

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Algorithmic State Machine (ASM) Charts

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 12 is out
- It is due on Monday Dec 5 @ 4pm
- Last homework for the semester!

Administrative Stuff

The FINAL exam is scheduled for

Monday Dec 12 @ 2:15 – 4:15 PM

• It will be in this room.

http://www.registrar.iastate.edu/students/exams/fallexams

Standard Exams by Contact Hour

Time (by first contact)	Exam Day	Exam Date	Exam Time
Mon., 7:30-8:29 a.m.	Thurs.	Dec. 15	7:30-9:30 a.m.
Mon., 8:30-9:29 a.m.	Mon.	Dec. 12	7:30-9:30 a.m.
Mon., 9:30-10:29 a.m.	Tues.	Dec. 13	9:45-11:45 a.m.
Mon., 10:30-11:29 a.m.	Thurs.	Dec. 15	9:45-11:45 a.m.
Mon., 11:30 a.m12:29 p.m.	Fri.	Dec. 16	9:45-11:45 a.m.
Mon., 12:30-1:29 p.m.	Wed.	Dec. 14	2:15-4:15 p.m.
Mon.,1:30-2:29 p.m.	Thurs.	Dec. 15	12:00-2:00 p.m.
Mon., 2:30-3:29 p.m.	Wed.	Dec. 14	7:30-9:30 a.m.
Mon., 3:30-4:29 p.m.	Mon.	Dec. 12	2:15-4:15 p.m.

Final Exam Format

 The exam will cover: Chapter 1 to Chapter 6, and Sections 7.1-7.2

Emphasis will be on Chapter 5, 6, and 7

- The exam will be open book and open notes.
- You can bring up to 5 pages of handwritten or typed notes plus your textbook.

Final Exam Format

- The exam will be out of 130 points
- You need 95 points to get an A on this exam
- It will be great if you can score more than 100 points.
 - but you can't roll over your extra points ⊗

Topics for the Final Exam

- K-maps for 2, 3, and 4 variables
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adding and subtracting
- Serial adder
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Counters (up, down, synchronous, asynchronous)
- Registers and Register Files

Topics for the Final Exam

- Synchronous Sequential Circuits
- FSMs
- Moore Machines
- Mealy Machines
- State diagrams, state tables, state-assigned tables
- State minimization
- Designing a counter
- Arbiter Circuits
- Reverse engineering a circuit
- ASM Charts
- Register Machines
- Bus structure and Simple Processors
- Something from Star Wars

Reading Material for Next Lecture

- "The Seven Secrets of Computer Power Revealed" by Daniel Dennett.
- This is Chapter 24 in his latest book "Intuition Pumps and Other Tools for Thinking", 2013

Elements used in ASM charts

[Figure 6.81 from the textbook]

State Box

State Box

- Indicated with a rectangle
- Equivalent to a node in the State diagram
- The name of the state is written outside the box
- Moore-type outputs are written inside the box
- Only the output that must be set to 1 is written (by default, if an output is not listed it is set to 0)

Decision Box

Decision Box

- Indicated with a diamond shape
- Used for a condition expression that must be tested
- The exit path is chosen based on the outcome of the test
- The condition is on one or more inputs to the FSM
- Shortcut notation: w means "is w equal to 1?"

Conditional Output Box

- Indicated with an oval shape
- Used for a Mealy-type output signals
- The outputs depend on the state variables and inputs
- The condition that determines when such outputs are generated is placed in a separate decision box

Some Examples

FSM

Reset w = 1A/z = 0B/z = 0w = 0w = 1w = 0C/z = 1w = 1

[Figure 6.3 from the textbook]

ASM chart

[Figure 6.82 from the textbook]

FSM

ASM chart

[Figure 6.23 from the textbook]

[Figure 6.83 from the textbook]

FSM

ASM chart

[Figure 6.73 from the textbook]

[Figure 6.84 from the textbook]

ASM Chart is different from a Flow Chart

- The ASM chart implicitly includes timing info
- It is assumed that the underlying FSM changes from one state to another on every active clock edge
- Flow charts don't make that assumption.

The general model for a sequential circuit

The general model for a sequential circuit

$$M = (W, Z, S, \varphi, \lambda)$$

- W, Z, and S are finite, nonempty sets of inputs, outputs, and states, respectively.
- φ is the state transition function, such that $S(t+1) = \varphi[W(t), S(t)]$.
- λ is the output function, such that $\lambda(t) = \lambda[S(t)]$ for the Moore model and $\lambda(t) = \lambda[W(t), S(t)]$ for the Mealy model.

