réseau; nous ne considérons que des (algébrique) de M_q par rapport à sa position d'équilibre. mouvements longitudinaux et notons x_q l'

FIGURE 2

indique les positions d'équilibre des atomes, la figure 2.b leurs écarts x_q par rapport à ces positions, à un ins Chaîne linéaire fermée de N atomes M_q , constituant un cristal à une dimension sans effets de bords. La figure 2. donné.

chacun de ses deux voisins M_{q-1} et c'est-à-dire proportionnelle à l'écart Nous supposons que chaque atome M_q de la chaîne est soumis, de la part de M_{q+1} , à une force de rappel de type harmonique, relatif $(x_q - x_{q\pm 1})$:

c'est-à-dire proportionnelle à l'écart relatif
$$(x_q - x_{q\pm 1})$$
.

 $F_q = -K(x_q - x_{q+1}) - K(x_q - x_{q-1})$,

où F_q est la mesure algébrique de la force le long de la chaîne orientée et K une F_q est la mesure algébrique de la force le long F_q dérive de l'énergie potentielle

a valeurs de ω , la courbe démarre comme ω^2 (voir formule (E.59) page suivante). $\omega \sim \omega_M/2$ ou $\omega_M/3$, provient principalement des modes transversaux. Pour les peti courbe du spectre, correspond aux modes maximums : le plus étroit, qui se produit pour ω proche de la borne supérier ainsi obtenue. Sa forme, relativement compliquée, présente le plus souve longitudinaux; l'autre, plus large et situé vo

FIGURE 4

déterminée expérimentalement, la courbe pointillée correspond à l'approximation de Debye (§ 2). Densité de modes normaux dans un cristal tel 9 ue l'aluminium. La courbe en trait plein schématise la densi

sinusoïdales

Phonons

qui a pour effet de quantifier l'énergie. Pour un oscillateur harmonique de pulsation A l'échelle atomique, les systèmes doivent être propre ω, l'énergie s'écrit traités en mécanique quantique

$$\epsilon = \left(n + \frac{1}{2}\right)\hbar\omega$$
, $n = 0, 1, 2, ...$

