MVE137 Probability and Statistical Learning Using Python

Supervised Learning

Alexandre Graell i Amat alexandre.graell@chalmers.se https://sites.google.com/site/agraellamat

September 28, 2021

Supervised learning

Statistical learning

Goal: Infer a predictive function (model), such that it can be used to predict the output for new, yet unseen data.

Examples: predicting housing or stock prices, image classification, ...

Supervised learning

Goal: Given a training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}$, identify an algorithm to predict the outcome y for a new (yet unseen) data point x.

- Learning a model from labeled data
- Predicting output of new data based on the learned model
- x_i : free variables (features, predictors, covariates, domain points)
- y_i: target variables (dependent variables, labels, responses)

Supervised learning

Three classes of responses:

- Continuous (quantitative): take on numerical values
- Discrete (qualitative, categorical): a discrete set of categories
- Order categorical: the order is important

Two learning algorithms:

- Regression: predict a quantitative output
- Classification: predict a qualitative output

Goal: Given a training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}$, predict y for a new (yet unseen) data point x.

Impossible if no information on the mechanism relating x and y!

We may assume that $oldsymbol{x}$ and $oldsymbol{y}$ are related via a function

$$y = \tilde{f}(\boldsymbol{x})$$

Goal: Find best possible approximation of $\tilde{f}(x)$, f(x) (prediction model). Predict the outcome y for x as $\hat{y} = f(x)$.

• Treat x and y as random variables, and

$$(\mathbf{x}_i, \mathbf{y}_i) \sim_{i.i.d.} p(\mathbf{x}, \mathbf{y}), \quad i \in [N].$$

How should we choose f(x)?

- Loss function $\ell(y, \hat{y}) = \ell(y, f(x))$: cost (loss or risk) incurred when the correct value is y while the estimate is \hat{y}
- Quadratic loss function:

$$\ell(y, \hat{y}) = (y - \hat{y})^2 = (y - f(x))^2,$$

Expected prediction error (expected generalization loss/error):

$$\begin{split} L(\hat{y}) &= \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p(\boldsymbol{x}, y)}[\ell(\mathbf{y}, f(\mathbf{x}))] \\ &= \int \int \ell(\mathbf{y}, f(\boldsymbol{x})) p(\boldsymbol{x}, y) \mathrm{d}\boldsymbol{x} \mathrm{d}y \,. \end{split}$$

How should we choose f(x)?

Optimal prediction $\hat{y}(x)$ obtained by minimizing generalization loss:

$$\begin{split} f^*(\boldsymbol{x}) &= \underset{f}{\operatorname{argmin}} \ L(\hat{y}) \\ &= \underset{f}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p(\boldsymbol{x}, y)}[\ell(\mathbf{y}, f(\mathbf{x}))] \\ &= \underset{f}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}} \left[\mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y} \mid \mathbf{x}}}[\ell(\mathbf{y}, f(\boldsymbol{x}))] \right] \end{split}$$

Hence, it suffices to solve

$$f^*(\boldsymbol{x}) = \operatorname*{argmin}_{f} \mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y} \mid \mathbf{x}}} [\ell(\mathbf{y}, f(\boldsymbol{x}))]$$

For the quadratic loss
$$\ell(y, \hat{y}) = (y - f(x))^2$$
,

$$f^*(\boldsymbol{x}) = \underset{f}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y} \mid \mathbf{x}}}[\ell(\mathbf{y}, f(\boldsymbol{x}))] =$$

Linear regression

Linear regression: Assumes linear model for f(x),

$$\hat{y} = f(\boldsymbol{x}) = \beta_0 + \sum_{j=1}^{p} x_j \beta_j,$$

with $x = (x_1, x_2, ..., x_p)^{\mathsf{T}}$.

