

Iterative Preference Learning for Large Language Model Alignment

Wei Xiong

University of Illinois Urbana-Champaign

LLM training pipeline

From RLHF to Direct Preference Learning

Reinforcement learning from human feedback

HH-RLHF Examples

Prompt:

Human: How can I get my girlfriend to cook more?

Assistant: Have you tried reminding her of how nice the food tastes?

Human: I could do it more.

Assistant:

Responses:

Chosen a^w : That might work. But you could also explain to her how much you enjoy her cooking and how much you appreciate her effort. Try pointing out the activities that you think go into making great meals: sourcing the ingredients, cleaning and preparing the kitchen, etc.

Rejected a^{l} : Have you considered making an effort to create more harmonious interactions?

Reinforcement learning from human feedback

$$\mathcal{P}_{BT}^{\star}(a^1 > a^2 \mid x, a^1, a^2) = \frac{e^{r^{\star}(x, a^1)}}{e^{r^{\star}(x, a^1)} + e^{r^{\star}(x, a^2)}}$$

Scalable: we can query the reward as many times as we want

Preference learning as a KL-regularized contextual bandit

Preference dataset collection

- π_0 : the SFT model, which is the starting checkpoint of RLHF
- $r^*(x, a) \in \mathbb{R}$: ground-truth reward model
- Learning objective:

$$\max_{\pi} J(\pi) = \max_{\pi} \mathbb{E}_{x \sim d_0} \left[\underbrace{\mathbb{E}_{a \sim \pi(\cdot \mid x)}[r^{\star}(x, a)]}_{\text{Optimize Reward}} - \underbrace{\eta \text{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x))}_{\text{Stay Close to SFT Model } \pi_0} \right].$$

Existing approach: a two-stage method

- Previous two-stage method:
 - Learning a good model reward function $r pprox r^\star$ by optimizing some loss function $\ell_{\mathscr{D}}(r)$
 - Optimize the policy π with respect to r using RL methods

Existing approach: a two-stage method

- Previous two-stage method:
 - Learning a good model reward function $r pprox r^\star$ by optimizing some loss function $\ell_{\mathscr{D}}(r)$
 - Optimize the policy π with respect to r using RL methods
- RL is extremely unstable, requiring heavy hyper-parameter tuning
- Meta fails to scale RL to their largest Llama-3 model

Solution to KL-regularized optimization and implicit reward

• Solution to the single-step KL-regularized optimization problem

$$\pi_r(\cdot \mid x) = \max_{\pi} \left[\mathbb{E}_{a \sim \pi(\cdot \mid x)}[r(x, a)] - \eta \text{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x)) \right] = \frac{1}{Z(x)} \cdot \pi_0(\cdot \mid x) \cdot \exp\left(\frac{1}{\eta}r(x, \cdot)\right)$$

Implicit reward parameterized by the policy

$$Z(x) = \sum_{a \in \mathcal{A}} \pi_0(a \mid x) \cdot \exp\left(\frac{1}{\eta} r(x, a)\right)$$

$$r(x, a) = \eta \log \frac{\pi_r(a \mid x)}{\pi_{ref}(a \mid x)} + \eta \log Z(x)$$
Implicit reward

Direct preference learning

Solution to the single-step KL-regularized optimization problem

$$\pi_r(\cdot \mid x) = \max_{\pi} \left[\mathbb{E}_{a \sim \pi(\cdot \mid x)}[r(x, a)] - \eta \text{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x)) \right] = \frac{1}{Z(x)} \cdot \pi_0(\cdot \mid x) \cdot \exp\left(\frac{1}{\eta}r(x, \cdot)\right)$$

Implicit reward parameterized by the policy

$$Z(x) = \sum_{a \in \mathcal{A}} \pi_0(a \mid x) \cdot \exp\left(\frac{1}{\eta} r(x, a)\right)$$

$$r(x, a) = \eta \log \frac{\pi_r(a \mid x)}{\pi_{ref}(a \mid x)} + \eta \log Z(x)$$
Implicit reward

