

### **Cloud Computing**

### **Load Balancing in Web Server Clusters**

Seyyed Ahmad Javadi

sajavadi@aut.ac.ir

Spring 2024

# Scheduling in Web Server Clusters

CS 260

LECTURE 3

From: IBM Technical Report

http://www.cs.ucr.edu/~bhuyan/CS260/index.html

### Reference

#### The State of the Art in Locally Distributed Web-Server Systems

VALERIA CARDELLINI AND EMILIANO CASALICCHIO

University of Roma Tor Vergata

MICHELE COLAJANNI

University of Modena

AND

PHILIP S. YU

IBM T. J Watson Research Center

### Web Server System

Providing web service



https://hackr.io/blog/web-application-architecture-definition-models-types-and-more

### Trend

- > Increasing number of clients
- Growing complexity of web applications



# Scalable web server systems

The ability to support large numbers of accesses and resources while still providing adequate performance.



https://www.devteam.space/blog/how-to-build-a-scalable-web-application/

#### Architecture solutions for scalable Web-server systems.



#### Model architecture for a locally distributed Web system.



#### 1) At the web client level where a request is originated



#### 2) At the DNS level during address resolution



#### 3) At the network level using router devices



#### 4) At the web system level



# Locally Distributed Web System

➤ Cluster Based Web System

➤ Distributed Web System

### Cluster Based Web System

The server nodes mask their IP addresses to clients, using a Virtual IP address corresponding to one device (web switch) in front of the set of the servers.

> Web switch receives all packets and then sends them to server nodes.

### Cluster based Architecture (cont.)



# Distributed Web System

> The IP addresses of the web server nodes are visible to clients.

No web switch, just a layer 3 router *may be employed* to route the requests.

### Distributed Architecture



# Cluster-based Architecture

### Two Approaches

Depends on which OSI protocol layer, the web switch routes inbound packets

➤ layer-4 switch

➤ layer-7 switch



# Layer-4 switch

➤ Determines the target server when TCP SYN packet is received.

Also called *content-blind routing* because the server selection
 policy is not based on http
 contents at the application level.



# Layer-7 switch

The switch first establishes a complete TCP connection with the client, examines http request at the application level and then selects a server.



### Layer-7 switch (cont.)

- ➤ Can support sophisticated dispatching policies, but large latency for moving to application level.
- > Also called *content-aware switches*

or Layer **5** (?) switches in TCP/IP protocol (application-layer switches).



### Taxonomy of cluster-based architectures.

- ➤ All client requests necessarily have to flow through the Web switch.
- ➤ One-way architecture: target server responds directly to the client.
- >Two-way architecture: target server returns its response to the

Web switch, that in turn sends response back to the client.

### Taxonomy of cluster-based architectures



# Layer-4 two-way architecture



# Layer-4 Products

| Two-way                 | One-way                 |                  |                       |
|-------------------------|-------------------------|------------------|-----------------------|
| Packet double-rewriting | Packet single-rewriting | Packet tunneling | Packet forwarding     |
| Cisco's                 | TCP Router [44]         | Linux Virtual    | IBM Network           |
| LocalDirector [33]      |                         | Server [68]      | Dispatcher [59, 61]   |
| Magicrouter [4]         |                         |                  | Linux Virtual         |
|                         |                         |                  | Server [68]           |
| Linux Virtual           |                         |                  | ONE-IP [41]           |
| Server [68]             |                         |                  |                       |
| LSNAT [92]              |                         |                  | LSMAC [54]            |
| F5 Networks'            |                         |                  | Intel's NetStructure  |
| BIG/ip [48]             |                         |                  | Traffic Director [62] |
| Foundry Networks'       |                         |                  | Nortel Networks'      |
| ServerIron [51]         |                         |                  | Alteon 780 [76]       |
| Cyber IQ's              |                         |                  | Foundry Networks'     |
| HyperFlow [39]          |                         |                  | ServerIron [51]       |
| HydraWEB's              |                         |                  | Radware's WSD         |
| Hydra2500 [60]          |                         |                  | Pro [85]              |
| Coyote Point's          |                         |                  |                       |
| Equalizer [37]          |                         |                  |                       |

# Layer-7 two-way architecture



### Layer-7 two-way mechanisms

#### ➤TCP gateway

An application level proxy running on the web switch mediates the communication between the client and the server – makes separate TCP connections to client and server.

