Outlier Analysis

Charu C. Aggarwal

Outlier Analysis

Second Edition

Charu C. Aggarwal IBM T.J. Watson Research Center Yorktown Heights, New York, USA

ISBN 978-3-319-47577-6 ISBN 978-3-319-47578-3 (eBook) DOI 10.1007/978-3-319-47578-3

Library of Congress Control Number: 2016961247

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my wife, my daughter Sayani, and my late parents Dr. Prem Sarup and Mrs. Pushplata Aggarwal.

Contents

1	An	ntroduction to Outlier Analysis	1
	1.1	Introduction	1
	1.2	The Data Model is Everything	5
		1.2.1 Connections with Supervised Models	8
	1.3	The Basic Outlier Detection Models	10
		1.3.1 Feature Selection in Outlier Detection	10
		1.3.2 Extreme-Value Analysis	11
		1.3.3 Probabilistic and Statistical Models	12
		1.3.4 Linear Models	13
		1.3.4.1 Spectral Models	14
		1.3.5 Proximity-Based Models	14
		1.3.6 Information-Theoretic Models	16
		1.3.7 High-Dimensional Outlier Detection	17
	1.4	Outlier Ensembles	18
		1.4.1 Sequential Ensembles	19
		1.4.2 Independent Ensembles	20
	1.5	The Basic Data Types for Analysis	21
		1.5.1 Categorical, Text, and Mixed Attributes	21
		1.5.2 When the Data Values have Dependencies	21
		1.5.2.1 Times-Series Data and Data Streams	22
		1.5.2.2 Discrete Sequences	24
		1.5.2.3 Spatial Data	24
		1.5.2.4 Network and Graph Data	25
	1.6	Supervised Outlier Detection	25
	1.7	Outlier Evaluation Techniques	26
		1.7.1 Interpreting the ROC AUC	29
		1.7.2 Common Mistakes in Benchmarking	30
	1.8	Conclusions and Summary	31
	1.9	Bibliographic Survey	31
	1.10	Exercises	33

viii CONTENTS

2	\mathbf{Pro}	babilistic Models for Outlier Detection	35
	2.1	Introduction	35
	2.2	Statistical Methods for Extreme-Value Analysis	37
		2.2.1 Probabilistic Tail Inequalities	37
		2.2.1.1 Sum of Bounded Random Variables	38
		2.2.2 Statistical-Tail Confidence Tests	43
		2.2.2.1 <i>t</i> -Value Test	43
		2.2.2.2 Sum of Squares of Deviations	45
		2.2.2.3 Visualizing Extreme Values with Box Plots	45
	2.3	Extreme-Value Analysis in Multivariate Data	46
		2.3.1 Depth-Based Methods	47
		2.3.2 Deviation-Based Methods	48
		2.3.3 Angle-Based Outlier Detection	49
		$2.3.4 \hbox{Distance Distribution-based Techniques: The Mahalanobis Method} \ .$	51
		2.3.4.1 Strengths of the Mahalanobis Method	53
	2.4	Probabilistic Mixture Modeling for Outlier Analysis	54
		2.4.1 Relationship with Clustering Methods	57
		2.4.2 The Special Case of a Single Mixture Component	58
		2.4.3 Other Ways of Leveraging the EM Model	58
		2.4.4 An Application of EM for Converting Scores to Probabilities	59
	2.5	Limitations of Probabilistic Modeling	60
	2.6	Conclusions and Summary	61
	2.7	Bibliographic Survey	61
	2.8	Exercises	62
3	Lin	ear Models for Outlier Detection	65
U	3.1	Introduction	65
	3.2	Linear Regression Models	68
	٥	3.2.1 Modeling with Dependent Variables	70
		3.2.1.1 Applications of Dependent Variable Modeling	73
		3.2.2 Linear Modeling with Mean-Squared Projection Error	74
	3.3	Principal Component Analysis	75
	0.0	3.3.1 Connections with the Mahalanobis Method	78
		3.3.2 Hard PCA versus Soft PCA	79
		3.3.3 Sensitivity to Noise	79
		3.3.4 Normalization Issues	80
		3.3.5 Regularization Issues	80
		3.3.6 Applications to Noise Correction	80
		3.3.7 How Many Eigenvectors?	81
		3.3.8 Extension to Nonlinear Data Distributions	83
		3.3.8.1 Choice of Similarity Matrix	85
		3.3.8.2 Practical Issues	86
		3.3.8.3 Application to Arbitrary Data Types	88
	3.4	One-Class Support Vector Machines	88
		3.4.1 Solving the Dual Optimization Problem	92
		3.4.2 Practical Issues	92
		3.4.3 Connections to Support Vector Data Description and Other Kernel	
		Models	93
	3.5	A Matrix Factorization View of Linear Models	95

