Mathematical Proofs for SynGuar

July 16, 2021

1 Preliminaries

Problem Setup. We are given an oracle to sample i.i.d. I/O examples from some unknown distribution D, a synthesizer with bounded hypothesis space and the ability to soundly upper bound number of programs consistent with I/O examples, and user-specified (ϵ, δ) parameters that capture the desired generalization guarantee. The synthesis algorithm queries the oracle for as many I/O examples as it needs and terminates with either *None* or a synthesized function f. We assume that f will satisfy all given I/O examples. We use S to represent all the I/O examples queried by the synthesis algorithm until it terminates. The probability that the synthesizer returns a function f that might not generalize should be under the given small δ , and the randomness is on I/O examples.

Formally, the goal is for a synthesis algorithm to achieve a PAC-style (ϵ, δ) generalization guarantee. We define (ϵ, δ) -synthesizer as the following:

Definition 1 ((ϵ , δ)-synthesizer). A synthesis algorithm \mathcal{A} with hypothesis space H is an (ϵ , δ)-synthesizer with respect to a target class of functions \mathcal{C} iff for any input distributions D, for all $t \in \mathcal{C}$, $\epsilon \in (0, 0.5)$, $\delta \in (0, 0.5)$, if $\mathcal{A}(S)$ outputs a program $f \in H$ on a set of samples S drawn i.i.d from the D, then:

$$Pr[\mathcal{A}(S) \text{ outputs } f \text{ such that } error(f) > \epsilon] < \delta$$

A starting point. The number of examples provably sufficient to achieve the (ϵ, δ) -generalization is given by Blumer et al. [1]. We restate this result, which computes sample complexity as a function of (ϵ, δ) and the capacity (or size) of any given hypothesis space H.

Theorem 1.1 (Sample Complexity for (ϵ, δ) -synthesis). For all $\epsilon \in (0, \frac{1}{2})$, $\delta \in (0, \frac{1}{2})$, hypothesis space H and any target program t, a synthesis algorithm $\mathcal{A}(S)$ which outputs functions consistent with n i.i.d samples is an (ϵ, δ) -synthesizer, if

$$n > \frac{1}{\epsilon} (\ln|H| + \ln\frac{1}{\delta})$$

Proof. Assume the true concept (may or may not in the hypothesis space) is t and all I/O examples are consistent with t. Now consider a single hypothesis $f \in H$ first. Let $error(f) = L_{(\mathcal{D},t)}(f)$ be the true error (expectation of 0-1 loss) $L_{(\mathcal{D},t)}(f) = \mathbb{E}_{x \sim \mathcal{D}} \mathbb{I}[t(x) \neq f(x)]$, and let $L_{(\mathcal{S},t)}(f)$ be the empirical error (empirical average of 0-1 loss) $L_{(\mathcal{S},t)}(f) = \frac{1}{|S|} \sum_{x \in S} \mathbb{I}[t(x) \neq f(x)]$, The following holds:

$$\Pr_{x \in \mathcal{D}}[\mathbb{I}[t(x) \neq f(x)] = 0 \mid L_{(\mathcal{D},t)}(f) \ge \epsilon] \le (1 - \epsilon)$$

Now consider a sample S with size n, the following holds:

$$\Pr_{S \in \mathcal{D}^n} [L_{(\mathcal{S},t)}(f) = 0 \mid L_{(\mathcal{D},t)}(f) \ge \epsilon] \le (1 - \epsilon)^n$$

