Constraint Satisfaction Problems (CSPs)

Outline

- I. Definition of a CSP
- II. Map coloring
- III. Job shop scheduling
- IV. The diet problem and linear programming

^{*} Figures/images are from the <u>textbook site</u> (or by the instructor). Otherwise, the source is cited unless such citation would make little sense due to the triviality of generating the image.

I. Definition of a CSP

• A set of variables $\mathcal{X} = \{X_1, ..., X_n\}$.

• A set of domains $\mathcal{D} = \{D_1, \dots, D_n\}$.

Domain $D_i = \{v_1, ..., v_{k_i}\}$ is the set of allowable values for the variable X_i . e.g., $\{true, false\}$ for a Boolean variable.

• A set of constraints $C = \{C_1, ..., C_m\}$ that specifies allowable combination of values.

Relation

• C_j : $\langle (v_i, v_j), \text{ relation} \rangle$

lacktriangle a set of tuple of values for v_i and v_j

If $D_1 = D_2 = \{1, 2, 3\}$, the relation " X_1 is greater than X_2 ":

$$\langle (X_1, X_2), \{(3,1), (3,2), (2,1)\} \rangle$$

Relation

• C_j : $\langle (v_i, v_j), \text{ relation} \rangle$

 \clubsuit a set of tuple of values for v_i and v_j

If
$$D_1 = D_2 = \{1, 2, 3\}$$
, the relation " X_1 is greater than X_2 ":

$$\langle (X_1, X_2), \{(3,1), (3,2), (2,1)\} \rangle$$

a function that checks if a tuple satisfies the relation

$$\langle (X_1, X_2), X_1 > X_2 \rangle$$

$$\{X_i = v_i, X_j = v_j, \dots\}$$

$$\{X_i = v_i, X_j = v_j, \dots\}$$

An assignment is

consistent if no constraint is violated.

$$\{X_i = v_i, X_j = v_j, \dots\}$$

An assignment is

consistent if no constraint is violated.

$${X_i = v_i, X_j = v_j, ...}$$

An assignment is

- consistent if no constraint is violated.
- complete if every variable is assigned a value.
- partial if some variables are unassigned.

$$\{X_i = v_i, X_j = v_j, \dots\}$$

An assignment is

- consistent if no constraint is violated.
- complete if every variable is assigned a value.
- partial if some variables are unassigned.

A *solution* to a CSP is a consistent, complete assignment.

A partial solution is a partial assignment that is consistent.

$$\{X_i = v_i, X_j = v_j, \dots\}$$

An assignment is

- consistent if no constraint is violated.
- complete if every variable is assigned a value.
- partial if some variables are unassigned.

A *solution* to a CSP is a consistent, complete assignment.

A partial solution is a partial assignment that is consistent.

Solving a CSP is NP-complete in general!

II. Example 1: Map Coloring

Color the regions of Australia in red, green, or blue such that no two neighboring regions share the same color.

Variables: $X = \{WA, NT, Q, NSW, V, SA, T\}$

Domains: $D_i = \{red, green, blue\}$

Map Coloring (cont'd)

Constraints: $C = \{SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V \\ WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V\}$

Map Coloring (cont'd)

Constraints: $C = \{SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V \}$ $WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V\}$

SA≠WA by enumeration: { (red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

Map Coloring (cont'd)

Constraints: $C = \{SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V \\ WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V\}$

SA≠WA by enumeration: { (red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

Constraint Graph

Binary constraints only.

variable ↔ vertex constraint ↔ edge

Constraint Graph

Binary constraints only.

variable \leftrightarrow vertex constraint \leftrightarrow edge

Northern Territory Queensland Western Australia South Australia New South Wales Victoria Tasmania

Constraint graph

Constraint Graph

Binary constraints only.

variable ↔ vertex constraint ↔ edge

Constraint graph

Four-Color Theorem

Theorem Any map in a plane can be colored using four colors in such a way that regions sharing a common boundary (other than a single point) do not share the same color.

