Distribución	Parámetros	Función de Probabilidad	Dominio	Media	Varianza	Función Generatriz de Momentos
Bernoulli	x~bernoulli(p)	$f(x) = p^x (1-p)^{1-x}$	x = 0, 1	р	p(1-p)	$(1-p) + e^t p$
Binomial	$x \sim bin(n, p)$	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$	$x = 1, 2, \dots, \mathbb{Z}^+$	np	np(1-p)	$[(1-p)+e^tp]^n$
Binomial Negativa	$x \sim NB(r,p)$	$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$	$x = r, r + 1, \dots, \mathbb{Z}^+$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-e^t(1-p)}\right]^r$
Geométrica	x~geo(p)	$f(x) = p(1-p)^{x-1}$	$x=1,2,,\mathbb{Z}^+$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$	$\frac{pe^t}{1-e^t(1-p)}$
Poisson	$x \sim POI(\lambda)$	$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$	$x = 0, 1, 2,, \mathbb{Z}^+$	λ	λ	$e^{\lambda(e^t-1)}$
Hipergeométrica	$x \sim hyp(N, M, K)$	$f(x) = \frac{\binom{M}{X} \binom{N-M}{K-X}}{\binom{N}{K}}$	$x = 0, 1, 2,, \mathbb{Z}^+$	$\frac{KM}{N}$	$\frac{KM}{N} \left[\frac{(N-M)(N-K)}{N(N-1)} \right]$	-
Uniforme Discreta Escalonada	$x \sim DU(x_1,, x_k)$	$f(x) = \frac{1}{k}$	$x = x_1, x_2, \dots, x_k$	\bar{x}	$\sum_{i=1}^k \frac{(x_i - \bar{x})^2}{k}$	_
Uniforme Discreta Seguida	$x \sim DU(1, k)$	$f(x) = \frac{1}{k}$	$x = 1, 2, \dots, k$	$\frac{k+1}{2}$	$\frac{k^2-1}{12}$	$\frac{1}{k} \left[\frac{e^t (1 - e^{tk})}{1 - e^t} \right]$

Distribución	Parámetros	Función de Probabilidad	Dominio	Media	Varianza
Uniforme Continua	$x \sim unif(a, b)$	$f(x) = \frac{1}{b-a}$	a < x < b	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$
Gamma	$x \sim gam(\alpha, \beta)$	$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-\frac{x}{\beta}}$	<i>x</i> > 0	αβ	$lphaeta^2$
Exponencial	$x \sim \exp(\theta)$	$f(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$	<i>x</i> > 0	θ	$ heta^2$
χ^2	$x\sim\chi_v^2$	$f(x) = \frac{1}{\Gamma(\frac{v}{2}) 2^{v/2}} x^{v/2-1} e^{-\frac{x}{2}}$	<i>x</i> > 0	υ	2υ
Т	<i>x</i> ~ <i>T_v</i>	$f(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v\pi}} \left(1 + \frac{x^2}{v}\right)^{-\left(\frac{v+1}{2}\right)}$	$x\epsilon\mathbb{R}$	0	$\frac{v}{v+2}; v > 2$
F	$x \sim F_{\upsilon_1,\upsilon_2}$	$f(x) = \frac{\Gamma\left(\frac{v_1 + v_2}{2}\right)}{\Gamma\left(\frac{v_1}{2}\right)\Gamma\left(\frac{v_2}{2}\right)} \left(\frac{v_1}{v_2}\right)^{\frac{v_1}{2}} x^{\frac{v_1}{2} - 1} \left(1 + \frac{v_1}{v_2}x\right)^{-\left(\frac{v_1 + v_2}{2}\right)}$	<i>x</i> > 0	$\frac{v_2}{v_2-2}$	$\frac{2v_2^2}{v_1} \left[\frac{v_1 + v_2 - 2}{(v_2 - 2)^2 (v_2 - 4)} \right]$
Normal	$x \sim N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$	$x\epsilon\mathbb{R}$	μ	σ^2
Lognormal	$x \sim LOGN(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}x\sigma}e^{-\frac{1}{2\sigma^2}(\ln x - \mu)^2}$	<i>x</i> > 0	$e^{\mu + \frac{\sigma^2}{2}}$	$(e^{\sigma^2}-1)e^{2\mu+\sigma^2}$

