Конспект по Дискретной математике.

Чепелин В.А.

Содержание

1 J.	Іекция 1.
1.1	Аксиоматическое вероятное пространство
2 J	Іекция 2.
2.1	Случайная величина
2.2	Мат. ожидание.
	Незав. случайные величины
2.4	Дисперсия случайной величины
3 J.	Іекция 3.
3.1	Ковариация
	Корреляция
	Хвостовые неравенства
4 J	Іекция 4.
4.1	Введение в теорию информации.
4.2	Энтропия
5 V	Інформация о курсе

1 Лекция 1.

1.1 Аксиоматическое вероятное пространство.

Пусть у нас есть Ω - элементарные исходы и связанная с ним функция $p:\Omega\to [0,1]$ - дискретная вероятностная мера (плотность вероятности) - функция, которая по элементарному исходу возвращает вероятность.

А также $\sum_{w \in \Omega} p(w) = 1$, а также $0 \le p_i \le 1$ А также мы считаем, что $|\Omega|$ не более чем счетно. Для множеств мощности континуума нам нужна более сложная теория.

Рассмотрим примеры:

1. Честная монета:

$$\Omega = \{0, 1\}. \ p(0) = p(1) = \frac{1}{2}.$$

2. Нечестная монета или распределение Бернулли:

$$\Omega = \{0, 1\}. \ p(0) = 1 - p(1) = q.$$

3. Честная игральная кость:

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$
 $p(w) = \frac{1}{6}.$ $p(w) = \frac{1}{52}$

4. Колода карт:

$$\Omega = \{ \langle c, r \rangle \ 1 \le c \le 4, 1 \le r \le 15 \}$$

5. Геометрическое распределение:

$$\Omega = \mathbb{N}, \, p(i) = \frac{1}{2^i}$$

Замечание. Не существует равномерного распределения на счетном множестве.

<u>Событие</u> — множество $A\subset \Omega.$ $P(A)=\sum_{w\in A}p(w).$ (Иногда используют \Pr).

P(A) = 1 — достоверное событие.

P(A) = 0 — невозможное событие.

Рассмотрим примеры на честной игральной кости:

- 1. Только четные: $P(A) = \frac{3}{6} = \frac{1}{2}$.
- 2. Больше 4-ex: $P(A) = \frac{2}{6} = \frac{1}{3}$.

Замечание: нельзя с равной вероятностью выбрать случайное целое число.

Независимые события — A,B независимы, если $P(A \cap B) = P(A) \cdot P(B)$.

$$\frac{P(A\cap B)}{P(B)} = \frac{P(A)}{P(\Omega)} - \text{независимы (если выполнилось B, то вероятность не поменялась)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
— вероятность А при условии В — **условная вероятность**.

Произведение вероятностных пространств.

Пусть у нас есть $\Omega_1.p_1$, а также Ω_2,p_2 , тогда произведение вероятностных пространств:

$$\Omega = \Omega_1 \times \Omega_2$$
$$p(\langle w1, w2 \rangle) = p_1(w_1) \cdot p_2(w_2)$$

Утв. $\forall A \subset \Omega_1, B \subset \Omega_2$.

 $A \times \Omega_2$ и $\Omega_1 \times B$ независимы.

Пусть у нас есть n событий: A_1, A_2, \ldots, A_n .

Тогда обычно **независимость** *п* **событий** подразумевает:

- 1. A_i, A_j независимы $\forall i, j, \quad i \neq j$
- 2. $\forall I \subset \{1, 2, 3, ..., n\}: P(\bigcap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$

Формула полной вероятности

$$\Omega = A_1 \cup A_2 \cup \ldots \cup A_n, \, orall i
eq j : A_i \cap A_j = \emptyset -$$
 полная система событий.

Возьму B - какое-то событие.

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

Пример: урна с шариками. Сначала выбираете урну, потом достаете шарик.

Формула Байеса.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$

2 Лекция 2.

2.1 Случайная величина.

