Densité volumique de courant

- $n_p(P,t)$: densité volumique des porteurs de charge en P
- ullet $\overrightarrow{v_p}(P,t)$: vitesse du porteur de charge en P
- ullet q_p : charge du porteur de charge

Densité volumique de courant

 $\overrightarrow{j}(M,t)$ est défini tel que le flux élémentaire de charges à travers une surface dS ait pour expression

$$d\Phi = \overrightarrow{j} \cdot \overrightarrow{dS}$$

$$\overrightarrow{j}$$
 = $n_p.q_p.\overrightarrow{v}$

Intensité du courant

Intensité du courant

L'intensité du courant correspond au flux de charges à travers une section du conducteur

$$i = \iint_S \overrightarrow{j} \cdot \overrightarrow{dS}$$
 (Ampère: A)

- \bullet \overrightarrow{j} est une densité volumique de courant car les porteurs de charge en mouvement peuvent se trouver un n'importe que point d'un volume
- L'intensité est obtenu par l'intégration sur une surface car il s'agit d'un flux

Champ magnétique

Une distribution de courants crée en un point M de l'espace un champ magnétique $\overrightarrow{B}(M)$ tel que l'action de cette distribution a pour expression dans le référentiel d'étude :

• Sur une charge q' avec une vitesse \overrightarrow{v} placée en M :

$$\overrightarrow{F} = q' \cdot \overrightarrow{v} \wedge \overrightarrow{B}(M)$$

 \bullet Sur un élément de courant $I'.\overrightarrow{dl}$ placée en M :

$$\overrightarrow{F} = I' . \overrightarrow{dl} \wedge \overrightarrow{B}(M)$$

Champ magnétique

Plan de symétrie

 π^+ est un plan de symétrie pour une distribution de courants si

$$P' = sym_{/\pi^+}(P) \longrightarrow \overrightarrow{j}(P') = +sym_{/\pi^+} \left[\overrightarrow{j}(P) \right]$$

Champ magnétique

Plan d'anti-symétrie

 π^- est un plan d'anti-symétrie pour une distribution de courants si

$$P' = sym_{/\pi^-}(P) \longrightarrow \overrightarrow{j}(P') = -sym_{/\pi^-} \left[\overrightarrow{j}(P) \right]$$

Les effets de la symétrie sont observables sur l'effet de la distribution sur une charge en mouvement, donc sur la force appliqué à cette charge

4**₽**▶4**≡**▶99

Les effets de la symétrie sont observables sur l'effet de la distribution sur une charge en mouvement, donc sur la force appliqué à cette charge

4 @ ▶ 4 **=** ▶ 9 9

Les effets de la symétrie sont observables sur l'effet de la distribution sur une charge en mouvement, donc sur la force appliqué à cette charge

4 🗇 ▶ 4 🗐 ▶

Les effets de la symétrie sont observables sur l'effet de la distribution sur une charge en mouvement, donc sur la force appliqué à cette charge

< ∄ > < ∄ >

Direction du champ en ${\cal M}$

En recherchant des plans de symétrie π^+ ou d'anti-symétrie π^- pour la distribution des courant contenant le point M, on peut en déduire la direction du champ en M

- Si $M \in \Pi^+$, alors $\overrightarrow{B}(M) \perp \Pi^+$
- Si $M \in \Pi^-$, alors $\overrightarrow{B}(M) \in \Pi^-$

Généralisation pour tout point ${\cal M}$

Pour des plans de symétrie π^+ ou d'anti-symétrie π^- pour la distribution des courant et en tout point M

•
$$M' = sym_{/\pi^+}(M) \longrightarrow \overrightarrow{B}(M') = -sym_{/\pi^+} [\overrightarrow{B}(M)]$$

•
$$M' = sym_{/\pi^{-}}(M) \longrightarrow \overrightarrow{B}(M') = +sym_{/\pi^{-}} [\overrightarrow{B}(M)]$$

