Natural Language and Speech Processing

Lecture 12: Tips and Tricks

Tanel Alumäe

Contents

- Tips about data
- Tips about models
- Tips about training
- Debugging neural networks
- Other practical tips

Partly based on Andrej Karpathy's (Head of AI at Tesla) recent blog post http://karpathy.github.io/2019/04/25/recipe/ (must read)

Data

- Become one with data
 - Inspect your data carefully (spend many hours)
 - Understand the distribution and look at the patterns
 - Your brain is very good at it
 - Are there duplicates?
 - Are there corrupt examples?
 - Are the labels inbalanced?
 - Think how your brain solves this task
 - Can you solve this task on local context only?
 - Or do you need larger (global) context?

How much data?

- Very general rule: you can start thinking about training a DNN if you have at least 1000 training samples
- There is no data like more data
- Common situation:
 - Baseline accuracy with a simple model: accuracy 60%
 - Super-well tuned "transformer with multi-head attention": accuracy: 70%
 - Spend 1 week
 - Simple model with more data: 80%
 - Spend 2 days on data collection
- Spending time on data collection is a time well spent
 - Can always apply new models / training tricks when they are invented
 - Time spent on fine-tuning a fancy model might be wasted when suddenly a new model architecture is invented

Data augmentation

- "The next best thing to real data is half-fake data"
- Data augmentation: train artificial additional training data by corrupting the real data by some domain-specific way
- Often applied so that the amount of training data is increased 10 (or more) times
- Data augmentation can make a huge difference, especially if domain adaptation can be performed using augmentation

Data augmentation, continued

- For example:
 - Speech recognition model trained on clean data: accuracy on reverberant/noisy data 50%
 - Add noise and reverberate clean training data: accuracy 85%
- Data augmentation is more useful in domains where input data is "continuous"
 - Image processing
 - Speech processing
- Usually works better than trying to "fix" the test data (e.g., denoise)
- Almost never hurts accuracy

Data augmentation is speech recognition

Speed perturbation

- Add copies of training sentences, sped up or slown down by 10%
- Simulates faster/slower speaking, but also different vocal tract characteristics

Reverberation

Add room effects (using real or artificial impulse responses)

Noise augmentation

- Add background noise to (clean training data), e.g. street noise, engine, car, wind
- Add "foreground noises" (e.g., door slams, claps, clicks)
- Add music
- Add "babble noise" (many persons speaking in the background)
- All this with random signal-to-noise ratio, and many times

Spectral augmentation

- Proposed by Google recently
 (https://ai.googleblog.com/2019/04/s
 pecaugment-new-data-augmentation
 .html)
- Three types of modifications of the raw filterbank spectrogram, randomly chosen
 - Time warping
 - Masking blocks of consecutive filterbank features (horizontal)
 - Masking whole filterbank blocks in time (vertical)

	LibriSpeech 960h		Switchboard 300h	
	test-clean	test-other	Switchboard	CallHome
Previous SOTA	2.95	7.50	8.3	17.3
Our Results	2.5	5.8	6.8	14.1

Data augmentation with images

- Flipping
- Rotation
- Translation
- Scaling
- Adding noise
- ...

Data augmentation for NLP

- For text data, data augmentation is less useful
- One idea: replace words in training data with words that have similar embeddings
 - But usually better to just use pretrained word embeddings (or pretrained contextualized representations, like BERT)
- Alternative: use domain knowledge
 - E.g., replace company names in text with other company names from the business registry (if having a good coverage of company names is relevant to your task)

Data augmentation under-fits training data

- Data augmentation turns over-fitting problem into under-fitting problem
 - Loss when training augmented data is worse than when training on clean data
 - But loss (and error rate) on test data is better
- Thus, common methods that work against under-fitting help:
 - Using larger (wider and deeper) models
 - Training for more epochs

Mixup

 During training, mix two training samples and the corresponding labels

$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j$$
, where x_i, x_j are raw input vectors $\tilde{y} = \lambda y_i + (1 - \lambda)y_j$, where y_i, y_j are one-hot label encodings

The mixup factor is drawn randomly from a

beta distribution

- Kind of surprising that it helps
- Not really applicable to text data

Pretraining

- It rarely ever hurts to use a pretrained network if you can, even if you have enough data
- Pretraining was first popularized by the image recognition community
 - Pretrain a ConvNet on ImageNet
 - ImageNet: dataset of 1.2M images, 1000 categories
 - Models trained on ImageNet can be used to initialize models for completely other datasets and improve performance significantly
 - Works even if you have only a few examples per object

Image classification

Easiest classes

red fox (100) hen-of-the-woods (100) ibex (100) goldfinch (100) flat-coated retriever (100)

porcupine (100) stingray (100) Blenheim spaniel (100)

Hardest classes

muzzle (71)

hook (66)

spotlight (66)

ladle (65)

Pretraining for NLP

- Pretraining can have huge benefits on NLP tasks
 - Pretrained embeddings
 - Pretrained contextualized embeddings (e.g. BERT)
- Use pretrained model "found" from internet (many Estonian models available) or train your own

- Cross-lingual pretraining
- Main idea:
 - Train word embeddings for two languages (e.g., English and Italian)
 - Align English and Italian embeddings
 - Use English labeled data to train a text classification model
 - The model also works for Italian!
 - https://github.com/facebookresearch/MUSE

Pretraining for speech recognition

- Pretraining also works for speech recognition
- Example:
 - Train a model on a large universal corpus
 - Use a small corpus (e.g. 20 h) of in-domain data to finetune the model

- Alternative: (multilingual) bottleneck features
- Useful in a situation when you have very little data (e.g. 40h) from a particular language
- Idea:
 - Train a DNN acoustic model on other language(s)
 - The DNN has a narrow bottleneck layer before the output
 - Use the bottleneck as a feature extractor
 - Train a speech recognition model on the low-resource language on bottleneck features, instead of the usual filterbanks

Pretraining for speaker recognition

 Pretraining is crucial for speaker recognition (e.g., speaker identification and verification)

Idea:

- Use a large speaker database (speech-speaker pairs) to train a speaker identification model (convolutional model with global pooling)
- Use the model's pooling layer output as a feature extractor
- Now, use the feature extractor to get speaker embeddings (called x-vectors) for speakers you need to cover
- Only a few sentences per speaker is now enough

VoxCeleb

- But how to get the "large speaker database", needed for training the voice feature extractor?
- VoxCeleb:
 - Query YouTube, using e.g. "Elon Musk interview"
 - Use Face Recognition to identify frames where Elon Musk is in the frame
 - Use lip-syncing to check that lips and audio are in sync
 - Extract all such frames and use this as training data
 - Alternative: given several videos of Elon Musk, the segments where he is speaking can be found automatically (invented in our lab, based on a Master thesis)

What model to use in NLP?

- What model to use for NLP task (e.g. text classification, information extraction), given that you have reasonable amount of training data?
- For most NLP tasks, Transformer
 (multi-layer multi-head attention with position encodings) is currently the best choice
- For English, use BERT for getting contextualized word embeddings
- For Estonian, train your own BERT?

Debugging neural networks

- Neural net training fails silently
- Tricky to unit test
- Your net can still (shockingly) work pretty well even if your training data is corrupted somehow
 - o E.g., maybe you feed it columns instead of rows of data
 - It's because neural nets can memorize the data to some extent
- Most of the time when you screw something up, it will train but silently work a bit worse

Recipe for training neural nets

- Verify your data
- Start with simple models
 - No data augmentation, fancy learning rate schedules, etc
- Train an input-independent baseline, (e.g. easiest is to just set all your inputs to zero)
 - This should perform worse than when you actually plug in your data without zeroing it out.
 Does it?
- Overfit a single batch of only a few examples (e.g. as little as two).
 - Verify that we can reach the lowest achievable loss (e.g. zero)

Recipe, continued

- Don't be a hero
 - Start with a model that is known to give good results on similar tasks
 - You're allowed to do something more custom later and beat this
- One complexity at a time
 - At fanciness to your model one by one and make sure it improves the model
- Leave learning rate tuning to the end

Recipe, continued

- Regularize (avoid overfitting)
 - Try to get more data
 - Data augmentation, try to be creative
 - Pretraining rarely hurts
 - Unsupervised learning usually gives very little improvement, and is very complicated
 - Try with less features
 - Try smaller model size
 - Add dropout
 - Add L2 regularization (weight decay)
 - Early stopping
 - Try larger model, but stop early

Some tricks: learning rate schedule

- Learning rate schedule
 - E.g., step decay (0.1 at the beginning,
 0.0001 at the end)
 - Or: constant learning rate, but decrease it when the loss on dev data doesn't decrease any more (ReduceLROnPlateau in Pytorch)
 - More recent: triangular learning rates
 - Start at learning rate 0.001
 - Gradually increase it to 0.01 at epoch 25%
 - Then gradually decrease it until the end
 - Cyclic learning rates

Some tricks: dropout, label smoothing

- Similarly to learning rate, dropout can be also scheduled
 - E.g.: 0 dropout at the beginning,
 - Increase dropout gradually to 0.3 at epoch
 50%
 - Then gradually decrease it back to 0

Label smoothing

- Very simple idea: redistribute 0.1 of probability mass from the correct label to all other labels
- Often used in Google's papers
- Results in less loss fluctuations on dev data during epochs in my experience
- Maybe disable label smoothing during the last training phase

Ensembles

- Model ensembles are a pretty much guaranteed way to gain 2% of accuracy on anything
 - Ensembles of models of different architecture result in the best performance
 - Even if a particular model is relatively bad (compared to the best ones in the ensemble),
 combining its predictions with others can give surprising gains
- If you can't afford the computation at test time, try distilling your ensemble into a network using dark knowledge
 - Compute posteriors (target probabilities) for your training data using the ensemble, and train a final model on the posteriors (instead of real targets)
 - This way, the final model learns to mimic the ensemble