Problem Set 6

Subeom Lee 2019-03-14

Warning: package 'knitr' was built under R version 3.5.3

Questions

```
load('BaseEnvironment.Rdata')
```

Team level questions

Q1. It seems that players are getting better at making 3-pointers than 20 years ago (both on average and also top 3-pointer shooters vs. top 3-pointer shooters) Is it true?

```
fg3year <- aggregate(dataGameLogsTeam[, 35:36], list(dataGameLogsTeam$yearSeason), sum)
colnames(fg3year)[1] <- "Year"</pre>
fg3year <- fg3year %>% filter (Year >= 1986)
fg3year$pctfg3 <- fg3year$fg3mTeam / fg3year$fg3aTeam * 100
fg3yearteam <- aggregate(dataGameLogsTeam[, 35:36], list(dataGameLogsTeam$yearSeason, dataGameLogsTeam$Team), sum)
colnames(fg3yearteam)[1] <- "Year"</pre>
colnames(fg3yearteam)[2] <- "Team"</pre>
fg3yearteam <- fg3yearteam %>% filter (Year >= 1986)
fg3yearteam$pctfg3 <- fg3yearteam$fg3mTeam / fg3yearteam$fg3aTeam * 100
xaxisbreaks <- seq(1985, 2019, by=3)
yaxisbreaks <- seq(15, 45, by=5)
Q1 <- ggplot() +
     geom_line(data=fg3yearteam, aes(x=Year, y=pctfg3, colour=Team), size=0.5, show.legend=FALSE, alpha=0.7) +
      geom_line(data=fg3year, aes(x=Year, y=pctfg3), size=2, colour='black') +
     xlab('Year') +
     ylab(NULL) +
     ggtitle('3 Pointer Field Goal Success Rate') +
      theme(panel.background=element_rect(fill=NA), panel.grid.major.y=element_line(color="grey", linetype=2),
                      plot.title = element_text(hjust = 0.5)) +
     scale_y_continuous(limits=c(15, 45), breaks=yaxisbreaks, labels=paste(yaxisbreaks, "%")) +
     scale_x_continuous(limits=c(1985,2019), breaks=xaxisbreaks) +
     geom_hline(yintercept=min(fg3year$pctfg3), linetype=2, color="steelblue", size=0.5, alpha=0.9) +
     geom_hline(yintercept=max(fg3year$pctfg3), linetype=2, color="steelblue", size=0.5, alpha=0.9) +
     geom_hline(yintercept=min(fg3yearteam$pctfg3), linetype=3, color="pink", size=0.5, alpha=0.9) +
     geom_hline(yintercept=max(fg3yearteam$pctfg3), linetype=3, color="pink", size=0.5, alpha=0.9) +
     annotate("text", x=1985, y=min(fg3year$pctfg3)+0.6, label=paste(toString(round(min(fg3year$pctfg3), digits=2)),"%"), color="st
     annotate("text", x=1985, y=max(fg3year$pctfg3)+0.6, label=paste(toString(round(max(fg3year$pctfg3), digits=2)),"%"), color="st
     annotate("text", x=1985, y=min(fg3yearteam$pctfg3)+0.6, label=paste(toString(round(min(fg3yearteam$pctfg3), digits=2)),"%"), cannotate("text", x=1985, y=min(fg3yearteam$pctfg3), digits=2)),"% (text", x=1985, y=min(fg3yearteam$pctfg3), digits=2)), cannotate("text", x=1985, y=min(fg3yearteam$pctfg3), digits=2)), cannotate("text", x=1985, y=min(fg3yearteam$pctfg3), digits=2)), cannotate("text", x=1985, y=min(fg3yearteam$pctfg3), digits=2)), cannotate("text", x=1985, y=min(fg3yearteam$pctfg3), digits=2), digits=
     annotate("text", x=1985, y=max(fg3yearteam$pctfg3)+0.6, label=paste(toString(round(max(fg3yearteam$pctfg3), digits=2)),"%"), cannotate("text", x=1985, y=max(fg3yearteam$pctfg3), digits=2)),"% (text", x=1985, y=max(fg3yearteam$pctfg3), digits=2)), cannotate("text", x=1985, y=max(fg3yearteam$pctfg3), digits=2)), cannotate("text", x=1985, y=max(fg3yearteam$pctfg3), digits=2)), cannotate("text", x=1985, y=max(fg3yearteam$pctfg3), digits=2)), cannotate("text", x=1985, y=max(fg3yearteam$pctfg3), digits=2), digits=
```

