CIND 110 Data Organization for Data Analysts Assignment 3 Michael McAllister – 501133880

Question 1.1

Apply the Apriori algorithm on this dataset. Note that, the set of items is {Meat, Potato, Onion, Noodle, Spinach, Eggs, Salt}. You may use 0.3 for the minimum support value.

Step 1									
Trans ID	Items Purchased	Eggs	Meat	Noodle	Onion	ı	Potato Salt	Spin	ach
	2001 Meat, Potato, Onion			1		1	1		
	2002 Meat, Noodle			1	1				
	2003 Noodle, Spinach				1				1
	2004 Meat, Potato, Onion			1		1	1		
	2005 Onion, Potato, Noodle				1	1	1		
	2006 Eggs, Spinach		1						1
	2007 Eggs, Noodle		1		1				
	2008 Meat, Potato, Salt, Onion			1		1	1	1	
	2009 Salt, Spinach							1	1
	2010 Meat, Potato			1			1		
Frequency			2	5	4	4	5	2	3
Support			0.2	0.5	0.4	0.4	0.5	0.2	0.3

Calculate frequency and support, min support level is 0.3 as given and add them to a list L1.

Step 3	Step 4	Step 5	Step 6	Step 7	
Itemset	Support Calc	L2	Repeat Loop	L3	
{Meat, Noodle}	{Meat, Noodle} 0.125	{Meat, Potato} 0.6666666667	{Meat, Potato, Noodle}) {Meat, Potato, Onion}	0.5
{Meat, Onion}	{Meat, Onion} 0.5	{Onion, Potato} 0.8	{Meat, Potato, Onion} 0.	5	
{Meat, Potato}	{Meat, Potato} 0.6666666667	{Meat, Onion} 0.5	{Meat, Potato, Spinach}	0	
{Meat, Spinach}	{Meat, Spinacl 0		{Onion, Potato, Noodle} 0.12	5 Step 8	
{Noodle, Onion}	{Noodle, Onion 0.1428571429		{Onion, Potato, Spinach}	0	
{Noodle, Potato}	{Noodle,Potatc 0.125		{Meat, Onion, Noodle}) {Meat, Potato, Onion, Noodle}	0
{Noodle, Spinach}	Noodle, Spina 0.1666666667		{Meat, Onion, Spinach}	Meat, Potato, Onion, Spinach	0
{Onion, Potato}	(Onion, Potato 0.8				
{Onion, Spinach}	{Onion, Spinac 0			Terminate Algorythm	

Create a set of all permutations for possible combinations of items over the 0.3 support. Calculate the support for each set and add them to a new list L(k+1) if they're over the 0.3 support level. Check items in L2 with all remaining items from L1 (there is no need to use the original list because of antinomicity) and calculate the support. Alorythm ends with one 3 item set of {Meat, Potato, Onion}.

1.2 Show the rules that have a confidence of 0.8 or greater for an itemset containing three items.

{Meat, Potato} => Onion	sup('Meat', potatoes, 'Onion')/sup{'Meat', potatoes}	0.75	{Meat,Onion} => Potato	is over .8
{Potato, Onion} => Meat	sup('Meat', potatoes, 'Onion')/sup{potatoes, Onion}	0.625		
{Meat,Onion} => Potato	sup('Meat', potatoes, 'Onion')/sup{'Meat', Onion}	1		

The rule that has a confidence over 0.8 is (Meat, Onion) => Potato.

Question 2 Assuming, that the class attribute is Profile, apply a classification algorithm to this dataset.

ID	Age	City	Gender	Education	Profile	Age		Gender	
	101 20-30	NY	F	College	Employed	20-30	5	F	7
	102 31-40	NY	F	College	Employed	31-40	1	M	3
	103 51-60	NY	F	College	Unemployed	41-50	2		
	104 20-30	LA	М	High School	Unemployed	51-60	2		
	105 41-50	NY	F	College	Employed				
	106 41-50	NY	F	Graduate	Employed	City		Education	
	107 20-30	LA	М	College	Employed	NY	7	High School	2
	108 20-30	NY	F	High School	Unemployed	LA	2	College	7
	109 20-30	NY	F	College	Employed	SF	1	Graduate	1
	110 51-60	SF	М	College	Unemployed				

