Gauged Lepton number

with dark matter and dark baryogenesis

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on

In collaboration with

Leonardo Leite, Orlando Peres, William Novelo (UNICAMP), David Suárez (UdeA)

Local Abelian extensions of the SM

Anomaly cancellation

Any *universal* local Abelian extension of the Standard Model can be reduced to a set of integers which must satisfy the gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$ conditions:

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (1)$$

• From a list of N-2 integers, e.g., for N even

$$\mathbf{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
 (2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \dots k_n, -l_1, -k_1, \dots - k_n,] \qquad \mathbf{y} = [0, 0, l_1, \dots l_n, -l_1, \dots - l_n] \qquad (3)$$

• From a list of N-2 integers, e.g., for N even

$$\mathbf{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
 (2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \dots k_n, -l_1, -k_1, \dots - k_n,]$$
 $\mathbf{y} = [0, 0, l_1, \dots l_n, -l_1, \dots - l_n]$ (3)

• Obtain a (some times) non vector-like solution with $z_{max} = 2m$

$$\mathbf{z} = \mathbf{x} \oplus \mathbf{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \mathbf{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \mathbf{y},$$
 (4)

• From a list of N-2 integers, e.g., for N even

$$\mathbf{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
 (2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \dots k_n, -l_1, -k_1, \dots - k_n,] \qquad \mathbf{y} = [0, 0, l_1, \dots l_n, -l_1, \dots - l_n]$$
(3)

• Obtain a (some times) non vector-like solution with $z_{max} = 2m$

$$\mathbf{z} = \mathbf{x} \oplus \mathbf{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \mathbf{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \mathbf{y},$$
 (4)

The parameter space to be explored with $z_{\rm max}=20~(m=10)$ has $96\,153$ non vector-like solutions

of
$$\mathbf{q}$$
 lists = $(2m+1)^{N-2}$ =
$$\begin{cases} 9261 \to 3 & N=5 \\ 194841 \to 38 & N=6 \\ \vdots & \vdots \\ 1.6 \times 10^{13} \to 65910 & N=12 \end{cases}$$
 instead 10^{19}

• From a list of N-2 integers, e.g., for N even

$$\mathbf{q} = [l_1 = 2, l_2 = 3, k_1 = -1, k_2 = -3], \qquad n = 2.$$
 (2)

in the range [-3,3], build two vector-like solutions of 6 integers,

$$\mathbf{x} = [2, -1, -3, -2, 1, 3,]$$
 $\mathbf{y} = [0, 0, 2, \dots, 3, -2, \dots, -3]$ (3)

• Obtain a (some times) non vector-like solution with $z_{\text{max}} = 2 \times 3 = 6$

$$\mathbf{z} = \mathbf{x} \oplus \mathbf{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \mathbf{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \mathbf{y},$$
(4)

The parameter space to be explored with $z_{\text{max}}=20~(m=10)$ has $96\,153$ non vector-like solutions

of **q** lists =
$$(2m+1)^{N-2}$$
 =
$$\begin{cases} 9261 \to 3 & N = 5 \to [1, -2, -3, 5, 5, -6] \\ 194841 \to 38 & N = 6 \\ \vdots & \vdots \\ 1.6 \times 10^{13} \to 65910 & N = 12 , \text{ instead } 10^{19} \end{cases}$$
 (5)

https://pypi.org/project/anomalies/

https://doi.org/10.5281/zenodo.7380817

Minimal secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_D$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (6)

 $96\,153 \rightarrow 5\,196$

multi-component DM (N=8,12)
ightarrow 142 with three Dirac-fermion DM

Minimal secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_D$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (6)

 $96\,153
ightarrow 5\,196$ multi-component DM (N=8,12) ightarrow 142 with three Dirac-fermion DM

$$z = [1, -2, -2, 4, 5, -7, -7, 8] \rightarrow \phi = 9 \rightarrow [(1, 8), (-2, -7), (4, 5)]$$
 (7)

Minimal secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_D$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (6)

