MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER

SLAS272D - JULY 2000 - REVISED MARCH 2003

- Low Supply-Voltage Range, 1.8 V . . . 3.6 V
- Ultralow-Power Consumption:
 - Active Mode: 280 μA at 1 MHz, 2.2V
 - Standby Mode: 1.6 μA
 - Off Mode (RAM Retention): 0.1 μA
- Five Power-Saving Modes
- Wake-Up From Standby Mode in 6 μs
- 16-Bit RISC Architecture,
 125-ns Instruction Cycle Time
- 12-Bit A/D Converter With Internal Reference, Sample-and-Hold and Autoscan Feature
- 16-Bit Timer_B With Seven
 Capture/Compare-With-Shadow Registers
- 16-Bit Timer_A With Three Capture/Compare Registers
- On-Chip Comparator
- Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse

- Serial Communication Interface (USART), Functions as Asynchronous UART or Synchronous SPI Interface
 - Two USARTs (USART0, USART1) MSP430x14x Devices
 - One USART (USART0) MSP430x13x Devices
- Family Members Include:
 - MSP430F133:

8KB+256B Flash Memory, 256B RAM

- MSP430F135:

16KB+256B Flash Memory, 512B RAM

- MSP430F147:

32KB+256B Flash Memory, 1KB RAM

- MSP430F148:

48KB+256B Flash Memory, 2KB RAM

- MSP430F149:

60KB+256B Flash Memory, 2KB RAM

- Available in 64-Pin Quad Flat Pack (QFP)
- For Complete Module Descriptions, See the MSP430x1xx Family User's Guide, Literature Number SLAU049

description

The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs.

The MSP430x13x and the MSP430x14x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter, one or two universal serial synchronous/asynchronous communication interfaces (USART), and 48 I/O pins.

Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system. The timers make the configurations ideal for industrial control applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AVAILABLE OPTIONS

	PACKAGED DEVICES
TA	PLASTIC 64-PIN QFP (PM)
-40°C to 85°C	MSP430F133IPM MSP430F135IPM MSP430F147IPM MSP430F148IPM MSP430F149IPM

pin designation, MSP430F133, MSP430F135

pin designation, MSP430F147, MSP430F148, MSP430F149

functional block diagrams

MSP430x13x

MSP430x14x

Terminal Functions

TERMINAL			DECODIFICAL	
NAME	NO.	I/O	DESCRIPTION	
AVCC	64		Analog supply voltage, positive terminal. Supplies only the analog portion of the analog-to-digital converter.	
AVSS	62		Analog supply voltage, negative terminal. Supplies only the analog portion of the analog-to-digital converter.	
DV _{CC}	1		Digital supply voltage, positive terminal. Supplies all digital parts.	
DV _{SS}	63		Digital supply voltage, negative terminal. Supplies all digital parts.	
P1.0/TACLK	12	I/O	General digital I/O pin/Timer_A, clock signal TACLK input	
P1.1/TA0	13	I/O	General digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output	
P1.2/TA1	14	I/O	General digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output	
P1.3/TA2	15	I/O	General digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output	
P1.4/SMCLK	16	I/O	General digital I/O pin/SMCLK signal output	
P1.5/TA0	17	I/O	General digital I/O pin/Timer_A, compare: Out0 output	
P1.6/TA1	18	I/O	General digital I/O pin/Timer_A, compare: Out1 output	
P1.7/TA2	19	I/O	General digital I/O pin/Timer_A, compare: Out2 output/	
P2.0/ACLK	20	I/O	General digital I/O pin/ACLK output	
P2.1/TAINCLK	21	I/O	General digital I/O pin/Timer_A, clock signal at INCLK	
P2.2/CAOUT/TA0	22	I/O	General digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output	
P2.3/CA0/TA1	23	I/O	General digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input	
P2.4/CA1/TA2	24	I/O	General digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input	
P2.5/Rosc	25	I/O	General-purpose digital I/O pin, input for external resistor defining the DCO nominal frequency	
P2.6/ADC12CLK	26	I/O	General digital I/O pin, conversion clock – 12-bit ADC	
P2.7/TA0	27	I/O	General digital I/O pin/Timer_A, compare: Out0 output	
P3.0/STE0	28	I/O	General digital I/O, slave transmit enable – USART0/SPI mode	
P3.1/SIMO0	29	I/O	General digital I/O, slave in/master out of USART0/SPI mode	
P3.2/SOMI0	30	I/O	General digital I/O, slave out/master in of USART0/SPI mode	
P3.3/UCLK0	31	I/O	General digital I/O, external clock input – USARTO/UART or SPI mode, clock output – USARTO/SPI mode	
P3.4/UTXD0	32	I/O	General digital I/O, transmit data out – USART0/UART mode	
P3.5/URXD0	33	I/O	General digital I/O, receive data in – USART0/UART mode	
P3.6/UTXD1 [†]	34	I/O	General digital I/O, transmit data out – USART1/UART mode	
P3.7/URXD1 [†]	35	I/O	General digital I/O, receive data in – USART1/UART mode	
P4.0/TB0	36	I/O	General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR0	
P4.1/TB1	37	I/O	General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR1	
P4.2/TB2	38	I/O	General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR2	
P4.3/TB3†	39	I/O	General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR3	
P4.4/TB4 [†]	40	I/O	General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR4	
P4.5/TB5†	41	I/O	General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR5	
P4.6/TB6†	42	I/O	General-purpose digital I/O, capture I/P or PWM output port – Timer_B7 CCR6	
P4.7/TBCLK	43	I/O	General-purpose digital I/O, input clock TBCLK – Timer_B7	
P5.0/STE1 [†]	44	I/O	General-purpose digital I/O, slave transmit enable – USART1/SPI mode	
P5.1/SIMO1 [†]	45	I/O	General-purpose digital I/O slave in/master out of USART1/SPI mode	
P5.2/SOMI1 [†]	46	I/O	General-purpose digital I/O, slave out/master in of USART1/SPI mode	
P5.3/UCLK1 [†]	47	I/O	General-purpose digital I/O, external clock input – USART1/UART or SPI mode, clock output – USART1/SPI mode	
P5.4/MCLK	48	I/O	General-purpose digital I/O, main system clock MCLK output	
P5.5/SMCLK	49	I/O	General-purpose digital I/O, submain system clock SMCLK output	

^{† 14}x devices only

Terminal Functions (Continued)

TERMINAL				
NAME	NO.	I/O	DESCRIPTION	
P5.6/ACLK	50	I/O	General-purpose digital I/O, auxiliary clock ACLK output	
P5.7/TboutH	51	I/O	General-purpose digital I/O, switch all PWM digital output ports to high impedance – Timer_B7 TB0 to TB6	
P6.0/A0	59	I/O	General digital I/O, analog input a0 – 12-bit ADC	
P6.1/A1	60	I/O	General digital I/O, analog input a1 – 12-bit ADC	
P6.2/A2	61	I/O	General digital I/O, analog input a2 – 12-bit ADC	
P6.3/A3	2	I/O	General digital I/O, analog input a3 – 12-bit ADC	
P6.4/A4	3	I/O	General digital I/O, analog input a4 – 12-bit ADC	
P6.5/A5	4	I/O	General digital I/O, analog input a5 – 12-bit ADC	
P6.6/A6	5	I/O	General digital I/O, analog input a6 – 12-bit ADC	
P6.7/A7	6	I/O	General digital I/O, analog input a7 – 12-bit ADC	
RST/NMI	58	I	Reset input, nonmaskable interrupt input port, or bootstrap loader start (in Flash devices).	
TCK	57	I	Test clock. TCK is the clock input port for device programming test and bootstrap loader start (in Flash devices).	
TDI	55	I	Test data input. TDI is used as a data input port. The device protection fuse is connected to TDI.	
TDO/TDI	54	I/O	Test data output port. TDO/TDI data output or programming data input terminal	
TMS	56	I	Test mode select. TMS is used as an input port for device programming and test.	
Ve _{REF+}	10	I/P	Input for an external reference voltage to the ADC	
V _{REF+}	7	0	Output of positive terminal of the reference voltage in the ADC	
V _{REF} _/Ve _{REF} _	11	0	Negative terminal for the ADC's reference voltage for both sources, the internal reference voltage, or an external applied reference voltage	
XIN	8	I	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.	
XOUT/TCLK	9	I/O	Output terminal of crystal oscillator XT1 or test clock input	
XT2IN	53	I	Input port for crystal oscillator XT2. Only standard crystals can be connected.	
XT2OUT	52	0	Output terminal of crystal oscillator XT2	

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g. ADD R4,R5	R4 + R5> R5
Single operands, destination only	e.g. CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	e.g. JNE	Jump-on-equal bit = 0

