TTH4A3 Sistem Komunikasi Seluler

Modul 1:

Basic Concepts for Cellular Communications

(1 weeks)

LECTURE IDENTITY

Ir. Uke Kurniawan Usman, MT, IPM.

Office

WA & Line

Call & SMS

E-mail

Blog

: FEK, N Building 2rd floor, Room : N.211

: 0822-1922-3069

: 0822-1922-3069

: kuliahuku@gmail.com

: http://ukeusman.staff.telkomuniversity.ac.id

Dosen : UKU

		6:30	7:00	7:30	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:30	17:00	17:30	18:00	18:30
Monday	,									10:30 T KU1.02.	TI1A2 -															
Tuesday	у																	14:30 T	TI4A3 -	UKU - P	403		17:30			
Wednes	day									10:30 T KU1.02.		UKU - (A	A201A) 12:30									16:30 T KU1.02	TI1A2 - I .17	UKU - (#	A209) 18:30	
Thursda Friday Saturda				07:30 T	TI4A3 -	UKU - P	401		10:30																	
Sunday																										
Jadwa	al Dose	en																			•	Print	t	B Exp	ort to	csv
Show	20 •	✓ er	ntries															\$	Search	(Press	Enter):					
Hari		•	Shift		∯ F	Ruanga	an	\$	Kode N	1ata Kı	uliah	Mata I	Kuliah				A	Doser	Utam	ia 🌲	Dafta	r Dose	en 🌲	Kelas	5	A
					_					_																

Hari	Shift	Ruangan	Kode Mata Kuliah	Mata Kuliah	Dosen Utama	Daftar Dosen	♦ Kelas ♦
KAMIS	07:30 - 10:30	P401	TTI4A3	KOMUNIKASI AKSES WIRELESS	UKU	UKU	TT-41-07
RABU	10:30 - 12:30	(A201A) KU1.02.01	TTI1A2	PENGENALAN TEKNIK TELEKOMUNIKASI	UKU	UKU	TT-44-04
SENIN	10:30 - 12:30	(A209) KU1.02.17	TTI1A2	PENGENALAN TEKNIK TELEKOMUNIKASI	UKU	UKU	TT-44-05
SELASA	14:30 - 17:30	P403	TTI4A3	KOMUNIKASI AKSES WIRELESS	UKU	UKU	TT-41-08
RABU	16:30 - 18:30	(A209) KU1.02.17	TTI1A2	PENGENALAN TEKNIK TELEKOMUNIKASI	UKU	UKU	TT-44-03

	Minggu ke-	Kemampuan Akhir Sesuai Tahapan Belajar (Sub-CPMK)
	1,2	Mahasiswa mengetahui dan memahami berbagai konsep-konsep dasar komunikasi wireless [CLO 1]
Rincian Rencana	3,4,5	Mahasiswa mengetahui dan memahami berbagai konsep-konsep dasar komunikasi wireless [CLO 1]
Pembelajaran Semester	6,7	Mahasiswa memahami konsep kanal wireless dan rekayasa sub sistem radio [CLO 2]
Komunikasi	8,9	Mahasiswa memahami konsep kanal wireless dan rekayasa sub sistem radio [CLO 2]
Akses Wireless	10	Mahasiswa memahami konsep kanal wireless dan rekayasa sub sistem radio [CLO 2]
	11,12,13,14	Mahasiswa mengetahui dan memahami cara menghitung jumlah titik akses komunikasi wireless (jumlah BTS) berdasarkan pendekatan kapasitas dan pendekatan cakupan (coverage) [CLO 3]
		<u>-</u>

