

Lecture 3

Topics covered in this lecture session

- 1. Trigonometric functions.
- 2. More about Trigonometric functions.
- 3. Solving Trigonometric equations.
- 4. Formulae for addition, factor and multi-angle.

Trigonometric functions

$$\cos \theta = \frac{\text{Adjacent Side}}{\text{Hypotenuse}} = \frac{x}{r} = \frac{x}{1} = x$$

$$\sin\theta = \frac{\text{Opposite Side}}{\text{Hypotenuse}} = \frac{y}{r} = \frac{y}{1} = y$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \quad ; \quad \cos \theta \neq 0$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} \quad ; \quad \sin \theta \neq 0$$

$$\sec \theta = \frac{1}{\cos \theta}$$
 ; $\cos \theta \neq 0$

$$\csc \theta = \frac{1}{\sin \theta} \quad ; \quad \sin \theta \neq 0$$

Trigonometric identities

The basic trigonometric identities are:

$$\cos^2 \theta + \sin^2 \theta = 1 \tag{1}$$

$$1 + \tan^2\theta = \sec^2\theta \qquad ; \qquad \cos\theta \neq 0$$
 obtained by dividing (1) by $\cos^2\theta$

$$1+\cot^2\theta=\csc^2\theta \hspace{0.3cm} ; \hspace{0.3cm} \sin\theta\neq0$$
 obtained by dividing (1) by $\sin^2\theta$

Conversion (degree ←→ radians)

By definition, the length of the enclosed arc (s) is equal to the radius (r) multiplied by the magnitude of the angle (θ) in radians.

$$s = r \theta \quad \Rightarrow \quad \theta = \frac{s}{r}$$

 \therefore For one complete revolution (360°), the magnitude in radians is

$$360^{\circ} = \frac{s}{r} = \frac{2\pi r}{r} = 2\pi$$

An important relation to convert degrees to radians and vice-versa.

Conversion (degree \longleftrightarrow radians)

angle in radians = angle in degrees
$$\times \left(\frac{\pi}{180^{\circ}}\right)$$

angle in degrees = angle in radians
$$\times \left(\frac{180^{\circ}}{\pi}\right)$$

$$45^{\circ} = 45^{\circ} \times \left(\frac{\pi}{180^{\circ}}\right) = \frac{\pi}{4} \text{ radians}$$

$$270^{\circ} = 270^{\circ} \times \left(\frac{\pi}{180^{\circ}}\right) = \frac{3\pi}{2} \text{ radians}$$

$$\frac{\pi}{6} \text{ radians} = \left(\frac{180^{\circ}}{\pi}\right) \times \frac{\pi}{6} = 30^{\circ}$$

$$270^{\circ} = 270^{\circ} \times \left(\frac{\pi}{180^{\circ}}\right) = \frac{3\pi}{2} \text{ radians}$$

$$\frac{5\pi}{12} \text{ radians} = \left(\frac{180^{\circ}}{\pi}\right) \times \frac{5\pi}{12} = 75^{\circ}$$

Periodic functions

If f(x + p) = f(x), the function f is called periodic and p is defined as its period. The smallest positive value of p is called the

Principal period of f.

Trigonometric function	Principal Period
cos	
sin	2π
sec	271
cosec	
tan	π
cot	/(

Periods of Trigonometric functions

Principal period of $a T_1(bx + c) + d$ is $\frac{2\pi}{|b|}$

where T_1 is the trig function sin, cos, sec or cosec.

e.g. principal period of :
$$2\cos(4x-5)+6=\frac{2\pi}{4}$$

Principal period of $a T_2(bx + c) + d$ is $\frac{\pi}{|b|}$

where T_2 is the trig function tan or cot.

e.g. principal period of :
$$3 \tan (4 - 5x) + 2 = \frac{\pi}{|(-5)|} = \frac{\pi}{5}$$

Q1

Find the Principal Period of cosec $\left(\frac{1}{3}x - \pi\right)$

 $A \frac{3\pi}{2}$

B 4π

C 6π

Increasing and Decreasing functions

If
$$x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$$
,

then the function f is said to be an increasing (\uparrow) function.