96 153 ightarrow 5 196 multi-component DM ($\mathit{N}=8,12$) ightarrow 142 with three Dirac-fermion DM

$$z = [1, -2, -2, 4, 5, -7, -7, 8] \rightarrow \phi = 9 \rightarrow [(1, 8), (-2, -7), (4, 5)]$$
 (7)

$$\mathcal{L} \subset h_{(1,8)} \psi_1 \psi_8 \phi^* \phi^{(*)} + \sum_{a,b=1}^2 h_{(-2a,-7b)} \psi_4 \psi_{-7} \phi + h_{(4,5)} \psi_4 \psi_5 \phi^* \phi^{(*)} + \text{h.c.}$$
(8)

5

Simplest secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_{D}$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (9)

 $96\,153\rightarrow5\,196$

multi-component DM (N=8,12)
ightarrow 41 with two Dirac-fermion DM

Simplest secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_D$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (9)

 $96\,153
ightarrow 5\,196$ multi-component DM (N=8,12)
ightarrow 41 with two Dirac-fermion DM

$$z = [1, 2, 2, 4, -5, -5, -7, 8] \rightarrow \phi = 3 \rightarrow [(1, 2), (2, -5), (-5, 8), (4, -7)]$$
 (10)

Simplest secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_{D}$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (9)

 $96\,153
ightarrow 5\,196$ multi-component DM (N=8,12) ightarrow 41 with two Dirac-fermion DM

6

neutrino masses and mixings

$$\frac{y}{\Lambda}LLHH \to \frac{y}{\Lambda}LLHH\frac{\Phi}{\Lambda}\frac{\Phi^*}{\Lambda}$$

Majorana neutrino masses and mixings

$$\frac{y}{\Lambda} LLHH \rightarrow \frac{y}{\Lambda} LLHH \frac{\Phi}{\Lambda} \frac{\Phi^*}{\Lambda}$$

Already found in arXiv:2008.08573 (N \leq 9 and $z_{\text{max}} \leq$ 10)

$$z = [1, 1, 2, 3, -4, -4, -5, 6] \rightarrow \phi = 2 \rightarrow [(1, 1)_a, (2, -4), (4, -6), (4, -7)]$$
 (12)

Additional conditions to reduce

multiplicity

Effective Dirac neutrino mass operator

Decrease the number of charges to be assigned to dark matter particles, ψ_i below

$$[\chi_1,\chi_2,\cdots,\psi_1,\psi_2,\cdots,\psi_{N'}]$$

Secluded case:

$$[\nu, \nu, (\nu), \psi_1, \psi_2, \cdots, \psi_{N'}]$$

$$\chi_1 \to \nu_{R1}, \cdots, \chi_{N_{\nu}} \to \nu_{RN_{\nu}}, \qquad 2 \le N_{\nu} \le 3,$$

$$\mathcal{L}_{\mathrm{eff}} = h_{\nu}^{\alpha i} \left(\nu_{R\alpha} \right)^{\dagger} \epsilon_{ab} L_{i}^{a} H^{b} \left(\frac{\Phi^{*}}{\Lambda} \right)^{\delta} + \mathrm{H.c.}, \qquad \mathrm{with} \ i = 1, 2, 3 \,,$$

 Φ is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry and give mass to all ψ_i

$$\phi = -\frac{\nu}{\delta} \,, \tag{14}$$

(13)

Effective Dirac neutrino mass operator

Decrease the number of charges to be assigned to dark matter particles, ψ_i below

$$[\chi_1,\chi_2,\cdots,\psi_1,\psi_2,\cdots,\psi_{N'}]$$

Secluded case:

Active case:

$$[\nu, \nu, (\nu), \psi_1, \psi_2, \cdots, \psi_{N'}]$$

$$[\nu,\nu,(\nu),m,m,m,\psi_1,\psi_2,\cdots,\psi_{N'}]$$

$$\chi_1 \to \nu_{R1}, \cdots, \chi_{N_{\nu}} \to \nu_{RN_{\nu}}, \qquad 2 \le N_{\nu} \le 3, \quad X(L_i) = -L, \quad X(H) = h \qquad \to m = L - h$$
(13)

$$\mathcal{L}_{\mathrm{eff}} = h_{
u}^{lpha i} \left(
u_{Rlpha}
ight)^{\dagger} \epsilon_{ab} \, L_{i}^{a} \, H^{b} \left(rac{\Phi^{*}}{\Lambda}
ight)^{\delta} + \mathrm{H.c.}, \qquad \mathrm{with} \, \, i = 1, 2, 3 \, ,$$

 Φ is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry and give mass to all ψ_i \to [-4,-4,1,1,5]

$$\phi = -\frac{(\nu + m)}{\delta} \,, \tag{14}$$

FIGURE 1 | Distribution of solutions with N integers to the Diophantine **Eq. 1** which allow the effective Dirac neutrino mass operator at $d=(4+\delta)$ for at least two right-handed neutrinos and have non-vanishing Dirac o Majorana masses for the other SM-singlet chiral fermions in the solution.

