

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Кафедра «Космические аппараты и ракеты-носители»

Дисциплина «Проектирование летательных аппаратов с жидкостными ракетными двигателями»

Домашнее задание №1

Вариант №4

Студентка: Гусева Н. А.

Группа: СМ1-81

Преподаватель: Коровин В.В.

Исходные данные

- 1-Активный УТ
- 2-Баллистический УТ 3-Участок входа в атмосферу

Дальность полета: L = 1850 + 150 * N = 1850 + 150 * 4 = 2450 км

Масса полезной нагрузки: $M_{\Pi\Gamma}=1$ т

Топливо для ракеты варианта 4: $O_2 + H_2$

В данном домашнем задании необходимо:

- Провести баллистический расчет;
- Провести массовый расчет;
- Провести массово-габаритный расчет;
- Построить чертеж общего вида.

Решение задачи

Баллистический расчет

Дальность полета для баллистической ракеты:

$$L = R_3 * \angle A'OC'$$

Тогда для баллистического участка траектории, дальность участка:

$$L_{\text{балл}} = R_3 * \angle AOC$$

Где радиус Земли : $R_3 = 6371$ км

Переходим к зависимости длины баллистического участка от дальности всего полета ракеты:

$$L = K_{\mathrm{Д}} * L_{\mathsf{балл}}$$

Где $K_{\text{Д}}$ –коэффициент дальности.

Согласно приведенной зависимости коэффициента дальности от дальности полета ракеты, мы находим необходимое значение коэффициента для L=2450 км.

В нашем случае: $K_{\text{Д}} = 1,137$

Следовательно, длина баллистического участка траектории:

$$L_{\mathsf{балл}} = \frac{L}{\mathsf{K}_{\mathsf{\Pi}}} = 2155 \; \mathsf{км}$$

Следовательно, можно найти угол на котором разворачивается баллистический участок траектории:

$$\beta = \frac{L_{\text{балл}}}{2R_3} = 0,169$$
 рад

Затем необходимо найти угол и скорость в конце АУТ, чтобы обеспечить заданную дальность баллистического участка.

В начале определим угол бросания. Согласно линейной зависимости между углом бросания φ_A и углом β , можно найти для заданной дальности полета (а соответственно для

известного угла β) необходимый угол бросания: $\phi_{\rm A}=0.701$ рад = 40° .

Согласно формуле, связывающей скорость, угол бросания и угол в:

$$tg\beta = \nu_A * \frac{tg\varphi_A}{1 - \nu_A + tg^2\varphi_A}$$

Подставляя известные значения, находим безразмерную скорость $\nu_{\rm A}=0.288$. Определим круговую скорость:

 $v_{\text{круг}}(r_{\!A}) = \sqrt{\frac{\mu}{r_{\!A}}}$ — Это первая космическая скорость для сферы, радиусом $r_{\!A}$.

Где гравитационный параметр Земли: $\mu = 3.986 * 10^{14} \frac{\text{м}^3}{\text{c}^2}$

В первом приближении мы можем считать зависимость высоты конца АУТ от дальности полета ракеты линейной. Следовательно, для нашей заданной дальности: $h_A = 103.5$ км.

Таким образом, геоцентрический радиус конца активного участка траектории:

$$r_A = R_3 + h_A = 6474$$
 км

Следовательно, круговая скорость:

$$v_{ ext{круг}} = \sqrt{rac{\mu}{r_A}} = 7,842 rac{ ext{км}}{ ext{c}}$$

Зависимость между круговой скоростью и скорость в конце АУТ:

$$v_A = \sqrt{v_A * v_{\text{круг}}^2} = 4,209 \frac{\text{км}}{\text{c}}$$

Проведем расчеты для второго приближения.

