

# BÁO CÁO ROS XÂY DỰNG VÀ MÔ PHỎNG THIẾT LẬP ĐIỀU KHIỂN ROBOT

Họ và tên Nguyễn Đào Đức Thắng Mã sinh viên 22027509

#### I,Mục tiêu dự án

#### Kiểm tra thiết kế robot

- Xác nhận cấu trúc cơ khí của robot, bao gồm các liên kết, khớp và cơ chế truyền động.
- Đánh giá khả năng hoạt động của hệ thống điều khiển.

# Phát triển thuật toán điều khiển

- Kiểm tra thuật toán điều khiển phản hồi, PID, điều khiển quỹ đạo cho robot di chuyển.
- Tối ưu hóa thuật toán di chuyển cho robot bốn chân, robot có bánh xe hoặc robot bay.

# Mô phỏng cảm biến và xử lý dữ liệu

- Tích hợp và kiểm tra dữ liệu từ cảm biến LiDAR, camera, IMU, GPS, v.v.
- Xây dựng thuật toán xử lý ảnh, điều hướng, SLAM và tránh chướng ngại vât.

#### Mô phỏng tương tác vật lý

- Mô phỏng động lực học của robot (khối lượng, trọng lực, ma sát, va cham).
- Kiểm tra khả năng di chuyển trên các địa hình phức tạp.

# Tăng tốc phát triển và giảm chi phí

- Giảm thiểu rủi ro hư hỏng robot trong thử nghiệm thực tế.
- Tăng tốc quá trình phát triển bằng cách thử nghiệm nhiều kịch bản khác nhau mà không cần thay đổi phần cứng.

# Kết hợp với ROS để kiểm tra hệ thống điều khiển

- Kết hợp Gazebo với **ROS** (**Robot Operating System**) để thử nghiệm và tinh chỉnh hệ thống phần mềm điều khiển.
- Mô phỏng hệ thống phân tán, robot tự động và phối hợp nhóm robot.

### II,Động học robot

Robot bánh xích di chuyển dựa trên nguyên tắc vi sai:

- Hai dải xích hoạt động độc lập, tốc độ khác nhau giúp robot quay trái/phải.
- Khi hai xích có cùng tốc độ, robot di chuyển thẳng.
- Khi một xích đứng yên và xích còn lại quay, robot quay tại chỗ.

Phương trình động học

$$v=rac{v_L+v_R}{2}$$

$$\omega = rac{v_R - v_L}{b}$$

#### Kích thước



III Thiết kế robot ,cách đặt hệ trục

- Probot bánh xích với thiết kế nhỏ gọn, phù hợp cho các nhiệm vụ di chuyển trên địa hình phức tạp.
- Hệ thống bánh xích giúp robot có khả năng bám đường tốt, di chuyển ổn định trên bề mặt gồ ghề.
- Phần thân có dạng hộp chữ nhật với các góc bo tròn, giúp giảm lực cản khi di chuyển.

#### Cấu Trúc Chính

## Khung gầm:

 Thiết kế dạng hộp kín có thể chứa linh kiện điện tử, động cơ và nguồn cấp điện bên trong.

#### • Hệ thống bánh xích:

- Bao gồm hai bánh chủ động lớn ở hai bên và một số bánh phụ để dẫn hướng xích.
- o Xích bao quanh các bánh xe giúp robot di chuyển êm ái và ổn định.

# Cánh tay hoặc cơ cấu nâng phía trên:

Có một tay gắp hoặc cơ cấu nâng nhỏ gắn trên phần thân, có thể xoay quanh một trục cố định.

