§1. Понятие комплексного числа. Алгебраическая форма комплексного числа

Самым широким из ранее рассмотренных числовых множеств являлось множество $\mathbb R$ действительных чисел. Характерным признаком этого множество являлось то, что все арифметические операции — сложение, вычитание, умножение, деление — на множестве действительных чисел являются замкнутыми. Однако, существуют задачи для решения которых действительных чисел недостаточно. Например, квадратное уравнение $x^2 + 1 = 0$ не имеет действительных корней, так как не существует такого действительного числа квадрат которого равен минус единице. Построим формально расширение множества $\mathbb R$, то есть построим новое множество чисел, введя арифметические операции на нем формально.

Определение. **Комплексным числом** будем называть упорядоченную пару (a;b) действительных чисел с введенными над ними специальным образом операциями сложения и умножения:

- 1. суммой двух комплексных чисел $(a_1; b_1)$ и $(a_2; b_2)$ называется комплексное число $(a_1 + a_2; b_1 + b_2);$
- 2. произведением двух комплексных чисел $(a_1; b_1)$ и $(a_2; b_2)$ называется комплексное число $(a_1a_2 b_1b_2, ; a_1b_2 + a_2b_1)$. Комплексное число вида (a; 0) считаем действительным числом.

Определение. Два комплексных числа $(a_1; b_1)$ и $(a_2; b_2)$ будем считать равными тогда и только тогда, когда $a_1 = a_2$ и $b_1 = b_2$.

Заметим, что операции над комплексными числами введены таким образом, что применяя их к двум любым действительным числам, рассмотренным как комплексные числа вида (a;0), придем к операциям над действительными числами. Следует также иметь в виду, что понятия «больше» и «меньше» для комплексных чисел не определены. Понятие «неравенства» для комплексного числа вводится только как отрицание равенства.

Для сокращения записи комплексное число обозначают одной буквой z=(a;b). Комплексное число z=(0;0) называют нулем. Очевидно, что оно совпадает с нулем множества действительных чисел. Нетрудно получить формулу разности двух комплексных чисел $z_1=(a_1;b_1)$ и $z_2=(a_2;b_2)$: $z_1-z_2=(a_1-a_2;b_1-b_2)$. Формулу частного двух комплексных чисел получим позднее. Непосредственно проверяется, что сумма и произведение двух комплексных чисел обладает теми же свойствами, что сумма и произведение действительных чисел (коммутативность, ассоциативность, дистрибутивность). Множество комплексных чисел обозначают $\mathbb C$. Это множество шире, чем ранее рассмотренные числовые множества: $\mathbb N \subset \mathbb Z \subset \mathbb Q \subset \mathbb R \subset \mathbb C$.

Рассмотрим комплексное число (1;0)=1. По определению оно является действительным числом и называется **действительной** единицей. Есте-

ственно возникает вопрос, а что из себя представляет число (0;1)? Перемножим это число на самоё себя по правилам перемножения комплексных чисел: $(0;1)\cdot(0;1)=(-1;0)=-1$, то есть $(0;1)^2=-1$. Это число обозначают i=(0;1) и называют *мнимой единицей*. В технической литературе, в частности в радиотехнической, для мнимой единицы используется обозначение j. Следовательно, уравнение $z^2+1=0$ имеет корень z=i. Рассмотрим комплексное число z=(a,b) и представим его, используя определение суммы комплексных чисел и умножение комплексного числа на действительное, в виде:

$$z = (a; b) = (a; 0) + (0; b) = (a; 0) + b(0; 1) = a + ib.$$

Полученная форма записи z = a + ib комплексного числа называется алгебраической формой комплексного числа. Здесь,

i — называется *мнимой единицей*;

a = Rez — называется действительной частью комплексного числа z;

b = Imz — называется *мнимой частью комплексного числа z*.

Комплексные числа вида z = ib называются **мнимыми числами**.

Алгебраическая форма комплексного числа удобна при выполнении арифметических операций. Сложение и умножение комплексных чисел в алгебраической форме можно выполнять формально по правилам сложения и умножения двучленов с заменой i^2 на -1.

Определение. Комплексное число $\bar{z} = (a; -b) = a - ib$ называется **комплекс- носопряженным** (или **сопряженным**) с числом z = (a; b) = a + ib.

