Fuzzy Logic Toolbox Analysis and Design

Dr. Pintu Chandra Shill

Professor

Computer Science and Engineering (CSE)

Khulna University of Engineering & Technology (KUET)

Matlab Fuzzy Toolbox

- Matlab Fuzzy Toolbox consist of two useful tools:
 - FIS Editor:

This Editor in combination with 4 other editors provides a powerful environment to define and modify Fuzzy Inference System (FIS) variable

• Fuzzy Controller:

This is a block in fuzzy Toolbox Library in Simulink environment. This block admits FIS variable produced by FIS Editor and implements the desirable rules

Fuzzy Inference System

FIS Diagram

- To implement a Fuzzy inference system, five steps must be followed:
 - 1. Fuzzyfication using input membership functions
 - 2. Apply Fuzzy Operand
 - 3. Apply Implication method on each rule
 - 4. Aggregate all Outputs
 - 5. Defuzzification of output set

FIS Editor

Membership Function Editor

Add or Remove Membership Functions to or from any Input ou Output

Change Input or Output range

Set Membership Function parameters manually

Rule Editor

Rule Viewer

Surface Viewer

FIS Editor Benefits

- Easily Define and modify a Fuzzy system
 - Simply Add or Remove Inputs and/or Outputs
 - Set or modify Inference methods
 - Simply Add or Remove Membership functions and easy management of function's parameters
 - Easy Rule definition and modification
 - Great Visualization area for FIS Diagram
 - 2-D visualization of Inference for any Input pairs to any Output
- Offers two Inference Engines
 - Mandani
 - Sugeno in which rule syntaxes became:

$$R^{k}$$
: If **x** is A^{k} then $y = c^{k}$, $k = 1, 2, ..., K$

ANFIS Editor

