

Universidad Piloto de Colombia

PROYECTO: SmartTraffic

Grupo: Exa

Ciclo:

Tabla de Contenido

1	Obj	etivo	2
2	Alca	ance	2
3	Jus	tificacióntificación	2
4	Red	cursos	2
	4.1	Humanos	
	4.2	Tecnológicos	
		Metodológicos	
	4.4	Artefactos elaborados	
5	Eva	aluación de características	
	5.1	Definiciones	2
	5.2	Métricas	2
	5.2.	1 Completitud	2
	5.2.	2 No ambigüedad	2
	5.2.	3 Consistencia	2
	5.2.	4 Trazabilidad	2
6	Cor	ntrol de cambios	2

Universidad Piloto de Colombia

PROYECTO: SmartTraffic

Grupo: Exa

Ciclo:

clo: 1

1 Objetivo

Establecer el marco metodológico y operativo para la administración y gestión de requerimientos de SmartTraffic durante todo su ciclo de vida (desde la elicitación hasta la verificación y el postmortem) siguiendo TSP en dos ciclos. El plan define políticas, roles, artefactos y flujos para identificar, priorizar, especificar, validar, versionar y controlar cambios (RTM, baselines, CR Log y CCB), garantizando que los requerimientos sean completos, no ambiguos, consistentes y trazables, y que su evolución se refleje oportunamente en la planeación, el diseño, la implementación y las pruebas.

2 Alcance

El alcance de este plan cubre la administración y gestión de todos los requerimientos funcionales y no funcionales de SmartTraffic v1 a lo largo de dos ciclos TSP, abarcando desde la elicitación, análisis y especificación (SRS y casos de uso) hasta la priorización, trazabilidad (RTM), validación, baselines, gestión de cambios mediante CR y CCB, verificación y postmortem; aplica a todo el equipo TSP (Líder de Equipo, Calidad, Planeación, Desarrollo, Soporte/Frontend y QA/Testing) y a los stakeholders internos y externos, e incluye la producción y control de los artefactos definidos en la sección 4.4, con el objetivo de garantizar requerimientos completos, no ambiguos, consistentes y trazables y su correcta sincronización con diseño, implementación y pruebas.

3 Justificación

La elaboración del Plan de Administración y Gestión de Requerimientos es fundamental para garantizar que el proyecto SmartTraffic se desarrolle con una base sólida y organizada. Los requerimientos representan las necesidades y expectativas de las partes interesadas, por esta razón, contar con un plan permite establecer mecanismos claros para su identificación, documentación, seguimiento y control.

Sin este plan, los requerimientos podrían estar incompletos, ambiguos o sujetos a interpretaciones diferentes, lo que generaría riesgos de retrasos, sobrecostos y una disminución en la calidad del producto. En cambio, al tener este documento, se asegura:

Los requerimientos se alineen con los objetivos del proyecto.

Versión 0.1 2/8

Colombia

PLAN DE ADMINISTRACIÓN Y GESTIÓN DE REQUERIMIENTOS

Universidad
Piloto de PROYECTO: SmartTraffic

Grupo: Exa
Ciclo: 1

 Se definan métricas que permitan evaluar su completitud, consistencia, trazabilidad y ausencia de ambigüedad.

• El equipo de trabajo cuente con una guía clara para priorizar, validar y mantener actualizada la información de los requerimientos durante todo el ciclo de vida del proyecto.

4 Recursos

4.1 Humanos

El proyecto se llevará a cabo gracias a los siguientes recursos humanos, cada uno con sus asignaciones por separado y distribución de tareas afines a sus roles y liderazgo:

Nombre	Correo	Número	Líder	Rol
Nicolás Moreno Ramírez	nicolas-mor eno4@upc. edu.co	+57 319 5102213	De Equipo	Backend, tester, QA
Julián David Nova Torroledo	julian-nova @upc.edu.c o	+57 300 3632511	De Calidad	Backend, tester, QA
Luis Gabriel Romero Castro	luis-romero 2@upc.edu .co	+57 313 4678133	De Soporte	Frontend, tester, QA
Andrés Felipe Triviño Garzón	andres-trivi no@upc.ed u.co	+57 310 6286518	De Planeación	Backend, tester, QA
Tomás David Vera Molano	tomas-vera @upc.edu.c o	+57 318 6052005	De Desarrollo	Frontend, tester, QA

