Graphs and Flows in Networks

Lecture 1

St. Petersburg State University, Russia

St. Petersburg, 2022

A graph G = (X, A) is a set of vertices x_1, x_2, \ldots, x_n (denoted by the set X), and a set of edges a_1, a_2, \ldots, a_m (denoted by the set A) joining all or some of these vertices.

If the edges in A have a direction - which is usually shown by an arrow - they are called arcs and the resulting graph is called a directed graph.

An arc is denoted by the pair of initial and final vertices, its direction will be assumed to be from the first vertex to the second.

$$a_1 \longrightarrow (x_1, x_2)$$

$$a_2 \longrightarrow (x_2, x_1)$$

If the edges have no orientation the are called links and the graph is nondirected.

In the case where G=(X,A) is a directed graph, but we want to disregard the direction of the arcs in A, the nondirected counterpart to G will be written as $\overline{G}=(X,\overline{A})$.

Mixed graphs

Correspondence Γ

An alternative way to describe a direct graph $G = (X, \Gamma)$, is by specifying:

- the set X of vertices
- a correspondence $\Gamma: X \to X$ which shows how the vertices are related to each other.

$$\Gamma(x_1) = \{x_2, x_5\}, \ \Gamma(x_2) = \{x_1, x_3\}$$

$$\Gamma(x_3) = ?, \Gamma(x_4) = ?, \Gamma(x_5) = ?, \Gamma(x_5) = ?$$

Correspondence Γ

An alternative way to describe a direct graph $G = (X, \Gamma)$, is by specifying:

- the set X of vertices
- a correspondence $\Gamma: X \to X$ which shows how the vertices are related to each other.

$$\Gamma(x_1) = \{x_2, x_5\}, \ \Gamma(x_2) = \{x_1, x_3\}$$

$$\Gamma(x_3) = \{x_1\}, \Gamma(x_4) = \emptyset, \Gamma(x_5) = \{x_4\}, \text{ for all } \emptyset$$

In the case of nondirected or mixed graph, the correspondence Γ will be assumed to be those as for an equivalent directed graph in which every link has been replaced by two arcs in opposite directions.

$$\Gamma(x_5) = \{x_1, x_3, x_4\}, \ \Gamma(x_1) = \{x_3, x_5\}$$

Inverse correspondence

 $\Gamma^{-1}(x_i)$ – the set of those vertices x_k for which an arc (x_k, x_i) exists in G.

$$\Gamma^{-1}(x_1) = \{x_2, x_3\}, \ \Gamma^{-1}(x_2) = \{x_1\}$$

$$\Gamma^{-1}(x_3) = ?, \Gamma^{-1}(x_4) = ?, \Gamma^{-1}(x_5) = ?$$

Inverse correspondence

 $\Gamma^{-1}(x_i)$ – the set of those vertices x_k for which an arc (x_k, x_i) exists in Γ .

$$\Gamma^{-1}(x_1) = \{x_2, x_3\}, \ \Gamma^{-1}(x_2) = \{x_1\}$$

$$\Gamma^{-1}(x_3) = \{x_2\}, \Gamma^{-1}(x_4) = \{x_5\}, \Gamma^{-1}(x_5) = \{x_1\}$$

$$X_q = \{x_1, x_2, \dots, x_q\}$$

$$\Gamma(X_q) = \Gamma(x_1) \cup \Gamma(x_2) \cup \dots \cup \Gamma(x_q)$$

$$\Gamma(\{x_2, x_5\}) = \{x_1, x_3, x_4\}, \ \Gamma(\{x_1, x_3\}) = ?$$

The double correspondence

$$\Gamma^{2}(x_{1}) = \Gamma(\Gamma(x_{1})) = \Gamma(\{x_{2}, x_{5}\}) = \{x_{1}, x_{3}, x_{4}\}$$

$$\Gamma^{3}(x_{1}) = ?, \ \Gamma^{-2}(x_{1}) = ?$$

$$X_q = \{x_1, x_2, \dots, x_q\}$$

$$\Gamma(X_q) = \Gamma(x_1) \cup \Gamma(x_2) \cup \dots \cup \Gamma(x_q)$$

$$\Gamma(\{x_2, x_5\}) = \{x_1, x_3, x_4\}, \ \Gamma(\{x_1, x_3\}) = \{x_1, x_2, x_5\}$$

The double correspondence

$$\Gamma^2(x_1) = \Gamma(\Gamma(x_1)) = \Gamma(\{x_2, x_5\}) = \{x_1, x_3, x_4\}$$

 $\Gamma^3(x_1) = \{x_2, x_5, x_1\}, \ \Gamma^{-2}(x_1) = \{x_1, x_2\}$

Arcs which have a common terminal vertex are called adjacent.

