

Robotics: Science & Systems [Topic 3: Kinematics]

Prof. Sethu Vijayakumar

Course webpage: http://wcms.inf.ed.ac.uk/ipab/rss

Kinematics?

 Move all the joints in a coordinated way such that the end-effector makes the desired movement

Three ingredients:

- when we know/set the joint angles, where is the end-effector?
- when we change the joint angles, how does the end-effector change position?
- when we want a certain change in end-effector position, how should we change the joint angles?

Notations

$$q \in \mathbb{R}^n$$

$$\dot{q} \in \mathbb{R}^n$$

$$\delta q \in \mathbb{R}^n$$

$$y \in \mathbb{R}^d$$

$$\phi: q \mapsto y$$
$$J(q) = \frac{\partial \phi}{\partial q} \in \mathbb{R}^{d \times n}$$

$$\|v\|_W^2 = v^{\mathsf{T}} W v$$

vector of joint angles (robot configuration)

vector of joint angular velocities

small step in joint angles

some "endeffector(s) feature(s)"

e.g. position $\in \mathbb{R}^3$ or vector $\in \mathbb{R}^3$

kinematic map

Jacobian

squared norm of v w.r.t. metric W

Kinematics: 3 ingredients

Kinematic Map

$$\phi: q \mapsto y$$

when we know/set the joint angles *q*, where is the end-effector *y*?

Jacobian

$$J: \delta q \mapsto \delta y$$

when we change the joint angles δq , how does the end-effector change position δy ?

Optimality Criterion

Kinematic Structures

A kinematic structure is a graph (usually tree or chain) of rigid links and joints

$$T_{W \to \mathsf{eff}}(q) = T_{W \to A} \ T_{A \to A'}(q) \ T_{A' \to B} \ T_{B \to B'}(q) \ T_{B' \to C} \ T_{C \to C'}(q) \ T_{C' \to \mathsf{eff}}$$

Joint Types

- link transformations: $T_{W \to A}$
- joint transformations: $T_{A \to A'}(q)$ depends on $q \in \mathbb{R}^n$

revolute joint: joint angle $q \in \mathbb{R}$ determines rotation about x-axis

$$T_{A \to A'}(q) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(q) & -\sin(q) & 0 \\ 0 & \sin(q) & \cos(q) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

prismatic joints: offset $q \in \mathbb{R}$ determines translation along x-axis

$$T_{A \to A'}(q) = \begin{pmatrix} 1 & 0 & 0 & q \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

others: 1DOF = screw, 2 DOF= cylindrical, spherical, universal

Kinematic Joint Types in 3D

Robinson 1989, Goodrich 1991, Ward 1992

Kinematic Map

For any joint angle vector $q \in \mathbb{R}^n$ we can compute $T_{W \to \text{eff}}(q)$ by *forward chaining* of transformations

 $T_{W \to eff}(q)$ gives us the *pose* of the endeffector

Two basic ways to define a *kinematic map* $\phi: q \rightarrow y$ are

$$\phi_{\mathsf{pos}}(q) = T_{W \to \mathsf{eff}}(q).\mathsf{translation} \in \mathbb{R}^3$$

and

$$\phi_{\text{vec}}(q) = [T_{W \to \text{eff}}(q).\text{rotation}] \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^3$$

Kinematics: 3 ingredients

Kinematic Map

$$\phi: q \mapsto y$$

when we know/set the joint angles *q*, where is the end-effector *y*?

Jacobian

$$J: \delta q \mapsto \delta y$$

when we change the joint angles δq , how does the end-effector change position δy ?

Optimality Criterion

Jacobian

when we change the joint angles δq , how does the endeffector change position δy ?

Given the kinematic map $y=\phi(q)$ what is the Jacobian $J(q)=\frac{\partial}{\partial q}\phi(q)$?

$$J(q) = \frac{\partial}{\partial q} \phi(q) = \begin{pmatrix} \frac{\partial \phi_1(q)}{\partial q_1} & \frac{\partial \phi_1(q)}{\partial q_2} & \cdots & \frac{\partial \phi_1(q)}{\partial q_n} \\ \frac{\partial \phi_2(q)}{\partial q_1} & \frac{\partial \phi_2(q)}{\partial q_2} & \cdots & \frac{\partial \phi_2(q)}{\partial q_n} \\ \vdots & & & \vdots \\ \frac{\partial \phi_d(q)}{\partial q_1} & \frac{\partial \phi_d(q)}{\partial q_2} & \cdots & \frac{\partial \phi_d(q)}{\partial q_n} \end{pmatrix}$$

Jacobian

To compute the Jacobian of some endeffector position or vector, we only need to know the position and rotation axis of each joint.

