

Examen de substitution du 20/01/2022 Durée 1h30

Tout appareil électronique interdit.

Les seuls documents autorisés sont les formulaires des équivalences sur les expressions booléennes et des règles de la Déduction Naturelle.

Inscrire votre numéro d'anonymat sur votre copie.

Exercice 1 (2+2+2=6 points)

Soit F la formule : $(\forall x \, s_1(s_2(x,y))) \wedge ((\exists y \, s_3(s_4(y),x)) \Rightarrow \forall z \, s_1(s_2(z,y))).$

- 1. Dire pour chacun des symboles s_i s'il correspond à un prédicat ou une fonction, unaire ou binaire.
- 2. Calculer F[y := h(x, z)].
- 3. Soit la formule $G = p(a, g(h(x), b)) \land \forall x((\exists x \forall z \, p(x, f(b, y, z))) \lor \exists y \, q(x, h(y), z))$ Renommer certains symboles de variables de G pour obtenir une formule logiquement équivalente à G dans laquelle les quantificateurs portent sur des symboles de variables différents qui n'ont aucune occurrence libre dans la formule.

Exercice 2 (0.5+0.5+3+(1.5+1.5))=7 points)

Soit $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1$ un ensemble de symboles de fonction avec $\mathcal{F}_0 = \{a\}$ et $\mathcal{F}_1 = \{f, g\}$.

1. Particulariser la définition de l'ensemble de termes $\mathcal{T}_0(\mathcal{F})$.

On définit une structure ${\bf M}$ dont le domaine d'interprétation est l'ensemble ${\mathbb N} \times {\mathbb N}$ des couples d'entiers naturels comme suit :

$$a^{\mathbf{M}} = (1,0) \qquad \begin{array}{ll} f^{\mathbf{M}} : (\mathbb{I} \mathbb{N} \times \mathbb{I} \mathbb{N}) \to (\mathbb{I} \mathbb{N} \times \mathbb{I} \mathbb{N}) & g^{\mathbf{M}} : (\mathbb{I} \mathbb{N} \times \mathbb{I} \mathbb{N}) \to (\mathbb{I} \mathbb{N} \times \mathbb{I} \mathbb{N}) \\ f^{\mathbf{M}} ((n_1,n_2)) = (max(n_1,n_2), min(n_1,n_2)) & g^{\mathbf{M}} ((n_1,n_2)) = (n_1+n_2, n_1 \times n_2)) \end{array}$$

- 2. Calculer $[g(f(g(a)))]^{\mathbf{M}}$.
- 3. Montrer pour tout terme $t \in \mathcal{T}_0(\mathcal{F})$, $[t]^{\mathbf{M}} = (1,0)$.
- 4. Nous considérons maintenant les prédicats p et q, une variable x et la formule $F = p(f(x)) \lor (q(g(x)) \lor \neg p(f(a)))$.
 - (a) Définir une structure \mathbf{M}_1 et une valuation v_1 telle $[F]_{v_1}^{\mathbf{M}_1} = 1$. Justifier votre réponse.
 - (b) Définir une structure \mathbf{M}_2 et une valuation v_2 telle $[F]_{v_2}^{\mathbf{M}_2}=0$. Justifier votre réponse.

Exercice 3 (5+5=10 points)

Avec les règles de la déduction naturelle prouver les deux formules ci-dessous (on pourra utiliser les règles dérivées du formulaire).

$$((\forall x \, p(x)) \land (\exists x \, (p(x) \Rightarrow q(x)))) \Rightarrow \exists x \, q(x) \qquad (\neg \exists x \, (p(x) \Rightarrow q(x))) \Rightarrow \forall x \, \neg q(x)$$

Exercice 4 (1+2+1=4 points)

Soit F la formule $((B \land (A \Rightarrow B)) \Rightarrow (\neg A \Rightarrow B))$.

- 1. Etant donnée une structure \mathbf{M} , calculer l'expression booléenne $[F]^{\mathbf{M}}$ en fonction de $\mathbf{I}_{\mathbf{M}}(A)$ et $\mathbf{I}_{\mathbf{M}}(B)$ (sans effectuer de simplification).
- 2. En utilisant un raisonnement équationnel, montrer que la formule F est valide.
- 3. Quelle propriété doit vérifier F' pour que la relation $F \models F'$ soit vérifiée? Justifier.

