EIE3105: Wave Generating and Capturing (Chapter 16 and 17)

Dr. Lawrence Cheung Semester 1, 2021/22

Topics

- Wave characteristics
- Timer 0 review
- Wave generating using Timer 0
- Wave generating using Timer 2
- Wave generating using Timer 1
- Capturing

Wave characteristics

- Period
 - Frequency

$$f = \frac{1}{T}$$

Duty cycle

duty cycle =
$$\frac{t_1}{T} \times 100 = \frac{t_1}{t_0 + t_1} \times 100$$

Amplitude

Waveform generators in ATmega32

4

Timer 0 Review

CS02	2 CS01	CS00	Comment
0	0	0	No clock source (Timer/Counter stopped)
0	0	1	clk (No Prescaling)
0	1	0	clk / 8
0	1	1	clk / 64
1	0	0	clk / 256
1	0	1	clk / 1024
1	1	0	External clock source on T0 pin. Clock on falling edge
1	1	1	External clock source on T0 pin. Clock on rising edge

WGM00	WGM01	Comment
0	0	Normal
0	1	CTC (Clear Timer on Compare Match)
1	0	PWM, phase correct
1	1	Fast PWM

Normal mode

TOV0: 1

CTC mode

Waveform Generator

Waveform Generator

Compare Output Mode (COM)

WGM00	WGM01	Mode
0	0	Normal
0	1	CTC (Clear Timer on Compare Match)
1	0	PWM, phase correct
1	1	Fast PWM

COM01	COM00	Description		
0	0	Normal port operation, OC0 disconnected.		
0	1	Toggle OC0 on compare match		
1	0	Clear OC0 on compare match		
1	1	Set OC0 on compare match		

Waveform Generator

$$F_{OC0} = \frac{f_{clk}}{2N(OCR0+1)} \longrightarrow 500KHz = \frac{8MHz}{2N(OCR0+1)} \longrightarrow N(OCR0+1) = \frac{8MHz}{1MHz}$$

N(OCR0+1) = 8
$$\longrightarrow$$
 $\begin{cases} N = 1 \text{ and OCR0} = 7 \\ N = 8 \text{ and OCR0} = 0 \end{cases}$

Assuming XTAL = 8 MHz, make a pulse with duty cycle = 50% and frequency = 500KHz

LDI R20,7 OUT OCR0,R20 LDI R20,0x19 OUT TCCR0,R20	OCR0 = 7; TCCR0 = 0x19; //prescaler = 1
LDI R20,0 OUT OCR0,R20 LDI R20,0x1A OUT TCCR0,R20	<pre>OCR0 = 0; TCCR0 = 0x1A; //prescaler = 8</pre>

Wave generating in Timer 2

Like Timer0

The difference between Timer 0 and Timer 2

Timer 0

FOC0

WGM00

COM01

COM00

WGM01

• Timer 2

FOC2

TCCR0

COM21

CS22	CS21	CS20	Comment
0	0	0	Timer/Counter stopped
0	0	1	clk (No Prescaling)
0	1	0	clk / 8
0	1	1	clk / 32
1	0	0	clk / 64
1	0	1	clk / 128
1	1	0	clk / 256
1	1	1	clk / 1024

COM20 WGM21

CS22

CS21

TCCR2

Timer 1

Timer 1 has two waveform generators.

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation	ТОР	Update of OCR1x	TOV1 Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	стс	OCR1A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	TOP	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	TOP	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	TOP	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICR1	воттом	воттом
9	1	0	0	1	PWM, Phase and Frequency Correct	OCR1A	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICR1	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCR1A	TOP	воттом
12	1	1	0	0	стс	ICR1	Immediate	MAX
13	1	1	0	1	Reserved	_	-	-
14	1	1	1	0	Fast PWM	ICR1	TOP	TOP
15	1	1	1	1	Fast PWM	OCR1A	TOP	TOP

In non PWM modes

COM1A1:COM1A0 D7 D6 Compare Output Mode for Channel A

COM1A1	COM1A0	Description
0	0	Normal port operation, OC1A disconnected
0	1	Toggle OC1A on compare match
1	0	Clear OC1A on compare match
1	1	Set OC1A on compare match

COM1B1:COM1B0 D5 D4 Compare Output Mode for Channel B

COM1B1	COM1B0	Description
0	0	Normal port operation, OC1B disconnected
0	1	Toggle OC1B on compare match
1	0	Clear OC1B on compare match
1	1	Set OC1B on compare match

воттом	The counter reaches the BOTTOM when it becomes zero (0x00).
MAX	The counter reaches its MAXimum when it becomes 0xFF (decimal 255).
TOP	The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR2A Register. The assignment is dependent on the mode of operation.

