PATENT ABSTRACTS OF JAPAN

2)

(11)Publication number:

05-210419

(43)Date of publication of application: 20.08.1993

(51)Int.CI.

G05D 3/12 B41J 19/04 G05B 13/02 G05D 3/12 G05D 19/02 // B41J 29/38 G11B 21/08

(21)Application number: 04-016774

(71)Applicant: FUJITSU LTD

(22)Date of filing:

31.01.1992

(72)Inventor: OKAMURA EIJI

(54) SYSTEM FOR CONTROLLING POSITIONING

(57)Abstract:

PURPOSE: To restrict the resonance of the body to be controlled with a simple construction by controlling the resonance characteristic of the body to be controlled by using a low-pass filter combining a notched filter and an oval function filter.

CONSTITUTION: A body 1 to be controlled such as a magnetic head having the shared characteristic is positioned at a command position. A position detection section 2 detects the shift position of the body 1 by means of a servo signal or the like. An arithmetic control section 3 consisting of such as DSPs generates a driving signal based on the position detection signal from the position detection section 2 and the command position signal from the host device. A driving section 4 consisting of voice coil motors shifts the body 1 by means of the driving signal from the section 3. A low-pass filter 7 consisting of the notched filter 5 and the oval function filter 6 controls the resonance characteristic of the body 1. Thus, the mechanical

resonance characteristic of the body 1 can be controlled with a simple construction.

LEGAL STATUS

[Date of request for examination]

26.09.1994

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2714905

[Date of registration]

07.11.1997

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-210419

(43)公開日 平成5年(1993)8月20日

(51)Int.CL ⁵		識別配号		庁内整理番号	FΙ		技術表示箇所	
G 0 5 D	3/12	305	V	9179-3H			•	
B 4 1 J	19/04			9212-2C			,	
G 0 5 B	13/02		S	9131-3H				
G 0 5 D	3/12		Q	9179-3H				
		305	K	9179-3H				
					審査請求	未請求	求 請求項の数2(全 18 頁) 最終頁に続く	
(21)出願番号		特顯平4-16774			(71)	出願人	000005223	
		•					富士通株式会社	
(22)出願日		平成4年(1992)1月31日 ·					神奈川県川崎市中原区上小田中1015番地	
					(72)発明者	岡村 桑治		
							神奈川県川崎市中原区上小田中1015番地	
							富士通株式会社内	
					(74)	人野人	弁理士 柏谷 昭司 (外1名)	
		•						
•					j			

(54) 【発明の名称】 位置決め制御方式

(57) 【要約】

【目的】 磁気ヘッド等の被制御体を指令位置に高速で 位置決めする位置決め制御方式に関し、被制御体の機械 的な共振特性を簡単な構成で抑制する。

【構成】 共振特性を有すると共に、指令位置に位置決めされる磁気ヘッド等の被制御体1と、この被制御体1 の移動位置をサーボ信号等によって検出する位置検出部2 と、この位置検出部2 からの指令位置信号とを基に駆動信号を発生するDSP等からなる演算制御部3と、この演算制御部3からの駆動信号によって被制御体1を移動させるボイスコイルモータ等からなる駆動部4とを備え、演算制御部3は、ループ補償器8と、ノッチフィルタ5及び楕円函数フィルタ6からなるローパスフィルタ7とを有し、このローパスフィルタ7により被制御体1の共振特性を抑制する。

本発明の原理説明図

【特許請求の範囲】

【請求項1】 共振特性を有し、指令位置に位置決めされる被制御体(1)と、該被制御体(1)の移動位置を 検出する位置検出部(2)と、該位置検出部(2)からの位置検出信号と指令位置信号とを基に駆動信号を発生 する演算制御部(3)と、該演算制御部(3)からの駆動信号に従って前記被制御体(1)を移動させる駆動部 (4)とを備え、

