

PHARMACOKINETIC REPORT

Pharmacokinetics of OCT-598 Following intravenous Administration to Male Cynomolgus

Monkeys

Study Number: PH-DMPK-OSCO-M-24-007

Experimental Work Started: Mar. 29, 2024

Experimental Work Completed: Apr. 1, 2024

Final Report Date: May. 16, 2024

Sponsor: Oscotec Inc.

Testing Facility: Pharmaron

No. 800 Bin-Hai 4th Road

Hangzhou Bay New Zone, Ningbo, 315336,

China

CONFIDENTIAL Page 1 of 27

TABLE OF CONTENTS

Τ.	ABLE	OF CONTENTS	2
L	IST OI	F TABLES	4
1	SIG	SNATURE PAGE	6
2	AB	BREVIATIONS AND DEFINITION OF TERMS	7
3	SU	MMARY	9
4	OB	JECTIVE	10
5	MA	TERIALS AND METHODS	11
	5.1	Test article information	11
	5.2	Animals	11
	5.3	Study design	11
	5.4	Formulation preparation	11
	5.5	Dosing procedure	12
	5.6	Sample collection	12
	5.7	Preparation of standard solutions and internal standard solution for LC-MS/MS Analy 12	/sis
	5.8	Sample treatment	13
	5.9	LC-MS/MS conditions	13
	5.10	Data acceptance criteria	14
	5.11	Statistical analysis	15
	5.12	Quality standard	15
	5.13	Study plan and working practice deviations	15
	5.14	Data Storage	15
6	RE:	SULTS	16

	6.1	Clinical observations	16
	6.2	Linearity	16
	6.3	Quality control samples	16
	6.4	Bioanalytical sample analysis	16
	6.5	Pharmacokinetic analysis	16
7	CO	NCLUSIONS	17
8	TAl	BLES	18
9	FIG	URES	19
A	ppendi	x I: Plasma vs Time-Concentration Curves	20
A	ppendi	x II: LC-MS/MS Validation Data	21
A	ppendi	x III: Dose Formulation Concentration	22
Δ	nnendi	x IV· CoA	23

LIST OF TABLES

Table 3-1 Stu	dy Design	9
Table 3-2 M	Mean Plasma Pharmacokinetic Parameters of OCT-598 Following IV	
	Administration of OCT-598 to Male Cynomolgus Monkeys at 3 mg/kg	9
Table 5-1 Tes	t materials information	11
Table 5-2 Dos	sing information	11
Table 5-3 Cor	mpound-dependent parameters on MS	14
Table 8-1:	OCT-598 Plasma Concentrations Following IV Administration of OCT-598	
	to Male Cynomolgus Monkeys at 3 mg/kg	18
Table 8-2:	Plasma Pharmacokinetic Parameters of OCT-598 Following IV	
	Administration of OCT-598 to Male Cynomolgus Monkeys at 3 mg/kg	18

CONFIDENTIAL Page 4 of 27

LIST OF FIGURES

	at 3 mg/kg	. 19
	Following IV Administration of OCT-598 to Male Cynomolgus Monkeys	
Figure 9-1:	Mean (\pm SD, n = 3) Plasma Concentration Vs Time Curves of OCT-598	

CONFIDENTIAL Page 5 of 27

1 SIGNATURE PAGE

The Pharmaron personnel responsible for the	e content of this report:	
Prepared by Dongqiong Yan		
Approved by Hainan Gao	Date	

CONFIDENTIAL Page 6 of 27

2 ABBREVIATIONS AND DEFINITION OF TERMS

Abbreviation	Definition				
API	Active pharmaceutical ingredient				
$\mathrm{AUC}_{(0\text{-t})}$	Area under the time-concentration curve from zero to the last time point				
$AUC_{(0-\infty)}$	Area under the time-concentration curve from zero to infinity				
BLOQ	Below the limit of quantification				
CE	Collision energy				
CL	Clearance				
C_0	Initial concentration				
CV	Coefficient of variation				
CXP	Collision cell exit potential				
DP	Declustering potential				
EP	Entrance Potential				
ESI	Electrospray ionization				
g	Acceleration of gravity				
HPLC	High performance liquid chromatography				
h	Hour				
IS	Internal Standard				
IV	Intravenous				
LC-MS/MS	Liquid chromatography tandem mass spectrometry				
LLOQ	Lower limit of quantification				
mg	Milligram				
min	Minute				
MRM	Multiple reaction monitoring				
m/z	Ratio of mass to charge				
NA	Not available				
ng/mL	Nanogram per milliliter				
QC	Quality control				
R	Correlation coefficient				
RPM	Revolutions per minute				
RS	Reference Standard				
SD	Standard deviation Second				
sec	Terminal half life				
$t_{1/2}$ μL	Microliter				
μL ULOQ					
OLOQ	Upper limit of quantification				

