Aula 08 – Análise Assintótica de Algoritmos: Notação Ω , ω e Θ

Norton Trevisan Roman norton@usp.br

18 de setembro de 2018

Definição

Uma função g(n) é $\Omega(f(n))$ se existirem constantes positivas c e m tais que $0 \le cf(n) \le g(n)$, para todo $n \ge m$

Definição

Uma função g(n) é $\Omega(f(n))$ se existirem constantes positivas c e m tais que $0 \le cf(n) \le g(n)$, para todo $n \ge m$

• Informalmente, dizemos que, se $g(n) \in \Omega(f(n))$, então g(n) cresce no mínimo tão lentamente quanto f(n)

Definição

Uma função g(n) é $\Omega(f(n))$ se existirem constantes positivas c e m tais que $0 \le cf(n) \le g(n)$, para todo $n \ge m$

• Informalmente, dizemos que, se $g(n) \in \Omega(f(n))$, então g(n) cresce no mínimo tão lentamente quanto f(n)

 Trata-se então de um limite assintótico inferior para g(n)

Exemplo

• $3n^3 + 2n \in \Omega(n^3)$?

- $3n^3 + 2n \in \Omega(n^3)$?
 - Fazendo c=1 temos $3n^3+2n\geq n^3$, para $n\geq 0$ (m=0)

- $3n^3 + 2n \in \Omega(n^3)$?
 - Fazendo c=1 temos $3n^3+2n\geq n^3$, para $n\geq 0$ (m=0)
- $\bullet \ \frac{3}{2}n^2 2n \in \Omega(n^2)?$

- $3n^3 + 2n \in \Omega(n^3)$?
 - Fazendo c=1 temos $3n^3+2n\geq n^3$, para $n\geq 0$ (m=0)
- $\bullet \ \frac{3}{2}n^2 2n \in \Omega(n^2)?$
 - Fazendo $c=\frac{1}{2}$ temos $\frac{3}{2}n^2-2n\geq \frac{1}{2}n^2$, para $n\geq 2$ (m=2)

• Uma vez que Ω descreve um limite inferior para o algoritmo, quando o usamos com o melhor caso estamos também limitando o algoritmo com qualquer entrada

- Uma vez que Ω descreve um limite inferior para o algoritmo, quando o usamos com o melhor caso estamos também limitando o algoritmo com qualquer entrada
- Quando dizemos que um algoritmo é $\Omega(f(n))$, isso significa que, a despeito da entrada escolhida, o tempo de execução será pelo menos $c \times f(n)$, para n suficientemente grande

Definição

Uma função g(n) é $\omega(f(n))$ se, para toda constante c > 0, existe uma constante m > 0 tal que $0 \le cf(n) < g(n)$, para todo $n \ge m$

Definição

Uma função g(n) é $\omega(f(n))$ se, para toda constante c > 0, existe uma constante m > 0 tal que $0 \le cf(n) < g(n)$, para todo $n \ge m$

• Informalmente, dizemos que, se $g(n) \in \omega(f(n))$, então g(n) cresce mais rapidamente que f(n)

Definição

Uma função g(n) é $\omega(f(n))$ se, para toda constante c > 0, existe uma constante m > 0 tal que $0 \le cf(n) < g(n)$, para todo $n \ge m$

- Informalmente, dizemos que, se $g(n) \in \omega(f(n))$, então g(n) cresce mais rapidamente que f(n)
 - Intuitivamente, na notação ω a função g(n) tem crescimento muito maior que f(n) quando n tende para o infinito

Definição

Uma função g(n) é $\omega(f(n))$ se, para toda constante c > 0, existe uma constante m > 0 tal que $0 \le cf(n) < g(n)$, para todo $n \ge m$

- Informalmente, dizemos que, se $g(n) \in \omega(f(n))$, então g(n) cresce mais rapidamente que f(n)
 - Intuitivamente, na notação ω a função g(n) tem crescimento muito maior que f(n) quando n tende para o infinito
 - Ou seja, $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$

