Chương 6

1. Hand simulate the Viterbi algorithm using the data and probability estimates in Figures 7.4- 7.6 on the sentence *Flower flowers like flowers*. Draw transition network as in Figure 7.10-7.12 for the problem, and identify what part of speech the algorithm identifies for each word.

Giải

Flower flowers like flowers

L = V, N, ART, P

category	Count at i	pair	Count at i,i+1	bigram	estimate
0	300	O, ART	213	PROB(ART/O)	0.71
0	300	O, N	87	PORB(N/O)	0.29
ART	558	ART, N	558	PROB(N/ART)	1.0
N	833	N,V	258	PROB(V/N)	0.43
N	833	N, N	108	PROB(N∕N)	0.13
N	833	N, P	366	PROB(P/N)	0.44
V	300	V, N	75	PROB(N/V)	0.35
V	300	V, ART	194	PROB(ART/V)	0.65
Р	307	P, ART	226	PROB(ART/P)	0.74
Р	307	P, N	81	PROB(N∕P)	0.26

PROB the LART)	.54		PROB(a ART)	.360
PROB (flies 1N)	.025		PROB(a1N)	.001
PROB (flies V)	.076		PROB (flower N)	.063
PROB(like V)	.1		PROB (flower V)	.05
PROB(like P)	.068	11	PROB (birds N)	.076
PROB (like 1N)	.012	i i	1 1 1 1 1 1 1 1	

Figure 7.6 The lexical-generation probabilities

```
i=1
    SEQ(1,1) = PROB(Flower/V) * PROB(V/O)
                                                       = 0.05 * 10^{-4} = 5 * 10^{-6}
to
    SEQ(2,1) = PROB(Flower/N) * PROB(N/O)
                                                       = 0.063 * 0.29 = 0.01827
N
     SEQ(3,1) = PROB(Flower/ART) * PROB (ART/O)
                                                       = 0
     SEO(4,1) = PROB(Flower/P) * PROB(P/O)
                                                       =0
    SEQ(1,2) = \max_{j=1,4} (SEQ(1,1) * PROB(V/V),
t=2
                                                       = \max(5 * 10^{-6} * 10^{-4}, 0.01827 * 0.43) * 0.05 =
     SEQ (2,1) * PROB(V/N)) * PROB(flowers/V)
                                                       0.000392805
to
     SEQ(2,2) = \max_{j=1,4} (SEQ(1,1) * PROB(N/V),
                                                       = \max(5 * 10^{-6} * 0.35, 0.01827 * 0.13) * 0.063 =
    SEQ (2,1) * PROB(N/N)) * PROB(flowers/N)
                                                       0.0001496313
i=1
to
    SEQ(3,2) = \max_{j=1,4} (SEQ(1,1) * PROB(ART/V),
                                                       = 0
4
    SEQ (2,1) * PROB(ART/N)) * PROB(flowers/ART)
     SEQ(4,2) = \max_{j=1,4} (SEQ(1,1) * PROB(P/V),
                                                       = 0
     SEQ(2,1) * PROB(P/N)) * PROB(flowers/P)
    SEQ(1,3) = \max_{j=1,4} (SEQ(1,2) * PROB(V/V),
                                                       = \max(0.000392805 * 10^{-4}, 0.0001496313 * 0.43)
t=3
                                                       * 0.1 = 0.0000064341459 = 6.43 * 10^-6
    SEQ (2,2) * PROB(V/N)) * PROB(like/V)
to
4
                                                       = \max(0.000392805 * 0.35, 0.0001496313 * 0.13) *
    SEQ(2,3) = \max_{j=1,4} (SEQ(1,2) * PROB(N/V),
i=1
    SEQ (2,2) * PROB(N/N)) * PROB(like/N)
                                                       0.012 = 0.000001649781 = 1.65 * 10^{-6}
to
     SEQ(3,3) = \max_{j=1,4} (SEQ(1,2) * PROB(ART/V),
                                                       =0
4
     SEQ (2,2) * PROB(ART/N)) * PROB(like/ART)
     SEQ(4,3) = \max_{i=1,4} (SEQ(1,2) * PROB(P/V),
                                                       = \max(0.000392805 * 10^{-4}, 0.0001496313 * 0.44)
     SEQ (2,2) * PROB(P/N)) * PROB(like/P)
                                                       *0.068 = 0.000004476968496 = 4.48 * 10^{-6}
    SEQ(1,4) = \max_{j=1,4} (SEQ(1,3) * PROB(V/V),
                                                       = \max(6.43 * 10^{\circ}-6 * 10^{\circ}-4, 1.65 * 10^{\circ}-6 * 0.43,
t=4
                                                       4.48 * 10^{6} * 10^{4} * 0.05 = 3.5475 * 10^{8}
    SEQ(2,3) * PROB(V/N),
i=1
    SEQ (4,3) * PROB(V/P)) * PROB(flowers/V)
to
4
     SEQ(2,4) = \max_{j=1,4} (SEQ(1,3) * PROB(N/V),
                                                       = \max(6.43 * 10^{-6} * 0.35, 1.65 * 10^{-6} * 0.13, 4.48)
     SEQ(2,3) * PROB(N/N),
                                                       * 10^-6 * 0.26) * 0.063 = 1.417815 * 10^-7
     SEQ (4,3) * PROB(N/P)) * PROB(flowers/N)
     SEQ(3,4) = \max_{i=1,4} (SEQ(1,3) * PROB(ART/V),
                                                       = 0
     SEQ(2,3) * PROB(ART/N),
```

