Komputerowe systemy sterowania

AR - studia stacjonarne I stopnia

Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynierii Systemów Sterowania

Wykład 15 2015/2016

Zarys problematyki projektowania systemów sterowania

Rozwój teorii sterowania i systemów (metody oparte na modelach)

- 1940 Sterowanie klasyczne
 - Metody w dziedzinie czasu i częstotliwości; stabilność z zapasem wzmocnienie i fazy
 - Szczególnie użyteczne dla systemów jednowymiarowych (SISO)
 - Ciągle jedno z głównych narzędzi inżynierów automatyków

1960 Nowoczesne sterowanie

- Podejście przestrzeni stanu do liniowych systemów sterowania
- Użyteczne zarówno dla systemów SISO jak i wielowymiarowych (MIMO)

Optymalne sterowanie

- Znajduje sterowanie, które minimalizuje pewną funkcję celu (np. zużycie paliwa, czas, ...
- Może być stosowane zarówno do sterowania w układzie otwartym jak i zamkniętym

Krzepkie sterowanie

Zapewnia stabilność przy istnieniu niepewności

Sterowanie nieliniowe, sterowanie adaptacyjne, sterowanie predykcyjne, sterowanie hybrydowe

1970

1980

Dwa oblicza teorii i inżynierii sterowania:

- Teoria systemów i sterowania rozwija się dynamicznie w ostatnich dziesięcioleciach
 - Podejście przestrzeni stanów i filtr Kalmana są produktami tego rozwoju lat 60. ubiegłego stulecia, które umożliwiły po raz pierwszy rozwiązywać problemy sterowania wielowymiarowych liniowych problemów sterowania
 - Od lat 70. rozwija się teoria i techniki sterowania adaptacyjnego
 - W latach 80. zostało rozwinięte sterowanie krzepkie dla systemów wielowymiarowych
 - W tym samym czasie rozwinięte zostały techniki detekcji i diagnostyki
- Nowe techniki są bardzo obiecujące dla zastosowań przemysłowych i przyciągały zawsze zainteresowanie akademickich ośrodków badawczych
- Zastosowanie tych technik w przemyśle procesowym było ograniczone

- Odwiedzając zakłady przemysłu procesowego możemy stwierdzić, że nowoczesne komputerowe systemy sterowania są kombinacją:
 - najnowszej technologii komputerowej
 - klasycznej technologii sterowania PID, która jest technologią ograniczoną
 głównie do układów jednowymiarowych, rozwiniętą w latach 1940 i 1950

Przyczyny dwoistości sytuacji (m.in.)

- Brak odpowiednich modeli dynamiki procesów przemysłowych wszystkie zaawansowane nowoczesne techniki są oparte na modelach i potrzebują dokładnych w racjonalnym stopniu modeli procesów
- brak dobrej komunikacji pomiędzy ośrodkami akademickimi a przemysłem (rola absolwentów z wykształceniem w zakresie inżynierii sterowania !!!)

Wyjątek

- W latach 90. ubiegłego stulecia sterowanie predykcyjne (Model Predictive Control - MPC) uzyskało silną pozycję w przemyśle rafineryjnym i petrochemicznym i zaczęło przyciągać uwagę innych przemysłów
 - Tysiące raportów przestawia zastosowania przemysłowe MPC, głównie z liniowymi modelami dynamicznymi
 - Koszt zastosowania MPC jest ciągle wysoki
 - Istnieje obecnie przekonanie, że modelowanie i identyfikacja procesów jest najtrudniejszą i najbardziej czasochłonną częścią projektów MPC

• Szerokie upowszechnienie zastosowań MPC wymaga bardziej efektywnych technologii identyfikacji

(w oparciu o: Yucai Zhu (2001). Multivariable System Identification for Process Control)

Obraz zastosowania klasycznej technologii PID

- Sterowniki PI oraz PID znajdują się w centrum praktyki inżynierii sterowania od siedemdziesięciu lat
- Pomimo tego nie znajdowały przez wiele lat odpowiedniego zainteresowania ośrodków akademickich; przełomem stały się prace
 - Åström, K.J., Hägglind, T. (1995). PID Controllers: Theory, Design and Tunning
 - Shinskey, F.G. (1988, 1996). Process Control Systems Application, Design and Tunning
- Istnieją silne dowody, że sterowniki PI i PID pozostają słabo rozumiane, a w szczególności niewłaściwie strojone w wielu zastosowaniach

