

Criptografía y Seguridad

Políticas de seguridad

Política de seguridad

 Es un enunciado que parte los estados de un sistema en autorizados (o seguros), y no autorizados.

 Si el sistema entra en un estado no autorizado ocurrio una violación de segurdad

Sistema seguro

 Es un sistema que comienza en un estado autorizado y no puede entrar en un estado no autorizado

Confidencialidad

- Sean
 - X = conjunto de entidades
 - I = Información
- Propiedad de confidencialidad
 - I es confidencial para X si ningún miembro de X puede obtener información de I

Confidencialidad (2)

- Sean
 - X = conjunto de entidades
 - I = Información
- Propiedad de confidencialidad
 - I es confidencial para X si ningún miembro de X puede obtener información de I

¡Ni siquiera por vías Indirectas!

Integridad

- Sean
 - X = conjunto de entidades
 - I = Información o recurso
- Propiedad de integridad
 - I es íntegro para X si todo miembro de X confía en I

Tipos de integridad

- Integridad de datos: Confianza en transporte y almacenamiento
- Integridad de origen: Confianza en el origen del dato o la identidad que representa
- Garantía: confianza en que el recurso o programa funciona como debería

Disponibilidad

- Sean
 - X = conjunto de entidades
 - I = Recurso
- Propiedad de disponibilidad
 - I está disponible para X si todo miembro de X puede acceder a I cuando lo requiera

Paradigmas de Control de Acceso

- Las políticas se centran en controlar el acceso a objetos:
- Acceso Discrecional (DAC)
 - Reglas arbitrarias (adhoc)
 - Mecanismos puntuales
 - Opcional: Acceso controlado por creadores
 - Quien crea la información controla el acceso a la misma
- Acceso Mandatorio (MAC)
 - Reglas prefijadas
 - Mecanismos del sistema
 - No pueden ser alterados

Modelos

- Describen familias de políticas
- Proveen un marco teórico común
 - Permiten reutilizar demostraciones
 - Simplifican el desarrollo de políticas

- Es un modelo de política militar
 - Se centra en garantizar confidencialidad
- Conceptualización del sistema:
 - Dividir el sistema en Sujetos y Objetos
 - Transición: (Sujeto, Objeto, Acción)
 - Las acciones se clasifican en Lectura y Escritura
- El modelo (versión simplificada):
 - Una lista ordenada de Niveles
 - Cada objeto y sujeto tienen un nivel asignado
 - ¿Cómo se restringe el acceso?

Modelo Bell-LaPadula - Lectura

- La información fluye hacia arriba, no hacia abajo
 - Se permite leer información de menor nivel
 - Se prohibe leer información de mayor nivel
- Condición de seguridad simple (reducida)
 - S puede leer O si y solo si L(O) ≤ L(S) y S tiene permiso para leer O \checkmark
- Se combina acceso mandatorio y discrecional

Importante: Los accesos discrecionales solo pueden restringir a los mandatorios, no contradecirlos

Modelo Bell-LaPadula - Escritura

- La información fluye hacia arriba, no hacia abajo
 - Se permite escribir información de mayor nivel
 - Se prohibe escribir información de menor nivel
- Condición de cierre (* property reducida)
 - S puede escribir O si y solo si L(S) ≤ L(O) y S tiene permiso para escribir O

Modelo Bell-LaPadula - DAC

 El acceso discrecional se define con una matriz de acceso:

Importante: La matriz de acceso RESTRINGE los accesos dados por el modelo mandatorio

- El modelo original define 4 niveles
 - Top Secret (TS)
 - Secret (S)
 - Confidential (C)
 - Public (P)
- Pero funciona para cualquier cantidad de niveles

Modelo Bell-LaPadula - Ejemplo

Ejemplo

- Sujetos: Diseñador, Gerente, Director
- Objetos: Producto X, Balances

Etiquetado:

- L(Diseñador) = Confidential
- L(Gerente) = Secret
- L(Director) = Top Secret
- L(Producto X) = Confidential
- L(Balances) = Secret

¿Qué acciones están permitidas?