Случайная величина или численная характеристика каждого элементарного исхода — это отображение $\xi: \Omega \to \mathbb{R},$ которое сопоставляет каждому элементарному исходу какое-то число. Пример:

- 1. $D=\{1,2,\dots,6\}$. Возьмем $\Omega=D^2$. Например, человек бросает два игральных кубика. Тогда, очевидно, $p(\langle i,j\rangle)=\frac{1}{36}$. И тогда он задает функцию случайной величины, например, как $\xi(\langle i,j\rangle)=i+j$.
- 2. Возьмем случайный граф G на n вершинах. $\xi(G) =$ количеству компонент связности. Или $\xi(G) =$ количеству ребер в этом графе.
- 3. Давайте кидать игральный кубик и сопоставим каждой выпадающей грани число, равное количеству точек на этой грани. То есть $\Omega = \{1, 2, \dots, 6\}, \, \xi(i) = i.$

4.
$$\Omega = \{1, 2, \dots, 6\}; E = \{2, 4, 6\}. \ x_E(w) = \begin{cases} 1, w \in E \\ 0, w \notin E \end{cases}$$

Возьмем какие-то Ω, p, ξ :

 $[\xi=i]=\{w|\xi(w)=i\}\subset\Omega-$ множество элементарных исходов, случайная величина которых равна i.

 $\underline{\operatorname{def:}}\ f_{\xi}:\mathbb{R} o \mathbb{R}$ — дискретная плотность вероятности $\xi.$

$$P([\xi = i]) = P(\xi = i) = f_{\xi}(i) = \sum_{w \in [\xi = i]} p(w)$$

Дискретная плотность вероятности — это функция, которая говорит нам, насколько вероятно каждое из этих отдельных значений, которые может принимать случайная величина. Другими словами, она присваивает вероятность каждому возможному исходу.

Немного поменяем и получим $[\xi \leq i] = \{w | \xi(w) \leq i\} \subset \Omega.$

$$P([\xi \le i]) = P(\xi \le i) = F_{\xi}(i)$$

<u>def:</u> $F_{\xi}: \mathbb{R} \to \mathbb{R} - \underline{\text{функция распределения}}$. У дискретной случайной величины функция распределения ступенчатая. Например:

2.2 Мат. ожидание.

Математическое ожидание — среднее значение случайной величины.

$$E_{\xi} = \sum_{w} p(w)\xi(w) = \sum_{i} i \cdot P(\xi = i).$$

Дальше А.С. использует 3 вида обозначений:

1. E_{ξ} 2. $E(\xi)$ 3. $E\xi$ — не боимся, это одно и то же.

Теорема (линейность мат ожидания)

$$E\lambda\xi = \lambda E_{\xi}$$
 $E_{(\xi+\eta)} = E_{\xi} + E_{\eta}$

Доказательство:

$$E\lambda\xi=\sum_w p(w)\cdot\lambda\xi(w)=\lambda\sum_w p(w)\xi(w)=\lambda E_\xi$$

$$E(\xi+\eta)=\sum_w p(w)(\xi(w)+\eta(w))=\sum_w p(w)\xi(w)+\sum_w p(w)\eta(w)=E(\xi)+E(\eta)$$
 Q.E.D.

МАТ. ОЖИДАНИЕ ВСЕГДА ЛИНЕЙНО!!!

2.3 Незав. случайные величины

 ξ,η - **независимы**, если $[\xi=a],[\eta=b]$ — независимы $\forall a,b.$

Эквивалентное утверждение — $[\xi \leq a], [\eta \leq b]$ — независимы $\forall a, b.$

Иначе говоря, две случайные величины называются *независимыми*, если по значению одной нельзя сделать выводы о значении другой.

Теорема (о мультипликативности мат. ожидания)

$$\xi, \eta$$
 — независимы $\Rightarrow E(\xi \cdot \eta) = E_{\xi} \cdot E_{\eta}$.

Доказательство:

$$\begin{split} E_{(\xi\cdot\eta)} &= \sum_{a} aP(\xi,\eta=a) = \sum_{a} a \sum_{\forall i,j:\, i\cdot j=a} \sum_{i\in R_{\xi},j\in R_{\eta}} P(\xi=i,\eta=j) = \\ &= \sum_{a} \sum_{i} \sum_{j} aP(\xi=i)P(\eta=j) = \sum_{i} iP(\xi=i) \cdot \sum_{j} jP(\eta=j) = E_{\eta} \cdot E_{\xi} \end{split}$$
 Q.E.D.

2.4 Дисперсия случайной величины.

 $D_{\xi} = Var(\xi)$ — **дисперсия** случайной величины.

$$D_{\xi} = E((\xi - E_{\xi})^2) = E_{\xi^2} - (E_{\xi})^2$$

Дисперсия случайной величины — это мера того, насколько сильно разбросаны значения этой случайной величины вокруг её математического ожидания (среднего значения). Другими словами, она показывает, насколько "широко"распределение вероятностей случайной величины.

Теорема (свойства дисперсии). Если ξ, η - независимы:

$$D_{c\eta} = c^2 D_{\eta}$$
 $D_{\xi+\eta} = D_{\xi} + D_{\eta}$

Доказательство тривиально из линейности мат. ожидания.

