#### Introduction to File processing

## 강의 개요 및 수업진행방향

담당교수: 이수철 (dakterlee@gmail.com)

- COVID-19에 따른 수업방식 변경안내
  - 1. 본 과목은 대면 방식으로 진행해야 되나 부득이 하게 오프 라인으로 진행하게 되었습니다.
  - 2. 오프라인으로 단순히 ppt+음성을 입히려고 하였으나, 크게 효과적이지 못할 것으로 판단하여 이번주는 강의자료를 읽고 report를 제출하는 방식으로 진행하려 합니다.
  - 3. 제1장의 강의자료와 책을 보신 후 제1장의 연습문제를 풀어 제출하시기 바랍니다. (31일 11시 59분 까지)

# 1. 화일의 기본개념

## ❖ 화일의 종류

▶ 정보 ≠ 데이타



$$I = P(D)$$

## ▶ 중요 용어 (1)

- ◆ 데이타 필드 (field), 애트리뷰트 (attribute), 데이타 항목 (item)
  - 이름을 가진 논리적 데이타의 최소 단위
  - 특정 객체(object, entity)의 한 성질의 값
- ◆ 레코드 타입 (record type)
  - 한 종류의 객체를 기술하는, 논리적으로 서로 연관된 데이타 필드(항목)들의 구조
  - 엔티티 타입
- ◆ 레코드 어커런스(record occurrence)
  - 한 레코드 타입의 인스턴스(instance)
  - 레코드 타입의 각 필드에 따라 실제 값이 들어가 어떤 특정
    사물을 나타내는 것

## ▶ 중요 용어 (2)

#### ◆ 화일(file)

- 보조기억장치에 저장된 같은 종류의 (논리적으로 연관) 레코드 집합
  - disk(RAM), tape(SAM)
- 공통 응용 목적을 위해 함께 저장된 데이타
  - ◆ 예:급여계산,인사기록,재고관리,과학기술계산

#### ◆ 데이타의 집합을 왜 화일로 구성하는가?

- ① 주기억장치에 전부 적재하기에 너무 많은 양
- ② 프로그램은 특정시간에 데이타의 일부만 접근
  - ◆ 데이타 전부를 주기억장치에 한꺼번에 저장시킬 필요가 없음
- ③ 데이타를 특정 프로그램의 수행과 독립적으로 보관
  - ◆ 데이타의 독립성(independency) 유지

## ▶ 화일의 분류 (1)

#### → 기능에 따라

- ◆ 마스터 화일 (master file)
- ◆ 트랜잭션 화일 (transaction file)
- ◆ 보고서 화일 (report file)
- ◆ 작업 화일 (work file)
- ◆ 프로그램 화일(program file)

### (1) 마스터 화일 (master file)

- ◆ 어느 한 시점에서 조직체의 업무에 관한 정적인 면을 나타내는 데이타의 집합
  - 예(제조 회사): 급여 마스터 화일, 고객 마스터 화일, 인사 마스터 화일, 재고 마스터 화일, 자재 요청 마스터 화일
- ◆ 비교적 영구적(permanent)인 데이타 또는 역사적 데이타 (historical status data)를 포함
- ★ 사전 화일 (dictionary file)
  - 마스터 화일의 특수한 종류
  - 데이타의 기술(description) 타입, 크기, 이름, 사용

### (2) 트랜잭션 화일 (transaction file)

- ◆ 마스터 화일의 변경 내용을 저장
- ◆ 마스터 화일에 새 레코드 추가, 현존 레코드를 제거 또는 수정하기 위한 데이타
- ★ 트랜잭션 (transaction)
  - 논리적인 작업 단위
  - 하나의 건수로 처리하는 작업

## 트랜잭션의 예 (1)

처리 순서는 중요하지 않지만 두 개의 UPDATE 문이 모두 정상적으로 실행되어야 함

#### 계좌이체 트랜잭션

❶ 성호 계좌에서 5,000원 인출

UPDATE 계좌

SET 잔액 = 잔액 - 5000

WHERE 계좌번호 = 100;

② 은경 계좌에 5,000원 입금

UPDATE 계좌

SET 잔액 = 잔액 + 5000

WHERE 계좌번호 = 200;

성호 잔액: 5,000원

은경 잔액: 5,000원

계좌이체 후의 데이터베이스 상태

계좌이체 전의 데이터베이스 상태

성호 잔액: 10,000원

0원

은경 잔액:

그림 10-1 트랜잭션의 예1: 계좌이체 트랜잭션

## 트랜잭션의 예 (2)

INSERT 문과 UPDATE 문이 모두 정상적으로 실행되어야 상품주문 트랜잭션이 성공적으로 수행됨

#### 상품주문 트랜잭션

● 새로운 주문 내역 추가

**INSERT** 

INTO 주문(주문번호, 주문고객, 주문제품, 주문수량, 주문날짜) VALUES ('o11', 'apple', 'p01', 10, '2013-10-10');

② 주문제품의 재고량 수정

UPDATE 제품

SET 재고량 = 재고량 - 10

WHERE 제품번호 = 'p01';

상품주문 후의 데이터베이스 상태

10개

90개

주문수량 :

재고량:

상품주문 전의

데이터베이스 상태

주문수량 :

재고량:

O개

100개

그림 10-2 트랜잭션의 예2: 상품주문 트랜잭션

## (3) 보고서 화일 (report file)

◆ 사용자에게 보고서로 보이기 위해 일정한 형식을 갖춘(formatted) 데이타를 저장

- 하드카피(hard copy), 단말 장치 화면





### (4) 작업 화일 (work file)

#### ◆ 시스템에 있는 임시 화일(temporary file)

<u>프로그램 실행</u>중에 어떤 <u>처리 결과</u>를 일단 <u>보조 기억 장치</u>로 출력하고 다음 처리 단계에서 그 출력을 입력으로서 처리를 행하는 경우가 있다.

이와 같이 처리 단계에 작업(work)용으로 사용하는 보조 <u>기억 장치</u> 상의 파일을 작업용 파일 또는 작업 파일이라고 한다.

분류(sorting) 등의 <u>프로그램</u>에 있어서도 이러한 작업용 파일이 사용된다.

[네이버 지식백과] <u>작업 파일</u> [work file] (컴퓨터인터넷IT용어대사전, 2011. 1. 20., 일진사)



## ▶ 4 개의 런에 대한 2-원 합병 예제

| 저려하 하이   | 50 110 95 15 100 30 150 40 120 60 70 130 |
|----------|------------------------------------------|
| 0.55 7.5 |                                          |
| 화일 1     | 50 95 110   40 120 150                   |
| 화일 2     | 15 30 100 60 70 130                      |
| 화일 3     |                                          |
| 화일 1     |                                          |
| 화일 2     |                                          |
| 화일 3     | 15 30 50 95 100 110 40 60 70 120 130 150 |
| 화일 1     | 15 30 50 95 100 110                      |
| 화일 2     | 40 60 70 120 130 150                     |
| 화일 3     |                                          |
| 화일 1     |                                          |
| 화일 2     |                                          |
| 화일 3     | 15 30 40 50 60 70 95 100 110 120 130 150 |

## (5) 프로그램 화일 (program file)

- ◆ 데이타를 처리하는 명령어들을 포함
- ◆ 고급언어(COBOL, PASCAL), 어셈블리어, 기계어, 작업 제어 언어(job control language) 등으로 작성

## ▶ 화일의 분류 (2)

- → 프로그램의 화일 접근 목적에 따라
  - (1) 입력 화일 (input file)
    - ◆ 프로그램이 읽기만 함
  - (2) 출력 화일 (output file)
    - ◆ 프로그램이 기록만 하기 위해 사용
    - ◆ 프로그램에 의해 작성
  - (3) 입/출력 화일 (input/output file)
    - ◆ 프로그램의 실행 중 읽기도 하고 기록하기도 함

### ▶ 화일 조직의 기본 개념 (1)

### ♦ 키 (key):

- 레코드를 식별하는데 사용되는 레코드 필드
  - ◆ 기본키(primary key) : 데이타 레코드를 유일하게 식별하고 저장하는 기억장소를 결정하는데 사용되는 레코드 필드
  - ◆ 보조키 (secondary key) : 나머지 레코드 필드 중에서 레코드를 접근하는데 사용되는 레코드 필드

## 키의 개념

#### 고객 릴레이션

고객 릴레이션의 기본키

| ſ |              | 1    |    |        |     |      |
|---|--------------|------|----|--------|-----|------|
|   | <u>고객아이디</u> | 고객이름 | 나이 | 등급     | 직업  | 적립금  |
|   | apple        | 김현준  | 20 | gold   | 학생  | 1000 |
|   | banana       | 정소화  | 25 | vip    | 간호사 | 2500 |
|   | carrot       | 원유선  | 28 | gold   | 교사  | 4500 |
|   | orange       | 정지영  | 22 | silver | 학생  | 0    |

주문 릴레이션

주문 릴레이션의 기본키

| <u>주문번호</u> | 주문고객   | 주문제품  | 수량 | 단가   | 주문일자       |
|-------------|--------|-------|----|------|------------|
| 1001        | apple  | 진짜우동  | 10 | 2000 | 2013-01-01 |
| 1002        | carrot | 맛있는파이 | 5  | 500  | 2013-01-10 |
| 1003        | banana | 그대로만두 | 11 | 4500 | 2013-01-11 |

주문 릴레이션의 외래키

외래키 속성과 그것이 참조하는 기본키 속성의 이름은 달라도 되지만 도메인은 같아야 한다.

