

Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

MICROONES

27 de Juny de 2008

Data notes provisionals: 03/07

Fi d'al·legacions: 04/07

Data notes revisades: 07/07

Professors: Albert Aguasca, Adolf Comerón, Núria Duffo.

Informacions addicionals:

• Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

En el circuit de la figura, la xarxa de dos accessos està dissenyada per a que a la fregüència de 150MHz, el generador estigui adaptat a la càrrega:

Si Z_0 =50 Ω , $\ell = 50cm$, L=53nH, V_p =2,4x10⁸m/s,

- a) Calculeu el valor de C per a que la xarxa estigui completament adaptada en un sistema d'impedància Z₀ a la freqüència de 150MHz.
- b) Calculeu la matriu de paràmetres S de la xarxa.
- c) Si es connecta a un generador canònic de potència disponible 5 dBm, calculi la potència dissipada a una càrrega connectada al port 2 de 50Ω
- d) El mateix si la càrrega és de 100Ω
- e) Calculi la pèrdua de transferència de potència (P_L/P_{avs}) a f=75MHz amb la càrrega de l'apartat c)

PROBLEMA 2

L'acoblador direccional en guia de la figura 1 té la matriu:

$$\begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} 0 & \gamma e^{j\theta} & 0 & \delta e^{j\phi} \\ \gamma e^{j\theta} & 0 & \delta e^{j\phi} & 0 \\ 0 & \delta e^{j\phi} & 0 & \gamma e^{j\theta} \\ \delta e^{j\phi} & 0 & \gamma e^{j\theta} & 0 \end{bmatrix}$$

Fig. 1

amb γ , δ , θ i ϕ reals, i $\gamma,\delta>0$ a la freqüència f =10 GHz .

a) Si $\lambda_g = \lambda / \sqrt{1 - \left(\frac{\lambda}{2a}\right)^2}$, determineu el valor que ha de tenir la distància entre orificis l.

- b) Determineu la relació que hi ha d'haver entre els mòduls γ i δ . Determineu els valors possibles de $\theta \phi$.
- c) Determineu, en funció de γ , δ , θ i ϕ , la matriu [s] del circuit de 4 accessos resultant d'interconnectar dos acobladors idèntics com s'indica a la figura 2.
- d) Quant ha de valer l'acoblament C d'un dels acobladors si es vol que el circuit de la figura 2 sigui un acoblador direccional de 3 dB, sabent que C > 3 dB?

Fig. 2

PROBLEMA 3

Els paràmetres S d'un transistor (Z_0 =50 Ω), a la freqüència de 1,5GHz, i amb les condicions de polarització corresponents, són els següents,

$$[s] = \begin{bmatrix} 0.64 \angle 160^{\circ} & 0.04 \angle 50^{\circ} \\ 4 \angle 65^{\circ} & 0.2 \angle -45^{\circ} \end{bmatrix}$$

El valor de Γ g que proporciona màxim guany (sense cap aproximació) és $\Gamma_g = 0.71 \angle -160^\circ$. Es vol sintetitzar un amplificador tot seguint l'esquema de la figura, on totes les línies són *microstrip* (per totes les línies s'assumeix $\epsilon_{reff} = 4$)

- a) Trobi les longituds de 1_1 i 1_2 que sintetitzaran Γ_g .
- b) Calculi el valor de Γ_L per assolir màxim guany G_T .
- c) Trobi els valors de 1_3 i \mathbb{Z}_0 ' que proporcionaran aquest guany (no necessariament la línia \mathbb{Z}_0 ' ha de ser més estreta que la \mathbb{Z}_0).
- d) Calculi el guany de transferència de potència total obtingut si s'hagués fet el disseny sota l'aproximació unilateral per assolir màxim guany. Quina és la pèrdua en dB?.

$$G_{T} = \frac{P_{L}}{P_{avs}} = \frac{\left|S_{21}\right|^{2} \left(1 - \left|\Gamma_{L}\right|^{2}\right) \left(1 - \left|\Gamma_{s}\right|^{2}\right)}{\left|\left(1 - S_{11}\Gamma_{s}\right) \left(1 - S_{22}\Gamma_{L}\right) - S_{12}S_{21}\Gamma_{L}\Gamma_{s}\right|^{2}}$$