Memory & I/O

Yi Kuo @ HPC-I

Outline

- I. Memory
 - A. Memory Hierarchy
 - B. Cache
 - C. Pages
- II. I/O
 - A. Chipset
 - B. PCle
 - C. Networking
 - D. NVIDIA GPUs
 - E. Storage

Memory

Memory Hierarchy

- CPUs could only access registers & load from main memory (DRAM)
- Main Memory is slow (compared to CPU)
 - Every memory access instructions would stall the CPU
 - We need cache!
 - Smaller, Faster, More expensive

- Main Memory is small & expensive (compared to disk)
 - We need to store data on secondary storage!
 - Bigger, Slower, Cheaper

Memory Hierarchy

CPU Caches

- Register: 1 cycle
- L1 Cache: 4 cycles
 - L1i: Instruction Cache
 - L1d: Data Cache
- L2 Cache: 12 cycles
- L3 Cache (LLC): ~21 cycles
 - Shared among multiple cores
- RAM: ~117 cycles
- Disk: 10000+ cycles

Istopo

- GUI mode
 - Requires X forwarding (ssh -Y)

- Console mode
 - Without \$DISPLAY variable, or lstopo-no-graphics

```
> lstopo-no-graphics
Machine (15GB total)
    Package L#0
    NUMANode L#0 (P#0 15GB)
    L3 L#0 (16MB)
    L2 L#0 (512KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
    PU L#0 (P#0)
    PU L#1 (P#1)
    L2 L#1 (512KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
    PU L#2 (P#2)
    PU L#3 (P#3)
    L2 L#2 (512KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2
    PU L#4 (P#4)
```

```
HostBridge
PCIBridge
PCI 01:00.0 (NVMExp)
Block(Disk) "nvme0n1"
PCIBridge
PCI 02:00.0 (Network)
Net "wlp2s0"
PCIBridge
PCI 03:00.0 (NVMExp)
Block(Disk) "nvme1n1"
PCIBridge
PCI e2:00.0 (VGA)
```


Cache Line & Locality

- The size of each data RAM entry is referred to "cache line size" or "block size"
- Common cache line size is 64 Bytes
 - Each time CPU loads 64 Bytes from main memory to cache
 - 16x consecutive 32-bit integers are loaded into the cache together
- Spatial Locality
 - Data that is located near each other in memory have a higher probability to be accessed together.
 - Arrays, Structures
- Temporal Locality
 - Data that is accessed repeatedly in a short duration of time is more likely to be accessed again in the near future.
 - Loops, Variables

Lab (as your Homework)

- Matrix Sum
 - https://gist.githubusercontent.com/YiPrograms/312b82fc3047ea121c697932b6b289f1/raw/mat_sum.cpp
 - o g++ mat_sum.cpp -o mat_sum
- What's wrong with this program?
 - o perf stat -d ./mat_sum
- Improve it according to cache locality

Submission:

https://docs.google.com/document/d/1S2Se8gpPpxFviomCSNQWC OppGf8CKR6NME3sunRjFE0/edit?usp=sharing

Virtual Memory

- The main memory is a big array
- Each process would want to have contiguous memory
 - -> Fragmentation
- A process should not be able to access the memory of other processes
- Virtual Memory
 - Each process has its own memory address space (Virtual Address, or VA)
 - The instructions in executables use virtual addresses
 - OS stores a Page Table to map from virtual address to physical address
 - Every process has a page table
 - The page size is 4KB on most computers
 - MMU hardware reads the page table to do the translation
 - Page table in memory -> Slow -> TLB Cache

Virtual Memory

Swapping

- Pages could be moved to secondary storage (e.g. Disks) to save main memory
- When the MMU failed to do the translation (the page is not in the memory, illegal access, etc.), Page Fault happens, and the control is handed to the OS
 - If the page is moved to secondary storage
 - OS moves the page back to main memory
 - Continue the program, and MMU would try the translation again
 - If it's an illegal access (e.g. page non-existent, writing read-only pages)

Disk

OS terminates the program with SIGSEGV (Segmentation Fault)

Page 0

Page 1

Page 3

Shared Pages

- A physical page could be shared among multiple processes (page tables)
 - o e.g. Shared Library, Copy on Write

Chipset

- North Bridge
 - Memory controller
 - High speed I/O (e.g. PCIe)

- South Bridge (I/O Controller)
 - Low speed I/O
 - PCI
 - USB
 - SATA
 - etc.

Chipset

- North Bridge
 - Memory controller
 - High speed I/O (e.g. PCIe)
 - Merged into CPU
- South Bridge (I/O Controller)
 - Low speed I/O
 - PCI
 - USB
 - SATA
 - etc.

PCle

PCIe Topology

- Root Complex (RC)
 - The root of PCIe topology
 - Bridges between
 PCle & CPU/other components
 - North Bridge
- PCIe Switch
 - Route PCIe packets for multiple PCIe devices
- Endpoint
 - o PCIe devices (e.g. GPU, NIC)
 - o Native PCIe: Memory Map only
 - Legacy PCle: support IO requests

PCIe Transactions

Programmed I/O

Initiated by the CPU to access
 PCIe devices

DMA

- Initiated by the endpoint
- Directly access the memory without CPU's involvement

P2P

 Initiated from one endpoint, to directly access another endpoint

PCIe P2P

- Routing under PCIe Bridges provides the best P2P performance
- Routing via Root Complex would degrade performance (since RC is in the CPU)
- Routing between RCs are not supported by specification

Istopo

- GUI mode
 - Requires X forwarding (ssh -Y)

- Console mode
 - Without \$DISPLAY variable, or lstopo-no-graphics

```
> lstopo-no-graphics
Machine (15GB total)
    Package L#0
    NUMANode L#0 (P#0 15GB)
    L3 L#0 (16MB)
    L2 L#0 (512KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
    PU L#0 (P#0)
    PU L#1 (P#1)
    L2 L#1 (512KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
    PU L#2 (P#2)
    PU L#3 (P#3)
    L2 L#2 (512KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2
    PU L#4 (P#4)
```

```
HostBridge
PCIBridge
PCI 01:00.0 (NVMExp)
Block(Disk) "nvme0n1"
PCIBridge
PCI 02:00.0 (Network)
Net "wlp2s0"
PCIBridge
PCI 03:00.0 (NVMExp)
Block(Disk) "nvme1n1"
PCIBridge
PCI e2:00.0 (VGA)
```


Networking

Ethernet (IP Network)

RDMA

- Remote Direct Memory Access
- Hardware Offload
 - Network protocols for remote memory access and transfer are offloaded to the NIC
- Kernel Bypass
 - Without the involvement of Operating System, data can be sent and received directly between buffers of applications without being copied between network layers
- Protocols
 - Infiniband
 - RoCE
 - iWARP

TCP vs RDMA

Transferring with Ethernet

Left sends data to Right

Transferring with RDMA

Left sends data to Right

RDMA Protocols & Devices

Infiniband Data Rates

Dete Dete	Throughput					
Data Rate	1x	4x (QSFP)				
SDR	2 Gb/s	8 Gb/s				
DDR	4 Gb/s	16 Gb/s				
QDR	8 Gb/s	32 Gb/s				
FDR10	10 Gb/s	40 Gb/s				
FDR	13.64 Gb/s	54.54 Gb/s				
EDR	25 Gb/s	100 Gb/s				
HDR	50 Gb/s	200 Gb/s				
NDR	100 Gb/s	400 Gb/s				
XDR	200 Gb/s	800 Gb/s				
GDR	400 Gb/s	1600 Gb/s				

QSFP vs SFP

NVIDIA GPUs

NVLINK

- NVLINK provides high-speed P2P communication between GPUs
- PCIe Version's NVLINK could only connect pairs of nearby GPUs
- SXM Version's NVLINK is built on the baseboard
- nvidia-smi nvlink -R -s