그림 5-10 외래키의 예 : 고객 릴레이션과 주문 릴레이신

### 키의 개념



그림 5-11 학생 상담 데이터베이스 스키마

하나의 릴레이션에는 외래키가 여러 개 존재할 수도 있고 외래키를 기본키로 사용할 수도 있다.

## ▶ 화일 조직의 기본 개념 (2)

#### ◆ 인덱스 (index) :

- 화일의 특정 필드에 대한 접근 효율을 높이기 위해서 만드는 보조적인 구조
  - .◆ 기본 인덱스 (primary index) : 기본키를 포함한 필드들에 대한 인덱스
  - ◆ 보조 인덱스(secondary index) : 기본 인덱스 이외의 인덱스
  - ◆ 집중 인덱스 (clustered index) : 데이타 레코드의 순서가 인덱스의 엔트리 순서와 동일하거나 유사하도록 유지하는 인덱스
  - ◆ 비집중 인덱스(unclustered index) : 집중 형태가 아닌 인덱스
  - ◆ 밀집인덱스 (dense index): 데이타 레코드 하나에 대해 적어도 하나의 인덱스 엔트리를 구성해놓은 인덱스 = 역인덱스(inverted index)
  - ◆ 희소 인덱스 (sparse index) : 레코드 그룹 또는 데이타 블록별로 하나씩 인덱스를 만들어 두는 인덱스

### ▶ 인덱스된 순차 화일의 예

◆ 이원 탐색 트리의 인덱스 구조를 가진 인덱스된 순차 화일의 예



순차 데이타 화일

| 1   | 김 성규 |  |
|-----|------|--|
| 2   | 김 병철 |  |
| 3   | 박 상범 |  |
| 4   | 신 정기 |  |
| 5   | 장 대길 |  |
| 6   | 정 지용 |  |
| ŧ   | į.   |  |
| 63  | 조 범순 |  |
| ŧ   | :    |  |
| 126 | 최 병국 |  |

## ❖화일의 조직

- ◆ 화일의 데이타 레코드를 표현, 저장하는 기법
  - (1) 순차화일 (sequential file)
    - ◆ 데이타를 저장 장치의 물리적 순서대로 저장
    - ◆ 각 레코드 내의 데이타 항목들은 모두 동일한 순서로 존재
  - (2) 인덱스된 순차 화일 (indexed sequential file)
    - ◆ 데이타에 대한 인덱스(임의 접근)와 순차 접근 제공
    - ◆ 인덱스, 순차 데이타 구역, 오버플로우 구역 (overflow area)으로 구성
  - (3) 직접 화일(direct file)
    - ◆ 레코드의 키값이 연산 루틴에 의해 그 키값을 갖는 레코드의 주소로 변환

## ❖화일의 조직 (계속)

- (4) 다중 키 화일 (multi-key file)
  - ◆ 인덱스를 통해서만 데이타 접근
  - ◆ 탐색 매개 변수가 되는 데이타 항목 : key
- (5) 다차원 화일 (multidimensional file)
  - ◆ 인덱스의 탐색키가 여러개의 필드를 포함하는 복합키(composite key)에 대한 인덱스를 지원하는 파일
  - ◆ 여러개의 필드가 모여 하나의 키 역할을 수행

### ▶ 화일 조직 기법의 특성

- 1) 화일의 레코드 순서를 결정
  - 보조기억장치 내에서 레코드의 물리적 순서
    - ◆ 정렬 순서 : 정렬 키 필드의 값
    - ◆ 임의 순서
- 2) 어떤 필드에 특정 값을 갖는 레코드를 탐색하는데 필요한 연산의 집합을 결정
  - 저장 장치의 운영(operational) 특성
    - → 화일의 조직에 영향
    - ◆ disk → 직접접근 저장장치 (DASD : Direct Access Storage Device)
    - ◆ tape → 순차접근 저장장치

