Physique du solide et des semiconducteurs - 3

1 Capacité calorifique d'un cristal : contribution des phonons

Modèle d'Einstein.

On assimile un cristal tridimensionnel à un ensemble de 3N oscillateurs harmoniques de masse m, soumis à une force $-\kappa \mathbf{r}_i$ où \mathbf{r}_i est leur déviation par rapport à leur position d'équilibre. On supposera dans un premier temps ces oscillateurs indépendants.

- 1. Déterminer la fonction de partition canonique en fonction de $\omega = \sqrt{\kappa/m}$. On pourra poser $\beta_E^{-1} = \hbar \omega$, ce qui définit la températeur d'Einstein T_E .
- 2. Déterminer l'énergie libre F, l'énergie interne U et l'entropie S.
- 3. Quel est le comportement de U lorsque $T\ll T_E,$ et lorsque $T\gg T_E$?
- 4. En déduire la capacité calorifique, et préciser son comportement pour $T \ll T_E$ et $T \gg T_E$.

Modèle de Debye.

On abandonne à présent l'hypothèse d'oscillateurs indépendants et on considère les modes de vibrations collectifs des 3N oscillateurs harmoniques sous forme d'ondes planes se propageant dans une boîte carrée de volume V. On va supposer qu'il existe une relation de dispersion de la forme $\omega = c||\mathbf{k}||$ associée à chaque mode \mathbf{k} , dans la limite du continu.

- 5. Selon vous, quel est le domaine de validité de cette relation de dispersion? Justifier. Critiquer.
- 6. On introduit ω_D , une fréquence de coupure en deçà de laquelle la relation de dispersion précédente est valable. Quel est le sens physique de ω_D ? Justifier son existence (on pourra considérer des oscillateurs harmoniques couplés).
- 7. Quel est le nombre de modes $g(\omega) d\omega$ entre ω et $\omega + d\omega$, en fonction de ω , V et c? Tracer $\omega \mapsto g(\omega)$. Tracer par dessus une courbe de $g(\omega)$ qui serait plus réaliste.
- 8. En déduire que $\omega_D = ck_D$, où l'on exprimera k_D en fonction de la densité volumique d'atomes n. Donner le sens physique de $\lambda_D = 2\pi/k_D$.
- 9. Déterminer l'énergie interne U. On l'exprimera à l'aide de la fonction de Debye $\mathcal{D}(x) = \int_0^x dy \frac{y^3}{e^y 1}$ et de $T_D = \hbar \omega_D/k_B$.
- 10. Quel est le comportement de U lorsque $T \ll T_D$? En déduire celui de C_v dans ce même régime.
- 11. Vérifier que pour $T \gg T_D$ on retrouve la loi de Dulong et Petit.
- 12. Comment la constante c dépend-elle de la compressibilité du matériau? Ordonner T_D par ordre croissant pour les matériaux suivants : diamant, plomb, sodium, cuivre.

On considère désormais le hamiltonien d'un ensemble d'oscillateurs harmoniques couplés $\mathcal{H} = \sum_i \frac{\mathbf{p}_i^2}{2m} + \frac{\kappa}{2} \sum_{\langle i,j \rangle} (\mathbf{r}_i - \mathbf{r}_j)^2$ et on cherche la relation de dispersion associée.

- 13. Écrire les équations du mouvement pour l'atome j. Soit a le pas du réseau et soit $\mathbf{m}_i a$ la position d'équilibre de l'atome i (\mathbf{m}_i est un triplet d'entiers). Montrer que les équations du mouvement admettent des solutions de la forme $\mathbf{r}_j(t) = \mathbf{A_k} e^{i\mathbf{k}\cdot\mathbf{m}_j a i\omega t}$. Quelle est la relation de dispersion?
- 14. Déterminer $g(\omega)$, et trouver son comportement à basse fréquence. Peut-on identifier une température de Debye T_D ?

2 Magnétisme dans les solides

On va chercher à rendre compte de la susceptibilité magnétique de différentes substances magnétiques, cf Fig. 1. L'Hamiltonien décrivant d'un électron soumis à un champ magnétique extérieur \vec{B}_0 est donné par

Figure 1 Characteristic magnetic susceptibilities of diamagnetic and paramagnetic substances.

