



#### **Bremsstrahlung**







- Emission from electron-ion encounters is a wide band emission from X-ray to infrared.
- In X-Ray spectral range, the emission has a strong dependence with temperature and can be used for  $T_e$  measurements (not used in present Tokamak anymore)
- In visible range the emission has a weak dependence on frequency and its level is

$$I_{\rm BS} \propto Z_{\rm eff} n_{\rm e}^2 T_{\rm e}^{-1/2}$$





#### SXR bremsstrahlung



Fig. 5.22. Typical emission spectrum from a tokamak plasma, also showing the effects of impurities [after Rice et al. (1982)].



#### Visible- Bremsstr.







- For hv<<T<sub>e</sub>, frequency dependence disappear
- Frequency range must be free from strong impurity line radiation.
- Absolute calibration is needed (easier in visible range)
- If  $\frac{n_e}{n_e}$  and  $T_e$  is known  $Z_{eff}$  can be measured



#### Measurement Example





Example of Zeff obtained on FTU from BS and compared wit resistive Zeff



Layout of FTU Bremsstrahlung line of sight.





# Charge Exchange Spectroscopy CXS (CXRS, CES, CERS)







 Neutral atoms in the plasma (from, for example, a neutral beam) donate electrons to fully ionized impurity ions, producing hydrogen-like ions. As the electrons decay from excited states they emit photons from which the impurity temperature, rotation and density can be measured using conventional spectroscopy

$$H^0 + A^{+q} \longrightarrow H^+ + [A^{+(q-1)}]^*$$



#### CXS



- The CXS is achievable only with active beam have the following capabilities:
  - The dominant, fully ionized stages of low-Z impurities can be studied through detection of the cascade radiation from the hydrogen-like stages
  - Spatial resolution can be achieved without the necessity of inverting chordal data by viewing across the beam
  - Emissions are at wavelengths long enough for making accurate Doppler broadening and shift measurements







Emission from plasma background is subtracted by a second symmetric array of channels. In some devices the background is negligible and only an array is used



Figure 1. Schematic view of a multichannel CXS system on JIPP T-IIU (Ida and Hidekuma 1989).





#### CXS: Emission lines



Figure 2. Spectra taken before and during neutral-beam injection in the ATF stellarator. Beam 1 crosses the field of view of the spectrometer; beam 2 is on the opposite side of the machine.







Charge-exchange spectroscopy as a plasma diagnostic

203

the magnetic field B is given in T, and  $M - M' = 0, \pm 1$ . Making the imation g = g' = 1, leads to a maximum wavelength shift (given by  $\Delta M = \pm 1$ )

$$\left(\frac{\Delta\lambda_{Z}}{\lambda}\right) = 4.669 \times 10^{-9} B(T) \lambda(\text{Å}) \tag{9}$$

$$\frac{\Delta \lambda_{Z}}{\Delta \lambda_{D}} = 6.06^{-5} \left( \frac{M(\text{amu})}{T(\text{eV})} \right)^{1/2} B(T) \lambda(\text{Å}). \tag{10}$$

+, 5292 Å at 1000 eV

$$\frac{\Delta \lambda_z}{100} = 0.105$$



#### CXS on ITER



Agenzia nazionale per le nuove tecnologie. l'energia e lo sviluppo economico sostenibile



Dedicated 100keV 4MW (?) H diagnostic beam because 1MeV

heating beams have very low CX

Electron Energy 10<sup>3</sup> eV

10° Proton or Atom Energy

EDGE CXRS (LOW) • Poor penetration: ok for r/a>0.4 Core and edge systems with different requirements for resolution

 Optical relays to outside VV, then optical fibre arrays to VIS

spectrometers



#### CXS on ITER



Agenzia nazionale per le nuove tecnologie,







#### **Motional Stark Effect**



#### MSE principle



A neutral particle which moves inside the plasma with a speed v, undergoes to an electric field

$$E = V \Leftrightarrow B$$

The electric field induces emission line splitting and polarization of emitted line (Stark Effect)

- The  $\Delta m = 0$  transition ( $\pi$  lines) are linearly polarized parallel to E
- The  $\Delta m = \pm 1$  transition (σ lines) are polarized perpendicular to E when viewed transverse to the field

Neutral beam is used to inject neutral particle inside plasma.

For H beam of 55 keV,  $B_T = 1.3$  T, E = 40 kV/cm



#### MSE measurements



Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile



FIG. 1. The Stark-effect pattern of the Balmer-alpha  $(H_{\alpha})$  transition is shown by the vertical lines. The data points are from a spectral scan of the fractional polarization and the solid curve is numerically calculated.



FIG. 4. Radial scan of the pitch angle.









## Measure the profile of pitch angle of magnetic field

$$\gamma_p(r) = \tan^{-1}(\frac{B_p}{B_T})$$

$$q(r) = \frac{r}{R} \tan \gamma_{p}(r)$$



#### MSE lay-out





FIG. 2. Experimental setup of the diagnostic neutral beam and polarimeter on PBX-M.















## Laser Induced Fluorescence (LIF)







- Impurity can be detected forcing ions to step to high energy level by a laser.
- The ions decay to the ground level emitting a photon (fluorescence)





## First measurement of neutral particles



V.S. Burakov, 1977 – on FT-1 tokamak (USSR)



Quantitative measurement of the neutral particle density: min detect.  $n_o > 10^{11} \text{ m}^{-3}$ 



#### Impurity measurement



l'energia e lo sviluppo economico sostenibile

- High power tunable laser is required.
  - All particles in the illuminated volume must step to higher energetic level
- Low ionized states can be detected
  - Edge diagnostic
  - Frequency dobbler are used to increase the pumping laser range
- Very good precision



Fig. 28. Time evaluation of neutral iron densities for ohr plasma (squares) and for neutral beam (+ ohmic) heate 0.4 MW and 1.0 MW neutral beam power (triangulars respectively) (from [76]).



Plssma Diagnostics

Onofrio Tudisco

plasmas. Three schemes using fluorescence spect presented in Fig. 27 from [75]. Of course, most eff is resonance spectroscopy, but direct-line and fluorescence can also be useful for atom density me Existing dye lasers with nonlinear frequency doub can be operated in the spectral range above 2000 Å up to several MW. Such light sources are most measuring atom densities in the plasma edge [76]. region of the ISX tokamak, laser fluorescence tech applied for measurement of atom densities and velo





### **HXR & SXR Tomography**



#### Tomography: schematic



Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile







## MHD island from tomography



Alcator: Granez 1985



#### FTU





## Fast Electron Bremsstrahlung : schematic



HXR- Tomography: Detect the bremsstrahlung from fast electron generated by LH



