www.xirenepalers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2005 question paper

0606 ADDITIONAL MATHEMATICS

0606/01 Paper 1 maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to
	ensure that the detailed working leading to the result is valid)

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE – November 2005	0606	1

1 (a) Squares and sets to 0 $ \rightarrow x^2 - 13x + 36$ $ \rightarrow x = 4 \text{ and } 9$ $ \rightarrow x < 4 \text{ and } x > 9$	M1 A1 A1 [3]	Condone alg errors in squaring but eqn must be set to 0 and attempt at solution. Independent of $<$,= or $>$ Co – not for \le or \ge .
2 (a) (i) $A' \cap B$, (ii) $A' \cup B$ or $(A \cap B')'$ (b) (i) (ii)	B1 B1 [2]	Co Co
	B1 [1] B1 [1]	Co Co
3 2(2x + 6/x) = x + c → 3x ² - cx + 12 = 0 Use of b ² -4ac=0 → c = 12 and → c = -12	M1 M1 A1 A1√ [4]	Eliminates y and forms a quadratic eqn. Uses b^2 -4 ac =0 on quadratic=0. Co For the -ve root of c^2 = k .
4 Length = $2-\sqrt{3}$. Area = $(2-\sqrt{3})^2 = 7 - 4\sqrt{3}$ Height = volume ÷ area = $(2\sqrt{3} - 3) \div (7 - 4\sqrt{3})$ × top and bottom by $7 + 4\sqrt{3}$ → height = $3 + 2\sqrt{3}$ (or $(7-4\sqrt{3})(a+b\sqrt{3}) = 2\sqrt{3}-3$ Sim eqns B1 M1(as before) M1 forming + sol A1)	B1 M1 M1 A1 [4]	Co Used with volume and area Technique correct Co but beware decimal answers leading to correct answer – this gets 0/4
5 F(i+12j) at (3i+2j). S (85i+5j) at -5i+kj At time t , $r_F = (1+3t)i+(12+2t)j$ $r_S = (85-5t)i+(5+kt)j$ Equate i's $1+3t=85-5t$ $t=10.5$ Equate j's $12+2t=5+kt$ $k=2\%$	M1 A1 M1 A1 M1A1√ [6]	M1 for one x or y component. A1 for both x components correct. M1 for equating x components. A1 Co M1 for equating y components. A1 √ for his t and his components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – November 2005	0606	1

6 $v = 6 - 6e^{-3t}$ (i) $a = dv/dt = 18e^{-3t}$ $t = \ln 2 e^{t} = 2 \rightarrow e^{-3t} = 1/8$ $\rightarrow a = 18/8 \text{ or } 2.25$ (ii) $s = \int vdt = 6t + 2e^{-3t} [+c]$ but $t=0$ when $s=0$, $\rightarrow c = -2$ Put $t = \ln 2 \rightarrow 2.41$	M1 A1 A1 [3] M1 A1 DM1 A1 [4]	Attempt at differentiation. Co. Co. Attempt at integration. Co. (ignore c) Don't allow if c automatically = 0. Co.
7 (a) 2 = log ₇ 49 Combines two logs correctly Forms equation and solves → y = 2	B1 M1 DM1 A1	Anywhere Allow even if first B1 not given Needs to have got rid of all logs correctly. Co
(b) $\log_{\rho} 8 \times \log_{16} p$ $\log_{\rho} 8 = \log_{2} 8 + \log_{2} p = 3/\log_{2} p$ $\log_{16} p = \frac{1}{4} \log_{2} p$ $\rightarrow \frac{3}{4} \text{ or } 0.75$	M1 M1 A1 [3]	Nb change to lg is same scheme –same work needed. Change of base once Same base – 2,8,16,10 – so that p cancels. Co.
8 $y = (x+2)\sqrt{(x-1)}$ (i) $dy/dx = \sqrt{x-1} + (x+2) \times \frac{1}{2}(x-1)^{-\frac{1}{2}}$ $= (x-1+\frac{1}{2}x+1) + \sqrt{x-1}$ $= \frac{3x}{2\sqrt{x-1}}$ $k = 1.5 \text{ or } 1\frac{1}{2}$ (ii) $\int_{3}^{5} \frac{xdx}{\sqrt{x-1}} = \frac{2}{3} \times \sqrt{(x-1)}(x+2)$	B1 M1 M1 A1 [4]	B1 for correct diff of $\sqrt{x-1}$ Use of "uv" for M. co Reasonable attempt at algebra co
evaluated from 2 to $5 = \frac{2}{3} \times (14 - 4)$ $\rightarrow 20/3$ 9 (a) $3\cos x = 8\tan x = 8\sin x/\cos x$	A1√ DM1 A1 [4]	For 1 ÷ "his k" Value at 25" – "value at 2". Co for A. Use of t=s/c
	M1 DM1 A1 A1√ [5]	Use of s²+c=1 Correct attempt at quadratic = 0 Co. for 180° - 1 st answer.
(b) $\cos(3y) = -\sqrt{3}/2$ $\rightarrow 3y = 5\pi/6 \text{ or } 2\pi - (\text{answer})$ $\rightarrow y = 5.50 \text{ or } 7\pi/4$	M1 DM1 A1 [3]	For $\cos^{-1}(\pm\sqrt{3}/2)$ For 2π – answer Allow if other answer (3.93) is given.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – November 2005	0606	1

