තියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

ලී ලංකා විභාග අදපාර්තමේන්තුව ලී ලංකා විභාග අද**්ධියේස්තා විභාග ශලදපාර්තමේන්තුවා** විභාග අදපාර්තමේන්තුව ලී ලංකා විභාග අදපාර්තමේන්තුව ඉහ්තානයට පුරු කියන් සහ මුණ්ඩනයට ප්රද්යාවේස්තා විභාග ලේකා විභාග මුණ්ඩනයට පුරු කියන් සහ ප්රදේශයට පුරු කියන් සහ ප්රදේශයට ප්රදේ

අධායන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015

<mark>භෞතික විදුනව I</mark> ධෝණුනිසඛායා I Physics I

පැය දෙකයි

இரன்டு மணித்தியாலம் Two hours

උපදෙස් :

- * මෙම පුශ්න පතුයේ පුශ්න 50 ක්, පිටු 10 ක අඩංගු වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 🗱 පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමක් ව කියවන්න.
- * 1 සිට 50 තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1), (2), (3), (4), (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය, පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින් (X) ලකුණු කරන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නො ලැබේ.

 $(g = 10 \,\mathrm{N \, kg^{-1}})$

- 1. ඉලෙක්ටුෝන වෝල්ට් (eV) යනු
 - (1) ආරෝපණයේ ඒකකයකි.
- (2) විභවයේ ඒකකයකි.
- (3) ධාරිතාවේ ඒකකයකි.

- (4) ශක්තියේ ඒකකයකි.
- (5) විදසුත් ක්ෂේතු තීවුතාවයේ ඒකකයකි.
- 2. පහත සඳහන් A,B සහ C යන මිනුම්, නිවැරදි ලෙස තෝරා ගත් මිනුම් උපකරණ භාවිතයෙන් ලබා ගෙන ඇත. $A=3.1~{
 m cm}$ $B=4.23~{
 m cm}$ $C=0.354~{
 m cm}$

A,B සහ C යන මිනුම් සඳහා යොදා ගෙන ඇති උපකරණ වනුයේ

	A	В	C
(1)	ව'නියර් කැලිපරය	ව'නියර් කැලිපරය	මයිකෝමීටර ඉස්කුරුප්පු ආමානය
(2)	මීටර කෝදුව	මීටර කෝදුව	ව'නියර් කැලිපරය
(3)	මීටර කෝදුව	මයිකෝමීටර ඉස්කුරුප්පු ආමානය	චල අණ්වීක්ෂය
(4)	මීටර කෝදුව	ව'නියර් කැලිපරය	මයිකෝමීටර ඉස්කුරුප්පු ආමානය
(5)	ව'නියර් කැලිපරය	මීටර කෝදුව	චල අණ්වීක්ෂය

- 3. එක එකෙහි බල්බය තුළ සමාන රසදිය පරිමාවන් ඇති A සහ B රසදිය වීදුරු උෂ්ණත්වමාන දෙකක කේශික නලවල අරයයන් පිළිවෙළින් r සහ $\frac{r}{3}$ වේ. බල්බවල උෂ්ණත්ව 1 °C කින් වැඩි කළ විට $\frac{A}{B}$ හි රසදිය කඳෙහි දිග වෙනස්වීම යන අනුපාතය ආසන්න වශයෙන් (වීදුරුවල පුසාරණය නොසලකා හරින්න.)
 - (1) $\frac{1}{9}$
- (2) $\frac{1}{3}$
- (3) 1
- (4) 3
- (5) 9
- 4. ධ්වනි තීවුතා මට්ටම 1 dB කින් ඉහළ නැංවූයේ නම්, ධ්වනි තීවුතාව කොපමණ සාධකයකින් වැඩි වේ ද?
 - (1)
- $(2) 10^{0.1}$
- $(3) 10^1$
- $(4) 10^{10}$
- (5) 1012
- 5. පුකාශ උපකරණ තුනක් පිළිබඳ ව කර ඇති පහත සඳහන් පුකාශ සලකා බලන්න.
 - (A) සරල අණ්වීක්ෂයට එක් අභිසාරී කාචයක් ඇති අතර, අණ්වීක්ෂය සාමානා සීරුමාරුවේ දී විශද දෘෂ්ටියේ අවම දුරෙහි අතාත්වික පුතිබිම්බයක් සාදයි.
 - (B) සංයුක්ත අණ්වීක්ෂයට අභිසාරී කාච දෙකක් ඇති අතර, අණ්වීක්ෂය සාමානා සීරුමාරුවේ දී අතාත්වික විශාලිත ප්‍රතිඛිම්බයක් අනන්තයේ සාදයි.
 - (C) නක්ෂනු දුරේක්ෂයට අභිසාරී කාච දෙකක් ඇති අතර, දුරේක්ෂය සාමානා සීරුමාරුවේ දී තාත්වික විශාලින පුතිබිම්බයක් අනන්තයේ සාදයි.

ඉහත පුකාශවලින්,

- (1) A පමණක් සතා වේ.
- (2) A සහ B පමණක් සතා වේ.
- (3) A සහ C පමණක් සතා වේ.
- (4) B සහ C පමණක් සතා වේ.
- (5) A, B සහ C සියල්ල ම සතා වේ.

6. රූපයේ පෙන්වා ඇති පරිදි $7.5~{
m cm}$ ක ඝනකමකින් යුත් පතුලක් සහිත සිලින්ඩරාකාර වීදුරු භාජනයක් $13.3~{
m cm}$ උසකට ජලයෙන් පුරවා ඇත. වීදුරු සහ ජලයේ වර්තන අංක පිළිවෙළින් $1.5~{
m cm}$ 1.33 වේ. ජල පෘෂ්ඨයට ඉහළින් නිරීක්ෂණය කළ විට, භාජනයේ පතුලේ P ලක්ෂායෙහි පිහිටි සලකුණක දෘශා ගැඹුර වන්නේ,

- (1) 5.8 cm (4) 11.9 cm
- (2) 10.9 cm (5) 15.0 cm
- (3) 11.6 cm
- 7. කඹයකින් ශක්තිමත් ගසක බැඳ ඇති ගවයෙක් යාබද ව ඇති පොල් පැළයක් කෑමට උත්සාහ කරන ආකාරය (a) රූපයෙහි පෙන්වා ඇත. ගවයා සඳහා නිදහස්-වස්තු රූප සටහන (free-body diagram) නිවැරදි ව දැක්වෙන්නේ,

8. රූපයේ දක්වා ඇති කප්පි සැකසුම මගින්, D පුකර්ෂණ උපකරණයකට සම්බන්ධ කර ඇති රෝගියකුගේ පාදය මත බලයක් ඇති කරයි. කප්පි සර්ෂණයෙන් තොර වන අතර පද්ධතිය සමතුලිතතාවයේ පවතී. D මගින් පාදය මත කිුියාකරන තිරස් බලය $80~{
m N}$ නම්, එල්ලා ඇති m ස්කන්ධයෙහි අගය වන්නේ $\left(\cos 30^{\circ} = \frac{\sqrt{3}}{2}\right)$,

- (1) $\frac{4}{\sqrt{3}}$ kg
- (2) 4 kg
- (3) $\frac{8}{\sqrt{3}}$ kg
 - (4) 8 kg
- (5) $8\sqrt{2} \text{ kg}$
- 9. එක එකෙහි ක්ෂේතුඵලය A වූ ලෝහ තහඩු දෙකක් භාවිත කර, පරතරය $0.9~{
 m cm}$ සහිත වාතය මාධා ලෙස ඇති $1~{
 m F}$ සමාන්තර තහඩු ධාරිතුකයක් සෑදුවහොත්, A ක්ෂේතුඵලයෙහි අගය ආසන්න වශයෙන් වන්නේ, $(arepsilon_0$ හි අගය $9 \times 10^{-12}~{
 m F}~{
 m m}^{-1}$ ලෙස ගන්න.)
 - (1) 1 cm^2
- $(2) 100 \text{ cm}^2$
- (3) 1000 m²
- (4) 100 km²
- (5) 1000 km²
- 10. දී ඇති පරිපථයෙහි බැටරියෙන් ඇදගන්නා ධාරාව (ඇම්පියරවලින්) වනුයේ,
 - (1) $\frac{1}{R}$
- $(2) \quad \frac{2}{R}$
- (3) $\frac{3}{R}$

- $(4) \quad \frac{4}{R}$
- $(5) \quad \frac{5}{R}$

11. $+q_1$ නම් ලක්ෂීය ආරෝපණයක්, O ලක්ෂායක රඳවා තබා ඇත. A සහ B ලක්ෂා O සිට පිළිවෙළින් r_1 හා r_2 දුරින් පිහිටා ඇත. $+q_2$ නම් වෙනත් ලක්ෂීය ආරෝපණයක් රූපයේ පෙන්වා ඇති පරිදි A ලක්ෂායේ සිට B ලක්ෂාය දක්වා දිග l වූ සර්පිලාකාර පථයක් ඔස්සේ ගෙන එන විට කරනු ලබන කාර්ය පුමාණය වන්නේ,

(3) $\frac{q_1}{4\pi\varepsilon_0} \left(\frac{q_1 - q_2}{r_2^2 - r_1^2} \right) l$

 $(4) \quad \frac{q_1 q_2}{4\pi\varepsilon_0} \left(\frac{1}{r_2} + \frac{1}{r_1} \right)$

- (5) $\frac{q_1}{4\pi\epsilon_0} \left(\frac{q_1}{r_2^2} \frac{q_2}{r_1^2} \right) l$
- 12. සරල අනුවර්හි චලිතයක යෙදෙන අංශුවක, කාලාවර්තයක් (T) තුළ විස්ථාපනය (x), කාලය (t) සමග විචලනය වීම (a) රූප සටහනේ පෙන්වා ඇත. කාලාවර්තය තුළ අංශුවේ චාලක ශක්තිය (K), කාලය (t) සමග විචලනය වන ආකාරය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

- 13. බෝලයක් 1.8 m ක උසක සිට දෘඪ පෘෂ්ඨයක් මතට අතහරිනු ලැබේ. බෝලය සහ පෘෂ්ඨය අතර ගැටුම පූර්ණ පුතාහස්ථ වේ. බෝලය අඛණ්ඩව පෘෂ්ඨය මත පොලා පනී නම් බෝලයේ චලිතය,
 - (1) කාලාවර්තය 1.2 s වූ සරල අනුවර්තී චලිතයකි.
 - (2) සරල අනුවර්තී නො වන එහෙත් කාලාවර්තය 0.6 s වූ ආවර්තක චලිතයකි.
 - (3) සරල අනුවර්තී නො වන එහෙත් කාලාවර්තය 1.2 s වූ ආවර්තක චලිතයකි.
 - (4) කාලාවර්තය 0.6 s වූ සරල අනුවර්තී චලිනයකි.
 - (5) කාලාවර්තය 2.4 s වූ සරල අනුවර්තී චලිතයකි.
- 14. සර්ෂණය රහිත මේසයක් මත පැන්සලක් එහි තුඩින් සිරස් ව තබා ගෙන ඇති ආකාරය රූපයේ පෙන්වා ඇත. පැන්සල නිදහසේ +x දිශාව දෙසට වැටීමට ඉඩහැරිය විට, එහි ගුරුත්ව කේන්දුයේ ගමන් පථය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

- 15. පෙන්වා ඇති පරිපථයෙහි එක් එක් සෘජුකාරක දියෝඩය ඉදිරි නැඹුරු කිරීම සඳහා එය හරහා $1 \ V$ වෝල්ටීයතාවක් අවශා ය. දියෝඩ දෙක ම ඉදිරි නැඹුරු කිරීම සඳහා X බැටරියේ චෝල්ටීයතාව විය යුත්තේ,
 - (1) 1 V
- (2) 2 V
- (3) 3 V

- (4) 4 V
- (5) 5 V

- 16. A,B සහ C යනු පුකාශ විදහුත් වීමෝචනය සඳහා දේහලීය තරංග ආයාමයන් පිළිවෙළින් $\lambda_A = 0.30~\mu\text{m}$, $\lambda_B = 0.28~\mu\text{m}$ සහ $\lambda_C = 0.20~\mu\text{m}$ වූ ලෝහ තුනකි. සංඛානතය $1.2 \times 10^{15}~\text{Hz}$ වූ ෆෝටෝන, එක් එක් ලෝහය මත පතනය වේ. පුකාශ ඉලෙක්ටෝන වීමෝචනය වන්නේ (රික්තයේ දී ආලෝකයේ වේගය $3 \times 10^8~\text{m s}^{-1}$),
 - (1) A මගින් පමණි.

(2) B මගින් පමණි.

(3) C මගින් පමණි.

- (4) A සහ B මගින් පමණි.
- (5) A, B සහ C සියල්ල ම මගිනි.

17. වස්තුවක පුවේගය (v), කාලය (t) සමග (a) රූප සටහනේ පෙන්වා ඇති පරිදි වීචලනය වේ නම්, ඊට අනුරූප විස්ථාපනය (x), කාලය (t) සමග වීචලනය වන ආකාරය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

- 18. $10~{\rm cm}$ ක නාභීය දුරක් සහිත L_1 තුනී කාචයක සිට $30~{\rm cm}$ ක් ඉදිරියෙන් කුඩා වස්තුවක් තැබූ විට, එහි පුතිබිම්බයක් කාචය පිටුපස සෑදේ. L_2 නම් තවත් තුනී කාචයක් L_1 හා ස්පර්ශ වන සේ තැබූ විට පුතිබිම්බය අනන්තයේ සෑදේ. L_2 යනු,
 - (1) නාභීය දුර 15 cm වූ අවතල කාචයකි.
- (2) නාභීය දුර 15 cm වූ උත්තල කාචයකි.
- (3) නාභීය දුර 20 cm වූ අවතල කාචයකි.
- (4) නාභීය දුර 10 cm වූ අවතල කාචයකි.
- (5) නාභීය දුර 20 cm වූ උත්තල කාචයකි.
- 19. (X) නම් කෝෂයක වී.ගා.බ. මැනීම සඳහා විභවමානයක් භාවිත කරමින් සිටින විට දී එහි කම්බියෙහි දෙකෙළවරට සම්බන්ධ කර ඇති 2 V ඇකියුම්ලේටරයෙහි වෝල්ටීයතාව අඩු වෙමින් පවතින බව සොයා ගන්නා ලදී. ඇකියුම්ලේටරයේ චෝල්ටීයතාවයෙහි අඩු වීමක් සිදු වුව ද විභවමාන කම්බියේ නියත සංතුලන ලක්ෂායක් ලබා ගත හැකි බව ශිෂායකු විසින් නිරීක්ෂණය කරන ලදී. මෙම නිරීක්ෂණය සඳහා ශිෂායා විසින් දෙන ලද පහත සඳහන් පැහැදිලි කිරීම්වලින් කුමක් පිළිගත හැකි ද?
 - (1) සංතුලන දිග ඇකියුමිලේටරයේ චෝල්ටීයකාව මත රඳා නොපවතී.
 - (2) විභවමාන කම්බියේ දෙකෙළවර හා සම්බන්ධ දෝෂයන්ගේ වෙනස්කම්, නියන සංතුලන ලක්ෂායක් ලැබීමට හේතුව විය හැකි ය.
 - (3) ඇකියුම්ලේටරයේ වෝල්ටීයතාව අඩු වෙමින් පැවතිය ද (X) කෝසෙ මගින් කම්බිය හරහා නියත විභව අනුකුමණයක් පවත්වා ගෙන ඇත.
 - (4) ඇකියුම්ලේටරයේ වෝල්ටීයතාව අඩු වීමේ බලපෑම, කම්බියේ උෂ්ණත්වය වැඩි වීම මගින් ශුනා කර ඇත.
 - (5) පරීක්ෂණය කර ගෙන යන අතරතුර දී (X) කෝෂයේ චෝල්ටීයතාව ද පහත වැටෙමින් පැවතෙන්නට ඇත.
- 20. දී ඇති පරිපථයෙහි, V වෝල්ට්මීටරය සහ A ඇමීටරය වැරදීමකින් එකිනෙකට මාරු වී ඇතොත්, ඇමීටරයෙහි සහ චෝල්ට්මීටරයෙහි කියවීම් පිළිවෙළින් විය හැක්කේ, (A සහ V පරිපූර්ණ උපකරණ බව සලකන්න.)

