Gyroid Fin Infill Pattern Ben Appleby, Project SunrIde,

12/04/2019

This infill is often found at a microscopic-level in butterfly wings. Its elastic strength is omnidirectional and uniform. The target weight for a carbon-fibre based part (according to OpenRocket) is 176.5g. For titanium and aluminium, this is 447g and 268g respectively.

Figure 1 | 20% Gyroid Infill Pattern with Shell

Infill Type	Infill Density	Theoretical Tensile Strength Reduction	PLA Weight (1.25g/cm^3)	Equivalent Titanium Weight (4.52g/cm^3)	Equivalent Aluminium Weight (2.7g/cm^3)
Gyroid	20%	25%	80g	289.28g	172.8g
Gyroid - Skeleton	20%	?	39g	141.02g	84.24g
Solid	100%	0%	204g	737.6g	440.64g

Figure 2 / Cost Savings and Strength Loss for different infill line distances (air gaps) (Baich, 2016)

The theoretical tensile strength reduction is 25% for a 20% infill, resulting in a 2mm line distance for the fins. This reduces cost by ~6% whilst resulting in a 25% loss of tensile strength. Printing with a shell thickness (wall) of zero results in a skeleton, which can be reinforced by wrapping with carbon fibre.

Figure 3 | 20% Gyroid Infill Skeleton (no-shell)

Printing the fin in solid titanium or aluminium with a shell will be acceptable to meet the requirements of the model. Both a gyroid aluminium infill with shell or titanium skeleton wrapped with carbon fibre will thus likely have the equivalent weight of setting the material to Carbon Fibre in OpenRocket.

References

Baich, L. (2016). *Impact of Infill Design on Mechanical Strength and Production Cost in.* YOUNGSTOWN STATE UNIVERSITY.

Tyson, E. (2019, April). *How to Use 3D Print Infill Settings - Increase Strength, Save Filament*. Retrieved from Rigid.ink: https://rigid.ink/blogs/news/optimum-infill