Chapitre 7

Les équations différentielles

Histoire

Le pendule isochrome, le probleme consiste à modifier le pendule standard pour rendr La periode independante de l'amplitude.

Hugense (1673, horologium Oscillatorium) a l'idée de modifier le cercle du pendule standard pour que la Force acceleratrice de devienne proportionnelle

à la longueur d'arc s.

Le mouvement du pendule serait alors décrit par s'' + Ks = 0, dont

les osciallations sont independantes de l'amplitude

(E.Hair et al,L'analyse au fil de l'Histoire,2000)

I. L'equation deifferentielle de premier ordre

1) Equation differentielle y' = ay $a \in IR^*$

Une équation de la forme y'=ay, où l'inconnue y est une fonction et a est un réel, est appelée équation différentielle linéaire du premier ordre coefficient constant. Résoudre dans IR une équation de la forme

y' = ay c'est trouver toutes les fonction dérivables sur IR qui vérifie y' = ay

Proprieté

Les solutions de l'équation différentielle y' = ay sont les fonctions définies et dérivables sur R telles que :

$$y = \lambda e^{ax}$$
 avec $\lambda \in IR$

 $y = \lambda e^{ax}$ avec $\lambda \in IR$ est appellé la solution generale de l'equation differentielle y' = ay

Demonstation: y' = ay,

Soit
$$\frac{y'}{y} = a \Rightarrow \ln|y| = ax + k$$

$$\Leftrightarrow |y| = e^{ax+k} = e^k e^{ax}$$

$$\Leftrightarrow y = \pm Ce^{ax} = \lambda e^{ax}$$
 avec C réel positif non nul.

Exemlpes

- 1) La solution generale de l'equation differentielle $y' + 3y = 0 \text{ est } y = \lambda e^{-3x} \text{ avec } \lambda \in IR$
- 2) La demi-vie du polonium-218 est presque exactement 3 minutes.
 - a) Quelle proportion de la quantité initiale restera-til après 5 minutes?
 - b) Combien de temps est-il nécessaire pour que 99% du polonium-218 soit décomposé?

On pose d'abord l'équation de la décomposition ${\rm radioactive} \ . \frac{dQ}{dt} = -kQ.$

On résout et on obtient . $Q = Q_0 e^{-kt}$.

Pour trouver la valeur de k, on utilise la condition initiale sur la demi-vie :

$$Q(3) = \frac{1}{2}Q_0 \Longrightarrow \frac{1}{2}Q_0 = Q_0e^{-3k} \Longrightarrow k = \frac{1}{3}\ln 2$$

Donc
$$Q(t) = Q_0 e^{-\frac{t}{3} \ln 2}$$
 ou $Q(t) = Q_0(2)^{-\frac{t}{3}}$
$$= Q_0 \left(\frac{1}{2}\right)^{\frac{t}{3}}$$

a) on a
$$Q(t) = Q_0 e^{-\frac{t}{3} \ln 2}$$

$$donc \ Q(5) = Q_0 e^{-\frac{5}{3} \ln 2}$$

En proportion,
$$\frac{Q_0 e^{-\frac{5}{3} \ln 2}}{Q_0} = e^{-\frac{5}{3} \ln 2} \approx 0.315$$

Après 5 minutes, il reste environ 31,5% de la quantité initiale.

b) On cherche t pour que $Q(t) = 0.01Q_0$

$$0.01Q_0 = Q_0 e^{-\frac{t}{3}\ln 2} \Longrightarrow \ln(0.01) = -\frac{t}{3}\ln 2$$

$$\Rightarrow t = -3 \frac{\ln(0.01)}{\ln 2} \approx 19.93$$

Ça prend donc près de 20 minutes pour que 99% du polonium-218 se décompose.