Examples of Solved Problems

Example 6.12

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true then the output z should be set to 1; otherwise to 0.

State Diagram

State Table for the FSM

Present	Next	Output	
state	w = 0	w = 1	z
A	В	D	0
В	$^{\mathrm{C}}$	D	0
С	$^{\mathrm{C}}$	D	1
D	В	${ m E}$	0
${ m E}$	В	\mathbf{E}	1

State Table for the FSM

Present	Next state		Output
state	w = 0	w = 1	z
A	В	D	0
В	$^{\mathrm{C}}$	D	0
С	$^{\mathrm{C}}$	D	1
D	В	${ m E}$	0
E	В	\mathbf{E}	1

Present	Next state		Output
state	w = 0	w = 1	z
A	В	D	0
В	$^{\mathrm{C}}$	D	0
С	$^{\mathrm{C}}$	D	1
D	В	${ m E}$	0
E	В	Ε	1

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
,				

$$z = y_3 + \overline{y}_1 y_2$$

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
,	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

Truth Table for the Output z

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
С	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

y_3	y_2	y_1	z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Truth Table for the Output z

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

y_3	y_2	y_1	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

Truth Table for the Output z

	Present state $y_3y_2y_1$		Next state					
			w = 0	w = 1	Output z			
			$Y_3Y_2Y_1$	$Y_3Y_2Y_1$				
Α		000		001	011		0	
В		001		010	011		0	
\mathbf{C}		010		010	011		1	
D		011		001	100		0	
Ε		100		001	100		1	
		101		ddd	ddd		d	
		110		ddd	ddd		d	
		111		ddd	ddd		d	

y_3	y_2	y_1	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

K-Map for the Output z

]	Present state $y_3y_2y_1$		Next $w = 0$	state $w = 1$	0	utp	out
				113119111		$Y_3Y_2Y_1$	z	
Α		000		001	011		0	
В		001		010	011		0	
$^{\rm C}$		010		010	011		1	
D		011		001	100		0	
\mathbf{E}		100		001	100		1	
		101		ddd	ddd		d	
		110		ddd	ddd		d	
		111		ddd	ddd		d	

y_2y	1			
	00	01	11	10
0	0	1	d	1
1	0	0	d	d

y_3	y_3 y_2		z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

The Expression for the Output z

Present	Next		
state	w = 0	w = 1	Output
$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
000	001	011	0
001	010	011	0
010	010	011	1
011	001	100	0
100	001	100	1
101	ddd	ddd	d
110	ddd	ddd	d
111	ddd	ddd	d

 \mathbf{E}

y_3y_1	2	y ₁	y ₂	y ₃
	00	01	11	10
0	0	1	d	1
1	0	0	Q	d

 y_1

y_3	y_2	y_1	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

State-Assigned Table for the FSM

	Present	Next	state				
	state	w = 0	w = 1	Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z			
Α	000	001	011	0			
В	001	010	011	0			
\mathbf{C}	010	010	011	1			
D	011	001	100	0			
\mathbf{E}	100	001	100	1			

$$Y_1 = w\overline{y}_1\overline{y}_3 + w\overline{y}_2\overline{y}_3 + \overline{w}y_1y_2 + \overline{w}\overline{y}_1\overline{y}_2$$

$$Y_2 = y_1 \overline{y}_2 + \overline{y}_1 y_2 + w \overline{y}_2 \overline{y}_3$$

$$Y_3 = wy_3 + wy_1y_2$$

How can we derive these expressions?

Truth Table for Y₃

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
	101	ddd	d <mark>dd</mark>	d
	110	ddd	d <mark>dd</mark>	d
	111	ddd	ddd	d

w	y_3	y_2	y_1	Y_3	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	d		
0	1	1	0	d		
0	1	1	1	d		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	1		
1	1	0	0	1		
1	1	0	1	d		
1	1	1	0	d		
1	1	1	1	d		

