Análisis Forense

ADQUISICIÓN DE EVIDENCIAS EN CALIENTE.

Jennifer

Índice

Índice	2
Introducción	3
Requisitos para realizar la práctica	3
Preparación del entorno	4
Máquina virtual window	4
Máquina virtual Linux	4
Extracción de evidencias digitales volátiles (RAM) Windows	5
OSF	7
Calcular el hash de las evidencias	10
FTK imager	10
Calcular el hash de las evidencias	12
Dumplt	12
Calcular el hash de las evidencias	14
Calcular hash usando sha512sum	15
Extracción de evidencias digitales volátiles (RAM) Linux	16
Microsoft AVML (linux)	16

aprenderás a realizar la adquisición de evidencias digitales en caliente, es decir, mientras el sistema aún se encuentra encendido y operativo. Se explican diversas herramientas y técnicas para extraer memoria RAM en sistemas Windows y Linux, calcular hashes y preservar la integridad de las evidencias volátiles. Es una guía paso a paso, útil para quienes quieren adentrarse en el análisis forense digital de sistemas activos.

Requisitos para realizar la práctica

Entorno virtual:

VirtualBox u otra herramienta similar.

Dos máquinas virtuales:

Una con Windows.

Otra con Linux.

Disco adicional Debian 12 para almacenar las evidencias.

Herramientas para Windows:

OSForensics (OSF)

FTK Imager

Dumplt

Comando: certutil -hashfile

Herramientas para Linux:

Kali Linux Live ISO

Microsoft AVML (herramienta en Rust para volcado de RAM)

Comando: sha512sum, mount, fdisk, ntfs-3g

Preparación del entorno

Máquina virtual window

Agregue un disco duro debían 12 para guardar la evidencia

Máquina virtual Linux

Agregue un disco duro debían 12 para guardar la evidencia

indice

Extracción de evidencias digitales volátiles (RAM) Windows

Comprobar que tenga el disco duro que le agregue para agregar ahí las evidencias.

Asignar una letra al disco que agregamos

1. Abrimos la terminal de windows con permisos de administrador y escribimos **diskpart**, listamos los discos que tenemos disponibles **list disk**

```
□ Administrador Símbolo del sistema - dískpart

C:\Windows\system32\diskpart

Microsoft DiskPart versión 10.0.19041.964

Copyright (C) Microsoft Corporation.
En el equipo: DESKTOP-3TLHLBI

DISKPART> list disk

Núm Disco Estado Tamaño Disp Din Gpt

Disco 0 En línea 24 GB 1024 KB

Disco 1 En línea 500 GB 0 B

DISKPART>

DISKPART>
```

- 2. Seleccionar el disco que se le asignará una letra:
 - a. Eliminamos la partición existente clean
 - **b.** Creamos una nueva partition create partition primary
 - c. Formateamos la partición con NTFS format fs=ntfs quick
 - d. Asignamos la letra assign letter=E

OSF

Es una herramienta de análisis forense digital desarrollada por PassMark Software. Está diseñada para ayudar a investigadores forenses a recopilar, analizar y gestionar evidencia digital en computadoras y dispositivos de almacenamiento.

1. Descargar la versión gratuita

2. Instalamos la herramienta

3. Seleccionar Visualizador de memoria y Realizar volcado de memoria física

4. Seleccionar en donde se va a guardar la evidencia

En window utilice el siguiente comando, mencionó que el hash es distinto ya que la memoria RAM es volátil y cambia constantemente mientras el sistema está en funcionamiento certutil -hasfile

FTK imager

Es una herramienta forense digital gratuita desarrollada por AccessData

1. Descargar e instalar la herramienta. Se tiene que descargar de su página oficial

2. Se abre la aplicación

- 3. Capturamos la Memoria RAM.
 - a. Seleccionar File/Capture Memory

b. Seleccionar el destino en mi caso lo pondré en el disco duro que agregue a la máquina virtual, y seleccionar los distintos formatos que se ofrecen, y seleccionar Capture Memory

c. Se crean tres archivos cada uno se puede analizar más tarde con la misma aplicación

