01204211 Discrete Mathematics Lecture 7a: Languages and regular expressions

Jittat Fakcharoenphol

August 21, 2023

What is computation?

Models of computations

Languages = specifications

Formal definition: strings

Intuitively, a string is a *finite* sequence of symbols. However, to be able to formally prove properties of strings we need a precise definition.

Let a finite set Σ be the **alphabet**. (E.g., for bit strings, $\Sigma = \{0, 1\}$; for digits, $\Sigma = \{0, 1, \dots, 9\}$; for English string $\Sigma = \{a, b, \dots, z\}$.) The following is a recursive definition of strings.

Recursive definition of strings

A string w over alphabet Σ is either

- ightharpoonup the empty string ε , or
- $ightharpoonup a \cdot x$ where $a \in \Sigma$ and x is a string.

The set of all strings over alphabet Σ is denoted by Σ^* .

Review: more recursive definitions

Lengths

For a string w, let |w| be the length of w defined as

$$|w| = \left\{ \begin{array}{ll} 0 & \text{when } w = \varepsilon \\ 1 + |x| & \text{when } w = a \cdot x \end{array} \right.$$

Concatenation

For strings w and z, the concatenation $w \bullet z$ is defiend recursively as

$$w \bullet z = \left\{ \begin{array}{ll} z & \text{when } w = \varepsilon \\ a \cdot (x \bullet z) & \text{when } w = a \cdot x \end{array} \right.$$

Review: proving facts about strings

Lemma 1

For strings w and z, $|w \bullet x| = |w| + |x|$.

Proof.

Formal languages

A **formal language** is a set of strings over some finite alphabet Σ . Examples:

Careful...

These are different languages: $\emptyset, \{\varepsilon\}$ And ε is not a language.

How to describe languages?

Composition

Combining languages

If A and B are languages over alphabet Σ .

- ▶ Basic set operations: $A \cup B$, $A \cap B$, $\bar{A} = \Sigma^* \setminus A$.
- ▶ Concatenation: $A \bullet B$.

ightharpoonup Kleene closure or Kleene star: A^* .

Examples

Regular languages

Definition: regular languages

A language L is regular if and only if it satisfies one of the following conditions:

- ► *L* is empty;
- ▶ L contains one string (can be the empty string ε);
- L is a union of two regular languages;
- L is the concatenation of two regular languages; or
- ightharpoonup L is the Kleene closure of a regular language.

Examples

Regular expressions

Regular expressions: examples

Subexpressions

Regex is everywhere

Proofs about regular expressions - structural induction

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: $R = \emptyset$.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: $R = \emptyset$.

Case 2: R is a single string.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: $R = \emptyset$.

Case 2: R is a single string.

Proof. (cont.2/4)

Case 3: R = S + T for some regular expressions S and T.

Proof. (cont.3/4)

Case 4: $R = S \bullet T$ for some regular expressions S and T.

Proof. (cont.4/4)

Case 5: $R = S^*$ for some regular expression S.

Proof. (cont.4/4)

Case 5: $R = S^*$ for some regular expression S.

In every case, the language L(R) is non-empty.

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression.

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression. We prove that if $L(R) \neq \emptyset$, then there exists a regular expression R' such that L(R) = L(R') and R' does not contain \emptyset .

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression. We prove that if $L(R) \neq \emptyset$, then there exists a regular expression R' such that L(R) = L(R') and R' does not contain \emptyset . We prove by induction. What should the induction hypothesis be?

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

What are the cases that we have to consider?

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

What are the cases that we have to consider?

- $ightharpoonup R = \emptyset$
- ightharpoonup R is a single string.
- ightharpoonup R = S + T for some regular expressions S and T.
- $ightharpoonup R = S \bullet T$ for some regular expressions S and T.
- $ightharpoonup R = S^*$ for some regular expression S.