CS559 Lecture 14

Clustering

Reading: Chapter 9, Bishop book

Non-parametric unsupervised learning

Parametric unsupervised learning

Equivalent to density estimation with a mixture of (Gaussian) components

Non-parametric unsupervised learning

- No density functions are considered in these methods
- Instead, we are concerned with finding natural groupings (clusters) in a dataset

Clustering

Groups together "similar" instances in the data sample

Basic clustering problem:

- distribute data into k different groups such that data points similar to each other are in the same group
- Similarity between data points is defined in terms of some distance metric (can be chosen)

Clustering is useful for:

- Similarity/Dissimilarity analysis

 Analyze what data points in the sample are close to each other
- Dimensionality reduction

 High dimensional data replaced with a group (cluster) label

- We see data points and want to partition them into groups
- Which data points belong together?

- We see data points and want to partition them into the groups
- Which data points belong together?

- We see data points and want to partition them into the groups
- Requires a distance measure to tell us what points are close to each other and are in the same group

- A set of patient cases
- We want to partition them into groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

- A set of patient cases
- We want to partition them into the groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

How to design the distance metric to quantify similarities?

Distance measures.

Assume pure real-valued data-points:

```
      12
      34.5
      78.5
      89.2
      19.2

      23.5
      41.4
      66.3
      78.8
      8.9

      33.6
      36.7
      78.3
      90.3
      21.4

      17.2
      30.1
      71.6
      88.5
      12.5

      ...
```

What distance metric to use?

Distance measures.

Assume pure binary values data:

...

What distance metric to use?

Proximity measures (1)

- Definition of metric
 - A measuring rule d(x,y) for the distance between two vectors x and y is considered a metric if it satisfies the following properties

$$\begin{aligned} &d(x,y) \ge d_0 \\ &d(x,y) = d_0 & \text{iff} & x = y \\ &d(x,y) = d(y,x) \\ &d(x,y) \le d(x,z) + d(z,y) \end{aligned}$$

· If the metric has the property

$$d(ax,ay) = |a| \cdot d(x,y)$$

- then it is called a norm and denoted d(x,y)=||x-y||
- The most general form of distance metric is the power norm

$$\|x - y\|_{p/r} = \left(\sum_{i=1}^{D} |x_i - y_i|^p\right)^{1/r}$$

Proximity measures (2)

- Most of the commonly used metrics are derived from the power norm
 - Minkowski metric (L_k norm)

$$\|x - y\|_k = \left(\sum_{i=1}^{D} |x_i - y_i|^k\right)^{1/k}$$

- The choice of an appropriate value of k depends on the amount of emphasis that you would like to give to the larger differences between dimensions
- Manhattan or city-block distance (L₁ norm)

$$\|x - y\|_{c-b} = \sum_{k=1}^{D} |x_k - y_k|$$

- When used with binary vectors, the L₁ norm is known as the Hamming distance
- Euclidean norm (L₂ norm)

$$\|\mathbf{x} - \mathbf{y}\|_{e} = \left(\sum_{k=1}^{D} |\mathbf{x}_{k} - \mathbf{y}_{k}|^{2}\right)^{1/2}$$

Chebyshev distance (L_∞ norm)

$$\left\|\mathbf{x} - \mathbf{y}\right\|_{c} = \max_{1 \le i \le D} \left|\mathbf{x}_{i} - \mathbf{y}_{i}\right|$$

Contours of equal distance

Proximity measures (3)

- Other metrics are also popular
 - Quadratic distance

$$d(x,y) = \sqrt{(x-y)^T B(x-y)}$$

- The Mahalanobis distance is a particular case of this distance
- Canberra metric (for non-negative features)

$$d_{ca}(x,y) = \sum_{i=1}^{D} \frac{|x_i - y_i|}{x_i + y_i}$$

Non-linear distance

$$d_{N}(x,y) = \begin{cases} 0 & \text{if } d_{e}(x,y) < T \\ H & \text{if } d_{e}(x,y) \ge T \end{cases}$$

 where T is a threshold and H is a distance. An appropriate choice for H and T for feature selection is that they should satisfy

$$H = \frac{\Gamma(p/2)}{T^p 2 \sqrt{\pi^p}}$$

■ and that T satisfies the unbiasedness and consistency conditions of the Parzen estimator: T^PN→∞, T→0 as N→∞

