05BQX Metodi Matematici per l'ingegneria 2011-2012

Marina Santacroce

Dipartimento di Scienze Matematiche, Politecnico di Torino

1. Analisi Combinatoria

Riferimenti: S.Ross Calcolo delle probabilità Cap.1

Outline

Informazioni generali

Definizione di Probabilità

Definizione classica Definizione frequentista Definizione soggettivista

Analisi combinatoria

Introduzione

Permutazioni

Combinazioni

Applicazione: numero di soluzioni intere di una equazione

Informazioni generali

- Testo di Riferimento: S. Ross, Calcolo delle Probabilità, Apogeo (2^a ed., 2007)
- · Orario di Ricevimento: ... presso il DISMA.
- Esame scritto (closed books)
- Esercitazioni: ultima ora (delle 3) dedicata agli esercizi.
- Simulazione d'esame: ultima lezione.
- Le slides delle lezioni saranno inserite sul portale della didattica nella sezione Materiale.

Esempio

Consideriamo un *esperimento* che consiste nel **lancio di un** dado *regolare* a 6 facce.

Sia $E = \{il \text{ risultato del lancio è un numero pari}\}$

• Quanto vale la probabilità di E, $\mathbb{P}(E)$? $\Longrightarrow \mathbb{P}(E) = \frac{1}{2}$

$$\mathbb{P}(E) = \frac{numero \ dei \ casi \ favorevoli \ a \ E}{numero \ dei \ casi \ possibili} = \frac{3}{6}$$

- i *casi favorevoli* a $E = \{\text{risultato del lancio pari}\}\$ sono $\{2,4,6\} \Longrightarrow 3$
- i casi possibili sono {1,2,3,4,5,6} ⇒ 6

Definizione classica

Figure: Pierre Simon Laplace

Def. 1 La **probabilità di un evento** *E* è il rapporto tra il numero dei casi favorevoli all'evento e il numero dei casi possibili, *purchè* questi ultimi siano tutti *ugualmente possibili*.

$$\mathbb{P}(E) = \frac{numero \ casi \ favorevoli \ a \ E}{numero \ casi \ possibili}$$

⇒ Si tratta di una definizione operativa ma con dei limiti:

- i casi "possibili" devono essere "ugualmente possibili", cioè "equiprobabili" (nell'esempio: dado regolare)
- definizione tautologica;
- il numero dei casi possibili deve essere finito.

Immaginiamo di ripetere l'esperimento "lancio del dado" n volte e sia n(E) il numero di volte in cui il risultato del lancio è pari.

Ci si aspetta che la *frequenza relativa* di E (dei lanci con risulato pari), $\frac{n(E)}{n}$, a lungo andare, sia all'incirca uguale ad $\frac{1}{2}$ (la probabilità di E).

Questa aspettativa è nota come *legge empirica del caso*:

"In una successione di prove fatte nelle stesse condizioni, la frequenza relativa di un evento si avvicina alla sua probabilità e l'approssimazione tende a migliorare all'aumentare delle prove."

La "legge empirica del caso" ha una formulazione volutamente vaga e rappresenta la traduzione sul piano pratico di uno dei risultati fondamentali della probabilità:

la legge dei grandi numeri.

Definizione frequentista (R. Von Mises)

In contrapposizione con la prima definizione classica, la definizione frequentista si basa sulle frequenze dei risultati sperimentali.

Def. 2 La **probabilità di un evento** E è il il limite della frequenza relativa delle prove in cui l'evento si verifica, quando il numero delle prove tende ad infinito,

$$\mathbb{P}(E) = \lim_{n \to \infty} \frac{n(E)}{n}.$$

⇒ Anche in questo caso, si tratta di una definizione *operativa* ma con dei *limiti*:

- presuppone si possa ripetere l'esperimento nelle stesse condizioni un numero infinito di volte
- presuppone che la successione {a_n = n(E)/n, n ≥ 1} converga ad una costante.

Supponiamo che si giochi la partita amichevole

Juventus - ProVercelli

Si vuole valutare la probabilità dell'evento $E = \{la \ Juventus \ perde\}$

- ⇒ È chiaro che le due definizioni non dovrebbero essere utilizzate.
- \Rightarrow Se "volessi utilizzare" la definizione classica $\Rightarrow \mathbb{P}(E) = \frac{1}{3}$
- \Rightarrow se "volessi utilizzare" la definizione frequentista dovrei stimare la probabilità $\frac{n(E)}{n}$, sulla base di "tutte" le partite che le due squadre hanno giocato...

Impostazione soggettivista (de Finetti/Savage)

Nella foto Bruno de Finetti

Definizione soggettivista

Def. 3 La probabilità *soggettiva* di un evento *E* rappresenta una misura di fiducia che il soggetto ripone nel verificarsi dell'evento *E* (coerentemente con tutte le informazioni a disposizione).

La definizione data non è ancora operativa. Uno dei modi per renderla tale è far riferimento alle scommesse imponendo una condizione di "coerenza" o "equità".

La probabilità $\mathbb{P}(E)$ può essere pensata come l'*equivalente certo di una scommessa sull'evento E*, i.e. quella cifra che il soggetto ritiene equo pagare per entrare in una scommessa in cui

- riceve 1 se la *Juventus perde*
- riceve 0 se la Juventus vince o pareggia

Le probabilità vengono attribuite agli eventi in modo che non ci sia un sistema di scommesse con vincita (o perdita) certa.

Definizione assiomatica (A.N. Kolmogorov (1933))

Un elemento comune alle tre definizioni è l'aspetto matematico. Nelle tre definizioni la probabilità di un evento $\mathbb{P}(E)$ è

- 0 < ℙ(E) < 1
- se E è l'evento certo, P(E) = 1
- proprietà di additività: se E ed F sono due eventi disgiunti allora $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F).$

(nell'esempio del dado $E = \{ risultato | ancio pari \} e F = \{ risultato | ancio 3 \} \}$

La moderna Teoria della Probabilità si fonda sull'Impostazione Assiomatica introdotta da A.N. Kolmogorov nel 1933. (prossima lezione)

Oggi ci occupiamo dei casi in cui i risultati di un esperimento sono un numero finito ed equiprobabili, i.e. dei casi in cui calcoliamo la probabilità di un evento con

 $\mathbb{P}(E) = \frac{\textit{numero casi favorevoli a E}}{\textit{numero casi possibili}}$ (Def. Classica)

Esempio

Si consideri un sistema di comunicazione costituito da \emph{n} antenne allineate.

Il sistema funziona se non vi sono due antenne consecutive difettose.

Se le antenne difettose sono m ($m \le n$), qual è la probabilità che il sistema funzioni?

Es.:
$$n = 4 e m = 2$$

Indichiamo con 1 le antenne funzionanti e 0 le difettose.

Le configurazioni possibili sono 6:

di cui 3 corrispondono ad un sistema funzionante.

$$\Rightarrow \mathbb{P}(\textit{sistema funziona}) = \frac{3}{6} = \frac{1}{2}$$

e per *m* e *n* arbitrari?

Principio fondamentale del calcolo combinatorio

Il calcolo combinatorio ci aiuta a contare gli insiemi con determinate caratteristiche, (nell'esempio precedente i possibili allineamenti delle antenne e quelli che non hanno due difettose consecutive).

Si basa sul seguente principio fondamentale:

Se un esperimento ha m possibili esiti e, indipendentemente dall'esito di questo, un secondo esperimento ha n possibili esiti \Rightarrow la coppia di esperimenti ha mn possibili esiti¹

Esempi:

- 2 lanci successivi di una moneta ⇒ i risultati possibili sono 4
- il primo lancio ha 2 esiti possibili {T, C} e (indipendentemente dal primo lancio) il secondo ha 2 esiti possibili
- targhe formate da 2 lettere 3 numeri e 2 lettere (con ripetizione) ⇒ 21² · 10³ · 21²
- estrazione dei primi due numeri nel gioco della tombola \Longrightarrow 90 \cdot 89

¹Si generalizza per r esperimenti, ognuno con rispettivamente $n_1, n_2, \ldots n_r$ esiti possibili \Rightarrow gli r esperimenti hanno $n_1 n_2 \ldots n_r$ possibili esiti.

Permutazioni

Sia $N = \{x_1, x_2, \dots, x_n\}$ un insieme di elementi distinti.

n = #(N) la cardinalità di N.

Def. L'insieme delle *Permutazioni di N*, $\mathcal{P}(N)$, è l'insieme degli ordinamenti dell'insieme N.

Esempio 1: Sia $N = \{a, b, c\}$ l'insieme,

$$\mathscr{P}(N) = \{abc, acb, bac, bca, cab, cba\}$$

Il numero delle permutazioni di $N = \{a, b, c\}$ è $6 \Rightarrow \#(\mathcal{P}(N)) = 3 \cdot 2 \cdot 1 = 3! = 6.$

 \Rightarrow II numero di permutazioni di un insieme N costituito da n elementi distinti

è
$$n \cdot (n-1) \cdot (n-2) \cdot ... 1 = n!$$

$$\#(\mathscr{P}(N)) = n!$$

Es. 2 In quanti modi si possono disporre 6 persone in fila indiana?

$$\Rightarrow$$
 6!

