

PUSCH

PUSCH: Physical Uplink Shared Channel / 物理上行共享信道

PUSCH的作用:主要是用来传输上行用户数据,高层信令(比如:RRC)

对于每个PUSCH调度,使用DCI 0_0或DCI 0_1

PUSCH最大支持4层

# of Layers	# of Antenna Ports	Transform Precoding	Precoding Matrix (38.211)
	2		Table 6.3.1.5-1
1	4	enabled	Table 6.3.1.5-2
	4	disabled	Table 6.3.1.5-3
2	2	disabled	Table 6.3.1.5-4
	4	disabled	Table 6.3.1.5-5
3	4	disabled	Table 6.3.1.5.4-6
4	4	disabled	Table 6.3.1.5-7

PUSCH支持的调制方式:

38.211-Table 6.3.1.2-1

Transform pred	oding disabled	Transform pro	ecoding enabled
Modulation scheme Modulation order Q_m		Modulation scheme	Modulation order $\mathcal{Q}_{\mathfrak{m}}$
		π/2-BPSK	1
QPSK	2	QPSK	2
16QAM	4	16QAM	4
64QAM	6	64QAM	6
256QAM	8	256QAM	8

转换预编码transform precoding

转换预编码就是对层的数据进行数学运算(离散傅里叶变换),在进行了转换预编码之后,再进行端口映射。

使用转换预编码目的是为了降低峰均比。(这里我们不展开讲这个的原理了)

PUSCH的时域资源分配

PUSCH时域资源分配

与PDSCH类似,PUSCH的时域资源分配类型(mapping type),也分为两种,但是细节有区别:

TypeA: 在一个时隙当中,PUSCH的符号从0开始,符号长度 4-14 个符号。

TypeB:在一个时隙当中,PUSCH从(0-13)开始,符号长度(1-14)个符号

typeA是时隙调度 typeB是mini slot

上下行Mini slot最重要的区别: PDSCH是只能2,4,7个符号 而PUSCH是1-14个符号都可以

< 38.214-Table 6.1.2.1-1: Valid S and L combinations >

PUSCH		Normal cyclic	prefix	Extended cyclic prefix			
mapping type	S	L	S+L	s	L	S+L	
Type A	0	{4,,14}	{4,,14}	0	{4,,12}	{4,,12}	
Type B	{0,,13}	{1,,14}	{1,,14}	{0,,12}	{1,,12}	{1,,12}	

PUSCH时域资源分配

PUSCH的时域调度,主要取决于4个核心参数:

- 时隙偏移值K2
- 时域起始符号S和时域符号数L
- mapping type: 时域分配类型, typeA或者typeB

由于现网mapping type都是typeA,因此,重点研究K2,S,和L。

时隙偏移值K2

k2指上行调度DCI与其调度的PUSCH之间的时隙间隔。

K2=0表示PUSCH与PDCCH在同一个slot上,K2=1表示PUSCH在PDCCH后面一个slot上,依次类推

时域起始符号S和时域符号数L

举个例子

< 38.214-Table 6.1.2.1-1: Valid S and L combinations >

PUSCH	Normal cyclic prefix			Extended cyclic prefix			
mapping type	S	L	S+L	S	L	S+L	
Type A	0	{4,,14}	{4,,14}	0	{4,,12}	{4,,12}	
Type B	{0,,13}	{1,,14}	{1,,14}	{0,,12}	{1,,12}	{1,,12}	

UE如何获取K2,S,L的配置

分为两种情况:

- 1. 待机状态,可通过DCI确定的查表索引查询默认表格直接获取到K2、mapping type、S和L;
- 2. RRC连接态时,高层参数PUSCH-Configcommon中的pusch-TimeDomainAllocationList 获取配置列表,然后结合DCI确定的查表索引获取 K2、mapping type、SLIV,再进一步计算出S和L。

DCI0-0和DCI0-1是调度PUSCH的,在PDCCH里面讲过了。

待机状态查表获取K2,S,L

A表

Table 6.1.2.1.1-2: Default PUSCH time domain resource allocation A for normal CP

•	Row index [△]	PUSCH mapping type⊲	K 2 ←3	Sċ	Lċ□	
•	1∂	Type A∈	j₽	0←	14∹	
ı	2↩	Type A-□	jċ□	0←	12↩	
	3년	Type A∈	j₽	0←	10∹	
	4≓	Type B⊲	j₽	2↩	10∹	
ı	5↩	Type B⊲	jċ□	4₽	10↩	
1	6ċ	Type B⊲	j₽	4₽	8₽	
	7ċ	Type B⊲	j₽	4₽	6⊲	
	8≓	Type A-□	<i>j</i> +1< [□]	0←1	14년	
I	9≓	Type A	<i>j</i> +1< [□]	0←	12↩	
	10₽	Type A-□	<i>j</i> +1₽	0←	10↩	
	11년	Type A-□	<i>j</i> +2 <i></i> -□	0~	14∹	
	12↩	Type A←	<i>j</i> +2< [□]	0←"	12↩	
ı	13년	Type A⊲	<i>j</i> +2 <i>ċ</i> [□]	0₽	10∹	
	14₽	Type B⊲	j₽	8≓	6₽	
	15↩	Type A←	<i>j</i> +3∈	0←	14∹	
	16∉	Type A∈	<i>j</i> +3∈	0√□	10₽	

有2个表格 这里的是A

UE待机状态下,查询默认表格,根据 DCI相应字段的数值+1,获得表的行数, 查表获取到K2,S,L,mapping type 4个参数

其中,K2的取值取决干子载波间隔

Table 6.1.2.1.1-4: Definition of value j←

+++			
	■ µ Pusch [©]	j⇔	Ę
	■ 0←	1₽	Ę,
	■ 1년	1₽	Ę
	■ 2←	2↩	4
	■ 3년	3₽	Ę

μ	子载波间隔
0	15
1	30
2	60
3	120

DCI 0_0或DCI 0_1中的Time domain resource assignment字段会指示PDSCH的时域位置。该字段共4个bit,所以其值为0-15,假设其值为m,则m+1指示了一个时域资源分配表格的row index(行索引)

举个例子

假设使用的A表

DCI: Time domain resource assignment=1

子载波间隔30KHZ

Row index=1+1=2

L=12													
0	1	2	3	4	5	6	7	8	9	10	11	12	13

1个时隙

S=2

Table 6.1.2.1.1-2: Default PUSCH time domain resource allocation A for normal CP

•	Row index [△]	PUSCH mapping type⊲	K 2 ←3	S₽	L₽	*
•	1₽	Type A⊲	j₽	0←	14년	+
Ε	2↩	Type A⊲	j₽	0←	12₽	+
•	3년	Type A⊲	j₽	0←	10₽	+
•	4₽	Type B⊲	j₽	2↩	10√	+
•	5₽	Type B⊲	j⇔	4↩	10√	+
•	6∈"	Type B∈	įς	4↩	8∈	+
•	7₽	Type B⊲	j₽	4₽	6⊲	+
•	8⊲	Type A⊲	<i>j</i> +1₽	0←	14₽	+
•	9≓	Type A<□	<i>j</i> +1₽	0←□	12₽	+
•	10√	Type A⊲	<i>j</i> +1₽	0←	10₽	+
•	11-□	Type A⊲	<i>j</i> +2 <i>ċ</i> [□]	0←	14↩	+
•	12↩	Type A⊲	<i>j</i> +2< [□]	0←□	12↩	+
•	13⊲	Type A⊲	<i>j</i> +2↩	0←	10₽	+
•	14₽	Type B∈	įς	8↩	6∈□	+
•	15₽	Type A⊲	<i>j</i> +3<□	0←	14₽	+
•	16↩	Type A⊲	<i>j</i> +3∈ [□]	0←□	10₽	+

Table 6.1.2.1.1-4: Definition of value j←

Ť.			
	■ µ Pusch [©]	j⊲	Ţ
	■ 0←	1₽	₽
	■ 1₽	1₽	₽
	■ 2↩	2↩	₽
	■ 3↩	3₽	₽

得知J=1 因此K2=1

表A-扩展cp

Table 6.1.2.1.1-3: Default PUSCH time domain resource allocation A for extended CP □

Row index [△]	PUSCH	K₂ [∟]	S ċ¹	Lċ□
	mapping type⊲			
1₽	Type A	j₽	0←	8≓
2←"	Type A	jċ□	0←	12↩
3∈□	Type A⊲	j₽	0←	10∹
4₽	Type B⊲	j₽	2↩	10↩
5₽	Type B⊲	jċ□	4₽	4←
6∈"	Type B∈	j⇔	4₽	8≓
7ċ	Type B⊲	j₽	4₽	6↩
8∈⊐	Type A⊲	<i>j</i> +1∈	0←	8≓
9≓	Type A⊲	<i>j</i> +1₽	0←	12↩
10₽	Type A⊲	<i>j</i> +1∈	0←	10↩
11∂	Type A⊲	j+2<□	0←	6↩
12↩	Type A⊲	j+2-□	0←	12↩
13↩	Type A⊲	<i>j</i> +2∈ [□]	0←□	10↩
14↩	Type B∉	j⇔	8∈	4↩
15↩	Type A⊲	<i>j</i> +3∈	0←	8↩
16⊲	Type A∉	<i>j</i> +3∈	0←	10↩

UE如何知道查哪个表?

UE需要查表的时候就根据目前是普通CP还是扩展CP,去查对应的A表即可。

Table 6.1.2.1.1-1: Applicable PUSCH time domain resource allocation←

■ RNTI	PDCCH search space⊲	pusch-ConfigCommon includes pusch- TimeDomainAllocationList⊟	pusch-Config includes pusch- TimeDomainAllocationList-	PUSCH time domain resource allocation to apply∂
 PUSCH s 	scheduled by	No∈	<u>-</u>	Default A∈
in subclaus	R as described se 8.2 of [6, TS 8.213]∉	Yes⊦¹	₹3	pusch- TimeDomainAllocationList provided in pusch- ConfigCommon⊴
■ C-RNTI,	Any common	No∈	- ₽	Default Ad
MCS-C- RNTI, TC- RNTI, CS-RNTI	search space associated with CORESET 0₽	Yes∂	دِ ح	pusch- AlloTimeDomaincationList provided in pusch- ConfigCommon [□]
■ C-RNTI,	Any common	No∈	No∈	Default A∈
MCS-C- RNTI, TC- RNTI,	search space not associated with	Yes⊲	Noċ□	pusch- TimeDomainAllocationList provided in pusch- ConfigCommon ←
CS- RNTI, SP-CSI- RNTI∉	CORESET 0, e UE specific search spacee	No/Yes∉	Yes∉	pusch- TimeDomainAllocationList provided in pusch-Config

RRC连接状态通过信令获取获取K2,S,L

```
PUSCH-ConfigCommon ::=
                                       SEQUENCE {
    groupHoppingEnabledTransformPrecoding ENUMERATED {enabled} OPTIONAL, -- Need R
                              SEQUENCE (SIZE(1..maxNrofuL-Allocations))
    pusch-AllocationList
                                    OF PUSCH-TimeDomainResourceAllocation OPTIONAL, -- Need R
   msg3-DeltaPreamble
                              INTEGER (-1..6) OPTIONAL,
    p0-NominalWithGrant
                              INTEGER (-202..24) OPTIONAL,
  pusch-AllocationList {
      PUSCH-TimeDomainResourceAllocation {
         mappingType typeA,
         startSymbolAndLength 00110111'B => 55(Dec)
      PUSCH-TimeDomainResourceAllocation {
         mappingType typeA,
         startSymbolAndLength '00111000'B => 56(Dec)
```

RRC信令中pusch-Configcommon中的 PUSCH-Allocationlist获取配置参数列表

-- Need R

-- Need R

具体选择哪一种配置,取决于DCI字段 Time domain resource assignment ,这里字段的取值,不用+1

在这种情况下,不是直接获取到S和L 这两个参数,而是获取了SLIV,通过 反向计算来获取S和L

SLIV---起始和长度指示值

PUSCH这里的SLIV计算公式,跟PDSCH的是一样的:

if
$$(L-1) \le 7$$
 then
 $SLIV = 14 \cdot (L-1) + S$
else
 $SLIV = 14 \cdot (14 - L + 1) + (14 - 1 - S)$

与PDSCH的区别就是S和L的取值有区别。因此,我们还是同样的可以通过SLIV去反向获得S和L的数值

< 38.214-Table 6.1.2.1-1: Valid S and L combinations >

PUSCH	Normal cyclic prefix			Extended cyclic prefix		
mapping type	S	L	S+L	s	L	S+L
Type A	0	{4,,14}	{4,,14}	0	{4,,12}	{4,,12}
Type B	{0,,13}	{1,,14}	{1,,14}	{0,,12}	{1,,12}	{1,,12}

