

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출 원 번 호 : 10-2003-0042430
Application Number

출 원 년 월 일 : 2003년 06월 27일
Date of Application JUN 27, 2003

출 원 인 : 주식회사 하이닉스반도체
Applicant(s) Hynix Semiconductor Inc.

2003 년 10 월 06 일

특 허 청
COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0010
【제출일자】	2003.06.27
【발명의 명칭】	반도체 소자의 터널산화막 형성 방법
【발명의 영문명칭】	Method for forming tunnel oxide in a semiconductor device
【출원인】	
【명칭】	(주)하이닉스 반도체
【출원인코드】	1-1998-004569-8
【대리인】	
【성명】	신영무
【대리인코드】	9-1998-000265-6
【포괄위임등록번호】	1999-003525-1
【발명자】	
【성명의 국문표기】	이승철
【성명의 영문표기】	LEE, Seung Cheol
【주민등록번호】	720325-1068828
【우편번호】	467-723
【주소】	경기도 이천시 증포동 191-7 선경아파트 101-604
【국적】	KR
【발명자】	
【성명의 국문표기】	박상욱
【성명의 영문표기】	PARK, Sang Wook
【주민등록번호】	670825-1144110
【우편번호】	143-755
【주소】	서울특별시 광진구 광장동 현대아파트 501-1601
【국적】	KR
【심사청구】	청구
【취지】	특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의한 출원심사를 청구합니다. 대리인 신영무 (인)

1020030042430

출력 일자: 2003/10/13

【수수료】

【기본출원료】	14	면	29,000	원
【가산출원료】	0	면	0	원
【우선권주장료】	0	건	0	원
【심사청구료】	5	항	269,000	원
【합계】			298,000	원
【첨부서류】			1.	요약서·명세서(도면)_1통

【요약서】**【요약】**

본 발명은 반도체 소자의 터널산화막 형성 방법에 관한 것으로, 고전압용 트랜지스터 형성 지역의 게이트 산화막을 형성한 후 메모리 셀 및 저전압용 트랜지스터 형성 지역의 산화막을 제거하는 과정에서 산화막의 일부 두께를 잔류시킴으로써 산화막 제거 및 감광막 제거시 발생되는 기판 표면의 거칠기 증가 및 카본의 흡착으로 인한 오염이 방지되어 막질이 우수한 터널산화막의 형성이 가능해진다.

【대표도】

도 4

【색인어】

터널산화막, CCST, 표면 거칠기, 카본 오염, 막질

【명세서】**【발명의 명칭】**

반도체 소자의 터널산화막 형성 방법 {Method for forming tunnel oxide in a semiconductor device}

【도면의 간단한 설명】

도 1a 내지 도 1d는 종래 반도체 소자의 터널산화막 형성 방법을 설명하기 위한 단면도.

도 2 및 도 3은 종래의 공정이 적용된 플래쉬 메모리 소자에서의 전류 스트레스 테스트 (Constant current stress test; CCST) 특성을 도시한 그래프.

도 4a 내지 도 4d는 본 발명에 따른 반도체 소자의 터널산화막 형성 방법을 설명하기 위한 단면도.

도 5는 본 발명이 적용된 플래쉬 메모리 소자에서의 전류 스트레스 테스트(CCST) 특성을 도시한 그래프.

도 6은 본 발명이 적용된 웨이퍼의 각 다이를 도시한 평면도.

