CutShort A Hybrid Sorting Technique

BY:

Ashish Garg

Versha Garg

Sudhir Goswami

What is a Sorting technique?

Sorting is a process that organizes a collection of data into either ascending or descending order.

Some sorting algorithms

- Insertion Sort
- Merge Sort
- Quick Sort

Importance of Sorting

- Data searching can be optimized to a very high level if data is sorted.
- Sorting is also done to represent data in more readable formats.
- Used in other important algorithms.

Motive

Dividing an input array into a number of sub-arrays so as to reduce the length of the array for performing sorting on individual sub-array.

Process

Getting the counts of numbers requiring the same number of bits (BitCount) in its binary form

Arranging the numbers such that numbers with same BitCount belong a same sub-arrays

Sorting the sub-arrays with pre-existing sorting technique

BitCounts

Number	Binary Representation	No. of bits required				
12	1010	4				
53	110101	6				
500	111110100	9				
9999	10011100001111	14				

Finding BitCount

Array "BitBand": Each element represents the counts of numbers with same BitCount

Arranging the elements

1	3	2	12	15	54	45	451	502	335	6512	5795

Sorting sub-arrays

1	2	3	12	15	45	54	335	451	502	5795	6512	
---	---	---	----	----	----	----	-----	-----	-----	------	------	--

Complexity

Factor 'd' is the number of sub-array after performing the CutShort pre-processing step.

Best case: T(n) = O(n.log(n/dmax))

Average Case:
T(n) = O(n.log n/d)

Worst case: $T(n) = O(n \log n)$

Time Complexity Comparsion with QuickSort

Time Complexity Comparsion with MergeSort

Time Complexity Comparsion with Insertion Sort

Thank You