WELTORGANISATION FUR GEISTIGES EIGENTUM

Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07K 14/575, A61K 38/22

(11) Internationale Veröffentlichungsnummer:

WO 97/46584

(43) Internationales

Veröffentlichungsdatum:

11. Dezember 1997 (11.12.97)

(21) Internationales Aktenzeichen:

PCT/EP97/02930

A1

DE

(22) Internationales Anmeldedatum:

5. Juni 1997 (05.06.97)

(30) Prioritätsdaten:

196 22 502.7 196 37 230.5 5. Juni 1996 (05.06.96)

13. September 1996 (13.09.96)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BOEHRINGER MANNHEIM GMBH [DE/DE]; D-68298 Mannheim (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): HOFFMANN, Eike [DE/DE]; Rathausstrasse 71, D-68519 Viernheim (DE). GÖKE, Rüdiger [DE/DE]; Sommerstrasse 3, D-35043 Marburg (DE). GÖKE, Burkhard-Johannes [DE/DE]; Mariborer Strasse 22, D-35637 Marburg (DE).
- (74) Gemeinsamer Vertreter: **BOEHRINGER MANNHEIM** GMBH; Patentabteilung, D-68298 Mannheim (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO Patent (GH, KE, LS, MW, SD, SZ, UG), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR. GB. GR. IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Anderungen eintreffen.

(54) Title: EXENDIN ANALOGUES, PROCESSES FOR THEIR PREPARATION AND MEDICAMENTS CONTAINING THEM

(54) Bezeichnung: EXENDIN-ANALOGA, VERFAHREN ZU DEREN HERSTELLUNG UND DIESE ENTHALTENDE ARZNEIMIT-

SEQ ID NO: I

R LFIEWLKN G X

SEQ ID NO: 2

(II) LFIEWLKN

(57) Abstract

The invention concerns novel exendin analogues which can be used in the treatment of diabetes mellitus. The invention also concerns processes for preparing these substances and medicaments containing them. The exendin analogues are derived from SEQ ID NO: 1 (I) or SEQ ID NO: 2 (II).

(57) Zusammenfassung

Diese Erfindung betrifft neue Exendin-Analoga, welche bei der Therapie des Diabetes mellitus eingesetzt werden können, Verfahren zu deren Herstellung und diese enthaltende Arzneimittel. Die Exendin-Analoga leiten sich von SEQ ID NO: 1 (I) oder SEQ ID NO: 2 (II) ab.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

Albanien	ES	Spanien	LS	Lesotho		Slowenien
Annenien	FI	Finnland	LT	Litauen	SK	Słowakci
Osterreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
Benin	1E	Irland	MN	Mongolei	UA	Ukraine
Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten vo:
Kanada	IT	Italien	MX	Mexiko		Amerika
Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
Kongo	KE	Kenia	NL	Niederlande	VN	Victnam
Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
Kamerun		Korea	PL	Polen		
China	KR	Republik Korea	PT	Portugal		
Kuba	KZ	Kasachstan	RO	Rumänien		
Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
Deutschland	u	Liechtenstein	SD	Sudan		
Dänemark	LK	Sri Lanka	SE	Schweden		
Estland	LR	Liberia	SG	Singapur		
						•
	Armenien Osterreich Australien Aserbaidschan Bosnien-Herzegowina Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Belarus Kanada Zentralafrikanische Republik Kongo Schweiz Côte d'Ivoire Kamerun China Kuba Tschechische Republik Deutschland Dänemark	Armenien FI Osterreich FR Australien GA Aserbaidschan GB Bosnien-Herzegowina GE Barbados GH Belgien GN Burkina Faso GR Bulgarien HU Benin IE Brasilien IL Belarus IS Kanada IT Zentralafrikanische Republik JP Kongo KE Schweiz KG Côte d'Ivoire KP Kamerun China KR Kuba KZ Tschechische Republik LC Deutschland LI Dänemark LK	Amenien FI Finnland Osterreich FR Frankreich Australien GA Gabun Aserbaidschan GB Vereinigtes Königreich Bosnien-Herzegowina GE Georgien Barbados GH Ghana Belgien GN Guinea Burkina Faso GR Griechenland Bulgarien HU Ungarn Benin IE Irland Brasilien IL Israel Belarus IS Island Kanada IT Italien Zentralafrikanische Republik JP Japan Kongo KE Kenia Schweiz KG Kirgisistan Côte d'Ivoire KP Demokratische Volksrepublik Kamerun China KR Republik Korea Kuba KZ Kasachstan Tschechische Republik LC St. Lucia Deutschland Dänemark LK Sri Lanka	Armenien FI Finnland LT Osterreich FR Frankreich I.U Australien GA Gabun I.V Aserbaidschan GB Vereinigtes Königreich MC Bosnien-Herzegowina GE Georgien MD Barbados GH Ghana MG Belgien GN Guinea MK Burkina Faso GR Griechenland Bulgarien HU Ungarn ML Benin IE Irland MN Brasilien IL Israel MR Belarus IS Island MW Kanada IT Italien MX Zentralafrikanische Republik JP Japan NE Kongo KE Kenia NL Schweiz KG Kirgisistan NO Côte d'Ivoire KP Demokratische Volksrepublik NZ Kamerun KR Republik Korea PT Kuba KZ Kasachstan RO Tschechische Republik LC St. Lucia RU Deutschland LI Liechtenstein SD Dänemark LK Sri Lanka SE	Armenien FI Finnland LT Litauen Osterreich FR Frankreich I.U Luxemburg Australien GA Gabun I.V Lettland Aserbaidschan GB Vereinigtes Königreich MC Monaco Bosnien-Herzegowina GE Georgien MD Republik Moldau Barbados GH Ghana MG Madagaskar Belgien GN Guinea MK Die chemalige jugoslawische Burkina Faso GR Griechenland Republik Mazedonien Bulgarien HU Ungarn ML Mali Benin IE Irland MN Mongolei Brasilien IL Israel MR Mauretanien Belarus IS Island MW Malawi Kanada IT Italien MX Mexiko Zentralafrikanische Republik JP Japan NE Niger Kongo KE Kenia NL Niederlande Schweiz KG Kirgisistan NO Norwegen Côte d'Ivoire KP Demokratische Volksrepublik NZ Neuseeland Kamerun Korea PL Polen China KR Republik Korea PT Portugal Kuba KZ Kasachstan RO Rumânien Tschechische Republik LC St. Lucia RU Russische Pöderation Dünemark LK Sri Lanka SE Schweden	Armenien FI Finnland LT Litauen SK Osterreich FR Frankreich I.U Luxemburg SN Australien GA Gabun I.V Lettland SZ Aserbaidschan GB Vereinigtes Königreich MC Monaco TD Bosnien-Herzegowina GE Georgien MD Republik Moldau TG Barbados GH Ghana MC Madagaskar TJ Belgien GN Guinea MK Die ehemalige jugoslawische TM Burkina Faso GR Griechenland Republik Mazedonien TR Bulgarien HU Ungarn ML Mali TT Benin IE Irland MN Mongolei UA Brasilien IL Israel MR Mauretanien UG Belarus IS Island MW Malawi US Kanada IT Italien MX Mexiko Zentralafrikanische Republik JP Japan NE Niger UZ Kongo KE Kenia NL Niederlande VN Schweiz KG Kirgisistan NO Norwegen YU Côte d'Ivoire KP Demokratische Volksrepublik NZ Neuseeland ZW Kamerun KR Republik Korea PL Polen China KR Republik Korea PT Portugal Kuba KZ Kasachstan RO Rumânien TScheechische Republik LC St. Lucia RU Russische Pöderation Denemark LK Sri Lanka SE Schweden

Exendin-Analoga, Verfahren zu deren Herstellung und diese enthaltende Arzneimittel

5

15

20

25

30

Diese Erfindung betrifft neue Exendin-Analoga, welche bei der Therapie des Diabetes mellitus eingesetzt werden können, Verfahren zu deren Herstellung und diese enthaltende Arzneimittel.

10 Hintergrund der Erfindung

Eine funktionelle Verbindung zwischen Dünndarm und exokrinem Pankreas wurde in den sechziger Jahren bewiesen, nachdem die exakte Bestimmung von Insulin im Plasma möglich wurde. Die Insulinantwort nach oraler Glukosegabe ist wesentlich kräftiger als die nach intravenöser Glukoseapplikation, auch wenn identische Glukoseplasmaspiegel erreicht werden. Diesen "Inkretin-Effekt" erklärt man im funktionellen Verbund der entero-insulären Achse. Verantwortlich für diesen Effekt sind Darmhormone, die nach Mahlzeiten vom Dünndarm freigesetzt, erhöht meßbar im Plasma zirkulieren und die Glukose-induzierte Insulinfreisetzung verstärken. Neben dem klassischen Inkretinhormon "Gastric inhibitory polypeptide I" (GIP), ist heute "Glucagon-like peptide-1" (GLP-1) in den Vordergrund des Interesses gerückt. In relativ kurzer Zeit ist GLP-1 vom physiologisch interessantesten Inkretinhormon-Kandidaten zur potentiellen Alternative zur Behandlung des Diabetes mellitus Typ II gereift. Die vorliegende Erfindung beschreibt neue Substanzen, die dem natürlich vorkommenden GLP-1 Molekül in der Wirkung nachempfunden sind. Die neuen Substanzen zeichnen sich durch erhöhte Stabilität bei erhaltener Wirksamkeit aus.

Antidiabetogene Wirkung

Infusion und subkutane Injektion von GLP-1 bewirken bei Patienten mit Diabetes mellitus Typ II eine deutliche Steigerung der Insulinsekretion sowie eine Hemmung der Glukagonfreisetzung (Gutniak, M. (1992); Kreymann, B. (1987); Nathan, D.M. (1992); Nauck, M.A. (1993a & b)). Beides ist aus therapeutischer Sicht von Interesse und an der blutzuckersenkenden Wirkung von GLP-1 beteiligt: Insulin fördert an seinen

15

20

25

30

Zielgeweben die Glukoseaufnahme sowie eine Hemmung der Glukoneogenese.

Desweiteren ist bei GLP-1-Analogen eine Verstärkung der Glukoseaufnahme in der Peripherie zu erwarten. Die Hemmung der Glukagonsekretion muß als indirekte GLP-1-Wirkung angesehen werden, da Glukagon-produzierende A-Zellen keine GLP-1

Rezeptoren exprimieren (Komatsu, R. (1989)). Vielmehr scheint dafür die erhöhte Insulin- und Somatostatinfreisetzung ausschlaggebend zu sein. Beide Hormone sind als Hemmstoffe der Glukagonfreisetzung bekannt.

Sicherlich tragen zwei molekulare Mechanismen zur GLP-1-induzierten
Insulinfreisetzung bei Diabetes mellitus Typ II bei. Neben der direkten Verstärkung der
Glukose-induzierten Insulinfreisetzung sensibilisiert GLP-1 eine Subgruppe von B-Zellen
gegenüber dem Schlüsselreiz "Glukose" (Fehmann, H.C. (1991)) und möglicherweise
auch gegenüber weiteren Stimuli, so daß insgesamt mehr B-Zellen Insulin sezernieren.
Diese "Priming"-Wirkung erklärt am ehesten die Tatsache, daß GLP-1 trotz seiner relativ
kurzen Plasma-Halbwertszeit zu einer langanhaltenden Insulinfreisetung führt.

Diese Wirkung ist abhängig von erhöhten Glukose-Spiegeln (> 108 mg/dl) (Göke, R. (1993a)). Sie unterscheidet GLP-1 grundsätzlich von den Sulfonylharnstoffen, die die Insulinsekretion unabhängig vom Glukose-Plasmaspiegel beeinflussen. Sinkt der Glukosewert unter 108 mg/dl, so versiegt die Insulinsekretion selbst bei intravenöser Infusion von GLP-1. Daher sind beim therapeutischen Einsatz von GLP-1 kaum Hypoglykämien zu erwarten. Tatsächlich wurden sie in den bisherigen klinischen Studien auch nicht beschrieben. Problematisch sind allerdings die pharmakokinetischen Eigenschaften von GLP-1. Aufgrund seiner sehr kurzen Halbwertszeit ist die Wirkdauer nur begrenzt.

Aus therapeutischer Sicht ist in jedem Fall die Synthese stabiler und wirkungsstarker GLP-1 analoger Peptide wünschenswert. Es wurden nun auf der Basis des ursprünglich aus dem Gift von Echsen isolierten Moleküls Exendin Peptidanaloga synthetisiert, mit dem Ziel verbesserte abbaustabilisierte Therapeutika mit verlängerter Wirkdauer zur Lehandlung des Diabetes mellitus zu entwickeln. Diese Peptide haben die gleiche

pharmakologische Wirkung wie GLP-1, weisen aber überraschenderweise eine deutlich längere Halbwertszeit auf.

Die als Gegenstand der Erfindung beschriebenen neuen Peptidsequenzen zeigen Wirkung auf Insulinsynthese und -abgabe sowie Wirkung auf den Insulineffekt insbesondere die Glucoseaufnahme in den Zielgeweben Muskel- und Fettgewebe, sowie der Magenentleerung.

Gegenstand der Erfindung

Die vorliegende Erfindung basiert auf der Sequenz von Exendin-3 und Exendin-4, 10 Peptiden, welche aus dem Sekret von Heloderma horridum bzw. Heloderma suspectum isoliert wurden (Eng, J. et al. (1990,1992)). Die Aminosäuren-Sequenz und Wirkung der beiden Peptide am Pankreas wurde bereits von mehreren Autoren publiziert (Eng, J. et al. (1990); Raufman, J. P.(1992); Göke, R. (1993b); Thorens, B. (1993)). Gegenstand dieser Erfindung sind neue verkürzte Exendin-Fragmente, welche die 15 Aminosäuresequenzen von Exendin-3-(1-30), oder Exendin-4-(1-30) umfassen, wobei das C-terminale Ende dieser Sequenzen um bis zu 3 Aminosäuren verkürzt, vorzugsweise um höchstens 1 Aminosäure, und das N-terminale Ende um bis zu 2, vorzugsweise höchstens 1 Aminosäure, verkürzt sein kann. Überraschenderweise sind diese Exendin-Fragmente biologisch wirksam, obwohl die Aminosäuresequenz verkürzt 20 ist. Verkürzte Aminosäuresequenzen sind wirtschaftlicher herzustellen als vergleichsweise längere Sequenzen. Besonders bevorzugt sind also Peptidfragmente mit den folgenden Sequenzen; insbesondere sind die Peptidfragmente, die auf Exendendin-3 (1-30) (Seq. ID No.1) beruhen:

25

SEQ ID NO: 1 basiert auf Exendin-3

20

25

SEQ ID NO: 2 basiert auf Exendin-4

wobei die Aminosäuren an Position 1, 2, 28, 29 oder 30 je nach gewünschter

Kettenlänge Teil der Sequenz sein können. Die Peptide sind vom N-Terminus zum CTerminus durchnumeriert. X₁ bedeutet eine proteogene oder nichtproteogene
Aminosäure außer Glycin.

Bevorzugt sind Exendin- und Exendinanaloga mit einer Kettenlänge von 1-27, besonders bevorzugt solche mit einer Kettenlänge 1-30.

Die Carboxylgruppe COR₃ der Aminosäure am C-terminalen Ende kann in freier Form (R₃ = OH) oder in Form eines physiologisch verträglichen Alkali- oder Erdalkalisalzes, wie z. B. des Natrium-, Kalium- oder Calciumsalzes vorliegen. Die Carboxylgruppe kann auch mit primären, sekundären oder tertiären Alkoholen verestert sein, wie z. B. Methanol, verzweigten oder unverzweigten C₁-C₆-Alkylalkoholen, insbesondere Ethylalkohol oder tert.-Butanol. Die Carboxylgruppe kann aber auch mit primären oder sekundären Aminen amidiert sein, wie z. B. Ammoniak, verzweigten oder unverzweigten C₁-C₆-Alkylaminen oder C₁-C₆-Di-Alkylaminen, insbesondere Methylamin oder Dimethylamin.

Die Aminogruppe der Aminosäure NR_1R_2 am N-terminalen Ende kann in freier Form $(R_1, R_2 = H)$ oder in Form eines physiologisch verträglichen Salzes, wie z. B. des Chlorides oder Acetats vorliegen. Die Aminogruppe kann auch mit Säuren acetyliert sein, so daß $R_1 = H$ und $R_2 = Acetyl$ -, Trifluoracetyl-, Adamantyl-, oder durch die gängigen Aminoschutzgruppen der Peptidchemie, wie z. B. Fmoc, Z, Boc, Alloc geschützt vorliegen, oder N-alkyliert sein mit R_1 und/oder $R_2 = C_1$ - C_6 - Alkyl oder C_2 - C_8 - Alkenyl oder C_7 - C_9 -Aralkyl.

Unter Alkylresten werden geradkettige, verzweigte oder gegebenenfalls ringförmige Alkylreste verstanden, vorzugsweise Methyl, Ethyl, Isopropyl und Cyclohexyl.

5 Alle Exendin-Fragmente können als voll oder partiell geschützte Derivate vorliegen.

Gegenstand dieser Erfindung sind außerdem Exendin-Fragmente mit den oben genannten Eigenschaften und Sequenzlängen, bei denen zusätzlich mindestens eine aber maximal elf der unter (a) bis (p) aufgeführten Modifikationen durchgeführt wurden. Bevorzugt sind solche Exendin-Fragmente, die maximal 9, besonders bevorzugt sind solche, die maximal 5 der unter (a) bis (p) aufgeführten Modifikationen aufweisen.

