"Machine Learning and Computational Statistics"

8th Homework

Exercise 1:

Consider a two-class 1-dim. classification problem of two equiprobable classes ω_1 and ω_2 that are modeled by the normal distributions N(0,1) and N(1,4), respectively. Depict the quantities $P(\omega_j)p(x|\omega_j)$ for j=1,2, in the same graph and determine the decision regions R_1 and R_2 corresponding to the two classes, according to the Bayes classification rule.

Exercise 2:

Consider a two-class 2-dim. classification problem of two equiprobable classes ω_1 and ω_2 that are modeled by the normal distributions $N(\mu_1, \Sigma)$ and $N(\mu_2, \Sigma)$, where $\Sigma = \sigma^2 I$.

- (a) Show that the Bayesian classifier borders the decision regions R_1 and R_2 (corresponding to ω_1 and ω_2 , respectively) by the perpendicular bisector of the line segment whose endpoints are μ_1 and μ_2 .
- (b) What would be the border in the case where $\Sigma \neq \sigma^2 I$? (give intuitive arguments).

<u>Hint:</u> The equation describing the perpendicular bisector of a line segment whose endpoints are $\boldsymbol{\mu}_1 = [\mu_{11}, \mu_{12}]^T$ and $\boldsymbol{\mu}_2 = [\mu_{21}, \mu_{22}]^T$, is $||\boldsymbol{x} - \boldsymbol{\mu}_2||^2 = ||\boldsymbol{x} - \boldsymbol{\mu}_1||^2$ or $(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{x} - \frac{1}{2} ||\boldsymbol{\mu}_1||^2 + \frac{1}{2} ||\boldsymbol{\mu}_2||^2 = 0$, where $\boldsymbol{x} = [x_1, x_2]^T$.

Exercise 3:

(a) Consider a three-class 1-dim. problem where the classes ω_1 , ω_2 $\kappa\alpha\iota$ ω_3 are modeled by the following uniform distributions

$$p(x|\omega_1) = \begin{cases} 1/5, & x \in (0,2) \cup (5,8) \\ 0, & \text{otherwise} \end{cases}$$
 $p(x|\omega_2) = \begin{cases} 1/9, & x \in (0,9) \\ 0, & \text{otherwise} \end{cases}$

και
$$p(x|\omega_3) = \begin{cases} 1, & x \in (3,4) \\ 0, & \text{otherwise} \end{cases}$$

- (I) Assume that all classes are equiprobable.
- (i) Depict graphically in the same figure $P(\omega_i)p(x|\omega_i)$ (as functions of x) and identify the respective decision regions, as they are specified by the Bayes classifier.
- (ii) Compute the error classification probability of the Bayes classifier.
- (iii) Classify the point x' = 3.5 to one of the three classes using the Bayes classifier.
- (II) Assume that the classes are **not** equiprobable.

- (i) Determine a set of values for the a priori probabilities of the three classes that guarantee that x'=3.5 is assigned to class ω_2 . Justify briefly your choice.
- (ii) Is there any combination of the a priori probabilities that guarantees that x'=3.5 will be assigned to ω_1 ? Explain.

Hints:

- $(\underline{H1})$ Focus only in the interval [0,10] since all pdfs are zero out of this interval.
- (H2) The error classification probability for the Bayes classifier is

$$P_e = \sum_{i=1}^{M} \int_{R_i} \left(\sum_{k=1, k \neq i}^{M} p(x/\omega_k) P(\omega_k) \right) dx$$

Exercise 4 (python code + text):

Consider a **three-class**, **four-dimensional** classification problem for which you can find attached two **sets**: one for **training** and one for **testing**. Each of these sets consists of pairs of the form (y_i,x_i) , where y_i is the class label for vector x_i . Let N_{train} and N_{test} denote the number of training and test sets, respectively. The data are given via the following arrays/matrices:

- \rightarrow train_x (a N_{train} x4 matrix that contains in its rows the training vectors x_i)
- \succ train_y (a N_{train} —dim. column vector containing the class labels (1, 2 or 3) of the corresponding training vectors x_i included in train_x).
- \triangleright test_x (a $N_{\text{test}} \times 4$ matrix that contains in its rows the test vectors x_i)
- \triangleright test_y (a N_{test} -dim. column vector containing the class labels (1, 2 or 3) of the corresponding test vectors x_i included in test_x).

Adopt the **Bayes classifier** under the following two scenarios:

- (i) $p(x|\omega_1)$, $p(x|\omega_2)$ and $p(x|\omega_3)$ are treated via the parametric approach
- (ii) $p(x|\omega_1)$, $p(x|\omega_2)$ and $p(x|\omega_3)$ are treated via the non-parametric k-NN density estimation approach.

For each of the above cases use the training set to **estimate** $P(\omega_1)$, $P(\omega_2)$, $P(\omega_3)$, $p(x|\omega_1)$, $p(x|\omega_2)$, $p(x|\omega_3)$. Then

- (a) Classify the points x_i of the test set, using the Bayes classifier (for each point apply the Bayes classification rule and keep the class labels, to an a N_{test} —dim. column vector, called $Btest_y$ containing the estimated class labels (1, 2 or 3) of the corresponding test vectors x_i included in $test_x$) and
- **(b) Estimate** the confusion matrix, the error classification probability, the recall and the precision (the latter two for each class), based on the test set classification results.

Hint: After downloading the attached MATLAB file, use the attached python code to retrieve the above mentioned matrices and vectors: