A biomimetic algorithm for combinatorial optimization problems Ant Colony Optimization

Duanmu Mei Gourgoulias Konstantinos

UMass Amherst

December 14, 2012

The basics : What is a combinatorial optimization problem?

Generally, we need to pick an object out of a finite set S, so that it minimizes a certain 'cost' function $f: S \to \mathbb{R}$.

The basics: What is a combinatorial optimization problem?

Generally, we need to pick an object out of a finite set S, so that it minimizes a certain 'cost' function $f: S \to \mathbb{R}$.

Problem : S is usually very large.

The basics: What is a combinatorial optimization problem?

Generally, we need to pick an object out of a finite set S, so that it minimizes a certain 'cost' function $f: S \to \mathbb{R}$.

Problem : S is usually very large.

Searching for the optimal solution is often very expensive!

The basics: What is a combinatorial optimization problem?

Generally, we need to pick an object out of a finite set S, so that it minimizes a certain 'cost' function $f: S \to \mathbb{R}$.

Problem : S is usually very large.

Searching for the optimal solution is often very expensive!

A famous example: Travelling salesman problem in Sweden

Solved by 96 dual core Intel Xeon processors at GeorgiaTech.

Running time: March 2003 to May 2004.

Figure: Full picture here.

What do ants have to do with anything?

• N ants move from A to D and back.

- N ants move from A to D and back.
- Rules :

- N ants move from A to D and back.
- Rules :
 - Once an ant picks a path, it can't return back until it reaches D.

- N ants move from A to D and back.
- Rules :
 - Once an ant picks a path, it can't return back until it reaches D.
 - Once an ant reaches D, it has to return to A from the same path.

- N ants move from A to D and back.
- Rules :
 - Once an ant picks a path, it can't return back until it reaches D.
 - Once an ant reaches D, it has to return to A from the same path.
- Goal: To find the shorter route between the two paths.

- N ants move from A to D and back.
- Rules :
 - Once an ant picks a path, it can't return back until it reaches D.
 - Once an ant reaches D, it has to return to A from the same path.
- Goal : To find the shorter route between the two paths.
- As in the video, the ants will choose between the two paths based on the "pheromone" level of each one.

Let's see what happens!

Let's see what happens!

Initially we have no information about which route is "better".

Let's see what happens!

Initially we have no information about which route is "better".

N/2 of ants pick A-B.

The rest pick the other one.

Let's see what happens!

Initially we have no information about which route is "better".

N/2 of ants pick A-B.

The rest pick the other one.

After the return trip, we calculate the pheromone they deposited at each path.

Pheromone Update:

$$\Delta \tau_{ij}^k = \left\{ \begin{array}{ll} 1/L_k & \text{if ant k used edge (i,j) in its tour.} \\ 0 & \text{otherwise} \end{array} \right.$$

 L_k is the length of the tour constructed by ant k, $k=1,\ldots,N$.

Let 0 be the evaporation rate of the pheromones.

Pheromone Update:

$$\Delta au_{ij}^k = \left\{ egin{array}{ll} 1/L_k & \mbox{if ant k used edge (i,j) in its tour.} \\ 0 & \mbox{otherwise} \end{array}
ight.$$

 L_k is the length of the tour constructed by ant k, $k=1,\ldots,N$.

Let 0 be the evaporation rate of the pheromones.

• Path A-B-D, $L_k = 4$. So $\tau_{AB} = (1-p)\epsilon + \frac{N}{8} = \tau_{BD}$

Pheromone Update:

$$\Delta \tau_{ij}^k = \left\{ \begin{array}{ll} 1/L_k & \text{if ant k used edge (i,j) in its tour.} \\ 0 & \text{otherwise} \end{array} \right.$$

 L_k is the length of the tour constructed by ant k, $k=1,\ldots,N$.

Let 0 be the evaporation rate of the pheromones.

- Path A-B-D, $L_k = 4$. So $\tau_{AB} = (1-p)\epsilon + \frac{N}{8} = \tau_{BD}$
- Path A-C-D, $L_k = 8$. So $\tau_{AC} = (1-p)\epsilon + \frac{N}{16} = \tau_{CD}$

$$P_{AB}^{k} = \frac{\tau_{AB}}{\tau_{AB} + \tau_{AC}} = \frac{\frac{1}{2}\epsilon + \frac{N}{8}}{\frac{1}{2}\epsilon + \frac{N}{8} + \frac{1}{2}\epsilon + \frac{N}{16}} = \frac{\frac{1}{2}\epsilon + \frac{N}{8}}{\epsilon + \frac{3N}{16}}$$

