Lecture 18

Confidence Intervals & Hypothesis Testing

STAT 8010 Statistical Methods I October 2, 2019

> Whitney Huang Clemson University

Agenda

- Confidence Intervals
- 2 Hypothesis Testing

Notes

Notes

Last Lecture: Confidence Intervals for $\boldsymbol{\mu}$

Notes			

Example: Average Height

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (≈175cm). Suppose we know the standard deviation of men's heights is 4" (\approx 10cm). Find the 95% confidence interval of the true mean height of ALL men.

WORLD HEIGHT CHART(MALE)

Notes

Notes

		_
		_
		_
		—

Average Height Example Cont'd

- O Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Population standard deviation: $\sigma = 4$ inches
- **3** Standard error of $\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$ inches
- **95%CI:** Need to find $z_{0.05/2} = 1.96$ from the Z-table
- **95%** CI for μ_X is:

$$[69 - 1.96 \times 0.63, 69 + 1.96 \times 0.63]$$

= [67.77, 70.23]

Properties of Confidence Intervals

- In contrast with the point estimate, \bar{X}_n , a (1α) % CI is an interval estimate, where the length of CI reflects our estimation uncertainty
- Typical α values: 0.01, 0.05, 0.1 \Rightarrow 99%, 95%, 90% confidence intervals. Interpretation: If we were to take random samples over and over again, then $(1 - \alpha)$ % of these confidence intervals will contain the true $\boldsymbol{\mu}$
- The length of a CI depends on
 - ullet Population Standard Deviation: σ
 - Confidence Level: 1α
 - Sample Size: n

Intervals & Hypothesis Testing
CLEMS N
Confidence Intervals

Notes			

Sample Size Calculation

- \bullet We may want to estimate μ with a confidence interval with a predetermined margin of error (i.e. $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$)
- For example, in estimating the true mean height of All men we may want our CI to be just 0.5 inches in
- The question is then, "how many observations do we need to take so that we have the desired margin of error?"

N	0	te);

Sample Size Calculation Cont'd

To compute the sample size needed to get a CI for $\boldsymbol{\mu}$ with a specified margin of error, we use the formula below

$$n = \left(\frac{Z_{\alpha/2} \times \sigma}{\text{Margin of error}}\right)^2$$

Exercise: Derive this formula using margin of error $= z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Notes

Average Height Example Revisited

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

- Length of CI: $2 \times z_{0.025} \frac{\sigma}{\sqrt{n}} = 2 \times$ margin of error
- ② Want to find n s.t. $z_{0.025} \frac{\sigma}{\sqrt{n}} = 0.25$
- **9** We have $n = \left(\frac{1.96 \times 4}{0.25}\right)^2 = 983.4496$

Therefore, the required sample size is 984

Notes

Confidence Intervals When σ Unknown

- \bullet In practice, it is unlikely that σ is available to us
- \bullet One reasonable option is to replace σ with s, the sample standard deviation
- We need to account for this added uncertainty with a (slightly) different sampling distribution that has fatter tails
 - ⇒ Student t Distribution (William Gosset, 1908)

Notes

Student t Distribution

- Recall the standardize sampling distribution $\frac{\bar{X}_0-\mu}{\frac{\sigma}{\sqrt{\eta}}}\sim N(0,1)$
- Similarly , the studentized sampling distribution $\frac{\bar{X}_{n}-\mu}{\frac{N}{\sqrt{n}}}\sim \mathrm{t}(df=n-1)$

Notes

Confidence Intervals (CIs) for μ When σ is Unknown

$$\left[\bar{X}_n - t_{\frac{\alpha}{2},n-1} \frac{s}{\sqrt{n}}, \bar{X}_n + t_{\frac{\alpha}{2},n-1} \frac{s}{\sqrt{n}}\right],\,$$

where $t_{\frac{\alpha}{2},n-1}$ is the 1 $-\frac{\alpha}{2}$ percentile of a student t distribution with the degrees of freedom =n-1

• $\frac{s}{\sqrt{n}}$ is an estimate of the standard error of \bar{X}_n

Notes

Average Height Example Revisited

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (≈175cm), and a standard deviation of 4.5" (\approx 11.4cm). Find the 95% confidence interval of the true mean height of ALL men.

N	otoc
I۷	otes

Notes

Average Height Example Cont'd

- Point estimate: $\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$ inches
- ② Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- (or using a statistical software)
- **95%** CI for μ_X is:

$$\begin{aligned} &[69-2.02\times0.71,69+2.02\times0.71]\\ &=[67.57,70.43] \end{aligned}$$

Hypothesis Testing

- Hypothesis Testing: A method for using sample data to decide between two competing claims (hypotheses) about a population characteristic (a parameter. e.g. μ)
- Examples:
 - The true mean starting salary for graduates of four-year business schools is \$4,500 per month $\Rightarrow \mu = 4,500$
 - The true mean monthly income for systems analysts is at least \$6,000 $\Rightarrow \mu \geq$ 6,000

Notes

Hypotheses

- Null Hypothesis: A claim about a population characteristic that is initially assumed to be true. We use H₀ to denote a null hypothesis
- Alternative Hypothesis: The competing claim, denoted by H_a
- In carrying out a test of H_0 versus H_a , the hypothesis H_0 will be rejected in favor of H_a only if sample evidence strongly suggests that H_0 is false. If the sample data does not contain such evidence, H_0 will not be rejected
- Therefore, the two possible decisions in a hypothesis test are:
 - Reject H₀ (and go with H_a)
 - Fail to Reject H₀

Notes

Courtroom Analogy

- In a criminal trial, we use the rule "innocent until proven guilty"
- Therefore, our hypotheses are:
 - H₀: Innocent
 - Ha: Guilty
- If we have strong evidence that the accused is not innocent, we reject H₀ (innocent) and conclude H_a (guilty)
- If we do not have enough evidence to say that the accused is guilty, we do not say that the accused is "innocent". Instead, we say that the accused is "not guilty"

Notes

Hypotheses

Be careful setting up hypotheses:

- A statistical hypothesis test is only capable of demonstrating strong support for the alternative hypothesis H_a (by rejecting the null hypothesis H₀)
- Failing to reject H₀ does not show strong support for the null hypothesis – only a lack of strong evidence against H₀, the null hypothesis

Confidence Intervals & Hypothesis Testing
CLEMS N
Hypothesis Testing

Notes			

The 2×2 Decision Paradigm for Hypothesis Testing

	Decision	
True State	Reject H ₀	Fail to reject
		H_0
H_0 is true	Incorrect:	Correct
	Type I error	
H_0 is false	Correct	Incorrect:
		Type II error

Errors in Hypothesis Testing

- \bullet The probability of a type I error is denoted by α
- \bullet The probability of a type II error is denoted by β

Notes	
Notes	
Notes	