Найдем значение оптимального угла бросания из выражения:

$$tg\varphi_A^{0\Pi T} = \sqrt{\frac{\nu_A}{2} * \frac{2R_3 - (r_A + R_3) * \nu_A}{R_3 \nu_A + 2(r_A - R_3)}}$$

Следовательно, оптимальный угол бросания: $\varphi_A^{\rm O\Pi T} = 0$,674 рад

Определим оптимальную безразмерную скорость из следующего выражения:

$$tg\beta = v_A^{\rm O\Pi T} * \frac{tg\varphi_A^{\rm O\Pi T}}{1 - v_A^{\rm O\Pi T} + tg^2\varphi_A^{\rm O\Pi T}}$$

Следовательно, $\nu_A^{
m O\Pi T}=0.288$ рад

Таким образом, скорость в конце активного участка траектории исходя из оптимальных значений параметров:

$$v_A = \sqrt{v_A^{\text{O\PiT}} * v_{\text{круг}}^2} = 4.212 \frac{\text{км}}{\text{c}}$$

Характеристическая скорость для нашей ракеты будет вычисляться по следующему выражению:

$$v_{xap} = v_A + \sum \Delta v_i$$

Где $\sum \Delta v_i$ — потери. Для упрощения расчетов введем допущение:

$$\sum \Delta v_i = 0.25 * v_A$$

Тогда характеристическая скорость: $v_{xap} = 1,25 * v_A = 5265 \text{ м/с}.$

Рассматривая выражение формулы Циолковского:

$$v_{xap} = -J_{y_{\Pi}\Pi} * ln(\mu_{K})$$

Где по условию задачи для топлива O2+H2 удельный пустотный импульс берем равным 4150 м/с.

Отсюда выражаем относительную конечную массу ракеты:

$$\mu_{\rm K} = \exp\left(-\frac{v_{xap}}{J_{\rm V_A\Pi}}\right) = 0.294$$

А это значит, что $\frac{M_K}{M_0} = 0.294$.

Массовый расчет

Весовое уравнение для одноступенчатой ракеты с ЖРД:

$$G_K = G_{\Pi\Gamma} + G_{TO} + G_{\Pi Y} + G_{\Sigma}$$

Разделив это выражение на стартовый вес G_0 , получим:

$$\frac{G_K}{G_0} = \frac{G_{\Pi\Gamma}}{G_0} + \frac{G_{TO}}{G_0} + \frac{G_{\Lambda y}}{G_0} + \frac{G_{\Sigma}}{G_0}$$

Или, заменив на коэффициенты, получим:

$$\mu_{\mathrm{K}} = \mu_{\mathrm{\Pi}\Gamma} + \frac{G_{TO}}{G_0} + \frac{G_{\mathrm{J}\mathrm{y}}}{G_0} + \mu_{\Sigma}$$

Рассмотрим второе слагаемое:

$$G_{TO}=a_{TO}*G_{T}
ightarrow a_{TO}=rac{G_{TO}}{G_{T}}$$
—весовой коэффициент топливного отсека.

Следовательно:

$$\frac{G_{TO}}{G_0} = a_{TO} * \frac{G_T}{G_0} = \frac{a_{TO}(G_{TO} - G_K)}{G_0} = a_{TO}(1 - \mu_K)$$

Рассмотрим третье слагаемое:

 $G_{\rm ДУ} = \gamma_{\rm ДУ} * P_0 \ o \ \gamma_{\rm ДУ} = rac{G_{\rm ДУ}}{P_0} - {
m весовой} \ {
m коэффициент} \ {
m двигательной} \ {
m установки}.$

Введем стартовую нагрузку на тягу: $\nu_0 = \frac{G_0}{P_0} \to P_0 = \frac{G_0}{\nu_0}$

Тогда
$$rac{G_{ extit{Д} extit{y}}}{G_0} = \gamma_{ extit{Д} extit{y}} * rac{ extit{P}_0}{G_0} = rac{\gamma_{ extit{Д} extit{y}}}{
u_0} * rac{G_0}{G_0} = rac{\gamma_{ extit{Д} extit{y}}}{
u_0}$$

Получим итоговое выражение весового уравнения одноступенчатой ракеты с ЖРД:

$$\mu_{\rm K}(1+a_{TO}) = \mu_{\Pi\Gamma} + a_{TO} + \frac{\gamma_{\rm JJ}}{\nu_{\rm O}} + \mu_{\rm \Sigma}$$

Зная, что $\mu_{\Pi\Gamma} = \frac{M_{\Pi\Gamma}}{M_0}$; $\mu_{K} = \frac{M_{K}}{M_0}$ получим:

$$\mu_{\Pi\Gamma} = \mu_{\rm K}(1 + a_{TO}) - a_{TO} - \frac{\gamma_{\rm JV}}{\nu_{\rm 0}} - \mu_{\rm \Sigma} = \frac{{\rm M}_{\Pi\Gamma}}{{\rm M}_{\rm 0}}$$

Найдем зависимости весовых коэффициентов от стартовой массы.