- (1) 0 A, 0 V
- (2) 0 A, 5 V
- (3) 0 A, 2.5 V

- (4) 0.1 A, 0 V
- (5) 0.05 A, 2.5 V
- 21. සර්වසම භෞතික මාන සහිත, එහෙත් $Y_1, Y_2, Y_3, ..., Y_n$ වූ වෙනස් යං මාපාංක ඇති දඬු n සංඛාාවක් කෙළවරින් කෙළවරට සම්බන්ධ කර ඍජු සංයුක්ත දණ්ඩක් සාදා ඇත. මෙම සංයුක්ත දණ්ඩේ තුලා (සමක) යං මාපාංකය දෙනු ලබන්නේ,

- (4) $\frac{n}{\frac{1}{Y_1} + \frac{1}{Y_2} + \frac{1}{Y_2} + \dots + \frac{1}{Y_n}}$
- $(5) \quad \left(Y_1 Y_2 Y_3 \cdots Y_n\right)^{\frac{1}{n}}$
- 22. ජලයේ පෘෂ්ඨික ආතතිය $(0.07\ N\ m^{-1})$ නිසා සමහර කුඩා කෘමීන්ට ජල පෘෂ්ඨය පහළට තෙරපීම මගින් ජල පෘෂ්ඨ මත ඇවිද යා හැකි ය. රූපයෙහි දක්වා ඇති පරිදි කෘමීන්ගේ පතුල් ආසන්න වශයෙන් ගෝලාකාර බව සැලකිය හැකි ය. කෘමියකු ජල පෘෂ්ඨයක් මත නිශ්චල ව සිටින අවස්ථාවක, එක් පෘදයක් පිහිටන ආකාරය රූපයේ දක්වා ඇත. ජල මට්ටමේ දී ගෝලාකාර පතුලෙහි වෘත්තාකාර හරස්කඩෙහි අරය r වේ. කෘමියා ගේ ස්කන්ධය $5.0 \times 10^{-6}\ kg$ ද $r=2.5 \times 10^{-5}\ m$ ද වේ. කෘමියාගේ බර උගේ පාද 6 මගින් දරා සිටින්නේ නම්, $\cos\theta$ ගි (රූපය බලන්න) අගය ආසන්න වශයෙන්, (π හි අගය 3 ලෙස ගන්න.)

- $(1) \quad 0.1$
- (2) 0.2
- (3) 0.4
- (4) 0.6
- (5) 0.8

 ${f 23}$. ඒකාකාර ක්ෂේතු තුනක් තුළ වෙන වෙන ම ගමන් කරන ආරෝපණ තුනක පථයන් ${f (A),(B)}$ සහ ${f (C)}$ රූප සටහන් මගින් පෙන්වා ඇත. පෙන්වා ඇති පථයන් ඇති කිරීමට අවශා ස්ථිතික විදාහුත් ක්ෂේතුය හෝ චුම්බක ක්ෂේතුය නිවැරදි ව දක්වා ඇත්තේ පහත සඳහන් කුමන පුතිචාරය මගින් ද?

	(A) £00000	(B)	(C) *
(1)	විදැපුත් ක්ෂේතුය	විදැපුත් ක්ෂේතුය	විදැපුත් ක්ෂේතුය
(2)	චුම්බක ක්ෂේතුය	චුම්බක ක්ෂේතුය	චුම්බක ක්ෂේතුය
(3)	විදාුුත් ක්ෂේතුය	විදයුත් ක්ෂේතුය	චුම්බක ක්ෂේතුය
(4)	චුම්බක ක්ෂේතුය	චුම්බක ක්ෂේතුය	විදයුත් ක්ෂේතුය
(5)	චුම්බක ක්ෂේතුය	විදයුත් ක්ෂේතුය	විදැදුත් ක්ෂේතුය

 ${f 24}$. අරය ${f r}$ වූ ගෝලීය ගවුසීය පෘෂ්ඨයක් මගින් ${f +q}$ ආරෝපණයක් වට වී ඇති අවස්ථා තුනක් (A), (B) සහ (C) රූප සටහන්වලින් පෙන්වා ඇත.

 ψ_L හා ψ_R යනු පිළිවෙළින් ගවුසීය පෘෂ්ඨයේ වම් හා දකුණු අර්ධගෝලාකාර කොටස් හරහා ගලන විදායුත් සුාව නම්, ψ_L හා ψ_p සම්බන්ධ ව පහත සඳහන් කුමක් නිවැරදි ද?

(A)	(B)	(C)
ψ_L , ψ_R	$\psi_L \cdot \psi_R$ $+q \stackrel{!}{\bullet} r$	$\psi_L : \psi_R$

	(A)	(B)	(C)
(1)	$\psi_L = \psi_R = \frac{q}{2\varepsilon_0}$	$\psi_L = \psi_R = \frac{q}{2\varepsilon_0}$	$\psi_L = \psi_R = \frac{q}{2\varepsilon_0}$
(2)	$\psi_L > \frac{q}{2\varepsilon_0} > \psi_R$	$\psi_L = \psi_R = \frac{q}{2\varepsilon_0}$	$\psi_L < \frac{q}{2\varepsilon_0} < \psi_R$
(3)	$\psi_L > \frac{q}{\varepsilon_0} > \psi_R$	$\psi_L = \psi_R = \frac{q}{\varepsilon_0}$	$\psi_L < \frac{q}{\varepsilon_0} < \psi_R$
(4)	$\psi_L = \psi_R = \frac{q}{\varepsilon_0}$	$\psi_L = \psi_R = \frac{q}{\varepsilon_0}$	$\psi_L = \psi_R = \frac{q}{\varepsilon_0}$
(5)	$\psi_L < \frac{q}{2\varepsilon_0} < \psi_R$	$\psi_L = \psi_R = \frac{q}{2\varepsilon_0}$	$\psi_L > \frac{q}{2\varepsilon_0} > \psi_R$

More Past Papers at

tamilguru.lk

25. වාතයෙන් පුරවන ලද, තහඩු අතර පරතරය d වූ සමාන්තර තහඩු ධාරිතුකයක්, චෝල්ටීයතාව V_0 වූ බැටරියක් මගින් පූර්ණ ලෙස ආරෝපණය කරනු ලැබේ. ඉන්පසු, බැටරිය ඉවත් කර තහඩු අතර අවකාශය, පාරවිදාුත් නියතය k වූ දුවායෙකින් පුරවනු ලැබේ. වාතයෙන් පිරවූ විට ධාරිතුකයෙහි ගබඩා වූ ශක්තිය U_0 ද පාරවිදයුත් දුවායෙන් පිර වූ විට ධාරිතුකය හරහා විද_ුනුත් ක්ෂේතු කීවුතාවය හා ධාරිතුකයෙහි ගබඩා වූ ශක්තිය පිළිවෙළින් E හා U නම්,

$$(1) \quad E = \frac{V_0}{d}, \quad U = kU_0 \ \text{od}.$$

(2)
$$E = \frac{V_0}{kd}$$
, $U = \frac{U_0}{k}$ $\otimes \mathfrak{D}$.

(2)
$$E = \frac{V_0}{kd}$$
, $U = \frac{U_0}{k} \otimes \mathfrak{D}$. (3) $E = \frac{V_0}{kd}$, $U = U_0 \otimes \mathfrak{D}$.

$$(4) \quad E = \frac{V_0}{kd}, \quad U = kU_0 \text{ a.s.}$$

$$(5) \quad E = \frac{V_0}{d}, \quad U = \frac{U_0}{k} \text{ a.s.}$$

26. $P{-}V$ රූප සටහනේ පෙන්වා ඇති පරිදි පරිපූර්ණ වායුවක නියක ස්කන්ධයක් චකීය කියාවලියකට භාජනය වේ. A,B,C,D සහ E ලක්ෂාවල උෂ්ණත්ව පිළිවෙළින් T_A, T_B, T_C, T_D සහ T_E නම්,

$$(2) \quad T_A \,=\, T_B \,<\, T_C \,<\, T_D \,=\, T_E \,\odot \mathbb{S}.$$

(3)
$$T_C = T_D > T_B = T_E > T_A \odot \mathcal{D}$$
.

$$(4) \quad T_A \,=\, T_B \,>\, T_C \,>\, T_D \,=\, T_E \,\, \text{ell}.$$

$$(5) \quad T_D = T_C > T_B > T_A = T_E \otimes \mathfrak{D}.$$

27. අැතුළට නෙරා යන පරිදි සාදන ලද (X) ඝනකාකාර පූජාස්ථානයක් සහිත එළිමහනේ පිහිටි ගඩොලින් සාදන ලද ව්‍යුහයක කොටසක් රූපයේ පෙන්වා ඇත. පූජාස්ථානයෙහි බිත්ති හුනු කපරාරු කර ඇති අතර එහි ඉදිරිපස, ව්්‍යුරු තහඩුවක් මගින් මුදුා තබා ඇත. බොහෝ අවස්ථාවල දී මෙම ව්්‍යුරු තහඩුවෙහි ඇතුළු පෘෂ්ඨය මත ජලවාෂ්ප ඝනීභවනය වන බව දැකිය හැකි අතර වැඩි වශයෙන් සන්ධාන කාලයේ දී මෙය සිදු වන බව සොයා ගෙන ඇත. මෙම තත්වය පිළිබඳ ශිෂායකු විසින් කරන ලද පහත සඳහන් අපෝහනවලින් බොහෝ සෙයින් ව්‍ය නොහැකි අපෝහනය කුමක් ද?

- (1) පූජාස්ථානය ඉදිරිපසින් මුදුා තබා තිබුණ ද ගඩොලින් සෑදුණු විශාල කොටස දෙසින් පූජාස්ථානය තුළට ජලවාෂ්ප ඇතුළු විය හැකි ය.
- (2) වීදුරු තහඩුවෙහි ඇතුළු පෘෂ්ඨය ආශිුත ව පවතින සාපේක්ෂ ආර්දුතාව දහවල් කාලය තුළ දී වෙනස් වේ.
- (3) ජලවාෂ්ප ඝනීභවනයට වායුගෝල උෂ්ණත්වයෙහි බලපෑමක් නැත.
- (4) වාුහයෙහි ගඩොල් මගින්, වර්ෂා කාලවල දී ජලය උරා ගනු ලැබුවා විය හැකි ය.
- (5) වියළි කාලයේ දී පූජාස්ථානයෙහි බිත්ති ජලවරණය (Water proof) කර ඉදිරිපස මුදුා තැබුවහොත් ජලවාෂ්ප සනීභවනය වීම අඩු කර ගත හැකි ය.
- 28. ස්කන්ධය 50 kg වූ ජිම්නාස්ටික් කි්ඩකයෙක් ස්වකීය ශරීරය ඍජු ව, සිරස් ව 6 m s⁻¹ක වේගයෙන් පොළොව මත පතිත කරයි. ඔහුගේ දෙපා පොළොව මත ස්පර්ශ වීමත් සමග ම, ශරීරයේ ඉතිරි කොටස් සිරස් ව තබා ගනිමින් ඔහු දණහිස් නවා 0.2 s කාලයක දී තම ශරීරය සම්පූර්ණයෙන් නිශ්චලතාවයට පත්කර ගනියි. 0.2 s කාලය තුළ දී පොළොව මගින් කී්ඩකයා මත යෙදෙන බලයේ සාමානා අගය වනුයේ,
 - (1) 30 N
- (2) 300 N
- (3) 1500 N
- (4) 1800 N
- (5) 3 000 N
- 29. නිල් (B), කොළ (G) සහ රතු (R) යන පුාථම්ක වර්ණ තුනෙහි මිශුණයකින් සමන්විත පටු ආලෝක කදම්බ (X), (Y) හා (Z) රූපවල දක්වා ඇති ආකාරයට එක ම දුවායකින් සාදන ලද වෙනස් වීදුරු පිස්ම මත ලම්බක ලෙස පතනය වේ. නිල්, කොළ සහ රතු වර්ණ සඳහා පිස්ම සාදා ඇති දුවාවල අවධි කෝණයන් පිළිවෙළින් (X) 43°, 44° සහ 46° වේ. PQ මුහුණත් තුළින් බැලූ විට රතු වර්ණය පමණක් දිස්වන්නේ,

(1) X හි පමණි.

(2) Y හි පමණි.

(3) X සහ Y හි පමණි.

(4) X සහ Z හි පමණි.

- (5) X, Y සහ Z යන සියල්ලෙහි ම ය.
- 30. යං මාපාංකය $4 \times 10^{11}\,\mathrm{N\,m^{-2}}$ වූ දවායකින් සාදන ලද අරය $1.0\,\mathrm{mm}$ වූ කම්බියක් $30\,\mathrm{N}$ ආතතියකට භාජනය කර ඇත. කම්බිය දිගේ අන්වායම තරංග පුවේගය (v_L) , තීර්යක් තරංග පුවේගය (v_T) ට දරන අනුපාතය $\dfrac{v_L}{v_T}$ හි විශාලත්වය වනුයේ, $(\pi\,$ හි අගය 3 ලෙස ගන්න.)
 - (1) 100
- (2) 150
- (3) 200
- (4) 250
- (5) 300
- 31. නාෂේට් කිහිපයක බඳන ශක්තීන් පහත දැක්වෙන වගුවෙන් පෙන්නුම් කරයි.

නා:ෂ්ටිය	⁴ ₂ He	²⁰ ₁₀ Ne	⁴⁰ ₂₀ Ca	⁶⁰ ₂₈ Ni	²³⁸ U
බඳන ශක්තිය (MeV)	28.3	160.6	342.1	526.8	1802.0

ඉහත සඳහන් නාාෂ්ටීවලින් වඩාත් ම ස්ථායි නාාෂ්ටීය කුමක් ද?

