Working with more than one time series

VISUALIZING TIME SERIES DATA IN PYTHON

Thomas VincentHead of Data Science, Getty Images

Working with multiple time series

An isolated time series

date	ts1		
1949-01	112		
1949-02	118		
1949-03	132		

A file with multiple time series

date	ts1	ts2	ts3	ts4	ts5	ts6	ts7
2012-01-01	2113.8	10.4	1987.0	12.1	3091.8	43.2	476.7
2012-02-01	2009.0	9.8	1882.9	12.3	2954.0	38.8	466.8
2012-03-01	2159.8	10.0	1987.9	14.3	3043.7	40.1	502.1

The Meat production dataset

```
import pandas as pd
meat = pd.read_csv("meat.csv")
print(meat.head(5))
```

```
lamb_and_mutton broilers
        date
               beef
                      veal
                              pork
                      85.0 1280.0
  1944-01-01 751.0
                                               89.0
                                                          NaN
  1944-02-01 713.0
                      77.0 1169.0
                                                          NaN
                                               72.0
  1944-03-01 741.0
                      90.0 1128.0
                                               75.0
                                                          NaN
  1944-04-01 650.0
                                               66.0
                                                          NaN
                      89.0
                             978.0
  1944-05-01 681.0
                                               78.0
                                                          NaN
                     106.0 1029.0
  other_chicken turkey
             NaN
                    NaN
0
                    NaN
            NaN
                    NaN
            NaN
3
                    NaN
            NaN
            NaN
                    NaN
```


Summarizing and plotting multiple time series

```
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
ax = df.plot(figsize=(12, 4), fontsize=14)
plt.show()
```


Area charts

```
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
ax = df.plot.area(figsize=(12, 4), fontsize=14)
plt.show()
```


Let's practice!

VISUALIZING TIME SERIES DATA IN PYTHON

Plot multiple time series

VISUALIZING TIME SERIES DATA IN PYTHON

Thomas VincentHead of Data Science, Getty Images

Clarity is key

In this plot, the default matplotlib color scheme assigns the same color to the beef and turkey time series.

The colormap argument

```
ax = df.plot(colormap='Dark2', figsize=(14, 7))
ax.set_xlabel('Date')
ax.set_ylabel('Production Volume (in tons)')
plt.show()
```

For the full set of available colormaps, click here.

Changing line colors with the colormap argument

Enhancing your plot with information

```
ax = df.plot(colormap='Dark2', figsize=(14, 7))
df_summary = df.describe()
# Specify values of cells in the table
ax.table(cellText=df_summary.values,
        # Specify width of the table
        colWidths=[0.3]*len(df.columns),
        # Specify row labels
        rowLabels=df_summary.index,
        # Specify column labels
        colLabels=df_summary.columns,
        # Specify location of the table
        loc='top')
plt.show()
```


Adding Statistical summaries to your plots

Dealing with different scales

Only veal

Facet plots

Time for some action!

VISUALIZING TIME SERIES DATA IN PYTHON

Find relationships between multiple time series

VISUALIZING TIME SERIES DATA IN PYTHON

Thomas VincentHead of Data Science, Getty Images

Correlations between two variables

- In the field of Statistics, the correlation coefficient is a measure used to determine the strength or lack of relationship between two variables:
 - Pearson's coefficient can be used to compute the correlation coefficient between variables for which the relationship is thought to be linear
 - Kendall Tau or Spearman rank can be used to compute the correlation coefficient between variables for which the relationship is thought to be non-linear

Compute correlations

```
from scipy.stats.stats import pearsonr
from scipy.stats.stats import spearmanr
from scipy.stats.stats import kendalltau
x = [1, 2, 4, 7]
y = [1, 3, 4, 8]
pearsonr(x, y)
SpearmanrResult(correlation=0.9843, pvalue=0.01569)
spearmanr(x, y)
SpearmanrResult(correlation=1.0, pvalue=0.0)
kendalltau(x, y)
KendalltauResult(correlation=1.0, pvalue=0.0415)
```


What is a correlation matrix?

- When computing the correlation coefficient between more than two variables, you obtain a correlation matrix
 - Range: [-1, 1]
 - 0: no relationship
 - 1: strong positive relationship
 - -1: strong negative relationship

What is a correlation matrix?

- A correlation matrix is always "symmetric"
- The diagonal values will always be equal to 1

```
x y z
x 1.00 -0.46 0.49
y -0.46 1.00 -0.61
z 0.49 -0.61 1.00
```

Computing Correlation Matrices with Pandas

```
corr_p = meat[['beef', 'veal','turkey']].corr(method='pearson')
print(corr_p)
```

```
beef veal turkey
beef 1.000 -0.829 0.738
veal -0.829 1.000 -0.768
turkey 0.738 -0.768 1.000
```

```
corr_s = meat[['beef', 'veal','turkey']].corr(method='spearman')
print(corr_s)
```

```
beef veal turkey
beef 1.000 -0.812 0.778
veal -0.812 1.000 -0.829
turkey 0.778 -0.829 1.000
```


Computing Correlation Matrices with Pandas

```
corr_mat = meat.corr(method='pearson')
```


Heatmap

```
import seaborn as sns
sns.heatmap(corr_mat)
```


Heatmap

Clustermap

sns.clustermap(corr_mat)

Let's practice!

VISUALIZING TIME SERIES DATA IN PYTHON