- (a) Die α-Aminosäure in Position 1 ist D-His, Ala, D-Ala, Gly, Lys oder D-Lys, wobei Ala, Gly oder Lys besonders bevorzugt werden; oder
- (b) Die α-Aminosäure in Position 2 ist Ser, D-Ser, Thr, D-Thr, Gly, Ala, D-Ala, Ile, D-Ile, Val, D-Val, Leu oder D-Leu, bevorzugt Ser, Thr, Gly, Ala, Val, Ile oder Leu; oder
 - (c) Die α-Aminosäure in Position 3 ist Glu, D-Glu, Asp, D-Asp, Ala oder D-Ala, bevorzugt Glu, Asp oder Ala; oder
- 20 (d) Die Aminosäure in Position 4 ist Ala, D-Ala oder β-Ala, bevorzugt Ala; oder
 - (e) Die α -Aminosäure in Position 5 ist Ser, Tyr oder Ala; oder
 - (f) Die α-Aminosäure in Position 6 ist Ala, Ile, Val, Leu, Cha oder Tyr, bevorzugt Ala,
 Ile, Val, Leu oder Tyr; oder
- (g) Die α-Aminosäure in Position 7 ist Ala, D-Ala, Tyr, D-Tyr, Ser, D-Ser oder D-Thr,
 bevorzugt Ala, Tyr oder Ser; oder
 - (h) Die α -Aminosäure in Position 8 ist Ala, Tyr oder Thr; oder
 - (i) Die α-Aminosäure in Position 9 ist Ala, D-Ala, Glu, D-Glu oder D-Asp, bevorzugt Ala oder Glu; oder
- (j) Die Aminosäuren in Position 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 24, 28, 29 sind
 30 unabhängig voneinander eine proteinogene oder nicht-proteinogene D- oder L Aminosäure, bevorzugt eine proteinogene L-Aminosäure; oder

15

- (k) Die α-Aminosäure in Position 13 ist eine neutrale L-Aminosäure, bevorzugt eine neutrale proteinogene L-Aminosäure; oder
- Die α-Aminosäure in Position 14 wird zur Stabilisierung ersetzt durch eine neutrale L- oder D-Aminosäure, außer L-Leucin, bevorzugt durch Nle, D-Nle, Ala, D-Ala, Ile, D-Ile, Val oder D-Val, besonders bevorzugt sind Ile, Val oder Ala; oder
- (m) Die α-Aminosäure in Position 22 ist D-Phe, Tyr, D-Tyr, Leu, D-Leu, Val, D-Val, L-Cha, D-Cha, β-1-Nal, β-2-Nal oder β-1-D-Nal, bevorzugt sind Tyr, Leu oder Val; oder
- (n) Die α-Aminosäure in Position 23 ist Leu, D-Leu, D-Ile, Val, D-Val, L-Cha, D-Cha,
 Tyr, D-Tyr, Phe oder D-Phe, bevorzugt sind Leu, Val, Tyr oder Phe; oder
 - (o) Die α-Aminosäure in Position 25, 26 oder 27 ist eine neutrale L- oder D-Aminosäure, bevorzugt eine neutrale, proteinogene L-Aminosäure; oder
 - (p) Die α-Aminosäure in Position 30 ist eine proteinogene oder nicht-proteinogene Doder L-Aminosäure außer Glycin, bevorzugt Arg, D-Arg, Tyr oder D-Tyr, besonders bevorzugt sind Arg oder Tyr.

Unter den neuen Exendin-Fragmenten sind solche besonders bevorzugt, welche neben den schon genannten Eigenschaften und Sequenzlängen, an Position 10 die Aminosäure Leucin und/oder an Position 19 die Aminosäure Valin, an Position 14 anstelle von Methionin die Aminosäure Isoleucin oder Alanin und an Position 30 Arginin enthalten.

Besonders bevorzugt sind auch diejenigen Modifikationen von Exendin-Fragmenten, bei denen sich, zusätzlich zu den erwähnten besonders bevorzugten Aminosäuren an den Positionen 10, 14, 19 und 30, an der Position 2 eine der 20 bekannten proteinogenen L-Aminosäuren befindet.

Bevorzugte Exendinanaloga weisen einen Austausch in Position 3 oder 14 auf, besonders bevorzugt in Position 2, ganz besonders bevorzugt enthalten die Exendinanaloga nur proteinogene Aminosäuren.

Gegenstand der Erfindung sind neben neuen verkürzten und stabilisierten Exendin-3 und Exendin-4 Analoga auch Verfahren zur Herstellung dieser Analoga, bei denen man die

Analoga in Festphasensynthese aus geschützten, in den Analoga enthaltenen Aminosäuren, herstellt, die in der Reihenfolge aneinander gekoppelt werden, welche den Aminosäuresequenzen in den Analoga entsprechen und welche gegebenenfalls durch entsprechende nicht in den natürlichen Exendin-Peptiden vorkommende Aminosäuren ergänzt wurden.

Das Glycin in Position 30, der Exendin-3 oder Exendin-4-Sequenz wurde gegen eine andere proteogene oder nicht-proteogene Aminosäure ausgetauscht, um bei der Synthese nach der Abspaltung der aminoterminalen Schutzgruppe, keine Diketopiperazinbildung vorliegen zu haben.

Die Exendin-(1-30)-Analoga und Fragmente sind gegenüber den Exendinen-1(1-39) vorteilhaft, da durch die kürzeren Sequenzen diese Analoga einfacher und in höheren Ausbeuten synthetisiert werden können.

Die verwendeten Abkürzungen und Definitionen der Aminosäuren wurden in Pure Appl. Chem. 31, 639-45 (1972) und ibid. 40, 277-90 (1974) empfohlen und stimmen mit den PCT-Regeln (WIPO Standard St. 23: Recommendation for the Presentation of Nucleotide and Amino Acid Sequences in Patent Applications and in Published Patent Documents) überein. Die Ein- bzw. Drei-Buchstabencodes sind wie folgt:

Aminosäureabkürzungen

Aminosäure	Drei-Buchstaben-	Ein-Buchstaben-Code
	Code	
Alanin	Ala	A
Arginin	Arg	R
Asparagin	Asn	N
Asparaginsäure	Asp	D
Cystein	Cys	С
Glutamin	Gln	Q

Glutaminsäure	Glu	E
Glycin	Gly	G
Histidin	His	Н
Isoleucin	Ile	I
Leucin	Leu	L
Lysin	Lys	K
Methionin	Met	M
Phenylalanin	Phe	F
Prolin	Pro	P
Serin	Ser	S
Threonin	Thr	T
Tryptophan	Тгр	W
Tyrosin	Тут	Y
Valin	Val	V
andere Aminosäuren	Xaa	X

Die Abkürzungen stehen für L-Aminosäuren, falls keine weiteren Spezifikationen wie Doder D,L- angegeben sind. D-Aminosäuren werden im Ein-Buchstabencode mit kleinen Buchstaben geschrieben. Bestimmte Aminosäuren, natürliche wie nichtnatürliche sind achiral, z. B. Glycin. Bei der Darstellung aller Peptide befindet sich das N-terminale Ende links und das C-terminale Ende rechts.

Beispiele für nichtproteinogene Aminosäuren sind in folgender Auflistung mit ihren Abkürzungen angegeben:

β-Alanin	β-Ala
o-Aminobenzoesäure	Oab
m-Aminobenzoesäure	Mab
p-Aminobenzoesäure	Pab
m-Aminomethylbenzoesäure	Amb

ω-Aminohexansäure	Ahx
ω-Aminoheptansäure	Ahp
ω-Aminooctansäure	Aoc
ω-Aminodecansäure	Ade
ω-Aminotetradecansäure	Atd
Citrullin	Cit
Cyclohexylalanin	Cha
α,γ-Diaminobuttersäure	Dab
α,β-Diaminopropionsäure	Dap
Methionin-Sulfoxid	Met(O)
C ^a -Methyl-Alanin	Aib
N-Methyl-Glycin (Sarkosin)	Sar
Naphtylalanin	Nal
Norleucin	Nle
Ornithin	Orn
1,2,3,4-Tetrahydroisochinolin-3-carbonsäure	Tic
Alle Aminosäuren lassen sich nach ihren physik	calisch-chemischen Eigenscha

Alle Aminosäuren lassen sich nach ihren physikalisch-chemischen Eigenschaften in die folgenden drei Hauptklassen unterteilen:

Sauer: Die Aminosäure gibt in wässriger Lösung und bei physiologischem pH ein Proton ab und trägt infolgedessen eine negative Ladung.

Basisch: Die Aminosäure nimmt in wässriger Lösung und bei physiologischem pH ein Proton auf und trägt infolgedessen eine positive Ladung.

Neutral: Die Aminosäure ist in wässriger Lösung und bei physiologischem pH in einem ungeladenen Zustand.

10

15

20

Die Definition "trägt eine positive/negative Ladung" oder " ist im ungeladenen Zustand" trifft dabei dann zu, wenn im statistischen Mittel eine signifikante Anzahl von Aminosäuren einer Klasse (mindestens 25%) sich im genannten Zustand befindet.

Neben den 20 sogenannten proteinogenen Aminosäuren, deren Einbau in Proteine durch die Information des genetischen Codes geregelt ist, lassen sich auch nicht proteinogene über die beschriebenen Syntheseverfahren in Peptidsequenzen einbauen. Eine Aufzählung der proteinogenen Aminosäuren und deren Einteilung in die oben genannten drei Klassen ist in Tabelle 1 gegeben. Nicht-proteinogene Aminosäuren sind nicht genetisch codiert. Beispiele für nicht-proteinogene Aminosäuren und deren Einteilung in saure, basische oder neutrale Aminosäuren sind in Tabelle 1 gegeben.

Tabelle 1

	proteinogen	nicht proteinoge
sauer	Asp, Glu	
basisch	Arg, His, Lys	Dab, Dap, Om
neutral	Ala, Asn, Cys, Gln, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val	B-Ala, Aib, Cit, Cha, Oab, Mab, Pab, Amb, Ahx, Ahp, Aoc, Ade, Atd, Nal, Nle, Sar, Tic

Die Exendin Analoga, welche Gegenstand dieser Erfindung sind, besitzen vorteilhafte therapeutische Eigenschaften. So führen sie zu einer Stimulation der Insulinfreisetzung aus dem endokrinen Pankreas, zu einer Erhöhung der Insulinbiosynthese sowie zu einer vermehrten peripheren Glukose-Utilisation. Da diese Effekte nur bei gleichzeitig erhöhten Blutzuckerspiegeln zu beobachten sind, ist nach ihrer Verabreichung nicht mit dem Auftreten einer Hypoglykämie zu rechnen. Weiterhin hemmen die Exendin-Analoga die Glukagonfreisetzung aus dem endokrinen Pankreas und führen so zu einer Absenkung der Glukoneogenese. Die Exendin-Analoga führen beim nichtinsulinabhängigen Diabetes mellitus (NIDDM) zu einer deutlichen Verbesserung der Stoffwechselsituation. Insbesondere wird unabhängig von der Insulin-sekretorischen

20

25

30

Wirkung die Glukoseaufnahme in Muskel- und Fettgewebe gesteigert. Aufgrund der inhibitorischen Wirkung auf die Glukagonfreisetzung ist auch die Verabreichung der Exendin-Analoga beim insulinabhängigen Diabetes mellitus sinnvoll. Gegenüber Glucagon-like peptide-1 (GLP-1) und den bekannten Exendin-3 und Exendin-4

5 Sequenzen besitzen die erfindungsgemäßen Exendin-Analoga eine überraschend höhere Wirksamkeit in den verschiedenen Testsystemen, so daß sie für eine therapeutische Anwendung besser geeignet sind als GLP-1, Exendin-3 oder Exendin-4. Die Vorteile der neuen Exendin-Analoga sind insbesondere die folgenden: höhere Stabilität gegenüber Abbau und Metabolisierung, längere Wirkdauer, Wirksamkeit bei niedrigeren Dosen.

10 Besondere bevorzugt sind Analoga auf Basis von Exendin-3, die besonders lange Wirkdauern oder Wirksamkeit bei besonders niedriger Dosis zeigen.

Die Festphasen- und Flüssigphasensynthese ist ein übliches Verfahren zur Herstellung von Peptiden. Um das Verfahren für die Herstellung eines bestimmten Produktes im Hinblick auf die Reinheit des Rohproduktes und die Ausbeute zu optimieren, ist es erforderlich, die Prozeßparameter und die verwendeten Materialien, beispielsweise das Trägermaterial, die Reagenzien, welche Gruppen zur Reaktion bringen sollen, die Materialien für das Blockieren der Gruppen, welche nicht reagieren sollen, oder die Reagenzien, welche blockierende Materialien abspalten, an das herzustellende Produkt, an die herzustellenden Zwischenprodukte bzw. Ausgangsmaterialien anzupassen. Diese Anpassung ist angesichts der Interpendenz der vielen Verfahrensparameter nicht einfach.

Arzneimittel, welche die erfindungsgemäßen Peptide einzeln oder zusammen als aktiven Wirkstoff neben üblichen Hilfs-und Zusatzstoffen enthalten, werden vorzugsweise parenteral (subcutan, intramuskulär oder intravenös) verabreicht. In Frage kommen aber auch alle sonst üblichen Applikationsverfahren wie oral, rectal, buccal (einschließlich sublingual), pulmonal, transdermal, iontophoretisch, vaginal und intranasal. Das Arzneimittel hat eine insulinregulierende Wirkung und fördert dabei in vorteilhafter Weise den Ausgleich des Blutzuckerspiegels. Vorteilhaft für die Anwendung des Arzneimittels ist es, wenn Blutspiegel zwischen 20 und 50 pmol/l erreicht werden. Dazu sind Infusionsraten von 0,4 - 1,2 pmol/kg/Min. erforderlich. Bei subcutaner bzw buccaler

Applikation sind je nach galenischer Form und angestrebter Wirkdauer Substanzmengen von 5 - 500 nmol erforderlich.

Die erfindungsgemäßen Exendin-Analoga oder pharmakologisch verträglichen Salze

hiervon werden vorzugsweise als sterile Lyophilisate gelagert und vor der Applikation
mit einer geeigneten isotonischen Lösung vermischt. In dieser Form können die Analoga
dann injiziert, infundiert oder gegebenenfalls auch durch die Schleimhäute absorbiert
werden. Als Lösungsmittel können die üblichen, für die Injektion oder Infusion
geeigneten isotonischen, wässrigen Systeme, die die bei Injektionslösungen üblichen

Zusätze wie Stabilisierungsmittel und Lösungsvermittler enthalten, verwendet werden.
Physiologische Kochsalzlösung oder gegebenenfalls durch Puffer isotonisch gestellte
Lösungen werden in diesem Fall bevorzugt.

Zusätze sind z. B. Tartrat- oder Citratpuffer, Ethanol, Komplexbildner (wie Ethylendianmintetraessigsäure und deren nichttoxischen Salze), hochmolekulare 15 Polymere (wie flüssiges Polyethylenoxid) zur Viskositätsregelung. Flüssige Trägerstoffe für Injektionslösungen müssen steril sein und werden vorzugsweise in Ampullen abgefüllt. Feste Trägerstoffe sind z. B. Stärke, Lactose, Mannit, Methylcellulose, Talkum, hochdisperse Kieselsäuren, höhermolekulare Fettsäuren (wie Stearinsäure), Gelantine, Agar-Agar, Calciumphosphat, Magnesiumstearat, tierische und pflanzliche 20 Fette, feste hochmolekulare Polymere (wie Polyethylenglykol); für orale Applikation geeignete Zubereiteungen können falls gewünscht Geschmacks- und Süßstoffe enthalten. Für die nasale Applikation können Surfactants zur Verbesserung der Absorption durch die nasale Schleimhaut zugesetzt werden, z. B. Cholsäure, Taurocholsäure, Chenodeoxycholsäure, Glykolsäure, Dehydrocholsäure, Deoxycholsäure und 25 Cyclodextrine.

Die zu verabreichende Tagesdosis liegt im Bereich von 150-500 nmol. Die Bestimmung der biologischen Aktivität basiert auf Messungen gegen internationale Referenzpräparationen für Glucagon-like peptide-1, Exendin-3 oder Exendin-4 in einem gebräuchlichen Testverfahren für Glucagon-like peptide-1.

20

Die erfindungsgemäßen Exendin-Analoga können nach den in der Peptidsynthese üblichen Verfahren hergestellt werden, wie sie z. B. in J. M. Steward und J. D. Young "Solid Phase Peptide Synthesis", 2nd ed., Pierce Chemical Co., Rockford, Illinois (1984) und J. Meienhofer "Hormonal Proteins and Peptides", Vol. 2, Academic Press, New York, (1973) für die Festphasensynthese und in E. Schroder und K. Lubke "The Peptides", Vol. 1, Academic Press, New York, (1965) für die Flüssigphasensynthese beschrieben worden sind.

10 Allgemeine Verfahren zur Peptidsynthese

Im allgemeinen werden bei der Synthese von Peptiden geschützte Aminosäuren zu einer wachsenden Peptidkette addiert. Die erste Aminosäure ist entweder an der Aminogruppe oder der Carboxylgruppe sowie an jeglicher reaktiver Gruppe in der Seitenkette geschützt. Diese geschützte Aminosäure wird entweder an einen inerten Träger gekoppelt oder kann auch in Lösung eingesetzt werden. Die nächste Aminosäure in der Peptidsequenz wird passend geschützt unter Bedingungen, welche die Ausbildung einer Amidbindung begünstigen, zu der ersten gegeben. Nachdem alle gewünschten Aminosäuren in der richtigen sequentiellen Abfolge gekuppelt wurden, werden die Schutzgruppen und gegebenenfalls die Trägerphase abgespalten. Das erhaltene rohe Polypeptid wird umgefällt und vorzugsweise chromatographisch zum Endprodukt gereinigt.

Eine bevorzugte Methode zur Darstellung von Analoga physiologisch aktiver
Polypeptide, mit weniger als etwa vierzig Aminosäuren, beinhaltet die
Festphasenpeptidsynthese. Bei dieser Methode werden die α-Aminofunktionen (Nα) und jegliche reaktive Seitenketten mit säure- oder basenlabilen Gruppen geschützt. Die verwendeten Schutzgruppen sollten unter den Bedingungen der Knüpfung von Amidbindungen stabil sein, aber sich leicht abspalten lassen ohne die entstandene
Polypeptidkette zu beeinträchtigen. Zu den geeigneten Schutzgruppen für die α-Aminofunktion gehören die folgenden Gruppen, sind aber nicht auf diese limitiert: t-

Butyloxycarbonyl (Boc), Benzyloxycarbonyl (Z), o-Chlorbenzyloxycarbonyl, Biphenylisopropyloxycarbonyl, tert.-Amyloxycarbonyl (Amoc), α,α-Dimetyl-3,5-dimethoxybenzyloxycarbonyl, o-Nitrosulfenyl, 2-Cyano-t-butoxycarbonyl, 9-Fluorenylmethoxycarbonyl (Fmoc), 1-(4,4-dimethyl-2,6-dioxocylohex-1-yliden)ethyl
 (Dde) und ähnliche. Vorzugsweise wird 9-Fluorenylmethoxycarbonyl (Fmoc) als Nα-Schutzgruppen eingesetzt.

Zu den geeigneten Seitenkettenschutzgruppen gehören die folgenden, sind aber nicht auf diese limitiert: Acetyl, Allyl (All), Allyloxycarbonyl (Alloc), Benzyl (Bzl),
 Benzyloxycarbonyl (Z), t-Butyloxycarbonyl (Boc), Benzyloxymethyl (Bom), o-Brombenzyloxycarbonyl, t-Butyl (tBu), t-Butyldimethylsilyl, 2-Chlorbenzyl, 2-Chlorbenzyloxycarbonyl (2-ClZ), 2,6-Dichlorbenzyl, Cyclohexyl, Cyclopentyl, 1-(4,4-dimethyl-2,6-dioxocylohex-1-yliden)ethyl (Dde), Isopropyl, 4-Methoxy-2,3,6-trimethylbenzyl-sulfonyl (Mtr), 2,2,5,7,8 Pentamethylchroman-6-sulfonyl (Pmc), Pivalyl,
 Tetrahydropyran-2-yl, Tosyl (Tos), 2,4,6-Trimethoxybenzyl, Trimethylsilyl und Trityl (Trt).

