INF4230 – Intelligence Artificielle

Recherche heuristique / Algorithme A*

Hiver 2017

Sommaire

- Rappels:
 - Agents.
 - Résolution de problème par recherche.
 - Espace d'états.
- Recherche informée.
- Recherche «meilleur en premier».
- Algorithme A*.
- Heuristiques.
- Propriétés de A*.
- Exemples d'heuristiques.

Rappel: Agents rationnels

Agent :

Perçoit son environnement.

- Agit dans son environnement
- Se fait une représentation du monde (modèle).
- Mesure de performance.
- (Modèle PEAS).
- Un agent a une fonction $f: \mathcal{P}^* \to \mathcal{A}$.

Rappel: Environnements

- Caractéristiques d'un environnement :
 - Complètement observable vs partiellement observable.
 - Déterministe vs stochastique.
 - Épisodique vs séquentiel.
 - Statique vs dynamique.
 - Discret vs continu.
 - Agent unique vs multi-agent.
- Quasi synonymes : environnement et monde (world).

Rappel : Paradigme de résolution de problème

- La fonction f d'un agent peut être implémentée à l'aide du paradigme «résolution de problèmes par recherche».
- Construction d'un modèle du monde à l'aide des données sensorielles provenant des capteurs.
- Un graphe est étendu à partir de l'état initial (actuel) en simulant les actions de l'agent.
- Les décisions séquentielles sont sélectionnées à l'aide d'une recherche dans un graphe.

Rappel: Types de problème

- Déterministe + Complètement observable → problème à partir d'un état unique.
 - L'agent sait tout et peut simuler ses actions.
 - Solution = séquence d'actions
- - À chaque itération, on doit percevoir l'environnement.
 - Solution = Plan contingent; Alternance recherche et exécution.
- Non observable

 problème sans capteurs ou problème de conformance (conformant planning).
 - L'agent n'a aucune idée de son environnement.
 - Solution = séquence d'actions.
- Espace d'états inconnu

 problème d'exploration.

Rappel: Agent basé sur des buts

```
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
   static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation
   state \leftarrow \text{Update-State}(state, percept)
   if seq is empty then do
        goal \leftarrow FORMULATE-GOAL(state)
        problem \leftarrow Formulate-Problem(state, goal)
        seq \leftarrow Search(problem)
   action \leftarrow First(seq)
   seq \leftarrow Rest(seq)
   return action
```

Exemple 1 – Agent sur une carte

Monde:

Villes et routes.

Problème posé (état_initial, but):

v0: ville de départ (état initial)

v6: destination (but)

Exemple 2 – Jeu de taquin (puzzle)

RECHERCHE INFORMÉE

Algorithme Meilleur en premier (Best-First-Search)

- La définition varie selon les auteurs :
 - Dans le livre de Norvig et Russell : «Greedy Best-First-Search» ≠ «Best-First-Search»
- «Greedy Best-First-Search» (GBFS) est une recherche locale ≈ hill climbing (chapitre 4).
- «Best-First-Search» est une recherche globale.
- Idée = choisir le prochain état qui «semble» le plus près du but (meilleur).
- Ce choix est fait par une (fonction) heuristique.

Qu'est-ce qu'une heuristique

 Dans divers domaines, dont en informatique, une heuristique est une méthode (~algorithme) qui calcule rapidement (ex: en temps constant, linéaire ou polynomiale) une solution pouvant être approximative et incomplète à un problème généralement trop complexe.

Algorithme de recherche en IA / Fonction heuristique

- Estimation de la distance (coût restant) entre un état *n* et un but *g*.
- Le but g peut être implicite.
- Généralement notée h ou h(n).
 - -h(n): estime le coût restant pour atteindre le but implicite g à partir du nœud (état) n.
- Exemple de fonctions heuristiques pour la navigation dans sur une carte :
 - Distance euclidienne (aussi appelée à vol d'oiseau).
 - Distance de Manhattan (ville quadrillée).

Greedy Best-First-Search

 Utilisation d'une heuristique pour guider la recherche.