Truth Table for Y₂

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
С	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	d <mark>dd</mark>	d <mark>dd</mark>	d
	110	ddd	d <mark>d</mark> d	d
	111	ddd	d <mark>d</mark> d	d

w	y_3	y_2	y_1	Y_3	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	0	0	
0	0	0	1	0	1	
0	0	1	0	0	1	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	d	d	
0	1	1	0	d	d	
0	1	1	1	d	d	
1	0	0	0	0	1	
1	0	0	1	0	1	
1	0	1	0	0	1	
1	0	1	1	1	0	
1	1	0	0	1	0	
1	1	0	1	d	d	
1	1	1	0	d	d	
1	1	1	1	d	d	

Truth Table for Y₁

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
$^{\rm C}$	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	ddd	dd <mark>d</mark>	d
	110	ddd	ddd	d
	111	ddd	dd <mark>d</mark>	d

w	y_3	y_2	y_1	Y_3	<i>Y</i> ₂	Y_1
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

Y_2 $w y_3$								
$y_2 y_1$	00	01	11	10				
00	0	0	0	1				
01	1	d	d	1				
11	0	d	d	0				
10	1	d	d	1				

Y_1 $w y_3$							
$y_2 y_1$	00	01	11	10			
00	1	1	0	1			
01	0	d	d	1			
11	1	d	d	0			
10	0	d	d	1			

w	y_3	y_2	y_1	Y_3	Y_2	Y_1
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

Y_2 $w y_3$								
$y_2 y_1$	00	01	11	10				
00	0	0	0	1				
01	1	d	d	1				
11	0	d	d	0				
10	1	d	d	1				

Y_1 $w y_3$							
$y_2 y_1$	00	01	11	10			
00	1	1	0	1			
01	0	d	d	1			
11	1	d	d	0			
10	0	d	d	1			

w	y_3	y_2	y_1	Y_3	Y ₂	<i>Y</i> ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

Expressions for Y₃, Y₂, Y₁

Y_2 $w y_3$							
$y_2 y_1 $	00	01	11	10			
00	0	0	0	1			
01	1	d	d	1			
11	0	d	d	0			
10	1	d	d	1			

w	y_3	y_2	y_1	<i>Y</i> ₃	Y_2	<i>Y</i> ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1		1	1	1	^	_

$$Y_1 = w\overline{y}_1\overline{y}_3 + w\overline{y}_2\overline{y}_3 + \overline{w}y_1y_2 + \overline{w}\overline{y}_1\overline{y}_2$$

$$Y_2 = y_1\overline{y}_2 + \overline{y}_1y_2 + w\overline{y}_2\overline{y}_3$$

$$Y_3 = wy_3 + wy_1y_2$$

Next State and Output Expressions

$$Y_1 = w\overline{y}_1\overline{y}_3 + w\overline{y}_2\overline{y}_3 + \overline{w}y_1y_2 + \overline{w}y_1\overline{y}_2$$

$$Y_2 = y_1\overline{y}_2 + \overline{y}_1y_2 + w\overline{y}_2\overline{y}_3$$

$$Y_3 = wy_3 + wy_1y_2$$

$$z = y_3 + \overline{y}_1 y_2$$

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
4	000	001	011	0
В	001	010	011	0
\mathbb{C}	010	010	011	1
)	011	001	100	0
\mathbf{E}	100	001	100	1

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1
	<u> </u>			

B,C, D, E – when $y_3=1$

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

	Present	Next	state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
A	000	100	110	0	———— cut here
В	100	101	110	0	cut here
\mathbf{C}	101	101	110	1	
D	110	100	111	0	
Ε	111	100	111	1	

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

Truth Table for the Output z

	Present		Next	Next state		0				
		state		state		w = 0	w = 1		utp	ut
	$y_3y_2y_1$		$Y_3Y_2Y_1$ Y_3		$Y_3Y_2Y_1$	$Y_3Y_2Y_1$				
A		000		100	110		0			
		001		ddd	ddd		d			
		010		ddd	ddd		d			
		011		ddd	ddd		d			
В		100		101	110		0			
С		101		101	110		1			
D	110		100	111		0				
Ε	L	111		100	111		1			

y_3	y_2	y_1	z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Expression for the Output z

	Present	Next	Next state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
Α	000	100	110	0	
	001	ddd	ddd	d	
	010	ddd	ddd	d	
	011	ddd	ddd	d	
В	100	101	110	0	
С	101	101	110	1	
D	110	100	111	0	
Е	111	100	111	1	

y_3	y_2	y_1	z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Truth Table for Y₃