<도면의 주요 부분에 대한 부호의 설명>

1, 11: 반도체 기판

2, 12: 제 1 산화막

3, 13: 감광막

4, 14: 제 2 산화막

【발명의 상세한 설명】**【발명의 목적】****【발명이 속하는 기술분야 및 그 분야의 종래기술】**

- <11> 본 발명은 반도체 소자의 터널산화막 형성 방법에 관한 것으로, 더욱 상세하게는 반도체 기판 표면의 거칠기 및 카본(Carbon)의 흡착 등으로 인한 막질의 저하를 방지할 수 있도록 한 반도체 소자의 터널산화막 형성 방법에 관한 것이다.
- <12> 도 1a 내지 도 1d는 종래 반도체 소자의 터널산화막 형성 방법을 설명하기 위한 단면도이다.
- <13> 도 1a를 참조하면, 소정의 공정을 거친 반도체 기판(1) 상에 고전압용 트랜지스터의 게이트 산화막을 형성하기 위해 350Å 두께의 제 1 산화막(2)을 형성한다.
- <14> 도 1b를 참조하면, 상기 제 1 산화막(2) 상에 감광막(3)을 형성한 후 메모리 셀 및 저전압용 트랜지스터가 형성될 지역의 상기 제 1 산화막(2)이 노출되도록 상기 감광막(3)을 패터닝 한다.
- <15> 도 1c를 참조하면, 디스크럼(Descum) 공정으로 패터닝된 감광막(3)을 경화시킨 후 노출된 부분의 제 1 산화막(2)을 제거한다. 이 때 300:1 BOE(Buffered Oxide Etchant)에서 2280초(sec)동안 제 1 산화막(2)을 제거한 후 H₂SO₄ 용액으로 감광막(3)을 제거하고 SC-1 용액으로 세정한다.
- <16> 도 1d를 참조하면, 전체 상부면에 80Å 두께의 제 2 산화막(4)을 형성하는데, 고전압 트랜지스터 형성 지역에는 제 1 산화막(2)과 제 2 산화막(4)으로 이루어진 두꺼운 게이트 산화막

이 형성되고, 메모리 셀 및 저전압용 트랜지스터 지역에는 제 2 산화막(4)으로 이루어진 터널산화막이 형성된다.

<17> 그런데 종래의 공정을 이용하면 메모리 셀 및 저전압용 트랜지스터 지역의 제 1 산화막(2)을 BOE로 제거하는 과정에서 30% 정도의 과도식각을 진행하기 때문에 반도체 기판(1)의 표면 거칠기(Roughness)가 증가하며, H_2SO_4 용액으로 감광막(3)이 제거되면서 감광막에 포함된 카본(Carbon) 성분이 반도체 기판(1)의 표면에 흡착된다. 흡착된 카본 성분은 후속 SC-1 용액을 이용한 세정 공정이나 터널산화막을 형성하기 전 50:1 HF 용액을 이용한 전처리 세정 공정에서도 잘 제거되지 않는다. 따라서 잔류된 카본 성분이 실리콘 맹글링 본드를 형성하기 때문에 카본 성분이 존재하는 상태에서 터널산화막이 형성될 경우 터널산화막의 막질이 저하되어 소자의 전기적 특성이 불량해진다.

<18> 도 2 및 도 3은 종래의 공정이 적용된 플래쉬 메모리 소자에서의 전류 스트레스 테스트(Constant current stress test; CCST) 특성을 도시한 그래프로서, 전반적으로 특성의 균일도가 불량하게 나타나며, 불량율도 높게 나타난다. 특히, 초기 불량은 웨이퍼의 가장자리부에 주로 분포함을 알 수 있다.

【발명이 이루고자 하는 기술적 과제】

<19> 따라서 본 발명은 고전압용 트랜지스터의 게이트 산화막을 형성한 후 메모리 셀 및 저전압용 트랜지스터 형성 지역의 산화막을 제거하는 과정에서 산화막의 일부를 잔류시킴으로써 산

화막 제거 및 감광막 제거시 발생되는 기판의 표면 거칠기 증가 및 카본의 흡착으로 인한 오염을 방지할 수 있도록 한 반도체 소자의 터널산화막 형성 방법을 제공하는 데 그 목적이 있다.