CONTENTS ix

		3.5.1 Outlier Detection in Incomplete Data
		3.5.1.1 Computing the Outlier Scores
	3.6	Neural Networks: From Linear Models to Deep Learning
		3.6.1 Generalization to Nonlinear Models
		3.6.2 Replicator Neural Networks and Deep Autoencoders 103
		3.6.3 Practical Issues
		3.6.4 The Broad Potential of Neural Networks
	3.7	Limitations of Linear Modeling
	3.8	Conclusions and Summary
	3.9	Bibliographic Survey
		Exercises
4		ximity-Based Outlier Detection 113
	4.1	Introduction
	4.2	Clusters and Outliers: The Complementary Relationship
		4.2.1 Extensions to Arbitrarily Shaped Clusters
		4.2.1.1 Application to Arbitrary Data Types
		4.2.2 Advantages and Disadvantages of Clustering Methods 118
	4.3	Distance-Based Outlier Analysis
		4.3.1 Scoring Outputs for Distance-Based Methods
		4.3.2 Binary Outputs for Distance-Based Methods
		4.3.2.1 Cell-Based Pruning
		4.3.2.2 Sampling-Based Pruning
		4.3.2.3 Index-Based Pruning
		4.3.3 Data-Dependent Similarity Measures
		4.3.4 ODIN: A Reverse Nearest Neighbor Approach
		4.3.5 Intensional Knowledge of Distance-Based Outliers
		4.3.6 Discussion of Distance-Based Methods
	4.4	Density-Based Outliers
		4.4.1 LOF: Local Outlier Factor
		4.4.1.1 Handling Duplicate Points and Stability Issues 13
		4.4.2 LOCI: Local Correlation Integral
		4.4.2.1 LOCI Plot
		4.4.3 Histogram-Based Techniques
		4.4.4 Kernel Density Estimation
		4.4.4.1 Connection with Harmonic k -Nearest Neighbor Detector . 139
		4.4.4.2 Local Variations of Kernel Methods
		4.4.5 Ensemble-Based Implementations of Histograms and Kernel Methods 146
	4.5	Limitations of Proximity-Based Detection
	4.6	Conclusions and Summary
	4.7	Bibliographic Survey
	4.8	Exercises
5	П:~1	h-Dimensional Outlier Detection 149
IJ	5.1	h-Dimensional Outlier Detection 149 Introduction
	5.1	Axis-Parallel Subspaces
	0.2	5.2.1 Genetic Algorithms for Outlier Detection
		5.2.1.1 Defining Abnormal Lower-Dimensional Projections
		5.2.1.1 Defining Abhormal Lower-Dimensional Projections 15.
		9.4.1.4 DOTHUE COUCHO COCIONO DU DUDODAGO DEGLO : : : : : 1.04