If
$$x_2 > x_1 \Rightarrow f(x_2) < f(x_1)$$
,

then the function f is said to be a decreasing (\downarrow) function.

Increasing and Decreasing functions

Quadrant	1	2	3	4
cos	+	+	↑	↑
\sin	↑	+	+	↑
tan	↑	↑	↑	↑

Quadrant	1	2	3	4
sec	 	↑	+	+
cosec	+	↑	↑	+
cot	+	+	+	+

Signs of Trigonometric functions in the quadrants

$$\cos\theta = \frac{x}{r}$$

$$\sin \theta = \frac{y}{r}$$

$$\tan \theta = \frac{y}{x}$$

For unit circle (r = 1)

 $\cos \theta = x \& \sin \theta = y$

Signs of Trigonometric functions in the quadrants

Example

If
$$\tan \theta = \frac{-3}{4}$$

If
$$\tan \theta = \frac{-3}{4}$$
; $\frac{3\pi}{2} \le \theta \le 2\pi$, find $\cos \theta$ and $\sin \theta$.

Even and Odd Trigonometric functions

The function f is said to be an even function if f(-x) = f(x)

e.g.
$$\cos(-\theta) = \cos\theta$$

 \Rightarrow cos is an even function.

The function f is said to be an odd function if f(-x) = -f(x)

e.g.
$$\sin(-\theta) = -\sin\theta$$

 \Rightarrow sin is an odd function.

Range of Trigonometric functions

From the graph of cosine function, it is clear that

$$-1 \le \cos \theta \le 1$$

 \therefore Range of cos function is [-1, 1]

Similarly,

$$-1 \le \sin \theta \le 1$$

 \therefore Range of sin function is [-1,1]

Range of Trigonometric functions

Also, $\tan \theta \in \mathbb{R}$ $\cot \theta \in \mathbb{R}$

 \therefore Range of tan function is \mathbb{R} . Range of cot function is \mathbb{R} . And, $\sec \theta \le -1$ or $\sec \theta \ge 1$ $\csc \theta \le -1$ or $\csc \theta \ge 1$

 \therefore Range of sec function is $\mathbb{R} - (-1, 1)$. Range of cosec function is $\mathbb{R} - (-1, 1)$.

Range of Trigonometric functions

Trigonometric function	Range
sin and cos	[-1, 1]
sec and cosec	$\mathbb{R}-(-1,1)$
tan and cot	\mathbb{R}

Foundation Algebra for Physical Sciences & Engineering

Q2

Find the Range of $y = 3\cos x + 2$

A
$$[-1,1]$$

B
$$[-1, 5]$$

$$C [-3, 2]$$

Sets of Zeros of Trigonometric functions

Sets of Zeros of Trigonometric functions

Note...

Function	Domain	Range	Set of zeros	Period
cos	\mathbb{R}	[-1,1]	$\left\{ (2k+1)\frac{\pi}{2} / k \in \mathbb{Z} \right\}$	2π
sin	\mathbb{R}	[-1,1]	$\{k\pi/k\in\mathbb{Z}\}$	2π
tan	$\mathbb{R}-\left\{ (2k+1)rac{\pi}{2}/k\in\mathbb{Z} ight\}$	\mathbb{R}	$\{k\pi/k\in\mathbb{Z}\}$	π
sec	$\mathbb{R}-\left\{ \left(2k+1 ight)rac{\pi}{2}/k\in\mathbb{Z} ight\}$	$\mathbb{R}-(-1,1)$	φ	2π
cosec	$\mathbb{R}-\{k\pi/k\in\mathbb{Z}\}$	$\mathbb{R}-(-1,1)$	φ	2π
cot	$\mathbb{R}-\{k\pi/k\in\mathbb{Z}\}$	\mathbb{R}	$\left\{ (2k+1)\frac{\pi}{2} / k \in \mathbb{Z} \right\}$	π

Solving Trigonometric equations

A trigonometric equation is an equation containing one or more trigonometric functions of the variable, say θ .