- (1) ${}_{2}^{4}$ He
- (2) 20 N
- (3) ⁴⁰Ca
- (4) 60 NG
- $(5) \quad ^{238}_{92}U$
- 32. එක එකෙහි අරය R සහ ස්කන්ධය m වූ සර්වසම ලෝහ ගෝල හතක් ස්කන්ධය 20m හා අරය 3R වූ කුහර ගෝලාකාර භාජනයක් තුළ අහුරා ඇත. මෙම භාජනය නිසල ගැඹුරු මුහුදක ජල පෘෂ්ඨයේ සිට නිශ්චලතාවයෙන් මුදා හැරිය විට එය සිරස් ව මුහුදු පතුල දෙසට ගමන් කරයි. භාජනය එහි ආන්ත පුවේගය v_0 ලබා ගත් පසු එය විවෘත කර, එය තුළ ඇති ලෝහ ගෝල ඒවායේ චලිතය නොකඩවා පවත්වා ගනිමින්, භාජනයේ බලපෑමකින් තොර ව එකිනෙකට ස්වායත්ත ව සිරස් ව මුහුදු පතුල දෙසට යාමට ඉඩ හරින ලදී. එක් ලෝහ ගෝලයක පුවේගය (v), කාලය (t) සමග වෙනස් වීම වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

(5)

[හත්වැනි පිටුව බලන්න.

33. දුස්සුාවී නො වන අසම්පීඩා තරලයක අනාකූල පුවාහයකට අනුරූප පුවාහ නලයක් (flow tube) රූපයේ පෙන්වා ඇත. එවැනි නලයක් තුළින් තරල පුවාහය පිළිබඳ ව පහත දී ඇති පුකාශවලින් **සහා නො වන්නේ** කුමක් ද?

- (1) Pලක්ෂායෙන් ඇතුළු වන සියලු ම අංශු නලය තුළ දී එක ම පථයක් ඔස්සේ ගමන් කරයි.
- (2) නලය තුළ, දී ඇති ලක්ෂායක පුවාහ පුවේගය කාලයක් සමග වෙනස් විය හැකි ය.
- (3) දී ඇති අනාකුල රේඛාවක් දිගේ ගමන් කරන අංශුවලට පුවාහ නලය තුළ වෙනස් ලක්ෂාවල දී වෙනස් පුවේග තිබිය හැකි ය.
- (4) අනාකුල රේඛාවකට ඕනෑ ම ලක්ෂායක දී අඳින ලද ස්පර්ශකය, එම ලක්ෂායේ දී පුවාහ පුවේගයේ දිශාව ලබා දෙයි.
- (5) පුවාහ නලය තුළ පවතින තරල ස්කන්ධය සැම විට ම නියකයක් වෙයි.
- 34. නිශ්චලතාවයේ සිට ගමන් අරඹන මෝටර් රථයක රෝදයක කෝණික ත්වරණය (α) , කාලය (t) සමග විචලනය වීම (a) රූප සටහනේ දැක්වේ. කාලය (t) සමග රෝදයෙහි කෝණික පුවේගය (ω) හි විචලනය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

55. රූපයේ පෙනෙන පරිදි, සැණකෙළියක ඇති, අරය R වූ තිරස් මෙරිගෝරවුමක x=-R හි ළමයෙක් සිටගෙන සිටියි, x-y යනු මෙරිගෝරවුමට සවි කර ඇති බණ්ඩාංක පද්ධතියක් වන අතර, y අක්ෂය මෙරිගෝරවුමේ භුමණ අක්ෂය ඔස්සේ පිහිටයි. සර්ෂණයෙන් තොර බෙයාරිමක් මත එළවුම් මෝටරයක් මගින් මෙරිගෝරවුම එහි අක්ෂය වටා නියත w_0 කෝණික පුවේගයකින් භුමණය වීමට සලස්වන අතර පසු ව එළවුම් මෝටරය රහිත ව නිදහසේ භුමණය වීමට සලස්වනු ලැබේ. දැන් ළමයා මෙරිගෝරවුමේ විෂ්කම්භය

ඔස්සේ $x=\pm R$ ස්ථානය දක්වා x-දිශාවට ගමන් කරයි නම්, මෙරිගෝරවුමේ කෝණික පුවේගය (ω) , ළමයාගේ පිහිටීම (x) සමග වෙනස් වන ආකාරය වඩාත් ම හොඳින් නිරූපණය කරනු ලබන්නේ,

36. පෙන්වා ඇති පරිපථයේ ටුාන්සිස්ටරයෙහි ධාරා ලාභය $100\, {
m m}$ වේ. පාදමට චෙනස් I_B අගයන් යොදන විට, ටුාන්සිස්ටරයේ කියාන්වින විධි පිළිබඳ ව පහත කුමක් සතා වේ ද?

	යොදන I_B අගය μ A වලින්	ටුාන්සිස්ටරයේ කිුයාන්විත විධිය
(1)	0	සංතෘප්ත විධිය
(2)	5	කපාහැරි විධිය
3)	12	කුියාකාරි විධිය
(4)	15	කපාහැරි විධිය
(5)	20	සංකජේත විධිය

77. P,Q සහ R මගින් දක්වා ඇත්තේ දී ඇති (A), (B) සහ (C) පරිපථවලට යොදා ඇති ද්වීමය පුදාන විචලාායන් ය.

- යොදා ඇති පුදාන සංයුක්ත සඳහා පරිපථ මගින් ලැබෙන F_1, F_2 සහ F_3 පුතිදාන සැලකීමේ දී
- (1) A හා B පමණක් එක ම පුතිදානය ලබා දෙයි.
- (2) B හා C පමණක් එක ම පුතිදානය ලබා දෙයි.
- (3) A හා C පමණක් එක ම පුතිදානය ලබා දෙයි.
- (4) පරිපථ තුන ම එක ම පුතිදානය ලබා දෙයි.
- (5) පරිපථ තුන එකිනෙකට වෙනස් පුතිදාන ලබා දෙයි.

ස්කන්ධයන් පිළිවෙළින් m_1 හා m_2 වූ A සහ B තරු දෙකක්, ඒවායේ අනෙහානා ගුරුත්වාකර්ෂණය නිසා $m_1 r_1 = m_2 r_2$ පරිදි වූ O නම් ලක්ෂාය වටා, සැම විට ම AOBඒක රේඛීයව පිහිටන සේ, රූපයේ දක්වා ඇති පරිදි වෘත්තාකාර චලිතයන් සිදු කරයි.

 m_1 හා m_2 හි වේගයන් පිළිවෙළින් v_1 හා v_2 නම්, $\dfrac{v_1}{v_2}$ අනුපාතය වනුයේ,

(3) $\frac{m_2}{m_1 + m_2}$

- ${f 39}.~~({
 m A}),~({
 m B})$ සහ $({
 m C})$ රූප සටහන්වල පෙනෙන පරිදි දණ්ඩ චුම්බකයක් සහ/හෝ සන්නායක පුඩුවක්/පුඩු වෙන් වෙන් ව සකස් කොට ඇත. O නිරීක්ෂකයා නිරීක්ෂණය කරන පරිදි චුම්බකය සහ පුඩුවක්/පුඩු, දක්වා ඇති v පුවේගවලින් ගමන් කරයි. (C) රූප සටහනේ පෙන්වා ඇති M පුඩුව වාමාවර්ත දිශාව ඔස්සේ I ධාරාවක් රැගෙන යයි.

O නිරීක්ෂකයා නිරීක්ෂණය කරන පරිදි L පුඩුවේ ප්රේරිත ධාරාව,

- (1) A සහ B හි දක්ෂිණාවර්ත වන අතර C හි ශූනා වේ.
- (2) A සහ C හි දක්ෂිණාවර්ත වන අතර B හි ශූනා වේ.
- (3) A සහ C හි දක්ෂිණාවර්ත වන අතර B හි වාමාවර්ත වේ.
- (4) A සහ B හි වාමාවර්ත වන අතර C හි ශූනා වේ.
- (5) A සහ C හි වාමාවර්ත වන අතර B හි ශූනා වේ.
- 40. (a) රූපයෙහි පෙන්වා ඇති වෝල්ටීයතා තරංග ආකාරය, (b) රූපයෙහි පෙන්වා ඇති අවකර පරිණාමකයක පුාථමිකයට ලබා දෙන අතර ද්විතීකයෙන් ලබා දෙන පුතිදාන තරංග ආකාරය දෝලනේක්ෂයක් මගින් නිරීක්ෂණය කරනු ලැබේ.

- 41. එක ම උෂ්ණත්වයේ හා පීඩනයේ පවතින වෙනස් ඝනත්ව ඇති A සහ B යන ද්වී පරමාණුක පරිපූර්ණ වායු දෙකක පිළිවෙළින් V_A සහ V_B පරිමා මිශු කරන ලදී. මිශුණය ඉහත උෂ්ණත්වයේ පවත්වා ගනු ලබන අතර, එය ද්වි පරමාණුක පරිපූර්ණ වායුවක් ලෙස සැලකිය හැක. ඉහත උෂ්ණත්වයේ දී හා පීඩනයේ දී A සහ B වායුවල ධ්වනි වේගයන් පිළිවෙළින් u_A සහ $u_{\scriptscriptstyle R}$ නම්, මිශුණය තුළ ධ්වනි වේගය දෙනු ලබන්නේ,
 - (1) $u_A u_B \sqrt{\frac{V_A + V_B}{V_A u_A^2 + V_D u_D^2}}$
- (2) $u_A u_B \sqrt{\frac{V_A + V_B}{V_A u_B^2 + V_B u_A^2}}$
- (3) $\sqrt{\frac{V_A u_A^2 + V_B u_B^2}{V_A + V_B}}$

- (5) $\sqrt{u_A u_B}$
- 42. ඒකක දිගක ස්කන්ධය $1.0~{
 m g~m^{-1}}$ සහ ආතතිය $40~{
 m N}$ සහිත ධ්වනිමාන කම්බියක කම්පන දිග කුඩා අගයක සිට වෙනස් කරමින් සංඛාාතය $320~{
 m Hz}$ වූ සරසුලක් සමග එකවර නාද කරනු ලැබේ. මෙම කිුිියාවලියේ දී සංඛාාතය $5~{
 m s}^{-1}$ වූ ස්පන්ද, දෝලනේක්ෂයක් මත නිරීක්ෂණය කළ හැකි නම්, ධ්වනිමාන කම්බියේ අනුරූප කම්පන දිගවල් (m වලින්) වනුයේ,

 $oldsymbol{43}$. දී ඇති පරිපථයෙහි A ඇමීටරයේ කියවීම, S_1 හා S_2 ස්විච්චි දෙක ම වසා හෝ දෙක ම විවෘත ව ඇති විට එක ම අගයක් දක්වයි. A පරිපූර්ණ ඇමීටරයක් නම්, R පුතිරෝධයෙහි අගය වනුයේ,

- (1) 1Ω
- (2) 2Ω
- (3) 3Ω

- (4) 4Ω
- (5) 6Ω
- 44. $-50~^{\circ}\mathrm{C}$ හි පවතින ස්කන්ධය $0.1~\mathrm{kg}$ වූ අයිස් කැබැල්ලක් $10~\mathrm{W}$ නියත ශීසුතාවයකින් තාප ශක්තිය සැපයීමෙන් ඒකාකාර ව රත් කරනු ලැබේ. අයිස්වල විශිෂ්ට තාප ධාරිතාව SI ඒකකවලින් lpha නම්, ආසන්න වශයෙන් අනෙකුත් අදාළ රාශින්වල අගයන් lpha ආශුයෙන් පහත සඳහන් ආකාරයට ලබා දිය හැකි ය.

ජලයේ විශිෂ්ට තාප ධාරිතාව

 $=2\alpha$

අයිස්වල වීලයනයේ ගුප්ත තාපය $= 160\alpha$

ජලයේ වාෂ්පීකරණයේ ගුප්ත තාපය = 1200 lpha

පද්ධතියේ උෂ්ණත්වය (heta), කාලය (t) සමග වෙනස්වීම වඩාත් හොඳින් නිරූපණය කරනුයේ පහත සඳහන් කුමන පුස්තාරය

 $oldsymbol{45}$. රූපයේ පෙන්වා ඇති පරිදි ස්කන්ධය M සහ උස h_0 වූ ඒකාකාර සෘජුකෝණාසුාකාර හරස්කඩක් සහිත භාජනයක් තුළ ඝනත්වය $ho_{
m oil}$ සහ ස්කන්ධය m වූ කිසියම් තෙල් පුමාණයක් අඩංගු වී ඇත. භාජනය, ඝනත්වය ho_{ω} (> $ho_{
m oil}$) වූ ජලයේ h_1 උසක් දක්වා සිරස් ව ගිලී පා වේ. දැන් තෙලෙහි කිසියම් පරිමාවක් **ඒ හා සමාන** ජල පරිමාවකින් පුතිස්ථාපනය කරනු ලැබේ. භාජනයේ පා වීම පවත්වා ගනිමින් පුතිස්ථාපනය කළ හැකි උපරිම තෙල් පරිමාව V නම් ද

මුලින් තිබූ තෙල් පරිමාව V_0 නම් ද $rac{V}{V_0}$ අනුපාතය දෙනු ලබන්නේ, (කිුයාවලිය අවසානයේ

දී භාජනය තුළ යම් තෙල් පුමාණයක් ඉතිරි වී ඇතැ'යි උපකල්පනය කරන්න.)

