6-6 如图所示,摇杆 OC 绕 O 轴转动,拨动固定在齿条 AB 上的销钉 K 而使齿条在铅直 导轨内移动。齿条再传动半径 $r=100\,\mathrm{mm}$ 的齿轮D。连线 OO_1 是水平的,距离 l = 400 mm。在图示位置,摇杆角速 度 $\omega = 0.5 \text{ rad/s}$, $\varphi = 30^{\circ}$ 。试求此时齿轮 D 的角速度。 解法一:

分两步计算。

(1) 计算齿条 AB 的速度。取 K 为动点,OC 杆为动系,则 $v_{e} = \overline{OK} \omega$. 由速度合成定理得:

$$v_{AB} = v_{a} = \frac{v_{e}}{\cos \varphi} = \frac{l\omega}{\cos^{2} \varphi},$$

(2) 计算齿轮 D 的角速度。

$$\omega_D = \frac{v_{AB}}{r} = \frac{l\omega}{r\cos^2\varphi} = \frac{8}{3} = 2.67 \text{ rad/s}. (逆时针)$$

解法二: 设齿轮 D 和齿条 AB 的啮合点到 K 点的距离为 h,则 $h = l \tan \varphi$, $\dot{\varphi} = -\omega$, 从而有

$$v_{AB} = \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} (l \tan \varphi) = -\frac{l \omega}{\cos^2 \omega t}$$

代入数据,

$$v_{AB} = -\frac{0.4 \times 0.5}{\cos^2 30^\circ} = -\frac{4}{15}$$
 m/s.

其中负号表示 v_{AB} 是沿h减小的方向,即向下。齿轮D的角速度为

$$v_D = \frac{v_{AB}}{r} = \frac{8}{3} = 2.67$$
 m/s. (逆时针)

解: 取销子 M 为动点,分别将动系 1,2 固结在盘和杆 OA

上,则
$$v_{\rm el} = \frac{b}{\cos 30^{\circ}} \omega_{\rm l}$$
, $v_{\rm e2} = \frac{b}{\cos 30^{\circ}} \omega_{\rm 2}$,方向与 OA 垂

直. 由速度合成定理

题 6-6 图

$$v_{\rm a} = v_{\rm e1} + v_{\rm r1}$$
, $v_{\rm a} = v_{\rm e2} + v_{\rm r2}$,

故

$$v_{\rm a} = v_{\rm e1} + v_{\rm r1} = v_{\rm e2} + v_{\rm r2}$$
 ,

将此式向水平方向投影,得

$$-v_{\rm el}\cos 60^{\circ} + 0 = -v_{\rm e2}\cos 60^{\circ} - v_{\rm r2}\cos 30^{\circ}$$

由此解出

$$v_{r2} = \frac{\sin 30^{\circ}}{\cos^2 30^{\circ}} b(\omega_1 - \omega_2),$$

代入数据得 $v_{r2} = 0.4$ m/s, $v_{e2} = 0.346$ m/s,

所以销子速度
$$v_a = \sqrt{{v_{e2}}^2 + {v_{r2}}^2} = 0.529$$
 m/s.

6-11 如图所示,带滑道的圆轮以等角速度 ω_0 绕 O 轴转动,滑块 A 可在滑道内滑动,已知 $OO_1=l$,在图示瞬时, $OA\perp OO_1$,且 OA=b,试求此瞬时:(1) 滑块相对于圆轮的

速度和加速度;(2)曲柄 O_1A 的角速度及角加速度。

解: 取 O_1A 杆的 A 点为动点,圆轮为动系,它作定轴转动.

(1) 速度分析. $v_e = b\omega_0$, $v_a = l\omega_{O_1A}$.由 $v_a = v_e + v_r$, 经过速度合成图分析可以看出

$$v_{\rm a} = \frac{v_{\rm e}}{\sin \theta}, \quad v_{\rm r} = v_{\rm e} \cot \theta.$$

其中 $\sin \theta = \frac{b}{\sqrt{h^2 + l^2}}$, $\cot \theta = \frac{l}{b}$, 代入上式,得

$$v_{\rm a} = \omega_0 \sqrt{b^2 + l^2}$$
, $v_{\rm r} = l\omega_0$.

曲柄 O_1A 的角速度 $\omega_{O_1A}=rac{v_{
m a}}{O_1A}=\omega_0$,顺时针方向.