We consider an infinitesimal variation δq_i of the ith joint and see how the endeffector's position $p_{\rm eff} = \phi_{\rm pos}(q)$ and attached vector $a_{\mathsf{eff}} = \phi_{\mathsf{vec}}(q)$ change. It must hold

$$\delta p_{\rm eff} = J_{\rm pos}(q)_{\cdot i} \delta q_i \qquad \delta a_{\rm eff} = J_{\rm vec}(q)_{\cdot i} \delta q_i$$

 $\delta p_{\rm eff} = J_{\rm pos}(q)._i \delta q_i \qquad \delta a_{\rm eff} = J_{\rm vec}(q)._i \delta q_i$ $a_i = [T_{W\to i}(q).{\rm rot}] \begin{pmatrix} 1\\0\\0 \end{pmatrix} \text{ is rotation axis and } p_i = [T_{W\to i}(q).{\rm pos}] \text{ position of } i\text{th joint}$

Jacobian

Consider a variation δq_i \rightarrow the whole sub-tree rotates

$$\delta p_{\text{eff}} = \delta q_i [a_i \times (p_{\text{eff}} - p_i)]$$

$$\delta a_{\text{eff}} = \delta q_i [a_i \times a_{\text{eff}}]$$

$$J_{\mathsf{pos}}(q) = \begin{pmatrix} \boxed{a_1} & \boxed{a_2} & & \boxed{a_n} \\ \times & \times & \dots & \times \\ \boxed{p_{\mathsf{e}}} & \boxed{p_{\mathsf{e}}} & \boxed{p_{\mathsf{e}}} \\ - & - & - \\ p_1 & \boxed{p_2} \end{pmatrix} \in \mathbb{R}^{3 \times n} \quad J_{\mathsf{vec}}(q) = \begin{pmatrix} \boxed{a_1} & \boxed{a_2} & & \boxed{a_n} \\ \times & \times & \dots & \times \\ a_n & a_n \\ - & p_1 \end{pmatrix} \in \mathbb{R}^{3 \times n}$$

Position Jacobian

Vector Jacobian

Kinematics: 3 ingredients

Kinematic Map

when we know/set the joint angles *q*, where is the end-effector *y*?

Jacobian

 $J:\ \delta q\mapsto \delta y$

when we change the joint angles δq , how does the end-effector change position δy ?

Optimality Criterion

Inverse Kinematics Problem

When we want a certain change δy in eff. position, how do we have to change the joint angles δq ?

- The Jacobian gives us $\delta y = J(q) \ \delta q$
- Iff the Jacobian were invertible: $\delta q = J(q)^{-1} \delta y$ but typically is not invertible!! $(J \in \mathbb{R}^{d \times n} \text{ with } d \neq n)$

We formulate an optimality principle to choose δq given δy

- related to taking the pseudo-inverse J^{\sharp} instead of the undefined J^{-1}

Inverse Kinematics: Optimality Principle

- Given current q_t and $y_t = \phi(q_t)$ given desired y^* compute q_{t+1} such that
 - 1) $\phi(q_{t+1})$ is close to $y^* \leftrightarrow move\ effector$
 - 2) q_{t+1} is close to $q_t \leftrightarrow be$ lazy
- Formalize as an objective function

$$q_{t+1} = q_t$$

$$f(q_{t+1}) = \|q_{t+1} - q_t\|_W^2 + \|\phi(q_{t+1}) - y^*\|_C^2$$

Inverse Kinematics: Optimality Principle

$$f(q_{t+1}) = \|q_{t+1} - q_t\|_W^2 + \|\phi(q_{t+1}) - y^*\|_C^2$$

• When using the **local linearization** $\phi(q_{t+1}) \approx \phi(q_t) + J \ (q_{t+1} - q_t)$, the optimal next joint state q_{t+1} that minimizes $f(q_{t+1})$ is

$$q_{t+1} = q_t + J^{\sharp} (y^* - y_t)$$

$$\delta q = J^{\sharp} \delta y$$

$$J^{\sharp} = (J^{\top}CJ + W)^{-1}J^{\top}C = W^{-1}J^{\top}(JW^{-1}J^{\top} + C^{-1})^{-1}$$

- for $C \to \infty$ and $W = \mathbf{I}$, $J^{\sharp} = J^{\mathsf{T}} (JJ^{\mathsf{T}})^{-1}$ is called *pseudo-inverse*
- -W generalizes the metric in q-space
- C regularizes this pseudo-inverse

Kinematics: 3 ingredients

Kinematic Map

$$\phi: q \mapsto y$$

when we know/set the joint angles *q*, where is the end-effector *y*?

