			27.50
			100

STAT

Handbook of Standard Letter Symbols

1.215 to 408

(1)	(2)	(3)		(4)	(5)	(6)
Thrust, horizontal	Н				GOST 2971-45	Construction mechanics
Distance from rein-	a				OST 90054-40	Building construction
forcement to the						
nearest side of						
section						
Distance from lateral	f			a	OST VKS 6203	Astronomy
mark of grid to the						
meridian						
Distance of two heavenly	Δ_{i}				OST VKS 6203	Astronomy
bodies of respective						
mass m_i and m_j , mutual						
Distance, rear vertex	V t		Distance 1	from rear vertex	OST VKS 6145	Optics
focal			to rear fo	ocus		

Declaratified in Part. Sprittred Conv. Approved for Polyage 2012/05/40 - CIA PDD92 00020P000400220022 2

(6) (5) (4) (3) (2) (1) Geodesy and OST VKS 6345 Distance, zenith cartography Aerial photography OST VKS 7144 Distance of aerial f_k photography camera, focal Optics $\delta = \frac{d}{n}$ OST VKS 6145 δ Distance between vertex where: of adjacent refractive d - axial thickness of lens surfaces, reduced; ren - index of refraction. duced thickness of lens Reduced distances between vertexes of 1st and 2nd surfaces, 2nd and 3rd.... k and k+l surfaces, are denoted by $\boldsymbol{\delta}_1,\,\boldsymbol{\delta}_2....\boldsymbol{\delta}_k$

(1)	(2)	(3)	(年)	(5)	(6)
Distance between two points, horizontal	đ			OST VKS 6345	Geodesy and cartography
Distance between rows of: rivets, keys, pins, etc	е			ost 9005440	Building construction
Distance between points A and B of a link	L _{AB} , 1 _{AB}			GOST 2899-45	Theory of mechanisms
Distance between wing chords	h		Measured between pressure center of wings, perpendicularly to the velocity $\mathbb {V}$	COST 1075-41	Hydro-aerodynamic computations in air- craft construction
Distance between centers of deflecting and de- flected magnets	R R			CST VKS 7082	Terrestrial magnestism

(2) (1) (3) (4) (5) (6) Δ_i OST VKS 6203 Distance of heavenly body Astronomy at moment t_i, geocentric $\rho_i = \Delta_i \cos \beta_i$ where: Distance of heavenly body, OST VKS 6203 Astronomy reduced geocentric △; - geocentric distance of heavenly body at moment eta_i - latitude of planet at moment ti Distance of neutral axis of OST 90054-40 Building construction section from terminal compressed thread Distance of objective of f1 OST VKS 7144 Aerial photography aerial photographic apparatus, focal

Charles Leaving Control Control

(6) (5) (4) (3) (2) (1) OST VKS 6145 Optics Rear focal distances of Distance of optical lst, 2nd...k-th system system, rear (princiare denoted by: f'1, pal) focal $\mathtt{f'_2\cdots f'_k}$ OST VKS 6145 Optics Forward focal distances Distance of optical of 1st, 2nd...k-th system System, forward are denoted by: f1, f2... (principal) focal Aerial photography OST VKS 71/44 Distance from airdrome to area photographed OST VKS 6145 Optics Distance from rear apex to rear focus; rear apex focal distance OST VKS 6145 Optics Distance from image of point y' to optical axis

(1)	(2)	(3)	(4)	(5)	(6)
Distance from forward	v			ost vks 6145	Optics
vertex to forward				•	
focus; forward vertex					
focal distance					
Distance from point to optical axis	у			OST VKS 6145	Optics
Distance from center of	L			GOST 1075-41	Hydro-aerodynamic
gravity of airplane to					computations in air-
hinges of tail group					craft construction
Distance from center of gravity of airplane to hinges of horizontal tail group	L <u>2-0</u>			GOST 1075-41	Hydro-aerodynamic computations in air- craft construction
Distance along the optical axis between vertex of	d			OST VKS 6145	Optics

(1)

Distance along the optical

to aperture stop

axis from object and image

(2)

(3)

first and last refractive surfaces; axigal thickness of lens or system Distances along the optical d₁, d₂... OST VKS 6145 Optics axis between vertex of \cdots d $_{k}$ adjoining refractive surfaces, 1st and 2nd, 2nd and 3rd...k and k+l Distance along the optical Δ OST VKS 6145 Optics axis from near (principal) focus of first system to the forward (principal) focus of second system; optical interval

(4)

-221 -

(5)

OST VKS 6145

Optics

(6)

(1) (2) (3) (4) (5) (6) Distance along the optical OST VKS 6145 Optics axis from object and image to forward principal point Distance along the optical x OST VKS 6145 Optics axis from object and image to the forward principal focus Distance along the optical OST VKS 6145 axis from object and Optics image to the field stop Distance along the optical OST VKS 6145 Optics axis from object and image to the rear principoint

(6) (5) (4) (2) (3) (1) OST VKS 6145 Optics Distance along the optical axis from object and image to the rear (principal) focus Distances along the optical OST VKS 6145 Optics Distance along the optical axis from intersection point axis from point of interof issuing ray with optical section of issuing ray with axis to the vertexes of 1st, optical axis to vertex of 2nd ... k-th, refractive refractive surface surfaces are denoted by: \$'1, 8'2 ... s'k OST VKS 6145 Optics Distances along the optical Distance along the optical axis from intersection point axis from point of interof incident ray with optical section of incident ray axis to the vertexes of 1st, with optical axis to vertex

	A PROPERTY OF THE PARTY OF THE							

(1)	(2)	(3)	(4)	(5)	. (6)
of refracting surface			2nd k-th refracting surfaces are denoted by: $s_1,\ s_2\\ s_k$		
Distance, forward vertex focal	v		Distance from forward vertex to forward focus	OST VKS 6145	Optics
Distance of perigee of parabolic orbit from	ą			OST VKS 6203	Astronomy
the sun Distance of perigee from rising node, angular	ω			OST VKS 6203	Astronomy
Distance of planet at	\mathbf{z}_{m}			ost vks 6203	Astronomy
Distance of planet,	Z		T.	OST VKS 6203	Astronomy

网络尼尔尔克拉拉亚克 1000mm

(1)	(2)	(3)		(4)	(5)	(6)
Distance of planet in astronomical units,	Δ		÷ ř		OST VKS 6203	Astronomy
Distance, focal	ſ				GOST 1493-42	General technical
Expenditure of aerial photographs for the entire area photographed (S _Z), total	ⁿ Σ				OST VKS 7144	Aerial photography
Discharge, weight	G				GOST 2970-45	Hydromechanics
Expenditure of fuel and oil, hourly	$q_{\mathbf{n}}$				COST VKS 7144	Aerial photography
Expenditure of flight hours, total	$^{\mathrm{T}}\!$				OST VKS 71144	Aerial photography

Declassified in Part - Sanitized Copy .	Approved for Release 2012/05/10	CIA-RDP82-00039R00	0100230022-2

(1)	(2)	(3)	(4)	(5)	(6)
Discharge, mass	M			GOST 2970-45	Hydromechanics
Discharge per width unit	q			GOST 2970-45	Hydromechanics
of flow					
Discharge, volume	Q			GOST 2970-45	Hydromechanics
Reactions of supports	X,Y,Z			GCST 2971-45	Construction mechanics
in spatial system:					
component reactions					
(on coordinate axes					
X, Y, Z)					
Reaction of support:	ν	А		OST 90054-40	Building constructions
vertical component					
Reaction of support:	H			OST 90054-40	Building constructions
horizontal component					

(1)	(2)	(3)	(4)	(5)	(6)
Reaction of support in	V, A			GOST 2971-45	Construction mechanics
plane system: vertical					
component of reaction					
Reaction of support in	Н			COST 2971-45	Construction mechanics
plane system: hori-					
zontal component of				•	
reaction					
Reaction of support in	R	A,B,		GOST 2971-45	Construction mechanics
plane system: total		C			
reaction					
Reaction of support in	R			GOST 2971-45	Construction mechanics
spatial system: total					
reaction					
Reaction of support,	R			OST 90054-40	Building constructions
total					
			- 227 -		

(1)	(2)	(3)	(上)	(5)	(6)
	e			OST VKS 6203	Astronomy
Refraction	C			OST VKS 6145	Optics
Refraction of lens,	$^{\mathrm{D}}\mathrm{u}$				
principal				*	0.15.5
Refraction of lens,	v_2			ost vks 6145	Optics
rear vertex				6 -1	
Refraction of lens,	Vl			OST VKS 6149	(Optics
forward vertex					
Refraction of infinitely	\mathbf{D}_{0}			ost vks 6149	6 Optics
thin lens					
Refraction of second	D_2			ost vks 614	5 Optics
surface of lens					
Refraction of first	D_1			ost vks 614	5 Optics
surface of lens					

Declassified in Part - Sanitized Copy Approved for	Palagon 2012/05/10	CIA DODGO	000200000100220022

(1)	(2)	(3)	(4)		(5)	(6)
Convergence of meridians on plane	γ			OST	VKS 6345	Geodesy and cartography
Convergence of meridians on spheroid	γ_s			OST	VKS 6345	Geodesy and cartography
Luminosity; luminousness	R			OST	VKS 7637	Light measurements
Light sensitivity	S			GOST	· 2653-44	Sensitometry
Light sensitivity monochromatic; special light sensitivity	- s _λ			COST	։ 2653-հկ	Sensitometry
Light sensitivity,	S			COST	: 2653-hh	Sensitometry
Light sensitivity determine, on basis of	S _o			CST	VKS 7144	Aerial photography

Declaration in Part - Capitand Capy Approved for Palaces 2012/05/10 - CIA PDD92 00020D000100220022 2

ALTERNATION OF THE PROPERTY OF THE PARTY.

Commence of the Commence of th

			•		
(1)	(2)	(3)	(4)	(5)	(6)
conventional					
quantity of difference					
between density and fog					
Light sensitivity,	s _x			gosт 2653-44	Sensitometry
spectral; monochromatic					
light sensitivity					
Light sensitivity,	S _{\varphi}			GOST 2653-44	Sensitometry
effective	,				
Displacement, relative;	γ			GOST 2971-45	Construction mechanics
angle of displacement					
				OST 90054-40	Building constructions
Displacement of phase	φ			GOST 1494-42	Electrotechnics
between current and					
voltage; phase difference					
of voltage and current					
			- 230 -		

	Declassified in Part - Sanitized Copy Approved for Release 2012/05/	/10 - CIA DDD00 0	00308000100330033 3
a	Declassified in Fait - Samuzed Copy Approved for Release 2012/05/	VIO . CIA-RDF62-0	003910000100230022-2
			4-4-4

(1)	(2)	(3)	(4) Individual lines of character-	(5) OST VKS 6350	(6) X-ray technology
Series of characteristic spectrum of x-rays	к, L, м, N		istic X-ray spectrum are denoted according to Siegbahn by: Kal, Ka2 K Bl		
Oblate of terrestrial	a		$L_{\alpha}1$ $L_{\beta}1$ $\alpha = \frac{a-b}{a}$ where a and b, major (a) and minor (b) half axes of ter-	CST VKS 6203 OST VKS 6345	Astronomy Geodesy and cartography
			restrial spheroid	_{GOST} 2970-45	Hydromechanics
Force	F, Q P, F	Q, R		GOST 1493-42	General technical
Force				GOST 2971-45	Construction mechanics
Force	P, Q, R P			0ST 90054-40	Building constructions
Force	ŕ		- 231 -		

(1) (3) (4) (5) (6) P, Q, F GOST 2899-45 Force Theory of mechanisms Force P, F Q, R Projections of force upon OST 2932 Theoretical mechanics coordinate axes, x, y, z are denoted either by $\mathbb{F}_{\mathbf{X}}$, F_y , F_z or by the letters X, Y, Z $R = c_{R}qS;$ GOST 1075-41 Force, aerodynamic Hydro-aerodynamic $R = \sqrt{\chi^2 + \chi^2 + \chi^2}$ computations in aircraft construction wherein: c_R - coefficient of aerodynamic force (total) q - velocity thrust (dynamic pressure) S - carrying area of wings X, Y, Z components of aerodynamic force

or a week make the probability and the

(1)	(2)	(3)	(4)	(5)	(<u>6</u>)
Force, lateral	Z		Z ™ c _z qS	GOST 1075-41	Hydro-aerodynamic
			where: c_z - coefficient		computations in air-
*			of lateral force,		craft construction
			q- velocity thrust (dynamic		
			pressure)		
			S - carrying area of wings		
Force, hydrodynamic lift	Y			GOST 1075-41	Hydro-aerodynamic
					computations in air-
					craft construction
Force of pressure	Р			COST 2970-45	Hydromechanics
Force of ground pressure;	R			OST 90054-40	Building constructions
ground pressure					
Force, kinetic;	T			GOST 2971-45	Construction mechanics
kinetic energy					

Declassified in Part - Sanitized Copy Approved for Release 2012/05/10	CIA-RDP82-00039R000100230022-2

(1)	(2)	(3)	(†)	(5)	(6)
Force, Kinetic;	E	Т		GOST 2899-45	Theory of mechanisms
kinetic energy					
Forces of inertia	Pu, Qu,			GOST 2899-45	Theory of mechanisms
	$\mathbf{F}_{\mathbf{u}}$				
Force, tangential	T			GOST 2970-45	Hydromechanics
Force, coercive;	$^{ m H}_{f c}$			OST VKS 6896	Ferromagnetism
reluctivity					
Force, magnetomotive	F			COST 1494-42	Electrotechnics
Force per unit of surface;	р, Р			ost vks 6394	Thermodynamics
tension; pressure					
Force, normal	Yl		Coordinate axes - body	GOST 1075-41	Hydro-aerodynamic
			axes		computations in
					aircraft construction

(1) Force, normal Force, intersecting; transversal force	(2) N Q	(3)	(4)	(5) GOST 2970-45 OST 90054-40	(6) Hydromechanics Building constructions
Force, lift	Y		Y = cyqS where: c _y - coefficient of lift force q - velocity thrust (dynamic pressure) 5 - carrying erea of wings	GOST 1075-41	Hydro-aerodynamic computations in aircraft construction
Force, total hydrodynamic	R Z ₁		Coordinate axes, body	COST 1075-41	Hydro-asrodynamic computations in aircraft construction

		1
Dealers if ad in Deal	CH 0 1 16 D-I 2042/05/40 - OIA DI	2002 0002000000400220022

(1)	(2)	(3)	(4)	(5)	(6)
(1)	ν,		axes		computations in aircraft construction
Force, transversal	Q			GOST 2971-45	Construction mechanics
Force, transversal;	Q			0ST 90054-40	Building construction
intersecting force				COST 1075-41	Hydro-aerodynamic
Force of flight velocity	X		Coordinate axes - wind axes	6031 1017-41	computations in
Force, longitudinal	М			COST 2971-45	Construction mechanics
				OST 90054-40	Building constructions
Force of airplane, lift	Р			OST VKS 7144	Aerial photography
Intensity of light	I			GOST 1493-42	General technical quantities
					-

	(2)	(3)	(14)		(5)	(6)
(1)	(2)	(5)			GOST 2653-44	Sensitometry
					0001 2005 11	
					OST VKS 7637	Light measurements
Intensity of light;	I					
intensity of light						
of punctal source					OST VKS 6261	Measurement of
Intensity of light of	I				OST AND OFOI	temperatures
radiant flux; angular						
density						Measurement of
a native of mono-	Ιλ			*	OST VKS 6261	
Intensity of light of mono-	- X			1		temperatures
chromatic radiant flux				:		
of wave length λ ;						
angular density of wave						
length						Light measurements
Intensity of light of	I			i	ost vks 7637	Light measurements
punctal source;						
intensity of light			- 237 -			

And the second second

(1)	(2)	(3)	(4)	(5)	(6)
Intensity of light,	J			ost vks 7637	Light measurements
specific					
Force, shearing	T			ost 90054-40	Building constructions
Force of system, kinetic	Т			OST VKS 6203	Astronomy
Force of resistance,	Ql		Coordinate axes,	GOST 1075-41	Hydro-aerodynamic
tangential			body axes		computations in
					aircraft construction
Force, tangetial	\mathbf{x}_{1}		Coordinate axes,	GOST 1075-41	Hydro-aerodynamic
			body axes		computations in
					aircraft construction
Force of thermo couple,	et			OST VKS 6261	Measurement of
thermo electromotive					temperatures

				(5)	(6)
(1)	(2)	(3)	(4)	CST VKS 7820	Measurement of temperatures
Force, thermo electro-	et				
motive			Working (effective) value	GOST 1494-42	Electrotechnics
Intensity of current;	i		of current is denoted by		
current			the capital letter I	ost 90054-40	Building constructions
Force, braking	Т			GOST 2970-45	Hydromechanics
Force of friction,	С				
specific				OST VKS 7144	Aerial photography
Force of thrust of	F				
propeller - engine					Electrotechnics
unit Force, electromotive	e	u	Working (effective) value of electromotive force is	COST 1494-42	Flectioneour
			denoted by capital letter E		

(1)	(2)	(3)	(4)	(5)	(6)
				OST VKS 7144	Aerial photography
Deviation, magnetic	$\Delta_{\mathcal{M}}$			OST VKS 7082	Terrestrial magnetism
Deviation, magnetic	D				Geodesy and carto-
Deviation of compass	8			OST VKS 6345	graphy
needle					
Inclination of planet	δ			OST VKS 6203	Astronomy
	S			GOST 1075-41	Hydro-aerodynamic
Sliding, relative	J				computations in air-
					craft construction
Velocity	v, u, w			GOST 2970-45	Hydromechanics
velocity	v			OST 2932	Theoretical mechanics
Velocity, vertical				GOST 1075-41	Hydro-aerodynamic
	$v_{\mathbf{y}}$				computations in air-
					craft construction

		(2)	(4)	(5)	(6)
(1)	(2)	(3)	, ,	OST VKS 7114	Aerial photography
Velocity of wind	U			GOST 1075-41	Hydro-aerodynamic
Velocity of wind;	W				computations in air-
velocity of flow					craft construction
				GOST 2899-45	Theory of mechanisms
Velocity of second link	W21				
with respect to the					
first link, angular				GOST 2899-45	Theory of mechanisms
Velocity of second link	v5 <u>1</u>				
with respect to the					
first link in for ward motion (forward couple					
2, 1)					
				GOST 1075-41	Hydro-aerodynamic
Velocity of horizontal	V _{max}				computations in air-
flight for all altitudes					craft construction
of flight, maximum			- 241 -		

(1)	(2)	(3)	(4)	(5)	(6)
Velocity of horizontal flight for all alti-	^у о max			GOST 1075-41	Hydro-aerodynamic computations in aircraft construction
tudes of flight, maxi-				GOST 2899-45	Theory of mechanisms
Velocity of motion of point B with respect to A of the same link	v BA			OST 2099-45	Interity of inconstitution
Velocity of motion of film in re-winding	v _f			ost vks 7146	Aerial photography
Velocity of fluid in ascending pipe	\mathbf{v}_{h}			OST VKS 6129	Senitation
Velocity of link,	w			GOST 2899-45	Theory of mechanisms

