Wyszukiwanie geometryczne

Przeszukiwanie obszarów

- ✓ Dane
 - P − zbiór punktów,
 - R obszar (region) np. prostokąt, wielokąt, okrąg …
- > Szukane
 - punkty (podzbiór P) leżące wewnątrz regionu R
 (lub ich liczba bądź też pewna funkcja agregująca)

Przeszukiwanie obszarów

Ocena rozwiązania (struktury danych)

- czas potrzebny na realizację zapytania,
- pamięć potrzebna na przechowywanie danych,
- czas wstępnego przetworzenia,
- czas aktualizacji

Przeszukiwanie obszarów

Podstawowe spostrzeżenie

Liczba zbiorów, jakie mogą być efektem wyszukiwania obszaru geometrycznego jest znacznie mniejsza od liczby wszystkich możliwych podzbiorów P (zbioru potęgowego)


```
R = \{ \{ \}, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{1,2\}, \{1,3\}, \{2,3\}, \{2,4\}, \{3,4\}, \\ \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \\ \{1,2,3,4\} \}
```

$$\{1,4\}$$
 $\{1,2,4\}$

Obszary prostokątne ortogonalne

- Regiony zdefiniowane jako prostokąty o bokach zgodnych z osiami współrzędnych
 - mogą być rozdzielone na zestaw wyszukiwań jednowymiarowych
- Typowe podejście reprezentacja P jako kolekcji podzbiorów kanonicznych {S₁, S₂, ..., S_k}
 (k zależy od n oraz typu regionu) takich, że dowolny zbiór wynikowy może być wyznaczony jako rozłączna suma podzbiorów kanonicznych (podzbiory te mogą się wzajemnie nakładać)

Wybór podzbiorów kanonicznych

- Wiele możliwości, wpływających na złożoność czasową i pamięciową
- Przykłady
 - -n 1-elementowych zbiorów $\{p_i\}$
 - efektywne pamięciowo O(n),
 - wynik zawierający k elementów k podzbiorów (nieefektywne dla zliczania wyników)
 - zbiór potęgowy dla P
 - każde zapytanie reprezentowalne przez 1 podzbiór
 - możemy mieć 2ⁿ zbiorów do przechowania

Wybór podzbiorów kanonicznych

Przypadek 1-wymiarowy

- zbiór punktów $P = \{p_1, p_2, ..., p_n\}$ na prostej
- region przedział $[x_{min}, x_{max}]$
- oczekiwana złożoność czasowa: O(log n + k),
 gdzie k jest liczbą wynikowych punktów
 (wrażliwość na rozmiar wyniku)
- dla zadania wyznaczenia liczby punktów w przedziale, można uzyskać złożoność O(log n)

w jaki sposób?

Metoda 1

- wstępnie posortować punkty rosnąco
- wyznaczyć najmniejszy punkt $p_i \ge x_{min}$
- wyznaczyć największy punkt $p_j \le x_{max}$
- zwrócić wszystkie punkty pomiędzy p_i i p_j

Wada: metoda nie da się uogólnić dla wyższych wymiarów...

Metoda 2

- posortować punkty rosnąco
- zapisać je w liściach zrównoważonego drzewa binarnego
- każdy element drzewa nie będący liściem zostaje oznaczony największą wartością występującą w lewym poddrzewie
- każdy element drzewa może być powiązany (jawnie lub nie) z podzbiorem punktów – O(n) podzbiorów kanonicznych

- odszukać pierwszy z lewej liść u o wartości większej lub równej x_{min}
- odszukać pierwszy z prawej liść v o wartości większej lub równej x_{max}

- wszystkie obiekty w poddrzewach na prawo od lewej ścieżki
- wszystkie obiekty w poddrzewach na lewo od prawej ścieżki
- obiekty w liściach u i v, zależnie od wartości

Białe węzły – nigdy nie odwiedzone w trakcie zapytania Szare węzły – odwiedzone; być może należą do "*odpowiedzi*" Czarne węzły – całe poddrzewo jest *wyjściem*

- złożoność pamięciowa: O(n)
- złożoność czasowa
 - podanie liczby obiektów: O(log n)
 - ustalenie zbioru obiektów: O(log n + k)

drzewa ćwiartkowe (quadtree, octree)

drzewa ćwiartkowe (quadtree, octree)

- łatwe w implementacji
- przydatne w wielu zastosowaniach
- dla przeszukiwania może być bardzo nieefektywne w pesymistycznym przypadku

kd-drzewa (kd-trees, k-d trees)

- uogólnienie drzewa przeszukiwania 1-wymiarowego
- praktyczne i łatwe w implementacji
- użyteczne w wielu problemach przeszukiwania

Struktura kd-drzewa

- liście
 - obiekty geometryczne punkty
- węzły
 - wymiar, względem którego wykonany jest podział
 - wartość współrzędnej podziału w wybranym wymiarze
 - obiekty mniejsze w lewym poddrzewie
 - · obiekty większe w prawym poddrzewie
 - obiekty równe w lewym lub prawym poddrzewie (dla zrównoważenia)
 - liczba obiektów w danym poddrzewie

