## OPENCLASSROOM

Parcours data scientist en alternance

## Livrable 4



| Missions                                                                                                                                                                                                                                                                                                                                    | Objectifs                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Des relevés <u>coûteux</u> ont été effectués entre<br>en 2015 et en 2016 à Seattle.<br>A partir de ces relevés, <b>prédire les émissions</b><br><b>de CO2 et la consommation totale d'énergie</b><br>des bâtiments <u>non résidentiels</u> pour lesquels<br>elles n'ont pas encore été mesurées.<br>Evaluer l'intérêt de l'ENERGYStarScore. | <ul> <li>Réaliser une courte analyse exploratoire.</li> <li>Tester différents modèles de prédiction</li> <li>Attention : <ul> <li>se passer des relevés annuels</li> <li>optimiser les performances avec des transformations simples aux variables</li> <li>évaluation rigoureuse des performances de la régression</li> <li>optimiser les hyperparamètres et le choix d'algorithme de ML à l'aide d'une validation croisée.</li> </ul> </li> </ul> |

## La source



Dataset provenant de la ville de Seattle et hébergée sur **Kaggle.** La donnée est mise à jour régulièrement.

Data en 2 datasets : 2015 et 2016

## Data Cleaning 🗸



## Prérequis



#### Réunir les deux datasets :

- homogénéiser les colonnes
- concatener les datasets

#### Déterminer les cibles :

- SiteEnergyUse(kBtu),
- TotalGHGEmissions,
- (ENERGYStarScore)

# Variables catégorielles (1)



- BuildingType : filtre les bâtiments non résidentiels
- Suppression des features sans intérêt (exemple TaxParcelldentificationNumber)



- Utilisation test chi 2 pour choisir certaines features (PrimaryPropertyType, LargestPropertyType)
- PrimaryPropertyType : réduire le nombre de type possible (passage de 30 à 17)

Variables catégorielles (2)

# Variables catégorielles (3)



#### Variables sélectionnées :

- PrimaryPropertyType
- Neighborhood
- BuildingType

-> One hot encoding

# Variables quantitatives (1)



- Suppression de toutes variables provenant des relevés
- Data-engineering: calcul age du bâtiment plutôt que l'année, ratio parking/surfacetotal, buidling/surfacetotal
- Analyse corrélation

# Variables quantitatives (2)



- Vérification des outliers (surfaces / nombre étage négatives)
- Remplir par la valeur de l'autre année si possible

## Variables quantitatives (3)





#### Variables sélectionnées :

- Numberofbuildings
- Numberoffloors
- parking ratio
- building ratio
- DataYear (encodée)
- PropertyGFABuilding(s)
- BuildingAge

-> Normalisation par RobustScaler due à la distribution présentant des outliers

$$X_{ ext{scale}} = rac{x_i - x_{ ext{med}}}{x_{75} - x_{25}}$$

11

### Cibles



Application de la transformée de Box-Cox sur les targets

$$y(\lambda) = \begin{cases} (y^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0; \\ \log y & \text{if } \lambda = 0. \end{cases}$$

Normalise + retour donnée originale possible

## Modèles Sélection 🧐



### Baseline



#### **DummyRegressor sur médiane:**

#### EnergySiteUse (médiane = 2 500 701 kBtu):

- **MAE**: 1 663 251

- **RMSE**: 19 070 933

- **r2: -**0.07

- **MDAPE**: 71

#### Emission (médiane=49):

- **MAE**: 36

- **RMSE**: 607

- **r2**: -0.04

- **MDAPE**: 75

### Premiers modèles





**Gridsearching** pour finetuner + **cross validation** (k=5) sur **régression linéaire**, **ridge**, **lasso**, **knn**, **randomforest et XGBoost** 

Résultats similaires sur la prédiction des émissions

#### **Evaluation sur:**

- MAE,
- RMSE,
- R2
- (MDAPE)

Meilleure modèle : Random forest

### Premiers modèles



Vérification tradeoff overfitting/underfitting par learning curves

-> Tradeoff ok, mais semble "manquer" de donnée pour atteindre un plateau

### Random Forest





Features importances sur la donnée box cox

Outliers semblent perturber le modèle

BoxCox transformation améliore les performances

Résultats similaires sur la target émission

### EnergieStarScore



|          | metrics      | Avec<br>EStarScore | Sans<br>EStarScore |
|----------|--------------|--------------------|--------------------|
| CONSOM-  | r2           | 0.9                | 0.78               |
| MATION   | r2<br>ajusté | 0.89               | 0.77               |
| EMISSION | r2           | 0.82               | 0.81               |
|          | r2<br>ajusté | 0.80               | 0.8                |

Sélection donnée avec EnergieStarScore (perte environ 1000 observations/3000) Réentrainement modèle avec et sans energie star score

- -> impact positif sur la prédiction de la consommation,
- -> pas d'impact sur prédiction d' émission.

## Entrainements 🏃



### Modèle Final



#### Random Forest:

- sans outliers,
- sans EnergieStarScore (enlève trop de donnée)
- Gridsearch pour finetuning hyperparams

## Modèle Final Consommation

|       | BASELINE                            | Résultats            |
|-------|-------------------------------------|----------------------|
| MAE   | <del>1 663 251</del><br>1 802 401   | 417 621<br>979 627   |
| RMSE  | <del>19 070 933</del><br>17 310 936 | 1 917 678<br>7733288 |
| R2    | <del>0.07</del><br>0.06             | 0.8<br>0.71          |
| mdape | <del>71</del><br>72                 | 21<br>35             |





## Modèle Final Emission

|       | BASELINE                  | Résultats |
|-------|---------------------------|-----------|
| MAE   | <del>36</del><br>39       | 7.5       |
| RMSE  | <del>607</del><br>405     | 53        |
| R2    | <del>-0.04</del><br>-0.08 | 0.71      |
| mdape | <del>75</del><br>78       | 17        |







#60648792

#### Modèle limité pour répondre à nos objectifs :

- Baseline largement améliorée
- R2 0.8 et 0.7
- mais MAE/RMSE hautes

## **EnergyStarScore semble très pertinent** sur la consommation

#### Pistes d'améliorations :

- avoir plus de données
- travailler colonne LargestPropertyUses?

#### Conclusions personnelles:

- Difficulté pour cerner la consigne
- Prédiction de plusieurs cibles + évaluation d'une feature -> beaucoup de pistes



Je vous remercie pour votre attention