TOMED THERMISTOR CHAIN OBSERVATIONS DURING MILDEX (MIMED LAYER DYNAMICS E. (U) OREGON STATE UNITY CORVALLIS COLL OF OCEANOGRAPHY R J BAUMANN ET AL. JUN 85 REF-85-12 N88814-79-C-8884 F/G 8/19 1/2 AD-A158 384 NL UNCLASSIFIED

NATIONAL BUREAU OF STANDARDS MICROCOPY RESOLUTION TEST CHART

College of

OCEANOGRAPHY

AD-A158 304

11

TOWED THERMISTOR CHAIN OBSERVATIONS DURING MILDEX

by

R.J. Baumann L.M. deWitt C.A. Paulson J.V. Paduan

Office of Naval Research N00014-79-C-0004 N00014-84-C-0218 NR-083-102 College of Oceanography Oregon State University

> Reference 85-12 June 1985

Reproduction in whole or part is permitted for any purpose of the United States Government.

OREGON STATE UNIVERSITY

85 8 22 014

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)									
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM								
T REPORT NUMBER 2. GOVT ACCESSION NO. 85-12	J. RECIPIENT'S CATALOG NUMBER								
TOWED THERMISTOR CHAIN OBSERVATIONS DURING MILDEX	5. TYPE OF REPORT & PERIOD COVERED Technical 6. PERFORMING ORG. REPORT NUMBER								
R. J. Baumann, L. M. deWitt, C. A. Paulson, J. V. Paduan and J. D. Wagner	N00014-79-C-0004 N00014-84-C-0218								
9. PERFORMING ORGANIZATION NAME AND ADDRESS College of Oceanography Oregon State University Corvallis, Oregon 97331	NR 083-102								
Office of Naval Research Ocean Science & Technology Division Arlington, Virginia 22217	June 1985 13. NUMBER OF PAGES 135								
14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	Unclassified								
	15. DECLASSIFICATION DOWNGRADING SCHEDULE								
Approved for public release; distribution unlimited									
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)									
18. SUPPLEMENTARY NOTES									

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Towed Thermistor Chain Upper Ocean Temperature Horizontal Variability

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Observations of temperature and pressure in the upper 115 m of the Pacific Ocean were taken with a towed thermistor chain during October and November, 1983, as a part of the Mixed Layer Dynamics Experiment (MILDEX). The MILDEX area was approximately 400 nautical miles west of Santa Barbara. The chain was towed on four occasions for a total distance of approximately 2500 km. The observations were averaged over sequential 30-second intervals and isotherms depths were interpolated from the averaged observations. Crosssections of temperature and isotherm depth are presented.

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 (

Unclassified

TOWED THERMISTOR CHAIN OBSERVATIONS DURING MILDEX

bу

R. J. Baumann, L. M. deWitt, C. A. Paulson, J. V. Paduan and J. D. Wagner

College of Oceanography Oregon State University Corvallis, Oregon 97331

REPORT

Office of Naval Research Contracts N00014-79-C-0004 and N00014-84-C-0218 Project NR-083-102

Approved for public release; distribution unlimited

Reference 85-12 June 1985 Douglas R. Caldwell Dean

TABLE OF CONTENTS

ACKNOWLE	DGMENTSi
INTRODUC	TION1
INSTRUME	NTATION3
OBSERVAT	IONS5
REFERENC	ES16
APPENDIC	ES
Α.	Sensor Depths17
В.	Temperature Cross-Sections27
C.	Isotherm Depth Cross-Sections82

ACKNOWLEDGMENTS

The design and construction of the thermistor chain were carried out by the Technical Planning and Development Group at Oregon State University under the direction of Rod Mesecar. We gratefully acknowledge the cooperation of the Captain, crew and scientists aboard the R/V WECOMA, Bruno Forsterer commanding and Douglas Caldwell, Chief Scientist. This research was supported by the Office of Naval Research through contracts N00014-79-C-0004 and N00014-84-C-0218 under project NR-083-102.

INTRODUCTION

This report presents observations of temperature in the upper ocean obtained by use of a towed thermistor chain. The observations were taken as part of a cooperative investigation of the upper ocean entitled Mixed Layer Dynamics Experiment (MILDEX). Measurements were made in October and November, 1983 in a region approximately 400 nautical miles west of Santa Barbara, California. The objectives of our participation were:

COURT CONTROL OF THE STATE OF T

- •To describe the horizontal variation of temperature in the upper layers.
- •To describe the wavenumber properties of the internal wave field.
- •To cooperate in a combined analysis of measurements with the towed chain, an acoustic doppler log and an underway profiler of conductivity and temperature.

The towed chain measurements were made aboard the R/V WECOMA.

The R/V ACANIA from the Naval Postgraduate School and the R/P FLIP from Scripps Institution of Oceanography (SIO) also participated in the experiment. In addition to the towed chain measurements aboard the WECOMA, Lloyd Regier (SIO) made underway measurements of vertical profiles of horizontal velocity with an acoustic doppler log, John Marra (Lamont-Doherty Geological Observatory) made underway measurements of chlorophyll-alpha, Russ Davis (SIO) deployed expendable current-following drifters, Roland de Szoeke and Jim

Richman (OSU) deployed a drifting current meter array which also measured surface atmospheric variables, and Doug Caldwell and Thomas Dillon (OSU) made measurements with microstructure profiling systems. Meteorological and surface temperature and salinity measurements made aboard the WECOMA are described in a separate report (Baumann et al. 1985).

INSTRUMENTATION

The towed chain system and its use in other experiments have been previously described by Spoering (1979), Baumann et al. (1980), Paulson et al. (1980), Baumann et al. (1982), and Baumann et al. (1983). For the MILDEX cruise the spacing of the sensors was modified from previous cruises. Table 1 shows the location of the sensors relative to the depressor and their operating status for each of the four times the chain was deployed during MILDEX. The three conductivity sensors were improperly grounded and did not yield reliable data. Navigational data from the ship's satellite and LORAN C instruments were recorded once every two minutes on a data logger system.

Table 1. Location and operation of sensors on the towed chain. The stations have either a temperature, conductivity or a pressure sensor installed denoted by a T, C, or P. The distance along the chain from the depressor to the sensor is denoted by S which has units of "chain-meters." One chain-meter equals 40 in. or 1.02 m.

