May 5, 2016

Remark on Analysis In general, analyze growth rate of runtime as a function of input size n. (i.e. take max over all input of size n).

Model isn't perfect. Constant factors do matter in practice, worst case can be overly pessimistic.

0.0.1 3SUM Problem

Given an array a_i of numbers, are there 3 numbers (taken with replacement) that sum up to t?

```
State-of-the-art: O(\frac{n^2}{\log n})
In [4]: \# O(N^3)
        def three_sum_1 (numbers, t):
             for a in numbers:
                  for b in numbers:
                      for c in numbers:
                           if a + b + c == t:
                               return True
             return False
         # O(N^2)
         def three_sum_2 (numbers, t):
             sums = []
             for a in numbers:
                  for b in numbers:
                      sums.append(a+b)
             residuals = [t - x \text{ for } x \text{ in } numbers]
             return len(set(sums) & set(residuals)) > 0
         # helper function: O(N)
         def find_common(a1, a2):
             x1 = 0
             x2 = 0
             while x1 < len(a1) and x2 < len(a2):
                 if a1[x1] == a2[x2]:
                      return True
                 elif a1[x1] < a2[x2]:
```

```
x2 += 1
                return False
          # O(N^2 \log N)
          def three_sum_3(numbers, t):
                sums = []
                for a in numbers:
                     for b in numbers:
                          sums.append(a+b)
                residuals = [t - x \text{ for } x \text{ in numbers}]
                sums.sort()
                residuals.sort()
                return find_common(sums, residuals)
          # O(N^2)
          def three_sum_4 (numbers, t):
                numbers.sort()
                residuals = [t - x for x in reversed(numbers)] # guaranteed to be sore
                for a in numbers:
                     sums = [x + a for x in numbers] # quaranteed to be sorted
                     if find_common(sums, residuals):
                          return True
                return False
In [5]: test_array = [1, 2, 3, 4, 5]
          assert three_sum_1(test_array, 12)
          assert three_sum_2(test_array, 12)
          assert three_sum_3(test_array, 12)
          assert three_sum_4(test_array, 12)
Math Review
   • O = \text{upper bound}
   • \Omega = lower bound
   • \Theta = tight bound
   • o = loose upper bound
   • \omega = loose lower bound
   Def: let f, g : \mathbb{N} \to \mathbb{R}. f(n) \in O(g(n)) iff \exists c > 0, n_0 > 0 s.t. \forall n \geq n_0, f(n) \leq cg(n)
   Def: f(n) \in \Omega(g(n)) iff \exists c > 0, n_0 > 0 s.t. \forall n \geq n_0, f(n) \geq cg(n)
   Def: f(n) \in \Theta(g(n)) iff f(n) \in O(g(n)) and f(n) \in \Omega(g(n))
   Def: f(n) \in o(g(n)) iff \forall c > 0, \exists n_0 > 0 s.t. \forall n \ge n_0, f(n) < cg(n)
   Def: f(n) \in \omega(g(n)) iff \forall c > 0, \exists n_0 > 0 s.t. \forall n \geq n_0, f(n) > cg(n)
```

x1 += 1

else: