Energy aware scheduling

March 9, 2016

1 Problem formulation

We consider a problem of applications scheduling in a center with limited power and resources.

This data center runs two different applications : active applications (also called web applications) and batch applications.

1.1 Active applications

We consider multiple active applications $\{A_i\}, i \in 1..n$, which run continuously over a given amount of time intervals 1..24.

Each application A_i has, at a given time interval j, an execution modes; each application's mode produces a given power consumption and profit when applied over an interval, with

 $M_{i,j} \in 1..3$ mode of activity i at time j.

 $E_{i,j} \in 0..1000$ power consumption of activity i at time j.

 $P_{i,j} \in 0..1000$ profit for running activity i at time j.

Those informations can be stored in tables, eg:

	Mode 1	Mode 2	Mode 3
A_1	50	60	70
A_2	40	45	55

Table 1: Energy consumption for two active applications

		Mode 1	Mode 2	Mode 3
	A_1	100	110	120
ĺ	A_2	90	100	110

Table 2: Profit for two active applications

- element $(M_{i,j}, Row_i^{Profit}, P_{i,j}) \% P_i = Row_i^{Profit}[M_i]$

1.2 Batch applications

We consider multiple batch jobs $\{B_i\}, i \in 1..m$, each with its own parameters:

 $Duration_i$ is the number of intervals this job must be run before being finished,

 $Deadline_i$ deadline is the interval at which the job must be finished,

 $Q_i \in 0..1000$ is the profit earnt only if the whole job is finished before or at deadline,

 $Power_i$ is the power consumed by the job when it is run over an interval

The batch jobs do not have execution modes.

	On	Off
B_1	60	0
B_2	80	0

Table 3: Energy consumption for Batch applications

Each batch job i can be decomposed in as many subjobs i, j as its duration. We note $S_{i,j}$ the interval at which the j^{th} subjob of jow i is executed. Since each subjob must be executed over a different time interval,

```
0 < S_{i,1} < S_{i,2} ... < S_{i,Duration_i}.
```

If the job meets its deadline, then also

 $S_{i,Duration_i} \le Deadline_i$

Energy consumption of batch job i during an interval is $E_{i,j}$, where $i \in [1,m]$ and $j \in [1...Duration_i]$.

• element $(S_{i,Duration_i}, [......Profit_i, Pen_i, ...], Q_i)$

1.3 Energy cap

We also introduce the maximum available energy at j as $Capacity_j$, where $j \in [1,24]$. Since, in cumulative constraint modeling, the limit of maximum capacity of available energy can not be changed, we introduce fake jobs in each slot to match with the $Capacity_j$. So the maximum capacity is defined as Limit, where $Limit = max(Capacity_h)$, $h \in [1,24]$. For scheduling purpose we slice the total time i.e., 24/48 hours to 24/48 slots meaning 1 hour as slot and schedule each slot in advance with known information. So, Total Profit is $P = \sum_{i=1}^{n} P_{i,j} + \sum_{i=1}^{m} Q_i$

- For each active job A_i starts at j, has duration of 1 slot and height of power consumption is E_{ij} , where, $\forall j \in [1,24]$
- For each batch jobs B_i the start time is S_{ij} , duration is 1 slot and and height of power consumption is E_i , where, $\forall i \in [1,m]$ and $\forall j \in [1,duration_i]$
- For every slot $j \in [1,24]$ we have a fake job F_h that starts at fixed j, duration of 1 slot and height of power consumption of Limit $Capacity_j$, where, $\forall j \in [1,24]$

1.4 Memory use

The data center contains l servers $\{S_k\}, k \in 1...l$. Each server S_k has a memory capacity M_k which limits the number of applications this server can execute.

Executing an application A_i or a job B_i on a server S_k consumes a fixed amount of memory on the server over the execution interval. Reciprocally, each application must be run on a server at any time and any job executed during an interval must be run on a server.

We note

 $HA_{i,j}$ the host of the application A_i during interval j

 $P(HA_{i,j})$ the cost of moving the application A_i from one host to $HA_{i,j}$. If $HA_{i,j-1}$ is defined i.e. application A_i was running during interval j-1, and $HA_{i,j-1} = HA_{i,j}$ then $P(HA_{i,j}) = 0$. If $HA_{i,j-1}$ is undefined, then $P(HA_{i,j}) = 0$. If $HA_{i,j-1}$ is defined and $HA_{i,j-1} \neq HA_{i,j}$ then $P(HA_{i,j})$ is a function of $HA_{i,j-1}$ and $HA_{i,j}$.

 $HB_{i,j}$ the host of the job B_i during interval j

 $Load_{k,j}$ the memory load of the server k during interval time j

mem(C) the memory use of the job or application C.

then we know that

$$Load_{k,j} = \sum_{A_i} (mem(A_i)ifHA_{i,j} = k) + \sum_{B_i} (mem(B_i)ifHB_{i,j=k})$$
(1)

2 Solution formulation

A solution to such a problem consists in:

- \forall Active application A_i and time interval j, the execution mode $M_{i,j}$ at which to run the application during the interval
- \forall Batch job B_i , a series time interval $S_{i,1}...S_{i,Duration_i}$ at which to execute the job.
- \forall time interval j, \forall server S_k , the set of Applications and jobs hosted on the server during the time interval.

with respect to the previously specified conditions.

3 Objective

Our objective function is to maximize P,

$$P = \sum_{j=1}^{24} \left(\sum_{i=1}^{n} P_{i,j} \right) + \sum_{i=1}^{m} Q_{i}$$