CHAPTER 3

Integration Theory

3.1. Lebesgue Integration

Definition 3.1. Let $\varphi: A \to \mathbb{R}$ be a simple function on a measurable set $A \subseteq \mathbb{R}^d$ and let $\varphi = \sum_{k=1}^n c_k \chi_{A_k}$ be its canonical form. Then the **Lebesgue integral** of φ over A the number

$$\int_{A} \varphi := \sum_{k=1}^{n} c_k m(A_k).$$

Moreover, for every measurable set $B \subseteq A$, the integral of φ over B is the number

$$\int_{B} \varphi \coloneqq \int_{A} \varphi \chi_{B}.$$

Lemma 3.1 (Independence of representation). Let $c_1, \ldots, c_n \in \mathbb{R}$ and $A_1, \ldots, A_n \subseteq A$ be measurable, mutually disjoint, and of finite measure. Then $\varphi := \sum_{k=1}^n c_k \chi_{A_k}$ is simple and $\int_A \varphi = \sum_{k=1}^n c_k m(A_k)$.

Proof. Without loss of generality suppose we may assume that $c_k \neq 0$ for all $k \in \{1, ..., n\}$. Let $c'_1 < \cdots < c'_{n'}$ be the numbers such that $\{c'_1, ..., c'_{n'}\} = \{c_1, ..., c_n\}$. For each $k \in \{1, ..., n'\}$ let $A'_k := \varphi^{-1}(\{c'_k\}) = \bigcup_{j \in J_k} A_j$, where $J_k := \{j \in \{1, ..., n\} : c_j = c'_k\}$. Then $\sum_{k=1}^{n'} c'_k \chi_{A'_k}$ is the canonical form of φ . Thus we complete the proof using

$$\int_{A} \varphi = \sum_{k=1}^{n'} c'_{k} m(A'_{k}) = \sum_{k=1}^{n'} c'_{k} \sum_{j \in J_{k}} m(A_{j}) = \sum_{k=1}^{n'} \sum_{j \in J_{k}} c'_{k} m(A_{j}) = \sum_{j=1}^{n} c_{j} m(A_{j}),$$

by finite additivity since the sets $(A_j)_j$ are mutually disjoint.

Proposition 3.1. Let $\varphi, \psi : A \to \mathbb{R}$ be simple functions.

- 1. $\forall \alpha, \beta \in \mathbb{R} : \alpha \varphi + \beta \psi$ is simple and $\int_A (\alpha \varphi + \beta \psi) = \alpha \int_A \varphi + \beta \int_A \psi$;
- 2. $\forall B_1, B_2 \subseteq A$ which are measurable and disjoint, $\int_{B_1 \cup B_2} \varphi = \int_{B_1} \varphi + \int_{B_2} \varphi$;
- 3. If $\varphi \leq \psi$ in A then $\int_A \varphi \leq \int_A \psi$; and
- 4. $|\varphi|$ is a simple function and $|\int_A \varphi| \leq \int_A |\varphi|$.

Proof.

1. Let $\varphi = \sum_{k=1}^{n} c_k \chi_{A_k}$ and $\psi = \sum_{k=1}^{n'} c'_k \chi_{A'_k}$ be the canonical forms of φ and ψ . Let $c_0 = c'_0 = 0$ and $A_0 := \varphi^{-1}(\{0\}) \cap \tilde{A}$, $A'_0 = \psi^{-1}(\{0\}) \cap \tilde{A}$, where $\tilde{A} := \bigcup_{k=1}^{n} A_k \cup \bigcup_{k=1}^{n} A'_k$ so that $\varphi = \sum_{k=0}^{n} c_0 \chi_{A_k}$, $\psi = \sum_{k=0}^{n'} c'_k \chi_{A'_k}$. the sets $(A_k)_k$, $(A'_k)_k$ are measurable, mutually disjoint, and of finite measure, and $\bigcup_{k=0}^{n} A_k = \bigcup_{k=0}^{n} A'_k = \tilde{A}$.

