

Outlier Detection: Density and Partition-Based

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — https://chato.cl/teach

Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

Liu, F. T., Ting, K. M., & Zhou, Z. H. Isolation forest. ICDM 2008.

- (1) Eryk Lewinson: Outlier detection with isolation forest (2018)
- (2) Tobias Sterbak: Detecting network attacks with isolation forests (2018)

Density-based methods

Density-based methods

- Key idea: find sparse regions in the data
- Limitation: cannot handle variations of density

Histogram- and grid-based methods

Histogram-based method:

- 1. Put data into **bins**
- 2. Outlier score: *num* 1, where *num* is the number of items in the same **bin**

Clear outliers are alone or almost alone in a bin

Histogram- and grid-based methods

Grid-based method

- 1. Put data into a grid
- 2. Outlier score: *num* 1, where *num* is the number of items in the same **cell**

Clear outliers are alone or almost alone in a cell

Problems with grid-based methods

- . How to choose the grid size?
- Grid size should be chosen considering data density, but density might vary across regions
- If dimensionality is high, then most cells will be empty

Kernel-based methods

. Given n points $\overline{X_1}, \overline{X_2}, \dots, \overline{X_n}$

$$f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K_h(\overline{X} - \overline{X_i})$$

- . K_h is a function peaking at X_i with bandwidth h
- . For instance, a Gaussian kernel:

$$K_h(\overline{X} - \overline{X_i}) = \left(\frac{1}{\sqrt{2\pi} \cdot h}\right)^d \cdot e^{-\|\overline{X} - \overline{X_i}\|^2/(2h^2)}$$

Kernel-based methods (cont.)

. Example with a Gaussian kernel

$$-X = < -2.1, -1.3, -0.4, 1.9, 5.1, 6.2 >$$

- . Each K_h in red
- $f = sum of K_h in blue$

$$f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K_h(\overline{X} - \overline{X_i})$$

[Wikipedia: Kernel density estimation]

Information-theoretic models

- Describe "ававававававававававававававава"
 - "AB" 17 times
- Describe "АВАВАСАВАВАВАВАВАВАВАВАВАВАВАВАВАВАВАВ"
 - Minimum description length increased
- Information-theoretic models: learn a model, then look at increases in model size due to a data point

Partitioning-based method: isolation forest

Isolation forest method

- . tree_build(X)
 - Pick a random dimension r of dataset X
 - Pick a random point p in [min_r(X), max_r(X)]
 - Divide the data into two pieces: x_r r</sub> ≥ p
 - Recursively process each piece

Stopping criteria for recursion

 Stop when a maximum depth has been reached -or-

Stop when each point is alone in one partition

Key: outliers lie at small depths

Outlier score

 Let c(n) be the average path length of an unsuccessful search in a binary tree of n items

$$c(n) = 2H(n-1) - (2(n-1)/n)$$

$$H(n) = \sum_{k=1}^{n} \frac{1}{k}$$

- . h(x) is the depth at which x is found in tree
- . Score:

outlier
$$(x,n) = 2^{-\frac{E(h(x))}{c(n)}}$$

Outlier scores in isolation forests

(each tree is built from a sub-sample of original data)

https://donghwa-kim.github.io/iforest.html

Example

(Note: here lines cross each other: we do not cross lines)

Extended Isolation Forest

 More freedom to partitioning by choosing a random slope and a random intercept

Exercise: isolation forest

- Create one tree of the isolation forest by repeating 4 times:
 - Picking a sector containing >1 element
 - Picking a random dimension
 - Picking a random cut-off between min and max value along that dimension
 - Draw the line of your cut do not cross lines, and label each line with a number 0, 1, 2, ...
- . Stop when each point is isolated
- Label each point with its depth h(x)

This is normally repeated several times, in the end:

outlier
$$(x,n) = 2^{-\frac{E(h(x))}{c(n)}}$$

In this case $c(10) = 2xH(9) - (2x9/10) \approx 3.857 \approx 4$

Example answer

- Let A = original data
- First cut, applied over A
 - Randomly pick dimension: x₁
 - In part A along dimension x₄, min=2, max=9
 - Randomly pick cut in [2,9]: 7
 - Let B = $A(x_1 < 7)$
 - Let $C = A(x_1 \ge 7)$
- Second cut, applied over B
 - Randomly pick dimension: x₁
 - In part B along dimension x_1 , min = 2, max=3

