

Sri Chaitanya IIT Academy, India A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A.P., TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 Date: 05-12-15

 Time: 9:00 AM to 12:00 Noon
 RPTM-13
 Max.Marks: 360

KEY SHEET

PHYSICS		CHEMISTRY		MATHS	
Q.NO	ANSWER	Q.NO	ANSWER	Q.NO	ANSWER
1	2	31	4	61	3
2	3	32	2	62	2
3	4	33	2	63	3
4	3	34	2	64	4
5	1	35	3	65	3
6	2	36	2	66	2
7	2	37	3	67	4
8	3	38	4	68	4
9	2	39	2	69	3
10	4	40	4	70	2
11	1	41	4	71	2
12	4	42	1	72	1
13	1	43	1	73	4
14	3	44	4	74	2
15	1	45	4	75	2
16	2	46	2	76	2
17	4	47	4	77	1
18	3	48	3	78	1
19	1	49	4	79	2
20	3	50	3	80	3
21	2	51	4	81	3
22	2	52	4	82	3
23	4	53	2	83	3
24	3	54	3	84	1
25	3	55	1	85	1
26	1	56	3	86	3
27	4	57	1	87	2
28	2	58	2	88	4
29	4	59	2	89	3
30	1	60	1	90	2

SOLUTIONS PHYSICS

1. Ans: 2

Due to Lorentz force, electrons in the moving strip will be displaced upwards, which will creates an electric current in the galvanometer circuit, directed clockwise)

2. Ans:3

$$I = \frac{BLv}{R}$$
, F = BIL, $F = \frac{B^2L^2v}{R}$

$$P = F.v = \frac{B^2 L^2 v^2}{R}$$

3. Ans: 4

Conceptual

4. Ans: 3

$$E = L \frac{dI}{dt}$$
 or $dI = \left(\frac{E}{L}\right) dt$ or $I = \left(\frac{1.5}{3}\right) t$

$$t = 2I = 6 \sec$$

5. Ans: 1

$$R = \frac{\rho 4a}{\pi d^2 / 4} = \frac{16\rho a}{\pi d^2}$$

$$I = \frac{E}{R} = \frac{Bav\pi d^2}{16\rho a} = \frac{\pi Bv d^2}{16\rho}$$

6. Ans: 2

$$V_A - V_B = \left[1 \times 5 - 15 + 5 \times 10^{-3} \left(-10^3\right)\right] volt$$

$$=-15V$$

$$V_B - V_A = 15V$$

7. Ans: 2

$$d\phi = \frac{\mu_0 I}{2\pi x} (adx)$$

$$\phi = \frac{\mu_0 Ia}{2\pi} \int_{\ell}^{\ell+a} \frac{1}{x} dx$$

$$= \frac{\mu_0 I a}{2\pi} \Big[\log_e (l+a) - \log_e l \Big]$$

$$E = \frac{d\phi}{dt} = \frac{\mu_0 Ia}{2\pi} \left[\frac{1}{l+a} - \frac{1}{l} \right] \frac{dl}{dt}$$

$$=-\frac{\mu_0 I a^2 V}{2\pi l \left(l+a\right)}$$

8. Ans: 3

$$I = \frac{E}{R_1} = \frac{6}{1} = 6 amp$$

$$I_0 = \frac{E}{R_2} = \frac{6}{1} = 6 A$$
, $\tau = \frac{L}{R_2} = \frac{200 \times 10^{-3}}{1} = 0.2$

$$I_2 = I_0 (1 - e^{-t/\tau}) = 6(1 - e^{-t/0.2})$$

$$V_2 = E - R_2 I_2 = 6 - 6(1 - e^{5t}) = 6e^{-5t}$$

9. Ans: 2

Emf will be maximum at mean position

$$mg\frac{l}{2}(1-\cos\alpha) = \frac{1}{2}\left(\frac{ml^2}{3}\right)\omega^2$$
 and $E = \frac{1}{2}B\omega l^2$

Since
$$\alpha$$
 is small so $1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2} \approx 2\left(\frac{\alpha}{2}\right)^2 = \frac{\alpha^2}{2}$

So
$$E = \frac{1}{2}Bl^2(\alpha\sqrt{3g/2l}) = B\alpha\sqrt{3gl^3/8}$$

10. Ans: 4

$$E = B(v \sin \theta)(2R) = 2BVR \sin \theta$$

11. Ans: 1

$$|E| = \frac{d\phi}{dt} = na^{n-1}$$

If 0 < n < 1, (n-1) negative |E| decays with time

$$n=1, \qquad |E|=cons \tan t$$

n > 1 |E| increases with time

12. Ans: 4

$$\tau = \frac{L}{R} = 1 \sec$$

$$I = I_0 e^{-t/\tau} = \left(\frac{8}{2}\right) e^{\log_e^2} = 2amp$$

So,
$$V_L = 8 - 2 \times 2 = 4V$$
, $W_{\text{sup plied by bettary}} = 8 \times 2 = 16J/s$

Rate of heat dissipated across resistor = $I^2R = 8J/s$

13. Ans:1

$$d\phi = \frac{\mu_0 I}{2\pi x} l dx$$

So,
$$\phi = \frac{\mu_0 I}{2\pi} l \log_e \left(\frac{d_2}{d_1} \right)$$

$$E = \frac{d\phi}{dt} = \frac{\mu_0 \ell}{2\pi} \log_e \left(\frac{d_2}{d_1}\right) I_0 \omega \cos wt$$

So,
$$E_{rms} = \frac{\mu_0}{2\pi} l \log_e \frac{d_2}{d_1} I_0 w \frac{1}{\sqrt{2}}$$

$$= 2 \times 10^{-7} \times 1 \times \log_e^2 \times \frac{2\sqrt{2}}{\log_e^2} \times \frac{50}{\sqrt{2}} = 2 \times 10^{-5} V$$

