भारत की राजपत्र The Gazette of India

EXTRAORDINARY

भाग II—खण्ड 3—उप-खण्ड (ii) PART II—Section 3—Sub-section (ii)

प्राधिकार से प्रकाशित PUBLISHED BY AUTHORITY

ti. 1798] No. 1798] गई दिल्ली, मंगलवार, नवम्बर 3, 2009/कार्तिक 12, 1931

NEW DELHI, TUESDAY, NOVEMBER 3, 2009/KARTIKA 12, 1931

कृषि मंत्रालय

(कृषि और सहकारिता विभाग)

आदेश

नई दिल्ली, 3 नवम्बर, 2009

का.आ. 2803(अ).—केन्द्रीय सरकार, आवश्यक वस्तु अधिनियम, 1955 (1955 का 10) की धारा 3 द्वारा प्रदत्त शिक्तयों का प्रयोग करते हुए, उर्वस्क (नियंत्रण) आदेश, 1985 का और संशोधन करने के लिए निम्नलिखित आदेश करती है, अर्थात्:—

- 1. (1) इस आदेश का संक्षिप्त नाम उर्वरक (नियंत्रण) तीसरा संशोधन आदेश, 2009 है।
 - (2) यह राजपत्र में प्रकाशन की तारीख को प्रवृत्त होगा।
- 2. उर्वाक (नियंत्रण) आदेश, 1955 में,—
 - (1) खण्ड 8 के, उप-खण्ड 3 में चौथे परन्तुक के पश्चात्, निम्नलिखित परन्तुक अन्तःस्थापित किए जाएंगे,
- अर्थात् :---

"परन्तु कि जहां कार्बनिक उर्वरक का विनिर्माता कोई राज्य सरकार या नगरपालिका है, वहां उसके लिए प्राधिकार पत्र अभिप्राप्त करना आवश्यक नहीं होगा :

परन्तु कि जहां राज्य सरकार या नगरपालिका से भिन्न वर्मी कम्पोस्ट विनिर्माता की वार्षिक उत्पादन क्षमता 50 मीट्रिक टन से कम है, वहां उसके भी प्राधिकार पत्र अभिप्राप्त करना आवश्यक नहीं होगा ।"

(2) खण्ड 14 में उप-खण्ड (3) के पश्चात् अंत में निम्नलिखित परन्तुक अन्तःस्थापित किए जाएंगे, अर्थात् म्न् "परन्तु कि जहां कार्बनिक उर्वरक का विनिर्माता कोई राज्य सरकार या नगरपालिका है, वहां उसके लिए प्राधिकार पत्र अभिप्राप्त करना आवश्यक नहीं होगा :

परन्तु यह और कि राज्य सरकार या नगरपालिका से भिन्न वर्मी कम्पोस्ट के विनिर्माता की वार्षिक उत्पादन क्षममा 50 मीट्रिक टन से है तो उसके लिए वर्मी-कम्पोस्ट तैयार करने के लिए विनिर्माण प्रमाण प्राधिकार पत्र अभिप्राप्त करना आवश्यक नहीं होगा ।" (3) खण्ड 19 में, निम्नलिखित परन्तुक अन्त में अंतः स्थापित किए जायेगें, अर्थातः-

" परन्तु नगरपालिकाओं की दशा में अनुसूची IV में शहरी कम्पोस्ट के विनिर्देश केवल तभी लागू होंगे जब इसका कृषि में उपयोग हेतु पैकेज्ड में व्यापार किया जाता है :

परन्तु यह और कि अनुसूची IV में वर्मी कम्पोस्ट के विनिर्देश केवल ऐसे मामलों में ही लागू होंगे जहां इसका विक्रय कृषि प्रयोजनों के लिए और पैकेज्ड रूप में किया जाता है। "

- (4) अनुसूची | के भाग क में " उर्वरकों के " विनिर्देश शीर्षक के अधीन
- (क) " ऋजु पोटाशी उर्वरकों " से संबंधित उप शीर्षक 1 (ग) के अधीन क्रम सं. 04 और उससे संबंधित प्रविष्टियों के पश्चात निम्नलिखित क्रम संख्या और प्रविष्टियां अंतः स्थापित की जाएंगी, अर्थातः-

" 5. सीरे से व्युत्पन्न पोटाश

(i)	भार के आधार पर आर्द्रता का अधिकतम प्रतिशत		4.79
(ii)	भार के आधार पर कुल नाइट्रोजन का न्यूनतम प्रतिशत		1.66
(iii)	भार के आधार पर न्यूट्रल अमोनियम साइट्रेट घुलनशील फास्फेट	- NO.	
	(पी2 ओ 5 के रूप में) का न्यनतम प्रतिशत		0.20

- (iV) भार के आधार पर पानी में घुलनशील पोटाश (के2 ओ के रूप में) न्यूनतम प्रतिशत 14.70"
- (ख) एनपीके শিश्रित उर्वरकों से संबंधित उपशीर्षक 1 (ड.) में, क्रम सं0 12 और उससे संबंधित प्रविष्टियों के पश्चात निम्नलिखित क्रम सं0 और प्रविष्टियां अन्तः स्थापित की जायेगी, अर्थातः-

" 13 एनपीके (12: 11: 18 एम जी ओ के साथ)

(1)	भार के आधार पर आर्द्रता का अधिकतम प्रतिशत	1.5
(ii)	भार के आधार पर कुल नाइट्रोजन का न्यूनतम प्रतिशत	12.0
(iii)	भार के आधार पर अमोनिकल नाइट्रोजन का न्यूनतम प्रतिशत	7.0
(iv)	भार के आधार पर नाइट्रेट नाइट्रोजन का न्यूनतम प्रतिशत	5.0
(v)	भार के अधार पर न्यूट्रल अमोनियम साइट्रेट घुलनशील फास्फेट	
•	(पी 2 ओ 5 के रूप में) का न्यूनतम प्रतिशत	11 .Ò
(vi)	भार के आधार पर पानी में घुलनशील फास्फेट (पी 2 ओ 5 के रूप में) का न्यूनतम प्रतिशव	7.7
(vii)	भार के आधार पर पानी में घुलनशील पोटाश (के 2 ओ कें रूप में) का न्यूनतम प्रतिशत	18.0
(viii)	भार के आधार पर मैगनीशियम (एम जी के रूप में) का न्यूनतम प्रतिशत	1.20

(ix) भार के आधार पर सल्फर (एस के रूप में) का न्यूनतम प्रतिशत

7.6

(X) भार के आधार पर कुल क्रोराईडस (सी एल के रूप में) का अधिकतम प्रतिशत

1.0

(xi) कण आकार-सामग्री का 90% से अन्यून 4 मि.मी. भा.मा. छलनी में से छन जायेगा और 1 मि0 मी0 की भा0 मा0 छलनी पर रह जायेगा और 5% से अनिधक 1 मि.मी. भा0 मा0 छलनी से नीचे रहेगा।

(5) अनुसूची ॥ में, -

(क) भाग क और उससे संबंधित प्रविष्टियों के स्थान पर निम्नलिखित रखा जाएगा, अर्थात:-

" पाग- क जैव उर्वरकों का विनिर्देश

1. राइजोबियम

(i) आधार

= नम/शुष्क चूर्ण या दानेदार के रूप में वाहक आधारित * या तरल आधारित

(ii) व्यवहार्य कोशिका संख्या

= सीएफयू चूर्ण, दानेदार या वाहक सामग्री का न्यूनतम 5X10 कोशिका प्रति ग्राम अथवा तरल का 1X10 कोशिका प्रति मि.ली.

(iii) संदूषण स्तर

= 10 तनुकरण पर कोई संदूषण नहीं।

(iv) पीएच

= 6.5-7.5

(V) वाहक आधारित सामग्री की दशा = सभी सामग्री 0.15-0.212 मिमी. भारतीय मानक छलनी में से में कण आकार निकल जाएगी।

(vi) आर्द्रता प्रतिशत भार द्वारा वाहक आधारित की दशा में अधिकतम = 30-40%

(vii) क्षमता विशेषता

= पैकेट पर सूचीबद्ध सभी प्रजातियों पर प्रभावी नोडुलेशन दिखाना चाहिए।

* वाहक की किस्म : वाहक सामग्री जैसे पीट, लिग्नाईट, पीट मृदा, खाद-मिट्टी, काठकोयला अथवा समरूप सामग्री जो जीव के किकास में सहायक हो ।

2. एजोटोबैक्टर

(i) आधार

= नम/शुष्क चूर्ण या दानेदार के रूप में वाहक आधारित * अथवा

तरल	आधारित	,

(ii) व्यवहार्य	कोशिका	संख्या
----------------	--------	--------

= सीएफयू वाहक सामग्री का न्यूनतम 5X10 कोशिका प्रति ग्राम अथूवा तरल का 1X10 कोशिका प्रति मि.ली.

(iii) संदूषण स्तर

= 10 तनुकरण पर कोई संदूषण नहीं।

(iv) पीएच

= 6.5-7.5

(V) वाहक आधारित सामग्री की दशा में कण आकार

= सभी सामग्री 0.15-0.212 मिमी. भारतीय मानक छलनी में से निकल जाएगी।

(vi) आर्द्रता प्रतिशत भार द्वारा वाहक आधारित की दशा में अधिकतम

= 30-40%

(Vii) क्षमता विशेषता

= किस्म में उपभोग किए गए प्रति ग्राम सूक्रोज के कम से कम 10 मिग्रा नाइट्रोजन के निर्धारण की क्षमता होनी चाहिए।

* वाहक की किस्म :

वाहक सामग्री जैसे पीट, लिग्नाईट, पीट मृदा, खाद-मिट्टी, काठकोयला अथवा समरूप सामग्री जो जीव के विकास में सहायक हो।

3. एजोसपिरिलम

(i) आधार

= नम/शुष्क चूर्ण या दानेदार के रूप में वाहक आधारित * अथवा तरल आधारित

(ii) व्यवहार्य कोशिका संख्या

= सीएफयू चूर्ण/ दानेदार अथवा वाहक सामग्री का न्यूनतम 5x 10 कोशिका प्रति ग्राम अथवा तरल का 1x 10 कोशिका प्रति मि.ली.

(iii) संदूषण स्तर

= 10 तनुकरण पर कोई संदूषण नहीं।

(iv) पीएच

= 6.5-7.5

(V) वाहक आधारित सामग्री की दशा में कण:आकार

= सभी सामग्री 0.15-0.212 मिमी. भारतीय मानक छलनी में से निकल जाएगी।

(भां) आर्द्रता प्रतिशत भार द्वारा वाहक आधारित की दशा में अधिकतम

= 30-40%

(Mii) असता विशेषता

= नाइट्रोजन मुक्त अर्धठोस ब्रोमोथाइमोल नीले माध्यम में सफेद झिल्ली का बनना।

वाहक की विक्रम

वाहक सामग्री जैसे पीट, किमाईट, पीट मृदा, खाद-मिही, काठकोयला अथवा समरूप सामग्री जो जीव के विकास में

सहायक हो।

4. फास्फेट घुलनशील वैक्टीरिया

- (i) आधार
- (ii) व्यवहार्य कोशिका संख्या
- (iii) संदूषण स्तर
- (iv) पीएच
- (V) वाहक आधारित सामग्री की दशा में कण आकार
- (vi) आर्द्रता प्रतिशत भार द्वारा वाहक आधारित की दशा में अधिकतम
- (vii) क्षमता विशेषता

- चम /शुष्क चूर्ण या दानेदार के रूप में वाहक आधारित

 अथवा
 तरल आधारित
 च्रिक्त अथवा
 तरल आधारित
 च्रिक्त अथवा
 च्
- = सीएफयू वाहक सामग्री का न्यूनतम 5X 10 मि.ली. कोशिका प्रति ग्राम अथवा तरल का 1X 10 कोशिका प्रति
- = 10 तनुकरण पर कोई संदूषण नहीं।
- = 6.5-7.5 नम/शुष्क चूर्ण दानेदार वाहक आधारित और 5.0-7.5 तरल आधारित के लिए
- = सभी सामग्री 0.15-0.212 मिमी. भारतीय मानक छलनी में से निकल जाएगी।
- = 30-40%
- = स्पैक्ट्रोफोटोमीट्रिक रूप से परीक्षण करने पर किस्म में कम से कम 30% की रेंज में फास्फेट को घोलने की क्षमता होनी चाहिए। जोन बनने के हिसाब से निर्धारित माध्यम में न्यूनतम 5 मि.मी. घुलनशील जोन जिसमें कम से कम 3 मि.मी. मोटाई हो।

* वाहक की किस्म : वाहक सामग्री जैसे पीट, लिग्नाईट, पीट मृदा, खाद-मिट्टी, काठकोयला अथवा समरूप सामग्री जो जीव के विकास में सहायक हो।