Bei der Festphasensynthese wird die C-terminale Amionosäure als erste an ein geeignetes Trägermaterial gekuppelt. Geeignete Trägermaterialien sind solche, die inert gegen die Reagenzien und die Reaktionsbedingungen der schrittweisen Kondensations- und 20 Abspaltungsraktionen sind, und welche sich nicht in den benützten Reaktionsmedien lösen. Beispiele für kommerziell erhältliche Trägermaterialien beinhalten Styrol/Divinylbenzol Copolymerisate, welche mit reaktiven Gruppen und/oder Polyethylenglykol modifiziert wurden, so auch chlormethyliertes Styrol/Divinylbenzol Copolymer, hydroxy- oder aminomethyliertes Styrol/Divinylbenzol Copolymer und 25 ähnliche. Mit 4-Benzyloxybenzylalkohol (Wang-Anker (Wang, S. S. 1973)) oder 2-Chlortritylchlorid (Barlos, K. et. al. 1989) derivatisiertes Polystyrol(1%)divinylbenzol oder TentaGel® (Rapp Polymere, Tübingen) wird bevorzugt eingesetzt, falls die Peptidsäure dargestellt werden soll. Handelt es sich um das Peptidamid, so wird das mit 5-(4'-aminomethyl)-3',5'-dimethoxy-phenoxy)valeriansäure (PAL-Anker) (Albericio, F. 30 et. al. 1987) oder der p-(2,4-Dimethoxyphenyl-aminomethyl)-phenoxy-Gruppe (Rink-

20

25

Amid-Anker (Rink, H. 1987)) derivatisiertes Polystyrol(1%)divinylbenzol oder TentaGel® bevorzugt.

Die Anknüpfung an die polymeren Träger kann durch Reaktion der C-terminalen Fmocgeschützten Aminosäure, unter Zusatz eines Aktivierungsreagenzes, in Ethanol,
Acetonitril, N,N-Dimethylformamid (DMF), Dichlormethan, Tetrahydrofuran, NMethylpyrrolidon oder ähnlichen Solventien, vorzugsweise in DMF, mit dem
Trägermaterial bei Raumtemperatur oder erhöhten Temperaturen, z.B. zwischen 40°C
und 60°C, vorzugsweise bei Raumtemperatur, und Reaktionszeiten von 2 bis 72

Stunden, vorzugsweise etwa 2 × 2 Stunden, erreicht werden.

Die Kupplung der Nα-geschützten Aminosäure, vorzugsweise der Fmoc-Aminosäure, an das PAL-, Wang- oder Rink-Anker kann beispielsweise mit Hilfe von Kupplungsreagenzien wie N,N'-Dicyclohexylcarbodiimid (DCC), N,N'-

Diisopropylcarbodiimid (DIC) oder anderen Carbodiimiden, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborat (TBTU) oder anderen Uronium-Salzen, O-Acyl-Harnstoffen, Benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphat (PyBOP) oder anderen Phosphonium-Salzen, N-hydroxysuccinimiden, anderen N-Hydroxyimiden, oder Oximen, in Gegenwart oder auch in Abwesenheit von 1-Hydroxybenzotriazol oder 1-Hydroxy-7-azabenzotriazol, vorzugsweise mit Hilfe von TBTU unter Zusatz von HOBt, mit oder ohne Zusatz einer Base wie beispielsweise Diisopropylethylamin (DIEA), Triethylamin oder N-Methylmorpholin, vorzugsweise Diisopropylethylamin, bei Reaktionszeiten von 2 bis 72 Stunden, vorzugsweise 3 Stunden, in einem 1,5 bis 3 fachem Überschuß der Aminosäure und der Kupplungsreagenzien, vorzugsweise in einem 2fachen Überschuß und Temperaturen zwischen etwa 10°C und 50°C, vorzugsweise bei 25°C, in einem

Temperaturen zwischen etwa 10°C und 50°C, vorzugsweise bei 25°C, in einem Lösungsmittel wie Dimethylformamid, N-Methylpyrrolidon oder Dichlormethan, vorzugsweise Dimethylformamid, durchgeführt werden. Anstelle der Kupplungseagenzien kann auch der Aktivester (z.B. Pentafluorphenyl, p-Nitrophenyl

30 oder ähnliche), das symmetrische Anhydrid der Nα-Fmoc-Aminosäure, deren

Säurechlorid oder -fluorid unter den oben beschriebenen Bedingungen eingesetzt werden.

Die Kupplung der Na-geschützten Aminosäure, vorzugsweise der Fmoc-Aminosäure, an das 2-Chlortrityl-Harz wird bevorzugt in Dichlormethan unter Zusatz von DIEA, bei Reaktionszeiten von 10 bis 120 Minuten, vorzugsweise 20 Minuten, durchgeführt, ist aber nicht auf die Verwendung dieses Lösungsmittels und dieser Base beschränkt.

10

15

20

25

30

Die sukzessive Kupplung der geschützten Aminosäuren kann nach den in der Peptidsynthese üblichen Verfahren typischerweise in einem Peptidsyntheseautomaten durchgeführt werden. Nach Abspaltung der Nα-Fmoc-Schutzgruppe der gekuppelten Aminosäure auf der Festphase durch Behandlung mit Piperidin (10% bis 50%) in Dimethylformamid für 5 bis 20 Minuten, vorzugsweise 2×2 Minuten mit 50% Piperidin in DMF und 1×15 Minuten mit 20% Piperidin in DMF, wird die nächste geschützte Aminosäure in einem 3 bis 10 fachem Überschuß, vorzugsweise in einem 10fachen Überschuß, in einem inerten, nichtwässrigen, polaren Lösungsmittel, wie Dichlormethan, DMF oder Mischungen aus beiden, vorzugsweise DMF, und Temperaturen zwischen etwa 10°C und 50°C, vorzugsweise bei 25°C, an die vorhergehende gekoppelt. Als Kupplungsreagenzien kommen die bei der Kupplung der ersten Nα-Fmoc-Aminosäure an den PAL-, Wang- bzw. Rink-Anker bereits erwähnten Reagenzien in Frage. Wiederum können alternativ auch Aktivester der geschützten Aminosäure deren Chloride oder Fluoride oder deren symmetrische Anhydride verwendet werden.

Am Ende der Festphasensynthese wird das Peptid vom Trägermaterial abgespalten unter gleichzeitiger Abspaltung der Seitenkettenschutzgruppen. Die Abspaltung kann mit Trifluoressigsäure oder anderen stark sauren Medien unter Zusatz von 5% - 20% v/v Scavengern wie Dimethylsulfid, Ethylmethylsulfid, Thioanisol, Thiokresol, m-Kresol, Anisol Ethandithiol, Phenol oder Wasser, vorzugsweise 15% v/v Dimethylsulfid/ Ethandithiol/ m-Kresol 1.1:1, innerhalb von 0,5 bis 3 Stunden, vorzugsweise 2 Stunden, erfolgen. In den Seitenkettten vollgeschützte Peptide werden durch Spaltung des 2-

Chlortritylankers mit Eis-essig/Trifluorethanol/Dichlormethan 2:2:6 erhalten. Das geschützte Peptid kann durch Chromatographie über Silicagel gereinigt werden. Ist das Peptid über den Wang-Anker mit der Festphase verbunden, und soll ein Peptid mit Cterminaler Alkylamidierung erhalten werden, so kann die Abspaltung über eine Aminolyse mit einem Alkylamin oder Fluoroalkylamin durchgeführt werden. Die Aminolyse wird bei Temperaturen zwischen etwa -10°C und 50°C, vorzugsweise etwa 25°C, und Reaktionszeiten zwischen etwa 12 und 24 Stunden, vorzugsweise etwa 18 Stunden, durchgeführt. Weiterhin kann das Peptid auch durch Umesterung, z. B. mit Methanol, vom Träger gespalten werden.

10

15

Die erhaltene saure Lösung wird mit der 3- 20 fachen Menge an kaltem Ether oder n-Hexan, vorzugsweise einem 10fachen Überschuß Diethylether versetzt, um das Peptid auszufällen und damit von den im Ether verbleibenden Scavengern und abgespaltenen Schutzgruppen abzutrennen. Eine weitere Reinigung kann durch mehrfaches Umfällen des Peptides aus Eis-essig erfolgen. Das erhaltene Precipitat wird in Wasser oder tert. Butanol oder Mischungen der beiden Lösungsmittel, vorzugsweise einer 1:1 Mischung von tert. Butanol/Wasser, aufgenommen und gefriergetrocknet.

Das erhaltene Peptid kann durch einzelne oder alle der folgenden chromatographischen

Methoden gereinigt werden: Ionenaustausch über ein schwach basisches Harz in der
Acetat Form; hydrophobe Adsorptionschromatographie an nicht derivatisierten Polystyrol/Divinylbenzol-Copolymeren (z.B. Amberlite[®] XAD); Adsorptionschromatographie
an Silicagel; Ionenaustauschchromatographie an Carboxymethylcellulose;

Verteilungschromatographie, z.B. an Sephadex® G-25;

Gegenstromverteilungschromatographie; oder Hochdruckflüssigkeitschromatographie
(HPLC), insbesondere "reversed-phase" HPLC an Octyl- oder Octadecylsilylsilica (ODS)
-Phasen.

Zusammenfassend beinhaltet ein Teil der vorliegenden Erfindung Verfahren zur

30 Darstellung von Polypeptiden, und deren pharmazeutisch verwendbaren Salzen. Diese
Verfahren, welche zu physiologisch aktiven verkürzten Homologen und Analogen von

WO 97/46584

PCT/EP97/02930

Exendin-3 oder Exendin-4, mit den oben erwähnten bevorzugten Kettenlängen und Modifikationen führen, setzen sich aus Verfahren zur sequentiellen Kondensation geschützter Aminosäuren auf einem geeigneten Trägermaterial, zur Abspaltung des Trägers und der Schutzgruppen, und zur Reinigung der erhaltenen Rohpeptide zusammen.

Die Aminosäurenanalyse wurde mit einem Aminosäurenanalysator 420A der Firma Applied Biosystems (Weiterstadt) durchgeführt. 50 bis 1000 pmol der zu analysierenden Probe wurden in 10 bis 40 µl Lösung auf den Probenträger aufgetragen und anschließend vollautomatisch in der Gasphase bei 160°C mit 6N Salzsäure 90 Minuten hydrolysiert, mit Phenylisothiocyanat derivatisiert und on-line über eine Microbore-HPLC analysiert. Massenspektroskopische Untersuchungen wurden wurden an einem API III Triple-Quadrupol-Massenspektrometer (SCIEX, Thornhill, Kanada) ausgerüstet mit Ionenspray Ionenquelle durchgeführt.

15

10

5

Die geschützten Aminosäurenderivate können z.B. von der Novabiochem GmbH (Bad Soden) bezogen werden.

Die folgenden Beispiele stellen nur eine illustrierende Auswahl des Erfindungsgedanken

dar und keine Einschränkung des Erfindungsgegenstandes.

Beispiel 1

HGEGTFTSDLSKQ-NIe-EEEAVRLFIEWLKNGR-NH₂ (SEQ ID Nr. 3) [NIe¹⁴, Arg³⁰]-Exendin-4-(1-30)-NH₂

- Beispiel 1 wurde in einem 0,02 mmol Ansatz nach der Festphasenmethode auf 5-(4'aminomethyl)-3',5'-dimethoxyphenoxy)valerianyl-alanyl-aminomethylpolystyrol(1%)divinylbenzol (Beladung: 0,5 mmol/g) auf einem Multiplen
 Peptidsyntheseautomaten SyRo II der Firma MultiSynTech (Bochum) synthestisiert. Die
 α-Aminofunktionen der Aminosäuren waren 9-Fluorenylmethoxycarbonyl (Fmoc)

 geschützt. Als Seitenkettenschutzgruppen wurden t-Butyl (tBu) für Asp, Glu, Ser und
 Thr, Trityl (Trt) für Asn, Gln und His, t-Butyloxycarbonyl (Boc) für Lys und Trp und
 2,2,5,7,8-Pentamethylchroman-6-sulfonyl (Pmc) für Arg eingesetzt. Die sequentielle
 Kupplung der geschützten Aminosäuren erfolgte in 10fachem Überschuß mit
 Doppelkupplungen von 2 mal 40 Minuten Dauer und mit N,N-Diisopropylcarbodiimid/1Hydroxybenzotriazol als Aktivierungsreagenzien. Die Abspaltung des Peptides vom
- Hydroxybenzotriazol als Aktivierungsreagenzien. Die Abspaltung des Peptides vom polymeren Träger unter gleichzeitiger Abspaltung der Schutzgruppen erfolgte in Trifluoressigsäure (85%) in Gegenwart von 15% Ethandithiol/Dimethylsulfid/m-Kresol (1:1:1 v/v/v) für 120 Minuten bei Raumtemperatur. Anschließend wurde das Peptid mit wasserfreiem Diethylether gefällt und zur vollständigen Entfernung der Thiole noch mehrfach mit wasserfreiem Diethyl-ether gewaschen. Gefriertrocknung des Precipitats aus Wasser/tert.-Butanol (1:1) ergab 62 mg des Rohpeptides. Das Rohpeptid wurde über reversed-phase HPLC mit einem Gradienten von 37% auf 42% Acetonitril/0,9% TFA in 30 Minuten gereinigt. Das Eluat wurde eingeengt, lyophilisiert und ergab eine Ausbeute von 29 mg eines weißen Feststoffes mit einer Reinheit von ≥ 97%.

25

Aminosäurenanalyse: Ala 1,08 (1); Asx 1,91 (2); Glx 6,10 (6); Phe 1,78 (2); Gly 3,10 (3); His 1,00 (1); Ile 0,88 (1); Lys 2,02 (2); Leu 3,24 (3); Nle 1,10 (1); Arg 1,98 (2); Ser 2,04 (2); Thr 1,99 (2); Val 0,91 (1); Trp 0,87 (1).

30 ESI-MS: 3488,2

Beispiel 2

HGEGTFTSDLSKQ-Nle-EEEAVRLFIEWLKNGY-NH₂ (SEQ ID Nr. 4) [Nle¹⁴, Tyr³⁰]-Exendin-4-(1-30)-NH₂

5

Beispiel 2 wurde in einem 0,0076 mmol Ansatz nach der Festphasenmethode auf TentaGel® (Rapp Polymere, Tübingen) synthetisiert, welches mit dem Rink-Amid-Anker (4-(2',4'-Dimethoxyphenyl-aminomethyl)-phenoxy-Gruppe) derivatisiert war (Beladung: 0,18 mmol/g) auf einem Multiplen Peptidsyntheseautomaten SyRo II der Firma

10 MultiSynTech (Bochum) synthetisiert. Die eingesetzten geschützten Aminosäuren waren analog zu Beispiel 1. Die sequentielle Kupplung der geschützten Aminosäuren erfolgte in 8fachem Überschuß mit Einfachkupplungen von 40 Minuten Dauer, bei 40°C und unter Rühren. Als Aktivierungsreagenzien wurden 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborat (TBTU)/1-Hydroxybenzotriazol unter Zusatz von Diisopropylethylamin verwendet. Die Abspaltung und Aufreinigung des Peptides erfolgte analog zu Beispiel 1. Es wurden 18,1 mg eines weißen Feststoffes mit einer Reinheit von ≥ 95% erhalten.

Aminosäurenanalyse: Ala 1,03 (1); Asx 1,90 (2); Glx 6,24 (6); Phe 1,94 (2); Gly 3,12 (3); His 1,02 (1); Ile 1,09 (1); Lys 2,01 (2); Leu 3,06 (3); Nle 1,08 (1); Arg 0,97 (1); Ser 1,98 (2); Thr 1,80 (2); Val 0,93 (1); Trp 1,01 (1); Tyr 0,90 (1).

ESI-MS: 3494,8

25 Beispiel 3

30

HSDGTFTSDLSKQ-Nle-EEEAVRLFIEWLKNGR-NH₂ (SEQ ID Nr. 5)
[Nle¹⁴, Arg³⁰]-Exendin-3-(1-30)-NH₂
Beispiel 3 wurde analog nach der für Beispiel 2 beschriebenen Methode synthetisiert. Es wurden 17,6 mg eines weißen Feststoffes mit einer Reinheit von ≥ 99% erhalten.

Aminosäurenanalyse: Ala 0,99 (1); Asx 2,98 (3); Glx 5,16 (5); Phe 2,08 (2); Gly 2,16 (2); His 0,95 (1); Ile 1,03 (1); Lys 2,04 (2); Leu 2,91 (3); Nle 1,05 (1); Arg 1,04 (1); Ser 3,00 (3); Thr 2,05 (2); Val 1,01 (1); Trp 1,18 (1); Tyr 0,98 (1).

5 ESI-MS: 3504,4

Beispiel 4

HGEGTFTSDLSKQMEEEAVRLFIEWLKNGR-NH2 (SEQ ID Nr. 6)

[Arg³⁰]-Exendin-4-(1-30)-NH₂
 Beispiel 4 wurde analog nach der für Beispiel 1 beschriebenen Methode synthetisiert. Es wurden 17,9 mg eines weißen Feststoffes mit einer Reinheit von ≥ 96% erhalten.

Aminosäurenanalyse: Ala 0,96 (1); Asx 2,01 (2); Glx 6,00 (6); Phe 1,80 (2); Gly 3,21 (3); His 0,96 (1); Ile 1,07 (1); Lys 1,92 (2); Leu 2,98 (3); Met 1,06 (1); Arg 1,90 (2); Ser 1,91 (2); Thr 2,09 (2); Val 0,97 (1); Trp 0,84 (1).

ESI-MS: 3508,4

20 Beispiel 5

GEGTFTSDLSKQ-Nle-EEEAVRLFIEWLKNGR-NH₂ (SEQ ID Nr. 7) [Nle¹⁴, Arg³⁰]-Exendin-4-(2-30)-NH₂

Beispiel 5 wurde analog nach der für Beispiel 2 beschriebenen Methode synthetisiert. Es wurden 13,2 mg eines weißen Feststoffes mit einer Reinheit von ≥ 97% erhalten.

Aminosäurenanalyse: Ala 1,04 (1); Asx 1,98 (2); Glx 6,08 (6); Phe 1,86 (2); Gly 2,91 (3); Ile 0,96 (1); Lys 1,84 (2); Leu 2,98 (3); Nle 1,04 (1); Arg 1,90 (2); Ser 1,94 (2); Thr 1,92 (2); Val 0,96 (1); Trp 0,85 (1).

ESI-MS: 3350,8

Beispiel 6

HGEGTFTSDLSKQMEEEAVRAFIEWLKNGR-NH2 (SEQ ID Nr. 8)

5 [Ala²¹, Arg³⁰]-Exendin-4-(1-30)-NH₂

Beispiel 6 wurde analog nach der für Beispiel 1 beschriebenen Methode synthetisiert. Es wurden 11,1 mg eines weißen Feststoffes mit einer Reinheit von ≥ 95% erhalten.

Aminosäurenanalyse: Ala 2,08 (2); Asx 1,93 (2); Glx 6,07 (6); Phe 1,74 (2); Gly 2,97 (3); His 0,98 (1); Ile 0,87 (1); Lys 2,15 (2); Leu 2,02 (2); Met 0,96 (1); Arg 2,13 (2); Ser 1,87 (2); Thr 2,07 (2); Val 1,04 (1); Trp 0,87 (1).

