Step	Algorithm: $C := AB + C$
1a	${C = \widehat{C}}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{c_1^T}\right) $ where a_1 has 1 row, c_1 has 1 row
6	$ \left\{ \begin{array}{c} C_0 \\ c_1^T \\ C_2 \end{array} \right) = \begin{pmatrix} \widehat{C}_0 \\ \widehat{c}_1^T \\ A_2B + \widehat{C}_2 \end{pmatrix} $
8	$c_1^T := a_1^T B + c_1^T$
7	$ \left\{ \begin{pmatrix} C_0 \\ c_1^T \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ a_1^T B + \widehat{c}_1^T \\ A_2 B + \widehat{C}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{c_1^T}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\left\{C = AB + \widehat{C}\right\}$

Step	Algorithm: $C := AB + C$
1a	\{
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right.$
1b	\

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right.$
1b	$\left\{ C = AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$	
1a	$\{C=\widehat{C}$	}
4	where	
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$	
3	while do	
2,3	$\left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B}\right) \wedge \end{array} \right.$	
5a	where	
6		
8		
7		
5b		
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$	
	endwhile	
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg () \right\}$	
1b	$\left\{C = AB + \widehat{C}\right\}$	}

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	
2	where $\left\{ \begin{pmatrix} C_T \\ \overline{C_B} \end{pmatrix} = \begin{pmatrix} \widehat{C}_T \\ \overline{A_B B} + \widehat{C}_B \end{pmatrix} \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \wedge m(A_B) < m(A) \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\left\{ C = AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\left\{ C = AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{c_1^T}\right) $ where a_1 has 1 row, c_1 has 1 row
6	
8	
7	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{c_1^T}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
	endwhile
2,3	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\} $
1b	$\left\{ C = AB + \widehat{C} \right\}$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}$
4	$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{c_1^T}\right) $ where a_1 has 1 row, c_1 has 1 row
6	$ \left\{ \begin{pmatrix} C_0 \\ c_1^T \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ \widehat{c}_1^T \\ A_2B + \widehat{C}_2 \end{pmatrix} \right\} $
8	
7	
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{c_1^T}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\left\{C = AB + \widehat{C}\right\}$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C} $
4	$A o \left(\frac{A_T}{A_B}\right), C o \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{c_1^T}\right) $ where a_1 has 1 row, c_1 has 1 row
6	$ \begin{cases} \begin{pmatrix} C_0 \\ c_1^T \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ \widehat{c}_1^T \\ A_2B + \widehat{C}_2 \end{pmatrix} $
8	
7	$ \left\{ \begin{pmatrix} C_0 \\ c_1^T \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ a_1^T B + \widehat{c}_1^T \\ A_2 B + \widehat{C}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{c_1^T}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\left\{C = AB + \widehat{C}\right\}$

Step	Algorithm: $C := AB + C$
1a	$\{C = \widehat{C}\}$
4	$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
3	while $m(A_B) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land m(A_B) < m(A) \right\}$
5a	$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{c_1^T}\right) $ where a_1 has 1 row, c_1 has 1 row
6	$ \begin{cases} \begin{pmatrix} C_0 \\ c_1^T \\ C_2 \end{pmatrix} = \begin{pmatrix} \hat{C}_0 \\ \hat{C}_1^T \\ A_2B + \hat{C}_2 \end{pmatrix} $
8	$c_1^T := a_1^T B + c_1^T$
7	$ \left\{ \begin{pmatrix} C_0 \\ c_1^T \\ C_2 \end{pmatrix} = \begin{pmatrix} \widehat{C}_0 \\ a_1^T B + \widehat{c}_1^T \\ A_2 B + \widehat{C}_2 \end{pmatrix} $
5b	$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{c_1^T}\right)$ C_2
2	$\left\{ \qquad \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{\widehat{C}_T}{A_B B + \widehat{C}_B} \right) \land \neg (m(A_B) < m(A)) \right\}$
1b	$\left\{C = AB + \widehat{C}\right\}$

Algorithm: $C := AB + C$
$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$ where A_B has 0 rows, C_B has 0 rows
while $m(A_B) < m(A)$ do
$ \left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{c_1^T}\right) $ where a_1 has 1 row, c_1 has 1 row
$c_1^T := a_1^T B + c_1^T$
$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{c_1^T}\right)$ C_2
endwhile

Algorithm: C := AB + C

$$A \to \left(\frac{A_T}{A_B}\right), C \to \left(\frac{C_T}{C_B}\right)$$

where A_B has 0 rows, C_B has 0 rows

while $m(A_B) < m(A)$ do

$$\left(\frac{A_T}{A_B}\right) \to \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{c_1^T}\right)$$

where a_1 has 1 row, c_1 has 1 row

$$c_1^T := a_1^T B + c_1^T$$

$$\left(\frac{A_T}{A_B}\right) \leftarrow \left(\frac{A_0}{a_1^T}\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{c_1^T}\right)$$

endwhile