(1)
$$\frac{(h_0 - h_1) (M + m)\rho_{\text{oil}}}{h_1 m (\rho_\omega - \rho_{\text{oil}})}$$

(2)
$$\frac{h_0(M-m)\rho_{\text{oil}}}{h_1 m \left(\rho_{\omega} - \rho_{\text{oil}}\right)}$$

$$(3) \ \frac{h_1}{h_o} \cdot \frac{\rho_{\omega}}{\rho_{\text{oil}}}$$

$$(4) \quad \frac{\left(h_0 - h_1\right)\left(M - m\right)\rho_{\text{oil}}}{h_0 m\left(\rho_\omega + \rho_{\text{oil}}\right)}$$

(5)
$$\frac{h_0(M+m)\rho_{\text{oil}}}{M(h_0+h_1)\,(\rho_\omega+\rho_{\text{oil}})}$$

 $oldsymbol{46}$. ස්කන්ධය $oldsymbol{M}$ සහ දිග Lවූ ඒකාකාර ඍජුකෝණාසුාකාර ලී පටියක් මේසයක් මත x දිශාව ඔස්සේ මේසයේ එක් දාරයකට සමාන්තර වන සේ රූපයේ පෙන්වා ඇති පරිදි තබා ඇත්තේ ලී පටියෙන් කොටසක් මේසයෙන් ඉවතට දික් වන සේ ය. ලී පටියේ G ගුරුත්ව කේන්දුයේ සිට මේසයේ කෙළවරට දුර x_0 වේ. දැන් ස්කන්ධය m වූ කුඩා කුට්ටියක් පටියේ වම් කෙළවරෙහි තබා පටිය ඔස්සේ xදිශාවට එයට v ආරම්භක වේගයක් දෙනු ලැබේ. පටිය සහ කුට්ටිය අතර ගතික

සර්ෂණ සංගුණකය μ නම්, පටිය පෙරළීම සඳහා කුට්ටියට දිය හැකි අවම වේගය වන්නේ,

$$(1) \quad \sqrt{2\mu g \left(x_0 + \frac{L}{2} + \frac{Mx_0}{m}\right)}$$

$$(2) \quad \sqrt{\mu g \left(\frac{L}{4} + \frac{Mx_0}{m}\right)}$$

$$(3) \quad \sqrt{2\mu g\left(x_0 + \frac{L}{2} + \frac{mx_0}{M}\right)}$$

(4)
$$\sqrt{\frac{\mu g M x_0 L}{\left(\frac{L}{2} + x_0\right)}}$$

$$(5) \quad \sqrt{2\mu g \left(\frac{x_0}{2} + \frac{ML}{m}\right)}$$

- 47. සුනාම් අනතුරු හැඟවීමක දී නිශ්චල සයිරනයකින් සංඛානය 1 600 Hz වූ ධ්වනි තරංග නිකුත් කරන අතර වෙරළේ සිට ගොඩබීම දක්වා 60 m s⁻¹ ක ඒකාකාර වේගයෙන් සුළඟක් හමයි. සයිරන් හඬ ඇසුණු පුද්ගලයෙක් ඔහුගේ මෝටර් රථය 30 m s⁻¹ ක වේගයකින් වෙරළ සීමාවෙන් ඉවතට ගොඩබීම දෙසට පදවයි. මෝටර් රථය ගමන් කරන දිශාවට ම සුළඟ හමයි නම් ද නිශ්චල වාහයේ ධ්වනි වේගය 340 m s⁻¹ නම් ද මෝටර් රථයේ රියදුරුට ඇසෙන සයිරන හඬෙහි සංඛානය වන්නේ,
 - (1) 1 400 Hz
- (2) 1 480 Hz
- (3) 1 600 Hz
- (4) 1 740 Hz
- (5) 1 880 Hz

48. තාප පරිවාරක දවායකින් සාදන ලද, L දිගැති බටයක් තුළින් ඒකාකාර ශීඝුතාවයකින් ජලය ගලා යයි. රූපයෙහි පෙනෙන පරිදි $100\,^{\circ}\mathrm{C}$ හි පවතින විශාල තාප කටාරයකින් බටය තුළ ඇති ජලයට තාප සංකාමණය කිරීම සඳහා, කටාරය සහ බටය අතර, තාප ජලය පරිවරණය කරන ලද සර්වසම වූ ද ඒකාකාර ඇතුළට වූ ද එකිනෙකට සමදුරින් පිහිටා ඇති ලෝහ දඬු විශාල සංඛාාවක් සම්බන්ධ කර ඇත. බටය තුළට ජලය ඇතුළු වන උෂ්ණත්වය

කාමර උෂ්ණත්වයට සමාන නම්, නොසැලෙන අවස්ථාවේ දී දඬු දිගේ තාපය ගලායාමේ ශීඝුතාවය (R) සහ ජලයේ උෂ්ණත්වය (heta) බටය දිගේ දුර (x) සමග වෙනස් වන ආකාරය වඩාත් හොඳින් නිරූපණය කරන්නේ පහත සඳහන් කුමන පුස්තාරය මගින් ද?

49. රූපයෙහි දක්වා ඇති පරිදි, I ධාරාවක් ගෙන යන දිග ඍජු කම්බියක්, තවත් I ධාරාවක් ගෙන යන වෘත්තාකාර කම්බි පුඩුවක තලයට ලම්බකව එහි P කේන්දුය හරහා ගමන් කරන අක්ෂය දිගේ රඳවා තබා ඇත.

පහත සඳහන් පුකාශ සලකා බලන්න.

- (A) ධාරාව ගෙන යන ඍජු කම්බිය නිසා පුඩුව මත සම්පුයුක්ත බලය හා සම්පුයුක්ත වාහවර්තය ශුනා වේ.
- (B) ධාරාව ගෙන යන සෘජු කම්බිය පුඩුවෙහි අක්ෂයට සමාත්තර ව Q ලක්ෂායට ගෙන ගිය විට, ධාරාව ගෙන යන සෘජු කම්බිය නිසා පුඩුව මත සම්පුයුක්ත වාාවර්තයක් කියා කරයි.
- (C) ධාරාව ගෙන යන ඍජු කම්බිය පුඩුවෙහි අක්ෂයට සමාන්තර ව Q ලක්ෂායට ගෙන ගිය විට, ධාරාව ගෙන යන ඍජු කම්බිය නිසා පුඩුව මත සම්පුයුක්ත බලය ශූනා නො වේ.

ඉහත පුකාශ අතුරෙන්,

- (1) A පමණක් සතා වේ.
- (2) B පමණක් සතා වේ.
- (3) C පමණක් සතා වේ.
- (4) A හා B පමණක් සතා වේ.
- (5) A, B හා C සියල්ල ම සතා වේ.
- 50. අරය R වූ ඝන ගෝලයකින් කොටසක් කපා ඉවත් කර සාදා ගන්නා ලද, ඝන වස්තුවක් රූපයේ දක්වා ඇති පරිදි ටැංකියක පතුලේ තබා ඇත. ගෝලයේ කේන්දුයේ සිට ටැංකියේ පතුලට ඇති දුර l වේ. දැන් ටැංකිය සෙමෙන් ජලයෙන් පුරවනු ලැබේ. ඝන වස්තුවේ **පතුල හෙත් නො වන** ලෙස එය ටැංකියේ පතුලට සවිකර ඇති බව උපකල්පනය කරන්න. ජලය මගින් වස්තුව මත යොදන F උඩුකුරු සිරස් බලය, ජලයේ h උස සමග වෙනස් වන ආකාරය වඩාත් හොඳින් නිරූපණය කරනු ලබන්නේ,

P

හියලු ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

ලි ලංකා විතාල දෙපාර්තමේන්තුව ලි ලංකා විතාල දෙපාර්ත**ි**න්තුවන් ලෙසන් පාත්තිම නියාතිත දෙපාර්තමේන්තුව ලි ලංකා විතාල දෙපාර්තමේන්තුව මුණායකයට ප්රියාතන නියාතනයට ප්රියාතනයට ප්රියාතනයට ප්රියාතනයට ප්රියාතන නියාතනයට ප්රියාතනයට ප්

> අධානයන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஒகஸ்று General Certificate of Education (Adv. Level) Examination, August 2015

<mark>භෞතික විද</mark>නව II பௌதிகவியல் II Physics II

පැය තුනයි மூன்று மணித்தியாலம் Three hours

විභාග අංකය :	

වැදගත් :

- 🔆 මෙම පුශ්ත පතුය පිටු 13 කින් යුක්ත වේ.
- st මෙම පුශ්න පතුය f A සහ f B යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකට** ම නියමිත කාලය **පැග** තුනකි.
- 🔆 ගණක යන්නු භාවිතයට ඉඩ දෙනු නො ලැබේ.

A කොටස - වසුහගත රචනා (පිටු 2 - 7)

සියලු ම පුශ්නවලට පිළිතුරු මෙම පතුයේ ම සපයන්න. ඔබේ පිළිතුරු පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නො වන බව ද සලකන්න.

B කොටස - රචනා (පිටු 8 - 13)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතු ය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- * සම්පූර්ණ ප්‍රශ්න පන්‍යට නියමිත කාලය අවසන් වූ පස්‍ය A සහ B කොටස් එක් පිළිතුරු පත්‍යක් වන සේ, A කොටස B කොටසට උඩන් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

දෙවැනි පතුය සඳහා		
කොටස	පුශ්න අංක	ලැබූ ලකුණු
	1	
A	2	
Δ.	3	
	4	
	5	
	6	
	7	
n	8	
В	9 (A)	
	9 (B)	
	10 (A)	
And the same of th	10 (B)	
එකතුව		

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරින්	

සාකේත අංක

	3
උත්තර පතු පරීක්ෂක l	
උත්තර පතු පරීක්ෂක 2	
ලකුණු පරීක්ෂා කළේ	
අධීක්ෂණය කළේ	

A කොටස- වපුහගත රචනා					
පුශ්න	හතරට ම	පිළිතුර	ැමෙම	පතුයේ ම	සපයන්න
		(g =	10 N k	g^{-1})	

මෙම තීරයේ කිසිවක් නො ලියන්න

- ${f 1}$. දිග ℓ වූ සරල අවලම්බයක චලිතය (1) රූපයේ පෙන්වා ඇත.
 - (a) ℓ සහ ගුරුත්වජ ත්වරණය g ඇසුරෙන් සරල අවලම්බයේ දෝලන කාලාවර්තය T සඳහා පුකාශනයක් ලියා දක්වන්න.

(b) සරල අවලම්බය භාවිත කර, g හි අගය සොයන විදහාගාර පරීක්ෂණයේ දී 0.5s ක නිරවදහතාවකින් කාලය මැනිය හැකි විරාම සටිකාවක් ඔබට සපයා ඇත. T දෝලන කාලාවර්තයෙහි නිමානිත අගය 2s නම්, T හි පුතිශත දෝෂය 1% දක්වා අඩු කර ගැනීමට ඔබ විසින් ගත යුතු අවම දෝලන සංඛාහව නිර්ණය කරන්න.

(1) රූපය

(c) 'අනාවරක පද්ධතියක්' භාවිත කර, දෝලන කාලාවර්තය T වඩාත් නිවැරදි ව නිර්ණය කිරීම සඳහා ශිෂායකු විසින් විදයුත් කුමයක් සැලසුම් කරන ලදී.

(2)(a) රෑපය

(2)(b) රූපය

අනාවරක පද්ධතිය පුභව දියෝඩයකින් සහ අනාවරක දියෝඩයකින් සමන්විත වේ. පුභව දියෝඩය නියත I_0 තීවුතාවකින් යුත් පටු අධෝරක්ත (IR) ආලෝක කදම්බයක් නිකුත් කරයි. අනාවරක දියෝඩය මගින් මෙම ආලෝක කදම්බය අනාවරණය කරනු ලබන අතර එමගින් කදම්බයේ තීවුතාව ද මනිනු ලබයි [(2)(a) රූපය බලන්න]. අනාවරක පද්ධතිය සරල අවලම්බයේ බට්ටාගේ පථයෙහි තබා ඇත. දෝලනය වන අතරතුර බට්ටා IR කදම්බය හරහා ද ගමන් කරයි [(2)(b) රූපය බලන්න]. බට්ටා IR කදම්බය අවහිර කරන සෑම විටක දී ම අනාවරක දියෝඩ සංඥාව ශුනා වන අතර, එසේ නො වන විට I_0 නියත තීවුතාවකින් යුත් සංඥාවක් ලබා දෙයි. බට්ටා දෝලනය වන විට කාලය (t) සමග අනාවරක සංඥාවේ තීවුතාව (I) හි විචලනයේ පුස්තාරයක් පරිගණක තිරය මත දිස්වේ.

- (3) රූපයේ පෙන්වා ඇත්තේ පරිගණක තිරය මත දිස්වූ එවැනි පුස්තාරයක් වන අතර එය ලබා ගෙන ඇත්තේ **වාත රෝධය** නිසා ඇති කරන බලය **නොගිනිය හැකි** අවස්ථාවක දී ය. ශූනා අනාවරක සංඥාවට අදාළ කාල අන්තරය t_0 වේ (රූපය බලන්න).
 - (i) t_0 හි අගය, බට්ටා IR කදම්බය හරහා ගමන් කරන වේගය v සහ බට්ටාගේ විෂ්කම්භය D මත රඳා පවතී. (1) v වැඩි කළ විට (2) D වැඩි කළ විට, t_0 හි අගයට කුමක් සිදු වේ ද?

(1) vට අදාළව :.....

(2) Dට අදාළ ව :.....

€,

	(ii)	v නිමානය කිරීම සඳහා පුකාශනයක් D සහ t_0 ඇසුරෙන් ලියා දක්වන්න.	මෙම තීරයේ නිසිවක් නො ලිං
	(iii)	ඉහත (3) රූපයේ දී ඇති පුස්තාරයට අනුව T හි අගය කුමක් ද?	
(d)	මාර්ලෙ	ාගේ උපරිම වේගය v_m නිර්ණය කිරීම සඳහා ශිෂායා විසින් අනාවරක පද්ධතිය බට්ටාගේ ගමන් ායේ වඩාත් ම සුදුසු ස්ථානයේ තබා (3) රූපයේ පෙන්වා ඇති පුස්තාරයට සමාන පුස්තාරයක් ලබා ාා ලදී.	 !
	(i)	ඉහත (1) රූප සටහනට අනුව, v_m නිර්ණය කිරීම සඳහා ශිෂායා අනාවරක පද්ධතිය කුමන ස්ථානයක $(A \ \mathrm{ent} \ B)$ තැබිය යුතු දැ'යි සඳහන් කරන්න. ඔබේ තේරීමට හේතුවක් දෙන්න.	
			į
	(ii)	මෙම පරීක්ෂණය සිදු කිරීම සඳහා $(4)(a)$ රූපයෙහි පෙන්වා ඇති සිලින්ඩරාකාර බට්ටා, $(4)(b)$ රූපයෙහි පෙන්වා ඇති ගෝලාකාර බට්ටාට වඩා සුදුසු බව ශිෂායා පවසයි. බට්ටන්ට එක ම D විෂ්කම්භයක් ඇත්නම්, ඔහුගේ පුකාශය සතාථ කිරීමට හේතුවක් දෙන්න. $(4)(a)$ රූපය $(4)(b)$ රූපය	
	(iii)	ඉහත සඳහන් කළ පුස්තාරය සහ (c) (ii) හි පුකාශනය භාවිත කර v_m හි අගය ගණනය කිරීමට ශිෂායා තී්රණය කළේ ය. ඔහුට මෙම කුමය මගින්, v_m සඳහා නිශ්චිත අගය ලබා ගත හැකි ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.	
(e)	v_m e	රෝධය නිසා ඇති වන බලය සැලකිය යුතු තරම් වූ අවස්ථාවක ශිෂායා, ඔහු ලබා ගත් උපරිම වේගය දෝලනයෙන් දෝලනයට සැලකිය යුතු ලෙස අඩු වී අවසානයේ බට්ටා නිශ්වල වන බව නිරීක්ෂණය ා ලදී.	
	(i)	මෙවැනි අවස්ථාවක් සඳහා, ඔබ බලාපොරොත්තු වන (t) සමග (I) පුස්තාරය, පහත දී ඇති රූපයේ T කාලයක් සඳහා සම්පූර්ණ කරන්න.	
		7 1	
		t = 0 t = T	
	(ii)	$t=0$ හි දී සහ $t=T$ හි දී බට්ටාගේ උපරිම වේගයන් පිළිවෙළින් $0.44~{\rm ms^{-1}}$ සහ $0.42~{\rm ms^{-1}}$ නම්, වාත රෝධය නිසා $t=0$ සිට $t=T$ කාලය තුළ අවලම්බයේ ශක්ති හානිය නිමානය කරන්න. බට්ටාගේ ස්කන්ධය $100~{\rm g}$ වේ.	
			\

2.

මෙව තීරයේ කිසිවක් නො ලියන්

වායුවක් සඳහා පීඩන නියමය සතහාපනය කිරීමට ඉහත රූපයේ පෙන්වා ඇති පරීක්ෂණ ඇටවුම භාවිත කරනු ලැබේ.

