

MODEL REGRESI UNTUK DATA DERET WAKTU (2)

Pertemuan ke-6 Akbar Rizki, M.Si 1. Reviu

2. Uji Kebebasan Antar Sisaan

3. Penanganan Autokorelasi Diri

1. Reviu

2. Uji Kebebasan Antar Sisaan

3. Penanganan Autokorelasi Diri

• Salah satu asumsi regresi linear klasik:

$$cov(e_i, e_j) = 0$$

dengan e_i menunjukkan galat pengamatan ke-i dan e_j menunjukkan galat pengamatan ke-j.

- Sebab Umum Terjadinya Autokorelasi pada Galat:
 - a. Terdapat peubah yang tidak disertakan dalam model
 - b. Mispesifikasi model
 - c. Measurement error

Konsekuensi Pelanggaran Asumsi Kebebasan Sisaan

- Jika asumsi tidak terpenuhi:
- a. Penduga masih bersifat tak bias dan konsisten
- b. Jika ukuran contoh besar, masih bisa diasumsikan normal
- c. Namun, penduga menjadi tidak efisien (bukan penduga tak bias terbaik (BLUE)).
- d. Penduga galat baku menjadi tidak reliable, sehingga hasil uji-T dan F dapat menjadi tidak valid.

Deteksi Autokorelasi

- Deteksi Autokorelasi:
 - a. Pendekatan grafik (residual plot, ACF plot)
 - b. Uji Durbin-Watson
 - c. Uji Breusch-Godfrey (BG)
 - d. Run-test, etc

Deteksi Autokorelasi dengan Grafik

Plot sisaan vs order

Bila plot tidak membentuk pola tertentu, maka asumsi kebebasan terpenuhi

ACF dan PACF Sisaan

Bila ACF dan PACF tidak ada yang signifikan, maka sisaan saling bebas

1. Reviu

2. Uji Kebebasan Antar Sisaan

3. Penanganan Autokorelasi Diri

UJI DURBIN WATSON

- Hipotesis:
 - \checkmark H0: ϕ = 0 lawan H1: ϕ > 0 (terdapat autokorelasi positif)
 - ✓ $H0: \phi = 0$ lawan $H1: \phi < 0$ (terdapat autokorelasi negatif)
 - \checkmark H0: ϕ = 0 lawan H1: ϕ ≠ 0 (tidak terdapat autokorelasi)
- Statistik uji durbin-Watson (d) didefinisikan sbb:

$$d = \frac{\sum_{t=1}^{t=n} (e_t - e_{t-1})^2}{\sum_{t=1}^{t=n} e_t^2}$$

UJI DURBIN WATSON

- Asumsi pada Uji Durbin-Watson:
- 1. Terdapat intersep pada model regresi
- Seluruh peubah penjelas bersifat tetap (fixed) pada penarikan contoh berulang
- 3. Galat mengikuti skema Autoregressive (AR) ordo ke-1:

$$u_t = \rho u_{t-1} + v_t$$

dengan ho adalah koefisien autokorelasi yang bernilai -1 s.d 1

- 4. Galat menyebar normal
- Lag dari peubah respon tidak disertakan sebagai peubah penjelas dalam model

UJI DURBIN WATSON

- ullet Menggunakan dua titik kritis, yaitu batas bawah dL dan batas atas dU
- Nilai d selalu terletak di antara 0 dan 4
- Gambaran tentang statistik Durbin-Watson:
 - Jika d mendekati nol \rightarrow semakin besar kemungkinan adanya autokorelasi positif
 - Jika d mendekati 4 → semakin besar kemungkinan adanya autokorelasi negatif.
 - Jika d mendekati 2→belum cukup bukti adanya autokorelasi negatif atau positif

UJI DURBIN WATSON

Kriteria Penarikan Kesimpulan:

UJI DURBIN WATSON

• Ilustrasi

Berikut adalah data deret waktu selama 24 periode:

Periode	Y	Х	Periode	Υ	Х
1	32	38	13	69	74
2	49	40	14	64	132
3	50	44	15	60	52
4	39	62	16	51	32
5	38	50	17	47	56
6	55	106	18	46	14
7	57	50	19	40	18
8	50	52	20	49	36
9	58	132	21	72	42
10	81	138	22	60	18
11	81	100	23	54	42
12	67	96	24	40	10