 $\begin{array}{c} SEQ\ (4,3)\ *\ PROB(ART/P))\ *\\ PROB(flowers/ART)\\ \hline \textbf{SEQ(4,4)} = \max_{j=1,4} (SEQ(1,3)\ *\ PROB(P/V),\\ SEQ(2,3)\ *\ PROB(P/N),\\ SEQ\ (4,3)\ *\ PROB(P/P))\ *\ PROB(flowers/P) \end{array} = 0$

Xác định chuỗi từ loại:

$$C(4) = 2$$
, $C(3) = 1$, $C(2) = 1$, $C(1) = 2$

Vậy chuỗi từ loại là **N V V N**

2. Using the bigram and lexical generation probabilities given in this chapter, calculate the word probabilities using the forward algorithm for the sentence *The a flies like flower* (involving a very rare use of the word a as a noun, as in the a flies, the b flies, and so on). Remember to use 0.0001 as a probability for any bigram not in the table. Are the results you get reasonable? If not, what is the problem and how might it be fixed?

Giải

The a flies like flower

L = ART, N, V, P

		N	v	ART	P	TOTAL	
	flies	21	23	0	0	44	
	fruit	49	5	1	0	55	
	lik	10	30	0	21	61	
	a	1	0	201	0	202	
	the	1	0	300	2	303	
١,	flower	53	15	0	0	68	
	flowers	42	16	0	0	58	
	birds	64	1	0	0	65	
	others	592	210	56	284	1142	
	TOTAL	833	300	558	307	1998	

t=1

SEQSUM(1,1) = PROB(The/ART) * PROB(ART/O) =
$$0.54 * 0.71 = 0.3834$$

SEQSUM(2,1) = PROB(The/N) * PROB(N/O) = $1/833 * 0.29 = 3.4814 * 10^-4$
SEQSUM(3,1) = PROB(The/V) * PROB(V/O) = $0 * 10^-4 = 0$
SEQSUM(4,1) = PROB(The/P) * PROB(P/O) = $2/307 * 10^-4 = 6.5147 * 10^-7$

