

Algorísmica

Algorismes per text

Mireia Ribera & Jordi Vitrià

Cerca de *strings*...

Són algorismes crítics en moltes aplicacions importants de la informàtica:

- Editors de text (search, spell, etc.).
- Bioinformàtica.
- Cercadors d'Internet.
- Bases de dades.
- Compressió.
- Antivirus.
- Etc.

Cerca de *strings*...

Considerem el següent problema:

El patró

Tenim un *string* de m caràcters (el que volem trobar) i un *string* de n caràcters, n > m dins el qual buscar.

El text

P: 001011

T: 10010101101001100101111010

P: happy

T: It is never too late to have a happy childhood.

P: GATTCAC

T: ATCGGATATCCGGAAACTGGTAGCGTGTAGGAGGTAGCCTGGAAG

Cerca de strings: la versió ingènua.

En una primera instància, podríem comparar tot el *string* amb cada possible posició, però fàcilment podem millorar-ho...

P: 001011

T: 10010101101001100101111010

Cerca de strings: la versió ingènua.

Algorisme de força bruta:

- 1. Alineem el patró al principi del text.
- 2. Ens movem d'esquerra a dreta, comparant cada caràcter del patró amb el caràcter corresponent del text fins que tots els caràcters fan correspondència o trobem una diferència.
- 3. Mentre hi hagi diferències i no haguem recorregut tot el text, re-alineem una posició més a la dreta i repetim el pas 2.

Cerca de *strings*: Algorisme de força bruta.

```
def BFStringMatching(t,p):
    m=len(p)
    n=len(t)
    for i in range(0,n-m+1):
        j=0
        while j<m and p[j]==t[i+j]: j=j+1
        if j == m: return i
    return -1</pre>
```

Cerca de *strings*: la versió ingènua.

La complexitat de l'algorisme es pot analitzar en tres situacions:

- En moltes ocasions, fem una comparació i movem. Aquest és el millor cas, i la complexitat si per tots els moviments féssim això seria O(n).

 Aquest seria el cas de tenir una patró que comença per una lletra que no apareix al text.
- En d'altres, fem totes les comparacions. Aquest és el **pitjor cas**, i la complexitat si per tots els moviments féssim això seria O(nm).
- Quan parlem de *llenguatge natural*, la complexitat mitja s'acosta més a O(n+m)=O(n).

Altres problemes

La cerca no és l'únic problema interessant:

- Buscar el *substring* més gran en comú entre dos texts.
- Cerca aproximada.
- Etc.

Cerca aproximada de strings.

El **problema** és: donat un patró P[1..m] i un text T[1..n], trobar el *substring* de T amb la **distància d'edició mínima** respecte a P.

Un algorisme basat en la **força bruta** calcularia la distància d'edició de *P* a **tots els** *substrings* de *T*, i llavors escolliria el que té distància mínima.

Cerca aproximada de strings.

El nombre de substrings és
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = O(n^2)$$

Un algorisme basat en la força bruta per fer cerca aproximada de strings tindria una complexitat $O(n^3m)$, atès que (com veurem) el càlcul de la distància d'edició té O(nm).

Cerca de *strings*: Versions avançades.

Una de les formes que tenim per reduir aquesta complexitat és pre-processar l'entrada de l'algorisme per optimitzar el seu funcionament.

Aquesta estratègia s'usa en molts àmbits de l'algorísmica.

Abans de veure com cercar un patró (curt) en un text (llarg), anem a veure com calcular la "distància" d entre dos strings (curts).

• • •

Això es fa amb l'algorisme de Levenshtein.

В.И. Левенштейн (1965). "Двоичные коды с исправлением выпадений, вставок и замещений символов". Доклады Академий Наук СССР**163** (4): 845–8. Appeared in English as: Levenshtein VI (1966). "Binary codes capable of correcting deletions, insertions, and reversals". Soviet Physics Doklady **10**: 707–10.

Aquest algorisme (també anomenat "distància d'edició") calcula el nombre mínim d'operacions d'edició que són necessàries per modificar un string P i obtenir-ne un altre T.

Usualment, les operacions d'edició són:

- inserció (p.e., canviar cot per coat),
- eliminació (p.e., canviar coat per cot), i
- *substitució* (p.e., canviar *coat* per *cost*).

