第三章 微分中值定理与导数应用

第五节 函数的极值与最值

主讲 武忠祥 教授

一、函数的极值及其求法

定义(极值) 若 $\exists \delta > 0$, 使得

 $\forall x \in U(x_0, \delta)$ 恒有 $f(x) \ge f(x_0)$, 则称 f(x) 在 x_0 取极小值.

 $\forall x \in U(x_0, \delta)$ 恒有 $f(x) \leq f(x_0)$, 则称 f(x) 在 x_0 取极大值.

定理1(极值的必要条件)

若 f(x) 在 x_0 处可导,且在 x_0 处取得极值,则

$$f'(x_0) = 0$$

定理2(极值的第一充分条件)

设 f(x) 在 $U(x_0, \delta)$ 内可导,且 $f'(x_0) = 0$ (或 f(x) 在 x_0 处连续)

- (1) 若 $x < x_0$ 时, $f'(x) \ge 0$; $x > x_0$ 时, $f'(x) \le 0$,则 f 在 x_0 处取极大值.
- (2) 若 $x < x_0$ 时, $f'(x) \le 0$; $x > x_0$ 时, $f'(x) \ge 0$, 则 f 在 x_0 处取极小值.
- (3) 若 f'(x) 在 x_0 的两侧不变号,则 f 在 x_0 无极值.

定理3 (极值的第二充分条件) 设 $f'(x_0) = 0, f''(x_0) \neq 0$

- (1) 当 $f''(x_0) < 0$, f(x) 在 x_0 处取极大值.
- (2) 当 $f''(x_0) > 0$, f(x) 在 x_0 处取极小值.

例1 求函数 $f(x) = x^3 - 3x^2 - 9x + 5$ 的极值

例2 求函数 $y = (x-1)\sqrt[3]{x^2}$ 的极值.

$$y' = x^{\frac{2}{3}} + \frac{2}{3}(x-1)x^{-\frac{1}{3}} = \frac{5x-2}{3x^{\frac{1}{3}}}$$

二、最大值与最小值问题

(1) 求连续函数 f(x) 在 [a,b] 上的最值

第一步: 求出 f(x) 在 (a,b) 内的驻点和不可导的点

$$x_1, x_2, \cdots x_n;$$

第二步: 求出函数值 $f(x_1), f(x_2), \cdots f(x_n), f(a), f(b)$;

第三步:比较以上各点函数值.

(2) 最大最小值的应用题

第一步:建立目标函数

第二步:

例3 求 $f(x) = 2x^3 - 3x^2$ 在 [-1,2] 上最大值和最小值

例4 证明不等式
$$\frac{1}{2^{p-1}} \le x^p + (1-x)^p \le 1, (x \in [0,1], p > 1).$$

例5 在半径为 R 的球中内接一直圆锥,试求圆锥的

最大体积.

$$(\frac{32}{81}\pi R^3)$$

内容小结

1.连续函数的极值

- (1) 极值可疑点: $f'(x_0) = 0$ 或 $f'(x_0)$ 不存在
- (2) 第一充分条件

$$f'(x)$$
 过 x_0 由正变负 $= > f(x_0)$ 为极大值 $f'(x)$ 过 x_0 由负变正 $= > f(x_0)$ 为极小值

(3) 第二充分条件

$$f'(x_0) = 0$$
, $f''(x_0) < 0$ $\Longrightarrow f(x_0)$ 为极大值 $f'(x_0) = 0$, $f''(x_0) > 0$ $\Longrightarrow f(x_0)$ 为极小值 $+$

2.连续函数的最值

- (1) 求连续函数 f(x) 在 [a,b] 上的最值
- (2) 最大最小值的应用题

作业 P161: 1(1)(3)(8)(9); 3; 6(2); 11; 15;