<u>Definition</u>: The **substitution** of an expression for a (free) variable in a lambda expression is denoted by $E[v \to E_1]$ and is defined as follows:

- 1. $v[v \to E_1] = E_1$ for any variable v.
- 2. $x[v \to E_1] = x$ for any variable $x \neq v$.
- 3. $c[v \to E_1] = c$ for any constant c.
- 4. $(E_{rator}E_{rand})[v \rightarrow E_1] = ((E_{rator}[v \rightarrow E_1])(E_{rand}[v \rightarrow E_1]))$
- 5. $(\lambda v. E)[v \rightarrow E_1] = (\lambda v. E)$
- 6. $(\lambda x. E)[v \to E_1] = \lambda x. (E[v \to E_1])$ when $x \neq v$ and $x \notin FV(E_1)$.
- 7. $(\lambda x. E)[v \to E_1] = \lambda z.$ $(E[x \to z][v \to E_1])$ when $x \neq v, x \in FV(E_1), z \neq v,$ and $z \notin FV(E_1).$

In part 7, the first substitution $E[x \to z]$ replaces the bound variable x that will capture the free xs in E_1 by an entirely new bound variable z. Then the intended substitution can be performed safely.

$\underline{\textbf{Definition}}: \alpha\text{-}\mathbf{reduction}$

If v and w are variables and E is a lambda expression,

$$\lambda v. E \Rightarrow_{\alpha} \lambda w. E[v \rightarrow w]$$

provided that w does not occur at all in E, which makes the substitution $E[v \to w]$ safe. The equivalence of expressions under α -reduction is what makes part 7 of the definition of substitution correct.

<u>Definition</u> : β -reduction

If v is a variable and E and E_1 are lambda expressions,

$$(\lambda v. E)E_1 \Rightarrow_{\beta} E[v \rightarrow E_1]$$

provided that the substitution $E[v \to w]$ is carried out according to the rules for a safe substitution.

<u>Definition</u> : η -reduction

If v is a variable, E is a lambda expression (denoting a function), and v has no free occurrence in E,

$$\lambda v.(E \ v) \Rightarrow_{\eta} E.$$