(w oparciu o: O'Dwyer, A. Yucai Zhu (2006). Handbook of PI and PID Controller Tunning

Fakty o technologii sterowania PID:

- Prawdopodobnie jedynie w 5-10% przemysłowych układów sterowania nie mogą być zastosowane jednowymiarowe sterowniki PID
- Sterowniki te sprawdzają się dobrze dla procesów z "łagodną" dynamiką i umiarkowanymi wymaganiami jakości istnieją dane, że: 98% pętli sterowania i przemyśle papierniczym wykorzystuje sterowniki SISO PI (Bialkowski, W,L. (1996). in The Control Handbook, Ed. W.S. Levine); ponad 95% zastosowań sterowania procesami wykorzystuje sterowniki PID (Åström, K.J., Hägglind, T. (1995). PID Controllers: Theory, Design and Tunning)
- Stosowanie sterowników PI oraz PID jest rekomendowane dla procesów niskiego i średniego rzędu i z niedużymi opóźnieniami (Isermann, R. (1989). Digital Control Systems)

Dowody, że sterowniki PI i PID pozostają słabo rozumiane:

- Testowanie ponad tysiąca pętli sterowania w ponad stu zakładach pokazało, że: ponad 30% zainstalowanych sterowników pracuje w trybie sterowania ręcznego a 65% pętli pracujących w trybie sterowania automatycznego posiada gorsze parametry jakościowe niż te pracujące w trybie ręcznego sterowania (Ender, D.B. (1993). Process control performamnce: not as good as you think, Control Engineering)
- 80% sterowników jest niewłaściwie nastrojonych; 30% pracuje w trybie sterowania ręcznego; 25% wszystkich sterowników PID pracuje wykorzystując domyślne nastawy fabryczne, co sugeruje, że nie były w ogóle strojone (Van Overschee, P. and De Moor, B. (2000). RaPID: the end of heuristic PID tunning. Preprints of Proceedings of PID'00: IFAC Workshop on digital control)

Przedstawienie graficzne zasad projektowania i testowania sterownika:

Dla zaprojektowania i nastrojenie dobrego sterowania/sterownika należy:

- Określić wymagane wskaźniki jakości i krzepkości dla pętli sterowania
- Poznać model dynamiki sterowanego systemu/obiektu
- Posiadać odpowiednią metodę projektowania sterownika zapewniającą osiągnięcie wymaganych wskaźników jakości i krzepkości dla posiadanego modelu dynamiki
- Wdrożyć zaprojektowany sterownik biorąc pod uwagę praktyczne ograniczenia
- Przetestować jakość działania regulatora na obiekcie lub modelu referencyjnym i jeżeli potrzeba przeprojektować/przestroić

Metodyka projektowania systemów sterowania

Uwagi wstępne

- Inżynieria sterowania (Control Engineering) odgrywa dziś fundamentalną rolę w nowoczesnych systemach technologicznych,
- · Korzyści ze sterowania w przemyśle, mogą być wielorakie
 - poprawa jakości produktu
 - obniżenie zużycie energii
 - minimalizacja odpadów
 - podniesienie poziomu bezpieczeństwa
 - redukcja zanieczyszczeń otoczenia
 -

Ale

 Zaawansowane aspekty inżynierii sterowania wymagają dobrych podstaw matematycznych (dynamika, stabilność, jakość, obserwowalność, sterowalność,

Uwagi c.d.