X CONTENTS

		5.2.2 Finding Distance-Based Outlying Subspaces	7
		5.2.3 Feature Bagging: A Subspace Sampling Perspective	7
		5.2.4 Projected Clustering Ensembles	8
		5.2.5 Subspace Histograms in Linear Time	iC
		5.2.6 Isolation Forests	1
		5.2.6.1 Further Enhancements for Subspace Selection 16	3
		5.2.6.2 Early Termination	53
		5.2.6.3 Relationship to Clustering Ensembles and Histograms 16	i 4
		5.2.7 Selecting High-Contrast Subspaces	j 4
		5.2.8 Local Selection of Subspace Projections	6
		5.2.9 Distance-Based Reference Sets	ig
	5.3	Generalized Subspaces	(
		5.3.1 Generalized Projected Clustering Approach	′1
		5.3.2 Leveraging Instance-Specific Reference Sets	
		5.3.3 Rotated Subspace Sampling	
		5.3.4 Nonlinear Subspaces	
		5.3.5 Regression Modeling Techniques	
	5.4	Discussion of Subspace Analysis	
	5.5	Conclusions and Summary	(
	5.6	Bibliographic Survey	
	5.7	Exercises	,4
c	04	l! F	_
6	6.1	Elier Ensembles 18 Introduction	
	6.2	Introduction	
	0.2	6.2.1 Basic Score Normalization and Combination Methods	
	6.3	Theoretical Foundations of Outlier Ensembles	
	0.5	6.3.1 What is the Expectation Computed Over?	
		6.3.2 Relationship of Ensemble Analysis to Bias-Variance Trade-Off 19	
	6.4	Variance Reduction Methods	
	0.4	6.4.1 Parametric Ensembles	
		6.4.2 Randomized Detector Averaging	
		6.4.3 Feature Bagging: An Ensemble-Centric Perspective	
		6.4.3.1 Connections to Representational Bias	
		6.4.3.2 Weaknesses of Feature Bagging	
		6.4.4 Rotated Bagging	
		6.4.5 Isolation Forests: An Ensemble-Centric View	
		6.4.6 Data-Centric Variance Reduction with Sampling	
		6.4.6.1 Bagging	
		6.4.6.2 Subsampling	
		6.4.6.3 Variable Subsampling	
		6.4.6.4 Variable Subsampling with Rotated Bagging (VR) 20	
		6.4.7 Other Variance Reduction Methods	
	6.5	Flying Blind with Bias Reduction	
		6.5.1 Bias Reduction by Data-Centric Pruning	
		6.5.2 Bias Reduction by Model-Centric Pruning	
		6.5.3 Combining Bias and Variance Reduction	
	6.6	Model Combination for Outlier Ensembles	
	-	6.6.1 Combining Scoring Methods with Ranks	

CONTENTS xi

		6.6.2 Combining Bias and Variance Reduction
	6.7	Conclusions and Summary
	6.8	Bibliographic Survey
	6.9	Exercises
7	Sup	ervised Outlier Detection 219
	7.1^{-}	Introduction
	7.2	Full Supervision: Rare Class Detection
		7.2.1 Cost-Sensitive Learning
		7.2.1.1 MetaCost: A Relabeling Approach
		7.2.1.2 Weighting Methods
		7.2.2 Adaptive Re-sampling
		7.2.2.1 Relationship between Weighting and Sampling 229
		7.2.2.2 Synthetic Over-sampling: SMOTE
		7.2.3 Boosting Methods
	7.3	Semi-Supervision: Positive and Unlabeled Data
	7.4	Semi-Supervision: Partially Observed Classes
		7.4.1 One-Class Learning with Anomalous Examples
		7.4.2 One-Class Learning with Normal Examples
		7.4.3 Learning with a Subset of Labeled Classes
	7.5	Unsupervised Feature Engineering in Supervised Methods
	7.6	Active Learning
	7.7	Supervised Models for Unsupervised Outlier Detection
		7.7.1 Connections with PCA-Based Methods
		7.7.2 Group-wise Predictions for High-Dimensional Data 243
		7.7.3 Applicability to Mixed-Attribute Data Sets
		7.7.4 Incorporating Column-wise Knowledge
		7.7.5 Other Classification Methods with Synthetic Outliers 24
	7.8	Conclusions and Summary
	7.9	Bibliographic Survey
	7.10	Exercises
8	Cate	egorical, Text, and Mixed Attribute Data 249
Ū	8.1	Introduction
	8.2	Extending Probabilistic Models to Categorical Data
		8.2.1 Modeling Mixed Data
	8.3	Extending Linear Models to Categorical and Mixed Data
		8.3.1 Leveraging Supervised Regression Models
	8.4	Extending Proximity Models to Categorical Data
		8.4.1 Aggregate Statistical Similarity
		8.4.2 Contextual Similarity
		8.4.2.1 Connections to Linear Models
		8.4.3 Issues with Mixed Data
		8.4.4 Density-Based Methods
		8.4.5 Clustering Methods
	8.5	Outlier Detection in Binary and Transaction Data
	-	8.5.1 Subspace Methods
		8.5.2 Novelties in Temporal Transactions
	8.6	Outlier Detection in Text Data