Table 2. Address Mode Descriptions

ADDRESS MODE	s	D	SYNTAX	EXAMPLE	OPERATION
Register	~	1	MOV Rs,Rd	MOV R10,R11	R10 —> R11
Indexed	~	1	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)—> M(6+R6)
Symbolic (PC relative)	~	1	MOV EDE,TONI		M(EDE)> M(TONI)
Absolute	~	1	MOV and MEM,and TCDAT		M(MEM)> M(TCDAT)
Indirect	~		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	~		MOV @Rn+,Rm	MOV @R10+,R11	M(R10) —> R11 R10 + 2—> R10
Immediate	1		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

NOTE: S = source D = destination

MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER

SLAS272D - JULY 2000 - REVISED MARCH 2003

operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode AM;
 - All clocks are active
- Low-power mode 0 (LPM0);
 - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled
- Low-power mode 1 (LPM1);
 - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled DCO's dc-generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2);
 - CPU is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator remains enabled
 ACLK remains active
- Low-power mode 3 (LPM3);
 - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator is disabled ACLK remains active
- Low-power mode 4 (LPM4);
 - CPU is disabled
 ACLK is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator is disabled
 Crystal oscillator is stopped

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh – 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-up External Reset Watchdog Flash memory	WDTIFG KEYV (see Note 1)	Reset	0FFFEh	15, highest
NMI Oscillator Fault Flash memory access violation	NMIIFG (see Notes 1 & 4) OFIFG (see Notes 1 & 4) ACCVIFG (see Notes 1 & 4)	(Non)maskable (Non)maskable (Non)maskable	0FFFCh	14
Timer_B7 (see Note 5)	TBCCR0 CCIFG (see Note 2)	Maskable	0FFFAh	13
Timer_B7 (see Note 5)	TBCCR1 to 6 CCIFGs, TBIFG (see Notes 1 & 2)	Maskable	0FFF8h	12
Comparator_A	CAIFG	Maskable	0FFF6h	11
Watchdog timer	WDTIFG	Maskable	0FFF4h	10
USART0 receive	URXIFG0	Maskable	0FFF2h	9
USART0 transmit	UTXIFG0	Maskable	0FFF0h	8
ADC12	ADC12IFG (see Notes 1 & 2)	Maskable	0FFEEh	7
Timer_A3	TACCR0 CCIFG (see Note 2)	Maskable	0FFECh	6
Timer_A3	TACCR1 CCIFG, TACCR2 CCIFG, TAIFG (see Notes 1 & 2)	Maskable	0FFEAh	5
I/O port P1 (eight flags)	P1IFG.0 (see Notes 1 & 2) To P1IFG.7 (see Notes 1 & 2)	Maskable	0FFE8h	4
USART1 receive	URXIFG1	Maskable	0FFE6h	3
USART1 transmit	UTXIFG1		0FFE4h	2
I/O port P2 (eight flags)	P2IFG.0 (see Notes 1 & 2) To P2IFG.7 (see Notes 1 & 2)	Maskable	0FFE2h	1
			0FFE0h	0, lowest

- NOTES: 1. Multiple source flags
 - 2. Interrupt flags are located in the module.
 - 3. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event.
 - 4. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable
 - 5. Timer_B7 in MSP430x14x family has 7 CCRs; Timer_B3 in MSP430x13x family has 3 CCRs. In Timer_B3 there are only interrupt flags TBCCR0, 1, and 2 CCIFGs and the interrupt-enable bits TBCCTL0, 1, and 2 CCIEs.

special function registers

Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access.

interrupt enable 1 and 2

WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog

timer is configured in interval timer mode.

OFIE: Oscillator-fault-interrupt enable
NMIIE: Nonmaskable-interrupt enable

ACCVIE: Flash access violation interrupt enable

URXIE0: USART0, UART, and SPI receive-interrupt enable UTXIE0: USART0, UART, and SPI transmit-interrupt enable

URXIE1: USART1, UART, and SPI receive-interrupt enable UTXIE1: USART1, UART, and SPI transmit-interrupt enable

interrupt flag register 1 and 2

WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on V_{CC}

power up or a reset condition at the RST/NMI pin in reset mode.

OFIFG: Flag set on oscillator fault

NMIIFG: Set via RST/NMI pin

URXIFG0: USART0, UART, and SPI receive flag UTXIFG0: USART0, UART, and SPI transmit flag

URXIFG1: USART1, UART, and SPI receive flag UTXIFG1: USART1, UART, and SPI transmit flag

MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER

SLAS272D - JULY 2000 - REVISED MARCH 2003

module enable registers 1 and 2

7 6 5 **Address** UTXE0 URXE0 04h **USPIE0** rw-0 rw-0

URXE0: USART0, UART receive enable UTXE0: USART0, UART transmit enable

USPIE0: USARTO, SPI (synchronous peripheral interface) transmit and receive enable

Address UTXE1 URXE1 05h USPIE1 rw-0

URXE1: USART1, UART receive enable UTXE1: USART1, UART transmit enable

USPIE1: USART1, SPI (synchronous peripheral interface) transmit and receive enable

Bit Can Be Read and Written Legend: rw:

rw-0: Bit Can Be Read and Written. It Is Reset by PUC.

rw-0

SFR Bit Not Present in Device

memory organization

		MSP430F133	MSP430F135	MSP430F147	MSP430F148	MSP430F149
Memory Main: interrupt vector	Size	8kB	16kB	32kB	48kB	60kB
	Flash	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h	0FFFFh – 0FFE0h
Main: code memory	Flash	0FFFFh - 0E000h	0FFFFh - 0C000h	0FFFFh - 08000h	0FFFFh - 04000h	0FFFFh - 01100h
Information memory	Size	256 Byte	256 Byte	256 Byte	256 Byte	256 Byte
	Flash	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h
Boot memory	Size	1kB	1kB	1kB	1kB	1kB
	ROM	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h
RAM	Size	256 Byte 02FFh – 0200h	512 Byte 03FFh – 0200h	1kB 05FFh – 0200h	2kB 09FFh – 0200h	2kB 09FFh – 0200h
Peripherals	16-bit	01FFh - 0100h	01FFh - 0100h	01FFh - 0100h	01FFh — 0100h	01FFh — 0100h
	8-bit	0FFh - 010h	0FFh - 010h	0FFh - 010h	0FFh — 010h	0FFh — 010h
	8-bit SFR	0Fh - 00h	0Fh - 00h	0Fh - 00h	0Fh — 00h	0Fh — 00h

bootstrap loader (BSL)

The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089.

flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A and B can be erased individually, or as a group with segments 0–n.
 Segments A and B are also called *information memory*.
- New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use.

peripherals

Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions.

digital I/O

There are six 8-bit I/O ports implemented—ports P1 through P6:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
- Read/write access to port-control registers is supported by all instructions.

oscillator and system clock

The clock system in the MSP430x13x and MSP43x14x family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

watchdog timer

The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

multiplication (MSP430x14x Only)

The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16 , 16×8 , 8×16 , and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required.

USARTO

The MSP430x13x and the MSP430x14x have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.

USART1 (MSP430x14x Only)

The MSP430x14x has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. Operation of USART1 is identical to USART0.

MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER

SLAS272D - JULY 2000 - REVISED MARCH 2003

timer_A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

timer_B7 (MSP430x14x Only)

Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

timer B3 (MSP430x13x Only)

Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

comparator_A

The primary function of the comparator_A module is to support precision slope analog—to—digital conversions, battery—voltage supervision, and monitoring of external analog signals.

