Optimal estimation and robustness

-Summary-

A permutation-based model for crowd labeling - Model and problem formulation

Notations

Assume n workers and d questions having two possible answers (+1 or -1)

- $x^* \in \{-1, 1\}^d$: correct answer vector to d questions
- $Q^* \in [0, 1]^{n \times d}$: probability matrix (unknown)

 $(Q_{ij}^*$: probability that worker i answers question j correctly)

• $Y_{ij} \in \{-1, 0, 1\}$: response of worker i to question j

 $(Y_{ij} = 0 \text{ if worker } i \text{ is not asked question } j)$

- $p_{obs} \in [0, 1]$: probability that worker i asked question j
- \Rightarrow Goal : Given random matrix Y, estimate x^*

Assumption

- 1. Worker is never asked the same question twice
- 2. Given x^* and Q^* , Y'_{ij} s are mutually independent such that

$$Y_{ij} = \begin{cases} x_j^* & w.p \ p_{obs}Q_{ij}^* \\ -x_j^* & w.p \ p_{obs}(1 - Q_{ij}^*) \\ 0 & w.p \ (1 - p_{obs}) \end{cases}$$

- Model and problem formulation

Assumption (cont.)

There exists two permutation π^* : $[n] \to [n]$ for workers, σ^* : $[d] \to [d]$ for questions such that the probability matrix Q^* satisfies :

(Worker monotonicity)

if $\pi^*(i) < \pi^*(i')$, $Q_{ij}^* \ge Q_{i'j}^*$ for every question j

(Question monotonicity)

 $if \ \sigma^*(j) < \sigma^*(j'), \qquad Q_{ij}^* \ge Q_{ij'}^* \ \text{for every worker i}$

Conditions

- (R1) $Q_{ij}^* \ge \frac{1}{2}$ $\forall i \in [n], j \in [d]$
- (R2) $p_{obs} \ge \frac{1}{n}$ and $d \ge n$

- Model and problem formulation

Definitions

- $C_{perm} = \{Q \in [0,1]^{n \times d} \mid \exists \text{ permutation } (\pi,\sigma) \text{ such that worker \& question monotonicity hold} \}$
- $C_{Int} = \{Q = \tilde{q}(1-h)^T + \frac{1}{2}1h^T \in C_{perm} \mid for \ some \ \tilde{q} \in [0,1]^n, h \in [0,1]^d \}$
- $C_{DS} = \{ Q \in C_{perm} \mid Q = q^{DS} 1^T \text{ for some } q^{DS} \in [0, 1]^n \}$
- Estimator for answer vector $x^* : \hat{x} : Y \to \{-1, 1\}^d$
- Hamming error : $d_H(\hat{x}, x^*) = \frac{1}{d} \sum_{j=1}^d 1\{\hat{x}_j \neq x_j^*\}$
- Q^* -loss function: $L_{Q^*}(\hat{x}, x^*) = \frac{1}{d} \sum_{j=1}^d 1\{\hat{x_j} \neq x_j^*\} \Psi(Q_{1j}^*, \dots, Q_{nj}^*)$

(where $\Psi: [0,1]^n \to R_+$ is a function capturing difficulty of the task)

Remark

- $\Psi(Q_{1j}^*, ..., Q_{nj}^*) = \frac{1}{n} \sum_{i=1}^n (2Q_{ij}^* 1)^2$ for each task $j \in [d]$ (from collective intelligence)
- $L_{Q^*}(\hat{x}, x^*) = \frac{1}{d} \sum_{j=1}^{d} (1\{\hat{x}_j \neq x_j^*\} \frac{1}{n} \sum_{i=1}^{n} (2Q_{ij}^* 1)^2) = \frac{1}{dn} \left\| \left(Q^* \frac{1}{2} 11^T \right) diag(\hat{x} x^*) \right\|_F^2$