Calcular el hash de las evidencias

En window utilice el siguiente comando, mencionó que el hash es distinto ya que la memoria RAM es volátil y cambia constantemente mientras el sistema está en funcionamiento.

certutil -hasfile

```
E:\>certutil -hashfile memdumpftk.mem sha512

SHA512 hash de memdumpftk.mem:
d803Gb738ae407d6b7f399845f2ef068a731072f2d3dc67ca20ff91578cb1d3dcafb4dcefb0fb98d9ebb9121e806b7522bed95f3b4bfe4a3b99dca2c
0a1d07fb
Certutil: -hashfile comando completado correctamente.

E:\>_
```

Dumplt

Es una herramienta forense que nos permite extraer el contenido completo de la memoria RAM

1. Descargar la herramienta, elegimos la versión gratuita, al ser una herramienta portal no requiere instalación.

2. Ejecutamos la herramienta y automáticamente se realiza el volcado de memoria al descargar la herramienta se descarga una carpeta comprimida la descomprimimos y ejecutamos como se captura en el instante debe ejecutarse en el lugar donde queremos la evidencia así que copie el archivo dumplt.exe y lo pegue en el disco duro que agregue

3. Capturar la memoria RAM, lo ejecutamos como administrador

4. Se abre una ventana y le damos yes

5. Se crean un archivo con extensión .dmp

Calcular el hash de las evidencias

En window utilice el siguiente comando, mencionó que el hash es distinto ya que la memoria RAM es volátil y cambia constantemente mientras el sistema está en funcionamiento. certutil -hasfile

Calcular hash usando sha512sum

Utilice un disco de arranque de kali live en virtual box

Escribir sudo fdisk -l para ver cual disco vamos a utilizar, crear una carpeta llamada mnt/window y montamos con

sudo mount -t ntfs-3g /dev/sdb1 /mnt/windows

```
-(kali⊕kali)-[~]
-$ sudo mount -t ntfs-3g /dev/sdb1 /mnt/windows
 -(kali⊕kali)-[~]
—$ cd /mnt/windows
 —(kali⊛kali)-[/mnt/windows]
$RECYCLE.BIN'
                copraosf2.mem
                                                       DumpStack.log.tmp
                                                                            pagefile.sys
                DESKTOP-3TLHLBI-20241029-093816.dmp
                                                                           'System Volume Information'
                                                       memcapture.ad1
copramosf.cfg
copramosf.mem
                DESKTOP-3TLHLBI-20241029-093943.dmp
                                                       memcapture.ad1.txt
                                                       memdumpftk.mem
copraosf2.cfg
                DumpIt.exe
 -(kali® kali)-[/mnt/windows]
```

Calcular el hash de cada una de las imágenes que realice en los apartados anteriores

```
(kali@ kali)-[/mnt/windows]
$ sha512sum copramosf.mem

055e9d7ca419bb2b102aba8f1cb5656c5b4d18e38be3e42cc06e21a907acb61743cd64e46e1f0c3646c476292e63d58dc5b35bfcb922311
467224287c485bda6 copramosf.mem

(kali@ kali)-[/mnt/windows]
$ sha512sum memdumpftk.mem

d8036b738ae407d6b7f399845f2ef068a731072f2d3dc67ca20ff91578cb1d3dcafb4dcefb0fb98d9ebb9121e806b7522bed95f3b4bfe4a
3b99dca2c0a1d07fb memdumpftk.mem

(kali@ kali)-[/mnt/windows]
$ sha512sum DESKTOP-3TLHLBI-20241029-093816.dmp
69547873a74d357cd0103af50ce60870883f2d4b3c470556c9910dc35582652e54d16fa655acb47d2a3debdeb272b55facac27a4cb5d507
51abe73d5344141c6 DESKTOP-3TLHLBI-20241029-093816.dmp

(kali@ kali)-[/mnt/windows]
```

Es una buena práctica sacar el hash en el sistema operativo donde se encuentra ya que si se cambia puede alterar un poco la evidencia.

