EDLD652 Lab 2

Hyeonjin Cha

Rachael Latimer

Tess Sameshima

2/3/2021

1. Google Trends Data


```
#part2
plot2 <- google_trends_longer %>%
    ggplot(aes(date, mentions, fill = hurricane)) +
    geom_area(position = "dodge", alpha = 0.8) +
    theme_minimal()
plot2
```



```
#part3
plot3 <- google_trends_longer %>%
  ggplot(aes(date, mentions)) +
  geom_area(aes(fill = hurricane)) +
  scico:: scale_fill_scico(palette = "tokyo") +
 theme_minimal()
# #Error: Discrete value supplied to continuous scale
# How do I change the scales so color is mapped to a continuous scale? Hurricane is a categorical varia
# Maybe change the variable from categorical to numerical?
\#\ google\_trends\_longer\$hurricane = as.numeric(levels(google\_trends\_longer\$hurricane))[google\_trends\_longer\$hurricane]
# this didn't seem to work either... it all turned NA
#part 4
# google_trends_longer_landfall <- google_trends_longer %>%
   mutate(landfall = 0) %>%
#
    mutate(landfall = ifelse(
#
      hurricane == "harvey_us" & date == "2017-08-25" |
      hurricane == "irma_us" & date == "2017-09-10" |
      hurricane == "maria_us" & date == "2017-09-20",
#
      1, 0))
#probably not the way Daniel intended....
landfall <- data.frame(hurricane = c("harvey_us", "irma_us", "maria_us"),</pre>
```


US Google Search Interest on Hurricanes

Search interest measured in search term popularity relative to peak popularity in the given region and time period (with 100 as peak popularity)

2. Replicating "National cable news networks" Plot

```
date = as.Date(c("2017-08-25", "2017-09-10", "2017-09-20", "2017-10-01")),
                     RefTV = c("Harvey landfall", "Irma landfall", "Maria landfall", "Las Vegas shooting")
                     stringsAsFactors = FALSE)
d <- data.frame(state = c("texas", "florida", "puerto_rico"),</pre>
                date=as.Date(c("2017-08-28","2017-09-10","2017-10-01")),
                percent=c(1,1.5,0.40),
                name = c("Texas", "Florida", "Puerto Rico"),
                stringsAsFactors = FALSE)
TVplot <- tv_states_longer %>%
  mutate(state = fct_relevel(state, "florida", "texas", "puerto_rico")) %>%
  ggplot(aes(date, percent, fill = state)) +
  guides(fill = FALSE) +
  geom_area(position = "dodge") +
  geom_vline(data = TVlines, aes(xintercept=as.numeric(date[c(1,2,3,4)])), linetype=4) +
  geom_text(mapping = aes(x = date,
                          y = 4,
                          label = RefTV,
                          hjust = "center",
                          vjust = 0),
            data = TVlines) +
            scale fill manual(values = c("#ff007b","#ff6e00","#00d9ff"))+
  labs(title = "National cable news networks",
       x = NULL,
       y = "Share of sentences",
       caption = "Includes Bloomberg, CNBC, CNN, Fox Business, Fox News and MSNBC.") +
  theme minimal() +
  geom_text(data=d, mapping=aes(x=date, y=percent, label=name))
TVplot
```

National cable news networks

Includes Bloomberg, CNBC, CNN, Fox Business, Fox News and MSNBC.

2. Using Comic_characters Dataset

```
library(janitor)
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
##
       chisq.test, fisher.test
comic_characters <- comic_characters</pre>
N <- 23272
#pie chart of appearance count by first appearance date
comic_characters_gender <- comic_characters %>%
  count(gender_type = sex) %>%
    mutate(gender_ratio = n/N)#devide each sex count value by total
comic_characters_gender_type <- gsub(" Characters", "", comic_characters_gender_type)</pre>
comic_plot_1 <- comic_characters_gender %>%
  ggplot(aes("", gender_ratio, fill = gender_type)) +
```

```
geom_bar(stat = "identity", width = 5) +
    coord_polar("y", start = 0) +
    theme_void() +
    labs(title = "Ratio of Gender Types of Comic Book Characters",
    x = "Gender Ratio",
    y = NULL,
    caption = "Includes DC & Marvel Characters from 1938 to 2013")
    #scale_color_discrete(name = "Gender Types")
```

Ratio of Gender Types of Comic Book Characters

Includes DC & Marvel Characters from 1938 to 2013

```
#Bar plots for type of gender ratio by alignment
comic_plot_2 <- comic_characters %>%
    count(gender_type = sex, align) %>%
    mutate(gender_ratio = n/N) %>%
    #tabyl(gender_type, align) %>% #returns dataframe with counts with sex as row and align as column,
    ggplot(aes(gender_ratio, align, fill = gender_type)) +
        geom_col() +
        facet_wrap(~gender_type) +
        theme_minimal()
```



```
comic_plot_3 <- comic_characters_gender %>%
  ggplot(aes(gender_type, gender_ratio, fill = gender_type)) +
    geom_bar(stat="identity")

comic_plot_3 +
  labs(title = "Ratio of Gender Types of Comic Book Characters",
    subtitle = "Includes DC & Marvel Characters from 1938 to 2013",
    x = "Type",
    y = "Ratio",
    label = "Type")
```

Ratio of Gender Types of Comic Book Characters

Includes DC & Marvel Characters from 1938 to 2013