#### Thiết kế trên solid



Thân bo tròn giảm lực cản khi di chuyển



Xe hoàn chỉnh

Đặt hệ trục tọa độ





Trục X: Hướng về phía trước hoặc sau robot Trục Y: Hướng sang trái hoặc phải của robot

Trục Z: Hướng lên hoặc xuống

Pointbase (Point) Pointtrcphai (Point) Pointsauphai (Point) Pointtrctrai (Point) Pointsautrai (Point) Pointtam1 {Point1} Pointtam2 {Point2} Axisbase (Axis) Axistrcphai (Axis) Axissauphai {Axis} Axistrctrai (Axis) Axissautrai (Axis) Axistam1 (Axis1) Axistam2 (Axis2) Coordinate Systembase (Coord ♣ Coordinate Systemtrcphai {Coc ♣ Coordinate Systemsauphai {Co ♣ Coordinate Systemtrctrai {Coor ♣ Coordinate Systemsautrai {Coo ♣ Coordinate Systemtam1 (Coorc ♣ Coordinate Systemtam2 (Coorc

Sau khi xuất URDF thành công



#### VI Mô tả file URDF

# Cấu trúc robot giả định

- base\_footprint: Liên kết cơ sở, đại diện cho vị trí của robot trên mặt đất (thường là một liên kết "ảo" không có hình học).
- **base\_link**: Thân chính của robot, gắn với base\_footprint qua một biến đổi tĩnh (static transform).
- **link1**: Phần đầu tiên của cánh tay robot, gắn với base\_link qua một khớp quay (link1\_joint).
- link2: Phần thứ hai của cánh tay robot, gắn với link1 qua một khớp quay (link2\_joint).
- base\_disk (dựa trên hình ảnh): Một chi tiết hình đĩa, có thể là một phần của base\_link hoặc một liên kết khác, gắn qua một khớp quay.

#### Links

- base\_footprint: Liên kết ảo, gốc tọa độ.
- base\_link: Thân chính, gắn với base\_footprint qua khớp cố định.
- link1: Phần đầu cánh tay, gắn với base link qua khớp quay (link1 joint).
- link2: Phần thứ hai cánh tay, gắn với link1 qua khớp quay (link2\_joint).
- base\_disk (dựa trên hình): Chi tiết hình đĩa, có thể gắn với base\_link qua khóp quay.

#### Joint

- Khớp cố định: base\_footprint → base\_link.
- Khóp quay: base\_link → link1 (điều khiển bởi link1\_joint\_controller), link1 → link2 (điều khiển bởi link2\_joint\_controller).

# V Mô tả cơ chế điều khiển trên gazebo

# 1. Điều khiển di chuyển robot

- Topic: /cmd\_vel (kiểu Twist).
- Phím điều khiển:
  - o w: Tăng tốc độ tiến (linear.x tăng, tối đa 150 m/s).
  - o x: Giảm tốc độ lùi (linear.x giảm).
  - o a: Rẽ trái (angular.z tăng, tối đa 150 rad/s).
  - o d: Rẽ phải (angular.z giảm).
  - ∘ s: Dừng (đặt linear.x và angular.z về 0).
- **Cơ chế**: Lệnh Twist được gửi qua self.cmd\_pub.publish(self.twist), Gazebo nhận và áp dụng để di chuyển robot (thường là base\_link hoặc bánh xe).

# 2. Điều khiển tay máy (2 khớp)

- **Topic**: /link1\_joint\_controller/command và /link2\_joint\_controller/command (kiểu Float64).
- Phím điều khiển:
  - i: Tăng tốc độ cả hai khớp (link1\_vel và link2\_vel tăng, tối đa 150 rad/s).
  - o k: Giảm tốc độ cả hai khớp (link1\_vel và link2\_vel giảm).
  - o j: Quay trái (giảm tốc độ khớp).
  - o 1: Quay phải (tăng tốc độ khớp).
- **Cơ chế**: Lệnh Float64 được gửi qua self.link1\_pub.publish(self.link1\_vel) và self.link2\_pub.publish(self.link2\_vel), Gazebo nhận và điều khiển khớp link1 và link2.

## 3. Tích hợp với Gazebo

- File launch đã khởi động Gazebo, tải mô hình robot (robo.urdf), và thiết lập các bộ điều khiển (link1\_joint\_controller, link2\_joint\_controller).
- File Python gửi lệnh qua các topic, Gazebo nhận và áp dụng để mô phỏng chuyển động của robot.

# 4. Thoát chương trình

• Nhấn Ctrl+C để thoát, robot dừng (tốc đô về 0).