<u>índice</u>

Extracción de evidencias digitales volátiles (RAM) Linux Microsoft AVML (linux)

Es una herramienta escrita en rust sirve para obtener el contenido de la memoria volátil de un sistema Linux; una de las ventajas de esta herramienta, es que no necesita conocer de entrada la distribución basada en Linux o kernel que se está utilizando.

 Descargue el fichero de los documentos compartidos por drive y lo descomprimi tar -xzvf avml.tgz

```
jenny@debian:~$ tar -xzvf avml.tgz
x86_64-unknown-linux-gnu/
x86_64-unknown-linux-gnu/CACHEDIR.TAG
x86_64-unknown-linux-gnu/release/
x86_64-unknown-linux-gnu/release/examples/
```

2. Revistas los discos que tenemos (sudo fdisk -l)

```
jenny@debian:~$ sudo fdisk -l
[sudo] contraseña para jenny:
Disco /dev/sda: 20 GiB, 21474836480 bytes, 41943040 sectores
Modelo de disco: VBOX HARDDISK
Unidades: sectores de 1 * 512 = 512 bytes
Tamaño de sector (lógico/físico): 512 bytes / 512 bytes
Tamaño de ef/S (mínimo/óptimo): 512 bytes / 512 bytes
Tipo de etiqueta de disco: dos
Identificador del disco: 0x17df26d8

Disposit. Inicio Comienzo Final Sectores Tamaño Id Tipo
/dev/sda1 * 2048 39942143 3994096 196 83 Linux
/dev/sda2 39944190 41940991 1996802 975M 5 Extendida
/dev/sda5 39944192 41940991 1996800 975M 82 Linux swap / Solaris

Disco /dev/sdb: 500 GiB, 536870912000 bytes, 1048576000 sectores
Modelo de disco: VBOX HARDDISK
Unidades: sectores de 1 * 512 = 512 bytes
Tamaño de sector (lógico/físico): 512 bytes / 512 bytes
Tamaño de E/S (mínimo/óptimo): 512 bytes / 512 bytes
Tipo de etiqueta de disco: dos
Identificador del disco: 0x3c21e163

Disposit. Inicio Comienzo Final Sectores Tamaño Id Tipo
/dev/sdb1 2048 1048573951 1048571904 500G 7 HPFS/NTFS/exFAT
jenny@debian:~$
```

3. Creo una carpeta donde se montará el disco y monto el disco en el nuevo punto de montaje sudo mkdir /mnt/evidencia

sudo mount -t ntfs-3g /dev/sdb1 /mnt/evidencia

```
jenny@debian:~$ sudo mount -t ntfs-3g /dev/sdb1 /mnt/evidencia
jenny@debian:~$ ■
```

4. Ejecuto la herramienta AVML ./avml /mnt/evidencia/imagram.lime

```
jenny@debian:~/x86_64-unknown-linux-gnu/release$ sudo ./avml /mnt/evidencia/imagram.lime
```

5. compruebo que sí se creó la imagen

```
jenny@debian:~/x86_64-unknown-linux-gnu/release$ sudo ./avml /mnt/evidencia/imagram.lime
jenny@debian:~/x86_64-unknown-linux-gnu/release$ cd /mnt/evidencia/
jenny@debian:/mnt/evidencia$ ls
imagram.lime
jenny@debian:/mnt/evidencia$ _
```

Calcular el hash sha512sum imaram.lime

```
jenny@debian:/mnt/evidencia$ sudo sha512sum imagram.lime
803ad90c05c30619f277a41698b05f28ed29d646c46f3415d9e7b48abb842b4d47198ac97f629ff5fadb7db4e31e6da7c46b
9fc7b7b4415fe6bb6b8404ace5f9 imagram.lime
jenny@debian:/mnt/evidencia$
```

7. Calcular el hash con otro sistema de arranque sin encender la máquina.

```
(kali@ kali)-[~]
$ sudo mkdir /mnt/evidenciakali

(kali@ kali)-[~]
$ sudo mount -t ntfs-3g /dev/sda1 /mnt/evidenciakali

(kali@ kali)-[~]
$ cd /mnt/evidenciakali

(kali@ kali)-[/mnt/evidenciakali]

$ ls

$
```

indice