

TD Fatigue: Comportement cyclique - Durée de vie

I- On étudie l'influence d'un traitement thermique sur le comportement en fatigue plastique à déformation totale imposée sous un chargement alterné symétrique d'un acier type 35NiCrMo16. On considère deux traitements thermiques différents, notés A et B et définis comme suit :

- austénisation à 875 °C pendant 1/2 heure dans les deux cas.

puis - pour A : refroidissement air + trempe -196°C 1/2h + revenu 200°C 2h.

- pour B: refroidissement air.

1°) La figure 1 présente des boucles d'hystérésis relevées pour 3 valeurs différentes de l'amplitude de déformation totale imposée $\Delta\epsilon_t/2$. Pour chaque valeur de $\Delta\epsilon_t/2$, déterminer la valeur de

 $\Delta\epsilon_p/2\,,\;\Delta\epsilon_e/2$ et $\Delta\sigma/2\,.$

 2°) Pour les deux états considérés le comportement monotone et cyclique est déterminé pour des valeurs identiques de la déformation totale (ϵ_t ou $\Delta\epsilon_t/2$). Les résultats obtenus sont donnés dans les tableaux suivants.

ÉTAT A				
Déformation(%)	R monotone (MPa)	R cyclique (MPa)		
0.25	500	500		
0.50	1000	1000		
0.75	1450	1215		
1.00	1667	1430		
1.25	1784	1588		
1.50	1843	1686		

ÉTAT B				
Déformation (%)	R monotone (MPa)	R cyclique (MPa)		
0.25	500	500		
0.50	820	1000		
0.75	1076	1410		
1.00	1256	1615		
1.25	1385	1820		
1.50	1564	1923		
1.75	1653	2000		

Tableau I: comportement monotone et cyclique.

A partir de ces données, tracer et comparer les courbes de consolidation monotone et cyclique. Caractériser le comportement cyclique pour chacun des deux états A et B.

La figure 2 donne l'évolution de la teneur en austénite en résiduelle de l'état B, mesurée au 50^{ème} cycle, en fonction de l'amplitude de déformation imposée. Interpréter la comportement cyclique sur la base de cette donnée.

Déterminer les limites d'élasticité monotone et cyclique $R_{e_{0.2\%}}$ et $R'_{e_{0.2\%}}$ pour l'état A et pour l'état B.

3°) Montrer graphiquement que les courbes monotone et cyclique peuvent se mettre sous la forme

d'une loi de Ramberg-Osgood. Déterminer les paramètres de cette loi uniquement pour l'état A.

II- Les résultats des essais de fatigue obtenus pour l'état A à amplitude de déformation imposée sont donnés dans le tableau II. Les valeurs des amplitudes de déformation élastique $\frac{\Delta \epsilon_e}{2}$ et

plastique $\frac{\Delta \epsilon_p}{2}$ ont été déterminées au 50ème cycle pour chaque niveau de $\frac{\Delta \epsilon_{tot}}{2}$ sélectionné.

$\Delta \varepsilon_{\rm t}/2~(\%)$	$\Delta \varepsilon_{\rm p}/2~(\%)$	$\Delta \varepsilon_{\rm e}/2~(\%)$	Nf
1.70	0.76	0.94	117
1.61	0.66	0.95	154
1.31	0.43	0.88	258
1.09	0.25	0.84	599
0.84	0.11	0.73	1320
0.69	0.04	0.65	2295
0.66	0.03	0.63	2528
0.57	0.01	0.56	9094
0.46		0.46	35000
0.40		0.40	420000

Tableau II

- 1°) Tracer les courbes amplitude de déformation totale $\Delta \varepsilon_t/2$ / durée de vie N_f.
- 2°) Montrer que la durée de vie est reliée à l'amplitude de déformation totale par une loi de la forme:

$$\frac{\Delta \varepsilon_{t}}{2} = \varepsilon_{f} (N_{f})^{c} + \frac{\sigma_{f}}{E} (N_{f})^{b}$$

Déterminer les valeurs des cœfficients et des exposants. En particulier comparer les valeurs de σ_f' et ϵ_f' avec les valeurs de contrainte vraie et déformation vraie à rupture en chargement monotone : $\sigma_f = 3150$ MPa et $\epsilon_f = 0.63$.

- 3°) Calculer le nombre de cycles N_t à la transition "élastique / plastique".
- III Le diagramme de Goodman de l'acier 35NiCrMo16 traité à 1300 MPa est donné ci-dessous. Déterminer la limite de fatigue pour une contrainte moyenne nulle et une contrainte moyenne de 1000 MPa.

Figure 3.

Graphiques