(2) 加速度分析.
$$a_{\rm a}^{\rm n} = \sqrt{b^2 + l^2} \omega_{O_1 A}^2 = \omega_0^2 \sqrt{b^2 + l^2}$$
 , $\alpha_{\rm a}^{\rm n} = \sqrt{b^2 + l^2} \omega_{O_1 A}^2 = \omega_0^2 \sqrt{b^2 + l^2}$,

连运动为定轴转动时的加速度合成定理 $\boldsymbol{a}_a^n + \boldsymbol{a}_a^t = \boldsymbol{a}_e^n + \boldsymbol{a}_e^t + \boldsymbol{a}_r + \boldsymbol{a}_c$,分别向水平和铅垂轴投影

$$-a_{\rm a}^{\rm t}\sin\vartheta + a_{\rm a}^{\rm n}\cos\vartheta = a_{\rm c}$$
, $a_{\rm a}^{\rm t}\cos\vartheta + a_{\rm a}^{\rm n}\sin\vartheta = a_{\rm e}^{\rm n} + a_{\rm r}$

解得:
$$a_{\rm a}^{\rm t}=-rac{l}{h}\omega_{
m 0}^2\sqrt{b^2+l^2}$$
, $a_{
m r}=-rac{l^2}{h}\omega_{
m 0}^2$.(方向向上).

曲柄
$$O_1A$$
的角加速度 $\alpha_{O_1A} = \frac{a_{\rm a}^{\rm t}}{O_1A} = -\frac{l}{b}\omega_0^2$, (逆时针).

6-13 如图所示,杆 OA 绕定轴 O 转动,圆盘绕动轴 A 转动。一直杆长 $I=0.2\,\mathrm{m}$,圆盘半径 $r=0.1\,\mathrm{m}$,在图示位置,杆的角速度和角加速度为 $\omega=4\,\mathrm{rad/s}$, $\alpha=3\,\mathrm{rad/s}^2$,圆盘相对于杆 OA 的角速度和角加速度为 $\omega_\mathrm{r}=6\,\mathrm{rad/s}$, $\alpha_\mathrm{r}=4\,\mathrm{rad/s}^2$ 。求圆盘上 M_1 和 M_2 点的绝对速度及绝对加速度。

解:

(1) 动点:圆盘上 M_1 点;动系: OA杆。

则 OA 延长线与 M_1 重合的点 m_1 为牵连点。可得

$$v_{\rm e} = \omega \cdot Om_1 = 4 \times 0.3 = 1.2$$
 m/s,

方向为垂直 Om_1 逆时针方向。又

$$v_{\rm r} = \omega_{\rm r} \cdot r = 6 \times 0.1 = 0.6 \,\text{m/s}$$

方向与ve平行而反向。

 M_1 点的加速度合成图

 $\therefore v_{\rm a} = v_{\rm e} + v_{\rm r} = 1.2 - 0.6 = 0.6 \text{ m/s},$ 方向与 $v_{\rm e}$ 相同。

 M_1 点的加速度合成图如图 b),其中 $a_{
m e}^{
m n}=\omega^2\cdot\overline{Om}_1=4^2 imes0.3=4.8~{
m m/s}^2$; $a_{
m r}^{
m n}=\omega_{
m r}^2\cdot r=3.6~{
m m/s}^2$; $a_{
m r}^{
m t}=\alpha_{
m r}\cdot r=0.4~{
m m/s}^2$, $a_{
m e}^{
m t}=\alpha\cdot\overline{Om}_1=0.9~{
m m/s}^2$, $a_{
m c}=2\omega v_{
m r}=4.8~{
m m/s}^2$.

$$a_{\rm a}^{\rm n} + a_{\rm a}^{\rm t} = a_{\rm e}^{\rm n} + a_{\rm e}^{\rm t} + a_{\rm r}^{\rm n} + a_{\rm r}^{\rm t} + a_{\rm c}$$

得
$$a_a^n = a_e^n + a_r^n - a_c = 3.6 \text{ m/s}^2$$
, $a_a^t = a_e^t - a_r^t = 0.5 \text{ m/s}^2$

$$\therefore a_a = \sqrt{(a_a^n)^2 + (a_a^t)^2} = 3.63 \text{ m/s}^2$$

(2) 动点:圆盘上M₂点;动系: OA杆。

 OA 杆的刚性延伸,与 M_2 点重合的 m_2 点为牵连点,有

$$v_{\rm r} = \omega_{\rm r} \cdot r = 0.6 \,\mathrm{m/s}, \quad v_{\rm e} = \omega \cdot \overline{OM_2} = 0.894 \,\mathrm{m/s}$$

速度合成图如图示,图中 $9 = \arctan(2) = 63.43^{\circ}$

由速度合成定理得

$$v_{\rm a} = \sqrt{(-v_{\rm e}\cos\theta + v_{\rm r})^2 + (v_{\rm e}\sin\theta)^2} = 0.824 \text{ m/s}.$$

作 M_2 点的速度合成图如图示,其中

$$a_{
m r}^{
m n} = \omega_{
m r}^2 \cdot r = 6^2 imes 0.1 = 3.6 \ {
m m/s}^2, \quad a_{
m r}^{
m \tau} = lpha_{
m r} \cdot r = 0.1 imes 4 = 0.4 \ {
m m/s}^2, \ a_{
m c} = 2\omega \ v_{
m r} = 4.8 \ {
m m/s}^2 \ a_{
m e}^{
m n} = \omega^2 \cdot \overline{Om_2} = 1.6 \sqrt{5} \ {
m m/s}^2, \quad a_{
m e}^{
m \tau} = \alpha \cdot \overline{Om_2} = 0.3 \sqrt{5} \ {
m m/s}^2 \, .$$

$${
m m} {
m m}$$

由勾股定理, 得 $a_a = 3.45$ m/s².

M, 点的速度合成图

 M_2 点的加速度合成图

6-16 一牛头刨床的机构如图所示。已知 $O_1A=200~\mathrm{mm}$,匀角速度 $\omega_1=2~\mathrm{rad/s}$ 。求图示位置滑枕 CD 的速度和加速度。

解: 1) 速度分析 (图 a)。

先取 O_1A 的A点为动点, O_2B 为动系,设 $\overline{O_1A}=r$ 。由速度合成定理,A点的速度为

$$\boldsymbol{v}_{Aa} = \boldsymbol{v}_{Ae} + \boldsymbol{v}_{Ar}$$
,

其中 $v_{Aa} = r\omega$,解得

$$v_{Ae} = \omega_{\rm l} r \sin 30^\circ = \frac{1}{2} \omega_{\rm l} r ,$$

$$v_{Ar} = \omega_1 r \cos 30^\circ = \frac{\sqrt{3}}{2} \omega_1 r$$

于是, O_2B 杆的角速度为 $\omega_2 = \frac{v_{Ae}}{O_2A} = \frac{\omega_1}{4}$ (逆时针).

再选B点为动点,CD为动系,由速度合成定理,B点速度为

$$\boldsymbol{v}_{Ba} = \boldsymbol{v}_{Be} + \boldsymbol{v}_{Br}$$

其中, $v_{Ba} = \overline{O_2B} \cdot \omega_2$,由此解得CD的速度为

$$v_{Be} = v_{Ba} \cos 30^{\circ} = \frac{\sqrt{3}}{2} \cdot \overline{O_2 B} \cdot \omega_2 = 0.325 \text{ m/s}.$$

滑枕 CD 的速度 $v_{CD}=0.325~\mathrm{m/s}$,方向向右。

动点, 动系仍如速度分析。

A点加速度

$$\boldsymbol{a}_{Aa} = \boldsymbol{a}_{Ae}^{t} + \boldsymbol{a}_{Ae}^{n} + \boldsymbol{a}_{Ar} + \boldsymbol{a}_{c}$$
,

其中

$$a_{Aa} = r\omega_1^2$$
, $a_{Ae}^t = \overline{O_2 A} \cdot \alpha_2 = 2r\alpha_2$, $a_{Ae}^n = \overline{O_2 A} \cdot \omega_2^2 = \frac{r}{8}\omega_1^2$

$$a_{\rm c} = 2\omega_2 v_{\rm Ar} = \frac{\sqrt{3}}{4} r \omega_1^2.$$

方向如图示。向 η 轴投影得

$$a_{Aa}\cos 30^\circ = -a_{Ae}^\tau + a_c$$

题 5-16 图

图 a 速度分析图

图 b 加速度分析图

解得
$$a_{Ae}^{t} = a_{c} - a_{Aa} \cos 30^{\circ} = -\frac{\sqrt{3}}{4} r \omega_{l}^{2}$$
,

于是,
$$O_2B$$
杆的角加速度为 $\alpha_2 = \frac{a_{Ae}^t}{O_2A} = -\frac{\sqrt{3}}{8}\omega_1^2$,(逆时针)

B点加速度为

$$m{a}_{Ba}^{t}$$
 + $m{a}_{Ba}^{n}$ = $m{a}_{Be}$ + $m{a}_{Br}$ 大小: $ar{O}_{2}ar{B}\cdotm{lpha}_{2}$ $ar{O}_{2}ar{B}\omega_{2}^{2}$? ? $ar{r}$ 方向: 如 图 所 示

向 CD 轴投影得

$$a_{Ba}^{t}\cos 30^{\circ} - a_{Ba}^{n}\sin 30^{\circ} = a_{Be}$$

解得 $a_{Be} = -0.6567$ m/s

滑枕 CD 的加速度 $a_{CD}=0.6567$ m/s ,方向向左。

在图示位置,滑枕 CD 的速度和加速度反向,表明滑枕在此瞬时作减速运动。