SLIV与S和L计算对应表

Mapping typeA的SLIV与S和L计算表

S	L	L-1	Last Symbol	SLIV	Valid Mapping Type (Normal CP) PDSCH	Valid Mapping Type (Normal CP) PUSCH
0						
	4	3	3	42	Type A, <u>Type B</u>	Type A,Type B
	5	4	4	56	<u>Type A</u>	Type A,Type B
	6	5	5	70	<u>Type A</u>	Type A,Type B
	7	6	6	84	<u>Type A</u> ,Type B	Type A,Type B
	8	7	7	98	<u>Type A</u>	Type A,Type B
	9	8	8	97	<u>Type A</u>	Type A,Type B
	10	9	9	83	<u>Type A</u>	Type A,Type B
	11	10	10	69	<u>Type A</u>	Type A,Type B
	12	11	11	55	<u>Type A</u>	Type A,Type B
	13	12	12	41	<u>Type A</u>	Type A,Type B
	14	13	13	27	<u>Type A</u>	Type A,Type B

举个例子

DCI :

Time domain resource assignment = 1

PUSCH的频域资源分配

频域资源分配类型

与PDSCH是一样的,也是分为两种类型: type0和type1

Type0: bitmap(位图),指示的资源位置既可以是集中连续的,又可以是根据信道需要灵活分散的

Type1: RIV(开始RB+连续RB长度),在频域RB上集中连续分配的

只有关闭了转换预编码(transform precoding) 功能后,才支持PUSCH的上行资源分配方案type 0。启用或禁用转换预编码transform precoding时,均支持上行资源分配方案type 1。

DCI与分配类型

DCIO-O调度的PUSCH,仅仅支持type1

DCIO-1调度的PUSCH,类型由高层信令PUSCH-config中的resource Allocation字段来配置,

```
PUSCH-Config ::= SEQUENCE {
    dataScramblingIdentityPUSCH
    txConfig
    dmrs-UplinkForPUSCH-MappingTypeA
    dmrs-UplinkForPUSCH-MappingTypeB
    pusch-PowerControl
    frequencyHopping
    frequencyHopping
```

resourceAllocation

pusch-TimeDomainAllocationList

Format 0_1

This is used for the scheduling of PUSCH in one cell

Field (Item)	Bits	Reference
Identifier for DCI formats	1	
Carrier indicator	0 or 3	
UL/SUL Indicator	0,1	0 - bit for UE not configured with SUL in the cell 1 - bit for UEs configured with SUL in the cell
Bandwidth part indicator	0,1,2	Determined by <u>BandwidthPart-Config</u> in higher layer message and <u>38.212 - Table 7.3.1.1.2-1</u>
Frequency domain resource assignment	Variable	Variable with Resource Allocation Type
Time domain resource assignment	4	Carries the row index of the items in <u>pusch_allocationList in RRC</u> Number of Bit Length is determined by log(I,2), where I is the number of elements in <u>pusch_allocationList</u> in RRC

DCI0-1中的

Frequency domain resource assignment字段来进行频域资源分配类型的指示(最高位bit为0代表type0,为1代表type1)

什么时候使用类型type0

首先必须是使用DCIO-1格式来调度PUSCH

第一种情况 PUSCH-config中的resource Allocation字段为type0

第二种情况: 当PUSCH-config中的resource Allocation字段为dynamicswitch, DCI Frequency domain resource assignment字段最高位bit为0

```
PDSCH-Config ::=
                                        SEQUENCE {
    dataScramblingIdentityPDSCH
                                        INTEGER (0..1007)
                                                             OPTIONAL.
   dmrs-DownlinkForPDSCH-MappingTypeA
                                            SetupRelease { DMRS-DownlinkConfig } OPTIONAL.
   dmrs-DownlinkForPDSCH-MappingTypeB
                                            SetupRelease { DMRS-DownlinkConfig } OPTIONAL,
   tci-StatesToAddModList
                                            SEQUENCE (SIZE(1..maxNrofTCI-States))
                                                OF TCI-State OPTIONAL, -- Need N
   tci-StatesToReleaseList
                                            SEQUENCE (SIZE(1..maxNrofTCI-States))
                                                OF TCI-StateId OPTIONAL,
   vrb-ToPRB-Interleaver
                                            ENUMERATED {n2, n4},
   resourceAllocation
                                            ENUMERATED { resourceAllocationType0,
                                                         resourceAllocationType1,
                                                         dynamicSwitch},
                                   SEQUENCE (SIZE(1..maxNrofDL-Allocations))
    pdsch-AllocationList
                                     OF PDSCH-TimeDomainResourceAllocation
                                                                               OPTIONAL.
    ndsch-AggregationEactor
                                            ENTIMEDATED { n2 n4 n8 } OPTIONAL
```

频域资源分配类型type0

Type 0使用bitmap指示PUSCH所使用的RBG,与PDSCH一致

bitmap存储在DCI0-1的Frequency domain resource assignment字段中

RBG定义没有变化,是跟PDSCH一致的

< 38.214 - Table 5.1.2.2.1-1: Nominal RBG size P, Table 6.1.2.2.1-1: Nominal RBG size P >

Bandwidth Part Size	Configuration 1	Configuration 2
1 - 36	2	4
37 - 72	4	8
73 - 144	8	16
145 - 275	16	16

RRC信令中定义RBG大小

```
PUSCH-Config ::= SEQUENCE {
    dataScramblingIdentityPUSCH
                                                INTEGER (0..1023) OPTIONAL,
                                                 ENUMERATED {codebook, nonCodebook}
    txConfig
    dmrs-UplinkForPUSCH-MappingTypeA
                                                 SetupRelease { DMRS-UplinkConfig }
    dmrs-UplinkForPUSCH-MappingTypeB
                                                 SetupRelease { DMRS-UplinkConfig }
    pusch-PowerControl
                                                 PUSCH-PowerControl
    frequencyHopping
                                                 ENUMERATED {intraslot, interslot}
    frequencyHoppingOffsetLists
                                                 SEQUENCE (SIZE (1..4)) OF
                                                      INTEGER (1.. maxNrofPhysicalResourceBlocks-1)
                                                 ENUMERATED { resourceAllocationType0,
    resourceAllocation
                                                              resourceAllocationType1,
                                                              dynamicSwitch},
    pusch-TimeDomainAllocationList
                                                 SetupRelease {
                                                          PUSCH-TimeDomainResourceAllocationList
    pusch-AggregationFactor
                                                 ENUMERATED { n2, n4, n8 }
    mcs-Table
                                                 ENUMERATED {qam256, qam64LowSE}
    mcs-TableTransformPrecoder
                                                 ENUMERATED {gam256, gam64LowSE}
    transformPrecoder
                                                 ENUMERATED {enabled, disabled}
    codebookSubset
                                                 ENUMERATED {fullyAndPartialAndNonCoherent,
                                                             partialAndNonCoherent,
                                                             nonCoherent }
                                                 INTEGER (1..4)
    maxRank
                                                 ENUMERATED { config2}
    rbq-Size
    uci-OnPUSCH
                                                 SetupRelease { UCI-OnPUSCH }
    tp-pi2BPSK
                                                 ENUMERATED {enabled}
```