Согласно расчетам, предложенным Л.П.Мухамедовым для топливной пары H2+O2:

$$a_{TO} = 0.105 * (1 + 1.6 * \exp(-0.28M_T))$$

 $\gamma_{TV} = 0.049 * (1 + 4.1 * \exp(-0.023 * P_{\Pi}))$

Для определения относительной массы прочих элементов ракеты:

$$\mu_{\text{IIP}} = 0.013 * (1 + 0.59 * \exp(-0.0048 * M_0) + \frac{0.25}{M_0} = \mu_{\Sigma}$$

Причем зависимость массы топлива от стартовой массы:

$$M_T = M_0 * (1 - \mu_K)$$

Рассчитаем время работы двигательной установки:

$$t_K = \frac{J_{y_{A}\Pi} \nu_0 (1 - \mu_K)}{k_{\Pi} g_0} = 166 c$$

Где для нашей топливной пары принимаем: $k_{\rm n} = 1,12$ – коэффициент тяги в пустоте.

Следовательно, секундный массовый расход (в первом приближении)

$$\dot{m} = \frac{M_T}{t_K} = M_0 * \frac{(1 - \mu_K)}{t_K}$$

Тогда пустотная тяга:

$$P_{\Pi} = \dot{m} * J_{y_{\Pi}\Pi} = M_0 * \frac{(1 - \mu_K)}{t_K} * J_{y_{\Pi}\Pi}$$

Следовательно, с учетом данных выражений мы получаем зависимость $\mu_{\Pi P}(M_0), \gamma_{J Y}(M_0), a_{T O}(M_0)$.

Весовое уравнение примет вид:

$$\mu_{K}(1 + a_{TO}(M_{0})) - a_{TO}(M_{0}) - \frac{\gamma_{JJV}(M_{0})}{\nu_{0}} - \mu_{\Sigma}(M_{0}) = \frac{M_{\Pi\Gamma}}{M_{0}}$$

Разрешая данное уравнение, получаем значение стартовой массы:

$$M_0 = 12,013 \text{ T}$$

Следовательно, находим оставшиеся параметры уравнения:

$$M_T = M_0 * (1 - \mu_K) = 8,481$$
T

Тогда масса горючего:

$$M_{\Gamma} = \frac{M_T}{1 + k_M} = 1,229 \text{ T}$$

Где коэффициент $k_M = 5,9$

Масса окислителя:

$$M_{OK} = \frac{M_T * k_M}{1 + k_M} = 7,253 \text{ T}$$

Тогда масса топливного отсека:

$$M_{TO} = a_{TO} * M_T = 1,023 \text{ T}$$

Масса двигательной установки:

$$M_{\rm ДУ} = \gamma_{\rm ДУ} * rac{{
m M}_0}{{
m v}_0} = 1,015 {
m T}$$

Прочая масса:

$$M_{\Sigma} = \mu_{\Sigma} * M_0 = 0,493 \text{ T}$$

Выполняем проверку

$$M_{\Sigma} + M_{\text{ДУ}} + M_{TO} + M_{OK} + M_{\Gamma} + M_{\Pi\Gamma} =$$
 = 0,493 + 1,015 + 1,023 + 7,253 + 1,229 + 1 = 12,013 т

Суммарная масса всех составляющих элементов ракеты получается равной стартовой массе.

Получим следующие значения весовых коэффициентов:

$$a_{TO} = 0.121$$

 $\gamma_{\text{ДУ}} = 0.051$
 $\mu_{\Sigma} = 0.041$

Объемно-габаритный расчет

Задаемся диаметром ракеты. Пусть d=1.6 м. Далее проверим правильность подобранного значения для соблюдения условия удлинения ракеты:

$$\lambda = \frac{l}{d} = 8..12$$

Применить в ракете схему с межбаковым отсеком. Следовательно, принимаем длину межбакового отсека (длина тоннельной трубы в этом отсеке)

$$L_{\text{MEW}} = 0.1 * d = 0.16 \text{ M}$$

<u>Расчет тоннельной трубы</u>

Расход окислителя по тоннельной трубе:

$$\dot{m}_{OK} = \dot{m} * k_M * \frac{1000}{1+k_M} = 41,395 \frac{\mathrm{KF}}{\mathrm{c}}$$

Тогда, диаметр тоннельной трубы:

$$d_{\text{TP}} = \sqrt{\frac{m_{OK}}{0.785 * v * \rho_{OK}}} = 0,124$$

Где скорость течения компонента топлива по трубе: v = 3 м/c

Плотность окислителя и горючего:

$$\rho_{\rm OK} = 1140 \frac{\rm KF}{\rm M^3}$$

$$\rho_{\rm \Gamma} = 79 \frac{\rm KF}{\rm M^3}$$

Тогда диаметр магистральной трубы:

$$d_{TOH} = d_{TP} + 0.060 = 0.184$$
 м

Расчет баков

Мы принимаем бак окислителя сверху ракеты, бак горючего – снизу.