^{*} Images from https://commons.wikimedia.org/wiki/File:World_map_with_four_colours.svg and https://geology.com/world/the-united-states-of-america-satellite-image.shtml.

Four-Color Theorem

Theorem Any map in a plane can be colored using four colors in such a way that regions sharing a common boundary (other than a single point) do not share the same color.

^{*} Images from https://commons.wikimedia.org/wiki/File:World_map_with_four_colours.svg and https://geology.com/world/the-united-states-of-america-satellite-image.shtml.

Four-Color Theorem

Theorem Any map in a plane can be colored using four colors in such a way that regions sharing a common boundary (other than a single point) do not share the same color.

^{*} Images from https://commons.wikimedia.org/wiki/File:World_map_with_four_colours.svg and https://geology.com/world/the-united-states-of-america-satellite-image.shtml.

- A natural representation for a wide variety of problem.
- Fast and efficient CSP solvers.

- A natural representation for a wide variety of problem.
- Fast and efficient CSP solvers.
- Ability of a CSP solver to reduce the search space significantly.

- A natural representation for a wide variety of problem.
- Fast and efficient CSP solvers.
- Ability of a CSP solver to reduce the search space significantly.

- A natural representation for a wide variety of problem.
- Fast and efficient CSP solvers.
- Ability of a CSP solver to reduce the search space significantly.

$${SA = blue}$$

- A natural representation for a wide variety of problem.
- Fast and efficient CSP solvers.
- Ability of a CSP solver to reduce the search space significantly.

$${SA = blue}$$

blue cannot be assigned to WA, NT, Q, NSW, and V.

- A natural representation for a wide variety of problem.
- Fast and efficient CSP solvers.
- Ability of a CSP solver to reduce the search space significantly.

$${SA = blue}$$

blue cannot be assigned to WA, NT, Q, NSW, and V.

 $2^5 = 32$ assignments to the five regions.

- A natural representation for a wide variety of problem.
- Fast and efficient CSP solvers.
- Ability of a CSP solver to reduce the search space significantly.

$${SA = blue}$$

blue cannot be assigned to WA, NT, Q, NSW, and V.

 $2^5 = 32$ assignments to the five regions.

A reduction from $3^5 = 243$ assignments by a search procedure not using the constraint.

Why the Search Space is Reduced?

Atomic state-space search

Is this specific state a goal? If not, what about this one?

Why the Search Space is Reduced?

Atomic state-space search

Is this specific state a goal? If not, what about this one?

CSP

Upon violation by a partial assignment

- discard its further refinements,
- see which variables cause the violation,
- focus on those variables that matter.

Why the Search Space is Reduced?

Atomic state-space search

Is this specific state a goal? If not, what about this one?

CSP

Upon violation by a partial assignment

- discard its further refinements,
- see which variables cause the violation,
- focus on those variables that matter.

Car assembly with 15 tasks:

- install axles (front and back): 2
- affix wheels (right and left, front and back): 4
- tighten nuts for each wheel: 4
- affix hubcaps: 4
- inspect the final assembly: 1

Car assembly with 15 tasks:

- install axles (front and back): 2
- affix wheels (right and left, front and back): 4
- tighten nuts for each wheel: 4
- affix hubcaps: 4
- inspect the final assembly: 1

```
 \mathcal{X} = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{LF}, Wheel_{RB}, Wheel_{LB}, Nuts_{RF}, \\ Nuts_{LF}, Nuts_{RB}, Nuts_{LB}, Cap_{RF}, Cap_{LF}, Cap_{RB}, Cap_{LB}, Inspect\}.
```

Car assembly with 15 tasks:

- install axles (front and back): 2
- affix wheels (right and left, front and back): 4
- tighten nuts for each wheel: 4
- affix hubcaps: 4
- inspect the final assembly: 1

```
 \mathcal{X} = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{LF}, Wheel_{RB}, Wheel_{LB}, Nuts_{RF}, \\ Nuts_{LF}, Nuts_{RB}, Nuts_{LB}, Cap_{RF}, Cap_{LF}, Cap_{RB}, Cap_{LB}, Inspect\}.
```

 \mathcal{D} : time space for each variable.

