

REMARKS

I. Comments on Restriction Requirement

Claim 8 is a method of making the polypeptides of Group I and Claims 18, 44, 45, and 46 and are methods of using the polypeptides of Group I, which should be examined together with the polypeptides of Group I, per the Commissioner's Notice in the Official Gazette of March 26, 1996, entitled "Guidance on Treatment of Product and Process Claims in light of *In re Ochiai*, *In re Brouwer* and 35 U.S.C. § 103(b)" which sets forth the rules, upon allowance of product claims, for rejoinder of process claims covering the same scope of products.

II. Rejection of Claims 1, 15, and 17 Under 35 U.S.C. § 112, first paragraph, written description

The Examiner rejected Claims 1, 15, and 17 under 35 U.S.C. § 112, first paragraph, alleging that the claimed polypeptides, compositions, and methods were not adequately described¹. In particular, the Examiner alleged that "a polypeptide having at least 90-99% sequence identity to SEQ ID NO:1" and the claimed polypeptide fragments are not adequately described. (Office Action, pages 4-5.) Solely in order to expedite prosecution, Claim 17 has been canceled, and Claim 1 has been amended. The rejection as it pertains to Claim 17 and to "biologically active fragments" is therefore moot.

In the Office Action, the Examiner ignores the claim limitations of "a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:1" and attempts to introduce a limitation of "function" to the polypeptide variants, limitations which are not present in the rejected claims. The Examiner ignores the limitation that the claimed polypeptide comprises a naturally-occurring amino acid sequence. (Office Action, pages 4-5.)

The requirements necessary to fulfill the written description requirement of 35 U.S.C. 112, first

¹The Examiner stated that "[t]he specification as filed does not provide adequate written description support for an antibody to a polypeptide having at least 90-99% sequence identity to SEQ ID NO:1." (Office Action, page 4.) Applicants note that the rejected claims are not directed to an antibody, and therefore assume that the Examiner made the statement inadvertently.

paragraph, are well established by case law.

. . . the applicant must also convey with reasonable clarity to those skilled in the art that, as of the filing date sought, he or she was in possession *of the invention*. The invention is, for purposes of the “written description” inquiry, *whatever is now claimed*. *Vas-Cath, Inc. v. Mahurkar*, 19 USPQ2d 1111, 1117 (Fed. Cir. 1991)

Attention is also drawn to the Patent and Trademark Office’s own “Guidelines for Examination of Patent Applications Under the 35 U.S.C. Sec. 112, para. 1”, published January 5, 2001, which provide that :

An applicant may also show that an invention is complete by disclosure of sufficiently detailed, relevant identifying characteristics⁴² which provide evidence that applicant was in possession of the claimed invention,⁴³ i.e., complete or partial structure, other physical and/or chemical properties, functional characteristics when coupled with a known or disclosed correlation between function and structure, or some combination of such characteristics.⁴⁴ What is conventional or well known to one of ordinary skill in the art need not be disclosed in detail.⁴⁵ If a skilled artisan would have understood the inventor to be in possession of the claimed invention at the time of filing, even if every nuance of the claims is not explicitly described in the specification, then the adequate description requirement is met.⁴⁶

Thus, the written description standard is fulfilled by both what is specifically disclosed and what is conventional or well known to one skilled in the art.

SEQ ID NO:1 is specifically disclosed in the application (see, for example, pages 47-48 of the Sequence Listing). Variants of SEQ ID NO:1 are described, for example, at page 4, line 28 through page 5, line 1. In particular, the preferred, more preferred, and most preferred SEQ ID NO:1 variants (80%, 90%, and 95% amino acid sequence similarity to SEQ ID NO:1) are described, for example, at page 11, lines 18-21. Incyte clones in which the nucleic acids encoding the human HTAP were first identified and libraries from which those clones were isolated are described, for example, at page 11, lines 1-6 of the Specification. Chemical and structural features of HTAP are described, for example, on page 11, lines 7-14. Given SEQ ID NO:1, one of ordinary skill in the art would recognize “a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:1.” The Specification describes (e.g., page 39, line 23 through page 40, line 13) how to use BLAST to determine whether a given sequence falls within the “at least 90% identical” scope.

Immunogenic fragments are described in the Specification, e.g., at page 5, lines 26-28, page 25, lines 19-25, and page 45, lines 12-27.

There simply is no requirement that the claims recite particular variant and fragment polypeptide sequences because the claims already provide sufficient structural definition of the claimed subject matter. That is, the polypeptide variants and fragments are defined in terms of SEQ ID NO:1 ("An isolated polypeptide selected from the group consisting of: . . . b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:1, and c) an immunogenic fragment of a polypeptide having an amino acid sequence of SEQ ID NO:1.") Because the polypeptide variants and fragments are defined in terms of SEQ ID NO:1, the precise chemical structure of every polypeptide variant and fragment within the scope of the claims can be discerned. The Examiner's position is nothing more than a misguided attempt to require Applicants to unduly limit the scope of their claimed invention. Applicants further submit that given the polypeptide sequence of SEQ ID NO:1, it would be redundant to list specific fragments. The structure of SEQ ID NO:1 provides the blueprint for all fragments thereof. Listing all possible fragments of SEQ ID NO:1 is, thus, a superfluous exercise which would needlessly clutter the Specification. As long as the polypeptide variants and fragments are naturally-occurring, they are useful in toxicology testing. Their "function," whether the same or different than that of SEQ ID NO:1, is immaterial, given the description in the Specification and what is known to one of skill in the art (see, *infra*, Rejection under 35 U.S.C. § 101). Accordingly, the Specification provides an adequate written description of the recited polypeptides.

A. The present claims specifically define the claimed genus through the recitation of chemical structure

Court cases in which "DNA claims" have been at issue (which are hence relevant to claims to proteins encoded by the DNA) commonly emphasize that the recitation of structural features or chemical or physical properties are important factors to consider in a written description analysis of such claims. For example, in *Fiers v. Revel*, 25 USPQ2d 1601, 1606 (Fed. Cir. 1993), the court stated that:

If a conception of a DNA requires a precise definition, such as by structure, formula, chemical name or physical properties, as we have held, then a description also requires that degree of specificity.

In a number of instances in which claims to DNA have been found invalid, the courts have noted that the claims attempted to define the claimed DNA in terms of functional characteristics without any reference to structural features. As set forth by the court in *University of California v. Eli Lilly and Co.*, 43 USPQ2d 1398, 1406 (Fed. Cir. 1997):

In claims to genetic material, however, a generic statement such as "vertebrate insulin cDNA" or "mammalian insulin cDNA," without more, is not an adequate written description of the genus because it does not distinguish the claimed genus from others, except by function.

Thus, the mere recitation of functional characteristics of a DNA, without the definition of structural features, has been a common basis by which courts have found invalid claims to DNA. For example, in *Lilly*, 43 USPQ2d at 1407, the court found invalid for violation of the written description requirement the following claim of U.S. Patent No. 4,652,525:

1. A recombinant plasmid replicable in prokaryotic host containing within its nucleotide sequence a subsequence having the structure of the reverse transcript of an mRNA of a vertebrate, which mRNA encodes insulin.

In *Fiers*, 25 USPQ2d at 1603, the parties were in an interference involving the following count:

A DNA which consists essentially of a DNA which codes for a human fibroblast interferon-beta polypeptide.

Party Revel in the *Fiers* case argued that its foreign priority application contained an adequate written description of the DNA of the count because that application mentioned a potential method for isolating the DNA. The Revel priority application, however, did not have a description of any particular DNA structure corresponding to the DNA of the count. The court therefore found that the Revel priority application lacked an adequate written description of the subject matter of the count.

Thus, in *Lilly* and *Fiers*, nucleic acids were defined on the basis of functional characteristics and were found not to comply with the written description requirement of 35 U.S.C. §112; i.e., "an

mRNA of a vertebrate, which mRNA encodes insulin" in *Lilly*, and "DNA which codes for a human fibroblast interferon-beta polypeptide" in *Fiers*. In contrast to the situation in *Lilly* and *Fiers*, the claims at issue in the present application define polypeptides in terms of chemical structure, rather than on functional characteristics. For example, the "variant language" and "fragment language" of independent claim 1 recites chemical structure to define the claimed genus:

1. An isolated polypeptide selected from the group consisting of: . . .
 - b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:1, and
 - c) an immunogenic fragment of a polypeptide having an amino acid sequence of SEQ ID NO:1.

From the above it should be apparent that the claims of the subject application are fundamentally different from those found invalid in *Lilly* and *Fiers*. The subject matter of the present claims is defined in terms of the chemical structure of SEQ ID NO:1. In the present case, there is no reliance merely on a description of functional characteristics of the polypeptides recited by the claims. Such functional recitations that are included add to the structural characterization of the recited polypeptides. The polypeptides defined in the claims of the present application recite structural features, and cases such as *Lilly* and *Fiers* stress that the recitation of structure is an important factor to consider in a written description analysis of claims of this type. By failing to base its written description inquiry "on whatever is now claimed," the Office Action failed to provide an appropriate analysis of the present claims and how they differ from those found not to satisfy the written description requirement in *Lilly* and *Fiers*.

B. The present claims do not define a genus which is "highly diverse"

Furthermore, the claims at issue do not describe a genus which could be characterized as "highly diverse." (Office Action, page 4.) Available evidence illustrates that the claimed genus is of narrow scope.

In support of this assertion, the Examiner's attention is directed to the enclosed reference by Brenner et al. ("Assessing sequence comparison methods with reliable structurally identified distant

evolutionary relationships," Proc. Natl. Acad. Sci. USA (1998) 95:6073-6078) (Reference No. 1). Through exhaustive analysis of a data set of proteins with known structural and functional relationships and with <90% overall sequence identity, Brenner et al. have determined that 30% identity is a reliable threshold for establishing evolutionary homology between two sequences aligned over at least 150 residues. (Brenner et al., pages 6073 and 6076.) Furthermore, local identity is particularly important in this case for assessing the significance of the alignments, as Brenner et al. further report that ≥40% identity over at least 70 residues is reliable in signifying homology between proteins. (Brenner et al., page 6076.)

The present application is directed, *inter alia*, to tumorigenesis proteins related to the amino acid sequence of SEQ ID NO:1. In accordance with Brenner et al., naturally occurring molecules may exist which could be characterized as tumorigenesis proteins and which have as little as 40% identity over at least 70 residues to SEQ ID NO:1. The "variant language" of the present claims recites, for example, polypeptides "comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:1," (note that SEQ ID NO:1 has 195 amino acid residues). This variation is far less than that of all potential tumorigenesis proteins related to SEQ ID NO:1, i.e., those tumorigenesis proteins having as little as 40% identity over at least 70 residues to SEQ ID NO:1.

C. The state of the art at the time of the present invention is further advanced than at the time of the *Lilly* and *Fiers* applications

In the *Lilly* case, claims of U.S. Patent No. 4,652,525 were found invalid for failing to comply with the written description requirement of 35 U.S.C. §112. The '525 patent claimed the benefit of priority of two applications, Application Serial No. 801,343 filed May 27, 1977, and Application Serial No. 805,023 filed June 9, 1977. In the *Fiers* case, party Revel claimed the benefit of priority of an Israeli application filed on November 21, 1979. Thus, the written description inquiry in those cases was based on the state of the art at essentially at the "dark ages" of recombinant DNA technology.

The present application has a priority date of March 20, 1997. Much has happened in the development of recombinant DNA technology in the 17 or more years from the time of filing of the applications involved in *Lilly* and *Fiers* and the present application. For example, the technique of

polymerase chain reaction (PCR) was invented. Highly efficient cloning and DNA sequencing technology has been developed. Large databases of protein and nucleotide sequences have been compiled. Much of the raw material of the human and other genomes has been sequenced. With these remarkable advances one of skill in the art would recognize that, given the sequence information of SEQ ID NO:1, and the additional extensive detail provided by the subject application, the present inventors were in possession of the claimed polypeptide variants and fragments at the time of filing of this application.