前記演算制御部 (3) は、ノッチフィルタ (5) と楕円 函数フィルタ (6) とを組合せたローパスフィルタ

(7)を有し、該ローパスフィルタにより前記被制御体 (1)の共振特性を抑制することを特徴とする位置決め 制御方式。

【簡求項2】 前記ローパスフィルタ(7)をオン,オフする構成とし、該ローパスフィルタ(7)をオフとした時に、該ローパスフィルタ(7)による共振特性抑制の為の初期値を与えることを特徴とする請求項1記載の位置決め制御方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、磁気ヘッド等の被制御体を指令位置に高速で位置決めする位置決め制御方式に関する。磁気ディスク装置、光ディスク装置、プリンタ等は、高速動作が要求され、それに伴って磁気ヘッド、光ヘッド、印字ヘッド等の被制御体を高速且つ高精度で指令位置に位置決めすることが必要となり、このような高速位置決めを行う場合に、高加速度で駆動することになるから、機械的な共振特性が問題となる。従って、この機械的な共振特性を抑制して安定な制御を可能とすることが要望されている。

[0002]

【従来の技術】図8は磁気ディスク装置の説明図であり、(A)は概略の上面図、(B)は概略の側面図を示す。同図に於いて、50は磁気ディスク、51は回転軸、52はアクチュエータ、53はアーム、54はジンパル、55はコアスライダ、56は回転軸である。磁気ディスク50を固定した回転軸51は、図示を省略したモータによって回転されるもので、磁気ディスク50は、回転軸51に10枚固定されている場合を示すが、

記憶容量に対応して1~2枚程度とすることもできる。 【0003】又一つのアーム53に2個のジンバル54 を介してそれぞれコアスライダ55が支持された場合を 示し、アクチュエータ52の回転軸56を中心にアーム 53が回動されることにより、コアスライダ55が磁気 ディスク50の半径方向に移動されて、指令された位置 (トラック)に磁気ヘッドが位置決めされることにな り、この磁気ヘッドにより磁気ディスク50にデータの むみを行われるか、或いは磁気ディスク50に記録されたデータの読出しが行われる。

【0004】磁気ディスク50の記憶密度が高くなり、 且つ高速で磁気ヘッドを指令トラックに移動して位置決 めする為には、アクチュエータ52を高速動作させる必 要がある。その場合に、コアスライダ55を含むアーム 53をアクチュエータ52によって高加速度で駆動する ことになるから、機械的な共振が問題となり、その共振 特性をできるだけ制動されたものとするか、又は共振周 波数を高域へ移して、制御帯域に影響がないようにする 必要がある。

【0005】図9はアクチュエータの伝達特性(x/i特性;アクチュエータを構成するボイスコイルモータに供給する電流iに対するヘッド位置応答x)の一例の曲線図であり、横軸は周波数 [Hz]、縦軸は利得 [dB]及び位相 [deg]を示す。又曲線aは利得特性、曲線bは位相特性をそれぞれ示す。この伝達特性から判るように、アクチュエータの構造に起因する幾つかの機械的な共振が見られる。主なものは、アクチュエータ全体の主共振,ねじれ共振,多数のヘッドを取付けたフォーク状のアームの上下共振,ねじれ共振,ヘッドとアクチュエータとの間のスプリングアームの共振、ボイスコイルモータの共振等がある。

【〇〇〇6】前述の共振特性は、共振周波数及び共振強度が一定ではなく、装置対応にばらつきがあり、又或る特定の装置に限定しても、温度変化,経時変化,アーム回転位置(ヘッド位置)によって変化することになる。このようなアクチュエータを制御する場合のアクチュエータの伝達函数F(s)及び機械共振特性を表す伝達函数Freso(s)は、

【数1】

$$F(s) = \frac{Km}{s^2} \cdot F r e s o (s) \qquad \cdots (1)$$

Freso(s) =
$$\sum_{i=1}^{n} \frac{a_i s + b_i}{s^2 + 2 \zeta_i \omega_i s + \omega_i^2}$$
 ...(2)

$$Km = \frac{K \tau R_H}{J} \quad (m / (A - s^2)) \qquad \cdots (4)$$

と衷される。このアクチュエータを剛体と見做してモデル化すれば、Freso(s)=1 と考えることができ、又(4)式のKmは、回転形アクチュエータの慣性モーメントを $J[kg\cdot m^2]$ 、ボイスコイルモータのトルク定数を $K_T[N-m/A]$ 、回転中心からヘッドまでの距離を $R_H[m]$ として表したものである。

【0007】このような共振特性を有するアクチュエータの従来例の制御系は、図10に示すものとなる。同図に於いて61は加算器(Σ)、62はループ補償器、63はノッチフィルタ群、64はパワーアンプ、65はア

$$Gc(s) = Gco\frac{s + \omega Ld}{s + \omega Lg}$$
.

