

사물인터넷 캡스톤 디자인 최종 Presentation

201332001 강인성 201332028 장승훈

발표자: 장승훈

Contents

- Team Bluethings
- Smart Home Hub Introduce
- Using Techniques
- Project Things
 - Smart Switch
 - Smart Plug
 - Mobile Application
 - Raspberry PI Application [Web UI, Connector UI]
- Project Feedback
- Final Testing
- Q & A

Team Bluethings

Project 진행 동안 인원들의 역할에 대한 소개

디자인 담당 하드웨어 담당 Web View 담당

모바일 어플리케이션 담당 소프트웨어 담당 프로젝트 아이디어 담당

장승훈

강인성

Introduce Of Smart Home Hub

- 스마트 스위치, 콘센트는 Brand Price로 인해서 직접 구매하기엔 가격 부담이 있음.
- 기존에 나온 Smart Home Hub 키트들에 대하여 실생활과 연동을 할 수 있는 Smart Kit를 제공을 하는데 목표를 두었음.
- Raspberry PI를 이용하여 실시간 생활 정보, 기기 작동 제어를 할 수 있는 Smart Desk를 제공.

경제성

가격 부담감을 줄이는 점

커스터마이징

자신에게 알맞은 스마트 Kit 제공

복지성

이용 방법은 쉽게, 서비스는 다양하게.

4

Subject Of This Project

- 기존의 제품들의 원거리 통신에 대한 불필요를 줄여 단거리 통신인 Bluetooth를 기반으로 제작.
- 스마트 콘센트, 스마트 스위치를 Arduino 키트를 이용해서 간단한 구조를 이용하여 제작.
- 기존 제품과는 달리 어린이나 노약자들도 쉽게 쓸 수 있도록 Kit를 만드는데 목표를 두었음.
- 모바일로는 블루투스 제어가 1대1 관계이지만 라즈베리파이를 이용해 1대 다 관계를 형성

단거리 통신
Bluetooth를 기반으로
기술 비용 절약

복잡한 기능들을 배제하고 간단한 원리를 이용하여 손쉽게 이용할 수 있도록 제작

Raspberry PI 시스템
Display를 이용하여
Smart한 홈 허브 제공

Smart Home Hub Structure

Smart Switch, Smart Plug
Mobile Application
Web UI, Connector UI

Smart Switch

Smart Plug

Mobile Application

Connector

wer

Using Techniques

Smart Switch, Smart Plug – Arduino IDE, C++
Mobile Application – Java, Android Studio
Web UI – Spring MVC Framework, JSP, Sharing Data API
Connector UI – Python 2.7

Smart Switch

스마트 스위치 구상도 모터 제어를 통한 스위치 작동

스마트 스위치를 사용하려면 Android Mobile App BlueThings를 다운로드 한 후 Bluetooth 연결을 통한 제어 그리고 Raspberry PI Monitor를 통해 제어가 가능합니다.

Smart Switch

Bluetooth를 기반으로 제작
Bluetooth 통신을 통하여 서보 모터가 작동
뒤에 부착된 보조 배터리를 활용해 전력 공급

스마트 스위치를 사용하려면 Android Mobile App BlueThings를 다운로드 한 후 Bluetooth 연결을 통한 제어 그리고 Raspberry PI Monitor를 통해 제어가 가능합니다.

Smart Switch

서보 모터 프로펠러 부분에 나무를 감아스위치 부분의 압력이 많이 가해지게 제작

부착 가능하도록 앞 쪽으로 튀어나오게 만들고 벨크로를 부착해 스위치에 장착할 수 있게 제작

스마트 스위치를 사용하려면 Android Mobile App BlueThings를 다운로드 한 후 Bluetooth 연결을 통한 제어 그리고 Raspberry PI Monitor를 통해 제어가 가능합니다.

12

Smart Plug

Smart Plug

스마트 스위치 구상도

SSR(Solid State Relay)를 이용하여 전류의 흐름을 제어할 수 있음.

스마트 콘센서는 2구 콘센서에 대해서 통합 관리를 할 수 있으며 Bluethings Mobile Application으로 조작이 가능하며, Raspberry PI Monitor에서도 제어가 가능합니다.

Smart Plug

Bluetooth를 기반으로 제작 보조 배터리를 이용하여 작동 관리를 할 수 있음. 터치 센서를 추가해서 원 터치를 통하여 전류 관리를 쉽게 할 수 있도록 설계함.

스마트 콘센서는 2구 콘센서에 대해서 통합 관리를 할 수 있으며 Bluethings Mobile Application으로 조작이 가능하며, Raspberry PI Monitor에서도 제어가 가능합니다.

Smart Plug

Solid State Relay를 이용해서 기존의 전자식 릴레이를 이용한 스마트 콘센서의 소음의 단점을 해결함과 동시에 누전 방지를 최소화를 하여 안전성을 보완하였음.

스마트 콘센서는 2구 콘센서에 대해서 통합 관리를 할 수 있으며 Bluethings Mobile Application으로 조작이 가능하며, Raspberry PI Monitor에서도 제어가 가능합니다.

- Android 어플리케이션 기반으로 제작
- 첫 화면을 통해서 Bluetooth Device 목록을 선택을 하고 난 후에 이용을 할 수 있도록 만들었음.