#### >TCP splicing

Reduce the overhead in TCP gateway. For outbound packets, packet forwarding occurs at network level by rewriting the client IP address.

# Layer 7 products

| Two-way                                             |                                                                                                                                                                                                            | One-way             |                                  |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|
| $TCP\ gateway$                                      | TCP $splicing$                                                                                                                                                                                             | $TCP\ hand off$     | TCP connection hop               |
| IBM Network Dispatcher CBR [61] CAP [27] HACC [101] | [34]  Nortel Networks' Web OS SLB [76] Foundry Networks' ServerIron [51] Cisco's CSS [33] F5 Networks' BIG/ip [48] Radware's WSD Pro+ [85] HydraWEB's HydraWEB's Hydra2500 [60] Zeus's Load Balancer [100] | ScalaServer [8, 79] | Resonate's Central Dispatch [86] |
|                                                     | [98]                                                                                                                                                                                                       |                     |                                  |

# Dispatching Algorithms

>Strategies to select the target server of the web clusters.

➤ Static: Fastest solution to prevent web switch bottleneck, but do not consider the current state of the servers.

➤ Dynamic: Outperform static algorithms by using intelligent decisions, but collecting state information and analyzing them cause expensive overheads.

### Dispatching Algorithms Requirements

- (1) Low computational complexity
- (2) Full compatibility with web standards
- (3) State information must be readily available without much overhead.



# Content blind approach- Static Policies

➤ Random: distributes the incoming requests uniformly with equal probability of reaching any server.

➤ Round Robin (RR): use a circular list and a pointer to the last selected server to make the decision.

➤ Static Weighted RR (For heterogeneous severs): A variation of RR, where each server is assigned a weight Wi depending on its capacity.

### Content blind approach-Dynamic policies

Client state aware: Static partitioning the server nodes and to assign group of clients identified through the clients information, such as source IP address.

### Content blind approach-Dynamic policies

#### ➤ Server State Aware

#### Least Loaded

- The server with the lowest load.
- Issue: Which is the server load index?

#### Least Connection

The server with fewest active connection first

#### Fastest Response

The server responding fastest

#### Weighted Round Robin

 Variation of static RR, associates each server with a dynamically evaluated weight that is proportional to the server load.

### Content blind approach-Dynamic policies

#### ➤ Client and server state aware

• Client affinity: Instead of assigning each new connection to a server only on the basis of the server state regardless of any past assignment, consecutive connections from the same client can be assigned to the same server.

### Considerations of content blind

Static approach is the fastest, easy to implement, but may make poor assignment decision.

➤ Dynamic approach has the potential to make better decision, but it needs to collect and analyze state information, may cause high overhead.

➤ Overall, simple server state aware algorithm is the best choice,

least loaded algorithm is commonly used in commercial products.



### Content aware approach

#### **≻**Sever state aware

- Cache Affinity
  - The file space is partitioned among the server nodes.
- Load Sharing
  - SITEA (Size Interval Task Assignment with Equal Load): switch determines the size of the requested file and select the target server based on this information.
  - CAP (Client-Aware Policy): web requests are classified based on their impact on system resources: such as I/O bound, CPU bound.

# Content aware approach (Cont.)

#### >Client state aware

- Service Partitioning
  - Employ specialized servers for certain type of requests.

#### Client Affinity

 Using session identifier to assign all web transactions from the same client to the same server.

# Content aware approach (cont.)

#### **➤ Client and server state aware**

- LARD (Locality aware request distribution)
  - Direct all requests to the same web object to the same server node as long as its utilization is below a given threshold.

#### Cache Manager

 A cache manager that is aware of the cache content of all web servers.

