PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-007438

(43) Date of publication of application: 12.01.2001

(51) Int. CI.

H01S 5/0687 H01S 5/02 H04B 10/14 H04B 10/08 H04B 10/04

(21) Application number: 11-178467

(71) Applicant: NEC CORP

(22) Date of filing:

24.06.1999

(72) Inventor: IWATO TAKAMI

(54) OPTICAL TRANSMITTER AND WAVELENGTH MULTIPLEXING OPTICAL TRANSMISSION UNIT EMPLOYING IT

(57) Abstract:

PROBLEM TO BE SOLVED: To stabilize oscillation wavelength through wavelength control using no forward emission light nor beam splitter by an arrangement wherein a first light receiving unit detects the level of transmitting light and outputs a transmission light level while a second light receiving unit detects the level of reflected light and outputs a reflected light

SOLUTION: An wavelength monitor section 2 comprises a wavelength filter 11 for branching forward emission light from a semiconductor leser diode 4 into two and outputting transmitted light and reflected light, and two light receivers 12, 13 for receiving the transmitted light and reflected light, respectively, and detecting the optical level thereof. A circuit included in an operating unit 19 calculates the ratio of level between the transmitted light and reflected light

for these current signals. A comparator 21 compares that ratio with a predetermined reference ratio and a temperature control circuit 23 controls the temperature of a temperature control element to have a specified relation thus controlling the wavelength of the semiconductor laser diode 4.

LEGAL STATUS

[Date of request for examination]

25.05.2000

[Date of sending the examiner's decision of rejection]

http://www19.ipdl.jpo.go.jp/PA1/result/detail/main/wAAAoCa0mtDA41300743... 8/18/2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公閱番号 特開2001-7438 ビ (P2001 - 7438A)

(43)公開日 平成13年1月12日(2001.1.12)

(51) Int.Cl.		識別記号	FΙ		· 7- 7	"](参考)
H01S	5/0687		H01S	5/0687	;	5 F O 7 3
	5/02			5/02	;	5 K O O 2
H 0 4 B	10/14		H04B	9/00	S	•
	10/06					
	10/04					
			審查	京水 有	請求項の数10 OL	(全 8 頁)

(21)出願番号 特顯平11-178467

(22)出顯日 平成11年6月24日(1999.6.24) (71) 出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 岩藤 尊己

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100082935

弁理士 京本 直樹 (外2名)

Fターム(参考) 5F073 EAD3 EA15 GA03 GA12 GA13

GA14 GA19 GA21

5K002 AA01 BA04 BA05 BA13 CA05

CA09 CA11 DA02 FA01

光送信器とこの光送信器を用いた沙長多望光伝送装置 (54) | 郵明の名称]

(57)【要約】

【課題】 前方出射光を用いずビームスプリッタを使用 せずに半導体レーザの発振波長を制御して波長の安定化 を図る。

【解決手段】 半導体レーザとこの半導体レーザの前方 出射光が結合される光導波路と波長フィルタと第1及び 第2の2つの受光器とを備えている。波長フィルタは透 過波長帯域から反射波長帯域へ遷移する波長帯域に半導 体レーザの発振波長を含み、半導体レーザの後方出射光 の一部を透過させ透過光を出力するとともに残余の役方 -出射光を反射させ反射光を出力する機能を有している。 第1の受光器は透過光の光レベルを検出して透過光レベ ルを出力し、第2の受光器は反射光の光レベルを検出し て反射光レベルを出力する。さらに波長制御回路を備え ており、透過光レベルと反射光レベルの比率又は差分等 を算出して基準値と比較して一定に保たれるように半導 体レーザの発振波長を制御する。

【特許請求の範囲】

【請求項1】 半導体レーザダイオードと、

前配半導体レーザダイオードの前方出射光が入射される 光導波路と、

透過波長帯域から反射波長帯域へ又はその逆へ遷移する 波長帯域に前記半導体レーザダイオードの発振波長を含み、前記半導体レーザダイオードの後方出射光の一部を 透過させ透過光を出力するとともに残余の後方出射光を 反射させ反射光を出力する波長フィルタと、