Entropy | Profile | = -0.6log2|0.6|-0.4log2|0.4| 0.9709505945

Gain in Information

Age	0.970950			
	Employed	Unem	ployed	
20-30		3	2	
31-40		1		All employed
41-50		2		All employed
51-60			1	Unemployed

 $0.9709505945 - 0.5 (-0.6 \log 2|.6| -.4 \log 2|.4) - 0.1 (-1 \log 2|1| -0 \log 2|0|)$

0.4854752972 ← Highest Information gain

City 0.9709505945

Employed Unemployed NY 5 2 LA 1 1 1 SF 1

Information gain 0.9709505945 -0.7(-(5/7)log2|5/7|-.(2/7)log2|2/7)-0.2(-1log2|1|-1 0.1667661965

Gender 0.9709505945

 $\begin{array}{cccc} & & & & & & & \\ \mathsf{M} & & & & & 1 & & 2 \\ \mathsf{F} & & & & 5 & & 2 \\ \end{array}$

Information gain 0.9709505945 -0.3(1/3log2|1/3|-2/3log2|2/3|)-0.7(5/7log2|1|-2/7log2|1)-0.0912774462

Education 0.9709505945

Employed Unemployed
Highschool 0 2
College 5 2
Graduate 1

The highest information gain was age, this became the root node of the decision tree.

Age Node

Age 20-30 Entropy -0.6log2|0.6|-0.4log2|0.4| 0.9709505945

City 0.9709505945

NY Employed Unemployed DY 2 1 LA 1 1

Information gain 0.9709505945 -3/5(-2/3log2|2/3|-1/3log2|1/3|)-2/5(1/2log2|1/2|-1

0.419973094

Gender 0.9709505945

F 2 1 M 1 1

Information gain 0.9709505945 -3/5(-2/3log2|2/3|-1/3log2|1/3|)-2/5(1/2log2|1/2|-1

0.419973094

Education 0.9709505945

Employed Unemployed

Highschool 0 2 College 3 0

Information gain 0.9709505945 -3/5(-2/3log2|2/3|-1/3log2|1/3|)-2/5(1/2log2|1/2|-1

0.9709505945 ← Highest Information gain

The highest information gain was then education, and the algorythm ends here and no further nodes are needed. The final decision tree is:

Question 3.

3.1

Use the K-means algorithm to cluster this dataset. You can use a value of 2 for K and can assume that the records with RIDs 103, and 104 are used for the initial cluster centroids.

Question 3			
RID	Age	Years of Service	
	101	30 5	
	102	50 25	
	103	50 15	
	104	25 5	
	105	30 10	
	106	55 25	
Iteration 1			
ileration i			Cluster 1 Cluster 2
RID	Age	Years of Service	Distance (103) Distance (104) Cluster Allo Cluster 1 mearCluster 2 mear
2	101	30 5	22.360679775 5 2 x 51.66666667 28.333333333
	102	50 25	10 32.0156211872 1 y 21.666666667 6.6666666667
	103	50 15	0 26.9258240357
	104	25 5	26.9258240357 0 2
	105	30 10	20.6155281281 7.0710678119 2
	106	55 25	11.1803398875 36.0555127546 1
Iteration 1			
D.ID			Cluster 1 Cluster 2
RID	Age	Years of Service	Distance Distance Cluster Cluster 1 mearCluster 2 mear
	101	30 5	27.3353657781 2.357022604 2 x 51.6666666667 28.333333333
	102	50 25	3.7267799625 28.3823106099 1 y 21.6666666667 6.6666666667
	103	50 15	6.8718427094 23.213980462 1
	104	25 5	31.4466037735 3.7267799625 2
	105	30 10	24.6080384337 3.7267799625 2
	106	55 25	4.7140452079 32.3608130649 1

Final iteratation, no change to mean or cluster allocation

3.2

What is the difference between describing discovered knowledge using clustering and describing it using classification?

Classification and clustering are two methods of pattern identification used in machine learning. Although both techniques have certain similarities, the difference lies in the fact that classification uses predefined classes in which objects are assigned, while clustering identifies similarities between objects, which it groups according to those characteristics in common and which differentiate them from other groups of objects. These groups are known as "clusters". Classification involves supervised learning allocates into already defined classes and clusters involves unsurpervised learning and relies on similarities between data items.