* bedicate calculous.

suantifiers refer to quantities such as some oll'

> i.e. for all (all, every) their rists (some)

the two types can be expressed key: -

) +: for all Call, every) [universal quantifiers]

2)]: Hose orists (some) Ceristential quantifiers)

eg- (1) 2x is divisible by 2 +x

a Ix such that 3x is not divisible by q.

8- Express the following using ouantifiers. Dill human beings are mostal.

ni a human being

2 there exists a student.
3 some students are clover.
@ Some students are not successfield.
Seh 8(x): x is a student.
R(x): x is cleves
T(x): x is successful.
for @ (3x) B(x)
for 3 (3x) (8(x) \ R(x))
for (Jx) (8(x) 177(x))
0- Cularana = 11 a 1 10
Q-Eupross the following using seantifiers.
1 Every house is a physical psient.
3 Every house is owned by somehody.
30000: 2 is a house
S(x): is a house. R(x): is a physical object
Denot by somebody.
(7) (3(x) R(x)) T(x,y): home x
(2) ($\exists x$) ($g(x) \land R(x)$) $T(x,y)$: home x is owned by become
by year on y
3 (+x) (g(x) -Ayt(x,y))

(v)4

West For new

* Score and Binding get y be a formula. A substring (a small upression) of y is called a seek formela if and only if Z is a formula on its sun. the scope of an occurance of a quantifier, occurring in Y is. the sub-formula of y wasting with that occurance brom that place to The sub formulas of the formula eg-1 x x, 7x2 (CP, (x8) n P2 (x,)) -> P, (x2) are, - p' (13), P2'(7), p'(x2), $P_{1}(x_{3}) \wedge P_{1}(x_{1}), (P_{1}(x_{3}) \wedge P_{1}(x_{1}) - X_{1}(x_{2})$ 3 x2 ((P, 1 (x3) 1 P, 1(x1)) -> P, 1 (x2)) 7 x1, 3 x2 ((P, '(x3) n P, '(x1)) ~ P, '(x2)) The scope of x is? 7 x, 3x2 ((---)) The Scope of I is: J 72 ((P, '(x3)) P, '(1)) > P, '(x2)) 3η₂ (ρ,² (η₂,η₁) η + η, ρ₃ (χ₁))

* Bound and free variable

An occurance of a sociable & in Y (ginen famuly) is a bound occurance if and only if

this occurance is written the scope of an

occurance of ++ or 7 7. A variable &

is a bound variable of y, if and only

if there is alleast one bound occurance
of x in Y.

An occurance of a variable in a formula is called a free remarks. if and only if it is not bound. If their is a free occurance of a variable to in a formula to, you say that I is a free variable.

e-g-] x2 (p,2 (x2,x1) N 7 x, P3 (x7)).

n, is a bound variable new-r.t. J'

brocess of finding bound and feel uniable is colled birding.

* Substitution: -

The expression (x/+) is used to substitute the variable x by the learn +.

The enpression (X) [x(t)] is used to express the formula obtained by replacing all the free occurances of x with the term of in the formula T. $e\cdot g=1$ $(Pn \rightarrow 8\pi)[\pi/t]=Pt \rightarrow 8t$.

2) $\forall n \left(\int_{xy} \left[x/t \right] \right) = \left(\forall x \right) \mathbb{E}_{ty} \mathbb{F}_{ty}$ 3) $\forall n \exists y \left((\int_{x} \wedge \partial_{y} n) \rightarrow \int_{\mathbb{R}^{2}} y \left(y/t \right) \right)$ $= \forall n \exists y \left((\int_{x} \wedge \partial_{y} n) \rightarrow \int_{\mathbb{R}^{2}} y \left(y/t \right) \right)$

4) (7x dy (Pn N gya) -> Rxy) [x/2] = (4x dy (Px N gyx) -> Rxy)

I in a state, or has been assigned to a, then Prf(2) signifies 'a & f(a)' are selected to P.

l-g - f(a) > feether of earlier

a > hancel

then, f(a) & a Clearer and Repul ord

selated to P)

younger factor of'

Suppose Pxf(a) signifies Rapul is younger

than his feether

let (1) = Robul of (l(x)) = father of Rahul Offine of by: off) - fashes of then $|l(f(n)) = \phi(f) Q(x)|$ The symbol l'is for valuation, I=(0,0) where & is called an associative function weith relation on (0 = compty got) A state Ie is a triplet (0,0,0) I is the interpretation \$ is the associative relation 2 l is a Valuation of x be any formula then Ie + x means Je verifies X'. or lesotisfies X'.

Let x be a given formula, shen x is satisfiable if and only if some exate satisfiable it. x is unsatisfiable if and

only if each state satisfies it, × is valid if and only if each state satisfies it, × is invalid if and only if some state falsifies it.