Why We Believe Mathematical Proofs

Ang Yan Sheng

Theorem: (YS Ang, 1998) Even + even = even. Even + Even = Even because they all has partners.

$$2a + 2b = 2(a+b)$$

Derivation (formal)

VS.

Intuition (informal)


```
*54.42. \vdash :: \alpha \in 2.0:.\beta \subset \alpha._{\overline{A}}!\beta.\beta \neq \alpha. \equiv .\beta \in \iota^{\iota\iota}\alpha
       Dem.
\vdash .*54.4. \supset \vdash :: \alpha = \iota'x \cup \iota'y. \supset :.
                           [*24·53·56.*51·161] \equiv : \beta = \iota^{\epsilon} x \cdot \mathbf{v} \cdot \beta = \iota^{\epsilon} y \cdot \mathbf{v} \cdot \beta = \alpha
                                                                                                                                             (1)
\vdash . *54·25 . Transp . *52·22 . \supset \vdash : x \neq y . \supset . \iota 'x \cup \iota 'y \neq \iota 'x . \iota 'x \cup \iota 'y \neq \iota 'y :
[*13·12]  \exists t : \alpha = t'x \cup t'y \cdot x \neq y \cdot \exists \alpha \neq t'x \cdot \alpha \neq t'y 
                                                                                                                                             (2)
\vdash \cdot (1) \cdot (2) \cdot \supset \vdash :: \alpha = \iota^{\epsilon} x \cup \iota^{\epsilon} y \cdot x \neq y \cdot \supset :.
                                                                  \beta \subset \alpha \cdot \exists ! \beta \cdot \beta + \alpha \cdot \equiv : \beta = \iota' x \cdot \lor \cdot \beta = \iota' y :
[*51.235]
                                                                                                           \equiv: (\Im z) \cdot z \in \alpha \cdot \beta = \iota^{\epsilon}z:
[*37:6]
                                                                                                          \Xi: \beta \in \iota^{\prime\prime}\alpha
                                                                                                                                            (3)
F.(3).*11·11·35.*54·101.⊃F.Prop
*54.43. \vdash:. \alpha, \beta \in 1.0: \alpha \cap \beta = \Lambda = \alpha \cup \beta \in 2
      Dem.
             \vdash . *54·26 . \supset \vdash :. \alpha = \iota 'x . \beta = \iota 'y . \supset : \alpha \cup \beta \in 2 . \equiv . x \neq y .
             [*51.231]
                                                                                                         \equiv \cdot t^{\epsilon}x \wedge t^{\epsilon}y = \Lambda.
             [*13.12]
                                                                                                         \equiv . a \land \beta = \Lambda
                                                                                                                                             (1)
             F.(1).*11·11·35.D
                       \vdash :. (\pi x, y) \cdot \alpha = t'x \cdot \beta = t'y \cdot \exists : \alpha \cup \beta \in 2 \cdot \equiv . \alpha \cap \beta = \Lambda
                                                                                                                                             (2)
             1. (2). *11.54. *52·1. ⊃ ⊢. Prop
```

From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2.

Assertion

Ref	Expression	
2p2e4	$\vdash (2+2) = 4$	

Proof of Theorem 2p2e4

Step	Нур	Ref	Expression
1		<u>df-2</u> 8943	$3 \vdash 2 = (1+1)$
2	<u>1</u>	oveq2i 5389	$2 \vdash (2+2) = (2+(1+1))$
3		<u>df-4</u> 8945	$3 \vdash 4 = (3 + 1)$
4		<u>df-3</u> 8944	4 \vdash 3 = (2 + 1)
5	<u>4</u>	<u>oveq1i</u> 5388	$3 \vdash (3+1) = ((2+1)+1)$
6		<u>2cn</u> 8953	4 ⊢ 2 ∈ ℂ
7		<u>ax-1cn</u> 8227	4 ⊢ 1 ∈ ℂ
8	<u>6, 7, 7</u>	addassi 8269	$3 \vdash ((2+1)+1) = (2+(1+1))$
9	3, <u>5</u> , <u>8</u>	<u>3eqtri</u> 2106	$a_2 \vdash 4 = (2 + (1 + 1))$
10	<u>2, 9</u>	<u>eqtr4i</u> 2105	$_1 \vdash (2+2) = 4$

Theorem opreq2i 2368

Description: Equality inference for operations.