$$P_{AB}^{k} = \frac{\tau_{AB}}{\tau_{AB} + \tau_{AC}} = \frac{\frac{1}{2}\epsilon + \frac{N}{8}}{\frac{1}{2}\epsilon + \frac{N}{8} + \frac{1}{2}\epsilon + \frac{N}{16}} = \frac{\frac{1}{2}\epsilon + \frac{N}{8}}{\epsilon + \frac{3N}{16}}$$
$$P_{AC}^{k} = \frac{\tau_{AC}}{\tau_{AB} + \tau_{AC}} = \frac{\frac{1}{2}\epsilon + \frac{N}{16}}{\frac{1}{2}\epsilon + \frac{N}{8} + \frac{1}{2}\epsilon + \frac{N}{16}} = \frac{\frac{1}{2}\epsilon + \frac{N}{16}}{\epsilon + \frac{3N}{16}}$$

Step 1: Initialize Pheromone Construct Initial pheromone matrix, for each entry $\tau_{ij} = \epsilon$ which represent the pheromone between two nodes i and j.

Step 1: Initialize Pheromone Construct Initial pheromone matrix, for each entry $\tau_{ij} = \epsilon$ which represent the pheromone between two nodes i and j.

Step 2: Update pheromone.
$$\tau_{ij} \leftarrow (1-\rho) \cdot \tau_{ij} + \sum\limits_{k=1}^{m} \Delta \tau_{ij}^{k}$$
 Here, $\Delta \tau_{ij}^{k} = \left\{ \begin{array}{l} Q/L_{k} & \text{if ant k used edge (i,j) in its tour.} \\ 0 & \text{otherwise} \end{array} \right.$

Step 1: Initialize Pheromone Construct Initial pheromone matrix, for each entry $\tau_{ij}=\epsilon$ which represent the pheromone between two nodes i and j.

Step 2: Update pheromone.
$$\tau_{ij} \leftarrow (1-\rho) \cdot \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

Here, $\Delta \tau_{ij}^k = \left\{ \begin{array}{ll} Q/L_k & \text{if ant k used edge (i,j) in its tour.} \\ 0 & \text{otherwise} \end{array} \right.$

Step 3: Update probability to choose path from i to j.

$$P_{ij}^k = \left\{ egin{array}{ll} rac{ au_{ij}^lpha \eta_{ij}^eta}{\sum_{\mathcal{C}_{ii} N(s^p)} au_{ii}^lpha \eta_{ii}^eta} & ext{if } C_{ij} \in N(s^p). \ 0 & ext{otherwise} \end{array}
ight.$$

Step 1: Initialize Pheromone Construct Initial pheromone matrix, for each entry $\tau_{ii} = \epsilon$ which represent the pheromone between two nodes i and j.

Step 2: Update pheromone.
$$\tau_{ij} \leftarrow (1-\rho) \cdot \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$$

Here, $\Delta \tau_{ij}^k = \begin{cases} Q/L_k & \text{if ant k used edge (i,j) in its tour.} \\ 0 & \text{otherwise} \end{cases}$

Step 3: Update probability to choose path from i to j.

$$P_{ij}^k = \left\{ egin{array}{ll} rac{ au_{ij}^lpha \eta_{ij}^eta}{\sum_{\mathcal{C}_{il} \mathcal{N}(s^p)} au_{il}^lpha \eta_{il}^eta} & ext{if } \mathcal{C}_{ij} \in \mathcal{N}(s^p). \ 0 & ext{otherwise} \end{array}
ight.$$

Here $\eta_{ij} = \frac{1}{d_{ij}}$, where d_{ij} is the distance between nodes i and j. $N(s^p)$ is the set of feasible components; that is, edges (i,l) where l

is a node not yet visited by the ant k.

convergence of Ant Colony Optimization Algorithm

Due to pheromone evaporation, the maximum possible pheromone level τ_{max} is bounded asymptotically.

For any
$$\tau_{ij}$$
, we have $\lim_{t\to\infty} \tau_{ij}(t) \leqslant \tau_{max} = \frac{1}{p} \cdot g(s^*)$

convergence of Ant Colony Optimization Algorithm

Due to pheromone evaporation, the maximum possible pheromone level τ_{max} is bounded asymptotically.

For any
$$au_{ij}$$
, we have $\lim_{t \to \infty} au_{ij}(t) \leqslant au_{max} = rac{1}{p} \cdot g(s^*)$

Theorem : Let $P^*(t)$ be the probability that the algorithm finds an optimal solution at least once within the first t iterations. Then, for an arbitrary choice of a small $\epsilon>0$ and for a sufficiently large , it holds that $P^*(t)\geqslant 1-\epsilon$ and asymptotically $\lim_{t\to\infty}P^*(t)=1$.

Applet

Link

Thank you!

References:

[Dorigo, 2002] Dorigo M., Stutzle T.,

A short convergence proof for a class of Ant Colony optimization algorithms,

back