江苏省徐州市 2024 届部分学校高三上学期 期初试卷

一、单选题

- 1. 生活中的某些问题常常涉及化学知识。下列叙述错误的是
 - A. 糖类、油脂和蛋白质都是生命必需的营养物质
 - B. 服用 84 消毒液可以杀死新冠病毒
 - C. 聚丙烯纤维是生产医用口罩的主要原料
 - D. 75%的酒精可用于抗新冠病毒的防疫消毒
- 2. 我国科学家研制分子筛网高效分离 CO₂和 CH₄,已知分子筛孔径为 0.36nm,
- CO₂、CH₄分子直径分别为 0.33nm、0.38nm。下列说法正确的是
 - A. 键角: CH₄>CO₂
- B. 干冰、CH4晶体都是分子晶体
- C. CO₂、CH₄都是由极性键组成的极性分子 D. 乙烯分子能透过该分子筛网
- 3. 下列有关物质的性质与用途具有对应关系的是
 - A. FeCl₃具有氧化性,可用作净水剂 B. Mg(OH)₂具有碱性,可用于制胃酸中和剂
 - C. H₂O₂是无色液体,可用作消毒剂 D. 液 NH₃具有碱性,可用作制冷剂
- 4. 利用超分子可分离 C_{60} 和 C_{70} 。将 C_{60} 、 C_{70} 混合物加入一种空腔大小适配 C_{60} 的"杯酚"中进行分离的流程如图。下列说法错误的是

- A. 第二电离能: C<O
- B. 杯酚分子中存在 π 键
- C. 杯酚与 C60 形成氢键
- D. C60 与金刚石晶体类型不同
- 5. 石墨烯是一种由碳原子组成六角形呈蜂巢晶格的二维碳纳米材料(如图甲),石墨烯中部分碳原子被氧化后,其平面结构会发生改变,转化为氧化石墨烯(如图乙)。

下列说法错误的是

- A. 图甲中, 1号 C与相邻 C形成 σ键的个数为 3
- B. 图乙中, 1号C的杂化方式是sp²

C. M与 C60 可制备一种低温超导材料, 晶胞如图为

该材料的化学式为 M₃C₆₀

- D. 将 50nm 左右的石墨烯或氧化石墨烯溶于水,在相同条件下所得到的分散系后者更为稳定
- 6. 下列离子方程式书写正确的是
 - A. 钠与水反应的化学方程式是 2Na+2H₂O=2Na++2OH-+H₂↑
 - B. 氯气与水反应: Cl₂+H₂O=2H++ClO+Cl-
 - C. 硫酸与氢氧化钡溶液反应: Ba²⁺+SO²⁻+H⁺+OH=BaSO₄↓+H₂O
 - D. 石灰石与稀盐酸反应: CO²⁻+2H⁺=CO₂↑+H₂O
- 7. 阿伏伽德罗常数值为 N_A, 下列说法中正确的是
 - A. 一定条件下 $3.2gSO_2$ 与足量 O_2 反应转移电子数为 $0.1N_A$
 - B. 2.9g 异丁烷和正丁烷混合物含有 C-H 键数目为 0.5NA
 - C. 50mL12 mol/L 浓盐酸与足量 MnO₂ 共热转移电子数 0.3N_A
 - D. 标准状况下, 3.36L 三氯甲烷中含有氯原子 0.45NA
- 8. 下列关于化学反应类型的叙述中,正确的是
 - A. 凡是生成盐和水的反应都是中和反应
 - B. 复分解反应一定没有单质参加
 - C. 生成一种单质和一种化合物的反应一定是置换反应
 - D. 分解反应的生成物一定有单质
- 9. 下列醇类能发生消去反应的是
- (1)CH₃OH (2)CH₂(OH)CH₂CH₃ (3)CH₂(OH)CH₂CH₂CH₃ (4)CH₃CH(OH)CH₂CH₃
- (5)(CH₃)₃CCH₂OH (6)CH₂(OH)CH₂CH₂CH₂CH₃
 - A. 1)5 B. 2346 C. 246 D. 234
- 10. 对于反应 2CO(g)+2NO(g) ⇌ 2CO₂(g)+N₂(g), 下列说法正确的是
 - A. 反应的ΔS>0
 - B. 反应的平衡常数可表示为 $K = \frac{c^2(CO) \cdot c^2(NO)}{c^2(CO_2) \cdot c(N_2)}$
 - C. 保持其他条件不变, 升高温度, 反应体系的活化分子百分数增大
 - D. 使用合适的催化剂能降低该反应的活化能从而改变该反应的 AH
- 11. 如图是一种实验某气体化学性质的实验装置,图中B为开关.若先打开B,在A处通入干燥的氯气,C中红色布条颜色无变化;当关闭B在A处通入干燥的氯气时,C中红色布条颜色褪去.则D瓶中盛有的溶液是

