

Freshwater corridor networks in the conterminous US: a coarse-filter approach

Journal:	Ecological Applications
Manuscript ID	Draft
Wiley - Manuscript type:	Articles
Date Submitted by the Author:	n/a
Complete List of Authors:	McCullough, Ian; Michigan State University, Department of Fisheries and Wildlife Hanly, Patrick; Michigan State University, Department of Fisheries and Wildlife King, Katelyn; Michigan State University, Department of Fisheries and Wildlife Wagner, Tyler; U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit
Substantive Area:	Conservation < Landscape < Substantive Area, Reserves/Protected Areas < Management < Substantive Area, Databases < Data < Substantive Area, Limnology/Hydrology < Ecosystems < Substantive Area
Organism:	
Habitat:	Freshwater < Aquatic Habitat < Habitat
Geographic Area:	United States < North America < Geographic Area
Key words/phrases:	climate change, connectivity, coarse-filter, corridors, graph theory, lakes, network, protected areas, rivers, streams
Abstract:	Maintaining regional-scale freshwater connectivity is challenging owing to the dendritic, easily fragmented structure of freshwater networks, but is essential for promoting ecological resilience under climate change. Although the importance of stream network connectivity has been recognized, lake-stream network connectivity has largely been ignored. Furthermore, protected areas are generally not designed to maintain or encompass entire freshwater networks. We analyzed freshwater corridor networks, disproportionately important network lakes (i.e., "hubs"), and their protection status in the conterminous US. We calculated connectivity scores for 385 freshwater networks with > 4 lakes (≥ 1 ha) and identified 2080 hub lakes (2% of all network lakes) that are critical for maintaining intact networks. Freshwater connectivity scores were not correlated with any type of protection. Just 3% of networks received high connectivity scores based on their large size and structure (medians of 1303 lakes, 498.6 km north-south stream distance), but these also contained a median of 454 dams. In contrast, undammed networks (17% of networks) were considerably smaller (medians of 6 lakes, 7.2

km north-south stream distance), indicating that the functional connectivity of the largest potential freshwater corridor networks in the conterminous US currently may be diminished compared to smaller, undammed networks. Network lakes and hubs were protected at similar rates nationally across different levels of protection (8-18% and 6-20%, respectively), but were generally more protected in the western US. Our results indicate that conterminous US protection of major freshwater corridor networks and the hubs that maintain them generally fell short of the international conservation goal of protecting an ecologically representative, well-connected set of fresh waters (\geq 17%) by 2020 (Aichi Target 11). Conservation planning efforts might consider focusing on hubs, particularly in larger networks, less protected or biodiverse regions, to support connectivity for freshwater biodiversity conservation under climate change.

SCHOLARONE™ Manuscripts

1 Running head

- 2 Freshwater corridor networks
- 3 Title
- 4 Freshwater corridor networks in the conterminous US: a coarse-filter approach

6 Authors

5

- 7 Ian M McCullough¹, Patrick J Hanly¹, Katelyn BS King¹, Tyler Wagner²
- 8 ¹Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824,
- 9 USA

- 10 ²U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit,
- 11 Pennsylvania State University, University Park, PA, 16801, USA
- 12 Address for correspondence: Department of Fisheries and Wildlife, Michigan State University,
- East Lansing, MI, 48824, USA, email: immccull@gmail.com
- 15 Disclaimer: This draft manuscript is distributed solely for purposes of scientific peer review. Its
- 16 content is deliberative and predecisional, so it must not be disclosed or released by reviewers.
- 17 Because the manuscript has not yet been approved for publication by the US Geological Survey
- 18 (USGS), it does not represent any official finding or policy.

Open research: All data, metadata, and R analysis scripts are currently available at https://github.com/cont-limno/TripleC. Upon publication, this repository will be permanently archived in a publicly accessible online location and cited in our methods.

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

19

20

21

Abstract

Maintaining regional-scale freshwater connectivity is challenging owing to the dendritic, easily fragmented structure of freshwater networks, but is essential for promoting ecological resilience under climate change. Although the importance of stream network connectivity has been recognized, lake-stream network connectivity has largely been ignored. Furthermore, protected areas are generally not designed to maintain or encompass entire freshwater networks. We analyzed freshwater corridor networks, disproportionately important network lakes (i.e., "hubs"), and their protection status in the conterminous US. We calculated connectivity scores for 385 freshwater networks with > 4 lakes (> 1 ha) and identified 2080 hub lakes (2% of all network lakes) that are critical for maintaining intact networks. Freshwater connectivity scores were not correlated with any type of protection. Just 3% of networks received high connectivity scores based on their large size and structure (medians of 1303 lakes, 498.6 km north-south stream distance), but these also contained a median of 454 dams. In contrast, undammed networks (17% of networks) were considerably smaller (medians of 6 lakes, 7.2 km north-south stream distance), indicating that the functional connectivity of the largest potential freshwater corridor networks in the conterminous US currently may be diminished compared to smaller, undammed networks. Network lakes and hubs were protected at similar rates nationally across different levels of protection (8-18% and 6-20%, respectively), but were generally more

protected in the western US. Our results indicate that conterminous US protection of major
freshwater corridor networks and the hubs that maintain them generally fell short of the
international conservation goal of protecting an ecologically representative, well-connected set
of fresh waters (≥ 17%) by 2020 (Aichi Target 11). Conservation planning efforts might consider
focusing on hubs, particularly in larger networks, less protected or biodiverse regions, to support
connectivity for freshwater biodiversity conservation under climate change.
Key Words Climate change, coarse-filter, connectivity, corridors, graph theory, lakes, network, protected areas, rivers, streams

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

permeability gradients) (Rayfield et al. 2011).

Introduction

Connectivity is important for numerous ecological processes, including gene flow, migrations, and species range shifts, and is therefore often key for promoting ecological resilience under climate change (Heller and Zavaleta 2009). Such processes operate over a range of spatial and temporal scales from local to continental and transient to evolutionary (Littlefield et al. 2019, Armstrong et al. 2021). As habitats are increasingly lost, degraded, or fragmented, maintaining connectivity among habitats at these various spatial and temporal scales becomes particularly challenging (Fischer and Lindenmayer 2007). From a biodiversity conservation perspective, it is often critical to identify, create, or protect corridors to ensure long-term population maintenance and the potential for species range shifts under climate change (Beier & Noss 1998, Stralberg et al. 2020). Corridors are natural or human-created features (habitat or non-habitat) that facilitate connectivity among two or more habitat patches (Beier & Noss 1998, Costanza and Terando 2019). Numerous studies have attempted to identify corridors for conservation purposes. Many earlier studies focused on landscape-scale modeling of least cost pathways or cost surfaces for select species among core habitats (often protected areas) based on various methods including expert opinion, literature review, or observed species-habitat relationships (Beier et al. 2008, Pullinger and Johnson 2010). Similarly, other studies have applied graph theory to model connectivity across landscapes reflecting the spatial arrangement of numerous habitat patches and potential corridors across the underlying landscape (Urban and Keitt 2001, Urban et al. 2009). Over time, graph-based studies have been adapted to incorporate more nuanced information on the characteristics of both patches (e.g., shape) and the landscape (e.g.,

Whereas such approaches have been successfully applied for landscape-scale conservation planning, researchers have encountered limitations when applying them at larger spatial scales, including computational constraints, inability to resolve patch characteristics (e.g., shape, habitat quality), and the fact that well-studied, candidate focal species rarely range across large spatial extents or adequately represent regional biodiversity (Theobald et al. 2012). Coarsefilter corridor mapping approaches represent a common solution to these challenges for regionalto continental-scale conservation planning, particularly when the goals are to link distant protected areas for multiple taxa (Beier et al. 2011). Such approaches build off fine-filter graphbased or least-cost approaches, but instead rely on generalized surfaces of landscape permeability as a function of natural vegetation or lack of human presence (Theobald et al. 2012). Although such larger-scale, coarse-filter studies often have to make simplifying assumptions about connectivity (e.g., that human presence is broadly representative of fine-scale features such as fences and roads that restrict movements) (Lawler et al. 2013, Nuñez et al. 2013, Belote et al. 2016), coarse-filter approaches can be useful when prioritizing efficiency, relatively mobile, larger-bodied, or generalist species, or diverse abiotic habitat conditions that promote biodiversity (Brost and Beier 2012, Krosby et al. 2014, Costanza and Terando 2019). In more recent years, some studies have also incorporated climate change projections into landscape permeability models to account for climate change effects on habitat distribution and accessibility (i.e., "climate connectivity") (McGuire et al. 2016, Carroll et al. 2018, Parks et al. 2020).

96

97

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Advancing coarse-filter freshwater corridor mapping across lakes, streams, and rivers

Although there is a rich and growing conservation literature on coarse-filter corridor mapping at broad spatial scales, most of this progress has occurred in the terrestrial realm.

Despite the fact that the freshwater biodiversity crisis was identified decades ago (Abell 2002, Dudgeon et al. 2006), freshwater biodiversity continues to experience greater rates of endangerment and extinction than marine or terrestrial biodiversity (Collen et al. 2014, McRae et al. 2017, Williams-Subiza and Epele 2021). Many studies have demonstrated the importance of connectivity within freshwater networks for maintaining freshwater populations and community structure across taxa (Altermatt and Fronhofer 2018, de Mendoza et al. 2018, Schmera et al. 2018). Of existing freshwater corridor mapping studies, the majority has focused on river and stream networks at landscape, watershed, or regional scales, without incorporating lentic waterbodies (Collier 2011, Saunders et al. 2016, but also see Gardner et al. 2019, Harvey and Schmadel 2021).

The lack of broad-scale freshwater corridor studies across both lotic and lentic ecosystems may be explained somewhat by the dendritic nature of freshwater landscapes (i.e., networks of streams, rivers, and lakes). Freshwater networks are easily fragmented by numerous anthropogenic (e.g., impoundments, hydrologic alterations) or natural factors (e.g., flow direction, seasonal hydrology) (Erős et al. 2012, LeMoine et al. 2020), many of which are difficult to represent spatially across multiple regions. Another potential limitation is the imperfect translatability of the terrestrial graph-based approaches to freshwater networks of lakes, streams, and rivers (Nel et al. 2009, Hermoso et al. 2018). Topologically, lakes resemble nodes (i.e., patches) and streams and rivers resemble edges (i.e., corridors) in a traditional graph theory framework, but lakes, streams, or rivers may each represent preferred habitat, with others functioning as marginal habitat or corridors depending on the taxa of interest (Tonn and

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

Magnuson 1982, Jones 2010, Heim et al. 2019). Regardless, it is important to consider lakes, streams, and rivers together when mapping freshwater corridors due to their important structural and ecological linkages (Saunders et al. 2016, McCullough et al. 2019a, King et al. 2021a). Moreover, such freshwater networks represent the only possible corridors for strictly freshwater taxa without human intervention. In light of these facts, coarse-filter approaches focused on network structural characteristics that broadly influence connectivity among lakes, streams, and rivers may represent a promising avenue for identifying potential freshwater corridors for conservation purposes over large areas.

A concept from terrestrial graph theory that potentially translates well to fresh waters is the important role of particular nodes in maintaining structural landscape connectivity (Urban and Keitt 2001, Rayfield et al. 2011). We refer to these as "hubs": major nodes within freshwater networks that disproportionately influence and reinforce whole-network structural connectivity (Muirhead & MacIsaac 2005) (Figure 1a). Because lakes are generally ignored in many stream and river connectivity studies, we considered lakes as nodes and streams as edges and therefore lakes as potential hubs, but recognize that it may make sense to designate stream reaches as nodes under some circumstances (e.g., regions with detailed stream habitat data or few lakes). Regardless, network fragmentation increases and whole-network connectivity is considerably reduced if hubs become compromised due to factors such as impoundments or other hydrologic alterations, water quality declines, biological invasions, or shoreline developments (Figure 1b). Terrestrial studies have demonstrated the importance of particular nodes for maintaining network structure, including stepping-stone nodes that represent lower quality habitat (Saura et al. 2014, Dilts et al. 2016). Therefore, protecting and managing hubs to maintain intact freshwater networks for lotic-associated species may be advisable, particularly in a climate change context.

For example, loss of hubs could threaten access to seasonal thermal refuges (Armstrong et al. 2021) or persistent waterbodies in dry landscapes (Jaeger et al. 2014), or the potential for species range shifts (Comte et al. 2013, Lynch et al. 2016, Ebersole et al. 2020). Future work is needed, however, to examine directly the biological importance of hubs within freshwater networks.

Finally, a major impetus for coarse-filter connectivity mapping is to identify, create, or protect corridors among protected areas (Costanza and Terando 2019). Protected areas, however, are generally focused on terrestrial biodiversity (Saunders et al. 2002, Abell et al. 2007); thus perhaps there has been less motivation for coarse-filter freshwater corridor mapping or conservation prioritization. Moreover, freshwater biodiversity and ecosystems are often poorly represented in protected areas, including across the US (Jenkins et al. 2015, Bastin et al. 2019, McCullough et al. 2019b). Notably, global protection targets for freshwater ecosystems (Aichi Target 11; CBD 2010) have been only partly achieved. In 2020, the 5th Global Biodiversity Outlook deemed Target 11 as "partially achieved": the 17% protection target was likely achieved globally, but not necessarily based on ecologically representative, well-connected fresh waters (Secretariat of the Convention on Biological Diversity 2020). Therefore, protection of freshwater corridors may currently be insufficient in many regions and countries.

Study objective and research questions

Our objective was to provide a national-scale, coarse-filter assessment of freshwater corridors in the conterminous US, encompassing characteristics of freshwater networks, potential corridor networks, and their protected status with respect to the 17% Aichi conservation target. We focus on corridor networks owing to the need to link numerous local corridors to achieve regional-scale connectivity (Beier et al. 2008, Beier et al. 2011). This work builds upon the

primarily terrestrially-focused coarse-filter connectivity literature for conservation purposes by extending these practices to fresh waters and explicitly considering the role of major nodes (i.e., hubs) in corridor networks. This work also represents the first conterminous US-wide analysis of freshwater corridor protection, another topic that has been a major focus in the terrestrial realm. Specifically, we asked:

- - 1. What freshwater networks can best represent freshwater corridor networks?
- 173 2. What lakes represent freshwater network hubs?
- 174 3. How well protected are these freshwater corridor networks and hubs?

Generally, we expected most freshwater networks to be relatively small, heavily dammed, and susceptible to fragmentation, limiting the availability of regional freshwater corridor networks in the conterminous US. We also expected hub lakes to be more prevalent in regions with more lakes overall and for protection of hub lakes and freshwater corridor networks to fall below the 17% Aichi target nationally, except in the western US where large protected areas are concentrated. This analysis represents an important step for freshwater biodiversity conservation in a climate change context and is intended to facilitate future biodiversity-centered work including observations of species and genetic diversity, as well as important processes of gene flow, migrations, and range shifts.

184

185

186

187

188

189

167

168

169

170

171

172

175

176

177

178

179

180

181

182

183

Methods

Freshwater connectivity metrics and scoring criteria

A challenge associated with assessing conterminous US-scale freshwater connectivity is obtaining data at ecologically appropriate resolutions across such a large spatial extent. We applied a novel, conterminous US-scale dataset, LAGOS-US-NETWORKS v1.0, that represents

graph-based freshwater networks with lakes as nodes and streams as edges (King et al. 2021b, c). This dataset contains 86511 on-network lakes ≥ 1 ha in surface area and approximately 39.5 million stream reaches that comprise a total of 898 networks (Fig 2a). Lakes were defined as permanent, lentic waterbodies ≥ 1 ha (both natural lakes and reservoirs) with a geographically defined polygon in the National Hydrography Dataset v2 (Cheruvelil et al. 2021, Smith et al. 2021). LAGOS-US-NETWORKS also includes on-network dams (n = 48777) and metrics for the number of total dams within each network and the number of upstream or downstream dams from individual lakes. We calculated additional connectivity metrics described below using all pairs of connected lakes and the stream distances connecting them.

In our representation of freshwater networks, edges were weighted by the total stream course distance (km) and were undirected connections between pairs of nodes such that travel through each network was irrespective of streamflow direction. Subsequently, we analyzed the relationship among nodes within networks using several metrics that broadly represented the density of edges and nodes, accessibility of nodes, susceptibility of networks to fragmentation, and climatic heterogeneity within networks (Table 1). All network connectivity metrics were calculated using the igraph R package (Csardi & Nepusz 2006). We prioritized variables that reflected these phenomena to represent coarse-filter structural connectivity in a climate change context. Although we recognize that only relatively mobile taxa are potentially capable of traveling throughout larger networks (e.g., to reach cooler habitats at higher latitudes), many of our connectivity metrics (e.g., susceptibility to fragmentation, distances between nodes) are also relevant to slow-dispersing taxa whose resilience under climate change relies more on localized movements. Therefore, a coarse-filter structural connectivity analysis of these networks

generally represents a useful step for freshwater biodiversity conservation in a climate change context.

Coarse-filter, broad-scale connectivity studies in the terrestrial realm often require simplifying assumptions at this scale (e.g., that snapshot metrics of generalized human presence reflect landscape permeability; Theobald et al. 2012). Therefore, in the freshwater realm, we made various, similar assumptions about what our freshwater connectivity metrics represent at the scale of the conterminous US. Such assumptions may require revision for studies at finer spatial scales when different data are available or for specific taxa of interest. Specifically, we assumed static hydrology (i.e. not accounting for seasonal or interannual variation) and that all dams are structurally similar and well represented across the US, and we do not include fine-scale barriers such as waterfalls, culverts, or slope gradients. We also did not account for networks that crossed international borders due to data constraints.

We integrated the various freshwater connectivity metrics (described and defined in Table 1) into a composite network connectivity score that could easily be compared across networks using a principal component analysis (PCA). We only performed this analysis for networks with > 4 lakes (n = 385); however, we excluded the Mississippi River network due to its exceptional size (containing 37.9% of all network lakes). Prior to the PCA, dam rate and percent articulation points were rescaled such that higher values represented fewer barriers and greater resistance to network fragmentation, respectively (and therefore greater overall connectivity). We then rescaled all input variables (mean of 0 and standard deviation of 1) before PCA calculations. We used 2 principal components, which explained 60% of variation in the data, to calculate connectivity scores. We opted to use 2 components based on agreement between the Kaiser criterion and Horn's parallel analysis for component retention (Dinmo 2018).

236

237

238

239

To facilitate usefulness of our study for management and policy decision-making processes, we analyzed freshwater connectivity scores across 9 ecoregions used by the US Environmental Protection Agency National Aquatic Resource Survey (NARS) (Herlihy et al. 2008) (Figure 2b). For networks that spanned multiple ecoregions, we assigned ecoregions based on the majority of nodes within those networks.

