml, 5 mM ATP, 1,25 mM je NTP, 20 μM je Aminosäure, 50 mM PEP (Na₃-Salz), 2,5 mM cAMP, 250 μg je *E. coli* tRNA/ml) und 23 μl einer geeigneten Menge *S. aureus* S30 Extrakt zugegeben und vermischt. Nach Inkubation für 60 min bei 30°C werden 50 μl Luziferinlösung (20 mM Tricine, 2,67 mM MgSO₄, 0,1 mM EDTA, 33,3 mM DTT pH 7,8, 270 μM CoA, 470 μM Luziferin, 530 μM ATP) und die entstehende Biolumineszenz für 1 min in einem Luminometer gemessen. Als IC₅₀ wird die Konzentration eines Inhibitors angegeben, die zu einer 50%igen Inhibition der Translation von Firefly Luziferase führt.

Bestimmung der Minimalen Hemmkonzentration (MHK):

Die minimale Hemmkonzentration (MHK) ist die minimale Konzentration eines Antibiotikums, mit der ein Testkeim in seinem Wachstum über 18-24 h inhibiert dabei nach mikrobiologischen Die Hemmstoffkonzentration kann Standardverfahren bestimmt werden (siehe z.B. The National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-fifth edition. NCCLS document M7-A5 [ISBN 1-56238-394-9]. NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2000). Die MHK der erfindungsgemäßen Verbindungen wird im Flüssigdilutionstest im 96er-Mikrotiter-Platten-Maßstab bestimmt. Die Bakterienkeime wurden in einem Minimalmedium (18,5 mM Na₂HPO₄, 5,7 mM KH₂PO₄, 9,3 mM NH₄Cl, 2,8 mM MgSO₄, 17,1 mM NaCl, 0,033 μg/ml Thiaminhydrochlorid, 1,2 µg/ml Nicotinsäure, 0,003 µg/ml Biotin, 1% Glucose, 25 µg/ml von jeder proteinogenen Aminosäure mit Ausnahme von Phenylalanin; [H.-P. Kroll; unveröffentlicht]) unter Zusatz von 0,4% BH Bouillon kultiviert (Testmedium). Im Fall von Enterococcus faecalis ICB 27159 wird dem Testmedium hitzeinaktiviertes fötales Kälberserum (FCS; GibcoBRL, Deutschland) in einer Endkonzentration von 10% zugesetzt. Übernachtkulturen der Testkeime werden auf eine OD578 von 0,001 (im Falle der Enterokokken auf 0,01) in frisches Testmedium

verdünnt und 1:1 mit Verdünnungen der Testsubstanzen (Verdünnungsstufen 1:2) in Testmedium inkubiert (150 μl Endvolumen). Die Kulturen werden bei 37°C für 18-24 Stunden inkubiert; Enterokokken in Gegenwart von 5% CO₂.

Die jeweils niedrigste Substanzkonzentration, bei der kein sichtbares Bakterienwachstum mehr auftrat, wird als MHK definiert. Die MHK-Werte in µM einiger erfindungsgemäßer Verbindungen gegenüber einer Reihe von Testkeimen sind in der nachstehenden Tabelle beispielhaft aufgeführt. Die Verbindungen zeigen eine abgestufte antibakterielle Wirkung gegen die meisten der Testkeime.

10

5

Tabelle A

- 1	Nr.	S. aureus		S. aureus	E faecalis 10B 27159	Tar Administration	<i>E. coli</i> MRE600.	S. aureus 133	IC50 S. aureus RN4220 Translation
	2	0,2	0,1	6,25	6,25	1,56	0,15	0,9	0,5
	4	25	12,5	50	25	25	0,55	1,3-4,5	3,4

Alle Konzentrationsangaben in µM.

