

Introduction to Data Science

Lecture 15 Optimization: Convex Set Zicheng Wang

Review: Interval Estimation

Interval Estimation

- A random variable: X with variance σ^2
- Data: X_1, X_2, \dots, X_n
- Target: estimate the mean (μ) of the random variable
- Point estimate: $\bar{X} = \frac{X_1 + \dots + X_n}{n}$
- What's the probability that μ lies in $T=[\bar{X}-\frac{b\sigma}{\sqrt{n}},\bar{X}+\frac{a\sigma}{\sqrt{n}}]$, where a,b>0 are constants?

Interval Estimation

• Compute
$$P(\bar{X} - \frac{b\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{a\sigma}{\sqrt{n}})$$

•
$$P\left(\bar{X} - \frac{b\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{a\sigma}{\sqrt{n}}\right) = P\left(-a \le \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \le b\right)$$

- By the Central Limit Theorem, $\frac{\sqrt{n}(X-\mu)}{\sigma} \sim N(0,1)$
- $P(-a \le \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \le b) = \Phi(b) \Phi(-a)$, where $\Phi(x)$ is the CDF of a standard normal distribution

Formally, we say $[\bar{X} - \frac{b\sigma}{\sqrt{n}}, \bar{X} + \frac{a\sigma}{\sqrt{n}}]$ is a $\Phi(b) - \Phi(-a)$

Confidence Interval

Optimization

Optimization

Objective Function Constraints Given: a function $f: A \to \mathbb{R}$ from some set A to the real numbers Sought: an element $\mathbf{x}_0 \in A$ such that $f(\mathbf{x}_0) \leq f(\mathbf{x})$ for all $\mathbf{x} \in A$ ("minimization") or such that $f(\mathbf{x}_0) \geq f(\mathbf{x})$ for all $\mathbf{x} \in A$ ("maximization").

Optimization problem in standard form

minimize subject to $f_0(x)$ subject to $f_i(x) \le 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$ mization variable Constraints

- **Decision Variables**
- \triangleright $x \in \mathbb{R}^n$ is the optimization variable
- ▶ $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m,$ are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

Motivating Example

- Suppose you want to start your own blind box business.
- Let D denote the one season (three months) random demand, with CDF $F(\cdot)$, and mean $\mu = E[D]$.
- At the beginning of each season, you place an order Q to Pop Mart, with a cost c for each blind box.
- Each blind box can be sold at a price of p > c.
- At the end of each season, unsold blind boxes are salvaged, and you get s < c for each salvaged box.

Motivating Example

- For simplicity, let's assume that D is a continuous random variable and you can also place a continuous order Q.
- You want to choose the optimal order quantity Q so as to maximize your expected profit.

How should you formulate the problem?

Problem Formulation

- First we observe that if the realized demand D > Q, then your profit is (p-c)Q. Otherwise, your profit is (p-c)D + (s-c)(Q-D).
- Let's define $(Q D)^+ = \max(Q D, 0)$.
- Given D, your profit is $p \cdot \min(Q, D) + s(Q D)^+ cQ$.

• The objective function (i.e., the expected profit) is then given by $f(Q) = pE[\min(Q, D)] + sE[(Q - D)^+] - cQ$

Problem Formulation

- For this problem, we have one inequality constraint: $Q \ge 0$.
- Hence, the optimization problem is as follows

maximize
$$pE[\min(Q,D)] + sE[(Q-D)^+] - cQ$$
 subject to $Q \ge 0$

In standard form, we have

minimize
$$-(pE[\min(Q,D)] + sE[(Q-D)^+] - cQ)$$
 subject to
$$-Q \le 0$$

Breakout Room Question

- Suppose you want to start your own blind box business.
- Let D denote the one season (three months) random demand, which follows a uniform distribution in [10,100].
- At the beginning of each season, you place an order Q to Pop Mart, with a cost 10 Yuan for each blind box.
- Each blind box can be sold at a price of 20 Yuan.
- At the end of each season, unsold blind boxes are salvaged, and you get 3
 Yuan for each salvaged box.
- How many blind boxes should you order to maximize your expected profit?

- Convex Optimization, Stephen Boyd and Lieven Vandenberghe
- https://web.stanford.edu/~boyd/cvxbook/

- Convex sets: (No need to read the part about matrix analysis)
 - 2.1.1, 2.1.4, 2.1.5
 - 2.2.1, 2.2.2, 2.2.4
 - 2.3.1
- Exercises: (whenever multiple-dimension, prove it in two-dimension)
 - 2.1, 2.2, 2.3, 2.4, 2.7, 2.11, 2.12, 2.15, 2.16, 2.17
 - The solution is available online.

Terminologies

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., n$

- Feasible Set: the set of all points such that the constraints can all be satisfied.
- x^* is the **global minimizer**, if $f(x^*) \le f(y)$ for any y in the feasible set.
- x^* is called a **saddle point**, if $\frac{df(x^*+te)}{dt}|_{t=0} = 0$ for any e. (First-order derivative in any direction is 0 at point x^*), but the function attains neither a local maximum value nor a local minimum value

Remark: In this lecture, I will use **bold** form to represent a high dimension point. Without bold form, it represents a scalar

Graphical illustration of a saddle point

Terminologies

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., n$

Local minimizer

- Denote S as the feasible set
- Denote B(\mathbf{x}, ε) = { \mathbf{y} : $||\mathbf{y} \mathbf{x}|| \le \varepsilon$ } as the set of all points such that the distance from x and each point in the set is smaller than ε .
- If there exists an $\varepsilon > 0$ such that for any $y \in S \cap B(x^*, \varepsilon)$, $f(x^*) \le f(y)$. Then x^* is called a local minimizer of the optimization problem.

