R Textbook Companion for Thermodynamics And Heat Power by I. Granet And M. Bluestein¹

Created by
Hiren Shah
MCA
Computer Science and Engineering
GTU
Cross-Checked by
R TBC Team

April 16, 2021

¹Funded by a grant from the National Mission on Education through ICT - http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and R codes written in it can be downloaded from the "Textbook Companion Project" section at the website - https://r.fossee.in.

Book Description

Title: Thermodynamics And Heat Power

Author: I. Granet And M. Bluestein

Publisher: Addison Wesley (Singapore), New Delhi

Edition: 6

Year: 2001

ISBN: 81-7808-291-8

R numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means an R code whose theory is explained in Section 2.3 of the book.

Contents

Lis	ist of R Codes	
1	Fundamental Concepts	5
2	Work Energy and Heat	9
3	The first law of Thermodynamics	15
4	The second law of Thermodynamics	24
5	Properties of liquids and Gases	33
6	The Ideal Gas	44
7	Mixture of Ideal Gases	63
8	Vapor Power Cycles	74
9	Gas power Cycles	82
10	Refrigeration	89
11	Heat transfer	97

List of R Codes

Exa 1.1	Determine the Temprature	5
Exa 1.2	Weight on Moon	5
Exa 1.3	Weight on Earth	6
Exa 1.4	Determine its Weight and horizontal acceleration	6
Exa 1.5	Derive the convesion Factor	6
Exa 1.7	Determine the Pressure	7
Exa 1.8	Determine the pressure	7
Exa 1.9	Determine the pressure	7
Exa 1.10	Determine the pressure	8
Exa 1.11	Determine the pressure	8
Exa 2.2	How much work done	9
Exa 2.3	How much work done	9
Exa 2.4	How much work done	10
Exa 2.5	Determine the change	10
Exa 2.6	Determine the change	10
Exa 2.7	Determine the horsepower	11
Exa 2.8	Determine the change	11
Exa 2.9	Determine the change	12
Exa 2.10	what will kinetic Energy	12
Exa 2.11	Determine the Flow work term	13
Exa 2.12	Determine the Flow work	13
Exa 2.14	How much work done	14
Exa 2.15	Determine the work done	14
Exa 3.4	Determine the change	15
Exa 3.5	Determine the mass flow rate	15
Exa 3.6	Determine the mass flow rate	16
Exa 3.7	Determine the mass flow rate	16
Eva 3.8	Determine the Velocity	17

Exa 3.9	Determine the inlet	7
Exa 3.10	Determine the final gas Temprature	8
Exa 3.11	Determine the Power produced	8
Exa 3.12	Determine the work output	9
Exa 3.13	Determine the work output	9
Exa 3.14	Determine the work output	20
Exa 3.15	Determine the magnitude and Direction	20
Exa 3.16	Determine the direction and magnitude	21
Exa 3.17	How much energy has been added	22
Exa 3.18	Determine the Velocity	22
Exa 3.19	Determine the Velocity	23
Exa 3.21		23
Exa 4.1	What is the Efficiency of the cycle	24
Exa 4.2		25
Exa 4.3	what is the minimum horsepower input	25
Exa 4.4	Determine the heat supplied	26
Exa 4.5		26
Exa 4.7		27
Exa 4.8		27
Exa 4.9	· · · · · · · · · · · · · · · · · · ·	28
Exa 4.10		29
Exa 4.11		29
Exa 4.12		29
Exa 4.13		80
Exa 4.14		80
Exa 4.15		31
Exa 5.1		3
Exa 5.2		3
Exa 5.3		34
Exa 5.4		34
Exa 5.5		5
Exa 5.6		5
Exa 5.7		5
Exa 5.8	- v	6
Exa 5.9	10	37
Exa 5.10		7
Exa 5.13	1 0	8
Exa 5 14		8

Exa 5.16	Determine the enthalpy	39
Exa 5.27	Compare he result	39
Exa 5.35		3 9
Exa 5.36	Determine the pressure	10
Exa 5.37	Determine the Heat added	10
Exa 5.38	Determine the change	11
Exa 5.39	Determine the final state of steam	11
Exa 5.40	Determine the change	12
Exa 5.41	Determine the change	12
Exa 5.42	Determine the Velocity	12
Exa 5.43		13
Exa 5.44	how much heat removed	13
Exa 6.1		14
Exa 6.2	What volume will gas occupy 4	14
Exa 6.3	Determine the volume	15
Exa 6.5	Determine the volume	15
Exa 6.6	How much gas is there in container	15
Exa 6.7	what is the pressure	16
Exa 6.8	Determine the mass of gas	16
Exa 6.9	Determine the mean specific heat	16
Exa 6.10	Solve the answer	17
Exa 6.11	Determine the heat	17
Exa 6.12	Determine cu	18
Exa 6.13	Determine the cp	18
Exa 6.14	Determine k cv and cp	18
Exa 6.15	find the specific heat	19
Exa 6.16	Determine the change	19
Exa 6.17		60
Exa 6.18	Determine the change	51
Exa 6.19	what was the increase in pressure	51
Exa 6.20	Determine the change	51
Exa 6.21	Determine the change	52
Exa 6.22	Determine the higher temprature	52
Exa 6.23	Determine the initial tmeprature	52
Exa 6.24	Determine the heat transferred	53
Exa 6.25	Determine the heat transferred	53
Exa 6.26	Determine the Heat added	54
Exa 6.27	Determine the Heat added	54

Exa 6.28	Determine the change	54
Exa 6.29	Determine the final state	55
Exa 6.30	Determine the final state	55
Exa 6.31	Determine k ofr this gas	56
Exa 6.32		56
Exa 6.33	Determine the ratio inlet	57
Exa 6.34	Determine the change	57
Exa 6.35	solve the problem	58
Exa 6.36	Determine the Velocity	58
Exa 6.37	what is the mach number	59
Exa 6.38		59
Exa 6.39		59
Exa 6.40	Determine the Temprature	60
Exa 6.41	Determine the specific Volume	31
Exa 7.1	Determine the number of moles 6	3
Exa 7.2	what is the mole fraction	34
Exa 7.3	Determine the moles	34
Exa 7.4	Determine the mixture volume	35
Exa 7.5	Determine the mixture volume	66
Exa 7.6	Determine the mass fraction	66
Exa 7.7	Determine the fraction by volume	57
Exa 7.8	Determine the volumetric analysis	57
Exa 7.9	Determine the final Temperature	38
Exa 7.10	Determine the final temprature	38
Exa 7.12	Determine the change in entropy	₅₉
Exa 7.14		70
Exa 7.15	solve the problem	71
Exa 7.16	how much water was removed	71
Exa 7.18	Solve the problem	72
Exa 7.19	Solve the problem	72
Exa 7.20	how much heat is required	72
Exa 7.23	Determine the amount of water	73
Exa 8.1	Determine the thermal Efficiency	74
Exa 8.2	solve the problem	74
Exa 8.3	Sketch the cycle	75
Exa 8.4	solve the problem	75
Exa 8.5	what is the type of efficiency	76
Exa 8.6		76

Exa 8.7	What is the thermal Efficiency of this cycle
Exa 8.8	Determine the Heat Rate
Exa 8.9	Determine the Efficiency
Exa 8.10	solve the problem
Exa 8.11	Determine the Efficiency
Exa 8.12	Compare the Results
Exa 8.13	Compare the Results
Exa 8.14	Determine the conventional thermal efficiency 80
Exa 9.1	Compare the Results
Exa 9.2	Determine the efficiency
Exa 9.3	Determine the peak temprature 83
Exa 9.4	Calculate the Efficiency
Exa 9.7	Determine the horsepower
Exa 9.9	What is its compression ratio
Exa 9.10	Determine the mean Effective pressure 85
Exa 9.11	Determine the mean Effective pressure 86
Exa 9.12	Find the efficiency
Exa 9.13	Determine the network per pound 87
Exa 9.14	Determine the heat in
Exa 10.1	Calculate the heat removal 89
Exa 10.2	Determine the COP of the Cycle
Exa 10.3	Determine the maximum COP for the cycle 90
Exa 10.4	Determine the power required
Exa 10.5	Determine the power required
Exa 10.6	Compute the problem 91
Exa 10.7	solve the problem
Exa 10.8	Determine the COP of the Cycle
Exa 10.9	solve the problem
Exa 10.10	Find the horse power required
Exa 10.11	solve the problem
Exa 10.12	Determine the airflow required
Exa 10.13	Calculate the mass of water 95
Exa 10.14	solve the problem
Exa 10.15	Determine the COP
Exa 10.16	determine the work
Exa 11.1	Determine the heat transferred
Exa 11.2	Determine the heat transfer
Exa 11.3	Determine the heat transferred 98

Exa 11.4	Determine the heat transferred	98
Exa 11.5	Calculate the temprature	99
Exa 11.6	Determine the heat transferred	100
Exa 11.7	Determine the temperature	101
Exa 11.8	Determine the heat loss	103
Exa 11.9	Determine the Heat loss	104
Exa 11.10		104
Exa 11.11		105
Exa 11.12	Determine the heat transfer	105
Exa 11.15	Determine the Heat loss	106
	Determine the heat transfer	107
	Determine the heat transferred	107
Exa 11.18	Determine the inside film coefficient	108
Exa 11.19	Determine the Heat loss	108
Exa 11.20	Determine the heat transferred	109
Exa 11.21	solve the problem	109
Exa 11.22	Determine the over all heat transfer	110
Exa 11.23	Determine the heat transferred	111
Exa 11.24	Determine the outside tube surfaced	111
Exa 11.25	Determine the outside tube surfaced	112
Exa 11.26	Calculate the surface required	112
	Determine the temprature	113

Chapter 1

Fundamental Concepts

R code Exa 1.1 Determine the Temprature

```
1 # page no. 8
2
3 func <- function(x) {a <- 5/9*(x-32)-x}
4 root = uniroot(func, c(160,161), extendInt = "yes")
5 print(root[1])</pre>
```

R code Exa 1.2 Weight on Moon

```
1 # page no. 18
2
3 Mm = 0.0123
4 Me = 1
5 Dm = 0.273
6 De = 1
7 Rm = Dm/2
8 Re = De/2
9
10 F = (Me/Mm)*(Rm/Re)^2;
11 print(format(F,digits=3))
```

R code Exa 1.3 Weight on Earth

```
1 # page no. 20
2
3 M = 5;
4 g = 9.81;
5 W = M*g;
6 print(W);
```

R code Exa 1.4 Determine its Weight and horizontal acceleration

```
1 # page no. 21
2
3 M = 10
4 g = 9.5
5 W = M*g;
6 print(W);
7
8 F = 10;
9 a = F/M;
10 print(a);
```

R code Exa 1.5 Derive the convesion Factor

```
1 # page no: 25
2
3 in1 = 12;
4 m = 2.54/100;
5 l = ((m*in1)**2);
```

```
6 print(1)
```

R code Exa 1.7 Determine the Pressure

```
1 # page no. 33
2
3 Gamma = (1.0/454)*(2.54*12)^3;
4 print(format(Gamma, digits=3))
5 p = (1/12)*(Gamma*13.6);
6 p = (1/12)*Gamma*13.6*(1/144)
7 print(format(p, digits=3));
8
9 P = p+14.7;
10 print(format(P, digits=4));
```

R code Exa 1.8 Determine the pressure

```
1 # page no. 34
2
3 Rho = 13.595
4 h = 25.4
5 g = 9.806
6 p = Rho*g*h
7 print(p);
```

R code Exa 1.9 Determine the pressure

```
1 # page no. 34
2
3 Patm = 30.0
```

```
4 Vacuum = 26.5
5 Pabs = Patm-Vacuum
6 p = Pabs*0.491
7 print(format(p,digits=3))
```

R code Exa 1.10 Determine the pressure

```
1 # page no. 35
2
3 Rho = 2000
4 h = -10
5 g = 9.6
6 p = -Rho*g*h
7 print(p/1000)
```

