Resumen Control 2

MA5402 Cálculo Estocástico - Primavera 2023

0. Preliminares

Proposición: [Cota para la distribución normal] Si $X \sim \mathcal{N}(0, 1)$ y $t \ge 1$, entonces

$$\mathbb{P}(X > t) \le \frac{1}{\sqrt{2\pi}t} e^{-t^2/2}$$

Proposición: [Máximo de normales] Sea $(X_n)_{n \in \mathbb{N}}$ sucesión iid $\mathcal{N}(0,1)$, entonces c.s. para todo $c > \sqrt{2}$, existe $n_0 \in \mathbb{N}$ tal que a partir de n_0 :

$$\max_{k \in [1..n]} X_k \le c \sqrt{\log(n)}$$

- **Definición:** [Limsup y liminf de conjuntos] Sea $\{A_n\}_{n\in\mathbb{N}}$ colección de conjuntos. Definimos:
 - $\limsup_{n} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_n$ (A_n occurre infinitas veces)
 - $\liminf_n A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{m \geq n} A_n$ (A_n ocurre eventualmente)
- **Lema:** [Borel-Cantelli] Sea $\{A_n\}_{n\in\mathbb{N}}$ colección de eventos del espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$. Entonces
 - (convergente)

$$\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) < \infty \implies \mathbb{P}\left(\limsup_n A_n\right) = 0$$

• (divergente) Si además los $\{A_n\}_n$ son independientes:

$$\sum_{n \in \mathbb{N}} \mathbb{P}(A_n) = \infty \implies \mathbb{P}\left(\limsup_n A_n\right) = 1$$

- **Definición:** [Vector Gaussiano] Un vector aleatorio X sobre \mathbb{R}^n se dice gaussiano si para todo $u \in \mathbb{R}^n$, $u^t X$ tiene distribución normal.
- **Definición:** [Proceso Gaussiano] Un proceso $(X_t)_t$ se dice gaussiano si para todo $n \in \mathbb{N}$ y $t_1 < t_2 < ... < t_n$, el vector $(X_{t_1},...,X_{t_n})$ es un vector gaussiano en \mathbb{R}^n .
- **Proposición:** [Caracterización de Independencia] Sean X, Y vectores o bien procesos gaussianos centrados. Entonces, se tiene que $X \perp \!\!\! \perp Y$ si y solo si:

$$\forall u, v : \mathbb{E}[u^t X \cdot v^t Y] = 0$$

En que los u, v se interpretan en \mathbb{R}^n , o de cualquier tamaño finito dependiendo del caso.

Teorema: [Radon-Nikodym] Si μ , λ son medidas finitas en (S, Σ) un espacio medible tales que

$$\forall F \in \Sigma : \mu(F) = 0 \implies \lambda(F) = 0$$

(condición que se define como absoluta continuidad: $\lambda \ll \mu$), entonces existe f medible no-negativa tal que $\lambda(A) = \int_A f \, \mathrm{d}\mu$ para todo $A \in \Sigma$. Llamamos a f la derivada de Radon-Nikodym de λ con respecto a μ y denotamos

$$f =: \frac{\mathrm{d}\lambda}{\mathrm{d}\mu}$$

1. Construcción de Lévy del MB

Definición: [Movimiento Browniano] Decimos que una función continua aleatoria $B: \mathbb{R}^+ \to \mathbb{R}$ es un movimiento browniano estándar si

- 1. $B_t \sim \mathcal{N}(0, t)$
- 2. $B_{t+h} B_t \stackrel{\mathcal{L}}{=} B_h$ y es independiente de $\sigma(B_s : s \le t)$
- 3. $B_0 = 0$
- Proposición: [Propiedades del MB]
 - 1. (Correlaciones) $\mathbb{E}[B_t B_s] = t \wedge s$
 - 2. (Reescalado) $\forall \alpha \neq 0 \in \mathbb{R} : (B_t)_t \stackrel{\mathscr{L}}{=} (a^{-1}B_{a^2t})$
 - 3. (Inversiones temporales)

a)
$$(B_t)_{t \in [0,1]} \stackrel{\mathcal{L}}{=} (B_{1-t} - B_1)_{t \in [0,1]}$$

b)
$$(B_t)_{t\geq 0} \stackrel{\mathcal{L}}{=} (tB_{1/t}\mathbf{1}_{t\neq 0})_{t\geq 0}$$

Nota: Un proceso gaussiano $(W_t)_t$ con $W_0 = 0$ y que cumple 1. es un MB.

■ **Definición:** [Conjuntos Diádicos] Definimos los siguientes subconjuntos de [0,1]

$$D_n := \left\{ \frac{k}{2^n} : k \in \{0, \dots, 2^n\} \right\}$$
$$D = \bigcup_{n \in \mathbb{N}} D_n$$

- **Definición:** [Construcción de Lévy] Dada $(X_t)_{t \in D}$ familia de $\mathcal{N}(0,1)$ independientes:
 - (Construcción en los diádicos) Construímos $B_0 = 0$, $B_1 = X_1$ y para $n \ge 1$, $d \in D_n \setminus D_{n-1}$

$$B_d = \frac{B_{d+2^{-n}} + B_{d-2^{-n}}}{2} + 2^{-\frac{n+1}{2}} X_d$$

• (Construcción en [0,1]) Definimos $F_0(t) = X_1 \cdot t$ y

$$F_n(t) = \begin{cases} 2^{-\frac{n+1}{2}} x_t & t \in D_n \setminus D_{n-1} \\ 0 & t \in D_{n-1} \end{cases}$$
 lineal entre los valores.

Así, $B_t = \sum_{k \ge 0} F_k(t)$ coincide con la construcción en D y define un MB en [0,1].

■ (Construcción en \mathbb{R}^+) Sea $(B^i)_{i \in \mathbb{N}}$ una familia de MBs independientes en [0,1], entonces

$$B_t = B_{t-\lfloor t\rfloor}^{\lfloor t\rfloor} + \sum_{i=1}^{\lfloor t\rfloor - 1} B_1^i$$

Define a un MB en \mathbb{R}^+

2. Propiedades Trayectoriales del MB

Definición: [Módulo de continuidad] Una función ϕ : $[0,1] \to \mathbb{R}^+$ creciente se dice módulo de continuidad de F: $[0,1] \to \mathbb{R}$ si

$$\lim_{h \to 0} \sup_{l \in [0,h]} \sup_{t \in [0,1-h]} \frac{|F(t+l) - F(t)|}{\phi(l)} = 1$$

Teorema: [Módulo de continuidad del MB] El módulo de continuidad del MB es casi seguramemnte

$$\phi(h) = \sqrt{2}\sqrt{h\log(1/h)}$$

- Proposición: [Monotonía y derivabilidad] c.s. el movimiento browniano no es monótono en ningún intervalo ni derivable en ningún punto
- **Proposición:** [Ceros del MB] El conjunto $C = B^{-1}(\{0\})$ de ceros del MB es un conjunto cerrado sin puntos aislados, con medida de Lebesgue nula y que no contiene intervalos.

_

Proposición: [Máximos del MB] Definamos

$$M_{\text{loc}} = \{t \in [0, 1] : t \text{ es máximo local de } B\}$$

Entonces, M_{loc} es un conjunto numerable denso en [0, 1] en que todos los puntos de él tienen valor máximo local diferente entre

Proposición: [Absoluta continuidad] Sea ₱ la ley del movimiento Browniano $(B_t)_{t \in [0,1]}$ y $\mathbb{P}^{(c)}$ la ley del movimiento Browniano con drift $(B_t + ct)_{t \in [0,1]}$. Entonces se tiene la absoluta continuidad entre ellas

$$\mathbb{P}^{(c)} \ll \mathbb{P} \ll \mathbb{P}^{(c)}$$

Con derivada de Radon-Nikodým dada por

$$\frac{\mathrm{d}\mathbb{P}^{(c)}}{\mathrm{d}\mathbb{P}}\left((B_t)_{t\in[0,1]}\right) = \exp\left(cB_1 - \frac{c^2}{2}\right)$$

