Constantes Matemáticas

Thiago da Conceição

Contents

D	emonstração
2.	Constante de Arquimedes
2.	2 Unidade imaginária
2.	B Número de Euler
2.	1 Constante Pitagórica

Essa é uma lista de constantes matemáticas mais provavelmente conhecidas.

1 Constantes matemáticas

Essas são as constantes mais provavelmente conhecidas.

- 1. Constante de Arquimedes: $\pi \approx 3.14159$
- 2. Unidade imaginária: $i = \sqrt{-1}$
- 3. Número de Euler: $e \approx 2.71828$
- 4. Constante Pitagórica: $\sqrt{2} \approx 1.4142$

2 Demonstração

2.1 Constante de Arquimedes

A maneira mais comum de descobrir o π é o calculo da razão entre a Circunferência de um círculo e seu Diametro ou seja $\pi=\frac{C}{d}.^1$

 $^{^{1}{\}rm tentei}$ centralizar o circulo e não consegui.

2.2 Unidade imaginária

A unidade imaginária i foi criada para resolver equações quadraticas quando a parabola não tocasse o grafico da equação ou seja $b^2 - 4ac < 0$. A unidade imaginária esta sobre um plano complexo que está sobre um plano cartesiano \mathbb{R}^2 .

2.3 Número de Euler

A primeira descoberta do e foi por Jacob Bernoulli no século XVII quando estudava sobre juros compostos. Uma conta começa com £1,00 e paga juros de 100% ao ano. Se os juros forem creditados uma vez, no final do ano, o valor da conta no final do ano será de £2,00. O que acontecerá se os juros forem calculados e creditados com mais frequência durante o ano? Se fosse oferecido 50% de juro a cada 6 meses o valor inicial £1 seria £1.5, se você esperar mais 6 meses, você irar receber os 50% do seu restante ou seja £0.75 que ficaria com £2.25, seria mais ou menos assim £1.00 × 1.5 2 = 2.25.

Rendimentos trimestrais compostos: £1.00 × 1.25⁴ = £2.44140625

Rendimentos mensais compostos: $£1.00 \times (1 + \frac{1}{12})^2 = £2.613035...$

Leonhard Euler estudou essa propriedade no seu livro Introdução à análise do infinito além de provar que o e é um número irracional.

2.4 Constante Pitagórica

Para descobrir a Constante Pitagórica usaremos o Teorema de Pitagóras.

Teorema 1 O quadrado da hipotenusa é igual a soma dos quadrados dos catetos.

traduzindo algebricamente, ficaria assim $\sqrt{a^2 + b^2}$.

pegue um retangulo $\Box ABCD$ de comprimento e altura 1, trace uma reta do ponto B ao ponto C, criando um triangulo reto $\triangle BCD$, use o Teorema de

Pitagóras, que ficaria $\sqrt{1^2+1^2}=\sqrt{2}\approx 1.14.$ todo número calculado da um irracional.

