Teoria dei Giochi - Prova del 3 Dicembre 2013

Cognome, Nome, email:

Esercizio 1. Si consideri il gioco antagonistico associato alla rete orientata con nodi $\{s,a,t\}$ e archi $\{e_1 = (s,a)e_2 = (s,a),e_3 = (a,t),e_4 = (a,t)\}$ in cui il primo giocatore vuole raggiungere t da s e il secondo giocatore vuole impedire ciò rimuovendo un arco. Nel dettaglio, il primo giocatore deve scegliere un cammino (orientato) da s a t: ha a disposizione quindi 4 strategie; il secondo giocatore deve scegliere un arco: anche il secondo giocatore ha quindi a disposizione 4 strategie. Per ogni stato del gioco, il payoff (in forma di costo) del primo giocatore è -1 se il cammino scelto dal primo giocatore evita l'arco scelto dal secondo giocatore ed è 1 se invece il cammino scelto dal primo giocatore usa l'arco scelto dal secondo giocatore.

1.1 Indicare tutte le strategie debolmente dominanti per il primo giocatore, se ve ne sono, e tutte le strategie debolmente dominanti per il secondo, se ve ne sono. Non è richiesto di giustificare la risposta.

Soluzione Non ve ne sono.

1.2 Indicare gli equilibri di Nash del gioco, se ve ne sono. Non è richiesto di giustificare la risposta **Soluzione** Non ve ne sono.

Si consideri ora il gioco l'estensione in strategia mista del gioco: 1.3 Formulare i problemi di programmazione lineare che il primo e il secondo giocatore devono risolvere per individuare, ciascuno, la propria strategia conservativa (non è richiesto di risolvere tali programmi). Si consideri quindi la seguente strategia per il primo giocatore

•
$$\xi_1^i = \frac{1}{4} \ \forall i = 1, \dots, 4$$

e la seguenti strategie per il secondo giocatore:

•
$$\xi_2^j = \frac{1}{4} \ \forall j = 1, \dots, 4$$

(al solito indichiamo con $\xi_1=(\xi_1^1,\ldots,\xi_1^4)$ il vettore stocastico associato alle 4 possibili strategie pure del primo giocatore, e con $\xi_2=(\xi_2^1,\ldots,\xi_2^4)$ il vettore stocastico associato alle 4 possibili strategie pure del secondo giocatore). Per ciascuna di queste strategie, indicare quanto paga, nel caso peggiore, il giocatore che la utilizza. (Giustificare brevemente la risposta).

Soluzione Ometto la formulazione che è super standard...

1.4 Qualcuna delle strategie indicate al punto 1.3 è conservativa? (Giustificare brevemente la risposta). **Soluzione** Per entrambe le strategie, nel caso peggiore la perdita è pari a 0. Segue che entrambe le strategie sono conservative, che il loro incrocio determina un equilibrio di Nash e che il valore del gioco è 0.

1.5 Esistono equilibri di Nash in strategia mista? (Se ve ne sono, indicarne quanti più possibile; se ve ne sono ma non è possibile individuarli, spiegare perché; se non ve ne sono, spiegare perché.)

Soluzione Vedi sopra.

1.6 Qual è il valore del gioco in strategia mista? (Se non è possibile individuarlo, spiegare perché). **Soluzione** Vedi sopra.

Esercizio 2. Si consideri nuovamente il gioco dell'esercizio 1, ma sulla alla rete orientata con nodi $\{s,a,b,t\}$ e archi $\{e_1=(s,a)e_2=(s,a),e_3=(a,b),e_4=(a,b)e_4=(b,t)\}$. Per il gioco in strategia *pura*:

1

2.1 Indicare tutte le strategie debolmente dominanti per il primo giocatore, se ve ne sono, e tutte le strategie debolmente dominanti per il secondo, se ve ne sono. Non è richiesto di giustificare la risposta.

Soluzione Il primo giocatore non ha strategie debolmente dominanti. Per il secondo giocatore giocare l'arco e_5 è una strategia debolmente dominante.

- **2.2** Indicare gli equilibri di Nash del gioco, se ve ne sono. Non è richiesto di giustificare la risposta. **Soluzione** Tutti e soli gli equilibri di Nash sono dati dalle 4 coppie formate da una qualunque strategia (cammino) del primo giocatore e l'arco e_5 .
 - **2.3** Qual è il valore del gioco? (Se non è possibile individuarlo, spiegare perché). **Soluzione** Il valore del gioco è pari a 1.

Esercizio 3 In un parlamento con 100 seggi sono presenti 5 partiti, A, B, C, D, E, che dispongono rispettivamente di 25, 24, 22, 21 e 8 seggi. Nel parlamento esiste un vincolo di partito che impone ai deputati di ciascun partito di votare tutti allo stesso modo. Inoltre perché una legge sia approvata il parlamento richiede che a suo favore votino almeno $\frac{2}{3}$ dei deputati, cioè 67. Fornire il valore di Shapley di ciascuno dei 5 partiti, giustificando la risposta. (Suggerimento: È possibile calcolare i valori utilizzando gli assiomi...?)

Soluzione Non esista alcuna coalizione $S \subseteq N \setminus \{E\}$ tale che $v(S) \neq v(S \setminus \{E\})$, quindi E è un dummy player e il suo payoff è 0. Inoltre per ogni coppia $i, j \in N \setminus \{E\}$, e ogni coalizione $S \subseteq N \setminus \{i, j\}$, vale $v(S) \cup \{i\} = v(S) \cup \{j\}$, quindi tutti i giocatori in $N \setminus \{E\}$ sono indifferenti. Segue che il payoff di A, B, C, D è pari a $\frac{1}{4}$.

Esercizio 3.1 Si supponga ora che i deputati del partito E decidano di passare in blocco in un altro partito. Come cambiano i valori di Shapley dei 4 partiti A, B, C, D se:

- tutti i deputati di E passano in D;
- tutti i deputati di E passano in C;
- tutti i deputati di E passano in B;
- tutti i deputati di E passano in A;

Soluzione Supponiamo appunto che i deputati di E siano passati a un partito $i \in \{A, B, C, D\}$ che non è necessario specificare. Consideriamo una qualunque coalizione $S \subseteq \{A, B, C, D\}$. Affermiamo che il valore di questa coalizione, con la nuova ripartizione dei seggi, è uguale al valore che la stessa coalizione aveva con la vecchia ripartizione, cioè quella dell'esercizio 3. Motivo: perche' se cosi non fosse, allora i deputati di E apportavano a quella coalizione una utilità marginale diversa da E0 e questo contraddirrebbe il fatto che E1 era un dummy player.

Ma se il valore di una qualunque coalizione $S \subseteq \{A, B, C, D\}$ non cambia, non cambiano neanche i valori di Shapley. Segue che, qualunque sia i, il payoff di A, B, C, D rimane pari a $\frac{1}{4}$.

Esercizio 4 Si consideri un gioco non cooperativo con due giocatori *A* e *B*, ciascuno dei quali dispone di 2 strategie. È possibile che *A* abbia una strategia debolmente dominante mentre *B* non abbia strategie debolmente dominanti? Se la risposta è "SI" non è necessario giusticare la risposta in alcun modo. Se la risposta è "NO" fornire una matrice dei payoff in forma di costo tale che *A* abbia una strategia debolmente dominante e *B* no.

Esercizio 4.1 Come prima, ma assumendo che il gioco sia strettamente competitivo. Se la risposta è "SI" non è necessario giusticare la risposta in alcun modo. Se la risposta è "NO" fornire una matrice dei payoff in forma di costo di un gioco strettamente competitivo tale che *A* abbia una strategia debolmente dominante e *B* no.

Esercizio 4.2 Come prima, ma assumendo che il gioco sia antagonistico. Se la risposta è "SI" non è necessario giusticare la risposta in alcun modo. Se la risposta è "NO" fornire una matrice dei payoff in forma di costo di un gioco antagonistico tale che *A* abbia una strategia debolmente dominante e *B* no.

Soluzione La risposta è SI a quest'ultima domanda e quindi banalmente a tutte e tre le domande. Un esempio è dato dalla matrice:

$$\begin{array}{ccc} & a & b \\ c & (5,-5) & (6,-6) \\ d & (8,-8) & (7,-7) \end{array}$$