单片机控制与应用实验

主讲教师: 郭东伟

课程概述

- *本实验为计算机科学与技术相关专业高年级的综合性实验
- * 主要内容:
 - * 单片机的原理与结构
 - * 常见外部设备接口
 - *一些传感器和控制部件的输入输出
 - * 控制系统的构成和应用

相关知识

- *相关的前导知识包括:数字逻辑、操作系统、微机原理,计算机接口等。
- * 学习方法:
 - * 教师讲解
 - * 学生自学(结合讲义、参考书)
 - * 课堂实验
 - *课外仿真实验

单片机 (MicroController Unit)

- * 将CPU、内存和各种接口电路,甚至包括一部分驱动电路都整合到单一芯片上,形成芯片级的计算机。
- *特点: CPU指令简单、主频低、内存小、接口丰富
- * 主要用于外部设备的接口、信息采集和控制等领域
- * 应用范围:测控系统、智能仪表、机电一体化、汽车电子、家用电器等

MCU发展历史

- * 1971年Intel公司, 4位微处理器Intel 4004
- * 80年代, 8位的Intel MCS-51系列
- * 90年代之后,单片机在集成度、功能、速度、可靠性等方面继续发展

MCU应用现状

- * 2021年,全球MCU的交付量309 亿颗,销售额 196 亿美元,同比增长了23%
- * 2022年中国MCU市场规模超过268亿元

MCS-51系列单片机

- * Intel公司的一系列8位单片机的统称
- * 包括其他公司推出的兼容和改进的芯片

实验题目和完成时间

*本实验共计12周,1-2次实验设一个时间点,超时不能完成将按 未做完对待,如果能够提前完成,可以直接进入下一个实验。

序号	时间(周)	类型	内容	主要工具	平时分
1	4.2	仿真实验	MCS51初步	Proteus+汇编	5
2	1-3		键盘和显示仿真		5
3	4.6	硬件设备实 验	LED点阵显示屏	实验箱 -Keil开发环境 (C51语言)	7
4	4-6		步进电机		7
5	7-9		AD+液晶显示		7
6			直流电机脉宽调制调速		7
7	10-12		音频录制与播放		7
8	10-12		自主创新实验(选作)		5

实验过程和要求

- *本实验学生可以分组完成,每组不超过4人, 可以单人1组。
- * 每个实验完成(或中间的检查点),学生请教师检查实验,学生共同讲解实验,说明在实验中每个人的分工和贡献。教师会向学生提问。每组中各个同学获得的分数可能不同。
- * 平时成绩占50%, 期末考试成绩占50%
- * 期末考试计划采用线下实验的方式,仍然按照平时的分组完成和提交。