Basics of cluster analysis

In this notebook we explore the very basics of cluster analysis with k-means

Import the relevant libraries

```
In [12]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Set the styles to Seaborn
         sns.set()
         # k-means clustering with sklearn
         from sklearn.cluster import KMeans
```

Load the data

```
In [13]: # Load the country clusters data
         data = pd.read_csv('Country_clusters.csv')
         # Check out the data manually
In [14]:
Out[14
```

]:		Country	Latitude	Longitude	Language
	0	USA	44.97	-103.77	English
	1	Canada	62.40	-96.80	English
	2	France	46.75	2.40	French
	3	UK	54.01	-2.53	English
	4	Germany	51.15	10.40	German
	5	Australia	-25.45	133.11	English

Plot the data

```
In [15]: plt.scatter(data['Longitude'],data['Latitude'])
         # Set limits of the axes, again to resemble the world map
         plt.xlim(-180,180)
         plt.ylim(-90,90)
         plt.show
```

Out[15]:

<function matplotlib.pyplot.show(close=None, block=None)>

Select the features

```
In [16]: x = data.iloc[:,1:3] \# choosing columns 1 and 2
In [17]: x
```

Out[17]:

0	44.97	-103.77
1	62.40	-96.80
2	46.75	2.40
3	54.01	-2.53
4	51.15	10.40
5	-25.45	133.11

Latitude Longitude

Clustering This is the part of the sheet which deals with the actual clustering

```
In [18]:
         kmeans = KMeans(3)
         # Fit the input data, i.e. cluster the data in X in K clusters
In [19]:
         kmeans.fit(x)
         KMeans(n_clusters=3)
```

Clustering results

Out[19]:

In [20]:

There are many ways to do this part, we found this to be the most illustrative one

Create a variable which will contain the predicted clusters for each observation

```
identified clusters = kmeans.fit predict(x)
         # Check the result
         identified clusters
         array([2, 2, 0, 0, 0, 1])
Out[20]:
```

-60

-80

-150

-100

-50

0

50

100

150

```
In [21]: # Create a copy of the data
         data with clusters = data.copy()
         # Create a new Series, containing the identified cluster for each observation
         data with clusters['Cluster'] = identified clusters
         # Check the result
         data with clusters
            Country Latitude Longitude Language Cluster
Out[21]:
```

0	USA	44.97	-103.77	English	2
1	Canada	62.40	-96.80	English	2
2	France	46.75	2.40	French	0
3	UK	54.01	-2.53	English	0
4	Germany	51.15	10.40	German	0
5	Australia	-25.45	133.11	English	1

```
plt.ylim(-90,90)
plt.show()
```

In [22]: plt.scatter(data_with_clusters['Longitude'], data_with_clusters['Latitude'], c=data_with_clusters['Cluster'], cmap

