1. Introduction

Using EEGNet and DeepConvNet to solve a classification problem, the training data is from BCI competition and has a shape of (C=1, H=2, W=750).

2. Experiment set up

A. The detail of your model

EEG model:

EEGNet is a relatively simple Convolutional Neural Network (CNN) architecture optimized for the characteristics of EEG data. It combines depth-wise separable convolutions and spatial convolutions to reduce the number of parameters in the model while effectively capturing spatial information. This allows EEGNet to have lower computational costs when processing EEG data while maintaining good performance. The advantages of EEGNet lie in its ability to efficiently handle time-series EEG data and its ability to achieve good generalization with relatively fewer training samples.

```
EEGNet(
  (firstconv): Sequential{
    (0): Conv2d(1, 10, kernel_size=(1, 51), stride=(1, 1), padding=(0, 25), bias=False)
    (1): BatchNornZd(16, eps=le-05, nomentum=0.1, affine=True, track_running_stats=True)
}
(depthwiseConv): Sequential{
    (0): Conv2d(16, 32, kernel_size=(2, 1), stride=(1, 1), groups=16, bias=False)
    (1): BatchNornZd(32, eps=le-05, nomentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPoolZd(kernel_size=(1, 4), stride=(1, 4), padding=0)
    (4): Dropout(p=0.75)
}
(separableConv): Sequential(
    (0): Conv2d(32, 32, kernel_size=(1, 15), stride=(1, 1), padding=(0, 7), bias=False)
    (1): BatchNornZd(32, eps=le-05, nomentum=0.1, affine=True, track_running_stats=True)
    (2): ELU(alpha=1.0)
    (3): AvgPoolZd(kernel_size=(1, 8), stride=(1, 8), padding=0)
    (4): Dropout(p=0.25)
}
(classify): Sequential(
    (0): Linear[in_features=736, out_features=2, bias=True]
}
```

DeepConvNet:

DeepConvNet is a more complex CNN architecture compared to EEGNet. It consists of multiple layers of convolutional, pooling, and batch normalization layers, followed by a fully connected layer and a softmax output layer for classification. The network is designed to automatically learn hierarchical and spatial features from EEG signals, allowing it to capture more complex patterns and representations. The advantage of

DeepConvNet lies in its ability to effectively capture spatial and temporal dependencies within EEG data due to its deeper architecture. However, it may require more computational resources and training data compared to EEGNet.

Layer	# filters	size	# params	Activation	Options
Input		(C, T)			
Reshape		(1, C, T)			
Conv2D	25	(1, 5)	150	Linear	mode = valid, max norm = 2
Conv2D	25	(C, 1)	25 * 25 * C + 25	Linear	mode = valid, max norm = 2
BatchNorm			2 * 25		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	50	(1, 5)	25 * 50 * C + 50	Linear	mode = valid, max norm = 2
BatchNorm			2 * 50		epsilon = $1e$ - 05 , momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	100	(1, 5)	50 * 100 * C + 100	Linear	mode = valid, max norm = 2
BatchNorm			2 * 100		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Conv2D	200	(1, 5)	100 * 200 * C + 200	Linear	mode = valid, max norm = 2
BatchNorm			2 * 200		epsilon = 1e-05, momentum = 0.1
Activation				ELU	
MaxPool2D		(1, 2)			
Dropout					p = 0.5
Flatten					
Dense	N			softmax	max norm = 0.5

B. Explain the activation function

ReLU:

$$R(z) = \left\{ \begin{matrix} z & z > 0 \\ 0 & z <= 0 \end{matrix} \right\}$$

$$R'(z) = \left\{ \begin{array}{ll} 1 & z > 0 \\ 0 & z < 0 \end{array} \right\}$$

Advantage:

The ReLU function is computationally efficient and addresses the vanishing gradient problem in deep neural networks, making it widely used in various architectures. it speeds up the convergence during training since it allows the neuron to be active (outputting a non-zero value) for positive inputs.

Disadvantage:

it can suffer from a problem called "dying ReLU," where neurons might get stuck and stop learning if they consistently output zero.

