Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 235.4 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E

658.04
658.03
658.01
658.00
0 20 40 60 80 100 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 13.52, tilsynelatende blå størrelseklass $m_B=16.01$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 5.92, tilsynelatende blå størrelseklass $m_B = 8.41$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\cdot}\mathrm{V}=5.92,$ tilsynelatende

blå størrelseklass m_B = 7.41

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 13.52, tilsynelatende blå størrelseklass $m_B = 15.01$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.19 og store halvakse a=82.59 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.19 og store halvakse a=85.97 AU.

Filen 1F.txt

Ved bølgelengden 650.60 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

9.00 - 88.50 - 8.00 - 7.50 - 6.50 - 0 20 40 60 80 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 11.60 solmasser, temperatur på 74.60 Kelvin og tetthet 1.61e-21 kg per kubikkmeter

Gass-sky B har masse på 16.40 solmasser, temperatur på 77.40 Kelvin og tetthet 9.32e-21 kg per kubikkmeter

Gass-sky C har masse på 4.20 solmasser, temperatur på 55.00 Kelvin og

tetthet 1.75e-21 kg per kubikkmeter

Gass-sky D har masse på 15.80 solmasser, temperatur på 52.90 Kelvin og tetthet 3.37e-21 kg per kubikkmeter

Gass-sky E har masse på 12.10 solmasser, temperatur på 11.20 Kelvin og tetthet 1.62e-20 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

STJERNE B) stjernas energi kommer fra Planck-stråling alene

STJERNE C) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE D) stjerna har et degenerert heliumskall

STJERNE E) stjernas overflate består hovedsaklig av helium

Filen 1L.txt

Stjerne A har spektralklasse G6 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 9.15

Stjerne B har spektralklasse K7 og visuell tilsynelatende størrelseklasse m_V = 7.03

Stjerne C har spektralklasse A1 og visuell tilsynelatende størrelseklasse m_V = 4.70

Stjerne D har spektralklasse K7 og visuell tilsynelatende størrelseklasse m_V = 5.90

Stjerne E har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 2.60

Filen 1P.txt

Alle gasspartiklene har fart $100~\mathrm{m/s}$ i tilfeldige (uniformt fordelte) retninger.

$Filen~2A/Oppgave 2A_Figur 1.png$

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png
Figur 1

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen $2A/Oppgave2A_Figur2.png$

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.667999999999992716937 AU.

Tangensiell hastighet er 48788.570697844013920985 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.286 AU.

Kometens avstand fra jorda i punkt 2 er r2=6.540 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=19.237.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9364 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00071 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=1080.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9927 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 491.70 nm.

Filen 4A.txt

Stjernas masse er 2.38 solmasser.

Stjernas radius er 0.53 solradier.

Filen 4C.png

Figur 4C 1.8000 1.6500 1.5000 Sannsynlighetstetthet i 10⁻⁴ % 1.3500 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 500 -1000 -250 250 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 27.60 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.43 solmasser.

r-koordinaten til det innerste romskipet er
r $=7.35~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=11.12~\mathrm{km}.$