- Algorithme :
 - 1. GBFS(n):
 - 2. tant que n ne satisfait pas le but
 - 3. $S \leftarrow Successeurs(n)$
 - 4. $n' \leftarrow$ choisir n' dans S ayant le plus petit h(n')
 - 5. $\sin n' = n$ alors ÉCHEC
 - 6. $n \leftarrow n'$

Exemple de GBFS sur une carte

(Adaptée d'une illustration par Henry Kautz, U. of Washington)

Best-First-Search

- Algorithme :
 - 1. BFS(n0):
 - 2. open \leftarrow {n}
 - 3. tant que open n'est pas vide
 - 4. $n \leftarrow \text{choisir dans open qui minimise h(n)}$
 - 5. si n satisfait le but, alors retourner solution
 - 6. ajouter successeurs(n) dans open

Exemple de GBFS sur une carte

(Adaptée d'une illustration par Henry Kautz, U. of Washington)

Algorithme A*

- A* est une extension de l'algorithme de Dijkstra.
 - Ajout d'une heuristique.
- A* et les heuristiques sont à la base de beaucoup de travaux en IA:
 - Recherche de meilleures heuristiques.
 - Heuristiques indépendantes du problème.
 - Apprentissage automatique d'heuristiques.
- Pour décrire A*, on décrit un algorithme générique très simple, dont A* est un cas particulier.

Variables importantes : open et closed

open :

- contient les nœuds à traiter;
- c'est à dire à la frontière de la partie explorée jusqu'à présent dans le graphe.

closed :

- contient les nœuds déjà traités;
- c'est à dire à l'intérieur de la frontière délimitée par open.

Insertion des nœuds dans open

- Les nœuds dans open sont ordonnés selon une estimation f(n) de la qualité d'une solution passant par ce nœud.
- Une fonction f(n) donne ou estime la qualité de la meilleure solution passant par le nœud n.
- Pour chaque nœud n, f(n) est un nombre réel positif ou nul, estimant le coût pour un chemin partant de l'état initial n_0 , passant par n, et arrivant dans un état n' satisfaisant le but g.

Définition de la fonction f(n)

- La fonction f désigne la distance entre le nœud initial et le but.
- En pratique on ne connaît pas cette distance : c'est ce qu'on cherche !
- Par contre on connaît la distance optimale dans la partie explorée entre le nœud initial n_0 et un nœud déjà exploré.
- Ainsi, on peut séparer f(n) en deux parties: f(n) = g(n) + h(n)
 - -g(n): coût réel du chemin optimal partant du nœud initial n_0 à n dans la partie déjà explorée.
 - h(n): coût estimé du reste du chemin partant de n jusqu'à un état satisfaisant le but.
 - h(n) est une fonction heuristique.

Algorithme générique de recherche dans un graphe

Algorithme rechercheDansGraphe(n_0)

- 1. open \leftarrow Créer un ensemble ordonnées par f(n) // vide au départ
- 2. closed ← Créer un ensemble // vide au départ
- 3. insérer n_0 dans open
- 4. while (true)

- // la condition de sortie (exit) est déterminée dans la boucle
- 5. si *open* est vide, sortir de la boucle avec échec (aucune solution n'existe)
- 6. n1 = noeud au début de open avec le plus petit f(n)
- 7. enlever n1 de open et l'ajouter dans closed
- 8. si *n1* est le but, sortir de la boucle avec succès en retournant le chemin;
- 9. pour chaque noeud successeur n2 de n1
 - 10. Initialiser la valeur g(n2) = g(n1) + coût de la transition (n1,n2)
 - 11. mettre parent(n2) = n1
 - 12. si *open* ou *closed** contient un nœud n3 équivalent à n2 (même état) avec f(n2) < f(n3), enlever n3 de *open* ou *closed** et insérer n2 dans *open*.
 - 13. sinon (c-à-d., n2 n'est est ni dans open ni dans closed)
 - 14. insèrer n2 dans open en triant les nœuds en ordre croissant selon f(n)

^{*} Le test dans closed à la ligne 12 est uniquement nécessaire en cas d'heuristique inadmissible ou **inconsistante**.

