Objetivos Entropia Física Multidisciplinaridade Considerações finais

Entropia: uma medida multidisciplinar

Marcelo A. Pires

28/07/2014

Sumário

- Objetivos
- 2 Entropia Física
 - Origem do conceito de entropia
 - O que é entropia?
 - Visão microscópica
 - Desordem
- Multidisciplinaridade
 - Entropia na Teoria da Informação
 - Entropia em Estatística
 - Entropia em Ecologia
 - Entropia em Nanociência
 - Entropia em Sociologia
- Considerações finais

Objetivos

- i) Discutir sobre a entropia.
- Mostrar alguns exemplos de que através da entropia o Físico pode encontrar oportunidades para transitar em diversos campos da ciência.
- iii) Apresentar a implementação computacional na linguagem R dos exemplos discutidos¹.

¹Todos os códigos desenvolvidos para esta palestra podem ser baixados livremente em https://github.com/PiresMA.

Origem do conceito de entropia

O conceito de entropia surgiu pela primeira vez no âmbito da termodinâmica, na metade do Século XIX, impulsionado pelo advento das máquinas térmicas.

O que é entropia?

A grandeza entropia foi introduzida por Rudolf Clausius como uma medida da irreversibilidade dos processos físicos.

- i) Em um processo reversível: $\Delta S = 0$,
- ii) Em um processo irreversível: $\Delta S > 0$.

O que é entropia?

A grandeza entropia foi introduzida por Rudolf Clausius como uma medida da irreversibilidade dos processos físicos.

- i) Em um processo reversível: $\Delta S = 0$,
- ii) Em um processo irreversível: $\Delta S > 0$.

Entropia Física: visão microscópica

Entropia, *H*: medida da desordem de um sistema Físico (Boltzmann–Gibbs):

$$H = -\sum_{k=1}^{W} p_k \log p_k$$

W = número de microestados compatíveis com um dado macroestado (multiplicidade).

 p_k = probabilidade do sistema estar no microestado k.

Macroestado vs Microestado

Multiplicidade

Desordem

Na Física Estatística, desordem é tomada como a quantidade de microestados possíveis para um determinado macroestado.

Qual é o macroestado com maior desordem? E o com menor desordem?

Desordem: uma analogia

Casa	Física Estatística
Desordem está relacionada a	Desordem está relacionada a
quantidade de coisas fora de seu	quantidade de microestados em
local próprio.	um dado macroestado.
Quanto maior o número de coisas fora de seu local próprio, maior a desordem.	Quanto maio o número de microestados acessíveis, maior a desordem, maior a entropia.
Casa ordenada: existe apenas	Sistema ordenado: o
um único local para guardar cada	macroestado tem apenas um
objeto. "cada coisa em seu lugar".	único microestado.

Figura: Analogia entre desordem da Física Estatística e de uma casa (Borges, 1999).

Exemplo: expansão simples do gás de N partículas

Figura: A cada instante uma partícula passa de uma metade para a outra.

Código na linguagem R do exemplo da entropia Física

```
4291 - ############# Entropia de Boltzmann-Gibbs #####
4292
4293 # preparar grafico
4294
     par(mfrow=c(1,1))
4295 Nmax=10: Wmax=fac(Nmax)/(fac(Nmax/2)*fac(Nmax/2))
      maxY=ceiling(log(Wmax, base = exp(1)))
4296
4297
      plot((0:maxY)/maxY,0:maxY , type="n", xlab="ne/N", ylab="H")
4298
4299 W=ne=nd=p=c(NULL); q=1
4300 - for(N in seq(2,Nmax,2)){
4301
       # inicializacao para cada iteracao
        ne[1]=N; nd[1]=0
4302
4303
        totEst=2^{(N)}
4304
        W[1]=factorial(N)/(factorial(ne[1])*factorial(nd[1]))
4305
        p[1]=W[1]/totEst
4306
         # expansao do gas:
4307
        # uma particula passa da metade esquerda para a direira
4308 +
        for(c in 1:N){
4309
          ne[c+1]=N-c
4310
          nd[c+1]=c
4311
          W[c+1]=fac(N)/(fac(ne[c+1])*fac(nd[c+1]))
4312
           p[c+1]=W[c+1]/totEst
4313
4314
         # calculo da entropia
4315
         H=log(W, base = exp(1))
4316
         #plot
4317
         lines(ne/N, H, type="o", col=q)
4318
         q=q+1
4319
4320
      legend( "topleft", legend=seq(2,Nmax,2) ,
4321
               col=1:(q-1) , pch=1)
4322
4323
4291:1 Entropia de Boltzmann-Gibbs ©
                                                                          R Script ¢
```

Expansão simples do gás de N partículas.