t=2

```
SEQSUM(1,2) =

(PROB(ART/ART) * SEQSUM(1,1) + PROB(ART/N) * SEQSUM(2,1) +

PROB(ART/V) * SEQSUM(3,1) + PROB(ART/P) * SEQSUM(4,1))
```

```
* PROB(a/ART)
= (10^{4} * 0.3834 + 10^{4} * 3.4814 * 10^{4} + 0 + 0.74 * 6.5147 * 10^{7}) * 0.36
= 1.3988 * 10^{-5}
SEQSUM(2,2) =
(PROB(N/ART) * SEQSUM(1,1) + PROB(N/N) * SEQSUM(2,1) +
PROB(N/V) * SEQSUM(3,1) + PROB(N/P) * SEQSUM(4,1)) * PROB(a/N) =
= (1 * 0.3834 + 0.13 * 3.4814 * 10^{-4} + 0 + 0.26 * 6.5147 * 10^{-7}) * 0.001
= 3.8346 * 10^{-4}
SEQSUM(3,2) =
(PROB(V/ART) * SEQSUM(1,1) + PROB(V/N) * SEQSUM(2,1) +
PROB(V/V) * SEQSUM(3,1) + PROB(V/P) * SEQSUM(4,1)) * PROB(a/V) = 0
SEQSUM(4,2) =
(PROB(P/ART) * SEQSUM(1,1) + PROB(P/N) * SEQSUM(2,1) +
PROB(P/V) * SEQSUM(3,1) + PROB(P/P) * SEQSUM(4,1)) * PROB(a/P) = 0
t=3
SEQSUM(1,3) =
(PROB(ART/ART) * SEQSUM(1,2) + PROB(ART/N) * SEQSUM(2,2) +
PROB(ART/V) * SEQSUM(3,2) + PROB(ART/P) * SEQSUM(4,2))
* PROB(flies/ART) = 0
SEQSUM(2,3) =
(PROB(N/ART) * SEQSUM(1,2) + PROB(N/N) * SEQSUM(2,2) +
PROB(N/V) * SEQSUM(3,2) + PROB(N/P) * SEQSUM(4,2)) * PROB(flies/N)
= (1 * 1.3988 * 10^{-5} + 0.13 * 3.8346 * 10^{-4} + 0 + 0) * 0.025 = 1.5959 * 10^{-6}
SEQSUM(3,3) =
(PROB(V/ART) * SEQSUM(1,2) + PROB(V/N) * SEQSUM(2,2) +
```

```
PROB(V/V) * SEQSUM(3,2) + PROB(V/P) * SEQSUM(4,2)) * PROB(flies/V)
= (10^{4} + 1.3988 + 10^{5} + 0.43 + 3.8346 + 10^{4} + 0 + 0) + 0.076 = 1.2532 + 10^{5}
SEQSUM(4,3) =
(PROB(P/ART) * SEQSUM(1,2) + PROB(P/N) * SEQSUM(2,2) +
PROB(P/V) * SEQSUM(3,2) + PROB(P/P) * SEQSUM(4,2)) * PROB(flies/P) = 0
t=4
SEQSUM(1,4) =
(PROB(ART/ART) * SEQSUM(1,3) + PROB(ART/N) * SEQSUM(2,3) +
PROB(ART/V) * SEQSUM(3,3) + PROB(ART/P) * SEQSUM(4,3))
* PROB(like/ART) = 0
SEQSUM(2,4) =
(PROB(N/ART) * SEQSUM(1,3) + PROB(N/N) * SEQSUM(2,3) +
PROB(N/V) * SEQSUM(3,3) + PROB(N/P) * SEQSUM(4,3)) * PROB(like/N)
= (0 + 0.13 * 1.5959 * 10^{-6} + 0.35 * 1.2532 * 10^{-5} + 0) * 0.012
= 5.5124 * 10^{-8}
SEQSUM(3,4) =
(PROB(V/ART) * SEQSUM(1,3) + PROB(V/N) * SEQSUM(2,3) +
PROB(V/V) * SEQSUM(3,3) + PROB(V/P) * SEQSUM(4,3)) * PROB(like/V)
= (0 + 0.43 * 1.5959 * 10^{-6} + 10^{-4} * 1.2532 * 10^{-5} + 0) * 0.1
= 6.8749 * 10^{-8}
SEQSUM(4,4) =
(PROB(P/ART) * SEQSUM(1,3) + PROB(P/N) * SEQSUM(2,3) +
PROB(P/V) * SEQSUM(3,3) + PROB(P/P) * SEQSUM(4,3)) * PROB(like/P)
= (0 + 0.44 * 1.5959 * 10^{-6} + 10^{-4} * 1.2532 * 10^{-5} + 0) * 0.068
=4.7835*10^{-8}
```

