CAYLEY NUMBERS

M. FARROKHI D. G.

INSTITUTE FOR ADVANCED STUDIES IN BASIC SCIENCES (IASBS)

DECEMBER 19, 2019 IPM-ISFAHAN

DEFINITIONS & EXAMPLES

Definition

- A graph Γ is vertex-transitive if its groups of automorphisms acts transitively on its vertex-set.
- A graph Γ is edge-transitive if its groups of automorphisms acts transitively on its edge-set.
- A graph Γ is arc-transitive if its groups of automorphisms acts transitively on its arc-set.
- A graph is symmetric if it is arc-transitive and it is weakly symmetric if it is vertex- and edge-transitive.

EXAMPLES

Vertex-transitive but not edge-transitive

Edge-transitive but not vertex-transitive

EXAMPLES

Petersen graph

Coxeter graph

Definition (Cayley 18781)

Let G be a group and C be an inversed closed subset of $G \setminus \{1\}$. Then the graph $\operatorname{Cay}(G,C)$ with vertex set G and edges $\{x,y\}$ with $x^{-1}y \in C$ is called the Cayley graph of G with respect to the connection set C.

Arthur Cayley

¹A. Cayley, Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation, *Amer. J. Math.* **1**(2) (1878), 174–176.

EXAMPLE: $Cay(A_4, \{\alpha^{-1}, \beta\})$

$$\alpha = (123)$$
 and $\beta = (12)(34)$ $a = (), b = (14)(23), c = (12)(34), and $d = (13)(24)$$

EXAMPLE: $Cay(F(x, y), \{x^{\pm 1}, y^{\pm 1}\})$

SOME FACTS

Theorem

Cayley graphs are vertex-transitive.

²G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. **68** (1964), 426–438.

SOME FACTS

Theorem

Cayley graphs are vertex-transitive.

Theorem (Sabidussi 1964²)

A vertex-transitive graph is a Cayley graph if and only if its group of automorphism has a regular subgroup.

²G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. **68** (1964), 426–438.

Definition

A subgraph Δ of a graph Γ is a retract of Γ if there exists an homomorphism $\theta : \Gamma \longrightarrow \Delta$ such that $\theta|_{\Delta}$ is the identity map.

Definition

A subgraph Δ of a graph Γ is a retract of Γ if there exists an homomorphism $\theta : \Gamma \longrightarrow \Delta$ such that $\theta|_{\Delta}$ is the identity map.

Theorem (Sabidussi 1964²)

Every connected vertex-transitive graph is a retract of a Cayley graph.

Definition

Let G be a group, H be a subgroup of G, and $C \subseteq G \setminus H$ be an inversed-closed union of double-cosets of G. Then the graph Cos(G, H, C) with vertex set G/H and edges $\{xH, yH\}$ with $x^{-1}y \in C$ is called a coset graph of G.

Definition

Let G be a group, H be a subgroup of G, and $C \subseteq G \setminus H$ be an inversed-closed union of double-cosets of G. Then the graph Cos(G, H, C) with vertex set G/H and edges $\{xH, yH\}$ with $x^{-1}y \in C$ is called a coset graph of G.

Theorem

Every coset graph is a vertex-transitive graph.

Definition

Let G be a group, H be a subgroup of G, and $C \subseteq G \setminus H$ be an inversed-closed union of double-cosets of G. Then the graph Cos(G, H, C) with vertex set G/H and edges $\{xH, yH\}$ with $x^{-1}y \in C$ is called a coset graph of G.

Theorem

Every coset graph is a vertex-transitive graph.

Theorem (Sabidussi 1964²)

Every vertex-transitive graph is a coset graph.

CAYLEY NUMBERS

Question (Marušič 1983³)

For which numbers *n* there exists a vertex-transitive graph of order *n* that is not a Cayley graph?

Dragan Marušič

³D. Marušič, Cayley properties of vertex symmetric graphs, *Ars Combin.* **16** (1983), 297–302.

