Capítulo 6

Termoquímica

- Natureza da Energia e Tipos de Energia
- Variações de Energia em Reacções Químicas
- Introdução à Termodinâmica
- Entalpia de Reacções Químicas
- Calorimetria
- Entalpia de Formação e de Reacção Padrão
- Calores de Solução e de Diluição

Cópia baseadas na apresentação fornecida pelo editor e não dispensa a consulta do livro "QUÍMICA GERAL". Chang. McGraw.Hill

Energia é a capacidade de realizar trabalho

- Energia radiante ou energia solar provém do Sol e é a fonte de energia primária da Terra.
- Energia térmica energia associada ao movimento aleatório dos átomos e das moléculas.
- Energia química energia armazenada dentro das unidades estruturais das substâncias químicas.
- Energia nuclear energia armazenada no conjunto de neutrões e protões do átomo.
- Energia potential energia disponível como consequência da posição de um objecto.

6.1

Variações de Energia em Reacções Químicas

O *calor* é a transferência de energia térmica entre dois corpos que estão a temperaturas diferentes.

Temperatura é a medida da energia térmica.

Temperatura X Energia térmica

6.2

Processo exotérmico — qualquer processo que liberte calor (transfere energia térmica do sistema para a vizinhança).

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(h) + energia$$

$$H_2O(g) \longrightarrow H_2O(h) + energia$$

Processo endotérmico — qualquer processo em que se tem de fornecer calor ao sistema a partir da vizinhança.

energia + 2HgO (s)
$$\longrightarrow$$
 2Hg (\hbar) + O₂ (g)

energia +
$$H_2O(s) \longrightarrow H_2O(h)$$

6.2

Uma amostra de azoto gasoso expande-se em volume de 1,6 L até 5,4 L a temperature constante. Qual é o trabalho efectuado em joules se o gás se expandir (a) no vácuo e (b) sob uma pressão constante de 3,7 atm? $W = -P \Delta V$ (a) $\Delta V = 5,4 L - 1,6 L = 3,8 L$ P = 0 atm $W = -0 \text{ atm} \times 3,8 L = 0 L \bullet \text{ atm} = \mathbf{0} \mathbf{J}$ (b) $\Delta V = 5,4 L - 1,6 L = 3,8 L$ P = 3,7 atm $W = -3,7 \text{ atm} \times 3,8 L = -14,1 L \bullet \text{ atm}$ $W = -14,1 L \bullet \text{ atm} \times \frac{101,3 J}{1 L \bullet \text{ atm}} = -1430 J$

A entalpia (H) é utilizada para quantificar o fluxo de calor libertado ou absorvido por um sistema num processo que ocorre a pressão constante. $\Delta H = H \text{ (produtos)} - H \text{ (reagentes)}$ $\Delta H = \text{ calor libertado ou absorvido durante a reacção a pressão constante}$ $\begin{array}{c} \Delta H = \text{ calor libertado ou absorvido durante a reacção a pressão constante} \\ \hline \\ Calor absorvido do vizinhança pelo sistema a vizinhança pelo sistema a vizinhança <math>\Delta H = -890,4 \text{ kJ} \\ \hline \\ H_{20} \text{ (s)} \\ \hline \\ H_{produtos} < H_{reagentes} \\ \Delta H < 0 \\ \hline \\ 6.4 \\ \hline \end{array}$

O *calor específico* (*c*) de uma substância é a quantidade de calor necessária para elevar de um grau Celsius a temperatura de um grama da substância.

A *capacidade calorífica* (*C*) de uma substância é a quantidade de calor necessária para elevar de um grau Celsius a temperatura de uma dada quantidade da substância. C = ms Calor específicos de Algumas Substância (C) de uma substância é a quantidade de calor necessária para elevar de um grau Celsius a temperatura de uma dada quantidade da substância.

<math display="block">C = ms $Calor (q) absorvido ou libertado: q = ms\Delta t$ $Q = ms\Delta t$ $Q = C\Delta t$ Cu = ms $Calor (q) absorvido ou libertado: Q = ms\Delta t$ $Q = ms\Delta t$ Q = m

6.5

Como não há maneira de determinar o valor absoluto da entalpia de uma substância tenho que medir as alterações da entalpia para cada uma das reaccões em causa?

Estabeleça uma escala arbitrária com a **entalpia de formação padrão** ($\Delta H_{\rm i}^0$) como ponto de referência para todas as expressões de entalpia.

Entalpia de formação padrão (ΔH_l^0) — calor posto em jogo quando se forma uma mole de um composto a partir dos seus elementos à pressão de 1 atm.

