#linear_algebra

An indexed set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution. The set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exist weights c_1, \dots, c_p , not all zero, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0} \tag{2}$$

Equation (2) is called a **linear dependence relation** among $\mathbf{v}_1, \dots, \mathbf{v}_p$ when the weights are not all zero. An indexed set is linearly dependent if and only if it is not linearly independent. For brevity, we may say that $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly dependent when we mean that $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a linearly dependent set. We use analogous terminology for linearly independent sets.

linear independence of Matrix columns

Suppose that we begin with a matrix $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$ instead of a set of vectors. The matrix equation $A\mathbf{x} = \mathbf{0}$ can be written as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{0}$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution of $A\mathbf{x} = \mathbf{0}$. Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has *only* the trivial solution. (3)

Sets of one or two vectors

A set containing only one vector—say, v—is linearly independent if and only if v is not the zero vector. This is because the vector equation $x_1 \mathbf{v} = \mathbf{0}$ has only the trivial solution when $\mathbf{v} \neq \mathbf{0}$. The zero vector is linearly dependent because $x_1 \mathbf{0} = \mathbf{0}$ has many nontrivial solutions.

The next example will explain the nature of a linearly dependent set of two vectors.

EXAMPLE 3 Determine if the following sets of vectors are linearly independent.

a.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

a.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ b. $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

SOLUTION

- a. Notice that \mathbf{v}_2 is a multiple of \mathbf{v}_1 , namely, $\mathbf{v}_2 = 2\mathbf{v}_1$. Hence $-2\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{0}$, which shows that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly dependent.
- b. The vectors \mathbf{v}_1 and \mathbf{v}_2 are certainly *not* multiples of one another. Could they be linearly dependent? Suppose c and d satisfy

$$c\mathbf{v}_1 + d\mathbf{v}_2 = \mathbf{0}$$

If $c \neq 0$, then we can solve for \mathbf{v}_1 in terms of \mathbf{v}_2 , namely, $\mathbf{v}_1 = (-d/c)\mathbf{v}_2$. This result is impossible because \mathbf{v}_1 is *not* a multiple of \mathbf{v}_2 . So c must be zero. Similarly, d must also be zero. Thus $\{v_1, v_2\}$ is a linearly independent set.

A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other. The set is linearly independent if and only if neither of the vectors is a multiple of the other.

FIGURE 1

Set of two or more vectors

Theorem 7:

Characterization of Linearly Dependent Sets

An indexed set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\mathbf{v}_1 \neq \mathbf{0}$, then some \mathbf{v}_j (with j > 1) is a linear combination of the preceding vectors, $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Warning: Theorem 7 does *not* say that *every* vector in a linearly dependent set is linear combination of the preceding vectors. A vector in a linearly dependent set may fail to be a linear combination of the other vectors. See Practice Problem 3.

FIGURE 2 Linear dependence in \mathbb{R}^3 .

Theorem 8:

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p > n.

PROOF Let $A = [\mathbf{v}_1 \cdots \mathbf{v}_p]$. Then A is $n \times p$, and the equation $A\mathbf{x} = \mathbf{0}$ corresponds to a system of n equations in p unknowns. If p > n, there are more variables than equations, so there must be a free variable. Hence $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, and the columns of A are linearly dependent. See Fig. 3 for a matrix version of this theorem.

Warning: Theorem 8 says nothing about the case in which the number of vectors in the set does *not* exceed the number of entries in each vector.

 $\Gamma \circ \Gamma \Gamma \Lambda \Gamma \Gamma \circ \Gamma$

FIGURE 3

If p > n, the columns are linearly dependent.

v

EXAMPLE 5 The vectors $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ are linearly dependent by Theorem

8, because there are three vectors in the set and there are only two entries in each vector. Notice, however, that none of the vectors is a multiple of one of the other vectors. See Fig. 4.

FIGURE 4

A linearly dependent set in \mathbb{R}^2 .

Theorem9:

If a set $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly dependent.

PROOF By renumbering the vectors, we may suppose $\mathbf{v}_1 = \mathbf{0}$. Then the equation $1\mathbf{v}_1 + 0\mathbf{v}_2 + \cdots + 0\mathbf{v}_p = \mathbf{0}$ shows that S is linearly dependent.