Question (Marušič 1983³)

For which numbers *n* there exists a vertex-transitive graph of order *n* that is not a Cayley graph?

Definition

A number n is a Cayley number if all vertex-transitive graphs of order n are Cayley graphs. The set of non-Cayley number is denoted by \mathcal{NC} .

Dragan Marušič

³D. Marušič, Cayley properties of vertex symmetric graphs, *Ars Combin.* **16** (1983), 297–302.

Theorem (Marušič 1985⁴)

For every prime p, the numbers p, p^2 , and p^3 are Cayley numbers but p^4 is a non-Cayley number.

⁴D. Marušič, Vertex-transitive graphs and digraphs of order p^k , Ann. Discrete Math. **27** (1985), 115–128.

Theorem (Marušič 19854)

For every prime p, the numbers p, p^2 , and p^3 are Cayley numbers but p^4 is a non-Cayley number.

Theorem

Let p be a prime.

- (1) The only p-group of order p is \mathbb{Z}_p ;
- (2) The p-groups of order p^2 are \mathbb{Z}_{p^2} and $\mathbb{Z}_p \times \mathbb{Z}_p$;
- (3) The p-groups of order p^3 are \mathbb{Z}_{p^3} , $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$, $\mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$, $\mathbb{Z}_{p^2} \rtimes \mathbb{Z}_p$, and $(\mathbb{Z}_p \times \mathbb{Z}_p) \rtimes \mathbb{Z}_p$.

⁴D. Marušič, Vertex-transitive graphs and digraphs of order p^k , Ann. Discrete Math. **27** (1985), 115–128.

Theorem (McKay and Praeger 1994⁵, 1996⁶)

Let n be a positive integer that is divisible by the square of a prime p. Then $n \in \mathcal{NC}$ unless $n = p^2$ or $n = p^3$ or n = 12.

Brendan McKay

⁵B. D. McKay and C. E. Praeger, Vertex-transitive graphs which are not Cayley graphs, I, J. Austral. Math. Soc. Ser. A **56**(1) (1994), 53–63.

⁶B. D. McKay and C. E. Praeger, Vertex-transitive graphs that are not Cayley graphs, II, *J. Graph Theory* **22**(4) (1996), 321–334.

Theorem (Frucht, Graver, and Watkins 1971⁷, Marušič and Scapellato 1992⁸, Praeger and Xu 1993⁹)

Let p < q be primes. Then $pq \in \mathcal{NC}$ if and only if one of the following holds:

- (1) p^2 divides q-1;
- (2) q = 2p 1 > 3 or $q = (p^2 + 1)/2$;
- (3) $q = 2^t + 1$ and either p divides $2^t 1$ or $p = 2^{t-1} 1$;
- (4) $q = 2^{t} 1$ and $p = 2^{t-1} + 1$;
- (5) (p,q) = (7,11).

⁷R. Frucht, J. Graver, and M. E. Watkins, The groups of the generalized Petersen graphs, *Proc. Cam. Phil. Soc.* **70** (1971), 211–218.

⁸D. Marušič and R. Scapellato, Characterising vertex-transitive pq-graphs with an imprimitive automorphism group, J. Graph Theory **16** (1992), 375–387.

⁹C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, *J. Combin. Theory B* **59** (1993), 245–266.

Theorem (Miller and Praeger 1994¹⁰, Seress 1998¹¹, Hassani, Iranmanesh, and Praeger 1998¹², Gamble and Praeger 2000¹³, Iranmanesh and Praeger 2001¹⁴)

Let p < q < r be primes. Then $pqr \in \mathcal{NC}$ if and only if one of the following holds:

¹⁰A. A. Miller and C. E. Praeger, Non-Cayley vertex-transitive graphs of order twice the product of two odd primes, *J. Algebraic Combin.* **3** (1994), 77–111.

