Least Squares and the Pseudoinverse

Kenton Lam

August 28, 2019

The goal of this is to explain how the (Moore-Penrose) pseudoinverse relates to the last squares problem. Specifically, the psuedoinverse allows one to compute the least-norm solution to the problem.

Notation

 $\mathbf{A} \in \mathbb{R}^{m \times n}$ denotes an $m \times n$ matrix and \mathbf{A}^{\dagger} is its pseudoinverse. Range \mathbf{A} is the vector space spanned by the columns of \mathbf{A} (the column space). As a consequence, Range \mathbf{A}^{\top} is the span of the rows of \mathbf{A} (the row space). Null \mathbf{A} is the null space of \mathbf{A} .

Fundamental Theorem of Linear Algebra

Theorem. If $\mathbf{A} \in \mathbb{C}^{m \times n}$, then

$$\mathrm{Null}(\mathbf{A}) = \mathrm{Range}(\mathbf{A}^*)^{\perp} \ \mathit{and} \ \mathrm{Null}(\mathbf{A}^*) = \mathrm{Range}(\mathbf{A})^{\perp}$$

where \mathbf{B}^{\perp} denotes the orthogonal complement of \mathbf{B} in its containing vector space.

1 Least Squares

The ordinary least squares problems is the following. Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^n$, solve

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2.$$

The vector \boldsymbol{x} is called the solution to this least squares problem. Note that this solution may not be unique.

1.1 Normal Equation

Let

$$f(\boldsymbol{x}) = \frac{1}{2} \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2.$$

It can be shown that f is convex. So to minimise f, it suffices to find an \boldsymbol{x} such that $\nabla f(\boldsymbol{x}) = 0$. We can expand f into

$$f(\boldsymbol{x}) = \frac{1}{2} \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$
$$= \frac{1}{2} (\mathbf{A}\boldsymbol{x} - \boldsymbol{b})^{\top} (\mathbf{A}\boldsymbol{x} - \boldsymbol{b})$$
$$= \frac{1}{2} \boldsymbol{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \boldsymbol{x} - \boldsymbol{b}^{\top} \mathbf{A} \boldsymbol{x} + \frac{1}{2} \boldsymbol{b}^{\top} \boldsymbol{b}$$

To compute the gradient of this function, we use the following result: for all $b \in \mathbb{R}^p$ and $\mathbf{B} \in \mathbb{R}^{p \times p}$,

$$f(x) = \langle b, x \rangle \implies \nabla f(x) = b$$

 $f(x) = \langle x, \mathbf{B} x \rangle \implies \nabla f(x) = (\mathbf{B} + \mathbf{B}^{\top}) x$

We can rewrite f(x) in terms of inner products to see that

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \boldsymbol{x} - \boldsymbol{b}^{\top} \mathbf{A} \boldsymbol{x} + \frac{1}{2} \boldsymbol{b}^{\top} \boldsymbol{b}$$

$$= \frac{1}{2} \langle \boldsymbol{x}, \mathbf{A}^{\top} \mathbf{A} \boldsymbol{x} \rangle - \langle \mathbf{A}^{\top} \boldsymbol{b}, \boldsymbol{x} \rangle + \frac{1}{2} \boldsymbol{b}^{\top} \boldsymbol{b}$$

$$\implies \nabla f(\boldsymbol{x}) = \frac{1}{2} (\mathbf{A}^{\top} \mathbf{A} + \mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - \mathbf{A}^{\top} \boldsymbol{b}$$

$$= \mathbf{A}^{\top} \mathbf{A} \boldsymbol{x} - \mathbf{A}^{\top} \boldsymbol{b}$$

Setting $\nabla f(\mathbf{x}) = 0$ gives us the normal equation for least squares,

$$\mathbf{A}^{\top}\mathbf{A}\boldsymbol{x} = \mathbf{A}^{\top}\boldsymbol{b}.$$

Thus, any \boldsymbol{x} satisfying the normal equation will solve the initial least squares problem.

1.2 Pseudoinverse

We assume there exists a unique $\mathbf{A}^{\dagger} \in \mathbb{R}^{n \times m}$ satisfying the Moore-Penrose conditions:

- 1. $\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}$
- 2. $\mathbf{A}^{\dagger}\mathbf{A}\mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}$
- 3. $(\mathbf{A}\mathbf{A}^{\dagger})^{\top} = \mathbf{A}\mathbf{A}^{\dagger}$ (so $\mathbf{A}\mathbf{A}^{\dagger}$ is symmetric)
- 4. $(\mathbf{A}^{\dagger}\mathbf{A})^{\top} = \mathbf{A}^{\dagger}\mathbf{A}$ (so $\mathbf{A}^{\dagger}\mathbf{A}$ is symmetric)

Firstly, we show that $\mathbf{A}\mathbf{A}^{\dagger}$ is a projection matrix:

$$(\mathbf{A}\mathbf{A}^{\dagger})(\mathbf{A}\mathbf{A}^{\dagger}) = (\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A})\mathbf{A}^{\dagger} = \mathbf{A}\mathbf{A}^{\dagger}.$$

Because it is symmetric, it must also be an orthogonal projection onto its range.

