National Water **Conditions**

UNITED STATES

Department of the Interior Geological Survey

CANADA

Department of the Environment Water Resources Branch

JULY 1993

Severe floods, both the highest of record and the highest in over 100 years in many cases, devastated much of the of the Midwest during June, July, and August. In sharp contrast, drought occurred in much of the East at the same time. During January 1993 there was above-normal range streamflow in most of the area from southern California to Florida to southern New England with January record highs occurring at four streamflow index stations in the Southwest, six in the Southeast,, and one in Michigan. During July, monthly highs occurred at 19 streamflow index stations (all in the Midwest), including all-time highs at 7 stations (in Illinois, Iowa, Kansas, and Missouri). Although there were no July monthly highs in the Southeast, flow at 22.of 40 stations in the area south of the Mason-Dixon Line and the Ohio River and east of the Mississippi River was in the below-normal range. Ground-water levels generally were below average in the same area, but reservoir contents generally were in the average to above-average range for the end of July.

Below-normal range streamflow occurred in 17 percent of the area of the conterminous United States and southern Canada during July, compared with 15 percent during June, and 19 percent during July 1992. Total flow during July for reporting index stations in the conterminous United States and southern Canada was 41 percent above median, 3 percent less than last month, and 29 percent more than flow during July 1992.

The combined flow of the 3 largest rivers in the lower 48 States—Mississippi, St. Lawrence, and Columbia—averaged about 43 percent above median and in the above-normal range, after an 8 percent decrease in flow from June to July. Flow of the St. Lawrence River was in the above-normal range for the ninth consecutive month after a 9 percent decrease from its June record high. Flow of the Mississippi River was in the above-normal range following a 4 percent increase from a normal range June. Flow of the Columbia River was in the normal range after a below-normal range June.

Mean July elevations at four master gages on the Great Lakes (provisional National Ocean Service data) were in the normal

range and above median on Lake Superior, Lake Huron, and Lake Erie, and in the above-normal range on Lake Ontario.

Utah's Great Salt Lake level fell 0.40 foot, ending the month at 4,201.50 feet above National Geodetic Vertical Datum. Lake level was 0.60 foot lower than at the end of July 1992, and 10.35 feet lower than the maximum of record.

EDITOR'S NOTE: This July 1993 issue of the National Water Conditions has been published before the February-June 1993 issues because of the Midwest floods. (The February-June 1993 issues will be published, but on an intermittent schedule while the NWC staff works to publish issues which come after July 1993.) A detailed treatment of the floods in the NWC is impossible, given the magnitude and areal extent of the flooding. However, there are four pages (4-7) which give a general overview of flood conditions in this issue. U.S. Geological Survey Circular 1120, Floods in the Upper Mississippi River Basin, 1993, consists of individually published chapters (some of which have already been published) that will document the effects of the flooding.

CONTENTS Page Surface-water conditions Streamflow ranges (map) Summary of streamflow ranges (graph)... Monthly and cumulative departure of total monthly means from total monthly medians (1961-90) for index stations in the conterminous United States and southern Canada 3 Dominant weather pattern June-July 1993 (map) Percent of normal precipitation April 1-July 31, 1993 (map) Streamflow maps for January-July 1993 ... Total precipitation and Percent of normal precipitation (maps) June-August 1993 floods in the midcontinent (map and graphs) New maximums at streamflow index stations Monthly mean discharge of selected streams (map and graphs) 9 Weather summary .. 11 Pacific Northwest (Oregon, Washington, Idaho, and Montana) reservoir index stations (map and graphs) California reservoir index stations (map and graphs) Hydrographs for the "Big Three" rivers - combined and individual flows (graphs) Dissolved solids and water temperatures at downstream sites on four large rivers 14 15 Usable contents of selected reservoirs and reservoir systems (map and graphs) Usable contents of selected reservoirs and reservoir systems Great Lakes elevations (graphs) ... Fluctuations of the Great Salt Lake, October 1987 through July 1993 (graph) 18 Streamflow during July 1992 and reservoir storage near the end of July 1992 (map) Actual monthly streamflow, 1992 and 1993 water years, compared with median monthly streamflow, 1961-90 (graphs) Monthly departure of actual streamflow (October 1987-July 1993) from median streamflow, 1961-90 (graphs) Ground-water conditions (and map) ... Water levels in key observation wells in some representative aquifers in the conterminous United States New extremes at ground-water index stations .. 24 Monthend ground-water levels in selected wells (map and graphs) 25 pH of precipitation for June 21-July 25, 1993 (map) Distribution of precipitation-weighted mean pH for all NADP/NTN sites having one or more weekly samples for June 21-July 25, 1993 (graph) ..

SURFACE-WATER CONDITIONS DURING JULY

July streamflow decreased from that for June at 139 index stations and increased at 45 index stations, resulting in normal or above-normal range streamflow at 71 percent of the 188 reporting index stations in the United States, southern Canada, and Puerto Rico during the month, compared with 79 percent last month and 80 percent during July 1992. [No data were reported for: St. Francois River at Hemmings Falls, Outardes River (adjusted) at Outardes Falls, and St. Maurice River (adjusted) at Grand Mere, Quebec, April-July 1993; Coulonge River near Fort Coulonge, Quebec, July 1993; Cape Fear River at William O. Huske Lock near Tarheel, North Carolina, June and July 1993; and Fraser River at Hope, British Columbia, June 1993.]

Below-normal range streamflow occurred in 17 percent of the area of the conterminous United States and southern Canada during July, compared with 15 percent during June, and 19 percent during July 1992. Total flow of 845,900 cubic feet per second (ft³/s) during July for 170 reporting index stations in the conterminous United States and southern Canada was 41 percent above median, 3 percent less than last month, and 29 percent more than flow during July 1992.

Nineteen new highs occurred during July, compared with ten new highs during June. No new lows occurred during either month. Hydrographs for the 19 streamflow stations at which the new extremes occurred—all in the area of the Midwest severely affected by flooding—are on pages 9-11.

The combined flow of the 3 largest rivers in the lower 48 States—Mississippi, St. Lawrence, and Columbia—averaged 1,381,000 ft³/s, about 43 percent above median and in the above-normal range, after an 8 percent decrease in flow from June to July. Flow of the St. Lawrence River was in the above-normal range for the ninth consecutive month after a 9 percent decrease from its June record high. Flow of the Mississippi River was in the above-normal range following a 4 percent increase from a normal range June. Flow of the Columbia River was in the normal range after a below-normal range June.

Month-end index reservoir contents were in the below-average range at 19 of 100 reporting sites, compared with 16 of 100 during June, and 31 of 100 at the end of July 1992, including most reservoirs in Massachusetts, New Jersey, North Dakota, Nebraska, Montana, Utah, and Nevada. Contents were in the above-average range at 44 reservoirs (compared with 52 last month, and 34 a year ago), including most reservoirs in Quebec, Maryland, South Carolina, the Tennessee Valley, Minnesota, South Dakota, Oklahoma, Texas, Idaho, Wyoming, California, and Arizona. There were no reservoirs with contents in the below-average range and significantly lower than last year (with normal maximum contents of at least 1,000,000 acre-feet). After 33 months of no usable storage, Lake Tahoe, California-Nevada, had water above the natural rim for the 2nd consecutive month.