R code Exa 1.11 Determine the pressure

Chapter 2

Work Energy and Heat

R code Exa 2.2 How much work done

```
1 # page no. 62
2
3 k = 100
4 l = 2
5 work = (1.0/2)*k*l^2
6 print(work)
```

R code Exa 2.3 How much work done

```
1 # page no. 62
2
3 k = 20*1000
4 l = 0.075
5 work = (1/2)*k*1^2
6 print(work)
```

R code Exa 2.4 How much work done

```
1 # page no. 66
2
3 Z = 600
4 gc = 32.174
5 g = gc
6 m = 1
7 PE = (m*g*Z)/gc
8 print(PE)
```

R code Exa 2.5 Determine the change

```
1 # page no. 66
2
3 m = 1
4 g = 9.81
5 Z = 50
6 PE = m*g*Z
7 print(PE)
```

R code Exa 2.6 Determine the change

```
1 # page no. 66
2
3 Rho = 62.4
4 A = 10000
5 V = (231/1728)
6
7 Z = 600
8 gc = 32.174
9 g = gc
10 m = 1
```

```
11 PE = (m*g*Z)/gc
12 print(PE)
13
14 M = Rho*A*V
15 Power = M*PE
16 print(Power)
17 print(Power/33000)
18
19 # The answer may slightly vary due to rounding off values
```

R code Exa 2.7 Determine the horsepower

```
1 # page no. 67
2
3 m = 1
4 g = 9.81
5 Z = 50
6 PE = m*g*Z
7 print(PE)
8
9 M = 1000
10 Power = PE*M*(1/60)
11 print(Power)
12 print(Power/745)
```

R code Exa 2.8 Determine the change

```
1 # page no. 69
2
3 m = 10
4 V1 = 88
5 V2 = 10
```

```
6 gc = 32.174
7
8 KE1 = m*V1^2/(2*gc)
9 print(KE1)
10
11 KE2 = m*V2^2/(2*gc)
12 print(KE2)
13
14 KE = KE1-KE2
15 print(KE)
```

${f R}$ code ${f Exa}$ 2.9 Determine the change

```
1 # page no. 70
2
3 m = 1500
4 V1 = 50
5 KE1 = (m*(V1*1000)^2/3600^2)/2
6 V2 = 30
7 KE2 = (m*(V2*1000)^2/3600^2)/2
8 KE = KE1-KE2
9 print(KE/1000)
```

R code Exa 2.10 what will kinetic Energy

```
1 # page no. 70
2
3 m = 10
4 Z = 10
5 g = 9.81
6 PE1 = m*g*Z
7 v = (PE1*2)/m
8 V = sqrt(v)
```

```
9 print(V)
10 KE2 = PE1
11 print(PE1)
```

R code Exa 2.11 Determine the Flow work term

```
1 # page no. 74
2
3 p1 = 100
4 Rho1 = 62.4
5 v1 = 144*(1/Rho1)
6 J = 778
7 FW1 = (p1*v1)/J
8 print(FW1)
9
10 p2 = 50
11 Rho2 = 30
12 v2 = 144*(1/Rho2)
13 J = 778
14 FW2 = (p2*v2)/J
15 print(FW2)
```

R code Exa 2.12 Determine the Flow work

```
1 # page no. 75
2
3 p1 = 200*1000
4 Rho1 = 1000
5 v1 = 1/Rho1
6 FW1 = p1*v1
7 print(FW1)
8
9 p2 = 100*1000
```

```
10 Rho2 = 250

11 v2 = 1/Rho2

12 FW2 = p2*v2

13 print(FW2)
```

R code Exa 2.14 How much work done

```
1 # page no. 78
2
3 p1 = 100*144
4 v1 = 2
5 v2 = 1
6 w = p1*v1*log(v2/v1)
7 print(w)
8 print(w/778)
9
10 # The answer provided in the textbook is wrong
```

R code Exa 2.15 Determine the work done

```
1 # page no. 79
2
3 p1 = 200*1000
4 p2 = 800*1000
5 v1 = 0.1
6 v2 = (p1/p2)*v1
7 w = p1*v1*log(v2/v1)
8 print(w/1000)
```

Chapter 3

The first law of Thermodynamics

R code Exa 3.4 Determine the change

```
1 # page no. 94
2
3 m = 10
4 Heat = 100
5 deltaU = Heat/m
6 print(deltaU)
```

R code Exa 3.5 Determine the mass flow rate

```
1 # page no. 96
2
3 P1 = 100
4 Rho1 = 62.4
5 A1V1 = 10000
6 A2 = 2
7 m = Rho1*A1V1
```

```
8 print(m)
9
10 Rho2 = Rho1
11 V2 = m/(Rho2*A2)
12 print(V2)
```

R code Exa 3.6 Determine the mass flow rate

```
1 # page no. 97
2
3 Rho1 = 1000
4 A1V1 = 2000
5 A2 = 0.5
6 m = Rho1*A1V1
7 print(m)
8
9 Rho2 = Rho1
10 V2 = m/(Rho2*A2)
11 print(V2)
```

R code Exa 3.7 Determine the mass flow rate

```
1 # page no. 97
2
3 Rho = 62.4
4 V = 100
5 d = 1
6 A = (pi*d^2)/(4*144)
7 m = Rho*A*V
8 print(m)
```

R code Exa 3.8 Determine the Velocity

```
1 # page no. 98
2
3 m1 = 50000
4 v1 = 0.831
5 d1 = 6
6 A1 = (pi*d1^2)/(4*144)
7 V1 = (m1*v1)/(A1*60*60)
8 print(V1)
9
10 m2 = m1
11 v2 = 1.825
12 d2 = 8
13 A2 = (pi*d2^2)/(4*144)
14 V2 = (m1*v2)/(A2*60*60)
15 print(V2)
```

R code Exa 3.9 Determine the inlet

```
1 # page no. 99
2
3 m1 = 10000
4 v1 = 0.05
5 d1 = 0.1
6 A1 = (pi/4)*d1^2
7 V1 = (m1*v1)/(A1*60*60)
8 print(V1)
9
10 m2 = m1
11 v2 = 0.10
12 d2 = 0.2
13 A2 = (pi/4)*(d2^2)
14 V2 = (m1*v2)/(A2*60*60)
15 print(V2)
```

R code Exa 3.10 Determine the final gas Temprature

```
1 # page no. 105
2
3 Cp = 0.22
4 Cv = 0.17
5 q = 800/10
6 T1 = 100
7
8 deltaT = q/Cp
9 T2 = deltaT+T1
10 w = -(Cv*(T2-T1)-q)
11 print(w)
```

R code Exa 3.11 Determine the Power produced

```
1 # page no. 111
2
3 Z1 = 10
4 V1 = 125
5 h1 = 1505.4
6 Z2 = 0
7 V2 = 430
8 h2 = 940.0
9
10 q = 0
11 J = 778
12 gc = 32.174
13 g = gc
14 W1 = ((Z1/J)*(g/gc)) + (V1^2/(2*gc*J)) + h1 + q - (( Z2/J)*(g/gc)) - (V2^2/(2*gc*J)) - h2
```

```
15  print(W1)
16  print(W1*150000)
17  print((W1*150000*778)/(60*33000))
18  print(((W1*150000*778)/(60*33000))*0.746)
19
20  q = 50000/150000
21  W2 = ((Z1/J)*(g/gc)) + (V1^2/(2*gc*J)) + h1 - q - (( Z2/J)*(g/gc)) - (V2^2/(2*gc*J)) - h2
22  print(W2)
23
24  # The answer may slightly vary due to rounding off values.
```

R code Exa 3.12 Determine the work output

```
1 # page no. 112
2
3 Z1 = 2
4 g = 9.81
5 V1 = 40
6 h1 = 3433.8
7 q = 1
8 Z2 = 0
9 V2 = 162
10 h2 = 2675.5
11
12 w = ((Z1*g)/1000) + ((V1^2/2)/1000) + h1 - q - ((Z2*g)/1000) - ((V2^2/2)/1000) - h2
13 print(w)
```

R code Exa 3.13 Determine the work output

```
1 # page no. 113
```

```
2
3 p1 = 150
4 T1 = 1000
5 p2 = 15
6 T2 = 600
7 Cp = 0.24
8 v1 = 2.47
9 v2 = 14.8
10
11 W = Cp*(T1-T2)
12 print(W)
```

R code Exa 3.14 Determine the work output

```
1 # page no. 114
2
3 p1 = 150
4 \text{ T1} = 1000
5 p2 = 15
6 T2 = 600
7 \text{ Cp} = 0.24
8 v1 = 2.47
9 v2 = 14.8
10
11 \quad W = Cp*(T1-T2)
12 print(W)
13
14 \quad q = 1.1
15 \text{ W1} = -\text{q} + \text{W}
16 print(W1);
```

R code Exa 3.15 Determine the magnitude and Direction

```
1 # page no. 115
2
3 p1 = 100
4 t1 = 950
5 p2 = 76
6 t2 = 580
7 v1 = 4
8 v2 = 3.86
9 Cv = 0.32
10
11 T1 = t1+460
12 T2 = t2+460
13 J = 778
14 q = Cv*(T2-T1) + (p2*v2*144)/J - (p1*v1*144)/J
15 print(q)
```

R code Exa 3.16 Determine the direction and magnitude

```
1 # page no. 116
2
3 p1 = 100
4 t1 = 950
5 p2 = 76
6 t2 = 580
7 v1 = 4
8 v2 = 3.86
9 \text{ Cv} = 0.32
10
11 T1 = t1 + 460
12 T2 = t2 + 460
13 J = 778
14 \text{ gc} = 32.174
15 g = gc
16
17 \quad Z2 = 100
```

R code Exa 3.17 How much energy has been added

```
1 # page no. 117
2
3 p1 = 1000
4 t1 = 100
5 p2 = 1000
6 t2 = 1000
7 h1 = 70.68
8 h2 = 1505.9
9 T1 = t1+460
10 T2 = t2+460
11 J = 778
12 q = h2-h1
13 print(q);
14 print(q*10000)
```

R code Exa 3.18 Determine the Velocity

```
1 # page no. 119
2
3 h1 = 1220
4 h2 = 1100
5
6 J = 778
7 gc = 32.174
8 V2 = sqrt((2*gc*J)*(h1-h2))
9 print(V2)
10
```

```
11 V1 = 1000

12 V2 = sqrt(((h1-h2)*(2*gc*J)) + V1^2)

13 print(V2)
```

R code Exa 3.19 Determine the Velocity

```
1 # page no. 120
2
3 h1 = 3450*1000
4 h2 = 2800*1000
5
6 V2 = sqrt(2*(h1-h2))
7 print(V2)
```

R code Exa 3.21 Determine the Flow rate

```
1 # page no. 125
2
3 m = 400
4 Cp = 0.85
5 T1 = 215
6 T2 = 125
7 DeltaT = T2-T1
8 Qoil = m*Cp*DeltaT
9 print(Qoil)
10
11 Cpw = 1.0
12 T3 = 60
13 T4 = 90
14 DeltaTw = T4-T3
15 Mw = Qoil/(Cpw*DeltaTw)
16 print(abs(Mw))
```

Chapter 4

The second law of Thermodynamics

R code Exa 4.1 What is the Efficiency of the cycle

```
1 # page no. 148
3 t1 = 1000
4 t2 = 80
5 T1 = t1 + 460
6 	ext{ T2} = t2 + 460
8 \text{ ans} = ((T1-T2)/T1)*100
9 print(ans)
10
11 \quad T1 = 2000 + 460
12 T2 = t2 + 460
13 ans = ((T1-T2)/T1)*100
14 print(ans)
15
16 \text{ T1} = \text{t1+460}
17 T2 = 160 + 460
18 ans = ((T1-T2)/T1)*100
19 print(ans)
```

R code Exa 4.2 Determine The amount of Work

```
1 # page no. 149
2
3 Qin = 100
4 t1 = 1000
5 t2 = 80
6
7 T1 = t1+460
8 T2 = t2+460
9 print(((T1-T2)/T1)*100)
10
11 W = 0.63*Qin
12 W = Qin*(W/Qin)
13 Qr = Qin-W
14 print(Qr)
```

