Kosinus-Ähnlichkeitsmaß

$$cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Stehen in der Term-Dokument-Matrix nur positive Zahlen, beträgt der größte mögliche Winkel zwischen zwei Vektoren 90° Dann ist Wertebereich Kosinus-Maß [0...1] Sonst [-1...1]

Termrelevanz

- Beispieltext aus Wikipedia: Man_Ray
- Was sind die relevantesten Terme im Text?

Termrelevanz

- Beispieltext aus Wikipedia: Man_Ray
- Was sind die relevantesten Terme im Text?
- Berechnet mit TF-IDF:

- Ray	29,03	Künstlers	11,51
Stieglitz	15,60	Johann-Karl	9,12
Fotografie	14,23	Photogramme	9,12
- Man	12,48	Pseudo-Solari	sation 9,12
	11,77	Rayographien	9,12
Cimetiére	11,51	Rudnitzky	9,12
Dada-Sektion	11,51	Sabattier-Effe	kts 9,12
Gemälde	11,51	er	8,87
Gründer	11,51	Stiftung	7,89

Termrelevanz

Termrelevanz - Beispielprogramme

- Zwei Perl-Skripte unter http://www.ling.uni-potsdam.de/~kolb/ir.html
- df.pl und tfidf.pl
- df-Speicher wikipedia 10K.df
- Eingabedokumente sollten tokenisiert sein
- UTF-8 (Unicode)
- Unter Linux: recode

Termrelevanz - Anwendungen

- Gewichten von Dokumentvektoren im IR
- Finden ähnlicher Dokumente ("More like this")
- Erzeugen von Zusammenfassungen:
 - Extraktionsverfahren:
 - Bestimme Termrelevanzen nach TF-IDF
 - Zerlege Eingabetext in Sätze
 - Berechne für jeden Satz die Summe der TF-IDF-Werte der enthaltenen Terme
 - Sortierte Sätze nach summierten TF-IDF-Werten
 - Gebe die n relevantesten Sätze als Zusammenfassung aus
- Automatische Verschlagwortung

Dokumentenraum

Ähnlichste Dokumente finden

	\mathbf{d}_1	d ₂	•••	d _m
t ₁	f _{1,1}	f _{1,2}	**	f _{1,m}
t ₂	f _{2,1}	f _{2,2}	*	f _{2,m}
•••	•••	•••	***	•••
t _n	f n,1	f _{n,2}	***	f _{n,m}

Ähnlichste Dokumente finden

- Dokumentvektor des Ausgangsdokuments mit allen anderen Dokumentvektoren auf Ähnlichkeit vergleichen
- per Kosinus-Maß
- n Dokumente, t Terme: O(n*t)
- Rangfolge der ähnlichsten Dokumente
- Duplikate, Versionen und Plagiate finden (Schwellwert?)

Ähnlichste Dokumente im Web finden

- Ausgangsdokument bzw. -vektor
- n relevanteste Terme auswählen
- Anfrage an Suchmaschine konstruieren und abschicken
- Woher den df-Speicher nehmen?
- Dokumentvektor wird stark gekürzt nicht schlimm (siehe nächste Folie!)
- Nachteil: keine Gewichtung der Terme in der Anfrage möglich
- nicht das Gleiche wie "ähnliche Seiten" bei Google!

Löschen nicht-relevanter Dimensionen

Ähnliche Dokumente in Lucene finden

- n relevanteste Terme auswählen
- Suchanfrage konstruieren
- Terme in Suchanfrage mit Hilfe des "term boost factors" gewichten
- z.B.: Ray^29.03 AND Stieglitz^15.6 AND Fotografie^14.23 AND Man^12.48
- 50%-60% der relevantesten Terme am besten
- Ähnlichkeitsfunktion FindSimilar bereits eingebaut

Termähnlichkeit

- Term-Dokument-Matrix: Spalten = Dokumentvekoren
- Zeilen = Termvektoren
- Termvektoren mit Kosinus-Maß auf Ähnlichkeit vergleichen
- → Liste mit ähnlichen Termen zum Ausgangsterm
- automatische Thesaurusgenerierung
- eigene, zweite Adjazenzstruktur nötig
- Manning u. Schütze (1999): Abschnitt 8.5
- http://bscw.sfb632.uni-potsdam.de/vbsa/disco.html

Termähnlichkeit

	\mathbf{d}_1	d ₂	•••	d _m
t 1	f _{1,1}	f _{1,2}	•••	f _{1,m}
t ₂	f _{2,1}	f _{2,2}	***	f _{2,m}
•••	•••	•••	•••	•••
t _n	f n,1	f _{n,2}	***	f _{n,m}

Termähnlichkeit

	A	В	С	D	Е	F	G	Н
A	0	1	0	0	1	0	0	1
В	1	0	1	1	0	0	0	0
С	1	1	0	1	0	0	0	0
D	1	1	1	0	1	0	1	0
Е	1	1	0	1	0	1	0	0
F	0	0	1	0	1	0	1	0
G	1	0	0	0	0	1	0	0
Н	1	0	1	0	0	0	0	0

