An index formula for families of end-periodic Dirac operators

... and anomalies in QFT

Alex Taylor

University of Illinois at Urbana-Champaign

GLaMP 2025 - June 6, 2025

- Index theory for Dirac operators

 $(M^n, g) =$ closed, even-dimensional Riemannian manifold.

 $E \to M$ vector bundle with connection ∇ .

 $\Delta = \text{Laplace-type operator on } C^{\infty}(M; E).$

 $(M^n, g) =$ closed, even-dimensional Riemannian manifold.

 $E \to M$ vector bundle with connection ∇ .

 $\Delta = \text{Laplace-type operator on } C^{\infty}(M; E).$

Paul Dirac in 1928: can we find an operator D such that $D^2 = \Delta$?

 $(M^n, g) =$ closed, even-dimensional Riemannian manifold.

 $E \to M$ vector bundle with connection ∇ .

 $\Delta = \mathsf{Laplace}\mathsf{-type}$ operator on $C^\infty(M; E)$.

Paul Dirac in 1928: can we find an operator D such that $D^2 = \Delta$?

Answer: define $D = \sum_{j} \operatorname{c}\ell(e^{j}) \nabla_{e_{j}}$, where

 $c\ell: T^*M \to End E$

satisfying $c\ell(e^i) c\ell(e^j) + c\ell(e^j) c\ell(e^i) = -2g^{ij}$ id (i.e. $E \to M$ is a Clifford module with Clifford action $c\ell$).

 $(M^n, g) =$ closed, even-dimensional Riemannian manifold.

 $E \to M$ vector bundle with connection ∇ .

 $\Delta = \text{Laplace-type operator on } C^{\infty}(M; E).$

Paul Dirac in 1928: can we find an operator D such that $D^2 = \Delta$?

Answer: define $D = \sum_{j} \operatorname{c}\ell(e^{j}) \nabla_{e_{j}}$, where

$$c\ell: T^*M \to End E$$

satisfying $c\ell(e^i) c\ell(e^j) + c\ell(e^j) c\ell(e^i) = -2g^{ij}$ id (i.e. $E \to M$ is a Clifford module with Clifford action $c\ell$).

ex. $D^+=d+d^*$ acting on $\Omega^{\mathrm{ev}}(M)\subseteq\Omega^{\scriptscriptstyle\bullet}(M)$ (Gauss-Bonnet operator).

 $(M^n, g) =$ closed, even-dimensional Riemannian manifold.

 $E \to M$ vector bundle with connection ∇ .

 $\Delta = \text{Laplace-type operator on } C^{\infty}(M; E).$

Paul Dirac in 1928: can we find an operator D such that $D^2 = \Delta$?

Answer: define $D = \sum_{j} \operatorname{c}\ell(e^{j}) \nabla_{e_{j}}$, where

$$c\ell: T^*M \to End E$$

satisfying $c\ell(e^i) c\ell(e^j) + c\ell(e^j) c\ell(e^i) = -2g^{ij}$ id (i.e. $E \to M$ is a Clifford module with Clifford action $c\ell$).

ex. $D^+=d+d^*$ acting on $\Omega^{\mathrm{ev}}(M)\subseteq\Omega^{\scriptscriptstyle\bullet}(M)$ (Gauss-Bonnet operator).

ex. $D^+=d+d^*$ acting on self-dual forms $\Omega^{n/2}_+(M)$, i.e. $*\omega=\omega$ (signature operator).

 D^+ is a Fredholm operator on $H^1(M; E^+)$, meaning the Fredholm index

$$\operatorname{ind} D^+ = \dim \ker D^+ - \dim \operatorname{coker} D^+$$

is a finite integer ind $D^+ \in \mathbb{Z}$.

 D^+ is a Fredholm operator on $H^1(M; E^+)$, meaning the Fredholm index

$$\operatorname{ind} D^+ = \dim \ker D^+ - \dim \operatorname{coker} D^+$$

is a finite integer ind $D^+ \in \mathbb{Z}$.

It turns out that the index of a Dirac operator is an interesting *topological invariant*!

 D^+ is a Fredholm operator on $H^1(M; E^+)$, meaning the Fredholm index

$$\operatorname{ind} D^+ = \dim \ker D^+ - \dim \operatorname{coker} D^+$$

is a finite integer ind $D^+ \in \mathbb{Z}$.

It turns out that the index of a Dirac operator is an interesting *topological invariant*!

ex.
$$\operatorname{ind}(d + d^*) = \chi(M) := \sum_{k=0}^{n} (-1)^k \dim H_{dR}^k(M).$$

 D^+ is a Fredholm operator on $H^1(M; E^+)$, meaning the Fredholm index

$$\operatorname{ind} D^+ = \dim \ker D^+ - \dim \operatorname{coker} D^+$$

is a finite integer ind $D^+ \in \mathbb{Z}$.

It turns out that the index of a Dirac operator is an interesting *topological invariant*!

ex.
$$\operatorname{ind}(d + d^*) = \chi(M) := \sum_{k=0}^{n} (-1)^k \dim H_{dR}^k(M).$$

Consider simple situation where dim M=2. Gauss-Bonnet theorem tells us that

$$\operatorname{ind}(d+d^*) = \chi(M) = \frac{1}{2\pi} \int_M K \, dA.$$

Natural question: in general, for a Dirac operator D, is there a local geometric formula for ind D^+ ?

Natural question: in general, for a Dirac operator D, is there a local geometric formula for ind D^+ ?

Answer: yes! (Atiyah, Getzler, Patodi, Singer ..., circa 1971)

Natural question: in general, for a Dirac operator D, is there a local geometric formula for ind D^+ ?

Answer: yes! (Atiyah, Getzler, Patodi, Singer ..., circa 1971)

ind
$$D^+ = \frac{1}{(2\pi i)^{n/2}} \int_M \widehat{A}(TM) \wedge \operatorname{ch}'(E)$$

Natural question: in general, for a Dirac operator D, is there a local geometric formula for ind D^+ ?

Answer: yes! (Atiyah, Getzler, Patodi, Singer ..., circa 1971)

ind
$$D^+ = \frac{1}{(2\pi i)^{n/2}} \int_M \widehat{A}(TM) \wedge \operatorname{ch}'(E)$$

 ${\sf Analysis} \ \, \leftrightarrow \ \, {\sf Geometry/Topology}$

Natural question: in general, for a Dirac operator D, is there a local geometric formula for ind D^+ ?

Answer: yes! (Atiyah, Getzler, Patodi, Singer ..., circa 1971)

ind
$$D^+ = \frac{1}{(2\pi i)^{n/2}} \int_M \widehat{A}(TM) \wedge \text{ch}'(E)$$

Analysis \leftrightarrow Geometry/Topology

Notation: ind
$$D^+ = \int_M AS(D(M))$$
.

