# Statistik – Methoden zum Vergleich von zwei Gruppen

Unterstützende Signifikanztests

- Für verschiedene statistische Testverfahren (z.B. z-Test, t-Test) ist es notwendig, dass die zu untersuchenden Daten einer Normalverteilung folgen
- Gilt besonders f
   ür kleine Stichproben (n < 30)</li>
- Wir benötigen Werkzeuge, die die Normalverteilungsannahme überprüfen können
- Des weiteren können einige der aufgeführten Testverfahren auch andere Verteilungsformen identifizieren, zum Teil können auch Stichproben gegeneinander geprüft werden (nicht Bestandteil des RCommander)

- Ein grafischer Vergleich der Daten mit einer Normalverteilung liefert Hinweise, wie nah man der geforderte Normalverteilung ist, macht aber keine statistisch signifikante Aussage
- Trotzdem sollte immer eine grafische Überprüfung erfolgen!!!



 Einige im RCommander genutzte Verteilungstests (nur Normalverteilung)

| Test                    |                                               |
|-------------------------|-----------------------------------------------|
| Shapiro-Wilk (SW)       | Standardtest                                  |
| $\chi^2$ -Test (Chi)    | Datenklassifizierung erforderlich             |
| Anderson-Darling (AD)   | Six Sigma / englisch sprachiger Raum          |
| Kolmogorov-Smirnov (KS) | Klassiker                                     |
| Cramer von Mises (CM)   | Starke Abhängigkeit von der Stichprobengröße  |
| Shapiro-Francia (SF)    | SW-Abwandlung für platokurtische Verteilungen |
| (Epps-Pulley)           | Tolerant gegen Abweichungen                   |
| (Jarque-Bera)           | Tolerant gegen Abweichungen                   |

- Es gibt nicht den einen Test auf Normalverteilung, alle aufgeführten Tests haben Schwächen und Stärken, sie führen auch zum Teil zu divergierenden Aussagen
- Je nach Stichprobengröße sind einzelne Testverfahren besser oder schlechter geeignet
- Kleine Stichproben
  - + Shapiro-Wilk, Anderson-Darling, Kolmogorow-Smirnov
- Große Stichproben
  - + Shapiro-Wilk,  $\chi^2$ -Test

Für alle aufgeführten Testverfahren gelten die gleichen Hypothesen

- Wichtig f
  ür die Auswertung des p-Wertes !!!
- H<sub>0</sub> Die Daten folgen der zugrunde gelegten Verteilung (z.B. der Normalverteilung)
- $H_1$  Die Daten folgen **nicht** der zugrunde gelegten Verteilung (z.B. der Normalverteilung)
- Das Signifikanzniveau wird im allgemeinen zu  $\alpha$  = 5% gesetzt

- Der Anderson-Darling-Test kann für verschiedene Verteilungsformen eingesetzt werden
- Verwendung für die Überprüfung der Normalverteilungsannahme
- Hohe Trennschärfe

#### **Das Testverfahren**

- Zu untersuchenden Daten werden der Größe nach sortiert
- Anschließend erfolgt eine Transformation der sortierten Daten in eine Gleichverteilung
- Anschließend wird die Übereinstimmung mit einer Gleichverteilungsfunktion überprüft
- Das Ergebnis der Prüfung kann in einen p-Wert überführt werden

#### Die Testgröße

$$AD^2 = -n - S$$
 (AD steht für Anderson Darling)

$$S = \sum_{k=1}^{n} \frac{2k-1}{n} \left[ \ln F(Y_k) + \ln(1 - F(Y_{n+1-k})) \right]$$

n: Stichprobengröße

F: Die Funktion der F-Verteilung

#### Der p-Wert

• 
$$z = AD^2 \left( 1 + \frac{0.75}{n} + \frac{2.25}{n^2} \right)$$

| z                  | p-Wert                                         |  |
|--------------------|------------------------------------------------|--|
| $z \leq 0,2$       | $1 - exp(-13,436 + 101,14 * z - 223,73 * z^2)$ |  |
| $0.2 < z \le 0.34$ | $1 - exp(-8,318 + 42,796 * z - 59,938 * z^2)$  |  |
| $0.34 < z \le 0.6$ | $exp(0.9177 - 4.279 * z - 1.38 * z^2)$         |  |
| 0.6 < z            | $exp(1,2937 - 5,709 * z + 0,0186 * z^2)$       |  |

#### Voraussetzungen für den Test

- Metrisch skalierte Daten
- Daten lassen sich in eine Gleichverteilung transformieren
- Stichprobengröße n ≥ 8

#### **Beispiel**

Datei Übung\_Deskriptiv.xlsx, Daten NV und NNV

Führen Sie die verschiedenen Testverfahren durch und vergleichen Sie die Werte.

