Heimadæmi 1 í eðlisfræði hjá 5.Z

Skilið eftirfarandi dæmum í hólfið mitt í Cösu Christi fyrir kl. 8:10 föstudaginn 12. október.

- Dæmi 1. (Anna Jónas) Hversu margir lítrar af vatni eru í Atlantshafinu?
- Dæmi 2. (Júlía Valdimar) Metið árstekjur Dominos á Íslandi.
- **Dæmi 3.** (Anna Jónas) Finnið SI-einingar þyngdarfastans G sem kemur fyrir í þyngdarlögmáli Newtons sem segir að krafturinn, F, sem að verkar milli tveggja massa m_1 og m_2 í fjarlægðinni r frá hver öðrum er gefinn með

$$F = G \frac{m_1 m_2}{r^2}$$

- **Dæmi 4.** (Júlía Valdimar) Finnið SI-einingar orku með því að nýta ykkur þekkta niðurstöðu kennda við Einstein að $E=mc^2$ er orka hlutar þar sem að m er massi hlutarins og c er ljóshraðinn.
- **Dæmi 5.** Stundum er hægt að leysa verkefni sem maður hefur engan skilning á aðeins með því að nýta sér víddir stærðanna sem eru gefnar í dæminu. Lítum á eftirfarandi stærðir sem hafa gefnar víddir, afl P með vídd $[P] = \frac{kgm^2}{s^3}$, hröðun a með vídd $[a] = \frac{m}{s^2}$, hleðsla q með vídd [q] = C (fyrir Coulomb), ljóshraði c með vídd $[c] = \frac{m}{s}$ og rafsvörunarstuðull tómarúms, ϵ_0 , með vídd $[\epsilon_0] = \frac{C^2 s^2}{kgm^3}$.

Hlaðin ögn geislar út orku í formi rafsegulbylgna þegar hún verður fyrir hröðun. Útgeislaða aflið P frá hlaðinni ögn sem ferðast í hring með föstum hornhraða er aðeins háð hröðun hennar a, hleðslunni q, ljóshraða c og rafsvörunarstuðli tómarúms ϵ_0 . Það þýðir að við getum ritað:

$$P = a^{\alpha} q^{\beta} c^{\gamma} \epsilon_0^{\delta}$$

þar sem að α, β, γ og δ eru fastar.

- (a) Finnið α, β, γ og δ með því að beita víddargreiningu.
- (b) Raunverulega formúlan fyrir útgeislaða aflið inniheldur margföldunarfastann $\frac{1}{6\pi}$. Að því gefnu ritið niður formúluna fyrir útgeislaða aflinu, P.
- **Dæmi 6.** Látum $m_1 = 5.0 \,\mathrm{kg}, m_2 = 2.0 \,\mathrm{kg}$ og $m_3 = 4.0 \,\mathrm{kg}$ vera tengda saman yfir trissu með vír eins og á meðfylgjandi mynd. Massarnir m_1 og m_2 hanga í frjálsu falli en massinn m_3 liggur á borði. Núningsstuðullinn milli borðsins og m_3 er $\mu = 0.25$.
 - (a) Finnið hröðun kerfisins.
 - (b) Finnið togkraftinn, T_1 , í vírnum sem tengir saman m_1 og m_3
 - (c) Finnið togkraftinn, T_2 , í vírnum sem tengir saman m_2 og m_3 .

- **Dæmi 7.** Kubbur með massa $m = 10 \,\mathrm{kg}$ byrjar að renna niður skábretti sem hallar um $\theta = 49^{\circ}$ miðað við lárétt.
 - (a) Finnið hröðun kubbsins ef núningsstuðullinn milli kubbsins og skábrettisins er $\mu = 0.2$.
 - (b) Finnið tímann τ sem það tekur kubbinn að renna niður skábrettið ef lengd þess er $\ell=3,2\,\mathrm{m}$.