ÓPTICA XEOMÉTRICA

Método e recomendacións

Espellos

- 1. Dado un espello esférico de 50 cm de radio e un obxecto de 5 cm de altura situado sobre o eixe óptico a unha distancia de 30 cm do espello, calcula analítica e graficamente a posición e tamaño da imaxe:
 - a) Se o espello é cóncavo.
 - b) Se o espello é convexo.

(P.A.U. Xuño 06)

Rta.: a) $\dot{s}_1 = -1.5 \text{ m}$; $\dot{y}_1 = -0.25 \text{ m}$; b) $\dot{s}_2 = 0.14 \text{ m}$; $\dot{y}_2 = 0.023 \text{ m}$

Datos (convenio de signos DIN)	Cifras significativas: 2
Radio de curvatura do espello cóncavo	R = -0.50 m
Radio de curvatura do espello convexo	R = +0.50 m
Tamaño do obxecto	y = 5.0 cm = 0.050 m
Posición do obxecto	$s_1 = -0.30 \text{ m}$
Incógnitas	
Posición das imaxes que dan ambos os espellos	S_1 , S_2
Tamaño das imaxes que dan ambos os espellos	$ \dot{s}_{1}, \dot{s}_{2} \dot{y}_{1}, \dot{y}_{2} $
Outros símbolos	
Distancia focal do espello	f
Ecuacións	
Relación entre a posición da imaxe e a do obxecto nos espellos	$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$ $A_{L} = \frac{y'}{y} = \frac{-s'}{s}$
Aumento lateral nos espellos	$A_{\rm L} = \frac{y'}{v} = \frac{-s'}{s}$
Relación entre a distancia focal e o radio de curvatura	f = R/2

Solución:

- a) No debuxo represéntase o obxecto O antes do espello e desde o seu punto superior debúxanse dous raios:
- Un horizontal cara ao espello que se reflicte de maneira que o raio reflectido pasa polo foco F (que se atopa á metade da distancia entre o espello e o seu centro C).
- Outro cara ao espello, que se reflicte sen desviarse pasando polo centro C de curvatura do espello. O punto de corte é o correspondente á imaxe I.

Polo convenio de signos, os puntos situados á esquerda do espello teñen signo negativo. Úsase a ecuación dos espellos:

Calcúlase a distancia focal, que é a metade do radio do espello.

$$f = R / 2 = -0.50 \text{ [m]} / 2 = -0.25 \text{ m}$$

Substitúense os datos:

$$\frac{1}{s_{1}'} + \frac{1}{-0.30 \text{ [m]}} = \frac{1}{-0.25 \text{ [m]}}$$

E calcúlase a posición da imaxe:

$$s_1' = -1.5 \text{ m}$$

A imaxe atópase a 1,50 m á esquerda do espello.

Para calcular a altura da imaxe úsase a ecuación do aumento lateral:

$$A_{\rm L} = \frac{y'}{y} = \frac{-s'}{s} = \frac{1,5[m]}{-0,30[m]} = -5,0$$

E calcúlase a altura da imaxe:

$$y' = A_L \cdot y = -5.0 \cdot 5.0 \text{ cm} = -25 \text{ cm} = -0.25 \text{ m}$$

A imaxe é real (s' < 0), invertida ($A_L < 0$) e maior ($|A_L| > 1$).

b) Aplícanse as indicacións do apartado anterior, pero tendo en conta que como os raios non se cortan, prolónganse alén do espello ata que se cortan. O punto de corte é o correspondente á imaxe I.

Os resultados son:

$$f = R / 2 = 0,50 \text{ [m]} / 2 = 0,25 \text{ m}$$

$$\frac{1}{s'_{2}} + \frac{1}{-0,30 \text{ [m]}} = \frac{1}{0,25 \text{ [m]}}$$

$$\dot{s}_{2} = 0.14 \text{ m}$$

A imaxe atópase a 0,14 m á dereita do espello.

$$A_{\rm L} = \frac{y'}{y} = \frac{-s'}{s} = \frac{-0.14[m]}{-0.30[m]} = 0.45$$

$$y' = A_L \cdot y = 0.45 \cdot 5.0 \text{ cm} = 2.3 \text{ cm} = 0.023 \text{ m}$$

A imaxe é virtual (s' > 0), dereita ($A_L > 0$) e menor ($|A_L| < 1$).