 β_0 : intercept or bias

· For simplicity, we will write

$$\tilde{\boldsymbol{x}} = (1, x_1, \dots, x_p)^\mathsf{T}$$
 and $\boldsymbol{\beta} = (\beta_0, \dots, \beta_p)^\mathsf{T}$

so that

$$\hat{y} = \sum_{j=0}^{p} \tilde{x}_{j} \beta_{j} = \tilde{\boldsymbol{x}}^{\mathsf{T}} \boldsymbol{\beta}$$

Linear regression assumes $\tilde{f}(x) \approx x^{\mathsf{T}} \beta$ or, equivalently, $\mathbb{E}_{\mathsf{v}|\mathsf{x}}[y|x] \approx \tilde{x}^{\mathsf{T}} \beta^*$.

Linear regression: Optimal β

$$\begin{split} \boldsymbol{\beta}^* &= \operatorname*{argmin}_{\boldsymbol{\beta}} L(\hat{y}) \\ &= \operatorname*{argmin}_{\boldsymbol{\beta}} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p(\boldsymbol{x}, y)} [\ell(\mathbf{y}, f(\mathbf{x}))] \\ &= \operatorname*{argmin}_{\boldsymbol{\beta}} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p(\boldsymbol{x}, y)} [(\mathbf{y} - \mathbf{x}^\mathsf{T} \boldsymbol{\beta})^2] \end{split}$$

Idea: Approximate the expectation by the empirical average over the Ntraining points $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$,

$$\beta^* = \underset{\beta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i - x_i^{\mathsf{T}} \beta)^2$$
$$= \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - x_i^{\mathsf{T}} \beta)^2$$

Least squares linear regression

$$\beta^* = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2$$

$$= \underset{\beta}{\operatorname{argmin}} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}\|^2$$

$$= \underset{\beta}{\operatorname{argmin}} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta})$$

with

$$m{X} = \left(egin{array}{ccccc} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,p} \ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,p} \ dots & dots & dots & dots \ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,p} \end{array}
ight)$$

and $\boldsymbol{y} = (y_1, \dots, y_N)^\mathsf{T}$

Least squares linear regression

$$\boldsymbol{\beta}^* = \operatorname*{argmin}_{\boldsymbol{\beta}} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta})^\mathsf{T} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta})$$

Least squares linear regression for classification

Binary classification: $y \in \{a, b\}$

Idea: Encode $y = a \Longrightarrow y = 0$ and $y = b \Longrightarrow y = 1$ and apply plain linear regression plus thresholding:

$$\hat{y}(\boldsymbol{x}) = \left\{ \begin{array}{ll} 0 & \text{if } f^*(\boldsymbol{x}) = \mathbb{E}_{\mathsf{y}|\mathbf{x}}[y|\boldsymbol{x}] = \boldsymbol{x}^\mathsf{T}\boldsymbol{\beta}^* \leq 0.5 \\ 1 & \text{otherwise} \end{array} \right.$$

Observations:

- The linear model determines the decision boundary $\{x : x^{\mathsf{T}}\beta^* = 0.5\}$
- We can interpret $f^*(x) = \mathbb{E}_{\mathbf{y}|\mathbf{x}}[y|x] = x^\mathsf{T}\boldsymbol{\beta}$ as the probability $p(\mathbf{y} = 1|x)$

Least squares linear regression for classification

- 100 samples from two bivariate Gaussian distributions
- Blue: $\mathcal{N}((1,0)^\mathsf{T}, \boldsymbol{I})$
- Orange: $\mathcal{N}((0,1)^\mathsf{T}, \mathbf{I})$

Goal: For a new coordinate $\boldsymbol{x}=(x_1,x_2)$, determine to which of the Gaussians corresponds to.

k-Nearest neighbor regression

k-Nearest neighbor regression: Given x, it predicts y as

$$\hat{y}(\boldsymbol{x}) = \frac{1}{k} \sum_{\boldsymbol{x}_i \in \mathcal{N}_k(\boldsymbol{x})} y_i(\boldsymbol{x}_i)$$

 $\mathcal{N}_k(x)$: set of k nearest neighbors to x in the training set.

ullet For $oldsymbol{x} \in \mathbb{R}^p$, we consider the Euclidean distance $d(oldsymbol{x}, oldsymbol{x}_i) = \|oldsymbol{x} - oldsymbol{x}_i\|^2 \longrightarrow$ $\mathcal{N}_k(x)$ is the set $\{x_i\}$ closest (in Euclidean distance) to x.

k-Nearest neighbor regression

Optimal solution:

$$\hat{y}(x) = f^*(\boldsymbol{x}) = \mathbb{E}_{\mathsf{y}|\mathsf{x}}[\mathsf{y}|\boldsymbol{x}]$$

k-nearest neighbors tries to accomplish this directly!

