Scilab Textbook Companion for Electronic Devices by K. C. Nandi¹

Created by
Mohd. Irfan
B.Tech
Electronics Engineering
UPTU
College Teacher
Mr. Sunil Kumar
Cross-Checked by
Muku Kulkarni & Lavitha Pereira

January 25, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Devices

Author: K. C. Nandi

Publisher: Tech-max Publications, Pune

Edition: 1

Year: 2013

ISBN: 978-93-5077-354-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Energy Bands And Charge Carriers	7
2	Excess Carriers In Semiconductors	23
3	Junction Properties	38
4	Junction Contd	53
5	Bipolar Junction Transistors	56

List of Scilab Codes

Exa 1.7.1 W	$ au_{ m avelength}$
Exa 1.7.2 Ex	nergy gap of Si
	osition of Fermi level
	robability
Exa 1.18.3 T	hermal equilibrium hole concentration
	onductivity of pure Si
Exa 1.21.2 N	umber of donar atoms
Exa 1.21.3 Co	onductivity of speciman
	obility of electrons in Ge
	ensity and mobility of holes
Exa 1.21.6 Ct	urrent produced
Exa 1.21.7 Re	esitivity of doped Ge atoms
	urrent produced in Ge sample
Exa 1.21.9 Co	onductivity of pure Si
Exa 1.23.1 Ha	all voltage produced
Exa 1.23.2 Ha	all coefficient and mobility of electrons
Exa 1.23.3 Co	oncentration of holes in Si crystals
Exa 1.23.4 Ha	all angle
Exa 1.23.5 M	obility and density of charge carriers
Exa 1.23.6 Ct	urrent density in speciman
Exa 1.23.7 Re	elaxation time
Exa 1.23.8 Te	emperature
	hermal equilibrium hole concentration 19
Exa 1.23.10Re	equired doping concentration 19
Exa 1.23.11Q	uasi Fermi energy levels
	quilibrium hole concentration
	urrent
Exa 2.21.1 He	ole concentration at equilibrium

Exa 2.21.3 Fermi level	23
Exa 2.21.4 Diffusion coefficients of electrons	24
Exa 2.21.5 Diffusion length	25
Exa 2.21.6 Concentration of holes and electrons	25
Exa 2.21.7 Electron transit time	26
Exa 2.21.8 Resistivity of intrinsic Ge	26
Exa 2.21.9 Hole and electron concentration	27
Exa 2.21.10Ratio of donot atoms to Si atoms	28
Exa 2.21.11Equilibrium electron and hole densities	28
Exa 2.21.12Carrier concentration	29
Exa 2.21.13Generation rate due to irradiation	29
Exa 2.21.14Mobility of minority charge carrier	29
Exa 2.21.15Hole and electron diffusion current	30
Exa 2.21.16Energy band gap of semiconductor material used	31
Exa 2.21.17Current density	32
Exa 2.21.18Resistance of the bar	32
Exa 2.21.19Depletion width	33
Exa 2.21.20 Majority carrier density	33
Exa 2.21.21Collector current density	34
Exa 2.21.22Band gap	34
Exa 2.21.23Rate of excess thermal energy	35
Exa 2.21.24Hole current	36
Exa 2.21.25Hole current	37
Exa 3.10.1 Contect difference of potential	38
Exa 3.10.2 Height of the potential energy barrier	39
Exa 3.10.3 Ratio of current for a forward bias to reverse bias	40
Exa 3.10.4 Anticipated factor	41
Exa 3.10.5 Leakage resistance	41
Exa 3.10.6 Dynamic resistance	42
Exa 3.10.7 Barrier capacitance	43
Exa 3.10.8 Width of the depletion layer	43
Exa 3.10.9 Current in the junction	44
Exa 3.10.10Forward biasing voltage	45
Exa 3.10.11Theoretical diode current	45
Exa 3.10.12Diode dynamic resistance	46
Exa 3.10.13Q point	46
Exa 3.10.14AC resistance of a Ge diode	47
Exa 3 10 15 Junction potential	47

Exa 3.10.16Dynamic resistance			48
Exa 3.10.17Width of the depletion layer			
Exa 3.10.18Barrier capacitance of a Ge pn junction			49
Exa 3.10.19Diameter			
Exa 3.10.20Temperature of junction			51
Exa 3.10.21Voltage			51
Exa 3.10.22Reverse saturation current			52
Exa 4.12.1 Pinch off voltage			53
Exa 4.12.2 Value of VGS and VDS			
Exa 4.12.3 Drain current			54
Exa 4.12.4 Value of transconductance			55
Exa 4.12.5 Transconductance and drain current			55
Exa 5.8.1 Value of collector current and VCB			56
Exa 5.8.2 Base current			56
Exa 5.10.1 Emitter current			57
Exa 5.10.1aBase and emitter current			57
Exa 5.10.3 Change in base current			58
Exa 5.10.4 Transistor current			
Exa 5.10.5 Collector current			
Exa 5.10.6 Current gain			60
Exa 5.10.7 Value of alphaDC and bitaDC			
Exa 5.13.1 Value of alphaDC and emitter current			
Exa 5.13.2 Base and emitter current			61
Exa 5.13.3 Base current			62
Exa 5.13.5 Emitter current			62
Exa 5.13.6 Region of operation of Si transistor		 	63
Exa 5.13.7 Value of IB IC and VCE			64
Exa 5.13.8 Region of operation			
Exa 5.13.9 Value of VBB			65
Exa 5.13.10Minimum value of RC required			66
Exa 5.13.11 Value of RE			
Exa 5.13.12Collector voltage and minimum value of bita			
Eve 5.21.1 Inductor circuit			60

Chapter 1

Energy Bands And Charge Carriers

Scilab code Exa 1.7.1 Wavelength

```
1 //Exa 1.7.1
2 clc;
3 clear;
4 close;
5 // Given data
6 E_g = 0.75 // in eV
7 E_g = 0.75 * 1.6 * 10^-19; // in J
8 h = 6.63 * 10^-34; // in J
9 c = 3 * 10^8; // in m/s
10 // hv = E_g
11 //E_g = (h*c)/lambda
12 lambda = (h*c)/E_g; // in m
13 lambda = lambda * 10^10; // in A
14 disp(lambda, "The wavelength at which germanium starts to absorb light in A is");
```

Scilab code Exa 1.7.2 Energy gap of Si

```
1 // Exa 1.7.2
2 clc;
3 clear;
4 close;
5 // Given data
6 h = 6.625 * 10^-34; // in J
7 c = 3 * 10^8; // in J
8 \quad lambda_Gr = 17760 * 10^-10; // in m
9 lambda_Si = 11000; // in A
10 lambda_Si = lambda_Si * 10^-10; // in m
11 E_g = (h*c)/lambda_Si; // in J
12 E_g = E_g /(1.6*10^-19); // in eV
13 disp(E_g, "The energy gap of Si in eV is ");
14 E_g1 = (h*c)/lambda_Gr; // in J
15 E_g1 = E_g1/(1.6 * 10^-19); // in eV
16 disp(E_g1, "The energy gap of Germanium in eV is ");
```

Scilab code Exa 1.18.1 Position of Fermi level

Scilab code Exa 1.18.2 Probability

```
1 //Exa 1.18.2
2 clc;
3 clear;
4 close;
5 // Given data
6 N_c = 2.8 * 10^19; // in cm^-3
7 del_E = 0.25; // fermi energy in eV
8 KT = 0.0259;
9 f_F = exp(-(del_E)/KT);
10 disp(f_F, "The probbaility in the condition band is occupied by an electron is ");
11 n_o = N_c * exp(-(del_E)/KT); // in cm^-3
12 disp(n_o, "The thermal equilibrium electron concentration in cm^-3 is");
```

Scilab code Exa 1.18.3 Thermal equilibrium hole concentration

```
1 //Exa1.18.3
2 clc;
3 clear;
4 close;
5 // Given data
6 T1 = 300; // in K
7 T2 = 400; // in K
8 del_E = 0.27; // Fermi level in eV
9 KT = (0.0259) * (T2/T1); // in eV
10 N_v = 1.04 * 10^19; // in cm^-3
11 N_v = N_v * (T2/T1)^(3/2); // in cm^-3
12 p_o = N_v * exp(-(del_E)/KT); // in per cm^3
```

13 disp(p_o, "The thermal equilibrium hole concentration
 in per cm^3 is");

Scilab code Exa 1.21.1 Conductivity of pure Si

```
1 // Exa 1.21.1
2 clc;
3 clear;
4 close;
5 // Given data
6 Mu_e = 1500; // in cm^2/volt sec
7 Mu_h = 500; // in cm^2/volt sec
8 n_i = 1.6 * 10^10; // in per cm^3
9 e = 1.6 * 10^-19; // in C
10 Sigma = n_i * (Mu_e + Mu_h) * e; // in mho/cm
11 disp(Sigma, "The conductivity of pure semiconductor in mho/cm is");
```

Scilab code Exa 1.21.2 Number of donar atoms

```
1 // Exa 1.21.2
2 clc;
3 clear;
4 close;
5 // Given data
6 Rho = 10; // in -cm
7 Mu_d = 500; // in cm^2/v.s.
8 e = 1.6*10^-19;
9 n_d = 1/(Rho * e * Mu_d); // in per cm^3
10 disp(n_d, "The number of donor atom must be added to achieve in per cm^3 is ");
```

Scilab code Exa 1.21.3 Conductivity of speciman

Scilab code Exa 1.21.4 Mobility of electrons in Ge

```
1 // Exa1.21.4
2 clc;
3 clear;
4 close;
5 // Given data
6 Rho = 0.3623 * 10^-3; // in Ohm m
7 Sigma = 1/Rho; // in mho/m
8 D = 4.42 * 10^28; // Ge density in atom/m^3
9 n_d = D / 10^6; // in atom/m^3
10 e = 1.6 * 10^-19; // in C
11 Mu = Sigma/(n_d * e); // in m^2/V.sec
```