- Index theory for Dirac operators
- 2 Index theory and anomalies
- Index theory for end-periodic Dirac operators
- A new index formula
- Remarks on the proof depending on how much time is left

The Atiyah-Patodi-Singer index theorem

Atiyah, Patodi, Singer, 1975: under the appropriate *global* boundary conditions, the Dirac operator $D^+(Z)$ is Fredholm, and the index is given by

The Atiyah-Patodi-Singer index theorem

Atiyah, Patodi, Singer, 1975: under the appropriate *global* boundary conditions, the Dirac operator $D^+(Z)$ is Fredholm, and the index is given by

$$\operatorname{ind} D^+(Z) = \int_Z AS(D(Z)) - \frac{1}{2} \eta(D(\partial Z))$$

The Atiyah-Patodi-Singer index theorem

Atiyah, Patodi, Singer, 1975: under the appropriate *global* boundary conditions, the Dirac operator $D^+(Z)$ is Fredholm, and the index is given by

$$\operatorname{ind} D^+(Z) = \int_Z AS(D(Z)) - \frac{1}{2} \eta(D(\partial Z))$$

where the eta invariant is defined as

$$\eta(D(\partial Z)) = \frac{1}{\sqrt{\pi}} \int_0^\infty t^{-1/2} \operatorname{Tr}(D(\partial Z) e^{-tD(\partial Z)^2}) dt.$$

 (M,g_0) smooth Riemannian spin manifold. $\pi:M\to M$ a diffeomorphism. Given a metric g, Witten considers the *effective action* for a Majorana-Weyl fermion:

$$I(g) = \frac{1}{2} \ln(\det(i\delta)).$$

 (M, g_0) smooth Riemannian spin manifold. $\pi: M \to M$ a diffeomorphism. Given a metric g, Witten considers the *effective action* for a Majorana-Weyl fermion:

$$I(g) = \frac{1}{2} \ln(\det(i\delta)).$$

Consider the variation ΔI of $I(g_t)$, where g_t interpolates between g_0 and $g_1 = \pi^* g_0$. If $\Delta I = 0$ then the theory is anomaly-free. How to compute ΔI ?

 (M, g_0) smooth Riemannian spin manifold. $\pi: M \to M$ a diffeomorphism. Given a metric g, Witten considers the *effective action* for a Majorana-Weyl fermion:

$$I(g) = \frac{1}{2} \ln(\det(i\delta)).$$

Consider the variation ΔI of $I(g_t)$, where g_t interpolates between g_0 and $g_1 = \pi^* g_0$. If $\Delta I = 0$ then the theory is anomaly-free. How to compute ΔI ?

Consider the mapping torus $(M \times S^1)_{\pi} = (M \times [0,1])/\sim$, where $(x,1) \sim (\pi(x),0)$. Suppose $(M \times S^1)_{\pi} = \partial B$. Then using APS, Witten computes ΔI in terms of the eta invariant $\eta(D(\partial B))$.

 (M,g_0) smooth Riemannian spin manifold. $\pi:M\to M$ a diffeomorphism. Given a metric g, Witten considers the *effective action* for a Majorana-Weyl fermion:

$$I(g) = \frac{1}{2} \ln(\det(i\delta)).$$

Consider the variation ΔI of $I(g_t)$, where g_t interpolates between g_0 and $g_1 = \pi^* g_0$. If $\Delta I = 0$ then the theory is anomaly-free. How to compute ΔI ?

Consider the mapping torus $(M \times S^1)_{\pi} = (M \times [0,1])/\sim$, where $(x,1) \sim (\pi(x),0)$. Suppose $(M \times S^1)_{\pi} = \partial B$. Then using APS, Witten computes ΔI in terms of the eta invariant $\eta(D(\partial B))$.

Global gravitational anomalies, Witten, 1985

where $H=dB+\omega_3^L$. Thus, the non-covariant objects dB and ω combine, as they must, into the covariant field strength H. ($\Delta \bar{S}$ and $\Delta I_{\rm Reg}$ were invariant under coordinate transformations that vanish at t=0 and t=1, but not otherwise. As far as I know, it does not make sense to identify t=1 with t=0 by means of a nontrivial diffeomorphism π until these expressions are combined into a covariant form.) Thus we finally get an expression for the change in the action in terms of topological invariants:

$$\Delta I_{\text{TOT}} = \Delta I_{\text{det}} + \Delta \tilde{S} + \Delta I_{\text{Reg}}$$

$$= -2\pi i \left[\frac{1}{(2\pi)^6} \int_{B}^{6} (\frac{1}{1536} (\text{Tr } R^2)^3 + \frac{1}{384} \text{Tr } R^2 \text{ Tr } R^4) \right]$$

$$- \int_{(M \times S^1)_{\pi}} H \cdot (\frac{1}{1536} (\text{Tr } R^2)^2 + \frac{1}{384} \text{Tr } R^4)$$

$$= -2\pi i \cdot \frac{1}{192} [-3p_1^3(B) + 4p_1p_2(B)], \qquad (57)$$

where p_1^3 and p_1p_2 were defined in Sect. II.

 $D = (D^z)_{z \in B} =$ family of Dirac operators on family of Clifford modules $E_z \to M_z$. D defines a K-theory class Ind $D = [\ker D] - [\operatorname{coker} D] \in K^0(B)$.

 $D=(D^z)_{z\in B}=$ family of Dirac operators on family of Clifford modules $E_z\to M_z$. D defines a K-theory class Ind $D=[\ker D]-[\operatorname{coker} D]\in K^0(B)$.

Chern character form of a (super)connection:

$$\mathsf{ch}(\nabla) = \mathsf{Str}(e^{-\nabla^2}) \in \Omega^{\mathrm{even}}(B).$$

 $D=(D^z)_{z\in B}=$ family of Dirac operators on family of Clifford modules $E_z\to M_z$. D defines a K-theory class Ind $D=[\ker D]-[\operatorname{coker} D]\in K^0(B)$.

Chern character form of a (super)connection:

$$\mathsf{ch}(
abla) = \mathsf{Str}(e^{-
abla^2}) \in \Omega^{\mathrm{even}}(B).$$

ch defines a ring homomorphism:

$$\operatorname{\mathsf{ch}}: \mathcal{K}^0(B) o H^{\operatorname{even}}_{dR}(B)$$

 $\operatorname{\mathsf{ch}}([E] - [F]) = [\operatorname{\mathsf{ch}}(\nabla^E)] - [\operatorname{\mathsf{ch}}(\nabla^F)].$

 $D=(D^z)_{z\in B}=$ family of Dirac operators on family of Clifford modules $E_z\to M_z$. D defines a K-theory class Ind $D=[\ker D]-[\operatorname{coker} D]\in K^0(B)$.