UJI DURBIN WATSON

```
> summary(model)
Call:
lm(formula = y \sim x, data = contoh)
Residuals:
    Min
        10 Median 30
                                    Max
-17.9921 -6.0457 -0.9104 5.4266 21.1712
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.04340 4.08925 10.281 7.27e-10 ***
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 10.6 on 22 degrees of freedom
Multiple R-squared: 0.3709, Adjusted R-squared: 0.3423
F-statistic: 12.97 on 1 and 22 DF, p-value: 0.001585
```

Periode	Sisaan	Period	de Sisaan
1	-18.0	13	11.5
2	-1.4	14	-5.7
3	-1.2	15	7.1
4	-16.0	16	2.3
5	-14.5	17	-6.8
6	-9.2	18	1.0
7	4.5	19	-5.8
8	-2.9	20	-0.6
9	-11.7	21	21.2
10	10.1	22	14.2
11	18.0	23	3.2
12	4.9	24	-4.1

UJI DURBIN WATSON

$$d = \frac{\sum_{t=2}^{t=n} (e_t - e_{t-1})^2}{\sum_{t=1}^{t=n} e_t^2}$$

$$= \frac{(e_2 - e_1)^2 + (e_3 - e_2)^2 + \dots + (e_{24} - e_{23})^2}{e_1^2 + e_2^2 + \dots + e_{24}^2}$$

$$= \frac{(-1.4 - (-18))^2 + (-1.2 - (-1.4))^2 + \dots + (-4.1 - 3.2)^2}{(-18)^2 + (-1.4)^2 + \dots + (-4.1)^2}$$

$$= 1.208767$$

UJI DURBIN WATSON

$$d = \frac{\sum_{t=2}^{t=n} (e_t - e_{t-1})^2}{\sum_{t=1}^{t=n} e_t^2}$$

$$= \frac{(e_2 - e_1)^2 + (e_3 - e_2)^2 + \dots + (e_{24} - e_{23})^2}{e_1^2 + e_2^2 + \dots + e_{24}^2}$$

$$= \frac{(-1.4 - (-18))^2 + (-1.2 - (-1.4))^2 + \dots + (-4.1 - 3.2)^2}{(-18)^2 + (-1.4)^2 + \dots + (-4.1)^2}$$

$$= 1.208767$$

UJI DURBIN WATSON

	k	· =1	1	₹'=2	1	c'=3	1	₹'=4	3	€'=5	1	₹'=6	1	₹'=7	1	k'=8
n	dL	dU	dL	đU	dL	dU	dL	dU	dL	dU	dL	dU	dL	dU	dL	dU
5	0.610	1.400														
7	0.700	1.356	0.467	1.896												
3	0.763	1.332	0.559	1.777	0.367	2.287										
)	0.824	1.320	0.629	1.699	0.455	2.128	0.296	2.588								
10	0.879	1.320	0.697	1.641	0.525	2.016	0.376	2.414	0.243	2.822						
11	0.927	1.324	0.758	1.604	0.595	1.928	0.444	2.283	0.315	2.645	0.203	3.004				
12	0.971	1.331	0.812	1.579	0.658	1.864	0.512	2.177	0.380	2.506	0.268	2.832	0.171	3.149		
13	1.010	1.340	0.861	1.562	0.715	1.816	0.574	2.094	0.444	2.390	0.328	2.692	0.230	2.985	0.147	3.266
4	1.045	1.350	0.905	1.551	0.767	1.779	0.632	2.030	0.505	2.296	0.389	2.572	0.286	2.848	0.200	3.111
15	1.077	1.361	0.946	1.543	0.814	1.750	0.685	1.977	0.562	2.220	0.447	2.471	0.343	2.727	0.251	2.979
16	1.106	1.371	0.982	1.539	0.857	1.728	0.734	1.935	0.615	2.157	0.502	2.388	0.398	2.624	0.304	2.860
17	1.133	1.381	1.015	1.536	0.897	1.710	0.779	1.900	0.664	2.104	0.554	2.318	0.451	2.537	0.356	2.757
18	1.158	1.391	1.046	1.535	0.933	1.696	0.820	1.872	0.710	2.060	0.603	2.258	0.502	2.461	0.407	2.668
19	1.180	1.401	1.074	1.536	0.967	1.685	0.859	1.848	0.752	2.023	0.649	2.206	0.549	2.396	0.456	2.589
20	1.201	1.411	1.100	1.537	0.998	1.676	0.894	1.828	0.792	1.991	0.691	2.162	0.595	2.339	0.502	2.521
21	1.221	1.420	1.125	1.538	1.026	1.669	0.927	1.812	0.829	1.964	0.731	2.124	0.637	2.290	0.546	2.461
22	1.239	1.429	1.147	1.541	1.053	1.664	0.958	1.797	0.863	1.940	0.769	2.090	0.677	2.246	0.588	2.407
23	1.257	1.437	1.168	1.543	1.078	1.660	0.986	1.785	0.895	1.920	0.804	2.061	0.715	2.208	0.628	2.360
24	1.273	1.446	1.188	1.546	1.101	1.656	1.013	1.775	0.925	1.902	0.837	2.035	0.750	2.174	0.666	2.318
25	1.288	1.454	1.206	1.550	1.123	1.654	1.038	1.767	0.953	1.886	0.868	2.013	0.784	2.144	0.702	2.280
26	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873	0.897	1.992	0.816	2.117	0.735	2.246
27	1.316	1.469	1.240	1.556	1.162	1.651	1.084	1.753	1.004	1.861	0.925	1.974	0.845	2.093	0.767	2.216

• Ilustrasi

 d_L =1.273 dan d_U =1.446

Akbar Rizki, M.Si – IPB University

UJI DURBIN WATSON

• Ilustrasi


```
library(lmtest)
 dwtest (model)
        Durbin-Watson test
data:
      model
DW = 1.2088, p-value = 0.01364
alternative hypothesis: true
autocorrelation is greater than 0
```

1. Reviu

2. Uji Kebebasan Antar Sisaan

3. Penanganan Autokorelasi Diri

- Cochrane-Orcutt
- Hildreth-Lu
- Regresi dengan Peubah Lag

Pendahuluan

Perhatikan model berikut:

$$y_{t} = \beta_{1} + \beta_{2} x_{2t} + \beta_{3} x_{3t} + \dots + \beta_{k} x_{kt} + u_{t}$$
(1)

dengan

$$u_t = \rho u_{t-1} + \varepsilon_t$$

Jika model tdb di-lag-kan dan dikalikan dengan ho

$$\rho y_{t-1} = \beta_1 \rho + \beta_2 \rho x_{2t-1} + \beta_3 \rho x_{3t-1} + \dots + \beta_k \rho x_{kt-1} + \rho u_{t-1}$$
 (2)

Model pada persamaan (1) dikurangi dengan (2) akan menjadi:

$$y_{t} - \rho y_{t-1} = \beta_{1}(1 - \rho) + \beta_{2}(x_{2t} - \rho x_{2t-1}) + \dots + \beta_{k}(x_{kt} - \rho x_{kt-1}) + (u_{t} - \rho u_{t-1})$$
(3)

Pendahuluan

Pers. (3) dapat ditulis sbb.

$$y_t^* = \beta_0^* + \beta_1 x_{t1}^* + \beta_2 x_{t2}^* + \dots + \beta_k x_{tk}^* + u_t$$

dengan

$$y_t^* = y_t - \rho y_{t-1}, \quad \beta_0^* = \beta_0 (1 - \rho),$$

 $x_{ti}^* = x_{ti} - \rho x_{t-1,i}, \, \varepsilon_t = \rho \varepsilon_{t-1} + u_t$

for t = 2, 3, ..., T and i = 1, ..., k. Note that the error term satisfies all the properties needed for applying the OLS procedure. If ρ were known, we could apply OLS to the transformed y^* and x^* and obtain estimates that are BLUE. However, ρ is unknown and has to be estimated from the sample.

Cochrane-Orcutt

Pendekatan dilakukan secara iterative agar mendapatkan penduga ρ yg lebih baik.

