Лабораторная работа №4.3.5

Исследование свойств голограмм точечного источника и объёмного предмета.

Маслов Артём Казаков Данила Б01-104

22.04.2023

Аннотация

В работе определяется расстояние от голограммы до точечного источника, который использовался при её создании, двумя методами:

- 1. По результатам измерения радиусов голографических колец, спроецированных на экран при помощи короткофокусной линзы.
- 2. По результатам измерения параметров проекционной установки, в которой голограмма используется как короткофокусная линза, а объектом служит предметная шкала.

Исследуются свойства голограммы объёмного предмета - линейки и стержня, расположенного за линейкой:

- 1. Оценивается угол падения опорной волны, использованной при создании голограммы.
- 2. Проверяется, что изображение предмета восстанавливается по части голограммы.
- 3. Оценивается расстояние от голограммы до линейки и стержня.

Теория

Голография – способ записи изображения, который позволяет по картине интенсивности восстановить полную информацию о волновом поле. Техника записи голограмм отображена на рис. 1. Важным свойством голограммы является возможность восстановить по её малому участку информацию обо всём объекте.

Назовём волну, падающую на предмет, предметной; а волну, падающую сразу на плёнку – опорной. Эти волны должны быть когерентны. Тогда:

$$t \propto a^2 + a_o^2 + 2aa_o\cos(\varphi - \varphi_o),$$

то есть сохраняется информация о фазе волны.

Рис. 2: Зонная решётка Габора

В частности, для точечного источника, считая, что $f_{\pi}=ae^{ikz}$ и $f_{\rm o}\approx ae^{ikr}$, получаем голограмму с функцией пропускания

$$t(x,y) \propto \left| a + ae^{ikr} \right|^2$$
.

Для обратного процесса – восстановления – применяют плоскую нормально падающую волну. Считая $f_-(x,y)\equiv 1$, на выходе голограммы точечного источника получим:

$$f_{+}(x,y) = |a + ae^{ikr}|^2 = 2a^2(1 + \cos(kr)) = 2a^2 + a^2e^{ikr} + a^2e^{-ikr}.$$

Отсюда видна структура полученной волны: суперпозиция плоской и двух сферических волн (соответствующих действительному и мнимому источникам).

Голограмма точечного источника имеет вид колец (рис. ??) с радиусами

$$\rho_m = \sqrt{m\lambda z_0},$$

где нечётному m соответствуют тёмные кольца.

Одним из свойств голограммы является её разрешающая способность, определяемая выражением:

$$\Delta x \sim \frac{\lambda}{D} z_0,$$

где z_0 – расстояние от источника до его голограммы, а D – размер голограммы.

Описание экспериментальной установки

Рис. 3: Голограмма точечного источника

При просвечивании голограммы точечного источника плоской волной с амплитудой $f_0 = const$, на выходе имеются три волны: плоская с амплитудой $f_1 = const$, расходящаяся сферическая волна $f_2 \propto e^{ikr}$, отвечающая мнимому изображению O_2 , и сходящаяся сферическая волна $f_3 \propto e^{-ikr}$, отвечающая действительному изображению O_3 . После прохождения линзы Π волна f_1 собирается в фокусе линзы в точке O'_1 , волны f_2 и f_3 фокусируются соответственно в точках O'_2 и O'_3 . Изображение, возникающее на экране Θ , можно рассматривать как результат интерференции сферических волн от трёх точечных источников O'_1 , O'_2 и O'_3 .

Кроме голограммы точечного источника в работе исследуется голограмма объёмного предмета, который представляет собой горизонтально расположенную миллиметровую линей-ку и вертикальный металлический стержень. При записи голограммы предмет распологался на расстоянии 10 см от пластинки. Голограмма установлена вертикально и может вращаться вокруг вертикальной оси. Источником света служит лазер длиной волны 532 нм и диаметром луча < 1мм.

Оборудование

- 1. Лазер с длиной волны $\lambda = 532$ нм.
- 2. Голограммы точечного источника и объёмного предмета.
- 3. Оптический стол с набором рейтеров.
- 4. Набор собирающих линз с фокусными расстояниями $f_1=43$ мм, $f_2=78$ мм, $f_3=200$ мм.

- 5. Предметная шкала.
- 6. Экран.
- 7. Линейка.

Результаты измерений

Определение цены деления предметной шкалы

Определим цену деления предметной шкалы транспаранта.

Установив транспарант вблизи зелёного лазера с длиной волны $\lambda=523$ нм, наблюдаем дифракционную картину на экране, расположенном на расстоянии $L=1062\pm 5$ мм от транспаранта. Расстояние измерялось стальной линейкой, но так как рейтеры не были расположены на оптическом рельсе, и линейка была короче измеряемого расстояния (было проведено два измерения) то погрешность оценим как $\sigma_L=5$ мм.

Было измерено расстояние между дифракционными максимумами на экране $\Delta x = 5 \pm 0.5$ мм. Измерения проводились стальной линейкой. Погрешность измерения определяется погрешностью отсчёта $\sigma_{\rm дел} = 0.5$ мм и инструментальной погрешностью линейки $\sigma_{\rm инстр} = 0.1$ мм. Итоговая погрешность $\sigma_{\Delta x} = \sqrt{\sigma_{\rm дел}^2 + \sigma_{\rm инстр}^2} = 0.5$ мм.