(Continued on page 8)

Explanation of data

SUMMARY OF JULY 1993 STREAMFLOW RANGES

MONTHLY AND CUMULATIVE DEPARTURE OF TOTAL MONTHLY MEANS FROM TOTAL MONTHLY MEDIANS (1961-90) FOR INDEX STATIONS IN THE CONTERMINOUS UNITED STATES AND SOUTHERN CANADA

46

50

JUNE-AUGUST 1993 FLOODS IN THE MIDCONTINENT

(Continued from page 2)

Mean July elevations at four master gages on the Great Lakes (provisional National Ocean Service data) were in the normal range and above median on Lake Superior, Lake Huron, and Lake Erie, and in the above-normal range on Lake Ontario. Levels rose from those for June on Lake Superior and Lake Huron and fell from those for June on Lake Erie and Lake Ontario. July levels ranged from 0.36 foot higher (Lake Huron) to 0.69 foot lower (Lake Ontario) than those for June. Monthly means have been in the normal range for 13 months on Lake Superior, 36 months on Lake Huron, and 3 months on Lake Erie, and in the above-normal range on Lake Ontario for 9 months. July 1993 levels ranged from 0.16 foot lower (Lake Superior) to 1.76 feet higher (Lake Ontario), than those for July 1992.

Utah's Great Salt Lake level (graph on page 18) fell 0.10 foot through midmonth, then fell another 0.30 foot through monthend, ending the month at 4,201.50 feet above National Geodetic Vertical Datum. Lake level was 0.60 foot lower than at the end of July 1992, and 10.35 feet lower than the maximum of record which occurred in June 1986 and March-April 1987

Maps on page 19 show streamflow conditions during July 1993 and July 1992. There are only small differences in the percent of area in each flow range for the two months, but the maps look quite different. Below-normal range streamflow occurred during both months in parts of Alaska, Oregon, Washington, British Columbia, Alberta, New York, New Jersey, Virginia, South Carolina, Georgia, New Mexico, Arizona, and Puerto Rico. Above-normal range streamflow occurred during both months in parts of Hawaii, California, Wyoming, Colorado, the Dakotas, Nebraska, Kansas, Oklahoma, Texas, Minnesota, Iowa, Missouri, Wisconsin, Michigan, Illinois, Indiana, and Ohio. Both maps also show reservoir storage near the end of the month at all reporting index reservoir stations for comparison with streamflow.

Graphs for 12 hydrologic areas (page 20) compare monthly streamflow for the 1993 and 1993 water years with median monthly streamflow for 1961-90 and show (page 21) monthly percent departure of streamflow from median for the 1988-93 water years. Streamflow increased from that for June in the Hudson Bay, Florida and Gulf of Mexico, Upper Missispipi River, Missouri River, Ohio River, and Southern Great Plains and Rio Grande basins, and decreased in the other basins (including the Pacific Slope, adjusting for the missing data in June). Streamflow was below median in the Atlantic Slope and Pacific Slope basins, and above median in the other 10 basins.

Provisional data; subject to revision

NEW MAXIMUMS DURING JULY 1993 AT STREAMFLOW INDEX STATIONS

				Previous July maximums (period of reco		July 1993				
Station number	Stream and place of determination	Drainage area (square miles)	Years of record	Monthly mean in cfs (year)	Daily mean in cfs (year)	Monthly mean in cfs	Percent of median	Daily mean in cfs	Day	
03380500	Skillet Fork at Wayne City, Illinois	464	75	1,056	4,900	1,285	1,415	4,000	20	
				(1969)	(1942)					
04084500	Fox River at Rapide Croche Dam near Wrightstown, Wisconsin	6,010	96	11,150 (1969)	16,200 (1969)	15,600	693	18,700	8	
05280000	Crow River at Rockford, Minnesota	2,520	67	4,359 (1957)	9,180 (1957)	6,688	809	9,500	8	
05288500	Mississippi River near Anoka, Minnesota	19,100	61	21,120 (1952)	44,500 (1972)	27,250	343	34,400	11	
05330000	Minnesota River near Jordan, Minnesota	16,200	58	15,250 (1984)	37,200 (1984)	37,430	806	54,700	1	
05331000	Mississippi River at St. Paul, Minnesota	36,800	100	43,290 (1905)	74,300 (1957)	68,070	467	91,000	1	
05435500	Pecatonica River at Freeport, Illinois	1,326	78	3,349 (1969)	10,800 (1969)	16,440	955	12,100	11	
05446500	Rock River near Joslin, Illinois	9,549	53	15,420 (1978)	32,900 (1978)	24,220	622	32,600	4	
05464500	Cedar River at Cedar Rapids, Iowa	6,510	90	27,190 (1969)	52,400 (1969)	137,980	893	60,800	12	
05474500	Mississippi River at Keokuk, Iowa	119,000	114	179,400 (1892)	299,000 (1892)	1395,500	605	1464,000	10	
05480500	Des Moines River at Fort Dodge, Iowa	4,190	60	8,883 (1969)	19,300 (1983)	121,530	1,586	30,200	14	
05572000	Sangamon River at Monticello, Illinois	550	82	1,520 (1981)	8,720 (1909)	1,787	1,138	5,920	4	
06485500	Big Sioux River at Akron, Iowa	8,424	64	4,703 (1983)	11,700 (1983)	18,300	2,298	46,000	13	
06800500	Elkhorn River at Waterloo, Nebraska	6,900	72	5,905	19,200	11,470	1,197	29,300	11	
06810000	Nishnabotna River above Hamburg, Iowa	2,806	65	4,756	(1915) 28,700	118,150	1,743	36,500	25	
06867000	Saline River near Russell, Kansas	1,502	41	(1958) 1,408	(1990) 6,950	13,790	12,265	123,900	22	
06884400	Little Blue River near Barnes, Kansas	3,324	34	(1951) 7,146	(1950) 37,900	112,950	2,983	22,300	28	
06897500	Grand River near Gallatin, Missouri	2,250	71	(1951) 7,499	(1992) 50,800	129,620	5,609	179,800	7	
07146500	Arkansas River at Arkansas City, Kansas	43,713	75	(1958) 17,190 (1951)	(1922) 43,000 (1951)	17,600	1,281	44,800	16	

All-time high

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period 1961-90. Heavy line indicates mean for current period.

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period 1961-90. Heavy line indicates mean for current period.

10

1991

1991

Drainage

J J A S O N D J F M A M J J A S O N D J F M A M J J A

1992

e miles

DISCHARGE, IN CUBIC FEET PER SECOND

J J A S O N D J F M A M J J A S O N D J F M A M J J A

1992

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period 1961-90. Heavy line indicates mean for current period.

JULY WEATHER SUMMARY

(Adapted from Weekly Weather and Crop Bulletin, NOAA/USDA Joint Agricultural Weather Facility)

Catastrophic flooding struck the upper half of the Mississippi Valley and the lower Missouri basin, and dozens of monthly temperature and rainfall records were broken in opposite quadrants of the Nation due to the sheer persistence and strength of a trough-ridge couplet. The energetic trough—fueled by a strong north Pacific jet stream and infused with abundant subtropical moisture—brought record cold to the Northwest and delivered record rainfall to many areas within the Missouri and middle Mississippi River watersheds. Equally anomalous and unyielding was the ridge over the Southeastern States, which suppressed thunderstorm activity and induced a month-long heatwave.