 $X_1 < 7$

В

x, ≥ 3

 $x_1 < 3$

- Randomly pick cut in [2,3]: 3
- Let D = $B(x_1 < 3)$
- Let $E = B(x_1 \ge 3)$
- Third cut, applied over C
 - Randomly pick dimension: x₂
 - In part C along dimension x₂, min=3, max=9
 - Randomly pick cut in [3,9]: 8
 - Let $F = C(x_2 < 8)$
 - Let $G = C(x_2 \ge 8)$

Summary

Things to remember

- Density-based methods
- Isolation forest

Exercises for TT19-TT21

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises 8.11 → all except 10, 15, 16, 17

Additional contents (not included in exams)

Distance-based methods

Instance-specific definition

- The distance-based outlier score of an object x is its distance to its kth nearest neighbor
- In this example of a small group of 4 outliers, we can set k > 3

Problem: computational cost

- The distance-based outlier score of an object x is its distance to its kth nearest neighbor
- In principle this requires O(n²) computations!
 - Index structure: useful only for cases of low data dimensionality
 - Pruning tricks: useful when only top-r outliers are needed

Problem: computational cost

- The distance-based outlier score of an item x is its distance to its kth nearest neighbor
- . In principle this requires:
 - O(n²) computations for evaluating the n x n distance matrix
 - O(n²) computations for finding the r smallest values on each row

Pruning method: sampling

- Evaluate s x n distances
- For points1...s we are OK
- For points (s+1)...nwe know only upper bounds

Pruning method: sampling (cont.)

From points

1...s we already know the r "winners"

(*r*≤*s* nodes with the larger distance to their kth nearest neighbor)

Any point having $V_{k} < L_{s}$ cannot be among

the top r outliers

Pruning method: sampling (cont.)

From points

1...s we already know the r "winners"

(r≤s nodes with the larger distance to their kth nearest neighbor)

Any point having $V_k < L_s$ cannot be among the top r outliers

Pruning method: sampling (cont.)

Remove points

having $\widehat{V_k} \leq L_r$

Update L_r keeping
r largest values, and
stop computing for a
row if one already finds
k nearest neighbors in that row
that are all below distance L_r

Local outlier factor

Local Outlier Factor (LOF)

- . Let $V_k(X)$ be the distance of X to its k-nearest neighbor
- . Reachability distance

$$R_k(\overline{X}, \overline{Y}) = \max\{\text{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y})\}$$

- . $V_k(X)$: distance of X to its k-nearest neighbor
- . Reachability distance

$$R_k(\overline{X}, \overline{Y}) = \max\{\text{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y})\}$$

- Not symmetric
- Equal to simple distance for long distances
- Smoothed by $V_k(X)$ for short distances

Reachability distance

$$R_k(\overline{X}, \overline{Y}) = \max\{\mathrm{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y})\}$$

Average reachability distance

$$AR_k(\overline{X}) = \underset{\overline{Y} \in L_k(\overline{X})}{E} \left[R_k(\overline{X}, \overline{Y}) \right]$$

 $AR_k(\overline{X}) = \mathop{E}_{\overline{Y} \in L_k(\overline{X})} \left[R_k(\overline{X}, \overline{Y}) \right]$. $L_k(\!X\!)$ is the set of points within distance $V_k(\!X\!)$ of $\!X\!$ (might be more than k due to ties)

$$R_k(\overline{X}, \overline{Y}) = \max\{\text{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y})\}$$
$$AR_k(\overline{X}) = \mathop{E}_{\overline{Y} \in L_k(\overline{X})} \left[R_k(\overline{X}, \overline{Y}) \right]$$

Local outlier factor

$$LOF_k(\overline{X}) = \mathop{E}_{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{X})}{AR_k(\overline{Y})}$$