3 Pointer Field Goal Success Rate


```
fg3yearavg <- aggregate(dataGameLogsTeam[, 35:36], list(dataGameLogsTeam$yearSeason), mean)
colnames(fg3yearavg)[1] <- "Year"</pre>
fg3yearavg <- fg3yearavg %>% filter (Year >= 1986)
fg3yearavg$pctfg3 <- fg3yearavg$fg3mTeam / fg3yearavg$fg3aTeam * 100
 \texttt{fg3yearteamavg} \gets \texttt{aggregate}(\texttt{dataGameLogsTeam}[, \ 35:36], \ \texttt{list}(\texttt{dataGameLogsTeam} \\ \texttt{$\texttt{yearSeason}}, \ \texttt{dataGameLogsTeam} \\ \texttt{$\texttt{Team}}), \ \texttt{mean}) 
colnames(fg3yearteamavg)[1] <- "Year"</pre>
colnames(fg3yearteamavg)[2] <- "Team"</pre>
fg3yearteamavg <- fg3yearteamavg %>% filter (Year >= 1986)
fg3yearteamavg$pctfg3 <- fg3yearteamavg$fg3mTeam / fg3yearteamavg$fg3aTeam * 100
xaxisbreaks <- seq(1986, 2019, by=3)
yaxisbreaks \leftarrow seq(0, 50, by=3)
Q1_2 <- ggplot() +
  geom_line(data=fg3yearteamavg, aes(x=Year, y=fg3mTeam, colour=Team), size=0.5, show.legend=FALSE, alpha=0.7) +
  geom_line(data=fg3yearavg, aes(x=Year, y=fg3mTeam), size=2, colour='green') +
  geom_line(data=fg3yearteamavg, aes(x=Year, y=fg3aTeam, colour=Team), size=0.5, show.legend=FALSE, alpha=0.7) +
  geom_line(data=fg3yearavg, aes(x=Year, y=fg3aTeam), size=2, colour='blue') +
  geom_line(data=fg3year, aes(x=Year, y=pctfg3), size=2, colour='black') +
 xlab('Year') +
  ylab(NULL) +
  ggtitle('3 Pointer Field Goal made vs tries') +
  theme(panel.background=element_rect(fill=NA), panel.grid.major.y=element_line(color="grey", linetype=2),
        plot.title = element_text(hjust = 0.5)) +
  scale_y_continuous(limits=c(0, 50), breaks=yaxisbreaks) +
  scale_x_continuous(limits=c(1986,2019), breaks=xaxisbreaks)
Q1_2
```

3 Pointer Field Goal made vs tries


```
fgallyearavg <- aggregate(dataGameLogsTeam[, 29:38], list(dataGameLogsTeam$yearSeason), mean)
colnames(fgallyearavg)[1] <- "Year"</pre>
fgallyearavg["plusminusTeam"] = NULL
fgallyearavg["urlTeamSeasonLogo"] = NULL
fgallyearavg["pfTeam"] = NULL
fgallyearavg <- fgallyearavg %>% filter (Year >= 1986)
fgallyearavg$pctpts3 <- fgallyearavg$fg3mTeam / fgallyearavg$ptsTeam * 100
fgallyearavg$pctpts2 <- fgallyearavg$fg2mTeam / fgallyearavg$ptsTeam * 100
fgallyearavg$pctptsft <- fgallyearavg$ftmTeam / fgallyearavg$ptsTeam * 100
fgallyearteamavg <- aggregate(dataGameLogsTeam[, 29:38], list(dataGameLogsTeam$yearSeason, dataGameLogsTeam$Team), mean)
colnames(fgallyearteamavg)[1] <- "Year"</pre>
colnames(fgallyearteamavg)[2] <- "Team"</pre>
fgallyearteamavg["plusminusTeam"] = NULL
fgallyearteamavg["urlTeamSeasonLogo"] = NULL
fgallyearteamavg["pfTeam"] = NULL
fgallyearteamavg <- fgallyearteamavg %>% filter (Year >= 1986)
\tt fgallyearteamavg\$pctpts3 <- fgallyearteamavg\$fg3mTeam \textit{/} fgallyearteamavg\$ptsTeam ** 100
\tt fgallyearteamavg\$pctpts2 \leftarrow fgallyearteamavg\$fg2mTeam \ / \ fgallyearteamavg\$ptsTeam \ * \ 100
fgallyearteamavg$pctptsft <- fgallyearteamavg$ftmTeam / fgallyearteamavg$ptsTeam * 100
xaxisbreaks <- seq(1986, 2019, by=3)
yaxisbreaks \leftarrow seq(0, 45, by=5)
Q1_3 <- ggplot() +
  geom_line(data=fgallyearteamavg, aes(x=Year, y=pctpts3, colour=Team), size=0.5, show.legend=FALSE, alpha=0.7) +
  geom_line(data=fgallyearteamavg, aes(x=Year, y=pctpts2, colour=Team), size=0.5, show.legend=FALSE, alpha=0.7) +
  geom_line(data=fgallyearteamavg, aes(x=Year, y=pctptsft, colour=Team), size=0.5, show.legend=FALSE, alpha=0.7) +
  geom_line(data=fgallyearavg, aes(x=Year, y=pctpts3), size=2, colour='red')
  geom_line(data=fgallyearavg, aes(x=Year, y=pctpts2), size=2, colour='green') +
  geom_line(data=fgallyearavg, aes(x=Year, y=pctptsft), size=2, colour='blue') +
```

Field Goal Percentage / all Points red:3, green: 2, blue: free throws

Yes, the success rate of 3 point field goal has been increased by about 9% since 1986.

