Лабораторная работа 3.2.3

Сидорчук Максим

11 октября 2023 г.

1 Цель работы

Исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

2 В работе используются:

- генератор сигналов
- источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью
- двулучевой осциллограф
- цифровые вольтметры

3 Теоретические положения

Схема экспериментального стенда для изучения резонанса токов в параллельном колебательном контуре показана на рис. 1. Синусоидальный сигнал от генератора GFG-8255A поступает на вход источника тока, собранного на операционном усилителе ОУ с полевым транзистором ПТ, питание которых осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 вольт. Цепи питания на схеме не показаны, представлен только резистор, переменное напряжение, на котором в используемой схеме равно напряжению на входе «+» операционного усилителя.

Рис. 1: Схема экспериментального стенда

Напряжение $E = E_0 cos(\omega t + \phi_0)$ поступает на вход «+» операционного усилителя от генератора через согласующую RC-цепочку. Это же напряжение через разъём «U1» подаётся одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Переменное напряжение на резисторе R1, как отмечалось выше, при этом также равно E. Напряжение на контуре U, совпадающее с напряжением на конденсаторе, подаётся со знаком «-» через разъём «U2» на канал 2 осциллографа и вход 2-го цифрового вольтметра GDM-8245. Показанные на схеме установки ещё два конденсатора без наименований (помимо входящего в RC-цепочку) играют вспомогательную роль и не влияют на характеристики контура.

Символ «->+» отмечает наличие источника питания полевого транзистора. Ток затвора «з» полевого транзистора ничтожно мал, так что токи истока «и» и стока «с» практически совпадают и равны току во внешней цепи контура. Как видно из схемы,

$$I = \frac{E}{R_1} = I_0 cos(\omega t + \phi_0), \quad I_0 = \frac{E_0}{R_1}$$

4 Ход работы

1. Проведём измерения характеристик контура при разных значениях ёмкости конденсатора. Будем фиксировать резонансные частоты f и напряжения U в контуре при разных C, так же регистрируя входное напряжение E. Результаты измерений занесём в таблицу 1. При расчётах импеданса при резонансе $Z_{\rm res}$, добротности контура Q, суммарного сопротивления R_{Σ} , реактивного сопротивления ρ , эквивалентного последовательного сопротивления конденсатора $R_{\rm smax}$ были использованы формулы:

$$\begin{split} Z_{\text{res}} &= \frac{U}{I_0} = \frac{U}{E/R_1} \qquad \rho = \sqrt{\frac{L}{C}} \qquad Q = \frac{Z_{\text{res}}}{\rho} \\ R_{\Sigma} &= \frac{Z_{\text{res}}}{Q^2} \qquad R_{\text{smax}} = \frac{tg\delta}{\omega C} \qquad R_L = R_{\text{smax}} - R \end{split}$$

Таблица 1: Измерения характеристик контура при разных ёмкостях

Cn , н Φ	f , к Γ ц	U, B	E, B	L , мк Γ н	ρ , Om	$Z_{\rm res},{ m Om}$	Q	R_{Σ} ,OM	$R_{ m max}$,Ом	R_L , Om
25.1	32	2	0.4	985.522	198.151	5040	25.435	7.790	0.198	4.092
33.2	27.8	1.6	0.4	987.216	172.439	4032	23.382	7.374	0.172	3.702
47.3	23.2	1.3	0.4	994.954	145.034	3276	22.587	6.420	0.145	2.775
57.4	21.1	1.1	0.4	991.204	131.409	2772	21.094	6.229	0.131	2.598
67.5	19.4	0.81	0.4	997.086	121.538	2041.2	16.794	7.236	0.121	3.615
82.7	17.6	0.63	0.4	988.802	109.345	1587.6	14.519	7.531	0.109	3.921
101.6	16	0.65	0.4	973.882	97.905	1638	16.730	5.851	0.097	2.254
Среднее значение 988.3				988.381						3.279
Среднеквадратичное отклонение 0.443									0.0422	

2. Снимем амплитудно-частотную характеристику контура при ёмкостях C_2 и C_4 . Для этого будем снимать зависимость напряжения в контуре от частоты колебаний. Результаты измерений занесём в табл. 2, резонансные кривые U(f) представим на рис. 2

