Voting Paradoxes in the Real World Theory Materials September 28, 2024

Faculty Mentor: A.J. Hildebrand Project Leader: Haoru Li

IML Scholars: Daniel Flores, Frank Ren, David Opoku-Ware

University of Illinois at Urbana-Champaign

Illinois Mathematics Lab September 28, 2024

Voting Methods

- Plurality
- Borda Count
- Condorcet

Voting method 1: Plurality Method

- The candidate(s) with the most first place votes wins.
- Example:
 - Candidates: A, B, C
 - Ballots:

Number of Voters	1st	2nd	3rd
1	Α	В	С
7	Α	С	В
7	В	С	Α
6	С	В	Α

- Plurality Calculation:
 - 1st place votes for A: 8
 - 1st place votes for B: 7
 - 1st place votes for C: 6
- Plurality Winner: A

Voting method 2: Borda Count Method

- Assume there are n candidates.
- Each voter ranks the candidates in the order of preference.
- Points are assigned based on the rank:
 - Standard Borda Count: n points for 1st place, n − 1 for 2nd place, etc, and 1 point for the last place.
 - **Generalized Borda Count:** w_1 points for 1st place, w_2 for 2nd place, etc, and w_n point for the last place, where $w_1 \ge w_2 \ge \cdots \ge w_n$.
- The points for each candidate are added up and the candidate with the highest total points wins.

Voting method 2: Borda count example

- Candidates: A, B, C
- Ballots:

Number of Voters	1st	2nd	3rd
1	Α	В	С
7	Α	С	В
7	В	С	Α
6	С	В	Α

- Borda Calculation:
 - Points for A: $3 \cdot 8 + 2 \cdot 0 + 1 \cdot 13 = 37$
 - Points for B: $3 \cdot 7 + 2 \cdot 7 + 1 \cdot 7 = 42$
 - Points for C: $3 \cdot 6 + 2 \cdot 14 + 1 \cdot 1 = 47$
- Borda Winner: C

Voting method 3: Condorcet Method

- Each voter ranks the candidates in the order of preference.
- For each pair of candidates A and B, the number of voters that rank A over B is compared to the number of voters that rank B over A.
- A Condorcet winner is a candidate who can beat every other candidate in a head-to-head comparison.

Voting method 3: Condorcet example

Candidates: A, B, C

Ballots:

Number of Voters	1st	2nd	3rd
1	Α	В	С
7	Α	С	В
7	В	С	Α
6	С	В	Α

Condorcet Calculation:

- A vs B: 8 votes to 13 votes: B wins over A
- B vs C: 8 votes to 13 votes: C wins over B
- A vs C: 8 votes to 13 votes: C wins over A
- Condorcet Winner: C

Some Voting Paradoxes

- The Borda count winner is the Plurality loser
- The Borda count winner is different from the Cordorcet winner
- Condorcet Paradox: There exists a cycle of candidates A, B, and C such that
 - a majority of voters rank A over B
 - a majority of voters rank B over C
 - a majority of voters rank C over A.

Independence of Irrelevant Alternatives (IIA)

- Independence of Irrelevant Alternatives Axiom: The addition or removal of a candidate (team, player) should not change the relative ranking of the remaining candidates.
- Example: Suppose there are four candidates A, B, C, and D, ranked A > D > C > B.
 Suppose D is disqualified. Then under the IIA axiom, the ranking between A, B, and C should be A > C > B.
- Paradox: Adding or removing a candidate changes the relative ranking of some other candidates (ie, IIA axiom is violated).

IIA Paradox Example

Number of Voters	1st	2nd	3rd	4th
3	Α	В	С	D
2	В	С	D	Α
2	С	D	Α	В

Borda Calculation by considering A, B, C, and D:

- Points for A: $4 \cdot 3 + 3 \cdot 0 + 2 \cdot 2 + 1 \cdot 2 = 18$
- Points for B: $4 \cdot 2 + 3 \cdot 3 + 2 \cdot 0 + 1 \cdot 2 = 19$
- Points for C: $4 \cdot 2 + 3 \cdot 2 + 2 \cdot 3 + 1 \cdot 0 = 20$
- Points for D: $4 \cdot 0 + 3 \cdot 2 + 2 \cdot 2 + 1 \cdot 3 = 13$
- Borda Ranking: C > B > A > D

Borda Calculation by considering A, B, and C:

- Points for A: $3 \cdot 3 + 2 \cdot 2 + 1 \cdot 2 = 15$
- Points for B: $3 \cdot 2 + 2 \cdot 3 + 1 \cdot 2 = 14$
- Points for C: $3 \cdot 2 + 2 \cdot 2 + 1 \cdot 3 = 13$
- Borda Ranking: A > B > C

Arrow's Impossibility Theorem

 Arrow's Impossibility Theorem: If there are three or more candidates, there does not exist a voting method that satisfies every reasonable fairness criteria.