B-splines - Schoenberg | Curvy | Carl R. de Boor

- are piecewise polynomial CLTVES;
- support local curre/shope madeling;
- consist of multiple polynomial segments:

Defining parameters:

-
$$U_0, U_1, ..., U_{n+k}$$
 (n+1) de Book control points
- $K \in \{1, 2, 3, ...\}$ order

/* $n \ge k-1 *$ /
- $U_0, U_1, ..., U_{n+k}, U_1 \le U_{lot}$,

Let Boor Algorithm

IN:
$$dl_{0},...dh$$
; K ; $u_{0} \leq u_{1} \leq ... \leq u_{n+k}$; $u \in [u_{k+1},u_{n+1}]$

Out: $C(\overline{u})$

Algo: "determine index I such that $\overline{u} \in [u_{I},u_{I+1}]$;

 $for(j=1)$ to $(k-1)$ do

for $(i=(I(k-1)) \neq r(I-j)$
 $I(i) = \underbrace{(I(k-1))}_{u+k-1} \neq r(I-j)$
 $I(i) = \underbrace{(I(k-1))}_{u+k-1} \neq r(I-j)$
 $I(i) = \underbrace{(I(k-1))}_{u+k-1} \neq r(I-j)$

(eturn $d[i]$)

 $I(i-1)$
 $I(i-1)$
 $I(i-1)$
 $I(i-1)$
 $I(i-1)$
 $I(i-1)$

$$K = 3$$

$$K = 4$$

$$C(W)$$