Although similar weather patterns have been observed during portions of other growing seasons (for example, early-summer 1947), never before this century has such a powerful, stubborn trough-ridge couplet dominated throughout June and July. In the Southeast, several locations notched 90 °F readings on every day in July, including Chattanooga, TN, and Atlanta, GA. Montgomery, AL, endured an average July maximum temperature of 97 °F. Atlanta reached the 100 °F mark on seven occasions, while Columbia, SC, remarkably attained that level 17 times during the month. Record July heat was registered as far north as the Middle Atlantic cities of Richmond, VA, Washington, DC, and Philadelphia, PA. Greenville-Spartanburg, SC, suffered through not only its hottest July on record, but its driest (0.75 inches of rain) as well.

Extremely dry weather was noted across much of the Nation's southern tier. Records for July dryness occurred in scattered locations from Arizona to the Carolinas. In parts of central and eastern Texas, including Waco and Dallas-Ft. Worth, no measurable rain fell during the month. But farther north, Concordia, KS, broke its July rainfall record by more than 5 inches, and its 16.75-inch inundation was the station's heaviest one-month total on record. July rainfall records were also established in locations such as Peoria, IL (10.15 inches), Huron, SD (6.69 inches), Bismarck, ND (13.75 inches), Williston, ND (6.28 inches), Miles City, MT (6.34 inches), and Glasgow, MT (5.93 inches).

In the Northwest, damp, cool conditions dominated. Spokane, WA, observed a combination of its coldest (8.6 °F below normal) and fifth wettest (2.08 inches of rain) July on record. The gigantic western trough held sway over weather conditions as far south as Salt Lake City, Utah, which had its coldest July ever. The mercury reached 90 °F on only 7 days during the month in Salt Lake City, 16 days fewer than normal.

Toward month's end, a dramatic shift in the weather pattern began to break the Southeast's heatwave and permitted the Nation's mid-section to start drying out. Meanwhile, heat quickly spread into the West. On July 29, Worland, WY, attained 102 °F, adaily record high. During the first 28 days of the month, Worland established 13 daily record lows. Farther east, Bristol, TN, which had its hottest month on record, closed the month with a daily record low of 55 °F.

DISCHARGE, IN CUBIC FEET PER SECOND

PACIFIC NORTHWEST (OREGON, WASHINGTON, IDAHO, AND MONTANA) RESERVOIR INDEX STATIONS

PERCENT OF NORMAL CAPACITY

PERCENT OF NORMAL CAPACITY

FLOW OF LARGE RIVERS DURING JULY 1993

			Average discharge through September 1991	July 1993							
	Stream and place of determination	Drainage		Monthly mean discharge (cubic feet per second)	Percent of median	Change in discharge from	Discharge near end of month Cubic Million				
Station number		area (square miles)	(cubic feet per second)		monthly discharge 1961-90	month (percent)	feet per second	galions per day	Dua		
01014000	St. John River below Fish River at Fort Kent, Maine	5,665	9,693	3,932	85	-73	2,650	1,710	31		
01318500	Hudson River at Hadley, New York	1,664	2,925	† 678	72	-69	540	349	31		
01357500	Mohawk River at Cohoes, New York	3,456	5,673	† 1,270	68	-55	1,610	1,040	3		
01463500	Delaware River at Trenton, New Jersey	6,780	11,660	† 3,499	65	-24	3,300	2,130	3		
01570500	Susquehanna River at Harrisburg, Pennsylvania	24,100	34,200	1 6,344	44	-45	4,610	2,980	3		
01646500	Potomac River near Washington, District of Columbia	11,560	111,070	13,050	66	-45	***	***			
02105500	Cape Fear River at William O. Huske Lock, near Tarheel, North Carolina.	4,852	4,933	***	***	***	***	***	**		
02131000	Pee Dee River at Peedee, South Carolina	8,830	9,903	4,000	63	-27	4,820	3,120	3		
02226000	Altamaha River at Doctortown, Georgia	13,600	13,570	† 3,629	55	-37	2,530	1,640	3		
02320500	Suwannee River at Branford, Florida	7,880	7,038	† 3,070	60	-23	2,980	1,930	3		
02358000	Apalachicola River at Chattahoochee, Florida	17,200	22,137	12,100	82	-3	10,000	6,000	3		
02467000	Tombigbee River at Demopolis lock and dam, near Coatopa, Alabama.	15,385	23,700	5,187	76	-23	3,450	2,230	3		
02489500	Pearl River near Bogalusa, Louisiana	6,573	10,102	9,980	308	88	3,810	2,460	3		
03049500	Allegheny River at Natrona, Pennsylvania	11,410	119,690	† 13,662	41	-57	3,040	1,960	2		
03085000	Monongahela River at Braddock, Pennsylvania	7,337	112,540	† 12,225	42	-45	1,650	1,070	2		
03193000	Kanawha River at Kanawha Falls, West Virginia	8,367	12,550	† 3,715	65	-43	3,030	1.960	2		
03234500	Scioto River at Higby, Ohio	5,131	4,654	* 7,464	374	209	1,220	788	3		
03294500	Ohio River at Louisville, Kentucky ²	91,170	115,900	61,400	112	-28	41,400	26,800	3		
03377500	Wabash River at Mount Carmel, Illinois	28,635	27,880	* 42,360	270	51	25,400	16,400	3		
04084500	Fox River at Rapide Croche Dam, near Wrightstown, Wisconsin. ²	6,010	4,248	* 15,600	693	17	11,800	7,640	3		
04264331	St. Lawrence River at Cornwall, Ontario, near Massena, New York. 4 #	298,800	245,300	* 318,000	114	-10	310,000	200,000	3		
02NG001	St. Maurice River at Grand Mere, Quebec	16,300	124,290	***	***	***	***	***			
05082500	Red River of the North at Grand Forks, North Dakota	30,100	2,565	* 12,200	417	180	25.500	15,500	3		
05133500	Rainy River at Manitou Rapids, Minnesota	19,400	9,036	22,440	132	63	22,800	14,700	3		
05330000	Minnesota River near Jordan, Minnesota	16,200	7,062	* 37,430	807	-8	23,400	15,100			
05331000	Mississippi River at St. Paul, Minnesota#	36,800	115,890	* 68,070	468	19	44,500	28,800			
05365500	Chippewa River at Chippewa Falls, Wisconsin	5,650	5,072	* 5,060	180	-71	2,200	1,420			
05407000	Wisconsin River at Muscoda, Wisconsin	10,400	8,666	* 15,570	273	-43	9,690	6,260			
05446500	Rock River near Joslin, Illinois	9,549	6,161	* 24,220	622	9	16,800	10,900	3		
05474500	Mississippi River at Keokuk, Iowa®	119,000	64,070	* 395,500	606	84	309,000				
06214500	Yellowstone River at Billings, Montana	11,795	6,965	15,340	104	-34	13,700	8,850	-		
06934500	Missouri River at Hermann, Missouri	524,200	76,940	* 352,000	447	112	725,000	469,000			
07289000	Mississippi River at Vicksburg, Mississippi5 #		583,000	* 859,800	195	4	1,030,000				
07331000	Washita River near Dickson, Oklahoma	7,202	1,584	* 1,830	412	-64	26	16			
08276500	Rio Grande below Taos Junction Bridge, near Taos, New Mexico.	9,730	757	727	148	-70	335	216			
09315000	Green River at Green River, Utah	44,850	6,292	5,204	85	-69	***	***			
11425500	Sacramento River at Verona, California	21,251	18,810	* 15,680	124	-41		***			
13269000	Snake River at Weiser, Idaho	69,200	18,220	12,000	115	-54	12,600	8,140			
13317000	Salmon River at White Bird, Idaho			13,600		-63	9,230				
13342500	Clearwater River at Spalding, Idaho			12,700		-51	7,020				
14105700	Columbia River at The Dalles, Oregon ^{6 #}			1202,800		-37	160,000				
14191000	Willamette River at Salem, Oregon	7,280		* 18,240		-71	9,210				
15515500	Tanana River at Nenana, Alaska			62,600		+28	64,000				
08MF005	Fraser River at Hope, British Columbia	83,800		† 129,600			,				

^{*}Indicates stations excluded from the combination bar/line graph. See Explanation of Data.

