Lesson 9

Chapter 5 Eigenvectors and Eigenvalues

- ▶ Eigenvectors and Eigenvalues
- ► The Characteristic Equation
- ▶ Diagonalization

- ▶ Complex Eigenvalues
- ► Applications to Differential Equations

Definition:

An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A\mathbf{x} = \lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ .

Eigenspaces

- The set of solutions of $(A \lambda I)\mathbf{x} = \mathbf{0}$ is the null space of $A \lambda I$
- ightharpoonup This is also called the eigenspace of A corresponding to λ
- ightharpoonup There is an eigenspace for each eigenvalue λ
- An eigenspace can be multidimensional

Theorem 5.5, The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors of A.

5.5 Complex Eigenvalues

$$\lambda = a + j \cdot b$$

Exactly n (complex) eigenvalues (roots) λ $x \in \mathbb{C}^n$ the corresponding (complex) eigenvector

Complex numbers:

$$\lambda \in \mathbb{C}: \ \lambda = a + j \cdot b = r \cdot \cos(\theta) + j \cdot r \cdot \sin(\theta) = r \angle \theta$$

$$Re(\lambda) = a = r \cdot \cos(\theta) \quad Im(\lambda) = b = r \cdot \sin(\theta)$$

Modulus:
$$|\lambda| = r = \sqrt{a^2 + b^2}$$

Argument:
$$Arg(\lambda) = \theta = arctg\left(\frac{b}{a}\right) (\pm \pi)$$

Complex vectors:

$$\mathbf{v} \in \mathbb{C}^2$$
: $\mathbf{v} = \begin{bmatrix} a_1 + j \cdot b_1 \\ a_2 + j \cdot b_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + j \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = Re(\mathbf{v}) + j \cdot Im(\mathbf{v})$
 $\in \mathbb{R}^2$

Discuss with your neighbour

The general expression for a complex vector is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad x_i \in \mathbb{C}$$

For some particular n, does the set of all n-dimensional complex vectors

$$\{\mathbf{x}|\mathbf{x}\in\mathbb{C}^n\}$$

form a vector space?

$$A = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{bmatrix}$$

$$Rotate \ angle \ \varphi$$

$$\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \cdot \cos(\theta) \\ r \cdot \sin(\theta) \end{bmatrix} \qquad b \uparrow^{\prime} \uparrow^{A\mathbf{u}} \downarrow^{\prime} \downarrow$$

$$A\mathbf{u} = \begin{bmatrix} r \cdot \cos(\theta)\cos(\varphi) - r \cdot \sin(\theta)\sin(\varphi) \\ r \cdot \cos(\theta)\sin(\varphi) + r \cdot \sin(\theta)\cos(\varphi) \end{bmatrix} = \begin{bmatrix} r \cdot \cos(\theta + \varphi) \\ r \cdot \sin(\theta + \varphi) \end{bmatrix} - \underbrace{u \text{ rotated angle } \varphi}_{\text{angle } \varphi}$$

$$C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = r \begin{bmatrix} a/r & -b/r \\ b/r & a/r \end{bmatrix} \quad \begin{array}{l} a, b \in \mathbb{R}; \quad (a, b) \neq (0, 0) \\ r = \sqrt{a^2 + b^2} \end{array}$$

$$= r \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{bmatrix}$$

$$\Rightarrow Scaling r \quad \Rightarrow Rotate \ angle \ \varphi$$

$$\underline{\operatorname{Ex} 2} \qquad C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{bmatrix} \quad \begin{array}{l} a, b \in \mathbb{R}; \quad b \neq 0 \\ r = \sqrt{a^2 + b^2}; \quad \varphi = \arctan\left(\frac{b}{a}\right) \end{array}$$

Eigenvalues:
$$det(C - \lambda I) = \begin{vmatrix} a - \lambda & -b \\ b & a - \lambda \end{vmatrix} = (a - \lambda)^2 + b^2 = \lambda^2 - 2a\lambda + a^2 + b^2 = 0$$

$$\Rightarrow \lambda = \frac{2a \pm \sqrt{4a^2 - 4(a^2 + b^2)}}{2} = a \pm jb \in \mathbb{C}$$