(1)	(2)	(3)	(7)	(5)	(6)
Velocity of sound	a a			GOST 1075-41	Hydro-aerodynamic computations in aircraft construction
Velocity of fluid in suction pipe	Ψ _E			OST VKS 6128	Hydrotechnics .
Velocity, cruising	$V_{\rm k}$			est vks 7144	Aerial photography
Velocity, cruising	^Ч <u>крейс</u>			GOST 1075-L1	Hydro-aerodynamic computations in aircraft construction
Velocity, critical	A ^{KD}			cost 1075-41	Hydro-aerodynamic computations in air- craft construction
Velocity, linear	v	w, u		GOST 1493-42	General technical

Perfectified in Part - Continued Copy Approved for Pelegge 2012/05/40 - CIA PDP92 00020000100220022

(6) (5) (4) (3) (2) (1) Construction mechanics GOST 2971-45 Velocity, linear OST 90054-40 Building constructions GOST 1075-41 Hydro-aerodynamics Velocity of breaking con-Vomp tact with the water Aerial photography OST VKS 7144 Velocity of climb (vertical) of airplane Hydro-aerodynamic GOST 1075-41 Velocity of flight computations in aircraft construction GOST 1075-41 Hydro-aerodynamic Velocity, handling Vnoc computations in aircraft construction

(1)	(2)	(3)	(4)	(5)	(6)
Velocity of flow	γ			COST 1975-41	Hydro-aerodynamic computations in air- craft construction
velocity of flow;	W			gost 1075-41	Hydro-aerodynamic computations in air- craft construction
Velocity of flow at distance from body	₩ ₀ 0			GOST 1075-41	Hydro-aerodynamic computations in air- craft construction
Velccity by width, relative; Frouce number by width	с ^Д		$c_V = \frac{V}{V g B}$ where: $V - \text{velocity}$ $g - \text{free fall acceleration}$ $B - \text{width of boat or}$ float	GOST 1075-41	Hydro-aerodynamic computations in air-craft construction

(1) (2) (3) (4) (5) (6) Velocity in gaining OST VKS 7144 Aerial photography altitude, optimum horizontal Velocity of water flow OST VKS 6128 Hydrotechnics at dam Speed of development V_{np} GOST 2653-44 Sensitometry Speed of disturbance GOST 2970-45 Hydromechanics propagation (speed of wave) Velocity of wave propaga-OST VKS 6146 Optics tion in vacuum Speed of airplane OST VKS 7144 Aerial photography (relative to medium), air

- 246 -

		(2)	(4)		(5)	(6)
(1)	(2)	(3)			OST VKS 7144	Aerial photography
Velocity of airplane,	v_{\max}			Ÿ		
maximum					OST VKS 7114	Aerial photography
velocity of airplane,	$v_{\mathbf{u}}$					
optimum					OST VKS 7114	Aerial photography
Velocity of airplane	v_{\min}					
(minimum), landing					CST VKS 7144	Aerial photography
Velocity of airplane	A					
(relative to ground),						i.
travel					GOST 2899-45	Theory of mechanisms
velocity of point of link	A	V			GOST 1075-41	Hydro-aerodynamic
velocity, angular	ω					computations in air-
						craft construction

THE RESERVE OF THE PARTY OF THE

(6) (5) (h) (3) (2) Hydromechanics (1) COST 2970-45 General technical COST 1493-42 quantities Construction mechanics GOST 2971-45 Building constructions OST 90054-40 Theoretical mechanics OST 2932 Aerial photography OST VKS 7114 Velocity of airplane, General technical economic GOST 1493-42 quantities Velocity of light X-ray technology OST VKS 6350 Ratio of reduction co-Reduction drop efficients before and after limit of absorption level

- 248 -

(6) (5) (4) (3) (2) (1) OST VKS 6350 X-ray technology Ratio of values of quantity Reduction drop before and after limit of absorption level, where τ portion of reduction coefficient dependent on photo effect OST VKS 6345 Geodesy and carto-Component of deviation η graphy of vertical line along longitude perpendicular to the meridian Geodesy and carto-OST VKS 6345 Component of deviation graphy of vertical line along the meridian X-ray technology Denotation ∠ is supple-OST VKS 6350 1 Layer of half reduction mented by sub-line index, - 249 -

(6) (5) (L) (3) (2) (1) indicating the reducing substance Aerial photography OST VKS 7144 Δ_h^r Displacement on aerial photograph induced by relief, linear Electrotechnics GOST 1494-42 Displacement, electric; D electrical induction Electrotechnics GOST 1494-42 Resistance, effective Resistance, temporary; strength limit Building constructions OST 90054-40 σ_n Resistance, temporary; strength limit Hydro-aerodynamic COST 1075-41 Resistance, hydrodynamic computations in aircraft construction

- 250 -

(1)	(2)	(3)	(4)	(5)	(6)
Resistance of dielectric	R_, r_		Effective resistance (for	OST VKS 7771	Electrotechnics
for direct current,			alternating current) is		
electric			denoted by the same symbol		
			but without the index -		
			(dash) namely R, r		
Resistance, head	Q		$Q = c_{k} q S$	GOST 1075-41	Hydro-aerodynamic
			wherein: c _x - coefficient		computations in air-
			of head resistance,		craft construction
			q - velocity thrust (dynamic		
			pressure,		
			S - carrying area of wings		
Resistance, magnetic	R			GOST 1494-42	Electrotechnic
Resistance (electric)	$^{ m R} oldsymbol{\epsilon}$			OST VKS 6261	Measurement of
of platinum resistance	•				temperatures

The state of the s

(4) (5) (6) (1) (2) (3) thermometer, at temperature t GOST 1494-42 Electrotechnics Resistance, total Electrotechnics Resistance, total z = r + jxwhere: GOST 1494-42 r - effective resistance (complex expression) x - reactance Resistance for direct OST VKS 7771 Electrotechnics R_{v-} , r_{v-} current, surface electrical OST VKS7771 Electrotechnics Resistance for direct R_{s-} , r_{s-} current, surface electrical Resistance for direct OST VKS 7771 Electrotechnics Pucurrent, specific volumetric electric - 252 -

Dealersified in Deal	Citi 0 1 16 D-I 2042/05/40	OIA DE	2002 000200	0004000000	22.2

	(0)	(3)	(4)	(5)	(6)
(1) Resistance for direct current, specific surface electrical	(2) (3—		The corresponding effective resistances (for alternating current) are denoted by the same symbols but without the index - (dash), namely, F.,	OST VKS 7771	Electrotechnics
				GOST 1494-42	Electrotechnics
Reactance	x			ost vks 7144	Aerial photography
Resistance of airplane,	Q				
head				GOST 1494-42	Electrotechnics
Resistance, specific	6			OST VKS 7082	Terrestrial magnetism
Component of intensity	Z				
of terrestrial field,					
vertical					

(1)	(2)	(3)	(4)	(5)	(6)
Component of intensity of	Y			OST VKS 7082	Terrestrial magnetism
terrestrial field,			× .		
east				7000	Terrestrial magnetism
Component of intensity of	X			ost vks 7082	Terrestriai magne tiom
terrestrial field, north					
Specific rotation	[∝]		Expressed in degrees, the	OST VKS 6146	Optics
of liquid			rotation angle of plane of		
			polarized light for a column		
,			of liquid of 1 decimeter		
Power, covering	<u>1</u> P			GOST 2653-44	Sensitometry
Power, resolving	$\mathbb{R}_{\mathbf{c}}$		Minimum percentage incre-	OST VKS 7144	Aerial photography
	· ·		ment of exposures, at which		
			the photographic paper re-		
			veals brightness details		

(3)
Angle, expressed in degrees, of rotation of plane of

(6) (5) (4) (3) (2) (1) element of the given body to that emitted by an equal element of the surface of a black body at the same temperature and over the same interval of OST VKS 6146 Optics Ratio of light flux, having Power of body, limited passed through the body to by two parallel the incident flux planes, transmittance; coefficient of a body limited by two parallel planes Optics OST VKS 6146 Ratio of light flux reflected Power of body, reflective; from the body to the incident coefficient of reflection flux of body

- 256 -

(6) (5) (4) (3) (2) Sensitometry (1) _{GOST} 2653-44 B Power of photographic Terrestrial magnetism layer, resolution OST VKS 7082 H_{H} Component of intensity of terrestrial field, horizontal (vector sum Building constructions of north and east) OST 90054-40 Degree of saturation of K <u>E</u> ground interstices by Aerial photography OST VKS 7144 water Side of aerial photograph, parallel to the abscissa Aerial photography OST VKS 7144 axis Side of aerial photograph parallel to the ordinates axis - 257 -

(5) (6) (4) (3) (2) (1) Aerial photography OST VKS 7144 Side of plane sheet frame of international grid, lateral OST VKS 7144 Aerial photography Sides, limiting area rx, ry of coverage of useful dimension of aerial photograph on terrain OST VKS 6345 Geodesy and cartoa, b, c Sides of spherical graphy triangle Construction mechanics GOST 2971-45 Rise of elevation: arc, archetc Building constructions OST 90054-40 GOST 2971-45 Construction mechanics Depth of ceamber

(6) (5) (4) (3) (1) Building constructions OST 90054-40 Hydro-aerodynamic GOST 1075-41 f computations in eir-Rise of profile craft construction curvature Terrestrial magnetism OST VKS 7082 Sum of north and east н, н components of intensity of terrestrial field, vector; horizontal component of intensity of terrestrial field General technical GOST 1493-42 Also permissible: quantities Temperature to Construction mechanics GOST 2971-45

			7		
(1)	(2)	(3)	(4)	(5)	(6)
				0ST 900514-40	Building constructions
Temperature	t°	D		GOST 2970-45	Hydromechanics
Temperature,	T	Θ	Also permissible:	GOST 1493-42	General technical
absolute			T^{O}		quantities
				GOST 2971-45	Construction mechanics
				OST 9005h-40	Building constructions
Temperature,	\mathtt{T}^{O}			GOST 2970-45	Hydromechanics
absolute					
Temperature,	T			GOST 1075-41	Hydro-aerodynamic
absolute					computations in air-
					craft construction
				OST VKS 7772	Thermal measurements

e.

(2)	(2)	(3)	(4)	(5)	(6)
(1)		•		CST VKS 6345	Geodesy and carto-
Temperature of	$t_\mathtt{A}$				graphy
aneroid	ŧ°			OST VKS 7144 OST VKS 6345	Aerial photography Geodesy and carto-
Temperature of air Temperature of air	t			081 AVD 6343	graphy
Temperature of air,	To			OST VKC 71144	Aerial photography
absolute	t ^o A			OST VKS 71144	Aerial photography
Temperature of air at airdrome	A				
Temperature of air	$\mathbf{t}^{\mathtt{o}}_{\mathrm{H}}$			OST VKS 71144	Aerial photography
at altitude H				OST VKS 7144	Aerial photography
Temperature of air	^{to} z				
at altitude Z				OST VKS 7144	Aerial photography
Temperature of air	t°0				
at sea level			- 261 -		
			707		

and the second second

(1)	(2)	(3)	(4)	(5)	(6)
Temperature, measured	°C		Denotation used with	CST VKS 6954	Temperature scale
in internation scale			example 950.5°C		
Temperature of source,	Ts			ost vks 7820	Measurement of temperatures
Temperature, measured on the basis of ${\ensuremath{\text{O}}}^{\ensuremath{\text{O}}} {\ensuremath{\text{C}}}$	t	θ		OST VKS 6261	Measurement of temperatures
(international hundred degree scale)				OST 6394	Thermodynamics
Temperature, measured on the basis of C ^O K	Т	Θ		OST VKS 6261	Measurement of temperatures
(absolute scale)				ost vks 6394	Thermodynamics
Temperature measured by means of scale of a con-	\dot{t}_{∇}		i i	OST VKS 6261	Measurement of temperatures
<pre>stant pressure gas thermo- meter (p = const)</pre>			- 262 -		

(1)	(2)	(3)	(4)	(5)	(6)
				OST VKS 6261	Measurement of
Temperature measured by	^t p				temperatures
means of scale of a					
constant volume gas					
thermometer (v = const)					
	t			GOST 1075-41	Hydro-aerodynamic
Temperature using scale	U				computations in air-
С					craft construction
*-					
Temperature, radiation	$\mathtt{T}_{\mathbf{r}}$		Temperature of a black	CST VKS 6146	Optics
1 Super Land	-		body, emitting the same		
			total amount of radiant		
			energy as the given body		
Temperature, centigrade;	t			OST VKS 7772	Thermal measurements
temperature				(2) (Optics
Temperature measured from	T	Θ		OST VKS 6146	050700
o°K (-273°C)					

(6) (5) (4) (3) (2) (1) Measurement of OST VKS 6261 Temperature, color temperatures Measurement of OST VKS 7820 temperatures Optics OST VKS 6146 Sensitometry GOST 2653-44 optics OST VKS 6146 Temperature of a black Temperature, black body emitting within a certain part of the spectrum the same amount of radiant energy as the given body Measurement of OST VKS 6261 Temperature, black; Ts temperatures temperature, luminosity

Market Committee of the Committee of the

(5) (4) (3) (2) (1) Thermal measurements OST VKS 7772 Temperature conductivity of substance General technical GOST 1493-42 Thermal capacity quantities Thermodynamics OST VKS 6394 Denotation for 1 kg Thermal capacity In denotation for 1 (true) kg → mole it is preceded, if necessary, by the letter M Thermal measurements OST VKS 7772 Thermal capacity of c_n substance, normal Thermal measurements OST VKS 7772 Thermal capacity of substance; specific thermal capacity

(6)

(1)	(2)	(3)	(h)	(5)	(6)
Thermal capacity,	С			OST VKS 7772	Thermal measurements
molecular Thermal capacity at constant pressure	c _p		Denotation for 1 kg In denotations for 1	OST VKS 6394	Thermodynamics
(true)			kg - mole, it is pre- ceded, if necessary, by the letter M		
Thermal capacity at	c _v		Denotation for 1 kg In denotations for 1	OST VKS 6394	Thermod ynamics
(true)			kg - mole it is pre- ceded, if necessary, by the letter M		
Thermal capacity, mean (within the interval $t_1^{\circ}C - t_2^{\circ}C$)	c _m			OST VKS 7772	Thermal measurements

(6) (5) (4) (3) (2) (1) Thermal measurements OST VKS 7772 Thermal capacity of body or of a system of bodies Building constructions OST 90054-40 Thermal capacity, specific Thermal measurements OST VKS 7772 Thermal capacity, specific; thermal capacity of substance Building constructions OST 90054-40 1 Thermoconductivity; co∞ efficient of thermal conductivity Thermal measurements OST VKS 7772 Z Thermal conductivity of substance OST VKS 6394 Thermodynamics Heat content

	(2)	(3)	(4)	(5)	(6)
(1)			Denotation for 1 kg	OST VKS 6394	Thermodynamics
Heat content	i		In demotations for		
			1 kg - mole it is pre-		
			ceded, if necessary,		
			by the letter M		
				GOST 1493-42	General technical
Heat content;	I				quantities
enthalpy				ost vks 6394	Thermodynamics
Heat content of liquid	i'		Denotation relates to	031 470 9314	
at the moment of in-			1 kg		
cipence of vaporization	Ĺ				an alamanwi os
	i		Denotation relates to	ost vks 6394	Thermodynamics
Heat content of super-	-		l kg		
heated steam			Denotation relates to	OST VKS 6394	Thermodynamics
Heat content of dry	i"		1 kg		
saturated steam					

(6) (5) (4) (3) (1) Thermodynamics OST VKS 6394 r = i* -i* Heat of evaporation, where: i" heat content relative to one of dry saturated steam kilogram i! - heat content of liquid at moment of incipence of vapor formation Thermodynamics OST VKS 6394 Heat of evaporation, relative to one kilogram, external Thermodynamics OST VKS 6394 ρ Heat of evaporation, relative to one kilogram, internal General technical GOST 1493-42 Heat of vaporization, quantities latent

(6) (4) (5) (3) (1) (2) General technical GOST 1493-42 Heat, latent quantities General technical GOST 1493-42 Н Heating power; quantities heat value Optics OST VKS 6145 Distance along the optical Thickness of lens axis between vertexes of or system, axial first and last refracting surfaces $\delta = \frac{d}{n}$ 2 OST VKS 6145 Optics δ Thickness of lens, where: d - axial thickreduced; reduced ness of lens distance between vern - index of refraction texes of adjacent re-Reduced distances between fracting surfaces vertexes of 1st and 2nd,

an are represented to the series

BREWING TO STATE OF THE STATE O

(1)	(2)	(3)	(4)	(5)	(6)
			2nd and 3rd, k and k+1 surfaces are denoted by: $\delta_1, \delta_2 \cdots \delta_k$		
Depth of wing profile	С			GOST 1075-41	Hydro-gerodynamic computations in air- craft construction
Depth of profile, relative	ē		c = c b where: c - depth of wing profile b - chord of wing (chord of profile)	GOST 1075⊷41	Hydro-gerodynamic computations in air- craft construction
Thickness of welded seam along leg of right angle triangle	^ћ <u>щ</u>		:	ost 90054 - 40	Building construction

- 271 -

the second of the second secon

	(2)	(3)	(4)	(5)	(6)
(1)	(2)	(2)		OST 90054-40	Building constructions
Thickness of welded	c zu				
seam, rated				OST VKS 6128	Hydrotechnics
Wall thickness of pipes	8			ODI VIIO	
and vessels				GOST 2970-45	Hydromechanics
Thickness of wall etc	δ ,c			GOST 2910=43	
Thickness of wall;	e			OST 90054-40	Building constructions
board; side of					
metal beam					
Thickness of wall;	c	δ_{j} a		GOST 2971-45	Construction mechanics
board; side of metal					
beam etc (dimensions					
of transversal section					
and their elements)				ost vks 7144	Aerial photography
Point of aerial	0			021 482 1144	
photograph, principal			- 212 -		

A STATE OF THE PARTY OF THE PAR

(1)	(2)	(3)	(4)	(5)	(6)
Point of vernal equinox	op		In case of technical im-	OST VKS 6203	Astronomy
			the greek letter γ is permissible		
Point of east	E		As an index to denote	OST VKS 6203	Astronomy
			"eastern" there is		
			used "e"		
Point of geodesic base - of trigonometric grid	⊡,△			ost vks 7144	Aerial photography
(accompanying the mark)					
Point, rear principal	Н¹			OST VKS 6145	Optics
Point, rear junction	K '			OST VKS 6145	Optics
Point of west	W		As an index to denote	OST VKS 6203	Astronomy
			"western" there is used		
			n _w n		

-273 -

(5) (6) (2) (3) (4) (1) Point, cameral OST VKS 7144 Aerial photography -0photogrammetrical (orientation) Point of madir OST VKS 7 بليلة Aerial photography on aerial photograph OST VKS 7144 Point of zero Aerial photography distortions on aerial photograph OST VKS 6145 Point, forward principal Optics Point, forward junction OST VKS 6145 Optics Point of intersection of OST VKS 6145 Optics plane of aperture stop with the optic axis

and the second section with the second section section

(6) (5) (4) (3) (2) (1) OST VKS 6145 Optics Point of intersection of plane of field stop with optic axis Aerial photography OST VKS 7144 Point, field photogrammetric (orientation) Aerial photography OST VKS 7144 Point of relief (accompanying . the mark) OST VKS 6203 Astronomy As an index to denote Point of North "northern" there is used "n" Aerial photography OST VKS 7144 Point of convergence on aerial photograph, principal OST VKS 6203 Astronomy As an index to denote Point of South

