## PRÁTICA 4 - CONDUÇÃO DE CALOR TRANSIENTE

LUIZ AUGUSTO DEMBICKI FERNANDES¹; PEDRO FRANCISCO DUARTE²; MANOELA SABRINE VIEIRA³, VICTOR GUSTAVO DURAU⁴; THIAGO ZAGONEL DE LINHARES⁵

Prof. Fernando Voll

## Fenômenos de Transporte Experimental II – TQ084 Universidade Federal do Paraná

<sup>1</sup>Discentes do curso de Engenharia Química da UFPR Grupo F-2

#### Resumo

O presente experimento teve como objetivo estudar a transferência de calor por convecção através da imersão de um sólido em diferentes fluidos que estavam a temperaturas consideravelmente inferiores. Mediu-se a temperatura do sólido em função do tempo com uso de um termômetro e um cronômetro. Assim, em posse de informações sobre algumas propriedades térmicas do objeto e dos fluidos, obteve-se a relação entre a temperatura adimensional θ do sólido e o tempo decorrido através da resolução numérica de uma equação diferencial, e o gráfico resultante foi comparado com os valores obtidos experimentalmente.

Palavras-chave: Transferência de calor, convecção, equação diferencial.

#### **Abstract**

The present experiment had the objective of studying the convective heat transfer by immersing a solid in different fluids, which were at considerably lower temperatures. The solid's temperature as a function of time was measured using a thermometer and a chronometer. Thus, through data with respect to some thermal properties of the solid and the fluids, the relationship between the solid's dimensionless temperature  $\theta$  and the elapsed time was obtained via the numerical solution of a differential equation, and its resulting graph was compared to the experimentally obtained values.

Keywords: Heat transfer, convection, differential equation.

## 1. Introdução

A condução de calor transiente, ou transferência de calor transiente, é um fenômeno de extrema importância em diversas áreas da ciência e engenharia. Ela descreve o processo de transferência de calor que ocorre em um sistema quando há variações de temperatura com o tempo, diferentemente da condução de calor em estado estacionário, em que as condições de temperatura permanecem constantes ao longo do tempo, ou seja, a distribuição de temperaturas em um determinado sistema é variável.

Esse tipo de fenômeno térmico é encontrado em uma ampla gama de aplicações práticas. Por exemplo, no campo da engenharia de materiais, entender a condução de calor transiente

é crucial para a otimização de processos de soldagem, tratamentos térmicos e fabricação de pecas. Em dispositivos eletrônicos, essa análise é fundamental para projetar sistemas de resfriamento eficientes e garantir o bom funcionamento dos componentes. Ainda, a condução de calor transiente também desempenha um papel vital na análise e projeto de sistemas de transferência de calor, como trocadores de calor, sistemas de refrigeração e isolamento térmico. Ao compreender como o calor se propaga e se dissipa em tais sistemas, é possível melhorar a eficiência energética, evitar danos causados superaquecimento garantir segurança е operacional.

Este relatório tem como objetivo explorar os conceitos-chave relacionados à condução de calor transiente, discutindo suas aplicações

práticas, características e as principais ferramentas e métodos utilizados para sua análise. Ao compreender e dominar esses fundamentos, será possível realizar análises mais precisas e tomar decisões embasadas em projetos e processos que envolvam a transferência de calor transiente.

## 2. Objetivos

### 2.1. Objetivo geral

Obter e analisar um fenômeno de transferência de calor por convecção natural para a água, o azeite e o ar e, a partir deles, determinar os valores para o coeficiente de transferência de calor para cada caso, a fim de identificar como os perfis de temperatura em função do tempo variam com as propriedades dos fluidos.

#### 2.2. Objetivos específicos

Com base nas informações de tempo e temperatura obtidas no experimento, fazer os gráficos de

 $\theta$ (t) versus t para cada fluido e comparar com os do modelo de parâmetros concentrados.

