Datasheet Version 1.1

1.0	Overview	03	10.3	ISED Regulatory Approval	16
2.0	Hotspot Features	04	10.3.1	ISED RSS Warning	17
2.1	Pygate Adapter Board	4	10.3.2	ISED RF exposure statement	17
2.2	Raspberry Pi CM4 Features	4	10.4	Helium Certification	
2.3	Hotspot Power supply options:	4			
2.4	Available signals on headers:	4			
2.5	Hotspot connectivity options:	4	11.0	Ordering information	17
2.6	Hotspot Absolute maximum ratings	4	11.0	Oracining innomination	
			12.0	Packaging	17
3.0	Block Diagram for Hotspot	5	130	Revision History	17
4.0	Pygate Overview	6	13.0	Revision mistory	17
5.0	Pygate Header Pinout	7			
6.0	Overview Hotspot Specfication	n 8			
6.1	CPU	8			
6.2	Memory	8			
6.3	WiFi	8			
6.4	Bluetooth	8			
6.5	LoRa	8			
6.6	Security	8			
6.7	Hash/encryption	8			
6.8	Helium Network	8			
7.0	LoRa Characteristics				
8.0	Electrical Characteristics	14			
8.1	Absolute Maximum rating	14			
8.2	DC Characteritics	14			
8.3	Power Consumption	14			
9.0	Mechanical Drawings	14			
10.0	Certification	15			
10.1	EU Regulatory Conformance	15			
10.2	Federal Communication Commission Compliance Statement	15			
10.2.1	Federal Communication Interference	15			
	Statement	כו			
10.2.2	RF Warning Statement	16			
10.2.3	Supplier's Declaration of Conformity	16			
10.2.4	End Product Labelling	16			

1.0 Overview

The Helium Hotspot contains the following Pycom and partner technology

- Pygate 868 Mhz or 915 Mhz
- Compute Module 4 adapter board
- Raspberry Pi Compute Module 4
- Pygate Case
- LoRa Antenna
- WiFi Antenna
- Power over Ethernet

The full helium hotspot enables users to connect to the Helium network and mine HNT coins once Authenticated on the network. It consists of a Pygate with a Compute Module 4 adapter board. This is designed for plugging Raspberry Pi Compute Module 4 onto the Pygate headers. In this configuration there is no need to add any additional development boards. The MCU is provided by the Raspberry Pi. The adapter board includes all necessary peripherals like SD-Card holder, power converter and a security chip.

2.0 Hotspot features

2.1 Pygate Adapter Board

- SD-Card holder for Raspberry Pi Compute 4 for SD boot and update
- Authentication IC through I2C for crypto transactions
- Fit into the standard Pygate case

2.2 Raspberry Pi CM4 Features:

- Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
- Small Footprint 55mm × 40mm × 4.7mm modüle
- Options for 1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM with ECC
- Options for OGB (CM4Lite), 8GB, 16GB, or 32GB eMMC Flash memory
- 2.4 GHz, 5.0 GHz IEEE 802.11 b/g/n/ac
- Bluetooth 5.0, BLE
- Electronic switch to select between PCB trace or external antenna
- SDIO 2.0 (CM4Lite)
- Single +5v PSU input

2.3 Hotspot Power supply options:

- USB Type-C
- PoE (Power Over Ethernet) via the optional adapter board

2.4 Available signals on headers:

- VCC supply.
- 3.3V from the Pycom module (Raspberry Pi Compute Module)
- VCC supply that goes off when the system enters sleep mode.
- 3V3 from the Gateway subsystem.
- UART Tx and UART Rx.
- GPS PPS input for adding an external GPS
- GND

2.5 Hotspot connectivity option

- WiFi: With the Raspberry Pi Compute Module 4.
- Ethernet: In combination with the Ethert adapter board.
- Bluetooth 5.0
- LoRa

2.6 Hotspot Absolute maximum ratings:

- Operating temperature range: -20 to +75°C
- Commercial temperature range: 0 to 70 °C
- Industrial temperature range: -40 to +85 °C
- Maximum RF LoRa Input Level: -10 dBm (0.1mW)

3.0 Block Diagram for Hotspot

Figure 1 - Hotspot Block diagram

Note:

^{*} Blocks shown with a dashed outline are modules that are plugged into the Pygate

^{**} PyEthernet module is not mandatory for the gateway operation, when Ethernet connectivity or Power over Ethernet functionality needed.