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

Hub lake determination

Conceptually, hubs within a freshwater network are vital for maintaining connectivity across large expanses. Hub lakes were determined based on individual metrics of lake nodes within networks. We defined hub lakes as lakes that were articulation points in their network and were in the top quintile of total node strength and betweenness centrality within their network (Figure 3). Hence, each network with ≥ 5 lakes will contain at least one hub lake using our definition as long as an articulation point exists in the network. Articulation points are by definition bridges among two or more subnetworks, meaning that an organism must travel through an articulation point to move aquatically from one subnetwork to another. High node strength for a lake indicates that it connects a high total network distance among lakes, whether through a multitude of short streams or a handful of long streams. Lakes with high betweenness centrality have shorter aquatic travel distances crossing through them and are more likely to be stepping stones for organisms moving within a network. Combined, these metrics indicate a lake that is necessary for network movement and connects long distances while being a more likely path for biota than other lakes in a network. Finally, although we did not differentiate between natural lakes and reservoirs in aforementioned connectivity metrics, we reported differences in the prevalence of hubs between natural lakes and reservoirs for waterbodies ≥ 4 ha.

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

online location and cited in our methods.

Analysis of protected networks, network lakes, and hub lakes

Defining protected freshwater ecosystems depends on different levels of legal protection. Therefore, we considered both strict (i.e., managed for biodiversity; Gap Analysis Program (GAP) status 1-2) and multi-use (i.e., managed for both biodiversity and natural resource extraction; GAP status 1-3) protection (Fig 2c) in the US Protected Areas Database v2.0 (US Geological Survey 2018). We also considered protection based on lakes occurring within protected areas (i.e., based on lake centers) and on at least 80% of lake watersheds occurring within protected areas given the importance of watersheds for maintaining freshwater habitats (sensu McCullough et al. 2019b). Under these different definitions of protection, the narrowest is based on strict 80% watershed protection, whereas the loosest is based on lake centers occurring within either strict or multi-use protected areas. Watersheds were based on LAGOS-US-LOCUS v1.0 (Cheruvelil et al. 2021, Smith et al. 2021). Using these definitions, we calculated the percentage of lakes in each network currently protected. Similarly, we analyzed current protection of hub lakes using these same definitions and compared protection of hub lakes to protection of all network lakes. We also compared natural log-transformed network connectivity scores to proportions of networks protected under all definitions of protection using Pearson's correlation coefficients. Finally, we analyzed protection status of whole networks, network lakes, and hub lakes with respect to the 17% Aichi target both nationally and by NARS ecoregions. All data, metadata, and R analysis scripts are currently available at https://github.com/cont-limno/TripleC. We used R version 4.0.4 for analyses (R Core Team

2021). Upon publication, this repository will be permanently archived in a publicly accessible

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

Results

Freshwater network characteristics

Of the 898 freshwater networks across the conterminous US, most were relatively small (medians of 3 lakes, 5.6 km N-S stream distance, and 1 dam). In contrast, larger networks were relatively rare: just 10.0% and 7.6% of networks contained at least 50 lakes or spanned at least 100 km of N-S stream distance, respectively. The Mississippi River network contained 37.9% of all network lakes (32811 lakes) and 51.2% of all network dams (24986 dams). Larger networks also tended to have more dams: number of dams was positively correlated with number of lakes and N-S stream distance across all networks (Pearson's r = 0.94 and 0.74, respectively, p < 0.001) (excluding the Mississippi River network). Aside from dams, larger networks were also generally more susceptible to fragmentation: 32.8% of network lakes were articulation points in networks with > 3 lakes, whereas this value was 18.5% across all networks (Table S1). Similarly, maximum N-S stream connectivity within networks was also susceptible to fragmentation with a median of 1 network cut necessary to undermine the full latitudinal breadth of all networks, as well as those with > 3 lakes. Freshwater network statistics across NARS ecoregions are reported in Table S1. In summary and as expected, our analysis of freshwater networks across the conterminous US indicates that most networks are relatively small and that larger networks generally have more dams and are structurally more susceptible to habitat fragmentation. In other words, the large networks potentially able to represent regional freshwater corridor networks are relatively few in number, heavily dammed, and particularly prone to habitat fragmentation.

302

303

Hub lakes: distribution and characteristics

We identified 2080 hub lakes across the conterminous US, representing 2.4% of network

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

lakes (Table S1, Figure 4a). This percentage varied marginally across most ecoregions, but was just 0.1% in the Northern Plains (NPL) ecoregion and 1.5 - 3.6% across all other ecoregions. Across NARS ecoregions, abundance of hub lakes was positively correlated with abundance of networks (Pearson's r = 0.79, p = 0.01). Hubs were generally most abundant in the 3 ecoregions with the most networks (Central Plains (CPL): 528 hubs, Northern Appalachians (NAP): 451 hubs, Upper Midwest (UMW): 260 hubs). Ecoregions with fewer networks were generally dominated by the Mississippi River network and also had generally fewer hubs (NPL: 28 networks/5 hubs, Southern Appalachians (SAP): 10 networks/295 hubs, Southern Plains (SPL): 8 networks/103 hubs, Temperate Plains (TPL): 58 networks/190 hubs). In the western US, which is mostly outside the Mississippi River network, the Western Mountains (WMT) and Xeric (XER) ecoregions had 169 and 79 hubs, respectively. Overall, hub lakes were found throughout the conterminous US, but were generally more abundant in regions with more freshwater networks, consistent with our expectations. Of all 2080 hub lakes, $1616 (77.7\%) \ge 4$ ha could be classified as either reservoirs or natural lakes, of which 1168 (72.3%) were reservoirs and 448 (27.7%) were natural lakes. Therefore, hub lakes were considerably more likely to be reservoirs than the general population of lakes; 43.5% of 137465 lakes in the conterminous US \geq 4 ha are classified as reservoirs. Of the 246 networks with hub lakes, just 27 networks (11.0%) had no dams. We found that 357 (21.5%) and 6 (0.4%) hub lakes (excluding the Mississippi network) had one dam or multiple dams directly on the lake, respectively. Additionally, even if a dam was not directly on a hub

lake, there were 0 - 301 dams upstream and 1 - 18 dams downstream from hub lakes within the

network, respectively. Hub lake surface area was a median of 15.4 ha (min = 1.0 ha; max =

107534.6 ha; Figure S3) compared with a median surface area of 4.0 ha (min = 1.0 ha; max = 129612.0 ha) for all network lakes.

Network connectivity scores followed a left-skewed distribution (Figure 4a, b, S2). Of

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

327

328

Network connectivity scores

the 385 assessed networks with > 4 lakes (excluding the Mississippi River network), 286 (67.5%) received scores < 2 (low), 112 (29.1%) received scores between 2 and 4 (medium), and 13 (3.4%) received scores > 4 (high). In general, networks received high, medium, and low scores throughout the conterminous US, but greater concentrations of high-scoring networks were found in the western US (Figure 4a, b). Of the 13 networks with high scores, there were 3 in the WMT ecoregion, 2 each in the CPL, SAP, SPL, and XER ecoregions, and 1 each in the NAP and UMW ecoregions (Table 2). The 3 highest-scoring networks were the Colorado River (WMT), Rio Grande (SPL), and Columbia River (WMT) networks. The NPL and TPL ecoregions had no high-scoring networks. Connectivity scores and network characteristics for all 385 scored networks are provided in Table S2. High-scoring networks were generally larger and contained more lakes and dams (Tables 2, S2). The 13 highest-scoring networks spanned 29.3 - 1330.3 km stream distance N-S (median = 498.6 km) and had 15 - 3241 lakes (median = 1303 lakes) and 0 - 1760 dams (median = 454 lakes) dams). Conversely, low- to medium-scoring networks ranged 0.9 - 553.9 km of stream distance N-S (median = 22.4 km) and had 5 - 2604 lakes (median = 13 lakes) and 0 - 1612 dams (median = 4 dams). Similarly, dam rate ranged 0.0 - 88.6% (median = 47.1%) across high-scoring networks and ranged 0.0 - 269.2% (median = 33.3%) across low- to medium-scoring networks. Dam rate was 100% or greater (i.e., at least as many dams as lakes) in 21 (5.5%) of scored

networks. Just 66 (17.1%) of scored networks contained no dams, but these networks were relatively small in terms of lakes (5 - 64 lakes; median = 6 lakes) and N - S stream distance (0.9 - 186.4 km; median = 7.2 km). Finally, high-scoring networks had 0 - 72 hub lakes (median = 24) and low- to medium-scoring networks had 0 - 46 hub lakes (median = 1).

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

350

351

352

353

Protection of freshwater networks, network lakes, and hub lakes

Whole freshwater networks are poorly protected across the conterminous US (Tables 3, S3, Figure 5). Median network protection was 0.0% across all networks, except under the loosest definition of protection (14.4%; strict + multi-use, lake center protection) (Figure 5a, c). Fully protected networks were relatively rare and varied across definitions of protection (28 - 122 networks; 3.1 - 13.6% of networks). Under the narrowest and loosest definitions of protection, the WMT (10.1%, 22.0%), CPL (3.3%, 19.8%), and XER (2.3%, 22.1%) ecoregions had the highest rates of full network protection, respectively, and the SAP and SPL ecoregions had no fully protected networks based on any definition of protection. Approximately 13.4 - 47.6% of networks had at least 17% of their lakes protected from the narrowest to loosest definitions of protection, respectively. Across all ecoregions, the CPL ecoregion had the highest number of networks meeting the 17% Aichi target based on lake center protection, whereas the UMW, WMT, and XER ecoregions had the highest, most consistent percentage of networks meeting the 17% Aichi target across all definitions of protection. The SAP and SPL ecoregions consistently had the fewest networks meeting the 17% Aichi target across definitions of protection. The Mississippi River network, approximately 10 times larger than the next-largest network in terms of number of lakes, was 4.3 - 15.1% protected across all definitions of protection. Additionally, network connectivity scores (natural log-transformed) were not correlated with the percent of

network protection under all definitions of protection (absolute Pearson's r < 0.1, p = 0.21 - 0.72). Overall, although whole network protection varied widely across ecoregions and definitions of protection, most networks were poorly protected as a whole and there is little association between freshwater connectivity and protection. As expected, however, protection rates of whole networks were generally greater in the western US.

Across all network lakes, protection varied from 8.2 - 18.4% from the narrowest to loosest definition of protection (Table S4). Therefore, lake protection in the conterminous US only narrowly met the 17% Aichi target under a generous definition of protection. Network lake protection varied across ecoregions from a low of 0.8% in the SAP and TPL ecoregions to highs of 55.6% in the NPL and 61.4% in WMT ecoregions under the narrowest and loosest definitions of protection, respectively. The WMT and NPL ecoregions were the only ecoregions that met the 17% Aichi target across all definitions of protection. In contrast, The CPL, NAP, SAP, SPL, TPL, and XER ecoregions did not meet the 17% Aichi target under any definition of protection and were often near or below 5% protection. The UMW ecoregion met the 17% Aichi target only when considering both strict and multi-use protected areas.

Of the 2080 hub lakes in the conterminous US, 118 (5.7%) and 413 (19.8%) were protected under the narrowest and loosest definitions of protection, respectively, similar to protection levels of all network lakes (Figure 5b, d, Table S4). Therefore, the 17% Aichi target was only met for hub lakes under the loosest definition of protection. Across ecoregions, the WMT (36.1%), UMW (8.8%), and TPL (3.2%) ecoregions had the highest rates of hub lake protection under the narrowest definition of protection, whereas the WMT (68.0%), UMW (30.0%), and XER (31.6%) ecoregions had the highest rates of hub lake protection under the loosest definition of protection. These results were broadly consistent with our expectation of

greater hub lake protection in the western US. The WMT ecoregion actually had a slightly higher hub lake protection rate under strict + multi-use 80% watershed protection (69.8%) than lake center protection, indicating that a few hubs themselves were not protected, but their watersheds largely were. Notably, the NPL ecoregion had only 5 hub lakes, one of which was protected based on both strict and multi-use lake center protection.

Discussion

Freshwater connectivity and dams

We found that the networks with the highest structural connectivity scores tended to be geographically expansive (median = 498.6 km north-south), but with higher dam rates (median = 47.1%). Presumably, dams represent human-made barriers within freshwater corridor networks. Aside from the 12 of 13 networks with high connectivity scores despite dams, the 66 smaller, undammed networks (median = 7.2 km N-S stream distance) provide relatively unimpeded localized corridor networks for organisms and species to move throughout networks.

Importantly, many undammed networks were found along the West, East, and Great Lakes Coasts (Figure S1). These networks are important for many species, particularly diadromous fishes that use both fresh and saltwater for different life stages, and potamodromous fishes that use both the Great Lakes and inland waters for various life stages (D'Amelio et al. 2008, Hall et al. 2011). Nonetheless, our broad-scale analysis suggests that the largest freshwater corridor networks in the conterminous US generally contain abundant dams and may therefore limit functional connectivity, particularly for long-distance migrations and species range shifts under climate change.

Another important component of maintaining open freshwater corridor networks is maintaining hubs. Our finding that most hub lakes were reservoirs (72.3%) is not surprising, as reservoirs tend to fall on large rivers and are therefore likely central in freshwater networks. This suggests that connectivity within many networks may be considerably compromised due to the location of dams on or near hub lakes. Likewise, the 27 hub lakes currently within undammed networks may be of high conservation value for maintaining connectivity (Figure S1).

Conversely, dams can facilitate biological invasions within networks by altering habitat (Johnson et al. 2008), which is an important consideration when reservoirs are central nodes in many networks. Although outright removal of large reservoir dams is often societally challenging or unfeasible, connectivity mitigation measures (e.g., fish ladders, lifts) or dam modifications to enhance natural flow regimes at or near hubs could help restore some functionality in freshwater corridor networks (Renöfält et al. 2009, Muir & Williams 2012, McKay et al. 2013).

Graph theory applications for freshwater conservation

Graph theory has previously been applied toward conservation in river networks (Erős et al. 2011, Erős & Lowe 2019), including to predict current and future species' ranges (Chaput-Bardy et al. 2017), but few studies have applied a similar framework to lakes (Saunders et al. 2016). Thus, our integration of both lake and stream variables in quantifying overall freshwater network connectivity represents a novel, coarse-filter approach to identifying potential freshwater corridor networks across multiple regions of the conterminous US. This repeatable approach leverages publicly available data and can be adjusted to accommodate specific taxa of interest or new or different connectivity variables at different spatial or temporal scales.

A way in which our work advances graph theory applications for freshwater ecology and conservation is through the use of hubs, which in our case were major lake nodes that disproportionately influenced freshwater network structure. The concept of hubs in freshwater ecology (Muirhead and MacIsaac 2005, Bishop-Taylor et al. 2015) or general landscape ecology (Minor & Urban 2008) as highly connected nodes is not new, but our characterization using multiple axes of lake-stream network analysis allows for a unified definition across all freshwater networks in the conterminous US and could be similarly applied elsewhere. Critical nodes, conceptually similar to hubs, have been previously identified for river networks, but without consideration of lakes (Sarker et al. 2019). Analogous efforts to identify important nodes have a longer history for terrestrial landscapes (e.g., Estrada & Bodin 2008, Saura & Rubio 2010), which have also often included ecological attributes of nodes (Saura & Torné 2009) unlike our species-neutral hub identification. "Stepping stone" characterization has been previously quantified using betweenness centrality (Zetterberg et al. 2010) and articulation points (Keitt et al. 1997), and our usage of total node strength is an extension of using the degree of a node with the added information of the distance of those connections. Thus, our multi-metric approach to identifying lakes within a network that are potentially more important for maintaining corridor networks across large expanses extends past research and can help prioritize individual locations for conservation, particularly when whole-network conservation is impractical.

459

460

461

462

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

Implications for conservation planning under climate change

Whereas all freshwater corridor networks can potentially play important roles in supporting the resilience of biodiversity under climate change, many such networks in the

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

conterminous US are relatively small, contain many dams, and are susceptible to fragmentation. The relatively small number of large corridor networks, which are likely the only networks capable of supporting regional-scale migrations or species range shifts under climate change. generally are even more heavily dammed and structurally prone to fragmentation. Moreover, most freshwater corridor networks are currently poorly protected, not only falling short of the 17% Aichi target under most types of protection, but particularly so in regions with high freshwater biodiversity (i.e., southern, central, and eastern US). These findings indicate that considerable conservation effort may be required to facilitate important phenomena such as gene flow, migrations, and range shifts for freshwater biodiversity in the conterminous US. Given limited or unpredictable resources for conservation, prioritizing the monitoring and protection of network hubs could represent a relatively efficient strategy for maintaining freshwater corridor networks, but our analysis shows that current protection levels of hub lakes are not only similar to all network lakes in general, but are also relatively low (19.9%; only meeting the 17% Aichi target under combined strict and multi-use, non-watershed protection). Managers might consider prioritizing hub ecosystems for future conservation given that maintaining these lakes would help promote network functionality. Additionally, regular monitoring of network hubs may assist in water quality maintenance and early detection of aquatic invasive species within networks. The 2020 assessment of progress toward the 17% Aichi conservation target for fresh waters identified current gaps in ecological representation and connectivity globally. Our analysis reinforces the notion that current US protected areas do not contain an ecologically representative portfolio of fresh waters (Jenkins et al. 2015, McCullough et al. 2019b), but also

shows that considerable work is still needed to promote and improve protection of freshwater

connectivity. Under a changing climate, ensuring functional connectivity for freshwater

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

biodiversity is a key priority. Across the 13 high-scoring freshwater networks, 4 networks met the 17% Aichi target across all definitions of protection, 6 networks did not meet the target under any definition of protection, whereas results were mixed for the remaining 3 networks. This generally reflects the concentration of large protected areas in the western US. For example, the Savannah-Santee, Suwannee River, and James River networks in the eastern US (ranked #7, 9 and 11 nationally by connectivity score, respectively; Figure 4a, b) are 0.0 - 5.2% protected across all definitions of protection (Table 2). In contrast, the 3 highest-scoring networks in the WMT ecoregion (Colorado River, Columbia River, and San Francisco Bay networks, ranked #1, 2, and 4, respectively) were 32.5 - 72.6% protected across all definitions of protection. These findings not only reinforce the previously identified national-scale mismatches between protected areas and freshwater biodiversity (Jenkins et al. 2015), but also indicate regional mismatches between protected areas and freshwater connectivity in the southern, central, and eastern US (Fig 3). On the positive side, however, overlap between freshwater biodiversity and several large freshwater corridor networks in these regions suggests that efforts to maintain or enhance these corridor networks could help support populations and the resilience of regional freshwater biodiversity to climate change (e.g., facilitate seasonal migrations and range shifts). Moreover, conservation prioritization of hub lakes may be disproportionately more beneficial and cost-effective for conservation under climate change as generalized percent network protection targets (17% or otherwise) given their large effects on network intactness. We envision our data, concepts of freshwater corridor networks and hubs, and analytical

approach making foundational contributions to future conservation efforts, including fully datadriven systematic conservation planning or more participatory structured decision-making involving managers and stakeholders. Our use of basic computational techniques (i.e., PCA) and

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

public data at scales of both individual lakes and whole lake-stream networks creates flexibility for future studies to integrate other relevant datasets at different spatial and temporal scales or to tailor their approaches to species, taxa, or functional groups of interest. Our coarse-filter approach targeting generalized structural connectivity in a climate change context is only one example of many potential applications. For example, studies interested in restoring anadromous fish migrations could integrate a similar structural connectivity scoring approach with more localized data on features such as waterfalls and culverts to identify networks most likely to benefit from interventions to enhance connectivity. Additionally, studies interested in maintaining access to permanent waterbodies in dry climates could integrate structural connectivity data with seasonal hydrology or other habitat data (e.g., lake or stream depth). Moreover, there is potential to analyze the joint freshwater-terrestrial conservation benefits of freshwater corridor networks, given that riparian areas often represent terrestrial corridor networks (Krosby et al. 2018) and regulate water temperature, chemistry, and physical habitat characteristics (Johnson and Almlof 2016). Although such efforts are beyond the scope of this current study, our study and approach demonstrate the potential for future connectivity studies to help advance conservation planning under climate change, particularly for freshwater biodiversity and ecosystems.

