Multivariate Statistical Analysis

Lecture 14

Fudan University

luoluo@fudan.edu.cn

Outline

1 Likelihood Ratio Criterion and T^2 -Statistic

2 Multivariate Analysis of Variance

Multivariate Linear Regression

Outline

1 Likelihood Ratio Criterion and T^2 -Statistic

2 Multivariate Analysis of Variance

Multivariate Linear Regression

Likelihood Ratio Criterion and T^2 -Statistic

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with N > p.

We shall derive T^2 -Statistic

$$\mathcal{T}^2 = \mathsf{N}(ar{\mathsf{x}} - oldsymbol{\mu}_0)^{ op} \mathsf{S}^{-1}(ar{\mathsf{x}} - oldsymbol{\mu}_0)$$

from likelihood ratio criterion

$$\lambda = rac{\displaystyle\max_{oldsymbol{\Sigma} \in \mathbb{S}_p^{++}} L(oldsymbol{\mu}_0, oldsymbol{\Sigma})}{\displaystyle\max_{oldsymbol{\mu} \in \mathbb{R}^p, oldsymbol{\Sigma} \in \mathbb{S}_p^{++}} L(oldsymbol{\mu}, oldsymbol{\Sigma})}.$$

Likelihood Ratio Criterion and T^2 -Statistic

We have

$$\lambda^{\frac{2}{N}} = \frac{1}{1 + T^2/(N-1)},$$

where

$$T^2 = N(ar{\mathbf{x}} - oldsymbol{\mu}_0)^{ op} \mathbf{S}^{-1} (ar{\mathbf{x}} - oldsymbol{\mu}_0), \qquad ar{\mathbf{x}} = rac{1}{N} \sum_{lpha = 1}^N \mathbf{x}_{lpha}$$

and

$$\mathbf{S} = rac{1}{N-1} \sum_{lpha=1}^N (\mathbf{x}_lpha - ar{\mathbf{x}}) (\mathbf{x}_lpha - ar{\mathbf{x}})^ op.$$

Likelihood Ratio Criterion and T^2 -Statistic

The condition $\lambda^{2/N} > c$ for some $c \in (0,1)$ is equivalent to

$$T^2<\frac{(N-1)(1-c)}{c}.$$

Outline

1 Likelihood Ratio Criterion and T²-Statistic

2 Multivariate Analysis of Variance

Multivariate Linear Regression

We consider testing the equality of means with common covariance.

Let $\mathbf{x}_{\alpha}^{(g)}$ be an observation from the g-th population $\mathcal{N}_{p}(\boldsymbol{\mu}^{(g)}, \boldsymbol{\Sigma})$ for $\alpha=1,\ldots,N_g$ and $g=1,\ldots,q$. We wish to test the hypothesis

$$H_0: \mu_1 = \cdots = \mu_g.$$

The likelihood function is

$$\begin{split} &L(\boldsymbol{\mu}^{(1)},\dots,\boldsymbol{\mu}^{(g)},\boldsymbol{\Sigma})\\ &=\prod_{g=1}^{q}\frac{1}{(2\pi)^{\frac{\rho N_g}{2}}(\det(\boldsymbol{\Sigma}))^{\frac{N_g}{2}}}\exp\Bigg(-\frac{1}{2}\sum_{\alpha=1}^{N_g}\left(\mathbf{x}_{\alpha}^{(g)}-\boldsymbol{\mu}^{(g)}\right)^{\top}\boldsymbol{\Sigma}^{-1}\big(\mathbf{x}_{\alpha}^{(g)}-\boldsymbol{\mu}^{(g)}\big)\Bigg). \end{split}$$

- **1** We let $\boldsymbol{\theta} = \{\boldsymbol{\mu}^{(1)}, \dots, \boldsymbol{\mu}^{(g)}, \boldsymbol{\Sigma}\}$ be the parameters.
- ② The set Ω is the space in which Σ is positive definite and each $\mu^{(g)}$ is any p-dimensional vector.
- **3** The set ω is the space in which $\mu^{(1)} = \cdots = \mu^{(g)}$ (p-dimensional vectors) and Σ is positive definite matrix.