Análise: En ambos os casos, os resultados dos cálculos coinciden cos debuxos.

Espellos e lentes do capítulo

Óptica xeométrica Optica Espellos e lentes

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas cedas de cor branca e bordo azul.

Os resultados son:

	Distancia focal		−25,0 cı	m
		Posición (cm)	Altura (cm)	
	Obxecto	-30,0	5,00 A	umento
a)	Imaxe	-150	-25,0	-5,00
	Imaxe	Real	Invertida	Maior

Para os apartados seguintes, chega con cambiar o signo da posición do centro.

Espello	convexo	Unidades	cm
	Posición (cm)	Altura (cm)	
Centro (radio)	50		
Obxecto	-30	5	

Os novos resultados son:

	Distancia focal		25,0 c	m
		Posición (cm)	Altura (cm)	
	Obxecto	-30,0	5,00 A	Aumento
b)	Imaxe	13,6	2,27	0,455
	Imaxe	Virtual	Dereita	Menor

- 2. Un obxecto de 3 cm está situado a 8 cm dun espello esférico cóncavo e produce unha imaxe a 10 cm á dereita do espello:
 - a) Calcula a distancia focal.
 - b) Debuxa a marcha dos raios e obtén o tamaño da imaxe.
 - c) En que posición do eixe hai que colocar o obxecto para que non se forme imaxe?

(P.A.U. Xuño 08)

Rta.: a)
$$f = -0.40$$
 m; b) $y' = 3.8$ cm

Datos (convenio de signos DIN)	Cifras significativas: 3
Posición do obxecto	s = -8,00 cm = -0,0800 m
Posición da imaxe	s' = 10.0 cm = -0.100 m
Tamaño do obxecto	y = 3,00 cm = 0,0300 m
Incógnitas	
Distancia focal do espello	f
Tamaño da imaxe	ý
Ecuacións	
Relación entre a posición da imaxe e a do obxecto nos espellos	$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$
Aumento lateral nos espellos	$A_{\rm L} = \frac{y'}{v} = \frac{-s'}{s}$
Relación entre a distancia focal e o radio de curvatura	f = R/2

Solución:

a) Polo convenio de signos, os puntos situados á esquerda do espello teñen signo negativo. Úsase a ecuación dos espellos:

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$$

Substitúense os datos:

$$\frac{1}{0,100 \,[\mathrm{m}]} + \frac{1}{-0,080 \,(\mathrm{m}]} = \frac{1}{f}$$

E calcúlase a incógnita:

$$f = -0.400 \text{ m}$$

- b) No debuxo represéntase o obxecto O antes do espello e desde o seu punto superior debúxanse dous raios:
- Un horizontal cara ao espello que se reflicte de maneira que o raio reflectido pasa polo foco F (que se atopa á metade da distancia entre o espello e o seu centro C).
- Outro cara ao espello, que se reflicte sen desviarse pasando polo centro C de curvatura do espello.

Como os raios non se cortan, prolónganse alén do espello ata que as súas prolongacións córtanse. O punto de corte é o correspondente á imaxe I.

Para calcular a altura da imaxe úsase a ecuación do aumento lateral:

$$A_{\rm L} = \frac{y'}{y} = \frac{-s'}{s} = \frac{-0,100[\,\mathrm{m}\,]}{-0,0800[\,\mathrm{m}\,]} = 1,25$$

E calcúlase a altura da imaxe:

$$y' = A_L \cdot y = 1,25 \cdot 3,00 \text{ cm} = 3,75 \text{ cm} = 0,0375 \text{ m}$$

A imaxe é virtual (s' > 0), dereita ($A_L > 0$) e maior ($|A_L| > 1$). Análise: Os resultados están de acordo co debuxo.

c) No foco. Os raios que saen dun obxecto situado no foco saen paralelos e non se cortan, polo que non se forma imaxe.