Distance measures

Generalized distance metric:

$$d^{2}(\mathbf{a}, \mathbf{b}) = (\mathbf{a} - \mathbf{b})\Gamma^{-1}(\mathbf{a} - \mathbf{b})^{T}$$

- Γ semi-definite positive matrix
- Γ^{-1} is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric.
- If $\Gamma = I$ we get squared Euclidean $\Gamma = \Sigma$ (covariance matrix) we get the Mahalanobis distance that takes into account correlations among attributes

Proximity measures (4)

- Notice that the above distance metrics are measures of DISSIMILARITY
- Some measures OF SIMILARITY also exist
 - Inner product

$$s_{INNER}(x,y) = x^T y$$

- The inner product is used when the vectors x and y are normalized, so that they have the same length
- Correlation coefficient

$$s_{cc}(x,y) = \frac{\sum_{i=1}^{D} (x - \overline{x})(y - \overline{y})}{\left[\sum_{i=1}^{D} (x - \overline{x})^{2} \sum_{i=1}^{D} (y - \overline{y})^{2}\right]^{1/2}}$$

Tanimoto measure (for binary-valued vectors)

$$s_{T}(x,y) = \frac{x^{T}y}{\|x\|^{2} + \|y\|^{2} - x^{T}y}$$

Distance measures.

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

What distance metric to use?

Distance measures.

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	M	85	125/80
Patient 2	62	M	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	M	84	135/85

What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and Hamming distances for subsets of attributes

Cluster validity

- The choice of (dis)similarity measure and criterion function will have a major impact on the final clustering produced by the algorithms
 - · Notice that the validity of the final cluster solution is highly subjective
 - This is in contrast with supervised training, where a clear objective function is known: Bayes risk.
 - Example
 - Which are the meaningful clusters in these cases?
 - How many clusters should be considered?

 A number of quantitative methods for cluster validity are proposed in [Theodoridis and Koutrombas, 1999]

Clustering

Clustering is useful for:

- Similarity/Dissimilarity analysis

 Analyze what data points in the sample are close to each other
- Dimensionality reduction
 High dimensional data replaced with a group (cluster) label
- Data reduction: Replaces many datapoints with the point representing the group mean

Problems:

- Pick the correct similarity measure (problem specific)
- Choose the correct number of groups
 - Many clustering algorithms require us to provide the number of groups ahead of time

Criterion function for clustering

- Once a (dis)similarity measure has been determined, we need to define a criterion function to be optimized
 - The most widely used criterion function for clustering is the sum-of-square-error

$$J_{\text{MSE}} = \sum_{i=1}^{C} \sum_{x \in \omega_i} \left| x - \mu_i \right|^2 \qquad \text{where } \mu_i = \frac{1}{N_i} \sum_{x \in \omega_i} x$$

- This criterion measures how well the data set X={x⁽¹, x⁽², ..., x^(N)} is represented by the cluster centers μ={μ⁽¹, μ⁽², ..., μ^(C)} (C<N)</p>
- Clustering methods that use this criterion are called minimum variance methods
- Other criterion functions exist, based on the scatter matrices used in Linear Discriminant Analysis
 - For details, refer to [Duda, Hart and Stork, 2001]

Iterative optimization

- Once a criterion function has been defined, we must find a partition of the data set that minimizes the criterion
 - Exhaustive enumeration of all partitions, which guarantees the optimal solution, is unfeasible
 - For example, a problem with 5 clusters and 100 examples yields 10⁶⁷ partitionings
- The common approach is to proceed in an iterative fashion
 - 1. Find some reasonable initial partition and then
 - Move samples from one cluster to another in order to reduce the criterion function
- These iterative methods produce sub-optimal solutions but are computationally tractable

Clustering algorithms

- K-means algorithm
 - suitable only when data points have continuous values;
 groups are defined in terms of cluster centers (also called means). Refinement of the method to categorical values:
 K-medoids
- Probabilistic methods (with EM)
 - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
 - Every point goes to the class with the highest posterior
 - Examples: mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
 - Agglomerative
 - Divisive

K-means

K-Means algorithm:

Initialize randomly *k* values of means (centers)

Repeat two steps until no change in the means:

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Stop when no change in the means

Properties:

- Minimizes the sum of squared center-point distances for all clusters
- The algorithm always converges (to the local optima).