• $\Omega(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le cf(n) \le g(n)$, para todo $n \ge m\}$

- $\Omega(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le cf(n) \le g(n)$, para todo $n \ge m\}$
 - A expressão $0 \le cf(n) \le g(n)$ é válida para alguma constante c > 0

- $\Omega(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le cf(n) \le g(n)$, para todo $n \ge m\}$
 - A expressão $0 \le cf(n) \le g(n)$ é válida para alguma constante c > 0
- $\omega(f(n)) = \{g(n): \text{ para toda constante positiva } c,$ existe uma constante m > 0 tal que $0 \le cf(n) < g(n)$, para todo $n \ge m\}$.

- $\Omega(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le cf(n) \le g(n)$, para todo $n \ge m\}$
 - A expressão $0 \le cf(n) \le g(n)$ é válida para alguma constante c > 0
- $\omega(f(n)) = \{g(n): \text{ para toda constante positiva } c,$ existe uma constante m > 0 tal que $0 \le cf(n) < g(n)$, para todo $n \ge m\}$.
 - A expressão $0 \le cf(n) < g(n)$ é válida para toda constante c > 0

- $\Omega(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le cf(n) \le g(n)$, para todo $n \ge m\}$
 - A expressão $0 \le cf(n) \le g(n)$ é válida para alguma constante c > 0
- $\omega(f(n)) = \{g(n): \text{ para toda constante positiva } c,$ existe uma constante m > 0 tal que $0 \le cf(n) < g(n)$, para todo $n \ge m\}$.
 - A expressão $0 \le cf(n) < g(n)$ é válida para <u>toda</u> constante c > 0
- ullet ω está para Ω da mesma forma que o está para O

•
$$\frac{n^2}{2} \in \omega(n)$$
?

Exemplo

•
$$\frac{n^2}{2} \in \omega(n)$$
?

• Buscamos um m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn$

- $\frac{n^2}{2} \in \omega(n)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn$
 - $\Rightarrow \frac{n}{2} > c$ (dividindo ambos os lados por *n*)

- $\frac{n^2}{2} \in \omega(n)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn$
 - $\Rightarrow \frac{n}{2} > c$ (dividindo ambos os lados por *n*)
 - $\Rightarrow n > 2c$

- $\frac{n^2}{2} \in \omega(n)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn$
 - $\Rightarrow \frac{n}{2} > c$ (dividindo ambos os lados por *n*)
 - $\bullet \Rightarrow n > 2c$
 - Ou seja, para todo valor de c, um m que satisfaz a definição é m=2c+1 (pois $n\geq m$ e n>2c)

$$\bullet \ \frac{n^2}{2} \in \omega(n^2)?$$

Exemplo

$$\bullet \ \frac{n^2}{2} \in \omega(n^2)?$$

• Buscamos um m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn^2$

- $\bullet \ \frac{n^2}{2} \in \omega(n^2)?$
 - Buscamos um m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn^2$
 - Mas $\frac{n^2}{2} > cn^2 \Rightarrow \frac{1}{2} > c$ (caso em que vale para todo n > 0)

- $\bullet \ \frac{n^2}{2} \in \omega(n^2)?$
 - Buscamos um m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn^2$
 - Mas $\frac{n^2}{2} > cn^2 \Rightarrow \frac{1}{2} > c$ (caso em que vale para todo n > 0)
 - Ou seja, não há m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn^2$

- $\bullet \ \frac{n^2}{2} \in \omega(n^2)?$
 - Buscamos um m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn^2$
 - Mas $\frac{n^2}{2} > cn^2 \Rightarrow \frac{1}{2} > c$ (caso em que vale para todo n > 0)
 - Ou seja, não há m tal que, para todo c e $n \ge m$, $\frac{n^2}{2} > cn^2$
 - Logo, $\frac{n^2}{2} \notin \omega(n^2)$