FIGURE 1 – Susceptibilité des corps magnétiques en fonction de la température.

$$\hat{\mathcal{H}} = \frac{1}{2m}(\hat{\vec{p}} + e\vec{A})^2 + g_e \mu_B \hat{\vec{S}} \cdot \vec{B} + U(\hat{\vec{r}})$$

- 1. Quelles sont les significations des différents termes de cet Hamiltonien?
- 2. Pour un champ magnétique uniforme parallèle à la direction z, montrer que l'Hamiltonien décrivant les électrons d'un atome est donné par

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}(B_0 = 0) + \mu_B(\hat{\vec{L}} + g_e\hat{\vec{S}}) \cdot \vec{B}_0 + \frac{e^2}{8m} B_0^2 \sum_i (\hat{x}_i^2 + \hat{y}_i^2)$$
 (1)

où la somme porte sur les différents électrons de l'atome considéré. Montrer que le dernier terme est normalement négligeable par rapport au second (quand le second n'est pas nul)

3. Pourquoi ne considère-t-on que les effets magnétiques associés aux électrons? Quel phénomène fait exception à cette considération?

2.1 Diamagnétisme des électrons de valence

Dans le cas d'atomes possédant toutes leurs couches électroniques pleines, les règles de sélection montrent que l'état fondamental $|0\rangle$ est caractérisé par des moments cinétiques orbital et de spin nuls, $\hat{\vec{L}}|0\rangle = \hat{\vec{S}}|0\rangle = 0$.

- 4. Dans ce cas, en utilisant le cadre des perturbations stationnaires en mécanique quantique, quelle est l'énergie de l'état fondamental sous champ magnétique?
- 5. En considérant que pour de tels atomes seul est réellement accessible l'état fondamental (préciser la condition sur T), quelle est l'énergie libre d'un système de N atomes? En déduire la susceptibilité d'un tel système. Quel est son signe? Quelle est sa dépendance en température? Quel phénomène décrit-elle?

2.2 Paramagnétisme des électrons de valence

Dans le cas d'atomes n'ayant pas toutes leurs couches internes complètes, on peut montrer que l'état fondamental d'un atome est dégénéré et peut être caractérisé par $|LSJm_J\rangle$ avec $L,\,S,\,J$ donnés par des règles de sélection (règles de Hund) et $m_J=-J,-J+1,\ldots,J$. Dans ce cas, on peut montrer que dans le sous-espace vectoriel restreint aux états à L,S,J donnés, $\hat{\vec{L}}+g_e\hat{\vec{S}}=g\hat{\vec{J}}$ où $g=\frac{1}{2}(g_e+1)-\frac{1}{2}(g_e-1)\frac{L(L+1)-S(S+1)}{J(J+1)}$.

- 6. En ne considérant que ces états à L, S, J donnés, quelles sont les énergies accessibles au système en présence d'un champ magnétique?
- 7. Écrire la fonction de partition d'un système de N ions identiques décrits par les considérations précédentes.
- 8. En déduire l'aimantation moyenne d'un tel système. On traitera explicitement à part le cas J = 1/2. Montrer qu'elle peut se mettre sous la forme

$$\langle M \rangle = \frac{N}{V} g \mu_B J B_J(\alpha)$$

où $\alpha = g\mu_B B_0 J/k_B T$ et $B_J(\alpha) = \frac{1}{2J} \left\{ (2J+1) \coth\left[\frac{(2J+1)}{2J}\alpha\right] - \coth\left[\frac{1}{2J}\alpha\right] \right\}$. Quelle est la limite de cette expression à fort champ magnétique? Commentaire.

9. Montrer que ce résultat se réduit dans le cas J=1/2 à

$$\langle M \rangle = \frac{N}{V} \frac{g\mu_B}{2} \tanh\left(\frac{g\mu_B B_0}{2k_B T}\right) \tag{2}$$

10. Calculer la susceptibilité d'un tel système à faible champ magnétique. On pourra utiliser le développement $B_J(x) = \frac{J+1}{3J}x$ à faible x. Quelle loi retrouve-t-on?

2.3 Paramagnétisme des électrons de conduction

Les électrons de conduction d'un conducteur peuvent bien être décrits par l'Hamiltonien

$$\hat{\mathcal{H}} = \frac{\hat{\vec{p}}^2}{2m} + g_e \mu_B \hat{S}_z B_0$$

où la masse peut être une masse effective.

