INT102 Algorithmic Foundations and Problem Solving Dynamic Programming

Dr Pengfei Fan Department of Intelligent Science

Dynamic programming

Learning outcomes

- Understand the basic idea of dynamic programming
- ➤ Able to apply dynamic programming to compute Fibonacci numbers
- ➤ Able to apply dynamic programming to solve the assembly line scheduling problem

Dynamic programming an efficient way to implement some divide and conquer algorithms

Those who cannot remember the past are condemned to repeat it.

-Dynamic Programming

Dynamic programming

- The basic steps of dynamic programming are as follows:
 - Define the problem and identify the subproblems.
 - Formulate a recursive solution to the problem.
 - Memoize the solutions of the subproblems in a table or array.
 - -Use the memoized solutions to compute the optimal solution to the problem.

Fibonacci numbers

Problem with recursive method

Fibonacci number F(n)

$$F(n) = \begin{cases} 1 & \text{if } n = 0 \text{ or } 1 \\ F(n-1) + F(n-2) & \text{if } n > 1 \end{cases}$$

n	0	1	2	3	4	5	6	7	8	9	10
F(n)	1	1	2	3	5	8	13	21	34	55	89

Two approaches

```
Procedure F(n)
  if n==0 or n==1 then
    return 1
  else
    return F(n-1) + F(n-2)
```

```
Procedure F(n)
   Set A[0] = A[1] = 1
   for i = 2 to n do
        A[i] = A[i-1] + A[i-2]
   return A[n]
```


Recursive version - exponential

$$f(n) = f(n-1) + f(n-2) + 1$$

$$= [f(n-2)+f(n-3)+1]+f(n-2)+1$$

$$> 2 f(n-2)$$

$$> 2 [2 f(n-2-2)] = 2^2 f(n-4)$$

$$> 2^2 [2 f(n-4-2)] = 2^3 f(n-6)$$

Suppose f(n) denote the time complexity to compute F(n)

•••

 $> 2^k f(n-2k)$

exponential in n

Can we avoid exponential time?

If n is even, $f(n) > 2^{n/2} f(0) = 2^{n/2}$ If n is odd, $f(n) > f(n-1) > 2^{(n-1)/2}$

Idea for improvement

Memoization:

- ➤ Store F(i) somewhere after we have computed its value
- Afterward, we don't need to re-compute F(i); we can retrieve its value from our memory.

- [] refers to array
- () is parameter for calling a procedure

```
Procedure F(n)
  if (v[n] < 0) then
    v[n] = F(n-1)+F(n-2)
  return v[n]</pre>
```

Main

$$set v[0] = v[1] = 1$$

$$v[i] = -1$$

(Dynamic Programming)

Can we do even better?

Observation

- The 2nd version stills make many function calls, and each wastes times in parameters passing, dynamic linking, ...
- In general, to compute F(i), we need F(i-1) & F(i-2) only

Idea to further improve

- Compute the values in bottom-up fashion.
- That is, compute F(2) (we already know F(0)=F(1)=1), then F(3), then F(4)...

This new implementation saves lots of overhead.

```
Procedure F(n)

Set A[0] = A[1] = 1

for i = 2 to n do

A[i] = A[i-1] + A[i-2]

return A[n]
```

Recursive vs DP approach

Recursive version:

```
Procedure F(n)
   if n==0 or n==1 then
     return 1
   else
    return F(n-1) + F(n-2)
```

Too Slow! exponential

Dynamic Programming version:

```
Procedure F(n)
   Set A[0] = A[1] = 1
   for i = 2 to n do
        A[i] = A[i-1] + A[i-2]
   return A[n]
```

Efficient!
Time complexity is O(n)

Summary of the methodology

- Write down a formula that relates a solution of a problem with those of sub-problems.
 - E.g. F(n) = F(n-1) + F(n-2).
- Index the sub-problems so that they can be stored and retrieved easily in a table (i.e., array)
- Fill the table in some **bottom-up** manner; start filling the solution of the smallest problem.
 - This ensures that when we solve a particular sub-problem, the solutions of all the smaller sub-problems that it depends are available.

For historical reasons, we call such methodology **Dynamic Programming**.

In the late 40's (when computers were rare), programming refers to the "tabular method".

Exercise

Consider the following function

$$G(n) = \begin{cases} 1 & \text{if } 0 \le n \le 2 \\ G(n-1) + G(n-2) + G(n-3) & \text{if } n > 2 \end{cases}$$
Draw the execution tree of computing G(6)

- Draw the execution tree of computing G(6) recursively
- 2. Using dynamic programming, write a pseudo code to compute G(n) efficiently
- 3. What is the time complexity of your algorithm?