(a)	වායුවක් සඳහා පීඩන නියමය යෙදිය හැකි වන්නේ වායුවට අදාළ විචලා රාශි දෙකක් නියතව තබා ගන්නේ නම් පමණි, එම රාශි මොනවා ද?
	(i) (ii)
(b)	මෙම ඇටවුමේ XY කේශික නලය භාවිත කිරීමට හේතුව කුමක් ද?
(c)	මෙම පරීක්ෂණයේ දී ජල තාපකයේ උෂ්ණත්වය ඉහළ නැංවීම සෙමින් සිදු කිරීමට අවශා වන්නේ ඇයි දැ'යි පැහැදිලි කරන්න.
(<i>d</i>)	ජලයේ උෂ්ණත්වය කිසියම් අගයක පවත්වා ගත්ත ද බල්බය තුළ වායුවේ උෂ්ණත්වය එම අගයට ම පැමිණ ඇති බව ඉන් තේරුම් යන්නේ නැත. මෙම පරීක්ෂණයේ දී බල්බය තුළ වායුවේ උෂ්ණත්වය ජලයේ උෂ්ණත්වයට පැමිණ ඇති බව ඔබ තහවුරු කර ගන්නේ කෙසේ ද?
(e)	මෙම පරීක්ෂණයේ දී ජලයේ උෂ්ණත්වය මැනීමට පෙර එම උෂ්ණත්වය උචිත අගයක පවත්වා ගැනීම සඳහා භාවිත කරන පරීක්ෂණාත්මක කිුයා පිළිවෙළෙහි පුධාන පියවර දෙක ලියන්න.
	(i)
	(ii)
(f)	වායුවේ පීඩනය ලබා ගැනීම සඳහා අදාළ පාඨාංක ගැනීමට පෙර ඔබ විසින් අනුගමනය කරන පරීක්ෂණාත්මක කිුිිිියා පිළිවෙළෙහි පුධානතම පියවර ලියන්න.

(g) වායුගෝලීය පීඩනය රසදිය සෙන්ට්මීටර H ද A සහ B නලවල රසදිය මට්ටම් අතර උසෙහි වෙනස සෙන්ටිමීටර h ද නම්, පීඩන නියමය සතාාපනය කිරීම සඳහා ඔබ විසින් අදිනු ලබන පුස්තාරයේ දළ සටහනක්, දී ඇති රූප සටහනාහි අදින්න. අක්ෂ නිවැරදි ව නම් කරන්න.

මෙරි නිරයේ කිසිවක් නො ලියන්ස

(h) පහත දැක්වෙන පුස්තාරය, උෂ්ණත්වය $400~{
m K}$ හි දී පරිපූර්ණ වායුවක P පීඩනය, V පරිමාව සමග වීචලනය වීම පෙන්වයි.

(i) උෂ්ණක්වය $600~{
m K}$ හි දී වායුවේ $20\times 10^{-3}~{
m m}^3$ සහ $60\times 10^{-3}~{
m m}^3$ පරිමාවන්ට අනුරුප P_1 සහ P_2 පීඩන ගණනය කරන්න.

 P_1 P_2

- (ii) ඉහත (h) (i) හි ඔබ ලබා ගත් අගයන්ට අනුරූප ලක්ෂාා ඉහත (h) යටතේ දී ඇති පුස්තාරයේ ලකුණු කර, 600 K හි දී වායුවේ පරිමාව සමග පීඩනයේ වීචලනය පෙන්වීමට දළ වකුයක් එම පුස්තාරය මත ම අඳින්න.
- 3. ඔබට සම්පාත කුමය භාවිතයෙන් උත්තල කාචයක නාභීය දුර පරීක්ෂණාත්මකව නිර්ණය කිරීමට නියම ව ඇත. මෙම පරීක්ෂණය කිරීම සඳහා අවශා සියලු ම අයිතම ඔබට සපයා ඇති බව උපකල්පනය කරන්න.
 - (a) ඔබ විසින් මෙම පරීක්ෂණය කිරීම සඳහා අවශා සියලු ම අයිතම මේසය මත අටවන ආකාරය පෙන්වන රූප සටහනක් ඇඳ අයිතම නම් කරන්න. (අයිතම රඳවා ඇති ආධාරක පැහැදිලි ව ඇඳිය යුතු ය.)

More Past Papers at

tamilguru.lk

මේසය

	(b)	පරීක්ෂණය සඳහා අවශා අයිතම ඇටවීමට පෙර, දී ඇති එක්තරා අයිතමයකට අදාළ යම් දත්තයක් දැන	මෙම තීරයේ කිසිවක්
	(0)	තිබීම පහසු වේ. මෙම දත්තය කුමක් ද? මෙම දත්තය සඳහා දළ අගයක් ලබා ගැනීමට සරල කුමයක් විස්තර කරන්න.	නො ලියන්න
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	(a)	ඉහත (a) හි දැක්වූ ආකාරයට සියලු ම අයිතම අටවා පුතිබිම්බය දෙස බැලූ විට, පුතිබිම්බය සහ අන්වේෂණ	
	(6)	කුර එක ම සිරස් රේඛාවක නොමැති බව ඔබ විසින් නිරීක්ෂණය කරන ලදැ'යි සිතන්න. මෙය සිදු වූයේ ඇයි දැ'යි දැක්වීමට, එකක් කුරුවලට අදාළ ව ද අනෙක කාචයට අදාළ ව ද වශයෙන් හේතු දෙකක් දෙන්න.	
		(i) කුරු :	
		(ii) කාචය :	
	(d)	මෙම පරීක්ෂණයේ දී ඇස පුකාශ අක්ෂය හරහා දෙපසට ගෙන යාමේ දී පුතිබිම්බය ඇසෙහි චලිත දිශාවට විරුද්ධ දිශාවට ගමන් කරන බව ඔබ නිරීක්ෂණය කළේ යැ'යි සිතන්න. මෙම අවස්ථාවේ දී පුතිබිම්බය පිහිටන නිශ්චිත ස්ථානය සොයා ගැනීම සඳහා අන්වේෂණ කූර ගෙන යා යුත්තේ ඇස දෙසට ද නැතහොත් ඇසෙන් ඉවතට ද යන වග සඳහන් කරන්න.	
	(e)	වස්තු දුර, පුතිබිම්බ දුර සහ උත්තල කාචයෙහි නාභීය දුර පිළිවෙළින් u,v සහ f නම්, රේඛීය පුස්තාරයක් ඇඳීම මගින් කාචයෙහි නාභීය දුර නිර්ණය කිරීම සඳහා කාච සූතුය නැවත සකසන්න. ඔබ කාච සූතුය සඳහා භාවිත කළ ලකුණු සම්මුතිය සඳහන් කරන්න.	
	(f)	ඉහත (e) හි ලබා ගත් සමීකරණයෙහි ස්වායත්ත විචලාය දී ඇති රූප සටහනෙහි තිරස් අක්ෂයෙහි ද පරායත්ත විචලාය සිරස් අක්ෂයෙහි ද ලකුණු කරන්න.	WARRIAND AND THE STATE OF THE S
	(g)	බලාපොරොත්තු වන පුස්තාරයෙහි දළ සටහනක් එම රූප සටහනෙහි ම 0 අඳින්න. වස්තු දුර සහ පුතිබිම්බ දුර සඳහා ඔබ (e) හි භාවිත කළ ලකුණු සම්මුතියට අදාළ ලකුණු භාවිත කරන්න.	
, !	(a)	වී.ගා.බ. E_0 ($<$ E) වූ සම්මත කෝෂයක අභාගන්තර පුතිරෝධය r_0 නිර්ණය කිරීම සඳහා විදාහාගාරයේ භාවිත කරනු ලබන විභවමාන පරිපථයක අසම්පූර්ණ රූප සටහනක් (1) රූපයේ පෙන්වා ඇත. E	
		$ \begin{array}{c c} E_0, r_0 \\ \hline & P \\ \hline & P \end{array} $ $ Q $ $ A \qquad B \qquad (1) \text{ Gives} $	
		(1) 0(000)	
		(i) සම්මත පරිපථ සංකේත යොදා ගනිමින්, P සහ Q අතර පරිපථ කොටස සම්පූර්ණ කරන්න.	

(ii) R පුතිරෝධයක් ලබා ගැනීමට විදාහගාරයේ දී X සඳහා යොදා ගන්නා අයිතමය කුමක් ද?

(iii)	විභවමාන කම්බියේ සංතුලන දිග ℓ ද විභවමාන කම්බියේ ඒකක දිගකට විභව බැස්ම k ද නම්, $k\ell$ \sharp \mathfrak{g} ගුණිතය සඳහා පුකාශනයක් E_0, r_0 සහ R ඇසුරෙන් වහුත්පන්න කරන්න.
	феры
b) esBes	එයේ X අයිතමය, දිග ℓ_1 වූ නිකෝම් කම්බියක් මගින් පුතිස්ථාපනය කිරීමෙන් නිකෝම් කම්බියෙහි ඒකක ℓ_1
<i>0)</i> පිරප දිගක	ට පුතිරෝධය (m_0) නිර්ණය කිරීම සඳහා ඉහත ඇටවුම විකරණය කිරීමට ශිෂායෙක් තීරණය කළේ ය.
	මෙම අවස්ථාවේ දී විභවමාන කම්බියේ සංකුලන දිග ℓ_2 නම්, ඔබ (a) (iii) යටතේ දී ඇති පුකාශනය විකරණය කර $k\ell_2$ ගුණිතය සඳහා පුකාශනයක් $E_0,\ m_0,\ \ell_1$ සහ r_0 ඇසුරෙන් ලියන්න.
(ii)	$\frac{1}{\ell_1}$ ස්වායත්ත විචලාය ලෙස ගෙන, $\frac{1}{\ell_2}$ සහ $\frac{1}{\ell_1}$ අතර පුස්තාරයක් ඇඳීමට සුදුසු ආකාරයට ඔබ
	(b) (i) යටතේ දී ඇති පුකාශනය නැවත සකසන්න.
(iii)	ඉහත (b) (ii) හි සඳහන් කළ පුස්තාරයෙන් ලබා ගත් දත්ත සහ r_0 හි අගය භාවිතයෙන් ඔබ m_0 නිර්ණය කරන්නේ කෙසේ ද?
(iv)	ශිෂායාට ලබා දී ඇති නිකෝම් කම්බියෙහි විෂ්කම්භය $1.6 \times 10^{-4}\mathrm{m}$ නම්, $50~\Omega$ පුතිරෝධයක් ලබා ගැනීම සඳහා අවශා කම්බියෙහි දිග ගණනය කරන්න. නිකෝම්හි පුතිරෝධකතාව $10^{-6}~\Omega~\mathrm{m}$ වේ $(\pi\mathrm{fb}$ අගය 3 ලෙස ගන්න).
()	පුතිරෝධය $50~\Omega$ වූ නිකෝම් කම්බිය, මීටර කෝදුවක් මත සවිකර ඇත. ඉහත (b) (ii) හි සඳහන්
(v)	කළ පුස්තාරය භාවිතයෙන් m_0 නිර්ණය කිරීම සඳහා විභවමානයෙන් මිනුම් කට්ටලයක් ලබා ගැනීමට
	ඔබට පවසා ඇත. තිකෝම් කම්බියේ ආසන්න වශයෙන් $25~\Omega$ ට අනුරුප දිගක් සඳහා අදාළ මිනුම
	ලබා ගැනීමට ඔබ නිකෝම් කම්බිය විභවමාන පරිපථයට සම්බන්ධ කරන්නේ කෙසේ දැ'යි පහත (2) රූපයේ දී ඇති පරිපථය සම්පූර්ණ කිරීම මගින් පෙන්වන්න.
	E
	E_0, r_0
	V
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

සියලු ම හිමිකම් ඇව්ටිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற General Certificate of Education (Adv. Level) Examination, August 2015

<mark>ගෞතික විදනාව II</mark> பௌதிகவியல் II Physics II

L()

 ∞

(()

O1SII

B කොටස _ රචනා

පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න.

 $(g = 10 \,\mathrm{N \, kg^{-1}})$

5. (a) හරස්කඩ වර්ගඵලය A වූ සිරස් පැතලි තහඩුවක් රූපයේ පෙන්වා ඇති ආකාරයට නිශ්චල වාතය තුළ v නියත වේගයෙන් ගමන් කරයි. තහඩුව සහ වාත අණු අතර සාපේක්ෂ චලිතය සලකන්න. මෙම තත්ත්වය යටතේ, වාත අණු තහඩුවේ පෘෂ්ඨය හා ලම්බකව ගැටෙන බව සහ ගැටීමෙන් පසු තහඩුවට සාපේක්ෂව එම v වේගයෙන් ම පුතිවිරුද්ධ දිශාවට පොලා පනින බව උපකල්පනය නෙරන්න.

- (i) *m* යනු වාත අණුවක ස්කන්ධය නම්, අණුවේ ගමාතාවයේ වෙනස් වීම සඳහා පුකාශනයක් ලියන්න.
- (ii) ඒකක කාලයක දී තහඩුව සමග ගැටෙන වාත අණු සංඛාාව සලකමින් හෝ වෙනත් කුමයකින්, තහඩුව මත වාතය මගින් ඇති කරනු ලබන F බලයෙහි විශාලත්වය $F=2Adv^2$ මගින් දිය හැකි බව පෙන්වන්න. මෙහි d යනු වාතයේ ඝනත්වයයි. **මෙම බලය රෝධකු බලය ලෙස හඳුන්වනු ලැබේ**.
- (b) තරලයක් තුළින් ගමන් කරන වස්තුවක් මත රෝධක බලය (F_D) වස්තුවේ හැඩය මත රඳා පවතී. F_D සඳහා වඩා නිරවදා පුකාශනයක්, $F_D=KAdv^2$ ලෙස දිය හැකි අතර මෙහි K, වස්තුවේ හැඩය මත රඳා පවතින නියතයකි. රථවාහනවල බාහිර හැඩය නිර්මාණය කිරීමේ දී රෝධක බලය වැදගත් කාර්යභාරයක් ඉටු කරයි. සමකල මාර්ගයක v නියත වේගයකින් නිශ්චල වාතයේ ගමන් කරන මෝටර් රථයක් සලකන්න. $d=1.3~{
 m kg~m}^{-3}$ සහ මෝටර් රථය සඳහා $K=0.20~{
 m kg}$ හා $A=2.0~{
 m m}^2$ ලෙස ගන්න.
 - (i) F_D රෝධක බලය මැඩ පැවැත්වීමට අවශා ජවය (P) සඳහා පුකාශනයක් ලියන්න.
 - (ii) මෝටර් රථය $90~{
 m km}~{
 m h}^{-1}$ (= $25~{
 m m}~{
 m s}^{-1}$) වේගයෙන් ගමන් කරන විට P ජවය ගණනය කරන්න.
 - (iii) මෝටර් රථය මත කිුිිියා කරන අනෙකුත් බාහිර සර්ෂණ බල මැඩ පැවැත්වීමට අවශා ජවය **නියත** වන අතර එය 6~kW නම්, $90~km~h^{-1}$ ක නියත වේගයක් පවත්වා ගැනීමට මෝටර් රථයේ එළවුම් රෝද මගින් සැපයිය යුතු මුළු ජවය කොපමණ ද?
 - (iv) මෝටර් රථයේ වේගය $90~{\rm km}~{\rm h}^{-1}$ සිට $126~{\rm km}~{\rm h}^{-1}~(=35~{\rm m}~{\rm s}^{-1})$ දක්වා වැඩි කළේ නම්, මෝටර් රථයේ වේගය එම අගයෙහි පවත්වා ගැනීමට අවශs **අමකර ජවය** ගණනය කරන්න.
 - (v) මෝටර් රථය $90~{\rm km}~{\rm h}^{-1}$ නියත වේගයකින් 3° ක ආනතියක් සහිත මාර්ගයක් ඔස්සේ නගියි නම්, එළවුම් රෝද මගින් සැපයිය යුතු **අමතර ජවග** ගණනය කරන්න. මෝටර් රථයේ ස්කන්ධය $1~200~{\rm kg}$ ලෙස සලකන්න. $(\sin 3^{\circ} = 0.05~{\rm e}$ ලස ගන්න)
- (c) ඉහත (b)(iii) හි විස්තර කර ඇති පරිදි සමතල මාර්ගයක ගමන් කරන මෝටර් රථයක් සලකන්න. පෙට්රල් ලීටරයක් දහනය කිරීමෙන් පිට කරන ශක්තිය $4 \times 10^7 \, \mathrm{J}$ බව ද මෙම ශක්තියෙන් 15% ක් පමණක් රෝද කරකැවීමට භාවිත කරන බව ද සලකන්න. පහත තත්ත්වයන් යටතේ මෙම මෝටර් රථයේ ඉන්ධන කාර්යක්ෂමතාව ලීටරයට කිලෝමීටරවලින් ගණනය කරන්න.
 - (i) එය නිශ්චල වාතයේ ගමන් කරන විට
 - (ii) එය $36~{
 m km}~{
 m h}^{-1}~(=10~{
 m m~s}^{-1})$ නියත වේගයෙන් හමන සුළඟකට පුතිවිරුද්ධ දිශාවට ගමන් කරන විට
- $m{6}$. පහත දී ඇති ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