xii CONTENTS

		8.6.1	Probabilistic Models	262
		8.6.2	Linear Models: Latent Semantic Analysis	264
			8.6.2.1 Probabilistic Latent Semantic Analysis (PLSA)	265
		8.6.3	Proximity-Based Models	268
			8.6.3.1 First Story Detection	269
	8.7	Concl	usions and Summary	270
	8.8	Biblio	graphic Survey	270
	8.9	Exerci	ises	272
9	Tin	ne Seri	es and Streaming Outlier Detection	273
	9.1	Introd	luction	273
	9.2	Predic	etive Outlier Detection in Streaming Time-Series	276
		9.2.1	Autoregressive Models	276
		9.2.2	Multiple Time Series Regression Models	279
			9.2.2.1 Direct Generalization of Autoregressive Models	279
			9.2.2.2 Time-Series Selection Methods	281
			9.2.2.3 Principal Component Analysis and Hidden Variable-Based	
			Models	282
		9.2.3	Relationship between Unsupervised Outlier Detection and Prediction	284
		9.2.4	Supervised Point Outlier Detection in Time Series	284
	9.3	Time-	Series of Unusual Shapes	286
		9.3.1	Transformation to Other Representations	287
			9.3.1.1 Numeric Multidimensional Transformations	288
			9.3.1.2 Discrete Sequence Transformations	290
			9.3.1.3 Leveraging Trajectory Representations of Time Series	291
		9.3.2	Distance-Based Methods	293
			9.3.2.1 Single Series versus Multiple Series	295
		9.3.3	Probabilistic Models	295
		9.3.4	Linear Models	295
			9.3.4.1 Univariate Series	295
			9.3.4.2 Multivariate Series	296
			9.3.4.3 Incorporating Arbitrary Similarity Functions	297
			9.3.4.4 Leveraging Kernel Methods with Linear Models	298
		9.3.5	Supervised Methods for Finding Unusual Time-Series Shapes	298
	9.4	Multio	dimensional Streaming Outlier Detection	298
		9.4.1	Individual Data Points as Outliers	299
			9.4.1.1 Proximity-Based Algorithms	299
			9.4.1.2 Probabilistic Algorithms	301
			9.4.1.3 High-Dimensional Scenario	301
		9.4.2	Aggregate Change Points as Outliers	301
			9.4.2.1 Velocity Density Estimation Method	302
			9.4.2.2 Statistically Significant Changes in Aggregate Distributions	304
		9.4.3	Rare and Novel Class Detection in Multidimensional Data Streams .	305
		-	9.4.3.1 Detecting Rare Classes	305
			9.4.3.2 Detecting Novel Classes	306
			9.4.3.3 Detecting Infrequently Recurring Classes	306
	9.5	Concl	usions and Summary	307
	9.6		graphic Survey	307
	9.7	Exerci		310

