FI3 B.3.2 Beskrivelse av bevegelsen sett fra i-systemet

Teorem B.14 Bevegelsen av et stivt legeme sett fra treghhetssystemet i

Bevegelsen av et stivt legeme som ikke er utsatt for et ytre moment er beskrevet, sett fra treghetsrommet, av at den kinetiske energiellipsoida ruller på det invariable plan (plan \bot spinnvektoren $\vec{h}^{\mathbf{i}}$) uten å gli. Rullinga følger polhodet på den kinetiske energiellipsoida (kontaktpunktet mellom det invariable plan og ellipsoida er dermed enden på $\vec{\omega}_b^{\mathbf{i}}$ -vektoren).

B.3.3 Stabilitet om hovedaksene

(shot-time-stability)

Teorem B.15 Stabiliteten om hovedaksene for et stivt legeme

Anta b-systemet faller sammen med hovedaksene for det stive legemet og $J_{xx}^b > J_{yy}^b > J_{zz}^b$. Da gir linearisering om \vec{b}_1 -aksen (J_{xx}^b) eller \vec{b}_3 -aksen (J_{zz}^b) et lineært system med kompleks konjugerte egenverdier. Linearisering om \vec{b}_2 -aksen (J_{yy}^b) gir et lineært system med to egenverdier, den ene ligger i venstre halvplan den andre i høgre.

Assume
$$|w_x| \gg |w_y| \approx |w_z|$$
, set $w_y \cdot w_z = 0$

Enter equations:

$$\dot{W}_{x} = (J_{55} - J_{22}) W_{5} W_{2} / J_{xx} = 0 \implies W_{x} (4) = W_{x0}$$

$$\dot{W}_{5} = \left(\int_{22} - \int_{x_{1}} \right) \dot{W}_{x} \dot{W}_{z} / \int_{y_{3}} = \frac{\int_{22} - \int_{x_{2}} \dot{W}_{x_{0}} \dot{W}_{z}}{\int_{y_{3}} \dot{W}_{x_{0}} \dot{W}_{z}} = - \dot{W}_{1} \dot{W}_{z} + \dot{W}_{1} \dot{W}_{z} = - \dot{W}_{1} \dot{W}_{z} + \dot{W}_{1} \dot{W}_{z} + \dot{W}_{1} \dot{W}_{z} = - \dot{W}_{1}$$

$$\dot{W}_z = (J_{xx} - J_{yy}) w_x w_y / J_{zz} = \frac{J_{xx} - J_{yy}}{J_{zz}} w_{xo} w_y = \langle z w_y = \rangle \quad \dot{W}_z = \langle z w_y = \rangle$$

We know the solution has form.

From d.e. Wy = - ~, Wz

 $\mathring{W}_{z} = \frac{1}{\alpha_{1}} A w^{2} \sin(\omega t + \phi) = \alpha_{2} w_{y}$

We ran show:
$$W=W_{x0}\sqrt{\frac{(J_{xx}-J_{yy})(J_{xx}-J_{yy})}{J_{yy}J_{zz}}}$$

$$A=\frac{W_{y}(0)}{\sin\theta}$$

$$\theta=\sigma r \cot\left(\frac{-W_{y}(0)}{\sqrt{W_{z}(0)}}\right)$$

(i) Rotation around by-axis (2-axis).
Assume |Wz| >> |Wx | \approx |Wy|, WxWy=0

Postion around
$$b_2$$
-axis (y-axis)

Assume $|w_3| \gg |w_x| \approx |w_2|$, $w_x w_z = 0$
 $w_x = \frac{J_{yy} - J_{zz}}{J_{xx}} w_y o w_z = \beta, w_z$, $\beta, >0$
 $w_y = \frac{J_{xx} - J_{yy}}{J_{yy}} w_x w_z = 0 \Rightarrow w_y(t) = w_y o$
 $w_z = \frac{J_{xx} - J_{yy}}{J_{zz}} w_y o w_x = \beta_z w_x$, $\beta_z > 0$

$$w_z = \frac{J_{xx} - J_{yy}}{J_{zy}} w_y o w_x = \beta_z w_x$$
, $\beta_z > 0$

$$w_z = \frac{J_{xx} - J_{yy}}{J_{zy}} w_y o w_z = \beta_z w_x$$
, $\beta_z > 0$

$$W_{x} = (3, W_{2})$$

$$W_{z} = (52, W_{x})$$

$$W_{z} = (3, W_{2})$$

$$W_{z}$$

Eigenvalues:
$$|\lambda I - A| = |\lambda - \beta_1| = \lambda^2 - \beta_1 \beta_2 = 0$$

