

TEST REPORT

FCC Part 22 Subpart H / Part 24 Subpart E

Report Reference	No:	CTL1706302041-WF01
------------------	-----	--------------------

Compiled by: (position+printed name+signature)

Tested by:

(position+printed name+signature)

Approved by: (position+printed name+signature)

Allen Wang (File administrators)

> Nice Nong (Test Engineer)

> > Ivan Xie (Manager)

Allen Wang
Nice Nong

Product Name: Android All Mode Wireless Module

Model/Type reference: M100-QVCX-2G16G

List Model(s)..... See next page

Trade Mark.....: Temolin

FCC ID...... 2AM5I-TML-M100

Applicant's name Temolin Technology Co., Ltd

Room 311, Building B, No.125 TianShan Road West, ChangNing Address of applicant.....:

District, Shanghai City, China

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification:

Standard FCC CFR Title 47 Part 2, Part 22H and Part 24E

EIA/TIA 603-D: 2010 KDB 971168 D01

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of Receipt...... Jun. 23, 2017

Date of Test Date Jun. 24, 2017–Jul. 11, 2017

Data of Issue...... Jul. 12, 2017

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. :	CTL1706302041-WF01	Jul. 12, 2017
	C1L1700302041-WF01	Date of issue

Equipment under Test : Android All Mode Wireless Module

Model /Type : M100-QVCX-2G16G

: M100-OVCX-1G8G, M100-OVCX-2G16G,

M100-OVWX-1G8G, M100-OVWX-2G16G, M100-OVTX-1G8G, M100-OVTX-2G16G, M100-QVCX-1G8G, M100-QVCX-2G16G,

Listed Models M100-QVCX-1G8G, M100-QVCX-2G16G, M100-QVWX-2G16G, M100-QVWX-2G16G,

M100-QVVX-1G8G, M100-QVVX-2G16G, M100-QVTX-1G8G, M100-QVTX-2G16G, M100-QWNX-1G8G, M100-QWNX-2G16G, M100-QWNX-1G8G, M100-QWNX-2G16G

Applicant : Temolin Technology Co., Ltd

Address : Room 311, Building B, No.125 TianShan Road West,

ChangNing District, Shanghai City, China

Manufacturer : Temolin Technology Co., Ltd

Address : Room 311, Building B, No.125 TianShan Road West,

ChangNing District, Shanghai City, China

Test result	Pass *
-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2017-07-12	CTL1706302041-WF01	Tracy Qi

Contents

1 SI	UMMARY	5
1.1	TEST STANDARDS	5
1.2	Test Description	
1.3	Test Facility	
1.4	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	SENERAL INFORMATION	
2 0		
2.1	Environmental conditions	
2.2	GENERAL DESCRIPTION OF EUT	7
2.3	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	8
2.4	EQUIPMENTS USED DURING THE TEST	g
2.5	RELATED SUBMITTAL(S) / GRANT (S)	g
2.6	Modifications	
3 TI	EST CONDITIONS AND RESULTS	10
3.1	Output Power	10
3.2	OCCUPIED BANDWIDTH	14
3.3	BAND EDGE COMPLIANCE	
3.4	Spurious Emission	22
3.5	Frequency Stability under Temperature & Voltage Variations	35
4 TI	EST SETUP PHOTOS OF THE EUT	38
5 E	VTERNAL AND INTERNAL PHOTOS OF THE FLIT	20

V1.0 Page 5 of 40 Report No.: CTL1706302041-WF01

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24: PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01:v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

<u>ANSI C63.26-2015</u> American National Standard for Compliance Testing of Transmitters Used in Licensed Radio

1.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 22.913 (a)(2) Part 24.232 ©	Pass
Peak-to-Average Ratio	Part 24.232 (d)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 22.917 Part 24.238	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 22.917 (a) Part 24.238 (a)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Pass
Out of band emission, Band Edge	Part 22.917 (a) Part 24.238 (a)	Pass
Frequency stability	Part 2.1055 Part 22.355 Part 24.235	Pass

V1.0 Page 6 of 40 Report No.: CTL1706302041-WF01

1.3 Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. Quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 GENERAL INFORMATION