Permutazioni

Consideriamo le permutazioni di un insieme di *n* elementi *non* tutti distinti.

Esempio 1: Quanti sono gli anagrammi della parola PEPPER?

- ∘ gli anagrammi di P₁E₁P₂P₃E₂R sono 6!
- o dato che i modi di permutare le *P* e le *E* sono rispettivamente 3! e 2!

$$\Rightarrow \frac{6!}{3!2!} = 60$$

In generale, il numero di permutazioni di un insieme N costituito da n elementi di cui n_1 indistinguibili tra loro, n_2 indistinguibili tra loro ma distinti dai precedenti, ... , n_r indistinguibili tra loro ma distinti dai precendenti è

$$\#(\mathscr{P}(N)) = \frac{n!}{n_1! n_2! \dots n_r!}$$

- Es. 2 Quanti sono i segnali distinti che si possono formare mettendo in fila 9 bandiere di cui 4 bianche, 3 rosse e 2 blu? (bandiere dello stesso colore sono indistinguibili)
 - $\Rightarrow \frac{9!}{4!3!2!} = 1260$
- Es. 3 Il numero di modi per ordinare *n* antenne di cui *m* difettose (si indichi con 1 le antenne funzionanti e con 0 le difettose) è

$$\Rightarrow \frac{n!}{m!(n-m)!}$$
.

Combinazioni

Sia $N = \{x_1, x_2, \dots, x_n\}$ un insieme di n elementi distinti.

n = #(N) la cardinalità di N.

Def. L'insieme delle *combinazioni di N di classe k*, con $k \le n$, $\mathcal{C}_{n,k}(N)$ è l'insieme dei sottoinsiemi di N che hanno k elementi.²

Esempio 1: L'estrazione (in blocco) di due palline da un'urna contenente 10 palline numerate da 1 a 10.

 \Rightarrow II numero di combinazioni di un insieme N costituito da n elementi distinti di classe k è

$$\#(\mathscr{C}_{n,k}(N)) = \binom{n}{k}.$$

Es. 2 Il numero di possibli comitati formati da 3 persone scelte da un gruppo di 20 sono $\binom{20}{2}$.

²Nelle combinazioni non conta l'ordine degli elementi!

Osservazioni:

- $\binom{n}{k}$ corrisponde al numero delle permutazioni dell'insieme $N = \{0, 0, \dots, 1, 1\}$ costituito da k "1" e n k "0".
- $\binom{n}{k}$ è noto anche come "coefficiente binomiale n su k"³
- $\binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \ \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$
- Quanti sono i sottoinsiemi di un insieme N di n elementi (includendo l'insieme stesso e l'insieme vuoto)?
- Quanti sono i possibli modi di dividere un insieme di n elementi in due gruppi di k e n – k elementi rispettivamente?
- ⇒ Generalizziamo l'ultimo problema.

Coefficiente multinomiale

In quanti modi è possibile suddividere un insieme di n elementi distinti in r gruppi (distinti) di numerosità $n_1, n_2, ..., n_r$ con $\sum_{i=1}^r n_i = n$?

$$\Rightarrow \ \binom{n}{n_1} \cdot \binom{(n-n_1)}{n_2} \cdot \ldots \cdot \binom{(n_{r-1}+n_r)}{n_{r-1}} \cdot \binom{n_r}{n_r} = \frac{n!}{n_1! \cdot n_2! \cdot \ldots \cdot n_r!} = \binom{n}{n_1, \ldots, n_r}$$

 $\binom{n}{n_1,\ldots,n_r}$ è noto come *coefficiente multinomiale*.

Esempio: 9 ragazzi devono formare tre squadre di 3 membri ciascuna, che giocheranno in campionati diversi. Quante sono le suddivisioni possibili?

$$\Rightarrow \binom{9}{3,3,3}$$

e se le squadre giocassero nello stesso campionato?

$$\Rightarrow \frac{\binom{9}{3,3,3}}{3!}$$

Osservazione: Quanto vale $\sum_{\substack{(n_1,\ldots,n_r):\\n_1+\cdots+n_r=n}} {n\choose n_1,\ldots,n_r}? \Rightarrow r$

Partizioni di un insieme di elementi indistinguibili

Consideriamo un insieme *N* costituito da *n* elementi *indistinguibili*.

In quanti modi è possibile suddividere N in r sottoinsiemi (distinti), i.e. quante sono le partizioni dell'insieme N in r sottoinsiemi?

Esempio: In quanti modi si possono distribuire 7 caramelle a 3 bambini (ogni bambino deve ricevere almeno una caramella)?