Сопряженное к комплексному числу отличается только знаком мнимой части. Рассмотрим сумму и произведение сопряженных чисел:

$$z + \overline{z} = a + ib + a - ib = 2a \in \mathbb{R};$$

$$z \cdot \overline{z} = (a + ib) \cdot (a - ib) = a^2 + b^2 \in \mathbb{R},$$

то есть сумма и произведение двух комплесносопряженных чисел есть число действительное.

Пользуясь алгебраической формой комплексного числа и понятием сопряженного к нему определим операцию деления двух комплексных чисел

$$z_1 = (a_1; b_1)$$
 и $z_2 = (a_2; b_2)$:
$$\frac{z_1}{z_2} = \frac{a_1 + ib_1}{a_2 + ib_2} = \frac{(a_1 + ib_1)(a_2 - ib_2)}{(a_2 + ib_2)(a_2 - ib_2)} = \frac{(a_1a_2 + b_1b_2) + i(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2} = \frac{(a_1a_2 + b_1$$

Пример. Найти частное двух комплексных чисел
$$z_1=1+2i$$
 и $z_2=2+3i$.
$$\frac{z_1}{z_2}=\frac{1+2i}{2+3i}=\frac{(1+2i)(2-3i)}{(2+3i)(2-3i)}=\frac{8+i}{13}=\frac{8}{13}+i\frac{1}{13},$$

$$Re\,\frac{z_1}{z_2}=\frac{8}{13}, Im\,\frac{z_1}{z_2}=\frac{1}{13}.$$

§2. Геометрическое изображение комплексного числа. Тригонометрическая и показательная форма комплексного числа

Комплексное число z = a + ib можно изобразить геометрически, то есть точкой M(a;b) с координатами (a;b) в декартовой прямоугольной системе координат, либо как радиус-вектор \overrightarrow{OM} (вектор, проведенный из начала координат к точке M) этой точки. Ось абсцисс в этом случае называют deŭcmeu-meльной осью (и обозначают Rez), а ось ординат — mhumoù ocью (и обозначают Imz). Саму плоскость Oxy называют komnekchoù nnockocmbo.

При таком способе изображения множество комплексных чисел взаимно однозначно отображается на множество точек координатной плоскости. Операции сложения и вычитания можно интерпретировать, как сложение и вычитание векторов, изображающих эти числа.

Пример. Изобразить числа -2, i, 1+2i, -3+i, $\overline{1+2i}$ на комплексной плоскости.

Решение. Так как 1 + 2i = 1 - 2i, имеем

Определение. Расстояние от точки M(a;b) до начала координат называется модулем комплексного числа z=a+ib. Оно обозначается |z| или r и равно длине радиус-вектора \overrightarrow{OM} : $|z|=r=\sqrt{a^2+b^2}$. Аргументом комплексного числа z=a+ib называется величина угла φ , который образует радиус-вектор точки M(a;b) с положительным направлением оси абсцисс.

Очевидно, что модуль комплексного числа определяется однозначно, а аргумент с точностью до $2\pi k, k \in \mathbb{Z}$. Значение аргумента, удовлетворяющее условию $-\pi \le \varphi \le \pi$ (либо $0 \le \varphi \le 2\pi$) называется главным значением аргумента комплексного числа и обозначается argz. Множество всех значений

аргумента обозначают $Argz = argz + 2\pi k, k \in \mathbb{Z}$. Для комплексного числа z = 0 модуль равен нулю, а аргумент этого числа не определен.

Из соотношений в прямоугольном треугольнике имеем, что

$$\begin{cases} a = |z| \cos \varphi, \\ b = |z| \sin \varphi. \end{cases}$$

Подставив эти равенства в алгебраическую форму комплексного числа, получаем *тригонометрическую форму комплексного числа*:

$$z = |z|(\cos\varphi + i\sin\varphi).$$

Для того, чтобы перейти от алгебраической к тригонометрической форме комплексного числа вначале находим модуль комплексного числа $|z|=r=\sqrt{a^2+b^2}$, а затем из формул

$$\cos \varphi = \frac{a}{r}$$
, $\sin \varphi = \frac{b}{r}$

следует, что для на аргумента φ верно следующее равенство: $\operatorname{tg} \varphi = \frac{b}{a}$. Для главного значения аргумента, удовлетворяющего условию $-\pi \leq \varphi \leq \pi$, справедливы соотношения

