

Conoscenza Incerta e Ragionamento

Outline

- Incertezza
- Probabilità
- Sintassi e Semantica
- Inferenza
- Indipendenza e regola di Bayes

Incertezza

Sia A_t = avviamoci all'aeroporto t minuti prima del volo Mi permetterà A_t di giungere in tempo per il volo?

Problemi:

- osservabilità parziale (stato della strada, piani di altri autisti, etc.)
- sensori rumorosi (sensori per il traffico)
- incertezza nei risultati dell'azione (foratura gomma, etc.)
- elevata complessità nella modellazione e nella predizione del traffico

Incertezza

- Pertanto, un approccio puramente logico
 - comporta rischio di falsità: "A₂₅ mi porterà in tempo a destinazione", oppure
 - porta a conclusioni troppo deboli per il decision making:
 - "A₂₅ mi porterà a destinazione in tempo a patto che non ci siano incidenti sul ponte, non piove, le mie gomme sono integre, etc etc."
 - ▶ (Ragionevolmente si può dire che A₁₄₄₀ mi porterebbe a destinazione in tempo, ma dovrei pernottare in aeroporto..)

Decisione razionale

- Un agente logico non è in grado di agire poiché non conosce con quali azioni raggiungere l'obiettivo
- L'informazione in possesso dell'agente non può garantire i possibili esiti di A₉₀, ma può fornire un grado di credenza sul loro raggiungimento
- La cosa giusta da fare dipende
- 1. Dall'importanza relativa dei vari obiettivi
- Dalla probabilità e dalla misura del loro raggiungimento

Inadeguatezza dell'approccio logico

- ▶ Consideriamo un esempio di diagnosi medica ∀ p Sintomo(p,MalDiDenti) => Malattia(p, Carie)
- Sbagliato! Non tutti i pazienti che accusano mal di denti hanno carie
 - ∀ p Sintomo(p,MalDiDenti) => Malattia(p, Carie) v Malattia(p, Gengivite) v Malattia(p, Ascesso)....
- ▶ Elenco lunghissimo di cause. Regola causale
 ∀ p Malattia(p, Carie) => Sintomo(p,MalDiDenti)
- Non tutte le carie causano dolore. Bisogna elencare tutte le cause del mal di denti sul lato sinistro

Probabilità

- Grado di credenza del modello di agente
- Date le evidenze disponibili:
 - ▶ A₂₅ mi porterà in tempo a destinazione con probabilità 0.04
- Le asserzioni probabilistiche sintetizzano gli effetti di
 - pigrizia: mancata enumerazione di eccezioni, condizioni, etc., sia perché richiede troppo lavoro, sia perché le regole risulterebbero difficili da usare.
 - Ignoranza Teorica: assenza di fatti rilevanti. Es. la scienza medica non ha una teoria completa per il suo dominio.
 - Ignoranza Pratica: anche se conosciamo tutte le regole, potremmo essere incerti perché non sono state fatte tutte le misurazioni (es. accertamenti di un paziente).

Differenze con ontologie specifiche

- Probabilità soggettiva:
 - Le probabilità mettono in relazione proposizioni e stato della conoscenza dell'agente, cioè

```
P(A_{25} \mid nessun incidente) = 0.06
```

- Queste non sono asserzioni sul mondo reale.
- Le probabilità di proposizioni cambiano con nuove evidenze, cioè:

$$P(A_{25} \mid \text{nessun incidente, alle 5 a.m.}) = 0.15$$

Il grado di credenza è diverso dal grado di verità. Le formule sono sempre vere o false. Un probabilità di 0.8 indica un grado di credenza nella verità dell'80% (abbastanza forte)