Channel No.	Station	S (Chain-Meters)	Operat Run 1	ion Senso Run 2	ors (Y Run 3	Y = yes) Run 4
0	P0	2/61		Y	Y	Υ
1	TO	4/102 ²	Y	_	Ÿ	Ÿ
2	T1	8	Y	Y	-	_
2 3	P1	10	Y			
4	T2	12	Y	Y	Y	
5	CO	16				
6	Т3	16	Y	Y	Y	Y
7	T4	20	Y	Y	Y	Y
8	T 5	24	Y	Y		
9	Т6	28	Y	Y	Y	Y
10	Т7	32	Y	Y	Y	Y
11	Т8	36	Y	Y	Y	Y
12	Т9	40	Y			
13	T10	44	Y		Y	Y
14	T11	48	Y	Y		Y
15	T12	52	Y	Y	Y	Y
16	T13	56	Y	Y	Y	Y
17	P2	58	Y	Y	Y	Y
18	C1	60				
19	T14	60	Y	Y	Y	Y
20	T15	61	Y		Y	Y
21	T16	62	Y	Y	Y	Y
22	T17	63	Y	Y		
23	T18	64			Y	Y
24	T19	65	Y			
25	T20	66	Y		Y	Y
26	T21	67		Y		Y
27	T22	68	Y	Y		
28	T23	69				Y
29	C2	70				
30	T24	70	Y		Y	Y
31	P3	72	Y			
32	T25	74	Y			Y
33	T26	78		Y		Y
34	T27	86				
35	T28	94	Y	Y	Y	Y

Moved to chain-meter 6 between Runs 1 and 2

 $^{^{2}}$ Moved to chain-meter 102 between Runs 2 and 3

OBSERVATIONS

The thermistor chain was towed on four occasions during the cruise. The tow tracks are shown in Figures 1-5. The locations of FLIP and the Richman/de Szeoke drifting current meter string are also shown in Figures 1-3. The fourth tow began with a survey of a front encountered while returning to San Diego (Figure 4) and continued across the California Current (Figure 5). The times and positions of the corners of the tows are tabulated in Table 2. Table 3 gives additional navigational information about the tow segments as well as the isotherms calculated for each segment. During Run 3 the chain was raised approximately 10 meters for 25 hours to repair damage to the fairing that occured near the surface.

The depths of sensors were determined from a combination of the pressure measurements and a model of the configuration of the chain under tow. The model is described by Baumann et al. (1982) and Baumann et al. (1980). The description is also supplemented by material in Appendix A of this report. The average depth of the sensors for each tow segment is also complied in this appendix.

The temperature, conductivity and pressure observations were recorded at 4 Hz and subsequently low-pass filtered by computing sequential 30-s averages. Filtering removes fluctuations caused by variations in sensor depths associated with surface gravity waves and the pitch, roll and heave of the ship. The filtered temperature and

pressure observations are presented in Appendix B. The isotherm depths that were calcutated from the observed temperature values are presented in Appendix C.

Table 2. Positions and navigational notes for the tow segments. Positions are from LORAN-C data recorded every two minutes by the SAIL system.

		N T. 424 . 3.	M. Longitude	Comments
	Time (GMT)		<pre>W. Longitude (deg) (min)</pre>	Comments
27 - 0ct	1300	33 49.45	127 02.37	Start Run 1
	1823 2230	22 50 01	126 33.52	Speed increae
28 - 0ct	0359	33 50.01 33 50.09	125 56.51	Turn to 000°
20-000	0935	34 20.00	125 57.21	Turn to 270°
	1450	34 20.14	126 32.83	Turn to 180°
	2100	33 50.10	126 32.95	
29-0ct	0256	33 20.03	126 32.78	Turn to 270°
	0734	33 20.17		Turn to 037°
	1356	33 49.53	126 33.49	End Run 1
31 - 0ct	1905	34 01.33	126 11.48	Start Run 2
1-Nov	0000	34 04.25		
	0430	34 03.95		Turn to 180°
	1038	33 34.25		Turn to 270°
	1240	22 24 46	105 11 01	Increase in speed
	1602 1602	33 34.16	125 41.91	Turn to 000° Decrease in speed
	2200	34 04.48	125 37.16	Decrease In Specu
2-Nov	0340	34 34.51	125 37.48	Turn to 270°
	0830	34 34.59	126 12.38	Turn to 180°
	1449	34 02.20	126 10.10	
	1530	33 58.33	126 11.74	
	2107	33 27.96	126 09.65	Turn to 270°
3-Nov	0309	33 28.05		Turn to 000°
	0845	3 58.53	126 45.99	Turn to 090°
	1541	33 58.10	126 03.03	End Run 2
6-Nov	2103	33 52.97		Start Run 3
7-Nov	0219	34 21.07		Turn to 270°
	0741	34 20.95	126 25.87	Turn to 180°
	1241	33 50.82	126 26.08	Turn to 090°
	1743	33 51.77	125 50.14	Turn to 000° Chain raised 10 m
	2215 2305	34 20.97	125 50.02	Turn to 090°
8-Nov	2305 0503	34 20.97	125 13.83	Turn to 180°
ONOV	1101	33 51.16	125 13.65	Turn to 270°
	1702	33 50.88	125 49.88	Turn to 000°
	2218	34 20.96	125 50.06	Turn to 270°
	2200			Chain lowered 10 m
9-Nov	0334	34 21.07	126 25.99	Turn to 180°
	0942	33 51.05	126 25.18	Turn to 090°
	1432	33 50.96	125 48.18	Turn to 000°
40.5	1953	34 20.97	125 48.46	Turn to 090°
10-Nov	0129	34 21.01	125 13.68	Turn to 180° End Run 3
	0243	34 15.33	125 13.63	End van 2

Mildex Run 2 Average sensor depth for each tow segment.

