WAKISSHA JOINT MOCK EXAMINATIONS 2015 UGANDA ADVANCED CERTIFICATE OF EDUCATION MARKING GUIDE

P425/1 **MATHEMATICS** PAPER 1

JULY/AUGUST 2015

 $X=5+\sqrt{3} \cos\Theta....(1)$

$$Y = -3\frac{\sqrt{3}}{2}Sin\Theta....(2)$$

From 1 X-5 =
$$\frac{\sqrt{3}}{2}$$
Cos Θ

$$\left(\frac{2X-10}{\sqrt{3}}\right) = \cos \Theta$$

$$\left(\frac{2X-10}{\sqrt{3}}\right) = \cos\Theta$$

$$\cos^2\Theta = \left(\frac{2X-10}{\sqrt{3}}\right)^2$$

From (2) Y+3=
$$\sqrt{3}$$
Sin Θ

$$Sin\Theta = 2(Y+3)$$

 $\sqrt{3}$

$$\sin^2\Theta = \underline{(2Y-6)^2}$$

$$\cos^2\Theta + \sin^2\Theta = 2(2X-10)^2 + (2Y-6)^2$$
3
3

$$(2X-10)^2 + (2Y-6)^2 = 3$$

$$4X^2-40X+100+4Y2-24Y+36=3$$

$$4X^2+4Y^2-40X-24Y+133=0$$

$$X^2+Y^2-10X+6Y-133-0$$

$$(X-5)^2 + (Y+3)^2 = \frac{3}{4}$$

Locus is a circle with centre

$$(5-3)$$
 and radius $\sqrt{3}$

B1

M1

B1 – for $Co^2\Theta$ and $Sin\Theta$

$$(x-5)^2 = \frac{3}{4}\cos^2\Theta....(1) \quad B1$$
$$(y+3)2 = \frac{3}{4}\sin^2\Theta...(2)$$

$$(1) + (2)$$

$$(x-5)^3 + (y+3)^2 = \frac{3}{4}$$
 M1

$$4x^2 + 4y^2 - 40x - 24y + 130 = 0$$
 A

Is locus of a circle

The radius = $\frac{\sqrt{3}}{2}$ and centre (5, -3) B1

B1 **B**1 05

2 22n+2 0 0		
2. 3^{2n+2} -8n-9.		
Let au= 3^{2n+2} -8n-9.		
For $n=1$ $a_1=3^4-8-9=64$	B1	
thus divisible.		
For n=k.		
$ak=3^{2X+2}-8k-9. \Rightarrow 9k = 3^{2k}.3^2-8k-9$		
$9k=9(3^{2\pi})-8k-9.$	B1	
32k = 9k + 8k + 9		
9		
For $= k+1$		
$9R+1 = 3^{2(k+1)+2}-8(k+1)-9$		
$9R+1=3^{2\pi+4}-8k-8-9 \Rightarrow 9K+1=81(3^{4k})-8k-$		
17	B1	
Subst.(3) in (4)	וטו	
81(9k+8k+9).8k-17		
9		
9k+1=9ak+72R+81-8K-17.		
9K+1= 9AK+64R+64.		
$9K+1 = 64(\frac{9ak}{64} + k+1)$		
Ak+1=64Bfor B= $\frac{9ak}{64}$ +C+1		
Since its divisible for $n = \pi 41$, $n = c$ thus this	B1	
also divisible for all integral values of n.		
	05	
3. 6Cos2X+777=7Sin2X using t = tan x		
$6\left(\frac{1-t^2}{1+t^2}\right) + 7 = 7\left(\frac{2t}{1+t^2}\right)$	M1	For substitution
$6(1-t^2) +7(1+t^2) = 14t. \Rightarrow t^2-14t+13=0$		
(t-1) (t-13)=0		
t=1 t=13	M1	For method
for t=1	A1	
tan X=1 X=45°,225°		
For t=13	A1	
tan x=13 $\times = 85.6^{\circ}, 265^{\circ}6^{\circ}$		
Or	A1	
7Sin2x-6Cos2X=7		
R Sin(2x∝)= 7Sin2X-6CosR		
R Cos∝=7 and R Sin∝=6		
$R = \sqrt{49} + 36 = S85 \tan \propto = \frac{6}{7}$		
$\sqrt{85} \operatorname{Sin}(2x-\infty)=7$		
$\sin(2x-\propto) = \frac{7}{\sqrt{85}}$		
$2x = \sin^{-1}\left(\frac{7}{85}\right) + \tan^{-1}\left(\frac{6}{7}\right)X =$		
(85) (7) A1A1 = 05		
A1A1 = 05		

