Heritability of subcortical volumes in the adolescent brain

Table of contents I

Subcortical heritability through lifetime

Difficulties in extending timeline

Variance component models to estimate heritability

Multiple subcortical volumes highly heritable in adolescence

Toolbox

Subcortical heritability through lifetime

Subcortical volumes associated with psychological disorders

- Major depressive disorder hippocampus, putamen, caudate nucleus¹
- Schizophrenia anterior cingulate, hippocampus/amygdala, thalamus, insula²
- Anxiety amygdala, insula, anterior cingulate cortex³

R

Subcortical volumes are heritable

- ► In young adults and adults⁴
- ► Heritability of head size changes through lifespan⁵

Figure 2: Heritability across brain volumes, Red means highly heritable

Extending the trajectory

- ▶ Regional heritability varies through lifetime in adults⁴
- Want to extend their scale to younger years
- Q: Are regional volumes heritabile in adolescents (9-10 years old)?

B

Difficulties in extending timeline

Difficult to estimate since the largest dataset is multiple sites

- ► Adolescent Brain Cognitive Development study (ABCD)
- ► Taken over 22 sites
- ► Confounding with scanner and site effects

Figure 4: Map of ABCD sites

Variance component models to estimate heritability

Linear model explaining genetic influence

$$Y = X_g \beta_g + X_d \beta_d + \epsilon$$

- $ightharpoonup X_d$ is demographics (i.e. age, sex, etc.)
- X_g is $(\#subjects \times \#SNPs)$ genetic data (#SNPs >> #subjects)

Variance component models for heritability

- Assume SNPs $\beta_g \sim N(0, \sigma_g^2 (2f(1-f))^{-1}/m)$
- Genetic relatedness matrix (GRM) is genetic correlation between individuals ($GRM = X_q^{stand} X_q^{stand,T} / \#SNPs$)
- $ightharpoonup PC_i$ is the jth pc of the GRM
- Then the model reduces to

$$Y = X_d\beta_d + \sum_{i=1}^k \lambda_i PC_i + \epsilon$$

$$Var(\epsilon) \sim \sigma_g^2 GRM + \sigma_e^2 I + \sum_{i=1}^k \delta_i PC_i PC_i'$$

AdjHE extension accounts for site effects in second moment

- Estimate σ_g^2, σ_e^2 via Restricted Maximum Likielihood (REML) or method of moments (MOM)
- Previously, created closed form solution to MOM (AdjHE)
- Next, control for site effects into MOM
- Phenotypes measured over multiple sites/scanners but same protocol assume only mean affected
- $\triangleright X_s$ site mebership matrix

$$\begin{split} EY &= X_d\beta_d + X_S\beta_S + \sum \lambda_i PC_i \\ Var(Y) &= \sigma_g^2 GRM + \sum \delta_i PC_i PC_i' + \sigma_e^2 I \end{split}$$

AdjHE extension accounts for site effects in second moment

- lacktriangle Many sites leads to estimation of high dim eta_S
- First k PCs of GRM correlate to site membership
- \blacktriangleright Additionally assume site effect iid with variance σ_S^2

$$EY = X_d \beta_d + \sum_i \lambda_i PC_i$$

$$Var(Y) = \sigma_g^2 GRM + \sigma_S^2 S + \sum_i \delta_i PC_i PC_i' + \sigma_e^2 I$$

- ► Heritability: genetic influence (σ_a^2) vs environment (σ_e^2)
- Closed form OLS solution on 2nd moment

Outperforms existing methods adjusting for site effects

- Other estimators necessitate site indep of genetics
- up to 4x faster computation (with minimal optimization)

Figure 5: Simulated comparisons

Multiple subcortical volumes highly heritable in adolescence

Multiple subcortical volumes highly heritable in adolescence

- Lowest heritability in oldest part of brain: brain stem
- ► Higher heritability in outer regions: hippocampus, cerrebellum

Figure 6: Heritability estimates visualized on the brain

Future extensions and applications

- Estimate heritability of functional networks (and their topographies)
- Extend estimation to multivariate traits

Figure 7: Functional topologies as a function of age

Image credit Cao et al. 2014

Toolbox

Simulation features

Figure 8: Simulation diagram

- Simulates phenotypes from existing or simulated GWAS data
- Control heritability across distinct genetic clusters
- Control shared vs nonshared SNP effects across genetic clusters

Estimation features

- ► GREML (via GCTA wrapper)
- Method of Moments estimation
- United 8 site adjustment methods
- Efficient internal looping for methods of moments approach

Thank you

Questions?

Estimation with balanced sites

Figure 9: Simulated comparisons

All ABCD estimates

ABCD PCs

R

Site 16

European estimates

Estimator

- AdjHE
- AdiHE RE
- Combat
- GCTA
- nAdjHE nGCTA
- SWD

G×**E**MM

$$Y = X\alpha + G\beta + \sum GZ_k\gamma_k + Z_k\delta_k + \epsilon$$

- Simulating phenotypes conserving hertiability for ancestries
- ► Shared genetic effects
- ► Ancestry genetic effects
- Ancestry effects
- Assume effects proportional to frequency $\beta \sim N(0, \tau^2 \frac{\sigma^2}{m})$ $\tau_s^2 \propto f_s (1-f_s)^\alpha$

References

- Koolschijn, P. C. M. P., Haren, N. E. M. van, Lensvelt-Mulders, G. J. L. M., Hulshoff Pol, H. E. & Kahn, R. S. Brain volume abnormalities in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. *Hum Brain Mapp* 30, 3719–3735 (2009).
- 2. Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J. & Green, M. J. Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. *Neurosci Biobehav Rev* **36**, 1342–1356 (2012).
- 3. Holzschneider, K. & Mulert, C. Neuroimaging in anxiety disorders. *Dialogues Clin Neurosci* **13**, 453–461 (2011).
- 4. Zhao, B. *et al.* Heritability of regional brain volumes in large-scale neuroimaging and genetic studies. *Cereb Cortex* **29**, 2904–2914 (2019).
- 5. Smit, D. J. A. et al. Heritability of head size in dutch and australian twin families at ages 0-50 years. Twin Res Hum Genet 13, 370–380 (2010).