การหารพหุนาม

ขั้นตอนการหาร

ตัวตั้ง = ตัวหาร × ผลหาร + เศษ

$$P(x) = Q(x) T(x) + R(x)$$

♥ โดยที่ตัวเศษจะมีดีกรีน้อยกว่าตัวหารอยู่ 1

-2 เรียงดีกรีจากมากไปน้อย

หารสังเคราะห์

- ♥ ตัวหารต้องมีดีกรีเป็น 1
- 💙 หาได้ทั้งผลหารและเศษ

 $\underline{\mathbf{E}}\mathbf{x}$ จงหาผลหารและเศษที่เกิดจากการหาร $3x^4 + 6x^3 + x - 2$ ด้วย x - 2

Sol
$$2 \mid 3 \mid 6 \mid 0 \mid 1$$

 $6 \mid 24 \mid 48$
 $x-2=0$
 $x=2$
 $3 \mid 12 \mid 24 \mid 49$

Names
$$3x^3 + 12x^2 + 24x + 49$$

ข้อควรรู้

ถ้าตัวหารอยู่ในรูป ax+b จะต้องนำผลหารจากการหารสังเคราะห์มาคูณด้วย $\frac{1}{a}$ ก่อนถึงจะได้ผลหารที่แท้จริง

ทฤษฎีบทเศษเหลือ

- ♥ ตัวหารต้องมีดีกรีเป็น 1
- 💙 หาเศษจากการหารเท่านั้น
- ถ้า P(x) หารด้วย x c เศษจะเท่ากับ P(c)
- ถ้า P(c)=0 จะได้ว่า x c หาร P(x) ลงตัว หรือเป็นตัวประกอบของ P(x)

การแยกตัวประกอบตรรกยะ

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

ขั้นตอนการแยกตัวประกอบ

1. หาตัวประกอบของ $a_{_{n}}$ และ $a_{_{0}}$ สมมติว่าเป็น m และ k ตามลำดับ

2. หาค่า $\frac{k}{m}$ ที่ทำให้ $P\left(\frac{k}{m}\right)=0$ แล้ว $x-\frac{k}{m}$ เป็นตัวประกอบของ P(x)

3. นำ $\left(x-\frac{k}{m}\right)$ ไปหารสังเคราะห์ P(x) แล้วนำผลหารไปแยกตัวประกอบต่อ ตามขั้นตอน 1 - 3 ทำซ้ำไปเรื่อยๆ จนแยกตัวประกอบได้ทั้งหมด

Ex จงแยกตัวประกอบ
$$2x^4 - 7x^3 + x^2 + 7x - 3$$

ขั้นตอนที่ 1 $a_0 = -3$ ตัวประกอบของ a_0 คือ $\pm 1, \pm 3$ ให้เป็น k Sol

 $a_n=2$ ตัวประกอบของ a_n คือ $\pm 1, \pm 2$ ให้เป็น m

ชั้นตอนที่ 2 หาค่า
$$\frac{k}{m} = \pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$$

หาค่า $\frac{k}{m}$ ที่ทำให้ $P\left(\frac{k}{m}\right) = 0$ จะได้ว่า $\frac{k}{m} = \frac{1}{2}$

ขั้นตอนที่ 3
$$\frac{1}{2}$$
 2 -7

$$P(x) = \left(x - \frac{1}{2}\right)(x - 1)(2x^2 - 4x - 6)$$
$$= \left(x - \frac{1}{2}\right)(x - 1)(2x + 2)(x - 3)$$

III. การแกัสมการพหุนามหนึ่งตัวแปร

กรณีพหุนามดีกรีสอง

วิธีที่ 1 แยกสองวงเล็บ

วิธีที่ 2 ใช้สูตร

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 b^2 - 4ac $\begin{cases} > 0 : \vec{\mathfrak{U}} \ 2$ คำตอบที่เป็น $R \\ = 0 : \vec{\mathfrak{U}} \ 1$ คำตอบที่เป็น $R \\ < 0 : ไม่มีคำตอบที่เป็น <math>R$

<u>สูตรที่ควรรู้</u>

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a-b)(a+b) = a^{2} - b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$a^{3} \pm b^{3} = (a \pm b)(a^{2} \mp ab^{2} + b^{2})$$

$$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$$

Trick!!