Leaky ReLU:

$$R(z) = \left\{ egin{array}{ll} z & z > 0 \\ lpha z & z <= 0 \end{array}
ight\} \qquad \qquad R'(z) = \left\{ egin{array}{ll} 1 & z > 0 \\ lpha & z < 0 \end{array}
ight\}$$

$$R'(z) = \left\{ \begin{array}{ll} 1 & z > 0 \\ \alpha & z < 0 \end{array} \right\}$$

Advantage:

Can solve dying ReLU problem. (x<0 != 0)

Disadvantage:

When x<0 that is linear, it can't be used in the complex classification.

ELU:

$$R(z) = \left\{ \begin{array}{ll} z & z > 0 \\ \alpha. \ (e^z - 1) & z <= 0 \end{array} \right\} \qquad \qquad R'(z) = \left\{ \begin{array}{ll} 1 & z > 0 \\ \alpha. \ e^z & z < 0 \end{array} \right\}$$

Advantage:

It introduces a slight curvature for negative inputs, which helps alleviate the vanishing gradient problem and allows for faster learning.

Disadvantage:

the main downside of ELU is its computational cost, as it involves the exponential function, which is more computationally expensive than simple linear operations like ReLU and Leaky ReLU.

3. Experiment results

A. The highest testing accuracy

EEGNet:

ReLU_train acc: 97.87037037037037

ReLU_test acc: 86.48148148148148

LeakyReLU_train acc: 97.68518518518519

LeakyReLU_test acc: 87.12962962962963

ELU_train acc: 95.2777777777777

ELU test acc: 83.42592592592592

DeepConvNet:

	ReLU	Leaky ReLU	ELU
EEGNet	86.48%	87.12%	83.43%
DeepConvNet	81.76%	80.83%	82.04%

B. Comparison figures

EEGNet:

epcoh 10	loss:0.0005	acc:72.1%	epcoh 10	loss:0.0005	acc:71.7%	epcoh 10	loss:0.0005	acc:74.3%
epcoh 20	loss:0.0005	acc:75.5%	epcoh 20	loss:0.0005	acc:75.5%	epcoh 20	loss:0.0004	acc:77.0%
epcoh 30	loss:0.0004	acc:77.1%	epcoh 30	loss:0.0004	acc:77.5%	epcoh 30	loss:0.0004	acc:77.1%
epcoh 40	loss:0.0004	acc:79.6%	epcoh 40	loss:0.0004	acc:78.2%	epcoh 40	loss:0.0004	acc:80.3%
epcoh 50	loss:0.0004	acc:81.8%	epcoh 50	loss:0.0004	acc:79.8%	epcoh 50	loss:0.0004	acc:79.5%
epcoh 60	loss:0.0003	acc:85.7%	epcoh 60	loss:0.0004	acc:82.8%	epcoh 60	loss:0.0004	acc:81.3%
epcoh 70	loss:0.0003	acc:85.3%	epcoh 70	loss:0.0003	acc:85.2%	epcoh 70	loss:0.0004	acc:82.3%
epcoh 80	loss:0.0003	acc:86.9%	epcoh 80	loss:0.0003	acc:86.5%	epcoh 80	loss:0.0003	acc:83.5%
epcoh 90	loss:0.0002	acc:90.3%	epcoh 90	loss:0.0003	acc:88.6%	epcoh 90	loss:0.0003	acc:85.6%
epcoh100	loss:0.0002	acc:90.3%	epcoh100	loss:0.0002	acc:90.6%	epcoh100	loss:0.0003	acc:85.6%
epcoh110	loss:0.0002	acc:91.9%	epcoh110	loss:0.0002	acc:91.3%	epcoh110	loss:0.0003	acc:87.6%
epcoh120	loss:0.0002	acc:92.3%	epcoh120	loss:0.0002	acc:90.7%	epcoh120	loss:0.0003	acc:87.9%
epcoh130	loss:0.0002	acc:92.8%	epcoh130	loss:0.0002	acc:92.0%	epcoh130	loss:0.0002	acc:90.0%
epcoh140	loss:0.0002	acc:93.4%	epcoh140	loss:0.0002	acc:93.2%	epcoh140	loss:0.0002	acc:90.6%
epcoh150	loss:0.0002	acc:94.4%	epcoh150	loss:0.0002	acc:93.8%	epcoh150	loss:0.0002	acc:91.3%
epcoh160	loss:0.0001	acc:94.6%	epcoh160	loss:0.0002	acc:94.1%	epcoh160	loss:0.0002	acc:90.4%
epcoh170	loss:0.0001	acc:95.7%	epcoh170	loss:0.0001	acc:95.0%	epcoh170	loss:0.0002	acc:91.8%
epcoh180	loss:0.0001	acc:94.0%	epcoh180	loss:0.0001	acc:95.0%	epcoh180	loss:0.0002	acc:91.9%
epcoh190	loss:0.0001	acc:96.3%	epcoh190	loss:0.0001	acc:95.3%	epcoh190	loss:0.0002	acc:92.9%
epcoh200	loss:0.0001	acc:96.7%	epcoh200	loss:0.0001	acc:95.4%	epcoh200	loss:0.0002	acc:92.4%
epcoh210	loss:0.0001	acc:96.4%	epcoh210	loss:0.0001	acc:95.5%	epcoh210	loss:0.0002	acc:91.9%
epcoh220	loss:0.0001	acc:95.6%	epcoh220	loss:0.0001	acc:95.9%	epcoh220	loss:0.0002	acc:94.4%
epcoh230	loss:0.0001	acc:95.3%	epcoh230	loss:0.0001	acc:95.6%	epcoh230	loss:0.0002	acc:94.8%
epcoh240	loss:0.0001	acc:97.3%	epcoh240	loss:0.0001	acc:96.6%	epcoh240	loss:0.0002	acc:93.7%
epcoh250	loss:0.0001	acc:97.1%	epcoh250	loss:0.0001	acc:96.9%	epcoh250	loss:0.0002	acc:93.6%
epcoh260	loss:0.0001	acc:95.9%	epcoh260	loss:0.0001	acc:97.9%	epcoh260	loss:0.0001	acc:94.7%
epcoh270	loss:0.0001	acc:96.8%	epcoh270	loss:0.0001	acc:96.8%	epcoh270	loss:0.0002	acc:93.8%
epcoh280	loss:0.0001	acc:97.2%	epcoh280	loss:0.0001	acc:97.4%	epcoh280	loss:0.0002	acc:94.9%
epcoh290	loss:0.0001	acc:97.1%	epcoh290	loss:0.0001	acc:97.2%	epcoh290	loss:0.0001	acc:94.3%
epcoh300	loss:0.0001	acc:97.2%	epcoh300	loss:0.0001	acc:97.5%	epcoh300	loss:0.0001	acc:94.8%

DeepConvNet:

epcoh 10	loss:0.0009	acc:54.6%
epcoh 20	loss:0.0006	acc:67.9%
epcoh 30	loss:0.0005	acc:69.7%
epcoh 40	loss:0.0005	acc:70.6%
epcoh 50	loss:0.0005	acc:74.0%
epcoh 60	loss:0.0005	acc:75.4%
epcoh 70	loss:0.0004	acc:76.4%
epcoh 80	loss:0.0004	acc:79.0%
epcoh 90	loss:0.0004	acc:80.2%
epcoh100	loss:0.0004	acc:80.2%
epcoh110	loss:0.0004	acc:79.9%
epcoh120	loss:0.0003	acc:82.5%
epcoh130	loss:0.0003	acc:83.7%
epcoh140	loss:0.0003	acc:84.3%
epcoh150	loss:0.0003	acc:85.9%
epcoh160	loss:0.0003	acc:85.2%
epcoh170	loss:0.0003	acc:85.7%
epcoh180	loss:0.0003	acc:87.3%
epcoh190	loss:0.0003	acc:88.0%
epcoh200	loss:0.0003	acc:87.7%
epcoh210	loss:0.0003	acc:89.1%
epcoh220	loss:0.0002	acc:88.5%
epcoh230	loss:0.0002	acc:91.4%
epcoh240	loss:0.0002	acc:89.7%
epcoh250	loss:0.0002	acc:89.8%
epcoh260	loss:0.0002	acc:91.7%
epcoh270	loss:0.0002	acc:90.6%
epcoh280	loss:0.0002	acc:90.6%
epcoh290	loss:0.0002	acc:91.7%
epcoh300	loss:0.0002	acc:91.8%

