МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Анализ звука и голоса»

Тема: Классификация речевых сигналов по эмоциям

Студентка гр. 6304	 Вероха В. Н
Преподаватель	Рыбин С. В

Санкт-Петербург

Цель работы.

Классификация данных речевых сигналов по эмоциям.

Описание данных.

В выборке присутствует эмоциональная речь по 5 классам.

- Angry.
- Chilled.
- Happy.
- Neutral.
- Sad.

Выполнение работы.

1. Подключены необходимы библиотеки. Результаты на рис. 1.

```
# Подключение библиотек
import librosa
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import os
from PIL import Image
import pathlib
import csv
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder, StandardScaler
import keras
from keras import models
from keras import layers
from tqdm.notebook import tqdm
import warnings
warnings.filterwarnings('ignore')
```

Рисунок 1 — Подключение библиотек

2. Извлечены функции из аудио с использованием Librosa, а также записаны в датафрейм. Фрагмент полученного датафрейма представлен на рис. 2.

	filename	chroma_stft	rmse	spectral_centroid	$spectral_bandwidth$	rolloff	zero_crossing_rate	mfcc1	mfcc2	mfcc3	 mfcc12	
0	001.wav	0.449320	0.061361	3079.059976	2693.275778	6049.869999	0.229912	-343.794189	30.688906	-15.840018	 -2.452909	-4.
1	002.wav	0.506070	0.057922	2367.790483	2384.544363	4229.604727	0.131504	-366.752838	28.327007	-18.157299	 -5.445252	-0.
2	003.wav	0.432045	0.023526	2591.701724	2619.853698	5499.470355	0.163465	-474.658630	34.974876	-7.841065	 -2.695741	-3.
3	004.wav	0.482492	0.058055	2525.448793	2413.145172	4952.198543	0.136912	-349.897095	43.330460	-18.259544	 0.638473	-2
4	005.wav	0.388032	0.058289	3115.824434	2492.394799	5793.514316	0.182514	-388.422485	34.102715	-20.510458	 -5.720950	-7

Рисунок 2 — Фрагмент извлеченных функций

3. Извлечены типы эмоциональной окраски из названий папок и дописаны отдельным столбцом "label" к датафрейму. Результаты представлены на рис. 3.

zero_crossing_rate	mfcc1	mfcc2	mfcc3	 mfcc12	mfcc13	mfcc14	mfcc15	mfcc16	mfcc17	mfcc18	mfcc19	mfcc20	label
0.229912	-343.794189	30.688906	-15.840018	 -2.452909	-4.215964	-0.071347	-3.416410	-5.418313	-2.700627	1.247998	0.751982	4.828207	angry
0.131504	-366.752838	28.327007	-18.157299	 -5.445252	-0.062126	0.066857	-6.336366	1.053317	-7.168151	-1.407118	1.191806	2.260072	angry
0.163465	-474.658630	34.974876	-7.841065	 -2.695741	-3.054490	-1.559706	-3.396726	-1.685482	-0.118342	1.202329	1.822596	7.559172	angry
0.136912	-349.897095	43.330460	-18.259544	 0.638473	-2.003618	2.220423	-5.797532	3.321220	-0.829450	2.314820	5.491830	8.821283	angry
0.182514	-388.422485	34.102715	-20.510458	 -5.720950	-7.264971	-5.371935	-2.434712	-7.158056	-0.002204	2.571340	-0.628871	3.901053	angry

Рисунок 3 — Типы акустических шумов

4. Полученные данные извлеченных функций преобразованы для обучения. Результаты представлены на рис. 4.

```
array([[-0.40763205, 3.80280416, 0.66277582, ..., 0.64427888, 0.90513809, 1.59496332],
[ 0.4640073 , 3.54989011, -1.36836336, ..., -0.22661084, 1.04311311, 0.8381416 ],
[ -0.6729604 , 1.02057738, -0.72895045, ..., 0.62929918, 1.24099467, 2.39977089],
...,
[ 1.00352492, -0.56213561, 0.57679699, ..., -0.54916428, 0.05821169, 0.23895281],
[ 1.07467689, -0.55117232, 0.79667249, ..., -1.17219894, -0.39330505, 0.01063524],
[ -2.3324741 , -0.50044242, -2.2444935 , ..., -0.39164112, -1.10656368, -0.48902932]])
```

Рисунок 4 — Вектор Х для обучения

5. Составлен вектор данных с ярлыками возможных эмоций. Результаты представлены на рис. 5.

Рисунок 5 — Вектор у для обучения

- 6. Данные для моделирования разделены на выборки для обучения и тестов в соотношении 80/20.
 - 7. Создана модель, архитектура которой представлена на рис. 6.

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 512)	13824
dense_1 (Dense)	(None, 256)	131328
dense_2 (Dense)	(None, 128)	32896
dense_3 (Dense)	(None, 64)	8256
dense_4 (Dense)	(None, 10)	650
Total params: 186,954 Trainable params: 186,954		

Рисунок 6 — Архитектура модели

8. Точность построенной модели составила 89.37%.

Non-trainable params: 0

9. Сформирован файл с результатами тестовой выборки. Фрагмент файла представлен на рис. 7.

	filename	label	predict_score	predict_classes
0	001.wav	angry	0.999994	angry
1	002.wav	angry	0.999511	angry
2	003.wav	angry	0.999863	angry
3	004.wav	angry	0.999999	angry
4	005.wav	angry	0.998273	angry

Рисунок 7 — Фрагмент файла с результатами

Выводы.

В результате проделанной лабораторной работы были получены навыки программирования на языке Python. Изучена задача классификации речевых сигналов по эмоциям.

Создана модель с точностью обучения — 89.37%. А также составлен файл с результатами.