前記透過光の光レベルを検出して透過光レベルを出力する第1の受光器と、

前記反射光の光レベルを検出して反射光レベルを出力する第2の受光器と、

前記透過光レベルと前記反射光レベルに基づいて前記半 導体レーザダイオードの発振波長を制御する波長制御回 路とを備えていることを特徴とする光送信器。

【請求項2】 半導体レーザダイオードと、

前記半導体レーザダイオードの前方出射光が入射される 光導波路と、

透過波長帯域から反射波長帯域またはその逆に遷移する 20 波長帯域に前記半導体レーザダイオードの発振波長を含み、前記半導体レーザダイオードの後方出射光の一部を透過させ透過光を出力するとともに残余の後方出射光を反射させ反射光を出力する波長フィルタと、

前記透過光の光レベルを検出して透過光レベルを出力する第1の受光器と、

前記反射光の光レベルを検出して反射光レベルを出力する第2の受光器と、 3・~

前記還過光レベルと前記反射光レベルの和を算出する総合和光レベル算出回路と、

前記総和光レベルに基づいて前記前方出射光の光レベル を制御する出射光制御回路と、

前記透過光レベルと前記反射光レベルに基づいて前記半 導体レーザダイオードの発振被長を制御する波長制御回 路とを備えていることを特徴とする光送信器。

【請求項3】 前記波長制御回路は、

前記半導体レーザダイオードの周囲温度を制御する第1 の温度制御素子と、

前記透過光レベルと前記反射光レベルとの比率が所定の 基準比率になるように前記第1の温度制御素子を制御す 40 る第1の温度制御回路とを備えていることを特徴とする 請求項1又は請求項2記載の光送倡器。

【請求項4】 前記波長制御回路は、

前記半導体レーザダイオードの周囲温度を制御する第1 の温度制御索子と、

前記透過光レベルと前記反射光レベルの差分が所定の基準値になるように前記第1の温度制御素子を制御する第1の温度制御回路とを備えていることを特徴とする請求項1又は請求項2記載の光送信器。

【請求項5】 前記波長制御回路は、

前記半導体レーザダイオードの周囲温度を制御する第1 の温度制御案子と、

前記透過光レベルと前記反射光レベルの整分を前記総和 光レベルで除算して規格化した規格化レベル差が所定の 基準値になるように前記第1の温度制御素子を制御する 第1の温度制御回路とを備えていることを特徴とする請 求項2記載の光送信器。

【請求項6】 前記出射光制御回路は、

前記半導体レーザダイオードへの注入電流を制御して前 10 記出射光レベルを制御する注入電流制御回路を備えてい ることを特徴とする請求項1から請求項5までのいずれ かの請求項に記載の光送信器。

【請求項7】 請求項1から請求項6までのいずれかの 請求項に記載の光送信器であって、さらに、

前記波長フィルタの周囲温度を制御する第2の温度制御 素子と.

前記波長フィルタの周囲温度が一定になるように前記第 2の温度制御素子を制御する第2の温度制御回路とを備 えていることを特徴とする光送信器。

20 【請求項8】 前記光導波路は、光ファイバであることを特徴とする請求項1又は請求項2記載の光送信器。

【請求項9】 請求項1から請求項8までのいずれかの 請求項に記載の光送信器であって、さらに、

前記半導体レーザダイオードと前記波長フィルタとの間 に配置される前記後方出射光を平行ビームに変換するレンズを備えていることを特徴とする光送信器。

【請求項10】 光送信局と、光受信局と、前記光送信局及び前記光受信局とを接続する光伝送路とを備えるいに異なる波長の複数が信号光を前記光送信局を前記光 の受信局間で光伝送する改送多重光伝送製鑑であった。 前記光送信局は、