4.0 Pygate Overview

The Pygate is a super low-cost 8-channel LoRaWAN gateway that comes in the shape of a shield. It's got withe well-known form factor from our other shields and you can connect Pygate adapter board.

Size: 65mm x 50mm x 3.5mm

Figure 2 - Pygate pins and connector

5.0 Pygate Header Pinout

Module socket pinout

Figure 3 - Socket to Pycom module

6.0 Overview Hotspot Specification

6.1 CPU

Broadcom BCM2711 quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GH

6.2 Memory

- 2 GB LPDDR4-3200 SDRAM with ECC
- 64 GB uSD card

6.3 WiFi

- 2.4GHz and 5.0GHz IEEE 802.11b/g/n/ac with onboard and external antenna

Internal antenna: 3.5dBi @2.4GHz, 2.5dBi @5GHz External antenna: 1.6dBi @2.4GHz, 2.0dBi @5GHz

6.4 Bluetooth

Bluetooth 5.0, BLE

Internal antenna: 3.5dBi @2.4GHz, 2.5dBi @5GHz External antenna: 1.6dBi @2.4GHz, 2.0dBi @5GHz

6.5 LoRa

Operating Frequencies:

863-870MHz at 14dBm maximum 902-928MHz at 22dBm maximum

LoRa (868MHz/915MHz) & Sigfox Antenna Kit External antenna

- RF Cable Assemblies RP-SMA (Female)
 JK-IPEX MHF U.FL 1.13 100MM RP-SMA (Male)
 Tilt Swivel Whip antenna
- ROHS Compliant
- Frequency: 824 ~ 960MHz
- VSWR: 3.0 MAX
- Gain: 0.87 dBi
- Impedance: 50 Ohm

6.6 Security

- SSL/TLS support z
- WPA Enterprise security

6.7 Hash/encryption

Using Microchip ATECC608A

- Crypto Authentication Device
- Cryptographic Co-Processor with Secure Hardware-Based Key Storage
- Protected storage for up to 16 keys, certificates or data
- Can comply with the ECC608 provisioning process

6.8 Helium Network

LoRa Network

7.0 LoRa Characteristics

Table 1 - LoRa Packet data field

Packet Buffer data Organization				
Offset from start pointer	Data Stored	Comment		
0 - - - - Payload size -1	PAYLOAD	PAYLOAD DATA		
Payload size	CHANNEL	1-10 as described by block diagram		
+1 Payload size	SF[3:0],CR[2:0], CRC_EN			
+2 Payload size	SNR Average	Averaged SNR in dB on the packet lenght		
+3 Payload size	SNR MIN	Input/output pin. Pycom Module pin 6 and to SD_CMD		
+4 Payload size	SNR MAX	Input/output pin. Pycom Module pin 10 and to SD_DAT		
+5 Payload size	RSSI	External WiFi/BT antenna switch, Low = on-board, High = U.FL		
+6 Payload size +7 Payload size +8 Payload size +9 Payload size	TMESTAMP[7:0] TMESTAMP[15:8] TMESTAMP[23:16] TMESTAMP[31:24]	31 hit time stamp, 1 us step		
+10 Payload size +11 Payload size	CRC Value [7:0] CRC Value [15:8]	Value of the computed CRC16		
+12 Payload size	MODEMID			
+13 Payload size +14 Payload size	RX MAX BIN POS[7:0]RX MAX BIN POS[15:8]	Correlation peak position		

Table 1 - LoRa Packet data field

+15 Payload size	RX CORP SNR	Detection correlation SNR
+16 Payload size	RESERVED	
+17 Payload size	RESERVED	

Table 2 - Packet Structure of transmission

Byte	Subfield	Description	Comment		
0	23:16				
1	15:8	Channel Frequency	Fchan/32MHz*2^19		
2	7:0	_			
3	31:24				
4	23:16		Value at the timer at which the		
5	15:8	— Start Time	modem has to start (in us)		
6	7:0	_			
	7:6	Reserved			
	5:5	Radio select	Select radio A (0) or B (1)		
7 -	4:4	Modulation Type	0:LoRa, 1: FSK		
	3:0	Tx power	> 7:20dBm, otherwise 14dBm		