$$argz = egin{cases} arctg rac{b}{a}, & a > 0 \ (\emph{I}, \emph{IV} - \mbox{четверть}); \ arctg rac{b}{a} + \pi, & a < 0, b \geq 0 \ (\emph{II} - \mbox{четверть}); \ arctg rac{b}{a} - \pi, & a < 0, b < 0 \ (\emph{III} - \mbox{четверть}); \ rac{\pi}{2}, & a = 0, b > 0; \ -rac{\pi}{2}, & a = 0, b < 0. \end{cases}$$

Пример. Представить в тригонометрической форме комплексное число $z = -1 - i\sqrt{3}$.

Решение. Модуль этого комплексного числа $r=\sqrt{1+3}=2$. Для нахождения аргумента по вышеприведенной формуле определяем, что действительная и мнимая части отрицательные, то есть число находится в III четверти. Следовательно, $argz=arctg\frac{b}{a}-\pi=arctg\sqrt{3}-\pi=-\frac{2\pi}{3}$ и число в тригонометрической форме имеет вид

$$z = 2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right) = 2\left(\cos\left(\frac{2\pi}{3}\right) - i\sin\left(\frac{2\pi}{3}\right)\right).$$

Нетрудно видеть, что комплексные числа в тригонометрической форме равны тогда и только тогда, когда равны их модули, а аргументы отличаются на период, то есть число, кратное 2π .

Тригонометрическая форма комплексного числа удобна при выполнении операций умножения, деления, возведения в степень:

а) при умножении комплексных чисел их модули перемножаются, а аргументы складываются:

$$z_1 \cdot z_2 = \left[r_1 \left(\cos \varphi_1 + i \sin \varphi_1 \right) \right] \cdot \left[r_2 \left(\cos \varphi_2 + i \sin \varphi_2 \right) \right] =$$

$$= r_1 \cdot r_2 \left(\cos \left(\varphi_1 + \varphi_2 \right) + i \sin \left(\varphi_1 + \varphi_2 \right) \right),$$

б) при делении комплексных чисел их модули делятся, а аргументы вычитаются:

$$\frac{z_1}{z_2} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \frac{r_1}{r_2}(\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)), r_2 > 0,$$

в) возведение в степень:

$$z^{n} = \left[r(\cos\varphi + i\sin\varphi)\right]^{n} = r^{n}(\cos n\varphi + i\sin n\varphi), n \in \mathbb{N}.$$

Эта формула получается если комплексное число z^n рассмотреть как умножение числа z на себя n раз. При r=1 получаем формулу Муавра

$$(\cos \varphi + i \sin \varphi)^n = \cos n\varphi + i \sin n\varphi.$$

Если воспользоваться формулой Эйлера

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$

то можно перейти от тригонометрической формы комплексного числа к показательной

$$z = re^{i\varphi}$$
.

Здесь, r=|z| — модуль, $\varphi=Argz=argz+2\pi k$, $k\in\mathbb{Z}$ — аргумент комплексного числа z.

Функция $e^{i\phi}$ обладает свойствами показательной функции с действительным аргументом, поэтому формулы умножения, деления и возведения в степень имеют простой вид. Если $z_1 = r_1 e^{i \varphi_1}$, $z_2 = r_2 e^{i \varphi_2}$, то:

- 1. $z_1 z_2 = r_1 e^{i\varphi_1} r_2 e^{i\varphi_2} = r_1 r_2 e^{i(\varphi_1 + \varphi_2)};$ 2. $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\varphi_1 \varphi_2)};$ 3. $z^n = r^n e^{in\varphi}.$

§3. Извлечение корней из комплексных чисел

Возведение в степень комплексного числа рассмотрели в предыдущем параграфе, а теперь рассмотрим обратную задачу: извлечение корня из комплексного числа.

Определение. Корнем n -ой степени $(n \in \mathbb{N})$ из комплексного числа zназывается любое комплексное число w такое, что $w^n = z$.

Обозначается, как и в действительном анализе: $\sqrt[n]{z} = w$.

