4 Метод сопряженных направлений (Пауэлла)

Определение: векторы $p_1, p_2...p_n$ называются векторами, сопряженными относительно матрицы A, если

$$p_i^T A p_j = 0$$

В методе сопряженных направлений применяется итерационная формула метода Гаусса-Зейделя в следующем виде:

Положим $\overline{X}_0^{r+1} = \overline{X}^r$ и пусть $e_1, e_2...e_n$ -- орты используемой системы координат.

Тогда итерационную формулу метода Гаусса-Зейделя можно записать в виде

$$\overline{X}_{i}^{r+1} = \overline{X}_{i-1}^{r+1} + \lambda_{i}^{r} e_{i} = \overline{X}_{i-1}^{r+1} + \lambda_{i}^{r} p_{i}^{r}, i=1,2,...n$$

где коэффициенты λ_i^r находятся из условий:

$$, i=1,2,...n$$

$$\min_{\lambda \in (-\infty; +\infty)} \Phi\left(\overline{X}_{i-1}^{r+1} + \lambda e_i\right) = \Phi\left(\overline{X}_{i-1}^{r+1} + \lambda_i^r e_i\right) = \Phi\left(\overline{X}_1^{r+1}\right)$$

Схема метода сопряженных направлений

- 1. Задаем начальную точку $\bar{X}^{\,0}$ и полагаем r =0, i =1.
- 2. Последовательно для i=1,2,..., находим точки \overline{X}_1^{r+1} , \overline{X}_2^{r+1} ... \overline{X}_n^{r+1}
- 3. Исходя из точки \bar{X}_{n}^{r+1} еще раз находим минимум функции Φ вдоль первого

координатного направления — вычисляем координаты точки $\overline{X}_{n+1}^{r+1} = \overline{X}_n^{r+1} + \lambda_1^r e_1$ где коэффициент λ_1^r находится из условия:

$$\min_{\lambda \in (-\infty; +\infty)} \Phi\left(\overline{X}_{n+1}^{r+1} + \lambda e_1\right) = \Phi\left(\overline{X}_{n}^{r+1} + \lambda_1^r e_1\right) = \Phi\left(\overline{X}_{n+1}^{r+1}\right)$$

4. Исходя из точки \overline{X}_1^{r+1} , находим минимум функции Φ вдоль вектора $p_{n+1}^r = \overline{X}_{n+1}^{r+1} + \overline{X}_1^{r+1}$ вычисляем

 $\overline{X}^{r+1} = \overline{X}_1^1 + \lambda_{n+1}^{r+1} p_{n+1}^r$, где коэффициент λ находится из условия:

$$\min_{\lambda \in (-\infty; +\infty)} \Phi\left(\overline{X}_1^{r+1} + \lambda p_{n+1}^r\right) = \Phi\left(\overline{X}^r + \lambda_{n+1}^r p_{n+1}^r\right) = \Phi\left(\overline{X}^{r+1}\right)$$

5. Если одно из стандартных условий окончания итераций

$$\|\overline{X}^{r+1} - \overline{X}^r\| \le epsx$$

$$|\Phi(\overline{X}^{r+1}) - \Phi(\overline{X}^r)| \le eps\Phi$$

выполнено, то полагаем $\overline{X}^* \approx \overline{X}^{r+1}$ и заканчиваем вычисления. Иначе — полагаем r=r+1 и переходим к п.2.

Траектория поиска минимума функции Химмельблау методом сопряженных направлений

Метод ориентирован, прежде всего, на минимизацию квадратических функций и существенным образом использует специфику последних. Минимизация квадратических функций занимает важное место в теории и практике оптимизационных задач. Во-первых, это простейшая задача нелинейной безусловной оптимизации. Во-вторых, в окрестности экстремума любые нелинейные функции хорошо аппроксимируются квадратической функцией.

Заметим, что при минимизации квадратичной функции методом сопряженных направлений минимум достигается за одну итерацию.