- Least square estimator

Least square estimator under permutation model

$$\left(\tilde{x}_{LS}, \tilde{Q}_{LS}\right) \in \underset{x \in \{-1,1\}^d, Q \in C_{perm}}{\operatorname{argmin}} \left\| \frac{1}{p_{obs}} Y - \left(2Q - 11^T\right) diag(x) \right\|_F^2$$

Theorem 1 (Performance guarantee for least square estimator)

(a) For any binary vector $x^* \in \{-1, 1\}^d$ and any matrix $Q^* \in C_{perm}$, the least squares estimator \tilde{x}_{LS} has error at most

$$L_{Q^*}(\tilde{x}_{LS}, x^*) \le \frac{c_v}{np_{obs}} \log^2 d$$

with probability at least $1 - e^{-c_H d log(dn)}$

(b) There exists a matrix $\tilde{Q} \in C_{DS}$ such that any estimator \hat{x} has error at least

$$\sup_{x^* \in \{-1,1\}^d} E[L_{\tilde{Q}}(\hat{x}, x^*)] \ge \frac{c_L}{np_{obs}}$$

- Least square estimator

Remark

Let $W \in \mathbb{R}^{n \times d}$ be a random matrix defined by :

$$W_{ij} = \begin{cases} 1 - p_{obs}(2Q_{ij}^* - 1)x_j^* & w. p \ p_{obs}\left(Q_{ij}^*\left(\frac{1 + x_j^*}{2}\right) + (1 - Q_{ij}^*)\left(\frac{1 - x_j^*}{2}\right)\right) \\ -1 - p_{obs}(2Q_{ij}^* - 1)x_j^* & w. p \ p_{obs}\left(Q_{ij}^*\left(\frac{1 + x_j^*}{2}\right) + (1 - Q_{ij}^*)\left(\frac{1 - x_j^*}{2}\right)\right) \\ -p_{obs}(2Q_{ij}^* - 1)x_j^* & w. p \ 1 - p_{obs} \end{cases}$$

Then, observed matrix Y can be written in the following form:

$$\frac{1}{p_{obs}}Y = (2Q^* - 11^T)diag(x^*) + \frac{1}{p_{obs}}W$$

Since $E[Y] = p_{obs}(2Q^* - 11^T)diag(x^*)$, $(\tilde{x}_{LS}, \tilde{Q}_{LS})$ becomes minimizer for $||Y - E[Y]||_F^2$

- Least square estimator

Corollary 1

(a) For any $x^* \in \{-1,1\}^d$ and any $Q^* \in \mathcal{C}_{perm}$, the least squares estimate \tilde{Q}_{LS} has error at most

$$\frac{1}{dn} \left\| \tilde{Q}_{LS} - Q^* \right\|_F^2 \le \frac{c_v}{np_{obs}} \log^2 d$$

with probability at least $1 - e^{-c_H d log(dn)}$

(b) Conversely, for any answer vector $x^* \in \{-1,1\}^d$, any estimator \hat{Q} has error at least

$$\sup_{Q^* \in C_{nerm}} E\left[\frac{1}{dn} \left\| \hat{Q} - Q^* \right\|_F^2\right] \ge \frac{c_L}{np_{obs}}$$

- WAN estimator

WAN estimator : when worker's ordering is approximately known(π)

Step 1 (Windowing) : Compute integer k_{WAN}

$$k_{WAN} \in \underset{k \in \left\{\frac{\log^{1.5}(dn)}{p_{obs}}, \dots, n\right\}}{argmax} \sum_{j \in [d]} 1\{|\sum_{i \in [k]} Y_{\pi^{-1}(i)j}| \geq \sqrt{kp_{obs}\log^{1.5}(dn)}\}$$

Step 2 (Aggregating Naively) : Set $\hat{x}_{WAN}(\pi)$ as majority vote of the best k_{WAN} workers

$$[\hat{x}_{WAN}(\pi)]_j \in \underset{b \in \{-1,1\}}{argmax} \sum_{i=1}^{k_{WAN}} 1\{Y_{\pi^{-1}(i)j} = b\} \text{ for every } j \in [d]$$

- WAN estimator

Theorem 2 (Performance guarantee for WAN estimator)

For any matrix $Q^* \in C_{perm}$ and any binary vector $x^* \in \{-1,1\}^d$, suppose that the WAN estimator is provided with the permutation π of workers. Consider the subset of the questions given by

$$J = \{j \in [d] | \exists k_j \ge \frac{\log^{1.5}(dn)}{p_{obs}} \ s. \ t \ \sum_{i=1}^{k_j} \left(Q_{\pi^{-1}(i)j}^* - \frac{1}{2} \right) \ge \frac{3}{4} \sqrt{\frac{k_j}{p_{obs}} \log^{1.5}(dn)}$$

Then the WAN estimator correctly estimates the labels of all questions in set *J* with high probability:

$$P([\hat{x}_{WAN}(\pi)]_j = x_j^* \text{ for all } j \in J) \ge 1 - e^{-c_H \log^{1.5}(dn)}$$

Notation

- $Q_i^* = j$ th column of Q^*
- Q_i^{π} = vector obtained by permuting the entries of Q_i^* using π (approximate ordering)
- $Q_j^{\pi^*}$ = vector obtained by permuting the entries of Q_j^* using π^* (correct ordering)

- WAN estimator

Corollary 2

For any matrix $Q^* \in C_{perm}$ and any binary vector $x^* \in \{-1,1\}^d$, suppose that the WAN estimator is provided with the permutation π of workers.

Then for every question $j \in [d]$ such that

$$\left\|Q_{j}^{*} - \frac{1}{2}\right\|_{2}^{2} \ge \frac{5\log^{2.5}(dn)}{p_{obs}}, \quad and \left\|Q_{j}^{\pi} - Q_{j}^{\pi^{*}}\right\|_{2} \le \frac{\left\|Q_{j}^{*} - \frac{1}{2}\right\|_{2}}{\sqrt{9\log(dn)}}$$

We have

$$P([\hat{x}_{WAN}(\pi)]_j = x_i^* \text{ for all } j \in J) \ge 1 - e^{-c_H \log^{1.5}(dn)}$$

Consequently, if π is the correct permutation of the workers ($\pi=\pi^*$), then with probability at least $1-e^{c_H'\log^{1.5}(dn)}$, we have

$$L_{Q^*}(\hat{x}_{WAN}(\pi), x^*) \le \frac{c_v}{np_{obs}} \log^{2.5} d$$

OBI-WAN estimator : when worker's ordering(π) is unknown

Note: OBI-WAN = Ordering Based on Inner-products-WAN

Step 0 (preliminary):

- 1. Split d question into two set (T_0, T_1)
- 2. Assign every questions to T_0 or T_1 uniformly at random.
- 3. Get Y_0 , Y_1 : the submatrices of Y containing columns of Y associated to questions in T_0 , T_1 respectively

Step 1 (OBI):

1. Get top left eigenvector of $Y_l Y_l^T$:

$$u_l \in \underset{\|u\|_2=1}{\operatorname{argmax}} \|Y_l^T u\|_2$$

(Choose sign of u_l so that $\sum_{i \in [n]} [u_l]_i^2 1\{[u_l]_i > 0\} \ge \sum_{i \in [n]} [u_l]_i^2 1\{[u_l]_i < 0\}$)

2. Obtain π_l : permutation of n workers in order of the respective entries of u_l

Step 2 (WAN): (To avoid violation of independence assumptions)

Compute estimators:

$$\hat{x}_{OBI-WAN}(T_0) = \hat{x}_{WAN}(Y_0, \pi_1), \qquad \hat{x}_{OBI-WAN}(T_1) = \hat{x}_{WAN}(Y_1, \pi_0)$$

Guarantees for OBI-WAN under intermediate model

- Introduce a parameter $h_j^* \in [0,1]$ that captures the difficulty of each question $j \in [d]$
- Use \tilde{q} associated with the workers as in Dawid-Skene model (instead of q_{DS})
- Under intermediate model

$$P(Y_{ij} = x_j^*) = \widetilde{q}_i(1 - h_j^*) + \frac{1}{2}h_j^* \qquad \forall (i, j) \text{ such that } Y_{ij} \neq 0$$