Cours

Application:

Resoudre les equations differentielle suivantes : y' + y = 0; $y' + \sqrt{2}y = 0$; 2y' + 3y + 0

2) La solution particuliere de ED y' = ay qui verifier $y(x_0) = y_0$

Proprieté

Soit a un reel non nul .pour tous reels x_0 et y_0 , l'equation y'=ay admet une unique solution qui prend la valeur y_0 en x_0 . C'est $y=y_0e^{a(x-x_0)}$

Exemples

- 1) l'unique solution de l'equation differentielle y' = 5y qui prend la valeur 3 en 2 est $y = 3e^{5(x-2)}$
- 2) l'unique solution de l'equation differentielle y' + 2y = 0 qui verifier la condition $y(\ln 3) = 4$ est $y = 4e^{-2(x-\ln 3)}$

Application:

- 1) Determiner la solution de l'eqation differentielle y' + 3y = 0 qui prend la valeur -5 en 0
- 2) Determiner la solution de l'eqation differentielle y' = 5y qui prend la valeur 5 en ln2
- 3) L'equation differentielle y' = ay + b

On determine la solution generale de l'equation differentielle y' = ay + b

on a
$$y' = ay + b \Rightarrow y' = a\left(y + \frac{b}{a}\right)$$

$$\Rightarrow \left(y + \frac{b}{a}\right)' = a\left(y + \frac{b}{a}\right)$$

on pose $z = y + \frac{b}{a}$ donc l'equation differentielle $\left(y + \frac{b}{a}\right)' = a\left(y + \frac{b}{a}\right)$ devient z' = az

On sait que la solution generale de l'eqution differentielle $z' = \alpha z$ est $z = \lambda e^{\alpha x}$ avec $\lambda \in IR$

Donc on remplace z par $y + \frac{b}{a}$ on obtient $y = \lambda e^{ax} - \frac{b}{a}$

Et par suite la solution generale de ED y = ay + b c'est $y = \lambda e^{ax} - \frac{b}{a}$ avec $\lambda \in IR$

Proprieté

Soient a et b deux reels non nuls

la solution generale de ED y = ay + b c'est $y = \lambda e^{ax} - \frac{b}{a}$ avec $\lambda \in IR$

Exemples

$$y = \lambda e^{3x} - \frac{7}{3} \operatorname{avec} \lambda \in IR$$

la solution generale de l'eqation y' + 2y + 5 = 01) la solution generale de l'eqation y' = 3y + 7 est $est \ y = \lambda e^{-2x} - \frac{5}{2} \text{ avec } \lambda \in IR$

Application:

- 1) Determiner la solution generale de l'eqation differentielle y' + 7y + 11 = 0
- 2) Determiner la solution de l'egation differentielle $y' = \pi y + \sqrt{2}$ qui verifier y(0) = -1

L'equation differentielle de second ordre

1) L'equation differentielle y'' + ay' + by = 0 avec $(a; b) \in IR^2$

Soient a et b deuc reels. L'equation y'' + ay' + by = 0 telle que l'incunnue est une fonction y deux fois derivables sur IR (ou sur un intervalle I de IR) s'appelle l'equation differentielle de scond ordre.

Cas particuliers:

Si a = b = 0: dans ce cas l'equation differentielle y'' + ay' + by = 0 devient y'' = 0

Donc la solution generale de cette equation est $y = \alpha x + \beta$ avec α et β sont des reels

Si b = 0: dans ce cas, l'equation differentielle y'' + ay' + by = 0 devient y'' + ay' = 0

Equivaut à (y' + ay)' = 0 donc $(\exists b \in IR)$: y' + ay = b donc d'apres ce qui precede on obtient

$$y = \lambda e^{ax} + \frac{b}{a} \operatorname{avec} \lambda \in IR$$

Si a = 0 et b > 0: donc l'equation differentielle y'' + ay' + by = 0 devient $y'' + +\omega^2 y = 0$ avec $\omega = \sqrt{b}$

nous avons vu déjà la solution generale de cette equation differentielle c'est $y = \alpha\cos(\omega x) + \beta\sin(\omega x)$ tels $(\alpha, \beta) \in IR^2$.