- 1. Replacing $\mathbf{x} = \mathbf{x}$ by neighborhood of \mathbf{x} in the training data $\mathcal{N}_k(\mathbf{x})$
- 2. Replacing expectation by average over the k training neighbors

We make two approximations:

- Expectation approximated by sample average
- Conditioning at point x relaxed to conditioning on region close x

k-Nearest neighbor regression

What's the role of k?

For a larger $k \dots$

- Average is more accurate and stable (reduced variance)
- Neighborhood is bigger and less representative of $\mathbf{x} = x$ (increased bias)

Under mild regularity conditions on p(x,y), as $N\to\infty$, $k(N)\to\infty$ and $k(N)/N \to 0, \ \hat{y}(x) \to \tilde{f}(x), \ \forall x.$

k-Nearest neighbors for classification

Idea: Replace averaging by a majority vote,

$$\hat{y}(\boldsymbol{x}) = \mathbb{1}\left\{\frac{1}{k} \sum_{\boldsymbol{x}_i \in \mathcal{N}_k(\boldsymbol{x})} \mathbb{1}\{y_i(\boldsymbol{x}_i) = 1\} > 0.5\right\}$$

- 1. Find $\mathcal{N}_k(x)$
- 2. Majority vote: Assign x to the class that most predictors in $\mathcal{N}_k(x)$ belong

k-Nearest neighbors for classification

- Left: 15-nearest neighbors
- Right: 1-nearest neighbor

Error on training data decreases with decreasing k, and is zero for k = 1.

Is k = 1 optimal?

Least squares regression vs k-nearest neighbors regression

Least squares regression:

- ullet Assumes $ilde{f}(oldsymbol{x})$ well approximated by a globally linear function
- Very smooth boundary
- Stable to fit
- Linear decision boundary (strong assumption!)
- Low variance and (potentially) high bias

k-nearest neighbors regression:

- No stringent assumptions about underlying data
- Can adapt to any shape of the data
- Not smooth boundary (for small k)
- Unstable to fit (for small k)
- high variance and low bias

Parametric vs nonparametric models

Parametric models: Build f(x) as a parametric model that applies to the whole space.

- 1. Select parametric model (hypothesis class), with fixed number of parameters
- 2. Learn parameters to fit the training data \mathcal{D}

Nonparametric models: Don't make explicit assumptions about form f(x), but describe it in terms of local behavior of the training data in the region near x.

- 1. Seek an estimate of f that gets as close to the data points as possible without being too wiggly
- 2. Advantage: accurately fit a wider range of possible shapes for f
- 3. Disadvantage: number parameters grows with amount of training data

- $y \in C = \{C_1, \dots, C_K\}, |C| = K$
- ullet We assume that $oldsymbol{x}$ and $oldsymbol{y}$ are related via function $ilde{f}(oldsymbol{x})$ (rule)

Goal: learn a rule f(x) which maps x to one of the classes $\{C_1, \ldots, C_K\}$.

How should we choose f(x)?

• 0–1 loss function:

$$\ell(y, f(\boldsymbol{x})) = \begin{cases} 0 & y = f(\boldsymbol{x}) \\ 1 & y \neq f(\boldsymbol{x}) \end{cases}$$

Equivalently,

$$\ell(y, f(x)) = \mathbb{1}\{y \neq f(x)\}\$$

Optimal rule $f^*(x)$:

$$\begin{split} f^*(\boldsymbol{x}) &= \operatorname*{argmin}_{f} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p(\boldsymbol{x}, y)}[\ell(\mathbf{y}, f(\boldsymbol{x}))] \\ &= \operatorname*{argmin}_{f} \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}} \left[\mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y} \mid \mathbf{x}}}[\ell(\mathbf{y}, f(\boldsymbol{x}))] \right] \\ &= \operatorname*{argmin}_{f} \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}} \left[\mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y} \mid \mathbf{x}}} [\mathbb{1}\{\mathbf{y} \neq f(\boldsymbol{x})\}] \right] \end{split}$$

$$\boldsymbol{f}^*(\boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{f}} \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{x}}} \left[\mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y} \mid \mathbf{x}}} [\mathbb{1}\{\mathbf{y} \neq f(\boldsymbol{x})\}] \right]$$

