Lecture 16: Determinants (Section 4.1-4.2)

Thang Huynh, UC San Diego 2/16/2018

For the next few lectures, all matrices are square!

▶ Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

1

For the next few lectures, all matrices are square!

▶ Recall that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

The determinant of

- a 2×2 matrix is $\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix} = ad bc$,
- a 1×1 matrix is det([a]) = a.

We will write both $\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix}$ and $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$

1

The determinant is characterized by:

• the normalization $\det I = 1$,

- the normalization $\det I = 1$,
- and how it is affected by elementary row operations:

- the normalization $\det I = 1$,
- and how it is affected by elementary row operations:
 - (replacement) Add one row to a multiple of another row.
 Does not change the determinant.

- the normalization $\det I = 1$,
- and how it is affected by elementary row operations:
 - (replacement) Add one row to a multiple of another row.
 Does not change the determinant.
 - (interchange) Interchange two rows.
 Reverses the sign of the determinant.

- the normalization $\det I = 1$,
- and how it is affected by elementary row operations:
 - (replacement) Add one row to a multiple of another row.
 Does not change the determinant.
 - (interchange) Interchange two rows.
 Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s.
 Multiplies the determinant by s.

Example. Compute $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{vmatrix}$.

Example. Compute
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{vmatrix}$$
.

▶ Solution.

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{vmatrix} \stackrel{R_2 \to \frac{1}{2}R_2}{=} 2 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{vmatrix} \stackrel{R_3 \to \frac{1}{7}R_3}{=} 14 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 14.$$

► Example. Compute $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 7 \end{vmatrix}$.

► Example. Compute
$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 7 \end{vmatrix}$$
.

▶ Solution.

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 7 \end{vmatrix} \xrightarrow{R_2 \to \frac{1}{2}R_2} 2 \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 7 \end{vmatrix} \xrightarrow{R_3 \to \frac{1}{7}R_3} 14 \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\begin{array}{c} R_1 \to R_1 - 3R_3, R_2 \to R_2 - 2R_3 \\ = \end{array} \begin{array}{c} 14 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 1 \\ 0 \\ 1 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \begin{array}{c} R_1 \to R_1 - 2R_2 \\ = \end{array} \begin{array}{c} 14 \\ 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \begin{array}{c} 1 \\ 0 \\ 0 \end{array}$$

The determinant of a triangular matrix is the product of the diagonal entries

Example. Compute
$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$$
.

The determinant of a triangular matrix is the product of the diagonal entries

Example. Compute
$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$$
.

▶ Solution.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} R_{2} \rightarrow R_{2} - 3R_{1} \stackrel{R_{3}}{=} R_{3} \rightarrow R_{3} - 2R_{1} \begin{vmatrix} 1 & 2 & 0 \\ 0 & -7 & 2 \\ 0 & -4 & 1 \end{vmatrix}$$

$$R_{3} \rightarrow R_{3} - \frac{4}{7}R_{2} \begin{vmatrix} 1 & 2 & 0 \\ 0 & -7 & 2 \\ 0 & 0 & -\frac{1}{7} \end{vmatrix}$$

$$= 1(-7)(-\frac{1}{7}) = 1.$$

The determinant of a triangular matrix is the product of the diagonal entries

Example. Compute
$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$$
.

▶ Solution.

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} R_{2} \rightarrow R_{2} - 3R_{1} \stackrel{R_{3}}{=} R_{3} \rightarrow R_{3} - 2R_{1} \begin{vmatrix} 1 & 2 & 0 \\ 0 & -7 & 2 \\ 0 & -4 & 1 \end{vmatrix}$$

$$R_{3} \rightarrow R_{3} - \frac{4}{7}R_{2} \begin{vmatrix} 1 & 2 & 0 \\ 0 & -7 & 2 \\ 0 & 0 & -\frac{1}{7} \end{vmatrix}$$

$$= 1(-7)(-\frac{1}{7}) = 1.$$

Example. Prove the determinant formula for $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

Example. Prove the determinant formula for $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

The following important properties follow from the behavior under row operations:

• $det(A) = 0 \iff A$ is not invertible.

The following important properties follow from the behavior under row operations:

7

- det(A) = 0 ⇔ A is not invertible.
 Why? Because det(A) = 0 if and only if, in an echelon form, a diagonal entry is zero (that is, a pivot is missing).
- det(AB) = det(A) det(B).

- det(A) = 0 ⇔ A is not invertible.
 Why? Because det(A) = 0 if and only if, in an echelon form, a diagonal entry is zero (that is, a pivot is missing).
- det(AB) = det(A) det(B).
- $\det(A^{-1}) = \frac{1}{\det(A)}$

- det(A) = 0 ⇔ A is not invertible.
 Why? Because det(A) = 0 if and only if, in an echelon form, a diagonal entry is zero (that is, a pivot is missing).
- det(AB) = det(A) det(B).
- $\det(A^{-1}) = \frac{1}{\det(A)}$
- $det(A^T) = det(A)$

▶ Example. Recall that if AB = 0, it does not follow that A = 0 or B = 0. However, show that det(A) = 0 or det(B) = 0.

- ▶ Example. Recall that if AB = 0, it does not follow that A = 0 or B = 0. However, show that det(A) = 0 or det(B) = 0.
- ▶ Solution. Follow from det(A) det(B) = det(AB) = 0.

- ▶ Example. Recall that if AB = 0, it does not follow that A = 0 or B = 0. However, show that det(A) = 0 or det(B) = 0.
- ▶ Solution. Follow from det(A) det(B) = det(AB) = 0.
- ▶ Example. Suppose *A* is a 3×3 matrix with det(A) = 5. What is det(2A)?

- ▶ Example. Recall that if AB = 0, it does not follow that A = 0 or B = 0. However, show that det(A) = 0 or det(B) = 0.
- ▶ Solution. Follow from det(A) det(B) = det(AB) = 0.
- ► Example. Suppose *A* is a 3×3 matrix with det(A) = 5. What is det(2A)?
- ▶ Solution. *A* has three rows. Multiplying all 3 of them by 2 produces 2A. Hence, $det(2A) = 2^3 det(A) = 40$.

A "bad" way to compute determinants

Example. Compute $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$ by cofactor expansion.

A "bad" way to compute determinants

- Example. Compute $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$ by cofactor expansion.
- ▶ Solution. We expand by the second column:

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = -2 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix} = -2(-1) + (-1)1 - 0 = 1.$$

A "bad" way to compute determinants

- **Example.** Compute $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$ by cofactor expansion.
- ▶ Solution. We expand by the second column:

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = -2 \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix} = -2(-1) + (-1)1 - 0 = 1.$$

▶ Solution. We expand by the third column:

$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = 0 \begin{vmatrix} 3 & -1 \\ 2 & 0 \end{vmatrix} + (-2) \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} = 0 - 2(-4) + 1(-7) = 1.$$

Why is the method of cofactor expansion not practical?

Because to compute a large $n \times n$ determinant,

Why is the method of cofactor expansion not practical?

Because to compute a large $n \times n$ determinant,

- one reduces to n determinants of size $(n-1) \times (n-1)$,
- then n(n-1) determinants of size $(n-2) \times (n-2)$.
- · and so on.

In the end, we have $n! = n(n-1) \cdots 3 \cdot 2 \cdot 1$ many numbers to add. \Rightarrow too much work.