(= probability that worker i correctly answers question j)

$$C_{Int} = \{Q = \tilde{q}(1-h)^T + \frac{1}{2}1h^T \in C_{perm} \mid for \ some \ \tilde{q} \in [0,1]^n, h \in [0,1]^d \}$$

(= Intermediate model class)

• Obviously, $C_{DS} \subset C_{int} \subset C_{perm}$ holds

- OBI-WAN estimator

Remark: OBI-WAN under intermediate model

- Guarantees for the OBI step : Is $u_l \approx \pi_l^*$ (correct worker permutation) ?
- Guarantees for the WAN step : Is u_l operates well on T_{1-l} ?

(Notations & Assumption)

- $r^* = \tilde{q} \frac{1}{2}$
- $\tilde{r}_l = r^*$ permuted by ordering of $u_l (= \pi_l)$
- Assume $Q_j^* = Q_j^{\pi_l^*}$ => already ordered correctly (\tilde{q} is correctly ordered)

- OBI-WAN estimator

Lemma 5

Suppose (\tilde{q}, h^*) satisfies $\|\tilde{q} - \frac{1}{2}\|_2^2 \|1 - h^*\|_2^2 \ge \frac{\tilde{c}d \log^{2.5}(dn)}{p_{obs}}$ for a large enough constant \tilde{c} . Then, with sufficiently high probability, we have

$$P\left(\|\tilde{r}_l - r^*\|_2^2 > \frac{\|r^*\|_2^2}{9\log(dn)}\right) \le e^{-c\log^{1.5}(d)}$$

[From Equation 41] (with high probability)

$$\Leftrightarrow \left\| Q_j^{\pi_l} - Q_j^* \right\|_2 \le \frac{\left\| Q_j^* \right\|_2}{\sqrt{9 \log(dn)}} \text{ for every question } j \in T_{1-l}$$

Theorem 3 (Performance guarantee for OBI-WAN estimator under intermediate model)

Consider any binary vector $x^* \in \{-1,1\}^d$ and any matrix $Q^* \in C_{int}$ associated with vectors (\tilde{q},h^*) satisfying $\|\tilde{q}-\frac{1}{2}\|_2^2 \|1-h^*\|_2^2 \ge \frac{\tilde{c}d \log^{2.5}(dn)}{p_{obs}}$

for a large enough constant \tilde{c} . Then for every question $j \in [d]$ such that

$$(1-h_j^*)^2 \left\| \tilde{q} - \frac{1}{2} \right\|_2^2 \ge \frac{5 \log^{2.5}(dn)}{p_{obs}},$$

We have

$$P([\hat{x}_{OBI-WAN}]_j = x_j^*) \ge 1 - e^{-c_H \log^{1.5}(dn)}$$

Corollary 3

For any $Q^* \in C_{int}$ and any vector $x^* \in \{-1, 1\}^d$, the estimate $\hat{x}_{OBI-WAN}$ has error at most

$$L_{Q^*}(\hat{x}_{OBI-WAN}, x^*) \le \frac{c_v}{np_{obs}} \log^{2.5} d$$

With probability at least $1 - e^{-c_H \log^{1.5}(dn)}$

- OBI-WAN estimator

Guarantees for OBI-WAN under Dawid-Skene model

- Handle adversarial workers : ignore (R1) condition (i.e : $q_i^{DS} < \frac{1}{2}$ is possible) [Recall : (R1) $Q_{ij}^* \ge \frac{1}{2}$ $\forall i \in [n], \ j \in [d], \ Q^* = q^{DS} 1^T$ in Dawid-Skene model]
- Define two associated vectors q^{DS+} , $q^{DS-} \in [0,1]^n$

$$q_i^{DS+} = \max \left\{ q_i^{DS}, \frac{1}{2} \right\}$$
$$q_i^{DS-} = \min \left\{ q_i^{DS}, \frac{1}{2} \right\}$$

