

THÈSE DE DOCTORAT DE

L'Université de Nantes

ÉCOLE DOCTORALE N° 596

Matière, Molécules, Matériaux

Spécialité: Physique des particules

Par

Léonard Imbert

Precision measurement of solar neutrino oscillation parameters with the JUNO small PMTs system and test of the unitarity of the PMNS matrix

Thèse présentée et soutenue à Nantes, le Too soon and too early at the same time Unité de recherche : Laboratoire SUBATECH, UMR 6457

Rapporteurs avant soutenance:

Someone Very high position, Somewhere Someone else Another high position, Somewhere else

Composition du Jury:

Président : Jacques Chirac French president, France

Examinateurs: Yoda Master, Dagobha

Dir. de thèse : Frédéric Yermia Professeur, Université de Nantes

Co-dir. de thèse : Benoit Viaud Professeur, CNRS

Invité(s):

Victor Lebrin Docteur, CNRS/SUBATECH

List of Abbreviations

NMO Neutrino Mass Ordering

JUNO Jiangmen Underground Neutrino Observatory

NO Normal OrderingIO Inverse OrderingIBD Inverse Beta Decay

Contents

Co	onten	ts		1
Re	emero	ciement	ts	5
In	trodu	ction		7
1	Neu	trino p	hysics	g
	1.1	Standa	ard model	Ç
		1.1.1	Limits of the standard model	Ç
	1.2	Histori	c of the neutrino	Ç
	1.3	Oscilla	tion	ç
		1.3.1	Phenomologies	ç
	1.4	Open	questions	ç
2	The	JUNC	experiment	11
	2.1	Neutri	nos physics in JUNO	11
		2.1.1	Reactor neutrino oscillation for NMO and precise measurements $\ . \ .$	11
			Identification of the mass ordering	13
			Precise measurement of the oscillations parameters	13
		2.1.2	Other physics	13
			Geoneutrinos	13
			Atmospheric neutrinos	13
			Beyond standard model neutrinos interactions	14
			Supernovae burst neutrinos	14
			Diffuse supernovae neutrinos background	14
			Background in the neutrinos reactor spectrum	14
	2.2	The J	JNO detector	14
		2.2.1	Central Detector (CD)	14
			Acrylic containment sphere	14

			Liquid scintillator	14
			Large photo-multipliers (LPMTs)	14
			Small photo-multipliers (SPMTs)	14
			Data Acquisition System (DAQ)	14
			Simulation	14
			Software	14
		2.2.2	Veto detector	14
			Cherenkov in water pool	14
			Top tracker	14
	2.3	Calibra	ation strategy	14
		2.3.1	Energy scale calibration	14
		2.3.2	Calibration system	14
		2.3.3	Calibration program	14
	2.4	Event	selection and background rejection	14
		2.4.1	Fiducial volume	15
		2.4.2	Muon tagging	15
	2.5	State o	of the art of the IBD reconstruction	15
		2.5.1	Interaction vertex reconstruction	15
		2.5.2	Energy reconstruction	15
		2.5.3	Particle identification	15
		2.5.4	Machine learning for reconstruction	15
			Vertex reconstruction	15
			Energy reconstruction	15
	2.6	JUNO	sensitivity to NMO and precise measurements	15
		2.6.1	Fitting procedure	15
				4 –
3			earning and Artificial Neural Network	17
	3.1	•	y of the Machine learning	17
	3.2		ed Decision Tree (BDT)	17
	3.3		ial Neural Network (NN)	17
		3.3.1	Fully Connected Deep Neural Network (FCDNN)	17
		3.3.2	Convolutional Neural Network (CNN)	17
		3.3.3	Graph Neural Network (GNN)	17
		3.3.4	Adversorial Neural Network (ANN)	17
			Generative Adversorial Network (GAN)	17

Contents 3

	Reinformcement Learning (RL)	17
	Random Search (RS)	17
	Bayesian Optimization	17
4	Image recognition for IBD reconstruction with the SPMT system	19
5	Graph representation of JUNO for IBD reconstruction with the LPMT system	21
6	Reliability of machine learning methods	23
7	Discrimination of e+/e- events in JUNO	25
8	Conclusion	27
Bi	bliography	29

Remerciements

Introduction

Neutrino physics

The neutrino, or ν for the close friends, a fascinating and invisible particle. Some will say that dark matter also have those property but at least we are pretty confident that neutrinos exists.

1.1 Standard model

1.1.1 Limits of the standard model

1.2 Historic of the neutrino

First theories

Discovery

Milestones and anomalies

- 1.3 Oscillation
- 1.3.1 Phenomologies
- 1.4 Open questions

Decrire le standard Regarder LHC / O Kochebin

Limite du standard essant/ju etudier le neutrinos violation ? Pb des ?