Wejście: zbiór P i obecna głębokość depth

Wyjście: korzeń kd-drzewa dla zbioru P

Początkowo: P – cały zbiór depth=0

BUILDTREE(P,depth)

```
if P zawiera tylko jeden punkt

then return liść pamiętający ten punkt

else if depth jest parzyste

then podziel P pionową prostą I na zbiory P_1 i P_2

else podziel P poziomą prostą I na zbiory P_1 i P_2;

V_I \leftarrow \text{BUILDTREE}(P_1, \text{depth+1});

V_p \leftarrow \text{BUILDTREE}(P_2, \text{depth+1});

stwórz węzeł V - \text{ojca } V_I i V_p oraz zapamiętaj w nim I;

return V
```


- Jak wybrać wymiar dla podziału?
 - kolejne wymiary
 - nie trzeba przechowywać tej informacji jawnie w drzewie
 - mogą pojawić się wydłużone podobszary
 - wymiar, dla którego współrzędne punktów mają największą różnicę
 - pozwala uzyskać lepszą strukturę drzewa
- Jak wybrać wartość dla podziału?
 - mediana względem wybranego wymiaru
 - dla zapewnienia głębokości drzewa O(log n)

- Złożoność czasowa O(n log n)
- Najkosztowniejszy krok
 - ustalenie mediany dla podziału
 - k list/tablic punktów (wskaźników), posortowanych według wartości współrzędnych dla kolejnych wymiarów
 - wstępne sortowanie O(n log n)
 - ustalenie mediany O(1)
 - podział list O(n)

kd-drzewa

W jaki sposób znamy *region(v)*?

- opcja 1: zapamiętany w wierzchołku v
- opcja 2: obliczany przy przechodzeniu po drzewie

Białe węzły – region R nie przecina region(v)Szare węzły – region R przecina region(v), ale $region(v) \not\subset R$ Czarne węzły – $region(v) \subseteq R$

Niech ls(v) (rs(v)) oznacza lewego (prawego) syna wierzchołka v, a region(I) jest obszarem, który dzieli prosta I.

```
SEARCHKD(v,R)
if v jest liściem then
  if v \in R then zwróć v
  else
    if region (ls(v)) \subseteq R
       then zwróć wszystkie liście poddrzewa o korzeniu w ls(v)
       else if region(ls(v)) przecina R then
                 SEARCHKD(Is(v), R)
    if region (rs(v)) \subseteq R
       then zwróć wszystkie liście poddrzewa o korzeniu w rs(v)
       else if region (rs(v)) przecina R then
                 SEARCHKD(rs(v), R)
```

- Dla zrównoważonego drzewa
 - złożoność czasowa zliczania: $O(\sqrt{n})$
 - złożoność czasowa wyszukiwania: $O(\sqrt{n}+k)$
 - złożoność pamięciowa: O(n)
- Jak wykazać?
 - liczba odwiedzanych węzłów: $O(\sqrt{n})$
 - liczba odwiedzanych węzłów = liczba przecinanych komórek drzewa

Lemat:

dla zrównoważonego kd-drzewa z zamiennym podziałem, dowolna pionowa lub pozioma prosta przecina $O(\sqrt{n})$ komórek.

- Załóżmy linię pionową x=x₀
 - dla podziału pionowego, prosta przecina lewy lub prawy podwęzeł
 - dla podziału poziomego, prosta przecina oba
 - ponieważ podział jest zamienny, podwaja się co dwa poziomy – przecina co najwyżej 2 węzły na 2 poziomie, 4 na 4 poziomie, 2ⁱ na 2i poziomie

- Ponieważ wzrost jest potęgowy, suma jest zdominowana przez ostatni składnik – liczbę przeciętych komórek na najniższym poziomie drzewa.
- Drzewo jest zrównoważone log n poziomów
- Liczba komórek przeciętych na najniższym poziomie przez prostą: $2^{(\log n)/2} = 2^{\log \sqrt{n}} = \sqrt{n}$
- Liczba komórek przeciętych przez prostokąt
- ... stąd złożoność obliczeniowa całego procesu

$$O(4\sqrt{n}) = O(\sqrt{n})$$

kd-drzewa w wyższym wymiarze

Zakresy prostokątne ortogonalne

Ortogonalne drzewa obszarów

- wielopoziomowe drzewa wyszukiwania dekompozycja złożonego zapytania na skończoną liczbę prostszych zapytań o zakres
- zamiana przeszukiwania d-wymiarowego na zestaw zapytań 1-wymiarowych

Przykład 2d

- zapytanie o prostokątny zakres dwa zapytania o przedziały: $[x_{min}, x_{max}]$ oraz $[y_{min}, y_{max}]$
- zakładamy, że mamy przygotowane 1-wymiarowe drzewo przeszukiwania obszaru dla współrzędnej x
 - zrównoważone drzewo binarne
 - z każdym węzłem niejawnie powiązany podzbiór kanoniczny
 - odpowiedź na zapytanie suma niewielkiej liczby $m=O(\log n)$ podzbiorów $\{S_1, S_2, ..., S_m\}$