资源分配Type0举例1

假设:

PUSCH-config中

resource Allocation字段为type0

rbg-Size: configuration 1

RRC信令获取BWP带宽: 273RB

DCI0-1中:

Frequency domain resource assignment "110101011100000111"

可知RBG=16个VRB

< 38.214 - Table 5.1.2.2.1-1: Nominal RBG size P, Table 6.1.2.2.1-1: Nominal RBG size P >

Bandwidth Part Size	Configuration 1	Configuration 2
1 - 36	2	4
37 - 72	4	8
73 - 144	8	16
145 - 275	16	16

273RB

什么时候使用类型type1

DCI0-0调度的PUSCH

DCI0-1调度的PDSCH

- PUSCH-config中的resource Allocation字段为type1
- 当PUSCH-config中的resource Allocation字段为dynamicswitch,
 DCI0-1 Frequency domain resource assignment字段最高位bit为1

Type1的频域资源分配

Type1类型下,通过RIV(Resource Indication Value)反推 RB起始位置S和映射的连续RB个数L,即可完成映射。与PDSCH是一致的。

RIV的公式与PDSCH的也是一模一样的

if
$$(L_{RBs}-1) \le \lfloor N_{BWP}^{size}/2 \rfloor$$
 then
$$RIV = N_{BWP}^{size}(L_{RBs}-1) + RB_{start}$$
 else
$$RIV = N_{BWP}^{size}(N_{BWP}^{size}-L_{RBs}+1) + (N_{BWP}^{size}-1-RB_{start})$$

RIV 在DCI的 Frequency domain resource assignment字段中

RIV计算举例子

$$N_{BWP}^{size} = 50 \quad (L_{RBs} - 1) \le \lfloor N_{BWP}^{size} / 2 \rfloor$$

L _{RBs} =1]	$L_{RBs}=2$			I	_{RBs} =2	6		
RB _{Start}	0	1	49	0	1	48		0	1	24
RIV	0	1	49	50	51	98		1250	1251	1274

$$(L_{RBs}-1)>\left\lfloor N_{BWP}^{size}/2\right
floor$$

	$L_{\mathrm{RBs}} = 27$			I	$L_{\rm RBs}=48$		L _{RBs} =49		L _{RBs} =50	
RB _{Start}	0	1	23	•••	0	1	2	0	1	0
RIV	1249	1248	1226		199	198	197	149	148	99

Type1的频域资源分配举例子

假设

PUSCH-config中 resource Allocation字段为type1

RRC信令获取BWP带宽: N=50RB

DCIO-1中:

Frequency domain resource assignment:10011100010

110011转换成十进制RIV=1250

反推得到S=0,L=26

PUSCH跳频 (hopping)

PUSCH跳频(hopping)模式

跳频的主要作用就是降低干扰。

5G PUSCH 支持两种跳频模式(下行PDSCH不支持跳频):

PUSCH频域资源分配type1才会使用跳频,type0模式下不会使用跳频。本身type0的RB资源就是离散分布的,已经对干扰有一定的频率分集的作用。

UE怎么知道是否开启跳频?

在PUSCH使用频域分配类型type1的时候,有以下3中情况会开启跳频:

- 1、DCI格式当中被检测到跳频Frequency hopping flag字段值为1
- 2、高层信令配置了frequencyHoppingOffset(跳频偏移)
- 3、随机接入信令MSG2中Frequency hopping flag字段的值为1

时隙内跳频

在时隙内跳频中,一个时隙中前一半符号为第一hop,后一半符号为第二hop

$$RB_{start} = \begin{cases} RB_{start} & i = 0 & 第一hop起始位置 RB_{start} \\ (RB_{start} + RB_{offset}) mod N_{BWP}^{size} & i = 1 \end{cases}$$
 第二hop起始位置 $RB_{start} + RB_{offset}$

• Num	ber of PRBs in initial UL BWP←	Value of N_{ULhop} Hopping Bits \leftarrow	Frequency offset for 2nd hop
	Noize 50	0←3	LN size /2 J←
<u> </u>	$N_{ m BWP}^{ m size}\!<\!50$ $\! ightarrow$	1←	_N size /4 _ ←
	00↩	N size /2 d	
_	Naize Sour	01년	_N size /4 _ ←
$N_{\rm BWP} \ge 3$	$N_{ m BWP}^{ m size}\!\geq\!50$ $\! ightarrow\!$	10↩	- [N size /4]←
		11₽	Reserved

核心参数就是偏移量 $N_{
m UL,hop}$

举个例子

	■Number of PRBs in initial UL BWP	Value of N_{ULhop} Hopping Bits	Frequency offset for 2 nd hop←	↵			
	■ $N_{ m BWP}^{ m size}\!<\!50$ $\!\!\! ightarrow\!\!$	0←	$\lfloor N_{\mathrm{BWP}}^{\mathrm{size}} / 2 \rfloor$	₽	→	得知:	offset=10
		1↩	[N _{BWP} /4]←	↩			
	■ $N_{\mathrm{BWP}}^{\mathrm{size}} \! \geq \! 50 \! \leftarrow \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	00↩	LN size /2 J←	↵			
		01↩	_N size /4 _←	₽			
		10↩	- [N size /4]←	←			
		11↩	Reserved	←7			

假设:

BWP=20PRB

 $N_{\rm UL,hop} = 0$

第一hop RB start=2

时隙间跳频

n_s^μ 是时隙编号

$$\mathrm{RB}_{\mathrm{start}} \left(n_s^{\mu} \right) = \begin{cases} \mathrm{RB}_{\mathrm{start}} & n_s^{\mu} \bmod 2 = 0 \\ \left(\mathrm{RB}_{\mathrm{start}} + \mathrm{RB}_{\mathrm{offset}} \right) \bmod N_{\mathit{BWP}}^{\mathit{size}} & n_s^{\mu} \bmod 2 = 1 \end{cases}$$
 偶数时隙起始位置 $\mathrm{RB}_{\mathrm{start}} + \mathrm{RB}_{\mathrm{offset}}$

• Numi	ber of PRBs in initial UL BWP	Value of N_{ULhop} Hopping Bits	Frequency offset for 2nd hop-
- Neize 50 1		0←3	[N _{BWP} /2]←
[$N_{ m BWP}^{ m size}\!<\!50$ $\! ightarrow\!$	1←	LN size /4 J←
		00년	LN size /2 J←
	Neize > 50.	01년	LN size /4 J←
N _{BWP} ≥ 50	$N_{ m BWP}^{ m size}\!\ge\!50$ $\! ightarrow$	10↩	- [N size /4]←
		11₽	Reserved

核心参数就是偏移量 $N_{
m UL,hop}$

UE如何获取偏移量参数

Frequency hopping flag: 是否支持跳频

Frequency domain resource assignment: offset选项在这里

Format 0_0

This is used for the scheduling of PUSCH in one cell.

