Modélisation stochastique - Séance 2

Quentin Baert

09/12/2015

1 Simulation avec sa propre implantation

1.1 Dégradation

Question 1

Voir Figure 1 à 4.

Question 2

Le temps t^* pour arriver à un nombre de A égal à #A(0)/2 vaut à peu près 7 et ce quelque soit le nombre initial de A. Il n'y a donc pas de relation entre t^* et le nombre initiale de molécules.

Question 3

On peut assimiler les molécules de H_20 aux molécules de A des expériences précédentes. On remarque que le temps d'exécution est exponentielle en fonction du nombre de A. La quantitée de H_2O étant énorme dans un litre d'eau (de l'ordre de 10^{25}), on peut en déduire que le temps de simulation serait exponentiellement grand.

Question 4

Voir Figure 5 et 6.

- Pour k = 0.001, on trouve $t^* = 0.01$ secondes
- Pour k = 0.002, on trouve $t^* = 0.005$ secondes

La réaction se produit deux fois plus rapidement pour k = 0.002 que pour k = 0.001. Le système atteint donc sa demie vie deux fois plus rapidement.

1.2 Réaction enzymatique

Question 5

- Pour #E(0) = 10, voir Figure 7
- Pour #E(0) = 1, voir Figure 8
- Pour #E(0) = 0, le système n'évolue pas. En effet l'espèce E est absente du système alors qu'elle est absolument nécéssaire à l'exécution de sa seule réaction.

On ne voit pas l'évolution de l'espèce E sur les deux courbes précédente car sa quantitée est à une trop petite echelle comparé aux nombre de S et de P. On sait cependant, d'après le système, que la quantitée de E reste stable au cours de l'exécution du système : $E(t) = E(0), \forall t \in [0, 10]$.

2 Simulation avec Copasi

2.1 Dégradation

Question 6

On remarque les temps d'exécutions suivants :

- pour #A(0) = 10:43 millisecondes
- pour $\#A(0) = 10^3$: 40 millisecondes
- pour $\#A(0) = 10^5$: 59 millisecondes
- pour $\#A(0) = 10^7$: 950 millisecondes
- pour $\#A(0) = 10^8 : 8.55$ secondes

L'implémentation réalisée est plus efficace que Copasi lorsque le système compte initialement peu de molécules (#A(0) = 10 et $\#A(0) = 10^3$).

Question 7

On retrouve bien un $t^* \simeq 7$ tel que $\#A(t^*) = \#A(0)/2$.

Question 8

Non, malgré les performances de **Copasi**, l'outil est incapable de faire une simulation avec un nombre de molécules initiales de l'ordre de 10^{25} .

Question 9

Les courbes sembles être les mêmes que celles obtenues à la Question 1.

On constate les temps d'exécutions suivants :

- pour #A(0) = 10 : 42 millisecondes
- pour $\#A(0) = 10^3$: 43 millisecondes
- pour $\#A(0) = 10^5$: 43 millisecondes
- pour $\#A(0) = 10^7 : 47$ millisecondes
- pour $\#A(0) = 10^8$: 50 millisecondes

On note que l'algorithme τ -Leap est bien plus efficace que l'algorithme stochastique directe.

Alors que l'algotihme stochastique directe met à jour systématiquement les paramètres du système (à chaque fois qu'une réaction se produit), l'algorithme τ -Leap met ne les met à jour que tous les τ intervalles de temps, ce qui lui permet d'être bien plus rapide.

Question 10

Contrairement à l'algorithme implémenté, on touve, pour $\#A(t^*) = \#A(0)/2$, les valeurs de t^* suivantes :

- si $k = 0.001, t^* = 0.005$
- si $k = 0.002, t^* = 0.0025$

On remarque que les valeurs de t^* sont différents. Cependant, le fait que t^* soit divisé par deux alors que k double est préservé.

Question 11

Le temps t^* de demie vie vaut :

- Pour k = 0.001, $t^* = 0.005$.
- Pour k = 0.002, $t^* = 0.0025$.

Figure 1: #A(0) = 10, 7 millisecondes d'exécution

Figure 2: $\#A(0)=10^3,$ 22 millisecondes d'exécution

Figure 3: $\#A(0)=10^5,\,436$ millisecondes d'exécution

Figure 4: $\#A(0) = 10^7$, 27 secondes d'exécution

Figure 5: $\#A(0) = 10^5$, k = 0.001

Figure 6: $\#A(0) = 10^5$, k = 0.002

Figure 7: #E(0) = 10

Figure 8: #E(0) = 1