Generative Modelling of Sequential Data

M.Sc. thesis in collaboration with Corti ApS

Magnus Berg Sletfjerding February 9th, 2022

Contents

Introduction

Problem and Hypotheses

Experiments

Conclusions

Appendix Slides

Introduction

Supervised and Unsupervised learning

Learns a mapping from data \boldsymbol{x} to labels \boldsymbol{y} :

$$p(\mathbf{y}|\mathbf{x}) = \sum_{i=1}^N p(y_i|x_i)$$

Unsupervised Learning

Learns the structure of the data \boldsymbol{x} :

$$p(\mathbf{x}) = \sum_{i=1}^N p(x_t)$$

Why study hierarchies of information in sequences?

- · Most data we work with has some hierarchical structure
 - Text
 - Video
 - · Proteins/DNA
- · Human brains process hierarchies of information natively
 - · Human-like AI requires hierarchical processing
- · All real-world data has a sequential dimension time!

Unsupervised sequence modeling

Unsupervised sequence modeling optimize the likelihood $p(\cdot)$ of the data \mathbf{x} , calculated by conditioning the likelihood of x_t on previous timesteps:

$$p(\mathbf{x}) = \prod_{t=1}^N p(x_t|x_{< t}), \qquad \ \mathbf{x} \in \mathbb{R}^N$$

Recurrent vs. Convolutional Autoregressive models

Recurrent architectures

Condition $p(x_t|x_{< t})$ through one or more hidden states h_t passed between timesteps:

$$p(x_t, h_t | x_{< t}) = p(x_t | x_{t-1}, h_{t-1})$$

Autoregressive Architectures

Condition $p(x_t|x_{< t})$ by viewing a receptive field of size R of the input sequence.

$$p(\mathbf{x}) = \prod_{t=R+1}^{N} p(x_t|x_{\geq t-R+1, < t})$$

WaveNet - Convolutional Autoregressive Sequence Modelling

- Common vocoder in Text to Speech production systems
- · Makes use of dilated convolution to inflate receptive field
- No "hidden state" for representing earlier timesteps
- Constrained to look back within receptive field

Main Problem with WaveNet ...

- · Local signal structure
- Missing long-range correlations
- Low receptive field (300ms)
- Generated audio sounds like babbling if not conditioned on phoneme or text representations

Hypotheses Investigated

- 1. WaveNet's receptive field is the main limiting factor for modeling long-range dependencies.
- 2. WaveNet's stacked convolutional layers learn good representations of speech.
- 3. WaveNet's hierarchical structure makes it suitable to learn priors over representations of speech such as text.
- 4. A large WaveNet architecture trained on speech can generate coherent words and sentence fragments

Experiments

Experiment overview

- 1. Expanding Receptive Field by Stacking
- 2. Latent Space of Stacked WaveNets
- 3. WaveNet as an ASR preprocessor
- 4. WaveNet as a Language Model

Expanding Receptive Field by Stacking - Setup

Hypothesis tested

1. WaveNet's receptive field is the main limiting factor for modeling long-range dependencies.

Setup

Transform x as:

Visualization of stacking on Sin curve

Expanding Receptive Field by Stacking - Results

Expanding Receptive Field by Stacking - Conclusions

- 1. Stacking does not improve likelihoods significantly.
- 2. Increasing residual channels increases evaluation likelihoods.

Does this mean that the WaveNet does not extract any semantic information at all?

Is this a failure to measure the output correctly?

Latent space of stacked WaveNet - Setup

Hypothesis tested

2. WaveNet's stacked convolutional layers learn good representations of speech.

Setup

- 1. Extract the hidden states of WaveNet for the TIMIT test set.
- 2. Reduce dimensionality from ${\cal C}$ to 2 using Principal Component Analysis.
- 3. Plot density plot of all samples
- 4. Overlay 2500 samples with phoneme labels to observe clusters

Latent space of stacked WaveNet - Results

WaveNet as an ASR preprocessor - setup

Hypothesis tested

2. WaveNet's stacked convolutional layers learn good representations of speech.

Idea

Are WaveNet's unsupervised representations more useful for Speech Recognition models than raw audio?

