PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-131069

(43)Date of publication of application: 19.05.1995

(51)Int.CI.

H01L 33/00 H01L 21/301 H01L 21/86

(21)Application number: 05-300940

(22)Date of filing:

06.11.1993

(71)Applicant:

NICHIA CHEM IND LTD

NAKAMURA SHUJI (72)Inventor:

YAMADA MOTOKAZU

(54) METHOD FOR MANUFACTURING GALLIUM NITRIDE COMPOUND SEMICONDUCTOR CHIP

(57)Abstract:

PURPOSE: To provide a method for preventing crack and chipping of a cutting surface from occurring and to perform cutting to a desired shape and size with an improved yield when cutting gallium nitride compound semiconductor wafer with sapphire as a substrate into chips. CONSTITUTION: A first split groove 11 is formed in a line and in a desired chip shape on the nitride semiconductor surface of a wafer where a nitride semiconductor is laminated on a sapphire substrate 1, a second split groove 22 is newly formed in a line on the surface of the sapphire substrate 1 of the wafer at a position matching the line of the first split groove 11, a line width W2 of the second split groove 22 is adjusted to be narrower than the line width WI of the first split groove 11, and then the wafer is separated into chip shape groove the first split groove 11 and the second split groove 22.

LEGAL STATUS

[Date of request for examination]

27.11.1995

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2780618

[Date of registration]

15.05.1998

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-131069

(43)公開日 平成7年(1995)5月19日

	21/301	識別記号 C	庁内整理番号	FΙ			技術表示箇所		
•	21/86			H01L	21/ 78 21/ 86		L		
				客查請求		請求項の数5	FD	(全	5 頁)
(21)出顯番号		特顧平5-300940		(71)出顧人	000226057 日亜化学工業株式会社				
(22)出顧日		平成5年(1993)11月	∃6日	(72)発明者	100 100	日亜化			
				(72)発明者	徳島県	元 量 阿南市上中町岡4 朱式会社内	491番地	100	日亜化
				(74)代理人	弁理士	豊栖 康弘			

(54) 【発明の名称】 窒化ガリウム系化合物半導体チップの製造方法

(57)【要約】

【目的】 サファイアを基板とする窒化ガリウム系化合物半導体ウエハーをチップ状に切断するに際し、切断面のクラック、チッピングの発生を防止し、歩留良く、所望の形状、サイズに切断する方法を提供する。

【構成】 サファイア基板 1 上に窒化物半導体を積層したウェハーの窒化物半導体面に所望のチップ形状で第一の割り溝 1 1 を線状に形成し、第一の割り溝 1 1 の線と合致する位置で、ウェハーのサファイア基板 1 面に新たに第二の割り溝 2 2 を線状に形成して、前記第一の割り溝 1 1 の線幅(W 2)を狭く調整した後、第一の割り溝 1 1 と、第二の割り溝 2 2 に沿ってウェハーをチップ状に分離する。

1

【特許請求の範囲】

【讃求項1】 サファイア基板上に窒化ガリウム系化合 物半導体を積層したウエハーの窒化ガリウム系化合物半 導体面に所望のチップ形状で第一の割り溝を線状に形成 する工程と.

前記第一の割り溝の線と合致する位置で、前記ウエハー のサファイア基板面に新たに第二の割り溝を線状に形成 すると共に、前記第一の割り溝の線幅(₩1)よりも、 第二の割り溝の線幅(W2)を狭く調整する工程と、 前記第一の割り溝、および前記第二の割り溝に沿って前 10 盤目状に引いた後、外力によってウエハーを割る装置で 記ウエハーをチップ状に分離する工程とを具備すること を特徴とする窒化ガリウム系化合物半導体チップの製造 方法。

【請求項2】 前記第二の割り溝を形成する前に、前記 ウエハーのサファイア基板側を研磨して、サファイア基 板の厚さを200µm以下に調整する工程を具備するこ とを特徴とする請求項1に記載の窒化ガリウム系化合物 半導体チップの製造方法。

【請求項3】 前記第二の割り溝を形成する工程におい て、第二の割り溝の深さを深くして、第一の割り溝の底 20 部と、第二の割り溝の底部との距離を200μm以下に 調整することを特徴とする請求項1 に記載の窒化ガリウ ム系化合物半導体チップの製造方法。

【請求項4】 前記第一の割り溝をエッチングにより形 成することを特徴とする請求項1ないし請求項3のいず れか一項に記載の窒化ガリウム系化合物半導体チップの 製造方法。