CONTENTS xiii

10	Out	lier De	etection in Discrete Sequences	311
	10.1	Introd	uction	311
	10.2		on Outliers	
		10.2.1	Rule-Based Models	315
		10.2.2	Markovian Models	316
		10.2.3	Efficiency Issues: Probabilistic Suffix Trees	318
	10.3		nation Outliers	
			A Primitive Model for Combination Outlier Detection	
			10.3.1.1 Model-Specific Combination Issues	323
			10.3.1.2 Easier Special Cases	
			10.3.1.3 Relationship between Position and Combination Outliers .	
		10.3.2	Distance-Based Models	324
			10.3.2.1 Combining Anomaly Scores from Comparison Units	326
			10.3.2.2 Some Observations on Distance-Based Methods	327
			10.3.2.3 Easier Special Case: Short Sequences	327
		10.3.3	Frequency-Based Models	327
			10.3.3.1 Frequency-Based Model with User-Specified Comparison Ur	nit327
			10.3.3.2 Frequency-Based Model with Extracted Comparison Units	328
			10.3.3.3 Combining Anomaly Scores from Comparison Units	329
		10.3.4	Hidden Markov Models	329
			10.3.4.1 Design Choices in a Hidden Markov Model	331
			10.3.4.2 Training and Prediction with HMMs	333
			10.3.4.3 Evaluation: Computing the Fit Probability for Observed Se-	
			quences	334
			10.3.4.4 Explanation: Determining the Most Likely State Sequence	
			for Observed Sequence	334
			10.3.4.5 Training: Baum-Welch Algorithm	335
			10.3.4.6 Computing Anomaly Scores	336
			10.3.4.7 Special Case: Short Sequence Anomaly Detection	337
		10.3.5	Kernel-Based Methods	337
	10.4		ex Sequences and Scenarios	
		10.4.1	Multivariate Sequences	338
		10.4.2	Set-Based Sequences	339
		10.4.3	Online Applications: Early Anomaly Detection	340
	10.5	Superv	vised Outliers in Sequences	340
	10.6	Conclu	sions and Summary	342
			graphic Survey	
	10.8	Exercis	ses	344
11	Spat	tial Ou	ntlier Detection	345
	-		uction	
			l Attributes are Contextual	
		-	Neighborhood-Based Algorithms	
			11.2.1.1 Multidimensional Methods	
			11.2.1.2 Graph-Based Methods	
			11.2.1.3 The Case of Multiple Behavioral Attributes	
		11.2.2	Autoregressive Models	
			Visualization with Variogram Clouds	
		11.2.4	Finding Abnormal Shapes in Spatial Data	355

xiv CONTENTS

		11.2.4.1 Contour Extraction Methods	356
		11.2.4.2 Extracting Multidimensional Representations	360
		11.2.4.3 Multidimensional Wavelet Transformation	360
		11.2.4.4 Supervised Shape Discovery	360
		11.2.4.5 Anomalous Shape Change Detection	361
	11.3	Spatiotemporal Outliers with Spatial and Temporal Context	362
	11.4	Spatial Behavior with Temporal Context: Trajectories	363
		11.4.1 Real-Time Anomaly Detection	363
		11.4.2 Unusual Trajectory Shapes	363
		11.4.2.1 Segment-wise Partitioning Methods	363
		11.4.2.2 Tile-Based Transformations	364
		11.4.2.3 Similarity-Based Transformations	365
		11.4.3 Supervised Outliers in Trajectories	365
	11.5	Conclusions and Summary	366
		Bibliographic Survey	366
		Exercises	367
12	Out	lier Detection in Graphs and Networks	369
	12.1	Introduction	369
	12.2	Outlier Detection in Many Small Graphs	371
		12.2.1 Leveraging Graph Kernels	371
	12.3	Outlier Detection in a Single Large Graph	372
		12.3.1 Node Outliers	372
		12.3.1.1 Leveraging the Mahalanobis Method	374
		12.3.2 Linkage Outliers	374
		12.3.2.1 Matrix Factorization Methods	374
		12.3.2.2 Spectral Methods and Embeddings	378
		12.3.2.3 Clustering Methods	379
		12.3.2.4 Community Linkage Outliers	380
		12.3.3 Subgraph Outliers	381
	12.4	Node Content in Outlier Analysis	382
		12.4.1 Shared Matrix Factorization	382
		12.4.2 Relating Feature Similarity to Tie Strength	383
		12.4.3 Heterogeneous Markov Random Fields	384
	12.5	Change-Based Outliers in Temporal Graphs	384
		12.5.1 Discovering Node Hotspots in Graph Streams	385
		12.5.2 Streaming Detection of Linkage Anomalies	386
		12.5.3 Outliers Based on Community Evolution	388
		12.5.3.1 Integrating Clustering Maintenance with Evolution Analysis	388
		12.5.3.2 Online Analysis of Community Evolution in Graph Streams	390
		12.5.3.3 GraphScope	390
		12.5.4 Outliers Based on Shortest Path Distance Changes	392
		12.5.5 Matrix Factorization and Latent Embedding Methods	392
	12.6	Conclusions and Summary	393
		Bibliographic Survey	394
	12.8	Exercises	396

