assignment-3

October 30, 2024

```
[102]: import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
       from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
       from statsmodels.tsa.arima.model import ARIMA
[103]: # Load the dataset
       data = pd.read_csv('datasets.csv')
[113]: #Remove trailing spaces from column names
       data.columns = data.columns.str.strip()
[114]: # Convert 'Date' to datetime format and set as index
       data['Date'] = pd.to_datetime(data['Date'], format='%d-%b-%Y')
       data.set_index('Date', inplace=True)
[115]: # Remove commas and convert relevant columns to numeric
       for col in ['OPEN', 'HIGH', 'LOW', 'PREV. CLOSE', 'ltp', 'close', 'vwap',
        ⇔'VOLUME', 'VALUE', 'No of trades']:
           data[col] = pd.to_numeric(data[col].astype(str).str.replace(',', ''),_u
        ⇔errors='coerce')
[116]: # Check for missing values
       print("Missing Values:\n", data.isnull().sum())
      Missing Values:
                       0
       series
      OPEN
                      0
      HIGH
                      0
      LOW
      PREV. CLOSE
                      0
      ltp
      close
                      0
                      0
      vwap
      52W H
                      0
      52W L
                      0
      VOLUME
                      0
```

```
VALUE 0
No of trades 0
dtype: int64
```

```
[117]: # Step 2: Visualize the data to identify trends, seasonality, and outliers
    plt.figure(figsize=(12, 6))
    plt.plot(data['close'], label='Close Price')
    plt.title('Time Series of Close Price')
    plt.xlabel('Date')
    plt.ylabel('Close Price')
    plt.legend()
    plt.show()
```



```
[118]: # Step 3: Descriptive statistics
print("Summary Statistics:\n", data[['OPEN', 'HIGH', 'LOW', 'close']].

→describe())
```

Summary Statistics:

	OPEN	HIGH	LOW	close
count	248.000000	248.000000	248.000000	248.000000
mean	885.813306	894.791331	874.155645	884.209274
std	157.811659	159.959591	154.479379	157.274130
min	618.700000	620.800000	608.300000	613.600000
25%	723.437500	727.250000	713.375000	720.162500
50%	950.000000	958.625000	937.725000	947.400000
75%	1005.000000	1014.587500	990.600000	1002.737500
max	1167.000000	1179.000000	1145.300000	1161.850000

```
[119]: # Step 4: ACF and PACF plots for ARIMA model selection
plt.figure(figsize=(12,6))
plt.subplot(211)
plot_acf(data['close'].dropna(), ax=plt.gca(), lags=40)
plt.subplot(212)
plot_pacf(data['close'].dropna(), ax=plt.gca(), lags=40)
plt.show()
```



```
[120]: # Based on ACF and PACF plots, select (p,d,q) for ARIMA. Here (1,1,1) is anumerample.

model = ARIMA(data['close'].dropna(), order=(1,1,1))

model_fit = model.fit()

print(model_fit.summary())
```

C:\Users\Rohit\AppData\Local\Programs\Python\Python311\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

self._init_dates(dates, freq)

C:\Users\Rohit\AppData\Local\Programs\Python\Python311\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: A date index has been provided, but it is not monotonic and so will be ignored when e.g. forecasting.

self._init_dates(dates, freq)

C:\Users\Rohit\AppData\Local\Programs\Python\Python311\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

self._init_dates(dates, freq)

C:\Users\Rohit\AppData\Local\Programs\Python\Python311\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: A date index has been provided, but it is not monotonic and so will be ignored when e.g. forecasting.

self. init dates(dates, freq)

C:\Users\Rohit\AppData\Local\Programs\Python\Python311\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

self._init_dates(dates, freq)

C:\Users\Rohit\AppData\Local\Programs\Python\Python311\Lib\site-packages\statsmodels\tsa\base\tsa_model.py:473: ValueWarning: A date index has been provided, but it is not monotonic and so will be ignored when e.g. forecasting.

self._init_dates(dates, freq)

SARIMAX Results

______ Dep. Variable: close No. Observations: 248 ARIMA(1, 1, 1) Log Likelihood
Wed, 30 Oct 2024 AIC -1049.978 Model: Date: 2105.957 Time: 19:39:12 BIC 2116.485 O HQIC 2110.195 Sample: - 248 Covariance Type: opg ______ P>|z| coef std err z [0.025 ______ ar.L1 0.3049 0.650 0.469 0.639 -0.970 1.580 ma.L1 -0.2222 0.663 -0.335 0.737 -1.522 1.077 sigma2 288.2782 13.622 21.162 0.000 261.579 314.977 ______ Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 359.68 Prob(Q): 0.88 Prob(JB): 0.00 Heteroskedasticity (H): 0.22 Skew: 0.92

8.62

Warnings:

Prob(H) (two-sided):

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

0.00 Kurtosis:

[121]: # Step 6: Plot model diagnostics
model_fit.plot_diagnostics(figsize=(10,8))
plt.show()

