3- laboratoriya mashg'uloti

Matlab tizimida interpolyasiya masalalarini echish.

I. Ishdan maqsad: Matlab® dasturiy kompleksida Algebraik va simvolli hisoblashlar Symbolic Math Toolbox –simvoli matematika vositalaridan foydalanib matematik ifodalarni bajarish.

.

II. Ishning mazmuni:

MATLABda matematik funksiyalarni foydalanish quyidagilarni o'z ichiga oladi:

- a. Chiziqli funksiyalar ustida amallar;
- b. Trigonametrik funksiyalar grafigini hosil qilish;
- c. Matematik hisoblashlarni amalga oshirish;
- d. Uch o'lchovli matematik funksiyalarni hosil qilish;

MATLAB tizimi fan va texnikaning eng yangi yo'nalishlari bo'yicha ham juda kuchli operatsion muhit bo'lib hizmat qila oladi va natijalarni yuqori darajalarda vizulashtirish imkoniyatlariga egaligi bilan xarakterlanadi.

III. Jihozlar:

Matlab®/Simulink®dasturiy ta'minoti bilan ta'minlangan kompyuter va printer.

IV. Umumiy ma'lumotlar

Uslubiy ko'rsatmalar:

- 1. n –tartibli ko'phad quyidagicha ifodalanadi: $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0(1)$, n ko'phad tartibi, $n\hat{I}Z^+ \, \dot{E}\{0\}$. Agar $n\dot{E}Z$ bo'lsa, ya'ni $Z = Z^+ \, \dot{E}\{0\}\dot{E}Z$ u holda $P_n(x)$ funksiya ratsional funksiya deyiladi. Ikki ko'phadning nisbati natijasida kasrratsional funksiya hosil bo'ladi.
- 2. Matlabda (1) ko'phad koeffitsiyentlari darajalari kamayib borish tartibida joylashtirilgan vektor ko'rinishida ifodalanadi. Masalan: $P_3(x)=5x^3-4x^2+2x-1$ ko'phadni Matlabda berilishi:

```
Using Toolbox Path Cache. Type "help toolbox_path_cache" for more info.

To get started, select "MATLAB Help" from the Help menu.

>> P3=[5 -4 2 -1]

P3 =

5 -4 2 -1

>> |
```

3. Ikki m – va n – tartibli ko'phadlarni ko'paytirish operatsiyasi konvolyutsiya deyiladi va quyidagi komanda orqali amalga oshiriladi: **s=conv(a,b)**, bu yerdaa, b – uzunliklari (m+1) va (n+1) bo'lgan va ko'paytirilayotgan ko'phadlar koeffitsiyentlaridan iborat vektorlar.

Misol: 1) P₁=[-2 3 1] va P₂=[3 -4 5 2] ko'phadlarni Matlabda ko'paytirish.

```
Command Window

>> P1=[-2 3 1];
>> P2=[3 -4 5 2];
>> C=conv(P1,P2)

C =

-6 17 -19 7 11 2

>> |
```

- 4. Matlabda ko'phadlarni bo'lish operatsiyasi quyidagi funksiya asosida amalga oshiriladi: **[a,b]=deconv(p,q),** bu yerda p,q –bo'linuvchi va bo'luvchi ko'phadlar koeffitsiyentlaridan tashkil topgan vektorlar, a va b –bo'linma va qoldiq ko'phad koeffitsiyentlari. Agar p₁,p₂ ko'phadlar bo'lsa, ularni bo'lish quyidagicha amalga oshiriladi: [a,b]=deconv(p₁,p₂), bunda, m³nbo'lsa, a va b vektorlar uzunliklari mos ravishda [(m+1)-(n+1)+1] va (m+1) ga teng, m£n bo'lsa, a ning uzunligi 0 ga, b ning uzunligi (mQ1) ga teng(a bo'linma, b qoldiq ko'phad koeffitsiyentlari).
- 5. Ko'phadning ildizlari **s=roots(r)** funksiyasi orqali topiladi, bu yerda r –ko'phad koeffitsiyentlari vektori, uzunligi(n+1)ga teng; s ko'phad ildizlari, uzunligi n ga teng vektor-ustun. **Misol:** $P_2(x) = x^2 5x + 6$ ko'phad ildizlarini topamiz.