The second of th

(2)	(3)	(4)	(5)	(6)
	(3)	(4)	1-7	•
		"southern there is		
		used "s"		
А, В			GOST 2899-45	Theory of mechanisms
i		Working (effective)	GOST 114914→142	Electrotechnics
		value of current is		
		denoted by capital		
		letter I		
			ost vks 6345	Geodesy and carto-
t				graphy
		<u> </u>		
P			GOST 1075-41	Hydro-aerodynamic
		* 1		computations in air-
				craft construction
X			ost vks 6145	Optics
Y			OST VKS 6145	Optics
		- 27/2 -		
	x	t P X	used "s" A, B i Working (effective) value of current is denoted by capital letter I t	used "s" A, B GOST 2899-45 Working (effective) GOST 1494-42 value of current is denoted by capital letter I COST VKS 6345 P OST VKS 6145 OST VKS 6145

(6) (5) (4) (2) (3) (1) Optics OST VKS 6145 Magnification, angular GOST 2970-45 Hydromechanics Angles Theory of mechanisms GOST 2899-45 Geodesy and carto-OST VKS 6345 Angles of a spherical А, В, С graphy triangle Hydro-aerodynamic GOST 1075-41 Angle of attack, true computations in aircraft construction GOST 1075-41 Hydro-aerodynamic Angle of attack of wing computations in aircraft construction Aerial photography OST VKS 7144 Θ Angle of attack (of incidence) of airplane wings -277 -

Perfeccified in Part - Paritized Copy Approved for Pelegge 2012/05/40 - CIA PDD92 00030P001100320033

(6) (5) (4) (3) (2) Hydro-serodynamic (1) GOST 1075-41 computations in air- α_{o} Angle of attack for craft construction Cy = 0 Hydro-aerodynamic COST 1075-41 CAX - meridian aerocomputations in air-Angle of attack CAX α_{A} dynamic chord craft construction Aerial photography OST VKS 7144 Angle within the horizontal plane (T or E), formed by projection of principal vertical and direction toward a certain point A Aerial photography OST VKS 7144 Θ Angle of incidence (of attack) of airplane wings

The second secon

(6) (5) (4) (3) (2) (1) Aerial photography OST VKS 7144 Angle within the horizontal plane (T or E), formed by projection of principal vertical and the axis of X's Aerial photography OST VKS 7144 Construction mechanics Angle of wind GOST 2971-45 Angle of internal friction friction in free-flowing Building constructions materials OST 90054-4C Aerial photography OST VKS 7144 Angle within plane P, formed by direction of principal wertical with the direction toward certain point a

- 279 -

Declaration in Part - Capitized Capy Approved for Pologo 2012/05/40 - CIA PDP92 00020P000100220022

(6) (5) (4) (3) (2) (1) Aerial photography OST VKS 7 بليلا Angle within plane P, formed by direction of principal vertical with the direction of the axis of X's Aerial photography OST VKS 7144 2 Angle of sighting, vertical (between perpendicular line and the direction toward point of terrain) Aerial photography OST VKS 7144 Angle of sighting, hori-6 zontal (between initial starting line and the direction from the point of nadir toward the corresponding point of terrain)

(1)	(2)	(3)	(4)	(5)	(6)
Angle, direction	Т			ost vks 6345	Geodesy and carto- graphy
Angle of longitudinal trim	Р			GOST 1075-41	Hydro-serodynamic computations in air- craft construction
Angle of longitudinal trim, initial	Po			GOST 1075-41	Hydro-serodynamic computations in sir- craft construction
Angle of drift	ψ			GOST 1075-41	Hydro-aerodynamic computations in air- craft construction
Angle of diffractional reflection	Θ			OST VKS 6350	X-Ray technology
Angle of diffractional reflection of the	$\mathcal{\Theta}_n$			OST VKS 6350	X-Ray technology
n-th order			- 281 -		

Control of the Contro

(1)	(2)	(3)	(4)	(5)	(6)
Angle of dielectric	8			COST 1494-42	Electrotechnics
losses					Construction mechanics
Angle of natural	φ			GOST 2971-45	CONSTITUTION MODIFICATION
slope Angle, given true	$\alpha_{\mathcal{H}}$			OST VKS 711վ4	Aerial photography
travel Angle, given magnetic	∝ _M			OST VKS 7114	Aerial photography
travel Angle of twist,	θ			GOST 2971-45	Construction mechanics
linear				ost 90054-40	Building constructions
Angle of convergency	γ	γ	Angle of intersection of	ost vks 7144	Aerial photography
			projections of optical axes of serial photographic		

(1)	(2)	(3)	(4)	(5)	(6)
			apparatus within the hori-		
			zontal or the vertical plane		
Angle of cone	2 X			OST VKS 7530	Conic connections in machine building
Angle of bank	γ			gost 1075-41	Hydro-serodynamic computations in air-craft construction
Angle of bank of airplane wings	β			OST VKS 7114	Aerial photography
Angle of torsion	Δ			OST VKS 7082	Terrestrial magnetism
of thread	€0			OST VKS 6145	Optics
of light ray by prism Angle of inclination	α			ost vks 6345	Geodesy and carto-

Declaratified in Part. Societized Casy Approved for Polance 2012/05/10 - CIA RDR92 00020R000100220022.2

(6) (5) (4) (3) (2) (1) Optics OST VKS 6145 α Angle of inclination with respect to the optical axis of in-Optics cident ray OST VKS 6145 α' Angle of inclination with respect to the optical axis of the issuing ray Astronomy OST VKS 6203 i Angle of inclination of plane of motion relative to plane of Geodesy and ecliptic OST VKS 6345 cartography o∠, T' Angle with plane, directional -284 **-**

The second secon

Poologistised in Part. Contined Conv. Approved for Pologog 2012/05/10 - CIA PDD92 00020P00100220022

100 Contract of the Contract o

(6) (5) (4) (2) (3) (1) Aerial photography OST VKS 7144 Angle formed by principal planes of objective Q and the planes of negative OST VKS 7144 Aerial photography Angle formed by the ν_{E} principal planes of objective Q and the plane of screen E OST VKS 7144 Aerial photography Angle formed by the optical axis of the objective of the aerial photographic apparatus, and the sighting ray

(6) (5) (4) (3) (2) (1) Terrestrial magnetism OST VKS 7082 Angle of deviation of the magnet Aerial photography OST VKS 7144 Angle of deflection of the optical axis of the aerial photographic apparatus from the vertical Aerial photography OST VKS 7144 \propto Angle of deflection of optical axis of the photographic apparatus from the vertical Hydro-serodynamic GOST 1075-41 of deflection)
Angle of flight controls S computations in aircraft construction

Declassified in Part - Sanitized Co	py Approved for Release 2012	2/05/10 : CIA-RDP82-00	0039R000	100230022-2
	AND THE STREET	The state of the s	Compression	TOTAL OF THE PARTY OF THE PARTY.

(1) Angle of elevator	(2) S <u>e</u>	(3)	(4)	(5) COST 1075-41	(6) Hydro-aerodynamic computations in air-craft construction
Angle of rudder	$\delta_{m{arkappa}}$			GOST 1075-41	Hydro-serodynamic computations in air-craft construction
Angle of deflection of	€			OST VKS 6145	Optics
light ray by prism	τ			GOST 1075-41	Hydro-cerodynamic computations in air-
Angle of tab					craft construction Hydro-zerodynamic
Angle of elevator tab	$\mathcal{T}_{\underline{\mathscr{C}}}$			GOST 1075-41	computations in air-
Angle of rudder tab	7 <u>z</u>		-181 -	GOST 1075-4:1	Hydro-zerodynamic
				Liver and the contract of	and the second s

(6) (5) (4) (3) (2) (1) computations in aircraft construction Hydro-serodynamic GOST 1075-41 7≥ Angle of aileron tab computations in aircraft construction Hydro-zerodynamic GOST 1075-41 computations in air-Angle of aileron eraft construction Aerial photography OST VKS 7114 Angle, actual true BN travel Aerial photography OST VKS 7144 Angle, actual magnetic travel Optics OST VKS 6145 Angles of incidence of Angle of incidence ray with 1st, 2nd ... of light ray - 288 -

(1)	(2)	(3)	(h)	(5)	(6)
			k-th surface are denoted by:		,
			i ₁ , i ₂ , i _k		
Angle, parallax	q			OST VKS 6203	Astronomy Astronomy
Angle of eccentricity of eliptic orbit	φ		$e = \sin \varphi$ where: $e = eccentricity$	OST VKS 6203	RS 010 storing
an line checlutes	Δl	δ	of orbit	GOST 2971-45	Construction mechanics
Elongation, absolute: absolute longitudinal deformation on stretching		0			
Elongation, absolute;	Δl			ost 90054-40	Building constructions
absolute longitudinal deformation on stretchin	g				
Aspect ratio ("Elongation wings")	of A		$\lambda = \frac{1^2}{8}$, where: 1 - span of wings	gost 1075 - 41	Hydro-serodynamic computations in air-

(1)	(2)	(3)	(4)	(5)	(6)
(1)			S - carrying area of wings		craft construction
Aspect ratio of boat or float ("Elongation of	ī		$\bar{L} = \frac{L}{B}$, where: L - total length of boat	GOST 1075-41	Hydro-serodynamic computations in air-craft construction
boat or float")	€	δ	B - width of boat or float	GOST 11193-42	General technical
Elongation, relative		0		GOST 2971 - 45	quantities Construction mechanics
Elongation, relative; relative longitudinal deformation on stretching	ϵ				
				0ST 9005Ludio	Building constructions
Aspect ratio of wetted surface ("Elongation of wetted surface")	λ		$\lambda = \frac{1}{B}$ where: 1 = length of wetted area	GOST 1075-41	Hydro-gerodynamic computations in gir-craft construction

(6) (5) (4) (3) (2) (1) B - width of boat or float GOST 2970-45 Hydromechanics I, i Slope Conic connections OST VKS 7530 One half of taper: Slope in machine building i = tan x (tangent of inclination angle) Construction mechanics GOST 2971-45 δ ⊿1 Contraction, absolute; absolute longitudinal deformation on compression Building constructions OST 90054-40 1 Contraction, absolute; absolute longitudinal deformation on compression

(6) (5) (4) (3) (2) (1) Construction mechanics GOST 2971-45 Contraction, relative; relative longitudinal deformation on compression Building constructions OST 90054-40 Thermodynamics OST VKS 6394 p, P Tension; force per unit of surface; pressure Measurement of time OST VKS 7158 Time equation η X-Ray technology OST VKS 6350 K, L_{I} , L_{II} , Levels of atomic L_{III}, ... energy M_{I} , M_{II} ... Building constructions OST 90054-40 D Stress in strut of framework

Declassifie	d in Part - S	Sanitized Copy	Approved for	Release 2	2012/05/10 :	CIA-RDP82	2-00039R000	100230022-2
SERVICE SERVICE STATE	SERVICE STATES	AND SAME STREET, SAME OF THE PARTY OF THE PA	Mary Services	Married School of	Section of the section of	entract to the second	opening action regions in	The state of the s

(1)	(2)	(3)	(4)	(5)	(6)
Stress in rod	N		General denotation	OST 90054-40	Building constructions
Stress in rod - general denotation	N, S			GOST 2971 - 45	Construction mechanics
Stress in upright of upper zone of frame- work	0			OST 90054-40	Building construction
Stress in upright of lower zone of frame- work	U			оѕт 90054-40	Building constructions
Stress in brace of frame- work	Ψ			OST 90054-4i0	Building construction
Acceleration	a, j			GOST 1075-41	Hydro-zerodynamic computations in air-craft construction

		(2)	(<u>\</u>)		(5)	(6)
(1)	(2)	(3)	(4)			
Acceleration	a	j			GOST 2970-45	Hydrome chanics
Acceleration	2			;	OST 2932	Theoretical mechanics
Acceleration of second	$\epsilon_{_{21}}$				GOST 2899-45	Theory of mechanisms
link relative to first,						
Acceleration of link,	€				GOST 2899-45	Theory of mechanisms
angular						
Acceleration, coriolis!	a ^K	j*			GOST 2899-45	Theory of mechanisms
Acceleration, linear	a	j			COST 1493-42	General technical quantities
					GOST 2971-45	Construction mechanics
Acceleration, linear	a				OST 90054-40	Building constructions

Declaration in Part - Societized Conv. Approved for Paleona 2012/05/40 - CIA PDD92 00020P000100220022

				(4)	(6)
(1)	(2)	(3)	(h)	(5)	• :
(1)				COST 1075-41	Hydro-aerodynamic
Acceleration of free	g				computations in air-
fall					craft construction
				OST 2932	Theoretical mechanics
	_			GOST 1493-42	General technical
Angle, plane	α, β, γ				quantities
				COST 2971-45	Construction mechanics
				OST 90054-40	Building constructions
Angle of link	φ			GOST 2899-45	Theory of mechanisms
rotation	1				honios
Angle of section	φ			COST 2971-45	Construction mechanics
rotation					
				OST 90054-40	Building constructions

	(2)	(3)	(4)	(5)	(6)
(1)	φ, θ	• ,		GOST 2971-45	Construction mechanics
Angle, polar	9,0				
(coordinates polar)	at)			GOST 1075-41	Hydro-zerodynamic
Angle of transversal V	¥				computations in air-
					craft construction
				GOST 1075-41	Hydro-aerodynamic
Angle of transversal	eta'				computations in air-
careening at stop,					craft construction
external				GOST 1075-41	Hydro-aerodynamic
Angle of transversal	ß				computations in air-
careening at stop,					craft construction
internal			6	OST VKS 6145	Optics
Angle of refraction of	i.		Angles of refraction of a light ray on passage through	051 486 445	
light ray			light ray on passage outrogs lst, 2nd k-th surface		
			are denoted by i'l, i'2i'k		

(1)	(2)	(3)	(4)	(5)	(6)
Angle of prism,	0			OST VKS 6145	Optics
refraction				#200 \ 3	Hydro-aerodynamic
Angle of longitudinal careening of stern	\mathcal{V}_{z}			GOST 1075-41	computations in air-
careeming of Sveri					craft construction
Angle of longitudinal	γ_{1}			GOST 1075-41	Hydro-aerodynamic computations in air-
careening of portion	~				craft construction
Angle of flow direction	ß		•	GOST 1075-41	Hydro-aerodynamic
with propeller blade	1				computations in air-
profile, measured					crait construction
within plane of rotation	0	,		GOST 1075-41	Hydro-aerodynamic
Angle, anti noseover	ß				computations in air-
					craft construction

	(1)	(2)	(3)	(4)	(5)	(6)
Angl	e of travel	ψ			cost 1075-41	Hydro-aerodynamic computations in air- craft construction
_	le of planet,	t			OST VKS 6203	Astronomy
Ang]	le of displacement;	γ			GOST 2971-45	Construction mechanics
	•				OST 90054-40	Building constructions
Ang	le of sliding	β			GOST 1075-41	Hydro-aerodynamic computations in air- craft construction
Ang	gle of taper of flow	ϵ			COST 1075-41	Hydro-aerodynamic computations in air- craft construction

graphic and the control of the contr

Declassified in Part - Sanitized Copy Approved for Release 201	12/05/10 · CI	A-RDP82-00039R0	000100230022-2

	(2)	(3)	(4)	(5)	(6)
(1)	•	(- /		OST VKS 7144	Aerial photography
Angle of drift	φ			GOST 1075-41	Hydro-aerodynamic
Angle of sweepback	κ				computations in air-
					craft construction
	2			GOST 1075-41	Hydro-serodynamic
Angle of pitching	P				computations in air-
					craft construction
*				GOST 1493-42	General technical
Angle, solid	ω				quantities
				GOST 1075-41	Hydro-aerodynamic
Angle of flight	θ			9	computations in air-
trajectory with					craft construction
horizon				COST 2899-45	Theory of mechanisms
Angle of friction	φ			2.2.	

			(4)	(5)	(6)
(1)	(2)	(3)	、	OST VKS 7530	Conic connections in
Angle of slope	d				machine building
				OST VKS 7144	Aerial photography
Angle of lead	ω			GOST 1075-41	Hydro-aerodynamic
Angle of setting	P			0001 2-12	computations in air-
Muszo	,				craft construction
				GOST 1075-41	Hydro-aerodynamic
Angle of setting;	φ			0002	computations in air-
inclination of blade					craft construction
section to plane of					
rotation				OST VKS 6145	Optics
Angle, central	p ·		Angle between optical	30	
n-6,	•		axis and radius of spherical surface		
			spnerical surface	7359	Measurement of time
Angle, hourly	Θ , t			OST VKS 7158	
Augre, mourt	0,0				

(6)

(6) (5) (4) (3) (2) (1) Hydromechanics GOST 2970-45 Acceleration of force of gravity General technical GOST 1493-42 quantities Construction mechanics GOST 2971-45 Building constructions OST 90054-40 Geodesy and carto-OST VKS 6345 Acceleration (tension) of graphy force of gravity, observed Geodesy and carto-OST VKS 6345 Acceleration (tension) of graphy force of gravity at the pole Geodesy and carto-OST VKS 6345 Acceleration (tension) of ge graphy force of gravity at the equator

(6) (5) (4) (3) (1) Geodesy and carto-OST VKS 6345 Acceleration of gravig" graphy tation force reduced to sea level including Buge correction, observed Geodesy and carto-OST VKS 6345 Acceleration (tension) of g'o graphy gravitation force reduced to sea level with free air and topographic correction, observed Geodesy and carto-OST VKS 6345 Acceleration (tension) of g, graphy gravitation force reduced to sea level with free air correction, observed Theory of mechanisms GOST 2899-45 Acceleration of point A, normal

-30Z **-**

		45)	· (ħ)	(5)	(6)
(1)	(2)	(3)		GOST 2899-45	Theory of mechanisms
Acceleration of point,	a				
total				GOST 2899-45	Theory of mechanisms
Acceleration of point A,	$\mathbf{a}_{\mathrm{A}}^{\mathbf{t}}$	$\mathfrak{j}_{\mathrm{A}}^{\mathtt{t}}$			
tangential				GOST 2899-45	Theory of mechanisms
Acceleration of point B	a n BA	j _{BA}			
relative to point A of					
the same link, normal				GOST 2899-45	Theory of mechanisms
Acceleration of point B	≥BA	$\boldsymbol{\mathfrak{j}}_{\mathrm{BA}}$		G001	
relative to point A of					
the same link, total				GOST 2899-45	Theory of mechanisms
Acceleration of point B	a t BA	$\mathtt{j}_{\mathtt{BA}}^{\mathtt{t}}$		0031 2077 42	
relative to point A of					
the same link, tangential				GOST 1493-42	General technical
Acceleration, angular	ϵ	29		COST THAN HE	quantities

Declassified in Part - Sanitized Copy Approved for Release 2012/05/10	CIA-RDP82-00039R000100230022-2