- ¿Que ocurre si no existe un orden completo?
- Ejemplo:
 - Varios proyectos aislados
 - No se ven entre sí
 - Un director ve todos los proyectos

Modelo completo

- Además de niveles se definen categorias
- Describen el tipo de información
- Las categorías no están ordenadas
- A cada objeto y sujeto se le asigna un compartimento
- Compartimento = (Nivel, {categorias})

Dominancia:

Sea,
$$l \in L$$
, $C \subseteq CAT$
 $(l,C)dom(l',C') \Leftrightarrow l' \leq l \land C' \subseteq C$

- Compartimentos
 - Conjunto parcialmente ordenado
 - Dado A y B puede ocurrir que:
 - A dom B
 - B dom A
 - Ni A dom B ni B dom A
 - Ejemplos:
 - (TS, {X}) dom (TS, {})
 - (TS, {X}) dom (S, {X})
 - (S, {X}) no dom (P, {Y})
 - (P, {Y}) no dom (S, {X})

Modelo Bell-LaPadula - Lectura

- La información fluye hacia arriba, no hacia abajo
 - Se permite leer información de menor nivel
 - Se prohibe leer información de mayor nivel
- Condición de seguridad simple
 - S puede leer O si y solo si L(S) dom L(O) y S tiene permiso para leer O
- Se combina acceso mandatorio y discrecional

Modelo Bell-LaPadula - Escritura

- La información fluye hacia arriba, no hacia abajo
 - Se permite escribir información de mayor nivel
 - Se prohíbe escribir información de menor nivel
- Condición de cierre
 - S puede escribir O si y solo si L(O) dom L(S) y S tiene permiso para escribir O

- Teorema básico de la seguridad
 - Si un sistema comienza en un estado seguro y sus transiciones satisfacen la condición simple de seguridad y la condición de cierre, todos los estados del sistema son seguros
- Garantiza que no existe flujo de información en el sentido de la condición simple
- ¿Para que existe la condición de cierre?
 - Para garantizar que no existan caminos indirectos que violen la condición simple

El problema de la comunicación

- A le envía un mensaje a B (B dom A)
 - Como B dom A, la regla de cierre permite enviar el mensaje (escritura)
- B le contesta
 - Como B dom A, la regla de cierre prohíbe enviar el mensaje
 - Problemas!!!
- El modelo Bell-LaPadula establece la posibilidad de disminuir el nivel de acceso temporalmente
 - MaxLevel y CurLevel / MaxLeve dom CurLevel
 - La disminución de acceso debe ser solicitada explicitamente

Principio de tranquilidad

- Usuarios y objetos no cambian sus niveles luego de ser creados
- ¿Que pasaría se los niveles cambiasen?
- Subir el nivel de un objeto
 - La información fue leída por usuarios de menor nivel
 - Viola principio de seguridad simple
- Bajar el nivel de un objeto
 - Problema de desclasificación
 - Viola principio de cierre

Políticas de integridad

- Se concentran en preservar la integridad
- Mayor uso en ambientes comerciales
- Requerimientos muy diferentes a las políticas de confidencialidad
 - Prevenir modificación de datos por entidades no autorizadas
 - Prevenir modificaciones no autorizadas de datos por entidades autorizadas
 - Asegurar que los datos representan la información que se supone deben representar

Modelos de integridad de Biba

- Base para los tres modelos:
 - Conjunto de sujetos S, objetos O, Niveles de Integridad I
 - Relación < : I x I , dominancia del 1ro sobre el 2do
 - i: $S \cup O$ → I, nivel de integridad de una entidad
 - \underline{r} : $S \times O$, pares $s \in S$, $o \in O$ donde se puede leer o
 - w: $S \times O$, idem para escritura
 - x: $S \times O$, ídem para ejecución

Niveles de integridad

- A mayor nivel, mayor confianza de que
 - Un programa se ejecutará correctamente o detectará errores en sus entradas
 - Un dato es preciso y/o fiable
- Clasificación normal

No confiable
 Untrusted

Ligeramente confiable
 Slightly trusted

Confiable Trusted

Altamente confiable Highly trusted

Intachable
 Unimpeachable

Camino de transferencia de información

- Camino que puede seguir la información para llegar desde un objeto a otro
- Secuencia de objetos o_1 , ..., o_{n+1} y sujetos s_1 , ..., s_n tal que s_i <u>r</u> o_i y s_i <u>w</u> o_{i+1} para todo i, $1 \le i \le n$.


```
¿Como fluye información de O_1 a O_4?

S_1 lee O_1 y escribe O_2

S_2 lee O_2 y escribe O_3

S_3 lee O_3 y escribe O_4
```