- 6. Ko'phad ildizlarini topishga teskari protsedura, ya'ni ko'phadlarni tiklash, **r=poly(c)**funksiyasi asosida amalga oshiriladi, bu yerda c ko'phad ildizlari vektor-ustun; p ko'phad koeffitsiyentlari.
- 7. Ko'phad qiymatlari y=polyval(r,x) funksiyasi asosida hisoblanadi; bu yerda, r ko'phad koeffitsiyentlari vektori; x –skalyarvektor yoki matritsa; y –ko'phadning berilgan x ga mos qiymati. Misol: $P_3(x)=4x^3-3x^2+2x-1$ ko'phadning x=0.75 dagi qiymatini toping.

- 8. Ko'phadning hosilasi **dp=polyval(r)** funksiyasi yordamida topiladi, bu yerda r berilgan ko'phad koeffitsiyentlari vektori; dp ko'phad hosilasi koeffitsiyentlari vektori.
- 9. Approksimatsiya deganda bir funksiya (approksimatsiyalanuvchi) ni berilgan qiymatlari va ma'lum kriteriy asosida boshqa eng yaxshi yaqinlashuvchi funksiyaga almashtirish tushuniladi.
- 10.Injenerlik amaliyotida odatda tekis va o'rta kvadratik yaqinlashish kriteriysi qo'llaniladi.
- 11.Interpolyatsiya deganda bir funksiyaning kam sonli tugun nuqtalari (interpolyatsiya tugunlari)da berilgan qiymatlardan foydalanib, qiymatlari berilgan funksiyaning tugun nuqtalardagi qiymatlari bilan ustma-ust tushuvchi va tugun nuqtalar orasidagi ixtiyoriy nuqtada funksiyaning qiymatlarini hisoblashga imkon beruvchi yaqinlashuvchi polinom bilan almashtirish tushuniladi.

12.Matlabda approksimatsiyalovchi funksiya sifatida n – tartibli ko'phad, approksimatsiya kriteriysi sifatida o'rta kvadratik chetlanish ishlatiladi. Approksimatsiyalash funksiyasi quyidagi ko'rinishga ega: **r=polyfit(x,y,n)**, bu yerda: **x**, **y** –bir xil yoki turli qadamdagi tugun nuqtalar va shu nuqtadagi berilgan qiymatlar; **n** –approksimatsiyalovchi polinom tartibi; r –approksimatsiyalovchi

polinom koeffitsiyentlari vektori. Misol. $y = \underline{\qquad} \sin(x)$ funksiyaning bir xil

qadamdagi tugun nuqtalardagi qiymatlari asosida 5-tartibli ko'phad bilan approksimatsiya qilish.

```
x=pi/8:pi/8:4*pi;

y=sin(x)./x;

p=polyfit(x,y,5);

fa=polyval(p,x);

subplot(3,1,1:2), plot(x,y,'-o',x,fa,':*'), grid, hold on;

error=abs(fa-y); subplot(3,1,3), plot(x,error,'--p')
```


13. $y = \frac{\sin(x)}{\cos(x)}$ funksiyaning [0.1;4.5] oraliqda har xil qadam bilan 3-tartibli ko'phad x

bilan approksimatsiyasi.

```
x=[0.1 0.3 0.5 0.75 0.9 1.1 1.3

1.7... 2 2.4 3 3.1 3.6 4 4.1 4.2 4.3

4.5]; y=sin(x)./x;

p=polyfit(x,y,3); fa=polyval(p,x);

subplot(3,1,1), plot(x,y,'-o'), grid, title('y=sin(x)/x'), hold on;

subplot(3,1,2), plot(x,fa,':*'), grid, title('polinom'), hold on;

error=abs(fa-y); subplot(3,1,3), plot(x,error,'--p'), grid,

title('Oshibka'), hold on; stem(x,error)
```