		(0)	(4)	(5)	(6)
(1)	(2)	(3)	``	GOST 1075-41	Hydro-aerodynamic
Acceleration, angular	ϵ			0002	computations in air-
, and the same of					craft construction
				GOST 2971-45	Construction mechanics
			,	OST 90054-40	Building constructions
				OST 2932	Theoretical mechanics
				OST VKS 6146	Optics
Phase of oscillation,	φ				
initial	ψ	q		GOST 1494-42	Electrotechnics
Phase, initial	7	·		GOST 2653-կկ	Sensitometry
Factor of graininess	G			OST VKS 6145	Optics
Focus, rear (principal)	F¹			OST VKS 6145	Optics
Focus, forward (principal)	F				

(1)	(2)	(3)	(4)	(5)	(6)
Function, power	Ū			OST VKS 6203	Astronomy
				GOST 2970-45	Hydromechanics
				OST 2932	Theoretical mechanics
Function of current	ψ , Y			GOST 2970-45	Hydromechanics
Characteristic, discharge	K			GOST 2970-45	Hydromechanics
Variation of chronometer	ŝ			OST VKS 7082	Terrestrial magnetism
Variation of clock	ω		,	OST VKS 6203	Astronomy
Chord of vertical tail	ъ <u>в.о.</u>			GOST 1075-41	Hydro-aerodynamic
group					computations in air-
4.				GOST 1075-41	Hydro-aerodynamic
Chord of horizontal tail	bz.0.			3321 2777 42	computations in air-
8 -			:		craft construction
			- 305 -		

(6) (5) (4) (3) (1) Hydro-aerodynamic GOST 1075-41 b конц, computations in air-Chord, tip craft construction Hydro-aerodynamic GOST 1075-41 Chord of wing; chord of computations in airprofile craft construction Hydro-aerodynamic GOST 1075-41 Chord of profile; chord computations in airof wing craft construction Hydro-aerodynamic GOST 1075-41 $\mathtt{b}_{\mathbf{p}}$ Chord of rudder computations in aircraft construction Hydro-aerodynamic GOST 1075-41 Chord of wheel pair computations in aircraft construction Hydro-acrodynamic computations in air -GOST 1075-41 Chord of altitude rudder - 306 craft construction

and the contract of the contra

The state of the s

(6) (5) (4) (3) (2) (1) Hydro-aerodynamic GOST 1075-41 Chord of direction rudder ъ_ж computations in aircraft construction Hydro-aerodynamic GOST 1075-41 b_A Chord, mean aerodynamic computations in aircraft construction Hydro-aerodynamic COST 1075-41 $^{b}\underline{mp}$ computations in air-Chord of trimmer craft construction Hydro-aerodynamic GOST 1075-41 Chord of aileron computations in aircraft construction Aerial photography OST VKS 7144 Chronometric timing; time \mathbf{T}_{ω} expended to determine aerial navigation elements - 307 -

Declaration in Part - Continued Conv. Approved for Palance 2012/05/40 - CIA PDD92 0002000000000222

CONTRACTOR MANAGEMENT

(1) (2) (3) (4) (5) (6) Value of one graduation 2 OST VKS 6345 Geodesy and cartoof level in seconds of graphy OST VKS 6345 Value of one graduation Geodesy and cartoof micrometer knob in graphy seconds Value of one graduation of OST VKS 6345 Geodesy and cartoplanimeter (absolute) graphy Value of one graduation OST VKS 6345 Geodesy and carto p_s of planimeter, expressed graphy in land measure (scale or relative) Center of rotation of link $P_{\mathbf{v}}$ GOST 2899-45 Theory of mechanisms instanteneous; instanteneous center of velocities

Bearing the second of the

(1)	(2)	(3)	(4)	(5)	(6)
	c			OST VKS 7114	Aerial photography
Center of projection	S			GOST 2899-45	Theory of mechanisms
Center of velocities,	$\mathtt{P}_{\boldsymbol{v}}$	P		GOP.1. 50AA-42	1110013
instantaneous;					
instantaneous center					
of rotation of link					
Center of spherical surface	С		Centers of 1st, 2nd,	OST VKS 6145	Optics
Center of Sphores			kath spherical surfaces		
			are denoted by: cl,		
			c ₂ , c _k		
Center of gravity	s,c	,		GOST 2899-45	Theory of mechanisms
of link	ŕ				
OI Trans				GOST 2899-45	Theory of mechanisms
Center of acceleration	$P_{\mathbf{a}}$	U,		3022	
of link, instantaneous		Рj			
Circuit of velocity	Γ			GOST 1075-41	Hydro-aerodynamic
-			-309 -		

(1)	(2)	(3)	(4)	(5)	(6) computations in air- craft construction
Frequency	f	υ		GOST 2970-45 GOST 1493-42	Hydromechanics General technical quantities
	,			GOST 1494-42 OST VKS 6350	Electrotechnics X-Ray technology
Frequency of oscillation	ν ν , f			cost 1075-4:1	Hydro-aerodynamic computations in air- craft construction
Frequency, cycle	ω, p			GOST 1075-41	Hydro-aerodynamic computations in air- craft construction

100 CO 10

(6) (5) (4) (3) (2) (1) X-Ray technology OST VKS 6350 Frequency of oscillations, limiting highest in continuous spectrum of X-rays Optics OST VKS 6146 Frequency of oscillations, ω angular Electrotechnics GOST 1494-42 W Frequency, angular Astronomy OST VKS 6203 Portion of year from moment Т of beginning of Bessel's fictitious year X-Ray technology OST VKS 6350 See: reduction co-2 Portion of the reduction efficient coefficient, dependent on photoeffect

(1) (4) (2) (3) (5) (6) Portion of the reduction wherein: w - coefficient OST VKS 6350 X-Ray technology coefficient determined of reduction and 7 the from the correlation portion of the reduction coefficient dependent on photoeffect. See: coefficient of reduction Portion of the reduction See: coefficient of re-OST VKS 6350 X-Ray technology coefficient, determining duction the energy of emission electrons Bessel's numbers for trans-A, B, C, OST VKS 6203 Astronomy fer of visible location D, E into mean and vice versa A*, B* (first order of magnitudes)

(1)	(2)	(3)	(4)	(5)	(6)
Number of aerial photo-	n			ost vks 71կև	Aerial photography
graphs (numbering by					
means of arabic numerals					
Number of aerial photo-	$n_{\mathbf{p}}$			OST VKS 7144	Aerial photography
graphs in one flight					
Number of aerial photo-	$^{ m n}_{ m L}$			OST VKS 7144	Aerial photography
graphs in one itinerary					
Number of aerial photo-	$^{\mathrm{n}}\mathrm{_{S}}$			OST VKS 7144	Aerial photography
graphs in area S					
Number of turns in	ω	n		GOST 1494-42	Electrotechnics
MINGELIE					
Number of waves per one	N			ost vks 6146	Optics
centimeter					

(1)	(2)	(3)	(4)	(5)	(6)
Total number of links	n			GOST 2899-45	Theory of mechanisms
in kinematic chain					
Number of kinematic couples of 1st, 2nd,	P ₁ , P ₂ P ₃ etc	^q 1, ^q 2 q ₃ etc		gost 2899 - 45	Theory of mechanisms
3rd etc class				401.4	
Number of oscillations	ν			OST VKS 6146	Optics
per second . Number of blades of propeller	*			COST 1075-41	Hydro-aerodynamic computations in air-
					craft construction
Number of itineraries	N			OST VKS 7144	Aerial photography
Number of itineraries	$N_{\mathbf{p}}$			OST VKS 7144	Aerial photography
in one flight					

(6) (5) (4) (3) (2) (1) Aerial photography OST VKS 7144 Number of itineraries $^{\mathtt{N}}\mathbf{z}^{\mathtt{r}}$ within area of photographing (SZ) Hydro≃zerodynamic COST 1075-41 $Ma = \frac{V}{a}$ computations in air-Ma. Makh number where: V - velocity of craft construction flight (or flow) a - velocity of sound General technical GOST 1493-42 quantities Number of revolutions per unit of time Hydro-aerodynamic GOST 1075-41 computations in air-Number of revolutions craft construction per minute Hydro-aerodynamic GOST 1075-41 The denotation $n_{\underline{c}}$ is computations in air-Number of revolutions permissible craft construction per second

the state of the s

(6) (5) (4) (3) (2) (1) Theory of mechanisms GOST 2899-45 Number of revolutions of link per minute Geodesy and carto-OST VKS 6345 Number of polar plani- ${\tt graphy}$ meter, constant $Re = \frac{VL}{\nu}$ Hydromechanics GOST 2970-45 Number of Reynolds Re Hydro-aerodynamic where: V- velocity of GOST 1075-41 computations in airflight (or flow) craft construction 1 - characteristic linear dimension \mathcal{V} - kinematic viscosity co-efficient GOST 2899-45 Theory of mechanisms of the mechanisms Theory of mechanisms GOST 2899-45 Н Number of freedom orders of a kinematic chain

- 316 -

(1)	(2)	(3)	(h)	(5)	(6)
Number of Strouhal	Sh		Sh = $\frac{V}{n_8D}$ where: V = velocity of flight (or flow) n_8 = number of revolutions per second D = diameter of propeller	gosт 1075-41	Hydro-aerodynamic computations in air-craft construction
Number of phases	m			GOST 11494−4;2	Electrotechnics
Number of Froude	Fr		$Fr = \frac{v^2}{gl}$ where: v - velocity g - acceleration of free fall l - length	GOST 2970⊶45 GOST 1075-41	Hydromechanics Hydromecrodynamic computations in airmoraft construction

Declaratified in Part. Societized Copy Approved for Palagon 2012/05/40 : CIA PDD92 00020P000100220022.2

(5) (6) (4) (1) (3) GOST 1075-41 Hydro-aerodynamic Number of Froude computations in airby width; relative where: V - velocity craft construction velocity by width g - acceleration of free fall B - width of boat or float GOST 1075-41 Hydro-aerodynamic Pitch of propeller computations in aircraft construction $h = \frac{H}{\overline{D}}$ GOST 1075-41 Hydro-aerodynamic Pitch of propeller, computations in airrelative where: H - pitch of craft construction propeller D - diameter of propeller Spacing of threaded OST 90054-40 Building constructions fittings in reinforced concrete member - 318 -

(6) (5) (4) (3) (2) Building constructions (1) OST 90054-40 Spacing of rivets, keys, General technical pins etc GOST 1493-42 quantities Width Building constructions OST 90054-40 Hydromechanics GOST 2970-45 b, B Building constructions Width OST 90054-40 Construction mechanics GOST 2971-45 **b**, B Width (dimensions of constructions and their elements) Construction mechanics GOST 2971-45 Width (dimensions of cross sections and their elements)

- 319 -

(4) (5) (6) (3) (1) (2) GOST 1075-41 Hydro-aerodynamic Width of track computations in aircraft construction GOST 1075-41 Hydro-aerodynamic B Width of boat computations in aircraft construction GOST 1075-41 Hydro-aerodynamic Width of midship $B_{\underline{\mathcal{M}}}$ computations in airsection craft construction GOST 1075-41 Hydro-aerodynamic Width of midship computations in airsection of fuselage craft construction OST 90054-40 Building constructions b_n Width of ledge of T reinforced concrete section

(1)	(2)	(3)	(†)	(5)	(6)
Width of float	В	$^{\mathtt{B}}n$		GOST 1075-41	Hydro-aerodyne mic computations in air- craft construction
Latitude, geographic (astronomical)	${\mathscr G}$			ost vks 6345	Geodesy and carto⊶
Latitude, geodesic	В		•	OST VKS 6345	Geodesy and carto- graphy
Latitude, geocentric	<i>q'</i>			ost vks 6345	Geodesy and carto- graphy
Latitude of heavenly	b			OST VKS 6203	Astronomy
body, heliocentric	u			ost vks 6345	Geodesy and carto-

And the second second second

(6) (5) (4) (3) (2) (1) Terrestrial magnetism OST VKS 7082 Latitude of point of observation Astronomy OST VKS 6203 β Latitude of planet OST VKS 6203 Astronomy Latitude of sun Geodesy and carto-OST VKS 6345 Latitude, mean geography graphic (astronomical) Geodesy and carto-OST VKS 6345 Latitude, mean geodesic graphy Astronomy OST VKS 6203 Latitude of point of earth surface, geographical OST VKS 6203 Astronomy P' Latitude of point of earth surface, geocentric - 32Z -

(1)	(2)	(3)	(μ)	(5)	(6)
Latitude, photographic	L			GOST 2653-44	Sensitometry
	L _s		Difference of log of ex-	OST VKS 7114	Aerial photography
Latitude of emulsion,	"s		posures corresponding to	•	
useful			two points of the character-		
			istic curve, for which the		
			gradient has the least use-		
			ful value		
Equivalent of work,	A		1	ost VKS 6394	Thermodynamics
thermal	•		A :		
Equivalent, photocentric	P		<u> </u>	GOST 2653-Ы4	Sensitometry
	Н			соят 2653-44	Sensitometry
Exposure; amount of illumination	n		1		
Exposure of photographic	Э		Determines that exposure	ost vks 7144	Aerial photography
paper, standard	П		which for a negative of		
F-F			density 2.0 corresponds to		
			- 323 -		

Declaratified in Part - Capitized Capy Approved for Palesco 2012/05/40 - CIA BDD92 000200000000220022

(1)	(2)	(3)	(4)	(5)	(6)
			the point in the under-		
			exposure area with the least		
			useful gradient		
Eccentricity	е			GOST 2971-45	Construction mechanics
				OST 90054-40	Building constructions
				GOST 2899-45	Theory of mechanisms
Eccentricity of	е			OST VKS 6203	Astronomy
alidade					
Eccentricity of	е			OST VKS 6345	Geodesy and carto-
alidade or circle					graphy
Eccentricity of meridian	е			OST VKS 6203	Astronomy
of terrestrial spheroid					

(6) (5) (3) (1) $e = \frac{\sqrt{a^2 - b^2}}{a}$ OST VKS 6345 Geodesy and carto-Eccentricity of meridian graphy of terrestrial spheroid where: a and b - lengths (first) of major (a) and minor (b) half axis of terrestrial spheroid $e^{1} = \frac{\sqrt{a^2 - b^2}}{b}$ OST VKS 6345 Geodesy and carto-Eccentricity of meridian graphy of terrestrial spheroid where: a and b, lengths (second) of major (a) and minor (b) half axis of terrestrial spheroid OST VKS 6203 Astronomy Eccentricity of orbit GOST 1494-42 Electrotechnics Electric force; intensity of electric field

(1) (2) (3) (4) (5) (6) OST VKS 6345 Geodesy and carto-Element of reduction, graphy linear Θ, OST VKS 6345 Geodesy and carto-Element of reduction, graphy angular OST VKS 6345 Geodesy and carto-Element of centering, linear graphy OST VKS 6345 Geodesy and carto-Element of centering, graphy angular OST VKS 6203 Elements of epoch to, Astronomy osculatory Energy A, E COST 1493-42 General technical quantities GOST 2970-45 Hydromechanics Energy E, U

Declaratified in Part. Continued Conv. Approved for Paleona 2012/05/40 : CIA BDD92 00020B000400220022.2

	(0)	(3)	(4)	(5)	(6)
(1)	(2)	(5)	·		Building constructions
ergy	W	U		OST 90054-40	Burnaring Comparator
	E			OST VKS 6394	Thermodynamics
ergy	В			OST VKS 6394	Thermodynamics
ergy	е		Denotation for 1 Kg	051 VAS 0574	•
			In denotation for 1		
			kg-mole it is preceded,		
			if necessary, by the		
			letter M		
				GOST 1493-42	General technical
nergy, interval	U				quantities
				OST VKS 6394	Thermodynamics
· ·	u		Denotation for 1 Kg	OST VKS 6394	Thermodynamics
nergy, interval	•		In denotation for 1		
			kg-mole it is preceded,		
			if necessary, by the		
			letter M		
			- 327 -		

(6) (5) (4) (2) (3) (1) Thermodynamics Denotation relates to 1 Kg OST VKS 6394 Energy of liquid at the moment of incipiency of vaporization, interval OST VKS 6350 X-Ray technology Energy of radiation of X-rays of wave length 2 OST VKS 6350 X-Ray technology Energy of radiation of X-Rays, striking a given surface of irradiated medium X-Ray technology OST VKS 6350 Energy of radiation of X-rays, absorbed by the irradiated medium

Declaration in Part - Spritted Copy Approved for Paleons 2012/05/40 - CIA BDD92 00020B000400220022

(1)	(2)	(3)	(4)	(5)	(6)
Energy of radiation of X-rays passing	w W			OST VKS 6350	X-Ray technology
through a given area,					
of time					
Energy, kinetic	E			OST 2932	Theoretical mechanics
Energy, kinetic	T		•	GOST 2970 - 45	Hydromechanics
				GOST 1493-42	General technical
Energy, kinetic;	E	Ť		GOST 2899-45	Theory of mechanisms
Energy, kinetic;	Т				
kinetic force	-			GOST 2971⊸45	Construction mechanics

The second secon

Declassified in Part - Sanitized Copy Approved for Release 2012/05/10	CIA-RDP82-00039R000100230022-2

-	(2)	(3)	(4)	(5)	(6)
(1) Energy of superheated	u		Denotation relates to 1 Kg	OST VKS 6394	Thermodynamics
steam; interval	T			GOST 2970-45	Hydrome c hanics
Energy, potential	Π			GOST 1493≖42	General technical
				OST 2932	Theoretical mechanics
Energy, potential;	υ , π			GOST 2971⊷45	Construction mechanics
expansible energy				ost vks 7637	Light measurements
Energy, light Energy, free	L F			GOST 11493⊷42	General technical
Energy, free	f		Denotation for 1 Kg	OST VKS 6394	Thermodynamics
PHSTEN . Tree			In denotations for 1		

(1)	(2)	(3)	(4)	(5)	(6)
			Kg - mole it is preceded,		
			if necessary, by the lett	er M	
		• 4			
Energy of section,	<u>Э</u>			GOST 2970-45	Hydromechanics
specific	_				
Energy of saturated	U"		Denotation relates to	OST VKS 6394	Thermodynamics
steam, interval			1 Kg		
Energy, expansible;	u , ///			GOST 2971-45	Construction mechanics
potential energy					
Enthalpy; heat	I			GOST 1493-42	General technical
content					quantities
Entiropy	s		:	GOST 1493-42	General technical
ьпо в гору	5		:	GOST 1493=42	quantities
			*		4
				ost vks 6394	Thermodynamics
			- 331 -		

Ball Street, March 1987

(1)	(2)	(3)	(4)	(5)	(6)
Entigropy	S		Denotation for 1 Kg In denotations for 1	ost vks 6394	Thermodynamics
			Kg - mole it is pre- ceded, if necessary,		
			by the letter M		
Entaropy of a liquid at the moment of in-	s¹		The denotation relates to 1 Kg	ost vks 6394	Thermodynamics
cipiency of vaporization				ost vks 6394	Thermodynamics
Entaropy of superheated steam	Š		The denotation relates to 1 ${\tt Kg}$	051 VAS 0394	The Indiana
EntBropy of dry saturated steam	s"		The denotation relates to 1 Kg	OST VKS 6394	The rmodynamics
Brightness	В			ost vks 7637	Light measurements
				GOST 2653-44	Sensitometry

encernaera (STS)

PART II

 $$\operatorname{\textsc{Denotations}}$ of terms in alphabetical order of letters and of special denotations.

