TANGENT SPACES AND DIFFERENTIALS

We are going to show that T_pM has the same dimension as M. The idea is to first show $T_p\mathbb{R}^n \cong \mathbb{R}^n$, then use a chart to create a chain of isomorphisms.

Definition. Let M be a smooth manifold, and let $p \in M$. A derivation at p is a linear map $v: C^{\infty}(M) \to \mathbb{R}$ satisfying the product rule:

$$v(fg) = f(p)vg + g(p)vf \qquad \forall f, g \in C^{\infty}(M).$$

We define T_pM to be the collection of all derivations at p.

It is straightforward to check that T_pM is a linear subspace of $C^{\infty}(M)^*$.

Definition. Let $F: M \to N$ be a smooth map between smooth manifolds. Let $p \in M$. We define the differential of F at p, denoted $dF_p: T_pM \to T_{F(p)}N$, by

$$dF_p(v)f := v(f \circ F).$$

It is easy to check that given $v \in T_pM$, $dF_p(v)$ is indeed a derivation at F(p). Here are some properties of the differential:

Proposition. Let $F: M \to N$ and $G: N \to P$ be smooth maps between smooth manifolds. Let $p \in M$.

- (i) The differential dF_p is linear.
- (ii) The chain rule is satisfied: $d(G \circ F)_p = dG_{F(p)} \circ dF_p$.
- (iii) The differential of the identity is the identity: $d(\mathrm{Id}_M)_p = \mathrm{Id}_{T_pM}$.
- (iv) If F is a diffeomorphism, then dF_p is an isomorphism with $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

Proof. We show (iii); the proofs for the others are routine. Let $v \in T_pM$, and let $f \in C^{\infty}(P)$. Then

$$dG_{F(n)}(dF_n(v))f = dF_n(v)(f \circ G) = v(f \circ G \circ F) = d(G \circ F)_n f.$$

The following lemma shows that derivations only need local data.

Lemma. Let M be a smooth manifold. Let $p \in M$, and let $v \in T_pM$. Suppose $f, g \in C^{\infty}(M)$, and f = g on a neighbourhood around p. Then vf = vg.

Proof. Define h:=f-g. Observe that $\operatorname{supp} h\subseteq M\backslash\{p\}$, because f=g on a neighbourhood of p. Let $\psi\in C^\infty(M)$ be a smooth bump function for $\operatorname{supp} h$ supported in $M\backslash\{p\}$. Then $h=h\psi$, so $v(h)=v(h\psi)=0$.

The following proposition shows that we can identify T_pU with T_pM , where $U \subseteq M$ is an open submanifold.

Proposition. Let M be a smooth manifold, and let $U \subseteq M$ be open with inclusion map $\iota: U \hookrightarrow M$. Let $p \in U$. Then $d\iota_p: T_pU \to T_pM$ is a linear isomorphism.

Proof. Let B be a neighbourhood of p such that $\overline{B} \subseteq U$.

Let us show injectivity. Suppose $v \in T_pU$, and $d\iota_p(v) = 0$. Let $f \in C^{\infty}(U)$. Let $\widetilde{f} \in C^{\infty}(M)$ be an extension of f that agrees on \overline{B} . Then the lemma implies that $v(f) = v(\widetilde{f}|_U) = v(\widetilde{f} \circ \iota) = d\iota_p(v)\widetilde{f} = 0$.

Next, let us show surjectivity. Let $w \in T_pM$. Define $v : C^{\infty}(U) \to \mathbb{R}$ by $vf := w\widetilde{f}$, where $\widetilde{f} : M \to \mathbb{R}$ is any smooth map such that \widetilde{f} and f agree on \overline{B} . The lemma guarantees that this map is well-defined. It is straightforward to check that v is indeed an element of T_pU . Finally, $d\iota_p(v)g = v(g \circ \iota) = wg$, as desired. \square

Let $p, v \in \mathbb{R}^n$, and let $f \in C^{\infty}(\mathbb{R}^n)$. Recall that we define the directional derivative of f at p in the direction v by

$$D_v|_p f := \frac{d}{dt}\Big|_{t=0} f(p+tv).$$

From calculus, we know that $D_v|_p$ is a derivation at p, so $D_v|_p \in T_p\mathbb{R}^n$.

Proposition. Let $p \in \mathbb{R}^n$. Then the map $\Phi : \mathbb{R}^n \to T_p\mathbb{R}^n$, $v \mapsto D_v|_p$ is a linear isomorphism.

Proof. Linearity follows because $D_v|_p f = \operatorname{grad} f_p \cdot v$. Further, if $v = (v^i)$, then we can write $D_v|_p f = v^i \partial_i|_p f$.

Let us show injectivity. Let $v=(v^i)$, and suppose $D_v|_p=0$. Let π^j denote the projection onto the jth coordinate. Then $0=D_v|_p\pi^j=v^i\partial_i|_p\pi^j=v^j$.

Next, let us show surjectivity. Let $w \in T_p\mathbb{R}^n$, and define $v := w(\pi^i)e_i$. Let $f \in C^{\infty}(\mathbb{R}^n)$. Taylor's Theorem implies that we can write

$$f = f(p) + (\pi^i - p^i)\partial_i|_p f + R,$$

where $R \in C^{\infty}(\mathbb{R}^n)$ satisfies w(R) = 0. Then $wf = w(\pi^i)\partial_i|_p f = D_v|_p f$.

Proposition. Let M be a smooth manifold of dimension n. Let $p \in M$. Then T_pM is an n-dimensional vector space.

Proof. Let (U,φ) be a chart around p. Then we can write

$$T_pM \cong T_pU \cong T_{\varphi(p)}(\varphi(U)) \cong T_{\varphi(p)}\mathbb{R}^n \cong \mathbb{R}^n,$$

where the second equivalence follows because φ is a diffeomorphism.

Definition. Let M be a smooth manifold, and let (U, φ) be a chart containing $p \in M$. We define the *coordinate vectors at* p *induced by* φ by

$$\partial_i|_p := d(\varphi^{-1})_{\varphi(p)}(\partial_i|_{\varphi(p)}).$$

The previous proposition implies that $\{\partial_i|_p\}$ forms a basis for T_pM .