R code Exa 4.3 what is the minimum horsepower input

```
1 # page no. 149
2
3 t1 = 70
4 t2 = 15
5 Qin = 125000
6 T1 = t1+460
7 T2 = t2+460
8 Qr = Qin*(T2/T1)
9 print(Qr)
10 work = Qin-Qr
11 print(work)
12 print(work*778/(60*33000))
```

R code Exa 4.4 Determine the heat supplied

```
1 # page no. 150
3 W = (50*33000)/778
4 print(W)
6 t1 = 1000
7 t2 = 100
8 T1 = t1+460
9 T2 = t2 + 460
10 n = (1-(T2/T1))*100
11 print(n)
12
13 Qin = W/(n/100)
14 print(Qin)
15 Qr = Qin*(1-(n/100))
16 print(Qr)
17
18 # The answer may slightly vary due to rounding off
      values
```

R code Exa 4.5 Determine the heat supplied

```
1 # page no. 151
2
3 t1 = 700
4 t2 = 20
5 T1 = t1+273
6 T2 = t2+273
7 n = (T1-T2)/T1*100
8 print(n)
```

```
9
10 output = 65
11 work = output*0.746
12 print(work)
13
14 Qin = work/(n/100)
15 print(Qin)
16
17 Qr = Qin*(1-(n/100))
18 print(Qr)
```

R code Exa 4.7 Determine the Temprature

```
1 # page no. 152
2
3 t1 = 700
4 t2 = 200
5
6 T1 = t1+460
7 T2 = t2+460
8
9 Ti = sqrt(T1*T2)
10 print(Ti)
11 print(Ti-460)
12
13 # The answer may slightly vary due to rounding off values
```

R code Exa 4.8 What is the change

```
1 # page no. 157
2
3 q = 843.7
```

```
4 t = 381.86
5 T = t+460
6 deltaS = (q/T)
7 print(deltaS)
```

R code Exa 4.9 How much work is done

```
1 # page no. 158
3 q = 843.7
4 t = 381.86
5 T = t + 460
6 \text{ deltaS} = (q/T)
7 t1 = 381.86
8 t2 = 50
9 \text{ T1} = \text{t1+460}
10 T2 = t2 + 460
11 \quad qin = q
12 n = (1-(T2/T1))*100
13 print(n)
14 \text{ wbyJ} = qin*n*0.01
15 print(wbyJ)
16 \ Qr = qin-wbyJ
17 print(Qr)
18 \text{ qin} = T1*deltaS
19 Qr = T2*deltaS
20 print(Qr)
21
22 \text{ wbyJ} = qin-Qr
23 print(wbyJ)
24
25 n = (wbyJ/qin)*100
26 print(n)
```

R code Exa 4.10 Compare your answer

```
1 # page no. 159
2
3 hfg = 1959.7
4 T = 195.07+273
5 deltaS = hfg/T
6 print(deltaS)
```

R code Exa 4.11 how much of this energy unavailable

```
1 # page no. 159
2
3 t = 1000
4 T1 = t+460;
5
6 Qin = 100
7 deltaS = Qin/T1
8 T2 = 50+460
9 Qr = T2*deltaS
10 print(Qr)
11 T2 = 0+460
12 Qr = T2*deltaS
13 print(Qr)
```

R code Exa 4.12 How much energy

```
1 # page no. 160
2
```

```
3 Qin = 1000
4 t = 500
5
6 T1 = t+273
7 deltaS = Qin/T1
8 T2 = 20+273
9 Qr = T2*deltaS
10 print(Qr)
11
12 T2 = 0+273
13 Qr = T2*deltaS
14 print(Qr)
```

R code Exa 4.13 Determine the temprature

```
1 # page no. 161
2
3 m = 6
4 Cp = 0.361
5 DeltaS = -0.7062
6 t = 1440
7
8 T1 = t+460
9 T2 = T1*exp(DeltaS/(m*Cp))
10 print(T2)
11 print(T2-460)
```

R code Exa 4.14 specific heat

```
1 # page no. 162
2
3 m1 = 1
4 m2 = 1
```

```
5  c1 = 1
6  c2 = 1
7  t1 = 500
8  t2 = 100
9  cmix = 1
10
11  t = ((m1*c1*t1)+(m2*c2*t2))/((m1+m2)*cmix)
12  print(t)
13
14  deltas = cmix*log((t+460)/(t1+460))
15  deltaS = cmix*log((t+460)/(t2+460))
16  print(deltaS+deltas)
```

R code Exa 4.15 answer in F

```
1 # page no. 163
2
3 m1 = 1
4 m2 = 1
5 c1 = 1
6 c2 = 1
7 t1 = 500
8 t2 = 100
9 \text{ cmix} = 1
10 \quad t = ((m1*c1*t1) + (m2*c2*t2)) / ((m1+m2)*cmix)
11 print(t)
12
13 deltas = cmix*log((t1+460)/(0+460))
14 s = cmix*log((t2+460)/(0+460))
15 s1 = cmix*log((t+460)/(0+460))
16 print(s1-deltas)
17
18 s2 = cmix*log((t+460)/(0+460))
19 print(s2-s)
20 print(s1-deltas+s2-s)
```

Chapter 5

Properties of liquids and Gases

R code Exa 5.1 Compare your answer

```
1 # page no. 182
2
3 p = 0.6988
4 vg = 467.7
5 ug = 1040.2
6 J = 778
7 hg = ug+((p*vg*144)/J)
8 print(hg)
```

R code Exa 5.2 Compare your answer

```
1 # page no. 187
2
3 p = 4.246
4 vg = 32.894
5 ug = 2416.6
6 J = 778
7 hg = ug+(p*vg)
8 print(hg)
```

R code Exa 5.3 Compare the Results

```
1 # page no. 188
2
3 hg = 1190.4+(3/5)*(1191.1-1190.4)
4 print(hg)
5
6 vg = 3.884-(3/5)*(3.884-3.730)
7 print(vg)
8
9 sg = 1.5921-(3/5)*(1.5921-1.5886)
10 print(sg)
11
12 ug = 1107.7-(3/5)*(1108.3-1107.7)
13 print(ug)
14
15 # The answer may slightly vary due to rounding off values
```

${f R}$ code ${f Exa}$ 5.4 Determine ${f Hfg}$

```
1 # page no.189
2
3 p = 115
4 ufg = 798.8
5 ug = 3.884
6 vf = 0.017850
7 J = 778
8 hfg = ufg+(p*144*(ug-vf))/J
9 print(hfg)
```

R code Exa 5.5 Determine the hfg

```
1 # page no. 190
2
3 p = 1000
4 ufg = 1822.0
5 vf = 0.0011273
6 vg = 0.19444
7 vfg = vg-vf
8 hfg = ufg+(p*vfg)
9 print(hfg)
```

R code Exa 5.6 Determine Hfg

```
1 # page no. 190
2
3 a = 388.12;
4 b = 460;
5 c = 1.1042
6 hfg = (a+b)*(c)
7 print(hfg)
8
9 # The answer provided in the textbook is wrong.
```

R code Exa 5.7 Determine its entropy

```
1 # page no. 192
2
3 x = 0.8
```

```
4 \text{ sf} = 0.49201
 5 \text{ sfg} = 1.0966
 6 \text{ hf} = 312.67
 7 \text{ hfg} = 878.5
 8 \text{ uf} = 312.27
 9 \text{ ufg} = 796.0
10 \text{ vf} = 0.017886
11 \text{ vfg} = (3.730-0.017886)
12 sx = sf + (x*sfg)
13 print(sx);
14 hx = hf + (x*hfg)
15 print(hx)
16 \text{ ux} = \text{uf} + (\text{x*ufg})
17 print(ux)
18 \text{ vx} = \text{vf+(x*vfg)}
19 print(vx)
20
21 J = 778
22 px = 120
23 ux = hx - ((px*vx*144)/J)
24 print(ux)
```

R code Exa 5.8 Determine its entropy

```
1 # page no. 193
2
3 x = 0.85
4 sf = 2.1387
5 sfg = 4.4487
6 hf = 762.81
7 hfg = 2015.3
8 uf = 761.68
9 ufg = 1822.0
10 vf = 1.1273
11 vfg = (194.44-1.1273)
```

R code Exa 5.9 What is its quality

```
1 # page no. 193
2
3 hx = 900
4 hf = 58.07
5 hfg = 1042.7
6 x = (hx-hf)/hfg
7 print(x*100)
```

${f R}$ code ${f Exa}$ 5.10 Determine its quality

```
1 # page no. 194
2
3 hx = 2000
4 hf = 125.79
5 hfg = 2430.5
6 x = (hx-hf)/hfg
```

```
7 print(x*100)
```

R code Exa 5.13 Determine the Specific Volume

```
1 # page no. 197
2
3 v=1.4691+(1/2)*(1.4945-1.4691)
4 print(v);
5
6 u=1131.8+(1/2)*(1137.0-1131.8)
7 print(u);
8
9 h=1221.5+(1/2)*(1228.2-1221.5)
10 print(h);
11
12 s=1.5219+(1/2)*(1.5293-1.5219)
13 print(s);
```

R code Exa 5.14 Determine the Specific Volume

```
1 # page no. 198
2
3 v = 1.4696-(2/5)*(1.4693-1.4448);
4 h = 1227.5-(2/5)*(1227.5-1226.7);
5
6 v = 1.4640-(2/5)*(1.4640-1.4693);
7 h = 1234.2-(2/5)*(1234.2-1233.4);
8
9 v = 1.4595+(1/2)*(1.4841-1.4595);
10 h = 1227.5+(1/2)*(1233.9-1227.5);
11 print(v)
12 print(h)
```

R code Exa 5.16 Determine the enthalpy

```
1 # page no. 202
2
3 pf = 66.98
4 vf = 0.017448
5 hf = 269.73
6 p = 1000
7 J = 778
8 h = hf+((p-pf)*vf*144)/J
9 print(h)
10 percentoferror = (h-271.46)/271.46;
11 print(percentoferror*100)
```

R code Exa 5.27 Compare he result

```
1 # page no. 213
2
3 moisture = 0.192
4 a = 1
5 q = (a-moisture)*100
6 print(q);
```

R code Exa 5.35 Determine the moisture

```
1 # page no. 218
2
3 hx=1168.8;
4 hf=330.75;
```

```
5 hfg=864.2;
6 x=(hx-hf)/hfg;
7 print((1-x)*100);
8 print(x);
```

R code Exa 5.36 Determine the pressure

```
1 # page no. 219
2
3 u2 = 1093.0
4 u1 = 117.95
5 q = u2-u1
6 print(q)
```

R code Exa 5.37 Determine the Heat added

```
1 # page no. 220
 3 \text{ Vf} = 45
 4 \text{ vf} = 0.016715
 5 \text{ Vg} = 15
 6 \text{ vg} = 26.80
 7 \text{ mf} = Vf/vf
 8 \text{ mg} = Vg/vg
 9 \text{ total} = mf + mg
10 \text{ ug} = 1077.6;
11 \text{ uf} = 180.1;
12 \text{ Ug = mg*ug}
13 Uf = mf*uf
14 \text{ Total} = \text{Ug+Uf}
15 print(Total)
16 \text{ vx} = (Vf + Vg)/(mf + mg)
17 \text{ vx} = 0.022282;
```

```
18  vf = 0.02087;
19  vfg = 0.5691-0.02087;
20  x = (vx-vf)/vfg;
21  print(x*total)
22
23  mg = x*total;
24  print(total-(x*total))
25  mf = total-(x*total)
26  ug = 1115.0
27  uf = 506.6
28  Ug = mg*ug
29  Uf = mf*uf
30  Total1 = Ug+Uf
31  difference = Total1-Total
32  print(difference/total)
```

R code Exa 5.38 Determine the change

```
1 # page no. 222
2
3 h1 = 1270.4
4 sx = 1.4861
5 sf = 0.5440
6 sfg = 1.0025
7 hf = 355.6
8 hfg = 843.7;
9 x = (sx-sf)/sfg
10 hx = hf+(x*hfg)
11 print(hx)
12 print(h1-hx)
```

