

planetmath.org

Math for the people, by the people.

ω -limit set

Canonical name omegalimitSet

Date of creation 2013-03-22 13:39:37 Last modified on 2013-03-22 13:39:37

Owner Koro (127) Last modified by Koro (127)

Numerical id 6

Author Koro (127)
Entry type Definition
Classification msc 37B99
Synonym omega-limit set
Related topic NonwanderingSet

 $\begin{array}{ll} \text{Defines} & \alpha\text{-limit} \\ \text{Defines} & \text{alpha-limit} \\ \text{Defines} & \omega\text{-limit} \\ \text{Defines} & \text{omega-limit} \end{array}$

Let X be a metric space, and let $f: X \to X$ be a homeomorphism. The ω -limit set of $x \in X$, denoted by $\omega(x, f)$, is the set of cluster points of the forward orbit $\{f^n(x)\}_{n \in \mathbb{N}}$. Hence, $y \in \omega(x, f)$ if and only if there is a strictly increasing sequence of natural numbers $\{n_k\}_{k \in \mathbb{N}}$ such that $f^{n_k}(x) \to y$ as $k \to \infty$.

Another way to express this is

$$\omega(x,f) = \bigcap_{n \in \mathbb{N}} \overline{\{f^k(x) : k > n\}}.$$

The α -limit set is defined in a similar fashion, but for the backward orbit; i.e. $\alpha(x, f) = \omega(x, f^{-1})$.

Both sets are f-invariant, and if X is compact, they are compact and nonempty.

If $\varphi : \mathbb{R} \times X \to X$ is a continuous flow, the definition is similar: $\omega(x,\varphi)$ consists of those elements y of X for which there exists a strictly increasing sequence $\{t_n\}$ of real numbers such that $t_n \to \infty$ and $\varphi(x,t_n) \to y$ as $n \to \infty$. Similarly, $\alpha(x,\varphi)$ is the ω -limit set of the reversed flow (i.e. $\psi(x,t) = \phi(x,-t)$). Again, these sets are invariant and if X is compact they are compact and nonempty. Furthermore,

$$\omega(x, f) = \bigcap_{n \in \mathbb{N}} \overline{\{\varphi(x, t) : t > n\}}.$$