LEnsE / Institut d'Optique Graduate School

INSTITUT
d'OPTIQUE
BRADUATE S CHOOL
Paris Coh

TD10

TD 10 / MODÉLISER UN MONTAGE TRANSIMPÉDANCE

Correction

Exercice 1 - Montage transimpédance - Etude simple

Notions abordées

- ⊳ Modélisation d'une photodiode et d'un oscilloscope
- ⊳ Intérêt de l'ALI pour un système de photodétection

On considère le montage récepteur à photodiode suivant. L'amplificateur linéaire intégré (ALI) est alimenté en ± 15 V. On note $\Phi_{lum}(t)$ le flux lumineux reçu par la photodiode et k sa sensibilité.

1. A quoi correspondent les différents éléments de ce montage?

Réponse

 C_{Phd} correspond à la capacité de jonction de la photodiode.

 R_e et C_e correspondent à l'impédance d'entrée de l'instrument de mesure du signal V_S (un oscilloscope par exemple) et à la capacité des câbles permettant d'amener le signal vers l'appareil de mesure.

2. Dans quel mode de fonctionnement est l'ALI?

Réponse

Il y a une contre-réaction négative, l'ALI fonctionne donc en mode linéaire. On peut ainsi dire que V+=V-.

3. Exprimez la tension de sortie $V_S(f)$ en fonction de i_{Phd} et des éléments du montage.

Comme $V^+ = V^-$, la photodiode est donc polarisée avec une tension constante et la capacité se retrouve avec une différence de potentiel constante à ses bornes, ainsi $i_c = 0$.

On a donc : $V_S(f) = -R_F \cdot i_{Phd}$.

Mais cette représentation ne permet pas de décrire les résultats expérimentaux obtenus, à savoir : une résonance dans la réponse en fréquence et un comportement passe-bas.

Exercice 2 - Montage de contre-réaction

Notions abordées

⊳ Filtre linéaire

On étudie le montage suivant :

1. Calculez les courants i_R et i_C en fonction des éléments du montage.

Réponse

$$i_R = \frac{V^- - V_S}{R_F}$$

$$i_C = -\frac{V^-}{\frac{1}{j \cdot C \cdot \omega}}$$

2. Quel est le lien entre i_R , i_C et i_{Phd} ?

Réponse

Par la loi des noeuds, $i_{Phd} + i_C - i_R = 0$.

3. Que vaut alors V^- en fonction de V_S et i_{Phd} ?

On obtient:

$$i_{Phd} + \frac{V_S}{R_F} - \frac{V^-}{R_F} - V^- \cdot j \cdot C_{Phd} \cdot \omega = 0$$

Ce qui donne :

$$V^{-} = (V_S + R_F \cdot i_{Phd}) \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

4. Dans le cas où $i_{Phd} = 0$, quel est le comportement en fréquence du système entre V_S et V^- ?

Réponse

D'après la relation précédente :

$$\frac{V^{-}}{V_{S}} = \frac{1}{1 + j \cdot R_{F} \cdot C_{Phd} \cdot \omega}$$

Il s'agit d'un filtre passe-bas de fréquence de coupure $f_c = \frac{1}{2 \cdot \pi \cdot R_F \cdot C_{Phd}}$.

Exercice 3 - Transimpédance et modèle du premier ordre pour l'ALI

Notions abordées

- $\,\rhd\,$ Modèle de l'ALI du premier ordre
- ⊳ Système linéaire

Soit le montage suivant :

On modélisera l'ALI par son modèle du premier ordre :

$$A(j \cdot \omega) = \frac{A_0}{1 + \frac{j \cdot \omega}{\omega_0}}$$

où A_0 est l'amplification différentielle statique et $\omega_0 = \frac{GBP}{A_0}$ la pulsation de coupure, avec GBP la bande-passante unitaire.

1. Que vaut V_S en fonction de V^+ et V^- ?

$$V_S = A(p) \cdot (V^+ - V^-)$$

2. Quel est le lien avec le montage de l'exercice 2?

Réponse

Le montage de l'exercice 2 se retrouve dans la contre-réaction du montage transimpédance.

3. Que vaut alors V_S en fonction de i_{Phd} ?

Réponse

 $V^+ = 0$ et V^- est la relation trouvée à la fin de l'exercice 2.