CONFIDENTIAL Page 7 of 27

Abbreviation	Definition
v/v	Volume/volume
Vss	The apparent volume of distribution at steady state of the parent test item in the test system following IV dosing

CONFIDENTIAL Page 8 of 27

3 SUMMARY

The purpose of this study is to evaluate the pharmacokinetic profiles of OCT-598 following single intravenous administration to Cynomolgus Monkeys.

PK parameters of OCT-598 in plasma were determined following intravenous administration of 3 mg/kg OCT-598 to male Cynomolgus Monkeys according to the design in Table 3-1.

Table 3-1 Study Design

Group	Treatment	Dose Level	Dose Volume	Conc.	No. of
No.		(mg/kg)	(mL/kg)	(mg/mL)	Animals
1	OCT-598	3	1	3	3 Males

Intravenous administration of dose group was performed without incident. No abnormal clinical symptoms were observed during the entire experiment.

Plasma samples were collected at 0.083, 0.25, 0.5, 1, 2, 4, 8, and 24 h post-dose. The concentrations of OCT-598 were determined in plasma and the mean PK parameters of OCT-598 are summarized in Table 3-2.

Table 3-2 Mean Plasma Pharmacokinetic Parameters of OCT-598 Following IV

Administration of OCT-598 to Male Cynomolgus Monkeys at 3 mg/kg

Tuestment	Dose Level	Co	AUC(0-24h)	AUC(0-∞)	t _{1/2}	CL	Vss
Treatment	(mg/kg)	(ng/mL)	(h.ng/mL)	(h.ng/mL)	(h)	(mL/min/kg)	(L/kg)
OCT-598	3	9014	3753	3857	8.36	13.4	1.74

Following single intravenous administration of OCT-598 to male Cynomolgus Monkeys at 3 mg/kg, plasma concentration of OCT-598 decreased with a terminal half-life (t1/2) of 8.36 hours. Mean clearance (CL) and mean volume of distribution at stead-state (Vss) values were 13.4 mL/min/kg and 1.74L/kg, respectively.

CONFIDENTIAL Page 9 of 27

4 **OBJECTIVE**

The purpose of this study is to evaluate the pharmacokinetic profiles of OCT-598 following single intravenous administration to Cynomolgus Monkeys.

CONFIDENTIAL Page 10 of 27

5 MATERIALS AND METHODS

5.1 Test article information

OCT-598 provided by the Sponsor was used for the dose formulation and standard stock solution preparation as listed in Table 5-1:

Table 5-1 Test materials information

Formulation Identification	Lot No	MW	FW	Salt Factor	Correction Factor	Storage Condition
OCT-598	EW40829-43-P1	507.62	-	1	NA	2-8°C
OCT-598-D31	P-0003800-002	510.64	-	1	NA	2-8°C

¹ Internal standard

5.2 Animals

Male Cynomolgus Monkeys were purchased from AniKeeper (Zhanjiang) Biotech Co., Ltd. The animals were ~4 years old with body weights of 3.9-4.45 kg on the dosing date. This study was approved by the Pharmaron Institutional Animal Care and Use Committee (IACUC).

5.3 Study design

Total of 3 male Cynomolgus Monkeys were dosed via a design as shown in Table 5-2.

Table 5-2 Dosing information

Group	Treatment	Dose Level	Dose Volume	Conc.	No. of
No.		(mg/kg)	(mL/kg)	(mg/mL)	Animals
1	OCT-598	3	1	3	3 Males

Feeding condition: Animals will have free access to food and water

5.4 Formulation preparation

Preparation of dosing formulation for IV administration (3 mg/kg OCT-598):

Dissolved 52.46 mg of OCT-598 in 17.487 mL of 10% SBE- β -CD in 50 mM potassium phosphate (pH 8.0) with vortexing and sonification to obtain a solution.