請求項1から請求項9までのいずれかの請求項に記載の 光送信器であって、前記光導波路から出力される信号光 の波長が互いに相違する複数の光送信器と、

前記信号光を波長多重する光合波器とを備え、

前記光受信局は、

前記各信号光を受信する光受信器を備えていることを特 長とする波長多重光伝送装置。

【発明の詳細な説明】

10 [0001]

【発明の風する技術分野】本発明は、半導体レーザダイオードを光源とする光送信器に関し、特に、半導体レーザダイオードの発振波長をモニタして所定の波長に制御する機能を備えた光送信器に関する。

[0002]

【従来の技術】インターネットの爆発的な普及により、近年ますます伝送容量の拡大が強く求められている。このため、単一の半導体レーザダイオードの波長を用いた光伝送のみならず、複数の半導体レーザダイオードを用50 いて複数の波長を高密度に多重化した波長多重通信が注

目されるようになってきている。波長多重光伝送では、 半導体レーザダイオードの発振波長をモニタし、発振波 長を制御して安定化させることが重要となる。半導体レ ーザダイオードの発振波長を安定化させる手段として、 例えば従来は温度を一定にし半導体レーザダイオードの 発振波長を一定に保つ方法がある。ところが、上記方法 によれば、半導体レーザダイオードの経時劣化により波 長変動が生じた場合、これを抑えることが困難である。 加えて、高密度波長多重通信においては、半導体レーザ ダイオードの発振波長間隔を狭くし髙精度に波長を設定 することが要求されるため、従来の方法による波長制御 では不十分となる。

【0003】そこで、半導体レーザダイオードの発振波 長に変動が生じないように制御する方法として、一般的 に、半導体レーザダイオードの後方出射光を光検出器で 検出し、半導体レーザダイオードからの光出力を一定に する制御が行われている。一方、発振波長の変動は、温 度を一定に保つ制御を行うことで波長変動を抑えるとい う構成が用いられている。このような構成として、例え ば特開平9-219554号公報には、透過特性が逆の 20 傾斜を有する二つの光フィルタ用いることにより半導体 レーザダイオードの温度を調整し発振波長を制御するこ とが開示されている。

【0004】図6は、上記文献に開示の従来の半導体レ ーザダイオードの波長制御装置の構成を示したものであ る。これは、半導体レーザダイオード26の後方出射光 をその背後に配置されたビームスプリッタ28により二 分岐し、透過光及び反射光を互いに透過特性の逆な波長 フィルタ29、30を通じて受光器31、32で検出す。 - るというものである。各受光器31、32で検出された *30* 光レベルに関する信号は制御回路33,34により処理 され、LD駆動回路35および温度制御回路37により 半導体レーザダイオード28の光出力と発振波長が制御 される。この構成では、各受光器31、32で検出され た光レベルの出力差分に基づいて発振波長のずれを修正 するよう、半導体レーザダイオードの温度を変化させる ことにより発振波長が制御される。上記構成によれば、 半導体レーザダイオードの経時劣化の発振波長安定化に おいて一応の対策を講じることは可能である。

100051

【発明が解決しようとする課題】しかしながら、ビーム スプリッタを用いる点において新たに光の偏向を受けて しまうという問題がある。また、ビームスプリッタ自体 も温度変化によって分光比が変動しやすく、理想的に所 定の比率で安定的に分岐するビームスプリッタの素子を 得ることは困難である。さらに、透過特性が逆の傾斜を 有する波長フィルタを実現することも困難である。

【0006】特開平10-209546号公報には、ビ ームスプリッタを使用せず半導体レーザダイオードの前 方出射光を光カプラにより分岐し、干渉光フィルタによ 50 ベル」という。)が高くなり、同時に反射光の光レベル

