Human capital panel data analysis

Code ▼

Hide

```
library(readxl)
pwt100 <- read_excel("C:/Users/Stoycho/Downloads/pwt100.xlsx",
     sheet = "Data")
pwt100<-pwt100[,-c(1,3)]
head(pwt100)</pre>
```

country <chr></chr>	year <dbl></dbl>	rgdpe <dbl></dbl>	rgdpo <dbl></dbl>	pop <dbl></dbl>	emp <dbl></dbl>	avh <dbl></dbl>	hc <dbl></dbl>	ccon <dbl></dbl>	cda <dbl></dbl>
Aruba	1950	NA	NA	NA	NA	NA	NA	NA	NA
Aruba	1951	NA	NA	NA	NA	NA	NA	NA	NA
Aruba	1952	NA	NA	NA	NA	NA	NA	NA	NA
Aruba	1953	NA	NA	NA	NA	NA	NA	NA	NA
Aruba	1954	NA	NA	NA	NA	NA	NA	NA	NA
Aruba	1955	NA	NA	NA	NA	NA	NA	NA	NA
6 rows 1-10 of 50 columns									

6 rows | 1-10 of 50 columns

Hide

```
library(plm)
df<-pwt100
df<-plm.data(df, index=c("country", "year"))</pre>
```

Warning: use of 'plm.data' is discouraged, better use 'pdata.frame' instead

```
model1<-lm(rgdpo~pop+hc+ctfp+rnna, data=df)
stargazer::stargazer(model1, type="text")</pre>
```

```
_____
                 Dependent variable:
                      rgdpo
                   1,150.465***
pop
                     (38.670)
                   -51,617.210***
hc
                    (6,996.340)
                   106,608.200***
ctfp
                    (17,040.690)
                     0.227***
rnna
                     (0.001)
Constant
                   -42,718.060**
                    (19,037.980)
-----
Observations
                      6,412
R2
                      0.941
Adjusted R2
                      0.941
Residual Std. Error 369,447.400 (df = 6407)
F Statistic 25,710.380*** (df = 4; 6407)
_____
              *p<0.1; **p<0.05; ***p<0.01
```

```
df2 <- df[df$year == 2014, ]
model2<-lm(rgdpo~hc+pop+rnna, data=df2)
stargazer::stargazer(model2, type="text")</pre>
```

```
_____
                  Dependent variable:
                        rgdpo
hc
                     -95,710.690*
                     (53,409.810)
                     839.608***
pop
                      (319.076)
                      0.246***
rnna
                       (0.006)
                     173,349.400
Constant
                     (140,566.100)
Observations
                        144
R2
                        0.969
Adjusted R2
                        0.968
Residual Std. Error 404,680.300 (df = 140)
F Statistic 1,445.395*** (df = 3; 140)
_____
               *p<0.1; **p<0.05; ***p<0.01
Note:
```

```
library(ggplot2 )
model3<-lm(rgdpo ~ pop, data = df2)
plot(rgdpo ~ pop, data = df2)
abline(model3)</pre>
```


boxplot(df2\$rgdpo)

boxplot(df2\$pop)

Hide

Hide

No. of variables tried at each split: 1

Mean of squared residuals: 982202421661 % Var explained: 80.71

plot(RF)

Hide

importance(RF)

IncNodePurity
pop 3.167396e+14
rnna 4.124764e+14

Hide

 $model_qr \leftarrow quantreg::rq(GDP \sim pop + rnna, data = df3, tau = 0.25)$ $summary(model_qr)$

Call: quantreg::rq(formula = GDP ~ pop + rnna, tau = 0.25, data = df3)

tau: [1] 0.25

Coefficients:

coefficients lower bd upper bd
(Intercept) -11777.21594 -16154.42690 -7612.50206
pop 1695.91514 572.49549 3267.29625
rnna 0.18295 0.13149 0.19505

```
rho <- sum(abs(residuals(model_qr)))
model_qr_null <- quantreg::rq(GDP ~ 1, data = df3, tau = 0.5)

Warning in rq.fit.br(x, y, tau = tau, ...) : Solution may be nonunique

Hide

rho_null <- sum(abs(residuals(model_qr_null)))
pseudo_r2 <- 1 - (rho / rho_null)
pseudo_r2

[1] 0.7711102

Hide

plot(df3$GDP, fitted(model_qr), main = "Fitted vs Actual (Quantile Regression)", xlab = "Actual GDP", ylab = "Fitt ed GDP")
abline(0, 1, col = "red")</pre>
```