R code Exa 5.39 Determine the final state of steam

```
1 # page no. 226
2
3 deltah = 0.8*122
4 h1 = 1270
5 h2 = h1-deltah
6 print(h2)
```

${f R}$ code ${f Exa}$ 5.40 Determine the change

```
1 # page no. 226
2
3 h1 = 2942
4 h2 = 2512
5 print(h1-h2)
```

R code Exa 5.41 Determine the change

```
1 # page no. 226
2
3 h1minush2 = 122
4 J = 778
5 gc = 32.17
6 V2 = sqrt(2*gc*J*(h1minush2))
7 print(V2)
```

R code Exa 5.42 Determine the Velocity

```
1 # page no. 227
2
3 h1 = 1270
```

```
4 h2 = 1199
5 J = 778
6 gc = 32.17
7 V2 = sqrt(2*gc*J*(h1-h2))
8 print(V2)
```

R code Exa 5.43 How much Heat per pound

```
1 # page no. 229
2
3 h2 = 1412.1
4 h1 = 1205.3
5 q = h2-h1
6 print(q)
```

R code Exa 5.44 how much heat removed

```
1 # page no. 229
2
3 hf = 69.74
4 hfg = 1036.0
5 hg = 1105.8
6 x = 0.97
7 hx = hf+(x*hfg)
8 print(hx)
9
10 deltah = hx-hf
11 print(deltah)
12
13 # The answer may slightly vary due to rounding off values
```

Chapter 6

The Ideal Gas

R code Exa 6.1 What volume will gas occupy

```
1 # page no. 241
2
3 P1 = 100
4 V1 = 100
5 P2 = 30
6 V2 = (P1*V1)/P2
7 print(V2)
```

R code Exa 6.2 What volume will gas occupy

```
1 # page no. 241
2
3 P1 = 10^6
4 V1 = 2
5 P2 = 8*10^6
6 V2 = (P1*V1)/P2
7 print(V2)
```

R code Exa 6.3 Determine the volume

```
1 # page no. 242
2
3 T1 = 32+460
4 V1 = 150
5 T2 = 100+460
6 V2 = (T2*V1)/T1
7 print(V2)
```

R code Exa 6.5 Determine the volume

```
1 # page no. 242
2
3 V1 = 4
4 T2 = 0+273
5 T1 = 100+273
6 V2 = V1*(T2/T1)
7 print(V2)
```

R code Exa 6.6 How much gas is there in container

```
1 # page no. 245

2

3 p = (200+14.7)*(144)

4 T = (460+73)

5 V = 120/1728

6 R = 1545/28

7 v = (R*T)/p
```

```
8 print(v)
9 print(V/v)
10 m = (p*V)/(R*T)
11 print(m)
```

R code Exa 6.7 what is the pressure

```
1 # page no. 245
2
3 p1 = 200+14.7
4 T2 = 460+200
5 T1 = 460+73
6 p2 = p1*(T2/T1)
7 print(p2)
```

R code Exa 6.8 Determine the mass of gas

```
1 # page no. 246
2
3 R = 8.314/44
4 p = 500
5 V = 0.5
6 T = (100+273)
7 m = (p*V)/(R*T)
8 print(m)
```

R code Exa 6.9 Determine the mean specific heat

```
1 \# page no. 252
```

R code Exa 6.10 Solve the answer

```
1 # page no. 252
2
3 hbar540 = 3729.5+(3/63)*(4167.9-3729.5)
4 hbar960 = 6268.1+(60/100)*(6977.9-6268.1)
5 h2 = 6694.0
6 h1 = 3750.4
7 T2 = 500+460
8 T1 = 80+460
9 cbar = (h2-h1)/(28*(T2-T1))
10 print(cbar);
```

R code Exa 6.11 Determine the heat

```
1 # page no. 253
2
3 T2 = 500+460
4 T1 = 80+460
5 A = 0.219
6 B = 3.42*10^-5
7 D = 2.93*10^-9
8 cpbar = A+((B/2)*(T2+T1))+((D/3)*(T2^2+(T2*T1)+T1^2)
)
```

```
9 print(cpbar)
```

R code Exa 6.12 Determine cu

```
1 # page no. 255
2
3 R = 1545/32
4 J = 778
5 cp = 0.24
6 cv = cp-(R/J)
7 print(cv)
```

R code Exa 6.13 Determine the cp

```
1 # page no. 255
2
3 R = 8.314/32
4 k = 1.4
5 cv = R/(k-1)
6 print(cv)
7 cp = k*cv
8 print(cp)
```

R code Exa 6.14 Determine k cv and cp

```
1 # page no. 255
2
3 R = 60
4 deltah = 500
5 deltau = 350
```

```
6  J = 778
7  k = deltah/deltau
8  print(k);
9  cv = R/(J*(k-1))
10  print(cv)
11  cp = k*cv
12  print(cp)
```

${f R}$ code ${f Exa}$ 6.15 find the specific heat

```
1 # page no. 256
3 \ Q = 0.33
4 V = 60
5 m = 0.0116
6 p1 = 90
7 T1 = 460+40
8 V = 60
9 m = 0.0116
10 p2 = 108
11 \quad T2 = 460 + 140
12 cv = Q/(m*(T2-T1))
13 print(cv)
14
15 R = (144*p1*(V/1728))/(m*T1)
16 print(R)
17
18 J = 778
19 cp = cv + (R/J)
20 print(cp)
```

R code Exa 6.16 Determine the change

```
1 # page no. 260
2
3 cp = 0.24
4 p2 = 15
5 p1 = 100
6 T2 = 460+0
7 T1 = 460+100
8 J = 778
9 R = 1545/29
10 deltas = (cp*(log(T2/T1)))-((R/J)*(log(p2/p1)))
11 print(deltas)
```

R code Exa 6.17 solve the problem

```
1 # page no. 261
2
3 \text{ cp=0.24};
4 p2=15;
5 p1=100;
6 T2 = 460 + 0;
7 T1=460+100;
8 J = 778;
9 R = 1545/29;
10
11 k=(cp*J)/((cp*J)-R);
12 print(k);
13
14 cv = cp/k;
15 print(cv);
16 v2byv1 = (T2*p1)/(T1*p2);
17 deltas=(cv*log(p2/p1))+(cp*log(v2byv1));
18 print(deltas);
```

R code Exa 6.18 Determine the change

```
1 # page no. 261
2
3 cp = 0.9093
4 p2 = 150
5 p1 = 500
6 T2 = 273+0
7 T1 = 273+100
8 R = 8.314/32
9 deltas = (cp*(log(T2/T1)))-((R)*(log(p2/p1)))
10 deltaS = 2*deltas
11 print(deltaS)
```

R code Exa 6.19 what was the increase in pressure

```
1 # page no. 262
2
3 k=1.4
4 v2=1/2
5 v1=1
6 p2byp1=exp((1/4)-(k*log(v2/v1)))
7 print(p2byp1)
```

R code Exa 6.20 Determine the change

```
1 # page no. 264
2
3 T2 = 460+270
4 T1 = 460+70
5 cv = 0.17
6 deltas = cv*log(T2/T1)
7 deltaS = (1/2)*deltas
```

```
8 print(deltaS)
```

R code Exa 6.21 Determine the change

```
1 # page no. 264
2
3 T2 = 100+273
4 T1 = 20+273
5 cv = 0.7186
6 deltas = cv*log(T2/T1)
7 deltaS = (0.2)*deltas
8 print(deltaS)
```

R code Exa 6.22 Determine the higher temprature

```
1 # page no. 264
2
3 deltas = 0.0743
4 T1 = 460+100
5 cv = 0.219
6 T2 = T1*exp(deltas/cv)
7 print(T2)
```

R code Exa 6.23 Determine the initial tmeprature

```
1 # page no. 265
2
3 deltaS = 0.4386
4 T2 = 273+425
5 cv = 0.8216
```

```
6 m = 1.5
7 T1 = T2/(exp(deltaS/(m*cv)))
8 print(T1)
9 print(T1-273)
```

R code Exa 6.24 Determine the heat transferred

```
1 # page no. 267
3 T2 =
          460+400
4 T1
          460+70
       =
          0.24
5 \text{ cp} =
6 J =
         778
7 R = 1545/29
8 \text{ deltah} = \text{cp*}(T2-T1)
9 print(deltah)
10 deltas = cp*log(T2/T1)
11 print(deltas)
12 flowworkchange = (R/J)*(T2-T1)
13 print(flowworkchange)
```

R code Exa 6.25 Determine the heat transferred

```
1 # page no. 268
2
3 T2 = 500+273
4 T1 = 20+273
5 cp = 1.0062
6 deltah = cp*(T2-T1)
7 print(deltah)
8 deltas = cp*log(T2/T1)
9 print(deltas)
```

R code Exa 6.26 Determine the Heat added

```
1 # page no. 270
2
3 v2 = 2;
4 v1 = 1;
5 T = 460+200;
6 J = 778;
7 R = 1545/28;
8 q = ((R*T)/J)*log(v2/v1);
9 Q = 0.1*q;
10 print(Q*10);
11 WbyJ = Q;
12 print(WbyJ);
```

R code Exa 6.27 Determine the Heat added

```
1 # page no. 270
2
3 T = 50+273;
4 v2 = 1/2;
5 v1 = 1;
6 R = 8.314/32;
7 q = R*T*log(v2/v1);
8 print(q);
9 W = q;
10 print(W);
```

R code Exa 6.28 Determine the change

```
1 # page no. 271
2
3 T = 50+273;
4 v2 = 1/2;
5 v1 = 1;
6 R = 8.314/32;
7 q = R*T*log(v2/v1);
8 print(q);
9 deltas = q/T;
10 print(deltas);
```

R code Exa 6.29 Determine the final state

```
1 # page no. 274
2
3 T1 = 1000;
4 p2 = 1;
5 p1 = 5;
6 J = 778;
7 R = 1545/29;
8 k = 1.4;
9 T2 = T1*((p2/p1)^((k-1)/k));
10 print(T2);
11 work = (R*(T2-T1))/(J*(1-k));
12 print(work)
```

R code Exa 6.30 Determine the final state

```
1 # page no. 274
2
3 T1 = 500+273;
4 p2 = 1;
5 p1 = 5;
```

```
6 J = 778;
7 R = 8.314/29;
8 k = 1.4;
9 T2 = T1*((p2/p1)^((k-1)/k));
10 print(T2-273);
11 work = (R*(T2-T1))/((1-k));
12 print(work)
```

R code Exa 6.31 Determine k of this gas

```
1 # page no. 275
2
3 library(MASS)
4 T1 = 800+273;
5 T2 = 500+273;
6 p2 = 1;
7 p1 = 5;
8 k = ginv(1-((log(T2/T1)/log(p2/p1))))[1];
9 print(k[1]);
```

R code Exa 6.32 Determine the heat transferred

```
1 # page no. 279
2
3 n = 1.3;
4 k = 1.4;
5 cp = 0.24;
6 T2 = 600;
7 T1 = 1500;
8 R = 53.3;
9 J = 778;
10 cv = cp/k;
11 cn = cv*((k-n)/(1-n));
```

```
12 print(cn);
13 q = cn*(T2-T1);
14 print(q);
15 w = (R*(T2-T1))/(J*(1-n));
16 print(w);
17 deltas = cn*log(T2/T1)
18 print(deltas)
```

R code Exa 6.33 Determine the ratio inlet

```
1 # page no. 279
2
3 n = 1.3;
4 k = 1.4;
5 cp = 0.24;
6 T2 = 600;
7 T1 = 1500;
8 R = 53.3;
9 J = 778;
10 p1byp2 = exp(log(T1/T2)/((n-1)/n));
11 print(p1byp2);
12
13 # The answer may slightly vary due to rounding off values
```

R code Exa 6.34 Determine the change

```
1 # page no. 284
2
3 h2 = 240.98;
4 h1 = 119.48;
5 u2 = 172.43;
6 u1 = 85.20;
```

```
7 fy2 = 0.75042;
8 fy1 = 0.58233;
9 deltah = h2-h1;
10 deltau = u2-u1;
11 print(deltah)
12 print(deltau);
13 deltas = fy2-fy1;
14 print(deltas);
```