A maioría das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u>
Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela
<u>Espellos e lentes</u>

do capítulo

Óptica xeométricaOpticaEspellos e lentes

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas cedas de cor branca e bordo azul.

 201000000				
Espello	cóncavo	Unidades	cm	
	Posición (cm)	Altura (cm)		
Centro (raio)	-8			
Obxecto	3			
Imaxe	10			

Os resultados son:

a)	Distancia focal		-40,0 c	em
		Posición (cm)	Altura (cm)	
	Obxecto	-8,00	` ′	Aumento
b)	Imaxe	10,0	3,75	1,25
	Imaxe	Virtual	Dereita	Maior

- Un espello ten 1,5 de aumento lateral cando a cara dunha persoa está a 20 cm de ese espello.
 - a) Razoa se ese espello é plano, cóncavo ou convexo.
 - b) Debuxa o diagrama de raios.
 - c) Calcula a distancia focal do espello.

(A.B.A.U. Set. 18)

Rta.: c) f = -60 cm

Datos (convenio de signos DIN)

Posición do obxecto Aumento lateral

Incógnitas

Distancia focal do espello

Ecuacións

Relación entre a posición da imaxe e a do obxecto nos espellos

Aumento lateral nos espellos

Relación entre a distancia focal e o radio de curvatura

Cifras significativas: 3 s = -20,0 cm = -0,200 m

 $A_{\rm L} = 1,50$

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$$

 $A_{L} = \frac{y'}{y} = \frac{-s'}{s}$ f = R/2

Solución:

c) Emprégase a ecuación do aumento lateral para establecer a relación entre a distancia obxecto s e a distancia imaxe s'.

$$A_{\rm L} = \frac{y'}{y} = \frac{-s'}{s} = 1.5$$

Polo convenio de signos, os puntos situados á esquerda do espello teñen signo negativo.

$$s' = -1.5 \ s = -1.5 \cdot (-0.20 \ [m]) = 0.30 \ m$$

Úsase a ecuación dos espellos:

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$$

Substitúense os datos:

$$\frac{1}{0,300 \, [\text{m}]} + \frac{1}{-0,200 \, [\text{m}]} = \frac{1}{f}$$

E calcúlase a incógnita:

$$f = -0,600 \text{ m}$$

- a) O espello é cóncavo, posto que a distancia focal é negativa. O foco está á esquerda do espello.
- b) No debuxo represéntase o obxecto O antes do espello e desde o seu punto superior debúxanse dous raios:
- Un horizontal cara ao espello que se reflicte de maneira que o raio reflectido pasa polo foco F (que se atopa á metade da distancia entre o espello e o seu centro C).
- Outro cara ao espello, que se reflicte sen desviarse pasando polo centro C de curvatura do espello. Como os raios non se cortan, prolónganse alén do

espello ata que as súas prolongacións córtanse. O punto de corte é o correspondente á imaxe I.

A maioría das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u>

Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Espellos e lentes

do capítulo

Óptica xeométrica

Optica

Espellos e lentes

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas cedas de cor branca e bordo azul.

Espello	cóncavo	Unidades	cm
	Posición (cm)	Altura (cm)	
Obxecto	-20		
Imaxe		1,5	
		↑ Aumento	

Os resultados son:

Lentes

- 1. Un obxecto de 3 cm de altura colócase a 20 cm dunha lente delgada de 15 cm de focal. Calcula analítica e graficamente a posición e tamaño da imaxe:
 - a) Se a lente é converxente.
 - b) Se a lente é diverxente.

