

# **README:**

A clustering diffused particle method

Lang Wang, Ilia L. Rasskazov, P. Scott Carney

August 26, 2020

iffused particle method calculates the scattered field from point particles with both electric and magnetic responses. The computational complexity is reduced by hierarchical clustering techniques to enable simulations with on the order of  $10^{10}$  particles. The calculation is based on a generalized Foldy-Lax equation in [2]. With so many particles we are able to see the transition to bulk media behavior of the fields. Thus the method is also used to verify a generalized effective medium theory [1].



Figure 1: The simulation model of the diffused-particle method.

# Contents

| 1        | Exa<br>1.1 | $egin{aligned} \mathbf{mples} \ & elec\_field.m & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \end{aligned}$ | 3 |
|----------|------------|----------------------------------------------------------------------------------------------------------------------|---|
|          | 1.2        | $sweep\_beta.m$                                                                                                      | 3 |
|          | 1.3        | $sweep\_n0.m$                                                                                                        | 3 |
| <b>2</b> | Fun        | ctions                                                                                                               | 4 |
|          | 2.1        | Effective medium theories                                                                                            | 4 |
|          |            | 2.1.1 <i>CM.m</i>                                                                                                    | 4 |
|          |            | 2.1.2 $GCM_m_branch.m$                                                                                               | 4 |
|          |            | $2.1.3$ $GCM_p_branch.m$                                                                                             | 4 |
|          | 2.2        | Green's functions                                                                                                    | 4 |
|          |            | 2.2.1 $G2d.m$                                                                                                        | 4 |
|          |            | 2.2.2 $G2d.m$                                                                                                        | 5 |
|          |            | 2.2.3 Gxx.m                                                                                                          | 5 |
|          | 2.3        | Dipole and mesh generators                                                                                           | 5 |
|          |            | 2.3.1 <i>cube_mesh.m</i>                                                                                             | 5 |
|          |            | 2.3.2 ran_cube.m                                                                                                     | 5 |
|          | 2.4        | Plot tools                                                                                                           | 5 |
|          |            | 2.4.1 plot_DPM.m                                                                                                     | 6 |
|          |            | 2.4.2 plot_E_colormap.m                                                                                              | 6 |
|          |            | 2 4 3 plot EMT m                                                                                                     | 6 |

# 1 Examples

# $1.1 \quad elec\_field.m$

The script *elec\_field.m* plots the electric field in the middle plane of the simulation region. It reproduces Fig. 5 in [1] and Fig. 4 in [2] with the input parameters given in the corresponding references. The input parameters are listed in the table below:

| parameter | unit           | description                                |
|-----------|----------------|--------------------------------------------|
| k0        | $\lambda^{-1}$ | wave number                                |
| rho       | $\lambda^3$    | concentration of particles                 |
| alpha_e   | $\lambda^3$    | electric polarizability                    |
| alpha_m   | $\lambda^3$    | magnetic polarizability                    |
| Ys        | λ              | Y size of the sampling region              |
| Zs        | λ              | Z size of the sampling region              |
| n0        |                | initial guess of refractive index n        |
| L         | λ              | side length of the cubic simulation region |
| D1        | λ              | side length of a Lv1 voxel                 |
| D2        | λ              | side length of a Lv2 voxel                 |

# $1.2 \quad sweep\_beta.m$

The script  $sweep\_beta.m$  plots the values of  $\varepsilon$ ,  $\mu$  and n with different  $\beta_e$  and  $\beta_m$  values, based on [2]. It reproduces Fig. 4 in [1] and Fig. 5 in [2](a) with the input parameters given in the corresponding references. The input parameters different from the script  $elec\_field.m$  are listed in the table below:

| parameter     | unit        | description                          |
|---------------|-------------|--------------------------------------|
| alpha_e_sweep | $\lambda^3$ | swept electric polarizability values |
| alpha_m_sweep | $\lambda^3$ | swept magnetic polarizability values |

# 1.3 $sweep\_n0.m$

The script  $sweep\_n0.m$  plots the number of iterations before the convergence of the algorithm with different  $n_0$  values, based on [2]. It reproduces Fig. 5 in [2](b) with the input parameters given in the corresponding references. The input parameters different from the script  $elec\_field.m$  are listed in the table below:

|   | parameter | unit | description                   |
|---|-----------|------|-------------------------------|
| ĺ | n0_re     |      | swept real part of $n_0$      |
| ĺ | n0_im     |      | swept imaginary part of $n_0$ |

# 2 Functions

## 2.1 Effective medium theories

These functions under the folder /functions/eff\_medium\_theory calculate theoretical macroscopic parameters  $\varepsilon$  and  $\mu$  given microscopic parameters  $\beta_{\rm e}$  and  $\beta_{\rm m}$ .

#### 2.1.1 CM.m

Computes permittivity and permeability by the Clausius-Mossotti relation. The input and output parameters are given below:

| parameter | unit   | description          |  |  |
|-----------|--------|----------------------|--|--|
|           | Inputs | 3                    |  |  |
| be        |        | $\beta_{\mathrm{e}}$ |  |  |
| bm        |        | $\beta_{\mathrm{m}}$ |  |  |
| Outputs   |        |                      |  |  |
| ер        |        | ε                    |  |  |
| mu        |        | $\mu$                |  |  |

#### 2.1.2 $GCM_m_branch.m$

Computes theoretical ("-" branch) effective permittivity and permeability based on cite1. The input and output parameters are the same as the function CM.m.

