

Source:

Creator:

Dr. WIlliam H. Wolberg (physician)

University of Wisconsin Hospitals

Madison, Wisconsin, USA

Location:

UCI data repository

Kaggle data repository

Attribute Information:

1. Sample code number: id number

2. Clump Thickness: 1 - 10

3. Uniformity of Cell Size: 1 - 10

4. Uniformity of Cell Shape: 1 - 10

5. Marginal Adhesion: 1 - 10

6. Single Epithelial Cell Size: 1 - 10

7. Bare Nuclei: 1 - 10

8. Bland Chromatin: 1 - 10

9. Normal Nucleoli: 1 - 10

10. Mitoses: 1 - 10

11. Class: (2 for benign, 4 for malignant)

Malignant==> Cancerous

Benign==> Not Cancerous (Healthy)

Background

All of our bodies are composed of cells. The human body has about 100 trillion cells within it. And usually those cells behave in a certain way. However, occasionally, one of these 100 trillion cells, behave in a different way and keeps dividing and pushes the other cells around it out of the way. That cell stops observing the rules of the tissue within which it is located and begins to move out of its normal position and starts invading into the tissues around it and sometimes entering the bloodstream and becoming is called a metastasis.

In summary, as we grow older, throughout a lifetime, we go through this knid of situation where a particular kind of gene is mutated where the protein that it makes is abnormal and drives the cell to behave in a different way that we call cancer.

This is what Dr. William H. Wolberg was observing and put together this dataset.

Can we predict whether a cell is Malignant or Benign?

```
In [162]: # !pip install pyforest
# from pyforest import*
# lazy_imports()
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline

In [164]: data=pd.read_csv("breastcancer.csv")

In [165]: data.head()

Out[165]:
```

	id	clump_thickness	size_uniformity	shape_uniformity	marginal_adhesion	epithelial_size	bare_n
0	1000025	5	1	1	1	2	
1	1002945	5	4	4	5	7	
2	1015425	3	1	1	1	2	
3	1016277	6	8	8	1	3	
4	1017023	4	1	1	3	2	

Data pre-processing

In [163]: import numpy as np

clump_thickness int64
size_uniformity int64
shape_uniformity int64
marginal_adhesion int64
epithelial_size int64
bare_nucleoli object
bland_chromatin int64
normal_nucleoli int64
mitoses int64
class int64
dtype: object

```
In [168]: data['bare_nucleoli'] #let's inspect the 'bare_nucleoli' column
Out[168]: 0
                  1
                  10
           1
           2
                  2
           3
                  4
                   1
           4
           5
                  10
           6
                  10
           7
                   1
           8
                   1
           9
                   1
           10
                   1
           11
                   1
                   3
           12
           13
                   3
           14
                   9
           15
                   1
           16
                   1
           17
                  1
           18
                  10
           19
                  1
           20
                  10
           21
                  7
           22
                   1
                   ?
           23
          24
                   1
           25
                   7
           26
                   1
           27
                   1
           28
                   1
           29
                   1
                  . .
           669
                  5
           670
                  8
           671
                   1
           672
                   1
           673
                   1
           674
                   1
           675
                   1
           676
                   1
           677
                   1
           678
                   1
           679
                   1
           680
                  10
           681
                  10
                   1
           682
           683
                   1
           684
                   1
           685
                   1
           686
                   1
           687
                   1
           688
                   1
           689
                   1
           690
                   1
                   5
           691
           692
                   1
           693
                   1
                   2
           694
           695
                   1
           696
                   3
           697
                   4
           698
                   5
           Name: bare_nucleoli, Length: 699, dtype: object
```

In [169]: data[data['bare_nucleoli'] == '?'] #checking the presence of '?' in the 'bare_nucleoli' column