Q2. If true, what could be the reasons for that? - What are the expected average points of 3-pointers and 2-pointers? Show the historical data. - If the expected average point from 3-pointers is getting higher than that of 2-pointers, how should each team's strategy changes

 $https://www.nytimes.com/2016/01/21/sports/basketball/how-the-nba-3-point-shot-went-from-gimmick-to-game-changer. \\html$

Its debut, in the 1979-80 season, was inauspicious.

There are many reasons for the rise of the 3-point shot, but one may simply be math. It took a while, but coaches finally stopped listening to the traditionalist naysayers and realized that a shot that is worth 50 percent more pays off, even if that shot is a little harder to make.

"Teams have all caught on to the whole points-per-possession argument," Lawrence Frank, the Nets' coach at the time, said in 2009 as the 3 rate began to rapidly increase.

```
fgyear <- aggregate(dataGameLogsTeam[, 35:38], list(dataGameLogsTeam$yearSeason), sum)
colnames(fgyear)[1] <- "Year"
fgyear <- fgyear %>% filter (Year >= 1986)
fgyear$pctfg3 <- fgyear$fg3mTeam / fgyear$fg3aTeam * 100
fgyear$pctfg2 <- fgyear$fg2mTeam / fgyear$fg2aTeam * 100</pre>
```

```
fgyearteam <- aggregate(dataGameLogsTeam[, 35:38], list(dataGameLogsTeam$yearSeason, dataGameLogsTeam$Team), sum)
colnames(fgyearteam)[1] <- "Year"</pre>
colnames(fgyearteam)[2] <- "Team"</pre>
fgyearteam <- fgyearteam %>% filter (Year >= 1986)
fgyearteam$pctfg3 <- fgyearteam$fg3mTeam / fgyearteam$fg3aTeam * 100</pre>
fgyearteam$pctfg2 <- fgyearteam$fg2mTeam / fgyearteam$fg2aTeam * 100</pre>
xaxisbreaks <- seq(1985, 2019, by=3)
yaxisbreaks <- seq(15, 60, by=5)
Q2_1 <- ggplot() +
  geom_line(data=fgyearteam, aes(x=Year, y=pctfg3, colour=Team), size=0.5, show.legend=FALSE, alpha=0.7) +
  geom_line(data=fgyear, aes(x=Year, y=pctfg3), size=2, colour='black') +
  geom_line(data=fgyearteam, aes(x=Year, y=pctfg2, colour=Team), size=0.5, show.legend=FALSE, alpha=0.7) +
  geom_line(data=fgyear, aes(x=Year, y=pctfg2), size=2, colour='black') +
  xlab('Year') +
  ylab(NULL) +
  ggtitle('Field Goal Success Rate') +
  theme(panel.background=element_rect(fill=NA), panel.grid.major.y=element_line(color="grey", linetype=2),
        plot.title = element_text(hjust = 0.5)) +
  scale_y_continuous(limits=c(15, 60), breaks=yaxisbreaks, labels=yaxisbreaks) +
  scale_x_continuous(limits=c(1985,2019), breaks=xaxisbreaks)# +
Q2_1
```

Field Goal Success Rate

The expected points of 2-point shots in 1986 was 'r fgyearpet fg2[1986-1985]/100'*2='rfgyearpet fg2[1986-1985]/1002' The expected points of 3-point shots in 1986 was 'r fgyearpet fg3[1986-1985]/100'*3='rfgyearpet fg3[1986-1985]/1003'

The expected points of 2-point shots in 2019 was 'r fgyearpctfg2[2019 - 1985]/100' * 2 = 'rfgyearpctfg2[2019-1985]/1002' The expected points of 3-point shots in 2019 was 'r fgyearpctfg3[2019 - 1985]/100' * 3 = 'rfgyearpctfg3[2019-1985]/1003'

Teams started to focus on 3-point shots after its first introduction in 1979, because the expected points of 3-point shots are higher than that of 2-point shots since early 90's.