Versión 0.1

Universidad Piloto de Colombia

PROYECTO: SmartTraffic

Grupo: Exa

Ciclo:

clo: 1

4.2 Tecnológicos

La plataforma será desarrollada utilizando un conjunto de tecnologías modernas y robustas que garantizan escalabilidad, seguridad y un óptimo rendimiento:

En el Frontend se empleará React, una librería de JavaScript ampliamente utilizada en el desarrollo de interfaces dinámicas y responsivas, lo que permitirá ofrecer a los usuarios una experiencia fluida e intuitiva

En el Backend se utilizará Java en conjunto con el framework Spring, reconocido por su potencia, versatilidad y robustez en el desarrollo de aplicaciones empresariales. Esta combinación facilitará la implementación de servicios escalables y mantenibles, además de permitir una integración eficiente con otros módulos de la plataforma.

La base de datos seleccionada es PostgreSQL, un sistema relacional confiable, seguro y altamente escalable, ideal para manejar grandes volúmenes de información de manera eficiente.

En cuanto a la seguridad de la plataforma, se implementarán mecanismos modernos como JWT para la gestión de autenticación y autorización, garantizando que solo los usuarios autorizados accedan a los recursos y BCrypt para el cifrado de contraseñas, asegurando la protección de la información sensible de los usuarios.

4.3 Metodológicos

Para desarrollo del producto de Software se hará uso de la metodología TSP (Team Software Process) en dos ciclos incrementales con las siguientes fases:

Iniciación (Para el ciclo 1): Definición de procesos, lineamientos y reglas generales, roles.

Estrategia: Plan de riesgos, administración de configuración de cambios.

Requerimientos: Casos de uso, modelo de dominio, escenarios de calidad, plan de administración y gestión de requerimientos.

Versión 0.1 4/8

Universidad Piloto de Colombia

PROYECTO: SmartTraffic

Grupo: Exa

Ciclo:

clo: 1

Planeación:Estimación de las siguientes fases (horas, tareas, defectos), WBS.

Diseño: Calidad, arquitectura, diseño.

Implementación: Codificación, número de líneas hechas.

Pruebas: Pruebas unitarias, log de defectos en código, solución de errores.

errores.

Postmortem: Cierre de ciclo con lecciones aprendidas, ajuste de políticas, análisis retrospectivo.

4.4 Artefactos elaborados

- SRS (Especificación de Requerimientos) con RF/RNF priorizados y versionados.
- Especificaciones de Casos de Uso (entradas, salidas, pre/post, flujos, excepciones).
 Glosario y Reglas de Negocio (terminología y políticas operativas).
- Catálogo de NFR (seguridad, rendimiento, disponibilidad, cumplimiento).
- RTM Requirements Traceability Matrix (trazas forward/backward).
- ADR/Decisiones de Arquitectura (justificación técnica, alternativas, impacto).
- **Diseño** (diagramas UML, contratos de API, modelos de datos).
- Política de versionado y nomenclatura (REQ-### vX.Y; ramas/tags).
- Registro de baselines (p. ej., BL-REQ-C1-v1, BL-REQ-C2-v1).
- CR Log v Actas CCB (solicitudes, decisiones, evidencias).
- Checklists de calidad y evidencias de revisión (requisitos, diseño, código).
- Plan de Pruebas, Casos de Prueba (UT/IT/E2E) y Resultados/Evidencias.
- Reporte de métricas (5.2) y análisis de brechas.
- Lecciones aprendidas y acciones de mejora (postmortem por ciclo).