- (ख) भाग ख में, " जैव उर्वरक की सहन सीमा " शीर्ष के अधीन, " वाहक का 5X 10 प्रति सीएफयू/प्रति ग्राम अथवा तरल सामग्री का प्रति मि0 ली0 " शब्दों और अंको के स्थान पर " चूर्ण या दानेदार के रूप में वाहक सामग्री का 1X 10 सीएफयू/ग्राम अथवा तरल सामग्री का 5X 10 सीएफयू/ग्राम शब्द और अंक रखे जाएंगे।
- (ग) भाग ग और उससे संबंधित प्रविष्टियों के स्थान पर शीर्षक के अधीन निम्नलिखित रखा जाएगा, अर्थात्

" भाग-ग

जैव उर्वरक के नमूने लेने की प्रक्रिया

जैव उर्वरकों के नमूना तैयार करने की प्रक्रिया

- "1. नमूना तैयार करने की सामान्य अपेक्षाएं
- 1.0 नमूनों को लेने, तैयार करने और रखरखाव में निम्नलिखित सावधानियों और निर्देशों का पालन किया जाना चाहिए।
- 1.1 क्योंकि यह आवश्यक है कि नमूना जांच किए जाने वाले ढ़ेर का प्रतिनिधि होता है इसलिए नमूना लेने का कार्य प्रशिक्षित और अनुभवी व्यक्ति द्वारा किया जाना चाहिए।
- 1.2 नमूनों को उनकी वास्तविक स्थिति में बंद पैकेटों से लिए जाय और उन्हें प्रयोगशाला में भेजा जाय जिससे रखरखाव के दौरान नमूनों के संभावित संदूषण से बचा जा सकेगा और सामग्री की शुद्ध स्थिति को स्पष्ट करने में सहायता मिलेगी।
- 1.3 स्वच्छ पैकेटों को संरक्षित स्थान से लिया जाय जो नमी, हवा, प्रकाश धूल अथवा कालिख में खुला न हो।"

2. नमूनों का पैमाना

2.1 ढेर

सभी इकाइयां (किसी एक प्रकार की सामग्री की एक खेप जो विनिर्माण के एक ही बैचें से संबंधित हो के कन्टेनरी) एक ढ़ेर से संबंधित होगी। यदि किसी खेप में विनिर्माण के भिन्न-भिन्न बैच हों तो एक बैचें बाले कन्टेनरों को अलग किया जाय और उनका अलग ढ़ेर बनाया जाए।

2.2 बैच

किसी बैच फरमेन्टर या फ्रास्कों (कन्टेनरों) के एक समूह से तैयार किया गया कोई संरोपण (इनोकुलेन्ट) एक बैच गठित करेगा।

- 2.3 विनिर्देश की अपेक्षाओं के लिए सामग्री की सुनिश्चितता निर्धारित करने के लिए नमूनों के प्रत्येक ढ़ेर से अलग-अलग रूप से जांच की जाएगी।
- 2.4 एक ढ़ेर से चयन किए गए पैकेटों की संख्या ढ़ेर के आकार पर निर्भर करेगी और इन पैकेटों का चयन यादृच्छिक रूप से किया जाएगा और चयन की यादृच्छिकता को सुनिश्चित करने के लिए आई एस 4905 में दी गई प्रक्रिया शब्दों का अनुसरण किया जाए। "

" 3. नमूनों का लिया जाना :

- 3.1 निरीक्षक एक ही बैच से तीन पैकेट नमूना के रूप में लेगा। प्रत्येक नमूना एक परीक्षण नमूना होगा।
- 3.2 नमूने कपड़े के थैलों में मुहर बंद होने चाहिए और इसके अन्दर फार्म पी रखने के बाद निरीक्षक की मुहर से

सील किया जाना चाहिए। पहचानगत ब्यौरे जैसे नमूना संख्या, कोड संख्या या कोई अन्य ब्यौरे जो इसकी पहचान में मदद करते हैं, कपड़े के थैले पर अंकित किए जायेंगे।

3.3 एकत्र किए गए तीन नमूनों में से इस प्रकार सील किया गया एक नमूना खण्ड 29 के अधीन राज्य सरकार द्वारा अधिसूचित प्रयोगशाला के प्रभारी या राष्ट्रीय कार्बनिक खेती केन्द्र या इसके किसी भी क्षेत्रीय केन्द्र को भेजा जायेगा । दूसरा नमूना यथास्थिति विनिर्माता अथवा आयातक अथवा डीलर, को दिया जायेगा । तीसरा नमूना निरीक्षक द्वारा अपने अगले उच्चतर प्राधिकारी के पास सुरक्षित अभिरक्षा रखने के लिए भेजा जायेगा । बाद के दो नमूनों में से किसी को खण्ड 29 ख के उप खण्ड (2) के अधीन संदर्भी विश्लेषण के लिए भेजा जायेगा ।

3.4 देर में से लिए जाने वाले नमूनों की संख्या

ढ़ेर/बैच	नमूनों की संख्या
5,000 पैकेटों तक	03
5,001-10,000 पैकेट	04
10,000 पैकेटों से ज्यादा	05

- (घ) भाग घ में, 'जैव उर्वरकों के विश्लेषण की रीति 'शीर्ष के अधीन :-
- (i) 1.ग एजोस्पीरिलम जैव उर्वरकों के विश्लेषण की रीति से संबंधित ' उपशीर्षक और उससे संबंधित प्रविष्टियों के स्थान पर निम्नलिखित रखा जायेगा, अर्थात –

" 1.ग. एजोस्पीरिलमजैव उर्वरकों के विश्लेषण की रीति

- 1. साधित्र :राइजोवियम के समान
- 2. अभिकर्मक
- 2.1 मीडियम

एमपीएन टयूबों को तैयार करने के लिए निम्नलिखित संमिश्रण के एन मुक्त अर्थठोस मीडियम (एनएफबी) का प्रयोग करें।

डीएल-मैलिक एसिड	5 .0
के2 एचपीओ 4	0.5
एमजीएसओ 4 7 एच 2 ओ	0.2
एनएसीएल	0.1
सीएसीएल 2	0.02
*	
ट्रेस एलीमेन्ट घोल	2.0 मि.ली.
एफईईडीटीए (1.64%घोल)	4.0 मि.ली.
विटामिन घोल	1.0 मि.ली.
के ओ एच	4.0 मि.ली.

व्रोमोथाइमोल ब्लू (0.5% एक्यू)	2.0 मिली.	
केओएच के साथ पीएच को		
6.8-7.0 तक समायोजित करें		· **
अर्ध ठोस के लिए अगर मिलाए	1.75 ग्राम	
ठोस माध्यम के लिए अगर मिलाए	15.0 ग्राम	

2.1.1 ट्रेस एलीमेंट घोल (ग्रा०/ली०)

एनए 2 एमओओ 4 2 एच 2 ओ	0.2
एमएनएसओ 4 एच 2 ओ	0.235
एच 3 बीओ 3	0.28
सीयूएसओ 4 5 एच 2 ओ	0.008
जेडएनएसओ ४ ७ एच २ ओ	0.024
आसवित जल	1000 मि.ली.

एनएफबी माध्यम के एक लीटर में इस घोल का 2 मि.ली. प्रयोग करें।

विटामिन घोल (ग्रा०/लीटर)

बायोटिन	0.01
पायरिडॉक्सिन	0.02
आस्वित जल	1000 मि.ली.
एनएफबी माध्यम के एक लीट	र में इस घोल का एक मि.ली. प्रयोग करें।

2.2 एमपीएन टयूबों का विसंक्रमण और तैयारी

- 2.2.1 पैरा 2.1 में यथा उल्लिखित नाइट्रोजन मुक्त ब्रोमोथाइमोल ब्लू मेलेट मीडियम तैयार करें। अगर को घोलने के लिए उबालें। 15X150 मि.ली. टेस्ट टयूब या पेचदार ढक्कन लगी कल्चर टयूबों में 10 मि.ली. पिघला हुआ माध्यम तेजी से डालें और रूई के प्रगों या पेचदार ढक्कन से बंद करें। प्रत्येक नमूने के लिए कम से कम ऐसी 25 टयूबों की आवश्यकता होगी।
- 2.2.2 20 मिनट तक 121 डिग्री सेल्सियस पर आटोक्क्रेविंग द्वारा टयूबों को विसंक्रमित करें जैसा कि पैरा 2.3.2 पर राइजोवियम में है।

3. एमपीएन काउंट के लिए क्रमिक घोल की तैयारी

30 ग्राम एजोस्पिरिलिम जैव उर्वरकों को 270 मि.ली. आवसित जुलू में डालें और एक रेसिप्रोकल शेकर पर 10 मिनट तक हिलाएं। क्रिमिक घोल को 10 घोल तक बनाएं। 10 से 10 तनुकृत घोल के 1 मि.मी. सम भाग को पिपेट से निकालें और इसे पेचदार ढ़क्कन वाली टयूबों या एन- मुक्त अर्धठोस एनएफबी माध्यम वाली टेस्ट टयूबों में डालें।

4. टयूबों का उष्मांयन

टयूबों को लेबल लगाएं और एक टेस्ट टयूब स्टैंड में उर्ध्वाधर अवस्था में 3-4 दिन तक 36±1 डिग्री से0 पर उष्मापन करें। उष्मापन की पूरी अवधि के दौरान माध्यम को नहीं छेड़ें।

5. संगणना

- 5.1 ऐसी टयूबों की संगणना करें जो नीली हो चुकी हों और जिनकी उप सतह पर विशेष श्वेत झिल्ली विकसित हो गई हो।
- 5.2 उप सतह पर विशेष श्वेत झिल्ली की बने रहने के लिए टयूबों को + (पोजिटिव) या -(निगेटिव) के रूप में गिनती करें और गणना के उद्देश्य हेतु विचार करें।

5.3 एमपीएन काउंट के आकलन की रीति

- 5.3.1 मूल नमूना में संघटकों की संभाव्य संख्या की गणना करने के लिए कम से कम सान्द्रित घोल में पोजिटिव टयूबों की संख्या पी1 के रूप में चयन करें जिसमें सभी टयूब पाजिटिव हो या जिसमें टयूबों की अधिकतम संख्या +(पोजिटिव) हो और पी2 और पी3 को अगले दो उच्चतर घोलों में पाजिटिव टयूबों की संख्या प्रदर्शित करें।
- 5.3.2 उसके पश्चात तालिका 1 में संख्या के क्रम का पता करें जिसमें पी1 और पी2 प्रायोगिक रूप से अभिप्राप्त मान के सदृश हो। संख्या के उस क्रम को पूरी तालिका से लेकर पी की अभिप्राप्त मान की तालिका तक अनुसरण करें।
- 5.3.3 प्रतिच्छेद-बिन्दु पर अंकित आंकड़ द्वितीय घोल में मिश्रित इनोकुलम में प्रदर्शित मूल नमूने की मात्रा में संघटकों की अति संभाव्य संख्या है। एमपीएन मान अभिप्राप्त करने के लिए इस अंक का उचित घोल खण्ड से गुणा करें।
- 5.3.4 एजोस्पीरिलम काउंट प्रति वाहक ग्राम = एमपीएन तालिका का मान *X घोल स्तर उत्पाद का शुष्क भाग

तालिका 1

* 10 गुने घोल के साथ प्रयोग के लिए अति संभाव्य संख्या और प्रति घोल 5 ट्यूब (कोचरान, 1950)

. 2.0	पी3 के सांकेतिक मान के लिए अति संभाव्य संख्या							
यी	明	-	_0	1	2	3 2	1	5
0	0	-	0.018	0.036	0.054	0.072	0.090	••
0	1	0.018	0.036	0.055	0.073	0.091	0.11	
0	2	0.037	0.055	0.074	0.092	0.11	0.11	
0	3	0.056	0.074	0.093	0.11	0.13	0.15	
0	4	0.075	0.094	0,11	0.13	0.15	0.17	
0	5	0.094	0.11	0.13	0.15	0.17	0.19	
1	0	0.020	0.040	0.060	0.080	0.10	0.12	-
1	1	0.040	0.061	0.081	0.10	0.10	0.12	
1	2	0.061	0.082	0.10	0.12	0.12	0.17	
1	3	0.089	0.10	0.13	0.16	0.17	0.17	
1	4	0.11	0.13	0.15	0.17	0.19	0.13	-
1	5	0.13	0.15	0.17	0.19	0.22	0.24	
2	0	0.046	9.068	0.091	0.12	0.14	0.16	
2	1	0.068	0.092	0.12	0.14	0.17	0.10	į
2 2	2	0.093	0.12	0.14	0.17	0.19	0.19	
	3	0.12	0.14	0.17	0.20	0.22	0.25	ļ
, 2	4	0.15	0.17	0.20	0.23	0.25	0.23	
2	5	0.17	0.20	0.23	0.26	0.29	0.28	
3	0	0.078	0.11	0.13	0.16	0.20	0.23	-
1	1	0.11	0.14	0.17	0.20	0.23	0.23	
3	2	0.14	0.17	0.20	0.24	0.27	0.27	ĺ
3	3 4	0.17	0.21	0.24	0.28	0.31	0.31	
3	t .	0.21	0.24	0.28	0.32	0.36	0.40	
3	5	0.25	0.29	0.32	0.37	0.41	0.45	į
	 					1	0.15	İ
4	0	0.13	0.17	0.21	0.25	0.30	0.36	
4	l	0.17	0.21	0.26	0.31	0.36	0.42	
4	2	0.22	0.26	0.32	0.38	0.44	0.50	
4	3	0.27	0.33	0.39	0.45	0.52	0.59	
4	4	0.34	0.40	0.47	0.54	0.62	0.69	
4	5	0.41	0.48	0.56	0.64	0.72	0.81	
5	0	0.23	0.31	0.43	0.58	0.76	0.95	┦
5	1	0.33	0.46	0.64	0.84	1.1	1.3	
5	2	0.49	0.70	0.95	1.2	1.5	1.8	
5	3	0.79	1.1	1.4	1.8	2.1	2.5	
5	4	1.3	1.7	2.2	2.8	3.5	4.3	
5	5	2.4	3.5	5.4	9.2	16.0		
							<u> </u>	j

