PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-038615

(43) Date of publication of application: 07.02.1995

(51)Int.Cl.

H04L 27/18

H04J 11/00

(21)Application number: 05-176797

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22) Date of filing:

16.07.1993

(72)Inventor: SOGABE YASUSHI

(54) CN RATIO MEASUREMENT MEANS

(57) Abstract:

PURPOSE: To measure the C/N before demodulation from a reception signal even when there is no non-modulation part or even from a signal subjected to quasi-synchronization detection.

CONSTITUTION: An in-phase orthogonal component of a burst signal detected and phase-modulated by an orthogonal detector 3 is sampled and quantized by a A/D converter 4, a filter 5 is used to make waveform shaping and the signal is stored by one burst in a buffer memory 6. An XY-R2 converter 7 calculates square of the amplitude of the signals outputted from the buffer memory 6 and a selector 8 selects the value to which accumulator it is to be received. A noise power calculation section 10 uses plural accumulated sums

outputted from an accumulation section 9 to obtain noise power of the reception signal and a C/N calculation section 11 estimates the C/N from the accumulation outputted from the accumulation section 9 and the noise power outputted from the noise power calculation section 10 and the estimated C/N by the C/N calculation section 11 is outputted from an output terminal 12.

LEGAL STATUS

[Date of request for examination] 25.09.1997

[Date of sending the examiner's decision of 05.06.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number] 3237322

[Date of registration] 05.10.2001

[Number of appeal against examiner's 2001-11658

decision of rejection]

[Date of requesting appeal against examiner's 05.07.2001

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平7-38615

(43)公開日 平成7年(1995)2月7日

(51) Int.Cl.⁶

識別記号 庁内整理番号 FΙ

技術表示箇所

H04L 27/18

A 9297-5K

HO4J 11/00

Α

審査請求 未請求 請求項の数5 OL (全 15 頁)

(21)出願番号

特顯平5-176797

(22)出廣日

平成5年(1993)7月16日

(71)出願人 000006013

三菱電機株式会社

東京都千代田区丸の内二丁目2番3号

(72)発明者 曽我部 靖志

鎌倉市大船五丁目1番1号 三菱電機株式

会社通信システム研究所内

(74)代理人 弁理士 高田 守

(54) 【発明の名称】 CN比測定手段

(57)【要約】

【目的】 受信信号に無変調部分がなくても、また、準 同期検波された信号に対してでも、復調前にC/N測定 を行う。

【構成】 直交検波器3で検波された、位相変調された バースト信号の同相直交成分ををA/D変換器4で標本 化および量子化し、フィルタ5で波形整形した後にバッ ファメモリ6に1バースト分蓄積する。 XY-R2 変換 器7はバッファメモリ6から出力される信号の振幅の2 乗を計算し、セレクタ8では、その値をどの累積加算器 に入力するかを選択する。雑音電力計算部10では、累 積加算部9から出力される複数個の累積加算値を用いて 受信信号の雑音電力を求め、さらに、C/N計算部11 では、累積加算部9から出力される累積加算値および雑 音電力計算部10から出力される雑音電力から計算によ りC/Nを推定し、出力端子12からC/N計算部11 で推定されたC/Nを出力する。

【特許請求の範囲】

【請求項1】 位相変調された受信信号を変換しその値 に応じた出力を生ずる演算器、所定のサンプリング周期 に対応して前記演算器の出力を周期的に選択する選択 器、上記選択器により選択した信号を累積加算する累積 加算器、上記累積加算値を用いて受信信号の電力対雑音 電力比を求めるC/N測定部を備えたことを特徴とする CN比測定手段。

【請求項2】 位相変調された受信信号から信号の同 相、直交成分を取り出す直交検波器、前記直交検波器出 10 力をA/D変換するA/D変換器、上記A/D変換器出 力を変換しその値に応じた出力を生ずる演算器、所定の サンプリング周期に対応して前記演算器の出力を周期的 に選択する選択器、上記選択器により選択した信号を累 積加算する累積加算器、上記累積加算値を用いて受信信 号の電力対雑音電力比を求めるC/N測定部を備えたこ とを特徴とするCN比測定手段。