Выведем формулу вычисления корня из комплексного числа. Запишем числа *z* и *w* в тригонометрической форме:

$$z = r(\cos \varphi + i \sin \varphi), w = \rho(\cos \psi + i \sin \psi).$$

Тогда по формуле возведения в степень комплексного числа

$$w^n = \rho^n(\cos n\psi + i\sin n\psi)$$

и по определению корня из комплексного числа выполняется равенство

$$\rho^{n}(\cos n\psi + i\sin n\psi) = r(\cos \varphi + i\sin \varphi).$$

Из дефиниции равенства двух комплексных чисел в тригонометрической форме следует, что их модули равны, то есть $r=\rho^n$, а аргументы либо равны, либо отличаются на число кратное 2π , то есть $n\psi=\varphi+2\pi k, k\in\mathbb{Z}$. Отсюда модуль корня $\rho=\sqrt[n]{r}$, а аргумент $\psi=\frac{\varphi+2\pi k}{n}$, где $k\in\mathbb{Z}$ и искомое число w примет вид

$$\sqrt[n]{z} = w_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right),$$

где $k \in \mathbb{Z}$, $n \in \mathbb{N}$. Проанализируем полученную формулу:

- 1. Если z = 0, то |z| = 0 и, следовательно, $\sqrt[n]{z} = 0$. То есть корень n-ой степени из нуля имеет ровно одно значение.
- 2. Если $z \neq 0$, то существует бесчисленное множество корней $\sqrt[n]{z}$. Так как корень w_n

$$w_n = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi n}{n} + i \sin \frac{\varphi + 2\pi n}{n} \right) =$$
$$= \sqrt[n]{r} \left(\cos \left(\frac{\varphi}{n} + 2\pi \right) + i \sin \left(\frac{\varphi}{n} + 2\pi \right) \right) = w_0$$

равен корню w_0 , то различных среди этого множества корней будет только n корней при $k=\overline{0,n-1}$. Таким образом получим n различных значений $w_0,w_1,...,w_{n-1}$ корня n-ой степени из числа $z\neq 0$. Эти значения различны, так как аргументы двух рядом стоящих корней отличаются на величину $\frac{2\pi}{n}$, модули у них совпадают.

Окончательно, число различных комплексных корней из комплексного числа $\mathbf{z} \neq \mathbf{0}$ равно показателю степени корня. Геометрически, точки, соответствующие различным корням п-ой степени, располагаются в вершинах правильного п-угольника с центром в точке O (лежат на окружности $|\mathbf{z}| = \sqrt[n]{r}$ в комплексной плоскости), причем одна из вершин (k=0) имеет полярные координаты $(\sqrt[n]{r}; \frac{\varphi}{n})$.

Пример. Извлечь корни 3-ей степени из комплексного числа $z=\sqrt{3}-i$. Главное значение аргументы выбрать для $0\leq \varphi \leq 2\pi$.

Решение. Имеем

$$\sqrt[3]{\sqrt{3} - i} = \sqrt[3]{2\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)} = \sqrt[3]{2}\left(\cos\frac{\frac{\pi}{6} + 2\pi k}{3} - i\sin\frac{\frac{\pi}{6} + 2\pi k}{3}\right),$$

где k = 0, 1, 2. Отсюда

$$(\sqrt[3]{z})_0 = \sqrt[3]{2} \left(\cos\frac{\pi}{18} - i\sin\frac{\pi}{18}\right), \left(\sqrt[3]{z}\right)_1 = \sqrt[3]{2} \left(\cos\frac{13\pi}{18} - i\sin\frac{13\pi}{18}\right),$$

$$(\sqrt[3]{z})_2 = \sqrt[3]{2} \left(\cos\frac{25\pi}{18} - i\sin\frac{25\pi}{18}\right).$$

Значения $(\sqrt[3]{z})_0$, $(\sqrt[3]{z})_1$, $(\sqrt[3]{z})_2$ на комплексной плоскости изображаются вершинами правильного треугольника, вписанного в окружность радиуса $R = \sqrt[3]{2}$ с центром в начале координат.

§4. Многочлены с комплексными коэффициентами.

Многочленом степени $n \in \mathbb{N}$ *с комплексными коэффициентами* называется выражение вида

$$P_n(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z^n + a_n$$

где a_k — комплексные числа, а z=x+iy — комплексная переменная. Очевидно, что $P_0(z)=a_0$, то есть любое комплексное число можно рассматривать как многочлен нулевой степени. **Два многочлена** $P_n(z)$ и $Q_n(z)$ степени n называются равными, если у них равны коэффициенты при соответствующих степенях. Комплексное число $z_0=x_0+iy_0$ называется корнем многочлена $P_n(z)$ если $P_n(z_0)=0$. Задача отыскания корней достаточно трудоемкая, поэтому часто приходится использовать численные методы для отыскания приближенных значений корней. Большинство таких методов базируется на следующей теореме.

Теорема. Для того, чтобы комплексное число $z_0 = x_0 + iy_0$ было корнем многочлена $P_n(z)$ необходимо и достаточно, чтобы многочлен $P_n(z)$ делился на $(z-z_0)$, то есть $P_n(z) = (z-z_0)P_{n-1}(z)$.

Докажем необходимость, а достаточность оставим для самостоятельного рассмотрения. Пусть $z_0 = x_0 + iy_0$ — корень многочлена $P_n(z)$. Согласно правилу деления многочлена на многочлен, имеем, что в этом случае многочлен $P_n(z)$ представим в виде

$$P_n(z) = (z - z_0)P_{n-1}(z) + R_n(z),$$

причем степень многочлена $R_n(z)$ (остатка от деления) ниже степени делителя. Но делитель $(z-z_0)$ – многочлен первой степени. Следовательно остаток $R_n(z)$ является многочленом нулевой степени, то есть числом C. Поэтому $P_n(z)=(z-z_0)P_{n-1}(z)+C$. Подставим значение корня $z=z_0$ в последнее равенство и получим, что $P_n(z_0)=C$. Но z_0 – корень многочлена и, следовательно, $P_n(z_0)=0$, что влечет за собой C=0 и представление исходного многочлена имеет вид $P_n(z)=(z-z_0)P_{n-1}(z)$, что и требовалось доказать.

Таким образом теорема утверждает, что в процессе отыскания корня можно многочлен делить на множитель $(z-z_0)$, на чем и построены методы приближенного вычисления корня. Однако, теорема не дает ответа на вопрос всегда ли существует корень многочлена, а если корни существуют, то сколько их у многочлена. Без доказательства приведем следующую теорему.

Теорема (основная теорема алгебры). Всякий многочлен степени $n \ge 1$ с комплексными коэффициентами имеет по крайней мере один комплексный корень (он может быть действительным).

Непосредственно из теоремы следует, что многочлен $P_n(z)$ ($n \ge 1$) имеет по крайней мере один корень $z=z_1$. Следовательно, он делится на одночлен $(z-z_1)$, то есть $P_n(z)=(z-z_1)P_{n-1}(z)$. В многочлене $P_{n-1}(z)$ коэффициентом при старшей степени z^{n-1} будет число a_0 . Если многочлен $P_{n-1}(z)$ не является многочленом нулевой степени (числом), то по основной теореме алгебры у него по крайней мере имеется один корень $z=z_2$. Поэтому $P_n(z)=(z-z_1)(z-z_2)P_{n-2}(z)$, где у многочлена $P_{n-2}(z)$ коэффициентом при старшей степени z^{n-2} будет число a_0 . Продолжая процесс, пока это возможно, придем представлению многочлена в следующем виде

$$P_n(z) = a_0(z - z_1)(z - z_2) \cdots (z - z_n).$$

Фактически, обозначена схема доказательства следствия из основной теоремы алгебры.

Следствие 1. Всякий многочлен

 $P_n(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z^n + a_n$ степени $n \ge 1$ можно единственным образом представить в виде

 $P_n(z) = a_0(z - z_1)(z - z_2) \cdots (z - z_n),$

где $z_1, z_2, ..., z_n$ – корни многочлена $P_n(z)$.

Непосредственно из этого следствия можно получить следующее

Следствие **2.** Всякий многочлен $P_n(z)$ степени $n \ge 1$ имеет ровно n корней.