Denotations

Terms

1.	Latin	Alphabet.
1.0	丁マハナガ	WThirance.

A	Azimuth of geodesic line
A	Azimuth of planet
Ą	Activity of developing action of developer
A	Amplitude
A	Astronomical azimuth
A ,	Atomic weight
A	Vector potential
A	True azimuth
A	Reading by aneroid
A	Loss of light in body by absorption, expressed in parts
	of flux striking the body
A	Work
A	Reaction of support in plane system; vertical component
	of reaction
A	Thermal equivalent of work
A	Angular magnification
A	Energy
А, В, С,	Coefficients of calibration formulas for platinum resistance
	thermometer
А, В, С,	Points of a link

A, B, C,	Angles of a spherical triangle.
A, B, C,	Centrifugal moment of inertia relative to coordinate
	axes X, Y, Z.
А, В, С,	Equatorial gauss' constants
A, B, C, D,	Numbers of Bessel for reduction from apparent place to
E, A', B'.	mean place and vice-versa.
	(first system)
(A, B, C,)	Total reactions of supports in plane system
Aĸ	Internal cone
Am	Magnetic azimuth
Ao	Reading of aneroid corrected for temperature
Aλ	Monochromatic photoactinic flux
A t	Back azimuth
A', B'	See numbers of Bessel for reduction of apparent place
	to mean place, and vice-versa, A, B, C, D, E, A', B'.
a	Amplitude of oscillation
a	Aerodynamic linear stagger
a	Major half axis of terrestial spheroid
a	Major semi axis of orbit
a	Upper base of plane sheet frame of internation grid
a	Length of major half axis of terrestial spheroid
a	Linear acceleration
a	Reading of micrometer on adjusting hairlines to
	lowest mark
а	Total acceleration of point
a	Correction for condition of aneroid
a	Distance of framework to the nearest section edge
a	Distance along optical axis from object and image
	to forward principal point

а	Velocity of sound
a	Temperature conductivity of substance
a	Acceleration
a	Spacing of rivets, keys, pins, etc.
a, b, c,	Coefficients of formula correlating thermoelectromotive
	force of platinum-platinum-thodium thermocouple with
	the temperature
a, b, c,	Sides of spherical triangle
a, b, c,	Equatorial gauss' constants
a, b, c, d,	Plane sheets of internation grid
	Frame dimensions:
	a - Upper base
	b - Lower base
	c - Lateral side
	d - diagonal
a, b, c, d,(Siderial constants of Bessel
a',b',c',d',	
an A	Normal acceleration of point A
a_A^t	Tangential acceleration of point A
a_{BA}	Total acceleration of point B relative to point A of
	the same link.
$a_{_{B\mathcal{A}}}^{\;n}$	Normal acceleration of point B relative to point A of
	the same link
a_{BA}^{t}	Tangential acceleration of point B relative to point A
	of the same link
ag	Spacing of threaded framework in reinforced concrete
	member
20, e0, So	Osculatory elements of epoch to

```
Distance along optical axis from object and image
              to rear principal point
a', b', c',d' Sider al constants of Bessel
              Corrolis' acceleration
              Geodesic latitude
В
              Length of photographic base
              Coefficient of load for swept area
               Magnetic induction
               Reading of mercury barometer
               See A, B, C, (A, B, C)
               Width
               Width of track
               Width of boat
 В
               Width of float
               Latitude of sun
               Brightness
                External cone
                Width of boat
 Bol
                Width of midship section
 Bon
                Width of midship section of fuselage
  Вм. ф
                Width of float
  Вп
                Residual magnetic induction of body
  ^{\mathrm{B}}d
                Internal magnetic induction
  B_{i}
                Mean geodesic latitude
  Bm
                Maximum magnetic induction
  Bmax
                Residual magnetic induction of body
  B_r
                 Internal magnetic induction of saturation
  B_S
                 True pressure of air
  B_o
```

В'	See A', B'
Ъ	Basis of scale in photographing
Ъ	Heliocentric latitude of heavenly body
р	Length of minor half axis of terrestial spheroid
р	Minor half axis of terrestial spheroid
ъ	Inclination of horizontal axis relative to horizon
Ъ	Lower base of plane sheet frame of international grid
ъ	Reading of micrometer adjusting the hairlines to the
	highest mark
b	Susceptance
Ъ	See a, b, c.
Ъ	Temperature coefficient of aneroid
Ъ	Chord of wing; chord of profile
Ъ	Width
2b	Interval of floats
ъд	Mean aerodynamic chord
b <u>₿</u>	Chord of elevator
b <u>e.o</u>	Chord of vertical tail group
Ъ <u>г.о</u>	Chord of horizontal tail group
b <u>۴</u>	Chord of wing base
р жонц	Chord of wing tip
Ъ <u>н</u>	Chord of directional rudder
b <u>п</u>	Width of ledge of T - reinforced concrete section
b <u>p</u>	Chord of rudder
dm d	Chord of trimmer
b <u>∍</u>	Chord of aileron
bx,by, bz	Projection of base on axes of coordinates or planes
ъ•	See a', b', c'
С	Base distance of cone

C		Coefficient of head resistance
С		Coefficient of lift force
C		Coefficient of Chezy
C		Molecular heat capacity
C		Correction for emergent column
C		Constant of range finder; coefficient of range finder
C		Constant of displacement law - law of W. Wien.
С		Constant of $e_{\hat{1}}$ uations of Wien and Planck
С		Projection of point of zero distortions on terrain
С		See, A, B, C (A, B, C).
C		Thermal Capacity
C		Center of spherical surface
С		Center of gravity of link
C		Electric capacity
Cz		Second constant of equations of Wien and Planck
°C		Temperature measured by internation scale
С		Base distance of cone
С	٠	Lateral side of plane sheet frame of international
		grid
С		Collimator error
С		Relative thickness of profile
С		Reduction factor of magnetic theodolite
С		Correction
С		Correction for emergent mercury column of thermometer
С		Correction of direction by centering in seconds of arc
C		Correction of aneroid scale
_		Velocity of disturbance propagation (ways velocity)

С	Velocity of wave propagation in vacuo
С	Light velocity
С	See, a, b, c.
C	Thermal capacity (true)
C	Thermal capacity of substance; specific thermal capacity
С	Depth of wing profile
C	Thickness of wall, board, side of metal beam
С	Point of zero distortions of aeri photograph
C ·	Specific thermal capacity
$c_{\mathcal{A}}$	Correction for condition of neroid
$c_{\mathcal{B}}$	Coefficient of dynamic load
C rue	Rated thickness of welded seam
c_f	Coefficient of surface friction
c _m	Coefficient of moment (aerodynamic)
C m	Mean thermal capacity (within interval
	$t_{z}^{\circ}C - t_{z}^{\circ}C$
c_n	Normal thermal capacity of substance
$c_{\mathcal{P}}$	Coefficient of negative thrust of propeller
Cp	Thermal capacity at constant pressure (true)
^C R	Coefficient of aerodynamic thrust of propeller (total)
c_s	Coefficient of speed
$c_{_{S}}$	Thermal capacity of body or system of bodies
c_{V}	Relative velocity by width; Froude's number by width
$C_{\mathcal{U}}$	Thermal capacity at constant volume (true).
$^{\text{C}}_{\mathcal{W}}$	Coefficient of hydrodynamic resistance
c_{κ}	Coefficient of head resistance
(-cx)	Coefficient of power by velocity

$c_{\kappa i}$	Coefficient of induction resistance
$C_{k_{1}}$	Coefficient of tangential force of resistance
$(-c_{\mu_{\perp}})$	Coefficient of tangential force
c_{kf}	Coefficient of friction, relative to midship or area
<i>ν</i>)	of the wings
Cxp	Coefficient of profile resistance
cy	Coefficient of lift force
$c_{y_{\pm}}$	Coefficient of normal force
Cz	Coefficient of lateral force
c_{z_I}	Coefficient of transversal force
CA	Coefficient of static load
c'	See a', b', c'.
D	Displacement, by weight, of boat
D	Diameter of propeller
D	Diopter
D	Dosage (physical)
D	Magnetic deviation
D	Optical density; optical density of blackening
D	Rated diameter
D	Stress in street of framework
D	Electric displacement; electric induction
D, E, F,	Centrifugal moments of inertia relative to coordinate
	axes X, Y, Z.
D_o	Optical density of fog
D_n	Optical density of base
(D _n)	Displacement, by weight, of float
Dmax	Upper limit of blackening; maximum optical density

$^{\mathrm{D}}r$	Optical density of print
D _S	Distance from airdrome to area of photographing
$\mathbf{D_t}$	Depression of zero point after temperature t in
	a thermometer subjected to ageing
Du	Principal refraction of lens
D_{κ} , D_{γ} ,	Sides limiting area covered by useful dimension of aerial
	photograph upon terrain
Dφ	Effective optical density
D_o	Major diameter of cone
$D_{\hat{o}}$	Dosage (physical) of X-rays on surface of irradiated
	medium
D _o	Length of base reduced to sea level
D_o	Refraction of infinitely thin lens
\mathtt{D}_{1}	Refraction of first surface of lens
$D_{\mathcal{Z}}$	Refraction of second surface of lens
D	Regular optical density
DH	Diffusional optical density
$^{ extstyle D} \mathcal{\Sigma}$	Integral optical density
\mathbb{D}_{∞}	Limit optical density
d	Displacement, by weight, of float
d	Horizontal distance between two points
d	Diagonal of plane sheet frame of international grid
d	Diameter
d	Relative weight
d	Distance along optical axis between vertexes of first
	and last refracting surfaces; axial depth of lens or
	system
d	Rated diameter

(d)	Thickness of wall, board, side of metal beam etc.
	(dimensions of cross sections and their elements)
dy	Diameter of aperture stop
d'p'	Diameter of field stop
ďŧ	Depression of zero point after temperature
dy	Longitudinal useful dimension of aerial photograph
d _y	Transversal useful dimension of aerial photograph
d o	Minor diameter of cone
$d_1, d_2 \dots d_K$	Distance along the optical axis between vertexes of adja-
1, ~	cent refracting surfaces, 1st and 2nd, 2nd and 3rd,
	and Kth and Kt1-th
E	Kinetic force; kinetic energy
E	Modulus of longitudinal elasticity
E	Modulus of elasticity
E	Intensity of electric field; electric force
E	Illumination
E	Plane of transformation; plane of screen
E	See, D. E, F.
E	Point of East
E	Eccentric anomaly
E	Energy
е	Electron charge
е	Emittive power of body
е	Linear element of centering
е	Distance between rows of rivets, keys, pins etc.
е	Eccentricity
е	Eccentricity of alidade or circle

Eccentricity of meridian of terrestial spheroid Eccentricity of meridian of terrestial spheroid Eccentricity of orbit Electromotive force (e) Electric potential Difference of potentials (e) Thermoelectromotive force of a thermocouple e_t Osculatory element of epoch t_o (see a_o , e_o , Ω_o Linear element of reduction Second eccentricity of meridian of terrestial spheroid Magnetomotive force Forward focus, (principal) Area swept by propeller Area Area of discharge Light flux Free energy Force Force of thrust of propeller-engine assembly See, D, E, F. F Number of Froude Force of inertia Rear focus (principal) Coefficient of friction Coefficient of sliding friction Forward (principal) focal distance of optical system Area of section Correction for earth curvature and refraction

```
Constant of Newtonian attraction
               Distance of lateral mark of grid from median
               Free energy
              Rise of elevation, arc, arch etc.
              Depth of clamber
              Rise of profile curvature
              Focal distance
              Frequency
              Frequency of oscillations
f, g, G, h, H, Quantities for the reduction of apparent location of
i, f', g', G' planet to mean and vice-versa (second system)
 Fx
              Focal distance of aerial photographic camera
              Focal distance of objective of aerial photographic
              apparatus
              Rear (principal) focal distance of optical system
              Relative curvature of profile
G
              Weight
              Weight of link
              Weight of discharge
G
              Magnetic conductivity
G
              Modulus of shear
G
              Flight weight of airplane
              Permanent point load; permanent loading
             Point load; point loading
G
              Factor of graininess
              Flight weight of
             Total load of airplane
             Useful load
             Weight of empty airplane
```

G <u>m</u> + <u>c</u>	Weight of fuel and lubricant
G _{s-}	Surface electrical conductivity of dielectric for
	direct current
G _v ⊷	Volumetric electrical conductivity of dielectric
	for direct current
G_	Electric conductivity of dielectric for direct current
G/N	Load per H.P.
G/S	Load per m ² ; specific load
G1	See: f, g, G, h, H, i, f', g', G'
g	Conductance
g	Weight of the entire airplane in flight
g	Gradient; slope of characteristic curve
g	Observed acceleration (intensity) of force of gravity
g	Permanent distributed load; load, permanent uniform
g	Permanent uniform load; permanent distributed load
g	See: f, g, G, h, H, i, f', g', G'
g	Uniform loading
g	Acceleration of free fall
g	Acceleration of gravitation force
ge	Acceleration of intensity of gravitation force at
	equator
g _{min}	Least useful gradient (corresponding to beginning of
	distinct rendition of light components)
g _{min}	Useful minimum gradient
g _p	Acceleration (intensity) of gravitation force at the
	pole
gs-	Surface electrical conductivity of dielectric for
	direct current

8v-	Volumetric electrical conductivity of dielectric
	for direct current
go	Observed acceleration (intensity) of force of gravity
	reduced to sea level with correction for free air
80	Observed acceleration of force of gravity, corrected
	for free air and including topographic correction
g¹	See f, g, G, h, H, i, f', g', G'.
go"	Observed acceleration of force of gravity reduced
80	to sea level with Bouget correction
g_	Electric conductivity of dielectric for direct current
9 00	Mean gradient
6 H	Absolute altitude of point
Н	Vector sum of north and east components of intensity
	of terrestial field; horizontal component of terrestial
	field intensity
Н	Height
Н	Height of dam
Н	Altitude of flight
Н	Height of plane at moorings
Н	Altitude of plane above terrain
Н	Horizontal thrust
Н	Length of conic connection; height of conic connection
Н	Amount of illumination; exposure
Н	Pressure
Н	Intensity of magnetic field
Н	Forward principal point
Н	Reaction of support in plane system; horizontal
	component of reaction

H	See: f, g, G, h, H, i, f^t , g^t , G^t
Н	Number of degrees of freedom of kinematic chain
Н	Pitch of propeller
(H)	Heating value; heating power
$H_{ extsf{A}}$	Altitude above airdrome of departure
$H^{\overline{N}}$	Height of boat
HM	Height of midship section
H M. 90	Height of midship section of fuselage
H 24	Horizontal component of terrestrial field intensity
	(vector sum of north and east components)
$\mathtt{H}_{\underline{\mathbf{n}}}$	Practical ceiling
$H_{\underline{\mathbf{c}}}$	Coercive force; reluctivity
(H _C)	Height of plane grounded
H _m	Theoretical ceiling
$^{\rm H}$ d	Intensity of demagnetizing field of magnet
$H_{\mathbf{e}}$	Intensity of external magnetic field
$H_{\dot{1}}$	Horizon of instrument
$H_{\dot{a}}$	Intensity of internal magnetic field
Hi	Reading of flight altitude by the altimeter
$H_{\mathbf{m}}$	Absolute ceiling of airplane
H _p	Practical ceiling of airplane
$\mathbf{H}_{\mathbf{T}}$	Altitude of airplane above mean level of given terrain;
	photographic altitude
${\tt H}_{ m T}$	Intensity of terrestrial magnetic field (total)
$\mathbf{H}_{\mathbf{u}}$	Maximum working altitude
H1	Rear principal point
H ₀	Intensity of demagnetizing field
h	Height

h	Amplitude of waye
h	Altitude of ray incidence to system
h	Height of float
h	Altitude of planet above horizon
h	Height of layer of atmospheric precipitation
h	Depth
h	Depth of flow of under water .
h	Metacentric height
h	Quantum constant of planck
h - h	Direction of principal horizontal on aerial photograph
h	Relative pitch of propeller
h	Planck's constant
h	Transcendence of one point of ground surface above
	another
h	Transcendence of one point of terrain above another
h	Difference of altitudes
h	Distance between wing chords
h	See, f, g, G, h, H, i, f', g', G'.
^h A	Altitude of airdrome above sea level
h _a	Transcendence of mean level of relief of terrain above
	airdrome
$^{\mathrm{h}}\mathcal{B}$	Metacentric transversal height
hn	Height of ledge of T-reinforced concrete section
h zus	Thickness of welded seam along leg of right triangle
hc - hc	Direction of line of undistorted scale
h'm	Mean difference of altitudes within one aerial photo-
	graph

h _i - h _i	Direction of line of horizon on aerial photograph
${\tt h}_{\tt L}$	Metacentric longitudinal height
h _o	Height of wave in reservoir
h _o	Useful height of reinforced concrete section
h _o	Elevation of mean relief level of terrain above sea level
$h_1, h_2, \dots h_k$	Height of incidence of ray at 1st, 2nd, kth refracting
	surfaces
h [‡]	Height of exit of ray from system
I	Intensity of radiation
I	Magnetic dip
I	Moment of inertia
I	Intensity of light; intensity of light of point
•	source
I	Angular density; light mm intensity of radiant flux
I	Inclination
I	Enthalpy; heat content
I _d	Residual magnetization of body
I _{max}	Maximum magnetization; maximum intensity of magnetization
$I_{ exttt{med}}$	Median magnetization; median intensity of magnetization
$I_{\mathbf{r}}$	Residual magnetization of substance; residual intensity
	of magnetization of substance
I _s	Intensity of magnetization of saturation; magnetization
	of saturation
Iλ	Intensity of radiation of X-rays of λ wave length
Ιλ	Intensity of light of a monochromatic radiant flux
	of wave length λ ; angular density of wave length λ
I _o	Intensity of radiation of X-rays on the surface of the

irradiated medium Principal convergence point of aerial photograph i Altitude of horizontal rotation axis of instrumment's i telescope above the ground Coefficient of rigidity i Inclination of the alidade axis relative to the horizon Transmission ratio Radius of inertia Intensity of current; current See f, g, G, h, H, i, f', g', G'. Heat content Heat content of superheated steam Angle of inclination of plane of motion relative to plane of ecliptic Angle of incidence of light ray Inclination Radii of inertia relative to the axes Angle of refraction of light ray į١ Heat content of liquid at the moment of incipiency of vaporization Heat content of dry superheated steam i" Coefficient of resistance J Moment of inertia J Magnetization; intensity of magnetization Intensity of vortex filament; intensity of vortex Intensity of light Specific intensity of light Moments of inertia relative to the coordinate axes XY, ZX, ZY.