CONTENTS

13	Applications of Outlier Analysis	399
	13.1 Introduction	399
	13.2 Quality Control and Fault Detection Applications	401
	13.3 Financial Applications	404
	13.4 Web Log Analytics	406
	13.5 Intrusion and Security Applications	407
	13.6 Medical Applications	410
	13.7 Text and Social Media Applications	411
	13.8 Earth Science Applications	413
	13.9 Miscellaneous Applications	415
	13.10Guidelines for the Practitioner	416
	13.10.1 Which Unsupervised Algorithms Work Best?	418
	13.11Resources for the Practitioner	421
	13.12Conclusions and Summary	422

Preface

"All things excellent are as difficult as they are rare." – Baruch Spinoza

First Edition

Most of the earliest work on outlier detection was performed by the statistics community. While statistical methods are mathematically more precise, they have several shortcomings, such as simplified assumptions about data representations, poor algorithmic scalability, and a low focus on interpretability. With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly been participating in the latest advancements of this field. Computer scientists approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions—the data can be of any type, structured or unstructured, and may be extremely large. Furthermore, issues such as computational efficiency and intuitive analysis of the data are generally considered more important by computer scientists than mathematical precision, though the latter is important as well. This is the approach of professionals from the field of data mining, an area of computer science that was founded about 20 years ago. This has led to the formation of multiple academic communities on the subject, which have remained separated, partially because of differences in technical style and opinions about the importance of different problems and approaches to the subject. At this point, data mining professionals (with a computer science background) are much more actively involved in this area as compared to statisticians. This seems to be a major change in the research landscape. This book presents outlier detection from an integrated perspective, though the focus is towards computer science professionals. Special emphasis was placed on relating the methods from different communities with one another.

The key advantage of writing the book at this point in time is that the vast amount of work done by computer science professionals in the last two decades has remained largely untouched by a formal book on the subject. The classical books relevant to outlier analysis are as follows:

- P. Rousseeuw and A. Leroy. Robust Regression and Outlier Detection, Wiley, 2003.
- V. Barnett and T. Lewis. Outliers in Statistical Data, Wiley, 1994.
- D. Hawkins. Identification of Outliers, Chapman and Hall, 1980.

xviii CONTENTS

We note that these books are quite outdated, and the most recent among them is a decade old. Furthermore, this (most recent) book is really focused on the relationship between regression and outlier analysis, rather than the latter. Outlier analysis is a much broader area, in which regression analysis is only a small part. The other books are even older, and are between 15 and 25 years old. They are exclusively targeted to the statistics community. This is not surprising, given that the first mainstream computer science conference in data mining (KDD) was organized in 1995. Most of the work in the data-mining community was performed after the writing of these books. Therefore, many key topics of interest to the broader data mining community are not covered in these books. Given that outlier analysis has been explored by a much broader community, including databases, data mining, statistics, and machine learning, we feel that our book incorporates perspectives from a much broader audience and brings together different points of view.

