

DISCRETE MATHEMATICS, TEST 1, TRINITY 2024

Instructions to Candidates:

- (i) Answer all questions.
- (ii) Write your name and registration number on top of the paper.
- (iii) All questions MUST be answered in the spaces provided on the question paper.
- 1. Use the truth table to prove the validity of the following argument. If there is a chance of rain or her red headband is missing, then Lois will not mow her lawn. Whenever the temperature is over 20°C there is no chance for rain. Today the temperature is 22°C and Lois is wearing her (6 marks) red headband. Therefore Lois will mow her lawn.

 $, (pvq) \rightarrow 7r$ let be her red heatsband is missing. be hois will mow her lawn SATP SATQ temperatur is ouer 20°C

P792 7r \$ 1	PV9 1751	7p (pvq) -	>75 5->	7P S179	1
TTTT	TF	FF	F	F	T
TTTF	,	FF	T	F	T
TITIFIT	TT	FT	The Party Inc. F. Car	F	F
	TTIT	FIT	1	+	F
TFTT	TF	FF	> / F	1 1	T
一十 F T F	TF	FF	1 1	/ F	T
T F F T F T F T F T F T F T F T F T F T	TT	F/T/	1/F	T	F
TFFF		F/T/	// 1	F	F
	TF	TF	17	F	T
FTTF	TF	TE	/ T	F	1.
FTFT	TT	7 7	T	FF	F
FTF	+ 1	TT	T	F	F
FTTTFT FTFTTFT		1 0			(T)
FFTF	1	TT	1 1	F	T
FFTF		TO	0	(A)	FX
		TIT	TT	F	F
FIFIFIF	WAR STREET	1 ALEMAN AND AND AND AND AND AND AND AND AND A			

i. The Argument is a fallacy which is an invalid

(3 marks)

2. Re-write
$$A \wedge B \vee C$$
 using only formal connectives.
 $A \wedge B \vee C \equiv (A \wedge B) \vee C \equiv (A \wedge B) \vee C$
 $\equiv \neg (\neg (A \rightarrow \neg \beta)) \rightarrow C$

3. Write down all the subformulas for $\rho = ((\neg A_1 \to A_7) \to (A_8 \to A_1))$

(3 marks)

$$S(g) = \begin{cases} \neg A_1, A_1 & A_2 \\ A_3 & A_4 \end{cases} , (\neg A_1 \rightarrow A_2) \rightarrow (A_8 \rightarrow A_1) , (A_8 \rightarrow A_1), (A_8 \rightarrow A_1), (A_8 \rightarrow A_1) , (A_8 \rightarrow A_1), (A_8 \rightarrow A$$

4. Define the following terms.

(a) A language. A language is a set of symbols (1 mark) and rules for assembling symbols into formulas of 9 language

(b) A proposition. A proposition is a statement that (1 mark) expresses a single idea which is either true or false but not both.

5. Given α and β are atomic formulas, find the length of $\neg \alpha \rightarrow \beta$.

Land
$$\Rightarrow \beta$$
 are atomic formulas, find the length of $\neg \alpha \rightarrow \beta$.

$$= 1 + L \{ \neg \alpha \} + L \{ \beta \} = 1 + 1 + L \{ \alpha \} + L \{ \beta \} = 1 + 1 + L \{ \alpha \} + L \{ \beta \} = 1 + 1 + L \{ \alpha \} + L \{ \beta \} = 1 + 1 + L \{ \alpha \} + L \{ \beta \} = 1 + 1 + L \{ \alpha \} + L \{ \beta \} = 1 + L \{ \beta \} = 1 + L \{ \alpha \} + L \{ \beta \} = 1 + L \{ \beta \}$$

-1	6. Pro	ove that	$(p \to q), (q \to q)$	r) $ = (p \rightarrow r)$.		(4
P	9	r	P->9	2->r	P->9	(4 marks)
7	T	T	(A)	0	(F)	
T	T	F	T	F	F	
T.	F	T	F	T	+	
T	F	F	F	T	F	
F	7	T	(f)	A	(+)	
F	T	F	T	F	+	
F	F	T	A	(2)		
F	-	E	A			
-	1				(T)	-/1
-	1			TECT 0 :- 4		

whenever both

DISCRETE MATHEMATICS, TEST 1, TRINITY 2024

7. Construct a truth table for each of the following and determine which of them is a tautology or

, ,			0
(a) $\neg A \rightarrow B \wedge C$.	Z	74 ->	(RAC)
	-	14 -	(0110)

(4 marks)

1	AI	BIG	- 1		- ' ' '	(2/10)	400
+	T		- 1	7 A	BAC	¬A → (BAC)	1
-	111,	T	T	F	T	T	
_	T	T	F	F	F	MANUT TO THE REAL PROPERTY.	- 19
	T	F	T	F	F	Ť	
	T	F	F	F	F	T	
	F	T	T	T	T	T Dinder	11. / 1
	F	T	F	T	F	F	
1	F	F	T	T	F	F	- 14
	F	F	F	T	F	F	
	11111111	1					

7A -> (BM) 15 neither a tautology nor a Contradiction

(b) $P \leftrightarrow R \vee S$.

