Duality Theorems

Theorem 1: The dual problem of the dual is the primal **Proof**:

Primal [P]

Dual [D]

Max
$$Z = cx$$
 Dual variable
S.t. $Ax \le b$ y
 $x \ge 0$

Min W = yb
S.t.
$$yA \ge c$$

 $y \ge 0$

Theorem 2: Weak Duality Theorem (WDT)

If x is a f.s. to [P] and y is a f.s. to [D], then $\mathbf{cx} \leq \mathbf{yb}$. (i.e. maximum profit is constrained by the value of resources)

Proof: x is feasible to
$$[P] \Rightarrow Ax \leq b$$
 (1)
y is feasible to $[D] \Rightarrow yA \geq c$ (2)

Pre-multiply (1) by y and post multiply (2) by x, then $\mathbf{cx} \le \mathbf{yAx} \le \mathbf{yb} => \mathbf{cx} \le \mathbf{yb}$

Observations from WDT ($cx \le yb$)

Note: Primal refers to the maximization problem and dual refers to the corresponding minimization problem

- 1) The Objective function value of the primal for its any feasible solution is a lower bound to the minimum value of the dual problem
- 2) Similarly, the Objective function value of the dual for its any feasible solution is an upper bound to the maximum value of the primal problem
- 3) If the primal is unbounded (i.e., Max Z->+ ∞), then the dual problem is infeasible.
- 4) If the dual is unbounded (i.e., Min W->- ∞), then the primal is infeasible.

Theorem 3: Strong Duality Theorem (SDT)

If \mathbf{x}^* and \mathbf{y}^* are feasible to [P] and [D] respectively and $\mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{b}$, then \mathbf{x}^* and \mathbf{y}^* are optimal to [P] and [D], respectively.

```
Proof: From WDT, \mathbf{cx} \le \mathbf{yb} for any feasible \mathbf{x} and \mathbf{y}.
Then \mathbf{cx} \le \mathbf{y*b} for any feasible \mathbf{x} and \mathbf{y*}.
But \mathbf{cx*} = \mathbf{y*b} (Given)
Then \mathbf{cx} \le \mathbf{cx*} for any feasible \mathbf{x}
=> \mathbf{x*} is optimal to [P] {maximization problem}
```

Similarly, y* is optimal to [D]

Simplex Tableau for Primal at any iteration

BV	\mathbf{x}^{T}	$\mathbf{x_s}^{\mathrm{T}}$	RHS
X_B	B-1A	B-1	B-1b
Z	$c_B B^{-1} A - c$	$\mathbf{c}_B \mathbf{B}^{-1}$	$c_B B^{-1} b$

Proposition: If **B** is the optimal primal basis, then optimal solution of the dual problem is $y^* = c_B B^{-1}$

Proof:

From SDT,
$$\mathbf{c}\mathbf{x}^* = \mathbf{y}^*\mathbf{b}$$

 $=> \mathbf{c}_{\mathbf{B}}\mathbf{x}_{\mathbf{B}} = \mathbf{y}^*\mathbf{b}$
 $=> \mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{b} = \mathbf{y}^*\mathbf{b}$
 $=> \mathbf{y}^* = \mathbf{c}_{\mathbf{B}}\mathbf{B}^{-1}$

Economic interpretation of Duality (dual variable)

Suppose optimal basis **B** does not change by changing the *i*th resource from b_i to $b_i + \Delta b_i$.

$$\mathbf{b}' = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_i + \Delta \mathbf{b}_i \\ \vdots \\ \mathbf{b}_m \end{bmatrix}$$
 So Z'= $\mathbf{C}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{b}'$

The Change in objective function,

$$\Delta Z = C_B B^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \Delta b_i \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} y_1^* & y_2^* & \cdots & y_i^* & \cdots & y_m^* \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \Delta b_i \\ \vdots \\ 0 \end{bmatrix}_{m \times 1} = y_i^* \Delta b_i$$

 $=>\Delta Z/\Delta b_i = y_i^* =$ Shadow Price or Dual Price

Complementary Slackness Theorem (CST)