- 14.Bir o'zgaruvchili funksiyalarni interpolyatsiyalash f_i = int $erp1(x, y, x_i[,'< memo >'])$ funksiyasi orqali amalga oshiriladi, bu yerda: x interpolyatsiya tugunlari (teng qadamli, tengmas qadamli); y –interpolyatsiya qilinuvchi funksiya; x_i –tugun va oraliq nuqtalar; <metod > interpolyatsiyalovchi funksiyalar:
 - · 'nearest' 0-tartibli ko'phad;
 - · 'linear' 1-tartibli ko'phad;
 - · 'cubic' 3-tartibli ko'phad;
 - · 'spline' kubik splayn; f_i interpolyatsiyalovchi funksiya qiymatlari.
- 15. $y = \frac{\sin(x)}{\sin(x)}$ funksiyaning bir xil qadam bilan kubik ko'phad va kubik splayn asosida x

```
interpolyatsiyasi. x=pi/8:pi/2:(4*pi+pi/2); y=sin(x)./x; xi=pi/8:pi/16:(4*pi+pi/16); fil=interpl(x,y,xi,'cubic'); plot(x,y,'-o',xi,fil,':*'), grid, hold on\ legend('y=sin(x)./x','cubic') figure fi2=interpl(x,y,xi,'spline'); plot(x,y,'-o',xi,fi2,':*'), grid, hold on\ legend('y=sin(x)./x','spline')
```


Primer (interpolyasiya funksii kosinusa): x=0:10; y=cos(x); xi=0:0.1:10; yi=interp1(x,y,xi); plot(x,y,'x',xi,yi,'g'),hold on yi=interp1(x,y,xi,'spline'); plot(x,y,'o',xi,yi,'m'),grid,hold off Primer: x=0:10; y=3*cos(x); x1=0:0.1:11; y1=spline(x,y,x1);

plot(x,y,'o',x1,y1,'—')

Topshiriqlar:

- Variant asosida funksiyalar interpolyatsiyasini topish; - Yaratilgan grafiklarni rasmiylashtirish.

Variantlar:

№	1	2	3	4	5	6	7
X	y	Y	Y	Y	y	y	Y
0.2 5	0.77 8	2.28	0.24 7	0.55	1.03	0.44 4	0.25 5
0.3	0.75 8	2.36	0.28 5	0.61 5	1.04 8	0.53	0.32 0

0.3	0.71	2.43	0.36	0.66	1.06	0.64	0.37
6	7	3	2	7	6	5	6
0.3	0.67 7	2.47	0.39	0.74	1.10	0.77	0.41
0.4	0.65	2.53	0.41 6	0.64	1.19	0.64	0.45 8
0.4 7	0.62 5	2.10	0.35	0.58 7	1.23	0.53 8	0.50 8
0.5	0.64 4	1.98	0.33	0.54	1.13	0.47 7	0.57 2
0.5 6	0.66	1.85	0.33	0.58 9	1.06	0.50 8	0.62 6
0.6 4	0.71 7	1.89	0.39	0.68	1.02	0.56 4	0.54 4
0.6 6	0.71	1.93 5	0.51	0.70 9	1.12	0.57 8	0.47 6
0.7	0.69	2.03	0.65	0.77 1	1.25	0.61	0.55 9
No	8	9	10	11	12	13	14
X	y	Y	y	Y	у	у	y

0.2	0.33	1.27 4	0.58 6	0.24	1.00	0.54 4	0.23 7
0.2 6	0.25 4	1.29 7	0.57 1	0.26 2	1.10	0.56 6	0.25 7
0.2 7	0.26	1.31	0.66	0.27	1.20	0.57 6	0.26 6
0.2	0.38 4	1.43	0.64 8	0.29 4	1.20	0.59 8	0.28 6
0.3	0.49 1	1.53 5	0.54 0	0.30 4	1.30	0.50 9	0.29 5
0.3	0.50 9	1.43	0.52 6	0.32 5	1.25	0.43	0.23 4
0.3 7	0.45 4	1.34	0.59 0	0.30 8	1.31	0.38	0.16 1
0.3 8	0.36	1.14 6	0.68	0.28 9	1.37 7	0.39 9	0.17 0
0.4	0.39 7	1.25	0.65 7	0.23	1.40 9	0.44 6	0.24 7
0.4 9	0.45 5	1.36	0.61 2	0.30 9	1.41	0.53	0.24 7
0.5 9	0.53	1.38	0.55 4	0.32	1.35 7	0.66 9	0.20 6

Nazorat savollari:

- 1.Ko'phadlarning Matlabda berilishi?
- 2. Matlabda ko'phadlar ustida amallar?