15

20

25

Systemische Infektion mit S. aureus 133

Die Eignung der erfindungsgemäßen Verbindungen zur Behandlung von bakteriellen Infektionen kann in verschiedenen Tiermodellen gezeigt werden. Dazu werden die Tiere im allgemeinen mit einem geeigneten virulenten Keim infiziert und anschließend mit der zu testenden Verbindung, die in einer an das jeweilige Therapiemodell angepassten Formulierung vorliegt, behandelt. Speziell kann die Eignung der erfindungsgemäßen Verbindungen zur Behandlung von bakteriellen Infektionen in einem Sepsismodell an Mäusen nach Infektion mit S. aureus demonstriert werden.

Dazu werden S. aureus 133 Zellen über Nacht in BH-Bouillon (Oxoid, Deutschland) angezüchtet. Die Übernachtkultur wurde 1:100 in frische BH-Bouillon verdünnt und für 3 Stunden hochgedreht. Die in der logarithmischen Wachstumsphase befindlichen Bakterien werden abzentrifugiert und 2 x mit gepufferter, physiologischer Kochsalzlösung gewaschen. Danach wird am Photometer (Dr. Lange LP 2W) eine Zellsuspension in Kochsalzlösung mit einer Extinktion von 50 Einheiten eingestellt. Nach einem Verdünnungsschritt (1:15) wird diese Suspension 1:1 mit einer 10 %-igen Mucinsuspension gemischt. Von dieser Infektionslösung wird 0,2 ml/20 g Maus i.p. appliziert. Dies entspricht einer Zellzahl von etwa 1-2 x 10E6 Keimen/Maus. Die i.v.-Therapie erfolgt 30 Minuten nach der Infektion. Für den Infektionsversuch werden weibliche CFW1-Mäuse verwendet. Das Überleben der Tiere wird über 6 Tage protokolliert. Das Tiermodell ist so eingestellt, daß unbehandelte Tiere innerhalb von 24 h nach der Infektion versterben. Für die Beispielverbindung 2 konnte in diesem Modell eine therapeutische Wirkung von ED100 = 1.25 mg/kg demonstriert werden.

10

5

C. Ausführungsbeispiele für pharmazeutische Zusammensetzungen

Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:

5

15

25

30

Tablette:

Zusammensetzung:

100 mg der Verbindung von Beispiel 1, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magnesiumstearat.

Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.

Herstellung:

Die Mischung aus Wirkstoff, Lactose und Stärke wird mit einer 5%-igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat für 5 min. gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Pesskraft von 15 kN verwendet.

20

Oral applizierbare Suspension:

Zusammensetzung:

1000 mg der Verbindung von Beispiel 1, 1000 mg Ethanol (96%), 400 mg Rhodigel (Xanthan gum der Fa. FMC, Pennsylvania, USA) und 99 g Wasser.

Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.

Herstellung:

Das Rhodigel wird in Ethanol suspendiert, der Wirkstoff wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluss der Quellung des Rhodigels wird ca. 6h gerührt.

Patentansprüche

1. Verbindungen der Formel (I)

$$^{8}RO$$
 ^{8}RO ^{9}O $^{0}R^{7}$ $^{1}R^{2}N$ $^{1}R^{3}$ $^{3}R^{3}$ $^{1}R^{4}$ ^{4}O $^{1}NR^{5}R^{6}$ 6 $^{1}NR^{5}R^{6}$

worin

R¹ gleich Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Alkylcarbonyl, Arylcarbonyl, Heterocyclylcarbonyl, Heteroarylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Arylsulfonyl, Heterocyclylsulfonyl, Heteroarylsulfonyl oder ein carbonylgebundener Aminosäurerest ist,

wobei R¹ substituiert sein kann mit 0 bis 3 Substituenten R¹⁻¹, wobei die Substituenten R¹⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Cyano, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy und Carboxyl,

R² gleich Wasserstoff, Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl,

wobei R² außer Wasserstoff substituiert sein kann mit 0 bis 3 Substituenten R²⁻¹, wobei die Substituenten R²⁻¹ unabhängig voneinander ausgewählt

10

15

20

25 -

werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy und Carboxyl,

oder

5

10

15

R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebund en sind, einen Heterocyclus bilden, der substituiert sein kann mit 0 bis 3 Substituenten R¹-², wobei die Substituenten R¹-² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl und Aminocarbonyl,

