

Wrangling Rogues: A Case Study on Managing Experimental Post-Moore Architectures

Will Powell, Jason Riedy, Jeffrey Young, Tom Conte 1 August 2019 Center for Research into Novel Computing Hierarchies at Georgia Tech

#### Outline

What is the CRNCH Rogues Gallery?

**Current Rogues** 

Emu Chick

3D Stacked Memories and FPGAs

Neuromorphic / Analog Hardware (FPAA)

Management lessons learned

Helpful points

Painful points

# Apps: Massive+-scale data analysis

Cyber-security Identify anomalies, malicious actors

**Health care** Find outbreaks, population epidemiology, similar patient association

Social networks Advertising, searching, grouping

Intelligence Decisions at scale, regulating markets, smart & sustainable cities

Systems biology Understanding interactions, drug design

Power grid / Smart cities Disruptions, conservation, prediction

Irregular data access. Changing data.

Thursday, Suptember 4, 2008

Re NOTE OLEN LARK GROSS SAFE TO DESCRIBE FAILure to Reac

Mining Twitten Social Mining Twitten

## High-Performance Data Analysis (HPDA)

#### Novel applications:

- Data at scale and speed needs new ideas for computing analysis.
- "Big data" platforms fare poorly v. a single thread plus large SSD even for static data sets. (McSherry, Isard, Murray. "Scalability! But at what COST?" HotOS XV, 2015.)
- Many high-level codes are written and re-written to answer one question: need flexibility.
- · Some primitives may be tuned and re-used.

### Why do we need rogues?

Rogue: Someone who goes their own way, who breaks away from the crowd.



- Current architectures are hitting limits on manufacturing, heat dissipation, memory latency...
- What happens when novel prototypes hit reality?
- Designers need feedback, a software ecosystem, and trained students.

## What is the Rogues Gallery?







Hardware! "I'll tell you later."

## Introducing the CRNCH Rogues Gallery

#### **CRNCH Rogues Gallery**

A physical & virtual space for hosting novel computing architectures, systems, and accelerators since fall 2017.

Host / manage remote access for novel architectures to

- · kick-start software ecosystems (e.g. Kokkos),
- · leverage real applications to train students, and
- provide rapid feedback to architects.

Amortize effort and cost of trying novel architectures.

Break the "but it's too much work" barrier.

http://crnch.gatech.edu/rogues-gallery

#### Rogues Gallery summary



### **Current Rogues**

**Current Rogues** 

Emu Chick

3D Stacked Memories and FPGAs

Neuromorphic / Analog Hardware (FPAA)

## Emu Technology's Chick

- "Migratory Memory Side Processing" to exploit weak locality.
- Data for graph edge attributes, documents / medical records, etc. reside nearby even if accessed irregularly.
- Moving threads to data on reads: all reads are local, so lower latency.





# **Emu Chick: Ongoing Results**



#### Platform:

- · Application direction.
- · Demo-able code.
- Debugging.
- · Connections.



#### People:

- GT → Emu: One employee, one intern.
- Emu → GT: One graduate student.

### 3D Stacked Memory and FPGAs

- FPGA + HMC / DRAM: Enable experiments with "near-memory" and memory-centric processing.
- FPGA platforms prototype non-traditional accelerators like Automata, sparse data engines, etc.
- Current work is supported in part by Micron hardware donation.



### FPGA & memory results





Hadidi, Asgari, Young, Mudassar, Garg, Krishna, Kim. "Performance Implications of NoCs on 3D-Stacked Memories: Insights from the Hybrid Memory Cube (HMC)," ISPASS 2018

- Characterizations with FPGA and Hybrid Memory Cube show latency/bandwidth tradeoff.
- Other FPGA work is focused on compilers, HPC prototyping, and sparse algorithms for Intel and Xilinx FPGAS.