Jxy,Jzx,Jzy	Centrifugal moments of inertia relative to axes
	X, Y, Z.
j	Acceleration
(j)	Linear acceleration
(j)	Total acceleration of point
(j_A^n)	Normal acceleration of point A.
(j*)	Tangential acceleration of point A
j BA	Total acceleration of point B relative to point A $$
BA	of the same link
(j ⁿ) BA	Normal acceleration of point B relative to point A
	of the same link
(j ^t (BA	Tangential acceleration of point B relative to point
Dri	A of the same link
j <u>*</u>	Coriolis' acceleration
K	Efficiency
K	Coefficient of scale alteration in reproduction
К	Coefficient of refraction
K	Moment of inertia of magnetic system
К	Relative visibility
K	Forward junction point
K	Absorption of light per centimeter of path
K	Constant of continuous wedge
К	Discharge characteristic
(K)	Intensity of electric field; electric force
К, L, M, N	Series of characteristic spectrum of X-rays
$K, L_{I}, L_{II},$	Energy levels of atom
L _{III} M _I ,M	
Kz	Hydrodynamic efficiency

$^{ ext{K}}$ \underline{np}	Constant of development kinetics
К <u>с</u>	Constant of stepped wedge
^K ≠	Coefficient of filtration
κ_{f_z}	First power of light filter
K +2	Second power of light filter
$^{\mathrm{K}}$ $_{\mathcal{A}}$	Relative visibility of monochromatic light of wave
	length λ .
Κı	Rear junction point
k	Gauss' constant
k	Performance by weight
k	Taper
k	Coefficient of scale alteration in reduction
k	Coefficient of flotation margin
k	Coefficient of expenditure fluctuation
	(ratio of maximum hourly expenditure to average hourly
	expenditure on a yearly basis)
k	Coefficient of light quenching
k	Coefficient of coupling
k	Coefficient of heat transfer
k	Coefficient of rolling friction
k	Coefficient in correction for temperature of cold
	end of thermocouple
k	Coefficient of filtration
k	Constant annual aberation
k	Number of propeller blades
(k)	Scale

k g	Degree of saturation of ground interstices by water
k'	Coefficient of scale alteration in transformation
k'	Coefficient of light absorption
k′	Constant daily aberration
I.	Geodesic longitude
L	Distance of flight
L	Length
L ·	Length of cone
L	Length of dam along crest
L	Length of landing run
L	Length of take off run
L	Length of airplane
L	Length of seconds pendulum
L	Inductance; coefficient of self-induction
L	Interval of exposure
L	True longitude of the sun
L	Momentum moment of system (principal)
L	Momentum moment of point
L	Reading of limb with "circle left"
L	Reading of the horizontal or vertical circle with the
	vertical circle disposed to the left
L	Total length of boat
L	Work
L	Distance from center of gravity of the airplane to
	hinges of tail group
L	Light energy
т.	Latent heat

L	Photographic latitude
L	See K, L. M, N.
(L)	Power
(L)	Work
2 L	Length of wave in reservoir
L <u>z.o</u>	Distance from center of gravity of airplane to the
2.0	hinges of horizontal tail group.
L <u>æ</u>	Length of stern portion of boat
L <u>en</u>	Length of between steps portion of boat
L _M	Length of one ittenerary of photographing
L _H	Length of prow portion of boat
(Lnon)	Distance of flight
(L m/c)	Landing run
(L pa3)	Take off rum
L _{AB}	Distance between points A and B of link
Lg	Useful interval of exposure
L _{Ĺ,} K	Mutual inductivity; coefficient of mutual induction
L max	Total interval of exposure
LN	Total length of photographic it neraries
//	(laid down during one flight)
$^{ ext{L}}_{\mathcal{S}}$	Total length of all photographic itineraries within
J	the given area.
L _S	Grading of photographic paper, corresponding to the
J	useful width of negative emulsion
Ls	Useful width of the emulsion
L _x , L _y	Lines limiting area covered upon terrain by one aerial
, ,	photograph
L _T , L _{TL} , L	m See K, L _I , L _{II} , L _{III} ···· M _I , M _{II}
Ī.	Aspect ratio of boat or float

1	Altitude of sighting point above ground
1	Heliocentric longitude of heavenly body
1	Length
1	Length of wing float
1	Span of wings
1	Rated length of cone
1	Wetted length
(1)	Course
12.0	Span of horizontal tail group
1 &	Length of stern portion of float
1 21	Length of prow portion of float
1 ₀	Interval of brightness of object
l _ē	Span of aileron
= ¹ AB	Distance between points ${\tt A}$ and ${\tt B}$ of link
11	Interval of illumination of optical image
1 _n	Total length aerial photography film
1 _t	Length of tape, wire or rod at temperature
l _k	Side of aerial photograph parallel to the axis of
,	abscissa g
ly	Side of aerial photograph parallel to the axis of
	ordinates
$1_{m{z}}$	Correction for displacement of zero point
M	Mutual inductivity; coefficient of mutual induction
M	Moment of rotation
M	Mean freenwich time, reckoned from noon
M	Moment of flexure
М	Mass discharge
М	Molecular weight

M	Moment of couple of force
М	Bearing moment of flexure
М	Total aerodynamic moment
М	Total hydrodynamic moment
M	Moment of force
M	Moment of force relative to a point
M	Curvature radius of meridian section of terrestial
	spheroid
M	See, K, L, M, N
М	Mean anomaly
М	Mean solar reenwich time
(M)	Mass
м О	Zero point of vertical circle
мZ	Zenith point of vertical circle
Ma	Number of mach
^M <u>≭</u>	Moment of torsion
M <u>e</u>	Center moment
$^{\mathrm{M}}$ s	Meridian point of horizontal circle
Mx, Mx ₁	Moment of bank
$M_{y}, M_{y_{1}}$	Moment of yawing
$^{\mathrm{M}}z$	Point of zenith of vertical circle
$^{\mathrm{M}}z$, $^{\mathrm{M}}z_{1}$	Moment of pitching
M q	Moment of longitudinal trim
M ψ	Moment of drift
$^{\rm M}$ o	Mean anomaly of epoch
$^{ m M}$ ı, $^{ m M}$ п	See K, L _I , L _{II} , L _{III} M _I , M _{II}
l:M	Numerical scale of photoplan

	Quantity for computation of precession in right
m	ascension
	Apparent magnitude of star
m	
m	Coefficient of weir discharge
m	Magnetic mass
m	Maximum linear scale
m	Mass
m	Mass of link
m	Mass of planet or comet
m	Mass of a point
m	Local mean time, reckoned from noon
m	Mean solar time (local)
mı	Number of phases
m _C	Civil time (local)
^m M	Coefficient of aerodynamic moment (total)
$^{\rm m}M_{o}$	Coefficient of moment at zero lift force
m _K , m _K ,	Coefficient of bank moment
m_y , m_{y_q}	Coefficient of yawing moment
mz, mz,	Coefficient of pitching moment
m 🛮	Coefficient of moment by width and load
l:m	Numerical scale of aerial photograph along line $\mathbf{h_c}$ - $\mathbf{h_c}$
	(line of undistorted scale)
l:m	Numerical scale of transformed aerial photograph
1: m _h	Numerical scale along principal horizontal
1: m _v	Numerical scale along principal vertical

N	Magnetic coefficient of demagnetization
N	Power
N	Normal force
N	Constant nutation
N	Longitudinal force
N	Projection of nadir point of aerial photograph upon
	terrain
N	Radius of curvature of terrestial spheroid Section
	perpendicular to the meridian section
N	See K, L, M, N
N .	Point of North
И	Stress in rod, general denotation
N	Number of wares per one centimeter
N	Number of itineraries
Ne	Effective power
N nom	Nominal power
Nn	Needed power
N p	Available power
N PKC	Operation power
NB	Ballistic coefficient of demagnetization
N _b	Ballistic coefficient of demagnetization of a permanent
b	magnet
N max	Maximum power
Nφ	Number of itineraries per one flight
$^{ m N}\mathcal{Z}$	Number of itineraries within area of photographing ($\mathcal{S}_{\!\!\!\!Z}$)
~	

Valency

on
oaram
ogram
ic

n S	Number of aerial photographs within area S
$n_{\mathcal{S}}$	Number of revolutions per second
n '	Index of refraction of medium following the optical
,	system
$^{\mathrm{n}}\mathcal{L}$	Total expenditure of aerial photographs for the entire
	area of photographing (S Σ)
0	Stress in upright of upper zone of framework constructions
0 .	Central projection of principal point of aerial photo-
	graph upon the terrain
OK	Direction of flight velocity
0 K 1	Longitudinal axis
04	Axis of lift force, located within the plane of symmetry
	of the airplane and perpendicular to 0μ
$\circ y_{1}$	Normal axis
049	Vertical axis
0 z	Axis of lateral force
Ozi	Transversal axis
0	Principal point of aerial photograph
Op	Vertex of angles in photo - triangulation
P	Active power
P	Temporary point load; temporary point loading
P	Pressure; force per unit of surface; tension
P	Power
P	Power of radiation
P	Perimeter of theodolite traverse
P	Plane of the negative; picture plane
P	Lift force of airplane

P	Polarization
Ρ.	Constant precession
P	North pole
P	Pressure force
P	Concentrated load; point load
P	Point of intersection of plane of aperture stop with
	the optical axis
P	Thrust of propeller
P	Photometric equivalent
(P)	Momentary rotation center of link; momentary center
•	of velocities
$^{ ext{P}}\!\mathcal{D}$	Power of physical dosage
$^{\mathrm{P}}\mathcal{D}_{o}$	Power of physical dosage of X-rays on the surface of
	irradiated medium.
$\mathtt{P}_{\underline{\boldsymbol{\mathcal{U}}}}$	Force of inertia
P_a	Momentary center of acceleration of link
P_{a}	Power of radiation of X-rays absorbed by the irradiated
	medium
$\mathbb{P}_{\!f}$	Power in Foucault currents; losses by Foucault currents
Ph	Power in hysteresis; losses by hysteresis
Phf	Power in hysteresis and Foucault current: losses by hys-
	teresis and Foucault currents
(Pj)	Momentary center of acceleration of link
$^{\mathtt{P}}v$	Momentary center of rotation of link; momentary center
	of velocities
$^{P}\lambda$	Power of radiation of X-rays of wave length λ
Po	Power of radiation of X-rays striking the surface of
	the irradiated medium

P ₁ , P ₂ , P ₃	Number of kinematic couples of 1st, 2nd, 3rd etc.
etc.	class
1 P	Covering capacity
P'	Point of intersection of the plane of field stop
	with the optical axis
P'	South Pole
Pa	Equatorial horizontal parallar of the moon at
·	median distance from earth
р	Temporary distributed load; temporary uniform load
р	Horizontal parallar; longitudinal parallar
р .	Pressure
p	Pressure; force per unit of surface; tension
Р	Excess pressure
р	Area distortion
р	Coefficient of formula of magnet interaction on
	development by power
р	Coefficient of Schwartz schild
р	Cyclic frequency
р	Load per m 2 ; specific load
р	Pressure
р	Parallax of planet
p	Perimeter
Р	Half-perimeter of a triangle
р	Distance along the optical axis from object and image
	to aperture stop
р	Uniform load
p	Specific pressure; pressure

p	Value of one division of the planimeter (absolute)
(p)	Momentary center of velocities
(p)	Pole of the velocity plane
(p)	Pole of a velocity bundle
p_a	Absolute pressure
P_a	Pole of acceleration plane
p_a	Pole of an acceleration bundle
p _b	Atmospheric pressure; barometric pressure
P _e	Actual value (of measured) pressure
pf	Specific power in Foucault currents; specific losses
	by Foucault currents
P _{fv}	Volumetric power in Foucault currents; volumetric
	losses by Foucault currents
p_{H}	Atmospheric pressure at altitude H
p_h	Vacuum; rarefaction
p_h	Specific power in hysteresis; specific losses by
	hysteresis
$p_{\mathbf{hf}}$	Specific power in hysteresis and Foucault currents;
	specific losses by hysteresis and Foucault currents
$\mathbf{p}_{\mathbf{hfv}}$	Volumetric losses by hysteresis and Foucault currents;
	volumetric power in hysteresis and Foucault currents
$\mathbf{p}_{\mathbf{h}\mathbf{v}}$	Volumetric losses by hysteresis; volumetric power in
	hysteresis
p _i	Reading of instrument
(p _j)	Pole of acceleration plane
(p _j)	Pole of acceleration bundle
\mathbf{p}_{m}	Limit pressure of instrument

p_n	Permissible pressure of instrument
p _s	Value of one division of planimeter; expressed in land
	measures (scalar or relative)
$\mathcal{P}_{\mathcal{V}}$	Pole of velocity plane
Pv	Pole of velocity bundle
p'	Distance along the optical axis from object and
,	image to field stop
\mathcal{P}_{\odot}	Equatorial horizontal parallax of the sun at median
	distance from the earth
P	Pressure coefficient
Q .	Principal plane of objective
Q	Amount of light
Q	Amount of heat
Q	Amount of warmth
Q.	Coefficient of Callier
Q	Head resistance
, Q	Head resistance of airplane
Q	Volumetric discharge
Q	Intersecting force; transversal force
Q	Constant number of polar planimeter
Q	Reaction power
Q	Force
Q.	Concentrated load; point load
Q	Heat producing capacity; heat value
Q 21	Force of inertia
Q Z	Tangential resistance force
(Qxy, Qzx, Qzy)	Centrifugal inertia moments relative to axes XY,ZX,ZY

q	Vertical parallax; transversal parallax
q	Weight of the total amount of fuel and oil
q	Charge; amount of electricity
q	Amount of heat
ą .	Power of light filter
q	Angle of parallax
q	Total distributed load; total uniform load
ď	Distance of perihelion of parabolic orbit from sun
q	Discharge per unit of flow width
q	Velocity thrust (dynamic pressure)
q	Uniform load
q _a	Weight of aerial navigation equipment
q_e	Weight of crew
$q_{\mathbf{f}}$	Weight of photographic equipment (aerial)
q_n	Hourly expenditure of fuel and oil
q _l ,	q2, q3 Number of kinematic couples of 1st, 2nd, 3rd etc class
R	Aerodynamic force
R	Gas constant
R	Ground pressure; force of ground pressure
R	Length of arms of polar planimeter
R	Coefficient of reflection of body; reflective power of
	body
R	Magnetic resistance
R	Reading of limb with "circle right"
R	Reading of horizontal or vertical circle with vertical
	circle located to the right
R	Total reaction of support
R	Total hydrodynamic force

R	Projection of radius of useful area upon terrain
R	Radius
R	Radius of propeller
R	Radius of veering
R	Resolving power of photographic layer
R	Distance between centers of deflecting and deflected
	magnets
R R R	Reaction of support in spatial system; total reaction Reaction of support in flat system; total reaction Luminosity; luminousness
R	Force
R	Mean radius of curvature
Re	Reynolds number
^R <u>и</u> .	Radius of circulation
$^{ m R}$ c	Resolving power
R¿	Radius-vector of earth at moment t, , wherein
	i = 1, 2, 3
Rs-	Surface electrical resistance for direct current
^R ₹	Electric resistance of platinum resistance thermo-
	meter, at temperature t
$^{ m R}$ $_{m u}$	Rated radius of range of airplane
R v-	Volumetric electrical resistance for direct current
$^{ m R}$ ω	Actual radius of range of airplane
R1	Length of arms of polar planimeter
$^{ m R}$ \odot	Geocentric angular radius of the sun
R	Electric resistance of dielectric for direct current
r	Effective resistance
r	Coefficient of brightness
r	Polar coordinates
r	Polar radius-vector (polar coordinates)
r	Correction of direction for reduction in seconds of arc

r	Correction of pitch of micrometer screw per turn
	(run)
r	Reduction of zenith distance of planet to meridian
r	Radius
r	Radius-vector
r	Radius-vector of heavenly body
r	Radius of parallel
r	Radius of useful area of aerial photograph
r	Radius of spherical surface
r	Latent heat of evaporation
r	Running radius of propeller
r	Heat of evaporation, for one kilogram
(r)	Radius of curvature
^r a	Radius-vector relative certain point a
[™] e	external radius of a pipe
r _s -	Surface electrical resistance for direct current
r _k , r _y , r _z	Radii of inertia relative axes X, Y, Z
r	Electric resistance of dielectric for direct current
r _v _	Volumetric electrical resistance for direct current
r	Relative radius of propeller
S	Vector of Poynting (power per unit of area)
S	Greenwich sidereal time
S	Length of arc, arch, dome
S	Sidereal mean Greenwich time
S 7	Apparent power
S	Coefficient of reflection
S	Carrying area of wings

S	Total light sensitivity
S	Period of one half of complete oscillation; duration
	of pendulum wing
S	Area
S	Area covered on terrain by one aerial photograph
S	Area of diagram
S	Area of conic connection
S	Light sensitivity
S	Sidereal year
S	Welted area of boat or float
S	Static moment of section
S	Point of south
S	Stress in rod, general denotation
S	Center of projection
S	Center of gravity of link
S	EntBropy
(S)	Area
<u>8</u> <u>A</u>	Area of coverage, upon terrain, by the useful area of a
Ξ	single set of aerial photographs
s <u>a</u>	Area of coverage, upon terrain, by a single set of
	aerial photographs
S'8	Area of elevator
S _{8.0}	Area of vertical tail group
S 2.0	Area of horizontal tail group
S×	Area of keel
S <u>24</u>	Area of rudder
S_n	Area of midship section

Su. op	Area of midship section of fuselage
Sme	Area of trimmer
Scm	Area of tabilizer
S Wy	Area of flap
S _J	Area of aileron
Sh	Strouhal's number
S_{m}	Sidereal mean Greenwich time
S _N	Area of photographic of single flight
SR	Area of coverage of terrain by the useful dimensions
K	of the aerial photograph
Sa	Monochromatic light sensitivity; spectral light
sl	sensitivity
Sq	Effective light sensitivity
5 _{Σ'}	Area of photographed sector
S ₀	Greenwich sidereal time at mean midnight
Sò	Light sensitivity determined by means of conventional-
00	quantity of the difference between density and fog
<u></u> S	Length of geodesic line of normal section
-	between two points of spheroid
S	Length of arc, arch, dome
S	Length of arc of the normal section between two points
-	of spheroid
S	Length of path
S	Unit of light sensitivity
s .	Sidereal true time (local)
s	Sidereal quasitrue time (local)
S	Sidereal mean time (local)
S	Local sidereal time

3	Modulus of discharge
3	Area of useful section
S	Area of one aerial photograph
S	Path
s	Path of a point of the link
s	Distance along the optic axis from point of intersec-
	tion of incident ray and optic axis to vertex of
	refracting surface
S	Gliding, relative
s 5 5	Daily correction of chromometer Entropy Enteropy of superheated steam
s _a	Area of rectified set of aerial photographs photo-
	graphed by means of multiple objective aerial photo-
	graphy apparatus
s _E	Area of rectified or transformed aerial photograph
s _.	Useful area of a rectified or transformed aerial
-	photograph
sm	Sidereal mean time (local)
Sqv	Sidereal quasitrue time (local);
l -	sidereal time (local)
sr	Useful area of one aerial photograph
$\mathtt{s}_{\mathcal{O}}$	Sidereal true time (local)
so	Local sidereal time at mean local midnight
s'	Distance along optic axis from point of intersection
	of issuming ray with optic axis to the vertex of
	refracting surface
s/ '	Enteropy of a liquid at the moment of incipiency of
	vaporization

s"	Enteropy of dry saturated steam
Т	Absolute temperature
Т	Time (in dimensional formulas)
T	Directional joint
Т	Kinetic force; kinetic energy
T	Kinetic force Of a system
Т	Tangential force
T	Coefficient of transmission of a body, limited by two
	parallel planes; transmittance power of a body limited
	by two parallel planes
T	Power in kilograms/seconds
T	Intensity of terrestial magnetic field (total)
T	Total length of flight
T	Period
T	Period of magnet swing
T	Period of oscillation
T	Period of revolution of heavenly body around the sun
T	Period of one half of a complete oscillation; duration
	of a pendulum swing
T	Plane of terrain; object plane
T	Clock reading
T	Shearing force
T	Braking force
T	Temperature, measured from O°K (absolute scale).
T	Tropical year
(T)	Kinematic force; kinematic energy
т - т	Line of base, line of intersection of picture plane with
	plane of object