Box sid Channe		9-6	6-7	7-8	8-9	
1	113.30	112.98	112.15	112.96	113.57	
0	111.24	110.94	110.11	110.92	111.53	
2	109.18	108.90	108.07	108.88	109.49	
3	107.12	106.86	106.03	106.84	107.45	
4	105.06	104.83	104.00	104.80	105.41	
5	100.95	100.76	99.93	100.73	101.35	
6	100.95	100.76	99.93	100.73	101.35	
7	96.85	96.70	95.87	96.67	97.28	
8	92.76	92.64	91.83	92.62	93.23	
9	88.68	88.60	87.79	88.58	89.18	
10	84.61	84.57	83.77	84.54	85.14	
11	80.56	80.55	79.76	80.52	81.11	
12	76.52	76.54	75.76	76.51	77.10	
13	72.50	72.54	71.78	72.52	73.09	
1 4	68.49	68.56	67.81	68.54	69.10	
15	64.50	64.59	63.87	64.57	65.12	
16	60.53	60.64	59.94	60.63	61.16	
17	58.55	58.68	57.93	58.66	59.18	
18	56.58	56.71	56.03	56.69	57.21	
19	56.58	56.71	56.03	56.69	57.21	
20	55.59	55.73	55.05	55.71	56.22	
21	54.61	54.75	54.08	54.73	55.24	
22	53.63	53.77	53.10	53.75	54.26	
23	52.64	52.79	52.13	52.78	53.27	
24	51.66	51.82	51.16	51.80	52.29	
<i>2</i> 5	50.69	50.84	50.19	50.82	51.31	
26	49.71	49.87	49.23	49.85	50.33	
27	48.73	48.89	48.26	48.88	49.36	
28	47.76	47.92	47.30	47.90	48.38	
29	46.78	46.95	46.33	46.93	47.40	
30	46.78	46.95	46.33	46.93	47.40	
31	44.84	45.01	44.41	44.99	45.45	
32	42.90	43.07	42.49	43.06	43.51	
33	39.04	39.22	38.67	39.20	39.63	
34	31.38	31.56	31.08	31.55	31.92	
35	23.81	23.98	23.58	23.97	24.28	

Mildex Run 2
Average sensor depth for each tow segment.

	ie: 0-0'	0'-1	1-2	2-3	3-0'	0 • -4	4-5	5 - 0
Channe				_				
1	111.22	112.38	114.19	110.67	114.15	113.47	113.56	113.46
0	109.19	110.34	112.15	108.63	112.1	111.43	111.51	111.41
2	107.15	108.30	110.11	106.59	110.07	109.39	109.47	109.38
3	105.12	106.26	108.07	104.55	108.03	107.35	107.43	107.34
4	103.09	104.23	106.03	102.52	105.99	105.31	105.40	105.30
5	99.03	100.16	101.96	98.46	101.92	101.24	101.32	101.23
5 6	99.03	100.16	101.96	98.46	101.92	101.24	101.32	101.23
7	94.98	96.10	97.89	94.41	97.85	97.17	97.26	97.17
8	90.94	92.05	93.83	90.37	93.79	93.12	93.20	93.11
9	86.92	88.01	89.78	86.34	89.74	89.07	89.15	89.06
10	82.91	83.98	85.74	82.33	85.70	85.03	85.11	85.03
11	78.91	79.96	81.70	78.34	81.66	81.01	81.08	81.00
12	74.93	75.96	77.68	74.37	77.64	76.99	77.07	76.99
13	70.97	71.98	73.66	70.41	73.63	72.99	73.06	72.98
14	67.03	68.01	69.66	66.48	69.62	69.00	69.07	68.99
15	63.10	64.05	65.67	62.57	65.63	65.02	65.09	65.02
16	59.20	60.12	61.69	58.67	61.65	61.06	61.13	61.06
17	57.25	58.16	59.70	56.74	59.67	59.09	59.15	59.08
18	55.31	56.20	57.72	54.80	57.69	57.11	57.18	57.11
19	55.31	56.20	57.72	54.80	57.69	57.11	57.18	57.11
20	54.34	55.22	56.73	53.84	56.70	56.13	56.19	56.13
21	53.38	54.25	55.74	52.88	55.71	55.15	55.21	55.14
22	52.41	53.27	54.76	51.92	54.72	54.16	54.23	54.16
23	51.45	52.30	53.77	50.96	53.74	53.18	53.24	53.18
24	50.49	51.33	52.78	50.00	52.75	52.20	52.26	52.20
25	49.52	50.36	51.80	49.04	51.77	51.22	51.28	51.22
26	48.57	49.39	50.81	48.09	50.78	50.24	50.30	50.24
27	47.61	48.42	49.83	47.13	49.80	49.27	49.32	49.26
28	46.65	47.45	48.85	46.18	48.82	48.29	48.35	48.29
29	45.69	46.48	47.87	45.23	47.83	47.31	47.37	47.31
30	45.69	46.48	47.87	45.23	47.83	47.31	47.37	47.31
31	43.79	44.56	45.90	43.34	45.87	45.37	45.42	45.36
32	41.88	42.63	43.95	41.45	43.92	43.42	43.47	43.42
33	38.10	38.80	40.04	37.68	40.02	39.55	39.60	39.54
33 34	30.10	31.20	32.28	30.23	32.26	31.85	31.89	31.85
35	23.18	23.68	24.58	22.88	24.56	24.22	24.25	24.22
37	01 • ر ع	25.00	250	22.00	2,000	_ · •		

Mildex Run 1
Average sensor depth for each tow segment.