PCIe Version

SXM Version

nvidia-smi topo -m

```
[yikuo0425@gn1103 ~]$ nvidia-smi topo -m
         GPU<sub>0</sub>
                  GPU1
                           GPU<sub>2</sub>
                                     GPU3
                                              GPU4
                                                       GPU<sub>5</sub>
                                                                 GPU<sub>6</sub>
                                                                                   mlx5 0
                                                                                            mlx5 1
                                                                                                      mlx5 4
                                                                                                               mlx5 5
                                                                                                                        CPU Affinity
                                                                                                                                           NUMA Affinity
                                                                          GPU7
          X
                  NV1
                                     NV2
                                              SYS
                                                                 NV2
                                                                          SYS
                                                                                            NODE
                                                                                                      SYS
                                                                                                               SYS
                                                                                                                        0 - 16
GPU<sub>0</sub>
                           NV1
                                                       SYS
                                                                                   PIX
GPU1
                           NV2
                                                                 SYS
                                                                                   PIX
                                                                                            NODE
                                                                                                      SYS
                                                                                                               SYS
                                                                                                                        0-16
         NV1
                                     NV1
                                              SYS
                                                        SYS
                                                                          NV2
                                                                                                                                  0
GPU2
         NV1
                  NV2
                                     NV2
                                              NV1
                                                       SYS
                                                                 SYS
                                                                          SYS
                                                                                   NODE
                                                                                            PIX
                                                                                                      SYS
                                                                                                               SYS
                                                                                                                        0-16
                                                                                                                                  0
GPU3
         NV2
                  NV1
                            NV2
                                              SYS
                                                       NV1
                                                                 SYS
                                                                          SYS
                                                                                   NODE
                                                                                            PIX
                                                                                                      SYS
                                                                                                               SYS
                                                                                                                        0 - 16
                                                                                                                                  0
GPU4
         SYS
                  SYS
                           NV1
                                     SYS
                                                       NV2
                                                                NV1
                                                                          NV2
                                                                                   SYS
                                                                                            SYS
                                                                                                      PIX
                                                                                                               NODE
                                                                                                                        18-32
GPU5
         SYS
                  SYS
                           SYS
                                     NV1
                                              NV2
                                                                NV2
                                                                          NV1
                                                                                   SYS
                                                                                            SYS
                                                                                                      PIX
                                                                                                               NODE
                                                                                                                        18-32
GPU6
         NV2
                                     SYS
                                                                                            SYS
                                                                                                                        18-32
                  SYS
                           SYS
                                              NV1
                                                       NV2
                                                                          NV1
                                                                                   SYS
                                                                                                      NODE
                                                                                                               PIX
GPU7
         SYS
                                     SYS
                                                                NV1
                                                                                            SYS
                                                                                                      NODE
                                                                                                               PIX
                                                                                                                        18-32
                  NV2
                           SYS
                                              NV2
                                                        NV1
                                                                                   SYS
mlx5 0
         PIX
                  PTX
                           NODE
                                     NODE
                                              SYS
                                                       SYS
                                                                 SYS
                                                                          SYS
                                                                                            NODE
                                                                                                      SYS
                                                                                                               SYS
mlx5 1
         NODE
                  NODE
                           PIX
                                     PIX
                                              SYS
                                                       SYS
                                                                 SYS
                                                                          SYS
                                                                                   NODE
                                                                                                      SYS
                                                                                                               SYS
mlx5_4
         SYS
                  SYS
                           SYS
                                     SYS
                                              PIX
                                                       PIX
                                                                NODE
                                                                          NODE
                                                                                   SYS
                                                                                            SYS
                                                                                                               NODE
mlx5 5
        SYS
                  SYS
                           SYS
                                     SYS
                                              NODE
                                                       NODE
                                                                 PIX
                                                                          PIX
                                                                                   SYS
                                                                                            SYS
                                                                                                      NODE
```

Legend:

```
X = Self

SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node

PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)

PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)

PIX = Connection traversing at most a single PCIe bridge

NV# = Connection traversing a bonded set of # NVLinks
```


nvidia-smi topo -m

[yikuo04	[yikuo0425@gn1103 ~]\$ nvidia-smi topo -m														
	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	<u>mlx5_0</u>	<u>mlx5_1</u>	<u>mlx5_4</u>	<u>mlx5_5</u>	CPU Aff	inity	<u>NUMA Affinity</u>
CDUC	v	NIV / 1	NIV/1	NIVO	CVC	CVC	NVO	CVC	DTV	NODE	CVC	CVC	0 10	_	
GPU6	NV2	SYS	SYS	SYS	NV1	NV2	Χ	NV1	SYS	SYS	NODE	PIX	18-32	1	
GPU7	SYS	NV2	SYS	SYS	NV2	NV1	NV1	Χ	SYS	SYS	NODE	PIX	18-32	1	
mlx5_0	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	Х	NODE	SYS	SYS			

