Shimura Varieties

Ikhan Choi Lectured by University of Tokyo, Spring 2024 October 2, 2024

1 Day 1: April 11

1.1 Modular curves

[DS05] Let \mathcal{H} be the upper half plane. For $N \geq 1$, let $\Gamma(N) := \ker(\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/n\mathbb{Z}))$ and $Y(N) := \Gamma(N) \setminus \mathcal{H}$ be the left quotient. Then, Y(N) has a Riemann surface structure, and is called the *modular curve* of level $\Gamma(N)$.

Remark. If $N \ge 2$, then the projection $\mathcal{H} \to Y(N)$ is a local homeomorphism, so that Y(N) is a Riemann surface.

Definition. For an elliptic curve E over \mathbb{C} , a level $\Gamma(N)$ -structure is a pair (P,Q) of generators of E[N] satisfying $e_N(P,Q)=e^{\frac{2\pi i}{N}}$, where $e_N:E[N]\times E[N]\to \mu_N$ is the Weil pairing. We denote by $\mathrm{Ell}(\Gamma(N))$ the set of isomorphism classes of elliptic curves over \mathbb{C} with level $\Gamma(N)$ -structure.

For
$$\tau \in \mathcal{H}$$
, let $E_{\tau} := \mathbb{C}/\tau \mathbb{Z} \oplus \mathbb{Z}$.

Proposition. $\tau \mapsto (E_{\tau}, ([N^{-1}], [-\tau N^{-1}]))$ is bijective and induces $Y(N) \to \text{Ell}(\Gamma(N))$.

Remark.
$$(E_{\tau},([N^{-1}],[-\tau N^{-1}])) \cong (E_{-\tau^{-1}},([-\tau^{-1}N],[N^{-1}])).$$

Remark. If $N \ge 3$, then Y(N) can be regarded as the moduli space of elliptic curves with $\Gamma(N)$ -level structure.

Let $\mathcal{H}^{\pm} := \mathbb{C} \setminus \mathbb{R}$. Then, $GL_2(\mathbb{R})$ acts on \mathcal{H}^{\pm} . Let $\mathbb{A}^{\infty} := \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$ be the finite adele ring. For a compact open subgroup $K \subset GL_2(\mathbb{A}^{\infty})$, define the double coset space

$$\operatorname{Sh}_K := \operatorname{GL}_2(\mathbb{Q}) \setminus \mathcal{H}^{\pm} \times \operatorname{GL}_2(\mathbb{A}^{\infty})/K.$$

For $N \ge 3$, let $K(N) := \ker(\operatorname{GL}_2(\widehat{\mathbb{Z}}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}))$.

Proposition. We have a bijection

$$\coprod_{a\in (\mathbb{Z}/N\mathbb{Z})^\times} \Gamma(N)\setminus \mathcal{H} \to \operatorname{Sh}_{K(N)}: [\tau]_a \mapsto [(\tau, \begin{pmatrix} \hat{a} & 0 \\ 0 & 1 \end{pmatrix})],$$

where $\hat{a} \in \hat{\mathbb{Z}}$ is the lift of a.

Remark. To give a moduli interpretation on $Sh_{K(N)}$, we can remove the condition $e_N(P,Q) = e^{2\pi i/N}$ in the definition of level structures. More generally, Sh_K has a natural scheme structure over \mathbb{C} , called the *Shimura variety of level K for* $(GL_2, \mathcal{H}^{\pm})$.

Let Ell_K be the set of isogeny classes of $(E, \eta K)$, where E is a complex elliptic curve and

$$\eta: (\mathbb{A}^{\infty})^2 \xrightarrow{\sim} V^{\infty}(E) := (\lim_n E[n]) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

 $\operatorname{Fix}[(E, \eta K)] \in \operatorname{Ell}_K$.

Take $\psi: H_1(E,\mathbb{Q}) \xrightarrow{\sim} \mathbb{Q}^2$. Then, by the Hodge decomposition $H^1(E,\mathbb{C}) \cong H^1(E,\mathcal{O}_E) \oplus H^0(E,\Omega_E)$, we can define a unique $\tau_{\psi} \in \mathcal{H}^{\pm}$ such that $\ker \rho_{\psi} = \mathbb{C}(\tau_{\psi},1)$, where

$$\rho_{\psi}:\mathbb{C}^2\to H_1(E,\mathbb{Q})\otimes_{\mathbb{Q}}\mathbb{C}\cong H_1(E,\mathbb{C})\cong H^1(E,\mathbb{C})^*\cong H^1(E,\mathcal{O}_E)^*\oplus H^0(E,\Omega_E)^*\twoheadrightarrow H^0(E,\Omega_E)^*.$$