ESI-MS: 3466,3

15

25

Beispiel 7

HGEGTFTSDLSKQMEEEAVRLFIEWLKAGR-NH₂ (SEQ ID Nr. 9) [Ala²⁸, Arg³⁰]-Exendin-4-(1-30)-NH₂

Beispiel 7 wurde analog nach der für Beispiel 1 beschriebenen Methode synthetisiert. Es wurden 15,0 mg eines weißen Feststoffes mit einer Reinheit von ≥ 97% erhalten.

Aminosäurenanalyse: Ala 1,98 (2); Asx 0,98 (1); Glx 6,22 (6); Phe 1,92 (2); Gly 3,03 (3); His 0,99 (1); Ile 1,03 (1); Lys 2,05 (2); Leu 3,03 (3); Met 0,96 (1); Arg 1,84 (2); Ser 1,98 (2); Thr 2,09 (2); Val 1,01 (1); Trp 0,72 (1).

ESI-MS: 3465,4

Beispiel 8

HGEGTFTSDLSKQMEEEAVRAFIEWLKAGR-NH₂ (SEQ ID Nr. 10) [Ala^{21,28}, Arg³⁰]-Exendin-4-(1-30)-NH₂

5

Beispiel 8 wurde analog nach der für Beispiel 1 beschriebenen Methode synthetisiert. Es wurden 18,4 mg eines weißen Feststoffes mit einer Reinheit von ≥ 95% erhalten.

Aminosäurenanalyse: Ala 3,12 (3); Asx 0,99 (1); Glx 6,04 (6); Phe 1,80 (2); Gly 3,00 (3); His 0,96 (1); Ile 1,02 (1); Lys 1,84 (2); Leu 1,97 (2); Met 0,98 (1); Arg 2,03 (2); Ser 1,91 (2); Thr 1,88 (2); Val 0,99 (1); Trp 0,99 (1).

ESI-MS: 3423,3

WO 97/46584 PCT/EP97/02930

Beispiel 9

In analoger Weise können die folgenden Exendinderivate in hoher Reinheit hergestellt werden.

5 (Ex-4 = Exendin-4, Ex-3 = Exendin-3)

Seq.	Sequenz
11	HGEGTFTSDLSKQAEEEAVRLFIEWLK NGR-OH
12	Ac- HGEGTFTSDLSKQIIeEEEAVRLFIEWLK NGR-NH ₂
13	HGEGTFTSDLSKQNIeEEEAVRLFIEWL K-NH ₂
14	HSDGTFTSDLSKQAEEEAVRLFIEWLK NAR-NH2
15	HSDGTFTSDLSKQAEEEAVRLFIEWLA NGR-NH2
16	HSDGTFTSDLSKQAEEEAVRLFIEWAK NGR-NH ₂
17	HAEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
18	HCEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
19	HDEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
20	HEEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
21	HFEGTFTSDLSKQNIeEEEAVRLFIEWLK NGR-NH ₂
22	HHEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
	11 12 13 14 15 16 17 18 19 20 21

[I ² , Nle ¹⁴ ,R ³⁰]-Ex-4-(1-30)-NH ₂	23	HIEGTFTSDLSKQNIeEEEAVRLFIEWLK NGR-NH ₂
[K ² , Nle ¹⁴ , R ³⁰]-Ex-4-(1-30)-NH ₂	24	HKEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[L ² , Nle ¹⁴ ,R ³⁰]-Ex-4-(1-30)-NH ₂	25	HLEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[M ² , Nle ¹⁴ ,R ³⁰]-Ex-4-(1-30)-NH ₂	26	HMEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
$[N^2, Nle^{14}, R^{30}]$ -Ex-4-(1-30)-NH ₂	27	HNEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[P ² , Nle ¹⁴ ,R ³⁰]-Ex-4-(1-30)-NH ₂	28	HPEGTFTSDLSKQNIeEEEAVRLFIEWLK NGR-NH ₂
$[Q^2, Nle^{14}, R^{30}]$ -Ex-4-(1-30)-NH ₂	29	HQEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
$[R^2, Nle^{14}, R^{30}]$ -Ex-4-(1-30)-NH ₂	30	HREGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[S ² , Nle ¹⁴ ,R ³⁰]-Ex-4-(1-30)-NH ₂	31	HSEGTFTSDLSKQNIeEEEAVRLFIEWLK NGR-NH ₂
$[T^2, Nle^{14}, R^{30}]$ -Ex-4-(1-30)-NH ₂	32	HTEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[V ² , Nle ¹⁴ ,R ³⁰]-Ex-4-(1-30)-NH ₂	33	HVEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[W ² , Nle ¹⁴ , R ³⁰]-Ex-4-(1-30)-NH ₂	34	HWEGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[Y ² , Nle ¹⁴ ,R ³⁰]-Ex-4-(1-30)-NH ₂	35	HYEGTFTSDLSKQNleEEEAVRLFIEWL KNGR-NH ₂
$[A^{2,24},G^{16},E^{21},K^{20,28},Q^{17},R^{30},S^{12},V^{27},Y^{13}]$ -Ex-3-(1-30)-NH ₂	36	HADGTFTSDLSSYMEGQAVKEFIAWL VKGR-NH ₂
$[A^{14,25}, R^{30}]$ -Ex-3-(1-30)-NH ₂	37	HSDGTFTSDLSKQAEEEAVRLFIEALKN GR-NH₂

$[E^3, A^{14}, R^{30}]$ -Ex-3-(1-30)-NH ₂	38	HSEGTFTSDLSKQAEEEAVRLFIEWLKN GR-NH ₂
$[A^1, V^{14}, R^{30}]$ -Ex-3-(1-30)-NH ₂	39	ASDGTFTSDLSKQVEEEAVRLFIEWLK NGR-NH ₂
$[A^{3,14},R^{30}]$ -Ex-4-(1-30)-NH ₂	40	HGAGTFTSDLSKQAEEEAVRLFIEWLK NGR-NH₂
$[A^{5,14},R^{30}]$ -Ex-4-(1-30)-NH ₂	41	HGEGAFTSDLSKQAEEEAVRLFIEWLK NGR-NH₂
$[A^{14}, R^{30}, Y^{5}]$ -Ex-4-(1-30)-NH ₂	42	HGEGYFTSDLSKQAEEEAVRLFIEWLK NGR-NH₂
$[A^{14}, R^{30}, Y^6]$ -Ex-4-(1-30)-NH ₂	43	HGEGTYTSDLSKQAEEEAVRLFIEWLK NGR-NH ₂
$[A^{14},I^6,R^{30}]$ -Ex-4-(1-30)-NH ₂	44	HGEGTITSDLSKQAEEEAVRLFIEWLKN GR-NH2
$[A^{14}, R^{30}, S^7]$ -Ex-4-(1-30)-NH ₂	45	HGEGTFSSDLSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{14}, R^{30}, Y^{7}]$ -Ex-4-(1-30)-NH ₂	46	HGEGTFYSDLSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{14}, R^{30}, T^{8}]$ -Ex-4-(1-30)-NH ₂	47	HGEGTFTTDLSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{14}, R^{30}, Y^{8}]$ -Ex-4-(1-30)-NH ₂	48	HGEGTFTYDLSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{14}, E^9, R^{30}]$ -Ex-4-(1-30)-NH ₂	49	HGEGTFTSELSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{10,14},R^{30}]$ -Ex-4-(1-30)-NH ₂	50	HGEGTFTSDASKQAEEEAVRLFIEWLK NGR-NH2
$[A^{11,14},R^{30}]$ -Ex-4-(1-30)-NH ₂	51	HGEGTFTSDLAKQAEEEAVRLFIEWLK NGR-NH2
$[A^{12,14},R^{30}]$ -Ex-4-(1-30)-NH ₂	52	HGEGTFTSDLSAQAEEEAVRLFIEWLK NGR-NH₂
$[A^{13,14},R^{30}]$ -Ex-4-(1-30)-NH ₂	53	HGEGTFTSDLSKAAEEEAVRLFIEWLK

		NGR-NH ₂
$[A^{14,15},R^{30}]$ -Ex-4-(1-30)-NH ₂	54	HGEGTFTSDLSKQAAEEAVRLFIEWLK NGR-NH2
[A ^{14,16} ,G ¹ ,R ³⁰ ,S ⁵]-Ex-3-(1-30)- NH ₂	55	GSDGSFTSDLSKQAEAEAVRLFIEWLK NGR-NH ₂
$[A^{14,17},K^1,R^{30}]$ -Ex-4-(1-30)-NH ₂	56	KGEGTFTSDLSKQAEEAAVRLFIEWLK NGR-NH ₂
$[A^{14}, L^{18}, R^{30}]$ -Ex-4-(1-30)-NH ₂	57	HGEGTFTSDLSKQAEEELVRLFIEWLK NGR-NH₂
$[A^{14},I^{19},R^{30}]$ -Ex-4-(1-30)-NH ₂	58	HGEGTFTSDLSKQAEEEAIRLFIEWLKN GR-NH2
$[A^{14,20},R^{30}]$ -Ex-4-(1-30)-NH ₂	59	HGEGTFTSDLSKQAEEEAVALFIEWLK NGR-NH₂
$[A^{14}, R^{30}, Y^{22}]$ -Ex-3-(1-30)-NH ₂	60	HSDGTFTSDLSKQAEEEAVRLYIEWLK NGR-NH ₂
$[A^{14}, R^{30}, V^{23}]$ -Ex-4-(1-30)-NH ₂	61	HGEGTFTSDLSKQAEEEAVRLFVEWLK NGR-NH2
$[A^{14},L^{24},R^{30}]$ -Ex-4-(1-30)-NH ₂	62	HGEGTFTSDLSKQAEEEAVRLFILWLK NGR-NH2
$[A^{14,25},R^{30}]$ -Ex-4-(1-30)-NH ₂	63	HGEGTFTSDLSKQAEEEAVRLFIEALKN GR-NH2
$[A^{14,26},R^{30}]$ -Ex-4-(1-30)-NH ₂	64	HGEGTFTSDLSKQAEEEAVRLFIEWAK NGR-NH2
$[A^{14,27},R^{30}]$ -Ex-4-(1-30)-NH ₂	65	HGEGTFTSDLSKQAEEEAVRLFIEWLA NGR-NH2
$[A^{14,29},R^{30}]$ -Ex-4-(1-30)-NH ₂	66	HGEGTFTSDLSKQAEEEAVRLFIEWLK NAR-NH2
[A ¹⁴ ,R ³⁰]-Ex-4-(1-30)-NH ₂	67	HGEGTFTSDLSKQAEEEAVRLFIEWLK NGR-NH2
[R ³⁰]-Ex-3-(1-30)-NH ₂	68	HSDGTFTSDLSKQMEEEAVRLFIEWLK NGR-NH₂
[Nle ¹⁴ , Y ³⁰]-Ex-3-(1-30)-NH ₂	69	HSDGTFTSDLSKQNleEEEAVRLFIEWL KNGY-NH2

[Nle ¹⁴ , R ³⁰]-Ex-3-(1-30)-OH	70	HSDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-OH
$[A^{14}, R^{30}]$ -Ex-3-(1-30)-NH ₂	71	HSDGTFTSDLSKQAEEEAVRLFIEWLK NGR-NH ₂
[Nle ¹⁴ , R ³⁰]-Ex-3-(2-30)-NH ₂	72	SDGTFTSDLSKQNIeEEEAVRLFIEWLK NGR-NH ₂
[Nle ¹⁴ , R ³⁰]-Ex-3-(3-30)-NH ₂	73	DGTFTSDLSKQNIeEEEAVRLFIEWLKN GR-NH2
Ac-[Nle ¹⁴ , R ³⁰]-Ex-3-(2-30)-NH ₂	74	Ac- SDGTFTSDLSKQNIeEEEAVRLFIEWLK NGR-NH ₂
Ac-[Nle ¹⁴ , R ³⁰]-Ex-3-(3-30)-NH ₂	75	Ac- DGTFTSDLSKQNIeEEEAVRLFIEWLKN GR-NH2
[Nle ¹⁴]-Ex-3-(1-27)-NH ₂	76	HSDGTFTSDLSKQNIeEEEAVRLFIEWL K-NH ₂
$[K^2,P^3, A^{14},R^{30}]$ -Ex-3-(1-30)-NH ₂	77	HKPGTFTSDLSKQAEEEAVRLFIEWLK NGR-NH ₂
$[A^2, Nle^{14}, R^{30}]$ -Ex-3-(1-30)-NH ₂	78	HADGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
$[C^2, Nle^{14}, R^{30}]$ -Ex-3-(1-30)-NH ₂	79	HCDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
$[D^2, Nle^{14}, R^{30}]$ -Ex-3-(1-30)-NH ₂	80	HDDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[E ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	81	HEDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[F ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	82	HFDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[G ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	83	HGDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[H ² Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	84	HHDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[I ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	85	HIDGTFTSDLSKQNIeEEEAVRLFIEWLK

		NGR-NH ₂
[K ² , Nle14,R ³⁰]-Ex-3-(1-30)-NH ₂	8 6	HKDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[L ² , Nle ¹⁴ , R ³⁰]-Ex-3-(1-30)-NH ₂	87	HLDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
$[M^2, Nle^{14}, R^{30}]$ -Ex-3-(1-30)-NH ₂	88	HMDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[N ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	89	HNDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[P ² , Nle ¹⁴ , R ³⁰]-Ex-3-(1-30)-NH ₂	90	HPDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[Q ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	91	HQDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[R ² , Nle ¹⁴ , R ³⁰]-Ex-3-(1-30)-NH ₂	92	HRDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH2
[T ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	93	HTDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH2
[V ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	94	HVDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH2
[W ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	95	HWDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
[Y ² , Nle ¹⁴ ,R ³⁰]-Ex-3-(1-30)-NH ₂	96	HYDGTFTSDLSKQNIeEEEAVRLFIEWL KNGR-NH ₂
$[A^{3,14},R^{30}]$ -Ex-3-(1-30)-NH ₂	97	HSAGTFTSDLSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{5,14},R^{30}]$ -Ex-3-(1-30)-NH ₂	98	HSDGAFTSDLSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{14}, R^{30}, Y^{5}]$ -Ex-3-(1-30)-NH ₂	99	HSDGYFTSDLSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{14}, R^{30}, Y^{6}]$ -Ex-3-(1-30)-NH ₂	100	HSDGTYTSDLSKQAEEEAVRLFIEWLK NGR-NH ₂
[A ¹⁴ ,I ⁶ ,R ³⁰]-Ex-3-(1-30)-NH ₂	101	HSDGTITSDLSKQAEEEAVRLFIEWLKN GR-NH ₂

$[A^{14}, R^{30}, S^7]$ -Ex-3-(1-30)-NH ₂	102	HSDGTFSSDLSKQAEEEAVRLFIEWLKN GR-NH ₂
$[A^{14}, R^{30}, Y^7]$ -Ex-3-(1-30)-NH ₂	103	HSDGTFYSDLSKQAEEEAVRLFIEWLK NGR-NH₂
$[A^{14}, R^{30}, T^{8}]$ -Ex-3-(1-30)-NH ₂	104	HSDGTFTTDLSKQAEEEAVRLFIEWLK NGR-NH ₂
$[A^{14}, R^{30}, Y^8]$ -Ex-3-(1-30)-NH ₂	105	HSDGTFTYDLSKQAEEEAVRLFIEWLK NGR-NH2
$[A^{14},E^9,R^{30}]$ -Ex-3-(1-30)-NH ₂	106	HSDGTFTSELSKQAEEEAVRLFIEWLKN GR-NH ₂
$[A^{10,14},R^{30}]$ -Ex-3-(1-30)-NH ₂	107	HSDGTFTSDASKQAEEEAVRLFIEWLK NGR-NH2
$[A^{11,14},R^{30}]$ -Ex-3(1-30)-NH ₂	108	HSDGTFTSDLAKQAEEEAVRLFIEWLK NGR-NH ₂
$[A^{12,14},R^{30}]$ -Ex-3-(1-30)-NH ₂	109	HGEGTFTSDLSAQAEEEAVRLFIEWLK NGR-NH ₂
$[A^{13,14},R^{30}]$ -Ex-3-(1-30)-NH ₂	110	HSDGTFTSDLSKAAEEEAVRLFIEWLK NGR-NH2
$[A^{14,15},R^{30}]$ -Ex-3-(1-30)-NH ₂	111	HSDGTFTSDLSKQAAEEAVRLFIEWLK NGR-NH2
$[A^{14,17},K^1,R^{30}]$ -Ex-3-(1-30)-NH ₂	112	KSDGTFTSDLSKQAEEAAVRLFIEWLK NGR-NH ₂
$[A^{14},L^{18},R^{30}]$ -Ex-3-(1-30)-NH ₂	113	HSDGTFTSDLSKQAEEELVRLFIEWLK NGR-NH₂
$[A^{14},I^{19},R^{30}]$ -Ex-3-(1-30)-NH ₂	114	HSDGTFTSDLSKQAEEEAIRLFIEWLKN GR-NH2
$[A^{14,20},R^{30}]$ -Ex-3-(1-30)-NH ₂	115	HSDGTFTSDLSKQAEEEAVALFIEWLK NGR-NH₂
$[A^{14}, R^{30}, Y^{22}]$ -Ex-3-(1-30)-NH ₂	116	HSDGTFTSDLSKQAEEEAVRLYIEWLK NGR-NH ₂
$[A^{14}, R^{30}, V^{23}]$ -Ex-3-(1-30)-NH ₂	117	HSDGTFTSDLSKQAEEEAVRLFVEWLK NGR-NH₂

[A¹⁴,L²⁴,R³⁰]-Ex-3-(1-30)-NH₂

Suc-[Nie¹⁴, R³⁰]-Ex-3-(3-30)-NH₂

[Nie¹⁴, R³⁰]-Ex-3-(1-30)-NH₂

118

HSDGTFTSDLSKQAEEEAVRLFILWLK
NGR-NH₂

SucDGTFTSDLSKQNieEEEAVRLFIEWLKN
GR-NH₂

[Nie¹⁴, R³⁰]-Ex-3-(1-30)-NH₂

120

HSDGTFTSDLSKQNieEEEAVRLFIEWL
KNGR-NH₂

Die folgenden Beispiele wurde in einem 0,02 mmol Ansatz nach der Festphasenmethode auf RAM-Harz® (Rapp Polymere, Tübingen) synthetisiert, bei dem Aminomethylpolystyrol(1%)divinylbenzol mit dem Rink-Amid-Anker (4-(2',4'-Dimethoxyphenylaminomethyl)-phenoxy-Gruppe) derivatisiert ist (Beladung: 0,5 mmol/g). Die Synthesen wurden auf einem Multiplen Peptidsyntheseautomaten SyRo II der Firma MultiSynTech (Bochum) durchgeführt. Die eingesetzten geschützten Aminosäuren waren analog zu Beispiel 1. Die sequentielle Kupplung der geschützten Aminosäuren erfolgte in 5fachem Überschuß mit Einfachkupplungen von 40 Minuten Dauer, bei 40°C und unter Rühren. Als Aktivierungsreagenzien wurde 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborat (TBTU) unter Zusatz von Diisopropylethylamin verwendet. Die Abspaltung und Aufreinigung des Peptides erfolgte analog zu Beispiel 1. In den folgenden beiden Tabellen sind die Ausbeuten, Reinheiten und Analysendaten der wie oben beschrieben synthetisierten Peptide aufgeführt.

