▼ Kaggle 신용카드 사기 검출 (Google Drive Mount)

https://www.kaggle.com/mlg-ulb/creditcardfraud

Credit Card Fraud Detection

- creditcard.csv (284,807 * 31)
- Class: 0 (정상), 1 (사기)
- 사기 검출(Fraud Detection), 이상 탐지(Anomaly Detection)

```
import warnings
warnings.filterwarnings('ignore')
```

▼ I. Google Drive Mount

• 'creditCardFraud.zip' 파일을 구글드라이브에 업로드 후 진행

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

• 마운트 결과 확인

```
!Is -I '<u>/content/drive/My Drive/Colab</u> Notebooks/datasets/creditCardFraud.zip'
```

```
-rw----- 1 root root 69155672 Mar 4 04:46 '/content/drive/My Drive/Colab Notebooks/datasets/creditCardFraud.zip'
```

II. Data Preprocessing

▼ 1) Unzip 'creditCardFraud.zip'

• Colab 파일시스템에 'creditcard.csv' 파일 생성

!unzip <u>/content/drive/My</u>₩ Drive/Colab₩ Notebooks/datasets/creditCardFraud.zip

```
Archive: /content/drive/My Drive/Colab Notebooks/datasets/creditCardFraud.zip inflating: creditcard.csv
```

• creditcard.csv 파일 확인

```
!|s -|
```

```
total 147304

-rw-r--r-- 1 root root 150828752 Sep 20 2019 creditcard.csv

drwx----- 5 root root 4096 Jul 20 06:04 drive

drwxr-xr-x 1 root root 4096 Jul 16 13:20 sample_data
```

▼ 2) 데이터 읽어오기

pandas DataFrame

```
import pandas as pd

DF = pd.read_csv('creditcard.csv')

DF.info()
```

Rang Data #		284807 entries, 0 to 2848 (total 31 columns): Non-Null Count Dtype	306			
0	Time	284807 non-null float64				
1	V1	284807 non-null float64				
2	V2	284807 non-null float64				
3	V3	284807 non-null float64				
4	V4	284807 non-null float64				
5	V5	284807 non-null float64				
6	V6	284807 non-null float64				
7	V7	284807 non-null float64				
8	V8	284807 non-null float64				
9	V9	284807 non-null float64				
10	V10	284807 non-null float64				
11	V11	284807 non-null float64				
12	V12	284807 non-null float64				
13	V13	284807 non-null float64				
14	V14	284807 non-null float64				
15	V15	284807 non-null float64				
16	V16	284807 non-null float64				
17	V17	284807 non-null float64				
18	V18	284807 non-null float64				
19	V19	284807 non-null float64				
20	V20	284807 non-null float64				
21	V21	284807 non-null float64				
22	V22	284807 non-null float64				
23	V23	284807 non-null float64				
24	V24	284807 non-null float64				
25	V25	284807 non-null float64				
26	V26	284807 non-null float64				
27	V27	284807 non-null float64				
28	V28	284807 non-null float64				
29	Amount	284807 non-null float64	1			
30	Class	284807 non-null int64				
dtypes: float64(30), int64(1)						
memory usage: 67.4 MB						

DF.head()

	Time	V 1	V2	٧3	V4	V5	V6	٧7	V8	V9	V10	V 1 1	V12
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	0.090794	-0.551600	-0.617801
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.166974	1.612727	1.065235
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	0.207643	0.624501	0.066084
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.054952	-0.226487	0.178228
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	0.753074	-0.822843	0.538196

• 0 (정상) Class와 1 (사기) Class 개수

DF.Class.value_counts()

0 284315 1 492

Name: Class, dtype: int64

• 0 (정상) Class와 1 (사기) Class 비율

(DF.Class.value_counts() / DF.shape[0]) * 100

99.8272510.172749

Name: Class, dtype: float64

▼ 3) Time 열(Column) 삭제

```
DF.drop('Time', axis = 1, inplace = True)
DF.head(1)
```

0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 0.098698 0.363787 0.090794 -0.5516 -0.617801 -0.99139

4) train_test_split()

• X (Input), y (Output) 지정

```
X = DF.iloc[:,:-1]
y = DF.iloc[:, -1]

X.shape, y.shape
((284807, 29), (284807,))
```

• With 'Stratify'