12 disp(Mu, "The mobility of electron in germanium in m ^2/V.sec is");

Scilab code Exa 1.21.5 Density and mobility of holes

```
1 / Exa 1.21.5
2 clc;
3 clear;
4 close;
5 // Given data
6 AvagadroNumber = 6.025 * 10^26; // in kg. Mole
7 W = 72.59; // atomic weight of Ge
8 D = 5.36 * 10^3; // density of Ge in kg/m^3
9 Rho = 0.42; // resistivity in Ohm m
10 e = 1.6 * 10^-19; // in C
11 Sigma = 1/Rho; // in mho/m
12 n = (AvagadroNumber/W) * D; // number of Ge atoms
      present per unit volume
13 // Holes per unit volume, H = n*10^-6\%
14 \text{ H= } n*10^-8;
15 \quad a=H;
16 // Formula sigma= a*e*Mu_h
17 Mu_h = Sigma/(a * e); // in m^2/V.sec
18 disp(Mu_h, "Mobility of holes in m^2/V.sec is");
```

Scilab code Exa 1.21.6 Current produced

```
1 //Exa 1.21.6
2 clc;
3 clear;
4 close;
5 // Given data
6 e = 1.6 * 10^-19; // in C
```

```
7  n_i = 2 * 10^19; // in /m^3
8  Mu_e = 0.36; // in m^2/v.s
9  Mu_h = 0.17; // in m^2/v.s
10  A = 1 * 10^-4; // in m^2
11  V = 2; // in volts
12  l = 0.3; // in mm
13  l = 1 * 10^-3; // in m
14  E=V/l; // in volt/m
15  Sigma = n_i * e * (Mu_e + Mu_h); // in mho/m
16  // J = I/A = Sigma * E
17  I= Sigma*E*A;
18  disp(I, "The current produced in a small germanium plate in amp is");
```

Scilab code Exa 1.21.7 Resitivity of doped Ge atoms

```
1 // Exa 1.21.7
2 clc;
3 clear;
4 close;
5 // Given data
6 D = 4.2 * 10^28; // density of Ge atoms in atoms/m^3
7 N_d = D / 10^6; // in atoms/m^3
8 e = 1.6 * 10^-19; // in C
9 Mu_e = 0.36; // in m^2/vs
10 Sigma_n = N_d * e * Mu_e; // in mho/m
11 Rho_n = 1/Sigma_n; // in ohm m
12 disp(Rho_n, "The resistivity of drop Ge in ohm m is ");
```

Scilab code Exa 1.21.8 Current produced in Ge sample

```
1 // Exa 1.21.8
```

```
2 clc;
3 clear;
4 close;
5 // given data
6 = 1.6 * 10^-19; // in C
7 \text{ n_i} = 1 * 10^19; // in per m^3
8 Mu_e = 0.36; // in m^2/volt.sec
9 \text{ Mu_h} = 0.17; // \text{ in } \text{m}^2/\text{volt.sec}
10 A = 2; // \text{ in cm}^2
11 A = A * 10^--4; // im m^2
12 t = 0.1; // in mm
13 t = t * 10^-3; // in m
14 V = 4; // in volts
15 Sigma_i = n_i * e * (Mu_e + Mu_h); // in mho/m
16 J = Sigma_i * (V/t); // in Amp/m<sup>2</sup>
17 I = J * A; // in Amp
18 disp(I,"The current produced in a Ge sample in Amp
      is");
```

Scilab code Exa 1.21.9 Conductivity of pure Si

```
1 //Exa 1.21.9
2 clc;
3 clear;
4 close;
5 // Given data
6 e = 1.6 * 10^-19; // in C
7 Mu_h = 500; // in cm^2/V.s.
8 Mu_e = 1500; // in cm^2/V.s.
9 n_i = 1.6 * 10^10; // in per cm^3
10 Sigma_i = n_i * e * (Mu_h + Mu_e); // in mho/cm
11 disp(Sigma_i, "Conductivity of pure silicon at room temperature in mho/cm is");
```

Scilab code Exa 1.23.1 Hall voltage produced

```
1 //Exa 1.23.1
2 clc;
3 clear;
4 close;
5 //Given data
6 l= 0.50*10^-2; // width of ribbon in m
7 d= 0.10*10^-3; // thickness of ribbon in m
8 A= l*d; // area of ribbon in m^2
9 B = 0.8; // in Tesla
10 D = 10.5; // density in gm/cc
11 I = 2; // in amp
12 q = 1.6 * 10^-19; // in C
13 n=6*10^28; // number of elec. per m^3
14 V_H = ( I * B * d)/(n * q * A); // in volts
15 disp(V_H, "The hall Voltage produced in volts is");
```

Scilab code Exa 1.23.2 Hall coefficient and mobility of electrons

```
1 //Exa 1.23.2
2 clc;
3 clear;
4 close;
5 // Given data
6 l = 1; // in m
7 d = 1; // in cm
8 d = d * 10^-2; // in m
9 W = 1; // in mm
10 W = W * 10^-3; // in m
11 A = d * W; // in m^2
12 I = 1; // in Amp
```

```
13  B = 1; // Tesla
14  V_H = 0.074 * 10^-6; // in Volts
15  Sigma = 5.8 * 10^7; // in mho/m
16  R_H = (V_H * A)/(B*I*d); // in m^3/c
17  disp(R_H, "The hall coefficient in m^3/c is");
18  Mu = Sigma * R_H; // in m^2/volt.sec
19  disp(Mu, "The mobility of electrons in copper in m ^2/volt-sec is ");
```

Scilab code Exa 1.23.3 Concentration of holes in Si crystals

```
1 //Exa1.23.3
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 1.4 * 10^18; // in /m^3
7 n_D = 1.4 * 10^24; // in /m^3
8 n=n_D; // in /m^3
9 p = n_i^2/n; // in /m^3
10 R = n/p;
11 disp(R, "The ratio of electrons to hole concentration is");
```

Scilab code Exa 1.23.4 Hall angle

```
1 //Exa 1.23.4
2 clc;
3 clear;
4 close;
5 // Given data
6 B = 0.48; // in wb/m^2
7 R_H = 3.55 * 10^-4; // in m^3/c
```

```
8 Rho = 0.00912; // in ohm-m
9 Sigma = 1/Rho; // in (ohm-m)^-1
10 theta_H = atand( Sigma * B * R_H); // in degree
11 disp(theta_H, "The hall angle for a hall coefficient in degree is");
```

Scilab code Exa 1.23.5 Mobility and density of charge carriers

```
1 //Exa 1.23.5
2 clc;
3 clear;
4 close;
5 //Given data
6 R = 9 * 10^-3; // in ohm-m
7 R_H = 3.6 * 10^-4; // in m^3
8 e = 1.6 * 10^-19; // in C
9 Sigma = 1/R; // in (ohm-m)^-1
10 Rho = 1/R_H; // in coulomb/m^3
11 n = Rho/e; // in /m^3
12 disp(n, "Density of charge carriers in per m^3 is");
13 Mu = Sigma * R_H; // in m^2/v-s
14 disp(Mu, "Mobility of charge carriers in m^2/V-s is")
;
```

Scilab code Exa 1.23.6 Current density in speciman

```
1 //Exa 1.23.6
2 clc;
3 clear;
4 close;
5 // Given data
6 e = 1.6 * 10^-19; // in C
7 R_H = 0.0145; // in m^3/coulomb
```

```
8 Mu_e = 0.36; // in m^2/v-s
9 E = 100; // in V/m
10 n = 1/(e * R_H); // in /m^3
11 J = n * e * Mu_e * E; // in A/m^2
12 disp(J,"The current density of specimen in A/m^2 is"
);
```

Scilab code Exa 1.23.7 Relaxation time

```
1 / \text{Exa} \ 1.23.7
2 clc;
3 clear;
4 close;
5 //Given data
6 Mu_e = 7.04 * 10^-3; // in m^2/v-s
7 m = 9.1 * 10^-31;
8 E_F = 5.5; // in eV
9 n = 5.8 * 10^28;
10 e = 1.6 * 10^-19; // in C
11 Torque = (Mu_e/e) * m; // in sec
12 disp(Torque, "Relaxation Time in sec is ");
13 Rho = 1 /(n * e * Mu_e); // in ohm—m
14 disp(Rho, "Resistivity of conductor in ohm—m is");
15 V_F = sqrt((2 * E_F * e)/m); // in m/s
16 disp(V_F, "Velocity of electrons with fermi-energy in
      m/s is");
```

Scilab code Exa 1.23.8 Temperature

```
1 //Exa 1.23.8
2 clc;
3 clear;
4 close;
```

```
5 // Given data
6 E= 5.95; // in eV
7 EF= 6.25; // in eV
8 delE= 0.01;
9 // delE= 1-1/(1+exp((E-EF)/KT))
10 K=1.38*10^-23; // Boltzman Constant in J/K
11 T = ((E-EF)/log(1/(1-delE) -1)*1.6*10^-19)/K; // in K
12 disp(T,"The temperature in K is:")
```

Scilab code Exa 1.23.9 Thermal equilibrium hole concentration

```
1 //Exa 1.23.9
2 clc;
3 clear;
4 close;
5 // Given data
6 N_V = 1.04 * 10^19; // in cm^-3
7 T1 = 300; // in K
8 T2 = 400; // in K
9 del_E = 0.27; // in eV
10 N_V = N_V * (T2/T1)^1.5; // in cm^-3
11 KT = (0.0259) * (T2/T1); // in eV
12 P_o = N_V * exp(-(del_E)/KT); // in cm^-3
13 disp(P_o, "The thermal equilibrium hole concentration in silicon in cm^-3 is ");
```