Пример

Метод сопряженных направлений для квадратичной функции

Найти минимум $\Phi(X)$ методом сопряженных направлений

$$\Phi(x, y) = 4x^2 + 4y^2 + 6xy$$

Начальное приближение решения (-1.0; -1.0)

Точность по X epsx=0.1

Точность по Φ eps Φ =0.1

В матричной форме

$$\Phi(x,y) = \begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix}$$

Каноническая форма записи квадратичной функции

$$\Phi(\overline{X}) = \frac{1}{2} (A\overline{X}, \overline{X}^T) + (\overline{b}^T, \overline{X}) + c$$

$$\Phi(x,y) = \frac{1}{2} \begin{bmatrix} 8 & 6 \\ 6 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + 0$$

Метод сопряженных направлений:

- 1. Задаем начальную точку: $\overline{X}^0 = (-1, -1)^T$, номер итерации r=0
- 2. Выполняем последовательный поиск из вдоль координатных осей, шаг выбирается из решения одномерной задачи минимизации Ф в направлении поиска.

Пох

$$\min_{\lambda} \Phi(-1+\lambda,-1) = 4(-1+\lambda)^2 + 4(-1)^2 + 6(-1+\lambda)(-1) = 4\lambda^2 - 14\lambda + 14$$

$$\lambda = 1.75$$

Делаем шаг вдоль оси х:

$$\overline{X}_{1}^{1} = (0.75, -1)^{\mathrm{T}}$$
 $\Phi(\overline{X}_{1}^{1}) = 1.75$

Из новой точки \overline{X}_1^1 шаг по у:

$$\min_{\lambda} \Phi(0,75,-1+\lambda) = 4(0,75)^2 + 4(-1+\lambda)^2 - 6*0,75*(-1+\lambda) = \dots$$

$$\lambda = 0.4375$$

Делаем шаг вдоль оси у

$$\overline{X}_{2}^{1} = (0.75, -0.5625)^{T}$$

$$\Phi(\overline{X}_{2}^{1})=0,9844$$

Из последней точки еще раз вдоль оси х

$$\min_{\lambda} \Phi(0.75 + \lambda, -0.5625) = \dots$$

$$\lambda = -0.32813$$

 $\bar{X}_{3}^{1} = (0.42187, -0.5625)^{T}$

$$_{\text{Шаг вдоль}}$$
 $\overline{p}_3 = \overline{X}_3^1 - \overline{X}_1^1 = \begin{bmatrix} 0.42187 \\ -0.5625 \end{bmatrix} - \begin{bmatrix} 0.75 \\ -1 \end{bmatrix} = \begin{bmatrix} -0.32813 \\ 0.4375 \end{bmatrix}$

 Φ – квадратичная, минимум достигается за одну итерацию.

Замечание: вектора р1 и р3 являются сопряженным относительно матрицы А.

Проверка сопряженности

$$\overline{p}_1 A \overline{p}_3^T = \begin{bmatrix} 1,75 & 0 \end{bmatrix} \begin{bmatrix} 8 & 6 \\ 6 & 8 \end{bmatrix} \begin{bmatrix} -0,32813 \\ 0,4375 \end{bmatrix} \approx 0$$

5 Симплекс-метод

Регулярным симплексом в n-мерном пространстве R называется правильный многогранник, образованный (n+1) равноотстоящими друг от друга вершинами. n=2- это равносторонний треугольник n=3 тетраэдр

Если в пространстве R необходимо построить регулярный симплекс, одна из вершин которого находится в точке $\overline{X}^0 = \left(x_1^0, x_2^0, ..., x_n^0\right)$, то координаты вершин такого симплекса удобно задавать с помощью матрицы $n \times (n+1)$ матрицы вида

$$R_{n\times(n+1)} = \begin{bmatrix} x_1^0 & x_1^0 + r_1 & x_1^0 + r_2 & \dots & x_1^0 + r_2 \\ x_2^0 & x_2^0 + r_2 & x_2^0 + r_1 & \dots & x_2^0 + r_2 \\ x_3^0 & x_3^0 + r_2 & x_3^0 + r_2 & \dots & x_3^0 + r_2 \\ \dots & \dots & \dots & \dots \\ x_n^0 & x_n^0 + r_2 & x_n^0 + r_2 & \dots & x_n^0 + r_1 \end{bmatrix}$$