Graphical illustration

Convex Optimization

- Verifying if a point is a local minimum can be easy.
- However, how can we ensure that a local minimum is indeed a global minimum?
- A category of problems known as convex optimization has property that any local minimum is also a global minimum.

This will be proved in subsequent lectures.

Convex vs. Non-Convex

Convex problem

- Local minimizer is the global minimizer.
- Can be solved efficiently
- Gradient descent (or many other acceleration methods) converges to the global solution

Non-Convex problem

- It's not easy to find the global solution
- Use heuristics to find local optimal solutions

This is not a local minimizer, as the function value is smaller when the variable is just slightly higher.

Non-Convex

Introduction to Convex Optimization

Line Segment

• Let $x_1 \neq x_2$ be two points in \mathbb{R}^n . Points of the form

$$x = \theta x_1 + (1 - \theta) x_2$$

where $\theta \in [0, 1]$, form the line segment between x_1 and x_2 .

Convex Set

Set C is a convex set if the line segment between any two points in C lies in C.

• Formal definition: A set C is convex if $\forall x_1, x_2 \in C, \forall \theta \in [0,1]$ $\theta x_1 + (1-\theta)x_2 \in C$.

Remark: In this lecture, I will use **bold** form to represent a high dimension point. Without bold form, it represents a scalar

Examples

Which set is a convex set?

Convex Set Examples

- The empty set \emptyset , the singleton set $\{x_0\}$, and the complete space R are convex sets.
- An interval of $[a,b] \subset R$ is a convex set
- In R^n the set $H := \{x \in R^n : a_1x_1 + \dots + a_nx_n = c\}$ is a convex set
- Half spaces, e.g., $H := \{(x, y) : y \le ax + b\}$ are convex sets
- A disk with center (0,0) and radius c is a convex subset of \mathbb{R}^2

Remark: In this lecture, I will use **bold** form to represent a high dimension point. Without bold form, it represents a scalar

Steps for Showing the Convexity of a Set

Prove H: = $\{(x, y): y = ax + b\}$ is a convex set

For any (x_1, y_1) and (x_2, y_2) in H,

- $y_1 = ax_1 + b$
- $y_2 = ax_2 + b$
- $\theta(x_1, y_1) + (1 \theta)(x_2, y_2) = (\theta x_1 + (1 \theta)x_2), \theta y_1 + (1 \theta)y_2$
- Then for any $\theta \in [0,1]$
 - $\theta y_1 + (1 \theta)y_2 = a(\theta x_1 + (1 \theta)x_2) + b$

Steps for Showing the Convexity of a Set

Prove H: =
$$\{(x, y): y = ax + b\}$$
 is a convex set

For any (x_1, y_1) and (x_2, y_2) in H,

- $y_1 = ax_1 + b$ $y_2 = ax_2 + b$ 1. Use the assumption that $(x_1, y_1), (x_2, y_2) \in H$
- $y_2 = ax_2 + \nu$ $\theta(x_1, y_1) + (1 \theta)(x_2, y_2) = (\theta x_1 + (1 \theta)x_2), \theta y_1 + (1 \theta)y_2$
- Then for any $\theta \in [0,1]$ 2. Characterize the new point within the line segment
 - $\theta y_1 + (1 \theta)y_2 = a(\theta x_1 + (1 \theta)x_2) + b$
 - 3. Use (1) and (2) to show that the new point is in H

Prove Half spaces, e.g., $H \coloneqq \{(x,y) : y \le ax + b\}$ are convex sets

Proof:

For any (x_1, y_1) and (x_2, y_2) in H,

- $y_1 \leq ax_1 + b$
- $y_2 \le ax_2 + b$
- $\theta(x_1, y_1) + (1 \theta)(x_2, y_2) = (\theta x_1 + (1 \theta)x_2), \theta y_1 + (1 \theta)y_2)$
- Then for any $\theta \in [0,1]$
 - $\theta y_1 \leq a\theta x_1 + \theta b$
 - $(1-\theta)y_2 \le a(1-\theta)x_2 + (1-\theta)b$
 - $\theta y_1 + (1 \theta)y_2 \le a(\theta x_1 + (1 \theta)x_2) + b$

Properties of convex sets.

Lemma: If both S_1 and S_2 are convex sets, then $S_1 \cap S_2$ is also a convex set.

Proof

- Given any two points $\mathbf{x_1}$ and $\mathbf{x_2}$ in $S_1 \cap S_2$,
- Let **x** be a point on the line segment between x_1 and x_2 .
- As S_1 is convex set, **x** is within S_1
- As S_2 is convex set, **x** is within S_2
- Thus, **x** is within $S_1 \cap S_2$

Question:

Is the union of two convex sets a convex set?

Blind Box Problem

• In standard form, we have

It is a half space, and hence a convex set