블루투스 장치 선택

SAMUL

장승훈 (SHV-E250S)

KANG

PISnet SoundBox

취소

Mobile Application

- Mobile Device를 통하여 단거리 제어 기능 탑재
- Switch 버튼을 이용: 쉬운 조작을 통하여 기계와 친숙하지 않은 사람들도 손쉽게 제어 가능
- Smart Switch, Smart Plug 등 새로운 Smart Device가 나오게 되어도 어플리케이션을 재활용 할 수 있는 호환성 제공

BlueThings

Raspberry PI Application

Web UI – Sharing Data API

Connector UI – Pairing with Smart Devices

Raspberry Web UI

공공데이터 API를 이용하여 실시간으로 버스 정보들에 대해서 얻어올 수 있는 서비스를 제공했습니다.

정류장 코드	정류장 이름	
22173	강남역	4
22339	강남역	
23285	강남역	-
00040	THE LANGE	

버스 종류	노선 번호	이동방향	첫 번째 도착	첫번째 버스 위치	두 번째 도착	두번째 버스 위치	
공항	6000	잠실역	38분44초후[4번째 전]	고속터미널	출발대기		
공항	6009	푸른마을아파트 앞	5분7초후[1번째 전]	논현역	23분40초후[5번째 전]	동작대교(가상)	
공항	6500	더케이호텔서울	147분9초후[55번째 전]	신분당선강남역	출발대기		
간선	144	교대	2분13초후[1번째 전]	논현역	8분56초후[2번째 전]	신사역.푸른저축은행	
간선	145	강남역	3분15초후[1번째 전]	논현역	10분43초후[3번째 전]	신사사거리.가로수길	
간선	400	염곡동	18분3초후[3번째 전]	순천향대학병원.한남오거리	26분48초후[8번째 전]	이태원역.보광동입구	
간선	402	장지공영차고지	3분55초후[1번째 전]	논현역	13분3초후[2번째 전]	신사역.푸른저축은행	
간선	407	송파공영차고지	9분25초후[2번째 전]	신사역.푸른저축은행	17분55초후[3번째 전]	순천향대학병원.한남오거리	
간선	441	윌암공영차고지	3분후[1번째 전]	논현역	9분21초후[3번째 전]	신사사거리.가로수길	
간선	470	상암차고지	2분7초후[1번째 전]	논현역	10분40초후[2번째 전]	신사역.푸른저축은행	
간선	471	세곡동사거리	3분53초후[1번째 전]	논현역	15분2초후[2번째 전]	신사역.푸른저축은행	
간선	N13	송파공영차고지	운행종료		은행종료		٦.,
71.34	MOT	소리코에비크리	೧ಶಾ≂=		೧೩೮೨		

곧 도착 예정 버스

140 360 420 440 462 542 1005-1광주 ┃ 1151성남 ┃ M7412

검색할 정류장 번호 22011

검색할 정류장 장소 강남역

Q 검색

Raspberry PI Web UI

- 사용자의 근처 정류장을 검색해서, 버스 정류장 코드를 얻어온 후에 사용자의 집 근처 정류장에 도착하고 있는 버스들의 정보를 얻어오도록 하였 습니다.
- 또한 Web UI는 Wi-Fi 환경에서 얻어오는 방법으로 제작을 하여 집 안의 무선 인터넷을 이용한다면 쉽게 작동할 수 있도록 제작을 하였습니다.

Raspherry PI Connector UI

Raspberry PI Monitor 내부에서 Python Tkinter GUI를 이용하여 사용자가 간편하게 콘센서와 스위치를 관리할 수 있도록 제작했습니다.

Raspberry PI Connector UI

- Python 2.7 Tkinter 패키지와 Serial 패키지를 활용하여 Bluetooth를 기반으로 한 통신으로 데이터를 전송하는 원리로 작동을 제어하도록 설계.
- Raspberry Pi Monitor에서 탑재한 터치 스크린 기능을 활용해서 남녀노소가 쉽게 Smart Kit 들을 제어할 수 있도록 제작.

Project Fedback

지원비 부족

부품지연 및 고장

서버 적용 문제

지원비 부족

스케치업 형태로 필요한 치수에 따라 제작한 도면

원래 아크릴 케이스로 제작하려 관련 지식 공부 후 스케치업으로 그렸지만 너무 비싼 가격으로 인해 포기

부품 지연 및 고장

예상보다 부품들의 배송이 늦어서 하드웨어 작업에 지장이 생겼고 그 와중에 부품 고장들도 있어서 계획에 차질이 생겼습니다.

서버적용문제

저희 프로젝트에 서버를 적용했다면 좀 더 다양한 서비스들을 제공할 수 있었지만 예상보다 해결해야할 문제들이 많았고 배워보지 못한 서버 공부를 하면서 서버 구현까지 하기에는 한달 정도는 걸릴 것 같아서 아쉽지만 적용을 하지 못했습니다.

프로젝트느낀점

Arduino 부품들이 이런 곳에 쓰일 수 있다는 사실을 알고 있었지만 직접 해볼 수 있는 좋은 경험이었고 하드웨어 관련 지식이 조금 더 있었다면 좋은 프로젝트를 완성할 수 있었을 거라는 아쉬움이 남았습니다. 앞으로의 프로젝트에서는 하드웨어적인 부분을 공부해서 더 좋은 프로젝트를 만들도록 하겠습니다.

Final Testing

Final Testing

and

Feedback

Q & A