A. 浓硫酸

B. 饱和 NaCl 溶液

C. 浓 NaOH 溶液 D. 浓 KI

溶液

- 12. 设 NA 为阿伏加德罗常数的值。下列说法正确的是
 - A. 24g 乙烯和丙烯的混合气体中 p-pσ 键数目为 2N_A
 - B. 1L1mol/L 氯化铵溶液中 NH⁺和 H⁺数目之和为 N₄
 - C. 2molNO 与 1molO₂ 在密闭容器中充分反应后的分子数为 2N_A
 - D. 标准状况下, 11.2LCH₄与 22.4LCl₂反应后分子总数为 1.5N_A
- 13. 在 25 °C、 1.01×10^5 Pa 下,将 22 g CO₂ 通入 750 mL 1mol/LNaOH 溶液中充分反应,测得反应放出 x kJ 热量。在该条件下,1 mol CO₂ 通入 1mol/L NaOH 溶液 2 L 中充分反应放出 y kJ 热量。则 CO₂ 与 NaOH 溶液反应生成 NaHCO₃ 的热化学方程式是
 - A. $CO_2(g) + NaOH(aq) = NaHCO_3(aq) \Delta H = -(2y-x) kJ \cdot mol^{-1}$
 - B. $CO_2(g) + NaOH(aq) = NaHCO_3(aq) \Delta H = -(2x-y) kJ \cdot mol^{-1}$
 - C. $CO_2(g)+NaOH(aq)=NaHCO_3(aq)$ $\Delta H=-(4x-y) kJ \cdot mol^{-1}$
 - D. $2CO_2(g) + NaOH(1) = NaHCO_3(1) \Delta H = -(8x 2y) kJ \cdot mol^{-1}$

二、工业流程题

14. 废旧铅蓄电池经粗加工可得到铅膏,其主要成分为PbO、PbO₂、PbSO₄等。以铅膏为原料回收PbSO₄,流程如下:

已知: PbCl₂(s)+2Cl⁻(aq) ⇌ PbCl₄²⁻ (aq) ΔH>0

- (1)用 Na₂CO₃作转化剂,将铅膏中的硫酸铅转化为碳酸铅,其离子方程式为____。
- (2)浆液中加入 Na,SO,溶液的目的是。
- (3)从滤液 A 提取 Na₂SO₄·10H₂O 晶体,主要步骤为___、__、过滤、洗涤、干燥;上述流程中可循环利用的物质是 (写化学式)。
- (4)采用冰水浴得 PbCl₂ 晶体的原因是____。
- (5)理论上要得到 a 吨的 PbSO₄,则铅膏的质量范围为____。
- 15. 含+6 价铬的废水毒性强,对环境污染严重。化工厂常用 SO_2 处理含铬废水,其工艺流程如下图所示:

已知: Cr₂O₇²⁻+ H₂O ⇌2CrO₄²⁻+ 2H⁺

(1) 将吸收塔中 $1 \text{mol } \text{Cr}_2\text{O}_7^2$ -与 $S\text{O}_2$ 反应的热化学方程式补全。

 $Cr_2O_7^{2-}(aq) + _SO_2(g) + _ = _ + _ + _ + _ \Delta H = -1145 \text{ kJ/mol}$

(2) 其他条件不变,研究吸收塔中 pH 对反应的影响。

рН	2	4	6
Cr (+6) 最大去除率	99.99% 达排放标准	99.95% 达排放标准	99.5% 未达排放标准
时间	30 min	35 min	45 min

- ①由上述数据获得的结论有。。
- ②实际工业生产控制 pH=4 左右的原因是____。
- ③下列说法不合理的是____。
- a.该酸性含铬废水中一定含有 CrO42-, pH 越大其含量越高
- b.其他条件不变,增大压强,吸收塔中反应的 K 增大,有利于除去 Cr (+6)
- c.理论上看, SO₃²、Fe²⁺等也可以用于除去 Cr (+6)
 - (3) 其他条件不变, 研究温度对 Cr(+6) 去除率的影响(如图 1 所示)。

30min 前相同时间内,80℃的 Cr (+6) 去除率比 40℃高,30min 后 80℃的 Cr (+6) 去除率低,原因分别是_____; ____。

- (4)图2为Cr(+3)微粒物质的量分数随溶液 pH的变化关系示意图,中和池中应控制 pH范围为____。
- (5) 废水中 Cr (+6) 总浓度为 $a \times 10^{-3}$ mol/L,处理 1000 L 废水,去除率要求达到 99.95%,理论上需要 SO_2 物质的量为_____mol (写计算式)。

