

Practical Application in Machine Learning

Rina BUOY, PhD

ChatGPT 4.0

Disclaimer

Adopted from

https://introml.mit.edu/fall24

Expected prerequisite background

Things we expect you to know (we use these constantly, but don't teach them explicitly):

Programming (e.g. as in 6.101[009] or 6.121[006])

- Intermediate Python, including classes
- Exposure to algorithms ability to understand & discuss pseudo-code, and implement in Python

Linear Algebra (e.g. as in 18.06, 18.00, 18.03, or 18.700)

- Matrix manipulations: transpose, multiplication, inverse etc.
- Points and planes in high-dimensional space
- (Together with calculus): taking gradients, matrix calculus

Useful background

Things it helps to have prior exposure to, but we don't expect (we use these in 6.390, but will discuss as we go):

- numpy (Python package for matrix/linear algebra)
- pytorch (python package for modern ml models like deep neural networks)
- Basic discrete probability: random variables, independence, conditioning

What we're teaching: Machine Learning!

Given:

- a collection of examples (gene sequences, documents, ...)
- an encoding of those examples in a computer (as vectors)

Derive:

• a **computational model** (called a hypothesis) that describes relationships within and among the examples that is expected to characterize well new examples from that same population, to make good predictions or decisions

A model might:

- classify images of cells as to whether they're cancerous
- specify groupings (clusters) of documents that address similar topics
- steer a car appropriately given lidar images of the surroundings

Very roughly, ML can be categorized into

(the categorization can be refined, e.g. there are active learning, semi-supervised, selective, contrastive, few-shot, inverse reinforcement learning...)

[Slides adapted from 6.790]

Supervised learning

Goal: predict to what degree a drug candidate binds to the intended target protein (based on a dataset of already-screened molecules against the target)

· Learning a machine translation system from pairs of sentences

Spanish (input)

Aquí tienes un bolígrafo

Las conferencias de ML son divertidas

Todo el mundo debería estudiar AI

English (output)

Here's a pen

ML conferences are fun

Everyone should study AI

.

[Slides adapted from 6.790]

dimensionality reduction, embedding

[Mikolov et al., 2013]

Unsupervised learning

dependency /causal structure

[Sachs et al 05]

Over 3D protein structures, etc.

+Self-Supervised paradigm

de-noising diffusion models over images

0.5

-0.5

[image from Rissanen et al 2022]

[Slides adapted from 6.790]

Reinforcement learning

Step 1

Collect demonstration data and train a supervised policy.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

Explain reinforcement learning to a 6 year old.

Sometimes of the service of

This data is used to train our reward model.

outputs from best to worst.

Step 3 Optim rewar reinfo Explain reinforcement earning to a 6 year old. Step 3 Optim rewar reinfo A new sample the data sa

ChatGPT

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

policy using PPO.

Single-player game played by AlphaTensor, where the goal is to find a correct matrix multiplication algorithm. The state of the game is a cubic array of numbers (shown as grey for 0, blue for 1, and green for -1), representing the remaining work to be done. [Slides adapted from 6.790]

Machine learning (ML): why & what

What is ML?

Roughly, a set of methods for making predictions and decisions from data.

Why study ML?

To apply; to understand; to evaluate; to create

What do we have?

Data! And computation!

What do we want?

To make predictions on new data!

How do we learn to make those decisions?

The topic of this course!

What do we have?

- There are many different problem classes in ML
 - We will first focus on an instance of supervised learning known as regression.

(Training) data

- n training data points
- For data point $i \in \{1, \dots, n\}$
 - Feature vector $x^{(i)} = (x_1^{(i)}, \dots, x_d^{(i)})^{ op} \in \mathbb{R}^d$
 - Label $y^{(i)} \in \mathbb{R}$
- Training data $\mathcal{D}_n = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$

 $x_1^{(1)}$

What do we want?

We want a "good" way to label new feature $y^{(1)}$ vectors

- How to label? Learn a hypothesis
- We typically consider a class of possible hypotheses

how well our hypothesis labels new feature vectors depends largely on how expressive the hypothesis class is

Warning: Overfitting vs. Generalization

What we really want is to generalize to future data!

- What we don't want:
 - Model does not capture the input-output relationship
 - → Underfitting
 - Model too specialized to training data → Overfitting

What do we want?

We may consider the class of linear regressors:

Hypotheses take the form:

$$h(x; \underline{\theta}, \underline{\theta_0}) = \theta^\top x + \theta_0$$

Generally, we might refer to the set of all learned parameters as $\boldsymbol{\Theta}$ (capital $\boldsymbol{\theta}$)

How good is a hypothesis?

Hopefully predict well on future data

How good is a regressor at one point?

 Quantify the error using a loss function, $\mathcal{L}(g,a)$ a: actual

g: guess

$$\mathcal{L}(g,a) = (g-a)^2$$

h: hypothesis function (outputs g)

x: input, θ : parameters, y: actual

• Training error:
$$\mathcal{E}_n(h;\Theta) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}\left(h(x^{(i)};\Theta), y^{(i)}\right)$$

Validation or Test error (n' new points):

$$\mathcal{E}(h) = \frac{1}{n'} \sum_{i=n+1}^{n+n'} \mathcal{L}\left(h(x^{(i)}), y^{(i)}\right)$$

How do we learn?

- Have data; have hypothesis class
- Want to choose (learn) a good hypothesis (a set of parameters)

What we want:

How to get it: (Next time!)

