

RDMA Protocols

- InfiniBand (IB): native RDMA protocol
- iWARP
- RoCE (RoCE v2): RDMA over Commercial Ethernet

InfiniBand

 need to overhaul the datacenter with Infiniband enabled switches and NICs.

Table 3. InfiniBand Link Rates

InfiniBand Link	Signal Count	Signalling Rate	Data Rate	Fully Duplexed Data Rate
1X	4	2.5 Gb/s	2.0 Gb/s	4.0 Gb/s
4X	16	10 Gb/s	8 Gb/s	16.0 Gb/s
12X	48	30 Gb/s	24 Gb/s	48.0 Gb/s

Note: The bandwidth of an InfiniBand 1X link is 2.5 Gb/s. The actual raw data bandwidth is 2.0 Gb/s (data is 8b/10b encoded). Due to the link being bi-directional, the aggregate bandwidth with respect to a bus is 4 Gb/s. Most products are multi-port designs where the aggregate system I/O bandwidth will be additive.

Introduction to InfiniBand (White Paper)

iWARP & RoCE over Ethernet

- iWARP: very heavy weight, lower performance: implements the entire TCP/IP stack in the NIC **
 - an "ill-conceived attempt", 10 Gbps
- RoCE: operating over standard layer 2 and layer 3 Ethernet switches
 - 40 Gbps
 - Microsoft: scale RoCEv2 beyond VLAN

WHITE PAPER: RoCE vs. iWARP Competitive Analysis RDMA over Commodity Ethernet at Scale, SIGCOMM' 16

RDMA needs a lossless network!

- InfiniBand: credit-based algorithm
- RoCEv2: PFC (Priority-based Flow Control)
 - IRN: eliminate the need for PFC (SIGCOMM' 18)
- iWARP: TCP

Revisiting Network Support for RDMA, SIGCOMM' 18

DPDK

- provide
 - kernel bypassing (zero copy)
- does not provide
 - IP forwarding
 - firewalls
 - TCP or UDP

A Look at Intel's Dataplane Development Kit

Introduction to RDMA Programming

WHITE PAPER: RoCE vs. iWARP Competitive Analysis

WHITE PAPER: RoCE in the Data Center

SoftRDMA

- implement a entirely user-level iWARP stack (DPDK, LwIP, iWARP)
- One copy: NIC is unaware about the application-appointed place

SoftRDMA: Rekindling High Performance Software RDMA over Commodity Ethernet, APNet'17

mTCP

- focuses on small message transactions on multicore systems
 - Implementing TCP in the user level, One copy
 - batch of packet-level and socket-level events (reduce IPC overhead)
 - CPU Cache Locality
- 25x faster than latest Linux TCP stack

mTCP: A Highly Scalable User-level TCP Stack for Multicore Systems

Sandstorm

- a specialized userspace stack for serving static content
- implement a complete zero-copy stack (netmap)
- under high load, the same packet may need to be sent more than once: pre-copy stack

Network Stack Specialization for Performance, SIGCOMM' 14

Sandstorm

X: A Protected Dataplane Operating System

Goodput (Gbps)

- Dune, DPDK, LwIP
- a networking stack can be implemented in a protected OS kernel
- Zero-copy

(c) Different message sizes s (n=1)

IX: A Protected Dataplane Operating System for High Throughput and Low Latency, nsdi' 14 Dune: Safe User-level Access to Privileged CPU Features
Arrakis: The Operating System Is the Control Plane

Lessons

- loss rate on wireless path and wired path?
- starting point: DPDK, IwIP
- the best batch size? adaptive batching strategy?
- at least one copy?