Multi-component dark matter

Multi-flavor dark matter

$U(1)_X$ selection

• Active symmetry m = 3

$$(-5, -5, 3, 3, 3, -7, 8)$$

$U(1)_{X}$ selection

- Active symmetry m = 3
- Effective neutrino mass $\delta = 2 \rightarrow \nu = -5$:

$$(-5, -5, 3, 3, 3, -7, 8)$$

$U(1)_{x}$ selection

- Active symmetry m = 3
- Effective neutrino mass $\delta=2 \rightarrow \nu=-5$:
- Active symmetry: $m=3 \rightarrow \phi = -(\nu + m)/\delta = 1$

(-5, -5, 3, 3, 3, -7, 8)

$U(1)_{x}$ selection

- Active symmetry m = 3
- Effective neutrino mass $\delta = 2 \rightarrow \nu = -5$:
- Active symmetry: $m=3 \rightarrow \phi = -(\nu+m)/\delta = 1$
- Dirac-fermionic DM: $(\psi_L)^{\dagger} \psi_R'' \Phi^* \rightarrow z_6 = -7, z_7 = 8$

(-5, -5, 3, 3, 3, -7, 8)

$U(1)_{x}$ selection

- Active symmetry m = 3
- Effective neutrino mass $\delta = 2 \rightarrow \nu = -5$:
- Active symmetry: $m = 3 \rightarrow \phi = -(\nu + m)/\delta = 1$
- Dirac-fermionic DM: $(\psi_L)^{\dagger} \psi_R'' \Phi^* \rightarrow z_6 = -7, z_7 = 8$

 $g_{B-L} = 0.1$ $M_{Z'} = 4 \text{ TeV}$ $M_{\Psi} [\text{GeV}]$

(-5, -5, 3, 3, 3, -7, 8)

Half active symmetries: gauged B

or L

Standard model extended with $U(1)_{\mathcal{X}=X \text{ or } D}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{X}=\mathbf{D} \text{ or } X}$
Q_i^{\dagger}	2	-1/6	Q
d_{Ri}	1	-1/2	d
u_{Ri}	1	+2/3	и
L_i^{\dagger}	2	+1/2	L
e_{Ri}	1	-1	e
Н	2	1/2	h
χ_{α}	1	0	Z_{α}

Φ	1	0	ϕ

Table 1: LHC: hadronic production and dileptonic decay

$$i = 1, 2, 3, \ \alpha = 1, 2, \dots, N'$$

Standard model extended with $U(1)_{\mathcal{X}=L \text{ or } \mathbf{B}}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{X}=\mathbf{B}}$ or L
Q_i^{\dagger}	2	-1/6	Q
d_{Ri}	1	-1/2	d
u_{Ri}	1	+2/3	и
L_i^{\dagger}	2	+1/2	L
e_{Ri}	1	-1	e
Н	2	1/2	h = 0
χ_{α}	1	0	z_{lpha}
$(L'_L)^{\dagger}$	2	1/2	-x'
$L_R^{\prime\prime}$	2	-1/2	x''
e_R'	1	-1	x'
$(e_L^{\prime\prime})^\dagger$	1	1	-x"
Ф	1	0	ϕ
S	1	0	S

Table 1: minimal set of new fermion content: L = e = 0 for $\mathcal{X} = B$. Or Q = u = d = 0 for $\mathcal{X} = L$. $i = 1, 2, 3, \alpha = 1, 2, \dots, N'$

