Symulacje Komputerowe

Raport: 1

Temat sprawozdania	
Wykonawca:	
Imię i Nazwisko, nr indeksu	Kacper Budnik, 262286 Szymon Malec, 262276
Wydział	Wydział matematyki, W13
Termin zajęć:	Wtorek, 15 ¹⁵
Numer grupy ćwiczeniowej	T00-70d
Data oddanie sprawozdania:	22 kwietnia 2022
Ocena końcowa	

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

- 1. Wstęp Koniec
- 2. Liniowy generator kongruentny Kiedyś
- 3. Metoda odwrotnej dystrybuanty Malec
 - 3.1. Teoria
 - 3.2. Algorytm
 - 3.3. Przykład
- 4. Metoda akceptacji i odrzucenia^[1] Budnik
 - 4.1. **Opis**

Metoda akceptacji i odrzucenia służy do generowania zmiennej losowej **X** przy użyciu innych zmiennych. By móc wykorzystać tą metodę muszą być spełnione:

- Potrafimy efektywnie generować inną zmienną losową Y
- Zmienne X oraz Y muszą być skupione na tym samym zbiorze
- Potrafimy wyznaczyć stałą c taką że $\frac{\mathbb{P}(X=i)}{\mathbb{P}(Y=i)} \le c$ dla każdego i

Jeśli są spełnione powyższe założenia możemy użyć poniższego algorytmu do generowania zmiennej \mathbf{X} .

Algorytm

- 1. Generuj jedną realizację Y
- 2. Generuj U~U(0,1), **U ⊥⊥ Y**
- 3. Jeśli $\mathbf{U} \leqslant \frac{p_Y}{cq_Y}$ zwróć **X=Y**, w przeciwnym wróć do 1.

Prawdopodobieństwo że zmienna zostanie zaakceptowana wynosi

$$\mathbb{P}(\text{'wartość zaakceptowana'}) = \frac{1}{c}$$

zatem by algorytm był wydajny stała c powinna być jak najmniejsza. Średnia liczba powtórzeń algorytmu wynosi c. **To było dyskretne, jeszcze potrzebne ciągłe**

- 4.2. Przykład
- 5. Metoda splotowa Malec
- 6. Metoda kompozycji Malec
- 7. Metoda Boxa-Mullera Budnik
- 8. Metoda biegunowa Budink
- 9. Zakończenie Początek

Bibliografia

[1] https://youtu.be/NFmbgbyj5M0?t=1323