The JUNO experiment

The first idea of a medium baseline (60 km) experiment, was explored in 2008 where it was demonstrated that the Neutrino Mass Ordering (NMO) could be determined by a medium baseline experiment if $\sin^2(2\theta_{13}) > 0.005$ without requirements on accurate information of reactor antineutrino spectra and the value of Δm_{32}^2 . [1] It was shown that for value of

The JUNO (Jiangmen Underground Neutrino Observatory) is a neutrino detection experiment located in China. Its main objective is the determination of the mass ordering at the $3-4\sigma$ level in 6 years of data taking [2].

now. See JUNO ch before ge back here

2.1 Neutrinos physics in JUNO

As said before, the main goals of JUNO are the determination of the NMO and the precise measurements of the oscillation parameters Δm_{21}^2 , $\sin^2 2\theta_{12}$, Δm_{32}^2 and, with less precision, $\sin^2 \theta_{13}$.

2.1.1 Reactor neutrino oscillation for NMO and precise measurements

Previous works [1, 3] shows that oscillation parameters and the NMO can be observed by looking at the $\bar{\nu}_e$ disappearance spectrum coming from medium baseline nuclear reactor. This disappearance probability can be expressed as [2]:

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \frac{\Delta m_{21}^2 L}{4E} - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \frac{\Delta m_{31}^2 L}{4E} + s_{12}^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right]$$

Where $s_{ij}=\sin\theta_{ij}$, $c_{ij}=\cos\theta_{ij}$, E is the $\bar{\nu}_e$ energy and L is the baseline. We can see the sensitivity to the NMO in the dependency to Δm_{32}^2 and Δm_{31}^2 causing a phase shift of the spectrum (Figure 2.1). By carefully fitting this spectrum, one can extract the NMO and the oscillation parameters.

Might rer this line i enough p in preced chapter/s

FIGURE 2.1 — Expected number of neutrinos event per MeV in JUNO after 6 years of data taking. The black curve shows the flux if there was no oscillation. The light gray curve shows the oscillation if only the solar terms are taken in account $(\theta_{12}, \Delta m_{21}^2)$. The blue and red curve shows the spectrum in the case of, respectively, NO and IO. The dependency of the oscillation to the different parameters are schematized by the double sided arrows. We can see the NMO sensitivity by looking at the fine phase shift between the red and the blue curve.

Identification of the mass ordering

To identify the mass ordering, we fit the neutrino energy spectrum under the two hypothesis of NO and IO. Those two fit give us two χ^2 , respectively χ^2_{NO} and χ^2_{IO} . By computing the difference $\Delta\chi^2=\chi^2_{NO}-\chi^2_{IO}$ we can determine the most probable mass ordering: NO if $\Delta\chi^2>0$ and IO if $\Delta\chi^2<0$. Current studies shows that the expected sensitivity the mass ordering would be of 3.4σ after 6 years of data taking in nominal setup[2].

Precise measurement of the oscillations parameters

The oscillations parameters θ_{12} , θ_{13} , Δm_{21}^2 , Δm_{31}^2 are free parameters in the fit of the oscillation spectrum. The precision on those parameters have been estimated and are shown in figure 2.2. Wee see that for θ_{12} , Δm_{21}^2 , Δm_{31}^2 , precision at 6 years is better than the reference precision by an order of magnitude [4]

	Central Value	PDG2020	$100\mathrm{days}$	6 years	20 years
$\Delta m_{31}^2 \ (\times 10^{-3} \text{ eV}^2)$	2.5283	$\pm 0.034 \ (1.3\%)$	$\pm 0.021 \ (0.8\%)$	$\pm 0.0047 \; (0.2\%)$	±0.0029 (0.1%)
$\Delta m_{21}^2 \ (\times 10^{-5} \ \text{eV}^2)$	7.53	$\pm 0.18 \; (2.4\%)$	$\pm 0.074 \ (1.0\%)$	$\pm 0.024 \ (0.3\%)$	$\pm 0.017 \; (0.2\%)$
$\sin^2 \theta_{12}$	0.307	$\pm 0.013 \ (4.2\%)$	$\pm 0.0058 \ (1.9\%)$	$\pm 0.0016 \ (0.5\%)$	$\pm 0.0010 \ (0.3\%)$
$\sin^2 \theta_{13}$	0.0218	$\pm 0.0007 \ (3.2\%)$	$\pm 0.010 \ (47.9\%)$	$\pm 0.0026 \; (12.1\%)$	$\pm 0.0016 \ (7.3\%)$

FIGURE 2.2 - A summary of precision levels fir the oscillation parameters. The reference value (PDG 2020 [5]) is compared with 100 days, 6 years and 20 years of JUNO data taking.

2.1.2 Other physics

While reactor neutrinos are the main signal, JUNO will of course be sensitive to every neutrinos energetic enough to allow an IBD, and even some other more exotic channels.

