Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Электротехника»

ДОМАШНЕЕ ЗАДАНИЕ №3

Расчет переходных процессов в цепях первого порядка

Группа N3246

Таблица 2.4

Вариант 3.

Работу выполнил:

студент Суханкулиев М.,

группа N3246, поток ЭЛТЕХ. N23 1.4.1

Дата сдачи:

18.05.2025

Контрольный срок сдачи: 19.05.2025

Количество баллов:

Санкт-Петербург 2025 г.

СОДЕРЖАНИЕ

1	Расче	Расчет переходных процессов в цепях первого порядка		
1.1	I Пос	Постановка задачи		
1.2	2 Pen	ление	4	
	1.2.1	Классический (упрощенный) метод	4	
		Операторный метод		
		Графики		
Спис	Список использованных источников			

1 РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЦЕПЯХ ПЕРВОГО ПОРЯДКА

Таблица 2.4

Вари-	Элементы E [В], R [Ом], L [Гн], C [Ф]	Искомые величины	Расположение ключа	Ключ при <i>t</i> <
3	$E = 250;$ $R_1 = R_4 = R_{10} = 800;$ $C_9 = 1 \cdot 10^{-5}$	$i_1(t), u_9(t)$	Параллельно R_1	3

Рисунок

1.1 Постановка задачи

Рисунок 1 – Схема электрической цепи

Дано:

$$E = 250 \text{ [B]};$$
 $R_1 = R_4 = R_{10} = 800 \text{ [OM]};$ $C_9 = 1 \cdot 10^{-5} \text{ [}\Phi\text{]}$

Найти:

 $i_1(t), u_9(t)$ классическим (упрощенным) и операторным методами расчета; построить найденные величины на интервале времени $[-\tau; 4\tau]$.

1.2 Решение

1.2.1 Классический (упрощенный) метод

Рисунок 2 - t < 0

$$i_1(0_-) = i_2(0_-) = i(0_-) = \frac{E}{R} = \frac{250}{800} = 0.3125 \text{ [A]}$$

 $u_C(0_-) = Ri(0_-) = E = 250 \text{ [B]} = u_C(0_+)$

Рисунок 3 - t = 0

$$\begin{cases} i_1(0) - i_2(0) - i_3(0) = 0 \\ i_1(0)R + i_3(0)R = E - E_C, & E_C = u_C(0_-) = E \\ i_2(0)R - i_3(0)R = E_C \end{cases}$$

$$i_1(0) = \frac{250}{3R} \approx 0.104167 \text{ [A]}$$

 $i_2(0) = \frac{500}{3R} \approx 0.20833 \text{ [A]}$
 $i_3(0) = -\frac{250}{3R} \approx -0.104167 \text{ [A]}$

Рисунок 4 - t > 0

$$i_{1,2}(\infty) = i(0_+) = \frac{E}{2R} = 0.15625 \text{ [A]}$$

 $u(\infty) = u(0_+) = Ri(0_+) = 125 \text{ [B]}$

Рисунок 5 – Пассивная цепь

$$\tau = CR_{06\text{iii}}$$

$$R_{06\text{iii}} = \frac{R}{2} + R = \frac{3R}{2}$$

$$\tau = \frac{3RC}{2} = 0.012 \text{ [c]}$$

$$u(t) = u(\infty) + (u(0) - u(\infty))e^{-\frac{1}{\tau}t} = 125 + 125e^{-83.3333t} \text{ [B]}$$

$$i(t) = i(\infty) + (i(0) - i(\infty))e^{-\frac{1}{\tau}t} = 0.1563 + (0.1042 - 0.1563)e^{-83.3333t} = 0.1563 - 0.0521e^{-83.3333t} \text{ [A]}$$

1.2.2 Операторный метод

Рисунок 6 – Операторная схема замещения

$$u_{C}(0_{-}) = 250 \text{ [B]}$$

$$i_{1} = i_{2} + i_{3}$$

$$Ri_{1} + \left(R + \frac{1}{PC}\right)i_{3} = \frac{E - u_{C}(0_{-})}{P}$$

$$Ri_{2} - \left(R + \frac{1}{PC}\right)i_{3} = \frac{u_{C}(0_{-})}{P}$$

$$i_{1} = \frac{E + 2ECPR - CPRu_{C}(0_{-})}{3CP^{2}R^{2} + 2PR}$$

$$i_{2} = \frac{E + 2ECPR + CPRu_{C}(0_{-})}{3CP^{2}R^{2} + 2PR}$$

$$i_{3} = \frac{EC - 2Cu_{C}(0_{-})}{3CPR + 2}$$

$$p_{1} = 0, \quad p_{2} = -\frac{2}{3RC} = -83.333$$

$$I(P) = \frac{E + 2ECPR - CPRu_{C}(0_{-})}{3CP^{2}R^{2} + 2PR} = \frac{250 + 2P}{19.2P^{2} + 1600P} = \frac{A}{P} + \frac{B}{9.6P + 800}$$

$$A = 0.15625$$

$$B = -0.5$$

$$i(t) = \mathcal{L}^{-1} \left\{ \frac{0.052083}{P + 83.3333} \right\} = 0.15625 - 0.052083e^{-83.333t} \text{ [A]}$$

$$u(P) = \frac{I(P)}{PC} = \frac{10416.7(P + 125)}{P^{2}(P + 83.3333)} = \frac{10416.7}{P + 83.3333}$$

$$A = \frac{10416.7}{P + 83.3333}|_{P=0} = 125$$

$$B = -\frac{10416.7}{P + 83.3333} = 125$$

$$u(t) = 125 + 125e^{-83.3333t} \text{ [B]}$$

1.2.3 Графики

Интервал времени $t \in [-0.012; 0.048]$ или $\tau \in [-1, 4]$

Рисунок 7 — Ток (от τ и от t)

Рисунок 8 – Напряжение (от τ)

Ответ:

$$\begin{cases} i_1 \approx 0.3125 \, [\mathrm{A}] \\ i_1(t) \approx 0.1563 - 0.0521 e^{-83.3333t} \, [\mathrm{A}] \end{cases} \quad \begin{cases} u_9 = 250 \, [\mathrm{B}] \\ u_9(t) \approx 125 + 125 e^{-83.3333t} \, [\mathrm{B}] \end{cases} \quad t < 0$$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Усольцев А. А. Общая электротехника: Учебное пособие. СПб: НИУИТМО, 2013. 305с. URL: ОБЩАЯ ЭЛЕКТРОТЕХНИКА Учебные издания НИУ ИТМО.
- 2. М. В. Никитина Электротехника: Варианты домашних заданий СПб: Университет ИТМО $60 \ c$.