GRAFIK FUNGSI TRIGONOMETRI

1. Fungsi Trigonometri Sinus, Kosinus, dan Tangen

Fungsi yang memetakan himpunan sudut x^o ke himpunan bilangan real sin x^o disebut fungsi sinus.

Dilambangkan:

$$f: x^o \rightarrow$$

 $\sin x^o$ (f memetakan x^o ke sinus x^o).

Jadi, rumus untuk fungsi sinus adalah $f(x^o) = \sin x^o$ atau $f(x) = \sin x$ untuk x dalam ukuran radian.

Fungsi f memetakan himpunan sudut x^o ke himpunan bilangan real $\cos x^o$ disebut fungsi kosinus.

Dilambangkan:

$$f: x^0$$

 $\rightarrow \cos x^o$ (f memetakan x^o ke kosinus x^o).

Jadi, rumus untuk fungsi kosinus adalah $f(x^o) = \cos x^o$ atau $f(x) = \cos x$ untuk x dalam ukuran radian.

Fungsi f memetakan himpunan sudut x^o ke himpunan bilangan real tan x^o disebut fungsi tangen.

Dilambangkan:

$$f: x^o$$

 $\rightarrow \tan x^o$ (f memetakan x^o ke tangen x^o).

Jadi, rumus untuk fungsi tangen adalah $f(x^o) = \tan x^o$ atau $f(x) = \tan x$ untuk x dalam ukuran radian.

Contoh:

Hitunglah nilai fungsi trigonometri berikut.

$$a. f(x) = \sin x \text{ , untuk } x = \frac{\pi}{3}$$

$$1 + \sin x$$

$$b. f(x) = \frac{1 + \sin x}{\cos^2 x}, \text{ untuk } x = \frac{\pi}{6}$$

Jawab

$$a.f\left(\frac{\pi}{3}\right) = \sin\frac{\pi}{3} = \sin\frac{180^{\circ}}{3} = \sin60^{\circ} = \frac{1}{2}\sqrt{3}$$

$$b.f\left(\frac{\pi}{6}\right) = f\left(\frac{180^{\circ}}{6}\right) = f(30^{\circ}) = \frac{1 + \sin30^{\circ}}{\cos^{2}30^{\circ}}$$

$$= \frac{1 + \frac{1}{2}}{\left(\frac{1}{2}\sqrt{3}\right)^{2}} = \frac{\frac{3}{2}}{\frac{3}{4}} = \frac{3}{2} \times \frac{4}{3} = \frac{3}{2}$$

Nilai Maksimum dan Minimum Fungsi Sinus dan Kosinus

Perubahan nilai fungsi trigonometri (sinus, kosinus, dan tangen) dapat diamati dengan menggunakan lingkaran satuan, yaitu lingkaran trigonometri yang berjari-jari satu satuan.

Berdasarkan gambar di atas, diperoleh:

$$\sin \alpha^o = \frac{y}{r} = \frac{y}{1}$$

= y, $nilai \sin \alpha^o$ ditentukan oleh ordinat y.

$$\cos \alpha^o = \frac{x}{r} = \frac{x}{1}$$

= x, $nilai \cos \alpha^o$ ditentukan oleh absis x.

 $\tan \alpha^o$

 $=\frac{y}{x}$, $nilai \tan \alpha^o$ ditentukan oleh absis x dan ordinat y.

Jika titik P berputar (dimulai dari titik A) berlawanan arah jarum jam sepanjang lintasan lingkaran satuan, maka besar sudut $\alpha^o = \angle XOP$ bertambah secara kontinu dari 0^o sampai 360^o . Dengan pertambahan besar sudut α^o , maka nilainilai fungsi trigonometri $\sin \alpha^o$, $\cos \alpha^o$, dantan α^o akan mengalami perubahan. Perubahan nilai-nilai fungsi trigonometri diperlihatkan pada table di bawah ini.

		Perubahan sudut α^o									
	0° ke 90) 90° ke 18	3 180° ke 2	270° ke 3							
sin α ⁶	bertam bah dari 0 ke 1	berku rang dari 1 ke 0	berkuran g dari 0 ke -1	bertamba h dari -1 ke 0							
cosα	berkur ang dari 1 ke 0	berkura ng dari 0 ke -1	bertamba h dari -1 ke 0	bertamba h dari 0 ke 1							
tan α	bertam bah dari 0 ke positif tak berhin gga	bertamb ah dari negatif tak berhing ga ke 0	bertamba h dari 0 ke positif tak berhingg a	bertamba h dari negatif tak berhingg a ke 0							

Tabel 1

Berdasarkan tabel 1 di atas, dapat disimpulkan sebagai berikut.