D. Summary

The Office Action failed to base its written description inquiry "on whatever is now claimed." Consequently, the Action did not provide an appropriate analysis of the present claims and how they differ from those found not to satisfy the written description requirement in cases such as *Lilly* and *Fiers*. In particular, the claims of the subject application are fundamentally different from those found invalid in *Lilly* and *Fiers*. The subject matter of the present claims is defined in terms of the chemical structure of SEQ ID NO:1. The courts have stressed that structural features are important factors to consider in a written description analysis of claims to nucleic acids and proteins. In addition, the genus of polypeptides defined by the present claims is adequately described, as evidenced by Brenner et al. Furthermore, there have been remarkable advances in the state of the art since the *Lilly* and *Fiers* cases, and these advances were given no consideration whatsoever in the position set forth by the Office Action.

III. Rejection of Claim 17 Under 35 U.S.C. § 112, first paragraph, enablement

The Examiner rejected Claim 17 under 35 U.S.C. § 112, first paragraph, alleging that the Specification did not enable the making and use of the claimed invention. In order to expedite prosecution, Claim 17 has been canceled. For at least the above reasons, Applicants respectfully request that the Examiner withdraw the enablement rejection of Claim 17.

IV. Rejection of Claims 1, 15, and 17 Under 35 U.S.C. § 112, second paragraph

The Examiner rejected Claims 1, 15, and 17 under 35 U.S.C. § 112, second paragraph, alleging that the claims are “vague and indefinite in the recitation ‘biologically-active fragment.’” (Office Action, page 8.) Solely in order to expedite prosecution, Applicants have amended Claim 1 to:

1. An isolated polypeptide selected from the group consisting of:
 - a) a polypeptide comprising an amino acid sequence of SEQ ID NO:1,
 - b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:1, and
 - c) an immunogenic fragment of a polypeptide having an amino acid sequence of SEQ ID NO:1.

For at least the above reasons, Applicants respectfully request that the Examiner withdraw the indefiniteness rejection.

V. Rejection of Claims 1-2 and 15-17 Under 35 U.S.C. § 101

SUMMARY OF THE INVENTION

Applicants' invention is directed, *inter alia*, to a polypeptide (“HTAP”) having strong homology to murine lymphomagenesis-associated protein, BUP (GI 265569), and compositions containing it. This invention has a variety of utilities, e.g., in expression profiling, and in particular for diagnosis of conditions or diseases characterized by expression of HTAP, for toxicology testing, and for drug discovery. (See the Specification at, e.g., page 33, lines 8-16 and page 37, line 18 through page 38, line 6.). As described in the Specification:

In one embodiment, the invention encompasses a polypeptide comprising the amino acid sequence of SEQ ID NO:1, as shown in Figures 1A and 1B. HTAP is 195 amino acids in length and has three potential casein kinase II phosphorylation sites encompassing residues S35-D38, T85-E88, and S162-E165, and one potential protein kinase C phosphorylation site encompassing residues S129-R131. HTAP has chemical and structural homology with a murine lymphomagenesis-associated protein, BUP (GI 265569; SEQ ID NO:3). In particular, HTAP and BUP share 89% identity. As illustrated by Figures 3A and 3B, HTAP and BUP have rather similar hydrophobicity plots. Northern analysis shows the expression of this sequence in various cDNA libraries, at least 58% of which are immortalized or cancerous, 14% of which are associated with inflammation, and 14% associated with normal growth and

development occurring in tissues of a fetus or child. (Specification, page 11, lines 7-17.)

Claims 1-2 and 15-17 stand rejected under 35 U.S.C. §§ 101 and 112, first paragraph, based on the allegation that the claimed invention lacks patentable utility². The rejection alleges in particular that “the claimed invention is not supported by either a specific and a substantial asserted utility or a well established utility.” (Office Action, page 8.)

The rejection of Claims 1-2 and 15-17 is improper, as the inventions of those claims have a patentable utility as set forth in the instant specification, and/or a utility well-known to one of ordinary skill in the art.

The invention at issue, identified in the patent application as a human tumorigenesis protein, abbreviated as HTAP, is a polypeptide encoded by a gene that is expressed in human uterus. The novel polypeptide is demonstrated in the specification to be a tumorigenesis protein. The claimed invention has numerous practical, beneficial uses in toxicology testing, drug development, and the diagnosis of disease, none of which require knowledge of how the polypeptide actually functions. As a result of the benefits of these uses, the claimed invention already enjoys significant commercial success.

There is, in addition, direct proof of the utility of the claimed invention. Applicants submit with this brief the Declaration of Furness describing some of the practical uses of the claimed invention in gene and protein expression monitoring applications as they would have been understood at the time of the patent application. The Furness Declaration describes, in particular, how the claimed polypeptide can be used in protein expression analysis techniques such as 2-D PAGE gels and western blots. Using the claimed invention with these techniques, persons of ordinary skill in the art can better assess, for example, the potential toxic effect of a drug candidate. (Furness Declaration at ¶ 10).

The Patent Examiner contends that the claimed polypeptide cannot be useful without precise knowledge of its function. But the law never has required knowledge of biological function to prove

²The Examiner stated that “[t]he specification asserts the following utilities for the claimed antibodies . . . ” and “the asserted utilities of the claimed antibodies . . . ” (Office Action, pages 8 and 9.) Applicants note that the rejected claims are not directed to antibodies, and therefore assume that the Examiner made the statements inadvertently.

utility. It is the claimed invention's uses, not its functions, that are the subject of a proper analysis under the utility requirement.

In any event, as demonstrated by the Furness Declaration, the person of ordinary skill in the art can achieve beneficial results from the claimed polypeptide in the absence of any knowledge as to the precise function of the protein. The uses of the claimed polypeptide for gene expression monitoring applications including toxicology testing are in fact independent of its precise function.