#### **Beispiel**

Datei Übung\_Deskriptiv.xlsx, Daten NV und NNV

| Test | p-Wert (NV) | p-Wert (NNV)  |  |
|------|-------------|---------------|--|
| SW   | 0,3076      | 3,333e-10     |  |
| Chi  | 0,8508      | 8,707e-11     |  |
| AD   | 0,1914      | 1,015e-14     |  |
| KS   | 0,1367      | 1,556e-11     |  |
| CM   | 0,1525      | 9,585e-10     |  |
| SF   | 0,3076      | 0,00000005747 |  |

## **Ryan-Joiner-Test**

- Korrelationsverfahren zur Überprüfung der Normalverteilung
- Der Ryan-Joiner-Test bestimmt einen Koeffizienten für die Korrelation der Daten und den normalverteilten Werten der Daten
- Liegt dieser Koeffizient nahe 1, so liegen die Daten am Wahrscheinlichkeitsnetz der Normalverteilung

## **Ryan-Joiner-Test**

#### **Teststatistik**

$$R_p = \frac{\sum (Y_i - \overline{Y})b_i}{\sqrt{s^2(n-1)\sum b_i^2}}$$

mit

 $Y_i$  geordnete Beobachtungen  $b_i$  normalverteilte Werte der geordneten Beobachtungen  $s^2$  Stichprobenvarianz

## QQ - Diagramm

- Quantil-Quantil-Diagramm
- Grafische Überprüfung von Daten auf Normalverteilung (auch für andere Verteilungsformen)
- Vergleichbar mit dem Wahrscheinlichkeitsnetz
- Es ersetz nicht den Verteilungstest, aber grafische Werkzeuge sollten immer parallel eingesetzt werden!

## QQ - Diagramm

- Die Gerade stellt hier den Verlauf der Normalverteilung dar
- Sind die Daten normalverteilt, folgen die Datenpunkte möglichst genau der Geraden



# **QQ - Diagramm**

Überlagerung von Verteilungen sample181 150 190 4  $\alpha$  $\alpha$ ĕ 0 0 Ņ -2 0 norm quantiles norm quantiles

- Signifikanztests zur Prüfung der Gleichheit von Varianzen
- Die vorgestellten Tests k\u00f6nnen auf zwei (F-Test) oder mehr Gruppen (Bartlett/Levene) gleichzeitig angewandt werden
- Für alle Tests gelten die Voraussetzungen:
  - Unabhängige Beobachtungen
  - Metrisches Skalenniveau
  - Normalverteilung (nur Bartlett und F-Test), der Levene-Test ist auch für Nichtnormalverteilungen geeignet

#### Verschiedene Tests und ihr Einsatzgebiet

| Test          | Normalverteilung | Stichproben | Ein/zweiseitig? |
|---------------|------------------|-------------|-----------------|
| Levene-Test   | Nein             | ≥ 2         | zweiseitig      |
| Bartlett-Test | Ja               | ≥ 2         | zweiseitig      |
| F-Test        | Ja               | = 2         | ein-/zweiseitig |

#### Hypothesen für Levene und Bartlett

#### Nullhypothese

$$H_o$$
:  $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$ 

#### **Alternativhypothese**

 $H_1$ :  $\sigma_i^2 \neq \sigma_j^2$  für mindestens ein Gruppenpaar i,j mit i  $\neq$  j

Der F-Test kann ein- und zweiseitig genutzt werden, entsprechend müssen hier die Alternativhypothesen eingestellt werden

#### Anmerkungen

- Bartlett-Test: Trennschärfer als Levene, setzt aber Normalverteilung voraus und sollte annähernd gleiche Stichprobengrößen aufweisen
- Levene-Test: Robust bei nicht-normalverteilten Daten und bei unterschiedlich großen Stichproben
- F-Test: Höchste Trennschärfe, aber sehr empfindlich bei Nicht-Normalität