Minggu ke-	Kemampuan Akhir Sesuai Tahapan Belajar (Sub-CPMK)		Materi Pembelajaran
(1)	(2)		(3)
1.2	Mahasiswa mengetahui dan memahami berbagai konsep-konsep	1	Filosofi Shannon capacity, elemen-elemen komunikasi wireless, pengantar multiple access
1,2	dasar komunikasi wireless [CLO 1]	2	Standar komunikasi wireless (arsitektur, elemen-elemen, frekuensi kerja)
		3	Konsep large scale fading
245	Mahasiswa mengetahui dan memahami berbagai konsep-konsep	4	Model prediksi redaman propagasi (Okumura Hata, COST 231, Walfish Ikegami, dll)
3,4,5	dasar komunikasi wireless [CLO 1]		Manajemen interferensi (frequency reuse, perhitungan C/I, contoh pengaturan frekuensi, teknik manajemen spektrum lain)
6,7	6,7 Mahasiswa memahami konsep kanal wireless dan rekayasa sub sistem radio [CLO 2]		Konsep Small Scale Fading (PDP, RMS, doppler shift, multipath fading, distribusi Rayleigh dan Rician, diversity karena alam)
			Konsep MIMO (diversity karena antena, MIMO murni tanpa coding)
	Mahasiswa memahami konsep	8	Mitigation for Small Scale Fading: Equalizer
8,9	kanal wireless dan rekayasa sub sistem radio [CLO 2]	9	Mitigation for Small Scale Fading: OFDM
10	Mahasiswa memahami konsep kanal wireless dan rekayasa sub sistem radio [CLO 2]	10	Konsep dasar teknik maju multiple access (SC-FDMA dan OFDMA)
		1	Traffic demand forecasting
11,12,13,	Mahasiswa mengetahui dan memahami cara menghitung jumlah	2	Capacity planning (technology dependence)
14	titik akses komunikasi wireless	3	Coverage planning and link budget (technology dependence)
	(jumlah BTS) berdasarkan pendekatan kapasitas dan pendekatan cakupan (coverage) [CLO 3]	4	Studi kasus dan presentasi

Minggu Pertemuan: 1

Outline

Pendahuluan Siskomsel

- Filosofi Shannon limit
- Elemen-elemen Utama Siskomsel,
- Teknik Multiple Access

Problem Besar, Bahan Kajian, dan LO

PROBLEM

Apakah konsep-konsep yang harus diketahui & dipahami dalam konteks Sistem Komunikasi Seluler?

Bagaimana prinsip rekayasa system transceiver komunikasi radio seluler?

Apa standar seluler yang penting/popular, dan bagaimana karakteristiknya?

Bagaimana merancang dimensi jaringan radio seluler berdasarkan pertimbangan *coverage* dan kapasitas?

BAHAN KAJIAN

KONSEP DASAR JARINGAN RADIO SELULER

MOBILE CHANNEL DAN KONSEP REKAYASA SISTEM RADIO SELULER

WIRELESS CELLULAR COMMUNICATION STANDARDS

DESAIN JARINGAN RADIO SELULER

Learning Outcome

Mengetahui dan memahami sejumlah konsep dasar yang penting dalam jaringan komunikasi seluler

Introduction

Filosofi Shannon Limit: Kapasitas Kanal

Image: IEEE Information Theory Society, 2016

C: Kapasitas, B: Bandwidth S/N: Rasio Daya Signal terhadap Noise

Kapasitas untuk kanal Gaussian (Dipelajari di S1 dan Kuliah ini)

← Entropy (Dipelajari di S2)

Kapasitias untuk Kanal Sebarang (Dipelajari di S2)

- Telekomunikasi berkembang sejak 1948
- Diawali oleh sebuah paper C.E. Shannon, "A Mathematic Theory of Communication", The Bell System Technical Journal, October 1948.