Цену деления определим по формуле дифракции Фраунгофера на препятствии:

$$D = \frac{L}{\Delta x} \lambda = 111 \pm 11 \text{ MKM}$$

Определим цену деления шкалы вторым способом.

Поместим после транспаранта положительную линзу с фокусным расстоянием f=43 мм и получим на экране сфокусированное увеличенное изображение предметной шкалы.

Расстояние от транспаранта до линзы $a = 51 \pm 0.5$ мм.

Расстояние от линзы до экрана $b = 1011 \pm 5$ мм.

На экране наблюдалось 8 делений шкалы. Размер N=8 делений $d=19\pm0.5$ мм. По формуле увеличения тонкой линзы определим цену деления шкалы предмета:

$$D = \frac{d}{N} \cdot \frac{b}{a} = 119 \pm 3 \text{ MKM}$$

Второй способ точнее, так как на экране наблюдается изображение, геометрические размеры которого измеряются точнее, чем в первом способе.

Определение расстояния от точечного источника до голограммы методом наблюдения интерференционной картины на экране

Определим расстояние от голограммы до точечного источника, использованного при её создании.

Осветим голограмму лазером, после голограммы с помощью линзы с фокусным расстоянием f=43 мм получим увеличенное изображение интерференционной картины. Измерим

радиусы тёмных колец.

Nº _	1	2	3	4	5	6	7	8
r_n , MM	2	3.5	4.5	5.5	6	7	7.5	8

Построим график зависимости квадрата радиуса тёмного кольца от его номера $r^2(n)$.

Рис. 4: График зависимости $r^2(n)$

Теоретический радиус тёмных колец определяется по формуле:

$$r_n^2 = n\lambda z_0$$

Аппроксимируем полученную зависимость прямой y = ax + b и определим расстояние от голограммы до источника z_0 .

Коэффициенты аппроксимирующей прямой:

$$a = (30, 3 \pm 0, 7) \cdot 10^{-3} \text{ mm}^2$$

$$b = (-18 \pm 4) \cdot 10^{-3} \; \mathrm{mm}^2$$

Определим расстояние от голограммы до точечного источника:

$$z_0 = 5, 8 \pm 0, 1$$
 cm.

Определение расстояния до мнимого и действительного изображений

Определим расстояние до действительного и мнимого изображений голограммы.

- b расстояние от экрана до линзы.
- а расстояние от линзы до голограммы.
- d модуль расстояния от голограммы до изображения точеного источника.

Изображение	a, MM	b, mm	d, mm					
Падение лучей под углом								
Действительное	133 692		$45,1\pm 0,7$					
Мнимое	65	760	$21,9 \pm 0,7$					
Падение лучей под углом								
Действительное	136	643	$47,2 \pm 0,7$					
Мнимое	69	710	$18,6 \pm 0,7$					

Погрешность измерения расстояний a, b равна 0, 5. Значения расстояния от мнимого и действительно изображений до голограммы, и расстояние от точечного источника до голограммы не совпадают из-за допущенной в ходе эксперимента ошибки: на экране была получена интерференционная картина не голограммы. Предметная шкала давала чёткое изображение на экране на расстоянии L=1062 мм, расстояние от транспаранта до линзы a=51, расстояние от линзы до экрана b=1011. Транспарант с голограммой был расположен на расстоянии L'=826 мм, a=46 мм, b=780 мм.

Определение фокусирующих свойств голограммы

С помощью фокусирующих свойств голограммы определим расстояние от голограммы до предметной шкалы a. Расстояние от голограммы до экрана $b=800\pm 5$ мм. Размер деления на экране $D'=2,3\pm 0,2$ мм. Расстояние до предмета:

$$a = b \frac{D}{D'} = 3.8 \pm 0.5 \text{ cm}$$

По формуле тонкой линзы определим фокусное расстояние и оптическую силу голограммы:

$$f^{-1} = \frac{1}{a} + \frac{1}{b} = 3,88 \pm 0,03$$
 дптр $f = \frac{1}{f^{-1}} = 25,8 \pm 0,2$ см

Итого расстояние от точечного источника до голограммы $z_0 = 38 \pm 5$ мм.

Исследование свойств голограммы объёмного предмета

В работе был измерен угол падения опорной волны, использованной при создании голограммы $\varphi=47^{\circ}$.

Было проверено свойство голограммы: при закрытии её части непрозрачным листом бумаги, изображение полностью восстанавливалось по оставшейся открытой части.

Было измерено расстояние от голограммы до предметов, использованных при её создании: Расстояние до линейки $l_1=101$ мм.

Расстояние до гвоздя $l_2 = 151$ мм.

Обсуждение результатов и выводы

В работе была определена оптическая сила голограммы $D=3,88\pm0,03$ дптр. Было определено фокусное расстояние голограммы $f=25,8\pm0,2$ см.

С помощью фокусирующих свойств было определено расстояние от голограммы до точечного источника, использованного при её создании: $a=38\pm 5$ мм.

В работе был измерен угол падения опорной волны, использованной при создании голограммы $\varphi = 47^{\circ}$.

Было проверено свойство голограммы: при закрытии её части непрозрачным листом бумаги, изображение полностью восстанавливалось по оставшейся открытой части.

Было измерено расстояние от голограммы до предметов, использованных при её создании: Расстояние до линейки $l_1=101~\mathrm{mm}$.

Расстояние до гвоздя $l_2 = 151$ мм.