També es podria considerar la *transposició*: canviar *cost* per *cots*.

Per fer-ho, va omplint una matriu *d* de manera que la posició [*m*,*n*] representa la distància d'edició entre el prefix de *m* caràcters d'un *patró* i el prefix de *n* caràcters d'un *text*.

patró	L	E	V	E	N	S	Н	T	E	I	N
text	M	Ε	Ι	L	Ε	N	S	Τ	Ε	Ι	N

d[1][1]=1, $L \rightarrow M$, doncs només és una substitució. d[1][3]=3, $L \rightarrow MEI$, és una substitució i 2 insercions.

Aquests valors són evidents

Com calculem aquests valors?

Suposem que ja tenim una alineació òptima entre els **prefixos** p[0,i-1] i t[0,j-1]. Què podem fer amb p[i] i t[j] i com calculem d[i,j]?

•••	p _{i-1}	p _i	p _{i+1}	•••
•••	t _{j-1}	t_{j}	t _{j+1}	•••

Només podem fer tres coses!

1. Fem que p[i] i t[j] facin correspondència. Si p[i]=t[j] llavors d[i,j]=d[i-1,j-1]. Sinó, d[i,j]=d[i-1,j-1]+1

2. Decidim que hi ha un forat al patró, i per tant d[i,j]=d[i-1,j]+1

3. Decidim que hi ha un forat al text, i per tant d[i,j]=d[i,j-1]+1

Observació:

$$d[i,j] = 0 \text{ si són iguals, 1 si hi ha substitució}$$

$$min \{d[i-1,j] + 1, d[i,j-1] + 1, d[i-1,j-1] + cost\}$$

Això és podria resoldre amb una crida recursiva, atès que nosaltres volem d[m,n] i coneixem d[0,:] i d[:,0], però la crida recursiva té massa cost computacional!

Podem seguir la mateixa estratègia que vam fer servir per la seqüència de Fibonacci.

minim
$$(d[i-1,j] + 1, d[i,j-1] + 1, d[i-1,j-1] + cost)$$

		G	U	М	В	0
	0	1	2	3	4	5
G	1					
Α	2					
М	3					
В	4					
0	5					
L	6					

		G	U	M	В	0
	0	1	2	3	4	5
G	1	0				
Α	2	1				
M	3	2				
В	4	3				
0	5	4				
L	6	5				

		G	U	M	В	0
	0	1	2	3	4	5
G	1	0	1			
Α	2	1	1			
М	3	2	2			
В	4	3	3			
0	5	4	4			
L	6	5	5			

		G	U	M	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	
Α	2	1	1	2	3	
М	3	2	2	1	2	
В	4	3	3	2	1	
0	5	4	4	3	2	
L	6	5	5	4	3	

		G	U	M	В	0
	0	1	2	3	4	5
G	1	0	1	2		
Α	2	1	1	2		
М	3	2	2	1		
В	4	3	3	2		
0	5	4	4	3		
L	6	5	5	4		

		G	U	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
М	3	2	2	1	2	3
В	4	3	3	2	1	2
0	5	4	4	3	2	1
L	6	5	5	4	3	2

La matriu es pot omplir sequencialment:

Això té una complexitat O(mn) = calcular tots els elements de la matriu.

El nombre que queda a la cantonada de baix a la dreta de la matriu és la distància de Levenshtein, o d'edició, entre les dues paraules.

Si volem saber les operacions d'edició efectuades, hem de buscar el camí mínim entre els extrems de la matriu o <u>simplement guardar a cada pas la decisió presa respecte a l'edició</u>.

		m	е	İ		е	n	S	t	е	i	n
	0	1	2	თ	4	5	6	7	8	o,	10	11
	1	1	2	3	3	4	5	6	7	8	9	10
е	2	2	1	2	3	3	4	5	6	7	8	9
٧	3	3	2	2	3	4	4	5	6	7	8	9
е	4	4	3	3	3	3	4	5	6	6	7	8
n	5	5	4	4	4	4	3	4	5	6	7	7
S	6	6	5	5	5	5	4	3	4	5	6	7
h	7	7	0)	6	9	9	5	4	4	5	6	7
t	8	∞	7	7	7	7	6	5	4	5	6	7
е	9	0	∞	∞	∞	7	7	6	5	4	5	6
i	10	10	9	8	9	8	8	7	6	5	4	5
n	11	11	10	9	9	9	8	8	7	6	5	4

