PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-253842

(43) Date of publication of application: 01.10.1996

(51)Int.Cl.

C22C 38/00 C22C 38/14 C22C 38/16 C22C 38/54

(21)Application number: 07-083447

(71)Applicant: NIPPON STEEL CORP

(22)Date of filing:

16.03.1995

(72)Inventor: OCHI TATSURO

KANISAWA HIDEO

(54) STEEL FOR INDUCTION HARDENING SHAFT PARTS EXCELLENT IN TWISTING **FATIGUE STRENGTH**

(57)Abstract:

PURPOSE: To produce a steel suitable for induction hardening shaft parts having excellent twisting fatigue strength.

CONSTITUTION: This steel for induction hardening shaft parts excellent in twisting fatigue strength is the one having a compsn. contg., by weight, 0.35 to 0.65% C, 0.35 to 2.5% Si, 1.0 to 1.8% Mn, 0.05 to 0.8% Mo, 0.01 to 0.15% S, 0.015 to 0.05% Al, 0.005 to 0.05% Ti, 0.0005 to 0.005% B and 0.002 to 0.01% N, in which the contents of P, Cu and O are limited to specified ones or below, furthermore contg. specified amounts of one or two kinds of Cr and Ni, in which the structural fraction of ferrite is regulated to ≤5% and the ferrite grain size is regulated to ≤20μm.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-253842

(43)公開日 平成8年(1996)10月1日

(51)Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇序			
C 2 2 C	38/00	301		C22C 3	38/00	301	Y			
:	38/14			3	38/14					
;	38/16			3	88/16					
;	38/54			3	88/54					
				審查請求	未蘭求	請求項の数3	FD (全 9 頁)			
(21)出願番号	•	特願平7-83447		(71)出願人	0000066	55				
					新日本鄭	新日本製罐株式会社				
(22)出願日		平成7年(1995)3	月16日		東京都司	F 代 田区大手町	2丁目6番3号			
				(72)発明者	越智	塵朗				
					北海道室	菌蘭市仲町12番	地 新日本製鐵株式			
					会社室的	制製鐵所内				
				(72)発明者	蟹澤 多	身雄				
					北海道室	医蘭市仲町12番	地 新日本製鐵株式			
					会社室	制製鐵所内				
				(74)代理人	弁理士	萩原 康弘	(外1名)			

(54) 【発明の名称】 捩り疲労強度の優れた高周波焼入れ軸部品用鋼材

(57)【要約】

【目的】 本発明は、優れた捩り疲労強度を有する高周 波焼入れ軸部品用用として好適な鋼材を提供する。

【構成】 重量比で、 $C:0.35\sim0.65\%$ 、S $i:0.35\sim2.5\%$ 、 $Mn:1.0\sim1.8\%$ 、M $o:0.05\sim0.8\%$ 、 $S:0.01\sim0.15\%$ 、 $Al:0.015\sim0.05\%$ 、 $Ti:0.005\sim0.05\%$ 、N:0.05%、 $B:0.0005\sim0.005\%$ 、 $N:0.002\sim0.01\%$ を含有し、P、Cu、O量を特定以下に制限し、またはさらに、特定量の<math>Nb、Vol1種または2種を含有し、またはさらに、特定量の<math>Cr、 $Nio1種または2種を含有し、かつフェライトの組織分率が35%以下で、フェライト結晶粒径が<math>20\mu m$ 以下であることを特徴とする捩り疲労強度の優れた高周波焼入れ軸部品用鋼材。

【特許請求の範囲】

【請求項1】 重量比として、

 $C : 0.35 \sim 0.65\%$

 $Si: 0.35 \sim 2.5\%$

 $Mn: 1. 0 \sim 1. 8\%$

 $Mo: 0. 05 \sim 0. 8\%$

 $S : 0. 01 \sim 0. 15\%$

 $Al: 0. 015 \sim 0. 05\%$

 $Ti:0.005\sim0.05\%$

B : 0. $0005 \sim 0.005\%$

 $N~: 0.~0 \ 0 \ 2 \! \sim \! 0 \, .~0 \ 1 \, \%$

を含有し、

P:0.020%以下、

Cu: 0. 05%以下、

O:0.0020%以下に制限し、残部が鉄および不可避的不純物からなり、かつフェライトの組織分率が35%以下で、フェライト結晶粒径が20μm以下であることを特徴とする捩り疲労強度の優れた高周波焼入れ軸部品用鋼材。

