

## Algebraic Identities Ex 4.3 Q9 **Answer:**

In the given problem, we have to find the value of  $x^3 + \frac{1}{x^3}$ 

Given 
$$x^2 + \frac{1}{x^2} = 98$$

We shall use the identity  $(x+y)^2 = x^2 + y^2 + 2xy$ 

Here putting  $x^2 + \frac{1}{r^2} = 98$ ,

$$\left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \times x \times \frac{1}{x}$$

$$\left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \times \cancel{x} \times \frac{1}{\cancel{x}}$$

$$\left(x + \frac{1}{x}\right)^2 = 98 + 2$$

$$\left(x + \frac{1}{x}\right)^2 = 100$$

$$\left(x+\frac{1}{x}\right)=\sqrt{100}$$

$$\left(x + \frac{1}{x}\right) = \pm 10$$

In order to find  $x^3 + \frac{1}{x^3}$  we are using identity  $a^3 + b^3 = (a+b)(a^2+b^2-ab)$ 

$$x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)\left(x^2 + \frac{1}{x^2} - x \times \frac{1}{x}\right)$$
 Here  $\left(x + \frac{1}{x}\right) = 10$  and  $x^2 + \frac{1}{x^2} = 98$ 

$$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)\left(x^{2} + \frac{1}{x^{2}} - \cancel{x} \times \frac{1}{\cancel{x}}\right)$$

$$=10(98-1)$$

$$=10\times97$$

$$=970$$

Hence the value of  $x^3 + \frac{1}{x^3}$  is  $\boxed{970}$ 

Algebraic Identities Ex 4.3 Q10

## Answer:

In the given problem, we have to find the value of  $8x^3 + 27y^3$ 

Given 
$$2x + 3y = 13$$
,  $xy = 6$ .

In order to find  $8x^3 + 27y^3$  we are using identity  $(a+b)^3 = a^3 + b^3 + 3ab(a+b)$ 

$$(2x+3y)^3 = (13)^3$$

$$8x^3 + 27y^3 + 3(2x)(3y)(2x+3y) = 2197$$

$$8x^3 + 27y^3 + 18xy(2x+3y) = 2197$$

Here putting, 2x + 3y = 13, xy = 6

$$8x^3 + 27y^3 + 18 \times 6 \times 13 = 2197$$

$$8x^3 + 27y^3 + 1404 = 2197$$

$$8x^3 + 27y^3 = 2197 - 1404$$

$$8x^3 + 27y^3 = 793$$

Hence the value of  $8x^3 + 27y^3$  is  $\boxed{793}$ 

## Algebraic Identities Ex 4.3 Q11

## Answer:

In the given problem, we have to find the value of  $27x^3 - 8y^3$ 

Given 
$$3x - 2y = 11$$
,  $xy = 12$ .

In order to find  $27x^3 - 8y^3$  we are using identity  $(a-b)^3 = a^3 - b^3 - 3ab(a-b)$ 

$$(3x-2y)^3=(11)^3$$

$$27x^3 - 8y^3 - 3(3x)(2y)(3x - 2y) = 11 \times 11 \times 11$$

$$27x^3 - 8y^3 - 3(3x)(2y)(3x - 2y) = 1331$$

Here putting, 3x - 2y = 11, xy = 12.

$$27x^3 - 8y^3 - 18 \times 12 \times 11 = 1331$$

$$27x^3 - 8y^3 - 2376 = 1331$$

$$27x^3 - 8y^3 = 1331 + 2376$$

$$27x^3 - 8y^3 = 3707$$

Hence the value of  $27x^3 - 8y^3$  is 3707

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*\*