Exercice 5 (2+2+2+2=8 points)

On considère un plateau carré contenant 16 cases dans lesquelles peuvent être placées des pièces qui sont soit rondes soit carrées. Chaque case est désignée par ses coordonnées (ℓ, c) (désignant respectivement un numéro de ligne et un numéro de colonne) et contient au plus une pièce. Une pièce est représentée par un tuple (p, ℓ, c) où $p \in \{\bigcirc, \square\}$ désigne la forme de la pièce, ℓ le numéro de ligne et ℓ le numéro de colonne où se trouve la pièce. On peut représenter un plateau par l'ensemble des pièces qu'il contient. Voici un exemple de plateau noté $P_{\rm ex}$ (les coordonnées de chaque case figurent en bas des cases).

(3,0)	(3,1)	(3,2)	(3,3)
(2,0)	(2,1)	(2,2)	(2,3)
	0		0
(1,0)	(1,1)	(1,2)	(1,3)
(0,0)	(0,1)	(0,2)	(0,3)

$$P_{\text{ex}} = \left\{ \begin{array}{l} (\square, 2, 0), \\ (\square, 2, 2), \\ (\bigcirc, 1, 1), \\ (\bigcirc, 1, 3), \\ (\square, 0, 0) \end{array} \right\}$$

Etant donné un plateau P, on définit une structure \mathbf{M}_P dont le domaine est $|\mathbf{M}_P| = P$. On considère l'ensemble de prédicats $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ où $\mathcal{P}_1 = \{\text{est_rond}\}\$ et $\mathcal{P}_2 = \{\text{est_a_gauche}\}\$ et tel que :

- est $_{rond}(x)$ signifie que la pièce x située sur le plateau est ronde
- est_a_gauche(x,y) signifie que la pièce x est dans une case qui se trouve à gauche de la case contenant la pièce y: une case de coordonnées (ℓ,c) est à gauche d'une case de coordonnées (ℓ',c') lorsque c< c'
- 1. Calculer $[F_1]_v^{\mathbf{M}_{Pex}}$ (pour toute valuation v) avec $F_1 = \forall x \, (\text{est_rond}(x) \Rightarrow \exists y \, \text{est_a_gauche}(y, x))$
- 2. Calculer $[F_2]_v^{\mathbf{M}_{P_{\mathrm{ex}}}}$ (pour toute valuation v) avec $F_2 = \forall x \, (\mathrm{est_rond}(x) \Rightarrow \forall y \, \mathrm{est_a_gauche}(y, x))$
- 3. Est-il possible, en déplaçant une seule pièce, d'inverser la valeur de $[F_1]_v^{\mathbf{M}_{P_{\mathrm{ex}}}}$ (pour toute valuation v)? Justifier votre réponse.
- 4. Est-il possible, en déplaçant une seule pièce, d'inverser la valeur de $[F_2]_v^{\mathbf{M}_{P_{\mathrm{ex}}}}$ (pour toute valuation v)? Justifier votre réponse.

Exercice 6 (3+3=6 points)

Soit F la formule $\exists y ((\forall x p(y, x)) \lor (\exists x (p(x, x) \land \neg p(x, y)))).$

- 1. Proposer une structure \mathbf{M}_1 telle $[F]_v^{\mathbf{M}_1}=1$ (quelle que soit la valuation v). Justifier votre réponse.
- 2. Proposer une structure \mathbf{M}_2 telle $[F]_v^{\mathbf{M}_2}=0$ (quelle que soit la valuation v). Justifier votre réponse.

Corrigé de l'examen 1ère session du 04/01/2022

- ► Corrigé de l'exercice 1.
- 1. $s_1 \in \mathcal{P}_1, s_2 \in \mathcal{F}_2, s_3 \in \mathcal{P}_2, s_4 \in \mathcal{F}_1$
- 2. Pour substituer y par h(x, z) dans la formule :

$$F = (\forall x \, s_1(s_2(x,y))) \land ((\exists y \, s_3(s_4(y),x)) \Rightarrow \forall z \, s_1(s_2(z,y)))$$

Il faut d'abord renommer les occurrences liées de x et z dans les sous-formules contenant une occurrence libre de y. On obtient :

$$(\forall x_1 \, s_1(s_2(x_1, y))) \land ((\exists y \, s_3(s_4(y), x)) \Rightarrow \forall z_1 \, s_1(s_2(z_1, y)))$$