Prendere Decisioni in Incertezza

- Supponiamo che io abbia le seguenti convinzioni:
 - \triangleright P(A₂₅ mi porta in tempo a destinazione | ...) = 0.04
 - \triangleright P(A₉₀ mi porta in tempo a destinazione | ...) = 0.70
 - ► $P(A_{120} \text{ mi porta in tempo a destinazione } | ...) = 0.95$
 - \triangleright P(A₁₄₄₀ mi porta in tempo a destinazione |...) = 0.9999
- Quale azione scegliere?
- Dipende dalle mie preferenze tra perdere il volo rispetto a passare del tempo ad attenderlo, etc.
 - La Teoria dell'Utilità viene usata per rappresentare ed inferire preferenze.
 - Teoria delle Decisioni = Teoria della Probabilità + Teoria dell'Utilità
 - ▶ Maximize expected utility : $a^* = argmax_a \sum_s P(s \mid a) U(s)$

Decision-theoretic agent che seleziona azioni razionali

function DT-AGENT(percept) returns an action

persistent: belief_state, probabilistic beliefs about the current state of the world action, the agent's action

update belief_state based on action and percept
calculate outcome probabilities for actions,
given action descriptions and current belief_state
select action with highest expected utility
given probabilities of outcomes and utility information
return action

Sintassi di Proposizioni

- Elemento di base: variabile casuale
- Simile alla logica proposizionale: possibili mondi definiti attraverso l'assegnamento di valori a variabili casuali. Il mondo dei Dadi
- Variabili casuali Booleane
 - es., Carie(Ho una carie?), con valore vero o falso
- Variabili casuali discrete
 - es., Il Tempo atmosferico è una variabile casuale che assume un valore tra <soleggiato, piovoso, nuvoloso, neve>
- Variabili casuali continue
 - es., Esprimono una distribuzione come una funzione parametrizzata di valori.
- Valori del dominio esaustivi e mutuamente esclusivi
- ▶ Proposizioni elementari costruite assegnando un valore ad una variabile casuale, es. Tempo = soleggiato, Carie= Falso (¬carie)
- ▶ Proposizioni complesse formate da proposizioni elementari e connettivi logici standard es., Tempo= soleggiato ∨ Carie = falso

Sintassi di Proposizioni

- Evento atomico: Una specifica completa del mondo dell'agente che è incerto
 - Se il mondo consiste solo di 2 variabili Booleane Carie e MalDiDenti, allora ci sono 4 eventi atomici distinti:

```
Carie = falso \times MalDiDenti = falso
Carie = falso \times MalDiDenti = vero
Carie = vero \times MalDiDenti = falso
Carie = vero \times MalDiDenti = vero
```

 Gli eventi atomici sono mutuamente esclusivi (massimo 1 si verifica) ed esaustivi (almeno 1).

Probabilità a Priori

- Probabilità a Priori o Probabilità Incondizionate di proposizioni
 - es., P(Carie = vero) = 0.1 o P(Tempo = soleggiato) = 0.72 corrisponde alla confidenza prima dell'arrivo di qualunque (nuova) evidenza
- Ogni possibile mondo ω è associato con un valore di probabilità tale che:
 - $ightharpoonup 0 \le P(\omega) \le 1$
 - $\Sigma_{\omega \in \Omega} P(\omega) = 1$
- Esempio: Se lanciamo due dadi (distinguibili) ci sono 36 possibili mondi da considerare: (1,1), (1,2),..., (6,6) P(ω) =1/36
- Una distribuzione di probabilità fornisce valori per tutti i possibili assegnamenti:
 - es. **P**(*Tempo*) = <0.72,0.1,0.08,0.1> (normalizzata, i.e., somma a 1)
 - ▶ **P**(Dadi) = <1/36,...,1/36>

Distribuzioni di probabilità

- Associa una probabilità ad ogni valore; somma ad 1
 - Temperature:

P(T)

Т	Р
hot	0.5
cold	0.5

Weather:

P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Joint distribution

P(T,W)

		Temperature		
		hot	cold	
sun rain fog	sun	0.45	0.15	
	rain	0.02	0.08	
Wea	fog	0.03	0.27	
	meteor	0.00	0.00	

Probabilità a Priori

- Una distribuzione di probabilità congiunta per un insieme di variabili casuali fornisce la probabilità di ogni evento atomico di tali variabili
 - es. P(Tempo, Carie) = una matrice 4×2 con valori:

Tempo =	soleggiato	piovoso	nuvoloso	neve
Carie = vero	0.144	0.02	0.016	0.02
Carie = falso	0.576	0.08	0.064	0.08

