	Reg. No.										
--	----------	--	--	--	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, MAY 2023 Fourth Semester

18AIO352T – MACHINE LEARNING

Note: (i) (ii)	Part - A should be answered in OMR over to hall invigilator at the end of 40 th Part - B & Part - C should be answere	sheet w	».		d be	han	ded
Time: 3	hours		I	Max. I	Marl	ks: 1	00
	$PART - A (20 \times 1)$	= 20 N	Marks)	Marks	BL	со	PO
	Answer ALL	Questic	ons				
1.	Output of training process in machi	ne lear	ning is	1	2	1	. 1
	(A) Accuracy	(B)	Outcome				
	(C) Machine learning model	(D)	Mean variance				
2.	type of machine learning	g algoi	rithm is suitable for predicting	1	1	1	1
	(A) Logistic regression	(B)	Linear regression				
	(C) Decision tree classifier						
3.	If a ML model output involves tar	get var	iable then the model is called as	1	1	1	1
	(A) Descriptive model	(B)	Predictive model				
	(C) Reinforcement learning	. ,	Well defined				
4.	Machine learning model which is l data.	built or	sample data is known as	1	1	1	1
	(A) Transfer	(B)	Training				
	(C) Clean	(D)	Testing				15
5.	What type of regularization is used	to redu	ace over fitting?	1	2	2	. 3
	(A) L2	(B)					
	(C) Both L1 and L2	(D)	Linear regression				
6.	Which of the following does not co	me uno	ler logistic regression?	1	2	2	2
	(A) Binomial	(B)	Trinomial				
	(C) Multinomial	(D)	Ordinal				
7.	Cross validation is used for			1	3	2	2
. •	(A) Estimating expected error	(B)	Helps in selecting best fit model				
	(C) Avoiding over fit model	(D)					
8	Logistic regression comes under	10	earning.	1	1	2	2
0.	(A) Supervised		Unsupervised				
	(C) Semi-supervised		Reinforcement				
	(C) Dellii bapei ribea						

Page 1 of 3

27MF4-18AIO352T

	9. KNN is used for .			1	2	3	3
	(A) Classification	(B) R	egression				
	(C) Approximation		lassification and regression				
1	10. PCA is used for			1	1	3	2
	(A) Over fitting case	(B) Sr	mall data and new features				
	(C) Regularizing	. ,	educing the dimensionality				
		()	8				
1	11. Which of the following is not used	as distance	e function in KNN?	1	2	3	1
	(A) Euclidean distance		ledian distance				
	(C) Manhattan distance	. ,	linkowski distance			ē.	
	<u> </u>	()					
1	12. To calculate Eigen value and Eig	en vector	of the covariance matrix th	e 1	3	3	3.
	expressions						
	(A) $ M * X = 0$	(B) M	$M \div X \models 0$				
	(C) $ M + X = 0$		M-X = 0				
		() (
1	3. Divisive hierarchical clustering is _	app	oroach.	1	2	4	3
	(A) Bottom-up		op-down				
	(C) Middle to top		iddle to down				
		(-)					
1	4. Which of the following method	determine	s the number of clusters in	1	3	4	3
	hierarchical clustering?		(•			
	(A) Elbow method	(B) Sil	lhoulte method				
	(C) Gap statistic	` '	If the above				
		(-) 111	12 110 110 110 110 110 110 110 110 110 1				
= 1.	5. The disadvantage of single linkage	n hierarch	nical clustering is?	1	1	4	2
	(A) It resulting long and string	/ (B) It i	is sensitive to noise				
	clusters	(-)					
	(C) It results in spherical clusters	(D) Co	omputationally expensive				
		()					
10	6. K-mean clustering is algor	ithm.		1	2	4	5
	(A) Supervised		nsupervised				
	(C) Reinforcement		mi-supervised				
		` /	1				
1'	7. Which type of neural network is con	nmonly us	sed for recognition of image?	1	3	5	5
	(A) RNN	(B) CN					
	(C) Multilayer perceptron	(D) Ra	dial basis function network				
		` /	71				
18	8. The purpose of back propagation in	neural net	twork is?	1	1	5	1
+0			propagate input				
	(C) To calculate error between	(D) To	regularize				
	predicted and actual output	. ,	3				
	1		S (#2)				
19	9. Technique used to prevent over fitting	ng in neura	al network is	1	2	5	2
	(A) Lasso	(B) Ric					
	(C) Regularization	(D) Dro					
		. , _	•	•			
20	0. Neural network is used to solve			1	3	5	3
	(A) Non linear problems	(B) Lin	near problems				
	(C) Classification		I the above				
n -							
Page 2 of	1.3			27MF4-1	8AIO:	352T	

	PART – B (5 \times 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	со	РО
21.	Define under fitting and over fitting.	4	2	1	1
22.	. What do you mean by curse of dimensionality?		3	1	2
23.	Define precision and recall.	4	2	2	3
24.	Write a note on linear regression with multiple variables.	4	3	2	5
25.	Describe about Bayesian classifier.	4	4	3	3
26.	What do you mean by bi-clustering explain about it?	4	3	4	5
27.	How does a random forest algorithm work?	4	2	5	2
	PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	со	PO
28. a.i.	Explain in detail about bias and variance.	6	3	1	2
ii.	Write a note on learning curve with a neat diagram.	6	2	1	1
b.	(OR) Describe in detail about L1 and L2 regularization techniques.	12	3	1	2
29. a.	Explain in detail about logistic regression with an example.	12	4	2	2
b.	(OR) What are various performance metrics available? Explain about each metrics.	12	4	2	5
30. a.	Explain in detail about principal component analysis.	12	3	3	2
b.	(OR) Describe in detail about support vector machine and kernels with a neat diagram.	12	4	3	5
31. a.	Explain in detail about K-means clustering with a neat diagram.	12	4	4	5
b.	(OR) Describe in detail about K-medoids clustering with a neat diagram.	12	3	4	2
32. a.	How does a decision tree algorithm works, explain with an example.	12	2	5	5
b.i.	Write a note on CART.	6	3	5	2
ii.	What is inductive bias in decision tree?	6	2	5	1

* * * * *