Algorithm 1 SynGuar Synthesis returns a program with error smaller than ϵ with probability higher than $1 - \delta$

```
1: procedure SynGuar(\epsilon, \delta)
           k = 1 // \text{ tunable parameter}
           g \leftarrow \text{PickStoppingCond}
 3:
           S' \leftarrow \varnothing, s \leftarrow 0
 4:
           size_H \leftarrow \text{ComputeSize}(H)
 5:
           n \leftarrow g(size_H)
 6:
           while s \leq n \operatorname{do}
 7:
                S' \leftarrow S' \cup \text{SAMPLE}(k)
 8:
                H_{S'} \leftarrow \text{UpdateHypothesis}(S')
 9:
                size_{H_{S'}} \leftarrow \text{ComputeSize}(H_{S'})
10:
                s \leftarrow s + k
11:
                n \leftarrow min(n, s + g(size_{H_{S'}}))
12:
           end while
13:
          m_{H_{S'}} = \frac{1}{\epsilon} (\ln size_{H_{S'}} + \ln \frac{1}{\delta})
14:
           T \leftarrow \text{SAMPLE}(m_{H_{S'}}(\epsilon, \delta))
15:
           S \leftarrow S' \cup T
16:
           return f program in H_S
17:
18: end procedure
```

Then take union bound on all hypothesis in H:

$$\Pr_{S \in \mathcal{D}^n} [\exists f \in H, \ L_{(\mathcal{S},t)}(f) = 0 \ \land \ L_{(\mathcal{D},t)}(f) \ge \epsilon] \le |H| (1 - \epsilon)^n < \delta$$

$$\Rightarrow n > \frac{1}{\epsilon} (\ln |H| + \ln \frac{1}{\delta}) \text{ suffices}$$

So with sample size larger than $\frac{1}{\epsilon}(\ln|H| + \ln\frac{1}{\delta})$, with probability at least $1 - \delta$, all $f \in H$ that have true error larger than ϵ have a non-zero empirical loss and will be ruled out and any hypothesis in H that is still consistent with the sample has true error smaller than ϵ .

2 Analysis of SynGuar

SYNGUAR's design is motivated by being able to give a formal generalization guarantee and a bounded sample complexity. For this purpose, we state and prove the following properties:

(P1: Termination) SynGuar always terminates for a finite |H|.

(P2: (ϵ, δ) guarantees) If SynGuar returns an f then f is ϵ -far with probability $< \delta$.

(P3: Sample complexity) SYNGUAR's sample complexity is always within $2\times$ of the optimal.

Theorem 2.1 (P1). SynGuar always terminates for a finite |H|.

Proof. It suffices to prove that the sampling phase (lines 7-13) of SynGuar terminates in order to show that SynGuar terminates. In each iteration of the sampling phase, let S_i be the queue storing the user-provided examples after each iteration, z_t be the t^{th} example, $S_{i+1} = S_i \cup \{z_{ik+1}, ... z_{ik+k}\}$ and $S_0 = \emptyset$. For each S_i , H_{S_i} determines the set of consistent hypothesis that satisfy S_i . Let N_i be the limit of the number of I/O examples n for the sampling phase after iteration i. For iterations i and j where i < j and $\forall g : \mathbb{N} \to \mathbb{Z}$ such that g is monotonically non-decreasing, the following holds:

$$S_i \subset S_j \Rightarrow |H_{S_j}| \leq |H_{S_i}| \Rightarrow g(|H_{S_j}|) \leq g(|H_{S_i}|)$$

 $N_j \leq \min\{N_i, |S_j| + g(|H_{S_i}|)\} \leq N_i$ (see line 13 in Alg. 1)

Therefore, if $N_0 \leq g(|H|)$ then the loop will terminate at some iteration p such that $N_p < |S_p| \leq N_p + k \leq N_0 + k$.

Theorem 2.2 (P2). If SYNGUAR (ϵ, δ) returns the synthesized program f then f is ϵ -far with probability $< \delta$.

Proof. By Theorem 2.1, we know that the sampling phase terminates with S' samples (see line 14). In lines 14 - 16 SynGuar samples an additional number of I/O examples required to generalize and then synthesizes a program after seeing the additional samples. Therefore, Theorem 2.2 follows from Theorem 1.1.

In order to prove the last property, we define a new quantity $\omega(Q)$. It is the smallest sample size taken by SynGuar (ϵ, δ) for any non-decreasing g used for a sequence of I/O examples Q.

