Tricept Parallel Robot MSA and VJM Modeling & Fanuc R2000 with Positioner VJM, Elastostatic Calibration, Geometrical Calibration and Redundancy Resolution

MSc. Students: Ibrahim Sinan, Dalang Felix

Tricept

Tricept robot was invented by Dr.
Neumann in 1988, it is a 5 degree of freedom hybrid mechanism composed of 3UPS-UP parallel mechanism in series with a 2R series mechanism, it has the advantages of high precision, rigidity, stability and so on, and is widely used in industrial production such as parts milling, welding, painting, handling, assembly, etc..

Tricept VJM Moduling

Tricept VJM Moduling

Simplified VJM Model

$$T = T_{base} * R_x(q_1) * R_y(q_2) * T_z(\theta_1) * T_z(l_1) * T_{3D}(\theta_i, 2-7) * R_x(q_3) * R_y(q_4) * R_z(q_5) * T_{Ubase}$$
 (39)

Tricept VJM Modeling

Simplified VJM Model

$$T = T_{base} * R_x(q_1) * R_y(q_2) * T_z(\theta_1) * T_z(l_1) * T_{3D}(\theta_i, 2 - 7) * R_x(q_3) * R_y(q_4) * R_z(q_5) * T_{Ubase}$$

$$\tag{39}$$

$$J_q = [J_1 \ J_2 \ J_3 \ J_4 \ J_5]$$
 J_{6*5}
 $J_{\theta} = [J_1 \ J_2 \ J_3 \ J_4 \ J_5 \ J_6 \ J_7] \ J_{6*7}$

$$K \quad system = \begin{bmatrix} 0 & J_{\theta} & J_{\theta} \end{bmatrix} \\ \begin{bmatrix} J'_{\theta} & -K_{\theta} & 0 \end{bmatrix} \\ \begin{bmatrix} J'_{q} & 0 & 0 \end{bmatrix} \\ & K_{18*18} \\ & K_{\theta \ 7*7} \end{bmatrix}$$

Tricept VJM Modeling

Simplified VJM Model

Now to find Kc:

$$\begin{bmatrix} \mathbf{0} & \mathbf{J}_{\theta} & \mathbf{J}_{q} \\ \mathbf{J}_{\theta}^{\mathrm{T}} & -\mathbf{K}_{\theta} & \mathbf{0} \\ \mathbf{J}_{q}^{\mathrm{T}} & \mathbf{0} & \mathbf{0} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{K}_{C} & * & * \\ * & * & * \\ * & * & * \end{bmatrix}$$

And calculate
 Δt from the
 following
 equation:

$$\mathbf{F} = \mathbf{K}_{\mathbf{C}} \cdot \Delta \mathbf{t}$$

Tricept VJM Modeling

Deflections

```
We calculate Kc for each leg then: K_c = \sum K_i ; i = 1 - 3
```

```
Editor - C:\Users\new--laptop\Downloads\innopolis\Advanced Robotics\project\Tripteron_robot_VJM\Tricept with A\VJM.m
  VJM.m × Jacobian_q.m × k_cylinder.m × +
        F = [100, 100, 100, 0, 0, 0]';
 9 -
        count = 1:
10
11 -
        Kthl = 10000000;
12
13 -
        E = 70 *10e5; %Young's modulus
        G = 25.5*10e5; %shear modulus
14 -
15 -
        d = 10*10e-2;
16 -
        1= 0.8;
17 -
        Kl1 = Kth1;
        K22 = k \text{ cylinder}(E,G,d,1);
18 -
19
        Ktheta = [Kll, zeros(1,6);
20 -
                       zeros(6,1), K22];
21
```

Command Window

```
delta =

1.0e-04 *

-0.0000
0.0000
0.4109
0.0000
0.0000
```

Tricept MSA Modeling

- We will show here our paper on overleaf:
- https://www.overleaf.com/project/62568740a75a7946f334584a
- Code:
- https://colab.research.google.com/drive/1o2XfpdWgn7ePPqQt6VqoQvdG7Yz0ZWs#scrollTo=h4B83yQ_1Ri0

