1.Downloading the Dataset and importing the Libraries

```
# import packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

2.load the datset

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
5938	5939	15679668	Yao	850	Spain	Male	38	7
4850	4851	15593094	Goddard	516	France	Male	27	9
1008	1009	15569050	Farrell	444	France	Male	45	6
1951	1952	15589793	Onwuamaeze	604	France	Male	53	8
3399	3400	15633352	Okwukwe	628	France	Female	31	6
4968	4969	15572158	Blackburn	604	Spain	Male	41	3
4740	4741	15618661	Chidubem	535 France	Male	30	6	
8083	8084	15684011	Miller	576	Germany	Male	29	7
2171	2172	15747174	Нао	526	Germany	Male	58	9
35	36	15794171	Lombardo	475	France	Female	45	0
univarient								
4 010	۷ ۱ ۱ ۲	10146600	Dellacol	100	Germany	iviaic	JJ	-

features =['Age', 'CreditScore', 'Balance']
data[features].hist(figsize=(13, 10));

bivarient

import seaborn as sns
sns.boxplot(x = data['EstimatedSalary'], y = data['Gender']);

multivarient

df_1 = pd.DataFrame(data,columns=['CreditScore','EstimatedSalary','Balance'])
corrMatrix = df_1.corr()
sns.heatmap(corrMatrix, annot=True)
plt.show()

sns.relplot(x = "Age",y ="EstimatedSalary",hue="Gender",data=data)

4. Performing descriptive statistics on the dataset.

data[['CreditScore','Balance','EstimatedSalary']].mean()

CreditScore 650.528800 Balance 76485.889288 EstimatedSalary 100090.239881

dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].median()

CreditScore 652.000
Balance 97198.540
EstimatedSalary 100193.915

dtype: float64

data[['CreditScore','Balance','EstimatedSalary']].mode()

	CreditScore	Balance	EstimatedSalary	1	
0	850	0.0	24924.92		

data[['CreditScore', 'Balance', 'EstimatedSalary']].quantile()

CreditScore 652.000
Balance 97198.540
EstimatedSalary 100193.915
Name: 0.5, dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].std()

 CreditScore
 96.653299

 Balance
 62397.405202

 EstimatedSalary
 57510.492818

dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].min()

CreditScore 350.00
Balance 0.00
EstimatedSalary 11.58

dtype: float64

data[['CreditScore', 'Balance', 'EstimatedSalary']].max()

CreditScore 850.00
Balance 250898.09
EstimatedSalary 199992.48

dtype: float64

data[['CreditScore','Balance','EstimatedSalary']].skew()

CreditScore -0.071607 Balance -0.141109 EstimatedSalary 0.002085

dtype: float64

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
d+vn/	oc. float64(2) i	0+64(0) object(ر د

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

data.describe()

Balance	Tenure	Age	CreditScore	CustomerId	RowNumber	
10000.000000	10000.000000	10000.000000	10000.000000	1.000000e+04	10000.00000	count
76485.889288	5.012800	38.921800	650.528800	1.569094e+07	5000.50000	mean
62397.405202	2.892174	10.487806	96.653299	7.193619e+04	2886.89568	std
0.000000	0.000000	18.000000	350.000000	1.556570e+07	1.00000	min
0.000000	3.000000	32.000000	584.000000	1.562853e+07	2500.75000	25%
97198.540000	5.000000	37.000000	652.000000	1.569074e+07	5000.50000	50%
127644.240000	7.000000	44.000000	718.000000	1.575323e+07	7500.25000	75%
250898.090000	10.000000	92.000000	850.000000	1.581569e+07	10000.00000	max

4

5. Handling the Missing values.

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000

6.finding the outliers and replace the outlier

sns.distplot(data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `d warnings.warn(msg, FutureWarning)

sns.boxplot(data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f390dff3050>

box_scatter(data, 'EstimatedSalary', 'Exited');
plt.tight_layout()


```
upper_limit = data['CreditScore'].mean() + 3*data['CreditScore'].std()
lower_limit = data['CreditScore'].mean() - 3*data['CreditScore'].std()
print('upper limit:', upper_limit)
print('lower limit:', lower limit)
```

upper limit: 940.488696208391 lower limit: 360.568903791609

data.loc[(data['CreditScore'] > upper_limit) | (data['CreditScore'] < lower_limit)]</pre>

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	E
1405	1406	15612494	Panicucci	359	France	Female	44	6	12
1631	1632	15685372	Azubuike	350	Spain	Male	54	1	15
1838	1839	15758813	Campbell	350	Germany	Male	39	0	10

new_data = data.loc[(data['CreditScore'] <= upper_limit) & (data['CreditScore'] >= lower_limi
print('before removing outliers:', len(data))
print('after removing outliers:',len(new_data))
print('outliers:', len(data)-len(new_data))

before removing outliers: 10000 after removing outliers: 9992 outliers: 8

sns.boxplot(new_data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f390e305110>


```
new_df = data.copy()
new_df.loc[(new_df['CreditScore']>=upper_limit), 'CreditScore'] = upper_limit
new_df.loc[(new_df['CreditScore']<=lower_limit), 'CreditScore'] = lower_limit</pre>
```

sns.boxplot(new_data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f390e0bedd0>

len(new_data)

9992

```
upper_limit = data['CreditScore'].quantile(0.99)
lower_limit = data['CreditScore'].quantile(0.01)
print('upper limit:', upper_limit)
print('lower limit:', lower_limit)
```

upper limit: 850.0 lower limit: 432.0

sns.boxplot(data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f390df2af50>

sns.distplot(data['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `d
 warnings.warn(msg, FutureWarning)
<matplotlib.axes. subplots.AxesSubplot at 0x7f390de60810>

7. Checking for Categorical columns and performing encoding.

from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()

for i in data:

if data[i].dtype=='object' or data[i].dtype=='category':data[i]=encoder.fit_transform(data[i]

8. Split the data into dependent and independent variables

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.

4 _____

y=data.iloc[:-1]

y.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.
1	2	15647311	Hill	608	Spain	Female	41	1	83807
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
7	+								

9. Scaling the independent variables

```
names=x.columns
names
  dtype='object')
X = pd.DataFrame(x,columns = names)
```

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Е
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	8;
10. S	plitting	g the data in	to Training ar	ndTesting						

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

df=pd.read_csv("/content/Churn_Modelling (1).csv")
df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	E
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8;
2	3	15619304	Onio	502	France	Female	42	8	15!
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	12
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	5
9997	9998	15584532	Liu	709	France	Female	36	7	
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	7!
9999	10000	15628319	Walker	792	France	Female	28	4	130

10000 rows × 14 columns

import numpy as np

x=np.array(df['CreditScore']).reshape(-1,1)

```
x.shape
     (10000, 1)
print(x)
     [[619]
      [608]
      [502]
      [709]
      [772]
      [792]]
y=np.array(df['CreditScore']).reshape(-1,1)
y.shape
     (10000, 1)
print(y)
     [[619]
      [608]
      [502]
      . . .
      [709]
      [772]
      [792]]
print(type(y))
     <class 'pandas.core.frame.DataFrame'>
```

Colab paid products - Cancel contracts here

• 0s completed at 6:47 AM

X