R code Exa 6.35 solve the problem

```
1 # page no. 285
2
3 pr = 12.298;
4 h = 240.98;
5 pr = 12.298/5;
6 T = 620+(((2.4596-2.249)/(2.514-2.249))*20);
7 print(T);
8 u1 = 172.43;
9 u2 = 108.51;
10 work = u1-u2;
11 print(work)
```

R code Exa 6.36 Determine the Velocity

```
1 # page no. 288
2
3 T = 1000+460;
4 Va = 49.0*sqrt(T);
5 print(Va);
6 khydrogen = 1.41;
7 kair = 1.40;
8 Rhydrogen = 766.53;
```

R code Exa 6.37 what is the mach number

```
1 # page no. 288
2
3 T = 200+460;
4 V = 1500;
5 Va = 49.0*sqrt(T);
6 print(Va);
7 M = V/Va;
8 print(M);
```

R code Exa 6.38 Determine its total enthalpy

```
1 # page no. 290
2
3 V = 1000;
4 gc = 32.17;
5 J = 778;
6 h = 1204.4;
7 h0 = h+((V^2)/(2*gc*J));
8 print(h0);
```

R code Exa 6.39 Calculate the pressure

```
1 # page no. 297
```

```
3 library(MASS)
4 k = 1.4
5 M = 1
6 \text{ TO} = 800
7 \text{ gc} = 32.17
8 R = 53.35
9 p0 = 300
10 Tstar = T0*0.8333
11 print(Tstar)
12 Vat = round(sqrt(gc*R*Tstar*k))
13 print(Vat)
14 \text{ M1} = 0.3
15 print(M1)
16 \text{ pstar} = p0*0.52828
17 T1 = round(T0*0.982332,1)
18 print(T1)
19 p1 = p0*0.93947
20 print(p1)
21 \text{ Va1} = \text{sqrt}(\text{gc*k*R*T1})
22 V1 = round(M1*Va1)
23 print(V1)
24 v = (R*T1)/(p1*144)
25 \text{ rho} = \text{ginv}(v)
26 A = 2.035
27 \text{ m} = \text{round}(\text{rho}[1]*A*V1)
28 print(m)
```

R code Exa 6.40 Determine the Temprature

```
1 # page no. 299
2
3 k = 1.4;
4 R = 53.3;
5 M = 2.5;
```

```
6 \text{ TO} = 560;
7 T = T0/(1+((1/2)*(k-1)*M^2));
8 print(T);
9 p = 0.5;
10 p0 = p*14.7*((T0/T)^(k/(k-1)));
11 print(p0);
12 \text{ gc} = 32.17;
13 Va = sqrt(gc*k*R*T);
14 V = M*Va;
15 print(V);
16 v = (R*T)/(p*14.7*144);
17 print(v);
18 print(V/v);
19 M = 2.5;
20 \text{ TO} = 560;
21 \quad T = T0 * 0.44444;
22 print(T)
23 p = 0.5;
24 p0 = (p*14.7)/0.05853;
25 print(p0);
26 print(V)
27 print(v)
28 print(V/v)
```

R code Exa 6.41 Determine the specific Volume

```
1 # page no. 304
2
3 p = 500;
4 pc = 674;
5 T = 50+460;
6 Tc = 343;
7 R = 1545/16;
8 pr = p/pc;
9 Tr = T/Tc;
```

```
10 Z = 0.93;

11 v = Z*((R*T)/(p*144));

12 print(v);

13 v = (R*T)/(p*144);

14 print(v);
```

Chapter 7

Mixture of Ideal Gases

R code Exa 7.1 Determine the number of moles

```
1 # page no. 322
3 \text{ n02} = 0.2315/32;
4 print(n02);
5 \text{ nN2} = 0.7685/28.02;
6 print(nN2);
7 \text{ nm} = n02+nN2;
8 print(nm);
9 \times 02 = n02/nm;
10 \quad xN2 = nN2/nm;
11 print(x02);
12 print(x02+xN2);
13
14 \text{ p02} = x02*14.7;
15 print(p02);
16 \text{ pN2} = xN2*14.7;
17 print(pN2);
18
19 MWm = (x02*32) + (xN2*28.02);
20 print (MWm);
21 \text{ Rm} = 1545/\text{MWm};
```

```
22 print(Rm);
```

R code Exa 7.2 what is the mole fraction

```
1 # page no. 323
2
3 print(1000-14.7)
4 print(14.7/1000)
5 print((1000-14.7)/1000)
6 MWm = ((14.7/1000)*29) + (((1000-14.7)/1000)*120.9);
7 print(MWm);
```

R code Exa 7.3 Determine the moles

```
1 \# page no. 323
 2
 3 \text{ nair} = 10/29;
4 print(nair);
5 \text{ nCO2} = 1/44;
6 print(nCO2);
 7 \text{ nN2} = 5/28;
8 print(nN2);
9 \text{ nm} = \text{nair} + \text{nCO2} + \text{nN2};
10 print(nm);
11 xair = nair/nm
12 \times CO2 = nCO2/nm;
13 \times N2 = nN2/nm;
14 print(xair);
15 print(xCO2)
16 print(xN2);
17 pair = xair*100;
18 print(pair);
19 pCO2 = xCO2*100;
```

```
20  print(pCO2);
21  pN2 = xN2*100;
22  print(pN2);
23  MWm = (xair*29) + (xCO2*44) + (xN2*28);
24  print(MWm);
25  Rm = 1545/MWm;
26  print(Rm);
```

R code Exa 7.4 Determine the mixture volume

```
1 # page no. 325
3 \times 02 = 5/15;
4 \text{ xH2} = 10/15;
5 print(((5/15)*32)+((10/15)*2.016));
6 R = 1545/32;
7 T = 460+70;
8 p = 14.7;
9 \text{ vO2} = (R*T)/(p*144);
10 \ VO2 = vO2*5*32;
11 print(VO2);
12 Vm = 3*V02;
13 print(Vm);
14 \text{ VH2} = \text{Vm} - \text{VO2};
15 print(VH2);
16 R = 1545/2.016;
17 vH2 = (R*T)/(p*144);
18 \text{ VH2} = \text{vH2}*10*2.016;
19 print(VH2);
20 print (358*((460+70)/(460+32)));
21 \ VO2 = 5*358*((460+70)/(460+32));
22 print(VO2);
23 \text{ VH2} = 10*358*((460+70)/(460+32));
24 print(VH2);
```

R code Exa 7.5 Determine the mixture volume

```
1 # page no. 326
3 \text{ nCO2} = 10/44;
4 \text{ nN2} = 5/28.02;
5 print(nCO2+nN2);
6 \quad xCO2 = nCO2/(nCO2+nN2);
7 \times N2 = nN2/(nCO2+nN2);
8 print(xCO2+xN2);
9 \text{ MWm} = (xCO2*44) + (xN2*28.02);
10 print (MWm);
11 \text{ pm} = 100;
12 \text{ Tm} = 460+70;
13 Rm = 1545/37.0;
14 \text{ mm} = 15;
15 Vm = (mm*Rm*Tm)/(pm*144);
16 print(Vm);
17 VCO2 = Vm*xCO2;
18 print (VCO2);
19 VN2 = Vm * xN2;
20 print(VN2);
21 \text{ pCO2} = \text{pm*xCO2};
22 print(pCO2);
23 \text{ pN2} = \text{pm}*xN2;
24 print(pN2);
```

R code Exa 7.6 Determine the mass fraction

```
1 # page no. 327
2
3 print((0.40*44.0))
```

```
4 print((0.40*44.0)/33.4)
5 print((28.02*0.10))
6 print((28.02*0.10)/33.4)
7 print((0.10*2.016))
8 print((0.10*2.016)/33.4)
9 print((0.40*32.0))
10 print((0.40*32.0)/33.4)
```

R code Exa 7.7 Determine the fraction by volume

```
1 # page no. 328
2
3 moles = c(1.2, 0.3, 0.3, 1.2)
4 s = sum(moles)
5 volume = vector(length = 4)
6 for (i in 1:4) {
7    v = moles[i]/s;
8    volume[i] = v*100;
9    print(v)
10 }
11 MWm = sum(volume)/s
12 print(MWm)
```

R code Exa 7.8 Determine the volumetric analysis

```
1 # page no. 329
2
3 moles = c(0.724, 2.693, 0.033)
4 s = sum(moles)
5 volume = vector(length = 3)
6 for (i in 1:3) {
7  v = moles[i]/s;
8  volume[i] = v*100;
```

```
9  print(v)
10 }
11  MWm = sum(volume)/s
12  print(MWm)
13
14  # The answer may slightly vary due to rounding off values.
```

R code Exa 7.9 Determine the final Temperature

```
1 # page no. 331
2
3 a = 500;
4 b = 160;
5 oxygen = 0.164;
6 Cv = 0.25;
7 nitr = 196;
8 tm = ((a*b*0.23)+(nitr*Cv*200))/((nitr*Cv)+(b*0.23))
;
9 print(tm);
10 cpm = ((b/(b+nitr))*0.23)+((nitr/(b+nitr))*Cv);
11 print(cpm);
12 tm = ((b*0.23*a)+(nitr*Cv*200))/(cpm*(b+nitr));
13 print(tm);
14
15 # The answer may vary due to the change in units.
```

R code Exa 7.10 Determine the final temprature

```
1 # page no. 332
2
3 a = 500;
4 b = 160;
```

```
5  oxygen = 0.164;
6  Cv = 0.178;
7  nitr = 196;
8  tm = ((a*b*oxygen)+(nitr*Cv*200))/((nitr*Cv)+(b*oxygen));
9  print(tm);
```

R code Exa 7.12 Determine the change in entropy

```
1 # page no : 334
2
3 \text{ cp} = 0.23;
4 T2 = 328.7 + 460;
5 T1 = 500+460;
6 deltas = (cp*log(T2/T1));
7 DeltaS = 160*deltas;
8 print(DeltaS);
9 \text{ cp} = 0.25;
10 \quad T2 = 328.7 + 460;
11 T1 = 200+460;
12 deltas = (cp*log(T2/T1));
13 deltaS = 196*deltas;
14 print(deltaS);
15 deltaS = deltaS+DeltaS;
16 print(deltaS);
17 deltasm = deltaS/(196+160);
18 print(deltasm);
19 \text{ cp} = 0.23;
20 	ext{ T2} = 500+460;
21 	ext{ T1} = 0+460;
22 deltas = cp*log(T2/T1);
23 print(deltas);
24 T2 = 328.7 + 460;
25 \text{ T1} = 0+460;
26 Deltas = cp*log(T2/T1);
```

```
27 print(Deltas);
28 deltaS = Deltas-deltas;
29 print(deltaS);
30 \text{ cp} = 0.25;
31 \quad T2 = 200 + 460;
32 \text{ T1} = 0+460;
33 deltas = cp*log(T2/T1);
34 print(deltas);
35 \quad T2 = 328.7 + 460;
36 \text{ T1} = 0+460;
37 Deltas = cp*log(T2/T1);
38 print(Deltas);
39 deltaS = Deltas-deltas;
40 print(deltaS);
41
42 # The answer may slightly vary due to rounding off
      values.
```

R code Exa 7.14 Determine the partial pressure

```
1 # page no : 338
2
3 pres1 = 14.7;
4 pres2 = 0.6988;
5 vol = 467.7
6 RT = 1545;
7 mole = 0.00799
8 ratio = 0.0477
9 p_dry_air = 28.966
10 R = RT/p_dry_air;
11 T = 90+460;
12 pdryair = 14.0;
13 vdryair = (R*T)/(pdryair*144);
14 print(pres1-pres2);
15 print(vol/vdryair);
```

```
16 print((mole/ratio)*100);
17 print((mole/ratio)*pres2);
18 print(pres1-((mole/ratio)*pres2));
19 print((mole/ratio)*pres2);
20
21 # The answer may slightly vary due to rounding off values.
```