	$ax^2 + bx + c = 0$	$ax^3 + bx^2 + cx + d = 0$
ผลบวกของราก	$-\frac{b}{a}$	- <u>b</u>
ผลคูณของราก	<u>c</u> a	- <u>d</u>
ผลบวกของผลคูณของราก	_	$\frac{c}{a}$

IV. การแก้อสมการพหุนามหนึ่งตัวแปร

- 1. จัดรูปให้ฝั่งหนึ่งเป็นศูนย์แล้วแยกตัวประกอบ
- 2. ทำ ส.ป.ส หน้าตัวแปรให้เป็น + ทุกวงเล็บ และแต่ละวงเล็บยกกำลังเลขคี่
- หาค่าตัวแปรที่ทำให้แต่ละวงเล็บเท่ากับ 0
- 4. น้ำค่าตัวแปรที่ได้มา *plot* บนเส้นจำนวน และใส่เครื่องหมาย + + ไปเรื่อยๆ โดยเริ่มจากขวาไปซ้าย
- 5. ถ้า > 0, \geq 0 ให้ตอบช่วง + ถ้า < 0, \leq 0 ให้ตอบช่วง -
- 6. ตรวจสอบคำตอบ ตัวส่วน ≠ 0
 แการคูณหรือหารด้วยจำนวนลบ ต้องกลับเครื่องหมายอสมการเสมอ
 และห้าม x, ÷ ทั้งอสมการด้วยตัวแปร

V. ค่าสัมบูรณ์

นิยาม

$$|a| = \begin{cases} a & \text{id } a > 0 \\ 0 & \text{id } a = 0 \\ -a & \text{id } a < 0 \end{cases}$$

สมบัติค่าสัมบูรณ์ที่ควรรู้

1.	$ a \ge 0$	

4.
$$|a \cdot b| = |a| \cdot |b|$$

$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

2.
$$|x| \le a \rightarrow -a \le x \le a$$

 $|x| \le a \rightarrow -a \le x \le a$

5.
$$x^2 = |x|^2 = |x^2|$$

3.
$$|x| > a \rightarrow x < -a$$
 หรือ $x > a$
 $|x| \geqslant a \rightarrow x \leqslant -a$ หรือ $x \geqslant a$

6.
$$\sqrt[n]{a^n} = \begin{cases} a; n \in \text{เลขคี่} \\ |a|; n \in \text{เลขคู่} \end{cases}$$

กราฟค่าสัมบูรณ์

$$y = |x|$$

$$\frac{|x|}{a} + \frac{|y|}{b} = 1$$

VI. การแก้สมการ/ อสมการ ค่าสัมบูรณ์

ถ้า	แล้ว
1. $ P(x) = Q(x)$ $ P(x) < Q(x)$ กรวจคำตอบ $ P(x) > Q(x)$	$P(x) = \pm Q(x)$ $-Q(x) < P(x) < Q(x)$ $P(x) < -Q(x)$ পুর্বৃত্ব $P(x) > Q(x)$
2. $ P(x) = P(x)$ P(x) = -P(x)	$P(x) \ge 0$ $P(x) \le 0$
3. P(x) = Q(x)	$(P(x))^2 = (Q(x))^2$
4. มีหลายค่าสัมบูรณ์	ปลดค่าสัมบูรณ์, แยกกรณีคิด
5. $\begin{vmatrix} a & + & b \end{vmatrix} = \begin{vmatrix} a + b \end{vmatrix}$ $\begin{vmatrix} a & + & b \end{vmatrix} = \begin{vmatrix} a - b \end{vmatrix}$ $\begin{vmatrix} a & + & b \end{vmatrix} > \begin{vmatrix} a + b \end{vmatrix}$	$ab \ge 0$ $ab \le 0$ $ab < 0$
$ a + b \geqslant a+b $	R