Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

Кафедра теоретических основ электротехники

Лабораторная работа № 16 "Исследование трёхфазной цепи при соединении звездой"

Проверил: доц. кафедры Петровский И. И. Выполнил: ст. группы 120602

1 Цели работы

- 1. Изучение основных свойств симметричной и несимметричной трёхфазных систем при соединении звездой.
- 2. Опытное определение соотношений между линейными и фазными напряжениями и токами при различных нагрузках отдельных фаз.
- 3. Выяснение роли нейтрального провода в цепи.
- 4. Измерение мощности в трёхфазной цепи методом двух ваттметров.
- 5. Построение векторных диаграмм по экспериментальным данным.

2 Домашнее задание

Рисунок 2.1. Исходная схема

№ варианта	Линейное напряжение, В	Количест	во элемент	Регулируемая фаза			
	-	Фаза А	Фаза Б	Фаза С	-		
4	33	7	5	3	A		

Таблица 1: Данные для расчета

- 1. Для трёхфазной трёхпроводной цепи (рис. 2.1) по данным из таблицы:
 - Определим напряжение между нулевыми узлами:

$$\dot{U}_{AB} = 33 * e^{j30^{\circ}} = 28.759 + 16,500j \text{ (B)}$$

$$\dot{U}_{BC} = 33 * e^{-j90^{\circ}} = -33j \text{ (B)}$$

$$\dot{U}_{CA} = 33 * e^{j150^{\circ}} = -28.579 + 16,500j \text{ (B)}$$

$$\dot{U}_{CA} = 33 * e^{j150^{\circ}} = -28.579 + 16,500j \text{ (B)}$$

$$\dot{U}_{AB} = U_{AB} = 19,053 \text{ (B)}$$

$$\dot{U}_{AB} =$$

$$\dot{U}_{Nn} = \frac{\dot{U}_A Y_A + \dot{U}_B Y_B + \dot{U}_C Y_C}{Y_A + Y_B + Y_C} = 3,814 - 2,206j$$
 (B)

• Определим напряжение каждой фазы нагрузки:

$$\dot{U}_a = \dot{U}_A - \dot{U}_{Nn} = 19,053 - 3,814 + 3,206j = 15,239 + 3,206j$$

$$\dot{U}_b = \dot{U}_B - \dot{U}_{Nn} = 9,526 - 16,5j - 3,814 + 3,206j = -13,340 - 13,294j$$

$$\dot{U}_c = \dot{U}_C - \dot{U}_{Nn} = 9,526 + 16,5j - 3,814 + 3,206j = -13,340 + 19,706j$$

• Определим ток в каждой фазе:

$$\dot{I}_a = \dot{U}_a Y_a = (15, 239 + 3, 206j) * 25 \cdot 10^{-3} = 0, 381 + 0, 080j = 0, 389 * e^{j11,858^{\circ}} \text{ (A)}$$

$$\dot{I}_b = \dot{U}_b Y_b = (-13, 340 - 13, 294j) * 17, 86 \cdot 10^{-3} = -0, 238 - 0, 237j = 0, 336 * e^{j135,12^{\circ}} \text{ (A)}$$

$$\dot{I}_c = \dot{U}_c Y_c = (-13, 340 + 19, 706j) * 10, 7 \cdot 10^{-3} = -0, 143 + 0, 211j = 0, 255 * e^{j124,13^{\circ}} \text{ (A)}$$

• Определим активную мощность, потребляемую цепью:

$$P_1 = |\dot{U}_{AB}||\dot{I}_a|\cos{(\varphi_{U_{AB}} - \varphi_{I_A})} = 12,199 \text{ (Bt)}$$

 $P_2 = |\dot{U}_{CB}||\dot{I}_c|\cos{(\varphi_{U_{CB}} - \varphi_{I_C})} = 6,966 \text{ (Bt)}$
 $P = P_1 + P_2 = 19,165 \text{ (Bt)}$