Filosofi Shannon Limit: Kapasitas Kanal vs Kapasitas User

- Kapasitas Kanal bisa dinaikkan dengan:
 - Memperbesar Bandwidth
 - Memperbanyak Antenna → Sistem Multiple Input Multiple Output (MIMO)
 - Menaikkan daya transmisi -> sebagai jalan terakhir, karena hanya menyebabkan baterai cepat habis (lifetime pendek)
 - Ketiga aspek tersebut dinyakan dengan

$$C \approx n \cdot B \log_2 \left(1 + \frac{S}{N} \right)$$

n adalah jumlah kanal karena MIMO

- Kapasitas User disebut juga Kapasitas Jaringan bisa dinaikkan dengan
 - Menggunakan Multiple access yang baik
 - Menggunakan Konsep Selular dan frequency re-use

Filosofi Shannon Limit: Kapasitas Kanal vs Kapasitas User

- Kapasitas Kanal hanya untuk komunikasi yang melibatkan 2 user (atau dua titik)
- Kapasitas User/Jaringan untuk komunikasi yang melibatkan banyak user (system seluler), yaitu angka yang menunjukkan jumlah user yang bisa dilayani (tanpa error atau dengan error yang diijinkan) dalam sebuah jaringan.
- Contoh kapasitas kanal (atau kecepatan transmisi) system telekomunikasi generasi 5G:
 - Bandwidth B=400 MHz (maksimal)
 - S/N = 10 dB
 - MIMO= $15x15 \rightarrow n=10$ (kondisi ideal)

$$C \approx n \cdot B \log_2 \left(1 + \frac{S}{N} \right)$$

 $\approx 15 * 400.000.000 * \log_2 \left(1 + 10^{10/10} \right) \text{ bps}$
 $\approx 20,757 \text{ Gbps}$

Nilai kapasitas ini adalah nilai pendekatan, karena nilai n bergantung kepada lingkungan tempat tx dan rx berada.

Latar Belakang Sejarah

 Sebelum konsep seluler diketemukan, hubungan akan terputus pada batas area cakupan dan user harus melakukan call set up lagi

• Kelemahan:

- Mahal (daya, dan tinggi antena)
- ▶ Kenyamanan pelanggan rendah
- ▶ Kapasitas dan efisiensi spektrum rendah

- Tahun 1950-1960 diperkenalkan IMTS yang sudah bersifat full dupleks
- Tahun 1950-1960 oleh Bell Laboratories namun implementasinya baru tahun 1983 di Chicago (AMPS)

Why Cellular Architecture?

- ✓ Keterbatasan spektrum frekuensi
- ✓ Efisiensi penggunaan spektrum frekuensi

- High power transmitter
- Large coverage area

"Arsitektur seluler"

- Low power transmitter
- Small coverage area
- Frequency reuse
- Handoff
- Central control
- Cell splitting to increase call capacity

Klasifikasi Teknologi

Klasifikasi Teknologi Nirkabel: Berdasarkan tingkat mobilitas dan arsitektur

	Fixed Wireless	Non Cellular	contoh: point to point communication, infra red communication, LMDS, Microwave communication
Wireless Communication		Cellular	contoh: PHS, CT2, PACS, DCS1800, DECT
	Mobile	Non Cellular	contoh: paging system (ERMES, NTT, NEC) , dispatching system, PAMR (<i>Public</i> Access Mobile Radio) dsb
	Wireless	Cellular	contoh: GSM, CDMA/IS-95, AMPS, UMTS, PHS, DCS1800, NMT450, TACS, C-450, dsb

Klasifikasi Berdasarkan Generasi Sistem Komunikasi Nirkabel

Layanan

Sumber:

Fei Hu, Opportunities in 5G Networks: A Research and Development Perspective, CRC Press

Generation	Definition	Throughput/ Speed	Technology	Time Period	Features
1G	Analog	14.4 Kbps (peak)	AMPS, NMT, TACS	1981–1990	Wireless phones are used for voice only
2G	Digital narrowband circuit data	9.6/14.4 Kbps	TDMA, CDMA	1991–2000	Multiple users on a single channel via multiplexing. Cellular phones are used for data also along with voice
2.5G	Packet data	171.2 Kbps (peak) 20–40 Kbps	GPRS	2001–2004	Internet becomes popular. Multimedia services and streaming start to show growth. Phones start supporting web browsing
3G	Digital broadband packet data	3.1 Mbps (peak) 500–700 Kbps	CDMA 2000 (1 × RTT, EVDO) UMTS, EDGE	2004–2005	Multimedia services support along with streaming. Universal access and portability