Chern character form of a (super)connection:

$$\mathsf{ch}(
abla) = \mathsf{Str}(e^{-
abla^2}) \in \Omega^{\mathrm{even}}(B).$$

ch defines a ring homomorphism:

$$\mathsf{ch}: \mathcal{K}^0(B) o \mathcal{H}^{\mathrm{even}}_{dR}(B) \ \mathsf{ch}([E] - [F]) = [\mathsf{ch}(\nabla^E)] - [\mathsf{ch}(\nabla^F)].$$

Goal: find a 'nice' representative for ch(Ind D) in de Rham cohomology.

 $D=(D^z)_{z\in B}=$ family of Dirac operators on family of Clifford modules $E_z\to M_z$. D defines a K-theory class Ind $D=[\ker D]-[\operatorname{coker} D]\in K^0(B)$.

Chern character form of a (super)connection:

$$\mathsf{ch}(
abla) = \mathsf{Str}(e^{-
abla^2}) \in \Omega^{\mathrm{even}}(B).$$

ch defines a ring homomorphism:

$$\mathsf{ch}: \mathcal{K}^0(B) o \mathcal{H}^{\mathrm{even}}_{dR}(B) \ \mathsf{ch}([E] - [F]) = [\mathsf{ch}(\nabla^E)] - [\mathsf{ch}(\nabla^F)].$$

Goal: find a 'nice' representative for ch(Ind D) in de Rham cohomology.

Important construction: the Bismut superconnection

$$A \circlearrowleft C^{\infty}(M; E \otimes \Lambda T^*B)$$

$$A = D + A_{[1]} + A_{[2]}.$$

Generalization of APS for families

Generalization of APS for families

Bismut-Cheeger 1990, Melrose-Piazza 1997: under the appropriate global boundary conditions, the family $(D^+(Z)^z)_{z\in B}$ is Fredholm, and the Chern character of the index bundle $\operatorname{ch}(\operatorname{Ind} D)$ is represented in de Rham cohomology by the differential form

Generalization of APS for families

Bismut-Cheeger 1990, Melrose-Piazza 1997: under the appropriate global boundary conditions, the family $(D^+(Z)^z)_{z\in B}$ is Fredholm, and the Chern character of the index bundle $\operatorname{ch}(\operatorname{Ind} D)$ is represented in de Rham cohomology by the differential form

$$\int_{Z/B} AS(D(Z)) - \frac{1}{2} \widehat{\eta}(D(\partial Z)) \in \Omega(B)$$

Generalization of APS for families

Bismut-Cheeger 1990, Melrose-Piazza 1997: under the appropriate global boundary conditions, the family $(D^+(Z)^z)_{z\in B}$ is Fredholm, and the Chern character of the index bundle $\operatorname{ch}(\operatorname{Ind} D)$ is represented in de Rham cohomology by the differential form

$$\int_{Z/B} AS(D(Z)) - \frac{1}{2} \widehat{\eta}(D(\partial Z)) \in \Omega(B)$$

where the eta form is defined as

$$\widehat{\eta}(D(\partial Z)) = \frac{1}{\sqrt{\pi}} \int_0^\infty \operatorname{Str}\left(c\ell\left(\frac{dx}{x}\right) \dot{A}_t(\partial Z) e^{-A_t^2(\partial Z)}\right) dt.$$

Witten's "effective action" is a special case of the Feynman path integral or pfaffian of a Dirac operator – the canonical section $\det(D_{M/B})$ of the determinant line bundle.

Witten's "effective action" is a special case of the Feynman path integral or pfaffian of a Dirac operator – the canonical section $\det(D_{M/B})$ of the determinant line bundle.

Let $M \to B$ Riemannian spin fiber bundle, and $E_z \to M_z$ family of Clifford modules. Consider the determinant line bundle

$$Det(D_{M/B}) \rightarrow B$$
.

Witten's "effective action" is a special case of the Feynman path integral or pfaffian of a Dirac operator – the canonical section $\det(D_{M/B})$ of the determinant line bundle.

Let $M \to B$ Riemannian spin fiber bundle, and $E_z \to M_z$ family of Clifford modules. Consider the determinant line bundle

$$Det(D_{M/B}) \rightarrow B$$
.

Bismut-Freed: the degree two component of ch(Ind D) is the curvature of the Quillen connection on the determinant line bundle.

Witten's "effective action" is a special case of the Feynman path integral or pfaffian of a Dirac operator – the canonical section $\det(D_{M/B})$ of the determinant line bundle.

Let $M \to B$ Riemannian spin fiber bundle, and $E_z \to M_z$ family of Clifford modules. Consider the determinant line bundle

$$Det(D_{M/B}) \rightarrow B$$
.

Bismut-Freed: the degree two component of ch(Ind D) is the curvature of the Quillen connection on the determinant line bundle.

A path of metrics g_t is a loop in the parameter space B and Witten's global anomaly is recovered as the holonomy around this loop of the connection on the determinant line bundle.

- Index theory for Dirac operators
- Index theory and anomalies
- 3 Index theory for end-periodic Dirac operators
- 4 A new index formula
- Remarks on the proof depending on how much time is left

Cylindrical end = boundary

$$g=dt^2+g_{\partial Z}$$

Cylindrical end = boundary

$$(p^*D(Y))\Big|_{end(M)} \qquad (p^*g_Y)\Big|_{end(M)}$$

$$E\Big|_{endM} \longrightarrow end(M)$$

$$\widetilde{E} \longrightarrow \widetilde{Y} \xrightarrow{f} \mathbb{R}$$

$$\downarrow p \qquad \downarrow \exp$$

$$\widetilde{D} = p^*D(Y) \qquad E_Y \longrightarrow Y \xrightarrow{\overline{f}} S^1$$

D is an end periodic Dirac operator on M, i.e.,

$$D|_Z = D(Z)$$

$$D|_{\operatorname{end}(M)} = (p^*D(Y))\Big|_{\operatorname{end}(M)}$$

D is an end periodic Dirac operator on M, i.e.,

$$D|_Z=D(Z)$$

$$D|_{\mathsf{end}(M)} = (p^*D(Y))\Big|_{\mathsf{end}(M)}$$

Family context:

$$M \to B, Y \to B, \widetilde{Y} \to B$$

 $\mathbb{E} = E \otimes \pi^* \Lambda T^* B, \text{ etc.}$

$$E_Y \rightsquigarrow \mathbb{E}, \ \widetilde{E} \rightsquigarrow \widetilde{\mathbb{E}}$$

 $E \rightsquigarrow \mathbb{E}. \ D \rightsquigarrow A.$

 $E \rightsquigarrow \mathbb{E}, D \rightsquigarrow A, etc.$

• $g = dr^2 + h(r)^2 g_{\partial Z}$ on the cylinder.