* Above-normal range

† Below-normal range

¹Adjusted.

Records furnished by Corps of Engineers.

Records furnished by Buffalo District, Corps of Engineers, through International St. Lawrence River Board of Control. Discharges shown are considered to be the same as discharge at Ogdensburg, N.Y., when adjusted for storage in Lake St. Lawrence River Board of Control. Discharges shown are considered to be the same as discharge at Ogdensburg, N.Y., when adjusted for storage in Lake St. Lawrence River Board of Control. Discharges shown are considered to be the same as discharge at Ogdensburg in Corps of Engineers and Geological Survey.

5 Discharge determined from information furnished by Bureau of Reclamation, Corps of Engineers, and Geological Survey.

HYDROGRAPHS FOR THE "BIG THREE" RIVERS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period 1961-90. Heavy line indicates mean for current period.

Provisional data; subject to revision

DISSOLVED SOLIDS AND WATER TEMPERATURES FOR JULY 1993 AT DOWNSTREAM SITES ON FOUR LARGE RIVERS

Station	Station name	July data of following	Stream discharge during	Dissolve		Dissolv	ed-solids disc	Water temperature 2			
		calendar	month	Mini-	Maxi-		Mini-	Maxi-		Mini-	Maxi-
		years	Mean	mum	mum	Mean	mum	mum	Mean	mum	mum (°C)
			(ft ³ /s)	(mg/L)	(mg/L)	((tons per day)		(°C)	(°C)	
01463500	Delaware River at Trenton,	1993	3,500	117	142	1,195	965	1,474	28.0	25.0	31.0
	New Jersey, (Morrisville,	1945-92	6,690	57	145	32,066	465	16,700	325.5	18.5	33.5
	Pennsylvania)	(Extreme yr)		(1947)	(1978)		(1965)	(1969)			
			45,394								
07289000	Mississippi River at	1993	859,800	210	267	545,000	485,600	643,800	28.0	27.5	30.0
	Vicksburg, Mississippi	1976-92	498,300	188	330	309,500	114,000	633,000	25.5	23.5	34.5
		(Extreme yr)		(1989)	(1988)		(1988)	(1980)			
			4441,800								
06934500	Missouri River at Hermann,	1993	352,000	175	318	202,900	80,300	452,000	27.5	26.0	30.0
	Missouri. (60 miles west of	1976-92	93,210	201	501	88,550	44,700	208,000	27.5	22.0	32.5
	St. Louis, Missouri)	(Extreme yr)		(1981)	(1985)		(1977)	(1984)			
			478,820								
14246900	Columbia River at Beaver Army	1993	198,000	74	88	42,800	36,100	48,300	19.0	17.5	21.5
	Terminal, near Quincy,	1976-92	158,900	60	158	32,200	12,500	65,100	17.5	15.5	22.0
	Oregon (streamflow station at	(Extreme yr)		(1976)	(1992)		(1977)	(1981)			
	The Dalles, Oregon)		4,5262,400								

¹Dissolved-solids concentrations, when not analyzed directly, are calculated on basis of measurements of specific conductance.

 2 To convert ${}^{\circ}$ C to ${}^{\circ}$ F: $[(1.8 \times {}^{\circ}\text{C}) + 32] = {}^{\circ}\text{F}$.

3Mean for 8-year period (1983-91).

⁴Median of monthly values for 30-year reference period, water years 1961-90, for comparison with data for current month.

USABLE CONTENTS OF SELECTED RESERVOIRS NEAR END OF JULY 1993

[Contents are expressed in percent of reservoir (system) capacity. The usable capacity of each reservoir (system) is shown in the column headed "Normal maximum" in the table <u>Usable contents of selected reservoir systems.</u>]

1991

1992

USABLE CONTENTS OF SELECTED RESERVOIRS AND RESERVOIR SYSTEMS NEAR END OF JULY 1993

[Contents are expressed in percent of reservoir or reservoir system capacity. The usable capacity of reservoir or reservoir system is shown in the column headed "Normal maximum"]