SEQSUM(1,5) = (PROB(ART/ART) * SEQSUM(1,4) + PROB(ART/N) * SEQSUM(2,4) + PROB(ART/V) * SEQSUM(3,4) + PROB(ART/P) * SEQSUM(4,4))* PROB(flower/ART) = 0SEQSUM(2,5) =(PROB(N/ART) * SEQSUM(1,4) + PROB(N/N) * SEQSUM(2,4) +PROB(N/V) * SEQSUM(3,4) + PROB(N/P) * SEQSUM(4,4)) * PROB(flower/N) $= (0 + 0.13 * 5.5124 * 10^{-8} + 0.35 * 6.8749 * 10^{-8} + 0.26 * 4.7835 * 10^{-8}) * 0.063$ $= 2.7509 * 10^{-9}$ SEQSUM(3,5) =(PROB(V/ART) * SEQSUM(1,4) + PROB(V/N) * SEQSUM(2,4) +PROB(V/V) * SEQSUM(3,4) + PROB(V/P) * SEQSUM(4,4)) * PROB(flower/V) $= (0 + 0.43 * 5.5124 * 10^{-8} + 10^{-4} * 6.8749 * 10^{-8} + 10^{-4} * 4.7835 * 10^{-8}) * 0.05$ $= 1.1857 * 10^{-9}$ SEQSUM(4,5) =(PROB(P/ART) * SEQSUM(1,4) + PROB(P/N) * SEQSUM(2,4) +PROB(P/V) * SEQSUM(3,4) + PROB(P/P) * SEQSUM(4,4)) * PROB(flower/P) = 0Tính xác suất từ vựng 1. SEQSUM(1,1) + SEQSUM(2,1) + SEQSUM(3,1) + SEQSUM(4,1) = 0.3837PROB(the|ART|the) = SEQSUM(1,1) / 0.3837 = 0.9992PROB(the|N|the) = SEQSUM(2,1) / 0.3837 = 0.00091PROB(the|V|the) = SEQSUM(3,1) / 0.3837 = 0

PROB(the|P|the) = SEQSUM(4,1) / 0.3837 = 0.0000017

2. SEQSUM(1,2) + SEQSUM(2,2) + SEQSUM(3,2) + SEQSUM(4,2) = 3.9745 * 10^-4
PROB(a|ART|the a) = SEQSUM(1,2) / (3.9745 * 10^-4) = 0.0352

PROB(a|N|the a) = SEQSUM(2,2) / (3.9745 * 10^-4) = 0.9648

PROB(a|V|the a) = SEQSUM(3,2) / (3.9745 * 10^-4) = 0

PROB(a|P|the a) = SEQSUM(4,2) / (3.9745 * 10^-4) = 0

3. SEQSUM(1,3) + SEQSUM(2,3) + SEQSUM(3,3) + SEQSUM(4,3) = 1.4128 * 10^-5
PROB(flies|ART|the a flies) = SEQSUM(1,3) / (1.4128 * 10^-5) = 0
PROB(flies|N|the a flies) = SEQSUM(2,3) / (1.4128 * 10^-5) = 0.1130

PROB(flies|V|the a flies) = SEQSUM(3,3) / (1.4128 * 10^-5) = 0.8870

PROB(flies|P|the a flies) = SEQSUM(4,3) / (1.4128 * 10^-5) = 0

4. SEQSUM(1,4) + SEQSUM(2,4) + SEQSUM(3,4) + SEQSUM(4,4) = 1.7171 * 10^-7

PROB(like|ART|the a flies like) = SEQSUM(1,4) / (1.7171 * 10^-7) = 0

PROB(like|N|the a flies like) = SEQSUM(2,4) / (1.7171 * 10^-7) = 0.3210

PROB(like|V|the a flies like) = SEQSUM(3,4) / (1.7171 * 10^-7) = 0.4004

PROB(like|P|the a flies like) = SEQSUM(4,4) / (1.7171 * 10^-7) = 0.2786

5. SEQSUM(1,5) + SEQSUM(2,5) + SEQSUM(3,5) + SEQSUM(4,5) = 3.9366 * 10^-9 PROB(flowers|ART|the a flies like flowers) = SEQSUM(1,5) / (3.9366 * 10^-9) = 0

PROB(flowers|N|the a flies like flowers) = SEQSUM(2,5) / (3.9366 * 10^-9) = 0.6988 PROB(flowers|V|the a flies like flowers) = SEQSUM(3,5) / (3.9366 * 10^-9) = 0.3012 PROB(flowers|P|the a flies like flowers) = SEQSUM(4,5) / (3.9366 * 10^-9) = 0

Như vậy **the a flies like flowers** là **ART N V V N**.

