UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Homework 12

Spring 2023

1. Flipping Coins and Hypothesizing

You flip a coin until you see heads. Let 0 , and suppose that your hypotheses are

$$X = \begin{cases} 0 & \text{if the bias of the coin is } p \\ 1 & \text{if the bias of the coin is } q. \end{cases}$$

You observe Y, the number of flips until you see heads. Find a decision rule \hat{X} that maximizes $\mathbb{P}(\hat{X}=1\mid X=1)$ subject to $\mathbb{P}(\hat{X}=1\mid X=0)\leq \beta$ for some $\beta\in[0,1]$.

Hint: Remember to calculate the randomization constant γ .

2. One Flip

You flip a single coin and observe its result $Y \sim \text{Bernoulli}(p)$. Suppose the hypotheses are

$$X = \begin{cases} 0 & \text{if } p = \frac{1}{3} \\ 1 & \text{if } p = \frac{2}{3}. \end{cases}$$

- a. Find the MLE of X and its associated type I and type II error rates.
- b. Plot the error curve.
- c. Derive the randomized decision rule that minimizes type II error subject to the constraint of $\beta=0.5$ on the type I error.

Hint: You should only need to look at the plot from part b.

3. Exam Difficulty

The difficulty of an EECS 126 exam, Θ , is uniformly distributed on [0, 100] (continuously). Alice gets a score X that is uniformly distributed on $[0, \Theta]$, and she wants to estimate the difficulty of the exam given her score.

- a. What is the MLE of Θ ? What is the MAP of Θ ?
- b. What is the LLSE for Θ ?

4. Gaussian LLSE

Let X, Y, Z be i.i.d. $\mathcal{N}(0, 1)$.

- a. Find $\mathbb{L}(X^2 + Y^2 \mid X + Y)$.
- b. Find $\mathbb{L}(X + 2Y \mid X + 3Y + 4Z)$.
- c. Find $\mathbb{L}((X+Y)^2 \mid X-Y)$.

5. Projections

The following exercises are from the note on the Hilbert space of random variables. See the notes for some hints.

- a. Let $\mathcal{H} := \{X : X \text{ is a real-valued random variable with } \mathbb{E}(X^2) < \infty\}$. Prove that \mathcal{H} is closed under addition and scalar multiplication over the real numbers \mathbb{R} , and prove that the function $\langle X, Y \rangle := \mathbb{E}(XY)$ is an inner product on \mathcal{H} .
- b. Let U be a subspace of a real inner product space V. We define the *projection* map P onto U as follows: for each $v \in V$, let Pv be the unique vector in U such that $v Pv \in U^{\perp}$. Prove that P is a linear transformation.
- c. Using part b, prove that $\mathbb{L}(X+Y\mid Z)=\mathbb{L}(X\mid Z)+\mathbb{L}(Y\mid Z)$ for all $X,Y,Z\in\mathcal{H}$.
- d. Now, suppose that U is a finite-dimensional subspace, $\dim U := n$, with an orthonormal basis $\{u_i\}_{i=1}^n$. Prove that $Px = \sum_{i=1}^n \langle x, u_i \rangle u_i$ for all $x \in V$.

¹Remark. It is possible for $X \neq 0$ to have $\mathbb{E}(X^2) = 0$, e.g. if X = 0 with probability 1. To fix this, we can take almost-sure equivalence classes of random variables, where X and Y are equivalent if $\mathbb{P}(X = Y) = 1$. You may cite this construction when checking that $X \neq 0$ implies $\mathbb{E}(X^2) > 0$.

6. Sufficient Statistics

Suppose X_1, \ldots, X_n are i.i.d. samples drawn from a probability distribution parameterized by θ . (We are in the non-Bayesian setting, so θ is deterministic but unknown).

A statistic $T(X_1, \ldots, X_n)$ is a *sufficient statistic* for θ if for all t, the conditional distribution of (X_1, \ldots, X_n) given T = t does not depend on θ . Intuitively, $T(X_1, \ldots, X_n)$ "captures all there is to know about θ from the sample X_1, \ldots, X_n ."

- a. Let X_1, \ldots, X_n be drawn i.i.d. from a Poisson distribution with mean μ . Show that $T = \sum_{i=1}^{n} X_i$ is a sufficient statistic for μ .
- b. Let T be a sufficient statistic for θ , and let $\hat{\theta}$ be an estimator for θ with $var(\hat{\theta}) < \infty$. Show that in mean-squared error sense, $\mathbb{E}[\hat{\theta} \mid T]$ is at least as good as $\hat{\theta}$ at estimating θ :

$$\mathbb{E}[(\mathbb{E}[\hat{\theta} \mid T] - \theta)^2] \le \mathbb{E}[(\hat{\theta} - \theta)^2].$$

Hint: Consider expanding the decomposition $\mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{E}[((\hat{\theta} - \mathbb{E}[\hat{\theta}]) + (\mathbb{E}[\hat{\theta}] - \theta))^2]$. Remark. Since $\mathbb{E}[\hat{\theta} \mid T]$ is a function of T, the result above suggests we should be looking for estimators of θ that are functions of sufficient statistics.