

Subsets and Power Sets

Sets

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

The only way

to learm

mathematics

is to do

mathematics.

PAUL HALMOS

A set is a well defined collection of distinct objects.

Example:

The collection of first five prime natural numbers is a set containing the elements 2, 3, 5, 7, 11.

Representing Sets

1. Roster Form: In this method a set is described by listing elements, separated by commas and enclose them by curly brackets.

Note

While writing the set in roster form, an element is not generally repeated.

Example:

The set of letters of word MISSISSIPPI may be written as {M, I, S, P}.

Representing Sets

2. Set builder form:

In this we write down a property or rule which gives us all the element of the set.

$$A = \{x : P(x)\}$$

where P(x) is the property by which $x \in A$ and colon (:) stands for 'such that'

Express set A = (x³: x < 5, x is a whole number) in roster form

$$A = \{0, 1, 8, 27, 64\}$$

Example

Express set **B** = {2, 5, 10, 17, 26} in set builder form

set B = {2, 5, 10, 17, 26} in set builder form
$$S = \begin{cases} 2, 5, 10, 17, 26 \end{cases} \text{ in set builder form}$$

$$S = \begin{cases} 2, 5, 10, 17, 26 \end{cases} \text{ in set builder form}$$

Express set C = $\left\{\frac{1}{9}, \frac{1}{25}, \frac{1}{49}, \frac{1}{81}\right\}$ in set builder form

$$C = \{ \frac{1}{(2n+1)^2} ; n \in N; n \leq 4 \}$$

Example

The number of elements in the set $A = \{ (a, b) : 2a^2 + 3b^2 = 35, a, b \in Z \}$, where Z is the set of all integers, is:

A. 2
$$2a^{2} + 3b^{2} = 35$$

$$6 = 0$$
; $2a^2 = 35 \times$

$$6 = \pm 1$$
; $2a^2 = 32$
 $a^2 = 16$

$$b = \pm 2$$
; $2a^2 = 23 \times$

$$a^{2} = 4$$

$$a = \pm 2$$

1. Null set or empty set:

A set having no element in it. It is denoted by ϕ or $\{\}$.

Example:

A =
$$\{ x : 0 < x < 1; x \in \text{Integers } \}$$

2. Singleton set:

A set consisting of a single element is called a singleton set.

Example:

A = $\{ x : 0 < x < 2; x \in Integers \}$

3. Finite set: A set which has countable number of elements is called a finite set.

Example: Set of prime numbers less than 10.

Order of a finite set: The number of elements in a finite set A is called the order of this set and denoted by O(A) or n(A). It is also called cardinal number of the set.

e.g:
$$A = \{a, b, c, d\} \Rightarrow n(A) = 4$$

4. Infinite set:

A set which has an infinite number of elements is called an infinite set.

Real Nos

Q: Rational No

Which of the following sets is empty?

- A. $\{x \in R \mid x^2 = 9 \text{ and } 2x = 6\}$ B. $\{x \in R \mid x^2 = 9 \text{ and } 2x = 4\}$ C. $\{x \in R \mid x + 4 = 4\}$ D. $\{x \in R \mid 2x + 1 = 3\}$

Which of the following is **not null set**?

- A. Set of odd natural numbers divisible by 2
- Set of even prime numbers
 - C. $\{x : x \text{ is a natural number, } x < 5 \text{ and } x > 7\}$
 - D. {y : y is a point common to any two parallel lines}

Which of the following is a singleton set?

A. $\{x : |x| < 1, x \in I\}$ B. $\{x : |x| = 5, x \in I\}$ C. $\{x : x^2 = 1, x \in I\}$

D. $\{x : x^2 + x + 1 = 0, x \in R\}$

Example

Consider the following sets

- A = The set of lines which are parallel to the X-axis.
- **B** = The set of letters in the English alphabet. and
- **c** = The set of animals living on the earth.
- Which of these is finite or infinite set?
 - A. Finite set \rightarrow B, Infinite set \rightarrow A, C
- B. Finite set \rightarrow B, C, Infinite set \rightarrow A
 - C. Finite set \rightarrow A, C, Infinite set \rightarrow B
 - D. None of the above

5. Equal sets

Two sets A and B are said to be equal if every element of A is member of B, and every element of B is a member of A.

$$A = \{1, 2, 3\}$$

$$B = \{3, 2, 1\}$$

6. Equivalent sets

Two finite sets A and B are equivalent if their number of elements are same i.e. n(A) = n(B)

e.g.
$$A = \{1, 3, 5, 7\}$$
, $B = \{a, b, c, d\}$ $n(A) = 4$ and $n(B) = 4$

⇒ A and B are equivalent sets

7. Universal Set:

A set consisting of all possible elements which occur in the discussion is called a universal set and is denoted by U.