Optimal classification: Bayes' classifier

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{i \in [K]} p(\mathbf{y} = i | \boldsymbol{x})$$

k-nearest neighbors: Approximates the optimal solution as

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{j \in [K]} \frac{1}{k} \sum_{\boldsymbol{x}_i \in \mathcal{N}_k(\boldsymbol{x})} \mathbb{1}\{y_i = j\}$$

Curse of dimensionality (regression)

Optimal solution:

$$\hat{y}(x) = f^*(\boldsymbol{x}) = \mathbb{E}_{\mathbf{y}|\mathbf{x}}[\mathbf{y}|\boldsymbol{x}]$$

k-nearest neighbors: Approximates the optimal solution as

$$\hat{y}(\boldsymbol{x}) = \frac{1}{k} \sum_{\boldsymbol{x}_i \in \mathcal{N}_k(\boldsymbol{x})} y_i(\boldsymbol{x}_i)$$

Can we accurately approximate the optimal solution by considering a very large training set? How large?

Curse of dimensionality

3-nearest neighbors

- Blue and red: Training data points $x_i \in \mathcal{X} = [-1, 1]^2 \ (10, 100, 1000)$
- Black: New data point
- Red: 3 nearest neighbors

As N increases:

$$\hat{y}(\boldsymbol{x}) = \frac{1}{k} \sum_{\boldsymbol{x}_i \in \mathcal{N}_k(\boldsymbol{x})} y_i(\boldsymbol{x}_i) \rightarrow \mathbb{E}[\mathbf{y}|\boldsymbol{x}]$$

Curse of dimensionality

 \dots but k-nearest neighbors (and other local methods) do not work well with high-dimensional inputs!

Curse of dimensionality: number of points exponential in number of dimensions!

- 1. Nearest neighbors not so close to x
- 2. k-NNs of x closer to the boundary of $\mathcal X$
- 3. Need a prohibitive number of training samples to densely sample $\mathcal{X} \in \mathbb{R}^p$

(see "The elements of statistical learning," Section 2.5, for 2 and 3)

For large p, the nearest neighbors are not so close

k-nearest neighbors to data with training points uniformly distributed in a p-dimensional unit hypercube, $\mathcal{X} = [0,1]^p$.

Want to estimate the density of class labels around a test point x by growing a hypercube around x until we capture a fraction ρ of the data points.

Expected length of the side of the smallest hypercube containing a fraction ρ of the data points:

For large p, the nearest neighbors are not so close

- Estimate based on 10% of the data ($\rho = 1/10$): $r_{10}(1/10) = 0.8$
- Estimate based on 1% of the data $(\rho = 1/100)$: $r_{10}(1/100) = 0.63$

k-nearest neighbors is not local in higher dimensions! \longrightarrow Far-away data points may not be good predictors for the behavior of the function at x.

Probabilistic models for learning

Up to now we assumed

$$y = \tilde{f}(\boldsymbol{x})$$

Typically assume a probabilistic model of the form

$$y = \tilde{f}(\boldsymbol{x}) + \varepsilon$$

with ε independent of **x** and $\mathbb{E}[\varepsilon] = 0$.

Hence,

$$\mathbb{E}[\mathbf{y}|\mathbf{x}=\boldsymbol{x}] = \tilde{f}(\boldsymbol{x})$$

How do we effectively use the training data \mathcal{D} to guide the learning of f(x)?

Probabilistic models for learning

The space of all possible regression functions f(x) is enormous!

Idea: Consider a parametric form of f(x), $f_{\theta}(x)$, with parameters θ .

