# Misurare Processi di Business

R.Bruni A.Corradini G.Ferrari T.Flagella R.Guanciale G.O.Spagnolo

8 novembre 2011 **Conferenza aica 2011** - **Torino** 



### **Business Process Management**

- BPM affronta la modellazione, l'organizzazione, l'applicazione e l'ottimizzazione delle attività necessarie per raggiungere un determinato obiettivo (es. offrire un determinato servizio, oppure produrre un certo manufatto).
- In BPM, i processi vengono rappresentati attraverso formalismi grafici, permettendo di comunicare in modo non ambiguo le regole di business, e quindi discuterle o modificarle, tra gli svariati ruoli coinvolti che vanno dagli esperti del dominio di business o del settore, agli architetti software e sviluppatori.

### Obiettivi

- "Group" application interactions into process instances
- Monitor process evolution
- Monitor SLAs
- Detect and inspect protocol failures

## Strategia

- Adottare ed estendere esistenti metodi formali (Petri Nets)
- Integrare ed estendere esistenti infrastutture software (ProM)
- Metodologia dei work-flow
  - I processi sono descritti con BPMN diagrams
  - II BPMN diagram viene trasformata in una Petri Net
  - I log delle istanze di processo sono processati usando tecniche disponibili per le Petri Net
  - I risultati delle analisi sono proiettati indietro sul modello di partenza BPMN.

### Esempio di modello BPMN

 Permette di modellare i processi ad un alto livello di astrazione, questo modello pu essere compreso o creato anche dai non addetti ai lavori.



#### From BPMN to Petri Net

- Sfruttiamo una metodologia di trasformazione esistente (Dijkman, R.M., Dumas, M., Ouyang, C.) estesa
- successivamente affrontiamo il problema di riportare i risultati di queste analisi sul modello BPMN di partenza.



### Analisi basata su Petri Nets

- Gli eventi delle istanze di processo del log sono ordinati (e.s. timestamp)
- Gli eventi sono mappati sulle transizioni della rete
- Log Replay: replay delle istanze di processo del log (non-blocking way)
  - 1'algoritmo parte con un token nella piazza iniziale delle rete
  - Estrae dalla testa del log l'evento
  - viene effettuato il fire della corrispondente transizione
    - se la transizione non abilitata i token mancanti vengono creati artificialmente e chiamati missing token
- Metriche
  - Il numero di missing/remaining token per ogni piazza/transizione
  - Il numero di archi attraversati
  - Il tempo di soggiorno/attesa/sincronizzazione per ogni piazza.



Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



$$\begin{array}{ccc} & p0 & p2 \\ \ltimes & 0 & 0 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



$$p0$$
  $p2$   $\bowtie$  0

Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



$$\begin{array}{ccc} & \text{p0} & \text{p2} \\ \ltimes & 0 & 0 \\ \bowtie & 1 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



$$\begin{array}{ccc} & \text{p0} & \text{p2} \\ \ltimes & 0 & 0 \\ \bowtie & 1 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4s), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



$$\begin{array}{ccc} & p0 & p2 \\ \ltimes & 0 & 0 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



$$\begin{array}{ccc} & p0 & p2 \\ \ltimes & 0 & 0 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



$$\begin{array}{ccc} & \text{p0} & \text{p2} \\ \ltimes & 0 & 0 \\ \bowtie & 1 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



$$\begin{array}{ccc} & \text{p0} & \text{p2} \\ \ltimes & 0 & 0 \\ \bowtie & 1 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



$$\begin{array}{ccc} & \text{p0} & \text{p2} \\ \ltimes & 0 & 0 \\ \bowtie & 1 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



$$\begin{array}{cccc} & \mathsf{p0} & \mathsf{p2} \\ \bowtie & 0 & 0 \\ \bowtie & 1 & \mathit{Missing} & 1 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



$$\begin{array}{cccc} & \mathsf{p0} & \mathsf{p2} \\ \ltimes & 0 & 0 \\ \bowtie & 1 \end{array} \qquad \begin{array}{cccc} \mathsf{p3} \\ \textit{Missing} & 1 \end{array}$$

Trace  $\log (A, 1s), (B, 2s), (D, 8s)$ 



|           | p0 | p2 |           | p3 | p2 |
|-----------|----|----|-----------|----|----|
| $\bowtie$ | 0  | 0  | Missing   | 1  | 0  |
| $\bowtie$ | 1  |    | Remaining | 0  | 1  |

Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



#### Measures

X

 $\bowtie$ 

Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$ 



### A refined Performance analysis

- Exploit standard log-replay techniques in order to reuse existing sw infrastructure
- Transform resulting transition list into eager sequences
  - $R = [tr_1, ..., tr_n]$  for each  $tr_i$  invisible transition
    - let  $tr_p$  the last preceding (p < i) visible transition
    - •  $tr_i \cap tr_p \bullet \neq \emptyset$
- Straightforward algorithm: for each invisible transition tr<sub>i</sub>
  - **1** left shift the transition until a visible transition • $tr_i$  ∩  $tr_p$   $\neq$   $\emptyset$  is found
- All conformance metrics are not changed

## Refined Performance example

- Trace log (A, 1s), (B, 2s), (C, 4), (D, 8s)
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



### Measures

X

 $\bowtie$ 

- Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



#### Measures

X

 $\bowtie$ 

- Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



- Trace  $\log (A, 1s), (B, 2s), (C, 4), (D, 8s)$
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



- Trace log (A, 1s), (B, 2s), (C, 4), (D, 8s)
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



$$\begin{array}{cccc} & \mathsf{p0} & \mathsf{p2} & \mathsf{p1} \\ \ltimes & 0 & 0 & 0 \\ \bowtie & 1 & \end{array}$$

- Trace log (A, 1s), (B, 2s), (C, 4), (D, 8s)
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



$$\begin{array}{cccc} & \mathsf{p0} & \mathsf{p2} & \mathsf{p1} \\ \ltimes & 0 & 0 & 0 \\ \bowtie & 1 & \end{array}$$

- Trace log (A, 1s), (B, 2s), (C, 4), (D, 8s)
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



|           | р0 | p2 | p1 | р3 | p4 |
|-----------|----|----|----|----|----|
| $\ltimes$ | 0  | 0  | 0  |    |    |
| $\bowtie$ | 1  |    | 0  |    |    |

- Trace log (A, 1s), (B, 2s), (C, 4), (D, 8s)
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



|           | р0 | p2 | p1 | р3 | p4 |
|-----------|----|----|----|----|----|
| $\bowtie$ | 0  | 0  | 0  |    |    |
| $\bowtie$ | 1  |    | 0  |    |    |

- Trace log (A, 1s), (B, 2s), (C, 4), (D, 8s)
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



|           | р0 | p2 | p1 | р3 | p4 |
|-----------|----|----|----|----|----|
| $\bowtie$ |    |    |    | 0  |    |
| $\bowtie$ | 1  | 2  | 0  |    |    |

- Trace log (A, 1s), (B, 2s), (C, 4), (D, 8s)
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



|           | р0 | p2 | p1 | р3 | p4 |
|-----------|----|----|----|----|----|
| $\bowtie$ |    | 0  |    |    |    |
| $\bowtie$ | 1  | 2  | 0  |    |    |

- Trace log (A, 1s), (B, 2s), (C, 4), (D, 8s)
- Log replay transition sequence A, B, C, t1, D
- Resulting eager sequence A, B, t1, C, D



|           | р0 | p2 | p1 | р3 | p4 |
|-----------|----|----|----|----|----|
| $\bowtie$ |    | 0  |    |    |    |
| $\bowtie$ | 1  | 2  | 0  | 4  | 6  |

## From Analysis to BPMN (Conformance)

- Missing tokens: Log replay produces missing tokens only to fire visible transitions ⇒ pre-set of at least one visible transition
- Remaining tokens fires invisible transitions fired only if required by visible transition ⇒ places in the post-set of a visible transition or of an invisible transition spawning several tokens



## From Analysis to BPMN (Performance)

- Waiting time: invisible transitions fired immediately ⇒ pre-set of visible transitions
- Synchronization time places having at least one transition in their post-set that depends on another place.





#### Theoretical results

- Refined PetriNet techniques to handle invisible transitions
- Measurement projection on the BPMN model

### Development results

- A new ProM context to execute the plug-ins into a GUI-less environment
- New ProM plug-ins
  - Model transformation from BPMN to PetriNet
  - Eager Sequence transformer
  - PetriNet performance evaluator
  - Projection of PetriNet measures to the starting BPMN model

- Introduzione
  - Business Process Management
  - Sommario
- Supporto alla modellazione tramite BPMN
  - From BPMN to Petri Net
- 3 The The Process Monitoring platform
  - Engineering efforts
- Formal Analysis based on Petri nets
  - Adopted Petri Net techniques
  - A refined Performance analysis
  - From Analysis to BPMN
- Concluding Remarks