The likelihood ratio criterion is

$$\lambda = \frac{\sup_{\boldsymbol{\theta} \in \omega} L(\boldsymbol{\theta})}{\sup_{\boldsymbol{\theta} \in \Omega} L(\boldsymbol{\theta})} = \frac{(\det(\hat{\boldsymbol{\Sigma}}_{\Omega}))^{\frac{N}{2}}}{(\det(\hat{\boldsymbol{\Sigma}}_{\omega}))^{\frac{N}{2}}},$$

where

$$\hat{oldsymbol{\Sigma}}_{\Omega} = rac{1}{N} \sum_{g=1}^{q} \sum_{lpha=1}^{N_{oldsymbol{g}}} ig(oldsymbol{\mathsf{x}}_{lpha}^{(g)} - ar{oldsymbol{\mathsf{x}}}^{(g)} ig) ig(oldsymbol{\mathsf{x}}_{lpha}^{(g)} - ar{oldsymbol{\mathsf{x}}}^{(g)} ig)^{ op}$$

and

$$\hat{oldsymbol{\Sigma}}_{\omega} = rac{1}{N} \sum_{g=1}^{q} \sum_{lpha=1}^{N_{
m g}} ig(oldsymbol{\mathsf{x}}_{lpha}^{(g)} - ar{oldsymbol{\mathsf{x}}} ig) ig(oldsymbol{\mathsf{x}}_{lpha}^{(g)} - ar{oldsymbol{\mathsf{x}}} ig)^{ op}.$$

We can write

$$N\hat{\mathbf{\Sigma}}_{\omega} = \mathbf{A} + \mathbf{B},$$

where

$$\mathbf{A} = N\hat{\mathbf{\Sigma}}_{\Omega} = \sum_{g=1}^{q} \sum_{\alpha=1}^{N_g} \left(\mathbf{x}_{\alpha}^{(g)} - \bar{\mathbf{x}}^{(g)}\right) \left(\mathbf{x}_{\alpha}^{(g)} - \bar{\mathbf{x}}^{(g)}\right)^{\top} \sim \mathcal{W}_p(\mathbf{\Sigma}, N-q)$$

and

$$\mathbf{B} = \sum_{g=1}^q \mathsf{N}_g (ar{\mathbf{x}}^{(g)} - ar{\mathbf{x}}) (ar{\mathbf{x}}^{(g)} - ar{\mathbf{x}})^ op \sim \mathcal{W}_p(\mathbf{\Sigma}, q-1)$$

are independent.

Wilks' Lambda distribution

For two independent random matrices $\mathbf{A} \sim \mathcal{W}_p(\mathbf{\Sigma}, n)$ and $\mathbf{B} \sim \mathcal{W}_p(\mathbf{\Sigma}, m)$ with $n \geq p$, the ratio

$$\frac{\det(\mathbf{A})}{\det(\mathbf{A}+\mathbf{B})}$$

has Wilks' Lambda distribution with degrees of freedom n and m, which is typically written as

$$rac{\det(\mathbf{A})}{\det(\mathbf{A}+\mathbf{B})}\sim \Lambda_{p,n,m}.$$

Wilks' Lambda distribution

Theorem.

Let $\mathbf{A} \sim \mathcal{W}_p(\mathbf{\Sigma}, n)$ and $\mathbf{B} \sim \mathcal{W}_p(\mathbf{\Sigma}, m)$ be two independent Wishart distributed variables, then we can write

$$\frac{\det(\mathbf{A})}{\det(\mathbf{A}+\mathbf{B})} = \prod_{i=1}^{p} u_i \sim \Lambda_{p,n,m},$$

where u_1, \ldots, u_p are independent distributed as

$$u_i \sim \operatorname{Beta}\left(\frac{n+1-i}{2}, \frac{m}{2}\right).$$

Properties of Wishart Distribution

Let $\mathbf{A} \sim \mathcal{W}_p(\mathbf{\Sigma}, n)$ and partition \mathbf{A} and $\mathbf{\Sigma}$ into q and p-q rows and columns as

$$\label{eq:lambda} \boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{bmatrix} \qquad \text{and} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix},$$

then we have

- (a) $\mathbf{A}_{11} \sim \mathcal{W}_q(\mathbf{\Sigma}_{11}, n)$ and $\mathbf{A}_{22} \sim \mathcal{W}_{p-q}(\mathbf{\Sigma}_{22}, n)$;
- (b) if q = 1, then

$$\mathbf{a}_{21} \,|\, \mathbf{A}_{22} \sim \mathcal{N}_{p-q} \big(\mathbf{A}_{22} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\sigma}_{21}, \, \sigma_{11.2}^2 \mathbf{A}_{22} \big)$$

where
$$\sigma_{11.2}^2 = \sigma_{11} - \boldsymbol{\sigma}_{21}^{\top} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\sigma}_{21}$$
;

(c) if n > p - q, then

$$\mathbf{A}_{11.2} = \mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \sim \mathcal{W}_q(\mathbf{\Sigma}_{11.2}, n-p+q)$$

is independent on \mathbf{A}_{22} and \mathbf{A}_{12} , where $\mathbf{\Sigma}_{11.2} = \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21}$.

