PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C07D 413/12, A61K 31/44

(11) International Publication Number:

WO 00/61580

A1 |

(43) International Publication Date:

19 October 2000 (19.10.00)

(21) International Application Number:

PCT/GB00/01393

(22) International Filing Date:

12 April 2000 (12.04.00)

(30) Priority Data:

9908355.2 60/141.470 12 April 1999 (12.04.99) 29 June 1999 (29.06.99) GB US

(71) Applicant (for all designated States except US): AVENTIS PHARMA LIMITED [GB/GB]; Aventis House, 50 Kings Hill Avenue, West Malling, Kent ME19 4AH (GB).

(72) Inventors; and

(75) Inventors, and

(75) Inventors/Applicants (for US only): CLARK, David, Edward [GB/GB]; Aventis Pharma Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB). EASTWOOD, Paul, Robert [GB/GB]; Aventis Pharma Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB). HARRIS, Neil, Victor [GB/GB]; Aventis Pharma Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB). McCARTHY, Clive [GB/GB]; Aventis Pharma Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB). MORLEY, Andrew, David [GB/GB]; Aventis Pharma Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB). PICKETT, Stephen, Dennis [GB/GB]; Aventis Pharma Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB).

(74) Agent: CAFFIN, Lee; Aventis Pharma Limited, Rainham Road South, Dagenham, Essex RM10 7XS (GB).

(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SUBSTITUTED BICYCLIC HETEROARYL COMPOUNDS AS INTEGRIN ANTAGONISTS

(57) Abstract

The invention is directed to physiologically active compounds of general formula (I) R^1Z^1 -Het- L^1 -Ar 1 -L 2 -Y wherein Het is an optionally substituted, saturated, partially saturated or fully unsaturated 8 to 10 membered bicyclic ring containing at least one heteroatom selected from O, S or N; R^1 is optionally substituted aryl, heteroaryl, alkyl, alkenyl, alkynyl, cycloalkyl or heterocycloalkyl; Z^1 represents a direct bond, an alkylene chain, NR^4 , O or $S(O)_n$; L^1 is an $a-R^5$ -R 6 - linkage where R^5 is alkylene, alkenylene or alkynylene and R^6 is a direct bond, cycloalkylene, heterocycloalkylene, arylene, heteroaryldiyl, $-C(=Z^3)$ -NR 4 -, $-NR^4$ - $C(=Z^3)$ -NR 4 -, -C(=O)-NR 4 -, -C(=O)

BEST AVAILABLE COPY