Ogni domanda su un dominio può essere risposta con una distribuzione congiunta

Distribuzioni Marginali

- Le distribuzioni marginali sono sottotabelle che eliminano variabili
- Marginalizazione: Collassare una dimensione aggiungendo

$$P(X=x) = \sum_{y} P(X=x, Y=y)$$

		Temperature			
		hot	cold		_
,	sun	0.45	0.15	0.60	
Weather	rain	0.02	0.08	0.10	DUAA
Wea	fog	0.03	0.27	0.30	P(W)
	meteor	0.00	0.00	0.00	
		0.50	0.50		•

Probabilità Condizionate

- Una semplice relazione tra probabilità congiunte e condizionate
- Infatti, questa è considerata la definizione di una probabilità condizionata

$$P(a \mid b) = \frac{P(a, b)}{P(b)}$$

T	$IA\Lambda$
1.	VVI

		Temperature		
		hot cold		
•	sun	0.45	0.15	
ther	rain	0.02	0.08	
rain fog		0.03	0.27	
	meteor	0.00	0.00	

$$P(W=s \mid T=c) = \frac{P(W=s, T=c)}{P(T=c)} = 0.15/0.50 = 0.3$$

$$= P(W=s, T=c) + P(W=r, T=c) + P(W=f, T=c) + P(W=m, T=c)$$

$$= 0.15 + 0.08 + 0.27 + 0.00 = 0.50$$

Normalizzare una distribuzione

(Dizionario) Per riportare o ripristinare una condizione normale

Tutte le entries si sommano a UNO

- Procedura:
 - Moltiplicare ogni entry per $\alpha = 1/(\text{sum over all entries})^{\text{l}}$

	P	(W,T)				D(14/1 T	$T_{-0} = D(M/T_{-0})/D(T_{-0})$
		Temp	erature	$P(W \mid T=c) = P(W,T=c)/P(T=c)$ $= \alpha P(W,T=c)$				
	_	hot	cold		(<i>W,T</i> =	=c) – ·	ar (vi	v, r =0)
ر	sun	0.45	0.15		0.15		0.30	
Weather	rain	0.02	0.08		0.08	Normalize	0.16	
Wea	fog	0.03	0.27		0.27	110.50	0.54	
	meteor	0.00	0.00		0.00	$\alpha = 1/0.50$	0.00	

Probabilità Condizionata

Definizione di Probabilità Condizionata:

```
▶ P(a | b) = P(a ∧ b) / P(b) if P(b) > 0 P(doubles | Die_1 = 5) = \frac{P(doubles ∧ Die_1 = 5)}{P(Die_1 = 5)}
```

La Regola del Prodotto offre una formulazione alternativa:

```
P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)
```

- Una versione generale vale per l'intera distribuzione, cioè
 - P(Tempo, Carie) = P(Tempo | Carie) P(Carie)
 (Vista come un insieme di 4 × 2 equazioni, non una matrice multipla)
- La Chain rule è derivata attraverso successive applicazioni della regola del prodotto

```
P(X1, ..., Xn) = P(X1, ..., Xn-1) P(Xn | X1, ..., Xn-1)
= P(X1, ..., Xn-2) P(Xn-1 | X1, ..., Xn-2) P(Xn | X1, ..., Xn-1)
= ...
= \pi_{i=1}^n P(Xi | X1, ..., Xi-1)
```

Assiomi di Probabilità

- Per ogni coppia di proposizioni A, B
 - $0 \le P(A) \le 1$
 - P(true) = 1 and P(false) = 0
 - $P(A \vee B) = P(A) + P(B) P(A \wedge B)$

True

Inferenza Probabilistica

- Inferenza probabilistica: calcola una probabilità desiderata da un modello di probabilità
- ▶ Tipicamente per una variabile *query* date le *evidenze*
 - Es., P(airport on time | no accidents) = 0.90
 - Questi rappresentano le convinzioni dell'agente date le prove
- Le probabilità cambiano con nuove prove:
 - ▶ P(airport on time | no accidents, 5 a.m.) = 0.95
 - ▶ P(airport on time | no accidents, 5 a.m., raining) = 0.80
 - L'osservazione di nuove prove fa sì che le convinzioni vengano aggiornate

