15 poäng ger garanterat betyg E. Motivera alla lösningar noggrant. Obevisade deluppgifter kan användas.

- 1. (a) (2 poäng) Låt $T: V \to W$ vara en linjär avbildning mellan vektorrum. Definiera nollrumet N(T) och bevisa att $N(T) \subseteq V$ är ett delrum.
 - (b) (3 poäng) Låt $P_4(\mathbb{C})$ vara vektorrumet av alla komplexa polynom av grad högst 4 och låt $T: P_4(\mathbb{C}) \to \mathbb{C}^3$ vara linjära avbildningen som uppfyller

$$T(p) = (p(0), p'(2), p''(1)).$$

Bestäm N(T) och R(T) och hitta en bas till N(T).

Lösning.

(a) Nolrumet av T är

$$N(T) = \{ v \in V \mid T(v) = 0 \}.$$

Då

$$T(x+y) = T(x) + T(y) = 0 \text{ och}$$
$$T(cx) = cT(x) = 0$$

för alla $x, y \in \mathcal{N}(T)$ och alla skalär c följer att $\mathcal{N}(T)$ är sluten för addition och skalär multiplikation. Det gäller också att $0 \in \mathcal{N}(T)$. Alltså är $\mathcal{N}(T)$ ett delrum av V.

(b) Matrisrepresentationen för T relativ till standard ordnata baserna av $P_4(\mathbb{C})$ och \mathbb{C}^3 är

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 4 & 12 & 32 \\ 0 & 0 & 2 & 6 & 12 \end{pmatrix}.$$

Då matrisens kolonner genererar \mathbb{C}^3 följer att $\mathrm{R}(T)=\mathbb{C}^3$. Man kan använder Gaussalgoritmen för att finna radekvivalenta matrisen

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 8 \\ 0 & 0 & 1 & 3 & 6 \end{pmatrix}.$$

Alltså gäller

$$N(T) = \{ \sum_{i=0}^{4} a_i x^i \mid a_0 = 0, \ a_1 = -8a_4, \ a_2 = -3a_3 - 6a_4 \}.$$

Vektorerna $x^4 - 6x^2 - 8x$ och $x^3 - 3x^2$ ligger i N(T) och är linjär oberoende. Då dim N(T) = $5 - \dim R(T) = 2$, kan vi drar slutsatsen att dem är en (ordnat) bas av N(T).

- 2. (a) (1 poäng) Låt $A \in M_n(\mathbb{R})$. Definiera när A kallas diagonaliserbar.
 - (b) (3 poäng) Låt

$$A = \frac{1}{2} \begin{pmatrix} 0 & -2 & 2 \\ -3 & 1 & 3 \\ -1 & 1 & 3 \end{pmatrix} .$$

Bestäm om A är diagonaliserbar. Om så är fallet, bestäm en bas för \mathbb{R}^3 bestående av egenvektorer av A för \mathbb{R}^3 samt deras egenvärden.

(c) (1 **poäng**) Bestäm om matrisen A från sista delen är diagonaliserbar relativ till en ortonormalbas av \mathbb{R}^3 .

Lösning.

- (a) Matrisen A kallas för diagonaliserbar om det finns en inverterbar matris $S \in M_n(\mathbb{R})$ sådan att SAS^{-1} är en diagonalmatris.
- (b) Vi undersöker $B=2\cdot A$ i stället för att underlätta beräkningen. Då egenvektorer av A och B är samma och egenvärde multipliceras med 2 är det tillräklig att göa det. Karaktäristiskt polynom av B beräknas som

$$\chi_B(t) = -t^3 + 4t^2 + 4t - 16$$
.

Pröving av delare av 16 visar att

$$\chi_B(t) = -(t-2)(t+2)(t-4)$$
.

Då B är av storlek 3×3 och har 3 olika egenvärde, är den diagonaliserbar. Det medför att också A är diagonaliserbar. Egenvektorer av A beräknas nu genom att bestämmer

$$N(B - 2I_3) = \operatorname{span} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$N(B + 2I_3) = \operatorname{span} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$N(B - 4I_3) = \operatorname{span} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Alltså är $(1,0,1)^t$, $(1,1,0)^t$, $(0,1,1)^t$ en bas av egenvektorer för A med egenvärde 1, -1 och 2.

(c) Matrisen A är inte diagonaliserbar relativ till en ortonormalbas av \mathbb{R}^3 , eftersom dem är inte självadjungerad.

2

- 3. (a) (1 poäng) Definiera begreppet "unitär matris".
 - (b) (1 poäng) Definiera begreppet "övertriangulär matris".
 - (c) (3 poäng) Beräkna QR-uppdelningen av

$$A = \frac{1}{2} \begin{pmatrix} 1 & 3 & 2 & 3 \\ 1 & 1+2i & 0 & -i \\ 1 & -1 & 2 & 1 \\ 1 & 1-2i & 0 & i \end{pmatrix} \in \mathcal{M}_4(\mathbb{C}).$$

Lösning.

- (a) En matris $U\in \mathrm{M}_n(\mathbb{C})$ kallas för unitär om $U^*U=\mathrm{I}_n=UU^*$ gäller.
- (b) En matris $R \in \mathcal{M}_n(\mathbb{F})$, där \mathbb{F} är en godtycklig kropp, kallas för övertriangulär om $R_{ij} = 0$ gäller för alla i > j.
- (c) QR uppdelning beräknas genom att tillämpa Gram-Schmidts metod till basen som består av kolonvektorer v_1,\ldots,v_4 av A för att hitta ortonormalbasen

$$\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ i \\ -1 \\ -i \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 1 \\ -i \\ -1 \\ i \end{pmatrix},$$

som vi kallar för u_1, \ldots, u_4 . Unitära matrisen i QR-uppdelningen är alltså

$$Q = (u_1 \cdots u_4) = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

Man noterar hur Gram-Schmit beräknar vektorerna och skriver motsvarande koefficienter i matrisen

$$R = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- 4. (a) (1 poäng) Definiera singulärvärde av en matris $A \in M_n(\mathbb{C})$.
 - (b) (4 poäng) Beräkna singulärvärdesuppdelning av

$$A = \frac{1}{2} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 2 & -1 & 0 \end{pmatrix} .$$

Lösning.

(a) Singulärvärden av $A \in M_n(\mathbb{C})$ är positiva tal $\sigma_1 \geq \ldots \geq \sigma_r$, där $r = \operatorname{rank}(A)$ är matrisens rang, tillsammans med $\sigma_{r+1} = \cdots = \sigma_n = 0$, sådan att det finns orthonormalbaser u_1, \ldots, u_n och v_1, \ldots, v_n av \mathbb{C}^n som uppfyller

$$Av_i = \sigma_i u_i$$

för all $i \in \{1, \ldots, n\}$.

Kommentar: en alternativ definition betrakta bara positiva singulärvärde $\sigma_1, \ldots, \sigma_r$.

(b) För att bestämmer singulärsvärdeuppdelning av A beräknar man först

$$A^*A = \frac{1}{4} \begin{pmatrix} 4 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$

och sen en ortonormalbas av egenvektorer v_1, v_2, v_3 av A^*A med egenvärde $\sigma_1^2 \geq \sigma_2^2 \geq \sigma_3^2$. Man hittar

$$v_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1\\0 \end{pmatrix}, v_2 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, v_3 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$

och

$$\sigma_1^2 = 5/4,\, \sigma_2^2 = 2,\, \sigma_3^2 = 0\,.$$

Därefter beränar man bildvektorer Av_1, Av_2 och normaliserar och kompleterar dem för att får en ortonormalbas u_1, u_2, u_3 , nämligen

$$u_1 = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, u_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

Samanfattningsvis ger det singulärsvärdeuppdelning

$$A = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{5}}{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -\frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}} \\ 0 & 1 & 0 \end{pmatrix}^{t}$$

$$= \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{5}}{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0 \end{pmatrix}.$$

5. (a) (1 poäng) Kom ihåg att spåravbildningen $\operatorname{Tr}: \operatorname{M}_n(\mathbb{R}) \to \mathbb{R}$ defineras genom formeln

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

Bevisa att Tr(AB) = Tr(BA) gäller för all $A, B \in M_n(\mathbb{R})$.

- (b) (2 poäng) Låt $V = \{A \in M_2(\mathbb{R}) \mid Tr(A) = 0\}$. Bevisa att $V \subseteq M_2(\mathbb{R})$ är ett delrum och bestäm en bas för V.
- (c) **(2 poäng)** Låt

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} .$$

Vi definierar avbildningen $T: V \to V$ med hjälp av formeln T(A) = BA - AB. Bevisa att T är linjär och bestäm dess matrisrepresentation relativ till basen du hittade i del 5b.

Lösning.

(a) Det gäller att

$$\operatorname{Tr}(AB) = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} A_{ik} B_{ki} \right) = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} B_{ik} A_{ki} \right) = \operatorname{Tr}(BA).$$

(b) Man kontrollerar direkt att $0 \in V$ och att det är sluten för addition och skalär multiplikation. Vektorer

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

ligger i V och är linjär oberoende. Alltså gäller $3 \leq \dim V < \dim M_2(\mathbb{R}) = 4$. Det implicerar att $\dim V = 3$ och att vektorer är en (ordnat) bas av V.

(c) Det är en direkt räkning som visar att T är linjär. Matrisrepresentationen relativ till basen vi hittade i sista delen är

$$\begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} .$$

- 6. (a) (2 poäng) Bevisa att två ändligdimensionella \mathbb{F} -vektorrum V och W är isomorfa om och endast om $\dim_{\mathbb{F}} V = \dim_{\mathbb{F}} W$ gäller.
 - (b) (3 poäng) Formulera och bevisa Cauchy-Schwarz olikheten.

Lösning. Se bok eller föreläsningsanteckningar.

Skrivningsåterlämning äger rum fredagen 5 november kl. 12:00 utanför sal 15, hus 5. Därefter kan skrivningen hämtas på studentexpeditionen i rum 204.

5