භූ කම්පත, පෘථිවිය මත ඇති වන පුබල ස්වාභාවික සංසිද්ධීන් අතුරින් එකකි. පෘථිවියේ අභාගන්තර වනුහය, ලොව වටා සිදු වන පුධාන භූ කම්පන කි්යාකාරකම් තේරුම් ගැනීමට අවශා එක් වැදගත් පරාමිතියකි. පෘථිවියට ඒක කේන්දික පුධාන කබොළ කොටස් තුනක් ඇති බව සැලකිය හැකි අතර, ඒවා නම් වශයෙන් කබොළ, මැන්ටලය සහ මධාය චේ[(1) රූපය බලන්න]. ශිලාගෝලය සහ අධෝගෝලය පෘථිවියේ බාහිර ස්ථර දෙක වේ. ශිලාගෝලය, භූ චලන තල ලෙස හඳුන්වන මැන්වල පුධාන දෘඪ ශිලාගෝලීය තල 10 කින් සමන්විත වන අතර, ඒවා අධෝගෝලය මත පාවෙමින් පවතින්නේ යැ'යි සැලකිය හැකි ය.

භූ චලන තල

 ශක්තිය නිදහස් වූ ලක්ෂායේ සිට සෑම දිශාවකට ම මෙම භූ කම්පන තරංග ගමන් කරන අතර එම ලක්ෂාය භූ කම්පනයේ නාභිය ලෙස හැඳින්වේ. නාභියට කෙළින් ම ඉහළින් පෘථිවි පෘෂ්ඨය මත වූ අනුරූප ලක්ෂාය භූ කම්පනයේ අපිකේන්දුය ලෙස හැඳින්වේ.

පෘථිවි කබොළ පුගමන තරංගවල පුචාරණයට ආධාර කරයි. පෘථිවි කබොළ තුළින් ගමන් කරන තරංග අභාන්තර තරංග ලෙස හැඳින්වෙන අතර පෘෂ්ඨය මත ගමන් කරන තරංග පෘෂ්ඨය තරංග ලෙස හැඳින්වෙ. අභාන්තර තරංග P (පුාථමික) තරංග සහ S (ද්විතීයික) තරංග වලින් සමන්වික වේ. P තරංග අන්වායම වන අතර S තරංග තීර්යක් වේ. ඕනෑම ඝන හෝ තරල දවායෙක් සම්පීඩනයට ලක් කළ හැකි නිසා P තරංගවලට ඕනෑම වර්ගයේ දවායෙක් තුළින් ගමන් කළ හැකි ය. නමුත්, විරූපණ බලය මත රඳා පවතින S තරංග තරලයක් තුළ නොපවතී. භූ කම්පනයක සිට විශාල දුරවල් හි දී S තරංග නොතිබීම පෘථිවිය තුළ දුව පුදේශයක් ද පවතින බවට වූ මුල් ම ඇඟවීමයි. දෙන ලද ස්ථානයකට, භූ කම්පනයක P තරංග, S සහ පෘෂ්ඨය තරංගවලට පෙර පැමිණේ.

භූ කම්පන දත්ත සටහන් කිරීමේ මධාසේථාන විශාල සංඛාාවක් ලොව පුරා ඇත. එවැනි මධාස්ථානයක සිට අපිකේන්දුයට දූර d සෙවීම පිණිස කෙනෙකු P සහ S තරංග, මධාස්ථානය වෙත පැමිණීමේ ඓලාවන්හි වෙනස Δt මැනිය යුතු ය.

[(2) රූපය බලන්න].
$$d$$
 දුර, $d=\left[\frac{\upsilon_p \upsilon_{\varsigma}}{\upsilon_p-\upsilon_{\varsigma}}\right]\!\Delta t$ මහින් ලබා දෙන අතර මෙහි υ_p

සහ $v_{\rm S}$ යනු පිළිවෙළින් P සහ S තරංගවල වේගයන් ය. මධාස්ථාන අවම වශයෙන් තුනකින්වත් ලබා ගත් d අගයයන් භාවිතයෙන් අපිකේන්දුයේ පිහිටීම සොයා ගත හැකි ය. මනින ලද දුරවල්වලට (d අගයයන්) අනුරූප අරයයන් සහිත වෘත්ත තුනක් ඇඳීමෙන් සහ වෘත්තවල පොදු ඡේදන ලක්ෂාය භාවිත කිරීමෙන් (තිුකෝණිකරණය) කෙනෙකුට අපිකේන්දුයේ පිහිටීම සොයා ගත හැකි ය.

රීච්ටර් පරිමාණය භූ කම්පනයක පුබලතාවය නිමානය කිරීමට භාවිත කරන වඩාත් පිළිගත් කුමචේදය වේ. මධාස්ථානයේ සිට අපිකේන්දුයට ඇති දූර d සහ මධාස්ථානයේ සටහන් වී ඇති භූ කම්පන තරංගවල **උපරිම** විස්තාරය A_m භාවිතයෙන් භූ කම්පනයේ M රිච්ටර් පරිමාණ විශාලත්වය නිමානය කිරීම සඳහා (3) රූපයේ පෙන්වා ඇති සරල විධිලේඛය යොදා ගත හැකි ය. භූ කම්පනයක M විශාලත්වය, $\log_{10}E = 4.4 + 1.5M$ යන සමීකරණය මගින්. පිට කළ E ශක්තියට (ජූල් වලින්) සම්බන්ධ වේ.

- (b) භූ චලන තල අඛණ්ඩව චලිත වන්නේ ඇයි දැ'යි පැහැදිලි කරන්න.
- (c) භු කම්පනයක නාහිය සහ අපිකේන්දුය අතර සම්බන්ධය කුමක් ද?

- (e) තරංග පුචාරණ දිශාව සහ මාධාායේ අංශුවල කම්පත දිශාව ඊතල මගින් දක්වමින් P සහ S තරංග පුචාරණය වෙන් වෙන් රූප සටහන් **දෙකක** අදින්න. ඒවා පැහැදිලි ව නම් කරන්න.
- (ƒ) පෘථිවි අභාන්තර වාුහය තුළ දුව පුදේශයක් ඇති බව ඇඟවූ මුල් ම පරීක්ෂණාත්මක නිරීක්ෂණය කුමක් ද?
- (g) භූ කම්පන විදාහවේ දී භාවිත කරන තිුකෝණිකරණ කුමය සුදුසු රූප සටහනක් මගින් විදහා දක්වන්න. අපිකේන්දයේ පිහිටීම O ලක්ෂාය ලෙස ද අනුරූප මධාාස්ථානවල පිහිටීම් S_1 , S_2 සහ S_3 ලෙස ද පැහැදිලි ව ඔබේ රූප සටහනේ ලකුණු කරන්න.
- (h) ඉහත (2) රූපයේ පුස්තාරය මෑතක දී නේපාලයේ සිදු වූ භූ කම්පනයට අදාළ ව එක්කරා මධාස්ථානයක් මගින් ලබා ගත් භූ කම්පන සටහනක් නම්, මෙම මධාස්ථානය සඳහා Δt හි අගය තත්පරවලින් සොයා, d හි අගය කිලෝමීටරවලින් ගණනය කරන්න. $v_P=5~{\rm km\,s^{-1}}$ සහ $v_S=4~{\rm km\,s^{-1}}$ ලෙස ගන්න.
- (i) ඉහත (3) රූපයේ ඇති විධිලේඛය භාවිත කර, ඉහත (h) හි සඳහන් කළ භූ කම්පනයේ M රිච්ටර් පරිමාණ විශාලත්වය නිමානය කරන්න.

ඉගිය: d සහ A_m අගයයන් නිවැරදි අක්ෂ මත ලකුණු කරන්න. ලක්ෂා දෙක (d සහ A_m) යා කරන රේඛාව ඇඳ M අක්ෂය ඡේදනය වන ලක්ෂායේ අගය කියවන්න. විධිලේඛය ඔබගේ උත්තර පතුයට පිටපත් කිරීම **අවශන** නොවේ.

- (J) නේපාලයේ සිදු වූ භූ කම්පනය මගින් පිට කළ E_N සම්පූර්ණ ශක්තිය ජූල් වලින් ගණනය කරන්න.
- (k) 2004 දී සුමාතුාවල සිදු වූ භූ කම්පනය සඳහා M=9.1 සහ පිට කළ සම්පූර්ණ ශක්තිය E_{ς} නම්, $\frac{E_{\varsigma}}{E_{N}}$ අනුපාතය ගණනය කරන්න. $10^{1.8}=63$ ලෙස ගන්න.

7. (a) මිනිස් සිරුරේ අස්ථියක දිග එහි පළලට වඩා වැඩි නම්, එය 'දිගු අස්ථියක්' ලෙස වර්ගීකරණය කරනු ලැබේ.

එක්තරා 'දිගු අස්ථියක්' සඳහා $\left(\frac{F}{A}\right)$ ආතනා පුතාාබලය $-\left(\frac{\Delta \ell}{\ell}\right)$ විකිුයාව වකුය (1) රුපයේ පෙන්වා ඇත. මෙහි සියලු ම සංකේත සඳහා ඒවායේ සුපුරුදු තේරුම ඇත.

(i) පෙන්වා ඇති (1) රූපයේ වකුය මත සලකුණු කොට ඇති P සහ Q ලක්ෂා හඳුන්වන්න.

- (ii) 'දිගු අස්ථිය', හරස්කඩ වර්ගඵලය $3 \times 10^{-4} \, \mathrm{m}^2$ වූ ඒකාකාර දණ්ඩක් ලෙස උපකල්පනය කරන්න. $4.5 \times 10^3 \, \mathrm{N}$ විශාලත්වයකින් යුත් ආතනා බලයක් යෙදුවේ නම්, අස්ථිය මත ආතනා පුතාාබලය ගණනය කරන්න.
- (iii) 'දිගු අස්ථියෙහි' යං මාපාංකය $1.5 \times 10^{10} \, \mathrm{N \ m^{-2}}$ නම්, අස්ථියෙහි ආතනා විකිුයාව ගණනය කරන්න.
- (iv) 'දිගු අස්ථියෙහි' මුල් දිග 25 cm ක් වූයේ නම්, ආකතා බලය යෙදූ විට එහි දිග කොපමණ ද?
- (b) මිනිස් සිරුරේ ඇති දිගු අස්ථීවලින් එකක් වන කළවා අස්ථියෙහි ආතතිය සහ සම්පීඩනය යටතේ ලබා ගත් පුතානස්ථතා ලාක්ෂණික පහත වගුවේ පෙන්වයි.

පුතනස්ථතා ලාක්ෂණික	ආතනස අගය	සම්පීඩක අගය	
යං මාපාංකය	$1.60 \times 10^{10} \text{ N m}^{-2}$	$1.00 \times 10^{10} \text{ N m}^{-2}$	
හේදක ලක්ෂාායට අනුරූප පුතාාාබලය	$1.20 \times 10^8 \text{ N m}^{-2}$	$1.65 \times 10^8 \text{ N m}^{-2}$	
භේදක ලක්ෂායට අනුරූප විකිුයාව	1.50×10^{-2}	1.75×10^{-2}	