で表される。なお、Gcoは直流ゲイン、 ω_{Ld} は進み補償角周波数、 ω_{Lg} は遅れ補償角周波数、 ξ_C 及び ω_C は 2次フィルタのダンピング比とカットオフ角周波数を示す。

【0009】又通常は、更に定常位置誤差をなくす為に 積分器(伝達函数=〔(s+ω_i)/s〕)を直列に接続することが多いものであるが、簡略化の為に図示等を 省略している。又被制御体65の機械共振特性が無いか 或いはあっても無視できる程度の場合は、ループ補償器

クチュエータや磁気ヘッド等を含む被制御体(プラント)である。被制御体65の位置情報と指令位置情報とが加算器61に加えられ、その差を零等の所定の値とするように、ループ補償器62,ノッチフィルタ群63,パワーアンプ64を介して被制御体65が制御される。 【0008】この制御系に於けるループ補償器62は、

【0008】この制御系に於けるループ補償器62は、ループの安定化の為のリードラグフィルタと高域に於けるノイズ低減の為の2次フィルタとの組合せからなり、その伝達函数Gc(s)は、

【数2】

$$\frac{1}{s^2 + 2 \zeta \omega \cdot s + \omega^2} \cdots (5)$$

62を図示のように設けることにより、安定な制御が可能となる。

【0010】ループ補償器62は、オブザーバを用いた 状態フィードバック・レギュレータを用いることも可能 であり、この場合の状態方程式及び出力方程式は、

- (6) 式及び(7) 式にであり、これらの(6),
- (7) 式から(8) 式のオブザーバ方程式が求まる。 【数3】

$$\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ Km \end{bmatrix} u \qquad \cdots (6)$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \cdots (7)$$

$$\frac{d}{dt} \begin{bmatrix} E s t x \\ E s t v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E s t x \\ E s t v \end{bmatrix} + \begin{bmatrix} 0 \\ Km \end{bmatrix} u$$

$$+\begin{bmatrix} L & 1 \\ L & 2 \end{bmatrix} (x - E s t x) \qquad \cdots (8)$$

$$u = -k_1 \cdot E s t x - k_2 \cdot E s t v$$
 ...(9)

(8) 式のL1, L2を、参考文献(森北出版 1985年5月30日 第15版 発行 G.F.フランクリン他 著 「ダイナミックシステムのディジタル制 御」)等を参照して選択すれば、Estx, Estvは、それぞれ位置×及び速度vの推定値になるように選択できる。従って、状態フィードバックを用いて(9)式のコントローラ方程式により、ゲインk1, k2を選

択することにより被制御体を制御することができる。 【0011】しかし、機械共振特性が大きい場合は、これを打ち消す為に、次のように複数のノッチフィルタをループ補償器62に直列に必要な数を挿入する。即ち、ノッチフィルタ群63を設ける。

【数4】

Gn (s) =
$$\prod_{i=1}^{m} \frac{s^2 + 2 \zeta_{ni} \omega_{ni} d_{ni} s + \omega_{ni}^2}{s^2 + 2 \zeta_{ni} \omega_{ni} s + \omega_{ni}^2} \qquad \cdots (10)$$

但し、 ξ_{nj} =ノッチフィルタのダンピング比、 ω_{nj} =ノッチ中心角周波数、 d_{nj} =ノッチの深さで、 d_{nj} <1とする。

[0012]

【発明が解決しようとする問題点】ノッチフィルタは、機械的な共振周波数にノッチ中心角周波数ωnjを一致なせるように構成するものであるが、装置毎に共振周で数、共振強度のばらつきがあると、それに対応して国際を行う必要が生じ、マルタの設計を行う必要が生じ、中心を設定をがずれることになり、有効な抑制ができならながあった。又被制御体65の機械的な共振点の数がのと、共振点対応のノッチフィルタを含むノッチの協議が多くなり、アナログ回路で構成する場合は、部品点数が多くなって大型化し、且つ経済的、フルターは、部品点数が多くなって大型化し、且の路で構成する場合は、部品点数が多くなって大型化し、且の路で構成する場合は、部品点数が多くなって大型化し、自つ経済的による。又ディジタルの路で構成する場合は、部品に変更がある。文学のでは、高価な高速動作のDSP(ディジタル・シグナル・プロセッサ)を用いる必要が生じる欠点がある。本発明