Theorem 4 (Performance guarantee for OBI-WAN estimator under Dawid-Skene model)

Consider any Dawid-Skene matrix of the form $Q^* = q^{DS} 1^T$ for some $q^{DS} \in [0, 1]^n$. Then:

(a) If
$$\left\|q^{DS+} - \frac{1}{2}\right\|_2 \ge \left\|q^{DS-} - \frac{1}{2}\right\|_2 + \sqrt{\frac{4\log^{2.5}(dn)}{p_{obs}}}$$
 and $\left(q^{DS} - \frac{1}{2}\right)^T 1 \ge 0$, then for any $x^* \in \{-1, 1\}^d$,

the OBI-WAN estimator satisfies:

$$P(\hat{x}_{OBI-WAN} = x^*) \ge 1 - e^{-c_H \log^{1.5}(dn)}$$

(b) Conversely, there exists a positive universal constant c such that for any $q^{DS} \in \left[\frac{1}{10}, \frac{9}{10}\right]^n$ with $\left\|q^{DS} - \frac{1}{2}\right\|_2 \le \sqrt{\frac{c}{p_{obs}}}$, any estimator \hat{x} has (normalized) Hamming error at least

$$\sup_{x^* \in \{-1,1\}^d} E\left[\sum_{i=1}^a \frac{1}{d} 1\{\hat{x}_i \neq x_i^*\}\right] \ge \frac{1}{10}$$

Remark: OBI-WAN under Dawid-skene model

- Guarantees for the OBI step : Is $u_l \approx \pi_l^*$ (correct worker permutation) ?
- Guarantees for the WAN step : Is u_l operates well on T_{1-l}

(Notations & Assumption)

- $r^* = q^{DS} \frac{1}{2},$
- $\tilde{r}_l = r^*$ permuted by ordering of $u_l (= \pi_l)$
- q^{DS} is already ordered

[From equation 50]

Under Dawid-skene model, the following holds:

$$P\left(\|\tilde{r}_l - r^*\|_2^2 \le \frac{\log^{1.5} d}{18p_{obs}}\right) \ge 1 - e^{-c\log^{1.5}(d)}$$

Guarantee for the WAN step => theorem 4 (a)

- OBI-WAN estimator

Guarantees for OBI-WAN under permutation-based model

• Previous two sections provided strong guarantees for OBI-WAN for exact recovery and the Q^* -loss for Dawid-skene and intermediate model.

Proposition 1 (Performance guarantee for OBI-WAN estimator under permutation model)

Consider any matrix $Q^* \in C_{perm}$ and any binary vector $x^* \in \{-1,1\}^d$. For every question $j \in [d]$ such that $\sum_{i=1}^n \left(Q_{ij}^* - \frac{1}{2}\right) \ge \frac{3}{4} \sqrt{\frac{n \log^{1.5}(dn)}{p_{obs}}}$, the

OBI-WAN estimator satisfies

$$P([\hat{x}_{OBI-WAN}]_j = x_j^*) \ge 1 - e^{-c_H \log^{1.5}(dn)}$$

Consequently for any $Q^* \in \mathcal{C}_{perm}$ and any $x^* \in \{-1,1\}^d$, with probability at least $1-c^{-c_H \log^{1.5}(dn)}$, the estimator incurs a Q^* -loss of at most

$$L_{Q^*}(\hat{x}_{OBI-WAN}, x^*) \le \frac{c_v \log d}{\sqrt{np_{obs}}}$$

- Real world data / Simulation

Real-world crowdsourcing data / Simulation

- The experiments reveals that OBI-WAN compares favorably to Spectral-EM (All in all)
- Under synthetic simulation, OBI-WAN shows good performance under $C_{perm} \setminus C_{Int}$
- Under super sparse case, OBI-WAN incurs relatively higher error
- Shows limited performance under small p_{obs} , n, d