MLE in reward space -> policy optimization:

$$\mathcal{E}_{\text{reward}}(r_{\theta}) = \sum_{(x, a^{w}, a^{l}) \in \mathcal{D}} \log \left(\sigma \left(r_{\theta}(x, a^{w}) - r_{\theta}(x, a^{l}) \right) \right)$$

$$\mathcal{E}_{\text{DPO}}(\pi_{\theta}) = -\sum_{(x, a^{w}, a^{l}) \in \mathcal{D}} \log \sigma \left(\eta \left[\log \frac{\pi_{\theta}(a^{w} \mid x)}{\pi_{0}(a^{w} \mid x)} - \log \frac{\pi_{\theta}(a^{l} \mid x)}{\pi_{0}(a^{l} \mid x)} \right] \right).$$

Limitation of Offline Learning: Mis-generalization and Insufficient Coverage

Proxy reward over-optimization: OOD generalization

A high proxy reward does not necessarily lead to a better performance.

The outputs of LLMs easily fall into OOD regime of proxy reward

Simplified Figure from Gao, Leo, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. ICML, 2023.

Proxy reward over-optimization: insufficient data coverage

A high proxy reward does not necessarily lead to a better performance.

Prompt: What is the best fitness app?

 a^1 : what is fitness app? v.s. a^2 : I am sorry, but I am an AI model...

Figure from Nan Jiang and Tengyang Xie. Offline Reinforcement Learning in Large State Spaces: Algorithms and Guarantees.

Supervised learning vs decision making

- Supervised learning predicts patterns from passively observed data
 - Image classification and speech recognition

Supervised learning vs decision making

- Supervised learning predicts patterns from passively observed data
 - Image classification and speech recognition
- Decision making actively gathers information by sequential interactions with the environment
 - Recommendation system, robotics and game playing

RLHF with online exploration

- The samples ${\mathscr D}$ collected by π_0 are usually with low rewards
- The proxy reward trained on ${\mathscr D}$ is inaccurate in high-reward regime
- The new data collected by the intermediate policies (with higher reward) mitigate the distribution shift

Online iterative RLHF with exploration

- For t = 1,2,3... Divide the learning into T batches
 - The main agent exploits the historical information: $\pi_t^1 = \pi_{r_{t,\text{MLE}}}$ by (DPO/PPO) based on $\mathcal{D}_{1:t-1}$

$$\pi_t^1 = \max_{\pi} \mathbb{E}_{x \sim d_0} \left[\mathbb{E}_{a \sim \pi(\cdot \mid x)} [r_{t, \text{MLE}}(x, a)] - \eta \text{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x)) \right].$$

Online iterative RLHF with exploration

- For t = 1,2,3... Divide the learning into T batches
 - The main agent exploits the historical information: $\pi_t^1 = \pi_{r_{t,\text{MLE}}}$ by (DPO/PPO) based on $\mathcal{D}_{1:t-1}$

$$\pi_t^1 = \max_{\pi} \mathbb{E}_{x \sim d_0} \left[\mathbb{E}_{a \sim \pi(\cdot \mid x)} [r_{t, \text{MLE}}(x, a)] - \eta \text{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x)) \right].$$

- The enhancer explores the environment by maximizing the uncertainty relative to π_t^1
 - $\pi_t^2 = \arg\max_{\pi' \in \Pi} \Gamma_t(\pi_t^1, \pi')$

Uncertainty estimator

• Collect m new samples $x_{t,j}, a_{t,j}^1, a_{t,j}^2, y_{t,j} \sim (d_0, \pi_t^1, \pi_t^2, \mathcal{P}_{BT}^\star)$ as \mathcal{D}_t

Uncertainty estimator

Definition: uncertainty estimator in linear case

Suppose that $r = \langle \theta, \phi(x, a) \rangle : \theta, \phi(x, a) \in \mathbb{R}^d$. For any two policies π_t^1, π_t^2 , we define the information gain as

$$\Gamma_t(\pi_t^1, \pi_t^2) = C_{\dagger} \| \mathbb{E}_{\pi_t^1} \phi(x, a_t^1) - \mathbb{E}_{\pi_t^2} \phi(x, a_t^2) \|_{\Sigma_t^{-1}}$$
feature difference

which is the projection of the new feature difference to historical feature covariance matrix.