Inferenza tramite Enumerazione

Inizia con la distribuzione congiunta di probabilità :

	mald	identi	→ male	didenti
	prende	→ prende	prende	→ prende
carie	.108	.012	.072	.008
→ carie	.016	.064	.144	.576

 La probabilità di una proposizione φ è data dalla somma degli eventi atomici ω su cui φ diventa vera:

$$P(\varphi) = \Sigma_{\omega:\omega \models \varphi} P(\omega)$$

P(dado < 4) = P(1) + P(2) + P(3) = 1/2

Inferenza tramite Enumerazione

Inizia con la distribuzione congiunta di probabilità:

	mald	identi	→ male	didenti
	prende	rende → prende		→ prende
carie	.108	.012	.072	.008
→ carie	.016	.064	.144	.576

Per ogni proposizione φ, somma gli eventi atomici laddove diventa vera: $P(φ) = Σ_{ω:ω} \models_φ P(ω)$

$$P(maldidenti) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Probabilità marginale

Inferenza tramite Enumerazione

Inizia con la distribuzione congiunta di probabilità:

	mald	identi	– male	didenti
	prende	→ prende	prende	→ prende
carie	.108	.012	.072	.008
→ carie	.016	.064	.144	.576

- Spesso siamo interessati a calcolare le probabilità condizionali di alcune variabili, date le evidenze su altre.
- ► $P(carie | maldidenti) = P(carie \land maldidenti) / P(maldidenti)$ = (0.108 + 0.012) / (0.108 + 0.012 + 0.016 + 0.064) = 0.6
- P(¬carie|maldidenti) = P(¬ carie ∧ maldidenti) / P(maldidenti) = 0.4

Normalizzazione

Inizia con la distribuzione congiunta di probabilità:

	mald	identi	– male	didenti
	prende	→ prende	prende	→ prende
carie	.108	.012	.072	.008
→ carie	.016	.064	.144	.576

Il Denominatore può essere visto coma una costante di normalizzazione α

```
 \begin{aligned} \textbf{P}(\textit{Carie} \mid \textit{maldidenti}) &= \alpha \ \textbf{P}(\textit{Carie}, \textit{maldidenti}) \\ &= \alpha \ [\textbf{P}(\textit{Carie}, \textit{maldidenti}, \textit{prende}) + \textbf{P}(\textit{Carie}, \textit{maldidenti}, \neg \textit{prende})] \\ &= \alpha \ [<0.108, 0.016> + <0.012, 0.064>] \\ &= \alpha \ <0.12, 0.08> = <0.6, 0.4> & \textbf{Non ci serve conoscere P(maldidenti)!} \end{aligned}
```

 Idea generale: calcolare la distribuzione sulla variabile di query fissando variabili di evidenze (maldidenti) e sommando variabili nascoste (prende)

- In genere, siamo interessati a
 - la distribuzione congiunta a posteriori delle variabili di query
 X (Carie nell'esempio)
 - dati valori specifici e per le variabili di evidenza E (MalDiDenti nell'esempio)
- Siano le variabili nascoste H = Y X E
- Il risultato richiesto è ottenuto sommando le variabili nascoste:

$$P(X \mid E = e) = \alpha P(X, E = e) = \alpha \Sigma_h P(X, E = e, H = h)$$

I termini nella sommatoria rappresentano entry congiunte, perché
 X, E e H insieme esauriscono l'insieme di variabili casuali

- ▶ Dato il modello probabilistico $P(X_1, ..., X_n)$
- Partiziona le variabili $X_1, ..., X_n$ come segue:
 - Evidence variables: **E** = **e**
 - Query variables: X
 - Hidden variables:
 - Step 1: Seleziona le entry coerenti con le evidenze

 Step 2: Somma H dal modello per ottenere l'unione di query e evidenze

$$P(X,e) = \sum_{h} P(X,h,e)$$

$$X_{1}, \dots, X_{n}$$

Vogliamo:

 $P(X \mid e)$

Step 3: Normalizza

$$P(X \mid e) = \alpha P(X,e)$$

▶ P(W)?