ADC12

The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.

peripheral file map

	PERIPHERALS WITH WORD ACCES	SS	
Watchdog	Watchdog Timer control	WDTCTL	0120h
Timer_B7	Timer_B interrupt vector	TBIV	011Eh
Timer_B3	Timer_B control	TBCTL	0180h
(see Note 1)	Capture/compare control 0	TBCCTL0	0182h
	Capture/compare control 1	TBCCTL1	0184h
	Capture/compare control 2	TBCCTL2	0186h
	Capture/compare control 3	TBCCTL3	0188h
	Capture/compare control 4	TBCCTL4	018Ah
	Capture/compare control 5	TBCCTL5	018Ch
	Capture/compare control 6	TBCCTL6	018Eh
	Timer_B register	TBR	0190h
	Capture/compare register 0	TBCCR0	0192h
	Capture/compare register 1	TBCCR1	0194h
	Capture/compare register 2	TBCCR2	0196h
	Capture/compare register 3	TBCCR3	0198h
	Capture/compare register 4	TBCCR4	019Ah
	Capture/compare register 5	TBCCR5	019Ch
	Capture/compare register 6	TBCCR6	019Eh
Timer_A3	Timer_A interrupt vector	TAIV	012Eh
_	Timer_A control	TACTL	0160h
	Capture/compare control 0	TACCTL0	0162h
	Capture/compare control 1	TACCTL1	0164h
	Capture/compare control 2	TACCTL2	0166h
	Reserved		0168h
	Reserved		016Ah
	Reserved		016Ch
	Reserved		016Eh
	Timer_A register	TAR	0170h
	Capture/compare register 0	TACCR0	0172h
	Capture/compare register 1	TACCR1	0174h
	Capture/compare register 2	TACCR2	0174h
	Reserved	17100112	0178h
	Reserved		0176h
	Reserved		017An
	Reserved		0176h
Multiply	Sum extend	SUMEXT	017Eh
(MSP430x14x only)	Result high word	RESHI	013Ch
,	Result low word	RESLO	013Ch
	Second operand	OP2	013An
	Multiply signed +accumulate/operand1	MACS	0136h
	Multiply+accumulate/operand1	MAC	0136h
	Multiply signed/operand1	MPYS	
	, , , ,		0132h
	Multiply unsigned/operand1 n MSP430x14x family has 7 CCR. Timer B3 in	MPY	0130h

NOTE 1: Timer_B7 in MSP430x14x family has 7 CCR, Timer_B3 in MSP430x13x family has 3 CCR.

peripheral file map (continued)

	PERIPHERALS WITH WORD ACCESS (CONTINUED)	
Flash	Flash control 3	FCTL3	012Ch
	Flash control 2	FCTL2	012Ah
	Flash control 1	FCTL1	0128h
ADC12	Conversion memory 15	ADC12MEM15	015Eh
	Conversion memory 14	ADC12MEM14	015Ch
	Conversion memory 13	ADC12MEM13	015Ah
	Conversion memory 12	ADC12MEM12	0158h
	Conversion memory 11	ADC12MEM11	0156h
	Conversion memory 10	ADC12MEM10	0154h
	Conversion memory 9	ADC12MEM9	0152h
	Conversion memory 8	ADC12MEM8	0150h
	Conversion memory 7	ADC12MEM7	014Eh
	Conversion memory 6	ADC12MEM6	014Ch
	Conversion memory 5	ADC12MEM5	014Ah
	Conversion memory 4	ADC12MEM4	0148h
	Conversion memory 3	ADC12MEM3	0146h
	Conversion memory 2	ADC12MEM2	0144h
	Conversion memory 1	ADC12MEM1	0142h
	Conversion memory 0	ADC12MEM0	0140h
	Interrupt-vector-word register	ADC12IV	01A8h
	Inerrupt-enable register	ADC12IE	01A6h
	Inerrupt-flag register	ADC12IFG	01A4h
	Control register 1	ADC12CTL1	01A2h
	Control register 0	ADC12CTL0	01A0h
	ADC memory-control register15	ADC12MCTL15	08Fh
	ADC memory-control register14	ADC12MCTL14	08Eh
	ADC memory-control register13	ADC12MCTL13	08Dh
	ADC memory-control register12	ADC12MCTL12	08Ch
	ADC memory-control register11	ADC12MCTL11	08Bh
	ADC memory-control register10	ADC12MCTL10	08Ah
	ADC memory-control register9	ADC12MCTL9	089h
	ADC memory-control register8	ADC12MCTL8	088h
	ADC memory-control register7	ADC12MCTL7	087h
	ADC memory-control register6	ADC12MCTL6	086h
	ADC memory-control register5	ADC12MCTL5	085h
	ADC memory-control register4	ADC12MCTL4	084h
	ADC memory-control register3	ADC12MCTL3	083h
	ADC memory-control register2	ADC12MCTL2	082h
	ADC memory-control register1	ADC12MCTL1	081h
	ADC memory-control register0	ADC12MCTL0	080h

peripheral file map (continued)

	PERIPHERALS WITH BYTE ACC	CESS	
USART1	Transmit buffer	U1TXBUF	07Fh
(Only in 'x14x)	Receive buffer	U1RXBUF	07Eh
	Baud rate	U1BR1	07Dh
	Baud rate	U1BR0	07Ch
	Modulation control	U1MCTL	07Bh
	Receive control	U1RCTL	07Ah
	Transmit control	U1TCTL	079h
	USART control	U1CTL	078h
USART0	Transmit buffer	U0TXBUF	077h
	Receive buffer	U0RXBUF	076h
	Baud rate	U0BR1	075h
	Baud rate	U0BR0	074h
	Modulation control	U0MCTL	073h
	Receive control	U0RCTL	072h
	Transmit control	U0TCTL	071h
	USART control	U0CTL	070h
Comparator_A	Comparator_A port disable	CAPD	05Bh
	Comparator_A control2	CACTL2	05Ah
	Comparator_A control1	CACTL1	059h
Basic Clock	Basic clock system control2	BCSCTL2	058h
	Basic clock system control1	BCSCTL1	057h
	DCO clock frequency control	DCOCTL	056h
Port P6	Port P6 selection	P6SEL	037h
	Port P6 direction	P6DIR	036h
	Port P6 output	P6OUT	035h
	Port P6 input	P6IN	034h
Port P5	Port P5 selection	P5SEL	033h
	Port P5 direction	P5DIR	032h
	Port P5 output	P5OUT	031h
	Port P5 input	P5IN	030h
Port P4	Port P4 selection	P4SEL	01Fh
	Port P4 direction	P4DIR	01Eh
	Port P4 output	P4OUT	01Dh
	Port P4 input	P4IN	01Ch
Port P3	Port P3 selection	P3SEL	01Bh
	Port P3 direction	P3DIR	01Ah
	Port P3 output	P3OUT	019h
	Port P3 input	P3IN	018h
Port P2	Port P2 selection	P2SEL	02Eh
	Port P2 interrupt enable	P2IE	02Dh
	Port P2 interrupt-edge select	P2IES	02Ch
	Port P2 interrupt flag	P2IFG	02Bh
	Port P2 direction	P2DIR	02Ah
	Port P2 output	P2OUT	029h
	Port P2 input	P2IN	028h

MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER

SLAS272D - JULY 2000 - REVISED MARCH 2003

peripheral file map (continued)

PERIPHERALS WITH BYTE ACCESS				
Port P1	Port P1 selection	P1SEL	026h	
	Port P1 interrupt enable	P1IE	025h	
	Port P1 interrupt-edge select	P1IES	024h	
	Port P1 interrupt flag	P1IFG	023h	
	Port P1 direction	P1DIR	022h	
	Port P1 output	P1OUT	021h	
	Port P1 input	P1IN	020h	
Special Functions	SFR module enable 2	ME2	005h	
	SFR module enable 1	ME1	004h	
	SFR interrupt flag2	IFG2	003h	
	SFR interrupt flag1	IFG1	002h	
	SFR interrupt enable2	IE2	001h	
	SFR interrupt enable1	IE1	000h	

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Voltage applied at V _{CC} to V _{SS}	0.3 V to + 4.1 V
Voltage applied to any pin (referenced to V _{SS})	0.3 V to V _{CC} +0.3 V
Diode current at any device terminal	±2 mA
Storage temperature (unprogrammed device)	–55°C to 150°C
Storage temperature (programmed device)	40°C to 85°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE: All voltages referenced to VSS.

recommended operating conditions

PARAM	ETER		MIN	NOM MAX	UNITS
Supply voltage during program execution, $V_{\hbox{CC}}$ (A	$V_{CC} = DV_{CC} = V_{CC}$	MSP430F13x, MSP430F14x	1.8	3.6	V
Supply voltage during flash memory programming $(AV_{CC} = DV_{CC} = V_{CC})$, V _{CC}	MSP430F13x, MSP430F14x	2.7	3.6	V
Supply voltage, V _{SS} (AV _{SS} = DV _{SS} = V _{SS})			0.0	0.0	V
Operating free-air temperature range, T _A		MSP430x13x MSP430x14x	-40	85	°C
	LF selected, XTS=0	Watch crystal		32768	Hz
LFXT1 crystal frequency, f(LFXT1) (see Notes 1 and 2)	XT1 selected, XTS=1	Ceramic resonator	450	8000	kHz
(see Notes 1 and 2)	XT1 selected, XTS=1	Crystal	1000	8000	kHz
VTO amostal for many and f	Ceramic resonator	450	8000		
T2 crystal frequency, f _(XT2)		Crystal	1000	8000	kHz
D		V _{CC} = 1.8 V	DC	4.15	
Processor frequency (signal MCLK), f(System)		V _{CC} = 3.6 V	DC	8	MHz
Flash-timing-generator frequency, f(FTG)		MSP430F13x, MSP430F14x	257	476	kHz
Cumulative program time, t _(CPT) (see Note 3)		V _{CC} = 2.7 V/3.6 V MSP430F13x MSP430F14x		3	ms
Mass erase time, t(MEras) (See also the flash me control register FCTL2 section, see Note 4)	mory, timing generator,	V _{CC} = 2.7 V/3.6 V	200		ms
Low-level input voltage (TCK, TMS, TDI, RST/NMI)	, V _{IL} (excluding Xin, Xout)	V _{CC} = 2.2 V/3 V	VSS	V _{SS} +0.6	V
High-level input voltage (TCK, TMS, TDI, RST/NM (excluding Xin, Xout)	1I), V _{IH}	V _{CC} = 2.2 V/3 V	0.8V _{CC}	VCC	V
Input levels at Xin and Xout	VIL(Xin, Xout)	$V_{CC} = 2.2 \text{ V/3 V}$	Vss	0.2×V _{CC}	V
Input levels at Alli allu Adut	VIH(Xin, Xout)		0.8×V _{CC}	Vcc	

- NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal and the LFXT1 oscillator requires a 5.1-MΩ resistor from XOUT to V_{SS} when V_{CC} < 2.5 V. In XT1 mode, the LFXT1. and XT2 oscillators accept a ceramic resonator or a 4-MHz crystal frequency at V_{CC} ≥ 2.2 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or an 8-MHz crystal frequency at V_{CC} ≥ 2.8 V.
 - 2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, FXT1 accepts a ceramic resonator or a crystal.
 - 3. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if segment write option is used.
 - 4. The mass erase duration generated by the flash timing generator is at least 11.1 ms. The cumulative mass erase time needed is 200 ms. This can be achieved by repeating the mass erase operation until the cumulative mass erase time is met (a minimum of 19 cycles may be required).

Figure 1. Frequency vs Supply Voltage, MSP430F13x or MSP430F14x

electrical characteristics over recommended operating free-air temperature (unless otherwise noted)

supply current into AV_{CC} + DV_{CC} excluding external current

	PARAMETER		TEST COND	ITIONS	MIN	NOM	MAX	UNIT
less	Active mode, (see Note 1) $f(MCLK) = f(SMCLK) = 1 \text{ MHz},$	F13x,	$T_{\Delta} = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	V _{CC} = 2.2 V		280	350	μA
I(AM)	f(ACLK) = 32,768 Hz XTS=0, SELM=(0,1)	F14x	1A = -40 C to 65 C	VCC = 3 V		420	560	μΑ
Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 4 096 Hz, f(ACLK) = 4,096 Hz F13x, F14x			V _{CC} = 2.2 V		2.5	7		
I(AM)	f(ACLK) = 4,096 Hz XTS=0, SELM=(0,1) XTS=0, SELM=3	F14x	$T_A = -40$ °C to 85°C	VCC = 3 V		9	20	μА
la puo	Low-power mode, (LPM0)	F13x,	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	V _{CC} = 2.2 V		32	45	μA
I(LPM0)	(see Note 1)	F14x	1A = -40 C to 65 C	V _{CC} = 3 V		55	70	μΑ
	Low-power mode, (LPM2),		T 4000 / 0500	V _{CC} = 2.2 V		11	14	
I(LPM2)	f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32.768 Hz, SCG0 = 0		$T_A = -40$ °C to 85°C	V _{CC} = 3 V		17	22	μА
			T _A = -40°C			8.0	1.5	
			$T_A = 25^{\circ}C$	V _{CC} = 2.2 V		0.9	1.5	μΑ
la prio	Low-power mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz,		$T_A = 85^{\circ}C$			1.6	2.8	
I(LPM3)	$f_{(ACLK)} = 32,768 \text{ Hz}, SCG0 = 1 \text{ (see Note)}$	2)	$T_A = -40^{\circ}C$			1.8	2.2	
	(NOLIV)	,	T _A = 25°C	V _{CC} = 3 V		1.6	1.9	μΑ
			T _A = 85°C			2.3	3.9	
			T _A = -40°C			0.1	0.5	
			T _A = 25°C	V _{CC} = 2.2 V		0.1	0.5	μΑ
	Low-power mode, (LPM4)		T _A = 85°C			0.8	2.5	
I(LPM4)	f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz, f(ACLK) = 0 Hz, SCG0 = 1		$T_A = -40^{\circ}C$			0.1	0.5	_
	(NOLIV)		T _A = 25°C	VCC = 3 V		0.1	0.5	
			T _A = 85°C			0.8	2.5	

NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

^{2.} Timer_B is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current. The current consumption in LPM2 and LPM3 are measured with ACLK selected.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

Current consumption of active mode versus system frequency, F-version

 $I(AM) = I(AM) [1 MHz] \times f(System) [MHz]$

Current consumption of active mode versus supply voltage, F-version

 $I_{(AM)} = I_{(AM)[3\ V]} + 175\ \mu A/V \times (V_{CC} - 3\ V)$

SCHMITT-trigger inputs - Ports P1, P2, P3, P4, P5, and P6

	30 1 2 2 2				
	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V _{IT+} Positive-going input threshold voltage		V _{CC} = 2.2 V	1.1	1.5	
		V _{CC} = 3 V	1.5	1.9	V
.,	No method method through although an	V _{CC} = 2.2 V	0.4	0.9	
V _{IT} — Negative-going in	Negative-going input threshold voltage	V _{CC} = 3 V	0.90	1.3	V
\/.	Input voltage bystoresis (// //)	V _{CC} = 2.2 V	0.3	1.1	V
V _{hys} Input	put voltage hysteresis (V _{IT+} – V _{IT})	V _{CC} = 3 V	0.5	1	V

standard inputs - RST/NMI; JTAG: TCK, TMS, TDI, TDO/TDI

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IL}	Low-level input voltage	Vaa 22V/2V	VSS		V _{SS} +0.6	V
V_{IH}	High-level input voltage	V _{CC} = 2.2 V / 3 V	0.8×V _{CC}		VCC	V

outputs - Ports P1, P2, P3, P4, P5, and P6

	PARAMETER	TEST	CONDITIONS		MIN	TYP MAX	UNIT
		$I_{OH(max)} = -1 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 1	V _{CC} -0.25	Vcc	
I VOLL High-level official voltage	$I_{OH(max)} = -3.4 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 2	VCC-0.6	VCC		
	$I_{OH(max)} = -1 \text{ mA},$	$V_{CC} = 3 V$,	See Note 1	V _{CC} -0.25	Vcc	V	
		$I_{OH(max)} = -3.4 \text{ mA},$	$V_{CC} = 3 V$,	See Note 2	VCC-0.6	Vcc	
		$I_{OL(max)} = 1.5 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 1	V _{SS}	V _{SS} +0.25	
Val	Low-level output voltage	$I_{OL(max)} = 6 \text{ mA},$	$V_{CC} = 2.2 \text{ V},$	See Note 2	VSS	V _{SS} +0.6	V
VOL	VOL Low-level output voltage	$I_{OL(max)} = 1.5 \text{ mA},$	$V_{CC} = 3 V$,	See Note 1	VSS	V _{SS} +0.25	V
		$I_{OL(max)} = 6 \text{ mA},$	$V_{CC} = 3 V$,	See Note 2	VSS	V _{SS} +0.6	

NOTES: 1. The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±6 mA to satisfy the maximum specified voltage drop.

2. The maximum total current, I_{OH(max)} and I_{OL(max)}, for all outputs combined, should not exceed ±24 mA to satisfy the maximum specified voltage drop.

outputs - Ports P1, P2, P3, P4, P5, and P6 (continued)

TYPICAL LOW-LEVEL OUTPUT CURRENT VS

TYPICAL LOW-LEVEL OUTPUT CURRENT vs

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

Figure 3

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

output frequency

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
f _{TAx}	TA02, TB0–TB6, Internal clock source, SMCLK signal applied (see Note 1)	C _L = 20 pF		DC		fSystem	NAL I-
fACLK, fMCLK, fSMCLK	P5.6/ACLK, P5.4/MCLK, P5.5/SMCLK	C _L = 20 pF				fSystem	MHz
		P2.0/ACLK	fACLK = fLFXT1 = fXT1	40%		60%	
		$C_L = 20 \text{ pF},$ $V_{CC} = 2.2 \text{ V} / 3 \text{ V}$	fACLK = fLFXT1 = fLF	30%		70%	
			fACLK = fLFXT1/n		50%		
			fSMCLK = fLFXT1 = fXT1	40%		60%	
^t Xdc	Duty cycle of output frequency,	P1.4/SMCLK,	fSMCLK = fLFXT1 = fLF	35%		65%	
		$C_L = 20 \text{ pF},$ $V_{CC} = 2.2 \text{ V} / 3 \text{ V}$	fSMCLK = fLFXT1/n	50%– 15 ns	50%	50%– 15 ns	
		1 200 = 12 1 7 2 1	fSMCLK = fDCOCLK	50%– 15 ns	50%	50%– 15 ns	

