Computational Microelectronics [HW-11]

Professor: Sung-Min Hong

Data: 18/11/19

Student ID: 20172106

Student name: Hyo Seok, Kim

1. Simulation explanation

In this report, we consider BTE simulator in a 30 nm long structure. It's potential is 0 from 0 nm to 10 nm, V increases linearly from 10 nm to 20 nm, $V=V_D>0$ from 20 nm to 30 nm. We are only treating $f_0 \& f_1$, whose relation is shown below.

$$v \frac{\partial}{\partial x} \frac{1}{c_1} f_0(x, H) \gamma_{0,1,1} = -\frac{f_1(x, H)}{\tau}$$
$$\frac{1}{c_1} = \sqrt{\frac{1}{\pi}}$$

Vacuum permittivity, [F/m]	8.854187817e-12
Boltzmann constant, [J/K]	1.380662e-23
Temperature, [K]	300.0
Relaxation time [s]	1e-12
Electron mass [Kg]	9.109534e-31
Drain voltage [V]	0.01

Table.1: Simulation parameters

2. Result and discussion

Figure 1 f0 variation in terms of H(Energy) and x-position

Figure 2 f1 variation in terms of H(Energy) and x-position