Jacobian

 $J: \delta q \mapsto \delta y$

when we change the joint angles δq , how does the end-effector change position δy ?

Optimality Criterion

Iterating Inverse Kinematics

• Assume initial posture q_0 . We want to reach a desired endeff position y^* in T steps:

```
1: Input: initial state q_0, desired y^*, methods \phi_{\mathsf{pos}} and J_{\mathsf{pos}}

2: Output: trajectory q_{0:T}

3: Set y_0 = \phi_{\mathsf{pos}}(q_0) \rhd current (old) endeff position

4: for t = 1 : T do

5: y \leftarrow \phi_{\mathsf{pos}}(q_{t-1}) \rhd current endeff position

6: J \leftarrow J_{\mathsf{pos}}(q_{t-1}) \rhd current endeff Jacobian

7: \hat{y} \leftarrow y_0 + (t/T)(y^* - y_0) \rhd interpolated endeff target

8: q_t = q_{t-1} + J^\sharp(\hat{y} - y) \rhd new joint positions

9: Command q_t to all robot motors and compute all T_{W \to i}(q_t)

10: end for
```


Where are we?

- We have derived the most basic motion generation principle in robotics – inverse kinematics – from:
 - an understanding of the robot geometry and kinematics
 - a basic notion of optimality
- In the remainder
 - inverse kinematics and motion rate control
 - singularity and singularity-robustness
 - null space, task space/operational space, joint space
 - extension to multiple task variables
 - extension to other task variables, collisions

Inverse Kinematics and Motion Rate Control

- The notion "kinematics" describes the mapping $\phi: q \to y$, which usually is a many-to-one function.
- The notion "inverse kinematics" in the strict sense describes some mapping g: y → q such that φ(g(y)) = y, which usually is non-unique (and non-optimal in our setting).
- In practice, one often refers to $\delta q = J^{\sharp} \delta y$ as **inverse kinematics**.
- When iterating $\delta q = J^{\sharp} \delta y$ in a control cycle with time step τ (typically $\tau \approx 1-10$ msec), then $\dot{y} = \delta y/\tau$ and $\dot{q} = \delta q/\tau$ and $\dot{q} = J^{\sharp}\dot{y}$. Therefore the control cycle effectively controls the endefector velocity—this is why it is called **motion rate control**.

Null, Task, Operational, Joint, Configuration Space

- The space of all $q \in \mathbb{R}^n$ is called joint/configuration space. The space of all $y \in \mathbb{R}^d$ is called task/operational space. Usually d < n, which is called redundancy
- For a desired endeffector state y* there exists a whole manifold (assuming φ is smooth) of joint configurations q:

nullspace
$$(y^*) = \{q \mid \phi(q) = y^*\}$$

Null Space Motion

• Plain $\delta q = J^{\sharp} \, \delta y$ resolves redundancy based on the "be lazy" criterion. One can also add **null space motion**: an additional drift $h \in \mathbb{R}^n$ in the nullspace of the task:

$$\delta q = J^{\sharp} \, \delta y + (I - J^{\sharp} J) \, h$$

This corresponds to a cost term $||q_{t+1} - q_t - h||_W^2$ in $f(q_{t+1})!$

- Assume we have m simultaneous tasks; for each task i we have:
 - a kinematic mapping $y_i = \phi_i(q) \in \mathbb{R}^{d_i}$
 - a current value $y_{i,t} = \phi_i(q_t)$
 - a desired value y_i^*
 - a metric C_i or precision ϱ_i (related via $C_i = \varrho_i \mathbf{I}$)
- Each task contributes a term to the objective function

$$f(q_{t+1}) = \|q_{t+1} - q_t\|_W^2 + \|\phi_1(q_{t+1}) - y_1^*\|_{C_1}^2 + \varrho_2 \|\phi_2(q_{t+1}) - y_2^*\|^2 + \cdots$$

Solution: Optimal joint step is:

$$q_{t+1} = q_t + \left[\sum_{i=1}^m J^{\mathsf{T}} C_i J + W\right]^{-1} \left[\sum_{i=1}^m J^{\mathsf{T}} C_i (y_i^* - y_{i,t})\right]$$