【발명의 구성 및 작용】

- <20> 상기한 목적을 달성하기 위한 본 발명은 반도체 기판 상에 제 1 산화막을 형성한 후 감광막 패턴을 이용하여 메모리 셀 및 저전압용 트랜지스터가 형성될 지역의 상기 제 1 산화막을 노출시키는 단계와, 노출된 상기 제 1 산화막의 일부 두께 및 상기 감광막 패턴을 순차적으로 제거하는 단계와, 잔류된 상기 제 1 산화막을 완전히 제거한 후 전체 상부면에 제 2 산화막을 형성하는 단계를 포함하는 것을 특징으로 한다.
- <21> 상기 제 1 산화막은 순수 산화막이며, 750 내지 850°C의 온도에서 350 내지 600Å 두께로 성장시키는 것을 특징으로 한다.
- <22> 상기 제 1 산화막 및 감광막 패턴을 제거하는 단계는 300:1 BOE에서 1730 내지 1735초동 안 제 1 산화막의 일부 두께를 제거하는 단계와, H₂SO₄ 용액으로 상기 감광막 패턴을 제거하는 단계와, SC-1 용액으로 세정하여 파티클이나 유기물 성분의 오염물질을 제거하는 단계를 포함하는 것을 특징으로 한다.
- <23> 상기 잔류되는 상기 제 1 산화막의 두께는 20~30Å이며, 상기 잔류된 제 1 산화막은 50:1 HF 용액을 이용한 세정 공정으로 제거하는 것을 특징으로 한다.
- <24> 이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.

- <25> 도 4a 내지 도 4d는 본 발명에 따른 반도체 소자의 터널산화막 형성 방법을 설명하기 위한 단면도이다.
- <26> 도 4a를 참조하면, 소정의 공정을 거친 반도체 기판(11) 상에 고전압용 트랜지스터의 게이트 산화막을 형성하기 위해 350 내지 600Å 두께의 제 1 산화막(12)을 형성한다. 제 1 산화막(12)은 순수 산화막(Pure oxide)이며, 750 내지 850°C의 온도에서 성장시킨다.
- <27> 도 4b를 참조하면, 상기 제 1 산화막(12) 상에 감광막(13)을 형성한 후 메모리 셀 및 저전압용 트랜지스터가 형성될 지역의 상기 제 1 산화막(12)이 노출되도록 상기 감광막(13)을 패터닝한다.
- <28> 도 4c를 참조하면, 80 내지 140°C의 온도에서 10분 미만의 시간동안 디스컴(Descum) 공정을 실사하여 패터닝된 감광막(13)을 경화시킨 후 노출된 부분의 제 1 산화막(12)의 일부 두께를 제거한다. 이 때 300:1 BOE에서 1730 내지 1735초(sec)동안 제 1 산화막(12)을 일부 제거한 후 H₂SO₄ 용액으로 감광막(13)을 제거하고 SC-1 용액으로 세정하여 파티클이나 유기물 성분의 오염물질을 완전히 제거한다. 이 때 유기물 성분의 오염물질은 H₂SO₄/H₂O₂가 80 내지 100°C의 고온에서 반응하여 Caro's Acid를 형성하고 탈수반은, 산화반은에 의해 제거되도록 할 수도 있다. 상기 제 1 산화막(12) 제거, 감광막(13) 제거 및 세정 공정은 연속적으로 진행한다.
- <29> 도 4d를 참조하면, 50:1 HF 용액을 이용한 전처리 세정 공정(FN40")으로 잔류된 제 1 산화막(12)을 완전히 제거한 후 전체 상부면에 80Å 두께의 제 2 산화막(14)을 형성하면 고전압 트랜지스터 형성 지역에는 제 1 산화막(12)과 제 2 산화막(14)으로 이루어진 두꺼운 게이트 산화막이 형성되고, 메모리 셀 및 저전압용 트랜지스터 형성 지역에는 제 2 산화막(14)으로 이루어진 터널산화막이 형성된다.

<30> 상기 제 2 산화막(14)은 H₂/O₂/N₂ 가스를 사용한 산화 공정 및 N₂ 가스를 사용한 열처리를 통해 형성되며, 고전압 트랜지스터 형성 지역에는 80Å, 메모리 셀 및 저전압용 트랜지스터 형성 지역에는 350Å의 두께가 형성되도록 한다. 한편, 상기 전처리 세정 공정 시 고전압용 트랜지스터 형성 지역의 제 1 산화막(12)을 소정 두께 제거해도 된다.