Tahapan prosedur:

- 1. Meregresikan Y terhadap X untuk memperoleh galat e_t
- 2. Menduga koefisien korelasi serial ordo ke-1 $(\hat{\rho})$ dengan meregresikan e_t terhadap e_{t-1}

$$e_t = \rho e_{t-1} + u_t$$

3. Melakukan transformasi terhadap X dan Y:

$$y_t^* = y_t - \hat{\rho}y_{t-1}, \quad x_{t1}^* = x_{t1} - \hat{\rho}x_{t-1,1}$$

Cochrane-Orcutt

- 4. Meregresikan Y^* terhadap X^* sehingga diperoleh penduga koefisien β_0^* , β_1^* , dst...
- 5. Menghitung $\hat{\beta}_0 = \frac{\hat{\beta}_0^*}{1-\rho}$, substitusikan $\hat{\beta}_0$ dan β_1^* , β_2^* , dst... pada persamaan regresi pada tahap (1) sehingga dapat dihitung gugus data galat e_t yg baru.
- 6. Ulangi tahap (2) s.d tahap (5) hingga nilai $\hat{\rho}$ dianggap konvergen

Cochrane-Orcutt

Ilustrasi

Berikut adalah data deret waktu selama 24 periode:

Periode	Y	X
1	32	38
2	49	40
3	50	44
4	39	62
5	38	50
6	55	106
7	57	50
8	50	52
9	58	132
10	81	138
11	81	100
12	67	96

Periode	Y	X
13	69	74
14	64	132
15	60	52
16	51	32
17	47	56
18	46	14
19	40	18
20	49	36
21	72	42
22	60	18
23	54	42
24	40	10

Cochrane-Orcutt

```
> model<-lm(y~x)
> library(lmtest)
> dwtest(model)

Durbin-Watson test

data: model
DW = 1.2088, p-value = 0.01364
alternative hypothesis: true autocorrelation is greater than 0
```

Cochrane-Orcutt

Ilustrasi

```
> rho<-cochrane.orcutt(model)$rho
> y.transformed<-y[-1]-(y[-24]*rho)
> x.transformed<-x[-1]-(x[-24]*rho)
> model.t<-lm(y.transformed~x.transformed)</pre>
```

before

after

Cochrane-Orcutt

Ilustrasi

Penduga koefisien regresi setelah tranformasi ke persamaan awal:

•
$$b_0 = \frac{b_0^*}{1-r} = \frac{26.76315}{1-0.441367} = 47.90829$$

•
$$b_1 = b_1^* = 0.13206$$

$$\Rightarrow \hat{y}_t = 47.908 + 0.132 x_t$$

Hildreth-Lu

- STEP 1: Choose a value of ρ (say ρ_1). Using this value, transform the variables and estimate the transformed regression by OLS.
- STEP 2: From these estimates, derive \hat{u}_t from Equation (10.1) and the error sum of squares associated with it. Call it $SSR_{\hat{u}}(\rho_1)$, Nest choose a different ρ (ρ_2) and repeat Steps 1 and 2.
- STEP 3: By varying ρ from -1 to +1 in some systematic way (say, at steps of length 0.05 or 0.01), we can get a series of values of $SSR_{\hat{u}}(\rho)$. Choose that ρ for which $SSR_{\hat{u}}$ is a minimum. This is the final ρ that globally minimizes the error sum of squares of the transformed model. Equation (10.1) is then estimated with the final ρ as the optimum solution.

Hildreth-Lu

• Ilustrasi

```
# Hildreth-Lu (does not require iterations)
rho = c(seq(0.1, 0.8, by=0.1), seq(0.90, 0.99, by=0.01))
hildreth.lu <- function(rho, model) {
  x <- model.matrix(model)[, -1]
  y <- model.response(model.frame(model))</pre>
  n <- length(y)
  t <- 2:n
  y < -y[t] - rho * y[t-1]
  x \leftarrow x[t] - rho * x[t-1]
  return(lm(y \sim x))
```

Hildreth-Lu

```
> fit <- lm(y \sim x)
> tab <- data.frame('rho' = rho,
                    'SSE' = sapply(rho, function(r) {deviance(hildreth.lu(r, fit))}))
> round(tab, 4)
    rho
             SSE
1 0.10 1979,103
2 0.20 1869.163
3 0.30 1796.786
4 0.40 1761.665
5 0.50 1765.243
6 0.60 1810.768
7 0.70 1902.698
8 0.80 2045.622
9 0.90 2243.228
10 0.91 2266.095
11 0.92 2289.534
12 0.93 2313.546
13 0.94 2338.132
14 0.95 2363.293
15 0.96 2389.029
16 0.97 2415.341
17 0.98 2442.231
18 0.99 2469.697
```

Hildreth-Lu

```
plot(SSE ~ rho, tab, type = 'l')
abline(v = tab[tab$SSE == min(tab$SSE), 'rho'], lty = 3)
```