Principal uses: F-Flood control		Percent	of normal			Reservoir or reservoir system Principal uses: F-Flood control		Danner	of named		
I-Irrigation			imum			I-Irrigation			of normal		
M-Municipal	End	End	Average	End		M-Municipal	End		imum	-	
P-Power	of	of	for	of	Normal	P-Power		End	Average	End	
R-Recreation	July		end of	June	maximum	R-Recreation	of	of	for	of	Normal
W-Industrial	1993	July 1992	July	1993	(acre-feet)1	W-Industrial	July 1993	July 1992	end of July	June 1993	maximum (acre-feet) ¹
NOVA SCOTIA Rossignol, Mulgrave, Falls						NEBRASKA	+ 65	54	74		
Lake, St. Margaret's Bay, Black, and Ponhook reservoirs (P)	64	41	60	64	² 226,300	Lake McConaughy (IP) OKLAHOMA	† 65	34	/4	68	1,948,000
		44	00		220,500	Eufaula Lake (FPR)	• 103	109	91	110	2,378,000
QUEBEC		-			200 (00	Keystone Lake (FPR)	• 134	106	93	127	661,000
Allard (P)	* 84 * 78	77	76 69	88 78	280,600 6,954,000	Tenkiller Ferry Lake (FPR)	* 110	109	98 67	117	628,200 133,000
MAINE						Lake O'The Cherokees (FPR)	* 101	106	92	107	1,492,000
Seven reservoir systems (MP) NEW HAMPSHIRE	† 83	87	92	95	4,107,000	Lake Texoma (FMPRW)	102	103	100	103	2,722,000
First Connecticut Lake (P)	85	87	88	92	76,450	TEXAS					
Lake Francis (FPR)	89	84	86	94	99,310	Bridgeport (IMW)	• 95	96	57	98	386,400
Lake Winnipesaukee (PR)	† 76	91	88	84	165,700	Canyon Lake (FMR)	* 98 * 87	100	84 77	99 87	385,600
VERMONT						International Falcon (FIMPW)	* 74	103	66	71	2,668,000
Harriman (P)	78	79	78	83	116,200	Livingston (IMW)	• 101	99	91	106	1,788,000
Somerset (P)	83	85	82	85	57,390	Possum Kingdom Lake (IMPRW)	† 86 * 37	96 49	96 26	93 40	570,200
MASSACHUSETTS						Red Bluff (P)	92	95	90	103	307,000 4,472,000
Cobble Mountain and						Toledo Bend (P) Twin Buttes (FIM)	* 64	81	90 34 89	72	177,800
Borden Brook (MP)	† 77	95	83	83	77,920	Lake Kemp (IMW)	92 37	93 44	38	99 38	268,000 796,900
NEW YORK						Lake Travis (FIMPRW)	• 91	99	79	98	1,144,000
Great Sacandaga Lake (FPR)	83	90	83	98	786,700						
Indian Lake (FMP)	90 † 77	96 85	91 91	98 89	1,680,000	MONTANA Canyon Ferry Lake (FIMPR)	* 96	78	90	96	2,043,000
New Tork City reservoir system (Mt W)	1 11	63	21	07	1,080,000	Fort Peck Lake (FPR)	† 68	58	88	62	18,910,000
NEW JERSEY					00.100	Hungry Horse (FIPR)	† 69	74	96	61	3,451,000
Wanaque (M)	T 00	82	82	88	85,100	WASHINGTON					
PENNSYLVANIA						Ross (PR) Franklin D. Roosevelt Lake (IP)	100	90	96	97	1,052,000
Allegheny (FPR)	44	50	46	49	1,180,000	Franklin D. Roosevelt Lake (IP)	96	98	99	96	5,022,000
Pymatuning (FMR)	93 67	100	93 64	98 68	188,000 761,900	Lake Chelan (PR)Lake Cushman (PR)	102	98	98 99	99 102	676,100 359,500
Lake Wallenpaupack (PR)	† 67	71	73	80	157,800	Lake Merwin (P)	101	104	105	101	245,600
MA DAY AND						ІДАНО					
MARYLAND Baltimore Municipal System (M)	* 98	76	90	100	261,900	Boise River (4 Reservoirs) (FIP)	* 79	15	71	92	1,235,000
						Coeur d'Alene Lake (P)	* 97	99	83	97	238,500
NORTH CAROLINA	95	96	90	94	288,800	Pend Oreille Lake (FP)	98	100	96	99	1,561,000
Bridgewater (Lake James) (P)	92	93	96	93	128,900	IDAHO-WYOMING					
High Rock Lake (P)	82	89	78	89	234,800	Upper Snake River (8 Reservoirs) (MP)	* 84	34	69	97	4,401,000
SOUTH CAROLINA						WYOMING					
Lake Murray (P)	* 85	90	79	91	1,614,000	Boysen (FIP)	• 97	78	88	100	802,000
Lake Marion and Lake Moultrie (P)	* 84	79	72	84	1,777,000	I Burraio Bill (IP)	124	98	99 45	116	421,300 193,800
SOUTH CAROLINA-GEORGIA						Keyhole (F)	† 36	13	43	33	193,800
Strom Thurmond Lake (FP)	68	71	69	73	1,730,000	Glendo, and Guernsey reservoirs (I)	† 51	37	60	58	3,056,000
GEORGIA						COLORADO					
Burton Lake (PR)	92	97	92	97	104,000	John Martin (FIR) Taylor Park (IR)	17	5	22	25	364,400 106,200
Sinclair (MPR)Lake Sidney Lanier (FMPR)	† 82 55	90 60	90 60	89 62	214,000 1,686,000	Colorado-Big Thompson Project (I)	* 81	83 69	91 72	84 82	730,300
	33	00		-	110001000		-	-		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Laba Mostin (TI)	95	97	91	99	1,375,000	COLORADO RIVER STORAGE PROJECT					
Lake Martin (P)	93	21	21	27	1,373,000	Lake Powell; Flaming Gorge,					
TENNESSEE VALLEY						Fontenelle, Navajo, and			-	-	21 422 000
Clinch Projects: Norris and Melton Hill Lakes (FPR)	* 63	66	57	70	2,293,000	Blue Mesa reservoirs (IFPR)	81	65	82	80	31,620,000
Douglas Lake (FPR)	• 71	77	62	78	1,395,000	UTAH-IDAHO					
Hiwassee Projects: Chatuge,						Bear Lake (IPR)	† 38	23	67	38	1,421,000
Nottely, Hiwassee, Apalachia, Blue Ridge, Ocoee 3, and						CALIFORNIA					
Parksville Lakes (FPR)	81	86	77	88	1,012,000	Folsom Lake (FIMPR)	76	34	73	96	1,000,000
Holston Projects: South Holston.						Hetch Hetchy (MP)	* 100	69	80 43	90 72	360,400 568,100
Watauga, Boone, Fort Patrick Henry, and Cherokee Lakes (FPR)	• 72	76	63	82	2,880,000	Lake Isabella (FIR)	• 81	7	51	90	1,001,000
Little Tennessee Projects: Nantahala,	14	70	00	-	210001000	Clair Engle Lake (Lewiston) (FP)	85	40	81	84	2,438,000
Thorpe, Fontana, and Chilhowee			26	01	1 428 000	Lake Almanor (P)	* 98	82 32	66	104 56	1,036,000
Lakes (FPR)	- 83	88	76	91	1,478,000	Millerton Lake (FI)	* 87	44	64	100	503,200
WISCONSIN						Shasta Lake (FIPR)		52	75	100	4,377,000
Chippewa and Flambeau (PR)	* 84	90 72	83 74	95 92	365,000 399,000	CALIFORNIA-NEVADA					
Wisconsin River (21 reservoirs) (PR)	- 84	12	74	92	399,000	Lake Tahoe (IMPRW)	† 10	0	67	9	744,600
MINNESOTA											
Mississippi River Headwater System (FMR)	* 52	41	38	48	1,640,000	Rye Patch (I)	† 27	0	59	30	194,300
	30	41	24	40	2,5 10,000	1		-			
NORTH DAKOTA Lake Sakakawea (Garrison) (FIPR)	† 79	64	88	69	22,700,000	ARIZONA-NEVADA Lake Mead and Lake Mohave (FIMP)	81	75	76	82	27,970,000
SOUTH DAKOTA						ARIZONA					
Angostura (I)	*91	71	81	92	130,770	San Carios (IP)	* 61	64	23	69	935,100
Angostura (I)	* 82	26	54 84	77	185,200 4,589,000	Salt and Verde River System (IMPR)	• 71	75	47	77	2,019,100
Lake Prancis Case (FIP)	* 85	81 64	74	83 77	22,240,000	NEW MEXICO					
Lake Sharpe (PIP)	104	99	101	101	1,697,000	Conchas (FIR) Elephant Butte and Caballo (FIPR)	83	92	83	85	315,700
Lewis and Clark Lake (FIP)	† 92	84	100	88	432,000	Elephant Butte and Caballo (FIPR)	* 88	88	40	91	2,394,000

¹¹ acre-foot = 0.04356 million cubic feet = 0.326 million gallons = 0.504 cubic feet per second per day. ²Thousands of kilowatt-hours (the potential electric power that could be generated by the volume of water in storage).

^{*} Above-average range † Below-average range

GREAT LAKES ELEVATIONS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period 1961-90. Heavy line indicates mean for current period. Data from National Ocean Service.

FLUCTUATIONS OF THE GREAT SALT LAKE, OCTOBER 1987 THROUGH JULY 1993

ELEVATION, IN FEET ABOVE NATIONALGEODETIC VERTICAL DATUM OF 1929

ACTUAL MONTHLY STREAMFLOW, 1992 AND 1993 WATER YEARS, COMPARED WITH MEDIAN MONTHLY STREAMFLOW, 1961-90

MONTHLY DEPARTURE OF ACTUAL STREAMFLOW (OCTOBER 1987-JULY 1993) FROM MEDIAN STREAMFLOW (1961-90)

WATER YEAR

WATER YEAR

MONTHLY DEPARTURE FROM MEDIAN STREAMFLOW, IN PERCENT

WATER YEAR

New extremes occurred at 33 ground-water index stations (see table on page 24) during July—28 low (including 10 all-time, counting the equalling of an all-time low set in June) and 5 highs—compared with 28 new extremes last month. Graphs showing water levels in seven wells for the past 26 months are on page 25. Two of the graphs are for wells in the Glaciated Central region (monthly highs in Iowa and Michigan). The other graphs are for wells in the Alluvial Basins region (New Mexico), the Columbia Lava Plateau region (a monthly low in Idaho), the Piedmont and Blue Ridge region (Virginia), the Northeast and Superior Uplands region (Massachusetts), and the Southeast Coastal Plain region (Florida).

