Лекція № 5.4. Планарні графи

- 1 Планарні графи
- 2 Умови планарності
- 3 Грані плоского графа
- 4 Алгоритм побудови плоского зображення графа

Запитання для контролю

1 Планарні графи

Планарний граф – це граф, допускає укладання площині, тобто. він може бути зображений на площині так, що жодні ребра не мають спільних точок, крім своїх вершин.

Зображення графа на площині з дотриманням цієї умови називається плоским графом.

Планарність потрібна, наприклад, для реалізації друкованого монтажу, у процесі розробки якого схема пристрою представляється як граф: елементи – вершини, зв'язок між виходами елементів – ребра. Печатний монтаж виконується в одній або декількох площинах, які називають шарами, тому зазвичай виникають питання:

- Граф планарний?
- Як одержати плоске зображення графа?

Якщо граф не планарний , то доводиться видаляти (переносити в інший шар, іншу площину) окремі ребра.

Мінімальне число ребер, яке треба видалити для отримання плоского зображення, називається числом планарності графа та позначається $\theta(G)$. Для повних графів K_n з числом вершин $n \ge 4$

$$\theta(K_n) = (n-3)(n-4)/2.$$

3 формули випливає, що за n=4 $\theta(4)=0$. Для K_5 $\theta(5)=1$, отже, щоб граф K_5 став планарним, треба видалити одне ребро.

При перенесенні на другу площину перенесена частина може знову виявитися не плоскою. Тоді окремі ребра переносять до нової площини і так далі.

Мінімальне число площин, при якому граф розбивається на плоскі частини, називається товщиною графа та позначається t(G).

Товщина довільного графа задовольняє нерівності $t(G) \ge \frac{\lfloor q + 3p - 7 \rfloor}{\lfloor 3p - 6 \rfloor}$.

Тут [x] - ціла частина x, p - число вершин, q - число ребер.

Товщина повних графів задовольняє рівності t (K_n) = $\frac{[n+7]}{6}$ за винятком n=9, 10, для яких товщина дорівнює 3.

Наприклад, для $K_5 t(K_5) = 2$.

2 Умови планарності

Відповідь на перше запитання: - Граф планарний ? – можна отримати, якщо користуватися умовами планарності.

У зв'язного плоского графа з *числом вершин р* \geq 3 число ребер q задовольняє умові

$$q \le 3p - 6$$

У зв'язного плоского дводольного графа

$$q \le 2p - 4$$

Приклад 1. Повний граф K_4 (рис. 1 а) – планарний ? У цьому графі p=4, q=6.

Підставимо ці значення за умови планарності. Отримаємо $6 \le 3.4 - 6 = 6$.

Умова виконується. Отже, граф можливо планарний . Дійсно, граф K_4 можна подати, наприклад, так, як показано на рис. 1, б. 3 рисунка ясно, що граф K_4 планарний .

Приклад 2. Повний граф K_5 (рис. 1, в) – планарний ? У цьому графі p = 5, q = 10.

Підставимо ці значення за умови планарності. Отримаємо $10 \le 3.5 - 6 = 9$.

Умова не виконується. Отже, граф не планарний.

Приклад 3. Дводольний повний граф $K_{3,3}$ (рис. 1, г) - планарний ? У цьому графі p=6, q=9.

Підставимо ці значення за умови планарності. Отримаємо 9 ≤ 2 ⋅6 - 4 = 8.

Умова не виконується. Отже, граф не планарний.

3 прикладів видно, що розташувати на площині без перетину ребер можна не кожен граф. А ось у тривимірному просторі може бути зображений будь-який кінцевий граф.

Доказ простий.

Розташуємо всі вершини на одній прямій. Побудуємо *q* площин на цій прямій, тобто для кожного ребра свою площину. Проведемо ребра у своїх площинах. Ребра не перетинаються (крім своїх вершин).

Непланарність графів K_5 і $K_{3,3}$ використовується для оцінки планарності великих графів: граф не планарний, якщо він містить підграфи виду K_5 або $K_{3,3}$, або зведені до них.

3. Грані плоского графа

У плоского графа, крім вершин і ребер, можна виділити ще один геометричний образ – грань.

Область площини, обмежена ребрами зв'язкового плоского графа і містить у собі ні ребер, ні вершин, називається його гранню .

Зовнішня необмежена грань називається нескінченною гранню.

Наприклад, граф на рис. 1, б володіє чотирма гранями: f_1 , f_2 , f_3 , f_4 де f_4 - нескінченна грань.

У графа без циклів одно грань – нескінченна. Не слід думати, що вона якась виняткова. При укладанні графа на сферу ця грань нічим не відрізнятиметься від інших.

Число граней f у зв'язному плоскому графі визначається із співвідношення

$$f = q - p + 2$$
,

де p – число вершин, q - Число ребер.

4 Алгоритм побудови плоского зображення графа

Відповідь на друге запитання: як одержати плоске зображення графа, дає алгоритм, розглянутий нижче.

Нехай задана частина $G_1 = (V_1, E_1)$ графа G = (V, E).

Будемо називати сегментом графа G щодо G_1 :

- 1. Ребро $e \notin E_1$ разом з його кінцями, які належать V_1 .
- 2. Компоненту зв'язності $G'_{i} = (V'_{i}, E'_{i})$ підграфа, породженого зв'язною підмножиною вершин $V \setminus V_{1}$, доповнену всіма ребрами, інцидентними вершинам з V'_{i} , і всіма вершинами цих ребер, що належать V_{1} , які називаються «контактними точками».

