$\begin{array}{c} Probabiltiy \ and \ Stochastic \ Processes \ for \ Finance \ II \\ (MTH \ 9862). \end{array}$

Final Examination.

Instructions: Please **print** your name below. Show all work and write legibly. Full credit corresponds to 100 points. **Good luck!**

Student name:	Grade

Problem	Out of	Score	Comments
1	20		
2	20		
3	20		6+7+7
4	20		
5	20		
6	20		
Total	120		

Problem 1. Let B(t), $t \ge 0$, be a standard Brownian motion, N(t), $t \ge 0$ be a Poisson process with intensity λ , and M(t), $t \ge 0$ be a compensated Poisson process. Evaluate the following stochastic integrals:

- (a) $\int_0^t B(s)e^{B(s)}dB(s);$
- (b) $\int_0^t e^{2B(s)-2s} dB(s)$;
- (c) $\int_0^t N(s) dN(s)$;
- (d) $\int_0^t M(s-) dM(s)$

Problem 2. Let B(t), $t \ge 0$, be a standard Brownian motion, Q(t), $t \ge 0$, be a compound Poisson process with intensity λ and jump distribution $P(Y_1 = y_m) = p_m$, $m \in \{1, 2, ..., M\}$ (both are adapted to the same filtration). Set

$$S(t) = S(0)e^{\mu t + \sigma B(t) + Q(t)}.$$

where $\mu \in \mathbb{R}$, $\sigma > 0$ are constants. Find

- (a) Var(S(t));
- (b) Cov(S(t), B(t));
- (c) Cov(S(t), Q(t)).

Problem 3. Let under \mathbb{P} the process $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity $\lambda > 0$. Let $\tilde{\lambda} \in (0, \infty)$.

- (a) Find the measure $\tilde{\mathbb{P}}$ under which $\{N(t)\}_{0 \leq t \leq T}$ is a Poisson process with intensity $\tilde{\lambda}$. Write explicitly the Radon-Nikodym derivative Z(t), $0 \leq t \leq T$.
- (b) Use the definition of a martingale and properties of Poisson process to show that Z(t), $0 \le t \le T$, is a martingale.
- (c) Apply Itô-Doeblin formula to show that Z(t), $0 \le t \le T$, is a martingale.

Problem 4.

(a) Suppose that for $0 \le t \le u \le T$

$$dX(u) = b(u, X(u)) du + \sigma(u, X(u)) dB(u), \quad X(t) = x.$$

Let f(x) and h(x) be given deterministic functions (such that all integrals below are well-defined). Find the PDE satisfied by

$$g(t,x) = E^{t,x}[h(X(T))] + \int_t^T E^{t,x}[f(X(u))] du.$$

(b) Solve explicitly the following terminal value problem:

$$g_t(t,x) + (1-x)g_x(t,x) + 2g_{xx}(t,x) = 1, \quad g(T,x) = x^2.$$

Problem 5. Assume BSM model with a constant interest rate and no dividends. Let S(t) be the price of the stock at time t. Define

$$Y(T) := \exp\left(\frac{1}{T} \int_0^T \ln S(t) \, dt\right).$$

Suppose that an Asian call option has payoff $(Y(T) - K)_+$ at time T. Find an explicit formula for the price of such an option at time 0.

Problem 6. Assume BSM model. An American cash-or-nothing option can be exercised at any time $t \ge 0$ (no expiration). If exercised at time t its payoff is

$$\begin{cases} 1, & \text{if } S(t) \le K; \\ 0, & \text{if } S(t) > K. \end{cases}$$

- (a) What is the optimal exercise strategy?
- (b) What is the time 0 price of this option? You may use the fact that for $\mu \in \mathbb{R}, m > 0, X(t) = \mu t + B(t), \tau_m = \inf\{t \geq 0 : X(t) = m\}$, and for all $\lambda > 0$

$$\mathbb{E}(e^{-\lambda \tau_m} 1_{\{\tau_m < \infty\}}) = e^{-m(-\mu + \sqrt{\mu^2 + 2\lambda})}.$$