Figura: Entropia do sistema

Entropia: aplicações

A entropia tem sido aplicada com êxito em diversos campos da ciência tais como:

- i) Teoria da Informação: medida da incerteza (Wise, 2012).
- Estatística: medida da heterogeneidade de um conjunto de dados (Vogel, 2014).
- iii) Ecologia: medida da diversidade de espécies (Ricotta, 2006).
- iv) Nanociência: medida da uniformidade espacial da distribuição de nanoparticulas sobre uma superfície (Kam, 2012).
- v) Sociologia: medida da uniformidade das amizades (Eagle, 2010).

Entropia: aplicações

A entropia tem sido aplicada com êxito em diversos campos da ciência tais como:

- i) Teoria da Informação: medida da incerteza (Wise, 2012).
- ii) Estatística: medida da heterogeneidade de um conjunto de dados (Vogel, 2014).
- iii) Ecologia: medida da diversidade de espécies (Ricotta, 2006).
- iv) Nanociência: medida da uniformidade espacial da distribuição de nanoparticulas sobre uma superfície (Kam, 2012).
- v) Sociologia: medida da uniformidade das amizades (Eagle, 2010).

Entropia na Teoria da Informação

Entropia, *H*: medida do gau de incerteza que existe antes que uma escolha seja feita (Shannonn):

$$H = -\sum_{k=1}^{W} p_k \log p_k$$

W = número de possibilidades.

 p_k = probabilidade de ocorrência do evento k.

Entropia na Teoria da Informação

Entropia em Estatística Entropia em Ecologia Entropia em Nanociência Entropia em Sociologia

Exemplo: jogo de moeda

Em um jogo com uma moeda, seja:

- i) p=probabilidade de sair cara,
- ii) q=probabilidade de sair coroa.

Em um jogo com uma moeda, seja:

- i) p=probabilidade de sair cara,
- ii) q=probabilidade de sair coroa.

Agora considere as seguintes situações:

- i) Uma moeda com duas caras (p=1, q=0),
- ii) Uma moeda viciada em cara (p>q),
- iii) Uma moeda honesta (p=q=0.5).

Em um jogo com uma moeda, seja:

- i) p=probabilidade de sair cara,
- ii) q=probabilidade de sair coroa.

Agora considere as seguintes situações:

- i) Uma moeda com duas caras (p=1, q=0),
- ii) Uma moeda viciada em cara (p>q),
- iii) Uma moeda honesta (p=q=0.5).

Em qual dessas situações existe maior incerteza em relação ao resultado? E a menor incerteza?

Em um jogo com uma moeda, seja:

- i) p=probabilidade de sair cara,
- ii) q=probabilidade de sair coroa.

Agora considere as seguintes situações:

- i) Uma moeda com duas caras (p=1, q=0),
- ii) Uma moeda viciada em cara (p>q),
- iii) Uma moeda honesta (p=q=0.5).

Em qual dessas situações existe maior incerteza em relação ao resultado? E a menor incerteza?

Na situação (i), moeda com duas caras, a incerteza é mínima (nula), pois antes de observar o resultado já podemos predizê-lo.

Na situação (i), moeda com duas caras, a incerteza é mínima (nula), pois antes de observar o resultado já podemos predizê-lo.

Na situação (iii), moeda honesta, a incerteza é máxima, pois não há nenhum privilégio para cara ou coroa.

Entropia em Ecologia Entropia em Nanociênci Entropia em Sociologia

Exemplo: jogo de moeda

Na situação (i), moeda com duas caras, a incerteza é mínima (nula), pois antes de observar o resultado já podemos predizê-lo.

Na situação (iii), moeda honesta, a incerteza é máxima, pois não há nenhum privilégio para cara ou coroa.