- 3. Matlabda ko'phadlarning idizlarini topish funksiyasi?
- 4. Funksiyalarni approksimatsiyasi va interpolyatsiyasi?
- 5.Bir o'lchovli funksiyalarni approksimaktsiyalash funksiyalari?
- 6.Bir o'lchovli funksiyalar interpolyatsiyasi?

V. Ishni bajarish tartibi:

Laboratoriya mashg'ulotida har bir talaba ilovada keltirilgan masalalarni Matlab\Simulink dasturida yechishi va yechimlarini hisobot shaklida topshirishi talab etiladi.

Ilovadagi masalalar.

- 1. $P_3(x) = -8x^4 + 4x^3 3x^2 + 2x 1$ ko'phadning x = 0.25 dagi qiymatini toping?
- 2. $y = \frac{\sin(x)}{2}$ funksiyaning [0.1;3.5] oraliqda har xil qadam bilan 4-tartibli x
 - ko'phad bilan interpolyatsiyasini toping?
- 3. $y = -8x^4 + 4x^3 3x^2 + 2x 1$ funksiyaning [0.1;4.5] oraliqda har xil qadam bilan 3-tartibli ko'phad bilan interpolyatsiyasini toping?
- 4. $y = -6x^3 3x^2 + 2x 6$ funksiyaning [0.1;4.5] oraliqda har xil qadam bilan 5tartibli ko'phad bilan interpolyatsiyasini toping?
- 5. $y = \frac{\cos(x)}{\sin(x)} + \frac{\sin(x)}{\sin(x)}$ funksiyaning bir xil qadam bilan kubik ko'phad va kubik x x splayn asosida interpolyatsiyasi.
- 6. Y=sin2x+1 funksiyaning bir xil qadamdagi tugun nuqtalardagi qiymatlari asosida 5-tartibli ko'phad bilan approksimatsiya qilish.
- 7. $P_2(x)=3x^2-5x+8$ ko'phad ildizlarini topamiz.
- 8. $y = 5x^3 4x^2 + 2x 1$ funksiyaning [0.1;4.5] oraliqda har xil qadam bilan 6tartibli ko'phad bilan interpolyatsiyasini toping?

Tekshirish uchun savollar:

- 1. Matematik modellashtirish;
- 2. Meshgrid funksiyasining vazifasini ayting;
- 3. Chiziqli algebra masalalarini keltiring?
- 4. Ezplot funksiyasining vazifasi nima?

- 5. Ikki va uch o'lchamli grafiklarni hosil qilish;
- 6. Dasturlash, m-fayllar va funksiyalar;
- 7. Dslove funksiyasining vazifasi nima?
- 8. Darajalar bo'yicha komplektlash funksiyasini ayting?
- 9. Oddiy differensial tenglamalar;
- 10.Birinchi tartibli ODT, Eyler metodi;
- 11.Runge-Kutta metodi;
- 12.ODT yechilmalari: ode23, ode45, ode113;
- 13. Ikkinchi tartibli ODTlar va Yuqori tartibli ODTlar;

FOYDALANILGAN ADABIYOTLAR:

- 1. T. Dadajonov va M.Muhitdinov. Matlab asoslari: Toshkent 2007 yil.
- 2. MATLAB 7.*/R2006/R2007 o'quv qo'llanma.:M.2008.
- 3. Mathematica. Wolfram, Stephen, 1959.
- 5. Dyakonov V. P., Abramyenkova I. V., Kruglov V. V. MATLAB 5 s pakyetami rasshiryeniy. M.: Nolidj, 2001.
- 6. Dyakonov V. P. MATLAB 6.5 SP1/7 + Simulink 5/6 v. Obrabotka signalov I proyektirovaniye filtrov. M.: Solon_R, 2005.
- 7. Dyakonov V. P. MATLAB 6.5 SP1/7 + Simulink 5/6 v. Rabota s izobrajye niyami i vidyeopotokami. M.: Solon R, 2005.

Foydalanilgan manbalar:

- 1. http://www.mathworks.com/access/helpdesk/help/helpdesk.html.
- 2. http://www.lephanpublishing.com/MatlabCsharp.html 3. http://www.lephanpublishing.com/MATLABBookCplusplus.html
 - 4. http://www.google.uz.