Ground-water levels in the Western Mountain Ranges region were below last month's except in Washington, and below long-term average throughout the Region. An all-time low (the fourth in the last five months) occurred in the Cretaceous aquifer well near Helena, Montana.

In the Alluvial Basins region, ground-water levels were generally below last month's levels in California, Oregon, Nevada, and Texas; and were mixed with respect to last month's in Arizona, New Mexico, and Utah. Levels were below long-term averages except in the Oregon well, two wells in Nevada, and one well in New Mexico, which were above average. All-time lows occurred in the valley-fill aquifer well near Las Vegas, Nevada (for the second consecutive month); in the Mehrten aquifer well near Wilton, California (following nine monthly lows); in the basin-fill aquifer at Albuquerque, New Mexico (for the second consecutive month); and in the Hueco Bolson aquifer at El Paso, Texas (for the first time this year). A July high occurred in the Roswell Basin aquifer well at Roswell, New

Mexico and a monthly low occurred in the Roswell Basin shallow aquifer well at Dayton, New Mexico (for the third consecutive month).

In the Columbia Lava Plateau region, water levels were below last month's in Oregon and mixed with respect to last month's levels in Idaho. Water levels were below long-term averages throughout the Region. All-time lows occurred in the Snake River Plain aquifer wells near Atomic City, Idaho (for the seventh consecutive month) and near Rupert, Idaho (for the second consecutive month following eight monthly lows); and in the Columbia River basalts aquifer well at Pendleton, Oregon (for the first time this year). A monthly low occurred in the Snake River Plain aquifer well at Gooding, Idaho (for the tenth consecutive month).

Levels in the Colorado Plateau and Wyoming Basin region were above last month's levels in Utah and mixed with respect to last month's levels in New Mexico. Levels were above long-term average in Utah and mixed with respect to average in New Mexico. A monthly low occurred in the Westwater Canyon aquifer well near Grants-Bluewater, New Mexico (for the seventh consecutive month and a monthly high occurred in the San Andres-Yeso aquifer well at Bluewater, New Mexico (for the second consecutive month).

In the High Plains region, ground-water levels were below last month's levels in Nebraska, Oklahoma, and Texas, and about the same as last month's levels in New Mexico. Levels were below long-term averages except in Nebraska. An all-time low occurred in the Ogallala aquifer well near Lubbock, Texas (for the sixth consecutive month and the ninth time this year). A September low occurred in the Ogallala aquifer well near Colby, Kansas.

WATER LEVELS IN KEY OBSERVATION WELLS IN SOME REPRESENTATIVE AQUIFERS IN THE CONTERMINOUS UNITED STATES-JULY 1993

	Aquifer type and local		Water level in feet	Departure	Net change	e in water	Year	
GROUND-WATER REGION	aquifer	in	below land-	average	level in fe	et since:	records	
Aquifer and Location	pumpage	feet	surface datum	in feet	Last month	Last year	began	Remarks
WESTERN MOUNTAIN RANGES (1)								
Rathdrum Prairie aquifer near Athol, northern Idaho	•	485	466.2	-6.4	0.9	-2.8	1929	
ALLUVIAL BASINS (2)								
Alluvial valley-fill aquifer in Steptoe Valley, Nevada		122	9.66	2.78	73	38	1949	
Valley-fill aquifer, Elfrida area near Douglas, Arizona		124	100.45	-15.15	14	.77	1947	
Hueco bolson aquifer at El Paso, Texas	•	640	274.48	~18.72	25	-1.70	1964	All-time low
COLUMBIA LAVA PLATEAU (3)								
Snake River Plain aquifer near Eden, Idaho	•	208	124.0	-5.6	4.1	7	1962	
Columbia River basalts aquifer at Pendleton, Oregon		1,501	228.30	-34.39	85	04	1965	All-time low
COLORADO PLATEAU AND WYOMING BASIN (4)								
Dakota aquifer near Blanding, Utah		140	43.01	2.68	1.13	5.27	1960	
HIGH PLAINS (5)								
Ogallala aquifer near Colby, Kansas		175	131.10	-11.43	35	.13	1947	
Southern High Plains aquifer at Lovington, New Mexico	•	212	58.46	-3.49	21	.21	1971	
NONGLACIATED CENTRAL REGION (6)								
Sentinel Butte aquifer near Dickinson, North Dakota	0	160	20.04	-2.39	1.11	2.07	1968	
Sand and gravel Pleistocene aquifer near	•	54	14.09	2.89	1.83	6.54	1937	
Valley Center, Kansas	-							
Glacial outwash aquifer near Louisville, Kentucky		94	18.00	5.89	.15	.20	1945	
Upper Pennsylvanian aquifer in the Central		25	10.50	6.19	.34	.86	1953	All-time hig
Appalachians Plateau near Glenville, West Virginia	_							
GLACIATED CENTRAL REGION (7)								
Fluvial sand and gravel aquifer, Platte River Valley,		12	***	***	***	***	1933	
near Ashland, Nebraska								
Sheyenne Delta aquifer near Wyndmere, North Dakota	0	40	2.52	2.58	.41	3.78	1963	
Pleistocene (glacial drift) aquifer at Princeton, Illinois	000	29	6.50	4.40	38	20	1942	
Shallow drift aguifer near Roscommon, Michigan	Õ	14	4.33	.32	63	08	1934	
Silurian-Devonian carbonate aquifer near Dola, Ohio	ň	51	6.18	1.07	.26	22	1954	
PIEDMONT AND BLUE RIDGE (8)		-				-		
Water-table aquifer in Petersburg Granite, southeastern	0	100	15.91	29	95	06	1939	
Piedmont at Colonial Heights, Virginia	0			-				
Weathered granite aquifer near Mocksville,	0	31	14.55	3.51	-1.03	1.91	1981	July high
North Carolina	0			0.01	1100	2102		and man
Surficial aquifer at Griffin, Georgia	0	30	16.27	69	-1.92	1.08	1943	
NORTHEAST AND SUPERIOR UPLANDS (9)	0	50	10.27	100	*.>=		*****	
Pleistocene glacial outwash aquifer, at		59	13.06	.80	1.31	1.86	1949	
Camp Ripley, near Little Falls, Minnesota	•	-	10100		2,0 4			
Glacial outwash sand aquifer at Oxford, Maine	0	39	9.00	48	63	60	1980	
Shallow sand aquifer (glacial deposits) at	~	34		05	76	.53	1965	
Acton, Massachusetts		34	10.70	00	-,10		1305	
Stratified drift aquifer near Morristown, Vermont	0	50	20.08	54	-1.09	.04	1966	
ATLANTIC AND GULF COASTAL PLAIN (10)	0	50	20.00	2.	1100	.0 1	1,00	
Columbia deposits aquifer near Camden, Delaware	0	11	6.99	48	68	1.18	1950	
Memphis sand aquifer near Memphis, Tennessee		384		-17.30	-1.59	-1.54	1940	All-time low
Eutaw aquifer at Montgomery, Alabama	-	270		-1.9	5	9	1952	7411 dillio 10 to
	-	1,152		25.34	13	6.70	1978	
Evangeline aquifer at Houston, Texas SOUTHEAST COASTAL PLAIN (11)	-	1,132	413.33	43.34	13	0.70	1310	
	-	348	37.16	-7.80	-2.10	-3.26	1956	
Upper Floridan aquifer on Cockspur Island near Savannah, Georgia		548	37.10	-7.80	-2.10	-3.20	1950	
Upper Floridan aquifer at Jacksonville, Florida	-	905	-21.0	-5.4	2	3	1930	
Biscayne aquifer near Homestead, Florida	O	20		.41	.48	.64	1932	
Discayne aquiter near riomesteau, rioma	0	20	0.13	.41	170	.07	1220	