$^{\mathrm{T}}\!\mathcal{A}$	Time required for descent from altitude H to the
	airdrome
$^{\mathtt{T}}\mathcal{B}$	Time expended per one approach
$^{\mathrm{T}}_{\mathcal{C}}$	Color temperature
$^{\mathrm{T}}\!\mathcal{D}$	Time of flight over distance D
$^{\mathtt{T}}\!f$	Photographing time of one flight
$^{\mathrm{T}}_{\mathcal{H}}$	Time of gaining altitude H
Τί	Zone time
$^{ ext{T}}\!$	Time expended on laying one photographic itinerary
$^{ extsf{T}}_{\mathcal{R}}$	Time of flight over distance R
Tr	Radiation temperature
^T S	Time, expended on photographing area S
$\mathtt{T}_{\mathcal{S}}$	Black temperature, luminosity temperature
T_S	Black temperature of source
$^{ ext{T}}\omega$	Time expended on determination of aerial navigation
	elements; chronometric timing
$^{\mathrm{T}}\!\mathcal{\Sigma}'$	Total expenditure of flight hours
T_{O}	Universal time
$T_{\mathcal{O}}$	Greenwich civil time; universal time
$T_1, T_2 \dots$	Local civil (zone) time of first, second, etc. zone
To	Absolute temperature; absolute temperature of air
T'	Directional angle on plane
t	Time
t	Time of illumination of photograph; exposure
t	Temperature; centigrade temperature
t	Temperature of the air
t	Temperature measured from 0°C (international
	centigrade scale)
t	Temperature scale C.
t	Accuracy of vernier (nonius)
t	Hourly angle

t	Hourly angle of planet
$^{t}\mathcal{A}$	Temperature of aneroid
t'A	Temperature of air at airdrome
t <u>np</u>	Time of development
t_{gr}	Temperature gradient
t <i>#</i>	Temperature of air at altitude H
t _o	Period of induction
t _P	Temperature, measured - using scale of a gas thermo-
	meter of constant volume (v=const)
^{t}v	Temperature, measured using scale of a gas thermo-
	meter of constant pressure (p=const)
t w	Time of run of sighted terrain point in determining
	ground speed
${}^{\rm t}_{\boldsymbol{\mathcal{Z}}}^{^{o}}$	Temperature of air at altitude Z
${}^{\mathrm{t}}\mathcal{\Sigma}$	Total time of illumination; total exposure
t_{o}°	Temperature at sea level
$^{ ext{t}}\odot$	True solar time (local)
t ^o t ^o	Temperature
U	Temperature of air Internal energy
U	Expression $\frac{\tan(45^{\circ}+0.5\varphi)}{\tan^{\circ}(45^{\circ}+0.5\varphi)}$
Ū	Contrast of object
U	Correction of clock relative to Greenwich time
U	Potential energy; expansible energy
Ū	Force function
U	Wind velocity

Ū	Stress in unright a
U	Stress in upright of lower zone of framework
(U)	
(U)	Momentary acceleration center of link
(U)	Pole of acceleration plane
(U)	Pole of acceleration bundle Energy
u	Argument of latitude
u	Internal energy
u	
u	Internal energy of superheated steam
u	Correction of clock relative local time Corrected latitude
u	
u	$^{ m Difference}$ of potentials $^{ m Velocity}$
u	
u	Velocity of rise (vertical) of an airplane Electric voltage
(u)	Linear velocity
(u)	Perimeter
(u)	Electromotive force
u'	
	Internal energy of a liquid at the moment of in-
u"	Vaporization
V	Internal energy of dry saturated steam Visibility
V	
	Aerial velocity of airplane (relative to medium)
7	
	Expression: $\sqrt{1+e^{2}\cos^{2}q}$
	Total amount of water in volumetric units (flowing

through turbine or hydrostation over a certain interval

of time) Volume Forward vertex focal distance Reaction of support; vertical component Velocity of flight Velocity of flow Stress in pillar of framework Projection of direction of principal vertical upon terrain (∀) Velocity of point of link Ve Economic speed of airplane Cruising speed V_{\varkappa} V_{Lp} Critical velocity Vxpice Cruising speed $\mathbb{V}_{\mathcal{H}}$ Optimum horizontal velocity on gaining altitude Vompe Velocity at breaking contact with water Velocity at landing V noc Vyz Speed of development Maximum velocity of horizontal fight (at all altitudes Vmax of flight V max Maximum velocity of airplane V_{min} Landing velocity of airplane (minimum) Vzi Optimum velocity of airplane Vy Vertical velocity V 2 Visibility of monochromatic light

Forward vertex refraction of lens

V₁

3.7	Rear vertex refraction of lens
V ₂	True anomaly
v	Linear velocity
V	Volume of superheated steam
v	Distance from forward vertex to forward 1994,
٧	forward vertex focal distance
V	Velocity
٧	Velocity of a point of the link
v - v	Velocity of a point of Direction of principal vertical on aerial photograph
V	Velocity of motion of point B relative to point A
^V BA	of the same link
∀ /	Speed of motion of film in rewinding
· ∫ √h	Velocity of liquid in ascending pipe
v _s	Velocity of liquid in suction pipe
v _o	Velocity of water flow at dam
Vomax	Maximum ground speed of horizontal flight
V 2.1	Maximum ground spot
21	ward motion (forward couple - 2, 1)
v′	Rear vertex focal distance
. V	Rear vertex local divides and the results of the re
	zation
٧ //	Volume of dry saturated steam
W	Expression: $\sqrt{1-e^2 \sin^2 \varphi}$
W	Hydrodynamic resistance
W	Complex potential
W	Moment of resistance
W	Volume of water in reservoir

M	Ground speed of airplane (relative to the ground)
W	Work
M	Wind velocity; flow velocity
W	Point of West
W	Number of order of freedom of mechanism
W	Energy
W	Energy of radiation of X-rays, passing through
	given area over given time
(W)	Work
W_{a}	Energy of radiation of X-rays, absorbed by the ir-
	radiated medium
W ₂	Energy of radiation of X-rays of wave length λ
$W_{\mathcal{O}}$	Energy of radiation of X-rays striking a given area
	of irradiated medium
W 00	Velocity of flow at a distance from body
W	Complex potential
W	Relative humidity in percent
W	Density of magnetic energy
W	Work
M.	Velocity Number of turns of winding
(w)	Linear velocity
Wmax	Maximum density of magnetic energy
X	Reaction of support in spatial system; component
	reaction along coordinate axis
X	Northern component of intensity of terrestial field
Х	Force by flight velocity
X	Magnification, axial

X, Y, Z	Rectangular geocentric equatorial coordinates of the sun
X_{\pm}	Tangential force
x	Vapor content of mixture
x	Distance along optic axis from object and image to
	forward (principal) focus
х	Reactance
х, у	Coordinates of a point of an aerial photograph depending
	upon the direction of projections of coordinate axes
	of terrain upon plane of the photograph
х, у	Plane coordinates of terrain point
xy	Plane of flow
$x_{\gamma}y$	Rectangular coordinates
х, у, z	Cartesian coordinates
x,y,z	Rectangular heliocentric equatorial coordinates of
	heavenly bodies
XZ 🔸	Plane of sliding
x,z	Coordinates of a point of an aerial photograph depend-
	ing upon the direction of projections of coordinate
	axes of terrain upon plane of the photograph
х <u>э</u>	Coordinate of center of pressure
<u>ж</u>	Coordinate of center of rigidity
х <u>т</u>	Coordinate of center of gravity
x_1y_1	Plane of symmetry
$x_1 x_1$	Principal plane; plane of wings
x'	Distance along optic axis from object and image to
	rear (principal) focus
Υ .	Eastern component of intensity of terrestial field
Y	Hydrodynamic lift force
Y	Lift force

Y	Transversal linear magnification
Y	Distance from point to optic axis
Y	Reaction of support in spatial system; component of
-	reaction along coordinate axis Y.
У	See X, Y, Z.
Υλ	Density of intensity in spectrum
У	Total conductivity
У	Distance of neutral axis of section from terminal com-
J	pressed thread
У	See x, y, z.
уZ	Front plane
y _d	Normal force
y ₁ z 1	Transversal plane
y'	Distance from image to optic axis
Z	Absolute altitude of airplane (above sea level)
Z	Lateral force
Z	Altitude coordinate of terrain point
Z	Vertical component of intensity of terrestial field
Z	Zenith
Z	Location of zero point
Z	Reaction of supports in spatial system; component of
	reactions along coordinate axis Z
Z	See X, Y, Z.
Z Ł	Location of zero point following temperature t, in
	thermometer which had been subjected to ageing
Zį	Transversal force
z'	Nadir
z	Zenith distance

Zenith distance of planet

Total resistance Location of zero point See x,y,z. Zenith distance of planet in median Location of zero point after temperature t 2. Greek Alphabet X Directional angle in plane Coefficient of concentration ol. Coefficient of Coriolis Coefficient of linear expansion α Coefficient of absorption X Coefficient of heat emission X Coefficient of propeller thrust X. α Coefficient of electric resistance (temperature) α Constant of phase displacement Right ascension of planet. Oblate of terrestial spheroid Angle amplitude of magnet oscillation α Angle of attack of wing α Ø. Angle of inclination Angle of inclination, relative to optic axis, of entering ray Angle of deviation of optic axis of photographic appa- \propto ratus from the vertical. $2 \propto$ Angle of cone

[<i>α</i>]	Rotation power of liquid (basic denotation with
,	parentheses
(Ø)	Rotation power of body (basic denotation with paren-
	theses)
[∝]	Specific rotation power of disolved body (basic denota
•	tion with parentheses)
α, β, γ	Angles
α, β, γ'	Plane angles
α_A	Temperature coefficient of aneroid
$lpha_{\!A}$	Angle of attack CAX
(α_{k})	Coefficient of propeller thrust
Ø 21	True angle of attack
∝ _M	Given magnetic travel angle
of np	Temperature coefficient of development
α_{i}	Temperature coefficient of instrument
α_N	Given true travel angle
dy	Transversal bank
$\alpha_{\mathbf{k}}$	Projection of angle $ imes$ upon coordinate plane ZOY
α_y	Latitudinal inclination
α_y	Projection of angle α upon coordinate plane ZOX
$\alpha_{\mathbf{Z}}$	Projection of angle & upon coordinate plane XOY
0%	Angle of attack at $C_y = 0$
α'	Angle of inclination, relative to optic axis, of
	issuring ray.
β	Interval angle of transversal careening at stop
β	Coefficient of propeller power
β	Coefficient of volumetric expansion
β	Coefficient of contrast loss.

β	Plane angle
β	One half of true field of vision
β	Constant of attenuation
β	Anti-capotage angle
β	Angles (See α , β , γ)
β	Angle of bank of airplane wings
β	Angle formed by optical axis of the objective of an
	aerial photographic apparatus with the sighting ray
β	Angle of flow direction with profile of propeller
	blade, measured within plane of rotation
β	Angle of sliding
β	Latitude of planet
2β	True field of vision
$(\beta_{\underline{g}})$	Coefficient of propeller power
ВM	Actual magnetic travel angle
βN	Actual true travel angle
βx	Projection of angle eta upon plane ZOY
βγ	Projection of angle eta upon plane ZOX
β_z	Projection of angle eta upon plane XOY
β'	External angle of transversal careening at stop
β' β' 2β'	One half of apparent field of vision
2 B'	Apparent field of vision
, T	Intensity of vortex line; intensity of vortex
Γ'	Velocity circulation
γ	Weight of unit of volume
γ	Coefficient of contrast
y	Coefficient of volumetric expansion
2	Plane angle (see lpha , eta , eta)
y	Error of instrument reading

γ	Constant of wave propagation
y	Specific conductivity
y	Convergency of meridi as within plane
γ	Point of vernal equinox
y	Specific weight
y	Angle of convergence
y	Angle of bank
7 7 7 7 (2)	Angle of displacement; relative displacement
8	Center angle
(4)	Volumetric weight
(y)	Relative weight
7 <u>×</u>	Compass course
8M	Magnetic course
Yo	Volumetric weight
106	Volumetric weight
rom	Reactive weight
84	Specific weight
1 max	Maximum coefficient of contrast
TN	True course
In	Tolerance
γ_s	Convergence of meridians on spheroid
Ps-	Specific surface electric conductivity for direct current
20-	Specific volumetric electrical conductivity for direct
	current
\mathcal{V}_{ω}	Progress course
Po	Theoretically normal magnitude of acceleration (inten-
	sity) of gravitation force, reduced to surface of com-
	putation

γ_1	Angle of longitudinal careening of the portion be-
V 1	tween stops
V_{a}	Angle of longitudinal careening of stern portion
Yz 2	Limit coefficient of contrast
γ∞ Δ	Compass variation
Δ	Height of roughness protuberances
- 🛮	Geocentric distance of planet in astronomical units
Δ	Brightness detail
4	Load on water
	Optic interval
	Optical difference of paths of two rays
1	Relative length of rod
_ 	Ratio of air density at altitude to air density at the
	ground
\triangle	Error (of line lengths, Location of points, values of
	angles)
	angres
Δ	Spatial changes of elements of terrestial magnetism
	Spatial changes of elements of terrestial magnetism
	Spatial changes of elements of terrestial magnetism Layer of one-half reduction
	Spatial changes of elements of terrestial magnetism Layer of one-half reduction Angle of twist of thread
	Spatial changes of elements of terrestial magnetism Layer of one-half reduction Angle of twist of thread Compass deviation
	Spatial changes of elements of terrestial magnetism Layer of one-half reduction Angle of twist of thread Compass deviation Magnetic declination
Д Д Д Д <u>ж</u> Д <u>м</u> Д <u>ф</u> Д _{i,j}	Spatial changes of elements of terrestial magnetism Layer of one-half reduction Angle of twist of thread Compass deviation Magnetic declination Photographic brightness detail
	Spatial changes of elements of terrestial magnetism Layer of one-half reduction Angle of twist of thread Compass deviation Magnetic declination Photographic brightness detail Mutual distance of two heavenly bodies of mass m; and
A A A A M A A A A A A	Spatial changes of elements of terrestial magnetism Layer of one-half reduction Angle of twist of thread Compass deviation Magnetic declination Photographic brightness detail Mutual distance of two heavenly bodies of mass m; and m; respectively
A A A A A A A A A A A A A	Spatial changes of elements of terrestial magnetism Layer of one-half reduction Angle of twist of thread Compass deviation Magnetic declination Photographic brightness detail Mutual distance of two heavenly bodies of mass m; and m; respectively Geocentric distance of heavenly body at moment i

ΔD	Interval of density of photographic reproduction
ΔD_q	Useful density interval
Δg	Anomaly of acceleration (intensity) of gravitation
6	force, with reduction, in free air (if required taking
	into account topographic correction)
AH	Correction for flight altitude (summative)
Δh	Altitudinal error of closure in leveling traverse
	(direct and reverse)
1L	Difference of geodesic longitudes
Al, Al	Absolute elongation; absolute longitudinal deformation
	on stretching
Al	Absolute contraction; absolute longitudinal deforma-
	tion on compression
1P	Linear error of closure of perimeter of theodolite
	traverse
Ap	Excess pressure
AQ	Error of closure in angles of theodolite traverse
1/2 R	Linear distance on terrain corresponding to the linear
	displacement on the aerial photograph due to relief
1/hr	Linear displacement on aerial photograph due to relief
ΔS	Error of closure in area by comparison with result of
	area computation
$\Delta \epsilon$	Nutation in inclination
12	Difference of geographic longitudes
	(astronomic)
$\Delta \varphi$	Difference of geographic latitudes (astronomic)
4	Nutation in longitude

8	Variations in time of elements of terrestial magnetism
8	Detail of blackening .
8	Coefficient of quenching (in time)
8	Coefficient of movement variation
δ	Coefficient of formula of Callendara, used as criterion
	of quality of platinum
8	Error in distance between bisectors of micrometer hair
	lines (in angular measurements)
S	Correction for curvature in reproduction of geodesic
	line
8	Phase difference of two oscillations
8	Reduced thickness of lens
8	Deviation of magnetic needle
8	Declination of planet
8	Thickness of wall etc.
8	Thickness of wall of pipes, vessels etc.
8	Angle of dielectric losses
8	Angle of deflection of flight controls
(δ)	Absolute elongation; absolute longitudinal deforma-
	tion on stretching
(8)	Absolute contraction; absolute longitudinal deformation
. (1)	on compression
(8)	Relative elongation
(8)	Thickness of wall; board; side of metal beam etc
C	(dimensions of transversal sections and their elements)
O <u>e</u>	Angle of deflection of elevator
$\delta_{\underline{\kappa}}$	Compass direction of wind

S _M	Magnetic direction of wind
δ <u>Μ</u> δ <u>μ</u> δ _Ξ δμ δχ	Angle of deflection of rudder
8-	Angle of deflection of aileron
ر ا	True direction of wind
S.	
· C	Reduction drop
02	Reduction drop
S.a. S.e. S. S.	, , 56 , or order r
	relative to the disturbing masses
€	Dielectric permeability; dielectric constant
€	Coefficient of gliding
ϵ	Coefficient of integral radiance
ϵ	Coefficient of porosity
6	Coefficient of compression
ϵ	Inclination of plane of equator relative to plane of
	ecliptic
ϵ	Relative elongation; relative longitudinal deforma-
	tion on stretching
ϵ	Relative contraction; relative longitudinal deforma-
	tion on compression
€	Constant of magnitometer
ϵ	Spherical excess of triangle
€	Angular acceleration
€	Angular acceleration of link
ϵ	Angle of wind
€ ,	Angle of deflection of light ray by prism
€	Angle of flow taper
ϵ_c	Coefficient of color radiation

ϵ_{λ}	Coefficient of monochromatic radiation of wave length λ
ϵ_o	Angle of least deflection of light ray by prism
ϵ_{21}	Angular acceleration of second link relative to
	first
5	Rectangular geocentric equatorial coordinates of
9	heavenly bodies (see ξ , γ , ξ)
5	Component of deviation of vertical line along meridian
η	Coefficient of useful effect
7	Coefficient of useful effect of airscrew
7	Coefficient of taper of wing
η	Mechanical coefficient of useful effect
ή	The perpendicular to the meridian component of vertical
,	line deviation by longitude
γ	Location of center of gravity in altitude
η	Rectangular geocentric equatorial coordinates of
,	heavenly bodies (see, ξ , γ , ξ
γ	Time equation
γ	Cartesian coordinates (See ξ, γ, ξ)
(ŋ)	Dynamic viscosity coefficient
<i>'</i>	Precession from planets
Θ	Angular element of centering
Θ	Angle of attack(of incidence) of airplane wings
Θ	Angle of diffraction reflection
Θ	Angle of deviation of magnet
Θ	Hourly angle
$ eta \Theta_{n} $	Angle of diffraction image of n-th order
(@)	Temperature measured from O'K (absolute scale);
	absolute temperature.

