Tables

Part I

	Truth-Tables						
P	Q	$P \wedge Q$	$P \lor Q$	$\neg P$	$P \Rightarrow Q$	$P \Leftrightarrow Q$	
0	0	0	0	1	1	1	
0	1	0	1		1	0	
1	0	0	1	0	0	0	
1	1	1	1		1	1	

Equivalences for connectives				
Commutativity: $P \wedge Q \stackrel{val}{=} Q \wedge P,$ $P \vee Q \stackrel{val}{=} Q \vee P,$ $P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$ Idempotence: $P \wedge P \stackrel{val}{=} P,$ $P \vee P \stackrel{val}{=} P$	Associativity: $(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R),$ $(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R),$ $(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$ Double Negation: $\neg \neg P \stackrel{val}{=} P$			
Inversion: $\neg \text{True} \stackrel{val}{=\!=\!=} \text{False},$ $\neg \text{False} \stackrel{val}{=\!=\!=} \text{True}$	$\begin{array}{c} \textbf{True/False-elimination:} \\ P \wedge \texttt{True} \overset{val}{=\!\!\!=\!\!\!=} P, \\ P \wedge \texttt{False} \overset{val}{=\!\!\!=\!\!\!=} \texttt{False,} \\ P \vee \texttt{True} \overset{val}{=\!\!\!=\!\!\!=} \texttt{True,} \\ P \vee \texttt{False} \overset{val}{=\!\!\!=\!\!\!=} P \end{array}$			
Negation: $\neg P \stackrel{val}{=\!\!\!=\!\!\!=} P \Rightarrow \texttt{False}$	Contradiction: $P \land \neg P \stackrel{val}{=} \text{False}$ Excluded Middle: $P \lor \neg P \stackrel{val}{=} \text{True}$			
$\begin{array}{c} \textbf{Distributivity:} \\ P \wedge (Q \vee R) \stackrel{val}{=} (P \wedge Q) \vee (P \wedge R), \\ P \vee (Q \wedge R) \stackrel{val}{=} (P \vee Q) \wedge (P \vee R) \end{array}$	De Morgan: $\neg (P \land Q) \stackrel{val}{=} \neg P \lor \neg Q, \\ \neg (P \lor Q) \stackrel{val}{=} \neg P \land \neg Q$			
Implication: $P \Rightarrow Q \stackrel{val}{=\!\!\!=} \neg P \lor Q$	Contraposition: $P \Rightarrow Q \stackrel{val}{=\!\!\!=} \neg Q \Rightarrow \neg P$			
$\begin{array}{c} \textbf{Bi-implication:} \\ P \Leftrightarrow Q \ \stackrel{val}{=\!\!\!=} \ (P \Rightarrow Q) \land (Q \Rightarrow P) \end{array}$	Self-equivalence: $P \Leftrightarrow P \stackrel{val}{=\!\!\!=\!\!\!=} \text{True}$			

Weakening rules					
	Extremes: False $\stackrel{val}{=} P$,				
Monotonicity: If $P \stackrel{val}{\models} Q$, then $P \wedge R \stackrel{val}{\models} Q \wedge R$, If $P \stackrel{val}{\models} Q$, then $P \vee R \stackrel{val}{\models} Q \vee R$	$P \not \models^{val}$ True				

