Titre

Antoine PUISSANT

 $24~\mathrm{mars}~2015$

Résumé

The abstract text goes here.

Table des matières

1	Exercice 1	
	1.1 Question 1	•
	1.2 Question 2	
	1.3 Question 3	
	1.4 Question 4	
	1.5 Question 5	
	1.6 Question 6	
	1.7 Question 7	
	1.8 Question 8	
	1.9 Question 9	4
	1.10 Question 10	4
	1.11 Question 11	4
	1.12 Question 12	4
2	Section 2 2.1 Subsection	
3	Conclusion	6

1 Exercice 1

1.1 Question 1

Somme des carrés de regression par la somme des carrés résiduels.

$$R^2 = \frac{SC_{reg}}{SC_{tot}} \tag{1}$$

$$R^{2} = \frac{SC_{reg}}{SC_{tot}}$$

$$R^{2} = \frac{980.64}{980.64 + 440.03} = 0.69 = 69\%$$
(2)

$$R^2 = \frac{643.57}{643.57 + 777.10} = 0.45 = 69\%$$
 (3)

1.2 Question 2

Il faut renmplir le tableau avec le carré moyen de la variance. Somme des carrés résiduels divisé par le degré de liberté.

$$\frac{SC_{res}}{n-p} \tag{4}$$

	Carré moyen résiduel	Écart-type des résidus
Régression due à X_1 Régression due à X_2	$\frac{440.03}{777.10} = 44.003$ $\frac{777.10}{215.81} = 77.710$ $\frac{215.81}{9} = 23.979$	$\sqrt{44.003} = 6.6334$ $\sqrt{77.710} = 8.815$
Régression due à X_1, X_2	$\frac{215.81}{9} = 23.979$	$\sqrt{23.979} = 4.896223$

Table 1: Question 2

1.3 Question 3

Source de variation	Somme des carrés	ddl	Carrés moyens	F_{obs}
Régression due à X_1, X_2 Résiduelle Totale	$1204.86 \\ 215.81 \\ 1420.67$	p-1 = 3-1 = 2 p-1 = 10-1 = 9 p-1 = 12-1 = 11	602.43 23.98	25.12

Table 2: Question 3

Question 4 1.4

On va selectionner une test de Fisher car on veut tester les coéfficents de la régression.

- Question 5 1.5
- Question 6 1.6
- 1.7 Question 7
- 1.8 Question 8

Pour savoir si la contribution marginale de la variable "densité du matériau" est significative lorsqu'elle est introduite à la suite de la variable "épaisseur du matériau" pour un seuil de signification $\alpha = 5\%$ on va alors réaliser deux tests:

```
— Le test de Student On teste sur le \widehat{\beta_2}=11.072. Soit : \frac{11.072}{3.621}=3.05 On calcule ensuite le quantile du test de Student : qt(0.975,9)=2.26 On a \alpha=5\% donc pour qt, on a 1-(\frac{\alpha}{2})=0.975. 9 correspond au 12 variables moins les 3 utilisées. — Le test de Fisher partiel
```

1.9 Question 9

Il faut modéliser avec les variables X_1/X_2 avec la commande 'predict'.

Épaisseur X_1	Densité X_2	Estimation de la résistance moyenne	Écart-type de l'estimation
4	3.8	31.61175	2.10
3	3.4	22.27821	1.43
4	2.9	21.64689	2.57

Table 3: Question 9

Sur R, le residual standard error = $\frac{\sqrt{SC_{Residual}}}{ddl}$

1.10 Question 10

```
Pour trouver l'intervalle de confiance, on tape dans R : predict(modele1, data.frame(Ep_mat = 4, Dens = 3.8), interval = "confidence") On obtient alors l'intervalle de confiance suivant : [26.86038, 36.36311]
```

1.11 Question 11

Pour trouver la marge d'erreur, on fait : 36.36311 - 26.86038 = 9.5%

1.12 Question 12

```
Pour trouver l'intervalle de prédiction, on tape dans R: predict(modele1, data.frame(Ep_mat=4, Dens=3.8), interval="prediction") On obtient alors l'intervalle suivant: [19.55839, 43.6651]
```

2 Section 2

Here is the text of your introduction.

$$\alpha = \frac{\sqrt{\beta}}{\gamma} \tag{5}$$

2.1 Subsection

Write your subsection text here.

3 Conclusion

Write your conclusion here.