A entalpia de formação padrão de qualquer elemento na sua forma mais estável é **zero**.

$$\Delta H_f^0(O_2) = 0$$

$$\Delta H_f^0$$
 (C, grafite) = 0

$$\Delta H_f^0$$
 (O₃) = 142 kJ/mol

$$\Delta H_f^0$$
 (C, diamante) = 1,90 kJ/mol

6.6

Ag (s) AgCl (s)	0		
		$H_2O_2(l)$	-187,6
	-127,0	Hg(l)	0
Al (s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669,8	HI(g)	25,9
$Br_2(l)$	0	Mg(s)	0
HBr (g)	-36,2	MgO(s)	-601,8
C(grafite)	0	$MgCO_3(s)$	-1112,9
C(diamante)	1,90	$N_2(g)$	0
CO (g)	-110,5	$NH_3(g)$	-46,3
$CO_2(g)$	-393,5	NO(g)	90,4
Ca (s)	0	$NO_2(g)$	33,85
CaO (s)	-635,6	$N_2O_4(g)$	9,66
$CaCO_3(s)$	-1206,9	$N_2O(g)$	81,56
$Cl_2(g)$	0	O(g)	249,4
HCl (g)	-92,3	$O_2(g)$	0
Cu (s)	0	$O_3(g)$	142,2
CuO(s)	-155,2	S(ortorrômbico)	0
$F_2(g)$	0	S(monoclínico)	0,30
HF(g)	-271,6	$SO_2(g)$	-296,1
H (g)	218,2	$SO_3(g)$	-395,2
$H_2(g)$	0	$H_2S(g)$	-20,15
$H_2O(g)$	-241,8	ZnO(s)	-348,0

Entalpia de formação padrão ($\Delta H^0_{\rm reac}$) — entalpia de uma reacção levada a cabo a 1 atm.

$$aA + bB \longrightarrow cC + dD$$

$$\Delta H_{\text{reac}}^{0} = \left[c\Delta H_{\text{f}}^{0}\left(\text{C}\right) + d\Delta H_{\text{f}}^{0}\left(\text{D}\right) \right] - \left[a\Delta H_{\text{f}}^{0}\left(\text{A}\right) + b\Delta H_{\text{f}}^{0}\left(\text{B}\right) \right]$$

$$\Delta H_{\text{reac}}^0 = \sum n \Delta H_f^0 \text{ (produtos)} - \sum m \Delta H_f^0 \text{ (reagentes)}$$

Lei de Hess — quando os reagentes são convertidos em produtos, a variação de entalpia é a mesma quer a reacção se dê num só passo ou numa série de passos.

A entalpia é uma funcão de estado. Não interessa como se chega lá, apenas é importante onde se começa e onde se acaba.

6.6

Calcule a entalpia de formação padrão do
$$CS_2$$
 (f):

$$C(grafite) + O_2(g) \longrightarrow CO_2(g) \quad \Delta H_{reac}^a = -393.5 \text{ kJ}$$

$$S(rômbico) + O_2(g) \longrightarrow SO_2(g) \quad \Delta H_{reac}^a = -296.1 \text{ kJ}$$

$$CS_2(f) + 3O_2(g) \longrightarrow CO_2(g) + 2SO_2(g) \quad \Delta H^0 = -1072 \text{ kJ}$$
1. Escreva a entalpia de formação da reacção para CS_2

$$C(grafite) + (2S(rômbico)) \longrightarrow CS_2(f)$$
2. Adicione as entalpias dadas:
$$C(grafite) + \delta_x(g) \longrightarrow Q_2(g) \quad \Delta H_{reac}^a = -393.5 \text{ kJ}$$

$$2S(rômbico) + 2O_2(g) \longrightarrow \Delta H_{reac}^a = -296.1 \times 2 \text{ kJ}$$

$$+ CO_2(g) + 2SO_2(g) \longrightarrow CS_2(f) \longrightarrow \Delta H_{reac}^a = +1072 \text{ kJ}$$

$$C(grafite) + 2S(rômbico) \longrightarrow CS_2(f)$$

$$\Delta H_{reac}^0 = -393.5 + (2 \times -296.1) + 1072 = 86.3 \text{ kJ}$$
6.6

O benzeno (C_eH_e) arde no ar e produz dióxido de carbono e água líquida. Calcule o calor libertado por mole de benzeno consumido? A entalpia de formação padrão do benzeno é 49,04 kJ/mol.

$$(2C_6H_6)(h + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(h)$$

$$\Delta H_{\text{reac}}^0 = \sum n \Delta H_f^0 \text{ (produtos)} - \sum m \Delta H_f^0 \text{ (reagentes)}$$

$$\Delta H_{\text{reac}}^0 = [12\Delta H_{\text{f}}^0 \text{ (CO}_2) + 6\Delta H_{\text{f}}^0 \text{ (H}_2\text{O})] - [2\Delta H_{\text{f}}^0 \text{ (C}_6\text{H}_6)]$$

$$\Delta H_{\text{reac}}^0 = [12 \times -393,5 + 6 \times -187,6] - [2 \times 49,04] = -5946 \text{ kJ}$$

$$\frac{-5946 \text{ kJ}}{2 \text{ mol}} = -2973 \text{ kJ/mol } C_6 H_6$$

6.6

Entalpia de solução (ΔΗ_{sol}) ou calor de solução — calor libertado ou absorvido quando uma certa quantidade de soluto se dissolve numa certa quantidade de solvente.

$$\Delta H_{\text{sol.}} = H_{\text{sol.}} - H_{\text{componentes}}$$

Que substância(s) podem ser utilizadas para fundir gelo?

Que substâncias(s) podem ser utilizadas para um emplastro frio?

6.7