Scilab code Exa 1.23.10 Required doping concentration

```
1 //Exa 1.23.10
2 clc;
3 clear;
4 close;
5 //Given data
```

```
6  N_c = 2.8 * 10^19;
7  N_V = 1.04 *10^19;
8  T1 = 550; // in K
9  T2 = 300; // in K
10  E_g = 1.12;
11  KT = (0.0259);
12  n_i = sqrt(N_c *N_V *(T1/T2)^3* exp(-(E_g)/KT*T2/T1)); // in cm^-3
13  // n_o = N_d/2 + sqrt((N_d/2)^2 + (n_i)^2)
14  // 1.05*N_d -N_d/2= sqrt((N_d/2)^2 + (n_i)^2)
15  N_d=sqrt((n_i)^2/((0.55)^2-1/4));
16  disp(N_d, "Minimum donor concentration required in cm ^-3 is");
```

Scilab code Exa 1.23.11 Quasi Fermi energy levels

```
1 / \text{Exa} 1.23.11
2 clc;
3 clear;
4 close;
5 //Given data
6 T = 300; // in K
7 \text{ n_o} = 10^15; // in cm^-3
8 \text{ n_i} = 10^10; // \text{ in cm}^3
9 p_o = 10^5; // in cm^-3
10 del_n = 10^13; // in cm^-3
11 del_p = del_n; // in cm^-3
12 KT = 0.0259; // in eV
13 delta_E1 = KT*log(n_o/n_i); // value of E_F-E_Fi in eV
14 delta_E2= KT*log((n_o+del_n)/n_i); // value of E_Fn-
      E_Fi in eV
15 delta_E3 = KT * log((p_o + del_p)/n_i); // value of E_Fi
      E<sub>Fp</sub> in eV
16 disp(delta_E1, "The Fermi level for thermal
      equillibrium in eV is: ")
```

```
17 disp(delta_E2,"The quase-Fermi level for electrons
          in non equillibrium in eV is : ")
18 disp(delta_E3,"The quasi-Fermi level for holes in
          non equillibrium in eV is : ")
19 disp("The quasi-Fermi level for electrons is above
          E_Fi ")
20 disp("While the quasi-Fermi level for holes is below
          E_Fi")
```

Scilab code Exa 1.23.12 Equilibrium hole concentration

```
1 // Exa 1.23.12
2 clc;
3 clear;
4 close;
5 //Given data
6 n_i = 1.5 * 10^10;
7 n_o = 10^17;
8 KT = 0.0259;
9 P_o = (n_i)^2/n_o;// in cm^-3
10 del_E = KT * log(n_o/n_i);// in eV
11 disp(del_E, "equilibrium hole concentration in eV is");
```

Scilab code Exa 1.23.13 Current

```
1 //exa 1.23.13
2 clc;
3 clear;
4 close;
5 //Given data
6 Mu_n = 700; //in cm<sup>2</sup>/v-s
7 n_o = 10<sup>1</sup>7; // in /cm<sup>3</sup>
```

```
8  q = 1.6 * 10^-19; // in C
9  l = 0.1; // in cm
10  A = 10^-6;
11  V = 10; // in V
12  Sigma = q * Mu_n * n_o; // in (ohm cm)^-1
13  Rho = 1/Sigma; // in ohm cm
14  R = Rho * (1/A); // in ohm
15  I = V/R; // in A
16  disp(I*10^3, "The current in mA is");
```

Chapter 2

Excess Carriers In Semiconductors

Scilab code Exa 2.21.1 Hole concentration at equilibrium

```
1 // Exa 2.21.1
2 clc;
3 clear;
4 close;
5 // Given data
6 N_d = 10^17; // atoms/cm^3
7 n_i = 1.5 * 10^10; // in /cm^3
8 n_o = 10^17; // in cm^3
9 // p_o * n_o = (n_i)^2
10 p_o = (n_i)^2 / n_o; // in holes/cm^3
11 disp(p_o, "The holes concentration at equilibrium in holes/cm^3 is");
```

Scilab code Exa 2.21.3 Fermi level

```
1 // Exa 2.21.3
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 1.5 * 10 ^10; // in /cm^3 for silicon
7 N_d = 10^17; // in atoms/cm^3
8 n_o = 10^17; // electrons/cm^3
9 KT = 0.0259;
10 // E_r - E_i = KT * log(n_o/n_i); // in eV
12 disp("The energy band for this type material is Ei + "+string(del_E)+" eV");
```

Scilab code Exa 2.21.4 Diffusion coefficients of electrons

```
1 // Exa 2.21.4
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ K} = 1.38 * 10^-23; // in J/K
7 T = 27; // in degree
8 T = T + 273; // in K
9 = 1.6 * 10^-19; // in C
10 Mu_e = 0.17; // in m^2/v-s
11 Mu_e1 = 0.025; // in m^2/v-s
12 D_n = ((K * T)/e) * Mu_e; // in m^2/s
13 disp(D_n,"The diffusion coefficient of electrons in
     m^2/s is");
14 D_p = ((K * T)/e) * Mu_e1; // in m^2/s
15 disp(D_p, "The diffusion coefficient of
                                             holes in m
      ^{2}/s is ");
```

Scilab code Exa 2.21.5 Diffusion length

```
1 // Exa 2.21.5
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Mu_n} = 0.15; // \text{ in } \text{m}^2/\text{v-s}
7 \text{ K} = 1.38 * 10^-23; // in J/K
8 T = 300; // in K
9 \text{ del_n} = 10^20; // \text{ in per m}^3
10 Toh_n = 10^-7; // in s
11 e = 1.6 * 10^-19; // in C
12 D_n = Mu_n * ((K * T)/e); // in m^2/s
13 disp(D_n, "The diffusion coefficient in <math>m^2/s is");
14 L_n = sqrt(D_n * Toh_n); // in m
15 disp(L_n, "The Diffusion length in m is");
16 J_n = (e * D_n * del_n)/L_n; // in A/m^2
17 disp(J_n, "The diffusion current density in A/m^2 is"
      );
18 // Note: The value of diffusion coefficient in the
      book is wrong.
```

Scilab code Exa 2.21.6 Concentration of holes and electrons

```
1 // Exa 2.21.6
2 clc;
3 clear;
4 close;
5 // Given data
6 Sigma = 0.1; // in (ohm-m)^-1
7 Mu_n = 1300;
8 n_i = 1.5 * 10^10;
9 q = 1.6 * 10^-19; // in C
10 n_n = Sigma/(Mu_n * q); // in electrons/cm^3
```

Scilab code Exa 2.21.7 Electron transit time

```
1 // Exa 2.21.7
2 clc;
3 clear;
4 close;
5 // Given data
6 Mu_e = 0.13; // \text{ in } \text{m}^2/\text{v-s}
7 Mu_h = 0.05; // in m^2/v-s
8 \text{ Toh_h} = 10^-6; // in s
9 L = 100; // in m
10 L = L * 10^-6; // in m
11 V = 2; // in V
12 t_n = L^2/(Mu_e * V); // in s
13 disp(t_n, "Electron transit time in seconds is");
14 p_g = (Toh_h/t_n) * (1 + Mu_h/Mu_e); //photo
      conductor gain
15 disp(p_g, "Photo conductor gain is");
17 // Note: There is a calculation error to evaluate
      the value of t<sub>n</sub>. So the answer in the book is
      wrong
```

Scilab code Exa 2.21.8 Resistivity of intrinsic Ge

```
1 // Exa 2.21.8 2 clc;
```

```
3 clear;
4 close;
5 //Given data
6 n_i = 2.5 * 10^13;
7 \text{ Mu_n} = 3800;
8 \text{ Mu_p} = 1800;
9 q = 1.6 * 10^-19; // in C
10 Sigma = n_i * (Mu_n + Mu_p) * q; // in (ohm-cm)^-1
11 Rho = 1/Sigma; // in ohm-cm
12 Rho = round(Rho);
13 disp(Rho,"The resistivity of intrinsic germanium in
      ohm—cm is");
14 \text{ N_D} = 4.4 * 10^2/(1*10^8); // \text{ in atoms/cm}^3
15 Sigma_n = N_D * Mu_n * q; // in (ohm-cm)^-1
16 Rho_n = 1/Sigma_n; // in ohm—cm
17 disp(Rho_n," If a donor type impurity is added to the
       extent of 1 atom per 10<sup>8</sup> Ge atoms, then the
      resistivity drops in ohm-cm is");
```

Scilab code Exa 2.21.9 Hole and electron concentration

```
1 // Exa 2.21.9
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 10^16; // in /m3
7 N_D = 10^22; // in /m^3
8 n = N_D; // in /m^3
9 disp(n, "Electron concentration per m^3 is");
10 p = (n_i)^2/n; // in /m^3
11 disp(p, "Hole concentration per m^3 is");
```

Scilab code Exa 2.21.10 Ratio of donot atoms to Si atoms

```
1 // Exa 2.21.10
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Rho} = 9.6 * 10^-2; // in ohm-m
7 Sigma_n = 1/Rho; // in (ohm-m)^-1
8 q = 1.6 * 10^-19; // in C
9 Mu_n = 1300 * 10^-4; // in m^2/v-s
10 N_D = Sigma_n / (Mu_n * q); // in atoms/m^3
11 A_D = N_D; // Atom density in atoms/cm^3
12 A_D = A_D * 10^6; // atoms/m^3
13 R_si = N_D/A_D; // ratio
14 disp(R_si," the ratio of donor atom to silicon atom
      is");
15
16 // Note: In the book the wrong value of N<sub>-</sub>D
      (5*10^22) is putted to evaluate the value of Atom
       Density (A_D) whereas the value of N_D is
      calculated as 5*10^20.
               So the answer in the book is wrong
17 //
```

Scilab code Exa 2.21.11 Equilibrium electron and hole densities

```
1 // Exa 2.21.11
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 1.5 * 10^10; // in per cm^3
7 n_n = 2.25 * 10^15; // in per cm^3
8 p_n = (n_i)^2/n_n; // in per cm^3
9 disp(p_n, "The equilibrium electron per cm^3 is");
```

```
10 h_n = n_n; // in cm<sup>3</sup>
11 disp(h_n, "Hole densities in per cm<sup>3</sup> is");
```