#### 3. Materiais e métodos

#### 3.1. Material

Na prática, foram utilizados os seguintes materiais: termopar 101 sem proteção soldado em sua extremidade; soprador térmico; celular; cronômetro digital; ar; água; azeite de oliva.

#### 3.2. Procedimento experimental

A prática teve início com o aquecimento da esfera soldada na ponta do termopar por meio da utilização de um soprador térmico. Em seguida, a esfera ficou em contato com o ar a fim de ser resfriada e, consecutivamente, limpa, haja vista que o procedimento precisou ser repetido também para a água e o óleo, nessa ordem. O resfriamento foi filmado com o celular e as medidas de tempo e temperatura foram extraídas do vídeo.

#### 4. Resultados

O vídeo capturado pelo celular permitiu a extração dos dados para o a variação da temperatura da esfera com o tempo a partir de sua

imersão em água, ar e azeite que serviram para a confecção das tabelas 1, 2 e 3, dispostas abaixo.

A TABELA 1 contém as informações de temperatura em cada instante de tempo a partir da imersão da esfera em água.

TABELA 1 – Variação da temperatura com o tempo imerso em água

| Tempo<br>(s) | Temperatura<br>(°C) | Tempo<br>(s) | Temperatura<br>(°C) |
|--------------|---------------------|--------------|---------------------|
| 25,8         | 147,1               | 39,4         | 20,9                |
| 26,6         | 141,8               | 41,0         | 20,7                |
| 27,5         | 74,5                | 42,2         | 20,5                |
| 28,9         | 36,2                | 43,2         | 20,4                |
| 30,5         | 28,1                | 44,8         | 20,2                |
| 32,0         | 25,1                | 47,5         | 20,1                |
| 33,2         | 23,4                | 50,6         | 20,0                |
| 34,8         | 22,4                | 52,0         | 19,9                |
| 35,1         | 21,8                | 60,0         | 19,8                |
| 37,8         | 21,3                |              |                     |

FONTE: Os autores (2023).

Já a TABELA 2, menciona os resultados experimentais para o ar.

TABELA 2 – Variação da temperatura com o tempo imerso em ar

|              | imerso em ar        |              |                     |  |
|--------------|---------------------|--------------|---------------------|--|
| Tempo<br>(s) | Temperatura<br>(°C) | Tempo<br>(s) | Temperatura<br>(°C) |  |
| 19,8         | 152,9               | 73,3         | 52,5                |  |
| 21,3         | 147,9               | 74,8         | 51,3                |  |
| 22,8         | 142,6               | 76,0         | 50,1                |  |
| 24,3         | 137,8               | 77,6         | 49,0                |  |
| 25,6         | 132,8               | 79,0         | 48,0                |  |
| 27,2         | 128,3               | 80,4         | 47,0                |  |
| 28,6         | 122,0               | 81,6         | 46,0                |  |
| 30,1         | 120,1               | 83,2         | 45,0                |  |
| 31,6         | 116,5               | 84,6         | 44,1                |  |
| 33,0         | 112,9               | 86,2         | 43,2                |  |
| 34,5         | 109,3               | 87,6         | 42,5                |  |
| 36,0         | 106,3               | 89,0         | 41,7                |  |
| 37,4         | 103,3               | 90,5         | 40,9                |  |
| 38,8         | 100,5               | 92,0         | 40,2                |  |
| 40,1         | 97,6                | 93,3         | 39,5                |  |
| 41,6         | 94,8                | 94,8         | 38,9                |  |
| 43,0         | 92,1                | 96,2         | 38,3                |  |
| 44,5         | 89,5                | 97,6         | 37,8                |  |
| 46,0         | 86,8                | 99,0         | 37,1                |  |
| 47,4         | 84,3                | 100,5        | 36,5                |  |
| 48,8         | 81,9                | 102,0        | 35,9                |  |
| 50,3         | 79,7                | 103,6        | 35,5                |  |
| 51,8         | 77,6                | 104,8        | 34,9                |  |
| 53,3         | 75,5                | 106,0        | 34,5                |  |
| 54,6         | 73,4                | 107,6        | 34,1                |  |
| 55,2         | 71,5                | 109,0        | 33,8                |  |
| 57,6         | 69,6                | 110,6        | 33,3                |  |
| 58,9         | 67,9                | 112,0        | 32,9                |  |
| 60,4         | 66,1                | 113,4        | 32,5                |  |