#### **Beispiel**

Beispiel\_Var.xlsx

Untersuchung auf ungleiche Streuung / Varianz

$$H_0 \qquad \sigma_1^2 = \sigma_2^2$$

$$H_1 \qquad \sigma_1^2 \neq \sigma_2^2$$

#### **Beispiel**

Unterschiedliche Streuungen



#### **Beispiel**

Der p-Wert wird in der R-Ausgabe als Pr bezeichnet

#### **Beispiel**

Bartlett test of homogeneity of variances

data: Werte by Index

Bartlett's K-squared = 79.646, df = 1, p-value < 2.2e-16

F test to compare two variances

#### **Beispiel**

data: Werte by Index
F = 0.053739, num df = 49, denom df = 49, p-value < 2.2e-16
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.03049562 0.09469829
sample estimates:
ratio of variances
 0.05373903</pre>

## Signifikanztest für Korrelationen

- Korrelation auf Signifikanz pr
  üfen
- Gibt es in zwischen Gruppen eine Korrelation, kann geprüft werden, ob diese auch statistisch signifikant ist
- Ab welchem Betrag ist ein Korrelationskoeffizient statistisch signifikant?

## Signifikanztest für Korrelationen

- Testverfahren: t-Tests, eine Stichprobe
- Weicht der Korrelationskoeffizient signifikant von 0 ab
- Prüfung auf lineare Unabhängigkeit

#### **Nullhypothese**

 $H_0$  r=0, es besteht keinen Zusammenhang zwischen den Gruppen

#### Alternativhypothesen

 $H_1$   $r \neq 0$ , es besteht ein Zusammenhang zwischen den Gruppen

# Signifikanztest für Korrelationen

#### **Teststatistik**

$$t = \frac{r * \sqrt{n-2}}{\sqrt{1-r^2}}$$

- Diesen Wert kann man mit einem kritischen Wert  $t_{krit}$  vergleichen, der z.B. einer t-Tabelle entnommen werden kann
- Anzahl der Freiheitsgrade df = n 2

- Bei der ersten Analyse unserer Daten fallen immer wieder Werte auf, die scheinbar nicht zum Datensatz passen
- Wir neigen dazu, diese Werte per se als Ausreißer zu identifizieren
- Sie verhindern teilweise, dass wir parametrische Verfahren zur Datenanalyse nutzen, wir müssen auf nichtparametrische Verfahren ausweichen

- Datenpunkt 9 ist in mehreren Grafiken auffällig
- (Beispiel\_Ausreisser.xlsx / Daten)







#### Definition von Ausreißern im Boxplot



 Führt man einen Test auf Normalverteilung durch, sieht man möglicherweise eine Nichtnormalverteilung

```
Shapiro-Wilk normality test data: Daten W = 0.95365, p-value = 0.04826
```

 Ohne auffällige Werte können wir unter Umständen von einer Normalverteilung ausgehen

```
Shapiro-Wilk normality test
```

```
data: DatenoA W = 0.98526, p-value = 0.7924
```

- Andererseits wissen wir, dass Normalverteilungen durchaus eine größere Bandbreite haben können
- Wir benötigen also Verfahren, die Werte hinsichtlich ihrer ungewöhnlichen Lage überprüfen
- Ausreißer-Test
  - Grubb's Test
  - David-Hartley-Pearson-Test
  - Dixon's r-Statistiken
- Voraussetzung für all diese Verfahren: Normalverteilte Daten (ohne Ausreißer)

- Belegt ein Ausreißer-Test das Vorliegen eines Ausreißers, stellt sich die Frage: Wie mit diesem Wert umgehen?
- Mögliches Vorgehen:
  - Identifizierte Ausreißer auf Mess-, Rechen-, Schreiboder Datenerfassungsfehler (systematischer Fehler) überprüfen und ggf. korrigieren/entfernen
  - Entscheiden, ob der Wert überhaupt zur Stichprobe gehört
  - Gegebenenfalls wird der Wert aus der Stichprobe entfernt

 Testverfahren zur Überprüfung des Minimal- und/oder Maximalwertes des Datensatzes

#### Voraussetzungen:

- Die Stichprobe (ohne Ausreißer) ist normalverteilt
- Es befinden sich maximal zwei Ausreißer in der Stichprobe (ansonsten muss der Test mehrfach wiederholt werden, wobei identifizierte Ausreißer entfernt werden)
- Grubbs' Ausreißertest kann ein- oder zweiseitig angesetzt werden