Box sid		6-1	1-2	2-3	3 - 6	6-4	4-5	5 - 6
0	107.55	107.24	108.15	108.13	108.38	108.00	108.25	107.00
				-				107.00
1	103.47	103.15	104.06	104.05	104.30	103.92	104.16	102.91
2	99.40	99.07	99.98	99.97	100.22	99.84	100.08	98.83
3	97.36	97.03	97.94	97.93	98.18	97.80	98.04	96.80
4	95.33	95.00	95.90	95.89	96.14	95.76	96.00	94.76
5	91.26	90.93	91.83	91.82	92.07	91.69	91.93	90.69
6	91.26	90.93	91.83	91.82	92.07	91.69	91.93	90.69
7	87.20	86.86	87.76	87.75	88.00	87.62	87.86	86.63
8	83.15	82.81	83.70	83.69	83.93	83.56	83.79	82.58
9	79.11	78.76	79.65	79.63	79.88	79.51	79.74	78.54
10	75.07	74.73	75.60	75.59	75.83	75.47	75.69	74.51
11	71.05	70.71	71.57	71.55	71.79	71.43	71.65	70.49
12	67.04	66.70	67.54	67.53	67.76	67.41	67.62	66.48
13	63.04	62.70	63.52	63.51	63.74	63.40	63.61	62.49
14	59.05	58.72	59.52	59.51	59.73	59.39	59.60	58.51
15	55.07	54.75	55.53	55.51	55.73	55.40	55.60	54.55
16	51.11	50.79	51.55	51.53	51.75	51.43	51.62	50.60
17	49.14	48.82	49.56	49.55	49.76	49.44	49.63	48.64
18	47.16	46.85	47.58	47.56	47.77	47.46	47.65	46.67
19	47.16	46.85	47.58	47.56	47.77	47.46	47.65	46.67
20	46.18	45.87	46.59	46.57	46.78	46.48	46.65	45.69
21	45.20	44.89	45.60	45.58	45.79	45.49	45.66	44.72
22	44.21	43.91	44.61	44.60	44.70	44.50	44.67	43.74
23	43.23	42.93	43.62	43.61	43.81	43.51	43.69	42.76
24	42.25	41.95	42.63	42.62	42.82	42.53	42.70	41.79
25	41.27	40.98	41.65	41.64	41.83	41.54	41.71	40.81
26	40.29	40.00	40.66	40.65	40.84	40.56	40.73	39.84
27	39.31	39.03	39.68	39.67	39.85	39.58	39.74	38.87
28	38.34	38.05	38.70	38.68	38.87	38.60	38.76	37.89
29	37.36	37.08	37.71	37.70	37.88	37.62	37.77	36.92
30	37.36	37.08	37.71	37.70	37.88	37.62	37.77	36.92
31	35.41	35.14	35.75	35.74	35.92	35.66	35.81	34.99
32	33.46	33.20	33.79	33.78	33.95	33.70	33.85	33.06
33	29.59	29.34	29.88	29.88	30.03	29.80	29.94	29.21
34	21.88	21.67	22.12	22.11	22.24	22.05	22.16	21.56
35	14.23	14.07	14.41	14.40	14.50	14.36	14.44	13.99
		•				-		-

was corrected by subtracting 0.5 m. Channel 17 was corrected by first multiplying the measured pressure by 0.9954 and then adding 0.4 m.

The following pages list sensor depths for each tow segment.

APPENDIX A

Sensor Depths

The sequential 30-s averages of pressure measurements and a model of the thermistor chain under tow were used to calculate the depth of the temperature sensors. The model specifies the shape of the chain as a function of tow speed. Tow speed was not known with sufficient accuracy, however, so numerical techniques were used to compute a time series of fictitious speed based on the lowest pressure measurement. The fictitious speed is then used in the model to calculate sensor depth as a function of time. Isotherms were calculated by linear interpolation between adjacent temperature sensors.

The chain model used was derived by Baumann et al. (1980). The drag coefficient of the chain was adjusted in the model to fit the depths measured by the pressure sensors. The drag force on the chain ($CApU^2$) was calculated by use of $CAp = 2.4 \text{ N/m}^3\text{s}^2$ (compared to 2.6 N/m $^3\text{s}^2$ used for JASIN and 1.7 N/m $^3\text{s}^2$ used for FRONTS 80). In addition, the length of a chain-meter was 1.02 m instead of 1.016 m used in previous experiments.

The pressure measurements used were those from the deepest operating pressure sensor for each run. Channel 17 was used for Run 1 and channel 0 was used for Runs 2 through 4. The laboratory pressure calibrations were adjusted by examining the pressure measured as the chain was raised at the end of each run. The pressure from channel 0

REFERENCES

- Baumann, R. J., C. A. Paulson, J. V. Paduan and J. D. Wagner, 1985: Surface Atmospheric and Oceanic Measurements during MILDEX. Informal Report, College of Oceanography, Corvallis, OR 97331.
- Baumann, R. J., C. A. Paulson, R. Samelson, J. St.Martin and J. D. Wagner, 1983: Towed thermistor chain observations in FRONTS-82 Part I: Temperature cross-sections and surface observations. Informal Report, School of Oceanography, Corvallis, OR 97331, 187 pp.
- Baumann, R. J., L. M. deWitt, M. D. Levine, C. A. Paulson and J. Wagner, 1982: Towed thermistor chain observations across the Gulf Stream. Report, Reference 82-2, School of Oceanography, Corvallis, OR 97331, 98 pp.
- Baumann, R. J., C. A. Paulson and J. Wagner, 1980: Towed chain observations in JASIN. Report, Reference 80-14, School of Oceanography, Corvallis, OR 97331, 202 pp.
- Paulson, C. A., R. J. Baumann, L. M. deWitt, T. J. Spoering and J. D. Wagner, 1980: Towed thermistor chain observations in FRONTS 80. Report, Reference 80-18, School of Oceanography, Corvallis, OR 97331, 183 pp.
- Spoering, T. J., 1979: Towed observations of internal waves in the upper ocean. Report, Reference 79-10, School of Oceanography, Corvallis, OR 97331, 121 pp.

Figure 5. Tow track for Run 4. Figure 4 shows the detail of the beginning of the tow. The tow began at 2036 on 13-Nov-1983 and finished at 1737 on 16-Nov-1983 (GMT) at location 13. Positions numbered 7 through 13 are at six hour intervals. Additional navigational information is given in Tables 2 and 3.

Figure 4. Beginning of the tow track for Run 4. The tow began at 2036 on 13-Nov-1983 (GMT) at point 0. Additional navigational information is given in Tables 2 and 3.

Figure 3. Tow track for Run 3. R/P FLIP was near the center of the eastern box and the Richman/de Szoeke drifter was near the center of the western box. The tow began at 2103 on 6-Nov-1983 and ended at 0243 on 10-Nov-1983 (GMT). Tables 2 and 3 give additional navigational information.

Figure 2. Tow track for Run 2. The survey began at 0 at 1905 on 31-Oct-1983 and ended at 1541 on 3-Nov-1983 (GMT) at 9. The Richman/de Szoeke drifting current meter array was near corner 9 while R/P FLIP was near corner 0'. Tables 2 and 3 give additional navigational information.

Figure 1. Tow track for Run 1. The Richman/de Szoeke drifting current meter array was near corner 6. The F marks FLIP's location at the beginning of the tow. The tow began at 1800 on 27-Oct-1983 and ended at 1356 on 29-Oct-1983. The positions plotted are 2 minute LORAN-C positions. Tables 2 and 3 give additional navigational information.