# Neuromorphic systems

- Field-Programmable Analog Array (FPAA) System-On Chip, designed in the lab of Dr. Jennifer Hasler.
- Analog + digital to achieve unprecedented power and size reductions.
- Potential on-chip/package accelerator.
- Adding other neuromorphic systems







#### **FPAA** results





Embedded learning & classification:  $20\text{--}30\mu W$  on full, 1s Nzero database (GOMAC 2016)

# Management lessons learned

Management lessons learned

Helpful points

Painful points

#### Rogues Gallery structure



## Management lessons learned

- Invest in rogues, but realize some technology may be short-lived.
  - · Minimize custom management effort.
- Physical hardware resources not dedicated to rogues should be kept to a minimum.
  - Don't spend \$ on non-rogues.
- · Collaboration and commiseration is key.
  - · Rogues need a community to succeed.
- Licensing and appropriate identity management are tough but necessary challenges.
  - · Use network isolation when needed.

### Helpful points

- Network isolation provides security.
  - · Well, enough given limited usefulness.
- · Singularity is great for build environments.
  - HW start-ups cannot afford supporting every OS/arch.
  - IT cannot afford supporting every OS/arch.
  - · Companies must be friendly...
- · Inspired undergrads are wonderful!
  - Modernizing tools (FPAA)
  - Building out demonstrations
  - http://www.vip.gatech.edu/teams/ rogues-gallery

## Painful points

- SLURM aspects:
  - · Managing slurmd.conf.
  - Building on all the OS/arch combos.
- · Few light-weight management options.
  - · salt-ssh, ansible on some
- · Hardware access for rebooting, reseating.
- · Many programming interfaces, few people
  - Kokkos, TENNLab, more...
- Still need to tackle "sensitive" data, including some FPGA IP
- · Reproducible / replicable / audit-able results

## Rogues Gallery: Active and Growing

- Integrating FPAAs and toolchain
- · Tight development loop with Emu
- · Active research projects and publications
- · Community building via tutorials & talks
- New approaches to benchmarking, quantum software stacks, neuromorphic toolchains, ...

CRNCH Rogues Gallery connects researchers and students with novel architectures and architects with upcoming applications.

Let us host / manage your neat stuff! http://crnch.gatech.edu/rogues-gallery

#### Acknowledgments

#### Fantastic students and colleagues:

- Srinivas Eswar (GT CSE)
- Dr. Eric Hein (GT ECE  $\Rightarrow$  Emu)
- Patrick Lavin (GT CSE)
- Dr. Jiajia Li (GT CSE  $\Rightarrow$  PNNL)
- · Abdurrahman Yaşar (GT CSE)
- Chunxing Yin (GT CSE)

- · Dr. Jeffrey S. Young (GT CS)
- Dr. Tom Conte (GT CS/ECE)
- Dr. Vivek Sarkar (GT CS)
- Dr. Ümit Çatalürek (GT CSE)
- · Dr. Bora Uçar (ENS Lyon CNRS)
- Dr. Rich Vuduc (GT CSE)

#### Code (ideally will have links from ${\tt crnch.gatech.edu}$ ):

- https://gitlab.com/crnch-rg
- https://github.com/ehein6/emu-microbench

#### Other testbeds:

· ORNL: ExCL

· Argonne

· Berkeley: AQCT

· PNNL: CENATE

Sandia HAAPS

· (others?)

#### External Image Credits

- · "What's that watermelon doing there?": copyright MGM, used for identification
- · Oscar Wilde: public domain, obtained from Wikipedia
- · Edna St. Vincent Millay: public domain, obtained from Wikipedia
- · Dread Pirate Roberts: copyright 20<sup>th</sup> Century Fox, used for identification
- Mary Jackson, Katherine Goble Johnson, Dorothy Vaughan (Hidden Figures): copyright 20<sup>th</sup> Century Fox, used for identification
- · Malcolm Reynolds: copyright Universal Pictures, used for identification
- · Rogue One: copyright Walt Disney Studios Motion Pictures, used for identification
- · The Story of Karrawingi, the Emu (cover): copyright estate of Leslie Rees, used for identification
- · Big Hero 6: copyright Walt Disney Studios Motion Pictures, used for identification