Linear Programming Computational Intelligence, Lecture 9

by Sergei Savin

Fall 2020

Content

- Linear Programming
 - General form
 - LP with no solution examples
- Convex piece-wise linear functions
 - Problem statement
 - Solution as LP
 - Sum of piece-wise linear functions
 - Code example
- Chebyshev center of a polyhedron
 - Problem statement
 - Solution as LP
 - Code example
- Homework

Linear Programming General form

A linear program (LP) is an optimization problem of the form:

minimize
$$\mathbf{f}^{\top}\mathbf{x}$$
,
subject to
$$\begin{cases} \mathbf{A}\mathbf{x} \leq \mathbf{b}, \\ \mathbf{C}\mathbf{x} = \mathbf{d}. \end{cases}$$
 (1)

It is one of the older and widely used classes of convex optimization problems.

Note that the solution of such problem will always lie on the boundary of its domain.

Linear Programming LP with no solution - examples

Here are some examples of LP which have no solutions:

$$\underset{\mathbf{x}}{\text{minimize}} \quad \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{2}$$

This one is has no boundaries at all, hence no solution. Next one has boundaries, but they do not restrict motion along the descent direction for the cost function.

minimize
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
,
subject to $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le 1$ (3)

Convex piece-wise linear functions

Problem statement

Convex piece-wise linear functions have the form:

$$f(\mathbf{x}) = \max(\mathbf{a}_i^{\mathsf{T}} \mathbf{x} + b_i) \tag{4}$$

Figure below shows geometric interpretation of such function for a one-dimensional case.

Convex piece-wise linear functions Solution as LP

We can formulate a minimization problem using convex piece-wise linear functions:

$$\underset{\mathbf{x}}{\text{minimize}} \quad \max(\mathbf{a}_i^{\top} \mathbf{x} + b_i) \tag{5}$$

Which can be equivalently transformed into the following LP:

$$\begin{array}{ll}
\text{minimize} & t \\
\text{subject to} & \mathbf{a}_i^\top \mathbf{x} + b_i \le t
\end{array} \tag{6}$$

We can observe that optimal (minimal) t will have to lie on one of the linear functions $\mathbf{a}_i^{\mathsf{T}}\mathbf{x} + b_i$, i.e. on the original piece-wise linear function $f(\mathbf{x})$. And optimal value on t corresponds to the smallest value of the original function $f(\mathbf{x})$.

Sum of piece-wise linear functions Solution as LP

Sum of convex piece-wise linear functions have the form:

$$f(\mathbf{x}) + g(\mathbf{x}) = \max(\mathbf{a}_i^{\mathsf{T}} \mathbf{x} + b_i) + \max(\mathbf{c}_i^{\mathsf{T}} \mathbf{x} + d_i)$$
 (7)

Their representation as LP is:

minimize
$$t_1 + t_2$$

subject to
$$\begin{cases} \mathbf{a}_i^\top \mathbf{x} + b_i \le t_1 \\ \mathbf{c}_i^\top \mathbf{x} + d_i \le t_2 \end{cases}$$
(8)

Convex piece-wise linear functions

Code

```
o func = @(t) t^2;
  derivative\_func = @(t) 2*t;
  approx_points = [-1, -0.3, 0, 0.3, 1];
4|n = length (approx_points);
  a = zeros(n, 1);
6 \mid b = zeros(n, 1);
s \mid for i = 1:n
       t = approx_points(i);
      a(i) = derivative\_func(t);
       b(i) = func(t) - a(i)*t ;
12 end
_{14}|f = [1; 0];
  \lim_{A} A = [-\operatorname{ones}(n, 1), a];
16 | lin_b = -b;
  x = linprog(f, lin_A, lin_b, [], []);
```

Chebyshev center of a polyhedron

Problem statement

Chebyshev center of a polyhedron is the center of the largest ball inscribed in a polyhedron:

Equation describing this ball can be written as:

$$\mathcal{B} = \{ \mathbf{x}_c + \mathbf{u} : ||\mathbf{u}||_2 \le r \}$$
 (9)

where r is the radius of the ball and \mathbf{x}_c is its center.

Chebyshev center of a polyhedron Solution as LP, part one

For the ball \mathcal{B} to be inscribed in a polygon $\mathcal{P} = \{\mathbf{x} : \mathbf{A}\mathbf{x} \leq \mathbf{b}\},$ the following should hold:

$$\sup\{\mathbf{a}_i^{\top}(\mathbf{x}_c + \mathbf{u}) : ||\mathbf{u}||_2 \le r\} \le b_i$$
 (10)

Note that the largest value of $\mathbf{a}_i^{\top}\mathbf{u}$ under condition $||\mathbf{u}||_2 \leq r$ is $r||\mathbf{a}_i^{\top}||$: it can indeed achieve this value if \mathbf{a}_i and \mathbf{u} are co-directional, but a larger one is not possible. Therefore:

$$\sup\{\mathbf{a}_i^{\top}(\mathbf{x}_c + \mathbf{u}): ||\mathbf{u}||_2 \le r\} = \mathbf{a}_i^{\top}\mathbf{x}_c + r||\mathbf{a}_i^{\top}|| \le b_i$$
 (11)

Chebyshev center of a polyhedron Solution as LP, part two

Finally, we can write down the solution of the problem as a linear optimization:

maximize
$$r$$

 r, \mathbf{x}_c (12)
subject to $\mathbf{a}_i^{\top} \mathbf{x}_c + r ||\mathbf{a}_i^{\top}|| \le b_i$

Below we can see MATLAB code for solving the problem:

```
V = \operatorname{randn}(10, 2);
2 | k = convhull(V);
 |P = V(k, :);
  [domain_A, domain_b] = vert2con(P);
6 norm_A = vecnorm (domain_A');
A = [reshape(norm_A, [], 1), domain_A];
10 \mid b = domain_b;
|x| = \text{linprog}(f, A, b, [], []);
_{14} | center = [x(2), x(3)];
  r = x(1);
```

Homework

Implement linear approximation of a convex function and solve it as LP

Lecture slides are available via Moodle.

You can help improve these slides at: github.com/SergeiSa/Computational-Intelligence-Slides-Fall-2020

Check Moodle for additional links, videos, textbook suggestions.