REPORT - A POSTERIORI ERROR ESTIMATOR FOR ODE

ASSYR ABDULLE* AND GIACOMO GAREGNANI†

1. Theory. Consider $f: \mathbb{R}^d \to \mathbb{R}^d$ and the ODE

(1)
$$\begin{cases} y'(t) = f(y(t)), & t \in (0, T], \\ y(0) = y_0, \end{cases}$$

whose flow is denoted by $y(t) = \varphi_t(y_0)$. Consider N > 0, h = T/N and the additive noise numerical method

(2)
$$Y_{k+1} = \Psi_h(Y_k) + \xi_k(h), \quad k = 0, \dots, N,$$

where $\xi_k(h)$ satisfies

$$\mathbb{E}\,\xi_k(h) = 0,$$

$$(4) \mathbb{E}\,\xi_k(h)\xi_k(h)^\top = Qh^{2p+1}, \quad \forall k = 1,\dots, N,$$

for some symmetric positive definite matrix Q and exponent $p \geq 1$.

Theorem 1.1 (Mean square order). Report the result with precise constants.

Proof. From the proof of [?, Theorem 2.2], denoting the exact solution by $y_k = y(kh)$, the global error by $e_k = Y_k - y_k$ and the local error by $\varepsilon_k = \Psi_h(Y_k) - \varphi_h(Y_k)$, we have

$$\mathbb{E}|e_{k+1}|^2 \le \mathbb{E}|\varphi_h(y_k) - \varphi_h(y_k - e_k) - \varepsilon_k|^2 + |Q|h^{2p+1}.$$

Hence, developing the square in the first term of the right hand side, considering that φ_h is Lipschitz with constant 1 + Lh and that $\mathbb{E}|\varepsilon_k|^2 \leq C_{\text{loc}}^2 h^{2q+2}$, we have

$$\mathbb{E}|e_{k+1}|^2 \leq (1+Lh)^2 \, \mathbb{E}|e_k|^2 + \mathbb{E}|\left(h^{1/2}(\varphi_h(y_k) - \varphi_h(y_k - e_k)), h^{-1/2}\varepsilon_k\right)| + C_{\text{loc}}^2 h^{2q+2} + |Q|h^{2p+1}.$$

Applying Cauchy-Schwarz and Young inequalities on the inner product we get

$$\mathbb{E}|e_{k+1}|^2 \le (1+h)(1+Lh)^2 \,\mathbb{E}|e_k|^2 + (1+h)C_{\text{loc}}^2 h^{2q+1} + |Q|h^{2p+1}.$$

Setting p = q, we rewrite this bound as

$$\mathbb{E}|e_{k+1}|^2 \le \left(1 + \left(1 + 2L + (L^2 + 2L)h + L^2h^2\right)h\right)\mathbb{E}|e_k|^2 + \left((1+h)C_{\text{loc}}^2 + |Q|\right)h^{2q+1}.$$

Denoting by $C_{\text{err}} = C_{\text{err}}(L,h) = 1 + 2L + (L^2 + 2L)h + L^2h^2$, we get by Gronwall's inequality

$$\mathbb{E}|e_k|^2 \le \frac{(1+h)C_{\text{loc}}^2 + |Q|}{C_{\text{err}}} \Big(e^{C_{\text{err}}T} - 1\Big)h^{2q},$$

which proves the desired result.

Theorem 1.2 (Variance). The bound for the variance.

Proof. Thanks to independence of Y_k and ξ_k we have

$$\operatorname{Var} Y_{k+1} = \operatorname{Var} \Psi_h(Y_k) + |Q|h^{2q+1}.$$

The Lipschitz constant of Ψ_h being $1 + L_{\Psi}h$, we have

$$\operatorname{Var} Y_{k+1} < (1 + L_{\Psi} h)^2 \operatorname{Var} Y_k + |Q| h^{2q+1}.$$

^{*}Institute of Mathematics, École Polytechnique Fédérale de Lausanne (assyr.abdulle@epfl.ch)

[†]Institute of Mathematics, École Polytechnique Fédérale de Lausanne (giacomo.garegnani@epfl.ch)

Hence, denoting by $C_{\rm var}=C_{\rm var}(L,h)=1+(2L_\Psi+L_\Psi^2h)h$, we obtain by Gronwall's inequality

(5)
$$\operatorname{Var} Y_k \le \frac{|Q|}{C_{\operatorname{var}}} \left(e^{C_{\operatorname{var}}T} - 1 \right) h^{2q}.$$

Fig. 1: Lorenz system with tuning of Q. Here h = 0.01, T = 50, Heun as deterministic integrator.

Fig. 2: Lorenz system without tuning of Q. Here h = 0.01, T = 50, Heun as deterministic integrator.

Fig. 3: Van der Pol system ($\varepsilon = 1$) with tuning of Q. Here h = 0.1, T = 400, Heun as deterministic integrator.

Fig. 4: Van der Pol system ($\varepsilon = 1$) without tuning of Q. Here h = 0.1, T = 400, Heun as deterministic integrator.