

Machine Learning

Support Vector Machines

The mathematics behind large margin classification (optional)

Vector Inner Product

SVM Decision Boundary

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} \left(0_{1}^{2} + 0_{2}^{2} \right) = \frac{1}{2} \left(\left[0_{1}^{2} + 0_{2}^{2} \right]^{2} = \frac{1}{2} \left[\left[0_{1}^{2} + 0_{2}^{2} \right]^{2} \right] = \frac{1}{2} \left[\left[0_{1}^{2} + 0_{2}^{2} \right]^{2} \right]$$

$$\lim_{\theta} \frac{1}{2} \sum_{j=1}^{\theta_j} \theta_j$$
s.t.
$$\frac{\theta^T x^{(i)}}{\theta^T x^{(i)}} \ge 1 \quad \text{if } y^{(i)} = 1$$

w = (Jw)2

Andrew Ng

SVM Decision Boundary

$$\Rightarrow \min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_{j}^{2} = \frac{1}{2} \|\mathbf{e}\|^{2} \leftarrow$$

s.t.
$$|p^{(i)}\cdot \|\theta\| \geq 1$$
 if $y^{(i)}=1$ $p^{(i)}\cdot \|\theta\| \leq -1$ if $y^{(i)}=1$ can be set $p^{(i)}\cdot \|\theta\| \leq -1$ if $y^{(i)}=1$

$$p^{(i)} \cdot \|\theta\| \le -1$$
 if $y^{(i)} = 1$

where $p^{(i)}$ is the projection of $x^{(i)}$ onto the vector θ .

Simplification:
$$\theta_0 = 0$$

| In the second of the second

