TD 6 graphes: ordonnancement et flot

I. Exercice 1

Un projet est décomposé en tâches A,B,C,D,E,F,G,H,I. Les contraintes de postériorité et les durées des tâches sont données dans le tableau suivant :

Tâches (x_i, x_j)	Α	В	С	D	Ε	F	G	Н	I
Tâches prérequises			В	Α	Α	A,C	Е	D,F	D,F,G
Durées b_{ij}	4	1	2	3	2	8	4	2	8

- 1. Construire le graphe d'états (PERT) du problème.
- 2. Construire le graphe de tâches du problème.
- 3. Construire le diagramme de Gantt du problème.
- 4. Critère de durée.

Sur le résultat de la question 2, déterminer :

- les dates de début au plus tôt des différentes tâches, et la durée minimale du projet;
- les dates de début au plus tard des différentes tâches pour que la durée du projet ne soit pas augmentée
- − le (ou les) chemin(s) critique(s) ainsi que les tâches critiques.
- 5. Exploiter le résultat de la question 3, pour trouver combien de personnes il faut au minimum pour réaliser le projet dans le temps calculé en question 4 en supposant qu'une personne réalise une tâche à la fois, et toutes à la même vitesse.
- 6. Critère de coût.

On suppose maintenant que, moyennant un surcoût unitaire h_{ij} , la durée t_{ij} de la tâche (x_i, x_j) peut être réduite, conformément aux données suivantes :

Tâches (x_i, x_j)	Α	В	С	D	Е	F	G	Н	Ι
Durée minimale a_{ij}	2	1	1	2	2	6	3	1	5
Coût unitaire de réduction h_{ij}	4	-	5	3	-	5	8	7	10

On note λ_M (respectivement λ_m) la durée minimale du projet pour les durées initiales $t_{ij} = b_{ij}$ des tâches (respectivement pour les durées minimales $t_{ij} = a_{ij}$ des tâches).

Notons C_M le coût de réalisation du projet lorsque la durée minimale du projet est égale à λ_M ; et

- $C(\lambda)$ le coût minimum de réalisation du projet pour une durée minimale du projet $\lambda \in [\lambda_m$, $\lambda_M]$:
- $C(\lambda) = C_M + \theta(\lambda)$, où $\theta(\lambda)$ est le surcoût résultant de la diminution de la durée de certaines tâches (θ est une fonction décroissante de λ , $\theta(\lambda_M) = 0$).
- (a) Quelle est la valeur de λ_m ?
- (b) Préciser la (ou les) tâche(s) dont il faut réduire la durée pour obtenir un coût $C(\lambda)$, ainsi que la valeur de $\theta(\lambda)$, pour $\lambda = 19$.

II. Vacances

Avant de partir en vacances, on doit effectuer plusieurs opérations :

- 1. choisir le lieu de vacances et ceci avant toute autre tâche
- 2. aller à l'office du tourisme
- 3. se faire vacciner

- 4. obtenir un visa au consulat (après être passé à l'office du tourisme)
- 5. acheter les billets de voyage
- 6. préparer les valises
- 7. mettre les billets, le passeport et les certificats de vaccination dans son portefeuille
- 8. aller à l'aéroport pour prendre l'avion

Les durées maximale et minimale de chaque tâche ainsi que l'accroissement de son coût de réalisation correspondant à une diminution unitaire de sa durée sont contenus dans le tableau ci-dessous :

Opérations	1	2	3	4	5	6	7	8
Durées maximales	35	7	25	15	5	20	2	1
Durées minimales	25	3	10	5	3	16	0	0
Coûts unitaires	3	1	2	2	1	3	1	3

Déterminer un ordonnancement de durée minimale et de coût minimum.

III. Flots

On considère le graphe suivant muni des capacités données entre parenthèses.

1. On considère le vecteur ϕ 0 suivant. Est-ce un flot, qui est compatible pour le réseau de transport correspondant au graphe ci-dessus ? Si oui le justifier sinon le modifier en changeant le flux sur un seul arc afin qu'il le devienne. Quelle est sa valeur ?

(s,1)	(s,3)	(1,2)	(1,t)	(2,4)	(2,5)	(3,2)	(3,4)	(4,t)	(5,t)	(5,6)	(6,t)
4	3	4	0	6	1	3	0	6	-1	0	0

2. Donnez un flot maximum grâce à l'algorithme de Ford-Fulkerson en partant de ce flot. Vous donnerez les différentes chaînes augmentantes utilisées et direz à chaque étape de combien vous augmentez le flot. Vous donnerez enfin la valeur du flot maximum.