VJM Model:

```
\begin{split} T &= T_{base} * T_z(l_0) * R_z(\theta_1) * T_z(l_1) * T_{3D}(\theta_i, 2-7) * R_y(\theta_8) * \\ &\quad T_z(l_2) * T_{3D}(\theta_i, 9-14) * R_y(\theta_1 5) * T_z(l_3) * T_{3D}(\theta_i, 16-21) * T_{tool} \end{split} \tag{40}
```

```
It = [T14(1,4), T14(2,4), T14(3,4), T14(3,2), T14(1,3), T14(2,1)];

T15= Tz(10)*Rz(th1)*Tz(11)*Rx(th2)*Ry(th3) * Rz(th4)*Tz(th5)*Ty(th6)*Tx(th7)*Ry(th8)* Tz(12)* Rx(th9)*Ry(th10) * Rz(th11)*Tz(th12)*

J15 = [T15(1,4), T15(2,4), T15(3,4), T15(3,2), T15(1,3), T15(2,1)];

T16= Tz(10)*Rz(th1)*Tz(11)*Rx(th2)*Ry(th3) * Rz(th4)*Tz(th5)*Ty(th6)*Tx(th7)*Ry(th8)* Tz(12)* Rx(th9)*Ry(th10) * Rz(th11)*Tz(th12)*

J16 = [T16(1,4), T16(2,4), T16(3,4), T16(3,2), T16(1,3), T16(2,1)];

T17= Tz(10)*Rz(th1)*Tz(11)*Rx(th2)*Ry(th3) * Rz(th4)*Tz(th5)*Ty(th6)*Tx(th7)*Ry(th8)* Tz(12)* Rx(th9)*Ry(th10) * Rz(th11)*Tz(th12)*

J17 = [T17(1,4), T17(2,4), T17(3,4), T17(3,2), T17(1,3), T17(2,1)];

T18= Tz(10)*Rz(th1)*Tz(11)*Rx(th2)*Ry(th3) * Rz(th4)*Tz(th5)*Ty(th6)*Tx(th7)*Ry(th8)* Tz(12)* Rx(th9)*Ry(th10) * Rz(th11)*Tz(th12)*

J18 = [T18(1,4), T18(2,4), T18(3,4), T18(3,2), T18(1,3), T18(2,1)];

T19= Tz(10)*Rz(th1)*Tz(11)*Rx(th2)*Ry(th3) * Rz(th4)*Tz(th5)*Ty(th6)*Tx(th7)*Ry(th8)* Tz(12)* Rx(th9)*Ry(th10) * Rz(th11)*Tz(th12)*

J19 = [T19(1,4), T19(2,4), T19(3,4), T19(3,2), T19(1,3), T19(2,1)];

T20= Tz(10)*Rz(th1)*Tz(11)*Rx(th2)*Ry(th3) * Rz(th4)*Tz(th5)*Ty(th6)*Tx(th7)*Ry(th8)* Tz(12)* Rx(th9)*Ry(th10) * Rz(th11)*Tz(th12)*

J20 = [T20(1,4), T20(2,4), T20(3,4), T20(3,2), T20(1,3), T20(2,1)]*;

T21= Tz(10)*Rz(th1)*Tz(11)*Rx(th2)*Ry(th3) * Rz(th4)*Tz(th5)*Ty(th6)*Tx(th7)*Ry(th8)* Tz(12)* Rx(th9)*Ry(th10) * Rz(th11)*Tz(th12)*

J21 = [T21(1,4), T21(2,4), T21(3,4), T21(3,2), T21(1,3), T21(2,1)]*;
```

Activate Windows

J = [J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20 J21];

Why did we do that?

Results?

5.5

Results?

- Elastostatic Calibration :
- why it's important? Calculate deflections.

$$\mathbf{t} = g(\mathbf{q}, \, \mathbf{\theta}, \, \mathbf{\pi}) \qquad \qquad \mathbf{\theta} = \mathbf{k}_{\theta} \cdot \mathbf{J}_{\theta}^{\mathrm{T}} \cdot \mathbf{F}$$

where g(.) defines the manipulator extended geometric model, \mathbf{q} is the vector of actuated coordinates, $\mathbf{\theta}$ is the vector of robot elastostatic deflections, and the vector of the parameters $\boldsymbol{\pi} = \boldsymbol{\pi}_0 + \Delta \boldsymbol{\pi}$ is presented as the sum of the nominal component $\boldsymbol{\pi}_0$ and geometrical errors $\Delta \boldsymbol{\pi}$ to be identified via calibration.

$$\mathbf{t} = \mathbf{g}_0 + \mathbf{J}_{\pi} \cdot \Delta \mathbf{\Pi} + \mathbf{J}_{\theta} \cdot \mathbf{k}_{\theta} \cdot \mathbf{J}_{\theta}^T \cdot \mathbf{F}$$

Elastostatic Calibration :

$$\sum_{i=1}^{m} \left\| \mathbf{t}_{i} - \mathbf{g}_{0i} - \mathbf{J}_{\pi i} \cdot \Delta \boldsymbol{\pi} - \mathbf{J}_{\theta i} \cdot \mathbf{k}_{\theta} \cdot \mathbf{J}_{\theta i}^{T} \cdot \mathbf{F}_{i} \right\|^{2} \longrightarrow \min_{\Delta \boldsymbol{\pi}, \mathbf{k}_{\theta}}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \left\| \mathbf{p}_{ij} - \mathbf{g}_{0ij}^{(p)} - \mathbf{J}_{\pi ij}^{(p)} \cdot \Delta \boldsymbol{\pi} - \left[\mathbf{J}_{\theta ij} \cdot \mathbf{k}_{\theta} \cdot \mathbf{J}_{\theta ij}^{T} \cdot \mathbf{F}_{i} \right]^{(p)} \right\|^{2} \rightarrow \min_{\Delta \boldsymbol{\pi}, \mathbf{k}_{\theta}}$$

Then we find the elasticity parameters.

Geometrical Calibration and Redundancy Resolution :

- https://www.overleaf.com/project/62568740a75a7946f334584a
- Code:
- Redundancy Resolution
- Geometrical Calibration