R code Exa 7.15 solve the problem

```
1 # page no. 343
2
3 W = 0.005;
4 pm = 14.7;
5 pv = (W*pm)/(0.622+W);
6 print(pv);
7 pa = pm-pv;
8 print(pa);
9 pvs = 0.6988;
10 print(pvs);
11 phy = pv/pvs;
12 print(phy*100);
```

R code Exa 7.16 how much water was removed

```
1 # page no. 343
2
3 pm = 14.7;
4 phy = 0.7;
5 pvs = 0.6988;
6 pv = phy*pvs;
7 pa = pm-pv;
8 W = 0.622*(pv/pa);
```

```
9 phy = 0.4;
10 pvs = 0.5073;
11 pv = phy*pvs;
12 pa = pm-pv;
13 w = 0.622*(pv/pa);
14 print(W-w);
```

${f R}$ code ${f Exa}$ 7.18 Solve the problem

```
1 # page no. 347
2
3 total_pres = 14.7;
4 pres = 0.12;
5 print(total_pres-pres);
```

R code Exa 7.19 Solve the problem

```
1 # page no. 348
2
3 w1 = 150;
4 w2 = 61;
5 print(w1-w2);
6 print((w1-w2)/7000);
```

R code Exa 7.20 how much heat is required

```
1 # page no. 349
2
3 t_heat1 = 23.4
4 t_heat2 = 16.1
5 print(t_heat1-t_heat2)
```

R code Exa 7.23 Determine the amount of water

```
1 # page no. 358
2
3 h100F = 68.05;
4 h70F = 38.09;
5 h = 20.4;
6 w = 38.2;
7 H = 52.1;
8 W = 194.0;
9 ma = (200000*(h100F-h70F))/((H-h)-(h70F*((W-w)/7000)));
10 print(ma);
11 print(ma*((W-w)/7000));
12
13 # The answer may slightly vary due to rounding off values.
```

Chapter 8

Vapor Power Cycles

R code Exa 8.1 Determine the thermal Efficiency

```
1 # page no. 380
2
3 hf = 340.49;
4 h1 = hf;
5 h4 = 3230.9;
6 h5 = 2407.4;
7 nR = (h4-h5)/(h4-h1);
8 print(nR*100);
9 p2 = 3000;
10 p1 = 50;
11 vf = 0.001030;
12 Pumpwork = (p2-p1)*vf;
13 nR = ((h4-h5)-Pumpwork)/((h4-h1)-Pumpwork);
14 print(nR*100);
```

R code Exa 8.2 solve the problem

```
1 # page no. 381
```

```
2
3 hf = 340.49;
4 h1 = hf;
5 h2 = h1;
6 h4 = 3230.9;
7 h5 = 2407.4;
8 nR = (h4-h5)/(h4-h2);
9 print(nR*100);
10 Pumpwork = 343.59-340.54;
11 nR = ((h4-h5)-Pumpwork)/((h4-h1)-Pumpwork);
12 print(nR*100);
```

R code Exa 8.3 Sketch the cycle

```
1 # page no. 382
2
3 h1 = 180.15;
4 h2 = h1;
5 h4 = 1515;
6 h5 = 1150.5;
7 nR = (h4-h5)/(h4-h2);
8 print(nR*100);
9 p2 = 400;
10 p1 = 14.696;
11 vf = 0.01167;
12 J = 778;
13 Pumpwork = ((p2-p1)*vf*144)/J;
14 nR = ((h4-h5)-Pumpwork)/((h4-h1)-Pumpwork);
15 print(nR*100);
```

R code Exa 8.4 solve the problem

```
1 # page no. 383
```

```
3  h5 = 1150.4;
4  h2 = 180.17;
5  h1 = h2;
6  h4 = 1514.0;
7  t = 982.07;
8  h = 181.39;
9  nR = (h4-h5)/(h4-h2);
10  print(nR*100);
11  Pumpwork = h-h2;
12  nR = ((h4-h5)-Pumpwork)/((h4-h2)-Pumpwork);
13  print(nR*100);
```

R code Exa 8.5 what is the type of efficiency

```
1 # page no. 385
2
3 T1 = 982.4+460;
4 T2 = 212+460;
5 nc = ((T1-T2)/T1)*100;
6 print(nc);
7 nR = 27.3;
8 typen = (nR/nc)*100;
9 print(typen);
```

R code Exa 8.6 Calculate the type Efficiency

```
1 # page no. 385
2
3 T1 = 400+273;
4 T2 = 81.33+273;
5 nc = ((T1-T2)/T1)*100;
6 print(nc);
```

```
7  nR = 28.5;
8  typen = (nR/nc)*100;
9  print(typen);
```

R code Exa 8.7 What is the thermal Efficiency of this cycle

```
1 # page no. 386
2
3 work = 1515-1150.5;
4 available = 364.5-50;
5 n = available/(1515-180.15);
6 print(n*100);
```

R code Exa 8.8 Determine the Heat Rate

```
1 # page no. 387
2
3 heatrate = 3413/0.273;
4 print(round(heatrate));
5 print(3413/(1515-1150.5));
```

R code Exa 8.9 Determine the Efficiency

```
1 # page no. 388
2
3 h4 = 1515;
4 h5 = 1205;
5 h7 = 1413;
6 h1 = 180.15;
7 nreheat = ((h4-h5)+(h4-h7))/((h4-h1)+(h4-h7));
8 print(nreheat*100);
```

R code Exa 8.10 solve the problem

```
1 # page no. 389
2
3 h7 = 1413.6;
4 h4 = 1514.0;
5 h5 = 1205.2;
6 h1 = 180.17;
7 nreheat = ((h4-h5)+(h4-h7))/((h4-h1)+(h4-h7));
8 print(nreheat*100);
```

R code Exa 8.11 Determine the Efficiency

```
1 # page no. 394
2
3 \text{ h4} = 1505;
4 h5 = 922;
5 h6 = h5;
6 \text{ h1} = 69.74;
7 \text{ nR} = (h4-h5)/(h4-h1);
8 print(nR*100);
10 \text{ h5} = 1168;
11 h7 = 69.74;
12 \text{ h1} = 250.24;
13 W = ((1*h1)-h7)/(h5-h7);
14 print(W);
15 work = (1-W)*(h4-922) + W*(h4-h5);
16 print(work);
17 \text{ qin} = h4-h1;
18 n = work/qin;
```

```
19 print(n*100);
20 n = 1-(((h5-h1)*(h6-h7))/((h4-h1)*(h5-h7)));
21 W = (h1-h7)/(h5-h7);
22 print(n*100);
```

R code Exa 8.12 Compare the Results

```
1 # page no. 396
3 \text{ W2} = ((1*298.61) - 250.24)/(1228.6 - 250.24);
4 print(W2);
5 \text{ W1} = (((1-\text{W2})*250.24)-69.74+(\text{W2}*69.74))/(1168-69.74)
6 print(W1);
7 work = ((1505-1228.6)*1)+((1-W2)*(1228.6-1168))+((1-W2)*(1228.6-1168))
      W1-W2)*(1168-922));
8 print(work);
9 \text{ qin} = 1505-298.61;
10 print(qin);
11 n = work/qin;
12 print(n*100);
13 W2 = (298.61-250.24)/(1228.6-250.24);
14
15 print(W2);
16 \text{ W1} = ((1228.6 - 298.61) * (250.24 - 69.74)) / ((1168 - 69.74) *
      (1228.6-250.24));
17 print(W1);
18 n = 1-(((922-69.74)*(1228.6-298.61)*(1168-250.24))/
      ((1505-298.61)*(1228.6-250.24)*(1168-69.74)));
19 print(n*100);
```

R code Exa 8.13 Compare the Results

R code Exa 8.14 Determine the conventional thermal efficiency

```
1 # page no. 426
3 h5 = 1168;
4 \text{ h4} = 1505;
5 h6 = 922;
6 \text{ h1} = 69.74;
7 h7 = 69.74;
8 h2 = 250.24;
9 W = ((1*h2)-h7)/(h5-h7);
10 liquidleaving = (W*h2)+(1-W)*h1;
11 heatin = h4-liquidleaving;
12 print(heatin);
13 workout = ((1-W)*(h4-h6))+(W*(h4-h5));
14 print (workout);
15 n = workout/heatin;
16 print(n*100);
17 qout = W*(h5-h2);
18 n = (workout+qout)/heatin;
```

```
19 print(n*100);
20
21 # The answer may slightly vary due to rounding off
     values
```

Chapter 9

Gas power Cycles

R code Exa 9.1 Compare the Results

```
1 # page no. 462
2
3 Rc = 7;
4 k = 1.4;
5 notto = (1-(1/Rc)^(k-1))*100;
6 print(notto);
7 T2 = 70+460;
8 T4 = 700+460;
9 nc = (1-(T2/T4))*100;
10 print(nc);
11 T4 = 1000+460;
12 nc = (1-(T2/T4))*100;
13 print(nc);
14 T4 = 3000+460;
15 nc = (1-(T2/T4))*100;
16 print(nc);
```

R code Exa 9.2 Determine the efficiency

```
1 # page no. 463
3 library(MASS)
4 \text{ cv} = 0.172;
5 \text{ Rc} = 7;
6 k = 1.4;
7 T2 = 70+460;
8 	ext{ T4} = 1000+460;
9 T3byT2 = Rc^(k-1);
10 T3 = T3byT2*T2;
11 qin = cv*(T4-T3);
12 Qr = (ginv(Rc)[1])^(k-1);
13 T5 = T4*Qr;
14 Qr = cv*(T5-T2);
15 print(qin-Qr);
16 notto = ((qin-Qr)/qin)*100;
17 print(notto);
18
19 # The answer may slightly vary due to rounding off
      values.
```

R code Exa 9.3 Determine the peak temprature

```
1 # page no. 464
2
3 cv = 0.7186;
4 Rc = 8;
5 k = 1.4;
6 T2 = 20+273;
7 qin = 50;
8 T3byT2 = Rc^(k-1);
9 T3 = T3byT2*T2;
10 T4 = (qin/cv)+T3;
11 print(T4-273);
```

R code Exa 9.4 Calculate the Efficiency

```
1 # page no. 465
3 \text{ rc} = 7;
4 = 50;
5 p2 = 14.7;
6 	 T2 = 60+460;
7 \text{ cp} = 0.24;
8 \text{ cv} = 0.171;
9 R = 53.3;
10 k = 1.4;
11 v2 = (R*T2)/(p2*144);
12 print(v2);
13 p3 = p2*rc^k;
14
15 print(p3);
16 \text{ v3} = \text{v2/rc};
17 print(v3);
18 T3 = (p3*v3*144)/R;
19 print(T3);
20 \text{ v4} = \text{v3};
21 print(v4);
22 	ext{ T4} = 	ext{T3+(q/cv)};
23 print(T4);
24 p4 = (R*T4)/(144*v4);
25 print(p4);
26 \text{ v5} = \text{v2};
27 print(v5);
28 	 p5 = p4*(v4/v5)^k;
29 print(p5);
30 	ext{ T5} = (p5*v5*144)/(R);
31 print(T5);
32 n = (((T4-T3)-(T5-T2))/(T4-T3))*100;
```

```
33 print(n);
```

R code Exa 9.7 Determine the horsepower

```
1 # page no. 468
2
3 pm = 1000;
4 N = 4000/2;
5 LA = 2
6 hp = (pm*LA*N)/44760;
7 print(hp);
```

R code Exa 9.9 What is its compression ratio

```
1 # page no. 469
2
3 c = 0.2;
4 rc = (1+c)/c;
5 print(rc);
```

R code Exa 9.10 Determine the mean Effective pressure

```
1 # Page No : 470
2
3 hp = 100;
4 L = 4/12;
5 A = (pi/4)*(3)^2*6;
6 N = 4000/2;
7 pm = (hp*33000)/(L*A*N);
8 print(pm);
```

R code Exa 9.11 Determine the mean Effective pressure

```
1 # page no. 470
2
3 hp = 230;
4 LA = 3.3*1000*(1/2.54)^3;
5 N = 5500/2;
6 pm = (hp*33000*12)/(LA*N);
7 print(pm);
```