epcoh 10	loss:0.0009	acc:56.0%
epcoh 20	loss:0.0005	acc:68.1%
epcoh 30	loss:0.0005	acc:73.1%
epcoh 40	loss:0.0005	acc:73.2%
epcoh 50	loss:0.0005	acc:76.2%
epcoh 60	loss:0.0004	acc:77.0%
epcoh 70	loss:0.0004	acc:76.9%
epcoh 80	loss:0.0004	acc:78.9%
epcoh 90	loss:0.0004	acc:78.6%
epcoh100	loss:0.0004	acc:79.6%
epcoh110	loss:0.0004	acc:81.2%
epcoh120	loss:0.0003	acc:83.2%
epcoh130	loss:0.0003	acc:83.3%
epcoh140	loss:0.0003	acc:82.5%
epcoh150	loss:0.0003	acc:84.3%
epcoh160	loss:0.0003	acc:85.8%
epcoh170	loss:0.0003	acc:85.1%
epcoh180	loss:0.0003	acc:86.5%
epcoh190	loss:0.0003	acc:87.1%
epcoh200	loss:0.0003	acc:88.1%
epcoh210	loss:0.0003	acc:88.8%
epcoh220	loss:0.0002	acc:90.0%
epcoh230	loss:0.0002	acc:90.4%
epcoh240	loss:0.0002	acc:90.1%
epcoh250	loss:0.0002	acc:91.0%
epcoh260	loss:0.0002	acc:91.4%
epcoh270	loss:0.0002	acc:90.6%
epcoh280	loss:0.0002	acc:91.2%
epcoh290	loss:0.0002	acc:92.8%
epcoh300	loss:0.0002	acc:91.8%

epcoh 10	loss:0.0010	acc:59.7%
epcoh 20	loss:0.0007	acc:69.4%
epcoh 30	loss:0.0005	acc:72.7%
epcoh 40	loss:0.0005	acc:74.3%
epcoh 50	loss:0.0004	acc:74.0%
epcoh 60	loss:0.0004	acc:78.1%
epcoh 70	loss:0.0004	acc:78.0%
epcoh 80	loss:0.0004	acc:78.4%
epcoh 90	loss:0.0004	acc:81.1%
epcoh100	loss:0.0004	acc:79.0%
epcoh110	loss:0.0004	acc:82.2%
epcoh120	loss:0.0004	acc:82.4%
epcoh130	loss:0.0003	acc:83.6%
epcoh140	loss:0.0003	acc:83.7%
epcoh150	loss:0.0003	acc:84.9%
epcoh160	loss:0.0003	acc:87.2%
epcoh170	loss:0.0003	acc:86.0%
epcoh180	loss:0.0003	acc:87.2%
epcoh190	loss:0.0002	acc:88.1%
epcoh200	loss:0.0002	acc:90.4%
epcoh210	loss:0.0002	acc:91.8%
epcoh220	loss:0.0002	acc:91.8%
epcoh230	loss:0.0002	acc:93.6%
epcoh240	loss:0.0002	acc:91.8%
epcoh250	loss:0.0002	acc:93.2%
epcoh260	loss:0.0001	acc:94.9%
epcoh270	loss:0.0002	acc:93.4%
epcoh280	loss:0.0001	acc:94.8%
epcoh290	loss:0.0001	acc:94.8%
epcoh300	loss:0.0001	acc:95.1%

4. Discussion

A. Anything you want to share

Different Dropout: Dropout is a regularization technique commonly used in neural networks to prevent overfitting. It works by randomly setting a fraction of the neurons to zero during training, effectively dropping them out of the network for that particular forward and backward pass. This helps the network to become more robust and less reliant on specific neurons, reducing the risk of overfitting the training data.

0.25

0.8

Different optimizer:

SGD:

Adagrad:

RMSprop:

