

Mathematical Foundations of Computer Science

Lecture 27: LPs: general form and LP Duality

Announcements

- 1. Next (last) assignment due tomorrow.
- 2. No discussion sessions this week thanksgiving week.
- 3. No office hours later this week (i.e. on Wed Sun)

Linear Programming

Linear Optimization

Suppose you want to buy apples and oranges.

- Apple costs 2\$/lb and oranges cost 1\$/lb.
- Apples have 1mg/lb of vit-C, oranges have 2mg/lb of vit-C.
- Apples and oranges both provide 1*Kcal/lb*.

How many pounds of apples & oranges can you buy with at most 3\$, so that total Vitamin C intake $\leq 3 mg$, in such a way to maximize calorie intake?

Let x_1 be the #lbs of apple bought, x_2 be #lbs of oranges bought

money spent =
$$2x_1 + x_2 \le 3$$
 Linear Program.
vit-Commend = $x_1 + 2x_2 \le 3$
 $x_1 > 0$, $x_2 > 0$

Optimize this...

What is the optimal solution? One of the corner points.

The corners of the feasible region.

LP Formulation

Variables: $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$

Constraints: given by $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

max
$$c^T x = \sum_{i=1}^{n} c_i x_i$$

such that

 $(Ax) \leq b$

entywise inequality

 $x \geq 0$

At $= \frac{a_{in}}{a_{in}} \frac{a_{in}}{a_{in}}$
 $x \geq 0$

At $= \frac{a_{in}}{a_{in}} \frac{a_{in}}{a_{in}}$
 $= \frac{a_{in}}{a_{in}} \frac{a_{in}}{a_{in}}$

"Standard" LP Formulation

Variables: $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$

Constraints: given by $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ & give $c \in \mathbb{R}^n$

$$\max c^T x = (x_1 + x_2 + \dots + x_n + x_n)$$
such that
$$Ax \le b \quad \text{ i.e. (m]: } \begin{cases} \sum_{j=1}^n a_{ij} x_j \le b_j \\ j = 1 \end{cases}$$

$$x \ge 0 \quad \text{ i.e. (m]: } x_j \ge 0$$

Claim: Standard LP formulation can capture general Linear programs.

Capturing a minimization problem

Minimize
$$2y_1 + 4y_2 + 2y_3 = \text{maximize} -(2y_1 + 4y_2 + 2y_3)$$

$$y_1 + y_2 \le 5$$

$$y_2 + y_3 \le 4$$

$$y_1, y_2, y_3 \ge 0$$

$$y_1, y_2, y_3 \ge 0$$

$$y_1, y_2, y_3 \ge 0$$

Variables:
$$x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$

Constraints: given by $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

$$\min c^{T}x = \max (-c)^{T}x$$
s.t $Ax \le b$ s.t $Ax \le b$

$$x \ge 0$$
 $x \ge 0$

estandard form

Capturing other inequality, equality constraints

$$\max 2y_1 + 4y_2 + 2y_3 = \max 2y_1 + 4y_2 + 2y_3$$

$$y_1 + y_2 \le 5$$

$$y_1 + y_2 \le 5$$

$$y_2 + y_3 \ge 4$$

$$y_1, y_2, y_3 \ge 0$$

Variables: $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$

Constraint $\sum_{j=1}^{n} a_{ij} x_j \ge b_j$ is the same as $\sum_{j=1}^{n} (-a_{ij}) x_j \le -b_j$

How do you capture constraint $\sum_{j=1}^{n} a_{ij} x_j = b_j$?

It is captured by following two constraints:

$$\sum_{j=1}^{n} a_{ij} x_j \le b_j \text{ and } \sum_{j=1}^{n} (-a_{ij}) x_j \le -b_j$$

Unconstrained Variables

$$\max 2y_{1} + 4y_{2} + 2y_{3}$$

$$y_{1} + y_{2} \leq 5$$

$$y_{2} + y_{3} \leq 4$$

$$y_{2}, y_{3} \geq 0$$

$$y_{1} \in \mathbb{R}$$

Variable y_1 is unconstrained. How to bring it to standard form?

Max
$$2(z_1 - z_2) + 4y_2 + 2y_3$$

$$z_1 - z_2 + y_2 \le 5$$

$$y_2 + y_3 \le 4$$

$$z_1, z_2, y_2, y_3 \ge 0$$

negative variables z_1, z_2 such that $y_1 = z_1 - z_2$

$$y_1 = z_1 - z_2$$

"Standard" LP Formulation

Variables:
$$x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$

Constraints: given by $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

$$\max c^{T}x = c_{1}x_{1} + c_{2}x_{2} + \cdots + c_{n}x_{n}$$
such that
$$Ax \leq b \quad \text{ if } c_{n} : \quad \text{ if } a_{ij} \neq b_{j} \text{ if } x_{j} \geq b_{j}$$

$$x \geq 0 \quad \text{ if } c_{n} : \quad x_{j} \geqslant 0$$

Claim: Standard LP formulation can capture general Linear programs (any linear objective subject to linear constraints).

How do you know you are optimal?

Maximize
$$x_1 + x_2$$

$$(x_1 + x_2 \le 3)$$

$$(x_1 + 2x_2 \le 3)$$

$$x_1, x_2 \ge 0$$

Maximize
$$x_1 + x_2$$
 How do we know that (1,1) is optimal? LP = 2 optimal? LP = 2 is the factor of the every feasible (x_1, x_2) be have $(x_1, x_2) = x_1, x_2 \ge 0$

$$2x_{1} + x_{2} \leq 3$$
 $x_{1} + 2x_{2} \leq 3$
 $3x_{1} + 3x_{2} \leq 1$

$$\Rightarrow x_{1} + x_{2} \leq 2$$

Another Example

Guess for optimal solution:

$$y_1 = 1, y_2 = 4, y_3 = 0.$$

objective=18.

Is this optimal?

$$2y_1 + 2y_2 + 2y_2 + 2y_3 \le 18$$

 $2y_1 + 4y_2 + 2y_3 \le 18$

Another Example

Maximize
$$2x_1 + 4x_2 + x_3$$

$$(x_1 + x_2 \le 5) \times y_1$$

$$(x_2 + x_3 \le 4) \times y_2$$

$$x_1, x_2, x_3 \ge 0$$

- Say you didn't know to multiply by 2, 2.
- How do you show optimality?

$$y_1 \times_1 + y_1 \times_2 + y_2 \times_2 + y_2 \times_3 \le 5y_1 + 4y_2 - y_1 \times_1 + (y_1 + y_2) \times_2 + y_2 \times_3 \le 5y_1 + 4y_2$$

Ex: What is ther best value of y. Je, J3?

How do you know you are optimal?

Claim: (1,1) is optimal with max value = 2. Maximize $5x_1 - 3x_2$ How do you show optimality? $(x_1 + 3x_2 \le 5) \times y_1$ We need upper bound on objective $3x_1 + x_2 \le 4$) × y_2 $5x_1 - 3x_2 \le ????$ $4x_1 - 8x_2 \le -4$ $x_1, x_2 \ge 0$ y1, y2, y3 >,0 $\chi_1(y_1 + 3y_2 + 4y_3) + \chi_2(3y_1 + y_2 - 8y_3) \leq 5y_1 + 4y_2 - 4y_3$ minimize $5y_1 + 4y_2 - 4y_3$ $y_1 + 3y_2 + 4y_3 \ge 5 + 3$ $3y_1 + y_2 - 8y_3 \ge -3$ $y_1, y_2, y_3 \ge 0$

Thank you!