- (ii) 1.घ फास्फेट विलेय जीवाण्विक जैवउवर्रक के विश्लेषण की रीति से संबंधित " उपशीर्षक में 'प्रक्रिया' से संबंधित 'प्रक्रिया से सम्बन्धित, ' एस्कोरबिक अम्ल का उपयोग करके विलेय फास्फोरस का निर्धारण,' से संबंधित क्रम संख्या 5 में क्रम संख्या 5.3.3 के अधीन मद (i) और मद (ii) के स्थान पर निम्नलिखित रखा जायेगा, अर्थात:-
- "(i) नमूनों की तैयारी
 अगर को छोड़कर उपर 2.1 के अनुसार विशुद्ध कल्चर मीडियम।
 250 मि0 ली. कोनिकल फ्लास्क में, 6 की संख्या में, 100 मि.ली. समभागों में ब्रोध मीडियम तैयार करें और 20 मिनट तक 121 डिग्री से0 पर आटोक्लेव में विसंक्रमित करें।
- (ii) मीडियम का इनोकुलेशन इस प्रकार की एक पीएसबी कालानी को चुने जिसे (घुलनशीलता के पर्याप्त जोन को दर्शाते हुए) पीएसबी के रूप में गिना गया हो और एक पेट्री डिश में 2.1 पर यथा उल्लिखित सेट मीडियम पर रेखा से चिन्हित करें। ब्रोध को इनोकुलेट करने के लिए इस विशुद्ध कल्चर का प्रयोग करें। 3 फ्लास्कों को इनोकुलेट करें और 3 फ्लास्कों को अनइनोकुलेटेड नियंत्रण के लिए रखें। फ्लास्कों को 12 दिनों तक 28+10 से० पर रोटरी शेकर पर इनक्यूबेट करें। 12 दिनों के बाद प्रत्येक फ्लास्क की सामग्री को पृथक रूप से वाटमैन न 0 42 छलनी कागज से छानिए या 10,000 आरपीएम पर 15 मिनट तक अपकेन्द्रित करें।
- (iii) 10 मि.ली. आशोधित/अपकेन्द्रित सामग्री को 50 मि.ली. ओलसन तत्व में मिलाएं और 30 मिनट तक रोटरी शेकर में हिलाएं ।
- (iv) सस्पेंशन को वाटमैन छलनी कागज सं. 40 के माध्यम से छाने । यदि आशोधित सामग्री रंगीन हो जाए तो उसके बाद एक छोटा चम्मच डेक्रो-60 (सक्रिय फास्फोरस मुक्त कार्बन) मिलाएं, उसे पुनः हिलाएं और छानें ।
- (v) एक 50 मि.ली. अनुमापी फ्रास्क में एक पहचाना हुआ एलीक्वोट (5 से 25 मि.ली.) सारतत्व लें।
- (vi) पी-नाइट्रोफीनोल सांकेतक की 5 बूंदे मिलाएं (पानी में 1.5 प्रतिशत घोल) और 2 और 3 के बीच सारतत्व के पीएच को 4 एनएच 2 एसओ 4 की सहायता से संतुलित करें। घोल का पीएच जब 3 हो जाए तो पीला रंग गायब हो जायेगा। सीओ 2 के बनने के साथ घोल के समाप्त होने से बचने के लिए इसे धीरे-धीरे घुमाएं।
- (vii) जब सी ओ 2 का बनना बन्द हो जाए तो फ़्रास्क के मुहाने को साफ करें और लगभग 40 मि.ली. तक घोल को तनुकृत करें।

- (Viii) एसकोरबिक अम्ल वाले 5 मि.ली. सल्फोमोलिबिडिक अम्ल मिश्रित अभिकर्मक मिलाएं, सामग्री को हिलाएं और आयतन तैयार करें।
- (iX) लाल आशोधक का प्रयोग करते हुए 880 एनएम पर 30 मिनट बाद संचरण को मापें। विकसित हुआ नीला रंग 60 मिनट तक स्थिर रहता है।
- (X) मानक वक्र से सारतत्व रूप में फास्फोरस(पी) की सान्द्रता दर्ज करें और निम्नानुसार घुलनशील फास्फोरस की सान्द्रता की गणना करें।"
- (iii) पैककरना, चिन्ह लगाना, भंडारकरण और उपयोग से संबंधित उपशीर्षक 4 में.-
- (i क) 'पैकिंग से संबंधित क्रम संख्या 4.1 में '' जैव उवर्रक पालीथीन पैकों में पैक किया जाएगा जिसकी, मोटाई 75-100 माइक्रोन से कम नहीं होगी'' शब्दों के स्थान पर निम्नलिखित शब्द और अंक रखे जाएगें, अर्थात्:
- " जैव उर्वरक उचित प्रास्टिक थैलों/पैकेटों में पैक किया जाएगा जिसकी मोटाई 75-100 माइक्रान से कम नहीं होगी या उचित प्रास्टिक की बोतलों में पैक किया जाएगा।"
- (i ख) ' विन्ह लगाना ' से संबंधित क्रम संख्या 4.2 में , की प्रविष्टि (छ) में, समाप्ति की तारीख जो विनिर्माण की तारीख से 6 माह से अधिक नहीं होगी'' शब्दों और अंकों के स्थान पर '' समाप्ति की तारीख जो राइजोबियम, एजोटोबैक्टर, एजोस्पीरिलम तथा पीएसबी जैव उर्वरकों के वाहक आधारित चूर्ण/दानेदार संरचना और तरल आधारित राइजोबियम जैव उर्वरक की दशा में विनिर्माण की तारीख से 6 मास से कम नहीं होगी, जबिक इसे तरल आधारित एजोटोबैक्टर, एजोस्पीरिलम और पीएसबी जैव उवर्रकों की दशा में विनिर्माण की तारीख से बारह मास से कम नहीं होगी'' शब्द रखे जाएगें।
- 6. अनुसूची-IV, में
- (क) भाग क और उससे संबंधित प्रविष्टियों के स्थान पर निम्नलिखित रखा जाएगा, अर्थात :--

भाग - क

1. सिटी कम्पोस्टः

(i) भार के आधार पर आर्द्रता प्रतिशत 15.0-25.0 (ii) रंग गहरा भूरा से काला

(भि) गंधा बुरी गंध से मुक्त

(iv) कण आकार न्यूनतम 90% सामग्री 4.0 एमएम आईएस छलनी से छन जानी चाहिए।

(७) आयजन धनत्व (ग्राम/सीएम) < 1.0

(भां)) कुल कार्बनिक कार्बन 12.0

2.

(V) आयंतन घनत्व (ग्राम/सीएम²)

(vii) कुल नाइट्रोजन (एन के रूप में)

भार के आधार पर प्रतिशत, न्यूनतम

(vi) कुल कार्बनिक कार्बन,

भार के	आधार पर प्रतिशत, न्यूनतम	
(vii)	कुल नाइट्रोजन (एन के रूप में)	0.8
	वजन द्वारा प्रतिशत, न्यूनतम	
(viii)	कुल फास्फेट्स (पी2 ओ 5 के रूप में)	0.4
	भार के आधार पर प्रतिशत, न्यूनतम	*
(ix)	कुल पोटाश (के2 ओ के रूप में)	0.4
	भार के आधार पर प्रतिशत न्यूनतम	
(x)	सीःएन अनुपात	< 20
(xi)	पीएच	6.5-7.5
(xii)	चालकता (डीएसएम- के रूप में) से अनधिक	4.0
(xiii)	पैथोजेन्स	शून्य
(xiv)	भारी धातु वस्तु (मि.ग्रा./कि.ग्रा. के रूप में)	
œ.	भार के आधार पर प्रतिशत, अधिकतम	•
1	आर्सेनिक (एस 2 ओ 3 के रूप में)	10.00
	केडमियम (सीडी के रूप में)	5.00
	क्रोमियम (सीआर के रूप में)	50.00
1	तांबा (सीयू के रूप में)	300.00
	मर्करी (एचजी के रूप में)	0.15
	निकेल (एनआई के रूप में)	50.00
	सीसा (पीबी के रूप में)	100.00
,	जिंक (जेडएन के रूप में)	1000.00
वर्मी क	म्पोस्ट :	
(i)	भार के आधार पर आर्द्रता प्रतिशत	15.0-25.0
(ii)	रंग .	गहरा भूरा से काला
(iii)	गंध	बुरी गंध से मुक्त
(iv)	कण आकार	न्यूनतम 90% सामग्री 4.0 एमएमआईएस
·		——————————————————————————————————————

छलनी से छन जानी चाहिए।

0.7-0.9

18.0

1.0

=			THETORDITY	[FARI H—3EC, 3(II)]
		भार के आधार पर प्रतिशत, न्यूनतम		
	(viii)	कुल फास्फेट (पी2 ओ 5 के रूप में)	0.8	_
		भार के आधार पर प्रतिशत, न्यूनतम		•
	(ix)	कुल पोटाशियम (के2 ओ के रूप में)	0.8	
		भार के आधार पर प्रतिशत, न्यूनतम	ı	
	(x)	भारी धातु वस्तु (मि.ग्रा./कि.ग्रा. के रूप में)	· ·	
		भार के आधार पर प्रतिशत अधिकतम		
		कैडमियम (सीडी के रूप में)	5.0	
		क्रोमियम (सीआर के रूप में)	50.00	
		निकेल (एनआई के रूप में)	50.00	
		सीसा (पीबी के रूप में)	100.00"	

- (ख) भाग ख में ' कार्बनिक उर्वरकों की सहन सीमा', शीर्षक के अधीन यौगिक नाइट्रोजन फास्फोरस और पोटैशियम न्यूट्रैटस के लिए 0.1 यूनिट " शब्दों और अंकों के स्थान पर " नाइट्रोजन, फास्फोरस और पोटैशियम न्यूट्रैटस का कुल योग सिटी कम्पोस्ट में 1.5% से कम नहीं होगा और वर्मीकम्पोस्ट की दशा में 2.5% से कम नहीं होगी " शब्द और अंक रखे जाएंगे।
- (ग) भाग घ और उससे संबंधित प्रविष्टियों के स्थान पर निम्नलिखित रखा जाएगा अर्थात् ;

भाग - घ

कार्बनिक उवर्रकों के विश्लेषण की रीति

- 1. पीएच में का प्राक्कलन
 - एक सस्पेंशन 50 मि.ली. आशिवत जल में में 25 ग्राम कम्पोस्ट बनाए और 2 घंटे तक रोटरी शेकर पर हिलाएं
 - · वुचनर फनेल का प्रयोग करते हुए निर्वात में वाटमैन सं0 1 या समतुल्य छलनी कागज के माध्यम से छाने।
 - पीएच मीटर द्वारा आशोधित सामग्री का पीएच अभिनिर्धारित करें।

नमी का प्राक्तलन 2.

रीति :

भारित स्वच्छ, शुष्क पेट्रीडिश में लगभग 5 ग्राम तैयार नमूने को नजदीकी मि.ग्रा. तक तोलें। भार को स्थिर करने के लिए 65 + पर लगभग 5 घंटे तक एक ओवन में गर्म करें, शोषित्र में ठंडा करें और तोलें। नमी मात्रा के रूप में भार में प्रतिशत हानि दर्ज करें।

संगणनाः

भार के आधार पर नमी प्रतिशत 100 **(**ख-ग) ख-क

क = पेट्रीडिश का भार ख = सूखाने से पहले प्रट्रीडिश और सामग्री का भार ग = सूखने के बाद पेट्रीडिश और सामग्री का भार

भारी सघनता का प्राक्कलन 3.