Tabelle 1

15

5

10

Seq. ID	Ausbeute [mg]	Reinheit [%]	ESI-MS
36	6,0	99	3343,3
38	12,8	99	3477,4
68	14,2	99	3523,4
59	14,1	> 99	3512,1
70	18,0	95	3506,0
71	22,4	95	3463,6
2	6,6	> 99	3368,0
3	17,8	> 99	3281,1
5	12,0	99	3323,1
6	14,0	99	3178,1
77	7,2	99	3486,6
78	23,8	95	3488,1
79	19,0	95	3520,1
0	15,2	95	3531,9
1	8,6	> 99	3545,9

PCT/EP97/02930

82	23,6	98	3563,9
83	25,4	95	3475,6
84	10,4	> 99	3554,1
85	8,2	> 99	3530,1
86	10,4	95	3545,3
87	9,2	> 99	3530,1
88	13,6	> 99	3548,1
89	10,6	> 99	3531,0
90	9,4	96	3514,9
91	6,0	> 99	3545,4
92	15,4	> 99	3574,9
93	10,1	> 99	3519,7
94	9,4	> 99	3517,7
95	12,0	> 99	3604,7
96	9,8	95	3581,8
120	8,5	95	3505,6

Tabelle 2

Aminosäurenanalysen

Seq.	Ala	Arg	Asx	Ж	Gly	His	Ile	Leu	Lys	Nie	Phe	Ser	Thr	Тгр	Val
36*	3,18	0,99	1,95	3,04	2,94	0,89	1,03	2,14 (2)	2,09		1,95	3,06	1,88 (2)	0,99	1,94 (2)
38	2,08	2,10	2,00	6,06 (6)	2,04	0,81	1,01	3,25	2,13		1,96	3,08 (3)	1,82 (2)	0,94	1,02
68 ^b	1,02	2,14	3,16 (3)	5,06	1,71	0,93	1,02	3,21 (3)	2,08		1,93	3,00 (3)	1,88 (2)	0,98	1,02
.69	1,02	1,12	2,99	4,94 (5)	1,81	0,77	1,12	3,26 (3)	2,12 (2)	1,04	1,99	2,91 (3)	1,81	1,06	1,03
70	1,08	2,15	2,96 (3)	5,07	1,84 (2)	0,85	1,06	3,23 (3)	2,06	0,92	1,99	2,01 (3)	1,84 (2)	1,05	1,04
11	1,98	2,06	3,14	4,98 (5)	1,95	0,85	1,01	3,20 (3)	2,08		1,94 (2)	3,09	1,90	1,03	0,96
72	1,02	2,12 (2)	3,06	5,02 (5)	1,94 (2)		1,02	3,25 (3)	2,11	0,95	1,98	2,92	1,88	1,02	1,03

1,03	0,88	1,03	1,01	1,05	1,05	1,03	0,96	0,99	1,03	1,01	1,02
0,97	1,28	0,98 (1)	1,01	1,00	1,06	1,05	1,01	0,98	0,99	0,98	0,97
1,87	2,04	1,86	1,93	1,90	1,87	1,82 (2)	1,89	1,85	1,86	1,84	1,94
2,00	2,10	3,02 (3)	2,05	2,06 (2)	2,02 (2)	1,99	2,05 (2)	1,98	2,09	1,90	2,03
1,98	1,95	(2) 1,95 (2)	1,93	1,99	1,93	1,97 (2)	2,04	2,74	1,99	1,99	1,97
1,06	1,08	(1) (1)		1,05	0,96	0,92	0,95	0,91	1,12	0,94	1,11
2,07	2,10	2,01	3,12	2,06	2,06	2,04	2,08	2,04 (2)	2,13 (2)	2,07	2,11
3,19	3,26	3,18 (3)	3,14 (3)	3,25 (3)	3,30	3,20 (3)	3,17	3,14	3,23 (3)	3,18	3,23
0,99	1,16	(1) (1)	(1,01 (E)	1,06	1,08	1,05	1,02	1,02	1,1	1,07	1,83
		0,88	0,93 (1)	0,90	0,66 (1)	0,84	0,82	1,02	0,83	1,69	0,93
1,83	1,75	0,94	1,78	1,92	1,78 (2)	1,82	2,01	1,89	2,85	1,71 (2)	1,88
5,03	5,18	(5) 4,90 (5)	5,07 (5)	5,01	5,07	5,03	5,96 (6)	4,99	5,01	5,01	5,03
3,02	3,10	(3) 2,05 (2)	2,10	3,14	3,07	3,78	3,08	3,01 (3)	3,09 (3)	3,09	3,11
2,04	2,21	1,06	(;) 2,00 (2)	2,17	2,10	2,13	2,06	1,96	2,22 (2)	1,98	2,12 (2)
1,01	60,1	E) 1.03	2,07	2,11	1,16	1,07	1,0 40,E	1,09	1,08	1,01	1,07
73	75	92	774	78	79°	80	81	82	83	84	85

1,03 2,11 (1) (2)	2,11		3,07	5,03	2,10 (2)	0,88	(1)	3,21 (3)	3,00	(1)	1,97	2,05 (2)	1,88 (2)	1,01	(1)
2,16 3,13 5,03 (2) (3) (5)	3,13 5,03 (3) (5)	5,03 (5)		1,94		0,89	1,09	4,05	2,23	0,93	1,97	2,07	1,92 (2)	0,95	- ⊂
2,14 3,16 5,07 (2) (3) (5)	3,16 5,07 (3) (5)	5,07 (5)		1,71		0,93	1,02	3,21 (3)	2,09	0,94	1,93	2,01	1,88	0,99	0,0
1,97(2) 3,89 5,06 (4) (5)	3,89 5,06 (4) (5)	5,06 (5)		1,95		0,88	1,03	3,19	2,08	0,92	1,94	2,03	1,87	0,99	(1)
2,09 3,18 5,04 (2) (3) (5)	3,18 5,04 (3) (5)	5,04		1,97		0,86	1,02	3,23 (3)	2,10	1,01	1,96	2,09	1,92 (2)	1,04	0,97
2,08 3,07 5,73 (2) (3) (6)	3,07 5,73 (3) (6)	5,73 (6)		1,87		0,80	1,05	3,21 (3)	2,10 (2)	1,05	1,93	1,95	1,79	1,11	1,06
3,11 3,02 5,03 (3) (3) (5)	3,02 5,03 (3) (5)	5,03 (5)		1,83		0,82	0,99	3,19	2,07	1,06	1,97	2,00	1,87 (2)	0,97	1,03
2,12 3,02 5,04 (2) (3) (5)	3,02 5,04 (3) (5)	5,04		1,98		0,82	1,02	3,28 (3)	2,14 (2)	1,00	1,96	2,06	2,75	0,95	1,03
2,17 3,04 5,08 (2) (3) (5)	3,04 5,08 (3) (5)	5,08 (5)		1,72 (2)		0,82	1,14	3,20 (3)	2,06 (2)	1,06	1,92 (2)	2,06	2,00	1,26	1,72 (2)
2,18 3,04 5,04 (2) (3) (5)	3,04 5,04 (3) (5)	5,04		1,84 (2)		0,80	1,04	3,31	2,14	0,95	1,96	2,02 (2)	1,88	1,76 (2)	1,14
2,25 3,03 5,00 (2) (3) (5)	3,03 5,00 (3) (5)	5,00		1,84 (2)		0,78	1,14	3,30 (3)	2,15 (2)	1,05	2,02 (2)	1,96	1,84	1,07	1,05
1.98 3.05 5.06	3.05 5.06	5.06		16.1		1,03	1,03	3,18	2,07	0,93	1,95	2,94	1,88	66'0	1,00

 \equiv

 $\widehat{\Xi}$

(5)

(3)

(2)

 \equiv

(5)

(3)

 \equiv

Ξ

3

(5)

(1) (2) (3) Methionin 0,96 (1); Tyrosin 0,86 (1)

Methionin 0,94 (1)

Tyrosin 0,82 (1)

Prolin 1,02 (1)

Cystein konnte bei den gegebenen Hydrolysebedingungen nicht nachgewiesen werden.

Methinon 0,93 (1)

Prolin 0,86 (1)

Tyrosin 0,87 (1)

\$

WO 97/46584 PCT/EP97/02930

38

Beispiel 10: Pharmakologische Daten

Peptidmetabolismus in Ektopeptidase-Preparationen oder an Nieren-Microvilli Membranpräparationen

Hintergrund

5

10

15

Eine Gruppe von Ektopeptidasen ist verantwortlich für den post-sekretorischen Metabolismus von Peptidhormonen. Diese Enzyme sind an die Plasma-Membranen von verschiedenen Zelltypen gebunden. Ihre "active site" ist in Richtung des extrazellulären Raumes orientiert. Außerdem sind diese Enzyme in hohen Konzentrationen in den Bürstensaum Membranen der nierennahen Tubuli vorhanden. Nieren Bürstensaum Microvillimembranen (BBM) sind also eine gute Quelle für die relevanten Ektopeptidasen und können als in vitro Test für die metabolische Stabilität von synthetischen Peptiden eingesetzt werden. Alternativ können Ektopeptidase-Preparationen verwendet werden. Beispielhaft wurden die humane Neutrale Endopeptidase 24.11 sowie die Dipeptidyl Peptidase IV eingesetzt, da GLP-1 ein Substrat dieser beiden Ektopeptidasen ist.

Präparation von Bürstensaum Microvillimembranen

20 Mittels subzellulärer Fraktionierung unter Verwendung der
Differentialzentrifugationsmethode (Booth and Kenny (1975)) werden
Microvillimembranen des Ratten- und Schweinenierencortex isoliert. Zur Beurteilung des
Reinheitsgrades und der Ausbeute der Membranen werden 4 BürstensaumEktopeptidasen fluorimetrisch und andere Markerenzyme kolorimetrisch gemessen.

25

Ektopeptidase Präparationen

Gereinigte humane Neutrale Endopeptidase 24.11 wurde in der rekombinanten Form von Genentech (San Francisco, USA), Dipeptidyl Peptidase IV wurde als Isolat aus humaner Placenta von Calbiochem (Bad Soden) bezogen.

Inkubations-Protokoll

Microvilli Membranen (0,5 - 1 μg Protein) oder die jeweilige Ectopeptidase Präparation (60-300 ng) wurden mit 10 μg Peptid (etwa 3 nmol) in 100 μl HEPES Puffer (50 mM, pH 7,4), welcher 50 mM NaCl enthielt, inkubiert. An vorher bestimmten Zeitpunkten (Dauer bis zu 1 Stunde) wurden die Reaktionen durch Kochen abgebrochen.

Anschließend wurden die Proben zentrifugiert (10.000 × g), mit 150 μl 0,1% TFA verdünnt und mittels "reversed phase" (RP) HPLC analysiert. Jede Probe wurde doppelt bestimmt.

10 HPLC Analyse

Für die HPLC Analyse wurde ein System mit den folgenden Komponenten verwendet:
Eine "2248" Niederdruckpumpe (Pharmacia-LKB, Freiburg), ein WISP 10B
Autoinjector (Millipore-Waters, Eschborn), ein UV-Detektor SP-4 (Gynkotec, Berlin),
ein Niederdruck-Mischsystem (Pharmacia-LKB, Freiburg) und einer "Program Manager"
Software-Steuerung (Pharmacia-LKB, Freiburg). Die Trennungen erfolgten über
Lichrospher C-8, 5μ, 4 × 124 mm (Merck, Darmstadt) mit einem binären Gradienten mit
den Laufmitteln A: 0,1% Trifluoressigsäure (TFA) und B: Acetonitril:Wasser:TFA
(70:29,9:0,1). Nach der Injektion von 244 μl der Probenlösung auf die mit Laufmittel A
equilibrierte Säule, wurden die Inkubationsprodukte mit einem linearen Gradienten von
0% auf 80% B in 80 min eluiert und bei 215 nm UV-Absorption detektiert.

Berechnung der Proteolyse-Raten

Für jede Inkubationszeit eines jeden Peptides wurden zwei Messungen durchgeführt und die mittlere Peak-Höhe des Substrat-Peaks gegen die Zeit aufgetragen. Am Beispiel von GLP-1 konnte gezeigt werden, daß die Peakhöhe linear proportional zur Quantität des Peptides in der Probenlösung ist. Innerhalb der ersten Stunde der Inkubation mit den Microvilli-Membranen oder den Peptidasen konnte außerdem eine lineare Abnahme der Peakhöhe mit der Zeit beobachtet werden. Die Proteolyse-Rate wird also durch die Abnahme der Höhe des Substratpeaks bestimmt und in [μmol Substrat/mg

Abbaustabilität von Exendin-Analoga

Inkubation mit humaner Neutraler Endopeptidase 24.11b

[Nle¹⁴,Arg³⁰]-Exendin-4-(1-30)-NH₂ (Seq.ID Nr. 3) wurde mit der Neutralen Endopeptidase 24.11 wie oben beschrieben inkubiert und die Abbaurate wurde bestimmt. Als Kontrolle diente GLP1-(7-36)-NH₂. Die Ergebnisse sind in Tabelle 3 aufgeführt.

Tabelle 3

	Abbaurate
	[mM/100ng/ml NEP24.11/ min]
GLP1-(7-36)-NH ₂	0,0586
[Nle ¹⁴ ,Arg ³⁰]-Ex-4-(1-30)-NH _{2 Bsp. 1}	0,0083

10

15

5

Inkubationen mit Dipeptidyl Peptidase IV

Die in Tabelle 4 aufgeführten Peptide wurden mit Dipeptidyl Peptidase IV (DDP-IV) wie oben beschrieben inkubiert. Die Inkubation wurde jeweils zu dem Zeitpunkt abgebrochen, bei dem GLP1-(7-36)-NH₂ 50% Hydrolyse zeigte. Der Substratpeak jedes Peptides wurde aus dem rpHPLC-Lauf gesammelt und massenspektroskopisch untersucht, um trunkierte Produkte auszuschließen.

Tabelle 4

Analogon	Seq.ID	Substrat für DDP-IV
[Ala ² ,Nle ¹⁴ ,Arg ³⁰]-Ex-3-(1-30)-NH ₂	78	keine Proteolyse
GLP1-(7-36)-NH ₂		50% Proteolyse

Inkubationen mit Bürstensaum Microvillimembranen

In Tabelle 5 sind die Proteolyseraten aufgeführt, welche nach Inkubation mit Bürstensaum Microvillimembranen (BBM) nach dem oben beschriebenen Protokoll berechnet wurden. Als Kontrolle dienten GLP1-(7-36)-NH₂.

5 Tabelle 5

Analogon	Seq.ID	Abbaurate [ng Peptid/min/mg BBM]
GLP1-(7-36)-NH ₂		880,00
[Lys ² ,Nle ¹⁴ ,Arg ³⁰]-Ex-3-(1-30)-NH ₂	86	2,05

Insulinsekretion an isolierten Inselzellen

Organentnahme

10

15

Den narkotisierten (0,3 - 0,5 ml Nembutal/isoton. Kochsalzlsg 1:4, i.p.) Mäusen wird durch einen Medianschnitt und zwei Flankenschnitte das Abdomen geöffnet, das Bauchfell fixiert und am Rippenbogen entlang das Zwerchfell aufgeschnitten. Durch Injektion einer Neutralrotlösung in die linke Herzkammer werden sämtliche Organe aufgebläht und rot angefärbt. Das Pankreas wird am Magen und am Duodenum entlang bis zu den Mesenterien vorsichtig abpräpariert. Bis zur Verdauung wird der Pankreas in einer eisgekühlten Petrischale in Hank's balanced salt solution (HBBS) und einigen Tropfen Neutralrot abgelegt.

Inselpräparation

Jeweils zwei Pankreas werden mit Zellstoff abgetupft, in ein Röhrchen gegeben, mit 5 ml frisch angesetzter Kollagenaselösung (Kollagenase (Cl. histolyticum) 0,74 U/mg, Serva, 2 mg/ml in HBBS/Wasser 1:9, pH 7,4) versetzt und unter Schütteln bei 37°C 18 Minuten

inkubiert. Anschließend wird mit 1000 rpm 1 Minute zentrifugiert. Der Überstand wird verworfen. In einem zweiten Verdauungsschritt wird mit 5 ml Kollagenaselösung (1mg/ml) 4 Minuten inkubiert, geschüttelt und unverdautes Gewebe sedimentiert. Der Überstand wird dekantiert und der ganze Vorgang vier- bis fünfmal wiederholt. Der Überstand wird nun 1 Minute bei 1000 rpm zentrifugiert und die Kollagenaselösung verworfen. Das verbleibende Pellet wird mit eiskaltem HBBS aufgeschüttelt und ca. 10 Minuten auf Eis sedimentiert. Dieser Waschvorgang wird noch dreimal wiederholt. Aus den gewaschenen Pellets werden unter einer Stereolupe die schwach rosa angefärbten Inseln herausgepickt und in Kulturmedium (100ml RPMI 1640 (Gibco), 1 ml Glutamin, 1 ml Penicillin, 1 ml Cibrobay Antibiotikum (Bayer), 10 ml fötales Kälberserum, 2 ml Hepes-Puffer 1M) umgesetzt. Um eine möglichst reine Kultur zu erhalten, werden die Inseln zwei- bis dreimal gepickt und in frisches Kulturmedium umgesetzt.

Stimulation der Inseln

15

20

Die Inselzellen werden aus dem Kulturmedium zu je 10 Inseln in Eppendorfgefäße mit 200 ml Stimulationspuffer (NaCl 118 mM, NaH₂PO₄ 0,2 mM, MgCl₂ 0,565 mM, CaCl₂ 1,25 mM, Kcl 4,7 mM, Hepes 10 mM, BSA 1%, Glukose 3,3 mM; pH 7,4) verteilt und für eine Stunde bei 37°C in den Brutschrank gestellt. Anschließend werden die zu testenden Peptide zugegeben und mit Stimulationspuffer auf 500 ml aufgefüllt und eine Stunde bei 37°C inkubiert. Die Inseln werden bei 1000 rpm 1 Minute lang abzentrifugiert. Im Überstand wird die Menge an C-Peptid mit dem Insulin-RIA (DPC Biermann, Nauheim) gemessen. Jede Testsubstanz wurde vierfach bestimmt.