Out[169]:

	id	clump_thickness	size_uniformity	shape_uniformity	marginal_adhesion	epithelial_size	bare
23	1057013	8	4	5	1	2	
40	1096800	6	6	6	9	6	
139	1183246	1	1	1	1	1	
145	1184840	1	1	3	1	2	
158	1193683	1	1	2	1	3	
164	1197510	5	1	1	1	2	
235	1241232	3	1	4	1	2	
249	169356	3	1	1	1	2	
275	432809	3	1	3	1	2	
292	563649	8	8	8	1	2	
294	606140	1	1	1	1	2	
297	61634	5	4	3	1	2	
315	704168	4	6	5	6	7	
321	733639	3	1	1	1	2	
411	1238464	1	1	1	1	1	
617	1057067	1	1	1	1	1	

In [170]: data[data['bare_nucleoli'] == '?'].sum() # alternatively

Out[170]:	id	13721250
	clump_thickness	54
	size_uniformity	39
	shape_uniformity	46
	marginal_adhesion	29
	epithelial_size	39
	bare_nucleoli	?????????????????
	bland_chromatin	50
	normal_nucleoli	44
	mitoses	16
	class	36
	dtype: object	

Alternatively

Using the isdigit() function

Out[171]:

	bare_	_nucleoli
0		True
1		True
2		True
3		True
4		True
5		True
6		True
7		True
8		True
9		True
10		True
11		True
12		True
13		True
14		True
15		True
16		True
17		True
18		True
19		True
20		True
21		True
22		True
23		False
24		True
25		True
26		True
27		True
28		True
29		True
		•••
669		True
670		True
671		True
672		True
673		True
674		True
675		True
676		True
677		True
678		True

	bare_nucleoli
679	True
680	True
681	True
682	True
683	True
684	True
685	True
686	True
687	True
688	True
689	True
690	True
691	True
692	True
693	True
694	True
695	True
696	True
697	True
698	True

699 rows × 1 columns

Out[172]:

	id	clump_thickness	size_uniformity	shape_uniformity	marginal_adhesion	epithelial_size	bare
23	1057013	8	4	5	1	2	
40	1096800	6	6	6	9	6	
139	1183246	1	1	1	1	1	
145	1184840	1	1	3	1	2	
158	1193683	1	1	2	1	3	
164	1197510	5	1	1	1	2	
235	1241232	3	1	4	1	2	
249	169356	3	1	1	1	2	
275	432809	3	1	3	1	2	
292	563649	8	8	8	1	2	
294	606140	1	1	1	1	2	
297	61634	5	4	3	1	2	
315	704168	4	6	5	6	7	
321	733639	3	1	1	1	2	
411	1238464	1	1	1	1	1	
617	1057067	1	1	1	1	1	

Let us replace these missing values with NaN

```
In [173]: df= data.replace('?', np.nan)
In []:
```

```
In [174]: df.bare_nucleoli
Out[174]: 0
                  1
                  10
          1
          2
                 2
          3
                 4
                  1
          4
          5
                 10
                 10
          6
          7
                  1
                  1
          8
          9
                  1
          10
                  1
                  1
          11
                  3
          12
          13
                  3
          14
                  9
          15
                  1
          16
                  1
          17
                  1
          18
                 10
          19
                  1
                 10
          20
                  7
          21
          22
                  1
          23
                 NaN
          24
                 1
          25
                  7
          26
                  1
          27
                   1
                  1
          28
          29
                   1
          669
                5
          670
          671
                  1
          672
                   1
          673
                  1
          674
                  1
          675
                  1
          676
                  1
          677
                  1
          678
                  1
          679
                  1
          680
                 10
                  10
          681
          682
                  1
                  1
          683
          684
                  1
          685
                  1
          686
                   1
          687
                   1
          688
                  1
          689
                   1
          690
                   1
          691
                  5
          692
                  1
          693
                  1
          694
                   2
          695
                  1
                  3
          696
          697
                   4
          698
                   5
          Name: bare_nucleoli, Length: 699, dtype: object
```

```
In [175]:
           df.median()
Out[175]: id
                                  1171710.0
                                         4.0
           clump_thickness
           size_uniformity
                                         1.0
           shape_uniformity
                                         1.0
           marginal_adhesion
                                         1.0
           epithelial_size
                                         2.0
           bare_nucleoli
                                         1.0
           bland_chromatin
                                         3.0
           normal_nucleoli
                                         1.0
                                         1.0
           mitoses
           class
                                         2.0
           dtype: float64
In [176]:
           df.head()
Out [176]:
              id
                      clump_thickness size_uniformity shape_uniformity marginal_adhesion epithelial_size bare_n
            0 1000025
                                  5
                                               1
                                                                              1
                                                                                          2
                                                              1
            1 1002945
                                  5
                                               4
                                                              4
                                                                              5
                                                                                          7
            2 1015425
                                  3
                                               1
                                                              1
                                                                              1
                                                                                          2
            3 1016277
                                  6
                                               8
                                                              8
                                                                              1
                                                                                          3
            4 1017023
                                                                              3
                                                                                          2
                                               1
                                                              1
In [177]:
           df = df.fillna(df.median())
In [178]:
           df.dtypes
Out[178]: id
                                   int64
           clump_thickness
                                   int64
           size_uniformity
                                   int64
           shape_uniformity
                                   int64
           marginal_adhesion
                                   int64
           epithelial_size
                                   int64
           bare_nucleoli
                                  object
           bland_chromatin
                                   int64
           normal_nucleoli
                                   int64
                                   int64
           mitoses
           class
                                   int64
```