Low-Water-Mark Policy (1er modelo)

 Idea: Si un sujeto usa información poco confiable, se vuelve poco confiable

Reglas:

- 1. $s \in S$ puede escribir $o \in O$ si y solo si $i(o) \le i(s)$.
- 2. Si $s \in S$ lee $o \in O$, entonces i'(s) = min(i(s), i(o)) es el nuevo nivel de integridad de s
- 3. $s_1 \in S$ puede ejecutar $s_2 \in S$ si y solo si $i(s_2) \le i(s_1)$

Previene contra:

- Modificaciones directas que bajarian el nivel de integridad
- Modificaciones indirectas con informacion de menor nivel de integridad

Restricción en el flujo de información

- Si hay un camino de transferencia entre o_1 y o_n la aplicación de la política requiere $i(o_j) \le i(o_1)$ para todo $1 < j \le n$
- Demostración (idea):
 - Asumir que existe un camino de transferencia y las operaciones se realizan ordenadamente $(s_1 \text{ lee } o_1, s_1 \text{ escribe } o_2, s_2 \text{ lee } o_1 \dots)$
 - Por indicucción $i(s_1) = min (i(s_1), i(o_1))$. Luego de k lecturas $i(s_k) = min (i(o_1), i(o_2), ..., i(o_k))$
 - La última escritura requiere $i(o_n) \le i(s_n) \le i(o_1)$

Low-Water-Mark - Problemas

- Los niveles de integridad de los sujetos decaen con el uso del sistema
 - Eventualmente nadie puede acceder o generar objetos de niveles altos de integridad
- Alternativas: modificar los niveles de integridad de los objetos en lugar de los sujetos
 - Problema similar: los objetos se degradan hasta llegar a los niveles mas bajos de integridad

Ring Policy (2do modelo)

- Considera solamente el problema de la modificación directa de objetos
- Reglas:
 - 1. $s \in S$ puede escribir $o \in O$ si y solo si $i(o) \le i(s)$.
 - 2. Cualquier sujeto puede leer cualquier objeto
 - 3. $s_1 \in S$ puede ejecutar $s_2 \in S$ si y solo si $i(s_2) \le i(s_1)$
- Los niveles de integridad son estaticos
- Previene contra la modificación directa
- Permite utilizar información de menor nivel de confianza para generar información de mayor nivel

Strict Integrity (3er modelo)

- Similar al modelo Bell-LaPadula
- Reglas:
 - 1. $s \in S$ puede leer $o \in O$ sii $i(s) \le i(o)$
 - 2. $s \in S$ puede escribir $o \in O$ sii $i(o) \le i(s)$
 - 3. $s_1 \in S$ puede ejecutar $s_2 \in S$ sii $i(s_2) \le i(s_1)$
- Se pueden agregar categorias y controles discrecionales para obtener el dual de Bell-LaPadula
- Mantiene la misma restricción en el flujo de información

Modelo de la pared China

- Modelo híbrido
 - Toma en cuenta confidencialidad e integridad
- Se concentra en el problema de conflictos de interés
 - De amplio uso en ámbitos bursátiles y judiciales
 - Algunos países exigen medidas que prevengan problemas de conflicto de interés

• Ejemplos:

- Impedir que un trader represente a dos clientes que compiten en el mercado
- Impedir que un abogado represente a dos empresas competidoras

Concepto

- Agrupar las entidades en clases de conflicto de interés
- Controlar el acceso de sujetos a a cada clase
- Controlar la escritura a todas las clases para impedir que se mueva información en contra de la política
- Permitir que datos desclasificados sean vistos por todos

Definiciones

- Objetos. Items de información
- Company dataset (CD): conjunto de objetos relacionados con la misma empresa o grupo
- Conflict of interest Class (COI): contiene CDs de empresas con conflicto de interes
 - Se asume que cada objeto pertenece a exactamente un CD y a un COI

Ejemplo

COI de entidades financieras

COI de medios de prensa

Idea

- Un usuario nuevo puede leer cualquier objeto
 - Una vez que leyo un objeto no puede acceder a objetos de otras empresas que entren en conflicto.