4. >	(+3a <2 X	-2a			
	(+3a) ² <4(x-	•			
		<4(X²-4aX+4	۵۱		
	+0ax+3a2\ (² -22ax+7a	•	ωj		
(3	x-a)(x-7a)>			_ A1	
	$X<\frac{1}{3}a$	$\frac{1}{2}$ a <x<7a< td=""><td>X>7a</td><td></td><td></td></x<7a<>	X>7a		
3x-a	3	3	+		
	-	+		4	
x-7a	-	-	+	_	
	+	_	+		
∴The sol	ution is X<	$\frac{1}{3}$ and x>7a	l	A1	A1 for each range of solution
5. ∫ ₁ °	$\frac{1}{3} \frac{dx}{x\sqrt{1}+x^2}$				
	ethod 1				
	$t u = \sqrt{1 + x^2}$	-			
x		1			
	, -				
U					
du	$I = \frac{1}{2}(1+x2)^{-1/2}$	² .2 <i>x</i> dx.		B1	
du	$I = \frac{dx}{\sqrt{1+x^2}} dx$				
	V = 1.20				
	$= \int_{0}^{\infty} \frac{1}{U^2 - 1} \frac{U}{X}$				
I =	$\int_{2}^{\infty} \frac{1}{U^2-1} du$				
Let $\frac{1}{U^2-1} = \frac{A}{u-1} + \frac{B}{u+1}$		B1			
A=	$\frac{1}{2}$, B= $\frac{-1}{2}$				
I	$=\frac{1}{2}\bigg[In\bigg(\frac{u-1}{u}\bigg)\bigg]$	-1		M1	
		$+1 \rfloor_2$			
	$=\frac{1}{2}(0-in\frac{1}{3})$				
=======================================	1 2 2			A1	
				05	
Λ Ι-	ternative me	othod			
Al		$ \infty \frac{dx}{x\sqrt{1} + x} $	_		
		$\sqrt{3} x \sqrt{1 + x}$	Z		
	et x=tan u			B1	(Control of the control of the contr
d	r= Sec²udu				(for only changing variablesi.e x to U because it can be worked without
	$\frac{\pi}{}$				involving limits until toward end then we
I=	$\int \frac{2}{\pi} \frac{1}{\tan u \sec u}$			M1	bring limits.
	2				Ŭ I
	$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos U}{\sin U} \frac{1}{\cos 3}$				
= J	$\int_{\pi}^{2} \frac{\cos \theta}{\sin \theta} \frac{1}{\cos \theta}$	_ du.			
	3	ου			
	$\frac{\pi}{}$				
= J	$\int_{-\pi}^{2}$ Cosec u	du			
	3				

$\left[in(Tan\frac{u}{2})\right]$	B1
$=(0-in\frac{1}{\sqrt{3}}$	
$=\frac{1}{2}\ln 3$	A1
6. (i-λi+4k).(2i-4j+6k)=0	
$4\lambda = -26$	
$\lambda = \frac{-13}{2}$ or -6.5	
Using ratio theorem.	
$OP = (\frac{-3}{-3+2})a + (\frac{-3}{-3+2})b$	M1
2(i-2j+4k)-2(3i-4j+6k)	M1
=3i-6j+12k-6i+8j-12k	
= -3i+2j	A1
7 1 24 24 2 2 3 1 2 4 2 2 2 3 1	05
7. Let ar, ar ² , ar ³ , be the age of the	
children in order and that of	
Pondo respectively. ar, ar ² , ar ³ =140	
ar, ar , ar =140 a(i+r+r ² +r ³)=140i	
, ,	
and a+ar =14	
a+ar = 14 a(i+r) = 14ii	
$a(1+1) = 14$ ar^2 , $ar^3 = 126 \Rightarrow$	
$ar^{2}(1+r)=126iii$	
(i)/(ii)gives	
$r^2=9$	
r=+-3	
r=3	
a(1+3)=14	
$a = \frac{7}{2}$	
-	
is a root $(r+1)(r+3)(r-3)=0$	
\Rightarrow r=3, r=-1, and r=-3 are	
roots.	
r=3	
subset for r=3 in equation	
(ii) 4a=14	
$a = \frac{7}{2}$	
Pando's age = $ar^3 = \frac{7}{2}x3^3 = 27x\frac{7}{2}$	
giving 94.5years.	

8. YCos2X $\frac{dy}{dx}$ = tan x+2, at y=0, X= $\frac{\pi}{4}$		
$y\frac{dy}{dx} = \frac{\tan x + 2}{\tan x + 2}$		
Cos ² x		
$y\frac{dy}{dx}$ =(tanx+2)sec ² x		
$ydy = \int \tan x sec^2 x dx +$		
2sec2xdx		
$\frac{y^2}{2} = \frac{1}{2} \tan^2 x + \tan x + c$		
At y=0, $x = \frac{\pi}{4}$		
$0 = \frac{1}{2} (\tan \frac{\pi}{4})^2 + 2 \tan \frac{\pi}{4} + c$		
$= \frac{1}{2}(1)^2 + 2(1) + c$		
$C = \frac{-5}{2}$		
-		
$\frac{y^2}{2} = \frac{1}{2} \tan^2 x + \tan x - \frac{-5}{2}$		
9.		
	I	

	T	,
10. (a)(i) Let $Z=x+iy$		
Z-i <3		
x+(y-1)i < 3		
$X^2+(y-1)^2<3^2$		
This is a circle with centre $(0,1)$		B1 for stating centre (0,1)
and radius r=3	B1B1	B1 for stating centre $(0,1)$ B1 for stating $r \le 3$
		Di foi stating i \(\sigma\)
	B1	For correct sketch and shading
(ii)This $\pi \le \arg(z,2) \le \pi$		
This is a region of half lines from		
(2,0) between $\frac{1}{2}\pi$		
3		
(b) $Z = X + IY$		
$\operatorname{Re} \underline{Z+i} = 0$		
Z+2		
$Re \underline{x+(y+1)i}$		
(x+2)+yi		
$Re \underline{x+(y+1)i (x+2)-yi} = 0$		
(x+2)+yi(x+2)-yi		
Re $\underline{x(x+2)}$ -		
xyi+i(x+2)(y+1)+y(y+1)=0		
$(x+2)^2+y^2$		
$\underline{X(x+2)+y(y+1)}$		
$(x+2)^2+y^2$		
$X^2+2x+y^2+y=0$		
$(x+1)^2-1+(y+\frac{1}{2})^2-\frac{1}{4}=0$		
$(x+1)^2 + (y+\frac{1}{2})^2 = \frac{5}{4}$		
Z=X+iy on a circle of centre (-		
$1,\frac{1}{2}$) and radius		
$R = \frac{\sqrt{5}}{2}$		
2		