2) Resolution de l'equation differentielle y'' + ay' + by = 0

Théorème

Soit (E) une équation différentielle linéaire du second ordre de la forme : (E) : ay'' + by' + cy = 0

On appelle equation caractéristique de l'équation (E), l'equation défini par : $ar^2 + br + c = 0$

Soit Δ le discriminant du l'equation caractéristique

Les solutions de l'équation (E) dépend du nombre de racines du l'equation caractéristique

- Si $\Delta > 0$, l'equation caractéristique admet deux racines réelles r_1 et r_2 , alors les solutions de (E) peuvent se mettre sous la forme : $y(x) = \lambda e^{r_1 x} + \mu e^{r_2 x}$, $(\lambda, \mu) \in IR^2$
- Si Δ = 0, l'equation caractéristique admet une racine double r_0 , alors les solutions de (E) peuvent se mettre sous la forme : $y(x) = (\lambda + \mu x)e^{r_0x}$, $(\lambda, \mu) \in IR^2$
- Si $\Delta < 0$, l'equation caractéristique admet deux racines complexes conjuguées $r_1 = r_0 + i\omega$ et $r_2 = r_0 i\omega$, alors les solutions de (E) peuvent se mettre sous la forme : $y(x) = e^{r_0 x} [\lambda \cos(\omega x) + \mu \sin(\omega x)] (\lambda, \mu) \in IR^2$

Exemple:

1) • Résoudre dans R : 2y'' - 5y' + 2y = 0

On calcule le discriminant du polynôme caractéristique : $\Delta = 25 - 16 = 9$.

- On calcule ses racines : $r_1 = \frac{5+3}{4} = 2$ et $r_1 = \frac{5-3}{4} = \frac{1}{2}$
- On obtient les solutions suivantes : $y(x) = \lambda e^{2x} + \mu e^{\frac{x}{2}}$
- 2) soit m un nombre reel fixé. On rescute selon les valeurs de m les solutions de l'equation differentielle :

$$(E_m): y'' - 2y' + (1 - m)y = 0$$

L'equation caracteristique de ED (E_m) est $r^2-2r+1-m=0$. On a $\Delta=4m$

- si m=0 alors $\Delta=0$ et l'equation caractéristique une solution double c'est r=1 et par suite la solution generale de l'equation (E_0) c'est $y(x)=(\lambda+\mu x)e^x$, $(\lambda,\mu)\in IR^2$
- \bullet si m>0 alors $\Delta>0$ et l'equation caractéristique admet deux racines reels differents $r_1=1+\sqrt{m}$ et

 $r_2 = 1 - \sqrt{m}$ et par suite la solution generale de l'équation differentielle (E_m) c'est :

$$y(x) = \lambda e^{(1+\sqrt{m})x} + \mu e^{(1-\sqrt{m})x}, (\lambda, \mu) \in IR^2$$

Cours

• si m < 0 alors $\Delta < 0$ et l'equation caractéristique admet deux racines complexes conjugués $r_1 = 1 + i\sqrt{-m}$ et

 $r_2=1-i\sqrt{-m}\,$ et par suite la solution generale de l'équation differentielle (E_m) c'est :

$$y(x) = e^{x} [\lambda \cos(\sqrt{-m} x) + \mu \sin(\sqrt{-m} x)] (\lambda, \mu) \in IR^{2}$$

Application

- 1) Resoudre les equations differentielles suivantes : y'' + y' 3y = 0 ; y'' 2y = 0 ; y'' 4y' + 3y = 0 y'' + y' + y = 0 ; y'' + 4y' - 5y = 0
- 2) Resoudre et Discuter selon les valeurs de m l'equation differentielle (E_m) : y'' 2my' + my = 0