Equivalences for quantifiers Bound Variable: $\forall_x [P:Q] \ \stackrel{val}{=\!\!\!=\!\!\!=} \ \forall_y [P[y \ \text{for} \ x]:Q[y \ \text{for} \ x]],$ $\exists_x [P:Q] \stackrel{val}{=} \exists_y [P[y \text{ for } x]: Q[y \text{ for } x]]$ Domain Splitting: $\forall_x [P \vee Q : R] \stackrel{val}{=\!\!\!=} \forall_x [P : R] \wedge \forall_x [Q : R],$ $\exists_x [P \lor Q : R] \stackrel{val}{=} \exists_x [P : R] \lor \exists_x [Q : R]$ One-element: Empty Domain: $\forall_x [x=n:Q] \stackrel{val}{=\!\!\!=} Q[n \text{ for } x],$ $\forall_x[\mathtt{False}:Q] \stackrel{val}{=\!\!\!=\!\!\!=} \mathtt{True},$ $\exists_x[\mathtt{False}:Q] \stackrel{val}{=\!\!\!=\!\!\!=} \mathtt{False}$ $\exists_x [x = n : Q] \stackrel{val}{=\!\!\!=} Q[n \text{ for } x]$ Domain Weakening: De Morgan: $\neg \forall_x [P:Q] \xrightarrow{val} \exists_x [P:\neg Q],$ $\neg \exists_x [P:Q] \xrightarrow{val} \forall_x [P:\neg Q]$ $\forall_x [P \land Q : R] \stackrel{val}{=} \forall_x [P : Q \Rightarrow R],$ $\exists_x [P \land Q : R] \stackrel{val}{=} \exists_x [P : Q \land R]$

Part II

∧-intro	oduction:	∧-elimination:			
	$ P \\ \vdots \\ Q \\ \vdots \\ \{ \land \text{-intro on } (k) \text{ and } (l) \colon \} \\ P \land Q $		$\ \ $ $P \wedge Q$ $\ \ $ $\{ \land \text{-elim on } (k) \colon \}$ $P \text{ resp. } Q$		
⇒-intr	oduction:	⇒-elimination:			
(k) (m-1) (m	:	(k) (l) (m)	$ $ $P \Rightarrow Q$ $ $ P $ $ $\{ \Rightarrow \text{-elim on } (k) \text{ and } (l) \colon \}$ Q		

Derivation rules for \neg , False and $\neg\neg$ \neg -introduction: \neg -elimination: * { Assume: } $\neg P$ (k) (k) $\| \|$ (l)(m-1)False { ¬-intro on $\{ \neg \text{-elim on }$ (k) and $(m-1): \}$ (k) and (l): $\neg P$ (m)False (m)False-introduction: * False-elimination: (k) False (*k*) (l) $\{ \text{ False-elim on } (k) : \}$ (m){ False-intro on (k) and (l): False (m) $\neg \neg$ -introduction: $\neg \neg$ -elimination: (k) (*k*) $\{ \neg \neg -intro on (k): \}$ $\{ \neg \neg \text{-elim on } (k) : \}$ $\neg \neg P$ (m)(m)

 $^{^*}$ Note: ¬-elim and False-intro are similar, but differ in use. See Section 14.3, I.

Derivation rules for \lor and \Leftrightarrow

\lor -introduction:

$$\{ \text{ Assume: } \}$$

$$(k) \qquad \boxed{\neg P} \\ \vdots \\ (m-1) \qquad Q \\ \{ \forall \text{-intro on } \\ (k) \text{ and } (m-1) : \}$$

$$(m) \qquad P \lor Q$$

$$\{ \text{ Assume: } \}$$

$$(k) \qquad \boxed{\neg Q}$$

$$\vdots \qquad \qquad P$$

$$\{ \forall \text{-intro on } \}$$

$$\begin{array}{cc} & (k) \text{ and } (m-1) \colon \} \\ (m) & P \vee Q \end{array}$$

∨-elimination:

$$(k) \qquad P \vee Q$$

$$\parallel \parallel$$

$$(l) \qquad \neg P$$

$$\parallel \parallel$$

$$\{ \ \vee \text{-elim on }$$

$$(m)$$
 Q \cdots resp. \cdots

(k) and (l):

$$(k) \qquad P \lor Q$$

$$\parallel \parallel$$

(l)
$$\neg Q$$

$$\parallel \parallel$$

$$\{ \lor \text{-elim on } (k) \text{ and } (l) \colon \}$$

(m) P

\Leftrightarrow -introduction:

 $(k) P \Rightarrow Q$

:

(l) $Q \Rightarrow P$ \vdots { \Leftrightarrow -intro on (k) and (l): }

(m) $P \Leftrightarrow Q$

\Leftrightarrow -elimination:

$$(k) \qquad P \Leftrightarrow Q$$

$$\parallel \parallel$$

$$\{ \Leftrightarrow \text{-elim on } (k) \colon \}$$

$$(m) \qquad P \Rightarrow Q \text{ resp. } Q \Rightarrow P$$

Proof by contradiction

```
 \left\{ \begin{array}{ll} \text{Assume:} \, \\ (k) & \overline{\neg P} \\ & \vdots \\ (m-1) & \text{False} \\ & \left\{ \begin{array}{ll} \neg\text{-intro on } (k) \text{ and } (m-1) \,, \\ & \text{followed by } \neg \neg \text{-elim:} \, \\ \end{array} \right\} \\ (m) & P \\ \end{array}
```

Proof by case distinction

Derivation rules for \forall and \exists

\forall -introduction:

 \exists -introduction:

$$\begin{array}{cccc} & \{ \text{ Assume: } \} \\ (k) & & \underline{\text{var } x; \ P(x)} \\ & \vdots \\ (m-1) & & Q(x) \\ & \{ \ \forall\text{-intro on} \\ & (k) \text{ and } (m-1)\text{: } \} \\ (m) & & \forall_x [P(x):Q(x)] \end{array}$$

\forall -elimination:

(k)
$$\forall_x [P(x):Q(x)]$$

$$\parallel \parallel$$
(l)
$$P(a)$$

$$\parallel \parallel$$

$$\{ \forall \text{-elim on } (k) \text{ and } (l) \colon \}$$
(m)
$$Q(a)$$
(a must be an object being

∃-elimination:

$$(k) \quad \exists_x [P(x) : Q(x)]$$

'available' in line (l))

 $\forall_x [P(x): \neg Q(x)]$ (l){∃-intro on (k) and (l): }

(m)False elim

Alternative derivation rules for \exists

\exists *-introduction:

:

- (k) P(a)
- $(l) \qquad Q(a)$
- $\{ \exists^*\text{-intro on} (k) \text{ and } (l) \colon \}$
- (m) $\exists_x [P(x):Q(x)]$

(a must be an object being 'available' in lines (k) and (l))

\exists *-elimination:

$$\exists_x [P(x):Q(x)]$$

 $\{ \exists^* \text{-elim on } (k) \colon \}$

(m) Pick an x with P(x) and Q(x).

(x in line (m) must be 'new')

Part III

Sets				
$A \subseteq B \stackrel{\text{def}}{=} \forall_x [x \in A : x \in B]$	$A = B \stackrel{\text{def}}{=} A \subseteq B \land B \subseteq A$			
$A \cap B \stackrel{\text{def}}{=} \{x \in \mathbf{U} x \in A \land x \in B\}$	$A \cup B \stackrel{\text{def}}{=} \{x \in \mathbf{U} x \in A \lor x \in B\}$			
$A^{\text{c}} \stackrel{\text{def}}{=} \{x \in \mathbf{U} \neg (x \in A)\}$	$A \backslash B \stackrel{\text{def}}{=} \{ x \in \mathbf{U} x \in A \land \neg (x \in B) \}$			
$\mathbf{U} = \{ \ x \in \mathbf{U} \mid \mathtt{True} \}$	$\emptyset = \{ \ x \in \mathbf{U} \mid \mathtt{False} \}$			
Property of \in : $t \in \{x \in \mathbf{D} P(x)\} \stackrel{val}{=} t \in \mathbf{D} \land \mathbf{D}$	P(t)			
Property of \subseteq : $A \subseteq B \land t \in A \stackrel{val}{\models} t \in B$	Properties of =: $A = B \xrightarrow{val} \forall_x [x \in A \Leftrightarrow x \in B]$ $A = B \land t \in A \xrightarrow{val} t \in B$ $A = B \land t \in B \xrightarrow{val} t \in A$			
Property of \cap : $t \in A \cap B \stackrel{val}{=} t \in A \land t \in B$	Property of \cup : $t \in A \cup B \stackrel{val}{=} t \in A \lor t \in B$			
Property of ${}^{\text{\tiny C}}$: $t \in A^{\text{\tiny C}} \stackrel{val}{=} \neg (t \in A)$	Property of \: $t \in A \setminus B \stackrel{val}{=} t \in A \land \neg (t \in B)$			
$egin{aligned} \mathbf{Properties} & \mathbf{of} \ \mathbf{U:} \ t \in \mathbf{U} & \stackrel{val}{=\!=\!=} \ True \ A = \mathbf{U} & \stackrel{val}{=\!=\!=} \ \forall_x [x \in A : True] \end{aligned}$	$ \begin{array}{ccc} \textbf{Properties of } \emptyset : \\ t \in \emptyset & \stackrel{val}{=} & \texttt{False} \\ A = \emptyset & \stackrel{val}{=} & \forall_x [x \in A : \texttt{False}] \end{array} $			
Property of \mathcal{P} : $C \in \mathcal{P}(A) \stackrel{val}{=} C \subseteq A$	Properties of \times : $(a,b) \in A \times B \stackrel{val}{=}$ $a \in A \land b \in B$ $(a,b) = (a',b') \stackrel{val}{=} a = a' \land b = b'$			