आवश्यकता

100 एम एल का एक मापक सिलेन्डर रबर पैड (1 वर्ग फुट:1 इंच मोटा)

भार तुला

हाट एयर ओवेन

रीति

- एक शुष्क 100 एम एल सिलिण्डर को तोल लीजिए (डब्ल्यू 1 गिल)
- सिलिण्डर 100 एम एल चिन्ह तक नमूने से भरें। आयतन नोट कीजिए (वी 1 एमएल)
- नमूने के साथ सिलिण्डर को तोल लीजिए (डब्ल्यू 2 ग्राम)
- दो मिनट तक सिलिण्डर को बंद कर दीजिए।
- संघटित आयतन को माप लीजिए (वी 2 एमएल)

प्राक्कलन

लिए गए नमूने का भार (डब्ल्यू 2-डब्ल्यू 1) बल्क डेन्सिटी = आयतन (वी1 -वी 2)

विद्युतकीय चालकता का प्राक्कलन

आवश्यकताएं :

-250 एमएल फ्रास्क

फनेल (ओ डी-75 एमएम)

- 100 एमएल बीकर

विश्लेषणात्मक तुला

-पोटेशियम क्लोराइड (एआर ग्रेड)

फिल्टर पेपर

-कन्डिक्टिविटी मीटर (टेम्परेचर कम्पेन्सेशन सिस्टम युक्त)

रीति

- 2-4 मिमी. की छलनी से कार्बनिक उवर्रक के नए नमूने को छान लीजिए।
- इसमें से 20 ग्राम नमूना लीजिए और 100 एमएल आसवित पानी में मिला लीजिए जिससे इसका अनुपात
 1:5 हो जाए ।
- नियमित अन्तराल पर इसको 1 घंटे तक हिलाते रहें।
- 0.01 एम पोटैशियम क्लोराइड विलयन का प्रयोग करते हुए कंडिक्टिविटी मीटर को कैलिबरेट कर लीजिए।
- बिना छाने हुए कार्बनिक उवर्रक के सस्पेंशन की कंडक्टिविटी को माप लीजिए।

संगणना

परिणाम को 25 डिग्री सेंटीग्रेड पर मिलीम्हो या डीएस/ईएम में व्यक्त कीजिए और कार्बनिक उवर्रक सस्पेंशन की सान्द्रता स्पष्ट कीजिए जैसे कि 1:5 कार्बनिक उवर्रक सस्पेंशन।

- 5. कार्बनिक कार्बन का प्राक्कलन साधित्र
- (i) सिलिका/प्लेटिनम क्रूसिबिल 25 ग्राम क्षमता
- (ii) मफेल फर्नेस

प्रक्रिया

पूर्व भारित क्रूसेवल में 6 घंटे तक ओवन में सुखाते हुए 10 ग्राम नमूने को सही-सही तौलें और 6-8 घंटे तक 650-700 सें0 पर छादित भड़ी में सामग्री को सुलगाएं। कक्ष के तापमान को क्रूसिबिल के साथ सामग्री को तोलें। कक्ष के तापमान को ठंडा करें और 12 घंटे तक डिसीकेटर में सुखाएं।

क्रूसिबिल सहित सामग्री को निम्नलिखित फार्मूले से कुल कार्बनिक कार्बन की गणना करें:-

संगणना

कुल कार्बनिक कार्बन को निम्नलिखित फार्मूले से परिकलित करें :-

कुल कार्बनिक सामग्री %

= आरंभिक भार-अन्तिम भार

लिए गए नमूने का भार

X100

कुल सी%

= कुल कार्बनिक सामग्री "

1.724

6. कुल नाइट्रोजन का प्राक्कलन

एफसीओ 1985 की अनुसूची-!!, भाग ख, 3 (V) में यथावर्णित है

7. सी : एन के अनुपात का प्राक्तलन

रीति

सी: एन अनुपात की संगणना कुल नाइट्रोजन मूल्य में कार्बनिक कार्बन मूल्य का भाग देकर कीजिए।

फास्फोरस का आकलन

नमूना तैयार करना - 50 ग्राम क्षमता सिलिका क्रूसिबिल में 10 ग्राम ओवेन में सुखाए गए नमूने को ठीक-ठीक तोलें और राख प्राप्त करने के लिए इसे 6-8 घंटे तक 650-700 से0 पर सुलगाएं। इसे ठंण्डा करें और डेसीकेटर में रखें। 100 मि.ली. बीकर में सामग्री का संचरण करें। 30 मि.ली. 25% एच.सी.एल. मिलाएं। 10 मि.ली. 25% एच सी एल से क्रूसिबिल को दो बार धोएं और सामग्री को बीकर में अन्तरित करें। गर्म प्लेट पर 10-15 मिनट तक गर्म करें। 4 घंटे तक रखें। वॉट मैन सं0 1 छलनी कागज के माध्यम से छानें। (अम्ल विहीन होने तक) 4-5 बार आसवित जल से धोएं।

एक आयतनी प्रास्क में 250 मि0 ली0 का आशोधित सामग्री का आयतन बनाएं। एफ.सी.ओ. 1985 की अनुसूची-|| भाग ख 4 (||) के अधीन यथा निर्धारित ग्रेवीमिट्रिक क्यूनोलाइन मोलीबिडेट रीति से कुल पी का प्राक्कलन करें।

9. पोटेशियम का आकलन

क्रम फोटोमिट्री रीति: - कुल पोटैशियम का अवधारण 650-700 डिग्री सेंटीग्रेड ताप पर ड्राई एशिंग करके तथा सान्द्र हाइड्रोक्नोरिक अमल में विलयन तैयार करके किया जाता है।

- पोटैशियम क्लोराइड मानक विलयनः 1 लीटर आसवित जल में 1.909 ग्रा0 ए आर श्रेणी के पोटैशियम क्लोराइड (1 घंटे तक 60 डिग्री सेन्टीग्रेट पर सुखाया हुआ) 1000 पीपीएम के का स्टॉक विलयन तैयार कीजिए। 1000 पीपीएम विलयन में से 100 एमएल वियलन मिलाकर 1 लीटर निष्कर्षित विलयन के साथ 100 पीपीएम मानकर विलयन तैयार कीजिए।
- मानक वक्रः 100 पीपीएम मानक विलयन में से 0,5,10,15 और 20 एमएल पिपेट से लेकर 100 एमएल (2) वाल्यूमिट्रिक प्रास्क में मिला लीजिए ताकि इसका आयतन चिन्ह तक पहुंच पाए। अब इसमें क्रमशः 0,5,15 तथा 20 पीपीएम के उपस्थित हैं।

* एक पोर्सिलीन की कटोरी में 5 ग्राम नमूना ले लीजिए और मफेल फर्नेस में पदार्थ को 650-700 सेंटीग्रेड पर गरम प्रकिया करके राख तैयार कर लीजिए।

- * इसे ठढ़ा कर लीजिए और 5 एमएल सान्द्र हाइड्रोक्कोरिक एसिड में घोल लीजिए। इसे 250 एमएल के बीकर में डालकर आसवित जल से कई बार धो लीजिए और फिर इसको गर्म करिये। फिर इसे 100 एमएल अनुमापी फ्रास्क में रखकर आयतन माप लीजिए।
- * यदि जरूरी हो तो विलयन को छान लीजिए और छने हुए भाग में आसवित जल मिलाकर इसे इतना पतला करिये कि प्रयोग किए जाने वाले विलयन में के की मात्रा O से 20 पीपीएम हो जाए।
- * उपकरण को ठीक तथा संतुलित करने के पश्चात के फिल्टर का प्रयोग करते हुए फ्लेम फोटोमीटर द्वारा के का मापन करिए।
- * प्लेम फोटोमीटर में मानक विलयन में के की विभिन्न सान्द्रता को इसी प्रकार पढिए और के की विभिन्न सांद्रता को पढ़ते हुए प्लोटिंग द्वारा मानक वक्र तैयार कीजिए।

संगणना- पोटाश (के) भार के अनुसार प्रतिशत= आर X20X तनु बनाने वाले कारक जहां आर= नमूना विलयन में के का आरपीपीएम (मानक वक्र में अतिरिक्त निर्देशांकन से अभिप्राप्त)

"10. कैडमियम, तांबा, क्रोमियम, सीसा, निकेल और जस्ते का प्राक्कलन अपेक्षित सामग्री

- ट्राईएसिड भिश्रणः 10 भाग एचएन ओ 3 (नाइट्रिक अम्ल)
 भाग एच 2 एसओ 4 (सल्फ्यूरिक अम्ल) और 4 भाग एचसीएल ओ 3 (परक्रोरिक अम्ल) मिलाएं।
- 2. क्रोनिकल फ्रास्क, 250 एमएल
- 3. THE RE
- 4. उटमैन फिल्टर पेपर न 0 42
- ण्डोमिक एब्लार्प्सन स्वेन्द्रोकोडोमीटर (एएएस)

कर्ने का प्रसंस्करण

ओवन में (105 डिग्रीसेंटीग्रेड) सुखाए गए नमूने का 5.0 ग्राम या उपयुक्त मात्रा, जो कि पूरी तरह पिसी हो और 0.2 एमएम छलनी से छानी गई हो, को एक कोनिकल फ्लास्क में ले लीजिए।

30 एमएल ट्राईएसिड मिश्रण ले लीजिए और इसे रीफ़्रिक्सिंग हेतु छोटे ग्लास फनेल से ढ़क लीजिए। नमूने को हाट प्लेट पर 200 डिग्रीसेंटीग्रेड तक गरम करिये जिससे कि विलयन लगभग आधा हो जाए और सफेद अवक्षेप बैठ जाए।

ठड़ा करके हाटमैन न 0 42 फिल्टर पेपर से नमूने को छानकर अनुमापी फ्रास्क में 100 एमएल मिश्रण ले लीजिए।

कार्यगत मानकों की तैयारी

कैडिमियम- एफसीओ (1985) की अनुसूची-II, भाग ख, 8 (X) में यथा उल्लिखित
तांबा- एफसीओ (1985) की अनुसूची-II, भाग ख, 8 (iV) में यथाउल्लिखित
क्रोमियम- आयतनी फ्लास्क में 199 पीपीएम क्रोमियम मानक के 1,2,3 और 4 मि.ली. को दुगने आसवित जल में घोलें और 1,2,3 4 पीपीएम की सान्द्रताओं वाले मानक अभिप्राप्त करने के लिए 100 मि.ली. का आयतन तैयार करें सीसा- एफसीओ (1985) की अनुसूची-II, भाग ख 8 (V) में यथाउल्लिखित
निकल- आयतनी फ्लास्क में 199 पीपीएम निकल मानक के 1,2,3 और 4 मि.ली. को दुगने आसवित जल में घोलें और 1,2,3 और 4 पीपीएम की सान्द्रताओं वाले मानक अभिप्राप्त करने के लिए 100 मि.ली. का आयतन तैयार करें। जस्ता- एफसीओ (1985) की अनुसूची-II, भाग ख 8 (ii) में यथाउल्लिखित

परिणामों का मापन

उपकरण के लिए दी गई प्रक्रिया के अनुसार एटोमिक एब्जार्प्सन स्पेक्ट्रोफोटोमीटर (एएएस) का प्रयोग करते हुए सीडी, सीयू, सीआर, एफई, पीबी, एनआई, जेडएन धातु की सान्द्रताओं का आकलन मानक घोल और नमूनों को आग दारा किया जाए। यही प्रक्रिया अपनाते हुए ब्लैंक परीक्षण कीजिए।

परिणामों को व्यक्त करना

धातु की सान्द्रता को 3 डेसीमल यूनिटों में भार के आधार पर ओवन में सुखाए जाने के बाद मि.ग्रा./ग्राम के आधार पर व्यक्त कीजिए।

(सन्दर्भ- मैन्यूअल फार एनलिसिस ऑफ म्यूनिसिपल सालिड वेस्ट (कम्पोस्ट) : (केन्द्रीय प्रदूषण नियंत्रण बोर्ड) " बोर्ड ।

11. पारा का प्राक्कलन

अभिकर्मक

- (क) सान्द्रित नाइट्रिक अम्ल (एचएन ओ 3)
- (ख) सान्द्रित सल्प्यूरिक अम्ल (एच 2 एस ओ 4)
- (ग) पोटैशियम परसल्फेट (5%विलयन): 1 लीटर आसवितत जल में 50 ग्राम के 2 एस 2 ओ 8 का घोल तैयार करिये।
- (घ) पोटैशियम परमैंगनेट (5%विलयन): एक लीटर आसवित जल में 50 ग्राम केएमएन ओ 4 का घोल तैयार कीजिए
- (ड.) हाइड्राक्सीलेमाइन सोडियम क्लोराइड विलयनः 1 लीटर आसवित जल में 120 ग्राम हाइड्राक्सिल माइन साल्ट और 120 ग्राम सोडियम क्लोराइड (एनएसीएल) का घोल तैयार कीजिए।

(च) स्टैनस क्रोराइड (20%): 100 एमएल आसवित जल में 20 ग्राम एसएनसीएल 2 का घोल तैयार कीजिए।

अपेक्षित सामग्री

- (क) वाटर बाथ
- (ख) फ्लेमलेस एटोमिक एब्जार्प्सन स्पेक्ट्रोफोटोमीटर या कोल्ड वेपर मर्करी एनलाइजर
- (ग) बीओडी बाटल, 300 एमएल