Quiz

Let $\mathbf{A} \sim \mathcal{W}_p(\mathbf{\Sigma}, n)$, we can follow above theorem to show

$$\det(\mathbf{A}) = \det(\mathbf{\Sigma}) \prod_{i=1}^p v_i$$

with some independent random variables v_1, \ldots, v_p ?

Outline

1 Likelihood Ratio Criterion and T^2 -Statistic

2 Multivariate Analysis of Variance

3 Multivariate Linear Regression

Multivariate Linear Regression

Given dataset $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^p$ and $\mathbf{y}_i \in \mathbb{R}^q$ are the feature and the corresponding output of the *i*-th data.

We suppose

$$\mathbf{y}_i = \mathbf{B}^{ op} \mathbf{x}_i + \epsilon_i$$
 with $\mathbf{B} \in \mathbb{R}^{p imes q}$ and $\epsilon_i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}_q(\mathbf{0}, \mathbf{\Sigma})$

for i = 1, ..., N, $\Sigma \succ 0$ and N > p.

We regard $\mathbf{B} \in \mathbb{R}^{p \times q}$ and $\mathbf{\Sigma} \in \mathbb{R}^{q \times q}$ as parameters, then

$$\epsilon_i = \mathbf{y}_i - \mathbf{B}^{\top} \mathbf{x}_i \sim \mathcal{N}_q(\mathbf{0}, \mathbf{\Sigma}).$$

Multivariate Linear Regression

We denote

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \vdots \\ \mathbf{x}_N^\top \end{bmatrix} \in \mathbb{R}^{N \times p}, \quad \mathbf{Y} = \begin{bmatrix} \mathbf{y}_1^\top \\ \vdots \\ \mathbf{y}_N^\top \end{bmatrix} \in \mathbb{R}^{N \times q} \quad \text{and} \quad \mathbf{E} = \begin{bmatrix} \boldsymbol{\epsilon}_1^\top \\ \vdots \\ \boldsymbol{\epsilon}_N^\top \end{bmatrix} \in \mathbb{R}^{N \times q},$$

and suppose X is full rank.

MLE for Multivariate Linear Regression

We construct the likelihood function for $\epsilon_1, \ldots, \epsilon_N$ as follows

$$\begin{split} & L(\mathbf{B}, \mathbf{\Sigma}) \\ &= \prod_{\alpha=1}^{N} \frac{1}{\sqrt{(2\pi)^{p} \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2} (\mathbf{B}^{\top} \mathbf{x}_{\alpha} - \mathbf{y}_{\alpha})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{B}^{\top} \mathbf{x}_{\alpha} - \mathbf{y}_{\alpha})\right) \\ &= \frac{1}{(2\pi)^{Np/2} (\det(\mathbf{\Sigma}))^{N/2}} \exp\left(-\frac{1}{2} \mathrm{tr} \left((\mathbf{X} \mathbf{B} - \mathbf{Y}) \mathbf{\Sigma}^{-1} (\mathbf{X} \mathbf{B} - \mathbf{Y})^{\top} \right) \right). \end{split}$$

The maximum likelihood estimators are

$$\hat{\boldsymbol{B}} = \left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{Y} \qquad \text{and} \qquad \hat{\boldsymbol{\Sigma}} = \frac{1}{N}\boldsymbol{Y}^{\top}(\boldsymbol{I} - \boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top})\boldsymbol{Y}.$$

MLE for Multivariate Linear Regression

We write

$$\mathbf{B} = egin{bmatrix} oldsymbol{eta}_1 & \cdots & oldsymbol{eta}_q \end{bmatrix} \in \mathbb{R}^{q imes p} \quad ext{and} \quad \hat{\mathbf{B}} = egin{bmatrix} \hat{oldsymbol{eta}}_1 & \cdots & \hat{oldsymbol{eta}}_q \end{bmatrix} \in \mathbb{R}^{q imes p}.$$