| 61,8 | 64,4 | 114,8 | 31,9 |
|------|------|-------|------|
| 63,3 | 62,8 | 116,3 | 31,6 |
| 64,7 | 61,1 | 117,6 | 31,2 |
| 66,2 | 59,6 | 119,0 | 30,9 |
| 67,6 | 58,0 | 120,6 | 30,6 |
| 68,9 | 56,5 | 122,0 | 30,3 |
| 70,4 | 55,1 | 123,3 | 29,9 |
| 72,0 | 53,8 |       |      |

FONTE: Os autores (2023).

Enquanto, a TABELA 3, por sua vez, expressa a variação da temperatura com a variação do tempo.

TABELA 3 – Variação da temperatura com o tempo imerso em azeite

| Tempo<br>(s) | Temperatura<br>(°C) | Tempo<br>(s) | Temperatura<br>(°C) |
|--------------|---------------------|--------------|---------------------|
| 20,8         | 139,6               | 63,0         | 23,4                |
| 21,4         | 135,3               | 64,5         | 23,2                |
| 22,8         | 99,5                | 65,8         | 23,1                |
| 24,3         | 78,4                | 67,4         | 22,9                |
| 25,8         | 67,0                | 68,8         | 22,7                |
| 27,0         | 58,5                | 70,2         | 22,6                |
| 28,6         | 52,1                | 71,6         | 22,5                |
| 30,0         | 47,3                | 73,0         | 22,4                |
| 31,5         | 43,4                | 74,5         | 22,3                |
| 32,8         | 40,3                | 76,0         | 22,2                |
| 34,3         | 37,8                | 77,4         | 22,1                |
| 35,8         | 35,6                | 78,8         | 22,0                |
| 37,1         | 33,9                | 80,1         | 21,9                |
| 38,6         | 32,6                | 81,6         | 21,8                |
| 40,2         | 31,4                | 84,5         | 21,6                |
| 41,4         | 30,3                | 85,9         | 21,5                |
| 43,0         | 29,3                | 90,2         | 21,4                |
| 44,3         | 28,6                | 93,0         | 21,3                |
| 45,8         | 27,8                | 97,4         | 21,2                |
| 47,3         | 27,3                | 98,8         | 21,1                |
| 48,6         | 26,7                | 102,0        | 21,0                |
| 50,0         | 26,2                | 107,4        | 20,9                |
| 51,6         | 25,8                | 111,6        | 20,8                |
| 53,0         | 25,4                | 121,6        | 20,7                |
|              |                     |              |                     |

| 54,5 | 25,0 | 127,4 | 20,6 |
|------|------|-------|------|
|      |      |       |      |
| 56,0 | 24,7 | 141,6 | 20,5 |
|      |      |       |      |
| 57,3 | 24,4 | 158,8 | 20,4 |
|      |      |       |      |
| 58,8 | 24,1 |       |      |
|      |      |       |      |
| 60,2 | 23,9 |       |      |
|      |      |       |      |
| 61,6 | 23,6 |       |      |
|      |      |       |      |

FONTE: Os autores (2023).

## 4.1. Solução numérica e comparação com dados experimentais

Tendo em os resultados mente observados, foi utilizado o método Runge-Kutta de quarta ordem para a obtenção de uma solução numérica para o problema. Com modelagem de parâmetros concentrados, foi utilizado um intervalo de tempo de 150 segundos e o software Scilab na resolução númerica do problema. A partir da solução numérica e dos dados experimentais foram confeccionados os gráficos de Theta variando com o tempo (t) apresentados nos gráficos 1, 2 e 3, em que os pontos vermelhos indicam os dados experimentais e as curvas azuis representam a solução numérica para os respectivos fluidos indicados.