Seules les occurrences libres de y dans F sont ensuite substituées par h(x,z):

$$F[y := h(x, z)] = (\forall x_1 \, s_1(s_2(x_1, h(x, z)))) \wedge ((\exists y \, s_3(s_4(y), x)) \Rightarrow \forall z_1 \, s_1(s_2(z_1, h(x, z))))$$

3. On obtient la formule suivante :

$$p(a, g(h(x), b)) \land \forall x_1((\exists x_2 \forall z_1 \, p(x_2, f(b, y, z_1))) \lor \exists y_1 \, q(x_1, h(y_1), z))$$

- ► Corrigé de l'exercice 2.
- 1. Définition inductive de $\mathcal{T}_0(\mathcal{F})$:
- $a \in \mathcal{T}_0(\mathcal{F}).$
- Si $t \in \mathcal{T}_0(\mathcal{F})$, alors $f(t) \in \mathcal{T}_0(\mathcal{F})$ et $g(t) \in \mathcal{T}_0(\mathcal{F})$.
- $2. \ [g(f(g(a)))]^{\mathbf{M}} = g^{\mathbf{M}}(f^{\mathbf{M}}(g^{\mathbf{M}}(a^{\mathbf{M}}))) = g^{\mathbf{M}}(f^{\mathbf{M}}(g^{\mathbf{M}}((1,0)))) = g^{\mathbf{M}}(f^{\mathbf{M}}((1,0))) = g^{\mathbf{M}}((1,0)) = (1,0)$
- 3. Raisonnement par récurrence sur t.
- (B) Si t = a, alors $[a]^{\mathbf{M}} = (1, 0)$.
- (I) Soit t un terme, en supposant, par hypothèse de récurrence, que $[t]^{\mathbf{M}} = (1,0)$, il vient :

$$\begin{split} [f(t)]^{\mathbf{M}} &= f^{\mathbf{M}}([t]^{\mathbf{M}}) \\ &= f^{\mathbf{M}}((1,0)) \qquad \text{(par hypothèse de récurrence)} \\ &= (\max(1,0), \min(1,0)) \\ &= (1,0) \\ [g(t)]^{\mathbf{M}} &= g^{\mathbf{M}}([t]^{\mathbf{M}}) \\ &= g^{\mathbf{M}}((1,0)) \qquad \text{(par hypothèse de récurrence)} \\ &= (1+0,1\times0) \\ &= (1,0) \end{split}$$

$$\begin{array}{lll}
4.a \\
[F]_{v_1}^{\mathbf{M}_1} &= [(p(f(x)) \lor (q(g(x)) \lor \neg p(f(a)))]_{v_1}^{\mathbf{M}_1} \\
&= [(p(f(x))]_{v_1}^{\mathbf{M}_1} + [(q(g(x)) \lor \neg p(f(a)))]_{v_1}^{\mathbf{M}_1} \\
&= [(p(f(x))]_{v_1}^{\mathbf{M}_1} + [q(g(x))]_{v_1}^{\mathbf{M}_1} + [\neg p(f(a))]_{v_1}^{\mathbf{M}_1} \\
&= [(p(f(x))]_{v_1}^{\mathbf{M}_1} + [q(g(x))]_{v_1}^{\mathbf{M}_1} + [p(f(a))]_{v_1}^{\mathbf{M}_1}
\end{array}$$

Considérons \mathbf{M}_1 identique à \mathbf{M} , $p_1^{\mathbf{M}}$ et $q^{\mathbf{M}_1}$ quelconques et $v_1(x) = [a]^{\mathbf{M}_1} = (1,0)$. On a alors

$$\begin{split} [F]_{v_1}^{\mathbf{M}_1} &= [(p(f(x))]_{v_1}^{\mathbf{M}_1} + [q(g(x))]_{v_1}^{\mathbf{M}_1} + \overline{[p(f(a))]_{v_1}^{\mathbf{M}_1}} \\ &= p^{\mathbf{M}_1}(f^{\mathbf{M}_1}(v_1(x))) + q^{\mathbf{M}_1}(g^{\mathbf{M}_1}(v_1(x))) + \overline{p^{\mathbf{M}_1}(f^{\mathbf{M}_1}(a^{\mathbf{M}_1}))} \\ &= p^{\mathbf{M}_1}(f^{\mathbf{M}_1}((1,0))) + q^{\mathbf{M}_1}(g^{\mathbf{M}_1}((1,0))) + \overline{p^{\mathbf{M}_1}(f^{\mathbf{M}_1}((1,0)))} \\ &= p^{\mathbf{M}_1}((1,0)) + \overline{p^{\mathbf{M}_1}((1,0))} + q^{\mathbf{M}_1}((1,0)) \\ &= 1 + q^{\mathbf{M}_1}((1,0)) = 1 \end{split}$$