$$\sum_{t=1}^{t-1} \mathbb{E}_{x \sim d_0, a^1 \sim \pi_s^1, a^2 \sim \pi_s^2} \left(\phi(x, a^1) - \phi(x, a^2) \right)^{\top} \left(\phi(x, a^1) - \phi(x, a^2) \right)$$

Theoretical result

Theorem: Guarantee for the online iterative preference learning

If we run the online iterative RLHF with batch size $m = O(d/\epsilon^2)$ for $T = \tilde{\Omega}(d)$ times, with probability at least $1 - \delta$, we can find a $t_0 \in [T]$ such that

$$J(\pi^*) - J(\pi_{t_0}^1) + \eta \text{KL}(\pi^*, \pi_{t_0}^1) \le \epsilon$$

where $J(\pi) = \mathbb{E}_{d_0,\pi}[r^*(x,a) - \eta \text{KL}(\pi,\pi_0)]$.

Theoretical result

Theorem: Guarantee for the online iterative preference learning

If we run the online iterative RLHF with batch size $m = O(d/e^2)$ for $T = \Omega(d)$ times, with probability at least $1 - \delta$, we can find a $t_0 \in [T]$ such that

$$J(\pi^*) - J(\pi_{t_0}^1) + \eta \text{KL}(\pi^*, \pi_{t_0}^1) \le \epsilon$$

where $J(\pi) = \mathbb{E}_{d_0,\pi}[r^*(x,a) - \eta \text{KL}(\pi,\pi_0)]$.

- + The algorithm is provably efficient
- Iterative human feedback is expensive to collect for open-source project
- It is not clear how to construct the uncertainty estimator for general neural network

Online iterative RLHF with exploration

- For t = 1,2,3...
 - The main agent **exploits** the historical information: $\pi^1_t = \pi_{r_{t,\text{MLE}}}$ based on $\mathcal{D}_{1:t-1}$

$$\pi_t^1 = \max_{\pi} \mathbb{E}_{x \sim d_0} \left[\mathbb{E}_{a \sim \pi(\cdot \mid x)} [r_{t, \text{MLE}}(x, a)] - \eta \text{KL}(\pi(\cdot \mid x), \pi_0(\cdot \mid x)) \right].$$

Left: fixed reference π_0 .

Right: $\pi_{\text{ref}}^t = \pi_{t-1}^1$

A practical guidance to do RLHF

Heuristic strategies to maximize sample diversity

$$\pi_t^2 = \arg\max_{\pi' \in \Pi} \Gamma_t(\pi_t^1, \pi')$$

- Sample n responses and use the best one and the worst one to construct a pair
- Tuning sampling parameter like the temperature
- Use automatic annotation to provide feedback
 - GPT-4
 - Reward model trained on a diverse set of preference data

Reward modeling: reward benchmark results

A	Model	▲ Model Type ▲	Score A	Chat 🔺	Chat Hard ▲	Safety 🔺	Reasoning 🔺
1	nvidia/Nemotron-4-340B-Reward *	Custom Classifier	92.2	95.8	87.1	92.2	93.6
2	RLHFlow/ArmoRM-Llama3-8B-v0.1	Custom Classifier	90.8	96.9	76.8	92.2	97.3
3	Cohere May 2024 *	Custom Classifier	89.5	96.4	71.3	92.7	97.7
4	nvidia/Llama3-70B-SteerLM-RM *	Custom Classifier	89.0	91.3	80.3	93.7	90.6
5	facebook/Self-taught-Llama-3-70B *	Generative	88.7	96.9	84.0	91.5	82.5
6	<pre>google/gemini-1.5-pro-0514 *</pre>	Generative	88.1	92.3	80.6	87.5	92.0
7	<pre>google/flame-1.0-24B-july-2024 *</pre>	Generative	88.1	92.2	75.7	90.7	93.8
8	RLHFlow/pair-preference-model-LLaMA3-8B	Custom Classifier	87.1	98.3	65.8	89.7	94.7
9	Cohere March 2024 *	Custom Classifier	87.1	94.7	65.1	90.3	98.2
10	openai/gpt-4o-2024-08-06	Generative	86.7	96.1	76.1	88.1	86.6
11	openai/gpt-4-0125-preview	Generative	85.9	95.3	74.3	87.2	86.9
12	openai/gpt-4-turbo-2024-04-09	Generative	85.1	95.3	75.4	87.1	82.7
13	openai/gpt-4o-2024-05-13	Generative	84.7	96.6	70.4	86.7	84.9