は、比較的簡単な構成により、被制御体の共振による影響を抑制することを目的とする。

[0013]

【課題を解決するための手段】本発明の位置決め制御方式は、図1を参照して説明すると、共振特性を有し、指令位置に位置決めされる磁気ヘッドや印字ヘッド等の被制御体1と、この被制御体1の移動位置を検出する位置検出部2と、この位置検出部2からの位置検出信号と指令位置信号とを基に駆動信号を発生するループ補償とお等を含む演算制御部3と、この演算制御部3からの駆動信号に従って被制御体1を移動させるモータ等を含む駆動部4とを備え、演算制御部3は、ノッチフィルタ5と、楕円函数フィルタ6とを組合せたローパスフィルタ7を有し、このローパスフィルタ7によって被制御体1の共振特性を抑制するものである。

【0014】又ローパスフィルタフをオン,オフする構成とし、このローパスフィルタフをオフとした時に、このローパスフィルタフによる共振特性抑制の為の初期値を与えるものである。

[0015]

【0016】又指令位置に移動させる過程に於ける速度 制御期間に於いては、指令位置に到達して位置決めする 場合のようなフィルタ演算を省略することが可能の場合 があり、その場合には、ローパスフィルタフをオフと し、位置決めの制御に移行した時に、ローパスフィルタ 7をオンとすることになる。このローパスフィルタ7をオフとした状態に於けるローパスフィルタ7の入出力状態は不確定であるから、オフからオンに切替えた時に、制御ループが安定化するまでの時間が長くなる場合がある。そこで、ローパスフィルタ7をオフとした時の制御 値を与えて、ローパスフィルタ7をオンとした時の制御ループを高速で安定化することができる。

[0017]

【実施例】図2は本発明の実施例の制御系の説明図であり、11は加算回路、12はループ補償器、13は2次ノッチフィルタ、14は楕円函数フィルタ、15はパワーアンプ、16は被制御体、17はローパスフィルタである。指令位置信号と、被制御体1の位置検出信号との差を加算回路11により求め、ループ補償器12とローパスフィルタ17と、パワーアンプ15とを介して被制御体16が制御されて、指令位置に位置決めされる。

【0018】その場合のローパスフィルタ17は、2次ノッチフィルタ13と楕円函数フィルタ14との組合せからなるものであり、2次ノッチフィルタ13をGn(s)、楕円函数フィルタ14をGe(s)とすると、【数5】

$$G n e (s) = G n (s) G e (s)$$
 ...(11)

Gn (s) =
$$\frac{s^2 + 2 \zeta_{n} \omega_{n} d_{n} s + \omega_{n}^{2}}{s^2 + 2 \zeta_{n} \omega_{n} s + \omega_{n}^{2}} \qquad \cdots (11a)$$

Ge₂ (s) =
$$\frac{d_e (s^2 + \omega_{ze}^2)}{s^2 + 2 \zeta_{e} \omega_e s + \omega_e^2}$$
 ...(12)

但し、ここで直流ゲインを1.0とする為に、 ω_e^2 = $d_e \omega_{ze}^2$ とする。なお、(12)式は、2次楕円函数フィルタとした場合を示す。楕円函数フィルタ14は、その係数計算が複雑であるから、低域(通過)帯域リップルRpと、高域(阻止)帯域に於ける減衰Rsと、カットオフ周波数Fcと、フィルタ次数Nを基に、表等によって係数を求めることができる。

【0019】図3及び図4はフィルタ伝達函数を示し、 細線曲線は2次のノッチフィルタを2段接続した場合、 点線曲線は4次の楕円函数フィルタを用いた場合、太線曲線は2次ノッチフィルタと2次の楕円函数フィルタを 用いた場合の本発明の実施例を示す。2次のノッチフィルタを2段接続した場合を(13)式に、4次の楕円函数フィルタを用いた場合を(14)式に、又2次ノッチフィルタと2次楕円函数フィルタを用いた場合を(15)式にそれぞれ示す。