Definition 2 (Smallest dynamic sample size). For any infinite sampled sequence of examples Q, let Prefix Q, Q be the prefix of Q at which SynGuar (ϵ, δ) terminates. Then,

$$\omega(Q) = \inf\{|m_g| : \forall g, m_g = \text{Prefix}(Q, g)\}$$

Theorem 2.3 (P3). SynGuar uses no more than $2\omega(Q)$ examples on any Q when the result is not None with $g(x) = g_0(x) = \max\{0, \frac{1}{\epsilon}(\ln(x) - \ln(\frac{1}{\delta}))\}$ and $k \leq \frac{1}{2\epsilon} \ln \frac{1}{\delta}$.

Proof. Let $S' \subset Q$ be the samples in sampling phase. Let P be the samples when $\omega(Q) = \operatorname{PREFIX}(Q,g)$ for some g and let us call this the best stopping point for SynGuar's sampling phase on Q. Then $\omega(Q) = |P| + \frac{1}{\epsilon}(\ln|H_P| + \ln\frac{1}{\delta})$. Let $g_0(x) = \max\{0, \frac{1}{\epsilon}(\ln(x) - \ln(1/\delta))\}$, $\gamma(Q) = \operatorname{PREFIX}(Q,g_0)$ and $S' \subset Q$ be the samples in sampling phase.

If P is the samples for the best stopping point, then

$$\omega(Q) = |P| + \frac{1}{\epsilon} (\ln|H_P| + \ln\frac{1}{\delta})$$

Case 1: SynGuar using g_0 is stopping earlier in phrase 1 than the best possible stopping point, $|S'| \leq |P|$

$$\gamma(Q) - 2 \cdot \omega(Q) = |S'| - 2 \cdot |P| + \frac{1}{\epsilon} \cdot (\ln|H_{S'}| - 2 \cdot \ln|H_P|)$$
$$- \frac{1}{\epsilon} \cdot \ln \frac{1}{\delta}$$
$$\leq -|P| - \frac{1}{\epsilon} \cdot \ln \frac{1}{\delta} + \frac{1}{\epsilon} \cdot (\ln|H_{S'}|)$$
$$\text{since } |S'| \leq |P|$$

Observe that, for $g_0(x) = \max\{0, \frac{1}{\epsilon}(\ln(x) - \ln(1/\delta))\}$ the $|S'| \ge \frac{1}{\epsilon} \cdot (\ln|H_{S'}| - \ln\frac{1}{\delta})$ (see, step 12 in Algorithm 2)

$$\gamma(Q) - 2 \cdot \omega(Q) < -|P| + |S'| < 0$$

Case 2: SynGuar using g_0 is stopping after the best possible stopping point in phrase 1, |S'| > |P|

In this case, $|H_P| \ge |H_{S'}|$. Observe that $|S'| \le \omega(Q)$. Because for SYNGUAR using g_0 , after seeing P, it will take no more than $g_0(|H_P|) + 2k = \max\{0, \frac{1}{\epsilon}(\ln|H_P| - \ln\frac{1}{\delta})\} + 2k \le \frac{1}{\epsilon}(\ln|H_P| + \ln\frac{1}{\delta})$ examples in phase 1.

$$|S'| \le |P| + 2k + g_0(|H_P|)$$

$$\omega(Q) = |P| + \frac{1}{\epsilon} (\ln|H_P| + \ln\frac{1}{\delta})$$

$$\implies |S'| \le \omega(Q)$$

Now,

$$\begin{split} \gamma(Q) - 2 \cdot \omega(Q) &= |S'| + \frac{1}{\epsilon} \cdot (\ln|H_{S'}| + \ln\frac{1}{\delta}) - 2 \cdot \omega(Q) \\ &\leq \frac{1}{\epsilon} \cdot (\ln|H_{S'}| + \ln\frac{1}{\delta}) - \omega(Q) \quad (\text{by } |S'| \leq \omega(Q)) \\ &\leq -|P| + \frac{1}{\epsilon} \cdot (\ln|H_{S'}| - \ln|H_{P}|) \\ &\leq 0 \quad (\text{since, } |H_{P}| \geq |H_{S'}|) \end{split}$$

References

[1] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Occam's razor. *Information processing letters*, 24(6):377–380, 1987.