Mappings

Property of 'mapping' $F: A \rightarrow B$: $\forall_x [x \in A: \exists_y^1 [y \in B: F(x) = y]]$

Image and source

Let $F: A \to B$ be a mapping, $A' \subseteq A$ and $B' \subseteq B$

the image of A': $F(A') = \{b \in B | \exists_x [x \in A' : F(x) = b] \}$ the source of B': $F^{\leftarrow}(B') = \{a \in A | F(a) \in B'\}$

Properties of 'image': $x \in A' \stackrel{val}{=} F(x) \in F(A')$ $y \in F(A') \stackrel{val}{=}$ $\exists_x [x \in A' : F(x) = y]$

Property of 'source': $x \in F^{\leftarrow}(B') \stackrel{val}{=} F(x) \in B'$

Special mappings

Property of 'surjection' for $F:A\to B$: $\forall_y[y\in B:\ \exists_x[x\in A:F(x)=y]]$

Property of 'injection' for $F:A \rightarrow B$: $\forall_{x_1,x_2}[x_1,x_2 \in A: (F(x_1)=F(x_2)) \Rightarrow (x_1=x_2)]$

Property of 'bijection' for $F: A \to B$: $\forall_y [y \in B: \exists_x^1 [x \in A: F(x) = y]]$

Property of 'inverse function' $F^{-1}: B \to A$ for bijection $F: A \to B$: $F(x) = y \ \stackrel{val}{=} \ F^{-1}(y) = x$

Property of 'composite mapping' $G \circ F : A \to C$ for $F : A \to B$ and $G : B \to C$: $G \circ F(x) = z \stackrel{val}{=} G(F(x)) = z$

Standard derivation rules for induction

Induction:

:

(k) A(0)

:

 $(l) \qquad \forall_i [i \in \mathbb{N} :$

 $A(i) \Rightarrow A(i\!+\!1)]$ { Induction on

(k) and (l): }

 $(m) \quad \forall_n [n \in \mathbb{N} : A(n)]$

Induction from $a \in \mathbb{Z}$:

:

(k) A(a)

;

(l) $\forall_i [i \in \mathbb{Z} \land i \geq a :$

 $A(i) \Rightarrow A(i+1)]$

{ Induction on (k) and (l): }

(m) $\forall_n [n \in \mathbb{Z} \land n \ge a : A(n)]$

${\bf Strong\ induction:}$

:

(l) $\forall_k [k \in \mathbb{N} : \\ \forall_j [j \in \mathbb{N} \land j < k : A(j)]$

 $\Rightarrow A(k)$]

{ Strong induction on

(l): }

 $(m) \quad \forall_n [n \in \mathbb{N} : A(n)]$

Strong induction from $a \in \mathbb{Z}$:

:

(l) $\forall_k [k \in \mathbb{Z} \land k \ge a :$

 $\forall_j [j \in \mathbb{Z} \land a \leq j < k : A(j)]$ $\Rightarrow A(k)]$

{ Strong induction on

(l):

(m) $\forall_n [n \in \mathbb{Z} \land n \ge a : A(n)]$

Special relations

R on A is reflexive if $\forall_x [x \in A : xRx]$

R on A is irreflexive if $\forall_x [x \in A : \neg(xRx)]$

R on A is symmetric if $\forall_{x,y}[x,y \in A : xRy \Rightarrow yRx]$

R on A is antisymmetric if $\forall_{x,y}[x,y\in A:(xRy\wedge yRx)\Rightarrow x=y]$ R on A is strictly antisymmetric if $\forall_{x,y}[x,y\in A:\neg(xRy\wedge yRx)]$

R on A is transitive if $\forall_{x,y,z}[x,y,z\in A:(xRy\wedge yRz)\Rightarrow xRz]$

R on A is linear if $\forall_{x,y}[x,y \in A : xRy \lor yRx \lor x = y]$

Equivalence relation

R on A is an equivalence relation if R is reflexive and symmetric and transitive

Orderings

R on A is a quasi-ordering if R is reflexive and transitive

R on A is a reflexive ordering if

R is reflexive, antisymmetric and transitive

R on A is an irreflexive ordering if

R is irreflexive, strictly antisymmetric and transitive

R on A is a reflexive linear ordering if

R is a reflexive ordering which is also linear

R on A is an irreflexive linear ordering if

R is an irreflexive ordering which is also linear

Let $\langle A, R_1 \rangle$ and $\langle B, R_2 \rangle$ be irreflexive orderings.

The corresponding lexicographic ordering $\langle A \times B, R_3 \rangle$ is defined by: $(x,y)R_3(x',y')$ if $xR_1x' \lor (x = x' \land yR_2y')$

Special relations and orderings: overview						
A is a set , R is a relation on A						
	equi- valence	quasi- ordering	(partial) ordering		linear ordering	
R on A is:	relation		refl.	irrefl.	refl.	irrefl.
reflexive	\checkmark	$\sqrt{}$	$\sqrt{}$		\checkmark	
irreflexive				$\sqrt{}$		$\sqrt{}$
symmetric	\checkmark					
antisymmetric			$\sqrt{}$		\checkmark	
str. antisymm.				$\sqrt{}$		$\sqrt{}$
transitive	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$
linear						
examples:	= <u>val</u>	\Rightarrow		С	\leq , \geq	<,>

Extreme elements

Let $\langle A, R \rangle$ be a **reflexive ordering** and $A' \subseteq A$

 $m \in A'$ is a maximal element of A' if $\forall_x [x \in A' : mRx \Rightarrow x = m]$ $m \in A'$ is a minimal element of A' if $\forall_x [x \in A' : xRm \Rightarrow x = m]$

 $m \in A'$ is the maximum of A' if $\forall_x [x \in A' : xRm]$ $m \in A'$ is the minimum of A' if $\forall_x [x \in A' : mRx]$

Let $\langle A, S \rangle$ be an **irreflexive ordering** and $A' \subseteq A$

 $m \in A'$ is a maximal element of A' if $\forall_x [x \in A' : \neg (mSx)]$ $m \in A'$ is a minimal element of A' if $\forall_x [x \in A' : \neg (xSm)]$

 $m \in A'$ is the maximum of A' if $\forall_x [x \in A' \land x \neq m : xSm]$ $m \in A'$ is the minimum of A' if $\forall_x [x \in A' \land x \neq m : mSx]$

Upper and lower bounds

Let $\langle A, R \rangle$ be a **reflexive ordering** and $A' \subseteq A$

 $b \in A$ is an upper bound of A' if $\forall_x [x \in A' : xRb]$ $a \in A$ is a lower bound of A' if $\forall_x [x \in A' : aRx]$