Class T	est No. 10	Thursday 26 th Sep 2019	Duration: 10 Minutes	Closed notes
Name: _			Roll No	
	Choose on	ly one option which is the m	ost appropriate for questio	ns 1 - 5.
	•	nalysis in s-plane context is	concerned with	
•	*	poles in RH s-plane		
		poles in LH s-plane		
		part of poles closest to imagi	•	
<u>(c</u>	d) real part o	f poles closest to imaginary a	<u>X1S</u>	
2. Modif	ied Routh's	method provides the margin	for a stable system by shiftin	g
,	a) real axis u	•		
,		axis to the right		
		axis to the left		
(0	d) real axis d	ownwards		
3. For a	plant having	g stable closed loop, the Nyqu	uist plot intersection with rea	l axis is
(8	a) to the left	of $-1 + j0$		
	b) to the righ	t of -1 + j0		
(0	c) at $-1 + j0$			
(0	d) at -∞			
4. In the	Nyquist plo	t context, a system is said to l	have crossed over when its	
(8	a) magnitude	is 1 and phase is 90°		
(t	b) magnitude	e is -1 and phase is 180°		
<u>(c</u>	c) magnitude	is 1 and phase is 180°		
(0	d) magnitude	e is -1 and phase is 90°		
5. At the	crossover po	oint for a stable closed loop		
		hase crossover frequencies ar	e the same	
		s lie on the imaginary axis in		
	•	over frequency is higher than	<u>-</u>	
<u>(d</u>	d) phase cros	ssover frequency is higher tha	n gain crossover frequency	
~.				
Give sho	ort (1 - 2 line	es) answer to the questions 6	5-10	
6. How 6	does the mod	dified Routh's method provid	e the stability margin?	

Modified Routh's method provides the stability margin by ensuring occurrence of '0' in the 1st column of the Routh's tabulation.

7. Give the general procedure to extract actual stability margin with modified Routh's method.

Actual stability margin is extracted from modified Routh's method by replacing 's' with 'z - σ ' in D(s) and solving for ' σ ' by enforcing the condition of '0' in all 1st column entries.

8. What is the relation between the grid lines with respect to $j\omega$ axis in s-plane and Nyquist plot with respect to -1 + j0 in $G(j\omega)$ plane, in a qualitative sense?

As the grid lines move closer to ' $j\omega$ ' axis, the Nyquist plot also moves closer to -1 + j0.

9. How can we obtain the gain cross over frequency from the Nyquist plot?

Gain crossover frequency can be obtained from Nyquist plot by drawing a phasor of unit length and determining the point on Nyquist plot where it touches the plot.

10. Determine the gain cross over frequency and phase at this frequency for the following plant.

$$G(s) = \frac{10}{s+10}$$

$$|G(j\omega)| = \left|\frac{10}{j\omega + 10}\right| = 1 \rightarrow 100 = \omega^2 + 100 \rightarrow \omega = 0; \quad \angle G(j0) = 0$$