Chapter 5 Hash Functions++

Hash Function Motivation

- Suppose Alice signs M
 - o Alice sends M and $S = [M]_{Alice}$ to Bob
 - o Bob verifies that $M = \{S\}_{Alice}$
 - o Is it OK to just send S?
- □ If M is big, [M]_{Alice} is costly to compute
- Suppose instead, Alice signs h(M), where h(M) is much smaller than M
 - o Alice sends M and $S = [h(M)]_{Alice}$ to Bob
 - o Bob verifies that $h(M) = \{S\}_{Alice}$

Part 1 ≥ Cryptography

Crypto Hash Function

- \Box Crypto hash function h(x) must provide
 - o Compression —output length is small
 - o Efficiency -h(x) easy to computer for any x
 - o One-way —given a value y it is infeasible to find an x such that h(x) = y
 - o Weak collision resistance —given x and h(x), infeasible to find $y \neq x$ such that h(y) = h(x)
 - o Strong collision resistance —infeasible to find any x and y, with $x \neq y$ such that h(x) = h(y)
 - o Lots of collisions exist, but hard to find one

Part 1 ≥ Cryptography

Pre-Birthday Problem

- Suppose N people in a room
- □ How large must N be before the probability someone has same birthday as me is $\geq 1/2$
 - o Solve: $1/2 = 1 (364/365)^N$ for N
 - \circ Find N = 253

Birthday Problem

- □ How many people must be in a room before probability is $\geq 1/2$ that two or more have same birthday?
 - $0.1 365/365 \cdot 364/365 \cdot \cdot \cdot (365 N + 1)/365$
 - Set equal to 1/2 and solve: N = 23
- Surprising? A paradox?
- Maybe not: "Should be" about sqrt(365) since we compare all pairs x and y

Of Hashes and Birthdays

- $\ \ \square$ If h(x) is N bits, then 2^N different hash values are possible
- \Box sqrt(2^N) = 2^{N/2}
- $\hfill\Box$ Therefore, hash about $2^{N/2}$ random values and you expect to find a collision
- □ Implication: secure N bit symmetric key requires 2^{N-1} work to "break" while secure N bit hash requires $2^{N/2}$ work to "break"

Next Non-crypto & Crypto Hashes, Design, Tiger, HMAC,...