Lecture Outline

x Distributed Real-Time Systems

Chapter 1	The Real-Time Environment
Chapter 2	Distributed Real-Time Systems
Chapter 3	Global Time
Chapter 4	Modeling Real-Time Systems
Chapter 5	Real-Time Entities and Images
Chapter 6	Fault Tolerance
Chapter 7	Real-Time Communication
Chapter 8	Time-Triggered Protocols
Chapter 9	Input and Output
Chapter 10	Real-Time Operating Systems: OSEK and AUTOSAR
Chapter 11	Real-Time Scheduling
Chapter 12	Validation

Lecturer: Prof. Dr. Jörg Friedrich, joerg.friedrich@hs-esslingen.de, Room F 01.316

Summary

Chapter 1: The Real-Time Environment

- Definition of a real-time system.
- Simple model with operator, computer system, and controlled object.
- Introduction of distributed real-time systems.
- Hard real-time systems and soft real-time systems.
- Functional, temporal, and dependability requirements.
- Sphere of control
- Event-triggered versus time-triggered systems.

Chapter 2: Distributed Real-Time Systems

- · Distributed system architecture overview, clusters, nodes, communication network
- Structure of node with host computer, communication network interface, communication controller
- Event and state messages, gateways.
- Concept of composability.
- Event- and time-triggered communication systems.

Literature

Literature for this lecture

Text books for this lecture

[1.1] Kopetz, H.: Distributed Real-Time Systems, Springer 2008
[1.2] Buttazzo, G.: Hard Real-Time Computing Systems, Springer 2005

Complementing texts

Some books complementing the material treated in this lecture

[2.1] Liu, J.S.: Real-Time Systems, Prentice Hall 2000

[2.2] Vérissimo, P; Rodrigues, L.: Distributed Systems for System Architects, Kluwer 2001
 [2.3] Laplante, P.: Real-Time Systems Design and Analysis, IEEE Press, 2004
 [2.4] Halbwachs, N.: Synchronous Programming of Reactive Systems, Kluwer 1993
 [2.5] Zimmermann, W.: Bussysteme in der Fahrzeudtechnik. Vieweg 2006 (German only)

Schmidgall, R.:

Iournal Articles and Web Documents

Original journal articles and documents from the web pertaining to this lecture

[3.0] Albert, A.: Comparison of Event-Triggered and Time-Triggered Concepts with Regard

to Distributed Control Systems, Embedded World, 2004, Nürnberg, http://www.semiconductors.bosch.de/pdf/embedded world 04 albert.pdf

[3.1] Müller, B.; Führer, T.; Fault Tolerant TTCAN Networks, Proceedings 8th International CAN Confer-

Hartwich, F.; Hugel, R.; ence; 2002; Las Vegas, NV

Weiler, H.: http://www.semiconductors.bosch.de/pdf/Fault_Tolerant_TTCAN.pdf

Summary

• Scalability, dependability, issues of physical installation.

Chapter 3: Global Time

- Notions of causal order, temporal order, and delivery order
- External observers, reference clocks, and global time base
- Sparse time base to view event order in a distributed real-time system
- Internal clock synchronization to compensate for drift offset. Influence of the communication system jitter on the precision of the global time base.
- External time synchronization, time gateways, and the Internet network time protocol (NTP)

Chapter 4: Modeling Real-Time Systems

- Introduction of a conceptual model for real-time systems
- Tasks, nodes, fault-tolerant units, clusters
- Simple and complex tasks
- Interface placement and interface layout

Summary

- Temporal control and logical control
- The history state

Chapter 5: Real-Time Entities and Images

- · Real-time entities
- Observations, state and event observations
- Real-time images as current picture of real-time entity, and real-time objects
- Temporal accuracy and state estimation to improve real-time image accuracy
- Permanence in case of race conditions and idempotency with replicated messages
- Replica determinism to implement fault-tolerance by active redundancy

Chapter 6: Fault Tolerance

- Failures, Errors, and Faults
- Error Detection
- · A Node as a Unit of Failure
- Fault Tolerant Units

Summary

- The Basic CNI
- Internal Operation of TTP/C
- TTP/A for Field Bus Applications

Chapter 9: Input and Output

- The dual role of time
- Agreement protocol
- · Sampling and polling
- Interrupts
- Sensors and actuators
- Physical installation

Chapter 10: Real-Time Operating Systems: OSEK and AUTOSAR

- Task management
- Interprocess communication

Summary

- Reintegration of a Repaired Node
- Design Diversity

Chapter 7: Real-Time Communication

- Real-Time Communication Requirements
- Flow Control
- OSI Protocols for Real-Time
- Fundamental Conflicts in Protocol Design
- Media-Access Protocols
- Performance Comparison: ET versus TT
- The Physical Layer

Chapter 8: Time-Triggered Protocols

- Introduction to Time-Triggered Protocols
- Overview of the TTP/C Protocol Layers

Summary

- Time management
- Error detection
- OSEK and AUTOSAR

Summary

Chapter 11: Real-Time Scheduling

- The scheduling problem
- The adversary problem
- Dynamic scheduling, dynamic priority servers
- Static scheduling, fixed priority servers

Chapter 12: Validation

- Building a Convincing Safety Case
- Formal Methods
- Testing
- Fault Injection
- Dependability Analysis