Здесь і -й столбец представляет собой координаты і -й вершины симплекса

$$r_{\!\scriptscriptstyle 1} = l \, rac{\sqrt{n+1} + n - 1}{n\sqrt{2}} \, ; \quad r_{\!\scriptscriptstyle 2} = l \, rac{\sqrt{n+1} - 1}{n\sqrt{2}} \, , \quad l -$$
длина ребра симплекса

Например, регулярный симплекс в двумерном пространстве с одной из вершин в начале координат определяется матрицей

$$R_{2 imes 3} = egin{bmatrix} 0 & r_1 & r_2 \ 0 & r_2 & r_1 \end{bmatrix} \;\;\;$$
и имеет вид

Преобразования симплекса

В алгоритме симплекс-метода используется следующее важное свойство регулярного симплекса: если одну из вершин регулярного симплекса перенести на надлежащее расстояние вдоль прямой, соединяющей данную вершину и центр тяжести оставшихся вершин, то вновь получится регулярный симплекс

Будем называть эту процедуру отражением вершины симплекса относительно центра тяжести остальных вершин.

Пусть X_i^r – векторы координат вершин регулярного симплекса (i=1,...,n+1).

Тогда при выполнении операции отражения k -й вершины симплекса имеет место следующая связь координат этой вершины и новой вершины:

$$\frac{\overline{X}_k^r + \overline{X}_k^{r+1}}{2} = \overline{X}_c^r$$
, где

координаты центра тяжести остальных вершин симплекса (за исключением отраженной вершины k)

$$\overline{X}_c^r = \frac{1}{n} \sum_{i=1, i \neq k}^{n+1} \overline{X}_i^r$$

Таким образом, после отражения k -ой вершины симплекса получаем новый симплекс с координатами вершин

$$\overline{X}_i^{r+1} = \overline{X}_i^r, \quad i \neq k$$

$$\overline{X}_{k}^{r+1} = 2\overline{X}_{c}^{r} - \overline{X}_{k}^{r}$$

Кроме операции отражения вершины симплекса, симплекс-метод может использовать операцию **редукции симплекса** — уменьшение длин всех ребер симплекса на одну и ту же величину.

Пример – редукция вершин регулярного симплекса к вершине X1 .

Таким образом, после редукции вершин симплекса к вершине Xk получаем новый симплекс с координатами вершин

$$\begin{split} \overline{X}_{i}^{r+1} &= \overline{X}_{k}^{r} + \gamma \left(\overline{X}_{i}^{1} - \overline{X}_{i}^{r} \right), \quad i \neq k \\ \overline{X}_{k}^{r+1} &= \overline{X}_{k}^{r} \end{split}$$

Схема простейшего варианта симплекс-метода

- 1. Задаем начальное приближение экстремума, длину ребра симплекса l
- 2. Вычисляем координаты всех вершин симплекса
- 3. Вычисляем Ф во всех вершинах симплекса
- 4. Находим максимальное из вычисленных значений Φ пусть максимальное значение в вершине Xk
- 5. Отражаем вершину Xk относительно центра тяжести остальных вершин симплекса получаем новый симплекс
- 6. Вычисляем Ф в новой вершине
- 7. Если условие окончания итераций выполнено, то заканчиваем. Иначе п.4

Траектория поиска минимума функции Химмельблау простейшим симплекс-методом

Рассмотренный простейший симплекс-метод склонен к зацикливанию и медленно сходится, если длина ребра симплекса \boldsymbol{l} выбрана малой (выбор большой длины ребра симплекса обеспечивает высокую скорость сходимости, но дает малую точность решения).

Поэтому в вычислительной практике используются различные модификации простейшего метода, направленные на преодоление его указанных недостатков.