【請求項2】 請求項1に記載の成分に加えて、

 $Nb:0.01\sim0.25\%$

 $V : 0.03 \sim 0.5\%$

の1種または2種を含有し、かつフェライトの組織分率が35%以下で、フェライト結晶粒径が20μm以下であることを特徴とする捩り疲労強度の優れた高周波焼入れ軸部品用鋼材。

【請求項3】 請求項1または請求項2記載の成分に加えて、

 $Cr: 0. 05 \sim 0.5\%$

 $Ni: 0. 1 \sim 3. 5\%$

の1種または2種を含有し、かつフェライトの組織分率が35%以下で、フェライト結晶粒径が20μm以下であることを特徴とする捩り疲労強度の優れた高周波焼入れ軸部品用鋼材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は高周波焼入れ軸部品用鋼材に係り、さらに詳しくは、図1の(a)~(c)に示したスプライン部を有するシャフト、フランジ付シャフト、外筒付シャフト等の自動車の動力伝達系を構成する40軸部品用として好適な、優れた振り疲労強度を有する鋼材に関するものである。

[0002]

【従来の技術】自動車の動力伝達系を構成する軸部品は、通常中炭素鋼を所定の部品に成形加工し、高周波焼入れー焼戻しを施して製造されているが、近年の自動車エンジンの高出力化および環境規制対応に伴い高捩り強度化の指向が強い。これに対して、特開平5-179400号公報にはC:0.38~0.45%、Si:0.35%以下、Mn:1.0超~1.5%、B:0.0050

05~0.035%、Ti:0.01~0.05%、Al:0.01~0.06%、N:0.010%以下でフェライト結晶粒度番号6以上の細粒組織を有する直接切削一高周波焼入れ用鋼材が示されている。該発明材では静的捩り強度については言及されているものの、捩り疲労強度については全く配慮されていない。

【0003】また、日本鉄鋼協会講演論文集「材料とプロセス」第7巻第3号第771頁、第1図には、S53 C鋼(代表的な成分系0.53C-0.25Si-0.

10 8 M n)をベースに捩り疲労強度に及ぼす合金元素の影響を検討し、B、Si、Moが有効であることが示されている。しかしながら、高周波焼入れ用軸部品用鋼としていかなる鋼材が適しているかについては全く開示されていない。

[0004]

【発明が解決しようとする課題】本発明の目的は、捩り 疲労強度の優れた高周波焼入れ軸部品用鋼材を提供しようとするものである。

[0005]

30

20 【課題を解決するための手段】本発明者らは、高周波焼 入れにより優れた捩り疲労強度を有する軸部品を実現す るために、鋭意検討を行い次の知見を得た。

- (1) 高周波焼入れ材の捩り疲労破壊は、次の過程で起きる。
- A) 表面または硬化層と芯部の境界で亀裂が発生する。
- B) 軸方向に平行な面または垂直な面で亀裂が初期伝播 する。
- C) 軸方向に45度の面で粒界割れを伴って脆性破壊を起こし、最終破壊を起こす。
- (2)表面硬化層で硬さのムラがあれば、早期に疲労亀裂が発生する。高周波焼入れ前の組織のフェライト分率が35%を超え、フェライト結晶粒径が20μmを超えると硬化層で顕著な硬さのムラを生じ、早期に疲労亀裂が発生しやすい。

【0006】(3)次に、硬化層は捩り疲労過程で材質 劣化を起こす。つまり、捩り疲労過程では、表面圧縮残 留応力の減衰、硬さの低下が起きる。疲労過程でこのよ うな材質劣化を起こしやすい材料ほど疲労亀裂の発生が 早期に起きる。捩り疲労過程でのこうした材質劣化を抑 制するには、下記の方法が有効である。

