

SMPS MOSFET

IRFP90N20DPbF

HEXFET® Power MOSFET

Applications

- High frequency DC-DC converters
- Lead-Free

V _{DSS}	R _{DS(on)} max	I _D
200V	0.023Ω	94A [©]

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	94⑥	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	66	A
I _{DM}	Pulsed Drain Current ①	380	
P _D @T _C = 25°C	Power Dissipation	580	W
	Linear Derating Factor	3.8	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	6.7	V/ns
T_{J}	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.26	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage				V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.24		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.023	Ω	V _{GS} = 10V, I _D = 56A ④
V _{GS(th)}	Gate Threshold Voltage			5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
loos	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 200V, V_{GS} = 0V$
I _{DSS} D	Diam-to-Source Leakage Current			250	μΛ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage — 100 Gate-to-Source Reverse Leakage — -100			100	nA -	$V_{GS} = 30V$
I _{GSS}			-100	'''^	$V_{GS} = -30V$	

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9 _{fs}	Forward Transconductance	39			S	$V_{DS} = 50V, I_{D} = 56A$
Qg	Total Gate Charge		180	270		$I_D = 56A$
Q _{gs}	Gate-to-Source Charge		45	67	nC	V _{DS} = 160V
Q _{gd}	Gate-to-Drain ("Miller") Charge		87	130	[V _{GS} = 10V, ⊕
t _{d(on)}	Turn-On Delay Time		23			V _{DD} = 100V
t _r	Rise Time		160		ns	$I_D = 56A$
t _{d(off)}	Turn-Off Delay Time		43			$R_G = 1.2\Omega$
t _f	Fall Time		79			V _{GS} = 10V ④
C _{iss}	Input Capacitance		6040			$V_{GS} = 0V$
Coss	Output Capacitance		1070			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		170		pF	f = 1.0MHz
Coss	Output Capacitance		8350			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		420			$V_{GS} = 0V, V_{DS} = 160V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		870			V _{GS} = 0V, V _{DS} = 0V to 160V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		1010	mJ
I _{AR}	Avalanche Current①		56	Α
E _{AR}	Repetitive Avalanche Energy①		58	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			946		MOSFET symbol
	(Body Diode)			940	A	showing the
I _{SM}	Pulsed Source Current			380		integral reverse
	(Body Diode) ①			300		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.5	V	$T_J = 25^{\circ}C$, $I_S = 56A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		230	340	ns	$T_J = 25^{\circ}C, I_F = 56A$
Q _{rr}	Reverse RecoveryCharge		1.9	2.8	μC	di/dt = 100A/µs ④
ton	Forward Turn-On Time Intrinsic turn-on time is			me is ne	egligible (turn-on is dominated by L _S +L _D)	

International Rectifier

IRFP90N20DPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International TOR Rectifier

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRFP90N20DPbF

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

1GS 01 101 20g10 20101 2011000

Fig 14. For N-Channel HEXFET® Power MOSFETs

International Rectifier

TO-247AC Package Outline Dimensions are shown in millimeters (inches)

nsior	ns are	e sho	wn in	milli	imet	ers (inches)		
NOTES:								
1. D	DIMENSIONING AND TOLERANCING PER ASME Y14,5M 1994,							
2. D	DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]							
Δc	CONTOUR OF SLOT OPTIONAL.							
^								
_ P						OFLASH SHALL NOT EXCEED .005" (0.127) OUTERMOST EXTREMES OF THE PLASTIC BODY.		
<u>∕5</u> . π	HERMAL PAI	D CONTOUR	OPTIONAL	WITHIN DIM	ENISONS	D1 & E1,		
ΔL	EAD FINISH	LINCONTROL	IED IN 11					
^								
	P TO HAVE IAMETER OF			IGLE OF 1.	5 . 10 TH	E TOP OF THE PART WITH A MAXIMUM HOLE		
B. O	UTLINE CON	FORMS TO	JEDEC OUTL	INE TD-24	7 WITH T	HE EXCEPTION OF DIMENSION c.		
	1	DIMEN	ISIONS					
SYMBOL	INC	HES		ETERS	1			
5.,,,,,,,,	MIN.	MAX.	MIN.	MAX.	NOTES			
A	.183	209	4.65	5.31	.,	LEAD ASSIGNMENTS		
A1	.087	,102	2.21	2,59		ELIO FIGURATION		
A2	.059	.098	1.50	2.49		HEXFET		
ь	.039	.055	0.99	1.40		<u>HEXPE</u>		
ь1	.039	,053	0,99	1,35		1 GATE		
ь2	.065	.094	1,65	2.39		2 DRAIN		
ь3	.065	,092	1,65	2.37		3 SOURCE		
b4	.102	.135	2.59	3.43		4, - DRAIN		
b5	,102	,133	2,59	3,38				
С	.015	.034	0.38	0.86				
c1	.015	.030	0.38	0.76		IGBTs, CoPACK		
D	.776	.815	19,71	20.70	4			
D1	.515	-	13.08	-	5	1 GATE 2 COLLECTOR		
D2	.020	.030	0.51	0.76		3 EMITTER		
Ε	.602	.625	15.29	15.87	4	4 COLLECTOR		
E1	.540	-	15,72	-		4. COLLECTOR		
e		BSC		BSC				
øk		10	2.			DIODES		
L	.559	.634	14.20	16.10				
L1	.146	,169	3,71	4.29	4 1	1 ANODE/GPEN		
N		3		BSC	1 1	2 CATHODE		
øΡ	.140	.144	3,56	3.66	1	3 ANDDE		
øP1	l	.275		6.98	1			
0	.178	.224	5.31	5.69	1			
		.216	4.52	5,49	J I			
R		BSC	5.51					

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2000
IN THE ASSEMBLY LINE: "H"
Note: "P" in assembly line
position indicates "Lead-Free"

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.64mH $R_G = 25\Omega$, $I_{AS} = 56$ A.
- ③ $I_{SD} \le 56A$, $di/dt \le 470A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175^{\circ}C$
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 90A.

Data and specifications subject to change without notice.

This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

International

Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/