La estabilidad casi segura de los sistemas lineales de salto Markoviano en tiempo discreto

V. Daniel Camarena Pérez

Universidad Nacional de Ingeniería Group pf Mathematical Modeling and Numerical Simulation

vcamarenap@uni.pe

5 de enero del 2018

Contenido

- Introducción
- 2 Los sistemas lineales de salto Markoviano en tiempo discreto
- 3 La estabilidad casi segura y el exponente de Lyapunov

Sea el sistema de ecuaciones en diferencias

$$x(k+1) = Ax(k), \quad k \ge 0, \tag{1}$$

Sea el sistema de ecuaciones en diferencias

$$x(k+1) = Ax(k), \quad k \ge 0, \tag{1}$$

donde

$$x(k) \in \mathbb{R}^d$$
,

Sea el sistema de ecuaciones en diferencias

$$x(k+1) = Ax(k), \quad k \ge 0, \tag{1}$$

donde

$$x(k) \in \mathbb{R}^d$$
, $A \in \mathbb{R}^{d \times d}$.

Estabilidad de la solución (Costa et al. 2005).

Estabilidad de la solución (Costa et al. 2005).

Teorema 1

El sistema (1) es estable $\Leftrightarrow \rho(A) < 1$

Estabilidad de la solución (Costa et al. 2005).

Teorema 1

El sistema (1) es estable $\Leftrightarrow \rho(A) < 1 \Leftrightarrow \|\operatorname{lim}_{k \to \infty} \frac{1}{k} \ln \|A^k\| < 0.$

Control de receptores centrales térmicos solares

Control de receptores centrales térmicos solares

Agentes atmosféricos:

- Día soleado
- Día nublado

Control de receptores centrales térmicos solares

Agentes atmosféricos:

- Día soleado
- Día nublado

Tenemos tres tipos de diseños de sistemas

- Una sola ley de control con una perturbación del modelo.
- ② Dos leyes de control, una para cada modo de operación, independientes.
- Os leyes de control, una para cada modo de operación, alternando según una dinámica estocástica.

Camino aleatorio en \mathbb{Z} .

Sea X_k la posición del sapo luego de dar k saltos, $k \ge 0$.

Sea X_k la posición del sapo luego de dar k saltos, $k \ge 0$.

Coleccionamos todos los caminos posibles

$$\{k\mapsto X_k(\omega)\}_{\omega\in\Omega}.$$

Sea X_k la posición del sapo luego de dar k saltos, $k \ge 0$.

Coleccionamos todos los caminos posibles

$$\{k\mapsto X_k(\omega)\}_{\omega\in\Omega}.$$

Coleccionamos todas las posiciones posibles dada una cantidad finita de saltos

$$\{\omega\mapsto X_k(\omega)\}_{k\geq 0}.$$

Los sistemas lineales de salto Markoviano en tiempo discreto

Modelando el control de receptores centrales térmicos solares

- $x(k) \in \mathbb{R}^d$: variable de estado
- $\{A_1, \ldots, A_N\}$: modos de operación
- $\theta(k) \in \mathbb{S} = \{1, \dots, N\}$: dinámica de salto entre los modos

Modelando el control de receptores centrales térmicos solares

- $x(k) \in \mathbb{R}^d$: variable de estado
- $\{A_1, \ldots, A_N\}$: modos de operación
- $\theta(k) \in \mathbb{S} = \{1, ..., N\}$: dinámica de salto entre los modos

Dinámica del sistema

$$x(k+1) = A_{\theta(k)}x(k), \quad k \ge 0, \tag{2}$$

Modelando el control de receptores centrales térmicos solares

- $x(k) \in \mathbb{R}^d$: variable de estado
- $\{A_1, \ldots, A_N\}$: modos de operación
- $\theta(k) \in \mathbb{S} = \{1, ..., N\}$: dinámica de salto entre los modos

Dinámica del sistema

$$x(k+1) = A_{\theta(k)}x(k), \quad k \ge 0, \tag{2}$$

donde $\{\theta(k)\}_{k\geq 0}$ es una cadena de Markov irreducible, ergódica, con matriz de transición P y distribución inicial igual a su única distribución invariante π .

El concepto de estabilidad

Evolución del sistema en el tiempo, d = 2 (Costa et al. 2005).