- (i) කළවා අස්ථියක් සඳහා ඉහත වගුවේ දී ඇති අගයයන් භාවිත කරමින්, එක ම ප්‍රත්‍යාබල සඳහා සම්පීඩක විකි්යාව, අාතනා විකි්යාව මෙන් 1.6 බව පෙන්වන්න.
- (ii) කළවා අස්ථිය බිඳීමට වඩාත් ම නැඹුරු වන්නේ කුමන (ආතති හෝ සම්පීඩන) තත්ත්වය යටතේ ද? ඔබේ පිළිතුර සාධාරණීකරණය කිරීමට ඉහත වගුවේ දී ඇති අගයයන් භාවිත කරන්න.
- (c) පුද්ගලයෙක් එක් පාදයක් මත සිටගෙන සිටිත විට පුද්ගලයාගේ සම්පූර්ණ බර, පාදය මත සම්පීඩක එලයක් ඇති කරයි. ඇවිදිමින් සිටින පුද්ගලයකුගේ 75 kg ක සම්පූර්ණ ශරීර ස්කන්ධය එක් කළවා අස්ථියක් මගින් දරා සිටින අවස්ථාවක් සලකන්න. කළවා අස්ථිය අභාගන්තර කුහරයකින් යුත් ඝන බිත්ති සහිත ඒකාකාර හරස්කඩක් ඇති සිලින්ඩරයක් ලෙස සලකන්න. එහි බාහිර සහ අභාගන්තර අරයයන් පිළිවෙළින් 1.5 cm සහ 0.5 cm වේ. පහත ගණනය කිරීම් සඳහා ඉහත වගුවේ දී ඇති අගයයන් භාවිත කරන්න.
 - (i) මෙම පුද්ගලයා එක් පාදයක් මත සිටගෙන සිටින විට ඔහුගේ කළවා අස්ථියට යෙදෙන සම්පීඩක පුතාහබලය සොයන්න. (π හි අගය 3 ලෙස ගන්න)
 - (ii) ඉහත (c)(i) අවස්ථාවට අනුරූප විකිුයාව සොයන්න.
 - (iii) මනුෂායෙකුට සාමානා තත්ත්ව යටතේ අපහසුවකින් තොරව එක් පාදයකින් සිටගැනීමට නම්, කළවා අස්ථිය මත විකියාව ඉහත වගුවේ දක්වා ඇති විකියාවේ අගයෙන් 1%ට වඩා අඩු විය යුතු ය. එනයින්, ඉහත සඳහන් කළ පුද්ගලයා එක් පාදයක් මත සිටගෙන සිටින විට ඔහුට අපහසුවක් නොදැනෙන බව පෙන්වන්න.
 - (iv) සාමානය පුද්ගලයකු හා සංසන්දනය කළ විට, සියලු ම අස්ථි ද සමග ශරීරයේ සියලු ම මාන දෙගුණ වූ පුද්ගලයකු සලකන්න. එවැනි පුද්ගලයකුගේ ස්කන්ධය 600 kg ලෙස සලකමු. පුමාණයෙන් විශාල වූ පුද්ගලයා දැන් එක් පාදයක් මත සිටගෙන සිටී නම්, ඔහුට අපහසුවක් දැනේ ද? ඔබේ පිළිතුර සාධාරණීකරණය කරන්න. මෙම අවස්ථාව සඳහා ඉහත වගුවේ දී ඇති පුතයාස්ථතා ලාක්ෂණික නොවෙනස් ව පවතින බව උපකල්පනය කරන්න.
- 8. (a) අරය a වූ සෘජු දිග සිහින් සිලින්ඩරාකාර සන්නායක A කම්බියක ඒකක දිගකට $+\lambda$ ආරෝපණයක් ඇත. කම්බිය පොළොවට සාපේක්ෂව ධන විභවයකට සම්බන්ධ කිරීමෙන් මෙය පුායෝගිකව සිදු කළ හැකි ය.
 - (i) කම්බියට දී ඇති ආරෝපණය භෞතිකව පවතින්නේ කුමන තැනක ද?
 - (ii) කම්බිය වටා යෝගා ගවුසීය පෘෂ්ඨයක් සලකමින්, කම්බියේ අක්ෂයෙහි සිට $r(\geq a)$ දුරක දී E විදාුුුත් ක්ෂේතුයේ තීවුතාවයෙහි විශාලත්වය $E=rac{\lambda}{2\pi arepsilon_0 r}$, මගින් දෙන බව පෙන්වන්න. මෙහි $arepsilon_0$ යනු, නිදහස් අවකාශයෙහි පාරවේදානාව වේ.
 - (iii) කම්බියෙහි හරස්කඩක් ඇඳ, එය වටා සමවිභව රේඛා අඳින්න.
 - (iv) $a=10~\mu m$ සහ $\lambda=8.1\times 10^{-8}~C~m^{-1}$ නම් කම්බියෙහි පෘෂ්ඨය මත විදාපුත් ක්ෂේතු තීවුතාවයෙහි විශාලත්වය ගණනය කරන්න. (ε_0 හි අගය $9\times 10^{-12}~F~m^{-1}$ හා π හි අගය 3 ලෙස ගන්න)
 - (v) දැන් මෙම A කම්බිය, කඩදාසි තලයට ලම්බක වූ ද සමතල වූ ද සමවිතව පෘෂ්ඨ සහිත වූ ඒකාකාර විදයුත් ක්ෂේතුයක් ඇති පුදේශයක් ආසන්නයට ගෙන එනු ලැබේ. කම්බියේ අක්ෂය ද කඩදාසියේ තලයට ලම්බක වේ. රූපයේ පෙන්වා ඇති a,b,c,d,e සහ f කඩ ඉරි මගින් නිරූපණය කරනු ලබන්නේ, ඉහත සඳහන් කළ සමවිතව පෘෂ්ඨවල හරස්කඩ කඩදාසියේ තලය මත පෙනෙන ආකාරයයි. මෙම කඩ ඉරි මගින් විදයුත් ක්ෂේතුයට අනුරූප

සමවිභව රේඛා නිරූපණය කරනු ලබන අතර, සමවිභව රේඛාවලට අදාළ විභවයන් ද (kV) වලින්), රූපයේ පෙන්වා ඇත. ඕනෑම සමවිභව රේඛා දෙකක් අතර පරතරය 2 mm වේ. මෙම සැකසුමේ A කම්බිය පොළොවට සාපේක්ෂව ධන විභවයකට සම්බන්ධ කර ඇති අතර එය ඇනෝඩයක් ලෙස සැලකිය හැකි ය.

(1) ඇනෝඩය සහ සමවිභව රේඛා ඔබගේ උත්තර පතුයට පිටපත් කර ගෙන, තිත් මගින් *e* සමවිභව රේඛාව මත සලකුණ කර ඇති ස්ථානවල පිට 4 ආකෝඩ කුම්බිය ස

සලකුණු කර ඇති ස්ථානවල සිට A ඇනෝඩ කම්බිය දක්වා විදයුත් බල රේඛා අඳින්න. (2) සමවිභව රේඛා දෙකක් අතර $E_{
m h}$ විදයුත් ක්ෂේතු තීවුතාව ගණනය කරන්න.

(b) අධි ශක්ති අංශු සහ ෆෝටෝන අනාවරණය කිරීම සඳහා යොදා ගන්නා සැකැස්මක කොටසක් ඉහත (a)(v) කොටසෙහි විස්තර කරන ලද සැකැස්මට සමාන වේ. A ඇතෝඩයෙහි ඒකක දිගකට $+\lambda=8.1\times10^{-8}\,\mathrm{C\,m^{-1}}$ ආරෝපණයක් සහිත වූ එවැනි සැකැස්මක්, නිෂ්කිය වායුවකින් (ආගන්) පිරවූ වායුගෝල පීඩනයෙහි පවතින කුටීරයක ස්ථාපිත කර ඇති බව සිතන්න.

කිසියම් ෆෝටෝනයක් කුටීරයට ඇතුළු වී X හි දී ආගන් පරමාණුවක් සමග ගැටී පුකාශ ඉලෙක්ටුෝනයක් සහ ආගන් අයනයක් ඇති කරන අවස්ථාවක් සලකන්න. මෙවැනි ඉලෙක්ටුෝනයක් පුාථමික ඉලෙක්ටුෝනයක් ලෙස හැඳින්වේ. ආගන් වායුව තුළ එවැනි ඉලෙක්ටුෝන-අයන යුගලයක් නිපදවීමට අවශා ශක්තිය $30~{
m eV}$ වේ.

($1~{
m eV} = 1.6 \times 10^{-19} \, {
m J}$, ඉලෙක්ටුෝනයක ආරෝපණය $e = 1.6 \times 10^{-19} \, {
m C}$)

(i) ඉහත (a)(v)(1) හි සඳහන් කළ විදයුත් ක්ෂේතුය නිසා පුාථමික පුකාශ ඉලෙක්ටුෝනයට ලැබෙන ආරම්භක ත්වරණයේ විශාලත්වය සඳහා පුකාශනයක් m,e හා E_0 ඇසුරෙන් ලියන්න. මෙහි m හා e යනු පිළිවෙළින් ඉලෙක්ටුෝනයක ස්කන්ධය හා ආරෝපණය වේ.

(ii) ඉලෙක්ටුෝනය සන්තතිකව ත්වරණය නොවී, A ඇනෝඩය දෙසට v_d ප්ලාවිත පුවේගයකින් ගමන් කරන්නේ ඇයි දැ`යි පැහැදිලි කරන්න.

- (iii) පුාථමික ඉලෙක්ටෝනය නිශ්චලතාවයේ සිට ගමන් අරඹා ඉහත (a)(v)(1) හි සඳහන් කළ විදුසුත් ක්ෂේතුය ඔස්සේ ගමන් කරන්නේ යැ'යි සිතමු. ආගන් පරමාණු සමග සිදු වන අනුයාත ගැටුම් දෙකක් අතර පුාථමික ඉලෙක්ටෝනය ගමන් කරන මධ්‍යන්‍ය දුර 0.5 μm නම්, ගැටුම් දෙකක් අතර විදුසුත් ක්ෂේතුය නිසා පාථමික ඉලෙක්ටෝනයෙහි චාලක ශක්තියේ වැඩි වීම eV වලින් ගණනය කර, මෙම ශක්තිය සහිත පාථමික ඉලෙක්ටෝනයට තවත් ආගන් පරමාණුවක ගැටීමෙන් තවත් ඉලෙක්ටෝනයක් ඉවත් කිරීමට නොහැකි බව පෙන්වන්න. (ආගන් පරමාණුවකින් ඉලෙක්ටෝනයක් ඉවත් කිරීම සඳහා ඉලෙක්ටෝනයකට අවශා ශක්තිය 30 eV ලෙස සලකන්න.)
- (iv) මෙම ප්‍රාථමික ඉලෙක්ට්රෝනය ඇනෝඩයට ආසන්න වූ විට එය ඉහත (a) (ii) හි සඳහන් කරන ලද ප්‍රකාශනයෙන් දෙනු ලබන අධි විදයුත් ක්ෂේත්‍රයක බලපෑමට හසු වේ. මෙම තත්ත්ව යටතේ දී ප්‍රාථමික ඉලෙක්ට්රෝනය ගැටුම් අතරතුර ඉලෙක්ට්රෝන-අයන යුගල ඇති කිරීමට තරම් ප්‍රමාණවත් ශක්තියක් ලබා ගන්නා අතර මෙලෙස නිපදවෙන ද්විතීයික ඉලෙක්ට්රෝන ඉනික්බිතිව ඇනෝඩයෙහි එකතු වීමට පෙර තවත් ඉලෙක්ට්රෝන-අයන යුගල නිපදවයි. මේ ආකාරයට ප්‍රාථමික ඉලෙක්ට්රෝනයක් මගින් නිපදවන සම්පූර්ණ ද්විතීයික ඉලෙක්ට්රෝන සංඛාභව වායුව සඳහා වර්ධක සාඛකය ලෙස හඳින්වේ. ඇනෝඩ කම්බිය මගින් ආරෝපණ එක්රැස් කිරීමේ හැකියාව එයට ධාරිතාවයේ ගුණ ඇති බව පෙන්නුම් කරයි. මෙම ධාරිතාව අනාවරකයේ ධාරිතාව ලෙස හඳුන්වයි. ඇනෝඩය මගින් ආරෝපණ එක්රැස් කළ විට මෙම ධාරිතුකය හරහා කුඩා චෝල්ට්යතාවක් උත්පාදනය වේ. අනාවරකයේ ධාරිතාව 5 pF සහ ප්‍රාථමික ඉලෙක්ට්රානය මගින් ඇති වූ ද්විතීයික ඉලෙක්ට්රාන නිසා ධාරිතුකය හරහා උත්පාදනය වූ වෝල්ට්යතාව 0.96 mV නම්, ඇනෝඩය මගින් එක්රැස් කළ ආරෝපණය සොයන්න.
- (v) එනයින්, වායුව සඳහා වර්ධක සාධකය මසායන්න.

9.~~(A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

 $({f A})~(a)~(1)$ රූපයෙහි පෙන්වා ඇති පරිපථයේ ${f X}$ යනු වී.ගා.බ. ${f E}$ සහ අභාන්තර පුතිරෝධය ${f r}$ වූ ඇකියුම්ලේටරයකි.

L යනු AB හරහා සම්බන්ධ කර ඇති විදුලි පහනක් වන අතර, පහන හරහා ධාරාව I වේ. χ -

(i) විදුලි පහන මගින් පරිභෝජනය කරනු ලබන P ක්ෂමතාව, $P = EI - I^2 r$ ලෙස දිය හැකි බව පෙන්වන්න.

(ii) E සහ I සඳහා අර්ථ දැක්වීම් භාවිත කර, EI ගුණිකය ඇකියුම්ලේටරය මගින් උත්පාදනය කරනු ලබන ක්ෂමතාවට සමාන වන්නේ ඇයි දැ'යි පැහැදිලි කරන්න.

(iii) පෙන්වා ඇති (2) රූපයේ පරිදි, දැන් (1) රූපයේ ඇති විදුලි පහන වී. ගා. බ. E_1 සහ අභාන්තර පුතිරෝධය r_1 වූ වෙනත් ඇකියුම්ලේටරයකින් පුතිස්ථාපනය කරනු ලැබේ. $E > E_1$ වන අතර පරිපථයේ ධාරාව දැන් I_1 වේ.

(1) $EI_1 - I_1^2 r = E_1 I_1 + I_1^2 r_1$ බව පෙන්වන්න.

(b) ඉහත (2) රූපයේ දී ඇති පරිපථයට සමාන පරිපථයක්, නැවත ආරෝපණය කළ හැකි විසර්ජනය වූ බැටරියක් නැවත ආරෝපණය කිරීම සඳහා භාවිත කළ හැකි ය. මෙම සංදර්භයේ X යනු නියත ක්ෂමතා පුතිදානයක් ලබා දිය හැකි පුභවයක් වන අතර, එය බැටරි ආරෝපකය ලෙස හඳුන්වයි. Y මගින් විසර්ජනය වූ බැටරිය නිරූපණය වේ.

(3) රූපයේ දක්වා ඇති එවැනි පරිපථයක් සලකන්න. X යනු 12~V බැටරි අාරෝපකයකි. ගණනය කිරීම් සඳහා එය වී.ගා.බ. 12~V වූ ද අභාන්තර පුතිරෝධය $r=2~\Omega$ වූ ද නියත ක්ෂමතා පුභවයක් ලෙස සලකන්න. L යනු බැටරි ආරෝපකය හරහා සම්බන්ධ කර ඇති පුතිරෝධය $r_L=2~\Omega$ වූ දර්ශක පහනකි. අාරෝපණ කියාවලියේ **එක්තරා මොහොතක** දී Y බැටරියේ වී. ගා. බ. සහ එහි අභාන්තර පුතිරෝධය E_2 සහ r_2 මගින්

(1) රූපය

(i) එම මොහොතේ දී Yබැටරියේ \widetilde{E}_{γ} ව්.ගා.බ. ගණනය කරන්න.

නිරූපණය කරයි. එම මොහොතේ $r_{\gamma}=1~\Omega$ සහ Yහරහා ධාරාව $1~\mathrm{A}$ නම්,

(ii) එම මොහොතේ දී බැටරි ආරෝපක්ය මගින් උත්පාදනය කරනු ලබන ක්ෂමතාව ද r , r_2 සහ r_1 මගින් උත්සර්ජනය කරනු ලබන ක්ෂමතාව ද ගණනය කරන්න.

(iii) එම මොහොතේ දී ආරෝපණ කිුයාවලිය සඳහා ශක්ති සංස්ථිති මූලධර්මය යොදාගතිමිත්, බැටරි ආරෝපකය මගින් උත්පාදනය කළ අමතර ක්ෂමතාවයට සිදු වූයේ කුමක් දැ'යි පැහැදිලි කරන්න.