4.b

$$[F]_{v_2}^{\mathbf{M}_2} = [(p(f(x))]_{v_2}^{\mathbf{M}_2} + [q(g(x))]_{v_2}^{\mathbf{M}_2} + \overline{[p(f(a))]_{v_2}^{\mathbf{M}_2}}]$$

 $[F]_{v_2}^{\mathbf{M}_2} = [(p(f(x))]_{v_2}^{\mathbf{M}_2} + [q(g(x))]_{v_2}^{\mathbf{M}_2} + \overline{[p(f(a))]_{v_2}^{\mathbf{M}_2}}$ Considérons \mathbf{M}_2 identique à \mathbf{M} , $p_2^{\mathbf{M}} = \{(1,0)\}$, $q^{\mathbf{M}_2} = \{(0,0)\}$ et $v_2(x) = (1,2)$. On a alors

$$[F]_{v_2}^{\mathbf{M}_2} = [(p(f(x))]_{v_2}^{\mathbf{M}_2} + [q(g(x))]_{v_2}^{\mathbf{M}_2} + \overline{[p(f(a))]_{v_2}^{\mathbf{M}_2}}$$

$$= p^{\mathbf{M}_2}(f^{\mathbf{M}_2}(v_2(x))) + q^{\mathbf{M}_2}(g^{\mathbf{M}_2}(v_2(x))) + \overline{p^{\mathbf{M}_2}(f(\mathbf{M}_2(a^{\mathbf{M}_2}))}$$

$$= p^{\mathbf{M}_2}(f^{\mathbf{M}_2}((1,2))) + q^{\mathbf{M}_2}(g^{\mathbf{M}_2}((1,2))) + \overline{p^{\mathbf{M}_2}(f(\mathbf{M}_2((1,0)))}$$

$$= p^{\mathbf{M}_2}((2,1)) + q^{\mathbf{M}_2}((3,2)) + \overline{p^{\mathbf{M}_2}((1,0))}$$

$$= 0 + 0 + \overline{1} = 0 + 0 = 0$$

► Corrigé de l'exercice 3.

$$\begin{array}{|c|c|c|}\hline \langle 1 \rangle & \operatorname{montrons} \left(\neg \exists x \left(p(x) \Rightarrow q(x) \right) \right) \Rightarrow \forall x \neg q(x) \\ \hline \langle 2 \rangle & \operatorname{supposons} h_1 : \neg \exists x \left(p(x) \Rightarrow q(x) \right), \operatorname{montrons} \forall x \neg q(x) \\ \hline \langle 3 \rangle & \operatorname{soit} \ \operatorname{une} \ \operatorname{nouvelle} \ \operatorname{variable} \ y, \operatorname{montrons} \ \neg q(y) \\ \hline \langle 4 \rangle & \operatorname{supposons} \ h_2 : q(y), \operatorname{montrons} \ false \\ \hline \langle 5 \rangle & \operatorname{montrons} \ \neg \exists x \left(p(x) \Rightarrow q(x) \right) \\ \hline \langle 5 \rangle & \operatorname{CQFD} \left(\operatorname{Ax} \ \operatorname{avec} \ h_1 \right) \\ \hline \langle 6 \rangle & \operatorname{montrons} \ \exists x \left(p(x) \Rightarrow q(x) \right) \\ \hline \langle 7 \rangle & \operatorname{montrons} \ p(y) \Rightarrow q(y) \\ \hline \langle 8 \rangle & \operatorname{CQFD} \left(\operatorname{Ax} \ \operatorname{avec} \ h_2 \right) \\ \hline \langle 7 \rangle & \operatorname{CQFD} \left(\operatorname{I}_{\Rightarrow} \right) \\ \hline \langle 4 \rangle & \operatorname{CQFD} \left(E_{\neg} \right) \\ \hline \langle 2 \rangle & \operatorname{CQFD} \left(I_{\neg} \right) \\ \hline \langle 1 \rangle & \operatorname{CQFD} \left(I_{\Rightarrow} \right) \\ \hline \end{array}$$

► Corrigé de l'exercice 4.