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 General Description of EUT

Product Name:		Android All Mode Wireless Module	
Model/Type reference:		M100-QVCX-2G16G	
Power supply:		DC 3.3V from host device	
2G			
Operation Band:		GSM850, GSM900, DCS1800, PCS1900	
Supported type:		GSM, GPRS, EGPRS	
Power Class:		GSM850,GSM900:Power Class 4 DCS1800, PCS1900:Power Class 1	
Modulation Type:		GMSK for GSM, GPRS, 8-PSK for EGPRS	
GSM Release Versio	n / 🐰	R99	
GPRS Multisport Cla	ss	12	
EGPRS Multisport Class		12	
Antenna type:	,	FPC antenna	
WCDMA			
Operation Band:	Z	FDD Band I , FDD Band II, FDD Band V, FDD Band VIII	
Power Class:	120	Power Class 3	
Modulation Type:	13	QPSK for HSUPA/HSDPA	
WCDMA Release Version:		R8	
HSDPA Release Version:		Release 7, CAT14	
HSUPA Release Version:		Release 6, CAT6	
DC-HSUPA Release Version:		Not Supported	
Antenna type:		FPC antenna	
Nata Canasas data:	la	the year's manual of the CLIT	

Note: For more details, refer to the user's manual of the EUT.

Remark: The GPRS/ EGPRS frequency band includes GSM850, GSM900, DCS1800 and PCS1900, but only GSM850 and PCS1900 bands test data included in this report. The HSPA frequency band support Band I, FDD Band II, FDD Band V, and FDD Band VIII but only Band II and Band V bands test data included in this report.

V1.0 Page 8 of 40 Report No.: CTL1706302041-WF01

2.3 Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest middle and highest frequency of channel were selected to perform the test, then shown on this report.

Test Frequency:

GSM 850		PCS1900		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
128	824.20	512	1850.20	
190	836.60	661	1880.00	
251	848.80	810	1909.80	

FDD Band II		FDD E	Band V
Channel	Frequency (MHz)	Channel	Frequency (MHz)
9262	1852.4	4132	826.40
9400	1880.0	4182	836.60
9538	1907.6	4233	846.60

Test Modes:

The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
Mode 1	GSM system, GSM, GMSK modulation
Mode 2	GSM system, GPRS, GMSK modulation
Mode 3	GSM system, EDGE, GMSK modulation
Mode 4	WCDMA system, QPSK modulation
Mode 5	HSDPA system, QPSK modulation
Mode 6	HSUPA system, QPSK modulation

Note:

- 1. As GSM and GPRS with the same emission designator, test result recorded in this report at the worst case Mode 1 only after exploratory scan.
- 2. As WCDMA, HSDPA and HSUPA with the same emission designator, test result recorded in this report at the worst case Mode 4 only after exploratory scan.

