# MATEMÁTICA DISCRETA

Conceptos Básicos de la Teoría de Conjuntos (Parte III)

# Conceptos Básicos de la Teoría de Conjuntos (P-III)

- Ejercicios resueltos.
- Cardinal de un conjunto. Principio de Inclusión-Exclusión.

Ejercicio 1: Sea  $A = \{2, \{4,5\}, 4\}$ , ¿Cuáles de las siguientes declaraciones son incorrectas? Justifica la respuesta.

(i) 
$$5 \in A$$

(ii) 
$$\{5\} \in A$$

(i) 
$$5 \in A$$
 (ii)  $\{5\} \in A$  (iii)  $\{5\} \subseteq A$ .

Solución(Ejercicio 1): Las tres declaraciones son incorrectas.

Ejercicio 2: Calcula el conjunto potencia  $\mathcal{P}(S)$  correspondiente al conjunto  $S = \{3, \{1,4\}\}.$ 

Solución(Ejercicio 2):  $\mathcal{P}(S) = \{\emptyset, \{3\}, \{\{1,4\}\}, S\}.$ 

#### Ejercicio 3: Sean A y B dos conjuntos. Demuestra que:

$$A^c \setminus B^c = B \setminus A$$
.

Solución(Ejercicio 3): Observa que:

$$A^{c} \setminus B^{c} = \{x : x \in A^{c} \land x \notin B^{c}\}$$
$$= \{x : x \in B \land x \notin A\}$$
$$= B \setminus A.$$

Ejercicio 4: Sean A y B dos conjuntos. Demuestra que si  $A \cap B = \emptyset$ , entonces  $A \subseteq B^c$ .

Solución(Ejercicio 4): Sea  $x \in A$ . Como  $A \cap B = \emptyset$ , se sigue que  $x \notin B$ , lo cual implica que  $x \in B^c$ . Por tanto,  $A \subseteq B^c$ .

#### Cardinal de un conjunto

• Si X es un conjunto finito, entonces al número de elementos diferentes de X se le llama cardinal del conjunto X y se denota por Card(X) o |X|.

# Principio de Inclusión-Exclusión

- Permite obtener relaciones entre los cardinales de varios conjuntos y los de los conjuntos resultantes de operarlos entre sí.
- Considera los casos en que los elementos de un conjunto se pueden repartir en varios subconjuntos de modo que dichos subconjuntos puedan tener elementos en común.

## Principio de Inclusión-Exclusión

Si X e Y son conjuntos finitos, entonces

$$|X\cup Y|=|X|+|Y|-|X\cap Y|.$$



#### Teorema

Si X e Y son conjuntos finitos, entonces

$$|X \cup Y| = |X| + |Y| - |X \cap Y|.$$

**Proof.** Sean *X* e *Y* dos conjuntos finitos arbitrarios. Observa que:

$$-|X| = |X \setminus Y| + |X \cap Y| \quad (X = (X \setminus Y) \cup (X \cap Y) \text{ y } (X \setminus Y) \cap (X \cap Y) = \emptyset)$$

$$-|Y| = |Y \setminus X| + |X \cap Y| \quad (Y = (Y \setminus X) \cup (X \cap Y) \text{ y } (Y \setminus X) \cap (X \cap Y) = \emptyset)$$

- 
$$|X \cup Y| = |X \setminus Y| + |X \cap Y| + |Y \setminus X|$$
 How is it obtained?

Como consecuencia de las tres igualdades anteriores se deduce que:

$$|X \cup Y| = |X \setminus Y| + |X \cap Y| + |Y \setminus X|$$
  
=  $(|X| - |X \cap Y|) + |X \cap Y| + (|Y| - |X \cap Y|)$   
=  $|X| + |Y| - |X \cap Y|$ .