Expected points

Q3. Teams with more 3-pointers tend to be the better performing teams? - Any insights between standings and 3-pointers?

```
standings <- read_csv("standings.csv")

fgyearteam <- aggregate(dataGameLogsTeam[, 35:38], list(dataGameLogsTeam$yearSeason, dataGameLogsTeam$nameTeam), sum)
colnames(fgyearteam)[1] <- "Year"
colnames(fgyearteam)[2] <- "nameTeam"
fgyearteam <- fgyearteam %>% filter (Year >= 1986)
fgyearteam$pctfg3 <- fgyearteam$fg3mTeam / fgyearteam$fg3aTeam * 100
fgyearteam$pctfg2 <- fgyearteam$fg2mTeam / fgyearteam$fg2aTeam * 100

standings2 <- left_join(standings, fgyearteam, by=c("Year" = "Year", "Team" = "nameTeam"))</pre>
```

```
Q3 <- ggplot(standings2) +
geom_point(aes(x=pctfg3, y=Rk), color="steelblue") +
geom_point(aes(x=pctfg2, y=Rk), color="pink")

Q3
```



```
linearModel <- lm(Rk ~ pctfg3, data=standings2)</pre>
tidy(linearModel)
# A tibble: 2 x 5
            estimate std.error statistic p.value
 term
 <chr>
              <dbl> <dbl>
                                <dbl> <dbl>
1 (Intercept)
             32.6
                      2.72
                                12.0 5.33e-31
              -0.518 0.0787
2 pctfg3
                                -6.58 7.74e-11
linearModel2 <- lm(Rk ~ pctfg2, data=standings2)</pre>
tidy(linearModel2)
# A tibble: 2 x 5
            estimate std.error statistic p.value
 term
 <chr>
              1 (Intercept)
                        4.97
                                21.6 2.14e-84
                       0.103 -18.6 3.69e-66
2 pctfg2
              -1.91
linearModel3 <- lm(Rk ~ pctfg3 + pctfg2, data=standings2)</pre>
tidy(linearModel3)
# A tibble: 3 x 5
 term
            estimate std.error statistic p.value
 <chr>
              <dbl> <dbl> <dbl> <dbl>
                                22.1 9.52e-88
1 (Intercept) 114.
                       5.15
2 pctfg3
             -0.305 0.0694
                                -4.40 1.23e- 5
3 pctfg2
             -1.83 0.103 -17.7 4.80e-61
```

```
linearModel4 <- lm(pctfg3 ~ pctfg2, data=standings2)</pre>
tidy(linearModel4)
# A tibble: 2 x 5
 term
             estimate std.error statistic p.value
 <chr>
               <dbl>
                        <dbl>
                                   <dbl>
1 (Intercept) 22.0
                         2.29
                                     9.60 6.40e-21
                        0.0472
               0.257
                                     5.45 6.57e- 8
2 pctfg2
Q3_2 <- ggplot(standings2) +
 geom_point(aes(x=pctfg2, y=pctfg3), color="steelblue")
```


Yes. However, pctfg2 is more relevant than pctfg3

• Focus on three point shooting is a strategy that started fairly recently, we can create a map to show where this strategy initially emerged and how fast it spreaded across the entire country.

