Reinforcement Learning 01

DS Development Presentations Peter Nicholas S. Onglao | MNL

GOAL:

Make an RL algorithm for chess (>3 presentations away) that can beat me

Contents

- Re-Introduction to Reinforcement Learning (RL)
- Markov Decision Processes (MDP)

Sources

- UCL Course on Reinforcement Leaning, David Silver
 - Video lectures with accompanying slides
 - David Silver: AlphaGo, AlphaZero, AlphaStar (DeepMind)
 - Content is patterned after his lectures
- Reinforcement Learning An Introduction, Sutton and Barto

1

What is RL?

Introduction + basic math requirements for an RL problem.

Introduction to RL

- What makes RL different from supervised/unsupervised learning?
 - No supervisor, only a reward
 - Feedback is delayed, not instantaneous
 - Time really matters, not i.i.d. data
 - The agent affects the data it receives
- Basic components:
 - Agent
 - Environment
 - Observation
 - Action
 - Reward

RL Components

- \blacksquare At each step t the agent:
 - \triangleright Executes action A_t
 - ightharpoonup Receives observation O_t
 - ightharpoonup Receives reward R_t
- At each step t the environment:
 - ightharpoonup Receives action A_t
 - ightharpoonup Emits observation O_{t+1}
 - ightharpoonup Emits reward R_{t+1}

Reward

- \blacksquare The reward R_t is a **SCALAR** feedback signal
- Indicates how well the agent is doing at step t
- The agent's job is to maximize cumulative reward
 - Cumulative reward since actions may have long-term consequences, and reward may be delayed
 - Immediate vs. long-term gain

Reward hypothesis

All goals can be described by the maximization of expected cumulative reward

History and State

- How will the agent act? History and State
- **History**: the sequence of observations, actions, rewards

$$\vdash H_t = O_1, R_1, A_1, \dots, A_{t-1}, O_t, R_t$$

- All observable variables up to time t
- The future depends on the history
 - Agent: selects action
 - Environment: selects observation/reward
- State: a concise way to represent history
 - It is a function of history
 - $ightharpoonup S_t = f(H_t)$

https://mat3e.github.io

chessfox.com

Environment and Agent States

- **Environment State** (S_t^e)
 - The **internal state** of the environment (some set of numbers)
 - The data the environment uses to pick the next observation/reward
 - Not usually visible to agent
 - If it is visible, it may not be useful to the agent
- Agent State (S_t^a)
 - The set of numbers inside the algorithm
 - The information used by the agent to pick the next action
 - Our role choose which information to keep/take

Agent and Environment States

Information/Markov State

Markov State

- Contains all useful information from the history
- ightharpoonup A state S_t is Markov iff:

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, ..., S_t]$$

"The future is independent of the past given the present"

$$\vdash H_{1:t} \rightarrow S_t \rightarrow H_{t+1:\infty}$$

- Once the current state is known, the history may be thrown away
- The state is a sufficient statistic of the future
- Environment state S_t^e is Markov
- History H_t is Markov

Components of an RL Agent

- An RL agent may include **one or more** of the following:
 - **Policy**: agent's behavior function
 - ▶ Value function: how good is each state and/or action
 - Model: agent's representation of the environment

Components of an RL Agent

- Policy: the agent's behavior; a map from state to action
 - ightharpoonup Deterministic: $a = \pi(s)$
 - Stochastic: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$
- Walue function: prediction of future reward; evaluate the current state

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+2} + \cdots | S_t = s]$$

- Model: predicts what the environment will do next
 - $ightharpoonup \mathcal{P}$ predicts the **next state**

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

 $ightharpoonup \mathcal{R}$ predicts the **next reward**

$$\mathbb{R}^a_s = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

Maze Example: Policy

- Each state s = a position in the maze
- Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

		-14	-13	-12	-11	-10	-9		
t	-16	-15			-12		-8		
		-16	-17			6	-7		
			-18	-19		-5			
		-24		-20		-4	-3		
		-23	-22	-21	-22		-2	7	Goal

- Each state s = a position in the maze
- Reward: -1 per step
- Numbers represent the value function $v_{\pi}(s)$ of each state s

Maze Example: Model

- Agent may have an internal model of the environment
- Model may be imperfect
- Grid layout represents transition model $\mathcal{P}_{ss'}^a$
- Numbers represent immediate reward R_s^a from each state s
 - All the same since the immediate reward is the same each step

Categories of RL agents

(1) Depending on Policy & Value Function

▶ Value Based: No Policy (Implicit) + Value Function

Policy Based: Policy + No Value Function

Actor Critic: Policy + Value Function

(2) Depending on Model

Model Free: Policy and/or Value Function + No Model

Model Based: Policy and/or Value Function + Model

Differentiating some RL terms

- Learning vs. Planning
 - Learning
 - Environment is initially unknown
 - Agents interacts w/ environment and improves its policy
 - Planning
 - A model of the **environment** is **known**
 - Agent does not perform interactions but performs computations, and improves its policy this way

Differentiating some RL terms

- Exploration vs Exploitation
 - **Exploration**: Discover a good policy
 - **Exploitation**: W/o losing too much reward along the way
- Prediction vs Control
 - Prediction: evaluate the future given a policy
 - Control: optimize the future and find the best policy

c) π_*

Prediction (policy = random)