Table 3. (continued)

Date (1983)	Times (GMT) from to	Length (hrs)	Tow Speed (m/s)	Length (km)		sother (deg C High)	Run No.	Side	
13-Nov	2036 0020	3.68	2.46	32.62	9	17.0	13.0	4	0-1	
14-Nov	0020 0320	3.02	2.74	29.74	10	17.0	12.5	4	1-2	
	0320 0432	1.22	2.30	10.07	11	17.5	12.5	4	2-3	
	0432 0856	4.40	2.33	36.85	10	17.0	12.5	4	3-4	
	0856 0954	0.97	2.70	9.41	10	17.0	12.5	4	4-5	
	0954 1344	3.83	2.67	36.88	10	17.0	12.5	4	5-6	
	1344 1448	1.07	2.42	9.29	10	17.0	12.5	4	6-3	
	1448 1908	4.33	2.35	36.64	9	17.0	13.0	4	3-4	
	1908 2002	0.92	2.68	8.84	9	17.0	13.0	4	4-5	
	2002 2348	3.75	2.71	36.57	9	17.0	13.0	4	5-6	
	2348 0600	6.20	2.47	55.12	10	17.0	12.5	4	6-7	
15-Nov	0600 1200	6.00	2.43	52.53	12	17.5	12.0	4	7-8	
	1200 1800	6.00	2.63	56.85	14	18.0	11.5	4	8-9	
	1800 0000	6.00	2.80	60.57	15	18.5	11.5	4	9-10	
16-Nov	0000 0600	6.00	2.84	61.32	14	18.5	12.0	14	10-11	
	0600 1200	6.00	2.73	59.01	15	19.0	1 0	4	11-12	
	1200 1737	5.38	2.73	52.80	12	18.5	13.0	4	12-13	

Table 3. Parameters for segments of tows that correspond in most instances to the sides of boxes (Figures 1-5).

Date (1983)	(GMT) from to	(hrs)	Tow Speed (m/s)	(km)		sother (deg C High)	Run No.	Side	
27-0ct	1800 2230	4.50	2.82	45.66		18.0	11.0	1	0-6	
20 0-4	2230 0359		2.84	55.96	16	18.5	11.0	1	6-1	
28 - 0ct	0359 0935		2.74 2.89	55.30	15 14	18.0	11.0	1 1	1-2 2-3	
	0935 1450 1450 2100		2.50	54.63 55.63	14	18.0 18.0	11.5 11.5	1	2-3 3-6	
	2100 0256		2.63	55.94	10	18.0	13.5	1	5 0 6-4	
29 - 0ct	0256 0734		2.41	40.24	10	18.0	13.5	1	4-5	
29-000	0734 1356		2.91	66.82	10	18.0	13.5	1	5 - 6	
	0134 1300	0.40	2.51	00.02	7.0	10.0	13.7	,) 0	
31-0ct	1905 0000	4.92	2.95	55.28	16	18.5	11.0	2	0-0'	
1-Nov	0000 0430	4.48	2.89	46.70	15	18.5	11.5	2	0'-1	
	0430 1038	6.13	2.50	55.12	10	18.5	14.0	2	1-2	
	1038 1602		2.89	56.14	9	18.0	14.0	2	2-3	
	1602 2200		2.67	57.51	12	18.0	12.5	2	3 - 0'	
	2200 0340		2.68	54.46	14	18.0	11.5	2	0'-4	
2-Nov	0340 0830		3.07	54.41	14	18.0	11.5	2	4-5	
	0830 1449		2.64	60.14	14	18.0	11.5	2	5-0	
	1449 1530		2.76	6.79	17	18.5	10.5	2	0-9	
	1530 2107		2.80	56.37	11	18.0	13.0	2	9-6	
	2107 0309		2.62	56.90	10	18.0	13.5	2	6-7	
3-Nov	0309 0845		2.80	56.43	11	18.0	13.0	2	7-8	
	0845 1541	6.97	2.66	66.62	15	18.0	11.0	2	8-9	
6-Nov	2103 0219	5.25	2.74	51.83	15	18.5	11.5	3	0-1	
7-Nov	0219 0741		2.85	55.15	14	18.0	11.5	3	1-2	
,	0741 1241	5.00	3.10	55.74	14	18.0	11.5	3	2-3	
	1241 1742		3.06	55.35	14	18.0	11.5	3 3	3-4	
	1742 2305		2.79	53.97	13	18.0	12.0	3	4-5	
	2305 0503		2.58	55.50	11	18.0	13.0	3 3	5-6	
8-Nov	0503 1101	5.97	2.59	55.71	9	18.0	14.0	3	6-7	
	1101 1702		2.58	55.89	9	18.0	14.0	3	7-8	
	1702 2218		2.93	55.64	11	18.0	13.0	3	0-1	
	2218 0334		2.91	55.09	14	18.0	11.5	3	1-2	
9-Nov	0334 0942		2.51	55.53	13	18.0	12.0	3	2-3	
	0942 1432		3.28	57.10	13	18.0	12.0	3	3-4	
	1432 1952		2.88	55.45	13	18.0	12.0	3	4-5	
	1952 0129	5.60	2.64	53.29	13	18.0	12.0	3	5-6	
10-Nov	0129 0243	1.27	2.36	10.76	13	18.0	12.0	3	6-7	

Table 2. (continued)

Date (1983)	Time (GMT)	N. Latitude (deg) (min)	W. Longitude (deg) (min)	Comments
13-Nov	2036	32 16.01	121 51.67	Start Run 4
14-Nov	0020	32 26.55	122 08.75	Turn to 172°
	0320	32 10.64	122 06.66	Turn to 083°
	0432	32 10.93	122 00.34	Turn to 000°
	0856	32 30.90	122 00.04	Turn to 270°
	0954	32 30.93	122 06.06	Turn to 180°
	1344	32 11.00	122 05.90	Turn to 090°
	1448	32 11.03	121 59.99	Turn to 000°
	1908	32 30.85	122 00.40	Turn to 270°
	2002	32 30.89	122 05.93	Turn to 180°
	2348	32 10.99	122 05.96	Turn to 080°
15-Nov	0600	32 14.56	121 31.18	
	1200	32 20.42	120 58.45	
	1800	32 25.80	120 22.78	
	1813			Turn to 100°
16-Nov	0000	32 20.65	119 44.77	
	0445			Turn to 070°
	0600	32 17.81	119 06.19	
	1200	32 24.71	118 29.48	
	1637			Turn to 120°
	1705			Turn to 080°
	1737	32 30.32	117 56.80	End Run 4