3 Лекция 3.

3.1 Ковариация

$$Cov(\xi, \eta) = E_{\xi\eta} - E_{\xi}E_{\eta}$$

Ковариация или **корреляционный момент** показывает на сколько зависимы случайные величины это мера зависимости двух случайных величин.

Если ξ, η - независимые случайные величины

$$Cov(\xi, \eta) = 0$$

:

$$Cov(\xi,\xi) = D_{\xi} = Var_{\xi}$$
 - вариация

3.2 Корреляция

$$Corr(\xi, \eta) = \frac{E_{\xi\eta} - E_{\xi}E_{\eta}}{\sqrt{D_{\xi} \cdot D_{\eta}}} = \frac{Cov(\xi, \eta)}{\sqrt{D_{\xi} \cdot D_{\eta}}}$$

Корреляция - статистическая взаимосвязь двух случайных величин. Корреляция является **нормированной** версией ковариации, что позволяет сравнивать силу линейной зависимости между различными парами переменных, независимо от их масштаба.

Теорема (об ограниченности корреляции)

$$-1 \le Cor(\xi, \eta) \le 1$$

Доказательство:

Возьму $\alpha = \xi - \lambda \eta$:

$$D\alpha = D(\alpha) = E\xi^2 - 2\lambda E_{\xi\eta} + \lambda^2 E\eta^2 - (E\xi)^2 + 2\lambda E_{\xi} E_{\eta} - \lambda^2 (E_{\eta})^2 \ge 0$$
$$D\xi - 2\lambda Cov(\xi, \eta) + \lambda^2 D\xi \ge 0$$

Откуда, если рассматривать это, как уравнение относительно λ , то $D \le 0$, то есть:

$$4Cov(\xi,\eta) - 4D_{\eta}D_{\xi} \le 0$$

А если присмотреться, то это и есть то, что нам надо.

Q.E.D.

3.3 Хвостовые неравенства

Рассмотрим азартную игру. не одобряем, не играем.

Проводится случайный эксперимент, смотрится значение ξ . Если оно получилось 100 или больше, то мы платим 100 рублей, а иначе наш друг платит нам 100 рублей. Мы знаем $E\xi=10,\xi\geq 0$

Хотим оценить $P(\xi \le 100)$:

Давайте посмотрим, является ли наша вероятность меньше $\frac{1}{2}$. Тогда всё, что правее 100 имеет вероятность выпадения $\geq \frac{1}{2}$. Все левое оценивается нулем, откуда мат ожидание хотя бы 50. Такого быть не может. В общем случае:

Теорема (Неравенство Маркова)

$$\xi \not\equiv 0, \xi \ge 0 : \forall a \ge 1 : P(\xi \ge a \cdot E\xi) \le \frac{1}{a}$$

Доказательство:

$$E_{\xi} = \sum_{v} v \cdot P(\xi = v) = \sum_{v < a \cdot E\xi} v P(\xi = v) + \sum_{v \ge a \cdot E\xi} v P(\xi = v) \ge \sum_{v \ge a \cdot E\xi} a E \xi P(\xi = v) = a E \xi \cdot P(\xi \ge a \cdot E\xi)$$

Q.E.D.

Теорема (Неравенство Чебышева)

Абсолютная версия и относительная версия ($\alpha = \lambda \sigma$):

$$P(|\xi - E\xi| \ge \alpha) \le \frac{D\xi}{\alpha^2}$$
 $P(|\xi - E\xi| \ge \lambda\sigma) \le \frac{1}{\lambda^2}$

Доказательство:

Возьму вот такие величины:

$$D_{\xi} = E(\xi - E\xi)^2$$
 $\eta = (\xi - E\xi)^2$

Заметим, что $E\eta = D\xi$. Используем неравенство Маркова для оценки дисперсии:

$$P(\eta \ge c \cdot E\eta) \le \frac{1}{c}$$

Возьму $c = \frac{D_{\xi}}{\alpha^2}$ и получу искомое.

Q.E.D.

Нечестная монета. Вот вам дали домашку, вместе с вопросом $p > \frac{1}{2}$ или $p < \frac{1}{2}$. Что вы можете делать? Только кидать ее, но при этом бесконечное количество раз вы не кинете, у вас дедлайн домашки через час.

