

THEORY OF COMPUTATION

Vivek Kulkarni

Slides for Faculty Assistance

@ Oxford University Press 2013. All rights reserved.

Chapter 3

Regular Expressions

Author: Vivek Kulkarni vivek_Kulkarni@yahoo.com

Outline

- - The concept of regular expressions (RE)
 - Equivalence of regular expressions and finite automata
 - © Construction of a DFA from the given regular expression
 - Obtaining a regular expression for the language accepted by a DFA
 - Arden's theorem
 - Closure properties of regular languages (or sets)
 - Pumping lemma for regular languages
 - Applications of regular expressions / finite automata

Regular Expression (RE)

- The languages accepted by finite automata (FA) are described or represented by simple expressions called *regular expressions* (RE). Regular expressions, say r are like the short-form notations that denote regular languages (or regular sets) say, L(r).
- - **SIGNORMALIE** 1. Regular expressions over Σ , include letters, ϕ (empty set), and ϵ (empty string of length zero).

 - 3. If R1 and R2 are regular expressions over Σ , then so are (R1 + R2), $(R1 \cdot R2)$, and $(R1)^*$, where '+' indicates alternation (parallel path), the operation '.' denotes concatenation (series connection), and '*' denotes iteration (closure or repetitive concatenation).
 - □ 4. Regular expressions are only those that are obtained using rules 1–3.
 - @ Oxford University Press 2013. All rights reserved.

Regular Expression Examples

(93

Calculate Canalysis Canadys Canalysis Canalysis Canalysis Canalys

$$\mathbf{r} = (0+1)^* \cdot 0 \cdot 0 \cdot (0+1)^*$$

- If L(r) = set of all strings over $\Sigma = \{0, 1, 2\}$, such that at least one 0 is followed by at least one 1, which is followed by at least one 2 then, $r = 0 \cdot 0^* \cdot 1 \cdot 1^* \cdot 2 \cdot 2^*$ or, $r = 0^+ \cdot 1^+ \cdot 2^+$
- The language over $\Sigma = \{0, 1\}$ containing all possible combinations of 0's and 1's but not having two consecutive '0's can be represented using RE as,

$$r = (0 + \epsilon) \cdot (1 + 10)^*$$

Equivalence of Regular Expressions and Finite Automata

- **∝Kleene's theorem** is stated in two parts:
 - Any regular language is accepted by a finite automaton.
 - ☑ Languages accepted by FA are regular.

Given a regular expression one can obtain an equivalent DFA accepting the language represented by the regular expression. The converse is true as well.

Regular Expression to NFA with ∈ -moves Conversion

Rules for constructing NFA with \in -moves from given regular expression

@ Oxford University Press 2013. All rights reserved.

DFA to RE - Examples

$$r = (a + b) \cdot (a + b)^*$$

) o,1
$$r = 1*00(0+1)* + (1*01)*00(0+1)*$$

$$- q_0$$

$$0,1$$

$$q_1$$

$$q_1$$

$$r = (0+1) \cdot [(0+1) \cdot (0+1)]^*$$

Iterative method for obtaining RE from DFA

- \bowtie Let us consider any general DFA M, with Q 5 {1, 2, 3, 4, ..., n}.
- Let us also use the label $R^{(k)}_{ij}$, which represents a regular expression, and whose language is the set of all strings w such that there is a path w available from state i to state j in the transition graph for M. The only restriction here is that the path does not traverse through any state, whose number is greater than k.
- The expression $R^{(k)}_{ij}$, when built through inductive definition, where we start with k = 0 and incrementally build the expression till k = n. In this way, we achieve all possible paths from i to j that traverse through all the possible states available in M.
- For k = 0 there will be no intermediate state. Hence, for k = 0, we rely only on the direct transitions that are available.
- When i and j are initial and final states respectively and if k = n, then $R^{(k)}_{ij}$ represents the RE equivalent to the DFA M.

Arden's Theorem

03

- - (i) If R = P + RQ or R = RQ + P then, R can be simplified as, $R = PQ^*$
 - (ii) If R = P + QR or, R = QR + P then, R can be simplified as, $R = Q^* P$

™ For the example DFA,

$$q_0 = q_0 \ 1 + \epsilon = \epsilon \ 1^* = 1^*$$
 $q_1 = q_0 \ 0 + q_1 \ (0 + 1) = 1^* \ 0 + q_1 \ (0 + 1) = 1^* \ 0 \ (0 + 1) *$

As q_1 is the final state for the DFA, RE equivalent to the DFA is, r = 1*0(0+1)*

Closure Properties of Regular Sets

- Regular languages languages represented by regular expressions are termed as Regular Sets.
- Regular sets (or, regular languages) are closed under the operations
 - **Construction** Union: ${}'R_1 + R_2{}'$ denotes all the strings that are either denoted by ${}'R_1{}'$ or ${}'R_2{}'$. Thus, $L(R_1 + R_2) = L(R_1) \cup L(R_2)$
 - **Concatenation**: ${}'R_1 \cdot R_2{}'$ denotes all the strings that are denoted by ${}'R_1{}'$ concatenated with the strings denoted by ${}'R_2{}'$. Thus, $L(R_1 \cdot R_2) = L(R_1) \cdot L(R_2)$.
 - **kleene closure**: ' R_1 *' denotes all the strings that are denoted by 'R' concatenated to itself zero or more number of times. Thus, $L(R^*) = L(R) \cdot L(R) \cdot L(R) \cdot L(R)$ zero or more number of times.

Pumping Lemma for Regular Languages

- **Formal Statement**: Let 'L' be a regular set. Then there is a constant 'n' such that if 'z' is any word in 'L' such that length of 'z' is at least 'n' i.e. $|z| \ge n$, then we can write z = uvw in such a way that,
 - $|uv| \le n$, that means, the substring near the beginning of the string is not too long.
 - $|v| \ge 1$, that means, $v \ne \in$. Since, 'v' is the substring that gets pumped.
 - Solution For all $i \ge 0$, $u v^i$ w is in L. That means, the substring 'v' can be pumped as many times as we like and the resultant string obtained will be a member of 'L'.

Pumping Lemma - Example

- Prove that, the set $L = \{0^{i2} \mid i \text{ is an integer, } i \geq 1\}$ which consists of all strings of '0's whose length is a perfect square is NON-REGULAR.
- Solution: The length of each string is a perfect square.
 - Step 1: Let us assume that the language 'L' is a regular language. Let 'n' be the constant of pumping lemma.
 - Step 2: Let us choose a sufficiently large string 'z' Let $z = 0^{12}$ for some large 1 > 0 where length of 'z' is, $|z| = 1^2 \ge n$. Since, we assumed that 'L' is a regular language and is an infinite language; pumping lemma can be applied now. That means, we should be able to write 'z' as, z = uvw.
 - Step 3: As per pumping lemma every string "uvⁱw", for all $i \ge 0$ is in 'L'. Also, $|v| \ge 1$, that means 'v' cannot be empty and can contain one or more symbols.
- ☑ If we consider 'v' containing any number of '0's and pumping it we will get into the situation where we will have non-square length which will not as per language definition.
- \bowtie Hence, language L = {0ⁱ² | i ≥ 1} is non-regular.

Applications of Regular Expression and Finite Automata

- Lexical analyzer
- **Reserve Text Editors**
- □ Unix grep command
- Many other ...