(P.A.U. Set. 06)

Rta.: a) s' = 0.60 m; y' = -9.0 cm; b) s' = -0.086 m; y' = 1.3 cm

Datos (convenio de signos DIN)

Tamaño do obxecto Posición do obxecto Distancia focal da lente

Incógnitas

Posición da imaxe en ambas as lentes Tamaño da imaxe en ambas as lentes Cifras significativas: 2

y = 3.0 cm = 0.030 m s = -20 cm = -0.20 m f = 15 cm = 0.15 m s_1', s_2' y_1', y_2'

Solución:

a) Polo convenio de signos, os puntos situados á esquerda da lente teñen signo negativo. Para a lente converxente, f = +0.15 m:

Úsase a ecuación das lentes:

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

Substitúense os datos:

$$\frac{1}{s'} - \frac{1}{-0,20 \text{ [m]}} = \frac{1}{0,15 \text{ [m]}}$$

E calcúlase a posición da imaxe:

$$s' = 0,60 \text{ m}$$

Para calcular a altura da imaxe úsase a ecuación do aumento lateral:

$$A_{\rm L} = \frac{y'}{y} = \frac{s'}{s}$$

A maioría das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u> Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Espellos e lentes

do capítulo

Óptica xeométrica Optica <u>Espellos e lentes</u>

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas cedas de cor branca e bordo azul.

Lente	converxente	Unidades <mark>cm</mark>	
	Posición (cm)	Altura (cm)	
Foco	15		
Obxecto	-20	3	

Os resultados son:

a)		Potencia	6,67 d	ioptrías
		Posición (cm)	Altura (cm)	
	Obxecto	-20,0	3,00 A	umento
b)	Imaxe	60,0	-9,00	-3,00
	Imaxe	Real	Invertida	Maior

- 2. Quérese formar unha imaxe real e de dobre tamaño dun obxecto de 1,5 cm de altura. Determina:
 - a) A posición do obxecto si úsase un espello cóncavo de R = 15 cm.
 - b) A posición do obxecto si úsase unha lente converxente coa mesma distancia focal que o espello.
 - c) Debuxa a marcha dos raios para os dous apartados anteriores.

(P.A.U. Xuño 11)

Rta.: a) $s_e = -11$ cm; b) $s_l = -11$ cm

Datos (convenio de signos DIN)	Cifras significativas: 2
Tamaño do obxecto	y = 1.5 cm = 0.015 m
Aumento lateral	$A_{\rm L} = -2.0$
Radio do espello cóncavo	R = -15 cm = -0.15 m
Incógnitas	
Posición do obxecto ante o espello	Se
Posición do obxecto ante a lente	S_{l}
Outros símbolos	
Distancia focal do espello e da lente	f
Tamaño da imaxe	ý
Ecuacións	
Relación entre a posición da imaxe e a do obxecto nos espellos	$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$ $A_{L} = \frac{y'}{y} = \frac{-s'}{s}$
Aumento lateral nos espellos	$A_{\rm L} = \frac{y}{y} = \frac{-s}{s}$
Relación entre a distancia focal e o radio de curvatura	f = R/2

Relación entre a posición da imaxe e a do obxecto nas lentes Aumento lateral nas lentes

Solución:

a) Se a imaxe é real e de tamaño dobre, ten que ser invertida, polo que o aumento lateral será negativo.

$$A_{\rm L} = -2.0$$

Aplicando a ecuación do aumento lateral atópase a relación entre as distancias do obxecto e imaxe:

$$A_{\rm L} = -s' / s \Longrightarrow s' = 2.0 s$$

A distancia focal vale:

$$f_e = R / 2 = -0.075 \text{ m}$$

Aplícase a ecuación dos espellos:

$$\frac{1}{s'} + \frac{1}{s} = \frac{1}{f}$$

Substitúense os datos:

$$\frac{1}{2,0s} + \frac{1}{s} = \frac{1}{-0,075 [m]}$$

E calcúlase a distancia do obxecto:

$$s_e = 3 \cdot \frac{(-0.075 [m])}{2} = -0.11 m$$

No debuxo represéntase o obxecto O antes do espello e desde o seu punto superior debúxanse dous raios:

- Un horizontal cara ao espello que se reflicte de maneira que o raio reflectido pasa polo foco F (que se atopa á metade da distancia entre o espello e o seu centro C).
- Outro cara ao espello, que se reflicte sen desviarse pasando polo centro C de curvatura do espello.

Como os raios non se cortan, prolónganse alén do espello ata que as súas prolongacións córtanse. O punto de corte é o correspondente á imaxe I.