2.4 Equipments Used during the Test

JB1 JB1 ESCI E4407B Controller EM 1000 DRH-118 DRH-118 FMZB1519 8349B 8447D CTH-608	A061713 A061714 103710 MY45108355 N/A A062013 A062014 1519-037 3008A02306 2944A10176 02	2017/06/02 2017/06/02 2017/06/02 2017/06/02 2017/05/21 2017/05/19 2017/05/19 2017/05/19 2017/05/19 2017/05/19 2017/05/20	2018/06/01 2018/06/01 2018/06/01 2018/05/20 2018/05/18 2018/05/18 2018/05/18 2018/05/18
ESCI E4407B Controller EM 1000 DRH-118 DRH-118 FMZB1519 8349B 8447D	103710 MY45108355 N/A A062013 A062014 1519-037 3008A02306 2944A10176	2017/06/02 2017/06/02 2017/05/21 2017/05/19 2017/05/19 2017/05/19 2017/05/19	2018/06/01 2018/06/01 2018/05/20 2018/05/18 2018/05/18 2018/05/18 2018/05/18
E4407B Controller EM 1000 DRH-118 DRH-118 FMZB1519 8349B 8447D	MY45108355 N/A A062013 A062014 1519-037 3008A02306 2944A10176	2017/06/02 2017/05/21 2017/05/19 2017/05/19 2017/05/19 2017/05/19	2018/06/01 2018/05/20 2018/05/18 2018/05/18 2018/05/18 2018/05/18
Controller EM 1000 DRH-118 DRH-118 FMZB1519 8349B 8447D	N/A A062013 A062014 1519-037 3008A02306 2944A10176	2017/05/21 2017/05/19 2017/05/19 2017/05/19 2017/05/19 2017/05/19	2018/05/20 2018/05/18 2018/05/18 2018/05/18 2018/05/18 2018/05/18
1000 DRH-118 DRH-118 FMZB1519 8349B 8447D	A062013 A062014 1519-037 3008A02306 2944A10176	2017/05/19 2017/05/19 2017/05/19 2017/05/19 2017/05/19	2018/05/18 2018/05/18 2018/05/18 2018/05/18 2018/05/18
DRH-118 FMZB1519 8349B 8447D	A062014 1519-037 3008A02306 2944A10176	2017/05/19 2017/05/19 2017/05/19 2017/05/19	2018/05/18 2018/05/18 2018/05/18 2018/05/18
FMZB1519 8349B 8447D	1519-037 3008A02306 2944A10176	2017/05/19 2017/05/19 2017/05/19	2018/05/18 2018/05/18 2018/05/18
8349B 8447D	3008A02306 2944A10176	2017/05/19 2017/05/19	2018/05/18 2018/05/18
8447D	2944A10176	2017/05/19	2018/05/18
1/22	7		
CTH-608	02	2017/05/20	0040/05/10
《 》等		2011/00/20	2018/05/19
CMU200	115419	2017/05/22	2018/05/21
9SH10-2700/X1 2750-O/O	N/A	2017/05/20	2018/05/19
41H10-1375/U1 2750-O/O	N/A	2017/05/20	2018/05/19
RG214	N/A	2017/05/20	2018/05/19
EL-10KA	A20120523	2017/05/20	2018/05/19
E4421B	US40051744	2017/05/20	2018/05/19
87300B	3116A03638	2017/05/20	2018/05/19
	41H10-1375/U1 2750-O/O RG214 EL-10KA E4421B	41H10-1375/U1 N/A 2750-O/O N/A RG214 N/A EL-10KA A20120523 E4421B US40051744	41H10-1375/U1 2750-O/O N/A 2017/05/20 RG214 N/A 2017/05/20 EL-10KA A20120523 2017/05/20 E4421B US40051744 2017/05/20

2.5 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AM5I-TML-M100 filing to comply with of the FCC Part 22 and Part 24 Rules.

2.6 Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 10 of 40 Report No.: CTL1706302041-WF01

3 TEST CONDITIONS AND RESULTS

3.1 Output Power

LIMIT

GSM850/WCDMA Band V: 7W PCS1900/WCDMA Band II: 2W

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter

c) The output of the test antenna shall be connected to the measuring receiver.

V1.0

- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.

TEST RESULTS

Conducted Measurement:

EUT Mode	Channel	Frequency (MHz)	Avg.Burst Power (dBm)	Peak-to-Average Ratio (dB)	Limit (dBm)	Result
GSM850	128	824.20	32.25	/		
(GMSK,1Slot)	190	836.60	32.62	/	38.45	Pass
(GIVIOIX, FOICE)	251	848.80	32.34	/		
EGPRS850	128	824.20	27.25	/		
(8PSK,1Slot)	190	836.60	27.44	/	38.45	Pass
(OF SIX, 13101)	251	848.80	27.36	/		
GSM1900	512	1850.20	29.87	0.42		
(GMSK,1Slot)	661	1880.00	29.85	0.23	33.01	Pass
(Olviort, rolot)	810	1909.80	29.74	0.52		
EGPRS1900	512	1850.20	24.22	3.13		
(8PSK,1Slot)	661	1880.00	24.36	3.15	33.01	Pass
(6) 513, 15101)	810	1909.80	24.21	3.42		
WCDMA Band II	9262	1852.40	22.25	3.23		
(QPSK)	9400	1880.00	22.36	3.55	33.01	Pass
(QI OIV)	9538	1907.60	22.28	3.41		
WCDMA Band V	4132	826.40	22.20	1		
(QPSK)	4183	836.60	22.23	-4	38.45	Pass
(\(\oldsymbol{Q}\) \(\oldsymbol{O}\)	4233	846.60	22.19	75		

Note: 1.Peak-to-Average Ratio= maximum PK burst power-maximum Avg. burst power.