Scilab code Exa 2.21.12 Carrier concentration

Scilab code Exa 2.21.13 Generation rate due to irradiation

```
1 // Exa 2.21.13
2 clc;
3 clear;
4 close;
5 // Given data
6 del_n = 10^15; // in cm^3
7 Torque_p = 10 * 10^-6; // in sec
8 R_g = del_n/Torque_p; // in hole pairs/sec/cm^3
9 disp(R_g, "The rate of generation of minority carrier in electron hole pairs/sec/cm^3 is ");
```

Scilab code Exa 2.21.14 Mobility of minority charge carrier

```
1 // Exa 2.21.14
2 clc;
3 clear;
4 close;
5 // Given data
6 v = 1/(20 * 10^-6); // in cm/sec
7 E = 10; // in V/cm
8 Mu= v/E; // in cm^2/V-sec
9 disp(Mu, "The mobility of minority charge carrier in cm^2/V-sec is ");
```

Scilab code Exa 2.21.15 Hole and electron diffusion current

```
1 // Exa 2.21.15
2 clc;
3 clear;
4 close;
5 // Given data
6 q = 1.6 * 10^-19; // in C
7 \text{ N_D} = 4.5 * 10^15; // in /cm^3
8 \text{ del}_p = 10^21;
9 e=10; // in cm
10 A = 1; // in mm<sup>2</sup>
11 A = A * 10^-14; // \text{ cm}^2
12 \ 1 = 10; // in cm
13 Torque_p = 1; // in microsec
14 Torque_p = Torque_p * 10^-6; // in sec
15 Torque_n = 1; // in microsec
16 Torque_n = Torque_n * 10^-6; // in
                                          sec
17 \text{ n_i} = 1.5 * 10^10; // in /cm^3
18 D_n = 30; // in cm^2/sec
19 D_p = 12; // in cm^2/sec
20 n_o = N_D; // in /cm^3
21 p_o = (n_i)^2/n_o; // in /cm^3
22 disp(p_o," Hole concentration at thermal equilibrium
```

```
per cm<sup>3</sup> is");
23 l_n = sqrt(D_n * Torque_n); // in cm
24 disp(1_n, "Diffusion length of electron in cm is");
25 l_p = sqrt(D_p * Torque_p); // in cm
26 disp(l_p, "Diffusion length of holes in cm is");
27 \text{ x} = 34.6 * 10^{-4}; // in cm
28 dpBYdx = del_p *e; // in cm<sup>4</sup>
29 disp(dpBYdx," Concentration gradient of holes at
      distance in cm<sup>4</sup> is");
30 \text{ e1} = 1.88 * 10^1; // in cm
31 dnBYdx = del_p * e1; // in cm^4 check this also
      32 disp(dnBYdx, "Concentration gradient of electrons in
      per cm<sup>4</sup> is");
33 J_P = -(q) * D_p * dpBYdx; // in A/cm^2
34 disp(J_P, "Current density of holes due to diffusion
      in A/cm^2 is");
35 \text{ J_n} = q * D_n * dnBYdx; // in A/cm^2
36 disp(J_n, "Current density of electrons due to
      diffusion in A/cm<sup>2</sup> is");
```

Scilab code Exa 2.21.16 Energy band gap of semiconductor material used

```
1 // Exa 2.21.16
2 clc;
3 clear;
4 close;
5 // Given data
6 e= 1.6*10^-19; // electron charge in C
7 h = 6.626 * 10^-34; // in J-s
8 h= h/e; // in eV
9 c = 3 * 10^8; // in m/s
10 lembda = 5490 * 10^-10; // in m
11 f = c/lembda;
12 E = h * f; // in eV
```

13 disp(E,"The energy band gap of the semiconductor material in eV is");

Scilab code Exa 2.21.17 Current density

Scilab code Exa 2.21.18 Resistance of the bar

```
1 // Exa 2.21.18
2 clc;
3 clear;
4 close;
5 // Given data
6 q = 1.6 * 10^-19; // in C
7 n_n = 5 * 10^20; // in /m^3
8 n_n = n_n * 10^-6; // in cm^3
9 Mu_n = 0.13; // in m^2/V-sec
10 Mu_n = Mu_n * 10^4; // in cm^2/V-sec
```

```
11 Sigma_n = q * n_n * Mu_n; // in (ohm-cm)^-1
12 Rho = 1/Sigma_n; // in -cm
13 l = 0.1; // in cm
14 A = 100; // m^2
15 A = A * 10^-8; // in cm^2
16 R = Rho * (1/A); // in Ohm
17 R=round(R*10^-6); // in M
18 disp(R,"The resistance of the bar in M is");
```

Scilab code Exa 2.21.19 Depletion width

```
1  // Exa 2.21.19
2  clc;
3  clear;
4  close;
5  // Given data
6  t_d = 3; // total depletion in m
7  D = t_d/9; // in m
8  disp(D," Depletion width in m is");
```

Scilab code Exa 2.21.20 Majority carrier density

```
1 // Exa 2.21.20
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 1.5 * 10^16; // in /m^3
7 n_n = 5 * 10^20; // in /m^3
8 p_n = (n_i)^2/n_n; // in /m^3
9 disp(p_n, "The majority carrier density per m^3 is");
```

Scilab code Exa 2.21.21 Collector current density

```
1 // Exa 2.21.21
2 clc;
3 clear;
4 close;
5 // Given data
6 D_n = 25; // in cm^2/sec
7 q = 1.6 * 10^{-19}; // in C
8 \text{ y2} = 10^14; // \text{ in } /\text{cm}^3
9 \text{ y1} = 0; // \text{ in } /\text{cm}^3
10 \text{ x2} = 0; //in
11 \times 1 = 0.5; // in m
12 \times 1 = \times 1 * 10^-4; // in cm
13 dnBYdx = abs((y2-y1)/(x2-x1)); // in /cm^4
14 \ J_n = q * D_n * (dnBYdx); // in /cm^4
15 J_n = J_n * 10^-1; // in A/cm^2
16 disp(J_n," the collector current density in A/cm<sup>2</sup> is
      ");
17
18 // Note: In the book, the calculated value of dn by
      dx (2*10^19) is wrong. Correct value is 2*10^18
      so the answer in the book is wrong.
```

Scilab code Exa 2.21.22 Band gap

```
1 //Exa 2.21.22
2 clc;
3 clear;
4 close;
5 // Given data
6 h = 6.64 * 10^-34; // in J-s
```

```
7 e= 1.6*10^-19; // electron charge in C
8 c= 3 * 10^8; // in m/s
9 lembda = 0.87; // in m
10 lembda = lembda * 10^-6; // in m
11 E_g = (h * c)/lembda; // in J-s
12 E_g= E_g/e; // in eV
13 disp(E_g, "The band gap of the material in eV is");
```

Scilab code Exa 2.21.23 Rate of excess thermal energy

```
1 // Exa 2.21.23
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 I_o = 10; // in mW
7 e = 1.6 * 10^-19; // in J/eV
8 \text{ hv} = 2; // \text{ in eV}
9 hv1=1.43; // in eV
10 alpha = 5 * 10^4; // in cm^-1
11 l = 46; // in m
12 \ 1 = 1 * 10^-6; // in m
13 I_t = round(I_0 * exp(-(alpha) * 1)); // in mW
14 AbsorbedPower= I_o-I_t; // in mW
15 AbsorbedPower=AbsorbedPower*10^-3; // in W or J/s
16 disp(AbsorbedPower, The absorbed power in watt or J/
      s is");
17 F= (hv-hv1)/hv; // fraction of each photon energy
      unit
18 EnergyConToHeat = AbsorbedPower*F; // in J/s
19 disp(EnergyConToHeat,"The amount of energy converted
       to heat per second in J/s is : ")
20 A= AbsorbedPower/(e*hv1);
21 disp(A," the number of photon per sec given off from
      recombination events in photons/s is");
```

Scilab code Exa 2.21.24 Hole current

```
1 // Exa 2.21.24
2 clc;
3 clear;
4 close;
5 // Given data
6 format('v',13)
7 \text{ Mu_p} = 500; // \text{ in cm}^2/\text{v-s}
8 kT = 0.0259;
9 \text{ Toh_p} = 10^-10; // \text{ in sec}
10 p_o = 10^17; // in cm<sup>-3</sup>
11 q = 1.6*10^-19; // in C
12 A=0.5; // in square meter
13 del_p = 5 * 10^16; // in cm^-3
14 n_i = 1.5*10^10; // in cm^-3
15 D_p = kT * Mu_p; // in cm/s
16 L_p = sqrt(D_p * Toh_p); // in cm
17 x = 10^{-5}; // in cm
18 p = p_o+del_p* %e^(x/L_p); // in cm^-3
19 // p= n_i *\%e^(Eip)/kT where Eip=E_i-F_p
20 Eip= log(p/n_i)*kT;// in eV
21 Ecp= 1.1/2-Eip; // value of E<sub>-</sub>c-E<sub>-</sub>p in eV
22 Ip= q*A*D_p/L_p*del_p*%e^(x/L_p); // in A
23 disp(Ip,"The hole current in A is: ")
24 Qp= q*A*del_p*L_p; // in C
25 disp(Qp,"The value of Qp in C is: ")
26
27 // Note: There is a calculation error to evaluate
      the value of hole current but they putted correct
       value of it to evaluate the value of Qp.
28 //
                Hence the value of hole current in the
      book is wrong
```