【請求項3】 位相変調された受信信号をA/D変換す るA/D変換器、前記A/D変換器出力から信号の同 相、直交成分を取り出す直交検波手段、上記直交検波手 20 段出力を変換しその値に応じた出力を生ずる演算器、所 定のサンプリング周期に対応して前記演算器出力を周期 的に選択する選択器、上記選択器により選択した信号を - 累積加算する累積加算器、上記累積加算値を用いて受信 -信号の電力対雑音電力比を求めるC/N測定部を備えた ことを特徴とするCN比測定手段。

【請求項4】 複数個の累積加算値の比からC/Nを求 めるC/N測定部を備えたことを特徴とする請求項第1 項及び請求項第2項及び請求項第3項に記載のCN比測 定手段。

【請求項5】 複数個の累積加算値の形状からC/Nを 求めるC/N測定部を備えたことを特徴とする請求項第 1項及び請求項第2項及び請求項第3項に記載のCN比 測定手段。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、衛星通信や移動体衛 星通信システムにおいて受信信号を復調する復調装置に 関するものである。

[0002]

【従来の技術】従来のCN比測定方式としては、受信波 を同相、直交検波した後に、検波出力の無変調部分をA /D変換し、そのA/D変換されたデータ系列より統計 的にC/Nを求める方式が提案されている。図15は従 来のCN比測定器であり、例えば信学技報、CS82-73 (1 982)、" TDMA衛星通信用CN比測定方式" (水野 他)に記載されている。図15において、51は入力端 子であり、52はCN比測定回路の帯域幅を決定するB PF、53、54はリミッタと乗算器で構成される直交

るLPF、57は同相検波出力の平均値を2乗する演算 部1、58は直交検波出力の2乗平均値を計算する演算 部2、59は直交検波出力の平均値を2乗する演算部 3、60は演算部2の出力と演算部3の出力を加算する 加算器、61は同期検波時に使用するタンク、62は遅 延検波時に使用する遅延素子、63はタンク61または 遅延素子62出力の位相をシフトするπ/2位相シフ タ、64は加算器60出力を2倍する乗算器、65は演 算部1出力を加算器60出力または乗算器64出力で割 る除算器、66は除算結果を出力する出力端子である。 【0003】一般に受信信号からC/Nを求めるにあた っては、復調された信号のナイキスト点におけるデータ または、受信信号の無変調部分の同相または直交成分の 平均値を2乗することにより搬送波電力を求めることが でき、また、分散を求めることによって雑音電力を求め ることができる。ただし、受信信号の雑音電力は、同相 および直交成分の雑音電力の和であるため、同相または 直交成分を用いて求めた分散を2倍する必要がある。以 上の方法に基づいて受信信号のC/Nを求める。

【0004】次に動作について、図15を参照して説明 する。以下のC/N測定においては、受信信号の無変調 部分のみを用いるものとし、図には、遅延検波の場合も 示したが、簡単のため、同期検波の場合についてのみ説 明する。また、以下の処理において使用するデータの総 ポイント数をLとし、直交検波され、LPFを通された 信号の同相および直交成分を各々ei 、eq とする。さ らにxの平均をE[x]と表すことにする。受信波y(t) をBPF52に通し、測定回路のC/Nを受信C/ Nより高くすることで、測定の正確さを確保する。 TA 30 NK61は、BPF52出力から搬送波を再生し、再生 された搬送波(以下、再生搬送波)を出力する。リミッ タと乗算器で構成される位相検出器 1 (53)からは、 BPF52を通された受信波と再生搬送波を用いて直交 検波した受信信号の同相成分が出力され、位相検出器2 (54)からは、同様にして直交成分が出力される。演 算部1(57)では、LPF1(55)を通された信号 の同相成分ei のLポイントにわたる振幅の平均の2乗 値(E [ei]) 2 を求める。ガウス雑音の性質より、 振幅の平均値を求めることで雑音成分は0となるので、 受信信号の搬送波電力を求めることができる。演算部2 (58)では、LPF2(56)を通された信号の直交 成分eq のLポイントにわたる振幅の2乗平均値E [e

