EICNPL SEARCH 10/601,136 9/24/07.7m

Set	Items	Description 1/24/07 TLW
S1	7017	INSTRUCTION? (2N) DECOD?
S2	16	
S3	491	S1:S2(3N)(DEDICAT? OR SEPARATE? OR SINGULAR? OR UNIQUE?
OR		
	LO	NE? OR UNIQUE OR RESPECT? OR INDIVIDUAL? OR SPECIF? OR
PART-		
		UL?)
S4	953	
	5678417	RULES? OR TERM? ? OR CONDITION? OR OPTION? OR DIRECT?
OR P-		
0.0		CEDURE?
S6	1004/6	S5(5N)(STORE? ? OR STORING OR SAVE? ? OR ACCUMULAT?
CACHE?	OB	CACUTAC OD CHOCKS OD CANTAC OD KEEDSSS
S7		CACHING OR STOCK? OR SAVING OR KEEP???) (DEDICAT? OR SEPARATE? OR SINGULAR? OR UNIQUE? OR LONE?
OR	20301	(DEDICAL! OR SEPARALE! OR SINGULAR! OR UNIQUE! OR DONE!
OK	IIN	IQUE OR RESPECT? OR INDIVIDUAL? OR SPECIF? OR
PARTTCI	JL?)(2W-	IQUE ON RESIDET: ON INDIVIDUAL: ON SIECIF: ON
11111110		REGISTER? OR RAM OR DATABASE? OR BUFFER? OR QUEUE?)
S8		(ONLY OR SOLELY OR EXCLUSIV? OR JUST OR SIMPLY OR
PARTICU		
		LY OR PRIMARILY OR EXACTLY OR PRECISELY OR
NOTHING	G()BUT)(3	
		PREFIX? OR PRE()FIX??? OR PREFIX?(2N)(COMMAND? OR S5))
S9	8	S8(5N)(DECOD??? OR RE()ORDER??? OR RECONFIG? OR
REFORM	JLAT?	4
	0	R RESET? OR SELECT? OR RE()SELECT? OR DECIPHER? OR
DECRYPT	r?)	
S10	50	S3:S4 AND S5 AND S7
S11	0	S10 AND S9
S12	313	(DECOD??? OR RE()ORDER??? OR RECONFIG? OR REFORMULAT?
OR R-		
~=~~		ET? OR SELECT? OR RE()SELECT? OR DECIPHER? OR
DECRYP'	r?) (3N) -	DEDITYO OF DDD () DIVOGO OF DDDETYO (OV) (GOMANDO OF GE))
S13		REFIX? OR PRE()FIX??? OR PREFIX?(2N)(COMMAND? OR S5))
S13 S14	1 8	
S14 S15	0	S3:S4 AND S9
		S3:S4 AND S6 AND S7
S17		(DECOD??? OR RE()ORDER??? OR RECONFIG? OR REFORMULAT?
OR R-	130003	(BECOD: OK KEY/OKBEK OK KECOMITO. OK KETOKIOEMI.
•••	ES	ET? OR SELECT? OR RE()SELECT? OR DECIPHER? OR
DECRYPT	[?) (5N) -	'
		NSTRUCTION? OR COMMAND? OR S5)
S18	10216	S17(5N)(CHANG??? OR ADAPT? OR ALTER? OR REARRANG? OR
MODIF?		
	0	R REVIS? ? OR EDIT???)
S19	19	S18 AND S6 AND S7.
S20	3	(S2:S3 OR S4) AND S19
S21	11	S16 NOT S13:S14
S22		S20 NOT S13:S14
S23		S21:S22
S24	674	(CHECK? OR ANALY? OR DETECT? OR ASSESS? OR DETERMIN? OR
EX-		THE OR THROUGH OR MONTHORN OR THERESEN (FIX) (REFERENCE
DEE (AM	IN? OR JUDG??? OR MONITOR? OR INSPECT?) (5N) (PREFIX? OR
PRE(-		

```
)FIX??? OR PREFIX?(2N)(COMMAND? OR S5))
S25
           9 (S2:S3 OR S4) AND S24
S26
                (S2:S3 OR S4) AND FETCH? (2N) CIRCUIT?
          16
S27
                S25:S26
          24
S28
                S27 NOT (S9 OR S13:S16 OR S20:S23)
          17
                S4/TI
S29
          93
                S29 AND S3
S30
           3
S31
               S29 AND S6 AND S7
           2
S32
          19
                S13:S16 OR S20:S23
S33
           5
                S30:S31
                S28 AND S29
S34
           0
S35
          17
                S28 NOT S33
S36
               S35 NOT S32:S33
          17
File 350:Derwent WPIX 1963-2007/UD=200757
        (c) 2007 The Thomson Corporation
File 347: JAPIO Dec 1976-2007/Mar(Updated 070809)
       (c) 2007 JPO & JAPIO
```

13/69,K/1 (Item 1 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0008443213 - Drawing available WPI ACC NO: 1997-052545/199705

Microprocessor with expanded functionality within existing architecture

has control unit detecting presence of segment override prefixes in instruction code sequences executed in flat memory mode and using prefix

value to control in- and or external functions

Patent Assignee: ADVANCED MICRO DEVICES INC (ADMI); ADVANCED MICRO

DEVICES

LTD (ADMI)

Inventor: CHRISTIE D S; DUTTON D J

Patent Family (13 patents, 20 countries)

Patent Application Number Kind Date Number Kind Date Update WO 1996041257 19961219 Α1 WO 1996US9986 19960607 199705 В Α US 5680578 19971021 Α US 1995479782 Α 19950607 199748 Е EP 834118 A1 19980408 EP 1996923277 19960607 199818 E Α WO 1996US9986 19960607 Α 19980616 US 5768574 Α US 1995481704 Α 19950607 199831 Ε US 1997914698 Α 19970819 US 5822778 Α 19981013 US 1995474400 Α 19950607 199848 Ε US 1997886421 Α 19970701 EP 834118 В1 19990331 EP 1996923277 Α 19960607 E 199917 WO 1996US9986 Α 19960607 19990506 19960607 DE 69601939 DE 69601939 Α 199924 E EP 1996923277 A 19960607 WO 1996US9986 Α 19960607 19990601 199928 ES 2129271 T3 EP 1996923277 A 19960607 Ε JP 11507453 W 19990629 WO 1996US9986 Α 19960607 199936 Ε JP 1997502131 Α 19960607 19990325 KR 1999022430 Α WO 1996US9986 A 19960607 200023 Ε KR 1997708910 Α 19971205 CN 1187255 Α 19980708 CN 1996194492 Α 19960607 200336 Ε WO 1996US9986 Α 19960607 KR 448675 В 20041213 WO 1996US9986 Α 19960607 200525 Ε KR 1997708910 Α 19971205

Priority Applications (no., kind, date): US 1997914698 A 19970819; US 1997886421 A 19970701; US 1995481704 A 19950607; US 1995479782 A 19950607; US 1995474400 A 19950607

WO 1996US9986

JP 1997502131

Α

Α

19960607

19960607

200562

F.

Patent Details

JP 3698441

Number Kind Lan Pg Dwg Filing Notes

20050921

WO 1996041257 A1 EN 28 6

B2

National Designated States, Original: CN JP KR

Regional Designated States, Original: AT BE CH DE DK ES FI FR GB GR IE IT

LU MC NL PT SE

US 5680578	Α	EN	13	6	
EP 834118	A1	EN		0	PCT Application WO 1996US9986
					Based on OPI patent WO 1996041257
Regional Designa	ted	States	,Origi	inal	: DE ES FR GB
US 5768574	Α	EN			Continuation of application US
1995481704					
US 5822778	Α	EN			Continuation of application US
1995474400					
EP 834118	B1	EN			PCT Application WO 1996US9986
					Based on OPI patent WO 1996041257
Regional Designa	ted	States	,Origi	inal	: DE ES FR GB
DE 69601939	E	DE			Application EP 1996923277
					PCT Application WO 1996US9986
-					Based on OPI patent EP 834118
					Based on OPI patent WO 1996041257
ES 2129271	Т3	ES			Application EP 1996923277
					Based on OPI patent EP 834118
JP 11507453	W	JA	39		PCT Application WO 1996US9986
		•			Based on OPI patent WO 1996041257
KR 1999022430	Α	KO		6	
					Based on OPI patent WO 1996041257
CN 1187255	Α	ZH			PCT Application WO 1996US9986
					Based on OPI patent WO 1996041257
KR 448675	В	KO			PCT Application WO 1996US9986
					Previously issued patent KR
99022430					
					Based on OPI patent WO 1996041257
JP 3698441	B2	JA	15		PCT Application WO 1996US9986
					Previously issued patent JP
11507453					

Based on OPI patent WO 1996041257

Alerting Abstract WO Al

The microprocessor includes an address translation unit (ATU) (116) generating a physical address from a logical one and a segment value. Several segment registers are coupled to the ATU, one storing the segment

value. A control unit coupled to the ATU detects an instruction field indicative of one of the segment registers, and conveys a signal to the ATU

indicative of it.

A confirmation register stores a value indicative of a microprocessor address translation mode. A second control unit coupled to the configuration register and the first control unit performs a function dependent on the stored value in the configuration register and on the signal from the first control unit.

ADVANTAGE - Code may be easily ported to processor implementing new functions, while overall nature of instruction set remains unchanged.

`Title Terms/Index Terms/Additional Words: MICROPROCESSOR; EXPAND; FUNCTION;

EXIST; ARCHITECTURE; CONTROL; UNIT; DETECT; PRESENCE; SEGMENT; OVERRIDE;

INSTRUCTION; CODE; SEQUENCE; EXECUTE; FLAT; MEMORY; MODE; PREFIX;
VALUE;

EXTERNAL

Class Codes

International Classification (Main): G06F-012/00, G06F-012/02, G06F-009/318

, G06F-009/32

US Classification, Issued: 395481000, 395479000, 395567000, 711206000, 711209000, 711208000, 395567000

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03C

Original Titles:

...Microprocessor using an instruction field to expand the condition flags and a computer system employing the microprocessor...

Original Publication Data by Authority

Original Abstracts:

...to use the prefix value or the value stored in the associated segment

register to selectively enable condition flag modification for instructions. An instruction which modifies the condition flags and a branch instruction intended to branch based on the condition flags set

by the instruction may be separated by numerous instructions which do not

modify the condition flags. When the branch instruction is decoded

the condition flags it depends on may already be available. In another

embodiment of the **present** microprocessor, the segment register override

bytes are used to select between multiple sets of condition flags. Multiple conditions may be retained by the microprocessor for later examination. Conditions which a program utilizes multiple times in a

program may be maintained while other conditions may be generated and utilized.

...Additional registers are available to a program other than the AMD.artwork. 80x86 Series architecture specifies , but the instruction

for more operands to

Claims:

...plurality of segment registers to a control unit; operating said control

unit to select an operand register

?

14/69,K/3 (Item 3 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0013927598 - Drawing available

WPI ACC NO: 2004-107513/200411 XRPX Acc No: N2004-085459

Instruction length decoding apparatus for complex instruction set computing

architecture, has primary instruction length decoder that selects subset of

instruction bytes, and decodes prefix within subset of bytes

Patent Assignee: MADDURI V R (MADD-I)

Inventor: MADDURI V R

Patent Family (1 patents, 1 countries)

Patent Application

 Number
 Kind
 Date
 Number
 Kind
 Date
 Update

 US 20030236964
 Al 20031225
 US 2002180389
 A 20020625
 200411
 B

Priority Applications (no., kind, date): US 2002180389 A 20020625

Patent Details

Number Kind Lan Pg Dwg Filing Notes US 20030236964 Al EN 10 5

Alerting Abstract US A1

NOVELTY - An instruction streaming buffer (ISB) stores the instruction

bytes. A primary instruction length decoder (ILD) stage selects a subset of

instruction bytes, and decodes a prefix within instruction bytes. Secondary ILD stage decodes an instruction length of an instruction within

the subset of instruction bytes, and aligns an instruction. Tertiary ILD

stage calculates an actual instruction length of instruction based on the prefix.

DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- 1.processor;
- 2.recorded medium storing instruction length decoding program;
- 3.instruction length decoding system; and
- 4.method for decoding instruction length.

USE - For processor (claimed) using complex instruction set computing (CISC) architecture, in computer system.

ADVANTAGE - Increases the rate of instruction output since the decoder

speculatively decodes the instruction length. Improves instruction decoding

performance by speculatively decoding the length of instruction in

parallel

manner.

DESCRIPTION OF DRAWINGS - The figure shows a flowchart explaining the instruction decoding process in the microprocessor.

Title Terms/Index Terms/Additional Words: INSTRUCTION; LENGTH; DECODE; APPARATUS; COMPLEX; SET; COMPUTATION; ARCHITECTURE; PRIMARY; SELECT; SUBSET; BYTE; PREFIX

Class Codes

International Classification (Main): G06F-009/30 US Classification, Issued: 712204000, 712209000, 712212000

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03C; T01-M04

...set computing architecture, has primary instruction length decoder that

selects subset of instruction bytes, and decodes prefix within subset

of bytes

...bytes. A primary instruction length decoder (ILD) stage selects a

subset of instruction bytes, and decodes a prefix within instruction

bytes. Secondary ILD stage decodes an instruction length of an instruction $% \left(1\right) =\left(1\right) +\left(1\right)$

within the ...

Original Publication Data by Authority

Claims:

...instruction length decoder (ILD) stage to select a subset of said instruction bytes, said first ILD stage comprising a prefix decoder

to decode a prefix within said instruction bytes; a second ILD stage

to speculatively decode an instruction length of an instruction within

said subset of instruction bytes, said second ILD stage comprising a shift

unit to align an instruction; a third ILD stage to calculate an actual

instruction length of said instruction based at least partially upon said prefix.

14/69,K/4 (Item 4 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0010060157 - Drawing available WPI ACC NO: 2000-365791/200031

XRPX Acc No: N2000-273694

Variable byte length instruction predecoding method for superscalar microprocessors, involves predecoding fixed number of instructions bytes

starting with instruction bytes identified by predecode pointer Patent Assignee: ADVANCED MICRO DEVICES INC (ADMI)

Inventor: AHMED S F; MILLER P K; ZURASKI G D

Patent Family (7 patents, 20 countries)

_	<u>-</u>				,				
Pat	ent			Ap	plication				
Number		Kind	Date	e Number		Kind	Date	Update	
WO	2000026769	A1	20000511	WO	1999US12961	Α	19990609	200031	В
US	6260134	B1	20010710	US	1998184750	Α	19981102	200141	E
ΕP	1131698	A1	20010912	ΕP	1999927380	Α	19990609	200155	E
				WO	1999US12961	Α	19990609		
KR	2001075672	Α	20010809	KR	2001705482	A	20010430	200211	E
JP	2002529809	W	20020910	WO	1999US12961	Α	19990609	200274	E
				JP	2000580084	Α	19990609		
EP.	1131698	B1	20030521	ΕP	1999927380	Α	19990609	200341	E
				WO	1999US12961	Α	19990609		
DE	69908175	E	20030626	DE	69908175	A	19990609	200350	E
				EΡ	1999927380	Α	19990609		
				WO	1999US12961	Α	19990609		

Priority Applications (no., kind, date): US 1998184750 A 19981102

Patent Details

Number Kind Lan Pg Dwg Filing Notes

WO 2000026769 A1 EN 46 14

National Designated States, Original: JP KR

Regional Designated States, Original: AT BE CH CY DE DK ES FI FR GB GR

ΙE

IT LU MC NL PT SE

EP 1131698 A1 EN PCT Application WO 1999US12961

Based on OPI patent WO 2000026769

Regional Designated States, Original: DE FR GB

JP 2002529809 W JA 72 PCT Application WO 1999US12961

Based on OPI patent. WO 2000026769

EP 1131698 B1 EN PCT Application WO 1999US12961

Based on OPI patent WO 2000026769

Regional Designated States, Original: DE FR GB

DE 69908175 E DE Application EP 1999927380

PCT Application WO 1999US12961
Based on OPI patent EP 1131698
Based on OPI patent WO 2000026769

Alerting Abstract WO A1

NOVELTY - The fixed number of instruction bytes starting with instruction

byte identified by predecode pointer, are predecoded. The pointer is incremented and again the corresponding instruction bytes are predecoded.

DESCRIPTION - An INDEPENDENT CLAIM is also included for predecoder. USE - For precoding instruction bytes of variable byte length instructions to identify bytes of variable length instructions in super season microprocessor used in computer system.

ADVANTAGE - The performance of microprocessor is improved by limiting the

length detection time, routing time and shifting time of instruction bytes. By utilizing the predecoded information from the predecode unit, the

instruction alignment can be implemented with relatively small number of

cascaded level of logic gates and pipeline stages thereby facilitates high

frequencies of operation.

DESCRIPTION OF DRAWINGS - The figure shows block diagram of predecode unit.

Title Terms/Index Terms/Additional Words: VARIABLE; BYTE; LENGTH; INSTRUCTION; METHOD; MICROPROCESSOR; FIX; NUMBER; START; IDENTIFY; POINT

Class Codes

International Classification (Main): G06F-009/30, G06F-009/38 US Classification, Issued: 712210000, 712204000, 712213000

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-D02; T01-F03A; T01-F03C; T01-M06C

Alerting Abstract ... The performance of microprocessor is improved by limiting the length detection time, routing time and shifting time of instruction bytes. By utilizing the predecoded information from the predecode unit, the instruction alignment can be...

Original Publication Data by Authority

Claims:

...a set of possible prefix byte values;a prefix accumulator circuit (310)

coupled to said decode circuit and said prefix find circuit and configured to output a plurality of position length vectors each corresponding to one of said fixed number of instruction bytes and representing a length of said potential instruction, wherein each of said

position length...

...d'octets de prefixe possibles;un circuit accumulateur de prefixes (310)

couple audit circuit de decodage et audit circuit de recherche de prefixe et configure pour produire une pluralite de vecteurs de longueur de

...a particular instruction byte and represents a length of a potential instruction assuming that the potential instruction starts at the particular instruction byte; a prefix find circuit configured to receive said fixed number of instruction bytes and to identify which...

...in the set of possible prefix byte values; a prefix accumulator

circuit coupled to said decode circuit and said prefix find circuit and configured to output a plurality of position length vectors which identify an...

...instruction length vectors and are adjusted by said identified prefixes; anda tree circuit coupled to said prefix accumulation circuit and configured to generate and output a plurality of start bits based on the position...

14/69,K/5 (Item 5 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0009807242 - Drawing available WPI ACC NO: 2000-096950/200008 Related WPI Acc No: 2000-062777 XRPX Acc No: N2000-074911

MPEG based variable length decoder for digital versatile disk and digital

video broadcasting set-top-box applications

Patent Assignee: BOSE S (BOSE-I); BUBLIL M (BUBL-I); GADRE S C
(GADR-I);

HONG J (HONG-I); OZCELIK T (OZCE-I); SONY CORP (SONY); SONY ELECTRONICS INC (SONY)

Inventor: BOSE S; BUBLIL M; GADRE S C; HONG J; OZCELIK T; GADERE S C
Patent Family (13 patents, 85 countries)

Pat	tent			App	plication				
Nur	mber	Kind	Date	Nur	Number		Date	Update	
WO	1999060521	A2	19991125	WO	1999US10659	A	19990514	200008	В
ΑU	199939908	Α	19991206	ΑU	199939908	Α	19990514	200019	E
EΡ	1078533	A2	20010228	ΕP	1999923050	A	19990514	200113	Ē
	•			WO	1999US10659	A	19990514		
CN	1302512	A	20010704	CN	1999806441	A	19990514	200158	E
KR	2001043480	A	20010525	KR	2000712555	Α	20001109	200168	E
JP	2002516501	W	20020604	WO	1999US10659	. A	19990514	200239	E
				JP	2000550062	Α	19990514		
ΕP	1078533	В1	20030226	ΕP	1999923050	Α	19990514	200316	E
				WO	1999US10659	Α	19990514		
US	20030043917	A1	20030306	US	199885797	P	19980518	200320	E
				US	1999280437	Α	19990329		
DE	69905565	E	20030403	DE	69905565	Α	19990.514	200330	E
				EΡ	1999923050	Α	19990514		
				WO	1999US10659	Α	19990514		
US	6704361	B2	20040309	US	199885797	P	19980518	200418	E
				US	1999280437	Α,	19990329		
US	6934338	В1	20050823	US	199885797	P	19980518	200556	E
				US	1999280437	Α	19990329		
				US	2003419507	Α	20030421		
				US	2003662645	Α	20030915		
IN	200000417	P3	20050715	WO	1999US10659	·A	19990514	200574	E
				IN	2000MN417	Α	20000920		
CN	1199472	Ċ	20050427	CN	1999806441	Α	19990514	200641	Ε

Priority Applications (no., kind, date): US 2003662645 A 20030915; US 2003419507 A 20030421; US 199885797 P 19980518; US 1999280437 A 19990329

Patent Details

Number Kind Lan Pg Dwg Filing Notes

WO 1999060521 A2 EN 58 6

National Designated States, Original: AE AL AM AT AU AZ BA BB BG BR BY CA

CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG

KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG

SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW Regional Designated States, Original: AT BE CH CY DE DK EA ES FI FR GB GH

GM GR IE IT KE LS LU MC MW NL OA PT SD SE SL SZ UG ZW

AU 199939908 A EN Based on OPI patent WO 1999060521 EP 1078533 A2 EN PCT Application WO 1999US10659

Based on OPI patent WO 1999060521 Regional Designated States, Original: AT BE CH CY DE DK ES FI FR GB GR

ΙE

IT LI LU MC NL PT SE

JP 2002516501 W JA 90 PCT Application WO 1999US10659
Based on OPI patent WO 1999060521

EP 1078533 B1 EN PCT Application WO 1999US10659
Based on OPI patent WO 1999060521

Regional Designated States, Original: DE FR GB NL

US 20030043917 A1 EN Related to Provisional US 199885797

DE 69905565 E DE Application EP 1999923050

PCT Application WO 1999US10659
Based on OPI patent EP 1078533
Based on OPI patent WO 1999060521

Division of application US

Continuation of application US

US 6704361 B2 EN Related to Provisional US 199885797

US 6934338 B1 EN Related to Provisional US 199885797

1999280437

2003419507

Division of patent US 6704361
IN 200000417 P3 EN PCT Application WO 1999US10659

Alerting Abstract WO A2

NOVELTY - A command decode and execution circuit (136) coupled to memory

(114), receives selected variable length encoded data stored in memory. A

sequence (134) provides commands to a circuit to convert the encoded data

into corresponding decoded values. A master controller provides commands to

the circuit independently to the sequences to control decoding operation of the circuit.

DESCRIPTION - The sequencer includes a memory (140) for storing instructions and an instruction decode and control circuit coupled to the

memory for decoding instructions from the memory and then provides commands

to the command decode and execution circuit to convert the variable length

encoded data into corresponding decoded values.

USE - For decoding digitally encoded video signal transmitted and received in digital audio/video reception in digital versatile disk (DVD)

and digital video broadcasting (DVB) set-top-box (STB) applications.

ADVANTAGE - Minimizes amount of memory required to decode the various MPEG variable length codes.

DESCRIPTION OF DRAWINGS - The figure shows block diagram of video decoder.

114,140 Memories

134 Sequence

136 Circuit

142 Control circuit

Technology Focus

INDUSTRIAL STANDARDS - Variable length video decoder is scuted for decoding MPEG-1 and 2 syntax compliant video bit streams.

Title Terms/Index Terms/Additional Words: BASED; VARIABLE; LENGTH;
DECODE;

DIGITAL; VERSATILE; DISC; VIDEO; BROADCAST; SET; TOP; BOX; APPLY

Class Codes

International Classification (Main): H04N-007/12, H04N-007/30, H04N-007/50

(Additional/Secondary): H03M-007/42

International Classification (+ Attributes)

IPC + Level Value Position Status Version

G06T-0009/00 A I R 20060101 H04N-0007/26 A I R 20060101 H04N-0007/30 A I R 20060101 H04N-0007/50 A I R 20060101 G06T-0009/00 C I R 20060101 H04N-0007/26 C I R 20060101 H04N-0007/30 C I R 20060101 H04N-0007/50 C I R 20060101

US Classification, Issued: 382233000, 375240250, 375240230, 375240230

File Segment: EPI;

DWPI Class: S03; T01; W03; W04

Manual Codes (EPI/S-X): T01-D02; T01-H07C3B; T01-J10D; W03-A16C3; W04-C10A3

; W04-F01F1; W04-P01A4

Original Publication Data by Authority

Original Abstracts:

 \dots for decoding the video data and a set of flow control instructions. A

rotator/barrel shifter (158) is provided for making a predetermined number of encoded bits from the video bit...