- (B) (a) වෝල්ටීයතා අක්ෂය මත $0.7\,\mathrm{V}$ ඉදිරි නැඹුරු වෝල්ටීයතාවය දක්වමින්, සිලිකන් දියෝඩයක් සඳහා ධාරාව (I) -වෝල්ටීයතාව (V) ලාක්ෂණිකය අඳින්න.
 - (b) ඔබ විසින් (a) යටතේ අදින ලද ලාක්ෂණිකය වෙනුවට (1) රූපයේ දී ඇති කල්පිත දියෝඩ ලාක්ෂණිකය ද සිලිකන් දියෝඩ සහිත පරිපථ විශ්ලේෂණය සහ නිර්මාණය කිරීම සඳහා බොහෝ විට භාවිත කෙරේ. (1) රූපයට අනුව වෝල්ටීයතාව 0.7 V වන තුරු දියෝඩය හරහා ධාරාව ශූනා වන අතර, එම වෝල්ටීයතාවයේ දී ධාරාව I අක්ෂයට සමාන්තරව තියුණු ලෙස වැඩි වේ.

- (1) රූපයේ දී ඇති I-V ලාක්ෂණිකය භාවිත කර, (2) රූපයේ පෙන්වා ඇති පරිපථයේ I ධාරාව ගණනය කරන්න. ඉහත (1) රූපයේ දී ඇති ලාක්ෂණිකය පහත සඳහන් සෑම පුශ්නයකට ම පිළිතුරු සැපයීමට ද භාවිත කරන්න.
- (c) පෙන්වා ඇති (3) රූපයේ D_1 සහ D_2 සිලිකන් දියෝඩ වන අතර A සහ B පුදාන චෝල්ටීයතා ලෙස 5 ${
 m V}$ හෝ 0 ${
 m V}$ තිබිය හැකි ය.
 - (i) විවිධ පුදාන වෝල්ටීයතා සංයුක්ත සඳහා F පුතිදානයේ (V_F) වෝල්ටීයතා සොයා පහත දී ඇති වගුව සම්පූර්ණ කරන්න (මෙම කාර්යය සඳහා වගුව ඔබේ පිළිතුරු පතුයට පිටපත් කර ගන්න).

A(V)	B(V)	$V_F(V)$
0	0	
5	0	
0	5	
5	5	·

- (ii) F පුතිදානය පිළිබඳ ව පමණක් සැලකීමේ දී $0.7\,\mathrm{V}$ මගින් ද්වීමය 0 නිරූපණය කරන්නේ නම්, සහ $5\,\mathrm{V}$ මගින් ද්වීමය 1 නිරූපණය කරන්නේ නම්, (3) රූපයේ දී ඇති පරිපථයට අනුරූප ද්වාරය හඳුනා ගෙන, එහි සතානා වගුව ලියා දක්වන්න.
- (iii) දියෝඩ **දෙක ම** හරහා ධාරාවෙහි එකතුව $0.5~{
 m mA}$ ට සීමා කරන සුදුසු අගයක්, R_1 සඳහා ගණනය කරන්න.
- (d) ඉහත (4) රූපයේ පෙන්වා ඇති පරිපථයෙහි X අගුය, (3) රූපයේ පෙන්වා ඇති පරිපථයේ F පුතිදානයට දැන් සම්බන්ධ කරන්නේ යැ 2 යි සිතන්න.
 - (i) A සහ B පුදාන, ද්වීමය 1 නිරූපණය කරන විට $I_{\scriptscriptstyle R}$ පාදම ධාරාව කුමක් ද?
 - (ii) ඉහත (d) (i) හි දී ඇති පුදාන තත්ත්වයන් යටතේ ටුාන්සිස්ටරය වසා ඇති ස්විච්චියක් ලෙස කිුිිියා කරන බව පෙන්වන්න. ටුාන්සිස්ටරයේ, β ධාරා ලාභය, 50ක් ලෙස උපකල්පනය කරන්න.
 - (iii) එසේ නමුදු (3) රූපයේ, F ද්වීමය 0 නිරූපණය කරන විට ටුාන්සිස්ටරය විවෘත ස්වීච්චීයක් ලෙස කිුියාත්මක නො වන බව පෙන්වන්න.
 - (iv) ඉහත (4) රූපයේ දී ඇති පරිපථයේ උචිත ස්ථානයකට තවත් සිලිකන් දියෝඩයක් ඇතුළත් කිරීම මගින් (3) සහ (4) රූපවල දී ඇති පරිපථයන්ගෙන් සමන්විත සංයුක්ත පරිපථය, NAND ද්වාරයක් ලෙස කිුිිියාත්මක වන ආකාරයට පරිවර්තනය කරන්නේ කෙසේ දැ'යි පරිපථ සටහනක් ආධාරයෙන් පෙන්වන්න.
- 10. (A) කොටසට හෝ (B) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.
- $({f A})~(a)~ heta_0$ කාමර උෂ්ණත්වයේ පවතින, L_0 දිගක් සහිත තඹවලින් සාදන ලද නලයක් heta උෂ්ණත්වයක් දක්වා රත් කරනු ලැබේ. නලයේ වැඩි වන දිග සඳහා පුකාශනයක් ලියන්න. තඹවල රේඛීය පුසාරණතාව lpha වේ.

පහත පුශ්නවලට පිළිතුරු සැපයීමේ දී සැම විට ම නොසැලෙන තත්ත්ව සලකන්න.

- (b) $heta_0$ කාමර උෂ්ණත්වයේ දී දිග L_0 වූ සහ අභ $ext{$\mu$}$ න්තර හරස්කඩ ක්ෂේතුඵලය A_0 වූ පරිවරණය කරන ලද සෘජු තඹ නලයක් විශාල පරතරයකින් වෙන් වූ තෙල් ටැංකි දෙකක් අතර අතුරා ඇත්තේ එක් ටැංකියක සිට අනෙක් ටැංකියට රත් කරන ලද තෙල් පුවාහනය කිරීම සඳහා ය.
 - ටැංකි අතර පරතරය L_0 හි නියතව තබා ඇත්නම්, නලය තුළින් රත් කළ තෙල් යැවූ විට නලයෙහි සම්පීඩක පුතාහබලයක් ගොඩ නැගේ. තඹවල සම්පීඩක පුතාහස්ථතා සීමාව ඉක්මවා නොයන පරිදි නලය තුළින් යැවිය හැකි තෙලෙහි උපරිම උෂ්ණත්වය $heta_M$ සඳහා පුකාශනයක් ලියන්න. තඹ සඳහා පුතාහස්ථතා සීමාවට අනුරූප සංකෝචන දිග ΔL_0 ලෙස උපකල්පනය කරන්න.

(c) ඉහත (b) හි සඳහන් කළ නලයේ සම්පීඩනය වළක්වා වඩා වැඩි θ_H උෂ්ණත්වයක $(>\theta_M)$ ඇති තෙල් පුවාහනය කිරීම සඳහා θ_0 කාමර උෂ්ණත්වයේ දී මධානා අරය r_0 වූ තඹවලින් සාදන ලද අමතර කුඩා වෘත්තාකාර කොටසක් ඇතුළත් කර, එය නලයේ ම කොටසක් වන පරිදි රූපයේ ඇති ආකාරයට නලය විකරණය කිරීමට තීරණය කර ඇත.

- (i) එවැනි විකරණය කිරීමක් මගින් (b) හි සඳහන් කළ උෂ්ණත්වය සමග නලය සම්පීඩනය වීම වැළැක්වෙන්නේ කෙසේ දැ'යි පැහැදිලි කරන්න.
- (ii) $heta_0$ කාමර උෂ්ණත්වයේ දී නලයේ සම්පූර්ණ දිග කොපමණ ද?
- (iii) $heta_H$ උෂ්ණත්වයේ තෙල්, නලය තුළින් යැවූ විට නලයේ සම්පූර්ණ දිග (L_H) සඳහා පුකාශනයක් වනුත්පන්න කරන්න.
- (iv) $heta_H$ උෂ්ණත්වයේ තෙල්, නලය තුළින් යැවූ විට වෘත්තාකාර කොටසේ නව මධානා අරය (R_H) සඳහා පුකාශනයක් වාූත්පන්න කරන්න. වෘත්තාකාර කොටසේ හැඩය වෘත්තාකාර ලෙස ම පවතින බව උපකල්පනය කරන්න.
- (v) θ_0 කාමර උෂ්ණත්වයේ දී පරිමාව සමග සංසන්දනය කරන විට, θ_H හි දී නලය තුළ තෙල් පරිමාවේ වැඩි වීම සඳහා පුකාශනයක් වපුත්පන්න කරන්න.
- (vi) උෂ්ණත්වය සමග නලයේ ඇත්දොර හරස්කඩ ක්ෂේතුඵලයෙහි ද නෙලෙහි ඝනත්වයෙහි ද වීචලනය වීම නොගිනිය හැකි නම්, තෙලෙහි උෂ්ණත්වය $heta_0$ කාමර උෂ්ණත්වයේ සිට $heta_H$ දක්වා ඉහළ නැංවූ වීට නලය තුළ $\frac{ heta_H}{ heta_0}$ හි දී තෙල්වල පුවාහ වේගය , අනුපාතය සඳහා පුකාශනයක් වුහුත්පන්න කරන්න. නලයෙහි ඇත්දොර සහ මිහිදොර අතර තෙලෙහි පීඩන අන්තරය නියතව පවතින බව උපකල්පනය කරන්න.
- (vii) නලය පරිවරණය කර ඇති වුවත් නලයේ සම්පූර්ණ දිග හරහා **රේඛිය** ලෙස $heta_H$ උෂ්ණත්වයේ කුඩා පහළ බැසීමක් ඇතැ'යි සිතන්න. මෙම බැස්ම $\Delta heta$ නම්, වෘත්තාකාර කොටසේ මධානා අරය සඳහා පුකාශනයක් වුහුත්පන්න කරන්න. වෘත්තාකාර කොටස නලයේ මධාායේ පිහිටා ඇති බව උපකල්පනය, කර, එම කොටසේ උෂ්ණත්ව විචලනය නොසලකා හරින්න.
- (B) (a) අයින්ස්ටයින්ගේ ස්කන්ධ-ශක්ති සම්බන්ධතාව භාවිතයෙන් පරමාණුක ස්කන්ධ ඒකකයේ (1 u) තුලා ශක්තිය MeV වලින් නිර්ණය කරන්න. (1 MeV = 1.6×10^{-13} J, 1 u = 1.66×10^{-27} kg, ආලෝකයේ වේගය = 3×10^8 m s $^{-1}$)
 - (b) නියුටුෝනයක් අවශෝෂණය කළ විට $^{235}_{92}{
 m U}$ නාෂ්ටියක් විඛණ්ඩනයට භාජනය වේ. විඛණ්ඩන විධිවලින් එකක් පහත සඳහන් විඛණ්ඩන පුතිකිුිියාව මගින් දෙනු ලබයි.

$$n + {}^{235}_{92}U \longrightarrow {}^{96}_{37}Rb + {}^{138}_{55}Cs + 2n$$

 $^{235}_{92}$ U , $^{96}_{37}$ Rb , $^{138}_{55}$ Cs හි සහ නියුටෝනයක ස්කන්ධයන් ආසන්න වශයෙන් පිළිවෙළින් $235.0440~\mathrm{u},~95.9343~\mathrm{u},~137.9110~\mathrm{u}$ සහ $1.0087~\mathrm{u}$ වේ.

- (i) ඉහත විඛණ්ඩන පුතිකිුයාවේ ස්කන්ධ හානිය පරමාණුක ස්කන්ධ ජකකවලින් සොයන්න.
- (ii) එනයින්, ඉහත විඛණ්ඩන පුතිකිුයාවේ දී මුදා හරිනු ලබන ශක්තිය MeV වලින් නිර්ණය කරන්න.
- (c) විශාල තාෂ්ටික පුතිකියාකාරකයක $^{235}_{92}$ U ඉන්ධන විඛණ්ඩනය නිසා නිපදවන තාපජ ක්ෂමතාව 3 200 MW වේ. එයට අනුරූපව නිපදවෙන විදුසුත් ක්ෂමතාව 1 000 MW වේ. වෙනස් විඛණ්ඩන පුතිකියා විධිවලින් වෙනස් ශක්ති පුමාණ තාපය ලෙස නිදහස් වේ. මෙම විඛණ්ඩන පුතිකියාවල දී නිපදවනු ලබන තාප ශක්තියේ සාමානා අගය එක් විඛණ්ඩනයකට 200 MeV වේ.
 - (i) නාාෂ්ටික පුතිකිුයාකාරකයේ කාර්යක්ෂමතාව නිර්ණය කරන්න.
 - (ii) නාෳෂ්ටික පුතිකිුයාකාරකයේ තොසැලෙන අවස්ථාවේ දී තත්පරයක දී සිදු වන විඛණ්ඩන සංඛ්‍යාව (විඛණ්ඩන ශීඝුතාව) නිර්ණය කරන්න.
 - (iii) එනයින්, නාෂ්ටික පුතිකිුයාකාරකයේ $^{235}_{92}$ U පරිභෝජන ශීඝුතාව වසරකට kg වලින් සොයන්න. (ඇවගාඩෝ අංකය $6.0 \times 10^{23}~{
 m mol}^{-1}$ ලෙස ගන්න.)
- (d) ස්වාභාවික යුරේනියම්වල බර අනුව 0.7% ක් $^{235}_{92}$ U සහ 99.3% ක් $^{238}_{92}$ U අඩංගු වේ. ඉහත නාෂ්ටික පුතිකිුයාකාරකයට වීදුලිය නිපදවීම සඳහා ඉන්ධන ලෙස අවශා වනුයේ $^{235}_{92}$ U පමණි. ඉහත පුතිකිුයාකාරකයට 2% සුපෝෂිත යුරේනියම් සහිත යුරේනියම් ඉන්ධන අවශා වේ. (එනම් බර අනුව 2% ක් , $^{235}_{92}$ U අඩංගුව ඇති යුරේනියම් ඉන්ධන ය.) ඉහත (c) යටතේ සඳහන් කළ $1\,000\,\mathrm{MW}$ පුතිකිුයාකාරකය වසරක් කිුයා කරවීමට අවශා 2% සුපෝෂිත යුරේනියම් ඉන්ධන පුමාණය නිර්ණය කරන්න.
- (e) ගල් අඟුරු බලාගාරවල විදුලිය නිෂ්පාදනයට අවශා තාප ශක්තිය කාබන් දහනය කිරීමෙන් නිපදවයි.

$$C+O_2 \longrightarrow CO_2+4eV$$

ගල් අඟුරු බලාගාරයක කාර්යක්ෂමතාව නාෂ්ටික බලාගාරයක කාර්යක්ෂමතාවට බොහෝ දුරට සමාන වේ. $1\,000~{\rm MW}$ ගල් අඟුරු බලාගාරයක් වසරක් කුියා කරවීමට අවශා කාබන් පුමාණය kg වලින් නිර්ණය කරන්න. ගල් අඟුරු බලාගාරයේ කාර්යක්ෂමතාව ඉහත (c) (i) හි නිර්ණය කළ කාර්යක්ෂමතාවට සමාන බව උපකල්පනය කරන්න. (C හි මවුලික ස්කන්ධය = $12~{\rm g~mol}^{-1}$ වේ.)