The chapters of this book have been organized carefully, with a view of covering the area extensively in a natural order. Emphasis was placed on simplifying the content, so that students and practitioners can also benefit from the book. While we did not originally intend to create a textbook on the subject, it evolved during the writing process into a work that can also be used as a teaching aid. Furthermore, it can also be used as a reference book, since each chapter contains extensive bibliographic notes. Therefore, this book serves a dual purpose, providing a comprehensive exposition of the topic of outlier detection from multiple points of view.

Additional Notes for the Second Edition

The second edition of this book is a significant enhancement over the first edition. In particular, most of the chapters have been upgraded with new material and recent techniques. More explanations have been added at several places and newer techniques have also been added. An entire chapter on outlier ensembles has been added. Many new topics have been added to the book such as feature selection, one-class support vector machines, one-class neural networks, matrix factorization, spectral methods, wavelet transforms, and supervised learning. Every chapter has been updated with the latest algorithms on the topic.

Last but not least, the first edition was classified by the publisher as a monograph, whereas the second edition is formally classified as a textbook. The writing style has been enhanced to be easily understandable to students. Many algorithms have been described in greater detail, as one might expect from a textbook. It is also accompanied with a solution manual for classroom teaching.

Acknowledgments

First Edition

I would like to thank my wife and daughter for their love and support during the writing of this book. The writing of a book requires significant time that is taken away from family members. This book is the result of their patience with me during this time. I also owe my late parents a debt of gratitude for instilling in me a love of education, which has played an important inspirational role in my book-writing efforts.

I would also like to thank my manager Nagui Halim for providing the tremendous support necessary for the writing of this book. His professional support has been instrumental for my many book efforts in the past and present.

Over the years, I have benefited from the insights of numerous collaborators. An incomplete list of these long-term collaborators in alphabetical order is Tarek F. Abdelzaher, Jiawei Han, Thomas S. Huang, Latifur Khan, Mohammad M. Masud, Spiros Papadimitriou, Guojun Qi, and Philip S. Yu. I would like to thank them for their collaborations and insights over the course of many years.

I would also like to specially thank my advisor James B. Orlin for his guidance during my early years as a researcher. While I no longer work in the same area, the legacy of what I learned from him is a crucial part of my approach to research. In particular, he taught me the importance of intuition and simplicity of thought in the research process. These are more important aspects of research than is generally recognized. This book is written in a simple and intuitive style, and is meant to improve accessibility of this area to both researchers and practitioners.

Finally, I would like to thank Lata Aggarwal for helping me with some of the figures created using PowerPoint graphics in this book.

Acknowledgments for Second Edition

I received significant feedback from various colleagues during the writing of the second edition. In particular, I would like to acknowledge Leman Akoglu, Chih-Jen Lin, Saket Sathe, Jiliang Tang, and Suhang Wang. Leman and Saket provided detailed feedback on several sections and chapters of this book.

Author Biography

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996.

He has worked extensively in the field of data mining. He has published more than 300 papers in refereed conferences and journals and authored over 80 patents. He is the author or editor of 15 books, including a textbook on data mining and a comprehensive book on outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy

technology, a recipient of two IBM Outstanding Technical Achievement Awards (2009, 2015) for his work on data streams and high-dimensional data, respectively. He received the EDBT 2014 Test of Time Award for his work on condensation-based privacy-preserving data mining. He is also a recipient of the IEEE ICDM Research Contributions Award (2015), which is one of the two highest awards for influential research contributions in the field of data mining.

He has served as the general co-chair of the IEEE Big Data Conference (2014) and as the program co-chair of the ACM CIKM Conference (2015), the IEEE ICDM Conference (2015), and the ACM KDD Conference (2016). He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate editor of the ACM Transactions on Knowledge Discovery from Data, an associate editor of the IEEE Transactions on Big Data, an action editor of the Data Mining and Knowledge Discovery Journal, editor-in-chief of the ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information Systems Journal. He serves on the advisory board of the Lecture Notes on Social Networks, a publication by Springer. He has served as the vice-president of the SIAM Activity Group on Data Mining and is a member of the SIAM industry committee. He is a fellow of the SIAM, ACM, and the IEEE, for "contributions to knowledge discovery and data mining algorithms."

