1) Power	Polynomicl	2 tuple vector
0	O	(0,0)
.d.	ı	(1,0)
w	w	(0,1)
ω	1 + ω	(1,1)

2)

+	0	Į.	W	<i>ພ</i> ັ
0	0	1	W	ωì
ı	-1	O	ຜ້	w
W	W	ຜ້	0	Ī
w	w	W	ı	O

•	0	1	W	W
0	0	0	0	0
ı	0	ı	Ŋ	w2
W	O	ω	cs ²	ŧ
2	O	w	1	W

1) $P(X) = X^2 + X + \omega$ is irreducible since if not then it is divisible by $X - \alpha$ for some element α in GF(4), i.e, it has a root in GF(4). However, $P(0) = 0 + 0 + \omega = \omega \neq 0$ $P(1) = 1 + 1 + \omega = \omega \neq 0$ $P(\omega) = \omega^2 + \omega + \omega = \omega^2 \neq 0$ $P(\omega^2) = \omega + \omega^2 + \omega = \omega^2 \neq 0$

Hence, p(X) is irreducible.

2)	Done	polynomial	2-tuple vector
	0	0	(0,0)
	1	1	(1,0)
	\propto	×	(0/1)
	_d2	W+X	(ω, i)
	×3	WHWX	(w, w')
	×4	1 + ~	(1,1)
	as -	ω	(6,0)
	d6	ພ [*] ×	(0,6)
	α^7	ω+ ω ×	(w`, w)
	a8	w+ x	$(\omega^{*}, 1)$
	29	W+ wa	(ω, ω)
	din	ω L	(62, 0)
	d	w ² x	(0, w2)
	of 12	1 + WZX	(1, 652)
	413	1+ 60	$(1, \omega)$
	×14	WZ+ wza	(ω^2, ω^2)

3)	element	minimal palynomial
	1	x + 1
	×	$(X+\alpha)(X+\alpha^4) = X^2 + X + \omega$
	×2	$(X + \alpha^{2})(X + \alpha^{8}) = X^{2} + X + \omega^{2}$
	α^3	$(x+\alpha^{3})(x+\alpha^{12})=x^{2}+\omega^{3}x+1$
	×4	$(x + \alpha^4)(x + \alpha) = x^2 + x + \omega$
	5 A	$X + \alpha^5 = X + \omega$
	6	(x+x6)(x+x9)=X+1
	× 7	$(X + \alpha^7)(X + \alpha^{13}) = X^2 + \omega X + \omega$
	× 8	$(X+\alpha^{2})(X+\alpha^{2})=X^{2}+X+\omega^{2}$
	× 9	$(X + \alpha^{q})(X + \alpha^{6}) = X^{2} + \omega X + 1$
	dio	X+ d'0 = X+ w2
	a	$(X + \alpha'')(X + \alpha'') = X^2 + \omega^2 X + \omega^2$
	4	$(X + \alpha^{12})(X + \alpha^{3}) = X^{2} + \omega^{2}X + 1$
	d ¹²	$(X + \alpha^{13})(X + \alpha^7) = X^2 + \omega X + \omega$
	d ¹³	$(X + \alpha^{14})(X + \alpha^{11}) = X^{2} + \omega^{2} X + \omega^{2}$
	×14	$(X + \alpha) / (\lambda + \alpha) = \lambda + \alpha \wedge + \alpha$

- 1) $g(x) = LCM \{ \varphi_i(X), \varphi_i(X), \varphi_j(X), \varphi_j(X) \}$ where $\varphi_i(X)$ is the minimal polynomial of α' $g(X) = LCM \{ X_7^2 X_1 \omega, X_7^2 X_2 + \omega^2 X_1^2, X_7^2 + \omega^2 X_2^2 + \omega^2 X_1^2 + \omega^2 X_2^2 + \omega^2 X_1^2 + \omega^2 X_2^2 + \omega^2 X_1^2 + \omega$
- 2) Dimension = 15 degree of g(X)= 15 - 6 = 9Number of codewords = 4^9 = 262,144

$$r(X) = \omega^2 X_{+}^{q} \omega X_{+}^{g} X_{+}^{3} X$$

Syndrome Computation: S=r(a)=a2, S=r(a2)=d4, S=r(a3)=0, S=r(a4)=a8.

Berlekamp - Massey Algorithm:

M	6 (X)	du	In I	P
-1		1	0	
6	1	∝²	0	_
1	1 + 2 X	×9	1	out 1
2	1 + 012X	راا	,	
3	1+ 22x + 29 x	0	2	•
4	1 + \(\times^{12} \times + \(\pi^9 \times^2 \)	, ,	· ` `	
	1 1 1 1 1 1 1	-	2	~

 $\sigma(X)$ has roots α^8 and α^{13} . Hence, $\beta_1 = \alpha^{-18} = \alpha^2$, $\beta_2 = \alpha^2 = \alpha^2$.

Error Evaluation:

$$Z_0 = S_1 + (S_2 + \sigma_1 S_1)X = \alpha^2 + (\alpha^{4} + \alpha^{12}, \alpha^{2})X = \alpha^2$$

$$= Z_1(\beta^{-1})$$

$$S_k = -\frac{Z_o(\beta_k^{-1})}{\sigma'(\beta_k^{-1})}$$
 where $\sigma'(X) = \alpha'$.

$$S_1 = -\frac{\alpha^2}{\alpha^{12}} = \alpha^5 = \omega, \quad S_2 = -\frac{\alpha^2}{\alpha^{12}} = \alpha^5 = \omega.$$

$$\nu(x) = \nu(x) - e(x)$$

= $\nu^2 X^9 + \nu X^8 + \nu X^7 + \lambda^3 + \nu X^7 + \lambda^8$