526

527

528

529

530

531

Acknowledgments

Support for this research was provided by the US National Science Foundation Macrosystems Biology program (EF #1638679 and #1638539). IMM and KBSK conceived of the original study. PJH calculated hub lakes and additional connectivity metrics beyond those in LAGOS-US-NETWORKS. IMM conducted protection analyses and PJH and KBSK analyzed

532 relationships among hubs, reservoirs, and dams. All authors conducted literature review and 533 exploratory data analyses and wrote portions of the paper. We thank K. Cheruvelil and P. Soranno for constructive comments at early stages of this project and P. Soranno for reviewing 534 535 an early draft. We also thank N. Smith for processing protected area data. Any use of trade, firm, 536 or product names is for descriptive purposes only and does not imply endorsement by the US Government. 537 538 539 **Literature Cited** 540 Abell, R. (2002). Conservation biology for the biodiversity crisis: a freshwater follow-up. Conservation Biology, 16, 1435-1437. 541 542 Abell, R., Allan, J. D., & Lehner, B. (2007). Unlocking the potential of protected areas for 543 freshwaters. Biological Conservation, 134, 48-63. 544 545 Altermatt, F., & Fronhofer, E. A. (2018). Dispersal in dendritic networks: Ecological 546 consequences on the spatial distribution of population densities. Freshwater Biology, 63(1), 22-547 32. 548 549 Armstrong, J. B., Fullerton, A. H., Jordan, C. E., Ebersole, J. L., Bellmore, J. R., Arismendi, I., 550 Penaluna, B. E. & Reeves, G. H. (2021). The importance of warm habitat to the growth regime 551 of cold-water fishes. Nature Climate Change, 11, 354-361.

- Bastin, L., Gorelick, N., Saura, S., Bertzky, B., Dubois, G., Fortin, M. J., & Pekel, J. F. (2019).
- Inland surface waters in protected areas globally: Current coverage and 30-year trends. *PLoS*
- 555 *ONE*, 14, e0210496.

- Beier, P., Majka, D. R., & Spencer, W. D. (2008). Forks in the road: choices in procedures for
- designing wildland linkages. Conservation Biology, 22, 836-851.

559

- Beier, P., & Noss, R. F. (1998). Do habitat corridors provide connectivity?. Conservation
- 561 *Biology*, 12, 1241-1252.

562

- Beier, P., Spencer, W., Baldwin, R. F., & McRAE, B. H. (2011). Toward best practices for
- developing regional connectivity maps. *Conservation Biology*, 25, 879-892.

565

- Belote, R. T., Dietz, M. S., McRae, B. H., Theobald, D. M., McClure, M. L., Irwin, G. H.,
- McKinley, P. S., Gage, J. A., & Aplet, G. H. (2016). Identifying corridors among large protected
- areas in the United States. *PLoS One*, 11, e0154223.

569

- Bishop-Taylor, R., Tulbure, M. G., & Broich, M. (2015). Surface water network structure,
- landscape resistance to movement and flooding vital for maintaining ecological connectivity
- across Australia's largest river basin. *Landscape Ecology*, 30, 2045-2065.

- Brost, B. M., & Beier, P. (2012). Use of land facets to design linkages for climate change.
- 575 *Ecological Applications*, 22, 87-103.

576	
577	Carroll, C., Parks, S. A., Dobrowski, S. Z., & Roberts, D. R. (2018). Climatic, topographic, and
578	anthropogenic factors determine connectivity between current and future climate analogs in
579	North America. Global Change Biology, 24, 5318-5331.
580	
581	CBD. (2010). COP 10 decision X/2: Strategic plan for biodiversity 2011–2020. In 10th Meeting
582	of the Conference of the Parties to the Convention on Biological Diversity, Nagoya, Japan.
583	Available from https://www.cbd.int/decision/cop/?id=12268 .
584	
585	Chaput-Bardy, A., Alcala, N., Secondi, J., & Vuilleumier, S. (2017). Network analysis for
586	species management in rivers networks: Application to the Loire River. Biological Conservation,
587	210, 26-36.
588	
589	Cheruvelil, K. S., Soranno, P. A., McCullough, I. M., Webster, K. E., Rodriguez, L. and N. J.
590	Smith. (2021). LAGOS-US LOCUS v1.0: Data module of location, identifiers, and physical
591	characteristics of lakes and their watersheds in the conterminous U.S. Limnology and
592	Oceanography Letters.
593	
594	Collen, B., Whitton, F., Dyer, E. E., Baillie, J. E., Cumberlidge, N., Darwall, W. R., Pollock, C.,
595	Richman, N. I., Soulsby, A., & Böhm, M. (2014). Global patterns of freshwater species diversity,
596	threat and endemism. Global Ecology and Biogeography, 23, 40-51.
597	

598 Collier, K. J. (2011). The rapid rise of streams and rivers in conservation assessment. *Aquatic* 599 Conservation Marine and Freshwater Ecosystems, 21, 397-400. 600 601 Comte, L., Buisson, L., Daufresne, M., & Grenouillet, G. (2013). Climate-induced changes in the 602 distribution of freshwater fish: observed and predicted trends. Freshwater Biology, 58, 625-639. 603 604 Costanza, J. K., & Terando, A. J. (2019). Landscape connectivity planning for adaptation to 605 future climate and land-use change. Current Landscape Ecology Reports, 4, 1-13. 606 Csardi G. & Nepusz, T. (2006). The igraph software package for complex network research, 607 608 InterJournal, Complex Systems 1695. https://igraph.org. 609 610 D'Amelio, S., Mucha, J., Mackereth, R., & Wilson, C. C. (2008). Tracking coaster brook trout to 611 their sources: combining telemetry and genetic profiles to determine source populations. North 612 American Journal of Fisheries Management, 28, 1343-1349. 613 614 de Mendoza, G., Kaivosoja, R., Grönroos, M., Hjort, J., Ilmonen, J., Kärnä, O. M., Paasivirta, L., 615 Tokola, L., & Heino, J. (2018). Highly variable species distribution models in a subarctic stream 616 metacommunity: Patterns, mechanisms and implications. Freshwater Biology, 63, 33-47. 617 618 Dilts, T. E., Weisberg, P. J., Leitner, P., Matocq, M. D., Inman, R. D., Nussear, K. E., & Esque, 619 T. C. (2016). Multiscale connectivity and graph theory highlight critical areas for conservation

under climate change. Ecological Applications, 26, 1223-1237.

621 622 Dinmo, A. (2018). paran: Horn's test of principal components/factors. R package version 1.5.2. 623 https://CRAN.R-project.org/package=paran. 624 625 Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A., Soto, D., Stiassny, M. L., & Sullivan, C. A. (2006). 626 627 Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182. 628 629 Ebersole, J. L., Quiñones, R. M., Clements, S., & Letcher, B. H. (2020). Managing climate 630 631 refugia for freshwater fishes under an expanding human footprint. Frontiers in Ecology and the 632 Environment, 18, 271-280. 633 Erős, T., & Lowe, W. H. (2019). The landscape ecology of rivers: from patch-based to spatial 634 635 network analyses. Current Landscape Ecology Reports, 4, 103-112. 636 Erős, T., Olden, J. D., Schick, R. S., Schmera, D., & Fortin, M. J. (2012). Characterizing 637 638 connectivity relationships in freshwaters using patch-based graphs. Landscape Ecology, 27, 303-639 317. 640 641 Erős, T., Schmera, D., & Schick, R. S. (2011). Network thinking in riverscape conservation—a 642 graph-based approach. Biological Conservation, 144, 184-192.

Ecology of Freshwater Fish, 28, 209-221.

644 Estrada, E., & Bodin, Ö. (2008). Using network centrality measures to manage landscape 645 connectivity. Ecological Applications, 18, 1810-1825. 646 647 Fergus, C. E., Lapierre, J. F., Oliver, S. K., Skaff, N. K., Cheruvelil, K. S., Webster, K., Scott, C. 648 & Soranno, P. (2017). The freshwater landscape: lake, wetland, and stream abundance and 649 connectivity at macroscales. *Ecosphere*, 8, e01911. 650 651 Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: a 652 synthesis. Global Ecology and Biogeography, 16, 265-280. 653 Gardner, J. R., Pavelsky, T. M., & Doyle, M. W. (2019). The abundance, size, and spacing of 654 655 lakes and reservoirs connected to river networks. Geophysical Research Letters, 46, 2592-2601. 656 Hall, C. J., Jordaan, A., & Frisk, M. G. (2011). The historic influence of dams on diadromous 657 658 fish habitat with a focus on river herring and hydrologic longitudinal connectivity. Landscape Ecology, 26, 95-107. 659 660 Harvey, J. W., & Schmadel, N. M. (2021). The river borridor's evolving connectivity of lotic and 661 662 lentic waters. Linking Hydrological and Biogeochemical Processes in Riparian Corridors. 663 664 Heim, K. C., Arp, C. D., Whitman, M. S., & Wipfli, M. S. (2019). The complementary role of lentic and lotic habitats for Arctic grayling in a complex stream-lake network in Arctic Alaska. 665

a

667	
668	Heller, N. E., & Zavaleta, E. S. (2009). Biodiversity management in the face of climate change: a
669	review of 22 years of recommendations. Biological Conservation, 142, 14-32.
670	
671	Herlihy, A. T., Paulsen, S. G., Sickle, J. V., Stoddard, J. L., Hawkins, C. P., & Yuan, L. L.
672	(2008). Striving for consistency in a national assessment: the challenges of applying a reference-
673	condition approach at a continental scale. Journal of the North American Benthological Society,
674	27, 860-877.
675	
676	Hermoso, V., Filipe, A. F., Segurado, P., & Beja, P. (2018). Freshwater conservation in a
677	fragmented world: dealing with barriers in a systematic planning framework. Aquatic
678	Conservation: Marine and Freshwater Ecosystems, 28, 17-25.
679	
680	Jaeger, K. L., Olden, J. D., & Pelland, N. A. (2014). Climate change poised to threaten
681	hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National
682	Academy of Sciences, 111, 13894-13899.
683	
684	Jenkins, C. N., Van Houtan, K. S., Pimm, S. L., & Sexton, J. O. (2015). US protected lands
685	mismatch biodiversity priorities. Proceedings of the National Academy of Sciences, 112, 5081-
686	5086.
687	

688 Johnson, P. T., Olden, J. D., & Vander Zanden, M. J. (2008). Dam invaders: impoundments 689 facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment, 6, 690 357-363. 691 692 Johnson, R. K., & Almlöf, K. (2016). Adapting boreal streams to climate change: effects of riparian vegetation on water temperature and biological assemblages. Freshwater Science, 35(3), 693 694 984-997. 695 Jones, N. E. (2010). Incorporating lakes within the river discontinuum: longitudinal changes in 696 697 ecological characteristics in stream-lake networks. Canadian Journal of Fisheries and Aquatic 698 Sciences, 67, 1350-1362. 699 700 Keitt, T. H., Urban, D. L., & Milne, B. T. (1997). Detecting critical scales in fragmented 701 landscapes. Conservation Ecology, 1. 702 King, K. B. S., Bremigan, M. T., Infante, D., & Cheruvelil, K. S. (2021a). Surface water 703 704 connectivity affects lake and stream fish species richness and composition. Canadian Journal of 705 Fisheries and Aquatic Sciences, 78, 433-443. 706 707 King, K. B. S., Wang, Q., Rodriguez, L.K., Haite, M., Danila, L., Pang-Ning, T., Zhou, J., & 708 Cheruvelil, K.S. (2021b). LAGOS-US NETWORKS v1.0: Data module of surface water

networks characterizing connections among lakes, streams, and rivers in the conterminous U.S.

- 710 Environmental Data Initiative.
- 711 https://portal.edirepository.org/nis/mapbrowse?packageid=edi.879.1. Dataset accessed 6/1/2021.
- 712
- King, K. B. S., Wang, Q., Rodriguez, L.K., & Cheruvelil, K.S. (2021c). Lake networks and
- 714 connectivity metrics for the conterminous U.S. (LAGOS-US NETWORKS v1). Limnology and
- 715 *Oceanography Letters*, 6, 293-307.

- Krosby, M., Breckheimer, I., Pierce, D. J., Singleton, P. H., Hall, S. A., Halupka, K. C., Gaines,
- W. L., Long, R. A., McRae, B. H., Cosentino, B. L., & Schuett-Hames, J. P. (2015). Focal
- 719 species and landscape "naturalness" corridor models offer complementary approaches for
- 720 connectivity conservation planning. *Landscape Ecology*, 30, 2121-2132.

721

- 722 Krosby, M., Theobald, D. M., Norheim, R., & McRae, B. H. (2018). Identifying riparian climate
- 723 corridors to inform climate adaptation planning. *PLoS One*, 13, e0205156.

724

- Lawler, J. J., Ruesch, A. S., Olden, J. D., & McRae, B. H. (2013). Projected climate-driven
- faunal movement routes. *Ecology Letters*, 16, 1014-1022.

727

- 728 LeMoine, M. T., Eby, L. A., Clancy, C. G., Nyce, L. G., Jakober, M. J., & Isaak, D. J. (2020).
- 729 Landscape resistance mediates native fish species distribution shifts and vulnerability to climate
- 730 change in riverscapes. Global Change Biology, 26, 5492-5508.

- Littlefield, C. E., Krosby, M., Michalak, J. L., & Lawler, J. J. (2019). Connectivity for species on
- 733 the move: supporting climate-driven range shifts. Frontiers in Ecology and the Environment, 17,
- 734 270-278.

- T36 Lynch, A. J., Myers, B. J., Chu, C., Eby, L. A., Falke, J. A., Kovach, R. P., Krabbenhoft, T. J.,
- 737 Kwak, T. J., Lyons, J., Paukert, C. P. & Whitney, J. E. (2016). Climate change effects on North
- American inland fish populations and assemblages. *Fisheries*, 41, 346-361.

739

- 740 McCullough, I. M., King, K. B., Stachelek, J., Diaz, J., Soranno, P. A., & Cheruvelil, K. S.
- 741 (2019a). Applying the patch-matrix model to lakes: a connectivity-based conservation
- framework. *Landscape Ecology*, 34, 2703-2718.

743

- McCullough, I. M., Skaff, N. K., Soranno, P. A., & Cheruvelil, K. S. (2019b). No lake left
- behind: How well do US protected areas meet lake conservation targets?. *Limnology and*
- 746 *Oceanography Letters*, 4, 183-192.

747

- 748 McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A., & Theobald, D. M. (2016). Achieving
- 749 climate connectivity in a fragmented landscape. *Proceedings of the National Academy of*
- 750 *Sciences*, 113, 7195-7200.

- 752 McKay, S. K., Schramski, J. R., Conyngham, J. N., & Fischenich, J. C. (2013). Assessing
- 753 upstream fish passage connectivity with network analysis. Ecological Applications, 23, 1396-
- **754** 1409.

755 756 McRae, L., Deinet, S., & Freeman, R. (2017). The diversity-weighted Living Planet Index: 757 controlling for taxonomic bias in a global biodiversity indicator. *PLoS ONE*, 12, e0169156. 758 759 Minor, E. S., & Urban, D. L. (2008). A graph-theory framework for evaluating landscape 760 connectivity and conservation planning. Conservation Biology, 22, 297-307. 761 762 Muirhead, J. R., & MacIsaac, H. J. (2005). Development of inland lakes as hubs in an invasion 763 network. Journal of Applied Ecology, 42, 80-90. 764 Muir, W. D., & Williams, J. G. (2012). Improving connectivity between freshwater and marine 765 766 environments for salmon migrating through the lower Snake and Columbia River hydropower 767 system. Ecological Engineering, 48, 19-24. 768 769 Nel, J. L., Roux, D. J., Abell, R., Ashton, P. J., Cowling, R. M., Higgins, J. V., Thieme, M., & 770 Viers, J. H. (2009). Progress and challenges in freshwater conservation planning. *Aquatic* 771 Conservation: Marine and Freshwater Ecosystems, 19, 474-485. 772 Nuñez, T. A., Lawler, J. J., McRae, B. H., Pierce, D. J., Krosby, M. B., Kavanagh, D. M., 773 774 Singleton, P. H., & Tewksbury, J. J. (2013). Connectivity planning to address climate change. 775 Conservation Biology, 27, 407-416.

776

- Parks, S. A., Carroll, C., Dobrowski, S. Z., & Allred, B. W. (2020). Human land uses reduce
- climate connectivity across North America. *Global Change Biology*, 26, 2944-2955.

779

- 780 Pullinger, M. G., & Johnson, C. J. (2010). Maintaining or restoring connectivity of modified
- landscapes: evaluating the least-cost path model with multiple sources of ecological information.
- 782 *Landscape Ecology*, 25, 1547-1560.

783

- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for
- 785 Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

786

- Rayfield, B., Fortin, M. J., & Fall, A. (2011). Connectivity for conservation: a framework to
- 788 classify network measures. *Ecology*, 92, 847-858.

789

- 790 Renöfält, B. M., Jansson, R., & Nilsson, C. (2010). Effects of hydropower generation and
- 791 opportunities for environmental flow management in Swedish riverine ecosystems. *Freshwater*
- 792 *Biology*, 55(1), 49-67.

793

- 794 Sarker, S., Veremyev, A., Boginski, V., & Singh, A. (2019). Critical nodes in river networks.
- 795 Scientific Reports, 9, 1-11.

796

- 797 Saunders, D. L., Meeuwig, J. J., & Vincent, A. C. (2002). Freshwater protected areas: strategies
- for conservation. *Conservation Biology*, 16, 30-41.