【数6】

$$G n (s) = \frac{(s^{2} + 2 \zeta_{n1} \omega_{n1} d_{n1} s + \omega_{n1}^{2})}{(s^{2} + 2 \zeta_{n1} \omega_{n1} s + \omega_{n1}^{2})}$$

$$\times \frac{(s^{2} + 2 \zeta_{n2} \omega_{n2} d_{n2} s + \omega_{n2}^{2})}{(s^{2} + 2 \zeta_{n2} \omega_{n2} s + \omega_{n2}^{2})} \cdots (13)$$

$$\begin{cases} \omega_{n1} = 2 \pi \times 3000, d_{n1} = 10^{-(25/20)} (-25 dB) \\ \zeta_{n1} = 0.3 \\ \omega_{n2} = 2 \pi \times 4100, d_{n2} = 10^{-(25/20)} (-25 dB) \\ \zeta_{n2} = 0.7 \end{cases}$$

$$G e (s) = \frac{d_{e1} (s^{2} + \omega_{ze1}^{2})}{(s^{2} + 2 \zeta_{e1} \omega_{e1} s + \omega_{e1}^{2})}$$

$$\times \frac{d_{e2} (s^{2} + \omega_{ze2}^{2})}{(s^{2} + 2 \zeta_{e2} \omega_{e2} s + \omega_{e2}^{2})} \cdots (14)$$

$$\omega_c = 2.\pi \times 2.4.00$$
, R p = 0. 1 dB, R s = 2.0 dB

Gne (s) =
$$\frac{(s^{2} + 2 \zeta_{n}\omega_{n}d_{n}s + \omega_{n}^{2})}{(s^{2} + 2 \zeta_{n}\omega_{n}s + \omega_{n}^{2})}$$

$$\times \frac{d_{e} (s^{2} + \omega_{ze}^{2})}{(s^{2} + 2 \zeta_{e}\omega_{e}s + \omega_{e}^{2})} \cdots (15)$$

$$\omega_n = 2 \pi \times 3 \ 0 \ 0 \ 0$$
, $d_{u1} = -2 \ 5 \ dB$, $\zeta_{n1} = 0$. 3
 $\omega_c = 2 \pi \times 2 \ 3 \ 0 \ 0$, $R_p = 1$, $0 \ dB$, $R_s = 1 \ 5 \ dB$

【0020】前述の(13)式に於いて、1段目のノッチフィルタのノッチ中心周波数を3kHz、2段目のノッチフィルタのノッチ中心周波数を4.1kHzとした場合に、ゲインー周波数特性は、図3の細線曲線に、すものとなる。又(14)式に於いて、カットオフ周波数を2.4kHzとし、低域帯域リップルRpを0.1dB、高域帯域の減衰Rsを20dBとした場合に、ゲインー周波数特性は、図3の点線曲線に、又位相一周波数特性は、図4の点線曲線に示すものとなる。即ち、カットオフ周波数の直前にはゲインを一度上げるような特性となり、又位相遅れは他の場合と比較して大きい値となる。

【0021】これに対して、本発明の実施例の(15) 式に於けるノッチフィルタのノッチ中心周波数を3kH z、楕円函数フィルタのカットオフ周波数を2.3kHzとし、低域帯域リップルRpを1.0dB、高域帯域の減衰Rsを15dBとした時に、ゲイン一周波数特性は、図3の太線曲線に、位相一周波数特性は、図4の太線曲線に示すものとなる。この場合、ノッチフィルタのノッチ中心周波数を最低次の機械共振周波数に合わせ、楕円函数フィルタの零点周波数を、2番目に低い機械共振周波数に合わせることが重要である。

【0022】楕円函数フィルタの計数の求め方は既に知られている各種の手段を用いることができる(例えば、1885年11月25日 第1刷 マグロウヒル 発行 A.B.ウィリアムズ 著 「電子フィルタ回路設計ハンドブック」参照)。又2次楕円函数フィルタを演算 増幅器により構成することができるものであり、その例