#### 2.1.3 $GCM_p_branch.m$

Computes theoretical ("+" branch) effective permittivity and permeability based on cite1. The input and output parameters are the same as the function CM.m.

#### 2.2 Green's functions

These functions under the folder /functions/Greens\_func calculate Green's functions.

#### 2.2.1 G2d.m

Calculates the 2D Green's function. The input and output parameters are given below:

| parameter                          | unit           | description                          |  |  |  |
|------------------------------------|----------------|--------------------------------------|--|--|--|
|                                    | Inputs         |                                      |  |  |  |
| k0                                 | $\lambda^{-1}$ | free-space wave number               |  |  |  |
| rs                                 | λ              | 3D location of the source            |  |  |  |
| rt $\lambda$                       |                | 3D location of the observing point   |  |  |  |
| Outputs                            |                |                                      |  |  |  |
| G the value of the 2d Green's func |                | the value of the 2d Green's function |  |  |  |

#### 2.2.2 G2d.m

Calculates the 3D Green's function  $\times 4\pi k_0^2$ . The input and output parameters are the same as the function G2d.m.

#### 2.2.3 Gxx.m

Calculates the xx component of 3D Green's function  $\times 4\pi k_0^2$ . The input and output parameters are the same as the function G2d.m.

# 2.3 Dipole and mesh generators

These functions under the folder  $/functions/cube\_creator$  generate 3D locations of the dipoles or the cubic mesh.

#### 2.3.1 $cube\_mesh.m$

Generates 3D cubic mesh in a cube. The input and output parameters are given below:

| parameter unit description                |        | description                          |  |  |  |
|-------------------------------------------|--------|--------------------------------------|--|--|--|
|                                           | Inputs |                                      |  |  |  |
| ax $\lambda$ side length of the cube in x |        |                                      |  |  |  |
| ay $\lambda$                              |        | side length of the cube in y         |  |  |  |
| az                                        | λ      | side length of the cube in z         |  |  |  |
| $dr$ $\lambda$                            |        | distance between neighbor mesh nodes |  |  |  |
| Outputs                                   |        |                                      |  |  |  |
| r $\lambda$ 3D locations of mesh nodes    |        |                                      |  |  |  |

#### 2.3.2 $ran\_cube.m$

Generates random 3D locations of dipoles in a cube. The input and output parameters are given below:

| parameter unit                                |        | description                        |  |  |  |
|-----------------------------------------------|--------|------------------------------------|--|--|--|
|                                               | Inputs |                                    |  |  |  |
| X                                             | λ      | side length of the cube in x       |  |  |  |
| Υ λ                                           |        | side length of the cube in y       |  |  |  |
| $Z$ $\lambda$                                 |        | side length of the cube in z       |  |  |  |
| n                                             |        | number of dipoles                  |  |  |  |
| Outputs                                       |        |                                    |  |  |  |
| r $\lambda$ random 3D locations of the dipole |        | random 3D locations of the dipoles |  |  |  |

# 2.4 Plot tools

These functions under the folder /functions/plot\_tool provide plot tool for different requirements.

#### $2.4.1 \quad plot\_DPM.m$

Plots the simulated values of epsilon and mu by diffused particle method, for example: Fig. 4 in [1]. The input parameters are given below:

| parameter | unit | description               |
|-----------|------|---------------------------|
| beta_e    |      | $eta_{ m e}$              |
| ер        |      | $\varepsilon$             |
| mu        |      | $\mu$                     |
| fig_numb  |      | figure number of the plot |

## $2.4.2 \quad plot\_E\_colormap.m$

plots the electric field in the middle plane of the simulation region, for example Fig. 1 and Fig. 4 in [2]. The input parameters are given below:

| parameter | unit | description                                    |  |
|-----------|------|------------------------------------------------|--|
| L         | λ    | side length of the cubic simulation region     |  |
| D2        | λ    | side length of the lv2 voxel                   |  |
| E         |      | electric field distributed in the middle plane |  |

#### 2.4.3 $plot\_EMT.m$

Plots the theoretical values of  $\varepsilon$  and  $\mu$  vs.  $Re(\beta_e)$ , for example: Fig. 4 in [1]. The input parameters are given below:

| parameter    | unit | description                          |
|--------------|------|--------------------------------------|
| beta_e_start |      | start value of $\beta_{\rm e}$ array |
| beta_e_end   |      | end value of $\beta_{\rm e}$ array   |
| beta_m_start |      | start value of $\beta_{\rm m}$ array |
| beta_m_end   |      | end value of $\beta_{\rm m}$ array   |
| fig_numb     |      | figure number of the plot            |

# References

- [1] L. Wang, I. L. Rasskazov, and P. S. Carney, Clausius-mossotti relation revisited: Media with electric and magnetic response, arXiv preprint: 2008.09178 (2020).
- [2] L. Wang, I. L. Rasskazov, and P. S. Carney, Clustering diffused-particle method for scattering from large ensembles of electromagnetically polarizable particles, arXiv preprint: 2008.09185 (2020) .