CONFIDENTIAL Page 11 of 27

The concentration of each dose formulation was measured by LC-MS, and the results shown in Appendix III.

5.5 Dosing procedure

The cephalic (forelimb) is the vein of choice for intravenous injection in monkeys. The monkey will be restrained using the monkey chair. One technician restrains the monkey's arms. The other technician disinfects the injection site with alcohol wipes or other disinfectant. The first technician occludes the cephalic vein at the elbow while extending the monkey's forelimb toward the second technician. The second technician inserts the needle at a shallow angle into the vein. Aspirate syringe to ensure proper needle placement (blood at the tip of the syringe indicates proper placement). Once the needle has been inserted properly into the vein, gently push the syringe plunger to deliver the formulation in a smooth, even flow.

5.6 Sample collection

Blood samples (0.3 mL) were collected from each animal via cephalic vein on the following timepoints: 0.083, 0.25, 0.5, 1, 2, 4, 8, and 24 h post-dose. Blood samples were placed into tubes containing EDTA-K2, and then centrifuged at 2000 g for 10 minutes at 20-25 $^{\circ}$ C to prepare plasma. All samples were stored at -75±15 $^{\circ}$ C until analysis.

5.7 Preparation of standard solutions and internal standard solution for LC-MS/MS Analysis

OCT-598 was prepared in DMSO with vortexing at 1 mg/mL (free form) to make the standard stock solution.

Calibration standard working solutions were prepared at concentrations of 5, 10, 20, 50, 100, 500, 1000, 5000, and 10000 ng/mL by serial dilution of the standard stock solution by 50% acetonitrile in water. Quality control working solutions at concentrations of 10, 20, 50, 500, and 8000 ng/mL were prepared by serial dilution of the standard stock solution by 50% acetonitrile in water. These QC samples were prepared on the day of analysis in the same way as calibration standards.

OCT-598-D3 was prepared in DMSO with vortexing at 1 mg/mL (free form) to make the internal standard stock solution.

The internal standard working solutions were prepared at concentrations of 20 ng/mL by dilution of the internal standard stock solution by 100% acetonitrile for precipitating protein respectively.

CONFIDENTIAL Page 12 of 27

5.8 Sample treatment

5 μ L of each calibration standard working solution (5, 10, 20, 50, 100, 500, 1000, 5000, and 10000 ng/mL) was added to 50 μ L of blank Cynomolgus Monkeys plasma to achieve calibration standards of 0.5-1000 ng/mL (0.5, 1, 2, 5, 10, 50, 100, 500, and 1000 ng/mL) in a total volume of 55 μ L. Quality Control (QC) samples at 1 ng/mL (low-1), 2 ng/mL (low-2), 5 ng/mL (low-3), 50 ng/mL (mid) and 800 ng/mL (high) in blank plasma were prepared independently from those used for the calibration curves. These QC samples were prepared on the day of analysis in the same way as calibration standards.

55 μ L of standards, 55 μ L of QC samples or 55 μ L of unknown samples (50 μ L of plasma sample with 5 μ L 50% acetonitrile in water) were mixed with 200 μ L of acetonitrile containing IS (OCT-598-D3 with concentration at 20 ng/mL) to precipitate proteins. Then the samples were vortexed for 30 sec. After centrifugation at 4 °C, 3900 rpm for 15 min, the supernatant was diluted at a ratio of 1:2 with water (v/v: 1/2). 10 μ L of diluted supernatant was injected into the LC-MS/MS system for quantitative analysis.

5.9 LC-MS/MS conditions

The LC-MS/MS system consisted of Degasser DGU-20A5R, S, Liquid Chromatograph LC-30AD, Communications Bus Module CBM-20A, Auto Sampler SIL-30AC, Rack changer II and an AB API 5500 LC/MS/MS instrument (Serial No. EF20361804).

Chromatographic separation was performed on a Raptor Biphenyl $2.7\,\mu m$ ($50*2.1\,m m$) at room temperature. The mobile phase was composed of A: 5% acetonitrile (0.1% formic acid) in water; B: 95% acetonitrile (0.1% formic acid) in water. The flow rate was $0.6\,m L/m in$. The injection volume was $10\,\mu L$.