Ground-water levels in the Nonglaciated Central region were generally below last month's levels except in Oklahoma, where they were mixed with respect to last month's levels, and in Georgia, where they were below last month's levels. Water levels were generally above long-term averages in Oklahoma, Texas Georgia, Kentucky, Maryland, West Virginia, and Pennsylvania, and below average elsewhere. All-time lows occurred in the Sentinel Butte aquifer well near Dickinson, North Dakota (for the 5th consecutive month and the 10th time this year), and the Equus aquifer well near Halstead, Kansas (for the third consecutive month). A September high occurred in the Twin Mountains (Trinity) aquifer well near Hurst/Fort Worth, Texas.

Ground-water levels in the Glaciated Central region were generally below last month's in the Dakotas, Kansas, and Illinois; mixed with respect to last month's levels in Indiana, Ohio, and New York; and generally above last month's levels elsewhere. Water levels were generally below long-term averages only in Illinois and Ohio. An all-time low occurred in the Lower Mount Simon aquifer well at Illinois Beach State Park, Illinois. A September low occurred in the Ironton-Galesville aquifer well at Illinois Beach State Park, Illinois, and a September high occurred in the Silurian-Devonian carbonate aquifer well near Dola, Ohio.

In the Piedmont and Blue Ridge region, ground-water levels were below last month's except in New Jersey where levels were

NEW EXTREMES DURING JULY AT GROUND-WATER INDEX STATIONS

					OI IIIOIIII WALL	r level in feet below land	Carrace Gallerin
WRD Station Identification	GROUND-WATER REGION	Aquifer type and local aquifer	Depth of	Years of	Previous Ju		
Number	Aquifer and Location	pumpage	well	record	Average	Extreme (year)	July 1993
	LOW WATE	R LEVELS					
	WESTERN MOUNTAIN RANGES (1)						
63906112043901	Cretaceous aquifer near Helena, Montana ALLUVIAL BASINS (2)		110	16	30.15	36.25 (1991)	139.25
82444121123301	Mehrten aquifer near Wilton, California		300	6	138.11	142.89 (1992)	1143.71
61611115151301	Valley-fill aquifer near Las Vegas, Nevada		905	47	39.25	110.72 (1992)	1123.84
	Roswell Basin shallow aquifer at Dayton, New Mexico	-	250	41	93.46	123.13 (1992)	123.19
	Basin-fill aquifer at Albuquerque, New Mexico	-	980	10	35.44	39.16 (1992)	140.24
	Hueco bolson aquifer at El Paso, Texas		640	28	255.76	272.83 (1991)	1274.48
	COLUMBIA LAVA PLATEAU (3)						
53934118491701	Columbia River basalts aquifer at Pendleton, Oregon	0	1,501	26	193.91	228.26 (1992)	1228.30
	Snake River Plain aquifer near Atomic City, Idaho	0	636	44	585.2	589.1 (1992)	1590.0
	Snake River Plain aquifer at Gooding, Idaho	Ö	165	21	134.5	149.2 (1992)	152.4
	Snake River Plain aquifer near Rupert, Idaho COLORADO PLATEAU AND WYOMING BASIN (4)	ŏ	194	42	154.4	166.6 (1992)	1169.4
52023107473201	Westwater Canyon aquifer near Grants-Bluewater, New Mexico HIGH PLAINS (5)		155	37	77.75	80.65 (1991)	81.86
41010102240801	Ogallala aquifer near Lubbock, Texas GLACIATED CENTRAL REGION (7)		202	42	56.63	94.20 (1992)	196.33
22803087475302	Lower Mount Simon aquifer at Illinois Beach State Park, Illinois NORTHEAST AND SUPERIOR UPLANDS (9)		2,264	4	203.28	206.32 (1992)	206.53
35343072151801	Stratified drift aquifer near West Fairlee Village, Vermont ATLANTIC AND GULF COASTAL PLAIN (18)	0	54	26	4.33	5.03 (1985)	5.09
95524074502501	Upper Potomac-Raritan-Magothy aquifer system near Medford, New Jersey		410	16	119.35	143.56 (1988)	144.62
44607091543401	Mississippi Valley alluvial aquifer near Lonoke, Arkansas		135	24	111.80	122.12 (1989)	1123.64
	Sparta aquifer near Ruston, Louisiana		763	49	224.61	237.90 (1992)	239.55
	Sand and gravel aquifer at Ensley, Florida		239	53	74.26	83.89 (1992)	84.76
	Upper Potomac aquifer near Toana, Virginia	_	401	7	159.57	164.10 (1992)	1165.01
	Memphis sand aquifer near Memphis, Tennessee	-	384	52	91.84	107.62 (1988)	1109.14
	HIGH WAT	ER LEVEL	S				
	ALLUVIAL BASINS (2)						
332615104303601	Roswell Basin aquifer at Roswell, New Mexico COLORADO PLATEAU AND WYOMING BASIN (4)		324	26	63.13	41.10 (1992)	40.80
351651107594501	San Andres-Yeso aquifer at Bluewater, New Mexico NONGLACIATED CENTRAL REGION (6)		505	47	106.16	98.77 (1990)	98.13
85604080495701	Upper Pennsylvanian aquifer near Glenville, West Virginia GLACIATED CENTRAL REGION (7)	0	25	39	16.69	11.36 (1992)	² 10.50
14315091252002	Devonian aquifer near Morse, Iowa		82	52	16.64	12.28 (1962)	11.94
	Unconsolidated glacial drift aquifer near Harcourt, Iowa		42		4.62	2.33 (1992)	2.24
	Ironton-Galesville aquifer at Illinois Beach State Park, Illinois		1,203		233.00	231.57 (1991)	2222.50
	Shallow drift aquifer near Dewitt, Michigan PIEDMONT AND BLUE RIDGE (8)	O	26		17.39	15.96 (1969)	15.92
155359080331701	Weathered granite aquifer near Mocksville, North Carolina	0	31	11	18.06	15.54 (1991)	14.55
	Newman Terrace deposits aquifer near Lawrence, Kansas	9	53		20.67	16.27 (1969)	² 12.69
All time meet		-	33	41	20.07	10.27 (1909)	-12.0

1 All-time month-end low.

² All-time month-end high.

above last months. Levels were below long-term averages in Georgia and Maryland; generally above long-term averages in New Jersey and North Carolina; and mixed with respect to average in Pennsylvania and Virginia. A monthly high occurred in the weathered granite aquifer well near Mocksville, North Carolina (for the ninth consecutive time).

In the Northeast and Superior Uplands region, levels were generally above last month's in Minnesota and below last month's levels elsewhere. Water levels were above average in Michigan, Minnesota, and New York, but were below average elsewhere. A monthly high occurred in the stratified drift aquifer well near West Fairlee Village, Vermont (for the first time this year).

