Dérivation et composée

Dérivées de référence. A chaque ligne, f est définie et vaut l'expression de la 2ème colonne sur <u>tout</u> D_f . On déduit : f est dérivable sur $D_{f'}$, et f'(x)vaut l'expression dans la $3^{\text{ème}}$ colonne $\underline{sur \ tout} \ D_{f'}$

D_f	f(x)	f'(x)	$D_{f'}$	Conditions
\mathbb{R}	С	0	\mathbb{R}	$c \in \mathbb{R}$
\mathbb{R}	x	1	\mathbb{R}	
\mathbb{R}	ax	а	\mathbb{R}	$a \in \mathbb{R}$
\mathbb{R}	ax + b	а	\mathbb{R}	$a,b \in \mathbb{R}$
\mathbb{R}	x^2	2x	\mathbb{R}	
\mathbb{R}	x^3	$3x^2$	\mathbb{R}	
\mathbb{R}	x^n	nx^{n-1} nx^{n-1}	\mathbb{R}	$n \in \mathbb{N}, n > 0$
\mathbb{R}^*	x^n	nx^{n-1}	\mathbb{R}^*	$n \in \mathbb{Z}, n < 0$
\mathbb{R}^*	1	1	\mathbb{R}^*	
	$\frac{-}{x}$	$-\frac{1}{x^2}$		
\mathbb{R}_+	\sqrt{x}	1	\mathbb{R}_+^*	
		$\overline{2\sqrt{x}}$		
\mathbb{R}	e^x	e^x	\mathbb{R}	

Opérations sur les dérivées. A chaque ligne :

- On suppose que u et v sont à valeurs dans \mathbb{R} , et dérivables sur un intervalle I.
- On déduit que f est définie et dérivable sur I.

f	f'	Conditions
<i>J</i>	<i>J</i>	Conditions
u+v	(u+v)'=u'+v'	
u-v	(u-v)'=u'-v'	
$a \times u$	$(a \times u)' = a \times u'$	$a \in \mathbb{R}$
$u \times v$	(uv)' = u'v + v'u	
1	$/1$ \'\ $-v'$	$v:I\to\mathbb{R}^*$
$\frac{\overline{v}}{v}$	$\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$	v ne s'annule pas
		<u>sur <i>I</i> .</u>
\underline{u}	$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$	$v:I\to\mathbb{R}^*$
v	$\left(\frac{-}{v}\right) = \frac{-}{v^2}$	v ne s'annule pas
	•	sur I.
e(i(x))	$e'(i(x)) \times i'(x)$	$i: I \to J \text{ et } e: J \to \mathbb{R}$
e^u	$(e^u)' = u'e^u$	

Propriété. Dérivée de la composée.

Soit $i: I \to I$ une fonction dérivable et $e: I \to \mathbb{R}$ une fonction dérivable, où I et I sont des intervalles de \mathbb{R} . Alors la fonction $f: x \mapsto e(i(x))$ est dérivable sur I et sa dérivée est $f'(x) = e'(i(x)) \times i'(x)$

(exterieur(interieur))' = exterieur'(interieur) × interieur'

Exemple. Calculer la dérivée de $f(x) = (3x + 5)^{10}$

$$f(x) = e(i(x))$$
 avec $i(x) = 3x + 5$ et $e(x) = x^{10}$.

$$i'(x) = 3$$
 et $e'(x) = 10x^9$

Donc
$$f'(x) = e'(i(x)) \times i'(x) = 10(i(x))^9 \times 3 = 30(3x+5)^9$$

Exemple. Calculer la dérivée de $f(x) = \sqrt{4x+2}$

$$f(x) = e(i(x))$$
 avec $i(x) = 4x + 2$ et $e(x) = \sqrt{x}$.

$$i'(x) = 4$$
 et $e'(x) = \frac{1}{2\sqrt{x}}$

Donc
$$f'(x) = e'(i(x)) \times i'(x) = \frac{1}{2\sqrt{i(x)}} \times 4 = \frac{4}{2\sqrt{4x+2}} = \frac{2}{\sqrt{4x+2}}$$

Exemple. Calculer la dérivée de $f(x) = e^{-7x^2+2}$

$$f(x) = e(i(x))$$
 avec $i(x) = -7x^2 + 2$ et $e(x) = e^x$. $i'(x) = -7 \times 2x = -14x$ et $e'(x) = e^x$.

$$i'(r) = -7 \times 2r = -14r$$
 et $e'(r) = e^x$

Donc
$$f'(x) = e'(i(x)) \times i'(x) = e^{(-7x^2+2)} \times (-14x) = -14x e^{-7x^2+2}$$

Exemple. Sur quel intervalle *I* la dérivée de $f(x) = \sqrt{4x+2}$ est-elle définie ?

$$f(x) = e(i(x))$$
 avec $i(x) = 4x + 2$ et $e(x) = \sqrt{x}$

e n'est dérivable que sur $J =]0; +\infty[= \mathbb{R}^*_+. i(x)]$ doit donc être à valeurs dans J.

On résout
$$i(x) \in J \Leftrightarrow 4x + 2 > 0 \Leftrightarrow 4x > -2 \Leftrightarrow x > -\frac{2}{4} \Leftrightarrow x > -0.5 \Leftrightarrow x \in]-0.5; +\infty[$$

Donc on doit choisir $I =]-0.5; +\infty[$ pour que $i: I \to J$ et que f soit dérivable sur I.