

ST 电机控制开发套件5.0简介

电动机分类

ST电动机控制库 3

电机	电机库名称	描述					
直流无刷(BLDC)六步换	X-CUBE-SPN7	基于STM32Cube三相BLDC方波控制库					
向	X-CUBE-SPN8	基于STM32Cube低电压BLDC控制库					
永磁同步 (PMSM)	STSW-STM32100	STM32 永磁同步电机 (BLDC) FOC控制库—FOC V5.0					
步进电机	STSW-STM32018	步进电机控制—STM32F103xx (AN2820)					
	X-CUBE-SPN1	基于STM32Cube步进电机控制库					
	X-CUBE-SPN2	基于STM32Cube两轴步进电机控制库					
	X-CUBE-SPN5	基于STM32Cube双极步进电机控制库					
直流电机	X-CUBE-SPN12	基于STM32Cube低电压双有刷电机控制库					
交流异步(ACIM)	STSW-STM8020	STM8S/STM8A BLDC/ACIM 电机控制库(UM0708)					
	STM32 V2.0.1	STM32 FOC 电机控制库					

ST电动机控制库 4

内转子/外转子

转子-

表面贴装磁石或内嵌式磁石

永磁同步电动机 (直流无刷电动机)

绕组(定子) — 集中绕组/分布绕组

基本定律

- 库仑定律静止点电荷相互作用
 - $F = k \frac{q_1 q_2}{d^2} = \frac{q_1 q_2}{4\pi \varepsilon_0 d^2}$
- ▶ 奥斯特实验/安培定则
 - 开启人类大规模利用电能的大门
 - $F = BIL \cdot sin\theta$

- 发电机
 $\varepsilon = -n\frac{d\Phi}{dt}$

$$\oint_{\partial V} \mathbf{E} \cdot d\mathbf{a} = \frac{Q_V}{\epsilon_0},$$

$$\oint_{\partial S} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{a},$$

$$\oint_{\partial V} \mathbf{B} \cdot d\mathbf{a} = 0,$$

$$\oint_{\partial S} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_S + \mu_0 \epsilon_0 \frac{d}{dt} \int_S \mathbf{E} \cdot d\mathbf{a}.$$

电机转动本质 7

> 运动平衡方程

$$J\frac{d\omega}{dt} = T_e - T_f - B\omega$$

- J-转动惯量
- ω -机械角速度
- T_f-转子负载转矩
- B-阻尼系数

当负载固定,同一个电机速度正比于转矩 $\omega \propto \tau_e$

直接转矩控制 (DTC) ABB专利

$$\Phi = \int \varepsilon \cdot dt \Rightarrow \tau_e \Rightarrow \omega$$

在定子坐标系下分析

$$\begin{cases} U_d = Ri_d + L_d \frac{d_i}{d_t} - \omega \Phi_q \\ U_q = Ri_q + L_q \frac{d_i}{d_t} + \omega \Phi_d \end{cases} \qquad \text{ is the expression of the expressi$$

电压控制机理(2/2) 12

Clarke 变换, 三轴ia,ib,ic (120°) 到两轴 iα,iβ (90°)

$$i_{\alpha} = i_{as}$$

$$i_{\beta} = -\frac{i_{as} + 2i_{bs}}{\sqrt{3}}$$

Park 变换, 两轴 iα,iβ (90°)到 动轴iq,id (90°)

$$\begin{split} i_{qs} &= i_{\alpha} \cos \theta_r - i_{\beta} \sin \theta_r \\ i_{ds} &= i_{a} \sin \theta_r + i_{\beta} \cos \theta_r \end{split}$$

及Park变换,得到Vα,Vβ

$$v_{\alpha} = v_{qs} \cos \theta_r + v_{ds} \sin \theta_r$$
$$v_{\beta} = -v_{qs} \sin \theta_r + v_{ds} \cos \theta_r$$

构成FOC控制的要素 14

▶ 1-SHUNT: 采样电阻放在DC BUS上

- · ST专利的算法
- 仅需要1个电阻/运放: 成本较低
- 电流采样算法可能会带来力矩纹波

▶ 3-SHUNT: 采样电阻放在3个下桥臂上

- 电流采样精度高
- 不会有电流纹波产生

▶ ICS: 2个隔离的电流传感器

- · 放在A/B相绕组上
- 适用于相电流较大的场合: 无功耗
- 成本较高

转子位置及速度检测 16

▶ 速度及位置检测支持:

- Encoder
 - 成本较高,一般适用于伺服控制
- Hall
 - 成本较低,一般适用于马达静止或低速下也要求额定扭矩的应用
- Sensorless
 - 高频注入算法-HFI
 - 适用于凸极马达(IPMSM, Ld<Lq)
 - 能实现马达转子位置的精确检测,即使在 静止或低速下
 - 仅STM32F3和STM32F4系列支持
 - State Observer + PLL
 - 基于马达的BEMF,使用相电流及相电压估计 马达转子的位置
 - 适用于马达的转速范围: 额定转速的5% 100%
 - State Observer + CORDIC

V原区

 $U_{i}(001)$

$$T_0 = T_7 = (T_s - T_{Ux} - T_{Ux+60}) / 2$$

其中 T_{Ux} , T_{Ux+60} 代表相邻的两个基本电压空间矢量

 $U_{\rm s}(101)$

$$f(t) = K_p \times \text{Error}_{sys}(t) + K_i \times \int_{0}^{t} \text{Error}_{sys}(t) dt + K_d \times \frac{d}{dt}(\text{Error}_{sys}(t))$$

FOC v5.0中的电流环-PID 19

$$K_p = \omega_c * \frac{B * P}{K_e}$$

$$K_i = \omega_c * \frac{B^2 * P}{J * K_e} * T_s$$

J-转动惯量

 ω_{c} - 带宽系数

B-阻尼系数

P-极对数

 K_e - 反电势系数

 T_s - 速度环时间

FOC速度控制环路 11

电机控制系统

MCUs for Motor Control (8-32 bit)

Inverters IPM / discretes

ST MC Workbench

PC SW GUI
Full customization
and real time
communication

电机控制

HW Boards

FW library

wide range of features & algorithms (FOC)

Software Development Kit (SDK)

电机库发展历史

SDK V5.0电机库构成

Workbench (1/2)

> 简化方案开发过程,缩短开发周期。

单片机相关

Workbench (2/2)

Motor Profiler

马达本体参数识别+马达转动参数识别

电机库构成

电机软件库架构

电动机控制固件库

- (1) High Frequency Injection
- (2) Max FOC estimated in sensorless mode
- (3) STM32F103xC/D/E/F/G and STM32F303xB/C
- Not for STM32F100
- (5) For STM32F30x

电机库V5.0性能测试数据

测试条件: PWM 频率20KHz / FOC 电流环控制频率

		MCSDK5.0						
		Workload	Total	ro data	RAM	FOC Lib	HAL	
MCU	Config	(%).	Code size	(B).	(B).	(kB).	(kB).	
▼	*	Ψ.	(kB). <u>▼</u>	Ψ.	₩.	¥	¥	
F072RB	1 Shunt	44.3	18.8	609	3126	12.8	5.1	
F072RB	3 Shunt	39.4	19.5	653	2910	12.9	4.5	
F303RE	1 Shunt	20.4	22.3	4427	2940	14.4	7.8	
F303RE	3 Shunt	18.1	23.6	4179	2884	16.1	7.5	
F446RE	1 Shunt	10.2	19.7	625	3122	14.4	5.3	
F446RE	3 Shunt	8.2	17.8	603	2840	13.1	4.7	
F303VE	DUAL/3S	38.2	20.8	4449	4724	13.1	7.7	
F415ZG	DUAL/3S	18.3	19.3	761	4484	14.7	4.6	

固件库程序架构对比-V4.3 VS V5.0

SDK V5.0 电机库开发过程

STM32 电机控制开发套件 5.0 概览-软件库架构

电机驾驶舱

电机控制动态

实现对电机动的动态控制:

- -FOC控制环路(高频任务)
- 电机控制环路(中频任务)
- 安全控制环路 (安全任务)

电机控制库

软件控制库

- 是诸多组件的集合。每一个组件实现电机控制的一个功能例如, 速度和位置检测,电流检测,PID算法等等...
- X-CUBE-MCSDK 中的组件不提供源代码,以库的形式 提供。