Hypothesen

 $H_0$  Der Datensatz enthält keine Ausreißer  $H_1$  Es gibt mindestens einen Ausreißer im Datensatz

Teststatistik

$$G = \frac{max|x_i - \bar{x}|}{S}$$

mit  $\bar{x}$ : Stichprobenmittelwert

s: Standardabweichung der Stichprobe

- Kritischer Wert  $G_{krit}$ 
  - Beispiel: Zweiseitiger Test

$$G_{krit} = \frac{(n-1)}{\sqrt{n}} \sqrt{\frac{\left(\frac{t_{\alpha}}{2n}, n-2\right)^2}{n-2+\left(\frac{t_{\alpha}}{2n}, n-2\right)^2}}$$

 $t_{rac{lpha}{2n},n-2}$  erhält man aus einer t-Verteilung mit  ${
m df}=n-2$  Freiheitsgraden und einem Signifikanzniveau von lpha/2n

Für  $G > G_{krit}$  wird die Nullhypothese verworfen

- Kritischer Wert  $G_{krit}$ 
  - Für den einseitigen Test wird das Signifikanzniveau zu  $\alpha/n$  gewählt

#### Berechnung in R

- Im RCommander sind keine Ausreißer-Tests hinterlegt
- Installation des Package "Outliers"
- install.packages("outliers")
- library(outliers)

#### Berechnung in R

```
grubbs.test(x, type = 10, opposite = FALSE, two.sided = FALSE)
```

mit

x Datenvektor

type Testvariante (10 – ein Ausreißer; 11 – zwei Ausreißer auf

gegenüberliegenden Seiten des Datensatzes; 20 – zwei

Ausreißer auf einer Seite des Datensatzes)

opposite FALSE – Überprüfung des Datenpunktes mit dem größten

Mittelwertabstand

TRUE – Überprüfung des gegenüberliegenden Punktes

two.sided FALSE – einseitiger Test

TRUE – zweiseitiger Test

### Berechnung in R

Vorsicht, nur folgende Kombinationen machen Sinn

```
type = 10 \text{ und} two.sided = FALSE
```

type = 11 <u>und</u> two.sided = TRUE

andernfalls wird der  $\alpha$ -Wert falsch interpretiert

Beispiel\_Ausreisser.xlsx

(Daten)

Datenpunkt 9 ist ein potentieller Ausreißer

Shapiro-Wilk normality test

data: Daten W = 0.95365, p-value = 0.04826

 Der Originaldatensatz ist nicht normalverteilt



Beispiel\_Ausreisser.xlsx

(DatenoA)

Überprüfung ohne Punkte 9

Shapiro-Wilk normality test

data: DatenoA W = 0.98526, p-value = 0.7924

 Der veränderte Datensatz ist normalverteilt



- Beispiel\_Ausreisser.xlsx (Daten)
- Hier: Test auf einen Ausreißer

```
> with (Dataset, grubbs.test (Daten, type=10, opposite=FALSE, two.sided=FALSE))

Grubbs test for one outlier
```

```
data: Daten G = 3.46375, U = 0.75015, p-value = 0.005479 alternative hypothesis: lowest value 6.1004376 is an outlier
```

p < 0,05: Alternativhypothese – Datenpunkt 9 ist ein Ausreißer

- Beispiel\_Ausreisser.xlsx (Daten)
- Hier: Test auf zwei Ausreißer (gegenüberliegende Seiten)

```
> with (Dataset, grubbs.test (Daten, type=11, opposite=FALSE, two.sided=TRUE))
```

Grubbs test for two opposite outliers

```
data: Daten G = 5.29914, U = 0.68528, p-value = 0.1517 alternative hypothesis: 6.1004376 and 11.833236 are outliers
```

p > 0,05: Nullhypothese – Datenpunkte 9 <u>und</u> 50 sind keine Ausreißer

- Beispiel\_Ausreisser.xlsx (Daten2A)
- Hier: Test auf zwei Ausreißer (gegenüberliegende Seiten)

```
> with (Dataset, grubbs.test (Daten2A, type=11, opposite=FALSE, two.sided=TRUE))
```

Grubbs test for two opposite outliers

```
data: Daten2A G = 5.97107, U = 0.63081, p-value = 0.00871 alternative hypothesis: 6.1004376 and 12.833236 are outliers
```

p < 0,05: Alternativhypothese – Datenpunkte 9 <u>und</u> 50 sind Ausreißer