			EDGE		
3.5G	Packet data	14.4 Mbps (peak) 1–3 Mbps	HSPA	2006–2010	Higher throughput and speeds to support higher data
4G	Digital broadband packet, all IP, very high throughput	100–300 Mbps (peak) 3–5 Mbps 100 Mbps (Wi-Fi)	WiMAX LTE Wi-Fi	Now (transitioning to 4G)	High speed and definition streaming. New phones with HD capabilities surface. Portability is increased further. Worldwide roaming
5G	Not yet	Gigabits	LAS-CDMA, OFDM, MC-CDMA, UWB, Network-LMDS	Soon (probably 2020)	Currently there is no 5G technology deployed. It will provide very high speeds and efficient use of bandwidth when deployed

Evolution step GSM / GPRS / UMTS / HSDPA

Klasifikasi Berdasarkan Luas Cakupan

Arsitektur Jaringan dan Infrastruktur Komunikasi Seluler

Arsitektur Dasar Jaringan Bergerak Seluler

Telecommunication Networks Today ...

Apa yang kita pelajari di "Sistem Komunikasi Seluler?"

Manajemen Frekuensi

Konsep Frequency Reuse

Frequency Reuse

Pengulangan atau **menggunakan kembali** frekuensi yang sama pada area yang berbeda **di luar** jangkauan interferensinya

Parameter Kualitas Sinyal: C/I (carrier to interference ratio)

- Lokasi kasus sinyal terburuk → titik A
- Dalam desain, pada lokasi sinyal terburuk → C/I harus tetap lebih besar atau sama dari C/I minimum yang dipersyaratkan

Plane earth propagation model

$$L_p = \left(\frac{d^2}{h_1 h_2}\right)^2$$

$$\frac{\mathbf{C}}{\mathbf{I}} = \frac{1}{\mathbf{N}_{\text{int erferensi}}} \begin{bmatrix} \mathbf{I}_{t} \\ \mathbf{R}^{4} \\ \mathbf{P}_{t} \end{bmatrix}$$

Analisis Interferensi Co-Channel

Analisis Interferensi Co-Channel: Uplink (MS → BTS)

$$C = P_o / L(R)$$

$$I = P_o / L(D)$$

$$\rightarrow C/I = f (R,D)$$

$$\frac{C}{I} = \frac{P_O}{L(R)}$$

$$\sum_{n=1}^{N} P_n$$

$$L(D)$$

N = Jumlah sel penginterferensi

Analisis Interferensi Co-Channel: Downlink (BTS → MS)

$$C = P_o / L(R)$$

$$I = P_o / L(D)$$

$$\rightarrow C/I = f (R,D)$$

$$\frac{C}{I} = \frac{P_O}{L(R)}$$

$$\frac{\sum_{n=1}^{N} P_n}{L(D)}$$

N = Jumlah sel penginterferensi

Analisis Interferensi Co-Channel

$$\frac{C}{I} = \frac{P_0}{\frac{\sum_{N=1}^{N} P_n}{\sum_{n=1}^{L(D)}}}$$

$$L_p = \left(\frac{d^2}{h_1 h_2}\right)^2$$

Plane Earth Propagation Model

Asumsi sel seragam,

$$h_{10} = h_{11} = \dots = h_{1n}$$

 $h_{20} = h_{21} = \dots = h_{2n}$

$$C_{I} = \frac{R^{-4}}{N.D^{-4}} = \frac{1}{N} \left(\frac{D}{R}\right)^{4}$$

$$C_{I} = \frac{1}{N} \left(\sqrt{3K}\right)^{4} = \frac{9K^{2}}{N}$$

$$\frac{D}{R} = \sqrt{3K}$$

$$\frac{C}{I} = \frac{R^{-4}}{\sum_{n=1}^{N} D_n^{-4}}$$

Perbaikan C/I Dengan Sektorisasi Antena

Topologi sel trisektor menggunakan antena sektor 120°. Karena antena tersebut mencakup 1/3 bagian sel, maka interferensi cochannel akan dapat ditekan hingga 1/3-nya pula.

