Teresa Klatzer

PhD Researcher at the University of Edinburgh, UK | E-mail | Website | Scholar Profile | Github | Linkedin Nationality: Austrian | Languages: German, English, French

Summary

Passionate researcher at the intersection of machine learning, Bayesian computation, and imaging inverse problems with a strong background in computer science and mathematics. Skilled in Python, PyTorch, and various ML libraries. Excellent problem-solving, writing, and collaboration abilities. Seeking a challenging interdisciplinary research position to contribute to cutting-edge science and the future of fundamental research in probabilistic AI.

Research Experience

Postgraduate Researcher

Sept 2021 – Present

University of Edinburgh

Edinburgh, UK

- Developed accelerated algorithms for Bayesian computation incorporating machine learning models using PyTorch and Matlab
- · State-of-the-art results for reconstructing photon-starved imaging data providing uncertainty quantification
- Convergence results for convex and data-driven ML priors
- Interdisciplinary collaboration with researchers in the fields of computer science, mathematics, and statistics
- Running large-scale experiments using server infrastructure and benchmarking
- Dissemination of research through publishing of scientific papers with source code, regular presenting at international meetings
- Additional training in Scalable Inference and Deep Learning, Uncertainty Quantification (at DTU Compute), and by the APTS (Academy for PhD Training in Statistics)

Research Assistant July 2014 – Sept 2017

Graz University of Technology

Graz, Austria

- Researcher in the Computer Vision, Learning and Optimization Group, led by Prof. Thomas Pock
- Development of variational networks including learnt activation functions
- Solving a wide range of image reconstruction problems (joint denoising and demosaicing or super-resolution problems, joint
 reconstruction and classification problems, medical image reconstruction problems)
- Developing algorithms using convex and non-convex optimization strategies, bi-level optimization and algorithm unrolling
- Co-developing learning frameworks using theano, tensorflow, pytorch and C++/CUDA

Education

University of Edinburgh

Edinburgh, UK

PhD in Applied and Computational Mathematics

Sept 2021 - Aug 2025 (ongoing)

- Supervisors: Prof. Konstantinos Zygalakis and Prof. Marcelo Pereyra
- Research project: "Bayesian computation for low-photon imaging"

Graz University of Technology, Austria

Graz, Austria

MSc in Telematics (Computer and Information Engineering)

Oct 2012 - Sept 2014

- With distinction
- Majors in Computational Intelligence and Software Technology
- Master's thesis: Bi-level Optimization for Support Vector Machines, supervised by Prof. Thomas Pock
- Project: State Estimation with Recurrent Neural Networks, supervised by Prof. Robert Legenstein

Graz University of Technology, Austria

Graz, Austria

BSc in Telematics (Computer and Information Engineering)

Oct 2008 - Sept 2012

Interdisciplinary study: Information technology, electrical engineering, computer science

Université Lille 1 Science et Technologies, France

Erasmus Program

Villeneuve-d'Ascq, France Sept 2011 – Jan 2012

 Project: Map Reduce Programming for Machine Learning Algorithms on Graphs, supervised by Marc Tommasi and Gemma C. Garriga at INRIA

Skills and Expertise

Research areas: Computational Statistics, Probabilistic Methods, Machine Learning, Neural Networks, Uncertainty Quantification, Optimization, Inverse Problems, Imaging Science

Programming Languages: Python, Matlab, C++, C, CUDA, Java

Deep Learning Frameworks: PyTorch, Theano, TensorFlow

Libraries & Tools: Git, NumPy, Pandas, Scikit-learn, OpenCV, DeepInv, Hadoop

Management: Agile software development, Scrum, Coaching

Teaching Experience

Jan 2022 - Present **University Tutor** University of Edinburgh Edinburgh, UK

Subjects: Machine Learning in Python, Calculus, Linear Algebra, Stochastic and Ordinary Differential Equations

Teaching Assistant 2010 - 2015Graz, Austria

Graz University of Technology

Subjects: Convex Optimization, Analysis, Computer and communication networks

Leadership

Black Tusk GmbH

Product Owner and Agile Coach

April 2020 - Aug 2021

Graz. Austria

Project lead for several (medical) software products

- Portfolio management, customer interviews and requirement engineering
- General management and regulatory affairs for medical devices

Product Owner Nov 2018 - March 2020

Denovo GmbH Graz, Austria

- Project lead for several digitization projects, responsibility for product backlog and maximization of business value
- Leading the development and roll-out of an AI tool for waste management
- · Active management of client relations and business development, scrum and team development

Project Manager for Digital Business Solutions

Jan 2018 - Oct 2018

Graz, Austria

- Project lead for digital products, responsibility for budget, time, project quality and controlling
- Mediation between teams and all stakeholders

Honors and awards

Scoop and Spoon GmbH

SIAM Travel Award and Laura Wisewell Travel Scholarship

Travel funding to attend the SIAM Imaging Science conference in Atlanta, GA, USA.

Laura Wisewell Travel Scholarship

2023

2024

• Travel funding to attend the Mathematics and Image Analysis conference in Berlin, Germany.