Definição

Uma função g(n) é $\Theta(f(n))$ se existirem constantes positivas c_1 , c_2 e m tais que $0 \le c_1 f(n) \le g(n) \le c_2 f(n)$ para todo $n \ge m$

Definição

Uma função g(n) é $\Theta(f(n))$ se existirem constantes positivas c_1 , c_2 e m tais que $0 \le c_1 f(n) \le g(n) \le c_2 f(n)$ para todo $n \ge m$

• Informalmente, dizemos que, se $g(n) \in \Theta(f(n))$, então g(n) cresce tão rapidamente quanto f(n)

Definição

Uma função g(n) é $\Theta(f(n))$ se existirem constantes positivas c_1 , c_2 e m tais que $0 \le c_1 f(n) \le g(n) \le c_2 f(n)$ para todo $n \ge m$

• Informalmente, dizemos que, se $g(n) \in \Theta(f(n))$, então g(n) cresce tão rapidamente quanto f(n)

• Trata-se de um **limite assintótico firme** para g(n)

$$\bullet \ \frac{3}{2}n^2 - 2n \in \Theta(n^2)?$$

Exemplo

$$\bullet \ \frac{3}{2}n^2 - 2n \in \Theta(n^2)?$$

• Queremos c_1 e c_2 tais que $c_1 n^2 \le \frac{3}{2} n^2 - 2n \le c_2 n^2$

- $\bullet \ \frac{3}{2}n^2 2n \in \Theta(n^2)?$
 - Queremos c_1 e c_2 tais que $c_1 n^2 \le \frac{3}{2} n^2 2n \le c_2 n^2$
 - Fazendo $c_1=rac{1}{2}$ e $c_2=rac{3}{2}$ temos que

$$\frac{1}{2}n^2 \le \frac{3}{2}n^2 - 2n \le \frac{3}{2}n^2$$
, para $n \ge 2$ $(m = 2)$

Exemplo

$$\bullet \ \frac{3}{2}n^2 - 2n \in \Theta(n^2)?$$

- Queremos c_1 e c_2 tais que $c_1 n^2 \le \frac{3}{2} n^2 2n \le c_2 n^2$
- Fazendo $c_1=rac{1}{2}$ e $c_2=rac{3}{2}$ temos que

$$\frac{1}{2}n^2 \le \frac{3}{2}n^2 - 2n \le \frac{3}{2}n^2$$
, para $n \ge 2$ $(m = 2)$

• Outras constantes podem existir, mas o importante é que existe alguma escolha para as 3 $(m, c_1 e c_2)$

Mas...

<u>M</u>as...

•
$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
, pois $\frac{3}{2}n^2 - 2n \le \frac{3}{2}n^2$

Mas...

•
$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
, pois $\frac{3}{2}n^2 - 2n \le \frac{3}{2}n^2$

•
$$e^{\frac{3}{2}n^2} - 2n \in \Omega(n^2)$$
, pois $\frac{1}{2}n^2 \le \frac{3}{2}n^2 - 2n$

Mas...

•
$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
, pois $\frac{3}{2}n^2 - 2n \le \frac{3}{2}n^2$

•
$$e^{\frac{3}{2}n^2 - 2n} \in \Omega(n^2)$$
, pois $\frac{1}{2}n^2 \le \frac{3}{2}n^2 - 2n$

Será coincidência?

Mas...

•
$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
, pois $\frac{3}{2}n^2 - 2n \le \frac{3}{2}n^2$

• e
$$\frac{3}{2}n^2 - 2n \in \Omega(n^2)$$
, pois $\frac{1}{2}n^2 \le \frac{3}{2}n^2 - 2n$

- Será coincidência?
 - Não!

Mas...

