Partie I

1. On suppose ici $b^2 - 4c > 0$.

(a)
$$r_1 = \frac{-b + \sqrt{b^2 - 4c}}{2} \qquad r_2 = \frac{-b - \sqrt{b^2 - 4c}}{2}$$
$$r_1 + r_2 = -b \qquad r_1 r_2 = c$$

(b) Soit $f_i: t \mapsto e^{r_i t}$ pour $t \in \mathbb{R}$ et i = 1, 2.

 f_i est deux fois dérivable et

$$f_i''(t) + bf_i'(t) + cf_i(t) = (r_i^2 + br_i + c)e^{r_i t}$$

$$= 0$$

car r_i solution de $r^2 + br + c = 0$.

Ainsi f_i , pour i = 1, 2, est bien solution de (\mathcal{E}_H) sur \mathbb{R} .

(c) Soit y une solution de (\mathcal{E}_H) sur \mathbb{R} . on a

$$(y' - r_1 y)' - r_2 (y' - r_1 y) = y'' - r_1 y' - r_2 y' + r_1 r_2 y$$

en utilisant I.1.(a)
 $= y'' + by' + cy$
 $= 0$

Finalement, si y est une solution de (\mathcal{E}_H) sur \mathbb{R} alors

$$(y' - r_1 y) - r_2(y' - r_1 y) = 0$$

(d) Soit y une solution de (\mathcal{E}_H) sur \mathbb{R} , de la question précédente, on en déduit que $(y'-r_1y)$ est solution de $z'-r_2z=0$ sur \mathbb{R} .

Ainsi, il existe C_2 dans \mathbb{R} telle que

$$\forall t \in \mathbb{R}, \ (y' - r_1 y)(t) = C_2 e^{r_2 t}$$

De manière analogue, on montre que $(y'-r_2y)$ est solution de $z'-r_1z=0$ sur \mathbb{R} et donc qu'il existe C_1 dans \mathbb{R} telle que

$$\forall t \in \mathbb{R}, \ (y' - r_2 y)(t) = C_1 e^{r_1 t}$$

Finalement pour toute solution y de (\mathcal{E}_H) sur \mathbb{R} , il existe C_1 et C_2 telles que :

$$\forall t \in \mathbb{R}, \ y'(t) - r_2 y(t) = C_1 e^{r_1 t} \qquad y'(t) - r_1 y(t) = C_2 e^{r_2 t}$$

(e) On prenant les expressions de la question précédente, on a pour y solution (\mathcal{E}_H) sur \mathbb{R} :

$$\forall t \in \mathbb{R}, \ (y'(t) - r_1 y(t)) - (y'(t) - r_2 y(t)) = C_2 e^{r_2 t} - C_2 e^{r_1 t}$$

On a ainsi pour tout $t \in \mathbb{R}$, $(r_2 - r_1)y(t) = C_2e^{r_2t} - C_2e^{r_1t}$.

Comme $r_2 - r_1 \neq 0$, on en déduit qu'il existe (λ, μ) des réels tels que y s'écrit :

$$\forall t \in \mathbb{R}, \ y(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$$

On remarque que toute fonction y de la forme ci-dessus est solution de (\mathcal{E}_H) . Donc les solutions de (\mathcal{E}_H) sont les fonctions de la forme précédente.

(f) i. Les solutions de $r^2 - 16 = 0$ sont $r_1 = 4$ et $r_2 = -4$.

Donc les solutions de (\mathcal{E}_H) sont les fonctions :

$$\forall t \in \mathbb{R}, \ y(t) = \lambda e^{4t} + \mu e^{-4t}$$

où λ et μ sont des réels.

ii. Pour y solution de (\mathcal{E}_H) , on a :

$$\forall t \in \mathbb{R}, \ y'(t) = 4\lambda e^{4t} - 4\mu e^{-4t}$$

Les conditions initiales donnent alors le système :

$$\begin{cases} \lambda + \mu = 2e \\ 4\lambda - 4\mu = 0 \end{cases} \iff \lambda = \mu = e$$

On vient de montrer que l'équation (\mathcal{E}_H) admet une unique solution sur \mathbb{R} qui vérifie y(0)=2e et y'(0)=0. Cette solution est la fonction

$$\forall t \in \mathbb{R}, \ y(t) = e^{4t+1} + e^{-4t+1}$$

2. (a)

(b) Soit $(u, v) \in \Delta$ et (x, y) = h(u, v), on a :

$$y^2 - 2x = -u^2 < 0$$

ainsi pour $(u, v) \in \Delta$, on a $h(u, v) \in D$.