Chapter 1

An Introduction to Outlier Analysis

"Never take the comment that you are different as a condemnation, it might be a compliment. It might mean that you possess unique qualities that, like the most rarest of diamonds is ... one of a kind." – Eugene Nathaniel Butler

1.1 Introduction

An outlier is a data point that is significantly different from the remaining data. Hawkins defined [249] an outlier as follows:

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism."

Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the data mining and statistics literature. In most applications, the data is created by one or more generating processes, which could either reflect activity in the system or observations collected about entities. When the generating process behaves unusually, it results in the creation of outliers. Therefore, an outlier often contains useful information about abnormal characteristics of the systems and entities that impact the data generation process. The recognition of such unusual characteristics provides useful application-specific insights. Some examples are as follows:

- Intrusion detection systems: In many computer systems, different types of data are collected about the operating system calls, network traffic, or other user actions. This data may show unusual behavior because of malicious activity. The recognition of such activity is referred to as intrusion detection.
- Credit-card fraud: Credit-card fraud has become increasingly prevalent because of greater ease with which sensitive information such as a credit-card number can be compromised. In many cases, unauthorized use of a credit card may show different patterns, such as buying sprees from particular locations or very large transactions. Such patterns can be used to detect outliers in credit-card transaction data.

1

- Interesting sensor events: Sensors are often used to track various environmental and location parameters in many real-world applications. Sudden changes in the underlying patterns may represent events of interest. Event detection is one of the primary motivating applications in the field of sensor networks. As discussed later in this book, event detection is an important temporal version of outlier detection.
- Medical diagnosis: In many medical applications, the data is collected from a variety of devices such as magnetic resonance imaging (MRI) scans, positron emission tomography (PET) scans or electrocardiogram (ECG) time-series. Unusual patterns in such data typically reflect disease conditions.
- Law enforcement: Outlier detection finds numerous applications in law enforcement, especially in cases where unusual patterns can only be discovered over time through multiple actions of an entity. Determining fraud in financial transactions, trading activity, or insurance claims typically requires the identification of unusual patterns in the data generated by the actions of the criminal entity.
- Earth science: A significant amount of spatiotemporal data about weather patterns, climate changes, or land-cover patterns is collected through a variety of mechanisms such as satellites or remote sensing. Anomalies in such data provide significant insights about human activities or environmental trends that may be the underlying causes.

In all these applications, the data has a "normal" model, and anomalies are recognized as deviations from this normal model. Normal data points are sometimes also referred to as *inliers*. In some applications such as intrusion or fraud detection, outliers correspond to *sequences* of multiple data points rather than individual data points. For example, a fraud event may often reflect the actions of an individual in a particular sequence. The specificity of the sequence is relevant to identifying the anomalous event. Such anomalies are also referred to as *collective anomalies*, because they can only be inferred collectively from a set or sequence of data points. Such collective anomalies are often a result of unusual *events* that generate anomalous patterns of activity. This book will address these different types of anomalies.

The output of an outlier detection algorithm can be one of two types:

- Outlier scores: Most outlier detection algorithms output a score quantifying the level of "outlierness" of each data point. This score can also be used to rank the data points in order of their outlier tendency. This is a very general form of output, which retains all the information provided by a particular algorithm, but it does not provide a concise summary of the small number of data points that should be considered outliers.
- Binary labels: A second type of output is a binary label indicating whether a data point is an outlier or not. Although some algorithms might directly return binary labels, outlier scores can also be converted into binary labels. This is typically achieved by imposing thresholds on outlier scores, and the threshold is chosen based on the statistical distribution of the scores. A binary labeling contains less information than a scoring mechanism, but it is the final result that is often needed for decision making in practical applications.

It is often a subjective judgement, as to what constitutes a "sufficient" deviation for a point to be considered an outlier. In real applications, the data may be embedded in a