799

800 Saunders, M. I., Brown, C. J., Foley, M. M., Febria, C. M., Albright, R., Mehling, M. G., 801 Kavanaugh, M. T. & Burfeind, D. D. (2016). Human impacts on connectivity in marine and 802 freshwater ecosystems assessed using graph theory: a review. Marine and Freshwater Research, 803 67, 277-290. 804 Saura, S., Bodin, Ö., & Fortin, M. J. (2014). EDITOR'S CHOICE: Stepping stones are crucial for 805 806 species' long-distance dispersal and range expansion through habitat networks. Journal of *Applied Ecology*, 51, 171-182. 807 808 Saura, S., & Rubio, L. (2010). A common currency for the different ways in which patches and 809 810 links can contribute to habitat availability and connectivity in the landscape. *Ecography*, 33, 523-811 537. 812 Saura, S., & Torne, J. (2009). Cone for Sensinode 2.2: a software package for quantifying the 813 814 importance of habitat patches for landscape connectivity. *Environmental Modelling & Software*, 815 24, 135-139. 816 817 Schmera, D., Árva, D., Boda, P., Bódis, E., Bolgovics, Á., Borics, G., Csercsa, A., Deák, C., 818 Krasznai, E. A., Lukács, B. A., Mauchart, P., Móra, A., Sály, P., Specziár, A., Süveges, K., 819 Szivák, I., Takács, P., Tóth, M., Várbíró, G., Vojtkó, A. E., & Erős, T. (2018). Does isolation 820 influence the relative role of environmental and dispersal-related processes in stream networks? An empirical test of the network position hypothesis using multiple taxa. Freshwater Biology, 821

822

63, 74-85.

823	
824	Secretariat of the Convention on Biological Diversity. (2020). Global Biodiversity Outlook 5 –
825	Summary for Policy Makers. Montréal. https://www.cbd.int/gbo/gbo5/publication/gbo-5-spm-
826	<u>en.pdf</u>
827	
828	Smith, N.J., K.E. Webster, L.K. Rodriguez, K.S. Cheruvelil, and P.A. Soranno. 2021. LAGOS-
829	US LOCUS v1.0: Data module of location, identifiers, and physical characteristics of lakes and
830	their watersheds in the conterminous U.S. ver 1. Environmental Data Initiative.
831	https://doi.org/10.6073/pasta/e5c2fb8d77467d3f03de4667ac2173ca (Accessed 2021-10-01).
832	Stralberg, D., Carroll, C., & Nielsen, S. E. (2020). Toward a climate-informed North American
833	protected areas network: Incorporating climate-change refugia and corridors in conservation
834	planning. Conservation Letters, 13, e12712.
835	
836	Theobald, D. M., Reed, S. E., Fields, K., & Soulé, M. (2012). Connecting natural landscapes
837	using a landscape permeability model to prioritize conservation activities in the United States.
838	Conservation Letters, 5, 123-133.
839	
840	Tonn, W. M., & Magnuson, J. J. (1982). Patterns in the species composition and richness of fish
841	assemblages in northern Wisconsin lakes. <i>Ecology</i> , 63, 1149-1166.
842	
843	Urban, D., & Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. <i>Ecology</i> ,
844	82, 1205-1218.
845	

846	Urban, D. L., Minor, E. S., Treml, E. A., & Schick, R. S. (2009). Graph models of habitat
847	mosaics. Ecology Letters, 12, 260-273.
848	
849	US Geological Survey. (2018). U.S. Geological Survey, Gap Analysis Program (GAP). Protected
850	areas database of the United States (PAD-US), version 2.0 combined feature class.
851	
852	Williams-Subiza, E. A., & Epele, L. B. (2021). Drivers of biodiversity loss in freshwater
853	environments: A bibliometric analysis of the recent literature. Aquatic Conservation: Marine and
854	Freshwater Ecosystems, 31, 2469-2480.
855	
856	Zetterberg, A., Mörtberg, U. M., & Balfors, B. (2010). Making graph theory operational for
857	landscape ecological assessments, planning, and design. Landscape and Urban Planning, 95,
858	181-191.

Tables

Table 1. Description of network-scale freshwater connectivity metrics and ecological justification for their use in broad-scale freshwater corridor identification

their use in broad	l-scale freshwater corridor identification	
Variable name	Description	Ecological Justification
	Ratio of actual stream reaches (edges)	Represents availability of pathways
D1 1 '	connecting lakes to the maximum number	for traveling among lakes within a
Edge density	of potential stream reaches	network
Average lake	Average stream-course distance between	Represents density and accessibility of lakes within a network
distance (km)	lakes (nodes) Density of dams within a network,	of takes within a network
	calculated as the ratio between the number	
	of lakes (nodes) and number of dams;	
	rescaled such that higher values penalize	Represents connectivity barriers
Dam rate	network connectivity	within networks
Dam rate	network connectivity	Represents more localized climatic
		heterogeneity acessible within a
Elevation range	Maximum minus minimum elevation	network for both relatively mobile
(m)	among network nodes	and sessile species
Maximum	Maximum north-south distance spanned	Represents large-scale climatic
north-south	by the network based on lake and stream	heterogeneity accessible within a
distance (km)	connections	network for relatively mobile species
	Minimum number of stream reaches	
	(edges) to cut needed to separate the	Represents susceptibility of a
	network into multiple networks (i.e.,	network to fragmentation,
	undermine maximum north-south	particularly in climatic context for
Minimum cuts	distance)	relatively mobile species
	The percent of lakes (nodes) in the	
	network that are articulation points, which	
	are the lakes in the graph that when	
Percent	disconnected lead to separation into multiple networks; rescaled such that	
articulation	higher values represent greater resistance	Represents susceptibility of a
points	to network fragmentation	network to fragmentation
pomis	The number of shortest-distance pairwise	network to magnification
	stream paths in a network that pass	
	through a lake (node), which we averaged	
	across network lakes after normalization	Represents lake importance
Average	by the number of lakes within a network	according to position within a
betweenness	(N) using the formula (2BC)/(N*N-	network and the convergence of
centrality	3N+2).	stream pathways

Table 2. Freshwater network connectivity scores and statistics and protection status of networks and hub lakes in the conterminous US for high-scoring networks

Rank	Score	Network	Ecoregion	Lakes	Hubs	Dams	Dam rate*	North-South distance (km)
1	12.02	Colorado River	WMT	2027	42	954	47.1%	1,330.34
2	9.49	Rio Grande	SPL	536	13	388	72.4%	1,312.70
3	8.10	Columbia River	WMT	2397	55	915	38.2%	820.36
4	6.70	San Francisco Bay	WMT	1780	49	484	27.2%	629.52
5	6.21	Brazos River	SPL	1529	22	1273	83.3%	611.93
		Susquehanna-						
6	5.67	Hudson	NAP	2659	71	1099	41.3%	505.40
7	5.19	Savannah-Santee	CPL	3241	72	1760	54.3%	491.73
8	5.19	Potomac River	SAP	420	9	372	88.6%	238.12
9	4.94	Suwannee	CPL	1076	38	268	24.9%	245.86
10	4.84	Red River	UMW	754	16	250	33.2%	380.41
11	4.40	James River	SAP	765	24	424	55.4%	173.63
12	4.03	Lake Creek	XER	15	0	0	0.0%	29.30
13	4.01	Humboldt River	XER	21	1	43	204.8%	146.39

^{*}Dam rate = number of dams/number of lakes. CPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, WMT-Western Mountains, XER=Xeric. Strict protection=managed for biodiversity (GAPS 1-2), multi-use=managed for biodiversity and natural resource extraction (GAP 3)

Table 3. Protection status of networks and hub lakes in the conterminous US for high-scoring networks

		Network	protection			Hub pro	otection		
		Strict, lake	Strict + multi-use,	Strict, 80%	Strict + multi- use, 80%	Strict, lake	Strict + multi-use,	Strict, 80%	Strict + multi- use, 80%
Rank	Network	center	lake center	watershed	watershed	center	lake center	watershed	watershed
1	Colorado River	41.1%	68.9%	39.1%	72.6%	26.2%	83.3%	26.2%	76.2%
2	Rio Grande	17.2%	30.4%	11.2%	30.0%	0.0%	23.1%	0.0%	30.8%
3	Columbia River	36.3%	67.0%	32.5%	67.0%	12.7%	43.6%	16.4%	47.3%
4	San Francisco Bay	52.9%	65.3%	51.5%	62.4%	46.9%	59.2%	42.9%	46.9%
5	Brazos River	1.8%	2.4%	0.9%	1.0%	22.7%	22.7%	9.1%	9.1%
	Susquehanna-								
6	Hudson	5.3%	11.7%	11.9%	15.8%	12.7%	19.7%	4.2%	9.9%
7	Savannah-Santee	1.8%	2.7%	0.6%	1.2%	6.9%	6.9%	0.0%	0.0%
8	Potomac River	5.2%	11.7%	5.5%	10.0%	11.1%	33.3%	11.1%	22.2%
9	Suwannee	0.5%	1.2%	0.0%	0.2%	2.6%	7.9%	0.0%	0.0%
10	Red River	17.1%	23.9%	3.3%	4.4%	18.8%	18.8%	6.3%	12.5%
11	James River	2.7%	5.2%	0.7%	3.0%	0.0%	8.3%	0.0%	0.0%
12	Lake Creek	6.7%	53.3%	0.0%	20.0%	NA	NA	NA	NA
13	Humboldt River	28.6%	47.6%	23.8%	76.2%	0.0%	0.0%	0.0%	100.0%

CPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, WMT-Western Mountains, XER=Xeric. Strict protection=managed for biodiversity (GAPS 1-2), multi-use=managed for biodiversity and natural resource extraction (GAP 3)

Figure Captions

Figure. 1. Freshwater connectivity in Michigan, USA based on (a) an intact network with an operational hub lake and (b) a compromised hub lake, which results in network fragmentation and possible upstream habitat loss for freshwater biodiversity. Upstream streams are grayed out in (b) to represent loss of stream habitat. Isolated lakes are not accessible through networks.

Figure. 2. (a) Freshwater networks of the conterminous US based on LAGOS-US-NETWORKS v1.0 (King et al. 2021 b, c). Contiguous colors represent individual networks (the largest of which is the Mississippi River basin in green in the central US). Shown are 898 unique networks containing a total of 86511 lakes ≥ 1 ha. (b) Ecoregions used by the US Environmental Protection Agency National Aquatic Resource Survey (Herlihy et al. 2008). CPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, WMT=Western Mountains, XER=Xeric. (c) Strict (managed for biodiversity; GAPS 1-2) and multi-use (managed for biodiversity and natural resource extraction; GAP 3) protected areas based on the US Protected Areas Database v2.0 (US Geological Survey 2018).

Figure. 3. Graphical depiction of a hypothetical network showing the three network metrics used to define a hub lake: (a) vertex strength of each lake colored by quintile, (b) betweenness centrality of each lake colored by quintile, (c) lakes that are articulation points outlined in green and showing the subnetworks created by the removal of the central lake marked by "X". Hub lakes for the network (d) are those that are in the top quintile of vertex strength, the top quintile of betweenness centrality, and are articulation points.

Figure. 4. (a) Freshwater network connectivity scores (for networks > 4 lakes) and hub lakes (n = 2080). The Mississippi River network (unscored) is shown in light blue dots. (b) Highest-ranking freshwater network connectivity scores. Unique mapped colors represent individual, contiguous networks with high connectivity scores (n = 13), which are ranked by connectivity score (1 = highest).

Figure. 5. Percent of freshwater networks (lakes within networks) and hub lakes protected by NARS ecoregion and different levels of protection. The Mississippi River network (considered separately) has 7.6% and 15.1% of its lakes protected, respectively, under strict and strict + multi-use lake center protection (a), and 4.3% and 13.8% of its lakes protected, respectively, under strict and strict + multi-use 80% watershed protection, respectively (c). Mississippi River network hubs are reflected in (b) and (d). Dashed lines represent the 17% Aichi conservation target. See Table S1 for number of networks and hub lakes per ecoregion. CPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, WMT=Western Mountains, XER=Xeric.

Figures

Figure. 1. Freshwater connectivity in Michigan, USA based on (a) an intact network with an operational hub lake and (b) a compromised hub lake, which results in network fragmentation and possible upstream habitat loss for freshwater biodiversity. Upstream streams are grayed out in (b) to represent loss of stream habitat. Isolated lakes are not accessible through networks.

Figure. 2. (a) Freshwater networks of the conterminous US based on LAGOS-US-NETWORKS v1.0 (King et al. 2021 b, c). Contiguous colors represent individual networks (the largest of which is the Mississippi River basin in green in the central US). Shown are 898 unique networks containing a total of 86511 lakes ≥ 1 ha. (b) Ecoregions used by the US Environmental Protection Agency National Aquatic Resource Survey (Herlihy et al. 2008). CPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, WMT=Western Mountains, UMW=Upper Midwest, XER=Xeric. (c) Strict (managed for biodiversity; GAPS 1-2) and multi-use (managed for biodiversity and natural resource extraction; GAP 3) protected areas based on the US Protected Areas Database v2.0 (US Geological Survey 2018).

Figure. 3. Graphical depiction of a hypothetical network showing the three network metrics used to define a hub lake: (a) vertex strength of each lake colored by quintile, (b) betweenness centrality of each lake colored by quintile, (c) lakes that are articulation points outlined in green and showing the subnetworks created by the removal of the central lake marked by "X". Hub lakes for the network (d) are those that are in the top quintile of vertex strength, the top quintile of betweenness centrality, and are articulation points.

Figure. 4. (a) Freshwater network connectivity scores (for networks > 4 lakes) and hub lakes (n = 2080). The Mississippi River network (unscored) is shown in light blue dots. (b) Highest-ranking freshwater network connectivity scores. Unique mapped colors represent individual, contiguous networks with high connectivity scores (n = 13), which are ranked by connectivity score (1 = highest).

Figure. 5. Percent of freshwater networks (lakes within networks) and hub lakes protected by NARS ecoregion and different levels of protection. The Mississippi River network (considered separately) has 7.6% and 15.1% of its lakes protected, respectively, under strict and strict + multi-use lake center protection (a), and 4.3% and 13.8% of its lakes protected, respectively, under strict and strict + multi-use 80% watershed protection, respectively (c). Mississippi River network hubs are reflected in (b) and (d). Dashed lines represent the 17% Aichi conservation target. See Table S1 for number of networks and hub lakes per ecoregion. CPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, WMT=Western Mountains, XER=Xeric.

Supporting information

Figure. S1. Dam rate (number of lakes ≥ 1 ha divided by number of dams; unmodified before use in principal component analysis) in freshwater networks of the conterminous US. Shown are networks with ≥ 4 lakes ≥ 1 ha per network (386 networks). Of these, 66 have no dams.

Network connectivity scores

Figure. S2. Frequency distribution of freshwater network connectivity scores (n=385). Colors correspond to Fig. 4a.

Figure. S3. Scaled density plot of the surface area (ha) of hub lakes (n = 2080) and non-hub lakes (n = 84431) in freshwater networks.

Table S1. Descriptive statistics of freshwater networks in the conterminous US

Ecoregion ^a	Total Networks ^b	Number of lakes (min, median, max)	North-South distance (km) (min, median, max)	Number of dams (min, median, max)	% Articulation points (min, median, max)	Min cuts to disrupt max N-S distance (min, median, max)	Network lakes (number and % outside of MS River network)	Total network lakes (including MS River network)	Total hub lakes	% Hub lakes
CPL	243	2, 3, 3241	0.0, 3.1, 539.4	0, 1, 1760	0.0, 0.0, 77.8	1, 1, 550	14862 (81.1%)	18336	528	2.9%
NAP	206	2, 4, 2659	0.0, 7.0, 505.4	0, 2, 1099	0.0, 31.2, 62.5	1, 1, 44	11934 (95.8%)	12464	451	3.6%
NPL	28	2, 2, 6	0.2, 2.5, 15.1	0, 0, 2	0.0, 0.0, 66.7	1, 1, 3	93 (1.1%)	8166	5	0.1%
SAP	10	11, 362, 1665	27.4, 139.7, 553.9	3, 159, 944	10.2, 21.1, 66.7	1, 4, 426	8287 (69.8%)	11872	295	2.5%
SPL	8	2, 166, 1529	0.6, 97.3, 1312.7	1, 132, 1273	0.0, 22.3, 40.0	1, 1, 65	2692 (39.2%)	6871	103	1.5%
TPL	58	2, 3, 0147	0.2, 4.4, 147.5	0, 0, 58	0.0, 33.3, 77.8	1, 1, 84	1073 (12.9%)	8297	190	2.3%
UMW	150	2, 4, 1190	0.0, 7.4, 380.4	0, 0, 250	0.0, 25.0, 75.0	1, 1, 30	6115 (63.1%)	9691	260	2.7%
WMT	108	2, 3, 2397	0.0, 8.5, 1330.3	0, 1, 954	0.0, 0.0, 60.0	1, 1, 131	6614 (78.0%)	8476	169	2.0%
XER	86	2, 3, 0105	0.2, 13.3, 216.8	0, 2, 68	0.0, 11.0, 86.7	1, 1, 18	2030 (86.8%)	2338	79	3.4%
Overall	897	2, 3, 3241	0.0, 5.9, 1330.3	0, 1, 1760	0.0, 21.1, 86.7	1, 1, 550	53700 (62.07%)	86511	2080	2.4%

aCPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, XER=Xeric

bMississippi River basin network removed (32811 lakes, 24986 dams) in calculating columns 2-7

Table S2. Freshwater network connectivity scores and statistics and protection status^a of networks and hub lakes in the conterminous US