In []:

dtype: object

```
In [179]: df.bare_nucleoli
Out[179]: 0
                   1
                   10
           1
           2
                  2
           3
                   4
                    1
           4
           5
                  10
                  10
           6
           7
                   1
           8
                    1
           9
                    1
           10
                    1
           11
                    1
           12
                    3
           13
                    3
                    9
           14
           15
                    1
           16
                    1
           17
                   1
           18
                   10
                   1
           19
           20
                   10
           21
                   7
                    1
           22
           23
                    1
           24
                    1
           25
                    7
           26
                    1
           27
                    1
                    1
           28
           29
                    1
                   . .
           669
                   5
           670
                    8
           671
                    1
           672
                    1
           673
                    1
           674
                    1
           675
                    1
           676
                    1
           677
                    1
           678
                    1
           679
                   1
           680
                   10
                   10
           681
           682
                    1
                    1
           683
           684
                    1
           685
                    1
           686
                    1
           687
                    1
                    1
           688
           689
                    1
           690
                    1
           691
                    5
           692
                    1
           693
                    1
                    2
           694
           695
                    1
                    3
           696
           697
                    4
           698
                    5
           Name: bare_nucleoli, Length: 699, dtype: object
```

```
In [180]: df.dtypes
Out[180]: id
                                int64
          clump_thickness
                                int64
          size_uniformity
                                int64
          shape_uniformity
                               int64
          marginal_adhesion
                                int64
          epithelial_size
                                int64
          bare_nucleoli
                              object
          bland_chromatin
                               int64
          normal_nucleoli
                                int64
                                int64
          mitoses
          class
                                int64
          dtype: object
In [181]: | df['bare_nucleoli'] = df['bare_nucleoli'].astype('int64')
In [182]:
          df.dtypes
Out[182]: id
                               int64
          clump_thickness
                               int64
          size_uniformity
                              int64
          shape_uniformity
                               int64
          marginal_adhesion
                              int64
          epithelial_size
                              int64
          bare_nucleoli
                               int64
          bland_chromatin
                              int64
                              int64
          normal_nucleoli
          mitoses
                              int64
          class
                               int64
          dtype: object
```

Exploratory Data Analysis

```
In [183]: #dropping the index of the dataset

df.drop('id', axis=1, inplace=True)
```

In [184]: df.head()

Out[184]:

	clump_thickness	size_uniformity	shape_uniformity	marginal_adhesion	epithelial_size	bare_nucleoli	b
0	5	1	1	1	2	1	
1	5	4	4	5	7	10	
2	3	1	1	1	2	2	
3	6	8	8	1	3	4	
4	4	1	1	3	2	1	

```
In [185]: data.head()
```