Propriétés d'anti-symétrie

Le champ magnétique a des propriétés d'anti-symétrie par rapport aux distributions de coutant

- Plan de symétrie pour les courant \Rightarrow plan d'anti-symétrie pour le champ \overrightarrow{B}
- Plan d'anti-symétrie pour les courant \Rightarrow plan de symétrie pour le champ \overrightarrow{B}

Invariance par translation

Si la distribution est invariante pour un observateur par translation colinéairement à une direction \overrightarrow{u} , l'intensité du champ magnétique sera indépendante de la coordonnée $\overrightarrow{OM} \cdot \overrightarrow{u}$

Invariance par rotation

Si la distribution est invariante pour un observateur par rotation par rapport à un axe Δ d'un angle θ , l'intensité du champ magnétique sera indépendante de la coordonnée θ

Il sera important de choisir un système de coordonnées en fonction des invariances de la distribution.

Équations locales en magnétostatique

En un point M où la densité volumique de courants est $\overrightarrow{j}(M)$, le champ magnétique vérifie les équations locales :

$$\overrightarrow{rot}\overrightarrow{B} = \mu_0 . \overrightarrow{j}$$
 $div\overrightarrow{B} = 0$

$$div\vec{B} = 0$$

$$\mu_0$$
 = $4.\pi.10^{-7}$: Perméabilité du vide

- Forme intégrale de \overrightarrow{rotB} = $\mu_0.\overrightarrow{j}$:
- Avec le théorème de Stokes :

Theorème d'Ampère

La circulation de \overrightarrow{B} le long d'une courbe fermée Γ entourant un courant d'intensité I_{ent} est tel que

$$\int_{\Gamma} \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0. \iint_{S} \overrightarrow{j} \cdot \overrightarrow{dS}$$

- Avec le théorème de Stokes : $\int_{P \in \Gamma} \overrightarrow{B} \cdot \overrightarrow{dl_P} = \iint_{M \in V} \overrightarrow{j} \cdot \cdot \overrightarrow{dS}_M = \mu_0.I_{ent}$

Theorème d'Ampère

La circulation de \overrightarrow{B} le long d'une courbe fermée Γ entourant un courant d'intensité I_{ent} est tel que

$$\int_{\Gamma} \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0. \iint_{S} \overrightarrow{j} \cdot \overrightarrow{dS}$$

Théorème d'Ampère

Déterminer le champ crée en M avec le théorème d'Ampère :

- La distribution doit avoir les symétries et invariances suffisantes
- \bullet Le choix de la courbe d'Ampère se fait en fonction des symétries de la distribution. Elle doit contenir le point M
- ullet Calculer la circulation de \overrightarrow{B} le long du contour fermé choisi.
- Repérer et calculer l'intensité entrelacée par ce contour.

On déduit les caractéristiques des lignes de champ des formes intégrales des équations de Maxwell.

Compatibilité d'une carte de champs

Une cartographie de lignes de champ pourra correspondre à des lignes de champ magnétique si on ne peut pas trouver de surface fermée pour laquelle le flux est non nul.

Topographie

- Les lignes de champ sont fermées et entourent les sources du champ
- Le resserrement des lignes de champ correspond à des zones plus intenses du champ magnétique.

Domaine d'étude

Dipôle et Approximation dipolaire

Une spire de courant d'intensité I, de rayon a constitue un dipôle magnétostatique dont le moment magnétique a pour expression

$$\overrightarrow{\mathcal{M}} = I.\overrightarrow{S}$$

On se placera dans l'approximation dipolaire $OM\gg a$ \overrightarrow{S} est le vecteur surface de la spire, associé au sens de parcourt de I.

└─Magnéton de Bohr

On étudie l'atome d'hydrogène dans son modèle classique

- Le noyau est au centre de l'atome
- L'électron décrit une orbite circulaire de rayon r à une vitesse \overrightarrow{v} autour du noyau.

