Homa: A Receiver-Driven Low-Latency Transport for Datacenters

Behnam Montazeri with John Ousterhout, Yilong Li, Mohammad Alizadeh* Stanford University, MIT*

Granular Computing Platform

Replace TCP in the Datacenter?

TCP bad for datacenters: poor latency at high load

- Congestion managed from sender
- Uses buffer exhaustion to detect congestion
- At high load, short messages get buffered behind long messages

Homa: new approach to datacenter transport

- Manage congestion from the receiver
 - Reduce buffer occupancy
- Use network priority levels for preemption, high bandwidth utilization

Homa: New Transport Protocol

- Low-latency for short messages at high network loads
 - 99%tile tail latency, at 80% network load, is within factor of 2.2 of minimum possible latency
- High network bandwidth utilization
 - More than 90% network bandwidth utilization over various workloads

Outline

- Receiver-side scheduling
- Unscheduled packets to avoid latency overhead
- Preemption using receiver grants
- Priorities for preemption
- Scheduled priorities for bipartite matching
- Evaluation

Congestion: at the Edge

Scheduled Packets

Homa receivers schedule incoming packets: one grant per data packet

Scheduled Packets

Homa receivers schedule incoming packets: one grant per data packet

Scheduled Packets

- Homa receivers schedule incoming packets: one grant per data packet
- Problem: 1 RTT additional latency for scheduling

Unscheduled Packets

- Homa receivers schedule incoming packets: one grant per data packet
- Problem: 1 RTT additional latency for scheduling
- Solution: 1 RTT of unscheduled packets
- Optimal latency when unloaded

Use Grants for Preemption

- Homa is a message based protocol
- If competing senders, grant only to shortest message
- Policy: Shortest Remaining Processing Time (SRPT)
- Sender includes message size in packets

Preemption Lag

- One RTT of data from long message already committed when shorter message arrives
- Full preemption is delayed by 1 RTT

Priorities for Preemption

Most network switches support 8+ priority levels:

- Each packet header indicates priority level
- Switch transmits highest-priority packet for each link

Priorities for scheduled packets:

- Receiver selects priority, indicates in grant
- When shorter message arrives, use next higher priority level

Priorities for unscheduled packets:

- Receiver determines cutoff points based on traffic (equal bytes per level)
- Receiver piggybacks cutoffs on existing packets
- Sender uses most recent cutoffs for new messages

Priorities For Preemption

Priorities for scheduled packets:

- Receiver selects priority, indicates in grant
- Higher priority for short message of Sender 2

Priorities For Preemption

- Priorities for unsched. packets:
 - Shorter messages get higher unsched priority
 - Unsched. packets priorities are statistically assigned by the receiver
- Priority cutoffs: To receive equal unsched. bytes on priority levels

- S1 uses SRPT to prioritize outgoing messages
 - Doesn't respond immediately to grant for m1
- Result: wasted bandwidth at R1
- Goals: prioritize shorter messages, keep links busy

- Receiver sends grants to multiple incoming messages simultaneously
 - Different priority level for each message
 - Shortest message gets highest priority
- If both senders respond, lower priority packets get queued
- If highest priority sender doesn't respond, lower priority packets are delivered

- Receiver sends grants to multiple incoming messages simultaneously
 - Different priority level for each message
 - Shortest message gets highest priority
- If both senders respond, lower priority packets get queued
- If highest priority sender doesn't respond, lower priority packets are delivered

- Receiver sends grants to multiple incoming messages simultaneously
 - Different priority level for each message
 - Shortest message gets highest priority
- If both senders respond, lower priority packets get queued
- If highest priority sender doesn't respond, lower priority packets are delivered

- Receiver sends grants to multiple incoming messages simultaneously
 - Different priority level for each message
 - Shortest message gets highest priority
- If both senders respond, lower priority packets get queued
- If highest priority sender doesn't respond, lower priority packets are delivered

- Receiver sends grants to multiple incoming messages simultaneously
 - Different priority level for each message
 - Shortest message gets highest priority
- If both senders respond, lower priority packets get queued
- If highest priority sender doesn't respond, lower priority packets are delivered

- Receiver sends grants to multiple incoming messages simultaneously
 - Different priority level for each message
 - Shortest message gets highest priority
- If both senders respond, lower priority packets get queued
- If highest priority sender doesn't respond, lower priority packets are delivered

Evaluation Setup

- Workloads from heavy-tailed to heavy-headed
 - W1 and W4 from Facebook datacenters, W2 and W3 from Google datacenters
- Topology similar to what's been used in the prior works

Simulated Performance

99%-ile slowdown < 2.5x at 80% network load

Varying Scheduled Priorities

- Wasted bandwidth: receiver has incoming messages, but its link is idle
- Bandwidth wastes if receiver sends grants but sender doesn't transmit immediately
- Receiver wastes less bandwidth if more priorities are available

Priority Utilization

- Equal bytes per unscheduled priority level
- At low loads, sched priorities mainly used for preemption
- At high loads, sched priorities are used for achieving high bandwidth utilization

Wrap up

Homa:

- Low latency and high throughput
- Supports high network loads
- Minimizes buffer usage
- Next step: try to really replace TCP
- One possibility:
 - Linux kernel implementation
 - Support sockets interface (guess message sizes)
 - Automatic switchover (Homa for local, TCP for long-distance)
- Your good idea goes here

Questions/Discussion

Preemption Lag

- One RTT of data from long message already committed when shorter message arrives
- Full preemption is delayed by 1 RTT

Unscheduled Priorities

- Receiver measures message size distribution
- Shorter messages get higher unsched priority
- Unsched. packets priorities are statistically assigned by the receiver
- Priority cutoffs: To receive equal unsched. bytes on priority levels

Slowdown vs. Message-Size

- Slowdown: Message completion time divided by min completion time in an unloaded network
- X axis scaled by message cumulative message size distribution
 - Vertical grid lines at 10% steps of size distribution

Varying Scheduled Priorities

- We only need 4 priority to achieve perfect preemption
- The remaining 3 priorities are mainly used for increasing bw utilization

Bandwidth Utilization

- Much higher bandwidth utilization for Homa
- Total = application + overhead header bytes + retransmissions

Varying Unscheduled Bytes

- To avoid one RTT latency overhead, it is optimal to send at least RTTbytes unscheduled bytes
- Sending more than RTTbytes is not necessary

Unscheduled Priority Cut-Off

- Total of 2 unsched.
 Priorities
- Increase cutoff, reduce latency of larger messages but increases latency of short messages
- Homa chooses 1930 bytes for cutoff value

Varying Unscheduled Priorities

- Total of 8 priorities available
- 95% of total traffic is transmitted in unsched.
 bytes in workload W2
- Homa chooses 7 priorities for unscheduled packets for this workload which minimizes latency over the message size spectrum

Priority Utilization

- Equal bytes per unscheduled priority level
- At low loads, sched priorities mainly used for preemption
- At high loads, sched priorities are all used for achieving high bw utilization

Workload W3 Network Load: 50% 80% 90% Network Load: 50% 80% 90% P0 P1 P2 P3 P4 P5 P6 P7

Sched. priorities Unsched. priorities