Out[185]:

	id	clump_thickness	size_uniformity	shape_uniformity	marginal_adhesion	epithelial_size	bare_n
0	1000025	5	1	1	1	2	
1	1002945	5	4	4	5	7	
2	1015425	3	1	1	1	2	
3	1016277	6	8	8	1	3	
4	1017023	4	1	1	3	2	

In [186]: df.describe().T

Out[186]:

	count	mean	std	min	25%	50%	75%	max
clump_thickness	699.0	4.417740	2.815741	1.0	2.0	4.0	6.0	10.0
size_uniformity	699.0	3.134478	3.051459	1.0	1.0	1.0	5.0	10.0
shape_uniformity	699.0	3.207439	2.971913	1.0	1.0	1.0	5.0	10.0
marginal_adhesion	699.0	2.806867	2.855379	1.0	1.0	1.0	4.0	10.0
epithelial_size	699.0	3.216023	2.214300	1.0	2.0	2.0	4.0	10.0
bare_nucleoli	699.0	3.486409	3.621929	1.0	1.0	1.0	5.0	10.0
bland_chromatin	699.0	3.437768	2.438364	1.0	2.0	3.0	5.0	10.0
normal_nucleoli	699.0	2.866953	3.053634	1.0	1.0	1.0	4.0	10.0
mitoses	699.0	1.589413	1.715078	1.0	1.0	1.0	1.0	10.0
class	699.0	2.689557	0.951273	2.0	2.0	2.0	4.0	4.0

Bivariate Data Analysis

In [187]: | sns.distplot(df['class'])

Out[187]: <matplotlib.axes._subplots.AxesSubplot at 0x1a22421438>

Each is even distributed and there are beningn than malignant

Multivariate Data Analysis

In [188]: | df.hist(bins=20, figsize=(30,30), layout=(6,3)); In [189]: plt.figure(figsize= (15,10)) sns.boxplot(data=df,orient="h") Out[189]: <matplotlib.axes._subplots.AxesSubplot at 0x1a22994780>


```
In [190]: df.corr()
```

Out[190]:

	clump_thickness	size_uniformity	shape_uniformity	marginal_adhesion	epithelial_size
clump_thickness	1.000000	0.644913	0.654589	0.486356	0.521816
size_uniformity	0.644913	1.000000	0.906882	0.705582	0.751799
shape_uniformity	0.654589	0.906882	1.000000	0.683079	0.719668
marginal_adhesion	0.486356	0.705582	0.683079	1.000000	0.599599
epithelial_size	0.521816	0.751799	0.719668	0.599599	1.000000
bare_nucleoli	0.590008	0.686673	0.707474	0.666971	0.583701
bland_chromatin	0.558428	0.755721	0.735948	0.666715	0.616102
normal_nucleoli	0.535835	0.722865	0.719446	0.603352	0.628881
mitoses	0.350034	0.458693	0.438911	0.417633	0.479101
class	0.716001	0.817904	0.818934	0.696800	0.682785

```
In [191]: #Heatmap of the correlation between the indepent attributes

plt.figure(figsize=(35,15))
    sns.heatmap(df.corr(), vmax=1, square=True,annot=True,cmap='viridis')
    plt.title('Correlation between different attributes')
    plt.show()
```

0.90

0.75


```
In [192]: | #Pairplot of the correlation/distribution between various independent attribute
          sns.pairplot(df, diag_kind="kde")
Out[192]: <seaborn.axisgrid.PairGrid at 0x1a229bd668>
 In [ ]:
Building Our Model
```

```
In [193]: # Dividing our dataset into training and testing set

X = df.drop('class', axis=1) #selecting all the attributes except the class at tribute
y = df['class'] #selecting class attribute.
```

```
In [ ]:
```

```
In [194]: | #Splitting our data into 70:30
          from sklearn.model selection import train test split
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, rando
          m_state=1)
 In [ ]:
KNeighborsClassifier
In [195]: from sklearn.neighbors import KNeighborsClassifier
          KNN = KNeighborsClassifier(n neighbors= 5 , weights = 'distance')
In [196]: # Call Nearest Neighbour algorithm
          KNN.fit(X_train, y_train)
Out[196]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                                metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                                weights='distance')
In [197]: | predicted_1 = KNN.predict(X_test)
          predicted_1
Out[197]: array([2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4,
                 4, 2, 4, 2, 4, 4, 2, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2,
                 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
                 2, 4, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4,
                 4, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 4, 2,
                 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 2, 4, 2, 2, 2, 4,
                 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 4,
                 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4,
                 4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 4,
                 4, 2, 2, 2, 2, 4, 4, 4, 2, 2, 2])
In [198]: from scipy.stats import zscore
          print('KNeighborsClassifier Agorithm is predicting at {0:.2g}%'.format(KNN.scor
          e(X_test, y_test)*100))
```