- $\frac{3}{2}n^2 2n \in O(n^2)$, pois $\frac{3}{2}n^2 2n \le \frac{3}{2}n^2$
- $e^{\frac{3}{2}n^2} 2n \in \Omega(n^2)$, pois $\frac{1}{2}n^2 \le \frac{3}{2}n^2 2n$
- Será coincidência?
 - Não!
- Se $g(n) \in O(f(n))$ e $g(n) \in \Omega(f(n))$, então $g(n) \in \Theta(f(n))$

Ou seja...

Ou seja...

Ou seja...

Ou seja...

• Quando $g(n) = \Theta(f(n))$, podemos dizer que, para todo $n \ge m$, g(n) é igual a f(n) a menos de uma constante.

```
\mathsf{E}\,\theta?
```

$\mathsf{E}\,\theta$?

• Um $\theta(n) = \emptyset(n) + \omega(n)$?

- Um $\theta(n) = \emptyset(n) + \omega(n)$?
- Lembre que $o(n) \Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$

- Um $\theta(n) = \emptyset(n) + \omega(n)$?
- Lembre que $o(n) \Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$
- E que $\omega(n) \Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$

- Um $\theta(n) = \emptyset(n) + \omega(n)$?
- Lembre que $o(n) \Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$
- E que $\omega(n) \Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$
- Como então $\lim_{n\to\infty}\frac{g(n)}{f(n)}=0$ e ∞ ?

- Um $\theta(n) = \emptyset(n) + \omega(n)$?
- Lembre que $o(n) \Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$
- E que $\omega(n) \Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$
- Como então $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$ e ∞ ? Não há $\theta(n)$

• Uma vez que O, o, Ω , ω e Θ referem-se a conjuntos de funções, podemos dizer que, se $f(n) \in O(g(n))$, então f(n) é da classe O(g(n))

• Uma vez que O, o, Ω , ω e Θ referem-se a conjuntos de funções, podemos dizer que, se $f(n) \in O(g(n))$, então f(n) é da classe O(g(n))

 A relação entre as classes então fica:

Exemplos de classes

- $f(n) \in O(1)$: complexidade constante
- $f(n) \in O(log(n))$: complexidade logarítmica
- $f(n) \in O(n)$: complexidade linear
- $f(n) \in O(n^2)$: complexidade quadrática
- $f(n) \in O(n^3)$: complexidade cúbica
- $f(n) \in O(c^n)$, c > 1: complexidade exponencial
- etc

Notação assintótica em equações e inequações

Podemos usar a notação assintótica como parte de expressões

- Podemos usar a notação assintótica como parte de expressões
 - Representando assim funções cuja especificação não nos interessa, e eliminando detalhes não essenciais, como operações não relevantes num algoritmo, por exemplo

- Podemos usar a notação assintótica como parte de expressões
 - Representando assim funções cuja especificação não nos interessa, e eliminando detalhes não essenciais, como operações não relevantes num algoritmo, por exemplo
- Ex:
 - Em vez de $2n^2 + 3n + 1$, podemos escrever $2n^2 + \Theta(n)$

- Podemos usar a notação assintótica como parte de expressões
 - Representando assim funções cuja especificação não nos interessa, e eliminando detalhes não essenciais, como operações não relevantes num algoritmo, por exemplo
- Ex:
 - Em vez de $2n^2 + 3n + 1$, podemos escrever $2n^2 + \Theta(n)$
 - Isso equivale a dizer que $2n^2 + 3n + 1 = 2n^2 + f(n)$, onde $f(n) \in \Theta(n)$

Notação assintótica em equações e inequações

 Em alguns casos, usamos a notação do lado esquerdo de equações

- Em alguns casos, usamos a notação do lado esquerdo de equações
- Ex: $2n^2 + \Theta(n) = \Theta(n^2)$

- Em alguns casos, usamos a notação do lado esquerdo de equações
- Ex: $2n^2 + \Theta(n) = \Theta(n^2)$
 - Com isso, estamos dizendo que, independentemente da função escolhida à esquerda do '=', existe ao menos uma escolha para a função à direita, de modo a tornar a equação válida

