

FIG. 2

FIG. 4I

STRAND REPLACEMENT REACTION

FIG. 7A

FIG. 7B

FIG. 7D

FIG. 7E

= uridine-containing DNA synthesized by SR

_	,	,
		•
	١	١
٠	•	′.
	-	٩
	L	4
		ľ

					= DNA with dUTP, to be degraded	= DNA with labeled dTTP, to be used for array hybridization
With the same of t	- Kanadaran	HAMME	TANKARANI.			11

FIG. 11

40

FIG. 12

= DNA synthesized by PENT using only dATP, dTTP, and dCTP

FIG. 13

reaction time (min)

with dUTP with dTTP

	CANAL CALLACTOR CONTROL CONTROL CALLACTOR CALL			
	_	-	-	
0	10	20	30 ·	40

man = thymidine-containing DNA synthesized by PENT

/// = uridine-containing DNA synthesized by PENT

FIG. 14B

summation of ddNTP results into complete base sequence

FIG. 16

name o anama

Summation of dNTP results into complete base sequence (positions of bases in parentheses are inferred)

Results of six separation of detectable products of four dCNTP reactions

summation of ddNTP results into complete base sequence

13

Size separation of the products of twelve 2-base walk reactions

Assembly of complete sequence from the results of individual reactions (inferred bases in parentheses)

иск amplify, i 111ze, and expose 3'	OH at random sites In Fig. 5.
O	OA-C-T-A-T G-T-T-T-A
O	O
OT-A T-A-T-G-G-T-T-T-A	OA-C-T-A-T-G-G T-T-A
OT-A-C	O
OT-A-C-T T-G-G-T-T-A	O
O	O
	Block ends opposite T,G & C with ddATP,ddGTP,ddCTP (shown in bold letters); remove ddNTPs, then add dTT
OT A-C-T-A-T-G-G-T-T-T-A	O
O	O
O	O
OT-A-C-T A-T-G-G-T-T-T-A	O
OT-A-C-T-A T-G-G-T-T-T-A	O
OT-A-C-T-A-T G-G-T-T-T-A A-T-G-A-T-A-C-C-A-A-A-T	OT-A-C-T-A-T-G-G-T-T-T-A
	Block ends opposite A,G & C with ddTTP,ddGTP,ddCTP (shown in bold), remove ddNTPs, then add dATP.
OT-A C-T-A-T-G-G-T-T-T-A	▼ OT-A-C-T-A-T-G G-T-T-T-A
O	OT-A-C-T-A-T-G-G T-T-T-A
OT-A-C T-A-T-G-G-T-T-T-A	OT-A-C-T-A-T-G-G-T-T-T-A
O	OT-A-C-T-A-T-G-G-T-T-T-A
OT-A-C-T-A T-G-G-T-T-T-A	OT-A-C-T-A-T-G-G-T-T-T-A
	OT-A-C-T-A-T-G-G-T-T-A
	Block ends opposite T,G & C with ddATP,ddGTP,ddCTP (shown in bold), remove ddNTPs, then add tagged ddTTP.
OT-A-C T-A-T-G-G-T-T-T-A	O
OT-A C-T-A-T-G-G-T-T-T-A	O
OT-A-C T-A-T-G-G-T-T-T-A	O
O	O
OT-A-C-T-A T-G-G-T-T-T-A	O
OT-A-C-T-A-T-G G-T-T-T-A	O
Remove all non-immobilized DNA, then release, size-	eparate, and detect strands with tagged terminal T.
1 2 3 4 5 6	7 8 9 10 11 12

FIG. 24

FIG. 25

12345678 9

Fe/EDTA DNase I

FIG. 27

FIG. 28A

FIG. 28B

FIG. 29

- - 5' -phosphate
- - 3' dideoxynucleotide or NH₃ group

51	X	3, OH	4 C-X oligos
5'	 XY	3' OH	16 C-XY oligos
5'	XYZ	3' OH	64 C-XYZ oligos

X, Y and Z are A, T, G or C

COSTA LECTION

FIG. 30B

<u> </u>	<u> </u>	1 1	·
		Random doubl break incorpor	
		XYZ	
		XYZ	
		-	
	XYZ		
			
XYZ			
	Multi-	base selection	
	▼	XYZ	
	X	YZ	
	XYZ		
XYZ			
	1		

nosulais nand

Size separation

FIG. 31

FIG. 32

FIG. 33A

FIG. 33B