• Suppose

Primal [P] Max Z=cx s.t. $Ax \le b$, $x \ge 0$

Dual [D] Min W=yb s.t. $yA \ge c$, $y \ge 0$

• If x and y are feasible solution to P and D, respectively. Then x and y are optimal to their respective problems iff

$$(\mathbf{y}\mathbf{A}-\mathbf{c})\mathbf{x}+\mathbf{y}(\mathbf{b}-\mathbf{A}\mathbf{x})=0$$

Complementary Slackness Theorem (CST)

Proof:
$$\mathbf{A}\mathbf{x} + \mathbf{u} = \mathbf{b}$$
 (i), $\mathbf{y}\mathbf{A} - \mathbf{v} = \mathbf{c}$ (ii)

Where $\mathbf{u}, \mathbf{v} \ge 0$

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_m \end{bmatrix} \quad \mathbf{v} = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_n]$$

Pre-multiply (i) by y and post-multiply (ii) by x, we get

$$yAx + yu = yb$$
 (iii) and $yAx - vx = cx$ (iv)

Now, (iii) - (iv),

$$yu + vx = yb - cx = y(b-Ax)+(yA-c)x = yb - cx$$

and from the given condition y(b-Ax)+(yA-c)x = 0

 \Rightarrow yb - cx = 0 => yb = cx, which implies optimality of x and y (from SDT)

The proof is complete when the other side of statement is also proved, i.e. if x and y are optimal (=> yb = cx) it must be yu + vx = 0, which is straightforward.

Implications of CST

(i) Complementary slackness conditions

Since \mathbf{x} , \mathbf{u} , \mathbf{y} , $\mathbf{v} \ge 0$, if the sum of nonnegative terms equals zero, then each term is zero.

$$yu = 0 => y(b - Ax) = 0$$

 $vx = 0 => (yA - c)x = 0$

and

(ii) Using duality interpretations and the condition

If
$$y_i > 0 => u_i = 0$$

Thus, if another party is willing to +ve prices, then it must be the case that the resource must have been utilized fully. (Valuable resource)

If $u_i > 0 \Rightarrow y_i = 0$ (resource not used fully)

(iii) CST conditions can be used to find an optimal primal solution from an optimal dual solution, and vice-versa

Example

[P]

$$\begin{array}{lll} \text{Min W} = 2y_1 + 3y_2 + 5y_3 + 2y_4 + 3y_5 & \text{Dual variable} \\ \text{Subject to} & y_1 + y_2 + 2y_3 + y_4 + 3y_5 \geq 4 \\ & 2y_1 - 2y_2 + 3y_3 + y_4 + y_5 \geq 3 \\ & \text{and } y_1, \, y_2, \, y_3, \, y_4, \, y_5 \geq 0 \end{array}$$

[**D**]

Max $Z = 4x_1 + 3x_2$

Slack variable

Subject to
$$x_1 + 2x_2 \le 2$$
 (1)

$$(1)$$
 u_1

$$x_1 - 2x_2 \le 3$$
 (2)

$$(2)$$
 u_2

Optimal Solution:

$$2x_1 + 3x_2 \le 5 \tag{3}$$

$$(3)$$
 u_3

$$x_1 = 4/5$$
, $x_2 = 3/5$ and $Z = 5$

$$x_1 + x_2 \le 2$$

$$(4)$$
 u_4

$$3x_1 + x_2 \le 3$$

$$(5)$$
 u_5

$$x_1, x_2 \ge 0$$

For which constraints, slack $> 0 => u_2$, u_3 , $u_4 > 0$. From CST, primal variable y's corresponding to these constraints = $0 \Rightarrow y_2 = y_3 = y_4 = 0$

Also, from CST, since $x_1, x_2 > 0 \Rightarrow$ primal constraint should be satisfied as equality, i.e. $v_1 = v_2 = 0$

Now, [P] reduces to
$$y_1 + 3y_5 = 4$$
 and $2y_1 + y_5 = 3 \implies y_1 = 1$, $y_5 = 1$ and $W = 5$