NOTE 1: The limits of the system clock MCLK has to be met; the system (MCLK) frequency should not exceed the limits. MCLK and SMCLK frequencies can be different.

inputs Px.x, TAx, TBx

	PARAMETER	TEST CONDITIONS	ν _{CC}	MIN	TYP	MAX	UNIT
			2.2 V/3 V	1.5			cycle
^t (int)	External interrupt timing	Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag, (see Note 1)	2.2 V	62			
, ,		Tor the interrupt hag, (see Note 1)	3 V	50			ns
		TA0, TA1, TA2 (see Note 2)	2.2 V/3 V	1.5			cycle
t/222)	Timer_A, Timer_B capture	TAU, TAT, TAZ (see Note 2)	2.2 V	62			
t(cap) timing	TB0, TB1, TB2, TB3, TB4, TB5, TB6 (see Note 3)	3 V	50			ns	
f(TAext)	Timer_A, Timer_B clock		2.2 V			8	
f(TBext)	frequency externally applied to pin	TACLK, TBCLK, INCLK: $t_{(H)} = t_{(L)}$	3 V			10	MHz
f(TAint)	Timer_A, Timer_B clock frequency	CMCLIX on ACLIX simple planted	2.2 V			8	NAL I-
f(BTAint)		SMCLK or ACLK signal selected	3 V			10	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum t_(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t_(int). Both the cycle and timing specifications must be met to ensure the flag is set. t_(int) is measured in MCLK cycles.

wake-up LPM3

PARAMETER	TEST (CONDITIONS	MIN	TYP	MAX	UNIT
	f = 1 MHz				6	
LPM3) Delay time	f = 2 MHz	V _{CC} = 2.2 V/3 V			6	μs
	f = 3 MHz				6	

^{2.} The external capture signal triggers the capture event every time the minimum t_(Cap) cycle and time parameters are met. A capture may be triggered with capture signals even shorter than t_(Cap). Both the cycle and timing specifications must be met to ensure a correct capture of the 16-bit timer value and to ensure the flag is set.

^{3.} Seven capture/compare registers in 'x14x and three capture/compare registers in 'x13x.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

leakage current (see Note 1)

PARAMETER		TEST CONDITIONS			TYP	MAX	UNIT	
Ilkg(P1.x)	Leakage	Port P1	Port 1: V _(P1.x) (see Note 2)				±50	
I _{lkg(P2.x)}	current (see	Port P2	Port 2: V _(P2.3) V _(P2.4) (see Note 2)	$V_{CC} = 2.2 \text{ V/3 V}$			±50	nA
Ilkg(P6.x)	Note 1)	Port P6	Port 6: V _(P6.x) (see Note 2)				±50	

NOTES: 1. The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.

2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor.

RAM

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VRAMh	CPU HALTED (see Note 1)	1.6			V

NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition.

Comparator_A (see Note 1)

	PARAMETER	TEST CONDITIONS	3	MIN	TYP	MAX	UNIT
Less		CAON 4 CARSEL O CAREE O	V _{CC} = 2.2 V		25	40	^
I(DD)		CAON=1, CARSEL=0, CAREF=0	V _{CC} = 3 V		45	60	μΑ
I		CAON=1, CARSEL=0,	V _{CC} = 2.2 V		30	50	^
I(Refladder/Re	efdiode)	CAREF=1/2/3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2	V _{CC} = 3 V		45	71	μΑ
V _(IC)	Common-mode input voltage	CAON =1	V _{CC} = 2.2 V/3 V	0		V _{CC} -1	٧
V(Ref025) See Figure 6	Voltage @ 0.25 V _{CC} node	PCA0=1, CARSEL=1, CAREF=1, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, See Figure 6	V _{CC} = 2.2 V/3 V	0.23	0.24	0.25	
V _(Ref050) See Figure 6	Voltage @ 0.5V _{CC} node	PCA0=1, CARSEL=1, CAREF=2, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, See Figure 6	V _{CC} = 2.2 V/3 V	0.47	0.48	0.5	
		PCA0=1, CARSEL=1, CAREF=3,	V _{CC} = 2.2 V	390	480	540	.,
V(RefVT)		no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 T _A = 85°C	VCC = 3 V	400	490	550	mV
V _(offset)	Offset voltage	See Note 2	V _{CC} = 2.2 V/3 V	-30		30	mV
V _{hys}	Input hysteresis	CAON=1	V _{CC} = 2.2 V/3 V	0	0.7	1.4	mV
		T _A = 25°C, Overdrive 10 mV, With-	V _{CC} = 2.2 V	130	210	300	ns
+		out filter: CAF=0	V _{CC} = 3 V	80	150	240	115
^t (response LH	1)	T _A = 25°C, Overdrive 10 mV, With	V _{CC} = 2.2 V	1.4	1.9	3.4	
		filter: CAF=1	VCC = 3 V	0.9	1.5	2.6	μs
		T _A = 25°C,	V _{CC} = 2.2 V	130	210	300	ns
^t (response HL	1	Overdrive 10 mV, without filter: CAF=0	VCC = 3 V	80	150	240	115
-(response HL	-)	T _A = 25°C,	V _{CC} = 2.2 V	1.4	1.9	3.4	
		Overdrive 10 mV, with filter: CAF=1	VCC = 3 V	0.9	1.5	2.6	μs

NOTES: 1. The leakage current for the Comparator_A terminals is identical to I_{lkg(Px.x)} specification.

2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

Figure 6. $V_{(RefVT)}$ vs Temperature, $V_{CC} = 3 V$

Figure 7. $V_{(RefVT)}$ vs Temperature, $V_{CC} = 2.2 V$

Figure 8. Block Diagram of Comparator_A Module

Figure 9. Overdrive Definition

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

POR

	PARAMETER	CONDITIONS	VCC	MIN	NOM	MAX	UNIT
t(POR_Delay)			2.2 V/3 V		150	250	μs
V _{POR}		$T_A = -40^{\circ}C$		1.4		1.8	V
V _{POR}	POR	T _A = +25°C		1.1		1.5	V
V _{POR}		T _A = +85°C		0.8		1.2	V
V _(min)				0		0.4	V
t(Reset)	PUC/POR	Reset is accepted internally	2.2 V/3 V	2			μs

Figure 10. Power-On Reset (POR) vs Supply Voltage

Figure 11. V_{POR} vs Temperature

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

DCO (see Note 1)

PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
	R _{Sel} = 0, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.08	0.12	0.15	N 41 1-
f(DCO03)		V _{CC} = 3 V	0.08	0.13	0.16	MHz
	R _{Sel} = 1, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.14	0.19	0.23	N 41 1-
f(DCO13)		V _{CC} = 3 V	0.14	0.18	0.22	MHz
	R _{Sel} = 2, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.22	0.30	0.36	N 41 1-
f(DCO23)		V _{CC} = 3 V	0.22	0.28	0.34	MHz
4	R _{Sel} = 3, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.37	0.49	0.59	N 41 1-
f(DCO33)		V _{CC} = 3 V	0.37	0.47	0.56	MHz
	R _{Sel} = 4, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	0.61	0.77	0.93	N 41 1-
f(DCO43)		V _{CC} = 3 V	0.61	0.75	0.90	MHz
.	R _{sel} = 5, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	$V_{CC} = 2.2 \text{ V}$	1	1.2	1.5	N 41 1-
f(DCO53)		V _{CC} = 3 V	1	1.3	1.5	MHz
	R _{Sel} = 6, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	1.6	1.9	2.2	N 41 1-
f(DCO63)		V _{CC} = 3 V	1.69	2.0	2.29	MHz
4	R _{Sel} = 7, DCO = 3, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V	2.4	2.9	3.4	N 41 1-
f(DCO73)		V _{CC} = 3 V	2.7	3.2	3.65	MHz
f(DCO47)	R _{Sel} = 4, DCO = 7, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 2.2 V/3 V	fDCO40 ×1.7	fDCO40 × 2.1	fDCO40 × 2.5	MHz
,	D 7 000 7 1100 0 0000 0 7 0500	V _{CC} = 2.2 V	4	4.5	4.9	
f(DCO77)	R _{sel} = 7, DCO = 7, MOD = 0, DCOR = 0, T _A = 25°C	V _{CC} = 3 V	4.4	4.9	5.4	MHz
S _(Rsel)	S _R = f _{Rsel+1} / f _{Rsel}	V _{CC} = 2.2 V/3 V	1.35	1.65	2	
S _(DCO)	S _{DCO} = f _{DCO+1} / f _{DCO}	V _{CC} = 2.2 V/3 V	1.07	1.12	1.16	
	Temperature drift, R _{Sel} = 4, DCO = 3, MOD = 0	V _{CC} = 2.2 V	-0.31	-0.36	-0.40	07/00
D _t	(see Note 2)	V _{CC} = 3 V	-0.33	-0.38	-0.43	%/°C
D _V	Drift with V _{CC} variation, R _{Sel} = 4, DCO = 3, MOD = 0 (see Note 2)	V _{CC} = 2.2 V/3 V	0	5	10	%/V

NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f(System).