Large for outliers, close to 1 for others

Outlier score

$$\max_{k} \mathrm{LOF}_{k}(\overline{X})$$

Local outlier factor

$$LOF_k(\overline{X}) = \mathop{E}_{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(X)}{AR_k(\overline{Y})}$$

- LOF values for points inside a cluster are close to one if cluster is homogeneous
- LOF values much higher for outliers: they are computed in terms of average distances of near-by clusters

Exercise

compare outlier score LOF(u), LOF(v)

 $LOF_k(\overline{X}) = \mathop{E}_{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{X})}{AR_k(\overline{Y})}$

 $AR_k(\overline{X}) = \underset{\overline{Y} \in L_k(\overline{X})}{E} \left[R_k(\overline{X}, \overline{Y}) \right]$

$$LOF_2(u) = E[\{AR_2(u) / AR_2(a), AR_2(u) / AR_2(b) \}] =$$

•
$$AR_2(u) = E[\{R_k(u,a), R_k(u,b)\}] =$$

•
$$AR_2(v) = E[\{R_k(v,b), R_k(v,u) \}] =$$
• $AR_2(a) = E[\{R_k(a,u), R_k(a,b) \}] =$

•
$$AR_a(b) = E[\{R_a(b,u), R_a(b,a)\}] =$$

•
$$AR_2(b) = E[\{R_k(b,u), R_k(b,a) \}] =$$

•
$$AR_2(D) = E[\{R_k(D,u), R_k(D,a)\}] =$$

•
$$R_k(a,u) = \underline{\hspace{1cm}}; R_k(a,b) = \underline{\hspace{1cm}}; R_k(b,u) = \underline{\hspace{1cm}}; R_k(b,a) = \underline{\hspace{1cm}}$$
• $R_k(u,a) = \underline{\hspace{1cm}}; R_k(u,b) = \underline{\hspace{1cm}}; R_k(v,b) = \underline{\hspace{1cm}}; R_k(v,u) = \underline{\hspace{1cm}} R_k(\overline{X},\overline{Y}) = \max\{Dist(\overline{X},\overline{Y}), V_k(\overline{Y})\}$

$$V_2$$
 = distance to 2nd nearest neighbor: $V_2(u) = ____ ; V_2(v) = ____ ; V_2(a) = ____ ; V_2(b) = _____ ; V_2(b) = ____ ; V_2(b) = _____ ; V_2(b) = _____$

Answer

 $R_k(\overline{X}, \overline{Y}) = \max\{\text{Dist}(\overline{X}, \overline{Y}), V_k(\overline{Y})\}$

- Let k=2
- LOF₂(u) = E[{AR₂(u) /AR₂(a), AR₂(u)/AR₂(b)}] = (1.33+1.33)/2 = 1.33
- LOF₂(v) = E[{AR₂(v) /AR₂(b), AR₂(v)/AR₂(u)}] = (3+2.25)/2 = $\frac{\text{LOF}_k(\overline{X})}{\overline{Y} \in L_k(\overline{X})} = \frac{E}{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{X})}{AR_k(\overline{Y})} = \frac{E}{\overline{Y} \in L_k(\overline{X})} \frac{AR_k(\overline{Y})}{AR_k(\overline{Y})} = \frac{E}{\overline{Y} \in L_k(\overline{Y})} \frac{AR_k(\overline{Y})}{AR_k(\overline{Y}$
- $AR_2(u) = E[\{R_k(u,a), R_k(u,b)\}] = 2$
- $AR_2(v) = E[\{R_k(v,b), R_k(v,u)\}] = 4.5$
- $AR_2(a) = E[\{R_k(a,u), R_k(a,b)\}] = 1.5$
- $AR_2(b) = E[\{R_k(b,u), R_k(b,a)\}] = 1.5$
- $R_k(a,u) = 1$; $R_k(a,b) = 2$; $R_k(b,u) = 1$; $R_k(b,a) = 2$
- $R_k(u,a) = 2$; $R_k(u,b) = 2$; $R_k(v,b) = 4$; $R_k(v,u) = 5$
- V_2 = distance to 2nd nearest neighbor: $V_2(u) = 1$; $V_2(v) = 5$; $V_2(a) = 2$; $V_2(b) = 2$