Management strategy evaluation for the Indian Ocean tuna fishery: development of operating model

IOTC Working Party on Methods 25 March 2014 JRC, Ispra, Italty

Nokome Bentley

Progress

- Initial model development presented to WPM in October 2013
- Further development:
 - Refinements to model dynamics (C++)
 - Incorporation of data for conditioning (R/C++)
 - Presentation of conditioning fits (R)
- Code repository moved to:
 - https://github.com/iotcwpm/SKJ
- Issue tracking and to do list:
 - https://github.com/iotcwpm/SKJ/issues
- Documentation published at:
 - Text and equations: http://iotcwpm.github.io/SKJ/
 - Doxygen: http://iotcwpm.github.io/SKJ/doxygen/html/index.html

Model dimensions

- Quarterly time step:
 - 1950-2013 (conditioning model to observed data)
 - 2014-2038 (evaluating alternative harvest control rules)
- Three **regions**:
 - Western
 - Maldives
 - Eastern
- Five methods: Purse seine (PS), Pole and line (PL), Gillnet (GN), Line (LI), Other (OT)
- Twenty four quarterly ages: 0-23
- Forty 2cm size bins: 0-2, 2-4, ..., 78-80cm

Population structure

- Numbers by region, age, size
- Accounting for numbers-by-size (i.e. age x size matrix in each region): allows proper modelling of size-based selectivity; may provide advantages in simulating tagging programs

Spawning and recruitment

- Seasonal spawning fraction:
 - Priors based on Grande (2013)
- Stock-recruitment relationship: Beverton-Holt based on pooled, total spawning biomass
- Recruits distributed proportionally to each region and over sizes,

$$R_{r,s} = \overline{R} \cdot \chi_r \cdot A_s$$

Growth

- Von Bertallanfy growth
- Variability in increments: constant s.d. + c.v. on increment
- Converted to a quarterly size transition matrix
- Priors based on Hillary (2011) based on tagging data

$$I_s = (\lambda - L_s) \Big(1 - e^{-0.25 \kappa} \, \Big)$$

ormal distribution with a constant standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth increment for a fish of size s is the standard deviation of the growth deviation of the growth increment for a fish of size s is the standard deviation of the growth deviation of the gr

$$J_s = \sqrt{arepsilon^2 + \left(\phi I_s
ight)^2}$$

ze \dot{s} to size s in one quarter is thus,

$$G_{\dot{s},s} = \int_{l=2s}^{l=2(s+1)} rac{1}{\sqrt{2\pi}J_{\dot{s}}} \, rac{e^{-\left(L_{\dot{s}}+I_{\dot{s}}-l
ight)^2}}{2{\left(J_{\dot{s}}
ight)}^2}$$

Mortality

 On suggestion of WPTT use Lorenzen function:

$$M_s =
u W_s^{\gamma}$$

- nu (M at 1kg) = 0.7
- gamma (exponent) =
 -0.29 = estimated by
 Lorenzen
- Modified so there is a maximum M

Movement

- Currently, movement between regions is uniform across ages and sizes and quarters
- Parameters represent proportion of fish moving in a quarter
- Unlikely to be information in data used in conditioning
- Move to different selectivity by size and/or quarter?
- Use of tagging data to define priors?

Catches: by region and method

Selectivity

- Piecewise spline for each method
- Currently no difference among regions
- May allow for some, perhaps penalised, differences in selectivity if fits suggest it is needed

Model conditioning

- Condition the model based on likelihood of fits to:
 - Maldives standardised quarterly pole and line CPUE 2004-2012 (Sharma et al 2014; IOTC-2014-WPTT16-XX)
 - Western standardised annual purse seine CPUE 1982-2011 (Soto et al 2013; IOTC-2013-WPTT15-32)
 - Quarterly size frequencies by region and method as available (see data/size-frequencies.R for processing of data provided by IOTC)
 - Western tagging-based Z estimates by quarter and size group 2005-2009 (Hillary & Everson in press)

Model conditioning

- Plan to generate posterior distributions using a population-MCMC algorithm based on that of Ter Braak (2006):
 - Evolves posterior as a population of parameter sets proposal distribution is self adapting
 - Appears to be a robust, efficient, easily parallel-izable means of generating posterior
 - Implemented but not yet hooked onto model this week?
- The following fits to data are very very preliminary:
 - Uses a parameter set read in from file parameters.tsv based on means of priors with some tuning "by eye"
 - Deterministic recruitment (all recruitment deviation parameters = 0)
 - Meant for discussion of options/issues with fitting

C. J. F. Ter Braak. A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Statistical Computing, pages 239–249, 2006.

CPUE indices

Maldive PL CPUE

Need to estimate relative q for each quarter

West PS CPUE

Size frequencies

Mean observed and expected proportions by region, method, quarter over years

Mean lengths

Observed and expected mean length by region, method, year and quarter

Size frequencies: W/PS

Size frequencies: M/PL

Z - estimates

- Fit to Z estimated from tagging for each quarter, for each of 4 size classes
- Expected Z generated for W only
- Differences in Z among size classes should help in estimating W/PS selectivity

Next steps

- April June
 - Refinements to model dynamics and data as discussed here
 - Finalisation of model, data, priors and conditioning
 - Evaluation of simple harvest control rules
- July September
 - Evaluation of simple management procedures e.g.
 CPUE, mean length, tagging based
- October
 - meeting of project Advisory Committee
 - Changes as suggested by AC
- November and December
 - Meetings of WPTT and WPM