DM3: Conception et utilisation d'un SAT-solver

1 Conception du SAT-solver

Q10.

Soit *n* le nombre d'opérateur.

Dans la configuration $(...((a_0|a_1)|a_2)|...)|a_n$, il y a bien n opérateur.

De plus, la complexité de l'algorithme dans cette configuration est

$$C_n = C_{n-1} + C_0 + \Theta(n)$$

$$\geq C_{n-1} + nA$$

$$\geq C_0 + \sum_{i=0}^{n-1} (n-i)A$$

$$C_n = \boxed{\Omega(n^2)}$$

Donc dans le pire cas, la complexité est au moins en $\Omega(n^2)$.

Pour améliorer la fonction il faut passer par une variable intermédiaire puis trier la liste.

Q11.(Bonus)

Dans la nouvelle fonction, on a

$$C_n = \Theta(n) + \Theta(n\log(n))$$
$$C_n = \boxed{\Theta(n\log(n))}$$

Q19.

Dans la configuration $\sim (...(\sim T)...)$, la complexité de l'algorithme dans cette configuration est

$$C_n = C_{n-2} + \Theta(n)$$
$$C_n = \boxed{\Theta(n^2)}$$

Q20.(Bonus)

Dans la nouvelle fonction, on simplifie les enfants avant le noeud.

La complexité est

$$C_n = C_i + C_{n-1-i} + \Theta(1), \quad i \in [|0, n-1|]$$

$$C_n = \boxed{\Theta(n)}$$

Q25.

Q26.(Bonus)

Le satsolver spécialiser en FNC a été implémenter dans "fnc_solver.ml". De plus, la propagation unitaire a été rajouter.

En terme d'efficacité, le satsolver en FNC est meilleur que le simple. En effet, dans la résolution du problème a n dames (voir 2^{nd} partie), le satsolver en FNC permet de résoudre plus de dames et en moins de temps.

2 Résolution de problèmes

Q31.

La formule $\bigwedge_{1 \le i < j \le n} (\neg a_i \lor \neg a_j)$ est sous FNC.

Pour n variables différentes, la formule contient $\frac{n(n-1)}{2}$ variables.

Q38.

La taille de la formule de "gen_formule_n_dames" est

$$C_n = C_{ligne}(n) + C_{col}(n) + C_{diag}(n) + \Theta(1)$$

$$= nE_X(n) + nE_p(n) + 2\sum_{i=-n+2}^{n-2} E_p(|n-i|) + \Theta(n)$$

Avec E_X la fonction "exactement_une" et E_p "au_plus_une".

Or
$$nE_X(n) = \Theta(n^3)$$
, $nE_p(n) = \Theta(n^3)$ et $2\sum_{i=-n+2}^{n-2} E_p(|n-i|) \le 4nE_p(n) = O(n^3)$,

$$C_n = \Theta(n^3) + \Theta(n^3) + O(n^3) + \Theta(n)$$

$$C_n = \Theta(n^3)$$

Q40.

Pour le problème a 5 dames, on obtient

Soit encore

	0	1	2	3	4
0			Χ		
1					Х
2		Х			
3				Х	
4	Х				

Pour le problème a 8 dames, on obtient

Soit encore

	0	1	2	3	4	5	6	7
0			Х					
1						Х		
2				Х				
3		Х						
4								Χ
5					Х			
6							Χ	
7	Х							

Et pour le problème a 3 dames, on obtient

```
7/DM3/problemes$ ./fnc_solver 3_dames.txt
formule est sous FNC.
formule est insatisfiable.
fremps d'exécution: 0.000985 s
```

3 Problème du calendrier

Description

Pour la résolution du problème du calendrier, il faut respecter ces deux règles :

- 1. Chaque case a une pièce (voir 0 pour certaine case).
- 2. Chaque pièce n'est utiliser qu'une seul fois.

Pour représenter le problème, chaque case aura 10 variables, indiquant si la pièce correspondante est dessus.

Elle seront de la forme " X_0^0 " avec X le nom de la pièces, (0,0) les coordonnées de la cases. Exemples : "I 4 5", "T 2 7"

(le nom des pièces sont : I, L, S, b, C, I, s, Z, T et V)

Pour optimiser, les cases qui doivent avoir 0 pièce ne seront pas crée et utiliser.