Алгоритм використовує послідовний процес приєднання до деякого плоского підграфу G_i ланцюгів , обидва кінці яких (і тільки вони) – вершини G_i . Такийй ланцюг розіб'є одну з граней G_i на дві.

Як початковий плоский граф G_I обирають деякий цикл графа G.

Щоб перейти від підграфа G_i до G_{i+I} , попередньо розглядають усі сегменти P_j графа G відносно G_i .

Грань f_k графа G_i та сегмент P_j сумісні, якщо всі його контактні точки належать множині вершин цієї грані.

Для кожного сегмента визначаємо грані, які з ним сумісні. Можливі три випадки:

- 1. Деякий сегмент не сумісний з жодною гранню графа G_i . Тоді граф не плоский.
- 2. Якийсь сегмент сумісний з єдиною гранню f_k графа G_i . Тоді виберемо у цьому сегменті ланцюг μ_j такий, що обидва його кінці (і тільки вони) належать G_i . Доповнюючи G_i ребрами та вершинами цього ланцюга, отримуємо G_{i+1} , проводячи μ_j всередині грані f_k .
- 3. Якщо кожен із сегментів P_j сумісний принаймні з двома гранями графа G_i , то можна вибрати ланцюг μ_j у будь-якому з сегментів та діяти як у випадку 2.

Приклад. Проілюструємо цей алгоритм на прикладі графа G(V, E) на рис. 2.

Крок 1. Беремо довільний цикл, наприклад $u_0 = (1, 2, 6, 5, 1)$, що представляє плоский граф G_1 (Рис. 3, a). Його грані:

 A_0 - Зовнішня грань (1,2, 6, 5, 1), B_0 - Внутрішня грань (1,2,6,5,1).

Сегменти графа G щодо G_1 :

Вершини 3 і 4 не пов'язані ребрами з кінцевими вершинами G/G_1 , тому розглядатиметься мінімум 2 зв'язкових сегмента. Спочатку розглянемо всі ребра, що виходять з вершини 3 у вершини G_1 , потім аналогічно сформуємо зв'язну множину для вершини 4.

Сегменти	Можливі вершини сегмента	Контактні точки	Сумісні грані
P_1	{1, 3, 5, 6}	{1, 5, 6}	A_0 та B_0
P_2	{1, 2, 4, 6}	{1, 2, 6}	A_0 та B_0

Крок 2. Визначаємо G_2 . Усі сегменти сумісні з двома гранями (випадок 3). Вибираємо, наприклад, ланцюг (1, 3, 5) із сегмента P_1 і проводимо його в грані B_0 . Ця грань у G_2 замінюється двома гранями: B_1 – внутрішньою до (1,3,5,1) та B_2 – внутрішньою до (1,2,6,5,3,1) (рис. 3, б).

Нові сегменти G відносно G_2 .

Сегменти	Можливі вершини сегмента	Контактні точки	Сумісні грані
P_1	{3, 6}	{3, 6}	B_2
P_2	{1, 2, 4, 6}	{1, 2, 6}	A_0 та B_2

Крок 3. Визначаємо G_3 . Сегмент P_1 сумісний лише з однією гранню B_2 (Випадок 2). Ланцюг (3, 6) повинен бути поміщений у грань B_2 , яку вона розіб'є на дві грані: B_3 - внутрішню до (3, 5, 6, 3) і B_4 - внутрішню до (1, 2, 6, 3, 1) (рис. 3, 8).

Новий сегмент G відносно G_2 .

Сегменти	Можливі вершини сегмента	Контактні точки	Сумісні грані
P_1	{1, 2, 4, 6}	{1, 2, 6}	A_0 та B_4

Крок 4. Визначаємо **G**₄. Сегмент P_1 сумісний із двома гранями A_0 і B_4 (Випадок 3). Візьмемо, наприклад, ланцюг (1, 4, 2) і помістимо його до грані A_0 . Отримуємо дві нові грані: A_1 - зовнішню до (1, 4, 2, 6, 5, 1) і A_2 - внутрішню (1, 4, 2, 1) (рис. 3, г).

Сегменти G відносно **G**₄:

Сегменти	Можливі вершини сегмента	Контактні точки	Сумісні грані
P_1	{4, 6}	{4, 6}	A_1

Крок 5. Визначаємо **G**₅ . Сегмент P_1 сумісний з однією гранню A_1 (випадок 2). Поміщаємо єдиний ланцюг (4, 6) A_1 і отримуємо нові грані: A_3 – зовнішню до (1,4, 6, 5, 1) та A_4 – внутрішню до (2, 4, 6, 2) (рис. 3, д).

Таким чином, отримуємо плоске зображення графа G.

Запитання для контролю лекції

- 1. Що таке планарний граф?
- 2. Якими є умови планарності для довільного графа?
- 3. Грань плоского графа що це таке? Скільки граней у плоского графа?
- 4. Граф *K*₆ плоский ? А *K*₇?
- 5. Що таке число планарності та товщина графа? Як їх визначити?
- 6. Якою є ідея алгоритму побудови плоского зображення графа?