Player level questions

```
dataGameLogsPlayer1986 <- dataGameLogsPlayer %>% filter(yearSeason >= 1986)

fgyearplayer <- aggregate(dataGameLogsPlayer1986[, 19:26], list(dataGameLogsPlayer1986$yearSeason, dataGameLogsPlayer1986$namePlayer(fgyearplayer)[1] <- "Year"
colnames(fgyearplayer)[2] <- "Player"
fgyearplayer$pctFG = NULL
fgyearplayer$pctFG3 = NULL
fgyearplayer$pctFG3 <- fgyearplayer$fg3m / fgyearplayer$fg3a * 100</pre>
```

```
fgyearplayer$pctfg2 <- fgyearplayer$fgm / fgyearplayer$fga * 100
fgyearplayer$pctft <- fgyearplayer$ftm / fgyearplayer$fta * 100

# Meaningless...
yearplayer <- aggregate(fgyearplayer[,5], list(fgyearplayer$Player), sum)
colnames(yearplayer)[1] <- "Player"
colnames(yearplayer)[2] <- "totalfg3m"
ggplot(yearplayer, aes(totalfg3m)) + geom_histogram()</pre>
```



```
# Meaningless...

fgplayer <- aggregate(dataGameLogsPlayer1986[, 19:26], list(dataGameLogsPlayer1986$namePlayer), sum)
colnames(fgplayer)[1] <- "Player"
fgplayer$pctFG = NULL
fgplayer$pctFG3 = NULL

fgplayer$pctfg3 <- fgplayer$fg3m / fgplayer$fg3a * 100
fgplayer$pctfg2 <- fgplayer$fgm / fgplayer$fga * 100
fgplayer$pctff <- fgplayer$ftm / fgplayer$fta * 100

fgplayer <- fgplayer[order(-fgplayer$pctfg3),]
fgplayer100 <- fgplayer %% filter(fg3m >= 100)
```

```
import pandas as pd
fgplayer = r.fgplayer
fgplayer['firstYear'] = 2019
fgplayer['lastYear'] = 1986
print(fgplayer.head(5))
          Player
                     fgm
                             fga
                                                pctft firstYear lastYear
0
      Alvin Sims
                                            40.000000
                                                             2019
                                                                       1986
                     4.0
                            10.0
1
     Coty Clarke
                     2.0
                             4.0
                                                  NaN
                                                             2019
                                                                       1986
                                    . . .
2
      David Pope
                     9.0
                            19.0
                                            50.000000
                                                             2019
                                                                       1986
                                    . . .
                                            64.219474
                                                             2019
                                                                       1986
      Eddy Curry 2578.0
                          4734.0
4 Eric Anderson
                    12.0
                            35.0
                                            59.259259
                                                             2019
                                                                       1986
[5 rows x 12 columns]
print(fgplayer.tail(5))
               Player
                                fga
                                                     pctft firstYear lastYear
                         fgm
```

```
2019
2720
       Winston Crite 34.0 71.0
                                                76,000000
                                                                          1986
                       86.0 217.0
                                                57.009346
                                                                2019
                                                                          1986
2721
          Yinka Dare
                                       . . .
2722
          Yvon Joseph
                        0.0
                               0.0
                                               100.000000
                                                                2019
                                                                          1986
                                       . . .
      Zeljko Rebraca 488.0 926.0
                                               79 155673
                                                                2019
                                                                          1986
2723
                                       . . .
2724 Zendon Hamilton 176.0 400.0
                                       . . .
                                                66.005666
                                                                2019
                                                                          1986
[5 rows x 12 columns]
i = 0
for player in fgplayer.values:
 min = player[-2]
 max = player[-1]
 for yp in r.fgyearplayer.values:
   if player[0] == yp[1]:
     if max < yp[0]: max = yp[0]
      if min > yp[0]: min = yp[0]
 fgplayer.iloc[i,-1]=max
 fgplayer.iloc[i,-2]=min
 i += 1
print(fgplayer.head(5))
          Player
                            fga
                                                pctft firstYear lastYear
                    fgm
                                    . . .
     Alvin Sims
                    4.0
                           10.0
                                            40.000000
                                                            1999
                                                                      1999
                                    . . .
1
    Coty Clarke
                    2.0
                           4.0
                                                 \mathtt{NaN}
                                                            2016
                                                                      2016
                                   . . .
                                            50.000000
2
     David Pope
                    9.0
                          19.0
                                                            1986
                                                                      1986
                                  . . .
3
     Eddy Curry 2578.0 4734.0
                                            64.219474
                                                            2002
                                                                      2013
                                   . . .
4 Eric Anderson
                   12.0
                           35.0
                                            59.259259
                                                            1993
                                                                      1994
                                   . . .
[5 rows x 12 columns]
print(fgplayer.tail(5))
                                                    pctft firstYear lastYear
              Player
                        fgm
                               fga
2720
       Winston Crite
                       34.0
                               71.0
                                                76.000000
                                                                1988
                                                                          1989
                                       . . .
2721
                       86.0 217.0
                                                57 009346
                                                                1995
                                                                          1998
          Yinka Dare
                              0.0
                                               100.000000
                                                                1986
                                                                          1986
2722
          Yvon Joseph
                        0.0
                                       . . .
                                                                          2006
2723
      Zeljko Rebraca 488.0 926.0
                                               79.155673
                                                                2002
2724 Zendon Hamilton 176.0 400.0
                                                66.005666
                                                                2001
                                                                          2006
[5 rows x 12 columns]
fgplayer <- py$fgplayer
fgplayer100 <- fgplayer %>% filter(fg3m >= 100)
fgplayer1000 <- fgplayer100 %>% filter(fg3m >= 1000)
fgplayer2000 <- fgplayer1000 %>% filter(fg3m >= 2000)
xaxisbreaks <- seq(1985, 2019, by=3)
yaxisbreaks <- seq(20, 50, by=5)</pre>
plotPlayer100 <- ggplot() +</pre>
 geom_linerange(data=fgplayer100, aes(x=pctfg3, y=lastYear, ymin=firstYear, ymax=lastYear, colour=Player), size=1, show.legend
  # geom_point(data=fgplayer100, aes(x=lastYear, y=pctfg3, colour=Player), size=1, show.legend = FALSE) +
 # geom_line
 xlab('Year') +
 ylab(NULL) +
 ggtitle('3 point success rate by player and year') +
 theme(panel.background=element_rect(fill=NA), panel.grid.major.y=element_line(color="grey", linetype=2),
       plot.title = element_text(hjust = 0.5)) +
  scale_x_continuous(limits=c(20, 50), breaks=yaxisbreaks, labels=yaxisbreaks) +
  scale_y_continuous(limits=c(1985,2019), breaks=xaxisbreaks)
plotPlayer100
```


Above graph shows more players are trying 3 point shots than before, even though the average success rate is similar.

