FONDAMENTI MATEMATICI PER L'INFORMATICA

CORSO DI LAUREA IN INFORMATICA A.A.: 2014/15 9 SETTEMBRE 2015

T						
Innanzitutto	S1	compilino	1	campi	sottosta	ıntı

Totale	1	2	3	4	5

Cognome				
Nome				
Numero d	i Matricola			

Poi si svolgano su foglio protocollo i seguenti esercizi e si risponda alla domanda di teoria. Ogni risposta deve essere adeguatamente motivata. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni. Non sono consentite attrezzature elettroniche di alcun tipo, incluse le calcolatrici tascabili e i telefoni cellulari, né libri, né appunti. Si consegni solo la bella copia, inserendo questo foglio all'interno.

Esercizio 1. Si dimostri per induzione su $n \in \mathbb{N}$ la seguente proprietà :

$$\sum_{k=0}^{n} k!k = (n+1)! - 1 \qquad \forall n \ge 0$$

Esercizio 2. Determinare tutte le soluzioni (se esistono) del seguente sistema di congruenze:

$$\begin{cases} x \equiv 20 \mod 117 \\ x \equiv 11 \mod 81 \end{cases}$$

 $[254]_{1053}$

/NO/

|NO|

Si determini, motivando la risposta, se esiste una soluzione divisibile per 15.

Esercizio 3. Determinare le soluzioni della congruenza $x^{33} \equiv 2 \mod 55$.

Individuare tra tali soluzioni il minimo numero intero positivo. [7]₅₅

Esercizio 4. Si dica, motivando la risposta, quale dei seguenti vettori

$$d_1 = (2, 2, 2, 2, 4, 4, 5, 5, 8)$$
 $d_2 = (1, 2, 3, 3, 3, 4, 5, 5, 5, 10, 10, 10)$

è lo score di un grafo e, in caso lo sia, si costruisca un tale grafo applicando il teorema dello score. $[d_1:SI\ d_2:NO]$

Si dica inoltre se

- i) esiste un tale grafo che sia anche un albero; [NO]
- ii) esiste un tale grafo che sia sconnesso;
- iii) esiste un tale grafo che sia Hamiltoniano. [NO]

Esercizio 5 (Domanda di teoria). Si dimostri il teorema di esistenza dell'albero di copertura per i grafi connessi finiti.