Exemple A* avec recherche dans une ville

Routes entre les villes :

v0: ville de départ v6: destination

h: distance à vol d'oiseau

C: distance réelle entre deux ville

Contenu de *open* à chaque itération (état, f, parent) :

- 1. (v0, 9, void)
- 2. (v1,5,v0) (v2,6,v0), (v3,7,v0)
- 3. (v2,6,v0) (v3,7,v0), (v5,12,v1)
- 4. (v3,7,v0),(v4,9,v2),(v5,12,v1)
- 5. (v2,5,v3),(v4,6,v3),(v5,12,v1)
- 6. (v4,6,v3),(v5,12,v1)
- 7. (v6,7,v4), (v5,12,v1)
- 8. Solution: **v0,v3,v4,v6**

Contenu de *closed* à la sortie (noeud, f):

(v4,6), (v3,7), (v2,5), (v1,5), (v0,9)

Exemple de recherche avec A*

(Illustration par Henry Kautz, U. of Washington)

Non-optimalité de Best-First Search

Démos

Simulation des algorithmes : A*, Recherche en profondeur, largeur, meilleur en premier

http://ericbeaudry.ca/INF4230/demos/search/ (Applet Java)

http://qiao.github.io/PathFinding.js/visual/

Exemples d'heuristiques

JEU DE TAQUIN

Jeu de taquin

- État: configuration légale du jeu
- État initial: configuration initiale
- État final (but): configuration gagnante
- Transitions (fonction successeur)

2	8	3 4
7		5
	i	?

Heuristiques pour jeu de taquin

Estimer un nombre minimal de coups (actions)

- Nombre de tuiles mal placées :
 - Tuiles 2, 8, 1, 6
 - Donc, h = 4

Heuristiques pour jeu de taquin

Estimer un nombre minimal de coups (actions)

État/Noeud *n*

But

• Sommes des distances de Manhattan des tuiles avec leur position à atteindre :

Tuile	1	2	3	4	5	6	7	8
Distance	1	1	0	0	0	1	0	2

h = 5

Heuristiques pour jeu de taquin

Estimer un nombre minimal de coups (actions)

Sommes des distances avec buts:

Tuile	1	2	3	4	5	6	7	8
Distance	3	3	1	1	1	1	3	3

$$h = 16$$

PROPRIÉTÉS DE L'ALGORITHME A*

- Si un problème n'a pas de solution :
 - Tout l'espace d'états accessibles depuis l'état initial sera visité.
 - Une fois open vide, le constat d'absence de solution est confirmée.
- Si une solution existe, l'algorithme A* la trouve toujours.

- Si la fonction heuristique h retourne toujours une estimation inférieure au coût réel, on dit que h est une fonction heuristique admissible.
- Lors qu'utilisé avec une heuristique admissible, l'algorithme A* retourne toujours une solution optimale si elle existe.
- Attention : il peut y avoir plusieurs solutions optimales (mais de même coût).

- Complet? Oui, à condition d'avoir un nombre fini d'états.
- Complexité temporelle?
 - Dépend de l'heuristique.
 - Dans le pire cas, il faut faudra visiter n nœuds ...
 - Mais, la taille de l'espace d'états (n) est généralement exponentielle à la taille du problème!
- Complexité spatiale? O(n) où n est le nombre de nœuds explorés. Dans le pire cas n=|S|.
- Optimal? **Oui**, à condition que l'heuristique soit admissible.

- Équivalence A* et recherche en largeur
 - En utilisant des coûts des arcs uniformément égaux et strictement positifs (par exemple, tous égaux à 1) et h retournant toujours 0 quelque soit le nœud, A* devient une recherche en largeur.
 - Open devient une queue LILO (last in, last out), en d'autre termes « dernier entré, dernier sorti ».

