MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2007 SOLUTION KEY

Team Round - continued

C) Since the given information represents two sides and a <u>non</u>-included angle, $\triangle ABC$ might not exist or there could be exactly 1 or 2 non-congruent triangles that satisfy the stated conditions.

Let
$$(BC, AB) = (a, c)$$
. Then using the law of Sine, $\frac{\sin 30^{\circ}}{a} = \frac{\sin C}{c} \Rightarrow \sin C = \frac{c}{2a}$

Case 1: $\frac{c}{2a} > 1 \rightarrow$ no solution (sin *C* can not exceed 1)

Case 3:
$$\frac{1}{2} < \frac{c}{2a} < 1 \rightarrow a < c < 2a \rightarrow 2$$
 solutions 1 acute and 1 obtuse

(Ex: $C = 45^{\circ}$ and 135° or any pair of supplementary angles θ and $180 - \theta$, where $\theta > 30^{\circ}$)

Case 4:
$$\frac{c}{2a} = \frac{1}{2} \Rightarrow c = a \Rightarrow \text{m} \angle A = \text{m} \angle C = 30^{\circ} \Rightarrow \text{m} \angle B = 120^{\circ} \Rightarrow \Delta ABC$$
 is obtuse

Case 5:
$$0 < \frac{c}{2a} < \frac{1}{2} \Rightarrow c < a$$
, m $\angle C < 30^{\circ}$ or m $\angle C > 150^{\circ}$. The latter is impossible, but

if m $\angle C < 30^{\circ}$, then m $\angle B > 120^{\circ}$ and $\triangle ABC$ is obtuse.

Thus, all the acute triangles arise from case 3. We have $7 < c < 14 \rightarrow 8 \le c \le 13$. The number of integer values of c is 13 - 8 + 1 = 6

Note, in general, the solution is (2a-1)-(a+1)+1=a-1

D) Let building #1 have (N + 3) floors w/ ceilings H feet high and building #2 have N floors with ceilings (H - 0.5) feet high.

$$12 + (N+3)H = 2(12 + N(H-0.5)) \rightarrow 12 + NH + 3H = 24 + 2NH - N$$

$$3H - NH = 12 - N \rightarrow H = \frac{12 - N}{3 - N}$$

$$N=1 \rightarrow H=11/2$$
 (rejected – ceilings not at least 8 feet high)

$$N=2 \rightarrow H=10/1$$

Thus, building #1 is 12 + 5(10) = 62 feet tall.