1. Contrainte d'une case

Pour $p_{i,j}$ les variables "p est en (i,j)" et $\mathbb P$ l'ensembles des pièces, la contrainte sur la case (i,j) est

$$F = \left(\bigvee_{p \in \mathbb{P}} p_{i,j}\right) \wedge \bigwedge_{\substack{(p,p') \in \mathbb{P}^2 \\ p < p'}} \left(\neg p_{i,j} \vee \neg p'_{i,j}\right)$$

Cette formule est sous FNC.

2. Contrainte de toutes les cases

Pour C l'ensemble des cases qui doivent être remplie, la contrainte de toutes les cases est

$$F = \bigwedge_{(i,j) \in C} \left(\left(\bigvee_{p \in \mathbb{P}} p_{i,j} \right) \wedge \bigwedge_{\substack{(p,p') \in \mathbb{P}^2 \\ p < p'}} \left(\neg p_{i,j} \vee \neg p'_{i,j} \right) \right)$$

Cette formule est sous FNC.

3. Contrainte d'une pièce

Pour \mathbb{V}_p l'ensemble des positions valides de la pièce p, et

$$N_{\nu}(p_{i,j}) = \begin{cases} p_{i,j} & \text{si } p \text{ dans la position } \nu \text{ est sur la case } (i,j) \\ \neg p_{i,j} & \text{sinon} \end{cases}$$

Exemple pour la pièce T de position $v = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

On a $N_{\nu}(T_{1,2}) = T_{1,2}$ et $N_{\nu}(T_{3,1}) = \neg T_{3,1}$

La contrainte d'une pièce p est

$$F = \bigvee_{v \in \mathbb{V}_p} \left(\bigwedge_{(i,j) \in C} N_v(p_{i,j}) \right)$$

Mais cette formule n'est pas sous FNC, on doit passer par des variables intermédiaire que l'on nomme Z_{ν} .

$$F = \bigvee_{v \in \mathbb{V}_p} \left(\bigwedge_{(i,j) \in C} N_v(p_{i,j}) \right)$$
$$= \left(\bigvee_{v \in \mathbb{V}_p} Z_v \right) \wedge \bigwedge_{v \in \mathbb{V}_p} \left(Z_v \longleftrightarrow \bigwedge_{(i,j) \in C} N_v(p_{i,j}) \right)$$

Mais une implication est suffisant.

$$F = \left(\bigvee_{v \in \mathbb{V}_p} Z_v\right) \wedge \bigwedge_{v \in \mathbb{V}_p} \left(Z_v \to \bigwedge_{(i,j) \in C} N_v(p_{i,j})\right)$$

$$= \left(\bigvee_{v \in \mathbb{V}_p} Z_v\right) \wedge \bigwedge_{v \in \mathbb{V}_p} \left(\neg Z_v \vee \bigwedge_{(i,j) \in C} N_v(p_{i,j})\right)$$

$$= \left(\bigvee_{v \in \mathbb{V}_p} Z_v\right) \wedge \bigwedge_{\substack{(i,j) \in C \\ v \in \mathbb{V}_p}} \left(\neg Z_v \vee N_v(p_{i,j})\right)$$

qui est sous FNC.

4. Contrainte de toutes les pièces

La contrainte de toutes les pièces est

$$F = \bigwedge_{p \in \mathbb{P}} \left(\left(\bigvee_{v \in \mathbb{V}_p} Z_v \right) \wedge \bigwedge_{\substack{(i,j) \in C \\ v \in \mathbb{V}_p}} \left(\neg Z_v \vee N_v(p_{i,j}) \right) \right)$$

Cette formule est sous FNC.

5. Formule générale

La formule générale est donc

$$F = \bigwedge_{(i,j) \in C} \left(\left(\bigvee_{p \in \mathbb{P}} p_{i,j} \right) \wedge \bigwedge_{\substack{(p,p') \in \mathbb{P}^2 \\ p < p'}} \left(\neg p_{i,j} \vee \neg p'_{i,j} \right) \right) \wedge \bigwedge_{p \in \mathbb{P}} \left(\left(\bigvee_{v \in \mathbb{V}_p} Z_v \right) \wedge \bigwedge_{\substack{(i,j) \in C \\ v \in \mathbb{V}_p}} \left(\neg Z_v \vee N_v(p_{i,j}) \right) \right)$$

Implémentation