El concepto de estabilidad

El sistema (2) es estable \mathbb{P}_{π} -casi seguramente si para todo estado inicial $x(0) = x_0 \in \mathbb{R}^d$ se cumple

$$\mathbb{P}_{\pi}\left(\lim_{k o\infty}\|x(k)\|=0
ight)=1.$$

El exponente de Lyapunov

Definimos el exponente de Lyapunov del sistema (2)

$$\alpha_{\pi} = \limsup_{k} \frac{1}{k} \mathbb{E}_{\pi} \|A_{\theta(k-1)} \dots A_{\theta(0)}\|.$$

El exponente de Lyapunov

Definimos el exponente de Lyapunov del sistema (2)

$$\alpha_{\pi} = \limsup_{k} \frac{1}{k} \mathbb{E}_{\pi} \|A_{\theta(k-1)} \dots A_{\theta(0)}\|.$$

Lema 1

Se cumple

$$\alpha_{\pi} = \limsup_{k} \frac{1}{k} \|A_{\theta(k-1)} \dots A_{\theta(0)}\|, \qquad \mathbb{P}_{\pi} - c.s.$$

Caracterización de la estabilidad casi segura

Caracterización de la estabilidad casi segura

Teorema 2

• Si $\alpha_{\pi} <$ 0 entonces el sistema (2) es estable \mathbb{P}_{π} -casi seguramente.

Caracterización de la estabilidad casi segura

Teorema 2

- Si $\alpha_{\pi} < 0$ entonces el sistema (2) es estable \mathbb{P}_{π} -casi seguramente.
- Si $\alpha_{\pi} > 0$ entonces el sistema (2) no es estable \mathbb{P}_{π} -casi seguramente.

Ejemplo

Sea $\{\theta(k)\}_{k\geq 0}$ una cadena de Markov que toma solo dos estados, irreducible, recurrente y con distribución invariante $\pi=(0.5,\ 0.5)$, matriz de transición

$$P = \left(\begin{array}{cc} 0.5 & 0.5 \\ 0.5 & 0.5 \end{array}\right).$$

Ejemplo

Sea $\{\theta(k)\}_{k\geq 0}$ una cadena de Markov que toma solo dos estados, irreducible, recurrente y con distribución invariante $\pi=(0.5,\ 0.5)$, matriz de transición

$$P = \left(\begin{array}{cc} 0.5 & 0.5 \\ 0.5 & 0.5 \end{array}\right).$$

Sean los dos posibles modos de operación

$$A_1 = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}.$$

Como en la prueba del lema 1 definimos la siguiente cadena de Markov $\tilde{\theta}(k) = (\theta(2k+1), \ \theta(2k)), \ k \ge 0$, con espacio de estados

$$\{ \tilde{1} = (1,1); \; \tilde{2} = (1,2); \; \tilde{1} = (2,1); \; \tilde{1} = (2,2) \},$$

y matriz de transición

$$\tilde{P} = \left(\begin{array}{cccc} 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{array}\right).$$

Por lo tanto, la cadena es irreducible, recurrente positiva, y tiene distribución invariante

$$\tilde{\pi} = (0.25, 0.25, 0.25, 0.25).$$

Notemos que $A_1A_2=0$. Así, como el estado $\tilde{2}=(1,2)$ es recurrente positivo, $\mathbb{P}_{\tilde{\pi}}$ -casi seguramente este estado aparece en la secuencia $(\theta(k-1),\ldots,\theta(0))$ para k suficientemente grande \ldots Entonces se consigue $\alpha_{\pi}=-\infty<0$ y el sistema es \mathbb{P}_{π} -casi seguramente.

Notemos que $A_1A_2=0$. Así, como el estado $\tilde{2}=(1,2)$ es recurrente positivo, $\mathbb{P}_{\tilde{\pi}}$ -casi seguramente este estado aparece en la secuencia $(\theta(k-1),\ldots,\theta(0))$ para k suficientemente grande \ldots Entonces se consigue $\alpha_\pi=-\infty<0$ y el sistema es \mathbb{P}_π -casi seguramente.

Observe que $\rho(A_1) = \rho(A_2) = 2 \ge 1$, es decir, la estabilidad del sistema de salto Markoviano no implica la estabilidad de los sistemas invariantes asociados.

Notemos que $A_1A_2=0$. Así, como el estado $\tilde{2}=(1,2)$ es recurrente positivo, $\mathbb{P}_{\tilde{\pi}}$ -casi seguramente este estado aparece en la secuencia $(\theta(k-1),\ldots,\theta(0))$ para k suficientemente grande \ldots Entonces se consigue $\alpha_\pi=-\infty<0$ y el sistema es \mathbb{P}_π -casi seguramente.

Observe que $\rho(A_1) = \rho(A_2) = 2 \ge 1$, es decir, la estabilidad del sistema de salto Markoviano no implica la estabilidad de los sistemas invariantes asociados.

Se presume que cuando $\alpha_\pi=0$ el sistema no es estable \mathbb{P}_π -casi seguramente.

Referencias

- Costa, O. L. V., Fragoso, M. D. & Marques, R. P. (2005), Discrete-time Markov jump linear systems, Springer Science & Business Media.
- Fang, Y. (1994), Stability analysis of linear control systems with uncertain parameters, PhD thesis, Case Western Reserve University.
- Fang, Y., Loparo, K. & Feng, X. (1995), 'Stability of discrete time jump linear systems', *Journal of Mathematical Systems, Estimation and Control* **5**(3), 275–321.

¡Muchas Gracias!