- **①** 高Mnにより焼入れ性を確保する。Crを多量添加 しない。
- ② Moを添加する。
- 3 Siを増量する。

(4) 上記捩り疲労破壊過程はC) の欄で述べた、軸方向に45度の面で粒界割れを伴う脆性破壊を抑制するためには、次の方法による粒界強化が有効である。

- ◆ Ti-B添加。
- **5** P, Cu, O量の低減。
- (5) 捩り疲労は破壊の亀裂が表面で発生する場合に比

べて、硬化層と芯部の境界で発生する場合には、捩り疲労強度は低下する。これを抑制するためには、Nb, V添加により析出強化を図ることが有効である。

【0007】本発明は以上の新規なる知見に基づいてな されたものであり、本発明の要旨は以下の通りである。 重量比として、C:0.35~0.65%、Si:0. $35\sim2.5\%$, Mn: 1.0~1.8%, Mo: 0. $0.5 \sim 0.8\%$, S: 0. $0.1 \sim 0.15\%$, A1: 0. $015\sim0$. 05%, Ti: 0. $005\sim0$. 05%, B: 0. 0005 \sim 0. 005%, N: 0. 002 ~0.01%、を含有し、P:0.020%以下、C u:0.05%以下、O:0.0020%以下に制限 し、またはさらに、Nb: 0. 01~0. 25%、V: 0. 03~0. 5%の1種または2種を含有し、または さらに、Cr:0.05~0.5%、Ni:0.1~ 3. 5%の1種または2種を含有し、残部が鉄および不 可避的不純物からなり、かつフェライトの組織分率が3 5%以下で、フェライト結晶粒径が20μm以下である ことを特徴とする捩り疲労強度の優れた高周波焼入れ軸 部品用鋼材である。

[0008]

【作用】以下に、本発明を詳細に説明する。本発明の成分含有範囲を上記の如く限定した理由について説明する。まず、Cは高周波焼入れ硬化層の硬さを増加させるのに有効な元素であるが、0.35%未満では硬さが不十分であり、また0.65%を超えるとオーステナイト粒界への炭化物析出が顕著になって粒界強度を劣化させ、脆性破壊強度の低下を招くとともに、焼き割れが発生しやすくなるため、含有量を0.35~0.65%に定めた。次に、Siは①捩り疲労過程での材質劣化の抑制、②オーステナイト粒界への炭化物析出抑制によるを成れている。といしながら、0.35%未満ではその効果は不十分であり、一方、2.5%を超える過剰添加は、むしろ粒界脆性を招くので、その含有量を0.35~2.5%とした。

【0009】Mnは①捩り疲労過程での材質劣化の抑制、②焼入れ性の向上、および鋼中でMnSを形成することによる③高周波焼入れ加熱時のオーステナイト粒の微細化と④被削性の向上を目的として添加する。しかし 40ながら、1.0%未満ではこの効果は不十分である。一方、Mnはオーステナイト粒界に粒界偏析を起こし、粒界強度を低下させて捩り応力下での脆性破壊を起こし易くし、そのため強度を低下させる。特にこの傾向は1.8%を超えると顕著になる。以上の理由から、Mnの含有量を1.0~1.8%とした。Moは①捩り疲労過程での材質劣化の抑制、②オーステナイト粒界に粒界偏析を起こすことによる粒界強度増加、および③焼入れ性の向上を狙いとして添加する。しかしながら、0.05%未満ではこの効果は不十分であり、一方、0.8%を超50

える過剰添加は、効果が飽和し経済性の観点から望ましくないので、その含有量を0.05~0.8%とした。【0010】また、Sは鋼中でMnSを形成、これによる高周被焼入れ加熱時のオーステナイト粒の微細化および被削性の向上を目的として添加するが、0.01%を超えるとその効果は不十分である。一方、0.15%を超えるとその効果は飽和し、むしろ粒界偏析を起こし粒界脆化を招く。以上の理由から、Sの含有量を0.01超~0.15%とした。Alは、①Nと結合してAlNを形成することによる高周波焼入れ加熱時のオーテスナイト粒の微細化を目的とし、および②脱酸元素としてあり、大粒の微細化を目的とし、および②脱酸元素として添加するが、0.15%未満ではその効果は飽和し、むしろ初性を劣化させるので、その含有量を0.015~0.05%とした。

【0011】Tiもやはり鋼中でNと結合してTiNとなるが、これによる①高周波焼入れ加熱時のオーステナイト粒の微細化、および②固溶Nの完全固定によるBN析出防止、つまり固溶Bの確保を目的として添加する。しかしながら、、0.005%未満ではその効果は不中分であり、一方、0.05%を超えるとその効果は飽和し、むしろ靱性を劣化させるので、その含有量を0.005~0.05%とした。Bは固溶状態でオーステナイト粒界に粒界偏析し、P,Cu等の粒界不純物を粒界から追い出すことにより粒界強度を増加させることを狙いとして添加する。しかしながら、、0.0005%未満ではその効果は不十分であり、一方0.005%を超える過剰添加は、むしろ粒界脆化を招くので、その含有量を0.0005~0.005%とした。