Soit $(x, y) \in D$, résolvons

$$h(u,v) = (x,y) \iff \begin{cases} \frac{u^2 + v^2}{2} = x \\ v = y \end{cases} \iff \begin{cases} u^2 = 2x - y^2 \\ v = y \end{cases}$$

Comme (x, y) est dans \mathcal{D} , on a : $2x - y^2 > 0$. Ainsi on peut donc trouver au moins un couple (u, v) solution.

Ce système admet une seule solution dans Δ puisqu'on cherche u > 0.

h est ainsi une application de Δ dans D tel que chaque élément (x,y) de D admet un unique antécédent $(u,v)=(\sqrt{2x-y^2},y)$ dans Δ . Donc h est une bijection de Δ dans D et

$$\forall (x,y) \in D, h^{-1}(x,y) = (\sqrt{2x - y^2}, y)$$

Les applications partielles de h sont

$$h_1: u \to \left(\frac{u^2 + v^2}{2}, v\right)$$
 $h_2: v \to \left(\frac{u^2 + v^2}{2}, v\right)$

elles sont dérivables respectivement sur \mathbb{R}^{+*} et \mathbb{R} et de dérivées continues (comme polynômes). Donc h est de classe \mathcal{C}^1 sur Δ .

Les applications partielles de h^{-1} sont

$$x \to \left(\sqrt{2x - y^2}, y\right)$$
 $v \to \left(\sqrt{2x - y^2}, y\right)v$

elles sont dérivables respectivement sur $\{x \in \mathbb{R} | 2x - y^2 > 0\}$ et \mathbb{R} et de dérivées continues (comme polynômes). Donc h^{-1} est de classe \mathcal{C}^1 sur D.

On a donc bien montré que h est une bijection de Δ dans D de classe C^1 et donc la réciproque est aussi de classe C^1 .

(c) Explicitons la dérivée partielle $\frac{\partial^2 \psi}{\partial u^2}$ à l'aide des dérivées partielles de φ :

$$\frac{\partial \psi}{\partial u} = \frac{\partial h_1}{\partial u} \times \frac{\partial \varphi}{\partial x} + \frac{\partial h_2}{\partial u} \times \frac{\partial \varphi}{\partial y} = u \frac{\partial \varphi}{\partial x}$$
$$\frac{\partial^2 \psi}{u^2} = \frac{\partial \varphi}{\partial x} + u \left(\frac{\partial h_1}{\partial u} \times \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial h_2}{\partial u} \times \frac{\partial^2 \varphi}{\partial y \partial x} \right) = \frac{\partial \varphi}{\partial x} + u^2 \frac{\partial^2 \varphi}{\partial x^2}.$$

On a donc bien montré que φ est solution de (E) sur D si, et seulement si, ψ est solution de (E') sur Δ .

De la question I.1, on sait que les solutions de (E') sont les fonctions :

(d)
$$\psi(u,v) = C_1(v)e^{4u} + C_2(v)e^{-4u}$$

où C_1 et C_2 sont des applications définies, dérivables deux fois sur \mathbb{R} .