Example: Linear regression,

$$\hat{y} = \sum_{j=0}^{p} x_j \beta_j + \varepsilon$$

$$= \boldsymbol{x}^\mathsf{T} \boldsymbol{\beta} + \varepsilon.$$

Linear function of the parameters eta_0,\ldots,eta_p and of the input variables x_1,\ldots,x_p .

Probabilistic models for learning

More in general we may consider

$$f_{m{ heta}}(m{x},m{w}) = \sum_{i=1}^M heta_i \phi_i(m{x})$$

 ϕ_i : basis functions or basis expansion $f_{\theta}(\boldsymbol{x}, \boldsymbol{w})$: linear basis expansion

Resulting model is much richer, but still a linear function in θ !

Maximum likelihood learning

- Assume $f_{\theta}(x)$ fixed
- We want to learn θ

Before (least-squares regression):

$$\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} \sum_{i=1}^{N} (y_i - f_{\boldsymbol{\theta}}(\boldsymbol{x}_i))^2$$

Maximum likelihood: select θ for which the training set \mathcal{D} has the maximum probability of being observed.

Maximum likelihood learning

Choose θ that maximizes

$$p(y_{\mathcal{D}}|\boldsymbol{x}_{\mathcal{D}}, \boldsymbol{\theta}) = \prod_{i=1}^{N} p(y_i|\boldsymbol{x}_i, \boldsymbol{\theta})$$

or, equivalently, the log-likelihood (LL) function

$$\ln p(y_{\mathcal{D}}|\boldsymbol{x}_{\mathcal{D}},\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln p(y_{i}|\boldsymbol{x}_{i},\boldsymbol{\theta})$$

Maximum likelihood learning

$$\begin{aligned} \boldsymbol{\theta}_{\mathsf{ML}} &= \operatorname*{argmax}_{\boldsymbol{\theta}} \ln p(y_{\mathcal{D}} | \boldsymbol{x}_{\mathcal{D}}, \boldsymbol{\theta}) \\ &= \operatorname*{argmin}_{\boldsymbol{\theta}} - \ln p(y_{\mathcal{D}} | \boldsymbol{x}_{\mathcal{D}}, \boldsymbol{\theta}) \\ &= \operatorname*{argmin}_{\boldsymbol{\theta}} - \sum_{i=1}^{N} \ln p(y_{i} | \boldsymbol{x}_{i}, \boldsymbol{\theta}) \\ &= \operatorname*{argmin}_{\boldsymbol{\theta}} - \frac{1}{N} \sum_{i=1}^{N} \ln p(y_{i} | \boldsymbol{x}_{i}, \boldsymbol{\theta}) \end{aligned}$$

If
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$
, from $y = f_{\theta}(x) + \varepsilon$:
$$\mathbf{y}_i | \mathbf{x}_i, \boldsymbol{\theta} \sim \mathcal{N}(y_i; f_{\theta}(x_i), \sigma^2)$$

Maximum likelihood learning

$$\begin{aligned} \boldsymbol{\theta}_{\mathsf{ML}} &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} - \frac{1}{N} \sum_{i=1}^{N} \ln p(y_i | \boldsymbol{x}_i, \boldsymbol{\theta}) \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} - \frac{1}{N} \sum_{i=1}^{N} \ln \mathcal{N}(y_i; f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \sigma^2) \end{aligned}$$

Maximum likelihood learning

The need of structured regression models

Goal: Choose a function $f \in \mathcal{F}$ that minimizes a given loss function $L(\hat{y}) = L(f; \mathcal{D})$ based on training set $\mathcal{D} = \{(x_i, y_i)\}, i \in [N].$

Example:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \ \mathsf{RSS} \triangleq \sum_{i=1}^{N} (y_i - f_{\theta}(x_i))^2.$$

Observation: If \mathcal{F} set of all possible functions, can make RSS(f(x)) = 0 (any f(x) that passes through the training points)

... but not all will generalize well to new data.

Need to impose some constraints on f(x)!

The need of structured regression models

Which constraints should we impose?