Модифицированный симплекс-метод

Основной идей модифицированного симплекс-метода является *изменение по некоторому правилу размера симплекса* в процессе поиска.

При этом наряду с условием достижения точности по Φ в качестве условия окончания итераций можно использовать условие $l \leq \operatorname{epsx}$, где l – текущая длина ребра симплекса, epsx - требуемая точность решения по X .

Обычно размер симплекса изменяется при выполнении следующих условий:

- при «накрытии» симплексом дна оврага или точки минимума;
- при циклическом движении (ситуация, когда некоторая вершина симплекса не исключается на протяжении m итераций, интерпретируется как «зацикливание» алгоритма).

6 Метод деформируемого многогранника (Нелдера-Мида) – модификация симплекс-метода

Метод является развитием симплекс-метода и использует в процессе поиска деформацию (изменение размеров и формы) текущего симплекса (не обязательно регулярного).

Метод использует следующие операции над симплексами:

- отражение;
- редукция (уменьшение длин всех ребер в одно и то же количество раз);
- сжатие;
- растяжение.

Отражение

Редукция к Х1

Сжатие в направлении X1 - Xc:

Растяжение в направлении X1 – Xc:

Недостатки метода Нелдера-Мида: для сильно овражных функций может происходить вырождение («сплющивание») симплекса. Поэтому к рассмотренной схеме метода Нелдера-Мида добавляется этап периодического (через N итераций) восстановления симплекса, который заключается в следующем:

- ullet в текущем симплексе выбираются две «лучшие» вершины и определяется расстояние между ними l;
- ullet исходя из «лучшей» вершины текущего симплекса строится новый симплекс, длина ребра которого принимается равной l.

Градиентные методы

Найти минимум Φ

$$\min_{\overline{X} \in \mathbb{R}^n} \Phi(\overline{X}) = \Phi(\overline{X}^*) = \Phi^*$$

Пусть Φ всюду дифференцируема в n-мерном евклидовом пространстве R^n . Направление спуска в градиентных методах оптимизации совпадает c направлением антиградиента минимизируемой функции Φ .

Итерационная формула градиентных методов:

 \overline{X}^0 - начальное приближение решения

$$\overline{X}^{r+1} = \overline{X}^r + \lambda^r \overline{S}^r,$$

где \bar{S}^r - единичный вектор направления антиградиента функции Φ в точке \bar{X}^r :

$$\overline{S}^r = -\frac{\nabla \Phi^r}{\left\| \nabla \Phi^r \right\|}$$

Различные градиентные методы оптимизации отличаются между собой правилами выбора длины шага λ^r .

7 Градиентный метод наискорейшего спуска

Градиентный метод наискорейшего спуска в качестве длины шага λr использует величину, при которой достигается минимум функции Φ в направлении Sr:

$$\Phi(\overline{X}^{r+1}) = \Phi(\overline{X}^r + \lambda^r \overline{S}^r) = \min_{\lambda} \Phi(\overline{X}^r + \lambda \overline{S}^r)$$

Схема метода

- 1. Задаем начальную точку $\overline{X}^{\scriptscriptstyle 0}$ и счетчик количества итераций r=0.
- 2. Вычисляем антиградиент $\overline{S}^r = -\frac{\nabla \Phi^r}{\|\nabla \Phi^r\|}$
- 3. Решаем одномерную задачу безусловной минимизации находим точку \overline{X}^{r+1} : $\Phi(\overline{X}^{r+1}) = \Phi(\overline{X}^r + \lambda^r \overline{S}^r) = \min_{z} \Phi(\overline{X}^r + \lambda \overline{S}^r)$
- 4. Вычисляем значение функции в найденной точке $\phi(\bar{X}^{r+1})$
- 5. Если одно из условий окончание поиска выполнено, то $\overline{X}^* \approx \overline{X}^{r+1}$, конец. Иначе r=r+1, переход на п.2