Define $g_{\eta,\psi} \in GL_2(\mathbb{A}^{\infty})$ by

$$(\mathbb{A}^{\infty})^{2} \xrightarrow{\eta} V^{\infty}(E) \cong (\lim_{n} E[n]) \otimes_{\mathbb{Z}} \mathbb{Q} \cong (\lim_{n} H_{1}(E, \mathbb{Z}/n\mathbb{Z})) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{H}_{1}(E, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{A}^{\infty} \xrightarrow{\psi \otimes 1} (\mathbb{A}^{\infty})^{2}.$$

Now, it is known that we have a bijection

$$\Phi: \mathrm{Ell}_K \to \mathrm{Sh}_K: [(E, \eta K)] \mapsto [(\tau_{\psi}, g_{n,\psi})].$$

Then, $\mathcal{H}^{\pm} \times GL_2(\mathbb{A}^{\infty})/K$ can be seen as the set of all isogeny classes of $(E, \eta K, \psi)$, and we have the following diagram:

$$Sh_K \longleftarrow \mathcal{H}_{\pm} \times GL_2(\mathbb{A}^{\infty})/K \longrightarrow \mathcal{H}^{\pm}$$

$$[(E, \eta K)] \longleftrightarrow [(E, \eta K, \psi)] \longmapsto \tau_{\psi}$$

1.2 \mathcal{H}^{\pm} for the theory of Shimura varieties

Let $\mathbb S$ be the *Deligne torus*, defined as the Weil restriction $\operatorname{Res}_{\mathbb C/\mathbb R}\mathbb G_m$. This is a group scheme over $\mathbb R$ characterized such that for $\mathbb R$ -algebra R, we have $\mathbb S(R)=\mathbb G_m(\mathbb C\otimes_\mathbb R R)\cong (\mathbb C\otimes_\mathbb R R)^\times$. For a real vector space V, the homomorphism $h:\mathbb S\to\operatorname{GL}(V)$ corresponds to the Hodge structure on V such that $h(z_1,z_2)v=z_1^{-p}z_2^{-q}v$ if $v\in V^{p,q}$.

Let $h: \mathbb{S} \to \mathrm{GL}_{2,\mathbb{R}}: a+bi \mapsto (\frac{a-b}{b-a})$. If we let X be a $\mathrm{GL}_2(\mathbb{R})$ -conjugacy class of h, then $X \to \mathcal{H}^{\pm}:$ ad $(g)h \mapsto gi$ is bijective. Since $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C}^2: a \otimes b \mapsto (ab, a\overline{b})$, we have $\mathbb{S}_{\mathbb{C}} \cong \mathbb{G}_{m,\mathbb{C}} \times \mathbb{G}_{m,\mathbb{C}}$, and we can define

$$\mu_h: \mathbb{G}_{m,\mathbb{C}} \xrightarrow{z \mapsto (z,1)} \mathbb{G}^2_{m,\mathbb{C}} \cong \mathbb{S}_{\mathbb{C}} \xrightarrow{h \otimes \mathbb{C}} \mathrm{GL}_{2,\mathbb{C}}.$$

Let M_X be the $GL_2(\mathbb{C})$ -conjugacy classes of μ_h , and consider $X \to M_X$: $\mathrm{ad}(g)h \mapsto \mathrm{ad}(g)\mu_h$. For $\mu \in M_X$, by associate a one-dimensional subspace of \mathbb{C}^2 such that $\mu(z)$ acts as the scaling by z, we have $M_X \to \mathbb{P}^1(\mathbb{C})$. Therefore, we can put a complex structure on X by $X \to \mathbb{P}^1(\mathbb{C})$, which is compatible with the one of \mathcal{H}^{\pm} .

For $\sigma \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$ and $\mu \in M_X$, we determine $\sigma(\mu)$ such that

$$\mathbb{G}_{m,\mathbb{C}} \otimes_{\mathbb{C},\sigma} \mathbb{C} \xrightarrow{\mu_{\otimes_{\mathbb{C},\sigma}^{\mathbb{C}}}} \mathrm{GL}_{2,\mathbb{C}} \otimes_{\mathbb{C},\sigma} \mathbb{C}$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\mathbb{G}_{m,\mathbb{C}} \xrightarrow{\sigma(\mu)} \mathrm{GL}_{2,\mathbb{C}}$$

commutes. Let $\sigma(M_X)$ be the $\mathrm{GL}_2(\mathbb{C})$ -conjugacy class of $\sigma(\mu)$. The fixed field determined by $\{\sigma\in\mathrm{Aut}(\mathbb{C}/\mathbb{Q}):\sigma(M_X)=M_X\}$ is called the *relfex field* of M_X . In the case we have seen, the reflex field of M_X is \mathbb{Q} , which means that we have a standard model of Sh_K on \mathbb{Q} .

Matome:

