

Benefit-Risk of Multiple Sclerosis Treatments: Lessons Learnt in Multi-Criteria Decision Analysis

BBS Spring Conference Comparative Quantitative Assessments: Benefit-Risk & Effectiveness

Richard Nixon & Pedro Oliveira

Novartis AG and RTI Health Solutions May 10 2011

Overview

- Introduction and motivation
- Case study applying multi-criteria decision analysis (MCDA) in benefit-risk assessment of relapsing-remitting multiple sclerosis (RRMS) treatments
- Lessons learnt

Etiology

- This work was done by Pedro Oliveira on a summer placement from Sheffield University
- The principal objectives where
 - To gain experience in Multi-Criteria Decision Analysis
 - To produce a thesis for Pedro's degree
- This case study was used as an example to achieve these objectives

3 | Lessons Learnt in MCDA | Richard Nixon | May 2011

What is a Benefit-Risk Assessment?

Both a quantitative method and a qualitative framework

- Qualitative framework gives the structure
 - What is the decision that the assessment is supporting?
 - Which drugs, indication, patient population and perspective?
 - Which benefit and risk criteria are relevant to the assessment?
 - Which sources of evidence are relevant?
 - How to trade-off benefits and risks?
- Quantitative method
 - Methods for collecting and synthesizing the objective evidence and subjective judgments
 - Metrics for measuring the benefit-risk (e.g. clinical utility index)

What a Benefit-Risk Assessment is NOT

It does not make decisions, rather it supports decision makers

- Benefit-risk assessment does not give you the answer
- Experts make the decision
 - Expert judgment plays the central role
 - Frameworks and models by themselves are insufficient
- Expert knowledge is structured and decomposed in a framework. This helps to:
 - Understand the problem
 - Assess the main drivers of a decision
 - Communicate issues in a transparent, rational and consistent way
 - Appropriately handle uncertainty and perform sensitivity analysis

5 | Lessons Learnt in MCDA | Richard Nixon | May 2011

Motivation for Benefit-Risk methods

- Increasing attention is being given to quantitative benefit-risk assessments
 - EMA Benefit-Risk methodology project
 - PhRMA BRAT Framework
 - IMI PROTECT WP5
 - ISPOR Risk-Benefit Management Working Group
 - EFPSI working group on Benefit-Risk

Motivation for using relapsing remitting multiple sclerosis (RRMS) case study

- RRMS is a serious disease affecting the central nervous system
 - Progressive, chronic, inflammatory disease that can seriously affect quality of life
- The main current first-line treatments
 - Are effective at reducing the progression of the disease and the rate of relapse
 - But also have frequent or serious adverse events associated with them
 - How to judge if the benefits are worth the risks?

7 | Lessons Learnt in MCDA | Richard Nixon | May 2011

Susan has RRMS and is deciding on the treatment she prefers.

	Avonex	Movectro
Relapses per year	0.27	0.14
Chance of flu-like symptoms in during the next two-years	94%	43%
Convenience	Weekly IM injection	Monthly oral
Serious herpes zoster	0%	0.2%
Hepatic adverse events	0%	0.7%

- Are there other adverse events she should also consider?
- Which treatment should she take?
- Or should she consider Copaxone or Tysabri?

Steps in performing a benefit-risk analysis

PrOACT-URL framework 1

- Generic framework for framing and analyzing decisions
- Apply framework to multi-criteria decision analysis (MCDA)
- Some of the steps will be more substantive than others when applied to MCDA

1 Hammond JS, Keeney RL, Raïffa H (1999). Smart Choices: a practical guide to making better decisions. Harvard Business Press

9 | Lessons Learnt in MCDA | Richard Nixon | May 2011

LTERNATIVES

ONSEQUENCES

RADE

NCERTAINTY

TOLERANO

DECISIONS

Problem

Identify the fundamental problem

- Four first-line therapies for RRMS (in summer 2010)
 - Avonex, Copaxone, Tysabri and Movectro
- These drugs have favourable and unfavourable effects
- Take the patient perspective
- How do we decide among them?

Treatment

OBLEM OBJECTIVES LITERNATIVES ONSEQUENCES RADE NCERTAINTY TOLERANCE

Objectives

Identify the overall value and the criterion categories

11 | Lessons Learnt in MCDA | Richard Nixon | May 2011

OBLEM OBJECTIVES

LTERNATIVES

ONSEQUENCE

RADE

NCERTAINT^{*}

ISK TOLERANC INKED DECISIONS

Adverse events of first-line treatments

Many adverse events are observed

	Avonex	Copaxone	Tysabri	Movectro
Hepatic and hematologic abnormalities	X	X	X	X
Common adverse events				
Injection-site reactions	X	X	Х	
Flu-like symptoms	X	X	X	Х
Fatigue	Х		Х	
Headache	X			
Immediate post-injection reactions		X	Х	
Lipatrophy		X		
Serious adverse events				
Rare malignancies	X			
Progressive Multifocal Leukoencephalopathy			X	
Serious herpes zoster				Х

OBLEM OBJECTIVES LITERNATIVES ONSEQUENCES RADE OFFS NCERTAINTY TOLERANCE DECISIONS

Adverse events of first-line treatments

Many adverse event types can be reported in different ways

 Flu-like symptoms reported in many ways in different studies

How to combine these onto a common scale?

Headache Rhinitis
Chills Cough

Upper respiratory tract infection Bronchitis
Nasopharyngitis Dyspnea

Oropharyngeal pain Influenza / flu syndrome

Laryngismus Lower respiratory tract or lung infection

Pyrexia / fever Flu-like symptoms

Chronic sinusitis Pneumonia

13 | Lessons Learnt in MCDA | Richard Nixon | May 2011

OBLEM BJECTIVES

ALTERNATIVES

ONSEQUENCE

RADE

NCERTAINT

ISK TOLERANO INKED DECISIONS

Alternatives

Identify the possible decisions to be evaluated against the criteria

- Generally in MCDA there are multiple decisions to be made
- This leads to many combinations of possible decisions (strategies)
- However, in this situation there is only one decision to make: which treatment should the patient take to treat her RRMS?

Avonex: 30mcg, im, qw

• Copaxone: 20mg, sc, qd

• Tysabri: 300mcg, iv, qm

Movectro: 3.5mg/kg, oral, 8-20 times per year

OBLEM BJECTIVES LTERNATIVES CONSEQUENCES RADE NCERTAINTY TOLERANCE DECISIONS

Consequences

What are the observations relevant to the criteria?

- We considered data only from the pivotal Phase III studies
 - Benefits are calibrated to Movectro patients by using the Movectro placebo benefit and the relative/hazard ratio of the given drug compared to its respective placebo.

	# Patients / 1000			
	Avonex	Copaxone	Tysabri	Movectro
Adverse events				
Flu-like symptoms	938	533	485	433
Injection-site reactions	125	980	252	0
Serious herpes zoster	0	0	0	2
Hepatic adverse events	0	0	55	7
Benefits				
Relapses	270	234	104	140
EDSS progression	134	199	128	154
Convenience	i.m. qw	s.c. qd	i.v. qm	Oral qm

15 | Lessons Learnt in MCDA | Richard Nixon | May 2011

Trada offa (1)

QUENCES TRA

NCERTAINTY >

TOLERANC

INKED DECISIONS

Trade-offs (1)

Partial value functions for each criterion

- A partial value function maps the range of plausible outcomes for each criteria to the range [0,1]
- Assume a linear partial value function for each adverse event and benefit criteria

Number of relapses per 1000 patients at one year

Trade-offs (2)

Within-category weights are elicited

- Benefit-risk analysis must contain subjective value judgments
- We used a "bottom-up swing weights" method
 - Rank-order the criteria by the relative value of bringing each from its worst to its best plausible outcome
 - Assign the top-ranked criterion a weight of 100, and assign the others weights corresponding to their (subjective) relative values.

		Outco	omes		
Criterion	Unit of measurement	Worst	Best	Rank	Weight
Relapses	Number of relapses in 1000 patients in one year	400	80	2	40
Disability progression	Number of of patients out of 1000 whose EDSS scores increases by at least 1 point at two years		100	1	100

17 | Lessons Learnt in MCDA | Richard Nixon | May 2011

Trade-offs (3)

Between-category weights are elicited

Take the top-ranked criterion from each category, and compare these in the same way as the within-category weights

		Outcomes			
Category	Unit of measurement	Worst	Best	Rank	Weight
	Administration route and frequency	Oral, once a month	Subcutaneous injection, daily	3	30
progression	Number of patients out of 1000 whose EDSS scores increase by at least 1 point at two years	270	100	1	100
zoster	Number of patients out of 1000 with AE in two years	3	0	2	90

Trade-offs (4)

Weights measure and accumulate the relative values of the criteria

category weights $r_b' = \frac{r_b}{r_a + r_b + r_c}$

> **Normalized** within category weights

$$r_{b1}' = \frac{r_{b1}}{r_{b1} + r_{b2}}$$

Cumulative weights $W_{b1} = r_b' r_{b1}$ $\sum w..=1$

19 | Lessons Learnt in MCDA | Richard Nixon | May 2011

TRADE OFFS

Trade-offs (5)

Put it all together

BLEM BJECTIV

Overall results

 Although Tysabri has the highest benefit-risk from efficacy, the convenience of Movectro gives it the highest overall benefit-risk

21 | Lessons Learnt in MCDA | Richard Nixon | May 2011

OBLEM BJECTIVES

LTERNATIVES

ONSEQUENCES

RADE

UNCERTAINTY

ISK FOLERANC INKED DECISIONS

Uncertainty

Deterministic sensitivity analysis

- Deterministic sensitivity analysis of the weights
 - Could also look at the value functions
- Vary each of them one at a time and assess the effect on the benefit-risk balance
- Assess where the "tipping points" of a decision are
- If convenience did not matter so much to you, maybe you would choose Tysabri

 • Weight decrease

Variation of incremental benefit-risk of Movectro over Tysabri due to a variation of +/- 20% in weights for the average respondent

OBLEM BJECTIVES LITERNATIVES ONSEQUENCES RADE UNCERTAINTY TOLERANCE DECISIONS

Uncertainty

Deterministic sensitivity analysis

 The between-category efficacy weight would have to change from 0.45 (basecase) to 0.68 for Tysabri to be preferred treatment

23 | Lessons Learnt in MCDA | Richard Nixon | May 2011

OBLEM BJECTIVES LTERNATIVES ONSEQUENCES RADE OFFS UNCERTAINTY TOLERANCE

Uncertainty

Stochastic sensitivity analysis

- Could also perform a stochastic sensitivity analysis of the
 - Clinical effects of the different treatments
 - Judgments of the different treatments
- Stochastic sensitivity analysis could be performed, e.g. by using Monte Carlo simulation with sampling from distributions of various parameters
 - For clinical effects this comes from the evidence synthesis
 - For judgments distributions could be based on eliciting distributions for the weights, and/or combining weights from different people
- Results would include
 - Distribution of benefit-risk score for each treatment
 - Probabilities that each treatment has the highest score

OBLEM BJECTIVES LITERNATIVES ONSEQUENCES RADE OFFS NCERTAINTY TOLERANCE DECISIONS

Risk tolerance and linked decisions

Risk in this context mean uncertainty

Risk tolerance

- Uncertainty analysis indicates how robust the benefit-risk assessments are
- Are there factors that could affect the decision makers attitude and accept more uncertainty? E.g. Orphan drug or high unmet need