A. The Applicable Legal Standard

To meet the utility requirement of sections 101 and 112 of the Patent Act, the patent applicant need only show that the claimed invention is "practically useful," *Anderson v. Natta*, 480 F.2d 1392, 1397, 178 USPQ 458 (CCPA 1973) and confers a "specific benefit" on the public. *Brenner v. Manson*, 383 U.S. 519, 534-35, 148 USPQ 689 (1966). As discussed in a recent Court of Appeals for the Federal Circuit case, this threshold is not high:

An invention is "useful" under section 101 if it is capable of providing some identifiable benefit. See *Brenner v. Manson*, 383 U.S. 519, 534 [148 USPQ 689] (1966); *Brooktree Corp. v. Advanced Micro Devices, Inc.*, 977 F.2d 1555, 1571 [24 USPQ2d 1401] (Fed. Cir. 1992) ("to violate Section 101 the claimed device must be totally incapable of achieving a useful result"); *Fuller v. Berger*, 120 F. 274, 275 (7th Cir. 1903) (test for utility is whether invention "is incapable of serving any beneficial end").

Juicy Whip Inc. v. Orange Bang Inc., 51 USPQ2d 1700 (Fed. Cir. 1999).

While an asserted utility must be described with specificity, the patent applicant need not demonstrate utility to a certainty. In *Stiftung v. Renishaw PLC*, 945 F.2d 1173, 1180, 20 USPQ2d 1094 (Fed. Cir. 1991), the United States Court of Appeals for the Federal Circuit explained:

An invention need not be the best or only way to accomplish a certain result, and it need only be useful to some extent and in certain applications: "[T]he fact that an invention has only limited utility and is only operable in certain applications is not grounds for finding lack of utility." *Envirotech Corp. v. Al George, Inc.*, 730 F.2d 753, 762, 221 USPQ 473, 480 (Fed. Cir. 1984).

The specificity requirement is not, therefore, an onerous one. If the asserted utility is described so that a person of ordinary skill in the art would understand how to use the claimed invention, it is

sufficiently specific. *See Standard Oil Co. v. Montedison, S.p.a.*, 212 U.S.P.Q. 327, 343 (3d Cir. 1981). The specificity requirement is met unless the asserted utility amounts to a “nebulous expression” such as “biological activity” or “biological properties” that does not convey meaningful information about the utility of what is being claimed. *Cross v. Iizuka*, 753 F.2d 1040, 1048 (Fed. Cir. 1985).

In addition to conferring a specific benefit on the public, the benefit must also be “substantial.” *Brenner*, 383 U.S. at 534. A “substantial” utility is a practical, “real-world” utility. *Nelson v. Bowler*, 626 F.2d 853, 856, 206 USPQ 881 (CCPA 1980).

If persons of ordinary skill in the art would understand that there is a “well-established” utility for the claimed invention, the threshold is met automatically and the applicant need not make any showing to demonstrate utility. Manual of Patent Examination Procedure at § 706.03(a). Only if there is no “well-established” utility for the claimed invention must the applicant demonstrate the practical benefits of the invention. *Id.*

Once the patent applicant identifies a specific utility, the claimed invention is presumed to possess it. *In re Cortright*, 165 F.3d 1353, 1357, 49 USPQ2d 1464 (Fed. Cir. 1999); *In re Brana*, 51 F.3d 1560, 1566; 34 USPQ2d 1436 (Fed. Cir. 1995). In that case, the Patent Office bears the burden of demonstrating that a person of ordinary skill in the art would reasonably doubt that the asserted utility could be achieved by the claimed invention. *Id.* To do so, the Patent Office must provide evidence or sound scientific reasoning. *See In re Langer*, 503 F.2d 1380, 1391-92, 183 USPQ 288 (CCPA 1974). If and only if the Patent Office makes such a showing, the burden shifts to the applicant to provide rebuttal evidence that would convince the person of ordinary skill that there is sufficient proof of utility. *Brana*, 51 F.3d at 1566. The applicant need only prove a “substantial likelihood” of utility; certainty is not required. *Brenner*, 383 U.S. at 532.

✓ **B. Uses of the claimed polypeptide for diagnosis of conditions and disorders characterized by expression of HTAP, for toxicology testing, and for drug discovery are sufficient utilities under 35 U.S.C. §§ 101 and 112, first paragraph**

The claimed invention meets all of the necessary requirements for establishing a credible utility under the Patent Law: There are “well-established” uses for the claimed invention known to persons of

ordinary skill in the art, and there are specific practical and beneficial uses for the invention disclosed in the patent application's specification. These uses are explained, in detail, in the Furness Declaration accompanying this brief. Objective evidence, not considered by the Patent Office, further corroborates the credibility of the asserted utilities.

1. The similarity of the claimed polypeptide to murine lymphomagenesis-associated protein, BUP, demonstrates utility

Because there is a substantial likelihood that the claimed HTAP is functionally related to murine lymphomagenesis-associated protein, BUP, there is by implication a substantial likelihood that the claimed polypeptide is similarly useful. Applicants need not show any more to demonstrate utility. *In re Brana*, 51 F.3d at 1567.

It is undisputed, and readily apparent from the patent application, that the claimed polypeptide shares 89% sequence identity over 195 amino acid residues with murine lymphomagenesis-associated protein, BUP. This is more than enough homology to demonstrate a reasonable probability that the utility of murine lymphomagenesis-associated protein, BUP, can be imputed to the claimed invention. It is well-known that the probability that two unrelated polypeptides share more than 40% sequence homology over 70 amino acid residues is exceedingly small. Brenner et. al., Proc. Natl. Acad. Sci. 95:6073-78 (1998) (Reference No. 1). Given homology in excess of 40% over many more than 70 amino acid residues, the probability that the claimed polypeptide is related to murine lymphomagenesis-associated protein, BUP, is, accordingly, very high.

The Examiner must accept the Applicants' demonstration that the homology between the claimed invention and murine lymphomagenesis-associated protein, BUP, demonstrates utility by a reasonable probability unless the Examiner can demonstrate through evidence or sound scientific reasoning that a person of ordinary skill in the art would doubt utility. See *In re Langer*, 503 F.2d 1380, 1391-92, 183 USPQ 288 (CCPA 1974). The Examiner has not provided sufficient evidence or sound scientific reasoning to the contrary.