Table 1 Waveform Generation Mode Bit Description

Mode	WGM2	WGM1	WGM0	Timer/Counter Mode of Operation	ТОР	Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	TOP	воттом
2	0	1	0	стс	OCRA	Immediate	MAX
3	0	1	-1	Fast PWM	0xFF	воттом	MAX
4	1	0	0	Reserved		Ē.	1 2.
5	1	0	1	PWM, Phase Correct	OCRA	ТОР	воттом
6	1	1	0	Reserved	-	-5	<u> </u>
7	1	1	1	Fast PWM	OCRA	воттом	TOP

Notes:

- 1. MAX = 0xFF
- 2. BOTTOM = 0x00
- In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero.
- Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock cycle.

Timer Modes 3 and 1

(a) Fast PWM

(b) Phase-Correct PWM focnxPCPWM =

 $f_{OC2B} = f_{CLK} / 256 = 16 \text{ MHz} / 256 = 62.5 \text{ KHz} \simeq 64 \text{ KHz}$

Timer Modes 7 and 5

OCRxA = Frequency of oscillator / (Frequency of generated wave \times N) – 1 (N = prescaler)

Duty cycle = $(OCRxB + 1) / (OCRxA + 1) \times 100\%$.

```
#include "avr/io.h"
int main(void)
{
       TCCR0A = (1 << COM0A1) | (0 << COM0A0) | //00
               (1 << COMOB1) | (0 << COMOB0) |
               (1 << WGM01) | (1 << WGM00);
       TCCR0B = (1 \ll WGM02)
               (0 << CS02) | (0 << CS01) | (1 << CS00);
       OCROA = 249; //64kHz
       OCROB = 49; //20% duty cycle
       DDRD = 0b00100000; // PD5 (OC0B)
       while (1);
```

Capturing

- Usages
 - Measuring duty cycle
 - Measuring period

Capturing

Comparator

ICNC1: Input Capture Noise Canceller

0:disabled

1:Enabled (captures after 4 successive equal valued samples)

ICSES1: Input Capture Edge Select

0: Falling edge1: Rising edge

ACIC: Analog Comparator Input Capture Enable

0: ICP1 provides the capture signal

1: analog comparator is connected to the capturer

Measuring duty cycle and period

Capturing in ATmega328p

```
#include "avr/io.h"
int main()
       //measure the pulse width of a pulse
       unsigned char t1;
       DDRD = 0xFF; //PORTD as output
       PORTB = 0xFF;
       TCCR1A = 0; //Timer Mode = Normal
       TCCR1B = (1 << ICES1) |
                         (1 << CS12) \mid (0 << CS11) \mid (0 << CS10);
       //rising edge, prescaler = 256, no noise canceller
       while ((TIFR1&(1<<ICF1)) == 0); //wait while ICF1 is clear
       t1 = ICR1L; //first edge value (Input Capture Register,
low byte)
       TIFR1 = (1 << ICF1); //clear ICF1
       TCCR1B = (0 << ICES1) | (1 << CS12) | (0 << CS11) | (0 << CS10);
       //falling edge
       while ((TIFR1&(1<<ICF1)) == 0); //wait while ICF1 is clear
       PORTD = ICR1L - t1; //pulse width = falling - rising
       TIFR1 = (1 << ICF1); //clear ICF1
       while (1);
```

Capturing in ATmega328p

```
#include "avr/io.h"
int main()
       //measure the period of a pulse
       unsigned char t1;
       DDRD = 0xFF; //PORTD as output
       PORTB = 0xFF;
       TCCR1A = 0; //Timer Mode = Normal
       TCCR1B = (1 << ICES1) |
                        (1 << CS12) \mid (0 << CS11) \mid (0 << CS10);
       //rising edge, prescaler = 256, no noise canceller
       while ((TIFR1&(1<<ICF1)) == 0); //wait while ICF1 is clear
       t1 = ICR1L; //first edge value (Input Capture Register,
low byte)
       TIFR1 = (1 << ICF1); //clear ICF1
       while ((TIFR1&(1<<ICF1)) == 0); //wait while ICF1 is clear
       PORTD = ICR1L - t1; //period = second edge - first edge
       TIFR1 = (1 << ICF1); //clear ICF1
       while (1);
```

Reference Readings

 Chapter 16 and 17 – The AVR Microcontroller and Embedded Systems: Using Assembly and C, M. A. Mazidi, S. Naimi, and S. Naimi, Pearson, 2014.

End