Eigenvectors: $(C - \lambda I)x = 0$

$$\lambda_1 = a + jb \colon \ C - \lambda_1 I = \begin{bmatrix} -jb & -b \\ b & -jb \end{bmatrix} \sim \begin{bmatrix} -jb & -b \\ 0 & 0 \end{bmatrix} \ \rightarrow -jbx_1 - bx_2 = 0 \ \Rightarrow \ \boldsymbol{x} = \begin{bmatrix} x_1 \\ -jx_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -j \end{bmatrix} = x_1 \boldsymbol{v}_1;$$

$$\rightarrow v_1 = \begin{bmatrix} 1 \\ -j \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - j \begin{bmatrix} 0 \\ 1 \end{bmatrix} \epsilon \mathbb{C}^2$$

$$\lambda_{2} = a - jb \colon C - \lambda_{2}I = \begin{bmatrix} jb & -b \\ b & jb \end{bmatrix} \sim \begin{bmatrix} jb & -b \\ 0 & 0 \end{bmatrix} \rightarrow jbx_{1} - bx_{2} = 0 \Rightarrow x = \begin{bmatrix} x_{1} \\ jx_{1} \end{bmatrix} = x_{1}\begin{bmatrix} 1 \\ j \end{bmatrix} = x_{1}v_{2};$$

$$= \lambda_{1}^{*}$$

$$\rightarrow v_{2} = \begin{bmatrix} 1 \\ j \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + j\begin{bmatrix} 0 \\ 1 \end{bmatrix} = v_{1}^{*} \in \mathbb{C}^{2}$$

Ex 3
$$A = \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix}$$

Eigenvalues:
$$det(A - \lambda I) = \begin{vmatrix} 0.5 - \lambda & -0.6 \\ 0.75 & 1.1 - \lambda \end{vmatrix} = (0.5 - \lambda)(1.1 - \lambda) + 0.75 \cdot 0.6 = \lambda^2 - 1.6\lambda + 1 = 0$$

$$\Rightarrow \lambda = \frac{1.6 \pm \sqrt{1.6^2 - 4}}{2} = 0.8 \pm j0.6 \epsilon \mathbb{C} = \begin{cases} \lambda_1 \\ \lambda_2 = \lambda_1^* \end{cases}$$

Eigenvectors: $(A - \lambda I)x = \mathbf{0}$

$$\lambda_{1} = 0.8 + j0.6: \ A - \lambda_{1}I = \begin{bmatrix} -0.3 - j0.6 & -0.6 \\ 0.75 & 0.3 - j0.6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0.4 - j0.8 \\ 0 & 0 \end{bmatrix} \rightarrow x_{1} + (0.4 - j0.8)x_{2} = 0$$

$$\Rightarrow x = x_{1} \begin{bmatrix} -2 + 4j \\ 5 \end{bmatrix} = x_{1}v_{1} \rightarrow v_{1} = \begin{bmatrix} -2 + 4j \\ 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} + j \begin{bmatrix} 4 \\ 0 \end{bmatrix} \in \mathbb{C}^{2}$$

$$\lambda_{2} = 0.8 - j0.6: \ A - \lambda_{2}I = \begin{bmatrix} -0.3 + j0.6 & -0.6 \\ 0.75 & 0.3 + j0.6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0.4 + j0.8 \\ 0 & 0 \end{bmatrix} \rightarrow x_{1} + (0.4 + j0.8)x_{2} = 0$$

$$\Rightarrow x = x_{1} \begin{bmatrix} -2 - 4j \\ 5 \end{bmatrix} = x_{1}v_{2} \rightarrow v_{2} = v_{1}^{*} = \begin{bmatrix} -2 - 4j \\ 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} + j \begin{bmatrix} -4 \\ 0 \end{bmatrix} \epsilon \mathbb{C}^{2}$$

$$A = \{a_{ij}\}; \ a_{ij} \in \mathbb{R}:$$

$$Ax = \lambda x \Longrightarrow \overline{Ax} = \overline{\lambda x} \Longrightarrow A\overline{x} = \overline{\lambda}\overline{x} \Longrightarrow \begin{cases} \overline{\lambda} = \lambda^* \ eigenvalue \\ \overline{x} = x^* \ eigenvector \end{cases}$$

For a <u>real</u> matrix:

> Complex eigenvalues and –vectors comes in pairs: $\begin{cases} \lambda = a \pm j \cdot b \\ \boldsymbol{v} = Re(\boldsymbol{v}) \pm j \cdot Im(\boldsymbol{v}) \end{cases}$

$$\underline{\mathsf{Ex}\; \mathsf{4}} \qquad A = \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix}$$

$$\underbrace{\mathsf{Ex}\, 4} \quad A = \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix} \qquad \begin{aligned} \lambda_1 &= 0.8 + j \cdot 0.6 \\ \lambda_2 &= 0.8 - j \cdot 0.6 \end{aligned} \qquad \begin{aligned} \boldsymbol{v}_1 &= \begin{bmatrix} -2 + 4j \\ 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} + j \begin{bmatrix} 4 \\ 0 \end{bmatrix} \\ \lambda_2 &= \begin{bmatrix} -2 - 4j \\ 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} + j \begin{bmatrix} -4 \\ 0 \end{bmatrix} \end{aligned}$$

$$P = [Re(\mathbf{v}_1) \ Im(\mathbf{v}_1)] = \begin{bmatrix} -2 & 4 \\ 5 & 0 \end{bmatrix} \implies P^{-1} = \frac{1}{-20} \begin{bmatrix} 0 & -4 \\ -5 & -2 \end{bmatrix}$$

$$C = P^{-1}AP = \frac{1}{-20} \begin{bmatrix} 0 & -4 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 5 & 0 \end{bmatrix}$$

$$C \text{ og A similary} \qquad = \frac{1}{-20} \begin{bmatrix} 0 & -4 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} -4 & 2 \\ 4 & 3 \end{bmatrix}$$

$$= \frac{1}{-20} \begin{bmatrix} -16 & -12 \\ 12 & -16 \end{bmatrix}$$

$$= \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix} = \begin{bmatrix} Re(\lambda_1) & Im(\lambda_1) \\ -Im(\lambda_1) & Re(\lambda_1) \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

Ex 4 fortsat

$$A = \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix}$$

$$\lambda_1 = 0.8 + j \cdot 0.6$$

$$\boldsymbol{v}_1 = \begin{bmatrix} -2 + 4j \\ 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} + j \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$

$$\lambda_2 = 0.8 - j \cdot 0.6$$

$$\lambda_2 = 0.8 - j \cdot 0.6$$
 $v_2 = \begin{bmatrix} -2 - 4j \\ 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} + j \begin{bmatrix} -4 \\ 0 \end{bmatrix}$

$$P = [Re(\boldsymbol{v}_1) \ Im(\boldsymbol{v}_1)]$$

$$P = \begin{bmatrix} Re(\boldsymbol{v}_1) & Im(\boldsymbol{v}_1) \end{bmatrix} \qquad C = P^{-1}AP = \begin{bmatrix} Re(\lambda_1) & Im(\lambda_1) \\ -Im(\lambda_1) & Re(\lambda_1) \end{bmatrix}$$

$$\Rightarrow A = PCP^{-1} \qquad \begin{array}{c} \text{Change of } \\ \text{variable} \end{array} \qquad P^{-1} \qquad \begin{array}{c} P \\ \text{Change of } \\ \text{variable} \end{array} \qquad \begin{array}{c} C \\ \text{Rotation and scaling} \end{array} \qquad \begin{array}{c} C \\ \text{Cu} \\ \end{array}$$

$$x_0 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
; $x_1 = Ax_0$; $x_2 = Ax_1$; ...; $x_{n+1} = Ax_n$; ...

Theorem 5.9

Let A be a real 2 x 2 matrix with a complex eigenvalue $\lambda = a - j \cdot b$ ($b \neq 0$) and an associated eigenvector $\mathbf{v} = Re(\mathbf{v}) + j \cdot Im(\mathbf{v})$ in \mathbb{C}^2 . Then:

OBS!

$$A = PCP^{-1}$$
 where $P = [Re(\mathbf{v}) \ Im(\mathbf{v})]$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

Note, that eventhough the theorem only speaks about one eigenvalue and one eigenvector we actually know two eigenvalues and two eigenvectors as $\lambda_2=\lambda_1^*$ and $m v_2=m v_1^*$