В качестве критерия окончания поиска можно использовать одно из стандартных условий:

a)
$$\|\overline{X}^{r+1} - \overline{X}^r\| \le epsx$$

6)
$$|\Phi(\overline{X}^{r+1}) - \Phi(\overline{X}^r)| \le eps\Phi$$

в) В качестве критерия окончания поиска можно использоваться также условие $\left\| \nabla \varPhi^r \right\| \leq eps_grad \; ,$

где $\mathit{eps_grad}\,$ -- требуемая точность решения по градиенту функции $\Phi.$

Траектория поиска минимума функции Химмельблау градиентным методом наискорейшего спуска

Пример

Минимизировать методом наискорейшего спуска целевую функцию

$$f(x_1, x_2) = x_1^2 + 2x_2^2 + e^{x_1 + x_2}, \quad x_1, x_2 \in R$$

Критерий завершения вычислений:

$$\left| \frac{\partial f}{\partial x_i} \right| \le 0.05, i = 1,2$$

Начальное приближение решения:

$$x_1 = x_2 = 0$$

grad
$$f(x_1, x_2) = \begin{pmatrix} 2x_1 + e^{x_1 + x_2} \\ 4x_2 + e^{x_1 + x_2} \end{pmatrix}$$

Шаг 1.

$$grad f(0,0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Для определения величины шага \(\lambda \) решаем задачу одномерной минимизации

$$\min \left(f \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \lambda \cdot \operatorname{grad} f(0,0) \right) = \min \left(f \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) = \min f(-\lambda, -\lambda) =$$

$$= \min \left(\lambda^2 + 2\lambda^2 + e^{-2\lambda} \right)$$

$$3\lambda - e^{-2\lambda} = 0$$

$$\lambda = 0.22$$

$$\overline{X}^{r+1} = \overline{X}^r + \lambda^r \overline{S}^r$$

Таким образом, $x_1 = x_2 = -0.22$; f(-0.22, -0.22) = 0.789

Шаг	X1	X2	F(x1,x2)	df/dx1	df/dx2	λ	комментарий
1	0	0	1	1	1	0.22	продолжаем
2	-0.22	-0.22	0.789				

Шаг 2.

grad
$$f(-0.22, -0.22) = \begin{pmatrix} 0.204 \\ -0.236 \end{pmatrix}$$

Для определения величины шага λ решаем задачу одномерной минимизации

$$\min \left(f \left(\begin{pmatrix} -0.22 \\ -0.22 \end{pmatrix} - \lambda \cdot grad \ f \left(-0.22, -0.22 \right) \right) \right) = =$$

$$= \min \left(\left(-0.22 - 0.204\lambda \right)^2 + \left(-0.22 + 0.236\lambda \right)^2 + eps(-0.44 + 0.032\lambda) \right)$$

. . .

$$\lambda = 0.32$$

Таким образом,

$$x_1 = -0.2853$$
; $x_2 = -0.1445$; $f(-0.2853, -0.1445) = 0.7738$

Шаг	X1	X3	F(x1,x2)	df/dx1	df/dx2	λ	комментарий
1	0	0	1	1	1	0.22	продолжаем
2	-0.22	-0.22	0.789	0.204	-0.236	0.32	продолжаем
3	-0.2853	-0.1445	0.774				

Шаг 3.

grad
$$f(-0.2853, -0.1445) = \binom{?}{?}$$

Для определения величины шага \(\lambda \) решаем задачу одномерной минимизации

$$\min \left(f \left(\begin{pmatrix} -0.2853 \\ -0.1445 \end{pmatrix} - \lambda \cdot grad \ f \left(-0.2853, -0.1445 \right) \right) \right) = =$$

$$= \min \left(\left(-0.2853 - 0.08007\lambda \right)^2 + \left(-0.1445 - 0.07268\lambda \right)^2 + \exp(-0.429 + 0.15275\lambda) \right)$$
...
$$\lambda = 0.24$$

