Calculus 1 - Notes

Dom Hutchinson

February 21, 2018

Contents

1	Before Calculus			
	1.1	Fundamental Theorem of Calculus	2	
	1.2	Intervals	2	
2	Limits			
	2.1	Limits	3	
	2.2	Exponential Function	4	
3	$Th\epsilon$	The Derivative		
	3.1	Techniques for finding derivative	١	
	3.2	Implicit Differentiation	١	

Before Calculus 1

Fundamental Theorem of Calculus

Definition 1.01 - Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus states

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Definition 1.02 - Common Sets of Numbers

Natural Numbers, set of positive integers - $\mathbb{N} := \{1, 2, 3, ...\}$.

Whole Numbers, set of all integers - $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$.

Rational Numbers, set of fractions - $\mathbb{Q} := \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}$.

Real Numbers, set of all rational & irrational numbers - R.

1.2 Intervals

Definition 1.03 - *Intervals*

Sets of real numbers that fulfil in given ranges.

Notation

$$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$$

$$(a, b] := \{ x \in \mathbb{R} : a < x \le b \}$$

$$[a, b) := \{ x \in \mathbb{R} : a \le x < b \}$$

$$(a,b) := \{x \in \mathbb{R} : a < x < b\}$$

Example

In what interval does x lie such that:

$$|3x+4| < |2x-1|$$

Solution

Case 1:
$$x \ge \frac{1}{2}$$

=> 1 - 2x < 3x + 4 < 2x - 1
=> 1 - 2x < 3x + 4
=> $x > \frac{-3}{5}$

And,
$$=> 3x + 4 < 2x - 1$$

 $=> x < -5$

There are no real solutions in this range.

Case 2:
$$x < \frac{1}{2}$$

=> $2x - 1 < 3x + 4 < 1 - 2x$
=> $2x - 1 < 3x + 4$
=> $-5 < x$

And,
$$\Rightarrow 3x + 4 < 1 - 2x$$

 $\Rightarrow 5x < -3$
 $\Rightarrow x < \frac{-3}{5}$

$$=>-5 < x < \frac{-3}{5}, \ x \in \left(-5, \frac{-3}{5}\right)$$

Definition 1.04 - Functions

Functions map values between fields of numbers. The signature of a function is defined by

$$f:A\to B$$

Where f is the name of the function, A is the domain and B is the co-domain.

The *Domain* of a function is the set of numbers it can take as an input.

The Co-Domain is the set of numbers that the domain is mapped to.

N.B. - A function is valid iff it maps each value in the domain to a single value in the co-domain.

Definition 1.05 - Maximal Domain

The Maximal Domain of a function is the largest set of values which can serve as the domain of a function.

Remark 1.06 - Types of Function

Let $f: A \to B$

Polynomials

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

Rational

$$f(x) = \frac{p(x)}{q(x)}, \quad q(x) \neq 0 \ \forall \ x \in A$$

Trigonometric

$$sin(x), cos(x), tan(x)$$
 etc.

2 Limits

2.1 Limits

Definition 2.01 - Limits

A limit is the value a function tends to, for a given x.

i.e. The value f(x) has at it gets very close to x.

Formally We say L is the limit of f(x) as x tends to x_0 if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ st if } x \in A \text{ and } |x - x_0| < \delta => |f(x) - L| < \varepsilon$$

Notation

$$\lim_{x \to x_0} f(x) = L$$

Definition 2.02 - Directional Limits

Sometimes the value of a limit depends on which direction you approach it from.

 $\lim_{x\to x_0+}$ is used when approaching from values greater than x_0 .

 $\lim_{x\to x_0-}$ is used when approaching from values less than x_0 .

Theorem 2.03 - Operations with limits

Let $\lim_{x\to x_0} f(x) = L_f$ and $\lim_{x\to x_0} g(x) = L_g$ Then

$$\lim_{x \to x_0} [f(x) + g(x)] = L_f + L_g$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = L_f \cdot L_g$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L_f}{L_g} \quad L_g \neq 0$$

2.2 Exponential Function

Definition 2.04 - Exponential Function

$$e := \lim_{x \to \infty} \left(1 + \frac{1}{n} \right)^n \simeq 2.7182818...$$

Theorem 2.05 - Binomial Expansion

A techique for expanding binomial expressions

$$\left(1 + \frac{x}{n}\right)^n = \sum_{i=0}^n \binom{i}{n} \cdot 1^{(n-i)} \cdot \left(\frac{x}{n}\right)^i$$
$$= 1 + x + \frac{n-1}{2n} \cdot x^2 + \dots + \frac{x^n}{n^n}$$

3 The Derivative

Definition 3.01 - Differentiable Equations

Let $f: A \to B$ and $x_0 \in A$.

f is differentiable at x_0 if $\exists L \in B$ such that

$$L = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

If this limit exists $\forall x \in A$ then we can define the derivative of f(x)

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Definition 3.02 - Notation for Differentiation

There are two ways to denote the derivative of an equation

$$f'(x) \iff \frac{df}{dx}, f''(x) \iff \frac{d^2f}{dx^2}, ..., f^{(n)}(x) \iff \frac{d^nf}{dx^n}$$

N.B. - Using $\frac{df}{dx}$ is more informative, especially for equations with multiple variables.

3.1 Techniques for finding derivative

Theorem 3.03 - Sum Rule

Let f, g be differentiable with respect to x.

$$(f+q)' = f' + q'$$

Theorem 3.04 - Product Rule

Let f, g be differentiable with respect to x.

$$(fg)' = f'g + fg'$$

Theorem 3.05 - Quotient Rule

Let f, g be differentiable with respect to x.

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Definition 3.06 - Composite Functions

Let $f: B \to C$ and $g: A \to B$ Then

$$(f \circ g)(x) = f(g(x))$$

Theorem 3.07 - Chain Rule

Let f, g be differentiable with respect to x.

$$\frac{d}{dx}f(g(x)) = f'(g(x)).g'(x)$$

3.2 Implicit Differentiation

Definition 3.08 - Implicit Differentiation

Sometimes it is hard to isolate variables in multi-variable equations, in these cases differentiate both sides with respect to the same variable.

Remembering

$$\frac{d}{dx}(x) = 1$$
 and $\frac{d}{dx}(y) = \frac{dy}{dx} = y'$

Example

Find y if $x^3 + y^3 = 6xy$

$$\frac{d}{dx}(x^3 + y^3) = \frac{d}{dx}(6xy)$$
=>3x² + 3y².y' = 6y + 6x.y'
=>y'(3y² - 6x) = 6y - 3x²
=>y' = $\frac{2y - x^2}{y^2 - 2x}$