PROGRAM KECEMERLANGAN UNIT FIZIK KOLEJ MATRIKULASI PAHANG SEM 1 SESI 2022/2023

ANSWER SCHEME PRA PSPM 1

NO	ANSWER SCHEME	MARK(S)
1	$LHS \\ [v] = LT^{-1}$	
	$[at] = (LT^{-2})(T)$	G1
	$[at] = LT^{-1}$	
	: dimensionally is correct	J1
	TOTAL	2

NO	ANSWER SCHEME	MARK(S)
2 a(i)	$a = \frac{v}{t}$ $2 = \frac{15}{t}$ $t = 7.5 \text{ s}$ Correct value and label for 15 ms ⁻¹ and 7.5 s – D1 Shape – D1	D2

a (ii)	s = area under v-t graph	K1
	$s = \frac{1}{2}(15)(7.5)$ $s = 56.25 \text{ m}$	G1 JU1
b(i)	at maximum height, $v_y = 0$ $u_x = 30\cos(60^\circ) = 15 \text{ms}^{-1}$	K1
	$u_y = 30\sin(60^\circ) = 25.98 \text{ms}^{-1}$ $v_y^2 = u_y^2 - 2gs_y$ $0 = (25.98)^2 - 2(9.81)s_y$	
	$s_y = H = 34.40 \mathrm{m}$	GJU1
b(ii)	At point B, $s_y = 0$	K1
	$s_y = u_y t - \frac{1}{2} g t^2$ $0 = (25.98)t - (4.905)t^2$ $t = 5.30 s$	G1
	$s_x = u_x t$ $s_x = 15(5.30)$ $s_x = 79.5 \mathrm{m}$	GJU1
	TOTAL	10

NO	ANSWER SCHEME	MARK(S)
3 a	$\sum P_{xi} = \sum P_{xf} \text{ AND } \sum P_{yi} = \sum P_{yf}$	K1
	$\sum P_{xi} = \sum P_{xf}$ $m_A u_{Ax} + m_B u_{Bx} = m_A v_{Ax} + m_B u_{Bx}$ $(m)(40) + (m)(0) = (m)(v_A \cos 60^\circ) + (m)(v_B \cos 20^\circ)$ $40 = 0.5 \ v_A + 0.94 \ v_B \dots (1)$	G1
	$\sum P_{yi} = \sum P_{yf}$ $m_A u_{Ay} + m_B u_{By} = m_A v_{Ay} + m_B u_{By}$ $(m)(0) + (m)(0) = (m)(v_A \sin 60^\circ) + (m)(-v_B \sin 20^\circ)$ $0 = 0.866 \ v_A - 0.342 \ v_B$ $v_B = 2.532 v_A \dots (2)$ (2) into (1)	G1
	$40 = 0.5 v_A + 0.94 (2.532 v_A)$ $40 = 2.88 v_A$ $v_A = 13.89 \text{ m s}^{-1}$	GJU1
	Substitute $v_A = 13.89 \text{ m s}^{-1} \text{ in (2)}$ $v_B = 2.532 (13.89)$ $v_B = 35.17 \text{ m s}^{-1}$	GJU1
3 b (i)	BOX A $\vec{T} \qquad \vec{f}$ \vec{W}	D1 (All forces with arrow and label are correct)

	BOX B $\vec{f} \qquad \vec{T}$ \vec{W}	D1 (All forces with arrow and label are correct)
b (ii)	$\sum F_x = m_A a \text{ but a} = 0 \text{ because v constant}$ $\sum F_x = 0$	K1
	$\sum F_{y} = 0$ $N_{A} + F \sin \theta - W = 0$ $N_{A} + (70)\sin(25) - (30)(9.81) = 0$ $N_{A} = 264.72 \text{ N}$ $\sum F_{x} = 0$ $F \cos \theta - T_{A} - f_{A} = 0$ $F \cos \theta - \mu N_{A} = T_{A}$ $(70) \cos (25) - (0.05)(264.72) = T_{A}$ $T_{A} = 50.21 \text{ N}$	G1 GJU1
b (iii)	$\sum_{X} F_{x} = 0$ $T_{A} - f_{B} = 0$	
	$f_B = T_A$ $f_B = 50.21 \text{ N}$ $f_B = \mu N_B$	G1
	$(50.21) = (0.05)N_B$ $N_B = 1004.2 \text{ N}$	G1
	$\sum F_y = 0$	