Figure 12. DCO Characteristics

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

main DCO characteristics

- Individual devices have a minimum and maximum operation frequency. The specified parameters for fDCOx0 to fDCOx7 are valid for all devices.
- All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps with Rsel1, ... Rsel6 overlaps with Rsel7.
- DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter SDCO.
- Modulation control bits MOD0 to MOD4 select how often fDCO+1 is used within the period of 32 DCOCLK cycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to $f(DCO) \times (2^{MOD/32})$.

crystal oscillator, LFXT1 oscillator (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT	
V	Integrated input conscitones	XTS=0; LF oscillator selected V _{CC} = 2.2 V/3 V		12			
XCIN	Integrated input capacitance	XTS=1; XT1 oscillator selected V _{CC} = 2.2 V/3 V	2			pF	
V		XTS=0; LF oscillator selected V _{CC} = 2.2 V/3 V	12				
XCOUT	Integrated output capacitance	XTS=1; XT1 oscillator selected V _{CC} = 2.2 V/3 V	2		pF		
X _{INL}	Input levels at XIN, XOUT	V _{CC} = 2.2 V/3 V	V _{SS}		$0.2 \times V_{CC}$	V	
X _{INH}		V _{CC} = 2.2 V/3 V	$0.8 \times V_{CC}$	•	VCC	V	

NOTE 1: The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.

crystal oscillator, XT2 oscillator (see Note 1)

		· · · · · · · · · · · · · · · · · · ·				
	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
X _{CIN}	Integrated input capacitance	V _{CC} = 2.2 V/3 V		2		pF
XCOUT	Integrated output capacitance	V _{CC} = 2.2 V/3 V		2		pF
X _{INL}	Input levels at XIN, XOUT	V _{CC} = 2.2 V/3 V	VSS	0.2	\times VCC	V
X _{INH}		V _{CC} = 2.2 V/3 V	$0.8 \times V_{CC}$,	VCC	V

NOTE 1: The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer.

USART0, USART1 (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
*	LISARTO/1: dealitab time	V _{CC} = 2.2 V	200	430	800	20
t(t)	USART0/1: deglitch time	V _{CC} = 3 V	150	280	500	ns

NOTE 1: The signal applied to the USART0/1 receive signal/terminal (URXD0/1) should meet the timing requirements of t(t) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(t). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0/1 line.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

12-bit ADC, power supply and input range conditions (see Note 1)

P/	ARAMETER	TEST CONDITIONS	j	MIN	NOM	MAX	UNIT
AVCC	Analog supply voltage	AV _{CC} and DV _{CC} are connected toge AV _{SS} and DV _{SS} are connected toge V(AVSS) = V(DVSS) = 0 V		2.2		3.6	V
Vo	Positive built-in reference	REF2_5 V = 1 for 2.5 V built-in reference REF2_5 V = 0 for 1.5 V built-in	3 V	2.4	2.5	2.6	V
VREF+	voltage output	reference V(REF+) ≤ (VREF+)max	2.2 V/3 V		1.5	1.56	V
h mee	Load current out of V _{REF+}		2.2 V	0.01		-0.5	mA
IVREF+	terminal		3 V			-1	ША
		$V(REF)_{+} = 500 \mu\text{A} + /-100 \mu\text{A}$	2.2 V			±2	LSB
	Load-current regulation	Analog input voltage ~0.75 V; REF2_5 V = 0	3 V			±2	
IL(VREF)+ †	V _{REF+} terminal	I _V (REF)+ = 500 μA ± 100 μA Analog input voltage ~1.25 V; REF2_5 V = 1	3 V			±2	LSB
I _{DL(VREF)} + [‡]	Load current regulation V _{REF+} terminal	$I_{V(REF)}$ + =100 μA \rightarrow 900 μA, VCC=3 V, ax ~0.5 x V _{REF+} Error of conversion result ≤ 1 LSB	C _{VREF+} =5 μF			20	ns
V _{eREF+}	Positive external reference voltage input	VeREF+ > VREF_/VeREF_ (see Note	e 2)	1.4		VAVCC	V
VREF-/VeREF-	Negative external reference voltage input	VeREF+ > VREF_/VeREF_ (see Note	e 3)	0		1.2	V
(V _{eREF+} - V _{REF-/} V _{eREF})	Differential external reference voltage input	VeREF+ > VREF_/VeREF_ (see Note	e 4)	1.4		VAVCC	V
V(P6.x/Ax)	Analog input voltage range (see Note 5)	All P6.0/A0 to P6.7/A7 terminals. Ana selected in ADC12MCTLx register an $0 \le x \le 7$; $V(AVSS) \le VP6.x/Ax \le V(AVSS)$	d P6Sel.x=1	0		VAVCC	V
	Operating supply current	fADC12CLK = 5.0 MHz	2.2 V		0.65	1.3	
I _{ADC12}	into AV _{CC} terminal (see Note 6)	ADC12ON = 1, REFON = 0 SHT0=0, SHT1=0, ADC12DIV=0	3 V		0.8	1.6	mA
I _{REF+}	Operating supply current into AV _{CC} terminal (see Note 7)	fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 1	3 V		0.5	0.8	mA
	Operating supply current	fADC12CLK = 5.0 MHz	2.2 V		0.5	0.8	
REF+	(see Note 7)	ADC12ON = 0, REFON = 1, REF2_5V = 0	3 V		0.5	0.8	mA

[†]Not production tested, limits characterized

NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter.

- 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
- 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
- 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.
- 5. The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results.
- 6. The internal reference supply current is not included in current consumption parameter I_{ADC12}.
- 7. The internal reference current is supplied via terminal AV_{CC}. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.

[‡] Not production tested, limits verified by design

MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER

SLAS272D - JULY 2000 - REVISED MARCH 2003

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

12-bit ADC, built-in reference (see Note 1)

PA	RAMETER	TEST CONDITIONS			NOM	MAX	UNIT
I _{VeREF+}	Static input current (see Note 2)	0V ≤V _{eREF+} ≤ V _{AVCC}	2.2 V/3 V			±1	μА
IVREF-/VeREF-	Static input current (see Note 2)	0V ≤ V _{eREF} - ≤ VAVCC	2.2 V/3 V			±1	μΑ
C _{VREF+}	Capacitance at pin V _{REF+} (see Note 3)	REFON =1, $0 \text{ mA} \le I_{VREF+} \le I_{V(REF)+(max)}$	2.2 V/3 V	5	10		μF
C _i ‡	Input capacitance (see Note 4)	Only one terminal can be selected at one time, P6.x/Ax	2.2 V			40	pF
z _i ‡	Input MUX ON resistance (see Note 4)	0V ≤ V _{AX} ≤ V _{AVCC}	3 V			2000	Ω
T _{REF+} †	Temperature coefficient of built-in reference	$I_{V(REF)}$ + is a constant in the range of 0 mA $\leq I_{V(REF)}$ + \leq 1 mA	2.2 V/3 V			±100	ppm/°C

[†] Not production tested, limits characterized

NOTES: 1. The voltage source on V_{eREF+} and V_{REF-}/V_{eREF-}) needs to have low dynamic impedance for 12-bit accuracy to allow the charge to settle for this accuracy.

- 2. The external reference is used during conversion to charge and discharge the capacitance array. The dynamic impedance should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
- 3. The internal buffer operational amplifier and the accuracy specifications require an external capacitor.
- 4. The input capacitance is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. All INL and DNL tests uses two capacitors between pins V_{REF+} and AV_{SS} and V_{REF-} V_{eREF-} and AV_{SS}: 10 μF tantalum and 100 nF ceramic.