Scilab code Exa 2.21.25 Hole current

```
1 // Exa 2.21.25
2 clc;
3 clear;
4 close;
5 // Given data
6 format('v',13)
7 \text{ KT} = 0.0259;
8 A = 0.5; // in cm^2
9 \text{ Toh_p} = 10^-10; // in sec
10 p_o = 10^17; // in per cm^3
11 del_p = 5 * 10^16; // in per cm^3
12 x = 10^{-5}; // in cm
13 Mu_p = 500; // \text{ in cm}^2/\text{V-S}
14 q = 1.6 * 10^-19; // in C
15 D_p = KT * Mu_p; // in cm/s
16 L_p = sqrt(D_p * Toh_p); // in cm
17 p = p_0 * del_p * (%e^(x/L_p)); // in per cm^3
18 I_p = q * A * (D_p/L_p) * del_p * (%e^(x/L_p)); // in
19 disp(I_p, "The hole current in A is");
20 Q_p = q * A * del_p * L_p; // in C
21 disp(Q_p, "The hole charge in C is");
22
23 // Note: There is a calculation error to evaluate
      the value of hole current but they putted correct
       value of it to evaluate the value of Qp.
24 //
                Hence the value of hole current in the
      book is wrong
```

Chapter 3

Junction Properties

Scilab code Exa 3.10.1 Contect difference of potential

```
1 // EXa 3.10.1
2 clc;
3 clear;
4 close;
5 // Given data
6 t = 4.4 * 10^2; // total number of Ge atoms/cm^3
7 n = 1 * 10^8; // number of impurity atoms
8 N_A = t/n; // in atoms/cm<sup>3</sup>
9 N_A = N_A * 10^6; // in atoms/m^3
10 N_D = N_A * 10^3; // in atoms/m^3
11 n_i = 2.5 * 10^13; // in atoms/cm^3
12 n_i = n_i * 10^6; // in atoms/m^3
13 V_T = 26; //in \text{ mV}
14 V_T = V_T * 10^- 3; // in V
15 V_J = V_T * log((N_A * N_D)/(n_i)^2); // in V
16 disp(V_J, "The contact potential in V is");
17 // Part (b)
18 t = 5* 10<sup>22</sup>; // total number of Si atoms/cm<sup>3</sup>
19 N_A = t/n; // in atoms/cm^3
20 N_A = N_A * 10^6; // in atoms/m^3
21 \text{ N_D} = \text{N_A} * 10^3; // \text{ in } atoms/m^3
```

```
22  n_i = 1.5 * 10^10; // in atoms/cm^3
23  n_i = n_i * 10^6; // in atoms/m^3
24  V_T = 26; // in mV
25  V_T = V_T * 10^-3; // in V
26  V_J = V_T * log((N_A * N_D)/(n_i)^2); // in V
27  disp(V_J, "The contact potential in V is");
```

Scilab code Exa 3.10.2 Height of the potential energy barrier

```
1 // Exa 3.10.2
2 clc;
3 clear;
4 close;
5 // Given data
6 \ V_T = 26; // in \ mV
7 V_T = V_T * 10^-3; // in V
8 n_i = 2.5 * 10^13;
9 \text{ Sigma_p} = 1;
10 \text{ Sigma_n} = 1;
11 \ Mu_n = 3800;
12 q = 1.6 * 10^-19; // in C
13 \text{ Mu_p} = 1800;
14 N_A = Sigma_p/(2* q * Mu_p); // in /cm<sup>3</sup>
15 N_D = Sigma_n /(q * Mu_n); // in /cm<sup>3</sup>
16 V_J = V_T * log((N_A * N_D)/(n_i)^2); // in V
17 disp(V_J, "For Ge the height of the energy barrier in
       V is");
18 // For Si p-n juction
19 n_i = 1.5 * 10^10;
20 \text{ Mu_n} = 1300;
21 \text{ Mu_p} = 500;
22 \text{ N_A = Sigma_p/(2* q * Mu_p); // in /cm^3}
23 N_D = Sigma_n /(q * Mu_n); // in /cm<sup>3</sup>
V_J = V_T * \log((N_A * N_D)/(n_i)^2); // in V
25 disp(V_J, "For Si p-n junction the height of the
```

Scilab code Exa 3.10.3 Ratio of current for a forward bias to reverse bias

```
1 //Exa 3.10.3
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ Eta} = 1;
7 V_T = 26; // in mV
8 V_T = V_T * 10^- 3; // in V
9 // I = I_0 * (\%e^(V/(Eta*V_T)) - 1) \text{ and } I = -(0.9) *
       I_o;
10 V = log(1-0.9) * V_T; // in V
11 disp(V, "The voltage in volts is: ")
12 // Part (ii)
13 V1=0.05; // in V
14 V2 = -0.05; // in V
15 ratio= (%e^(V1/(Eta*V_T))-1)/(%e^(V2/(Eta*V_T))-1)
16 disp(ratio, "The ratio of the current for a forward
      bias to reverse bias is: ")
17 // Part (iii)
18 Io = 10; // in A
19 Io=Io*10^-3; // in mA
20 //For
21 V = 0.1; // in V
22 I = Io * (%e^{(V/(Eta*V_T))} - 1); // in mA
23 disp(I, "For v=0.1 V , the value of I in mA is : ")
24 //For
25 \text{ V=0.2;}// \text{ in V}
26 I = Io * (\%e^(V/(Eta*V_T)) - 1); // in mA
27 disp(I, "For v=0.2 V , the value of I in mA is : ")
28 //For
29 V = 0.3; // in V
```

Scilab code Exa 3.10.4 Anticipated factor

```
1 / \text{Exa} \ 3.10.4
2 clc;
3 clear;
4 close;
5 // Given data
6 // Part (i)
7 T1 = 25; // in
                   \mathbf{C}
8 T2 = 80; // in
                   \mathbf{C}
9 // Formula Io2 = Io1 *2^{(T2-T1)/10}
10 AntiFactor = 2^((T2-T1)/10);
11 disp(round(AntiFactor), "Anticipated factor for Ge is
       : ")
12 // Part (ii)
13 T1= 25; // in
14 T2= 150; // in C
15 AntiFactor= 2^((T2-T1)/10);
16 disp(round(AntiFactor), "Anticipated factor for Si is
       : ")
```

Scilab code Exa 3.10.5 Leakage resistance

```
1 //Exa 3.10.5
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 I=5; // in A
7 V = 10; // in V
8 T1 = 0.11; // in
                    C^-1
9 T2 = 0.07; // in
                    C^-1
10 // I_0+I_R=I
                                            ( i )
11 // dI_by_dT = dIo_by_dT
                           ( i i )
12 // 1/Io*dIo_by_dT = T1 and 1/I*dI_by_dT = T2, So
13 Io = T2*I/T1; // in A
14 I_R= I-Io;// in A
15 R= V/I_R; // in M
16 disp(R,"The leakage resistance in M
                                         is : ")
```

Scilab code Exa 3.10.6 Dynamic resistance

```
1 / \text{Exa} \ 3.10.6
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ Eta} = 1;
7 T = 125; // in
8 T = T + 273; // in K
9 V_T = 8.62 * 10^-5 * 398; // in V
10 I_o = 30; // in A
11 I_o = I_o *10^-6; // in A
12 v = 0.2; // in V
13 r_f = (Eta * V_T)/(I_o * %e^(v/(Eta* V_T))); // in
      ohm
14 disp(r_f, "The dynamic resistance in the forward
      direction in ohm is ");
15 r_r = (Eta * V_T)/(I_o * %e^(-v/(Eta* V_T))); // in
16 disp(r_r*10^-3, "The dynamic resistance in the
```

Scilab code Exa 3.10.7 Barrier capacitance

```
1 // Exa 3.10.7
2 clc;
3 clear;
4 close;
5 // Given data
6 epsilon = 16/(36 * %pi * 10^11); // in F/cm
7 A = 1 * 10^-2;
8 W = 2 * 10^-4;
9 C_T = (epsilon * A)/W; // in F
10 disp(C_T*10^12, "The barrier capacitance in pF is");
```

Scilab code Exa 3.10.8 Width of the depletion layer

```
1 //Exa 3.10.8
2 clc;
3 clear;
4 close;
5 //Given data
6 A = 1; // in mm^2
7 A = A * 10^-6; // in m^2
8 N_A = 3 * 10^20; // in atoms/m^3
9 q = 1.6 *10^-19; // in C
10 V_o = 0.2; // in V
11 epsilon_r=16;
12 epsilon_o= 8.854*10^-12; // in F/m
13 epsilon=epsilon_r*epsilon_o;
14 // Part (a)
15 V = -10; // in V
16 // V_{-0} - V = 1/2*((q * N_A)/epsilon) * W^2
```

```
17 W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A)); // m
18 C_T1 = (epsilon * A)/W;// in F
19 disp(W*10^6, "The width of the depletion layer for
     an applied reverse voltage of 10V in
                                             m is ");
20 // Part (b)
V = -0.1; // in V
22 \ W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A)); // m
23 C_T2 = (epsilon * A)/W;// in F
24 disp(W*10^6,"The width of the depletion layer for
     an applied reverse voltage of 0.1V in m is ");
25 // Part (c)
26 \ V=0.1; // in V
27 \text{ W} = \text{sqrt}(((V_o - V) * 2 * \text{epsilon})/(q * N_A)); // \text{ m}
28 disp(W*10^6, "The width of the depletion layer for
     an applied for a forward bias of 0.1V in m is "
     );
29 // Part (d)
30 disp(C_T1*10^12,"The space charge capacitance for an
       applied reverse voltage of 10V in pF is");
31 disp(C_T2*10^12,"The space charge capacitance for an
       applied reverse voltage of 0.1V in pF is");
```

Scilab code Exa 3.10.9 Current in the junction

```
1  // Exa 3.10.9
2  clc;
3  clear;
4  close;
5  // Given data
6  I_o = 1.8 * 10^-9; // A
7  v = 0.6; // in V
8  Eta = 2;
9  V_T = 26; // in mV
10  V_T=V_T*10^-3; // in V
11  I = I_o *(%e^(v/(Eta * V_T))); // in A
```

12 disp(I*10^3, "The current in the junction in mA is");

Scilab code Exa 3.10.10 Forward biasing voltage

```
1 // Exa 3.10.10
2 clc;
3 clear;
4 close;
5 // Given data
6 I_o = 2.4 * 10^-14;
7 I = 1.5; // in mA
8 I=I*10^-3; // in A
9 Eta = 1;
10 V_T = 26; // in mV
11 V_T= V_T*10^-3; // in V
12 v =log((I + I_o)/I_o) * V_T; // in V
13 disp(v, "The forward biasing voltage across the junction in V is");
```

