Bios 661: 1-5; Bios 673: 2-6.

- 1. C&B 4.19
- 2. C&B 4.23
- 3. C&B 5.6
- 4. Suppose (X_1, X_2) have the joint pdf

$$f_{X_1, X_2}(x_1, x_2) = \begin{cases} 1 & 0 < x_1 < 1, & 0 < x_2 < 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Let the support of (X_1, X_2) be denoted by the set $S = \{(x_1, x_2) : 0 < x_1 < 1, 0 < x_2 < 1\}$. Draw S on the xy-plane.
- (b) Suppose $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$ with a support \mathcal{T} . Draw \mathcal{T} on the xy-plane.
- (c) Derive the joint distribution of (Y_1, Y_2) using Jacobin method.
- (d) Derive the marginal distribution (pdf) of Y_1 and Y_2 .
- 5. Suppose that random variables X_1 and X_2 are mutually independent and follow N(0,1). Show that the random variable $Y_1 = X_1/X_2$ follows Cauchy distribution with pdf

$$f_{Y_1}(y_1) = \frac{1}{\pi} \frac{1}{1 + y_1^2}, \quad -\infty < y_1 < \infty.$$

Answer the following questions step by step toward the final solution.

- (a) Let $Y_2 = X_2$. Show that the Jacobian of the inverse function of y_1 and y_2 is y_2 , where $-\infty < y_2 < \infty$.
- (b) Derive the joint pdf of Y_1 and Y_2 using the Jacobian method.
- (c) Find the marginal distribution of Y_1 from the joint distribution of Y_1 and Y_2 in (b).
- 6. Let X_1, \ldots, X_n constitute a random sample of size $n(n \geq 3)$ from the parent population

$$f_X(x) = \lambda e^{-\lambda x}, \quad 0 < x < \infty, \quad 0 < \lambda < \infty$$

- (a) Find the conditional density function of X_1, \ldots, X_n given that $S = \sum_{i=1}^n X_i = s$.
- (b) Consider the (n-1) random variables

$$Y_1 = \frac{X_1}{S}, Y_2 = \frac{X_1 + X_2}{S}, \dots, Y_{n-1} = \frac{X_1 + X_2 + \dots + X_{n-1}}{S}.$$

Find the joint distribution of $Y_1, Y_2, \ldots, Y_{n-1}$ given that S = s.

- (c) When n=3 and when n=4, find the marginal distribution of Y_1 given that S=s, and then use these results to infer the structure of the marginal distribution of Y_1 given that S=s for any $n\geq 3$.
- 7. (Bios 673 class material) A certain simple biological system involves exactly two independently functioning components. If one of these two components fails, then entire systems fails. For i = 1, 2, let Y_i be the random variable representing the time to failure of the ith component, with the pdf of Y_i being

$$f_{Y_i}(y_i) = \theta_i e^{-\theta_i y_i}, \quad 0 < y_i < \infty, \quad \theta_i > 0.$$

Clearly, if this biological system fails, then only two random variables are observable, namely U and W, where $U = \min(Y_1, Y_2)$ and

$$W = \begin{cases} 1, & \text{if } Y_1 < Y_2, \\ 0, & \text{if } Y_2 < Y_1. \end{cases}$$

(a) Show that the joint distribution $f_{U,W}(u,w)$ of random variables U and W is

$$f_{U,W}(u,w) = \theta_1^{(1-w)} \theta_2^w e^{-(\theta_1 + \theta_2)u}, \quad 0 < u < \infty, \quad w = 0, 1.$$

- (b) Find the marginal distribution $f_W(w)$ of the random variable W.
- (c) Find the marginal distribution $f_U(u)$ of the random variable U.
- (d) Show that U and W are independent.