Table 3 - LoRa Specification

Subfield	Description	Comment
7:7	Payload CRC16 enable	Enables CRC16
6:4	Coding Rate	Coding Rate =4/(4+CR)
3:0	SF	6 to12
7:0	Payload length	numbers of bytes
7:3	Reserve	
2:2	Implicit header enable	
1:0	Modulation Bandwidth	2:500, 1:250, 0:125 kHz
15:8	Droamble symbol number	Number of symbols in the
7:0	Preamble symbol number	preamble
	Reserved	
	Reserved	
	7:7 6:4 3:0 7:0 7:3 2:2 1:0	7:7 Payload CRC16 enable 6:4 Coding Rate 3:0 SF 7:0 Payload length 7:3 Reserve 2:2 Implicit header enable 1:0 Modulation Bandwidth 15:8 7:0 Payload length

Table 4 - FSK Specification

Byte	Subfield	Description	Comment
9	7:0	FSK frequency deviation	FSK frequency deviation
10	7:0	Payload length	numbers of bytes
	0	Packet mode	0-> fixed length 1->Variable length
	1 CRC Enable 3:2 Dcfree ENC		0-> No CRC 1-> CRC
11			00-> DC free encoding off01-> Manchester encoding10-> Whitening encoding1-> RESERVED
	4	CRC IBM	0-> CCITT CRC 1-> IBM CRC
12 13	15:8 7:0	FSK Preamble size FSK Preamble size	The number preamble bytes send over the air before the sync pattern
14 15	15:8 7:0	FSK Bite rate FSK Bite rate	bit rate=32e6/(FSK bit Rate)
16		Payload First byte	Up to 128 bytes

8.0 Electrical Characteristics

8.1 Absolute maximum rating

Table 5 - Absolute maximum rating(for USB Only)

Symbol	Min	Тур.	Max	Unit
V_{IN}	5V Input Voltage	-0.5	6.0	V
V_{GPIO_ref}	GPIO Voltage	-0.5	3.6	V
V_{GPIO}	GPIO Input Voltage	-0.5	$V_{\text{GPIO_ref}} \! + \! 0.5 \text{V}$	V