Scilab code Exa 3.10.11 Theoretical diode current

```
1 // Exa 3.10.11
2 clc;
3 clear;
4 close;
5 // Given data
6 I_o = 10; // in nA
7 // I = I_o * ((e^(v/(Eta * V_T))) - 1)
8 // e^(v/(Eta * V_T) << 1, so neglecting it
9 I = I_o * (-1); // in nA
10 disp(I, "The Diode current in nA is ");</pre>
```

Scilab code Exa 3.10.12 Diode dynamic resistance

```
1 // Exa 3.10.12
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 4.5; // in ohm
7 I = 44.4; // in mA
8 I=I*10^-3; // in A
9 V = R * I; // in V
10 \text{ Eta} = 1;
11 V_T = 26; // in mV
12 V_T = V_T * 10^- 3; // in V
13 I_o = I/((%e^(V/(Eta * V_T))) -1); // in A
14 // At
15 V = 0.1; // in V
16 r_f = (Eta * V_T)/(I_o * ((%e^(V/(Eta * V_T)))-1));
      // in ohm
17 disp(r_f, "The diode dynamic resistance in
                                                    is");
```

Scilab code Exa 3.10.13 Q point

```
1  // Exa 3.10.13
2  clc;
3  clear;
4  close;
5  // Given data
6  V_D = 10; // in V
7  // V_S = i*R_L + V_D
8  V_S = V_D; // in V (i * R_L = 0)
```

Scilab code Exa 3.10.14 AC resistance of a Ge diode

```
1 // Exa 3.10.14
2 clc;
3 clear;
4 close;
5 // Given data
6 V = 0.25; // in V
7 I_o = 1.2; // in A
8 I_o = I_o * 10^-6; // in A
9 V_T = 26; // in mV
10 V_T = V_T * 10^-3; // in V
11 Eta = 1;
12 r = (Eta * V_T)/(I_o * (%e^(V/(Eta * V_T)))); // in ohm
13 disp(r, "The ac resistance of the diode in ohm is");
```

Scilab code Exa 3.10.15 Junction potential

```
1  // Exa 3.10.15
2  clc;
3  clear;
4  close;
5  // Given data
6  t = 4.4 * 10^22; // in total number of atoms/cm^3
7  n = 1 * 10^8; // number of impurity
8  N_A = t/n; // in atoms/cm^3
9  N_A = N_A * 10^6; // in atoms/m^3
10  N_D = N_A * 10^3; // in atoms/m^3
11  V_T = 26; // in mV
12  V_T = V_T * 10^-3; // in V
13  n_i = 2.5 * 10^19; // in /cm^3
14  V_J = V_T * log((N_A * N_D)/(n_i)^2); // in V
15  disp(V_J, "The junction potential in V is")
```

Scilab code Exa 3.10.16 Dynamic resistance

```
1 // Exa 3.10.16
2 clc;
3 clear;
4 close;
5 // Given data
6 Eta = 1;
7 I_o = 30; // in MuA
8 I_o = I_o * 10^-6; // in A
9 v = 0.2; // in V
10 K = 1.381 * 10^-23; // in J/degree K
11 T = 125; // in
                   \mathbf{C}
12 T = T + 273; // in K
13 q = 1.6 * 10^-19; // in C
14 V_T = (K*T)/q; // in V
15 r_f = (Eta * V_T)/(I_o * (e^(v/(Eta * V_T))));// in
16 disp(r_f, "The forward dynamic resistance in ohm is")
```

Scilab code Exa 3.10.17 Width of the depletion layer

```
1 // Exa 3.10.17
2 clc;
3 clear;
4 close;
5 // Given data
6 q = 1.6 * 10^-19; // in C
7 N_A = 3 * 10^20; // in /m^3
8 A = 1; // in m^2
9 A = A * 10^-6; // in m^2
10 V = -10; // in V
11 V_J = 0.25; // in V
12 V_B = V_J - V_i // in V
13 epsilon_o = 8.854; // in pF/m
14 epsilon_o = epsilon_o * 10^-12; // in F/m
15 \text{ epsilon_r} = 16;
16 epsilon = epsilon_o * epsilon_r;
17 W = sqrt((V_B * 2 * epsilon)/(q * N_A)); // in m
18 disp(W*10^6, "The width of depletion layer in m is"
     );
19 C_T = (epsilon * A)/W; // in pF
20 disp(C_T*10^12," the space charge capacitance in pF
     is");
```

Scilab code Exa 3.10.18 Barrier capacitance of a Ge pn junction

```
1 // Exa 3.10.18
2 clc;
3 clear;
4 close;
5 // Given data
6 W = 2 * 10^-4; // in cm
7 W = W * 10^-2; // in m
8 A = 1; // in mm^2
9 A = A * 10^-6; // in m^2
10 epsilon_r = 16;
11 epsilon_o = 8.854 * 10^-12; // in F/m
12 epsilon = epsilon_r * epsilon_o;
13 C_T = (epsilon * A)/W; // in F
14 disp(C_T*10^12, "The barrier capacitance in pF is");
```

Scilab code Exa 3.10.19 Diameter

```
1 // Exa 3.10.19
2 clc;
3 clear;
4 close;
5 // Given data
6 C_T = 100; // in pF
7 C_T = C_T * 10^-12; // in F
8 \text{ epsilon_r} = 12;
9 epsilon_o = 8.854 * 10^-12; // in F/m
10 epsilon = epsilon_r * epsilon_o;
11 Rho_p = 5; // in ohm—cm
12 Rho_p = Rho_p * 10^-2; // in ohm—m
13 V_j = 0.5; // in V
14 V = -4.5; // in V
15 Mu_p = 500; // in cm^2
16 \text{ Mu_p} = \text{Mu_p} * 10^-4; // in m^2
17 Sigma_p = 1/Rho_p; // in per ohm-m
18 \quad qN_A = Sigma_p / Mu_p;
```

```
19  V_B = V_j - V;
20  W = sqrt((V_B * 2 * epsilon)/qN_A); // in m
21  //C_T = (epsilon * A)/W;
22  A = (C_T * W)/ epsilon; // in m
23  D = sqrt(A * (4/%pi)); // in m
24  D = D * 10^3; // in mm
25  disp(D,"The diameter in mm is");
```

Scilab code Exa 3.10.20 Temperature of junction

```
1 // Exa 3.10.20
2 clc;
3 clear;
4 close;
5 // Given data
6 q = 1.6 * 10^-19; // in C
7 \text{ Mu_p} = 500; // \text{ in } \text{cm}^2/\text{V-sec}
8 \text{ Rho_p} = 3.5; // \text{ in ohm-cm}
9 Mu_n = 1500; // in cm^2/V - sec
10 Rho_n = 10; // in ohm—cm
11 N_A = 1/(Rho_p * Mu_p * q); // in /cm^3
12 N_D = 1/(Rho_n * Mu_n * q); // in /cm^3
13 V_J = 0.56; // in V
14 \text{ n_i} = 1.5 * 10^10; // in /cm^3
15 V_T = V_J/\log((N_A * N_D)/(n_i)^2); // in V
16 // V_{-}T = T/11600
17 T = V_T * 11600; // in K
18 T = T - 273; // in C
19 disp(T, "The Temperature of junction in C is");
```

Scilab code Exa 3.10.21 Voltage

```
1 // Exa 3.10.21
```

```
2 clc;
3 clear;
4 close;
5 // Given data
6 V_T = 26; // in mV
7 V_T = V_T * 10^-3; // in V
8 Eta = 1;
9 // I = -90% for Io, so
10 IbyIo= 0.1;
11 // I = I_o * ((e^(v/(Eta * V_T)))-1)
12 V = log(IbyIo) * V_T; // in V
13 disp(V, "The reverse bias voltage in volts is");
```

Scilab code Exa 3.10.22 Reverse saturation current

```
1 // Exa 3.10.22
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 5; // in ohm
7 I = 50; // in mA
8 I=I*10^-3; // in A
9 \ V = R * I; // in V
10 Eta = 1;
11 V_T = 26; // in mV
12 V_T = V_T * 10^- 3; // in V
13 I_o = I/((%e^(V/(Eta * V_T))) - 1); // in A
14 disp(I_o*10^6, "Reverse saturation current in A is"
      );
15 v1 = 0.2; // in V
16 \text{ r} = (\text{Eta} * V_T)/(I_o * (\%e^(v1/(\text{Eta} * V_T)))); // in
17 disp(r,"Dynamic resistance of the diode in
                                                       is");
```

Chapter 4

Junction Contd

Scilab code Exa 4.12.1 Pinch off voltage

```
1 //Exa 4.12.1
2 clc;
3 clear;
4 close;
5 // Given data
6 q = 1.6 * 10^-19; // in C
7 \text{ N_D} = 10^15; // \text{ in electrons/cm}^3
8 \text{ N_D} = \text{N_D} * 10^6; // \text{ in electrons/m}^3
9 \text{ epsilon_r} = 12;
10 epsilon_o = (36 * \%pi * 10^9)^-1;
11 epsilon = epsilon_o * epsilon_r;
12 \ a = 3 * 10^-4; // in cm
13 a = a * 10^-2; // in m
14 V_P = (q * N_D * a^2)/(2 * epsilon); // in V
15 disp(V_P, "The Pinch off voltage in V is");
16 // V_{GS} = V_{P} * (1-(b/a))^2
17 b = (1-0.707) *a; // in m
18 disp(b*10^6, "The value of b in m is:")
19 disp("Hence the channel width has been reduced to
      about one third of its value for V_GS = 0);//
20 // Note: The unit of b in the book is wrong since
```