Q4. Players who are good at 3-pointers are also good at 2-pointers or free throws?

By regression.

Players who are good at free throws tend to be good at 3-pointers. However, 2-point field goal success rate is not related with 3-point field goal success rate!!! Why?

```
linearModel <- lm(pctfg3 ~ pctfg2, data=fgplayer100)</pre>
tidy(linearModel)
# A tibble: 2 x 5
              estimate std.error statistic p.value
 term
  <chr>
                 <dbl>
                          <dbl>
1 (Intercept) 33.7
                          1.75
                                    19.2 2.81e-67
               0.0330
                        0.0400
                                    0.823 4.11e- 1
2 pctfg2
linearModel2 <- lm(fg3m ~ fgm, data=fgplayer100)</pre>
tidy(linearModel2)
# A tibble: 2 x 5
              estimate std.error statistic p.value
 term
                <dbl>
  <chr>
                           <dbl>
                                     <dbl>
1 (Intercept) 184.
                       19.6
                                      9.41 6.19e-20
2 fgm
                 0.143 0.00618
                                     23.1 2.24e-89
linearModel3 <- lm(fg3a ~ fga, data=fgplayer100)</pre>
tidy(linearModel3)
# A tibble: 2 x 5
 term
              estimate std.error statistic
  <chr>>
                <dbl> <dbl>
                                     <dbl>
                                               <dbl>
1 (Intercept) 404.
                        48.0
                                      8.42 1.98e- 16
                 0.197 0.00687
                                     28.6 3.67e-122
linearModel4 <- lm(fg3a ~ fga + fta, data=fgplayer100)</pre>
```

```
tidy(linearModel4)
# A tibble: 3 x 5
             estimate std.error statistic p.value
 term
 <chr>
               <dbl>
                       <dbl> <dbl>
                                          <dbl>
1 (Intercept) 276.
                       47.4
                                   5.82 8.67e- 9
               0.347
                       0.0172
                                   20.2 7.38e-73
2 fga
3 fta
               -0.455 0.0481
                                   -9.47 3.52e-20
linearModel5 <- lm(pctfg3 ~ pctft, data=fgplayer100)</pre>
tidy(linearModel5)
# A tibble: 2 x 5
 term
             estimate std.error statistic p.value
  <chr>
               <dbl>
                        <dbl>
                                 <dbl>
                                          <dbl>
1 (Intercept)
              18.2
                        1.42
                                   12.8 3.40e-34
2 pctft
              0.216
                      0.0181
                                   11.9 4.54e-30
linearModel6 <- lm(pctfg2 ~ pctft, data=fgplayer100)</pre>
tidy(linearModel6)
# A tibble: 2 x 5
 term
             estimate std.error statistic p.value
 <chr>>
               <dbl>
                         <dbl>
                                   <dbl>
                                            <dbl>
1 (Intercept) 41.9
                        1.42
                                   29.6 4.07e-128
              0.0219
                        0.0180
                                   1.21 2.25e- 1
2 pctft
linearModel7 <- lm(pctfg3 ~ pctfg2 + pctft, data=fgplayer100)</pre>
tidy(linearModel7)
# A tibble: 3 x 5
             estimate std.error statistic p.value
 term
 <chr>>
               <dbl>
                        <dbl>
                                  <dbl>
                                           <db1>
                        2.10
                                   8.42 1.86e-16
1 (Intercept) 17.7
              0.0136
2 pctfg2
                        0.0368
                                  0.370 7.12e- 1
              0.216 0.0182
                               11.9 6.51e-30
3 pctft
```

When we look at all the players, 2-pointers and 3-pointers are reverse-related. Maybe because of dunk shots?

```
linearModel7 <- lm(pctfg3 ~ pctfg2 + pctft, data=fgplayer)</pre>
tidy(linearModel7)
# A tibble: 3 x 5
              estimate std.error statistic p.value
 term
 <chr>
                <dbl>
                          <dbl>
                                     <dbl>
                                            <dbl>
               3.65
                          2.52
                                     1.45 1.48e- 1
1 (Intercept)
               -0.0441
                          0.0415
                                     -1.06 2.88e- 1
2 pctfg2
                                     13.9 3.19e-42
3 pctft
                0.329
                          0.0237
```