8.2 DC Characteristics

Table 6 - DC Characteristics

Conditions	Symbol	Min	Тур.	Max	Unit
$V_{ref} = 3.3V$	$V_{IL(GPIO)}$	0	-	0.8	V
$V_{ref} = 3.3V$	$V_{\text{IH}(\text{GPIO})}$	2.0	-	V_{GPIO_ref}	V
$V_{ref} = 1.8V$	$V_{IL(GPIO)}$	0	-	0.35	V
$V_{ref} = 1.8V$	$V_{\text{IH}(\text{GPIO})}$	0.65	-	V_{GPIO_ref}	V
-	V _{IL(GPIO)}	-	-	10	μΑ
-	$V_{\text{OL}(\text{GPIO})}$	-	-	0.4	V
-	$V_{OH(GPIO)}$	$V_{\text{GPIO_ref}}\text{-}0.4$	-	-	V
1mA	I _{O(GPIO)}	-	1.3	-	mA
2mA	I _{O(GPIO)}	-	2.6	-	mA
3mA	1 _{O(GPIO)}	-	3.9	-	mA
4mA Default	I _{O(GPIO)}	_	5.3	-	mA
5mA	I _{O(GPIO)}	-	6.6	-	mA
6mA	1 _{O(GPIO)}	-	7.9	-	mA
7mA	I _{O(GPIO)}	-	9.2	-	mA
8mA	I _{O(GPIO)}	-	10.5	-	mA
$V_{ref} = 3.3V$	R _{PU(GPIO)}	33	47	73	ΚΩ
$V_{ref} = 3.3V$	R _{PD(GPIO)}	33	47	73	ΚΩ
$V_{ref} = 1.8V$	R _{PU(GPIO)}	18	47	73	ΚΩ
V _{ref} = 1.8V	R _{PD(GPIO)}	18	47	73	ΚΩ
	V _{ref} = 3.3V V _{ref} = 3.3V V _{ref} = 1.8V V _{ref} = 1.8V - - ImA 2mA 3mA 4mA Default 5mA 6mA 7mA 8mA V _{ref} = 3.3V V _{ref} = 3.3V V _{ref} = 1.8V	V _{ref} = 3.3V V _{IL(GPIO)} V _{ref} = 3.3V V _{IH(GPIO)} V _{ref} = 1.8V V _{IL(GPIO)} - V _{IL(GPIO)} - V _{OL(GPIO)} - V _{OL(GPIO)} 1mA I _{O(GPIO)} 2mA I _{O(GPIO)} 3mA I _{O(GPIO)} 4mA Default I _{O(GPIO)} 5mA I _{O(GPIO)} 5mA I _{O(GPIO)} 7mA I _{O(GPIO)} 8mA I _{O(GPIO)} V _{ref} = 3.3V R _{PU(GPIO)} V _{ref} = 3.3V R _{PD(GPIO)} V _{ref} = 1.8V R _{PU(GPIO)}	V _{ref} = 3.3V V _{IL(GPIO)} O V _{ref} = 3.3V V _{IH(GPIO)} 2.0 V _{ref} = 1.8V V _{IL(GPIO)} 0 - V _{IL(GPIO)} 0.65 - V _{IL(GPIO)} - - V _{OL(GPIO)} - - V _{OH(GPIO)} - 1mA I _{O(GPIO)} - 2mA I _{O(GPIO)} - 3mA I _{O(GPIO)} - 4mA Default I _{O(GPIO)} - 5mA I _{O(GPIO)} - 6mA I _{O(GPIO)} - 7mA I _{O(GPIO)} - 8mA I _{O(GPIO)} - V _{ref} = 3.3V R _{PU(GPIO)} 33 V _{ref} = 3.3V R _{PD(GPIO)} 33 V _{ref} = 1.8V R _{PU(GPIO)} 18	V _{ref} = 3.3V V _{IL(GPIO)} 0 - V _{ref} = 3.3V V _{IH(GPIO)} 2.0 - V _{ref} = 1.8V V _{IL(GPIO)} 0 - V _{ref} = 1.8V V _{IH(GPIO)} 0.65 - - V _{IL(GPIO)} - - - V _{OL(GPIO)} - - - V _{OL(GPIO)} - - - V _{OH(GPIO)} - - ImA I _{O(GPIO)} - 1.3 2mA I _{O(GPIO)} - 2.6 3mA I _{O(GPIO)} - 3.9 4mA Default I _{O(GPIO)} - 5.3 5mA I _{O(GPIO)} - 5.3 5mA I _{O(GPIO)} - 7.9 7mA I _{O(GPIO)} - 9.2 8mA I _{O(GPIO)} - 10.5 V _{ref} = 3.3V R _{PD(GPIO)} 33 47 V _{ref} = 1.8V R _{PD(GPIO)} 18 47	V _{ref} = 3.3V V _{IL(GPIO)} O - O.8 V _{ref} = 3.3V V _{IL(GPIO)} 2.0 - V _{CPIO_ref} V _{ref} = 1.8V V _{IL(GPIO)} O - O.35 V _{ref} = 1.8V V _{IL(GPIO)} O.65 - V _{CPIO_ref} - V _{IL(GPIO)} - - O.4 - V _{OL(GPIO)} - - - 1mA I _{O(GPIO)} - 1.3 - 2mA I _{O(GPIO)} - 3.9 - 4mA Default I _{O(GPIO)} - 5.3 - 5mA I _{O(GPIO)} - 5.3 - 6mA I _{O(GPIO)} - 7.9 - 7mA I _{O(GPIO)} -<

8.3 Power Consumption

Table 7 - Power consumption

Parameter	Conditions	Symbol	Min	Тур.	Max	Unit
Shut down current	GLOBAL_EN=0v	I _{shutdown}	-	15	-	μΑ
Shut down current	GLOBAL_EN=2v	I _{shutdown}	-	8	-	mA
Idle current	GLOBAL_EN=2v	I_{idle}	-	400	-	mA
Operation current	GLOBAL_EN=2v	I _{load}	-	1400	-	mA

9.0 Mechanical Drawings of Hotspot

Side View of the Hotspot

Top View of the Hotspot

Adapter Board for Compute module for Pygate - Top View

Assembled Pygate with the Adapter Board and Raspberry Pi compute Module 4 - Side view

10.0 Certification

RED Directive

CE

FCC

iC .