Credits: David Silver's slides

Control

Summary

Components of an RL problem

- Agent, Environment
- Observation, Reward, Action
- History and State

Components of an RL agent

- Policy, Value Function, Model
- Agents can be categorized by presence/absence of those three

Differentiating some RL terms

- Learning vs Planning
- Exploration vs Exploitation
- Prediction vs Control

2

Markov Decision Process

MDPs, MRPs, and the Bellman Equation

Markov Process

- Markov Process/Markov Chain
 - ightharpoonup A tuple $\langle \mathcal{S}, \mathcal{P} \rangle$
 - \triangleright S is a (finite) set of states
 - $ightharpoonup \mathcal{P}$ is a state transition probability matrix

Example: Student Markov Chain

Credits: David Silver's slides

Pub

Markov Reward Process (MRP)

- A Markov chain with **values**
- Markov Reward Process
 - ightharpoonup A tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - \triangleright S is a (finite) set of states
 - $ightharpoonup \mathcal{P}$ is a state transition probability matrix
 - \nearrow R is a reward function, $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$
 - γ is a discount factor, $\gamma \in [0,1]$

Example: Student MRP

Return

Return G_t is the **total discounted reward** from time-step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{3} \gamma^k R_{t+k+1}$$

- ightharpoonup Discount γ is the **present value of future rewards**
- Value immediate reward vs. delayed reward
 - $ightharpoonup \gamma$ near 0: "myopic"
 - $ightharpoonup \gamma$ near 1: "far-sighted"
- The state value function v(s) gives the expected return of state s $v(s) = \mathbb{E}[G_t | S_t = s]$

State-Value Function for Student MRP

Credits: David Silver's slides

R = +10

Bellman Equation for MRPs

- The value function can be decomposed into **two parts**:
 - Immediate reward
 - Discounted value of successor state

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma^2 R_{t+3} + \cdots) | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$

Discounted value of next state

Bellman Equation for MRPs

$$v(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} P_{ss'} v(s')$$

- \triangleright S is a (finite) set of states
- \triangleright P is a state transition probability matrix, with elements $P_{ss'}$
- $ightharpoonup \mathcal{R}$ is a reward function, $\mathcal{R}_{S} = \mathbb{E}[R_{t+1}|S_{t} = S]$

Bellman Equation for Student MRP

Bellman Equation: Matrix Form

$$\begin{bmatrix} \mathbf{v}(1) \\ \vdots \\ \mathbf{v}(\mathbf{n}) \end{bmatrix} = \begin{bmatrix} \mathcal{R}(1) \\ \vdots \\ \mathcal{R}(n) \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \cdots & \mathcal{P}_{1n} \\ \vdots & \ddots & \vdots \\ \mathcal{P}_{n1} & \cdots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

$$\mathbf{v}(s) = \mathcal{R} + \gamma \mathcal{P} \mathbf{v}$$

$$(I - \gamma \mathcal{P}) \mathbf{v} = \mathcal{R}$$

$$\mathbf{v} = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- We can solve the Bellman equation! But it's $O(n^3)$ for n states.
- For larger n there are iterative solutions:
 - Monte-Carlo evaluation, Temporal-Difference learning
 - Dynamic Programming

Markov Decision Process (MDP)

- A Markov reward process with decisions.
- **Markov Decision Process**
 - ightharpoonup A tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - \triangleright S is a finite set of states
 - \triangleright A is a finite set of actions
 - \triangleright \mathcal{P} is a state transition probability matrix

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

- \mathbb{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0,1]$

Student MRP vs Student MDP

Policies for MDP

- **Policy** (π) : a distribution of actions given states
 - $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$
 - Fully defines the behavior of an agent
 - MDP policies depend on the current state, not the history
 - Stationary (time-independent), since you're considering all possible states

♦ Value Functions for MDP

State-value function $(v_{\pi}(s))$: the expected return following policy π , from state s

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

Action-value function $(q_{\pi}(s, a))$: the expected return after taking action a, following policy π , from state s

$$q_{\pi}(s, a) = \mathbb{E}[G_t | S_t = s, A_t = a]$$

State-Value Function for Student MDP

Bellman Expectation Equations

State-value function $(v_{\pi}(s))$: the expected return following policy π , from state s

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

Action-value function $(q_{\pi}(s,a))$: the expected return after **taking action** a, following policy π , from state s

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Bellman Expectation Equation in Stud. MDP

Finding an Optimal Value Function

Optimal state-value function $(v_*(s))$: the maximum state-value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Optimal action-value function $(q_*(s, a))$: the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- Theorem:
 - There exists an optimal policy π_* better than or equal to all other policies, $\pi_* \geq \pi$, $\forall \pi$
 - All optimal policies achieve the optimal state-value and actionvalue functions

Finding an Optimal Policy

An optimal policy can be found by maximizing over $q_*(s, a)$,

$$\pi_*(a|s) = \begin{cases} 1, & \text{if } a = \operatorname*{argmax} q_*(s, a) \\ 0, & \text{otherwise} \end{cases}$$

Optimal Policy for Student MDP

Bellman Optimality Equation

The Bellman equation for the state and action-value functions

$$v_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s') \right)$$

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s',a')$$

Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Iterative solution methods:
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa

Thank you!

Sources

- UCL Course on Reinforcement Leaning, David Silver
- Reinforcement Learning An Introduction, Sutton and Barto

Special thanks to:

- Presentation template by <u>SlidesCarnival</u>
- Photographs by <u>Startup Stock Photos</u>