При получении разложения многочлена на произведение корней мы не рассматривали каким образом соотносятся между собой корни многочлена. Другими словами, среди корней z_k могут быть повторяющиеся. Объединим их между собой и разложение примет вид

$$P_n(z) = a_0(z - z_1)^{k_1}(z - z_2)^{k_2} \cdots (z - z_s)^{k_s},$$

где все $z_1, z_2, ..., z_s$ различны и $k_1 + k_2 + \cdots + k_s = n$. В этом случае z_j называется корнем кратности k_j . Если $k_j = 1$, то корень называется простым или однократным. С учетом понятия кратности следствие 2 из основной теоремы алгебры можно переформулировать следующим образом: всякий многочлен $P_n(z)$ степени $n \geq 1$ имеет ровно п корней с учетом их кратности.

Рассмотрим далее, как определить кратность корня (если его каким-то образом удалось найти). Пусть $z=z_0$ – корень кратности k многочлена $P_n(z)$. Тогда многочлен представим в виде $P_n(z)=(z-z_0)^kQ(z)$, где $Q(z_0)\neq 0$. Найдем производную

$$P_n'(z) = k(z-z_0)^{k-1}Q(z) + (z-z_0)^kQ'(z) =$$

$$= (z-z_0)^{k-1}\underbrace{[kQ(z) + (z-z_0)Q'(z)]}_{\text{обозначим }\varphi(z)} = (z-z_0)^{k-1}\varphi(z).$$

Так как $Q(z_0) \neq 0, \varphi(z_0) \neq 0$. Следовательно, $z = z_0$ – корень кратности (k-1) для производной $P_n'(z)$.

Доказали следующую теорему.

Теорема. Если $z = z_0$ – корень кратности k многочлена $P_n(z)$, то он является корнем кратности (k-1) для производной $P'_n(z)$.

Практическую значимость представляет собой следствие из этой теоремы.

Следствие (признак кратности корня). Для того, чтобы комплексное число $z=z_0$ являлось корнем кратности k многочлена $P_n(z)$, необходимо и достаточно чтобы выполнялись условия

$$P_n(z_0) = P'_n(z_0) = P''_n(z_0) = \dots = P_n^{(k-1)}(z_0) = 0, P_n^{(k)}(z_0) \neq 0.$$

Следствие сводит задачу отыскания кратности корня к дифференцированию многочлена, что значительно проще многократных делений многочлена на множитель $(z-z_0)$.

Пример. Найти все корни многочлена $P_4(z)=z^4+3z^3+3z^2+z$. Решение. Очевидно, что если вынести z в правой части, то многочлен примет вид $P_4(z)=z(z^3+3z^2+3z+1)$. Из его вида следует, что z=0 является простым корнем, так как выражение в скобках при $z_1=0$ в ноль не обращается. Осталось найти корни многочлена $P_3(z)=z^3+3z^2+3z+1$. Непосредственной подстановкой убеждаемся, что $z_2=-1$ также является корнем исходного многочлена. Определим кратность этого корня. Так как

$$P_4(-1) = 0,$$

$$P'_4(z) = 4z^3 + 9z^2 + 6z + 1, P'_4(-1) = 0,$$

$$P''_4(z) = 12z^2 + 18z + 6, P''_4(-1) = 0,$$

$$P'''_4(z) = 24z + 18, P'''_4(-1) = -6 \neq 0,$$

то $z_2 = -1$ является корнем кратности три. Окончательно разложение исходного многочлена можно записать в виде

$$P_4(z) = z^4 + 3z^3 + 3z^2 + z = z(z+1)^3.$$

Кратность корня можно было определить и делением исходного многочлена на линейный множитель (z+1), но делать это пришлось бы три раза, что потребовало бы больше усилий, чем нахождение трех производных.

§5. Представление многочлена с действительными коэффициентами в виде произведения линейных и квадратичных множителей.

Рассмотрим многочлен

$$P_n(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z^n + a_n$$
,

где a_k $(k=\overline{0,n})$ — действительные числа, а z=x+iy — комплексная переменная.