Análise: Nun espello, a imaxe é real se se forma á esquerda do espello, xa que os raios que saen reflectidos só se cortan á esquerda.

b) Se a lente é converxente, a distancia focal é positiva.

$$f_1 = 0.075 \text{ m}$$

Como a imaxe é real o aumento lateral é negativo.

$$A_{\rm L}=-2,0=s^{'}/s$$

$$s' = -2.0 \ s$$

Aplícase a ecuación dos espellos:

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

Substitúense os datos:

$$\frac{1}{-2,0s} - \frac{1}{s} = \frac{1}{0,075 \,[\mathrm{m}]}$$

E calcúlase a distancia do obxecto:

$$s_1 = \frac{-3.0,075 \text{ [m]}}{2} = -0,11 \text{ m}$$

A maioría das respostas pode calcularse coa folla de cálculo <u>FisicaBachGl.ods</u> Cando estea no índice, manteña pulsada a tecla «↑» (maiúsculas) mentres fai clic na cela

Espellos e lentes

do capítulo

Óptica xeométrica Optica <u>Espellos e lentes</u>

Faga clic nas celas de cor salmón e elixa as opcións como se amosa. Escriba os datos nas cedas de cor branca e bordo azul.

	Lente	converxente	Unidades	m
		Posición (cm)	Altura (cm)	
	Foco			
	Obxecto			
	Distancia	2,7	10	
obxe	cto-imaxe		↑ Aumento	

Os resultados son:

c)		Potencia	4,48 dioptrías		
	Dista	ancia focal	0,223 m		
	Pos	sición (cm)	Altura (cm)		
	Obxecto	-0,245	Αι	ımento	
b)	Imaxe	2,45		-10,00	
	Imaxe	Real	Invertida	Maior	

Cuestións e problemas das <u>Probas de avaliación do Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha <u>folla de cálculo</u> de <u>LibreOffice</u> ou <u>OpenOffice</u> do mesmo autor. Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou. A tradución ao/desde o galego realizouse coa axuda de <u>traducindote</u>, de Óscar Hermida López.

Procurouse seguir as <u>recomendacións</u> do *Centro Español de Metrología* (CEM)

Actualizado: 20/01/22

Sumario

-					-		
\mathbf{OD}	TT(` ^	$\mathbf{v}_{\mathbf{I}}$	$\mathbf{r} \sim \mathbf{r}$	I	CDI	[CA]
111		4	A 1			K	. 4

Espei	llos1
1.	Dado un espello esférico de 50 cm de radio e un obxecto de 5 cm de altura situado sobre o eixe óptico a unha distancia de 30 cm do espello, calcula analítica e graficamente a posición e tamaño da
	imaxe:1
	a) Se o espello é cóncavo
	b) Se o espello é convexo
2.	Un obxecto de 3 cm está situado a 8 cm dun espello esférico cóncavo e produce unha imaxe a 10 cm
	á dereita do espello:3
	a) Calcula a distancia focal
	b) Debuxa a marcha dos raios e obtén o tamaño da imaxe
	c) En que posición do eixe hai que colocar o obxecto para que non se forme imaxe?
3.	Un espello ten 1,5 de aumento lateral cando a cara dunha persoa está a 20 cm de ese espello5
	a) Razoa se ese espello é plano, cóncavo ou convexo
	b) Debuxa o diagrama de raios
	c) Calcula a distancia focal do espello
	² S6
1.	Un obxecto de 3 cm de altura colócase a 20 cm dunha lente delgada de 15 cm de focal. Calcula ana-
	lítica e graficamente a posición e tamaño da imaxe:6
	a) Se a lente é converxente
	b) Se a lente é diverxente
2.	Quérese formar unha imaxe real e de dobre tamaño dun obxecto de 1,5 cm de altura. Determina:7
	a) A posición do obxecto si úsase un espello cóncavo de R = 15 cm
	b) A posición do obxecto si úsase unha lente converxente coa mesma distancia focal que o espello
	c) Debuxa a marcha dos raios para os dous apartados anteriores

Método e recomendacións