Problem Set 8

1. (Salience I)

Consider the model of salience and competition from the lecture. Let $x \in \{p, q\}$ be an attribute with average value \bar{x} as explained in the lecture.

(a) Prove that the function

$$\sigma(x,\bar{x}) = \frac{|x - \bar{x}|}{\bar{x}}$$

is a salience function that verifies the defining properties "zero homogeneity" and "ordering". State a verbal interpretation of this function.

- (b) Prove that if $\sigma(x, \bar{x})$ is a salience function, then the salience of attribute x is an increasing function of the percentage difference between x and \bar{x} . That is: If $\frac{x'-\bar{x}'}{\bar{x}'}>\frac{x-\bar{x}}{\bar{x}}$ then $\sigma(x',\bar{x}')>\sigma(x,\bar{x})$.
- 2. (Salience II) Consider the salience model with price competition from the lecture. There are two firms $j \in \{1, 2\}$, where quality levels verify $q_1 > q_2$ and unit costs verify $c_1 \geq c_2$, such that firm j = 1 is the high-quality firm. Let the salience parameter $\delta \in (0, 1)$ satisfy

$$\delta(c_1 - c_2) < q_1 - q_2 < \frac{c_1 - c_2}{\delta}$$

(a) Let $\frac{q_1}{c_1} > \frac{q_2}{c_2}$. Show that a quality-salient equilibrium exists, where only firm j = 1 makes positive profits $(j = 2 \text{ sets } p_2 = c_2)$ and

$$p_1 = \min\left\{\frac{q_1}{q_2}c_2, \frac{q_1 - q_2}{\delta} + c_2\right\}$$

(b) Suppose that $q_1 - c_1 > q_2 - c_2$ and $\frac{q_1}{c_1} > \frac{q_2}{c_2}$. Prove that firm j = 1 makes *less* profits in the salience equilibrium compared to the rational

benchmark model (where $\delta=1$). Why does such a *pro-competitive effect* of salience emerge?