り透過光と反射光をおのおの光検出器で検出する。そし て、光レベル検出量の差分により半導体レーザダイオー ドの発振波長を制御する構成が開示されている。 しか しながら、ビームスプリッタを用いないことからこれに 起因する問題は回避できるものの、一般的には波畏フィ ルタを5°以上傾斜させると透過レベルが変動してしま う。そこで、入射光光路の妨げにならないように、波長 フィルタから離れた位置に反射光を受ける受光器を置く 必要が自ずと生じるが、このため、上記の構成でモジュ ールを構成したときに寸法が大きくなってしまう欠点が ある。さらに、波長多重通信への適応を考えると、前方 出射光を光カプラで分岐する必要があるため分岐損が生 じ、多重波長数が増大したときスペースを多く必要とす るため、光伝送装置の大型化を招くという問題もある。 【0007】以上の従来の技術の欠点に鑑みて、本発明 の光送信器は、前方出射光を用いず、ビームスプリッタ を使用せずに波長制御し発振波長の安定化を図ることが できる光送信器および波長制御方法を提供することを目 的とする。

[0008]

【課題を解決するための手段】本発明の光送信器は、半 導体レーザダイオードと、この半導体レーザダイオード の前方出射光が入射される光導波路と、波長フィルタ と、第1及び第2の2つの受光器とを備えている。ここ で、上記波長フィルタは、透過波長帯域から反射波長帯 域へ、あるいはその逆に遜移する波長帯域に半導体レー ザダイオードの発振波長を含み、半導体レーザダイオー ドの後方出射光の一部を透過させ透過光を出力するとと もに残余の後方島創光を反射させ反射光素に力量を機能 を有している。そして、第1の受光器は透過光の光レベ ルを検出して透過光レベルを出力し、第2の受光器は反 射光の光レベルを検出して反射光レベルを出力する。

【0009】本発明の光送信器は、さらに波長制御回路 を備えており、透過光レベルと反射光レベルに基づいて 波長制御回路が半導体レーザダイオードの発振波長を制 御することを特徴としている。所定の波長 礼 に半導体 レーザダイオードの発振波長を制御しこれを維持したい 場合、例えば波長フィルタを透過する出射光と波長フィ ルタで反射される出射光の割合が同じになったときに発 40 振波長が入しになるような波長特性を有する波長フィル タを選定しておく。すなわち、波長フィルタは、透過波 長帯域から反射波長帯域へ、あるいはその逆に遷移する 波長帯域に半導体レーザダイオードの発振波長を含むよ うな波長特性を有するものを用い、発振波長がずれたと きに波長フィルタの透過光と反射光の割合が変化するよ うにしておく。

【0010】そうすると、仮に目標の波長である入りか ら半導体レーザダイオードの発振波長がずれればそのず れた波長分に応じて透過光の光レベル(以下「透過光レ

(以下「反射光レベル」という。) が低くなる。従っ て、上記透過光レベル及び反射光レベルの関係から波長 のずれを推測することができ、その波長変動量に合わせ て発振波長を逆向きにずらせるよう波長制御することが できる。透過光レベルと反射光レベルの関係に基づいた 制御としては、両光レベルの比率を算出し当該比率が所 定の基準比率になるように波長制御する方法や、両光レ ベルの差分が所定の基準値になるように波長制御する方 法が採りうる。なお。具体的な波長制御は、例えば半導 体レーザダイオードをペルチェなどの温度制御素子の上 10 に配置し、半導体レーザダイオードの周囲温度を変化さ せることにより行うことができる。

【0011】ここで、本発明の光送信器においては、一 方の出射光、例えば波長フィルタの透過光の光レベルの 絶対値の変動をモニタしているのではなく、透過光と反 射光の比率等をモニタしている。従って、仮に半導体レ ーザダイオードの出力自体に変化が生じた場合であって も、透過光と反射光との総和の光レベルも併せて算出 し、この総和光レベルが一定になるように制御すること により、半導体レーザダイオードの出力レベルも同時に 20 安定化させることが可能である。半導体レーザダイオー ドの出力レベルの制御は、例えば累子への注入電流を制 御することにより行うことができる。さらに、上記波長 制御において、透過光レベルと反射光レベルの差分を算 出し、さらに総和光レベルで除算して規格化して当該規 格化された値に基づいて波長制御することもできる。

