Locally Equivalent Weights for Bayesian MrP

Ryan Giordano, Alice Cima, Erin Hartman, Jared Murray, Avi Feller UT Austin Statistics Seminar September 2025

Standard error estimation

Does this mean anything? **Yes:** We can meaningful sum these weights against regressors.

What else might it mean? **Does the spread relate to frequentist variance?**

Figure 1: Comparison between raking and MrPlew weights for the Name Change dataset

Figure 2: Comparison between raking and MrPlew weights for the Gay Marriage dataset

Standard error estimation

Standard error consistency theorm: (sketch)

For Bayesian hierarchical logictic regression, define

$$\varepsilon_n = y_n - \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})} [m(\mathbf{x}_n^{\mathsf{T}} \theta)] \quad \text{ and } \quad \psi_n := N_S w_n^{\mathsf{MrP}} \varepsilon_n.$$

We state mild conditions under which, as $N \to \infty$,

$$\sqrt{N} \left(\hat{\mu}_{\text{MrP}} - \mu_{\infty} \right) \to \mathcal{N} \left(0, V \right)$$
 for some μ_{∞} and variance V , and

$$\frac{1}{N_S} \sum_{i=1}^{N_S} (\psi_n - \overline{\psi})^2 \to V.$$

The use of $w_n^{\rm MrP}$ is exactly analogous to the use of raking weights for standard error estimation. This builds on our earlier work on the Bayesian infinitesimal jackknife¹.

.

¹G. and Broderick 2024

Standard error estimation

Figure 3: Frequentist standard deviation estimates

Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on $Y_{\mathcal{S}}$.

Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on Y_S .

But the high level idea can be extended much more widely:

- 1. Assume your initial model was accurate
- 2. Select some perturbation your model should be able to capture
- 3. Use local sensitivity to detect whether the change is what you expect
- 4. If the change is not what you expect, either (1) or (2) was wrong

Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on Y_S .

But the high level idea can be extended much more widely:

- 1. Assume your initial model was accurate
- 2. Select some perturbation your model should be able to capture
- 3. Use local sensitivity to detect whether the change is what you expect
- 4. If the change is not what you expect, either (1) or (2) was wrong

Such checks recover generlized versions of many standard diagnostics for linear models.

Examples:

- Additive parameter shifts \leftrightarrow Unbiasedness
- Invariance to survey data weighting \leftrightarrow Regressor + residual orthogonality
- Importance sampling \leftrightarrow Sandwich covariance $\stackrel{?}{=}$ Inverse Fisher information

4

Student contributions and ongoing work:

- · Alice Cima contributed significantly to this work
- · Vladimir Palmin is working on extending MrPlew to lme4
- Sequoia Andrade is working on generalizing to other local sensitivity checks
- Lucas Schwengber is working on novel flow–based techniques for local sensitivity
- (Currently recruiting!) Doubly-robust Bayesian Hierarchical MrP

Alice Cima

Vladimir Palmin

Seguoia Andrade

Lucas Schwengber

Preprint and R package (hopefully) coming soon!

5

References

G. and T. Broderick (2024). The Bayesian Infinitesimal Jackknife for Variance. arXiv: 2305.06466 [stat.ME]. URL: https://arxiv.org/abs/2305.06466.