Homework #7: Fluid Boundary Layer Velocity Profiles Due: Tuesday, May 6th by 4:00 PM (hard-copy & drop-box formats)

A fluid flowing over a motionless solid surface develops a *boundary layer* through which the fluid velocity v changes from zero at the surface (y = 0) to the freestream value U at the "edge" of the boundary layer. For a <u>laminar</u> flow, the velocity profile v(y) is given by the parabolic relationship:

$$v/U = 2(y/\delta) - (y/\delta)^2$$

Where δ is the boundary layer thickness which roughly defines the edge of the layer. For a turbulent flow, the velocity profile follows a power-law relationship:

$$v/U = (y/\delta)^{1/n}$$

For the experimental data given below of measured velocity vs. position, determine which profile laminar or turbulent best represents the flow using both the *Excel* 'solver' utility and the *Matlab* 'cftool'. Plot the best-fit comparisons (as lines w/o points) superimposed on the experimental data observations (as points w/o lines); by convention set velocity as the abscissa and position as the ordinate as shown in the figures below. Include a table of the 'optimal' values of δ , U, and n (as appropriate) that best fit the given data for each equation model & method employed.

v (m/sec)	y (μ m)	v (m/sec)	y (μ m)
7.37	50	41.78	550
11.63	100	44.53	600
16.72	150	48.48	650
21.60	200	46.95	700
26.43	250	49.16	750
30.16	300	50.29	800
32.40	350	49.72	850
33.29	400	50.69	900
39.89	450	52.05	950
41.74	500	51.80	1000