										Network				TT. 1			
									North-	protectio	on Strict +		Strict +	Hub pro	Strict +		Strict +
									South	Strict,	multi-	Strict,	multi-use,	Strict,	multi-use,	Strict,	multi-use,
Net IDb	Rank	Score	Level	Ecoregion	Lakes	Hubs	Dams	Dam rate ^d	distance (km)	lake center	use, lake center	80% watershed	80% watershed	lake center	lake center	80% watershed	80% watershed
3	1	12.02	High	WMT	2027	42	954	47.1%	1,330.34	41.1%	68.9%	39.1%	72.6%	26.2%	83.3%	26.2%	76.2%
52	2	9.49	High	SPL	536	13	388	72.4%	1,312.70	17.2%	30.4%	11.2%	30.0%	0.0%	23.1%	0.0%	30.8%
34	3	8.10	High	WMT	2397	55	915	38.2%	820.36	36.3%	67.0%	32.5%	67.0%	12.7%	43.6%	16.4%	47.3%
59	4	6.70	High	WMT	1780	49	484	27.2%	629.52	52.9%	65.3%	51.5%	62.4%	46.9%	59.2%	42.9%	46.9%
50	5	6.21	High	SPL	1529	22	1273	83.3%	611.93	1.8%	2.4%	0.9%	1.0%	22.7%	22.7%	9.1%	9.1%
10	6	5.67	High	NAP	2659	71	1099	41.3%	505.40	5.3%	11.7%	11.9%	15.8%	12.7%	19.7%	4.2%	9.9%
2	7	5.19	High	CPL	3241	72	1760	54.3%	491.73	1.8%	2.7%	0.6%	1.2%	6.9%	6.9%	0.0%	0.0%
90	8	5.19	High	SAP	420	9	372	88.6%	238.12	5.2%	11.7%	5.5%	10.0%	11.1%	33.3%	11.1%	22.2%
36	9	4.94	High	CPL	1076	38	268	24.9%	245.86	0.5%	1.2%	0.0%	0.2%	2.6%	7.9%	0.0%	0.0%
11	10	4.84	High	UMW	754	16	250	33.2%	380.41	17.1%	23.9%	3.3%	4.4%	18.8%	18.8%	6.3%	12.5%
15	11	4.40	High	SAP	765	24	424	55.4%	173.63	2.7%	5.2%	0.7%	3.0%	0.0%	8.3%	0.0%	0.0%
106	12	4.03	High	XER	15	0	0	0.0%	29.30	6.7%	53.3%	0.0%	20.0%	NA	NA	NA	NA
0.5	12	4.01	TT: -1.	VED	21	1	43	204.8	146.39	28.6%	47.6%	23.8%	76.20/	0.0%	0.0%	0.0%	100.0%
95 6	13 14		High Medium	XER CPL	21 2604	1 66	1612	61.9%	482.56	1.3%	2.0%	1.1%	76.2% 2.1%	1.5%	3.0%	0.0%	0.0%
20	15	3.67 3.63	Medium	NAP	1118	37	746	66.7%	482.36	4.4%	22.4%	1.1%	9.7%	0.0%	10.8%	0.0%	0.0%
279	16	3.59	Medium	TPL	9	0	/ 4 0	11.1%	4.48	11.1%	33.3%	0.0%	0.0%	0.0% NA	10.8% NA	0.0% NA	0.0% NA
24	17	3.58	Medium	CPL	1810	61	910	50.3%	316.38	2.5%	3.3%	1.0%	1.6%	8.2%	9.8%	4.9%	4.9%
313	18	3.49	Medium	UMW	8	0	0	0.0%	6.67	0.0%	0.0%	0.0%	0.0%	NA	9.870 NA	4.970 NA	4.970 NA
313	10	3.47	Wicaram	CIVIV	O	O	Ü	180.0	0.07	0.070	0.070	0.070	0.070	1171	1471	1471	1471
112	19	3.49	Medium	TPL	5	0	9	%	17.39	20.0%	20.0%	0.0%	0.0%	NA	NA	NA	NA
28	20	3.46	Medium	SAP	1665	37	944	56.7%	553.87	2.0%	2.6%	0.5%	0.9%	0.0%	0.0%	0.0%	0.0%
47	21	3.40	Medium	NAP	1463	38	754	51.5%	355.69	6.4%	13.7%	2.3%	4.2%	7.9%	13.2%	2.6%	2.6%
32	22	3.40	Medium	WMT	122	6	49	40.2%	289.10	55.7%	71.3%	52.5%	65.6%	16.7%	50.0%	16.7%	33.3%
21	23	3.38	Medium	CPL	516	7	107	20.7%	539.44	3.9%	10.1%	1.7%	6.4%	14.3%	28.6%	0.0%	0.0%
192	24	3.37	Medium	CPL	26	0	18	69.2%	30.59	0.0%	7.7%	0.0%	11.5%	NA	NA	NA	NA
423	25	3.33	Medium	CPL	9	0	7	77.8%	8.36	100.0%	100.0%	22.2%	22.2%	NA	NA	NA	NA
766	26	3.32	Medium	CPL	5	0	0	0.0%	3.92	20.0%	40.0%	0.0%	60.0%	NA	NA	NA	NA
721	27	3.32	Medium	CPL	5	0	0	0.0%	3.13	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
247	28	3.32	Medium	NAP	6	0	2	33.3%	6.29	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
627	29	3.30	Medium	CPL	6	0	1	16.7%	13.85	0.0%	0.0%	0.0%	16.7%	NA	NA	NA	NA
48	30	3.30	Medium	CPL	1603	67	1176	73.4%	452.01	0.9%	2.6%	0.6%	0.9%	0.0%	0.0%	0.0%	0.0%

406	2.1	2.20) (I'	113 (33)	10	0		10.00/	0.25	0.00/	0.00/	0.00/	0.00/	27.4	27.4	37.4	27.4
406	31	3.30	Medium	UMW	10	0	1	10.0%	8.35	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
342	32	3.30	Medium	CPL	8	0	2	25.0%	16.62	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
77	33	3.29	Medium	TPL	7	0	2	28.6%	22.42	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
355	34	3.27	Medium	CPL	10	0	5	50.0%	44.63	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
248	35	3.27	Medium	CPL	6	0	2	33.3%	20.58	0.0%	16.7%	0.0%	0.0%	NA	NA	NA	NA
382	36	3.27	Medium	WMT	5	0	2	40.0%	19.30	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
411	37	3.26	Medium	CPL	9	0	0	0.0%	18.43	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
256	38	3.25	Medium	CPL	5	0	0	0.0%	18.09	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
132	39	3.24	Medium	WMT	108	4	12	11.1%	206.64	71.3%	97.2%	78.7%	95.4%	0.0%	75.0%	25.0%	75.0%
9	40	3.23	Medium	CPL	2247	36	1209	53.8%	315.88	1.5%	4.5%	1.2%	1.7%	5.6%	11.1%	0.0%	0.0%
673	41	3.20	Medium	WMT	6	0	2	33.3%	17.11	0.0%	33.3%	0.0%	33.3%	NA	NA	NA	NA
100	42	3.18	Medium	CPL	249	11	93	37.3%	187.67	0.8%	1.2%	0.4%	0.8%	0.0%	0.0%	0.0%	0.0%
58	43	3.14	Medium	CPL	441	12	255	57.8%	260.08	4.3%	5.2%	1.8%	3.2%	0.0%	0.0%	0.0%	0.0%
376	44	3.13	Medium	CPL	9	0	0	0.0%	186.40	44.4%	66.7%	33.3%	55.6%	NA	NA	NA	NA
33	45	3.07	Medium	NAP	1731	76	286	16.5%	392.07	3.8%	8.4%	6.8%	11.1%	1.3%	5.3%	2.6%	2.6%
66	46	3.07	Medium	NPL	6	0	0	0.0%	5.12	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
94	47	3.04	Medium	CPL	7	0	5	71.4%	7.46	14.3%	14.3%	0.0%	28.6%	NA	NA	NA	NA
271	40	• • • •		***	1.6	^		106.3		0.00/	10.00/	0.00/	6.207	374	37.	37.1	37.4
371	48	2.99	Medium	WMT	16	0	17	%	91.36	0.0%	18.8%	0.0%	6.3%	NA	NA	NA	NA
64	49	2.98	Medium	UMW	825	16	220	26.7%	266.80	2.2%	7.6%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%
69	50	2.98	Medium	CPL	26	0	11	42.3%	38.73	3.8%	3.8%	0.0%	0.0%	NA	NA	NA	NA
189	51	2.93	Medium	WMT	133	7	2	1.5%	141.71	97.7%	99.2%	97.7%	98.5%	100.0%	100.0%	100.0%	100.0%
93	52	2.93	Medium	CPL	23	0	9	39.1%	36.70	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
136	53	2.92	Medium	XER	21	1	30	142.9 %	101.57	4.8%	9.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
99	54	2.89	Medium	XER	105	3	68	64.8%	216.83	13.3%	29.5%	5.7%	31.4%	0.0%	0.0%	0.0%	0.0%
800	55	2.89	Medium	CPL	5	0	0	0.0%	0.86	100.0%	100.0%	0.0%	0.0%	0.076 NA	0.076 NA	0.076 NA	0.076 NA
407	56	2.79	Medium	NAP	5	0	0	0.0%	3.31	20.0%	20.0%	0.0%	0.0%	NA NA	NA NA	NA NA	NA NA
685	57	2.79	Medium	CPL	5	1	0	0.0%	3.37	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
550	58	2.79	Medium	TPL	5	0	0	0.0%	4.63	20.0%	20.0%	0.0%	0.0%	0.076 NA	0.076 NA		0.076 NA
287	59	2.79	Medium	TPL	5	0	0	0.0%			20.0%	0.0%	0.0%		NA NA	NA NA	NA NA
364	60	2.78	Medium	TPL	5	0	0	0.0%	5.51 6.43	20.0% 20.0%	80.0%	0.0%	0.0%	NA NA	NA NA	NA NA	NA NA
					5	0										NA	
457	61	2.76	Medium	TPL		0	0	0.0%	7.27	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
314	62	2.75	Medium	CPL	72	1	9	12.5%	29.84	100.0%	100.0%	4.2%	4.2%	100.0%	100.0%	0.0%	0.0%
762	63	2.73	Medium	XER	5	0	0	0.0%	17.56	0.0%	80.0%	0.0%	100.0%	NA	NA	NA	NA
264	64	2.72	Medium	WMT	5	0	0	0.0%	5.26	0.0%	20.0%	0.0%	0.0%	NA	NA	NA	NA
282	65	2.72	Medium	NAP	5	1	0	0.0%	3.05	0.0%	0.0%	40.0%	40.0%	0.0%	0.0%	0.0%	0.0%
30	66	2.68	Medium	UMW	20	1	4	20.0%	46.90	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
516	67	2.68	Medium	WMT	5	1	1	20.0%	2.65	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
681	68	2.63	Medium	XER	7	2	0	0.0%	2.91	0.0%	100.0%	0.0%	14.3%	0.0%	100.0%	0.0%	0.0%
827	69	2.63	Medium	NAP	5	0	2	40.0%	1.86	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA

								122.2									
119	70	2.61	Medium	WMT	45	3	55	%	220.24	2.2%	40.0%	2.2%	55.6%	0.0%	33.3%	0.0%	33.3%
280	71	2.60	Medium	NAP	14	0	0	0.0%	19.52	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
760	72	2.60	Medium	NPL	5	1	2	40.0%	5.18	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
67	73	2.59	Medium	TPL	146	7	58	39.7%	147.49	5.5%	10.3%	3.4%	3.4%	14.3%	28.6%	14.3%	14.3%
761	74	2.57	Medium	NAP	8	1	4	50.0%	7.86	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
139	75	2.52	Medium	NAP	271	10	162	59.8%	194.84	2.2%	7.0%	2.2%	2.6%	0.0%	0.0%	0.0%	0.0%
198	76	2.52	Medium	NAP	5	0	3	60.0%	6.97	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
105	77	2.52	Medium	CPL	36	2	13	36.1%	39.43	5.6%	22.2%	5.6%	11.1%	0.0%	0.0%	0.0%	0.0%
296	78	2.49	Medium	UMW	7	1	0	0.0%	7.19	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
19	79	2.49	Medium	SAP	21	1	13	61.9%	28.68	0.0%	9.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
109	80	2.47	Medium	WMT	52	3	8	15.4%	66.11	67.3%	71.2%	67.3%	71.2%	66.7%	66.7%	66.7%	66.7%
524	81	2.46	Medium	CPL	5	0	4	80.0%	2.05	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
227	82	2.46	Medium	XER	16	0	14	87.5%	54.89	18.8%	50.0%	6.3%	6.3%	NA	NA	NA	NA
178	83	2.45	Medium	CPL	5	0	4	80.0%	8.40	20.0%	20.0%	0.0%	0.0%	NA	NA	NA	NA
65	84	2.45	Medium	CPL	48	0	13	27.1%	54.71	0.0%	8.3%	0.0%	8.3%	NA	NA	NA	NA
152	85	2.43	Medium	NAP	5	0	4	80.0%	7.65	20.0%	20.0%	20.0%	20.0%	NA	NA	NA	NA
31	86	2.42	Medium	SPL	454	14	288	63.4%	253.01	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
427	87	2.40	Medium	NAP	10	0	9	90.0%	34.10	0.0%	10.0%	0.0%	0.0%	NA	NA	NA	NA
150	88	2.39	Medium	NAP	29	0	11	37.9%	30.82	3.4%	10.3%	0.0%	0.0%	NA	NA	NA	NA
40	89	2.38	Medium	WMT	200	1	13	6.5%	72.84	70.5%	77.5%	60.5%	65.5%	100.0%	100.0%	100.0%	100.0%
210	90	2.36	Medium	TPL	7	0	0	0.0%	3.46	0.0%	28.6%	0.0%	0.0%	NA	NA	NA	NA
277	91	2.34	Medium	UMW	50	3	0	0.0%	15.35	36.0%	96.0%	26.0%	100.0%	33.3%	100.0%	33.3%	100.0%
45	92	2.31	Medium	SPL	326	11	261	80.1%	185.41	2.1%	2.1%	0.9%	0.9%	9.1%	9.1%	0.0%	0.0%
781	93	2.30	Medium	CPL	7	0	4	57.1%	3.54	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
57	94	2.29	Medium	NAP	749	23	436	58.2% 100.0	215.67	1.2%	14.6%	0.4%	6.0%	0.0%	0.0%	0.0%	0.0%
108	95	2.29	Medium	XER	5	0	5	%	14.52	100.0%	100.0%	0.0%	80.0%	NA	NA	NA	NA
78	96	2.27	Medium	NAP	16	0	15	93.8% 110.7	27.65	0.0%	31.3%	0.0%	0.0%	NA	NA	NA	NA
118	97	2.26	Medium	WMT	28	1	31	%	82.28	21.4%	42.9%	10.7%	46.4%	0.0%	100.0%	0.0%	100.0%
196	98	2.25	Medium	CPL	18	1	4	22.2% 100.0	61.81	11.1%	11.1%	11.1%	11.1%	0.0%	0.0%	0.0%	0.0%
134	99	2.24	Medium	XER	40	1	40	%	70.38	5.0%	42.5%	2.5%	15.0%	0.0%	0.0%	0.0%	0.0%
35	100	2.23	Medium	CPL	609	29	332	54.5%	179.95	0.5%	0.5%	0.2%	0.2%	0.0%	0.0%	0.0%	0.0%
156	101	2.23	Medium	NAP	17	2	7	41.2%	25.89	5.9%	17.6%	0.0%	5.9%	0.0%	50.0%	0.0%	0.0%
648	102	2.22	Medium	XER	5	0	4	80.0%	24.32	60.0%	80.0%	0.0%	0.0%	NA	NA	NA	NA
133	103	2.20	Medium	CPL	172	7	35	20.3%	97.07	0.6%	1.2%	0.0%	1.2%	0.0%	0.0%	0.0%	0.0%
544	104	2.19	Medium	WMT	10	0	0	0.0%	21.22	60.0%	60.0%	0.0%	0.0%	NA	NA	NA	NA
271	105	2.18	Medium	NAP	9	0	3	33.3%	8.57	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
591	106	2.18	Medium	UMW	6	1	0	0.0%	4.59	0.0%	100.0%	33.3%	33.3%	0.0%	100.0%	0.0%	0.0%
289	107	2.17	Medium	UMW	13	2	2	15.4%	19.07	0.0%	7.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
858	108	2.13	Medium	TPL	6	0	0	0.0%	4.40	16.7%	16.7%	0.0%	0.0%	NA	NA	NA	NA

389	109	2.13	Medium	CPL	7	1	0	0.0% 269.2	2.68	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
232	110	2.12	Medium	WMT	13	0	35	%	52.23	15.4%	69.2%	0.0%	46.2%	NA	NA	NA	NA
29	111	2.12	Medium	NAP	736	22	126	17.1%	159.94	7.3%	9.5%	38.6%	41.6%	13.6%	13.6%	31.8%	31.8%
68	112	2.11	Medium	UMW	364	11	113	31.0%	241.04	9.1%	12.4%	6.6%	8.0%	9.1%	9.1%	0.0%	0.0%
261	113	2.11	Medium	WMT	55	2	12	21.8%	118.49	60.0%	78.2%	63.6%	89.1%	0.0%	0.0%	0.0%	0.0%
527	114	2.08	Medium	WMT	7	0	6	85.7%	74.60	0.0%	42.9%	0.0%	0.0%	NA	NA	NA	NA
388	115	2.08	Medium	XER	16	1	4	25.0%	24.53	6.3%	12.5%	6.3%	6.3%	0.0%	0.0%	0.0%	0.0%
144	116	2.08	Medium	UMW	15	0	0	0.0%	18.11	0.0%	80.0%	0.0%	26.7%	NA	NA	NA	NA
211	117	2.06	Medium	XER	8	1	5	62.5%	21.18	12.5%	37.5%	0.0%	12.5%	100.0%	100.0%	0.0%	0.0%
582	118	2.06	Medium	CPL	7	0	3	42.9%	12.01	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
375	119	2.05	Medium	NAP	10	0	8	80.0% 136.6	11.96	10.0%	10.0%	10.0%	10.0%	NA	NA	NA	NA
140	120	2.05	Medium	WMT	41	3	56	%	120.00	12.2%	48.8%	12.2%	48.8%	0.0%	33.3%	0.0%	33.3%
71	121	2.05	Medium	WMT	40	2	20	50.0%	134.60	22.5%	62.5%	15.0%	70.0%	0.0%	0.0%	0.0%	50.0%
249	122	2.05	Medium	NAP	9	1	6	66.7%	12.01	0.0%	22.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
98	123	2.03	Medium	WMT	92	2	11	12.0%	111.78	73.9%	85.9%	72.8%	85.9%	0.0%	50.0%	0.0%	50.0%
263	124	2.03	Medium	WMT	14	0	2	14.3%	39.21	64.3%	78.6%	71.4%	78.6%	NA	NA	NA	NA
240	125	2.01	Medium	CPL	19	2	10	52.6%	124.88	10.5%	15.8%	5.3%	15.8%	50.0%	50.0%	50.0%	50.0%
220	126	1.99	Low	UMW	7	0	4	57.1%	9.43	42.9%	71.4%	0.0%	0.0%	NA	NA	NA	NA
164	127	1.99	Low	UMW	30	1	0	0.0%	18.81	6.7%	76.7%	3.3%	93.3%	0.0%	100.0%	0.0%	100.0%
309	128	1.98	Low	UMW	27	1	4	14.8%	22.47	0.0%	3.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
145	129	1.98	Low	WMT	23	2	21	91.3%	72.48	21.7%	65.2%	21.7%	47.8%	50.0%	100.0%	50.0%	100.0%
165	130	1.97	Low	CPL	24	2	8	33.3%	112.31	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
238	131	1.96	Low	TPL	10	1	0	0.0%	6.95	10.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
448	132	1.95	Low	WMT	12	2	11	91.7%	71.45	8.3%	33.3%	8.3%	41.7%	0.0%	50.0%	0.0%	50.0%
284	133	1.95	Low	NAP	6	0	0	0.0%	2.46	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
529	134	1.93	Low	TPL	6	0	0	0.0%	4.90	33.3%	33.3%	0.0%	0.0%	NA	NA	NA	NA
38	135	1.92	Low	CPL	6	0	4	66.7%	2.75	33.3%	66.7%	0.0%	0.0%	NA	NA	NA	NA
5	136	1.91	Low	SAP	483	11	249	51.6%	168.70	1.2%	3.1%	0.2%	0.8%	0.0%	9.1%	0.0%	0.0%
357	137	1.91	Low	NAP	18	0	0	0.0%	14.76	0.0%	11.1%	27.8%	33.3%	NA	NA	NA	NA
581	138	1.90	Low	UMW	6	0	0	0.0%	2.91	0.0%	83.3%	0.0%	83.3%	NA	NA	NA	NA
200	139	1.89	Low	UMW	64	4	0	0.0%	22.55	51.6%	90.6%	42.2%	92.2%	25.0%	50.0%	50.0%	100.0%
410	140	1.89	Low	WMT	10	1	1	10.0%	26.27	0.0%	70.0%	20.0%	80.0%	0.0%	0.0%	0.0%	100.0%
158	141	1.89	Low	CPL	6	0	4	66.7%	2.14	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
160	142	1.88	Low	TPL	147	8	52	35.4%	122.73	16.3%	19.0%	2.0%	2.0%	37.5%	37.5%	12.5%	12.5%
14	143	1.88	Low	WMT	65	3	28	43.1%	143.11	44.6%	76.9%	38.5%	80.0%	0.0%	66.7%	0.0%	33.3%
486	144	1.88	Low	CPL	7	2	0	0.0%	3.16	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
633	145	1.88	Low	CPL	5	0	0	0.0%	4.24	100.0%	100.0%	0.0%	0.0%	NA	NA	NA	NA
141	146	1.87	Low	CPL	25	2	2	8.0%	4.04	40.0%	72.0%	4.0%	4.0%	100.0%	100.0%	0.0%	0.0%
573	147	1.86	Low	UMW	6	0	1	16.7%	11.17	0.0%	16.7%	0.0%	0.0%	NA	NA	NA	NA
195	148	1.86	Low	CPL	6	0	3	50.0%	8.97	33.3%	50.0%	0.0%	0.0%	NA	NA	NA	NA