- $g = dr^2 + h(r)^2 g_{\partial Z}$ on the cylinder.
- ullet $g=u^{4/(n-2)}(dr^2+g_{S^{n-1}})$ on $\mathbb{R} imes S^{n-1}$ (Mazzeo, Pollack, Uhlenbeck, 1994).

- $g = dr^2 + h(r)^2 g_{\partial Z}$ on the cylinder.
- ullet $g=u^{4/(n-2)}(dr^2+g_{S^{n-1}})$ on $\mathbb{R} imes S^{n-1}$ (Mazzeo, Pollack, Uhlenbeck, 1994).
- "Manifolds with periodic ends that are not products even topologically ...
 include manifolds whose ends arise from the infinite cyclic covers of 2-knot
 exteriors in the 4-sphere." (Mrowka, Ruberman, Saveliev, 2014).

- $g = dr^2 + h(r)^2 g_{\partial Z}$ on the cylinder.
- ullet $g=u^{4/(n-2)}(dr^2+g_{S^{n-1}})$ on $\mathbb{R} imes S^{n-1}$ (Mazzeo, Pollack, Uhlenbeck, 1994).
- "Manifolds with periodic ends that are not products even topologically ...
 include manifolds whose ends arise from the infinite cyclic covers of 2-knot
 exteriors in the 4-sphere." (Mrowka, Ruberman, Saveliev, 2014).
- Gauge theory on asymptotically periodic 4-manifolds, Taubes, 1987.

- $g = dr^2 + h(r)^2 g_{\partial Z}$ on the cylinder.
- ullet $g=u^{4/(n-2)}(dr^2+g_{S^{n-1}})$ on $\mathbb{R} imes S^{n-1}$ (Mazzeo, Pollack, Uhlenbeck, 1994).
- "Manifolds with periodic ends that are not products even topologically ...
 include manifolds whose ends arise from the infinite cyclic covers of 2-knot
 exteriors in the 4-sphere." (Mrowka, Ruberman, Saveliev, 2014).
- Gauge theory on asymptotically periodic 4-manifolds, Taubes, 1987.
- Seiberg-Witten equations, end-periodic Dirac operators, and a lift of Rohlin's invariant, Mrowka, Ruberman, Saveliev, 2011.

- $g = dr^2 + h(r)^2 g_{\partial Z}$ on the cylinder.
- ullet $g=u^{4/(n-2)}(dr^2+g_{S^{n-1}})$ on $\mathbb{R} imes S^{n-1}$ (Mazzeo, Pollack, Uhlenbeck, 1994).
- "Manifolds with periodic ends that are not products even topologically ...
 include manifolds whose ends arise from the infinite cyclic covers of 2-knot
 exteriors in the 4-sphere." (Mrowka, Ruberman, Saveliev, 2014).
- Gauge theory on asymptotically periodic 4-manifolds, Taubes, 1987.
- Seiberg-Witten equations, end-periodic Dirac operators, and a lift of Rohlin's invariant, Mrowka, Ruberman, Saveliev, 2011.
- Smooth quantum gravity: exotic smoothness and quantum gravity, Asselmeyer-Maluga, 2016.

- $g = dr^2 + h(r)^2 g_{\partial Z}$ on the cylinder.
- $g = u^{4/(n-2)}(dr^2 + g_{S^{n-1}})$ on $\mathbb{R} \times S^{n-1}$ (Mazzeo, Pollack, Uhlenbeck, 1994).
- "Manifolds with periodic ends that are not products even topologically ...
 include manifolds whose ends arise from the infinite cyclic covers of 2-knot
 exteriors in the 4-sphere." (Mrowka, Ruberman, Saveliev, 2014).
- Gauge theory on asymptotically periodic 4-manifolds, Taubes, 1987.
- Seiberg-Witten equations, end-periodic Dirac operators, and a lift of Rohlin's invariant, Mrowka, Ruberman, Saveliev, 2011.
- Smooth quantum gravity: exotic smoothness and quantum gravity, Asselmeyer-Maluga, 2016.
- Metrics on end-periodic manifolds as models for dark matter, Duston, 2021.

Index formula for end-periodic Dirac operators

Index formula for end-periodic Dirac operators

Mrowka, Ruberman, Saveliev, 2014: under the appropriate Fredholm condition, the index of the end-periodic Dirac operator D is given by

$$\operatorname{ind} D^+ = \int_{\mathcal{Z}} AS(D(\mathcal{Z})) - \int_{\mathcal{Y}} f \, AS(D(\mathcal{Y})) - \frac{1}{2} \eta_{\operatorname{ep}}(D(\mathcal{Y}))$$

where the end-periodic eta invariant is defined by

$$\widehat{\eta}_{\mathrm{ep}}(D(Y)) = \frac{1}{\pi i} \int_0^\infty \oint_{S^1} \mathrm{Tr} \left(\mathrm{c}\ell(df) D_{\xi}^+ e^{-tD_{\xi}^- D_{\xi}^+} \right) \frac{d\xi}{\xi} dt$$

and $D_{\xi} = D(Y) - \ln(\xi) \, c\ell(df)$, for $\xi \in S^1$, is the *indicial family* of D.

- Index theory for Dirac operators
- 2 Index theory and anomalies
- Index theory for end-periodic Dirac operators
- A new index formula
- Remarks on the proof depending on how much time is left

Theorem (T.) The Chern character of the index bundle, ch(Ind D), is represented in de Rham cohomology by the differential form

$$\int_{Z/B} AS(D(Z)) - \int_{W_0/B} f \, AS(D(Y)) - \frac{1}{2} \widehat{\eta}_{ep}(D(Y)) \in \Omega(B)$$

Theorem (T.) The Chern character of the index bundle, ch(Ind D), is represented in de Rham cohomology by the differential form

$$\int_{Z/B} AS(D(Z)) - \int_{W_0/B} f \, AS(D(Y)) - \frac{1}{2} \widehat{\eta}_{ep}(D(Y)) \in \Omega(B)$$

where the end-periodic eta form is given by

$$\begin{split} \widehat{\eta}_{\mathrm{ep}}(D(Y)) &= \frac{-1}{\pi i} \int_0^\infty \oint_{|\xi|=1} t^{1/2} \operatorname{Str} \left(\mathrm{c}\ell(d_{Y/B}f) \dot{A}_t(\xi) \mathrm{e}^{-A_t^2(\xi)} \right) \frac{d\xi}{\xi} dt \\ &- \frac{1}{\pi i} \int_0^\infty \oint_{|\xi|=1} \operatorname{Str} \left(\frac{d}{dt} [A_t(\xi), \delta_t \, \mathrm{c}\ell(df)] \mathcal{H}_t(\xi) \right) \frac{d\xi}{\xi} dt. \end{split}$$

where
$$\mathcal{H}_t(\xi) = \int_0^1 e^{-uA_t^2(\xi)} du$$
.

