Corpus Linguistics for NLP

Adam Meyers
New York University
2016

Outline

- Text Corpora in NLP
- Corpus Selection
- Corpus Annotation:
 - Purpose
 - Representation Issues
 - Linguistic Methods
 - Measuring Quality
- Role of Corpora & Annotation in Final Projects

Characters, Encodings, Etc.

- A Text Corpus is a set of texts
- Corpora can be derived in different ways
 - Text that was originally electronic (published, letters, etc.)
 - Does it include "non-standard" characters?
 - Transcripts of spoken language
 - No punctuation
 - Possible representation of pauses
 - Possibly including pauses and false starts
 - Optical Character Recognition (with errors)
- Encodings (mappings between bits and characters)
 - Old Standards (English): ASCII (less than 1 byte), ISO-8859 (2 bytes)
 - New standards UTF-8 (back-compat w/ASCII) and UTF-16
 - More characters/alphabets
 - UTF-8 encoded: 1st 128 chars use 1 byte, next 1920 char use 2 bytes, more chars use 3 or 4 bytes
 - UTF-16 encoded in 2-byte and 4-byte units
 - Other encodings: GB (e.g., Chinese), EUC (e.g., Japanese)

Types of Texts

- "Genre" divides text into types along several dimensions
 - Register? (socio-ling division by social setting): Fiction, News,
 Magazine, Scholarly Article, Legal Documents,
 Correspondence, Email, Discussion Groups, Twitter, Text
 Messages, Phone Calls, Instructions, Oral Narratives, Webpages
 - Topic: Sports, Games, Art, Natural Science, Social Science,
 Business, Fiction, Literary Criticism, ...
- Spoken language transcripts have different properties from standard written text (published text, correspondence, etc.)
 - Differences in Basic Units
 - Pauses/intonation, but no punctuation/capitalization
 - If transcribed at all, encoding is not standard
 - Additional lexical items, syntactic phenomena
 - Disfluencies: false starts, stutters, ...
 - "uh", "um", "like",

Choosing a Corpus for a Project

- Specialize in a single type of corpus
 - Simplifies study of a language phenomenon
 - If noted, this is normal for academic studies
 - Particular corpus is appropriate for your project
 - A telephone Question Answer system → corpus of phone conversations
- A "Diverse" Corpus
 - For development of versatile system
 - To focus on common features of different genres
 - Keep corpora separate & focus on adaptability of system
- Your own corpus or an existing standard corpus
 - Own corpus requires preparation, but will be suitable for your needs
 - Removing unwanted fields (tables), formating codes, ...
 - Standard/Shared Corpus: Next Slide

Standard/Shared Corpora

- Why have shared or standard Corpora?
 - Opportunities for comparison and collaboration
 - Use other's expertise/avoid duplicate effort
- Brown Corpus (Kucera and Frances 1967)
 - 1 million words, sort of open source now
 - "balanced" ("diverse" is easier to define)
 - prose fiction, poetry, news, general interest, government documents, biography, ...
- Work using corpora flourished starting in the 1990s
 - Mostly government sponsored, mostly newspaper corpora
 - Wall Street Journal Corpus, incl Penn Treebank (1 million words)
 - Licensed by Linguistic Data Consortium
 - Depends on what was widely available
 - Hansard Corpus Canadian French/English Parliamentary Proceedings
- Return to "diverse" corpora
 - British National Corpus (BNC) 100 million words, 1994
 - American National Corpus, incl Open American National Corpus (OANC) 2004 & ongoing
 - 21 million words (and growing) including (15 mllion words in OANC)

Statistical Info Derivable from Corpora (without Annotation)

- Frequency:
 - words: eat, ate, cats, cat, Mary, because, ...
 - base forms: eat, cat, Mary, because, ...
 - characters: a, e, i, z, q, &, ., 5, 3, ?, @, ..
- Examples of Higher Level Statistics:
 - Frequency of bi-grams: ate the, the cat, house was, ...
 - tri-grams, 4-grams, 5-grams, ... N-grams
 - TF-IDF: Term Freq×Inverse Document Freq
 - TF = Frequency of term in corpus
 - IDF = log (Num of Docs ÷ Num of Docs containing term)
 - Examples: 100 documents, 100 instances of the word cat
 - If all in same document: $100 \times \log(100/1) = 460.5$
 - If 2 each in 50 documents: $100 \times \log(100/50) = 69.3$
 - If 1 each in every document: $100 \times \log(100/100) = 0$
 - Used in Information Retrieval, Terminology Extraction, and other areas

Multi-lingual Corpora

- Parallel Corpora: bi-texts, tri-texts, etc.
 - 2 (or more copora), such that corresponding segments are (literal) translations of each other
 - Useful for Machine Translation
 - Ex: Hansard Corpus
- Comparable Corpora
 - 2 (or more corpora) about similar/same topics,
 e.g., Wikipedia articles in multiple languages