11. $\sin 30 = \sin(2\Theta + \Theta)$ $= \sin 2\Theta \cos\Theta + \cos 2\Theta \sin\Theta$ $(2\sin\Theta \cos\Theta \cos\Theta) + (1-2\sin^2\Theta)\sin\Theta$ $2\sin\Theta (1-\sin 2\Theta) + (1-2\sin^2\Theta)\sin\Theta$ $2\sin\Theta - 2\sin^3\Theta + \sin\Theta - 2\sin^3\Theta$ $\sin^3\Theta = 3\sin\Theta - 4\sin^3\Theta$ Let $\sin 3\Theta = \frac{p}{q}$ $\Rightarrow \frac{p}{q} = 3\sin\Theta - 4\sin^3\Theta$ $4q \sin^{-3}\Theta - 3q\sin\Theta + P = 0$ If $\sin\Theta = x$ $\Rightarrow 4qx^3 - 3qx + p = 8x^3 - 6x - 1 = 0$ Q = 2 and $P = -1\sin 3\Theta = -\frac{1}{2}$	
$3\Theta = \sin^{-1}(-\frac{1}{2})$ $210^{0},330^{0},570^{0},690^{0},930^{0}$ $Q=70^{0},110^{0},190^{0},230^{0},310^{0}$ $X=\sin 700=0.9397.$ $X=\sin 1900=-0.1736$ $X=\sin 2300=-0.7660$ 12 (a) Y2=4Y 8 Can be written as	
12. (a) Y2=4X-8 Can be written as Y2=4(x-2) =4.1(x-2) =4ax X= x-2 a=1 Y ² =4(x-2) is the image of y ² =4x under translation vector $\binom{2}{0}$ New focus = $\binom{1}{0}\binom{2}{0}\binom{3}{0}$ Focus (3,0) New direction = -1+2 X=1	

(b) At P(ap2,2ap)	
$X=ap2$ $y=2ap$ $\frac{dx}{dx}=2aP$ $\frac{dy}{dx}=2a$.	
ap	
$\frac{dy}{dx}$ $\frac{2a}{1}$	
dx = 2ap p	
Gradient of tangent at $P = \frac{1}{n}$	
Gradient of tangent at $P = \frac{1}{p}$ Gradient of tangent at $Q = \frac{1}{p}$	
Equation of tangent at P	
$y^{-2aP} = 1$	
x-9p2 p	
x-py+ap2=01	
Equation of tangent at Q.	
$x-qy+aq^2=02$	
solving equations 1 and 2	
$-py+qy+aq^2-aq^2=0$	
(q-p)y+a(p-q)(p-q)=0	
Y=a(p+q)	
Substitute for y in equation 1	
$X=Pa(P+q)-ap^2$	
=apq.	
R is $(apq, a(P+q))$	
If R lies on 2x+a=0	
Then R satisfies thus equations.	
2(apq)+a=0	
2pq+1=0	
$Pq - \frac{1}{2}$	
1 ⁴ 2	

Mid-point of PQ is	
$m\left(\frac{ap^2+aq^2}{2},\frac{2ap+2aq}{2}\right).$	
$M \frac{9}{2}(p^2+q^2), 9(p+q)$	
At M:	
$X = \frac{9}{2}(p^2 + q^2), y = a(p+q)$	
$p^2 + q^2 = \frac{2x}{9}$	
$P+q = \frac{y}{9}$	
From $3\frac{2x}{9} = (p+q)2-2pq$	
$Pq = -\frac{1}{2}$	
$\frac{2x}{9} = (P+q)^2 + 1 \dots 5$	
Substitution equation 4 in 5	
$\frac{2x}{9} = (\frac{y}{9})^2 + 1$	
$2ax = v^2 + a^2$	
$Y^2=2ax-a^2$	

13.(a)			
$\sqrt{x} - 3 + \sqrt{2x + 1} = \sqrt{3x + 4}$			
Squaring both sides.			
$((x-3)+2\sqrt{(x-3)}(2x+1)+(2x+1)=3x+4$			
$\Rightarrow \sqrt{(x-3)(2x+1)} = 3.$			
$2x^{2}-5x-12=0$			
(x+4)(2x+3)=0			
$X=4 \text{ or } x=\frac{-3}{4}$			
Checking.			
When x=4, LHS=RHS			
When $x = \frac{-3}{2}$, LHS=RHS			
X=4 is only solution.			
A-4 is only solution.			
13(b).			
Let the first term of an AP be a and the common			
difference be d let also the first term of a GP be b and			
the common ratio be r.			
AP = a + (a + d) + (a + 2d) + + (a + (n-1)d)			
$AP = a+(a+d)+(a+2d)+\dots+(a+(n-1)d)$ $G.P = b+br+br^2+br^3+\dots+br^{n-1}$			
⇒Sum of the first terms;			
a+b=57i			
⇒Sum of second terms.			
a+d+br=94			
at r=2.			
A+d+2b=94ii			
Sum of the third term			
a+2d+br2=171			
at r=2. a+2d+4b=171iii			
a+2a+40=1/1111			
	ı	1	

