Power Systems Flexibility from District Heating Networks - Online Appendix

Lesia Mitridati
Center for Electric Power and Energy
Technical University of Denmark
Kgs. Lyngby, Denmark

lemitri@elektro.dtu.dk

Josh A. Taylor

Department of Electrical & Computer Engineering
University of Toronto
Toronto, Canada
josh.taylor@utoronto.ca

Nomenclature

Sets and Indexes	
au	Set of time periods
\mathcal{I}^{HS}	Set of heat stations
\mathcal{I}^{HES}	Set of heat exchanger stations
\mathcal{I}^{CHP}	Set of combined heat and power plants $\mathcal{I}^{CHP} \subset \mathcal{I}^{HS}$
\mathcal{I}^{HP}	Set of heat pumps $\mathcal{I}^{HP} \subset \mathcal{I}^{HS}$
\mathcal{I}^E	Set of electricity generators
\mathcal{I}^N	Set of nodes in the district heating net-
	work
$ ilde{\mathcal{I}}^{N-}$	Set of nodes with a single pipe arriving $\tilde{\mathcal{I}}^{N-}\subset\mathcal{I}^N$
$ ilde{\mathcal{I}}^{N+}$	Set of nodes with a single pipe departing $\tilde{\mathcal{I}}^{N+}\subset\mathcal{I}^N$
\mathcal{I}^B	Set of electricity buses
\mathcal{I}^P	Set of heat pipelines
S_n^{P+}/S_n^{P-} S_n^{HS}	Set of pipes starting/ending at node n
S_n^{HS}	Set of heat stations connected to node n
S_n^{HES}	Set of heat exchanger stations connected
	to node n
$S_n^{HP} \ S_n^E$	Set of heat pumps connected to node n
S_n^E	Set of electricity generators connected to
D	bus n
S_n^B	Set of electricity buses connected to bus
	n

Input Parameters

R_p/L_p	Radius/Length of pipe p (m)
μ_p	Thermal loss coefficient in pipe p
	$(J.m^{-2}.s^{-2}.K^{-1})$
ho	Density of water (kg.m ⁻³)
$ u_p$	Pressure loss coefficient in pipeline p
c	Specific heat capacity of water
	$(J.kg^{-1}.K^{-1})$
η_i^{pump}	Efficiency of water pump in heat station
J	j
Δt	Time intervals (s)
$\underline{\mathit{mf}}_{it}^{HES}/\overline{\mathit{mf}}_{it}^{HES}$	Minimum/maximum mass flow rates at

	heat exchanger station i (kg/s)
$\underline{\textit{mf}}_{jt}^{HS}/\overline{\textit{mf}}_{jt}^{HS}$	Minimum/maximum mass flow rates at
	heat station j (kg/s)
$mf_{nt}^S/\overline{mf}_{pt}^S$	Minimum/maximum mass flow rates in
pv -	the supply network (kg/s)
$\underline{\mathit{mf}}_{\mathit{nt}}^{R}/\overline{\mathit{mf}}_{\mathit{pt}}^{R}$	Minimum/maximum mass flow rates in
P -	the return network (kg/s)
$\frac{\underline{T}_{nt}^S/\overline{T}_{nt}^S}{\underline{T}_{nt}^R/\overline{T}_{nt}^R}$ $\underline{P}_{nt}^S/\overline{p}\overline{r}_{nt}^S$	Supply temperature bounds at node n (K)
$\underline{T}_{nt}^R/\overline{T}_{nt}^R$	Return temperature bounds at node n (K)
$pr_{nt}^S/\overline{pr}_{nt}^S$	Pressure bounds at node n in the supply
	network (Pa)
$\underline{pr}_{nt}^R/\overline{pr}_{nt}^R$	Pressure bounds at node n in the return
HEC	network (Pa)
\underline{pr}_i^{HES}	Minimum pressure difference at heat ex-
$\overline{\circ}$	changer station i (Pa)
\overline{Q}_{jt}	Maximum heat output of heat station j (W)
α_j	Marginal cost parameter of heat station
ω_{j}	or electricity producer j (\$/Wh)
ρ_i^H/ρ_i^E	Heat/electricity fuel efficiency of CHP j
$ ho_j^H/ ho_j^E \ r_i^0/r_j$	Heat and electricity outputs ratio of CHP
y. c	j
\overline{F}_j	Maximum fuel consumption of CHP j
	(W)
$L^E_{nt} \ L^H_{it}$	Electricity load at bus n (W)
	Heat load at heat exchanger station $i(W)$
B_{nm}	Susceptance of line connecting buses n
\overline{D}	and m (S)
\overline{P}_{jt}	Maximum power output of electricity
\overline{f}_{nm}	generator j (W) Maximum flow in line connecting buses
J_{nm}	Maximum flow in line connecting buses n and m (W)
	is and its (W)