R code Exa 9.12 Find the efficiency

```
1 # page no. 478
2
3 library(MASS)
4 rc = 16;
5 v4byv3 = 2;
6 k = 1.4;
7 T2 = 100+460;
8 ndiesel = 1-((ginv(rc)[1])^(k-1)*(((v4byv3)^k-1)/(k*(v4byv3-1))));
9 print(ndiesel*100);
10 T5 = T2*(v4byv3)^k;
11 print(T5)
12 print(T5)
12 print(round(T5-460));
13
14 # The answer may slightly vary due to rounding off values.
```

R code Exa 9.13 Determine the network per pound

```
1 # page no. 479
3 \text{ rc} = 16;
4 v4byv3 = 2;
5 k = 1.4;
6 T2 = 100;
7 	 T5 = 1018;
8 \text{ ndiesel} = 0.614
9 \text{ cp} = 0.24;
10 \text{ cv} = 0.172;
11 Qr = cv*(T5-T2);
12 qin = Qr/(1-ndiesel);
13 J = 778;
14 networkout = J*(qin-Qr);
15 print(networkout);
16 mep = networkout/((16-1)*144);
17 print(mep);
18
19 # The answer may slightly vary due to rounding off
      values.
```

R code Exa 9.14 Determine the heat in

```
1 # page no. 489
2
3 library(MASS)
4 rc = 7;
5 k = 1.4;
6 cp = 0.24;
7 T3 = 1500;
8 p1 = 14.7;
9 T1 = 70+460;
10 R = 53.3;
```

```
11    nBrayton = 1-((ginv(rc)[1])^(k-1));
12    print(nBrayton*100);
13    v1 = (R*T1)/p1;
14    v2 = v1/rc;
15    T2 = T1*(v1/v2)^(k-1);
16    T2 = T2-460;
17    qin = cp*(T3-T2);
18    print(qin);
19    wbyJ = nBrayton*qin;
20    print(wbyJ);
21    print(qin-wbyJ);
22
23    # The answer may slightly vary due to rounding off values.
```

Chapter 10

Refrigeration

R code Exa 10.1 Calculate the heat removal

```
# page no. 503
2
3  T1 = 70+460;
4  T2 = 32+460;
5
6  COP = T2/(T1-T2);
7  print(COP);
8
9  Qremoved = 1000;
10  WbyJ = Qremoved/COP;
11  print(WbyJ);
12
13  Qrej = Qremoved+WbyJ;
14  print(Qrej);
```

R code Exa 10.2 Determine the COP of the Cycle

```
1 # page no. 504
```

```
2
3  T1 = 20+273;
4  T2 = -5+273;
5  COP = T2/(T1-T2);
6  print(COP);
7
8  Qremoved = 30;
9  W = Qremoved/COP;
10  print(W);
11  Qrej = Qremoved+W;
12  print(round(Qrej,2));
```

R code Exa 10.3 Determine the maximum COP for the cycle

```
1 # page no. 505
2
3 T1 = 70+460;
4 T2 = 20+460;
5 COP = T2/(T1-T2);
6 print(COP);
7
8 HPperTOR = 4.717/COP;
9 COPactual = 2;
10 HPperTORactual = 4.717/COPactual;
11 print(HPperTORactual-HPperTOR);
```

R code Exa 10.4 Determine the power required

```
1 # page no. 506
2
3 library(MASS)
4 COP = 4.5;
5 HPperTOR = 4.717/COP;
```

```
6 Qremoved = 1000;
7 HPrequired = HPperTOR*5;
8 print(HPrequired);
9 print(77.2*778*ginv(33000)[1]);
10 print((COP/12.95)*HPrequired);
```

R code Exa 10.5 Determine the power required

```
1 # page no. 506
2
3 COP = 10.72;
4 P = 2.8;
5 COPactual = 3.8;
6 power = P*COP/COPactual;
7 print(power)
```

R code Exa 10.6 Compute the problem

```
1 # page no. 509
2
3 h1 = 116.0;
4 h2 = 116.0;
5 h3 = 602.4;
6 s3 = 1.3938;
7 t4 = 237.4;
8 h4 = 733.4;
9
10 COP = (h3-h1)/(h4-h3);
11 print(COP);
12 print(h4-h3);
13 print(h3-h1);
14
15 tons = 30;
```

```
16 print((200*tons)/(h3-h1));
17
18 print(4.717*((h4-h3)/(h3-h1)));
```

R code Exa 10.7 solve the problem

```
1 # page no. 510
2
3 h1 = 30.14;
4 h2 = 30.14;
5 h3 = 75.110;
6 s3 = 0.17102;
7 h4 = 89.293;
8
9 COP = (h3-h1)/(h4-h3);
10 print(COP);
11 print(h4-h3);
12 print(h3-h1);
13
14 tons = 30;
15 print((200*tons)/(h3-h1));
16 print(4.717*((h4-h3)/(h3-h1)));
```

R code Exa 10.8 Determine the COP of the Cycle

```
1 # page no. 517
2
3 h1 = 28.713;
4 h2 = 28.713;
5 h3 = 78.335;
6 s3 = 0.16798;
7 s = 0.16798;
8 h4 = 87.192;
```

```
9 print(h3-h1);
10 print(h4-h3);
11 COP = (h3-h1)/(h4-h3);
12 print(COP);
```

R code Exa 10.9 solve the problem

```
1 # page no. 518
2
3 h1 = 41.6;
4 h2 = 41.6;
5 h3 = 104.6;
6 s3 = 0.2244;
7 h4 = 116.0;
8 print(h3-h1);
9 print(h4-h3);
10 COP = (h3-h1)/(h4-h3);
11 print(COP);
```

R code Exa 10.10 Find the horse power required

```
1 # page no. 518
2
3 T = -20;
4 h1 = 26.542;
5 n = 0.8;
6 h4 = 100.5;
7 h3 = 75.886;
8 m = (200*5)/(75.886-h1);
9 h4dashminush3 = (h4-h3)/n;
10 J = 778;
11 work = (h4dashminush3*m*J)/33000;
12 print(work);
```

```
13
14 h4dash = h4dashminush3+h3;
15 mdot = (m*(h4dash-h1))/(70-60);
16 print(mdot/8.3);
```

R code Exa 10.11 solve the problem

```
1 # page no. 521
2
3 h3 = 76.2;
4 h4 = 100.5;
5 n = 0.8;
6 work = (h4-h3)/n;
7 m = (200*5)/(h3-26.1);
8 J = 778;
9 totalwork = (m*work*J)/33000;
10 print(totalwork);
11 h4dash = h3+work;
12 mdot = (m*(h4dash-26.5))/(70-60);
13 print(mdot/8.3);
```

R code Exa 10.12 Determine the airflow required

```
1 # page no. 526
2
3 COP = 2.5;
4 cp = 0.24;
5 T1 = -100+460;
6 T3 = 150+460;
7 T4 = (3.5*T1)/COP;
8 T2 = (COP*T3)/3.5;
9 print(cp*(T4-T1));
10 print(cp*(T3-T2));
```

```
11  print((cp*(T3-T2))-(cp*(T4-T1)));
12  print(200/(cp*(T2-T1)));
13
14  # The answer may slightly vary due to rounding off values
```

R code Exa 10.13 Calculate the mass of water

```
1 # page no. 536
2
3 h1 = 58.07;
4 h2 = 13.04;
5 h3 = 1081.1;
6 m1 = 1;
7 m3 = (m1*h1-h2)/(h3+h2);
8 print(m3);
```

R code Exa 10.14 solve the problem

```
1 # page no. 536
2
3 h1 = 58.07;
4 h2 = 13.04;
5 h3 = 1081.1;
6 m1 = 1;
7 m3 = (m1*h1-h2)/(h3+h2);
8 m2 = 1-m3;
9 print(m3);
10 print(m3*(h3-h1));
11 print(m2*(h1-h2));
```

R code Exa 10.15 Determine the COP

```
1 # page no. 539
2
3 T1 = 70+460;
4 T2 = 32+460;
5 COP = T1/(T1-T2);
6 print(COP);
7 print(1077.2/77.2);
```

R code Exa 10.16 determine the work

```
1 # page no. 539
2
3 T1 = 70+460;
4 T2 = 0+460;
5 COP = T2/(T1-T2);
6 print(COP);
7 Qremoved = 1000;
8 WbyJ = Qremoved/COP;
9 print(WbyJ);
10 Qrej = Qremoved+WbyJ;
11 print(Qrej);
12 print(Qrej/WbyJ);
```

Chapter 11

Heat transfer

R code Exa 11.1 Determine the heat transferred

```
1 # page no. 553
2
3 deltaX = 6/12;
4 k = 0.40;
5 T1 = 150;
6 T2 = 80;
7 deltaT = T2-T1;
8 Q = (-k*deltaT)/deltaX;
9 print(Q);
```

R code Exa 11.2 Determine the heat transfer

```
1 # page no. 555
2
3 deltaX = 0.150;
4 k = 0.692;
5 T1 = 70;
6 T2 = 30;
```

```
7 deltaT = T2-T1;
8 Q = (-k*deltaT)/deltaX;
9 print(Q);
```

R code Exa 11.3 Determine the heat transferred

```
1 # page no. 556
2
3 deltaX = 6/12;
4 A = 1;
5 k = 0.40;
6 Rt = deltaX/(k*A);
7 deltaE = 9;
8 T1 = 150;
9 T2 = 80;
10 deltaT = T2-T1;
11 Re = (100*deltaE*Rt)/deltaT;
12 print(abs(Re));
13 i = deltaE/Re;
14 Q = 100*i;
15 print(abs(Q));
```

R code Exa 11.4 Determine the heat transferred

```
1 # page no. 558
2
3 deltaX = 6/12;
4 A = 1;
5 k = 0.40;
6 R = deltaX/(k*A);
7
8 print(R);
9 R1 = R;
```

```
10 deltaX = (1/2)/12;
11 A = 1;
12 k = 0.80;
13 R = deltaX/(k*A);
14
15 print(R);
16 R2 = R;
17 deltaX = (1/2)/12;
18 A = 1;
19 k = 0.30;
20 R = deltaX/(k*A);
21
22 print(R);
23 R3 = R;
24 \text{ Rot} = R1+R2+R3;
25 print(Rot);
26 \text{ T1} = 70;
27 	 T2 = 30;
28 \text{ deltaT} = T2-T1;
29 Q = deltaT/Rot;
30 print(abs(Q));
31
32 # The answer provided in the textbook is wrong
```

R code Exa 11.5 Calculate the temprature

```
1 # page no. 558
2
3 deltaX = 6/12;
4 A = 1;
5 k = 0.40;
6 R = deltaX/(k*A);
7
8 print(R);
9 R1 = R;
```

```
10 deltaX = (1/2)/12;
11 A = 1;
12 k = 0.80;
13 R = deltaX/(k*A);
14
15 print(R);
16 R2 = R;
17 deltaX = (1/2)/12;
18 A = 1;
19 k = 0.30;
20 R = deltaX/(k*A);
21
22 print(R);
23 \quad R3 = R;
24 \text{ Rot} = R1+R2+R3;
25 print(Rot);
26 \text{ T1} = 70;
27 	 T2 = 30;
28 \text{ deltaT} = T2-T1;
29 \ Q = deltaT/Rot;
30 print(abs(Q));
31
32 \text{ deltaT} = \mathbb{R} * \mathbb{Q}
33 deltaT = \mathbb{Q} * R1;
34 t1 = deltaT;
35 \text{ deltaT} = \mathbb{Q} * \mathbb{R}2;
36 t2 = deltaT;
37 \text{ deltaT} = \mathbb{Q} * R3;
38 t3 = deltaT;
39 \text{ deltaTo} = t1+t2+t3;
40 print(abs(deltaTo));
41
42 print(abs(T2)+abs(t1));
43 print(abs(T2)+abs(t1)+abs(t2));
```