Entropia na Teoria da Informação Entropia em Estatística Entropia em Ecologia Entropia em Nanociência

Código na linguagem R do exemplo do jogo de moedas

```
4365
4366 #-----
4367 - ########## Entropia e Informação
4368 #-----#
4369
     # jogo de moeda
4370 # declarações e inicializações
4371
     N = 1.00
4372 p=H=c(NULL)
4373
     H[1]=0: H[N]=0
4374
     p[1]=0; p[N]=1
4375 #iteração
4376 - for(k in 2:(N-1)){
4377
     #probabilidade de cara
4378 p[k]=k/N
4379 #probabilidade de coroa
4380 q=1-p\lceil k \rceil
4381
     #entropia
4382
      H[k]=-p[k]*log(p[k],base=2)-q*log(q,base=2)
4383
4384
     #gráfico
     plot(p,H, col="red")
4385
4386
```

Entropia Informacional

Figura: Entropia vs probabilidade para o jogo de distintas moedas.

Entropia em Estatística

Entropia, *H*: medida do grau de heterogeneidade de um conjunto de dados:

$$H = -\sum_{k=1}^{W} p_k \log p_k$$

W= número de ocorrências dos dados ou intervalo de classe. $p_k=$ probabilidade de ocorrência do k-ésimo valor ou k-ésimo intervalo de classe.

Qual distribuição tem maior entropia?

Figura: Distribuições de probabilidade gaussiana.

Código na linguagem R do exemplo da entropia na Estatística

Entropia em Estatística

Figura: H(esquerda) = 0.74, H(direita) = 0.67

Entropia na Teoria da Informação Entropia em Estatística Entropia em Ecologia Entropia em Nanociência Entropia em Sociología

Entropia em Ecologia,

Entropia, *H*: medida da diversidade de espécies:

$$H = -\sum_{k=1}^{W} p_k \log p_k$$

W = número de espécies. Chamado também de riqueza.

 p_k = abundância relativa da k-ésima espécie.

Qual sistema tem maior diversidade?

Figura: Dois sistemas com 6 indivíduos em cada.

Código na linguagem R do exemplo da entropia em Ecologia

```
4346
4347 - ############# Entropia e diversidade #########
4348
4349
4350
      # Geração dos sistemas I e II
4351
      sis_I=c(3.3)
4352
      sis_{II=C(2,2,2)}
4353
4354
      p=sis_I/sum(sis_I)
4355
      H1=-sum(p*log(p))
4356
      p=sis_II/sum(sis_II)
4357
      H2=-sum(p*log(p))
4358
4359
      par(mfrow=c(1,2))
4360
      barplot(sis_I,ylim=c(0,3), names.arg=c("A","B"),
4361
              xlab="Sistema I", vlab="número de indivíduos",
4362
              main=sprintf("%s%.2f","H1=",H1) )
      barplot(sis_II,ylim=c(0,3),names.arg=c("A","B","C"),
4363
4364
              xlab="Sistema II", ylab="número de indivíduos",
4365
              main=sprintf("%s%.2f","H2=",H2) )
4366
4367
4368
```

Entropia em Ecologia

Figura: Diagrama de frequências dos sistemas I e II.

Entropia em Nanociência

Entropia, *H*: medida do grau de uniformidade espacial da distribuição de nanoparticulas sobre uma superfície:

$$H = -\sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij} \log p_{ij}$$

N = número de pontos em um perfil da malha superficial.

 $p_{ij}=$ fração relativa de partículas no ponto (i,j) da malha superficial.

Entropia em Nanociência

Figura: Sobre qual superfície a distribuição de nanopartículas é mais uniforme?.

Fonte: Kam KM , Et. Al. (2012) 'On assessing spatial uniformity of particle distributions in quality control of manufacturing processes', *J Manuf Syst*.

Entropia: exemplo

Figura: Qual perfil tem distribuição de nanopartículas mais uniforme?

Código na linguagem R do exemplo da entropia em Nanociência

```
4391 - ######### Entropia em Nanociencia #########
4392
4393
4394 # perfil 1
4395
      perfil1=c(1,2,1); x=perfil1
4396 namesBar=1:length(x);
4397
      barplot(x, names.arg=namesBar)
4398
      # calculo de probabilidades
4399
      p=x/sum(x)
      #calculo da entropia normalizada
4400
      H1=-sum(p*log(p))/log(length(p))
4401
4402
4403
      # perfil 2
      perfil2=c(1.2.2): x=perfil2
4404
4405
      barplot(x, names.arg=namesBar)
4406
      # calculo de probabilidades
4407
      p=x/sum(x)
4408
      #calculo da entropia normalizada
4409
      H2=-sum(p*log(p))/log(length(p))
4410
      # perfil 3
4411
      perfil3=c(2,2,2); x=perfil3
4412
4413
      barplot(x, names.arg=namesBar)
4414 # calculo de probabilidades
4415
      p=x/sum(x)
4416 #calculo da entropia normalizada
      H3=-sum(p*log(p))/log(length(p))
4417
4418
4423:1 Entropia em Nanociencia 🕏
                                                        R Script $
```

Entropia: exemplo

Figura: Qual perfil tem distribuição de nanopartículas mais uniforme?