Partie II

1. λ et μ sont des réels avec $\mu \neq 0$ et $\lambda^2 - \mu < 0$. Pour tout réel x, on a :

$$x^{2} + 2\lambda x + \mu = (x+\lambda)^{2} + \mu - \lambda^{2}$$
$$= (\mu - \lambda^{2}) \left[1 + \frac{1}{\mu - \lambda^{2}} (x+\lambda)^{2} \right]$$

On peut ainsi écrire $x^2 + 2\lambda x + \mu = \alpha(1 + \beta(x + \lambda)^2)$ avec

$$\alpha = \mu - \lambda^2$$
 et $\beta = \frac{1}{\mu - \lambda^2}$

2. Le discriminant de $x^2 + 2\lambda x + \mu$ est $4(\lambda^2 - \mu) < 0$, donc $f: x \mapsto \frac{1}{(x^2 + 2\lambda x + \mu)^{n+1}}$ est continue sur \mathbb{R} . De plus :

*
$$f(x) \sim \frac{1}{x^{2n+2}}$$
, f est positive sur \mathbb{R} et l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{2n+2}}$ converge $(2n+2>1)$. Donc l'intégrale $\int_{1}^{+\infty} f(x) \, \mathrm{d}x$ converge;

*
$$f(x) \underset{x \to -\infty}{\sim} \frac{1}{x^{2n+2}}$$
, f est positive sur \mathbb{R} et l'intégrale de Riemann $\int_{-\infty}^{-1} \frac{\mathrm{d}x}{x^{2n+2}}$ converge $(2n+2>1)$. Donc l'intégrale $\int_{-\infty}^{-1} f(x) \, \mathrm{d}x$ converge.

Donc l'intégrale $\int_{-\infty}^{+\infty} f(x) dx$ converge.

On a, en utilisant la question II.1., pour a < b:

$$\int_{a}^{b} \frac{\mathrm{d}x}{x^{2} + 2\lambda x + \mu} = \frac{1}{\alpha} \int_{a}^{b} \frac{\mathrm{d}x}{1 + \beta(x + \lambda)^{2}}$$

Or
$$\beta = \frac{1}{\mu - \lambda^2} > 0$$
 ainsi

$$\int_{a}^{b} \frac{\mathrm{d}x}{x^{2} + 2\lambda x + \mu} = \frac{1}{\alpha} \left[\frac{1}{\sqrt{\beta}} \arctan\left(\sqrt{b}(x + \lambda)\right) \right]_{a}^{b}$$

On a
$$I_0 = \lim_{(a,b)\to(-\infty,+\infty)} \int_a^b \frac{\mathrm{d}x}{x^2 + 2\lambda x + \mu}$$
, comme

*
$$\lim_{a \to -\infty} \arctan(\sqrt{\beta}(a+\lambda)) = -\frac{\pi}{2}$$

*
$$\lim_{b \to +\infty} \arctan(\sqrt{\beta}(b+\lambda)) = +\frac{\pi}{2}$$
.

On en déduit que $I_0 = \frac{1}{\alpha \sqrt{\beta}} \pi$.

Finalement on a démontré que I_n est une intégrale convergente pour tout entier naturel n, et $I_0 = \frac{\pi}{\sqrt{\mu - \lambda^2}}$.

- 3. On a $\lambda = 0$ et $\mu = 1$.
 - (a) Pour *n* entier naturel non nul, $I_{n-1} = \int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(x^2+1)^n}$

Pour a < b, on a par intégration par parties :

$$\int_{a}^{b} \frac{dx}{(1+x^{2})^{n}} = \left[\frac{x}{(1+x^{2})^{n}}\right]_{a}^{b} + 2n \int_{a}^{b} \frac{x^{2}}{(1+x^{2})^{n+1}} dx$$

$$\int_{a}^{b} \frac{dx}{(1+x^{2})^{n}} = \frac{b}{(1+b^{2})^{n}} - \frac{a}{(1+a^{2})^{n}} + 2n \int_{a}^{b} \frac{1+x^{2}-1}{(1+x^{2})^{n+1}} dx$$

$$(1-2n) \int_{a}^{b} \frac{dx}{(1+x^{2})^{n}} = \frac{b}{(1+b^{2})^{n}} - \frac{a}{(1+a^{2})^{n}} - 2n \int_{a}^{b} \frac{dx}{(1+x^{2})^{n+1}}$$

Il reste à calculer les limites :

*
$$\lim_{(a,b)\to(-\infty,+\infty)} \int_a^b \frac{\mathrm{d}x}{(1+x^2)^n} = I_{n-1};$$

*
$$\lim_{(a,b)\to(-\infty,+\infty)} \int_a^b \frac{\mathrm{d}x}{(1+x^2)^{n+1}} = I_n;$$

*
$$\lim_{a \to -\infty} \frac{a}{(1+a^2)^n} = 0;$$

*
$$\lim_{b \to +\infty} \frac{b}{(1+b^2)^n} = 0.$$

On obtient alors la relation pour tout entier n non nul:

$$I_n = \frac{2n-1}{2n} I_{n-1}$$

(b) I_n étant l'intégrale d'une fonction continue strictement positive, I_n est non nul pour tout entier naturel n.

