Homework 6: Monotonic and Bounded Sequences

Assignments should be **stapled** and written clearly and legibly.

- 1. Let (a_n) be a convergent sequence. Suppose that $\lim a_n > 0$. Use the definition of a limit to prove that there exists $N \in \mathbb{N}$ such that $a_n > 0$ for all $n \geq N$.
- 2. (a) Give an example of a sequence with subsequences converging to 1, 2, and 3.
 - (b) Give an example of a sequence with subsequences converging to every integer.
 - (c) Show that there exists a sequence with subsequences converging to every rational number.
- 3. Prove that the sequence (a_n) converges, where $a_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}$.
- 4. In this problem, we give an algorithm for computing $\sqrt{2}$. Let $a_1 = 2$, and define

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right), \text{ for } n \ge 1.$$
 (1)

- (a) Prove that $a_n^2 \geq 2$ for all n. (Use proof by induction.)
- (b) Use part (a) and equation (1) to prove that $a_n a_{n+1} \ge 0$ for all n.
- (c) Conclude that the sequence (a_n) converges.
- (d) Prove that $\lim_{n\to\infty} a_n = \sqrt{2}$.
- (e) Modify the sequence (a_n) so that it converges to \sqrt{c} . No formal proof is required for this part, but you should give a brief justification.