Propiedad de Markov

- **Teorema:** [Propiedad de Markov Débil] Sea $(B_t)_{t\geq 0}$ un movimiento Browniano y $s \in \mathbb{R}^+$. Entonces el proceso $(B_{t+s} - B_s)_{t \ge 0}$ es un MB independiente de $(B_t)_{t \in [0,s]}$.
- Definición: [Filtración y filtraciones límite] Una filtración $(\mathcal{F}_t)_{t\geq 0}$ es una familia creciente de σ -álgebras. Definimos además las σ -álgebras límite

$$\mathscr{F}_{\infty} = \sigma \left(\bigcup_{t>0} \mathscr{F}_t \right), \qquad \mathscr{F}_t^+ = \bigcap_{\varepsilon>0} F_{t+\varepsilon}$$

- Definición: [Filtración casi natural del MB] Se define mediante $\mathscr{F}_t = \sigma(B_s : s \in [0, t])$
- **Teorema:** [Ley 0-1 de Blumenthal] La σ -álgebra \mathscr{F}_0^+ , en que $(\mathcal{F}_t)_t$ es la filtración casi natural del MB, es trivial. Es decir $\mathbb{P}(A) \in$ $\{0,1\}$ para A en esta σ -álgebra.
- Definición: [Filtración natural del MB] La filtración natural del movimiento Browniano es la completación con respecto a P de la filtración casi natural.
- **Definición:** [Continuidad a la derecha] Una filtración $(\mathscr{F}_t)_t$ se dice continua a la derecha cuando para todo t, se tiene $\mathcal{F}_t = \mathcal{F}_t^+$. Nota: La filtración natural del MB es continua a la derecha.
- **Definición:** [Adaptabilidad] Un proceso $(X_t)_t$ se dice adaptado a la filtración $(\mathcal{F}_t)_t$ cuando $\forall t \ge 0 : X_t$ es \mathcal{F}_t -medible.
- **Definición:** [Tiempo de parada] Un tiempo aleatorio $\tau: \Omega \to \mathbb{R}^+$ se dice tiempo de parada con respecto a la filtración $(\mathcal{F}_t)_t$ cuando $\{\tau \leq t\} \in \mathscr{F}_t$.
- **Proposición:** [Tiempo de llegada a un conjunto] Sea $(X_t)_{t\geq 0}$ un proceso en \mathbb{R}^d c.s. continuo y adaptado a $(\mathscr{F}_t)_t$ filtración continua por la derecha. Definimos, para $A \subseteq \mathbb{R}^d$,

$$\tau_A = \inf\{t \geq 0 : X_t \in A\}$$

Si A es abierto o cerrado, τ_A es tiempo de parada.

Definición: $[\mathscr{F}_{\tau}]$ Para τ un tiempo de parada, definimos

$$\mathcal{F}_{\tau} = \{\Theta \in \mathcal{F}_{\infty} : \forall t \ge 0, \Theta \cap \{\tau \le t\} \in \mathcal{F}_t\}$$
$$\mathcal{F}_{\tau^+} = \{\Theta \in \mathcal{F}_{\infty} : \forall t > 0, \Theta \cap \{\tau < t\} \in \mathcal{F}_t\}$$

- **Teorema:** [Propiedad de Markov Fuerte] Para todo τ tiempo de parada c.s. finito, el proceso $(B_{\tau+t}-B_{\tau})_{t\geq 0}$ es MB independiente
- Teorema: [Principio de Reflexión] Sea $(B_t)_{t\geq 0}$ un MB y τ un tiempo de parada. Entonces, el proceso reflejado en τ $(B_t^*)_{t>0}$ definido por

$$B_t^* = B_t \mathbf{1}_{t \le \tau} + (2B_{\tau} - B_t) \mathbf{1}_{t > \tau}$$

Tiene la lev de un MB.

