COMP9414: Artificial Intelligence

Lecture 5b: Language Models

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

© W. Wobcke et al. 2019 UNSW

COMP9414 Language Models COMP9414 Language Models

Probabilistic Language Models

- Based on statistics derived from large corpus of text/speech
 - ▶ Brown Corpus (1960s) 1 million words
 - ▶ Penn Treebank (1980s) 7 million words
 - ▶ North American News (1990s) 350 million words
 - ► IBM 1 billion words
 - ► Google & Facebook Trillions of words
- Contrary to view that language ability based on (innate) knowledge
- Idea is language ability can be learnt ... with enough data ...

COMP9414 Language Models

This Lecture

- Part of Speech Tagging
 - n-gram Models
 - ► Hidden Markov Models
 - ▶ Viterbi Algorithm
- Word Sense Disambiguation
 - ► Mutual Information
 - Class-Based Models

UNSW © W. Wobcke et al. 2019

3

Penn Treebank Tagset

UNSW

Tag Description		Example	Tag	Description	Example	
CC	coord. conjunction	and, or	RB	adverb	extremely	
CD	cardinal number	one, two	RBR	adverb, comparative	never	
DT	determiner	a, the	RBS	adverb, superlative	fastest	
EX	existential there	there	RP	particle	up, off	
FW	foreign word	noire	SYM	symbol	+, %	
IN	preposition or sub- conjunction	of, in	TO	"to"	to	
JJ	adjective	small	UH	interjection	oops, oh	
JJR	adject., comparative	smaller	VB	verb, base form	fly	
JJS	adject., superlative	smallest	VBD	verb, past tense	flew	
LS	list item marker	1, one	VBG	verb, gerund	flying	
MD	modal	can, could	VBN	verb, past participle	flown	
NN	noun, singular or mass	dog	VBP	verb, non-3sg pres	fly	
NNS	noun, plural	dogs	VBZ	verb, 3sg pres	flies	
NNP	proper noun, sing.	London	WDT	wh-determiner	which, that	
NNPS	proper noun, plural	Azores	WP	wh-pronoun	who, what	
PDT	predeterminer	both, lot of	WP\$	possessive wh-	whose	
POS	possessive ending	's	WRB	wh-adverb	where, how	
PRP	personal pronoun	he, she				

COMP9414

Part of Speech Tagging

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- There/EX are/VBP 70/CD children/NNS there/RB
- Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN s/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.

UNSW

© W. Wobcke et al. 2019

COMP9414

Language Models

5

Why is this Hard?

Ambiguity, e.g. back

- earnings growth took a back/JJ seat
- a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP about debt
- I was twenty-one back/RB then

Probabilistic Formulation

- Events: Occurrence of word w, occurrence of a word with tag t
- Given sequence of words w_1, \dots, w_n , choose t_1, \dots, t_n so that $P(t_1, \dots, t_n | w_1, \dots, w_n)$ is maximized
- Apply Bayes' Rule
 - $P(t_1,\cdots,t_n|w_1,\cdots,w_n) = \frac{P(w_1,\cdots,w_n|t_1,\cdots,t_n).P(t_1,\cdots,t_n)}{P(w_1,\cdots,w_n)}$
 - Therefore maximize $P(w_1, \dots, w_n | t_1, \dots, t_n).P(t_1, \dots, t_n)$

IINSW

© W. Wobcke et al. 2019

7

COMP9414

Language Models

Unigram Model

Maximize $P(w_1, \dots, w_n | t_1, \dots, t_n) . P(t_1, \dots, t_n)$

- Apply independence assumptions
 - $P(w_1, \dots, w_n | t_1, \dots, t_n) = P(w_1 | t_1) \dots P(w_n | t_n)$
 - Probability of word w generated by t independent of context
 - $P(t_1, \dots, t_n) = P(t_1) \dots P(t_n)$
 - Probability of tag sequence independent of order
- Estimate probabilities
 - P(w|t) = #(w occurs with tag t) / #(words with tag t)
 - P(t) = #(words with tag t) / # words
 - Choose tag sequence that maximizes $\Pi P(t_i|w_i)$
 - Chooses most common tag for each word
- Accuracy around 90% but still ≈1 word wrong in every sentence!