Support Vector Machine

In []:

max_iter=-1, probability=False, random_state=None, shrinking=True,

KNeighborsClassifier Agorithm is predicting at 97%

tol=0.001, verbose=False)

```
In [200]: predicted_2 = svc.predict(X_test)
          predicted_2
Out[200]: array([2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4,
                 4, 2, 4, 2, 4, 4, 2, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2,
                 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2,
                 2, 4, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4,
                 4, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2,
                 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 4, 2, 4, 2, 2, 2, 2, 4,
                 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 4,
                 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4,
                 4, 4, 4, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 4,
                 4, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 2])
In [201]: print('SupportVectorClassifier Agorithm is predicting at {0:.2g}%'.format(svc.s
          core(X_test, y_test)*100))
          SupportVectorClassifier Agorithm is predicting at 98%
In [202]: knnPredictions=pd.DataFrame(predicted_1)
          svcPredictions=pd.DataFrame(predicted_2)
In [203]: | df1=pd.concat([knnPredictions, svcPredictions], axis=1)
In [204]: | df1.columns=[['knnPredictions','svcPredictions']]
```

In [205]: df1

Out[205]:

	knnPredictions	svcPredictions
0	2	2
1	2	2
2	2	2
3	4	4
4	2	2
5	2	2
6	4	4
7	2	2
8	2	2
9	2	2
10	4	4
11	4	4
12	2	2
13	2	2
14	4	4
15	4	4
16	2	2
17	2	2
18	2	2
19	2	2
20	2	2
21	4	4
22	4	4
23	2	2
24	4	4
25	2	2
26	4	4
27	4	4
28	2	2
29	2	2
180	4	4
181	2	2
182	2	2
183	2	2
184	2	2
185	4	4
186	2	2
187	2	2
188	2	2
189	2	2

	knnPredictions	svcPredictions
190	2	2
191	2	2
192	2	2
193	4	4
194	2	2
195	4	4
196	4	4
197	4	4
198	4	4
199	2	2
200	2	2
201	2	2
202	2	2
203	2	2
204	4	4
205	4	4
206	4	4
207	2	2
208	2	2
209	2	2

210 rows × 2 columns

```
In [219]: from sklearn.metrics import classification_report
    print("classification_report for KNN")
    print("..."*10)
    print(classification_report(y_test, predicted_1))
```

 ${\tt classification_report\ for\ KNN}$

	precision	recall	f1-score	support
2	0.96	0.99	0.98	137
4	0.99	0.93	0.96	73
accuracy			0.97	210
<pre>macro avg weighted avg</pre>	0.98 0.97	0.96 0.97	0.97 0.97	210 210

```
In [220]: from sklearn.metrics import classification_report
    print("classification_report for SVC")
    print("..."*10)
    print(classification_report(y_test, predicted_2))
```

classification_report for SVC

	precision	recall	f1-score	support
2 4	0.99	0.99	0.99	137 73
accuracy			0.98	210
macro avg	0.98	0.98	0.98	210
weighted avg	0.98	0.98	0.98	210

Confusion Matrix For KNeighborsClassifier

Out[208]: <matplotlib.axes._subplots.AxesSubplot at 0x1a25cd1908>


```
In [ ]:
```

Confusion Matrix For SupportVectorMachine

Out[209]: <matplotlib.axes._subplots.AxesSubplot at 0x1a269cb5f8>


```
In [ ]:
```