Now, we claim that Range $\mathbf{A}^{\dagger} = \operatorname{Range} \mathbf{A}^{\top}$. Because Range $\mathbf{A}^{\top} \perp \operatorname{Null} \mathbf{A}$, this is equivalent to saying Range $\mathbf{A}^{\dagger} \perp \operatorname{Null} \mathbf{A}$. Suppose $\mathbf{A}^{\dagger} \mathbf{x} \in \operatorname{Range} \mathbf{A}^{\dagger}$ and $\mathbf{y} \in \operatorname{Null} \mathbf{A}$. Then, to show they are orthogonal,

$$(\mathbf{A}^{\dagger} \boldsymbol{x})^{\top} \boldsymbol{y} = \boldsymbol{x}^{\top} (\mathbf{A}^{\dagger})^{\top} \boldsymbol{y}$$

 $= \boldsymbol{x}^{\top} (\mathbf{A}^{\dagger} \mathbf{A} \mathbf{A}^{\dagger})^{\top} \boldsymbol{y}$ (using property of pseudoinverse)
 $= \boldsymbol{x}^{\top} ((\mathbf{A}^{\dagger} \mathbf{A}) \mathbf{A}^{\dagger})^{\top} \boldsymbol{y}$
 $= \boldsymbol{x}^{\top} (\mathbf{A}^{\dagger})^{\top} (\mathbf{A}^{\dagger} \mathbf{A})^{\top} \boldsymbol{y}$
 $= \boldsymbol{x}^{\top} (\mathbf{A}^{\dagger})^{\top} \mathbf{A}^{\dagger} \mathbf{A} \boldsymbol{y}$ (because $\mathbf{A}^{\dagger} \mathbf{A}$ is symmetric)
 $= \mathbf{0}$ (because $\boldsymbol{y} \in \text{Null } \mathbf{A}$)

An identical process shows that Null $\mathbf{A}^{\dagger} \perp \text{Range } \mathbf{A}$ and hence Null $\mathbf{A}^{\dagger} = \text{Null } \mathbf{A}^{\top}$.

1.3 Conclusion

With this in mind, we return to the normal equation. By the rank-nullity theorem, we know that Range $\mathbf{A}^{\top} \oplus \text{Null } \mathbf{A} = \mathbb{R}^n$. Then, any solution \boldsymbol{x} can be written uniquely as $\boldsymbol{x} = \boldsymbol{u} + \boldsymbol{v}$ where $\boldsymbol{u} \in \text{Range } \mathbf{A}^{\top}$ and $\boldsymbol{v} \in \text{Null } \mathbf{A}$.

Moreover, because we defined $u \in \text{Range } \mathbf{A}^{\dagger}$, there must exist a unique¹ $y \in \text{Range}(\mathbf{A}^{\dagger \top}) = \text{Range } \mathbf{A}$ such that $u = \mathbf{A}^{\dagger} y$. Thus,

$$\mathbf{A}^ op \mathbf{A} oldsymbol{x} = \mathbf{A}^ op oldsymbol{b}$$
 $\mathbf{A}^ op \mathbf{A} \mathbf{A}^\dagger oldsymbol{y} = \mathbf{A}^ op oldsymbol{b}$ $\mathbf{A}^ op (\mathbf{A} \mathbf{A}^\dagger)^ op oldsymbol{y} = \mathbf{A}^ op oldsymbol{b}$ $(\mathbf{A} \mathbf{A}^\dagger \mathbf{A})^ op oldsymbol{y} = \mathbf{A}^ op oldsymbol{b}$ $\mathbf{A}^ op oldsymbol{y} = \mathbf{A}^ op oldsymbol{b}$

We have $y \in \text{Range } \mathbf{A}$ and $\mathbf{A}^{\top} \mathbf{b} \in \text{Range } \mathbf{A}^{\top}$ (obviously). The matrix \mathbf{A}^{\top} is a linear map which is injective when its domain is restricted to Range \mathbf{A} . Therefore, the only possible y which satisfies this equation is \mathbf{b} .

Also, we said that any solution would be of the form

$$x = u + v$$

where $u \in \text{Range } \mathbf{A}^{\top}$ and $v \in \text{Null } \mathbf{A}$. We have shown $u = \mathbf{A}^{\dagger} \mathbf{b}$ so the general solution to the least squares problem is given by

$$x = \mathbf{A}^{\dagger} b + v$$
, where $v \in \text{Null } \mathbf{A}$.

An immediate consequence of this is that the solution is unique if and only if Null $A = \{0\}$.

¹when viewed as a linear map, a matrix is injective when restricted to its row space.