[‡] Not production tested, limits verified by design

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

12-bit ADC, timing parameters

P	ARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
tREF(ON) [†]	Settle time of internal reference voltage (see Figure 13 and Note 1)	$I_{V(REF)+} = 0.5 \text{ mA}, C_{V(REF)+} = 10 \mu\text{F},$ $V_{REF+} = 1.5 \text{ V}, V_{AVCC} = 2.2 \text{ V}$				17	ms
f(ADC12CLK)		Error of conversion result ≤ ±2 LSB	2.2V/ 3V	5			MHz
f(ADC12OSC)	ADC12DIV=0 [f(ADC12CLK) 2.2 V/ 3V 3.7			6.3	MHz		
	Conversion time	$ \begin{array}{l} \text{AV}_{\text{CC}(\text{min})} \leq \text{VAVCC} \leq \text{AV}_{\text{CC}(\text{max})}, \\ \text{CV}_{\text{REF+}} \geq 5 \ \mu\text{F}, \text{Internal oscillator}, \\ \text{f}_{\text{OSC}} = 3.7 \ \text{MHz} \ \text{to} \ 6.3 \ \text{MHz} \\ \end{array} $	2.2 V/ 3 V	2.06		3.51	μs
†CONVERT	Conversion time		Cor		13×ADC12DIV× 1/fADC12CLK		μs
tADC12ON [‡]	Settle time of the ADC	AVCC(min) ≤ VAVCC ≤ AVCC(max) (see N	Note 2)			100	ns
tot	Sampling time	$VAVCC(min) \le VAVCC \le VAVCC(max)$ $R_{i(Source)} = 400 \Omega, Z_{i} = 1000 \Omega,$	3 V	1220			ns
^t Sample [‡]	Camping time	$C_i = 30 \text{ pF}$ $\tau = [R_i(\text{source}) \times + Z_i] \times C_i$; (see Note 3)		1400			113

[†] Not production tested, limits characterized

- NOTES: 1. The condition is that the error in a conversion started after t_{REF(ON)} is less than ±0.5 LSB. The settling time depends on the external capacitive load.
 - 2. The condition is that the error in a conversion started after table 120N is less than ±0.5 LSB. The reference and input signal are already settled.
 - 3. Ten Tau (τ) are needed to get an error of less than ± 0.5 LSB. $t_{Sample} = 10 \text{ x (Ri + Zi) x Ci+ } 800 \text{ ns}$

Figure 13. Typical Settling Time of Internal Reference t_{REF(ON)} vs External Capacitor on V_{REF}+

[‡] Not production tested, limits verified by design

MSP430x13x, MSP430x14x MIXED SIGNAL MICROCONTROLLER

SLAS272D - JULY 2000 - REVISED MARCH 2003

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

12-bit ADC, linearity parameters

	PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT
_	lata anal lia aanitu annan	$1.4 \text{ V} \le \text{(VeREF+} - \text{VREF-/VeREF-)} \text{ min} \le 1.6 \text{ V}$	0.0.1/0.1/			±2	J
E _(I)	Integral linearity error	$1.6 \text{ V} < (\text{VeREF+} - \text{VREF-/VeREF-}) \text{ min} \leq [\text{V(AVCC)}]$	2.2 V/3 V			±1.7	LSB
ED	Differential linearity error	$ \begin{array}{l} (V_{eREF+}-V_{REF-}\!$	2.2 V/3 V			±1	LSB
EO	Offset error	$\label{eq:continuous} $$(V_{eREF+}-V_{REF-})_{min} \le (V_{eREF+}-V_{REF-})_{normal impedance of source R_i < 100 \ \Omega, }$$ (VREF+) = 10 \ \mu F \ (tantalum) \ and \ 100 \ nF \ (ceramic)$	2.2 V/3 V		±2	±4	LSB
EG	Gain error	$ \begin{array}{l} (V_{eREF+}-V_{REF-}\!$	2.2 V/3 V		±1.1	±2	LSB
ET	Total unadjusted error	$ \begin{array}{l} (V_{eREF+}-V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+}-V_{REF-}/V_{eREF-}), \\ C(V_{REF+}) = 10~\mu F~(tantalum)~and~100~nF~(ceramic) \end{array} $	2.2 V/3 V		±2	±5	LSB

Figure 14. Supply Voltage and Reference Voltage Design V_(REF-)/V_(eREF-) External Supply

Figure 15. Supply Voltage and Reference Voltage Design V_{REF-}/V_{eREF-} =AV_{SS}, Internally Connected

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

12-bit ADC, temperature sensor and built-in Vmid

	PARAMETER	TEST CONDITIONS		MIN	NOM	MAX	UNIT	
1	Operating supply current into	V _{REFON} = 0, INCH = 0Ah,	2.2 V		40	120	^	
ISENSOR	AV _{CC} terminal (see Note 1)	ADC12ON=NA, T _A = 25°C	3 V		60	160	μΑ	
· +		ADC12ON = 1, INCH = 0Ah,	2.2 V		986	986±5%	\/	
VSENSOR [†]		$T_A = 0$ °C	3 V		986	986±5%	mV	
TO		ADOLOGNI A INGIL GAL	2.2 V		3.55	3.55±3%		
TC _{SENSOR} †		ADC12ON = 1, INCH = 0Ah	3 V		3.55	3.55±3%	mV/°C	
. +	Sample time required if channel	ADC12ON = 1, INCH = 0Ah,	2.2 V	30			_	
[†] SENSOR(sample)	10 is selected (see Note 2)	Error of conversion result ≤ 1 LSB	3 V	30			μs	
	Owner that a divide set above all 44	ADC12ON = 1, INCH = 0Bh,	2.2 V			NA	•	
IVMID	Current into divider at channel 11	(see Note 3)	3 V			NA	μΑ	
.,	AV. 11.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	ADC12ON = 1, INCH = 0Bh,	2.2 V		1.1	1.1±0.04	.,	
VMID	AV _{CC} divider at channel 11	V _{MID} is ~0.5 x V _{AVCC}	3 V		1.5	1.50±0.04	V	
	On-time if channel 11 is selected	ADC12ON = 1, INCH = 0Bh,	2.2 V			NA	20	
tON(VMID)	(see Note 4)	Error of conversion result ≤ 1 LSB	3 V			NA	ns	

[†] Not production tested, limits characterized

- NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and VREFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). Therefore it includes the constant current through the sensor and the reference.
 - 2. The typical equivalent impedance of the sensor is 51 kΩ. The sample time needed is the sensor-on time tSENSOR(ON)
 - 3. No additional current is needed. The V_{MID} is used during sampling.
 - 4. The on-time t_{ON(VMID)} is identical to sampling time t_{Sample}; no additional on time is needed.

JTAG, program memory and fuse

PAR	AMETER	TEST CONDITIONS	VCC	MIN	NOM	MAX	UNIT
		TOK (see see see	2.2 V	DC		5	N 41 1-
f(TCK)	JTAG/Test (see Note 4)	TCK frequency	3 V	DC		10	MHz
	(See Note 4)	Pullup resistors on TMS, TCK, TDI (see Note 1)	2.2 V/ 3V	25	60	90	kΩ
VCC(FB)		Supply voltage during fuse-blow condition, $T_{(A)} = 25^{\circ}C$		2.5			V
V_{FB}	JTAG/fuse	Fuse-blow voltage, F versions (see Note 3)		6.0		7.0	V
	(see Note 2)	Supply current on TDI with fuse blown				100	mA
IFB		Time to blow the fuse				1	ms
I(DD-PGM)	F-versions only	Current from DV _{CC} when programming is active	2.7 V/3.6 V		3	5	mA
I(DD-Erase)	(see Note 4)	Current from DV _{CC} when erase is active	2.7 V/3.6 V		3	5	mA
	E versions only	Write/erase cycles		10 ⁴	10 ⁵		cycles
^t (retention)	F-versions only	Data retention T _J = 25°C		100			years

NOTES: 1. TMS, TDI, and TCK pull-up resistors are implemented in all F versions.

