1. 目的

エンコーダとデコーダにより、7 セグメント発光ダイオードを動作させ、表示回路の基本 を理解する。

2. 実験の原理

エンコーダとは、デジタルデータを一定の規則に従って、目的に応じた符号に変換することである。符号化ともいう。今回の実験では、エンコーダを作り、その出力を表示器に出力する。

3. 実験方法

3.1 手順

7400 を用いて 4 ライン-2 ラインエンコーダを作る。 エンコーダの出力をデコーダ(7447)につなぎ、表示器で出力する。

3.2 使用機器

課題通りのエンコーダを組み立てるために IC トレーナーを使用した。また、IC トレーナーの起動のために電源を使用した。 さらに、目的のエンコーダを実現するために 7400(74LS00)と、線材を使用した。これらの規格や形式を表 1 に示す。

品名	規格や形式など	個数
ICトレーナー	IC TRAINER	1台
	Sunhayato	
	MODEL CT-311R	
IC トレーナー用電源	AD-350 AC アダプタ	1台
	Sunhayato	
	INPUT AC100V 50/60Hz 6VA	
	OUTPUT DC7.5V	
ロジック IC	7400,74LS00	4 台
線材(ジャンプワイヤ)	ピン径 0.6 φ	49 本

表1 使用機器と個数

3.2 測定法

ICトレーナーで組み立てたのち、回路が正しいか確認するために、出力を 7 セグメント に接続して、結果を確認した。

4. 結果・考察

4.1 実験結果

4 ライン-2 ラインエンコーダの真理値表を表 2 に示す。

表 2 4 ライン-2 ラインエンコーダの真理値表

Х3	X2	X1	X0	Y 3	Y2	Y1	Y0	表示
0	0	0	0	1	0	0	0	8
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	1	1
0	0	1	1	0	0	0	1	1
0	1	0	0	0	0	1	0	2
0	1	0	1	0	0	1	0	2
0	1	1	0	0	0	1	0	2
0	1	1	1	0	0	1	0	2
1	0	0	0	0	0	1	1	3
1	0	0	1	0	0	1	1	3
1	0	1	0	0	0	1	1	3
1	0	1	1	0	0	1	1	3
1	1	0	0	0	0	1	1	3
1	1	0	1	0	0	1	1	3
1	1	1	0	0	0	1	1	3
1	1	1	1	0	0	1	1	3

表 2 より、Y3,Y2,Y1,Y0 のカルノー図を作成する。作成したカルノー図を図 1 に示す。

Y3 Y2

X1X0 X3X2	00	01	11	10
00	1			
01				
11				
10				

X1X0 X3X2	00	01	11	10
00				
01				
11				
10				

Y1 Y0

X1X0 X3X2	00	01	11	10
00				
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

X1X0 X3X2	00	01	11	10
00			1	1
01				
11	1	1	1	1
10	1	1	1	

図1 4ライン-2ラインエンコーダにおける各出力のカルノー図

図1より、4ライン-2ラインエンコーダにおいて、各出力の式は、

 $Y3 = \overline{X3} \overline{X2} \overline{X1} \overline{X0}$

Y2 = 0

Y1 = X3 + X2

 $Y0 = X3 + \overline{X2} X1$

となる。これらをもとに回路を作成した。

4 ライン-2 ラインエンコーダの回路を図 2 に示す。

図2 4ライン-2ラインエンコーダの回路

4.2 考察

真理値表やカルノー図を用いて、4 ライン-2 ラインエンコーダを作成した。エンコーダ には様々な種類があるが、多くの種類は論理回路を用いて制作できると考えられる。

5. 課題

課題内容

7447(BCD-7セグメントデコーダ)相当の回路図を 2 入力 NAND のみで構成せよ。

真理値表からカルノー図を導出し、回路を作成する。7447 の真理値表および表示される 記号を表 4 に示す。また、ここで示す出力の記号は図 3 に示される表示器の記号と対応し ている。

図3 出力に対応する LED

10)//		入	力					出力				
10進	D	С	В	А	а	b	С	d	е	f	g	表示
0	0	0	0	0	1	1	1	1	1	1	0	
1	0	0	0	1	0	1	1	0	0	0	0	
2	0	0	1	0	1	1	0	1	1	0	1	
3	0	0	1	1	1	1	1	1	0	0	1	
4	0	1	0	0	0	1	1	0	0	1	1	
5	0	1	0	1	1	0	1	1	0	1	1	
6	0	1	1	0	0	0	1	1	1	1	1	
7	0	1	1	1	1	1	1	0	0	0	0	
8	1	0	0	0	1	1	1	1	1	1	1	
9	1	0	0	1	1	1	1	0	0	1	1	
10	1	0	1	0	0	0	0	1	1	0	1	
11	1	0	1	1	0	0	1	1	0	0	1	
12	1	1	0	0	0	1	0	0	0	1	1	
13	1	1	0	1	1	0	0	1	0	1	1	
14	1	1	1	0	0	0	0	1	1	1	1	
15	1	1	1	1	0	0	0	0	0	0	0	

表 4 よりカルノー図を導出する(図 4)。

図 4 7447 の出力のカルノー図

図4より、7447において、各出力の式は、

$$\overline{a} = \overline{D} \ \overline{C} \ \overline{B}A + C\overline{A} + DB$$

$$\overline{b} = C\overline{B}A + CB\overline{A} + DB$$

$$\overline{c} = DC + \overline{C}B\overline{A}$$

$$\overline{d} = C\overline{B} \ \overline{A} + CBA + \overline{C} \ \overline{B}A$$

$$\overline{e} = C\overline{B} + A$$

$$\overline{f} = \overline{D} \ \overline{C} \ \overline{B}A + BA + \overline{C}B\overline{A}$$

$$\overline{g} = \overline{D} \ \overline{C} \ \overline{B} + CBA$$

となる。これらの式をもとに回路を作成する。 7447 の回路図を図 5 に示す。

図5 7447の回路

6 感想・意見

共通する部分を見つけ、素子の数を減らすことができた。この知識を生かして、これから の回路作成に生かしたい。

複雑な回路を組んだので、ケアレスミスが多くみられたが、一つずつ出力を確認して、ど こが間違っていたのか見つけることができた。