【0012】さらに、本発明の光送信器は、波長フィル タの特性を安定化させるため、さらに、波長フィルタの 周囲温度を制御する第2の温度影響素子と波長フィルタ の周囲温度が一定になるように第2の温度制御素子を制 30 御する第2の温度制御回路とを備えるようにすることも できる。

【0013】なお、上記光導波路は、基板上に形成され た光導波路であってもよいし、光ファイバであってもよ いことはいうまでもない。また、半導体レーザダイオー ドと波長フィルタとの間に後方出射光を平行ビームに変 換するレンズを配置して、受光器への後方出射光の結合 効率を高めることもできる。

【0014】また、上記本発明の光送信器を光送信局に 複数備えることにより、各波長の信号光の波長を近接さ せて高精度に制御することにより、波長多重光伝送装置 を構成することができる。すなわち、本発明の波長多重 光伝送装置は、光送信局と光受信局とこれら光送受信局 とを接続する光伝送路とを備えており、互いに異なる故 長の複数の信号光を光送信局と光受信局間で光伝送する 波長多重光伝送装置である。そして、上記光送信局は、 上述した本発明の光送信器であって光導波路(光ファイ バ) から出力される信号光の波長が互いに相違する複数 の光送信器と、信号光を波長多重する光合波器とを備 え、光受信局は各信号光を受信する光受信器を備えてい 50 光ファイバ9の間に光アイソレータ8が配置されてい

る。

[0015]

【発明の実施の形態】次に、本発明の光送信器及び波長 制御方法について、図面を参照して以下に詳細に説明す

6

【0016】図1は、本発明の光送信器の第1の実施の 形態の構成を示す図である。図1に示されるように、本 発明の光送信器は、大きく分けて、半導体レーザダイオ ード1、波長モニタ部2そして半導体レーザダイオード 制御部3から構成される。半導体レーザダイオード部1 は、半導体レーザダイオード4、光出力を光ファイバ9 と結合させるためのレンズ5、後方光を集光するための レンズ6、半導体レーザダイオード4の温度を制御する ための温度制御索子10と温度検出索子7を備えてい

【0017】波長モニタ部2は、半導体レーザダイオー ド4からの後方出射光を二分岐し、透過光と反射光を出 力する波長フィルタ11とこれら透過光と反射光とをそ れぞれ受光して受光光量 (光レベル)を検出する2つの 受光器12、13を備えている。なお、本実施例では、 波長フィルタ11自体の特性も安定化させるため、波長 フィルタ11の周囲温度を調整できるよう温度検出素子 14と温度制御素子15、温度制御回路16を備えてい

【0018】半導体レーザダイオード制御部3は、光検 出電流をI-V変換するI-V変換器17、18及び、 その値を演算する演算器19、演算量を比較するための 二つの比較器20、21、その比較量よりLD~-の注入 電流を制御するLD駅颱回路2Q、また半導体 🎒ボダ、📑 イオード4の温度調整する温度制御累ティでを記する ・・・・・ 温度制御回路23からなっている。なお、上記演算器1 9は、後述する透過光レベルと反射光レベルの総和光レ ベルを算出する総和光レベル算出回路、透過光と反射光 レベルとの比率あるいは差分を算出する算出回路等を備 えている。

【0019】半導体レーザダイオード4は、その両端面 から前方出射光および後方出射光が出射される。前方出 射光は、レンズ5によりコリメート光とされ光アイソレ ータ8により光ファイバ9へ結合される。後方光は、レ 40 ンズ6によりコリメート光にされ、波長フィルタ11へ 入射される。なお、後方光を集光するためのレンズ6 は、非球面レンズを用いるのが最適であるが、球面レン ズ、シリンドリカルレンズでも構わないし、レンズを用 いない直接結合も採用しうることはいうまでもない。ま た、本実施の形態では、半導体レーザダイオード4の前 方出射光は光ファイバ9に入射されるが、基板上に形成 された光導波路であってもよい。ここでは、さらに光フ ァイバ9からの戻り光が半導体レーザダイオード4に再 結合するのを防ぐために、本実施の形態ではレンズ5と ス