Teorema: [Transformada de Lévy] Sea $(B_t)_{t\geq 0}$ un MB. Entonces

$$(|B_t|)_{t\geq 0} \stackrel{\mathcal{L}}{=} \left(B_t - \inf_{s\in[0,t]} B_s \right)_{t\geq 0}$$

Dimensiones Fractales

Definición: [Dimensión de Minkowski] Para (X, d) un espacio métrico acotado, definimos

$$N(X,\varepsilon) = \inf \left\{ n \in \mathbb{N} : \exists (x_i)_{i=1}^n, X \subseteq \bigcup_{i=1}^n B(x_i,\varepsilon) \right\}$$

Y con esto se definen la dimensión superior e inferior de Minkowski

$$\begin{split} \overline{\dim}_{M}(X) &= \limsup_{\varepsilon \to 0} \frac{\log(N(X,\varepsilon))}{\log(1/\varepsilon)} \\ \underline{\dim}_{M}(X) &= \liminf_{\varepsilon \to 0} \frac{\log(N(X,\varepsilon))}{\log(1/\varepsilon)} \end{split}$$

Y la dimensión de Minkowski es el valor común cuando ambos coinciden.

Proposición: [Caracterización diádica] Sea $X \subseteq \mathbb{R}^d$ compacto y

$$\Box_n = \left\{ q + [0, 2^{-n}]^d : q \in 2^{-n} \mathbb{Z} \right\}$$

Así, si $\tilde{N}(X) := |\{c \in \square_n : c \cap X \neq \emptyset\}|$. Entonces

$$\begin{split} & \overline{\dim}_{M}(X) = \limsup_{n \to \infty} \frac{\log \left(\tilde{N}(X)\right)}{\log (2^{n})} \\ & \underline{\dim}_{M}(X) = \liminf_{n \to \infty} \frac{\log \left(\tilde{N}(X)\right)}{\log (2^{n})} \end{split}$$

Definición: [Medida de Hausdorff] La medida α -Hausdorff se define por

$$\begin{split} \mu_H^{\alpha,\varepsilon}(X) &= \inf \left\{ \sum_{n \in \mathbb{N}} \rho_i^{\alpha} : \exists (x_i)_{i \in \mathbb{N}}, \bigcup_{i \in \mathbb{N}} B(x_i, \rho_i) = X, \rho_i \leq \varepsilon \right\} \\ \mu_H^{\alpha}(X) &= \lim_{\varepsilon \to 0} \mu_H^{\alpha,\varepsilon}(X) \end{split}$$

Se tiene además que si $\mu_H^{\alpha} < \infty$ entonces, para todo $\beta > \alpha$, se tiene $\mu_H^{\beta}(X) = 0$ y si $\mu_H^{\alpha} > 0$, entonces para todo $\beta < \alpha$ se tiene $\mu_H^{\beta}(X) = \infty.$

Definición: [Dimensión de Hausdorff]

$$\dim_H(X) = \inf\{\alpha \ge 0 : \mu_H^{\alpha}(X) = 0\} = \sup\{\alpha \ge 0 : \mu_H^{\alpha}(X) = \infty\}$$

Se tiene que $\dim_H(X) \leq \dim_M(X)$.

Proposición: [Cotas para grafo e imagen] Sea $f:[0,1] \to \mathbb{R}^d$ una función α -Hölder. Entonces

- 1. Si $A \subset [0,1]$, $\dim_{M/H}(f(A)) \le \frac{1}{\alpha} \dim_{M/H}(A)$ 2. $\dim_{M/H}(G(f)) \le \frac{1}{\alpha} \land (1+d-d\alpha)$
- **Proposición:** [Ceros] Para el MB lineal, c.s. $\dim_{M/H}(B^{-1}(\{0\})) = \frac{1}{2}$.
- **Lema:** [Método de la energía] Sea $E \subseteq \mathbb{R}^d$ un conjunto. Supongamos que existe una medida v tal que

$$\iint_{E\times E} \frac{v(dx)v(dy)}{\|x-y\|^{\alpha}} < \infty$$

v v(E) > 0. Entonces $\dim_H(E) \ge \alpha$.

Proposición: [Grafo e imagen] Casi seguramente:

$$\dim_{M/H}(G(B)) = \begin{cases} \frac{3}{2} & \text{si } d = 1\\ 2 & \text{si } d \ge 2 \end{cases}$$

$$\dim_{M/H}(B([0,1])) = 2 \wedge d$$