<31> 본 발명은 도 4c와 같이 제 1 산화막(12)과 감광막(13)을 제거하는 과정에서 반도체 기판(11) 상에 소정 두께 예를 들어, 20±8Å 정도의 제 1 산화막(12)을 잔류시킴으로써 BOE에 의한 반도체 기판(11) 표면의 거칠기 증가 및 기판의 피해가 최소화되고, 감광막(13)에 포함된 카본 성분의 잔류로 인한 오염이 방지되도록 한다. 또한, 도 4d와 같이 잔류된 제 1 산화막(12)을 완전히 제거한 직후 바로 제 2 산화막(14)을 형성함으로써 터널산화막의 캐리어 이동도(Carrier mobility) 및 항복(Break down) 특성도 개선된다.

<32> 도 5는 본 발명이 적용된 플래쉬 메모리 소자에서의 전류 스트레스 테스트 특성을 측정한 결과로서, 전반적인 전류 스트레스 테스트 특성의 균일도가 개선되어 양호한 특성을 보이며, 초기 불량률도 감소함을 알 수 있다. 또한, 측정 결과 도 6과 같이 웨이퍼의 가장자리 부 중 3개의 다이(Die)에서만 불량을 확인할 수 있었다.

【발명의 효과】

<33> 상술한 바와 같이 본 발명은 고전압용 트랜지스터의 게이트 산화막을 형성한 후 메모리 셀 및 저전압용 트랜지스터 형성 지역의 산화막을 제거하는 과정에서 산화막의 일부를 잔류시킴으로써 산화막 제거 및 감광막 제거시 발생되는 기판의 표면 거칠기 증가 및 카본의 흡착으

1020030042430

출력 일자: 2003/10/13

로 인한 오염을 방지하여 막질이 우수한 터널산화막을 형성할 수 있으며, 이에 따라 소자의 전기적 특성이 향상된다.

【특허청구범위】**【청구항 1】**

- a) 반도체 기판 상에 제 1 산화막을 형성한 후 감광막 패턴을 이용하여 메모리 셀 및 저전압용 트랜지스터가 형성될 지역의 상기 제 1 산화막을 노출시키는 단계와,
- b) 노출된 상기 제 1 산화막의 일부 두께 및 상기 감광막 패턴을 순차적으로 제거하는 단계와,
- c) 잔류된 상기 제 1 산화막을 완전히 제거한 후 전체 상부면에 제 2 산화막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 터널산화막 형성 방법.

【청구항 2】

제 1 항에 있어서, 상기 제 1 산화막은 순수 산화막이며, 750 내지 850°C의 온도에서 350 내지 600Å 두께로 성장시키는 것을 특징으로 하는 반도체 소자의 터널산화막 형성 방법.

【청구항 3】

제 1 항에 있어서, 상기 단계 (b)는 300:1 BOE에서 1730 내지 1735초동안 제 1 산화막의 일부 두께를 제거하는 단계와,
 H_2SO_4 용액으로 상기 감광막 패턴을 제거하는 단계와,
SC-1 용액으로 세정하여 파티클이나 유기물 성분의 오염물질을 제거하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 터널산화막 형성 방법.

【청구항 4】

제 1 항에 있어서, 상기 단계 (b)에서 잔류되는 상기 제 1 산화막의 두께는 20~8A인 것을 특징으로 하는 반도체 소자의 터널산화막 형성 방법.

【청구항 5】

제 1 항에 있어서, 상기 단계 (c)에서 상기 제 1 산화막은 50:1 HF 용액을 이용한 세정 공정으로 제거하는 것을 특징으로 하는 반도체 소자의 터널산화막 형성 방법.

【도면】

【도 1】

【도 2】

【도 3】

【도 4】

【도 5】

【도 6】

	208	278	427	263	285		
352	430	424	228	462	273	394	
317	369	336	234	215	309	404	390
0	440	311	301	387	306	269	368
0	401	306	354	282	313	492	419
0	315	398	390	251	463	397	289
	311	448	314	457	294	294	253
	144	386	377	447	396		