¹¹Á. Seress, On vertex-transitive, non-Cayley graphs of order *pqr*, *Discrete Math.* **182** (1998), 279–292.

¹²A. Hassani, M. A. Iranmanesh, and C. E. Praeger, On vertex-imprimitive graphs of order a product of three distinct odd primes, *J. Combin. Math. Combin. Comput.* **28** (1998), 187–213.

¹³G. Gamble and C. E. Praeger, Vertex-primitive groups and graphs of order twice the product of two distinct odd primes, *J. Group Theory* **3** (2000), 247–269.

¹⁴M. A. Iranmanesh and C. E. Praeger, On non-Cayley vertex-transitive graphs of order a product of three primes, J. *Combin. Theory Ser. B* **81**(1) (2001), 1–19.

Theorem (Continued)

- (1) $q \stackrel{p^2}{\equiv} 1$, or $r \stackrel{p^2}{\equiv} 1$, or $r \stackrel{q^2}{\equiv} 1$;
- (2) 2s 1 and $(s^2 + 1)/2$ belongs to $\{p, q, r\}$ for some odd $s \in \{p, q, r\}$;
- (3) $\{p,q,r\}$ contains $2^t + 1$ and also contains either $2^{t-1} 1$ or a divisor of $2^t 1$ for some t;
- (4) $\{p, q, r\}$ contains $2^t 1$ and $2^{t-1} + 1$ for some t;
- (5) $7, 11 \in \{p, q, r\};$
- (6) $pqr = (2^{2^t} + 1)(2^{2^{t+1}} + 1)$ for some t, or $pqr = (2^{s\pm 1} + 1)(2^s 1)$ for some prime s;

Theorem (Continued)

```
(7) \{p, q, r\} = \{p', q', r'\} with p'q' being equal to
      (a) 2r' \pm 1 with p > 2;
      (b) (r' + 1)/2;
      (c) (r'^2 + 1)/2 with p > 2:
      (d) (r'^2 - 1)/24x with x \in \{1, 2, 5\} and p > 2, or
      (e) 2^t + 1 with r dividing 2^t - 1 for some t and p > 2;
(8) p^p || q - 1 and q^q || r - 1;
 (9) q = (3p + 1)/2 and r = 3p + 2 with p > 2;
(10) q = 6p - 1 and r = 6p + 1 with p > 2;
(11) q = (r-1)/2 with p \mid r+1 and p > 2;
(12) p = (r-1)/2 and q = (p+1)/2 with q \mid r+1 and p > 2;
```

Theorem (Continued)

- (13) $p = (k^{d/2} + 1)/(k + 1)$, $q = (k^{d/2} 1)/(k 1)$, and $r = (k^{d-1} 1)/(k 1)$ with k, d 1, and d/2 all prime;
- (14) $p = (k^{(d-1)/2} + 1)/(k+1)$, $q = (k^{(k-1)/2} 1)/(k-1)$, and $r = (k^d 1)/(k-1)$ with k, d, and (d-1)/2 all prime;
- (15) $p = k^2 k + 1$, $q = (k^5 1)/(k 1)$, and $r = (k^7 1)/(k 1)$ with k prime;
- (16) p = 3, $q = (2^d + 1)/3$, and $r = 2^d 1$ with d prime;
- (17) $p = (2^d + 1)/3$, $q = 2^d 1$, and $r = 2^{2d \pm 2} + 1$ with $d = 2^t \mp 1$ prime, or
- (18) (p,q,r) = (2,7,19), (5,11,19), or (7,73,257).

Question (McKay and Praeger 1996⁶)

Is there a number k > 0 such that every product of k distinct primes is in \mathcal{NC} ?

¹⁵T. Dobson and P. Spiga, Pablo, Cayley numbers with arbitrarily many distinct prime factors, *J. Combin. Theory Ser. B* **122** (2017), 301–310.

Question (McKay and Praeger 1996⁶)

Is there a number k > 0 such that every product of k distinct primes is in \mathcal{NC} ?