5.7 Applications to Differential Equations

$$x'(t) = Ax(t);$$

Dynamic systems Time developing

Ex 5.7.1

KCL

Two coupled linear 1. order diffential equations

$$\Rightarrow \begin{bmatrix} \frac{dv_1}{dt} \\ \frac{dv_2}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) & \frac{1}{R_2 C_1} \\ \frac{1}{R_2 C_2} & -\frac{1}{R_2 C_2} \end{bmatrix} \cdot \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix}$$

$$\Rightarrow x'(t) = Ax(t)$$

System of coupled linear 1. order diffential equations

System of coupled linear 1. order diffential equations (dynamic system):

Linear:

 $m{u}$ and $m{v}$ solutions ($m{u}' = Am{u}$ and $m{v}' = Am{v}$)

$$\Rightarrow (c_1 \mathbf{u} + c_2 \mathbf{v})' = c_1 \mathbf{u}' + c_2 \mathbf{v}' = c_1 A \mathbf{u} + c_2 A \mathbf{v} = A(c_1 \mathbf{u} + c_2 \mathbf{v}) \Rightarrow (c_1 \mathbf{u} + c_2 \mathbf{v}) \text{ solution}$$

Fundamental set of solutions:

- n linearly independent functions \rightarrow Basis set of solutions
- Any solution is a unique linear combination of the fundamental set → Infinitely many
- The solution set is an n-dimensional vector space of functions

Initial value problem: $x(0) = x_0 \rightarrow \text{Unique function (solution) } x(t)$

For the system of n coupled 1. order differential equations described by

$$\mathbf{x}' = A\mathbf{x},$$

there exists a fundamental set of n linearly independent solutions. These solutions form a basis for the set of all solutions to the differential equations. An arbitrary solution of $\mathbf{x}' = A\mathbf{x}$ can be written as a linear combination of the fundamental solutions.

Decoupling a dynamic system: x'(t) = Ax(t)

Eigenvalues (λ_i) /-vectors ($m{v}_i$) /-functions for A: $m{v}_1 e^{\lambda_1 t}$, \cdots , $m{v}_n e^{\lambda_n t}$

Change-of-variable matrix: $P = [v_1 \cdots v_n]$

Diagonal matrix:
$$D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \cdots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$
; $A = PDP^{-1}$

Coordinate vector of $\mathbf{x}(t)$ relative to the eigenvector basis

Change-of-variable: $y(t) = P^{-1}x(t) \iff x(t) = Py(t)$

Differential equations:
$$\mathbf{x}' = A\mathbf{x} \Rightarrow P\mathbf{y}' = \frac{dP\mathbf{y}}{dt} = AP\mathbf{y} = PDP^{-1}P\mathbf{y} = PD\mathbf{y}$$

$$\Rightarrow P^{-1}P\mathbf{y}' = P^{-1}PD\mathbf{y} \Rightarrow \mathbf{y}' = D\mathbf{y}$$

Decoupling a dynamic system: x'(t) = Ax(t)

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

Simple (uncoupled) / differential equations

Decoupled system

Decoupled system
$$y' = Dy \Rightarrow \begin{bmatrix} y_1' \\ \vdots \\ y_n' \end{bmatrix} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \cdots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \Rightarrow \begin{cases} y_1' = \lambda_1 y_1 \\ \vdots \\ y_n' = \lambda_n y_n \end{cases} \Rightarrow \begin{cases} y_1(t) = c_1 e^{\lambda_1 t} \\ \vdots \\ y_n(t) = c_n e^{\lambda_n t} \end{cases} \Rightarrow y(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

Initial value:
$$\mathbf{x}(0) = \mathbf{x}_0 \Rightarrow \mathbf{y}(0) = P^{-1}\mathbf{x}(0) = P^{-1}\mathbf{x}_0 = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Solution in eigenfunction basis

eigenvalue

Solution in the original system:

$$\mathbf{x}(t) = P\mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix} = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t} = \sum_{i=1}^n c_i \mathbf{v}_i e^{\lambda_i t}$$
eigenvector

$$i_1$$
 R_1
 i_2
 C_1
 R_2
 i_3
 C_2
 v_1

$$P = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$$

$$R_1 = 1\Omega$$
 $R_2 = 2\Omega$ $C_1 = 1F$ $C_2 = 0.5F$ $v_1(0) = 5V$ $v_2(0) = 4V$