नमूने का प्रसंस्करण

- (क) 5 ग्राम नमूना लेकर (जो पूरी तरह पिसा हो और सूखा न हो) ओवन में 105 से0 पर 8 घंटे तक गर्म करिये ताकि नमी का आकलन किया जा सके।
- (ख) 5 ग्राम का दूसरा नमूना (जो पूरी तरह पिसा हो और सूखा न हो) एक बीओडी बाटल में लीजिए इसमें 2.5 एमएल कोन, एच एन ओ 3+ मि.ली.कोन, एच 2 एसओ 4 और 15 एमएल 5% केएमएन ओ 4 मिलाइए।
- (ग) 15 मिनट बाद 8 एमएल 5% के 2 एस 2 ओ 8 मिलाइए।
- (घ) बाटल को ढ़क्कन से बंद कर दीजिए और इसे 95 डिग्रीसेंटीग्रेड पर 2 घंटे तक वाटर बाथ में रखिये।
- (ड.) कमरे के ताप तक ठण्डा करके इसमें 5 एमएल हाइड्राक्सीलेमाइन सोडियम क्लोराइड विलयन मिलाइये।

मापन :

एक कोल्ड वेपर मर्करी एनेलाइजर का प्रयोग करके, रीडिंग लेने के तत्कालपूर्व 20% एसएनसीएल 2 का 5 एमएल के साथ रखे गए नमूने में कमी निकाली जाती है।

परिणामों को व्यक्त करना :

पारे की सांद्रता को 3 डेसीमल ईकाई में ओवन में शुष्क भार के आधार पर मि.ग्राम/ग्राम में व्यक्त करिए। (सन्दर्भः मैन्यूअल फार एनेलिसिस आफ म्यूनिसिपल सोलिड वेस्ट (कम्पोस्ट) केन्द्रीय प्रदूषण नियंत्रण बोर्ड)

"12. आरसेनिक का प्राक्कलन

नमूने का प्रसंस्करण-एक बीकर में 10 ग्राम पूर्णतः शुद्ध नमूनें को 30 मि.ली. एक्वारेजिया (एचएनओ 3 + एचसीएल 1:3 के अनुपात में) प्रवाहित करें। नम काले अवशेष के अभिप्राप्त होने तक इसे गर्म घ्रेट पर रखें (सुखाएं नहीं)। 5 मि.ली. एक्वारेजिया मिलाएं और अवशेष के आन्द्र होने तक गर्म घ्रेट पर सूखने दें। 30 मि.ली. सान्द्रित एचसीएल में अवशेष को घोलें और 100 मि.ली. आयतनी फ्लास्क में वाट मैन सं0 1 छननी कागज के माध्यम से छानें। छननी कागज को दुगने आसवित जल से 3-4 बार धोएं। 100 मि.ली. का आयतन तैयार करें। 100 मि.ली. आयतनी फ्लास्क में इस घोल का मि.ली. भाग ले और इसमें 5 मि.ली. सान्द्रित एच सी एल और 2 ग्राम के एलएन मिलाएं तथा 100 मि.ली. का आयतन तैयार करें।

आयतनी फ्लास्क मे दुगने आसवित जल के साथ मानक आरसेनिक घोल के क्रमशः 0.05, 0.1 और 0.2 मि.ली. भाग को मिलाते हुए 0.05, 0.1 और 0.2 पीपीएम की सान्द्रता वाले मानक को तैयार करें। मापन— उपकरण संबंधी दी गई प्रक्रिया के अनुसार एटोमिक अबजोरप्सन स्पेक्ट्रोफोटोमीटर के साथ जुड़े वाष्प रचना संग्रहण का प्रयोग करके आरसेनिक का प्राक्कलन करें।

13. पैथोजेनिसिटी परीक्षण साधित्र

- 1. कम्पोस्ट के नमूने
- 2. सिंगल और डवल स्ट्रेन्थ वाला लैकटोस ब्राथ
- 3. कल्चर टयूब
- 4. डरहम टयूब
- बुन्सेन बर्नर
- 6. विसंक्रमण पीपेट्स
- 7. इन्क्यूवेटर आटोक्नेव्स
- 8. पेट्री-प्लेटसं
- 9. इनोकुलेशन लूप्स

कल्चर मीडिया तैयार करना

क. संभावित परीक्षण के लिए

1. लैक्टोस ब्राथ

बीफ निष्कर्षण

6.0 ग्राम

पेप्टोन

10.0 ग्राम

लैक्टोस

10.0 ग्राम

डी.डब्ल्यू

1000 एम.एल.

ख. पुष्टिकारक परीक्षण के लिए

1. इयोसाइन मिथीलीन ब्लू अगर मीडिया (इएमबी मीडिया)

पेपटोन

10.0 ग्राम

लैक्टोस

5.0 ग्राम

सुकरोस

5.0 ग्राम

के2 एचपीओ 4

2.0 ग्राम

इयोसाइन वाई

0.4 ग्राम

मिथीलीन ब्लू

0.06 ग्राम

अगर

15.0 ग्राम

डी डब्ल्यू

1000 एम.एल.

ग. पूर्ण परीक्षण के लिए

1. पोषणिक अगर

बीफ इक्सट्रेक्ट

3.0 ग्राम

पेपटोन

5.0 ग्राम

प्रक्रिया

क. संभावित परीक्षण

प्रत्येक नमूने के लिए लैक्टोस ब्राथ के 12 ट्यूब तैयार करें और ट्यूब को काटन प्रग्स /कैप्स से बन्द करें और
 20 मिनट तक 121 से0 पर आटोक्केव करें।

2. विसक्रमित आवसित जल से डूरहम टयूब को भरें और बीकर में रखें और 20 मिनट तक 121 से0 पर आटोक्लेव करें।

3. 270 मि.ली. विसंक्रमित आसवित जल में 30 ग्राम कुम्पोस्ट के नमूने प्रवाहित करें और अनुसूची III, भाग घ, एफसीओ (1985) के क्रम सं0 3 के अनुसार 10 घोल तक क्रम से मिलाते रहें।

4. प्रत्येक घोल के लिए 3 टयूबों में 10 से 10 तक 1 मि.ली. मात्रा प्रवाहित करें।

आसवित जल से भरे हुए डुरहम टयूब को प्रत्येक टयूब में उल्टी अवस्था में रखे और टयूब को पुनः बन्द कर दें

टयूब को इक्यूवेटर में 24 घंटे तक 36 से0 तक इनोकुलेट करें।

परिणाम

24 घंटे में गैस का उत्पादन-

नमूने में कोलीफार्म की उपस्थिति की पुष्टि करता है।

48 घंटे में गैस का उत्पादन-

संदेहास्पट परीक्षण

कोई गैस का उत्पादन नहीं-

नकारात्मक परीक्षण

ख. पुष्टिकारक परीक्षण

अभिपृष्टिकरण परीक्षण गैर कोलीफार्मस से कोलीफार्म और ग्राम निगेटिव तथा ग्राम पाजिटिव बैक्टीरिया को अन्तर करने में सहायक होता है। इस परीक्षण में ई.एम.बी. अगर घ्रेट नमूने के साथ गैस उत्पन्न करने वाले धनात्मक ट्यूबों से इनोकुलेट किए जाते हैं। डार्क सेन्टर वाली छोटी कालोनियों के पैदा होने से ग्राम निगेटिव शर्करा किण्वन कोलीफार्म बैक्टीरिया की उपस्थित की पुष्टि होती है। कभी-कभी कुछ गैर कोलीफार्म गैस भी उत्पन्न करते हैं इसलिए यह परीक्षण आवश्यक है।

- 1. अनुसूची III, भाग घ, पैराग्राफ 2.3.3 से 2.3.6 पर दिए गए विधि के अनुसार ई.एम बी अगर प्लेटों का मिश्रण के साथ तैयार करें।
- 2. संभावित परीक्षण में धनात्मक/संदेहास्पद परीक्षणों को दर्शाने वाले नमूनों को चिन्हित करके इनोकुलेशन परिपथ की मदद से प्लेटों को इनोकुलेट करें।

- 3. इनक्युबेटर में प्लेटों को 12 घंटे तक 30±1 से0 पर गर्म करें।
- डार्क सेंन्टर्ड या न्यूक्रियेटेड कालोनियां प्रगट होती हैं जो कालोनियों के आकार तथा धातुगत शीन के आधार पर इ 0 कोली तथा इ एरोजीन्स के बीच अन्तर स्पष्ट कर सकती है।

परिणामः

इस मीडियम पर इ 0 कोली कालोनियां छोटी होती हैं जिसमें धातुगत शीन पाए जाते हैं जबकि ई 0 एरोजीन्स कालोनियां सामान्यतः बड़ी होती है और इनमें शीन का अभाव होता है।

ग. पूर्ण परीक्षण

आगे के अभिपुष्टिकरण के लिए इस परीक्षण की जरूरत होती है।

प्रक्रिया

- 1. ई.एम.बी अगर घ्रेट से एकल कालोनी लें।
- 2. इसे लैक्टोस ब्राथ में इनोकुलेट करें और पौषणिक अगर स्लान्ट पर चिन्हित करें।
- 3. स्लान्टों को गर्म करें।
- 4. इसके विकसित होने के बाद ग्राम के प्रतिक्रिया का कार्य करें।

परिणाम

बैक्टीरिया की ग्राम निगेटिव प्रकृति पाजिटिव पूर्ण परीक्षण का सांकेतक है।

[फा. सं. 2-2/2009 उर्वरक विधि]

पंकज कुमार, संयुक्त सचिव

टिप्पण: मूल आदेश भारत के राजपत्र, भाग II खण्ड (3), उप-खण्ड (i) में संख्या सा.का.नि. 758(अ) तारीख 25 सितम्बर, 1985 द्वारा प्रकाशित किया गया था और तत्पश्चात् निम्नलिखित द्वारा संशोधन किया गया:—

1. सा.का.नि. 201**(**अ) तारीख 14 फरवरी, 1986

2.सा.का.नि. 508(अ) तारीख 19 मार्च, 1986

3.सा.का.नि. 1160**(**अ) तारीख 21 अक्तूबर, 1986

4.का.आ. 822**(**अ) तारीख 14 सितम्बर, 1987

5.का.आ. 10**79(**अ) तारीख 11 दिसम्बर, 1987

6.का.आ. 252**(**अ) तारीख 11 मार्च, 1988

7.का.आ. **724(अ**) तारीख 28 जुलाई, 1988

8.का.आ. **725(**अ) तारीख 28 जुलाई, 1988

9.का.आ. 940(अ) तारीख 11 अक्तूबर, 1988

10.का.आ. 498(अ) तारीख 29 जून, 1989

11.का.आ. 581(अ) तारीख 27 जुलाई, 1989

12.का.आ. 673(अ) तारीख 25 अगस्त, 1989

13.का.आ. 738(अ) तारीख 15 सितम्बर, 1989

14.का.आ. 140**(**अ) तारीख 12 फरवरी, 1990

15.का.आ. 271(अ) तारीख 29 मार्च, 1990

16.का.आ. 403(अ) तारीख 23 मई, 1990

17.का.आ. **675(अ)** तारीख 31 अगस्त,1990

18.का.आ. 261(अ) तारीख 16 अप्रैल, 1991

19.का.आ. 444(अ) तारीख 2 जुलाई, 1991

20.का.आ. 530(अ) तारीख 16 अगस्त, 1991

21.का.आ. 795(अ) तारीख 22 नवम्बर, 1991

22.का.आ. 377(अ) तारीख 29 मई, 1992

23.का.आ. **534(**अ) तारीख 20 जुलाई, 1992

2<u>4</u>.का.आ. 826**(**अ) तारीख 9 नवम्बर, 1992

25.का.आ. 254(अ) तारीख 3 जून, 1993

26.का.आ. 397(अ) तारीख 18 जून,1993

27.का.आ. 942(अ) तारीख 10 दिसम्बर,1993

28.का.आ. 163**(**अ) तारीख 14 फरवरी, 1994

29.का.आ. 340(अ) तारीख 17 अप्रैल,1995

30.का.आ. 459(अ) तारीख 22 मई, 1995

31.का.आ. 835(अ) तारीख 12 अक्तूबर, 1995

32.का.आ. **5**75**(**अ) तारीख 20 अगस्त, 1996

33.का.आ. 57**(**अ) तारीख 22 जनवरी, 1997

34.का.आ. 329**(**अ) तारीख 12 मई,1999

35.का.आ. 1068(अ) तारीख 4 नवम्बर,1999

36.का.आ. 49(अ) तारीख 16 जनवरी,2003

37.का.आ. 373(अ) तारीख 1 अप्रैल,2003

38.का.आ. 413(अ) तारीख 7 अप्रैल,2003

39.का.आ. 540(अ) तारीख 4 मई,2003

40.का.आ. 342(अ) तारीख 18 मार्च,2005

41.का.आ. 1772(अ) तारीख 17 अक्तूबर,2006

42.का.आ. 2164**(**अ) तारीख 28 दिसम्बर,2007

43.का.आ. 837(अ) तारीख 10 अप्रैल,2008

44.का.आ. 1741(अ) तारीख 22 जुलाई,2008

45. का.आ. 401**(**अ) तारीख 5 फरवरी,2009

46. का.आ. 1214(अ) तारीख 🕫 मई,2009

MINISTRY OF AGRICULTURE (Department of Agriculture and Cooperation) ORDER

New Delhi, the 3rd November, 2009

S.O. 2803(E).— In exercise of the powers conferred by section 3 of the Americal Commodities Act, 1955 (10 of 1955), the Central Government hereby makes the following Order further to amend the Fertiliser (Control) Order, 1985, namely:-

- 1. (1) This Order may be called the Fertiliser (Control) Third Amendment Order, 2009.
 - (2) It shall come into force on the date of its publication in the Official Gazette.
- 2. In the Fertiliser (Control) Order, 1985,-
- (1) in clause 8, in sub-clause 3, after the 4th proviso, the following provisos shall be inserted, namely:-

"Provided also that where the manufacturer of organic fertilizer is a State Government or municipality, it shall not be necessary for it to obtain the authorisation letter:

Provided also that where the manufacturer of vermi-compost, other than a State Government or municipality, has annual production capacity less than 50 metric tonnes, it shall not be necessary for him to obtain the authorisation letter".