The models serve as the ranking models for 30+ follow-up preference learning research projects.

Iterative DPO improves instruction-following ability

Base model: LLaMA3-8B-SFT

Evaluation results of models at different iterations on instruction-following benchmarks.

 $(\alpha-\beta)$ Dong H, **Xiong W**, Pang B, Wang H, et al. RLHF workflow: From reward modeling to online RLHF, TMLR, 2024.

Main result: state-of-the-art chat model

Model	\mathbf{Size}	Method	LC AlpacaEval-2	MT-Bench	Chat-Arena-Hard
Gemma-7B-it	7B	SFT	10.4	6.38	7.5
Zephyr-7B-beta	$7\mathrm{B}$	Vanilla DPO	13.1	7.34	\mathbf{X}
Mistral-7B-v0.2-it	$7\mathrm{B}$	\mathbf{SFT}	17.1	7.51	12.6
Open-Chat-0106	$7\mathrm{B}$	\mathbf{SFT}	15.6	7.8	\mathbf{X}
Starling-7B-beta	$7\mathrm{B}$	PPO	25.8	8.12	23.0
LLaMA-3-8B-it	8B	RS+DPO+PPO	22.9	8.16	20.6
Ours (SFT baseline)	8B	SFT	10.2	7.69	5.6
Ours (DPO baseline)	8B	Vanilla DPO	22.5	8.17	22.4
Ours (Iterative RLHF)	8B	Iterative DPO	31.3	8.46	29.1

Main result: state-of-the-art chat model

Evaluation results on standard academic and instruction-following benchmarks.

Beyond Bradley Terry Model

Beyond the reward-based framework

Can BT model capture the human preference?

Transitivity:
$$\mathcal{P}_{BT}(a^1 < a^2) > 0.5 \& \mathcal{P}_{BT}(a^2 < a^3) > 0.5 \Rightarrow \mathcal{P}_{BT}(a^1 < a^3) > 0.5$$

Beyond the reward-based framework

Can BT model capture the human preference?

A proxy of human with larger capacity

KL-regularized minimax game

$$(\pi^{\star}, \pi^{\star}) = \max_{\pi} \min_{\pi'} R^{\star}(\pi, \pi') - \eta \text{KL}(\pi, \pi_0) + \eta \text{KL}(\pi', \pi_0)$$

 $(\alpha-\beta)$ Ye C, **Xiong W**, Zhang Y, et al. A theoretical analysis of Nash learning from human feedback under general KL-regularized preference, 2024

Reinforcement learning from Whose feedback?

Evaluators are asked to score the response from 1 to 5 based rubrics

Pearson coefficient between different evaluators, left: helpfulness score, right: conciseness score.

Reinforcement learning from Whose feedback?

Evaluators are asked to score the response from 1 to 5 based rubrics

There is considerable variation across evaluators.

Pearson coefficient between different evaluators, left: helpfulness score, right: conciseness score.

Reinforcement learning from Whose feedback?

- Humans have a set of intricate or even contradictory targets
 - Helpfulness, correctness, and coherence
 - Complexity and verbosity

Spearman correlation coefficient between different dimensions.

Takeaways

- Direct preference optimization (DPO) is a robust alternative approach to RLHF
- The offline DPO/RLHF suffers from the reward over-optimization issue due to insufficient coverage and mis-generalization.
- Online iterative DPO further explores the underlying space and outperforms the offline variant with a large margin.

Thanks for listening!