Entropia na Teoria da Informação Entropia em Estatística Entropia em Ecologia Entropia em Nanociência Entropia em Sociologia

Exemplo de cálculo de entropias da distribuição de nanopartículas.

Figura: (esquerda) H = 0.946, (centro) H = 0.960, (direita) H = 1.00

Entropia em Sociologia

Entropia, H_i : medida da uniformidade das amizades da i-ésima pessoa.

$$H_i = -\sum_{k=1}^{W_i} p_{ik} \log p_{ik}$$

 W_i = número de amizades da i-ésima pessoa.

 p_{ik} = peso relativo da amizade entre as pessoas i e k.

Entropia em Sociologia

Um elevado valor de entropia implica que um indivíduo compartilha seu tempo com uma alta uniformidade entre os seus laços sociais.

Qual indivíduo tem maior entropia social?

Figura: Rede com 4 pessoas. Os números nas arestas referem-se ao peso da amizade entre as pessoas.

Código na linguagem R do exemplo da entropia em Sociologia

```
4391 - ######### Entropia em Redes Sociais ##########
4392 #-----#
4393 #Inicialização
4394
     num cell<-4
     mat adi<-matrix(0 .nrow=num cell. ncol=num cell)</pre>
4395
4396
4397
     # Criação da rede
     mat_adj[1,2]<-1
4398
4399 mat_adj[1,3]<-1
4400 mat_adj[2,3]<-1
4401
     mat_adi[2.4]<-1
4402
     mat_adj[3,4]<-1
4403
     g <- graph.adjacency( mat_adj, mode=c("undirected") )</pre>
4404
     E(q)$weight=c(0.3,0.3,0.6,0.01,0.99)
4405
4406
     # Cálculo da entropia
     round(graph.diversity(g), 2)
4407
4408
4409 # Visualizar
4410
     par(mfrow=c(1,1))
4411
     plot(q. lavout=lavout.circle.
4412
          edge.label=E(g)$weight)
4413
4414
```

Qual indivíduo tem maior entropia social?

Figura: $H_1 = 1.00$, $H_2 = 0.63$, $H_3 = 0.91$ e $H_4 = 0.08$.

Objetivos Entropia Física Multidisciplinaridade Considerações finais

Considerações finais

Considerações finais

A entropia é uma das grandezas fundamentais da Física e que interessantemente gera oportunidades para o Físico transitar em outros campos da ciência. Nesse seminário apresentei uma coleção de exemplos de aplicações da entropia em outros ramos da ciência.

Referências

- Pierce, J. R.An Introduction to Information Theory: Symbols, Signals and Noise, 1980.
- Shannon, C. E. A Mathematical Theory of Communication, *Bell Syst. Tech. J.*, 1948.
- Borges, E. Irreversibilidade, Desordem e Incerteza: Três Visões da Generalização do Conceito de Entropia. *RBEF*, vol. 21, no. 4, 1999.
- Nathan Eagle, et al., Network Diversity and Economic Development, *Science* 328, 1029, 2010.
- Kam KM, Et. Al. 'On assessing spatial uniformity of particle distributions in quality control of manufacturing processes', *J Manuf Syst*, 2012.

Referências

- R Core Team (2012) 'R: A language and environment for statistical computing', *R Foundation for Statistical Computing*, Vienna, Austria. ISBN 3-900051-07-0.
- Vogel R., et al. Diagnosing Leukemia Through Entropy, Physics, vol 7, 2014.
- A. Caticha, A. Golan / Physica A, 408, 2014.
- Wise S., Computers and Geosciences, 48, 2012.
- Carlo Ricotta, et al. Towards a unifying approach to diversity measures: Bridging the gap between the Shannon entropy and Rao's quadratic index, Theoretical Population Biology, 70, 3, 2006.

Objetivos Entropia Física Multidisciplinaridade Considerações finais

Obrigado pela atenção.