Positive mode electrospray ionization (ESI) was performed on a Turbo $V^{\text{®}}$ ion source to obtain a protonated ion of OCT-598 (RS) and OCT-598-D3 (IS). A multiple reaction monitoring (MRM) method was selected for quantitative analysis. The optimized transitions were 508.102/306.00 and 511.081/168.00 for OCT-598 and OCT-598-D3, respectively. The instrument parameters were set as follows: ion spray voltage: 5500 V; curtain gas: 40 psi; nebulizer gas: 50 psi; turbo gas: 50 psi; collision gas: 9 psi; temperature: 500 °C. The compound dependent parameters are listed in Table 5-3.

CONFIDENTIAL Page 13 of 27

Table 5-3 Compound-dependent parameters on MS

OCT-598 (RS)	OCT-598-D3 (IS)
508.102/306.00	511.081/168.00
256	256
31	49
12	16
	508.102/306.00 256 31

5.10 Data acceptance criteria

Acceptance criteria of standard calibration samples:

At least 6 samples should be analyzed to obtain a calibration curve. Acceptance of calibration standards requires calculated concentration within 80%-120% of the nominal concentration. 75% of the calibration standards should be within the acceptable range.

Acceptance criteria of quality control samples:

At least 3 concentrations of quality control samples (QCs) should be analyzed in a run. Each concentration should include at least 2 individual samples. Acceptance of QCs requires calculated concentration within 80%-120% of the nominal concentration. QCs should be analyzed amongst all unknown samples and 2/3 of the QCs should be within the acceptable range, including at least 1 sample at each concentration level in an analytical run.

Acceptance criteria of unknown samples:

Unknown samples with normal peak shape of analyte and calculated concentration within the calibration range should be accepted. Samples with calculated concentration below LLOQ should be recorded as BLOQ. Samples with calculated concentration above 100% of ULOQ should be diluted with blank matrix and re-assayed. The re-assayed concentration should be multiplied by the dilution factor to obtain the final data. In cases of abnormality, such as equipment malfunction, power outage, sample treatment failure and/or sample injection failure, re-assay should be done in an individual analytical run.

CONFIDENTIAL Page 14 of 27

5.11 Statistical analysis

Data acquisition was performed by Sciex Analyst 1.7.2 software (AB Sciex, Forster City, CA). All concentration data and Pharmacokinetic parameters were reported with 3 significant figures. BLOQ was set to zero in calculation. Data statistics were performed using Excel 2010 software.

5.12 Quality standard

This study has been performed in compliance with Pharmaron standard operating procedures. This report represents a true and accurate record of the results obtained.

This report has been reviewed for scientific content and consistency against the Working Practice.

5.13 Study plan and working practice deviations

There were no deviations from the study plan or working practice.

5.14 Data Storage

All raw data, the study plan, and the final report will be retained at Pharmaron for five years after issue of the final report. After this period, the Sponsor will be contacted to determine whether further storage of the data is required, whether the data should be sent to the Sponsor, or if it should be destroyed.

CONFIDENTIAL Page 15 of 27

6 RESULTS

6.1 Clinical observations

Intravenous administration of dose group was performed without incident. No abnormal clinical symptoms were observed during the entire experiment.

6.2 Linearity

In this study, a calibration standard was used for the regression of a $1/x^2$ weighted calibration curve. The curve was plotted using peak area ratio of OCT-598 (RS) and OCT-598-D3 (IS) versus the nominal concentration. The back-calculated concentrations of the calibration standards and calibration curve parameters are shown in Appendix II for plasma samples. The accuracy of the accepted standard samples was 94.4%-105% for male Cynomolgus Monkeys plasma samples. The accuracy of quality control samples was within acceptance criteria (80-120%).

6.3 Quality control samples

The results of QC samples for plasma are shown in Appendix II. The accuracy of the accepted QC samples was 98.6%-109% for male Cynomolgus Monkeys plasma. The accuracy of quality control samples was within acceptance criteria (80-120%).

6.4 Bioanalytical sample analysis

OCT-598 plasma concentration in Cynomolgus Monkeys is shown in Table 8-1,. The OCT-598 plasma concentrations vs. time profiles are shown in Figure 9-1 and Appendix I.