Aktivität der Exendin-Analoga

Einige Exendin-Analoga wurden wie oben beschriebenen an isolierten Inseln Zellen auf insulinsekretorische Aktivität getestet. Die Daten sind beispielhaft in folgender Tabelle:

Insulinfreisetzung aus isolierten Inseln nach 1 Stunde [mlU/h/10 Inseln] in Anwesenheit von 10 mM Glukose:

Tabelle 6

	Kontrolle	GLP1-(7-36)-NH ₂	Seq.ID 84
10 mM Glukose	30,21		
10 ⁻⁷ (10mM Glukose)	•	53,52	48,94
10 ⁻⁸ (10mM Glukose)	•	42,78	41,72
10 ⁻⁹ (10mM Glukose)		29,99	38,76
10 ⁻¹⁰ (10mM Glukose	:)		35,05

Messung der Erhöhung der cytosolischen Calciumkonzentration in B-Zellen des endokrinen Pankreas (klonale B-Zellinie INS-1)

Zucht von INS-1-Zellen (Asfari, M., 1992):

INS-1-Zellen werden in RPMI 1640 Medium mit 10% FKS, 10 mM HEPES-Puffer (pH 7,4), 2 mM L-Glutamin, 100 i.U. Penicillin/ml, 100 µg Streptomycin/ml, 1 mM Pyruvat (Natriumsalz) und 50 µM 2-Mercaptoethanol kultiviert, bei 37° C, in einer Atmosphäre von 95 % Luft und 5 % CO2. Nach 6 bis 8 Tagen Wachstum auf Kunststoff-Zellkulturplatten werden die subkonfluenten Zellen nach einmaligem Spülen mit PBS (phosphate-buffered saline) durch vierminütige Inkubation bei 37° C mit 0,025 % Trypsin und 0,27 mM EDTA in isoosmotischer Salzlösung von der Unterlage abgelöst.

15

20

10

5

Präparation der Zellen für Calciummessungen:

Die abgelösten Zellen werden in Spinnermedium (Kulturmedium wie oben, jedoch mit 5% FKS sowie 25 mM HEPES) resuspendiert und bei 37° C zweieinhalb Stunden in einer Spinnerflasche mit Rührstab inkubiert. Danach Entfernung des Mediums durch Zentrifugation und Resuspension der Zellen in Spinnermedium. Dann für 30 Minuten

5

30

Inkubation bei 37° C mit 2 µM Fura-2/Acetoxymethylester, unter denselben Bedingungen wie zuvor. Die Fura-Beladung der Zellen wird durch einmaliges Waschen der Zellen in Spinnermedium (Raumtemperatur) beendet. Danach werden die Zellen in Spinnermedium mit Raumtemperatur resuspendiert (2 x 10⁷ Zellen/ml). Aus dieser Suspension werden die Zellen für Calciummessungen entnommen.

Messungen der cytosolischen Calciumkonzentarion:

Die Messungen erfolgen bei 37° C in einem modifizierten Krebs-Ringer Puffer (KRBH) mit 136 mM NaCl, 4,8 mM KCl, 2 mM CaCl₂, 1,2 mM MgSO₄, 1,2 mM KH₂PO₄, 5 mM NaHCO₃, 10 mM Glukose, 250 µM Sulfinpyrazon (zur Hemmung von Fura-2 10 Efflux in das Medium) und 25 mM HEPES-Puffer (mit NaOH auf pH 7,4). Die Zellkonzentration beträgt 1-2 x 10⁶/ml. Die Messungen werden in einer mittels Rührstab gerührten Küvette in einem Spektralfluorimeter bei 37° C durchgeführt, mit 1,5 ml Zellsuspension. Exzitationswellenlänge ist 340 nm, Emissionswellenlänge 505 nm. Am Ende der Messungen werden 50 μM MnCl₂ und darauf 100 μM DTPA 15 (Dieethylentriaminpentaacetat) zugegeben, um durch eine vorübergehende Löschung ("Quenching") der Fluoreszenz von extrazellulärem Fura den Anteil des extrazellulären Fluoreszenzindikators an der gemessenen Fluoreszenz bestimmen zu können. Nach der Zugabe von DTPA folgt die Überführung des gesamten Furas zunächst in einen calciumgesättigten und dann in einen calciumfreien Zustand, zur Ermittlung der 20 Eichwerte F_{max} (calciumgesättigt) und F_{min} (calciumfrei) für die jeweilige Messung. Dazu werden die Zellen durch Zugabe von 0.1 % Triton X-100 lysiert. Durch den Kontakt mit der hohen extrazellulären Calciumkonzentration wird der Farbstoff mit Calcium gesättigt. Danach werden 5 mM EGTA (Ethylenbis(oxyethylennitrilo)tetraacetat) und 20 mM Tris-Lösung zugegeben, um den Farbstoff vollständig in die 25 calciumfreie Form zu überführen.

Die Berechnung der cytosolischen Calciumionenkonzentration erfolgt nach dem von R. Tsien und Mitarbeitern eingeführten Algorhythmus (Grynkiewicz, G., 1985):

$$[Ca^{2+}]_{cyt} = ((F - F_{min})/(F_{max} - F)) \times K_D$$

(F: Fluoreszenz des jeweiligen Meßpunkts;

K_D: Dissoziationskonstante des Calciumkomplexes des Fura-2, 225 nM (Grynkiewicz, G., 1985))

5

10

15

(Vor dieser Berechnung wird eine Kompensation für die Anwesenheit von extrazellulärem Fura durchgeführt. Dazu wird zunächst der durch Manganzugabe ermittelte Fluoreszenzbetrag (extrazelluläres Fura) von den Fluoreszenzwerten der Meßpunkte subtrahiert. Dann wird F_{max} durch die Subtraktion desselben Betrags korrigiert. Schließlich wurde der Korrekturbetrag für F_{min} ermittelt. Dazu wird der durch Manganzugabe bestimmte Fluoreszenzbetrag durch den Wert 2,24 dividiert. Der Wert 2,24 war als geräteeigener Proportionalitätsfaktor zwischen der Fluoreszenz von calciumgesättigtem und calciumfreiem Fura-2 bei einer Exzitationswellenlänge von 340 nm bestimmt worden (gemessen mit unverestertem, freiem Fura-2). Der so erhaltene Korrekturbetrag wurde von F_{min} subtrahiert.)

Die untersuchten Peptide wurden aus tausendfach konzentrierten Lösungen (10⁻⁵ M) in KRBH ohne CaCl₂ und Glukose zugegeben.

20 Aktivität der Exendin-Analoga

Einige Exendin-Analoga wurden im oben beschriebenen Calcium-Assay an INS-1 Zellen auf ihre biologische Aktivität getestet. Die Daten sind beispielhaft in Abbildung 1 als auch in Tabelle 7 gezeigt.

Tabelle 7

SEQ. ID Nr.	Konzentration der Peptide 10 ⁻⁸ M	Δ [Ca ²⁺]cyt
		\pm SD (n = 4)
6	[Arg ³⁰]-Exendin-(1-30)-NH ₂	64 ± 8 nM
3	[Nle ¹⁴ , Arg ³⁰]-Exendin-(1-30)- NH ₂	$63 \pm 8 \text{ nM}$
8	[Ala ²¹ , Arg ³⁰]-Exendin-(1-30)- NH ₂	61 ± 11 nM
9	[Ala ²⁸ , Arg ³⁰]-Exendin-(1-30)- NH ₂	$65 \pm 15 \text{ nM}$
10	[Ala ^{21,28} , Arg ³⁰]-Exendin-(1-30)- NH ₂	$69 \pm 30 \text{ nM}$
	Kontrolle:	
	GLP-1-(7-36)amide	$65 \pm 10 \text{ nM}$

Kompetition mit GLP1-(7-36)-NH₂ an B-Zellen des endokrinen Pankreas (klonale B-Zellinie INS-1)

Zucht von INS-1-Zellen (Asfari, M., 1992)

5 siehe Messung Calciumconcentration

Kompetitionsversuche

10

15

Die abgelösten Zellen werden in Krebs-Ringer-Puffer (25 mM Tris, 120 mM NaCl, 1,2 mM MgSO₄ 5 mM Kcl, 1mM Na-EDTA, 15 mM CH₃COONa, eingestellt auf pH 7,4, versetzt mit 1% HSA und 0,1% Bacitracin) aufgenommen und suspendiert. Aus dieser Suspension werden jeweils 250 ml für einen Ansatz entnommen, mit 20 ml Tracer (¹²⁵I-GLP1-(7-36)-NH₂, 20 000 cpm) und 30 ml des zu untersuchenden Peptides in der entsprechenden Verdünnung versetzt. Anschließend wird 30 Minuten bei 37°C inkubiert, 4 Minuten bei 13 000 rpm zentrifugiert, dreimal mit Puffer gewaschen und die am Pellet gebundene Radioaktivität (γ-Counter) gemessen. Kompetitionskurven wurden durch

Inkubation mit 10 verschiedenen Verdünnungen des zu testenden Peptides (10⁻¹⁰ - 10⁻⁶ M in Krebs-Ringer-Puffer) erhalten.

Rezeptoraffinität der Exendin-Analoga

Die Daten sind beispielhaft in Tabelle 8 aufgeführt. GLP1-(7-36)-NH₂ diente als Standard.

Tabelle 8

5

Seq.	Peptid	$Kd_{GLP1} \pm SD$ [nM]	Kd ± SD [nM]	Kd/Kd _{GLP1}
69	[Nle ¹⁴ ,Tyr ³⁰]-Ex3-(1-30)-NH ₂	$1,04 \pm 0,05$	$0,56 \pm 0,08$	0,5

Literatur

- Albericio, F. and Barany, G. (1987) Int. J. Peptide Protein Res. 30, 206-216.
- Asfari, M., Janjic, D., Meda, P., Li, G., Halban, P. A. and Wollheim, C. B. (1992) Endocrinology 130, 167-178.
- Barlos, K., Gatos, D., Kapolos, S., Paphotiu, G., Schafer, W., and Wengqing, Y. (1989)

 Tetrahedron Lett. 30, 3947-3950.
 - Booth, and Kenny, (1975) Biochem. J. 142, 575-581.
 - Eng, J., Andrews, P. C., Kleinman, W. A., Singh, L., and Raufman, J.-P. (1990) J. Biol. Chem. 265, 20259-20262.
- 10 Eng, J., Andrews, P. C., Kleinman, W. A., Singh, L., Singh, G., and Raufman, J.-P. (1992) J. Biol. Chem. 267, 7402-7405.
 - Fehmann, H.C., Göke, R., Göke, B., Bachle, R., Wagner, B. and Arnold, R. (1991)

 Biochim. Biophys. Acta 1091, 356-63.
 - Göke, R., Wagner, B., Fehmann, H. C. and Göke, B. (1993a) Res. Exp. Med. Berl. 193, 97-103
 - Göke, R., Fehman, H. C., Linn, T., Schmidt, H., Eng, J. and Göke, B. (1993b) J. Biol. Chem. 268, 19650-19655.
 - Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) J Biol Chem 260, 3440-3450.
 - Gutniak, M., Orskov, C., Holst, J. J., Ahren, B. and Efendic, S. (1992) N. Engl. J. Med.
- **326**, 1316-1322.

15

- Komatsu, R., Matsuyama, T., Namba, M., Watanabe, N., Itoh, H., Kono, N. and Tarui, S. (1989) Diabetes 38, 902-905.
- Kreymann, B., Williams, G., Ghatei, M. A. and Bloom, S. R. (1987) Lancet 2(8571), 1300-1304.
- Nathan, D.M., Schreiber, E., Fogel, H., Mojsov, S. and Habener, J. F. (1992) Diabetes Care 15, 270-276.
 - Nauck, M. A., Kleine, N. Orskov, C., Holst, J. J., Willms, B. and Creutzfeld, W. (1993a) Diabetologia 36, 741-744.
- Nauck, M. A., Heimesaat, M. M., Orskov, C., Holst, J. J., Ebert, R. and Creutzfeld, W.
- 30 (1993b) J. Clin. Invest. 91, 301-307.

Raufman, J. P., Singh, L., Singh, G. and Eng, J. (1992) J. Biol. Chem. 267, 21432-21437.

Rink, H. (1987) Tetrahedron Lett. 28, 3787-3790.

Thorens, B., Porret, A., Buehler, L., Deng, S.P., Morel, P. and Widman, C. (1993)

5 Diabetes 42, 1678-1682.

Wang, S. S. (1973) J. Am. Chem. Soc. 95, 1328-1333.

WO 97/46584

SEQUENZPROTOKOLL

5	(1) ALLGEMEINE ANGABEN:
	(i) ANMELDER:
	(A) NAME: BOEHRINGER MANNHEIM GMBH
	(B) STRASSE: Sandhofer Str. 116
10	(C) ORT: Mannheim
	(E) LAND: Deutschland
	(F) POSTLEITZAHL: D-68305
	(G) TELEFON: 0621/759-3197
	(H) TELEFAX: 0621/759-4457
15	
	(ii) BEZEICHNUNG DER ERFINDUNG: Exendin Analoga, Verfahren zu deren Herstellung und diese enthaltende Arzneimittel
20	(iii) ANZAHL DER SEQUENZEN: 118
	(iv) COMPUTER-LESBARE FASSUNG:
	(A) DATENTRÄGER: Floppy disk
	(B) COMPUTER: IBM PC compatible

(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS

(D) SOFTWARE: PatentIn Release #1.0, Version #1.30B (EPA)

- (2) ANGABEN ZU SEQ ID NO: 1:
- 30 (i) SEQUENZKENNZEICHEN:

25

(A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 5 (ii) ART DES MOLEKULS: Peptid (ix) MERKMAL: 10 (A) NAME/SCHLÜSSEL: Peptide (B) LAGE: 30 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet alle Aminosaeuren ausser Gly" 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu 15 10 5 1 20 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Xaa 30 25 20 (2) ANGABEN ZU SEQ ID NO: 2: 25 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 5 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE: 30 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet alle Aminosaeuren ausser Gly" 10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu 15 10 15 5 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Xaa 30 20 25 20 (2) ANGABEN ZU SEQ ID NO: 3: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 25 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(ii) ART DES MOLEKÜLS: Peptid

(D) TOPOLOGIE: linear

(ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide 5 (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3: 10 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 10 15 5 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 15 25 30 20 (2) ANGABEN ZU SEQ ID NO: 4: (i) SEQUENZKENNZEICHEN: 20 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 25

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: Peptide

WO 97/46584 PCT/EP97/02930

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

54

5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Tyr

20 25 30

(2) ANGABEN ZU SEQ ID NO: 5:

15 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

20

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL:

25 (A) NAME/SCHLUSSEL: Peptide

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

30

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 1 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25 (2) ANGABEN ZU SEQ ID NO: 6: 10 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 15 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: 20 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu 15 10 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25

25

(2) ANGABEN ZU SEQ ID NO: 7:

20

56

(i) SEQUENZKENNZEICHEN: (A) LANGE: 29 Aminosauren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 5 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE:13 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7: Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu Glu 15 5 10 1 20 Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25 20 (2) ANGABEN ZU SEQ ID NO: 8: 25 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu 15 10 10 Glu Ala Val Arg Ala Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 9: 15 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 20 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9: 25 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu 15 5 10 1

WO 97/46584 PCT/EP97/02930

58

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Ala Gly Arg 25 30 20 (2) ANGABEN ZU SEQ ID NO: 10: 5 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 10 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10: 15 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu 15 10 Glu Ala Val Arg Ala Phe Ile Glu Trp Leu Lys Ala Gly Arg 20 30 25 20 (2) ANGABEN ZU SEQ ID NO: 11: (i) SEQUENZKENNZEICHEN: 25 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11: 5 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 10 15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 10 25 30 20 (2) ANGABEN ZU SEQ ID NO: 12: 15 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 20 (11) ART DES MOLEKÜLS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12: 25 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ile Glu Glu 15 10 1

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

WO 97/46584 PCT/EP97/02930

60

20 25 30

(2) ANGABEN ZU SEQ ID NO: 13:

5 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 27 Aminosäuren

(B) ART: Aminosaure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

10

(ii) ART DES MOLEKÜLS: Peptid

(ix) MERKMAL:

15 (A) NAME/SCHLÜSSEL: Peptide

(B) LAGE: 14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys

20 25

(2) ANGABEN ZU SEQ ID NO: 14:

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 5 (ii) ART DES MOLEKULS: Peptid 10 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 5 1 20 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Ala Arg 30 20 25 (2) ANGABEN ZU SEQ ID NO: 15: 25 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 5 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 10 (xi) SEQUENZBESCHREIBUNG: Glu Ala Val Arg Lesp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala 15 Glu Glu 15 10 5 1 0: 3: (i) SEQUENZKENNZEIle Glu Trp Leu Ala Asn Gly Arg 30 25 20 20 (2) ANGABEN ZU SEQ ID NO: 16: (i) SEQUENZKENNZEICHEN: 25 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL:

5 (A) NAME/SCHLÜSSEL: Peptide

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu

1 5 10 15

15 Glu Ala Val Arg Leu Phe Ile Glu Trp Ala Lys Asn Gly Arg

20 25 30

(2) ANGABEN ZU SEQ ID N (D) TOPOLOGIE: linear

20 (ii) ART DES MOLEKULS: Peptid

Aminosäuren

(B) ART: A) NAME/SCHLUSSEL: Peptide

FORM: Einzelstrang

25 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17: His Ala Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 18: 15 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure 20 (C) (B) LAGE:14 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 25 (ix) MERKMAL:

(A) NAME/SCHLÜSSEL: Peptide

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

5

His Cys Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

10 20 25 30

- (2) ANGABEN ZU SEQ ID NO: 19:
- (i) SEQUENZKENNZEICHEN:

15 (A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

20 (ii) ART DES MOLEKULS: Peptid

- (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: Peptide

25 (B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

His Asp Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 10 15 1 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 20 25 30 (2) ANGABEN ZU SEQ ID NO: 20: (i) SEQUENZKENNZEICHEN: 10 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 15 (ii) ART DES MOLEKULS: Peptid (ix) MERKMAL: 20 (A) NAME/SCHLUSSEL: Peptide (B) LAGE: 14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 25 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20: His Glu Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 5 10 1

67

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
20 25 30

(2) ANGABEN ZU SEQ ID NO: 21:

5

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 30 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
- 10 (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid
- 15 (ix) MERKMAL:
 - (A) NAME/SCHLUSSEL: Peptide
 - (B) LAGE:14
 - (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

20

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:

His Phe Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

1 5 10 15

25

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
20 25 30

(2) ANGABEN ZU SEQ ID NO: 22:

WO 97/46584 PCT/EP97/02930

68

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure 5 (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Peptid 10 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22: His His Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 20 1 5 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25 25 (2) ANGABEN ZU SEQ ID NO: 23: (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

69

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

5

(ix) MERKMAL:

- (A) NAME/SCHLUSSEL: Peptide
- (B) LAGE:14
- 10 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:
- 15 His Ile Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 20 25 30

20

(2) ANGABEN ZU SEQ ID NO: 24:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

25 (B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide 5 (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 24: 10 His Lys Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 15 20 25 (2) ANGABEN ZU SEQ ID NO: 25: (i) SEQUENZKENNZEICHEN: 20 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 25

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: Peptide

- (B) LAGE:14
- (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25: 5

His Leu Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

15 10 5 1

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 10 30 25

(2) ANGABEN ZU SEQ ID NO: 26:

20

- 15 (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 30 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear

- (ii) ART DES MOLEKÜLS: Peptid
- (ix) MERKMAL:
- 25 (A) NAME/SCHLUSSEL: Peptide
 - (B) LAGE: 14
 - (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26: His Met Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 27: 10 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 15 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 20 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 25 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27: His Asn Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 5 10 1

PCT/EP97/02930

30

5

10

15

20

25

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25 30 20 (2) ANGABEN ZU SEQ ID NO: 28: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28: His Pro Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

25

(2) ANGABEN ZU SEQ ID NO: 29: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 5 (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE: 14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29: His Gln Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 20 15 1 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 25 (2) ANGABEN ZU SEQ ID NO: 30:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 5 (ii) ART DES MOLEKULS: Peptid (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide 10 (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 30: 15 His Arg Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 20 25 (2) ANGABEN ZU SEQ ID NO: 31: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 25 (B) ART: Aminosaure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL:

5 (A) NAME/SCHLUSSEL: Peptide

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:

His Ser Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
20 25 30

(2) ANGABEN ZU SEQ ID NO: 32:

20 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

25

(ii) ART DES MOLEKÜLS: Peptid

(ix) MERKMAL:

			(A)	NAME/SO	CHLUSSEL	: Peptide	е							
		(B) LAGE:14												
			(D)	SONSTIC	SE ANGAB	EN:/prod	uct=	"Xaa	a bed	deute	et N]	le"		
	5													
		(xi)	SEQU	enzbesch	HREIBUNG	: SEQ ID	NO:	32:						
		His	Thr (Glu Gly	Thr Phe	Thr Ser	Asp	Leu	Ser	Lys	Gln	Xaa	Glu	Glu
		1			5			10					15	
. 1	0													
	•	Glu	Ala '	Val Arg	Leu Phe	Ile Glu	Trp	Leu	Lys	Asn	Gly	Arg		
				20			25					30		
	(2)	ANGA	BEN ZI	U SEQ II	NO: 33	:								
1	5													
		(i) SEQUENZKENNZEICHEN:												
		(A) LÄNGE: 30 Aminosäuren												
		(B) ART: Aminosäure												
			(C)	STRANGE	FORM: Ei	nzelstra	ng							
2	.0		(D)	TOPOLOG	SIE: lin	ear								
		(ii)	ART 1	DES MOLI	EKULS: P	eptid								
_	_													
2	:5	(ix)	MERK											
						: Peptid	e							
		(B) LAGE:14												
			(D)	SONSTI	SE ANGAB	EN:/prod	uct=	"Xaa	a bec	deut	et Ni	le"		

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 33:

His Val Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

5 1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

20 25 30

- 10 (2) ANGABEN ZU SEQ ID NO: 34:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 30 Aminosäuren
 - (B) ART: Aminosaure
- 15 (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid

20

- (ix) MERKMAL:
 - (A) NAME/SCHLUSSEL: Peptide
 - (B) LAGE:14
 - (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

25

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:

His Trp Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

79

15 10 5 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 5 (2) ANGABEN ZU SEQ ID NO: 35: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 10 (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 15 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 35: His Tyr Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 25 10 15 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

25

20

(2) ANGABEN ZU SEQ ID NO: 36: (i) SEQUENZKENNZEICHEN: 5 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 10 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 36: His Ala Asp Gly Thr Phe Thr Ser Asp Leu Ser Ser Tyr Met Glu Gly 15 15 10 Gln Ala Val Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg 30 20 25 20 (2) ANGABEN ZU SEQ ID NO: 37: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 25 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

PCT/EP97/02930

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 37:

5	His Ser Asp Gly	Thr Phe	Thr Ser As	p Leu Se	r Lys Gl	n Ala	Glu	Glu
	1	5		10			15	
		* **	ri- cl., ri	- J J.	- h Cl			
	Glu Ala Val Arg 20	Leu Phe .	ile Giu Al 25		S ASH GI	30 30		
10	20		-					
	(2) ANGABEN ZU SEQ I	D NO: 38:						
	(i) SEQUENZKENN	ZEICHEN:						
	(A) LÄNGE:	30 Amino	säuren					
15	(B) ART: A	minosäure						
	(C) STRANG	FORM: Ein:	zelstrang					
	(D) TOPOLO	GIE: line	ar					
20	(ii) ART DES MOL	EKÜLS: Pe	ptid					
	(xi) SEQUENZBESC	HREIBUNG:	SEQ ID NO	: 38:				
	His Ser Glu Gly	Thr Phe	Thr Ser As	p Leu Se	r Lys Gl	n Ala	Glu	Glu
25	1	5		10			15	
	Glu Ala Val Arg	Leu Phe	Ile Glu Tr	p Leu Ly	s Asn Gl	y Arg		
	20		25			30		

5

10

15

20

(2) ANGABEN ZU SEQ ID NO: 39:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 39:

Ala Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Val Glu Glu

1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

25

20

(i) SEQUENZKENNZEICHEN:

(2) ANGABEN ZU SEQ ID NO: 40:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosaure

25 (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 40: His Gly Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 5 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 41: 10 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang 15 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 41: His Gly Glu Gly Ala Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 5 25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

25

(2) ANGABEN ZU SEQ ID NO: 42:

PCT/EP97/02930

(i) SEQUENZKENNZEICHEN:

(ii) ART DES MOLEKÜLS: Peptid

(A) LÄNGE: 30 Aminosauren (B) ART: Aminosäure 5 (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 42: His Gly Glu Gly Tyr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 1 15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 43: 20 (1) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 25 (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 43: His Gly Glu Gly Thr Tyr Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 10 15 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25 (2) ANGABEN ZU SEQ ID NO: 44: 10 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 15 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Genom-DNA 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 44: His Gly Glu Gly Thr Ile Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 5 10 15 25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

25

30

(2) ANGABEN ZU SEQ ID NO: 45:

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 5 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 45: His Gly Glu Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 15 30 25 20 (2) ANGABEN ZU SEQ ID NO: 46: 20 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 25 (ii) ART DES MOLEKULS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 46:

His Gly Glu Gly Thr Phe Tyr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 5 30 25 20 (2) ANGABEN ZU SEQ ID NO: 47: (i) SEQUENZKENNZEICHEN: 10 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 15 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 47: 20 His Gly Glu Gly Thr Phe Thr Thr Asp Leu Ser Lys Gln Ala Glu Glu 15 10 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 25 20 (2) ANGABEN ZU SEQ ID NO: 48:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 5 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 48: 10 His Gly Glu Gly Thr Phe Thr Tyr Asp Leu Ser Lys Gln Ala Glu Glu 10 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 15 20 (2) ANGABEN ZU SEQ ID NO: 49: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 20 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 49:

(ii) ART DES MOLEKULS: Peptid

10

15

20

25

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

His Gly Glu Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Ala Glu Glu 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 50: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 50: His Gly Glu Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Ala Glu Glu 10 15 5 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 51:

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid 5

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 51:

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ala Lys Gln Ala Glu Glu 10

15 10 5

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

30 25 20

15

(2) ANGABEN ZU SEQ ID NO: 52:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

20 (B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(11) ART DES MOLEKULS: Peptid

25

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 52:

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Ala Gln Ala Glu Glu

91

15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 5 (2) ANGABEN ZU SEQ ID NO: 53: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure 10 (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 53: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Ala Ala Glu Glu 15 20 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20

25 (2) ANGABEN ZU SEQ ID NO: 54:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

PCT/EP97/02930

(C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 54: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Ala Glu 15 10 5 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25 15 (2) ANGABEN ZU SEQ ID NO: 55: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 20 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 25 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 55: Gly Ser Asp Gly Ser Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Ala 15 10 5 1

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

25 30 20 (2) ANGABEN ZU SEQ ID NO: 56: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 10 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 56: Lys Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 20 Ala Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 57: 25 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang

PCT/EP97/02930

(D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 57: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 1 10 Glu Leu Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 58: 15 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 20 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 58: 25 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 5

10

15

20

25

Glu Ala Ile Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 59: (i) SEQUENZKENNZEICHEN: (A) LANGE: 30 Aminosäuren (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 59: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 5 1 Glu Ala Val Ala Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 60: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

	(ii) ART DES MOLEKÜLS: Peptid											
5	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 60:											
	His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Gl	u										
	1 5 10 15											
10	Glu Ala Val Arg Leu Tyr Ile Glu Trp Leu Lys Asn Gly Arg											
	20 25 30											
	(2) ANGABEN ZU SEQ ID NO: 61:											
15	(i) SEQUENZKENNZEICHEN:											
	(A) LÄNGE: 30 Aminosäuren											
	(B) ART: Aminosäure											
	(C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear											
20												
	(ii) ART DES MOLEKÜLS: Peptid											
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 61:											
25												
	His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Gl	u										
	1 5 10 15											

Glu Ala Val Arg Leu Phe Val Glu Trp Leu Lys Asn Gly Arg

97

20 25 30

(2) ANGABEN ZU SEQ ID NO: 62:

5 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

10

(ii) ART DES MOLEKULS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 62:

15

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu

1 5 10 15

Glu Ala Val Arg Leu Phe Ile Leu Trp Leu Lys Asn Gly Arg

20 25 30

(2) ANGABEN ZU SEQ ID NO: 63:

(i) SEQUENZKENNZEICHEN:

25 (A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 63: 5 His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 10 15 Glu Ala Val Arg Leu Phe Ile Glu Ala Leu Lys Asn Gly Arg 30 20 25 10 (2) ANGABEN ZU SEQ ID NO: 64: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 15 (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 20 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 64: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 25 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Ala Lys Asn Gly Arg

25

10

15

20

25

(2) ANGABEN ZU SEQ ID NO: 65: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 65: His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Ala Asn Gly Arg 25 30 20 (2) ANGABEN ZU SEQ ID NO: 66: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

	(xi)	SEQUENZB	ESCHREIE	BUNG: SE	ON DI C	: 66:						
5		Gly Glu	Gly Thr	Phe Thr	Ser As	p Leu 10	Ser	Lys	Gln		Glu 15	Glu
	1		J	•		10						
	Glu	Ala Val	Arg Leu	Phe Ile	Glu Tr	p Leu	Lys	Asn	Ala	Arg		
			20		25					30		
10	(2) ANGAI	BEN ZU SE	Q ID NO:	67:								
	(i)	SEQUENZK	ENNZEICH	ien:								
		(A) LÄN	IGE: 30 A	Aminosäu	ren							
15		(B) ART	: Aminos	säure								
	(C) STRANGFORM: Einzelstrang											
		(D) TOP	POLOGIE:	linear								
20	(ii)	ART DES	MOLEKULS	S: Pepti	d							
	(xi)	SEQUENZI	BESCHREI	BUNG: SE	Q ID NO): 67:						
	His	Gly Glu	Gly Thr	Phe Thr	Ser A	p Leu	Ser	Lys	Gln	Ala	Glu	Glu
25	1		5			10					15	
	Glu	Ala Val	Arg Leu	Phe Ile	Glu T.	rp Leu	Lys	Asn	Gly	Arg		
			20		2	5				30		

(2) ANGABEN ZU SEQ ID NO: 68: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 5 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 68: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu 15 5 10 15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25 30 20 (2) ANGABEN ZU SEQ ID NO: 69: 20 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure 25 (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

102

(ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE:14 5 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 69: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 10 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Tyr 30 20 25 15 (2) ANGABEN ZU SEQ ID NO: 70: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 20 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 25 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 70: 5 His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 10 30 20 25 (2) ANGABEN ZU SEQ ID NO: 71: (i) SEQUENZKENNZEICHEN: 15 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 20 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 71: 25 His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 1 10 15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25

(2) ANGABEN ZU SEQ ID NO: 72: (i) SEQUENZKENNZEICHEN: 5 (A) LÄNGE: 29 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide 15 (B) LAGE:13 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 72: 20 Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu Glu 15 10 5 1 Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25 25 20 (2) ANGABEN ZU SEQ ID NO: 73:

(i) SEQUENZKENNZEICHEN:

PCT/EP97/02930

105

(A) LÄNGE: 28 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

5

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL:

10 (A) NAME/SCHLÜSSEL: Peptide

(B) LAGE:12

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 73:

> Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu Glu Ala 15 5 10

20 Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 20 25

(2) ANGABEN ZU SEQ ID NO: 74:

25 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 29 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

106

(ii) ART DES MOLEKÜLS: Peptid

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: Peptide

(B) LAGE:13

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 74:

Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu Glu

1 5 10 15

Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
20 25

(2) ANGABEN ZU SEQ ID NO: 75:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 28 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
- 25 (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE: 12 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 75: Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu Glu Ala 15 10 10 5 Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 20 25 15 (2) ANGABEN ZU SEQ ID NO: 76: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 27 Aminosäuren (B) ART: Aminosäure 20 (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Peptid 25 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

(B) LAGE:14

	(xi)	SEQUEN	ZBESCHI	REIBU	JNG:	SEQ	ID	NO:	76:						
5	His	Ser Ası	Gly '	Thr i	he '	Thr	Ser.	Asp	Leu	Ser	Lys	Gln	Xaa	Glu	Glu
	1		!	5					10					15	
	Glu	Ala Va	l Arg	Leu I	Phe	Ile	Glu	Trp	Leu	Lys					
			20					25							
10															
	(2) ANGA	BEN ZU	SEQ ID	NO:	77:										
	(i)	SEQUEN	ZKENNZ	EICH	EN:										
		(A) L	ÄNGE:	30 Aı	mino	säur	en								
15		(B) A	RT: Am	inos	äure										
		(C) S	TRANGF	ORM:	Ein	zels	tran	ıg							
		(D) T	OPOLOG	IE:	line	ar									
	(ii)	ART DE	s Mole	KÜLS	: Pe	ptic	i								
20															
	(xi)	SEQUEN	ZBESCH	IREIB	UNG:	SEC	מו	NO:	77:						
	(/														
	His	s Lys Pr	o Glv	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Lys	Gln	Ala	Glu	Glu
25 -		, 2,0		5				•	10					15	
. د م	•			-											
	6 3.	u Ala Va	al Arc	T.e.u	Ph o	Tle	Glu	Tro	Leu	Lvs	Asn	Gly	Arq		
	GI	u via vo	20	<u>J</u> eu	* 116		J_ 4	25		-3-		•	30		
			20					23					-		

(2) ANGABEN ZU SEQ ID NO: 78: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 5 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE:14 15 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 78: 20 His Ala Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 1 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 25 (2) ANGABEN ZU SEQ ID NO: 79:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Peptid 5 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide 10 (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 79: 15 His Cys Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 20 25 (2) ANGABEN ZU SEQ ID NO: 80: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 25 (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL:

5 (A) NAME/SCHLÜSSEL: Peptide

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 80:

His Asp Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
20 25 30

(2) ANGABEN ZU SEQ ID NO: 81:

20 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

25

(ii) ART DES MOLEKÜLS: Peptid

(ix) MERKMAL:

WO 97/46584

112

PCT/EP97/02930

(A) NAME/SCHLUSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 81: His Glu Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 1 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 82: 15 (i) SEQUENZKENNZEICHEN: (A) LANGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 20 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 25 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

113

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 82:

His Phe Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

5 10 15 5 1

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

30 25 20

- 10 (2) ANGABEN ZU SEQ ID NO: 83:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 30 Aminosäuren
 - (B) ART: Aminosäure
- 15 (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKULS: Peptid

20

- (ix) MERKMAL:
 - (A) NAME/SCHLUSSEL: Peptide
 - (B) LAGE:14
 - (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

25

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 83:

His Gly Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

WO 97/46584 PCT/EP97/02930

114

10 15 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25 5 (2) ANGABEN ZU SEQ ID NO: 84: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 10 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 15 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE: 14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 84: His His Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 25 15 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20

	(2) ANGABEN ZU SEQ ID NO: 85:
£	(i) SEQUENZKENNZEICHEN:
5	(A) LÄNGE: 30 Aminosäuren
	(B) ART: Aminosäure
	(C) STRANGFORM: Einzelstrang
	(D) TOPOLOGIE: linear
10	(ii) ART DES MOLEKULS: Peptid
	(ix) MERKMAL:
	(A) NAME/SCHLÜSSEL: Peptide
15	(B) LAGE:14
.,	
	(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 85:
20	
	His Ile Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu
	1 5 10 15
	Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
25	20 25 30
	(2) ANGABEN ZU SEQ ID NO: 86:
	to to the control of the state

(i) SEQUENZKENNZEICHEN:

WO 97/46584 PCT/EP97/02930

116

.