- Sukces projektu systemu sterowania zależy od dwóch kluczowych składników
 - posiadania wystarczającego rozumienia systemu sterowanego (chemicznego, elektromechanicznego,)
 - posiadania wiedzy z zakresu podstawowych pojęć: sygnałów, systemów, teorii sterowania, struktur, algorytmów,
- Projekt sterowania procesem przemysłowym, aby wypełniał on wymagania opłacalności, jakości, bezpieczeństwa, wpływu na środowisko wymaga ścisłej współpracy pomiędzy ekspertami z różnych dziedzin technologii procesu, techniki komputerowej, mechaniki,, pomiarów i oprzyrządowania, sterowania

Ale

 Każdy z nich będzie patrzył na proces technologiczny, i jego sterowanie z innej perspektywy - z perspektywy swojej dziedziny

Przykładowe perspektywy:

- Inżynier technolog dziedzinowy procesy, warunki ich poprawnego zachodzenia, ich powiązania,
- Inżynier informatyk ("komputerowiec") sprzęt i oprogramowanie komputerowe, infrastruktura lokalnej sieci komputerowej, systemy operacyjne, oprogramowanie aplikacyjne,
- Inżynier pomiarów i oprzyrządowania sensory, aktuatory, ich okablowanie,
- Inżynier sterowania (automatyk) elementy systemu sterowania widziane w kategoriach sygnałów, systemów, dynamiki odpowiedzi, ich modeli lub ich właściwości,

Sygnały i systemy w pętlach sterowania

	Przykłady fizykalne, namacalne	Przykłady matematycznej aproksymacji	Przykłady właściwości
Sygnały	wartość zadana, wejście sterujące, zakłócenia, pomiary,	funkcja ciągła, ciąg próbek, proces przypadkowy,	analityczna, stochastyczna, sinusoidalna, stacjonarny, odchylenie standardowe,
Systemy	proces, sterownik, sensor, aktuator, 	równanie różniczkowe, równanie różnicowe, transmitancja, model przestrzeni stanu,	ciągły, dyskretny, próbkowany, liniowy, nieliniowy, stacjonarny,

Inżynier automatyk patrzy na system sterowania ze swojej perspektywy mając na uwadze inne perspektywy, ponieważ razem daje to całościowe spojrzenie na ten system

Znaczenie kosztów projektu systemu sterowania

- projekty niekomercyjne (badawcze, edukacyjne, specjalne (np. wojskowe, kosmiczne, ...);
 - o koszty nie są czynnikiem pierwszoplanowym,
 - ° pierwszoplanowe wymagania: parametry techniczne, niezawodność, bezpieczeństwo,
- projekty komercyjne
 - rola czynnika kosztów zależy, od tego, czy sterowanie (sterownik) jest niedużym podukładem większego produktu komercyjnego (np. układ utrzymania stałej prędkości (cruise control) czy ABS w samochodzie czy ABS (Anti-Lock Breaking System), czy też jest częścią pojedynczego procesu technologicznego (np. układ sterowania ruchem robotów linii montażowej samochodów)
 - w pierwszym przypadku koszty zwykle będziemy minimalizować (jak najprostsze rozwiązania), w drugim, wysiłek można skupić na uzyskaniu układu bardziej złożonego zapewniającego dobrą jakość produktu

Podstawowe znaczenie sterowania wykorzystującego sprzężenie zwrotne

Sterownik/algorytm sterowania ze sprzężeniem zwrotnym jest systemem podejmowania decyzji, który zbiera informacje z otoczenia dla zdecydowania jak wykorzystać je dla realizacji określonych zadań sterowania

Elementy nowoczesnego jednowymiarowego systemu sterowania

Obiekt: System fizyczny, aktuatory, sensory

Sterownik: Mikrokomputer plus sprzętowe przetwarzanie

Sprzężenie: Połączenie pomiędzy wyjściem obiektu a wejściem sterownika

Wymagania stawiane systemowi sterowania związane z jakością jego działania

• "Dobre" śledzenie trajektorii wejściowego sygnału referencyjnego (wejściowego sygnału wartości zadanej)

Śledzenie oznacza zdolność sterownika do wpływania na wejście obiektu (manipulowania wejściem obiektu) w taki sposób, aby trajektoria wyjścia obiektu pozostawała tak blisko jak to jest możliwe trajektorii sygnału referencyjnego

Czy można zapewnić śledzenie nie stosując sprzężenia zwrotnego?

Sterowanie w układzie otwartym

Nie można zrealizować (lub może to być bardzo trudne) śledzenia nie stosując sprzężenia zwrotnego

• Redukowanie wpływu niepomyślnych warunków (i niemierzonych)

- Odrzucanie niemierzonych zakłóceń
- Niewrażliwość na zmiany parametrów obiektu

Zdolność redukowania wpływu niepomyślnych warunków nazywamy krzepkością (odpornością)

Zarys problematyki projektowania systemów sterowania

Czy można zapewnić krzepkość nie stosując sprzężenia zwrotnego?