V1.0 Page 13 of 40 Report No.: CTL1706302041-WF01

Radiated Measurement:

Note: 1. The field strength of radiation emission was measured in the following position: EUT stand-up position (Zaxis), lie-down position (X, Y axis). The data show in this report only with the worst case setup. After exploratory measurement the worst case of Z axis was reported.

Note: 2 We test the H direction and V direction and V direction is worse.

GSM850

	Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
Γ	128	-10.12	2.42	8.45	2.15	36.82	30.58	38.45	7.87	V
Γ	190	-9.03	2.46	8.45	2.15	36.82	31.63	38.45	6.82	V
	251	-9.73	2.53	8.36	2.15	36.82	30.77	38.45	7.68	V

EGPRS850

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
128	-15.47	2.42	8.45	2.15	36.82	25.23	38.45	13.22	V
190	-14.68	2.46	8.45	2.15	36.82	25.98	38.45	12.47	V
251	-15.09	2.53	8.36	2.15	36.82	25.41	38.45	13.04	V

GSM1900

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
512	-11.65	3.41	10.24	33.6	28.78	33.01	4.23	V
661	-11.79	3.49	10.24	33.6	28.56	33.01	4.45	V
810	-12.16	3.55	10.23	33.6	28.12	33.01	4.89	V

FGPRS1900

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
512	-17.28	3.41	10.24	33.6	23.15	33.01	9.86	V
661	-17.12	3.49	10.24	33.6	23.23	33.01	9.78	V
810	-16.74	3.55	10.23	33.6	23.54	33.01	9.47	V

WCDMA BAND II

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
9262	-18.55	3.42	10.24	33.6	21.87	33.01	11.14	V
9400	-19.12	3.49	10.24	33.6	21.23	33.01	11.78	V
9538	-18.75	3.54	10.23	33.6	21.54	33.01	11.47	V

WCDMA BAND V

Channel	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
4132	-19.27	2.43	8.45	2.15	36.82	21.42	38.45	17.03	V
4183	-19.03	2.46	8.45	2.15	36.82	21.63	38.45	16.82	V
4233	-19.06	2.52	8.36	2.15	36.82	21.45	38.45	17.00	V

Remark:

- 1. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$
- 2. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.

V1.0 Page 14 of 40 Report No.: CTL1706302041-WF01

3.2 Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW≥3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
	128	824.20	244.0710	316.821
GPRS850 (GMSK,1Slot)	190	836.60	249.0342	313.584
(GWGPC, FOICE)	251	848.80	243.4334	311.480
5000000	128	824.20	245.6784	312.489
EGPRS850 (8PSK,1Slot)	190	836.60	246.4616	311.814
(6) 6) (1)	251	848.80	244.3043	307.447
00004000	512	1850.20	244.6666	311.366
GPRS1900 (GMSK,1Slot)	661	1880.00	245.4150	317.659
(Giviori, Foliot)	810	1909.80	246.0917	314.888
500004000	512	1850.20	244.4712	307.782
EGPRS1900 (8PSK,1Slot)	661	1880.00	244.3720	306.991
(6) 6) (1)	810	1909.80	240.7238	308.122
WCDMA Band II	9262	1852.4	4213.800	4861.000
(QPSK)	9400	1880.0	4179.900	4826.000
(&1 511)	9538	1907.6	4196.700	4855.000
	4132	826.4	4204.600	4856.000
WCDMA Band V (QPSK)	4183	836.6	4166.000	4827.000
(,	4233	846.6	4209.000	4848.000