Theorem (Dobson and Spiga 2017¹⁵)

There exists an infinite set of primes such that every finite product of its distinct elements is a Cayley number.

¹⁵T. Dobson and P. Spiga, Pablo, Cayley numbers with arbitrarily many distinct prime factors, *J. Combin. Theory Ser. B* **122** (2017), 301–310.

SOME NEW RESULTS

SOME NEW RESULTS

SOME ALGEBRAIC PROPERTIES OF SIERPIŃSKI-TYPE GRAPHS

JOINT WORK WITH E. GHORBANI, H. R. MAIMANI, AND F. RAHIMI MAHID

Definition (Klavžar and Milutinović 1997¹⁶)

The Sierpiński graph S(n,k) $(n,k \ge 1)$ is a graph with vertex set $\{1,\ldots,k\}^n$ such that two distinct vertices (u_1,\ldots,u_n) and (v_1,\ldots,v_n) are adjacent if there exists $t\in\{1,\ldots,n\}$ such that

- $u_i = v_i$ for i = 1, ..., t 1,
- $\blacksquare u_t \neq v_t$,
- \blacksquare $u_j = v_t$ and $v_j = u_t$ for j = t + 1, ..., n.

¹⁶S. Klavžar and U. Milutinović, Graphs S(n, k) and a variant of the tower of Hanoi problem, *Czechoslovak Math. J.* **47**(122) (1997), 95–104.

Definition (Klavžar and Milutinović 1997¹⁶)

The Sierpiński graph S(n,k) $(n,k \ge 1)$ is a graph with vertex set $\{1,\ldots,k\}^n$ such that two distinct vertices (u_1,\ldots,u_n) and (v_1,\ldots,v_n) are adjacent if there exists $t\in\{1,\ldots,n\}$ such that

- $u_i = v_i$ for i = 1, ..., t 1,
- $\blacksquare u_t \neq v_t$,
- \blacksquare $u_j = v_t$ and $v_j = u_t$ for j = t + 1, ..., n.

Remark

The graph S(n, k) has $k^n - k$ vertex of degree k and k extreme vertices of degree k - 1, namely (i, ..., i) for $1 \le i \le k$.

¹⁶S. Klavžar and U. Milutinović, Graphs S(n, k) and a variant of the tower of Hanoi problem, *Czechoslovak Math. J.* **47**(122) (1997), 95–104.

Definition (Klavžar and Mohar 2005¹⁷)

The Sierpiński-type graphs $S^{++}(n,k)$ are defined as follows:

- For n = 1, $S^{++}(n, k)$ is the complete graph K_{k+1} ;
- For $n \ge 2$, $S^{++}(n, k)$ is the graph obtained from a disjoint union of k + 1 copies of S(n 1, k) in which the extreme vertices in distinct copies of S(n 1, k) are connected as the complete graph K_{k+1} .

¹⁷S. Klavžar and B. Mohar, Crossing numbers of Sierpiński-like graphs, *J. Graph Theory* **50** (2005), 186–198.

Definition (Klavžar and Mohar 2005¹⁷)

The Sierpiński-type graphs $S^{++}(n,k)$ are defined as follows:

- For n = 1, $S^{++}(n, k)$ is the complete graph K_{k+1} ;
- For $n \ge 2$, $S^{++}(n, k)$ is the graph obtained from a disjoint union of k + 1 copies of S(n 1, k) in which the extreme vertices in distinct copies of S(n 1, k) are connected as the complete graph K_{k+1} .

Remark

- $S^{++}(n,1) \cong K_2$;
- $S^{++}(n,2) \cong C_{3\cdot 2^{n-1}};$
- \blacksquare S⁺⁺(1, k) \cong K_{k+1}.

¹⁷S. Klavžar and B. Mohar, Crossing numbers of Sierpiński-like graphs, *J. Graph Theory* **50** (2005), 186–198.