RCM (pending)

More information follows below in sections

10.1 EU Regulatory Conformance

This device is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC

10.2 Federal Communication Commission Compliance Statement

Contains FCC ID: 2AJMTPYGATE Contains FCC ID: 2ABCB-RPICM4

10.2.1 Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- 2. This device must accept any interference received, including interference that may cause undesired operation.

CAUTION: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

F/hotspot

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

10.2.2 RF Warning Statement

To comply with FCC RF exposure compliance requirements, the antennas used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter not authorized.

The device uses antennas with maximum gain as listed below:

- -LoRa External antenna: 0.87dBi
- -WiFi/BLE Internal antenna: 3.5dBi @2.4GHz, 2.5dBi @5GHz
- -WiFi/BLE External antenna: 1.6dBi @2.4GHz, 2.0dBi @5GHz

10.2.3 Supplier's Declaration of Conformity (47 CFR § 2.1077 Compliance Information)

Product Name: Pycom Hotspot Manufacturer: Pycom Ltd

Surrey Technology Park 2 Huxley Road, Guildford Surrey GU2 7RE, United Kingdom

Identification of the authorized co-located modules used in the assembly:

Module: Pygate

FCC ID: 2AJMTPYGATE, https://fccid.io/2AJMTPYGATE

Module: Raspberry Pi Compute Module 4 (CM4)

FCC ID: 2ABCB-RPICM4, https://fccid.io/2ABCB-RPICM4

Standard(s) applied:

FCC Part 15B - For Unintentional radiators.

FCC 47 CFR §1.1307 & §2.1091 - Maximum Permissible Exposure (MPE)

10.2.4 End Product Labelling

This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions:

- 1. this device may not cause harmful interference and
- 2. this device must accept any interference received, including interference that may cause undesired operation

10.3 ISED Regulatory Approval

Contains IC: 22263-PYGATE Contains IC: 20953-RPICM4

The device uses antennas with maximum gain as listed below:

- -LoRa External antenna: 0.87dBi
- -WiFi/BLE Internal antenna: 3.5dBi @2.4GHz, 2.5dBi @5GHz
- -WiFi/BLE External antenna: 1.6dBi @2.4GHz, 2.0dBi @5GHz

10.3.1 ISED RSS Warning

ISED RSS Warning: This device complies with Innovation, Science and Economic Development Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- (1) this device may not cause interference, and
- (2) this device must accept any interference, including interference that may cause undesired operation of the device

Le présent appareil est conforme aux CNR d'ISED applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

(1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radio électrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

10.3.2 ISED RF exposure statement:

This equipment complies with ISED radiation exposure limits set forth for an uncontrolled environment. This equipment should be instal led and operated with minimum distance 20cm between the radiator& your body. This transmitter must not be co - located or operating in conjunction with any other antenna or transmitter.

Le rayonnement de la classe b repecte ISED fixaient un environnement non contrôlés.Installation et mise en œuvre de ce matériel devrait avec échangeur distance minimale entre 20 cm ton corps.Lanceurs ou ne peuvent pas coexister cette antenne ou capteurs avec d'autres.

10.4 Helium Certification

This Pycom Hotspot has been through official Helium certification and has passed.

11.0 Packaging

The Helium Hotspot comes in a cardboard package measuring 16.5 cm x 24.5 cm x 5cm.

12.0 Ordering

Table 8 - Ordering information

PRODUCT	DESCRIPTION		EAN	UPC
Helium Hotspot 868Mhz	Pygate and RPi based hotspot for Helium networks in Europe	NEW	0604565430526	604565430526
Helium Hotspot 915Mhz	Pygate and RPi based hotspot for Helium networks in USA, Canada and Australia	NEW	0604565430533	604565430533

13.0 Revision

Table 9 - Document revision history

Version	Date	Initial Release
Version 1.0	29 Oct 2021	First version
Version 1.1	10 Mar 2021	Small amends to first version
Version 1.12	10 Mar 2021	Upgrade from 32GB to 64GB uSD Card