Scilab code Exa 4.12.2 Value of VGS and VDS

```
1 // Exa 4.12.2
2 clc;
3 clear;
4 close;
5 // Given data
6 I_DSS = 8; // in mA
7 V_P = -4; // in V
8 I_D = 3; // in mA
9 V_GS = V_P * (1 - sqrt(I_D/I_DSS)); // in V
10 disp(V_GS, "The value of V_GS in V is");
11 V_DS = V_GS - V_P; // in V
12 disp(V_DS, "The value of V_DS in V is");
```

Scilab code Exa 4.12.3 Drain current

```
1 // Exa 4.12.3
2 clc;
3 clear;
4 close;
5 // Given data
6 V_P = -4; // in V
7 I_DSS = 9; // in mA
8 I_DSS = I_DSS * 10^-3; // in A
9 V_GS = -2; // in V
10 I_D = I_DSS * ((1 - (V_GS/V_P))^2); // in A
11 disp(I_D*10^3, "The drain current in mA is ");
```

Scilab code Exa 4.12.4 Value of transconductance

```
1 // Exa 4.12.4
2 clc;
3 clear;
4 close;
5 // Given data
6 I_DSS = 12; // in mA
7 I_DSS = I_DSS * 10^-3; // in A
8 V_P = -(6); // in V
9 V_GS = -(1); // in V
10 g_mo = (-2 * I_DSS) / V_P; // in A/V
11 g_m = g_mo * (1 - (V_GS/V_P)); // in S
12 disp(g_m*10^3, "The value of transconductance in mS is");
```

Scilab code Exa 4.12.5 Transconductance and drain current

```
1 //Exa 4.12.5
2 clc;
3 clear;
4 close;
5 // Given data
6 I_DSS = 10; // in mA
7 I_DSS = I_DSS * 10^-3; // in A
8 V_P = -(5); // in V
9 V_GS = -(2.5); // in V
10 g_m = ((-2 * I_DSS)/V_P) * (1 -(V_GS/V_P)); // in S
11 g_m = g_m * 10^3; // in mS
12 disp(g_m, "The Transconductance in mS is");
13 I_D = I_DSS * ((1 - (V_GS/V_P))^2); // in A
14 disp(I_D*10^3, "The drain current in mA is");
```

Chapter 5

Bipolar Junction Transistors

Scilab code Exa 5.8.1 Value of collector current and VCB

```
1  // Exa 5.8.1
2  clc;
3  clear;
4  close;
5  // Given data
6  V_EE = 8; // in V
7  V_BE = 0.7; // in V
8  R_E = 1.5; // in k ohm
9  I_E = (V_EE - V_BE)/R_E; // in mA
10  I_C = I_E; // in mA
11  disp(I_C, "The value of I_C in mA is");
12  V_CC = 18; // in V
13  R_C = 1.2; // in k
14  V_CB = V_CC - (I_C * R_C); // in V
15  disp(V_CB, "The value of V_CB in V is");
```

Scilab code Exa 5.8.2 Base current

```
1 // Exa 5.8.2
2 clc;
3 clear;
4 close;
5 // Given data
6 alpha = 0.9;
7 I_E = 1; // mA
8 I_C = alpha * I_E; // in mA
9 I_B = I_E - I_C; // in mA
10 disp(I_B, "The value of base current in mA is");
```

Scilab code Exa 5.10.1 Emitter current

```
1 // Exa 5.10.1
2 clc;
3 clear;
4 close;
5 // Given data
6 bita = 50;
7 I_B= 20; // in A
8 I_B=I_B*10^-6; // in A
9 I_C= bita*I_B; // in A
10 I_E= I_C+I_B; // in A
11 I_E = I_E * 10^3; // in mA
12 disp(I_E, "The Emitter current in mA is");
```

Scilab code Exa 5.10.1a Base and emitter current

```
1 // Exa 5.10.1(a)
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 beta_dc = 90;
7 I_C = 15; // in mA
8 I_C = I_C * 10^-3; // in A
9 I_B = I_C/beta_dc; // in A
10 disp(I_B*10^6, "The base current in A is");
11 I_E = I_C + I_B; // in A
12 I_E = I_E * 10^3; // in mA
13 disp(I_E, "The Emitter current in mA is");
14 alpha_dc = beta_dc/(1+beta_dc);
15 disp(alpha_dc, "The value of alpha_dc is");
```

Scilab code Exa 5.10.3 Change in base current

```
1 // Exa 5.10.3
2 clc;
3 clear;
4 close;
5 // Given data
6 del_ic = 1.8; // in mA
7 del_ie = 1.89; // in mA
8 alpha = del_ic / del_ie;
9 bita = alpha/(1 - alpha);
10 del_ib = del_ic/bita; // in mA
11 del_ib = del_ib * 10^3; // in A
12 disp(del_ib, "The change in I_B in A is");
```

Scilab code Exa 5.10.4 Transistor current

```
1 //Exa 5.10.4
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 \text{ V_CC} = 10; // \text{ in V}
7 R_C = 3; // in k
8 R_C = R_C * 10^3; // in
9 \text{ bita} = 100;
10 I_CO = 20; // in nA
11 I_CO = I_CO * 10^-9; // in A
12 V_BB = 5; // in V
13 R_B = 200; // in k
14 R_B= R_B*10^3; // in
15 V_BE = 0.7; // in V
16 // Applying KVL to the base circuit, V_BB= I_B*R_B+
     V_BE
17 I_B = (V_{BB} - V_{BE})/R_{B}; // in A
18 disp(I_B*10^6, "The base current in A is");
19 I_C = (bita * I_B) + I_{CO}; // in A
20 disp(I_C*10^3, "The collector current in mA is");
21 I_E = I_C + I_B; // in A
22 disp(I_E*10^3, "Emitter current in mA is");
23 V_CE = V_CC - (I_C * R_C); // in V
24 disp(V_CE, "Collector emitter voltage in V is");
```

Scilab code Exa 5.10.5 Collector current

```
1 //Exa 5.10.5
2 clc;
3 clear;
4 close;
5 // Given data
6 bita = 100;
7 I_CBO = 4; // in A
8 I_B = 40; // in A
9 I_C = (bita * I_B) + ((1+bita) * I_CBO); // in A
10 I_C = I_C * 10^-3; // in msA
11 disp(I_C, "The collector current in mA is");
```

Scilab code Exa 5.10.6 Current gain

```
1 // Exa 5.10.6
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ del_IC} = 1 * 10^-3; // in A
7 \text{ del_IB} = 10 * 10^-6; // in A
8 CurrentGain= del_IC/del_IB;
9 disp(CurrentGain, "The current gain is");
10 del_IC= del_IC*10^3; // in mA
11 del_IB= del_IB*10^6; // in
12 I_B=0:0.1:50; // in A
13 I_C= I_B/del_IB+del_IC; // in mA
14 plot(I_B,I_C)
15 xlabel("Base current in A");
16 ylabel ("Collector current in mA")
17 title ("Transfer Characteristics")
18 disp ("Transfer Characteristics is shown in figure")
```

Scilab code Exa 5.10.7 Value of alphaDC and bitaDC

```
1 //Exa 5.10.7
2 clc;
3 clear;
4 close;
5 //Given data
6 I_CEo = 21; // in A
7 I_CBO = 1.1; // in A
8 beta_dc = (I_CEo/I_CBO) - 1;
9 disp(beta_dc," Value of beta_dc is");
```

```
10 alpha_dc = beta_dc/(1 + beta_dc);
11 disp(alpha_dc, "The value of alpha_dc is");
```

Scilab code Exa 5.13.1 Value of alphaDC and emitter current

```
1 // Exa 5.13.1
2 clc;
3 clear;
4 close;
5 // Given data
6 I_CBO = 3; // in A
7 I_CBO = I_CBO*10^-3; // in mA
8 I_C = 15; // in mA
9 // But it is given that I_C = 99.5% of I_E, SO
10 I_E = I_C/99.5*100; // in mA
11 alpha_dc = I_C/I_E;
12 disp(alpha_dc, "The value of alpha_dc is:")
13 disp(I_E, "The value of I_E in mA is:")
```

Scilab code Exa 5.13.2 Base and emitter current

```
1 //Exa 5.13.2
2 clc;
3 clear;
4 close;
5 //Given data
6 alpha_dc = 0.99;
7 I_CBO = 10; // in A
8 I_CBO= I_CBO*10^-6; // in A
9 I_E = 10; // in mA
10 I_E= I_E*10^-3; // in A
11 I_C = (alpha_dc * I_E) + I_CBO; // in A
12 disp(I_C*10^3, "The value of I_C in mA is");
```

```
13  I_B = I_E - I_C; // in A
14  I_B = I_B * 10^6; // in A
15  disp(I_B, "The value of I_B in A is");
```

Scilab code Exa 5.13.3 Base current

```
1 // Exa 5.13.3
2 clc;
3 clear;
4 close;
5 // Given data
6 alpha_dc = 0.99;
7 I_C = 6; // in mA
8 I_C = I_C * 10^-3; // in A
9 I_CBO = 15; // in A
10 I_CBO = I_CBO * 10^-6; // in A
11 I_E = (I_C - I_CBO)/alpha_dc; // in A
12 I_B = I_E - I_C; // in A
13 disp(I_B * 10^6, "The value of I_B in A is");
```

Scilab code Exa 5.13.5 Emitter current

```
1 //Exa 5.13.5
2 clc;
3 clear;
4 close;
5 // Given data
6 alpha_dc = 0.98;
7 I_CBO = 12; // in A
8 I_CBO = I_CBO * 10^-6; // in A
9 I_B = 120; // in A
10 I_B = I_B * 10^-6; // in A
11 beta_dc = alpha_dc/(1-alpha_dc);
```

```
12  I_E = ((1 + beta_dc) * I_B) + ((1 + beta_dc) * I_CBO
      );//in A
13  I_E = I_E * 10^3;// in mA
14  disp(I_E, "The value of I_E in mA is");
```