Distribución	Parámetros	Función de Probabilidad	Dominio	Media	Varianza
Beta	$x\sim beta(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$	0 < x < 1	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Pareto	$x \sim pareto(\theta, k)$	$f(x) = \frac{k}{\theta} \left(1 + \frac{x}{\theta} \right)^{-(k+1)}$	<i>x</i> > 0	$rac{ heta}{k-1}$	$\frac{\theta^2 k}{(k-2)(k-1)^2}$
Weibull	x~weibull(θ,β)	$f(x) = \frac{\beta}{\theta^{\beta}} x^{\beta - 1} e^{-\left(\frac{x}{\theta}\right)^{\beta}}$	<i>x</i> > 0	$\theta\Gamma\left(1+\frac{1}{\beta}\right)$	$\theta^{2} \left\{ \Gamma \left(1 + \frac{2}{\beta} \right) - \left[\Gamma \left(1 + \frac{1}{\beta} \right) \right]^{2} \right\}$
Exponencial de Dos Parámetros	$x \sim exp(\theta, \eta)$	$f(x) = \frac{1}{\theta} e^{-\left(\frac{x-\eta}{\theta}\right)}$	$x > \eta$	$\theta + \eta$	$ heta^2$
Doble Exponencial	$x \sim DE(\theta, \eta)$	$f(x) = \frac{1}{2\theta} e^{-\frac{ X-\eta }{\theta}}$	$x\epsilon\mathbb{R}$	η	$2\theta^2$
Cauchy	$x \sim CAU(\theta, \eta)$	$f(x) = \frac{1}{\theta \pi \left\{ 1 + \left(\frac{x - \eta}{\theta} \right)^2 \right\}}$	$x\epsilon\mathbb{R}$	ı	-
Valores Extremos (Gumbel)	$x\sim gumbel(heta,\eta)$	$f(x) = \frac{1}{\theta} e^{-\left(\frac{x-\eta}{\theta}\right)} e^{-e^{-\left(\frac{x-\eta}{\theta}\right)}}$	$x\epsilon\mathbb{R}$	$\eta - \gamma \theta$ $\gamma = 0.5772$	$\frac{\pi^2\theta^2}{6}$
Logística	$x \sim LOG(\mu, \theta)$	$f(x) = \frac{1}{4\theta} sech^2 \left(\frac{x - \mu}{2\theta} \right)$	$x\epsilon\mathbb{R}$	μ	$\frac{\pi^2}{3}\theta^2$

Distribución	Parámetros	Función Generatriz de Momentos	Función Acumulada
Uniforme Continua	$x \sim unif(a, b)$	$\frac{e^{bt} - e^{at}}{t(b-a)}$	$F(x) = \frac{x - a}{b - a}$
Gamma	$x\sim gam(\alpha,\beta)$	$\frac{1}{(1-\beta t)^{\alpha}}$	_
Exponencial	$x \sim \exp(\theta)$	$\frac{1}{1-\theta t}$	$F(x) = 1 - e^{-\frac{x}{\theta}}$
χ^2	$x\sim\chi_v^2$	$\frac{1}{(1-2t)^{\frac{v}{2}}}$	_
Normal	$x \sim N(\mu, \sigma^2)$	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$	_
Beta	$x\sim$ beta (α,β)	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$	_
Weibull	$x\sim$ weibull (θ,β)	$\sum_{n=0}^{\infty} \frac{t^n \theta^n}{n!} \Gamma\left(1 + \frac{n}{\beta}\right)$	$F(x) = 1 - e^{-\left(\frac{x}{\theta}\right)^{\beta}}$