Para tanto é utilizado a definição de Runge Kutta, para um problema de valor inicial:

$$\frac{dy}{dt} = f(t, y), \ y(t_0) = y_0$$
 (1)

Temos as seguintes equações para RK4:

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
(2)

Em que  $k_{\mathrm{1}}$ ,  $k_{\mathrm{2}}$ ,  $k_{\mathrm{3}}$  e  $k_{\mathrm{4}}$  são calculados da seguintes formas:

$$k_1 = f(t_n, y_n) \tag{3}$$

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f(t_{n} + \frac{h}{2}, y_{n} + h \frac{k_{1}}{2})$$

$$k_{3} = f(t_{n} + \frac{h}{2}, y_{n} + h \frac{k_{2}}{2})$$

$$k_{4} = f(t_{n} + h, y_{n} + h k_{3})$$
(3)
(4)
(5)

$$k_3 = f(t_n + \frac{h}{2}, y_n + h\frac{k_2}{2})$$
 (5)

$$k_4 = f(t_n + h, y_n + h k_3)$$
 (6)

No qual h é o passo.

O GRÁFICO 1 representa a variação de theta com o tempo para a água, a partir dos dados experimentais e obtidos por meio da solução numérica.

# GRÁFICO 1 – SOLUÇÃO NÚMERICA E EXPERIMENTAL, ÁGUA



Ainda, foi confeccionada a GRÁFICO 2 com a variação do theta com o tempo para o ar.

GRÁFICO 2 - SOLUÇÃO NÚMERICA E EXPERIMENTAL, AR



FONTE: Os autores (2023).

Por fim, no GRÁFICO 3 estão os comportamentos obtidos por meio da solução numérica e dados experimentais para a variação de theta com o tempo.

## GRÁFICO 3 - SOLUÇÃO NÚMERICA E EXPERIMENTAL, AZEITE



FONTE: Os autores (2023).

#### 5. Discussão

A taxa transferência de calor entre um objeto e o ambiente irá depender da diferença de temperatura entre o objeto e o meio ao seu redor. Quando o objeto e o ambiente são mantidos em temperatura constante, a taxa de transferência será constante. No entanto, à medida que um objeto resfria a  $\Delta T$  diminui. Isso diminui a taxa de mudança na temperatura e faz com que a variação da T com o tempo não apresente um comportamento linear.

No experimento realizado, a esfera de metal troca muito mais calor por convecção do que por outros mecanismos, então é possível tratar o experimento como troca exclusivamente por convecção. Além disso, a esfera tem volume pequeno e é feita de material condutor, logo a condução de calor no interior da esfera deve ser muito mais rápida que a troca convectiva na superfície, o que permite considerar que a T é homogênea em toda a esfera.

Segundo descrito em Incropera et. Al (2008), uma relação para o comportamento da temperatura ao longo do tempo pode ser obtida igualando a taxa de transferência de calor na superfície com a taxa de variação da energia interna do sólido.

$$-h \cdot A(T - T_{\infty}) = \rho \cdot V \cdot C_p \cdot \frac{dT}{dt}$$
 (7)

Substituindo a diferença entre as temperaturas por Theta, e rearranjando foi obtida a expressão da equação 7.

$$-\frac{h \cdot A}{\rho \cdot V \cdot Cp} = \frac{1}{\theta(t)} \cdot \frac{dT}{dt} \qquad (8)$$

A equação 6 é uma equação diferencial, no entanto ela não pode ser resolvida analiticamente, pois o valor de Cp varia em função da temperatura, que varia em função do tempo. O valor de h também irá variar ao longo do tempo, pois depende da densidade e de viscosidade do fluído que em contato com a superfície do sólido. Por isso foi necessário o uso de um método computacional para obter a solução.