【0020】次に、本発明の光送信器における光出力レベル及び発振波長の制御の原理について説明する。

【0021】上記構成において、半導体レーザダイオー ド4の後方出射光は、半導体レーザダイオード4の後方 に配置された波長フィルタ11により、透過光と反射光 に二分岐される。ここで、波長フィルタ11は、その透 過波長帯域から反射波長帯域へあるいはその逆に遷移す る波長領域に、半導体レーザダイオード4の本来の発振 の中心波長が位置するような特性を有しているものが用 いられる。例えば、半導体レーザダイオード4の発振の 中心波長が1550nmであれば、1550nmより短 い波長領域である波長幅の反射(阻止)帯域を有し、そ れ以外の波長領域では入射光を透過させ、1550nm 近傍では反射帯域から透過帯域に遷移する領域を有し、 1550mmでは透過率がほぼ50%の波長特性を有す るバンドパスフィルタを用いることにより、本発明の機 能、効果を得ることができる。このような波長フィルタ の波長特性を示したのが図2 (a) である。

【0022】なお、上述した波長フィルタは、反射帯域 20 から通過帯域への遷移領域に発振波長が含まれるような 波長特性を有するものであるが、その逆の通過帯域から 反射帯域への遷移領域に発振波長が含まれるようなもの でもよい。また、上記特性、すなわちその透過波長帯域 から反射波長帯域へあるいはその逆に遷移する波長領域 に半導体レーザダイオード4の本来の発振の中心波長が 位置するような特性を有しているものであればパンドパ スフィルタに限らず、ショートウェーブパスフィルタや ロングウエーブパスフィルタを採用することもできる。 【0023】図1に戻って説明すると、波長フィルタ1 30 1によって二分岐された透過光と反射光はそれぞれ2つ の光検出器12、13に受光され電流信号に変換され透 過光レベル及び反射光レベルが検出される。これら電流 信号はさらに I-V変換器 17、18により電圧に変換 され、前方出射光の光出力レベル及び波長制御に用いら れる。まず、演算器19にある総和光レベル算出回路に より、透過光レベルと反射光レベルの和が算出される。 その値、すなわち総和光レベルは基準電圧と比較器20 により比較され、基準電圧との誤差信号がゼロになるよ うにLD駆動回路22を通して半導体レーザダイオード 40 4への注入電流量が制御される。これにより、半導体レ ーザダイオード4からの出射光の光レベルが一定になる ように制御することができる。

【0024】一方、演算器19に含まれる透過光と反射 に示す。B/Aの 光との比率を算出する回路により、透過光レベルと反射 準電圧との誤差が 光レベルの比率が算出される。この比率とあらかじめ定 3を制御すること められた基準比率との比較を比較器21によって行い、 る。図2(c)に 所定の比率になるように温度制御回路23により温度制 である。以上から を避けつつ半導体 とによって半導体レーザダイオード4の波長制御がなさ 50 とが可能となる。

8

れる。なお、上記は制御パラメータに透過光レベルと反射光レベルとの比率に基づいて制御されているが、単純な差分によることもできる。あるいは、上記差分をすでに求められた総和光レベルにより除算し、規格化されたデータに基づいて半導体レーザダイオード4の波長を制御してもよい。半導体レーザダイオード4からの光出カレベルが一定の場合にはいずれの構成によってもよいが、光出カレベルを変化させるなどの場合には、上述した規格化されたデータに基づいて波長制御する方がより適切に制御することができる。

【0025】続いて、波長制御の動作をより具体的に説明する。ここでは、透過光レベルと反射光レベルの総和と差分を算出し、差分を総和光レベルで除算して規格化して当該規格化された値に基づいて波長制御する手法について説明する。例えば、上述したような図2(a)に示されるような波長特性を有するパンドパスフィルタが用いられ、いま所望の発振波長において波長フィルタ11による分岐比が等比である場合を想定して説明する。このような波長フィルタが用いられた場合の光検出器12、13における受光光量(光レベル)特性を示したのが図2(b)である。

【0026】光検出器 1·2、13の受光量をP1、P2 とすると

[0027]

【数1】P1=F·P·S .

