Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Filipchenko Vladislav Гр. 320207

Вариант 27

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:566c:6164:6900:0/104 |

Задание 1.2: разбить сеть из п.1.1 на 66 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Π рефикс $N_{ m C\acute{\Gamma}C,}$	2001: db8: 0: 4 eef: 566c: 6164: 6900: 0/111
Префикс $N_{ m C,P\ddot{e}PS}$	2001:db8:0:4eef:566c:6164:6982:0/111

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (27*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (27*16)/256=176

Дано: Сеть 11.176.0.0/12

Задание 2.1.1: разбить сеть на 2048 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	176	0	0
Адрес сети	00001011	10110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 7 бит из 2-го октета.

3. Итого, получается, что сеть 11.176.0.0/12 мы разбили на 2048 подсети, в каждой из которых по 510 узлов, указываем первые 5 подсетей:

	11	176	0	0
Адрес сети дв.с	00001011	10110000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

200	200 2	104
$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.176.0.0/23	3
Адрес первого узла N_1	11.176.0.1	
Адрес последнего узла N_1	11.176.1.254	
Широковещательный адрес N_1	11.176.1.255	
Адрес сети $N_2/$ Префикс N_2	11.176.2.0/23	3
Адрес первого узла N_2	11.176.2.1	
Адрес последнего узла N_2	11.176.3.254	
Широковещательный адрес N_2	11.176.3.255	
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.176.4.0/25	3
Адрес первого узла N_3	11.176.4.1	
Адрес последнего узла N_3	11.176.5.254	
Широковещательный адрес N_3	11.176.5.255	
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.176.6.0/2	3
Адрес первого узла N_4	11.176.6.1	
Адрес последнего узла N_4	11.176.7.254	
Широковещательный адрес N_4	11.176.7.255	
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.176.8.0/25	3
Адрес первого узла N_5	11.176.8.1	
Адрес последнего узла N_5	11.176.9.254	
Широковещательный адрес N_5	11.176.9.255	

Дано: Сеть 11.176.0.0/12

Задание 2.1.2: разбить сеть на 2500 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(2500 \leqslant 2^{12} = 4096)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета (получается, что сеть можно разбить на 4096 подсетей: $2^{12} = 4096$; оставшиеся 8 бит идут под узлы: $2^8 - 2 = 254$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.176.0.0/24
Λ дрес первого узла N_1	11.176.0.1
Адрес последнего узла N_1	11.176.0.254
Широковещательный адрес N_1	11.176.0.255
Анрос соли N. / Профикс N.	11 185 105 0 /2

$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	$\fbox{11.185.195.0/24}$
Λ дрес первого узла N_2	11.185.195.1
Адрес последнего узла N_2	11.185.195.254
Широковещательный адрес N_2	11.185.195.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 1024 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	176	0	0
Адрес сети	00001011	10110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=10, т.к. $2^{10}-2=1022$. Т.е. нужно выбрать такую маску, которря выделит ровно 10 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{10}=64$ подсетей по 1022 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.191.236.0/22
Адрес первого узла N_1	11.191.236.1
Адрес последнего узла N_1	11.191.239.254
Широковещательный адрес N_1	11.191.239.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.191.240.0/22
Адрес первого узла N_2	11.191.240.1
Адрес последнего узла N_2	11.191.243.254
Широковещательный адрес N_2	11.191.243.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	11.191.244.0/22
Адрес первого узла N_3	11.191.244.1
Адрес последнего узла N_3	11.191.247.254
Широковещательный адрес N_3	11.191.247.255

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	$oxed{11.191.248.0/22}$
Адрес первого узла N_4	11.191.248.1
Адрес последнего узла N_4	11.191.251.254
Широковещательный адрес N_4	11.191.251.255
Адрес сети $N_5/$ Префикс N_5	11.191.252.0/22
Адрес первого узла N_5	11.191.252.1
Адрес последнего узла N_5	11.191.255.254
Широковещательный адрес N_5	11.191.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 9000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	176	0	0
Адрес сети	00001011	10110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=14, т.к. $2^{14}-2=16382\geqslant 9000$.

	11	176	U	U
Адрес сети дв.с	00001011	10110000	00000000	00000000
Маска дв.с	11111111	11111111	11000000	00000000
	255	255	192	0

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	11.176.0.0/18
Адрес первого узла N_1	11.176.0.1
Адрес последнего узла N_1	11.176.63.254
Широковещательный адрес N_1	11.176.63.255

Адрес сети $N_2/$ Префикс N_2	11.191.192.0/18
Адрес первого узла N_2	11.191.192.1
Адрес последнего узла N_2	11.191.255.254
Широковещательный адрес N_2	11.191.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее $500~{\rm AKTИBHЫX}$ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	176	0	0
Адрес сети	00001011	10110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510$.

	11	176	0	0
Адрес сети дв.с	00001011	10110000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.191.246.0/23
Адрес первого узла N_1	11.191.246.1
Адрес последнего узла N_1	11.191.247.254
Широковещательный адрес N_1	11.191.247.255
Адрес сети $N_2/$ Префикс N_2	11.191.248.0/23
Адрес первого узла N_2	11.191.248.1
Адрес последнего узла N_2	11.191.249.254
Широковещательный адрес N_2	11.191.249.255

$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.191.250.0/23
Адрес первого узла N_3	11.191.250.1
Адрес последнего узла N_3	11.191.251.254
Широковещательный адрес N_3	11.191.251.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.191.252.0/23
Адрес первого узла N_4	11.191.252.1
Адрес последнего узла N_4	11.191.253.254
Широковещательный адрес N_4	11.191.253.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.191.254.0/23
Адрес первого узла N_5	11.191.254.1
Адрес последнего узла N_5	11.191.255.254
Широковещательный адрес N_5	11.191.255.255