Understanding Clouds from Satellite Images

Department of Computer Science Illinois Institute of Technology March 30, 2021

Problem statement

Build a deep learning to model to detect four types of shallow cloud formations in satellite images (Sugar, Flower, Fish and Gravel).

Motivation

Improve the physical understanding of cloud formations and help build better climate

2 1

Background materials

Two different approaches for cloud detection:

- Object detection: draws bounding boxes around the cloud formations.
 Semantic segmentation: classifies every point of the image, assigning them a category depending on the cloud formation.
 The model used a Lab

Secondary source

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science, 234-241. doi:10.1007/978-3-319-24574-4_28

They design and describe a model network used for semantic segmentation: U-Net.

Proposed solution

Semantic segmentation:

It is a form of pixel-level prediction by clustering parts of an image together which belong to the same object

A mask is a representation of the target as an image where a specific class is present.

Initially a single mask overlaying all the clouds in an image was designed.

4 3

Proposed solution

Network proposed in the paper:

U-Net with a Resnet50

Backbone

1. We have built and trained the original U-Net from scratch.
2. We have trained and used the pretrained U-Net with the Resnet50 Backbone.
3. Multiple results have been obtained and compared.

5 6

Implementation details

Image Generators and yield functions have been used.

Results of hyper-parameter tuning:

Adam Optimizer

Output function: 'Sigmoid' (pixels normalized between 0 and 1)

Batch size: 16

Loss: binary cross entropy + dice loss (measure of overlap between images)

Epochs:

Our model: 100 epochs (very long training time)

Pretrained model: 20 epochs.

9 10

Results

11 12

13 14

15 16

17 18

Conclusions

- Understand the data before training (pre-processing)!
- Use multiple image masks in semantic segmentation!
 Use generators and yield functions to prevent RAM overflow!
 Transfer learning is a great solution when limited resources are available.

Q & A Thank you for your time! Any questions?

20 19