- 11. Quels sont les états propres décrivant un électron?
- 12. Quel est la densité d'états des électrons de spin vers le haut ou vers le bas (par rapport au champ magnétique)?
- 13. On considère un système de N électrons de conduction. On notera N_+ (N_-) le nombre d'électrons de spin vers haut (bas). Exprimer N_+ et N_- en fonction de l'aimantation M du système et du nombre N d'électrons.
- 14. On suppose le système à température nulle. Écrire dans ce cas les nombres d'électrons N_{\pm} sous forme intégrale. Dans la limite de faible champ (qu'on justifiera), donner N_{\pm} sous la forme d'un développement en B_0 en fonction du potentiel chimique μ .
- 15. Montrer que le potentiel chimique n'est pas perturbé par le champ magnétique à l'ordre le plus bas.
- 16. En déduire l'aimantation moyenne du système et la susceptibilité du système (dite susceptibilité de Landau). Commentaire par rapport à la susceptibilité des électrons de valence?

On pourrait montrer par ailleurs (cf les niveaux de Landau) que ces mêmes électrons ont aussi une contribution diamagnétique égale à -1/3 de la susceptibilité paramagnétique que l'on vient de calculer

2.4 Ferromagnétisme

On considère désormais les interactions effectives entre spins décrits par le modèle d'Heisenberg d'une assemblée de spins

$$\hat{\mathcal{H}}^H = g_e \mu_b \vec{B}_0 \cdot \sum_i S_i - \frac{1}{2} J \sum_{i,j} S_i \cdot S_j$$

où par souci de simplification, on ne considèrera que la somme sur les plus proches voisins.

- 17. Quelle est l'origine du couplage entre les spins? Décrire le signe de J. Quel phénomène physique décrit cet Hamiltonien? Décrire l'ordre de la transition prédite par cet Hamiltonien.
- 18. On considère un spin i_0 donné. Quels sont tous les termes de l'Hamiltonian associés à ce spin? En traitant les autres spins uniquement en valeur moyenne, montrer qu'on peut mettre la contribution du spin i_0 à l'Hamiltonien sous la forme $g_e\mu_B S_{i_0} B^{eff}$ où on donnera B^{eff} en fonction de l'aimantation moyenne du système.
- 19. En les résultats concernant un système de spins $\pm 1/2$ indépendant plongés dans un champ magnétique B_0 , cf (2), donner l'équation implicite reliant l'aimantation M au champ magnétique B_0 et à la température T (équation d'état).
- 20. Dans le cas d'un champ nul, ré-écrire l'équation d'état en fonction de $x = \beta pJM/M_{\infty}$ et $T_c = pJ/4k_B$ où p est le nombre de premiers voisins et M_{∞} est la valeur maximale de l'aimantation.
- 21. Résoudre graphiquement cette équation et montrer l'existence de deux régimes $T < T_c$ et $T > T_c$.
- 22. Résoudre cette équation de façon perturbative pour $T \simeq T_c$. Quel exposant critique pour l'aimantation en fonction de la température trouve-t-on? Commentaire?
- 23. Calculer la susceptibilité du système au voisinage de T_c . Quel comportement trouve-t-on près du point critique? Quel exposant critique est ainsi prédit?
- 24. La théorie de Landau décrit un système ferromagnétique par une énergie libre fictive

$$\tilde{F}(T,M) = V [l(T) + a(T)M^2 + b(T)M^4 - B_0M]$$

Pour quoi quoi cette énergie libre n'est pas l'énergie libre du système? Quelle condition supplémentaire doiton ajouter sur M pour avoir la correspondance avec l'énergie libre? On assure b>0 pour avoir un système stable. Comment doit-on choisir le signe de a en fonction de la température pour rendre compte de la transition ferromagnétique/paramagnétique?

3 Modèle de Drude

- 1. Rappeler les hypothèses du modèle de Drude
- 2. Démontrer l'expression de la conductivité de ce modèle.
- 3. Estimer la densité électronique dans l'aluminium sachant que son paramètre de maille vaut $a=4.04\,\text{Å}$, que sa valence est 3+ et qu'il y a 4 atomes propre à chaque maille.
- 4. À partir des structures de bandes mesurées, on peut estimer que la masse effective associée aux bandes participant à la conduction vaut typiquement $m^*=0.9~10^{-30}\,\mathrm{kg}$. Sachant que la résistivité de l'aluminium à 0° est $\rho=2.5\,\mu\Omega.\mathrm{cm}$, estimer le temps typique entre collision τ ainsi que le libre parcours moyen.