	Present	Next	Next state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
A	000	100	110	0	
	001	ddd	d <mark>dd</mark>	d	
	010	ddd	d <mark>dd</mark>	d	
	011	ddd	<mark>d</mark> dd	d	
В	100	101	1 10	0	
С	101	101	1 10	1	
D	110	100	111	0	
Е	111	100	<u>1</u> 11	1	

w	y_3	y_2	y_1	Y_3	Y_2	Y_1
0	0	0	0	1		
0	0	0	1	d		
0	0	1	0	d		
0	0	1	1	d		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	d		
1	0	1	0	d		
1	0	1	1	d		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		_

Truth Table for Y₂

Present		Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	ddd	d <mark>d</mark> d	d
	010	<mark>dd</mark> d	<mark>d</mark> d	d
	011	ddd	ddd	d
В	100	101	1 10	0
С	101	101	110	1
D E	110 111	100 100	$1111 \\ 111$	1

w	y_3	y_2	y_1	Y_3	Y_2	Y ₁
0	0	0	0	1	0	
0	0	0	1	d	d	
0	0	1	0	d	d	
0	0	1	1	d	d	
0	1	0	0	1	0	
0	1	0	1	1	0	
0	1	1	0	1	0	
0	1	1	1	1	0	
1	0	0	0	1	1	
1	0	0	1	d	d	
1	0	1	0	d	d	
1	0	1	1	d	d	
1	1	0	0	1	1	
1	1	0	1	1	1	
1	1	1	0	1	1	
1	1	1	1	1	1	

Truth Table for Y₁

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

w	y_3	y_2	y_1	<i>Y</i> ₃	Y ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

Y_2 $w y_3$						
$y_2 y_1$	00	01	11	10		
00	0	0	1	1		
01	d	0	1	d		
11	d	0	1	d		
10	d	0	1	d		

Y_1 $w y_3$						
$y_2 y_1$	00	01	11	10		
00	0	1	0	0		
01	d	1	0	d		
11	d	0	1	d		
10	d	0	1	d		

w	y_3	y_2	y_1	Y_3	Y ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

Y_2 $w y_3$						
$y_2 y_1$	00	01	11	10		
00	0	0	1	1		
01	d	0	1	d		
11	d	0	1	d		
10	d	0	1	d		

Y_1 $w y_3$						
$y_2 y_1$	00	01	11	10		
00	0	1	0	0		
01	d	1	0	d		
11	d	0	1	d		
10	d	0	1	d		

w	y_3	y_2	y_1	Y_3	Y ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

Y_2 $w y_3$						
$y_2 y_1$	00	01	11	10		
00	0	0	1	1		
01	d	0	1	d		
11	d	0	1	d		
10	d	0	1	d		

w	y_3	y_2	y_1	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
$y_3\overline{y}$	2	0	0	1	1	0
	_	0	1	1	1	0
	_					

Y_1 $w y_3$						
$y_2 y_1$	00	01	11	10		
00	0	1	0	0		
01	d	1	0	d		
11	d	0	1	d		
10	d	0	1	d		

$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$

$$Y_2 = w$$

$$Y_3 = 1$$

	Present	Next	state	_
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$

$$Y_2 = w$$

$$Y_3 = 1$$

$$z = y_1$$

	Present	Next	state	_
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$

$$Y_2 = w$$

$$Y_3 = 1$$

$$z = y_1$$

Example 6.13

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- But do this with two different FSMs. The first one detects two consecutive 1's. The second one detects two consecutive 0's.
- If either condition (i.e., output of FSM) is true then the output z should be set to 1; otherwise to 0.

Example 6.13

(Construct the first FSM)

FSM to detect two consecutive 1's (this was the first example in Chapter 6)

Present	Next sta	Output	
state	w = 0 w	= 1	Z
A			
В			
C			

Present	Next state		Output
state	w = 0	w = 1	\overline{z}
A	A	В	0
В	A	C	0
C	A	C	1

Figure 6.4 from the textbook]

A Better State Encoding

Present	Next state		Output
state	w = 0	w = 1	2
A	A	В	0
В	A	C	0
C	A	C	1

Suppose we encoded our states another way:

$$A \sim 00$$

$$B \sim 01$$

A Better State Encoding

Present	Next state		Output
state	w = 0	w = 1	z
A	A	В	0
В	A	C	0
C	A	C	1

$A \sim 00$	
$B \sim 01$	
C ~ 11	

Present	Next state	
state	w = 0 $w = 1$	Output
		Z

A Better State Encoding

Present	Next state		Output
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	C	1

	Present	Next state		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	$Y_2 Y_1$	Y_2Y_1	Z
A	00	00	01	0
В	01	00	11	0
\mathbf{C}	11	00	11	1
	10	dd	dd	d

Let's Derive the Logic Expressions

	Present	Next state		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	11	0
C	11	00	11	1
	10	dd	dd	d

Let's Derive the Logic Expressions

Present

Next state

Warning: This table does not enumerate y_2y_1 , in the standard way, so be careful when filling out the K-Map.