Role of Manual Annotation in CL

- Together, annotation and specifications define a task
 - Can be used to "score" the output of any type of system
- · For supervised machine learning, corpus is divided
 - A Training corpus is used to acquire statistical patterns
 - A **Test** corpus is used to measure system performance
 - A Development corpus is similar to a test corpus
 - Systems are "tuned" to get better results on the Dev corpus
 - Test corpora are used infrequently and system should not be tuned to get better results
- More annotated text often yield more effective patterns
- Different genres may have different properties
 - Systems can "train" separately on different genres
 - Systems can "train" on one diverse corpus

Annotation by Directly Marking Text

- Example: The Penn Treebank
- Input: *This is a sentence*.
- Output: (S (NP (DT This))

 (VP (VBZ is)

 (NP (DT a)

 (NN sentence)))

 (...)
- Can be difficult to align original text with the annotation
 - Spaces, newlines, etc. not explicitly represented
 - Words --> tokens not always obvious
 - cannot --> can/MD not/RB
 - 'Tis \rightarrow T-/PRP is/VBZ
 - fearlast → fear/NN last/JJ
 - token standardization, typos and other accidental changes

Encoding Annotation with a Markup Language

- Input: *This is a sentence*.
- Output: <S><NP><DT>*This*</DT></NP> <VP><VBZ>*is*</VBZ></NP></DT>*a*</DT> <NN>*sentence*</NN></NP><VP><.>.</.>
 - (all on one line, preserving spaces)
- Markup language
 - Markup languages are designed to add information to text and typically distinguish beginning and ending tags <X> vs. </X>
 - Examples
 - HTML language for website creation
 - XML, SGML standards for more specific markup languages
- Programs often treat text and markup separately, e.g., turn markup into instructions (text color = red, bold, underline, italic, hyperlink, ...).
 - Example program: web browser treats html markup as instructions

Markup Annotation: Slide 2

- Annotation is usually designed so deleting the markup will remove all changes
 - sed 's/<[^>]*>//' annotated_file > copy_of_original_file
 - diff original_file copy_of_original_file
- Markup relies on assumption that certain characters will not appear in the original text (< and >)
 - Suppose the corpus included the sentence: "I used an "<NP>" tag today"
 - To handle this special characters are often substituted, e.g., html uses the following codes for ampersands and greater than signs
 - · &
 - >
 - See for example http://rabbit.eng.miami.edu/info/htmlchars.html
 - Same/similar codes are often used in non-html text for NLP pruposes
 - This adds a layer of complexity if one wants to compare (e.g., align) the annotated version with the original text.

Offset Annotation

- Many newer annotation frameworks use annotation that "points" to the original file
 - There is a file of plain text containing the words, sentences,
 etc. being classified.
 - 1 or more annotation files "point" to positions in the original file by means of character offsets from the beginning of the file.
- For example, a tag of the form:
 - <S start="0" end="57"> could mean that there is a sentence beginning at the start of the file and ending 57 characters after the start of the file.
 - As in many programming environments, positions in strings are before and after characters and begin with 0, e.g.,
 - the python slice: '*This string*'[0:4] selects the substring between 0 and 4, assuming: ${}^{0}T^{1}h^{2}i^{3}s^{4} {}^{5}s^{6}t^{7}r^{8}i^{9}n^{10}g^{11}$

Offset Annotation – Slide 2

- Overcomes the shortcomings of other methods
 - No special characters are needed
 - Relation to original text transparent
 - Multiple Annotations with the Same Scheme
 - Easy to Compare
 - Multiple Annotations with Different Schemes
 - Easier to compare, combine, etc.
- Difficult to read without programs (visualization tools, tools that write-out inline tag versions, etc.)
- The Mae tool used for HW1 creates offset annotation

Annotation of Annotation

- Annotation Often Performed in Layers
 - One Project (or phase) Annotates Constituents
 - Another Project (or phase) Annotates Relationships Between Those Constituents
- Typical Cases:
 - Coreference:
 - Constituents X and Y are "mentions" of one Entity
 - Argument Structure
 - Predicate is in relation R with X as ARG1 and Y as ARG2
- 2 Layers of Annotation for: *John and Mary said that they were leaving*.
 - NP₁ = [John and Mary], verb₁ = said, NP₂ = [they], S₁ = [that they were leaving]
 - Coref(NP₁,NP₂), ARG0(verb₁,NP₁),ARG1(verb₁,S₁)
- Examples of Projects: ACE, Penn Treebank + PropBank, NomBank and PDTB