...length decoding using the MPEG standard variable length code (VLC) tables. The variable length table decoder (186) shares a prefix pattern

matching scheme across all of the VLC tables and organizes the variable

length codes into a series of subtables. Each subtable corresponds to one of

the unique prefix patterns. Variable length codes are decoded by

identifying a leading pattern in the video data bit stream and, in parallel, accessing...

...length decoding using the MPEG standard variable length code (VLC) tables. The variable length table decoder shares a prefix pattern matching scheme across all of the VLC tables and organizes the variable

length codes into a series of subtables. Each subtable corresponds to

of the unique prefix patterns. Variable length codes are decoded by identifying a leading pattern in the video data bit stream and, in parallel, accessing the subtable corresponding...

...length decoding using the MPEG standard variable length code (VLC) tables. The variable length table decoder shares a prefix pattern matching scheme across all of the VLC tables and organizes the variable

length codes into a series of subtables. Each subtable corresponds to
one

of the unique prefix...

...length decoding using the MPEG standard variable length code (VLC) tables. The variable length table decoder shares a prefix pattern matching scheme across all of the VLC tables and organizes the variable

length codes into a series of subtables. Each subtable corresponds to

one of the unique prefix patterns. Variable length codes are ...for decoding the video data and a set of flow control instructions. A rotator/barrel shifter (158) is provided for making a predetermined number of encoded bits from the video bit...

...length decoding using the MPEG standard variable length code (VLC) tables. The variable length table decoder (186) shares a prefix pattern matching scheme across all of the VLC tables and organizes the variable length codes into a series of subtables .Each subtable corresponds to one of the unique prefix patterns. Variable length codes

are decoded by identifying a leading pattern in the video data ... Claims:

...variable length code table data comprises a plurality of subtable data

circuits each associated with a unique **prefix** pattern in the variable

length codes and independent of the prefix pattern length; a datapath...

...to each of the subtable data circuits; and control circuitry responsive

to the pattern match circuit for obtaining a decoded value from the subtable data circuit associated with the unique prefix pattern in the variable length codes that matches the identified prefix pattern in the

variable length encoded data, and additional data in the variable length codes...

14/69,K/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0008443213 - Drawing available WPI ACC NO: 1997-052545/199705

Microprocessor with expanded functionality within existing architecture

has control unit detecting presence of segment override prefixes in instruction code sequences executed in flat memory mode and using prefix

value to control in- and or external functions

Patent Assignee: ADVANCED MICRO DEVICES INC (ADMI); ADVANCED MICRO DEVICES

LTD (ADMI)

Inventor: CHRISTIE D S; DUTTON D J

Patent Family (13 patents, 20 countries)

Pat	ent			Application				
Nur	mber	Kind	Date	Number	Kind	Date	Update	
WO	1996041257	A1	19961219	WO 1996US9986	Α	19960607	199705	В
US	5680578	Α	19971021	US 1995479782	Α	19950607	199748	E
ΕP	834118	A1	19980408	EP 1996923277	Α	19960607	199818	E
				WO 1996US9986	A	19960607		
US	5768574	Α	19980616	US 1995481704	Α	19950607	199831	Ε
				US 1997914698	Α	19970819		
US	5822778	Α	19981013	US 1995474400	Α	19950607	199848	E
				US 1997886421	A	19970701		
EΡ	834118	B1	19990331	EP 1996923277	A	19960607	199917	E
				WO 1996US9986	A	19960607		
DE	69601939	E	19990506	DE 69601939	Α	19960607	199924	E
				EP 1996923277	Α	19960607		
				WO 1996US9986	Α	19960607		
ES	2129271	Т3	19990601	EP 1996923277	Α	19960607	199928	E
JP	11507453	W	19990629	WO 1996US9986	A	19960607	199936	E
				JP-1997502131	A	19960607		
KR	1999022430	Α	19990325	WO 1996US9986	A	19960607	200023	E
				KR 1997708910	Α	19971205		
CN	1187255	Α	19980708	CN 1996194492	Α	19960607	200336	Ε
				WO 1996US9986	Α	19960607		
KR	448675	В	20041213	WO 1996US9986	А	19960607	200525	\mathbf{E}
				KR 1997708910	A	19971205		
JP	3698441	B2	20050921	WO 1996US9986	Α	19960607	200562	E
				JP 1997502131	Α	19960607		

Priority Applications (no., kind, date): US 1997914698 A 19970819; US 1997886421 A 19970701; US 1995481704 A 19950607; US 1995479782 A 19950607; US 1995474400 A 19950607

Patent Details

Number Kind Lan Pg Dwg Filing Notes

WO 1996041257 A1 EN 28 6

National Designated States, Original: CN JP KR

Regional Designated States, Original: AT BE CH DE DK ES FI FR GB GR IE

LU MC NL PT SE

US 5680578 A EN 13 6

EP 834118 A1 EN 0 PCT Application WO 1996US9986

Regional Designa	ted	States	Original	Based on OPI patent WO 1996041257 : DE ES FR GB
US 5768574 1995481704	A		originar	Continuation of application US
US 5822778 1995474400	A	EN		Continuation of application US
EP 834118	В1	EN		PCT Application WO 1996US9986 Based on OPI patent WO 1996041257
Regional Designa	ted	States,	Original	
DE 69601939		DE	•	Application EP 1996923277
				PCT Application WO 1996US9986
				Based on OPI patent EP 834118
				Based on OPI patent WO 1996041257
ES 2129271	Т3	ES		Application EP 1996923277
				Based on OPI patent EP 834118
JP 11507453	W	JA	39	PCT Application WO 1996US9986
•				Based on OPI patent WO 1996041257
KR 1999022430	Α	KO	6	PCT Application WO 1996US9986
				Based on OPI patent WO 1996041257
CN 1187255	Α	ZH		PCT Application WO 1996US9986
				Based on OPI patent WO 1996041257
KR 448675	В	ко		PCT Application WO 1996US9986
				Previously issued patent KR
99022430				
				Based on OPI patent WO 1996041257
JP 3698441	B2	JA	15	PCT Application WO 1996US9986
				Previously issued patent JP
11507453				

Based on OPI patent WO 1996041257

Alerting Abstract WO Al

The microprocessor includes an address translation unit (ATU) (116) generating a physical address from a logical one and a segment value. Several segment registers are coupled to the ATU, one storing the segment

value. A control unit coupled to the ATU detects an instruction field indicative of one of the segment registers, and conveys a signal to the ATU

indicative of it.

A confirmation register stores a value indicative of a microprocessor address translation mode. A second control unit coupled to the configuration register and the first control unit performs a function dependent on the stored value in the configuration register and on the signal from the first control unit.

ADVANTAGE - Code may be easily ported to processor implementing new functions, while overall nature of instruction set remains unchanged.

Title Terms/Index Terms/Additional Words: MICROPROCESSOR; EXPAND; FUNCTION;

EXIST; ARCHITECTURE; CONTROL; UNIT; DETECT; PRESENCE; SEGMENT; OVERRIDE;

INSTRUCTION; CODE; SEQUENCE; EXECUTE; FLAT; MEMORY; MODE; PREFIX;
VALUE;

EXTERNAL

Class Codes

International Classification (Main): G06F-012/00, G06F-012/02, G06F-009/318

, G06F-009/32

US Classification, Issued: 395481000, 395479000, 395567000, 711206000, 711209000, 711208000, 395567000

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03C

Original Publication Data by Authority

Original Abstracts:

. . .

...to use the prefix value or the value stored in the associated segment

register to selectively enable condition flag modification for instructions. An instruction which modifies the condition flags and a branch instruction...

 \ldots be separated by numerous instructions which do not modify the condition

flags. When the branch instruction is decoded, the condition flags it

depends on may already be available. In another embodiment of the present

14/69,K/7 (Item 7 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0008235479 - Drawing available

WPI ACC NO: 1997-341865/199731

XRPX Acc No: N1997-283572

Microcontroller with code and instruction decoding extensions - in which

unused opcode in each of two instruction sets is used as prefix to predetermined instructions in respective instruction set when decoder

is operating in one of two predetermined modes

Patent Assignee: INTEL CORP (ITLC)

Inventor: PADWEKAR K A

Patent Family (4 patents, 73 countries)

	Fat	CIIC			Appricacion				
Number		mber	Kind	d Date Number		Kind	Date	Update	
	WO	1997022922	A1	19970626	WO 1996US18838	Α	19961206	199731	В
	ΑU	199714069	Α	19970714	AU 199714069	Α	19961206	199744	E
	TW	434472	Α	20010516	TW 1997104325	Α	19970403	200170	E
	US	6317822	В1	20011113	US 1995573305	Α	19951215	200173	E
			'		US 1997943554	А	19971003		

Priority Applications (no., kind, date): US 1997943554 A 19971003; US 1995573305 A 19951215

Patent Details

Number Kind Lan Pg Dwg Filing Notes

WO 1997022922 A1 EN 22 5

National Designated States, Original: AL AM AT AU AZ BA BB BG BR BY CA CH

CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT .

LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA

UG US UZ VN

Regional Designated States, Original: AT BE CH DE DK EA ES FI FR GB GR IE

IT KE LS LU MC MW NL OA PT SD SE SZ UG

AU 199714069 A EN Based on OPI patent WO 1997022922
TW 434472 A ZH
US 6317822 B1 EN Continuation of application US
1995573305

Alerting Abstract WO A1

The microcontroller includes an extension to provide additional instructions while maintaining backwards compatibility such that instructions for prior processors retain their functionality using one unused opcode in the opcode map. Binary and source modes are provided for

this operation. The instruction set is available in both modes, but decoding is different. In binary mode all instructions for the previous processor keep their encoding.

The additional instructions have an A5H prefix which indicates a single

unused opcode. In source mode, some of the instructions from the prior processor known as register instructions have the A5 prefix, which

enable

160 opcodes for other functions. Since the register based instructions of

the processor improve the performance of the instructions they replace, there is no need to use the old register based instructions. Therefore, adding a byte and a state to old register instructions results in negligible penalty. In source mode, the instructions for the new processor

do not require the A5 prefix.

USE/ADVANTAGE - Ensuring compatibility between old and new members of family of microcontroller architectures. Provides address space, code and

instruction encoding extensions to microcontroller architecture which provide backward compatibility with existing microcontroller while allowing

significant performance enhancements.

Title Terms/Index Terms/Additional Words: CODE; INSTRUCTION; DECODE; EXTEND

; TWO; SET; PREFIX; PREDETERMINED; RESPECTIVE; OPERATE; ONE; MODE

Class Codes

International Classification (Main): G06F-009/30 US Classification, Issued: 712209000, 712210000, 712229000 File Segment: EPI;

DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03; T01-F03C

...opcode in each of two instruction sets is used as prefix to predetermined instructions in respective instruction set when decoder

is operating in one of two predetermined modes

Original Publication Data by Authority

Claims:

 \ldots of opcodes; wherein when said instruction decoder operates in said first

mode, said unused opcode is used as a prefix that is affixed individually to at least a portion of said second plurality of opcodes that is used in...

14/69,K/8 (Item 8 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0006920064 - Drawing available

WPI ACC NO: 1994-316487/199439

XRPX Acc No: N1994-248596

Pipelined microprocessor including pre-fetch unit - has decoder having

prefix state machine for decoding prefixes and determining their lengths and micro-controller for sequencing microcode vectors

Patent Assignee: INTEL CORP (ITLC)

Inventor: ZAIDI S A A

Patent Family (1 patents, 1 countries)

Patent

Application

Update

199439 B

 Number
 Kind
 Date
 Number
 Kind
 Date

 US 5353420
 A 19941004
 US 1992927707
 A 19920810

Priority Applications (no., kind, date): US 1992927707 A 19920810

Patent Details

Number Kind Lan Pg Dwg Filing Notes

US 5353420 A EN 12 4

Alerting Abstract US A

The pipelined microprocessor includes a prefetch unit for obtaining a plurality of instructions to be processed. A decode unit has a prefix

state machine for decoding prefixes and determining their lengths. A

decode circuit decodes instructions and generates microcode vectors to be

executed. An apparatus counts the length of an instruction and a microcontroller sequences microcode vectors. An apparatus for detecting \cdot the

appearance of a particular prefixed instruction.

An apparatus responsive to the detection of the particular prefixed instruction disables the prefix state machine. An apparatus in the decode

circuit decodes the particular prefixed instruction and causes the decode circuit to generate microcode vectors for the instruction. A request

is generated to the microcontroller to handle microcode vectors generated.

USE/ADVANTAGE - For microprocessor running Intel instruction set. Operation of microprocessor is accelerated. Delay due to prefixed jump instructions eliminated.

Title Terms/Index Terms/Additional Words: PIPE; MICROPROCESSOR; PRE;
FETCH;

UNIT; DECODE; PREFIX; STATE; MACHINE; DETERMINE; LENGTH; MICRO; CONTROL;

SEQUENCE; VECTOR

Class Codes

International Classification (Main): G06F-009/38

US Classification, Issued: 395375000, 364231800, 364948340

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B; T01-M02C2

...has decoder having prefix state machine for decoding prefixes and determining their lengths and micro-controller for sequencing microcode vectors

Alerting Abstract ...microprocessor includes a prefetch unit for obtaining a plurality of instructions to be processed. A decode unit has

a prefix state machine for decoding prefixes and determining their

lengths. A decode circuit decodes instructions and generates microcode vectors to be...

...the particular prefixed instruction disables the prefix state machine.

An apparatus in the decode circuit decodes the particular prefixed instruction and causes the decode circuit to generate microcode vectors for

the instruction. A request...

Original Publication Data by Authority

Original Abstracts:

...which includes a prefetch unit for obtaining a plurality of instructions

to be processed; a decode unit having a prefix state machine for decoding prefixes and determining their lengths, a decode circuit

for decoding instructions and generating microcode vectors to be executed,

and apparatus for counting...

...to the detection of the particular prefixed instruction for disabling

the prefix state machine, apparatus in the decode circuit for decoding

the particular prefixed instruction and causing the decode circuit to generate microcode vectors for the instruction, and apparatus

for generating a request to...

Claims:

...which includes a prefetch unit for obtaining a plurality of instructions

to be processed; a decode unit having a prefix state machine for

decoding prefixes to instructions and determining their lengths,

decode circuit for decoding instructions and generating microcode vectors

to...

 \ldots means responsive to the detection of the particular prefixed instruction

for disabling the prefix state machine, means in the decode circuit for decoding the particular prefixed instruction and causing the

decode circuit to generate microcode vectors for the instruction, and
means for generating a request to...

23/69,K/1 (Item 1 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0010699503 - Drawing available WPI ACC NO: 2001-309751/200133

Related WPI Acc No: 2001-309752; 2002-646766

XRPX Acc No: N2001-221751

Processor with reduced latencies associated with branch instructions includes address registers, instruction decoder and execution unit Patent Assignee: HITACHI LTD (HITA); KRISHNAN S (KRIS-I); ZLESLER S H

(ZLES-I)

Inventor: IRIE N; IRLE N; KRISHNAN S; WERNER T L; ZIESLER S H; ZLESLER S H

Pat	ent Family	(13 pat	cents, 29	cou	ntries)				
Pat	ent			App	lication				
	Number Kind Date		Date	Nun	ber	Kind	Date	Update	
	1089169	A2	20010404	EΡ	2000308561	Α	20000929	200133	В
JP	2001142705	Α	20010525	JP	2000278486	Α	20000913	200136	E
KR	2001050791	A	20010625		200057683	A	20000930	200172	Ε
US	6324643	В1	20011127	US	1999410507	Α	19991001	200175	E
				US	1999410682	Α	19991001		
				US	1999411340	Α	19991001		
				US	2000679471	Α	20001004		
US	6356997	В1	20020312	US	1999410507	Α	19991001	200221	E
				US	1999410682	A	19991001		
			•	US	1999411340	A	19991001		
				US	2000679131	A	20001004		
US	6374348	В1	20020416	US	1999410507	A	19991001	200232	Ε
				US	1999410682	Α	19991001		
				US	1999411340	A	19991001		
				US	2000690340	A	20001017		
US	6389531	В1	20020514		1999410507	А	19991001	200239	E
				US-	1999410682	A	19991001	•	
				US	1999411340	A	19991001		
				·US	2000690500	Α	20001017	•	
US	6446197	В1	20020903	US	1999410507	A	19991001	200260	E
US	6477639	В1	20021105	US	1999410507	Α	19991001	200276	E
				US	1999410682	А	19991001		
				US	1999411340	А	19991001		
					2000679593	A	20001004		
US	20030070062	A1	20030410	US	1999410507	A	19991001	200327	E
				US	1999410682	A	19991001		
				US	1999411340	A	19991001		
					2000679593	A	20001004		
				US	2002288343	Α	20021104		
TW	502212	A	20020911	TW	2000120408	А	20000930	200336	E
US	6772323	В2	20040803		1999410507	А	19991001	200451	E
				US	1999410682	А	19991001		
					1999411340	A	19991001		
					2000679593	A	20001004		
					2002288343	А	20021104		
KR	2005107318	А	20051111		200591882	Α	20050930	200652	Е

Priority Applications (no., kind, date): US 2002288343 A 20021104; US 2000690500 A 20001017; US 2000690340 A 20001017; US 2000679593 A 20001004; US 2000679471 A 20001004; US 2000679131 A 20001004; US

Patent Details

Number Dwg Filing Notes Kind Lan Рg EP 1089169 EN **A2** 44 Regional Designated States, Original: AL AT BE CH CY DE DK ES FI FR GB IE IT LI LT LU LV MC MK NL PT RO SE SI JP 2001142705 Α JA 41 US 6324643 Continuation of application EN B1 1999410507 Continuation of application 1999410682 Continuation of application 1999411340 US 6356997 Continuation of application B1 EN 1999410507 Continuation of application 1999410682 Continuation of application 1999411340 US 6374348 B1 EN Continuation of application US 1999410507 Continuation of application US 1999410682 Continuation of application US 1999411340 US 6389531 Continuation of application US B1 EN 1999410507 Continuation of application 1999410682 Continuation of application US 1999411340 US 6477639 Continuation of application US B1 EN 1999410507 Continuation of application 1999410682 Continuation of application 1999411340 Continuation of application US 20030070062 **A**1 EN 1999410507 Continuation of application 1999410682 Continuation of application 1999411340 Continuation of application 2000679593 Continuation of patent US 6446197 Continuation of patent US 6477639 TW 502212 ZHΑ US 6772323 B2 EN Continuation of application 1999410507 Continuation of application US 1999410682 Continuation of application US 1999411340

Continuation of patent US 6446197 Continuation of patent US 6477639

Alerting Abstract EP A2

NOVELTY - The processor includes several address registers and an instruction decoder decoding an instruction supplied to it. The decoder provides control signals according to results of the decoding. An execution

unit responsive to the control signal executes the instruction. DESCRIPTION - The instruction can include a first instruction including

an operating code field defining a branch control operation and an address

field used for calculating an address for a branch. A first register selection field specifies one of the address registers in which the address

is to be stored after it is calculated. A second instruction includes an

operation code field defining a branch operation. A second register selection field specifies one of the address registers that stores the address to be used for the branch operation.

INDEPENDENT CLAIMS are included for a machine executable branch control

instruction and for a computer program.

USE - For high performance computing systems.

ADVANTAGE - Improves instruction execution. Reduces branch instruction $\ \ \,$

delays in highly pipelined processors. Improved branch operation instruction format that is both powerful and flexibly implemented by pipelined processors.

DESCRIPTION OF DRAWINGS - The figure shows a computing system.

Title Terms/Index Terms/Additional Words: PROCESSOR; REDUCE; ASSOCIATE; BRANCH; INSTRUCTION; ADDRESS; REGISTER; DECODE; EXECUTE; UNIT

Class Codes

International Classification (Main): G06F-009/38

International Classification (+ Attributes)

IPC + Level Value Position Status Version

G06F-0009/32 A I R 20060101 G06F-0009/38 A I R 20060101 G06F-0009/32 C I R 20060101 G06F-0009/38 C I R 20060101

US Classification, Issued: 712234000, 712238000, 712239000, 712237000, 703026000, 712043000, 712229000, 712237000, 712238000, 712237000, 712237000, 712237000, 712233000,

712237000, 711213000, 712238000, 712237000, 7

712208000, 712237000, 712234000

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03A; T01-F03B

Original Publication Data by Authority

Original Abstracts:

 \dots optimize instruction execution, based on particular indicators specified

for branch target instructions within a branch hint buffer .

. . .

...an improved instruction buffer, branch target instruction memory, branch

target address memory and instruction decoder adapted for handling branch

instructions so as to reduce latencies. A branch operation uses both a program branch control instruction (executed in advance to determine the branch target instruction address...instruction and the program branch control instruction both include separate prediction indicators used by the instruction decoder for initiating a loading

and speculatively pre-loading of instructions for execution in the processor...

...to register comparisons (including a compare to a zero valued register),

predicate evaluations, etc. A separate prediction bit within the branch

instruction specifies whether the branch is likely to be taken or not

taken to a branch control unit in...

Claims:

 \dots a second instruction including an operation code field defining a branch

operation, and a second register selection field for specifying one of

the plurality of address registers that stores said address to be used for

the branch operation....constitute a target instruction of a corresponding

program branch, and each have a target address stored in a target address storage location; (c) an instruction decoder which is configured: [i] for decoding said...

...A processor comprising:a plurality of dedicated address registers

for storing a plurality of different branch target addresses; and an instruction decoder decoding an...

...a branch, and a first register selection field for specifying one of said plurality of dedicated address registers in which said branch target address is to be stored after it is calculated; and2) a second instruction including an operation code field defining a branch operation, a second register selection field for specifying one of said

plurality of dedicated address registers that stores said branch target address to be used for the branch operation, and a...

...by the processor of said first instruction and said second instruction

is arranged so as to reduce latency for handling said branch

operation,
and such that resolution of said branch condition is performed
during
execution of said second instruction; andfurther wherein the
microprocessor
operates with a first mode for executing said first length instruction
and
a second mode for executing said second length instruction....

23/69,K/2 (Item 2 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0009715254

WPI ACC NO: 1999-631855/199954

XRPX Acc No: N1999-466430

Mask and shift instructions for ATM-type frame - Using logical OR

operation on result for destination register

Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)

Patent Family (1 patents, 1 countries)

Patent Application

 Number
 Kind
 Date
 Number
 Kind
 Date
 Update

 RD 422110
 A 19990610
 RD 1999422110
 A 19990520
 199954
 E

Priority Applications (no., kind, date): RD 1999422110 A 19990520

Patent Details

Number Kind Lan Pg Dwg Filing Notes

RD 422110 A EN 2 0

Alerting Abstract RD A

NOVELTY - Instructions are MASH (mask and shift) and MASHO (mask and shift or). The MASH instruction takes five parameters - source register to

get data from, most and least significant number of data to $\ensuremath{\mathbf{keep}}$, shift

 $\operatorname{direction}$ and number of bits to shift the selected bit field. The MASHO

into the destination register, useful when multiple non-contiguous fields

need to be concatenated.

USE - Instructions are for ATM or other network frames where the header

has to be examined to determine which connection the frame is for. ADVANTAGE - Instructions simplify the field extraction process.

Title Terms/Index Terms/Additional Words: MASK; SHIFT; INSTRUCTION; ATM:

TYPE; FRAME; LOGIC; OPERATE; RESULT; DESTINATION; REGISTER

Class Codes

International Classification (Main): H04L

Mask and shift instructions for ATM-type frame...

Alerting Abstract ...parameters - source register to get data from, most

and least significant number of data to $\ensuremath{\mathsf{keep}}$, shift $\ensuremath{\mathsf{direction}}$ and number of bits to shift the selected bit field. The MASHO instruction takes

an additional parameter $\ensuremath{\operatorname{specifying}}$ the destination $\ensuremath{\operatorname{register}}$. The result

of the mask and shift operation is logically or-ed into the

destination...

23/69,K/3 (Item 3 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0009611499 - Drawing available WPI ACC NO: 1999-561202/199947 Related WPI Acc No: 2001-307424

XRPX Acc No: N1999-414657

Instruction decoder in digital data processor system for bit mapped graphics processing

Patent Assignee: TEXAS INSTR INC (TEXI)

Inventor: GUTTAG K M; READ C J

Patent Family (1 patents, 1 countries)
Patent Application

 Number
 Kind
 Date
 Number
 Kind
 Date
 Update

 US 5960193
 A 19990928
 US 1993160112
 A 19931130
 199947
 B

 US 1997922726
 A 19970827

Priority Applications (no., kind, date): US 1993160112 A 19931130; US 1997922726 A 19970827

Patent Details

Number Kind Lan Pg Dwg Filing Notes

US 5960193 A EN 130 54 Division of application US 1993160112

Alerting Abstract US A

 ${\tt NOVELTY}$ - A functional signal is output to a functional control input of

arithmetic logic unit (230) based on which data at input terminals of ALU

are added, when multi-bit digital mask signal from a mask generator (239)

is at low level. The data at the terminals are subtracted when the output

mask signal is at high level.

DESCRIPTION - When the instruction decoder connected to data registers,

arithmetic logic unit (230) and flag register, is responsive to an instruction word, data is output from first and second data register units

to first and second data inputs of arithmetic logic unit. A functional signal is output to functional control input of arithmetic logic unit using

which data received at the second data input terminal is subtracted from

the first. A status decoder (210) of arithmetic logic unit generates status

signal indicating whether digital resultant signal obtained as a result of

subtraction, \cdot is less than zero. When the instruction decoder is responsive

to second instruction word, data from third and fourth data register units

are supplied to first and second data input terminals of arithmetic logic unit.

USE - For bit mapped graphics processing used in video conference multimedia application, high definition television, color facsimile and digital photography.

ADVANTAGE - Three input arithmetic logic units are provided in one digital graphic processor as a part of microprocessor is formed in single

integrated circuit used in image processor.

DESCRIPTION OF DRAWINGS - The figure shows the block diagram of digital

data processing system.

- 210 Status decoder
- 230 Arithmetic logic unit
- 239 Mask generator

Title Terms/Index Terms/Additional Words: INSTRUCTION; DECODE; DIGITAL; DATA; PROCESSOR; SYSTEM; BIT; MAP; GRAPHIC; PROCESS

Class Codes

International Classification (Main): G06F-009/00 US Classification, Issued: 395562000, 395565000, 364716070

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F

Original Publication Data by Authority

Original Abstracts:

...independent sections (301, 302, 303, 304). A multiple flags register (211) stores status bits of corresponding sections controlling the conditional addition to or subtraction from a like plurality of running

sums. After finishing the subtractions...

Claims:

...of instruction words, said plurality of data registers, said arithmetic

logic unit and flags register, said instruction decoder receiving individual instruction words of said stream of instruction words and

responsive to a first instruction word to supply data from a first

data register of said plurality of data registers to...

23/69,K/4 (Item 4 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0009003831 - Drawing available

WPI ACC NO: 1998-559651/199848

Related WPI Acc No: 1998-559652; 1998-559653; 1998-559656; 2005-513801

XRPX Acc No: N1998-436424

Graphics processor e.g. for creation of graphical images to be printed or

displayed - executes computer instruction set in form of opcode with operand which is, or indicates location data to be processed with data to

be processed consist of variable length stream of data
Patent Assignee: AMIES C (AMIE-I); CANON INFORMATION SYSTEMS RES
AUSTRALIA

(CANO); CANON KK (CANO); GIBSON I (GIBS-I); LONG T M (LONG-I) Inventor: AMIES C; CHUNG W Y; ELBOURNE T R; GIBSON I; GIBSON I R; GRAHAM S;

HIGGINBOTTOM R P; KEVIN C H W; LONG T M; MICHAEL J W; PAUL R H;

T; PULVER M; STONEY G; TIMOTHY M L; WEBB M J; WIN Y C; WONG K C; YIP

D								
Patent Family	(40 pa	tents, 28	COI	untries)			`.	
Patent				plication				
Number	Kind Date		Nur	Number		Date	Update	
EP 875853	A2	19981104	EΡ	1998303352	Α	19980429	199848	В
AU 199863697	Α	19981112	ΑU	199863697	Α	19980429	199906	E
AU 199863698	A	19981112	,AU	199863698	Α	19980429	199906	E
AU 199863695	· A	19981119	AU	199863695	A	19980429	199907	E
AU 199863696	A	19981119	ΑU	199863696	Α	19980429	199907	Ė
JP 11085963	Α	19990330	JР	1998169415	Α	19980430	199923	E
JP 11085969	Α	19990330	JР	1998169416	Α	19980430	199923	E
JP 11122116	A	19990430	JP	1998169417	A	19980430	199928	E
JP 11167627	Α	19990622	JΡ	1998169414	А	19980430	199935	Ε
AU 717168	В	20000316	AU	199863695	A	19980429	200024	E
AU 717336	В	20000323	ΑU	199863697	Α	19980429	200025	E
AU 200014980	A	20000413	AU	199863697	Α	19980429	200028	
NCE								
			ΑU	200014980	Α	20000209		
US 6061749	Α	20000509	US	199825744	A	19980218	200030	E
AU 200016349	Α	20000511	ΑU	199863695	Α	19980429	200031	
NCE								
•			AU	200016349	A	20000211		
US 6118724	A	20000912	US	199825726	A	19980218	200046	E
AU 727990	В	20010104	AU	199863698	Α	19980429	200107	E
AU 728882	· B	20010118	AU	199863696	А	19980429	200109	E
US 6195674	B1	20010227	US	199825506	Α	19980218	200114	Ε
US 6237079	· B1	20010522	US	199825758	Α	19980218	200130	E
US 6246396	B1	20010612	US	199825771	A	19980218	200135	E
US 6259456	В1	20010710	US	199825614	Α	19980218	200141	E
AU 200133402	A	20010621	ΑU	199863698	Α	19980429	200147	
NCE								
				200133402	А	20010402		
US 6272257	B1	20010807	US	199825613	А	19980218	200147	E
US 6289138	B1	20010911	US	199825725	Α	19980218	200154	E
US 20010021971	l A1	20010913	US	199825194	A	19980218	200155	E

US	6311258	В1	20011030	US	199825843	A	19980218	200172	E
AU	739533	В	20011018	ΑU	199863697	Α	19980429	200174	
NCE	3						•		
				AU	200014980	Α	20000209		
US	6336180	В1	20020101	US	199825755	Α	19980218	200207	Ε
ΑU	200197494	A	20020221	AU	200016349	Α	20000211	200221	
NCE	3								
				AU	200197494	Α	20011228		
US	6349379	B2	20020219	US	199825194	Α	19980218	200221	E
ΑU	744329	В ′	20020221	ΑU	199863695	Α	19980429	200223	
NCE	3								
				ΑU	200016349	Α	20000211		
US	20020057446	A1	20020516	US	199825768	Α	19980218	200237	E
US	6393545	В1	20020521	US	199825755	Α	19980218	200241	E
	·			US	2001873429	Α	20010605		
US	6414687	В1	20020702	US	199825507	Α	19980218	200248	E
US	6507898	В1	20030114	US	199825770 .	Α	19980218	200313	E
AU	760297	В	20030508	ΑU	200016349	Α	20000211	200337	
NCE	2								
				AU	200197494	Α	20011228		
US	6674536	B2	20040106	US	199825768	Α	19980218	200411	E
US	6707463	В1	20040316	US	199825614	Α	19980218	200420	E
				US	2000611978	Α	20000706		
JP	2005348410	Α	20051215	JP	1998169417	Α	19980430	200582	E
				JP	2005161916	Α	20050427		
ΕP	875855	В1	20060802	ΕP	1998303363	Α	19980429	200651	E

Priority Applications (no., kind, date): AU 200197494 A 20011228; AU 200133402 A 20010402; AU 200016349 A 20000211; AU 200014980 A 20000209; AU 19976492 A 19970430; AU 19976491 A 19970430; AU 19976490

A 19970430; AU 19976489 A 19970430; AU 19976488 A 19970430; AU 19976487 A 19970430; AU 19976486 A 19970430; AU 19976485 A 19970430

; AU 19976484 A 19970430; AU 19976483 A 19970430; AU 19976482 A 19970430; AU 19976481 A 19970430; AU 19976480 A 19970430; AU 19976479

A 19970430

Patent Details

Number Kind Lan Pg Dwg Filing Notes A2 EN 333 158 EP 875853 Regional Designated States, Original: AL AT BE CH CY DE DK ES FI FR GB IE IT LI LT LU LV MC MK NL PT RO SE SI JP 11085963 A JA 684 JP 11085969 Α JA 719

JP 11122116 Α JA 748 JP 11167627 Α JA 821 AU 717168 EN Previously issued patent AU 9863695 AU 717336 Previously issued patent AU EN9863697

AU 200014980 A EN Division of application AU 199863697

AU 200016349 199863695	A	EN		Division of patent AU 717336 Division of application AU
AU 727990 9863698	В	EN		Division of patent AU 717168 Previously issued patent AU
AU 728882 9863696	В	EN		Previously issued patent AU
AU 200133402 199863698	A	EN		Division of application AU
AU 739533 199863697	В	EN		Division of patent AU 727990 Division of application AU
200014980				Previously issued patent AU
AU 200197494 200016349	Α	EN		Division of patent AU 717336 Division of application AU
AU 744329 199863695	В	EN		Division of patent AU 744329 Division of application AU
200016349				Previously issued patent AU
US 6393545 199825755	в'n	EN		Division of patent AU 717168 Continuation of application US
AU 760297 200016349	В	EN		Continuation of patent US 6336180 Division of application AU
200197494				Previously issued patent AU
US 6707463 199825614	В1	EN		Division of patent AU 744329 Division of application US
JP 2005348410 199816 <u>9</u> 417	A	JA	328	Division of application JP
ED OSEOE	ъ.	-		

Regional Designated States, Original: DE FR GB

B1 EN

Alerting Abstract EP A2
The processor comprises several interrelated functional modules. A register is associated with each of the functional modules. Each register

is configured to control the function of its associated functional module.

An instruction controller decodes instructions for use with the graphics

processor, the instruction controller includes a register setting device to

set the registers in accordance with a decoded instruction, to configure

the function of each of the functional modules in response to each instruction.

The registers include a semaphore access mechanism accessible by external

modules, including the functional modules. Some of the functional registers

include a status register, the contents of each of which is updateable by

its associated register during or following execution of an instruction.

ADVANTAGE - Facilitates processing of variable length streams of data.

Title Terms/Index Terms/Additional Words: GRAPHIC; PROCESSOR; CREATION;
 GRAPHICAL; IMAGE; PRINT; DISPLAY; EXECUTE; COMPUTER; INSTRUCTION;
SET;

FORM; OPERAND; INDICATE; LOCATE; DATA; PROCESS; CONSIST; VARIABLE; LENGTH

; STREAM

Class Codes

International Classification (Main): G06T-001/00, G06T-001/20, G06T-009/00,

H03M-007/40

(Additional/Secondary): G06F-012/08, G06T-011/80, H04N-001/387, H04N-001/41, H04N-001/46, H04N-001/60, H04N-007/24, H04N-007/30, H04N-007/50, G06F-015/16, G06F-017/14, H03M-007/30

International Classification (+ Attributes)

IPC + Level Value Position Status Version

G06F-0012/00 A I R 20060101 R 20060101 G06F-0015/167 A I G06F-0009/28 A I R 20060101 G06F-0009/30 A I R 20060101 G06F-0009/38 A I R 20060101 G06F-0009/38 A I L B 20060101 G06T-0001/20 A I F B 20060101 G06T-0001/20 A Ι R 20060101 G06T-0001/60 A I R 20060101 G06T-0011/00 A I R 20060101 G06T-0015/00 A I R 20060101 G06T-0007/00 A I. R 20060101 G06T-0009/00 A R 20060101 I R 20060101 G11C-0008/00 A Ι H03M-0007/30 A I R 20060101 H03M-0007/40 A R 20060101 I H04N-0007/50 A I R 20060101 G06F-0012/00 C I R 20060101 G06F-0015/16 C I R 20060101 G06F-0009/28 C I R 20060101 G06F-0009/30 C I R 20060101 G06F-0009/38 C I R 20060101

```
G06T-0001/20 C I
                       R 20060101
  G06T-0001/60 C I
                       R 20060101
  G06T-0011/00 C I
                       R 20060101
  G06T-0015/00 C I
                       R 20060101
  G06T-0007/00 C I
                       R 20060101
  G06T-0009/00 C I
                        R 20060101
  G11C-0008/00 C I
                        R 20060101
 H03M-0007/30 C I
                        R 20060101
 H03M-0007/40 C I
                         R 20060101
                         R 20060101
 H04N-0007/50 C I
US Classification, Issued: 712215000, 358001150, 358001160, 382307000,
  358001130, 708204000, 708205000, 345154000, 710065000, 365189020,
  365221000, 365230020, 365230050, 708401000, 708402000, 711153000,
  712034000, 345153000, 345154000, 345513000, 358523000, 358524000,
  358525000, 345186000, 345501000, 345433000, 382246000, 382308000,
  382307000, 711210000, 711211000, 711212000, 711214000, 711215000,
  711200000, 711206000, 711207000, 711209000, 712034000, 712225000,
 712210000, 712035000, 711148000, 711153000, 711163000, 712034000, 345520000, 345559000, 712032000, 712033000, 712229000, 345503000,
  711118000, 711168000, 358001900, 358001150, 345501000, 345619000
File Segment: EngPI; EPI;
DWPI Class: T01; P85
Manual Codes (EPI/S-X): T01-F03C; T01-J10B; T01-M02
Original Publication Data by Authority
Original Abstracts:
...co-processor instructions to be executed, and those which have been
executed are allocated to respective queues (<b>1040, 1041</b>).
From
time to time the latter queue (<b>1041</b>) is cleaned up under
control...
...the co-processor by the CPU. This dynamic memory management
arrangement
preferably includes an instruction generator ( <b>1030</b> ), a
manager (<b>1031</b>) and a queue manager (<b>1032</b>...variable
stream of data and each instruction includes a length field
(<b>297</b>)
containing data specifying
                            the number of items of data to be
processed
or, if that number exceeds the size...
...for use with the graphics processor. The control bus and the data
pipeline are physically separate , and the instruction controller
includes a register setting unit adapted to set the registers via the
control bus ...
Claims:
...memory array; anda plurality of first-in-first-out (FIFO) output
coupled to respective ones of said plurality of read ports, wherein
```

...from said memory array, and each of said read ports is de-coupled by

said FIFO output buffers are disposed between said memory array...

its

. . .

respective FIFO output buffer from said memory array and/or a plurality of first-in-first-out (FIFO) input...

...to said memory array, and each of said write ports is de-coupled by its
respective FIFO input buffer from said memory array...

...including a combinatorial circuit for calculating a DCT without a clocked storage unit.

...of controlling the interaction between a host CPU and at least one co-processor in a computer system to permit substantially simultaneous

decoupled execution of CPU instructions and co-processor instructions, and

dynamic allocation ...enabling or disabling a plurality of options in said

image processing operation; a configuration register for storing said image processing operation and options; a register file for storing information necessary for performing said image processing operation; decoding means connected to said configuration r... A data store apparatus adapted to store first data objects comprised of a plurality of first data items and to store second data objects comprised of one or...

...the calculation represents processed image data, and each instruction

includes a length field that includes data specifying a number of items

of data to be processed or, if the number exceeds a size of...of the registers for conveying instructions, wherein said control bus and the data

pipeline are physically separate; and an instruction controller for decoding instructions for use with the graphics processor, the instruction

controller including a register setting unit...

23/69,K/5 (Item 5 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0008745016 - Drawing available WPI ACC NO: 1998-287185/199825 XRPX Acc No: N1998-225670

Eight-bit microcontroller with RISC architecture - has direct-address

couples program execution unit to directly access data store and register file during program execution, indirect-address bus provides register file with indirect data access to data store during program execution

Patent Assignee: ATMEL CORP (ATME-N)

Inventor: BOGEN A; BRYANT D; BRYANT J D; MYKLEBUST G; WOLLAN V.

Patent Family (14 patents, 23 countries)

Pat	ent			Appli	ication				
Nur	mber '	Kind	Date	Numbe	er	Kind	Date	Update	
WO	1998020422	A1	19980514	WO 19	997US19626	Α	19971030	199825	В
US	5854939	Α	19981229	US 19	996745098	Α	19961107	199908	E
TW	355772	Α	19990411	TW 19	997116599	Α	19971107	199935	Ε
ΕP	954791	A1	19991110	EP 19	997913860	Α	19971030	199952	E
				WO 19	997US19626	Α	19971030		
CN	1236455	Α	19991124	CN 19	997199485	Α	19971030	200014	Ε
KR	2000053047	Α	20000825	WO 19	997US19626	Α	19971030	200121	E
				KR 19	999703950	Α	19990504		
JP	2001504959	W	20010410	WO 19	997US19626	Α	19971030	200128	E
				JP 19	998521534	Α	19971030		
EP	954791	В1	20050316	EP 19	997913860	Α	19971030	200522	E
				WO 19	997US19626	Α	19971030		
				EP 20	00429045	Α	19971030		
DĒ	69732793	E	20050421	DE 69	9732793	A	19971030	200528	E
				EP 19	997913860	Α	19971030		
				WO 19	997US19626	Α	19971030		
KR	465388	В	20050113	WO .19	997US19626	Α	19971030	200535	E
				KR 19	999703950	A	19990504		
CN	1115631	С	20030723	CN 19	997199485	A	19971030	200548	E
JP	3694531	B2	20050914	WO 19	997US19626	Α	19971030	200560	E
				JP 19	998521534	A	19971030		
ΕP	1596279	A2	20051116	EP 19	997913860	Α	19980514	200575	E
				EP 20	00429045	A	19971030		
DE	69732793	T2	20060406		9732793	Α	19971030	200625	E
					997913860	Α	19971030		
				WO 19	997US19626	Α	19971030		

Priority Applications (no., kind, date): US 1996745098 A 19961107

Patent Details '

Number Kind Lan Pg Dwg Filing Notes

WO 1998020422 A1 EN 44 6

National Designated States, Original: CN DE GB JP KR

Regional Designated States, Original: AT BE CH DE DK ES FI FR GB GR IE

LU MC NL PT SE

TW 355772 · A ZH

EP 954791 A1 EN PCT Application WO 1997US19626

Based on OPI patent WO 1998020422

Regional IT	Designa	ted	States	Orig	inal:	: AT	BE	СН	DE	DK	ES	FI	FR	GB	GR	IE
LI LU	NL PT S	E		•												
KR 200005	53047	Α	KO		10	PCT A	App]	lica	atio	on	WO	199	97US	5196	526	
						Based	d or	1 OI	PI p	pate	ent	V	10	L998	3020	422
JP 200150	04959	W	JA	46		PCT Z	App]	Lica	atio	on	WO	199	7US	5196	526	
						Based	d or	1 OI	PI E	pate	ent		10 J	1998	3020	422
EP 954793	l	B1	EN			PCT A	App]	lica	atio	on	WO	199	7US	5196	526	
						Relat	ted	to	app	plic	cati	ion	E			
200429045	5										•					
						Based										
Regional	Designa	ted	States	Orig	inal:	AT	BE	CH	DE	DK	ES	FI	FR	GB	GR	IE

Regional Designated States, Original: AT BE CH DE DK ES FI FR GB GR IE

IT

LT LU NL PT SE

LT PO NP LL	SE			
DE 69732793	E	DE		Application EP 1997913860 PCT Application WO 1997US19626
				Based on OPI patent EP 954791 Based on OPI patent WO 1998020422
KR 465388	В	ко		PCT Application WO 1997US19626 Previously issued patent KR
2000053047				reviously issued pacent and
•				Based on OPI patent WO 1998020422
JP 3694531	B2	JA	22	PCT Application WO 1997US19626
0003504050				Previously issued patent JP
2001504959				
				Based on OPT patent WO 1998020422

EP 1596279 A2 EN Based on OPI patent WO 1998020422
Division of application EP
1997913860

Division of patent EP 954791 Regional Designated States, Original: AT BE CH DE DK ES FI FR GB GR IE

LI LU NL PT SE

DE 69732793 T2 DE Application EP 1997913860

PCT Application WO 1997US19626
Based on OPI patent EP 954791
Based on OPI patent WO 1998020422

Alerting Abstract WO Al

The system includes a program store for storing programs and a program

execution unit is coupled to the program store via a program bus. A

store separate from the program store is coupled to the eight-bit data bus.

A register file is coupled to the eight-bit data bus and has a number of

eight-bit registers. The register file combines two of the eight-bit registers to be accessed as a single logical sixteen-bit register. A general purpose ALU is coupled to receive the contents of two of the eight-bit registers, and has an output coupled to the eight-bit data bus. A

direct-address bus couples the program execution unit to directly access

the data store and the register file during program execution. An

indirect-address bus provides the register file with indirect data access

to the data store during program execution. A dedicated ALU performs arithmetic functions on a logical sixteen-bit register accessed through the

combining device.

ADVANTAGE - Provides complete and efficient instruction set for application software developer.

Title Terms/Index Terms/Additional Words: EIGHT; BIT; ARCHITECTURE;
DIRECT;

ADDRESS; BUS; COUPLE; PROGRAM; EXECUTE; UNIT; ACCESS; DATA; STORAGE; REGISTER; FILE; INDIRECT

Class Codes

International Classification (Main): G06F-013/00, G06F-009/30, G06F-009/32,

G06F-009/34, G06F-009/345

(Additional/Secondary): G06F-009/302, G06F-009/355

International Classification (+ Attributes)

IPC + Level Value Position Status Version

G06F-0013/00 A I F B 20060101

G06F-0009/30 A I L B 20060101

G06F-0009/302 A I L B 20060101

G06F-0009/355 A I L B 20060101

G06F-0009/34 C I L B 20060101

US Classification, Issued: 395800410, 395800010, 395800310, 395800320, 395800330

File Segment: EPI;

DWPI Class: T01

Manual Codes (EPI/S-X): T01-M05

...has direct-address bus couples program execution unit to directly access data store and register file during program execution, indirect-address bus provides register file with indirect data...

Alerting Abstract ...the eight-bit data bus. A direct-address bus couples

the program execution unit to directly access the data store and the

register file during program execution. An indirect-address bus provides

the register file...

Original Publication Data by Authority

Original Abstracts:

An eight-bit RISC based microcontroller (10) includes an eight-bit register

file having a $\mbox{\tt dedicated}$ arithmetic logic unit ALU (ALU-2), in addition to

general purpose eight-bit ALU (ALU...

...within the register file with a single instruction. This avoids having

to perform various loads, shift and /or masking operations needed by prior art microcontrollers...

...a dedicated arithmetic logic unit (ALU), in addition to a general purpose eight-bit ALU. The register file further includes means for combining a pair of registers to provide a logical sixteen-bit register for

indirect addressing. The dedicated ALU is a sixteen-bit ALU which provides certain arithmetic functions for the register pair, thus alleviating the computational burdens that would otherwise be imposed on

the general purpose...

Claims:

...einem vom Programmspeicher separaten Datenspeicher (SRAM), der mit dem

Acht-Bit-Datenbus (12) gekoppelt ist; einer Registerdatei , die mit dem

Acht-Bit-Datenbus (12) gekoppelt ist, wobei die Registerdatei eine Vielzahl von Acht-Bit-Registern (R0-R30) aufweist, wobei die Registerdatei

ferner ein Mittel...

...bit data bus (12);a direct-address bus (16) coupling said program execution unit to directly access said data store (SRAM) and said register file during program execution; characterized byan indirect-address bus (14...