Penggunaan 6 sektor sel akan menekan interferensi cochannel hingga 6 kali. Namun beban signalling akan menjadi lebih tinggi

$$\frac{\mathbf{C}}{\mathbf{I}} = \frac{1}{\mathbf{N}} \left[\frac{\mathbf{D}}{\mathbf{R}} \right]^4$$

$$\frac{\mathbf{C}}{\mathbf{I}} \cong \frac{1}{6} \left[\frac{\mathbf{D}}{\mathbf{R}} \right]^4$$

Antena omnidirectional

$$\frac{\mathbf{C}}{\mathbf{I}} \cong \frac{1}{2} \left[\frac{\mathbf{D}}{\mathbf{R}} \right]^4$$

Antena trisektoral

Analisis Sistem Koordinat

Sistem Koordinat

	_		$Q = D/R = \sqrt{3}$
1	0	1	1,73
1	1	3	3,00
2	0	4	3,46
2	1	7	4,58
3	0	9	5,20
2	2	12	6,00
3	1	13	6,24
4	0	16	6,93
3	2	19	7,55
4	1	21	7,94
3	3	27	9,00

$$D = \left\{ (u_2 - u_1)^2 + (v_2 - v_1)^2 + (u_2 - u_1)(v_2 - v_1) \right\}^{\frac{1}{2}}$$

Jika, $(u_1, v_1) = (0,0)(u_2, v_2) = \text{merupakan nilai integer} = (i,j)$

$$D = \sqrt{i^2 + ij + j^2}$$

 $\frac{D}{R} = \sqrt{3K}$

RuF (*Reuse Factor*) atau Ukuran Kluster (K)

- Kluster adalah kelompok sel yang masing-masing selnya memiliki 1 set frekuensi yang berbeda dengan sel lain di kluster yang sama.
- Ukuran kluster = Reuse Factor (dilambangkan = K= RuF) = jumlah sel dalam 1 kluster
- Semakin kecil RuF, frekuensi dapat diulangi semakin efisien → kapasitas makin besar

Contoh:

K = 3 artinya terdapat 3 sel dalam 1 kluster

K = 4 artinya terdapat 4 sel dalam 1 kluster

$$\frac{\mathrm{D}}{\mathrm{R}} = \sqrt{3\mathrm{K}}$$

$$\frac{D}{R} = \sqrt{3 \times RuF}$$

Kapasitas Seluler

ALOKASI FREKUENSI **OPERATOR** GSM TOTAL GSM900 GSM1800 (MHz) (MHz) (MHz) TELKOMSEL 7.5 22.5 30 30 INDOSAT 10 20 7.5 XL 7.5 15 15 **AXIS** 15 THREE 0 10 10 TOTAL 25 75 100

K

 $BW_{\underline{Alokasi}}$

 $BW_{ch RF}$

Kapasitas Kanal Tiap Sel

1 BTS

1 TRX

1 BTS

lebih dari satu buah...