Car assembly with 15 tasks:

- install axles (front and back): 2
- affix wheels (right and left, front and back): 4
- tighten nuts for each wheel: 4
- affix hubcaps: 4
- inspect the final assembly: 1

```
 \mathcal{X} = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{LF}, Wheel_{RB}, Wheel_{LB}, Nuts_{RF}, \\ Nuts_{LF}, Nuts_{RB}, Nuts_{LB}, Cap_{RF}, Cap_{LF}, Cap_{RB}, Cap_{LB}, Inspect\}.
```

 \mathcal{D} : time space for each variable.

 $Axle_F$ = starting time for installation of the front axle.

Precedence Constraints

$$\begin{array}{c|c} T_1+d_1 \leq T_2 \\ & | & | \\ \text{starting time of task } T_1 & \text{duration of task } T_1 \end{array}$$

Precedence Constraints

$$T_1 + d_1 \leq T_2$$

$$\mid \quad \quad \mid$$
 starting time of task T_1 duration of task T_1

♣ The axles have to be in place before the wheels are put on (axle installation takes 10 minutes).

$$Axle_F + 10 \le Wheel_{RF}$$
 $Axle_F + 10 \le Wheel_{LF}$
 $Axle_B + 10 \le Wheel_{RB}$ $Axle_B + 10 \le Wheel_{LB}$

Precedence Constraints

$$T_1 + d_1 \leq T_2 \\ | \quad |$$
 starting time of task T_1 duration of task T_1

♣ The axles have to be in place before the wheels are put on (axle installation takes 10 minutes).

$$Axle_F + 10 \le Wheel_{RF}$$
 $Axle_F + 10 \le Wheel_{LF}$
 $Axle_B + 10 \le Wheel_{RB}$ $Axle_B + 10 \le Wheel_{LB}$

Affix each wheel (1 minutes), then tighten the nuts (2 minutes), and finally attach the hubcap (1 minute, not represented)

$$Wheel_{RF} + 1 \le Nuts_{RF}$$
 $Nuts_{RF} + 2 \le Cap_{RF}$
 $Wheel_{LF} + 1 \le Nuts_{LF}$ $Nuts_{LF} + 2 \le Cap_{LF}$
 $Wheel_{RB} + 1 \le Nuts_{RB}$ $Nuts_{RB} + 2 \le Cap_{RB}$
 $Wheel_{LB} + 1 \le Nuts_{LB}$ $Nuts_{LB} + 2 \le Cap_{LB}$

More Constraints

♣ Inspection comes last and take 3 minutes

$$X + d_X \leq Inspect$$
 for every $X \in \mathcal{X}$ duration of task X

More Constraints

Inspection comes last and take 3 minutes

$$X + d_X \leq Inspect$$
 for every $X \in \mathcal{X}$ duration of task X

♣ The whole assembly must be finished in 30 minutes

More Constraints

Inspection comes last and take 3 minutes

$$X + d_X \leq Inspect$$
 for every $X \in \mathcal{X}$ duration of task X

♣ The whole assembly must be finished in 30 minutes

Limit the domain of all variables (discretization)

$$\mathcal{D} = \{1, 2, \dots, 27\}$$

Disjunctive Constraint

Four workers installing wheels have to share one tool for axle installment.

Disjunctive Constraint

Four workers installing wheels have to share one tool for axle installment.

 $Axle_F$ and $Axle_B$ must not overlap in time.

Disjunctive Constraint

Four workers installing wheels have to share one tool for axle installment.

 $Axle_F$ and $Axle_B$ must not overlap in time.

 $(Axle_F + 10 \le Axle_B)$ or $(Axle_B + 10 \le Axle_F)$

Discrete, finite domains:

Map coloring, 8-queens, scheduling (with time limits).

Discrete, finite domains:

Map coloring, 8-queens, scheduling (with time limits).

Discrete, infinite domains:

Implicit constraints only, e.g., $T_1 + d_1 \leq T_2$

Discrete, finite domains:

Map coloring, 8-queens, scheduling (with time limits).

