# GROUP OUTLYING ASPECTS MINING

# Jincai Ma

Xi'an Shiyou University, China

#### Introduction

**Project Background** Bike-sharing is not new to us. This report mainly analyzes the data of bike-sharing in Washington, US from 2011 to 2012.

**The Data Source** The data comes from Kaggle https://www.kaggle.com/c/bike-sharing-demand

**Project Purpose** This project is mainly about the prediction of relevant data, and the description and analysis of relevant factors are presented here.

### Related Field Name Interpretation

 datetime season holiday workingday weather temp atemp humidity windspeed casual registered count

### Data Analysis

• Descriptive statistics of the data

|       | season       | holiday      | workingday   | weather      | temp        | atemp        | humidity     | windspeed    | casual       | registered   | coun        |
|-------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|-------------|
| count | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.00000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.000000 | 10886.00000 |
| mean  | 2.506614     | 0.028569     | 0.680875     | 1.418427     | 20.23086    | 23.655084    | 61.886460    | 12.799395    | 36.021955    | 155.552177   | 191.57413   |
| std   | 1.116174     | 0.166599     | 0.466159     | 0.633839     | 7.79159     | 8.474601     | 19.245033    | 8.164537     | 49.960477    | 151.039033   | 181.14445   |
| min   | 1.000000     | 0.000000     | 0.000000     | 1.000000     | 0.82000     | 0.760000     | 0.000000     | 0.000000     | 0.000000     | 0.000000     | 1.00000     |
| 25%   | 2.000000     | 0.000000     | 0.000000     | 1.000000     | 13.94000    | 16.665000    | 47.000000    | 7.001500     | 4.000000     | 36.000000    | 42.00000    |
| 50%   | 3.000000     | 0.000000     | 1.000000     | 1.000000     | 20.50000    | 24.240000    | 62.000000    | 12.998000    | 17.000000    | 118.000000   | 145.00000   |
| 75%   | 4.000000     | 0.000000     | 1.000000     | 2.000000     | 26.24000    | 31.060000    | 77.000000    | 16.997900    | 49.000000    | 222.000000   | 284.00000   |
| max   | 4.000000     | 1.000000     | 1.000000     | 4.000000     | 41.00000    | 45.455000    | 100.000000   | 56.996900    | 367.000000   | 886.000000   | 977.00000   |
| 4     |              |              |              |              |             |              |              |              |              |              | - L         |

- The standard deviation of the number of leases you have to predict at the end is very large. So let's look at the distribution by drawing it.
- Exclude data other than three standards, log of count







• The impact of hour, month, season, year, weekday, working day



## Data Analysis

• The impact of weather



• The impact of temp, atemp, humidity, windspeed





### Data Analysis

• Impact of season, week, registered and non-registered users on cycling usage trends







• Draw the thermal diagram of the correlation coefficient



It can be seen that the correlation from large to small is:registered casual hour temp atemp year month season windspeed weekday holiday workingday weather humidity

#### Conclusion

Through this Kaggle project, I practiced by myself to have a deeper underest of data visualization and to explore the structure and rules of drawing and tabulating.

Acknowledgement

One of IIE, Chinese Academy of Sciences

One of IIE, Chinese Academy of Sciences



The 11<sup>th</sup> International Conference on Knowledge Science, Engineering and Management (KSEM 2018), 17-19/08/2018, Changchun, China