```
In [1]: #import all the libraries that we need.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [2]: #importing our dataset.
from google.colab import drive
drive.mount('/content/drive')

data\_path = '/content/drive/My Drive/diabetes\_data.csv' # Replace with your file path
df = pd.read\_csv(data\_path)

Mounted at /content/drive

In [3]: #Checking first five rows by calling df.head()
 df.head()

| Out[3]: |   | PatientID | Age | Gender | Ethnicity | SocioeconomicStatus | EducationLevel | ВМІ       | Smoking | AlcoholConsu |
|---------|---|-----------|-----|--------|-----------|---------------------|----------------|-----------|---------|--------------|
|         | 0 | 6000      | 44  | 0      | 1         | 2                   | 1              | 32.985284 | 1       | 4.           |
|         | 1 | 6001      | 51  | 1      | 0         | 1                   | 2              | 39.916764 | 0       | 1.           |
|         | 2 | 6002      | 89  | 1      | 0         | 1                   | 3              | 19.782251 | 0       | 1.           |
|         | 3 | 6003      | 21  | 1      | 1         | 1                   | 2              | 32.376881 | 1       | 1.           |
|         | 4 | 6004      | 27  | 1      | 0         | 1                   | 3              | 16.808600 | 0       | 15.          |

5 rows × 46 columns

In [4]: df.tail()

Out[4]

| ]: |      | PatientID | Age | Gender | Ethnicity | SocioeconomicStatus | EducationLevel | ВМІ       | Smoking | AlcoholCo |
|----|------|-----------|-----|--------|-----------|---------------------|----------------|-----------|---------|-----------|
|    | 1874 | 7874      | 37  | 0      | 0         | 2                   | 2              | 20.811137 | 0       |           |
|    | 1875 | 7875      | 80  | 1      | 0         | 2                   | 2              | 27.694312 | 0       |           |
|    | 1876 | 7876      | 38  | 1      | 0         | 0                   | 2              | 35.640824 | 0       |           |
|    | 1877 | 7877      | 43  | 0      | 1         | 2                   | 0              | 32.423016 | 0       |           |
|    | 1878 | 7878      | 85  | 1      | 0         | 2                   | 2              | 33.145119 | 0       |           |

5 rows × 46 columns

```
In [5]: #Take a look at the column names.
df.columns.values
```

```
Out[5]:

array(['PatientID', 'Age', 'Gender', 'Ethnicity', 'SocioeconomicStatus', 'EducationLevel', 'BMI', 'Smoking', 'AlcoholConsumption', 'PhysicalActivity', 'DietQuality', 'SleepQuality', 'FamilyHistoryDiabetes', 'GestationalDiabetes', 'PolycysticOvarySyndrome', 'PreviousPreDiabetes', 'Hypertension', 'SystolicBP', 'DiastolicBP', 'FastingBloodSugar', 'HbA1c', 'SerumCreatinine', 'BUNLevels', 'CholesterolTotal', 'CholesterolLDL', 'CholesterolHDL', 'CholesterolTriglycerides', 'AntihypertensiveMedications', 'Statins', 'AntidiabeticMedications', 'FrequentUrination', 'ExcessiveThirst', 'UnexplainedWeightLoss', 'FatigueLevels', 'BlurredVision', 'SlowHealingSores', 'TinglingHandsFeet', 'QualityOfLifeScore',
```

```
'HeavyMetalsExposure', 'OccupationalExposureChemicals',
        'WaterQuality', 'MedicalCheckupsFrequency', 'MedicationAdherence',
        'HealthLiteracy', 'Diagnosis', 'DoctorInCharge'], dtype=object)
#Checking for null values
df.isna().sum()
                             0
                    PatientID
                        Age 0
                     Gender 0
                    Ethnicity 0
         SocioeconomicStatus 0
              EducationLevel 0
                        BMI 0
                    Smoking 0
          AlcoholConsumption 0
              PhysicalActivity 0
                  DietQuality 0
                 SleepQuality 0
        FamilyHistoryDiabetes 0
          GestationalDiabetes
     PolycysticOvarySyndrome 0
          PreviousPreDiabetes 0
                Hypertension 0
                  SystolicBP 0
                 DiastolicBP
           FastingBloodSugar 0
                      HbA1c 0
             SerumCreatinine 0
                  BUNLevels 0
              CholesterolTotal 0
```

CholesterolLDL 0

CholesterolHDL 0

Statins 0

CholesterolTriglycerides 0

AntidiabeticMedications 0

UnexplainedWeightLoss 0

FrequentUrination 0

ExcessiveThirst 0

FatigueLevels 0
BlurredVision 0

AntihypertensiveMedications 0

In [7]:

Out[7]:

```
SlowHealingSores 0
TinglingHandsFeet 0
QualityOfLifeScore 0
HeavyMetalsExposure 0
OccupationalExposureChemicals 0
WaterQuality 0
MedicalCheckupsFrequency 0
MedicationAdherence 0
HealthLiteracy 0
Diagnosis 0
DoctorInCharge 0
```

### dtype: int64

In [8]: #plotting histogram of all numeric values
df.hist(bins = 50, grid = False ,figsize=(20,15) );



In [9]: #Generating descriptive statistics.
 df.describe()

| Out[9]: | PatientID |             | Age         | Gender Ethnicity |             | SocioeconomicStatus | EducationLevel | ВМІ         |
|---------|-----------|-------------|-------------|------------------|-------------|---------------------|----------------|-------------|
|         | count     | 1879.000000 | 1879.000000 | 1879.000000      | 1879.000000 | 1879.000000         | 1879.000000    | 1879.000000 |
|         | mean      | 6939.000000 | 55.043108   | 0.487493         | 0.755721    | 0.992017            | 1.699308       | 27.687601   |

| std | 542.564896  | 20.515839 | 0.499977 | 1.047558 | 0.764940 | 0.885665 | 7.190975  |
|-----|-------------|-----------|----------|----------|----------|----------|-----------|
| min | 6000.000000 | 20.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 15.025898 |
| 25% | 6469.500000 | 38.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 21.469981 |
| 50% | 6939.000000 | 55.000000 | 0.000000 | 0.000000 | 1.000000 | 2.000000 | 27.722988 |
| 75% | 7408.500000 | 73.000000 | 1.000000 | 1.000000 | 2.000000 | 2.000000 | 33.856460 |
| max | 7878.000000 | 90.000000 | 1.000000 | 3.000000 | 2.000000 | 3.000000 | 39.998811 |

8 rows × 45 columns

- Out[61]: ['1. How does the distribution of BloodPressure vary between individuals with and withou t diabetes?',
  - "2. How does the prevalence of the 'Diagnosis' (assuming this indicates a diabetes diagnosis) differ between males and females?",
  - '3. Is there a relationship between Fasting Blood Sugar and lifestyle factors (Smoking, Alcohol Consumption, Physical Activity, Diet Quality)?',
    - '4. How are patients distributed across different education levels?',
    - '5. What is the distribution of Quality of Life Scores among the patients?',
  - '6. How does the distribution of Diabeties values vary for individuals with and without a family history of diabetes?',
  - '7. How are fasting blood sugar levels distributed in the overall population?']

```
In [11]: #Let's check the 1st question
#1.How does the distribution of BloodPressure vary between individuals with and without
```

```
import pandas as pd
import matplotlib.pyplot as plt

# Calculate mean blood pressure for each group
mean_systolic = df.groupby('Diagnosis')['SystolicBP'].mean()

# Create bar plot
plt.figure(figsize=(8, 6))
mean_systolic.plot(kind='bar')
plt.title('Mean Systolic Blood Pressure by Diabetes Diagnosis')
plt.xlabel('Diagnosis (0 = No Diabetes, 1 = Diabetes)')
plt.ylabel('Mean Systolic Blood Pressure')
plt.xticks(rotation=0) # Rotate x-axis labels for readability
plt.show()
```



```
In [13]: sns.countplot(x = 'Diagnosis', data = df)
# blood pressure varience with and without diebeties
plt.show()
```



# Diagnosis Distribution by Gender Diagnosis O 1 O 1 O Gender

```
gender_diagnosis = df.groupby('Gender')['Diagnosis'].sum()
plt.pie(gender_diagnosis, labels=gender_diagnosis.index, autopct='%1.1f%%')
plt.title('Proportion of Positive Diagnoses by Gender')
plt.show()
```

### Proportion of Positive Diagnoses by Gender



```
In [ ]: #let's see question 3
#Is there a relationship between Fasting Blood Sugar and lifestyle factors (Smoking, Alc
```

```
In []: def categorize_blood_sugar(value):
    if value < 100:
        return 'Normal'
    elif value < 126:
        return 'Prediabetes'
    else:
        return 'Diabetes'

    df['BloodSugarCategory'] = df['FastingBloodSugar'].apply(categorize_blood_sugar)

In [36]: sns.countplot(x='BloodSugarCategory', hue='Smoking', data=df)
    plt.title('Count of Blood Sugar Categories by Smoking Status')
    plt.xlabel('Blood Sugar Category')
    plt.ylabel('Count')
    plt.show()</pre>
```

### Count of Blood Sugar Categories by Smoking Status



```
In []: #let's see question 4
    #How are patients distributed across different education levels?

In [27]: sns.countplot(x='EducationLevel', data=df)
    plt.title('Distribution of Patients by Education Level')
    plt.xlabel('Education Level')
    plt.ylabel('Count')
    plt.show()
```

## Distribution of Patients by Education Level



```
In [40]: # Count the occurrences of each education level
   education_counts = df['EducationLevel'].value_counts()

# Plot the pie chart
   plt.pie(education_counts, labels=education_counts.index, autopct='%1.1f%%')
   plt.title('Proportion of Patients by Education Level')
   plt.show()
```

# Proportion of Patients by Education Level



```
In [45]: plt.hist(df['QualityOfLifeScore'], bins=10, edgecolor='black')
    plt.title('Distribution of Quality of Life Scores')
    plt.xlabel('Quality of Life Score')
    plt.ylabel('Frequency')
    plt.show()
```

## Distribution of Quality of Life Scores



```
In [43]: sns.displot(df['QualityOfLifeScore'], kde=True)
   plt.title('Distribution of Quality of Life Scores')
   plt.xlabel('Quality of Life Score')
   plt.show()
```

## Distribution of Quality of Life Scores



```
In []: # now going to the next question no 6

# 6. How does the distribution of Diabetes vary for individuals with and without a family

In [28]: family history counts = df[[EamilyHistoryDiabetes]] value counts()
```

```
In [28]: family_history_counts = df['FamilyHistoryDiabetes'].value_counts()
    plt.pie(family_history_counts, labels=['No Family History', 'Family History'], autopct=''
    plt.title('Proportion of Patients with Family History of Diabetes')
    plt.show()
```

# Proportion of Patients with Family History of Diabetes



```
In []: #question 7
    #How are fasting blood sugar levels distributed in the overall population?

In [53]: sns.displot(df['FastingBloodSugar'], kde=True)
    plt.title('Distribution of Fasting Blood Sugar Levels')
    plt.xlabel('Fasting Blood Sugar (mg/dL)')
    plt.show()
```

## Distribution of Fasting Blood Sugar Levels



In [ ]: # How many individuals fall into different categories of fasting blood sugar level?