- Restrict to parametric functions f_{θ} (linear regression: \mathcal{F} family of all linear functions)
- Smoother functions

Three classes of structured regression models:

- Roughness penalty
- Kernel methods
- Basis functions and dictionary methods

Class 1: Roughness penalty

Assuming a measure of "niceness" (e.g., smoothness) J(f),

$$f(\boldsymbol{x}) = \operatorname*{argmin}_{f \in \mathcal{F}: L(f; \mathcal{D}) = 0} J(f)$$

Example: smoothing splines

For one-dimensional data $x \in [0,1]$, $\mathcal F$ is the family of all twice-differentiable functions, and we choose J(f) as

$$J(f) = \int_0^1 \left(f''(x) \right)^2 \mathrm{d}x$$

Can relax requirement that $L(f; \mathcal{D}) = 0$ via

$$f(\mathbf{x}) = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \ L(f; \mathcal{D}) + \lambda J(f)$$

Regularization methods: Trade-off between loss and smoothness

Class 2: Kernel methods

Estimate regression (or classification) function in a local neighborhood

 Need to specify nature of local neighborhood and class of functions used for local fit

Simplest form: Nadaraya-Watson weighted average,

$$f(\boldsymbol{x}) = \frac{\sum_{i=1}^{N} K_{\lambda}(\boldsymbol{x}, \boldsymbol{x}_i) y_i}{\sum_{i=1}^{N} K_{\lambda}(\boldsymbol{x}, \boldsymbol{x}_i)}$$

 $K_{\lambda}(x,b_i)$: Kernel function; assigns weights to x_i depending on closeness to x

Example 1: k-nearest neighbors

$$K_k(x, x_i) = 1\{||x_i - x|| \le ||x_{(k)} - x||\}$$

 $x_{(k)}$: k-th closest input in data set to x

Example 2: Gaussian kernel

$$K_{\lambda}(\boldsymbol{x}, \boldsymbol{x}_i) = \frac{1}{\lambda} \exp\left(\frac{\|\boldsymbol{x} - \boldsymbol{x}_i\|^2}{2\lambda}\right)$$

Class 2: Kernel methods

More in general,

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^N K_{\lambda}(\boldsymbol{x}, \boldsymbol{x}_i) (y_i - f_{\boldsymbol{\theta}}(\boldsymbol{x}_i))^2$$

Class 3: Basis functions and dictionary methods

f modeled as a linear expansion of basis functions:

$$f_{m{ heta}}(m{x},m{w}) = \sum_{i=1}^M heta_i \phi_i(m{x})$$

- k-NN method: k, the number of nearest neighbors
- Linear models: M, the model order (the number of basis functions)
- Roughness penalty methods: λ , the weight of the penalty term

Parameters control the capacity to fit data

Higher capacity (higher complexity) \longrightarrow fit training data more accurately ... but unlikely to generalize well

Low capacity — cannot capture all variations present on data and may generalize poorly

Idea: Divide expected prediction error into its components (bias and variance for the squared error loss; approximation and estimation error for general case).

We consider:

$$y = \tilde{f}(x) + \varepsilon,$$

with

- $\varepsilon \sim \mathcal{N}(0, \sigma^2) \longrightarrow \mathbb{E}[\mathsf{y}|x] = \tilde{f}(x)$
- $\mathbf{x} = x$ fixed
- square loss function $\ell(y, f(x)) = (y f(x))^2$
- Large number of datasets drawn from p(y, x)

Expected prediction (generalization) error:

$$\mathsf{Err}(y, f({m{x}})) = \mathbb{E}_{\mathcal{D}, {m{x}}, {m{y}}}[\ell({m{y}}, f({m{x}}))]$$

$$\mathsf{Err}(y,f(\boldsymbol{x})) = \mathbb{E}_{\mathcal{D},\mathbf{x},\mathbf{y}}[\ell(\mathbf{y},f(\mathbf{x}))]$$