Channel 251

Channel 251

3.3 Band Edge compliance

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

TEST PROCEDURE

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

TEST RESULTS

		GS	M850		
Channel	Frequency	Max Measure	ement Results	Limit	
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
128	824.20	823.9800	-16.92	-13.00	Pass
251	848.80	849.0175	-15.47	-13.00	Pass
₩ Agilent	Mkr	R T Freq/Channel	# Agilent	Mkr1 s	R T Peak Search
#Avg Log	n 45 dB	-16.92 dBm Center Freq 823.500000 MHz	Ref 35 dBm #Atten 45 #Avg Log		-15.47 dBm Meas Tools •
10 dB/ Offst 14.5		Start Freq 823.000000 MHz	10 dB/ Offst 14.5		Next Peak
dB DI -13.0		Stop Freq 824.000000 MHz	dB DI -13.0		Next Pk Right
dBm M1 S2		CF Step 100.000000 kHz <u>Auto Man</u>	dBm M1 S2		Next Pk Left
S3 FC AA		Freq Offset 0.00000000 Hz	S3 FC		Min Search
warmen had one	Marine marine and a second deposit of the se	Signal Track On <u>Off</u>	, Amongolingo	ar all many him was franch in	Pk-Pk Search
Start 823 MHz		Stop 824 MHz	Center 849.5 MHz		Span 1 MHz More
#Res BW 3 kHz	#VBW 30 kHz Sweep 176.	3 ms (401 pts)	#Res BW 3 kHz	#VBW 30 kHz Sweep 176.3	ms (401 pts)

		E	SPRS850		
Channel	Frequency	Measu	ement Results	Limit	
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
128	824.20	823.9725	-17.02	-13.00	Pass
251	848.80	849.0200	-16.26	-13.00	Pass
* Agilent		R T Peak Sea	h Agilent		R T Peak Search
Ref 35 dBm #Atter #Avg Log	Mkr1 n 45 dB	.17.02 dBm Meas T	Ref 35 dBm #Atten 45 #Avg		9.0200 MHz -16.26 dBm Meas Tools •
10 dB/ Offst 14.5		Next F	10		Next Peak
dB DI -13.0		Next Pk F	dB		Next Pk Right
dBm		Next Pk	dBm 1		Next Pk Left
M1 S2 S3 FC AA		Min Se	M1 S2 N AA N AA		Min Search
haralli maghinahin	man not a man	Pk-Pk Se	ch Manager and the control of the co	aproprieta	Pk-Pk Search
Start 823 MHz #Res BW 3 kHz	#VBW 30 kHz Sweep 176.		Center 849.5 MHz #Res BW 3 kHz	#VBW 30 kHz Sweep 176.3 m	Span 1 MHz More 1 of 2

			EGPR	S1900		
Channel	Frequency	M	leasureme	nt Results	Limit	
Number	(MHz)		luency 1Hz)	Values (dBm)	(dBm)	Verdict
512	1850.20	1849	9.9752	-19.73	-13.00	Pass
810	1909.80	1910	0.0275	-20.69	-13.00	Pass
₩ Agilent		R T	Peak Search	* Agilent		R T Freg/Channel
Ref 35 dBm #Atte	Mkr1 n 35 dB	1.8499752 GHz -19.73 dBm	Meas Tools •	Ref 35 dBm #Atten 35 #Avg		20.69 dBm Center Freq
Log			Next Peak	Log 10 dB/ Offst		1.91050000 GHz Start Freq 1.91000000 GHz
14.5 dB DI -13.0			Next Pk Right	14.5 dB DI -13.0		Stop Freq 1.91100000 GHz
dBm M1 S2		<i>M</i>	Next Pk Left	dBm		CF Step 100.000000 kHz <u>Auto</u> <u>Man</u>
S3 FC AA			Min Search	S3 FC AA		Freq Offset 0.00000000 Hz
was de la company de la compan	and the second s	**************************************	Pk-Pk Search	Whyman	met head when we were	Signal Track On Off
Start 1.849 GHz #Res BW 3 kHz	#VBW 30 kHz Sweep 172	Stop 1.85 GHz .8 ms (401 pts)	More 1 of 2	Start 1.91 GHz #Res BW 3 kHz	Sto #VBW 30 kHz Sweep 176.3 n	pp 1.911 GHz ns (401 pts)

