Minimum Distances

Consider an array of n integers, $A=[a_0,a_1,\ldots,a_{n-1}]$. The distance between two indices, i and j, is denoted by $d_{i,j}=|i-j|$.

Given A, find the $minimum\ d_{i,j}$ such that $a_i=a_j$ and $i\neq j$. In other words, find the minimum distance between any pair of equal elements in the array. If no such value exists, print -1.

Note: |a| denotes the absolute value of a.

Input Format

The first line contains an integer, n, denoting the size of array A.

The second line contains n space-separated integers describing the respective elements in array A.

Constraints

- $1 < n < 10^3$
- $1 \leq a_i \leq 10^5$

Output Format

Print a single integer denoting the minimum $d_{i,j}$ in A; if no such value exists, print -1.

Sample Input

6 713417

Sample Output

3

Explanation

Here, we have two options:

- ullet a_1 and a_4 are both 1, so $d_{1,4}=|1-4|=3$.
- ullet a_0 and a_5 are both 7, so $d_{0,5}=|0-5|=5.$

The answer is min(3,5)=3.