

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2024/2025

# Lesson 6 Bandpass digital transmission

## 1 Problemas básicos

Este primer bloque de problemas son problemas extraídos de la bibliografía de la asignatura, y consisten en algunos cálculos básicos que es necesario dominar.

#### Problem 6.1

[Sklar2001] Calculate the expected value of the number of error bits during a day for the coherent BPSK receiver described below, under continuous operation. The data rate is 5000bits/s. The input digital signals are  $s_1(t) = A \cdot cos(\omega_p t)$  and  $s_2(t) = -A \cdot cos(\omega_p t)$ , where A = 1mV, and the unilateral noise power spectral density is  $N_0 = 10^{-11}W/Hz$ .

Results for problem

2338 bits

### Problem 6.2

[Sklar2001] A coherent BPSK system operating continuously produces errors at an average rate of 100 errors per day. The data rate is 1000bits/s. The unilateral noise power spectral density is  $N_0=10^{-10}W/Hz$ .

- a) If the system is ergodic, which is the average error probability?
- b) If the average received power is adjusted to  $10^{-6}$  W, would this value be enough to keep the error probability calculated in a)?

Results for problem

- a)  $1.16 \cdot 10^{-6}$
- b) No

#### Problem 6.3

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones

Year 2024/2025

[Haykin2001] The signal component of a coherent PSK system is defined by the expression

$$s(t) = A_c k sen(\omega_p t) \pm A_c \sqrt{1 - k^2} cos(\omega_p t)$$

where  $0 \le t < T_b$ , and the plus sign corresponds to the 1 symbol, and the minus sign corresponds to the 0 one. The first term on the right hand side of the equation represents a carrier component, included to improve the synchronization between transmitter and receiver. Solve this:

- a) Plot the constellation of the signals described; what can be said about this diagram?
- b) Show that, in presence of zero-mean additive white Gaussian noise with power spectral density  $N_0/2$ , the average error probability is

$$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}(1-k^2)}\right)$$

with  $E_b = \frac{1}{2}A_c^2T_b$ 

- c) Assume that 10% of the transmitted power is located in the carrier component. Determine the value of  $E_b/N_0$  required to obtain an error probability of  $10^{-4}$ .
- d) Compare this  $E_b/N_0$  value with the one required in a conventional PSK system with the same error probability.

Results for problem

- a) PSK constellation
- b) Demonstration
- c)  $\frac{E_b}{N_0}=8.02$  d)  $\frac{E_b}{N_0}=7.22$

#### Problem 6.4

[Haykin2001] We want to compare two data transmission bandpass systems. One of them employs 16-PSK, the other, 16-QAM. Both systems have to provide an average symbol error probability of  $10^{-3}$ . Compare the signal-to-noise requirements of said systems.

Results for problem

$$\Delta\left(\frac{E_s}{N_0}\right) = 3.68dB$$

#### Problem 6.5

[Sklar2001] If the performance criterion of a system is the bit error probability, which one of the following modulation schemes would be chosen to operate in an AWGN channel? Show the calculations.



#### Communication Theory

Grados TIC

Dpto. de Teoría de la Señal y Comunicaciones Year 2024/2025

- a) Coherent binary orthogonal FSK with  $E_b/N_0=13dB. \label{eq:binary}$
- b) Coherent binary PSK with  $E_b/N_0=8dB$ .

Results for problem

Coherent binary orthogonal FSK

# References

[Haykin2001] Simon Haykin. Communication Systems, 4th Ed. John Wiley and Sons, 2001.

[Sklar2001] Bernard Sklar. Digital Communications, 2nd Ed. Prentice Hall, 2001.

v.20250116