Пусть мы бросили n раз. Выпало c единиц и n-c нулей. Пусть $c\leq \frac{n}{2}$:

мы оросили
$$n$$
 раз. Выпало c единиц и $n-c$ нулеи. Пусть $c \leq \frac{n}{2}$:
$$P(\xi=c) \leq P(\xi \leq c) \leq P(|\xi-pn| \geq pn-c) \leq P(|\xi-pn| \geq \frac{n}{2}-c) \leq \frac{n}{4} \cdot \frac{1}{\left(\frac{n}{2}-c\right)^2}$$

Что это концептуально значит? На самом деле, это дает нам оценку на распределение. Зачем? Чтобы СДАТЬ домашку.

Теорема (Граница Чернова)

$$\begin{split} P(\xi \geq (1+\varepsilon)p) &\leq e^{-\frac{\varepsilon^2}{2+\varepsilon}np} \quad \Leftrightarrow \quad P(\xi \geq (1+\varepsilon)p) \leq e^{-\frac{\varepsilon^2}{2}np} \\ e^{-\frac{\varepsilon^2}{3}np} &\leq \delta \quad \Leftrightarrow \quad -\frac{\varepsilon^2}{3}np \leq \ln \delta \\ n &\geq \frac{3}{p\varepsilon^2} \ln \frac{1}{\delta} \end{split}$$

Не знаю, что это концептуально, напишите пж

4 Лекция 4.

4.1 Введение в теорию информации.

информация = - неопределенность - сказал дяденька Шеннон

Для осознания нам поможет рисунок АС:

Есть что-то - неизвестное - облачко. Затем, вы с помощью глаза заглядываете туда, и ваша неопределенность уменьшается. Соответственно вы получили информацию. То есть сначала была неопределенность H_1 , потом H_2 . $I = H_1 - H_2$, откуда и получается наша формула. У него есть глубокий смысл, но создается вопрос: «И че? И что это за неопределенность?»

Ну наличие глаза мешает, непонятно, фу фу фу. Поэтому хотим ввести что-то более формальное и менее абстрактное.

Пусть у нас есть какой-то случайный эксперимент Ω , с вероятностями p_1, \ldots, p_n . И вот мы получили информацию что выпало (например орел на монетке).

<u>Случайный источник</u> — черный ящик с красной кнопкой, который показывает номер эл. исхода, когда вы нажимаете на красную кнопку.

Возьмем монетку. Кинули, получили 0 или 1. Теперь возьмем кубик, получим число от 1 до 6. Когда мы кидаем кубик, мы получаем больше информации. И вот Шеннон решил систематизировать все это...

4.2 Энтропия

Пусть у нас есть случайный источник и вероятности p_1, p_2, \ldots, p_n . Мы хотим померить численно сколько информации содержится в одном эксперименте:

$$H(p_1,\ldots,p_n):RS\to R^+$$

Энтропия Шеннона(H) - это мера неопределенности или случайности, связанная с случайной переменной. Она измеряет среднее количество информации, необходимое для описания результата случайной переменной. Иными словами, энтропия показывает, насколько непредсказуемым является источник информации.

Возьму пример $p_i = \frac{1}{n}$. Введем новое обозначение:

$$h(n) = H\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$$

Очевидно, что h(n+1) > h(n).

Теперь рассмотрим вероятностное пространство и источник на нем:

$$\Omega = \{(1,1), (1,1), \dots, (1,m_1), (2,1), \dots, (k,1), \dots, (k,m_k)\}$$

И давайте теперь каждому причислим какую-то q_{ij} , так, что в сумме 1. $p_i = \sum_{j=1}^{m_i} q_{ij}$. Пусть наш случайный источник сломан и показывает только одно число. Если я возьму сломанный случайный источник от Ω , то мы получим столько же информации сколько и у случайного источника сделанного из p.

Теперь давайте делить это на 2 части. Что вот мы сначала видим первую часть информации, а потом хоба и видим вторую часть информации. И того мы получаем, что когда мы открываем вторую часть мы получим $p_iH(\frac{q_{i1}}{p_i},\ldots,\frac{q_{mi}}{p_i})$ информации. Откуда благодаря таким рассуждение получаем свойство, которое называется **аддитивностью энтропии**:

$$H(p_1, \dots, p_k) + \sum_{i=1}^k p_i H(\frac{q_{i1}}{p_i}, \dots, \frac{q_{mi}}{p_i}) = H(q_{11}, \dots, q_{mk})$$

Также для фиксированного n, H непр из $\mathbb{R}^n \to \mathbb{R}$.

Теорема. (Формула энтропии Шеннона)

$$H(p_1, \dots, p_n) = -\alpha \sum_{i=1}^n p_i \log_2 p_i$$

 α отвечает за выбор единицы измерений.

Доказательство:

<u>Лемма 1.</u> $h(n \cdot m) = h(n) + h(m)$.