A l'aide de la relation précédente, on peut écrire pour tout entier n non nul :

$$\prod_{k=1}^{n} I_{k} = \prod_{k=1}^{n} \frac{2k-1}{2k} I_{k-1}$$

$$\left(\prod_{k=1}^{n-1} I_{k}\right) I_{n} = \left(\prod_{k=1}^{n-1} I_{k}\right) \prod_{k=1}^{n} \frac{2k-1}{2k} I_{0}$$

$$I_{n} = \prod_{k=1}^{n} \frac{2k-1}{2k} I_{0}$$

On peut alors faire la transformation :

$$I_n = \frac{\prod_{k=1}^{n} (2k-1)}{\prod_{k=1}^{n} (2k)} I_0 = \frac{\prod_{k=1}^{2n} k}{\left(\prod_{k=1}^{n} (2k)\right)^2} I_0$$

Finalement pour tout entier naturel n,

$$I_n = \frac{(2n)!}{(2^n n!)^2} I_0$$

Avec la question II.2. on peut écrire

$$\forall n \in \mathbb{N}, \ I_n = \frac{(2n)!}{(2^n n!)^2} \pi$$

Partie III

Le discriminant de $y^2 - y + x$ est 1 - 4x, comme $|x| \le 1/4$, ce discriminant est positif et les deux solutions de $y^2 - y + x = 0$ sont

$$y_1 = \frac{1 + \sqrt{1 - 4x}}{2}$$
 et $y_2 = \frac{1 - \sqrt{1 - 4x}}{2}$

2. La fonction f est définie sur $\mathcal{L}_y =]-\infty, -1/4]$.

1.

Pour tout réel α ,

$$\forall x \in]-1, 1[, (1+x)^{\alpha} = 1 + \sum_{k=1}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} x^k$$

4. De la question précédente, pour tout $x \in]-1/4, 1/4[$, on a :

$$\sqrt{1-4x} = 1 + \sum_{k=1}^{+\infty} \frac{(-1)^k 4^k}{k!} \prod_{i=0}^{k-1} \left(\frac{1}{2} - i\right) x^k$$

On peut alors en déduire le développement en série entière de f sur $\mathcal{D}_S =]-1/4,1/4[$ par

$$f(x) = \sum_{n=0}^{+\infty} S_n x^n \text{ avec}$$

$$S_0 = 0$$
 $\forall n \in \mathbb{N}^*, \ S_n = -\frac{1}{2} \frac{(-1)^n 4^n}{n!} \prod_{i=0}^{n-1} \left(\frac{1}{2} - i\right)$

5. Soient $\sum a_n x^n$ et $\sum b_n x^n$ deux séries entières de rayon de convergence respectifs R_a et R_b .

La série produit de Cauchy de ces deux séries est la série entière $\sum c_n x^n$ avec $c_n = \sum_{k=0}^n a_k b_{n-k}$. Le rayon de convergence de la série produit R est supérieur à $\inf(R_a, R_b)$.

6. On utilisera la question III.1 (plutôt que la II.1!).

Pour tout $x \in \mathcal{D}_S$, $f^2(x) + x = f(x)$. On a le développement en série entière de f sur \mathcal{D}_S . Par produit de Cauchy, on a celui de f^2 et donc de $g(x) = f^2(x) + x$ sur au moins \mathcal{D}_S :

$$f(x) = g(x) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} S_k S_{n-k} \right) x^n + x$$

Par unicité du développement en série entière, on peut en déduire que pour tout entier $n \ge 2$:

$$S_n = \sum_{k=0}^n S_k S_{n-k}$$

On sait aussi que $S_0 = 0$ donc pour $n \ge 2$, $S_n = \sum_{k=1}^{n-1} S_k S_{n-k}$.