Scilab code Exa 5.13.6 Region of operation of Si transistor

```
1 // \text{Exa} \ 5.13.6
  2 clc;
  3 clear;
  4 close;
  5 // Given data
  6 bita= 100;
  7 V_BEsat = 0.8; // in V
  8 \text{ V_CEsat= } 0.2; // \text{ in } V
  9 V_BEact = 0.7; // in V
10 V_{CC} = 10; // in V
11 V_BB=5; // in V
12 R_E = 2; // in k
13 R_C = 3; // in k
14 R_B= 50; // in k
15 // Applying KVL to collector loop
16 // V_CC = I_Csat*R_C + V_CEsat + I_E*R_E  and I_E =
                       I_{-}Csat+I_{-}B, So
17 / I_B = ((V_CC - V_CEsat) - (R_C + R_E) * I_Csat) / R_E;
                                                               (i)
18 // Applying KVL to base loop
19 // V_BB-I_B*R_B -V_BEsat-I_E*R_E = 0 and I_E=I_Csat+
                      I_B, So
20 //V_BB-V_BEsat= R_E*I_Csat + (R_B+R_E)*I_B
                                                                            ( i i )
21 // From eq (i) and (ii)
22 I_B = ((V_BB-V_BEsat)*5- (V_CC-V_CEsat)*2) / ((R_B+V_BEsat)*2) / ((R_B+V_BEsat)*3) / ((R_B+V_BEsat)*3
                      R_E)*5 - R_E*2; // in mA
23 I_Csat= ((V_CC-V_CEsat)-R_E*I_B)/(R_C+R_E); // in mA
```

Scilab code Exa 5.13.7 Value of IB IC and VCE

```
1 // \text{Exa} 5.13.7
2 clc;
3 clear;
4 close;
5 // Given data
6 bita= 100;
7 V_BEsat = 0.8; // in V
8 \text{ V_CEsat= } 0.2; // \text{ in } V
9 V_BEact = 0.7; // in V
10 V_{CC} = 10; // in V
11 V_BB=5; // in V
12 R_E = 2; // in k
13 R_C = 3; // in k
14 R_B= 50; // in k
15 // Applying KVL to input loop
16 // V_BB = I_B * R_B + (1 + bita) * I_B * R_E + V_BEact or
17 I_B = (V_BB - V_BEact)/(R_B + (1+bita)*R_E); // in mA
18 I_C= bita*I_B; // in mA
19 // Applying KVL to collector circuit
20 // V_{CC}=I_{Csat}*R_{C}+V_{CEsat}+(I_{C}+I_{B})*R_{E}
21 V_CEact = V_CC - I_B * R_E - I_C * (R_C + R_E); // in V
```

```
22 disp(I_B*10^3, "The value of I_B in A is : ")
23 disp(I_C, "The value of I_C in mA is : ")
24 disp(V_CEact, "The value of V_CE in volts is : ")
```

Scilab code Exa 5.13.8 Region of operation

```
1 //Exa 5.13.8
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ bita} = 100;
7 V_CEsat = 0.2; // in V
8 R_B = 150; // in kohm
9 R_C = 2; // in kohm
10 V_{CC} = 10; // in V
11 V_BEsat = 0.8; // in V
12 I_B = (V_CC - V_BEsat)/R_B; // in mA
13 I_C = (V_CC - V_CEsat)/R_C; // in mA
14 I_Bmin = I_C/bita; // in mA
15 if I_B>I_Bmin then
       disp("Since the value of I_B ("+string(I_B*10^3)
16
          +" A) is greater than the value of I_Bmin ("
          +string(I_Bmin*10^3)+" A)");
       disp("So the transistor is in the saturation
17
          region.")
18 end
```

Scilab code Exa 5.13.9 Value of VBB

```
1 //Exa 5.13.9
2 clc;
3 clear;
```

```
4 close;
5 //Given data
6 \text{ bita} = 100;
7 \text{ V_CE} = 0.2; //in \text{ V}
8 \text{ V}_BE = 0.8; // in V
9 R_C = 500; // in
10 R_B= 44*10^3; // in
11 R_E= 1*10^3; // in
12 V_{CC} = 15; // in V
13 V_{GE} = -15; // in V
14 // Applying KVL to collector circuit
15 // V_CC-V_GE - I_Csat*R_C-V_CE-I_E*R_E=0, but I_Csat
      = bita*I_Bmin and I_E=1+bita
16 I_Bmin= (V_CC-V_GE-V_CE)/(R_C*bita+(1+bita)*R_E);
      in A
17 // Applying KVL to the base emitter circuit
18 / V_BB-I_Bmin*R_B-V_BE-I_E*R_E + V_CC=0
19 V_BB = I_Bmin*R_B + V_BE + (1+bita)*I_Bmin*R_E-V_CC;
      // in V
  disp(I_Bmin*10^3, "The value of I_B(min) in mA is : "
21 disp(V_BB, "The value of V_BB in volts is:")
```

Scilab code Exa 5.13.10 Minimum value of RC required

```
1  // Exa 5.13.10
2  clc;
3  clear;
4  close;
5  // Given data
6  V_ECsat= 0.2; // in V
7  V_CC= 10; // in V
8  V_EBsat= 0.8; // in V
9
10  // Part (i)
```

```
11 bita= 100;
12 R_B= 220; // in k
13 // Applying KVL to collector circuit, V_CC= V_EC+
     ICRC
14 ICRC= V_CC-V_ECsat; // in V
15 // Applying KVL to input loop, V_CC=V_EBsat+I_B*R_B
              (i)
16 I_B = (V_CC - V_EBsat)/R_B; // in mA
17 I_C= bita*I_B; // in mA
18 R_Cmin= ICRC/I_C; // in k
19 disp(R_Cmin, "The minimum value of R_C in k is: "
20 // Part (ii)
21 R_C = 1.2; // in k
22 \text{ I_Csat= ICRC/R_C;// in mA}
23 I_B = I_Csat/bita; // in mA
24 // From eq (i)
25 R_B= (V_CC-V_EBsat)/I_B; // in k
26 disp(R_B,"The maximum value of R_B in k is:")
```

Scilab code Exa 5.13.11 Value of RE

```
1  //Exa 5.13.11
2  clc;
3  clear;
4  close;
5  // Given data
6  bita= 100;
7  V_BEsat= 0.8; // in V
8  V_CEsat= 0.2; // in V
9  V_BEact= 0.7; // in V
10  V_CC = 10; // in V
11  R_E = 1; // in k
12  R_C = 2; // in k
13  R_B= 100; // in k
```

```
14 bita=100;
15 alpha= bita/(1+bita);
16 // Applying KVL to collector circuit
17 // V_{CC} = I_{Csat} * R_{C} + V_{CE} + R_{E} * I_{E}
18 // but I_E = alpha * I_C sat
19 I_Csat= (V_CC-V_CEsat)/(R_C+R_E*alpha); in mA
20 I_Bmin= I_Csat/bita; // in mA
21 // Applying KVL to base loop
22 // V_{CC} = I_{B}*R_{B} + V_{BEsat} + I_{E}*R_{E}
23 // but I_E = I_C sat + I_B
I_B = (V_CC - V_BEsat - I_Csat*R_E)/(R_B+R_E); // in mA
25 disp(I_B*10^3, "The value of I_B in A is:")
26 disp(I_Bmin*10^3,"The minimum value of I_B in
       : ")
27 if I_B>I_Bmin then
       disp("Since the value of I_B is greater than the
           value of I_Bmin, ")
       disp("Hence the transistor is in saturation .")
29
30 end
31 I_E = (1+bita)*I_Bmin; // in mA
32 \text{ R_E= (V_CC-V_BEact-I_Bmin*R_B)/I_E; // in k}
33 disp(R_E, "The value of R_E in k is:")
34 disp("So R_E should be greater than this value in
      order to bring the transistor just out of
      saturation ")
```

Scilab code Exa 5.13.12 Collector voltage and minimum value of bita

```
1  // Exa 5.13.12
2  clc;
3  clear;
4  close;
5  // Given data
6  V_CC = 9; // in V
7  V_BE = 0.8; // in V
```

```
8 \text{ V_CE} = 0.2; // \text{ in V}
9 R_B = 50; // in k
10 R_C=2; // in k
11 R_E = 1; // in k
12 bita=70;
13 // Applying KVL to input loop, V_CC= I_B*R_B +V_BE +
      I_E * R_E
14 // V_{CC} - V_{BE} = (R_{B} + R_{E}) * I_{B} + R_{E} * I_{C}
                                                          ( i )
15 // Applying KVL to output loop, V_CC= R_C*I_C +V_CE
      +I_{-}C*R_{-}E +I_{-}B*R_{-}E
16 / I_{-}B = ((V_{-}CC - V_{-}CE) - (R_{-}C + R_{-}E) * I_{-}C) / R_{-}E
                                                           (ii
17 // From eq (i) and (ii)
18 I_C= ((V_CC - V_BE) - (R_B + R_E) * (V_CC - V_CE)/R_E)
      /(1-(R_B+R_E)*(R_C+R_E)); // in mA
19 I_B = ((V_CC - V_CE) - (R_C + R_E) * I_C) / R_E / in mA
20 I_Bmin= I_C/bita; // in mA
21 if I_B>I_Bmin then
       disp("Since the value of I_B ("+string(I_B)+" mA
22
           ) is greater than the value of I_Bmin ("+
           string(I_Bmin)+" mA)")
        disp("So the transistor is in saturation")
23
24 end
25 V_C = V_C - I_C * R_C; // in V
26 disp(V_C," The value of collector voltage in volts is
       : ")
27 bita= I_C/I_B;
28 disp(bita,"The minimum value of bita that will
      change the state of the trasistor is: ")
```

Scilab code Exa 5.21.1 Inductor circuit

```
1 // Exa 5.21.1
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 O_V = 5; // output voltage in V
7 V_D = 1.5; // voltage drop in V
8 R = (O_V - V_D)/O_V;
9 R = R * 10^3; // in ohm
10 disp(R, "The resistance value in is");
11 disp("As this is not standard value, use R=680 which is a standard value")
```