Field (Item)	Bits	
Identifier for DCI formats	1	
Frequency domain resource assignment	4	Variable with Indicate PRB I The number o as described <u>I</u>
Time domain resource assignment	X	Carries the ro in <u>pusch</u> alloc
Frequency Hopping Flag	1	
Modulation and coding scheme	5	38.214 - 6.1.4
New data indicator	1	

Format 0_1

This is used for the scheduling of PUSCH in one cell.

Field (Item)	Bits	Reference
Identifier for DCI formats	1	
Carrier indicator	0 or 3	
UL/SUL Indicator	0,1	0 - bit for UE not configured with SUL in the cell 1 - bit for UEs configured with SUL in the cell
Bandwidth part indicator	0,1,2	Determined by <u>BandwidthPart-Config</u> in higher layer message and <u>38.212 - Table 7.3.1.1.2-1</u>
Frequency domain resource assignment	Variable	Variable with Resource Allocation Type
Time domain resource assignment	4	Carries the row index of the items in <u>pusch_allocationList in RRC</u> Number of Bit Length is determined by log(I,2), where I is the number of elements in <u>pusch_allocationList in RRC</u>
Frequency Hopping Flag	0,1	
Modulation and coding scheme	5	38.214 - 6.1.4 (See <u>this table</u>)
New data indicator	1	

UE如何获取偏移量参数

从高层信令获取支持哪一种<mark>跳频方式以及offset列表</mark>

```
PUSCH-Config ::= SEQUENCE {
    dataScramblingIdentityPUSCH
                                                INTEGER (0..1023) OPTIONAL,
    txConfia
                                                 ENUMERATED {codebook, nonCodebook}
    dmrs-UplinkForPUSCH-MappingTypeA
                                                 SetupRelease { DMRS-UplinkConfig }
    dmrs-UplinkForPUSCH-MappingTypeB
                                                 SetupRelease { DMRS-UplinkConfig }
    pusch-PowerControl
                                                 PUSCH-PowerControl
                                                ENUMERATED {intraslot, interslot}
    frequencyHopping
                                                 SEQUENCE (SIZE (1..4)) OF
   trequencyHoppingOffsetLists
                                                      INTEGER (1.. maxNrofPhysicalResourceBlocks-1)
                                                 ENUMERATED { resourceAllocationType0.
    resourceAllocation
                                                              resourceAllocationTyne1
```

总的来说,首先,由<mark>DCI决定是否支持跳频</mark>,如果支持跳频,再由高层信令字段PUSCH-config决定支持哪种跳频, 以及跳频offset列表,最终由DCI字段决定offset列表中选择哪一个offset。

特殊情况,随机接入的时候,msg2会决定是否支持跳频,以及相应的字段会决定offse列表中选择哪一种offset。

随机接入流程中的跳频

随机接入简单来说就是:UE从空闲态转移到与基站之间连接态的过程 在随机接入的第三部信令需要PUSCH来承载,因此第二步骤msg2里面会携带是否跳频以及 Offset的选项。

PUSCH中的DMRS

PUSCH的DMRS分类

与PDSCH类似,PUSCH也支持两种DMRS:

Front Loaded DMRS, 前置DMRS, 1~2符号, 默认需要配置

Additional DMRS,额外DMRS,1~3符号,由高层配置;UE高速移动场景下进行更精准的信道估计

Front Loaded DMRS时域符号起始位

PUSCH 时域分布采用Type A的时候(现网):

Front Loaded DMRS(前置DMRS)的时域符号起始位置,由MIB里面的dmrs-Type A-Position字段决定可以是符号2或者符号3(pos2, pos3)。这一点与PDSCH是一样的。

```
MIB ::= SEQUENCE {
    systemFrameNumber
                                        BIT STRING (SIZE (6)),
    subCarrierSpacingCommon
                                        ENUMERATED {scs15or60, scs30or120},
                                        INTEGER (0..15),
    ssb-SubcarrierOffset
    dmrs-TypeA-Position
                                        ENUMERATED {pos2, pos3},
    pdcch-ConfigSIB1
                                       INTEGER (0..255),
    cellBarred
                                        ENUMERATED {barred, notBarred}.
    intraFreqReselection
                                        ENUMERATED {allowed, notAllowed},
                                        BIT STRING (SIZE (1))
    spare
```


Front Loaded DMRS时域占用符号数

Front Loaded DMRS(前置DMRS)的时域占用符号数,由高层信令PUSCH-Config => DMRS-UplinkConfig => maxLength决定(len1、len2)

```
DMRS-UplinkConfig ::=
                                    SEQUENCE (
    dmrs-Type
                                         ENUMERATED {type2}
    dmrs-Additional Position
                                        ENUMERATED (pos0, pos1, pos3)
                                        SetupRelease { PTRS-UplinkConfig }
   phaseTrackingRS
   maxLength
                                        ENUMERATED (len2)
   transformPrecodingDisabled
                                        SEQUENCE {+
        scramblingID0
                                            INTEGER (0..65535)
                                            INTEGER (0..65535)
        scramblingID1
```


Front Loaded DMRS频域分布

DMRS频域映射方式分为 type 1和 type 2两种,与PDSCH一样。由高层信令PUSCH-Config => DMRS-UplinkConfig => drms-Type指示.如果该field未配置,则默认为 type 1。

```
DMRS-UplinkConfig ::=
                                    SEQUENCE {↩
   dmrs-Type
                                        ENUMERATED {type2}
    dmrs-AdditionalPosition
                                        ENUMERATED {pos0, pos1, pos3}
                                        SetupRelease { PTRS-UplinkConfiq }
   phaseTrackingRS
   maxLength
                                        ENUMERATED {len2}
    transformPrecodingDisabled
                                        SEQUENCE {↩
        scramblingID0
                                            INTEGER (0..65535)
        scramblingID1
                                            INTEGER (0..65535)
```


Type1,频域上间隔一个符号

Type2频域上连续2个符号做间隔

PUSCH有几个天线端口?