q ²]を求める。演算部3(59)では、演算部1(5 7)と同様に信号の直交成分のしポイントにわたる振幅 の平均の2乗値 (E [eq]) ² を求める。加算器60 では演算部2(58)から出力されるE [eq2]か ら、演算部3(59)から出力される(E [eq]) ² を引くことによって直交成分の分散を求める。乗算器6 4では加算器60から出力される分散を2倍することで 検波用の位相検出部、55、56は高調波成分を除去す 50 受信信号の雑音電力を求める。除算器65では、演算部

1 (57)から出力された搬送波電力を乗算器64から 出力された雑音電力で割ることによりC/Nを求め、そ の値を出力端子66から出力する。

[0005]

【発明が解決しようとする課題】上記のような従来のC N比測定器では、受信波の無変調部分を用いてC/N測 定を行うため、送信側で送信データに無変調部分を付加 して送信しなければならないという欠点があり、また、 搬送波電力および雑音電力を求めるにあたっては、受信 15に示されるように、遅延検波または同期検波された 後でないとC/N測定は行えないという欠点があった。 更に、分散の計算においては、1バースト分のデータを 蓄積した後に平均を求め、その値を用いて分散を求める ために、演算量が多くリアルタイム処理が行えないとい う欠点があった。

【0006】この発明は上記のような欠点を解決するた めになされたもので、サンプリングされたデータ系列を 累積加算することで変調成分を除去することができ、無 変調部分がなくてもC/N測定を行い、受信波の振幅の 20 2乗値を用いることで、準同期検波された信号に対して でもC/N測定を行い、また、復調前にC/N測定を行 うことを目的とする。さらに、演算量を減らすことを目・ 的とする。

[0007]

【課題を解決するための手段】第1の発明に係るCN比 測定手段は上記の目的を達成するために、位相変調され た受信信号を変換しその値に応じた出力を生ずる演算 器、所定のサンプリング周期に対応して前記演算器の出 力を周期的に選択する選択器、上記選択器により選択し 30 た信号を累積加算する累積加算器、上記累積加算値を用 いて受信信号の電力対雑音電力比を求めるC/N測定部 を備える。

【0008】第2の発明に係るCN比測定手段は上記の 目的を達成するために、位相変調された受信信号から信 号の同相、直交成分を取り出す直交検波器、前記直交検 波器出力をA/D変換するA/D変換器、上記A/D変 換器出力を変換しその値に応じた出力を生ずる演算器、 所定のサンプリング周期に対応して前記演算器の出力を 周期的に選択する選択器、上記選択器により選択した信 40 号を累積加算する累積加算器、上記累積加算値を用いて 受信信号の電力対雑音電力比を求めるC/N測定部を備 える。

【0009】第3の発明に係るCN比測定手段は上記の 目的を達成するために、位相変調された受信信号をA/ D変換するA/D変換器、前記A/D変換器出力から信 号の同相、直交成分を取り出す直交検波手段、上記直交 検波手段出力を変換しその値に応じた出力を生ずる演算 器、所定のサンプリング周期に対応して前記演算器出力

信号を累積加算する累積加算器、上記累積加算値を用い て受信信号の電力対雑音電力比を求めるC/N測定部を 備える。

【0010】第4の発明に係るC/N測定部は上記の目 的を達成するために、第1の発明〜第3の発明に記載さ れたC/N測定部において、複数個の累積加算値の比か らC/Nを求めるC/N計算部とを備える。