Объем окислителя:

$$V_{OK} = M_{OK} * \frac{1000}{\rho_{OK}} = 6,362 \text{m}^3$$

Объем горючего:

$$V_{\Gamma} = M_{\Gamma} * \frac{1000}{\rho_{\Gamma}} = 15,56 \text{ m}^3$$

Расчет объема бака окислителя с учетом доли на подушку и на гарантию:

$$V_{\rm EO} = 1.1 V_{OK} = 6.998 \,\mathrm{m}^3$$

Расчет объема бака горючего с учетом доли на подушку и на гарантию:

$$V_{\rm B\Gamma} = 1.1 V_{\Gamma} = 17.116 \, {\rm m}^3$$

Выбираем вылет днища для баков. Оптимальным значением будет:

$$h = 0.25 * d = 0.4 \text{ M}$$

Тогда радиус днища будет следующим:

$$R_{\text{ДH}} = 1.25 * \frac{d}{2} = 1 \text{ M}$$

Объем сегмента днища:

$$V_{\text{ДH}} = \frac{1}{3} * \pi * h^2 * (3R_{\text{ДH}} - h) = 0.436 \text{ M}^3$$

Объем цилиндрической части бака окислителя:

$$V_{\text{HO}} = V_{\text{FO}} - 2V_{\text{JH}} = 6.127 \text{ m}^3$$

Нахождение длины цилиндрической части бака окислителя:

$$L_{IIO} = 4 * \frac{V_{IIO}}{\pi d^2} = 3,047 \text{ M}$$

Нахождение длины цилиндрической части бака горючего. Из следующего выражения с помощью программы Mathcad находим значение длины цилиндрической части бака горючего:

$$V_{\rm B\Gamma} = \frac{\pi}{4} (d^2 - d_{TOH}^2) * L_{\rm U\Gamma} + 2V_{\rm ZH} - 2L_{\rm ZH} * \frac{\pi}{4} * d_{TOH}^2$$

Следовательно, $L_{\rm II\Gamma} = 8,199$ м

Расчет приборного отсека

Введем допущение, что $M_{\Pi O} = \frac{M_{\varSigma}*1000}{2} = 246,568$ кг

Следовательно,
$$V_{\Pi O} = \frac{M_{\Pi O}}{\rho_{\Pi O}} = 0,759 \text{ м}^3$$

Где плотность приборного отсека мы принимаем за 325 $\frac{\kappa r}{M^3}$

Тогда найдем длину приборного отсека:

$$L_{\Pi O} = 4\pi * \frac{V_{\Pi O}}{d^2} = 0,377 \text{ M}$$

Расчет головной части

Найдем предварительную длину головной части, задаваясь углом развертывания головной части 40° .

$$L_{\Gamma 41} = \frac{d}{2ta(20^{\circ})} = 2,198 \text{ M}$$

Найдем объем головной части с такими параметрами:

$$V_{\Gamma \Psi} = \frac{1}{3} L_{\Gamma \Psi 1} * 0,785 d^2 = 1,472$$
 м

Тогда плотность головной части:

$$\rho_{\Gamma^{\text{Y}}} = M_{\Pi\Gamma} * \frac{1000}{V_{\Gamma^{\text{Y}}}} = 679,184 \frac{\kappa \Gamma}{M^3}$$

Расчет хвостового отсека

Данную методику я взяла из учебника Куренкова «Основы проектирования ракет-носителей».