与PDSCH一样,不同的天线端口,对应不同的DMRS分布位置。

对于DMRS type1,天线端口有4或者8端口对于DMRS type2,天线端口有6或者12端口编号方式与PDSCH不同

Table 6.4.1.1.3-5: PUSCH DM-RS time index l'. ←

■ DM-RS duration	l' 41	Supported ante	enna ports p̃
	1	Configuration type 1←	Configuration type 2
single-symbol DM-RS←	0←	0 − 3←	0 − 5←
■ double-symbol DM-RS	0, 1↩	0 – 7↩	0 – 11↩

PDSCH

Single or double symbol	l'	Supported antenna ports p				
DM-RS		Configuration type 1	Configuration type 2			
single	0	1000 – 1003	1000 – 1005			
double	0, 1	1000 – 1007	1000 – 1011			

DMRS频域映射公式

DMRS频域分布公式有两种,与是否使用转换预编码有关

不使用转换预编码的时候,公式与PDSCH是一样的

使用转换预编码

$$k = \begin{cases} 4n + 2k' + \Delta & \text{Configuration type 1} \\ 6n + k' + \Delta & \text{Configuration type 2} \end{cases}$$

$$k' = 0,1$$

$$n = 0,1,...$$
 K值就是频域位置

$$k = 4n + 2k' + \Delta$$

$$k' = 0,1$$

$$n = 0,1,...$$

K值就是频域位置

我们发现, 使用转换预编码 的时候,相当于 DMRS频域映射 只使用type1

是否使用转换预编码,高层信令PUSCH-Config => DMRS-UplinkConfig当中配置

```
DMRS-UplinkConfig ::=
                                     SEQUENCE {↩
    dmrs-Type
                                         ENUMERATED {type2}
    dmrs-AdditionalPosition
                                         ENUMERATED {pos0, pos1, pos3}
    phaseTrackingRS
                                         SetupRelease { PTRS-UplinkConfig }
    maxLength
                                         ENUMERATED {len2}
    transformPrecodingDisabled
                                         SEQUENCE {↩
        scramblingID0
                                             INTEGER (0..65535)
        scramblingID1
                                             INTEGER (0..65535)
```

DMRS频域映射公式举例

不使用转换预编码的时候,DMRS映射与PDSCH一模一样

$$k = \begin{cases} 4n + 2k' + \Delta & \text{Configuration type 1} \\ 6n + k' + \Delta & \text{Configuration type 2} \end{cases}$$
 $k' = 0,1$ $n = 0,1,...$ K值就是频域位置

Table 6.4.1.1.3-1: Parameters for PUSCH DM-RS configuration type 1. ↩

-‡∗									_
	•	\widetilde{p}	CDM group∂	$\Delta_{\scriptscriptstyle \leftarrow}$	$w_{\rm f}$	(k') ←	w_{t}	(l') _←	₽
					k' = 0 ←	k' = 1 ←	l' = 0 ←	l' = 1 ←3	₽
	•	0←	0←	0←	+1←	+1↩	+1↩	+1↩	₽
[•	1↩	0←	0←	+1↩	-1↩	+1↩	+1↩	₽
[•	2↩	1↩	1←	+1←	+1↩	+1↩	+1↩	₽
	•	3↩	1↩	1↩	+1⊹	-1↩	+1↩	+1↩	₽
	•	4↩	0←	0←	+1↩	+1↩	+1↩	-1↩	₽
Ī	•	5↩	0←	0←	+1↩	-1↩	+1↩	-1↩	₽
[•	6↩	1↩	1←	+1√	+1√	+1↩	-1←	₽
[•	7↩	1↩	1↩	+1↩	-1↩	+1↩	-1↩	↩

举例子

假设使用Type1,天线端口4,

查表得知 $\Lambda = 0$

当K'=0 K=4n,因为n=0,1,2…得到K=0,4,8,12,16…

当K'=1 K=4n+2, 因为n=0,1,2…得到K=2,6,10,14…

所以,天线端口4,的DMRS频域位置就是: 0.2.4.6…

Table 6.4.1.1.3-2: Parameters for PUSCH DM-RS configuration type 2. □

•	\widetilde{p}	CDM group⊲	Δ_{\leftarrow}	$w_{\rm f}$	·(k') ←	w_{t}	$w_{t}(l')_{\leftarrow}$		
				k' = 0 ←	$k' = 1_{\leftarrow}$	l' = 0 ←	l' = 1 ←		
•	0←	0←	0←	+1↩	+1↩	+1↩	+1↩		
•	1↩	0←	0←	+1↩	-1↩	+1↩	+1↩		
-	2↩	1↩	2↩	+1↩	+1↩	+1↩	+1←		
•	3↩	1↩	2↩	+1↩	-1↩	+1↩	+1↩		
-	4←	2↩	4↩	+1↩	+1↩	+1↩	+1↩		
•	5←	2↩	4↩	+1↩	-1↩	+1↩	+1↩		
•	6↩	0←	0←	+1↩	+1←	+1↩	-1↩		
•	7↩	0←	0←	+1↩	-1↩	+1↩	-1↩		
•	8←	1↩	2↩	+1↩	+1↩	+1↩	-1↩		
•	9↩	1↩	2↩	+1↩	-1↩	+1↩	-1←		
•	10↩	2↩	4↩	+1↩	+1↩	+1↩	-1↩		
•	11↩	2↩	4↩	+1↩	-1↩	+1↩	-1↩		

天线端口4的频域分布图

频域分布Type1,天线端口4,的DMRS频域位置就是: 0.2.4.6.8.10…

接下来我们把所有的天线端口对应的DMRS图全部画出来

DMRS type1

- 端口0,1码分复用,属于CDM组0
- 端口2,3码分复用,属于CDM组1

- 端口0,1,4,5码分复用,属于CDM组0
- 端口2,3,6,7码分复用,属于CDM组1

DMRS type2

- 端口0,1码分复用,属于CDM组0
- 端口2,3码分复用,属于CDM组1
- 端口4,5码分复用,属于CDM组2

- 端口0,1,6,7码分复用,属于CDM组0
- 端口2,3,8,9码分复用,属于CDM组1
- 端口4,5,10,11码分复用,属于CDM组2

Front Loaded DMRS时域符号起始位

PUSCH 时域分布采用Type B的时候(mini slot):