Nie można zapewnić (lub może to być bardzo trudne) krzepkości nie stosując sprzężenia zwrotnego

- Pożądane zachowanie w kategoriach odpowiedzi czasowej (jakość sterowania w dziedzinie czasu)
 - Stabilność asymptotyczna

- Czas narastania
- Przeregulowanie

Zarys problematyki projektowania systemów sterowania

- Czas ustalania

- Uchyb ustalony

Czynniki oceny projektu systemu sterującego (sterownika)

- Koszt całkowity
 - Ile czasu zajmie opracowanie sterownika? Koszt sensorów, aktuatorów, sterownika, innego wyposażenia? Ile będzie kosztowała instalacja sterownika? Liczba osobomiesięcy niezbędna dla zaprojektowania, wykonania, odbioru technicznego, utrzymania?
 - Złożoność obliczeniowa
 - Czy wymagania obliczeniowe sterownika nie przekroczą możliwości sprzętu komputerowego? Czy nie przekroczone zostaną wymagania pracy w czasie rzeczywistym?
 - Wykonalność
 - Czy sterownik będzie stawiał jakieś specjalne wymagania sprzętowe, aby go zastosować?

- Niezawodność

- Czy system będzie zawsze działał właściwie? Jak można zaprojektować system, aby minimalizować liczbę uszkodzeń? Co powoduje te uszkodzenia? Sensory, sterownik, aktuatory, połączenia komunikacyjne?

- Utrzymanie i konserwacja

- Czy łatwo będzie utrzymywać system w działaniu?

- Adaptowalność

- Czy ten sam projekt można będzie przystosować do użycia z podobnym obiektem?

Zarys problematyki projektowania systemów sterowania

- Modyfikowalność (otwartość)
 - W jakim stopniu system będzie musiał być przeprojektowany, aby można było do niego dołączyć nowy sprzęt, nową funkcję? Czy łatwo połączyć system z innymi?

- Zrozumiałość

- Czy określeni ludzie będą w stanie zrozumieć zastosowane podejście do sterowania?

- Polityka

 Czy twój szef jest przeciwny twemu podejściu? Czy twoje podejście jest zbyt nowatorskie i odbiega istotnie od standardów firmy? Czy twoje podejście jest zbyt ryzykowne?

Metodyka projektowania systemów sterowania (jednowymiarowych)

1. Zrozumienie obiektu i określenie zadań sterowania

- Zrozumienie obiektu, możliwości, ograniczeń
 - rozmowa z technologiem
 - zapoznanie się z dokumentacją obiektu
 - zbieranie informacji z obiektu
 - wykonanie eksperymentów na obiekcie
 - Określenie wymagania projektowe
 - samodzielnie
 - w porozumieniu z zamawiającym, zarządem firmy,

2. Zbudowanie modeli i reprezentacji niepewności

2. Zbudowanie modeli i reprezentacji niepewności - c.d.

3. Analiza dokładności modelu i właściwości obiektu

4. Konstruowanie i ocena systemu sterowania

Synteza sterownika

4. Konstruowanie i ocena systemu sterowania - c.d.

Badanie jakości działania układu zamkniętego

Badanie matematyczne – wykorzystanie modelu projektowego

Badanie symulacyjne – wykorzystanie modelu referencyjnego

4. Konstruowanie i ocena systemu sterowania - c.d.

Modele referencyjny i projektowy Projektowanie/ przeprojektowanie sterowania Matematyczne i symulacyjne badanie jakości Wdrożenie i ocena sterownika System sterowania

Eksperymentalna ocena jakości działania układu zamkniętego

Badanie na obiekcie - zwykle ograniczone możliwości

Podsumowanie: Iteracyjna procedura projektowania z wykorzystaniem modelowania

System sterowania automatycznego

Brak modelu: wykorzystanie podejścia heurystycznego

Przyczyny:

- proces zbyt skomplikowany
- brak środków na budowę modelu
- proces niezbyt wymagający

Dziękuję za uczestnictwo w wykładzie i uwagę