Quiz 2, Date: 27 April, 2024

Instructor: Ankan Kar

Timing: 4:00 PM to 7:00 PM

Score rule as per IMO

All questions carry equal marks, try as much as possible

- 1. Prove that for sufficiently large n, the fibonacci number f_n is the integer closest to $\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n$.
- 2. Let a, b be real numbers such that $0 \le a \le b \le 1$. Prove that $(ab^2 ba^2) \le \frac{1}{4}$.
- 3. Prove that for a, b, c > 0, it is possible to construct a triangle with sides of length a, b, c if and only if $pa^2 + qb^2 > pqc^2$ for any p, q with p + q = 1.
- 4. The numbers in the sequence $101, 104, 109, 116, \ldots$ are of the form $a_n = 100 + n^2$, where $n = 1, 2, 3, \ldots$ For each n, let d_n be the greatest common divisor of a_n and a_{n+1} . Find the maximum value of d_n as n ranges through the positive integers.
- 5. For natural numbers a, m, n, prove that $gcd(a^m 1, a^n 1) = a^{gcd(m,n)} 1$.
- 6. Find the value of $a \in \mathbb{R}$ such that the sum of squares of the zeros of $x^2 (a-2)x (a+1)$ is minimum.

End