		Band V	WCDMA		
	Limit	nt Results	Measureme	Frequency	Channel
Verdict	(dBm)	Frequency (MHz) Values (dBm)		(MHz)	Number
Pass	-13.00	-19.89	824.0000	826.4	4132
Pass	-13.00	-22.61	849.0175	846.6	4233
T Trace/View		₩ Agilent	R T Trace/View		₩ Agilent
MHz Bm Trace 1 2 3	Mkr1 84 IB	Ref 30 dBm #Atten 35 d Peak Log	1 824.0000 MHz -19.89 dBm Trace 1 2 3	1 35 dB	Ref 30 dBm #Atter
Clear Write		10 dB/ Offst 17	Clear Write		10 dB/ Offst 17
Max Hold		dB DI -13.0	Max Hold		dB DI -13.0
Min Hol		dBm 1	Min Hold		dBm
View	Work of Manney and before the war of	M1 S2 S3 FC AA	View	me More and another another and another an	M1 S2 S3 FC AA
Blank			Blank		
MHz More 1 of 2	#VBW 100 kHz Sweep 5 m	Center 849.5 MHz #Res BW 30 kHz	Span 1 MHz More 1 of 2	#VBW 100 kHz Sweep	Center 823.5 MHz #Res BW 30 kHz

3.4 Spurious Emission

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log (P) dB.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Conducted Spurious Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200 then selects a channel for testing.

- d) Add a correction factor to the display of spectrum, and then test.
- e) The resolution bandwidth of the spectrum analyzer was set at 1MHz for Part 22 and 1MHz for Part 24, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

Radiated Spurious Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.
- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h) The maximum signal level detected by the measuring receiver shall be noted.
- i) The transmitter shall be replaced by a substitution antenna.
- j) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k) The substitution antenna shall be connected to a calibrated signal generator.
- If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q) The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.

TEST RESULTS

Conducted Measurement:

GSM850

EGPRS850

GSM1900

EGPRS1900

WCDMA Band II

Radiated Measurement:

GSM850

Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1648.40	-31.83	3.00	3.00	9.58	-25.25	-13.00	12.25	Н
128	2472.60	-35.38	3.47	3.00	10.72	-28.13	-13.00	15.13	Н
120	1648.40	-30.20	3.00	3.00	9.68	-23.52	-13.00	10.52	V
	2472.60	-32.71	3.47	3.00	10.72	-25.46	-13.00	12.46	V
	1673.20	-30.79	3.14	3.00	9.61	-24.32	-13.00	11.32	Н
190	2509.80	-36.63	3.59	3.00	10.77	-29.45	-13.00	16.45	Н
190	1673.20	-30.95	3.14	3.00	9.61	-24.48	-13.00	11.48	V
	2509.80	-33.44	3.59	3.00	10.77	-26.26	-13.00	13.26	V
	1697.60	-32.13	3.26	3.00	9.77	-25.62	-13.00	12.62	Н
251	2546.40	-34.61	3.69	3.00	10.89	-27.41	-13.00	14.41	Н
231	1697.60	-30.74	3.26	3.00	9.77	-24.23	-13.00	11.23	V
	2546.40	-32.85	3.69	3.00	10.89	-25.65	-13.00	12.65	V

EGPRS850

Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
	1648.40	-35.32	3.00	3.00	-28.74	-28.65	-13.00	15.74	Н	
128	2472.60	-38.89	3.47	3.00	-31.64	-31.26	-13.00	18.64	Н	
120	1648.40	-33.91	3.00	3.00	-27.23	-27.54	-13.00	14.23	V	
	2472.60	-37.71	3.47	3.00	-30.46	-30.21	-13.00	17.46	V	
	1673.20	-36.05	3.14	3.00	-29.58	-29.33	-13.00	16.58	Н	
190	2509.80	-39.84	3.59	3.00	-32.66	-32.41	-13.00	19.66	Н	
190	1673.20	-32.61	3.14	3.00	-26.14	-26.58	-13.00	13.14	V	
	2509.80	-36.41	3.59	3.00	-29.23	-29.28	-13.00	16.23	V	
	1697.60	-35.03	3.26	3.00	-28.52	-28.35	-13.00	15.52	Н	
251	2546.40	-37.52	3.69	3.00	-30.32	-30.25	-13.00	17.32	Н	
251	1697.60	-32.92	3.26	3.00	-26.41	-26.33	-13.00	13.41	V	
	2546.40	-34.77	3.69	3.00	-27.57	-27.58	-13.00	14.57	V	