1.a.
$$[F_{1}]^{\mathbf{M}} = \underbrace{[((B \land (A \Rightarrow B)) \Rightarrow (\neg A \Rightarrow B))]^{\mathbf{M}}}_{=[B]^{\mathbf{M}} \cdot [(A \Rightarrow B)]^{\mathbf{M}} + [\neg A \Rightarrow B]^{\mathbf{M}}}_{=[B]^{\mathbf{M}} \cdot (\overline{[A]^{\mathbf{M}}} + [B]^{\mathbf{M}}) + (\overline{[\neg A]^{\mathbf{M}}} + [B]^{\mathbf{M}})}_{=[B]^{\mathbf{M}} \cdot (\overline{[A]^{\mathbf{M}}} + [B]^{\mathbf{M}}) + (\overline{\overline{\mathbf{I}_{\mathbf{M}}(A)}} + [B]^{\mathbf{M}})}_{=[B]^{\mathbf{M}} \cdot (\overline{\mathbf{I}_{\mathbf{M}}(A)} + \mathbf{I}_{\mathbf{M}}(B)) + (\overline{\overline{\mathbf{I}_{\mathbf{M}}(A)}} + \mathbf{I}_{\mathbf{M}}(B))}_{=[B]^{\mathbf{M}} \cdot (\overline{\mathbf{I}_{\mathbf{M}}(A)} + \mathbf{I}_{\mathbf{M}}(B)) + (\overline{\mathbf{I}_{\mathbf{M}}(A)} + \mathbf{I}_{\mathbf{M}}(B))}_{=[B]^{\mathbf{M}} \cdot (\overline{\mathbf{I}_{\mathbf{M}}(A)} + \mathbf{I}_{\mathbf{M$$

2. Pour montrer que F est valide il suffit de montrer que $[F]^{\mathbf{M}} = 1$ pour toute structure \mathbf{M} . En effet, en posant $\mathbf{I}_{\mathbf{M}}(A) = x$ et $\mathbf{I}_{\mathbf{M}}(B) = y$, on a :

$$[F]^{\mathbf{M}} = (\overline{y \cdot (\overline{x} + y)}) + (\overline{\overline{x}} + y) \stackrel{E1.2}{\equiv} (\overline{y \cdot (\overline{x} + y)}) + (x + y)$$

$$\stackrel{E4.3}{\equiv} (\overline{y} + (\overline{x} + y)) + (x + y)$$

$$\stackrel{E3.4,E3.1}{\equiv} (y + \overline{y}) + ((\overline{x} + y) + x)$$

$$\stackrel{E1.4}{\equiv} 1 + ((\overline{x} + y) + x) \stackrel{E3.3}{\equiv} 1$$

3. $F \models F'$ ssi pour toute structure \mathbf{M} , si $[F]^{\mathbf{M}} = 1$ alors $[F']^{\mathbf{M}} = 1$. Comme F est valide, pour toute structure \mathbf{M} , $[F]^{\mathbf{M}} = 1$ donc $F \models F'$ ssi pour toute structure \mathbf{M} , $[F']^{\mathbf{M}} = 1$ donc ssi F' est valide.

► CORRIGÉ DE L'EXERCICE 5.

$$\begin{split} [F_1]_v^{\mathbf{M}_{P_{\mathrm{ex}}}} &= [\forall x \, (\mathrm{est_rond}(x) \Rightarrow \exists y \, \mathrm{est_a_gauche}(\mathbf{y}, \mathbf{x}))]_v^{\mathbf{M}_{P_{\mathrm{ex}}}} \\ &= \prod_{m \in [\mathbf{M}_{P_{\mathrm{ex}}}]} [\mathrm{est_rond}(x) \Rightarrow \exists y \, \mathrm{est_a_gauche}(\mathbf{y}, \mathbf{x})]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}} \\ &= \prod_{m \in [\mathbf{M}_{P_{\mathrm{ex}}}]} [\overline{\mathrm{est_rond}(x)}]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}} + [\exists y \, \mathrm{est_a_gauche}(\mathbf{y}, \mathbf{x})]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}} \end{split}$$

On a

Off a
$$[F_1]_v^{\mathbf{M}_{P_{\mathrm{ex}}}} = 1 \quad \underbrace{ssi}_{[\mathrm{est_rond}(x)]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}}} + [\exists y \, \mathrm{est_a_gauche}(y, x)]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}} = 1 \, \mathrm{pour \, chaque} \, m \in |\mathbf{M}_{P_{\mathrm{ex}}}|$$
 Il faut donc vérifier que $[\exists y \, \mathrm{est_a_gauche}(y, x)]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}} = 1 \, \mathrm{lorsque} \, m \, \mathrm{est \, une} \, \mathrm{pièce \, ronde}.$

Il faut donc vérifier que $[\exists y \text{ est_a_gauche}(y, x)]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\text{ex}}}} = 1$ lorsque m est une pièce ronde.