# Principio de Inclusión-Exclusión

Si X, Y y Z son conjuntos finitos, entonces

$$|X \cup Y \cup Z| = |X| + |Y| + |Z| - |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|$$



#### Principio de Inclusión-Exclusión

Si  $X_1, X_2, \dots, X_n$  son conjuntos finitos, entonces

$$|X_1 \cup \dots \cup X_n| = \sum_{1 \le i \le n} |X_i| - \sum_{1 \le i < j \le n} |X_i \cap X_j| + \sum_{1 \le i < j < k \le n} |X_i \cap X_j \cap X_k| - \dots + (-1)^{n+1} |X_1 \cap \dots \cap X_n|$$

## Ejercicio 5

En un grupo de 100 personas, un total de 43 hablan inglés, 27 hablan francés y 50 hablan español. Sabemos también que 16 personas hablan inglés y francés, 20 hablan inglés y español y 18 hablan francés y español. Finalmente, 10 personas hablan los tres idiomas. ¿Cuántas personas no hablan ninguno de los tres idiomas?

Solución(Ejercicio 5): I conjunto de personas que hablan inglés, F conjunto de personas que hablan francés, E conjunto de personas que hablan español.

Se conoce que |I|=43, |F|=27, |E|=50,  $|I\cap F|=16$ ,  $|I\cap E|=20$ ,  $|F\cap E|=18$ ,  $|I\cap F\cap E|=10$ .

¿Qué estrategia seguir?

$$|I \cup F \cup E| = |I| + |F| + |E| - |I \cap F| - |I \cap E| - |F \cap E| + |I \cap F \cap E|$$
  
= 43 + 27 + 50 - 16 - 20 - 18 + 10 = 76.

Hay 76 personas que hablan por lo menos uno de los idiomas. Por lo tanto, hay 100-76=24 personas que no hablan ninguno de estos idiomas.

# Ejercicio 6

Una academia tiene 99 estudiantes. Los estudiantes pueden cursar tres asignaturas:  $A_1$ ,  $A_2$  y  $A_3$ . Hay 7 que cursan las tres, 60 que cursan  $A_1$ , 49 que cursan  $A_2$  y 43 que cursan  $A_3$ . En el caso de  $A_2$  y  $A_3$ , la cursan el triple de los que hacen  $A_1$  y  $A_2$ , mientras que  $A_1$  y  $A_3$ , la hacen el doble de los que hacen  $A_1$  y  $A_2$ . ¿Cuántos estudiantes cursan las asignaturas  $A_1$  y  $A_2$ ?

## Solución(Ejercicio 6):

- Sea  $E_i$  el conjunto formado por los estudiantes que cursan la asignatura  $A_i$  y sea  $x = |E_1 \cap E_2|$ .
- $|E_2 \cap E_3| = 3|E_1 \cap E_2| = 3x$  y  $|E_1 \cap E_3| = 2|E_1 \cap E_2| = 2x$ .
- $|E_1| = 60$ ,  $|E_2| = 49$ ,  $|E_3| = 43$  y  $|E_1 \cap E_2 \cap E_3| = 7$ .
- Principio de Inclusión-Exclusión  $\rightarrow$  99 = 60+49+43-x-2x-3x+7.
- Resolviendo la ecuación se obtiene que x = 10.



# Ejercicio 7

Se organizan 100 fotos en tres carpetas diferentes del ordenador. En las fotos de la primera carpeta aparecen animales, en las de la segunda carpeta hay paisajes y en las fotos de la tercera hay monumentos. En la carpeta de animales hay 45 fotos, en la de paisajes hay 65 y en la de monumentos hay 47. En 28 de las fotos de paisajes también sale algún animal y en 24 hay algún monumento. Además, en 12 de las fotos hay animales y monumentos a la vez. ¿Cuántas fotos están a la vez en las tres carpetas?

Solución(Ejercicio 7): A conjunto de fotos de animales, P conjunto de fotos de paisajes, M conjunto de fotos de monumentos.

$$|A \cap P \cap M| = |A \cup P \cup M| - |A| - |P| - |M| + |A \cap P| + |A \cap M| + |P \cap M|$$
  
= 100 - 45 - 65 - 47 + 28 + 12 + 24 = 7.