• Train_Data와 Test_Data의 1 (부정) 비율이 균형

```
print('Train_Data :','\m', (y_train.value_counts() / y_train.shape[0]) * 100)
print('Test_Data :','\m', (y_test.value_counts() / y_test.shape[0]) * 100)
```

Train_Data:
0 99.827451
1 0.172549
Name: Class, dtype: float64
Test_Data:
0 99.826785
1 0.173215
Name: Class, dtype: float64

⋆ I. Keras Modeling

→ 1) Import Tensorflow

• Tensorflow Version 확인

```
import tensorflow
tensorflow.__version__
'2.5.0'
```

→ 2) Model Define

• 모델 신경망 구조 정의

```
from tensorflow.keras import models
from tensorflow.keras import layers

ccfd = models.Sequential()
```

```
ccfd.add(layers.Dense(128, activation = 'relu', input_shape = (29,)))
ccfd.add(layers.Dense(64, activation = 'relu'))
ccfd.add(layers.Dense(32, activation = 'relu'))
ccfd.add(layers.Dense(1, activation = 'sigmoid'))
```

• 모델 구조 확인

ccfd.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 128)	3840
dense_1 (Dense)	(None, 64)	8256
dense_2 (Dense)	(None, 32)	2080
dense_3 (Dense)	(None, 1)	33
T		

Total params: 14,209 Trainable params: 14,209 Non-trainable params: 0

→ 3) Model Compile

• 모델 학습방법 설정

→ 4) Model Fit

• 모델 학습 수행

```
Epoch 1/50
                                       =] - 3s 9ms/step - loss: 0.0464 - recall: 0.4331 - val_loss: 0.0099 - val_recall: 0.8311
195/195 [=
Epoch 2/50
                                       =] - 1s 8ms/step - loss: 0.0087 - recall: 0.7326 - val_loss: 0.0036 - val_recall: 0.6959
195/195 [=
Epoch 3/50
                                       =] - 1s 8ms/step - loss: 0.0084 - recall: 0.7093 - val_loss: 0.0114 - val_recall: 0.8378
195/195 [=
Epoch 4/50
                                      ==] - 1s 8ms/step - loss: 0.0246 - recall: 0.7035 - val_loss: 0.0499 - val_recall: 0.5405
195/195 [==
Epoch 5/50
195/195 [=
                                       =] - 1s 8ms/step - loss: 0.0580 - recall: 0.6366 - val_loss: 0.0073 - val_recall: 0.8243
Epoch 6/50
                                      =] - 1s 7ms/step - loss: 0.0059 - recall: 0.7471 - val_loss: 0.0061 - val_recall: 0.8514
195/195 [=
Epoch 7/50
                                      ==] - 1s 7ms/step - loss: 0.0037 - recall: 0.7820 - val_loss: 0.0032 - val_recall: 0.8378
195/195 [=
Epoch 8/50
                                      ≔] - 1s 7ms/step - loss: 0.0035 - recall: 0.7965 - val_loss: 0.0048 - val_recall: 0.8243
195/195 [=
Epoch 9/50
                                      ==] - 1s 7ms/step - loss: 0.0134 - recall: 0.7267 - val_loss: 0.0035 - val_recall: 0.8514
195/195 [=
Epoch 10/50
195/195 [=
                                      ==] - 1s 7ms/step - loss: 0.0065 - recall: 0.7529 - val_loss: 0.0031 - val_recall: 0.8176
Epoch 11/50
195/195 [==
                                      ==] - 1s 8ms/step - loss: 0.0046 - recall: 0.7733 - val_loss: 0.0033 - val_recall: 0.8514
Epoch 12/50
195/195 [==
                                      ==] - 1s 7ms/step - loss: 0.0046 - recall: 0.7965 - val_loss: 0.0036 - val_recall: 0.8446
Epoch 13/50
195/195 [==
                                 :=====] - 1s 7ms/step - loss: 0.0032 - recall: 0.8110 - val_loss: 0.0031 - val_recall: 0.7770
```

```
Epoch 14/50
                                      ==] - 1s 7ms/step - loss: 0.0101 - recall: 0.7762 - val_loss: 0.0098 - val_recall: 0.8311
195/195 [=
Epoch 15/50
195/195 [=
                                       =] - 1s 7ms/step - loss: 0.0053 - recall: 0.8023 - val_loss: 0.0037 - val_recall: 0.8446
Epoch 16/50
195/195 [==
                                       =] - 2s 8ms/step - loss: 0.0033 - recall: 0.8081 - val_loss: 0.0034 - val_recall: 0.8378
Epoch 17/50
                                       =] - 1s 7ms/step - loss: 0.0148 - recall: 0.7238 - val_loss: 0.0032 - val_recall: 0.8041
195/195 [=
Epoch 18/50
195/195 [=
                                      ==] - 1s 8ms/step - loss: 0.0030 - recall: 0.8110 - val_loss: 0.0031 - val_recall: 0.8243
Epoch 19/50
                                       =] - 1s 8ms/step - loss: 0.0027 - recall: 0.8140 - val_loss: 0.0032 - val_recall: 0.7973
195/195 [=
Epoch 20/50
                                       =] - 1s 8ms/step - loss: 0.0029 - recall: 0.8140 - val_loss: 0.0031 - val_recall: 0.8649
195/195 [==
Epoch 21/50
                                       =] - 1s 7ms/step - loss: 0.0031 - recall: 0.8081 - val_loss: 0.0067 - val_recall: 0.7027
195/195 [==
Epoch 22/50
195/195 [=
                                       =] - 1s 8ms/step - loss: 0.0050 - recall: 0.7994 - val_loss: 0.0033 - val_recall: 0.8514
Epoch 23/50
195/195 [==
                                       =] - 1s 7ms/step - loss: 0.0024 - recall: 0.8169 - val_loss: 0.0032 - val_recall: 0.8649
Epoch 24/50
195/195 [==
                                       =] - 2s 8ms/step - loss: 0.0024 - recall: 0.8110 - val_loss: 0.0031 - val_recall: 0.8716
Epoch 25/50
195/195 [==
                                       =] - 2s 8ms/step - loss: 0.0024 - recall: 0.8227 - val_loss: 0.0035 - val_recall: 0.7635
Epoch 26/50
195/195 [=
                                       =] - 1s 7ms/step - Ioss: 0.0023 - recall: 0.8256 - val_loss: 0.0033 - val_recall: 0.8514
Epoch 27/50
195/195 [=
                                       =] - 1s 7ms/step - loss: 0.0022 - recall: 0.8372 - val_loss: 0.0033 - val_recall: 0.8108
Epoch 28/50
195/195 [==
                                       =] - 1s 8ms/step - loss: 0.0023 - recall: 0.8459 - val_loss: 0.0058 - val_recall: 0.8311
Epoch 29/50
195/195 [==
                                       =] - 1s 7ms/step - loss: 0.0063 - recall: 0.8110 - val_loss: 0.0045 - val_recall: 0.8243
Fnach 30/50
```

