

INOVAÇÕES TECNOLÓGICAS NA COMUNICAÇÃO INCLUSIVA

DETECÇÃO DE LIBRAS POR MEIO DE INTELIGÊNCIA ARTIFICIAL NO EDGE IMPULSE

RAFAELA DE MORAES PAPALE VINICIUS BOTTINI JARDIM

CONTENT

01

INTRODUÇÃO

02

TRABALHOS RELACIONADOS

03

METODOLOGIA

04

ANÁLISE E RESULTADOS

05

CONCLUSÃO

INTRODUÇÃO

A LIBRAS é uma forma rica e complexa de expressão, composta por gestos, expressões faciais e movimentos corporais. Nesse sentido, algoritmos avançados de aprendizado de máquina, quando treinados para reconhecer padrões complexos presentes na LIBRAS, têm o potencial de traduzir eficientemente gestos e expressões em linguagem compreendida por todos.

Propósito é a implementar de um projeto que empregue um conjunto de dados de sinais de LIBRAS em uma rede neural, de modo que, por meio da câmera do celular, seja possível identificar o sinal correspondente ao gesto realizado.

TRABALHOS RELACIONADOS

Redes Neurais Artificiais e Processamento de Imagem no Reconhecimento de LIBRAS, usando o Kinect

TRABALHO 1

TRABALHO 2

Reconhecimento de sinais da Libras utilizando descritores de forma e redes neurais artificiais

TRABALHO 3

Processo para
Reconhecimento e
Tradução de Sinais em
LIBRAS Utilizando
Redes Neurais Artificiais

TRABALHO 4

METODOLOGIA

Materiais

2 datasets retirados do Kaggle e mesclados, formando 11548 imagens em 21 letras diferentes do alfabeto

Pré processamento

Normalização das imagens, Redimensionamento para um formato Padrão de 64x64 pixels

Train vs Test

80% treinamento 20% teste

RESULTADOS

98% de acurácia 0.12 de loss

MATRIZ DE CONFUSÃO

	F1-SCORE	PRECISION	RECALL
A	0.94	0.95	0.92
В	0.96	0.99	0.94
С	1.00	1.00	1.00
D	0.97	0.96	0.99
E	0.97	0.98	0.96
F	0.98	0.99	0.97
G	0.98	1.00	0.97
I	0.98	0.98	0.99
L	0.99	1.00	0.97
M	0.99	1.00	0.98
N	0.99	0.99	0.99
0	0.97	0.99	0.96
P	1.00	1.00	1.00
Q	0.99	0.98	1.00
R	1.00	1.00	0.99
S	0.95	0.91	0.99
Т	0.97	0.94	1.00
U	0.97	0.94	1.00
V	1.00	0.99	1.00
W	0.98	1.00	0.96
Υ	1.00	1.00	1.00

TESTES

Inferencing...

Time per inference: 8 ms.

ABCDEFGILMNOPQRSTUVWY

CONCLUSÃO

O sistema ofereceu uma
experiência ágil para o
usuário e evidenciou a
praticidade e a
aplicabilidade do modelo em
ambientes do cotidiano.

Trabalhos futuros:

- Aprimoramento do modelo para melhorar o desempenho em cenários de baixa ou alta iluminação
- Inserção de análises por vídeo para interpretação de gestos.

A implementação bemsucedida do sistema reforça a ideia de que a tecnologia pode desempenhar um papel crucial na construção de uma sociedade mais inclusiva.