Proposta de solució al problema 1

- (a) $\Theta(\sqrt{n} \log n)$
- (b) Calculem:

$$\lim_{n \to \infty} \frac{\log(\log n^2)}{\log n} = \lim_{n \to \infty} \frac{\log(2\log n)}{\log n} = \lim_{n \to \infty} \frac{\log 2 + \log(\log n)}{\log n} =$$

$$= \lim_{n \to \infty} \frac{\log 2}{\log n} + \lim_{n \to \infty} \frac{\log(\log n)}{\log n} = \lim_{n \to \infty} \frac{\log(\log n)}{\log n}$$

Fem el canvi de variable $n = 2^m$ i obtenim que l'anterior és igual a

$$\lim_{m \to \infty} \frac{\log(\log 2^m)}{\log 2^m} = \lim_{m \to \infty} \frac{\log m}{m} = 0$$

Per tant únicament és cert que $log(n) \in \Omega(log(log(n^2)))$

Proposta de solució al problema 2

- (a) Retorna $f \circ g$, la composició de f amb g. El cost de misteri és el de la funció auxiliar $misteri_aux$, que ve descrit per la recurrència $T(n) = T(n-1) + \Theta(1)$, que té com a solució asimptòtica $T(n) \in \Theta(n)$.
- (b) Retorna f^k . És a dir, una funció tal que $f^k(x) = \underbrace{f(f(\dots(f(x))))}_k$. En funció de k, el seu cost ve donat per la recurrència $T(k) = T(k-1) + \Theta(1)$, que té com a solució $\Theta(k)$.

```
cc)

vector < int > misteri_2_quick (const vector < int > & f, int k) {
    if (k == 0) {
        vector < int > r(f. size ());
        for (uint i = 0; i < f. size (); ++i) r[i] = i;
        return r;
    }
    else if (k%2 == 0) {
        vector < int > aux = misteri_2_quick (f,k/2);
        return misteri (aux,aux);
    }
    else {
        vector < int > aux = misteri_2_quick (f,k/2);
        return misteri (f, misteri (aux,aux));
    }
}
```

La recurrència que descriu el cost en temps d'aquesta funció és $T(k) = T(k/2) + \Theta(1)$, que té com a solució asimptòtica $\Theta(\log k)$.

Proposta de solució al problema 3

- (a) És fàcil veure que la funció max_suma essencialment implementa una ordenació per selecció, que sabem que té cost en cas pitjor de $\Theta(m^2)$. L'única diferència és la línia on actualitzem suma, que triga temps constant i només s'executa m vegades. Per tant el cost total és $\Theta(m^2) + \Theta(m) = \Theta(m^2)$.
- (b) Si entenem el codi anterior ens podem adonar que ordena el vector de major a menor i agrupa els enters consecutivament de dos en dos seguint aquest ordre. Per millorar l'eficiència, només cal ordenar el vector amb un *merge sort*, de manera que el cost sigui $\Theta(m \log m)$, i agrupar els enters consecutivament de dos en dos. El cost asimptòtic en temps seria de $\Theta(m \log m)$.
- (c) Assumim que x_0 i x_1 són els dos nombres més grans de S i considerem una expressió que conté els productes $x_0 * y$ i $x_1 * z$, per certs $y,z \in S$. El que farem és reemplaçar aquests dos productes per $x_0 * x_1$ i y * z. Observem ara el següent: $(x_0 * x_1 + y * z) (x_0 * y + x_1 * z) = x_0(x_1 y) + (y x_1)z = x_0(x_1 y) (x_1 y)z = (x_0 z)(x_1 y) > 0$. L'últim pas és degut a que $x_0 > z$ i $x_1 > y$ ja que x_0 i x_1 són els elements majors de S, i són tots diferents. Per tant l'expressió original no era màxima ja que l'expressió resultant és major. Anem a demostrar el resultat per inducció sobre m:
 - Cas base (m = 0). L'algorisme és correcte ja que retorna una expressió que suma zero i per tant és òptima.
 - Pas d'inducció. Sigui m>0 i assumim la hipòtesi d'inducció: l'expressió màxima per un conjunt de < m elements es pot obtenir ordenant els elements de major a menor i agrupant-los de dos en dos consecutivament. Si ordenem els m elements $x_0>x_1>x_2>x_3>\cdots>x_{m-1}$, sabem gràcies al resultat anterior que l'expressió òptima conté el producte x_0*x_1 seguit d'una expressió formada amb els nombres $\{x_2,x_3,\ldots,x_{m-1}\}$. Aquesta expressió serà òbviament la major que puguem formar amb $\{x_2,x_3,\ldots,x_{m-1}\}$ i aplicant la hipòtesi d'inducció sabem que tindrà la forma $x_2*x_3+\cdots+x_{m-2}*x_{m-1}$. Per tant, l'expressió òptima és $x_0*x_1+x_2*x_3+\cdots+x_{m-2}*x_{m-1}$, com volíem demostrar.

Proposta de solució al problema 4

(a) $\begin{aligned} & \text{int } f(\textbf{const } \textit{vector} < \textbf{int} > \& \textit{p, int } l, \textit{ int } r) \{ \\ & \text{if } (l+1 \geq r) \textit{ return } (p[l] \leq p[r] ? l : r); \\ & \text{else } \{ \\ & \text{int } m = (l+r)/2; \\ & \text{if } (p[m] > p[m+1]) \textit{ return } f(p,m+1,r); \\ & \text{else } \textit{if } (p[m-1] < p[m]) \textit{ return } f(p,l,m-1); \\ & \text{else } \textit{ return } m; \\ & \} \end{aligned}$

```
}
pair < int,int> max_guany (const vector < int>& p) {
   return {f(p,0,p.size()-1), p.size()-1};
}
```

El cost de max_guany coincidirà amb el cost de la funció f. Per analitzar aquesta última, cal fixar-se que el seu cost ve donat per la recurrència $T(n) = T(n/2) + \Theta(1)$, d'on s'obté el cost de $\Theta(\log n)$.

(b) int max_guany (const vector < int > & p, int k) {
 int m = p[k];
 for (int i = k - 1; $i \ge 0$; --i)
 m = min(m,p[i]);

int M = p[k];
 for (int i = k + 1; i < p.size (); ++i)
 M = max(M,p[i]);

return M - m;
}

(c) Podem utilitzar un algorisme de dividir i vèncer. Donat un vector p, el partim en dues meitats, separades pel punt mig m. Recursivament, calculem el màxim guany possible si comprem i venem a la part esquerra del vector, i a continuació, també recursivament, calculem el màxim guany possible si comprem i venem a la part dreta del vector. Finalment, utilitzant la funció de l'apartat anterior, calculem el màxim guany d'un període que inclou el punt mig m (és a dir, comprem a la part esquerra i venem a la part dreta). El resultat final és el màxim dels tres guanys calculats.

Hem desenvolupat un esquema de dividir i vèncer on fem dues crides recursives de mida la meitat, i a continuació fem un treball lineal per calcular el màxim guany que inclogui el punt m. Per tant, la recurrència que determina el cost de la funció és: $T(n) = 2T(n/2) + \Theta(n)$, que té com a solució asimptòtica $\Theta(n \log n)$.

Nota: hi ha solucions més eficients no basades en dividir i vèncer.