(2) in clause 14, after sub-clause (3), the following provisos shall be inserted at the end, namely:-

"Provided that where the manufacturer of organic fertilizer is a State Government or a municipality, it shall not be necessary for it to obtain the Certificate of Manufacture:

Provided further that where the manufacturer of vermi-compost, other than a State Government or municipality, has annual production capacity less than fifty metric tonnes, it shall not be necessary for him to obtain the Certificate of Manufacture for preparation of vermi-compost."

(3) in clause 19, the following provisos shall be inserted at the end, namely:-

"Provided that specifications of city compost in Schedule IV shall, in case of municipalities, be applicable only when it is traded in packaged form for use in agriculture:

Provided further that the specifications of vermi-compost in Schedule IV shall be applicable only in such cases where it is sold in packaged form and for agricultural purposes."

- (4) in Schedule I, in Part A, under the heading 'Specification of Fertilizers",-
- (a) under sub-heading 1 (c) relating to 'Straight Potassic Fertilisers', after serial number 4 and entries relating thereto, the following serial number and entries shall be inserted, namely:-

"5. Potash derived from molasses

(i)	Moisture, per cent by weight, maximum	4.79
(ii)	Total nitrogen, per cent by weight, minimum	
(iii)	Neutral ammonium citrate soluble phosphate (as P ₂ O ₅)	1.66
<i>(</i> ')	per cent by weight, minimum	0.39
(iv)	Water soluble potash (as K ₂ O), per cent by weight, minimum	14.70"

(b) in sub-heading 1 (e) relating to 'N.P.K. Complex Fertilisers', after serial number 12 and entries relating thereto, the following serial number and entries shall be inserted, namely:-

"13. N.P.K. (12:11:18 with MgO)

(i)	Moisture, per cent by weight, maximum	1.5
.(ii)	Total nitrogen, per cent by weight, minimum	12.0
(iii)	Ammonical nitrogen, per cent by weight, minimum	
(iv)	Nitrate nitrogen, per cent by weight, minimum	7.0
(v)	Neutral ammonium citrate soluble phosphate (as P ₂ O ₅)	5.0
4. 15	per cent by weight, minimum	11.0
(vi)	Water soluble phosphates (as P ₂ O ₅), per cent by weight, minimum	7.7
(vii)	water soluble potash (as K ₂ O), per cent by weight minimum	18.0
(viii)	Magnesium (as Mg) per cent by weight, minimum	1.20
(ix)	Sulphur (as S), per cent by weight, minimum	
(x)	Total Chlorides (as Cl), percent by weight, maximum	7.6
(xi)	Particle size — Not less than 00 man and col	1.0
	Particle size – Not less than 90 per cent of the material shall pass th 4 mm IS sieve and be retained on 1 mm IS sieve and not more than cent shall be below 1 mm IS sieve";	rough 5 per

(5) in Schedule III,-

(a) for Part A, and entries relating thereto, the following shall be substituted, namely:-

"PART - A

SPECIFICATIONS OF BIOFERTILISERS

1. (i)	Rhizobium Base	***	Carrier based* in form of moist/dry powder or granules, or liquid based
(ii)	Viable cell count	=	CFU minimum 5x10 ⁷ cell/g of powder, granules or carrier material or 1x10 ⁸ cell/ml of liquid.
(iii)	Contamination level	=	No contamination at 10 ⁵ dilution
(iv)	рН	=	6.5 – 7.5
(v)	Particle size in case of carrier based material	=	All material shall pass through 0.15-0.212 mm IS sieve
(vi)	Moisture percent by weight, maximum in case of carrier based	=	30-40%
(vii)	Efficiency Character	=	Should show effective nodulation on all the species listed on the packet.

*Type of carrier:

The carrier material such as peat, lignite, peat soil, humus, wood charcoal or similar material favoring growth of the organism.

2. Azotobacter

(i)	Base	=	Carrier based* in form of moist/dry powder or granules, or liquid based
(ii)	Viable cell count	=	CFU minimum 5x10 ⁷ cell/g of carrier material or 1x 10 ⁸ cell/ml of liquid.
(iii)	Contamination level	=	No contamination at 10 ⁵ dilution
(iv)	pH	=	6.5 - 7.5
(v)	Particle size in case of carrier based material	=	All material shall pass through 0.15-0.212 mm IS Sieve
(vi)	Moisture percent by weight, maximum	=	30-40%
(vii)	Efficiency character	=	The strain should be capable of fixing at least 10 mg of nitrogen per g of sucrose consumed

*Type of carrier:

The carrier material such as peat, lignite, peat soil, humus, wood charcoal or similar material favoring growth of the organism.

Azospirillum *3*.

(i)	Base	=	Carrier based* in form of moist/dry
(ii)	Viable cell count	=	powder or granules, or liquid based CFU minimum $5x10^7$ cell/g of powder/granules or carrier material or
(!!!)	0		1 x10 ⁸ cell/ml of liquid.
(iii)	Contamination level	=	No contamination at 10 ⁵ dilution
(iv)	pH	==	6.5 - 7.5
(v)	Particle size in case of carrier based material	=	All material shall pass through 0.15-0.212 mm IS Sieve
(vi)	Moisture percent by weight, maximum in case of carrier based	=	30-40%
(vii)	Efficiency character	=	Formation of white pellicle in semisolid Nitrogen free bromothymol blue media.

*Type of carrier:

The carrier material such as peat, lignite, peat soil, humus, wood charcoal or similar material favoring growth of the organism.

4. Phosphate Solubilising Bacteria

(i)	Base	=	Carrier based* in form of moist/dry
(ii)	Viable cell count	=	powder or granules, or liquid based CFU minimum $5x10^7$ cell/g of carrier material or $1x10^8$ cell/ml of liquid material.
(iii)	Contamination level	=	No contamination at 10 ⁵ dilution
(iv)	pН		6.5-7.5 for moist/dry powder granulated carrier based and 5.0-7.5 for liquid based.
(v)	Particle size in case of carrier based material	=	All material shall pass through 0.15-0.212 mm IS Sieve
(vi)	Moisture percent by weight, maximum in case of carrier based	=	30-40%
(vii)	Efficiency Character	=	The strain should have phosphate solubilizing capacity in the range of minimum 30%, when tested
			spectrophotometrically. In terms of zone formation, minimum 5 mm solubilization zone in prescribed media having at least 3 mm thickness.

*Type of carrier:

The carrier material such as peat, lignite, peat soil, humus, wood charcoal or similar material favoring growth of the organism";

- (b). in Part B, under the heading 'Tolerance Limit of Biofertilizers', for the figures and words "5x10⁵ CFU/g of carrier or per ml of liquid material", the figures and words "1x10⁷ CFU/g of carrier material in form of powder or granules or 5x10⁷ CFU/gm of liquid material", shall be substituted;
- (c) for Part C and entries relating thereto the following shall be substituted namely, under the heading

"PART C

'PROCEDURE FOR DRAWAL OF SAMPLE OF BIOFERTILISERS -

PROCEDURE FOR SAMPLING OF BIOFERTILIZERS', -

"1. General Requirements of Sampling

1.0 In drawing, preparing and handling the samples, the following precautions and directions shall be observed.

1.1 Sampling shall be carried out by a trained and experienced person as it is essential that the sample should be representative of the lot to be examined.

1.2 Samples in their original unopened packets should be drawn and sent to the laboratory to prevent possible contamination of sample during handling and to help in revealing the true condition of the material.

.3 Intact packets shall be drawn from a protected place not exposed to dampness,

air, light, dust or soot."

2. Scale of Sampling

2.1 Lot

All units (containers in a single consignment of type of material belonging to the same batch of manufacture) shall constitute a lot. If a consignment consists of different batches of the manufacture the containers of the same batch shall be separated and shall constitute a separate lot.

2.2 Batch

All inoculant prepared from a batch fermentor or a group of flasks (containers) constitute a batch.

- 2.3 For ascertaining conformity of the material to the requirements of the specification, samples shall be tested from each lot separately.
- 2.4 The number of packets to be selected from a lot shall depend on the size of the lot and these packets shall be selected at random and in order to ensure the randomness of selection procedure given in IS 4905 may be followed."

- "3. Drawal of Samples
- 3.1 The Inspector shall take three packets as sample from the same batch. Each sample constitutes a test sample.
- 3.2 These samples should be sealed in cloth bags and be sealed with the Inspector's seal after putting inside Form P. Identifiable details such as sample number, code number or any other details which enable its identification shall be marked on the cloth bags.
- 3.3 Out of the three samples collected, one sample so sealed shall be sent to incharge of the laboratory notified by the State Government under clause 29 or to National Centre for Organic Farming or to any of its Regional Centres. Another sample shall be given to the manufacturer or importer or dealer as the case may be. The third sample shall be sent by the inspector to his next higher authority for keeping in safe custody. Any of the latter two samples shall be sent for referee analysis under sub-clause (2) of clause 29B.
- 3.4 The number of samples to be drawn from the lot

Lot/Batch	Number of Samples		
Upto 5,000 packets	03		
5,001-10,000 packets	04		
More than 10,000 packets	05		

- (d) In Part D, under the heading 'Method of Analysis of Biofertilisers',-
- (i) for sub-heading '1.C relating to Method of Analysis of Azospirillum Biofertilisers' and entries relating thereto, the following shall be substituted, namely:-
- "1.C. Method of Analysis of Azospirillum Biofertilisers
- Apparatus: same as Rhizobium
- 2. Reagents
- 2.1 Medium

Use N-free semisolid medium (Nfb) of the following composition for preparation of MPN tubes

	6.0
DL-Malic acid	5.0
K ₂ HPO ₄	0.5
MgSO ₄ 7H ₂ O	0.2
NaCl	0.1
CaCl ₂	0.02
Trace element Soln.	2.0 ml
Fe EDTA (1.64% Soln.)	4.0 ml
Vitamin soln.	1.0 ml
КОН	4.0 ml
Bromothymol blue (0.5% aq.)	2.0 ml
Adjust pH to 6.8-7.0 with KOH	
For semi solid add agar	1.75 g
For solid medium add agar	15.0 g

2.1.1 Trace element solution (g/litre)

Na ₂ MoO ₄ 2H ₂ O	0.2
MnSO ₄ H ₂ O	0.235
H ₃ BO ₃	0.28
CuSO ₄ 5H ₂ O	0.008
ZnSO ₄ 7H ₂ O	0.024
Distilled water	1000 ml

Use 2 ml of this solution in one litre of Nfb media

Vitamin solution (g/litre)

Biotin 0.01 Pyridoxin 0.02 Distilled water 1000 ml

Use one ml of this sol. in one litre of Nfb media

2.2 Sterilization and preparation of MPN tubes

2.2.1 Prepare Nitrogen free Bromothymol Blue malate medium as mentioned at paragraph 2.1. Boil to dissolve agar. Quickly dispense 10 ml molten media in 15 x 150 ml test tubes or screw capped culture tubes and close either with cotton plugs or screw caps. Minimum of 25 such tubes shall be needed for each sample.

2.2.2 Sterilize the tubes by autoclaving at 121°C for 20 minutes, as in Rhizobium at

paragraph 2.3.2.

3. Preparation of serial dilution for MPN count

Dispense 30 g of Azospirillum biofertilizers in 270 ml of sterile water and shake for 10 minutes on a reciprocal shaker. Make serial dilutions up to 10⁻⁸ dilution. Pipette out 1 ml aliquots of 10⁻⁴ to 10⁻⁸ dilution and deliver it to screw cap tubes or test tubes containing N-free semi solid Nfb media.

4. Incubation of tubes

Label the tubes and incubate at $36 \pm 1^{\circ}$ C for 3-4 days in vertical position in a test tubes stand. Do not disturb the medium during the entire period of incubation.

5. Counting

- 5.1 Count the tubes which have turned blue and have developed typical white sub-surface pellicle.
- 5.2 Count the tubes as +ve or -ve for the presence of sub-surface pellicle and consider for the purpose of calculation.

5.3 Method for Estimating MPN Count

- 5.3.1 To calculate the most probable number of organisms in the original sample, select as P₁ the number of positive tubes in the least concentrated dilution in which all tubes are positive or in which the greatest number of tubes is +ve, and let P₂ and P₃ represent the numbers of positive tubes in the next two higher dilutions.
- 5.3.2 Then find the row of numbers in Table 1 in which P₁ and P₂ correspond to the values observed experimentally. Follow that row of numbers across the table to the column headed by the observed value of P.
- 5.3.3 The figure at the point of intersection is the most probable number of organisms in the quantity of original sample represented in the inoculum added in the second dilution. Multiply this figure by the appropriate dilution factor to obtain the MPN value.
- 5.3.4 Azospirillum count/g of carrier = <u>Value from MPN table* x Dilution level</u>

 Dry mass of product

Table 1
*Most Probable Numbers for use with 10 fold dilution and 5 tubes per dilution (Cochran, 1950)

		M	ost probable		indicated valu		
$\mathbf{P_{l}}$	P ₂	0	1	2	3	4	. 5
0	0	-	0.018	0.036	0.054	0.072	0.090
0	1	0.018	0.036	0.055	0.073	0.091	0.11
0	2	0.037	0.055	0.074	0.092	0.11	0.13
0	3	0.056	0.074	0.093	0.11	0.13	0.15
0	4	0.075	0.094	0.11	0.13	0.15	0.17
0	5	0.094	0.11	0.13	0.15	0.17	0.19
1	0	0.020	0.040	0.060	0.080	0.10	0.12
1	1	0.040	0.061	0.081	0.10	0.12	0.14
1	2	0.061	0.082	0.10	0.12	0.16	0.17
1	3	0.089	0.10	0.13	0.16	0.17	0.19
1	4	0.11	0.13	0.15	0.17	0.19	0.22
1.	5	0.13	0.15	0.17	0.19	0.22	0.24
2	0	0.046	0.068	0.091	0.12	0.14	0.16
2	1	0.068	0.092	- 0.12	0.14	0.17	0.19
2 .	2	0.093	0.12	0.14	0.17	0.19	0.22
2	3	0.12	0.14	0.17	0.20	0.22	0.25
2	4	0.15	0.17	0.20	0.23	0.25	0.28
2	5	0.17	0.20	0.23	0.26	0.29	0.32
3	0	0.078	0.11	0.13	0.16	0.20	0.23
3	1	0.11	0.14	0.17	0.20	0.23	0.27
3	2	0.14	0.17	0.20	0.24	0.27	0.31
3	3	0.17	0.21	0.24	0.28	0.31	0.35
3	4	0.21	0.24	0.28	0.32	0.36	0.40
3	5	0.25	0.29	0.32	0.37	0.41	0.45
4	0	0.13	0.17	0.21	0.25	0.30	0.36
4	1	0.17	0.21	0.26	0.31	0.36	0.42
4	2	0.22	0.26	0.32	0.38	0.44	0.50
4	3	0.27	0.33	0.39	0.45	0.52	0.59
4	4	0.34	0.40	0.47	0.54	0.62	0.69
4	5	0.41	0.48	0.56	0.64	0.72	0.81
5	0	0.23	0.31	. 0.43	0.58	0.76	0.95
5	1	0.33	0.46	0.64	0.34	1.1	1.3
5	2	0.49	0.70	0.95	1.2	1.5	1.8
5	3	0.79	1.1	1,4	1.8	2.1	2.5
5	4	1.3	1.7	2.2	2.8	3.5	4.3
5	5	2.4	3.5	5.4	9.2	16.0	

397490009-6

- (ii) in sub-heading '1.D relating to Method of Analysis of Phosphate Solubilising . Bacterial Biofertiliser', in serial number 5 relating to 'Determination of Soluble Phosphorus Using Ascorbic Acid', under serial number 5.3.3 relating to 'Procedure', for items (i) and (ii), the following shall be substituted, namely:-
- "(i) Preparation of Sample
 Pure culture medium same as at 2.1 above excluding agar.
 Prepare broth medium in 100 ml aliquots in 6 no., 250 ml conical flasks and sterilize in autoclave at 121°C for 20 min.
- (ii) Inoculation of Medium
 Select one PSB colony of the type that has been counted as PSB (showing sufficient zone of solubilization) and streak on set medium as described at 2.1 in a Petri dish. Use this pure culture for inoculating the broth. Inoculate 3 flasks and keep 3 flasks as uninoculated control. Incubate the flasks over rotary shaker for 12 days at 28 + 1°C.
 After 12 days, filter the contents of each flask separately through Whatman No. 42 filter paper or centrifuge at 10,000 rpm for 15 min.
- (iii) Add 10 ml of filtrate/ centrifugate to 50 ml of olsen extractant and shake for 30 min over rotary shaker.
- (iv) Filter the suspension through Whatman filter paper No. 40. If the filtrate is coloured then add a tea spoon of Dacro-60 (activated phosphorous free carbon), reshake and filter.
- (v) Take a known aliquot (5 to 25 ml) of the extract in a 50 ml volumetric flask.
- (vi) Add 5 drops of p-nitrophenol indicator (1.5 per cent solution in water) and adjust the pH of the extract between 2 and 3 with the help of 4NH₂SO₄. The yellow colour will disappear when the pH of the solution becomes 3. Swirl gently to avoid loss of the solution along with the evolution of CO₂.
- (vii) When the CO₂ evolution has subsided, wash down the neck of the flask and dilute the solution to about 40 ml.
- (viii) Add 5 ml of the sulphomolybdic acid mixed reagent containing ascorbic acid, swirl the content and make up the volume.
- (ix) Measure the transmission after 30 min at 880 nm using red filter. The blue colour developed remains stable upto 60 minutes.
- (x) Record the concentration of phosphorous (P) in the extract form from the standard curve and calculate the concentration of soluble phosphorous as follows:"

- (iii) in sub-heading 4 relating to Packing, marking, storage and use,-
- (ia) in serial number 4.1 relating to 'Packing', for the words "Bio-fertiliser shall be packed in polyethylene packs, thickness which shall not be less than 75-100 micron" shall be substituted by the following words and figures, namely:-

"Biofertilizers shall be packed in suitable plastic bags/packets, thickness of which shall not be less than 75-100 micron or in suitable plastic bottles.";

(ib) in serial number 4.2 relating to 'Marking', in entry (g), for the words and number "Expiry date which shall not be more than 6 months from the date of manufacture", the words and letters "Expiry date which shall not be less than 6 months from the date of manufacture in case of carrier based powdered/granulated formulation of Rhizobium, Azotobacter, Azospirillum and PSB biofertilisers and liquid based Rhizobium biofertiliser, while it shall not be less than twelve months from the date of manufacture in case of liquid based Azotobacter, Azospirillum and PSB biofertilisers" shall be substituted.

6. In Schedule IV, -

(a) for Part A, and entries relating thereto, the following shall be substituted, namely:-

"PART - A

1. City compost:

(i) (ii)	Moisture, per cent by weight Colour	15.0-25.0 Dark brown to black
(iii)	Odour	Absence of foul odour
(iv)	Particle size	Minimum 90% material should pass through 4.0 mm IS
		sieve
(v)	Bulk density (g/cm ³)	<1.0
(vi)	Total organic carbon, per cent by weight, minimum	12.0
(vii)	Total Nitrogen (as N), per cent by weight, minimum	0.8
(viii)	Total Phosphates (as P ₂ O ₅), per cent	0.4
(ix)	by weight, minimum Total Potash (as K ₂ O), per cent by	0.4
	weight, minimum	<20
(x)	C:N ratio	6.5 - 7.5
(xi)	рН	

(xii)	Conductivity (as dsm ⁻¹), not	
	more than	4.0
(xiii)	Pathogens	Nil
(xiv)	Heavy metal content, (as mg/Kg), maximum	
	Arsenic as (As ₂ O ₃)	10.00
	Cadmium (as Cd)	5.00
	Chromium (as Cr)	50.00
	Copper (as Cu)	300.00
,	Mercury (as Hg)	0.15
	Nickel (as Ni)	50.00
	Lead (as Pb)	100.00
	Zinc (as Zn)	1000.00

2. Vermicompost:

(i) (ii) (iii)	Moisture, per cent by weight Colour Odour	15.0-25.0 Dark brown to black
(iv)	Particle size	Absence of foul odour Minimum 90% material
	1	should pass through 4.0 mm IS sieve
(v)	Bulk density (g/cm ³⁾	0.7 -0.9
(vi)	Total organic carbon, per cent by weight, minimum	18.0
(vii)	Total Nitrogen (as N), per cent by weight, minimum	1.0
(viii)		0.8
(ix)	Total Potassium (as K ₂ O), per cent by weight, minimum	0.8
(x)	Heavy metal content, (as mg/Kg), maximum	a eg
		50.75 50
	Cadmium (as Cd) Chromium (as Cr) Nickel (as Ni)	50.00
	Nickel (as Ni)	50.00
:	Lead (as Pb)	100.00"

(b). in Part B, under the heading 'Tolerance Limit of Organic Fertilisers', for the figures and words "0.1 unit for combined nitrogen, phosphorus and potassium nutrients", the figures and words "A sum total of nitrogen, phosphorus and potassium nutrients shall

not be less than 1.5% in City Compost and shall be not less than 2.5% in case of vermicompost", shall be substituted.

(c) for Part D, and entries relating thereto, the following shall be substituted namely;

PART D

METHODS OF ANALYSIS OF ORGANIC FERTILISERS

1. Estimation of pH

- Make 25 g of compost into a suspension in 50ml of distitled water and shake on a rotary shaker for 2 hours.
- Filter through Whatman No. 1 or equivalent filter paper under vacuum using a Buchner funnel.
- Determine pH of the filtrate by pH meter.

2. Estimation of Moisture

Method:

Weigh to the nearest mg about 5 gm of the prepared sample in a weighed clean, dry Petri dish. Heat in an oven for about 5 hours at 65^{0} ⁺. 1^{0} C to constant weigh, Cool in a desicator and weigh. Report percentage loss in weight as moisture content.

Calculation

Moisture percent by weight

100 (B-C)

B-A

A = Weight of the Petri dish

B= Weight of the Petri dish plus material before drying

C= Weight of the Petri dish plus material after drying

3. Estimation of Bulk density

Requirement

100 ml measuring cylinder

Weighing balance

Rubber pad [1 sq foot; 1 inch thickness]

Hot air oven

Method

- Weigh a dry 100ml cylinder (W 1 gill)
- Cylinder is filled with the sample upto the 100 ml mark. Note the volume (VI ml)
- Weigh the cylinder along with the sample (W2gm)
- Tap the cylinder for two minutes.
- Measure the compact volume (V2 ml).

Calculation

Bulk density

Weight of the sample taken (W2 - W1)
Volume (V1 - V2)

4. Estimation of Electrical Conductivity

Requirements:

- 250 ml flask

- Funnel [OD - 75 mm]

- 100 ml beaker

- Analytical balance

- Potassium chloride [AR grade]

- Filter paper

- Conductivity meter [With temperature compensation system]

Method

- Pass fresh sample of organic fertilizer through a 2-4 mm sieve.
- Take 20gm of the sample and add 100ml of distitled water to it to give a ratio of 1:5.
- Stir for about an hour at regular intervals.
- Calibrate the conductivity meter by using 0.01M potassium chloride solution.
- Measure the conductivity of the unfiltered organic fertilizer suspension.

Calculation

Express the results as millimho's or ds/cm at 25°C specifying the dilution of the organic fertilizer suspension viz., 1:5 organic fertilizer suspension.

5. Estimation of Organic Carbon

Apparatus

- (i) Silica/Platinum crucible 25 g cap.
- (ii) Muffle Furnace

Procedure

Accurately weigh 10 gm of sample dried in oven at 105° C for 6 hrs, in a pre weighed crucible and ignite the material in a Muffle furnace at $650 - 700^{\circ}$ C for 6-8 hrs. Cool to room temperature and keep in Desiccator for 12 hrs.

Weigh the contents with crucible

Calculation

Calculate the total organic carbon by the following formulae:-

Initial wt - final wt. X 100 Total Organic matter % wt. of sample taken

total organic matter" Total C% 1.724

6. Estimation of total Nitrogen

As mentioned under Schedule - II, Part-B, 3 (v) of FCO,1985.

7. Estimation of C: N Ratio

Method Calculate the C:N ratio by dividing the organic carbon value with the total nitrogen value.

Estimation of phosphate Preparation of sample - Accurately weigh 10 gm oven dried sample in 50 g cap. silica crucible and ignite it to 650° - 700°C for 6-8 hrs to obtain ash. Cool and keep in a Dessicator.

Transfer the contents to a 100 ml beaker. Add 30 ml 25% HCl. Wash the crucible with 10 ml 25% HCl twice and transfer the contents to Beaker. Heat over hot plate for 10-15 min. Keep for 4 hrs. Filter through Whatman No.1 filter paper. Wash with distilled water 4-5 times (till acid free).