$N_B - W = 0$	GJU1
$N_B = mg$ (1004.2) = $m(9.81)$	
(1004.2) = m(9.81)	
m = 102.37 kg	
TOTAL	13

NO	ANSWER SCHEME	MARK(S)
4 a	a F F W	
	$\sum F_{y} = 0$ $N - mg \cos \theta = 0$ $N = mg \cos \theta$	K 1
	$= (450)(9.81)\cos 27^{\circ}$ $= 3.93 \times 10^{3} \text{ N}$ $f = \mu N$	J1
	$W_f = fs \cos \theta$ = $\mu Ns \cos \theta$ = $(0.4)(3.93 \times 10^3)(3.8) \cos 180^\circ$ = $-5.97 \times 10^3 \text{ J}$	G1 JU1

4 b	$\sum E_i = \sum E_f$ $\frac{1}{2}kx^2 = \frac{1}{2}mv^2$ $\frac{1}{2}(850)(6 \times 10^{-2})^2 = \frac{1}{2}(1.5)v^2$	K 1
	$v = 1.43 \text{ m s}^{-1}$	GJU1
4 c	$v = 12 \frac{\text{km}}{\text{h}} \times \frac{1 \text{ h}}{(60 \times 60) \text{ s}} \times \frac{1 \times 10^{3} \text{ m}}{1 \text{ km}}$ $= \frac{12 \times 10^{3}}{60 \times 60} = 3.33 \text{ m s}^{-1}$ $P = Fv \cos \theta$ $F = \frac{P}{v \cos \theta} = \frac{7500}{(3.33)\cos 0^{\circ}} = 2.25 \times 10^{3} \text{ N}$	G1 GJU1
	TOTAL	8

NO	ANSWER SCHEME	MARK(S)
5 (i)	$\sum F_{y} = 0$	
	N - mg = 0	
	N = mg	K1
	$\sum_{c} F_{c} = F_{c}$ $f = F_{c}$ $F_{c} = \mu N$	
	$= \mu mg$ = (0.72)(1500)(9.81) = 1.06×10 ⁴ N	G1 JU1

(ii)	$\sum F_{x} = F_{c} = \frac{mv^{2}}{r}$	
	$F_c = \frac{mv^2}{r}$	
	$v = \sqrt{\frac{F_c r}{m}}$	
	$=\sqrt{\frac{(1.06\times10^{-4})(70)}{1500}}$	G1
	$= 22.24 \text{ m s}^{-1}$	JU1
	TOTAL	5

NO	ANSWER SCHEME	MARK(S)
6 a(i)	$T = \frac{2\pi}{}$	
	ω	
	$=\frac{2\pi}{4.38}$	G1
	=1.43s	JU1
a(ii)	$\omega = \sqrt{\frac{k}{m}}$	
	$4.38 = \sqrt{\frac{k}{1.50}}$	G1
	$k = 28.78 \text{ N m}^{-1}$	JU1
a(iii)	$v_{\text{max}} = \omega A$	
	=4.38(0.056)	G1
	$= 0.245 \mathrm{m \ s^{-1}}$	JU1
a (iv)	At $t = 1.00 s$,	
	$y = 0.056\sin(4.38(1))$	G1 JU1
	$=-5.29\times10^{-2} \text{ m}$	301

		1
	$v = 0.245\cos\left(4.38t\right)$	
	$=0.245\cos(4.38(1))$	
	$=-7.99\times10^{-2} \text{ m s}^{-1}$	G1
		JU1
	$a = -1.074\sin\left(4.38t\right)$	
	$=-1.074\sin(4.38(1))$	
	$=1.02 \mathrm{m \ s^{-2}}$	G1
		JU1
6 b (i)	$v = f \lambda$	
	$30 = f\left(1.6\right)$	
	f = 18.75 Hz	GJU1
	$\omega = 2\pi f$	
	$=2\pi \left(18.75\right)$	
	$=37.5\pi \mathrm{rad}\mathrm{s}^{-1}\mathrm{or}117.81\mathrm{rad}\mathrm{s}^{-1}$	GJU1
	$k = \frac{2\pi}{\lambda}$	
	$=\frac{2\pi}{1.6}$	GJU1
	$=1.25\pi \mathrm{m}^{-1}\mathrm{or}3.93\mathrm{m}^{-1}$	GJU1
b (ii)	$y(x,t) = 3.5 \times 10^{-3} \sin(37.5\pi t - 1.25\pi x)$	J1
	where x and y in meters and t in seconds.	
	where x and y in meters and t in seconds.	
b (iii)	The left-hand end is located at $x = 0$.	
	$y(t) = 3.5 \times 10^{-3} \sin(37.5\pi t)$	J1
	where x and y in meters and t in seconds.	
b (iv)	Particle at $x = 1.40 m$,	
	$y(x,t) = 3.5 \times 10^{-3} \sin(37.5\pi t - 1.25\pi(1.4))$	
	$y(t) = 3.5 \times 10^{-3} \sin(37.5\pi t - 1.75\pi)$	J1
	where x and y in meters and t in seconds.	J I
	•	