On alors :

$$V_S = -A(j \cdot \omega) \cdot (V_S + R_F \cdot i_{Phd}) \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

Ce qui donne :

$$V_S \cdot (1 + A(j \cdot \omega)) \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega} = -R_F \cdot i_{Phd} \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

On notera $\omega_c = \frac{1}{R_F \cdot C_{Phd}}$ et $K = \frac{A_0}{1 + A_0}$.

4. Quelle est la fonction de transfert de ce montage?

Réponse

$$\frac{V_S}{i_{Phd}} = -A(j \cdot \omega) \cdot \frac{R_F}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

En développant, on obtient :

$$\frac{V_S}{i_{Phd}} = -\frac{A_0 \cdot R_F}{1 + A_0 + j \cdot \omega \cdot (\frac{1}{\omega_o} + \frac{1}{\omega_o}) + (j \cdot \omega)^2 \cdot \frac{1}{\omega_o \cdot \omega_o}}$$

On obtient au final:

$$\frac{V_S}{i_{Phd}} = -K \cdot \frac{R_F}{1 + j \cdot \omega \cdot \frac{K}{A_0} (\frac{1}{\omega_c} + \frac{1}{\omega_0}) + (j \cdot \omega)^2 \cdot \frac{K}{A_0} \frac{1}{\omega_c \cdot \omega_0}}$$

Ou

$$\frac{V_S}{i_{Phd}} = -K \cdot \frac{R_F}{1 + j \cdot \omega \cdot \frac{1}{1 + A_0} (\frac{\omega_c + \omega_0}{\omega_c \cdot \omega_0}) + (j \cdot \omega)^2 \cdot \frac{1}{1 + A_0} \frac{1}{\omega_c \cdot \omega_0}}$$

5. Calculez les valeurs de la pulsation propre ω_T , le facteur d'amortissement m_T et le gain statique G_T de ce système.

Ce système est un système du second ordre, de type passe-bas.

$$G_T = K \cdot R_F$$

$$\omega_T = \sqrt{(1 + A_0) \cdot \omega_c \cdot \omega_0}$$

$$m_T = \frac{\omega_T}{(1 + A_0) \cdot \omega_c \cdot \omega_0} \cdot \frac{\omega_c + \omega_0}{2}$$

6. Que deviennent ces valeurs si on suppose que $A_0 >> 1$?

Réponse

On a : $K \approx 1$

Et ainsi : $G_T \approx R_F$

$$\omega_T \approx \sqrt{\omega_c \cdot A_0 \cdot \omega_0} = \sqrt{\omega_c \cdot \omega_{GBP}}$$

$$m_T = \frac{\omega_c + \omega_0}{2 \cdot \omega_T} \approx \frac{1}{2} \cdot \sqrt{\frac{\omega_c}{\omega_{GBP}}}$$

On prendra les valeurs suivantes pour la suite :

 $A_0 = 2 \cdot 10^5$, $GBP = 3 \, \text{MHz}$, $R_F = 100 \, \text{k}\Omega$ et une photodiode de type SFH206 (dont une courbe caractéristique est donnée ci-après).

Capacitance

7. Que valent ω_T et m_T pour $V_R=0$ V? Pour $V_R=30$ V?

Pour $V_R = 0 \text{ V}$, on a $C_{Phd} = 75 \text{ pF}$.

On a alors : $\omega_c = 133.3 \, \mathrm{krd/s}$ ($f_c = 21.2 \, \mathrm{kHz}$), $\omega_T = 1.58 \, \mathrm{Mrd/s}$ ($f_T = 252 \, \mathrm{kHz}$) et $m_T = 0.04$.

Pour $V_R = 30 \,\mathrm{V}$, on a $C_{Phd} = 10 \,\mathrm{pF}$.

On a alors : $\omega_c = 1 \,\text{Mrd/s}$ ($f_c = 159 \,\text{kHz}$), $\omega_T = 4.34 \,\text{Mrd/s}$ ($f_T = 690 \,\text{kHz}$) et $m_T = 0.115$.

8. Quelles formes ont les réponses en fréquence pour ces deux valeurs de tension de polarisation?

9. Parmi les deux réponses indicielles suivantes, laquelle est celle pour $V_R=0\,\mathrm{V}$? Pour $V_R=30\,\mathrm{V}$?

Le système A correspond à un facteur d'amortissement plus important que le système B. On peut donc supposer que le système A correspond à $V_R=30\,\mathrm{V}$ et le système B à $V_R=0\,\mathrm{V}$. On pourrait aussi comparer les fréquences des oscillations. Celle du système A est plus grande que le système B. Cela concorde également avec la réponse précédente.