[0028]

【数2】P2=(1-F)·P·S

と主义ことができる。ここで、Fは波長フィルタの反射 率、Pは波長入における圧射量、S位発検出器のです。 ある。

【0029】二つの光検出量の和分Aおよび差分Bは

[0030]

【数3】A=P1+P2= P·S

[0031]

【数4】 B = P1 - P2 = (2F-1) · P·S 上式より、

[0032]

【数5】B/A=2F-1

以上の処理を演算器19において行い、和分Aが比較器20の基準電圧と等しくなるようにLD駆動回路22により半導体レーザダイオード4への注入電流を制御することにより、光出力を一定にすることができる。

【0033】ここで、B/Aの特性の一例を図2(c)に示す。B/Aの値を比較器内のロックしたい波長の基準電圧との誤差信号がゼロになるように温度制御回路23を制御することにより、波長を安定化することができる。図2(c)は、基準電圧がゼロの場合を示したものである。以上から、発振波長を光出力の変動による影響を避けつつ半導体レーザダイオード4の変動を抑えることが可能しなる

【0034】本実施の形態では、さらに波長モニタ部2 において、波長フィルタ11の透過特性に温度依存性が あるため、温度検出案子14により温度を検出し、温度 制御回路16により温度制御索子15を駆動して温度が 一定になるように制御されている。特に、髙精度な波長 安定化が必要な場合には、温度依存性をもつ波長フィル タ11部分にも温度制御素子15を配置し、温度検出素 子14により温度を検出する。 温度制御回路16を通し て温度制御素子15を駆動させ波長フィルタ11を一定 化させることが可能になる。

【0035】本発明においては、半導体レーザダイオー ド4の後方出射光は上述したように波長フィルタ11に よって二分岐されるが、半導体レーザダイオードの出射 光は単一偏波として伝搬されるため、波長フィルタ11 の角度制限を受けにくいという特長がある。すなわち、 波長フィルタ11の入射光に対する角度は、入射する後 方光が単一偏波で伝搬されるため、図5に示されるよう な偏波による入射角度依存性は問題とならない。つま り、波長フィルタ11の角度および光検出器12の位置 は自由に変えることが可能となる。そのため、波長モニ 夕部分を小型に作ることが可能となり、波長多重通信を 考えた場合、光送信モジュールが多数必要となる場合、 小型化はスペースの点で非常に有利となる。

【0036】また、波長フィルタ11の角度を変えるこ とで透過特性および反射特性を変化させることができ る。そのため、光送信モジュールごとに異なる波長フィ ~·タを用意する手間を波長フィルタ11の角度を変えて 実装することで、用意せる波果フィルタの量を抑えること とができる。さらに、図6に示される従来の完達質器の 30 構成に比べピームスプリッタ28も不要となるため、モ ジュールの小型化が可能になるという特長もある。

【0037】次に、本発明の光送信器の第2の実施の形 態について説明する。

【0038】第1の実施例では、半導体レーザダイオー ド4の光出力の安定化に2つの光検出器からの検出量を 演算器19により処理した値を比較器20によりLD駅 動回路が制御されているこれに対して、本実施例では、 1つの光検出器13からの検出量を比較器20の基準電 が一定になるように制御される。

【0039】図3は、本発明の光送信器の第2の実施の 形態を示す図である。図3に示される実施の形態におけ る半導体レーザダイオード4の発振波長制御および波長 モニタ部の温度制御の原理は、第1の実施の形態と同様。 である。本実施の形態においては、波長フィルタ11を 通過した後方光は光検出器12、13に入射される。光 検出器13により検出された電流はI-V変換器により 電圧に変換され、比較器20の基準電圧との誤差信号を ゼロにするようにLD制御回路22に帰還することで半 50 ルタの波長特性、(b)は波長と各受光器により検出さ

