

Certification Exhibit

FCC ID: 2ADCB-RMODIT

FCC Rule Part: 47 CFR Part 2.1091

TÜV SÜD Project Number: 72151775

Manufacturer: Acuity Brands Lighting, Inc.

Model: RMODIT

RF Exposure

Model: RMODIT **FCC ID: 2ADCB-RMODIT**

General Information:
Applicant:
Device Category: Acuity Brands Lighting, Inc.

Mobile

Environment: General Population/Uncontrolled Exposure

The 900MHz ISM radio is collocated and transmits simultaneously with the 2.4GHz BTLE radio.

Technical Information:

Table 1: Technical Information

Table 1. Technical information						
	Device 1 Details	Device 2 Details				
Frequency Band(s) (MHz)	904-926	2402-2480				
Antenna Type(s)	Inverted F PCB Trace Antenna	Molex 0479480001 Chip Antenna				
Antenna Gain (dBi)	2.1	3				
Conducted Power (dBm)	19.06	9.48				
Conducted Power (mW)	80.54	8.87				

Project: 72151775 TÜV SÜD America Inc. Page 2 Model: RMODIT FCC ID: 2ADCB-RMODIT

MPE Calculation:

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 2: MPE Calculation (Including Collocated Devices)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)	Radio
904	19.06	0.60	80.54	2.1	1.622	20	0.026	Α
2402	9.48	1.00	8.87	3	1.995	20	0.004	В

<u>Summation of MPE ratios – Simultaneous Transmissions</u>

This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0 .

Table 3: Summation of MPE Ratios

	Scenario 1		
Radio A (900 MHz ISM)	х		
Radio B (2.4GHz BTLE)	х		
Radio A MPE Ratio	0.043117441		
Radio B MPE Ratio	0.00352152		
MPE Ratio Summation:	0.04663896		

Project: 72151775 TÜV SÜD America Inc. Page 3