CALORIMETRIA E PRIMO PRINCIPIO

ESERCIZIO 1

Una massa $m_1 = 0.1$ kg di ghiaccio alla temperatura $t_1 = -10^{\circ}$ C viene mescolata adiabaticamente con una massa $m_2 = 0.2$ kg di vapor d'acqua a temperatura $t_2 = 160^{\circ}$ C a pressione atmosferica. Si dica quale sará la composizione finale della miscela una volta raggiunto l'equilibrio termico. Si assumano, per i calori specifici e i calori latenti, i seguenti valori:

- calore specifico del ghiaccio: $c_q = 0.5 cal/g^o C$
- calore specifico dell'acqua: $c_a = 1cal/g^oC$
- calore specifico del vapor d'acqua: $c_{va} = 0.44 cal/g^o C$
- calore latente di condensazione del vapor d'acqua: $\lambda_{va} = 540 cal/g$
- calore latente di fusione del ghiaccio: $\lambda_g = 80cal/g$.

[Si ottiene una miscela di vapore e acqua in equilibrio a 100° C (con m=24.48g di massa di vapore condensata)]

ESERCIZIO 2

Un proiettile di piombo di massa m=0.1kg a temperatura $t_p=20^{\circ}\mathrm{C}$ si conficca in un blocco di ghiaccio di temperatura $t_g=0^{\circ}\mathrm{C}$ e massa M=10kg, in quiete su un piano orizzontale, con velocitá \vec{v} parallela al piano. Si calcoli il valore di v affinché il proiettile fonda 0.02kg di ghiaccio.

Calore specifico del piombo: $c_{pb} = 130J/kg^{o}C$.

Calore latente di fusione del ghiaccio: $\lambda_{f,g} = 3.35 \cdot 10^5 J/kg$.

[v = 360.68 m/s]

ESERCIZIO 3

Si consideri il processo di vaporizzazione di una massa $m=0.1{\rm kg}$ di acqua alla temperatura di ebollizione a pressione atmosferica $p=10^5{\rm Pa}$. Si calcolino il lavoro L compiuto dall'acqua e il corrispondente aumento di energia interna ΔU .

- Calore latente di vaporizzazione dell'acqua: $\lambda_{vap} = 2.26 \cdot 10^6 J/kg$.

Densitá del vapore: $\rho_{vap} = 0.6kg/m^3$.

Densitá dell'acqua: $\rho_a = 10^3 kg/m^3$.

$$[L = 1.67 \cdot 10^4 J; \Delta U = 20.93 \cdot 10^4 J]$$

ESERCIZIO 4

n=10 moli di gas perfetto vengono compresse isotermicamente in modo reversibile da un volume iniziale $V_i=1m^3$ al volume finale V_f . Il gas contenuto in un recipiente adiabatico a contatto termico con una massa m=0.1kg di ghiaccio fondente. Si determini il valore del volume finale V_f per il quale si ha completa fusione del ghiaccio (il calore latente di fusione del ghiaccio é $\lambda_{f,g}=80kcal/kg$).

$$[V_f = 0.23m^3]$$

ESERCIZIO 5

Un blocco di ghiaccio di massa m_1 alla temperatura $T_1 = -20^{\circ}C$ si trova all'interno di un contenitore adiabatico. Molto rapidamente vengono immessi nel contenitore un corpo solido di massa $m_2 = 0.4kg$, calore specifico $c_2 = 380J/kgK$, avente temperatura $T_2 = 60^{\circ}C$, e una massa $m_3 = 0.8kg$ di acqua alla temperatura $T_3 = 10^{\circ}C$. Si osserva che la temperatura di equilibrio é $T = -3^{\circ}C$. Calcolare il valore di m_1 .

$$[m_1 = 9.1kg]$$

ESERCIZIO 6

Una mole di gas ideale monoatomico compie un'espansione reversibile regolata dall'equazione $p(V-V_0)=-K$, con $V_0=5\cdot 10^{-2}~m^3$ e K=4.56kJ, dallo stato iniziale $V_1=10^{-2}~m^3$, $p_1=1.14$ bar allo stato finale $V_2=4\cdot 10^{-2}~m^3$, p_2 . Calcolare il lavoro e il calore scambiati.

$$[W = 6.3 \cdot 10^3 J, Q = 3.3 \cdot 10^4 J]$$