Theorem

The graph $S^{++}(n,k)$ is vertex-transitive if and only if either $n \le 2$ or $k \le 2$.

Definition

Let Γ be a graph and Δ be a subgraph of Γ . Then Γ is strongly Δ -partitioned if

- (1) the vertex set of Γ is partitioned by the vertex sets of copies $\Delta_0, \ldots, \Delta_k$ of Δ ;
- (2) besides $\Delta_0, \dots, \Delta_k$, the graph Γ contains no further copies of Δ .

Definition

Let Γ be a graph and Δ be a subgraph of Γ . Then Γ is strongly Δ -partitioned if

- (1) the vertex set of Γ is partitioned by the vertex sets of copies $\Delta_0, \ldots, \Delta_k$ of Δ ;
- (2) besides $\Delta_0, \ldots, \Delta_k$, the graph Γ contains no further copies of Δ .

Definition

Let Γ be a strongly Δ -partitioned graph. Then Γ has connection constant c if there are exactly c edges between any two copies of Δ in Γ . The set of all strongly Δ -partitioned graphs with connection constant c is denoted by $\mathcal{SP}_c(\Delta)$.

The only vertex-transitive graph among seven strongly C_4 -partitioned graphs.

Theorem

The graph $S^{++}(n, k)$ is strongly S(n-1, k)-partitioned when $n \ge 2$ and $k \ge 3$.

Theorem

Let Γ and Δ be regular graphs with $\Gamma \in \mathcal{SP}_1(\Delta)$. If Γ is a Cayley graph Cay(G, C), then

- (1) $|\Delta| + 1 = p^m$ is prime power,
- (2) $G = N \rtimes H$ is a Frobenius group with minimal normal Frobenius kernel $N \cong \mathbb{Z}_p^m$ and Frobenius complement H,
- (3) $C = C' \cup \{c\}$ with $\Delta \cong \operatorname{Cay}(H,C')$ and $c^2 = 1$, and either
 - (i) $c \in N$ and $H = \langle C' \rangle$, or
 - (ii) $c = h^n$ for some $h \in H \setminus \{1\}$ and $n \in N \setminus \{1\}$, and $H = \langle C', h \rangle$.

Theorem

Let Γ and Δ be regular graphs with $\Gamma \in \mathcal{SP}_1(\Delta)$. If Γ is a Cayley graph Cay(G, C), then

- (1) $|\Delta| + 1 = p^m$ is prime power,
- (2) $G = N \rtimes H$ is a Frobenius group with minimal normal Frobenius kernel $N \cong \mathbb{Z}_p^m$ and Frobenius complement H,
- (3) $C = C' \cup \{c\}$ with $\Delta \cong \operatorname{Cay}(H,C')$ and $c^2 = 1$, and either
 - (i) $c \in N$ and $H = \langle C' \rangle$, or
 - (ii) $c = h^n$ for some $h \in H \setminus \{1\}$ and $n \in N \setminus \{1\}$, and $H = \langle C', h \rangle$.

Conversely, if Δ satisfies the above conditions, then $Cay(G, C) \in \mathcal{SP}_1(\Delta)$.

Corollary

The graph $S^{++}(n, k)$ is a Cayley graph if and only if either

- (1) n = 1;
- (2) $k \leq 2$, or
- (3) n = 2 and $k + 1 = p^m$ is a prime power.

Corollary

The graph $S^{++}(n, k)$ is a Cayley graph if and only if either

- (1) n = 1;
- (2) $k \leq 2$, or
- (3) n = 2 and $k + 1 = p^m$ is a prime power.

Furthermore, in case (3), we have

$$S^{++}(n,k) \cong \operatorname{Cay}(G,(H \setminus \{1\}) \cup \{c\}),$$

for every Frobenius group G with complement H, elementary abelian minimal normal Frobenius kernel of order p^m , and involution $c \in G \setminus H$.