 \mathbb{R}^3

gleich Wasserstoff, Alkyl oder die Seitengruppe einer Aminosäure ist, worin Alkyl substituiert sein kann mit 0 bis 3 Substituenten R³⁻¹, wobei die Substituenten R3-1 unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Aryl, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Hydroxy, Alkoxy, Carboxyl, Heterocyclyl, Heteroaryl, und Aminocarbonyl, Alkylaminocarbonyl Alkoxycarbonyl, Dialkylaminocarbonyl,

25

20

worin Cycloalkyl, Aryl, Heteroaryl und Heterocyclyl substituiert sein können mit 0 bis 2 Substituenten R³⁻², wobei die Substituenten R³⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Nitro, Cyano, Amino und Dialkylamino,

30

und worin eine oder mehrere freie Aminogruppen in der Seitengruppe der Aminosäure mit Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Alkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Heterocyclylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Arylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Arylsulfonyl, Heterocyclylsulfonyl oder Heteroarylsulfonyl substituiert sein können,

R3' gleich Wasserstoff, C1-C6-Alkyl oder C3-C8-Cycloalkyl ist,

oder

 R^5

R³ und R³ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen Ring bilden, der ein Stickstoffatom enthalten kann und der substituiert sein kann mit 0 bis 3 Substituenten R³⁻³, wobei die Substituenten R³⁻³ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Cyano, Methyl, Ethyl, Trifluormethyl, Nitro, Amino, Alkylamino, Dialkylamino, Hydroxy und Alkoxy,

R⁴ gleich Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl ist,

gleich Wasserstoff, Alkyl, Alkenyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl oder ein amingebundener Aminosäurerest ist, wobei R⁵ substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻¹, wobei die Substituenten R⁵⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Alkylaminocarbonyl, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminosulfonyl, Aminosulfonyl, Dialkylaminocarbonyl, Heterocyclylamino-Arylaminosulfonyl, Dialkylaminosulfonyl, sulfonyl, Heteroarylaminosulfonyl, Aminocarbonylamino, Hydroxycarbonylamino und Alkoxycarbonylamino,

20

15

5

10

25

wobei R⁵⁻¹ im Falle von Aryl substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻², wobei die Substituenten R⁵⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Cyano, Amino, Alkylamino und Dialkylamino,

gleich Wasserstoff, Alkyl, Alkenyl, Cycloalkyl, Aryl, Heteroaryl,

wobei R⁶ substituiert sein kann mit 0 bis 3 Substituenten R⁶⁻¹, wobei die Substituenten R⁶⁻¹ unabhängig voneinander ausgewählt werden aus

der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Cyano, Amino, Alkylamino, Dialkylamino,

Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy,

Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl,

Dialkylaminocarbonyl, Aminosulfonyl, Alkylaminosulfonyl, Dialkyl-

Arylaminosulfonyl, Heterocyclylaminosulfonyl,

Aminocarbonylamino,

Hydroxy-

Heterocyclyl oder ein amingebundener Aminosäurerest ist,

5

 ${I\!\!R}^6$

10

15

20

oder

aminosulfonyl,

Heteroarylaminosulfonyl,

carbonylamino und Alkoxycarbonylamino,

25

. 30 R⁵ und R⁶ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Heterocyclus bilden, der substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻⁶, wobei die Substituenten R⁵⁻⁶ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, halogeniertes Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Aminosulfonyl, Alkylaminosulfonyl, Dialkylaminosulfonyl, Arylaminosulfonyl, Heterocyclylaminosulfonyl, Heteroarylaminosulfonyl und Aminocarbonylamino,