...ALU (ALU-2) coupled to said combining means in order to perform arithmetic functions on a logical sixteen-bit register (R27/R26) accessed through said combining means; said indirect-address bus (14) having

address-receiving...said general purpose ALU having an output coupled to

said eight-bit data bus; a direct -address bus coupling said program execution unit to directly access said data store and said register

file during program execution; andan indirect-address bus providing said

register file with indirect data access to said randomly accessible
memory

during program execution; said register file further including a dedicated

ALU coupled to said means for combining in order to perform arithmetic

functions on a logical sixteen

23/69,K/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0008610995 - Drawing available

WPI ACC NO: 1998-147173/199814

XRPX Acc No: N1998-116613

Super-scalar architecture processor - has multiplex-controlled paradigm unit for dynamic re-configuration and programming during execution of program

Patent Assignee: INFINEON TECHNOLOGIES AG (INFN); SIEMENS AG (SIEI)

Inventor: SIEMERS C; SIEMERS C R

Patent Family (8 patents, 26 countries)

Pa	tent			Ap)	plication				
Nu	mber	Kind	Date	Nu	mber	Kind	Date	Update	
ΕP	825540	A1	19980225	EP	1997114501	A	19970821	199814	В
DE	19634031	A1	19980226	DE	19634031	A	19960823	199814	E
JP	10105402	Α	19980424	JP	1997238917	Α	19970820	199827	Ε
KR	1998018874	Α	19980605	KR	199740002	А	19970822	199923	E
US	6061367	Α	20000509	US	1997918282	Α	19970825	200030	E
KR	316078	В	20020112	KR	199740002	A	19970822	200254	E
ΕP	825540	В1	20030507	EΡ	1997114501	Α	19970821	200333	Ε
DE	59710022	G	20030612	DE	59710022	A	19970821	200340	E
				EΡ	1997114501	Α	19970821		

Priority Applications (no., kind, date): EP 1997114501 A 19970821; DE 19634031 A 19960823

Patent Details

Number Kind Lan Pg Dwg Filing Notes

EP 825540 A1 DE 18 11

Regional Designated States, Original: AL AT BE CH DE DK ES FI FR GB GR

IT LI LT LU LV MC NL PT RO SE SI

DE 19634031 A1 DE 18 JP 10105402 A JA 12

KR 1998018874 A KO 12

KR 316078 B KO Previously issued patent KR

98018874

EP 825540 B1 DE

Regional Designated States, Original: DE FR GB IT

DE 59710022 G DE Application EP 1997114501

Based on OPI patent EP 825540

Alerting Abstract EP A1

The processor has a programmable structure buffer (30) acting as a logic

unit, an integer/address instruction buffer (32), an integer register file

(24) for direct communication with a data storage interface (36) and a functional unit (34) with a programmable structure forming a multiplex-controlled paradigm unit for dynamic re-

configuration/programming

during execution of the program.

The functional unit uses a number of arithmetic units, a number of compare units, multiplexers, inserted between the arithmetic units, the

compare units and the register file and demultiplexers between the outputs

of the compare units and the arithmetic units.

USE - For superscalar microcomputer.

 ${\tt ADVANTAGE}$ - Programmable structure allows optimum use of resources for

maximum processing rate.

Title Terms/Index Terms/Additional Words: SUPER; SCALE; ARCHITECTURE; PROCESSOR; MULTIPLEX; CONTROL; UNIT; DYNAMIC; CONFIGURATION; PROGRAM; EXECUTE

Class Codes

International Classification (Main): G06F-015/78, G06F-009/28, G06F-009/38,

H04J-003/04

(Additional/Secondary): G01B-011/22, G06F-015/80, G06F-009/302, G06F-009/45

US Classification, Issued: 370535000, 712033000

File Segment: EPI;

DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B1; T01-M02C2; T01-S01A

Original Publication Data by Authority

Original Abstracts:

...processor having a pipelining structure, in particular with a superscalar architecture, includes a configurable logic unit, an instruction memory, a decoder unit, an interface device, a programmable

structure buffer, an integer/address instruction buffer and a... Claims:

...unit (18), an integer/address instruction buffer (32) and an integer register file (24) for direct communication with data- storing interface

means (36),</br>
b>characterized bya functional unit with a programmable structure (34), havinga...output busses, which are provided

between the arithmetic units (50, 51), the compare units (52) and the register file (24), as well as aplurality of demultiplexers (46) having

one input bit and a plurality of output bits, for delivery of the results

of the comparisons (CoU) in a destination selection to corresponding arithmetic units (50, 51), a multiplex-controlled s-paradigm unit...

23/69,K/7 (Item 7 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0008356746 - Drawing available

WPI ACC NO: 1997-470414/199743

XRPX Acc No: N1997-392542

Data processor for executing instructions to insert or extract data to or

from optional byte position of register - specifies bit area on destination

register by decoding instruction contg. operation code, source operand and

destination operand, and inserts source data in register or memory into specified area

Patent Assignee: MITSUBISHI DENKI KK (MITQ); MITSUBISHI ELECTRIC CORP (MITQ)

Inventor: DOI T; IWATA S; MIZUGAKI S; SHIMIZU T

Patent Family (3 patents, 2 countries)

Patent			•	Application				
Number	•	Kind	Date	Number	Kind	Date	Update	
US 5669012		A	19970916	US 1994245792	A	19940519	199743	В
				US 1996720455	A	19960930		
JP 3203401		. B2	20010827	JP 1993120014	A	19930521	200152	E
JP 200135690	2	A	20011226	JP 1993120014	A	19930521	200206	E
				JP 2001130294	Α	19930521		

Priority Applications (no., kind, date): JP 2001130294 A 19930521; JP 1993120014 A 19930521

Patent Details

Number	Kind	Lan	Рg	Dwg	Filing Notes
US 5669012	A	EN	25	18	Continuation of application US
1994245792					
JP 3203401	B2	JA	15		Previously issued patent JP
06332695					
JP 2001356902	Α	JA	14		Division of application JP
1993120014					•

Alerting Abstract US A

The data processor has a micro-decoder which decodes instruction

comprising two operation code parts, a source operand specifying part and a

destination operand specifying part. An optional bit area of source data -

a register of a general register file or a memory - is inserted in an optional bit area, determined by the value of the first operation code part, of a destination register according to the decoding result.

An optional bit area, determined by the value of the second operation code part, of a source register is extracted and stored in an optional

bit area of destination - a register of the general register file or the

memory.

ADVANTAGE - Processes insertion and extraction operations to and from optional byte positions of registers at high speed with short instruction code size.

Title Terms/Index Terms/Additional Words: DATA; PROCESSOR; EXECUTE; INSTRUCTION; INSERT; EXTRACT; OPTION; BYTE; POSITION; REGISTER; SPECIFIED

; BIT; AREA; DESTINATION; DECODE; CONTAIN; OPERATE; CODE; SOURCE; OPERAND

; MEMORY

Class Codes

International Classification (Main): G06F-009/30, G06F-009/305, G06F-009/35

(Additional/Secondary): G06F-007/00, G06F-009/34 US Classification, Issued: 395800010, 395376000, 395384000, 395390000, 395611000, 395670000, 395898000, 364DIG001

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-E02D; T01-F01C; T01-F03A; T01-H01D; T01-J10B;

T01-S01A

Alerting Abstract ...the value of the second operation code part, of a source register is extracted and stored in an optional bit area of destination - a register of the general register file or the memory...

Original Publication Data by Authority

Original Abstracts:

...the value of the second operation code part) of a source register is extracted and stored in an optional bit area of destination (a register of the general register file or the memory), thereby making it possible to...

Claims:

...data to or from an optional byte position of a register, the data processor comprising: instruction decoding means for decoding a digital instruction code including a source operand specifying part, a destination operand specifying part, information specifying a byte

position in the source operand...

...decoding result specifying a source data corresponding to said source

operand specifying part, a memory or destination $\ensuremath{\text{\textbf{register}}}$ corresponding

to said destination operand specifying part, a position in the source data corresponding to...

...comprising one or a plurality of bits, corresponding to said operation

specifying part; a memory and a register file having one or a plurality

of registers, at least one of the memory and the one or a plurality of registers being specified as the destination operand by \mbox{said} decoding

result; instruction executing means, connected to said instruction decoding means and receiving said decoding result, for reading source

data **specified** by said decoding result and inserting a bit string, the

length of which is specified...

 \ldots by said decoding result, and storing the resulting source data in the

memory or register specified by said decoding result; and instruction

executing controlling means, connected to said instruction executing

means, for operating said instruction executing means when said operation

specifying part decoded by said instruction decoding means is a

predetermined code.

23/69,K/8 (Item 8 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0007414513 - Drawing available WPI ACC NO: 1996-022045/199603 XRPX Acc No: N1996-018299

Superscaler microprocessor with flag operand renaming and forwarding -

unit decoding instructions in stream and translating them into ROPs with

reorder buffer storing concatenated integer and flag results to form floating point results

Patent Assignee: ADVANCED MICRO DEVICES INC (ADMI)

Inventor: CHRISTIE D S; GODDARD M D; WHITE S A

Patent Family (8 patents, 14 countries)

	-	-	•	•				
P	atent			Application				
N	Tumber	Kind	Date	Number	Kind	Date	Update	
E	P 686913	A2	19951213	EP 1995303667	Α	19950530	199603	В
J	P 7334364	Α	19951222	JP 1995134013	A	19950531	199609	E
E	P 686913	A3	19961127	EP 1995303667	A	19950530	199702	E
U	IS 5632023	A	19970520	US 1994252029	A	19940601	199726	E
U	S 5805853	Α	19980908	US 1994252029	A	19940601	199843	E
				US 1997799064	A	19970210		
E	P 686913	B1	19990317	EP 1995303667	A	19950530	199915	\mathbf{E}
D	E 69508303	E	19990422	DE 69508303	Α	19950530	199922	Ė
				EP 1995303667	Α	19950530		
J	P 3662296	B2	20050622	JP 1995134013	Α	19950531	200541	E

Priority Applications (no., kind, date): US 1997799064 A 19970210; US 1994252029 A 19940601

Patent Details

Number	Kind	Lan	Pg	Dwg	Filir	ıg I	Note	es							
EP 686913	A2	EN	43	11											
Regional D	Designated	States	,Ori	ginal:	AT	BE	DE	DK	ES	FR	GB	GR	ΙE	IT	LU
NL															
PT SE															
TD		~-	~ =												

JP 7334364 A JΑ 37 EP 686913 A3 EN US 5632023 Α EN 36 11

US 5805853 Α EN Continuation of application US 1994252029

Continuation of patent US 5632023 EP 686913 B1 EN

Regional Designated States, Original: AT BE DE DK ES FR GB GR IE IT LU

PT SE DE 69508303 E DE Application EP 1995303667 Based on OPI patent EP 686913 JP 3662296 B2 JA 47 Previously issued patent JP 07334364

Alerting Abstract EP A2

The microprocessor has a decoder decoding instructions contained in an

instruction stream and translating them once decoded into RISC-like instructions (ROPs). A reorder buffer (35), coupled to the decoder stores

the speculative state of the processor. A register file (30), coupled to

the reorder buffer, stores the real state of the processor.

The reorder buffer includes an array with several storage locations including integer result portions for storing a speculative integer result

and a flag result portion for storing speculative flag information associated with the integer result. The flag result portion and the integer

result portion are concatenated to form a floating point storage location

which accommodates storage of floating point results wider than the integer

results. A real flags register, coupled to the reorder buffer, stores flag

information retired from the reorder buffer.

ADVANTAGE - Flags are advantageously grouped to lessen number of dependency checkers that are needed,. Microprocessor exhibits enhanced performance w.r.t. execution of instructions. Requires small number of flag structures.

Title Terms/Index Terms/Additional Words: MICROPROCESSOR; FLAG; OPERAND:

FORWARDING; UNIT; DECODE; INSTRUCTION; STREAM; TRANSLATION; BUFFER; STORAGE; CONCATENATED; INTEGER; RESULT; FORM; FLOAT; POINT

Class Codes

International Classification (Main): G06F-009/30, G06F-009/38
US Classification, Issued: 395394000, 395800000, 395391000, 395394000,
395391000, 395800230

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B

Original Publication Data by Authority

Original Abstracts:

 \ldots of the microprocessor. To enhance the performance of the microprocessor

with respect to conditional branching instructions , the reorder buffer

includes a flag storage area for storing flags that are updated by flag modifying instructions...

...of the microprocessor with respect to conditional branching instructions, the reorder buffer includes a flag storage area for storing flags that are updated by flag modifying instructions. The flags

are renamed to make possible...

...with respect to conditional branching instructions, the reorder

buffer

includes a flag storage area for **storing** flags **that** are updated by flag

modifying instructions. The flags are renamed to make possible the earlier

Claims:

. . .

...in an instruction stream or for decoding instructions contained in an

instruction stream and translating decoded instructions into ROPs respectively;</br>
 a reorder buffer, coupled to the decoder, for

storing the speculative state of the microprocessor;</br> a register file, coupled...

 \dots instructions contained in an instruction stream and translating decoded

instructions into RISC-like operations ("ROPs") respectively ;</br>

reorder buffer (285), coupled to the decoder, for storing the speculative

state of the microprocessor;</br>
 a register file (255), coupled to the

reorder buffer, for storing the real state of the microprocessor;</br>
the reorder buffer (285), including a reorder buffer array having a plurality of storage locations which include an ...

23/69,K/9 (Item 9 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0007130871 - Drawing available WPI ACC NO: 1995-163659/199522 Related WPI Acc No: 1996-020202

XRPX Acc No: N1995-128351

Write buffer for super-pipelined super-scalar microprocessor - directs each

write to memory to write buffer rather than memory bus or cache memory and

writes contents of write buffer to cache or main memory when memory bus or

cache becomes available

Patent Assignee: CYRIX CORP (CYRI-N); NAT SEMICONDUCTOR CORP (NASC); VIA-CYRIX INC (VIAC-N)

Inventor: BLUHM M; GARIBAY R; GARIBAY R A; HERVIN M W; MARC; NITARU P;
PATWA N; QUATTROMANI M A

Patent Family (10 patents, 10 countries)

Ра	tent			Apı	plication				
Nu	mber	Kind	Date	Nur	mber	Kind	Date	Update	
ΕP	651331	A1	19950503	ΕP	1994307580	A	19941017	199522	В
JP	7152566	Α	19950616	JP	1994251989	A	19941018	199533	E
US	5584009	Α	19961210	US	1993138654	A	19931018	199704	E
US	5615402	A	19970325	US	1993138652	Α	19931018	199718	E
				US	1995572584	Α	19951214		
US	5740398	Α	19980414	US	1993138651	Α	19931018	199822	E
US	5907860	Α	19990525	US	1993138654	Α	19931018	199928	E
				US	1996688900	A	19960731		
US	6219773	B1	20010417	US	1993138790	A	19931018	200123	E
ΕP	.651331	B1	20020109	EP	1994307580	Α	19941017	200211	E
DE	69429612	E	20020214	DE	69429612	A	19941017	200220	\mathbf{E}
				EP	1994307580	A	19941017		
JP	3678443	B2	20050803	JP	1994251989	Α	19941018	200551	E

Priority Applications (no., kind, date): US 1996688900 A 19960731; US 1995572584 A 19951214; EP 1994307580 A 19941017; US 1993138596 A 19931018; US 1993139596 A 19931018; US 1993138790 A 19931018; US 1993138654 A 19931018; US 1993138652 A 19931018; US 1993138651 A 19931018

Patent Details

Nun	ber	Kind	Lan	Pg	Dwg	Filing	Notes	5				
ΕP	651331	A1	EN	38								
Reg	jional Design	nated	States	s,Ori	ginal:	CH D	E ES F	R GE	3 IE	IT	LI :	NL
JP	7152566	Α	JA	36								
US	5584009	Α	EN	29	18							
US	5615402	Α	EN	29	18	Contin	uation	of	app:	lica	tio	n US
	1993138652											
US	5740398	A	EN	29								
US	5907860	Α	EN			Contin	uation	of	app.	lica	ıtio	n US
	1993138654											
ΕP	651331	В1	EN									
Reg	gional Design	nated	States	s,Ori	ginal:	CH D	E ES F	R GE	3 IE	IT	LI :	NL
DE	69429612	E	DE			Applica	ation	EP	1994	1307	580	

Based on OPI patent EP 651331

Alerting Abstract EP A1

The microprocessor includes a write buffer located between the CPU and

memory cache which stores the results of write operations to memory until

the cache memory becomes available, i.e when no high priority reads are to

be performed. The write buffer includes multiple entries that are split into two circular buffer sections for facilitating the interaction with the

two core pipelines. Cross-dependency tables are provided for each write buffer entry to ensure that the data is written from the write buffer to

memory in program order, while considering any prior data in the opposite $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

section.

Non-cacheable reads from memory are also ordered in program order with

the writing of data from the write buffer. Features for performing misaligned writes, handling speculative execution, detecting and handling

data dependencies and exceptions, and performing gathered writes are also

included within the microprocessor.

USE/ADVANTAGE - Memory access in microprocessor. Enables misaligned writes to be easily handled with minimal loss of performance. Ensures retiring of data from write buffer to cache or main memory in program order.

Title Terms/Index Terms/Additional Words: WRITING; BUFFER; SUPER; PIPE; SCALE; MICROPROCESSOR; DIRECT; MEMORY; BUS; CACHE; CONTENT; MAIN; AVAILABLE

Class Codes

International Classification (Main): G06F-012/04, G06F-012/08, G06F013/00,

G06F-009/38

(Additional/Secondary): G06F-012/00

US Classification, Issued: 395444000, 395445000, 395464000, 395449000, 364DIG001, 364261500, 364261700, 395800000, 395250000, 395410000, 395467000, 364704000, 364736000, 364748000, 395444000, 395250000, 395872000, 395449000, 711117000, 711144000, 711118000, 711169000, 395591000, 395872000, 711201000, 710052000

File Segment: EPI;

DWPI Class: T01

Manual Codes (EPI/S-X): T01-H01A; T01-H03A; T01-H05B1; T01-M02C

Original Publication Data by Authority

Claims:

 \dots instruction is a misaligned write instruction; </br> (f) a shifter coupled to the write buffer to shift the contents of a first entry

of the plurality of entries detected as a misaligned write instruction by the control logic, prior to presentation of the first entry to the cache memory...

...bits (XDEP), each cross-dependency bit corresponding to one of the buffer entries in the **respective second** and first sections (152x, 152y)

and indicating, when set, that the corresponding buffer entry $\mbox{was...}\mbox{core}$

for executing data processing operations according to a series of instructions, said microprocessor including a write buffer having a plurality of write buffer entries for buffering the results of the instructions executed...

...write buffer means having a plurality of entries, coupled to the core

means and the misalignment control means, for temporarily storing the

plurality of write operands and responsive to the misalignment control means indicating a misaligned...

23/69,K/10 (Item 10 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0005788180 - Drawing available WPI ACC NO: 1992-010489/199202

XRPX Acc No: N1992-008049

In-register data manipulation in RISC processor - permitting only simplified memory access data width and addressing modes with set limited

to register operations

Patent Assignee: DIGITAL EQUIP CORP (DIGI)
Inventor: SITES R; SITES R L; WITEK R; WITEK R T

Patent Family (10 patents, 7 countries)

Pat	tent	_		Application						
Nu	mber	Kind	Date	Nur	mber	Kind	Date	Update		
ΕP	465322	A	19920108	ΕP	1991401770	Α	19910627	199202	В	
CA	2045705	Α	19911230					199213	E	
ΕP	465322	A3	19921119	EP	1991401770	Α	19910627	199342	E	
US	5367705	Α	19941122	US	1990547619	A	19900629	199501	E	
				US	1993117482	Α	19930907			
US	5410682	A	19950425	US	1990547619	A	19900629	199522	E	
				US	1993117482	Α	19930907			
				US	1994289025	A	19940810			
TW	285729	Α	19960911	TW	1991106677	A	19910822	199704	E	
ΕP	465322	B1	19990922	EP	1991401770	A	19910627	199943	E	
DE	69131637	E	19991028	DE	69131637	Α	19910627	199951	E	
				EP	1991401770	A	19910627			
JP	3105960	B2 .	20001106	JP	1991254082	A	19910628	200059	E	
KR	231380	Bl	19991115	KR	199110879	Α	19910628	200111	E	

Priority Applications (no., kind, date): US 1994289025 A 19940810; US 1993117482 A 19930907; US 1990547619 A 19900629

Patent Details

Number	Kind	Lan	Pg	Dwg	Filing Notes
EP 465322	Α	EN			
Regional Desig	nated	States	,Ori	ginal	: DE FR GB NL
CA 2045705	A	EN			
EP 465322	A3	EN			
US 5367705	Α	EN	22	11	Continuation of application US
1990547619					
US 5410682	A	EN	22	11	Continuation of application US
1990547619					,
					Continuation of application US
1993117482					
:					Continuation of patent US 5367705
TW 285729	A	ZH			
EP 465322	B1	EN			
Regional Desig	nated	States	s,Ori	ginal	: DE FR GB NL
DE 69131637	\mathbf{E}	DE			Application EP 1991401770
					Based on OPI patent EP 465322
JP 3105960	B2	JA	32		Previously issued patent JP

06119166

The method of byte manipualtion in a processor comprises the step of loading to a first register a first quadword from a memory using a first

unaligned byte address. The unaligned byte address is the address of the

first byte of a data item of N bytes being modified to remove low order three bits before applying to the memory whereby an aligned quadword is loaded to the first register. The loading to a second register a second quadword from the memory using a second unaligned byte address, which is

the address of the first byte plus N-1, with the second unaligned byte address being modified to remove low order three bits before applying to

the memory whereby an aligned quadword is loaded to the second register.

Next extracting a first part fo the data item from the first register by

right shifting the content of the first register by a number of bytes corresponding to the value of the low order three bits of the unaligned byte address and zeroing the high order vacacted bits.

ADVANTAGE - Accomplishes all performance advantages of RISC type processor architecture, yet allows data structures and code previously generated for existing CISC type processors to be translated for use in high performance processor. @(36pp Dwg.No.1/11)@

Equivalent Alerting Abstract US A

The method of byte manipulation in the processor involves loading from a

memory to a first register in the processor a first quad-word, the memory

being addressed using a first unaligned byte address which is applied to

the memory by the processor, the first unaligned byte address addressing a

lowest-order first byte of a data item of N bytes, where N is an integer of

variable size. The first unaligned byte address is modified to replace a

lowest-order three bits of the first unaligned byte address with zeros before applying to the memory to address the first quad-word which is an

aligned quad-word that is received by the processor from the memory and loaded to the first register. The lowest-order three bits of the first unaligned byte address is saved as a first shift amount.

The method also involves loading from the memory to a second register in

the processor a second quad-word, the memory being addressed using a second

unaligned byte address which is applied to the memory by the processor. The

second unaligned byte address is the address of the first byte of the second quad-word plus N-1. The second unaligned byte address is modified to

replace lowest-order three bits of the second unaligned byte address with

zeros before applying to the memory to address the second quad-word which

is an aligned quad-word that is received by the processor from the memory

and loaded to the second register. The lowest-order three bits of the second unaligned byte address is saved as a second shift amount. First and

second parts of the data item are then selected and combined in one register.

ADVANTAGE - Accomplishes all performance advantages of RISC-type processor architecture, but allows data structures and code previously generated for existing CISC-type processors to be translated for use in high performance processor.

Equivalent Alerting Abstract US A

The byte operation method in a processor, involves loading to an internal

register a content of a selected memory location, the registers of N bytes,

the content containing an unaligned byte reference of M bytes in size where $% \left(1\right) =\left(1\right) +\left(1\right)$

M is any integer no more than N, the register and the selected memory location being addressed by an unaligned address to the unaligned byte reference but the content being aligned in the multiple-byte format. The

loading step is performed by a single instruction executed by the processor

performing in the processor an operation on the content, the operation changing only the unaligned byte reference in the internal register.

The content of the internal register is then stored to the selected memory location aligned in multiple-byte format using the unaligned address. The operation step includes extracting the unaligned byte reference from the content of the internal register, performing an arithmetic or logic operation on the extracted unaligned byte reference to

produce a result, then inserting the result into the content of the internal register at the unaligned byte reference before the step of storing.

USE/ADVANTAGE - Allows data structure and code for CISC processors to be

translated to RISC-y processor.