 Indichiamo le caramelle con degli "0" e con "^" gli spazi tra gli elementi, i.e.

$$0^{\wedge}0^{\wedge}0^{\wedge}0^{\wedge}0^{\wedge}0^{\wedge}0$$

- Ogni possibile distribuzione delle caramelle corrisponde ad una scelta di 2 tra 6 spazi \(^\) dove posizionare |: scegliendo il primo e il terzo ^ ⇔ 0|00|0000 ⇔ 1 caramella al primo bambino, 2 al secondo e 4 al terzo.
- ⇒ il numero di modi in cui posso scegliere 2 numeri dall'insieme $\{1, 2, 3, 4, 5, 6\} \ e^{\binom{6}{2}}$.

Analogamente, per un insieme N di n elementi indistinguibili, ogni partizione in r gruppi corrisponde ad una scelta di r-1 tra n-1 spazi $^{\wedge}$.

 \Rightarrow II numero di partizioni è $\binom{n-1}{r-1}$.

ni è
$$\binom{n-1}{r-1}$$
.

Numero di soluzioni intere positive di un'equazione

Osserviamo che

- indicando con x_1 , x_2 , x_3 rispettivamente il numero di caramelle assegnate al primo, secondo e terzo bambino,
- ogni possibile suddivisione identifica una soluzione intera positiva di

$$x_1 + x_2 + x_3 = 7,$$
 $x_i > 0.$

Analogamente, ogni partizione di N indentifica una soluzione intera positiva di

$$x_1 + x_2 + ...x_r = n,$$
 (1)

 $x_i > 0$, con x_i : numero di elementi dell' *i*-esimo sottoinsieme.

Quindi, il *numero* delle *soluzioni intere positive dell'equazione* (1) è $\binom{n-1}{r-1}$.

Numero di soluzioni intere non negative

Analisi combinatoria

Esempio: In quanti modi si possono distribuire 7 caramelle a 3 bambini, senza nessun vincolo?

- Utilizzando la rappresentazione con "0" e "|", ogni suddivisione si può rappresentare come un ordinamento di 7 "0" e 2 "|":
 |0|000000 ⇔ zero caramelle al primo bambino, 1 al secondo e 6 al terzo.
- \Rightarrow II numero di permutazioni dell'insieme costituito da 7 "0" e 2 "|" è $\binom{9}{2}$.

Analogamente, ogni partizione di un insieme N di n elementi indistinguibili in al più r gruppi (distinti) si può rappresentare come

- un *ordinamento* di n "0" e r-1 "|" oppure
- come soluzione intera non negativa di $x_1 + x_2 + ... + x_r = n$. Il numero di permutazioni dell'insieme costituito da n "0" e r-1 "|" è $\binom{n+r-1}{r-1}$.
- \Rightarrow il numero di soluzioni intere non negative dell'equazione (1) è $\binom{n+r-1}{r-1}$.

Esempio: antenne

Esempio: Soluzione problema del sistema formato da *n* antenne di cui *m* difettose. Il sistema funziona se non ci sono due antenne difettose consecutive.

• Indichiamo con "0" le antenne difettose e con x_i il numero di antenne funzionanti tra la i-1esima e la i-esima antenna difettosa.

$$x_1 \ 0 \ x_2 \ 0 \ x_3 \ 0 \dots \ x_m \ 0 \ x_{m+1}$$

- osserviamo che $x_1 \ge 0$, $x_{m+1} \ge 0$ $x_i > 0$ i : 2, ...m.
- ⇒ Ogni configurazione di funzionamento corrisponde ad una soluzione intera dell'equazione

$$x_1 + x_2 + ... x_m + x_{m+1} = n - m$$

con
$$x_1 > 0$$
, $x_{m+1} > 0$ e $x_i > 0$, $i: 2, ...m$.

• Introducendo $\bar{x}_1 = x_1 + 1$ $\bar{x}_{m+1} = x_{m+1} + 1$, dopo una semplice sostituzione

$$\bar{x}_1 + x_2 + ... x_m + \bar{x}_{m+1} = n - m + 2$$

con
$$\bar{x}_1 > 0$$
, $\bar{x}_{m+1} > 0$ e $x_i > 0$, $i: 2, ...m$.

 contando il numero di soluzioni intere positive dell'equazione precedente ⇒ le configurazioni di funzionamento sono (^{n-m+1}_m).

Passiamo alla pratica:

Vediamo se abbiamo capito?

⇒ Teniamo a mente la definizione Classica

$$\mathbb{P}(E) = \frac{\textit{numero casi favorevoli a E}}{\textit{numero casi possibili}}$$

per calcolare le probabilità teoriche

⇒ sperimentiamo la legge empirica del caso!

Al lavoro...