Annotation Entry Tools

- Help humans create computationally viable annotation
 - simulate inline annotation, while creating offset annotation
- Well-formedness
 - Only legal labels are permitted
 - Other constraints can be hard-coded (e.g., distance)
 - Constraints can be automated
 - Warning statements can be included for "unusual" labelings
- Ease of Annotation
 - Specification help menus can be included
 - System can automatically propose next item
 - Common options can be automated, e.g., previous tags for particular strings can be proposed by system

The MAE annotation tool

- Original (Amber Stubbs at Brandeis):
 - http://code.google.com/p/mae-annotation/
- Alternative version (modified at NYU by Giancarlo Lee):
 - http://nlp.cs.nyu.edu/meyers/IE_TECH_NYU.html
- java -jar mae.jar
- Write dtd file: specifications for annotation
- Load txt file and create xml file
- Process
 - Mae separates the document into 2 XML fields:
 - Copy of original text between: "<TEXT><![CDATA[" and "]]></TEXT>"
 - Annotation between <TAGS> and </TAGS>
- Annotation of entities is offset annotation
- Annotation of relations: refers to entity annotation

AttributionTask Example

- Let's do a little bit of sample "AttributionTask"
 - Load dtd file
 - Load file
- Let's assume the following specifications:
 - The ATTRIBUTION relation links a COMMUNICATOR with a MESSAGE
 - A COMMUNICATOR is an NP that is capable of making a statement. Subcategories include
 - person: fictional or nonfictional human being or a set of people
 - government_entity: country or organization run by a government
 - nongov organization: corporation, nonprofit, etc. group with a structure
 - Other: must be capable of having a message, e.g., a book/text, cartoon duck, etc.
 - A Message must be either quoted material or a complete sentence, subcategories include
 - direct_quote a quoted sentence
 - indirect_quote complement clause (e.g., with "that")
 - mixed_quote sentence, part of which is quoted
 - insinutated_attribution sentence associated with communicator in some other way
 - other: must be a message; must be a sentence that someone communicates, but not covered by specs.

AttributionTask Slide 2

- Let's look at the output file in emacs (my preferred text editor)
- In this output, character positions begin at the end of [CDATA]
 - i.e., = 0
- Ctrl-U N does following command N times
 - Ctrl-u N Ctrl-f moves forward N spaces
- The relation (ATTRBIUTION) refer to the IDs of the entities: COMMUNICATOR and MESSAGE
- Each annotated tag has several feature=value pairs
 - Some are calculated by the program start/end
 - Others we added in explicitly (function/type/comment)

Now Let's Look at the Penn Treebank and NomBank

- Penn Treebank: wsj_0003.mrg
 - In emacs, Cntrl-Meta-B and Cntrl-Meta-N are useful for finding corresponding brackets particularly in lisp-mode
- NomBank (and PropBank): wsj_0003.nombank
 - Identifies nodes in Penn Treebank Trees
 - Token:length-of-path-from-first-leaf
 - wsj/00/wsj_0003.mrg 10 13 amount 01 5:1*8:0-ARG1 7:0,9:0-Support 13:0-rel
 - File = wsj_0003
 - Tree = 10 (11th tree because count starts with 0)
 - predicate amount(s) = token 11 (staring with 0)
 - sense/roleset number 01 see lexical entry
 - ARG1 = (NP-SBJ-1 (NN asbestos)) as connected to its empty category
 - Support Chain = used + in (tokens 7 and 9)

Designing Content Component of Annotation Task

- Goals:
 - Task must describe desired phenomena
 - Humans must be able to make distinctions consistently
- Write detailed specs and test them on data
 - Use multiple annotators
 - Do annotators agree N %
 - Easy task: N>90%
 - Medium Task: N>85%
 - Difficult Task: N>70%, ...
 - Annotator Agreement is Upper Bound for System Output Quality
 - Different levels of agreement may be required for different applications
- If results are insufficient, revise specs and test new specs again
 - Repeat until results are good enough for your purpose

Measuring Annotation Quality

Popular, but imperfect measurement of agreement:

$$\textit{Kappa} = \frac{\textit{Percent} \left(\textit{Actual Agreement}\right) - \textit{Prob}\left(\textit{Chance Agreement}\right)}{1 - \textit{Prob}\left(\textit{Chance Agreement}\right)}$$

- Kappa works provided it is possible to estimate "chance agreement"
 - For POS tagging each token gets exactly one tag. So estimates can be based on:
 - tags assigned to previous instances of token
 - tags assigned to tokens in general
- Multiply annotated data can be adjudicated and then each annotator can be scored against the corrected annotation. These same scores are often used for system evaluations:

$$Recall = \frac{|Correct|}{|Answer Key|} \quad Precision = \frac{|Correct|}{|System Output|} \quad F - Score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

$$Computational \ Linguistics \ Lecture \ 5$$

$$2016$$

Annotation Tasks Vary in Difficulty

- Penn Treebank Part of Speech Tagging
 - Approximately 97% accuracy/agreement
 - Annotation = Fast process
- Penn Treebank Bracketing Annotation
 - Mid 90s? (a guess)
 - Now mostly by one experienced annotator (Ann Bies)
- PropBank Approximately 93%
 - About 1 instance per minute
- NomBank Approximately 85%
 - About 1 instance per 2 minutes
- Temporal Relations (big variation, approx 75%)
- Sentiment Annotation (about 75%)

Who Should Annotate?