Exercise

$$G(n) = \begin{cases} 1 & \text{if } 0 \le n \le 2 \\ G(n-1) + G(n-2) + G(n-3) & \text{if } n > 2 \end{cases}$$

Dynamic Programming version:

```
Procedure G(n)
Set A[0] = A[1] = A[2] = 1
for i = 3 to n do
    A[i] = A[i-1] + A[i-2] + A[i-3]
return A[n]
```

Time complexity is O(n)

Assembly line scheduling

Assembly line scheduling

2 assembly lines, each with n stations ($S_{i,j}$: line i station j) $S_{1,j}$ and $S_{2,j}$ perform same task but time taken is different

 $\mathbf{a}_{i,j}$: assembly time at $\mathbf{S}_{i,j}$ $\mathbf{t}_{i,j}$: transfer time after $\mathbf{S}_{i,j}$

Problem: To determine which stations to go in order to minimize the total time through the n stations

Example (1)

stations chosen:	S _{1,1}	S _{1,2}	S _{2,3}	S _{2,4}
time requir <mark>ed:</mark>	5	5 4	3	7 = 24

Example (2)

stations chosen:	S _{1,1}	S _{1,2}		S _{2,3}	S _{2,4}	
time requir <mark>ed:</mark>	5	5	4	3	7	= 24
stations chosen:	S _{2.1}	S _{1 2}		S _{2 3}	S _{1,4}	

time required: 15 1 5 4 3 2 4 = 34

Good news: Dynamic Programming

- > We don't need to try all possible choices.
- > We can make use of dynamic programming:
 - 1. If we can compute the fastest ways to get thro' station $S_{1,n}$ and $S_{2,n}$, then the faster of these two ways is the overall fastest way.
 - 2. To compute the fastest ways to get thro' $S_{1,n}$ (similarly for $S_{2,n}$), we need to know the fastest way to get thro' $S_{1,n-1}$ and $S_{2,n-1}$
 - 3. In general, we want to know the fastest way to get thro' $S_{1,i}$ and $S_{2,i}$, for all j.

A dynamic programming solution

What are the sub-problems?

- given j, what is the fastest way to get thro' $S_{1,i}$
- given j, what is the fastest way to get thro' $S_{2,j}$

Definitions:

- $-\mathbf{f_1[j]}$ = the fastest time to get thro' $S_{1,j}$
- $-\mathbf{f_2[j]}$ = the fastest time to get thro' $S_{2,i}$

The final solution equals to $\min \{ f_1[n], f_2[n] \}$

Task:

- Starting from $f_1[1]$ and $f_2[1]$, compute $f_1[j]$ and $f_2[j]$ incrementally

Q1: what is the fastest way to get thro' $S_{1,i}$?

A: either

- the fastest way thro' $S_{1,i-1}$, then <u>directly</u> to $S_{1,i}$, or
- the fastest way thro' $S_{2,j-1}$, a <u>transfer</u> from line 2 to line 1, and then through $S_{1,i}$

Q1: what is the fastest way to get thro' $S_{1,i}$?

A: either

- the fastest way thro' $S_{1,j-1}$, then directly to $S_{1,j}$ or
- the fastest way thro' $S_{2,j-1}$, a transfer from line 2 to line 1, and then through $S_{1,i}$

Q1: what is the fastest way to get thro' $S_{1,j}$?

A: either

- the fastest way thro' $S_{1,j-1}$, then directly to $S_{1,j}$, or
- the fastest way thro' $S_{2,j-1}$, a transfer from line 2 to line 1, and then through $S_{1,i}$

Q1: what is the fastest way to get thro' $S_{1,j}$?

A: either

- the fastest way thro' $S_{1,i-1}$, then directly to $S_{1,i}$, or
- the fastest way thro' $S_{2,j-1}$, a transfer from line 2 to line 1, and then through $S_{1,j}$

Conclusion:

$$f_1[j] = \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$$

Boundary case:

$$f_{1}[1] = a_{1,1}$$
Line 1
$$S_{1,j-1}$$

$$S_{1,j-1}$$

$$S_{1,j-1}$$

$$S_{1,j-1}$$

$$S_{1,j-1}$$

$$S_{1,j-1}$$

$$S_{1,j-1}$$

$$S_{1,j-1}$$

$$S_{2,j-1}$$

$$S_{2,j-1}$$

$$S_{2,j-1}$$

Q2: what is the fastest way to get thro' S_{2,i}?

By exactly the same analysis, we obtain the formula for the fastest way to get thro' $S_{2,i}$:

$$f_2[j] = \min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j})$$

Boundary case:

$$f_2[1] = a_{2,1}$$

$$f_{1}[j] = \begin{cases} a_{1,1} & \text{if } j=1, \\ \min \ (f_{1}[j-1]+a_{1,j} \ , \ f_{2}[j-1]+t_{2,j-1}+a_{1,j}) & \text{if } j>1 \end{cases}$$

$$f_{2}[j] = \begin{cases} a_{2,1} & \text{if } j=1, \\ \min \ (f_{2}[j-1]+a_{2,j} \ , \ f_{1}[j-1]+t_{1,j-1}+a_{2,j}) & \text{if } j>1 \end{cases}$$

$$f^{*} = \min(f_{1}[n] \ , f_{2}[n] \)$$

$$f_{1}[j] = \begin{cases} a_{1,1} & \text{if } j=1, \\ \min \ (f_{1}[j-1] + a_{1,j} \ , \ f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j>1 \end{cases}$$