 $\begin{array}{c} \text{Mildex Run 3} \\ \text{Average sensor depth for each tow segment.} \end{array}$

Box sic	 10. 0-1	1-2	2-3	3-4	4-5	5 - 6	6-7	7-8
Channe		1-2	2-3	2-4	4-5	5-0	0-7	7-0
0	111.65	110.49	108.69	110.10	106.56	97.67	96.83	97.13
2	109.60	108.45	106.65	108.07	104.52	95.63	94.79	95.09
3	107.56	106.42	104.62	106.03	102.49	93.59	92.75	93.05
4	105.53	104.38	102.58	103.99	100.46	91.55	90.72	91.01
5	101.46	100.31	98.52	99.92	96.41	87.48	86.65	86.94
6	101.46	100.31	98.52	99.92	96.41	87.48	86.65	86.94
7	97.40	96.25	94.47	95.87	92.37	83.42	82.59	82.88
8	93.35	92.20	90.43	91.82	88.35	79.36	78.54	78.83
9	89.31	88.16	86.40	87.78	84.35	75.31	74.40	74.79
10	85.27	84.13	82.39	83.76	80.37	71.27	70.47	70.75
11	81.25	80.12	78.40	79.74	76.42	67.24	66.45	66.73
12	77.23	76.12	74.42	75.75	72.49	63.22	62.45	62.73
13	73.23	72.13	70.47	71.77	68.58	59.22	58.46	58.73
14	69.24	68.16	66.53	67.80	64.70	55.22	54.49	54.75
15	65.26	64.20	62.62	63.85	60.84	51.24	50.53	50.78
16	61.29	60.26	58.72	59.93	57.01	47.27	46.59	46.83
17	59.32	58.30	56.78	57.97	55.11	45.30	44.63	44.87
18	57.34	56.34	54.85	56.01	53.21	43.32	42.67	42.90
19	57.34	56.34	54.85	56.01	53.21	43.32	42.67	42.90
20	56.36	55.36	53.88	55.04	52.27	42.33	41.69	41.92
21	55.37	54.39	52.92	54.07	51.32	41.35	40.71	40.94
22	54.39	53.41	51.96	53.09	50.38	40.37	39.74	39.96
23	53.41	52.44	51.00	52.12	49.44	39.38	38.76	38.98
24	52.42	51.46	50.04	51.15	48.50	38.40	37.79	38.01
25	51.44	50.49	49.08	50.18	47.57	37.42	36.82	37.03
26	50.46	49.52	48.13	49.22	46.63	36.44	35.85	36.06
27	49.48	48.55	47.17	48.25	45.70	35.46	34.88	35.08
28	48.50	47.58	46.22	47.28	44.77	34.48	33.91	34.11
29	47.53	46.62	45.27	46.32	43.84	33.50	32.94	33.14
30	47.53	46.62	45.27	46.32	43.84	33.50	32.94	33.14
31	45.58	44.68	43.37	44.40	41.98	31.55	31.01	31.20
32	43.63	42.76	41.48	42.48	40.13	29.60	29.08	29.26
33	39.74	38.92	37.71	38.66	36.46	25.72	25.24	25.41
34	32.02	31.30	30.26	31.07	29.20	18.00	17.62	17.75
35	24.37	23.77	22.90	23.58	22.05	10.35	10.08	10.17
1	16.78	16.31	15.65	16.17	15.01	2.77	2.62	2.67

Mildex Run 3
Average sensor depth for each tow segment.

Box side		1-21	2-31	3-41	4-51	5-6¹	6-71	
0	96.73	110.54	111.89	109.77	110.50	110.90	113.35	
2	94.69	108.50	109.85	107.73	108.47	108.86	111.30	
3	92.65	106.46	107.81	105.69	106.43	106.82	109.25	
4	90.61	104.43	105.77	103.66	104.39	104.78	107.20	
5	86.54	100.37	101.70	99.59	100.32	100.71	103.11	
5 6	86.54	100.37	101.70	99.59	100.32	100.71	103.11	
7	82.48	96.31	97.63	95.53	96.26	96.65	99.02	
8	78.43	92.27	93.58	91.49	92.21	92.60	94.93	
9	74.39	88.23	89.53	87.45	88.17	88.52	90.85	
10	70.37	84.21	85.48	83.43	84.14	84.52	86.78	
11	66.35	80.20	81.45	79.42	80.13	80.50	82.72	
12	62.35	76.20	77.43	75.43	76.12	76.49	78.66	
13	58.37	72.21	73.42	71.45	72.14	72.50	74.62	
14	54.40	68.24	69.42	67.50	68.16	68.52	70.58	
15	50.44	64.29		63.55	.64.21	64.55	66.56	
16	46.50	60.35	61.46	59.63	60.27	60.60	62.54	
17	44.55	58.39	59.48	57.68	58.30	58.64	60.54	
18	42.58	56.43	57.50	55.73	56.34	56.67	58.54	
19	42.58	56.43	57.50	55.73	56.34	56.67	58.54	
20	41.61	55.45	56.52	54.76	55.37	55.69	57.54	
21	40.63	54.48	55.53	53.79	54.39	54.71	56.54	
22	39.66	53.50	54.54	52.82	53.41	53.73	55.55	
23	38.68	52.53	53.56	51.85	52.44	52.75	54.55	
24	37.71	51.55	52.57	50.88	51.47	51.78	53.55	
25	36.74	50.58	51.59	49.92	50.49	50.80	52.56	
26	35.77	49.61	50.61	48.95	49.52	49.83	51.56	
27	34.80	48.64	49.63	47.99	48.54	48.86	50.57	
28	33.83	47.67	48.65	47.02	47.57	47.88	49.58	
29	32.87	46.70	47.67	46.06	46.62	46.91	48.58	
30	32.87	46.70	47.67	46.06	46.62	46.91	48.58	
31	30.94	44.77	45.71	44.15	44.69	44.97	46.60	
32	29.01	42.84	43.76	42.23	42.76	43.04	44.62	
33	25.18	39.00	39.87	38.42	38.92	39.19	40.67	
34	17.57	31.38	-	30.87	31.30	31.53	32.82	
35	10.04	23.83		23.41	23.77	23.96	25.01	
1	2.60	16.37	16.84	16.04	16.31	16.46	17.26	

 $^{{}^{1}\}mathrm{The}$ second traverse of this tow segment.