时域位置一般在PUSCH的第一个符号开始。

Additional DMRS

Additional DMRS(额外DMRS)为UE高速移动场景下进行更精准的信道估计。

由高层参数PUSCH-Config=>DMRS-uplinkConfig=>dmrs-Additional Position配置。

dmrs-Additional Position取值: pos0, pos1, pos2, pos3(代表数值0,1,2,3)

```
DMRS-UplinkConfig ::=
                                     SEQUENCE {+
    dmrs-Type
                                         ENUMERATED {type2}
    dmrs-AdditionalPosition
                                         ENUMERATED {pos0, pos1, pos3}
    phaseTrackingRS
                                         SetupRelease { PTRS-UplinkConfig }
    maxLength
                                         ENUMERATED {len2}
    transformPrecodingDisabled
                                         SEQUENCE {↩
        scramblingID0
                                             INTEGER (0..65535)
        scramblingID1
                                             INTEGER (0..65535)
```

参数代表additional DMRS的位置,需要查表来查询。

整体逻辑跟PDSCH是一模一样

DMRS单符号表

非时隙内跳频模式

Table 6.4.1.1.3-3: PUSCH DM-RS positions \bar{l} within a slot for single-symbol DM-RS and intra-slofrequency hopping disabled.

•	$l_{\mathbf{d}}$ in				DM-RS pos	sitions $\bar{l}_{_{\perp 3}}$						
S	ymbols∈		PUSCH m	apping type	e A⊲	PUSCH mapping type B						
Γ				itionalPosi		dmrs-AdditionalPosition						
		pos0⊲	pos1⊲	pos2⊲	pos3⊲	pos0∈	pos1⊲	pos2⊲	pos3⊲			
•	<4↩	-←	-←	-←	4	l ₀ ←	$l_0 \leftarrow$	l_0 \leftarrow	$l_0 \leftarrow$			
•	4↩	l ₀ ←	l ₀ ←	l ₀ ←	l_0 \leftarrow	l ₀ ←	l ₀ ←	l ₀ ←	l_0 \leftarrow			
•	5↩	l ₀ ←	l ₀ ←	l ₀ ←	l_0 \leftarrow	l ₀ ←	l₀, 4←	l ₀ , 4←	l ₀ , 4←			
•	6ċ	l ₀ ←	l ₀ ←	l ₀ ←	l_0 \leftarrow	l ₀ ←	l₀, 4←	l ₀ , 4←	l ₀ , 4←			
•	7↩	l ₀ ←	l ₀ ←	l ₀ ←	l_0 \leftarrow	l ₀ ←	l₀, 4←	l ₀ , 4←	l ₀ , 4←			
•	8↩	l ₀ ←	l₀, 7←	l₀, 7←	l ₀ , 7↩	l ₀ ←	l₀, 6←	l₀, 3, 6←	l₀, 3, 6←			
•	9ċ	l ₀ ←	l₀, 7←	l₀, 7←	l ₀ , 7←	l ₀ ←	l₀, 6∈	l₀, 3, 6←	l₀, 3, 6←			
•	10↩	l ₀ ←	l₀, 9←	l₀, 6, 9⊄	l ₀ , 6, 9↩	l ₀ ←	l₀, 8←	l₀, 4, 8⊄	l₀, 3, 6, 9€			
•	11↩	l ₀ ←	l₀, 9←	l₀, 6, 9⊄	l ₀ , 6, 9↩	l ₀ ←	l₀, 8←	l₀, 4, 8↩	l₀, 3, 6, 9€			
•	12↩	l ₀ ←	l₀, 9←	l₀, 6, 9⊄	l₀, 5, 8, 11↩	l ₀ ←	l₀, 10↩	l₀, 5, 10←	l₀, 3, 6, 9€			
•	13↩	<i>l</i> ₀ ←	<i>l</i> ₀ , 11↩	l₀, 7, 11↩	l₀, 5, 8, 11←	l ₀ ←	l₀, 10↩	l₀, 5, 10←	l₀, 3, 6, 9€			
•	14↩	l ₀ ←	l₀, 11ċ	l₀, 7, 11←	l₀, 5, 8, 11←	l ₀ ←	l ₀ , 10↩	l₀, 5, 10←	l₀, 3, 6, 9←			

PUSCH typeA Slot

PUSCH typeB minislot

举个例子

Table 6.4.1.1.3-3: PUSCH DM-RS positions \bar{l} within a slot for single-symbol DM-RS and intra-slot frequency hopping disabled. □

	$l_{\mathbf{d}}$ in	DM-RS positions $ar{l}$ \Box												
S	ymbols∈		PUSCH m	apping typ	e A⊲	PUSCH mapping type B								
[[itionalPosi				ditionalPos						
		pos0⊲	pos1⊲	pos2↩	pos3ċ	pos0∈	pos1⊲	pos2⊲	pos3⊲					
•	<4↩	_←	-←	-←	-4	l ₀ ←	l_0 \leftarrow	l_0 \leftarrow	l_0					
•	4↩	l ₀ ←	l ₀ ←	l ₀ ←	l ₀ ←	l ₀ ←	l ₀ ←	l ₀ ←	l ₀ ←					
•	5↩	l ₀ ←	l ₀ ←	l_0 \leftarrow	l ₀ ←	l ₀ ←	l₀, 4←	l ₀ , 4←	l ₀ , 4←					
•	6↩	l ₀ ←	l ₀ ←	l_0 \leftarrow	l ₀ ←	l ₀ ←	l ₀ , 4←	l ₀ , 4←	l ₀ , 4←					
•	7↩	l ₀ ←	l ₀ ←	l ₀ ←	l ₀ ←	l ₀ ←	l ₀ , 4←	l ₀ , 4←	l ₀ , 4←					
•	8←	l ₀ ←	l₀, 7←	l₀, 7←	l ₀ , 7←	l ₀ ←	l₀, 6←	l₀, 3, 6↩	l ₀ , 3, 6↩					
	9↩	l₀←	l₀, 7←	l₀, 7←	l ₀ , 7←	l ₀ ←	l₀, 6←	l₀, 3, 6↩	l ₀ , 3, 6←					
•	10↩	l ₀ ←	l ₀ , 9↩	l ₀ , 6, 9∉	l₀, 6, 9€	l ₀ ←	l₀, 8←	l₀, 4, 8↩	l₀, 3, 6, 9€					
•	11↩	l ₀ ←	l₀, 9←	l₀, 6, 9∈	l ₀ , 6, 9€	l ₀ ←	l₀, 8←	l₀, 4, 8↩	l₀, 3, 6, 9€					
•	12↩	l ₀ ←	l₀, 9←	l ₀ , 6, 9∉	l₀, 5, 8, 11⊄	l ₀ ←	l₀, 10←	l₀, 5, 10↩	l₀, 3, 6, 9€					
•	13↩	l ₀ ←	l₀, 11↩	l₀, 7, 11∈		l ₀ ←	l₀, 10↩	<i>l</i> ₀ , 5, 10↩	l₀, 3, 6, 9€					
•	14↩	l ₀ ←	l₀, 11ċ	l₀, 7, 11∈	l ₀ , 5, 8, 11↩	l ₀ ←	l₀, 10↩	l₀, 5, 10←	l₀, 3, 6, 9←					

