Supervised Learning: Classification

IBM Machine Learning - Project Mohammed Qasim K. October 2022

Main Objective

- The main objective of this analysis was to classify the fictional users in the data set as likely to spend money or not using Classification Methods
- The data set was split into Training set (60%), Validation set (20%), and Test set (20%) using Train-Test-Split.

About the Data

- The data set comprises of fictional user behaviors on the Stranger social app platform.
- This data set has 3000000 records and 5 variables. During the analysis, 7 duplicates were detected and removed.

Variable name	Туре	Description
user_id	int	Unique identifier for a given user
ts	object	Time Stamp of the given behavior
behaviour_type	object	A particular behavior of the app (like, disklike, etc.)
consume	int	Amount of money that occurred for those records
target_user	int	Unique identifier of the receptor <i>user_id</i>

https://www.kaggle.com/datasets/sexiaoze/strangersocial-app-user-behaviour-data?select=user_id.csv

- After checking for duplicates, the EDA was conducted on the data set.
- The data description is as follows:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2999993 entries, 0 to 2999992
Data columns (total 5 columns):
    Column
                     Dtype
    user_id
                     int64
     ts
                     object
     behaviour_type
                     object
     consume
                     int64
     target_user
                     int64
dtypes: int64(3), object(2)
memory usage: 114.4+ MB
```

- EDA was conducted on the behaviour_type column.
- The data description is as follows:

view	563888	
dislike	448510	
voiceroom	416270	
like	413939	
click	318675	
zan	313339	
post	229844	
comment	197854	
follow	62642	
buy	35032	
Name: behavi	our_type, dtype: int64	

behaviour_type	Description
dislike	the user doesn't want to match with the target user
like	the user feels ok to match the target user
zan	a like given by the user to any post
view	browse for recommended items, ads, posts, and any things you could imagine here with staying for at least a few seconds
post	put up a post
voiceroom	the user enters a voice chatting room
click	click a banner or an ad
buy	spend money on something
comment	comment a post
follow	follow a topic, a user, a group or something else

- One Hot Encoded the behaviour_type column and summed the column based on the user_id.
- Dropped ts, target_user and consume columns.
- Encoded the buy column into a Binary decision.

0 : Not Likely to perform In app purchases

1: Likely to perform In app purchases

	user_id	buy	click	comment	dislike	follow	like	post	view	voiceroom	zan
0	10928793	0	0	0	1	0	0	0	0	0	0
1	32521526	0	0	0	0	0	0	0	1	0	0
2	63353958	0	0	0	0	0	0	0	0	1	0
3	84233255	0	0	0	0	0	0	0	1	0	0
4	98010797	0	0	0	0	0	0	0	1	0	0
2999988	17775246	0	0	0	0	0	0	0	1	0	0
2999989	69288974	0	0	0	0	0	0	1	0	0	0
2999990	69497756	0	0	0	0	0	1	0	0	0	0
2999991	60503809	0	0	0	0	0	0	0	0	1	0
2999992	22359624	0	0	0	0	0	0	0	0	0	1

- The new data set upon which analysis will be conducted has 15000 unique records and 11 variables.
- The target label is the buy column where:

0 : Not Likely to perform In app purchases

1: Likely to perform In app purchases

	buy	click	comment	dislike	follow	like	post	view	voiceroom	zan
user_id										
10006437	1	11	7	26	0	9	9	24	15	25
10013978	1	13	8	21	0	19	9	32	17	21
10015055	1	18	20	29	5	33	17	37	30	21
10022355	1	23	16	33	0	37	15	39	21	16
10024335	0	22	21	29	1	24	19	34	22	26
99959540	1	19	5	37	3	27	12	42	21	24
99967539	1	13	15	20	0	19	13	21	19	10
99974265	1	21	15	37	3	27	15	46	29	21
99975758	1	13	1	16	0	15	12	24	21	14
99997216	1	17	11	22	0	18	7	22	26	13

Model Variations

 Implemented a K Nearest Neighbor algorithm, with a range of different K values (0 – 100) for finding the appropriate number of neighbors for clustering the dataset.

Predictions on the Validation Set

The four models were then fit on the unseen Validation Set and the appropriate evaluation metrics were calculated for each model.

- K Nearest Neighbor with n_neighbors = 57
- Decision Tree with an *Entropy* criterion
- Support Vector Machine with a *Sigmoid* kernel
- Logistic Regression with C = 0.01

Comparing the Metrics

- The metrics show that KNN and Logistic Regression performed decently with no signs of overfitting.
- SVM performed the worst on the validation set and is probably not fit for the data set.
- The best classification model is KNN (Jaccard score = 0.635640 & F1-score = 0.755593)

Jaccard	F1-score	LogLoss
0.635640	0.755593	NA
0.500683	0.633944	NA
0.228044	0.300249	NA
0.622556	0.748980	0.557872
	0.635640 0.500683 0.228044	0.6356400.7555930.5006830.6339440.2280440.300249

Comparing the Metrics Ground Truth The confusion matrix shows that

- The confusion matrix shows that KNN and Logistic Regression performed decently with less False Positives & Negatives.
- SVM performed the worst on the validation set.
- The best classification model is KNN (True Positives= 0.79 & True Negatives = 0.72)

Predictions on the Test Set

The four models were then fit on the unseen test Set and the appropriate evaluation metrics were calculated for each model.

- K Nearest Neighbor with *n_neighbors* = 57
- Decision Tree with an *Entropy* criterion
- Support Vector Machine with a *Sigmoid* kernel
- Logistic Regression with C = 0.01

Comparing the Metrics

- The metrics show that KNN and Logistic Regression performed decently with no signs of overfitting.
- SVM performed the worst of the test set and is probably not fit for the data set.
- The best classification model is KNN (Jaccard score = 0.643902 & F1-score = 0.756809)

Algorithm	Jaccard	F1-score	LogLoss
KNN	0.643902	0.756809	NA
Decision Tree	0.510840	0.639547	NA
SVM	0.237034	0.303575	NA
Logistic Regression	0.624326	0.745311	0.559229

Comparing the Metrics

- The confusion matrix shows that KNN and Logistic Regression performed decently with less False Positives & Negatives.
- SVM performed the worst on the test set.
- The best classification model is KNN (True Positives= 0.78 & True Negatives = 0.73)

Conclusion

The analysis shows that Feature Engineering has a large effect on the model performance. The best The analysis shows that Feature Engineering has a large effect on the model performance. The best classification model for this application is K Nearest Neighbors (KNN). Although performance by the model wasn't great improvements can be made by choosing a dataset which is not synthetic, trying other classification methods not employed in this analysis or adding/generating more features which wasn't done for the sake of simplicity and limited computational resources.

Jupyter Notebook can be found here: https://github.com/moqa19/IBM-Machine-Learning/blob/main/ML%203.ipynb