WaveNet as an ASR preprocessor - setup (0 layers)

WaveNet as an ASR preprocessor - setup (3 layers)

WaveNet as an ASR preprocessor - Conclusions

- Using WaveNet as a preprocessor decreases the loss when trained on the 1 hour and 10-hour training subsets.
- The best performance occurs when using 30 layers of the WaveNet trained on 10 hours of training data.
- Notably, WaveNet's use as a preprocessor grows more competitive when increasing the training data size.

WaveNet as a Language Model - Setup

Hypothesis tested

3. WaveNet's hierarchical structure makes it suitable to learn priors over representations of speech such as text.

Setup

- WaveNet implemented as a character-level language model
- · Categorical output distribution over alphabet
- Receptive field of 126 characters to match typical sentence length.

WaveNet as a Language Model - Results

Model	Dataset	BPD (test)
Mogrifier LSTM [?]	PTB	1.083
Temporal Convolutional Network [?]	PTB	1.31
WaveNet N=5 L=4 R=24 [RF 126]	PTB	1.835
WaveNet N=5 L=4 R=32 [RF 126]	PTB	1.666
WaveNet N=5 L=4 R=48 [RF 126]	PTB	1.678

WaveNet as a Language Model - Conclusions

- WaveNet remains below the bar compared to state-of-the-art models for Language Modelling, contradicting the hypothesis
- This may contribute to WaveNet's limited performance in speech synthesis

Conclusions

Conclusions

Hypothesis	Support?
WaveNet's receptive field is the main limiting factor for modeling long-range	No
dependencies.	
WaveNet's stacked convolutional layers learn good representations of speech.	Yes
WaveNet's hierarchical structure makes it suitable to learn priors over	No
representations of speech such as text.	
A large WaveNet architecture trained on speech can generate coherent words and	No
sentence fragments	

References

Appendix Slides

Experiment: WaveNet Gradient analysis over input space - 1

Explained

Run gradient evaluation over a trained WaveNet model and visualize the outputs.

Hypothesis tested

WaveNet uses the entirety of its receptive field for next-step prediction.

- Gradients in the end of the RF (close to output) are larger than the gradients in the rest of the RF.
- Gradients do NOT collapse to 0 around the beginning of the RF (furthest away from output).

Method

- 1. Calculate vector-Jacobian product with torch.autograd
- 2. Calculate norm with torch.linalg.norm

Experiment: WaveNet Gradient analysis over input space - 2

Notation

Symbol	Explanation
x_i, x_t	The i th index of \mathbf{x} , of size N . $x_i \in \mathbb{R}^N$. x_t is used when
	data is time-resolved.
X	The data x, composed of vectors x_i . $\mathbf{x} \in \mathbb{R}^{T imes N}$
$p_{ heta}(\cdot)$, $p(\cdot)$	Likelihood function over model parameters $ heta$. Denoted $p(\cdot)$
	for brevity
\hat{x}_i	Model prediction for x_i .
\mathcal{L}_i	Loss function for i th index.
R	Receptive field size.
S	Size of stack size used in stack transformations
d_i	Dilation of i th layer in a WaveNet architecture
C	Number of residual channels

Overview of Codebase and Experiments

Codebase

- https://github.com/JakobHavtorn/vseq/tree/wavenet-exps
- Collaborative codebase with Jakob Havtorn and Lasse Borgholt (PhDs at Corti)
- Includes custom implementations of likelihoods, data processing steps

