

Global Optimization Strategies for Standard Quadratic Problems

Candidate

Mirco Ceccarelli

Advisors

Prof. Fabio Schoen Prof.ssa Paola Cappanera

Co-advisor

Dott. Matteo Lapucci

INTRODUCTION TO StQPs

Standard Quadratic Optimization Problems (StQPs):

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} x^T Q x + c^T x$$

s.t.
$$e^T x = 1$$

$$x \ge 0$$

n-dimensional standard simplex

StQPs:

- Not convex
- NP-hard problems

StQPs are very important and these are some **applications**:

- Portfolio Optimization
- Finding Maximum clique in graphs

OBSERVATIONS ON STQP PROBLEMS

Given the structure of **StQP** problems, the following **observations** are valid:

- First Observation: Matrix Q and vector c can always be re-defined in such a way that $Q_{ii}=0$ for all $i=1,\ldots,n$, i.e. all diagonal elements of the Hessian matrix Q can be taken equal to 0.
- Second Observation: If the diagonal condition above holds, then all $Q_{ij} > 0$ can be set equal to 0, since at any optimal solution of the StQP problem, $Q_{ij} > 0$ implies that all least one among x_i and x_j is certainly equal to 0.

SMO ALGORITHM

To solve the **StQP** problems, **a fast decomposition algorithm** has been applied.

Sequential Minimal Optimization (SMO)

Main features:

- Updates two variables in closed form
- Guarantees convergence to a local minimum
- Efficient *local solver* within a global optimization strategy

A fundamental point of **SMO**:

Choice of the starting point

Using a simple Multi-Start strategy with SMO as a local solver:

• Global optimum is often found and with relatively short computation times

THESIS AIM

Use a strategy that allows to find the global minimum in a consistent way with less computation times.

Using the **Convexity Graph** associated to the **Hessian matrix** Q of the problem.

CONVEXITY GRAPH 1/3

A graph G = (V, E) can be associated with a problem StQP, where:

- $V = \{1, ..., n\}$ are vertices (or nodes) of the graph.
- $E = \{(i, j) : i, j \in \{1, ..., n\}, Q_{ij} < 0\}$ are edges (or arcs).

Def. Convexity Graph

Convexity Graph is graph in which every variable of the problem is associated with a node and an edge (i, j) is placed if and only if the objective function is strictly convex on the whole edge in the feasible set joining the nodes x_i and x_i .

Example:

CONVEXITY GRAPH 2/3

The **optimal solution** of the problem StQP must be attained in the relative interior of some face:

 $F_C = \{x \in \Delta_n : x_i = 0, i \notin C\}$, where $C \subseteq V$ is a **clique** over the convexity graph G.

This implies that

In an **optimal solution** if there are **multiple non-zero components**, they must be in a **clique**.

Def. Clique

A **Clique** C in an undirected graph G is a subset of the vertices, such that every two distinct vertices are adjacent.

CONVEXITY GRAPH 3/3

- Use the convexity graph for the choice of the starting points of the SMO algorithm
 - that is more efficient than a basic Multistart strategy (starts from the vertices of the standard simplex)
- Calculating the cliques is as difficult a problem as solving the starting problem
 - good strategy: look for initial solutions in which only two components are different from zero.

In an **optimal solution** these **two components** can be **simultaneously different from zero** only if they are **connected** in the **convexity graph**.

BUILD THE BINARY MATRIX

To choose the **starting point**, first you have to build the **binary matrix** H relating to the matrix Q of the problem, where:

• Extra-diagonal elements:

$$\frac{2Q_{ij}-Q_{ii}-Q_{jj}}{2}$$

then $H_{ij} = 0$ then $H_{ij} = 1$

with: i = 1,..., nj = 1,..., n

• Diagonal elements: $H_{ii} = 0$

This binary matrix H is necessary to efficiently choose the starting point from which to start the SMO algorithm.

CHOICE OF THE STARTING POINT

Pseudo-code:

Let $H \in \mathbb{R}^{n \times n}$ be a binary matrix and let $x \in \mathbb{R}^n$ be a zeros-vector.

- 1. Randomly choose $i \sim \mathcal{U}(1,...,n)$
- 2. $J = \{j \mid H_{ij} = 1\}$
- 3. s = length(J)
- 4. Randomly choose $k \sim ([0,...,s-1])$
- $5. | \hat{j} = J[k]$
- 6. $x = \left[0,0,0,\dots,\frac{1}{2},0,0,\dots,\frac{1}{2},0,\dots,0\right]$ where $x[i] = \frac{1}{2}$ and $x[\hat{j}] = \frac{1}{2}$
- 7. Return x

DESCRIPTION OF DATASETS

For this thesis, the experiments were performed on three different datasets:

- Generic Dataset: 56 instances of StQP problems with size $n \in \{10,30,50,100,200,500,1000\}.$
- **BSU Dataset**: **20 instances of StQP** problems with size $n \in \{5,...,24\}$. These problems are hard because they have an exponential number of local minimums.
- BHOSLIB Dataset: 5 instances of StQP problems for each of the 8 **different dimensions** in {450,595,760,945,1150,1272,1400,1534}. These are maximum clique problems and they are hard. For each problem, the real size of the maximum clique is known.