▶ P(W | winter)?

Season	Temp	Weather	Р
summer	hot	sun	0.35
summer	hot	rain	0.01
summer	hot	fog	0.01
summer	hot	meteor	0.00
summer	cold	sun	0.10
summer	cold	rain	0.05
summer	cold	fog	0.09
summer	cold	meteor	0.00
winter	hot	sun	0.10
winter	hot	rain	0.01
winter	hot	fog	0.02
winter	hot	meteor	0.00
winter	cold	sun	0.15
winter	cold	rain	0.20
winter	cold	fog	0.18
winter	cold	meteor	0.00

Inferenza Probabilistica

```
function ENUMERA-CONGIUNTA-ASK(X, e, P) returns una distribuzione su X
     inputs: X, la variabile della query
              e, i valori osservati per le variabili E
              P, una distribuzione congiunta sulle variabili \{X\} \cup E \cup Y
                                                          /* Y = variabili nascoste */
     Q(X) \leftarrow una distribuzione su X, inizialmente vuota
     for each valore x, di X do
         Q(x_i) \leftarrow \text{ENUMERA-CONGIUNTA}(x_i, e, Y, [], P)
     return NORMALIZZA(Q(X))
function ENUMERA-CONGIUNTA(x, e, variabili, valori, P) returns un numero reale
     if VUOTA?(variabili) then return P(x, e, valori)
     Y \leftarrow PRIMO(variabili)
     return \sum_{x} ENUMERA-CONGIUNTA(x, e, RESTO(variabili), [y|valori], P)
```

Problemi ovvi:

- 1. Complessità di tempo nel caso peggiore $O(d^n)$, dove d è la più grande arità
- 2. Complessità di spazio $O(d^n)$ per memorizzare la distribuzione congiunta
- 3. Come trovare i numeri per $O(d^n)$ entry?

Indipendenza

A e B sono indipendenti se e solo se

$$P(A/B) = P(A)$$
 or $P(B/A) = P(B)$ or $P(A, B) = P(A) P(B)$

P(MalDiDenti, Prende, Carie, CondizioniAtmosferiche) = P(MalDiDenti, Prende, Carie) P(CondizioniAtmosferiche)

- ▶ 32 entry si riducono a 12; per *n* lanci di moneta indipendenti, $O(2^n) \rightarrow O(n)$
- L'indipendenza assoluta è molto potente ma rara nella realtà
- L'odontoiatria è una disciplina ampia con centinaia di variabili, nessuna delle quali indipendente. Cosa fare?

Indipendenza Condizionale

- ▶ P(MalDiDenti, Prende, Carie) ha $2^3 1 = 7$ entry indipendenti
- Se ho una carie, la probabilità che lo strumento appuntito si blocca non dipende dal fatto che io abbia mal di denti:
 - (1) P(prende | maldidenti, carie) = P(prende | carie)
- La stessa indipendenza vale se io non ho una carie:
 (2) P(prende | maldidenti, ¬ carie) = P(prende | ¬ carie)
- Prende è condizionalmente indipendente da MalDiDenti data Carie:
 P(Prende | MalDiDenti, Carie) = P(Prende | Carie)
- Affermazioni equivalenti:

```
P(MalDiDenti | Prende, Carie) = P(MalDiDenti | Carie)
P(MalDiDenti, Prende | Carie) = P(MalDiDenti | Carie) P(Prende | Carie)
```

Indipendenza Condizionale

Decomposizione della distribuzione congiunta completa tramite chain rule:

```
P(MalDiDenti, Prende, Carie)
= P(MalDiDenti | Prende, Carie) P(Prende, Carie)

= P(MalDiDenti | Prende, Carie) P(Prende | Carie) P(Carie)

= P(MalDiDenti | Carie) P(Prende | Carie) P(Carie)
```

cioè 2 + 2 + 1 = 5 entry indipendenti

- Nella maggior parte dei casi, l'uso dell'indipendenza condizionale riduce la dimensione della rappresentazione della distribuzione congiunta da <u>esponenziale in n</u> a <u>lineare in n</u>.
- L'indipendenza condizionale è la nostra forma più semplice e solida di conoscenza di ambienti incerti.