【0011】第5の発明に係るC/N測定部は上記の目 的を達成するために、第1の発明〜第3の発明に記載さ 波の同相または直交成分を用いて計算していたため、図 10 れたC/N測定部において、複数個の累積加算値を用い てその形状を推定し、推定された形状とリファレンスと を比較することによってC/Nを決定する比較器とを備 える。

[0012]

【作用】第1の発明のCN比測定手段は、複数個の累積 加算値を求め雑音電力と信号電力を求め、前記雑音電力 と信号電力からCN比を測定する。

【0013】第2の発明のCN比測定手段は、まず受信 波を直交検波することによって同相、直交成分に分け、 この信号をA/D変換した後、演算しその演算値より複 数個の累積加算値を求め、さらに、これら複数個の累積 加算値を用いて受信信号の雑音電力を求め、累積加算値 および雑音電力から計算によりC/Nを推定し出力す

【0014】第3の発明のCN比測定手段は、まず受信 波をA/D変換し、A/D変換された信号から同相成分 (X)、直交成分 (Y)を取り出した後、演算しその演 算値より複数個の累積加算値を求め、さらに、これら複 数個の累積加算値を用いて受信信号の雑音電力を求め、 累積加算値および雑音電力から計算によりC/Nを推定 し出力する。

【0015】第4の発明のC/N測定部は、第1~第3 の発明のC/N測定部において、複数個の累積加算値か ら計算によりC/Nを推定し出力する。

【0016】第5の発明のC/N測定部は、第1~第3 の発明のC/N測定部において、複数個の累積加算値を 用いてその形状を推定する。さらに、推定された形状と リファレンスを比較することによってC/Nを推定し出 力する。

[0017]

【実施例】実施例1. 図1はこの発明の実施例を示すC N比測定手段のブロック図であり、図2は図1の動作を 示すフローチャートである。従来、直交検波において は、受信側で再生した再生搬送波を用いるが、準同期検 波の場合も考慮し、ここでは簡単のために、必ずしも送 信側の搬送波とは同期していない受信機の固定発振器を 用いる場合も直交検波と呼ぶことにする。 図1におい て、1は受信波形の入力端子、2は直交検波用の固定発 振器、3は直交検波器、4は直交検波器3出力の同相、 を周期的に選択する選択器、上記選択器により選択した 50 直交成分をサンプリングおよび量子化するA/D変換

器、5はA/D変換された信号の波形整形を行うフィル タ、6は波形整形された信号を1パースト分メモリに蓄 えるバッファメモリ、7はバッファメモリ6の出力を用 いて信号の振幅の2乗を計算するXY-R2変換器、8 はXY-R²変換器7出力をどの加算器に入力するかを 選択するセレクタ、9はN個の累積加算器で構成される 累積加算部、10は累積加算部9から出力される複数個 の累積加算値を用いて受信信号の雑音電力を求める雑音 電力計算部、11は累積加算部9から出力される累積加 算値および雑音電力計算部10から出力される雑音電力 から計算によりC/Nを推定するC/N計算部、12は C/N計算部11で推定されたC/Nを出力する出力端 子、100はセレクタ8、累積加算部9、雑音電力計算 部10、および、C/N計算部11で構成されるC/N 測定部である。

*【0018】以下、CN測定手段の動作について図1に 従い説明する。ここでは、説明を簡単にするために、バ ーストモードの場合について実施例を示し、図3に示す ように、メモリに蓄積されるバースト長をレシンボルと し、1シンボル当りNサンプルするものとする。また、 サンプル時における送信側サンプル点との初期位相差は 0 (1番目のサンプル点がナイキスト点) であるとす る。A/D変換された直交検波器出力の内、i番目のシ ンボルの」番目のサンプル点の同相成分のデータおよび 10 ノイズを各々X(i,j)、n1(i,j) とし、直交成分のデ ータおよびノイズを各々Y(i,j)、n2(i,j) とする(1 $\leq i \leq L, 1 \leq j \leq N$)。これらを $XY - R^2$ 変換器に通 すことにより求まった信号の振幅の2乗値をR(i,j) と すれば、R(i,j) は式1のように表すことができる。

$$R(i,j) = \{X(i,j)+n \ 1 \ (i,j)\}^2 \ + \{Y(i,j)+n \ 2 \ (i,j)\}^2$$

(式1)