GPU7 is connected to the PCIe RC on NUMA node 1, and it would communicate to

- GPU 0, 2, 3
 - UPI over NUMA nodes
- GPU 5, 6
 - A pair of NVLINK
- GPU 1, 4
 - Two pairs of NVLINK
- mlx5_0 and mlx5_1 (IB NIC)
 - UPI over NUMA nodes
- mlx5_4
 - PCle RC on the same NUMA node
- mlx5_5
 - PCle Switch

GPUDirect RDMA

• Ensure that the HCA is on the same PCIe Switch as the GPU for best performance

Storage

HDD & SSD

- HDD (Hard Disk Drive)
 - Mechanical Disks
 - Cheap
 - Slow
- SSD (Solid State Drive)
 - Flash Chips
 - Not so cheap
 - Fast

Shock resistant up to 55g (operating)
Shock resistant up to 350g (non-operating)

HDD

Protocols & Interfaces

IDE (PATA)

- SATA
- SAS
 - SAS drives are mostly used on servers, and has higher RPM.
 - SATA drives can be installed in SAS socket, but not vice versa.
- NVMe (PCIe)
 - o PCle
 - M.2 / NGFF (M Key)
 - U.2 / U.3
 - SATA & SAS drives can be installed in U.2 socket, but not vice versa.

RAID

- Redundant Array of Independent Disks
 - o Combining multiple disks to create a big storage, for speed & redundancy

Hewlett Packard			ard ———	BREAKDOWN OF COMMON RAID LEVELS								
	En	terprise	METHOD			COMMON USAGE	PROS	CONS				
		JBOD	SPANNING		2	INCREASE CAPACITY	COST- EFFECTIVE STORAGE	NO PERFORMANCE OR SECURITY BENEFITS				
		0	STRIPING		2 HEAVY READ OPERATIONS		HIGH PERFORMANCE (SPEED)	DATA IS LOST IF ONE DISK FAILS				
		1	MIRRORING		2	STANDARD APP SERVERS	FAULT TOLERANCE, HIGH READ PERFORMANCE	LAG FOR WRITE OPS, REDUCED STORAGE (BY 1/2)				
		5	STRIPING & PARITY		3	NORMAL FILE STORAGE & APP SERVERS	SPEED + FAULT TOLERANCE	LAG FOR WRITE OPS, REDUCED STORAGE (BY 1/3)				
		6	STRIPING & DOUBLE PARITY		4	LARGE FILE STORAGE & APP SERVERS	EXTRA LEVEL OF REDUNDANCY, HIGH READ PERFORMANCE	LOW WRITE PERFORMANCE, REDUCED STORAGE (BY 2/5)				
		10	STRIPING & MIRRORING		4	HIGHLY UTILIZED DATABASE SERVERS	WRITE PERFORMANCE + STRONG FAULT TOLERANCE	REDUCED STORAGE (1/2), LIMITED SCALABILITY				

Linux File I/O

- Buffered I/O
 - Files are buffered with page caches
 - read() / write()
 - fread() / fwrite()
 - With buffer in user space
 - mmap()
 - Directly map page caches to user pages
 - Reduce the overhead of system calls
- Direct I/O (O_DIRECT)
 - Skip page caches
 - Read/Write directly from/to disk
 - Used in Database systems, which manage caches itself

Partitions & LVM

- A disk is partitioned into multiple partitions
 - The partition table describes the partitions on the disk
 - MBR (Master Boot Record)
 - For legacy BIOS Systems
 - Max 2TB Disk
 - GPT (GUID Partition Table)
 - For UEFI Systems
- LVM (Logical Volume Management)
 - Reducing fragmentation (Just like virtual memory)
 - Features
 - Dynamic volume resizing
 - Block level snapshot
 - RAID

File Systems

- Used to store the file & directory structures
- FAT (File Allocation Table)
- Journaling file system
 - e.g. ext3 / ext4, NTFS, HFS+
- ZFS & Btrfs
 - Support many featurese.g. Snapshot, Compression, Encryption
- NFS (Network File System)
- tmpfs (RAM Disk)
 - sudo mount -t tmpfs tmpfs /mnt
- Distributed File System
 - e.g. BeeGFS, Lusture, GlusterFS

UNIX File System Layout