GSM1900

COM 1300										
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
	3700.40	-34.32	4.25	3.00	12.34	-26.23	-13.00	13.23	Н	
F10	5550.60	-35.76	4.97	3.00	13.52	-27.21	-13.00	14.21	Н	
512	3700.40	-32.61	4.25	3.00	12.34	-24.52	-13.00	11.52	V	
	5550.60	-33.91	4.97	3.00	13.52	-25.36	-13.00	12.36	V	
	3760.00	-34.50	4.38	3.00	12.34	-26.54	-13.00	13.54	Н	
661	5640.00	-36.02	5.01	3.00	13.58	-27.45	-13.00	14.45	Н	
001	3760.00	-32.08	4.38	3.00	12.34	-24.12	-13.00	11.12	V	
	5640.00	-33.80	5.01	3.00	13.58	-25.23	-13.00	12.23	V	
	3819.60	-34.25	4.49	3.00	12.45	-26.29	-13.00	13.29	Н	
010	5729.40	-35.82	5.26	3.00	13.66	-27.42	-13.00	14.42	Н	
810	3819.60	-32.58	4.49	3.00	12.45	-24.62	-13.00	11.62	V	
	5729.40	-33.88	5.26	3.00	13.66	-25.48	-13.00	12.48	V	

V1.0 Page 34 of 40 Report No.: CTL1706302041-WF01

EGPRS1900

Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3700.40	-38.83	4.25	3.00	12.34	-30.74	-13.00	17.74	Н
512	5550.60	-45.07	4.97	3.00	13.52	-36.52	-13.00	23.52	Н
312	3700.40	-37.72	4.25	3.00	12.34	-29.63	-13.00	16.63	V
	5550.60	-41.88	4.97	3.00	13.52	-33.33	-13.00	20.33	V
	3760.00	-38.41	4.38	3.00	12.34	-30.45	-13.00	17.45	Н
661	5640.00	-44.98	5.01	3.00	13.58	-36.41	-13.00	23.41	Н
001	3760.00	-36.21	4.38	3.00	12.34	-28.25	-13.00	15.25	V
	5640.00	-43.35	5.01	3.00	13.58	-34.78	-13.00	21.78	V
	3819.60	-39.22	4.49	3.00	12.45	-31.26	-13.00	18.26	Н
810	5729.40	-44.11	5.26	3.00	13.66	-35.71	-13.00	22.71	Н
010	3819.60	-36.32	4.49	3.00	12.45	-28.36	-13.00	15.36	V
	5729.40	-39.92	5.26	3.00	13. <mark>6</mark> 6	-31.52	-13.00	18.52	V

WCDMA Band II

Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3704.80	-40.81	4.27	3.00	12.34	-32.74	-13.00	19.74	Н
0262	5557.20	-43.06	4.99	3.00	13.52	-34.53	-13.00	21.53	Н
9262	3704.80	-43.73	4.27	3.00	12.34	-35.66	-13.00	22.66	V
	5557.20	-41.95	4.99	3.00	13.52	-33.42	-13.00	20.42	V
	3760.00	-40.81	4.38	3.00	12.34	-32.85	-13.00	19.85	Н
9400	5640.00	-42.93	5.01	3.00	13.58	-34.36	-13.00	21.36	Н
9400	3760.00	-41.54	4.38	3.00	12.34	-33.58	-13.00	20.58	V
	5640.00	-42.83	5.01	3.00	13.58	-34.26	-13.00	21.26	V
	3815.20	-42.34	4.47	3.00	12.45	-34.36	-13.00	21.36	Н
0530	5722.80	-44.32	5.23	3.00	13.66	-35.89	-13.00	22.89	Н
9538	3815.20	-40.73	4.47	3.00	12.45	-32.75	-13.00	19.75	V
	5722.80	-41.76	5.23	3.00	13.66	-33.33	-13.00	20.33	V