Then the joint distribution of $\hat{\beta}_1, \dots, \hat{\beta}_N$ is normal and we have

- $\bullet \ \mathbb{E}[\hat{\beta}_i] = \beta_i;$
- $\text{Ov}[\hat{\boldsymbol{\beta}}_i, \hat{\boldsymbol{\beta}}_j] = \sigma_{ij}(\mathbf{X}^\top \mathbf{X})^{-1};$
- $\hat{\boldsymbol{\Sigma}} \sim \mathcal{W}_q\left(\frac{1}{N}\boldsymbol{\Sigma}, N-p\right).$

Bayesian Multivariate Linear Regression

We can additionally suppose each b_{ij} independently follows

$$b_{ij} \sim \mathcal{N}(0, \tau^2),$$

then the posterior likelihood function is

$$\begin{split} & L(\mathbf{B}, \mathbf{\Sigma}) \\ &= \prod_{i=1}^{N} \frac{1}{\sqrt{(2\pi)^{p} \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2} (\mathbf{B}^{\top} \mathbf{x}_{i} - \mathbf{y}_{i})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{B}^{\top} \mathbf{x}_{i} - \mathbf{y}_{i})\right) \\ & \cdot \prod_{i=1}^{p} \prod_{j=1}^{q} \frac{1}{\sqrt{2\pi\tau^{2}}} \exp\left(-\frac{b_{ij}^{2}}{2\tau^{2}}\right) \\ & \propto & \frac{1}{(\det(\mathbf{\Sigma}))^{N/2}} \exp\left(-\frac{1}{2} \mathrm{tr} \left((\mathbf{X}\mathbf{B} - \mathbf{Y}) \mathbf{\Sigma}^{-1} (\mathbf{X}\mathbf{B} - \mathbf{Y})^{\top} \right) - \frac{1}{2\tau^{2}} \left\| \mathbf{B} \right\|_{F}^{2} \right), \end{split}$$

which leads to solving Sylvester equation.

Bayesian Multivariate Linear Regression

We typically suppose

$$oldsymbol{eta}_{(i)} \overset{ ext{i.i.d}}{\sim} \mathcal{N}_q(\mathbf{0}, au^2 \mathbf{\Sigma}), \qquad ext{where} \qquad \mathbf{B} = egin{bmatrix} oldsymbol{eta}_{(1)}^{ op} \ dots \ oldsymbol{eta}_{(p)}^{ op} \end{bmatrix} \in \mathbb{R}^{p imes q},$$

then the posterior likelihood function is

$$\begin{split} & L(\mathbf{B}, \mathbf{\Sigma}) \\ &= \prod_{i=1}^{N} \frac{1}{\sqrt{(2\pi)^{p} \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2} (\mathbf{B}^{\top} \mathbf{x}_{i} - \mathbf{y}_{i})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{B}^{\top} \mathbf{x}_{i} - \mathbf{y}_{i})\right) \\ & \cdot \prod_{j=1}^{p} \frac{1}{\sqrt{(2\pi)^{q} \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2\tau^{2}} \boldsymbol{\beta}_{(j)}^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\beta}_{(j)}\right) \\ & \propto \frac{1}{(\det(\mathbf{\Sigma}))^{N/2}} \exp\left(-\frac{1}{2} \mathrm{tr} \left((\mathbf{X} \mathbf{B} - \mathbf{Y}) \mathbf{\Sigma}^{-1} (\mathbf{X} \mathbf{B} - \mathbf{Y})^{\top} \right) - \frac{1}{2\tau^{2}} \mathbf{B} \mathbf{\Sigma}^{-1} \mathbf{B}^{\top} \right). \end{split}$$

Bayesian Multivariate Linear Regression

We have

$$\hat{\mathbf{B}}_{\lambda} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{Y},$$

and

$$\hat{\boldsymbol{\Sigma}}_{\lambda} = \frac{1}{N} \left((\boldsymbol{\mathsf{X}} \hat{\boldsymbol{\mathsf{B}}}_{\lambda} - \boldsymbol{\mathsf{Y}})^{\top} (\boldsymbol{\mathsf{X}} \hat{\boldsymbol{\mathsf{B}}}_{\lambda} - \boldsymbol{\mathsf{Y}}) + \lambda \hat{\boldsymbol{\mathsf{B}}}_{\lambda}^{\top} \hat{\boldsymbol{\mathsf{B}}}_{\lambda} \right),$$

where $\lambda = 1/\tau^2$.