A much nicer way to write (and code) exactly the same:

$$f(q_{t+1}) = \|q_{t+1} - q_t\|_W^2 + \Phi(q_{t+1})^{\mathsf{T}} \Phi(q_{t+1})$$

with the "big task vector"
$$\Phi(q_{t+1}) := \begin{pmatrix} M_1 \ (\phi_1(q_{t+1}) - y_1^*) \\ \sqrt{\varrho_2} \ (\phi_2(q_{t+1}) - y_2^*) \\ \vdots \end{pmatrix} \quad \in \mathbb{R}^{\sum_i d_i}$$

where M_1 is the Cholesky decomposition $C_1 = M_1^{\mathsf{T}} M_1$.

The optimal joint step in now:

$$q_{t+1} = q_t - (J^{\mathsf{T}}J + W)^{\mathsf{-1}}J^{\mathsf{T}} \Phi(q_t)$$

with $J \equiv \frac{\partial \Phi(q)}{\partial q}$ the "big Jacobian".

- we learnt how to 'puppeteer' a robot
- we can handle many task variables (but it is hard to specify their precision)

 what are interesting task variables?

Homework

Prove the results from slide 14

$$f(q_{t+1}) = \|q_{t+1} - q_t\|_W^2 + \|\phi(q_{t+1}) - y^*\|_C^2$$

• When using the **local linearization** $\phi(q_{t+1}) \approx \phi(q_t) + J \ (q_{t+1} - q_t)$, the optimal next joint state q_{t+1} that minimizes $f(q_{t+1})$ is

$$q_{t+1} = q_t + J^{\sharp} (y^* - y_t)$$

 $\delta q = J^{\sharp} \delta y$
 $J^{\sharp} = (J^{\top}CJ + W)^{-1}J^{\top}C = W^{-1}J^{\top}(JW^{-1}J^{\top} + C^{-1})^{-1}$

Hint: If you can derive the weighted least squares regression solution from first principles, this is not very different.

Motion Planning: Task Variables

- The following slides will define different types of task variables
- This is meant to give an idea of different possibilities
 - and as a reference.

Task Var. 1: Endeffector Position

Position of some point attached to link i	
dimension	d=3
parameters	link index i , point offset v
kin. map	$\phi_{posi,v}(q) = pos_i + rot_i \ v$
Jacobian	$J_{posi,v}(q)_{1:3,k} = [k \prec i] \ a_k \times (\phi_{posi}(q) - p_k)$

Notation:

- $-\operatorname{pos}_i$ and rot_i denote position and rotation in $T_{W\to i}$
- $-a_k, p_k$ are axis and position of joint k
- $-[k \prec i]$ indicates whether joint k is between root and link i
- $-J_{\mathsf{pos}i}(q)_{1:3,k}$ is the kth row

Task Var. 2: Endeffector Direction

Vector attached to link i	
dimension	d=3
parameters	link index i , attached vector v
kin. map	$\phi_{veci,v}(q) = rot_i \ v$
Jacobian	$J_{Veci,v}(q)_{1:3,k} = [k \prec i] \ a_k \times \phi_{Veci}(q)$

Notation:

- $-\operatorname{pos}_i$ and rot_i denote position and rotation in $T_{W\to i}$
- $-a_k, p_k$ are axis and position of joint k
- $-[k \prec i]$ indicates whether joint k is between root and link i
- $-J_{\mathsf{pos}i}(q)_{1:3,k}$ is the kth row

Task Var. 3: Endeffector Alignment

Alignment a vector attached to link i with a reference v^{\ast}	
dimension	d=1
parameters	link index i , attached vector v , world reference v^{*}
kin. map	$\phi_{aligni,v}(q) = v^{*\top} \phi_{veci,v}$
Jacobian	$J_{aligni,v}(q) = v^{*\top} J_{veci,v}$

Note: $\phi_{\text{align}} = 1 \leftrightarrow \text{align}$ $\phi_{\text{align}} = -1 \leftrightarrow \text{anti-align}$ $\phi_{\text{align}} = 0 \leftrightarrow \text{orthog}$.