$$2\Omega$$

$$_{2} = 0.5F$$

$$v_1(0) = 5V$$

$$v_2(0) = 4V$$

$$\begin{bmatrix} \frac{dv_1}{dt} \\ \frac{dv_2}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) & \frac{1}{R_2 C_1} \\ \frac{1}{R_2 C_2} & -\frac{1}{R_2 C_2} \end{bmatrix} \cdot \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} & \frac{1}{2} \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix}$$

$$\det(A - \lambda I) = \begin{vmatrix} -\frac{3}{2} - \lambda & \frac{1}{2} \\ 1 & -1 - \lambda \end{vmatrix} = \lambda^2 + \frac{5}{2}\lambda + 1 = 0 \implies \lambda = \begin{cases} -\frac{1}{2} \\ -2 \end{cases}$$

Eigenvectors: $\lambda_1 = -\frac{1}{2} \implies \boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\lambda_2 = -2 \implies \boldsymbol{u}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$P = \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & -2 \end{bmatrix} \qquad \mathbf{y}(t) = P^{-1}\mathbf{v}(t) = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{3}v_1(t) + \frac{1}{3}v_2(t) \\ -\frac{2}{3}v_1(t) + \frac{1}{3}v_2(t) \end{bmatrix}$$

$$\mathbf{y}' = \begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & -2 \end{bmatrix} \mathbf{y} \implies \begin{cases} y_1' = -\frac{1}{2}y_1 \\ y_2' = -2y_2 \end{cases} \implies \mathbf{y}(t) = \begin{bmatrix} c_1 e^{-\frac{1}{2}t} \\ c_2 e^{-2t} \end{bmatrix} = \begin{bmatrix} 3e^{-\frac{1}{2}t} \\ -2e^{-2t} \end{bmatrix} \qquad \begin{bmatrix} c_1 \\ c_1 \end{bmatrix} = \mathbf{y}(0) = P^{-1}\mathbf{v}(0) = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$\Rightarrow \mathbf{v}(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = P\mathbf{y}(t) = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3e^{-1/2t} \\ -2e^{-2t} \end{bmatrix} = \begin{bmatrix} 3e^{-1/2t} + 2e^{-2t} \\ 6e^{-1/2t} - 2e^{-2t} \end{bmatrix}$$

$$i_1$$
 R_1
 i_2
 C_1
 C_1
 R_2
 i_3
 C_2

$$R_1 = 1\Omega$$
 $R_2 = 2\Omega$ $C_1 = 1F$ $C_2 = 0.5F$ $v_1(0) = 5V$ $v_2(0) = 4V$

$$C_1 = 1F$$

$$C_2 = 0.5F$$

$$v_1(0) = 5V$$

$$v_2(0) = 4V$$

$$\begin{bmatrix} \frac{dv_1}{dt} \\ \frac{dv_2}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) & \frac{1}{R_2 C_1} \\ \frac{1}{R_2 C_2} & -\frac{1}{R_2 C_2} \end{bmatrix} \cdot \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix}$$

$$\det(A - \lambda I) = \begin{vmatrix} -\frac{3}{2} - \lambda & \frac{1}{2} \\ 1 & -1 - \lambda \end{vmatrix} = \lambda^2 + \frac{5}{2}\lambda + 1 = 0 \implies \lambda = \begin{cases} -\frac{1}{2} \\ -2 \end{cases}$$

Eigenvectors:
$$\lambda_1 = -\frac{1}{2} \implies \boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\lambda_2 = -2 \implies \boldsymbol{u}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Eigenfunctions:
$$\boldsymbol{u}_1 e^{\lambda_1 t} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-\frac{1}{2}t}$$
 and $\boldsymbol{u}_2 e^{\lambda_2 t} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$

$$v(t) = \sum_{i=1}^{n} c_{i} \mathbf{u}_{i} e^{\lambda_{i} t} = c_{1} \mathbf{u}_{1} e^{\lambda_{1} t} + c_{2} \mathbf{u}_{2} e^{\lambda_{2} t} = c_{1} \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-\frac{1}{2} t} + c_{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} c_{1} e^{-\frac{1}{2} t} - c_{2} e^{-2t} \\ 2c_{1} e^{-\frac{1}{2} t} + c_{2} e^{-2t} \end{bmatrix}$$

$$\mathbf{v}(0) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \Rightarrow \begin{cases} c_1 = 3 \\ c_2 = -2 \end{cases} \Rightarrow \mathbf{v}(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-\frac{1}{2}t} - 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 3e^{-\frac{1}{2}t} + 2e^{-2t} \\ 6e^{-\frac{1}{2}t} - 2e^{-2t} \end{bmatrix}$$

$$v(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-\frac{1}{2}t} - 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 3e^{-\frac{1}{2}t} + 2e^{-2t} \\ 6e^{-\frac{1}{2}t} - 2e^{-2t} \end{bmatrix}$$

$$u_1$$

Complex eigenvalues: x'(t) = Ax(t);