6.5 Pharmacokinetic analysis

OCT-598 plasma concentrations for each animal following intraveneous administration were used to calculate pharmacokinetic parameters by employing a non-compartmental analysis (Phoenix TM WinNonlin® 8.3). The linear trapezoidal algorithm was used for AUC calculation. Plasma pharmacokinetic parameters are shown in Table 8-2.

Following single intravenous administration of OCT-598 to male Cynomolgus Monkeys at 3 mg/kg, plasma concentration of OCT-598 decreased with a terminal half-life (t1/2) of 8.36 hours. Mean clearance (CL) and mean volume of distribution at stead-state (Vss) values were 13.4 mL/min/kg and 1.74L/kg, respectively.

CONFIDENTIAL Page 16 of 27

7 CONCLUSIONS

Intravenous administration of dose group was performed without incident. No abnormal clinical symptoms were observed during the entire experiment.

Following single intravenous administration of OCT-598 to male Cynomolgus Monkeys at 3 mg/kg, plasma concentration of OCT-598 decreased with a terminal half-life (t1/2) of 8.36 hours. Mean clearance (CL) and mean volume of distribution at stead-state (Vss) values were 13.4 mL/min/kg and 1.74L/kg, respectively.

CONFIDENTIAL Page 17 of 27

8 TABLES

Table 8-1: OCT-598 Plasma Concentrations Following IV Administration of OCT-598 to Male Cynomolgus Monkeys at 3 mg/kg

Time	Co	ncentration (ng/n	nL)	Mean	SD
(h)	20C05001	20C05043	20C05093	(ng/mL)	(ng/mL)
0.083	7850	5750	6670	6757	1053
0.25	4790	3550	3140	3827	859
0.5	2380	1610	1630	1873	439
1	862	472	495	610	219
2	220	112	94.7	142	67.9
4	50.5	41.1	22.8	38.1	14.1
8	22.1	27.7	7.46	19.1	10.5
24	10.1	10.7	1.01	7.3	5.4

BLOQ = below quantifiable limit of 0.5 ng/mL.

Table 8-2: Plasma Pharmacokinetic Parameters of OCT-598 Following IV Administration of OCT-598 to Male Cynomolgus Monkeys at 3 mg/kg

Animal	Cl_obs (mL/min/ kg)	T1/2 (h)	C ₀ (ng/mL)	AUC _(0-24h) (h*ng/mL)	$\begin{array}{c} AUC_{(0\text{-}\infty)} \\ \text{(h*ng/mL)} \end{array}$	MRTInf_ obs (h)	AUC _(0-24h) /D (h*ng/mL)	Vss_obs (L/kg)
20C05001	10.3	9.70	10034	4719	4860	2.42	1573	1.49
20C05043	14.1	10.7	7307	3374	3538	3.53	1125	2.99
20C05093	15.8	4.71	9699	3167	3173	0.778	1056	0.736
Mean	13.4	8.36	9014	3753	3857	2.24	1251	1.74
SD	2.8	3.2	1487	843	887	1.38	281	1.15

CONFIDENTIAL Page 18 of 27

9 FIGURES

Figure 9-1: Mean (\pm SD, n = 3) Plasma Concentration Vs Time Curves of OCT-598 Following IV Administration of OCT-598 to Male Cynomolgus Monkeys at 3 mg/kg

CONFIDENTIAL Page 19 of 27

Appendix I: Plasma vs Time-Concentration Curves

Plasma Semi-log Time-Concentration Curves of OCT-598 Following IV Administration of OCT-598 to Male Cynomolgus Monkeys at 3 mg/kg

CONFIDENTIAL Page 20 of 27

Appendix II: LC-MS/MS Validation Data

Back-Calculated Concentration of Calibration Standards of OCT-598 to Male Cynomolgus Monkeys Plasma

Expected Concentration (ng/mL)	Number of Values	Calculated Concentration (ng/mL)	% Accuracy
0.5	1	0.524	105
1	2	0.944	94.4
2	2	2.02	101
5	2	5.02	100
10	2	10.2	102
50	2	50.7	102
100	2	101	101
500	2	501	100
1000	2	969	96.9

y = 0.0133 x + 0.00123 (r = 0.9989)