各シンボルにおける j 番目の信号の振幅の2乗値をセレ ※で表される、 クタで抜きだし、累積加算器」において 1 バーストにわ [0019] たって累積した累積加算値をPjとすると、Pjは式2※20 【数1】

【0020】式2において、X(i,j) とn1(i,j)、Y (i,j) とn 2(i,j) は各々独立であるので、第3項はL が十分大きいと仮定すればOになる。また、n1(i,j) 、n 2(i,j) ともに全ての i について独立であると仮 定すれば、n1(i,j)、n2(i,j) は各々i番目のシン ボルのう番目のサンプル点におけるノイズの同相、直交★

★成分であるから、第2項は j 番目のサンプル点における ノイズのトータル電力となるが、その電力値は」によら ず同じになるので、ここでは、それをNとおく。以上の 結果より、式2は簡単に式3のようになる。

[0021]

【数2】

$$P j = \sum_{i=1}^{L} [X (i, j)^{2} + Y (i, j)^{2}] + N$$
 (式3)

【0022】式3における第1項について考える。以下 では4相位相シフトキーイング(以下、QPSKと呼 ぶ)の場合について説明する。ただし、簡単のため、直 交検波においては送受信の搬送波は同期しているものと し、周波数差、および初期位相差はないものとし、さら に、サンプルされた信号の前後各々kシンボルまでの符 号間干渉の影響があるとする。

☆を初期位相差-0として、1シンボル当たりNサンプル する様子を示す図である。図4において、実線は振幅 a、シンボル周期Tの受信信号の波形を示し、ここでは 1. -1からなる一連のデータを送信した場合の受信波 形の例を示している。サンプル点が本来のナイキスト点 $から\tau$ ($0 \le \tau \le T$) だけずれていると仮定する。サン プルされた信号yはその時刻における信号成分と符号間 【0023】図4は直交検波出力の同相または直交成分☆50 干渉の成分との和で表されるが、送受信合わせたフィル

$$h(\tau) = \frac{\sin(\pi \tau/T)}{\pi \tau/T} \cdot \frac{\cos(\pi \alpha \tau/T)}{\{1 - (2\alpha \tau/T)^2\}}$$

(式4)

$$yi = \sum_{P=-k}^{k} di + Pah (\tau + PT)$$
 (共5)

【0025】これより、X(i,j)、Y(i,j) は式6、式 ※【0026】 7のように表すことができる。 ※ 【数4】

X (i, j) =
$$\sum_{P=-k}^{k} di + Pah\{(j-1)T/N + PT\}$$
 (式6)

Y (i, j) =
$$\sum_{P=-k}^{k} d'$$
 i + Pah {(j-1)T/N+PT} (式7)

【0027】式6および式7より、式3における第1項 ★【0028】 を求めると、 ★20 【数5】

$$\sum_{i=1}^{L} [X(i,j)^{2} + Y(i,j)^{2}]$$

$$= \sum_{i=1}^{L} \{ \{ \sum_{P=-k}^{k} di + Pah\{(j-1)T/N + PT\} \} \}^{2}$$

+
$$\left[\sum_{P=-k}^{k} di + Pah\{(j-1)T/N + PT\}\right]^{2}$$
 (式8)

【0029】式8において、di、di(i≤0,L+1≥ 30☆すれば、 i) は存在しないが、ここでは、後での式の近似を考え 【0030】 てdi、di(i≤0,L+1≥i) はPNパターンであると☆ 【数6】

~【0031】ここで、ナイキスト点における、信号の振 *無視できるため、結局、簡単に式10の様に近似でき 幅の絶対値を $1(2a^2=1)$ とおき、また、Lは十分 [0032]