Task Var. 4: Joint Limits

Penetration of joint limit constraints	
dimension	d=1
parameters	joint limits $q_{\mathrm{low}}, q_{\mathrm{hi}},$ margin m
kin. map	$\phi_{\text{limits}}(q) = \frac{1}{m} \sum_{i=1}^{n} [q_{\text{low}} - q_i + m]^+ + [q_i - q_{\text{hi}} + m]^+$
Jacobian	$J_{\text{limits}}(q)_{1,i} = -\frac{1}{m}[q_{\text{low}} - q_i + m > 0] + \frac{1}{m}[q_i - q_{\text{hi}} + m > 0]$

$$[x]^+ = x > 0$$
? $x : 0$ [···]: indicator function

Task Var. 5: Collision Avoidance

Penetration of collision constraints	
dimension	d = 1
parameters	$margin\; m$
kin. map	$\phi_{\text{col}}(q) = \frac{1}{m} \sum_{k=1}^{K} [m - p_k^a - p_k^b]^+$
Jacobian	$J_{\text{col}}(q) = \frac{1}{m} \sum_{k=1}^{K} [m - p_k^a - p_k^b > 0]$
	$(-J_{posp_k^a} + J_{posp_k^b})^{\!\top} \frac{p_k^a - p_k^b}{ p_k^a - p_k^b }$

A collision detection engine returns a set $\{(a, b, p^a, p^b)_{k=1}^K\}$ of potential collisions between link a_k and b_k , with nearest points p_k^a on a and p_k^b on b.

Task Var. 6: Center of Gravity

Center of gravity of the whole kinematic structure	
dimension	d=3
parameters	(none)
kin. map	$\phi_{\mathrm{cog}}(q) = \sum_{i} mass_i \; \phi_{posi,c_i}$
Jacobian	$J_{\cos}(q) = \sum_{i} mass_{i} \ J_{posi,c_{i}}$

 c_i denotes the center-of-mass of link i (in its own frame)

Task Var. 7: Joint Angles (Comfort)

The joint angles themselves	
dimension	d = n
parameters	(none)
kin. map	$\phi_{qitself}(q) = q$
Jacobian	$J_{qitself}(q) = \mathbf{I}_n$

Example: Set the target $y^* = 0$ and the precistion ϱ very low \to this task describes posture comfortness in terms of deviation from the joints' zero position.

Task Variables: Conclusion

- There is much space for creativity in defining task variables: most of them are combinations of ϕ_{pos} and ϕ_{vec} and the Jacobians combine the basic ones.
- What is the *right* task variable to design/describe motion is a very hard problem. What task variables do humans plan in?
- In practise: Robot motion design requires cumbersome hand tuning of such task variables!

Trajectory Generation

So far, all our methods only look *one* step ahead: $f(q_{t+1})$ is a cost function for the *next* joint step $\delta q = J^\sharp \delta y$ desribed the *next* joint step

What if we want to have a nice *trajectory* that smoothly accelerates and comes to a halt at the target?

Trajectory Generation: Interpolation

- A trajectory $q_{0:T}$ is a sequence of robot configurations $q_t \in \mathbb{R}^n$.
 - This corresponds to T+1 time slices but T time steps (or transitions)!
 - In software: typically stored as $(T+1) \times n$ -matrix!
- The basic heuristic for trajectory generation: If you know a desired start point x_0 and target point x_T , interpolate on a straight line and choose a nice **motion profile**.

Heuristic Motion Profiles

• Assume initially x = 0, $\dot{x} = 0$. After 1 second you want x = 1, $\dot{x} = 0$. How do you move from x = 0 to x = 1 in one second?

The sine profile $x_t = x_0 + \frac{1}{2}[1 - \cos(\pi t/T)](x_T - x_0)$ is a compromise for low max-acceleration and max-velocity

Task Space Interpolation

Task Space Interpolation

Given a initial task value y_0 and a desired final task value y_T , interpolate on a straight line with a some motion profile. This gives $y_{0:T}$.

Joint Space Projection

Given the task trajectory $y_{0:T}$, compute a corresponding joint trajectory $q_{0:T}$ using inverse kinematics

$$q_{t+1} = q_t + J^{\sharp}(y_{t+1} - \phi(q_t))$$

Joint Space Interpolation

Optimize Final State Configuration

Given a desired final task value y_T , optimize a final joint state q_T to minimize the function

$$f(q_T) = \|q_T - q_0\|_{W/T}^2 + \|y_T - \phi(q_T)\|_C^2$$

Note the step metric $\frac{1}{T}W$, which is consistent with T cost terms with metric W.

Joint Space Interpolation

Given the initial configuration q_0 and the final q_T , interpolate on a straight line with a some motion profile. This gives $q_{0:T}$.