三、有机推断题

16. Prolitane 是一种抗抑郁药物,以芳香烃 A 为原料的合成路线如下:

相对分子质量
$$Cl_2$$
 C_7H_7C1 $1.Mg/THF$ C_2H_5OH H_2SO_4, \triangle D

$$\underbrace{\frac{1.C_2H_5ONa}{2.CH_3CH_2COCl}}_{E} \underbrace{\frac{1.OH^-/H_2O}{2.H_3O^+}}_{COCH_2CH_3} \underbrace{\frac{1.OH^-/H_2O}{2.H_3O^+}}_{C_{11}H_{12}O_3} \underbrace{\stackrel{\triangle}{\longrightarrow}}_{F}$$

$$\begin{array}{c|c} & H \\ & N \\ \hline G & H_2/Pd \\ \hline & H \\ & Prolitane \\ \end{array}$$

请回答以下问题:

- (1)D 的化学名称为_____, H→Prolitane 的反应类型为_____。
- (2)E 中含有的官能团的名称为。
- (3)B 的结构简式为___。
- (4)F→G 的化学方程式为____。
- (5)C 的同分异构体中能同时满足下列条件的共有 种(不含立体异构);
- ①属于芳香化合物 ②能发生银镜反应 ③能发生水解反应 其中核磁共振氢谱显示为 4 组峰,峰面积比为 3:2:2:1,写出符合要求的该同分异构 体的结构简式: 。

四、原理综合题

17. 甲烷水蒸气催化重整是制备高纯氢的方法之一。反应如下:

 $\overline{\text{Mi}}_{1} \cdot \text{CH}_{4}(g) + \text{H}_{2}\text{O}(g) \rightleftharpoons \text{CO}(g) + 3\text{H}_{2}(g) \quad \Delta H_{1} = +206\text{kJ} \cdot \text{mol}^{-1};$

反应ii. $CH_4(g) + 2H_2O(g) f CO_2(g) + 4H_2(g) \Delta H_2 = +165 \text{kJ} \cdot \text{mol}^{-1}$ 。

回答下列问题:

- (1)反应iii.CO₂(g)+H₂(g) ⇌ CO(g)+H₂O(g)的ΔH₃=____kJ·mol⁻¹;若在一定温度下的容积固定的密闭容器中进行该反应,则可以提高CO₂转化率的措施有____,下列说法可以证明该反应已达到平衡状态的是____(填字母)。
- $a. v_{\mathbb{H}}(CO_2) = v_{\mathbb{H}}(H_2)$ b. 容器内气体压强不再改变
- c. H2 的浓度不再改变 d.CO 和H2O的浓度之比为 1:1
- (2)对于反应i,向体积为 2L 的恒容密闭容器中,按 $n(H_2O):n(CH_4)=1:1$ 投料。
- ①若在恒温条件下,反应达到平衡时CH4的转化率为50%,则平衡时容器内的压强

与起始压强之比为_____(最简单整数比)。

②其他条件相同时,在不同催化剂(I、II、III)作用下,反应相同时间,CH4的转化率随反应温度的变化如图所示。a 点____(填"是"或"不是")化学平衡状态,CH4的依化率: c 点>d 点,原因是。

(3)某科研小组研究了反应ii的动力学,获得其速率方程 $v=k[c(CH_4)]^m \cdot [c(H_2O)]^{\frac{1}{2}}$,k 为速率常数(只受温度影响),m 为 CH_4 的反应级数。在某温度下进行实验,测得各组分初浓度和反应初速率如下:

实验序号	$c(H_2O)/mol \cdot L^{-1}$	$c(CH_4)/ mol \cdot L^{-1}$	$v/\text{mol} \cdot L^{-1} \cdot s^{-1}$
1	0.100	0.100	1.2×10 ⁻²
2	0.100	0.200	2.4×10 ⁻²

 CH_4 的反应级数 $m = ______$,当实验 2 进行到某时刻,测得 $c(H_2O) = 0.040 \text{mol} \cdot L^{-1}$,则此时的反应速率 $v = _______ \text{mol} \cdot L^{-1} \cdot \text{s}^{-1}$ (已知 $\sqrt{0.1} \approx 0.3$)。

(4)甲烷水蒸气催化重整制备高纯氢只发生反应i、反应ii。在恒温、恒压条件下,1mol $CH_4(g)$ 和 $1mol H_2O(g)$ 反应达平衡时, $CH_4(g)$ 的转化率为 a, $CO_2(g)$ 的物质的量为 bmol,则反应i的平衡常数 $K_x = _____$ [写出含有 a、b 的计算式;对于反应

 $mA(g)+nB(g) \rightleftharpoons pC(g)+qD(g)$, $K_x = \frac{x^p(C)\cdot x^q(D)}{x^m(A)\cdot x^n(B)}$, x 为物质的量分数]。