Hypothesis

Ref	Expression		
opreq1i.1	$\vdash A = B \blacktriangleleft$		

Assertion

Ref	Expression	
opreq2i	$\vdash (CFA) = (CFB)$	

$$A = B$$

$$2 = (1+1)$$

Proof of Theorem 2p2e4

Step	Нур	Ref	E3	pression
1←	< G	<u>df-2</u> 3348	$\vdash 2 = (1 + 1)$	l)
2	17(1	<u> </u>	\vdash (2 + 2) =	(2+(1+1))
3		Af-4 2350	⊢ 4 = (3 +	1)

Appel-Haken (1976)

1,936 cases

1,200 hours of computer time

THE $\mathbb{F}_l^{ imes\pm}$ -SYMMETRY IS REPRESENTED IN A \mathcal{D} - $\Theta^{\pm \mathrm{ell}}$ -HODGE THEATER $^\dagger\mathcal{H}\mathcal{T}^{\mathcal{D}}$ - $\Theta^{\pm \mathrm{ell}}$ BY A CATEGORY EQUIVALENT TO THE GALOIS CATEGORY OF FINITE ÉTALE COVERINGS OF \underline{X}_K .

ON THE OTHER HAND, EACH OF THE LABELS REFERRED TO ABOVE IS REPRESENTED IN A $\mathcal{D}\text{-}\Theta^{\pm\mathrm{ell}}$ -HODGE THEATER $^{\dagger}\mathcal{H}\mathcal{T}^{\mathcal{D}\text{-}\Theta^{\pm\mathrm{ell}}}$ BY A $\mathcal{D}\text{-}\mathsf{PRIME}\text{-}$ STRIP.

Sandra and Woo by Oliver Knörzer (writer) and Powree (artist) – www.sandraandwoo.com

E-mail:

motizuki@kurims.kyoto-u.ac.jp

Shinichi Mochizuki

The Periodic Table Of Finite Simple Groups

Enormous Theorem (1983)

Every finite simple group belongs to either:

- one of 18 different infinite families (omitted); or
- the list of 26 exceptions.

10,000+ pages 500+ papers 100+ reseachers

Mathieu group M₁₁

Mathieu group M_{12}

Janko group J_1

Mathieu group M₂₂

Janko group $J_2 = HJ$

Mathieu group M₂₃

Higman-Sims group HS

Janko group J₃

Mathieu group M₂₄

McLaughlin group McL

Held group He

Rudvalis Group Ru

Suzuki group Suz

O'Nan group O'N

Conway group Co3

Conway group Co2

Fischer group Fi_{22}

Harada-Norton group HN

Lyons Group Ly

Thompson Group Th

Fischer group Fi23

Conway group Col

Janko group J4

Fischer group Fi'24

baby monster group **B**

monster group M

Aschbacher-Smith (2004)

1,221 pages

FIELDS ARRANGED BY PURITY MORE PURE > OH, HEY, I DIDN'T WHICH IS JUST SOCIOLOGY 15 PSYCHOLOGY 15 BIOLOGY IS SEE YOU GUYS ALL APPLIED PHYSICS. JUST APPLIED JUST APPLIED JUST APPLIED THE WAY OVER THERE. IT'S NICE TO PSYCHOLOGY BIOLOGY. CHEMISTRY BE ON TOP. BIOLOGISTS P5YCHOLOGISTS CHEMISTS PHYSICISTS SOCIOLOGISTS MATHEMATICIANS