Decision variables

 COP_{jt}

$T_{pt}^{S,in}/T_{pt}^{S,out}$	Inlet/outlet temperatures in the supply
D to D or I	network (K)
$T_{pt}^{R,in}/T_{pt}^{R,out}$	Inlet/outlet temperatures in the return net-
	work (K)

Coefficient of performance of heat pump

$T_{nt}^S/T_{nt}^R \ mf_{nt}^S/mf_{nt}^R$	Supply/return temperatures at node n (K)
$\mathit{mf}_{pt}^{S}/\mathit{mf}_{pt}^{R}$	Mass flow rate in the supply/return net-
****	work (kg.m $^{-3}$)
$m\!f_{jt}^{HS} \ m\!f_{it}^{HES}$	Mass flow rate at heat station j (kg.m ⁻³)
mf_{it}^{HES}	Mass flow rate at heat exchanger station
	$i \text{ (kg.m}^{-3})$
pr_{nt}^S/pr_{nt}^R	Pressure at node n in the supply/return
	network (Pa)
$ au_{pt}^S/ au_{pt}^R$	Time delay in the supply/return network
r · r	(h)
Q_{jt}	Heat production of heat station j (Wh)
$Q_{jt} \ P_{jt}$	Electricity production of electricity gen-
J.	erator or CHP j (Wh)
L_{it}^{HP}	Electricity consumption of heat pump j
<i>J v</i>	(Wh)
L_{it}^{pump}	Electricity consumption of water pump in
Jt	heat station j (Wh)
Δ	· · · · · · · · · · · · · · · · · · ·
$ heta_{nt}$	Voltage angle at bus n (rad)

APPENDIX A: McCormick Relaxations

For each HES, we relax the bilinear terms $\mathit{mf}_{it}^{HES}\left(T_{nt}^S-T_{nt}^R\right)$ by introducing the following upper bounding and lower bounding linear functions

For supply and return temperature mixing equations at each node, we introduce the auxiliary variables w_{pt}^S and w_{pt}^R such that

$$w_{pt}^{S} = \mathit{mf}_{pt}^{S} \left(T_{nt}^{S} - T_{pt}^{S,out} \right) \quad \forall n \in \mathcal{I}^{N}, p \in S_{n}^{P-} \tag{2}$$

$$w_{pt}^R = m f_{pt}^R \left(T_{nt}^R - T_{pt}^{R,out} \right) \quad \forall n \in \mathcal{I}^N, p \in S_n^{P+}. \tag{3}$$

The products in (2)-(3) can be linearized using a McCormick envelopes

and

$$\begin{split} w_{pt}^{R} &\geq \overline{\mathit{mf}}_{pt}^{R} \left(T_{nt}^{R} - T_{pt}^{R,out} \right) + \mathit{mf}_{pt}^{R} \left(\overline{T}_{nt}^{R} - \underline{T}_{pt}^{R,out} \right) \\ &- \overline{\mathit{mf}}_{pt}^{R} \left(\overline{T}_{nt}^{R} - \underline{T}_{pt}^{R,out} \right), \ \forall n \in \mathcal{I}^{N}, p \in S_{n}^{+}, t \in \mathcal{T} \\ & \qquad \qquad (5a) \end{split}$$

