7.

a.
$$\hat{\mu} = \overline{x} = \frac{\sum x_i}{n} = \frac{1206}{10} = 120.6.$$

b. $\hat{\tau} = 10,000 \ \hat{\mu} = 1,206,000.$

c. 8 of 10 houses in the sample used at least 100 therms (the "successes"), so $\hat{p} = \frac{8}{10} = .80$.

d. The ordered sample values are 89, 99, 103, 109, 118, 122, 125, 138, 147, 156, from which the two middle values are 118 and 122, so $\hat{\mu} = \tilde{x} = \frac{118 + 122}{2} = 120.0$.

9.

a. $E(\overline{X}) = \mu = E(X)$, so \overline{X} is an unbiased estimator for the Poisson parameter μ . Since n = 150, $\hat{\mu} = \overline{x} = \frac{\sum x_i}{n} = \frac{(0)(18) + (1)(37) + ... + (7)(1)}{150} = \frac{317}{150} = 2.11$.

b. $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{\sqrt{\mu}}{\sqrt{n}}$, so the estimated standard error is $\sqrt{\frac{\hat{\mu}}{n}} = \frac{\sqrt{2.11}}{\sqrt{150}} = .119$.

11.

$$\mathbf{a.} \quad E\!\left(\frac{X_1}{n_1} - \frac{X_2}{n_2}\right) = \frac{1}{n_1} E\!\left(X_1\right) - \frac{1}{n_2} E\!\left(X_2\right) = \frac{1}{n_1} (n_1 p_1) - \frac{1}{n_2} (n_2 p_2) = p_1 - p_2 \,.$$

b. $V\left(\frac{X_1}{n_1} - \frac{X_2}{n_2}\right) = V\left(\frac{X_1}{n_1}\right) + V\left(\frac{X_2}{n_2}\right) = \left(\frac{1}{n_1}\right)^2 V(X_1) + \left(\frac{1}{n_2}\right)^2 V(X_2) = \frac{1}{n_1^2} (n_1 p_1 q_1) + \frac{1}{n_2^2} (n_2 p_2 q_2) = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}$, and the standard error is the square root of this quantity.

 $\mathbf{c.} \quad \text{With} \ \ \hat{p}_1 = \frac{x_1}{n_1} \,, \ \ \hat{q}_1 = 1 - \hat{p}_1 \,, \ \ \hat{p}_2 = \frac{x_2}{n_2} \,, \ \ \hat{q}_2 = 1 - \hat{p}_2 \,\,, \ \ \text{the estimated standard error} \ \ \text{is} \ \ \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} \,\,.$

d.
$$(\hat{p}_1 - \hat{p}_2) = \frac{127}{200} - \frac{176}{200} = .635 - .880 = -.245$$

e.
$$\sqrt{\frac{(.635)(.365)}{200} + \frac{(.880)(.120)}{200}} = .041$$

13. $\mu = E(X) = \int_{-1}^{1} x \cdot \frac{1}{2} (1 + \theta x) dx = \frac{x^2}{4} + \frac{\theta x^3}{6} \Big|_{-1}^{1} = \frac{1}{3} \theta \Rightarrow \theta = 3\mu \Rightarrow$ $\hat{\theta} = 3\overline{X} \Rightarrow E(\hat{\theta}) = E(3\overline{X}) = 3E(\overline{X}) = 3\mu = 3\left(\frac{1}{3}\right)\theta = \theta.$

Chapter 6: Point Estimation

15.

a.
$$E(X^2) = 2\theta$$
 implies that $E\left(\frac{X^2}{2}\right) = \theta$. Consider $\hat{\theta} = \frac{\sum X_i^2}{2n}$. Then
$$E(\hat{\theta}) = E\left(\frac{\sum X_i^2}{2n}\right) = \frac{\sum E(X_i^2)}{2n} = \frac{\sum 2\theta}{2n} = \frac{2n\theta}{2n} = \theta$$
, implying that $\hat{\theta}$ is an unbiased estimator for θ .

b.
$$\sum x_i^2 = 1490.1058$$
, so $\hat{\theta} = \frac{1490.1058}{20} = 74.505$.

17.

$$\begin{aligned} \mathbf{a.} \quad & E(\hat{p}) = \sum_{x=0}^{\infty} \frac{r-1}{x+r-1} \cdot \binom{x+r-1}{x} \cdot p^r \cdot (1-p)^x \\ & = p \sum_{x=0}^{\infty} \frac{(x+r-2)!}{x!(r-2)!} \cdot p^{r-1} \cdot (1-p)^x = p \sum_{x=0}^{\infty} \binom{x+r-2}{x} p^{r-1} (1-p)^x = p \sum_{x=0}^{\infty} nb(x;r-1,p) = p \ . \end{aligned}$$

b. For the given sequence,
$$x = 5$$
, so $\hat{p} = \frac{5-1}{5+5-1} = \frac{4}{9} = .444$.