として、前記文献の第144~147頁に説明されている。又より便利な方法としては、市販のプログラムパッケージ「MATLAB」を利用することも可能である。 従って、被制御体16の機械的な共振特性に対応して、 それを抑制する為のノッチフィルタ13及び楕円函数フィルタ14は、容易に実現することができる。

【0023】図5は本発明の実施例のブロック図であり、図1の演算制御部3をDSP(ディジタル・シグナル・プロセッサ)により構成した場合を示す。同図に於いて、21はDA変換器(DAC)、22は演算制御部、23はディジタル・シグナル・プロセッサ(DSP)、24はメモリ(MEM)、25は送受信レジスタ(SR)、26はバス、27はサーボ信号復号器、28はシリンダ計数器、29はAD変換器(ADC)、30は増幅器(AMP)、31は磁気ディスク装置、32は磁気ディスク、33はスピンドルモータ、34はヘッド、35はヘッドアーム、36はボイスコイルモータ等からなるアクチュエータである。

【0024】磁気ディスク装置31は、スピンドルモータ33により一定回転数で回転される磁気ディスク32と、ヘッド34が先端に支持されたヘッドアーム35を移動して、ヘッド34を磁気ディスク32の指令トラック位置に位置決めするように制御されるアクチュエータ36とを備えた簡略構成の場合を示すが、図8に示すように、多数の磁気ディスク及びヘッドを設けた構成とすることもできる。又増幅器30とアクチュエータ36の一部を含めた構成が図1の駆動部4に相当し、ヘッド34とヘッドアーム35とアクチュエータ36の一部とを含めた構成が、図1の被制御体1に相当する。

【0025】サーボ信号復号器27は、ヘッド34により磁気ディスク32から読み取ったサーボ信号を復号するものであり、シリンダ計数器28は、復号サーボ信号の零クロス点等を計数してシリンダ数(トラック数)とし、このシリンダ数(トラック数)により基準点からのヘッド34の現在位置を示し、ヘッド34の移動距離

(シーク距離)は、現在トラック位置と指令トラック位置との差のトラック数に対応したものとなる。又AD変換器29は、復号2相サーボ信号をディジタル信号に変換するものであり、このAD変換器29とシリンダ計数器28との組合せにより基準点からのヘッド34の現在位置が検出される。これらが図1の位置検出部2に相当

する構成である。又DA変換器21は、バス26を介したディジタル・シグナル・プロセッサ23からの駆動制御信号をアナログ信号に変換し、増幅器20により増幅して、アクチュエータ36を駆動する。

【0026】演算制御部22は図1の演算制御部3に相当し、ディジタル・シグナル・プロセッサ23と、メモリ24と、送受信レジスタ25とを含むもので、上位装置からのアドレス信号等を基に、ディジタル・シグナル・プロセッサ23は、ヘッド34の現在位置から指令中でである。その移動距離に対応した移動目標軌道を求めて、ヘッド34が移動目標軌道に定従するように、アクチュエータ36を制御する演算を行うものである。その場合に、前述のように、ループ補償器8,12と、ノッチフィルタ5,13と、楕円函数フィルタ6,14との機能を実現する演算処理を実行するものである。

【0027】図6は本発明の実施例のフローチャートで あり、演算制御部22に於けるノッチフィルタと楕円函 数フィルタとからなるローパスフィルタの機能を実現す る演算処理を、ステップ(a)~(i)により示すもの である。即ち、サーボ変数の初期化を行い(a)、サン プリング時刻か否かを判断し(b)、サンプリング時刻 の場合は、AD変換器(ADC)29より位置検出信号 ×n を読取る(c)。次に、駆動制御信号 un を、un $= F (x_{n}, x_{n-1}, \cdots x_{ni}, u_{n-1}, u_{n-2}, \cdots u)$ n-j)とし(d)、ノッチフィルタと楕円函数フィルタ とからなる振動抑制フィルタ(ローパスフィルタ)を入 れるか否かを選択する(e)。これは、磁気ディスク装 置のように、シーク動作とフォロイング動作とに大別で きる場合に、シーク動作中は大振幅で電流を変化させて アクチュエータ36を駆動する為、振動抑制フィルタを 切離したい場合があるから、このようなシーク動作中は 振動抑制フィルタ(ローパスフィルタ)をオフとし、フ ォロイング動作に移行して高速且つ高精度に位置決めを 行う場合に、振動抑制フィルタ(ローパスフィルタ)を オンとするものである。