Geoneutrinos

Geoneutrinos designate the antineutrinos coming from the decay of long-lived radioactive elements inside the Earth. The 1.8 MeV threshold necessary for the IBD makes it possible to measure geoneutrinos from 238U and 232Th decay chains. The studies of geoneutrinos can help refine the Earth crust models but is also necessary to characterise their signal, as they are a background to the mass ordering and oscillations parameters studies.

Atmospheric neutrinos

Atmospheric neutrinos are neutrinos originating from the decay of π and K particles that are produced in extensive air showers initiated by the interactions of cosmic rays with the Earth atmosphere. Earth is mostly transparent to neutrinos below the PeV energy, thus JUNO will be able to see neutrinos coming from all directions. Their baseline range is large

(15km \sim 13000km), they can have energy between 0.1 GeV and 10 TeV and will contain all neutrino and antineutrinos flavour.

Beyond standard model neutrinos interactions

Supernovae burst neutrinos

Diffuse supernovae neutrinos background

Background in the neutrinos reactor spectrum

2.2 The JUNO detector

2.2.1 Central Detector (CD)

Acrylic containment sphere

Liquid scintillator

Large photo-multipliers (LPMTs)

Small photo-multipliers (SPMTs)

Data Acquisition System (DAQ)

Simulation

Software

2.2.2 Veto detector

Cherenkov in water pool

Top tracker

2.3 Calibration strategy

- 2.3.1 Energy scale calibration
- 2.3.2 Calibration system
- 2.3.3 Calibration program
- 2.4 Event selection and background rejection

on ent cre un C)

- 2.4.1 Fiducial volume
- 2.4.2 Muon tagging
- 2.5 State of the art of the IBD reconstruction
- 2.5.1 Interaction vertex reconstruction
- 2.5.2 Energy reconstruction
- 2.5.3 Particle identification
- 2.5.4 Machine learning for reconstruction

Vertex reconstruction

Energy reconstruction

- 2.6 JUNO sensitivity to NMO and precise measurements
- 2.6.1 Fitting procedure

Machine learning and Artificial Neural Network

- 3.1 History of the Machine learning
- 3.2 Boosted Decision Tree (BDT)
- 3.3 Artificial Neural Network (NN)
- 3.3.1 Fully Connected Deep Neural Network (FCDNN)
- 3.3.2 Convolutional Neural Network (CNN)
- 3.3.3 Graph Neural Network (GNN)
- 3.3.4 Adversorial Neural Network (ANN)

Generative Adversorial Network (GAN)

Reinformcement Learning (RL)

Random Search (RS)

Bayesian Optimization

Image recognition for IBD reconstruction with the SPMT system

Graph representation of JUNO for IBD reconstruction with the LPMT system

Reliability of machine learning methods

Discrimination of e+/e- events in JUNO

Conclusion

Bibliography

- [1] Liang Zhan, Yifang Wang, Jun Cao, and Liangjian Wen. "Determination of the Neutrino Mass Hierarchy at an Intermediate Baseline". *Physical Review D* 78.11 (Dec. 2008). arXiv:0807.3203 [hep-ex, physics:hep-ph], 111103. ISSN: 1550-7998, 1550-2368. DOI: 10.1103/PhysRevD.78.111103. URL: http://arxiv.org/abs/0807.3203 (visited on 09/18/2023).
- [2] Fengpeng An et al. "Neutrino Physics with JUNO". Journal of Physics G: Nuclear and Particle Physics 43.3 (Mar. 2016). arXiv:1507.05613 [hep-ex, physics:physics], 030401. ISSN: 0954-3899, 1361-6471. DOI: 10.1088/0954-3899/43/3/030401. URL: http://arxiv.org/abs/1507.05613 (visited on 07/28/2023).
- [3] Liang Zhan, Yifang Wang, Jun Cao, and Liangjian Wen. "Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos". *Physical Review D* 79.7 (Apr. 2009). arXiv:0901.2976 [hep-ex], 073007. ISSN: 1550-7998, 1550-2368. DOI: 10.1103/PhysRevD.79.073007. URL: http://arxiv.org/abs/0901.2976 (visited on 09/18/2023).
- [4] JUNO Collaboration et al. "Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO". *Chinese Physics C* 46.12 (Dec. 2022). arXiv:2204.13249 [hep-ex], 123001. ISSN: 1674-1137, 2058-6132. DOI: 10.1088/1674-1137/ac8bc9. URL: http://arxiv.org/abs/2204.13249 (visited on 08/11/2023).
- [5] Particle Data Group et al. "Review of Particle Physics". Progress of Theoretical and Experimental Physics 2020.8 (Aug. 2020), 083C01. ISSN: 2050-3911. DOI: 10.1093/ptep/ptaa104. eprint: https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf. URL: https://doi.org/10.1093/ptep/ptaa104.