Why Experiments?

Experimental Research

Prof. Yamil Velez (9/8/22)

- Experimental research is a method of social scientific inquiry that stresses the importance of randomization in uncovering relationships between variables
- Most important concept: random assignment
 - By chance, units are assigned to different conditions or interventions and outcomes are measured
 - Units can be people, avocados, browser tabs
 - Chance: non-deterministic assignment
- Experiments can be used to study whether people are persuaded by certain kinds of messages, how communities respond to different programs, whether a new medication works, etc.

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

- Two-arm experiment example
- Units: People
- Conditions: ~Reminder; Reminder
- Outcome: Turnout

Primary goals of social science

Description

- Obtaining accurate counts of quantities
 - How many legislators in the New York State legislature?
 - What percentage of YouTube videos are political?
 - How many bills in Congress are about the environment?

Prediction

- Imputing unseen outcomes using observable data
 - Will Republicans or Democrats control the Senate?
 - Will Russia leave Ukraine?

Causation

- Understanding causal relationships between concepts
 - Does anger make people more likely to participate in politics?

Defining causality

Definitions

- How would you define causation?
 - Perfect correlation
 - The presence of X is always associated with Y
 - Law-like behavior
 - Temporal ordering
 - Y is always preceded by X
- What are some possible issues with these definitions?
- Neyman-Rubin causal model definition
 - Causality is the comparison of actual and counterfactual states of the world

- Key concepts
 - Treatments
 - Interventions, independent variables, causes
 - Units
 - People, communities, avocados
 - Potential outcomes
 - Outcomes observed under different treatment assignments (or states of the world)
- Notation
 - i represents each unit (or observation)
 - T represents treatment (one value for each condition or level)
 - Y represents the outcome
 - Potential outcomes
 - Possible outcomes observed under different states of the world
 - τ represents the difference in potential outcomes between one state of the world and another state of the world

$$\tau_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

$$\tau_i = Y_i(1) - Y_i(0)$$

$$\tau_i = Y_i(1) - Y_i(0)$$

outcome for unit *i* when assigned to treatment

outcome for unit *i* when assigned to control

individual treatment effect outcome for unit *i* when assigned to treatment

outcome for unit *i* when assigned to control

$$\tau_i = Y_i(1) - Y_i(0)$$

individual treatment effect outcome for unit *i* when assigned to treatment

outcome for unit *i* when assigned to control

$$\tau_1 = 1 - 0$$

$$\tau_i = Y_i(1) - Y_i(0)$$

individual treatment effect outcome for unit *i* when assigned to treatment

outcome for unit *i* when assigned to control

$$\tau_2 = 1 - 1$$

	$Y_i(1)$	$Y_i(0)$	T_i	$ au_i$
1	1	0	1	1
2	1	1	0	0
3	0	0	0	0
4	0	1	1	-1

Fundamental problem of causal inference

	$Y_i(1)$	$Y_i(0)$	T_i	$ au_i$
1	1	?	1	?
2	?	1	0	?
3	?	0	0	?
4	0	?	1	?

Assignment

- Submit a hypothetical experiment (on any topic)
- What are the units?
- What is the treatment? (Two conditions)
- What is the outcome?
- Create two potential outcomes tables for 4 units
 - Potential outcomes
 - Observable outcomes
 - Randomly assign the "units" to different conditions
 - Erase the potential outcomes for non-assigned condition