Problem

Notations

The objective loss function is:

$$egin{aligned} L(heta) &= -rac{n}{2} \log(2\pi) - rac{1}{2} \log|K_{nn}| + rac{1}{2} (\mu + L\epsilon)^T K_{nn}^{-1} (\mu + L\epsilon) \ &+ (-\sum_{i=1}^{n-n_{test}} \log(1 + \exp^{-label(i)(\mu_i + L_i\epsilon)}) - (-rac{n}{2} (\log(2\pi)) - rac{1}{2} \log|LL^T| - rac{1}{2} \epsilon^T \epsilon) \end{aligned}$$

Loss function: $L(\theta)=\log g_1+g_2$ where $g=[g_1,g_2]=[P_{\alpha}(v|w),\log \frac{P(D|v)}{q(v|\theta)}]$. (Section 4.1, Eq. (9))

$$P_{lpha}(v|w)=rac{1}{(2\pi)^{n/2}|K_{nn}|^{1/2}} \exp(rac{1}{2}(\mu+L\epsilon)^T K_{nn}^{-1}(\mu+L\epsilon))$$
. (Section 4.1, Eq. (9))

$$P(D|v) = \prod_{i=1}^n rac{1}{1+\exp^{-label(i)(\mu_i+L_i\epsilon)}}$$
. (Section 4.1, Eq. (9))

$$q(v| heta)=rac{1}{(2\pi)^{n/2}|LL^T|^{1/2}} ext{exp}ig(-1/2\epsilon^T\epsilonig)$$
. (Section 4.1, Eq. (9))

$$\theta = [\mu, vec(L)]$$

Update of primal variables

$$heta= heta-lpha\langle
abla g(heta),y
angle$$
, and $abla g(heta)=[rac{\partial P_lpha(v|w)}{\partial heta},rac{\partial\lograc{P(D|v)}{q(v| heta)}}{\partial heta}]$

$$rac{\partial P_{lpha}(v|w)}{\partial heta} = rac{1}{(2\pi)^{n/2}|K_{nn}|^{1/2}} \exp(-rac{1}{2}(\mu+L\epsilon)^T K_{nn}^{-1}(\mu+L\epsilon)) K_{nn}^{-1}(\mu+L\epsilon) rac{\partial \mu+L\epsilon}{\partial heta}$$
 Here,

 $\exp(-\frac{1}{2}(\mu + L\epsilon)^T K_{nn}^{-1}(\mu + L\epsilon))$ is very small. The reason is that $\frac{1}{2}(\mu + L\epsilon)^T K_{nn}^{-1}(\mu + L\epsilon)$ is large (> 10000). Therefore, when I begin to compute the gradient of $P_{\alpha}(v|w)$ with respect to $\theta = [\mu, vec(L)]$, I find that the gradient is very small (see the figure).

st	toc_nabla_mu_L_1	1 ×							
2652x1 double									
	1	2							
1	2.5986e-09								
2	6.8391e-09								
3	-1.3308e-09								
4	-3.4339e-09								
5	4.9560e-09								
6	6.2637e-10								
7	7.8143e-09								
8	-5.5226e-09								
9	-5.0651e-10								
10	-2.6263e-09								
11	-2.2707e-09								
12	5.1343e-10								
13	-2.6969e-09								
14	-6.2604e-08								
15	-7.8483e-09								
16	1.2442e-09								
17	5.1988e-11								
18	2.4678e-08								
19	1.9726e-09								
20	-5.9031e-08								
21	6.5674e-08								
22	6.0161e-09								
23	4.2297e-09								
24	1.6973e-09								
)							

The second item of g consist of P(D|v) and $q(v|\theta)$. The gradient of P(D|v) is computed as following codes:

```
%the second item of g
1
2
      stoc_nabla_mu_L_temp_2 = zeros(n+n*n,1);
      for j=1:n
3
4
           if j<=n_test</pre>
5
               continue; % During training, the test data is discarded due to
  lack of labels.
6
           end
           stoc_nabla_mu_L_temp_2 = stoc_nabla_mu_L_temp_2 +
   (label(j)*transpose(Q(j,:)))/(1+exp(label(j)*Q(j,:)*theta));
8
```

Its gradeint with respect to $\mu_{testdata}$ is 0 because the labels of test data is not used during the training of parameters.

The gradient of $q(v|\theta)$ with respect to μ is 0. Because it is a function with respect to L.

Therefore, during training iterations, the μ corresponding to the test data (dimensions from 1 to 10) do not have any changes:

theta_sequence x theta_avg x train_loss x test_loss x mu_temp x											
2652x100 double											
	1	2	3	4	5	6	7	8	9		
1	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070	0.0070		
2	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057		
3	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063	0.0063		
4	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088		
5	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066	0.0066		
6	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088	0.0088		
7	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047		
8	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014		
9	6.8134e	6.8134e	6.8134e	6.8134e-04	6.8134e	6.8134e	6.8134e	6.8134e	6.8134e		
10	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071	0.0071		
11	-0.0021	-0.0021	-0.0021	0.0075	0.0075	0.0075	0.0077	0.0077	0.0239		
12	0.0117	0.0117	0.0117	0.0021	0.0021	0.0021	0.0021	0.0021	-0.0142		
13	0.0013	-0.0029	0.0052	0.0052	0.0192	0.0333	0.0498	0.0653	0.0653		
14	0.0101	0.0101	0.0101	5.3257e-04	5.3257e	5.3257e	4.4034e	4.4034e	-0.0159		
15	0.0119	0.0119	0.0119	0.0023	-0.0028	-0.0028	-0.0028	-0.0028	-0.0191		
16	0.0099	0.0099	0.0099	3.0357e-04	3.0357e	3.0357e	-0.0017	-0.0017	-0.0180		
17	-2.1036e	-2.1036e	-2.1036e	0.0094	0.0094	0.0094	0.0096	0.0096	0.0259		
18	0.0099	0.0142	0.0060	0.0060	-0.0080	-0.0221	-0.0348	-0.0504	-0.0504		
19	0.0043	0.0043	0.0043	0.0139	0.0139	0.0139	0.0299	0.0299	0.0461		
20	0.0088	0.0131	0.0049	0.0049	-0.0091	-0.0232	-0.0397	-0.0553	-0.0553		
21	-0.0040	-0.0040	-0.0040	0.0057	0.0057	0.0057	0.0154	0.0154	0.0317		
22	-0.0028	-0.0028	-0.0028	0.0068	0.0068	0.0068	0.0068	0.0068	0.0231		
23	0.0117	0.0159	0.0078	0.0078	-0.0062	-0.0203	-0.0369	-0.0524	-0.0524		

Update of dual variables

$$y = y + \beta(g(\theta) - \nabla f^*(y))$$