- ullet Exprimer le moment cinétique $\overrightarrow{L_0}$
- ullet En déduire l'expression de I
- ullet Exprimer $\overrightarrow{\mathcal{M}}$ en fonction de $\overrightarrow{L_0}$

Rapport gyroscopique

On associe au moment cinétique $\overrightarrow{L_0}$ un moment magnétique $\overrightarrow{\mathcal{M}}$ tel que

$$\overrightarrow{\mathcal{M}} = \gamma.\overrightarrow{\mathcal{L}}$$

 γ est le rapport gyroscopique. Pour le mouvement orbital de l'électron autour du noyau :

Rapport gyroscopique

On associe au moment cinétique $\overrightarrow{L_0}$ un moment magnétique $\overrightarrow{\mathcal{M}}$ tel que

$$\overrightarrow{\mathcal{M}} = \gamma.\overrightarrow{\mathcal{L}}$$

 γ est le rapport gyroscopique. Pour le mouvement orbital de l'électron autour du noyau :

$$\gamma = \frac{-\epsilon}{2\pi}$$

Magnéton de Bohr

Il correspond à une valeur unitaire à l'échelle atomique du moment magnétique. Son expression fait intervenir

- ullet la charge élémentaire e
- ullet la masse de l'électron m
- La constante de Planck et α une constante a dimensionnée.

$$\triangle$$
 Par analyse dimensionnelle: $\mu_B = \alpha \cdot \frac{e.h}{m}$

Magnéton de Bohr

Unité de moment cinétique

 \hbar correspond à l'unité de moment cinétique, alors selon l'étude précédente :

$$\mu_B = \frac{\hbar . e}{2.m}$$

Sources du magnétisme

- Paramagnétisme Les atomes/molécules ayant un moment magnétique non nul mais subissant l'agitation thermique s'orientent en présence d'un champ extérieur, ce qui donne alors des propriétés magnétiques à la matière w
- Ferromagnétisme Les interactions entre atomes au niveau moléculaire confèrent à la matière des propriétés magnétiques naturelles.

Ordre de grandeur

Le moment magnétique volumique d'un aimant comportant n atomes par m^3 sera majoré par :

$$\mathcal{M}_{max} = n.\mu_b$$

Force d'adhérence

Deux aimants créent en un point de sa surface S un champ B. La force d'adhérence, force à appliquer afin de décoller les deux aimants l'un de l'autre, sera fonction de

- \bullet La surface S
- ullet L'intensité du champ au niveau de la surface B
- ullet La perméabilité du vide μ_0

Par analyse dimensionnelle
$$F \equiv \alpha \frac{B^2}{\mu_0}.S$$

Avec α une grandeur sans dimension proche de 1

Ces formules seront fournies...

Action d'un champ extérieur uniforme sur un dipôle

On considère un champ extérieur quelconque dans la zone du dipôle. Pour le dipôle placé en M, on aura :

$$\texttt{Moment:} \ \overrightarrow{\Gamma} = \overrightarrow{\overrightarrow{M}} \wedge \overrightarrow{B}_{ext}$$

A Résultante:
$$\overrightarrow{F} = \overrightarrow{grad} \left(\overrightarrow{\mathcal{M}} \cdot \overrightarrow{B_{ext}} \right)$$

Énergie potentielle:
$$E_p = -\overrightarrow{\mathcal{M}} \cdot \overrightarrow{B}_{ext}$$

Dipôle magnétostatique

Action d'un champ sur un dipôle

- ullet On considère une zone de champ extérieur \overrightarrow{B} = $B(z).\overrightarrow{e_z}$
- Un atome de coefficient gyroscopique γ arrive dans la zone de champ tel que $\overrightarrow{\mathcal{M}}, \overrightarrow{L_0} = \alpha$

Précession du moment magnétique

Le moment magnétique décrit un cône d'axe \overrightarrow{B} . Il tourne autour avec une pulsation ω_0

$$\omega_0 = \gamma.B$$