【数7】

$$T_n = A_{n0} u_n + A_{n1} u_{n-1} + A_{n2} u_{n-2}$$
 ...(16)
+ $B_{n1} T_{n-1} + B_{n2} T_{n-2}$

Gn'(s) =
$$\frac{s^2 + 2 \zeta_n \omega_n' d_n s + \omega_n'^2}{(s^2 + 2 \zeta_n \omega_n' s + \omega_n'^2)} \cdots (17)$$

$$s = \frac{2}{T s} \cdot \frac{1 - Z^{-1}}{1 + Z^{-1}} \qquad \cdots (17')$$

$$A_{n0} = \frac{t^2 + 2 \zeta_n d_n t + 1}{t^2 + 2 \zeta_n t + 1} \qquad \cdots (17a)$$

$$A_{n1} = \frac{2 (t^2 - 1)}{t^2 + 2 \zeta_n t + 1}$$
 ...(17b)

$$A_{n2} = \frac{t^2 - 2 \zeta_n d_n t + 1}{t^2 + 2 \zeta_n t + 1} \qquad \cdots (17c)$$

$$B_{n1} = -A_{n1}$$
 ...(17d)

Bn2=
$$-\frac{t^2-2\zeta_nd_nt+1}{t^2+2\zeta_nt+1}$$
 …(17e)
但し、 $t=t$ an $\frac{\omega_nTs}{2}$

【0029】又サンプリング周期をTsとし、ノッチ角周波数 ω_n ´をプリワープして、 ω_n ´ = (2/Ts) tan (ω_n Ts/2) とし、(11a) 式のノッチ角周波数 ω_n を ω_n ´に変えた(17) 式に、双一次変換(Tustin変換)〔(17 ´)式〕を施すと、(16) 式が得られる。即ち、(16) 式の A_{n0} , A_{n1} , A_{n2} , B_{n1} , B_{n2} は、(17a) ~(17e) 式に示すものとなる。

【0030】同様に、振動抑制フィルタ(0ーパスフィルタ)の2段目 s_n を示す(18)式も、二次の楕円函数フィルタの(12)式に於いて、零点の角周波数 ω_{ze} を、 ω_{ze} にプリワープし、 ω_{ze} = (1 / T s) t a n (ω_{ze} T s / 2) とし、前述の(12) 式の ω_{ze} を ω_{ze} に置換して、双一次変換を行うと、(18) 式を導出できる。

【数8】

$$S_n = A_{e0} T_n + A_{e1} T_{n-1} + A_{e2} T_{n-2} + B_{e1} S_{n-1} + B_{e2} S_{n-2}$$
 ...(18)

$$A_{e0} = \frac{d_{e} (t^{2} + 1)}{k^{2} + 2 \zeta k + 1}$$
 ...(19a)

$$A_{e1} = \frac{2 d_{e} (t^{2} - 1)}{k^{2} + 2 \zeta k + 1}$$
 ...(19b)

$$A_{e2} = A_{e0} \qquad \cdots (19c)$$

$$B_{e1} = -\frac{2 (k^2 - 1)}{k^2 + 2 \zeta k + 1}$$
 ...(19d)

$$B_{e1} = -\frac{k^2 - 2 \zeta k + 1}{k^2 + 2 \zeta k + 1} \qquad \cdots (19e)$$

但し、
$$t = t a n \left(\frac{T s \omega_{ze}}{2}\right)$$
 $k = \frac{T s \omega_{e}}{2}$

即ち、(18)式の A_{e0} , A_{e1} , A_{e2} , B_{e1} , B_{e2} は、(19a)~(19e)式に示すものとなる。

【0031】前述のような演算処理をステップ(h)に 於いて行い、(18)式による演算結果をDA変換器 (DAC)21に出力する(i)。このDA変換器21 により変換されたアナログ信号は増幅器30により増幅 されて、アクチュエータ36に加えられ、ヘッドアーム 35等を含む機械共振特性が抑制される。