Definition

Two vertices x_i and x_j are called adjacent if either arc (x_i, x_j) or arc (x_j, x_i) or both exit in the graph.

A path in a directed graph is any sequence of arcs where the final vertex of one is the initial vertex of the next one.

 a_2, a_4, a_3

 a_1, a_6, a_7, a_8

$$a_3, a_6, a_5, a_2 - ?$$

A simple path is a path which does not use the same arc more than once.

Definition

An elementary path is a path which does not use the same vertex more than once.

A loop is an arc whose initial and final vertices are the same

Definition

A circuit is a path a_1, a_2, \ldots, a_q in which the initial vertex of a_1 coincides with the final vertex of a_q .

$$a_2, a_7, a_8, a_6, a_1$$

$$a_1, a_3, a_6$$

An elementary circuit which passes through all the n vertices of a graph G is called a Hamiltonian circuit.

example - ?

A chain is a sequence of links $(\bar{a}_1, \bar{a}_2, \dots, \bar{a}_q)$ in which every link \bar{a}_i , except perhaps the first and last links, is connected to the links \bar{a}_{i-1} and \bar{a}_{i+1} by its two terminal vertices.

Definition

A cycle is a chain x_1, x_2, \ldots, x_q in which the beginning and end vertices are the same, i.e. in which $x_1 = x_q$.

$$\overline{a}_1, \overline{a}_3, \overline{a}_4;$$

$$\overline{a}_3, \overline{a}_4, \overline{a}_2$$

The number of arcs which have a vertex x_i as their initial vertex is called the outdegree of vertex x_i .

Definition

The number of arcs which have a vertex x_i as their final vertex is called the indegree of vertex x_i .

$$d_o(x_2) = |\Gamma(x_2)| = 2, \ d_t(x_2) = |\Gamma^{-1}(x_2)| = 1$$

$$\sum_{i=1}^n d_0(x_i) = \sum_{i=1}^n d_t(x_i) = m$$

For a nondirected graph: $d(x_i) = |\Gamma(x_i)|$ – the degree of a vertex x_i .

$$d(x_3) = 3$$

Let G = (X, A).

Definition

A partial graph G_p of G is the graph (X,A_p) with $A_p\subset A$. Thus a partial graph is a graph with the same number of vertices but with only a subset of the arcs of the original graph.

Definition

A subgraph G_s is the graph (X_s, Γ_s) with $X_s \subset X$ and for every $x_i \in X_s$, $\Gamma_s(x_i) = \Gamma(x_i) \cap X_s$. Thus, a subgraph has only a subset X_s of the set of vertices of the original graph but contains all the arcs whose initial and final vertices are both within this subset.

A partial subgraph is a partial graph of the subgraph.

A graph G=(X,A) is said to be complete if for every pair of vertices x_i and x_j in X, there exists a link $\overline{(x_i,x_j)}$ in $\overline{G}=(X,\overline{A})$ i.e. there must be at least one arc joining every pair of vertices.

The complete nondirected graph on n vertices is denoted by K_n .

A graph (X, A) is said to be symmetric if, whenever an arc (x_i, x_j) is one of the arcs in the set A of arcs, the opposite arc (x_j, x_i) is also in the set A.

Definition

An antisymmetric graph is a graph in which whenever an arc $(x_i, x_j) \in A$, the opposite arc $(x_j, x_i) \notin A$.

A nondirected graph G=(X,A) is said to be bipartite, if the set X of its vertices can be partitioned into two subsets X^a and X^b so that all arcs have one terminal vertex in X^a and the other in X^b . A directed graph G is said to be bipartite if its nondirected counterpart G is bipartite.

Theorem

A nondirected graph G is bipartite if and only if it contains no circuits of odd cardinality.

A bipartite graph $G=(X^a\cup X^b,A)$ is said to be complete if for every two vertices $x_i\in X^a$ and $x_j\in X^b$ there exists a link (x_i,x_j) in G=(X,A).

The adjacency matrix

Given a graph G, its adjacency matrix is denoted by $A=\left[a_{ij}\right]$ and is given by:

- $a_{ij} = 1$ if arc (x_i, x_j) exists in G
- $a_{ij} = o$ if arc (x_i, x_j) does not exist in G.

$$A = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

The incidence matrix

Given a graph G of n vertices and m arcs, the incidence matrix of G is denoted by $B=[b_{ij}]$ and is an $n\times m$ matrix defined as follows.

- $b_{ij} = 1$ if x_i is the initial vertex of arc a_j
- $b_{ij} = -1$ if x_i is the final vertex of arc a_j

and $b_{ij}=0$ if x_i is not a terminal vertex of arc a_j or if a_j is a loop.

$$B = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 \end{array}\right)$$