Mildex Run 4 Averge sensor depth for each tow segment.

Box side: 0-1 Channel		1-2	2-3	3-4	4-5	5 - 6	6-3	3-41
0	105.17	104.08	106.23	105.14	105.51	104.90	105.67	105.35
2	103.13	102.04	104.18	103.10	103.45	102.86	103.61	103.31
3	101.10	100.00	102.12	101.06	101.40	100.82	101.56	101.27
4	99.06	97.96	100.07	99.02	99.34	98.78	95.51	99.22
5	94.99	93.88	95.97	94.94	95.23	94.70	95.41	95.15
6	94.99	93.88	95.97	94.94	95.23	94.70	95.41	95.15
7	90.92	89.81	91.88	90.87	91.13	90.63	91.31	91.07
8	86.86	85.75	87.79	86.80	87.03	86.56	87.22	87.01
9	82.81	81.70	83.70	82.74	82.95	82.50	83.14	82.94
10	78.76	77.65	79.63	78.69	78.87	78.45	79.07	78.89
11	74.72	73.62	75.55	74.64	74.79	74.41	75.00	74.84
12	70.69	69.60	71.49	70.61	70.73	70.38	70.94	70.80
13	66.67	65.59	67.43	66.58	66.68	66.35	66.89	66.77
14	62.65	61.59	63.38	62.56	62.64	62.34	62.85	62.75
15	58.64	57.61	59.34	58.55	58.61	58.34	58.82	58.73
16	54.65	53.64	55.30	54.56	54.60	54.34	54.80	54.73
17	52.65	51.66	53.29	52.56	52.59	52.35	52.80	52.73
18	50.66	49.69	51.28	50.57	50.59	50.36	50.79	50.74
19	50.66	49.69	51.28	50.57	50.59	50.36	50.79	50.74
20	49.67	48.70	50.28	49.58	49.59	49.37	49.79	49.74
21	48.67	47.72	49.27	48.58	48.59	48.38	48.79	48.75
22	47.68	46.73	48.27	47.59	47.60	47.39	47.80	47.75
23	46.69	45.75	47.27	46.59	46.60	46.40	46.80	46.76
24	45.69	44.77	46.26	45.60	45.61	45.41	45.80	45.76
25	44.70	43.78	45.26	44.61	44.61	44.42	44.80	44.77
26	43.71	42.80	44.26	43.62	43.62	43.43	43.81	43.78
27	42.72	41.82	43.26	42.63	42.62	42.44	42.81	42.78
28	41.73	40.85	42.26	41.64	41.63	41.46	41.82	41.79
29	40.74	39.87	41.26	40.65	40.64	40.47	40.83	40.80
30	40.74	39.87	41.26	40.65	40.64	40.47	40.83	40.80
31	38.77	37.92	39.27	38.68	38.66	38.50	38.84	38.82
32	36.79	35.97	37.27	36.71	36.68	36.53	36.86	36.85
33	32.86	32.08	33.30	32.78	32.74	32.61	32.91	32.90
34	25.02	24.37	25.37	24.95	24.90	24.81	25.04	25.06
35	17.23	16.72	17.49	17.17	17.12	17.07	17.23	17.26
1	9.50	9.14	9.66	9.45	9.40	9.38	9.48	9.51

 $^{{}^{\}rm 1}{\rm The}$ second traverse of this tow segment.

Mildex Run 4 Averge sensor depth for each tow segment.

Box sid	ie: 4-5 ¹	5-6¹	6-7	7-8	8-9	9-10	10-11	11-12
0	105.70	104.74	105.06	105.08	104.64	102 71	101 10	102.00
2	103.70	104.74	103.00	103.00	102.60	103.74	104.10	103.99
3	103.04	102.70	103.02	103.04	102.60	101.70	102.06	101.95
3 4	99.53	98.62	98.94	98.96	98.52	99.66	100.03	99.91
5	99.53	94.54	94.87	94.88	94.45	97.62	97.99	97.87
6	95.42	94.54	94.87	94.88	94.45	93.55	93.92	93.80
7	91.31	94.54	90.80	94.00	90.38	93.55 89.49	93.92	93.80
8	87.21	86.40	86.74	86.75	86.32		89.85	89.74
9	83.12	82.35	82.68			85.43	85.79	85.68
10	79.03	78.30		82.69 78.64	82.26	81.38	81.74	81.63
11	74.96	74.26	78.63		78.22 74.18	77.35	77.70	77.60
12	70.89	70.23	74.59	74.60		73.33	73.68	73.57
13	66.84	66.20	70.55	70.56	70.15	69.31	69.66	69.55
14	62.79	62.19	66.53	66.54	66.14	65.31	65.64	65.55
15	58.76	58.20	62.51	62.52	62.13	61.33	61.65	61.55
16			58.51	58.52	58.13	57.35	57.67	57.57
	54.73	54.21	54.51	54.52	54.15	53.40	53.70	53.61
17	52.73	52.22	52.52	52.53	52.16	51.42	51.73	51.63
18	50.72	50.23	50.53	50.54	50.18	49.45	49.75	49.66
19	50.72	50.23	50.53	50.54	50.18	49.45	49.75	49.66
20	49.72	49.24	49.53	49.54	49.19	48.47	48.76	48.67
21	48.72	48.25	48.54	48.55	48.20	47.49	47.78	47.69
22	47.72	47.26	47.55	47.56	47.21	46.51	46.79	46.71
23	46.73	46.27	46.55	46.56	46.22	45.53	45.81	45.72
24	45.73	45.28	45.56	45.57	45.23	44.55	44.83	44.74
25	44.73	44.30	44.57	44.58	44.25	43.57	43.85	43.76
26	43.74	43.31	43.58	43.59	43.26	42.59	42.87	42.78
27	42.74	42.32	42.59	42.60	42.28	41.62	41.89	41.80
28	41.75	41.34	41.61	41.61	41.29	40.64	40.91	40.83
29	40.75	40.35	40.62	40.63	40.31	39.67	39.93	39.85
30	40.75	40.35	40.62	40.63	40.31	39.67	39.93	39.85
31	38.77	38.39	38.64	38.65	38.35	37.72	37.98	37.90
32	36.79	36.43	36.67	36.68	36.39	35.78	36.03	35.95
33	32.84	32.51	32.74	32.75	32.48	31.91	32.14	32.07
34	24.98	24.73	24.92	24.93	24.70	24.23	24.42	24.36
35	17.18	17.00	17.15	17.16	16.98	16.62	16.76	16.72
1	9.43	9.33	9.44	9.44	9.32	9.08	9.17	9.14

 $^{{}^{\}scriptscriptstyle I}{}$ The second traverse of this tow segment.

