

Examination Paper

Exam Code:

Year:

Examination Session:

May/June		2021	COMP1021-WE01
	J		
Title: Mathematics for Computer Science			
·			
Release Date/Time	9.30am 28/05/2021		
Deadline Date/Time	9.30am 29/05/2021		
Format of Exam	Take home exam		
Duration:	2 hours		
Word/Page Limit:	None		
Additional Material	None		
provided:			
Expected form of	A SINGLE PDF file (handwritten or typed) submitted onto Gradescope.		
Submission	Upload your submission with a file name comprising of your student ID and the Exam Code e.g 00001234532 COMP1021-WE01.		
Submission method	Gradescope		
Instructions to Cand	didates:	Answer ALL questions.	

Section A Linear Algebra (Prof. Andrei Krokhin)

Question 1

(a) Find the rank of the following matrix for all values of a

$$\left(\begin{array}{ccccc}
3 & 1 & 1 & 4 \\
a & 4 & 10 & 1 \\
1 & 7 & 17 & 3 \\
2 & 2 & 4 & 3
\end{array}\right).$$

Show your working.

[4 Marks]

(b) Let A and B be matrices of size 2×3 and 3×2 , respectively.

i. Prove or disprove: AB cannot be invertible.

[3 Marks]

ii. Prove or disprove: BA cannot be invertible.

[3 Marks]

(c) Let A be an $n \times n$ matrix and let $\mathbf{v} \in \mathbb{R}^n$ be a column vector such that $A^{k-1}\mathbf{v} \neq \mathbf{0}$, but $A^k\mathbf{v} = \mathbf{0}$ for some k > 0. Prove that the column vectors $\mathbf{v}, A\mathbf{v}, \dots, A^{k-1}\mathbf{v}$ are linearly independent. [5 Marks]

(d) Consider the vector space \mathbb{R}^{∞} of all infinite sequences $\mathbf{x}=(x_1,x_2,\ldots)$ of real numbers. Let $f:\mathbb{R}^{\infty}\to\mathbb{R}^{\infty}$ be the linear map defined as follows:

$$f(\mathbf{x}) = (x_1 + x_2, x_2 + x_3, x_3 + x_4, \ldots).$$

i. Find a basis for the kernel of f.

[3 Marks]

ii. What is the range of f?

[3 Marks]

iii. Compute the eigenvalues of f and an eigenvector corresponding to each eigenvalue. [4 Marks]

Justify your answer.

Question 2

- (a) Consider the vector space \mathbb{R}^5 equipped with the weighted Euclidean inner product with weights $w_1=2,w_2=1,w_3=3,w_4=1,w_5=1$. Find a basis for the orthogonal complement (with respect to this inner product) of the subspace $span(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$ where $\mathbf{v}_1=(1,2,3,-1,0)$, $\mathbf{v}_2=(0,-3,1,-4,6)$, $\mathbf{v}_3=(-2,-7,-5,-2,6)$. Show your working. [6 Marks]
- (b) Prove or disprove: if $\{\mathbf{u}, \mathbf{v}\}$ is a basis in \mathbb{R}^2 then there exist positive weights $w_1, w_2 \in \mathbb{R}$ such that \mathbf{u} and \mathbf{v} are orthogonal with respect to the weighted Euclidean inner product with weights w_1, w_2 . [4 Marks]
- (c) Consider the vector space $C[0,\pi]$ of all continuous functions on the interval $[0,\pi]$, equipped with the inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_0^{\pi} f(x)g(x) dx$$

where $\mathbf{f}=f(x), \mathbf{g}=g(x)$. Find an orthonormal basis of the subspace of $C[0,\pi]$ spanned by the vectors $\mathbf{v}_1=1$, $\mathbf{v}_2=x$, $\mathbf{v}_3=\sin(x)$. Show your working. [7 Marks]

- (d) Do there exist symmetric 3×3 matrices A and B such that
 - i. A has eigenvalues $\lambda_1=-3$, $\lambda_2=0$, and $\lambda_3=7$ and corresponding eigenvectors $\mathbf{v}_1=(0,-1,1)$, $\mathbf{v}_2=(1,0,0)$, $\mathbf{v}_3=(1,1,1)$?
 - ii. B has eigenvalues $\lambda_1=-2$, $\lambda_2=5$, and $\lambda_3=6$ and corresponding eigenvectors $\mathbf{v}_1=(0,-1,1)$, $\mathbf{v}_2=(1,0,0)$, $\mathbf{v}_3=(0,1,1)$?

In each case, either find such a matrix or explain why it does not exist.

[8 Marks]

Section B Calculus

(Prof. Magnus Bordewich)

Question 3

Let
$$f(x, y, z) = x^3 - x + \frac{y^2 z}{2} - 2y - 8z^2$$
.

- (a) Calculate the gradient $\nabla f(x,y,z)$ and use it to determine the critical points of f. Show your working. **[10 Marks]**
- (b) Determine the gradient of f in the direction of the vector $(2,3,1)^T$ at point (3,4,2). Show your working. **[4 Marks]**
- (c) Calculate the Hessian Matrix $H_f(x, y, z)$ and use it to determine the nature of each critical point you have identified. Show your working. [9 Marks]

Question 4

Let
$$e(x_1, x_2) = \tan^{-1}(2x_2 - 2x_1) + \max\{0, x_1^2 - x_2\} + x_1x_2$$
.

- (a) Draw a computation graph for e, identifying intermediate variables. List the intermediate variables and the operation by which each is obtained from its inputs. [5 Marks]
- (b) Compute the partial derivatives of each intermediate variable with respect to its inputs. [5 Marks]
- (c) Use a forward pass of your computation graph to compute e(2,3). Show your working. [3 Marks]
- (d) Use forward mode Automatic Differentiation (AD) to compute the directional derivative of e at point (2,3) in the direction (4,3). Show your working. [7 Marks]
- (e) Use reverse mode AD to compute a vector pointing in the direction of greatest decrease in e from point (2,3). Show your working. [7 Marks]