Доказательство:

Возьмем $k=n, m_i=m, p=\frac{1}{n}, q_{ij}=\frac{1}{nm}$. Из утверждения сверху это верно!

Q.E.D.

Фиксируем $h(2) = \alpha$. Тогда:

<u>Лемма 2.</u> $h(2^k) = k\alpha$. тривиально из Леммы 1.

Лемма 2,5. $h(n^r) = rh(n)$. тривиально из Леммы 1.

<u>Лемма 3.</u> $h(n) = \alpha \log_2 n$

Доказательство:

Найду i такое, что $2^i \le n^r < 2^{i+1}$, где $r \in \mathbb{N}$.

Из монотонности h следует: $\alpha i \leq h(n^r) < \alpha(i+1)$. Поэтому:

$$\alpha i \le rh(n) < \alpha \quad \Leftrightarrow \quad a\frac{i}{r} \le h(n) \le a\frac{i+1}{r}$$

Также мы знаем, что $i \leq r \log_2 n < i+1$. Получим, что:

$$\alpha \frac{i}{r} \le \alpha log_2 n < \alpha \frac{i+1}{r}$$

То есть $\forall r : |h(n) - \alpha log_2 n| \leq \frac{\alpha}{r}$. Откуда, получаем требуемое равенство.

Q.E.D.

Возвращаемся к доказательству теоремы. Пусть p_i рациональные. Приведем все p к общему знаменателю и пусть теперь $p_i=\frac{a_i}{b_i}$. Возьму $m_i=a_i,\ r_{ij}=\frac{1}{a_i}, q_{ij}=\frac{1}{n}$. Подставим во второе неравенство получим:

$$H\left(\frac{1}{b}, \frac{1}{b}, \dots, \frac{1}{b}\right) = H(p_1, p_2, \dots, p_k) + \sum_{i=1}^k p_i H\left(\frac{1}{a_i}, \dots, \frac{1}{a_i}\right)$$

Что тут происходит? Я разбиваю каждый исход изначальный, на a_i исходов по $\frac{1}{b_i}$. С одной стороны я получаю b исходов по $\frac{1}{b}$. С другой стороны я могу выбрать исход, а потом его разбить. Откуда по аддитивности и получается такая формула. А она в свою очередь уже удобная, так как в ней повторяются значения внутри H, так что можем заменить на h:

$$h(b) = H(p_1, \dots, p_k) + \sum_{i=1}^{k} p_i h(a_i)$$

Заметим, что $\sum_{i=1}^{n} p_i = 1$, так что левую часть на эту сумму:

$$\sum_{i=1}^{n} p_i h(b) = H(p_1, \dots, p_k) + \sum_{i=1}^{k} p_i h(a_i)$$

$$H(p_1, \dots, p_k) = \sum_{i=1}^{n} p_i(h(b) - h(a_i))$$

$$H(p_1, \dots, p_k) = \sum_{i=1}^n p_i(\alpha \log_2 b - \alpha \log_2 a_i) = -\alpha \sum_{i=1}^n p_i \log_2 p_i$$

Эта формула верна и не для рац. исходя непрерывности (любое не рац. можно зажать с двух сторон сходящимися последовательностями и мы победили)

Q.E.D.

 α — бит, единица информации.

Обычно используется логарифм по основанию 2, тогда энтропия измеряется в битах (или "Шеннонах"). Если используется натуральный логарифм (основание е), то энтропия измеряется в натах. Использование логарифма по основанию 10 даёт единицы измерения в децитах (Hartleys). Выбор основания влияет только на масштаб энтропии, а не на её относительные значения.

Энтропия Шеннона имеет широкое применение в различных областях, включая:

- Теория информации: Является фундаментальным понятием для измерения количества информации.
- Сжатие данных: Используется для оценки теоретического предела сжатия данных.
- Криптография: Оценка случайности ключей и стойкости шифров.
- Машинное обучение: В деревьях решений используется для выбора признаков, которые лучше всего разделяют данные.
- Обработка естественного языка (NLP): Оценка неопределенности в языковых моделях.
- Термодинамика: Аналогична термодинамической энтропии, отражает меру беспорядка в системе.

Также есть такие понятия, как взаимная энтропия и условная энтропия. Их определения появятся в конспекте после того, как пройдет неделя со сдачей домашки.

5 Информация о курсе

Поток — y2024.

Группы М3138-М3142.

Преподаватель — Станкевич Андрей Сергеевич.

В данном семестер фокусируются 2 темы: Дискретная теория вероятности и представление слов (токенов) в компьютере.