Theorem (T.) The Chern character of the index bundle, ch(Ind D), is represented in de Rham cohomology by the differential form

$$\int_{Z/B} AS(D(Z)) - \int_{W_0/B} f \, AS(D(Y)) - \frac{1}{2} \widehat{\eta}_{\rm ep}(D(Y)) \in \Omega(B)$$

where the end-periodic eta form is given by

$$\begin{split} \widehat{\eta}_{\mathrm{ep}}(D(Y)) &= \frac{-1}{\pi i} \int_0^\infty \oint_{|\xi|=1} t^{1/2} \operatorname{Str} \left(\mathrm{c}\ell(d_{Y/B}f) \dot{A}_t(\xi) \mathrm{e}^{-A_t^2(\xi)} \right) \frac{d\xi}{\xi} dt \\ &- \frac{1}{\pi i} \int_0^\infty \oint_{|\xi|=1} \operatorname{Str} \left(\frac{d}{dt} [A_t(\xi), \delta_t \, \mathrm{c}\ell(df)] \mathcal{H}_t(\xi) \right) \frac{d\xi}{\xi} dt. \end{split}$$

where $\mathcal{H}_t(\xi) = \int_0^1 e^{-uA_t^2(\xi)} du$. Moreover, the degree zero part of the end-periodic eta form $\widehat{\eta}_{\rm ep}$ is the fiberwise end-periodic eta invariant: $(\widehat{\eta}_{\rm ep})_{[0]} \in C^{\infty}(B)$ given by $z \mapsto \eta_{\rm ep}(D^z(Y_z))$.

Thank you

Extra slide

Some other important operators:

$$m_0: T^*M \to \operatorname{End} \mathbb{E}$$

 $\delta_t m_0(df) = t^{1/2} \operatorname{c}\ell(d_{Y/B}f) + \pi^* d_B f$
 $A_t(Y)(\xi) = A_t(Y) - \log(\xi)\delta_t m_0(df)$

Extra slide

The Bismut superconnection on Y is

$$A(Y) = D(Y) + A_{[1]}(Y) + A_{[2]}(Y)$$

where

$$egin{aligned} A_{[1]}(Y) &= \sum_{lpha} \mathrm{e}^{lpha} \wedge \left(
abla_{e_{lpha}}^{E_Y} + rac{1}{2} k_Y(e_{lpha})
ight) \ A_{[2]}(Y) &= -rac{1}{4} \sum_{lpha < eta} \sum_{i} \mathrm{e}^{lpha} \wedge \mathrm{e}^{eta} \, \mathrm{c}\ell(\mathrm{e}^{i}) (\Omega_Y(e_{lpha}, e_{eta}), e_{j}) \end{aligned}$$

- Index theory for Dirac operators
- 2 Index theory and anomalies
- Index theory for end-periodic Dirac operators
- 4 A new index formula
- **5** Remarks on the proof depending on how much time is left

 $e^{-tD^2} = \text{heat operator on } E \to M$

$$e^{-tD^2}=$$
 heat operator on $E o M$

$$\begin{cases} \left(\frac{\partial}{\partial t} + D^2\right) e^{-tD^2} u(x) = 0, \\ \lim_{t \to 0^+} e^{-tD^2} u(x) = u(x). \end{cases}$$

 $e^{-tD^2}=$ heat operator on E o M

$$\begin{cases} \left(\frac{\partial}{\partial t} + D^2\right) e^{-tD^2} u(x) = 0, \\ \lim_{t \to 0^+} e^{-tD^2} u(x) = u(x). \end{cases}$$

Consider the operator trace of the (chiral) heat operator

$$\mathsf{Tr}(e^{-tD^-D^+}) = \sum_{i} \langle e^{-tD^-D^+} \psi_j^+, \psi_j^+ \rangle$$

 $e^{-tD^2}=$ heat operator on E o M

$$\begin{cases} \left(\frac{\partial}{\partial t} + D^2\right) e^{-tD^2} u(x) = 0, \\ \lim_{t \to 0^+} e^{-tD^2} u(x) = u(x). \end{cases}$$

Consider the operator trace of the (chiral) heat operator

$$\operatorname{Tr}(e^{-tD^{-}D^{+}}) = \sum_{j} \langle e^{-tD^{-}D^{+}} \psi_{j}^{+}, \psi_{j}^{+} \rangle$$
$$= \int_{M} \operatorname{tr}\left(K_{e^{-tD^{-}D^{+}}}(x, x)\right) dx.$$

 e^{-tD^2} = heat operator on $E \to M$

$$\begin{cases} \left(\frac{\partial}{\partial t} + D^2\right) e^{-tD^2} u(x) = 0, \\ \lim_{t \to 0^+} e^{-tD^2} u(x) = u(x). \end{cases}$$

Consider the operator trace of the (chiral) heat operator

$$\operatorname{Tr}(e^{-tD^{-}D^{+}}) = \sum_{j} \langle e^{-tD^{-}D^{+}} \psi_{j}^{+}, \psi_{j}^{+} \rangle$$
$$= \int_{M} \operatorname{tr}\left(K_{e^{-tD^{-}D^{+}}}(x, x)\right) dx.$$

Define the supertrace of the heat operator

$$\mathsf{Str}(e^{-tD^2}) := \mathsf{Tr}(e^{-tD^-D^+}) - \mathsf{Tr}(e^{-tD^+D^-}).$$

Transgression formula:

$$\frac{d}{dt}\operatorname{Str}(e^{-tD^2}) = -\frac{1}{2}\operatorname{Str}[D, De^{-tD^2}] = 0.$$

Transgression formula:

$$\frac{d}{dt}\operatorname{Str}(e^{-tD^2}) = -\frac{1}{2}\operatorname{Str}[D, De^{-tD^2}] = 0.$$

Integrate the transgression formula:

$$\operatorname{ind} D^+ = \lim_{t \to \infty} \operatorname{Str}(e^{-tD^2})$$

Transgression formula:

$$\frac{d}{dt}\operatorname{Str}(e^{-tD^2}) = -\frac{1}{2}\operatorname{Str}[D,De^{-tD^2}] = 0.$$