Находим стартовую тягу ракеты:

$$P_0 = M_0 * \frac{g_0}{v_0} = 195,604$$
кН

Находим длину камеры сгорания вместе с соплом:

$$L_K = 0.125 * \left(P_0 * \frac{1000}{9.8}\right)^{0.25} = 1,486$$
 м

Далее задаемся коэффициентом удлинения двигателя $k_{\rm ДB}=1,\!35$ и находим длину двигательной установки:

$$L_{\rm ЛВ} = k_{\rm ЛВ} * L_K = 2,006$$
 м

Существует закон (описанный в учебнике Куренкова) для зависимости длины хвостового отсека от тяги двигателя:

$$L_{XO}(P_0) = 0.0005P_0 + 2.8867$$

И находим значение длины хвостового отсека по рассчитанной стартовой тяге:

$$L_{XO} = 2,985 \text{M}$$

<u>Расчет длины всей ракеты</u>

$$L = L_{XO} + L_{\Gamma \mathrm{H}} + L_{\Pi \mathrm{O}} + L_{\Pi \mathrm{C}} + L_{\Pi \mathrm{O}} + L_{\mathrm{MEW}} + 4*L_{\mathrm{ДH}} = 18,382$$
 м

Тогда удлинение ракеты следующее:

$$\lambda = \frac{L}{d} = 11,489$$

Что удовлетворяет условию домашнего задания. **HO!** Данный расчет XO является очень неточным и не подходит для нашей задачи проектирования. Поэтому мы спроектируем XO по следующим расчетам и примем их как основные.

Расчет хвостового отсека другим способом

Задаемся количеством камер двигателя в нашей ракете. Для упрощенного расчета принимаем, что двигатель ракеты однокамерный.

Зададимся основными параметрами нашей двигательной установки.

Расходный комплекс для топливной пары O2+H2: $\beta_{\rm T} = 220{\rm c} = 2149 \frac{\rm M}{\rm c}$

Давление в камере сгорания для двигателя с открытой схемой: $p_K = 10 \text{ M}\Pi a$

Давление на срезе сопла: $p_a=0.7$ атм =0.06865 МПа

Показатель процесса расширения для топливной пары O2+H2: n = 1,12

Согласно заданным параметрам рассчитаем площадь критического сечения:

$$S_{ ext{Kp}} = eta_{ ext{T}} * rac{P_{\Pi}}{p_{K} * J_{y_{\pi}\Pi}} = 10,406 * 10^{-3} \text{ m}^{3}$$

Тогда диаметр критического сечения:

$$d_{ ext{kp}} = \sqrt{\frac{4}{\pi} * S_{ ext{kp}}} = 0.115 \text{ M}$$

Радиус критического сечения:

$$r_{\rm Kp} = \frac{d_{\rm Kp}}{2} = 0.058 \text{ M}$$

Найдем площадь выходного сечения сопла:

$$S_a = S_{\text{Kp}} * \left[\frac{\frac{n-1}{2} * \left(\frac{2}{n+1}\right)^{\frac{n+1}{n-1}}}{\left(\frac{p_a}{p_K}\right)^{\frac{2}{n}} - \left(\frac{p_a}{p_K}\right)^{\frac{n+1}{n}}} \right]^{\frac{1}{2}} = 0,202 \text{ M}^3$$

Тогда диаметр выходного сечения:

$$d_a = \sqrt{\frac{4}{\pi} * S_a} = 0,508 \text{ M}$$

Радиус выходного сечения:

$$r_{\rm a} = \frac{d_{\rm a}}{2} = 0.254 \text{ M}$$

Произведем расчет закритической части сопла.

В качестве первого приближения рассматриваем конический профиль сопла, угол раскрытия которого равен 40° .

Длина конуса:

$$l_K = \frac{r_a - r_{\rm Kp}}{t g 20^\circ} = 0,539 \text{ M}$$

Рассмотрим второе приближение, где мы в качестве профиля сопла уже рассматриваем больше параболический вид.

Длина закритической части сопла:

$$l_{
m 3akp} pprox 0.8 l_K = 0.431 \ {
m M}$$

Рассмотрим докритическую часть.