19.

a.
$$\lambda = .5p + .15 \Rightarrow 2\lambda = p + .3$$
, so $p = 2\lambda - .3$ and $\hat{p} = 2\hat{\lambda} - .3 = 2\left(\frac{Y}{n}\right) - .3$; the estimate is $2\left(\frac{20}{80}\right) - .3 = .2$.

b.
$$E(\hat{p}) = E(2\hat{\lambda} - .3) = 2E(\hat{\lambda}) - .3 = 2\lambda - .3 = p$$
, as desired.

e. Here
$$\lambda = .7p + (.3)(.3)$$
, so $p = \frac{10}{7}\lambda - \frac{9}{70}$ and $\hat{p} = \frac{10}{7}\left(\frac{Y}{n}\right) - \frac{9}{70}$.

Section 6.2

21.

a. $E(X) = \beta \cdot \Gamma\left(1 + \frac{1}{\alpha}\right)$ and $E(X^2) = V(X) + [E(X)]^2 = \beta^2 \Gamma\left(1 + \frac{2}{\alpha}\right)$, so the moment estimators $\hat{\alpha}$ and $\hat{\beta}$ are the solution to $\overline{X} = \hat{\beta} \cdot \Gamma\left(1 + \frac{1}{\hat{\alpha}}\right)$, $\frac{1}{n} \sum X_i^2 = \hat{\beta}^2 \Gamma\left(1 + \frac{2}{\hat{\alpha}}\right)$. Thus $\hat{\beta} = \frac{\overline{X}}{\Gamma\left(1 + \frac{1}{\hat{\alpha}}\right)}$, so once $\hat{\alpha}$

has been determined $\Gamma\left(1+\frac{1}{\hat{\alpha}}\right)$ is evaluated and $\hat{\beta}$ then computed. Since $\overline{X}^2 = \hat{\beta}^2 \cdot \Gamma^2\left(1+\frac{1}{\hat{\alpha}}\right)$,

 $\frac{1}{n} \sum \frac{X_i^2}{\overline{X}^2} = \frac{\Gamma\left(1 + \frac{2}{\hat{\alpha}}\right)}{\Gamma^2\left(1 + \frac{1}{\hat{\alpha}}\right)}, \text{ so this equation must be solved to obtain } \hat{\alpha}.$

b. From **a**, $\frac{1}{20} \left(\frac{16,500}{28.0^2} \right) = 1.05 = \frac{\Gamma \left(1 + \frac{2}{\hat{\alpha}} \right)}{\Gamma^2 \left(1 + \frac{1}{\hat{\alpha}} \right)}$, so $\frac{1}{1.05} = .95 = \frac{\Gamma^2 \left(1 + \frac{1}{\hat{\alpha}} \right)}{\Gamma \left(1 + \frac{2}{\hat{\alpha}} \right)}$, and from the hint, $\frac{1}{\hat{\alpha}} = .2 \Rightarrow \hat{\alpha} = 5$. Then $\hat{\beta} = \frac{\overline{x}}{\Gamma (1.2)} = \frac{28.0}{\Gamma (1.2)}$.

23. Determine the joint pdf (aka the likelihood function), take a logarithm, and then use calculus:

$$f(x_1, ..., x_n \mid \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\theta}} e^{-x_i^2/2\theta} = (2\pi\theta)^{-n/2} e^{-\sum x_i^2/2\theta}$$

$$\ell(\theta) = \ln[f(x_1, ..., x_n \mid \theta)] = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\theta) - \sum x_i^2 / 2\theta$$

$$\ell'(\theta) = 0 - \frac{n}{2\theta} + \sum x_i^2 / 2\theta^2 = 0 \Rightarrow -n\theta + \sum x_i^2 = 0$$

Solving for θ , the maximum likelihood estimator is $\hat{\theta} = \frac{1}{n} \sum X_i^2$.

25.

- **a.** $\hat{\mu} = \overline{x} = 384.4; s^2 = 395.16$, so $\frac{1}{n} \sum (x_i \overline{x})^2 = \hat{\sigma}^2 = \frac{9}{10} (395.16) = 355.64$ and $\hat{\sigma} = \sqrt{355.64} = 18.86$ (this is <u>not</u> s).
- **b.** The 95th percentile is $\mu + 1.645\sigma$, so the mle of this is (by the invariance principle) $\hat{\mu} + 1.645\hat{\sigma} = 415.42$.
- c. The mle of $P(X \le 400)$ is, by the invariance principle, $\Phi\left(\frac{400 \hat{\mu}}{\hat{\sigma}}\right) = \Phi\left(\frac{400 384.4}{18.86}\right) = \Phi(0.83) = .7967$.