- 2. Once the fuse is blown, no further access to the MSP430 JTAG/test feature is possible. The JTAG block is switched to bypass mode.
- 3. The supply voltage to blow the fuse is applied to the TDI pin.
- f(TCK) may be restricted to meet the timing requirements of the module selected. Duration of the program/erase cycle is determined by $f_{(FTG)}$ applied to the flash timing controller. It can be calculated as follows:

t(word write) = $35 \times 1/f(FTG)$ t(block write, byte 0) = $30 \times 1/f(FTG)$ t(block write, bytes 1–63) = $20 \times 1/f(FTG)$ t(block write end sequence) = $6 \times 1/f(FTG)$ $t_{\text{(mass erase)}} = 5297 \times 1/f_{\text{(FTG)}}$ $t(\text{segment erase}) = 4819 \times \frac{1}{f(FTG)}$

[‡] Not production tested, limits verified by design

input/output schematic

port P1, P1.0 to P1.7, input/output with Schmitt-trigger

PnSel.x	PnDIR.x	Dir. CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P1Sel.0	P1DIR.0	P1DIR.0	P1OUT.0	DVSS	P1IN.0	TACLK [†]	P1IE.0	P1IFG.0	P1IES.0
P1Sel.1	P1DIR.1	P1DIR.1	P1OUT.1	Out0 signal [†]	P1IN.1	CCI0A†	P1IE.1	P1IFG.1	P1IES.1
P1Sel.2	P1DIR.2	P1DIR.2	P1OUT.2	Out1 signal [†]	P1IN.2	CCI1A [†]	P1IE.2	P1IFG.2	P1IES.2
P1Sel.3	P1DIR.3	P1DIR.3	P1OUT.3	Out2 signal [†]	P1IN.3	CCI2A [†]	P1IE.3	P1IFG.3	P1IES.3
P1Sel.4	P1DIR.4	P1DIR.4	P1OUT.4	SMCLK	P1IN.4	unused	P1IE.4	P1IFG.4	P1IES.4
P1Sel.5	P1DIR.5	P1DIR.5	P1OUT.5	Out0 signal [†]	P1IN.5	unused	P1IE.5	P1IFG.5	P1IES.5
P1Sel.6	P1DIR.6	P1DIR.6	P1OUT.6	Out1 signal [†]	P1IN.6	unused	P1IE.6	P1IFG.6	P1IES.6
P1Sel.7	P1DIR.7	P1DIR.7	P1OUT.7	Out2 signal [†]	P1IN.7	unused	P1IE.7	P1IFG.7	P1IES.7

[†] Signal from or to Timer_A

input/output schematic (continued)

port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt-trigger

x: Bit Identifier 0 to 2, 6, and 7 for Port P2

PnSel.x	PnDIR.x	Dir. CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.0	P2DIR.0	P2DIR.0	P2OUT.0	ACLK	P2IN.0	unused	P2IE.0	P2IFG.0	P2IES.0
P2Sel.1	P2DIR.1	P2DIR.1	P2OUT.1	DV _{SS}	P2IN.1	INCLK‡	P2IE.1	P2IFG.1	P2IES.1
P2Sel.2	P2DIR.2	P2DIR.2	P2OUT.2	CAOUTT	P2IN.2	CCI0B‡	P2IE.2	P2IFG.2	P2IES.2
P2Sel.6	P2DIR.6	P2DIR.6	P2OUT.6	ADC12CLK¶	P2IN.6	unused	P2IE.6	P2IFG.6	P2IES.6
P2Sel.7	P2DIR.7	P2DIR.7	P2OUT.7	Out0 signal§	P2IN.7	unused	P2IE.7	P2IFG.7	P2IES.7

[†] Signal from Comparator_A

[‡] Signal to Timer_A

[§] Signal from Timer_A

[¶] ADC12CLK signal is output of the 12-bit ADC module

port P2, P2.3 to P2.4, input/output with Schmitt-trigger

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.3	P2DIR.3	P2DIR.3	P2OUT.3	Out1 signal [†]	P2IN.3	unused	P2IE.3	P2IFG.3	P2IES.3
P2Sel.4	P2DIR.4	P2DIR.4	P2OUT.4	Out2 signal†	P2IN.4	unused	P2IE.4	P2IFG.4	P2IES.4

[†] Signal from Timer_A

port P2, P2.5, input/output with Schmitt-trigger and R_{osc} function for the basic clock module

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.5	P2DIR.5	P2DIR.5	P2OUT.5	DV_SS	P2IN.5	unused	P2IE.5	P2IFG.5	P2IES.5

port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger

x: Bit Identifier, 0 and 4 to 7 for Port P3

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P3Sel.0	P3DIR.0	DVSS	P3OUT.0	DVSS	P3IN.0	STE0
P3Sel.4	P3DIR.4	DV _{CC}	P3OUT.4	UTXD0†	P3IN.4	Unused
P3Sel.5	P3DIR.5	DV _{SS}	P3OUT.5	DV _{SS}	P3IN.5	URXD0§
P3Sel.6	P3DIR.6	DV _{CC}	P3OUT.6	UTXD1‡	P3IN.6	Unused
P3Sel.7	P3DIR.7	DVSS	P3OUT.7	DVSS	P3IN.7	URXD1 [¶]

[†] Output from USART0 module

port P3, P3.1, input/output with Schmitt-trigger

[‡] Output from USART1 module in x14x configuration, DV_{SS} in x13x configuration

[§] Input to USART0 module

[¶] Input to USART1 module in x14x configuration, unused in x13x configuration

input/output schematic (continued)

port P3, P3.2, input/output with Schmitt-trigger

port P3, P3.3, input/output with Schmitt-trigger

NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always

an input.

SPI, slave mode: The clock applied to UCLK0 is used to shift data in and out.

SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode).

port P4, P4.0 to P4.6, input/output with Schmitt-trigger

x: bit identifier, 0 to 6 for Port P4

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P4Sel.0	P4DIR.0	P4DIR.0	P4OUT.0	Out0 signal [†]	P4IN.0	CCI0A / CCI0B‡
P4Sel.1	P4DIR.1	P4DIR.1	P4OUT.1	Out1 signal [†]	P4IN.1	CCI1A / CCI1B‡
P4Sel.2	P4DIR.2	P4DIR.2	P4OUT.2	Out2 signal [†]	P4IN.2	CCI2A / CCI2B‡
P4Sel.3	P4DIR.3	P4DIR.3	P4OUT.3	Out3 signal [†]	P4IN.3	CCI3A / CCI3B‡
P4Sel.4	P4DIR.4	P4DIR.4	P4OUT.4	Out4 signal [†]	P4IN.4	CCI4A / CCI4B‡
P4Sel.5	P4DIR.5	P4DIR.5	P4OUT.5	Out5 signal [†]	P4IN.5	CCI5A / CCI5B‡
P4Sel.6	P4DIR.6	P4DIR.6	P4OUT.6	Out6 signal [†]	P4IN.6	CCI6A / CCI6B‡

[†] Signal from Timer_B

[‡] Signal to Timer_B

input/output schematic (continued)

port P4, P4.7, input/output with Schmitt-trigger

port P5, P5.0 and P5.4 to P5.7, input/output with Schmitt-trigger

x: Bit Identifier, 0 and 4 to 7 for Port P5

PnSel.x	PnDIR.x	Dir. CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P5Sel.0	P5DIR.0	DV _{SS}	P5OUT.0	DV _{SS}	P5IN.0	STE.1
P5Sel.4	P5DIR.4	DV _{CC}	P5OUT.4	MCLK	P5IN.4	unused
P5Sel.5	P5DIR.5	DV _{CC}	P5OUT.5	SMCLK	P5IN.5	unused
P5Sel.6	P5DIR.6	DVCC	P5OUT.6	ACLK	P5IN.6	unused
P5Sel.7	P5DIR.7	DV _{SS}	P5OUT.7	DVSS	P5IN.7	TBoutHiZ

NOTE: TBoutHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TboutHiZ is mainly useful when used with Timer_B7.

port P5, P5.1, input/output with Schmitt-trigger

port P5, P5.2, input/output with Schmitt-trigger

input/output schematic (continued)

port P5, P5.3, input/output with Schmitt-trigger

NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P5.3/UCLK1 direction

is always input.

SPI, slave mode: The clock applied to UCLK1 is used to shift data in and out.

SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P5.3/UCLK1 (in slave mode).

port P6, P6.0 to P6.7, input/output with Schmitt-trigger

x: Bit Identifier, 0 to 7 for Port P6

NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1←0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 μA.

Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12.

PnSel.x	PnDIR.x	DIR. CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P6Sel.0	P6DIR.0	P6DIR.0	P6OUT.0	DVSS	P6IN.0	unused
P6Sel.1	P6DIR.1	P6DIR.1	P6OUT.1	DVSS	P6IN.1	unused
P6Sel.2	P6DIR.2	P6DIR.2	P6OUT.2	DV _{SS}	P6IN.2	unused
P6Sel.3	P6DIR.3	P6DIR.3	P6OUT.3	DV _{SS}	P6IN.3	unused
P6Sel.4	P6DIR.4	P6DIR.4	P6OUT.4	DVSS	P6IN.4	unused
P6Sel.5	P6DIR.5	P6DIR.5	P6OUT.5	DVSS	P6IN.5	unused
P6Sel.6	P6DIR.6	P6DIR.6	P6OUT.6	DVSS	P6IN.6	unused
P6Sel.7	P6DIR.7	P6DIR.7	P6OUT.7	DVSS	P6IN.7	unused

NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module.

JTAG pins TMS, TCK, TDI, TDO/TDI, input/output with Schmitt-trigger

During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry

JTAG fuse check mode

MSP430 devices that have the fuse on the TDI terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, I_{TF} , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 16). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).

Figure 16. Fuse Check Mode Current, MSP430F13x, MSP430F14x

MECHANICAL DATA

PM (S-PQFP-G64)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026
- D. May also be thermally enhanced plastic with leads connected to the die pads.