能量刻度与 μ 寿命测量

宇宙线粒子探测与物理实验

朱宇涛 报告人: 王亚朋

2024年10月24日

目录

① 实验目标

② 实验结果

实验目标

实验目标

- 重新测量暗噪声、电子学噪声、μ信号与余波的一些参数;
- 2 测量单光子电荷;
- 3 进行能量刻度;
- 4 测量 μ 寿命。

实验结果

噪声

在 1500V 电压下进行实验, 得到:

- 暗噪声频率 $f_d \approx 10.04$ Hz.
- 电子学噪声振幅 0.5 mV.

μ信号参数

使用甄别器的 4、7 道(甄别电压 $15\,\mathrm{mV}$),测量符合信号。¹

- 左: 电压 1350V 信号宽度: $\Delta X(CH1) = 43.4 \text{ ns.}$ 计数率: $n(CH1) = 2995 \, \text{min}^{-1}$.
- 右: 电压 1500V 信号宽度: $\Delta X(CH2) = 38.4 \,\mathrm{ns}$. 计数率: $n(CH2) = 2014 \, \text{min}^{-1}$.
- 符合 计数率: $n = 859 \,\mathrm{min}^{-1}$

同时计算得到偶然符合计数率

$$n_a = 0.176 \,\mathrm{min}^{-1}.\tag{1}$$

能量刻度与 μ 寿命測量

 $^{^{1}}$ 后续测量与测量 μ 信号的实验条件一致.

余波时间分布

图 1: 所有信号的余波分布

图 2: 存在余波信号的余波分布

单光子电荷

图 3: 单光子电荷

● 単光子电荷量: (1.560 ± 0.245)×10⁻¹¹ V·s

衰减长度

考虑 Error Bar, 重新计算了衰减长度与相关系数:

$$L = 1.643 \pm 0.131 \,\mathrm{m} \tag{2}$$

$$\rho = 0.442. \tag{3}$$

不确定度优于上次结果.

图 6: 能量刻度

图 7: μ寿命

- 测量时长: 56min.
- 测得 μ 寿命: $\tau = 2.026 \pm 0.534 \,\mu s$.