Phase Locked Loop

Ben Lorenzetti

Start Date: April 2, 2015 Submission Date: April 20, 2015

Contents

1	Obj	jective	1				
2	Principles of Operation						
3	The	Theory					
	3.1	Texas Instruments LM656	3				
	3.2	Voltage Controlled Oscillator	4				
	3.3	Signal Multiplier	4				
	3.4	Frequency Independent Amplifier	4				
	3.5	Low-Pass Filter	4				
4 Design a		ign and Simulation	4				
	4.1	Voltage Controlled Oscillator	4				
		4.1.1 LM565 vs SPICE Model	4				
		4.1.2 Free Running Frequency, f_0	4				
		4.1.3 Oscillator Sensitivity, K_O	4				
	4.2	Signal Multiplier	4				
	4.3	Frequency Independent Amplifier	4				
	4.4	Low-Pass Filter	4				
	4.5	Phase Detector Sensitivity, K_D	4				
	4.6	PLL Loop Gain, K_OK_D	4				
	4.7	FSK Generator	4				
	4.8	FSK Demodulator	4				
5	Res	pults	4				
	5.1	Free Running Frequency, f_0	4				
	5.2	Oscillator Sensitivity, K_Q	4				
	5.3	FSK Demodulator	4				
6	Conclusions						
7	App	pendices	4				
	7.1	LM565 Schematic Diagram	5				

1 Objective

To measure the characteristics of a phase locked loop and to investigate and model its behavior in an FSK (frequency-shift keying) demodulator.

2 Principles of Operation

Figure 1: PLL Demodulator Block Diagram (left); Rearrangement for SOC Integration (right).

3 Theory

3.1 Texas Instruments LM656

Figure 2: Rough Block Diagram for the LM565 Phase Locked Loop

As discussed in the section 2, most of a PLL demodulator can be integrated onto a single silicon wafer—called a system-on-a-chip (SOC). The only parts that cannot be fabricated on silicon are the capacitors, so the PLL demodulator has been redesigned with this in mind. A company called Signetics was the first to put a PLL on an SOC, but they are out of business so we have a similar chip from Texas Instruments, the LM565.

The LM565 makes it easy for the circuit designer to incorporate frequency-shift keying into their product; you just have to slap on a few capacitors to have a working demodulator. The only design that must be done is selecting a free-running frequency f_0 near the transmission frequency and building a low-pass filter with bandwidth greater than the frequency shift but less than twice the transmission frequency. Use the following equation from the LM565 datasheet to select f_0 .

$$f_0 = \frac{0.3}{R_0 C_0} \tag{1}$$

For more information about how the LM565 works, see the schematic diagram in section 7.1.

- 3.2 Voltage Controlled Oscillator
- 3.3 Signal Multiplier
- 3.4 Frequency Independent Amplifier
- 3.5 Low-Pass Filter
- 4 Design and Simulation
- 4.1 Voltage Controlled Oscillator
- 4.1.1 LM565 vs SPICE Model

For the timing resistor R_0 , I decided to use $3k\Omega$ because it was available with 1% tolerance. Using equation 1, the timing capacitors for 1 kHz, 10 kHz, and 100 kHz operating ranges should be

$$R_0 = 3k\Omega$$

$$C_{0(1kHz)} = 0.1 uF \quad | \quad C_{0(10kHz)} = 0.01 uF \quad | \quad C_{0(100kHz)} = 1,000 pF$$

- 4.1.2 Free Running Frequency, f_0
- 4.1.3 Oscillator Sensitivity, K_O
- 4.2 Signal Multiplier
- 4.3 Frequency Independent Amplifier
- 4.4 Low-Pass Filter
- 4.5 Phase Detector Sensitivity, K_D
- 4.6 PLL Loop Gain, $K_O K_D$
- 4.7 FSK Generator
- 4.8 FSK Demodulator
- 5 Results
- 5.1 Free Running Frequency, f_0
- 5.2 Oscillator Sensitivity, K_O
- 5.3 FSK Demodulator
- 6 Conclusions
- 7 Appendices

7.1 LM565 Schematic Diagram

Figure 3: LM565 Schematic Diagram; taken from page 6 of the TI datasheet