- R⁷ gleich Wasserstoff, C₁-C₆-Alkyl, Alkylcarbonyl oder C₃-C₈-Cycloalkyl ist,
- R⁸ gleich Wasserstoff, C₁-C₆-Alkyl, Alkylcarbonyl oder C₃-C₈-Cycloalkyl ist,
- R⁹ gleich Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl ist.
- 2. Verbindungen der Formel (I) nach Anspruch 1, worin
 - R¹ gleich Wasserstoff, Alkyl, Aryl, Heteroaryl, Heterocyclyl, Alkylcarbonyl, Arylcarbonyl, Heterocyclylcarbonyl, Heteroarylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Arylsulfonyl, Heterocyclylsulfonyl, Heteroarylsulfonyl oder ein carbonylgebundener Aminosäurerest ist,

wobei R¹ substituiert sein kann mit 0 bis 3 Substituenten R¹⁻¹, wobei die Substituenten R¹⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Nitro, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy und Carboxyl,

- R² gleich Wasserstoff oder Alkyl,
- wobei R² außer Wasserstoff substituiert sein kann mit 0 bis 3 Substituenten R²⁻¹, wobei die Substituenten R²⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Amino, Alkylamino und Dialkylamino,

5

10

15

<u>2</u>0

25

oder

5

10

15

20

25

30

R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Heterocyclus bilden, der substituiert sein kann mit 0 bis 2 Substituenten R¹⁻², wobei die Substituenten R¹⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl und Aminocarbonyl,

R³ gleich Wasserstoff, Alkyl oder die Seitengruppe einer Aminosäure ist, worin Alkyl substituiert sein kann mit 0 bis 3 Substituenten R³⁻¹, wobei die Substituenten R³⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Trifluormethyl, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

worin Cycloalkyl, Aryl, Heteroaryl und Heterocyclyl substituiert sein können mit 0 bis 2 Substituenten R³⁻², wobei die Substituenten R³⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl und Amino,

und worin freie Aminogruppen in der Seitengruppe der Aminosäure mit Alkyl, Alkenyl, Cycloalkyl, Alkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Heterocyclylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl, Dialkylaminocarbonyl, Arylaminocarbonyl, Alkylsulfonyl, Dialkylsulfonyl, Arylsulfonyl, Heterocyclylsulfonyl, Heteroarylsulfonyl substituiert sein können,

R3' gleich Wasserstoff oder C1-C6-Alkyl ist,

oder

R⁴ gleich Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl ist,

5

gleich Wasserstoff, Alkyl, Alkenyl, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl oder ein amingebundener Aminosäur erest ist, wobei R⁵ substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻¹, wobei die Substituenten R⁵⁻¹ unabhängig voneinander aus gewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Trifluormethoxy, Cyano, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

15

10

R⁶ gleich Wasserstoff, Alkyl oder Cycloalkyl,

oder

20

R⁵ und R⁶ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Heterocyclus bilden, der substituiert sein kann mit 0 bis 3 Substituenten R⁵⁻⁶, wobei die Substituenten R⁵⁻⁶ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Alkyl, Trifluormethyl, Nitro, Amino, Alkylamino, Dialkylamino, Cycloalkyl, Aryl, halogeniertes Aryl, Heteroaryl, Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkylcarbonyl, Alkoxycarbonyl, Arminocarbonyl, Alkylaminocarbonyl, alkylaminocarbonyl,

25.

R⁷ gleich Wasserstoff oder C₁-C₆-Alkyl ist,

30

R⁸ gleich Wasserstoff oder C₁-C₆-Alkyl ist,

- R⁹ gleich Wasserstoff oder C₁-C₆-Alkyl ist.
- 3. Verbindungen der Formel (I) nach Anspruch 1, worin
 - R¹ gleich Wasserstoff, Alkyl, Alkylcarbonyl, Arylcarbonyl, Heterocyclylcarbonyl, Heteroarylcarbonyl, Alkoxycarbonyl oder ein carbonylgebundener Aminosäurerest ist,

wobei R¹ substituiert sein kann mit 0 bis 2 Substituenten R¹⁻¹, wobei die Substituenten R¹⁻¹ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Amino, Alkylamino, Dialkylamino, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy und Alkoxy,