Принимаем, как известные данные следующие параметры:

1) диаметр камеры сгорания:

$$d_{\text{\tiny KAM}} = 2d_{\text{\tiny KD}} = 0.230 \text{ M}$$

2) длина камеры сгорания:

$$l_{\text{\tiny KAM}} = 3d_{\text{\tiny KD}} = 0.345 \text{ M}$$

Угол сужения докритической части: $2\beta_{\text{докр}} = 90^{\circ}$

Следовательно, длина докритической части сопла:

$$l_{
m докр} = rac{r_{
m {\tiny KAM}} - r_{
m {\tiny Kp}}}{tg(eta_{
m {\tiny JOKD}})} = r_{
m {\tiny Kp}} = 0$$
,058 м

Тогда длина сопла: $l_{\it C} = l_{\rm 3akp} + l_{\rm докр} = 0$,489м

Таким образом, получаем длину двигательной установки, и которая в данном случае без учета длины днища бака горючего будет иметь следующее значение: $L_{XO}=l_{\text{ДV}}=2*l_{\text{C}}=$ 0,978 м

Расчет длины всей ракеты

Тогда удлинение ракеты следующее:

$$\lambda = \frac{L}{d} = 10,345$$

Что удовлетворяет условию домашнего задания.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Кафедра «Космические аппараты и ракеты-носители»

Дисциплина «Проектирование летательных аппаратов с жидкостными ракетными двигателями»

Домашнее задание №2

Вариант №4

Студентка: Гусева Н. А.

Группа: СМ1-81

Преподаватель: Коровин В.В.

Москва, 2023 год.

Расчет массы двухступенчатой ракеты другим способом

Исходные данные

Характеристическая скорость	$V_{\rm xap} = 4293 {\rm m/c}$
Стартовая нагрузка на тягу для первой ступени	$v_{01} = 0.6$
Стартовая нагрузка на тягу для второй ступени	$ u_{\Pi 2} = \nu_{01} = 0.6 $
Удельный импульс первой ступени	$J_{\rm УД\Pi 1} = 4150 \; {\rm M/c}$
Удельный импульс второй ступени	$J_{\rm Y_{\rm J}\Pi 2} = J_{\rm Y_{\rm J}\Pi 1} = 4150 \rm m/c$
Масса полезного груза	$M_{\Pi\Gamma}=1.6~\mathrm{T}$

Массовый расчет двухступенчатой ракеты

Обозначим стартовую массу ракеты – массу первой ступени ракеты:

$$M_0 = M_{01}$$

Введем понятие соотношения стартовых масс ступеней:

$$\lambda = \frac{M_{02}}{M_{01}}$$

Если $M_{\Pi\Gamma 1}=M_{02},$ тогда относительная масса полезного груза первой ступени:

$$\mu_{\Pi\Gamma 1} = \frac{M_{\Pi\Gamma 1}}{M_{01}} = \frac{M_{02}}{M_{01}} = \lambda$$

Тогда для второй ступени:

$$\mu_{\Pi\Gamma 2} = \frac{M_{\Pi\Gamma}}{M_{02}} = \frac{M_{\Pi\Gamma}}{\lambda M_{01}}$$

Задаемся весовыми уравнениями для двухступенчатой ракеты:

$$\begin{cases} \mu_{\text{K1}} = \frac{1}{(1 + a_{TO1})} \left(\lambda + a_{TO1} + \frac{\gamma_{\text{ДУ1}}}{\nu_{01}} + \mu_{\Sigma 1} \right) \\ \mu_{\text{K2}} = \frac{1}{(1 + a_{TO2})} \left(\frac{M_{\Pi\Gamma}}{\lambda M_{01}} + a_{TO2} + \frac{\gamma_{\text{ДУ2}}}{\nu_{\Pi 2}} + \mu_{\Sigma 2} \right) \end{cases}$$

Где весовые коэффициенты принимают следующий вид:

$$\left. \begin{array}{l} a_{TO1} = 0.097*(1+0.21*\exp(-0.045M_{T1})) \\ \gamma_{\text{ДУ1}} = 0.025*(1+1*\exp(-0.0021*P_{\Pi1})) \\ \mu_{\text{ПР1}} = 0.013*(1+0.59*\exp(-0.0048*M_{01}) = \mu_{\Sigma1} \end{array} \right\} - I \text{ ct.}$$

$$a_{TO2} = 0.097*(1+0.21*\exp(-0.045M_{T2})) \\ \gamma_{\text{ДУ2}} = 0.025*(1+1*\exp(-0.0021*P_{\Pi2})) \\ \mu_{\text{ПР2}} = 0.013*(1+0.59*\exp(-0.0048*M_{02}) + \frac{0.25}{M_{02}} = \mu_{\Sigma2} \\ -II \text{ ст.}$$

Также согласно формуле Циолковского получаем значение характеристической скорости:

$$V_{\text{xap}} = -J_{\text{Уд\Pi 1}} * \ln \mu_{\text{K1}} - J_{\text{Уд\Pi 2}} * \ln \mu_{\text{K2}}$$

Рассмотрим решение данной задачи способом, когда мы осуществляем нахождение минимальной стартовой массы ракеты путем варьирования коэффициентами $\mu_{\rm K1}$ и $\mu_{\rm K2}$, а также значениями M_{01} и λ .