• По данным расчёта построим векторную диаграмму:

2. Для трёхфазной четырехпроводной цепи:

• Выполним расчет токов и напряжений:

$$\begin{split} \dot{U}_{Nn} &= 0 \\ \dot{\dot{U}}_{a} &= \dot{U}_{A} = 19,053 \text{ (B)} \\ \dot{\dot{U}}_{b} &= \dot{U}_{B} = -9,526 - 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{C} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,5j \text{ (B)} \\ \dot{\dot{U}}_{c} &= \dot{\dot{U}}_{c} = -9,526 + 16,$$

• По данным расчёта построим векторную диаграмму:

3 Ход работы

1. Сборка измерительных приборов по схеме на рис 3.2 без нулевого провода:

Рисунок 3.2

- 2. Установим в фазах приёмника нагрузки в соответствии с данными таблицы. С помощью вольтметра измерим фазные и линейные напряжения, а также напряжение смещения нейтрали. Измерим фазные токи и мощности P_1 и P_2 .
- 3. Изменяя количество нагрузочных элементов в регулируемой фазе, повторим измерения по пункту 2 для различных режимов. Результаты измерений занесем в таблицу:

No,	Режим работы	U_{AB}	U_{BC}	U_{CA}	U_A ,	U_B ,	U_C ,	I_A ,	I_B ,	I_C ,	U_{Nn} ,	P_1 ,	P_2 ,	P,
ПП		В	В	В	В	В	В	мА	мА	мА	В	Вт	Вт	Вт
1	Симметричный	32	28,5	30,3	18,1	17,2	17,3	255	240	230	0,9	7,5	7,5	22,5
2	Обрыв фазы	12,7	28,5	15,7	28,7	13,2	15,3	0	180	210	9,4	8,5	_	8,5
3	Короткое	30,6	28,4	29,4	0,03	30,7	29,2	740	420	410	17,5	35	7,5	42,5
	замыкание													
4	Сопротивление	32,2	28,3	30,4	22,5	15,1	15,9	170	200	200	3,6	7,5	7,5	16
	увеличено													
5	Сопротивление	31,7	30,3	28,6	14,2	19,8	19,4	350	270	250	4,2	7,5	17,5	25
	уменьшено													
6	Домашнее													
	задание													

Таблица 2: Результаты измерений для трехфазной цепи без нулевого провода

4.	По данным	таблицы	построим	векторные	диаграммы	токов и	напряжений:	
----	-----------	---------	----------	-----------	-----------	---------	-------------	--

5. Повторим измерения для трехфазной цепи с нулевым проводом. Результаты измерений занесем в таблицу:

№,	Режим работы	U_{AB} ,	U_{BC} ,	U_{CA} ,	U_A ,	U_B ,	U_C ,	I_A ,	I_B ,	I_C ,	I_N ,
пп		В	В	В	В	В	В	мА	мА	мА	мА
1	Симметричный	32,2	28,7	30,6	18,6	17,5	16,7	260	250	240	0
2	Обрыв фазы	32,3	28,6	31,1	19,6	17,2	16,6	0	250	230	260
3	Сопротивление	32,5	28,8	30,9	19,1	17,4	16,7	140	250	210	0,15
	увеличено										
4	Сопротивление	31,9	28,9	30,4	18,0	18,0	16,7	440	250	210	0,18
	уменьшено										
5	Домашнее										
	задание										

Таблица 3: Результаты измерений для трехфазной цепи с нулевым проводом

6. По данным таблицы построим векторные диаграммы токов и напряжений:

4 Вывод

В ходе лабораторной работы:

- Изучены основные свойства симметричной и несимметричной трёхфазных систем при соединении звездой.
- Опытным путём определены соотношения между фазными напряжениями и токами при разных нагрузках определённых фаз.
- Выяснена роль нейтрального провода.
- Измерены мощности в трехфазной цепи методом двух ваттметров.
- Построены векторные диаграммы по экспериментальным данным.