【請求項5】 前記第二の割り溝をスクライブにより形 成することを特徴とする請求項1若しくは請求項2、ま たは請求項4のいずれか一項に記載の窒化ガリウム系化 30 合物半導体チップの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、青色、緑色あるいは赤 色発光ダイオード、レーザーダイオード等の発光デバイ スに使用される窒化ガリウム系化合物半導体チップの製 造方法に係り、特に、サファイア基板上に一般式Inx Al, Ga_{1-x-y} N (0 ≤ x < 1、0 ≤ y < 1) で表される 窒化ガリウム系化合物半導体(以下、窒化物半導体と記 載する。)が積層された窒化物半導体ウエハーをチップ 40 状に切断する方法に関する。

[0002]

【従来の技術】一般に発光ダイオード、レーザダイオー ド等の発光デバイスにはステム上に発光源である半導体 チップが設けられている。半導体チップを構成する材料 として、例えば赤色、橙色、黄色、緑色ダイオードの場 合GaAs、GaAlAs、GaP等が知られており、 また骨色ダイオードであればZnSe、InAlGa N、SiC等が知られている。

ら、発光デバイス用のチップに切り出す装置には一般に ダイサー、またはスクライバーが使用されている。ダイ サーとは一般にダイシングソーとも呼ばれ、刃先をダイ ヤモンドとするブレードの回転運動により、ウエハーを 直接フルカットするか、または刃先巾よりも広い巾の溝 を切り込んだ後(ハーフカット)、外力によってウエハ ーを割る装置である。一方、スクライバーとは同じく先 端をダイヤモンドとする針の往復直線運動によりウエハ ーに極めて細いスクライブライン(罫書線)を例えば碁

2

【0004】例えばGaP、GaAs等のせん亜鉛構造 の結晶はへき開性が<110>方向にあるため、この性 質を利用してスクライバーでこの方向にスクライブライ ンを入れることにより簡単にチップ状に破断できる。 【0005】しかしながら、一般に窒化物半導体はサフ ァイア基板の上に積層されるため、そのウエハーは六方 晶系というサファイア結晶の性質上へき開性を有してお らず、スクライバーで切断することは困難であった。一 方、ダイサーで切断する場合においても、窒化物半導体 ウエハーは、前記したようにサファイアの上に窒化物半 導体を積層したいわゆるヘテロエピタキシャル構造であ り格子定数不整が大きく、また熱膨張率も異なるため、 窒化物半導体がサファイア基板から剥がれやすいという 問題があった。さらにサファイア、窒化物半導体両方と もモース硬度がほぼ9と非常に硬い物質であるため、切 断面にクラック、チッピングが発生しやすくなり正確に 切断することができなかった。

-1000061

【発明が解決しようとする課題】窒化物半導体の結晶性 を傷めずに、ウエハーを正確にチップ状に分離すること ができれば、チップ形状を小さくでき、一枚のウエハー から多くのチップが得られるので生産性を向上させるこ とができる。従って、本発明はこのような事情を鑑みて なされたもので、その目的とするところは、サファイア を基板とする窒化物半導体ウエハーをチップ状に分離す るに際し、切断面のクラック、チッピングの発生を防止。 し、歩留良く、所望の形状、サイズを得るチップの製造 方法を提供することにある。

[0007]

【課題を解決するための手段】本発明の窒化物半導体チ ップの製造方法は、サファイア基板上に窒化物半導体を **積層したウエハーの窒化物半導体面に所望のチップ形状** で第一の割り溝を線状に形成する工程と、前記第一の割 り溝の線と合致する位置で、前記ウエハーのサファイア 基板面に新たに第二の割り溝を線状に形成すると共に、 前記第一の割り溝の線幅(W1)よりも、第二の割り溝 の線幅(W2)を狭く調整する工程と、前記第一の割り **溝、および前記第二の割り溝に沿って前記ウエハーをチ** 【0003】従来、半導体材料が積層されたウエハーか 50 ップ状に分離する工程とを具備することを特徴とする。

10

3

【0008】本発明の製造方法において、第一の割り溝 を形成するには、最も好ましくはウエットエッチング、 ドライエッチング等のエッチングを用いる。なぜならエ ッチングが最も窒化物半導体表面、側面を傷めにくいか らである。ドライエッチングであれば、例えば反応性イ オンエッチング、イオンミリング、集束ビームエッチン グ、ECRエッチング等の手法を用いることができ、ウ エットエッチングであれば、例えば硫酸とリン酸の混酸 を用いることができる。但し、エッチングを行う前に、 窒化物半導体表面に、所望のチップ形状となるように、 所定の形状のマスクを形成することは言うまでもない。 また、エッチングの他、ダイシングによるハーフカッ ト、スクライブ等を使用してもよいが、ダイシングは窒 化物半導体の表面、側面を物理的に傷め易く、サファイ ア基板と、窒化物半導体層との界面にストレスが係り、 窒化物半導体がサファイア基板から剥がれ易い傾向にあ り、またスクライブは、第二の割り溝よりも広い割り溝 を形成することが難しいため、あまり好ましいとはいえ ない。