假设:

PUSCH使用typeA模式(时隙调度模式)

Dmrs时域使用的是单符号

dmrs-TypeA-Position =2

PUSCH占用symbol = 0~9

dmrs-Additional Position: 2,结果如图所示

DMRS双符号表

非时隙内跳频模式

Table 6.4.1.1.3-4: PUSCH DM-RS positions \bar{l} within a slot for double-symbol DM-RS and intra-slot frequency hopping disabled.

•	$l_{ m d}$ in symbols $ m e$				DM-RS po	sitions $ar{l}$	-			<			
		P	USCH map	ping type	A⇔	P	PUSCH mapping type B⊲						
		dı	nrs-Additi	onalPositi	on⊍	dr	nrs-Additio	onalPositi	on∈	<			
		pos 0 ∈	pos1∈	pos2←	<i>pos</i> 3 □	pos 0 ∈	pos1∈	pos2←	pos3∈	<			
•	<4↩	_←	-4	Ţ	Ţ	7	-←	Ų.	Ţ	<			
•	4↩	l ₀ ←	l₀←	7	Ψ.	_~	-←	Ų.	7	<			
•	5↩	Ι ₀ ←	l ₀ ←	-	-	l ₀ ←	<i>l</i> ₀ ←	←J	÷	<			
•	6↩	<i>l</i> ₀ ←	l ₀ ←	↩	₽	l ₀ ←	l ₀ ←	↩	7	<			
•	7↩	l ₀ ←	l ₀ ←	4	₽	l ₀ ←	<i>l</i> ₀ ←	↩	7	<			
•	8↩	l ₀ ←	l ₀ ←	₽	₽	l ₀ ←	l₀, 5←	↩	7	<			
•	9↩	l ₀ ←	l ₀ ←	↩	₽	l ₀ ←	l₀, 5↩	↩	7	<			
•	10↩	Ι ₀ ←	l₀, 8←	↩	↩	l ₀ ←	l₀, 7←	↩	4	4			
•	11↩	l ₀ ←	l₀, 8←	₽	₽	l ₀ ←	l₀, 7←	↩	7	<			
•	12↩	l ₀ ←	l₀, 8←	4	4	l ₀ ←	l₀, 9←	↩	7	4			
•	13↩	l ₀ ←	l₀, 10←	4	7	l ₀ ←	l₀, 9←	↩	7	<			
•	14↩	ι₀⇔	l₀, 10↩	←	↩	l ₀ ←	l₀, 9←	↵	←	<			

DMRS单符号表

时隙内跳频模式 对于时隙内跳频模式,DMRS仅支持单符号。

Table 6.4.1.1.3-6: PUSCH DM-RS positions \bar{l} within a slot for single-symbol DM-RS and intra-slot frequency hopping enabled.

												_
	DM-RS positions $ar{l}$											₽
		PUS	CH map	ping typ	oe A⊲			PUS	SCH ma	pping ty	/pe B⊣	₽
l₀ = 2←					l _o =	= 3←			l_{o}	= 0←		↩
dmrs	s-Addit	ionalPos	sition∈	dmrs	-Additio	onalPos	ition⊲	dmi	s-Addit	ionalPo	sition∈	↩
pos0ċ		pos0← pos1←		ро	pos0← pos1←			ро	s 0 ∈	pos1⊲		↩
1 st↓	2 nd↓	1 st↓	2 nd↓	1 st↓	2 nd ↓	1 st↓	2 nd↓	1 st↓	2 nd↓	1 st↓	2 nd↓	₽
hopċ	hopċ	hop↩	hop⊍	hop⊍	hop∈	hop⊍	hopċ	hop⊍	hop⊍	hopċ	hopċ	
-←	-←	-←	_←	-←	-	-←	-←	0←	0-□	0←	0←	↩
2↩	0←	2↩	0←	3↩	0←	3↩	0←	0←	0←	0←	0←	↩
2↩	0←	2↩	0, 4↩	3↩	0←	3↩	0, 4↩	0←	0←	0, 4↩	0, 4↩	↩
2↩	0←	2, 6↩	0, 4↩	3↩	0←	3↩	0, 4↩	0←	0←	0, 4↩	0, 4↩	↩
	<i>po</i> 1st↓ hop← -← 2← 2←	dmrs-Addit pos0← 1st↓ 2nd↓ hop← hop← ← ← ← 2← 0← 2← 0←	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PUSCH mapping type A \colongle $l_0 = 2\colongle$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PUSCH mapping type Ac $l_0 = 3c$	PUSCH mapping type APUSCH ma $l_0 = 2$ $l_0 = 3$ l_0 dmrs-AdditionalPositiondmrs-AdditionalPositiondmrs-AdditionalPosition $pos0$ $pos0$ $pos0$ $pos0$ 1st\ pos0 $pos0$ $pos0$ $pos0$ 1st\ pos0 $pos0$ $pos0$ $pos0$ 1st\ pos0 $pos0$ $pos0$ hopehopehopehopehopehopehopehopehopehopehopehope loo <th< td=""><td>PUSCH mapping type A$\[\] \] \] \] \] \] \] \] \] \] \] \] \]$</td><td>PUSCH mapping type A $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$</td></th<>	PUSCH mapping type A $\[\] \] \] \] \] \] \] \] \] \] \] \] \] $	PUSCH mapping type A $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$

假设:

PUSCH使用typeA模式(时隙调度模式) Dmrs时域使用的是单符号

dmrs-TypeA-Position =2

PUSCH占用symbol = 0~4

dmrs-Additional Position: 1,结果如图所示

PUSCH typeA DMRS全景图

Front Loaded DMRS

Additional DMRS

非跳频

PUSCH typeB DMRS全景图

Front Loaded DMRS

Additional DMRS

非跳频

PUSCH typeA DMRS全景图

dmrs-TypeA-Position =2

PUSCH typeB DMRS全景图

Front Loaded DMRS

Additional DMRS _____

跳频