383	149	1.86	Low	UMW	6	1	0	0.0%	7.50	0.0%	0.0%	16.7%	16.7%	0.0%	0.0%	0.0%	0.0%
437	150	1.85	Low	UMW	6	0	1	16.7%	11.68	83.3%	83.3%	83.3%	83.3%	NA	NA	NA	NA
236	151	1.84	Low	XER	14	0	12	85.7%	189.16	7.1%	21.4%	0.0%	0.0%	NA	NA	NA	NA
338	152	1.83	Low	UMW	6	1	1	16.7%	9.31	0.0%	16.7%	0.0%	33.3%	0.0%	0.0%	0.0%	100.0%
443	153	1.82	Low	WMT	7	1	0	0.0%	10.87	57.1%	100.0%	42.9%	71.4%	0.0%	100.0%	0.0%	100.0%
480	154	1.81	Low	NAP	6	0	2	33.3%	12.69	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
324	155	1.80	Low	CPL	6	0	1	16.7%	26.96	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
44	156	1.78	Low	CPL	36	0	19	52.8%	66.55	2.8%	2.8%	0.0%	5.6%	NA	NA	NA	NA
42	157	1.78	Low	NAP	8	0	4	50.0% 100.0	6.05	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
129	158	1.78	Low	CPL	23	0	23	%	45.88	8.7%	21.7%	4.3%	4.3%	NA	NA	NA	NA
465	159	1.77	Low	NAP	6	0	2	33.3%	22.43	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
369	160	1.76	Low	WMT	6	0	4	66.7%	23.22	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
704	161	1.76	Low	CPL	5	0	0	0.0%	1.96	40.0%	40.0%	40.0%	40.0%	NA	NA	NA	NA
166	162	1.76	Low	CPL	186	2	93	50.0%	143.16	2.7%	2.7%	0.5%	0.5%	0.0%	0.0%	0.0%	0.0%
253	163	1.75	Low	WMT	42	3	10	23.8%	33.87	73.8%	92.9%	57.1%	76.2%	0.0%	66.7%	0.0%	66.7%
661	164	1.75	Low	CPL	6	0	3	50.0%	1.07	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
463	165	1.74	Low	XER	5	0	0	0.0%	4.67	0.0%	100.0%	0.0%	80.0%	NA	NA	NA	NA
356	166	1.74	Low	TPL	5	1	1	20.0%	13.44	20.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
651	167	1.74	Low	UMW	5	1	0	0.0%	5.10	80.0%	80.0%	80.0%	80.0%	100.0%	100.0%	100.0%	100.0%
272	168	1.73	Low	UMW	19	2	2	10.5%	6.15	10.5%	31.6%	10.5%	10.5%	0.0%	0.0%	0.0%	0.0%
394	169	1.73	Low	NAP	6	0	5	83.3%	10.68	16.7%	16.7%	0.0%	0.0%	NA	NA	NA	NA
621	170	1.72	Low	NAP	8	1	3	37.5%	5.52	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
323	171	1.72	Low	UMW	5	1	1	20.0%	10.41	0.0%	60.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
366	172	1.71	Low	NAP	6	0	3	50.0%	6.79	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
639	173	1.71	Low	NAP	5	0	0	0.0%	2.12	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
285	174	1.70	Low	NAP	5	0	1	20.0%	3.72	20.0%	40.0%	0.0%	0.0%	NA	NA	NA	NA
53	175	1.70	Low	NAP	338	8	170	50.3%	187.95	7.7%	17.5%	16.6%	19.2%	0.0%	25.0%	0.0%	0.0%
75	176	1.69	Low	CPL	382	16	165	43.2%	120.32	0.5%	0.8%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%
295	177	1.68	Low	NAP	5	0	2	40.0%	7.03	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
293	178	1.67	Low	UMW	23	1	2	8.7%	19.50	0.0%	34.8%	0.0%	87.0%	0.0%	0.0%	0.0%	100.0%
223	179	1.67	Low	WMT	14	1	0	0.0%	11.57	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
43	180	1.66	Low	UMW	1190	46	30	2.5%	180.01	52.9%	83.1%	49.9%	71.3%	37.0%	67.4%	23.9%	50.0%
420	181	1.66	Low	WMT	6	1	4	66.7%	18.12	0.0%	0.0%	0.0%	16.7%	0.0%	0.0%	0.0%	0.0%
126	182	1.66	Low	SAP	304	10	69	22.7%	110.80	0.3%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
254	183	1.63	Low	NAP	22	1	7	31.8%	35.87	4.5%	4.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
60	184	1.62	Low	SAP	586	18	278	47.4%	180.43	0.3%	4.8%	0.0%	0.2%	5.6%	33.3%	0.0%	0.0%
110	185	1.62	Low	UMW	142	8	31	21.8%	67.97	4.2%	15.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
543	186	1.62	Low	XER	5	1	0	0.0%	8.28	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
16	187	1.61	Low	CPL	400	17	134	33.5%	128.32	0.3%	0.5%	0.0%	1.3%	0.0%	0.0%	0.0%	11.8%
421	188	1.61	Low	XER	9	1	4	44.4%	26.21	11.1%	44.4%	0.0%	11.1%	0.0%	100.0%	0.0%	0.0%

189	1.61	Low	CPL	17	1	6	35.3%	16.27	0.0%	17.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
190	1.61	Low	XER	6	0	2	33.3%	56.53	50.0%	50.0%	16.7%	50.0%	NA	NA	NA	NA
191	1.60	Low	XER	6	1	4	66.7% 130.0	38.15	0.0%	16.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
192	1.59	Low	XER	10	0	13	%	27.44	60.0%	90.0%	80.0%	100.0%	NA	NA	NA	NA
193	1.58	Low	NAP	5	1	3	60.0%	6.77	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
194	1.58	Low	NAP	22	0	8	36.4%	17.10	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
195	1.58	Low	UMW	5	1	0	0.0%	4.98	20.0%	40.0%	20.0%	20.0%	0.0%	0.0%	0.0%	0.0%
196	1.57	Low	NAP	33	3	27	81.8%	16.21	3.0%	30.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
197	1.56	Low	CPL	20	0	3	15.0%	27.93	5.0%	15.0%	5.0%	10.0%	NA	NA	NA	NA
198	1.54	Low	UMW	6	0	0	0.0%	7.00	0.0%	83.3%	66.7%	66.7%	NA	NA	NA	NA
199	1.53	Low	NPL	5	1	2	40.0%	15.13	40.0%	40.0%	0.0%	0.0%	100.0%	100.0%	0.0%	0.0%
200	1.53	Low	CPL	8	1	2	25.0%	131.65	12.5%	12.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
201	1.53	Low	NAP	5	0	3	60.0%	10.32	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
202	1.52	Low	CPL	7	0	2	28.6%	2.06	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
203	1.52	Low	NAP	8	1	4	50.0%	13.35	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
204	1.52	Low	UMW	17	2	4	23.5%	18.08	11.8%	29.4%	5.9%	5.9%	0.0%	0.0%	0.0%	0.0%
205	1.51	Low	NAP	5	0	4	80.0%	7.04	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
206	1.50	Low	UMW	237	14	1	0.4%	41.65	58.2%	94.5%	54.9%	94.1%	28.6%	78.6%	21.4%	92.9%
207	1.49	Low	UMW	5	1	1	20.0%	3.19	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
208	1.48	Low	UMW	453	16	59	13.0%	182.22	12.4%	22.5%	12.4%	16.3%	6.3%	6.3%	0.0%	0.0%
209	1.48	Low	NAP	9	0	7	77.8%	8.45	0.0%	44.4%	0.0%	0.0%	NA	NA	NA	NA
210	1.47	Low	SPL	5	1	4	80.0%	6.08	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
211	1.47	Low	NAP	8	2	4	50.0% 100.0	14.46	12.5%	12.5%	0.0%	0.0%	50.0%	50.0%	0.0%	0.0%
212	1.46	Low	XER	5	0	5	%	14.66	0.0%	60.0%	0.0%	0.0%	NA	NA	NA	NA
213	1.45	Low	NAP	325	21	255	78.5%	80.79	3.1%	11.4%	0.0%	1.5%	4.8%	4.8%	0.0%	0.0%
214	1.44	Low	NAP	27	2	3	11.1%	38.74	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
215	1.43	Low	UMW	9	0	3	33.3%	20.31	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
216	1.43	Low	WMT	20	1	1	5.0%	34.29	15.0%	50.0%	10.0%	55.0%	0.0%	0.0%	0.0%	0.0%
217	1.42	Low	NAP	5	0	0	0.0%	11.99	20.0%	20.0%	0.0%	20.0%	NA	NA	NA	NA
218	1.41	Low	WMT	28	3	19	67.9%	106.23	7.1%	17.9%	3.6%	10.7%	0.0%	33.3%	0.0%	0.0%
219	1.40	Low	UMW	13	1	0	0.0%	14.59	30.8%	76.9%	69.2%	69.2%	0.0%	100.0%	0.0%	0.0%
220	1.40	Low	NAP	6	1	4	66.7%	14.90	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
221	1.39	Low	TPL	23	2	8	34.8%	81.88	13.0%	13.0%	13.0%	13.0%	0.0%	0.0%	0.0%	0.0%
222	1.38	Low	CPL	222	10	66	29.7%	166.94	0.0%	1.4%	0.0%	0.5%	0.0%	10.0%	0.0%	0.0%
223	1.37	Low	CPL	5	1	3	60.0%	42.12	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
224	1.37	Low	NAP	9	1	5	55.6%	7.72	11.1%	22.2%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
225	1.37	Low	CPL	13	1	7	53.8%	7.66	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
226	1.37	Low	WMT	6	0	0	0.0%	14.17	0.0%	16.7%	0.0%	0.0%	NA	NA	NA	NA
227	1.37	Low	CPL	9	1	7	77.8%	12.34	33.3%	66.7%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
228	1.35	Low	NAP	7	1	4	57.1%	6.18	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227	190 1.61 191 1.60 192 1.59 193 1.58 194 1.58 195 1.58 196 1.57 197 1.56 198 1.54 199 1.53 200 1.53 201 1.52 203 1.52 204 1.52 205 1.51 206 1.50 207 1.49 208 1.48 209 1.48 210 1.47 211 1.47 212 1.46 213 1.45 214 1.44 215 1.43 216 1.43 217 1.42 218 1.41 219 1.40 220 1.38 223 1.37 224 1.37 225 1.37 <td>190 1.61 Low 191 1.60 Low 192 1.59 Low 193 1.58 Low 194 1.58 Low 195 1.58 Low 196 1.57 Low 197 1.56 Low 198 1.54 Low 200 1.53 Low 201 1.53 Low 202 1.52 Low 203 1.52 Low 204 1.52 Low 205 1.51 Low 206 1.50 Low 207 1.49 Low 208 1.48 Low 210 1.47 Low 211 1.47 Low 212 1.46 Low 213 1.45 Low 214 1.44 Low 215 1.43 Low 216 1.43</td> <td>190 1.61 Low XER 191 1.60 Low XER 192 1.59 Low XER 193 1.58 Low NAP 194 1.58 Low NAP 195 1.58 Low UMW 196 1.57 Low NAP 197 1.56 Low CPL 198 1.54 Low UMW 199 1.53 Low NPL 200 1.53 Low NAP 201 1.53 Low NAP 202 1.52 Low CPL 203 1.52 Low NAP 204 1.52 Low UMW 205 1.51 Low NAP 206 1.50 Low UMW 207 1.49 Low UMW 208 1.48 Low UMW 209 1.48 Low<</td> <td>190 1.61 Low XER 6 191 1.60 Low XER 6 192 1.59 Low XER 10 193 1.58 Low NAP 5 194 1.58 Low NAP 22 195 1.58 Low UMW 5 196 1.57 Low NAP 33 197 1.56 Low CPL 20 198 1.54 Low UMW 6 199 1.53 Low NPL 5 200 1.53 Low CPL 8 201 1.53 Low NAP 5 202 1.52 Low CPL 7 203 1.52 Low NAP 8 204 1.52 Low UMW 17 205 1.51 Low NAP 5 206 1.50 Low<td>190 1.61 Low XER 6 0 191 1.60 Low XER 6 1 192 1.59 Low XER 10 0 193 1.58 Low NAP 5 1 194 1.58 Low NAP 22 0 195 1.58 Low UMW 5 1 196 1.57 Low NAP 33 3 197 1.56 Low CPL 20 0 198 1.54 Low UMW 6 0 199 1.53 Low UMW 6 0 199 1.53 Low CPL 8 1 200 1.53 Low CPL 8 1 201 1.53 Low CPL 7 0 203 1.52 Low CPL 7 0 203 1.52 Low UMW 17 2 205 1.51 Low UM</td><td>190 1.61 Low XER 6 0 2 191 1.60 Low XER 6 1 4 192 1.59 Low XER 10 0 13 193 1.58 Low NAP 5 1 3 194 1.58 Low NAP 22 0 8 195 1.58 Low UMW 5 1 0 196 1.57 Low NAP 33 3 27 197 1.56 Low CPL 20 0 3 198 1.54 Low UMW 6 0 0 199 1.53 Low NPL 5 1 2 200 1.53 Low NPL 5 0 3 202 1.52 Low CPL 7 0 2 203 1.52 Low UMW</td><td> 190</td><td> 190</td><td> 190</td><td> 190</td><td> 190</td><td> 190</td><td> 191</td><td> 191</td><td> 191</td></td>	190 1.61 Low 191 1.60 Low 192 1.59 Low 193 1.58 Low 194 1.58 Low 195 1.58 Low 196 1.57 Low 197 1.56 Low 198 1.54 Low 200 1.53 Low 201 1.53 Low 202 1.52 Low 203 1.52 Low 204 1.52 Low 205 1.51 Low 206 1.50 Low 207 1.49 Low 208 1.48 Low 210 1.47 Low 211 1.47 Low 212 1.46 Low 213 1.45 Low 214 1.44 Low 215 1.43 Low 216 1.43	190 1.61 Low XER 191 1.60 Low XER 192 1.59 Low XER 193 1.58 Low NAP 194 1.58 Low NAP 195 1.58 Low UMW 196 1.57 Low NAP 197 1.56 Low CPL 198 1.54 Low UMW 199 1.53 Low NPL 200 1.53 Low NAP 201 1.53 Low NAP 202 1.52 Low CPL 203 1.52 Low NAP 204 1.52 Low UMW 205 1.51 Low NAP 206 1.50 Low UMW 207 1.49 Low UMW 208 1.48 Low UMW 209 1.48 Low<	190 1.61 Low XER 6 191 1.60 Low XER 6 192 1.59 Low XER 10 193 1.58 Low NAP 5 194 1.58 Low NAP 22 195 1.58 Low UMW 5 196 1.57 Low NAP 33 197 1.56 Low CPL 20 198 1.54 Low UMW 6 199 1.53 Low NPL 5 200 1.53 Low CPL 8 201 1.53 Low NAP 5 202 1.52 Low CPL 7 203 1.52 Low NAP 8 204 1.52 Low UMW 17 205 1.51 Low NAP 5 206 1.50 Low <td>190 1.61 Low XER 6 0 191 1.60 Low XER 6 1 192 1.59 Low XER 10 0 193 1.58 Low NAP 5 1 194 1.58 Low NAP 22 0 195 1.58 Low UMW 5 1 196 1.57 Low NAP 33 3 197 1.56 Low CPL 20 0 198 1.54 Low UMW 6 0 199 1.53 Low UMW 6 0 199 1.53 Low CPL 8 1 200 1.53 Low CPL 8 1 201 1.53 Low CPL 7 0 203 1.52 Low CPL 7 0 203 1.52 Low UMW 17 2 205 1.51 Low UM</td> <td>190 1.61 Low XER 6 0 2 191 1.60 Low XER 6 1 4 192 1.59 Low XER 10 0 13 193 1.58 Low NAP 5 1 3 194 1.58 Low NAP 22 0 8 195 1.58 Low UMW 5 1 0 196 1.57 Low NAP 33 3 27 197 1.56 Low CPL 20 0 3 198 1.54 Low UMW 6 0 0 199 1.53 Low NPL 5 1 2 200 1.53 Low NPL 5 0 3 202 1.52 Low CPL 7 0 2 203 1.52 Low UMW</td> <td> 190</td> <td> 190</td> <td> 190</td> <td> 190</td> <td> 190</td> <td> 190</td> <td> 191</td> <td> 191</td> <td> 191</td>	190 1.61 Low XER 6 0 191 1.60 Low XER 6 1 192 1.59 Low XER 10 0 193 1.58 Low NAP 5 1 194 1.58 Low NAP 22 0 195 1.58 Low UMW 5 1 196 1.57 Low NAP 33 3 197 1.56 Low CPL 20 0 198 1.54 Low UMW 6 0 199 1.53 Low UMW 6 0 199 1.53 Low CPL 8 1 200 1.53 Low CPL 8 1 201 1.53 Low CPL 7 0 203 1.52 Low CPL 7 0 203 1.52 Low UMW 17 2 205 1.51 Low UM	190 1.61 Low XER 6 0 2 191 1.60 Low XER 6 1 4 192 1.59 Low XER 10 0 13 193 1.58 Low NAP 5 1 3 194 1.58 Low NAP 22 0 8 195 1.58 Low UMW 5 1 0 196 1.57 Low NAP 33 3 27 197 1.56 Low CPL 20 0 3 198 1.54 Low UMW 6 0 0 199 1.53 Low NPL 5 1 2 200 1.53 Low NPL 5 0 3 202 1.52 Low CPL 7 0 2 203 1.52 Low UMW	190	190	190	190	190	190	191	191	191