The k-means algorithm

 The k-means algorithm is a simple clustering procedure that attempts to minimize the criterion function J_{MSE} in an iterative fashion

$$J_{\text{MSE}} = \sum_{i=1}^{C} \sum_{x \approx \omega_i} \left| x - \mu_i \right|^2 \qquad \text{where } \mu_i = \frac{1}{N_i} \sum_{x \approx \omega_i} x$$

- 1. Define the number of clusters
- 2. Initialize clusters by
 - · an arbitrary assignment of examples to clusters or
 - an arbitrary set of cluster centers (some examples used as centers)
- 3. Compute the sample mean of each cluster
- 4. Reassign each example to the cluster with the nearest mean
- 5. If the classification of all samples has not changed, stop, else go to step 3
- It can be shown (Lecture 14) that k-means is a particular case of the EM algorithm for mixture models

The k-means algorithm

- The k-means algorithm is widely used in the fields of signal processing and communication for <u>Vector Quantization</u>
 - Unidimensional signal values are usually quantized into a number of levels (typically a power of 2 so the signal can be transmitted or stored in binary format)
 - The same idea can be extended for multiple channels
 - However, rather than quantizing each separate channel, we can obtain a more efficient signal coding
 if we quantize the overall multidimensional vector by finding a number of multidimensional prototypes
 (cluster centers)
 - The set of cluster centers is called a "codebook", and the problem of finding this codebook is normally solved using the k-means algorithm

K-Means example

K-means algorithm

• Properties:

- converges to centers minimizing the sum of squared centerpoint distances (still local optima)
- The result is sensitive to the initial means' values

• Advantages:

- Simplicity
- Generality can work for more than one distance measure

Drawbacks:

- Can perform poorly with overlapping regions
- Lack of robustness to outliers
- Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - k-medoid algorithm used for discrete data

Hierarchical clustering

- k-means and ISODATA create disjoint clusters, resulting in a "flat" data representation
 - However, sometimes it is desirable to obtain a hierarchical representation of data, with clusters and sub-clusters arranged in a tree-structured fashion
 - Hierarchical representations are commonly used in the sciences (i.e., biological taxonomy)
- Hierarchical clustering methods can be grouped in two general classes
 - Agglomerative
 - Also known as bottom-up or merging
 - Starting with N singleton clusters, successively merge clusters until one cluster is left
 - Divisive
 - Also known as top-down or splitting
 - Starting with a unique cluster, successively split the clusters until N singleton examples are left

Dendrograms

- The preferred representation for hierarchical clusters is the dendrogram
 - The dendrogram is a binary tree that shows the structure of the clusters
 - In addition to the binary tree, the dendrogram provides the similarity measure between clusters (the vertical axis)
 - An alternative representation is based on sets

 - However, unlike the dendrogram, sets cannot express quantitative information

Hierarchical clustering.

Uses an arbitrary similarity/dissimilarity measure. Typical similarity measures d(a,b):

Pure real-valued data-points:

Euclidean, Manhattan, Minkowski distances

Pure binary values data:

Hamming distance - Number of matching values

Pure categorical data:

Number of matching values

Combination of real-valued and categorical attributes

Weighted approaches

Hierarchical clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

Agglomerative clustering (1)

Outline

- Define
 - N_c: Number of clusters
 - N_{FX}: Number of examples
- 1. Start with N_{EX} singleton clusters
- 2. Find nearest clusters
- 3. Merge them
- 4. If $N_c > 1$ go to 2

