Алгебра. ИИИ. Осенний семестр

І. Алгебраические системы и алгебраические операции. Группы

- 1. Сколькими способами можно ввести бинарную операцию на конечном множестве X?
- 2. Являются ли алгебраическими системами следующие объекты:
 - a) $\langle \mathbb{Q}_{>0}, \sqrt{\ } \rangle$; б) $\langle \mathbb{R}_{>0}, \sqrt{\ } \rangle$; в) $\langle \mathbb{N}, \rangle$; г) $\langle \mathbb{Z}, : \rangle$; д) $\langle \mathbb{Q}, : \rangle$; е) $\langle \mathbb{Q} \setminus \{0\}, : \rangle$?
- 3. Относительно каких операций, заданных на множестве \mathbb{Z} , замкнуты множества $2\mathbb{Z}$ и $2\mathbb{Z}+1$? Рассмотрите бинарные операции: сложение, умножение, взятие НОДа; а также унарные операции: взятие противоположного элемента, удвоение, утроение.
- 4. Найдите все конечные подсистемы алгебраических систем:
 - а) $\langle \mathbb{Z}, f \rangle$, где f унарная операция удвоения;
 - б) $\langle \mathbb{Z}, \cdot \rangle$;
 - в) $\langle X, f \rangle$, где X множество точек плоскости, f тернарная операция, сопоставляющая трём точкам A, B, C точку пересечения медиан треугольника ABC (возможно, вырожденного).
- 5. Ассоциативна ли операция * на множестве M, если:
 - a) $M = \mathbb{N}, x * y = x^y;$
 - б) $M = \mathbb{N}, x * y = \mathsf{HOA}(x, y);$
 - в) $M = \mathbb{Z}, \ x * y = x^2 + y^2;$
 - г) $M = \mathbb{R} \setminus \{0\}, \ x * y = x \cdot y^{\frac{x}{|x|}};$
 - д) $M = \mathbb{R}, x * y = x + y + xy$?
- 6. Составьте таблицу Кэли для операции * на множестве $M = \{1, 2, 3, 4\}$:
 - a) $a*b = \min\{2a, b\};$ 6) $a*b = a + b \max\{a, b\}.$

Являются ли операции коммутативными? Имеют ли они нейтральный элемент? Есть ли в M идемпотенты, инволюции?

- 7. Докажите, что моноиды $\langle \mathscr{P}(M), \cap, M \rangle$ и $\langle \mathscr{P}(M), \cup, \varnothing \rangle$ изоморфны.
- 8.* $\mathscr{A}_{a,b}=\langle\mathbb{R},f\rangle$, где f унарная операция, действующая по правилу f(x)=ax+b, $a,b\in\mathbb{R}.$ Сколько попарно неизоморфных алгебраических систем в множестве $\{\mathscr{A}_{a,b}\,|\,a,b\in\mathbb{R}\}$?
- 9* Докажите, что во всякой конечной полугруппе найдётся идемпотент.

- 10.* Каждой паре вещественных чисел x и y поставлено в соответствие некоторое число x*y. Найдите все варианты 2025*2026, если известно, что для любых трёх чисел x,y и z выполнены тождества: x*x=0 и x*(y*z)=(x*y)+z.
- 11* На доске написано 2025 чисел: $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{2025}$. За один ход требуется стереть любые два числа a и b и вместо них написать число a+b+ab. Сделано 2024 хода и на доске осталось одно число. Какое это число может быть? Укажите все варианты.
- 12. Составьте таблицы Кэли для групп: а) $\mathbb{Z}_2 \times \mathbb{Z}_2$; б) $\mathbb{Z}_2 \times \mathbb{Z}_3$. Найдите порядки всех элементов этих групп.
- 13. Какие из указанных структур являются группами:
 - a) $\{\{-1, 1\}, \cdot\};$
 - 6) $\langle \mathbb{Z}_{2025}, \cdot \rangle$;
 - в) множество степеней данного ненулевого вещественного числа с натуральными показателями относительно умножения;
 - г) множество всех непрерывных монотонно возрастающих функций из [0,1] в [0,1], для которых $f(0)=0,\ f(1)=1,$ относительно композиции;
 - д) функции $x,\,-x,\,rac{1}{x},\,-rac{1}{x}$ на $\mathbb{R}ackslash\{0\}$ относительно композиции;
 - e) функции вида kx+b (k
 eq 0) на $\mathbb R$ относительно композиции;
 - ж) множество $\mathscr{P}(M)$ относительно симметрической разности?

Какие из групп являются абелевыми?

- 14. Составьте таблицу Кэли для:
 - а) группы симметрий правильного треугольника;
 - б) множества функций $x, \frac{x-1}{x}, \frac{1}{1-x}, 1-x, \frac{1}{x}, \frac{x}{x-1}$ на $\mathbb{R}\setminus\{0, 1\}$ с операцией композиции. Убедитесь, что эта структура является группой.

Абелевы ли эти группы? Сравните их таблицы Кэли.

- 15. Докажите, что если в группе выполнено тождество $x^2=e$, то эта группа абелева.
- 16. Докажите, что любая группа третьего порядка абелева.