

Случайный лес и оценка значимости признаков

Юлия Пономарева Data Scientist

Проверка связи

Отправьте «+», если меня видно и слышно

Если у вас нет звука или изображения:

- перезагрузите страницу
- попробуйте зайти заново
- откройте трансляцию в другом браузере (используйте Google Chrome или Microsoft Edge)
- с осторожностью используйте VPN, при подключении через VPN видеопотоки могут тормозить

Цели занятия

- 1. Изучим разложение ошибки на смещение и разброс
- 2. Реализуем свой бэггинг
- 3. Узнаем устройство модели случайный лес
- 4. Подберем оптимальные гиперпараметры для случайного леса
- 5. Разберемся с ООВ-ошибкой
- 6. Вспомним методы оценки значимости признаков

План занятия

- 1. Разложение ошибки на смещение и разброс
- 2. Бэггинг
- 3. Случайный лес
- 4. ООВ-ошибка
- 5. Оценка важности признаков
- 6. Итоги занятия

Оценка значимости признаков

Методы отбора признаков

Фильтры (одномерный отбор)

основаны на некоторых показателях, которые не зависит от метода классификации (коэффициент корреляции, взаимная информация, F-тест, Хи-квадрат)

Обертки

опираются на информацию о метрике качества, полученную от моделей ML (последовательный отбор и последовательное исключение признаков и др.)

Встроенные в алгоритмы

выполняют отбор признаков во время процедуры обучения классификатора, и именно они явно оптимизируют набор используемых признаков для достижения лучшей точности (регрессия с L1-регуляризация, Random Forest, SHAP, перемешивания и др.)

Фильтры

Корреляция

Коэффициент корреляции Пирсона

$$R_{k_i,p} = \frac{\sum_{i=1}^{n} (k_i - \hat{k}) \cdot (p_i - \hat{p})}{\sqrt{\sum_{i=1}^{n} (k_i - \hat{k})^2 \cdot \sum_{i=1}^{n} (p_i - \hat{p})^2}}$$

Взаимная информация (Mutual Information)

Чем выше значение MI, тем сильнее связь между этой переменной и таргетом, что говорит о том, что мы должны поместить эту переменную в набор данных для обучения

Entropy =
$$-\sum p(X) \log p(X)$$

Зависимость между полом и пользованием страховыми услугами

Пол	Пользуетесь ли Вы услугами страхования жизни?	
	Да	Нет
Мужской	39%	54%
Женский	61%	46%
Итого по столбцу	100%	100%

F-тест (критерий Фишера)

Чем больше F, тем проще различить выборки

Дисперсия между группами

Дисперсия внутри группы

Одномерный отбор

У одномерного отбора признаков есть проблема - они не учитывают взаимосвязь признаков, зависимость целевой переменной от сложной комбинации признаков.

Встроенные в модель

Методы встроенные в алгоритмы

Методы встроенные в алгоритмы (отдельная библиотека - SHAP*)

SHAP – значения показывают, насколько данный конкретный признак изменил наше предсказание (по сравнению с тем, как мы сделали бы это предсказание при некотором базовом значении этого признака)

Практика была https://colab.research.google.com/drive/1 aUW_cYoSkhHNW177nTaL82luQt892Eha

Ваши вопросы?

Итоги занятия

Итоги занятия

- 1. Изучили разложение ошибки на смещение и разброс
- 2. Реализовали свой бэггинг
- 3. Узнали устройство модели случайный лес
- 4. Подобрали оптимальные гиперпараметры для случайного леса
- 5. Разобрались с ООВ-ошибкой
- 6. Вспомнили методы оценки значимости признаков

Дополнительные материалы

- Ансамбли в машинном обучении https://dyakonov.org/2019/04/19/%D0%B0%D0%BD%D1%81%D0%B0%D0%BC%D 0%B1%D0%BB%D0%B8-%D0%B2-%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D 0%BD%D0%BE%D0%BC-%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0 %B8%D0%B8/
- 2. Ансамблевые методы: бэггинг, бустинг и стекинг https://neurohive.io/ru/osnovy-data-science/ansamblevye-metody-begging-busting-i-steking/
- 3. Бэггинг и бутстрап + композиции в целом https://habr.com/ru/company/ods/blog/324402/
- 4. Бэггинг и случайный лес https://youtu.be/rawnlo_XtYY

Пожалуйста, оставьте свой отзыв о семинаре

До встречи!