Remarque: soient x_0 et y_0 et z_0 des reels et y une solution generale de l'equationdifferentielle

$$(E): y'' + ay' + by = 0$$

Il existe une solution unique de l'equation (E) verifie les conditions initiales suivantes : $\begin{cases} y(x_0) = y_0 \\ y'(x_0) = z_0 \end{cases}$

Exércice 1 Problèmes de mélanges On s'intéresse à la quantité q (t) d'une substance (sel, polluant,

drogue, etc.) présente dans un environnement (réservoir, lac, patient, etc.) en supposant que cette substance peut être introduite dans l'environnement à un certain taux régulier (input) et qu'elle peut s'échapper de cet environnement à un autre taux (output). Comme dq dt représente le taux de variation de cette quantité, il est raisonnable de supposer qu'on

$$aura\ cette\ loi\ d'équilibre: \frac{dq}{dt} = input - output$$

Considérons l'exemple classique suivant :

Un réservoir contient initialement 500 litres d'eau pure. Ce réservoir est alimenté par un conduit qui fournit de l'eau à un débit de 4 litres/minute, avec une concentration de sel de 100 gr/litre. Un autre conduit, au bas du réservoir, laisse l'eau salée s'échapper _____ du réservoir, à un rythme de 4 litres/minute.

Correction

Soit q(t): la quantité de sel (en kilogrammes) dans le réservoir au temps t (en minutes) q(t puisque l'eau est pure initialement

$$\frac{dq}{dt} = input - output$$

input

= le taux de variation de la quantité entrante

= le débit \times la concentration

$$= 4 \times \frac{litres}{minute} \times 100 \frac{grammes}{litre} = 400 \times \frac{gr}{min}$$
$$= 0.4 \times \frac{kg}{min}$$

On remarque que l'input est constant. Nous supposerons que la solution est maintenue uniforme par brassage.

À un instant t donné, la concentration dans le réservoir

est donnée par
$$\frac{q(t)}{500} \times \frac{kg}{litre}$$
.

Comme l'eau du réservoir ayant cette concentration

de sel quitte à un taux de 4 litres/minute, on peut déduire que :

$$output = \frac{q(t)}{500} \times \frac{kg}{litre} \times 4 \frac{litre}{min} = \frac{q(t)}{125} \times \frac{kg}{min}$$

Nous pouvons donc écrire l'équation différentielle de la quantité de sel dans l'eau :

$$\frac{dq}{dt} = 0.4 - \frac{q}{125} \ avec \ q(0) = 0$$

C'est une équation différentielle linéaire; nous en trouvons la solution générale :

$$\frac{dq}{dt} + \frac{q}{125} = \frac{4}{10} \implies q(t) = 50 + Ce^{-\frac{t}{125}}$$

Puis utilisons la condition initiale pour trouver

$$a(t) = 50 - 50e^{-\frac{t}{125}}$$

Après 10 minutes, il y aura

$$q(10) = 50 - 50e^{-\frac{10}{125}} = 3,844kg$$

de sel dans ce réservoir.

Après une heure, il y aura

$$q(60) = 50 - 50e^{-\frac{60}{125}} = 19,061kg$$

de sel dans ce réservoir.

REMARQUE: Considérons le cas où le débit à la sortie est différent de celui à l'entrée; disons par exemple qu'il sort 3 litres/minute et qu'il entre 4 litres/minute. La concentration dans le réservoir, au temps t, sera

$$\frac{q(t)}{500+t}$$
 et non pas $\frac{q(t)}{500}$ puisque , à chaque

minute, le volume augmentera de 1 litre (débit à l'entrée - débit à la sortie).

L'équation différentielle à résoudre est

$$\frac{dq}{dt} = 0.4 - \frac{4q}{500 + t}$$

et sa solution donne

$$q(t) = \frac{2t}{25} + 40 - \frac{2,5 \times 10^{12}}{(t+500)^4}$$

Exércice 2

On considère le représenté par le

montage électrique schéma ci-dessous:

Le condensateur de capacité $C = 4 \times 10^{-4} \,\mathrm{F}$ (farads) est monté en série avec un générateur dont la tension aux bornes est E = 6 V et un conducteur ohmique de résistance R = 88 Ω (ohms).

