

Course Specialist Test 2 Year 12

Student name:	Teacher name:			
Task type:	Response/Investigation			
Reading time for this test: 5 mins				
Working time allowed for this task: 40 mins				
Number of questions:	7			
Materials required:	Upto 3 classpads/calculators			
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters			
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations			
Marks available:	42 marks			
Task weighting:	13%			
Formula sheet provided: no but formulae stated on page 2				
Note: All part questions worth more than 2 marks require working to obtain full marks.				

Useful formulae

Complex numbers

Cartesian form				
z = a + bi	$\overline{z} = a - bi$			
Mod $(z) = z = \sqrt{a^2 + b^2} = r$	$\operatorname{Arg}(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$			
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$			
$arg(z_1 z_2) = arg(z_1) + arg(z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$			
$z\overline{z} = z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$			
$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$			
Polar form				
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis} (-\theta)$			
$z_1 z_2 = r_1 r_2 cis (\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$			
$cis(\theta_1 + \theta_2) = cis \ \theta_1 \ cis \ \theta_2$	$cis(-\theta) = \frac{1}{cis \theta}$			
De Moivre's theorem				
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$			
$z^{rac{1}{q}}=r^{rac{1}{q}}\left(\cosrac{ heta+2\pi k}{q}+i\sinrac{ heta+2\pi k}{q} ight), \qquad ext{for k an integer}$				

$$(x-\alpha)(x-\beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$

Q1 (2 & 3 = 5 marks)

Consider the function f(x) plotted below.

- a) Solve for |f(x)| = 5.
- b) Sketch y = |f(|x|)| on the axes below.

Q2 (2, 3 & 3 = 8 marks)

Consider the functions $f(x) = \frac{1}{\sqrt{2x-9}}$ and $g(x) = \frac{1}{3x-1}$.

- a) Determine the natural domain and range of g(x).
- b) Does $f \circ g(x)$ exist over the natural domain of g(x)? Explain.

c) Determine the largest possible domain for $f \circ g(x)$.

Q3 (3, 3, 1 & 2 = 9 marks)

Consider the function $f(x) = 3x^2 - 12x + 19$, $x \le 2$.

a) Determine $f^{-1}(x)$ and state its domain.

Q3 continued

b) Sketch $f(x) & f^{-1}(x)$ on the same set of axes below.

d) Determine value(s) of x, if any, such that $f \circ f(x) = x$. Explain.

Q4 (3 marks)

If $z = 27cis\frac{7\pi}{8}$ is a solution to the equation $z^n = ir$ where r is a positive real number and n is a positive integer, determine the smallest possible value for r in the form 3^p . **Justify** your answer.

Q5 (3 & 3 = 6 marks)

Consider a triangular plane with vertices A(3,0,0), B(0,4,0) & C(0,0,5) shaded as shown below. There is a light globe situated at point D(5,11,7).

a) Determine the cartesian equation of the shaded plane $\ensuremath{\mathit{ABC}}$ above.

Q5 continued

b) Determine the distance of the globe to the shaded plane ABC.

Q6 (5 marks)

Consider the line A $r = \begin{pmatrix} -3 \\ 0 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix}$ and the sphere B $r - \begin{pmatrix} -3 \\ \alpha \\ 1 \end{pmatrix} = 10$ where α is a real constant.

Determine all possible values of α ,to one decimal place such that:

- i) the line misses the sphere.
- ii) the line just touches the sphere.
- iii) the line pierces the sphere at two points.

Q7 (3 & 3 = 6 marks)

Consider two rockets A & B that are ignited at the same time from different positions and move with constant velocities as shown below.

$$r_{A} = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix} km \quad , v_{A} = \begin{pmatrix} 1 \\ -1 \\ 7 \end{pmatrix} km/h$$

$$r_{B} = \begin{pmatrix} 5 \\ -3 \\ 15 \end{pmatrix} km \quad , v_{B} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} km/h$$

Both rockets leave a smoke trail that stays in the air for at least 6 hours.

a) Determine the distance of the closest approach between the rockets using **scalar dot** product (3 marks)

Mathematics	Department
-------------	------------

Perth Modern

Q7 continued on next page

b) Determine the exact point in space, if any, where the smoke trails overlap at some time in the first 6 hours. (3 marks)

Mathematics Department

Perth Modern

Working out space

Mathematics Departn	псш
---------------------	-----

Perth Modern

Working out space

Mathematics Department	Perth Modern
Working out space	
End of test	