HOMEWORK

- (1) Let $F(x,y)=(xy)^2$ for $x,y\in[0,1]$. Find the marginals $F_1(x),F_2(y)$ and the copula C(u,v) such that $F(x,y) = C(F_1(x),F_2(y))$.
- (2) Consider (X,Y) with joint cdf F(x,y) = xy for $x,y \in [0,1]$. Find the copula of
- (2) Consider (17) $(e^{X}, \ln(1+Y)).$ (3) Let $b = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Show that, if Y is a 2-dimensional random vector, $X = (D^2 + I)(Y - b)$ and Y has the same copula, where I is the identity matrix.
- (4) Let (X,Y) follow a bivariate normal distribution $\mathcal{N}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1&-1\\-1&4\end{bmatrix}\right)$. Find its correlation matrix.
- (5) Consider one-factor model:

$$Z_i = \sqrt{\rho}Y + \sqrt{1 - \rho}\epsilon_i, i = 1, 2, 3,$$

where $Y, \epsilon_i \sim N(0,1)$ are independent, and $\rho \in (0,1)$. Find the correlation matrix R and covariance matrix Σ of (Z_1, Z_2, Z_3) .