Example:

If $A = \{1, 2, 3\}$, $B = \{2, 4, 5, 6\}$,

 $C = \{1, 3, 5, 7\}$ then

 $U = \{1, 2, 3, 4, 5, 6, 7\}$ can be taken as the universal set.

Subset and Superset

Let A and B be two sets. If every element of A is an element B then A is called a subset of B and B is called superset of A. We write it as $A \subseteq B$.

ACB; BDA

e.g:
$$A = \{1, 2, 3, 4\}$$
 and

$$B = \{1, 2, 3, 4, 5, 6, 7, 8\} \Rightarrow A \subset B$$

If A is not a subset of B then we write $A \nsubseteq B$

Proper Subset

If A is a subset of B but A \neq B then A is a proper subset of B and we write A \subset B. Set A is not proper subset of A so this is improper subset of A.

Example:

Write the proper subsets of A = { 1, 2, 3 }

Let $A = \{1, 2, \{3, 4\}, 5\}$. Which of the following statements are correct.

$$\{3, 4\} \subset A$$
 B. $\{3, 4\} \in A$ **C.** $\{\{3, 4\}\}\} \subset A$ **1.** $\{1, 2, 3\} \subset A$

$$A = \{1, 2, [3,43], 5\}$$

 $3 \in A \times$
 $\{3,4\} \in A$

Important Results

- 1 Every set is a subset of itself
- **2** Empty set, ϕ , is a subset of every set
- 3 $A \subseteq B$ and $B \subseteq A \Leftrightarrow A = B$
- Φ is proper subset of every set except itself.

Important Results

The total number of subsets of a finite set containing n elements is 2ⁿ

Subsets:

{1,23, {2,33, {3,3}} (

Important Results

6

Number of proper subsets of a set having n elements is 2ⁿ - 1

If $A = \{x : x = 4n + 1, 2 \le n \le 5\}$, then number of subsets of A is -

- **A**. 16
 - B. 15
- **C.** 4
- D. None of these

Let $A = \{a, b, c, d\}$ and $B = \{a, b, c\}$. Then the number of sets X contained in A and not contained in B is

A. 8

B. 6

C. 16

D. 12

M-1:
$$(n(A)=4; n(B)=3)$$

Subset 24 subset 23
 (16) $(16$

Two finite sets have mand n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are respectively,

B. 7,

D. 7, 7

$$\frac{m}{2}$$

$$(-1) = 4 \times 28$$

= $2^{4} \times 7$
 (-3^{-1})

$$M-N=3$$

Let A be any set. The <u>set of all subsets</u> of A is called power set of A & is denoted by P(A)

Example

Find power set of set $A = \{1, 2\}$

The number of subsets of the power set of set $A = \{a, b, c\}$ is

If A is a null set and B = P(P(P(A))), where P(A) denotes power set of A, then which of the following is/are correct. Example

$$A = \{ \} \in B$$
 $B = \{ \} \in B \}$
 $A = \{ \} \in B \}$

$$A = \{ \{ \} \} \} = \emptyset \longrightarrow n(A) = 0 \longrightarrow n(P(A)) = 2 = 1$$

$$P(A) = \{ \{ \} \} \emptyset \} \longrightarrow n(P(A)) = 1 \longrightarrow n(P(P(A))) = 2 = 2$$

$$P(P(A)) = \{ \} \emptyset \} \{ \} \emptyset \} \{ \}$$

$$P(P(P(A))) = \{ \} \emptyset \} \{ \emptyset \} \{ \} \emptyset \} \{ \emptyset \} \{ \} \emptyset \} \{ \emptyset$$

$$P(P(P(A))) = \{ \emptyset, \{ \emptyset \}, \{ \emptyset \}, \{ \emptyset \} \} = B$$

Daily | TIMETABLE

11th

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

(9:00 - 10:30 PM)

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Step 1

Step 2

India's Biggest Test Series

USAT

(Unacademy Scholarship Assessment Test)

Every Sunday At 12 PM - 3 PM

Enroll Now for Free

Scholarship Worth Rs 1 Crore*

EVOLVE BATCH

JEE Main & Advanced 2022 Starting on 7th April

MEGA OFFER FOR IIT-JEE 2022 ASPIRANTS

ů.	ů.	u v	0000			
	-80	AF	RU			202
SUN	MON	TUE	WED	THU	FRI	SAT
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

BUY 12 MONTHS SUBSCRIPTION TODAY

LIMITED TIME OFFER,
GET 3 MONTHS EXTRA SUBSCRIPTION TILL

IIT-JEE ADVANCED 2022

Thank You

Download Now!