Precision and Accuracy of QC Samples IV of OCT-598 to Male Cynomolgus Monkeys Plasma

Nominal Concentration (ng/mL)	Number of Values	Calculated Concentration (ng/mL)	% Accuracy
1	2	1.09	109
2	2	1.98	99.1
5	2	5.16	103
50	2	49.9	100
800	2	789	98.6

CONFIDENTIAL Page 21 of 27

Appendix III: Dose Formulation Concentration

Donto	Commis Nome	Dilution	Nominal	Measured	Mean	Accuracy	SD
Route	Sample Name	Factor	(mg/mL)	(mg/mL)	(mg/mL)	(%)	(mg/mL)
	DOSE_IV_1	100000		3.02			
IV_	DOSE_IV_2	100000	3	2.92	2.92	97.3	0.100
	DOSE_IV _3	100000		2.82			

CONFIDENTIAL Page 22 of 27

confirm

98.9%

Appendix IV: CoA

CERTIFICATE OF ANALYSIS		
Product	OCT-598	
Lot No	EW40829-43-P1	
Appearance White solid		

¹H-NMR, Mass

min, 90.0%

Analysis Date: 2023. 11. 30

Identification

Assay (HPLC)

Expiry date: 2024. 11. 29

Prepared by:

Name: Kwon Soonsang Signature: Date: 05. Dec. 2023

Approved by:

Name: Jung Dongsik Date: 05. Dec. 2023 Signature/

CONFIDENTIAL Page 23 of 27

경기도 성남시 분당구 대왕판교로 700 코리이벤이오피크 A동 9층 Bundang-gu, Seongnam-si, Gyeonggi-do 463-400 Korea Tel: 031 · 628 · 7666 Fax: 031 · 628 · 7668 Fax: 031 · 638 · 7668 Fax: 031 · 7668 Fax: 031 · 768 · 7

CERTIFICATE OF ANALYSIS

Product	OCT-598-D3		
Lot No	P-0003800-002		
Appearance	White solid		
Identification	¹ H-NMR, Mass confirm		
Assay (HPLC)	min, 90.0%	98.0%	

Analysis Date: 2023. 11. 30

Expiry date: 2024. 11. 29

Prepared by:

Signature:__ Name: Kwon Soonsang Date: 05. Dec. 2023

Approved by:

Name: Jung Dongsik Signature Date: 05. Dec. 2023

CONFIDENTIAL Page 24 of 27

CERTIFICATE OF ANALYSIS

Product	Soluplus (OSCO-SDP_C2)	
Quantity	2.12g	
Lot No.	Bat#23K16	
Analytical tests	Specifications	Results
Appearance	Off-white powder	Off-white powder
Identification	1H NMR, Mass	confirmed
Assay (HPLC)	Min. 80%	99.1%
Analysis Date	12/14/2023	
Expiry Date	12/14/2024	

Prepared Soonsang Kwon

Signature Soonsang Kwon

Date 18-Dec-23

CONFIDENTIAL Page 25 of 27

CERTIFICATE OF ANALYSIS

Product	HPMC (OSCO-SDP_C4)	
Quantity	2.2g	
Lot No.	Bat#23K17	
Analytical tests	Specifications	Results
Appearance	Off-white powder	Off-white powder
Identification	1H NMR, Mass	confirmed
Assay (HPLC)	Min. 80%	91.0%
Analysis Date	12/14/2023	
Expiry Date	12/14/2024	

Prepared Soonsang Kwon

Signature Soonsang Kwon

Date 18-Dec-23

CONFIDENTIAL Page 26 of 27

CERTIFICATE OF ANALYSIS

Product	Kollidon VA 64 (OSCO-SDP/C6)	
Quantity	2.1g	
Lot No.	Bat#23K18	
Analytical tests	Specifications	Results
Appearance	Off-white powder	Off-white powder
Identification	1H NMR, Mass	confirmed
Assay (HPLC)	Min. 80%	108.2%
Analysis Date	12/14/2023	
Expiry Date	12/14/2024	

Prepared Soonsang Kwon

Signature Soonsang Kwon

Date 18-Dec-23

CONFIDENTIAL Page 27 of 27