- si $m_1 = (\bigcirc, 1, 1)$, on choisit $n_1 = (\Box, 2, 0)$, et on a $[\text{est_a_gauche}(y, x)]_{v[x \leftarrow m_1][y \leftarrow n_1]}^{\mathbf{M}_{Pex}} = 1$ donc $[\exists y \text{ est_a_gauche}(y, x)]_{v[x \leftarrow m_1]}^{\mathbf{M}_{Pex}} = 1$
- si $m_2 = (\bigcirc, 1, 3)$, on choisit $n_2 = (\Box, 2, 2)$, et on a $[\text{est_a_gauche}(y, x)]_{v[x \leftarrow m_2][y \leftarrow n_2]}^{\mathbf{M}_{P_{\text{ex}}}} = 1$ donc $[\exists y \text{ est_a_gauche}(y, x)]_{v[x \leftarrow m_2]}^{\mathbf{M}_{P_{\text{ex}}}} = 1$
- pour toutes les autres valeurs possibles de m on a $\overline{\left[\text{est_rond}(x)\right]_{v[x \leftarrow m]}^{\mathbf{M}_{Pex}}} = 1$

On a donc $[F_1]_v^{\mathbf{M}_{P_{\text{ex}}}} = 1$

1.b.
$$[F_2]_v^{\mathbf{M}_{P_{\mathrm{ex}}}} = [\forall x (\operatorname{est_rond}(x) \Rightarrow \forall y \operatorname{est_a_gauche}(\mathbf{y}, \mathbf{x}))]_v^{\mathbf{M}_{P_{\mathrm{ex}}}}$$

$$= \prod_{m \in |\mathbf{M}_{P_{\mathrm{ex}}}|} [\operatorname{est_rond}(x) \Rightarrow \forall y \operatorname{est_a_gauche}(\mathbf{y}, \mathbf{x})]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}}$$

$$= \prod_{m \in |\mathbf{M}_{P_{\mathrm{ex}}}|} \left(\overline{[\operatorname{est_rond}(x)]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}}} + [\forall y \operatorname{est_a_gauche}(\mathbf{y}, \mathbf{x})]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}} \right)$$

$$= \prod_{m \in |\mathbf{M}_{P_{\mathrm{ex}}}|} \left(\overline{[\operatorname{est_rond}(x)]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\mathrm{ex}}}}} + \prod_{n \in |\mathbf{M}|} [\operatorname{est_a_gauche}(\mathbf{y}, \mathbf{x})]_{v[x \leftarrow m][y \leftarrow n]}^{\mathbf{M}_{P_{\mathrm{ex}}}} \right)$$

On a $[F_2]_v^{\mathbf{M}_{Pex}} = 0 \text{ ssi}$

 $\overline{[\text{est_rond}(x)]_{v[x \leftarrow m]}^{\mathbf{M}_{P_{\text{ex}}}}} + \prod_{n \in |\mathbf{M}_{P_{\text{ex}}}|} [\text{est_a_gauche}(\mathbf{y}, \mathbf{x})]_{v[x \leftarrow m][y \leftarrow n]}^{\mathbf{M}_{P_{\text{ex}}}} = 0 \text{ pour une valeur } m \in |\mathbf{M}_{P_{\text{ex}}}|$

Considérons $m_1 = (\bigcirc, 1, 1)$ on a alors

$$\overline{\left[\text{est_rond}(x)\right]_{v[x \leftarrow m_1]}^{\mathbf{M}_{P_{\text{ex}}}}} = 0$$

$$- \left[\text{est_a_gauche}(\mathbf{y}, \mathbf{x})\right]_{v[x \leftarrow m_1][y \leftarrow m_1]}^{\mathbf{M}_{P_{\text{ex}}}} = 0, \text{ donc } \prod_{n \in |\mathbf{M}_{P_{\text{ex}}}|} \left[\text{est_a_gauche}(\mathbf{y}, \mathbf{x})\right]_{v[x \leftarrow m_1][y \leftarrow n]}^{\mathbf{M}_{P_{\text{ex}}}} = 0$$
On a donc $[F_2]_{v}^{\mathbf{M}_{P_{\text{ex}}}} = 0$