Title Terms/Index Terms/Additional Words: REGISTER; DATA; MANIPULATE; PROCESSOR; PERMIT; SIMPLIFY; MEMORY; ACCESS; WIDTH; ADDRESS; MODE; SET:

LIMIT; OPERATE

Class Codes

International Classification (Main): G06F-012/04, G06F-003/00, G06F-009/00,

G06F-009/30, G06F-009/308

(Additional/Secondary): G06F-012/00, G06F-015/76, G06F-009/31, G06F-009/312, G06F-009/315

US Classification, Issued: 395800000, 395425000, 364232230, 364252500, 364252600, 364255100, 364259500, 364259700, 364DIG001, 395800000, 395400000, 395425000, 364232230, 364252600, 364255100, 364DIG001

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B; T01-M04

Original Titles:

 \dots In-register data manipulation using data $% \left(\mathbf{n}\right) =\mathbf{n}$ shift in reduced instruction

set processor...

...In-register data manipulation for unaligned byte write using data shift

in reduced instruction set processor

Original Publication Data by Authority

Original Abstracts:

 \ldots byte extract, insert and masking, along with non-aligned load and store

instructions. The provision of load/locked and store / conditional instructions permits the implementation of atomic byte writes. By providing a conditional move instruction, many short branches can be... ...masking, along with non-aligned load and store instructions. The provision of load/locked and store / conditional instructions permits the

implementation of atomic byte writes .

. . .

...masking, along with non-aligned load and store instructions. The provision of load/locked and store / conditional instructions permits the

implementation of atomic byte writes.

Claims:

...by said right shifting;</br> extracting by said processor a second part of said data item from said second register by left shifting the

content of the second register by a number of bytes e...

23/69,K/11 (Item 11 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0005787330 - Drawing available WPI ACC NO: 1992-009536/199202 XRPX Acc No: N1992-007331

Branching in pipelined processor - decodes instructions before executing

instructions to ensure optimal performance of code

Patent Assignee: COMPAQ COMPUTER CORP (COPQ); DIGITAL EQUIP CORP (DIGI)

Inventor: SITES R L; WITEK R T

Patent Family (8 patents, 6 countries)

Patent				Application						
Number			Kind	Date	Number		Kind	Date	Update	
	ΕP	463977	Α	19920102		1991401783	Α	19910628	199202	В
	CA	2045791	Α	19911230					199213	E
	TW	198109	Α	19930111	TW	1991106670	Α	19910822	199325	E
	ΕP	463977	A 3	19930922	EP	1991401783	A	19910628	199509	E
	ΕP	463977	B1	19980729	EP	1991401783	Α	19910628	199834	E
	DE	69129881	E	19980903	DE	69129881	Α	19910628	199841	E
					EP	1991401783	Α	19910628		
	KR	190252	B1	19990601	KR	199110880	Α	19910628	200056	E
	US	6167509	Α	20001226	US	1990547629	Α	19900629	200103	E
					US	1994243559	Α	19940516		

Priority Applications (no., kind, date): US 1994243559 A 19940516; US 1990547629 A 19900629

Patent Details

Number	Kind	Lan	Pg Dwg	Filing Notes
EP 463977	Α	EN		
Regional Design	nated	States	Origina	l: DE FR GB NL
CA 2045791	Α	EN		•
TW 198109	Α	ZH		•
EP 463977	A3	EN		
EP 463977	B1	EN		
Regional Design	nated	States	Origina	l: DE FR GB NL
DE 69129881	E	DE ,		Application EP 1991401783
				Based on OPI patent EP 463977
US 6167509	A	EN		Continuation of application US
1990547629				

Alerting Abstract EP A

A pipelined processor is operated by fetching instructions from sequential addresses in memory and decoding the instructions before executing the instructions. The jump instructions are detected in the fetched instructions and the address of a register containing the address

of the target of the jump instruction is extracted.

A predicted target address is also extracted from the register. An instruction is prefetched from the predicted target address rather than from the sequential addresses before the jump instruction is executed.

USE/ADVANTAGE - High performance processors executing a reduced instruction set. The processor employs a variable memory page size so that

the entries in a translation buffer for implementing virtual addressing

can

be optimally used. @(34pp Dwg.No.1/11)@

Title Terms/Index Terms/Additional Words: BRANCH; PIPE; PROCESSOR; DECODE;

INSTRUCTION; EXECUTE; ENSURE; OPTIMUM; PERFORMANCE; CODE

Class Codes

International Classification (Main): G06F-009/00, G06F-009/38
US Classification, Issued: 712237000, 712205000, 712238000, 712239000

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B; T01-H03A; T01-M04

Original Publication Data by Authority

Original Abstracts:

...byte extract, insert and masking, along with non-aligned load and store

instructions. The provision of load/locked and store / conditional instructions permits the implementation of atomic byte writes. By providing a conditional move instruction, many short branches can be... Claims:

...an opcode, a register specifier and a memory address specifier, and extracting from said register specifier of said jump instruction an identification of a first of said registers for storing a first address which is a target address of said jump instruction, and extracting from said memory address specifier of said jump instruction a second address

which is a prediction of said target address; and prefetching...

33/69,K/3 (Item 3 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0009715254

WPI ACC NO: 1999-631855/199954

XRPX Acc No: N1999-466430

Mask and shift instructions for ATM-type frame - Using logical OR

operation on result for destination register

Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)

Patent Family (1 patents, 1 countries)

Patent

Application

Number Kind Date Number Kind Date Update RD 422110 A 19990610 RD 1999422110 A 19990520 199954 B

Priority Applications (no., kind, date): RD 1999422110 A 19990520

Patent Details

Number Kind Lan Pg Dwg Filing Notes

RD 422110 A EN 2 0

Alerting Abstract RD A

NOVELTY - Instructions are MASH (mask and shift) and MASHO (mask and shift or). The MASH instruction takes five parameters - source register to

get data from, most and least significant number of data to $\ensuremath{\mathbf{keep}}$, shift

direction and number of bits to shift the selected bit field. The MASHO

instruction takes an additional parameter **specifying** the destination **register**. The result of the mask and shift operation is logically ored

into the destination register, useful when multiple non-contiguous fields

need to be concatenated.

USE - Instructions are for ATM or other network frames where the header

has to be examined to determine which connection the frame is for. ADVANTAGE - Instructions simplify the field extraction process.

Title Terms/Index Terms/Additional Words: MASK; SHIFT; INSTRUCTION; ATM;

TYPE; FRAME; LOGIC; OPERATE; RESULT; DESTINATION; REGISTER

Class Codes

International Classification (Main): H04L

Mask and shift instructions for ATM-type frame...

Alerting Abstract ...parameters - source register to get data from, most

and least significant number of data to $\ensuremath{\mathsf{keep}}$, shift $\ensuremath{\mathsf{direction}}$ and number of bits to shift the selected bit field. The MASHO instruction takes

an additional parameter specifying the destination register. The result

of the mask and shift operation is logically or-ed into the

destination...

33/69,K/4 (Item 4 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0006274883 - Drawing available

WPI ACC NO: 1993-067412/199308

XRPX Acc No: N1993-051665

Computer instruction executing appts. with pipelined architecture -

instructions to executing unit according to logical sequence and shifts

other instructions into vacant decoders

Patent Assignee: ADVANCED MICRO DEVICES INC (ADMI)

Inventor: TRAN T M

Patent Family (1 patents, 1 countries)

Patent

Application

Number Kind Date Number Kind Date Update
US 5185868 A 19930209 US 1990464918 A 19900116 199308 B

Priority Applications (no., kind, date): US 1990464918 A 19900116

Patent Details

Number Kind Lan Pg Dwg Filing Notes

US 5185868 A EN 8 3

Alerting Abstract US A

The instruction executing apparatus executes instructions in a logical

sequence according to a control program. An instruction buffer of FIFO construction serially is connected to a decoder buffer also of a FIFO construction. The decoder buffer includes a number of decoder units arranged in a hierarchical manner from a lowest-significance decoder unit

to a highest-significance decoder unit in order to maintain the logical sequence of the instructions. The decoder units concurrently decode instructions transmitted from the instruction buffer and concurrently determine whether a corresponding decoded instruction is ready to be sent

to an instruction executing unit.

Each decoder unit sends a corresponding instruction to the instruction

executing unit. Instructions ready to be sent are sent to the instruction

executing unit, according to the logical sequence. Instructions not ready

to be sent are shifted to higher-significance available vacant decoder units, while maintaining the logical sequence of the instructions.

ADVANTAGE - High frequency operation. Efficient use of functional units.

Title Terms/Index Terms/Additional Words: COMPUTER; INSTRUCTION; EXECUTE;

APPARATUS; PIPE; ARCHITECTURE; SEND; UNIT; ACCORD; LOGIC; SEQUENCE; SHIFT

; VACANCY; DECODE

Class Codes

International Classification (Main): G06F-009/30
 (Additional/Secondary): G06F-009/34, G06F-009/38
US Classification, Issued: 395375000, 364965400, 364965700, 364966200, 364DIG002, 364244300, 364244500

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-D02; T01-F03B

 \dots sends instructions to executing unit according to logical sequence and

shifts other instructions into vacant decoders

Original Titles:

Apparatus having hierarchically arranged decoders concurrently decoding instructions and shifting instructions not ready for execution to vacant decoders higher in the hierarchy

Original Publication Data by Authority

Claims:

...certain conditions are satisfied, said certain conditions being source

operands necessary for execution of a respective decoded instruction

being available for delivery to said instruction execution means and said storage register means being available to receive resultant operands

of said respective decoded instruction, each of said plurality of

decoder units obtaining source operands when available from said storage

register means...

...one of said decoder units determines that said certain conditions are

not satisfied, shifting said respective decoded instruction to

higher-significance available vacant decoder unit, maintaining said predetermined sequence and providing a corresponding decoded...

33/69,K/5 (Item 5 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0005788180 - Drawing available WPI ACC NO: 1992-010489/199202

XRPX Acc No: N1992-008049

In-register data manipulation in RISC processor - permitting only simplified memory access data width and addressing modes with set limited

to register operations

Patent Assignee: DIGITAL EQUIP CORP (DIGI)
Inventor: SITES R; SITES R L; WITEK R; WITEK R T

Patent Family (10 patents, 7 countries)
Patent Application

Patent					Apj	plication				
Number		Kind	Date	Number		Kind	Date	Update		
	EP	465322	A	19920108	ΕP	1991401770	Α	19910627	199202	В
	CA	2045705	A	19911230					199213	E
	EP	465322	A3	19921119	ΕP	1991401770	, A	19910627	199342	E
	US	5367705	Α	19941122	US	1990547619	A	19900629	199501	E
					US	1993117482	A	19930907		
	US	5410682	A	19950425	US	1990547619	A	19900629	199522	E
					US	1993117482	A	19930907		
					US	1994289025	Α	19940810		
	TW	285729	A	19960911	TW	1991106677	A	19910822	199704	E
	ΕP	465322	B1	19990922	ΕP	1991401770	A	19910627	199943	E
	DE	69131637	E	19991028	DE	69131637	A	19910627	199951	E
					ΕP	1991401770	A	19910627		
	JP	3105960	B2	20001106	JP	1991254082	A	19910628	200059	E
	KR	231380	B1	19991115	KR	199110879	A	19910628	200111	E

Priority Applications (no., kind, date): US 1994289025 A 19940810; US 1993117482 A 19930907; US 1990547619 A 19900629

Patent Details

racent becaris									
Number Ki		Lan	Pg	Dwg	Filing Notes				
EP 465322		EN							
Regional Design	States	s,Ori	ginal	: DE FR GB NL					
CA 2045705	A	EN .							
EP 465322	A3	EN							
US 5367705	A	EN	22	11	Continuation of application US				
1990547619									
US 5410682	Α	EN	22	11	Continuation of application US				
1990547619					•				
					Continuation of application US				
1993117482									
					Continuation of patent US 5367705				
TW 285729	Α	ZH							
EP 465322	B1	EN							
Regional Designated States,Original: DE FR GB NL									
DE 69131637	DE			Application EP 1991401770					

DE 69131637 E DE Application EP 1991401770
Based on OPI patent EP 465322
JP 3105960 B2 JA 32 Previously issued patent JP

06119166

Alerting Abstract EP A

The method of byte manipualtion in a processor comprises the step of loading to a first register a first quadword from a memory using a first

unaligned byte address. The unaligned byte address is the address of the

first byte of a data item of N bytes being modified to remove low order three bits before applying to the memory whereby an aligned quadword is loaded to the first register. The loading to a second register a second quadword from the memory using a second unaligned byte address, which is

the address of the first byte plus N-1, with the second unaligned byte address being modified to remove low order three bits before applying to

the memory whereby an aligned quadword is loaded to the second register.

Next extracting a first part fo the data item from the first register by

right shifting the content of the first register by a number of bytes corresponding to the value of the low order three bits of the unaligned byte address and zeroing the high order vacacted bits.

ADVANTAGE - Accomplishes all performance advantages of RISC type processor architecture, yet allows data structures and code previously generated for existing CISC type processors to be translated for use in high performance processor. @(36pp Dwg.No.1/11)@

Equivalent Alerting Abstract US A

The method of byte manipulation in the processor involves loading from a

memory to a first register in the processor a first quad-word, the memory

being addressed using a first unaligned byte address which is applied to

the memory by the processor, the first unaligned byte address addressing a

lowest-order first byte of a data item of N bytes, where N is an integer of

variable size. The first unaligned byte address is modified to replace a

lowest-order three bits of the first unaligned byte address with zeros before applying to the memory to address the first quad-word which is an

aligned quad-word that is received by the processor from the memory and loaded to the first register. The lowest-order three bits of the first unaligned byte address is saved as a first shift amount.

The method also involves loading from the memory to a second register in

the processor a second quad-word, the memory being addressed using a second

unaligned byte address which is applied to the memory by the processor. The

second unaligned byte address is the address of the first byte of the second quad-word plus N-1. The second unaligned byte address is modified to

replace lowest-order three bits of the second unaligned byte address with

zeros before applying to the memory to address the second quad-word

which

is an aligned quad-word that is received by the processor from the memory

and loaded to the second register. The lowest-order three bits of the second unaligned byte address is saved as a second shift amount. First and

second parts of the data item are then selected and combined in one register.

ADVANTAGE - Accomplishes all performance advantages of RISC-type processor architecture, but allows data structures and code previously generated for existing CISC-type processors to be translated for use in high performance processor.

Equivalent Alerting Abstract US A

The byte operation method in a processor, involves loading to an internal

register a content of a selected memory location, the registers of N bytes,

the content containing an unaligned byte reference of M bytes in size where

M is any integer no more than N, the register and the selected memory location being addressed by an unaligned address to the unaligned byte reference but the content being aligned in the multiple-byte format. The

loading step is performed by a single instruction executed by the processor

performing in the processor an operation on the content, the operation changing only the unaligned byte reference in the internal register.

The content of the internal register is then stored to the selected memory location aligned in multiple-byte format using the unaligned address. The operation step includes extracting the unaligned byte reference from the content of the internal register, performing an arithmetic or logic operation on the extracted unaligned byte reference to

produce a result, then inserting the result into the content of the internal register at the unaligned byte reference before the step of storing.

 ${\tt USE/ADVANTAGE}$ - Allows data structure and code for CISC processors to be

translated to RISC-y processor.

Title Terms/Index Terms/Additional Words: REGISTER; DATA; MANIPULATE;
 PROCESSOR; PERMIT; SIMPLIFY; MEMORY; ACCESS; WIDTH; ADDRESS; MODE;
SET;

LIMIT; OPERATE

Class Codes

International Classification (Main): G06F-012/04, G06F-003/00, G06F-009/00,

G06F-009/30, G06F-009/308

(Additional/Secondary): G06F-012/00, G06F-015/76, G06F-009/31, G06F-009/312, G06F-009/315

US Classification, Issued: 395800000, 395425000, 364232230, 364252500, 364252600, 364255100, 364259500, 364259700, 364DIG001, 395800000, 395400000, 395425000, 364232230, 364252600, 364255100, 364DIG001

File Segment: EPI;

DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B; T01-M04

Original Titles:

...In-register data manipulation using data **shift** in reduced instruction set processor...

...In-register data manipulation for unaligned byte write using data shift

in reduced instruction set processor

Original Publication Data by Authority

Original Abstracts:

 \ldots byte extract, insert and masking, along with non-aligned load and store

instructions. The provision of load/locked and store / conditional instructions permits the implementation of atomic byte writes. By providing a conditional move instruction, many short branches can be... ...masking, along with non-aligned load and store instructions. The provision of load/locked and store / conditional instructions permits the

implementation of atomic byte writes .

...masking, along with non-aligned load and store instructions. The provision of load/locked and store / conditional instructions permits the

implementation of atomic byte writes.

Claims:

...by said right shifting;</br>
extracting by said processor a second part of said data item from said second register by left shifting the

content of the second register by a number of bytes e...

36/69,K/1 (Item 1 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0015728560 - Drawing available

WPI ACC NO: 2006-290450/200630

Related WPI Acc No: 2001-376794; 2001-376796; 2001-383384; 2001-467003;

2001-467004; 2001-546627; 2002-165712; 2002-165714; 2003-089239;

2003-729705; 2004-459740; 2004-532453; 2005-055725; 2005-381287

XRPX Acc No: N2006-247399

Digital signal processor for cellular telephone, comprises microprocessor

with instruction execution pipeline with pipeline phases, comprising program fetch circuitry, instruction decode circuitry, and at least one

functional unit

Patent Assignee: TEXAS INSTR INC (TEXI)
Inventor: HOYLE D; MARKANDEY V; NARDINI L
Patent Family (1 patents, 1 countries)

Patent Application

Number Kind Date Number Kind Date Update
US 20050188182 A1 20050825 US 1999173761 P 19991230 200630 B

US 2000183527 P 20000218 US 2000702405 A 20001031 US 2005114549 A 20050426

Priority Applications (no., kind, date): US 2000702405 A 20001031; US 2000183527 P 20000218; US 1999173761 P 19991230; US 2005114549 A 20050426

Patent Details

Number Kind Lan Pg Dwg Filing Notes

US 20050188182 A1 EN 24 8 Related to Provisional US

1999173761

Related to Provisional US

2000183527

Division of application US

2000702405

Alerting Abstract US A1

NOVELTY - A digital system comprises a microprocessor with an instruction

execution pipeline with pipeline phases, comprising program **fetch** circuitry that performs a first portion of the pipeline phases; instruction decode circuitry connected to receive fetched instructions from

the program **fetch circuitry**; and at least a first functional unit connected to receive control signals from the instruction decode circuitry.

DESCRIPTION - A digital system comprises a microprocessor having an instruction execution pipeline with pipeline phases. The microprocessor comprises program fetch circuitry that performs a first portion of the

pipeline phases; instruction decode circuitry connected to receive fetched

instructions from the program fetch circuitry, the instruction

decode

circuitry performs a second portion of the pipeline phases; and at least a

first functional unit connected to receive control signals (734) from the

instruction decode circuitry, with the functional unit performing a

portion of the pipeline phases, the third portion being execution phases.

The first functional unit comprises byte intermingling circuitry (702) connected to receive a single source operand having an ordered fields and

having outputs connected to provide a destination operand in response to

the control signals, where the byte intermingling circuitry is operable,

responsive to one of byte intermingling instructions, to place data from a

first selected field of the single source operand in a lower field of a most significant portion of the destination operand, filling the remainder

of the most significant portion of the destination operand with zeroes, and

to place data from a second selected field of the single source operand,

the second selected field being contiguous with and less significant than

the first selected field, in a lower field of a least significant portion

of the destination operand, filling the remainder of the least significant

portion of the destination operand with zeroes. An INDEPENDENT CLAIM is included for a method of operating a digital system having a microprocessor

and a set of byte intermingling instructions, comprising fetching a byte

intermingling instruction for execution; fetching a single source operand

selected by the byte intermingling instruction, the single source operand

comprising an ordered plurality of fields; and writing, into a lower field

of a most significant portion of a destination operand, data from a first

selected field of the single source operand and filling the remainder of

the most significant portion of the destination operand with zeroes, and

writing, into a lower field of a least significant portion of the destination operand, data from a second selected field of the single source

operand, with the second selected field being contiguous with and less significant than the first selected field, and filling the remainder of the

least significant portion of the destination operand with zeroes, with the

data selected in accordance with the byte intermingling instruction.

USE - Digital signal processor for a cellular telephone (claimed).
ADVANTAGE - The inventive digital system has microprocessors
optimized

for digital signal processing. It also has a processor having an improved

instruction set architecture. The processor is code-compatible with C62xx

DSP processors. It provides a superset of the C62x architecture while providing complete code compatibility for existing C62x code. The processor

provides extensions to the existing C62x architecture in several areas: register file enhancements, data path extensions, additional functional unit hardware, increased orthogonality of the instruction set, data flow

enhancements, 8-bit and 16-bit extensions, and additional instructions that

reduce code size and increase register flexibility. It also has a set of

multi-field byte intermingling instructions that provides features of single instruction, multiple data (SIMD) operation, reducing the code size

and improving performance.

DESCRIPTION OF DRAWINGS - The figure is a more detailed block diagram of

the intermingling circuit.

702 Intermingling circuitry

732 Mux control circuitry

734 Signals

src1, src2 Source operand

Technology Focus

ELECTRONICS - Preferred Function: The byte intermingling circuitry receives the single source operand and provides the destination operand during a single pipeline execution phase. Preferred System: The digital system further comprises a register file connected to the first functional

unit for providing the single source operand and connected to the first functional unit to receive the destination operand; an integrated keyboard

connected to the microprocessor via a keyboard adapter; a display, connected to the microprocessor via a display adapter; radio frequency (RF)

circuitry connected to the microprocessor; and an aerial connected to the

RF circuitry. Preferred Component: Each of the set of byte intermingling

instructions has a field for identifying a predicate register. The

selected field is a most significant byte of the single source operand or

is a second least significant byte of the single source operand. The second

selected field is a next most significant byte of the single source operand; or is a least significant byte of the single source operand (srcl.

src2). Preferred Method: The step of writing is performed during a single execution phase of the microprocessor.

Title Terms/Index Terms/Additional Words: DIGITAL; SIGNAL; PROCESSOR; CELLULAR; TELEPHONE; COMPRISE; MICROPROCESSOR; INSTRUCTION; EXECUTE; PIPE

; PHASE; PROGRAM; FETCH; CIRCUIT; DECODE; ONE; FUNCTION; UNIT

Class Codes

International Classification (Main): G06F-015/00 US Classification, Issued: 712224000

File Segment: EPI;

DWPI Class: T01; U21; W01

Manual Codes (EPI/S-X): T01-F03B1; T01-F03C; T01-J08A2; U21-A05D;

W01-C01D3C

...processor for cellular telephone, comprises microprocessor with instruction execution pipeline with pipeline phases, comprising program fetch circuitry, instruction decode circuitry, and at least one functional unit

Alerting Abstract ...digital system comprises a microprocessor with an

instruction execution pipeline with pipeline phases, comprising program fetch circuitry that performs a first portion of the pipeline phases;

instruction decode circuitry connected to receive fetched instructions from

the program fetch circuitry; and at least a first functional unit connected to receive control signals from the instruction...

 \dots comprises a microprocessor having an instruction execution pipeline with

pipeline phases. The microprocessor comprises program fetch circuitry

that performs a first portion of the pipeline phases; instruction $\frac{1}{2}$

circuitry connected to receive fetched instructions from the program fetch

 $\ensuremath{\operatorname{\textbf{circuitry}}}$, the instruction decode circuitry performs a second portion of

the pipeline phases; and at least...

Original Publication Data by Authority

Original Abstracts:

...of byte intermingling instructions. An instruction is provided that performs a shift right and byte merge operation. Another instruction is

provided that performs a shift left and byte merge operation. Another instruction is provided that perform a byte swap operation. A set of instructions are provided that...

Claims:

...an instruction execution pipeline with a plurality of pipeline phases,

wherein the microprocessor comprises:program fetch circuitry operable

to perform a first portion of the plurality of pipeline phases; instruction decode circuitry connected to receive fetched instructions from the program fetch circuitry, the instruction decode circuitry operable to perform a second portion of the plurality of pipeline phases; and at least a first functional unit...

