

Algorithmen und Datenstrukturen Kapitel 0: Organisation

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2019/2020

Organisatorisches (1)

- 4 SWS Vorlesung
 - Montag, 09:45 11:15, Raum R0.04
 - Donnerstag, 09:45 11:15, Raum R0.03
- 2 SWS Übung
 - 3 Übungsgruppen
 - Termine
 - Gruppe 1: Donnerstag, 11:45 13:15 Uhr, Raum B0.14
 - Gruppe 2: Donnerstag, 13:45 15:15 Uhr, Raum B0.14
 - Gruppe 3: Donnerstag, 15:30 17:00 Uhr, Raum B0.14
 - Anmeldung im <u>Learning Campus</u>
 - Spätestens Donnerstag, 10. Oktober, 08:30 Uhr
 - Übungsbeginn: Donnerstag, 10. Oktober

Organisatorisches (2)

7 ECTS

Häusliche Vor- und Nacharbeit erforderlich!

Voraussetzungen

- INF, SPO 2013: keine
- INF, SPO 2018:
 - mindestens 30 CP und
 - mindestens eines der Module "Prozedurale Programmierung" oder "Objektorientierte Programmierung" bestanden
- WIF, SPO 2014: Bestehen aller Module des ersten Studienjahres
- WIF, SPO 2018: Mindestens 80 CP

- Leistungserbringung: siehe Leistungsnachweisankündigung
 - Schriftliche Prüfung im Prüfungszeitraum
 - Wiederholungsklausur im Sommersemester
 - Hilfsmittel: Handbeschriebenes oder ausgedrucktes DIN A4 Blatt (Vorder- und Rückseite) + nicht-programmierbarer Taschenrechner

Literatur

- Vorlesungsfolien + eigene Notizen häufig ausreichend.
- Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, Third Edition, The MIT Press, 2009
 - Sehr gutes Standardwerk bzgl. Algorithmen und Datenstrukturen
 - Neben Beispielen viel Theorie, teuer!
 - Die Vorlesung behandelt nur einen Bruchteil
- Cormen, Leiserson, Rivest, Stein: Algorithmen Eine Einführung (deutsche Übersetzung), 4. Auflage, De Gruyter Oldenbourg, 2013
 - Deutsche Übersetzung des Standardwerkes
- Internetrecherche: "Google is your friend!"
- Segdewick, Wayne: "Algorithms", 4th Edition, Addison-Wesley, 2011
 - Buch recht teuer, nicht in Bibliothek vorhanden
 - Vieles 1:1 auf folgende Webseite: https://algs4.cs.princeton.edu/home/
- Ebooks in Bibliothek
 - o Ottmann, Widmayer: Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag, 6. Auflage, 2017
 - Dietzfelbinger, Mehlhorn, Sanders: Algorithmen und Datenstrukturen Die Grundwerkzeuge, Springer&Vieweg, 2014

Lernziele

- Verständnis grundlegender Datenstrukturen und Algorithmen und deren typischen Anwendungen.
- Umsetzung von Datenstrukturen und Algorithmen in einer Programmiersprache.
 - Hier: Java
- Bewertung der Datenstrukturen und Algorithmen bezüglich ihrer Laufzeit und Effizienz.
- Auswahl geeigneter Datenstrukturen, Algorithmen und Bibliotheken für spezifische Problemstellungen.

Vorlesung

- Vorlesungsfolien
 - Bereitstellung ca. 2-3 Tage vor Vorlesung im Gitlab
 - https://inf-git.fh-rosenheim.de/muwo522/ad_wise_2019
 - Kein echtes Skript, ggfs. zusätzliche Literatur- oder Internetrecherche notwendig!
- Illustrationen an der Tafel
 - Gemeinsames Erarbeiten/Entwickeln von Lösungen + Beispiele
 - Eigene Notizen sind empfehlenswert!
- Live Coding
 - Lösen von kleinen Teilproblemen bzw. Umsetzung von interessanten Codestellen direkt in der Vorlesung.
- Publikumsjoker
 - Klicker-Umfragen
 - Fragen sollen zum Nachdenken über das eben Gehörte anregen.

Übung

- Ziele
 - Vertiefung des Vorlesungsinhalts: Erst durch selbstständiges Nachdenken versteht man viele Probleme!
 - Klausurvorbereitung
- Betreuung
 - Dozent: Prof. Wolfgang Mühlbauer
 - Tutor: Florian Bayeff-Filloff
- Anmeldung im <u>Learning Campus</u>
 - Ab dem 7. Oktober bis spätestens zum 10. Oktober (08:30 Uhr)
 - Unbedingt gleichmäßig verteilen!
- Übungsblätter
 - Inhalt: Theoretische "Papieraufgaben" + Implementierung in Java
 - Bereitstellung einige Tage vor der Übungsgruppe im GitLab
 - https://inf-git.fh-rosenheim.de/muwo522/ad_wise_2019
 - Musterlösung ca. 2 Woche nach der Übungsgruppe im GitLab

Laptop mitbringen!

Inhalt

- Grundlagen
- Divide-and-Conquer
- Elementare Datenstrukturen
- Sortieren
 - Quicksort, Heapsort, Radixsort
- Hashtabellen
- Bäume
 - Binäre Suchbäume
 - Balancierte Bäume, Rot-Schwarz-Bäume
 - B-Bäume
- Suchen
 - Median
 - Substring Search
- Graphen
 - Tiefen- und Breitensuche
 - Kürzeste Wege
- Dynamische Programmierung
- Mehrfädige Algorithmen

Werkzeuge, Tipps

Werkzeuge

- Aktuelle Version des Java Development Kits (JDK)
 - OpenJDK oder auch JDK von Oracle
- Integrated Development Environment (IDE)
 - Z.B.: IntelliJ IDEA

Tipps

- Vor- und Nachbereitung
- Notizen während der Vorlesung, denken Sie mit!
- Ubungsgruppen besuchen, mit Nachbarn diskutieren, Fragen stellen
- Vorbereitet in die Übungsgruppe kommen
- Musterlösung verstehen genügt nicht. Wichtig ist es, selber aktiv zu programmieren bzw. zu lösen!