- Soit $f^*(n)$, le coût d'un chemin optimal passant par n. Pour chaque nœud exploré par A^* , on a toujours $f(n) \le f^*(n)$.
- Si quelque soit un nœud n1 et son successeur n2, nous avons toujours
 h(n1)≤coût(n1,n2) + h(n2), où coût(n1,n2) est le coût de l'arc (n1,n2), on dit
 que h est une heuristique consistante (on dit aussi parfois monotone mais
 c'est en réalité f qui devient monotone). Dans ce cas,
 - h est aussi admissible.
 - Chaque fois que A* choisit un nœud au début de open, cela veut dire que A* a déjà trouvé un chemin optimal vers ce nœud: le nœud ne sera plus jamais revisité!
 - Si une heuristique est non consistante, pour que A* soit optimal, il faut vérifier la présence des nœuds générés dans closed et les réinsérer dans open au besoin.

- Si on a deux heuristiques admissibles h1 et h2, tel que h1(n) < h2(n), alors h2(n) conduit plus vite au but: avec h2, A* explore moins ou autant de nœuds avant d'arriver au but qu'avec h1.
- Si h n'est pas admissible, soit x la borne supérieur sur la surestimation du coût. C-à-d., on a toujours h(n)≤h*(n)+x.
 Dans ce cas A* retournera une solution dont le coût est au plus x plus que le coût optimal, c-à-d., A* ne se trompe pas plus que x sur l'optimalité.

Mini-quiz sur A*

- Étant donné une fonction heuristique non admissible, l'algorithme A* donne toujours une solution lorsqu'elle existe, mais il n'y a pas de certitude qu'elle soit optimale.
- Si les coûts des arcs sont tous égaux à 1 et la fonction heuristique retourne tout le temps 0, alors A* retourne toujours une solution optimale lorsqu'elle existe.
- Lorsque la fonction de transition contient des boucles et que la fonction heuristique n'est pas admissible, A* peut boucler indéfiniment même si l'espace d'états est fini.
- Avec une heuristique monotone, A* n'explore jamais le même état deux fois.

Mini-quiz sur A*

- Étant donné deux fonctions heuristiques h_1 et h_2 telles que $0 \le h_1(s) < h_2(s) \le h^*(s)$, pour tout état s, h_2 est plus efficace que h_1 dans la mesure où les deux mènent à une solution optimale, mais h_2 le fait en explorant moins ou autant de nœuds.
- Si h(s)=h*(s), pour tout état s, l'optimalité de A* est garantie.

 Selon le poids que l'on veut donner à l'une ou l'autre partie, on définie f comme suit:

$$f(n) = (1-w)*g(n) + w*h(n)$$

où w est un nombre réel supérieur ou égal à 0 et inférieur ou égal à 1.

 Selon les valeurs qu'on donne à w, on obtient des algorithmes de recherche classique:

```
- Dijkstra: w = 0 c'est-à-dire f(n) = g(n)
```

- **Best-first-search**:
$$w = 1$$
 c'est-à-dire $f(n) = h(n)$

$$-A^*$$
: w = 0.5 équivalent à $f(n) = g(n) + h(n)$

Beam search

- On met une limite sur le contenu de OPEN et CLOSED
- Recommandé lorsque pas assez d'espace mémoire.

Bit-state hashing

- closed est implémenté par une table hash et on ignore les collisions
- Utilisé dans la vérification des protocoles de communication, mais avec une recherche en profondeur classique (pas A*).
 - Exemple: outil SPIN

Iterative deepening

- On met une limite sur la profondeur
- On lance A* jusqu'à la limite de profondeur spécifiée.
- Si pas de solution on augmente la profondeur et on recommence A*
- Ainsi de suite jusqu'à trouver une solution.

And-Or A*

- Fait pour les graphes ET-OU
- D* (proposée par Stenz etal.).
 - A* Dynamique. Évite de refaire certains calculs lorsqu'il est appelé
 plusieurs fois pour atteindre le même but, suite à des changements de
 l'environnement.

- Anytime Dynamic A*
 - Similaire au iterative deepening, en variant le poids de l'heuristique.

Référence: Maxim Likhachev, David Ferguson, Geoffrey Gordon,
 Anthony (Tony) Stentz, and Sebastian Thrun. Anytime Dynamic A*: An Anytime, Replanning Algorithm. Dans Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), June, 2005.