Markov Chain

Language Models

- Bayesian network
 - \triangleright $P(S_0)$ specifies initial conditions
 - \triangleright $P(S_{i+1}|S_i)$ specifies dynamics (stationary if same for each i)
- Independence Assumptions
 - $P(S_{i+1}|S_0,\cdots,S_i) = P(S_{i+1}|S_i)$
 - ► Transition probabilities dependent only on current state S_i independent of history to reach that state S_0, \dots, S_{i-1}
 - ▶ The future is independent of the past, given the present

UNSW

© W. Wobcke et al. 2019

COMP9414 Language Models

Hidden Markov Models

- Bayesian network
 - \triangleright $P(S_0)$ specifies initial conditions
 - $ightharpoonup P(S_{i+1}|S_i)$ specifies dynamics
 - $ightharpoonup P(O_i|S_i)$ specifies "observations"
- Independence Assumptions
 - $\triangleright P(S_{i+1}|S_0,\cdots,S_i) = P(S_{i+1}|S_i)$ (Markov Chain)
 - $P(O_i|S_0,\cdots,S_{i-1},O_0,\cdots,O_{i-1})=P(O_i|S_i)$
 - ▶ Observations (words) depend only on current state (tag)

Bigram Model

Maximize $P(w_1, \dots, w_n | t_1, \dots, t_n).P(t_1, \dots, t_n)$

- Apply independence assumptions (Markov assumptions)
 - $P(w_1, \cdots, w_n | t_1, \cdots, t_n) = \Pi P(w_i | t_i)$
 - $P(t_1, \dots, t_n) = P(t_n|t_{n-1}) \dots P(t_0|\phi)$, where $\phi = \text{start}$
 - ▶ Bigram model: state (tag) depends only on previous state (tag)
 - ▶ Observations (words) depend only on states (tags)
- Estimate probabilities
 - $P(t_i|t_i) = \#((t_i,t_i \text{ occurs})/\#(t_i \text{ starts a bigram})$
 - ▶ Choose tag sequence that maximizes $\Pi P(w_i|t_i).P(t_i|t_{i-1})$
 - ▶ Parts of speech generated by finite state machine

UNSW

©W. Wobcke et al. 2019

11

COMP9414 Language Models

Markov Model for POS Tagging

Transition probabilities define stationary distribution

COMP9414 Language Models 12 COMP9414 Language Models 14

Hidden Markov Model for POS Tagging

UNSW ©W. Wobcke et al. 2019

COMP9414 Language Models 13 COMP9414 Language Models 15

Computing Probabilities

Viterbi Algorithm

- 1. Sweep forward (one word at a time) saving only the most likely sequence (and its probability) for each tag t_i of w_i
- 2. Select highest probability final state
- 3. Follow chain backwards to extract tag sequence

UNSW © W. Wobcke et al. 2019

Word Sense Disambiguation

Example

I should have changed that stupid lock and made you leave your key, if I'd known for just one second you'd be back to bother me.

 $lock = \cdots$ $leave = \cdots$ $second = \cdots$ $back = \cdots$

Windows

Consider co-occurrences in a window about w

ſ	w_1			w			w_n
	-						

Language Models

- Senses of word should co-occur with classes of "related" words
- Choose sense s of w to maximize $P(w \text{ is } s | w_1, \dots, w_n)$
- Apply Bayes' Rule
 - Maximize $\frac{P(w_1, \dots, w_n | w \text{ is } s).P(w \text{ is } s)}{P(w_1, \dots, w_n)}$
- Apply independence assumptions
 - $P(w_1, \dots, w_n | w \text{ is } s) = \prod P(w_i | w \text{ is } s)$
- Estimate probabilities: $P(w_i|w \text{ is } s)$
 - \blacktriangleright #(w_i in n-word window around w as s)/#(windows on w as s)

UNSW

© W. Wobcke et al. 2019

17

COMP9414

Language Models

Mutual Information

$$MI(x,y) = \log_2 \frac{P(x,y)}{P(x).P(y)}$$

$$MI(sense(w_1), w_2) = \log_2 \frac{N.\#(sense(w_1), w_2)}{\#(sense(w_1)).\#(w_2)}$$

- MI < 0: sense(w_1) and w_2 occur together less than randomly
- MI > 0: sense(w_1) and w_2 occur together more than randomly
- Adding mutual information is equivalent to assuming independence
- Choose sense s for $w = \arg\max_{s \in senses(w)} \sum_{w_i \in window(w)} MI(s, w_i)$

Class-Based Methods

- Use pre-defined "sense classes", e.g. WordNet, Wikipedia
 - ightharpoonup lock ightharpoonup Mechanical Devices \leftarrow tool, crank, cog, ...
 - ▶ lock \rightarrow *Body Part* \leftarrow hair, eyes, hands, \cdots
- Calculate counts for word senses by adding those for words
- Advantages
 - ► Reduces space and time complexity
 - Reduces data sparsity
 - ► Allows unsupervised learning

IINSW

© W. Wobcke et al. 2019

COMP9414

Language Models

19

Conclusion

- Statistical (and neural network) models perform well on many tasks
 - ▶ Part-of-speech tagging
 - Word sense disambiguation
 - Control of traditional parser
 - ▶ Probabilistic parsing
- Problems
 - Unrealistic simplifying assumptions (that seem to work)
 - Requirement for very large amount of (labelled) text
 - Sparsity of word occurrences in (even large) text corpora
 - Changes in word usage over time (e.g. Senator Obama)