Solving for θ means finding the values of θ (in given interval) which makes the trigonometric equation true.

e.g. The solution of $\cos\theta = \frac{1}{2}$ in $\left(0, \frac{\pi}{2}\right)$ is $\frac{\pi}{3}$ radian

whereas its solution in $(0,2\pi)$ is

$$\frac{\pi}{3}$$
 or $\left(2\pi - \frac{\pi}{3}\right) = \frac{5\pi}{3}$ radians.

Solving Trigonometric equations (Review of angular measure)

Reference Angle $\theta \in (0, 2\pi)$

Sine and Cosine of Special Angles of $\theta \in \left[0, \frac{\pi}{2}\right]$

Coordinate of Point P on the unit circle is $(\sin \theta, \cos \theta)$

Solving Trigonometric equations (Review of angular measure)

Special angles shown for the unit circle

Q3
Find u and v from the figure below (note circle has a radius of 10)

A 5 and
$$\frac{3}{2}$$

B
$$-10\sqrt{2}$$
 and $\frac{10\sqrt{3}}{2}$

C
$$-5, -5\sqrt{3}$$

Worked Examples

1. Solve: $\tan^2 \theta - 2\sec \theta + 1 = 0$; $0 \le \theta \le \pi$.

2. Solve: $2 \cot^2 \theta = 7 \csc \theta - 8$; $0 < \theta < 180^{\circ}$.

Addition and factor formulae

Note: x(A+B) = xA + xB, but $\sin(A+B) \neq \sin A + \sin B$.

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Addition and factor formulae

Example
$$\sin 75^\circ = \sin (45^\circ + 30^\circ)$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$$

$$=$$
 $\frac{\sqrt{3}+1}{2\sqrt{2}}$ $=$ $\frac{\sqrt{6}+\sqrt{2}}{4}$

Addition and Factor formulae

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

 $\sin(A+B) + \sin(A-B) = 2\sin A \cos B$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

Subtracting

$$\sin(A+B) - \sin(A-B) = 2\cos A \sin B$$

Similarly, it can be proved that

$$\cos(A+B) + \cos(A-B) = 2\cos A \cos B$$

$$\cos(A+B) - \cos(A-B) = -2\sin A \sin B$$

Addition and Factor formulae

Writing
$$A + B = C$$
 and $A - B = D$ \Rightarrow $A = \frac{C + D}{2}$ and $B = \frac{C - D}{2}$

$$\sin(A+B) + \sin(A-B) = 2\sin A \cos B$$

$$\sin(A+B) - \sin(A-B) = 2\cos A \sin B$$

$$\cos(A+B) + \cos(A-B) = 2\cos A \cos B$$

$$\cos(A+B) - \cos(A-B) = -2\sin A \sin B$$

$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

$$\sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$$

$$\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

 $\cos C - \cos D = -2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$

Example Prove that $\sin 50^{\circ} + \sin 10^{\circ} = \sin 70^{\circ}$

Multi-angle formulae

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$

$$= 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$$

$$\sin^2 \theta = \frac{1}{2} (1 - \cos 2\theta)$$
$$\cos^2 \theta = \frac{1}{2} (1 + \cos 2\theta)$$

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$

Worked Example

Prove that
$$\frac{\sin 3\theta}{1 + 2\cos 2\theta} = \sin \theta$$
. Hence deduce the value of $\sin 15^o$.

With
$$t = \tan\left(\frac{\theta}{2}\right)$$
,

useful formulae in Calculus

$$\sin\theta = \frac{2t}{1+t^2} \qquad \cos\theta = \frac{1-t^2}{1+t^2}$$

$$\tan\theta = \frac{2t}{1-t^2}$$

Further Reading (click on links)

Foundation Algebra by P. Gajjar.

Chapter 5, and Chapter 6 (Sections 6.1 to 6.7)

Foundations of Mathematics by P. Brown.

Chapter 4 (Sections 4.1 to 4.12)

THANKS FOR YOUR ATTENTION

CELEN036