On a donc $[F_2]_v^{\mathbf{M}_{P_{\text{ex}}}} = 0$

- 1.c. Pour que $[F_1]_v^{\mathbf{M}_{Pex}} = 0$, il suffit d'avoir une pièce ronde avec aucune pièce à sa gauche. Si nous déplaçons la pièce m = (0, 1, 1) sur la première colonne pour obtenir la pièce m = (0, 1, 0), nous avons:
- 1.d. Il n'est pas possible d'obtenir $[F_2]_v^{\mathbf{M}_{P_{\mathrm{ex}}}}=1$ en ne déplaçant qu'une pièce. Toute pièce ronde amène à la non satisfaction de la formule car cette pièce n'est pas à gauche d'elle même. Donc il n'est pas possible d'avoir $[F_2]_v^{\mathbf{M}_{Pex}} = 1$ dès qu'une pièce ronde est posée sur le plateau.
- ► Corrigé de l'exercice 6.

$$\begin{split} [F]_{v}^{\mathbf{M}} &= [\exists y \left((\forall x \, p(y, x)) \vee (\exists x (p(x, x) \wedge \neg p(x, y))) \right)]_{v}^{\mathbf{M}} \\ &= \sum_{m \in |\mathbf{M}|} \left[(\forall x \, p(y, x)) \vee (\exists x (p(x, x) \wedge \neg p(x, y))) \right]_{v[y \leftarrow m]}^{\mathbf{M}} \\ &= \sum_{m \in |\mathbf{M}|} \left([\forall x \, p(y, x)]_{v[y \leftarrow m]}^{\mathbf{M}} + [\exists x (p(x, x) \wedge \neg p(x, y))]_{v[y \leftarrow m]}^{\mathbf{M}} \right) \\ &= \sum_{m \in |\mathbf{M}|} [\forall x \, p(y, x)]_{v[y \leftarrow m]}^{\mathbf{M}} + \sum_{m \in |\mathbf{M}|} [\exists x (p(x, x) \wedge \neg p(x, y))]_{v[y \leftarrow m]}^{\mathbf{M}} \end{split}$$

- 6.1. Considérons la structure \mathbf{M}_1 telle que $|\mathbf{M}_1| = \mathbb{N}$ et $p^{\mathbf{M}_1} = \{(x,y) \mid x \leq y\}$, on alors $[\forall x \, p(y,x)]_{v[y\leftarrow 0]}^{\mathbf{M}_1} = 1$, donc $[\exists y \, ((\forall x \, p(y,x))]_v^{\mathbf{M}_1} = 1$ et $[F]_v^{\mathbf{M}_1} = 1$
 - 6.2. Considérons la structure \mathbf{M}_2 telle que $|\mathbf{M}_2| = \mathbb{N}$ et $p^{\mathbf{M}_2} = \{(x, y) \mid x < y\}$, on alors

 - $\left[\forall x \, p(y,x)\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ car } [p(y,x))]_{v[y\leftarrow m][x\leftarrow m)]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N} \text{ donc } \\ \sum_{m \in |\mathbf{M}_2|} \left[\forall x \, p(y,x)\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \\ \left[p(x,x)\right]_{v[x\leftarrow n]}^{\mathbf{M}_2} = 0 \text{ pour chaque } n \in \mathbb{N}, \text{ donc } [p(x,x) \land \neg p(x,y)]_{v[x\leftarrow n][y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } \\ n \in \mathbb{N} \text{ et chaque } m \in \mathbb{N} \text{ et } \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } m \in \mathbb{N}, \text{ donc } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2} = 0 \text{ pour chaque } \\ \sum_{m \in \mathbb{N}} \left[\exists x (p(x,x) \land \neg p(x,y))\right]_{v[y\leftarrow m]}^{\mathbf{M}_2$ $\sum_{m \in |\mathbf{M}_2|} \left[\exists x (p(x, x) \land \neg p(x, y)) \right]_{v[y \leftarrow m]}^{\mathbf{M}_2} = 0$

donc, $[F]_v^{\mathbf{M}_2} = 0$