1. Nilai maksimum $\sin \alpha^o$ sama dengan 1, dicapai untuk $\alpha^o = 90^o + n .360^o$ Nilai minimum $\sin \alpha^o$ sama dengan – 1, dicapai untuk $\alpha^o = 270^o + n .360^o$ Jadi, $-1 \le \sin \alpha^o \le 1$ untuk setiap sudut α^o .

2. Nilai maksimum $\cos \alpha^o$ sama dengan 1, dicapai untuk $\alpha^o = n.360^o$ Nilai minimum $\cos \alpha^o$ sama dengan – 1,

dicapai untuk $\alpha^o = 180^o + n.360^o$ Jadi, $-1 \le \cos \alpha^o \le 1$ untuk setiap sudut α^o .

3. $\tan \alpha^o$ tidak mempunyai nilai maksimum maupun nilai minimum.

Contoh:

Carilah nilai minimum dan nilai maksimum dari : $y = \sin x^o - 1$.

Jawab:

- $-1 \le \sin x^o \le 1$
- $-1 1 \le \sin x^o \le 1 1$
- $-2 \le \sin x^o 1 \le 0$
- $-2 \le y \le 0$

 $y_{minimum} = -2 \operatorname{dan} y_{maksimum} = 0$ Jadi, $y = \sin x^{o} - 1$ mempunyai nilai minimum – 2 dan nilai maksimum 0.

3. Grafik Fungsi Trigonometri

Fungsi-fungsi trigonometri $f(x) = \sin x^o$, $f(x) = \cos x^o$, $dan \ f(x) = \tan x^o$ mempunyai persamaan grafik berturut-turut adalah $y = \sin x^o$, $y = \cos x^o$, $dan \ y = \tan x^o$. Grafik fungsi trigonometri itu dapat digambarkan dengan dua cara yaitu ;

- a. Dengan menggunakan tabel,
- b. Dengan menggunakan lingkaran satuan.

a. Menggambarkan Grafik Fungsi Trigonometri dengan Menggunakan Tabel

Untuk menggambarkan grafik fungsi trigonometri dengan menggunakan tabel diperlukan langkah-langkah sebagai berikut ;

Langkah I:

Buatlah tabel yang menyatakan hubungan antara x dengan $y = f(x^o)$. Pilihan nilai sudut x sehingga nilai $y = f(x^o)$ dengan mudah dapat ditentukan. Sudut x yang bersifat demikian adalah sudut-sudut khusus dan sudut-sudut batas kuadran.

Langkah II:

Titik-titik (x, y) yang diperoleh pada langkah 1 digambar pada bidang cartecius agar skala pada sumbu x dan pada sumbu y sama, maka nilai 360 pada sumbu x dibuat mendekati nilai 6,28 satuan (mengapa?).

Misalkan skala pada sumbu y ditetapkan 1 cm maka nilai 360 pada sumbu x dibuat kira-kira mendekati nilai 6,28 cm.

Langkah III:

Hubungkan titik-titik yang telah digambarkan pada bidang cartecius pada langkah 2 tersebut dengan kurva yang mulus sehingga diperoleh sketsa grafik fungsi trigonometri $y = f(x^o)$.

Berikut ini akan dijelaskan cara menggambar sketsa grafik fungsi trigonometri $y = \sin x^o$, $y = \cos x^o$, dan $y = \tan x^o$ dengan menggunakan langkah – langkah yang telah dibicarakan diatas.

1. Grafik fungsi $y = \sin x^o$ ($0 \le x \le 360$)
Pilihan sudut-sudut x; 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 360; kemudian dicari $y = \sin x^o$. Hubungan antara x dengan $y = \sin x^o$ dibuat tabel seperti diperlihatkan pada tabel 2 berikut;

1	11	Ж	W.	90	133	150	181	210	240	270	30	330	360
y = sin r*	g	+	₩.	1	46	1	0	4	-4/3	-1	-4/3	+	0

Tabel 2

Catatan ; untuk selanjutnya diadakan pendekatan nilai $\frac{1}{2}\sqrt{3}$ dengan 0,87

Titik – titik (x, y) pada tabel 2 digambarkan pada bidang cartecius, kemudian titik – titik itu dihubungkan dengan kurva yang mulus sehingga diperoleh grafik fungsi $y = \sin x^o$ (perhatikan gambar 2).