大きいとし、データはPNパターンであるのでランダム であるとすると、式9において第2項は第1項に比べて*

 $[X(i,j)^2+Y(i,j)^2]$

=
$$L \cdot \sum_{P=-k}^{k} h^{2} \{(j-1)T/N + PT\}$$
 (式10)

【0033】よって、Pjは以下のようになる。 ※【数8】

[0034]

$$P j = \sum_{i=1}^{L} [X(i, j)^{z} + Y(i, j)^{z}] + N$$

$$= L \sum_{P=-k}^{k} h^{z} \{(j-1)T/N + PT\} + N$$

$$= C i + N$$

=Cj+N

(式11)

【0035】式11におけるCjについて考える。ここ までは、CjおよびPjは離散値として考えていたが、 初期位相差=Oとは限らないので、Cj、Pjを連続関 数C (τ)、P (τ) (-T/2≤τ≤T/2)として考える。 バースト長Lを固定した場合、C(τ)はロールオフ率★

★によって一意的に決定されるので、例えば、C (τ) (-T /2≤ τ≤T/2)をC(0) で正規化した値は式12のよう に表すことができる。

[0036]

【数9】

(式12)

【0037】今、 τ =0およびt1における累積加算値* *は各々

$$P(0) = C(0) + N$$

 $P(t1) = C(t1) + N$

と表すことができる。よって式12~式14より、Nに 相当する分を推定すればC/Nが求まることがわかる。 以下に、Nを推定する方法の一例を示す。

【0038】雑音計算部10では、図6のように、P (0) 、P(t1)から、Nより十分小さい値n0 を減算し、※

$$N = p \cdot n0$$

と表すことができる。C/N計算部では、雑音計算部1 10★累積値P(0) を用いてまず、信号電力Cを求める。 Oから出力される雑音電力Nと、ナイキスト点における★

$$C(0) = P(0) - p \cdot n0$$

さらに、CとNを用いて以下のようにC/Nを求める。

$$C/N = (P(0) - p \cdot n0) / (p \cdot n0)$$

このC/N計算部11で求まったC/Nを出力端子12 から出力する。

【0039】以上の検討においては、サンプル点の中に τ=0の点があると仮定し、P(0)、C(0) を用いてC /Nを求めていたが、実際の動作においてはェ=0の点 があるとは限らない。この場合には、複数個のPjの値 20 から補間等により $P(\tau)$ を推定し、 $P(\tau)$ が最大に なる点をマ=0の点と仮定し、さらにこの推定されたP (τ) において $\tau=t$ 1の点における値を求めることに よって、同様の処理を行えば良い。

【0040】実施例2. 図7はこの発明の他の実施例を 示すCN比測定手段のブロック図であり、図8は図7の 動作を示すフローチャートである。図7において、入力 端子1、A/D変換器4、フィルタ5、メモリ6、XY -R² 変換器、C/N測定部100、出力端子12は実 ency) でA/D変換されメモリに蓄積された信号から同 相成分(X)、直交成分(Y)を取り出す直交変換器 と、直交変換器と直交変換器出力信号の振幅(R)の2 乗を求めるXY-R2 変換回路と、第2の発明記載のC /N測定部とを備える。

(式14)

※ P(t1) / P(0) と既知である k(t1) を比較し、両者の差 が最も小さくなるまで、この動作を繰り返す。p回繰り 返した後に両者の差が最も小さくなったとすると、雑音 電力Nは

(式15)

(式16)

(式17)

☆【0041】実施例1においては、C/Nを行う前に直 交検波により準同期または同期検波を行った信号に対し てA/D変換を行っていたが、ここでは、IF信号を直 接A/D変換し(以下、IFサンプリングと呼ぶ)、A /D変換した後に、例えばディジタル乗算等の信号処理 により直交変換を行い同相成分(X)、直交成分(Y) を取り出し、実施例1と同様の処理を行う。