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosaure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

5

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL:

10 (A) NAME/SCHLUSSEL: Peptide

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 86:

His Lys Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

1 5 10 15

20 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
20 25 30

(2) ANGABEN ZU SEQ ID NO: 87:

25 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

WO 97/46584 PCT/EP97/02930

117

(ii) ART DES MOLEKULS: Peptid 5 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 87: His Leu Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 5 10 15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 20 25 30 (2) ANGABEN ZU SEQ ID NO: 88: 20 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

25 ,

	(ix) MERKMAL:
	(A) NAME/SCHLÜSSEL: Peptide
	(B) LAGE:14
	(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"
5	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 88:
	His Met Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu
10	1 5 10 15
	Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
	20 25 30
15 (:	2) ANGABEN ZU SEQ ID NO: 89:
	(i) SEQUENZKENNZEICHEN:
	(A) LÄNGE: 30 Aminosäuren
	(B) ART: Aminosäure
20	(C) STRANGFORM: Einzelstrang
	(D) TOPOLOGIE: linear
	(ii) ART DES MOLEKÜLS: Peptid
25	
	(ix) MERKMAL:
	(A) NAME/SCHLUSSEL: Peptide
	(B) LAGE:14
	(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 89: His Asn Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 5 15 10 5 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25 30 20 10 (2) ANGABEN ZU SEQ ID NO: 90: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 15 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 20 (ix) MERKMAL: (A) NAME/SCHLUSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 25

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 90:

His Pro Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 5 20 (2) ANGABEN ZU SEQ ID NO: 91: (i) SEQUENZKENNZEICHEN: 10 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 15 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide 20 (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 91: 25 His Gln Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 5 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg

WO 97/46584 PCT/EP97/02930

121

20 25 30

(2) ANGABEN ZU SEQ ID NO: 92:

5 (i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

10

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL:

15 (A) NAME/SCHLÜSSEL: Peptide

(B) LAGE:14

(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"

20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 92:

His Arg Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu

1 5 10 15

25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
20 25 30

(2) ANGABEN ZU SEQ ID NO: 93:

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 5 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 93: His Thr Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 10 1 20 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 94: 25 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Peptid 5 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE:14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 94: His Val Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 15 15 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25 30 20 20 (2) ANGABEN ZU SEQ ID NO: 95: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosauren (B) ART: Aminosaure 25 (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

(ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide (B) LAGE: 14 (D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle" 5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 95: His Trp Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu 10 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 15 (2) ANGABEN ZU SEQ ID NO: 96: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure 20 (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 25 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: Peptide

(B) LAGE: 14

	(D) SONSTIGE ANGABEN:/product= "Xaa bedeutet Nle"	
5	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 96:	
,	His Tyr Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Xaa Glu Glu	
	1 5 10 15	
	Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg	
10	20 25 30	
	(2) ANGABEN ZU SEQ ID NO: 97:	
	(i) SEQUENZKENNZEICHEN:	
15	(A) LÄNGE: 30 Aminosäuren	
	(B) ART: Aminosäure	
	(C) STRANGFORM: Einzelstrang	
	(D) TOPOLOGIE: linear	
20	(ii) ART DES MOLEKÜLS: Peptid	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 97:	
25	His Ser Ala Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu	
	1 5 10 15	
	Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg	
	20 25 30	

(2) ANGABEN ZU SEQ ID NO: 98: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 5 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 10 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 98: His Ser Asp Gly Ala Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 15 5 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 20 (2) ANGABEN ZU SEQ ID NO: 99: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 25 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

WO 97/46584 PCT/EP97/02930

127

	(xi) SEQUENZBESCHRE	IBUNG: SEQ	ID NO:	99:				
5	His Ser Asp Gly Ty:	r Phe Thr	Ser Asp	Leu Ser	Lys Gln	Ala	Glu 15	Glu
	Glu Ala Val Arg Le	u Phe Ile	Glu Trp	Leu Lys	Asn Gly	Arg		
10	20		25			30		
	(2) ANGABEN ZU SEQ ID No	O: 100:						
	(i) SEQUENZKENNZEI (A) LÄNGE: 30		en					
15	(B) ART: Amino		trang					
	(D) TOPOLOGIE	: linear						
20	(ii) ART DES MOLEKU	LS: Peptid						
	(xi) SEQUENZBESCHRE	IBUNG: SEQ	ID NO:	100:				
25	His Ser Asp Gly Th	r Tyr Thr	Ser Asp	Leu Ser	Lys Gln	Ala	Glu 15	Glu
		u Dha Tìc	Clu Tro		Aen Cle	A = ~		
	Glu Ala Val Arg Le	d the ite	25	пеп пуз	wan già	30		

(2) ANGABEN ZU SEQ ID NO: 101: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 5 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 101: His Ser Asp Gly Thr Ile Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 15 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 20 (2) ANGABEN ZU SEQ ID NO: 102: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 25 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 102: His Ser Asp Gly Thr Phe Ser Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 5 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 10 (2) ANGABEN ZU SEQ ID NO: 103: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure 15 (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 103: His Ser Asp Gly Thr Phe Tyr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 1 10 25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25 30 20

(2) ANGABEN ZU SEQ ID NO: 104:

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 5 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 10 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 104: His Ser Asp Gly Thr Phe Thr Thr Asp Leu Ser Lys Gln Ala Glu Glu 15 10 15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 105: 20 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 25

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 105: His Ser Asp Gly Thr Phe Thr Tyr Asp Leu Ser Lys Gln Ala Glu Glu 5 15 10 1 5 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 25 30 20 (2) ANGABEN ZU SEQ ID NO: 106: 10 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 15 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 20 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 106: His Ser Asp Gly Thr Phe Thr Ser Glu Leu Ser Lys Gln Ala Glu Glu 15 10 25 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 20 25 30

(2) ANGABEN ZU SEQ ID NO: 107:

(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 5 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 107: 10 His Ser Asp Gly Thr Phe Thr Ser Asp Ala Ser Lys Gln Ala Glu Glu 15 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 15 . 25 30 20 (2) ANGABEN ZU SEQ ID NO: 108: (i) SEQUENZKENNZEICHEN: 20 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 25 (ii) ART DES MOLEKULS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 108:

	His	Ser As	p Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ala	Lys	Gln	Ala	Glu	Glu
	1			5					10					15	
5	Glu	Ala Va	l Arg	Leu	Phe	Ile	Glu	Trp	Leu	Lys	Asn	Gly	Arg		
			20					25					30		
	(2) ANGA	BEN ZU	SEQ II) ио:	109	9:									
10	(i)	SEQUEN	zkenn?	ZEICH	HEN:										
		(A) L	ÄNGE:	30 <i>P</i>	Amino	osäui	ren								
		(B) A	RT: An	ninos	säure	9									
		(C) S	TRANGI	FORM:	Eir	nzels	strai	ng				•			
		(D) T	OPOLO	SIE:	line	ear									
15	(ii)	ART DE	s moli	EKÜLS	5: Pe	eptio	i								
20	(xi)	SEQUEN	ZBESCI	HREI	BUNG	: SE(O ID	NO:	109:	1					
	His	Gly Gl	u Gly	Thr	Phe	Thr	Ser	Asp	Leu	Ser	Ala	Gln	Ala	Glu	Glu
	1			5					10					15	
	G1	n) - V-	1 2 2 2	T	Dh.a	Tlo	Cl.	T-n	I ou	T	n e n	C) v	Ara		
25	GIU	Ala Va	20	Leu	rne	116	GIU	25	Leu	гуз	ASII	GLY	30		
<i></i>			20												
	(2) ANGA	BEN ZU	SEQ I	D NO:	: 11	0:									

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 5 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 110: 10 His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Ala Ala Glu Glu 15 10 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25 15 (2) ANGABEN ZU SEQ ID NO: 111: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 20 (B) ART: Aminosaure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 111:

(ii) ART DES MOLEKULS: Peptid

25

His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Ala Glu 15 10 1 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 5 20 25 (2) ANGABEN ZU SEQ ID NO: 112: (i) SEQUENZKENNZEICHEN: 10 (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 15 (ii) ART DES MOLEKULS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 112: Lys Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 20 15 10 1 Ala Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25 25 (2) ANGABEN ZU SEQ ID NO: 113:

(i) SEQUENZKENNZEICHEN:

(A) LANGE: 30 Aminosäuren

WO 97/46584

PCT/EP97/02930

136

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

5 (ii) ART DES MOLEKULS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 113:

His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu

1 5 10 15

Glu Leu Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg
20 25 30

15

(2) ANGABEN ZU SEQ ID NO: 114:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

20 (B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKULS: Peptid

25

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 114:

His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu

PCT/EP97/02930 WO 97/46584

137

10 15 1 Glu Ala Ile Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 20 25 30 5 (2) ANGABEN ZU SEQ ID NO: 115: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren 10 (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 15 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 115: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 20 15 1 10 Glu Ala Val Ala Leu Phe Ile Glu Trp Leu Lys Asn Gly Arg 20 25 30

25 (2) ANGABEN ZU SEQ ID NO: 116:

(i) SEQUENZKENNZEICHEN:

(A) LÄNGE: 30 Aminosäuren

(B) ART: Aminosäure

(C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 5 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 116: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 10 1 Glu Ala Val Arg Leu Tyr Ile Glu Trp Leu Lys Asn Gly Arg 30 20 25 (2) ANGABEN ZU SEQ ID NO: 117: 15 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang 20 (D) TOPOLOGIE: linear (ii) ART DES MOLEKULS: Peptid 25 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 117: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 5

30

5

10

15

20

Glu Ala Val Arg Leu Phe Val Glu Trp Leu Lys Asn Gly Arg 30 25 20 (2) ANGABEN ZU SEQ ID NO: 118: (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Aminosäuren (B) ART: Aminosäure (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 118: His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Ala Glu Glu 15 10 1 Glu Ala Val Arg Leu Phe Ile Leu Trp Leu Lys Asn Gly Arg

25

20

Ansprüche

Peptid, dadurch gekennzeichnet, daß es die Sequenz 1 oder 2 aufweist

SEQ ID NO: 1

10 SEQ ID NO: 2

wobei X eine proteogene oder nichtproteogene Aminosäure außer Glycin bedeutet, die Aminosäuren in Position 1, 2, 28, 29 oder 30 unabhängig voneinander einzeln oder zusammen Teil der Sequenz sein können und der

N-Terminus durch NR₁R₂ dargestellt wird, wobei

- R₁ Wasserstoff, Acetyl, Trifluoracetyl, Adamantyl, Fmoc, Z, Boc, Alloc, C₁-
- C₆- Alkyl, C₂-C₈ Alkenyl oder C₇-C₉ Aralkyl,

20

R₂ Wasserstoff, Acetyl, Trifluoracetyl, Adamantyl, Fmoc, Z, Boc, Alloc, C4-C₆-Alkyl, C₂-C₈ Alkenyl oder C₇-C₉ Aralkyl, bedeuten

und der C-Terminus durch COR3 dargestellt wird, wobei

gleich OR4 oder NR4R5 R_3 mit R₄ gleich Wasserstoff oder C₁-C₆-Alkyl mit R₅ gleich Wasserstoff oder C₁-C₆-Alkyl

5

15

20

25

bedeutet, sowie deren physilogisch verträglichen Salze und Ester.

- Peptide nach Anspruch 1, dadurch gekennzeichnet, daß mindestens eine aber 2. höchstens 11 der folgenden Modifikationen an der Aminosäurekette erfolgt sind 10
 - (a) Die α-Aminosäure in Position 1 ist D-His, Ala, D-Ala, Gly, Lys oder D-Lys, wobei Ala, Gly oder Lys besonders bevorzugt werden; oder
 - Die α-Aminosäure in Position 2 ist Ser, D-Ser, Thr, D-Thr, Gly, Ala, D-(b) Ala, Ile, D-Ile, Val, D-Val, Leu oder D-Leu, bevorzugt Ser, Thr, Gly, Ala, Val, Ile oder Leu; oder
 - Die α-Aminosäure in Position 3 ist Glu, D-Glu, Asp, D-Asp, Ala oder D-(c) Ala, bevorzugt Glu, Asp oder Ala; oder
 - Die Aminosäure in Position 4 ist Ala, D-Ala oder B-Ala, bevorzugt Ala; (d) oder
 - Die α-Aminosäure in Position 5 ist Ser, Tyr oder Ala; oder (e)
 - Die α-Aminosäure in Position 6 ist Ala, Ile, Val, Leu, Cha oder Tyr, **(f)** bevorzugt Ala, Ile, Val, Leu oder Tyr; oder
 - Die α-Aminosäure in Position 7 ist Ala, D-Ala, Tyr, D-Tyr, Ser, D-Ser (g) oder D-Thr, bevorzugt Ala, Tyr oder Ser; oder
 - Die α-Aminosäure in Position 8 ist Ala, Tyr oder Thr; oder (h)
 - Die α-Aminosäure in Position 9 ist Ala, D-Ala, Glu, D-Glu oder D-Asp, (i) bevorzugt Ala oder Glu; oder
- Die Aminosäuren in Position 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 24, **(j)** 28, 29, sind unabhängig voneinander eine proteinogene oder nicht-30

- proteinogene D- oder L-Aminosäure, bevorzugt eine proteinogene L-Aminosäure; oder
- (k) Die α-Aminosäure in Position 13 ist eine neutrale L-Aminosäure, bevorzugt eine neutrale proteinogene L-Aminosäure; oder
- Die α-Aminosäure in Position 14 wird ersetzt durch eine neutrale L- oder D-Aminosäure außer L-Leucin, bevorzugt durch Nle, D-Nle, Ala, D-Ala, Ile, D-Ile, Val oder D-Val, besonders bevorzugt sind Ile, Val oder Ala; oder
- (m) Die α-Aminosäure in Position 22 ist D-Phe, Tyr, D-Tyr, Leu, D-Leu, Val,
 D-Val, L-Cha, D-Cha, β-1-Nal, β-2-Nal oder β-1-D-Nal, bevorzugt sind
 Tyr, Leu oder Val; oder
 - (n) Die α-Aminosäure in Position 23 ist Leu, D-Leu, D-Ile, Val, D-Val, L-Cha, D-Cha, Tyr, D-Tyr, Phe oder D-Phe, bevorzugt sind Leu, Val, Tyr oder Phe; oder
- 15 (o) Die α-Aminosäure in Position 25, 26 oder 27 ist eine neutrale L- oder D-Aminosäure, bevorzugt eine neutrale, proteinogene L-Aminosäure; oder
 - (p) Die α-Aminosäure in Position 30 ist eine proteinogene oder nichtproteinogene D- oder L-Aminosäure außer Glycin, bevorzugt Arg, D-Arg, Tyr oder D-Tyr, besonders bevorzugt sind Arg oder Tyr.

20

- 3. Peptid nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß es nur proteinogene Aminosäuren enthält.
- 4. Peptid nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß in Position 2 gegenüber der Sequenz 1 oder 2 ein Aminosäureaustausch erfolgt ist.
- 25 5. Peptid nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß in Position 14 gegenüber der Sequenz 1 oder 2 ein Aminosäureaustausch erfolgt ist.

70

10

- 6. Peptid nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß in Position 3 gegenüber der Sequenz 1 oder 2 ein Aminosäureaustausch erfolgt ist.
- 7. Peptid, dadurch gekennzeichnet, daß es eine der Sequenzen 5, 68, 69, 71, 78-82 oder 84-91 aufweist, wobei der N-Terminus durch
- Wasserstoff, Acetyl, Trifluoracetyl, Adamantyl, Fmoc, Z, Boc, Alloc, C₁-C₆-Alkyl, C₂-C₈ Alkenyl oder C₇-C₉ Aralkyl,
 - R₂ Wasserstoff, Acetyl, Trifluoracetyl, Adamantyl, Fmoc, Z, Boc, Alloc, C4-C₆-Alkyl, C₂-C₈ Alkenyl oder C₇-C₉ Aralkyl, bedeuten

und der C-Terminus durch COR3 dargestellt wird, wobei

R₃ gleich OR₄ oder NR₄R₅
mit R₄ gleich Wasserstoff oder C₁-C₆-Alkyl
mit R₅ gleich Wasserstoff oder C₁-C₆-Alkyl

bedeutet, sowie deren physilogisch verträglichen Salze und Ester.

- 9. Peptid nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß es die
 20 Insulinfreisetzung stimuliert.
 - Arzneimittel enthaltend neben üblichen Trägern und Hilfsstoffen mindestens ein Peptid nach einem der Ansprüche 1-8.
- 25 11. Verwendung von Peptiden nach einem der Ansprüche 1-8 zur Herstellung von pharmazeutischen Zusammensetzungen zur Behandlung von Diabetes.

INTERNATIONAL SEARCH REPORT

Interni al Application No PCT/EP 97/02930

A 4	ri Accieir	ATION	OF SUBJECT	MAILER	
A- 1		~1.011	0, 000000		
		~~~!	14/575	A61K38	177
TO	C 6	1 '13 1 V	1/1/6/6	DD IE SX	,,,

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) I PC 6 CO7 K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT  Category * Citation of document, with indication, where appropriate, of the relevant passages  Relevant					
Category *	CKADON OF BOOLIMENT, WITH MICKERSON, WHERE APPROPRIATE, OF THE PRICE STREET				
Х	US 5 424 286 A (ENG JOHN) 13 June 1995	1-4,6, 9-11			
	<pre>* see SEQ ID N. 4* see the whole document</pre>				
A	K. ADELHORST ET AL.: "Structure-Activity studies of Glucagon-like Peptide-1 (GLP-1)"  JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 269, no. 9, 4 March 1994, MD US, pages 6275-6278, XP002045291 see page 6277, column 1, line 4 - line 7	1-4,6,			

X Further documents are listed in the continuation of box C.	X Patent lamily members are laced in annual.					
Special categories of cited documents:      A document defining the general state of the art which is not considered to be of particular relevance.	"?" later document published after the international filing date or priority date and not in conflict with the application but ofted to understand the principle or theory underlying the invention					
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone					
which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-					
*O* document referring to an oral disclosure, use, exhibition or other means  *P* document published prior to the international filling date but	ments, such combination being obvious to a person skilled in the art.					
later than the priority date claimed	*&* document member of the same patent family					
Date of the actual completion of the international search	Date of mailing of the international search report					
31 October 1997	1 4. 11. 97					
Name and mailing address of the ISA	Authorized officer					
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Cervigni, S					

Form PCT/ISA/210 (second sheet) (July 1992)

# INTERNATIONAL SEARCH REPORT

tntern. al Application No
PCT/EP 97/02930

	H41ERGARAGE	PCT/EP 97/02930			
C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.		
Category °	Citation of document, with indication, where appropriate, of the relevant passages				
A	J. ENG ET AL: "Purification and structure of Exendin-3" JOURNAL OF BIOLOGICAL CHEMISTRY., vol. 265, no. 33, 25 November 1990, MD US, pages 20259-20262, XP002045292 see the whole document				
A	J. ENG ET AL: "Isolation of exendin-4" J. BIOL. CHEM, vol. 267, no. 11, 15 April 1992, pages 7402-7405, XP002045293 see the whole document				

# INTERNATIONAL SEARCH REPORT

information on patent (amily members

Interns at Application No
PCT/EP 97/02930

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5424286 A	13-06-95	NONE	
		,	
	•		

### INTERNATIONALER RECHERCHENBERICHT

Intern rales Aktenzeichen PCT/EP 97/02930

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C07K14/575 A61K38/22

Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

#### B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C07K

Weitere Veröfferklichungen sind der Fortsetzung von Feld C zu

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiste fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angebe der in Betracht kommenden Telle	Betr. Anspruch Nr.
X	US 5 424 286 A (ENG JOHN) 13.Juni 1995	1-4,6, 9-11
	*siehe SEQ ID N. 4* siehe das ganze Dokument	
A	K. ADELHORST ET AL.: "Structure-Activity studies of Glucagon-like Peptide-1 (GLP-1)" JOURNAL OF BIOLOGICAL CHEMISTRY, Bd. 269, Nr. 9, 4.März 1994, MD US, Seiten 6275-6278, XP002045291 siehe Seite 6277, Spalte 1, Zeile 4 - Zeile 7	1-4,6, 9-11
	-/	

enthehmen			
*Besondere Katsgorien von angegebenen Veröffentlichungen :  *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist  *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist  *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden eotl oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)  *O* Veröffentlichung, die sich auf eine mitnelliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht  *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	kann nicht als auf erfinderischer Tätigkeit benahend betramet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist		
Datum des Absohlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts		
31.0ktober 1997	1 4. 11. 97		
Name und Postanschrift der Internationalen Recherchenbehörde	Bevoltmåchtigter Bediensteter		
Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Cervigni, S		

X Siehe Anhang Patentfamilie

Formblatt PCT/ISA/210 (Blaft 2) (Juli 1992)

# INTERNATIONALER RECHERCHENBERICHT

Intern izles Aktenzeichen
PCT/EP 97/02930

	INTERNATIONALER RECHERCITETUDERCHIT		PCT/EP 97/02930	
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN  (ategorie*   Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme			nden Teile Betr. Anspruch Nr.	
A	J. ENG ET AL: "Purification and structure of Exendin-3" JOURNAL OF BIOLOGICAL CHEMISTRY., Bd. 265, Nr. 33, 25.November 1990, MD US, Seiten 20259-20262, XP002045292 siehe das ganze Dokument			
A	J. ENG ET AL: "Isolation of exendin-4" J. BIOL. CHEM, Bd. 267, Nr. 11, 15.April 1992, Seiten 7402-7405, XP002045293 siehe das ganze Dokument			
	·			

## INTERNATIONALER RECHERCHENBERICHT

1

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intern. sles Aktenzeichen
PCT/EP 97/02930

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5424286 A	13-06-95	KEINE	
•			
			_
			·