Gambar 2

2. Grafik fungsi $y = \cos x^o$ ($0 \le x \le 360$) Sudut – sudut yang dipilih seperti pada grafik $y = \sin x^o$. Hubungan antara x dengan $y = \cos x^o$ diperlihatkan pada table 3.

1	0	30	60	90	120	150	180	210	240	270	300	330	360
y = 000 x ⁴	t.	顿	ŧ	0	-1	-413	4	-1/3	+	0	1	10	1

Tabel 3

Titik –titik (x, y) pada tabel 3 digambarkan pada bidang cartecius. Kemudian titik-titik itu dihubungkan dengan kurva yang mulus sehingga diperoleh grafik fungsi $y = \cos x^o$ (diperhatikan gambar 3).

Gambar 3

3. Grafik fungsi $y = \tan x^o$ ($0 \le x \le 360$)
Pilihan sudut-sudut x; 0, 45, 90, 135, 180, 225, 270, 315, 360; kemudian dicari nilai $y = \tan x^o$. Hubungan antara x dengan $y = \tan x^o$ diperlihatkan pada tabel 4 berikut ini.

11.	()	45	90	135	180	225	270	315	360
$y = \tan x^{\alpha}$	0	L	-	-1	0	1	4	-1	0

Catatan : untuk x = 90 dan x = 270, nilai $y = \tan x^{o}$ tidak didefinisikan.

Titik –titik (x, y) pada tabel 4 diatas digambarkan pada bidang cartecius. Kemudian titik-titik itu dihubungkan dengan kurva yang mulus sehingga diperoleh grafik fungsi y = tan x^o (diperhatikan gambar 4 berikut ini).

Gambar 4

Berdasarkan grafik fungsi sinus $y = \sin x^o$ pada gambar diatas, grafik fungsi kosinus $y = \cos x^o$, dan grafik fungsi tangen $y = \tan x^o$ dapat disimpulkan beberapa hal sebagai berikut.

- Fungsi-fungsi trigonometri sinus, kosinus dan tangen merupakan fungsi periodik atau fungsi berkala.
 - a. Fungsi sinus $y = \sin x^o$ dan fungsi kosinus $y = \cos 180^o$ mempunyai periode 360^o
 - b. Fungsi tangen $y = \tan x^{\alpha}$ mempunyai periode 180°
- 2. Fungsi sinus $y = \sin x^o$ dan fungsi kosinus $y = \cos x^o$ mempunyai nilai minimum -1 dan nilai maksimum +1, sedangkan fungsi tangen $y = \tan x^o$ tidak mempunyai nilai minimum maupun nilai maksimum.
- 3. Khusus untuk fungsi tangen $y = \tan x^o$:
 - a. Untuk x mendekati 90 atau 270 dari arah kanan, nilai tan x^0 menuju ke negatif tak berhingga.
 - b. Untuk x mendekati 90 atau 270 dari arah kiri, nilai tan x^o menuju ke positif tak berhingga.
 - c. Garis-garis x = 90 dan x = 270 disebut garis asimtot.
 - d. Fungsi tangen $y = \tan x^0$ dikatakan diskontinu atau tak sinambung di x = 90 dan x = 270.

b. Menggambarkan Grafik Fungsi Trigonometri dengan Menggunakan Lingkaran Satuan.

Lingkaran satuan adalah lingkaran trigonometri yang berjari-jari satu satuan seperti diperlihatkan pada gambar 5 berikut.

Gambar 5

Dalam segitiga OMP, diperoleh ; $\sin x^o = \frac{MP}{OP} = \frac{b}{1} = b$, b merupakan ordinat titik p $\cos x^o = \frac{OM}{OP} = \frac{a}{1} = a$, a merupakan absis titik P.

Dalam segitiga OAQ, didapat :

$$\tan x^o = \frac{AQ}{OA} = \frac{d}{1} d, d$$
 merupakan ordinat titik Q.

Jadi, pada suatu lingkaran satuan dapat ditetapkan sebagai berikut .

- a. Nilai fungsi trigonometri $y = \sin x^o$ ditentukan oleh ordinat titik P
- b. Nilai fungsi trigonometri $y = \cos x^o$ ditentukan oleh absis titik P
- c. Nilai fungsi trigonometri $y = \tan x^o$ ditentukan oleh ordinat titik Q.

Berdasarkan analisis diatas, grafik trigonometri $y = \sin x^o$. $y = \cos x^o$, dan $y = \tan x^o$ ($0 \le x \le 360$) dapat digambarkan dengan menggunakan bantuan lingkaran satuan perhatiakan gambar 6, 7, dan 8 berikut ini.

Gambar 6

Gambar 7

Gambar 8