### ▶ 화일 사용의 형식

### ◆ 일괄처리(batch) 형식

- 마스터 화일 효율적으로 접근하도록 트랜잭션들을 구성함
- 트랜잭션들을 그룹화하여 처리하는 성능이 주요 관심사

### ◆ 대화(interactive) 형식

- 트랜잭션이 터미널에 도착하는 대로 구성하고 처리함
- 개개 트랜잭션의 처리 성능이 주요 관심사

### ▶화일에 대한 기본 연산

- (1) 생성
- (2) 기록(갱신, 삽입, 삭제)
- (3) 판독(화일 이름, 블록 명세)
- (4) 삭제
- (5) 개방과 폐쇄(버퍼의 할당과 반환)

### (1) 생성 (creation)

- ◆ 데이타 조직의 설계
  - skeleton design : data definition

◆ 데이타 수집(collection)과 확인(validation)

- ◆ 데이타 적재(loading)
  - 공간 할당 → 데이타가 한꺼번에 적재
  - 한 번에 한 레코드씩 구성

## (2) 기록 (write)

#### ◆ 마스터 화일의 내용을 기록

- i) 레코드 내용의 변경 (update)
- ii) 새로운 레코드의 삽입(insert)
- iii) 레코드 삭제(delete)

## (3) 판독 (read)

- ◆ 마스터 화일의 내용을 판독
  - 화일 이름, 판독해야 할 블록 명세
  - 디렉토리 조사(기록 연산과 비슷)

## (4) 삭제 (delete)

#### ◆ 화일의 삭제

- 화일 위치 검색
- 디스크 공간 반환, 디렉토리 엔트리 삭제

## (5) 개방과 폐쇄 (open, close)

- ◆ 화일의 개방
  - \_ 연산을 수행하기 위한 준비 단계
  - 판독, 기록 가능
  - \_ 버퍼 할당

#### ◆ 화일의 폐쇄

- 디스크에 버퍼 데이타 기록
- 버퍼 반환
- 화일에 대한 사용권한 반납

### ❖화일 구조 선정 요소

- ◆ 주기억 장치
  - 비교 연산 등 주요연산의 수행 횟수로 평가
  - 데이타 접근시간은 모두 일정한 것으로 가정

#### ◆ 보조 저장 장치

- 데이타 접근 시간이 메인 메모리에 비해 매우 길다
- 보조 저장 장치의 접근 횟수가 프로그램 성능 평가 요소
  - -> 화일 구조 선정의 중요성

## ❖화일 구조 선정 요소

- ♦ 화일 구조 선정 요소
  - (1) 가변성
  - (2) 활동성
  - (3) 사용빈도수
  - (4) 응답 시간
  - (5) 화일 크기
  - (6) 화일 접근 유형

## (1) 가변성(volatility)

#### ◆ 화일의 성격

- 내용이 변하지 않는 정적 화일 (과거의 기록)
- 내용이 자주 변하는 동적 화일 (현재의 상황 데이타)

### ◆ 가변성(volatility)

- 전체 레코드 수에 대해 추가되거나 삭제되는 레코드 수
- 가변성이 높은 동적 화일은 빠른 접근과 갱신이 필요

## (2) 활동성(activity)

#### ◆ 화일의 활동성

- 주어진 기간 동안(대개 한번의 트랜잭션)에 화일의 총 레코드수에 대해 접근한 레코드 수의 비율
- 활동성이 높으면 순차 화일 구조 유리

## (3) 사용 빈도수 (frequency of use)

#### ◆ 화일의 사용 빈도수

- 일정 기간 동안의 화일의 사용 빈도수
- 가변성과 활동성에 밀접히 관련

#### ◆ 사용 빈도수와 화일 구조

- 제한된 화일 접근 방법이 사용 빈도수에 장애
- 빈도수가 낮으면 순차 화일 구조 유리
- 빈도수가 높으면 임의 접근 구조 유리

### (4) 응답 시간(response time)

#### ◆ 응답 시간과 화일 구조

- 검색이나 갱신에 대해 요구하는 지연 시간
- 빠른 응답 시간 조건에는 임의 접근 방법 선택
- 정렬된 키를 이용한 순차 접근 방법 가능

## (5) 화일 크기(file size)

#### ◆ 화일 크기와 화일 구조

- 레코드 수와 각 레코드 길이가 화일 크기 결정
- 시간이 지남에 따라 화일 크기 성장(레코드 길이 확장, 레코드 수 증가)
- 성장을 유연하게 수용할 수 있는 구조 필요
  - ◆ 정적해싱 vs. 동적해싱

### (6) 화일 접근 유형

- ◆ 화일 접근 유형과 화일 구조
  - 연산의 유형과 접근 형식에 따라 화일 구조 결정
    - ex) 1. 판독 위주 접근 ? 갱신 위주 접근 ?
      - 2. 순차 접근 주도? 임의 접근 주도?