Entretanto, se simplificarmos o problema considerando que h e Cp são constantes, a equação diferencial pode ser resolvida de forma analítica. Na equação 8 o termo do lado direito foi substitúido pelo parâmetro b e os dois lados da expressão são integrados em relação ao tempo.

$$\int_{t1}^{t2} -b \cdot dt = \int_{t1}^{t2} \frac{1}{\theta} \cdot \frac{dT}{dt} \cdot dt$$
(9)  
-bt + C =  $ln\theta$   
 $\theta_{(t)} = C2 \cdot e^{-bt}$ 

Aplicando a condição inicial, de Theta em t = 0s, obtém-se uma aproximação para o comportamento da temperatura em função do tempo, representado na equação 9. A expressão obtida apresenta a variável t no expoente, o que indica que o gráfico deve ter comportamento exponencial. O sinal negativo no expoente indica que o valor de Theta irá reduzir com o tempo, tendendo a 0 em t =  $\infty$ , quando a temperatura da esfera e do fluído se igualam.

$$\theta_{(t)} = \theta_0 \cdot e^{-bt} \tag{10}$$

Nas figuras 1, 2 e 3, pode-se observar que o comportamento dos dados experimentais e das funções obtidas é compatível com o esperado para essa função. Nos três gráficos os pontos experimentais estão localizados mais à direita que a solução obtida. Esse achado provavelmente se deve ao atraso na medida do termômetro, visto que o intervalo de tempo em que todo o resfriamento ocorreu é curto, então pequenas diferenças no dado experimental apresentam um efeito relativamente grande.

Também é possível observar a diferença no tempo necessário para o resfriamento nos três fluidos. Conforme esperado, o tempo de resfriamento no ar foi mais prolongado, o que se deve a um coeficiente convectivo mais baixo no ar, pois o ar tem densidade e Cp pequenos. A água apresentou o menor tempo de resfriamento, com uma queda mais acentuada no gráfico, enquanto o azeite apresentou um comportamento parecido com o da água, mas com um tempo de resfriamento

mais prolongado. Isso se deve às diferenças nas propriedades dos dois líquidos. A água apresenta uma densidade maior que a do azeite e também uma viscosidade menor, o que favorece o movimento do líquido e uma troca de calor mais rápida.

#### 6. Conclusões

Analisando os resultados, foi possível observar o fenômeno da convecção natural para ar água e o óleo, e diante dos resultados obtidos nas simulações matemáticas em comparação às curvas experimentais plotadas com os dados do laboratório, foi possível demonstrar a aplicação dos assuntos estudados em fenômenos de transferência de calor de maneira a demonstrar o comportamento no perfil de temperatura durante o resfriamento de um sólido utilizando diferentes fluidos.

Com o experimento foi possível observar os aspectos do fluido que provocam essa diferença no tempo de troca de calor entre fluído e solido, sobretudo, os fenômenos que facilitam ou dificultam a transferência de calor. O fluido que melhor desempenhou a troca térmica foi a água com sua baixa viscosidade, alta capacidade calorífica e densidade moderada, seguida pelo óleo, com um desempenho um pouco inferior e, por fim, o ar que mostrou-se um péssimo fluido para a troca térmica, haja vista sua baixíssima densidade e capacidade calorífica, características muito para desempenhar negativas essa função. Consequentemente, o ar serve melhor como isolante do que como condutor térmico.

#### Referências

CHASE M.W., Jr. NIST-JANAF Themochemical Tables, Fourth Edition, **J. Phys. Chem. Ref. Data.** 9 ed, 1998, p. 1-1951.

INCROPERA, F.P.; DEWITT, D. P.; BERGMAN, T. L.; LAVINE, A. S. Fundamentos de transferência de calor e de massa. 6 ed. Rio de Janeiro: LTC, 2008.

JANNA, W. S.; **Projetos de sistemas fluidotérmicos**. São Paulo: Cengage Learning, 4 ed. 2016.

SMITH, J.M.; VAN NESS, H.C.; ABBOTT, M.M. Introdução à termodinâmica da engenharia química. 5ª ed. Rio de Janeiro: LTC, 2000.

CALLISTER, W. D.; Ciência e engenharia de materiais: uma introdução. 8. ed. Rio de Janeiro: LTC, 2012.