R code Exa 11.6 Determine the heat transferred

```
1 # page no. 559
2
3 \text{ deltaX} = 0.150;
4 A = 1;
5 k = 0.692;
6 R = deltaX/(k*A);
8 print(R);
9 R1 = R;
10 \text{ deltaX} = 0.012;
11 A = 1;
12 k = 1.385;
13 R = deltaX/(k*A);
14
15 print(R);
16 R2 = R;
17 \text{ deltaX} = 0.0120;
18 A = 1;
19 k = 0.519;
20 R = deltaX/(k*A);
21
22 print(R);
23 R3 = R;
24 \text{ Ro} = R1+R2+R3;
25 print(Ro);
26 \text{ T1} = 0;
27 	ext{ T2} = 20;
28 \text{ deltaT} = T2-T1;
29 \ Q = deltaT/Ro;
30 print(abs(Q));
```

R code Exa 11.7 Determine the temperature

```
1 # page no. 560
 3 \text{ deltaX} = 0.150;
4 A = 1;
 5 k = 0.692;
 6 R = deltaX/(k*A);
8 print(R);
9 R1 = R;
10 \text{ deltaX} = 0.012;
11 \quad A = 1;
12 k = 1.385;
13 R = deltaX/(k*A);
14
15 print(R);
16 R2 = R;
17 \text{ deltaX} = 0.0120;
18 A = 1;
19 k = 0.519;
20 R = deltaX/(k*A);
21
22 print(R);
23 R3 = R;
24 \text{ Ro} = R1+R2+R3;
25 print(Ro);
26 \text{ T1} = 0;
27 	ext{ T2} = 20;
28 \text{ deltaT} = T2-T1;
29 \ Q = deltaT/Ro;
30 print(abs(Q));
31
32 \text{ deltaT} = \mathbb{Q} * \mathbb{R}1;
33 t1 = deltaT;
34 \text{ deltaT} = \mathbb{Q} * \mathbb{R}2;
35 t2 = deltaT;
36 \text{ deltaT} = \mathbb{Q} * \mathbb{R}3;
37 t3 = deltaT;
38 \text{ deltaTo} = t1+t2+t3;
```

```
39 print(abs(deltaTo));
40
41 print(abs(deltaTo)-abs(t1));
42 print(abs(deltaTo)-abs(t1)-abs(t2));
43 print(round(abs(deltaTo)-abs(t1)-abs(t2)-abs(t3)));
```

R code Exa 11.8 Determine the heat loss

```
1 # page no. 561
3 library(MASS)
4 \text{ deltaX} = 4/12;
5 A = 7*2;
6 k = 0.090;
7 Rfir = deltaX/(k*A);
8 print(Rfir);
9 deltaX = 4/12;
10 A = 7*2;
11 k = 0.065;
12 Rpine = deltaX/(k*A);
13 print(Rpine);
14 deltaX = 4/12;
15 A = 7*2;
16 k = 0.025;
17 Rcorkboard = deltaX/(k*A);
18 print(Rcorkboard);
19 Roverall = ginv(ginv(Rfir)+ginv(Rpine)+ginv(
      Rcorkboard))[1];
20 print(Roverall);
21 \text{ T1} = 60;
22 	ext{ T2 = 80};
23 deltaT = T2-T1;
24 Qtotal = deltaT/Roverall;
25 print(abs(Qtotal));
26 Qfir = deltaT/Rfir;
```

```
27 print(abs(Qfir));
28 Qpine = deltaT/Rpine;
29 print(abs(Qpine));
30 Qcorkboard = deltaT/Rcorkboard;
31 print(abs(Qcorkboard));
32 Qtotal = Qfir+Qpine+Qcorkboard;
33 print(abs(Qtotal));
```

R code Exa 11.9 Determine the Heat loss

```
1 # page no. 565
2
3 ro = 3.50;
4 ri = 3.00;
5 Ti = 240;
6 To = 120;
7 L = 5;
8 deltaT = Ti-To;
9 k = 26
10 Q = (2*pi*k*L*deltaT)/log(ro/ri);
11 print(Q);
12
13 # The answer may slightly vary due to rounding off values
```

R code Exa 11.10 Determine the Heat loss

```
1 # page no. 566
2
3 ro = 90;
4 ri = 75;
5 Ti = 110;
6 To = 40;
```

```
7 L = 2;
8 deltaT = Ti-To;
9 k = 45
10 Q = (2*pi*k*L*deltaT)/log(ro/ri);
11 print(Q);
```

R code Exa 11.11 Determine the heat loss

```
1 # page no. 567
3 library(MASS)
4 r2 = 3.50;
5 \text{ r1} = 3.00;
6 \text{ Ti} = 240;
7 L = 5;
8 k1 = 26;
9 ans1 = (ginv(k1)[1]*log(r2/r1));
10 \text{ r3} = 5.50;
11 	 r2 = 3.50;
12 \text{ To} = 85;
13 deltaT = Ti-To;
14 k2 = 0.026
15 ans2 = (ginv(k2)[1]*log(r3/r2));
16 Q = (2*pi*L*deltaT)/(ans1+ans2);
17 print(Q);
```

R code Exa 11.12 Determine the heat transfer

```
1 # page no. 569
2
3 library(MASS)
4 r2 = 3.50;
5 r1 = 3.00;
```

```
6 \text{ Ti} = 240;
7 L = 5;
8 k = 26;
9 Rpipe = log(r2/r1)/(2*pi*k*L);
10 print(Rpipe);
11 To = 70;
12 deltaT = Ti-To;
13 h = 0.9;
14 A = (pi*r2)/12*L;
15 Rconvection = ginv(h*A)[1];
16 print(Rconvection);
17 Rtotal = Rpipe+Rconvection;
18 print(Rtotal);
19 Q = deltaT/Rtotal;
20 print(Q);
21
22 # The answer may slightly vary due to rounding off
      values.
```

R code Exa 11.15 Determine the Heat loss

```
1 # page no. 574
2
3 D = 3.5/12;
4 Ti = 120;
5 To = 70;
6 deltaT = Ti-To;
7 h = 0.9;
8 L = 5;
9 A = (pi*D)*L;
10 Q = h*A*deltaT;
11 print(Q);
```

R code Exa 11.16 Determine the heat transfer

```
1 # page no. 575
3 library(MASS)
4 h = 1/2;
5 R = (3/12)/0.07;
6 Roverall = ginv(1/2)[1]+ginv(1/2)[1]+R;
7 print(Roverall);
8 \text{ Ti} = 80;
9 \text{ To} = 50;
10 deltaT = Ti-To;
11 Q = deltaT/Roverall;
12 print(Q);
13
14 print(Q/(1/2));
15 print(Q*R);
16 print(Q/(1/2));
17 h = 0.42;
18 Roverall = ginv(h)[1]+ginv(h)[1]+R;
19 print(Roverall);
20 Q = deltaT/Roverall;
21 print(Q);
22 print(Q/h);
23 print(Q*R);
24 print(Ti-(Q/h));
25 print(To+(Q/h));
26 print (Ti-(Q/h)-(To+(Q/h)));
28 # The answer may slightly vary due to rounding off
      values.
```

R code Exa 11.17 Determine the heat transferred

```
1 # page no. 578
```

```
2
3 G = ((20*60)*(4*144)/(pi*0.87^2));
4 mu = 0.33;
5 D = 0.87/12;
6 Re = (D*G)/mu;
7 print(Re);
8 h1 = 630;
9 F = 1.25;
10 h = h1*F;
11 print(h);
```

R code Exa 11.18 Determine the inside film coefficient

```
1 # page no. 579
2
3 G = ((20*60)*(4*144))/(pi*(0.87^2));
4 mu = 0.062;
5 D = 0.87/12;
6 Re = (D*G)/mu;
7 print(Re);
8 h1 = 135;
9 F = 1.25;
10 h = h1*F;
11 print(h);
```

R code Exa 11.19 Determine the Heat loss

```
1 # page no. 586
2
3 Fe = 0.79;
4 FA = 1;
5 sigma = 0.173*10^-8;
6 T1 = 120+460;
```

```
7 T2 = 70+460;
8 D = 3.5/12;
9 L = 5;
10 A = (pi*D)*L;
11 Q = sigma*Fe*FA*A*(T1^4-T2^4);
12 print(Q);
```

R code Exa 11.20 Determine the heat transferred

```
1 # page no. 588
2
3 Ti = 120;
4 To = 70;
5 deltaT = 120-70;
6 hrdash = 1.18;
7 Fe = 1;
8 FA = 0.79;
9 hr = Fe*FA*hrdash;
10 print(hr);
11 D = 3.5/12;
12 L = 5;
13 A = (pi*D)*L;
14 Q = 214.5;
15 hr = Q/(A*deltaT);
16 print(hr);
```

R code Exa 11.21 solve the problem

```
1 # page no. 589
2
3 Qtotal = 206.2+214.5;
4 print(Qtotal);
5 hcombined = 0.9+0.94;
```

```
6 D = 3.5/12;
7 Ti = 120;
8 To = 70;
9 deltaT = Ti-To;
10 L = 5;
11 A = (pi*D)*L;
12 Qtotal = hcombined*A*deltaT;
13
14 print(Qtotal);
```

R code Exa 11.22 Determine the over all heat transfer

```
1 # page no. 595
3 library(MASS)
4 A = 1;
5 \text{ deltax} = 6/12;
6 k = 0.40;
7 brickResistance = deltax/(k*A);
9 print(brickResistance);
10 deltax = (1/2)/12;
11 k = 0.80;
12 concreteResistance = deltax/(k*A);
13
14 print(concreteResistance);
15 deltax = (1/2)/12;
16 k = 0.30;
17 plasterResistance = deltax/(k*A);
18
19 print(plasterResistance);
20 h = 0.9;
21 hotfilmResistance = ginv(h*A)[1];
22
23 print(hotfilmResistance);
```

R code Exa 11.23 Determine the heat transferred

```
1 # page no. 596
2
3 hi = 45;
4 r1 = 3.0/2;
5 k1 = 26;
6 r2 = 3.5/2;
7 k2 = 0.026;
8 r3 = 5.50/2;
9 ho = 0.9;
10 Ui = 1/((1/hi)+((r1/(k1*12))*log(r2/r1))+((r1/(k2*12))*log(r3/r2))+(1/(ho*(r3/r1))));
11 print(Ui);
12 Uo = Ui*(r1/r3);
13 print(Uo);
```

R code Exa 11.24 Determine the outside tube surfaced

```
1 # page no. 601
2
3 thetaA = 215-90;
```

```
4 thetaB = 125-60;
5 deltaTm = (thetaA-thetaB)/log(thetaA/thetaB);
6 m = 400*60;
7 Cp = 0.85;
8 deltaT = 215-125;
9 Q = m*Cp*deltaT
10 U = 40;
11 A = Q/(U*deltaTm);
12 print(A)
13
14 # The answer may slightly vary due to rounding off values.
```

R code Exa 11.25 Determine the outside tube surfaced

```
1 # page no. 602
2
3 thetaA = 215-60;
4 thetaB = 125-90;
5 deltaTm = (thetaA-thetaB)/log(thetaA/thetaB);
6 m = 400*60;
7 Cp = 0.85;
8 deltaT = 215-125;
9 Q = m*Cp*deltaT
10 U = 40;
11 A = Q/(U*deltaTm);
12 print(A);
```

R code Exa 11.26 Calculate the surface required

```
1 # page no. 603
2
3 library(MASS)
```

```
4  U = 40;
5  Roil = 0.005;
6  Rwater = 0.001;
7  Rcleanunit = ginv(U)[1];
8  Roverall = Roil+Rwater+Rcleanunit;
9  Uoverall = ginv(Roverall)[1];
10  A = 569*(U/Uoverall);
11  print(A);
```

R code Exa 11.27 Determine the temprature

```
1 # page no. 605
2
3 t2 = 140;
4 t1 = 280;
5 T1 = 85;
6 T2 = 115;
7 P = (t2-t1)/(T1-t1);
8 R = (T1-T2)/(t2-t1);
9 F = 0.91;
10 LMTD = ((t1-T2)-(t2-T1))/log((t1-T2)/(t2-T1));
11 TMTD = F*LMTD;
12 print(TMTD);
```