Kết quả trên không hợp lý, khi từ loại của flies như ta mong muốn là N, như kết quả phân tích lại thu được flies có từ loại là V.

Lý do có thể vì kích thước tập mẫu dữ liệu đầu vào chưa đủ lớn.

Cách giải quyết dễ thấy nhất là tăng kích thước tập mẫu lên.

3. 3. Consider an extended version of Grammar 7.17 with the additional rule:

10.
$$VP \rightarrow VPP$$

The revised rule probabilities are shown here (Any not mentioned are the same as in Grammar 7.17):

$$VP \rightarrow V$$
 0.32 $VP \rightarrow V NP PP 0.20$

$$VP \rightarrow V NP \quad 0.33 \quad VP \rightarrow V PP \quad 0.15$$

In addition, the following bigram probabilities differ from those in Figure 7.4:

$$PROB(N/V) = 0.53 \quad PROB(ART/V) = 0.32 \quad PROB(P/V) = 0.15$$

- a) Hand simulate (or implement) the forward algorithm on *Fruit flies like birds* to produce the lexical probabilities.
- b) Draw out the full chart for *Fruit flies like birds*, showing the probabilities of each constituent.

Giải

a) L = ART, N, V, P

	N	v	ART	P	TOTAL
flies	21	23	0	0	44
fruit	49	5	1	0	55
lik	10	30	0	21	61
a	1	0	201	0	202
the	1	0	300	2	303
flower	53	15	0	0	68
flowers	42	16	0	0	58
birds	64	1	0	0	65
others	592	210	56	284	1142
TOTAL	833	300	558	307	1998

