WATER DATA ANALYTICS

ENVIRON 790.02 Spring 2022

WELCOME TO WATER DATA ANALYSIS

Kateri Salk, PhD (she/her)

Adjunct Assistant Professor of Water Resources Aquatic Ecologist, Tetra Tech

kateri.salk@duke.edu

- Limnology, biogeochemistry
- Environmental informatics
- Empirical and process-based modeling

OFFICE HOURS

I will set office hours based on student schedules. Fill out the poll!

https://www.when2meet.com/?13981797-YJeci

- 1 hour of virtual office hours each week
- Before & after class in person

COURSE OBJECTIVES

- Synthesize information on fundamental and applied topics in water resources using quantitative analysis
- 2. Apply the appropriate steps of the data analytics pipeline to answer questions about aquatic systems
- Develop marketable skills in data management, analysis, and communication for the aquatic sciences field

COURSE SCHEDULE

Week 1: Intro and R boot camp

Weeks 2-4: Physical properties of lakes & rivers

Weeks 4-7: Water quality in lakes & rivers

Weeks 8-12: Time series analysis, spatial analysis, high frequency data

Week 13: Final project workshop

Finals week: Project presentations, project report

ASSIGNMENTS

- Each week will have an assignment (homework) (80 % of grade)
- Competency based
- I will provide a key try to complete the assignment without it
- Following completion, take the corresponding survey on Sakai
- Due dates in syllabus are targets, not deadlines

FINAL PROJECT

Choose a water-focused question and perform a quantitative analysis to answer this question

Project stages (% final grade)

- Initial idea (2%)
- Workshop session (5%)
- Final report (10%)
- Final presentation (3%)

OTHER SYLLABUS STUFF

- Schedule specifics
- COVID procedures
- Accommodations

INTEGRATING BIG DATA INTO AQUATIC ECOLOGY

6 key challenges:

- Recognizing big data
- Data handling
- Analytical techniques
- Verification
- Data sharing
- Developing knowledge infrastructure

Environmental Data Sequencing Data Satelite measurements Metagenomics (e.g. SST, SSHA) Transcriptomics Mooring-based **AUV** Eukarvotic measurements measurements Microbial Genomics Genomics Metabarcoding Sonar-derived data **Data Size** Manually collected Ship-based CTD abiotic data measurements **Organismal Data** Metabolic assays Optical In situ flow Behavioral imaging cytometry Density/ observations biomass **Taxonomy**

Manually Collected

Average

Complete Automation

Degree of Automation

Durden et al. 2017

INQUIRY-BASED LEARNING

Construction of knowledge through scientific practices Involves:

- Problem solving skills
- Active participation
- Knowledge discovery by the learner
- Inductive and/or deductive approach

Outcomes: inquiry based learning > traditional instruction

Engage

The purpose of the ENGAGE stage is to pique student interest and get them personally involved in the lesson, while preassessing prior knowledge.

Explore

The purpose of the EXPLORE stage is to get students involved in the topic; providing them with a chance to build their own understanding.

Explain

The purpose for the EXPLAIN stage is to provide students with an opportunity to communicate what they have learned so far and figure out what it means.

Extend

The purpose for the EXTEND stage is to allow students to use their new knowledge and continue to explore its implications.

Evaluate

The purpose for the EVALUATION stage is for both students and teachers to determine how much learning and understanding has taken place.

GITHUB SETUP

GitHub servers.

GITHUB SETUP: FORKING

- Navigate to <u>https://github.com/KateriSalk/Water Data Analytics 2022</u>
- 2. Fork the repository to your GitHub account

GITHUB SETUP: CLONING

3. Copy the link to your forked repository

GITHUB SETUP: CLONING

- 4. Open RStudio and go to File > New Project...
- 5. Select "Version Control", then "Git"
- 6. Paste your forked repo URL and choose a folder where the local repo will be saved

GITHUB SETUP: ERROR ON CLONING?

Set up a personal access token

- 1. From your profile menu, select Settings
- 2. Go to Developer Settings
- 3. Go to Personal access tokens
- Click "Generate new token"
- 5. Add info
 - Note: suggest "Water Data Analytics"
 - Expiration
 - Repo, workflow, and user scope

GITHUB SETUP: PERSONAL ACCESS TOKEN

Copy access token from GitHub, then enter the following into R:

```
install.packages("gitcreds")
library(gitcreds)
gitcreds_set()
```

Then, paste the access token when prompted

From: https://happygitwithr.com/https-pat.html

GITHUB SETUP: COMMIT AND PUSH

- Open the Git_Help file and follow the instructions in the Editing, Committing, Pushing section.
- Familiarize yourself with how to keep the local, remote, and upstream remote repositories up to date with each other.