A l'instant initial le condensateur est déchargé et la tension est nulle à ses bornes. On ferme le circuit, et on s'intéresse à l'évolution de la tension u_c aux bornes du condensateur. D'après la loi d'Ohm et la loi d'addition des tensions, la tension u_c aux bornes du condensateur vérifie l'équation différentielle :

$$E = R \times C \times \frac{du_c}{dt} + u_c$$

- . où t est le temps en secondes.
- 1) Ecrire une l'équation sous la forme y' = ay + b.
- 2) Résoudre cette équation en tenant compte des conditions initiales.
- 3) Donner la valeur de u_c au bout de 100 ms.

Correction

1) On pose
$$y = u_C$$
.

L'équation différentielle s'écrit alors : E = RCy' + y

$$Ou: RCy' = -y + E$$

$$ou y' = -\frac{1}{RC}y + \frac{E}{RC}$$

 $ou\ y' = -\frac{1}{RC}y + \frac{E}{RC}$ $De\ la\ forme\ y' = ay\ + b\ avec\ a = -\frac{1}{RC}\ et\ b = \frac{E}{RC}$

Exércices résolus

2) Les solutions générales de l'équation y' = ay + b sont de la forme : $y = ke^{at} - \frac{b}{a}$ avec $k \in IR$ Pour t = 0 on a $y(0) = 0 \Rightarrow 0 = k - \frac{b}{a} \Rightarrow k = \frac{b}{a}$

soit
$$y = y = \frac{b}{a}(e^{at} - 1)$$
$$\frac{b}{a} = -E$$

- On a donc $u_C(t) = E\left(1 e^{-\frac{t}{RC}}\right)$
- 3) Pout $t = 100 ms = 100 \times 10^{-3} s = 0.1 s$ $u_C(0,1) = 6 \left(1 e^{-\frac{0.1}{88 \times 4 \times 10^{-4}}} \right) = 6 \left(1 e^{-\frac{1000}{88 \times 4}} \right)$ $= 6 \left(1 e^{-\frac{125}{44}} \right) \approx 5.65 V$

Exércice 3

- 1) Resoudre l'equation differentielle y' y = 0 (1)
- 2) Soit f une fonction derivable sur IR telle que f'(x) f(x) = x (2)
 - a) Determiner a et b pour que la fonction $f_0(x) = ax + b$ soit une solution de l'equation (2)
 - b) Deduire toutes les solutions de l'equation (2) (poser $y = f f_0$)
 - c) Determiner l'unique solution f_1 de l'equation (2) qui verifie $f_1(0) = 0$

Correction

1) On a (1)
$$\Leftrightarrow$$
 $y' = y$

Donc $y = \lambda e^x$ avec $\lambda \in IR$

2)a) on a
$$f_0'(x) - f_0(x) = x \iff a - (ax + b) = x$$

$$\Leftrightarrow -ax + a - b = x \Leftrightarrow \begin{cases} a = -1 \\ a - b = 0 \end{cases}$$

Et par suite a = -1 et b = -1

b) resoudre l'equation (1)

on
$$a f_0' - f_0 = x \text{ et } f' - f = x$$
 (2)

donc
$$(f - f_0)' = f - f_0$$

alors
$$f - f_0 = \lambda e^x$$
 avec $\lambda \in IR$

et parsuite
$$f(x) = x - 1 + \lambda e^x$$
 avec $\lambda \in IR$

c) determinantion de
$$f_1$$

on a d'apres b)
$$f_1(x) = x - 1 + \lambda e^x$$
 avec $\lambda \in IR$

$$f_1(0) = 0 \text{ donc } -1 + \lambda = 0 \Leftrightarrow \lambda = 1$$

Et pae suite
$$f_1 = x - 1 + e^x$$