t=1

SEQSUM(2,1) = PROB(fruit/N) * PROB(N/O) =
$$49/833 * 0.29 = 0.0171$$

SEOSUM(3,1) = PROB(fruit/V) * PROB(V/O) =
$$5/300 * 10^{4} = 1.6667 * 10^{6}$$

SEQSUM(4,1) = PROB(fruit/P) * PROB(P/O) =
$$0$$

```
SEQSUM(1,2) =
(PROB(ART/ART) * SEQSUM(1,1) + PROB(ART/N) * SEQSUM(2,1) +
PROB(ART/V) * SEQSUM(3,1) + PROB(ART/P) * SEQSUM(4,1))
* PROB(flies/ART)
=0
SEQSUM(2,2) =
(PROB(N/ART) * SEQSUM(1,1) + PROB(N/N) * SEQSUM(2,1) +
PROB(N/V) * SEQSUM(3,1) + PROB(N/P) * SEQSUM(4,1))
* PROB(flies/N)
= (1 * 1.2724 * 10^{-3} + 0.13 * 0.0171 + 0.53 * 1.6667 * 10^{-6} + 0) * 0.025
= 8.7407 * 10^{-5}
SEOSUM(3,2) =
(PROB(V/ART) * SEQSUM(1,1) + PROB(V/N) * SEQSUM(2,1) +
PROB(V/V) * SEQSUM(3,1) + PROB(V/P) * SEQSUM(4,1)) * PROB(flies/V)
= (10^{4} + 1.2724 + 10^{3} + 0.43 + 0.0171 + 10^{4} + 1.6667 + 10^{6} + 0) + 0.076
= 5.5884 * 10^{-4}
SEQSUM(4,2) =
(PROB(P/ART) * SEQSUM(1,1) + PROB(P/N) * SEQSUM(2,1) +
PROB(P/V) * SEQSUM(3,1) + PROB(P/P) * SEQSUM(4,1)) * PROB(flies/P)
=0
t=3
SEQSUM(1,3) =
(PROB(ART/ART) * SEQSUM(1,2) + PROB(ART/N) * SEQSUM(2,2) +
PROB(ART/V) * SEQSUM(3,2) + PROB(ART/P) * SEQSUM(4,2))
* PROB(like/ART)
=0
SEQSUM(2,3) =
```

```
(PROB(N/ART) * SEQSUM(1,2) + PROB(N/N) * SEQSUM(2,2) +
PROB(N/V) * SEQSUM(3,2) + PROB(N/P) * SEQSUM(4,2))
* PROB(like/N)
= (0 + 0.13 * 8.7407 * 10^{5} + 0.53 * 5.5884 * 10^{4} + 0) * 0.012
= 3.6906 * 10^{-6}
SEQSUM(3,3) =
(PROB(V/ART) * SEQSUM(1,2) + PROB(V/N) * SEQSUM(2,2) +
PROB(V/V) * SEQSUM(3,2) + PROB(V/P) * SEQSUM(4,2))
* PROB(like/V)
= (0 + 0.43 * 8.7407 * 10^{5} + 10^{4} * 5.5884 * 10^{4} + 0) * 0.1
= 3.7641 * 10^{-6}
SEOSUM(4,3) =
(PROB(P/ART) * SEQSUM(1,2) + PROB(P/N) * SEQSUM(2,2) +
PROB(P/V) * SEQSUM(3,2) + PROB(P/P) * SEQSUM(4,2))
* PROB(like/P)
= (0 + 0.44 * 8.7407 * 10^{5} + 0.15 * 5.5884 * 10^{4} + 0) * 0.068
= 8.3154 * 10^{-6}
t=4
SEQSUM(1,4) =
(PROB(ART/ART) * SEQSUM(1,3) + PROB(ART/N) * SEQSUM(2,3) +
PROB(ART/V) * SEQSUM(3,3) + PROB(ART/P) * SEQSUM(4,3))
* PROB(birds/ART)
=0
SEQSUM(2,4) =
(PROB(N/ART) * SEQSUM(1,3) + PROB(N/N) * SEQSUM(2,3) +
PROB(N/V) * SEQSUM(3,3) + PROB(N/P) * SEQSUM(4,3))
* PROB(birds/N)
```

```
= (0 + 0.13 * 3.6906 * 10^{-6} + 0.53 * 3.7641 * 10^{-6} + 0.26 * 8.3154 * 10^{-6}) * 0.076
= 3.5239 * 10^{-7}
SEQSUM(3,4) =
(PROB(V/ART) * SEQSUM(1,3) + PROB(V/N) * SEQSUM(2,3) +
PROB(V/V) * SEQSUM(3,3) + PROB(V/P) * SEQSUM(4,3))
* PROB(birds/V)
= (0 + 0.43 * 3.6906 * 10^{-6} + 10^{-4} * 3.7641 * 10^{-6} + 10^{-4} * 8.3154 * 10^{-6}) * 1/300
= 5.2939 * 10^{-9}
SEQSUM(4,4) =
(PROB(P/ART) * SEQSUM(1,3) + PROB(P/N) * SEQSUM(2,3) +
PROB(P/V) * SEQSUM(3,3) + PROB(P/P) * SEQSUM(4,3))
* PROB(birds/P)
=0
Tính xác suất từ vựng
1. SEQSUM(1,1) + SEQSUM(2,1) + SEQSUM(3,1) + SEQSUM(4,1) = 0.0184
PROB(fruit|ART|fruit) = SEQSUM(1,1) / 0.0184 = 0.069152173913
PROB(fruit|N|fruit) = SEQSUM(2,1) / 0.0184 = 0.929347826087
PROB(fruit|V|fruit) = SEQSUM(3,1) / 0.0184 = 0.0000905815217391
PROB(fruit|P|fruit) = SEQSUM(4,1) / 0.0184 = 0
2. SEQSUM(1,2) + SEQSUM(2,2) + SEQSUM(3,2) + SEQSUM(4,2) = 0.000647
```

PROB(flies|P|fruit flies) = 0

3. SEQSUM(1,3) + SEQSUM(2,3) + SEQSUM(3,3) + SEQSUM(4,3) = 0.00001577PROB(like|ART|fruit flies like) = 0

PROB(like|N|fruit flies like) = SEQSUM(2,3) / 0.00001577 = 0.2340

PROB(like|V|fruit flies like) = SEQSUM(3,3) / 0.00001577 = 0.2387

PROB(like|P|fruit flies like) = SEQSUM(4,3) / 0.00001577 = 0.5273

4. SEQSUM(1,4) + SEQSUM(2,4) + SEQSUM(3,4) + SEQSUM(4,4) = 3.5768 * 10^-7 PROB(birds|ART|fruit flies like birds) = 0

PROB(birds|N|fruit flies like birds) = SEQSUM(2,4) / $(3.5768 * 10^-7) = 0.9852$

PROB(birds|V|fruit flies like birds) = SEQSUM(3,4) / $(3.5768 * 10^{-7}) = 0.0148$ PROB(birds|P|fruit flies like birds) = 0

