Homework #5

MEMS 0051 - Introduction to Thermodynamics

Assigned: June 11th, 2020 Due: June 18th, 2020

Problem #1

A heat engine is operating at a thermal efficiency of $\eta_{th}=40\%$ and produces 1,000 [kJ/hr]. The power produced is used to drive a refrigerator. The refrigerator removes the same amount of heat, \dot{Q}_L , that is rejected by the heat engine.

- a) What are \dot{Q}_L , \dot{Q}_H , and the COP of the refrigerator?
- b) Is this system realistic? Why or why not?
- c) Allow Q_L and/or Q_H to be any number. At what value are the thermal efficiency, η_{th} , and the COP, β , equal to one another?

Problem #2

Consider 2 [kg] of nitrogen, N₂, in a piston-cylinder undergoing a Carnot cycle between temperature reservoirs at 300 [K] and 1,100 [K]. The isothermal heat addition process results in the volume expanding from an initial value of 2.0 [m³] to 6.0 [m³]. The nitrogen (N₂) may be treated as an ideal gas. Use the tabulated values in Table A.8 to determine changes in internal energy (because u_2 - u_1 = $C_{\forall O}(T_2$ - T_1) is no longer a good approximation at temperatures as high as 1,100 [K].)

- a) Calculate the Carnot efficiency of this cycle;
- b) Determine the heat added during the isothermal expansion (q_H) and the heat rejected during the isothermal compression (q_L) ;
- c) Determine the changes in internal energy for the adiabatic expansion and the adiabatic compression processes;
- d) Determine the net work done by this cycle;

Problem #3

A powerplant is operating in a cycle with the following information given:

- Boiler: 1 [MW] of heat added to the water
- Turbine: ? [MW] of power produced by the turbine
- Condenser: 0.58 [MW] of heat removed from the water
- Pump: 0.02 [MW] of power required to operate the pump

With this information, answer the following:

- a) What is the thermal efficiency, η_{th} ?
- b) What is the power produced by the turbine?
- c) If the process was reversed and the system could be operated as a refrigerator, what would the COP value be?

Problem #4

A heat engine operates between a high-temperature reservoir T_{H1} and a low-temperature reservoir $T_{\rm ambient}$. The work produced, \dot{W}_1 , which is the difference of heat input \dot{Q}_{H1} and heat rejected \dot{Q}_{L1} , powers a heat pump. Part of the work from the heat engine enters the heat pump \dot{W}_2 , whereas the difference between \dot{W}_1 and \dot{W}_2 is designated as the net work, $\dot{W}_{\rm net}$. The heat pump accepts heat \dot{Q}_{L2} from the same low-temperature reservoir $(T_{\rm ambient})$ and rejects heat \dot{Q}_{H2} to a secondary high-temperature reservoir T_{H2} . Assuming $T_{H1} > T_{H2} > T_{\rm ambient}$, determine, based upon the following cases (a-f), if this system satisfies the First Law and/or violates the Second Law.

200	\dot{Q}_{H1}	\dot{Q}_{L1}	\dot{W}_1	\dot{Q}_{H2}	\dot{Q}_{L2}	\dot{W}_2
$^{\circ}a$	5	3	2	3	2	1
b	6	4	2 $^{\circ}$	5	4	1
\mathbf{c}	5	4	1	3	1	2
d	3	2	\Im	4	3	1
e	5	3	2	2	2	0
f	6	7	1	5	4	1.00