-388

	Tation to axis V
(O _K)	Moment of inertia relative to axis X
(Oxy,	Centrifugal moments of inertia relative to axes XY, ZX,
$\Theta_{zy},\Theta_{zy})$	ZY.
Θ_{t}	Angular element of reduction
θ	Linear angle of twist
θ	Polar angle, (coordinates)
θ	Refraction angle of prism
θ	Angle of flight trajectory with horizon
(θ)	Temperature measured from 0° C (International centi-
	grade scale)
D	Polar coordinates
D	Angle of pitching
(D)	Temperature
(D)	Angular acceleration
×	Coefficient of propeller moment
κ	Magnetic and electric susceptibility
æ	Rotation of negative within its plane around optical
	axi.s
K	Index of light quenching
×	Angle of sweepback
\varkappa'	Index of absorption
λ	Vertical angle of sighting
λ	Geographic longitude (astronomical)
2	Flexibility
2	Wave length
à	Wave length in vacuo
2	Length of light wave

2	Longitude of point of observation
λ	Longitude of planet
2	Longitude of point of earth surface measured from
,	Greenwich
2	Coefficient of Darcy-Weisbach
2	Coefficient of propeller speed; relative pitch of pro-
,	peller
2	Coefficient of thermal-conductivity; thermal conductivity
2	Aspect ratio of wetted surface
2	Aspect ratio of wings
ス え え _C ス _D	Length of light wave of C-line of hydrogen
λ_{D}	Length of light wave of D-line of sodium
λ_e	Effective wave length
le	Active wave length
l eff	Effective wave length; equivalent wave length
λ _F	Length of light wave of F-line of hydrogen
26'	Length of light wave of G'- line of hydrogen
λ_q	Wave length corresponding to limit of absorption of
J	X-rays
2 max	Wave length, corresponding to maximum intensity density
	in continuous spectrum of X-rays
2,	Limit, least wave length in continuous spectrum of
	X-rays, in vacuo
221	Ratio of second link length to length of first link
M	Annual proper motion of star along great circle
м	Dynamic viscosity coefficient
pc	Reinforcement coefficient
M	Coefficient of viscosity

M	Coefficient of reduction
м	Coefficient of gliding; inverse efficiency
M	Coefficient of Poisson
M	Coefficient of discharge
M	Magnetic permeability
M	Scale
M	Molecular weight
p	Temperature coefficient of magnetic moment
M	Value of one division of micrometer knob in seconds
(n)	Coefficient of strength margin
MA	Individual linear scale
Ma	Initial magnetic permeability
Md	Differential magnetic permeability
Me	Effective permeability; active permeability
Mmax	Maximum magnetic permeability
Mr	Reversible magnetic permeability
Ma	Proper motion of star in right ascension annual
MA	Magnetic permeability in individual cycle; mean mag-
·	netic permeability
MS	Proper motion of star in inclination, annual,
My	Moment of bank
MO	Magnetic permeability of body
ν	Induction coefficient of magnet
ν	Kinematic coefficient of viscosity
2	Coefficient of dispension
ν	Frequency of oscillations
ν	Number of oscillations per second
2	Coefficient of oisson

ν	Frequency
ν_{E}	Angle formed by principal planes of objective
	with plane of screen E
$ u_{_{\mathcal{D}}}$	Angle formed by principal planes of objective
,	with plane of negative
ν_o	Limiting highest frequency of oscillations in continu-
	ous spectrum of X-rays
ξ	Location of center of gravity in length
E, 7,5	Rectangular geocentric equatorial coordinates of heavenly
,	bodies
(8,7,5) Cartesian coordinates
77	Potential energy; expansible energy
N	Annual parallax of star
T	Longitude of peri
T	Proportionality of rendition, expressed by ratio of
	latitude of photographic paper to gradation
ρ	Internal heat of evaporation, relating to one kilogram
P	Horizontal angle of sighting
P	Metacentric radius
ρ	Volumetric density of charge
P	Density
P	Air density
	Polar radius-vector (polar coordinates)
ρ ρ	Radius-vector of point of earth surface, expressed in
·	parts of major half axis of terrestial spheroid
ρ	Radius of inertia of link
P	Radius of curvature
ρ	Refraction
1"	

P	Specific resistance
(ρ)	Polar coordinates
PA	Radius of curvature of normal section of azimuth A
P'B	Metacentric transversal radius
Pi	Reduced geocentric distance of heavenly body
PK	Compass bearing
PL	Metacentric longitudinal radius
PM	Magnetic bearing
en	True bearing
Ps-	Specific surface electric resistance for direct
	current
Po-	Specific volumetric electrical resistance for direct
	current
0	Density of air at ground
0	Ratio of air density at altitude to air density at
-	ground
σ	Coefficient of haze
σ	Coefficient of scattering (magnetic)
ď	Normal voltage
0	Surface density of charge
ď	Constant of equation (law) of Stefan-Boltzmann
σ	Reduction to ecliptic
0	Angle expression of arc of terrestial spheroid
ď	Specific magnetization
8	Portion of reduction coefficient, determined by means
	of the correlation: $\sigma = \mu - \tau$
$\sigma_{\underline{n}}$	Limit of strength; temporary resistance
$(\sigma_{\underline{n}})$	Limit of proportionality

One	Limit of proportionality
onu	Limit of proportionality
о _{пц} о <u>пч</u>	Limit of durability; temporary resistance
07	Yield point
- om.	Yield point
$ \begin{array}{ccc} \sigma_T & & & \\ \sigma_m & & & \\ \sigma_y & & & \\ \sigma_{yn} & & & \\ (\sigma_g) & & & \\ \end{array} $	Limit of elasticity
≥ Oun	Limit of elasticity
(O ₂)	Limit of strength; temporary resistance
OK	Limit of durability for asymmetric cycles
~ o <u>u</u>	Portion of reduction coefficient, determining the energy
2	of emission electrons
01	Limit of durability for symmetric cycles
7	Interval between two consecutive aerial photographs
7	Tangential stress
7	Coefficient of transmittance of absorber
7	Coefficient of transmission
7	Linear density of charge .
2	Moment of passage of heavenly body through perihelion
7	Constant of time
τ	Specific friction force
T	Angle of deflection of trimmer
ч	Value of division of level in seconds of arc
T	Part of year from moment of beginning of fictitious
	year of Bessel
τ	Portion of reduction coefficient, determined by the
	photo effect
(T)	Time
78	Angle of deflection of trimmer of elevator

-394 -

T 21	Angle of deflection of trimmer of rudder
T <u>∋</u>	Angle of deflection of trimmer of aileron
72	Coefficient of transmission, of light of wave length
	λ , of absorber
$ ot\!\!\!/$	Magnetic flux
$ ot \Phi $	Potential of velocities
$ ot \Phi$	Light flux
$ ot\!\!\!/ $	Thermal flux
$ ot\!\!\!/$	Thermodynamic potential
φ	Geographic latitude (astronomical)
φ	Geographic latitude of a point of earth surface
P	Coefficient of retardation of discharge
φ	Coefficient of built-up degree
4	Coefficient of longitudinal buckling
φ	Coefficient of velocity
P	Initial phase of oscillation
φ	Polar angle (polar coordinates)
φ	Potential of velocities
P	Difference of phases of voltage and current; phase dis-
	placement between current and voltage
φ	Thermodynamic potential
P	Angular or arc displacement
φ	Angle of internal friction in free-flowing materials
P	Angle of longitudinal trim
φ	Angle of natural slope
φ	Angle of link rotation
φ	Angle of section rotation
P	Angle of taper

P	Angle of friction
φ	Angle of setting; inclination of blade section
,	relative to plane of rotation
φ	Angle of eccentricity of elliptic orbit
P	Latitude of observation point
P	Electric potential
(q)	Initial phase
(4)	Polar coordinates
Pm.	Mean geographic latitude (astronomical)
90	Initial angle of longitudinal trim
0'	Geocentric latitude
φ' φ'	Geocentric latitude of a point of earth surface
χ	Coefficient of propeller moment
χ	Wetted perimeter
(χ _ξ)	Coefficient of propeller moment
$\overset{\sim}{arPsi}$	Flux of electrical induction; flux of displacement elec-
L	tricity
Ψ	Function of current
Ψ	Magnetic flux
3V	Internal heat of evaporation, for l kilogram
V	Initial phase
ψ	General precession
¥	Angle within plane P formed by the direction of the
	principal vertical with the axis of X's
ψ	Angle of drifting
W	Angle of transversal V
W	Angle of travel

ψ	Function of current
\mathcal{V}_{A}	Angle within the horizontal plane (T or E) formed by
	the projection of the principal vertical with the
	direction toward certain point A
V_a	Angle within plane P, formed by the direction of the
	principal vertical with the direction toward certain
	point a.
W.	Angle within the horizontal plane (T or E) formed by
	the projection of the principal vertical with the axis
,	of XI
W'	Lunisolar precession
Ω	Full contrast
ω	Cyclic frequency
ω	Area of useful section
ω	Limit of distortion of angle
ω	Solid angle
ω	Angle velocity
ω	Angle velocity of link
ω	Angular frequency
ω	Angular distance from perion to ascending node
ω	Angle of lead
ω	Clock movement
ω_{21}	Angular velocity of Second link relative to first
	3. Cyrillic alphabet
Э	Specific energy of section
	. N _t
	4. Denotations.

-397 -

1, 2, 3k,n	Numbers of	Links
(1,2), (2,3)	Kinematic	couples
(1-2, 2-3)	Kinematic	couples

5. Conventional sign	gns	si	onal	Conventi	5.
----------------------	-----	----	------	----------	----

	9. 001.01.01.01.01
Ω	Longitude of ascending node
Ω_o	Osculatory element of epoch to (See a, e, ,),)
*	Point, astronomically determined
90	Point of the vernal equinox
\Box	Point of geodesic base-of trigomotric grid (accompanied
	by a mark)
-0-	Point, cameral phogogrametric(orientation)
6	Point, field photogrametric (orientation)
<u> </u>	Point of relief (accompanied by a mark)
E	Standard exposure of photographic paper

Part III

Mathematic denotations (Basic) Ost 573

(1931 Edition)

I. Denotation of numbers.

The numerals of a multinomial whole number are divided into groups of three from right to left, the groups being separated by intervals; for example: 1 411 312.

A decimal fraction is separated from the whole portion by a comma; in the absence of whole portion its place is taken by a

zero. In the case when the decimal numbers are numerous they are divided into groups of three, from left to right, by means of intervals; for example: 13, 595 93.

In denotations of ordinary fraction there is used a horizontal line; for example: $\frac{7}{22}$

Note: To facilitate printing a slanted line is permissible, if its use is not misleading.

In a mixed number the proper fraction is written immediately following the whole portion; for example $\frac{2}{7}$

% - percent

 $o/_{oo}$ - per mill

Positive nature of a number is not denoted by a sign, excepting those cases where this must be indicated; in these instances the sign + (plus) precedes it; for example : + 5.

The negative nature of a number is denoted by its being preceded by the sign - (minus); for example: - 5.

The absolute value of a number is denoted by two vertical lines; for example: $\begin{vmatrix} -5 \end{vmatrix}$

II. Denotation of correlations

- = Equals
- E Identical or identically equals (used in cases where it is desirable specifically to note identity of both members of the equation
- # Is not equal
- pprox Approximately equals

Is less than Is greater than Is less than or equals (is not greater than) Is greater than or equals (is not less than) Is small in comparison with Is large in comparison with III Denotation of Basic Operations (plus) addition (minus) subtraction Multiplication The multiplication sign is usually not placed before a number denoted by a letter or before parentheses. Division ~ a to the m power Square root of Square root of -1; $i = \sqrt{-1}$ m-th root of, with $m \neq 2$ Logarithm to the base b log In those instances where it is not necessary to indi-Note: cate the base, the corresponding subindex of log is omitted. logarithm to the base 10 (common or decimal logarithm) lg Logarithm to the base e = 2.718 28... (natural logarithm) ln To denote the power of a logarithm the exponent of the power is written next to the logarithem sign, for ex-

ample: $\log \frac{2}{b}$ a.

Parentheses }

(')	
[]	Brackets enclosing marks
{ }	Braces
	IV Geometric denotations
1	Perpendicular to
11	Parallel to
#	Equal and parallel to
0	Similar to
α	Triangle; for example: \triangle ABC
_	Plane angle; for example: ∠ ABC
Note:	In those cases where misunderstandings may arise, the
	angle may be denoted by the more complex sign $ extstyle eq$
~ ~~	
or or arc:	for example: \smile AB, $\widehat{\text{AB}}$
0	Degree] In denoting values of plane angle or arc;
t	Minute for example: 2°3'4"
It	Second)
	the denotation O(degree), '(minute)or "(second)
	relates to a number including a decimal fraction, it is
	written above the comma; for example: 3° , l1; 6° 5,27;
	8°41211,9.
N	Ratio of length of circumference to the diameter;
	σ =3,141 59

V. Denotations of trigonometric and hyperbolic functions

sin sine cos cosine

tg tangent

ctg cotangent

sec secant

cosec cosecant

To denote the power of a trigonometric function the exponent of power is written above the sign of this function; for example: $\sin^2 \chi$.

To denote inverse trigonometric functions the above indicated denotations are preceded by arc (arcusarc): for example: arc sin 🗸 - arc the

sine of which is e_{η} ual to ot
ot

arcsin arcsine

arccos arccosine

arctg arctangent

arcctg arccotangent

Hyperbolic functions:

sh hyperbolic sine

ch hyperbolic cosine

th hyperbolic tangent

cth hyperbolic cotangent

To denote the power of a hyperbolic function the exponent of power is written above the sign of this function; for example: $sh^2 \varkappa$

To denote inverse hyperbolic functions the above indicated denotations are preceded by Ar (area-); - an area. The corresfor example: Arsh & ponding hyperbolic sine of which is equal to Arsh hyperbolic arsine Arch hyperbolic arcosine Arth hyperbolic artangent hyperbolic arcotangent Arcth VI Mathematical Analysis Denotations Constant numbers are denoted mostly by the first letters of the latin alphabet; for example: a, b, c... Variable numbers are denoted mostly by the last letters of the latin alphabet; for example: x, y, z, u... Function of one or several variables is denoted by one of the signs: f(), φ (), $\bar{\varphi}$ (),... for example: f(x), f(x, y, z):

const constant

oo infinity

 $\lim_{x \to \infty} \lim_{x \to \infty} \lim_{x$

 \rightarrow approaches: for example: $x \rightarrow a$, (lim l+x) = e

 \triangle increase of

d differential

S variation

denote successive derivatives of single variable function; for example: f'(x), y', $f^{IV}(x)$, y^{V}

Notes:

1. If the order of derivative is denoted by a letter or

an arabic numeral, then this letter or numeral is written in parentheses; for example:

$$f^{(3)}(x), f^{(a)}_{(y)}$$
.

- 2. To denote first or second derivative in special cases it is permissible to use one or two dots placed above the dependent variable; for example: $\dot{r}, \ddot{\mathcal{L}}$.
- $\frac{d^n}{dx^n}$ derivative of n-th order, for n > 1, of some function of variable x; for example: $\frac{d^2f}{dx^2} > \frac{d^3x}{dx^3}$

$$f_{y}', f_{y}', f_{xx}'', f_{xy}''$$

derivatives of

function f

$$\frac{df}{dx}$$
, $\frac{df}{dy}$, $\frac{d^2f}{dx^2}$, $\frac{d^2f}{dxdy}$

of several variables x, y, z...

$$\sum_{k=1}^{n} u = u_1 + u_2 + \cdots + u_n$$

S T

Integral

Definite integral from lower limit a to upper limit b. Product: for example: $\prod_{\kappa=1}^n u_{\kappa} = u_{\underline{\iota}} u_{\underline{\iota}} u_{\underline{\iota}} u_{\underline{\iota}} \dots u_{\underline{\iota}}$

n! factorial; for example: $n! = 1 \cdot 2 \cdot 3 \dots n$

Addendum I.

List of Standards of Letter Denotations Included in the Compendium, and their Abbreviated Designations

Numbers of	Title of Standards	Abbreviated
Standards	•	Designation of
		Standards
COCIM		*****
GOST	Axes of coordinates and basic	Hydro-aerodynamic
1075-41	denotations used in aerodynamic and	computations in
	hydrodynamic computations in airplane	aircraft construction
	construction	
GOST	Denotations of basic, general	General technical
11,93-1,2	technological quantities (by letters)	quantities
GOST	Electrotechnics. Denotation of basic	Electrotechnics
1494-42	quantities (by letters)	
GOST	Basic concepts and quantities of	Photographic sensi-
2653 - 44	photographic sensitometry (terminology) tometry	
	, , , , , , , , , , , , , , , , , , , ,	,
GOST	Theory of mechanisms. Rasic letter	Theory of
2899-45	denotations	mechanisms
OST 2932	Denotation of basic quantities in	Theoretical
	theoretical mechanics	mechanics -
GOST	Hydromechanics. Basic letter	Hydromechanics
2970-45	denotations	and one desired assessment
-,, - 4,	WOLLO OL OLGILID	

AND THE PROPERTY OF THE PROPER

GOST	Construction mechanics. Basic letter	Construction
2971-45	denotations	mechanics
OST VKS	Hydrotechnics. Denotations of basic	Hydrotechnics
6128	quantities	
OST VKS	Denotations of basic quantities in	Sanitation
6129	sanitation technology of water supply	technology
	and sewerage	
OST VKS	Denotations in geometrical optics.	Optics
61145	Basic	
OST VKS	Denotations in physical optics. Basic	, Optics
61/16		
OST VKS	Basic denotations in astronomy	Astronomy
6203		
OST VKS	Denotations relating to measurement	Measurement of
6261.	of temperatures	temperatures
OST VKS	Terms and denotations relating to	Measurement of
6262	the field of measurement of liquid	pressure
	pressure, vapor and gas by means of	
	manometers	
OST VKS	Advanced geodesy, topography, baro-	Geodesy and
6345	metric leveling, gravimetry, carto-	cartography
	graphy	
OST VKS	Basic concepts, terms and denotations	X-rays technology
6350	in the field of X-rays.	

OST VKS	Denotations of basic quantities of	Thermodynamics
6394	technical thermodynamics	
OST VKS	Terms, denotations and measurements	Ferromagnetism
6896	in the field of ferromagnetic phenome.	•
OST VKS	International temperature scale	Temperature scale
6954		remperature scare
OST VKS	Denotations relating to the field of	n Terrestial
7082	terrestial magnetism	magnetism
OST VKS	Denotations in aerial photography	Aerial photography
7144	3 1 0	nortal photography
OST VKS	Terms, denotations and measurements in	the Margument
7158	field of time measurement	of time
OST VKS	Conic connections in machine build-	Conic connections
7530	ing	in machine building
OST VKS	Light measurement. Basic terms and	Light measurements
7637	denotations	right measurements
OST VKS 7771	Dielectrics. Terms and denotations	127 - Amerika ()
		Electrotechnics
021 NP 1115	Heat measurements. Basic concepts, terms and measurements	Heat measurements
OOM INCO 170 00		
WIT WKS (820)	Temperature. Measurement of tempera-	
	ture in national economy. Terms and measurements	temperature

OST VKS 8822 Constants, radioactive

Radioactive

constants

OST

Conventional letter denotations in

Building

90054-40

the design of building constructions

constructions