用户界面库

UI Library

DAC

MC Protocol

UART Communication 用户界面库包含负责通讯的组件。电机控制代码通过这些组件控制串口和DAC与外界通讯。通过这个库我们可以连接MCU和Workbench。在Workbench中实现对电机运行状态的监控。


```
pMCI : MCI Handle t*□

    MC_StartMotor1(void)

    MC_StopMotor1(void): void

    MC_ProgramSpeedRampMotor1(int16_t, uint16_t): void

    MC_ProgramTorqueRampMotor1(int16_t, uint16_t): void

    MC_SetCurrentReferenceMotor1(Curr_Components): void

    MC_GetCommandStateMotor1(void): MCI_CommandState_t

    MC_StopSpeedRampMotor1(void)

    MC_HasRampCompletedMotor1(void)

    MC_GetMecSpeedReferenceMotor1(void): int16_t

    MC_GetMecSpeedAverageMotor1(void): int16_t

    MC_GetLastRampFinalSpeedMotor1(void): int16_t

    MC_GetControlModeMotor1(void): STC_Modality_t

    MC_GetImposedDirectionMotor1(void): int16_t

    MC_GetSpeedSensorReliabilityMotor1(void)

    MC_GetPhaseCurrentAmplitudeMotor1(void): int16_t

    MC_GetPhaseVoltageAmplitudeMotor1(void): int16_t

    MC_GetIabMotor1(void): Curr_Components

    MC GetIalphabetaMotor1(void): Curr Components

    MC GetIqdMotor1(void): Curr Components

    MC GetIqdrefMotor1(void): Curr Components

    MC_GetVqdMotor1(void): Volt_Components

    MC GetValphabetaMotor1(void): Volt Components

MC GetElAngledppMotor1(void): int16_t

    MC_GetTerefMotor1(void): int16_t

    MC_SetIdrefMotor1(int16_t): void

    MC_Clear_IqdrefMotor1(void): void

    MC_AcknowledgeFaultMotor1(void)

    MC_GetOccurredFaultsMotor1(void): uint16_t

    MC_GetCurrentFaultsMotor1(void): uint16_t

    MCI_GetSTMStateMotor1(void): State_t

    MC_ProgramRegularConversion(uint8_t, uint8_t): void

    MC_GetRegularConversionValue(void): uint16_t

    MC_GetRegularConversionState(void): UDRC_State_t
```

在 mc_api.c 中有一系列的函数来实现与对电机的控制,我们称之为 MC API。这些函数是用户和 SDK 之间的桥梁。下面列出了一些最常用的函数;

- MC StartMotor1 -- 启动电机
- MC_StopMotor1 -- 停止电机
- MC_ProgramSpeedRampMotor1 -- 设定速度
- MC_ProgramTorqueRampMotor1 -- 设定力矩
- MC_GetMecSpeedReferenceMotor1 -- 得到电机参考速度
- MC_GetMecSpeedAverageMotor1 -- 得到电机实际运行的平均速度
- MCI_GetSTMStateMotor1 -- 得到电机运行当前状态
- MC_GetOccurredFaultsMotor1 得到当前电机停转原因
- MC_AcknowledgeFaultMotor1 -- 异常状态清除
- MC_GetImposedDirectionMotor1 -- 得到电机运行方向

视频演示 39

SDK5.2 GUI 改进 40

适用于电动机控制的ST硬件评价板 41

覆盖不同的需求

适用于FOC控制的STM32产品线

10 product series / More than 40 product lines

FOC5.2电机库支持的芯片型号 43

- SDK5.0有两个发布软件包:
 - X-CUBE-MCSDK
 - 开放除了MTPA, CORDIC, flux weakening, STO+PLL, rev up, HFI以外全部源程序
 - 从 ST.com 直接下载, 无需注册
 - X-CUBE-MCSDK-FUL
 - 开放全部源程序
 - 注册批准以后,可以在ST.com下载
- 使用许可: ST license SLA0048, Ultimate Liberty
 - http://www.st.com/SLA0048
- 前SDK v4.3 所在的网站:
 - 保留 STSW-STM32100 超链接, 但是在这里无法下载SDK 4.3
 - 增加提醒信息:该链接已经自动转到下载MC SDK5.0的页面

MC SDK5.x 发布政策 45

- 计划内发布的版本: MC SDK5.x
 - 内容:
 - 新功能
 - Bug 修改
 - 测试: 完成全部非递归测试
- Bug 修复发布版本: MC SDK5.x.y
 - 内容:
 - · 仅修复影响性能的bug
 - 测试: 只测试修复部分
- 工具/固件 版本兼容:
 - 发布MC SDK时 WB与固件的版本是经检查完全对应的
 - 持续更新CubeMX 与电动机控制相适应的功能

《基于STM32的电机控制攻略》

问答环节

Releasing your creativity 47

- Thank you -