14. Ans:3

$$V_{PS} = iR = \frac{B\ell v}{r} \times \frac{r}{6} = \frac{Fr}{6B\ell} \qquad \left[\sin ce, v = \frac{Fr}{B^2 \ell^2} \right]$$

$$\sin ce, v = \frac{Fr}{B^2 \ell^2}$$

15. Ans:1

$$B = \frac{\mu_0 I}{h}, \ \phi = \frac{\mu_0 I}{h} \ell a$$

Self ind,
$$L = L = \frac{\phi}{I} = \frac{\mu_0 \ell a}{b}$$
, $U = \frac{1}{2}LI^2 = \frac{\mu_0 \ell a I^2}{2b}$

16. Ans:2

$$\phi = BA\cos\theta = \frac{1}{2}B\pi r^2\cos\omega t$$

$$\varepsilon = \frac{-d\phi}{dt} = \frac{1}{2}B\pi r^2 \omega \sin wt , \qquad P = \frac{\varepsilon^2}{R} = \frac{B^2 \pi^2 r^4 w^2 \sin^2 wt}{4R}$$

$$< P > = \frac{B^2 \pi^2 r^4 w^2}{4R} \times \frac{1}{2} = \frac{\left(B \pi r^2 w\right)^2}{8R}$$

17. Ans:4

$$\frac{q}{c} + L\frac{dI}{dt} = 0$$
 or $\frac{d^2q}{dt^2} + \frac{q}{LC} = 0$

Which is equation of oscillatory motion

So,
$$q = q_0 \sin \omega t \Rightarrow \frac{dq}{dt} = I = q_0 \omega \cos wt$$
 where $w = \frac{1}{\sqrt{LC}}$

18. Ans:3

$$V = \frac{LdI}{dt}, \ \frac{dI}{dt} = \frac{V}{L} = \frac{V_0 \sin wt}{L}$$

Or
$$I = \frac{-V_0}{Lw} \cos \omega t$$

P instantaneous = $VI = \frac{-V_0^2}{L\omega} \sin \omega t \cos \omega t = \frac{-V_0^2}{2\omega L} \sin 2\omega t$

19. Ans:1

$$\tan \phi_1 = \frac{X_L}{R}, \ \tan \phi_2 = \frac{X_C}{R}$$

Given
$$\phi_1 = \phi_2$$
 So, $X_L = X_C$

So,
$$X_L = X_C$$

20.

Energy loss in C = energy stored in L

$$\frac{1}{2}CV_1^2 - \frac{1}{2}CV_2^2 = \frac{1}{2}LI^2$$

21.

$$V_{rms} = \sqrt{\frac{\int_{0}^{T} V^{2} dt}{\int_{0}^{T} dt}}$$

22. Ans: 2

$$X_L - X_C = R$$

$$\frac{1}{2\pi fc} = \left(R + 2\pi fL\right)$$

23. Ans: 4

$$B = \frac{\mu_0 I}{2\pi r}, U = \int_{r_{inner}}^{r_{outer}} \frac{B^2}{2\mu_0} 2\pi r \ell = \frac{1}{2}LI^2$$

So,
$$L = \frac{\mu_0 I}{2\pi} \log_e \left(\frac{r_{outer}}{r_{inner}} \right)$$

$$w^2 = \frac{1}{LC}, \ T = \frac{2\pi}{w}$$

24.

$$E_{inside} = \frac{r}{2} \frac{dB}{dt}, \ E_{outside} = \frac{-R^2}{2r} \frac{dB}{dt}$$

Ans: 3 25.

$$d\phi = BdA$$
, $dA = 2xdy$, $x = \sqrt{\frac{y}{K}}$

$$|E| = \frac{d\phi}{dt} = -B2\sqrt{\frac{y}{k}} \frac{dy}{dt}, \frac{dy}{dt} = \sqrt{2ay}$$

26. Ans: 1

$$\phi = NBA\cos\omega t$$

$$|E| = \frac{d\phi}{dt}$$

27. Ans: 4

$$I = \frac{P}{V} = 0.5A, \ R = \frac{V^2}{P} = 200\Omega$$

$$Z = \frac{E}{I} = \sqrt{R^2 + X_C^2} = \frac{200}{0.5} = 400$$

So,
$$X_C = \sqrt{(400)^2 - (200)^2} = 200\sqrt{3} = \frac{1}{CW}or$$
, $C = 9.2 \mu F$

28. Ans: 2

$$I'_{rms} = \sqrt{I_{dc}^2 + I_{rms}^2} = \sqrt{5^2 + \left(\frac{10}{\sqrt{2}}\right)^2} = 5\sqrt{3}A$$

29. Ans: 4

$$V(t) = \left(\frac{4V_0}{T}\right)t \quad \text{for } 0 \le t \le \frac{T}{4}$$

$$V^2 = \left(\frac{16V_0^2}{T^2}\right)t^2$$

$$< V^2 >_{0-\frac{T}{4}} = \frac{\left(\frac{16V_0^2}{T^2}\right)\int\limits_0^{T/4} t^2 dt}{\int\limits_0^{T/4} dt} = \frac{V_0^2}{3}$$

$$V_{rms} = \frac{V_0}{\sqrt{3}}$$

30. Ans: 1

$$R = \frac{100}{1} = 100\Omega, \quad Z = \frac{V_{rms}}{I_{rms}} = \frac{100}{0.5} = 200\Omega$$

$$Z^2 = R^2 + x_L^2$$
, $x_L = \sqrt{z^2 - R^2} = 100\sqrt{3}$

$$X_L = 2\pi F L, \quad L = \frac{xl}{2\pi f} = 0.55H$$