1. Show that

$$\mathbb{P}(X = x) = F(x^{+}) - F(x^{-}).$$

2. Let X be such that $\mathbb{P}(X=2) = \mathbb{P}(X=3) = 1/10$ and $\mathbb{P}(X=5) = 8/10$. Plot the CDF F. Use F to find $\mathbb{P}(2 < X \le 4.8)$ and $\mathbb{P}(2 \le X \le 4.8)$.

$ \begin{array}{c cc} x & \mathbb{P}(X=x) \\ \hline 2 & 1/10 \\ 3 & 1/10 \\ 5 & 8/10 \\ \end{array} $	$ \begin{array}{c} F_X(x) \\ \hline 1/10 \\ 2/10 \\ 10/10 \end{array} $		
1	ı		
0.8			_
0.6			
0.4			_
0.2		•	
$0 - \frac{}{-5}$	0	 5	10

$$\mathbb{P}(2 < X \le 4.8) = \mathbb{P}(X > 2) \cdot \mathbb{P}(X \le 4.8)$$

$$= \{1 - \mathbb{P}(X \le 2)\} \cdot \mathbb{P}(X \le 4.8)$$

$$= \{1 - F_X(2)\} \cdot F_X(4.8)$$

$$= \{1 - 1/10\} \cdot 2/10$$

$$= 18/100$$

$$\mathbb{P}(2 \le X \le 4.8) = \mathbb{P}(X \ge 2) \cdot \mathbb{P}(X \le 4.8)$$

$$= \{\mathbb{P}(X > 2) + \mathbb{P}(X = 2)\} \cdot \mathbb{P}(X \le 4.8)$$

$$= \{1 - \mathbb{P}(X \le 2) + \mathbb{P}(X = 2)\} \cdot \mathbb{P}(X \le 4.8)$$

$$= \{1 - F_X(2) + \mathbb{P}(X = 2)\} \cdot F_X(4.8)$$

$$= \{1 - 1/10 + 1/10\} \cdot 2/10$$

$$= 2/10$$

3. Prove Lemma 2.15.

4. Let X have probability density function

$$f_X(x) = \begin{cases} 1/4 & : 0 < x < 1 \\ 3/8 & : 3 < x < 5 \\ 0 & : otherwise. \end{cases}$$

- (a) Find the cumulative distribution function of X.
- (b) Let Y = 1/X. Find the probability density function $f_Y(y)$ for Y

Hint: Consider three cases: $\frac{1}{5} \leq y \leq \frac{1}{3},\, \frac{1}{3} \leq y \leq 1,$ and $y \geq 1$