Universidad de Granada

Departamento de Electrónica y Tecnología de Computadores

ANÁLISIS DE CIRCUITOS

Grado en Ingeniería de Tecnologías de Telecomunicación Examen febrero 2012

Duración: 3 horas

Responda a cada pregunta en hojas separadas Lea detenidamente los enunciados antes de contestar

Nombre	D.N.I.	Grupo
Holling E	Para	O. upo

- 1. a) Calcular el equivalente de Thevenin entre los terminales A y B del siguiente circuito: (2 puntos)
 - b) Si V₁=0, calcular T(s)=V_{AB}/V₂ y representar el diagrama de Bode en módulo (1.5 puntos)
 - c) Considerando $V_1=0$, si $V_2(t)=5$ cos $(2\pi 100t + \pi/4)$, calcule $V_{AB}(t)$. (1 punto)

- 2. El circuito está en régimen permanente con el interruptor J1 cerrado, que se abre en t = 0.
 - Determinar la corriente en las dos bobinas en t = 0 ($I_1(0)$ e $I_2(0)$). (0.75 puntos)
 - Determinar la tensión en las dos bobinas en t = 0 (V₁(0) e V₂(0)). (0.75 puntos)
 - Determinar la corriente en las bobinas ($l_1(t)$ e $l_2(t)$ para t > 0. (1.5 puntos)
 - Determinar la tensión en las bobinas $(V_1(t) e V_2(t))$ para t > 0. (1 punto)

3. Calcule los parámetros Z de la siguientes red y obtenga la representación de su circuito equivalente a la frecuencia de ω = 2 rad/seg. (1.5 puntos)

NOTA: Transformadas de Laplace de utilidad:
$$\delta(t) \longleftrightarrow 1$$

$$u(t) \leftrightarrow \frac{1}{2}$$

$$u(t) \leftrightarrow \frac{1}{s}$$
 $\frac{d}{dt} f(t) \leftrightarrow sF(s) - f(0)$ $e^{-at} \leftrightarrow \frac{1}{s+a}$

$$e^{-at} \leftrightarrow \frac{1}{s+a}$$

$$\frac{d^2}{dt^2}f(t) \leftrightarrow s^2 F(s) - sf(0) - f(0)$$