Regola di Bayes

- ▶ Regola del prodotto $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$
 - \Rightarrow Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)
- o in forma distribuita

$$P(Y|X) = P(X|Y) P(Y) / P(X) = \alpha P(X|Y) P(Y)$$

- Perché è utile:
 - Costruiamo un condizionale dal suo inverso
 - Spesso un condizionale è complicato ma l'altro è semplice
 - Descrive un passaggio di "aggiornamento" dal precedente P(a) al successivo P(a | b)
- Utile per valutare la probabilità diagnostica dalla probabilità causale:
 - P(Cause | Effect) = P(Effect | Cause) P(Cause) / P(Effect)
 - P(Effect | Cause) descrive la direzione causale
 - P(Cause | Effect) descrive la relazione diagnostica

Regola di Bayes: Diagnosi medica

- Dai casi passati sappiamo che P(symptoms|disease), P(disease), P(symptoms)
- Per un nuovo paziente conosciamo i sintomi e cerchiamo diagnosi
 P(disease | symptoms)
- Esempi:
 - la meningite provoca un torcicollo il 70% delle volte
 - la probabilità a priori di meningite è 1/50 000
 - la probabilità a priori di torcicollo è 1%
- Qual è la probabilità che un paziente con un torcicollo abbia la meningite? P(m|s) = P(s|m) * P(m) / P(s) = 0.7 * 1/50000 / 0.01 = 0.0014
- Perché la probabilità condizionale per la direzione diagnostica non viene memorizzata direttamente?
 - la conoscenza diagnostica è spesso più fragile della conoscenza causale
 - per esempio, se c'è un'improvvisa epidemia di meningite, la probabilità incondizionata di meningite P (m) salirà, quindi anche P (m | s) dovrebbe salire mentre la relazione causale P (s | m) non è influenzata dall'epidemia, poiché riflette come funziona la meningite

Regola di Bayes e indipendenza condizionale

P(Carie | maldidenti ∧ prende)

- $= \alpha P(maldidenti \land prende \mid Carie) P(Carie)$
- = αP(maldidenti | Carie) P(prende | Carie) P(Carie)
- Questo è un esempio di modello naïve Bayes :

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod \mathbf{P}(Effect_i \mid Cause)$$

Il numero totale di parametri è lineare in n

Il Mondo del Wumpus

Abbiamo un labirinto con pozzi che vengono rilevati nei quadrati vicini attraverso il segnale brezza (il Wumpus e l'oro non saranno considerati ora).

Ogni cella contiene un pozzo con probabilità 0.2 (eccetto (1,1)).

Dove dovrebbe andare l'agente, se c'è brezza a (1,2) e (2,1)?

La pura inferenza logica non può concludere nulla su quale quadrato sia più probabile che sia sicuro!

In quale casella dovrebbe andare l'agente?

Modello Probabilistico

Variabili casuali booleane:

P_{i,j} – pozzo nella casella (i,j)

 $B_{i,j}$ – brezza nella casella (i,j) (solo per le caselle osservate $B_{1,1}$, $B_{1,2}$ e $B_{2,1}$)

Distribuzione completa delle probabilità congiunte

$$\begin{split} \textbf{P}(P_{1,2},\dots,P_{4,4},B_{1,1},B_{1,2},B_{2,1}) \\ &= \textbf{P}(B_{1,1},B_{1,2},B_{2,1} \, \big| \, P_{1,2},\dots,P_{4,4},) \, ^* \, \, \textbf{P}(P_{1,2},\dots,P_{4,4}) \end{split}$$

Regola del prodotto

$$P(P_{1,2},...,P_{4,4}) = \prod_{i,j} P(P_{i,j})$$

I pozzi sono distribuiti indipendentemente

$$P(P_{1,2},...,P_{4,4}) = 0.2^{n} * 0.8^{16-n}$$

la probabilità di pozzi è 0,2 e ci sono n pozzi

Query e semplice ragionamento

• Assumiamo di sapere che:

b =
$$\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1}$$

known = $\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}$

Siamo interessati a rispondere a query come $P(P_{1,3} | known, b)$.