(4 marks)

PI	R	5	RVS	P⇔(RVS)
1	T	T	T	T
T	T	F	T	Timber
T	F	T	T	MATE .
T	F	F	Faul	F
F	丁	T	T	+
FF	T	F	T	T P
F	F	T		+
F	F	F	least was	

8. Prove that √3 is irrational. Suppose √3 is a rational number (4 marks)

= a - 0 where a, b ∈ 74, gcd (a, b) = 1

Squaring both side of 0 gives $(\sqrt{3})^2 = (\frac{a}{b})^2 \Rightarrow 3 = \frac{a^2}{b^2}$

=> a² = 36² - D D implies thed 3 divides a² and therefore 3 divides a. Since 3 divides a, a= 31, LEZ

Substitute a=31 into (2) for get, $(31)^2=3b^2=3b^2=3b^2=3b^2$. This implies that 3 divides b^2 and therefore 3 divides b^2 . 3 gcd (a,b)=3 which contradicts that 3 gcd (a,b)=1 is irrational.

9. With explanation, determine whether the following statements are true or false.

(a) The set of natural numbers is close under subtraction. False Since 2-3=

(comfer example).

(b) The set of integers is closed under division.

sin @ 2,3 € ZL but 3/2 = 1.5 € ZL (600 Luter example), False

10. In a certain examination, 53% of students passed Economics, 61% passed Politics, 60% passed history, 24% passed both Economics and Politics, 35% passed Politics and History, 27% passed Economics and history, and 5% of the students passed none of these subjects.

(a) What percentage of the students passed all the three subjects?

(6 marks)

let The number of students

0.05X

0.53x = e + 0.24x-y + 0.27x-4+4 e = 0.02 x + y 0.6x = h+0.27x-y+y+0.35xc-4

h= -0.02x+4

0.61x = P + 0.24x /y + / + 0.35x P = 0.02 x + y.

x= e+h+p+0.35x-g+g+6.272-y+0.24 4 to 050

0.020cty+-0.82xty+0.02xty+0.35x+0.27x-4 to.24xc

$$x = 0.93x + y \Rightarrow y = 0.07x$$

79 passed all the three subjects

PAGE 4 OF

(b) What percentage of the students passes only one subject?

$$= 0.000 + y - 0$$

(a)
$$n(A \cap B)$$

(a)
$$n(A \cap B)$$
 $n(B) = n(AnB) + n(AlnB)$, $n(A) = n(AnB) + n(AnB')$

(2 marks)

$$n(A) = n(AnB) + n(AnB')$$

 $7 = n(AnB) + 4$

$$N(AMB) = 7-4 = 3$$

(b)
$$n(A \cup B)$$

(b)
$$n(A \cup B)$$
 $n(A \cup B) = n(A) + n(B) + -n(A \cap B)$

$$= 7 + 8 - 3 = 12$$
 (2 marks)

(c)
$$n(A' \cap B)$$

$$n(A'nB) = n(B) - n(AmB) = 8 - 3 = 5$$

12. Given two sets
$$A$$
 and B . Define a cartesian product of two sets by

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}. \text{ If } A = \{1, 2, 3\} \text{ and } B = \{a, b, c\}. \text{ Find } A \times B. \quad (2 \text{ marks})$$

$$A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c)\}.$$

13. Write the set
$$A = \{x : x^2 + 3 + 2 = 0\}$$
 in tabular notation.

$$2c^2+32c+2 = 0$$

$$\Rightarrow x^2 + x + 2x + 2 = 0$$

$$2C(xH)+2(xH)=0$$

$$(xt2)(xt1) = 0 =) x = + 0$$

$$A = \{-1, -2\}$$

$$\infty = -2$$

14. Given a set
$$A = \{\{1\}, \{2,3\}, \{a\}\}$$
 Write down the power set of A .

15. Given sets

$$U = \{1, 2, 3, \dots, 15\}$$

 $E = \{ \text{even numbers in } U \}$

 $F = \{\text{numbers in } U \text{ divisible by 5}\}$

List down the following sets:

(a)
$$F^c = \{ 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14\}^{(1 \text{ mark})}$$

(b)
$$E \cap F = \begin{cases} & & \\ & & \\ & & \end{cases}$$

(1 mark)

(c)
$$E \cup F^c = \{ 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, \frac{(1 \text{ mark})}{3, 14} \}$$

A = Cores + Graff

() Alberta

PAGE 6 OF 6