- Em alguns casos, usamos a notação do lado esquerdo de equações
- Ex: $2n^2 + \Theta(n) = \Theta(n^2)$
 - Com isso, estamos dizendo que, independentemente da função escolhida à esquerda do '=', existe ao menos uma escolha para a função à direita, de modo a tornar a equação válida
 - Nesse caso, estamos dizendo que, para **qualquer** função $f(n) \in \Theta(n)$, existe **alguma** função $g(n) \in \Theta(n^2)$ tal que $2n^2 + f(n) = g(n)$, para todo n

Notação assintótica em equações e inequações

• Podemos também encadear essas relações

- Podemos também encadear essas relações
- Ex:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
$$= \Theta(n^2)$$

Notação assintótica em equações e inequações

- Podemos também encadear essas relações
- Ex:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
$$= \Theta(n^2)$$

• A primeira equação diz que há **alguma** função $f(n) \in \Theta(n)$ tal que $2n^2 + 3n + 1 = 2n^2 + f(n)$, para todo n

- Podemos também encadear essas relações
- Ex:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
$$= \Theta(n^2)$$

- A primeira equação diz que há **alguma** função $f(n) \in \Theta(n)$ tal que $2n^2 + 3n + 1 = 2n^2 + f(n)$, para todo n
- A segunda diz que, para **qualquer** função $g(n) \in \Theta(n)$, há **aguma** função $h(n) \in \Theta(n^2)$, tal que $2n^2 + g(n) = h(n)$, para todo n

• Reflexividade:

- Reflexividade:
 - $\bullet \ f(n) = O(f(n))$

- Reflexividade:
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$

- Reflexividade:
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$
 - $f(n) = \Theta(f(n))$

- Reflexividade:
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$
 - $f(n) = \Theta(f(n))$
- Simetria:

- Reflexividade:
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$
 - $f(n) = \Theta(f(n))$
- Simetria:
 - $f(n) \in \Theta(g(n))$ se e somente se $g(n) \in \Theta(f(n))$

- Reflexividade:
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$
 - $f(n) = \Theta(f(n))$
- Simetria:
 - $f(n) \in \Theta(g(n))$ se e somente se $g(n) \in \Theta(f(n))$
- Simetria Transposta:

- Reflexividade:
 - f(n) = O(f(n))
 - $f(n) = \Omega(f(n))$
 - $f(n) = \Theta(f(n))$
- Simetria:
 - $f(n) \in \Theta(g(n))$ se e somente se $g(n) \in \Theta(f(n))$
- Simetria Transposta:
 - $f(n) \in O(g(n))$ se e somente se $g(n) \in \Omega(f(n))$

- Reflexividade:
 - $\bullet \ f(n) = O(f(n))$
 - $f(n) = \Omega(f(n))$
 - $f(n) = \Theta(f(n))$
- Simetria:
 - $f(n) \in \Theta(g(n))$ se e somente se $g(n) \in \Theta(f(n))$
- Simetria Transposta:
 - $f(n) \in O(g(n))$ se e somente se $g(n) \in \Omega(f(n))$
 - $f(n) \in o(g(n))$ se e somente se $g(n) \in \omega(f(n))$

- Transitividade:
 - Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$

- Transitividade:
 - Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$
 - Se $f(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$

- Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$
- Se $f(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$
- Se $f(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$

- Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$
- Se $f(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$
- Se $f(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$
- Se $f(n) \in o(g(n))$ e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$

- Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$
- Se $f(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$
- Se $f(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$
- Se $f(n) \in o(g(n))$ e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$
- Se $f(n) \in \omega(g(n))$ e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$

Referências

- Ziviani, Nivio. Projeto de Algoritmos: com implementações em Java e C++. Cengage. 2007.
- Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford. Introduction to Algorithms. 2a ed. MIT Press, 2001.