$$\lambda_{1,2} = \pm \sqrt{\beta_1 \beta_2}$$

$$-\frac{\beta_1 \beta_2}{\lambda_1 \beta_2}$$

$$-\frac{\beta_1$$

7

F13-TEK4040

A.6 Matrix calculation in cybernhis

Standard equation:
$$\dot{X} = A \times , \ \dot{X}(0) = \dot{X}_0$$

Eigenvalues: $|\lambda| - A| = 0 \iff n^{th}$ order equation of λ

Mathabia: $\lambda^n + C_n \lambda^{n+1} + \dots + C_n \lambda^n + C_n = 0 \implies \lambda_i$, $i = 1, 2, \dots, n$
 $[M, \Lambda] = eig(A)$ Eigenverdors: $(\lambda_i I - A) \underbrace{M}_i = 0$ let use do not have a unique solution. We can that $\lambda^n + \lambda^n + \lambda^$

$$M = \left[\begin{array}{c} \underline{M}, \underline{M}_{2}, \dots, \underline{M}_{n} \right] \quad \text{ Figur order matrix}$$
We had d.e. $\underline{x} = A\underline{x}, \underline{x}/0 = \underline{x}_{0}, \dots, \underline{x}$ since we want to use \underline{M} as a \underline{D} of we need to introduce a unique notation for the two frames the transformation is between $\{m\}$ and $\{q\}$

$$|\underline{e} \quad \underline{x}^{q} = A^{q} \underline{x}^{q}, \underline{x}^{q}(0) = \underline{x}^{q}, \dots, \underline{x}^{q}(0) = \underline{x}^{q}, \dots$$

$$M = \underline{M}_{m}^{q} = \left[\underline{M}_{1}^{q}, \underline{M}_{2}^{q}, \dots, \underline{M}_{m}^{q} \right]$$

$$\underline{x}^{q} = \underline{M}_{n}^{q} \underline{x}^{n}$$

$$\underline{W}_{1} = \underline{M}_{1}^{q} \underline{x}^{n} = \underline{M}_{1}^{q} \underline{x}^{n} = A^{q} \underline{X}^{q} = \underline{M}_{1}^{q} \underline{x}^{n} = A^{q} \underline{M}_{1}^{q} \underline{x}^{n}$$

$$= \underline{X}^{m} = \left[\underline{M}_{1}^{q}, \underline{M}_{1}^{q} \underline{x}^{m} \right]$$

$$\underline{A}^{m} = \underline{M}_{1}^{q} \underline{X}^{n} = \underline{M}_{1}^{q} \underline{M}_{1}^{q} \underline{X}^{n} = \underline{M}_{1}^{q} \underline{X}^{n} = \underline{M}_{1}^{q} \underline{M}_{1}^{q} \underline{X}^{n} = \underline{M}_{1}^{q} \underline{M$$

Coneral
$$(M_m^2)^{-1} \neq (M_m^3)^{-1}$$

We have $\underline{x}^m = \Lambda^m \underline{x}^m$, $\underline{x}^m(0) = (M_m^3) \underline{x}^2(0)$
 $\underline{x}^m = \lambda_1 \underline{x}^m$, $\underline{x}^m(0)$ given

 $\underline{x}^m(1) = \ell^{\lambda_1(1-t_0)} \underline{x}^n(1) = \ell^{\lambda_1(1-t_0)} \underline{x}^n(1)$

Le.
$$\underline{X}^{3} = A^{\frac{1}{2}} \underline{X}^{3}$$
, $\underline{X}^{1}(0)$ given

has solution: $\underline{X}^{3}(t) = M_{m}^{\frac{1}{2}} \underline{X}^{m}(t)$
 $\underline{X}^{3}(t) = M_{m}^{\frac{1}{2}} \underline{A}^{m}(M_{m}^{\frac{1}{2}})^{\frac{1}{2}} \underline{X}^{3}(0)$
 $\underline{X}^{3}(t) = e^{M_{m}^{2}} \underline{A}^{m}(M_{m}^{\frac{1}{2}})^{\frac{1}{2}} \underline{X}^{3}(0)$

where $e^{A^{\frac{3}{2}}t} = \underline{M}^{\frac{3}{2}} \underline{A}^{m} \underline{A}^{$