Distribución	Parámetros	Función Generatriz de Momentos	Función Acumulada
Cauchy	$x \sim \text{CAU}(\theta, \eta)$		$F(x) = \frac{1}{\pi} \tan^{-1} \left(\frac{x - \eta}{\theta} \right) + \frac{1}{2}$
Exponencial de Dos Parámetros	$x \sim \exp(\theta, \eta)$	$\frac{e^{\eta t}}{1-\theta t}$	$F(x) = 1 - e^{-\frac{(x-\mu)}{\theta}}$
Doble Exponencial	$x \sim \mathrm{DE}(\theta, \eta)$	$\frac{e^{\eta t}}{1 - \theta^2 t^2}$	
Valores Extremos (Gumbel)	$x \sim \text{EV}(\theta, \eta)$	$e^{\eta t}\Gamma(1-\theta t)$	$F(x) = e^{-e^{-\left(\frac{x-\eta}{\theta}\right)}}$
Logística	$x \sim LOG(\mu, \theta)$	$e^{\mu t}\beta(1-\theta t,1+\theta t)$	$F(x) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{x - \mu}{2\theta}\right)$
Geométrica	$x \sim \text{geo}(p)$	$\frac{pe^t}{1 - e^t(1 - p)}$	$F(x) = 1 - (1 - p)^x$
Pareto	$x \sim \text{pareto}(\theta, k)$	_	$F(x) = 1 - \left(1 + \frac{x}{\theta}\right)^{-k}$

Distribución	Dominio	Función de Probabilidad	Teoremas
Normal Bivariada	$x \in \mathcal{R}$ $y \in \mathbb{R}$ $\sigma_x > 0$ $\sigma_y > 0$ $-1 \le \rho \le 1$	$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_x}\right)\left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2\right]}$	$x \sim N(\mu_x, \sigma_x^2)$ $y \sim N(\mu_y, \sigma_y^2)$ $corr_{x,y} = \rho$ $corr(x^2, y^2) = \rho^2$ $x y \sim N\left[\mu_x + \rho \frac{\sigma_x}{\sigma_y}(y - \mu_y), \sigma_x^2(1 - \rho^2)\right]$
Multinomial	$\sum_{i=1}^{k} x_i = n$ $\sum_{i=1}^{k} p_i = 1$ $x = 0, 1, \dots, \mathbb{Z}^+$	$f(x_1, x_2,, x_k; n; p_1^{x_1}, p_2^{x_2},, p_k^{x_k}) = \frac{n!}{x_1! x_2! x_k!} p_1^{x_1} p_2^{x_2} p_k^{x_k}$	$x_{j} \sim bin(m, p_{j}),$ $m = n$ $cov(x_{i}, x_{j}) = -mp_{i}p_{j}$ $x_{i} x_{j} \sim bin\left(m - x_{j}, \frac{p_{i}}{1 - p_{j}}\right)$
Hipergeométrica Multivariada	$\sum_{i=1}^{k} x_i = n$ $\sum_{i=1}^{k} M_i = N$ $x = 0, 1,, \mathbb{Z}^+$	$f(x_1, x_2,, x_k; N; M_1, M_2,, M_K) = \frac{\binom{M_1}{x_1} \binom{M_2}{x_2} \binom{M_3}{x_3} \binom{M_k}{x_k}}{\binom{N}{n}}$	_
Dirichlet Bivariada	$ 0 < x < 1 0 < y < 1 0 < y < 1 - x < 1 \alpha > 0 \beta > 0 c > 0 $	$f(x, y; \alpha, \beta, c) = \frac{\Gamma(\alpha + \beta + c)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(c)} x^{\alpha - 1} y^{\beta - 1} (1 - x - y)^{c - 1}$	$x \sim beta(\alpha, \beta + c)$ $y \sim beta(\beta, \alpha + c)$ $Y X \sim beta(\beta, c)$ $1 - x \sim beta(\beta + c, \alpha)$