 $\lambda = a + jb$ eigenvalue for A; v the corresponding (complex) eigenvector

$$x(t) = ve^{\lambda t} = (Re(v) + j \cdot Im(v)) \cdot e^{(a+jb)t} = (Re(v) + j \cdot Im(v)) \cdot e^{at}e^{jbt}$$

$$= (Re(v) + j \cdot Im(v)) \cdot e^{at}(\cos(bt) + j \cdot \sin(bt))$$

$$= e^{at}(Re(v) \cdot \cos(bt) - Im(v) \cdot \sin(bt)) + j \cdot e^{at}(Re(v) \cdot \sin(bt) + Im(v) \cdot \cos(bt))$$

$$= Re(x(t)) + j \cdot Im(x(t))$$

Real solutions to x'(t) = Ax(t):

$$y_1(t) = e^{at}(Re(\mathbf{v}) \cdot \cos(bt) - Im(\mathbf{v}) \cdot \sin(bt))$$

$$y_2(t) = e^{at}(Re(\mathbf{v}) \cdot \sin(bt) + Im(\mathbf{v}) \cdot \cos(bt))$$

$$\Rightarrow \mathbf{y}(t) = c_1 \mathbf{y}_1(t) + c_2 \mathbf{y}_2(t)$$

$$R_1 = 5\Omega$$

$$\Omega 8.0$$

$$= 0.1F$$
 $L =$

$$i_L(0) = 3A$$

$$R_1 = 5\Omega$$
 $R_2 = 0.8\Omega$ $C_1 = 0.1F$ $L = 0.4H$ $i_L(0) = 3A$ $v_C(0) = 3V$

$$R_1$$
 C
 R_2
 i_L
 i_L

$$\det(A - \lambda I) = \begin{vmatrix} -2 - \lambda & -2.5 \\ 10 & -2 - \lambda \end{vmatrix} = \lambda^2 + 4\lambda + 29 = 0 \implies \lambda = -2 \pm 5$$

Eigenvector:
$$\boldsymbol{v} = \begin{bmatrix} j \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + j \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{aligned} \mathbf{y}_{1}(t) &= e^{-2t} \left(\begin{bmatrix} 0 \\ 2 \end{bmatrix} \cos(5t) - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \sin(5t) \right) \\ \mathbf{y}_{2}(t) &= e^{at} \left(\begin{bmatrix} 0 \\ 2 \end{bmatrix} \sin(5t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cos(5t) \right) \end{aligned} \Rightarrow \begin{bmatrix} i_{L} \\ v_{C} \end{bmatrix} = c_{1} \mathbf{y}_{1}(t) + c_{2} \mathbf{y}_{2}(t) = c_{1} e^{-2t} \begin{bmatrix} -\sin(5t) \\ 2\cos(5t) \end{bmatrix} + c_{2} e^{-2t} \begin{bmatrix} \cos(5t) \\ 2\sin(5t) \end{bmatrix}$$

$$\begin{bmatrix} i_L(0) \\ v_C(0) \end{bmatrix} = c_1 \begin{bmatrix} 0 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 3 \end{bmatrix} \implies \begin{bmatrix} i_L(t) \\ v_C(t) \end{bmatrix} = \begin{bmatrix} -\frac{3}{2}\sin(5t) + 3\cos(5t) \\ 3\cos(5t) + 6\sin(5t) \end{bmatrix} e^{-2t}$$

Discuss with your neighbour:

Consider figure 4 and figure 5 in example 3 on page 334

Why does it make physical sense that the solutions 'spirals' inwards to zero?

Todays words and concepts

Dynamic system

Sink

Complex vector

Complex eigenvalue

Rotation

Attractor Decoupled system

Saddle point

Scaling

Trajectory

Repeller

Source

Coupled differential equations