Như vậy **fruit flies like birds** là **N V P N**.

b)

S2

S1

S4

1 NP6, 2 VP9, 1 * 0.0383 * 0.33 * 30/61 * 0.1378 = 8.56 * 10^-4

S3

1 NP5, 2 VP9, 1 * 4.77 * 10^-3 * 0.33 * 30/61 * 0.1378 = 1.07 * 10^-4

1 NP1, 2 VP11, 1 * 0.14 * 49/55 * 0.15 * 23/44 * 0.0685 = 6.69 * 10^-4

1 NP1, 2 VP10, 1 * 0.14 * 49/55 * 0.33 * 23/44 * 0.0145 = 3.12 * 10^-4

VP11
1 V2, 2 PP1, 0.15 * 23/44 * 0.0685

VP10

	1 V2, 2 NP8, 0.33 * 23/44 * 0.0145				
		VP9			
		1 V3, 2 NP4, 0.33 * 30/61 * 0.1	1378		
	VP8				
	1 V2, 2 NP8, 0.33 * 23/44 *	* 0.0145			
	VP7				
	1 V2, 2 NP3, 0.33 * 23/44 *	* 0.0656			
VP6					
1 V1, 2 NP7, 0.33 * 5/5	55 * 7.04 * 10^-3				
VP5					
1 V1, 2 NP2, 0.33 * 5/5	55 * 0.0668				
		PP1			
		1 P1, 2 NP4, 1 * 21/61 * 0.14 * 64/65 = 0.0685			
		NP8			
		1 N3, 2 N4, 0.09 * 10/61 * 64/65 = 0.0145			
	NP7				
	1 N2, 2 N3, 0.09 * 21/44 *	10/61 = 7.04 * 10^-3			
NP6					
1 N1, 2 N2, 0.09 * 49/5	55 * 21/44 = 0.0383				
NP5					
1 ART1, 2 N2, 0.55 * 1/55 * 21/44 = 4.77 * 10^-3					
VP1	VP2	VP3	VP4		
1 V1, 0.32 * 5/55	1 V2, 0.32 * 23/44	1 V3, 0.32 * 30/61	1 V4, 0.32 * 1/65		
NP1	NP2	NP3	NP4		
1 N1	1 N2	1 N3	1 N4		

0.14 * 49/55	0.14 * 21/44 = 0.0668	0.14 * 10/61 = 0.0656	0.14 * 64/65 = 0.1378
ART1 1/55		P1 21/61	
V1 5/55	V2 23/44	V3 30/61	V4 1/65
N1 49/55	N2 21/44	N3 10/61	N4 64/65
Fruit	flies	like	birds

Như vậy fruit flies like birds là $N\ N\ V\ N.$

4. Specify PMI between two words, Positive PMI between two words in the below table

	aadvark	computer	data	pinch	result	sugar
Apricot	0	0	0	0	1	0
Pineapple	0	0	0	0	1	0
Digital	0	2	1	0	1	0
Information	0	1	6	0	4	0

Giải

 $p(w=Digital \mid c=computer) = 2/17$

p(w=Digital) = 4/17

p(c=computer) = 3/17

Tương tự, ta có bảng sau

	p(w, c)						
	aadvark	computer	data	pinch	result	sugar	
Apricot	0	0	0	0	1/17	0	1/17
Pineapple	0	0	0	0	1/17	0	1/17
Digital	0	2/17	1/17	0	1/17	0	4/17
Information	0	1/17	6/17	0	4/17	0	11/17
p(c)	0	3/17	7/17	0	7/17	0	

Suy ra:

 $pmi(Apricot, result) = log_2(1/17 / (7/17 * 1/17)) = 1.2801$

Tương tự ta có bảng sau:

pmi(w, c)

	aadvark	computer	data	pinch	result	sugar
Apricot					1.2801	
Pineapple					1.2801	
Digital		1.5025	-0.7199		-0.7199	
Information		-0.9569	0.4056		-0.1793	

	ppmi(w, c)							
	aadvark	computer	data	pinch	result	sugar		
Apricot					1.2801			
Pineapple					1.2801			
Digital		1.5025						
Information			0.4056					