vector space

2024年1月1日

目录

1	R^n a	and C^n	1
	1.1	definition complex number	1
	1.2	Properties of complex arithmetic	1
	1.3	Notation F	2
	1.4	Example	2
	1.5	definition list, length	2
	1.6	definition F^n	2
		1.6.1 definition in F^n	2
		1.6.2 scalar multiplication in F^n	3
	1.0		0
2	den	nition of vector space	3
	2.1	definition textbfaddition, scalar multiplication	3
		2.1.1 definition vector space	3
3	Sub	spaces	4
	3.1	definition subspaces	4
		3.1.1 Example	4
	3.2	Condiitions for a subspaces	4
	3.3	Sum of subspace	5
		3.3.1 definition sum of subsets	5

3.3.2	sum of subsoace is the smallest containing sub-	
	space	١
3.3.3	diretct sums	١
3.3.4	condititons for a direct sum	Į

1 \mathbb{R}^n and \mathbb{C}^n

1.1 definition complex number

- * **A** complex number is an ordered pair (a,b), where $a, b \in R$, but we will write this as a + bi
- * the set of all complex numbers is denoted by C:

$$C = \{a + bi : a, b \in R\}.$$

* addition and multiplication on C are defined by

$$(a + bi) + (c + d)i = (a + c) + (b + d)i,$$

 $(a + bi) * (c + d)i = (ac - bd) + (ab + bc)i,$
 $herea, b, c, d \in R.$

1.2 Properties of complex arithmetic

commutativity

$$\alpha + \beta = \beta + \alpha$$
 and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in R$

associativity

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 and $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ for all $\alpha, \beta, \lambda \in R$

indentities

$$\lambda + 0$$
 and $\lambda 1 = \lambda$ for all $\lambda \in C$;

indentities

for every $\alpha \in C$, there exists a unique $\beta \in C$ such that $\alpha + \beta = 0$;

multiplicative inverse

for every $\alpha \in C$, with $\alpha \neq 0$, there exists a unique $\beta \in C$ such that $\alpha\beta = 1$;

1.3 Notation F

Throughout this book, F stand for either R or C

1.4 Example

• The set R^3 , which you can think of as ordinary space, is the set of all ordered triples of real numbers:

$$R^{3} = \{(x, y, z) : x, y, z \in R\}$$

1.5 definition list, length

Suppose n is a nonnegative interger. A **list** of **length** n is an ordered collection of n elements (witch might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like this:

$$(x_1,\ldots,x_n)$$

Two lists are equal if and only if they have the same length and the some elements in the same order.

1.6 definition F^n

 F^n is the set of all lists of length n of elements of F:

$$F^{n} = \{(x_{1}, ..., x_{n}) : x_{j} \in Rforj = 1, ...n\}$$

For $(x_1,...,x_n) \in F^n$ and $j \in \{1,...,n\}$, we say that x_j is the j^{th} coordinate of $(x_1,...,x_n)$

1.6.1 definition in F^n

$$(x_1,...,x_n) + (y_1,...y_n) = (x_1 + y_1,...,x_n + y_n)$$

1.6.2 scalar multiplication in F^n

The product of a number λ and a vector in F^n is computed by multiplying each coordinate of the vector by λ :

$$\lambda(x_1, ..., x_n) = (\lambda x_1, ..., \lambda x_n)$$

here $\lambda \in F$ and $(x_1, ..., x_n) \in F^n$

2 definition of vector space

2.1 definition textbfaddition, scalar multiplication

- An addition on a set V is a function that assigns an element $u+v \in V$ to each pair of elements $u, v \in R$
- A scalar multiplication on a set V is a function that assigns an element $\lambda v \in F$ to each $v \in R$

2.1.1 definition vector space

A **vector space** is a set V along with addition on V and a scalar multiplication on V sunch taht following Properties hold:

commutativity

$$u + v = v + u$$
 for all $u, v \in V$;

associativity

$$(u+v)+w=v+(u+w)$$
 and $(ab)v=a(bv)$ for all $u,v,w\in V$, and all $a,v\in F$;

additive identity

there exists an element $0 \in R$ sunch that v + 0 = v for all $v \in V$.

additive inverse

for every $v \in V$, there exists $w \in R$ sunch that v + w = 0

multiplicative indentity

1v = v for all $v \in V$;

distribution Properties

$$a(u+v) = au + av$$
 and $(a+b)u = au + bu$ for all $a, b \in F$ and all $u, v \in V$

3 Subspaces

3.1 definition subspaces

A subset U of V is called a **subspaces** of V if U is also a vector space (using the same addition and scalar multiplication as on V)

3.1.1 Example

$$\{(x_1, x_2, 0) : x_1, x_2 \in F\}$$
 is a subspace of F^3

3.2 Condiitions for a subspaces

A subset of U of V is subspace of V if and noly if U statisfies the following three Condiitions:

additive indentity

$$0 \in U$$

closed under addition

$$u, w \in U$$
 implies $u + w \in U$

closed under scalar multiplication

$$a \in F$$
 and $u \in U$ implies $au \in U$

3.3 Sum of subspace

3.3.1 definition sum of subsets

Suppose $U_1, ..., U_m$ are subsets of V. the sum of $U_1, ..., U_m$, denoted $U_1, ..., U_m$, is the set of all possible sum of elements of $U_1, ..., U_m$ More precisely,

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}.$$

3.3.2 sum of subsoace is the smallest containing subspace

Suppose $U_1,...U_m$ are the subspaces of V. Then $U_1 + ... + U_m$ is the smallest subspace of V containing $U_1,...,U_m$

3.3.3 diretct sums

Suppose $U_1, ..., U_m$ are subspace of V. Every element of $U_1, ..., U_m$ can be written in the form

$$u_1 + ... + u_m$$

Where each u_j is in U_j . We will be especially interested in cases where each vector in $U_1, ..., U_m$ can represented in the form above in only one way. this situation is so important that we give it a special name:direct sum.

3.3.4 condititons for a direct sum

Suppose $U_1, ..., U_m$ are subspaces of V. then $U_1 + ... + U_m$ is a direct sum if and only way to wirite 0 as sum $u_1 + ... + u_m$, where each u_j is in U_j , is by taking each u_j equal to 0.

3.3.5 direct sum of two subspace

Suppose U and W are subspace of V. then U + W is a direct sum if and only $U \cap V = \{0\}$