2. The uses of HTAP for toxicology testing, drug discovery, and disease diagnosis are practical uses that confer "specific benefits" to the public

The claimed invention has specific, substantial, real-world utility by virtue of its use in toxicology testing, drug development and disease diagnosis through gene expression profiling. These uses are explained in detail in the accompanying Furness Declaration. The claimed invention is a useful tool in two-dimensional polyacrylamide gel electrophoresis ("2-D PAGE") analysis and western blots used to monitor protein expression and assess drug toxicity.

The instant application is a continuation application of and claimed priority to United States patent application Serial No. 09/183,825 filed on October 30, 1998 (hereinafter "the Hillman '825 application"), which in turn was a divisional application of and claimed priority to United States patent application Serial No. 08/822,260 filed on March 20, 1997 (hereinafter "the Hillman '260 application"), having essentially the identical specification, with the exception of corrected typographical errors and reformatting changes. Thus page and line numbers may not match as between the Hillman '915 application and the Hillman '260 application.

In his Declaration, Mr. Furness explains the many reasons why a person skilled in the art who read the Hillman '260 application on March 20, 1997 would have understood that application to disclose the claimed polypeptide to be useful for a number of gene and protein expression monitoring applications, *e.g.*, in 2-D PAGE technologies, in connection with the development of drugs and the monitoring of the activity of such drugs. (Furness Declaration at, *e.g.*, ¶¶ 10-13). Much, but not all, of Mr. Furness' explanation concerns the use of the claimed polypeptide in the creation of protein expression maps using 2-D PAGE.

2-D PAGE technologies were developed during the 1980's. Since the early 1990's, 2-D PAGE has been used to create maps showing the differential expression of proteins in different cell types or in similar cell types in response to drugs and potential toxic agents. Each expression pattern reveals the state of a tissue or cell type in its given environment, *e.g.*, in the presence or absence of a drug. By comparing a map of cells treated with a potential drug candidate to a map of cells not treated with the candidate, for example, the potential toxicity of a drug can be assessed. (Furness Declaration at ¶ 10.)

The claimed invention makes 2-D PAGE analysis a more powerful tool for toxicology and drug efficacy testing. A person of ordinary skill in the art can derive more information about the state or states or tissue or cell samples from 2-D PAGE analysis with the claimed invention than without it. As Mr. Furness explains:

In view of the Hillman '260 application. . . and other related pre-March 20, 1997 publications, persons skilled in the art on March 20, 1997 clearly would have understood the Hillman '260 application to disclose the SEQ ID NO:1 polypeptide to be useful in 2-D PAGE analyses for the development of new drugs and monitoring the activities of drugs for such purposes as evaluating their efficacy and toxicity. . . .
(Furness Declaration, ¶ 10)

* * *

Persons skilled in the art would appreciate that a 2-D PAGE map that utilized the SEQ ID NO:1 polypeptide sequence would be a more useful tool than a 2-D PAGE map that did not utilize this protein sequence in connection with conducting protein expression monitoring studies on proposed (or actual) drugs for treating disorders associated with cell proliferation and inflammation for such purposes as evaluating their efficacy and toxicity. (Furness Declaration, ¶ 12)

Mr. Furness' observations are confirmed in the literature published before the filing of the patent application. Wilkins, for example, describes how 2-D gels are used to define proteins present in various tissues and measure their levels of expression, the data from which is in turn used in databases:

For proteome projects, the aim of [computer-aided 2-D PAGE] analysis . . . is to catalogue all spots from the 2-D gel in a qualitative and if possible quantitative manner, so as to define the number of proteins present and their levels of expression. Reference gel images, constructed from one or more gels, for the basis of two-dimensional gel databases. (Wilkins, Tab C, p. 26).

✓ 3. **The use of proteins expressed by humans as tools for toxicology testing, drug discovery, and the diagnosis of disease is now "well-established"**

The technologies made possible by expression profiling using polypeptides are now well-established. The technical literature recognizes not only the prevalence of these technologies, but also their unprecedented advantages in drug development, testing and safety assessment. These technologies include toxicology testing, as described by Furness in his Declaration.

Toxicology testing is now standard practice in the pharmaceutical industry. See, e.g., John C. Rockett, et. al., Differential gene expression in drug metabolism and toxicology: practicalities, problems, and potential, Xenobiotica 29:655-691 (July 1999) (Reference No. 2):

Knowledge of toxin-dependent regulation in target tissues is not solely an academic pursuit as much interest has been generated in the pharmaceutical industry to harness this technology in the early identification of toxic drug candidates, thereby shortening the developmental process and contributing substantially to the safety assessment of new drugs. ((Reference No. 2), page 656)

To the same effect are several other scientific publications, including Emile F. Nuwaysir, et al.,

Microarrays and Toxicology: The Advent of Toxicogenomics, Molecular Carcinogenesis 24:153-159 (1999) (Reference No. 3); Sandra Steiner and N. Leigh Anderson, Expression profiling in toxicology - potentials and limitations, Toxicology Letters 112-13:467-471 (2000) (Reference No. 4).

The more genes – and, accordingly, the polypeptides they encode -- that are available for use in toxicology testing, the more powerful the technique. Control genes are carefully selected for their stability across a large set of array experiments in order to best study the effect of toxicological compounds. See attached email from the primary investigator of the Nuwaysir paper, Dr. Cynthia Afshari to an Incyte employee, dated July 3, 2000, as well as the original message to which she was responding (Reference No. 5) Thus, there is no expressed gene which is irrelevant to screening for toxicological effects, and all expressed genes have a utility for toxicological screening.

In fact, the potential benefit to the public, in terms of lives saved and reduced health care costs, are enormous. Recent developments provide evidence that the benefits of this information are already beginning to manifest themselves. Examples include the following:

- In 1999, CV Therapeutics, an Incyte collaborator, was able to use Incyte gene expression technology, information about the structure of a known transporter gene, and chromosomal mapping location, to identify the key gene associated with Tangier disease. This discovery took place over a matter of only a few weeks, due to the power of these new genomics technologies. The discovery received an award from the American Heart Association as one of the top 10 discoveries associated with heart disease research in 1999.
- In an April 9, 2000, article published by the Bloomberg news service, an Incyte customer stated that it had reduced the time associated with target discovery and validation from 36 months to 18 months, through use of Incyte's genomic information

database. Other Incyte customers have privately reported similar experiences. The implications of this significant saving of time and expense for the number of drugs that may be developed and their cost are obvious.