10. (i) Pythagoras \rightarrow $AB=\sqrt{40}$. $BC=\sqrt{40}$	M1 A1 [2]	Or by vectors
(ii) $m \text{ of } AC = \frac{1}{2}$. m of BD = -2 $eqn BD \rightarrow y+2x=20$ $\rightarrow D (10, 0)$	B1 M1 M1 A1 [4]	Anywhere Use of $m_1m_2 = -1$ Not necessary to have eqn since $y=0$ may be used. Finds $M \rightarrow m$ of -2 equivalent to B1M1.
or $M(4,12) \rightarrow m = -2$ (iii) Area of ABC : Area of ACD		rinds w—m or -2 equivalent to Drivit.
BM : MD = $\sqrt{20} : \sqrt{180} = 1:3$ (or finds each area by "matrix" or $\sqrt{2}bh$)	M1 M1 A1 [3]	Realises that only heights are needed. Pythagoras – any form ok for A mark. M1 ABC (40) M1 ACD (120) A1 1:3.
1		
f: $x \rightarrow 2x-3-4$ $-2 \le x \le 3$ (i)	B2,1 [2]	Must be "V" shaped to get any marks. Must cross -ve x and -ve y axes. Endpoint -ve y. Start point + ve y.
(ii) Range of f -4 to 3	B1 B1 [2]	Independent of graph4 on own ok. 3 on its own.
(iii) $2x - 3 = 2 \rightarrow x = 2\frac{1}{2}$ or 2.5 $2x - 3 = -2 \rightarrow x = \frac{1}{2}$ or 0.5	B1 M1A1 [3]	Co – answer only Correct method of other solution. co
(iv) Largest value is x value at "V" = $1\frac{1}{2}$	B1√ [1]	From his graph - or any other method
(v) Equation of left hand part of "V". $m = -2 \rightarrow -2x - 1$.	M1 A1 [2]	Realises that one line only is needed + correct method ($y=mx+c$ etc). Or $-(2x-3)-4=-2x-1$ Doesn't need a or b implicitly mentioned

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – November 2005	0606	1

2 EU	THER						
X	1.5	2	2.5	3	3.5		
y	7.3	3.5	2.0	1.3	0.9		
lgx	0.18	0.30	0.40	0.48	0.54		
lgy	0.86	0.54	0.30	0.11	-0.05		
18,7	0.00	0.54	0.50	0.11	0.05		
i) Dr	aws gra	anh of	Ισυ ασα	inst lø	r.	M1	Knows what to do.
	curacy					A2,1,0	Within 1/2 square.
	ocunacy.	or por	nto uno			[3]	•
ii)	n = 2.4	5 to 2.	.60			Ml Al	Needs $m = \pm n$ for M. Co for +ve only.
	a = 19.					Ml Al	Needs $\lg a = \text{intercept on } y \text{ axis.}$
						[4]	
iii)	$y = x^2$	$\rightarrow lgv$	$= 2 \lg x$.			M1	Allow M1 for statement in log form.
	→ Lin	_	_			A1	Reasonable attempt at line of $m = 2$
	$y = x^2$				ere the		through (0,0).
	lines m	eet. →	x = 1	.90 to 2	2.00	A1	Co.
						[3]	
(or so	lves y	= x ² w	ith yx ^{2.}	5=20 al	g)		
12 OF			8/125		2		
	A .	8		03.4.0	5		II. 61/ 20 141 - 15
(1) Ar	ea secto	or COB	3 = ½×	8°×1.2	= 38.4	M1 A1	Use of ½ρ²θ with radians.
						[2]	
(ii) 4	OC = *	-12	rad or	OAC	= 0.6rad	B1	Anywhere.
	$2 = 8^2 +$					MI AI	Cosine rule or splitting into two 90°
	4C = 2				.4)		triangles.
						M1 A1√	Use of ½r²0 with radians.
$area = \frac{1}{2} \times 13.2^2 \times 0.6 = 52.27$				4.41		[5]	Osc of 72 o with facilities.
(iii) S	ector A	CD + 2	Shaded	= 400	C+	MI	Plan mark linking the 4 regions.
	ector O					1	I tun mark mixing the 4 regions.
			= ½×8>	«8×sin	$(\pi^{-1}.2)$	MI	Independent mark -for triangle AOC.
			= 29.8(- The state of the
S	haded =		7		= 15.9	A1	Co for either 15.9 or 16.0.
				(allov	v 16.0)	[3]	
					,		
						L	
		dratic (equatio	n. Equ	ation mu		0 if using formula or factors.
Form						Factors	
Must be correct					. ali		empt to put quadratic into 2 factors.
 ignore arithmetic and algebraic slips. 						Each fac	ctor then equated to 0.

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – November 2005	0606	1