Таким образом, $x_1 = -0.3045$; $x_2 = -0.1619$; f(-0.3045, -0.1619) = 0.77240

Шаг	X1	X3	F(x1,x2)	Df/dx1	Df/dx2	λ	комментарий
1	0	0	1	1	1	0.22	продолжаем
2	-0.22	-0.22	0.789	0.204	-0.236	0.32	продолжаем
3	-0.2853	-0.1445	0.774	0.08007	0.07268	0.24	продолжаем
4	-0.3045	-0.1619	0.772	0.01821	-0.02051	-	Точность
							достигнута

Ответ: minf=f(-0.305,-0.162)=0.772

8 Градиентный метод с дроблением шага

В градиентном методе с дроблением шага точка \bar{X}^{r+1} определяется по формуле

$$\overline{X}^{r+1} = \overline{X}^r + \lambda^r \overline{S}^r$$

где величина шага λ^r находится из условия

$$\Phi(\overline{X}^{1}) - \Phi(\overline{X}^{r+1}) \ge 0.5\lambda^{r} \|\nabla \Phi^{r}\|$$

Схема метода

- 1. Задаем начальную точку \overline{X}^0 , начальную величину шага λ^0 , коэффициент дробления шага $\nu \in (0,1]$. Счетчик количества итераций r=0.
- 2. Вычисляем компоненты вектора \overline{X}^{r+1}

$$\overline{X}^{r+1} = \overline{X}^r + \lambda^r \overline{S}^r$$

- 3. Вычисляем значение функции в найденной точке $\Phi(\overline{X}^{r+1})$
- 4. Если условие

$$\Phi(\overline{X}^r) - \Phi(\overline{X}^{r+1}) \ge 0.5\lambda^r \|\nabla \Phi^r\|$$

Выполнено – п.5, иначе – п.6.

5. Полагаем

$$\lambda^r = \nu \, \lambda^r$$
 и переходим на п.2

6. Проверяем условие окончания поиска можно использовать одно из стандартных условий:

$$\|\overline{X}^{r+1} - \overline{X}^r\| \le epsx$$

$$\|\Phi(\overline{X}^{r+1}) - \Phi(\overline{X}^r)\| \le eps\Phi$$

$$\|\nabla \Phi^r\| \le eps_grad$$

Траектория поиска минимума функции Химмельблау градиентным методом с дроблением шага

Эффективность градиентных методов зависит от вида минимизируемой функции. В тех ситуациях, когда линии уровня минимизируемой функции представляют собой прямолинейный или, хуже того, криволинейный «овраг», эффективность метода оказывается очень низкой.

Пример

Минимизировать целевую функцию

$$f(x) = f(x_1, x_2) = x_1^2 + 2x_2^2 + e^{x_1 + x_2}, x \in \mathbb{R}^2,$$

методом градиентного спуска, завершив расчет при

$$\left| \frac{\partial f(x^{(k)})}{\partial x_i} \right| \le 0.05, i = 1, 2.$$

Решение

Выберем начальное приближение $x^{(0)} = (0,0)$ и величину шага спуска $\alpha = 1$, построим последовательность (5.3) (с дроблением шага спуска α), записывая результаты вычислений в таблицу.

k	$X_1^{(k)}$	$X_{2}^{(k)}$	$f(x^{(k)})$	$\frac{\partial f(x^{(k)})}{\partial x_1}$	$\frac{\partial f(x^{(k)})}{\partial x_2}$	α	Примечание
	0	0	1	1	1	1	
	-1	-1	3.145	_	_		Условие (5.4) нару- шено. Уменьшим α в 2 раза
0	0	0	1	1	1	0.5	
	-0.5	-0.5	1.118	_	-		Условие (5.4) нару- шено. Уменьшим α в 2 раза
	0	0	1	1	1	0.25	
1	-0.25	-0.25	0.794	0.106	-0.393	0.25	Условие (5.4) выполнено
2	-0.277	-0.152	0.774	0.098	0.045	0.25	Условие (5.4) выполнено
3	-0.301	-0.163	0.772	0.026	0.023	_	Точность достигнута

OTBET: min f=f(-0.301,-0.163)=0.772