Discrete, infinite domains:

Implicit constraints only, e.g., $T_1 + d_1 \leq T_2$

Continuous domains:

Scheduling of experiments on the Hubble Telescope,

Discrete, finite domains:

Map coloring, 8-queens, scheduling (with time limits).

Discrete, infinite domains:

Implicit constraints only, e.g., $T_1 + d_1 \leq T_2$

Continuous domains:

Scheduling of experiments on the Hubble Telescope,

linear programming.

IV. The Diet Problem*

How much money to spend in order to get what Polly needs every day?

- energy (2,000 kcal)
- protein (55 g)
- calcium (800 mg)

IV. The Diet Problem*

How much money to spend in order to get what Polly needs every day?

- energy (2,000 kcal)
- protein (55 g)
- calcium (800 mg)

		Energy	Protein	Calcium	Price per serving
Food	Serving size	(kcal)	(g)	(mg)	(cents)
Oat meal	28 g	110	4	2	3
$\operatorname{Chicken}$	$100~\mathrm{g}$	205	32	12	24
Eggs	2 large	160	13	54	13
Whole milk	$237 \mathrm{cc}$	160	8	285	9
Cherry pie	$170~\mathrm{g}$	420	4	22	20
Pork with beans	$260~\mathrm{g}$	260	14	80	19

^{*} V. Chvatal. *Linear Programming*. W. H. Freeman and Company, 1983.

Daily Serving Limits

	Servings at most per day
Oatmeal	4
Chicken	3
Eggs	2
Milk	8
Cherry pie	2
Pork with beans	2

Task: Design the most economical menu.

 x_1 : servings of oatmeal

 x_3 : servings of eggs

 x_5 : servings of cherry pie

 x_2 : servings of chicken

 x_4 : servings of whole milk

 x_6 : servings of pork with beans

	Price per serving
Food	(cents)
Oat meal	3
Chicken	24
Eggs	13
Whole milk	9
Cherry pie	20
Pork with beans	19

 x_1 : servings of oatmeal

 x_2 : servings of chicken

 x_3 : servings of eggs

 x_4 : servings of whole milk

 x_5 : servings of cherry pie

 x_6 : servings of pork with beans

	Price per serving
Food	(cents)
Oat meal	3
Chicken	24
$_{ m Eggs}$	13
Whole milk	9
Cherry pie	20
Pork with beans	19

$$\min \quad 3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6$$

subject to

 x_1 : servings of oatmeal

 x_2 : servings of chicken

 x_3 : servings of eggs

 x_4 : servings of whole milk

 x_5 : servings of cherry pie

 x_6 : servings of pork with beans

	Price per serving
Food	(cents)
Oat meal	3
Chicken	24
Eggs	13
Whole milk	9
Cherry pie	20
Pork with beans	19

	Objective function (linear)
\min	$3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6$

subject to

 x_1 : servings of oatmeal

 x_2 : servings of chicken

 x_3 : servings of eggs

 x_4 : servings of whole milk

 x_5 : servings of cherry pie

 x_6 : servings of pork with beans

	Price per serving
Food	(cents)
Oat meal	3
$\operatorname{Chicken}$	24
$_{\mathrm{Eggs}}$	13
Whole milk	9
Cherry pie	20
Pork with beans	19

$$\min \quad 3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6$$

subject to
$$0 \le x_1 \le 4$$

$$0 < x_2 < 3$$

$$0 \le x_3 \le 2$$

$$0 \le x_4 \le 8$$

$$0 \le x_5 \le 2$$

$$0 \le x_6 \le 2$$

 x_1 : servings of oatmeal

 x_2 : servings of chicken

 x_3 : servings of eggs

 x_4 : servings of whole milk

 x_5 : servings of cherry pie

 x_6 : servings of pork with beans

	Price per serving
Food	(cents)
Oat meal	3
Chicken	24
Eggs	13
Whole milk	9
Cherry pie	20
Pork with beans	19