$$\begin{aligned} w_{pt}^{R} &\geq \underline{\mathit{mf}}_{pt}^{R} \left(T_{nt}^{R} - T_{pt}^{R,out} \right) + \mathit{mf}_{pt}^{R} \left(\underline{T}_{nt}^{R} - \overline{T}_{pt}^{R,out} \right) \\ &- \underline{\mathit{mf}}_{pt}^{R} \left(\underline{T}_{nt}^{R} - \overline{T}_{pt}^{R,out} \right), \ \forall n \in \mathcal{I}^{N}, p \in S_{n}^{+}, t \in \mathcal{T} \\ & \qquad \qquad (5b) \end{aligned}$$

$$\begin{aligned} w_{pt}^{R} &\leq \overline{\mathit{mf}}_{pt}^{R} \left(T_{nt}^{R} - T_{pt}^{R,out} \right) + \mathit{mf}_{pt}^{R} \left(\underline{T}_{nt}^{R} - \overline{T}_{pt}^{R,out} \right) \\ &- \overline{\mathit{mf}}_{pt}^{R} \left(\underline{T}_{nt}^{R} - \overline{T}_{pt}^{R,out} \right), \ \forall n \in \mathcal{I}^{N}, p \in S_{n}^{+}, t \in \mathcal{T} \end{aligned} \end{aligned}$$

$$(5c)$$

$$\begin{aligned} w_{pt}^{R} &\leq \underline{\mathit{mf}}_{pt}^{R} \left(T_{nt}^{R} - T_{pt}^{R,out} \right) + \mathit{mf}_{pt}^{R} \left(\overline{T}_{nt}^{R} - \underline{T}_{pt}^{R,out} \right) \\ &- \underline{\mathit{mf}}_{pt}^{R} \left(\overline{T}_{nt}^{R} - T_{pt}^{R,out} \right), \ \forall n \in \mathcal{I}^{N}, p \in S_{n}^{+}, t \in \mathcal{T}. \end{aligned} \end{aligned}$$

The temperature mixing equations at each node can be reformulated as

$$\sum_{p \in S_n^-} w_{pt}^S = 0, \ \sum_{p \in S_n^+} w_{pt}^R = 0 \quad \forall n \in \mathcal{I}^N, t \in \mathcal{T}.$$
 (6)

APPENDIX B: CASE STUDY DATA

As shown in Fig. 1, the integrated heat and electricity system considered comprises a conventional thermal generator, a wind producer with an installed capacity of 500MW, n extraction CHP plant and a HP. The technical characteristics of these units are detailed in Table I.

Figure 1. Integrated heat and electricity system

TABLE I GENERATION UNITS PARAMETERS

		G_1	W_1	CHP_1	HP_1
\overline{P}	MW	180	500	-	-
\overline{Q}	MW	-	-	250	150
\overline{mf}^{HS}	kg/s	-	-	300	300
\overline{F}	MW	-	-	250	-
COP	-	-	-	-	2.5
r	-	-	-	0.6	-
$ ho^E$	-	-	-	2.4	-
$ ho^H$	-	-	-	0.25	-
η	-	-	-	0.9	0.9
α	\$/MWh	11	0	12.5	-

The technical parameters of the power transmission network and DHN are presented in Tables II, III, and IV.

TABLE II ELECTRICITY TRANSMISSION NETWORK PARAMETERS

		l_{12}	l_{23}	l_{34}	l_{45}	l_{56}	l_{16}	l_{35}
\overline{f}	MW	400	200	200	200	200	200	200
X	$10^{-1}\Omega$	1.70	0.37	2.58	1.97	0.37	1.40	0.18

TABLE III DHN PARAMETERS

		p_{12}	p_{23}
R	m	0.80	0.80
L	m	500	500
μ	${\rm W.m^{-2}.K^{-1}}$	20	20
ν	(10^{-3})	1.93	1.93
$\underline{\mathit{mf}}^S/\underline{\mathit{mf}}^R$	kg/s	50	50
$\overline{\mathit{mf}}^S/\overline{\mathit{mf}}^R$	kg/s	300	300