В качестве первого приближения будем рассматривать значения относительной конечной массы, начиная с $\mu_{K1}=0.3$ и с шагом $\Delta\mu_{K1}=0.05$ до значения $\mu_{K1}=0.75$, так как дальнейшее рассмотрение >0.75 является бессмысленным из-за нерационального распределения массы между ступенями ракеты.

Таким образом, мы получаем следующие значения:

 $\mu_{\mathrm{K1}} = (0.300 \quad 0.350 \quad 0.400 \quad 0.450 \quad 0.500 \quad 0.550 \quad 0.600 \quad 0.650 \quad 0.700 \quad 0.750)$ Рассмотрим в качестве примера $\mu_{\mathrm{K1}} = 0.300$ и решим задачу.

Из формулы Циолковского для двухступенчатой ракеты с одинаковым удельным импульсом каждой из ступеней получим значение относительной конечной массы второй ступени:

$$\mu_{\text{K2}} = \frac{\exp\left(-\frac{V_{xap}}{J_{\text{y}_{\text{Д}\Pi}}}\right)}{\mu_{\text{K1}}} = 1.185$$

Таким образом, учитывая, что:

$$M_{T1} = M_{01}(1-\mu_{\mathrm{K1}}) - I$$
 ст. $M_{T2} = M_{02}(1-\mu_{\mathrm{K2}}) - II$ ст. $M_{T2} = M_{02}(1-\mu_{\mathrm{K2}}) - II$ ст. $M_{T3} = 1.15 \cdot \frac{M_{01}g_0}{v_0} - I$ ст. $M_{T2} = 1.15 \cdot \frac{M_{02}g_0}{v_0} - I$ ст. $M_{T2} = 1.15 \cdot \frac{M_{02}g_0}{v_{T2}} - II$ ст.

Тогда мы можем получить зависимости весовых коэффициентов от стартовой массы ракеты, от коэффициента λ и от относительной конечной массы ступеней ракеты $\mu_{\rm K}$:

$$a_{TO1}(M_{01}, \mu_{K1})$$
 $a_{TO2}(M_{01}, \mu_{K2}, \lambda)$
 $\gamma_{\text{ДУ1}}(M_{01})$ $\gamma_{\text{ДУ1}}(M_{01}, \lambda)$
 $\mu_{\text{ПР1}}(M_{01})$ $\mu_{\text{ПР1}}(M_{01}, \lambda)$

Далее необходимо задаться произвольным значением стартовой массы первой ступени. Пусть $M_{01}=7.5\ \mathrm{T}.$

А значение λ будем варьировать от значения 0.2 до значения 0.65. Получим:

$$\lambda = (0.20 \ 0.25 \ 0.30 \ 0.35 \ 0.40 \ 0.45 \ 0.50 \ 0.55 \ 0.60 \ 0.65)$$

Затем находим значения скорости при постоянной массе и переменном значении λ. Построим график зависимости:

Из данного графика видно, что оптимальным значением λ является значение $\lambda=0.5$.

Далее необходимо определить такую стартовую массу, которая будет обеспечивать при полученном оптимальном значении $\lambda_{\text{опт}} = 0.5$ нужную характеристическую скорость $V_{xap} = 4293$ м/с.

Следовательно, подбор осуществляем из следующих значений массы:

$$M_{01} = (7.5 \ 8.0 \ 8.5 \ 9.0 \ 9.5 \ 10.0 \ 10.5 \ 11.0 \ 11.5 \ 12.0)$$

Тогда мы получим следующий ряд значений храктеристической скорости в зависимости от стартовой массы:

$$V_{xap} = (3776\ 3966\ 4142\ 4306\ 4458\ 4600\ 4733\ 4976\ 5088\ 5193)$$
 Таким образом, мы видим, что максимально приближенное значение характеристической скорости $V_{xap} = 4306\ \mathrm{m/c}$, что соответствует $M_{01} = 9\ \mathrm{T}$.