【0032】又振動抑制フィルタ(ローパスフィルタ)を入れない場合は、ステップ(f)に示すように、振動抑制フィルタ(ローパスフィルタ)の1段目と2段目とは、Tn-1 = Tn-2 = un 及びSn-1 = Sn-2 = un のように、フィルタ演算を行わない。このように振動抑制フィルタ(ローパスフィルタ)をオフとし、ステップ(d)に於ける出力unをDA変換器21に加え、変換したアナログ信号を増幅器30により増幅して、アクチュエータ36を駆動することになる。この場合、振動抑制フィルタ(ローパスフィルタ)をオンとした時に、過渡応答が生じないように、初期知を与え続けるものである。

【0033】図7は開ループ伝達特性曲線図であり、太

線曲線 a , c は本発明の実施例による利得一周波数特性 及び位相一周波数特性を示し、細線曲線 b , d は従来例 の利得一周波数特性及び位相一周波数特性を示し、本発 明のように、ノッチフィルタと楕円函数フィルタとを組 合せたローパスフィルタにより、機械的な共振特性を従 来例に比較して充分に抑制することができることが判 る。

【0034】前述の実施例は、振動抑制フィルタ(ローパスフィルタ)をディジタル演算機能によって実現した場合を示すが、演算増幅器等を用いたアナログ回路によって実現することも可能である。又磁気ディスク装置のみでなく、光磁気ディスク装置や光ディスク装置或いはプリンタ等のヘッド等の髙精度位置決めを必要とする被制御体の制御に適用することができるものである。

[0035]

【発明の効果】以上説明したように、本発明は、ノッチフィルタ5と楕円函数フィルタ6とを組合せたローパスフィルタ7により、被制御体1の共振特性を抑制するものであり、従来例のような多数のノッチフィルタを設けるものではないから、経済的な構成となり、ディジタル処理の場合には、演算処理時間が短くなるから、応答特

性を改善することができる。又アナログ回路により実現する場合は、小型化できる利点がある。更に、被制御体1の機械的な共振特性のばらつきや経時変化等があっても、楕円函数フィルタ6によって充分に抑制できる利点がある。

【0036】又ローパスフィルタフをオン、オフする構成とした場合、シーク動作のような大振幅の駆動電流の変化が生じる場合のローパスフィルタフの作用を停止させ、それによりディジタル処理の場合の演算処理を省略できるから、応答特性を向上することができる。又シーク動作からフォロイング動作に移行したような場合、ローパスフィルタフをオンとして、共振特性を抑制を行うことにより、高精度で位置決めを行うことができると共に、オフ状態の時に初期値を与えておくものであるから、オフからオンに移行した時に安定な制御に移行することができる利点がある。

【図面の簡単な説明】

【図1】本発明の原理説明図である。

- 【図2】本発明の実施例の制御系の説明図である。
- 【図3】フィルタ伝達函数曲線図である。
- 【図4】フィルタ伝達函数曲線図である。
- 【図5】本発明の実施例のブロック図である。
- 【図6】本発明の実施例のフローチャートである。
- 【図7】開ループ伝達特性曲線図である。
- 【図8】磁気ディスク装置の説明図である。
- 【図9】アクチュエータの伝達特性曲線図である。
- 【図10】従来例の制御系の説明図である。

【符号の説明】

- 1 被制御体
- 2 位置検出部
- 3 演算制御部
- 4 駆動会
- 5 ノッチフィルタ
- 6 楕円函数フィルタ
- 7 ローパスフィルタ
- 8 ループ補償器

【図2】

本発明の実施例の制御系の説明図

「図1】 本発明の原理説明図

【図3】 フィルタ伝達函数曲線図

【図4】 フィルタの伝達**函数曲線**図

[図5] 本発明の実施例のブロック図

[図6] 本発明の実施例のフローチャート

【図9】 アクチュエータの伝達特性曲線図

[図10] 従来例の制御系の説明図

フロントページの続き

(51) Int. Cl. ⁵
G O 5 D 19/02

// B41J 29/38

G11B 21/08

識別記号

庁内整理番号

FI

D 8914-3H

D 8804-2C

A 8425-5D

技術表示箇所