14. (a) let $y = \frac{2x^2}{x^2 + 1}$	
$Dy = \frac{2(x+h)^{2}}{\left[(x+h)^{2}+1\right]} - \frac{2x^{2}}{x^{2}+1}$	
$\frac{2(x+h)^{2}}{\left[(x+h)^{2}+1\right]} - \frac{(x^{2}+1)-2x^{2}\left[(x+h)^{2}\right]+1}{\left[x^{2}+1\right]}$	
$\frac{\left[2(x^{2}2xh+h^{2})+1\right]\left[x^{2}+1\right]-2^{2}\left[x^{2}+2xh+h^{2+1}\right]}{\left[(x+h)^{2}+1\right]\left[x^{2}+1\right]}$	
$\frac{\left[2x^{2}+4xh+2h^{2}+1\right]\left[x^{2}+1\right]-2x^{2}\left[x^{2}+2xh+h^{2}+1\right]}{\left[\left(x+h\right)^{2}+1\right]\left[x^{2}+1\right]}$	
$\frac{2x^4 + 2x^2 + 4x^3h + 4xh + 2x^2h^2 + 2h^2 - 2x4 - 4x^3h - 2x^2h^2}{\left[\left(x+h\right)^2 + 1\right]\left[x^2 + 1\right]}$	
$\frac{4xh+2h^2}{\left[\left(x+h\right)^2+1\right]\left[x^2+1\right]}$ $dx \qquad 4x+2h$	
$\frac{dy}{dx} = \frac{4x+2h}{\left[\left(x+h\right)^2+1\right]\left[x^2+1\right]}$	
$\frac{dy}{dx} = \frac{4x}{\left(x^2 + 1\right)\left(x^2 + 1\right)}$	
$\frac{dy}{dx} = \frac{4x}{\left(x^2 + 1\right)^2}$	

(b)
$$X^2 + 6x + 34 = (x + 3)^2 + 25$$
 $25 \left[1 + \left(\frac{x + 3}{5} \right)^2 \right]$
Let $\frac{x + 3}{5} = \tan \theta$
 $\frac{1}{5} = \sec^2 \theta \frac{dQ}{DX}$
When $x = 3$, $\tan \Theta = 0$
 $\Theta = \tan^{-1}(0) = 0$
 $X = 2$
 $\tan \Theta = \frac{5}{5}$
 $\Theta = \tan^{-1}(1) = \frac{\pi}{4}$

$$\int_{-2}^{2} \frac{dx}{x^2 + 6x + 34} = \int_{0}^{\pi/4} \frac{1}{25} \left(\frac{1}{1 + \tan^2 \theta} \right) 5 \sec^2 \theta dx$$
 $= \frac{1}{5} \int_{0}^{\pi/4} \frac{1}{4} d\theta$
 $= \frac{1}{5} [\theta]_{-\pi}^{\pi/4}$
 $= \frac{\pi}{20}$

15. (a)
$$\frac{dy}{dx} = y + \tan \left(\frac{y}{x} \right) \text{ using } y = ux$$
From $y = ux$
 $\frac{dy}{dx} = u \frac{d(x)}{dx} + x \frac{d(u)}{dx}$
 $\frac{dy}{dx} = u + x \frac{du}{dx}$

$$\left(u + x \frac{du}{dx} \right) = ux + \tan(u)$$
 $xu + x^2 \frac{dy}{dx} dx = x4 + \tan u$

