EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 12	le 23 Mai 2022

Veuillez rendre l'exercice bonus jusqu'au dimanche, 5 juin, 18 h.

Exercice 1.

Soit K un corps de caractéristique 2 et soit $K \subseteq L$ une extension de degré 2.

- (a) Supposons que pour tous $\alpha \in L \setminus K$ nous avons que $\alpha^2 \in K$. Montrer que:
 - (i) $L = K(\alpha)$, où $\alpha \in L \setminus K$.
 - (ii) tout $\alpha \in L \backslash K$ est inséparable.
- (b) Supposons qu'il existe $\alpha \in L \setminus K$ tel que $\alpha^2 \notin K$. Montrer que:
 - (i) $L = K(\beta)$, où $\beta \in L \setminus K$ est tel que $m_{\beta,K}(x) = x^2 + x + c \in K[x]$.
 - (ii) $\tau: K(\beta) \to K(\beta)$ donné par $\tau|_K = \mathrm{Id}_K$ et $\tau(\beta) = \beta + 1$ est un automorphisme de $K(\beta)$.
 - (iii) tout $\alpha \in L \setminus K$ est séparable.

Exercice 2.

Soit K un corps de caractéristique p > 0.

- (a) Pour tout $\alpha \in K^p$ montrer qu'il existe un unique $\beta \in K$ tel que $\beta^p = \alpha$.
- (b) Soit $\phi \in \text{Aut}(K^p)$. Montrer qu'il existe un unique $\psi \in \text{Aut}(K)$ tel que ψ est une extension de ϕ .

Exercice 3.

(a) Soit K un corps de caractéristique p > 0 et soit $\alpha \in K \setminus K^p$. Montrer que $x^p - \alpha \in K[x]$ est irréductible.

Soit $L = (\mathbb{F}_p(x))[y]/(y^2 - x(x-1)(x+1)).$

- (b) Montrer que L est un corps.
- (c) Si $p \neq 2$, montrer que L n'est pas parfait.
- (d) Si p = 2, montrer que L n'est pas parfait.

Exercice 4. 1. Soit $\mathbb{Q} \subset K$ une extension. Montrez que tout automorphisme de K est l'identité sur \mathbb{Q} .

2. Décrivez le groupe $\operatorname{Gal}(K/\mathbb{Q})$ dans les cas suivants: $K = \mathbb{Q}(i), \mathbb{Q}(\sqrt{7}), \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\omega^2)$ où $\omega = e^{2i\pi/3}$.

Exercice 5.

Considérons l'extension $\mathbb{F}_2 \subset \mathbb{F}_{2^n}$. D'après l'exemple 4.6.4 (6), $|\operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2)| = n$, et $\operatorname{Gal}(\mathbb{F}_{2^n}/\mathbb{F}_2) = \langle F \rangle$, où F est l'automorphisme Frobenius,

$$F: \mathbb{F}_{2^n} \ni \alpha \mapsto \alpha^2 \in \mathbb{F}_{2^n}.$$

- 1. Soit n=2, et considérons l'extension $\mathbb{F}_2 \subset \mathbb{F}_4 = \mathbb{F}_2(\alpha)$, où α est une racine de x^2+x+1 . Donnez la matrice de l'automorphisme Frobenius dans la base $\{1,\alpha\}$ en tant que \mathbb{F}_2 -espace vectoriel. Quels sont les valeurs et leurs espaces propres? Peut on diagonaliser la matrice?
- 2. Soit n=3, et considérons l'extension $\mathbb{F}_2 \subset \mathbb{F}_8 = \mathbb{F}_2(\beta)$, où β est une racine de x^3+x+1 . Donnez la matrice de l'automorphisme Frobenius dans la base $\{1,\beta,\beta^2\}$ en tant que \mathbb{F}_2 -espace vectoriel. Quels sont les valeurs et leurs espaces propres? Peut on diagonaliser la matrice sur \mathbb{F}_2 ? Sur \mathbb{F}_4 ?

Exercice 6.

Dans les cas suivantes, calculez $G = \text{Gal}(\mathbb{Q}(\alpha, \beta)/\mathbb{Q})$, et calculez le pôlynome minimal de $\alpha, \alpha + \beta, \alpha \cdot \beta$ et α^{-1} .

1.
$$\alpha = \sqrt{3}, \beta = \sqrt{7}$$

2.
$$\alpha = e^{(i\pi/3)}, \beta = -1$$

3.
$$\alpha = e^{(i\pi/3)}, \beta = i$$

4.
$$\alpha = e^{(i\pi/6)}, \beta = i$$
.

Bonus exercise

Exercice 7.

Let $f = x^3 + ax + b \in \mathbb{Q}[x]$ such that a > 0, $a \in \mathbb{Z}$ and b = 1.

- 1. Show that f is irreducible over \mathbb{Q} .
- 2. Show that f does not have 3 real roots in its splitting field (the splitting field (corps de décomposition) is isomorphic to the subfield of \mathbb{C} generated by the complex roots of f, and hence it makes sense to talk about its element being real).
- 3. Let $K = \mathbb{Q}[x]/(f)$. Show that K is a degree 3 extension of \mathbb{Q} , which is not Galois.
- 4. Let L be the decomposition field of f over \mathbb{Q} . Show that $Gal(L/Q) \cong S_3$