97	229	1.33	Low	UMW	14	1	0	0.0%	29.73	0.0%	21.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
115	230	1.33	Low	UMW	47	2	1	2.1%	35.97	36.2%	36.2%	31.9%	31.9%	100.0%	100.0%	0.0%	0.0%
276	231	1.33	Low	NAP	7	1	1	14.3%	7.09	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
275	232	1.32	Low	UMW	11	0	8	72.7%	13.16	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
202	233	1.30	Low	CPL	23	1	18	78.3%	42.08	21.7%	30.4%	4.3%	4.3%	0.0%	100.0%	0.0%	0.0%
39	234	1.29	Low	TPL	7	0	0	0.0%	5.33	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
604	235	1.28	Low	WMT	8	0	2	25.0%	13.35	0.0%	0.0%	0.0%	12.5%	NA	NA	NA	NA
283	236	1.28	Low	NAP	6	1	0	0.0%	5.90	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
63	237	1.27	Low	UMW	454	18	86	18.9%	116.11	3.7%	5.3%	0.9%	0.9%	0.0%	0.0%	0.0%	0.0%
185	238	1.27	Low	NAP	14	1	5	35.7%	15.75	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
188	239	1.27	Low	CPL	66	3	18	27.3%	39.39	37.9%	43.9%	9.1%	9.1%	100.0%	100.0%	0.0%	0.0%
257	240	1.27	Low	NAP	113	3	76	67.3%	40.10	5.3%	27.4%	0.0%	3.5%	0.0%	0.0%	0.0%	0.0%
88	241	1.26	Low	NAP	380	15	214	56.3%	97.72	3.4%	9.2%	0.3%	4.7%	13.3%	20.0%	0.0%	0.0%
92	242	1.25	Low	NAP	75	4	33	44.0%	50.59	2.7%	8.0%	2.7%	2.7%	0.0%	25.0%	0.0%	0.0%
435	243	1.25	Low	NAP	6	0	4	66.7%	6.09	0.0%	50.0%	0.0%	0.0%	NA	NA	NA	NA
187	244	1.24	Low	CPL	25	1	2	8.0%	9.01	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
114	245	1.24	Low	UMW	50	3	20	40.0%	41.64	0.0%	6.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
368	246	1.24	Low	XER	12	0	4	33.3%	35.46	0.0%	41.7%	0.0%	33.3%	NA	NA	NA	NA
489	247	1.22	Low	UMW	6	1	0	0.0%	8.77	0.0%	16.7%	16.7%	16.7%	0.0%	100.0%	0.0%	0.0%
363	248	1.21	Low	WMT	5	0	1	20.0%	21.51	0.0%	20.0%	20.0%	60.0%	NA	NA	NA	NA
26	249	1.20	Low	NAP	418	11	225	53.8%	142.51	4.8%	12.9%	2.2%	5.7%	0.0%	18.2%	0.0%	0.0%
72	250	1.19	Low	NAP	12	1	3	25.0%	11.88	33.3%	33.3%	0.0%	0.0%	100.0%	100.0%	0.0%	0.0%
214	251	1.17	Low	NAP	43	4	15	34.9%	55.27	2.3%	2.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
440	252	1.17	Low	XER	9	1	8	88.9%	12.79	11.1%	88.9%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
204	253	1.17	Low	NAP	28	2	11	39.3%	20.29	3.6%	3.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
302	254	1.17	Low	CPL	19	0	3	15.8%	91.01	0.0%	21.1%	0.0%	10.5%	NA	NA	NA	NA
522	255	1.16	Low	CPL	10	0	0	0.0%	12.54	10.0%	10.0%	0.0%	0.0%	NA	NA	NA	NA
595	256	1.15	Low	NAP	13	1	6	46.2%	7.82	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
570	257	1.15	Low	UMW	6	0	1	16.7%	16.18	16.7%	16.7%	50.0%	50.0%	NA	NA	NA	NA
438	258	1.15	Low	CPL	6	0	0	0.0%	13.52	33.3%	33.3%	16.7%	16.7%	NA	NA	NA	NA
7	259	1.15	Low	UMW	153	5	30	19.6%	139.15	4.6%	12.4%	3.3%	3.3%	20.0%	20.0%	0.0%	0.0%
358	260	1.15	Low	NAP	6	0	3	50.0%	10.92	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
559	261	1.15	Low	NAP	7	1	2	28.6%	7.24	0.0%	14.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
37	262	1.14	Low	NAP	261	10	81	31.0%	98.36	0.8%	5.4%	0.8%	3.8%	0.0%	0.0%	0.0%	0.0%
266	263	1.14	Low	CPL	40	0	27	67.5%	107.98	25.0%	25.0%	12.5%	12.5%	NA	NA	NA	NA
			_		_		_	100.0									
519	264	1.14	Low	CPL	7	1	7	%	15.29	0.0%	14.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
122	265	1.14	Low	XER	27	1	12	44.4%	90.13	11.1%	22.2%	7.4%	7.4%	100.0%	100.0%	0.0%	0.0%
13	266	1.13	Low	UMW	240	10	26	10.8%	119.26	0.4%	30.8%	0.0%	1.3%	0.0%	20.0%	0.0%	0.0%
460	267	1.13	Low	WMT	6	0	2	33.3%	9.69	0.0%	16.7%	0.0%	0.0%	NA	NA	NA	NA
307	268	1.12	Low	UMW	12	1	0	0.0%	44.34	8.3%	8.3%	25.0%	25.0%	0.0%	0.0%	100.0%	100.0%

18	269	1.11	Low	CPL	410	16	99	24.1%	130.19	0.5%	1.2%	0.5%	1.0%	0.0%	0.0%	0.0%	0.0%
274	270	1.11	Low	NAP	30	3	7	23.3%	16.41	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
80	271	1.11	Low	UMW	20	0	5	25.0%	43.14	15.0%	35.0%	35.0%	35.0%	NA	NA	NA	NA
224	272	1.10	Low	UMW	23	0	0	0.0%	32.53	0.0%	4.3%	4.3%	4.3%	NA	NA	NA	NA
62	273	1.09	Low	NAP	26	0	14	53.8%	15.53	0.0%	7.7%	0.0%	0.0%	NA	NA	NA	NA
104	274	1.09	Low	TPL	17	1	14	82.4%	36.14	5.9%	11.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
125	275	1.09	Low	NAP	10	1	3	30.0%	10.53	0.0%	30.0%	30.0%	30.0%	0.0%	0.0%	0.0%	0.0%
49	276	1.09	Low	NAP	62	3	38	61.3%	29.95	16.1%	22.6%	3.2%	12.9%	0.0%	0.0%	0.0%	0.0%
653	277	1.08	Low	UMW	6	1	1	16.7%	6.69	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
455	278	1.08	Low	NAP	12	2	1	8.3%	19.58	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
752	279	1.08	Low	UMW	7	1	0	0.0%	15.34	0.0%	42.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
27	280	1.08	Low	CPL	31	1	21	67.7%	48.20	32.3%	35.5%	3.2%	3.2%	100.0%	100.0%	0.0%	0.0%
565	281	1.08	Low	UMW	6	0	0	0.0%	14.96	33.3%	33.3%	83.3%	83.3%	NA	NA	NA	NA
221	282	1.07	Low	CPL	15	0	1	6.7%	31.04	13.3%	20.0%	6.7%	6.7%	NA	NA	NA	NA
127	283	1.06	Low	UMW	30	0	6	20.0%	36.88	3.3%	6.7%	0.0%	0.0%	NA	NA	NA	NA
180	284	1.06	Low	UMW	11	0	0	0.0%	16.19	9.1%	90.9%	0.0%	36.4%	NA	NA	NA	NA
452	285	1.05	Low	UMW	8	1	0	0.0%	4.75	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
25	286	1.05	Low	CPL	98	1	64	65.3%	129.12	1.0%	3.1%	1.0%	2.0%	0.0%	0.0%	0.0%	0.0%
344	287	1.05	Low	UMW	8	1	3	37.5% 100.0	11.54	0.0%	25.0%	25.0%	25.0%	0.0%	0.0%	0.0%	0.0%
255	288	1.04	Low	CPL	5	0	5	%	10.05	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
184	289	1.04	Low	CPL	57	1	34	59.6% 109.1	86.65	7.0%	26.3%	0.0%	3.5%	0.0%	0.0%	0.0%	0.0%
151	290	1.04	Low	CPL	22	3	24	%	50.63	4.5%	4.5%	0.0%	0.0%	33.3%	33.3%	0.0%	0.0%
85	291	1.04	Low	NAP	7	0	4	57.1%	10.36	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
46	292	1.03	Low	NAP	258	14	175	67.8%	74.07	6.2%	41.9%	1.9%	1.9%	0.0%	14.3%	0.0%	0.0%
8	293	1.02	Low	NAP	32	1	15	46.9%	31.55	0.0%	18.8%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
244	294	1.02	Low	UMW	50	4	14	28.0%	70.12	6.0%	30.0%	28.0%	28.0%	0.0%	0.0%	0.0%	0.0%
474	295	1.01	Low	CPL	12	1	7	58.3%	8.73	0.0%	8.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
239	296	1.01	Low	CPL	13	1	6	46.2%	13.26	0.0%	30.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
434	297	0.97	Low	NAP	6	0	4	66.7%	6.99	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
191	298	0.97	Low	WMT	8	0	2	25.0%	23.91	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
113	299	0.96	Low	CPL	10	0	0	0.0% 142.9	30.28	30.0%	30.0%	20.0%	20.0%	NA	NA	NA	NA
301	300	0.96	Low	CPL	7	0	10	%	15.53	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
387	301	0.96	Low	CPL	6	0	4	66.7%	10.01	66.7%	66.7%	16.7%	16.7%	NA	NA	NA	NA
750	302	0.94	Low	NAP	6	0	5	83.3% 100.0	22.62	33.3%	33.3%	16.7%	16.7%	NA	NA	NA	NA
576	303	0.93	Low	CPL	6	1	6	%	7.99	16.7%	16.7%	0.0%	0.0%	100.0%	100.0%	0.0%	0.0%
147	304	0.93	Low	CPL	24	1	0	0.0%	47.74	95.8%	100.0%	12.5%	12.5%	100.0%	100.0%	100.0%	100.0%
225	305	0.92	Low	NAP	28	4	11	39.3%	23.33	21.4%	21.4%	10.7%	10.7%	25.0%	25.0%	0.0%	0.0%
87	306	0.92	Low	NAP	181	5	18	9.9%	74.97	1.7%	4.4%	1.7%	5.5%	20.0%	20.0%	20.0%	20.0%
153	307	0.92	Low	UMW	174	8	36	20.7%	85.76	1.1%	2.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

54	308	0.90	Low	CPL	18	1	1	5.6%	15.30	44.4%	55.6%	22.2%	61.1%	0.0%	100.0%	0.0%	100.0%
361	309	0.90	Low	NAP	7	1	2	28.6%	15.46	0.0%	42.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
207	310	0.88	Low	NAP	83	6	8	9.6%	52.00	20.5%	21.7%	27.7%	37.3%	16.7%	16.7%	16.7%	16.7%
137	311	0.87	Low	XER	5	1	2	40.0%	8.83	20.0%	20.0%	20.0%	40.0%	0.0%	0.0%	0.0%	0.0%
230	312	0.86	Low	NAP	23	2	10	43.5%	14.16	4.3%	4.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
496	313	0.86	Low	NAP	10	0	5	50.0%	14.77	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
490	314	0.84	Low	XER	7	0	3	42.9%	23.39	0.0%	42.9%	0.0%	42.9%	NA	NA	NA	NA
242	315	0.84	Low	UMW	6	0	4	66.7%	19.57	0.0%	0.0%	0.0%	16.7%	NA	NA	NA	NA
154	316	0.83	Low	NAP	15	1	5	33.3%	29.65	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
405	317	0.83	Low	CPL	23	1	6	26.1%	29.09	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
96	318	0.83	Low	NAP	13	1	2	15.4% 100.0	22.38	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
545	319	0.83	Low	XER	7	1	7	%	33.95	0.0%	71.4%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
495	320	0.82	Low	UMW	9	0	1	11.1%	22.39	66.7%	66.7%	33.3%	33.3%	NA	NA	NA	NA
103	321	0.82	Low	CPL	27	1	7	25.9%	31.87	3.7%	3.7%	0.0%	7.4%	0.0%	0.0%	0.0%	0.0%
216	322	0.82	Low	UMW	7	1	1	14.3%	22.78	0.0%	14.3%	0.0%	14.3%	0.0%	0.0%	0.0%	0.0%
339	323	0.81	Low	WMT	22	1	1	4.5%	23.71	22.7%	40.9%	13.6%	31.8%	0.0%	0.0%	0.0%	0.0%
190	324	0.79	Low	NAP	9	2	6	66.7%	10.30	11.1%	22.2%	0.0%	0.0%	50.0%	50.0%	0.0%	0.0%
209	325	0.78	Low	NAP	17	1	11	64.7%	14.44	0.0%	5.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
142	326	0.78	Low	CPL	26	1	15	57.7%	19.81	46.2%	46.2%	15.4%	15.4%	0.0%	0.0%	0.0%	0.0%
51	327	0.78	Low	CPL	13	1	5	38.5%	9.84	46.2%	61.5%	23.1%	23.1%	0.0%	100.0%	0.0%	0.0%
269	328	0.77	Low	NAP	8	1	6	75.0%	8.10	12.5%	12.5%	0.0%	12.5%	0.0%	0.0%	0.0%	0.0%
321	329	0.76	Low	UMW	14	1	3	21.4%	21.38	0.0%	7.1%	7.1%	7.1%	0.0%	0.0%	0.0%	0.0%
102	330	0.76	Low	NAP	72	4	14	19.4%	87.57	1.4%	2.8%	1.4%	2.8%	0.0%	0.0%	0.0%	0.0%
643	331	0.75	Low	XER	8	1	2	25.0%	44.44	0.0%	50.0%	0.0%	100.0%	0.0%	0.0%	0.0%	100.0%
521	332	0.75	Low	XER	6	0	2	33.3%	19.49	0.0%	16.7%	0.0%	33.3%	NA	NA	NA	NA
148	333	0.74	Low	CPL	21	1	12	57.1%	51.42	28.6%	28.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
213	334	0.71	Low	NAP	9	0	7	77.8%	5.18	0.0%	11.1%	0.0%	33.3%	NA	NA	NA	NA
41	335	0.71	Low	UMW	100	6	20	20.0%	65.89	14.0%	25.0%	20.0%	20.0%	0.0%	16.7%	0.0%	0.0%
201	336	0.68	Low	NAP	39	4	20	51.3%	36.94	2.6%	5.1%	0.0%	2.6%	0.0%	0.0%	0.0%	0.0%
772	337	0.67	Low	XER	7	0	4	57.1%	58.14	0.0%	57.1%	0.0%	85.7%	NA	NA	NA	NA
317	338	0.65	Low	CPL	26	1	0	0.0%	11.40	100.0%	100.0%	0.0%	0.0%	100.0%	100.0%	0.0%	0.0%
81	339	0.64	Low	UMW	15	2	2	13.3%	9.03	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
390	340	0.64	Low	NAP	11	0	2	18.2%	45.50	9.1%	9.1%	0.0%	0.0%	NA	NA	NA	NA
73	341	0.64	Low	NAP	74	5	38	51.4%	43.47	8.1%	24.3%	0.0%	1.4%	0.0%	20.0%	0.0%	0.0%
130	342	0.63	Low	UMW	45	3	7	15.6%	42.37	26.7%	28.9%	40.0%	40.0%	33.3%	33.3%	0.0%	0.0%
250	343	0.63	Low	NAP	19	1	10	52.6%	16.77	10.5%	15.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
584	344	0.63	Low	XER	5	1	3	60.0%	13.71	0.0%	40.0%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
413	345	0.62	Low	WMT	9	0	6	66.7%	20.09	0.0%	66.7%	0.0%	77.8%	NA	NA	NA	NA
431	346	0.62	Low	NAP	17	1	1	5.9%	18.44	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
325	347	0.62	Low	CPL	13	0	2	15.4%	44.69	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA

484 348 0.61 Low Low																		
168 350 0.60 Low	484	348	0.61	Low	TPL	9	2	1	11.1%	61.15	11.1%	33.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Section Sect	177	349	0.61	Low	UMW	55	3	9	16.4%	96.63	7.3%	29.1%	20.0%	20.0%	0.0%	33.3%	0.0%	0.0%
120	168	350	0.60	Low	SAP	79	4	62	78.5%	72.12	5.1%	25.3%	0.0%	0.0%	25.0%	50.0%	0.0%	0.0%
347	536	351	0.58	Low	UMW	10	0	1	10.0%	13.38	50.0%	50.0%	50.0%	50.0%	NA	NA	NA	NA
Total Solution Total T	120	352	0.56	Low	NAP	134	7	72	53.7%	73.69	3.7%	15.7%	0.0%	3.7%	14.3%	14.3%	0.0%	0.0%
764	347	353	0.56	Low	NAP	12	2	1	8.3%	34.38	0.0%	25.0%	8.3%	8.3%	0.0%	0.0%	0.0%	0.0%
476																		
194				Low			_											
359 357 0.53 Low NAP 18 1 2 111% 24.92 0.0%	476		0.55	Low				3			0.0%							
466 358 0.52 Low XER	194	356	0.53	Low	UMW	62	4	24	38.7%	57.82	1.6%	16.1%	16.1%	16.1%	0.0%	0.0%	0.0%	0.0%
308 359 0.49 Low WMT 69 2 2 2.9% 44.83 60.9% 60.9% 60.9% 60.9% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 117 360 0.48 Low UMW 49 4 10 20.4% 97.05 8.2% 18.4% 61.9% 61.9% 60.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 22.3% 361 0.48 Low UMW 15 1 5 33.3% 36.36 0.0% 20.0% 0.0%	359	357	0.53	Low	NAP	18	1	2	11.1%	24.92	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
117 360 0.48 Low UMW 49 4 10 20.4% 97.05 8.2% 18.4% 6.1% 6.1% 6.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 328 361 0.48 Low UMW 15 1 5 33.3% 36.36 0.0% 20.0% 0.0	466	358	0.52	Low	XER	14	1	9	64.3%	21.79	14.3%	64.3%	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%
328 361 0.48 Low WMT 20 1 0 0.0% 16.99 100.0% 100.0	305	359	0.49	Low	WMT	69	2	2	2.9%	44.83	60.9%	60.9%	60.9%	60.9%	50.0%	50.0%	50.0%	50.0%
243 362 0.46 Low Low Low Low Low Low Low Low All 5 33.3% 36.36 0.0% 20.0% 0.0%	117	360	0.48	Low	UMW	49	4	10	20.4%	97.05	8.2%	18.4%	6.1%	6.1%	0.0%	0.0%	0.0%	0.0%
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	328	361	0.48	Low	WMT	20	1	0	0.0%	16.99	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
123 364 0.44 Low Low Low Low Low Low NAP 47 2 9 19.1% 36.80 2.1% 6.4% 0.0% 0	243	362	0.46	Low	UMW	15	1	5	33.3%	36.36	0.0%	20.0%	0.0%	20.0%	0.0%	0.0%	0.0%	0.0%
233 365 0.42 Low NAP 47 2 9 19.1% 36.80 2.1% 6.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	222	363	0.46	Low	XER	9	2	4	44.4%	30.57	0.0%	55.6%	0.0%	55.6%	0.0%	100.0%	0.0%	100.0%
127,3	123	364	0.44	Low	UMW	82	3	18	22.0%	63.82	37.8%	46.3%	43.9%	43.9%	33.3%	66.7%	0.0%	0.0%
419 366 0.42 Low SAP 11 1 14 % 27.43 9.1% 54.5% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 215 367 0.40 Low SAP 12 2 3 25.0% 31.35 16.7% 41.7% 0.0% 0.0% 0.0% 50.0% 0.0% 0.0% 146 368 0.39 Low UMW 28 3 7 25.0% 32.49 14.3% 14.3% 0.0% <td>233</td> <td>365</td> <td>0.42</td> <td>Low</td> <td>NAP</td> <td>47</td> <td>2</td> <td>9</td> <td>19.1%</td> <td>36.80</td> <td>2.1%</td> <td>6.4%</td> <td>0.0%</td> <td>0.0%</td> <td>0.0%</td> <td>0.0%</td> <td>0.0%</td> <td>0.0%</td>	233	365	0.42	Low	NAP	47	2	9	19.1%	36.80	2.1%	6.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
215 367 0.40 Low SAP 12 2 3 25.0% 31.35 16.7% 41.7% 0.0% 0.0% 0.0% 50.0% 0.0% 0.0% 146 368 0.39 Low TPL 33 1 14 42.4% 23.79 0.0% 33.3% 33.3% 0.0% 0.0% 0.0% 33.3% 33.3% 0.0% 0.0% 0.0% 33.3% 33.3% 0.0%																		
146 368 0.39 Low TPL 33 1 14 42.4% 23.79 0.0% <td></td> <td></td> <td></td> <td>Low</td> <td></td>				Low														
381 369 0.39 Low UMW 28 3 7 25.0% 32.49 14.3% 14.3% 0.0% 0.0% 33.3% 33.3% 0.0% 0.0% 235 370 0.39 Low UMW 79 5 10 12.7% 54.60 51.9% 51.9% 64.6% 64.6% 0.0% 0.0% 0.0% 40.0% 40.0% 205 371 0.39 Low NAP 14 1 8 57.1% 30.48 7.1% 21.4% 7.1% 7.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 478 372 0.36 Low UMW 34 2 1 2.9% 43.10 14.7% 58.8% 41.2% 41.2% 50.0% 100.0% 0.0% 0.0% 0.0% 30.4 374 0.35 Low UMW 16 1 4 25.0% 21.71 63.% 56.3% 0.0% 43.8% 100.0% 100.0% 0.0% 0.0% 0.0% 315 375 0.34 Low NAP 44 0 14 31.8% 42.08 11.4% 22.7% 2.3% 2.3% NA NA NA NA NA NA NA 74 376 0.31 Low UMW 58 1 19 32.8% 62.44 1.7% 25.9% 5.2% 5.2% 0.0% 0.0% 0.0% 0.0% 0.0% 329 377 0.29 Low XER 19 2 7 36.8% 41.33 15.8% 31.6% 0.0% 0.0% 50.0% 50.0% 0.0% 0.0% 0.0% 199 379 0.28 Low NAP 89 6 35 39.3% 67.31 2.2% 20.24 10.3% 27.6% 0.0% 0.0% 16.7% 50.0% 0.0% 0.0% 0.0% 135 381 0.25 Low UMW 33 2 5 15.2% 15.2% 16.51 12.1% 15.2% 12.1% 12.1% 0.0% 0.0% 0.0% 0.0% 0.0% 111 382 0.28 Low NAP 24 1 6 25.0% 33.32 0.0% 16.7% 8.3% 8.3% 0.0% 0.0% 0.0% 0.0% 0.0% 111 382 0.23 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0	215		0.40	Low				3			16.7%				0.0%			
235 370 0.39 Low UMW 79 5 10 12.7% 54.60 51.9% 51.9% 64.6% 64.6% 0.0% 0.0% 40.0% 40.0% 40.0% 20.5 371 0.39 Low NAP 14 1 8 57.1% 30.48 7.1% 21.4% 7.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NA	146	368	0.39	Low	TPL	33	1	14	42.4%	23.79	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
205 371 0.39 Low NAP 14 1 8 57.1% 30.48 7.1% 7.1% 7.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% NA N	381	369	0.39	Low	UMW	28	3	7	25.0%	32.49	14.3%	14.3%	0.0%	0.0%	33.3%	33.3%	0.0%	0.0%
478 372 0.36 Low WMT 6 0 2 33.3% 36.22 0.0% 0.0% 0.0% 0.0% NA NA <td>235</td> <td>370</td> <td>0.39</td> <td>Low</td> <td>UMW</td> <td>79</td> <td>5</td> <td>10</td> <td>12.7%</td> <td>54.60</td> <td>51.9%</td> <td>51.9%</td> <td>64.6%</td> <td>64.6%</td> <td>0.0%</td> <td>0.0%</td> <td>40.0%</td> <td>40.0%</td>	235	370	0.39	Low	UMW	79	5	10	12.7%	54.60	51.9%	51.9%	64.6%	64.6%	0.0%	0.0%	40.0%	40.0%
169 373 0.35 Low UMW 34 2 1 2.9% 43.10 14.7% 58.8% 41.2% 50.0% 100.0% 0.0% 0.0% 304 374 0.35 Low UMW 16 1 4 25.0% 21.71 6.3% 56.3% 0.0% 43.8% 100.0% 100.0% 0.0% 315 375 0.34 Low NAP 44 0 14 31.8% 42.08 11.4% 22.7% 2.3% NA	205	371	0.39	Low	NAP	14	1	8	57.1%	30.48	7.1%	21.4%	7.1%	7.1%	0.0%	0.0%	0.0%	0.0%
304 374 0.35 Low UMW 16 1 4 25.0% 21.71 6.3% 56.3% 0.0% 43.8% 100.0% 100.0% 0.0% 0.0% 315 375 0.34 Low NAP 44 0 14 31.8% 42.08 11.4% 22.7% 2.3% 2.3% NA	478	372	0.36	Low	WMT	6	0	2	33.3%	36.22	0.0%	0.0%	0.0%	0.0%	NA	NA	NA	NA
315 375 0.34 Low NAP 44 0 14 31.8% 42.08 11.4% 22.7% 2.3% 2.3% NA	169	373	0.35	Low	UMW	34	2	1	2.9%	43.10	14.7%	58.8%	41.2%	41.2%	50.0%	100.0%	0.0%	0.0%
74 376 0.31 Low UMW 58 1 19 32.8% 62.44 1.7% 25.9% 5.2% 5.2% 0.0% <td>304</td> <td>374</td> <td>0.35</td> <td>Low</td> <td>UMW</td> <td>16</td> <td>1</td> <td>4</td> <td>25.0%</td> <td>21.71</td> <td>6.3%</td> <td>56.3%</td> <td>0.0%</td> <td>43.8%</td> <td>100.0%</td> <td>100.0%</td> <td>0.0%</td> <td>0.0%</td>	304	374	0.35	Low	UMW	16	1	4	25.0%	21.71	6.3%	56.3%	0.0%	43.8%	100.0%	100.0%	0.0%	0.0%
329 377 0.29 Low XER 19 2 7 36.8% 41.33 15.8% 31.6% 0.0% 0.0% 50.0% 50.0% 50.0% 0.0% 0.0%	315	375	0.34	Low	NAP	44	0	14	31.8%	42.08	11.4%	22.7%	2.3%	2.3%	NA	NA	NA	NA
70 378 0.29 Low NAP 29 2 17 58.6% 20.24 10.3% 27.6% 0.0% 3.4% 0.0% 0.0% 0.0% 0.0% 199 379 0.28 Low NAP 89 6 35 39.3% 67.31 2.2% 20.2% 0.0% 0.0% 16.7% 50.0% 0.0% 0.0% 212 380 0.28 Low UMW 33 2 5 15.2% 16.51 12.1% 15.2% 12.1% 0.0%	74	376	0.31	Low	UMW	58	1	19	32.8%	62.44	1.7%	25.9%	5.2%	5.2%	0.0%	0.0%	0.0%	0.0%
199 379 0.28 Low NAP 89 6 35 39.3% 67.31 2.2% 20.2% 0.0% 0.0% 16.7% 50.0% 0.0% 0.0% 0.0% 212 380 0.28 Low UMW 33 2 5 15.2% 16.51 12.1% 15.2% 12.1% 12.1% 12.1% 0.0% 0.0% 0.0% 0.0% 0.0% 135 381 0.25 Low NAP 24 1 6 25.0% 33.32 0.0% 16.7% 8.3% 8.3% 0.0% 0.0% 0.0% 0.0% 0.0% 111 382 0.23 Low WMT 18 1 12 66.7% 54.53 5.6% 56.% 16.7% 16.7% 16.7% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low NAP 26 1 5 19.2% 22.40 0.0% 7.7% 0.0% 3.8% 0.0% 0.0% 0.0% 0.0% 0.0% 86 384 0.18 Low TPL 36 2 19 52.8% 54.77 5.6% 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0%	329	377	0.29	Low	XER	19	2	7	36.8%	41.33	15.8%	31.6%	0.0%	0.0%	50.0%	50.0%	0.0%	0.0%
212 380 0.28 Low UMW 33 2 5 15.2% 16.51 12.1% 15.2% 12.1% 0.0% 0.	70	378	0.29	Low	NAP	29	2	17	58.6%	20.24	10.3%	27.6%	0.0%	3.4%	0.0%	0.0%	0.0%	0.0%
135 381 0.25 Low NAP 24 1 6 25.0% 33.32 0.0% 16.7% 8.3% 8.3% 0.0% 0.0% 0.0% 0.0% 0.0% 111 382 0.23 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 16.7% 16.7% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low NAP 26 1 5 19.2% 22.40 0.0% 7.7% 0.0% 3.8% 0.0% 0.0% 0.0% 0.0% 0.0% 86 384 0.18 Low TPL 36 2 19 52.8% 54.77 5.6% 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0%	199	379	0.28	Low	NAP	89	6	35	39.3%	67.31	2.2%	20.2%	0.0%	0.0%	16.7%	50.0%	0.0%	0.0%
111 382 0.23 Low WMT 18 1 12 66.7% 54.53 5.6% 5.6% 16.7% 16.7% 0.0% 0.0% 0.0% 0.0% 0.0% 353 383 0.21 Low NAP 26 1 5 19.2% 22.40 0.0% 7.7% 0.0% 3.8% 0.0% 0.0% 0.0% 0.0% 0.0% 86 384 0.18 Low TPL 36 2 19 52.8% 54.77 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0%	212	380	0.28	Low	UMW	33	2	5	15.2%	16.51	12.1%	15.2%	12.1%	12.1%	0.0%	0.0%	0.0%	0.0%
353 383 0.21 Low NAP 26 1 5 19.2% 22.40 0.0% 7.7% 0.0% 3.8% 0.0% 0.0% 0.0% 0.0% 86 384 0.18 Low TPL 36 2 19 52.8% 54.77 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0%	135	381	0.25	Low	NAP	24	1	6	25.0%	33.32	0.0%	16.7%	8.3%	8.3%	0.0%	0.0%	0.0%	0.0%
353 383 0.21 Low NAP 26 1 5 19.2% 22.40 0.0% 7.7% 0.0% 3.8% 0.0% 0.0% 0.0% 0.0% 86 384 0.18 Low TPL 36 2 19 52.8% 54.77 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0%							1											
86 384 0.18 Low TPL 36 2 19 52.8% 54.77 5.6% 5.6% 0.0% 5.6% 0.0% 0.0% 0.0% 0.0%							1	5										
							2	19										
							1											

^aStrict protection=managed for biodiversity (GAPS 1-2), multi-use=managed for biodiversity and natural resource extraction (GAP 3)

^b Network ID = unique network identifier in LAGOS-US-NETWORKS,

^cCPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, WMT=Western Mountains, XER=Xeric

^d Dam rate = number of dams/number of lakes in a network

Table S3. Freshwater networks in the conterminous US that meet conservation targets^a

	17% Aichi target				30% by 2030				
Ecoregion ^b	Strict, lake center	Strict + multi- use, lake center	Strict, 80% watershed	Strict + multi- use, 80% watershed	Strict, lake center	Strict + multi- use, lake center	Strict, 80% watershed	Strict + multi-use, 80% watershed	Total networks ^c
CPL	88 (36.2%)	106 (43.6%)	21 (8.6%)	28 (11.5%)	81 (33.3%)	94 (38.7%)	16 (6.6%)	23 (9.5%)	243
NAP	29 (14.1%)	73 (35.4%)	15 (7.3%)	26 (12.6%)	19 (9.2%)	48 (23.3%)	12 (5.8%)	23 (11.2%)	206
NPL	11 (39.3%)	15 (53.6%)	1 (3.6%)	3 (10.7%)	10 (35.7%)	13 (46.4%)	0 (0.0%)	3 (10.7%)	28
SAP	0 (0.0%)	3 (30.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	2 (20.0%)	0 (0.0%)	0 (0.0%)	10
SPL	1 (12.5%)	1 (12.5%)	0 (0.0%)	1 (12.5%)	0 (0.0%)	1 (12.5%)	0 (0.0%)	1 (12.5%)	8
TPL	16 (27.6%)	23 (39.7%)	2 (3.5%)	2 (3.5%)	11 (19.0%)	16 (27.6%)	2 (3.5%)	2 (3.5%)	58
UMW	35 (23.3%)	75 (50.05%)	39 (26.0%)	52 (34.7%)	30 (20.0%)	63 (20.0%)	32 (21.3%)	43 (28.7%)	150
WMT	41 (38.0%)	67 (62.0%)	31 (28.7%)	53 (49.1%)	37 (34.3%)	63 (42.0%)	28 (26.0%)	53 (49.1%)	108
XER	20 (23.3%)	64 (74.4%)	11 (12.8%)	39 (45.4%)	17 (19.8%)	59 (68.6%)	9 (10.5%)	38 (44.2%)	86
Overall	241 (26.9%)	427 (47.6%)	120 (13.4%)	204 (22.7%)	205 (22.9%)	359 (40.0%)	99 (11.0%)	186 (20.7%)	897

^aStrict protection=managed for biodiversity (GAPS 1-2), multi-use=managed for biodiversity and natural resource extraction (GAP 3)

^bCPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, XER=Xeric

^cAll freshwater networks in the conterminous US except the Mississippi River network

Table S4. Lake protection^a across all freshwater networks in the conterminous US

	Network lakes					Hub lakes				
Ecoregion ^b	Strict, lake center	Strict + multi- use, lake center	Strict, 80% watershed	Strict + multi-use, 80% watershed	Total network lakes	Strict, lake center	Strict + multi- use, lake center	Strict, 80% watershed	Strict + multi- use, 80% watershed	Total hub lakes
CPL	636 (3.5%)	949 (5.2%)	203 (1.1%)	362 (2.0%)	18336	34 (6.4%)	51 (9.7%)	9 (1.7%)	11 (2.1%)	528
NAP	635 (5.1%)	1737 (13.9%)	917 (7.4%)	1389 (11.1%)	12464	24 (5.3%)	60 (13.3%)	14 (3.1%)	18 (4.0%)	451
NPL	2507 (30.7%)	4981 (61.0%)	1407 (17.2%)	4537 (55.6%)	8166	1 (20.0%)	1 (20.0%)	0 (0.0%)	0 (0.0%)	5
SAP	92 (0.8%)	210 (1.8%)	38 (0.3%)	85 (0.7%)	11872	20 (6.8%)	40 (13.6%)	4 (1.4%)	10 (3.4%)	295
SPL	126 (1.8%)	207 (3.0%)	77 (1.1%)	179 (2.6%)	6871	3 (2.9%)	6 (5.8%)	0 (0.0%)	0 (0.0%)	103
TPL	63 (0.8%)	90 (1.1%)	13 (0.2%)	15 (0.2%)	8297	25 (13.2%)	37 (19.5%)	6 (3.2%)	6 (3.2%)	190
UMW	1302 (13.4%)	2304 (23.8%)	1165 (12.0%)	1698 (17.5%)	9691	42 (16.2%)	78 (30.0%)	23 (8.8%)	57 (21.9%)	260
WMT	3430 (40.5%)	5205 (61.4%)	3220 (38.0%)	5183 (61.1%)	8476	54 (32.0%)	115 (68.0%)	61 (36.1%)	118 (69.8%)	169
XER	81 (3.5%)	253 (10.8%)	39 (1.7%)	170 (7.3%)	2338	5 (6.3%)	25 (31.6%)	1 (1.3%)	11 (13.9%)	79
Overall	8872 (10.2%)	15936 (18.4%)	7079 (8.2%)	13618 (15.7%)	86511	208 (10.0%)	413 (19.9%)	118 (5.7%)	231 (11.1%)	2080

^aStrict protection=managed for biodiversity (GAPS 1-2), multi-use=managed for biodiversity and natural resource extraction (GAP 3)

bCPL=Coastal Plains, NAP=Northern Appalachians, NPL=Northern Plains, SAP=Southern Appalachians, SPL=Southern Plains, TPL=Temperate Plains, UMW=Upper Midwest, XER=Xeric