1 TRX

1 BTS

1 TRX

Fз

K = 3

F1

Teknik Akses Jamak & Manajemen Sumberdaya Radio

Radio Resource Management

Sumberdaya Radio

- Resource radio (kanal) yang digunakan untuk mengirimkan informasi
- Sumberdaya radio utama:
 - Frekuensi → FDMA
 - Waktu → TDAM
 - Daya pancar → Capture effect
 - Space → SDMA, STBC
 - Code → CDMA

Multiple Access

- **CDMA** = Code Division Multiple Access
 - Berarti bahwa beberapa user dapat saling berkomunikasi menggunakan <u>Channel yang sama</u> pada <u>waktu yang bersamaan</u>, masing-masing user menggunakan <u>code yang berbeda</u>
- **TDMA** = *Time Division Multiple Access*
 - Berarti bahwa beberapa user dapat saling berkomunikasi menggunakan <u>Channel yang sama</u> pada <u>waktu yang berbeda</u>, tiap user <u>tidak</u> <u>menggunakan code</u>
- **FDMA** = Frequency Division Multiple Access
 - Berarti bahwa beberapa user dapat saling berkomunikasi menggunakan <u>Channel yang berbeda</u> pada <u>waktu yang sama</u>, tiap user <u>tidak menggunakan</u> <u>code</u>

Frequency Division Multiple Access (FDMA)

AMPS → 30 kHz/user

N-AMPS → 10 kHz/user

Time Division Multiple Access (TDMA)

IS-54 → 30 kHz, 3 user

IS-136 → 30 kHz, 3 user

GSM → 200 kHz, 8 user

Time Slot #2

Time Slot #3

Time Slot #4

Code Division Multiple Access (CDMA)

IS-95A → 1,25 MHz, ±22 user

IS-95B \rightarrow 1,25 MHz, \pm 22 user

ANSI-J-STD 008 \rightarrow 1,25 MHz, \pm 22 user

IS-2000 1x → 1,25 MHz

IS-2000 3x → 5 MHz

OFDMA

User 1

OFDM: In OFDM, all subcarriers of the symbol are used for providing data to a specific user

OFDMA: In OFDMA, the subscarriers of each symbol may be divided between multiple users thus enabling better use of

radio resources

OFDM = Orthogonal Frequency Division Multiplexing OFDMA = Orthogonal Frequency Division Multiple Access

OFDMA's dynamic allocation enables better use of the channel for multiple low-rate users and For the avoidance of narrowband fading and interference

OFDMA Time-Frequency Multiplexing

Perbedaan OFDM dan OFDMA

OFDM allocates users in time domain only

Time domain

OFDM dengan TDD

OFDMA allocates users in time and frequency domain

Time domain

OFDM

- Semua subcarrier dialokasikan untuk satu user
- Jika dengan TDD bisa untuk beberapa user
- Misal: 802.16-2004

OFDMA

- Subcarrier dialokasikan secara fleksibel untuk banyak user tergantung pada kondisi radio.
- Misal: 802.16e-2005 dan 802.16m

OFDM, OFDMA, dan SC-FDMA

- OFDM dan OFDMA memiliki peak-to-average Power (PAPR) yang besar (buruk) → boros power
- SC-FDMA memiliki PAPR yang rendah (baik)
- SC-FDMA dipakai pada Uplink 4G

OFDMA

Manajemen Wilayah Cakupan (Coverage Area)

Implementasi Sel

Gain =
$$\eta_{eff} \frac{4\pi}{B} \approx \eta_{eff} \frac{4\pi}{\theta_{1/2}.\phi_{1/2}}$$

Sel diimplementasikan dengan antenna yang memiliki pola radiasi dan beamwidth tertentu

Parameter antenna penting yg menentukan coverage sel:

- Beamwidth → menentukan pola pancaran
- 2. Gain (dB)
- 3. Tilting

Konfigurasi BTS

Omnidirectional

Sectoring 120°

Sectoring 60°

Ilustrasi infrastruktur fisik BTS-BSC

Contoh Konfigurasi BTS Trisektor 2/2/2

> Maksudnya 1 site terdiri 3 sector (3 cell), masing-masing sector 2 kanal RF

Radiasi Antena membentuk coverage sel

Loss propagasi

End of Kajian #1