La risposta può essere calcolata elencando l'intera distribuzione di probabilità congiunta.

Siano Unknown le variabili $P_{i,j}$ eccetto $P_{1,3}$ e Known: $P(P_{1,3}| known, b) = \Sigma_{unknown} P(P_{1,3}, unknown, known, b)$

Ma significa esplorare tutti i possibili valori delle variabili sconosciute e ci sono 2^{12} =4096 termini (crescita esponenziale nel numero di stanze)! Possiamo farlo meglio (più velocemente)?

Indipendenza condizionale

Osservazione:

Le brezze osservate sono condizionatamente indipendenti dalle altre variabili date le variabili note (bianco), di frontiera (giallo) e di query.

Dividiamo l'insieme delle variabili nascoste in frontiera e altre variabili:

Unknown = Fringe ∪ Other

Dall'indipendenza condizionale abbiamo:

 $P(b \mid P_{1,3}, known, unknown) = P(b \mid P_{1,3}, known, fringe)$

Ora, sfruttiamo questa formula.

Reasoning

```
\mathbf{P}(P_{1,3} \mid known, b)
= \alpha \Sigma_{\text{unknown}} \mathbf{P}(P_{1,3}, \text{known, unknown, b})
                                                                                      product rule P(X,Y) = P(X|Y) P(Y)
= \alpha \Sigma_{\text{unknown}} \mathbf{P}(b \mid P_{1,3}, \text{known, unknown}) * \mathbf{P}(P_{1,3}, \text{known, unknown})
= \alpha \Sigma_{\text{fringe}} \Sigma_{\text{other}} P(b \mid P_{1,3}, \text{known, fringe,other}) * P(P_{1,3}, \text{known, fringe,other})
= \alpha \Sigma_{\text{fringe}} \Sigma_{\text{other}} P(b \mid P_{1,3}, \text{known, fringe}) * P(P_{1,3}, \text{known, fringe, other})
= \alpha \Sigma_{\text{fringe}} P(b \mid P_{1,3}, \text{known, fringe}) * \Sigma_{\text{other}} P(P_{1,3}, \text{known, fringe, other})
= \alpha \Sigma_{\text{fringe}} P(b \mid P_{1,3}, \text{known, fringe}) * \Sigma_{\text{other}} P(P_{1,3}) P(\text{known}) P(\text{fringe}) P(\text{other})
= \alpha P(known)P(P<sub>1,3</sub>) \Sigma_{\text{fringe}} P(b | P<sub>1,3</sub>,known, fringe) P(fringe) \Sigma_{\text{other}} P(other)
= \alpha' P(P<sub>1,3</sub>) \Sigma_{\text{fringe}} P(b | P<sub>1,3</sub>,known, fringe) P(fringe)
```

 $\alpha' = \alpha$. P(known) Σ_{other} P(other) = 1

Soluzione

 $P(P_{1,3} | \text{known, b}) = \alpha' P(P_{1,3}) \Sigma_{\text{fringe}} P(\text{b} | P_{1,3}, \text{known, fringe}) P(\text{fringe})$

 Esploriamo possibili modelli (valori) di frontiera compatibili con l'osservazione b.

$$P(P_{1,3}|$$
 known, b)
= α' $\langle 0.2 (0.04 + 0.16 + 0.16), 0.8 (0.04 + 0.16) \rangle$
= $\langle 0.31, 0.69 \rangle$
 $P(P_{2,2}|$ known, b) = $\langle 0.86, 0.14 \rangle$

Evitare assolutamente il quadrato (2,2)!

Sommario

- La probabilità è un formalismo rigoroso per conoscenza incerta
- La distribuzione di probabilità congiunta specifica la probabilità di ogni evento atomico
- È possibile rispondere alle query sommando gli eventi atomici
- Per i domini non banali, dobbiamo trovare un modo per ridurre le dimensioni congiunte
- Indipendenza e indipendenza condizionale forniscono gli strumenti