Intervals, Transformations, and Slope Solution (version 171)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-10, -6) \cup (5, 9)$
Negative	$(-6,5) \cup (9,10)$
Increasing	$(-10, -8) \cup (-4, 8)$
Decreasing	$(-8, -4) \cup (8, 10)$
Domain	(-10, 10)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 171)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=29$ and $x_2=56$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 2 & 29 \\ 26 & 56 \\ 29 & 26 \\ 56 & 2 \\ \end{array}$$

$$\frac{g(56) - g(29)}{56 - 29} = \frac{2 - 26}{56 - 29} = \frac{-24}{27}$$

The greatest common factor of -24 and 27 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-8}{9}$$

2