Drugi poziom

– dla każdego węzła w tego drzewa przeszukiwania zakresu x tworzone jest pomocnicze drzewo w_{pom} będące drzewem przeszukiwania zakresu y dla wszystkich punktów w kanonicznych zbiorach związanych z węzłem w

Dla d-wymiarowych przeszukiwań obszaru d poziomów drzew

Złożoność pamięciowa

- Pierwsze drzewo zakresu x: O(n)
- Suma drzew drugiego poziomu: O(n log n)
 - liczba elementów w drzewie jest proporcjonalna do liczby liści, czyli liczby punktów w drzewie
 - każdy punkt należy do pomocniczych drzew dla wszystkich swoich przodków w drzewie
 - drzewo jest zrównoważone każdy punkt (liść) ma O(log n) przodków, stąd końcowe oszacowanie

O(n log n) na płaszczyźnie
O(n log^(d-1) n) w przestrzeni d-wymiarowej

Konstrukcja drzewa

- Stworzenie drzewa wyszukiwania obszaru pierwszego poziomu: O(n log n)
- Tworzenie drzew drugiego poziomu i kolejnych ...
- Strukturę można zbudować w czasie
 O(n log^(d-1) n)

Przeszukiwanie

Złożoność czasowa

- wyznaczenie węzłów reprezentujących podzbiory kanoniczne dla zakresu 1-wymiarowego: O(log n)
- O(log n) kanonicznych podzbiorów, dla każdego kolejne wyszukiwanie O(log n) – razem O(log² n)
 - wyznaczenie elementów tych zbiorów dodatkowe k
 - wyznaczenie liczby elementów wstępnie zliczone sumy podzbiorów
- złożoność czasowa w przestrzeni d-wymiarowej :
 O(log^d n + k)

Przeszukiwanie

- Złożoność czasowa
 - dla płaszczyzny (d=2) mieliśmy O(log² n)
- Dlaczego?
 - przeszukiwanie drzewa pierwszego poziomu O(log n)
 - dla każdego odwiedzanego węzła, przeszukiwanie drzewa drugiego poziomu O(log n)
- Jak uzyskać O(log^(d-1) n) ?
 - przeszukiwanie drzew drugiego poziomu w czasie O(1)
 - "kaskadowanie cząstkowe" (fractional cascading)

- Przeszukiwanie zbiorów obiektów innych niż punkty
- Przykład odcinki (poziome i pionowe) na płaszczyźnie
 - odcinek jest reprezentowany przez parę wierzchołków
 - odcinki mogą się przecinać

Zapytanie o okienkowanie

 znaleźć wszystkie odcinki przecinające ortogonalny prostokąt W (także odcinki leżące wewnątrz)

Trzy przypadki

- odcinki, których oba wierzchołki leżą wewnątrz W
- 2. odcinki, których jeden wierzchołek leży wewnątrz W
- 3. odcinki, których żaden wierzchołek nie leży wewnątrz W

- Przypadek 1 i 2 drzewo przeszukiwania zakresu dla 2n punktów
 - odcinki mające oba wierzchołki wewnątrz W będą zgłaszane dwukrotnie
 - posortowanie odcinków wynikowych i usunięcie powtórzeń
 - zaznaczanie odcinków w trakcie wyszukiwania
- Przypadek 3 odcinki, które przecinają W, ale których wierzchołki nie leżą wewnątrz W
 - poziomy odcinek przecina dowolną pionową linię łączącą górę i dół okna
 - odcinki pionowe analogicznie do poziomych

- Odszukanie poziomych odcinków przeciętych przez zadaną linię pionową (np. lewy bok okna W)
- Struktura binarnego drzewa podziałów
 - sortujemy wierzchołki (dla współrzędnej x)
 - x_{med} mediana 2*n* wierzchołków
 - podział na trzy grupy: M, L, R
 - jak przechowywać odcinki w M?

- dla $x_q \le x_{med}$
 - sortujemy odcinki rosnąco według lewego wierzchołka
 - przy przeglądaniu odcinków przerywamy, jeśli lewy wierzchołek jest większy od x_q
- dla $x_q > x_{med}$

symetrycznie

Konstrukcja drzewa

- Rekursywnie, poprzez kolejne podziały zbioru wszystkich odcinków
- Głębokość drzewa O(log n)
 - dla 2n wierzchołków, każdy podział dzieli je na dwie grupy L i R o rozmiarze nie większym niż połowa (odliczając odcinki w M)
- Wyliczanie mediany wierzchołków oraz sortowanie odcinków według lewego i prawego wierzchołka
 - wstępne posortowanie tych wartości i zapisanie ich w trzech osobnych listach
- Złożoność czasowa konstrukcji O(n log n)

Przecięcia odcinków przez pionowy **odcinek**ML i MR – zamiast list posortowanych według
lewych/prawych wierzchołków stosujemy drzewo
obszarów dla lewych/prawych wierzchołków

Efektywność

- złożoność czasowa przeszukiwań
 O(log²n + k)
- złożoność pamięciowa O(n log n)
- złożoność czasowa konstrukcji O(n log n)