Output w = 0w = 1state Z $Y_2 Y_1$ Y_2Y_1 y_2y_1 01 00 00 0 A 01 B 00 11 0 \mathbf{C} 11 00 11 10 ddddd

Let's Derive the Logic Expressions

Warning: This table does not enumerate y_2y_1 , in the standard way, so be careful when filling out the K-Map.

A B C

Present	Next state		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	11	0
11	00	11	1
10	dd	dd	d

$$Y_2(w, y_2, y_1) = wy_1$$

$$Y_1(w, y_2, y_1) = w$$

$$z(y_2, y_1) = y_2$$

Original State Encodings

New State Encodings

The Circuit Diagram

[Figure 6.17 from the textbook]

Example 6.13

(Construct the second FSM)

FSM to detect two consecutive 0's

This is similar to the previous one. Just invert the w's and relabel the states to D,E,F.

Present	Next state		Output
state	w = 0 $w =$	= 1	Z
D			
E			
F			

Present	Next	Output	
state	w = 0	w = 1	Z
D	Е	D	0
Е	F	D	0
F	F	D	1

FSM that detects a sequence of two zeros

Present	Ne xt	Output	
state	w = 0	w = 1	z_{zeros}
D	E	D	0
E	\mathbf{F}	D	0
F	\mathbf{F}	D	1

(a) State table

	Present	Next state		
	state	w = 0	w = 1	Output
	y_4y_3	Y_4Y_3	Y_4Y_3	z_{zeros}
D	00	01	00	0
Ε	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

FSM that detects a sequence of two zeros

Present state	Ne xt state	Output z_{zeros}
D E F	$w = 0 w = 1$ $E \downarrow D D$ $D D$	0 0 1

Only these two columns are swapped relative to the first FSM. And the states have different names now.

(a) State table

	Present	Next	state	
	state	w = 0	w = 1	Output
	y_4y_3	Y_4Y_3	Y_4Y_3	z_{zeros}
D	00	01	OO	0
Е	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

Only these two columns are swapped relative to the first FSM.

Let's Derive the Logic Expressions

	Present	Next state		
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	Y_4Y_3	Y_4Y_3	Z
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

Let's Derive the Logic Expressions

	Present	Next		
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	$Y_4 Y_3 \qquad Y_4 Y_3$		Z
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

Let's Derive the Logic Expressions

	Present	Next	state	
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	Y_4Y_3	Y_4Y_3	Z
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

$$Y_4(w, y_4, y_3) = \overline{w} y_3$$
 $Y_3(w, y_4, y_3) = \overline{w}$ $z(y_4, y_3) = y_4$

$$Y_3(w, y_4, y_3) = \overline{w}$$

$$z(y_4, y_3) = y_4$$

The Circuit Diagram

Example 6.13

(Combine the two FSMs)

The Two FSMs

Detect two consecutive 1's

Detect two consecutive 0's

The Two Circuit Diagrams

Detect two consecutive 1's

Detect two consecutive 0's

The Combined Circuit Diagram

Detect two consecutive 1's or two consecutive 0's

Example 6.14

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true then the output z should be set to 1; otherwise to 0.
- Implement this as a Mealy-type machine

State Diagram

Building the State Table

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A	В	С	0	0
В	В	$^{\mathrm{C}}$	1	0
С	В	$^{\mathrm{C}}$	0	1

State Table

Present	Next	state	Outp	out z
state	w = 0	w = 1	w = 0	w = 1
A	В	\mathbf{C}	0	0
В	В	\mathbf{C}	1	0
С	В	С	0	1

Building the State-Assigned Table

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A	В	$^{\mathrm{C}}$	0	0
В	В	\mathbf{C}	1	0
С	В	\mathbf{C}	0	1

