# from the discrete to the continuous

Dr. David Banks
Duke University





0, 1, 2... 10

## binomial probability

the chance of getting k heads in n tosses when the probability of heads is p

$$P[X = k] = \binom{n}{k} p^k (1-p)^{n-k}$$
probability mass function

## probability mass function



#### normal distribution

- = Gaussian distribution
- = bell-shaped curve



continuous random variable

#### random variables

discrete random variables can only

take values at separated points



#### continuous random variables can

take any value within an interval



condinante random variable probabilitypmass function

condinate random variable probabilitypmass function

condinante random variable probabilitypmass function

P [height = (5'11'':6'1'')]

continuous random variable

probability density function



#### continuous random variable





the pdf for a random variable X from a normal distribution with mean  $\mu$  and standard deviation  $\sigma$ 

$$f(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} e^{\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right]}$$

### probability mass function

assigns the probability that a random variable takes a specific value for the discrete set of possible values, the sum of those probabilities over all possible values must equal one

## probability density function

any function of x that is non-negative and which has area one underneath its curve

## probability density function



## important distributions

- continuous
  - normal
  - uniform
  - beta
  - gamma
- discrete
  - binomial
  - Poisson

#### summary

- 1. continuous random variables can take any value in a range
- 2. the probability that a continuous random variable takes a specific value is **zero**
- 3. its probabilities are determined by a **pdf**, which is non-negative and the area under the curve is equal to one
- 4. the probability that it lies between c and d is the area under the pdf between c and d