導体レーザダイオード4の光出力レベルが制御される。 従って、この実施例2では光出力安定化に演算器19を 用いず、光検出器13からの信号を分岐する必要がなく ため部品数の削減という効果が得られる。

10

【0040】次に、本発明の光送信器を用いた波長多重 光伝送装置について説明する。すでに説明してきたよう に、本発明の光送信器によれば、半導体レーザダイオー ドの発振波長を高精度に設定し制御することができる。 従って、本発明の光送信器を光送信局に複数備えること 温度に維持し、温度変動による波長フィルタ特性を安定 10 により、各波長の信号光の波長を近接させて高精度に制 御し、波長多重光伝送装置を構成することができる。

> 【0041】図4は、本発明の光送信器を用いた波長多 重光伝送装置の構成を示す図である。本発明の波長多重 光伝送装置は、光送信局100と光受信局200とこれ ら光送受信局とを接続する光伝送路300とを備えてお り、互いに異なる波長の複数の信号光を光送信局100 と光受信局200との間で光伝送する波長多重光伝送装 置である。そして、上記光送信局100は、上述した本 発明の光送信器であって光導波路(光ファイバ)から出 力される信号光の波長が互いに相違する複数の光送信器 101等と、信号光を波長多重する光合波器110とを 備え、光受信局200は受信された波長多重信号光を分 波する光分波器210と、分波された各信号光を受信す る光受信器201等とを備えている。

【0042】本発明の光送信器によれば、半導体レーザ ダイオードの発振波長を高精度に設定し制御することが できるので、例えば、1550nm波長帯で1pm~1 00 p m間隔で流接させて100波以上の信号光を波長 多重しても、安定して光伝送することも可能になる。 [0043]

【発明の効果】以上説明したように、本発明の光送信器 は、半導体レーザダイオードの後方出射光を、透過波長 帯域から反射波長帯域へ遷移する波長帯域に半導体レー ザの発振波長を含む波長フィルタにより二分岐し、分岐 された透過光と反射光をそれぞれ受光し両者の光レベル を検出する。これら透過光レベルと反射光レベルに基づ いて両者の比率又は差分等を算出して基準値と比較して 一定に保たれるように半導体レーザの発振波長を制御す るので、前方出射光を用いずビームスプリッタを使用せ 圧との比較値により半導体レーザダイオード4の光出力 40 ずに半導体レーザの発振波長を制御して波長の安定化を 図ることができる。また透過光レベルと反射光レベルの 総和を併せて算出し、半導体レーザダイオードへの注入 電流を制御することにより、波長とともに同時に光出力 レベルも制御することができる。

【図面の簡単な説明】

【図1】本発明の光送信器の第1の実施の形態を示す図

【図2】半導体レーザダイオードの発振波長と受光量、 演算器出力との関係等を示しており、 (a) は波長フィ れる受光光量(光レベル)との関係、(c)は波長と演 算器出力の関係をそれぞれ示す図である。

【図3】本発明の光送信器の第2の実施の形態を示す図

【図4】本発明の光送信器を用いた波畏多重光伝送装置 の構成を示す図である。

【図5】波長フィルタの波長と入射光角度の偏光依存性 の関係を示す図である。

【図6】従来の光送信器の一例を示す図である。

光ファイバ

【符号の説明】

9, 24

1, 27	半導体レーザダイオード部
2	波長モニタ部
3	半導体レーザダイオード制御部
4, 26	半導体レーザダイオード
5, 6, 25	レンズ
7, 14	温度検出案子
8	光アイソレータ

12

10, 15, 27 温度制御素子 11, 29, 30 波長フィルタ 12, 13, 31, 32 光検出器

16, 23, 36 温度制御回路

17, 18 I-V変換器

19 演算器

20, 21

比較器 22, 35 LD駆動回路

28 ピームスプリッタ

10 33, 34 制御回路

> 100 光送信局

101, 102, 103 光送信器

110 光合波器

光受信局

201, 202, 203 光受信器

2 1 0 光分波器

300 光伝送路

[図1]

【図2】

. -