Mildex Run 4
Averge sensor depth for each tow segment.

Box side:12-13 Channel 0 104.66 2 102.62 100.58 3 4 98.54 5 94.47 6 94.47 7 90.40 8 86.34 9 82.28 78.23 10 74.20 11 12 70.17 13 66.15 62.14 14 15 58.15 16 54.16 17 52.18 18 50.19 19 50.19 49.20 20 48.21 21 22 47.22 23 46.23 24 45.25 44.26 25 43.27 26 42.29 27 28 41.30 29 40.32 30 40.32 31 38.36 36.40 32 33 32.48 24.70 34 35 16.98

1

9.32

APPENDIX B

Temperature Cross-Sections

On the following pages are plots of temperature measurements as a function of distance and time along each tow segment. Dates and times are GMT. Also plotted is the depth record from the bottommost pressure sensor on the chain. The operating temperature sensors are shown in Table 1. For the plots to be easily legible, not all the operating sensors are plotted. Table B-1 gives the sensors whose data is plotted. Average sensor depths for each tow segment are given in Appendix A. The tow speeds and navigational information are found in Tables 2 and 3. The temperature and pressure measurements are low-pass filtered, computed by averaging over sequential 30-s intervals.

Table B-1. Selection of temperatures plotted on the subsequent plots. Table 1 gives a complete list of all functioning sensors. Appendix A contains a compilation of sensor depths for each tow segment.

Run 1 Chan Location No. (chain m)		Chan	Run 2 Chan Location No. (chain m)		Run 3 Chan Location No. (chain m)		Run 4 Chan Location No. (chain m)	
1	4	2	8	4	12	6	16	
4	12	6	16	7	20	7	20	
7	20	9	28	9	28	9	28	
9	28	11	36	11	36	11	36	
11	36	14	48	13	44	13	44	
13	44	16	56	15	52	15	52	
15	52	21	62	19	60	19	60	
19	60	27	68	25	66	26	67	
27	68	33	78	30	70	33	78	
32	74	35	94	35	94	35	94	
35	94			1	102	1	102	

5/

TEMPERATURE AND PRESSURE VS DISTANCE SPD = 2.76 M/S1450 2-NOV-83 TO 1530 2-NOV-83

SPD = 2.68 M/STEMPERATURE AND PRESSURE VS DISTANCE SPD 1908 14-NOV-83 TO 2002 14-NOV-83

TEMPERATURE AND PRESSURE VS DISTANCE SPD = 2.42 M/S1344 14-NOV-83 TO 1447 14-NOV-83

TEMPERATURE AND PRESSURE VS DISTANCE SPD = 2.70 M/S 0.70 M/S 0.70 M/S 0.70 M/S 0.70 M/S 0.70 M/S 0.70 M/S

2.30 M/S TEMPERATURE AND PRESSURE VS DISTANCE SPD = 0320 14-NOV-83 TO 0431 14-NOV-83

2.36 M/S TEMPERATURE AND PRESSURE VS DISTANCE SPD = 0129 10-NOV-83 TO 0243 10-NOV-83

APPENDIX C

Isotherm Cross-Sections

On the following pages are plots of the depths of isotherms at 0.5°C intervals for the tow segments given in Tables 2 and 3. The depths of isotherms were obtained by linear interpolation between the low-pass filtered temperature observations plotted in Appendix B. Isotherms which were not at least 80% complete were not plotted. Isotherms which were incomplete, but had no more than 20% of the record missing, were completed by linear extrapolation from adjacent isotherms.

AD-A1		CMT	TOMED THERMISTOR CHAIN OBSERVATIONS DURING HILDEX (MIXED LAYER DYNAMICS E. (U) OREGON STATE UNIV CORVALLIS COLL OF OCEANOGRAPHY R J BAUMANN ET AL. JUN 85 REF-85-12 N00014-79-C-00004 F/G 8/10								2/2 NL		
UNCLAS	SIFIE	J 10K	85 K	/-85-	I NOO					776		N.	
	T appear	*.	5	fur turber.				atom, and	-	<u> </u>	\$ 2 -		
				*				ζ.		1			
	ì)	1	END FILMED								•	

NATIONAL BUREAU OF STANDARDS MICROCOPY RESOLUTION TEST CHART

EDITED ISOTHERM DEPTH VS DISTANCE SPD = 2.76 M/S 18.5 - 10.5 DEG C, 1450 2-NOV-83 TO 1530 2-NOV-83

SPD = 2.36 M/STO 0243 10-NOV-83 EDITED ISOTHERM DEPTH VS DISTANCE 18.0 - 12.0 DEG C, 0129 10-NOV-83

SPD = 2.30 M/STO 0431 14-NOV-83 EDITED ISOTHERM DEPTH VS DISTANCE 17.5 - 12.5 DEG C, 0320 14-NOV-83

EDITED ISOTHERM DEPTH VS DISTANCE 17.0 - 12.5 DEG C, 0856 14-NOV-83

SPD = 2.42 M/STO 1447 14-NOV-83 EDITED ISOTHERM DEPTH VS DISTANCE 17.0 - 12.5 DEG C, 1344 14-NOV-83

EDITED ISOTHERM DEPTH VS DISTANCE SPD = 2.68 M/S 17.0 - 13.0 DEG C, 1908 14-NOV-83 TO 2002 14-NOV-83

END

FILMED

10-85

DTIC