Objective function (linear)

$$\min \quad 3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6$$

subject to
$$0 \le x_1 \le 4$$
 $0 \le x_2 \le 3$
 $0 \le x_3 \le 2$
 $0 \le x_4 \le 8$
 $0 \le x_5 \le 2$
 $0 \le x_6 \le 2$

Servings-per-day limits

 x_1 : servings of oatmeal

 x_2 : servings of chicken

 x_3 : servings of eggs

 x_4 : servings of whole milk

 x_5 : servings of cherry pie

 x_6 : servings of pork with beans

	Price per serving
Food	(cents)
Oat meal	3
Chicken	24
Eggs	13
Whole milk	9
Cherry pie	20
Pork with beans	19

min
$$3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6$$

subject to
$$0 \le x_1 \le 4$$
 $0 \le x_2 \le 3$
 $0 \le x_3 \le 2$
 $0 \le x_4 \le 8$
 $0 \le x_5 \le 2$
 $0 \le x_6 \le 2$

Servings-per-day limits

and

energy $110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$

protein $4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \ge 55$

calcium $2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \ge 800$

 x_1 : servings of oatmeal

 x_2 : servings of chicken

 x_3 : servings of eggs

 x_4 : servings of whole milk

 x_5 : servings of cherry pie

 x_6 : servings of pork with beans

	Price per serving
Food	(cents)
Oat meal	3
Chicken	24
$_{\mathrm{Eggs}}$	13
Whole milk	9
Cherry pie	20
Pork with beans	19

Objective function (linear)

$$\min \quad 3x_1 + 24x_2 + 13x_3 + 9x_4 + 20x_5 + 19x_6$$

subject to
$$0 \le x_1 \le 4$$
 $0 \le x_2 \le 3$
 $0 \le x_3 \le 2$
 $0 \le x_4 \le 8$
 $0 \le x_5 \le 2$
 $0 \le x_6 \le 2$

Servings-per-day limits

and

energy $110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$

protein $4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \ge 55$

calcium $2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \ge 800$

Constraints (linear)

 x_1 : servings of oatmeal

 x_2 : servings of chicken

 x_3 : servings of eggs

 x_4 : servings of whole milk

 x_5 : servings of cherry pie

 x_6 : servings of pork with beans

	Price per serving
Food	(cents)
Oat meal	3
$\operatorname{Chicken}$	24
$_{\mathrm{Eggs}}$	13
Whole milk	9
Cherry pie	20
Pork with beans	19

subject to
$$0 \le x_1 \le 4$$
 $0 \le x_2 \le 3$
 $0 \le x_3 \le 2$
 $0 \le x_4 \le 8$
 $0 \le x_5 \le 2$
 $0 \le x_6 \le 2$

Linear Program!

Servings-per-day limits

and

energy $110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \ge 2000$

protein $4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \ge 55$

calcium $2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \ge 800$

Constraints (linear)

$$\begin{array}{ll} \text{Max} & c_1x_1+c_2x_2+\cdots+c_d\ x_d \\ \\ \text{subject to} & a_{11}x_1+a_{12}x_2+\cdots+a_{1d}x_d \leq b_1 \\ & a_{21}x_1+a_{22}x_2+\cdots+a_{2d}x_d \leq b_2 \\ \\ & \vdots \\ & a_{n1}x_1+a_{n2}x_2+\cdots+a_{nd}x_d \leq b_n \end{array}$$

Max
$$c_1x_1 + c_2x_2 + \dots + c_d x_d$$
 subject to $a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \le b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \le b_2$ \vdots $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \le b_n$ $\mathbf{x} = (x_1, x_2, \dots, x_d)$ $\mathbf{c} = (c_1, c_2, \dots, c_d)$ $\mathbf{b} = (b_1, b_2, \dots, b_n)$

