

Self Supervised Learning Methods for Imaging

Part 5: Identification Theory

Mike Davies, University of Edinburgh

Julián Tachella, CNRS, École Normale Supérieure de Lyon

Mathematical problems

- **1.** Signal Recovery: Given the signal model p_x , is there a unique x for y = Ax
- **2. Model Identification:** Can we *uniquely* identify the distribution p_x from the measurement distribution p_y ?
- All possible pairs of answers possible (eg. no signal recovery but model identification possible)
- Signal recovery has been extensively study in the compressed sensing community (generally assuming that p_x is a k-sparse model.

Signal Recovery

Signal recovery only possible if supp $p_x = \mathcal{X}$ is **low-dimensional**.

There are multiple ways to 'measure' low-dimensionality.

A popular choice is **box-counting dimension**:

$$\dim(\mathcal{X}) = \lim_{\epsilon \to 0} - \frac{\log N(\mathcal{X}, \epsilon)}{\log \epsilon}$$

where $N(X, \epsilon)$ is the size of an ϵ -covering of X

Examples: Sparse dictionaries, manifold models, union-of-subspace models, etc. [Bourrier et al., 2014]

Signal Recovery

Theorem: [Sauer et al., 1991] A signal $x \in \mathcal{X} \subset \mathbb{R}^n$ with $\dim(\mathcal{X}) = k$ can be uniquely recovered from y = Ax with almost every $A \in \mathbb{R}^{m \times n}$ if m > 2k.

Model Identification

Model identification is a linear inverse problem in infinite dimensions

$$p_{y}(y) = \int p(y|x)p_{x}(x)dx$$

$$p_{\mathbf{y}} = \mathcal{A}(p_{\mathbf{x}})$$

• Here we assume access to p_y , however, in practice we only have finite observations $\hat{p}_y = \sum_{i=1}^N \delta_{y_i}$

Can we learn with noise?

Noisy measurement setting $y = x + \epsilon$

• For additive noise p(y|x) = g(x - y):

$$p_{\mathbf{y}} = \mathcal{N}(0, I\sigma^2) * p_{\mathbf{x}}$$

- This is a deconvolution problem!
- In Fourier we have, $\phi_y(\omega) = \phi_x(\omega) \, \hat{g}(\omega)$ where ϕ_x and ϕ_y are the characteristic functions of p_x and p_y , and \hat{g} is the Fourier transform of g.

Can we learn with noise?

• Since $\mathcal{N}(\mathbf{0}, I\sigma^2)$ is an invertible kernel $\hat{g}(\boldsymbol{\omega}) \neq 0$ for all $\boldsymbol{\omega}$, we can identify p_x from p_y

Proposition [T. et al., 2023]: For additive noise with nowhere zero characteristic function, it is possible to uniquely identify p_x from p_v .

For non-additive noise (eg. Poisson), the problem is slightly harder

Geometric intuition

Toy example (n = 3): Signal set is $\mathcal{X} = \text{supp } p_{\mathcal{X}} = \text{span}[1,1,1]^{T}$, Gaussian noise.

Incomplete Measurements

We now consider incomplete measurements $y_i = A_{g_i}x_i$ with $g \in \{1, ..., G\}$

• Either multiple operators, or equivariance $A_g = AT_g$

Can we **uniquely** identify the distribution p_x from the measurement distribution p_y when the A_a 's are incomplete?

• If p_x has a low-dimensional support, we can focus on recovering supp $p_x=\mathcal{X}$ from supp $p_y=\left\{A_g\mathcal{X}\right\}_{g=1:G}$

Geometric intuition

Toy example (n = 3, m = 2**):** Signal set is $\mathcal{X} = \text{span}([1,1,1]^T)$ Forward operator A keeps first 2 coordinates.

Geometric intuition

Toy example (n = 3, m = 2**):** Signal set is $\mathcal{X} = \text{span}[1,1,1]^T$. Forward operator A keeps first 2 coordinates. Now with explicit shift symmetry

$$\mathcal{X} = \bigcap_{g \in G} A_g^{-1} \mathcal{Y}$$

Sufficient Condition

• Multiple operator setting: assume $A_1, ..., A_G$ are **generic**

Theorem [T. et al., 2023]: Identifying a k-dimensional \mathcal{X} from observed sets $\left\{\mathcal{Y}_g = A_g \mathcal{X}\right\}_{g=1}^G$ is possible by almost every $A_1, \dots A_G \in \mathbb{R}^{m \times n}$ if

$$m > k + \frac{n}{G}$$

- If G > n, then the bound is similar to signal recovery.
- 'almost-every' result, doesn't say what happens for a specific subset (eg MRI operators).

Sufficient Condition

• Single operator setting: assume *A* is **generic**

Theorem [T. et al.]: G cyclic group. Identifying k-dim G-invariant set \mathcal{X} possible by almost every $A \in \mathbb{R}^{m \times n}$ with

$$m > 2k + \max c_j + 1 \ge 2k + \frac{n}{|G|} + 1$$

where c_i is the multiplicity of the representation.

- If G > n, then the bound is similar to signal recovery.
- 'almost-every' result, doesn't say what happens for a specific subset (e.g. MRI operator).

Can we learn any model?

Do we need the low dimensional assumption?

We can analyse identifiability using the characteristic function $\phi_x(\omega)$

• For finite groups/finite operators, we only observe ϕ_x in $\bigcup_{g \in G} \operatorname{range}(A_g)$:

$$\mathbb{E}_{y} e^{\mathrm{i}\boldsymbol{\omega}^{\mathsf{T}} A_{g}^{\dagger} y} = \mathbb{E}_{x} e^{\mathrm{i}x^{\mathsf{T}} A_{g}^{\dagger} A_{g} \boldsymbol{\omega}} = \phi_{x} (A_{g}^{\dagger} A_{g} \boldsymbol{\omega})$$

Theorem [Cramer and Wold, 1936]: Any distribution p_x is uniquely determined by **all** its one-dimensional (m = 1) projections.

Can we learn any model?

In practice, the Cramer Wold theorem is not verified, as it requires infinitely diverse operators.

• To uniquely identify p_x we need that $\bigcup_{g \in G} \operatorname{range}(A_g) = \mathbb{R}^n$ which only holds for $G \to \infty$

References

The full reference list for this tutorial can be found here:

https://tachella.github.io/projects/selfsuptutorial/

