Finite mixture models in secr

Murray Efford

November 21, 2010

Variation in detection probability among individuals ('individual heterogeneity') is a persistent problem in capture–recapture studies. Ideally, such variation is removed by grouping individuals into homogeneous classes (males and females) or including continuous predictors such as body weight. Finite mixture models are an option when unmodelled heterogeneity remains (Pledger 2000; Borchers and Efford 2008). The population is assumed to comprise 2 or more latent classes differing in detection parameters, with an unknown proportion in each class. The likelihood is a weighted sum over the classes.

Implementation in secr

Version 1.3 of **secr** introduced the 2-class finite mixture model as an option for any 'real' detection parameter (e.g., g0 or sigma of a halfnormal detection function). Consider a simple example, using conditional likelihood and **trace** = FALSE for brevity:

```
> library(secr)
> model.0 <- secr.fit(captdata, model = g0 ~ 1, CL = TRUE,
      trace = FALSE)
   Specify a 2-class mixture by adding the predictor h2 to the model formula:
> model.h2 <- secr.fit(captdata, model = g0 ~ h2, CL = TRUE,
      trace = FALSE)
> model.h2
secr.fit( capthist = captdata, model = g0 ~ h2, CL = TRUE, trace =
secr 1.5.0, 17:47:37 21 Nov 2010
Detector type
                  single
Detector number
                  100
Average spacing
                  30 m
                  365 635 m
x-range
y-range
                  365 635 m
N animals
                : 76
N detections
                : 235
N occasions
```

: 22.09 ha

Mask area

Model : g0~h2 sigma~1 pmix~h2

Fixed (real) : none
Detection fn : halfnormal

N parameters : 4

Log likelihood : -755.6554 AIC : 1519.311 AICc : 1519.874

Beta parameters (coefficients)

beta SE.beta lcl ucl g0 -0.8107857 0.53650154 -1.862309 0.2407379 g0.h22 -0.8195935 1.34169707 -3.449271 1.8100844 sigma 3.3808873 0.04494927 3.292788 3.4689863 pmix.h22 -1.2822787 5.10944816 -11.296613 8.7320556

Variance-covariance matrix of beta parameters

g0 g0.h22 sigma pmix.h22 g0 0.287833901 0.537760519 -0.001458684 2.58258599 g0.h22 0.537760519 1.800151022 0.004827578 6.07715276 sigma -0.001458684 0.004827578 0.002020436 0.01912904 pmix.h22 2.582585992 6.077152765 0.019129037 26.10646048

Fitted (real) parameters evaluated at base levels of covariates

session = 1, h2 = 1

link estimate SE.estimate lcl ucl g0 logit 0.3077231 0.1142907 0.1344341 0.5598955 sigma log 29.3968439 1.3220343 26.9178161 32.1041807 pmix logit 0.7828374 NA NA NA

session = 1, h2 = 2

link estimate SE.estimate lcl ucl g0 logit 0.1637784 0.07347659 0.0640497 0.359196 sigma log 29.3968439 1.32203426 26.9178161 32.104181 pmix logit 0.2171626 NA NA NA

From the output you can see that secr.fit has expanded the model to include an extra 'real' parameter, pmix for the proportions in the respective latent classes. You could specify this yourself as part of the model argument, but secr.fit knows to add it. There are also two extra 'beta' parameters: g0.h22 which is the difference in g0 between the classes on the link (logit) scale, and pmix.h22 which is the proportion in the second class, also on the logit scale. Fitted (real) parameter values are reported separately for each mixture class (h2 = 1 and h2 = 2).

We can compare a 2-class finite mixture model to the null (constant) model using AIC:

> AIC(model.0, model.h2)

model detectfn npar logLik AIC model.0 g0~1 sigma~1 halfnormal 2 -755.9344 1515.869

```
model.h2 g0~h2 sigma~1 pmix~h2 halfnormal 4 -755.6554 1519.311

AICc dAICc AICwt

model.0 1516.033 0.000 0.8722

model.h2 1519.874 3.841 0.1278
```

In this case there is no reason to prefer the mixture model.

More complex models are allowed. For example, one might, somewhat outlandishly, fit a learned response to capture that differs between two latent classes, while also allowing sigma to differ between classes:

```
> model.h2xbh2s <- secr.fit(captdata, model = list(g0 ~
+ h2 * b, sigma ~ h2), CL = FALSE)</pre>
```

Number of classes

The theory of finite mixture models in capture–recapture (Pledger 2000) allows an indefinite number of classes – 2, 3 or perhaps more. Programmatically, the extension to more classes is obvious (e.g., h3 for a 3-class mixture). The appropriate number of latent classes may be determined by comparing AIC for the fitted models

1

At this time you are advised not to fit more than 2 classes in **secr** because there are technical difficulties with the link function for pmix. This defaults to mlogit (after the 'mlogit' link in MARK), and in fact any attempt to change the link is ignored.

On the bright side, it is unlikely that you will ever have enough data to support more than 2 classes. For the data in the example above, the 2-class and 3-class models have identical log likelihood to 4 decimal places, while the latter requires 2 extra parameters to be estimated (this is to be expected as the data were simulated from a null model with no heterogeneity).

Notes

It's worth mentioning a perennial issue of interpretation: Do the latent classes have biological reality? The answer is No. Fitting a finite mixture model does not require or imply that there is a matching structure in the population (discrete types of animal). A mixture model is merely a convenient way to capture heterogeneity.

When more than one real parameter is modelled as a mixture, there is an ambiguity: is the population split once into latent classes common to all real parameters, or is the population split separately for each real parameter? The second option would require a distinct level of the mixing parameter for each real parameter. **secr** implements only the 'common classes' option, which saves one parameter.

¹score tests (e.g. McCrea and Morgan (2010) Multistate mark-recapture model selection using score tests *Biometrics* DOI: 10.1111/j.1541-0420.2010.01421.x) are not appropriate because the models are not nested, at least that's how it seems to me

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics **64**, 377–385. Pledger, S. (2000) Unified maximum likelihood estimates for closed capture–recapture models using mixtures. Biometrics **56**, 434–442.