Тогда мы нашли необходимое значение стартовой массы $M_{01}=9$ т и значение $\lambda=0,5$. Найдем остальные параметры ракеты при полученных массовых величинах.

$$M_{T1}=6.3\ \mathrm{T}-$$
 масса топлива $P_{\Pi 1}=168.532\ \mathrm{кH}-$ пустотная тяга ДУ $a_{TO_1}=0.112$ $\gamma_{\mathrm{ДУ}1}=0.043$ $\mu_{\Pi P1}=0.02$ — для первой сутпени $P_{\Pi 2}=84.266\ \mathrm{kH}-$ пустотная тяга ДУ $a_{TO_2}=0.118$ $\alpha_{TO_2}=0.118$ $\alpha_{TO_2}=0.046$ $\alpha_{TO_2}=0.046$ $\alpha_{TO_2}=0.046$

Где можно заметить, что масса топлива второй ступени получилась отрицательной. Предположительно это связано с тем, что энергии топлива, заключенной в баках первой ступени достаточно, чтобы ракета приобрела необходимую характеристическую скорость без учета применения второй ступени.

Далее проведем подобные расчеты для оставшихся значений конечной относительной массы и сведем все в таблицу.

Искомые характеристики ракеты по ступеням	1 вариант	2 вариант	3 вариант	4 вариант	5 вариант	6 вариант	7 вариант	8 вариант	9 вариант	10 вариант
Относительная конечная масса 1 ступени	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,65	0,7	0,75
Относительная конечная масса 2 ступени	1,185	1,015	0,889	0,79	0,711	0,646	0,592	0,547	0,508	0,474
Оптимальное лямбда	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Отптимальная стартовая масса 1 ступени	9	9	9	9	9	9	9	9	9	9
стартовая масса 2 ступени	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5	4,5
Масса топлива 1 ступени	6,3	5,85	5,4	4,95	4,5	4,05	3,6	3,15	2,7	2,25
Масса топлива 2 ступени	-0,831	-0,07	0,502	0,946	1,301	1,592	1,834	2,039	2,215	2,367
Стартовая тяга 1 ступени	146,55	146,55	146,55	146,55	146,55	146,55	146,55	146,55	146,55	146,55
Стартовая тяга 2 ступени	73,275	73,275	73,275	73,275	73,275	73,275	73,275	73,275	73,275	73,275
Пустотная тяга 1 ступени	168,532	168,532	168,532	168,532	168,532	168,532	168,532	168,532	168,532	168,532
Пустотная тяга 2 ступени	84,266	84,266	84,266	84,266	84,266	84,266	84,266	84,266	84,266	84,266
aTO1	0,112	0,112	0,113	0,113	0,114	0,114	0,114	0,115	0,115	0,115
aTO2	0,118	0,118	0,117	0,117	0,116	0,116	0,116	0,116	0,115	0,115
гамма ДУ1	0,043	0,043	0,043	0,043	0,043	0,043	0,043	0,043	0,043	0,043
гамма ДУ2	0,046	0,046	0,046	0,046	0,046	0,046	0,046	0,046	0,046	0,046
мю прочее 1 ступени	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
мю прочее 2 ступени	0,076	0,076	0,076	0,076	0,076	0,076	0,076	0,076	0,076	0,076

Как видно, при любых подобранных значениях относительной конечной массы первой и второй ступеней значения всех других параметров, кроме массы топлива и весового коэффициента a_{TO} не меняются.

Таким образом, мы можем найти по данному алгоритму значения наиболее минимальной стартовой массы, но для того, чтобы спроектировать саму ракету необходимо задаваться отдельно значениями a_{TO_1} , которые в свою очередь соответствуют весовому качеству ракеты и зависят от множества других факторов.

Задавшись этими значениями более точно мы можем определить и относительные конечные массы ступеней ракеты, что позволит сделать эскиз ракеты и определить более оптимальные объемно-габаритные параметры.

Сравнительный анализ полученных результатов

Стартовая масса одноступенчатой ракеты получилась равной:

$$M_0 = 11.079 \,\mathrm{T}$$

Стартовая масса двухступенчатой ракеты:

$$M_{01} = 9.0 \text{ T}$$

Следовательно, наиболее целесообразно проектировать именно двухступенчатую ракету на заданную дальность и заданную массу полезной нагрузки, так как видны выигрыши в массе на $\Delta M = 2079$ кг.