Pot haver-hi diversos possibles passos de cost mínim:

patró

text

L	E		V	E	N	S	Н	T	E	I	N
S	=	_	s	=	=	=	+	=	=	=	=
M	E	I	L	E	N	S		T	E	I	N

patró

text

L	E	V		E	N	S	Н	T	E	I	N
s	=	s	-	=	=	=	+	=	=	=	=
M	E	I	L	E	N	S		T	E	I	N

		k	i	t	t	е	n
	0	1	2	3	4	5	6
S	1	1	2	3	4	5	6
i	2	2	1	2	3	4	5
t	3	3	2	1	2	3	4
t	4	4	3	2	1	2	3
i	5	5	4	3	2	2	3
n	6	6	5	4	3	3	2
g	7	7	6	5	4	4	3

```
def levenshtein distance(first, second):
        if len(first) > len(second):
               first, second = second, first
        if len(second) == 0:
               return len(first)
        first length = len(first) + 1
        second length = len(second) + 1
        distance matrix = [[0] * second length for x in
        range(first length)]
        for i in range(first length): distance matrix[i][0] = i
        for j in range(second length): distance matrix[0][j] = j
        for i in xrange(1, first length):
               for j in range(1, second length):
                       deletion = distance matrix[i-1][j] + 1
                       insertion = distance matrix[i][j-1] + 1
                       substitution = distance matrix[i-1][j-1]
                       if first[i-1] != second[j-1]:
                              substitution += 1
                       distance matrix[i][j] = min(insertion,
                              deletion, substitution)
        return distance matrix[first length-1][second length-1]
```

```
def levenshtein distance(first, second):
      if len(first) > len(second):
             first, second = second, first
      if len(second) == 0:
             return len(first)
      first length = len(first) + 1
      second length = len(second) + 1
      distance matrix = [[0] * second length for x
      in range(first length)]
               >>> a = [[0] * 3 for x in range (3)]
                >>> a
                [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
```

```
for i in range(first length): distance matrix[i][0] = i
for j in range(second length): distance matrix[0][j] = j
for i in range(1, first length):
      for j in range(1, second length):
             deletion = distance matrix[i-1][j] + 1
             insertion = distance matrix[i][j-1] + 1
             substitution = distance matrix[i-1][j-1]
             if first[i-1] != second[j-1]: substitution += 1
             distance matrix[i][j] = min(insertion,
                    deletion, substitution)
return distance matrix[first length-1][second length-1]
```

Cerca aproximada de strings.

Recordem que el nostre problema era:

Donat un patró P[1..m] i un text T[1..n], trobar el substring de T amb la distància d'edició mínima respecte a P.

Cerca aproximada de strings.

Aquest càlcul es pot fer amb l'algorisme de Levenshtein.

Només cal adonar-se que si omplim la primera fila amb zeros (=considerar que podem inserir tants espais en blanc al davant del patró com sigui necessari) podem trobar els substrings de distància mímina!

Si busquem totes les solucions (camins) amb dist=<1, només cal mirar l'última fila. v

		-1	0	1	2	3	4	5	6	7	8	9	10	11
			C	A	G	A	T	¥	¥	G	¥	G	¥	¥
-1								0			0	0	0	0
0	G	1	1	1	0	1	1	1	1	0	1	0	1	1
1	¥	2	2	1	1	0	1	1	1	1	0	1	0	1
2	T	3	3	2	2	1	0	1	2	2	1	1	1	1
3	Ā	4	4	3	3	2	1	0	1	2	2	2	1	1
4	¥	5	5	4	4	3	2	1	0	1	2	3	2	1

(G A T A A G A G A A) (G A T A A G A G A A)

Aquest valor indica que aquí acaba un string amb distància 0

Aquest valor indica que aquí acaba un string amb distància 1. Si volem trobar el seu principi hem de fer el camí invers a la matriu!

Cerca aproximada de strings.

El càlcul de la matriu té una complexitat de O(mn), mentre que la cerca del camí marxa enrere té O(n+m).

T: la cassa mes gran que mai ha existit

P: casa

Trobem tres respostes a distància 1:

cas

cass

cassa