▼ 5) 학습 결과 시각화

Loss Visualization

```
import matplotlib.pyplot as plt

epochs = range(1, len(Hist_ccfd.history['loss']) + 1)

plt.figure(figsize = (9, 6))
plt.plot(epochs, Hist_ccfd.history['loss'])
plt.plot(epochs, Hist_ccfd.history['val_loss'])
plt.title('Training & Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend(['Training Loss', 'Validation Loss'])
plt.grid()
plt.show()
```


• Recall Visualization

import motalatlih numlat og alt

```
epochs = range(1, len(Hist_ccfd.history['recall']) + 1)

plt.figure(figsize = (9, 6))
plt.plot(epochs, Hist_ccfd.history['recall'])
plt.plot(epochs, Hist_ccfd.history['val_recall'])
plt.title('Training & Validation Recall')
plt.xlabel('Epochs')
plt.ylabel('Recall')
plt.legend(['Training Recall', 'Validation Recall'])
plt.grid()
plt.show()
```


→ 6) Model Evaluate

Loss & Accuracy

```
loss, recall = ccfd.evaluate(X_test, y_test)

print('Loss = {:.5f}'.format(loss))
print('Recall = {:.5f}'.format(recall))

2671/2671 [========] - 3s 1ms/step - loss: 0.0040 - recall: 0.8311
    Loss = 0.00401
    Recall = 0.83108
```

▼ 7) Model Predict

^{0.9995318516437859}

^{0.8913043478260869}

#

#

#

The End

#

#

#