TABLE IV DHN nodal parameters

		n_1	n_2	n_3 (HES ₁)
\underline{mf}^{HES}	kg/s	-	-	50
$\frac{-}{mf}_{HES}$	kg/s	-	-	300
\underline{T}^R	C	30	30	30
\overline{T}^R	C	60	60	60
\underline{T}^S	C	90	90	90
\overline{T}^S	C	120	120	120
$\underline{pr}^S/\underline{pr}^R$	kPa	0	0	0
$\overline{pr}^S/\overline{pr}^S$	kPa	100	100	100

We consider a specific heat capacity of water of $1.17 Wh.kg^{-1}.K^{-1}$ and a water density of $988 kg.m^{-3}$ through the whole DHN. And the time interval considered for optimization is $\delta t = 3600 s.$

Heat and electricity loads and available wind production are represented in Fig. 2 and Table V shows the repartition of the electric loads at each bus.

Figure 2. Case study setup: (a) Electricity load and available wind power and (b) Heat load

TABLE V ELECTRIC LOADS AT EACH BUS

	b_1	b_2	b_3	b_4	b_5	b_6
% of load	0	0	20	40	40	0

APPENDIX C: CONVENTIONAL ECONOMIC DISPATCH

The Conventional Economic Dispatch (CED) is formulated as follows

$$\min_{\tilde{\Omega}} \sum_{j \in \mathcal{I}^H, t \in \mathcal{T}} \alpha_j Q_{jt} + \sum_{j \in \mathcal{I}^E, t \in \mathcal{T}} \alpha_j P_{jt}$$
 (7a)

$$+\sum_{j\in\mathcal{I}^{CHP},t\in\mathcal{T}}\alpha_{j}\left(\rho_{j}^{E}P_{jt}+\rho_{j}^{H}Q_{jt}\right)\tag{7b}$$

$$+ \sum_{j \in \mathcal{I}^{CHP}, t \in \mathcal{T}} \alpha_j \left(\rho_j^E P_{jt} + \rho_j^H Q_{jt} \right)$$

$$s.t. \sum_{i \in \mathcal{I}^{HES}} L_{it}^H = \sum_{j \in \mathcal{I}^{HS}} Q_{jt} \quad \forall t \in \mathcal{T}$$

$$(7b)$$

$$L_{nt}^{E} + \sum_{j \in S_{n}^{HP}} L_{jt}^{HP} = \sum_{j \in S_{n}^{E}} P_{jt} + \sum_{m \in S_{n}^{B}} B_{nm} \left(\theta_{mt} - \theta_{nt} \right)$$

$$\forall n \in \mathcal{I}^B, t \in \mathcal{T} \tag{7d}$$

$$-\overline{f}_{nm} \le B_{nm} \left(\theta_{mt} - \theta_{nt}\right) \le \overline{f}_{nm}$$

$$\forall n \in \mathcal{I}^B, m \in S_n^B, t \in \mathcal{T} \tag{7e}$$

$$0 \le P_j \le \overline{P}_{jt} \quad \forall i \in \mathcal{I}^E, t \in \mathcal{T}$$
 (7f)

$$\underline{Q}_{jt} \le Q_{jt} \le \overline{Q}_{jt} \quad \forall j \in \mathcal{I}^{HS}, t \in \mathcal{T}$$
 (7g)

$$P_{it} > r_i^0 + r_c Q_{it} \quad \forall j \in \mathcal{I}^{CHP}, t \in \mathcal{T}$$
 (7h)

$$P_{jt} \ge r_j^0 + r_c Q_{jt} \quad \forall j \in \mathcal{I}^{CHP}, t \in \mathcal{T}$$

$$0 \le \rho_c^E P_{jt} + \rho_c^H Q_{jt} \le \overline{F}_j \quad \forall j \in \mathcal{I}^{CHP}, t \in \mathcal{T}$$
(7h)
$$(7i)$$

$$Q_{jt} = COP_{jt}L_{jt}^{HP} \quad \forall j \in \mathcal{I}^{HP}, t \in \mathcal{T}, \tag{7j}$$

where the set of optimization variables $\tilde{\Omega}$ = $\{P, Q, L^{HS}, B, \theta\}.$