Пусть $z_1=a_1+ib_1$ и $z_2=a_2+ib_2$ — два произвольных комплексных числа, $\bar{z}_1=a_1-ib_1$ и $\bar{z}_2=a_2-ib_2$ им комплексно сопряженные. Тогда

$$z_1 + z_2 = (a_1 + a_2) + i(b_1 + b_2), \bar{z}_1 + \bar{z}_2 = (a_1 + a_2) - i(b_1 + b_2), z_1 z_2 = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1), \bar{z}_1 \bar{z}_2 = (a_1 a_2 - b_1 b_2) - i(a_1 b_2 + a_2 b_1),$$

то есть результат для $\bar{z}_1 + \bar{z}_2$ и $\bar{z}_1\bar{z}_2$ – является сопряженным с результатом $z_1 + z_2$ и z_1z_2 . Так как это выполняется, то значения многочлена с действительными коэффициентами a_k от любого комплексного числа z_0 и комплексно сопряжённого ему \bar{z}_0 : $P_n(z_0) = p_0 + iq_0$, $P_n(\bar{z}_0) = p_0 - iq_0$ – комплексно сопряженные числа.

Пусть далее z_0 — корень многочлена с действительными коэффициентами $P_n(z)$, то есть по определению $P_n(z_0)=0$. С учетом вышерассмотренного $P_n(\bar{z}_0)=\overline{(0+\imath 0)}=0$. Следовательно, \bar{z}_0 — тоже корень этого многочлена. Таким образом, доказали следующую теорему.

Теорема. Если комплексное число $z_0 = \alpha + i\beta$ является корнем многочлена $P_n(z)$ с действительными коэффициентами, то и сопряженное с ним комплексное число $z_0 = \alpha - i\beta$ также является корнем многочлена $P_n(z)$.

3амечание. Сформулированная теорема справедлива только для многочленов $P_n(z)$ с действительными коэффициентами.

Следствие. Многочлен $P_n(z)$ с действительными коэффициентами нечетной степени имеет по крайней мере один действительный корень (или нечетное число действительных корней). Многочлен четной степени с действительными коэффициентами имеет или четное число действительных корней или вообще их не имеет.

Следствие получается из основной теоремы алгебры. Так как многочлен имеет ровно n корней с учетом их кратности и того, что комплексные корни являются комплексно сопряженными, то их число будет четным. Если степень многочлена — нечетная, то обязательно хотя бы один корень должен быть действительным.

Рассмотрим далее многочлен с действительными коэффициентами. Допустим, что нас будут интересовать только действительные корни этого многочлена. То есть многочлен имеет вид

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x^n + a_n$$
,

где a_k $(k=\overline{0,n})$ — действительные числа, а x — действительная переменная. Этот многочлен имеет n корней с учетом их кратности. Среди них могут быть как действительные, так и комплексно сопряженные. Пусть $x_1, x_2, ..., x_k$ — действительные корни, а $x_{k+1}, \bar{x}_{k+1}, x_{k+2}, \bar{x}_{k+2}, ..., x_{k+l}, \bar{x}_{k+l}$ — комплексно сопряженные корни. Тогда разложение многочлена по корням можно записать следующим образом

$$P_n(\bar{x}) = a_0(x - x_1)(x - x_2) \cdots (x - x_k)(x - x_{k+1})(x - \bar{x}_{k+1}) \cdots \cdots (x - x_{k+l})(x - \bar{x}_{k+l}).$$

Рассмотрим отдельно произведение линейных множителей с комплексно сопряженными корнями

$$(x - x_s)(x - \bar{x}_s) = x^2 - (x_s + \bar{x}_s)x + x_s\bar{x}_s = x^2 + px + q,$$

где p и q — действительные числа, так как сумма и произведение двух комплексно сопряженных чисел есть числа действительные, то есть **произведение**

любых двух линейных множителей, соответствующих комплексно сопряженным корням многочлена с действительными коэффициентами, дает квадратный трехчлен с действительными коэффициентами. Таким образом, разложение многочлена с действительными коэффициентами можно записать в виде

$$P_n(x) = a_0(x - x_1)(x - x_2) \cdots (x - x_k)(x^2 + p_1x + q_1) \cdots \cdots (x^2 + p_lx + q_l)$$
, где $p_k, q_k \in \mathbb{R}$.

Обозначили схему доказательства следующей теоремы.

Теорема. Всякий многочлен с действительными коэффициентами единственным образом разлагается в произведение линейных множителей и квадратных трехчленов с комплексно сопряженными корнями.

Замечание. Если в разложении есть совпадающие множители, то их обычно объединяют и разложение в этом случае представляет собой произведение линейных множителей и квадратных трехчленов, не имеющих действительных корней (то есть дискриминант в этом случае отрицательный) в натуральных степенях.