- Most Common for Difficult Annotation
 - Linguistics Academics: PostDocs and Students
 - Penn Treebank: Ann Bies
 - Other Experts: Classics students
 - Researchers (small projects)
 - Domain Experts (biology, physics, etc.)
- Crowd Sourcing
 - For easier annotation tasks
 - Some research breaking down hard tasks into sequences of easy ones

Crowd Sourcing

- Unknown annotators contribute via a web browser
- Tasks formulated so non-experts can do OK
 - break down decisions into multiple choice questions
 - use qualification tests
 - do more annotation and filter through consensus
- Amazon Turk: currently the most common conduit
 - Inexpensive (including Amazon's commission)
- Some People have set up their own sites, e.g.:
 - https://anawiki.essex.ac.uk/phrasedetectives/
- Limitation: difficult to formulate sophisticated tasks for crowd sourcing

URLs for Corpora w/English Bias

- Organizations that distribute corpora (and other resources) for fees
 - Linguistic Data Consortium: https://www.ldc.upenn.edu/
 - European Language Resource Association: http://www.elra.info/
- The British National Corpus: http://www.natcorp.ox.ac.uk/
- American National Corpus (including OANC):
 - http://www.americannationalcorpus.org/
- The Brown Corpus (also through NLTK)
 - http://www.hit.uib.no/icame/brown/bcm.html
 - https://archive.org/details/BrownCorpus
- PubMed Corpus of Scientific Abstracts: http://www.americancorpus.org/
- Links to more links: http://www.americancorpus.org/
- Legal Cases: https://www.courtlistener.com/api/bulk-info/
 - requires registration
 Computational Linguistics Lecture 5

Annotation Project URLs w/ English Bias

- Examples of Shared Tasks with Associated Corpora & Annotation
 - Automatic Content Extraction: Coreference, Named Entities, Relations, Events,
 English, Arabic, Chinese, Spanish (little bit) organized by US government
 - https://www.ldc.upenn.edu/collaborations/past-projects/ace
 - CONLL (yearly since 1997, diverse, internationally organized)
 - http://ifarm.nl/signll/conll/
 - I was on the committee for the 2008 & 2009 tasks
 - BIONLP (yearly IE task for biological texts)
 - http://aclweb.org/aclwiki/index.php?title=SIGBIOMED
- Penn Treebank: http://www.cis.upenn.edu/~treebank/
- PropBank: http://verbs.colorado.edu/~mpalmer/projects/ace.html
- NomBank: http://nlp.cs.nyu.edu/meyers/NomBank.html
- Penn Discource Treebank: http://www.seas.upenn.edu/~pdtb/
- TimeML (incl TimeBank): http://www.timeml.org/site/index.html
- Pittsburgh Opinion Annotation: http://mpqa.cs.pitt.edu/

Role of Corpora & Annotation in Final Projects

- Programming projects usually require corpora
 - To run system on consistent, well-defined sets of data
- Annotated Data
 - Test Corpus = Answer Key
 - Training & Dev Sets To develop system and/or train statistical systems
- Multi-Student Projects
 - Some students can be responsible for annotation
 - Creating and Tuning Specifications
 - Annotating and Scoring (Measuring Annotation Quality)
 - Other students can be responsible for creating systems using annotation
- Corpus Creation and/or Annotation Can also be Main Topic of Project
- Crowd Sourcing Another Possible Technique/Topic
 - Designing Tasks for Crowd Sourcing
 - Combining Crowd Sourced Results

Corpus Being Developed at NYU

- Court Listener Court Opinion Database
 - https://free.law/tag/courtlistener.html
 - Collects and Distributes Court Opinions
 - Provides some Search Capabilities
 - Json format
 - Metadata and text with inline annotation
- Web of Law Project at NYU
 - Creating text plus offset annotation from Court Listener
 - Identifying entities in text: Citations, parties, dates, legal_roles (defendant, appellant, complainant, ...),
 professions, organizations, judges, people names, terminology, legislation, ...
 - Citation Graph connecting citations with files in the corpus or simply identifying which citations are being cited (from previous student project)
 - Identifying relations in text
 - Equivalence, Date, Role, Profession, Is_party_of, ...
 - Current student projects:
 - Is citation being cited for appellant or appellee?
 - Clustering cases based on the terms they contain
- Planned release of 64K supreme court documents with some markup and citation graph for class use.