$$x^{2} \frac{du}{dx} = \tan u \quad \text{separating variables}$$

$$X^{2} \text{du} = \tan dx$$

$$\frac{du}{\tan u} = \frac{dx}{x^{2}}$$

$$\frac{1}{\tan u} du = \frac{dx}{x^{2}}$$

$$\frac{\cos u}{\sin u} du = x^{-2dx}$$

$$\Rightarrow \int \frac{\cos u du}{\sin u} = \int x^{2} dx$$

In sin $u = \frac{-1}{x} + c$

But from y=ux

$$u = \frac{y}{x}$$

$$\Rightarrow$$
 in $\sin\left(\frac{y}{x}\right) = \frac{-1}{x} + c$

Or
$$\ln \cos \frac{y}{x} + \frac{1}{x} + A = 0$$

(b)

Let A represent the number of accidents and P represent the number of police deployed.

$$\frac{dA}{dp} = -kp.$$

dA=-Kpdp.

SdA = -KSpdp.

A=-kSpdp

$$A = \frac{-kp^2}{2} + c$$

At A=7,P=2.

$$7 = -k\frac{4}{2} + c$$

$$1 = -k \frac{k16}{2} + c$$

 $1 = -8k + c \dots 11$

So the equation connecting A and P is $A = \frac{-p^2}{2} + 9$ A=

$$\frac{-p^2}{2} + 9$$

$$2A = -p^2 + (9X2)$$

 $P^2 = (2X9) - 2A$

$$P^2 = (2X9)-2A$$

$$P2=18-2A.$$

(i) When there is no policeman P=0.

$$P2 = 18-2A$$

$$O = 18-2A$$

$$\frac{2A}{2} = \frac{18}{2}$$

$$A = 9$$

There are 9 accidents if no policeman is deployed.

$$P2 = 18$$

$$P = \sqrt{18} = 4.24 = 5$$

5 policemen are required.

16.
$$k = \frac{5t}{16 + \left(\frac{t}{a}\right)^2}$$

$$k = \frac{5t}{1 + \frac{t^2}{a^2}}$$

$$k = \frac{5a^2t}{a^2 + t^2}$$

$$\frac{dk}{dt} = \frac{\left(a^2 + t^2\right) - 5a^2 - 5a^2t(2t)}{\left(a^2 + t^2\right)^2}$$

But at maximum concentration

$$\frac{dk}{dt} = 0$$

$$5t^{2}a^{2} + 5a^{4} - 10a^{2}t^{2} = 0$$
At t=6
$$180a^{2} + 5a^{4} - 360a^{2} = 0$$

$$5a^{2}(a^{2} - 36) = 0$$
Either 5a2=0, a=0
Or a2-36=0, a=±6
$$A=\pm 6$$

Volume of a cone.

$$\frac{1}{3}\pi r^2 h$$

$$v = \frac{1}{3\sqrt{3}}\pi r^3$$
Given $\frac{dv}{dv} = \frac{\pi r^2}{\sqrt{3}}$
Required $\frac{dv}{dt} = \frac{dv}{dv} \frac{dv}{dt}$

$$\frac{dr}{dt} = \frac{\sqrt{3}}{\pi} \cdot \frac{dv}{t}$$

From $\frac{dv}{dt} = 9$ m/s	
When $v = \frac{6}{60}$ $t=1$	
$v = \frac{6}{60}.20\sqrt{3} t = 20\sqrt{3}$	
$V=3\sqrt{3}$	
From V= $\frac{1}{3\sqrt{3}}\pi r^3$	
$3\sqrt{3} = \frac{1}{3\sqrt{3}}\pi r^3$	
3 05	
$r = \frac{3}{\pi^{\frac{1}{3}}}$	
$\pi r^{3} = 27$ $r = \frac{3}{\frac{1}{\pi^{3}}}$ $\frac{dr}{dt} = \frac{\sqrt{3}}{\pi \left(\frac{3}{\pi^{1/3}}\right)^{2}} \frac{dv}{dt}$ $\frac{dr}{dt} = \frac{\sqrt{3}}{\pi^{1/3}}$	
$\frac{dr}{dt} = \frac{\sqrt{3}}{\pi^{1/3}}$	