Work timeline

Experiment		Time
Single Timestep WaveNet		May
WaveNet gradient evaluation of	check	May-June
Audio LSTM control		May-June
Stacked WaveNet (softmax dis	tribution)	June-Aug
Stacked WaveNet (DMoL)		Aug-Nov
Latent space of stacked Wavel	Vet	Oct-Nov
WaveNet as an ASR preprocess	sor	Nov-Dec
WaveNet as a Language Mode	(Text)	Nov-Dec
WaveNet as a Language Mode	l (Nanobody)	Dec

Overview of extra experiments

Model	Dataset(s)	Notes
Single-Timestep WaveNet	TIMIT	Slow convergence compared
(softmax output)		to later DMoL
Stacked WaveNet	TIMIT, Librispeech	Collapses to predict silence
(softmax output)		for all timesteps
Single Timestep WaveNet	Generated Sinusoids with	Fails to follow modulation in
	periodically modulated pitch.	pitch

Different tested embeddings for stacked WaveNet input

		Num-	
Embedding type	Dim	ber	Note
Lookup table embedding with input	128	1024	Outputs collapsed to silence (suspect
dimensionality $S imes C$			too sparse embeddings)
S embeddings convolved together	128	$S \cdot 256$	White noise output.
2 Layer perceptron with input size S	R	Contin-	Final used embedding
and output size R		uous	

Stacking Transformation

$$x_t^* = \begin{pmatrix} x_t \\ \vdots \\ x_{t+S} \end{pmatrix}, \qquad t \in \{1, S+1, \dots, T-S\}, \mathbf{x}^* \in \mathbb{R}^{N/S \times S} \mathbf{x} \in \mathbb{R}^N$$

Residual Block of WaveNet

Full WaveNet architecture

DMoL vs. Categorical output distribution

Discretized Mixture of Logistics

With a mixture of K logistic distributions, for all discrete values of x except edge cases:

$$P(x|\pi,\mu,s) = CDF(x-0.5,x+0.5) = \sum_{i=1}^K \pi_i [\sigma(\frac{x+0.5-\mu_i}{s_i}) - \sigma(\frac{x-0.5-\mu_i}{s_i})]$$

Where $\sigma(\cdot)$ is the logistic sigmoid: $\sigma(x) = \frac{1}{1+e^x}$, π is the relative weight vector, μ is the location vector and s is the scale vector.

Softmax distribution

In a softmax distribution, the probability of the ith out of N discrete values is defined by:

$$\sigma(\mathbf{x})_i = \frac{\exp(x_i)}{\sum_{j=1}^N \exp(x_j)}$$

Phonemes in TIMIT

Group	Phonemes	
Vowels	iy, ih, eh, ey, ae, aa, aw, ay, ah, ao,	
	oy, ow, uh, uw, ux, er, ax, ix, axr, ax-h	
Stops	b, d, g, p, t, k, dx, q	
Closures	bcl, dcl, gcl, pcl, tck, kcl, tcl	
Affricates	jh, ch	
Fricatives	s, sh, z, zh, f, th, v, dh	
Nasals	m, n, ng, em, en, eng, nx	
Semivowels and Glides	l, r, w, y, hh, hv, el	
Others	pau, epi, h#, 1, 2	

Table 6: TIMIT phoneme groupings

Phoneme lengths in TIMIT

Mu Law Distribution Illustrated

Figure 3: Distribution of raw PCM values from the TIMIT test set. Far left: PCM (16-bit integers). Others: corresponding distribution after μ -law encoding the waveform values with $\mu \in 8, 10, 16$.

Output distribution of WaveNet from Librispeech clean-100h - 1

Sampled Output Distributions for WaveNet models trained on the Librispeech clean-100h subset. Distributions are in 16 bit μ -law space and binned into 256 bins from -1 to 1.

Output distribution of WaveNet from Librispeech clean-100h - 2

Sampled Output Distributions for WaveNet models trained on the Librispeech clean-100h subset. Distributions are in 16 bit μ -law space and binned into 256 bins from -1 to 1.

Output distribution of WaveNet from Librispeech clean-100h - constrained

Sigmoid and Tanh Activation functions

ReLU activation function

