Decition problem	General expression for Δ	$p_i = p \text{ (constant)}$	$p_i \in \{0, 1\}$	$p_i \in \{\epsilon, 1 - \epsilon\}$
and definitions	$\langle p \rangle := rac{1}{N} \sum_{i=0}^{N-1} p_i, \langle p^2 \rangle := rac{1}{N} \sum_{i=0}^{N-1} p_i^2$	$\implies \langle p \rangle = p \\ \implies \langle p^2 \rangle = p^2$	$\implies \langle p^2 \rangle = \langle p \rangle$	$\implies \epsilon \le \langle p \rangle \le 1 - \epsilon$ $\implies \langle p^2 \rangle = \langle p \rangle - \epsilon (1 - \epsilon)$
Prisoners dilemma against copy				
$\Delta := Q(\text{Cooperate}) - Q(\text{Defect})$	$\langle n^2 \rangle = \langle n \rangle^2$			
$p_i := P(\text{Cooperate} t=i)$	$\Delta = M \frac{\langle p^2 \rangle - \langle p \rangle^2}{\langle p \rangle (1 - \langle p \rangle)} - m$	$\Delta = -m$	$\Delta = M - m$	$\Delta = M \left(1 - \frac{\epsilon(1-\epsilon)}{\langle p \rangle (1-\langle p \rangle)} \right) - m$
M := Gain from copy cooperating	$\langle p/(1-\langle p/\rangle)$			
m := Gain from self defecting				
Evidential blackmail				
$\Delta := Q(\text{Pay} \text{Blackmail})$	$a(1-a)(\langle n^2 \rangle - \langle n \rangle^2)$			
-Q(Dont Blackmail)	$\Delta = M \frac{q(1-q)(\langle p^2 \rangle - \langle p \rangle^2)}{q^2 \langle p \rangle (1-\langle p \rangle) + \beta} - m$			
$p_i := P(\text{Pay} \text{Blackmail}, t = i)$	$q \langle p/(1-\langle p\rangle) + \rho$	$\Delta = -m$	$\Delta =$	$\Delta =$
M := Curent stock value	$\beta = (1 - 2q)[\langle p \rangle^2 + \langle p^2 \rangle - 3q \langle p \rangle \langle p^2 \rangle - (1 - 2q) \langle p^2 \rangle^2]$			
m := Blackmail ransom	β (1 $2q)[\langle P \rangle + \langle P \rangle + 3q \langle P \rangle \langle P \rangle + (1 2q) \langle P \rangle + [1]$			
q := P(Market crach)				
Absent minded driver	$4/n - 4/n^2 - 2/n^2 - 4/n / n^2 + 6/n^2$	4-6p		$2/n \setminus (1-/n) \setminus [2-8/n] + 6c(1-c) \setminus (1-c)$
$\Delta := Q(\text{Continue}) - Q(\text{Exit})$	$\Delta = \frac{4\langle p \rangle - 4\langle p \rangle^2 - 2\langle p^2 \rangle - 4\langle p \rangle \langle p^2 \rangle + 6\langle p^2 \rangle^2}{(1 - \langle p^2 \rangle)(\langle p \rangle + \langle p^2 \rangle)}$	$\Delta = \frac{4 - 6p}{1 + p}$	$\Delta = 1$	$\Delta = \frac{2\langle p\rangle(1-\langle p\rangle)+[2-8\langle p\rangle+6\epsilon(1-\epsilon)]\epsilon(1-\epsilon)}{2\langle p\rangle(1-\langle p\rangle)+[3\langle p\rangle-1-\epsilon(1-\epsilon)]\epsilon(1-\epsilon)}$
$p_i := P(\text{Continue} t=i)$		1 P		
Death in Damaskus	(1) (2) (4 (2) (1)			(4
$\Delta := Q(\text{Damaskus}) - Q(\text{Alleppo})$	$\Delta = M \frac{(\langle p \rangle - \langle p^2 \rangle)(1 - 2\langle p \rangle)}{\langle p \rangle(1 - \langle p \rangle)}$	$\Delta = M(1 - 2p)$	$\Delta = 0$	$\Delta = M \frac{\epsilon(1-\epsilon)(1-2\langle p \rangle)}{\langle p \rangle (1-\langle p \rangle)}$
$p_i := P(\text{Damaskus} t=i)$	$\langle p \rangle (1 - \langle p \rangle)$	(_F)	_ ,	$\langle p \rangle (1 - \langle p \rangle)$
M := Value of beeing alive				
Game against copy with				
general payof matrix		A 36 36		$A = M_{co} - M_{co}$
$\Delta := Q(a_1) - Q(a_2)$	$\Delta =$	$\Delta = M_{12} - M_{22}$	$\Delta = M_{11} - M_{22}$	$ \Delta = M_{11} - M_{22} + \left(\frac{M_{12} - M_{11}}{\langle p \rangle} + \frac{M_{22} - M_{21}}{1 - \langle p \rangle}\right) \epsilon (1 - \epsilon) $
$p_i := P(a_1 t=i)$		$+(M_{11}+M_{22}-M_{12}-M_{21})p$	11 22	$+\left(\frac{m_{12}-m_{11}}{\langle p\rangle}+\frac{m_{22}-m_{21}}{1-\langle p\rangle}\right)\epsilon(1-\epsilon)$
$M_{jk} := \text{Reward for self doing } a_j$,
and coppy doing a_k				