Make up the volume of filtrate to 250 ml in a volumetric flask.

Estimate total P by gravimetric quinoline molybdate method as described under Schedule - II, Part B, 4(ii) of FCO 1985.

9. Estimation of Potassium

Flame photometry method:- Total Potassium are usually determined by dry ashing at 650-700 Degree Centigrade and dissolving in concentrated hydrochloric acid.

Reagent and Standard curve

- (1) Potassium chloride standard solution: Make a stock solution of 1000 ppm K by dissolving 1.909 g. of AR grade potassium chloride (dried at 60 Degree C. for 1 h) in distilled water 1; and diluting up to 1 litre. Prepare 100 ppm standard by diluting 100 ml of 1000 ppm stock solution to 1 litre with extracting solution.
- (2) Standard curve: Pipette 0,5, 10,15 and 20 ml of 100 ppm solution into 100 ml volumetric flasks and make up the volume upto the mark. The solution contain 0,5, 15 & 20 ppm K respectively.

Procedure:

- *Take 5g sample in a porceline crucible and ignite the material to ash at 650-700 C in a muffle furnace.
- * Cool it and dissolve in 5 ml concentrated hydrochloric acid, transfer in a 250 ml beaker with several washing of distilled water and heat it. Again transfer it to a 100 ml volumetric flask and make up the volume.
- *Filter the solution and dilute the filtrate with distilled water so that the concentration of K in the working solution remains in the range of 0 to 20 ppm, if required.
- *Determine K by flame photometer using the K- filter after necessary setting and calibration of the instrument.
- *Read similarly the different concentration of K of the standard solution in flame photometer and prepare the standard curve by plotting the reading against the different concentration of the K.

Calculation: Potash (K) %by weight = R X 20 X diluting factor, where R= ppm of K in the sample solution (obtained by extra plotting from stand curve).

"10. Estimation of Cadmium, Copper, Chromium, Lead, Nickel and Zinc

Material Required

- Triacid mixture: Mix 10 parts of HNO₃ (Nitric acid), 1 part of H₂SO₄ (Sulphuric Acid) and 4 parts of HClO₃ (Perchloric Acid)
- 2. Conical flask, 250ml
- 3. Hot plate
- 4. Whatman filter paper No.42
- 5. Atomic Absorption Spectrophotometer

Processing of sample

Take 5.0 g or suitable quantity of oven dried (105°C) sample thoroughly ground and sieved through 0.2 mm sieve in a conical flask.

Add 30 ml triacid mixture, cover it with a small glass funnel for refluxing. Digest the sample at 200°C on a hot plate till the volume is significantly reduced with a whitish residue.

After cooling, filter the sample with Whatman No. 42 filter paper, make up to 100 ml in a volumetric flask.

Preparation of working standards

Cadmium - As mentioned under Schedule – II, Part B, 8(x) of FCO (1985) Copper - As mentioned under Schedule – II, Part B, 8(iv) of FCO (1985)

Chromium - Dilute 1, 2, 3 and 4 ml of standard 199 ppm Chromium standard solution with doubled distilled water in volumetric flasks and make up the volume to 100 ml to obtain standards having concentrations of 1, 2, 3, 4 ppm

Lead - As mentioned under Schedule - II, Part B, 8(v) of FCO (1985)

Nickel - Dilute 1,2,3 and 4 ml of standard 100 ppm Nickel standard solution with doubled distilled water in volumetric flasks and make up the volume to 100ml to obtain standards having concentrations of 1, 2, 3, 4 ppm

Zinc - As mentioned under Schedule - II, Part B, 8(ii) of FCO (1985)

Measurement of Result

Estimate the metal concentrations of Cd, Cu, Cr, Fe, Pb, Ni, Zn by flaming the standard solution and samples using atomic absorption spectrophotometer (AAS) as per the method given for instrument at recommended wavelength for each element. Run a blank following the same procedure.

Expression of Result

Express the metal concentration as mg/g on oven dry weight basis in 3 decimal units.

(Reference: Manual for Analysis of Municipal Solid Waste (compost): Central Pollution Control Board)."

11. 'Estimation of Mercury

Reagents:

(a) Concentrated Nitric acid (HNO₃)

(b) Concentrated Sulphuric acid (H2SO4)

(c) Potassium persulphate (5% solution): Dissolve 50g of K₂S₂O₃ in 1 litre of distilled water.

(d) Potassium permagnate (5% solution): Dissolve 50g of KMnO4 in 1 litre of distilled water.

(e) Hydroxylamine sodium chloride solution: Dissolve 120 g of Hydroxyl amine salt and 120 g of sodium chloride (NaCI) in 1 litre distilled water.

(f) Stannous chloride (20%): Dissolve 20 g of SnCI₂ in 100 ml distilled water.

Materials required

(a) Water bath

(b) Flameless atomic absorption spectrophotometer or cold vapour mercury analyzer.

(c) BOD bottle, 300 ml

Processing of sample:

- (a) Take 5 g (finely ground but not dried) sample in an oven at a temperature of 105°C for 8 hours for moisture estimation.
- (b) Take another 5 g sample (finaly ground but not dried) in a BOD bottle, add to it 2.5 ml of conc. HNO₃, 5ml of cone. H₂SO₄ and 15 ml of 5% KMnO₄.
- (c) After 15 minutes add 8 ml of 5% $K_2S_2O_8$.
- (d) Close the bottle with the lid and digest it on a water bath at 95°C for 2 hours.
- (e) After cooling to room temperature add 5 ml hydroxylamine sodium chloride soln.

Measurement:

Reduction of the digested sample is brought out with 5 ml of 20% SnC12 immediately before taking the reading, using a cold vapour mercury analyzer.

Expression of results:

Express the mercury concentration as mg/g on oven dry weight basis in 3 decimal units.

(Reference: Manual for Analysis of Municipal Solid Waste (compost). Central Pollution Control Board).

"12. Estimation of Arsenic

Processing of sample - Suspend 10 gm finely ground sample in 30 ml aquaregia (HNO₃ + HCl in a ratio of 1:3) in a beaker. Keep on hot plate till moist black residue is obtained (do not dry). Add 5 ml aquaregia and allow to dry on hot plate till residue is moist. Dissolve the residue in 30 ml conc. HCl and filter through Whatman No.1 filter paper in 100 ml volumetric flask. Wash filter paper 3-4 times with double distilled water. Make up the volume to 100 ml. Take 1 ml of this solution in 100 ml volumetric flask, add 5ml conc. HCl and 2 gm KI and make up the volume to 100 ml.

Prepare standards having concentration of 0.05, 0.1 and 0.2 ppm by diluting 0.05, 0.1 and 0.2 ml, respectively of standard Arsenic solution with double distilled water in volumetric flask and make up the volume to 100 ml

Measurement - Estimate Arsenic using vapour generation assembly attached to Atomic Absorption Spectrophotometer as per the procedure given for the instrument.

13. Pathogenicity Test

Apparatus

- 1. Samples of Compost
- 2. Lactose Broth of Single and Double Strength
- 3. Culture Tubes
- 4. Durham Tubes
- 5. Bunsen Burner
- 6. Sterile Pipettes
- 7. Incubator, Autoclaves,

- 8. Petri-Plates
- 9. Inoculation Loops

Preparation of Culture Media

A. For Presumptive Test

1. Lactose Broth

: 6.0 g **Beef Extract** : 10.0 g Peptone : 10.0 g Lactose : 1000 ml D.W.

B. For Confirmative Test

1. Eosine Methylene Blue Agar Media (EMB Media)

: 10.0 g Peptone : 5.0 g Lactose : 5.0 g Sucrose : 2.0 g K₂HPO₄ : 0.4 g Eosine Y : 0.06 g Methylene Blue : 15.0 g Agar : 1000 ml D.W.

C. For Completed Test

1. Nutrient Agar

: 3.0 g **Beef Extract** : 5.0 g Peptone

Procedures

1. Prepare 12 tubes of lactose broth for each sample and close the tube with cotton plugs/caps and autoclave at 121°C for 20 min.

2. Fill Durham tubes with sterilized distilled water and keep in beaker and autoclave at

3. Suspend 30 g of compost sample in 270 ml of sterile distilled water and serially dilute upto 10⁻⁴ dilution as per Schedule III, Part D, serial number 3 of FCO (1985)

4. Suspend 1 ml suspension from 10⁻¹ to 10⁻⁴ in 3 tubes for each dilution

5. Insert distilled water filled Durham tube in inverted position in each tube and close the tube again

6. Inoculate tubes at 36°C for 24h in incubator

Confirms the presence of coliforms in the sample Result Production of gas within 24h -Doubtful Test Production of gas within 48h -Negative Test No Gas Production

B. Confirmative Test

Confirmative test is for differentiating the coliforms from non-coliforms as well as Gram negative and Gram positive bacteria. In this test, the EMB agar plates are inoculated with sample from positive tubes producing gas. Emergence of small colonies with dark centres confirms the presence of Gram negative, lactose fermenting coliform bacteria. Sometimes some of the non-coliforms also produce gas, therefore, this test is necessary.

- 1. Prepare EMB agar plates with the composition as per the method at Schedule III, Part D, paragraphs 2.3.3 to 2.3.6
- 2. Inoculate plates with the help of inoculation loop with streaking of samples showing positive/doubtful tests in the presumptive test
- 3. Incubate plates at 30± 1°C for 12 h in incubator
- 4. Dark centred or nucleated colonies appear which may differentiate between E. coli and E. aerogenes based on size of colonies and metallic sheen

Result

E. coli colonies on this medium are small with metallic sheen, where as E. aerogenes colonies are usually large and lack the sheen.

C. Completed Test

This test is required for further confirmation.

Procedure

- 1. Pick up a single colony from EMB agar plate
- 2. Inoculate it into lactose broth and streak on a nutrient agar slant
- 3. Incubate the slants
- 4. Perform Gram reaction after attaining the growth

Result

Gram-negative nature of bacteria is indicative of a positive completed test."

[F. No. 2-2/2009 Fert. Law] PANKAJ KUMAR, Jt. Secy.

Note: The Principal Order was published in the Gazette of India, Extra Ordinary, Part II, Section (3), Sub section (i) vide number G.S.R. 758 (E) dated the 25th September, 1985 and subsequently amended by -

- 1. G.S.R.201(E) dated 14th February, 1986
- 2. G.S.R. 508(E) dated 19th March, 1986
- 3. G.S.R. 1160(E) dated 21st October, 1986
- 4. S.O. 822(E)dated 14th September, 1987
- 5. S.O. 1079(E) dated 11th December, 1987

- 6. S.O.252(E) dated 11th March, 1988
- 7. S.O. 724(E) dated 28th July, 1988
- 8. S.O. 725(E) dated 28th July, 1988
- 9. S.O. 940(E) dated 11th October, 1988
- 10. S.O. 498(E) dated 29th June, 1989
- 11. S.O. 581(E) dated 27th July, 1989
- 12. S.O. 673(E) dated 25th August, 1989
- 13. S.O. 738(E) dated 15th September, 1989
- 14. S.O. 140(E) dated 12th February, 1990
- 15. S.O. 271(E) dated 29th March, 1990
- 16. S.O. 403(E) dated 23rd May, 1990
- 17. S.O. 675(E) dated 31st August, 1990
- 18. S.O. 261(E) dated 16th April, 1991
- 19. S.O. 444(E) dated 2nd July, 1991
- 20. S.O. 530(E) dated 16th August, 1991
- 21. S.O. 795(E) dated 22nd November, 1991
- 22. S.O. 377(E) dated 29th May, 1992
- 23. S.O. 534(E) dated 20th July, 1992
- 24. S.O. 826(E) dated 9th November, 1992
- 25. S.O. 254(E) dated 3rd June, 1993
- 26. S.O. 397(E) dated 18th June, 1993
- 27. S.O. 942(E) dated 10th December, 1993
- 28. S.O. 163(E) dated 14th February, 1994
- 29. S.O. 340(E) dated 17th April, 1995
- 30. S.O. 459(E) dated 22nd May, 1995
- 31. S.O. 835(E) dated 12th October, 1995
- 32. S.O. 575(E) dated 20th August, 1996
- 33. S.O. 57(E) dated 22nd January, 1997
- 34. S.O. 329(E) dated 12th May, 1999
- 35. S.O. 1068(E) dated 4th November, 1999
- 36. S.O. 49(E) dated 16th January, 2003
- 37. S.O. 373(É) dated 1st April, 2003
- 38. S.O. 413(E) dated 7th April, 2003
- 39. S.O. 540(E) dated 4th May, 2003
- 40. S.O. 342(E) dated 18th March, 2005 41. S.O. 1772(E) dated 17th October, 2006
- 42. S.O. 2164 (E) dated 28th December, 2007
- 43. S.O. 837 (E) dated 10th April, 2008 44. S.O. 1741(E) dated 22nd July, 2008
- 45. S.O. 401 (E) dated 5th February, 2009
- 46. S.O. 1214 (E) dated 14th May, 2009