Max
$$c_1x_1 + c_2x_2 + \dots + c_d x_d = cx^T$$
 subject to $a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \le b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \le b_2$ \vdots $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \le b_n$ $x = (x_1, x_2, \dots, x_d)$ $c = (c_1, c_2, \dots, c_d)$ $b = (b_1, b_2, \dots, b_n)$

$$\begin{array}{ll} \text{Max} & c_1x_1+c_2x_2+\dots+c_d \ x_d & = \boldsymbol{c}\boldsymbol{x}^T \\ \\ \text{subject to} & a_{11}x_1+a_{12}x_2+\dots+a_{1d}x_d \leq b_1 \\ & a_{21}x_1+a_{22}x_2+\dots+a_{2d}x_d \leq b_2 \\ & \vdots \\ & a_{n1}x_1+a_{n2}x_2+\dots+a_{nd}x_d \leq b_n \end{array} \right\} \quad \boldsymbol{A}\boldsymbol{x}^T \leq \boldsymbol{b}^T \\ \boldsymbol{x} = (x_1,x_2,\dots,x_d) \\ \boldsymbol{c} = (c_1,c_2,\dots,c_d) \\ \boldsymbol{b} = (b_1,b_2,\dots,b_n)$$

$$\begin{array}{ll} \text{Max} & c_1x_1 + c_2x_2 + \cdots + c_d \; x_d \\ \\ \text{subject to} & a_{11}x_1 + a_{12}x_2 + \cdots + a_{1d}x_d \leq b_1 \\ & a_{21}x_1 + a_{22}x_2 + \cdots + a_{2d}x_d \leq b_2 \\ & \vdots \\ & a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nd}x_d \leq b_n \end{array} \right] \quad A \pmb{x}^T \leq \pmb{b}^T$$

$$\mathbf{x} = (x_1, x_2, ..., x_d)$$

 $\mathbf{c} = (c_1, c_2, ..., c_d)$
 $\mathbf{b} = (b_1, b_2, ..., b_n)$

Solvable in time polynomial in d.

$$\begin{array}{ll} \text{Max} & c_1x_1 + c_2x_2 + \cdots + c_d \; x_d \\ \\ \text{subject to} & a_{11}x_1 + a_{12}x_2 + \cdots + a_{1d}x_d \leq b_1 \\ & a_{21}x_1 + a_{22}x_2 + \cdots + a_{2d}x_d \leq b_2 \\ & \vdots \\ & a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nd}x_d \leq b_n \end{array} \right] \quad A \pmb{x}^T \leq \pmb{b}^T$$

$$\mathbf{x} = (x_1, x_2, ..., x_d)$$

 $\mathbf{c} = (c_1, c_2, ..., c_d)$
 $\mathbf{b} = (b_1, b_2, ..., b_n)$

Solvable in time polynomial in d.

$$\text{Max} \quad c_1 x_1 + c_2 x_2 + \dots + c_d \; x_d \qquad \qquad = \boldsymbol{c} \boldsymbol{x}^T$$
 subject to
$$\begin{array}{l} a_{11} x_1 + a_{12} x_2 + \dots + a_{1d} x_d \leq b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2d} x_d \leq b_2 \\ \vdots \\ a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nd} x_d \leq b_n \end{array} \right] \quad \boldsymbol{A} \boldsymbol{x}^T \leq \boldsymbol{b}^T$$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_d)$$

$$\boldsymbol{c} = (c_1, c_2, \dots, c_d)$$

 $\mathbf{b} = (b_1, b_2, ..., b_n)$

Solvable in time polynomial in *d*.

Simplex method $O(2^d)$ (best performance in practice)

$$\text{Max} \quad c_1 x_1 + c_2 x_2 + \dots + c_d \; x_d \qquad \qquad = \boldsymbol{c} \boldsymbol{x}^T$$
 subject to
$$\begin{array}{l} a_{11} x_1 + a_{12} x_2 + \dots + a_{1d} x_d \leq b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2d} x_d \leq b_2 \\ \vdots \\ a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nd} x_d \leq b_n \end{array} \right] \quad \boldsymbol{A} \boldsymbol{x}^T \leq \boldsymbol{b}^T$$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_d)$$

$$\boldsymbol{c} = (c_1, c_2, \dots, c_d)$$

 $\mathbf{b} = (b_1, b_2, ..., b_n)$

Simplex method $O(2^d)$ (best performance in practice)

Solvable in time polynomial in d.