В

Present	Next state		Output	
state	w = 0	w = 1	w = 0	w = 1
$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
00	01	11	0	0
01	01	11	1	0
11	01	11	0	1

	Present	Next	state	state Outp	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

	Present	Next state		Out		
	state	w = 0	w = 1	w = 0	w = 1	
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z	
Α	00	01	11	0	0	
В	01	01	11	1	0 cut	here
С	11	01	11	0	1	

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
A	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
A	00	01	11	0	0
В	01	01	11	1	0
·	1 0	d d	d d	d	d
\mathbf{C}	11	01	11	0	1

Truth Table for Y₂, Y₁, and z

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	y_2y_1	Y_2Y_1	Y_2Y_1	z	z
A	00	01	11	0	0
В	01	01	11	1	0
	1 0	d d	d d	d	d
\mathbf{C}	11	01	11	0	1

w	y_2	y_1	Y ₂	<i>Y</i> ₁	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_2 , Y_1 , and z

Y_1 $w y_2$								
y_I	00	01	11	10				
0	1	d	1	1				
			_	_				

w	y_2	y_1	Y_2	Y_1	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_2 , Y_1 , and z

$$Y_2 = W$$

Y_1 $w y_2$								
y_1	00	01	11	10				
0	1	d	1	1				
1	1	1	1	1				

$$Y_1 = 1$$

w	y_2	y_1	<i>Y</i> ₂	<i>Y</i> ₁	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

$$z = \overline{w} y_1 \overline{y}_2 + w y_2$$

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	y_2y_1	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

$$Y_1 = 1$$

$$Y_2 = W$$

$$z = \overline{W} y_1 \overline{y}_2 + W y_2$$

	Present	Next	state	Output			
	state	w = 0	w = 1	w = 0	w = 1		
	y_2y_1	Y_2Y_1	Y_2Y_1	z	z		
ł	00	01	11	0	0		
3	01	01	11	1	0		
	11	01	11	0	1		

$$Y_1 = 1$$

$$Y_2 = W$$

$$z = \overline{W} y_1 \overline{y}_2 + W y_2$$

Example 6.15

Goal

Implement this state-assigned Table using JK flip-flops

	Present	Next				
	state	w = 0	w = 1	Output		
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z		
Α	000	100	110	0		
В	100	101	110	0		
\mathbf{C}	101	101	110	1		
D	110	100	111	0		
E	111	100	111	1		

Excitation table with JK flip-flops

	Present	Flip-flop inputs								
	state	:	w =	: 0			w =	: 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
$^{\mathrm{C}}$	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$Q(t) \rightarrow Q(t+1)$	JΚ
0 → 0	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d 1
1 → 1	d 0

Excitation table with JK flip-flops

7	Present Flip-flop inputs								,	
	state		w = 0			w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	00 <mark>0</mark>	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	$\overline{1d}$	110	d0	1d	0d	0
$^{\mathrm{C}}$	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|ccc}
Q(t) \rightarrow Q(t+1) & J & K \\
\hline
0 \rightarrow 0 & 0 & d \\
0 \rightarrow 1 & 1 & d \\
1 \rightarrow 0 & d & 1 \\
1 \rightarrow 1 & d & 0
\end{array}$$

Excitation table with JK flip-flops

7	Present	Flip-flop inputs								
	state	w = 0				w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	$10\overline{1}$	d0	0d	1d	110	d0	1d	0d	0
$^{\rm C}$	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|ccc}
Q(t) \rightarrow Q(t+1) & J & K \\
\hline
0 \rightarrow 0 & 0 & d \\
\hline
0 \rightarrow 1 & 1 & d \\
1 \rightarrow 0 & d & 1 \\
1 \rightarrow 1 & d & 0
\end{array}$$

11	Present Flip-flop inputs										
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z	
A	000	100	1d	0d	0d	110	1d	1d	0d	0	
В	100	101	d0	0d	1d	110	d0	1d	0d	0	
\mathbf{C}	$10\overline{1}$	$10\overline{1}$	d0	0d	d0	110	d0	1d	d1	1	
D	110	100	d0	d1	0d	111	d0	d0	1d	0	
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1	

$$\begin{array}{c|ccc}
Q(t) \rightarrow Q(t+1) & J & K \\
\hline
0 \rightarrow 0 & 0 & d \\
0 \rightarrow 1 & 1 & d \\
1 \rightarrow 0 & d & 1 \\
\hline
1 \rightarrow 1 & d & 0
\end{array}$$