EXPERIMENTS ON GENERIC DATASET 1/2

Three algorithms were compared:

- 1. **Branch-and-bound** (exact algorithm that guarantees optimality)
- 2. **Multistart SMO** (starting points are the vertices of standard simplex)
- 3. Multistart SMO based on convexity graph (SMO-CG) (2000 iterations)

Some results are shown in the following tables:

	Branch-an	d-bound	Multista	rt SMO	SMO-CG	
Problem	Time to optimum (sec.)	Objective value	Time to optimum (sec.)	Objective value	Time to optimum (sec.)	Objective value
100x100(0.5)_5	20.65	-6.18	0.67	-6.14	0.71	-6.18
100x100(0.75)_1	55.58	-6.57	1.10	-6.51	80.0	-6.57
100x100(0.75)_2	101.57	-6.53	0.94	-6.53	0.42	-6.53
100x100(0.75)_3	1.82	-6.63	1.01	-6.63	0.65	-6.63
100x100(0.75)_4	47.32	-6.56	0.92	-6.56	0.36	-6.56
100x100(0.75)_5	42.48	-6.81	0.94	-6.81	0.85	-6.81

EXPERIMENTS ON GENERIC DATASET 2/2

•

	Branch-an	d-bound	Multista	rt SMO	SMO-CG		
Problem	Time to optimum (sec.)	Objective value	Time to optimum (sec.)	Objective value	Time to optimum (sec.)	Objective value	
200x200(0.75)_1	Error	Error	3.58	-6.70	0.30	-6.70	
200x200(0.75)_5	Error	Error	2.98	-6.86	0.36	-6.86	
500x500(0.25)_1	Error	Error	9.72	-6.81	4.24	-6.81	
500x500(0.25)_5	Error	Error	13.17	-6.58	5.58	-6.66	
500x500(0.5)_2	Error	Error	12.63	-7.07	6.81	-7.08	
500x500(0.5)_3	Error Error		12.67	-6.86	1.04	-6.86	
1000x1000(0.25)	Error	Error	39.58	-6.76	20.88	-6.76	

Number of problems in which the optimum was found for each algorithm:

Branch-and-bound: 40 of 56

Multistart SMO: 47 of 56

• SMO-CG: 56 of 56

EXPERIMENTS ON BSU DATASET

Three algorithms were compared:

- 1. Branch-and-bound (exact algorithm that guarantees optimality)
- 2. **Multistart SMO** (starting points are the vertices of standard simplex)
- 3. Multistart SMO based on convexity graph (SMO-CG) (2000 iterations)

Some **results** are shown in the following table:

Duahlam	Branch-and-bound	Multistart SMO	SMO-CG	
Problem	Time to optimum (sec.)	Time to optimum (sec.)	Time to optimum (sec.)	
BSU5	0.51	0.0096	0.0054	
BSU8	0.73	G.O Not Found	0.01	
BSU9	0.70	G.O Not Found	0.01	
BSU15	3.14	22.53	1.32	
BSU20	1.46	1.764	0.07	
BSU23	116.47	191.87	52.46	
BSU24	679.74	6.19	0.24	

EXPERIMENTS ON BHOSLIB DATASET 1/2

Two algorithms were compared:

- 1. **Multistart SMO** (starting points are the vertices of standard simplex)
- 2. Multistart SMO based on convexity graph (SMO-CG) (4000 iterations)

The **Branch-and-bound** was not used because it was unable to give a solution due to the greatness and complexity of the problems of this dataset.

The size of the clique, obtained after applying one of the two algorithms, is computed with the following formula:

$$clique_size = \frac{1}{1+f^*}$$
 where f^* is the optimal solution of the problem

EXPERIMENTS ON BHOSLIB DATASET 2/2

Results with **Multistart SMO**:

Vertices	Max. Clique Size	P1 sol.	P2 sol.	P3 sol.	P4 sol.	P5 sol.	Avg. Time to Optimum (sec.)
450	30	26	26	25	25	26	35.70
595	35	30	30	29	31	30	76.80
760	40	33	33	34	34	33	130.88
945	45	37	35	35	37	37	157.09
1150	50	40	39	43	40	41	337.28
1272	53	43	45	43	44	45	526.01
1400	56	46	45	45	45	44	744.58
1534	59	48	47	46	48	48	1042.06

Multistart SMO gets 8 wins compared to

SMO-CG

Results with **SMO-CG**:

Vertices	Max. Clique Size	P1 sol.	P2 sol.	P3 sol.	P4 sol.	P5 sol.	Avg. Time to Optimum (sec.)
450	30	25	26	26	26	25	19.01
595	35	30	29	30	31	31	133.82
760	40	33	35	33	33	34	164.53
945	45	37	37	36	37	38	170.26
1150	50	40	41	42	40	41	322.63
1272	53	42	45	44	44	42	307.07
1400	56	46	45	45	46	46	404.92
1534	59	48	47	48	48	48	936.40

SMO-CG gets
14 wins
compared to
Multistart SMO

CONCLUSIONS & FUTURE DEVELOPMENTS

- Implemented a technique that efficiently use SMO as a local solver within a global optimization strategy.
- The main challenge was to choose an adequate starting point for the algorithm
 - Best results using the convexity graph associated with the starting problem (SMO-CG).
 - SMO-CG was better, in terms of performance, compared to SMO equipped with a simple Multistart strategy
 - especially as the **size** of **StQP** problems **increases**.

A possible Future Development is:

1. Use strategies that better use information relating to convexity graph.

Global Optimization Strategies for Standard Quadratic Problems

Candidate

Mirco Ceccarelli

Advisors

Prof. Fabio Schoen
Prof.ssa Paola Cappanera

Co-advisor

Dott. Matteo Lapucci