【0012】さらに、NはA1N等の炭窒化物析出によ る高周波加熱時のオーステナイト粒の微細化を目的とし て添加するが、0.002%未満ではその効果は不十分 であり、一方0.01%超では、その効果は飽和し、む しろBNを析出して固溶Bの低減を引き起こすので、そ の含有量を0.002~0.01%とした。一方、Pは オーステナイト粒界に粒界偏析を起こし、粒界強度を低 下させて捩り応力下での脆性破壊を起こし易くし、その ため強度を低下させる。特にPが0.020%を超える と強度低下が顕著となるため、0.020%を上限とし た。なお、より粒界強化を図る場合には、0.015% 以下が望ましい。また、CuもPと同様オーステナイト 粒界に粒界偏析を起こし、強度低下の原因となる。 特に Cuが0.05%を超えると強度低下が顕著となるた め、0.05%を上限とした。さらに、Oは粒界偏析を 起こし粒界脆化を起こすとともに、鋼中で硬い酸化物系 介在物を形成し、捩り応力下での脆性破壊を起こし易く し、強度低下の原因となる。特に〇が0.0020%を 超えると強度低下が顕著となるため、0.0020%を 上限とした。

【0013】次に、本発明では、「フェライトの組織分

率が35%以下で、フェライト結晶粒径が20μm以 下」とする。高周波焼入れは急速加熱であるため、高周 波焼入れ前の組織のフェライト分率が大きくまたそれが 粗大であると、フェライトの部分はオーステナイト化 後、炭素の拡散が不十分で炭素濃度が添加炭素濃度より も低くなり、焼入れ後、その位置での硬さが小さくな る。そのため、この位置が疲労亀裂の発生起点となり易 い。以上の現象は、フェライトの組織分率が35%を超 えるか、またはフェライト結晶粒径が20μmを超える と特に顕著になる。以上の理由でフェライトの組織分率 10 を35%以下で、フェライト結晶粒径を20μm以下と した。なお、より高捩り疲労強度を図るためには、フェ ライトの組織分率を25%以下とするか、またはさらに フェライト結晶粒径を15μm以下とするのが望まし い。また、本発明の高周波焼入れ軸部品用鋼材では、フ ェライト以外の残りの組織を特に限定するものではな く、その種類がパーライト、上部ベイナイト、下部ベイ ナイト、中間段階組織、マルテンサイト、あるいはこれ らの混合組織のいずれでもよい。

【0014】第2の発明は、高周波焼入れ後の芯部硬さを析出硬化により増加させ、硬化層と芯部の境界での捩り疲労亀裂の発生を抑制するとともに、高周波加熱時のオーステナイト粒を一層微細化し、粒界破壊防止による高強度化を図った軸部品用鋼材である。Nb, Vは鋼中で炭室化物を形成し、析出硬化により高周波焼入れ後の芯部硬さを増加させるとともに、高周波加熱時のオーステナイト粒を微細化させる効果を有する。しかしながら、、Nb含有量が0.01%未満、V含有量が0.03%未満ではその効果は不十分であり、一方、Nb:0.25%超、V:0.50%超ではその効果は飽和し、むしろ靱性を劣化させるので、これらの含有量をNb:0.01~0.25%、V:0.03~0.5%とした。

【0015】第3の発明は、Cr、Ni添加により、① 振り疲労過程での硬さの以下の抑制、および②焼入れ性 の向上を図った軸部品用鋼材である。なお、Niには、 粒界近傍の靱性を改善し、脆性破壊を抑制する効果も有 ì

する。ただし、Cr:0.05%未満、Ni:0.1% 未満ではこの効果は不十分である。一方、Cr:0.5% 超では高周波焼入れ前の組織中のセメンタイトが安定化し、高周波焼入れ加熱時にセメンタイトの溶解が困難になり、高周波焼入れ後の効果層の硬さが不十分となる。また、3.5%を超えるNiの多量添加は、効果が飽和し経済性の観点から好ましくない。以上の理由から、 $Cr:0.05\%\sim0.5\%$ 、 $Ni:0.1\sim3.5\%$ とした。