b (v)	$v_{\text{max}} = \omega A$	
	$=37.5\pi(3.5\times10^{-3})$	
	$= 0.41 \mathrm{m \ s^{-1}}$	GJU1
b (vi)	At $t = 0.05 s$ and $x = 1.40 m$,	
	$y = 3.5 \times 10^{-3} \sin(37.5\pi(0.05) - 1.25\pi(1.40))$	G1
	$y = 1.34 \times 10^{-3} \text{ m}$	JU1
	$v_{y} = 0.412\cos(37.5\pi t - 1.25\pi x)$	
	$= 0.412\cos(37.5\pi(0.05) - 1.25\pi(1.40))$	G1
	$v_y = 0.381 \mathrm{m \ s^{-1}}$	JU1
	TOTAL	23

NO	ANSWER SCHEME	MARK(S)
7 a(i)	Radius of wire, $r = 1.65 \times 10^{-3}$ m	
	Cross-sectional area of steel wire, $A = \pi r^2$	
	$A = \pi (1.65 \times 10^{-3})^2$	
	$A = 8.55 \times 10^{-6} \mathrm{m}$	G1
	Young's Modulus, $Y = \frac{Fl}{Ae}$	
	$Y = \frac{[(2.5)(9.81)](0.4)}{(8.55 \times 10^{-6})(0.1 \times 10^{-3})}$	G1
	$Y = 1.15 \times 10^{10} \text{ N m}^{-2}$	JU1

a(ii)	Energy, $U = \frac{1}{2}Fe$	
	$U = \frac{1}{2}(24.53)(0.1 \times 10^{-3})$	G1
	$U = 1.23 \times 10^{-3} \mathrm{J}$	JU1
7 b	Let T_{θ} as the temperature between the interface	
	At steady state, $\left(\frac{Q}{t}\right)_{iron} = \left(\frac{Q}{t}\right)_{copper}$	K1
	$k_{iron} A \left(\frac{\Delta T}{L} \right) = k_{copper} A \left(\frac{\Delta T}{L} \right)$	
	$\frac{40A(70-T_{\theta})}{0.5} = \frac{360A(T_{\theta}-10)}{1.2}$	G1
	$3360 - 48T_{\theta} = 180T_{\theta} - 1800$	
	$228T_{\theta} = 5160$ $T_{\theta} = 22.63$ °C	JU1
	TOTAL	8

NO	ANSWER SCHEME	MARK(S)
8 a	f = 3	K1
	$f = 3$ $U = \frac{f}{2} NkT$	
	$1.56 \times 10^{-20} = \frac{3}{2}(2)(1.38 \times 10^{-23})(T)$	
	T = 376.8 K	J1

	$v_{rms} = \sqrt{\frac{3RT}{M}}$ $v_{rms} = \sqrt{\frac{3(8.31)(376.8)}{(4 \times 10^{-3})}}$ $v_{rms} = 1532.5 \text{ ms}^{-1}$	G1 JU1
b (i)	P (Pa) $P_1 \longrightarrow Axis with unit and both label - D1$ Shape and arrow - D1 $V \pmod{3}$ $V \pmod{3}$	D2
b (ii)	$Q = \Delta U + W$ $Q = 0 + (5.6 \times 10^{3})$ $Q = 5.6 \times 10^{3} \text{ J}$	G1
	$Q = 5.6 \times 10^3 \text{ J}$	JU1
	Heat is absorbed	J1
b (iii)	$W = nRT \ln \frac{V_2}{V_1}$	
	$5.6 \times 10^3 = (2)(8.31)(T) \ln \frac{4V}{V}$	G1
	T = 243.1 K	JU1
	TOTAL	11