【0009】次に、第二の割り溝をサファイア基板側に 20 形成するには、エッチング、ダイシング、スクライブ等 の手法を用いることができる。第二の割り溝はサファイ ア基板側に形成し、直接窒化物半導体層にダイサー、スクライバー等の刃先が触れることはないので、この工程 では第二の割り溝を形成する手法は特に問わないが、その中でも特に好ましくはスクライブを用いる。なぜなら、スクライブは第二の割り溝の線幅を、第一の割り溝の線幅よりも狭くしやすく、また、エッチングに比べて、改工ハー切断時にサファイア基板を削り取る面積が 30 少なくて済むので、単一ウエハーから多くのチップが得られるという利点がある。

【0010】また、第二の割り溝を形成する前に、サフ ァイア基板側を研磨して薄くすることが好ましい。研磨 後のサファイア基板の厚さは200µm以下、さらに好 ましくは150μm以下に調整することが望ましい。な ぜなら、窒化物半導体ウエハーは、サファイア基板の厚 さが通常300~800μm、その上に積層された窒化 物半導体の厚さが多くとも数十μmあり、そのほとんど がサファイア基板の厚さで占められている。しかも、前 記したように窒化物半導体は格子定数、および熱膨張率 の異なる材料の上に積層されているため、非常に切断し にくい性質を有している。サファイア基板の厚さが厚す ぎると、後に第二の割り溝を形成してウエハーを分離す る際、第一の割り溝と、第二の割り溝とを合致させた位 置で割りにくくなる傾向にある。つまり、図1のaの破 線に示すように、第一の割り溝線の中央線と、第二の割 り溝線の中央線が一致した位置でウエハーをチップ状に 分離できることが最も好ましいのであるが、ウエハーの

に示すように斜めになって割れ、p-n接合界面まで切断されて、目的としない形状でチップ化されやすい傾向にある。従って、サファイア基板を前記範囲内に研磨して薄くすることにより、前記割り溝の合致位置、つまり目的とするチップ形状で、ウエハーをさらに分離しやすくすることができる。基板の厚さの下限値は特に問わないが、あまり薄くすると研磨中にウエハー自体が割れ易くなるため、実用的な値としては50μm以上が好ましい。

4

【0011】また基板を研磨して薄くする他に、図2に示すように、第二の割り溝22をエッチング、ダイシング等の手法によって、サファイア基板1に深く形成することにより、部分的にサファイア基板1の厚さを薄くして、第一の割り溝11との切断距離を短くしてもよい。【0012】

【作用】本発明の製造方法の作用を図面を元に説明す る。図1ないし図4は本発明の製造方法の一工程を説明 する図である。図1はサファイア基板1の上にn型窒化 物半導体層2(n型層)と、p型窒化物半導体層3(p 型層)とを積層したウエハーの模式断面図である。それ らの窒化物半導体層側には所定のチップ形状になるよう に、第一の割り溝11を線状に形成しており、さらに第 一の割り溝11の線幅より狭い線幅の第二の割り溝22 を、第一の割り溝11の線の中央線と一致する位置で形 成した状態を示している。但し、との図では、第一の割 り溝はp型層3をエッチングして、n型層2を露出する ように形成しており、第二の割り溝はスクライブで形成 している。図1に示すように、ウエハーは第一の割り溝 11と第二の割り溝22の中央線が一致した点、つまり 破線aで示す位置でまっすぐに切断できることが最も好 ましいが、仮に破線bで示すように切断線が曲がって も、第一の割り溝11の線幅W1を、第二の割り溝22 の線幅W2よりも広く形成してあるため、切断位置がp -n接合界面にまで及ばず、チップ不良がでることがな

【0013】図2は第二の割り溝22をエッチング、またはダイシングにより形成し、サファイア基板1をハーフカットした状態を示している。この図では第二の割り溝22の深さを深くして、第一の割り溝との切断距離を短くすることにより、第一の割り溝の中央線と、第二の割り溝の中央線とが一致した位置でまっすぐに割ることができる。

5

ァイア基板 1 の厚さを部分的に薄くすることにより、両割り溝が合致した位置でまっすぐ切断できる。なお、割り溝 2 2 を深く形成するのは、サファイア基板を研磨した後(2 0 0 μ m以上の厚さで研磨する場合)でも、研磨する前でもかまわないが、スクライブによってその深さを深くするのは困難である。

