Logic control of electro-pneumatic systems

Kjartan Halvorsen

October 10, 2022

Cheese pressing example, sequence A+A-

From FESTO Didactic

The Relay

Other key components

Sources: FESTO didactic, electroschematics.com, automation-insights.blog

Proximity sensor Limit switch Solenoid valve

A logic control loop

Cheese pressing example - Variables

State variables

$$x = \begin{bmatrix} x_R & x_E \end{bmatrix}^T$$
 with

$$x_R = egin{cases} 1 & \text{Cylinder retracted} \ 0 & \text{not retracted} \end{cases}$$
 $x_E = egin{cases} 1 & \text{Cylinder extended} \ 0 & \text{not extended} \end{cases}$

Control signal

$$u = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^T$$
, with

Activating

solenoid UA+ extends the cylinder, activating UA- retracts the cylinder.

Command signal

$$u_c = egin{cases} 0 & ext{Button unpushed} \ 1 & ext{Button pushed} \end{cases}.$$

Cheese pressing example - Plant dynamics

Plant dynamics $x_{k+1} = g(x_k, u_k)$

Input	0(Current state		Next state	
$u_{1,k}$	$u_{2,k}$	$x_{R,k}$	$x_{E,k}$	$x_{R,k+1}$	$x_{E,k+1}$
0	0	0	1	0	1
0	1	0	1	1	0
1	0	0	1	0	1
(1)	(1)	(0)	(1)	(0)	(1)
0	0	1	0	1	0
0	1	1	0	1	0
1	0	1	0	0	1
(1)	(1)	(1)	(0)	(1)	(0)

Cheese pressing example - Control law

The system is operating as long as the start button is pressed ($u_c = 1$). When the button is released, the cylinder should go to the retracted position.

Control law $u_k = f(x, u_c)$

XR	ΧE	u_c	u_1	u_2
0	1	0	0	1
1	0	0	0	0
0	1	1	0	1
1	0	1	1	0
0	0	0	0	1
0	0	1	0	0

Activity: Write as boolen functions

$$u_1 = f_1(x_R, x_E, u_c) =$$

 $u_2 = f_2(x_R, x_E, u_c) =$

Cheese pressing example - implementing the control law

An electrical circuit with memory

An electrical circuit with memory

Latching circuit

Truth table

ılı	tabi	_		
	X	Y	R_k	R_{k+1}
	0	0	0	
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	1	0	1	
	1	1	0	
	1	1	1	

Group activity: Implement the circuit in FluidSim and verify the truth table.