Group Theory Notes

A group is defined as a set of elements that

- 1. Are closed under composition (multiplication)
- 2. Contain all inverses
- 3. Associative
- 4. Existence of identity

If a group is parameterized by continuous parameters (such as θ in 2D rotations), then this is a Lie group. If two elements of a Lie group commute, the group is said to be abelian. Otherwise, non-abelian.

Infinitesimal transformations can be found by taking derivatives with respect to the continuous parameters. These infinitesimal generators form a group as well, and if elements under commutation lie within the vector space spanned by the group, then they are said for form a Lie algebra.

Most often we take groups to be transformations acting on a vector space V. On such group is the general linear group which consists of all *invertible* linear operators acting on a space V

$$GL(V) \subset \mathcal{L}(V)$$
.

For a vector space with scalar field C and dimension n, then GL(V) may be represented by a subset of invertable $n \times n$ matrices denoted

$$GL(n,C) \subset M_n(C)$$
.

For $C = \mathbb{C}, \mathbb{R}$, we have the complex general linear group and real general linear group in n dimensions respectively.

If our vector space is equipped with a non-degenerate hermitian form (defined via an "inner product"), there exist an important subset of GL(V) called isometries, Isom(V) which by definition preserve the inner product. For $T \in Isom(V)$,

$$(Tu, Tw) = (u, w) \ \forall u, w \in V.$$

These form a group.

We can show that for a vector space in n dimensions with an inner product space $((v, v) > 0 \ \forall v \neq 0)$, T consists of all $n \times n$ matrices such that

$$T^{-1} = T^{\dagger}$$

where for real vector spaces this simplifies to $T^{-1} = T^T$. These groups correspond to U(n) and O(n) respectively. If we further restrict to matrices with determinant equal to unity, then we have SU(n) and SO(n) which are important subgroups.

Real vector space nd hermitian forms are symmetric, called a metric

For the Minkowski metric, the group Isom(V) can be shown to be transformations that satisfy

$$T_{\mu}{}^{\rho}T_{\nu}{}^{\sigma}\eta_{\rho\sigma} = \eta_{\mu\nu}$$

i.e. Lorentz transformations denoted as O(n-1,1). The restricted Lorentz group in four dimensions $SO(3,1)_{\sigma}$ is the restriction that for $A \in O(3,1)$

$$|A| = 1, \quad A_{11} > 0.$$

This preserves the orientation of space and time. Also, any element $A \in SO(3,1)_{\sigma}$ can be expressed as a rotation and a Lorentz boost R'L where

 $R' = \begin{pmatrix} R & 0 \\ 0 & 1 \end{pmatrix}$

for $R \in SO(3)$. If we add the parity and time reversal transformations to the $SO(3,1)_{\sigma}$ group, we recover the full O(3,1) group.