36/69,K/2 (Item 2 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0014520661 - Drawing available WPI ACC NO: 2004-702607/200469

XRPX Acc No: N2004-557252

Personal computer in data processing system, has decoder that tracks position of program instructions within block of called program instructions and stores block counter value in block counter register accordingly

Patent Assignee: ARM LTD (ARMA-N)
Inventor: ELWOOD M P; VASEKIN V

Patent Family (7 patents, 106 countries)

Patent	plication				•			
Number	Kind	Date	Number		Kind	Date	Update	
GB 2400198	Α	20041006	GB	20037821	A	20030404	4 200469	В
US 20040199754	Al	20041007	US	2004755449	Α	2004011	3 200469	E
WO 2004088504	Al	20041014	WO	2003GB5388	A	2003121	1 200469	E
AU 2003292401	A1	20041025	ΑU	2003292401	A	2003121	1 200506	E
US 20050257037	A1	20051117	US	2004755449	A	2004011	3 200576·	E
			US	2005121184	Α	2005050	4	
GB 2400198	В	20060405					200624	E
TW 200421174	Α	20041016	TW	2004100171	Α	2004010	5 200648	E
Priority Applic	ations	s (no., ki	nd,	date): GB 2	003782	21 A 2	0030404	

Patent Details

Number Kind Lan Pg Dwg Filing Notes

GB 2400198 A EN 21 5

WO 2004088504 A1 EN

National Designated States, Original: AE AG AL AM AT AU AZ BA BB BG BR BW

BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR

HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN 'MW

MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT

TZ UA UG UZ VC VN YU ZA ZM ZW

Regional Designated States, Original: AT BE BG BW CH CY CZ DE DK EA EE ES

FI FR GB GH GM GR HU IE IT KE LS LU MC MW MZ NL OA PT RO SD SE SI SK SL

SZ TR TZ UG ZM ZW

AU 2003292401 A1 EN Based on OPI patent WO 2004088504 US 20050257037 A1 EN C-I-P of application US 2004755449 TW 200421174 A ZH

Alerting Abstract GB A

NOVELTY - A decoder controls data processing operations specified by program instructions fetched from a memory. The decoder tracks the position

of program instructions within the block of called program instructions and

stores block counter value in block counter register (22) accordingly. DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- 1.data processing method; and
- 2.computer program product including data processing program.

 $\ensuremath{\mathsf{USE}}$ - For controlling execution of block of program instructions within

data processing system.

ADVANTAGE - Since location of program instructions is specified in different ways by using an offset field, the program instructions can be

easily located within block of program instructions.

DESCRIPTION OF DRAWINGS - The figures show the block diagram of computer

and call by execute block instruction data processing apparatus.

- 2 personal computer
- 22 block counter register

Title Terms/Index Terms/Additional Words: PERSON; COMPUTER; DATA; PROCESS:

SYSTEM; DECODE; TRACK; POSITION; PROGRAM; INSTRUCTION; BLOCK; CALL; STORAGE; COUNTER; VALUE; REGISTER; ACCORD

Class Codes

International Classification (Main): G06F-009/30

International Classification (+ Attributes)

IPC + Level Value Position Status Version

G06F-0009/32 A I R 20060101

G06F-0009/32 A I L B 20060101

G06F-0009/42 A I F B 20060101

G06F-0009/32 C I R 20060101

G06F-0009/40 C I F B 20060101

US Classification, Issued: 712242000, 712242000

File Segment: EPI;

DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03C; T01-S03

Original Publication Data by Authority

Original Abstracts:

...A data processing apparatus and method are disclosed. The data processing apparatus comprises: an instruction fetching circuit operable to fetch a sequence of program instructions from a sequence of

memory locations; an instruction decoder **responsive** to program instructions within the sequence of program instructions fetched by the

instruction **fetching circuit** to **control data** processing operations

specified by the program instructions; and an execution circuit
operable

under control of the instruction decoder to execute the data processing operations, wherein the instruction decoder is responsive

to an execute block instruction within the sequence of program instructions

to trigger fetching of a block of two or more program instructions by the

instruction fetching circuit and execution of the block of two or more

program instructions by the execution circuit , the block of two or

more instructions containing a number of program instructions specified by

a block length field...

...block of two or more program instructions is being processed to provide

to the instruction fetching circuit the indication of the memory location of the instruction following the execute block instruction so that

the instruction following the execute block instruction is fetched for

execution immediately following the last instruction in the...

...of the memory location of the instruction following the execute block

instruction to the instruction fetching circuit causes the fetch unit

to fetch that instruction so that the correct sequence of instructions is

fetched by the fetch unit which avoids the need to flush instructions...

...de programme a ete atteinte, un retour au deroulement du programme principal est declenche. Le **decodeur** d'instructions (14) peut comprendre un registre de compteur de bloc (22) pour suivre la position

dans le bloc d...

Claims:

l. Apparatus for processing data, said apparatus comprising:an
instruction fetching circuit operable to fetch program
instructions

from a sequence of memory locations;an instruction decoder
responsive

to program instructions fetched by said instruction **fetching** circuit to

control data processing operations specified by said program instructions; and an execution circuit operable under control of said

instruction decoder to execute said data processing operations; whereinsaid instruction decoder is responsive to an execute...

...instruction to trigger fetching of a block of two or more program instructions by said instruction fetching circuit and execution of

said block of two or more program instructions by said execution circuit, said block of two or more instructions containing a number of program...

...1. A data processing apparatus comprising:an instruction fetching circuit operable to fetch a sequence of program instructions

from a sequence of memory locations; an instruction decoder responsive

program instructions within said sequence of program instructions fetched by said instruction fetching circuit to control data processing

operations specified by said program instructions; and an execution

circuit operable under control of said instruction decoder to execute said data processing operations, wherein said instruction decoder is

responsive to an execute block instruction within said sequence of program instructions to trigger fetching of a block of two or more program

instructions by said instruction fetching circuit and execution of said

block of two or more program instructions by said execution circuit

said block of two or more instructions containing a number of program

instructions specified by a block length field within said executed block

instruction and being...

...block of two or more program instructions is being processed to provide

to said instruction fetching circuit said indication of said memory location of said instruction following said execute block instruction so

that said instruction following said execute block instruction is fetched

for execution immediately following said last instruction in said block

of two or more program instructions.

36/69,K/3 (Item 3 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0014344264 - Drawing available

WPI ACC NO: 2004-532453/200451

Related WPI Acc No: 2001-376794; 2001-376796; 2001-383384; 2001-467003;

2001-467004; 2001-546627; 2002-165712; 2002-165714; 2003-089239;

2003-729705; 2004-459740; 2005-055725; 2005-381287; 2006-290450

XRPX Acc No: N2004-421637

Digital signal processor shifts source operand and signed shift count value

in response to control signals from instruction decoding circuit during single pipeline execution phase

Patent Assignee: TEXAS INSTR INC (TEXI)

Inventor: HOYLE D; SCALES R H; WANG M; ZBICIAK J R

Patent Family (1 patents, 1 countries)

Patent Application

 Number
 Kind
 Date
 Number
 Kind
 Date
 Update

 US 6757819
 B1 20040629
 US 2000183527
 P 20000218 200451
 B

 US 2000703141
 A 20001031

Priority Applications (no., kind, date): US 2000183527 P 20000218; US 2000703141 A 20001031

Patent Details

Number Kind Lan Pg Dwg Filing Notes

US 6757819 B1 EN 20 9 Related to Provisional US

2000183527

Alerting Abstract US B1

NOVELTY - A shift circuit shifts the source operand and a signed shift

count value in response to control signals from instruction decoding circuit, and outputs a destination operand during a single pipeline execution phase.

DESCRIPTION - An INDEPENDENT CLAIM is also included for digital signal

processor operating method.

USE - For digital signal processing.

ADVANTAGE - Optimizes digital signal processing.

DESCRIPTION OF DRAWINGS - The figure shows a block diagram of the digital $% \left(1\right) =\left(1\right) +\left(1\right) +$

signal processor.

Title Terms/Index Terms/Additional Words: DIGITAL; SIGNAL; PROCESSOR; SHIFT

; SOURCE; OPERAND; SIGN; COUNT; VALUE; RESPOND; CONTROL; INSTRUCTION; DECODE; CIRCUIT; SINGLE; PIPE; EXECUTE; PHASE

Class Codes

International Classification (Main): G06F-015/82

(Additional/Secondary): G06F-009/305, G06F-009/315

US Classification, Issued: 712300000, 712213000, 712223000, 708209000, 708233000, 708236000

File Segment: EPI;

DWPI Class: T01; U22

Manual Codes (EPI/S-X): T01-F03B1; U22-G05

Original Publication Data by Authority

Original Abstracts:

...data processing system is provided with a digital signal processor which

has an instruction for shifting a source operand in response to a signed shift count value and storing the shifted result in...

...to the shift count value and in a direction according to the sign of the

shift count. One instruction is provided that performs a right shift

for a positive shift count and a left shift for a negative shift
count,

and another instruction is provided performs a left shift for a positive shift count and a right shift for a negative shift count. If the

shift...

Claims:

...an instruction execution pipeline with a plurality of pipeline phases,

wherein the microprocessor comprises:program fetch circuitry operable

to perform a first portion of the plurality of pipeline phases; instruction decode circuitry connected to receive fetched instructions from the program fetch circuitry, the instruction decode

circuitry operable to perform a second portion of the plurality
of

pipeline phases; and at least a first functional unit connected to receive

...from the instruction decode circuitry, the signed shift count value including a sign and a shift count value, wherein for a first shifting

instruction the shift circuitry shifts the source operand right by
the

shift count value if the sign is positive or left if the sign is negative onto the destination operand outputs, wherein for a second shifting instruction the shift circuitry shifts the source operand left

by the shift count value if the sign is positive or right if the sign

is negative onto the destination operand outputs...

...the first functional unit is operable to provide the shifted result in response to the shifting instructions.>

36/69,K/4 (Item 4 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0013244049 - Drawing available

WPI ACC NO: 2003-329220/200331

XRPX Acc No: N2003-263356

Data processing system for image processing, has general-purpose processing

unit which operates in either one of two modes to perform operation on instruction obtained from fetch unit or special-purpose processing unit Patent Assignee: PACIFIC DESIGN INC (PACI-N); PACIFIC DESIGN KK (PACI-N);

SATOU T (SATO-I)

Inventor: SATO T; SATOU T

Patent Family (5 patents, 3 countries)

	Pat	tent			Ap	plication				
Number		Kind	Date	Number		Kind	Date	Update		
Į	US	20020199081	A1	20021226	.US	2002175446	A	20020620	200331	В
(GΒ	2380282	Α	20030402	GB	200214388	A	20020621	200331	E
ı	JΡ	2003005957	Α	20030110	JP	2001191423	A	20010625	200331	E
(GB	2380282	В	20050720	GB	200214388	Α	20020621	200547	E
1	US	6948049	B2	20050920	US	2002175446	Α	20020620	200562	E

Priority Applications (no., kind, date): US 2002175446 A 20020620; JP 2001191423 A 20010625

Patent Details

Number Kind Lan Pg Dwg Filing Notes

US 20020199081 A1 EN 17 7

JP 2003005957 A JA 13

Alerting Abstract US A1

NOVELTY - A fetch unit respectively supplies instruction code fetched from memory to special-purpose processing unit (VU) or general-purpose processing unit (PU), on identifying the code to be special-purpose instruction or general-purpose instruction. The general-purpose processing

unit operates in either one of two modes to perform operation on instruction obtained from fetch unit or special-purpose processing unit.

DESCRIPTION - INDEPENDENT CLAIMS are included for the following:

- 1.control method; and
- 2.computer readable recording medium storing data processing program.

USE - In data processing systems equipped with dedicated circuits.

used in data processor for image processing and network processing. ADVANTAGE - Reduces overheads of data transfer between PU and VU without

sacrificing general-purpose nature of PU. Enables VU to process data without consuming larger number of clock cycles, which are consumed to data

transfer between PU and VU.

DESCRIPTION OF DRAWINGS - The figure shows the block diagram of data processing apparatus.

PU general-purpose processing unit VU special-purpose processing unit

Title Terms/Index Terms/Additional Words: DATA; PROCESS; SYSTEM; IMAGE; GENERAL; PURPOSE; UNIT; OPERATE; ONE; TWO; MODE; PERFORMANCE; INSTRUCTION

; OBTAIN; FETCH; SPECIAL

Class Codes

International Classification (Main): G06F-015/00, G06F-009/38
 (Additional/Secondary): G06F-009/30
US Classification, Issued: 712034000, 712043000, 712229000, 712034000, 712205000

File Segment: EPI;
DWPI Class: T01

supplying, when...

Manual Codes (EPI/S-X): T01-C04D; T01-M05; T01-S03

Original Publication Data by Authority

Claims:

...that specifies processing to be performed by the special-purpose processing unit, the special-purpose instruction or a decoded data of the special-purpose instruction to the special-purpose processing unit, and

...general-purpose instruction that specifies processing by the general-purpose processing unit, the general-purpose instruction or a decoded data of the general-purpose instruction to the general-purpose processing unit, wherein the general-purpose...

...a general-purpose processing unit that is suited to general-purpose data processing; anda fetch unit for supplying, when an instruction code fetched from a code memory is a special-purpose instruction...

36/69,K/5 (Item 5 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0011170350 - Drawing available

WPI ACC NO: 2002-107986/200215

XRPX Acc No: N2002-080414

Sub-pipelined translation structure has multiplexer selecting output from

base and migrant decoders depending on fetch packet operation mode

Patent Assignee: TEXAS INSTR INC (TEXI)

Inventor: SCHTAS D E; SIMA L R; SIMAR L R; STEISS D E

Patent Family (6 patents, 30 countries)

Pa	tent			Ap	plication				
Number		Kind	Date	Number		Kind	Date	Update	
ΕP	1168159	A1	20020102	EP	2001251	Α	20010625	200215	В
JP	2002041283	A	20020208	JP	2001193066	A	20010626	200215	E
CN	1365047	Α	20020821	CN	2001122080	Α	20010614	200281	E
TW	518516	Α	20030121	TW	2001115471	Α	20010626	200356	E
US	6895494	Bl	20050517	US	2000603226	Α	20000626	200533	E
CN	1175348	C	20041110	CN	2001122080	Α	20010614	200626	E

Priority Applications (no., kind, date): US 2000603226 A 20000626

Patent Details

Number Kind Lan Pg Dwg Filing Notes

EP 1168159 A1 EN 10 3

Regional Designated States, Original: AL AT BE CH CY DE DK ES FI FR GB GR

IE IT LI LT LU LV MC MK NL PT RO SE SI TR

JP 2002041283 A JA 8

TW 518516 A ZH

Alerting Abstract EP A1

NOVELTY - A shared data path parses the fetched instruction packets having base and migrant architecture modes, into corresponding execute packets. The base and migrant architecture instructions from the shared path are decoded by respective decoders, based on execution mode of instructions. The outputs of migrant and base decoders are selected by a

multiplexer depending on the operating mode of fetch packet.

DESCRIPTION - An INDEPENDENT CLAIM is also included for binary compatibility provision method.

USE - Sub-pipelined translation structure for real time DSP applications.

ADVANTAGE - Allows rapid mode transition, since packets are assigned

different modes. Instruction graduation and instruction dependencies are

not required, thus reducing complexity and hardware in instruction decoder.

 ${\tt DESCRIPTION}$ OF DRAWINGS - The figure shows the sub-pipelined translation

structure.

Title Terms/Index Terms/Additional Words: SUB; PIPE; TRANSLATION; STRUCTURE

; MULTIPLEX; SELECT; OUTPUT; BASE; DECODE; DEPEND; FETCH; PACKET;

OPERATE

; MODE

Class Codes

International Classification (Main): G06F-015/00, G06F-009/30, G06F-009/38

(Additional/Secondary): G06F-009/318

US Classification, Issued: 712024000, 712209000

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B; T01-J08A2

Original Publication Data by Authority

Original Abstracts:

...migrant). The two execution modes have separate control logic. Instructions from the dispatch datapath are decoded by either base architecture decode logic or the migrant architecture decode logic, depending on the execution mode bound to the... Claims:

...and a migrant architecture decode for decoding said base architecture

instructions and said migrant architecture instructions ,
respectively ,

in dependence upon the execution mode of the fetch packet of the instructions being decoded, prior to executing; a multiplexer having at

least two inputs and one machine word output...

...circuit for dispatching execute packet instructions having a base execution mode; a migrant architecture control circuit for dispatching

execute packet instructions having a migrant execution mode; a base architecture decode connected to said...

36/69,K/6 (Item 6 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0010972218 - Drawing available

WPI ACC NO: 2001-596037/200167

XRPX Acc No: N2001-444289

Pre- decoding one-byte instruction prefixes and branch instruction

indicators

Patent Assignee: INTEL CORP (ITLC)

Inventor: GRUNER F R; ZAVERI B

Patent Family (7 patents, 92 countries)

Patent			Applica	tion				
Number	Kind	Date	Number		Kind	Date	Update	
WO 2001044929	A2	20010621	WO 2000	US41327	A	20001019	200167	В
AU 200127459	Α	20010625	AU 2001	27459	Α	20001019	200167	E
GB 2373901	Α	20021002	WO 2000	US41327	A	20001019	200273	E
			GB 2002	15172	A	20020701		
US 6496923	B1	20021217	US 1999	466534	A	19991217	200307	E
CN 1434937	A	20030806	CN 2000	819062	Α	20001019	200366	E
GB 2373901	В	20040714	WO 2000	US41327	Α	20001019	200446	E
			GB 2002	15172	Α	20001019		
CN 1186719	С	20050126	CN 2000	819062	Α	20001019	200620	E

Priority Applications (no., kind, date): US 1999466534 A 19991217

Patent Details

Number Kind Lan Pg Dwg Filing Notes

WO 2001044929 A2 EN 26

National Designated States, Original: AE AG AL AM AT AU AZ BA BB BG BR BY

BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN

IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO

PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW Regional Designated States, Original: AT BE CH CY DE DK EA ES FI FR GB GH

GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TZ UG ZW
AU 200127459 A EN Based on OPI patent WO 2001044929

GB 2373901 A EN PCT Application WO 2000US41327
Based on OPI patent WO 2001044929

GB 2373901 B EN PCT Application WO 2001044929
Based on OPI patent WO 2001044929

Alerting Abstract WO A2

NOVELTY - A number of instruction indicators are generated. A prefix and

branch decode unit (512) combines at least two of the instruction indicators. A prefix and branch decode unit combines at least two of the

instruction indicators, and a pre-decode unit (56) decodes the combined instruction indicators. The one-byte branch and address size indicators are

combined by logic OR to produce an address size or branch indicator. DESCRIPTION - AN INDEPENDENT CLAIM is made for:

- 1.A system for pre- decoding one-byte instruction prefixes and branch instruction;
- Logic for pre- decoding one-byte instruction prefixes and branch instruction indicators.

USE - For detecting one-byte prefixes and branch type macroinstructions .

ADVANTAGE - Boundaries between instructions can be detected with relative

ease. Decoding can be by multiplexing an address size or branch indicator

with an opcode/prefix indicator and a code segment descriptor indicator to

produce an address size. Address size or branch indicator is multiplexed

with opcode or prefix indicator to produce a one-byte branch indicator (Claimed). Combined indicators are multiplexed with opcode/prefix indicator

and a code segment descriptor (CSD) indicator to produce an address size,

data size, or repeat indicator. In parallel with first multiplexing, combined indicators are multiplexed with opcode/prefix indicator and a branch for multiple prefix indicator to produce a one-byte branch indicator, an FF-two-byte branch indicator, or an OF-two-byte branch indicator.

DESCRIPTION OF DRAWINGS - Drawing shows a block diagram of one embodiment

of an architecture of the instruction pre-decoder (IPD) according to present invention.

56 Instruction pre-decoder

512 Prefix and branch decode unit.

Title Terms/Index Terms/Additional Words: PRE; DECODE; ONE; BYTE; INSTRUCTION; BRANCH; INDICATE

Class Codes

International Classification (Main): G06F-009/30
 (Additional/Secondary): G06F-009/318, G06F-009/38
US Classification, Issued: 712213000, 712210000, 712233000

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03

Pre- decoding one-byte instruction prefixes and branch instruction indicators

Original Titles:

Length decode to detect one-byte prefixes and branch...
...LENGTH DECODE TO DETECT ONE-BYTE' PREFIXES AND BRANCH...

...DECODAGE DE LONGUEUR POUR LA **DETECTION** DE **PREFIXES** D'UN OCTET ET DE BRANCHE

Alerting Abstract ... A system for pre- decoding one-byte

instruction

prefixes and branch instruction ; Logic for pre- decoding one-byte
instruction prefixes and branch instruction indicators.

 $\dots \text{USE}$ - For detecting one-byte prefixes and branch type macroinstructions .

Original Publication Data by Authority

Original Abstracts:

The invention provides a system and method which can be used for predecoding one-byte instruction prefixes and branch instruction indicators. A static line detect generates a number of instruction indicators. Further, a prefix and branch decode unit combines at least two of the number of instruction indicators, and a pre - decode unit decodes the combined instruction indicators. Embodiments of

the invention decode one byte prefixes without additional cycle penalty and generate one and two byte branch indications early...

...A system and method for pre- decoding one-byte instruction prefixes

and branch instruction indicators is described. A static line detect generates a number of instruction indicators. Further, a prefix

and branch decode unit combines at least two of the number of instruction indicators, and a pre-decode unit decodes the combined instruction indicators...

...des prefixes d'instructions a un octet et des indicateurs d'instructions

de branches. Une detection de ligne statique genere un certain nombre d'indicateurs d'instructions. En outre, une unite...

What is claimed is:1. A method comprising:pre-decoding branch and instruction prefix information; combining the branch and instruction

prefix information into a signal; sending bits to facilitate
decoding

the signal; and decoding the signal during an instruction decode phase

based on the bits to detect one-byte prefix and branch information without incurring additional cycle penalty.

36/69,K/7 (Item 7 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0010762920 - Drawing available

WPI ACC NO: 2001-376794/200140

Related WPI Acc No: 2001-376796; 2001-383384; 2001-467003; 2001-467004;

2001-546627; 2002-165712; 2002-165714; 2003-089239; 2003-729705;

2004-459740; 2004-532453; 2005-055725; 2005-381287; 2006-290450

XRPX Acc No: N2001-275796

Complex multiplication circuit for digital signal processor used in cellular phones, produces product of most and least significant portions of

source operands

Patent Assignee: TEXAS INSTR INC (TEXI)

Inventor: AL J R Z E; BALMER K; BHANDAL A A S; BHANDAL A S; GOLSTON J E:

GOSDEN J E; GUTTAG K M; HOYLE D; HULLEY D; HUSSAIN Z; MARKANDEY V; SIMAR

L R; STEISS D E; STOTZER E J; ZBICIAK J R Patent Family (10 patents, 30 countries)

Pat	ent			Application						
Number		Kind	Date	Number		Kind	Date	Update		
ΕP	1102161	A2	20010523	ΕP	2000310113	Α	20001114	200140	В	
JΡ	2001202245	Α	20010727	JP	2000403992	A	20001115	200148	E	
JP	2001256038	Α	20010921	JP	2000348735	Α	20001115	200170	E	
CN	1309347	Α	20010822	CN	2000133915	A	20001115	200175	E	
US	6671797	B1	20031230	US	2000183527	P	20000218	200402	E	
				US	2000702463	A	20001031			
TW	543000	Α	20030721	TW	2000124170	Α	20001115	200406	E	
US	6711602	B1	20040323	US	2000183527	P	20000218	200421	E	
				US	2000183654	P	20000218			
				US	2000703093	A	20001031			
US	6766440	B1	20040720	US	2000183527	P	20000218	200448	E	
				US	2000702453	Α	20001031			
CN	1194292	C	20050323	CN	2000133915	Α	20001115	200634	E	
US	7062526	B1	20060613	US	2000183527	P	20000218	200639	E	
				US	2000183654	P	20000218			
				US	2000703140	A	20001031			

Priority Applications (no., kind, date): US 2000703140 A 20001031; US 2000703093 A 20001031; US 2000702463 A 20001031; US 2000702453 A 20001031; US 2000183527 P 20000218; US 1999165512 P 19991115; US 2000183654 P 20000218

Patent Details

Number Kind Lan Pg Dwg Filing Notes

EP 1102161 A2 EN 48 22

Regional Designated States, Original: AL AT BE CH CY DE DK ES FI FR GB

IE IT LI LT LU LV MC MK NL PT RO SE SI TR

JP 2001202245 A JA 113 JP 2001256038 A JA 27 US 6671797 B1 EN

US 6671797 B1 EN Related to Provisional US

2000183527

TW 543000 A ZH

US 6711602 B1 EN Related to Provisional US

2000183527

			Related to Provisional	US
2000183654				
US 6766440	B1	EN	Related to Provisional	US
2000183527				
US 7062526	В1	EN	Related to Provisional	US
2000183527				
			Related to Provisional	US
2000183654				

Alerting Abstract EP A2

NOVELTY - Multipliers (173a,173b) receive the most and least significant

portions of different source operands respectively. Shifters produce shifted products of multipliers. An adder/converter (177) adds the shifted

products to form a full precision product having a double width.

DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- 1. Microprocessor with multiply circuit;
- 2. Digital system with microprocessor

USE - For digital signal processor used in electronic products such as

high speed modems, digital cellular phones, complex automotive system, video conferencing equipment and for digital systems such as video phones.

network processing natural speed interfaces, ultra high speed modems. ADVANTAGE - Since the multipliers independently select the most and least

significant portions of source operand for complex computation, a larger

number of multiply functions are enabled and hence the performance of digital signal processing is improved. Also, the multiplied products are

shifted to avoid overflow of bits.

DESCRIPTION OF DRAWINGS - The figure shows the block diagram of multiply

unit group in processor.

173a,173b Multipliers

177 Adder/converter

Title Terms/Index Terms/Additional Words: COMPLEX; MULTIPLICATION; CIRCUIT:

DIGITAL; SIGNAL; PROCESSOR; CELLULAR; TELEPHONE; PRODUCE; PRODUCT; SIGNIFICANT; PORTION; SOURCE; OPERAND

Class Codes

International Classification (Main): G06F-007/00, G06F-007/52, G06F-009/30,

G06F-009/315, G06F-009/38

(Additional/Secondary): G06F-011/00, G06F-012/00, G06F-013/38, G06F-017/16

, G06F-007/72, G06F-009/305

International Classification (+ Attributes)

IPC + Level Value Position Status Version

G06F-0007/38 A I L B 20060101 G06F-0007/52 A I F B 20060101 G06F-0007/48 C I F B 20060101

US Classification, Issued: 712224000, 712223000, 712213000, 712219000, 712214000, 712300000, 708625000, 712218000, 708620000, 708550000

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-E02B; T01-E03; T01-J04C

Original Publication Data by Authority

Claims:

...an instruction execution pipeline with a plurality of pipeline phases,

wherein the microprocessor comprises:program fetch circuitry operable

to perform a first portion of the plurality of pipeline phases; instruction

decode circuitry connected to receive fetched instructions form the program fetch circuitry, the instruction decode circuitry operable to

perform a second portion of the plurality of pipeline phases; andat least a

first functional unit connected to receive a plurality of control signals from the instruction decode circuitry, the functional unit operable

. . .

...source and said second data source, said second multiplier circuit forming a second product of an instruction selected portion of said first data source and an instruction selected portion of said second

data source; a second shifter connected to said second multiplier...

...shift amount; andan arithmetic circuit connected to said first shifter

and to said second shifter forming an instruction selected arithmetic

combination of said first shifted product applied to most significant bits

and said

36/69,K/8 (Item 8 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0009666424 - Drawing available WPI ACC NO: 1999-619933/199953

XRPX Acc No: N1999-457222

Computer instruction supplying method for processor of computer system

Patent Assignee: SGS THOMSON MICROELTRN LTD (SGSA)

Inventor: CUMMING P; GRISENTHWAITE R

Patent Family (1 patents, 1 countries)

Patent Application

Number Kind Date Number Kind Date Update US 5978908 A 19991102 US 1996735864 A 19961023 199953 B

Priority Applications (no., kind, date): GB 199521978 A 19951026

Patent Details

Number Kind Lan Pg Dwg Filing Notes

US 5978908 A EN 22 9

Alerting Abstract US A

NOVELTY - A testing operation to locate branch instructions from fetched

sequence of instructions is performed. Testing causes retrieval of new sequence of instruction from target address store for branch operation and

makes branch instructions in the sequence prior to the initial instruction

to be ignored.

DESCRIPTION - Several instructions to be executed by the processor are

stored in a sequence in a storage unit at addressable locations. After testing the sequence of instructions that is fetched from the storage unit

to locate a branch instruction which is predicted to be taken, branch operation is enabled. Interin updation of the branch prediction value of

branch instruction is preformed prior to execution of branch instruction,

and the interin update is corrected if actual execution of the branch instruction indicates that interin updated value is incorrect. The test operation is performed successively of any branch instructions in sequence

from initial instruction, to test the probability of branch being taken,

and disregards branch instructions in the sequence after initial branch instruction that is predicted is taken. An INDEPENDENT CLAIM is also included for circuit for supplying instruction to processor.

USE - For supplying instructions to processor of computer system.

ADVANTAGE - Complexity and size of devices is increased by increasing number of content addressable memory cell, thus reducing number of occasions on which a branch instruction needs to be written-in.

DESCRIPTION OF DRAWINGS - The figure shows content of CAM (content addressable memory) cells and data RAM's of branch target buffer. Title Terms/Index Terms/Additional Words: COMPUTER; INSTRUCTION; SUPPLY;

METHOD; PROCESSOR; SYSTEM

Class Codes

International Classification (Main): G06F-009/38

US Classification, Issued: 712240000, 712238000, 712239000

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B

Original Publication Data by Authority

Original Abstracts:

A computer instruction supply system has store and **fetch circuitry** for

obtaining a sequence of instructions, test circuitry for locating the

first instruction in the sequence to be enabled...

Claims:

...locations; fetching from said store a sequence of instructions for decoding and execution by the <code>processor</code>; supplying <code>data</code> indicative of

each instruction to a respective partition of a CAM array dependent
on

the position of the instruction in said...

36/69,K/9 (Item 9 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0009571008 - Drawing available

WPI ACC NO: 1999-517903/199943

XRPX Acc No: N1999-385144

Variable length instruction processor with self timed marking for executing

series of operations in computer systems

Patent Assignee: INTEL CORP (ITLC)

Inventor: BEEREL P A; GINOSAR R; KOL R; MYERS C J; ROTEM S; STEVENS K
S:

YUN K Y

Patent Family (1 patents, 1 countries)

Patent

Application

Number

Kind Date Number

Kind Date Update

US 5948096

A 19990907 US 1997997462

A 19971223 199943 B

Priority Applications (no., kind, date): US 1997997462 A 19971223

Patent Details

Number Kind Lan Pg Dwg Filing Notes

US 5948096 A EN 13 5

Alerting Abstract US A

NOVELTY - The marking unit (34) has a marking input and a pair of marking

outputs. The marking outputs are directly coupled to their respective downstream marking units, to provide marking signal. The marking input is

directly coupled to upstream marking unit to provide marking signal. DESCRIPTION - A self timed length decoder (602) is coupled to a buffer,

which receives bytes, and has one length output, one prefix output and one

prefix input. A self timed marking unit (34) is connected to the length decoder (602) via prefix signal lines (604). An INDEPENDENT CLAIM is also

included for a method of self timed marking of instructions.

USE - For executing series of operations in computer system.

ADVANTAGE - Since marking system uses prefixes to accommodate presence of

bytes, proper length decoding and marking is performed.

DESCRIPTION OF DRAWINGS - The figure shows the block diagram of computer

system with self timed marking circuit.

34 Marking unit

602 Self timed length decoder

604 Prefix signal lines

Title Terms/Index Terms/Additional Words: VARIABLE; LENGTH; INSTRUCTION:

PROCESSOR; SELF; TIME; MARK; EXECUTE; SERIES; OPERATE; COMPUTER; SYSTEM

Class Codes

International Classification (Main): G06F-009/30
US Classification, Issued: 712210000, 712212000, 712213000, 712245000,
712246000

File Segment: EPI;
DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03

Original Publication Data by Authority

Original Abstracts:

...self-timed instruction marking circuit includes a prefix handling system

for processing instruction bytes having prefix bytes . Length decoders

receive instruction data bytes, and perform length decoding independently of the other length decoders in the instruction marking circuit. A length decoder determines whether a byte being processed is a

prefix byte to an instruction. If a length-affecting prefix byte is
found,

the length decoder ...

36/69,K/10 (Item 10 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0009016396 - Drawing available

WPI ACC NO: 1998-573071/199849

XRPX Acc No: N1998-446243

Information processor - includes pipeline control circuit which forwards

calculation result related to load instruction, to storage register

Patent Assignee: MITSUBISHI ELECTRIC CORP (MITQ)

Inventor: KUBOTA J

Patent Family (1 patents, 1 countries)

Patent Application

Number Kind Date Number Kind Date Update
JP 10254698 A 19980925 JP 199759131 A 19970313 199849 B

Priority Applications (no., kind, date): JP 199759131 A 19970313

Patent Details

Number Kind Lan Pg Dwg Filing Notes

JP 10254698 A JA 5 4

Alerting Abstract JP A

The processor includes an instruction **fetch circuit** (2) which reads

instruction from an instruction memory in order from every stage. An instruction decoding circuit (3) decodes the read instruction in specified order by the instruction fetch circuit. An address decoding

circuit calculates and decodes the address which is access from the decoded

instruction. A calculation circuit performs the calculation by which instruction is performed from the decoded instruction. A pipeline processing type information processor is provided with the general purpose

register which stores the data required for execution. The instruction circuit reads several instructions from the instruction memory. A load instruction search circuit searches load instruction.

An instruction coding circuit decodes the instruction corresponding to

the next searched load instruction. An operand comparator circuit judges

whether the execution stole occurs in the instruction. A load address calculation circuit calculates the address which is accessed by load instruction when being judged with the execution stole arising by the calculation circuit. A load instruction address holding circuit whose address of the load instruction that has been judged by the execution stole. An address comparator circuit compares the instruction address and

the program count number shows the order of read-out to the instruction fetch circuit . A pipeline control circuit forward the calculation result

to the storing register.

ADVANTAGE - Avoids producing pipeline delay. Features improved capacity.

Title Terms/Index Terms/Additional Words: INFORMATION; PROCESSOR; PIPE;

CONTROL; CIRCUIT; FORWARD; CALCULATE; RESULT; RELATED; LOAD; INSTRUCTION;

STORAGE; REGISTER

Class Codes

International Classification (Main): G06F-009/38

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B1

Alerting Abstract ... The processor includes an instruction fetch circuit (2) which reads instruction from an instruction memory in order

from every stage. An instruction decoding circuit (3) decodes the read

instruction in specified order by the instruction fetch circuit . An

address decoding circuit calculates and decodes the address which is access

from the decoded...

 \dots address and the program count number shows the order of read-out to the

instruction fetch circuit . A pipeline control circuit forward the calculation result to the storing register...

36/69,K/11 (Item 11 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0008507869 - Drawing available

WPI ACC NO: 1998-038753/199804

XRPX Acc No: N1998-031225

4-bit up counter - has second counter part with shift circuit to receive

carry signal from third latch circuit which receives carry signal from shift circuit of first counter part

Patent Assignee: MITSUBISHI DENKI KK (MITQ); MITSUBISHI ELECTRIC CORP (MITQ); RENESAS TECHNOLOGY KK (RENE-N)

Inventor: MIURA H

Patent Family (3 patents, 2 countries)

Patent			Application				
Number	Kind	d Date Number		Kind	Date	Update	
JP 9292973	Α	19971111	JP 1996105596	Α	19960425	199804	В
US 5754616	Α	19980519	US 1996712626	Α	19960911	199827	E
JP 3567309	B2	20040922	JP 1996105596	Α	19960425	200462	E

Priority Applications (no., kind, date): JP 1996105596 A 19960425

Patent Details

Number	Kind	Lan	Рg	Dwg	Filing Notes	
JP 9292973	Α	·JA	14	14		
JP 3567309	B2	JA	17		Previously issued patent	JP
09292973						

Alerting Abstract JP A

The counter includes first and second counter parts. The first counter

part includes two pairs of latch circuits (la,lb,2a,2b) and shift circuits

(3a,3b). The first pair of latch circuits operate in synchronization with

first clock and second pair of latch circuit operate in synchronization with second clock. The first latch circuit latches data applied, in synchronization with first clock. The latched data is shifted and latched

into second latch circuit which operates in synchronization with second clock. The shift circuit outputs a carry signal. A similar circuit consisting a loop of latch and shift circuits performs a similar operation.

The first counter part counts the data of lower order bits based on first

and second clock circuits.

A third latch circuit (4) accepts carry signal from the shift circuit of

first counter part. The second counter part includes latch circuits (1c,1d,2c,2d) and shift circuits (3c,3d). The first latch circuits (1c,1d)

latches data in synchronization with second clock pulse and the latched data is shifted. The second latch circuit (2c,2d) latches shifted data in

synchronization with first clock pulse. The shift circuit outputs a

carry

signal. The second counter part counts the higher order bit of count value

based on first clock and second clock. The shift circuit in second counter

part receives the carry signal from the third latch circuit.

ADVANTAGE - Offers high speed counting.

Title Terms/Index Terms/Additional Words: BIT; UP; COUNTER; SECOND;
PART;

SHIFT; CIRCUIT; RECEIVE; CARRY; SIGNAL; THIRD; LATCH; FIRST

Class Codes

International Classification (Main): G06F-007/00, H03K-021/16 US Classification, Issued: 377115000, 377043000, 377078000

File Segment: EPI;
DWPI Class: T01; U21

Manual Codes (EPI/S-X): T01-E02; U21-D03; U21-D05

Original Publication Data by Authority

Claims:

...a first latch circuit for latching data synchronously with a first clock; a first shift circuit for fetching data latched by the first latch circuit and outputting data shifted in response to a shift instruction data and outputting the shift instruction data when a

predetermined shift operation occurs; and a second latch circuit for

latching data outputted by the first shift circuit synchronously with...

 \ldots a third latch circuit for latching data synchronously with the ${\tt second}$

clock; a second shift circuit for fetching data latched by the third

latch circuit and outputting data shifted in response to a shift instruction data and outputting the shift instruction data when a predetermined shift operation occurs; and a fourth latch circuit for

latching data outputted by the second shift circuit synchronously with

the first clock, and latching the latched data...

...latch circuit to the third latch circuit; and a fifth latch circuit for

latching the shift instruction data outputted from the first shift circuit and outputting the latched data from the fifth latch circuit to the second shift circuit; wherein the second latch circuit and the third

latch circuit, respectively, obtain data...

36/69,K/12 (Item 12 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0007027242 - Drawing available

WPI ACC NO: 1995-043738/199506

XRPX Acc No: N1995-034316

JTAG component instruction error detection - connecting JTAG serial

bus boundary scan path to single bit bypass register when errors occur Patent Assignee: AT & T GLOBAL INFORMATION SOLUTIONS CO (AMTT)

Inventor: SIMPSON D L; TAYLOR M A

Patent Family (1 patents, 1 countries)

Patent

Application

Number

Kind Date Update

US 5377198

Kind Date Number

A 19911127 199506 B

19941227 US 1991799507 Α

Patent Details

Number

Kind Pg Dwg Filing Notes Lan

US 5377198

Α EN 32 26

Alerting Abstract US A

The method for detecting errors in instructions used to control a serial

Priority Applications (no., kind, date): US 1991799507 A 19911127

test bus in a computer system involves setting up several components to connect instruction registers to receive instructions via the bus path. Instructions are shifted into the instruction registers and their validity checked. All the components containing valid instructions are

up to connect their boundary scan registers to receive data corresp. to the

valid instructions via the bus path. Those components containing

instructions connect their bypass registers to the bus path.

Data to be shifted into the boundary scan registers is prefixed with

header as long as the longest boundary scan register in the bus path

having a predetermined number of LSBs equal to the same value. The data

header are shifted into the components. Signals shifted out of the components are received as the data and header are shifted into the components. A portion of the signals shifted out of the components which

should correspond to the header is monitored to detect errors in the instructions used to control the test bus.

ADVANTAGE - Requires no component pins or connections in addition to normal connections required for standard JTAG operation.

Title Terms/Index Terms/Additional Words: COMPONENT; INSTRUCTION; ERROR;

DETECT; CONNECT; SERIAL; TEST; BUS; BOUNDARY; SCAN; PATH; SINGLE;

REGISTER; OCCUR

Class Codes

International Classification (Main): H04B-017/00

US Classification, Issued: 371022300

File Segment: EPI;

DWPI Class: S01; T01; U11; V04

Manual Codes (EPI/S-X): S01-G01A1; T01-G02A2; U11-F01C3; V04-V09

Alerting Abstract ...several components to connect instruction registers

to receive instructions via the bus path. Instructions are shifted into

the instruction registers and their validity checked. All the components

containing valid instructions are set up to...

Original Publication Data by Authority

Original Abstracts:

...scan path rather than the expected register when errors are detected.

JTAG instruction signals are shifted into the scan path to determine

whether an instruction error was received by a component. Data scanned into

the component is prefixed by a header which is monitored by the JTAG

control circuitry to detect any instruction errors. The combined data
and

header are padded by bits...

Claims:

...registers to receive instructions to be performed within said components

via said serial bus path; shifting instructions to be performed within said components into said instruction registers; checking the validity of said instructions shifted into said instruction registers; setting up all of said plurality of components having instruction registers containing valid instructions to connect...

36/69,K/13 (Item 13 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0006528157 - Drawing available WPI ACC NO: 1993-337145/199342

XRPX Acc No: N1993-260536

Extracting and aligning complex variable length instructions - extracts and

passes set of instruction bytes to align latch to align bytes, with aligned

bytes sent to next instruction detector

Patent Assignee: SEIKO EPSON CORP (SHIH); TRANSMETA CORP (TRAN-N)

Inventor: COON B; MIYAYAMA Y; NGUYEN L T; WANG J

Patent Family (35 patents, 16 countries)

Pa	tent			Application				
Nu	mber	Kind	Date	Number	Kind	Date	Update	
WO	1993020507	A2	19931014	WO 1993JP417	Α	19930330	199342	В
	636257	A1	19950201	EP 1993906870	Α	19930330	199509	E
				WO 1993JP417	A	19930330		
WO	1993020507	A3	19940106	WO 1993JP417	Α	19930330	199515	E
	7505968	W	19950629	JP 1993517306	A	19930330	199534	E
				WO 1993JP417	A	19930330		
US	5438668	Α	19950801	US 1992857599	A	19920331	199536	E
US	5546552	Α	19960813	US 1992857599	A	19920331	199638	E
		•		US 1995440225	A	19950512		
US	5619666	A	19970408	US 1992857599	A	19920331	199720	E
				US 1995460272	Α	19950602		
US	5983334	Α	19991109	US 1992857599	Α	19920331	199954	E
				US 1995460272	Α	19950602		
				US 1997784339	Α	19970116		
EP	1028370	A2	20000816	EP 1993906870	Α	19930330	200040	E
				EP 2000108579	Α	19930330		
JP	2000215047	Α	20000804	JP 1993517306	Α	19930330	200042	\mathbf{E}
				JP 20007258	A	19930330		
JΡ	2000215048	A	20000804	JP 1993517306	Α	19930330	200042	E
				JP 20007259	A	19930330		
JP	2000215049	. A	20000804	JP 1993517306	Α	19930330	200042	E
				JP 20007260	A	19930330		
JP	2000215050	A	20000804	JP 1993517306	Α	19930330	200042	E
				JP 20007261	Α	19930330		
JР	2000215051	Α	20000804	JP 1993517306	Α	19930330	200042	E
				JP 20007262	Α	19930330		
JP	2000215052	A	20000804	JP 1993517306	Α	19930330	200042	E
				JP 20007263	A	19930330		
JP	2000215053	A	20000804	JP 1993517306	A	19930330	200042	\mathbf{E}
				JP 20007264	Α	19930330		
JP	2000215054	Α	20000804	JP 1993517306	Α	19930330	200042	E
				JP 20007265	Α	19930330		
ΕP	636257	B1	20001108	EP 1993906870	A	19930330	200062	E
		•		WO 1993JP417	Α	19930330		
				EP 2000108579	A	19930330		
DE	69329644	E	20001214	DE 69329644	A	19930330	200104	E
	•			EP 1993906870	A	19930330		
	6063465		0001077	WO 1993JP417	A	19930330	0007.45	_
US	6263423	B1	20010717	US 1992857599	A	19920331	200142	Е
				US 1995460272	Α	19950602		

				US	1997784339	A	19970116		
				US	1999401860	A	19990922		
US	20030084270	A1	20030501	US	1995460272	Α	19950602	200331	E
				US	1997784339	A	19970116		
				US	1997857599	Α	19970516		
				US	1999401860	Α	19990922		
				US	2001852295	Α	20010510		
				US	200261295	Α	20020204		
KR	343530	В	20021127		1993JP417	Α	19930330	200334	E
				KR	1994703361	Α	19940927		
KR	371929	В	20030212	WO	1993JP417	Α	19930330	200341	E
				KR	1994703361	Α	19940927		
				KR	2001705744	Α	20010507		
JΡ	3544330	B2	20040721	JР	1993517306	Α	20000117	200448	E
				JP	20007258	Α	20000117		
JР	3544331	B2	20040721		1993517306	Α	20000117	200448	E
				JP	20007259	A	20000117		
JР	3544332	B2	20040721		1993517306	A	20000117	200448	E
				JР	20007260	Α	20000117		
JР	3544333	В2	20040721		1993517306	Α	20000117	200448	E
				JP	20007263	A	20000117		
JP	3544334	B2	20040721	JP	1993517306	Α	20000117	200448	E
				JP	20007264	A	20000117		
JP	3544335	B2	20040721	JP	1993517306	A	20000117	200448	E
,				JP	20007265	Α	20000117		
JP	3547052	B2	20040728	JP	1993517306	Α	19930330	200449	E
				WO	1993JP417	A	19930330		
EP	1028370	B1	20040915	EP	1993906870	Α	19930330	200460	E
				EP	2000108579	A	19930330		
DE	69333630	E	20041021	DE	69333630	Α	19930330	200469	E
				EP	2000108579	Α	19930330		
DE	69333630	T2	20050922	DE	69333630	Α	19930330	200563	E
				EP	2000108579	A	19930330		
US	6954847	B2	20051011	US	1992857599	Α	19920331	200567	E
				US	1995460272	Α	19950602		
				US	1997784339	Α,	19970116		
				US	1999401860	Α	19990922		
				US	2001852295	A	20010510		
				US	200261295	Α	20020204		
US	20050251653	A1	20051110	US	1992857599	Α	19920331	200574	E
				US	1995460272	A	19950602		
				US	1997784339	Α	19970116		
				US	1999401860	Α	19990922		
				US	2001852295	Α	20010510		
				US	200261295	Α	20020204		
				US	2005167289	Α	20050628		

Priority Applications (no., kind, date): US 2005167289 A 20050628; US 200261295 A 20020204; US 2001852295 A 20010510; US 1999401860 A 19990922; US 1997857599 A 19970516; US 1997784339 A 19970116; US 1995460272 A 19950602; US 1995440225 A 19950512; US 1992857599 A 19920331

Patent Details

Number Kind Lan Pg Dwg Filing Notes WO 1993020507 A2 EN 59 17 National Designated States,Original: JP KR

LU	ed	States	Orig:	inal	: AT BE CH DE DK ES FR GB GR IE IT
MC NL PT SE EP 636257	A1	EN	2	1	PCT Application WO 1993JP417 Based on OPI patent WO 1993020507
Regional Designat	ed A3	States, EN	Orig:	inal	<u>-</u>
	W	JA	23	1	PCT Application WO 1993JP417 Based on OPI patent WO 1993020507
US 5546552	A A	EN EN	40 44	17 17	Continuation of application US
	A	EN	34	17	Continuation of patent US 5438668 Continuation of application US
1992857599 US 5983334 1992857599	A	EN			Continuation of patent US 5438668 Continuation of application US
1995460272					Continuation of application US
	A2	EN			Continuation of patent US 5438668 Continuation of patent US 5619666 Division of application EP
1993906870 Regional Designat LT	ed	States	,Orig	inal	Division of patent EP 636257 : AT BE CH DE DK ES FR GB GR IE IT
LU MC NL PT SE	: A	JA	28		Division of application JP
JP 2000215048 1993517306	A	JA	29		Division of application JP
JP 2000215049 1993517306	A	JA	29		Division of application JP
JP 2000215050 1993517306	A	JA	29		Division of application JP
JP 2000215051 1993517306	A	JA	29		Division of application JP
JP 2000215052 1993517306	A	JA	29		Division of application JP
JP 2000215053 1993517306	A	JA	29		Division of application JP
JP 2000215054 1993517306	Α	JA	29		Division of application JP
EP 636257	B1	EN			PCT Application WO 1993JP417 Related to application EP
2000108579					Related to patent EP 1028370 Based on OPI patent WO 1993020507

Regional Designa	ted	States	,Original	: DE FR GB
DE 69329644	E	DE		Application EP 1993906870
	_			PCT Application WO 1993JP417
				Based on OPI patent EP 636257
				Based on OPI patent WO 1993020507
US 6263423	B1	EN		Continuation of application US
1992857599				
				Continuation of application US
1995460272				
				Continuation of application US
1997784339				••
				Continuation of patent US 5438668
				Continuation of patent US 5619666
				Continuation of patent US 5983334
US 20030084270	A1	ENT.		
	AI	EN		Continuation of application US
1995460272		•		
				Continuation of application US
1997784339				
				Continuation of application US
1997857599				
				Continuation of application US
1999401860				
				Continuation of application US
2001852295				concinuacion of application of
2001852295				Continuetic of colors we retore
				Continuation of patent US 5619666
				Continuation of patent US 5983334
				Continuation of patent US 6068737
·				Continuation of patent US 6263423
KR 343530	В	KO		PCT Application WO 1993JP417
				Previously issued patent KR
95701100				
				Based on OPI patent WO 1993020507
KR 371929	В	ко		PCT Application WO 1993JP417
10. 5, 1525	_			Division of application KR
1994703361				Division of application KK
1994703301				
				D
TD 0544000				Based on OPI patent WO 1993020507
JP 3544330	B2	JA	36	Division of application JP
1993517306				•
				Previously issued patent JP
2000215047				·
JP 3544331	B2	JA	36	Division of application JP
1993517306				
				Previously issued patent JP
2000215048				rieviously issued patent or
2000215048				
TD 2544220	D.C	77	2.6	District of Control of Control
JP 3544332	B2	JA	36	Division of application JP
1993517306				
				Previously issued patent JP
2000215049				
JP 3544333	B2	JA	36	Division of application JP

199351	7306	

					Previously issued patent JP
	2000215052				
	JP 3544334 1993517306	В2	JA .	36	Division of application JP
	2000215053				Previously issued patent JP
	JP 3544335 1993517306	В2	JA	37	Division of application JP
	2000215054				Previously issued patent JP
	JP 3547052	В2	JA	33	PCT Application WO 1993JP417
	07505968				Previously issued patent JP
	EP 1028370 1993906870	В1	EN		Based on OPI patent WO 1993020507 Division of application EP
	Regional Designa	ted.	States	Original	Division of patent EP 636257 : DE FR GB
	DE 69333630	E	DE	, or iginar	Application EP 2000108579 Based on OPI patent EP 1028370
	DE 69333630	Т2	DE	٠	Application EP 2000108579 Based on OPI patent EP 1028370
	US 6954847 1992857599	В2	EN		Continuation of application US
	1995460272				Continuation of application US Continuation of application US
	1997784339				Continuation of application US
	1999401860				Continuation of application US
	2001852295				Continuation of patent US 5438668 Continuation of patent US 5619666 Continuation of patent US 5983334
	US 20050251653	A1	EN		Continuation of patent US 6263423 Continuation of application US
	1992857599 1995460272				Continuation of application US
	1997784339				Continuation of application US
	1999401860				Continuation of application US
	2001852295				Continuation of application US
•	200261295				Continuation of application US
				٠	

.