Let $A_{i,j} := A_i \cap A'_j$ for all i, j so that the set $(A_{i,j})_{i,j}$ are measurable, mutually disjoint, of finite measure, and $\varphi = \sum_{i,j} c_i \chi_{A_{i,j}}$, $\psi = \sum_{i,j} c'_j \chi_{A_{i,j}}$. It follows that

$$\int (\alpha \varphi + \beta \psi) = \int \sum_{i,j} (\alpha c_i + \beta c'_j) \chi_{A_{i,j}} = \sum_{i,j} (\alpha c_i + \beta c'_j) m(A_{i,j})$$

$$= \alpha \sum_{i,j} c_i m(A_{i,j}) + \beta \sum_{i,j} c'_j m(A_{i,k}) = \alpha \int_A \varphi + \beta \int_A \psi.$$
 (cf. Lemma 3.1)

- 2. $\int_{B_1 \cup B_2} \varphi = \int_A \varphi \chi_{B_1 \cup B_2} = \int_A \varphi \chi_{B_1} + \int_A \varphi \chi_{B_2} = \int_{B_1} \varphi + \int_{B_2} \varphi$, since B_1 and B_2 are disjoint we have $\chi_{B_1 \cup B_2} = \chi_{B_1} + \chi_{B_2}$. (Exercise is to prove simple function)
- 3. If $\varphi \leq \psi$ then $\psi \phi \geq 0$ in A. Let $\psi \varphi = \sum_{k=1}^{n} c_k \chi_{A_k}$ be the canonical form of $\psi \varphi$. Since $\psi \varphi \geq 0$ in A, we have $c_k \geq 0$ for each k and so $\int_A (\psi \varphi) = \sum_{k=1}^{n} c_k m(A_k) \geq 0$, which implies by linearity $\int_A \psi \geq \int_A \varphi$.
- 4. Such follows from (3) noting that $-|\varphi| \leq \varphi \leq |\varphi|$.

Definition 3.2. We denote by supp(f) the support of a measurable function $f: A \to \overline{\mathbb{R}}$; that is,

$$\operatorname{supp}(f) := \{ x \in A : f(x) \neq 0 \}.$$

If $\operatorname{supp}(f) \subseteq E \subseteq A$, we say that f is supported in E; and if $m(\operatorname{supp}(f)) < \infty$, we say that f has finite support.

Proposition 3.2. Let $f: A \to \mathbb{R}$ be measurable, bounded $(\exists M > 0 : |f| < M \text{ in } A)$, and with finite support. Then there exists a number $\ell \in \mathbb{R}$ such that

$$\lim_{k \to \infty} \int \varphi_k = \ell$$

for all sequences of simple functions $(\varphi_k)_{k\in\mathbb{N}}$ satisfying

- 1. There exists a measurable set $E \subseteq A$ such that $m(E) < \infty$ and φ_k is supported in E for all $k \in \mathbb{N}$;
- 2. There exists an C > 0 such that $|\varphi_k| < C$ in A for all $k \in \mathbb{N}$; and
- 3. $(\varphi_k)_k$ converges pointwise a.e. in A to f.

We call ℓ the **integral** of f over A and denote it by $\int_A f$.

Proof. Since $m(E) < \infty$ by Egorov's theorem and (3), we obtain that for all $\varepsilon > 0$ there exists a closed set $F_{\varepsilon} \subseteq E$ such that φ_k converges uniformly in F_{ε} and $m(E \setminus F_{\varepsilon}) < \varepsilon$. Hence, there exists an $k_{\varepsilon} \in \mathbb{N}$ such that $|\varphi_k - f| < \varepsilon$ in F_{ε} whenever $k \ge k_{\varepsilon}$. Let $k_1, k_2, \ge k_{\varepsilon}$. Then

$$\left| \int_A (\varphi_{k_1} - \varphi_{k_2}) \right| \leq \int_A |\varphi_{k_1} - \varphi_{k_2}| = \underbrace{\int_{F_\varepsilon} |\varphi_{k_1} - \varphi_{k_2}|}_{\text{unif. conv.}} + \underbrace{\int_{E \backslash F_\varepsilon} |\varphi_{k_1} - \varphi_{k_2}|}_{m(E \backslash F_\varepsilon) < \varepsilon, |\varphi_k| < C} + \underbrace{\int_{A \backslash E} |\varphi_{k_1} - \varphi_{k_2}|}_{m(\operatorname{supp}(\varphi_k)) < \infty \text{ in } E}.$$

Remark 3.1. By the simple approximation lemma, such a sequence of functions $(\varphi_k)_k$ exists.

Remark 3.2. For $B \subseteq A$ we call the integral of f over B the number: $\int_B f = \int_A f \chi_B$.

Corollary 3.1. Let f be as in Proposition 3.2. If f = 0 a.e. in A then $\int_A f = 0$.