Anomaly cancellation: $\mathcal{X} = L$ or **B**: beyond SM-singlet fermions

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$\mathbf{u} = -\mathbf{e} - \frac{2}{3}\mathbf{L} - \frac{1}{9}(x' - x'') , \quad \mathbf{d} = \mathbf{e} + \frac{4}{3}\mathbf{L} - \frac{1}{9}(x' - x'') , \quad \mathbf{Q} = -\frac{1}{3}\mathbf{L} + \frac{1}{9}(x' - x'') ,$$
(15)

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'')=0.$$
 (16)

- Previously: x' = x''
- We choose instead (h = 0):

$$e = -L, (17)$$

so that (*L* is still a free parameter)

$$Q = -u = -d = -\frac{1}{3}L + \frac{1}{9}(x' - x''). \tag{18}$$

If
$$B = 0 \rightarrow U(1)_L$$

Anomaly cancellation: $\mathcal{X} = L$

The gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$, can be written as the following system of Diophantine equations, respectively,

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (19)$$

where

$$z_1 = -x',$$
 $z_2 = x'',$ $z_{2+i} = L, \quad i = 1, 2, 3$ (20)

 \rightarrow

$$9Q = -\sum_{\alpha=1}^{5} z_{\alpha} = -x' + x'' + L + L + L, \qquad (21)$$

$$L = 0 \rightarrow U(1)_B$$
 but $Q = 0 \rightarrow U(1)_L$

$U(1)_{B}$ selection

•
$$L = 0$$

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\mathbb{B}}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\it B}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

$$(5,5,-3,-2,\frac{1}{1},-6)$$

$U(1)_{\it B}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

• Dirac-fermionic DM: $(\chi_L)^{\dagger} \chi_R'' \Phi^* \rightarrow z_3 = -3, \ z_4 = -2$

$$(5, 5, -3, -2, 1, -6)$$

$U(1)_{B}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_I)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

- Dirac-fermionic DM: $(\chi_L)^{\dagger} \chi_R'' \Phi^* \rightarrow z_3 = -3, \ z_4 = -2$
- 959 solutions from \sim 400,000 (as in U(1)_D)

(5,5,-3,-2,1,-6)

Dark sector baryogenesis

Gauge Baryon number scotogenic realization: arXiv:2205.05762 [PRD]

with Andrés Rivera (UdeA) and Walter Tangarife (Loyola U.)

Gauge Baryon number scotogenic realization: arXiv:2205.05762 [PRD]

with Andrés Rivera (UdeA) and Walter Tangarife (Loyola U.)

Gauge Baryon number scotogenic realization: arXiv:2205.05762 [PRD]

with Andrés Rivera (UdeA) and Walter Tangarife (Loyola U.)

0.)			
Field	$SU(2)_L$	$U(1)_Y$	$U(1)_B$
u_{Ri}	1	2/3	u = 1/3
d_{Ri}	1	-1/3	d = 1/3
$(Q_i)^{\dagger}$	2	-1/6	Q = -1/3
$(L_i)^{\dagger}$	2	1/2	L=0
e_R	1	-1	e = 0
$(L'_L)^{\dagger}$	2	1/2	-x' = -3/5
e'_R	1	-1	x' = 3/5
$L_R^{\prime\prime}$	2	-1/2	x'' = 18/5
$\left(e_L^{\prime\prime} ight)^\dagger$	1	1	-x'' = -18/5
$\nu_{R,1}$	1	0	-3
$\nu_{R,2}$	1	0	-3
χ_R	1	0	6/5
$(\chi_L)^{\dagger}$	1	0	9/5
Н	2	1/2	0
S	1	0	3
Ф	1	0	3
σ_{lpha}^-	1	1	3/5
σ'_{α}^{-}	1	-1	-12/5

18

arXiv:2205.05762 [PRD] https://github.com/anferivera/DarkBariogenesis

- SARAH \rightarrow SPheno \rightarrow MicroMegas
- η_B calculation code
- Python notebook with the scan

Black points: Dirac neutrinos with proper DM and baryon assymetry

Conclusions

A methodology to find all the *universal* Abelian extensions of the standard model is designed

All of the extensions can be reformulated as the solution of

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0,$$

which we fully scan until N = 12 and $|z_{max}| = 20$

Once the physical conditions are stablished, the full set of self-consistent models are found from a simple data-analysis procedure