Integrate the transgression formula:

$$\operatorname{ind} D^{+} = \lim_{t \to \infty} \operatorname{Str}(e^{-tD^{2}})$$
$$= \lim_{t \to 0^{+}} \operatorname{Str}(e^{-tD^{2}})$$

Transgression formula:

$$\frac{d}{dt}\operatorname{Str}(e^{-tD^2}) = -\frac{1}{2}\operatorname{Str}[D,De^{-tD^2}] = 0.$$

Integrate the transgression formula:

$$\operatorname{ind} D^{+} = \lim_{t \to \infty} \operatorname{Str}(e^{-tD^{2}})$$
$$= \lim_{t \to 0^{+}} \operatorname{Str}(e^{-tD^{2}})$$
$$= \int_{M} AS(M).$$

Cylindrical (Melrose)

$${}^{b}\operatorname{Tr}[P,Q] = \frac{-1}{2\pi i} \oint_{S^{1}} \operatorname{Tr}\left(\frac{\partial P_{\xi}}{\partial \xi} Q_{\xi}\right) d\xi.$$

Cylindrical (Melrose)

$${}^{b}\operatorname{Tr}[P,Q] = \frac{-1}{2\pi i} \oint_{S^1} \operatorname{Tr}\left(\frac{\partial P_{\xi}}{\partial \xi} Q_{\xi}\right) d\xi.$$

Periodic (MRS 2014)

$$R \operatorname{Tr}[P, Q] = \frac{-1}{2\pi i} \oint_{S^1} \operatorname{Tr}\left(\frac{\partial P_{\xi}}{\partial \xi} Q_{\xi}\right) d\xi + \frac{1}{2\pi i} \oint_{S^1} \int_{W} f(x) \operatorname{tr}\left(K_{P_{\xi}Q_{\xi}}(x, x) - K_{Q_{\xi}P_{\xi}}(x, x)\right) dx \frac{d\xi}{\xi}.$$

Cylindrical (Melrose)

$${}^b {
m Tr}[P,Q] = rac{-1}{2\pi i} \oint_{\mathcal{S}^1} {
m Tr} \left(rac{\partial P_\xi}{\partial \xi} Q_\xi
ight) d\xi.$$

Periodic (MRS 2014)

$$R \operatorname{Tr}[P, Q] = \frac{-1}{2\pi i} \oint_{S^1} \operatorname{Tr}\left(\frac{\partial P_{\xi}}{\partial \xi} Q_{\xi}\right) d\xi + \frac{1}{2\pi i} \oint_{S^1} \int_{W} f(x) \operatorname{tr}\left(K_{P_{\xi}Q_{\xi}}(x, x) - K_{Q_{\xi}P_{\xi}}(x, x)\right) dx \frac{d\xi}{\xi}.$$

 $\mathsf{Periodic} + \mathsf{family} + \mathbb{Z}_2\text{-graded (T. 2025)}$

$$\begin{split} ^{R}\mathrm{Str}[P,Q] &= \frac{-1}{2\pi i} \oint_{S^{1}} \mathrm{Str}\left(\frac{\partial P_{\xi}}{\partial \xi} Q_{\xi}\right) d\xi \\ &+ \frac{1}{2\pi i} \oint_{S^{1}} \int_{W/B} f(x) \, \mathrm{str}\left(K_{[P_{\xi},Q_{\xi}]}(x,x)\right) dx \frac{d\xi}{\xi}. \end{split}$$

End no	riadia
End-pe	eriouic

End-periodic

$$\frac{End-periodic}{\frac{d}{dt} R ch(A_t) = -R Str\left[A_t, \dot{A}_t e^{-A_t^2}\right] + \alpha_1(t) + \alpha_2(t)}$$

$$\frac{d}{dt} ch(A_t) = -b Str\left[A_t, \dot{A}_t e^{-A_t^2}\right]$$

$$rac{d}{dt}^{b} \mathsf{ch}(A_{t}) = - {}^{b} \mathsf{Str} \left[A_{t}, \dot{A}_{t} \mathsf{e}^{-A_{t}^{2}}
ight]$$

End-periodic

$$rac{d}{dt}^R \mathrm{ch}(A_t) = - {}^R \mathrm{Str}\left[A_t, \dot{A_t} \mathrm{e}^{-A_t^2}
ight] + lpha_1(t) + lpha_2(t)$$

$$\frac{\text{Cylindrical}}{\frac{d}{dt}} {}^{b} \text{ch}(A_{t}) = - {}^{b} \text{Str} \left[A_{t}, \dot{A_{t}} e^{-A_{t}^{2}} \right]$$

$$= - {}^{b} \text{Str} \left[A_{t} - A_{[1]}, \dot{A_{t}} e^{-A_{t}^{2}} \right]$$

$$- {}^{b} \text{Str} \left[A_{[1]}, \dot{A_{t}} e^{-A_{t}^{2}} \right]$$

End-periodic

$$rac{d}{dt}^R ext{ch}(A_t) = -{}^R ext{Str}\left[A_t, \dot{A_t} e^{-A_t^2}
ight] \ + lpha_1(t) + lpha_2(t)$$

$$\begin{aligned} \frac{d}{dt} \, {}^{b} \mathrm{ch}(A_{t}) &= -\, {}^{b} \mathrm{Str} \left[A_{t}, \dot{A_{t}} \mathrm{e}^{-A_{t}^{2}} \right] \\ &= -\, {}^{b} \mathrm{Str} \left[A_{t} - A_{[1]}, \dot{A_{t}} \mathrm{e}^{-A_{t}^{2}} \right] \\ &- {}^{b} \mathrm{Str} \left[A_{[1]}, \dot{A_{t}} \mathrm{e}^{-A_{t}^{2}} \right] \\ &= -\frac{1}{2} \widehat{\eta}(t) - (\mathrm{exact}) \end{aligned}$$

End-periodic

$$\begin{aligned} \frac{d}{dt} \, ^R \mathrm{ch}(A_t) &= -\, ^R \mathrm{Str} \left[A_t, \dot{A}_t \mathrm{e}^{-A_t^2} \right] \\ &+ \alpha_1(t) + \alpha_2(t) \end{aligned}$$
$$&= \beta_1(t) + \beta_2(t) + \gamma_1(t) + \gamma_2(t) \\ &+ \alpha_1(t) + \alpha_2(t) \end{aligned}$$

$$\begin{split} \frac{d}{dt} \, {}^b \mathrm{ch}(A_t) &= -\, {}^b \mathrm{Str} \left[A_t, \dot{A}_t \mathrm{e}^{-A_t^2} \right] \\ &= -\, {}^b \mathrm{Str} \left[A_t - A_{[1]}, \dot{A}_t \mathrm{e}^{-A_t^2} \right] \\ &\quad -\, {}^b \mathrm{Str} \left[A_{[1]}, \dot{A}_t \mathrm{e}^{-A_t^2} \right] \\ &= -\frac{1}{2} \widehat{\eta}(t) - (\mathrm{exact}) \end{split}$$

