

PR-01- A3 PROGRAMA ANALÍTICO

Pág. 1 de 4

CÓDIGO DE ASIGNATURA

3024

ASIGNATURA: Mecánica General
JEFE DE CÁTEDRA: Víctor A. Bettachini
AÑO:
CARGA HORARIA:

OBJETIVOS:

Desarrollar en el alumno familiaridad con los conceptos físicos y la facilidad del uso de las herramientas matemáticas que le permitan resolver en forma autónoma problemas de la mecánica clásica.

CONTENIDOS MÍNIMOS:

Coordenadas generalizadas. Sistema cilíndrico y esférico de coordenadas. Derivación temporal de vectores y versores.

Principio de trabajos virtuales. Principio de D'Alembert. Principio de Hamilton.

Ecuación de Euler-Lagrange. Momentos generalizados, Cantidades conservadas: momentos generalizados, energía. Fuerzas de vínculo.

Tensor de inercia de un sólido. Ángulos de Euler. Ecuaciones de Euler. Contacto entre sólidos analizado como vínculo.

Estabilidad. Modos y frecuencias normales de pequeñas oscilaciones. Oscilaciones amortiguadas y forzadas.

Pág. 2 de 4

PROGRAMA ANALÍTICO:

- 1. Mecánica newtoniana
- 2.a ley de Newton. Energía cinética y potencial. Momentos y su conservación.
- 2. Mecánica analítica

Coordenadas generalizadas. Lagrangiano. Ecuación de Euler-Lagrange...Conservación de momentos generalizados y de la energía. Fuerzas de vínculo.

4. Cuerpo rígido

Tensor de inercia de un sólido. Ecuaciones de Euler. Vínculos entre sólidos.

5. Pequeñas oscilaciones

Modos normales. Forzado y amortiguado. Transferencia de energía. Resonancia.

BIBLIOGRAFÍA:

BIBLIOGRAFÍA BÁSICA

(Debe existir en Biblioteca o estar disponible para la compra)

Autor	Título	Editorial	Año	Edición
Landau, L.D., Lifshitz, E.M.	Física teórica. I: Mecánica	Reverté	2005	2.a
	Dinámica clásica de las partículas y			
Thornton, S.T., Marion, J.B.	sistemas	Reverté	2010	1.a
Martínez, E.O.	Ondas es física	EUdeBA	2009	1.a

BIBLIOGRAFÍA COMPLEMENTARIA

Autor	Título	Editorial	Año	Edición
Roederer, J.G.	Mecánica elemental	EUdeBA	2001	1.a
Taylor, J.R.	Mecánica Clásica	Reverté	2013	1.a
	Breve curso de			
Targ S. M.	mecánica teórica	MIR	1976	2.a
	Mecánica vectorial para	McGraw-		
Berr F. P., Russell J. E., Eisenberg E. R.	ingenieros: Dinámica	Hill	2010	9.a
	Mecánica vectorial para	McGraw-		
Berr F. P., Russell J. E., Eisenberg E. R.	ingenieros: Estática	Hill	2007	7.a

Pág. 3 de 4

METODOLOGÍA DE ENSEÑANZA:

El docente desarrollará en el pizarrón las bases teóricas de la temática a tratar, y a continuación la resolución de un ejemplo práctico aplicando tales bases. Posteriormente se presentará a los alumnos una guía conteniendo un conjunto de problemas relacionados a la temática del día para que resuelvan. Podrán hacerlo en forma individual o grupal, y en todo momento podrán pedir asistencia del docente.

EXPERIENCIAS DE LABORATORIO/TALLER / TRABAJOS DE CAMPO:

No se realizarán experiencias de laboratorio. Eventualmente se recurrirá a simulaciones numéricas de la dinámica de sistemas mecánicos para ilustrar alguna de las temáticas.

METODOLOGÍA DE EVALUACIÓN:

Se tomará una evaluación parcial al promediar el cuatrimestre y otra al finalizar el mismo. Si las notas de ambos es 7 o más la asignatura se considera promocionada. Caso contrario si ambos exámenes tienen una calificación de 4 o superior la asignatura se considera cursada y debe obtenerse una calificación de 4 o más en un examen final para considerar la asignatura aprobada. Si uno de los exámenes parciales fue calificado con menos de 4 debe rendirse el correspondiente examen recuperatorio y obtener una calificación de 4 o más en este para considerar cursada la asignatura. Solo puede rendirse el examen recuperatorio de solo uno de los exámenes parciales. El examen final es integrador de todas las temáticas que figuran en este programa.

CRONOGRAMA ORIENTATIVO DE ACTIVIDADES

Clase	Contenido
1	Repaso Newtoniana. Coordenadas cilíndricas y esféricas.
2	Dinámica de sistema en rotación (no inercial).
3	Coordenadas generalizadas. Vínculos. Lagrangiano.
4	Ecuaciones de Euler-Lagrange.
5	Fuerzas de vínculo por multiplicadores de Lagrange.
6	Fuerzas generalizadas de no conservativas.
7	Consultas Buffer
8	1.er parcial
9	Tensor de inercia.
10	Ecuaciones de Euler para el cuerpo rígido.
11	Mecanísmos como conjunto de rígidos.
12	Oscilaciones armónicas forzadas y amortiguadas.
13	Modos normales de oscilación en sistemas discretos.
14	Buffer / Repaso
15	2.o parcial
16	Recuperatorio

PR-01- A3 PROGRAMA ANALÍTICO

Pág. 4 de 4

CONDICIONES DE CURSADA Y APROBACIÓN

Según lo establecido en la RHCS 054/2011 (Régimen académico integrado)

vigente para el ciclo lectiv		, guarda consis	tencia con los contenido
mínimos del Plan de Estudi	OS"		