Best players (more than 1,000 career 3-point field goals) are good at 2-pointers as well!!!

```
linearModel7 <- lm(pctfg3 ~ pctfg2 + pctft, data=fgplayer1000)</pre>
tidy(linearModel7)
# A tibble: 3 x 5
                                                 p.value
              estimate std.error statistic
 term
  <chr>
                 <dbl>
                          <dbl>
                                    <dbl>
                                                   <dbl>
1 (Intercept)
                 3.76
                          4.06
                                     0.926 0.356
2 pctfg2
                 0.345
                          0.0843
                                     4.09 0.0000841
3 pctft
                 0.226 0.0344
                                    6.58 0.00000000197
linearModel8 <- lm(pctfg3 ~ pctfg2 + pctft, data=fgplayer2000)</pre>
tidy(linearModel8)
# A tibble: 3 x 5
 term
              estimate std.error statistic p.value
                                     <dbl>
 <chr>
                <dbl>
                          <dbl>
                                             <dbl>
1 (Intercept) -21.5
                          20.1
                                     -1.07
                                             0.334
2 pctfg2
                 0.799
                           0.442
                                      1.81
                                             0.131
3 pctft
                 0.290
                           0.231
                                      1.26
                                             0.264
```

-. Are there any relationship between players' ages and 3-pointers? Both total and average.

```
fgyearplayer100 <- fgyearplayer %>% filter(Player %in% fgplayer100$Player)
fgyearplayer1000 <- fgyearplayer100 %>% filter(Player %in% fgplayer1000$Player)
fgyearplayer2000 <- fgyearplayer1000 %>% filter(Player %in% fgplayer2000$Player)
xaxisbreaks <- seq(1985, 2019, by=3)
yaxisbreaks \leftarrow seq(0, 100, by=5)
plotYearPlayer100 <- ggplot() +</pre>
 geom_line(data=fgyearplayer100, aes(x=Year, y=pctfg3, colour=Player), size=1, show.legend = FALSE) +
 geom_line(data=fgyearplayer100, aes(x=Year, y=pctfg2, colour=Player), size=1, linetype="dotted", show.legend = FALSE) +
 xlab('Year') +
 ylab(NULL) +
 ggtitle('3 point shot success rate by player') +
 theme(panel.background=element_rect(fill=NA), panel.grid.major.y=element_line(color="grey", linetype=2),
       plot.title = element_text(hjust = 0.5)) +
  scale_y_continuous(limits=c(0, 100), breaks=yaxisbreaks, labels=yaxisbreaks) +
  scale_x_continuous(limits=c(1985,2019), breaks=xaxisbreaks)
plotYearPlayer100
```



```
scale_y_continuous(limits=c(0, 70), breaks=yaxisbreaks, labels=yaxisbreaks) +
scale_x_continuous(limits=c(1985,2019), breaks=xaxisbreaks)
plotYearPlayer1000
```


Let's regress.

```
fgyearplayerjoined <- left_join(fgyearplayer, fgplayer, by=c("Player" = "Player"))</pre>
fgyearplayerjoined$career = fgyearplayerjoined$Year - fgyearplayerjoined$firstYear + 1
fgyearplayerjoined100 <- fgyearplayerjoined %>% filter(Player %in% fgplayer100$Player)
fgyearplayerjoined1000 <- fgyearplayerjoined100 %>% filter(Player %in% fgplayer1000$Player)
fgyearplayerjoined2000 <- fgyearplayerjoined1000 %>% filter(Player %in% fgplayer2000$Player)
linearModel <- lm(pctfg3.x ~ career, data=fgyearplayerjoined2000)</pre>
tidy(linearModel)
# A tibble: 2 x 5
             estimate std.error statistic p.value
 term
  <chr>
               <dbl>
                         <dbl>
                                   <dbl>
                                            <dbl>
                                   55.0 1.01e-95
1 (Intercept) 39.6
                         0.720
              -0.0994 0.0656
                                 -1.51 1.32e- 1
\label{linearModel2} $$\lim(pctfg3.x - career, data=fgyearplayerjoined1000)$
tidy(linearModel2)
# A tibble: 2 x 5
 term
           estimate std.error statistic p.value
  <chr>
               <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 35.4
                        0.281
                                  126. 0
             0.0730 0.0306
2 career
                                 2.38 0.0173
linearModel3 <- lm(pctfg3.x ~ career, data=fgyearplayerjoined100)</pre>
tidy(linearModel3)
# A tibble: 2 x 5
 term
           estimate std.error statistic p.value
               <dbl> <dbl> <dbl>
  <chr>
1 (Intercept)
               31.7
                         0.208
                                  153. 0.
              0.186 0.0280
                                  6.63 3.63e-11
2 career
linearModel4 <- lm(pctfg3.x ~ career, data=fgyearplayerjoined)</pre>
tidy(linearModel4)
# A tibble: 2 x 5
```

Really good players are not related with ages/career. Average players' success rate is increased by 0.4% in one year. Not bad...?