How to find the "nearest" pair of clusters

• Minimum distance
$$d_{min}(\omega_i, \omega_j) = \min_{\substack{x \in \omega_i \\ y \in \omega_i}} ||x - y||$$

$$\bullet \quad \text{Maximum distance} \quad \mathsf{d}_{\text{max}} \! \left(\! \boldsymbol{\omega}_{_{\boldsymbol{i}}}, \! \boldsymbol{\omega}_{_{\boldsymbol{j}}} \right) \! = \! \max_{\substack{\boldsymbol{x} \in \boldsymbol{\omega}_{_{\boldsymbol{i}}} \\ \boldsymbol{y} \in \boldsymbol{\omega}_{_{\boldsymbol{j}}}}} \! \left\| \boldsymbol{x} - \boldsymbol{y} \right\|$$

$$\bullet \quad \text{Average distance} \qquad d_{avg} \Big(\omega_i, \omega_j \Big) = \frac{1}{N_i N_i} \sum_{x \in \omega_i} \sum_{y \in \omega_i} \left\| x - y \right\|$$

• Mean distance
$$d_{mean}(\omega_i, \omega_j) = \|\mu_i - \mu_j\|$$

Agglomerative clustering (2)

Minimum distance

- When d_{min} is used to measure distance between clusters, the algorithm is called the <u>nearest-neighbor</u> or <u>single-linkage</u> clustering algorithm
- If the algorithm is allowed to run until only one cluster remains, the result is a <u>minimum</u> <u>spanning tree</u> (MST)
- This algorithm favors elongated classes

Maximum distance

- When d_{max} is used to measure distance between clusters, the algorithm is called the <u>farthest-neighbor</u> or <u>complete-linkage</u> clustering algorithm
- From a graph-theoretic point of view, each cluster constitutes a <u>complete sub-graph</u>
- This algorithm favors compact classes

Average and mean distance

- The minimum and maximum distance are extremely sensitive to outliers since their measurement of between-cluster distance involves minima or maxima
- The average and mean distance approaches are more robust to outliers
- Of the two, the mean distance is computationally more attractive
 - Notice that the average distance approach involves the computation of N_iN_j distances for each pair of clusters

Hierarchical clustering example

Hierarchical clustering example

dendogram

Agglomerative clustering example

- Perform agglomerative clustering on the following dataset using the single-linkage metric
 - $X = \{1, 3, 4, 9, 10, 13, 21, 23, 28, 29\}$
 - In case of ties, always merge the pair of clusters with the largest mean
 - Indicate the order in which the merging operations occur

Agglomerative clustering, minimum Vs. maximum distance

■ Consider the problem of clustering nine major cities in the United States

	BOS	NY	DC	MIA	СНІ	SEA	SF	LA	DEN
BOS	0	206	429	1504	963	2976	3095	2979	1949
NY	206	0	233	1308	802	2815	2934	2786	1771
DC	429	233	0	1075	671	2684	2799	2631	1616
MIA	1504	1308	1075	0	1329	3273	3053	2687	2037
CHI	963	802	671	1329	0	2013	2142	2054	996
SEA	2976	2815	2684	3273	2013	0	808	1131	1307
SF	3095	2934	2799	3053	2142	808	0	379	1235
LA	2979	2786	2631	2687	2054	1131	379	0	1059
DEN	1949	1771	1616	2037	996	1307	1235	1059	0

Divisive clustering

Outline

- Define
 - N_C: Number of clusters
 - N_{FX}: Number of examples
- 1. Start with one large cluster
- 2. Find "worst" cluster
- 3. Split it
- 4. If $N_C < N_{EX}$ go to 2

How to choose the "worst" cluster

- · Largest number of examples
- Largest variance
- Largest sum-squared-error
- ...

How to split clusters

- Mean-median in one feature direction
- Perpendicular to the direction of largest variance
- ...
- The computations required by divisive clustering are more intensive than for agglomerative clustering methods
 - For this reason, agglomerative approaches are more popular

Hierarchical clustering

• Advantage:

Smaller computational cost; avoids scanning all possible clusterings

• Disadvantage:

Greedy choice fixes the order in which clusters are merged;
 cannot be repaired

• Partial solution:

 combine hierarchical clustering with iterative algorithms like k-means