【0042】実施例3. 図9はこの発明の他の実施例を 示すC/N測定部のブロック図であり、図10は図9の 動作を示すフローチャートである。 図9において、セレ クタ8と累積加算部9は実施例1または実施例2と同じ である。14は累積加算部部9から出力される複数個の 累積加算値を用いて受信信号のC/Nを計算するC/N 計算部である。

【0043】実施例1または実施例2と同様にして、累 施例1と同じである。13はIF (Intermediate Frequ 30 積加算部9ではN個の累積加算値を求める。P(0) とP (t1)の比を PRATE(t1)とすると、式13および式14よ りPRATE(t1)は式18のようになる。

> [0044] 【数10】

P RATE(t1) =
$$\frac{P(t1)}{P(0)} = \frac{C(t1) + N}{C(0) + N} = \frac{C(t1) / N + 1}{C(0) / N + 1}$$

= $\frac{C(t1) / C(0) \times C(0) / N + 1}{C(0) / N} = \frac{k(t1) \times C(0) / N + 1}{C(0) / N}$
= $\frac{k(t1) \times \dot{X} + 1}{X + 1}$ (\vec{X} 18)

【0045】式18より

$$X = C/N = - (PRATE(t1) - 1) / (PRATE(t1) - k(t1))$$

ここで、前述のようにk(t1)はロールオフ率αによって 一意的に決まるので、C/NはPRATE(t1)によって一意 的に決まることになる。このようにしてC/N計算部1 4ではC/Nを推定する。

(式19) ◆2の場合と同様に、サンプル点の中にτ=0の点がない 場合には、複数個のP j の値から補間等によりP (τ) を推定し、P(0)、およびP(t1)の値を求めれば良い。 【0047】実施例4.図11はこの発明の実施例を示 【0046】実施例3についても実施例1または実施例◆50 すC/N測定部のブロック図であり、図12は図11の

動作を示すフローチャートである。 図11において、セ レクタ8と累積加算部9は実施例1または実施例2と同 じである。15は累積加算部部9から出力される複数個 の累積加算値を用いてPの形状を推定する形状推定回 路、16は形状推定回路15で推定された形状をリファ レンスと比較することによりC/Nを推定する比較器で ある。

【0048】実施例3で求まったように、ロールオフ率 を固定にした場合、PRATE(t1)はC/Nによって一意的 に決まることになる。C/Nを変えた場合のPRATE (τ) (-T/2≤τ≤T/2)を図13に示す。ここでは、予 め求めておいた数種類の $PRATE(\tau)$ と、複数個の累積 加算値から求めたP1~PNで構成されるPの形状を比 較することによりC/Nを推定する。以下にその方法に ついて述べる。まず、実施例1と同様にして、累積加算 部9でN個の累積加算値を求める。形状推定回路15で は、このN個の累積加算値の中から複数個の累積加算値 を取りだし、それらを用いて図14のように補間式等に よりP1~PNで構成されるPの形状を推定する。比較 器16では、形状推定回路15で推定されたPの形状と 20 予め求めておいた数種類の $PRATE(\tau)$ の形状を比較 し、一致または両者の形状が最も近くなった場合に、そ のPRATE (τ) のC/Nを受信信号のC/Nと判定し、*

| PRATE(t1) - k(t1) | >> 0

の場合には、n0 の値を大きくし、

| PRATE(t1) - k(t1) | = 0

の場合には、n0 の値を小さくする等の適応処理を用い ることにより、より速く正確に推定することができる。 【0053】その他の実施例5

実施例2および実施例3において、波形整形フィルタは 30 の発明~第3の発明と同様の効果を得ることができる。 A/D変換器の後段においていたが、このフィルタは、 その動作が行える任意の場所 (例えば I F帯) に置き換 えても良い。ただし、この場合には、直交検波器で生じ る高調波を取り除くフィルタが必要であるのはいうまで もない。

[0054]