• Players with high salaries are good at 3-pointers?

23.1

2 salaryinM

1.12

2018-2019 season data only

```
nbaInsiderSalaries <- nba_insider_salaries(assume_player_opt_out = T, assume_team_doesnt_exercise = T, return_message = TRUE)
You got salary data for the Atlanta Hawks
You got salary data for the Boston Celtics
You got salary data for the Brooklyn Nets
You got salary data for the Charlotte Hornets
You got salary data for the Chicago Bulls
You got salary data for the Cleveland Cavaliers
You got salary data for the Dallas Mavericks
You got salary data for the Denver Nuggets
You got salary data for the Detroit Pistons
You got salary data for the Golden State Warriors
You got salary data for the Houston Rockets
You got salary data for the Indiana Pacers
You got salary data for the Los Angeles Clippers
You got salary data for the Los Angeles Lakers
You got salary data for the Memphis Grizzlies
You got salary data for the Miami Heat
You got salary data for the Milwaukee Bucks
You got salary data for the Minnesota Timberwolves
You got salary data for the New Orleans Pelicans
You got salary data for the New York Knicks
You got salary data for the Oklahoma City Thunder
You got salary data for the Orlando Magic
You got salary data for the Philadelphia 76ers
You got salary data for the Phoenix Suns
You got salary data for the Portland Trail Blazers
You got salary data for the Sacramento Kings
You got salary data for the San Antonio Spurs
You got salary data for the Toronto Raptors
You got salary data for the Utah Jazz
You got salary data for the Washington Wizards
fgplayersalary <- left_join(fgplayer, nbaInsiderSalaries, by=c("Player"="namePlayer"))
fgplayersalary2 <- na.omit(fgplayersalary)</pre>
fgplayersalary2$salaryinK = fgplayersalary2$value / 1000
fgplayersalary2$salaryinM = fgplayersalary2$value / 1000000
linearModel <- lm(pctfg3 ~ salaryinM, data=fgplayersalary2)</pre>
tidy(linearModel)
# A tibble: 2 x 5
 term
             estimate std.error statistic p.value
 <chr>
                <dbl>
                         <dbl>
                                    <dbl> <dbl>
1 (Intercept) 29.7
                          0.450
                                     65.9 0
              0.0931 0.0343
                                    2.72 0.00671
2 salaryinM
linearModel2 <- lm(fg3m ~ salaryinM, data=fgplayersalary2)</pre>
tidy(linearModel2)
# A tibble: 2 x 5
 term
             estimate std.error statistic p.value
                           <dbl>
                                 <dbl>
 <chr>>
                 <dbl>
                                              <dbl>
1 (Intercept)
                  94.5
                           14.7
                                     6.42 2.10e-10
```

When the salary increases by a million dollar, career success rate of 3-point shots increases by 0.09% only. It's difficult to say that 3-pointer success rate is the most important factor for one's salary.

20.6 1.38e-79

- We would like to explore the importance of three point shooters in a given team by measuring the share of the team's total salary over time.
- We want to analyze whether players can drastically improve their three point shooting skills over time or the skill is rather something people are borned with.

There is no dramatic increase in 3-pointer success rate. Maybe if we can check the players' data from NCAA or high school league, there might be different insight. However, based on NBA data, no big changes.

• Show the 3-pointer statistics geographically based on players' hometowns. Maybe this help illustrates the different basketball playing style across different regions, both domestic and international.

```
playerHometown <- read_csv("PlayerHometown.csv")

fgplayerhometown <- left_join(fgplayer, playerHometown, by=c("Player"="Player"))
fgplayerhometown <- fgplayerhometown %>% filter(not(is.na(State)))
fgplayerhometown <- na.omit(fgplayerhometown)

fgplayerhometownState <- aggregate(fgplayerhometown[, 2:7], list(fgplayerhometown$State), sum)
colnames(fgplayerhometownState)[i] <- "State"
fgplayerhometownState$pctfg3 <- fgplayerhometownState$fg3m / fgplayerhometownState$fg3a * 100
fgplayerhometownState$pctfg2 <- fgplayerhometownState$fgm / fgplayerhometownState$fga * 100
fgplayerhometownState$pctft <- fgplayerhometownState$ffm / fgplayerhometownState$ffa * 100

plotState <- ggplot() +
    geom_point(data=fgplayerhometownState, aes(x=State, y=pctfg3, colour=State)) +
    xlab(NULL)
plotState</pre>
```