	Present Flip-flop inputs									
	state		w =	: 0			w =	· 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
\mathbf{B}	100	101	d0	0d	1d	110	d0	1d	0d	0
$^{\rm C}$	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c}
Q(t) \rightarrow Q(t+1) & J K \\
\hline
0 \rightarrow 0 & 0 d \\
0 \rightarrow 1 & 1 d \\
1 \rightarrow 0 & d 1 \\
1 \rightarrow 1 & d 0
\end{array}$$

7	Present Flip-flop inputs									
	state		w =	= O				Output		
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	$11\overline{1}$	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|ccc}
Q(t) \rightarrow Q(t+1) & J & K \\
\hline
0 \rightarrow 0 & 0 & d \\
0 \rightarrow 1 & 1 & d \\
\hline
1 \rightarrow 0 & d & 1 \\
1 \rightarrow 1 & d & 0
\end{array}$$

	Present Flip-flop inputs									
	state		w =	= 0			w =	· 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	0 <mark>00</mark> 0	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|ccc}
Q(t) \rightarrow Q(t+1) & J & K \\
\hline
0 \rightarrow 0 & 0 & d \\
0 \rightarrow 1 & 1 & d \\
1 \rightarrow 0 & d & 1 \\
1 \rightarrow 1 & d & 0
\end{array}$$

	Present Flip-flop inputs									
	state		w =	= 0			Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$Q(t) \rightarrow Q(t+1)$	JK
0 -> 0	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d 1
1→1	d 0

And so on...

The Expression for z

+0	Present		Flip-flop inputs										
	state		w =	= O			Output						
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z			
A	000	100	1d	0d	0d	110	1d	1d	0d	0			
В	10 <mark>0</mark>	101	d0	0d	1d	110	d0	1d	0d	0			
\mathbf{C}	10 <mark>1</mark>	101	d0	0d	d0	110	d0	1d	d1	1			
D	11 <mark>0</mark>	100	d0	d1	0d	111	d0	d0	1d	0			
E	11 <mark>1</mark>	100	d0	d1	d1	111	d0	d0	d0	1			

z is equal to y₁

The Expression for J₃

	Present Flip-flop inputs									Output
	state		w = 0 $w = 1$							
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1 d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

The Expression for K₃

	Present Flip-flop inputs									4 <u>-</u> 8 (2 5)
	state		w =	: 0				Output		
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

K₃ is equal to 0

The Expression for J₂

	Present			9	Flip-flop	o inputs				4-x 4 5
	state	State $w = 0$								Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0 d	0d	110	1d	1 d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
$^{\mathrm{C}}$	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	dO	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

The Expression for K₂

	Present Flip-flop inputs									a_n a s
	state $w = 0$ $w = 1$									Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
$^{\mathrm{C}}$	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

 K_2 is equal to \overline{W}

The Expression for J₁

	Present Flip-flop inputs									
	state	w = 0 $w = 1$								Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	10 <mark>0</mark>	101	d0	0d	1 d	110	d0	1d	0d	0
$^{\rm C}$	10 <mark>1</mark>	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	$\overline{0}d$	111	d0	d0	1d	0
Ε	$1\overline{1}1$	100	d0	d1	d1	111	d0	d0	d0	1

$$J_1$$
 is equal to $w y_2 + \overline{w} y_3 \overline{y}_2$

The Expression for K₁

8)	Present state $y_3y_2y_1$	Flip-flop inputs								
		w = 0				w=1				Output
		$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	$1\overline{01}$	101	d0	0d	d 0	110	d0	1d	d 1	1
D	110	100	d0	d1	0d	111	d0	d0	$1\overline{d}$	0
\mathbf{E}	111	100	d0	d1	d 1	111	d0	d0	d0	1
·	001								d	

 K_1 is equal to \overline{W} $y_2 + \overline{W} y_2 y_1$

All Logic Expressions

$$J_{1} = wy_{2} + \overline{w}y_{3}\overline{y}_{2}$$

$$K_{1} = \overline{w}y_{2} + wy_{1}\overline{y}_{2}$$

$$J_{2} = w$$

$$K_{2} = \overline{w}$$

$$J_{3} = 1$$

$$K_{3} = 0$$

$$z = y_{1}$$

Questions?

THE END