gleich Aminocarbonylmethyl, 3-Aminopropyl, 2 -Hydroxy-3-amino-

- R² gleich Wasserstoff oder Methyl,
- 2-Aminocarbonylethyl, 2-Hydroxy-3-Guanidinopropyl, propyl, Hydroxymethyl, 2-Hydroxyethyl, 4-Aminobutyl, carbonylethyl, 4-Amino-3-hydroxybutan-1-yl, und worin freie Aminogruppen in der Seitengruppe der Aminosäure mit Alkyl, Alkenyl, C3-C6-Cycloalkyl, Alkylcarbonyl, Phenylcarbonyl, 5- bis 6-gliedriges Heteroarylcarbonyl, 5- bis 6-gliedriges Heterocyclylcarbonyl, Alkoxycarbonyl, Aminocarbonyl, Alkylamino-Phenylaminocarbonyl, Dialkylaminocarbonyl, carbonyl, sulfonyl, Dialkylsulfonyl, Arylsulfonyl, 5- bis 6-gliedriges Heterocyclylsulfonyl, 5- bis 6-gliedriges Heteroarylsulfonyl substituiert sein können,

R³ gleich Wasserstoff ist,

20

15

 \mathbb{R}^3

5

10

25

R⁴ gleich Wasserstoff oder Methyl ist,

gleich Wasserstoff, Alkyl, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl oder ein amingebundener Aminosäurerest ist,
wobei für den Fall, dass R⁵ gleich Alkyl, C₃-C₆-Cycloalkyl oder 5- bis 6-gliedriges Heterocyclyl ist, dieses substituiert sein kann mit 0 bis 2
Substituenten R⁵⁻², wobei die Substituenten R⁵⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Alkyl, Trifluormethyl, Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl,

Alkylaminocarbonyl und Dialkylaminocarbonyl,

und

wobei für den Fall, dass R⁵ gleich Phenyl oder 5- bis 6-gliedriges Heteroaryl ist, dieses substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻³, wobei die Substituenten R⁵⁻³ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Trifluormethoxy, Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

und

wobei für den Fall, dass R⁵ gleich amingebundener Aminosäurerest, dieser substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻⁴, wobei die Substituenten R⁵⁻⁴ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Trifluormethoxy,

10

5

15

20

25 ·

Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Alkoxycarbonyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

5

R⁶ gleich Wasserstoff, Alkyl oder C₃-C₆-Cycloalkyl,

oder

10

R⁵ und R⁶ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen Heterocyclus bilden, der substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻⁶, wobei die Substituenten R⁵⁻⁶ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, halogeniertes Phenyl, 5- bis 6-gliedriges Heteroaryl, Hydroxy, Alkoxy, Carboxyl und Aminocarbonyl,

15

R⁷ gleich Wasserstoff,

20

- R⁸ gleich Wasserstoff,
- R⁹ gleich Wasserstoff oder Methyl.

25

4. Verbindungen der Formel (I) nach Anspruch 1, worin

R¹ gleich Alkylcarbonyl, Phenylcarbonyl, 5- bis 6-gliedriges Heterocyclylcarbonyl, 5- bis 6-gliedriges Heteroarylcarbonyl oder Alkoxycarbonyl.

30

5.

Verbindungen der Formel (I) nach Anspruch 1, worin

- R² gleich Wasserstoff.
- 6. Verbindungen der Formel (I) nach Anspruch 1, worin
 - R³ gleich die Seitengruppe einer Aminosäure, insbesondere 3-Aminopropyl oder 2 -Hydroxy-3-aminopropyl ist, worin freie Aminogruppen in der Seitengruppe der Aminosäure mit Alkyl, Alkylcarbonyl, Phenylcarbonyl oder Alkoxycarbonyl substituiert sein können.
- 7. Verbindungen der Formel (I) nach Anspruch 1, worin
 - R3' gleich Wasserstoff.
- 15 8. Verbindungen der Formel (I) nach Anspruch 1, worin
 - R⁴ gleich Wasserstoff.
 - 9. Verbindungen der Formel (I) nach Anspruch 1, worin

gleich Wasserstoff, Alkyl, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl oder ein amingebundener Aminosäurerest ist, wobei für den Fall, dass R⁵ gleich Alkyl, C₃-C₆-Cycloalkyl oder 5- bis 6-gliedriges Heterocyclyl, dieses substituiert sein kann mit O bis 2 Substituenten R⁵⁻², wobei die Substituenten R⁵⁻² unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Trifluormethyl, Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, 5- bis 6-gliedriges Heteroaryl, 5- bis 6-gliedriges Heterocyclyl, Hydroxy, Alkoxy, Carboxyl, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl,