Versión 0.1 5/8

Universidad Piloto de Colombia

PROYECTO: SmartTraffic

Grupo: Exa

Ciclo:

clo: 1

5 Evaluación de características

5.1 Definiciones

- Requerimiento completo: identifica fuente/actor, objetivo, alcance, pre/postcondiciones, entradas/salidas, criterios de aceptación, prioridad, riesgo, estado y versión, con traza mínima a UC (si aplica).
- Bien especificado (no ambiguo): redactado en forma clara, verificable y medible, sin términos vagos ("rápido", "fácil"), unívoco y testeable.
- Consistencia: ausencia de contradicciones entre requerimientos y con reglas de negocio/NFR; coherencia entre versiones y artefactos derivados.
- **Trazabilidad**: capacidad de seguir un requerimiento **hacia atrás** (fuente) y **hacia adelante** (diseño, código, pruebas, manuales).
- Cadena de trazas: secuencia Fuente → Req → UC → Diseño/ADR → Código → Pruebas → Resultado/Defecto → CR → Baseline.
- **Baseline**: versión **aprobada y congelada** del SRS/RTM que sirve de referencia para cambios y auditorías.
- **CR (Change Request)**: solicitud formal de cambio sobre artefactos en baseline, con análisis de impacto y decisión del CCB.
- CCB (Change Control Board): comité que evalúa, aprueba/rechaza/difiere CR según impacto en alcance, costo, tiempo y calidad.
- Huérfano (control de calidad): prueba sin requerimiento vinculado o requerimiento sin pruebas/diseño asociados.
- Cobertura de trazabilidad: % de requerimientos con al menos una traza válida a diseño y a pruebas.

5.2 Métricas

5.2.1 Completitud

 Porcentaje de requerimientos completos, de esta manera se comprueba la cantidad de requerimientos que fueron desarrollados en el transcurso del proyecto

% de requerimientos completos = $\frac{\text{\# de requerimientos implementados}}{\text{Total de requerimientos}} \times 100$

Versión 0.1 6/8

Universidad Piloto de Colombia

PROYECTO: SmartTraffic

Grupo: Exa

Ciclo: 1

 Porcentaje de requerimientos bien especificados, de esta manera, se verifica que cada requerimiento tenga bien plasmados sus entradas, salidas, precondiciones y postcondiciones

% de requerimientos bien especificados =

 $\frac{\text{\# de requerimientos con entradas, salidas, pre y postcondiciones}}{\text{Total de requerimientos}} \times 100$

5.2.2 No ambigüedad

 Porcentaje de requerimientos similares, de esta manera, se verifica que la cantidad de requerimientos cuyas funcionalidades sean las mismas sea un valor cercano al nulo

% de requerimientos similares = $\frac{\# de \ requerimientos \ con \ objetivos \ repetidos/similares}{Total \ de \ requerimientos} \times 100$

 Porcentaje de extensiones de requerimientos existentes, de esta manera, se verifica que cada requerimiento que tenga como extensión otro requerimiento, que este último sea un requerimiento válido, con un id documentado y que esté correctamente diligenciado

% de requerimientos extensibles existentes =

 $\frac{\text{\# de requerimientos de extensión documentados en el documento de detalles de caso de uso}}{\text{Total de requerimientos de extensión}} \times 100$

5.2.3 Consistencia

- Número de inconsistencias entre requerimientos (ej, dos requerimientos describiendo tareas opuestas)
- Densidad de inconsistencias ($\frac{Conflictos}{Total de Requerimientos}$)

5.2.4 Trazabilidad

Versión 0.1 7/8

Universidad Piloto de Colombia

PROYECTO: SmartTraffic

Grupo: Exa
Ciclo:

 Número de requisitos que tienen rastro hacia artefactos posteriores (asegura que cada requisito se implementa y valida) y se mide desde el requisito hacia los artefactos derivados (diseño, código, pruebas, manuales, etc)

 $(\frac{\textit{Requisitos con traza a artefactos posteriores}}{\textit{Total de requisitos}} \times 100)$

- Longitud máxima de la cadena de trazas, definida por el número de artefactos con los que se relaciona.
 Ejemplo
 - Fuente: Stakeholder o documento de negocio.
 - Requisito: "El sistema debe permitir pagos en línea".
 - Caso de uso: "Realizar pago".
 - Modelo de diseño: Diagrama UML de clases y secuencia.
 - Especificación Técnica: Documento de API
 - Código fuente: Nombre de clase a que pertenece
 - Caso de prueba: "TC-45: Validar transacción exitosa".
 - Resultado de prueba: Log de ejecución, reporte de QA

Numero de longitud es 8

6 Control de cambios

	CONTROL DE CAMBIOS	
Fecha	Descripción	Autor(es)

Versión 0.1 8/8