【0016】図4は、図1に示すウエハーを窒化物半導体層側からみた平面図であり、第一の割り溝11の形状を示していると同時に、チップ形状も示している。この図では、p型層3を予めn層の電極が形成できる線幅でエッチングして、第一の割り溝11を形成し、さらにp型層3の隅部を半弧状に切り欠いた形状としており、この切り欠いた部分にn層の電極を形成することができる。

【0017】このように、本発明の方法では、第一の割り溝11の線幅W1を、第二の割り溝22の線幅W2よりも広くしているので、仮に切断線が斜めとなってウエハーが切断された場合でも、p-n接合界面まで切断面が入らずチップ不良が出ることがなく、一枚のウエハーから多数のチップを得ることができる。そして、さらに好ましくウエハーのサファイア基板を研磨するか、また30は第二の割り溝の深さを深くすることにより、所望とする切断位置で正確に分離することができる。

[0018]

【実施例】 [実施例1] 厚さ 400μ m、大きさ24ンチ ϕ のサファイア基板の上に順にn型GaN層を 5μ m と、p型GaN層とを 1μ m積層したウエハーを用意する。

【0019】次にこのp型GaN層の上に、フォトリソグラフィー技術によりSiOzよりなるマスクをかけた後、エッチングを行い、図4に示す形状で第一の割り溝 40を形成する。但し、第一の割り溝の深さはおよそ2μmとし、線幅(W1)80μm、350μmピッチとする。この第一の割り溝の線幅、ピッチを図4に示している。

【0020】以上のようにして、第一の割り溝を形成した後、ウエハーのサファイア基板側を研磨器により研磨して、基板を80μmの厚さにラッピング、およびポリッシングする。ポリッシングで基板表面を鏡面均一とし、容易にサファイア基板面から第一の割り溝が確認できるようする。

【0021】次に、p型GaN層側に粘着テープを貼付し、スクライバーのテーブル上にウエハーを張り付け、真空チャックで固定する。テーブルはX軸(左右)、Y軸(前後)方向に移動することができ、回転可能な構造となっている。固定後、スクライバーのダイヤモンド針で、サファイア基板をX軸方向に350μmビッチ、深さ5μm、線幅5μmで一回スクライブする。テーブルを90 回転させて今度はY軸方向に同様にしてスクライブする。このようにして350μm角のチップになるようにスクライブラインを入れ、第二の割り溝を形成する。ただし、第二の割り溝を形成する位置は、前記第一の割り溝の線の中央線と一致した位置とする。

【0022】スクライブ後、真空チャックを解放し、ウエハーをテーブルから剥し取り、サファイア基板側から軽くローラーで押さえることにより、2インチゆのウエハーから350μm角のチップを多数得た。チップの切断面にクラック、チッピング等が発生しておらず、外形不良の無いものを取りだしたところ、歩留は98%以上であった。

0 【0023】 [実施例2] 実施例1のサファイア基板を 研磨する工程において、サファイア基板の厚さを150 μmとする他は同様にして、350μm角のチップを得 たところ、歩留は95%以上であった。

【0024】[実施例3]実施例1のサファイア基板を研磨する工程において、サファイア基板の厚さを200 μmとする他は同様にして、350μm角のチップを得たところ、歩留は90%以上であった。

【0025】 [実施例4] 実施例1の第二の割り溝を形成する工程において、スクライバーの代わりにダイサーを用い、線幅 20μ m、深さ 10μ m、同じく 350μ mビッチでハーフカットして第二の割り溝を形成する他は同様にして、 350μ m角のチップを得たところ、同じく歩留は98%以上であった。

【0026】 [実施例5] 実施例1において、第一の割り溝を形成した後、サファイア基板を研磨せずにウエハーをダイサーにセットし、サファイア基板側を線幅20μm、深さ300μmでダイシングして第二の割り溝を形成する他は同様にして、350μm角のチップを得たところ、歩留は95%以上であった。

0 [0027]

【発明の効果】以上説明したように、本発明の方法によると、へき開性を有していない窒化物半導体ウエハーでも、スクライブ、ダイサー、レーザー等の手法により、歩留よく正確に切断することができ、生産性が向上する。また図1に示すように第一の割り溝を形成すれば、第一の割り溝の表面に電極を形成することもできる。 【図面の簡単な説明】

【図1】 本発明の製造方法の一工程を説明する模式断面図。

50 【図2】 本発明の製造方法の一工程を説明する模式断

面図。

【図3】 本発明の製造方法の一工程を説明する模式断

面図。

【図4】 本発明の製造方法の一工程を説明する平面

図。

【符号の説明】

* 1・・・・サファイア基板

2 · · · · n型層

3 · · · · p型層

11・・・第一の割り溝

22・・・第二の割り溝

【図1】

[図3]

【図2】

[図4]