Fitted vs Actual (Quantile Regression)


```
Hide

car::qqPlot(model_qr$residuals)

176 39
138 26
```


Residuals vs Fitted

Bootstrapping to get more robust standard errors
boot_qr <- summary(model_qr, se="boot", R=1000) # 1000 bootstrap replicates
boot_qr</pre>

```
Call: quantreg::rq(formula = GDP ~ pop + rnna, tau = 0.25, data = df3)
tau: [1] 0.25
Coefficients:
            Value
                         Std. Error
                                                    Pr(>|t|)
                                      t value
(Intercept) -11777.21594 11070.07811
                                           -1.06388
                                                         0.28920
              1695.91514
                            790.36519
                                           2.14574
                                                         0.03361
pop
rnna
                 0.18295
                              0.01689
                                          10.83110
                                                         0.00000
```

boot_qr2 <- summary(model2, se="boot", R=1000) # 1000 bootstrap replicates
boot_qr2</pre>

Hide

```
Call:
lm(formula = rgdpo ~ hc + pop + rnna, data = df2)
Residuals:
    Min
              1Q Median
                               3Q
                                       Max
-2287441
         -25473
                   50921 121985 2383972
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.733e+05 1.406e+05 1.233 0.21956
           -9.571e+04 5.341e+04 -1.792 0.07529.
            8.396e+02 3.191e+02 2.631 0.00946 **
pop
            2.460e-01 6.119e-03 40.208 < 2e-16 ***
rnna
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
Residual standard error: 404700 on 140 degrees of freedom
  (39 observations deleted due to missingness)
Multiple R-squared: 0.9687,
                            Adjusted R-squared: 0.9681
F-statistic: 1445 on 3 and 140 DF, p-value: < 2.2e-16
```

```
stargazer::stargazer(model2, model_qr,type="text")
```

% Error: Unrecognized object type.

```
library(plm)
library(ggplot2)
library(dplyr)
panel_data <- plm.data(pwt100, index = c("country"))</pre>
panel_data <- data.frame(</pre>
 year = panel_data$year,
 GDP = panel_data$rgdpe,
 HC = panel_data$hc,
  country = panel_data$country
)
panel_data <- na.omit(panel_data)</pre>
set.seed(123)
selected_countries <- sample(unique(panel_data$country), 10)</pre>
panel_data <- panel_data %>%
  filter(country %in% selected_countries)
panel_data$year <- as.numeric(panel_data$year)</pre>
panel_data$GDP <- as.numeric(panel_data$GDP)</pre>
panel_data$HC <- as.numeric(panel_data$HC)</pre>
gdp_max <- max(panel_data$GDP, na.rm = TRUE)</pre>
hc_max <- max(panel_data$HC, na.rm = TRUE)</pre>
transformation_factor <- hc_min / hc_max</pre>
plot <- ggplot(data = panel_data) +</pre>
  geom_point(aes(x = year, y = GDP / 1000), color = "blue", size = 2) +
  geom\_line(aes(x = year, y = GDP / 1000), color = "blue", size = 1) +
  facet_wrap(~country, scales = "free_y") +
  scale_y_continuous(
    name = "Real GDP (in billions of 2017 US$)",
    sec.axis = sec_axis(~ . / transformation_factor, name = "Health Care Spending")
  labs(title = "Output-side Real GDP and Health Care Over Time",
       x = "Year") +
  theme_minimal()
print(plot)
```

Output-side Real GDP and Health Care Over Time

library(plm) library(ggplot2) library(dplyr) set.seed(123) selected_countries <- sample(unique(panel_data\$country), 10)</pre> panel_data <- panel_data %>% filter(country %in% selected_countries) panel_data <- plm.data(panel_data, indexes = c("country"))</pre> panel_data\$year <- as.numeric(panel_data\$year)</pre> panel_data\$hc <- as.numeric(panel_data\$hc)</pre> plot <- ggplot(data = panel_data, aes(x = year, y = hc)) +</pre> geom_point(color = "red", size = 2) + geom_line(color = "red", size = 1) + facet_wrap(~country) labs(title = "Health Care Spending Over Time", x = "Year",y = "Health Care Spending (in relevant units)") + theme_minimal()

NULL

Hide

print(plot)

