Question 1:

b.

```
given lists lst1 and lst2 and a continuation procedure cont, we will prove using induction on length of the first list - (len(lst1)) and using applicative-eval (a - e) operation semantics that
```

Step: we prove that for k+1, len(lst1') = k+1 that

$$a - e[(cont (append lst1'lst2))] =$$

$$> a - e[(cont (cons (car lst1') (append (cdr lst1') lst2)))] *$$

(cont (append lst1 lst2)) = (append lst1 lst2 cont).

Len(lst1') = k+1, len(cdr lst1') = k, because we take the list without the first element.

From using the induction hypothesis:

$$a - e[(append\$ (cdr lst1')lst2) (lambda (res) (cont (cons((car lst1') res))))]$$

$$= a - e[(lambda (res) (cont (cons((car lst1') res)))$$

$$(append(cdr lst1') lst2))]$$

$$=> a - e[(cont (cons (car lst1') (append (cdr lst1') lst2)))] **$$
From * and ** we prove that
$$(cont (append lst1'lst2)) = (append\$ lst1'lst2 cont).$$

Question 3:

3.1

1.
$$unify[t(s(s), G, s, p, t(K), s), t(s(G), G, s, p, t(K), U)]$$

Initial:

1. Substitution =
$$\{\}$$
, Equation = $\{t(s(s), G, s, p, t(K), s) = t(s(G), G, s, p, t(K), U)\}$

We choose an equation: t(s(s), G, s, p, t(K), s) = t(s(G), G, s, p, t(K), U)

Both have the same number of arguments and predicate, we divide them in their small equations.

2. Substitution =
$$\{\}$$
, Equation = $\{s(s) = s(G), s = U\}$

We choose an equation: s(s) = s(G)

Both have the same number of arguments and predicate, we divide them in their small equations.

We choose an equation: s=G

We don't have compound expression so add to substitution:

$$\{\} \circ \{s = G\} = \{s = G\}$$

4. Substitution = {}, Equation = {s = U}

We choose an equation: s=U

We don't have compound expression so add to substitution:

$${s = G} \circ {s = U} = {s = G, s = U}$$

In the end we get Substitution : $\{s = G, s = U\}$.

2. unify[g(l, M, g, G, U, g, v(M)), g(l, v(U), g, v(M), v(G), g, v(M))]

Initial:

We choose an equation: t(s(s), G, s, p, t(K), s) = t(s(G), G, s, p, t(K), U)

Both have the same number of arguments and predicate, we divide them in their small equations.

We choose an equation: M=v(U)

We don't have compound expression so add to substitution

$$\{\} \circ \{M = v(U)\} = \{M = v(U)\}\$$

3. Substitution = $\{M = v(U)\}$, Equation = $\{G=v(M), U=v(G)\}$

We choose an equation: G=v(M),

We don't have compound expression so add to substitution:

$${M = v(U)} \circ {G = v(M)} = {M = v(U), G = v(v(U))}$$

4. Substitution =
$$\{M = v(U), G = v(v(U))\}$$
, Equation = $\{U=v(G)\}$

We choose an equation: U=v(G)

We don't have compound expression so add to substitution:

$$U = (v(G)) = v(v(v(U)))! = U$$

We get failure when we perform unification on wanted equation.

3. unify[m(M, N), n(M, N)]

Initial:

1. Substitution = {}, Equation = {m(M, N) = n(M, N)}

We choose an equation: m(M,N) = n(M,N)

We have different predicates m != n so we get failure.

4. unify[p([v | [V | VV]]), p([[v | V] | VV])]

Initial:

1. Substitution = {}, Equation = { p([v | [V | VV]]) = p([[v | V] | VV])}

We choose an equation: p([v | [V | VV]]) = p([[v | V] | VV])

Both have the same number of arguments and predicate, we divide them in their small equations.

2. Substitution = {}, Equation = $\{[v \mid [V \mid VV]] = [[v \mid V] \mid VV]\}$

We choose an equation: [v | [V | VV]] = [[v | V] | VV]

Both have the same number of arguments and predicate, we divide them in their small equations.

3. Substitution = $\{\}$, Equation = $v = [v \mid V], [V \mid VV] = VV$

We choose an equation: $v = [v \mid V]$,

 $v = [v \mid V]$, because v does exist in both sides of the equation so we get failure.

5. unify[g([T]), g(T)]

Initial:

1. Substitution = {}, Equation = {g([T]) = g(T)}

We choose an equation: g([T]) = g(T)

Both have the same number of arguments and predicate, we divide them in their small equations.

2. Substitution = $\{\}$, Equation = $\{[T] = T\}$

We choose an equation: [T] = T

[T] != T, because T does exist in both sides of the equation so we get failure.

	evol), times (X, s(s(zero)),. _%12 {y=	S(x_) ((2_):s(z_n)
% 11 { X = 2 cro, s(2 cro) = X_1		
le (zero, X.1), times (X,s(s	(2 mg) V) (e (1, 5(2 evo)), til	/ \
	%(2 v	Sail
Sail	le/r zero tiv	cs(S(X2), S(s(Zevo)),))
%f(\begin{align*}		
X=200, 8=200.}	% M	fail
	% M {X=Zero, 2=Zero X=X2=	((((
natural-unber(s(s(2000)))	tincs(s(zero),sls(z	2
trac		(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
{x=100, x=2 ==}	5 5 7 2 5 1 V 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Fai)
	{ 5(12):5(tero), 1/2=5(5(tero)), 22=1/3	
	times (zero, s(stero)), XY,), pl	45 (XY, , 5(5(Zeva)), Y)
	1/of 1 { X 1/2 = tero}	Fail
natural_au	mber(sis(zer)), plas(zero, sis(zero	,
	, ,	
5(9	= S(s(tivo)), (1
	15 (zero), 2m)	
	1	
3/3 P2 { s(3(10): s(1/2), 25 = s(24)}	fail	