- In a February 10, 2000, article in the *Wall Street Journal*, one Incyte customer stated that over 50 percent of the drug targets in its current pipeline were derived from the Incyte database. Other Incyte customers have privately reported similar experiences. By doubling the number of targets available to pharmaceutical researchers, Incyte genomic information has demonstrably accelerated the development of new drugs.

Because the Patent Examiner failed to address or consider the "well-established" utilities for the claimed invention in toxicology testing, drug development, and the diagnosis of disease, the Examiner's rejections should be withdrawn regardless of their merit.

4. Objective evidence corroborates the utilities of the claimed invention

There is in fact no restriction on the kinds of evidence a Patent Examiner may consider in determining whether a "real-world" utility exists. "Real-world" evidence, such as evidence showing actual use or commercial success of the invention, can demonstrate conclusive proof of utility.

Raytheon v. Roper, 220 USPQ2d 592 (Fed. Cir. 1983); *Nestle v. Eugene*, 55 F.2d 854, 856, 12 USPQ 335 (6th Cir. 1932). Indeed, proof that the invention is made, used or sold by any person or entity other than the patentee is conclusive proof of utility. *United States Steel Corp. v. Phillips Petroleum Co.*, 865 F.2d 1247, 1252, 9 USPQ2d 1461 (Fed. Cir. 1989).

Over the past several years, a vibrant market has developed for databases containing the sequences of all expressed genes (along with the polypeptide translations of those genes). (Note that the value in these databases is enhanced by their completeness, but each sequence in them is independently valuable.) The databases sold by Applicants' assignee, Incyte, include exactly the kinds of information made possible by the claimed invention, such as tissue and disease associations. Incyte sells its database containing the claimed sequence and millions of other sequences throughout the scientific community, including to pharmaceutical companies who use the information to develop new pharmaceuticals.

Both Incyte's customers and the scientific community have acknowledged that Incyte's databases have proven to be valuable in, for example, the identification and development of drug candidates. As Incyte adds information to its databases, including the information that can be generated only as a result of Incyte's discovery of the claimed polypeptide, the databases become even more powerful tools. Thus the claimed invention adds more than incremental benefit to the drug discovery and development process.

C. The Patent Examiner's Rejections Are Without Merit

Rather than responding to the evidence demonstrating utility, the Examiner attempts to dismiss it altogether by arguing that the disclosed and well-established utilities for the claimed polypeptide are not "credible, specific, or substantial" utilities. (Office Action at page 8.) The Examiner is incorrect both as a matter of law and as a matter of fact.

1. The Precise Biological Role Or Function Of An Expressed Polypeptide Is Not Required To Demonstrate Utility

The Patent Examiner's primary rejection of the claimed invention is based on the ground that, without information as to the precise "functional characterization" of the claimed invention, the claimed invention's utility is not sufficiently specific. (Office Action, page 8.) According to the Examiner, it is not enough that a person of ordinary skill in the art could use and, in fact, would want to use the claimed invention either by itself or in a 2-D gel or western blot to monitor the expression of genes for such applications as the evaluation of a drug's efficacy and toxicity. The Examiner would require, in addition, that the applicant provide a specific and substantial interpretation of the results generated in any given expression analysis.

It may be that specific and substantial interpretations and detailed information on biological function are necessary to satisfy the requirements for publication in some technical journals, but they are not necessary to satisfy the requirements for obtaining a United States patent. The relevant question is not, as the Examiner would have it, whether it is known how or why the invention works, *In re Cortwright*, 165 F.3d 1353, 1359 (Fed. Cir. 1999), but rather whether the invention provides an

"identifiable benefit" in presently available form. *Juicy Whip Inc. v. Orange Bang Inc.*, 185 F.3d 1364, 1366 (Fed. Cir. 1999). If the benefit exists, and there is a substantial likelihood the invention provides the benefit, it is useful. There can be no doubt, particularly in view of the Furness Declaration (at, e.g., ¶¶ 10-13), that the present invention meets this test.

The threshold for determining whether an invention produces an identifiable benefit is low. *Juicy Whip*, 185 F.3d at 1366. Only those utilities that are so nebulous that a person of ordinary skill in the art would not know how to achieve an identifiable benefit and, at least according to the PTO guidelines, so-called "throwaway" utilities that are not directed to a person of ordinary skill in the art at all, do not meet the statutory requirement of utility. Utility Examination Guidelines, 66 Fed. Reg. 1092 (Jan. 5, 2001).

Knowledge of the biological function or role of a biological molecule has never been required to show real-world benefit. In its most recent explanation of its own utility guidelines, the PTO acknowledged as much (66 F.R. at 1095):

[T]he utility of a claimed DNA does not necessarily depend on the function of the encoded gene product. A claimed DNA may have specific and substantial utility because, e.g., it hybridizes near a disease-associated gene or it has gene-regulating activity.

By implicitly requiring knowledge of biological function for any claimed polypeptide, the Examiner has, contrary to law, elevated what is at most an evidentiary factor into an absolute requirement of utility. Rather than looking to the biological role or function of the claimed invention, the Examiner should have looked first to the benefits it is alleged to provide.

2. Membership in a Class of Useful Products Can Be Proof of Utility

Despite the uncontradicted evidence that the claimed polypeptide is a polypeptide expressed by humans, the Examiner refused to impute the utility of the members of the family of polypeptides expressed by humans to HTAP.

In order to demonstrate utility by membership in a class, the law requires only that the class not contain a substantial number of useless members. So long as the class does not contain a substantial number of useless members, there is sufficient likelihood that the claimed invention will have utility and a

rejection under 35 U.S.C. § 101 is improper. That is true regardless of how the claimed invention ultimately is used and whether the members of the class possess one utility or many. *See Brenner v. Manson*, 383 U.S. 519, 532 (1966); *Application of Kirk*, 376 F.2d 936, 943 (CCPA 1967).