In the Atlantic and Gulf Coastal Plain region, water levels were below last month's except in Virginia, where levels were mixed

with respect to last month's. Levels were above long-term averages in Texas, Massachusetts, and Kentucky; mixed in New Jersey and South Carolina; and below average elsewhere. All-time lows occurred in wells in the Upper Potomac aquifer near Toana, Virginia (following eight monthly lows); the Memphis sand aquifer near Memphis, Tennessee (for the first time this year); and the Mississippi Valley alluvial aquifer near Lonoke, Arkansas (for the first time this year). Monthly lows occurred for the tenth consecutive month in the sand and gravel aquifer well at Ensley, Florida and in the Sparta aquifer well near Ruston, Louisiana. A monthly low occurred in the Upper Potomac-Raritan-Magothy aquifer system well near Medford, New Jersey (for the third consecutive month).

In the Southeast Coastal Plain region, water levels were mixed with respect to last month's and with respect to long-term averages.

MONTHEND GROUND-WATER LEVELS IN SELECTED WELLS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates average of monthly levels in previous years. Heavy line indicates level for current period.

pH of Precipitation for June 21-July 25, 1993

Current pH data shown on the map (* 4.9) are precipitation-weighted means calculated from preliminary laboratory results provided by the NADP/NTN Central Analytical Laboratory at the Illinois State Water Survey and are subject to change. The 128 points (*) shown on this map represent a subset of all sites chosen to provide relatively even geographic spacing. Absence of a pH value at a site indicates either that there was no precipitation or that data for the site did not meet preliminary screening criteria for this provisional report.

A list of the approximately 200 sites comprising the total Network and additional data for the sites are available from the NADP/NTN Coordination Office, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523.

Distribution of precipitation-weighted mean pH for all NADP/NTN sites having one or more weekly samples for June 21-July 25, 1993. The East/West dividing line is at the western borders of Minnesota, Iowa, Missouri, Arkansas, and Louisiana.

Range of Precipitation-Weighted Mean pH

Adapted from Monthly and Seasonal Weather Outlook prepared and published by the National Weather Service

NATIONAL WATER CONDITIONS

JULY 1993

Based on reports from the Canadian and U.S. Field offices; completed October 5, 1993

TECHNICAL

Thomas G. Ross, Editor Krishnaveni V. Sarma David V. Maddy

COPY PREPARATION Thomas G. Ross Kristina L. Herzog Paul Kapinos

GRAPHICS

Thomas G. Ross Krishnaveni V. Sarma Kristina L. Herzog Paul Kapinos

The National Water Conditions is published monthly. Subscriptions are free on application to the U.S. Geological Survey, 419 National Center, Reston, VA 22092.

EXPLANATION OF DATA (Revised September 1993)

Cover map shows generalized pattern of streamflow for the month based on provisional data from 186 index gaging stations—18 in Canada, 166 in the United States, and 2 in the Commonwealth of Puerto Rico. Alaska, Hawaii, and Puerto Rico inset maps show streamflow only at the index gaging stations that are located near the point shown by the arrows. Classifications on map are based on comparison of streamflow for the current month at each index station with the flow for the same month in the 30-year reference period, 1961-90. Shorter reference periods are used for one index station in Utah and both of the Puerto Rico index stations. Streamflow data presented herein are those published in the annual series of U.S. Geological Survey reports titled Water Resources Data (State) through the end of the 1991 water year—September 30, 1991. All other data are provisional.

The streamflow ranges map shows where streamflow has persisted in the above- or below-normal range from last month to this month and also where streamflow is in the above- or below-normal range this month after being in a different range last month. Three pie charts show the percent of stations reporting discharges in each flow range for both the conterminous United States and southern Canada, and also the percent of area in each flow range for the conterminous United States and southern Canada. The combination barrline graph shows the monthly percent departure of the total mean from the total median flow (1961-90) and the cumulative monthly departure from median for all reporting stations (excluding seven large river stations indicated by # in the Flow of large rivers table and French Broad River near Newport, Tennessee) in the conterminous United States and southern Canada. Graphs for individual hydrologic basins exclude the same stations.

The comparative data are obtained by ranking the 30 flows for each month of the reference period in order of decreasing magnitude—the highest flow is given a ranking of 1 and the lowest flow is given a ranking of 30. Quartiles (25-percent points) are computed by weighted averaging of the 7th and 8th highest flows (upper quartile), 15th and 16th highest flows (middle quartile or median), and the

23rd and 24th highest flows (lower quartile). The upper and lower quartiles set off the highest and lowest 25 percent of flows, respectively, for the reference period. The median (middle quartile) is the middle value by definition. For the reference period, 50 percent of the flows are greater than the median, 50 percent are less than the median, 50 percent are between the upper and lower quartiles (in the normal range), 25 percent are greater than the upper quartile (above normal), and 25 percent are less than the lower quartile (below normal). Flow for the current month is then classified as: in the above-normal range if it is greater than the upper quartile, in the normal range if it is between the upper and lower quartiles, and in the below-normal range if it is less than the lower quartile. Change in flow from the previous month to the current month is classified as seasonal if the change is in the same direction as the change in the median. If the change is in the opposite direction of the change in the median, the change is classified as contraseasonal. For example: at a particular index station, the January median is greater than the December median; if flow for the current January increased from December (the previous month), the increase is seasonal; if flow for the current January decreased from December, the decrease is

Flood frequency analyses define the relation of flood peak magnitude to probability of occurrence or recurrence interval. Probability of occurrence is the chance that a given flood magnitude will be exceeded in any one year. Recurrence interval is the reciprocal of probability of occurrence and is the average number of years between occurrences. For example, a flood having a probability of occurrence of 0.01 (1 percent) has a recurrence interval of 100 years. Recurrence intervals imply no regularity of occurrence; a 100-year flood might be exceeded in consecutive years or it might not be exceeded in a 100-year period.

Statements about ground-water levels refer to conditions near the end of the month. The water level in each observation well is compared with average level for the end of the month determined from the entire period of record for that well. Changes in ground-water levels, unless described otherwise, are from the end of the previous month to the end of the current month.

Dissolved solids and temperature data are given for four stream-sampling sites that are part of the National Stream Quality Accounting Network (NASQAN). Dissolved solids are minerals dissolved in water and usually consist predominately of silica and ions of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, sulfate, chloride, and nitrate. Dissolved-solids discharge represents the total daily amount of dissolved minerals carried by the stream. Dissolved-solids concentrations are generally higher during periods of low streamflow, but the highest dissolved-solids discharges occur during periods of high streamflow because the total quantities of water, and therefore total load of dissolved minerals, are so much greater than at times of low flow.

FACTORS FOR CONVERTING INCH-POUND UNITS TO

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches	2.54x10 ³ 2.54x10 ⁻³	millimeters (mm) meters (m)
feet	3.048x10 ⁻¹	meters (m)
miles	1.609x103	kilometers (km)
	Area	
square miles	2.590x10°	square kilometers (km²)
	Volume	
acre-feet (acre-feet)	1.233x10 ⁻³	cubic hectometers (hm3)
	1.233×10 ⁻⁴	cubic hectometers (km³)
	Flow	
cubic feet per second (ft³/s)	2.832x10 ⁻¹	cubic meters per second (m³/s

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY 419 NATIONAL CENTER RESTON VA 22092

OFFICAL BUSINESS

Return this sheet to above address, if you do NOT wish to receive this material , or if change of address is needed (indicate change, including ZIP code).

