Relational Algebra (Part III)

R & G, Chapter 4

Announcement

Reminder: Assignment 1 due on Monday, Oct
 3.

Summary of Relational Algebra Operations

Basic operations

- 1. <u>Selection</u> (σ)
- 2. <u>Projection</u> (π)
- 3. Cross-product (×)
- 4. <u>Set-difference</u> ()
- *5.* <u>Union</u> (∪)

Compound operations

- 1. Intersection (\cap)
- 2. Join (⋈)
- 3. Division (/)

Reserves

Sid	Bid	day
22	101	10/10/96
58	103	11/12/96

Examples

Sailors

	Sid	Sname	Rating	Age
	22	Dustin	7	45.0
;	31	Lubber	8	55.5
	58	Rusty	10	35.5

Boats

Bid	Bname	Color
101	Interlake	Blue
102	Interlate	Red
103	Clipper	Green
104	Marine	red

Selection and Projection

Find "reserve" record for boat of ID 103

$$\sigma_{bid=103}$$
 (Reserves)

Find the name of the boat of red color

$$\pi_{bname}(\sigma_{color='red'}(Boats))$$

Find the name of the boat of either red or green color

$$\pi_{bname}(\sigma_{color='red'\lor color='green'}(Boats))$$

Join (I)

- Find names of sailors who've reserved boat #103
- Solution 1:

$$\pi_{sname}((\sigma_{bid=103}(Reserves)) \bowtie Sailors)$$

Solution 2:

$$\pi_{sname}(\sigma_{bid=103}(Reserves \bowtie Sailors))$$

Join (II)

- Find names of sailors who've reserved a red boat
 - Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}(Boats))\bowtie Reserves\bowtie Sailors)$$

A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Reserves)\bowtie Sailors)$$

⊠ A query optimizer can find this given the first solution!

Join (III)

- Find the colors of boats reserved by the sailor named Lubber
 - Information about boat color and reservation only available in Boats and Resevers; so need two joins:

$$\pi_{color}((\sigma_{sname="lubber'}(sailors))\bowtie Reserves\bowtie Boats)$$

Join (IV)

 Find the name of sailors who have reserved at least one boat

$$\pi_{sname}$$
(Reserves \bowtie Sailors)

Join + Set Operations (I)

- Find the name of sailors who've reserved a red or a green boat
 - Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho(Tempboats, (\sigma_{color='red' \lor color='green'} (Boats)))$$
 $\pi_{sname}(Tempboats \bowtie Reserves \bowtie Sailors)$

Join + Set operations (II)

- Find the name of sailors who've reserved a red and a green boat
 - Is the following solution correct?

$$\rho$$
(Tempboats,($\sigma_{color='red' \land color='green'}$ Boats))

$$\pi_{sname}$$
(Temphoats \bowtie Reserves \bowtie Sailors)

Wrong! There is no boat of both colors.

Join + Set operations (II)

- Find the name of sailors who've reserved a red and a green boat
 - Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

$$\rho(Tempred, \pi_{sid}((\sigma_{color='red'}(Boats))) \bowtie Reserves))$$

$$\rho(Tempgreen, \pi_{sid}((\sigma_{color='green'}(Boats))) \bowtie Reserves))$$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$