End-periodic

$$\frac{d}{dt} R \operatorname{ch}(A_t) = -R \operatorname{Str} \left[A_t, \dot{A_t} e^{-A_t^2} \right]$$

$$+ \alpha_1(t) + \alpha_2(t)$$

$$= \beta_1(t) + \beta_2(t) + \gamma_1(t) + \gamma_2(t)$$

$$+ \alpha_1(t) + \alpha_2(t)$$

$$= -\frac{1}{2} \widehat{\eta}_{ep}(t)$$

$$- \frac{d}{dt} \oint_{\mathcal{E}_1} \int_{W/R} f(x) \operatorname{str}(K_{e^{-A_t^2(\xi)}}(x, x)) dx \frac{d\xi}{\xi} + (\operatorname{exact})$$

$$\frac{d}{dt} {}^{b} \operatorname{ch}(A_{t}) = - {}^{b} \operatorname{Str} \left[A_{t}, \dot{A}_{t} e^{-A_{t}^{2}} \right]$$

$$= - {}^{b} \operatorname{Str} \left[A_{t} - A_{[1]}, \dot{A}_{t} e^{-A_{t}^{2}} \right]$$

$$- {}^{b} \operatorname{Str} \left[A_{[1]}, \dot{A}_{t} e^{-A_{t}^{2}} \right]$$

$$= -\frac{1}{2} \widehat{\eta}(t) - (\operatorname{exact})$$

End-periodic

$$\frac{d}{dt} {}^{R} \operatorname{ch}(A_{t}) = -{}^{R} \operatorname{Str} \left[A_{t}, \mathring{A}_{t} e^{-A_{t}^{2}} \right]$$

$$+ \alpha_{1}(t) + \alpha_{2}(t)$$

$$= \beta_{1}(t) + \beta_{2}(t) + \gamma_{1}(t) + \gamma_{2}(t)$$

$$+ \alpha_{1}(t) + \alpha_{2}(t)$$

$$= -\frac{1}{2} \widehat{\eta}_{ep}(t)$$

$$\begin{split} \frac{d}{dt} \, {}^b \mathrm{ch}(A_t) &= -\, {}^b \mathrm{Str} \left[A_t, \dot{A}_t \mathrm{e}^{-A_t^2} \right] \\ &= -\, {}^b \mathrm{Str} \left[A_t - A_{[1]}, \dot{A}_t \mathrm{e}^{-A_t^2} \right] \\ &- {}^b \mathrm{Str} \left[A_{[1]}, \dot{A}_t \mathrm{e}^{-A_t^2} \right] \\ &= -\frac{1}{2} \widehat{\eta}(t) - (\mathrm{exact}) \end{split}$$

$$-\frac{d}{dt}\oint_{S^1}\int_{W/B}f(x)\operatorname{str}(K_{e^{-A_t^2(\xi)}}(x,x))\,dx\frac{d\xi}{\xi}+(\operatorname{exact})$$

$$(*) \quad -\frac{1}{2}\widehat{\eta}_{\text{ep}}(t) = \alpha_{1}(t) + \beta_{1}(t)$$

$$= \alpha_{1}(t) - \frac{1}{2\pi i} \oint_{|\xi|=1} t^{1/2} \operatorname{Str}\left(c\ell(d_{Y/B}f)\dot{A}_{t}(Y)(\xi)e^{-A_{t}^{2}(Y)(\xi)}\right) \frac{d\xi}{\xi}$$

Melrose-Piazza (1997) first step: $\frac{d}{dt} {}^b \text{ch}(A_t) = - {}^b \text{Str}[A_t, \dot{A}_t e^{-A_t^2}].$

Melrose-Piazza (1997) first step:
$$\frac{d}{dt} {}^b \mathrm{ch}(A_t) = - {}^b \mathrm{Str}[A_t, \dot{A_t} e^{-A_t^2}].$$

FAMILIES OF DIRAC OPERATORS

147

Proof. By Duhamel's formula, the derivative of the heat kernel is

$$(13.10) \qquad \frac{d}{dt}e^{-\mathbb{A}_t^2} = -\int\limits_0^1 e^{-s\mathbb{A}_t^2} \cdot \frac{d\mathbb{A}_t^2}{dt} \cdot e^{-(1-s)\mathbb{A}_t^2} ds.$$

The indicial family of \mathbb{A}_t^2 is even in λ , so applying (12.5) to commute the leading term, from left to right, no boundary terms arise. Thus

(13.11)
$$\frac{d}{dt} b\text{-Ch}(\mathbb{A}_t) = -b\text{-STr}\left(\frac{d\mathbb{A}_t^2}{dt}e^{-\mathbb{A}_t^2}\right).$$

Since \mathbb{A}_t is odd and commutes with $\exp(-\mathbb{A}_t^2)$, this can be written as a supercommutator:

(13.12)
$$\frac{d}{dt} b\text{-Ch}(\mathbb{A}_t) = -b\text{-STr}[\mathbb{A}_t, \frac{d\mathbb{A}_t}{dt} e^{-\mathbb{A}_t^2}].$$

Now, dA_t/dt is a fibre operator so (12.5) can be applied to give

Take $P=e^{-sA_t^2}$ and $Q=\partial_t(A_t^2)e^{-(1-s)A_t^2}$ in the supertrace defect formula:

$$\int_0^1 {}^R \mathsf{Str}[e^{-sA_t^2}, \partial_t(A_t^2)e^{-(1-s)A_t^2}] \, ds = \alpha_1(t) + \alpha_2(t).$$

Take $P=e^{-sA_t^2}$ and $Q=\partial_t(A_t^2)e^{-(1-s)A_t^2}$ in the supertrace defect formula:

$$\int_0^1 {}^R \mathsf{Str}[e^{-sA_t^2}, \partial_t(A_t^2)e^{-(1-s)A_t^2}] \, ds = \alpha_1(t) + \alpha_2(t).$$

The term $\alpha_2(t)$ is OK. More difficult is that $\alpha_1(t) \neq 0$ in the end-periodic case, because the parity argument made by M.-P. breaks down.