- Por ejemplo, un asesor puede leer objetos pertenecientes al CD La Nación
 - Pero una vez hecho esto no puede leer objetos del CD Clarin
 - Aunque nada impide que lea objetos del CD Santander

Elemento temporal

- Si S lee cualquier CD de un COI, no puede volver a leer otra CD del mismo COI, nunca.
 - El acceso depende de la historia de S
 - Se impide que use información que obtuvo antes para tomar decisiones que afecten a intereses en competencia
- El elemento temporal es un nuevo requerimiento que no es capturado en el modelo Bell-LaPadula

CW-Condición Simple de Seguridad

- s puede leer o si alguna de las condiciones se cumple:
 - Existe un o' leído previamente tal que CD(o) = CD(o')
 - Se accedió previamente a un dato de la empresa
 - Para todo o' leído previamente, COI(o) ≠ COI(o')
 - No se accedió a algún dato en una categoría de conflicto de interés
 - o es un objeto público (desclasificado)
 - Información que dejó de ser confidencial (por ejemplo: balance anual del período anterior)
 - Información sanitizada (donde se eliminan partes confidenciales)

Escritura

Control mas complicado para prevenir flujos indirectos Considerar:

- s₁ accede a objetos de Clarín y Santander
- s₂ accede a objetos de La Nación y Santander
- Ninguno esta en una situación de conflicto de interés.

Pero si s₁ <u>escribiera</u> un objeto en DS(Santander), podría estar volcando información de Clarín, y de esa forma hacer que s₂ la tenga disponible.

CW- Propiedad de cierre

- S puede escribir o si se cumplen las siguientes condiciones:
 - S puede leer o según la condición simple de seguridad
 - Para todo objeto no público o', si s puede leer o' entonces CD(o') = CD(o)
- Significa que para escribir un objeto es necesario que todo objeto accesible para la entidad pertenezca al mismo grupo
 - Por ejemplo: el dato es escrito por un miembro de la empresa

Composición de políticas

- El problema:
 - Conectar dos sistemas seguros
- Las preguntas
 - ¿La composición de los dos sistemas será segura?
 - ¿Se puede crear una política única consistente con ambas?

Composición de políticas

- Supongamos dos sistemas que siguen un modelo del tipo Bell-LaPadula
- ¿Cual es el modelo compuesto del sistema conjunto?
- Problemas
 - Los grupos no tienen orden total
 - Es necesario establecer una correspondencia entre niveles de seguridad

Ejemplo

Analisis del ejemplo

- Determinar orden de los niveles
 - Por ejemplo, S < HIGH < TS
- Determinar equivalencia de categorias
 - Por ejemplo: east representa lo mismo
- El modelo complementario tendría:
 - 4 niveles (LOW < S < HIGH < TS)
 - 3 categorías (SOUTH, EAST, WEST)
 - Notar que es una nueva política

Composición

- Si los modelos de políticas son iguales
 - Si se puede cambiar la política de los componentes (reemplazarla por el modelo compuesto) la composición es trivial
 - Si no se puede, hay que demostrar que la composición cubre los requerimientos de las políticas de los componentes. Muy dificil

Composición

- Si los modelos de políticas son diferentes
 - ¿Que significa seguro en este contexto?
 - ¿Que política domina la composición?
- No hay una única solución
- Posibles principios guía:
 - Cualquier acceso permitido por la política de seguridad de un componente debe estar permitido por la política emergente (autonomía)
 - Cualquier acceso prohibido por la política de seguridad de un componente debe ser prohibido por la política emergente (seguridad)

Consecuencias

- La política compuesta satisface la seguridad de las políticas de los componentes
- ¿Si algún caso no esta explícitamente permitido o prohibido por alguna política?
 - Permitirlo (modelo original de Gong & Quiam)
 - Prohibirlo (principio de denegación por defecto)

Ejemplo

- Systema X: Bob no puede leer archivos de Alice
- Sistema Y: Eve y Lilith pueden leer los archivos del otro
- Composición:
 - Por el sistema Y: bob podría leer archivos de Alice.
 - Pero el sistema X prohíbe explícitamente esto
 - Metodología:
 - Crear el conjunto de accesos posibles (expanción de relaciones transitivas)
 - Quitar las relaciones no permitidas
 - Determinar el número de relaciones que deben ser quitadas es un problema NP

Lectura recomendada

Capítulo 4

Capítulo 5: 5.1-5.4

Capítulo 6: 6.1-6.2

Capítulo 7: 7.1

Capítulo 8: 8.1

Computer Security Art and Science Matt Bishop