20

5

10

25

und

5

wobei für den Fall, dass R⁵ gleich amingebundener Aminosäurerest, dieser substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻⁴, wobei die Substituenten R⁵⁻⁴ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Trifluormethyl, Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Hydroxy, Alkoxy, Aminocarbonyl, Alkylaminocarbonyl und Dialkylaminocarbonyl.

10

10. Verbindungen der Formel (I) nach Anspruch 1, worin

R⁶ gleich Wasserstoff oder Methyl.

15

11. Verbindungen der Formel (I) nach Anspruch 1, worin

20

R⁵ und R⁶ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen Heterocyclus bilden, der substituiert sein kann mit 0 bis 2 Substituenten R⁵⁻⁶, wobei die Substituenten R⁵⁻⁶ unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Amino, Alkylamino, Dialkylamino, C₃-C₆-Cycloalkyl, Phenyl, halogeniertes Phenyl, 5- bis 6-gliedriges Heteroaryl, Hydroxy, Alkoxy, Carboxyl und Aminocarbonyl.

25

12. Verbindungen der Formel (I) nach Anspruch 1, worin

R⁸ gleich Wasserstoff.

30

13. Verbindungen der Formel (I) nach Anspruch 1, worin

R⁷ gleich Wasserstoff.

- 14. Verbindungen der allgemeinen Formel (I) nach Anspruch 1, worin bedeutet
 - R⁹ gleich Wasserstoff.
- 15. Verbindungen nach Anspruch 1, welche die Formel (I') aufweisen:

- worin R¹ bis R⁹ wie oben definiert sind.
 - 16. Verfahren zur Herstellung der Verbindungen der Formel (I), dadurch gekennzeichnet, dass Verbindungen der Formel (II)

$$^{8}RO$$
 R^{9}
 OR^{7}
 $R^{1}R^{2}N$
 R^{3}
 $R^{3'}$
 R^{4}
 OR^{10}
 OR^{10}
 OR^{10}
 OR^{10}

- worin R¹ bis R⁴ und R⁷ bis R⁹ die oben angegebene Bedeutung haben und R¹⁰ für Wasserstoff steht,
- 20 mit Verbindungen der Formel (III)

H-NR⁵R⁶ (III)

worin R⁵ und R⁶ die oben angegebene Bedeutung haben, umgesetzt werden.

- 5 17. Verbindungen der Formel (I) nach Anspruch 1 zur Bekämpfung von Erkrankungen.
 - 18. Arzneimittel, enthaltend Verbindungen der Formel (I) nach Anspruch 1 und Hilfsstoffe.
 - 19. Verwendung von Verbindungen der Formel (I) nach Anspruch 1 zur Herstellung eines Arzneimittels zur Behandlung von bakteriellen Erkrankungen.
- 15 20. Arzneimittel nach Anspruch 18 zur Behandlung von bakteriellen Infektionen.
 - 21. Verfahren zur Bekämpfung von bakteriellen Infektionen in Menschen und Tieren durch Verabreichung einer antibakteriell wirksamen Menge mindestens einer Verbindung nach einem der Ansprüche 1 bis 3.

Antibakterielle Makrozyklen

Zusammenfassung

Die vorliegende Erfindung betrifft Verbindungen der allgemeinen Formel (I), Verfahren zu ihrer Herstellung, sie umfassende pharmazeutische Zusammensetzungen sowie ihre Verwendung bei der Behandlung von Erkrankungen bei Menschen oder Tieren.

