Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2014/15

Folha 4: Séries de Potências e Fórmula de Taylor

1. Determine o domínio de convergência das seguintes séries de potências, indicando os pontos onde a convergência é simples ou absoluta.

(a)
$$\sum_{n=1}^{+\infty} n(n+1)x^n$$

(b)
$$\sum_{n=1}^{+\infty} \frac{(2x)^n}{(n-1)!}$$

(c)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

(d)
$$\sum_{n=1}^{+\infty} \frac{(2x-3)^n}{2n+4}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{n^2}{n!} x^n$$

(f)
$$\sum_{n=1}^{+\infty} \frac{n!(x-2)^n}{n-1}$$

(g)
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n} (x+2)^n$$

(h)
$$\sum_{n=0}^{+\infty} \frac{3^n}{2+n^3} x^n$$

(i)
$$\sum_{n=2}^{+\infty} \frac{x^{3n}}{\ln n}$$

(j)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n6^n} (3x - 2)^n$$

(k)
$$\sum_{n=0}^{+\infty} \frac{n+1}{2^n} (x-2)^n$$
 (Exame de Recurso de 2010)

(l)
$$\sum_{n=1}^{+\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$$
 (Exame de Recurso de 2007)

2. Mostre que:

- (a) se $\sum_{n=0}^{+\infty} a_n x^n$ é absolutamente convergente num dos extremos do seu domínio de convergência, então também é absolutamente convergente no outro extremo.
- (b) se o domínio de convergência de $\sum_{n=0}^{+\infty} a_n x^n$ é]-r,r], então a série é simplesmente convergente em x=r.

3. Considere a representação em série de potências da função $\frac{1}{1-x}$ dada por

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad -1 < x < 1.$$

Determine a representação em série de potências de (indicando o intervalo onde é válida):

- (a) $\frac{1}{1-3x}$
- (b) $\frac{2}{2+x}$
- (c) $\frac{1}{x}$
- 4. Determine os polinómios de Taylor seguintes:
 - (a) $T_0^3(x^3+2x+1)$;
 - (b) $T_{\pi}^{3}(\cos x);$
 - (c) $T_1^3(xe^x)$;
 - (d) $T_0^5(\sin x)$;
 - (e) $T_0^6(\sin x)$;
 - (f) $T_1^n\left(\frac{1}{x}\right)$ $(n \in \mathbb{N});$
 - (g) $T_1^n(\ln x) \quad (n \in \mathbb{N}).$
- 5. Considere $f(x) = e^x$.
 - (a) Escreva a fórmula de MacLaurin de ordem n da função f.
 - (b) Mostre que o polinómio de MacLaurin de ordem n permite aproximar e^x no intervalo]-1,0[, com erro inferior a $\frac{1}{(n+1)!}$.
 - (c) Escolha um dos polinómios de MacLaurin de f e use-o para obter uma aproximação de $\frac{1}{\sqrt{e}}$, indicando uma estimativa para o erro cometido nessa aproximação.
- 6. Usando o resto de Lagrange, determine um majorante para o erro cometido na aproximação de sen(3) quando se usa o polinómio de Taylor de ordem 5 em torno do ponto $a=\pi$.
- 7. Mostre que o polinómio de MacLaurin de ordem 7 da função seno permite aproximar os valores desta função, no intervalo [-1,1], com erro inferior a $\frac{1}{2} \times 10^{-4}$.
- 8. Determine um valor de n para o qual garanta que o polinómio de Taylor de ordem n da função $f(x) = \frac{1}{x}$ no ponto c = 1 aproxima essa função, no intervalo [0.9, 1.1], com erro inferior a 10^{-3} .
- 9. Determine o menor valor de n tal que o polinómio de MacLaurin de ordem n da função $f(x) = e^x$ aproxime f(1) com erro inferior a 10^{-3} .

2

10. Mostre, usando a fórmula de Taylor, que $ln(1+x) \le x$, para todo x > -1.