Algoritmos e Estruturas de Dados III

Aula 3.3 intercalação por substituição

Prof. Felipe Lara

Intercalação com seleção por substituição

A segunda estratégia de otimização é de gerar segmentos ordenados maiores na fase de distribuição

Requer o uso de uma fila de prioridades, como um heap.

Intercalação com seleção por substituição

Operações:

- Ínserír novo elemento (na raiz e afundá-lo)
- Remover a raiz (colocar o último elemento lá e afundálo)

$$filhoesquerdo(i) = i * 2 + 1$$

$$filhodireito(i) = i * 2 + 2$$

$$pai(i) = int((i-1)/2)$$

Intercalação com seleção por substituição

Arquivo a ser ordenado:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Passo 1: Preenchimento do heap

Passo 2: Organização do Heap

Da posição (n-1)/2, que representa o primeiro pai, até a posição 0, afundar cada elemento.

Heap organizado: Retira o menor elemento! Saídas:

Heap organizado: Retira o menor elemento! Saídas:

Heap organizado: Retira o menor elemento! Saídas:

Saídas:

Saídas:

0-12

6

5

6

3

2

0-35

0-21

5

0

0-40

3

Heap organizado: Retira o menor elemento! Saídas:

Saidas

Estou retirando o vetor, mas ele existe!

Criação de um novo número de segmento ordenado (1)

Saídas:

Arq 2:

9 < 12 Se ele entrar aqui, o segmento ordenado é finalizado

Arq 2:

8 < 27 Se ele entrar aqui, o segmento ordenado é finalizado

Arq 1:

Saídas:

Arq 1:

5	6	7	10
35	38	40	49

Saídas:

Arq 2:

3

A 4

Saídas:

28

29

Saídas:

Arq 2:

3 8 9 13 15 17 18 30

A	rq	1

5	6	7	10	11	12	21	27	28	29
35	38	40	49		1				1

Arq	2:									
3	8	9	13	15	17	18	30	34	36	46

	Arq	2:									
	3	8	9	13	15	17	18	30	34	36	46
,											

Arq	1:								
5	6	7	10	11	12	21	27	28	29
35	38	40	49	1					

Arq	2:									
3	8	9	13	15	17	18	30	34	36	46

3 8 9 13 15 17 18 30 34 36 46	Arq	2:									
	3	8	9	13	15	17	18	30	34	36	46

0 2-22 1 2-19 2 2-16

Saídas:

5	6	7	10	11	12	21	27	28	29
35	38	40	49	1	4				

3	8	9	13	15	17	18	30	34	36	46
---	---	---	----	----	----	----	----	----	----	----

Arq	1:								
5	6	7	10	11	12	21	27	28	29
35	38	40	49	1	4	16			

Arq	Arq 2:													
3	8	9	13	15	17	18	30	34	36	46				

Arq 2:

2-22

Arq 2:

3	8	9	13	15	17	18	30	34	36	46
---	---	---	----	----	----	----	----	----	----	----

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Agora é só fazer as intercalações!!!

Saídas:

Arq 1:

5	6	7	10	11	12	21	27	28	29
35	38	40	49	1	4	16	19	22	

3	8	9	13	15	17	18	30	34	36	46