【発明の効果】以上のように、第1の発明によれば、受 信信号を累積する方法を取るために、従来のCN比測定 器に比べ、無変調部分が無くてもC/N測定ができ、ま た、復調前にC/N測定をリアルタイムで行うことがで 40 きる。さらに、分散等の演算を行う必要がなく、演算量 を減少させることができ、従来よりも回路構成を簡単に することができる。

【0055】以上のように、第2の発明によれば、第1 の発明と同様の効果を得ることができる。

【0056】以上のように、第3の発明によれば、IF 受信信号からC/N測定を行うことができるので、IF サンプリングデータから復調を行う復調器に対しても適 用することができ、この場合、ベースバンド信号を作る 必要がなくなるため、従来よりも回路構成を簡単にする※50 *出力する。

【0049】その他の実施例1

実施例1~実施例4においては、受信信号をバースト毎 に一旦バッファメモリに蓄積した後にC/Nを求めてい たが、累積加算するシンボル数が多い方がよりノイズが 平均化され、C/N推定精度が向上するので、遅延が許 容されるようなシステムにおいては、例えば2バースト 毎にC/Nを測定する等、処理するバースト数を増やし ても良い。また、受信信号をバッファメモリに蓄積せず 10 に、この処理をリアルタイムで行っても良い。

【0050】その他の実施例2

実施例1においては、直交検波において送受信の搬送波 は同期しているものとし、周波数差および初期位相差は ないものとしていたが、Pjの導出にあたっては、受信 信号の振幅の2乗値を用いて計算を行うため、準同期の 状態でも同様の結果が得られる。

【0051】その他の実施例3

実施例1~実施例4においては、受信信号の振幅の2乗 値を用いて計算を行っていたが、例えば受信信号の振幅 の絶対値を用いても良い。

【0052】その他の実施例4

実施例1において、P(0)、P(t1)から、Nより十分小 さい値n0 を繰り返し減算していたが、

(式20).

(式21)

※ことができ、さらに、第1の発明と同様の効果を得るこ とができる。

【0057】以上のように、第4の発明によれば、第1 【0058】以上のように、第4の発明によれば、第1 の発明〜第3の発明と同様の効果を得ることができ、さ らに、補間の後にリファレンスと比較することでさらに 精度良くC/Nを測定することができる。

【図面の簡単な説明】

【図1】この発明の実施例1を示すCN比測定器のブロ ック図。

【図2】図1の動作を示すフローチャート。

【図3】バーストとサンプルの様子を説明する図。

【図4】受信信号を1シンボル当りNサンプルする動作 を説明する図。

【図5】フィルタのロールオフ率αを説明する図。

【図6】P(τ)の形状を示す図。

【図7】この発明の実施例2を示すCN比測定器のブロ ック図。

【図8】図7の動作を示すフローチャート。

【図9】この発明の実施例3を示すC/N測定部のブロ

【図10】図9の動作を示すフローチャート。

【図11】この発明の実施例4を示すC/N測定部のブ

ロック	☑.		15	形状推定回路
【図12】図11の動作を示すフローチャート。			16	比較器
【図13】PRATE(τ)の一例を示す図。			51	入力端子
【図14】Pの形状を推定する方法を説明する図。			52	BPF
[図1	5】従来例のCN比測定器のブロック図。		53	位相検出部1
【符号の説明】			54	位相検出部2
1	入力端子		55	LPF1
2	固定発振器		56	LPF2
3	直交検波器		57	演算部1
4	A/D変換器	10	58	演算部2
5	フィルタ		59	演算部3
6	バッファメモリ		60	加算器
7	XY-R ² 変換器		6 1	TANK
8	セレクタ		62	遅延素子
9	累積加算部		63	π/2位相シフタ
10	雑音電力計算部		64	乗算器
1 1	C/N計算部		65	除算器
12	出力端子		66	出力端子
13	直交变換器		100	C/N測定部
14	C/N計算部	20		

【図3】

ナイキスト点:1番目のサンプル点・

【図1】

0.0

【図5】

【図7】

【図9】

-

【図11】