Membership in a "general" class is insufficient to demonstrate utility only if the class contains a substantial number of useless members. There would be, in that case, a substantial likelihood that the claimed invention is one of the useless members of the class. In the few cases in which class membership did not prove utility by substantial likelihood, the classes did in fact include predominately useless members. *E.g., Brenner* (man-made steroids); *Kirk* (same); *Natta* (man-made polyethylene polymers).³

The Examiner addresses HTAP as if the general class in which it is included is not the family of polypeptides expressed by humans, but rather all polypeptides, including the vast majority of useless theoretical molecules not occurring in nature, and thus not pre-selected by nature to be useful. While these "general classes" may contain a substantial number of useless members, the family of polypeptides expressed by humans does not. The family of polypeptides expressed by humans is sufficiently specific to rule out any reasonable possibility that HTAP would not also be useful like the other members of the family.

Because the Examiner has not presented any evidence that the family of polypeptides expressed by humans has any, let alone a substantial number, of useless members, the Examiner must conclude that there is a "substantial likelihood" that the claimed HTAP polypeptide is useful.

As demonstrated by Applicants, knowledge that HTAP is a polypeptide expressed by humans is more than sufficient to make it useful for the diagnosis and treatment of disorders associated with cell proliferation and inflammation. Indeed, HTAP has been shown to be expressed in libraries derived from tissues that are immortalized or cancerous, are associated with inflammation, and are associated with normal growth and development occurring in tissues of a fetus or child. The Examiner must accept

³At a recent Biotechnology Customer Partnership Meeting, PTO Senior Examiner James Martinell described an analytical framework roughly consistent with this analysis. He stated that when an applicant's claimed protein "is a member of a family of proteins that already are known based upon sequence homology," that can be an effective assertion of utility.

these facts to be true unless the Examiner can provide evidence or sound scientific reasoning to the contrary. But the Examiner has not done so.

3. The uses of HTAP in toxicology testing, drug discovery, and disease diagnosis are practical uses beyond mere study of the invention itself

There is no authority for the proposition that use as a tool for research is not a substantial utility. Indeed, the Patent Office itself has recognized that just because an invention is used in a research setting does not mean that it lacks utility (Section 2107.01 of the Manual of Patent Examining Procedure, 8th Edition, August 2001, under the heading I. Specific and Substantial Requirements, Research Tools):

Many research tools such as gas chromatographs, screening assays, and nucleotide sequencing techniques have a clear, specific and unquestionable utility (e.g., they are useful in analyzing compounds). An assessment that focuses on whether an invention is useful only in a research setting thus does not address whether the specific invention is in fact “useful” in a patent sense. Instead, Office personnel must distinguish between inventions that have a specifically identified substantial utility and inventions whose asserted utility requires further research to identify or reasonably confirm.

The PTO’s actual practice has been, at least until the present, consistent with that approach. It has routinely issued patents for inventions whose only use is to facilitate research, such as DNA ligases, acknowledged by the PTO’s Training Materials to be useful.

The subset of research uses that are not “substantial” utilities is limited. It consists only of those uses in which the claimed invention is to be an **object** of further study, thus merely inviting further research on the invention itself. This follows from *Brenner*, in which the U.S. Supreme Court held that a process for making a compound does not confer a substantial benefit where the only known use of the compound was to be the object of further research to determine its use. *Id.* at 535. Similarly, in *Kirk*, the Court held that a compound would not confer substantial benefit on the public merely because it might be used to synthesize some other, unknown compound that would confer substantial benefit. *Kirk*, 376 F.2d at 940, 945. (“What appellants are really saying to those in the art is take these steroids, experiment, and find what use they do have as medicines.”) Nowhere do those cases

state or imply, however, that a material cannot be patentable if it has some other, additional beneficial use in research.

Such beneficial uses beyond studying the claimed invention itself have been demonstrated, in particular those described in the Furness Declaration. The Furness Declaration demonstrates that the claimed invention is a tool, rather than an object, of research, and it demonstrates exactly how that tool is used. Without the claimed invention, it would be more difficult to generate information regarding the properties of tissues, cells, drug candidates and toxins apart from additional information about the polypeptide itself.

The claimed invention has numerous other uses as a research tool, each of which alone is a "substantial utility." These include in diagnostic assays and in drug screening (Specification, e.g., page 33, lines 8-16 and page 37, line 18 through page 38, line 6).

4. Irrelevance of tissue distribution or disease association to utility in toxicology testing

The Examiner argues on page 8 of the Office Action that the specification does not disclose a "specific tissue distribution" of the claimed polypeptide or a "specific disease state in which these proteins affect." This is irrelevant. Applicants need not demonstrate whether the claimed polypeptide is associated with any tissue or disease, only whether the claimed polypeptide is useful. The claimed polypeptide is useful whether or not the claimed polypeptide is associated with any tissue or disease.

The claimed polypeptide can be used for toxicology testing in drug discovery without any knowledge of tissue distribution or disease association of the claimed polypeptide. Monitoring the expression of the claimed polypeptide gives important information on the potential toxicity of a drug candidate that is specifically targeted to any other polypeptide, regardless of the tissue distribution or disease association of the claimed polypeptide. The claimed polypeptide is useful for measuring the toxicity of drug candidates specifically targeted to other polypeptides regardless of any possible utility for measuring the properties of the claimed polypeptide.

D. By Requiring the Patent Applicant to Assert a Particular or Unique Utility, the Patent Examination Utility Guidelines and Training Materials Applied by the Patent Examiner Misstate the Law

There is an additional, independent reason to withdraw the rejections: to the extent the rejections are based on Revised Interim Utility Examination Guidelines (64 FR 71427, December 21, 1999), the final Utility Examination Guidelines (66 FR 1092, January 5, 2001) and/or the Revised Interim Utility Guidelines Training Materials (USPTO Website www.uspto.gov, March 1, 2000), the Guidelines and Training Materials are themselves inconsistent with the law.