Theorem

Let k be any positive integer such that k(k+1) is square-free and k+1 is not a prime. Then $k(k+1) \in \mathcal{NC}$.

Theorem

Let k be any positive integer such that k(k+1) is square-free and k+1 is not a prime. Then $k(k+1) \in \mathcal{NC}$.

Theorem

The density of the set

 $\{k : k(k+1) \text{ is square-free and } k+1 \text{ is not a prime}\}$

is equal to ${}_{2}C_{Feller\text{-}Tornier}-1\approx0.3226,$ where the Feller-Tornier constant

$$\frac{1}{2} + \frac{1}{2} \prod_{p} \left(1 - \frac{2}{p^2} \right) = \frac{1}{2} + \frac{3}{\pi^2} \prod_{p} \left(1 - \frac{1}{p^2 - 1} \right) \approx 0.6613$$

is the density of integers having an even number of non-prime prime powers factors.

The list of the numbers whose membership in \mathcal{NC} are not yet determined begins with

```
9982, 12958, 18998, 19646, 20398,
21574, 24662, 25438, 25606, ....
```

Among the numbers \leq 10⁸, there are 2763 square-free integers of the form k(k+1) with k+1 not a prime of which the following eight integers are new non-Cayley numbers:

```
1386506, 2668322, 15503906, 23985506, 38359442, 74261306, 89898842, 95912642.
```

RELATED PROBLEMS

Question (Feng 200218)

What is the smallest valency d(n) of a non-Cayley vertex-transitive graph of order n.

Yan-Quan Feng

¹⁸Y.-Q. Feng, On vertex-transitive graphs of odd prime-power order, *Discrete Math.* **248**(1-3) (2002), 265–269.

Theorem (Feng 2002¹⁸)

Every vertex-transitive graph of odd prime power order p^k with valency less than 2p + 2 is a Cayley graph.

Theorem (Feng 2002¹⁸)

Every vertex-transitive graph of odd prime power order p^k with valency less than 2p + 2 is a Cayley graph.

Theorem (Marušič 1985⁴ and McKay and Praeger 1994⁶)

There exists a non-Cayley vertex-transitive graph of odd prime power order p^k and valency 2p + 2.

Theorem (Feng 2002¹⁸)

Every vertex-transitive graph of odd prime power order p^k with valency less than 2p + 2 is a Cayley graph.

Theorem (Marušič 1985⁴ and McKay and Praeger 1994⁶)

There exists a non-Cayley vertex-transitive graph of odd prime power order p^k and valency 2p + 2.

Corollary

We have $d(p^k) = 2p + 2$ for all odd prime powers p^k .

Definition (Marušič, Scapellato, and Zagaglia Salvi 1992¹⁹)

Let G be a group, C be a subset of G, and θ be an automorphism of G satisfying

- (1) $\theta^2 = 1$;
- (2) $\theta(x^{-1})x \notin C$ for all $x \in G$;
- (3) $\theta(x^{-1})y \in C$ implies $\theta(y^{-1})x$ for all $x, y \in G$.

Then the graph $GCay(G, C, \theta)$ with vertex set G and edges $\{x, y\}$ if $\theta(x^{-1})y \in C$ is called a generalized Cayley graph of G.

¹⁹D. Marušič, R. Scapellato, and N. Zagaglia Salvi, Generalized Cayley graphs, *Discrete Math.* **102** (1992), 279–285.

Remark (Marušič, Scapellato, and Zagaglia Salvi 1992¹⁹)

Let

- \blacksquare $G = \mathbb{Z}_n \times \mathbb{Z}_n$,
- $C = \{(1,0), (1,1), (0,n-1), (n-1,n-1)\} \subseteq G,$ and
- \blacksquare $\theta: (x,y) \mapsto (y,x)$ be an automorphism of G.

Then the graph $GCay(\mathbb{Z}_n \times \mathbb{Z}_n, C, \theta)$ is not vertex-transitive.