For $\mathbf{x} = x$ fixed:

$$\begin{split} & \operatorname{Err}(\boldsymbol{x}) = \mathbb{E}_{\mathbf{y}|\mathbf{x},\mathcal{D}}[\ell(\mathbf{y},f(\boldsymbol{x}))|\mathbf{x}=\boldsymbol{x}] \\ & = \mathbb{E}_{\mathbf{y}|\mathbf{x}}\mathbb{E}_{\mathcal{D}}[\ell(\mathbf{y},f(\boldsymbol{x}))|\mathbf{x}=\boldsymbol{x}] \\ & = \mathbb{E}_{\mathbf{y}|\mathbf{x}}\mathbb{E}_{\mathcal{D}}\left[(\mathbf{y}-f(\boldsymbol{x}))^2|\boldsymbol{x}\right] \\ & = \mathbb{E}_{\mathbf{y}|\mathbf{x}}\mathbb{E}_{\mathcal{D}}\left[(\mathbf{y}-\mathbb{E}_{\mathbf{y}|\mathbf{x}}[\mathbf{y}|\boldsymbol{x}] + \mathbb{E}_{\mathbf{y}|\mathbf{x}}[\mathbf{y}|\boldsymbol{x}] - \mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})] + \mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})] - f(\boldsymbol{x}))^2\right] \\ & = \mathbb{E}_{\mathbf{y}|\mathbf{x}}\left[(\mathbf{y}-\mathbb{E}_{\mathbf{y}|\mathbf{x}}[\mathbf{y}|\boldsymbol{x}])^2\right] + (\mathbb{E}_{\mathbf{y}|\mathbf{x}}[\mathbf{y}|\boldsymbol{x}] - \mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})])^2 + \mathbb{E}_{\mathbf{y}|\mathbf{x}}\mathbb{E}_{\mathcal{D}}\left[(\mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})] - f(\boldsymbol{x}))^2\right] \\ & = \mathbb{E}_{\mathbf{y}|\mathbf{x}}\left[(\mathbf{y}-\tilde{f}(\boldsymbol{x}))^2\right] + (\tilde{f}(\boldsymbol{x}) - \mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})])^2 + \mathbb{E}_{\mathbf{y}|\mathbf{x}}\mathbb{E}_{\mathcal{D}}\left[(\mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})] - f(\boldsymbol{x}))^2\right] \\ & = \operatorname{Var}[\mathbf{y}|\boldsymbol{x}] + (\tilde{f}(\boldsymbol{x}) - \mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})])^2 + \mathbb{E}_{\mathcal{D}}\left[(\mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})] - f(\boldsymbol{x}))^2\right] \end{split}$$

$$\begin{split} \mathsf{Err}(\boldsymbol{x}) &= \mathsf{Var}[\mathbf{y}|\boldsymbol{x}] + (\tilde{f}(\boldsymbol{x}) - \mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})])^2 + \mathbb{E}_{\mathcal{D}}\left[\left(\mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})] - f(\boldsymbol{x})\right)^2\right] \\ &= \sigma^2 + \underbrace{\left(\tilde{f}(\boldsymbol{x}) - \mathbb{E}_{\mathcal{D}}[f(\boldsymbol{x})]\right)^2 + \mathsf{Var}_{\mathcal{D}}\left[f(\boldsymbol{x})\right]}_{\mathsf{bias}} \end{split}$$

Bias-variance decomposition

- σ^2 : Irreducible error due to data randomness
- Bias: Approximation error due to the limited flexibility model
- Variance: Estimation error; sensitivity/variability of model due to randomness in \mathcal{D}

Bias-variance trade-off:

- High capacity models: low bias, high variance (overfitting)
- Low capacity models: high bias, low variance (underfitting)

The bias-variance trade-off or least squares regression

$$\mathrm{Err}(\boldsymbol{x}) = \sigma^2 + \sigma^2 \boldsymbol{x}^\mathsf{T} \mathbb{E}_{\mathcal{D}} \left[(\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \right] \boldsymbol{x}$$

and

$$\begin{split} \mathsf{Err}(y, f(\boldsymbol{x})) &= \mathbb{E}_{\mathbf{x}}[\mathsf{Err}(\mathbf{x})] \\ &= \sigma^2 + \sigma^2 \mathbb{E}_{\mathbf{x}, \mathcal{D}} \left[\mathbf{x}^\mathsf{T} (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{x} \right] \end{split}$$

Tutorial exercice!

Reading

"The elements of statistical learning," Chapters 1 and 2