实验一 实验过程原始数据记录

表 1-1 验证 KCL 仿真实验数据

节点も	I (mA)	120	$I_2(m\Lambda)$)	ΣI=0 是否成立	
测量值	58.0		-63.0		.0	2	
		表 1-2	2 验证 KVL 仿真的	 上验数据			
回路 1		Un(V)	$U_{e\delta}(V)$	Uab(V)		ΣU是否成立	
(beab)	测量值	6.30	-15.0	8.70		3-	
回路 2		$U_{bi}(V)$	Ucs(V)	$U_{de}(V)$	$U_{cb}(V)$	ΣU是否成立	
(bcdcb)	测量值	1.1	10.0	->.58	-6.30	1-	

表 1-3 验证叠加定理仿真实验数据

测量数据	Us, Is共同作用	$U_1 = -5.50V$	U2= 450V	I1= 25.0mA	$I_2 = 45.0 \text{m/s}$
	U _s 单独作用	U'= -6.88V	$U_2'=$ $\left\langle \cdot \right\rangle $	$I' = 3[\cdot]^m A$	I'_2= 3 .2 m/A
	I _{S 单独作用}	$U_1'' = \langle -\zeta \gamma V \rangle$	$U_2'' = 1.37V$	1"= -6-25 mA	I"= 13.7m
	计算结果	N1+N1": -5-5 V	Uz+412=4.49V	Li+Zi=25.00m	12+ IN=449mA

等效电路参数: $U_{oc} = 0.148 \sqrt{I_{sc} = 40 \text{ m A}}$ $R_i = 153.70 \Omega$

表 1-4 含源一端口网络及等效电路外特性数据

参数	改变 RL	第一组	第二组	第三组	第四组	第五组	Uoc	Isc	
U = f(I)	J/mA	3.72	2-32	(.48	1.09	0.86	0	理论值: 40mA 测量值: 40mA	
	U/V	5.58	5.79	5.92	5.98	6.02	理论值: 6.148V 测量值: 0.148V	0	
U'=f(I')	I'/mA	5.33	2.15	1.4)	(.()	0.69	0	理论值: 40 MA 测量值: 40 MA	
	U'/V	5.33	5.82	5.97	5.98	6.04	理论值: 6. (48V 测量值: 6. (48V	, 0	
$U^{\prime\prime\prime}=f(I^{\prime\prime\prime})$	I''/mA	根	博	07/	0.94	0-67	0	理论值: 40nA 测量值: 40m	
	U'''/V	園	其	# g	h-010	6.04	理论值: 0 · 148 V 测量值: 0 - (44 V	0	
		5.75	5-13	5.10					

一、 数据处理

在根据公式 $U_{oc}=R_i\cdot I+U$ 和 $I_{sc}=\frac{U_{oc}}{R_i}$,再根据最小二乘法,可以求出 U_{oc} 和 I_{sc} 的值,算出来的数值已经填在表格之中。

二、数据结果分析

表 1-1 中的 $\sum I = 0$ 以及表 1-2 中的 $\sum U = 0$, 说明 KCL 与 KVL 定理的正确性。

表 1-3 中 $U_1'+U_1''$ 、 $U_2'+U_2''$ 、 $I_1'+I_1''$ 、 $I_2'+I_2''$ 分别与 U_1 、 U_2 、 I_1 、 I_2 在误差的合理范围之内相等,说明叠加定理的正确性。

表 1-4 中 U_{oc} 、 I_{sc} 的测量值与理论值的误差在合理范围之内,说明戴维南定理和诺顿定理的正确性。 曲线图中三条直线近似相同,说明电路的等效电路模型是正确的。

三、实验结论

本实验验证了基尔霍夫定律、叠加定理、戴维南定理和诺顿定理的正确性, 也验证了电路的 等效电路模型的正确性。

四、实验感想、意见、建议

本实验的实验内容比较简单,但是实验过程中需要注意的细节比较多,需要认真仔细的操作。仿真软件的使用也需要一定的时间去熟悉,但是熟悉之后,可以很方便的进行实验。

希望实验室能够提供实际的电路设备, 让我们能够更加直观的了解电路的工作原理。