【0016】ここで、本発明の高周波焼入れ軸部品用鋼材では、製造条件は特に限定せず、本発明の要件を満足すればいずれの条件でもよい。例えば、鋼材素材の熱間圧延による製造を仕上げ温度;750~900℃、仕上げ圧延後700~500℃の温度範囲の平均冷却速度;0.1~1.7℃/秒の条件で行う方法が挙げられるが、本発明では特に限定するものではない。また、本発明では、本発明の要件を満足すれば熱間圧延後、高周波焼入れの前に焼準、焼鈍、熱間鍛造等の加工熱処理を必要に応じて行うことができる。

[0017]

20

【実施例】以下に、本発明の効果を実施例により、さらに具体的に示す。表1,2の組成を有する鋼材を34mmφの棒鋼に圧延した。この棒鋼から、光学顕微鏡観察試験片を採取し、5%ナイタール液で腐食して200倍、400倍で観察しフェライト分率およびフェライト結晶粒径を求めた。表1,2にフェライト分率、フェライト結晶粒径を示す。また、比較鋼材23,24,25の材料については圧延後850度×1時間加熱し、850~500℃の温度範囲を1.2℃/秒の冷却速度で冷30却した。本材料に新規に23M,24M,25Mと記号を付し、フェライト分率およびフェライト結晶粒径を測定した。その結果を表3に示す。これらの材料から、平行部直径20mmの静的捩り試験片、捩り疲労試験片を採取した。

[0018]

【表1】

		7						٠,	,,							8	т т
72741	(100)	17	14	7	9	4	4	25	×	7	01	5	4	टा	6	6	13
11:11	8,	œ	и	14	7	5	þ	23	11	L	91	Þ	2	×	ÞĪ	П	12
	Ŋ	_	_	_	ı	1	_	_	_	-	_	i	_	-		_	1
	ర	ı	ı	ı	ı	1	1	ı	1	ţ	1	1	ı	ŀ	I	ι	ı
	٨	ŀ	1	1	1	-	1	-		-	l	ł	I	0. 10	l	ı	0.07
	Ź	l	1	1	ı	t	-	-	1	ı	l	ı	1	ı	0.018	0.020	0.206
•	0	0.0016	0.0013	0.0014	0.0014	0.0010	0.0008	0.0013	0.0015	0.0007	0.0013	0.0015	0.0009	0.0014	0.0015	0.0007	0 0017
(w 1%)	ਠੋ	Q 01	< 0.01	O O	< 0.01	0.02	0.01	0.03	< 0.01	10.0	0.02	< 0.01	0.03	0.02	< 0.01	0.02	0.01
	۵	0.011	0.012	0.003	0.013	0.012	0.012	0.013	0.012	0.014	0.011	0.011	0.008	0.013	0.013	0.014	0.00
4 成分	Z	0.0058	0.0062	0.0036	0.0088	0.0051	0.0056	0.0071	0.00T3	0.0068	0.0065	0.0072	0.0049	0.0062	0.0058	0.0061	0.0059
0 化学	В	0.0024	0.0025	0.0024	0.0024	0.0025	0.0024	0.0026	0.0028	0.0017	0.0024	0.0024	0.0027	0.0025	0.0025	0.0025	0.0028
140	Ţ	0.03	a 021	0.02	0.021	0.025	0.024	0.025	0.025	0.024	a. 023	0.024	0.021	0.018	0.023	0.023	0.024
拉羅	۱۷	0.024	0:030	0.035	0.028	a 630	0.028	0.03	व छा	0.030	0 020	a 029	a 029	0.030	0.028	0.031	0.031
书	S	020 D	a 018	0.021	a 023	a 019	Q. 019	Q 022	0.021	0.025	0.023	0.013	0.018	0.021	0.024	0.025	0.018
	Mo	0, 10	0 12	a 12	ឧប	0.15	21 D	Q. 10	81 D	Q 24	0.51	0.75	12 0	ŭ 11	0.10	11 0	0.09
	¥	1.62	1.30	1.34	1.08	1.31	1.40	1.31	1.11	1.28	1.28	1.05	1.37	1.30	1.30	18.1	1.28
	S	0.38	0,40	80	0.51	0.40	.0.41	2 13	1.42	122	0.75	0.48	a 37	88	0.40	0.37	Q 41
	ပ	0.38	0.41	0.47	0.53	0.58	0.63	0.42	0.52	0.58	0.42	0.53	0.57	0.42	0.52	0.58	0.43
	£	-	2	3	4	5	9	7	80	6	2	11	12	13	14	15	16
M	区分第一発明鋼材							無	~ 発 :	三本	2						