Linked decisions

- Consistency with other decisions
- How this decision could set a president for future decisions

25 | Lessons Learnt in MCDA | Richard Nixon | May 2011

Lessons learned

Improvements and developments

- Perform a more rigorous evidence synthesis, for example using mixedtreatment-comparisons, possible with case-mix adjustment.
- Choice of adverse events should have included progressive multifocal leukoencephalopathy (PML) for Tysabri.
- Use Patient Reported Outcomes, for example discrete choice experiments included in a clinical study, to assess patient values directly from patients.
- Include a probabilistic sensitivity analysis on clinical parameters.
- Use an underlying disease progression model to incorporate long-term effects of RMMS.
- Use MCDA to identify patient segments who would most benefit from a treatment.
- Use MCDA in development decisions. E.g. Go/no-go or indication selection.

Take home messages

- MCDA is a framework well suited to benefit-risk analysis
- MCDA analysis does not give you the answer
 - It is a framework for decomposing and understanding a problem
 - Assesses the main value drivers of a decision
 - Communicate issues in a transparent, rational and consistent way
- Benefit-risk analysis is conceptually easy but hard to operationalize
 - Define consistent criteria across decision options, find data matching these criteria, and elicit value judgments

27 | Lessons Learnt in MCDA | Richard Nixon | May 2011

Acknowledgements

- Didier Renard
- François Mercier
- Gordon Graham
- Gordon Francis
- Fabrice Bancken
- William Collins
- Marisa Bacchi
- Daniela Piani Meier
- Ana de Vera

References

MCDA

- Belton V, Stewart TJ (2002). Multiple criteria decision analysis: an integrated approach. Norwell, MA: Kluwer Academic Publishers.
- Mussen P, Salek S, Walker S (2009). Benefit-risk appraisal of medicines: a systematic approach to decision-making. Chichester: Wiley-Blackwell.
- Hammond JS, Keeney RL, Raïffa H (1999). Smart Choices: a practical guide to making better decisions. Harvard Business Press

Working groups

- EMA Benefit-Risk methodology project.
 http://www.ema.europa.eu/ema/index.jsp?curl=pages/special_topics/document_listing/document_listing_000314.j
 sp&murl=menus/special_topics/special_topics.jsp&mid=WC0b01ac0580223ed6&jsenabled=false
- PhRMA Benefit-Risk Action Team (BRAT) Framework. Clinical Pharmacology & Therapeutics. 2011:2;312–315. DOI:10.1038/clpt.2010.291
- IMI Pharmacoepidemiological Research on Outcomes of Therapeutics by a European ConsorTium (PROTECT).
 WP5: Benefit-risk integration and representation. http://www.imi-protect.eu/wp5.html
- International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Risk-Benefit Management Working Group. Guo et al. Value in Health. 2010:5;657-666. DOI: 10.1111/j.1524-4733.2010.00725.x

29 | Lessons Learnt in MCDA | Richard Nixon | May 2011

Appendix

Assumptions of linear additive value model

- Partial value functions satisfy interval scale properties changes in attributes rather than attributes themselves matter
- Preferential independence: elicitation of relative preference between a subset of criteria not affected by levels of attributes achieved in criteria outside the subset
- Note: Linearity of partial value functions is <u>not</u> a feature of the linear additive model.

31 | Lessons Learnt in MCDA | Richard Nixon | May 2011

OBLEM BJECTIVES LTERNATIVES ONSEQUENCES TRADE OFFS NCERTAINTY TOLERANCE DECISIONS

Trade-offs (1)

Partial value functions for each criterion

- A partial value function maps the range of plausible outcomes for each criteria to the range [0,1]
- Assume a linear partial value function for each adverse event and benefit criteria

Convenience criteria	Value
Oral, once a month	1
Oral, daily	0.9
Intramuscular injection, once a week	0.4
Subcutaneous injection, daily	0
Intravenous infusion, every month	0.3

Number of relapses per 1000 patients at one year