The Training Materials, which direct the Examiners regarding how to apply the Utility Guidelines, address the issue of specificity with reference to two kinds of asserted utilities: "specific" utilities, which meet the statutory requirements, and "general" utilities, which do not. The Training Materials define a "specific utility" as follows:

A [specific utility] is *specific* to the subject matter claimed. This contrasts to *general* utility that would be applicable to the broad class of invention. For example, a claim to a polynucleotide whose use is disclosed simply as "gene probe" or "chromosome marker" would not be considered to be specific in the absence of a disclosure of a specific DNA target. Similarly, a general statement of diagnostic utility, such as diagnosing an unspecified disease, would ordinarily be insufficient absent a disclosure of what condition can be diagnosed.

The Training Materials distinguish between "specific" and "general" utilities by assessing whether the asserted utility is sufficiently "particular," *i.e.*, unique (Training Materials at p.52) as compared to the "broad class of invention." (In this regard, the Training Materials appear to parallel the view set forth in Stephen G. Kunin, Written Description Guidelines and Utility Guidelines, 82 J.P.T.O.S. 77, 97 (Feb. 2000) ("With regard to the issue of specific utility the question to ask is whether or not a utility set forth in the specification is *particular* to the claimed invention.").)

Such "unique" or "particular" utilities never have been required by the law. To meet the utility requirement, the invention need only be "practically useful," *Natta*, 480 F.2d 1 at 1397, and confer a "specific benefit" on the public. *Brenner*, 383 U.S. at 534. Thus incredible "throwaway" utilities, such as trying to "patent a transgenic mouse by saying it makes great snake food," do not meet this standard.

Karen Hall, Genomic Warfare, The American Lawyer 68 (June 2000) (quoting John Doll, Chief of the Biotech Section of USPTO).

This does not preclude, however, a general utility, contrary to the statement in the Training Materials where “specific utility” is defined (page 5). Practical real-world uses are not limited to uses that are unique to an invention. The law requires that the practical utility be “definite,” not particular. *Montedison*, 664 F.2d at 375. Applicants are not aware of any court that has rejected an assertion of utility on the grounds that it is not “particular” or “unique” to the specific invention. Where courts have found utility to be too “general,” it has been in those cases in which the asserted utility in the patent disclosure was not a practical use that conferred a specific benefit. That is, a person of ordinary skill in the art would have been left to guess as to how to benefit at all from the invention. In *Kirk*, for example, the CCPA held the assertion that a man-made steroid had “useful biological activity” was insufficient where there was no information in the specification as to how that biological activity could be practically used. *Kirk*, 376 F.2d at 941.

The fact that an invention can have a particular use does not provide a basis for requiring a particular use. See *Brana, supra* (disclosure describing a claimed antitumor compound as being homologous to an antitumor compound having activity against a “particular” type of cancer was determined to satisfy the specificity requirement). “Particularity” is not and never has been the *sine qua non* of utility; it is, at most, one of many factors to be considered.

As described *supra*, broad classes of inventions can satisfy the utility requirement so long as a person of ordinary skill in the art would understand how to achieve a practical benefit from knowledge of the class. Only classes that encompass a significant portion of nonuseful members would fail to meet the utility requirement. *Supra* § V.C.2. (*Montedison*, 664 F.2d at 374-75).

The Training Materials fail to distinguish between broad classes that convey information of practical utility and those that do not, lumping all of them into the latter, unpatentable category of “general” utilities. As a result, the Training Materials paint with too broad a brush. Rigorously applied, they would render unpatentable whole categories of inventions heretofore considered to be patentable, and that have indisputably benefitted the public, including the claimed invention. See *supra* § V.C.2. Thus the Training Materials cannot be applied consistently with the law.

VI. Rejection of Claims 1-2 and 15-17 Under 35 U.S.C. § 112, first paragraph, enablement

To the extent the rejection of the claimed invention under 35 U.S.C. § 112, first paragraph, is based on the improper rejection for lack of utility under 35 U.S.C. § 101, it must be withdrawn. The rejection set forth in the Office Action is based on the assertions discussed above, i.e., that the claimed invention lacks patentable utility. To the extent that the rejection under § 112, first paragraph, is based on the improper allegation of lack of patentable utility under § 101, it fails for the same reasons.

CONCLUSION

In light of the above amendments and remarks, Applicants submit that the present application is fully in condition for allowance, and request that the Examiner withdraw the outstanding rejections. Early notice to that effect is earnestly solicited.

If the Examiner contemplates other action, or if a telephone conference would expedite allowance of the claims, Applicants invite the Examiner to contact Applicants' Agent at (650) 845-4646.

Applicants believe that no fee is due with this communication. However, if the USPTO determines that a fee is due, the Commissioner is hereby authorized to charge Deposit Account No. **09-0108.**

Respectfully submitted,
INCYTE GENOMICS, INC.

Date: January 29, 2003

Susan K. Sather
Susan K. Sather
Reg. No. 44,316
Direct Dial Telephone: (650) 845-4646

3160 Porter Drive
Palo Alto, California 94304
Phone: (650) 855-0555
Fax: (650) 849-8886

Docket No.: PF-0247-2 CON

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE CLAIMS:

Claim 17 has been canceled.

Claims 1, 2, and 16 have been amended as follows:

1. (Once Amended) An isolated polypeptide [comprising an amino acid sequence] selected from the group consisting of:

- a) a polypeptide comprising an amino acid sequence of SEQ ID NO:1,
- b) a [naturally occurring] polypeptide comprising a naturally occurring [an] amino acid sequence at least 90% identical to an amino acid sequence of SEQ ID NO:1, and
- c) [a biologically active fragment of a polypeptide having an amino acid sequence of SEQ ID NO:1, and]
- d)] an immunogenic fragment of a polypeptide having an amino acid sequence of SEQ ID NO:1.

2. (Once Amended) An isolated polypeptide of claim 1, comprising the amino acid [having a] sequence of SEQ ID NO:1.

16. (Once Amended) A composition of claim 15, wherein the polypeptide comprises [has] an amino acid sequence of SEQ ID NO:1.