7. On a en utilisant la question III.4, pour $n \ge 2$:

$$S_n = -\frac{1}{2} \frac{(-1)^n 4^n}{n!} \prod_{i=0}^{n-1} \left(\frac{1}{2} - i\right)$$

$$= -\frac{1}{2} \frac{(-1)^n 4^n}{n!} \prod_{i=0}^{n-1} \left(\frac{1-2i}{2}\right)$$

$$= -\frac{1}{2} \frac{(-1)^n 4^n}{n!} \frac{(-1)^n}{2^n} \prod_{i=0}^{n-1} (2i-1)$$

$$= \frac{1}{2} \frac{2^n}{n!} \prod_{i=1}^{n-1} (2i-1)$$

$$= \frac{1}{2} \frac{2^n}{n!} \frac{(2n-2)!}{2^{n-1}(n-1)!}$$

$$= \frac{(2n-2)!}{n!(n-1)!}$$

On a donc bien pour tout entier
$$n \ge 2$$
, $S_n = \frac{1}{n} \binom{2n-2}{n-1}$.

8. Pour $n \ge 2$, la combinaison $\binom{2n-2}{n-1}$ est un entier supérieur à 1. Donc pour tout $n \ge 2$, $S_n \ge \frac{1}{n}$.

La série harmonique diverge donc, par comparaison des séries à termes positifs, la série de terme général S_n diverge.

9. (a) $C_1 = 1$; $C_2 = 2$.

Pour n = 3, les mots de Dyck de longueur 6 sont

et donc $C_3 = 5$.

- (b) On va faire ce dénombrement en deux temps :
 - * nombre de mots M de Dyck de longueur 2n et tel que pour tout $h \in [1, n-1]$, le mot M tronqué à sa longueur 2h ne contienne jamais autant de A que de B. Ce mot commence nécessairement par un A, fini par un B et entre ces deux lettres se trouve un mot de Dyck de longueur 2(n-1). Il y a donc C_{n-1} mots de Dyck de cette forme;
 - * nombre de mots M de Dyck de longueur 2n et tel que pour $k \in [1, n-1[$ le mot M tronqué à la longueur 2k contienne autant de A que de B et ce, pour la première fois (c'est-à-dire que toute troncature de M de longueur 2h, h < k, ne contient jamais autant de A que de B). D'après le calcul précédent, il y a C_{k-1} possibilités de mots pour les 2k premières lettres; la fin du mot est aussi un mot de Dyck contenant 2(n-k) lettres donc il y a pour cette fin C_{n-k} possibilités de mots. Finalement, il y a $C_{k-1}C_{n-k}$ mots de Dyck de la forme cherchée.

En conclusion, un mot de Dyck de longueur 2n est soit de la première forme, soit de la deuxième en faisant varier k de 1 à n-1 et donc, comme $C_0=1$:

$$C_n = \sum_{k=1}^{n-1} C_{k-1} C_{n-k} + C_{n-1} = \sum_{k=1}^{n} C_{k-1} C_{n-k}$$

- (c) Par récurrence forte montrons que pour tout entier $n,\,C_n=S_{n+1}$:
 - * pour n = 0, $C_0 = 1$ et $S_1 = 1$ (en utilisant III.4);
 - * supposons que pour tout entier $h \leq n$, $C_h = S_{h+1}$. On a alors

$$C_{n+1} = \sum_{h=1}^{n+1} C_{h-1} C_{n+1-h}$$

Pour $h \in [1, n+1]$, $h \le n$ et $n+1-h \le n$ d'où :

$$C_{n+1} = \sum_{h=1}^{n+1} S_h S_{n+2-h} = S_{n+2}$$

Donc pour tout entier n, $C_n = S_{n+1}$. Il y a donc $\frac{1}{n+1} \binom{2n}{n}$ mots de Dyck de longueur 2n.