Remark (Marušič, Scapellato, and Zagaglia Salvi 1992¹⁹)

Let

- \blacksquare $G = \mathbb{Z}_n \times \mathbb{Z}_n$,
- $C = \{(1,0), (1,1), (0,n-1), (n-1,n-1)\} \subseteq G,$ and
- \blacksquare $\theta: (x,y) \mapsto (y,x)$ be an automorphism of G.

Then the graph $GCay(\mathbb{Z}_n \times \mathbb{Z}_n, C, \theta)$ is not vertex-transitive.

Question (Marušič, Scapellato, and Zagaglia Salvi 1992¹⁹)

Are there vertex-transitive generalized Cayley graphs which are not Cayley graphs?

Example (Watkins 1990²⁰)

The line graph of the Petersen graph is a non-Cayley vertex-transitive generalized Cayley graph.

²⁰M. E. Watkins, Vertex-transitive graphs that are not Cayley graphs, in: G. Hahn, et al. (Eds.), *Cycles and Rays*, Kluwer, Netherlands, 1990, 243–256.

Theorem (Hujdurović, Kutnar, and Marušič 2015²¹)

Every generalized Cayley graph of prime order is a Cayley graph.

²¹A. Hujdurović, K. Kutnar, and D. Marušič, Vertex-transitive generalized Cayley graphs which are not Cayley graphs, *European J. Combin.* **46** (2015), 45–50.

Theorem (Hujdurović, Kutnar, and Marušič 2015²¹)

Every generalized Cayley graph of prime order is a Cayley graph.

Theorem (Hujdurović, Kutnar, and Marušič 2015²¹)

There are vertex-transitive generalized Cayley graphs of orders $4(2n^2 + 2n + 1)$ and $20n (5 \nmid n)$ that are not Cayley graphs.

²¹A. Hujdurović, K. Kutnar, and D. Marušič, Vertex-transitive generalized Cayley graphs which are not Cayley graphs, *European J. Combin.* **46** (2015), 45–50.

Question (Tutte 1966²²)

For which numbers *n* there exists a weakly symmetric graph of order *n* that is not a symmetric graph?

William Thomas Tutte

²²W. T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.

Theorem (Tutte 1966²²)

Every weakly symmetric but not symmetric graph has even valency.

²³I. Z. Bouwer, Vertex and edge transitive, but not 1-transitive, graphs, *Canad*. Math. Bull. 13 (1970), 231-237.

Theorem (Tutte 1966²²)

Every weakly symmetric but not symmetric graph has even valency.

Theorem (Bouwer 1971²³)

For every number n, there exists a connected 2n-regular weakly symmetric graph of order $6 \cdot 9^{n-1}$ that is not a symmetric graph.

²³I. Z. Bouwer, Vertex and edge transitive, but not 1-transitive, graphs, Canad. Math. Bull. 13 (1970), 231-237.

Theorem (Holt 1981²⁴)

The following graph of order 27 is a weakly symmetric graph that is not a symmetric graph.

²⁴D. F. Holt, A graph which is edge transitive but not arc transitive, J. Graph Theory, 5 (1981), 201-204.

Theorem

Let p be a prime.

- (1) Every weakly symmetric graph of order p is a symmetric graph (Chao 1971²⁵).
- (2) Every weakly symmetric graph of order 2p is a symmetric graph (Cheng and Oxley 1987²⁶)
- (3) Every weakly symmetric graph of order 2p² is a symmetric graph (Zhou and Zhang 2018²⁷)

²⁵C.-Y. Chao, On the classification of symmetric graphs with a prime number of vertices, *Trans. Amer. Math. Soc.* **158** (1971), 247–256.

²⁶Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, *J. Combin. Theory Ser. B* **42** (1987), 196–211.

²⁷J.-X. Zhou and M.-M. Zhang, On weakly symmetric graphs of order twice a prime square, *J. Combin. Theory Ser. A* **155** (2018), 458–475.

Thanks!