Dual Simplex Method

• Primal Problem:

Maximize
$$Z = \mathbf{cx}$$

Subject to $\mathbf{Ax} \le \mathbf{b}$
 $\mathbf{x} > 0$

- Basis **B** is primal feasible if and only if $\mathbf{x_B} = \mathbf{B^{-1}b} \ge 0$
- Suppose this basis **B** is also feasible for the dual problem (called dual feasible), then

$$\mathbf{y} = \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \ge 0$$
and $\mathbf{y} \mathbf{A} \ge \mathbf{c}$

$$\Rightarrow \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{A} - \mathbf{c} \ge 0$$

$$\Rightarrow z_{i} - c_{i} \ge 0, \forall j$$

which are optimality conditions for the primal problem

- Thus, if a Basis **B** is dual feasible, then it is also primal optimal
- Since, this is primal optimal, using SDT ($\mathbf{cx} = \mathbf{yb}$ as $\mathbf{x_B} = \mathbf{B^{-1}b}$ and $\mathbf{y} = \mathbf{c_B}\mathbf{B^{-1}}$) \Rightarrow it is also dual optimal
- Thus, the main crux in the LP is to find the basis **B** which is both primal and dual feasible → Optimality

• (Primal) simplex method: Moves from one primal feasible basis to another till it achieves dual feasibility, i.e.

$$z_i - c_i \ge 0$$
 \longrightarrow optimality

- **Dual simplex method:** Starts with a dual feasible Basis and move towards primal feasibility
- Difference from primal simplex
 - Entering variable / leaving rule
 - Optimality

Algorithm: Dual Simplex

- 1) The problem should maximization type with \leq constraints
- 2) Updated objective function coefficients are $\geq 0 \Rightarrow$ Dual feasibility
- 3) At least one RHS is negative \Rightarrow Primal infeasibility
- 4) Leaving variable: The basic variable with most (-ve) RHS
- 5) Entering variable: Maximum ratio rule, that x_j for which the ratio $\left\{\frac{z_j-c_j}{a_{jk}}: a_{jk} < 0\right\}$ is maximum, where x_k is leaving variable
- 6) Perform elementary row operations as usual

Example: Dual simplex

mar 7+341+242=0

• Min
$$Z = 3x_1 + 2x_2$$

Subject to $3x_1 + x_2 \ge 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

• Convert into maximization type with all the constraints \leq type

Max
$$Z' = -Z = -3x_1 - 2x_2$$

Subject to
 $-3x_1 - x_2 \le -3$
 $-4x_1 - 3x_2 \le -6$
 $x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

Augmented form

Max
$$Z' = -Z = -3x_1 - 2x_2$$

Subject to
 $-3x_1 - x_2 + x_3 = -3$
 $-4x_1 - 3x_2 + x_4 = -6$
 $x_1 + x_2 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Solving using Dual simplex

	Basis	x ₁	X ₂	X ₃	X ₄	X5	RHS
Iteration 0	х ₃	-3	-1	1	0	0	-3
	x_4	-4	-3	0	1	0	-6
	X ₅	1	1	0	0	1	3
	Z′	3	2	0	0	0	0
Iteration 1	Ratio	-3/4	-2/3	-	-	-	
	X ₃	-5/3	0	1	-1/3	0	-1
	$\mathbf{x_2}$	4/3	1	0	-1/3	0	2
	X5	-1/3	0	0	1/3	1	1
	Z'	1/3	0	0	2/3	0	-4
Iteration 2	Ratio	-1/5	-	-	-2		
	x ₁	1	0	-3/5	1/5	0	3/5
	$\mathbf{x_2}$	0	1	4/5	-3/5	0	6/5
	X 5	0	0	-1/5	2/5	1	6/5
	Z′	0	0	1/5	3/5	0	-21/5

Dual feasible and optimal: $x_1 = \frac{3}{5}$, $x_2 = \frac{6}{5}$, $Z = -Z' = \frac{21}{5}$

Graphical Interpretation