27.

a.
$$f(x_1,...,x_n;\alpha,\beta) = \frac{(x_1x_2...x_n)^{\alpha-1}e^{-\Sigma x_i/\beta}}{\beta^{n\alpha}\Gamma^n(\alpha)}$$
, so the log likelihood is
$$(\alpha-1)\sum \ln(x_i) - \frac{\sum x_i}{\beta} - n\alpha \ln(\beta) - n \ln\Gamma(\alpha)$$
. Equating both $\frac{d}{d\alpha}$ and $\frac{d}{d\beta}$ to 0 yields
$$\sum \ln(x_i) - n \ln(\beta) - n \frac{d}{d\alpha}\Gamma(\alpha) = 0 \text{ and } \frac{\sum x_i}{\beta^2} = \frac{n\alpha}{\beta} = 0$$
, a very difficult system of equations to solve.

b. From the second equation in **a**, $\frac{\sum x_i}{\beta} = n\alpha \Rightarrow \overline{x} = \alpha\beta = \mu$, so the mle of μ is $\hat{\mu} = \overline{X}$.

29.

a. The joint pdf (likelihood function) is $f\left(x_{1},...,x_{n};\lambda,\theta\right) = \begin{cases} \lambda^{n}e^{-\lambda\Sigma(x_{i}-\theta)} & x_{1} \geq \theta,...,x_{n} \geq \theta \\ 0 & \text{otherwise} \end{cases}$ Notice that $x_{1} \geq \theta,...,x_{n} \geq \theta$ iff $\min(x_{i}) \geq \theta$, and that $-\lambda\Sigma(x_{i}-\theta) = -\lambda\Sigma x_{i} + n\lambda\theta$.
Thus likelihood = $\begin{cases} \lambda^{n}\exp(-\lambda\Sigma x_{i})\exp(n\lambda\theta) & \min(x_{i}) \geq \theta \\ 0 & \min(x_{i}) < \theta \end{cases}$

Consider maximization with respect to θ . Because the exponent $n\lambda\theta$ is positive, increasing θ will increase the likelihood provided that $\min(x_i) \ge \theta$; if we make θ larger than $\min(x_i)$, the likelihood drops to θ . This implies that the mle of θ is $\hat{\theta} = \min(x_i)$. The log likelihood is now

$$n\ln(\lambda) - \lambda \Sigma \left(x_i - \hat{\theta}\right)$$
. Equating the derivative w.r.t. λ to 0 and solving yields $\hat{\lambda} = \frac{n}{\Sigma \left(x_i - \hat{\theta}\right)} = \frac{n}{\Sigma x_i - n\hat{\theta}}$

b.
$$\hat{\theta} = \min(x_i) = .64$$
, and $\Sigma x_i = 55.80$, so $\hat{\lambda} = \frac{10}{55.80 - 6.4} = .202$

Supplementary Exercises

- 31. Substitute $k = \varepsilon/\sigma_Y$ into Chebyshev's inequality to write $P(|Y \mu_Y| \ge \varepsilon) \le 1/(\varepsilon/\sigma_Y)^2 = V(Y)/\varepsilon^2$. Since $E(\overline{X}) = \mu$ and $V(\overline{X}) = \sigma^2/n$, we may then write $P(|\overline{X} \mu| \ge \varepsilon) \le \frac{\sigma^2/n}{\varepsilon^2}$. As $n \to \infty$, this fraction converges to 0, hence $P(|\overline{X} \mu| \ge \varepsilon) \to 0$, as desired.
- Let x_1 = the time until the first birth, x_2 = the elapsed time between the first and second births, and so on. Then $f(x_1,...,x_n;\lambda) = \lambda e^{-\lambda x_1} \cdot (2\lambda) e^{-2\lambda x_2} ... (n\lambda) e^{-n\lambda x_n} = n! \lambda^n e^{-\lambda \Sigma k x_k}$. Thus the log likelihood is $\ln(n!) + n\ln(\lambda) \lambda \Sigma k x_k$. Taking $\frac{d}{d\lambda}$ and equating to 0 yields $\hat{\lambda} = \frac{n}{\Sigma k x_k}$. For the given sample, n = 6, $x_1 = 25.2$, $x_2 = 41.7 25.2 = 16.5$, $x_3 = 9.5$, $x_4 = 4.3$, $x_5 = 4.0$, $x_6 = 2.3$; so $\sum_{k=1}^{6} k x_k = (1)(25.2) + (2)(16.5) + ... + (6)(2.3) = 137.7$ and $\hat{\lambda} = \frac{6}{137.7} = .0436$.