Hildreth-Lu

Hildreth-Lu

• Ilustrasi

```
> fit <- hildreth.lu(0.44, fit)</pre>
> summary(fit)
Call:
lm(formula = v \sim x)
Residuals:
    Min
            1Q Median
-15.460 -6.101 -1.872 5.278 20.160
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 26.82008 2.74456 9.772 2.9e-09 ***
            0.13228 0.05897 2.243 0.0358 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.15 on 21 degrees of freedom
Multiple R-squared: 0.1933, Adjusted R-squared: 0.1549
F-statistic: 5.031 on 1 and 21 DF, p-value: 0.03581
> dwtest(fit)
        Durbin-Watson test
data: fit
DW = 1.6625, p-value = 0.1984
alternative hypothesis: true autocorrelation is greater than 0
```

Hildreth-Lu

Ilustrasi

```
> cat("Y = ", coef(fit)[1] / (1 - 0.44), " + ",
coef(fit)[2], "X", sep = "")

Y = 47.893 + 0.1322756X
```

Persamaan regresi setelah di transformasi ke persamaan awal

TERIMAKASIH

4. TUGAS PRAKTIKUM

NOMOR 1

Berikut ini adalah data pangsa pasar produk pasta gigi selama 20 periode:

Periode	Pangsa Pasar	Harga
1	3.63	0.97
2	4.20	0.95
3	3.33	0.99
4	4.54	0.91
5	2.89	0.98
6	4.87	0.90
7	4.90	0.89
8	5.29	0.86
9	6.18	0.85
10	7.20	0.82

Periode	Pangsa Pasar	Harga
11	7.25	0.79
12	6.09	0.83
13	6.80	0.81
14	8.65	0.77
15	8.43	0.76
16	8.29	0.80
17	7.18	0.83
18	7.90	0.79
19	8.45	0.76
20	8.23	0.78

- Lakukan pemodelan regresi antara pangsa pasar (Y) terhadap harga (X).
- Periksalah apakah terdapat autokorelasi pada sisaan model tersebut dengan pendekatan:
 - a) Grafik
 - b) Uji Durbin-Watson

4. TUGAS PRAKTIKUM

NOMOR 2

Periode	Х	Υ	Periode	Х	Υ
1	0	6.3	10	3	3.4
2	0	6.2	11	3	3.5
3	0	6.4	12	3	3.6
4	1	5.3	13	4	2.6
5	1	5.4	14	4	2.5
6	1	5.5	15	4	2.4
7	2	4.5	16	5	1.3
8	2	4.4	17	5	1.4
9	2	4.4	18	5	1.5

- Periksalah apakah terdapat korelasi serial pada sisaan model regresi $y_t = b_0 + b_1 x_t + e_t$?
- Jika ada, lakukan penanganan dengan metode Cochrane-Orcutt.
- Lakukan pula penanganan dengan metode Hildreth-Lu.

4. TUGAS PRAKTIKUM

NOMOR 3

Tahun	Penju	Biaya
	alan	Iklan
1975	11.7	9.4
1976	12.0	9.6
1977	12.3	10
1978	12.8	10.4
1979	13.1	10.8
1980	13.6	10.9
1981	13.9	11.7
1982	14.4	12.2
1983	14.7	12.5
1984	15.3	12.9
1985	15.5	13.0
1986	15.8	13.2
1987	16.1	13.8
1988	16.6	14.2
1989	16.9	14.6
1990	16.7	14.4
1991	16.9	15.0
1992	17.4	15.4
1993	17.6	15.7
1994	17.9	15.9

Tahun	Penju	Biaya
	alan	Iklan
1995	18.0	15.9
1996	17.9	16.0
1997	18.0	16.3
1998	18.2	16.2
1999	18.2	16.8
2000	18.3	17.3
2001	18.6	17.6
2002	19.2	18.1
2003	19.3	18.3
2004	19.5	18.5
2005	19.2	18.7
2006	19.3	18.9
2007	19.5	19.2
2008	20.0	20.0
2009	20.0	20.0
2010	19.9	20.3
2011	19.8	20.4
2012	19.9	21.0
2013	20.2	21.5
2014	21.0	22.1

- Periksalah apakah terdapat korelasi serial pada sisaan model regresi $y_t = b_0 + b_1 x_t + e_t$?
- Jika ada, lakukan penanganan dengan metode Cochrane-Orcutt.
- Lakukan pula penanganan dengan metode Hildreth-Lu.