Take $P=e^{-sA_t^2}$ and $Q=\partial_t(A_t^2)e^{-(1-s)A_t^2}$ in the supertrace defect formula:

$$\int_0^1 {}^R \mathsf{Str}[\mathsf{e}^{-sA_t^2}, \partial_t(A_t^2) \mathsf{e}^{-(1-s)A_t^2}] \, ds = \alpha_1(t) + \alpha_2(t).$$

The term $\alpha_2(t)$ is OK. More difficult is that $\alpha_1(t) \neq 0$ in the end-periodic case, because the parity argument made by M.-P. breaks down.

Recall that we have, by the supertrace defect formula,

$$\alpha_1(t) = \frac{-1}{2\pi i} \int_0^1 \oint_{S^1} \operatorname{Str}\left(\partial_{\xi}(e^{-sA_t^2(\xi)}) \cdot \partial_t(A_t^2(\xi)) \cdot e^{-(1-s)sA_t^2(\xi)}\right) d\xi ds$$

Take $P=e^{-sA_t^2}$ and $Q=\partial_t(A_t^2)e^{-(1-s)A_t^2}$ in the supertrace defect formula:

$$\int_0^1 {}^R \mathsf{Str}[\mathsf{e}^{-\mathsf{s} A_t^2}, \partial_t (A_t^2) \mathsf{e}^{-(1-\mathsf{s}) A_t^2}] \, d\mathsf{s} = \alpha_1(t) + \alpha_2(t).$$

The term $\alpha_2(t)$ is OK. More difficult is that $\alpha_1(t) \neq 0$ in the end-periodic case, because the parity argument made by M.-P. breaks down.

Recall that we have, by the supertrace defect formula,

$$\alpha_{1}(t) = \frac{-1}{2\pi i} \int_{0}^{1} \oint_{S^{1}} \operatorname{Str}\left(\partial_{\xi}(e^{-sA_{t}^{2}(\xi)}) \cdot \partial_{t}(A_{t}^{2}(\xi)) \cdot e^{-(1-s)sA_{t}^{2}(\xi)}\right) d\xi ds$$

$$\stackrel{?}{=} \frac{-1}{2\pi i} \int_{0}^{1} \oint_{S^{1}} \operatorname{Str}(\operatorname{odd} \cdot \operatorname{even} \cdot \operatorname{even}) \frac{d\xi}{\xi} ds$$

$$= 0$$

End-periodic

$$A_t(\xi) = A_t(Y) - \ln(\xi)\delta_t m_0(df)$$

$$A_t(\xi) = A_t(Y) - \ln(\xi)\delta_t m_0(dr)$$

End-periodic

$$\begin{split} A_t(\xi) &= A_t(Y) - \ln(\xi) \delta_t m_0(df) \\ A_t^2(\xi) &= A_t^2(Y) - \ln(\xi) \delta_t [A(Y), m_0(df)] \\ &- t \ln(\xi)^2 |d_{Y/B} f|^2 \end{split}$$

$$\begin{split} A_t(\xi) &= A_t(Y) - \ln(\xi) \delta_t m_0(dr) \\ A_t^2(\xi) &= A_t^2(Y) - \ln(\xi) \delta_t [A(Y), m_0(dr)] \\ &- t \ln(\xi)^2 |d_{Y/B}r|^2 \end{split}$$

End-periodic

$$\begin{split} A_t(\xi) &= A_t(Y) - \ln(\xi) \delta_t m_0(df) \\ A_t^2(\xi) &= A_t^2(Y) - \ln(\xi) \delta_t [A(Y), m_0(df)] \\ &- t \ln(\xi)^2 |d_{Y/B} f|^2 \end{split}$$

$$\begin{split} A_t(\xi) &= A_t(Y) - \ln(\xi) \delta_t m_0(dr) \\ A_t^2(\xi) &= A_t^2(Y) - \ln(\xi) \delta_t [A(Y), m_0(dr)] \\ &- t \ln(\xi)^2 |d_{Y/B}r|^2 \end{split}$$

Proposition (T., 2025)
$$[A(Y), m_0(df)] = m_0 \left(\nabla^{T^*Y} df \right) - 2 \nabla^{\mathbb{E}_Y, 0}_{(d_{Y/B}f)^\#}$$
$$= 0 \quad \text{iff the periodic end is cylindrical}$$

End-periodic

$$\begin{split} A_t(\xi) &= A_t(Y) - \ln(\xi) \delta_t m_0(df) \\ A_t^2(\xi) &= A_t^2(Y) - \ln(\xi) \delta_t [A(Y), m_0(df)] \\ &- t \ln(\xi)^2 |d_{Y/B} f|^2 \end{split}$$

Cylindrical

$$\begin{split} A_t(\xi) &= A_t(Y) - \ln(\xi) \delta_t m_0(dr) \\ A_t^2(\xi) &= A_t^2(Y) - \ln(\xi) \delta_t [A(Y), m_0(dr)] \\ &- t \ln(\xi)^2 |d_{Y/B}r|^2 \\ &= A_t^2(Y) - t \ln(\xi)^2 \end{split}$$

Proposition (T., 2025)

[
$$A(Y), m_0(df)$$
] = $m_0 \left(\nabla^{T^*Y} df \right) - 2 \nabla^{\mathbb{E}_Y, 0}_{(d_{Y/B}f)^{\#}}$
= 0 iff the periodic end is cylindrical

End-periodic

 $e^{-A_t^2(\xi)} = 777$

$$\begin{split} A_t(\xi) &= A_t(Y) - \ln(\xi) \delta_t m_0(df) \\ A_t^2(\xi) &= A_t^2(Y) - \ln(\xi) \delta_t [A(Y), m_0(df)] \\ &- t \ln(\xi)^2 |d_{Y/B} f|^2 \end{split}$$

Cylindrical

$$\begin{split} A_t(\xi) &= A_t(Y) - \ln(\xi) \delta_t m_0(dr) \\ A_t^2(\xi) &= A_t^2(Y) - \ln(\xi) \delta_t [A(Y) m_0(dr)] \\ &- t \ln(\xi)^2 |d_{Y/B}r|^2 \\ &= A_t^2(Y) - t \ln(\xi)^2 \\ e^{-A_t^2(\xi)} &= e^{-A_t^2(Y)} e^{-t \ln(\xi)^2} \end{split}$$

Proposition (T., 2025)

Proposition (1., 2025)
$$[A(Y), m_0(df)] = m_0 \left(\nabla^{T^*Y} df \right) - 2 \nabla^{\mathbb{E}_Y, 0}_{(d_{Y/B}f)^\#}$$
$$= 0 \quad \text{iff the periodic end is cylindrical}$$