Best Paper Award

2017

• German Conference on Pattern Recognition, Basel, Switzerland

■ Paper title: "Variational Networks: Connecting Variational Methods and Deep Learning"

Best Paper Award

2015

Computer Vision Winter Workshop, Seggau, Austria

• Paper title: "Continuous Hyper-parameter Learning for Support Vector Machines"

Scholarship of Excellence

2012

Graz University of Technology

Volunteering and Soft Skills

Committee member of Piscopia Organising activities supporting women and non-binary students doing PhDs in Mathematics	2023-2024
Co-founder of a Youtube channel, "Warum nicht leicht" • Production of educational videos and other content about personal development	2020-2021
Life coaching and Counselling certification at Balancakademie in Graz, Austria • 600h training and 750h practice	2018-2020
Founding member of a dance association. Salsativity.org. Graz. Austria.	2018

Referees

Prof Konstantinos Zygalakis, University of Edinburgh, k.zygalakis@ed.ac.uk
Prof Marcelo Pereyra, Heriot-Watt University, Edinburgh, m.pereyra@hw.ac.uk
Dr Tobías I. Liaudat, IRFU, CEA Paris-Saclay, Gif-sur-Yvette, France, tobiasliaudat@gmail.com
Dr Paul Dobson, Heriot-Watt University, Edinburgh, p.dobson_1@hw.ac.uk

Talks and Posters

- WiML Workshop at NeurIPS, Vancouver, Canada. (2024). Poster and contributed talk title: Mirror Langevin Dynamics with Plug-and-Play Priors for Poisson Inverse Problems.
- ICMS Workshop UQIPI24: UQ for Inverse Problems and Imaging, Edinburgh, UK. (2024). *Talk title: Bayesian Computation with Plug and Play Priors for Poisson Inverse Problems*.
- Mini-symposium "Deep Unrolled Methods for Inverse Imaging Problems" at SIAM Imaging in Atlanta, Georgia, USA. (2024). Talk title: Bayesian Computation with Plug and Play Priors for Poisson Inverse Problems.
- ICMS workshop on Imaging Inverse Problems and Generating Models: Sparsity and Robustness versus Expressivity, Edinburgh, UK. (2024). *Poster title: Bayesian Computation with Plug-and-Play Priors for Poisson Inverse Problems*.
- Mini-symposium "Advances in Bayesian Inverse Problems" at SIAM Conference of Uncertainty Quantification 2024, Trieste, Italy (Invited). (2024). *Talk title: Accelerating MCMC for UQ in Imaging Science by Relaxed Proximal-point Langevin Sampling*.
- Applied Inverse Problems (AIP) Conference in Göttingen, Germany. (2023). Talk title: Accelerating MCMC for imaging science by using an implicit Langevin algorithm.
- Mathematics and Image Analysis (MIA) in Berlin, Germany. (2023). Poster title: Accelerating MCMC by using an implicit method with applications in imaging science.
- ICMS Workshop on Interfacing Bayesian Statistics, Deep Learning, and Mathematical Analysis for Imaging Inverse Problems, Edinburgh, UK. (2023). *Poster title: Accelerating MCMC by using an implicit method with applications in imaging science.*
- Mini-symposium on "Non-standard regularisation: theory and applications" at the Applied Inverse Problems (AIP) conference in Hangzhou, China. (2017). *Talk title: Deep Regularization*.
- Interdisciplinary data science workshop on "Mathematical imaging with partially unknown models" in Cambridge, UK. (2017). Talk title: Learning Variational Networks for Solving Inverse Problems in Imaging.
- International Conference on Computational Photography, Chicago, IL. (2016). Talk title: Joint Demosaicing and Denoising Based on Sequential Energy Minimization.

Publications

- Klatzer, T., Dobson, P., Altmann, Y., Pereyra, M., Sanz-Serna, J. M., & Zygalakis, K. C. (2024). Accelerated Bayesian imaging by relaxed proximal-point Langevin sampling. *SIAM Journal on Imaging Sciences*, 17(2), 1078–1117.
- Effland, A., Hölzel, M., Klatzer, T., Kobler, E., Landsberg, J., Neuhäuser, L., Pock, T., & Rumpf, M. (2018). Variational networks for joint image reconstruction and classification of tumor immune cell interactions in melanoma tissue sections. *Bildverarbeitung in der Medizin*, 334–340.
- Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., & Knoll, F. (2018). Learning a variational network for reconstruction of accelerated mri data. *Magnetic Resonance in Medicine*, 79(6), 3055–3071.
- Klatzer, T., Soukup, D., Kobler, E., Hammernik, K., & Pock, T. (2017). Trainable regularization for multi-frame superresolution. In V. Roth & T. Vetter (Eds.), *Pattern recognition* (pp. 90–100). Springer International Publishing.
- Kobler, E., Klatzer, T., Hammernik, K., & Pock, T. (2017). Variational networks: Connecting variational methods and deep learning. *Pattern Recognition. GCPR German Conference on Pattern Recognition (GCPR)*, 281–293.
- Klatzer, T., Hammernik, K., Knobelreiter, P., & Pock, T. (2016). Learning joint demosaicing and denoising based on sequential energy minimization. *IEEE International Conference on Computational Photography (ICCP)*, 1–11.
- Klatzer, T., & Pock, T. (2015). Continuous hyper-parameter learning for support vector machines. *Proceedings of the 20th Computer Vision Winter Workshop, Seggau, Austria*.