WODNIA Balla V									
Channel	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Distance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1652.80	-39.10	3.02	3.00	9.58	-32.54	-13.00	19.54	Н
9262	2479.20	-43.57	3.51	3.00	10.72	-36.36	-13.00	23.36	Н
9202	1652.80	-36.91	3.02	3.00	9.68	-30.25	-13.00	17.25	V
	2479.20	-40.75	3.51	3.00	10.72	-33.54	-13.00	20.54	V
	1673.20	-39.83	3.14	3.00	9.61	-33.36	-13.00	20.36	Н
9400	2509.80	-42.66	3.59	3.00	10.77	-35.48	-13.00	22.48	Н
9400	1673.20	-37.72	3.14	3.00	9.61	-31.25	-13.00	18.25	V
	2509.80	-39.63	3.59	3.00	10.77	-32.45	-13.00	19.45	V
	1693.20	-40.18	3.24	3.00	9.77	-33.65	-13.00	20.65	Н
9538	2539.80	-42.79	3.65	3.00	10.89	-35.55	-13.00	22.55	Н
9000	1693.20	-37.77	3.24	3.00	9.77	-31.24	-13.00	18.24	V
	2539.80	-39.45	3.65	3.00	10.89	-32.21	-13.00	19.21	V

Remark:

- EIRP=P_{Mea}(dBm)-P_{cl}(dB) +G_a(dBi)
 We were not recorded other points as values lower than limits.
 Margin = Limit EIRP

3.5 Frequency Stability under Temperature & Voltage Variations

LIMIT

Cellular Band: ±2.5ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

Temperature Chamber

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603C

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation ($\pm 15\%$) and endpoint, record the maximum frequency change.

TEST RESULTS

Refere	Reference Frequency: GSM850 Middle channel=190 channel=836.6MHz									
Voltage (V)	Temperature (°C)	Freque	ncy error	Limit (ppm)	Result					
voltage (v)	remperature (c)	Hz	ppm	штік (рріті)	Result					
	-30	40.32	0.048							
	-20	45.48	0.054							
	-10	44.77	0.054							
	0	64.02	0.077							
3.70	10	30.53	0.036							
	20	35.23	0.042	2.5	Pass					
	30	78.93	0.094							
	40	45.01	0.054							
	50	55.24	0.066							
4.26	25	46.46	0.056							
End point 3.15	25	57.40	0.069							
		167	ASS.							

Refere	nce Frequency: PC	S1900 Middle cl	nannel=661 ch	annel=1880MHz	
Voltage (V)	Temperature	Frequer	ncy error	Limit (ppm)	Result
voltage (v)	(℃)	Hz	ppm	Limit (ppin)	Result
	-30	56.27	0.030	1	
	-20	96.63	0.051	-	
	-10	44.91	0.024	7	
	0 0	90.10	0.048		Pass
3.70	10	74.15	0.039	Within the	
	20	30.03	0.016	authorized frequency	
	30	72.26	0.038	block	
	40	93.11	0.050	3	
	50	85.28	0.045	0	
4.26	25	78.90	0.042		
End point 3.15	25	37.00	0.020		
		estind	10		

Reference	Reference Frequency: WCDMA Band II Middle channel=9400 channel=1880MHz									
Voltage (V)	Temperature	Frequer	ncy error	Limit (ppm)	Result					
voltage (v)	(℃)	Hz	ppm	Limit (ppin)	Kesuit					
	-30	38.52	0.020							
	-20	55.10	0.029							
	-10	50.40	0.027							
	0	83.67	0.045	Within the authorized frequency block						
3.70	10	81.95	0.044							
	20	37.05	0.020		Pass					
	30	68.86	0.037							
	40	45.66	0.024							
	50	62.98	0.034							
4.26	25	91.24	0.049							
End point 3.15	25	71.25	0.038							

Reference I	Reference Frequency: WCDMA Band V Middle channel=4182 channel=836.6MHz									
Voltage (V)	Temperature	Frequei	ncy error	Limit (ppm)	Result					
voltage (v)	(℃)	Hz	ppm	Limit (ppm)	Nesuit					
	-30	96.99	0.116							
	-20	40.17	0.048							
	-10	71.97	0.086							
	0	94.41	0.113	2.5	Pass					
3.70	10	94.74	0.113							
	20	88.02	0.105							
	30	73.99	0.088							
	40	45.11	0.054							
	50	53.53	0.064	1						
4.26	25	68.97	0.082	7						
End point 3.15	25	87.04	0.104							

4 Test Setup Photos of the EUT

5 Photos of the EUT

External Photos of EUT

V1.0

*************** End of Report ****************