Relatório

Lucas Emanuel de Oliveira Santos GRR20224379

Universidade Federal do Paraná – UFPR Curitiba, Brasil

I. Introdução

O presente trabalho tem como objetivo mostrar a produção de um multiplicador de 6 bits utilizando a porta lógica universal NOR, através do uso de simplificações da Álgebra de Boole e da confecção de tabelas verdades.

II. O Multiplicador

A primeira etapa foi entender qual era a função necessária para realizar a multiplicação de números binários, pra isso foi utilizada a seguinte tabela verdade:

Tabela I MULTIPLICAÇÃO DE DOIS NUMEROS BINÁRIOS

A	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Através da produção dessa tabela foi possível concluir que a multiplicação de dois números binários é equivalente a um "e" lógico. O próximo passo era, portanto, produzi-lo utilizando a porta lógica NOR. Na Álgebra de Boole um NOR é equivalente a negação de um OR, ou seja: $(\overline{A+B})$. Então usamos as seguintes simplicações para obter um A.B:

 $\overline{A+A}=\overline{A}\to Idempotência$ $\overline{B+B}=\overline{B}\rightarrow Idempotência$ $(\overline{\overline{A} + \overline{B}}) = \overline{\overline{A}}.\overline{\overline{B}} \rightarrow \text{De Morgan}$ A.B → Dupla negação

O próximo passo é realizar a soma dos resultados obtidos, para isso seriam necessários Half Adders e Full Adders. Portanto as seguintes tabelas verdade mostram as funções necessárias para a confecção desses somadores:

Tabela II

FULL ADDER							
Α	В	Cin	S	Cout			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

A partir dessa tabela verdade e da simplificação por Álgebra de Boole a função de saída de S e a função de saída de Cout são respectivamente:

 $S = A \oplus B \oplus C$ Cout = B.Cin + A.Cin + A.B

Tabela III HALF ADDER

B S Cout

	- 1 1			Cour
	0	0	0	0
	0	1	1	0
	1	0	1	0
	1	1	0	1
•				

A partir da tabela verdade do Half Adder encontramos outras funções de saída S e Cout, que são respectivamente:

$$S = A \oplus B$$

$$Cout = A.B$$

Para obter essas funções é utilizado o "e" lógico (que já foi demonstrado), o XNOR e o "ou" lógico. Para produzir essas novas portas lógicas utilizando apenas NORs, são necessárias as seguintes simplicações:

I. XNOR:

$$\overline{(A+(\overline{A+B}))}=\bar{A}.(A+B) \rightarrow \text{De Morgan}$$
 $\overline{(B+(\overline{A+B}))}=\bar{B}.(A+B) \rightarrow \text{De Morgan}$
 $\overline{(B}.(A+B)+\bar{A}.(A+B)) \rightarrow \text{NOR}$
 $\overline{(B}.A+\bar{A}.B) \rightarrow \text{Distributividade, Complemento}$
 $\overline{(B+A).(B+A)} \rightarrow \text{De Morgan}$
 $\overline{(B+A).(B+A)} \rightarrow \text{Distributividade, Complemento}$

II. "ou" lógico:

$$\frac{(\overline{(A+B)} + \overline{(A+B)}) \to NOR}{(\overline{A+B}) \to Idempotência}$$

$$A + B \to Dupla negação$$

Com todas as equações necessárias para a produção do multiplicador, o último passo foi construir subcircuitos que realizassem essas operações, com o intuito de simplificar o circuito principal e melhorar o entendimento, para isso foram criados quatro tipos de subcircuitos diferentes:

I. Subcircuito de Multiplicação: a função do subcircuito de multiplicação é multiplicar um número A com os todos os números B. Então basta aplicar esse circuito em todos os números

Relatório

Lucas Emanuel de Oliveira Santos GRR20224379

Universidade Federal do Paraná – UFPR Curitiba, Brasil

de A, assim ele resulta em seis números diferentes que depois serão somados pelo Adder.

II. Half Adder: a função do Half Adder é somar os dois primeiros resultados do subcircuito de multiplicação.

III. Full Adder: a função do Full Adder é somar os demais resultados do subcircuito de multiplicação (duas entradas).

A combinação do Full Adder com o Half Adder, gerou o quarto subcircuito, um Adder completo, capaz de realizar a soma de doze entradas, ou seja, seis vezes mais que um Full Adder. Responsável por somar as saídas das diferentes multiplicações e as saídas de outros Adders.

IV. Adder

A primeira saída de A0, é o primeiro bit do resultado, o próximo bit do resultado é a soma da segunda saída da multiplicação de A0 e a primeira saída da multiplicação de A1. Os demais resultados são obtidos através da combinação de um adder com outros adder até a última saída de A5.

III. Conclusão

Portanto, a associação de todos esses subcircuitos gera um circuito capaz de multiplicar quaisquer números binários de até 6 bits. Sendo construído única e exclusivamente a partir da porta lógica NOR, utilizando métodos de simplificação da Álgebra de Boole e da confecção de tabelas verdade.