Continuation of patent US 5438668 Continuation of patent US 5619666 Continuation of patent US 5983334 Continuation of patent US 6263423

Alerting Abstract WO A2

A portion of a stream of complex instructions is received and a set of

instruction bytes is extracted starting with the first instruction bytes

using an extract shifter. The set of instruction bytes are then passed to

an align latch where they are aligned and output to a next instruction detector. The next instruction detector determines the end of the first instruction based on the set of instruction bytes.

An extract shifter is used to extract and provide the next set of instruction bytes to an align shifter which aligns and outputs the next instruction. The process is then repeated for the remaining instruction bytes in the stream of complex instructions.

ADVANTAGE - Allows complex instructions to run on RISC-based hardware.

Equivalent Alerting Abstract US A

The method involves receiving a portion of the stream of complex instructions and extracting a first set of instruction bytes starting with

the first instruction bytes, using an extract shifter. The set of instruction bytes are then passed to an align latch where they are aligned

and output to a next instruction detector. The next instruction detector

determines the end of the first instruction based on the set of instruction bytes.

An extract shifter is used to extract and provide the next set of instruction bytes to an align shifter which aligns and outputs the next instruction. The process is then repeated for the remaining instruction bytes in the stream of complex instructions. The isolated complex instructions are decoded into nano-instructions which are processed by a

RISC processor core.

ADVANTAGE - Provides fast operation.

Title Terms/Index Terms/Additional Words: EXTRACT; ALIGN; COMPLEX; VARIABLE

; LENGTH; INSTRUCTION; PASS; SET; BYTE; LATCH; SEND; DETECT; RISC; CISC

Class Codes

International Classification (Main): G06F-015/76, G06F-009/30, G06F-009/318

, G06F-009/32, G06F-009/38

(Additional/Secondary): G06F-009/22, G06F-009/305, G06F-009/312, G06F-009/315

US Classification, Issued: 712204000, 712209000, 712023000, 395375000, 364DIG001, 364232220, 364259700, 364259900, 395375000, 364232220, 364259700, 364259900, 395384000, 364232220, 364259700, 364259900,

395380000, 395391000, 712023000, 712041000, 712206000, 712215000, 712217000, 712209000, 712204000, 712208000, 712204000, 712023000

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03; T01-F03B; T01-M04

Original Publication Data by Authority

Original Abstracts:

...instruction bytes starting with the first instruction bytes, using an

extract shifter. The set of instruction bytes are then passed to an align

latch where they are aligned and output to...

...the end of the first instruction based on said set of instruction bytes.

An extract shifter is used to extract and provide the next set of instruction bytes to an align shifter which aligns and outputs the next

instruction . The process is then repeated for the remaining
instruction

bytes in the stream of complex...

- ...set of instruction bytes. An extract shifter is used to extract and provide the next set of instruction bytes to an align shifter which aligns and outputs the next instruction. The process is...
- \dots a first set of instruction bytes starting with the first instruction bytes, using an extract shifter. The set of instruction bytes are then

passed to an align latch where they are aligned and output...

- ...align shifter which aligns and outputs the next instruction. The process
- is then repeated for the remaining instruction bytes in the stream of
- complex instructions. The isolated complex instructions are decoded into ${\tt nano...}$
- \dots a first set of instruction bytes starting with the first instruction bytes, using an extract shifter. The set of instruction bytes are then

passed to an align latch where they are aligned and output to a next instruction detector. The next instruction detector determines the end of

the first instruction based on said set of instruction bytes. An extract

shifter is used to extract and provide the next set of instruction
bytes

to an align shifter...

...to an align latch where they are aligned and output to a next instruction detector. The next instruction detector determines the end

of the first instruction based on said set of instruction bytes. An extract

shifter is used to extract and provide the next set of instruction bytes to an align shifter which...

...process is then repeated for the remaining instruction bytes in the stream of complex instructions. The isolated complex instructions are

decoded into nano-instructions which are processed by a RISC processor core

. . .

 \dots a first set of instruction bytes starting with the first instruction bytes, using an extract shifter. The set of instruction bytes are then

passed to an align latch where they are...

 \ldots is used to extract and provide the next set of instruction bytes to an

align shifter which aligns and outputs the next instruction. The process is then repeated for the remaining instruction bytes in the stream of complex instructions. The isolated complex instructions are decoded into nano-instructions which are processed by a RISC processor

core...

...to a next instruction detector. The next instruction detector determines

the end of the first instruction based on said set of instruction bytes.

An extract shifter is used to extract and provide the next set of instruction bytes to an align shifter which aligns and outputs the next

instruction. The process is then repeated for the remaining...

 \dots a first set of instruction bytes starting with the first instruction bytes, using an extract shifter. The set of instruction bytes are then

passed to an align latch where they are aligned and...

... The next instruction detector determines the end of the first instruction based on said set of instruction bytes. An extract shifter

is used to extract and provide the next set of instruction bytes to an align shifter which aligns and outputs the next instruction. The process is then repeated for the remaining instruction bytes in the stream

of complex instructions . The isolated complex instructions are $\boldsymbol{\cdot}$ decoded

into nano-instructions which are processed by a RISC...

 \dots a first set of instruction bytes starting with the first instruction bytes, using an extract shifter. The set of instruction bytes are then

passed to an align latch where they are aligned and output...

...next instruction detector determines the end of the first

instruction

based on said set of instruction bytes. An extract shifter is used to

extract and provide the next set of instruction bytes to an align shifter

which aligns and outputs the next instruction. The process is then repeated for the remaining instruction bytes in the stream of complex instructions. The isolated complex instructions are decoded into nano-instructions which are processed by a RISC processor core...a first

set of instruction bytes starting with the first instruction bytes, using

an extract $\operatorname{shifter}$. The set of instruction bytes are then passed to an

align latch where they are aligned and output...

 \dots a first set of instruction bytes starting with the first instruction bytes, using an extract **shifter**. The set of instruction bytes are then

passed to an align latch where they are...

...the end of the first instruction based on said set of instruction bytes.

An extract shifter is used to extract and provide the next set of instruction bytes to an align...
Claims:

A superscalar microprocessor for executing instructions obtained from an $\ensuremath{\mathsf{a}}$

instruction store, said microprocessor comprising:a fetch circuit to

fetch a plurality of CISC instructions from said instruction
store.

the plurality of CISC instructions being in program order; a...

 \ldots by said decoder into one or more first RISC instructions and one or more

second RISC instructions , respectively , per clock cycle,</br>wherein

said execution unit further comprises first and second registers each comprising...

 \ldots means into one or more first RISC instructions and one or more second

RISC instructions, respectively, per clock cycle, </br>
/br>
b>characterised

by> means for storing data in a plurality of registers identifiable by register references, said plurality of...set of instruction

bytes is extracted starting with the first instruction bytes using an extract shifter. The set of instruction bytes are then passed to an align latch where they are aligned and output...a first set of instruction

bytes starting with the first instruction bytes, using an extract shifter

- ; (3) passing said set of instruction bytes to an align latch; (4) outputting the aligned instruction bytes from...
- ...the contents of said first and second instruction latches into a

final

instruction bucket on a nano-instruction -by-nano-instruction basis, wherein said combining comprises storing said first instruction latch nano-instruction...A superscalar microprocessor for executing instructions

obtained from an instruction store, said microprocessor comprising:a fetch

circuit to fetch a plurality of CISC instructions from said instruction store, the plurality of CISC instructions being...

...instruction storage locations, wherein said first RISC instructions and said second RISC instructions are stored in said first register.

36/69,K/14 (Item 14 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0005601609 - Drawing available

WPI ACC NO: 1991-209693/199129

XRPX Acc No: N1991-160078

Data processing system with instruction tag - has processor tagging memory

to register instructions while pipelined execution of arithmetic instructions continues

Patent Assignee: IBM CORP (IBMC); INT BUSINESS MACHINES CORP (IBMC)

Inventor: HICKS T N; MYHONG N; NGUYENPHU M

Patent Family (10 patents, 6 countries)

Patent				Application						
Number		Kind	Date	Nur	mber	Kind	Date	Update		
EP	437044	Α	19910717	EP	1990313353	A	19901207	199129	В	
ΑU	199066753	Α	19910627					199133	E	
CN	1052740	Α	19910703					199215	\mathbf{E}	
US	5150470	A	19920922	US	1989453529	A	19891220	199241	E	
NZ	236142	A	19921223	NZ	236142	A	19901120	199308	E	
ΑŲ	639953	В	19930812	ΑU	199066753	A	19901120	199339	E	
EP	437044	A3	19921104	EP	1990313353	A	19901207	199342	E	
KR	199308035	B1	19930825	KR	199020196	Α	19901208	199432	E	
ΕP	437044	B1	19950222	ΕP	1990313353	Α	19901207	199512	E	
DE	69017178	E	19950330	DE	69017178	Α	19901207	199518	E	
				ΕP	1990313353	Α	19901207			

Priority Applications (no., kind, date): US 1989453529 A 19891220

Patent Details

Number K		Kind	Lan	Рg	Dwg	Filing Not	es		
EP 4	37044	Α	EN						
Regi	onal Design	nated	States	Orig	ginal:	DE FR GE	3		
US 5	150470	Α	EN	14	8 ·				
NZ 2	36142	Α	EN						
AU 6	39953	В	EN			Previously	issued	patent	AU
9066753									

EP 437044 A3 EN EP 437044 B1 EN 15

Regional Designated States, Original: DE FR GB

DE 69017178 E DE Application EP 1990313353

Based on OPI patent EP 437044

Alerting Abstract EP A

A multiprocessing system has a floating point processor (16) executing

arithmetic instructions, and a fixed point processor (14) executing load

instructions. Register to register and register to memory instructions are

placed in a queue, and memory to register instructions are placed in a second (load) queue.

When a floating point arithmetic instruction requires data that is being

loaded as a result of a load instruction, the floating point arithmetic

instruction is tagged in its queue. When an instruction receives its data.

it is provided to the floating point processor for execution.

ADVANTAGE - Reduces delays caused by fetching information from memory.

@(14pp Dwg.No.1/8)@

Equivalent Alerting Abstract US A

The data processing system has an instruction execution circuit that executes a first type of instruction. Also includes is a **fetch** circuit

that fetches instructions from a memory and fetches data from the memory

in response to a second type of instruction. An instruction decoder is included that decodes fetched instructions and dispatches instructions of

the first type to an instructions queueing circuit. The instruction decoder

further dispatches instructions of the second type to the **fetching** circuit .

The instruction queueing circuit includes the capability to store decoded

instructions of the first type while tagging these instructions when data

required for the execution of these instructions has not been fetched. The

instruction queueing circuit further clears these tags of these instructions of the first type when data that is required for the execution

has been fetched. The instruction queueing circuit serially provides the

untagged instructions of the first type to the instruction execution circuit.

ADVANTAGE - Has tags indicating outstanding data status.

Title Terms/Index Terms/Additional Words: DATA; PROCESS; SYSTEM;
 INSTRUCTION; TAG; PROCESSOR; MEMORY; REGISTER; PIPE; EXECUTE;
ARITHMETIC;

CONTINUE

Class Codes

International Classification (Main): G06F-009/38

International Classification (+ Attributes)

IPC + Level Value Position Status Version

G06F-0015/16 A I L R 20060101

G06F-0009/38 A I R 20060101

G06F-0015/16 C I L R 20060101

G06F-0009/38 C I R 20060101

US Classification, Issued: 395375000, 364DIG001, 364239400, 364258400, 364262800

File Segment: EPI; DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B

Equivalent Alerting Abstract ...an instruction execution circuit that executes a first type of instruction. Also includes is a fetch

circuit

that **fetches** instructions from a memory and fetches data from the memory

in response to a second...

...instructions queueing circuit. The instruction decoder further dispatches instructions of the second type to the **fetching circuit** .

Original Publication Data by Authority

Original Abstracts:

...instruction execution circuit 16 that executes a first type of instruction. Also included is a **fetch circuit** that **fetches** instructions from a memory 10 and fetches data from the memory in response to a...

...instruction queueing circuit. The instruction decoder further dispatches instructions of the second type to the **fetching circuit**. The instruction queueing circuit includes the capability to store decoded instructions of the first type...

...an instruction execution circuit that executes a first type of instruction. Also included is a **fetch circuit** that **fetches** instructions from a memory and fetches data from the memory in response to a second...

...instruction queueing circuit. The instruction decoder further dispatches

instructions of the second type to the **fetching** circuit. The instruction queueing circuit includes the capability to store decoded instructions of the first type...

Claims:

 \dots are queued before execution, characterised in that the system includes

decoding means 26, 28 to decode the instructions and to separate arithmetic instructions into a first queue in the buffering means and load

instructions into a...

...tag control means (68), characterised in that the system includes decoding means (26, 28) to decode the instructions and to separate arithmetic instructions into a first queue in the buffering means and load

instructions into a...

36/69,K/15 (Item 15 from file: 350)

DIALOG(R) File 350: Derwent WPIX

(c) 2007 The Thomson Corporation. All rts. reserv.

0004838112 - Drawing available

WPI ACC NO: 1989-214204/198930

Pipelined processor for CPU or microprocessor in computer system - computes

effective branch destination address of conditional branch instruction before or in parallel with execution of instruction

Patent Assignee: TOSHIBA KK (TOKE)

Inventor: USAMI K

Patent Family (5 patents, 6 countries)

Pacenc			Application							
Number	Kind	Date Number		Kind	Date	Update				
EP 324952	A	19890726	ΕP	1988121006	Α	19881215	198930	В		
US 5237664	Α	19930817	US	1988272948	Α	19881118	199334	E		
KR 199209999	B1	19921110	KR	1989482	A	19890118	199413	E		
EP 324952	B1	19961023	ΕP	1988121006	Α	19881215	199647	E		
DE 3855629	G	19961128	DE	3855629	Α	19881215	199702	E		
·			EΡ	1988121006	Α	19881215				

Priority Applications (no., kind, date): JP 19887035 A 19880118

Patent Details

Number Kind Lan Pg Dwg Filing Notes

EP 324952 A EN 11 7

Regional Designated States, Original: DE FR GB IT

US 5237664 A EN 9 7 EP 324952 B1 EN 12 7

Regional Designated States, Original: DE FR GB IT

DE 3855629 G DE Application EP 1988121006

Based on OPI patent EP 324952

Alerting Abstract EP A

The information processing system comprises a storage (3, 7) for fetching

and storing instructions to be executed and a decoder (8) for an instruction supplied from the storage (3, 7). The decoder sends an effective address generating request according to a result of the decoding.

An effective address computer receives the request from the decoder (8)

to compute an effective address of the decoded instruction. If the decoded

instruction is a conditional branch instruction, a destination address of

the conditional branch instruction is computed to prefetch an instruction

located at the branch destination address at least before the conditional

branch instruction is completely executed (10).

ADVANTAGE - Improves performance of CPU without increasing hardware.

Equivalent Alerting Abstract US A

The pipeline circuit includes instruction fetching unit to fetch instruction from memory at an address specified by program counter,

instruction decoder for decoding instruction code from instruction

fetching unit, sending an effective address generating request and information related to addressing mode to an effective address generating

unit instruction execution unit

A pipeline circuit adopted for CPU or a microprocessor in a computer system, computes the effective branch destination address of a conditional

branch instruction before or in parallel with the execution of the conditional branch instruction. According to result of execution of instruction just before the conditional branch instruction is met, it is

judged and if the branch condition is met, it executes the conditional branch instruction while prefetching and decoding an instruction located at

the branch destination address.

USE/ADVANTAGE - For CPU or microprocessor, capable of improving performance of CPU without drastically increasing amount of hardware and

without complicating controls.

Title Terms/Index Terms/Additional Words: PIPE; PROCESSOR; CPU; MICROPROCESSOR; COMPUTER; SYSTEM; COMPUTATION; EFFECT; BRANCH; DESTINATION; ADDRESS; CONDITION; INSTRUCTION; PARALLEL; EXECUTE Class Codes

International Classification (Main): G06F-009/38

International Classification (+ Attributes)

IPC + Level Value Position Status Version

G06F-0009/32 A I L R 20060101

G06F-0009/38 A I R 20060101

G06F-0009/32 C I L R 20060101

G06F-0009/38 C I R 20060101

US Classification, Issued: 395375000, 364DIG001, 364231800, 364261300, 364261500, 364262400, 364263000, 364263100, 364263200

File Segment: EPI;

DWPI Class: T01

Manual Codes (EPI/S-X): T01-F03B

Equivalent Alerting Abstract ... The pipeline circuit includes instruction fetching unit to fetch instruction from memory at an address

specified by program counter, instruction decoder for decoding instruction code from instruction fetching unit, sending an effective address generating request and information related to...

? t 36/9/16-17

36/9/16 (Item 1 from file: 347)

DIALOG(R) File 347: JAPIO

(c) 2007 JPO & JAPIO. All rts. reserv.

03689538 **Image available**
ELECTRONIC COMPUTER

PUB. NO.: 04-054638 [JP 4054638 A]

PUBLISHED: February 21, 1992 (19920221)

INVENTOR(s): MINAGAWA KENJI

AIKAWA TAKESHI SAITO MITSUO

APPLICANT(s): TOSHIBA CORP [000307] (A Japanese Company or

Corporation), JP

(Japan)

APPL. NO.: 02-164552 [JP 90164552]

FILED: June 22, 1990 (19900622)

INTL CLASS: [5] G06F-009/38; G06F-009/38

JAPIO CLASS: 45.1 (INFORMATION PROCESSING -- Arithmetic Sequence

Units)

JOURNAL: Section: P, Section No. 1365, Vol. 16, No. 247, Pg. 25,

June

05, 1992 (19920605)

ABSTRACT

PURPOSE: To efficiently execute the parallel processing of plural

instructions by decoding directly plural instructions fetched by a

fetching circuit in a first processing unit and detecting the
execution

sequence dependency between plural instructions.

CONSTITUTION: Four instructions fetched in an instruction buffer 1 are

distributed and supplied to plural instruction execution units 3 (3a, 3b -

3n), respectively in accordance with the classification of its instruction

through an instruction distributor 2. These respective instruction

executing units 3 are provided with a decoder 4, respectively, decode

an instruction distributed and supplied selectively from the instruction

buffer 1 under the control of the distributor 2, respectively, access a

register in accordance with data of a register field shown by a result of

its decoding and execute its instruction. In such a way, it is possible to

execute the processing of a simultaneous execution possibility decision

within a processing time of a decoding stage without setting newly the

processing time required for a decision of simultaneous execution

possibility between the instructions.

36/9/17 (Item 2 from file: 347)

DIALOG(R) File 347: JAPIO

(c) 2007 JPO & JAPIO. All rts. reserv.

01906111 **Image available**

ACCURACY MONITOR METHOD OF SAMPLING CYCLE

PUB. NO.: 61-120211 [JP 61120211 A]

PUBLISHED: June 07, 1986 (19860607)

INVENTOR(s): TSUKUDA HISASHI

APPLICANT(s): MITSUBISHI ELECTRIC CORP [000601] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.: 59-242767 [JP 84242767] FILED: November 16, 1984 (19841116)

INTL CLASS: [4] G05B-021/00; G06F-003/05; G11C-027/02

JAPIO CLASS: 22.3 (MACHINERY -- Control & Regulation); 45.2

(INFORMATION

PROCESSING -- Memory Units); 45.3 (INFORMATION PROCESSING

_ _

Input Output Units)

JAPIO KEYWORD: R005 (PIEZOELECTRIC FERROELECTRIC SUBSTANCES)

JOURNAL: Section: P, Section No. 507, Vol. 10, No. 305, Pg. 145,

October 17, 1986 (19861017)

ABSTRACT

PURPOSE: To monitor the presence or absence of a fault with high accuracy

by measuring the width of a sampling cycle by the time decided by

executing time and frequency of an instruction word of a program and

comparing the measured value with a standard for decision.

CONSTITUTION: A circuit device which fetches the input information by

sampling consists of a crystal oscillation circuit 1 which produces the

master clock signal, a dividing circuit 2 which divides the master clock

signal to produce the sample signal, a sample holding circuit 3 which

fetches the analog input information synchronously with the sample

signal, an A/D converting circuit 4, a memory 5 and a primary arithmetic

unit 6. Then a specific program for monitor of sampling cycle accuracy is

stored to a memory of the unit 6. This action is repeated by making use of

the processing idle time. The specific program includes an increment

instruction, a cycle $\mbox{\it shift}$ deciding $\mbox{\it instruction}$ and a branching

instruction with repeats both said increment and deciding instructions.

Then the program is measured by the time decided by the executing time of

an instruction word. This measured value is compared with the upper and

lower limit levels of the deciding standard. Thus the presence or absence

of a fault can be monitored with high accuracy. ?