$$f_{2}[j] = \begin{cases} a_{2,1} & \text{if } j=1, \\ \min \ (f_{2}[j-1] + a_{2,j} \ , \ f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j>1 \end{cases}$$

$$f^{*} = \min(f_{1}[n], f_{2}[n])$$

$$f_{1}[j] = \begin{cases} a_{1,1} & \text{if } j=1, \\ \min \ (f_{1}[j-1] + a_{1,j} \ , \ f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j>1 \end{cases}$$

$$f_{2}[j] = \begin{cases} a_{2,1} & \text{if } j=1, \\ \min \ (f_{2}[j-1] + a_{2,j} \ , \ f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j>1 \end{cases}$$

$$f^{*} = \min(f_{1}[n], f_{2}[n])$$

$$\begin{split} f_1[j] &= \left\{ \begin{array}{l} a_{1,1} & \text{if } j{=}1, \\ \min \; (\; f_1[j{-}1]{+}a_{1,j} \; , \; f_2[j{-}1]{+}t_{2,j{-}1}{+}a_{1,j}) & \text{if } j{>}1 \\ \\ f_2[j] &= \left\{ \begin{array}{ll} a_{2,1} & \text{if } j{=}1, \\ \min \; (\; f_2[j{-}1]{+}a_{2,j} \; , \; f_1[j{-}1]{+}t_{1,j{-}1}{+}a_{2,j}) & \text{if } j{>}1 \\ \\ f^* &= \min (\; f_1[n] \; , \; f_2[n] \;) \\ \end{split} \right. \end{split}$$

$$f_{1}[j] = \begin{cases} a_{1,1} & \text{if } j=1, \\ \min \ (f_{1}[j-1] + a_{1,j} \ , \ f_{2}[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j>1 \end{cases}$$

$$f_{2}[j] = \begin{cases} a_{2,1} & \text{if } j=1, \\ \min \ (f_{2}[j-1] + a_{2,j} \ , \ f_{1}[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j>1 \end{cases}$$

$$f^{*} = \min(f_{1}[n], f_{2}[n])$$

set $f_1[1] = a_{1,1}$ set $f_2[1] = a_{2,1}$ for j = 2 to n do begin

set $f_1[j] = \min (f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$

set
$$f_2[j] = min (f_2[j-1]+a_{2,j}, f_1[j-1]+t_{1,j-1}+a_{2,j})$$

end

set
$$f^* = \min(f_1[\mathbf{n}], f_2[\mathbf{n}])$$

One more example

One more example – solution

What if there are 3 or more lines?

In general, m assembly lines: use multi-dimensional arrays.

- a[i][j] represents assemble time of station j on line i
- t[i][j][k] represents transfer time from station j on line
 i to station (j+1) on line k
 - -t[i][j][i] = 0

f[i][j] - represents the best so far way of going thro'
 station j on line i

$$f[i][j] = \min_{1 \le k \le m} (f[k][j-1]+t[k][j-1][i] + a[i][j])$$

Pseudo code – calculate f[i][j]

```
for i = 1 to m do set f[i][1] = a[i][1]
                                                                 optional
for j = 2 to n do begin // station by station
   for i = 1 to m do begin // line by line to find f[i][j]
        min cost = f[1][j-1] + t[1][j-1][i]
                                                      transfer from line 1 to line i
        min line = 1
        for k = 2 to m do begin
                                                    transfer from line k to line i
            if (f[k][j-1]+t[k][j-1][i] < min cost) then begin
                min_cost = f[k][j-1]+t[k][j-1][i]
                min line = k
            end
        end
        f[i][j] = min_cost + a[i][j]
        from_line[i][j] = min_line
                                                            assume that t[i][j][i]
    end
```

end

59

Pseudo code – find optimal cost

```
min line = 1
min = f[1][n]
for i = 2 to m do
begin
   if (f[i][n] < min) then begin
      min line = i
      min = f[i][n]
   end
end
f^* = min
output f*
```

optional

Pseudo code – find optimal path

```
output "Station n: Line " + min_line

for j = n downto 2 do

begin

min_line = from_line[min_line][j]

output "Station " + (j-1) + ": Line " + min_line

end
```

Time Complexity

optional

```
O(m):
       for i = 1 to m do set f[i][1] = a[i][1]
O(nm^2): for j = 2 to n do begin
             for i = 1 to m do begin
                for k = 2 to m do begin
O(n):
       for i = 2 to m do
O(n):
          for j = n downto 2 do
Overall time complexity: O(nm<sup>2</sup>)
   - O(m) + O(nm^2) + O(m) + O(n)
```

Learning outcomes

- ✓ Understand the basic idea of dynamic programming
- ✓ Able to apply dynamic programming to compute Fibonacci numbers
- ✓ Able to apply dynamic programming to solve the assembly line scheduling problem

Dynamic programming an efficient way to implement some divide and conquer algorithms

Those who cannot remember the past are condemned to repeat it.

-Dynamic Programming