Таблица 2: Зависимость частоты колебаний от напряжения

C	2	C_4			
f ,к Γ ц	U,B	f ,к Γ ц	U,B		
18	0.039	15	0.03		
19	0.04	16	0.04		
20	0.05	17	0.05		
21	0.06	18	0.07		
22	0.07	19	0.11		
23	0.09	19.3	0.12		
24	0.11	19.6	0.15		
25	0.16	20	0.2		
26	0.24	20.1	0.21		
26.3	0.28	20.2	0.22		
26.7	0.37	20.3	0.24		
27.1	0.512	20.4	0.27		
27.2	0.576	20.5	0.29		
27.3	0.649	20.6	0.33		
27.4	0.68	20.7	0.38		
27.4	0.73	20.8	0.4		
27.6	0.91	20.9	0.46		
27.7	0.87	21	0.52		
27.9	0.89	21.2	0.56		
28	0.85	21.3	0.57		
28.1	0.79	21.4	0.53		
28.2	0.74	21.5	0.52		
28.3	0.69	21.6	0.49		
28.4	0.62	21.7	0.4		
28.5	0.56	21.8	0.38		
28.7	0.45	22	0.3		
28.9	0.41	22.3	0.24		
29	0.36	22.6	0.2		
30.1	0.21	23	0.15		
31	0.15	24	0.1		
32	0.12	25	0.08		
33	0.1	26	0.06		
34	0.08	28	0.04		
35	0.07	30	0.03		
36	0.06	32	0.03		

Проведём сравнительный анализ АЧХ для двух ёмкостей в контуре. $C_4 > C_2$, формула для добротности $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$. При повышении ёмкости падает добротность контура.

3. Построим графики АЧХ в координатах $U/U_0(f/f_0)$. По этим графикам (ширина резонансной кривой на уровне $\frac{1}{\sqrt{2}}$) определим добротность контуров.

$$Q_2 = 25.44$$
 $Q_4 = 23.92$

Значения, определённые в пункте 1:

$$Q_2 = 23.38$$
 $Q_4 = 21.09$

Полученные значение заметно, но не сильно, отличаются.

Рис. 3: АЧХ контуров с С2 и С4 в относительных координатах

4. Построим ФЧХ для контура с C_2 в координатах $x = f/f_0$ $y = \varphi/\pi$ (рис. 4). По графику определим добротность контура следующим методом: расстояние между точками по оси x, в которых y меняется от $-\pi/4$ до $\pi/4$, равно 1/Q.

$$Q = \frac{1}{1.019 - 0.986} \approx 30.3$$

Рис. 4: ФЧХ контура C_2

5. Построим векторную диаграмму для токов и напряжений в последнем контуре (с7). Определим значения токов на конденсаторе и на катушке, а также напряжение в контуре по формулам

$$I_0 = \frac{E}{R_1} = 0.0004A \ I_c = I_L = QI_0 = \frac{QE}{R_1} = 0.007A$$
 $U = Q\rho I_0 = \frac{Q\rho E}{R_1} = 0.650B$

Также определим сдвиги по фазе их от основного тока I_0 :

$$\varphi_c = \frac{\pi}{4} - \frac{R + R_L}{\rho} = 41^\circ$$
 $\qquad \qquad \varphi_L = -\frac{\pi}{2} + \delta = -90^\circ$ $\qquad \qquad \varphi_U = \frac{R + R_L}{\rho} + \delta = 4^\circ$

Рис. 5: Векторная диаграмма токов и напряжения для контура с добротностью Q=17.414

5 Вывод

В ходе работы мы ознакомились с явлением резонанса токов, изучили метод комплексных амплитуд, изучили амплитудночастотные и фазово-частотную характеристику колебательного контура, составленного из элементов, используемых в современной радиотехнике. В ходе эксперимента была с большой точностью разными методами определена добротность колебательного контура при разных значениях ёмкости конденсатора в цепи, а также рассчитаны некоторые другие характеристики контура. Результаты определения добротности непосредственными измерениями параметров контура, методом резонансных кривых и по исследованию ФЧХ совпадают.

Также было исследовано само поведение токов и напряжений в контуре. Выяснено, какой вклад вносят в цепь сопротивление конденсатора (очень незначительный) и катушки (порядка сопротивления резистора в цепи). Численно получено значение индуктивности катушки и её сопротивления. Сделан вывод, что при точном расчёте цепей обязательно нужно учитывать сопротивление катушки. Была также построена векторная диаграмма токов и напряжений в исследуемом контуре, изучена природа явления резонанса токов.