PolicyBERT: 基于全词掩码的中文政策文本预训练语言模型

北京大学 信息管理系 大数据管理与应用专业

研究背景

- 1.中文文本因缺乏空格标记和分词歧义问题,导致现有 词嵌入模型难以准确建模真实语义。
- 2.融合词级语义信息是一个具有潜力的途径。
- 3.本文提出PolicyBERT模型,结合HanLP分词与注意力 机制,提升中文政策文本的语义理解能力。
- 4.基于检索增强生成(RAG)技术,结合PolicyBERT和 大语言模型,构建高效的政策文本问答系统。

数据集-PolicySM

- 1.来自61个来源共99篇中央、地方政策文件。总字数 超过900,000。
- 2.基于不同规则与任务,构建了正负样本1:1,1:5的数据 集PolicySM-1和PolicySM-2, 样本数分别为46748与 140244

数据集	正样本数	负样本数	正负比例	总样本数
PolicySM-1 PolicySM-2	23374 23374	$23374 \\ 116870$	1:1 1:5	46748 140244

PolicyBERT

- 1.利用语料库构建词表。
- 2.根据词表对每个句子进行分词,计算匹配矩阵M。
- 3.使用单独的词编码器,与字符编码器并行,每一层输 出与M相乘,使用融合层(门控或多头注意力)融合。
- 4.字符编码器的最终输出进入预训练头或下游任务头。

公开数据集实验结果

$Model\Task$	CWS	POS	NER	DC	SA	SPM
BERT	0.9720	0.9543	0.9312	0.9671	0.9410	0.8513
BERT-wwm	-	-	0.9510	0.9760	0.9500	0.8680
ERNIE 1.0	-	-	0.9510	0.9730	0.9540	0.8740
ERNIE $2.0(B)$	-	-	-	-	0.9550	0.8790
NEZHA(B)	-	-	-	-	0.9517	0.8741
NEZHA-wwm(B)	-	-	-	-	0.9584	0.8710
ERNIE 2.0(L)	-	-	-	-	0.9580	0.8790
NEZHA(L)	-	-	-	-	0.9583	0.8720
NEZHA- $wwm(L)$	-	-	-	-	0.9600	0.8794
ZEN	0.9789	0.9582	0.9324	0.9687	0.9442	0.8527
$\begin{array}{c} PolicyBERT_{attn} \\ PolicyBERT_{gate} \end{array}$	$\frac{0.9812}{0.9816}$	$\frac{0.9711}{0.9716}$	$\frac{0.9437}{0.9422}$	$0.9651 \\ 0.9655$	$0.9441 \\ 0.9475$	$\begin{array}{c} \textbf{0.9016} \\ \underline{0.8997} \end{array}$

PolicySM-1实验结果

融合方法	分词方法	准确率
None	n-gram	0.8867
Gated Fusion	n-gram	0.8959
Attention-based Fusion	n-gram	0.9121
None	Hanlp	0.9035
Gated Fusion	Hanlp	0.8981
Attention-based Fusion	Hanlp	0.9132

DOL	icv\$ <i>N</i>	A つか	7人4士	: Ш
701	1000N	ハーと头	· 500 ZE	i 末

/ //=: H-1:		
骨干模型	融合方法	NSP acc
BGE	none gate attn	0.9236 0.9311 0.9272
ZEN	none gate attn	0.9260 0.9325 0.9274

- 1.在多个公开数据集上取得最优、次优结果(分词、词 性标注、句对匹配)
- 2.在PolicySM-1, PolicySM-2数据集上验证了引入分 词、融合层的有效性。

🖭 未名问政-PolicyBert

- 1.中文使用PolicyBERT框架对bge-base-zh-v1.5的部分 权重进行微调,得到bge-merged作为文档匹配模型。
- 2.利用Ollama框架本地部署bge-merged和通用大语 言模型千问gwen2.5:7B。
- 3.基于langchain-chatchat框架,部署本地政策文件 知识库,搭建政策问答RAG系统。