[0019]

【表2】

		9														10
72511	10m) (mm)	10	3	4	13	15	5	83	88	17	4	15	14	17	16	83
11.7	8. B	81	4	5	83	82	9	\$	æ	83	9	z	12	ន	89	42
	ix		1.24	00.00	1	1	0.28	-	1	0.32	1	ı	1	1	1	ŀ
	්ට	0.31	ı	0.19	0.31	0.30	0.12	-	1	0.28	-	_	1	1	0.83	ı
	>	ı	-	_	0.12	07 '0	0.07	1	0.14	0.07	l	_	1	1	_	1
	ź	1	ı	_	-	0,021	0.015	-	0.172	0.026	_	_	ı	-	-	1
	0	0.0016	0.0014	0.0013	0.0017	a 0013	0.0014	0.0017	0.0016	0.0018	0.0017	0.0017	0.0015	0.0016	0.0015	0.0019
(w t %)	تَ	< 0.01	0.02	0.02	< 0.01	0.01	0.02	Q 01	< 0.01	Q 01	Q 01	< 0.01	< 0.01	0.01	0.01	0.01
1	Ы	0.012	Q 013	a 008	Q 013	a 013	0.013	0.012	0.013	0.015	0.013	0.013	0.014	0.027	0.013	0.017
华成分	z	0.0071	0.0063	0.0061	0.0064	0.0064	0.0061	0.0061	0.0093	0.0081	0.0078	0.0077	0.0070	0.0072	0.0071	0.0033
Ø (k \$	В	0.0027	0.0027	0.0025	0.0026	0.0025	0.0025	0.0024	0.0025	0.0025	0.0024	0.0024	1	0.0025	0.00Zd	1
#	Ţi	0.021	0.023	0.021	0.021	0.025	0.024	0.022	0.021	0.025	a 022	a 021	0.022	0.022	a 020	-
以無	Al	0.031	0.028	0.029	0.029	0.028	0.030	0.030	0.025	0.028	0.027	0.029	0.029	a 030	0.030	0.028
₩	S	0.028	0.026	0,031	0.054	0.055	0.048	0.062	0.067	0.042	<i>120</i> 0	120 0	0 02	a 019	0.018	0.019
	οχ	0.08	80 TO	90.08	60.0	0.08	90.0	90.0	0.09	0.08	a 11	. —	0T 10	a 10	00 B	ı
	Ź	1.58	1.03	1.17	1.60	1.58	1.52	1.07	1.10	1.08	1.28	1.34	1.28	1.27	1. 18	Q 79
	Si	8	0.38	0.40	0.41	0.39	0.38	212	1.61	1.72	0.01	0.42	0.41	0.41	0.45	0.23
	ပ	0.44	0.53	0.52	0.43	0.43	0.44	0, 40	0.38	0.37	0.52	0.41	0.53	0.42	0.41	0.43
2	g E	17	82	23	83	ឧ	z	Ø	ষ	છ	83	12	88	প্ত	೫	31
M	区分策引発明材						31	数	3	**						

[0020]

*【表3】

区	Я	熱処理材鋼No.	[]	フェライト分率 (%)	フェライト結晶粒径 (μm)
第1発	明鋼材	2 3 M	2 3	3 3	1 7
第2発	明鋼材	2 4 M	2 4	2 4	1 0
第3発	明鋼材	2 5 M	2 5	2 8	1 4

【0021】静的捩り試験片、捩り疲労試験片について 0°×1時間の条件で焼戻しを行った。いずれも有効硬 周波数8.5 k H z で高周波焼入れを行い、その後17 50 化層深さは約5 mmである。その後、静的捩り試験、捩 り疲労試験を行った。捩り疲労特性は5×10⁵ サイクルでの時間強度で評価した。表4,5に各供試材の静的捩り強度、捩り疲労強度を示す。また、捩り疲労過程での材質劣化挙動を評価するために、応力振幅700MPaで1×10⁵ サイクル疲労試験を行った試験片について、①表面での圧縮残留応力の減衰量および②フェライト(211)面のX線回折ピークの単価幅の減衰量を評価した。X線回折ピークの半価幅の減衰量は、疲労過程での正味の硬さの低下量を評価するために用いた。X線*

*発生源としては、Cr管球を使用した。表4,5のNo.1~25Mは本発明鋼材であるが、本発明鋼材では、いずれも優れた静的捩り強度、捩り疲労強度を有している。特に捩り疲労強度は、0.4%C鋼で概ね600MPa以上、0.5%C鋼で概ね700MPa以上と優れた特性が得られている。

[0022]

【表4】

区分	No.	静的限り強度	振り疲労強度	疲労過程 での	破労過程 での
<u> </u>	INUL	(MPa)	(5×10⁴回) (MPa)	残留吃力減衰量 (MPa)	半個階級少量
第1発明網材	1	1742	586	145	0.073
	2	1920	628	150	0.042
	3	2058	668	84	0.025
	4	2133	698	102	0.016
1	5	2125	728	132	0.013
	6	2091	756	134	Q 010
	7	1733	632	54	0.038
	8	2144	705	7 3	Ø 016
	9	2131	731	68	0. 010
	10	1913	638	75	0. 032
	11	2145	711	56	0.012
	12	2137	743	58	Q 010
第2発明網材	13	1921	663	142	0.028
	14	2093	745	137	0.010
	15	2118	m	130	0.008
	16	1985	684	126	0.021

注: *広力機幅700MPaで1×10 回販労品験を行った記録片で測定

[0023]

13		Υ	,	, -	1
区分	No.	静的振り強度	振り疲労強度 (5×10*回)	度労過程。での 残留応力減衰量	度労過程*での 半価に対し置
		(MPa)	(MPa)	(MPa)	使
第3彈爛材	17	1979	620	151	0.043
	18	2021	<i>7</i> 53	148	0.009
	19	2125	703	145	0.014
	20	1984	642	137	0 031
	21	1993	636	146	0.034
	22	1987	647	140	0.030
第1発明網材	23M	1919	623	. 89	0.041
第2発明鋼材	24M	1747	589	92	0. 101
第3彈剛材	25M	1731	581	83	0. 122
比較鋼材	23	1863	595	173	0.123
	24	1695	553	210	0. 201
	25	1673	547	191	0. 292
	26	1928	643	287	0.063
	27	1721	546	295	0.362
	28	1825	672	153	0. 021
	29	1677	586	148	0.063
	30	1820	573	181	0. 125
	31	1618	503	320	0.472

注: *広力振幅700MPaで1×101回底光は験を行った試験片で測定

【0024】一方、比較鋼材23,24,25はフェライト分率またはフェライト結晶粒径のいずれか、または両者が本発明の範囲を上回った場合であり、比較鋼材26,27,28はSi,Mo,Bの含有量が本発明の範囲を下回った場合であり、比較鋼材29,30はP,Crの含有量が本発明の範囲を上回った場合であり、比較鋼材31はSi,Mn,Mo,Ti,Bの含有量が本発明の範囲を下回り、フェライト分率、フェライトも配置が本発明の範囲を上回った場合であり、いずれも同一炭素量の本発明鋼材に比較して、静的捩り強度、捩り疲労強度が劣っている。特に捩り疲労強度は、0.4%C鋼で、いずれも600MPa未満、0.5%C鋼で700MPa未満であり、本発明鋼材に比較して顕著に劣っている。比較鋼材の「疲労過程での残留応力減衰量」

「疲労過程での半価幅の減少量」は、同一炭素量の本発明鋼に比較して相対的に大きい。つまり、本発明鋼材では、捩り疲労過程での材質劣化が抑制されたことにより、優れた捩り疲労強度が得られていることが明らかで

ある。

[0025]

両者が本発明の範囲を上回った場合であり、比較鋼材 2 【発明の効果】以上述べたごとく、本発明の高周波焼入 6,27,28はSi,Mo,Bの含有量が本発明の範 30 れ軸部品用鋼材を用いれば、捩り疲労強度の優れた高周 囲を下回った場合であり、比較鋼材 29,30はP,C 波焼入れ軸部品の製造が可能となり、産業上の効果は極 r の含有量が本発明の範囲を上回った場合であり、比較 めて顕著なるものがある。

【図面の簡単な説明】

【図1】(a)はセレーション部を有するシャフ、

(b) はフランジ付シャフト、(c) は外筒付シャフトを示した図

【符号の説明】

10 シャフト

11, 12 セレーション

40 20, 21 シャフト

22 フランジ

30, 31, 32 シャフト

33 外筒部

【図1】

(a)

(b)

(c)

