ACFD: Asymmetric Cartoon Face Detector

Bin Zhang*, Jian Li*, Yabiao Wang, Zhipeng Cui {* Equal Contribution}

Youtu Lab, Tencent Southeast University

Task Analysis

- ➤ Model size should not exceed 200M.
- ➤Inference time of a single picture (1920x1080) should not exceed 50ms.
- ➤ Multi-scale and multi-model ensembles are allowed, in this way, inference time is the sum of multi-scale multi-models.
- > Pretrained model can not be utilized.
- ➤ WIDER Face can be used as the training dataset.

Dataset Analysis

distribution of boxes per image

distribution of face height and width ratio

distribution of face height and width ratio

Difficulties of iCartoonFace

Related Face Detectors

• State-of-the-art methods: SFD[1], PyramidBox[2], SRN[3], DSFD[4], RefineFace[5].

• Pipeline:

- One-stage anchor-based detectors are widely used.
- Take features of stride from 4 to 128 for predicting. (6 layers of pyramid features, for handling the small faces)
- Modules follow the backbone to fuse the pyramid features and enhance the semantic information sequentially.
- Match Strategy: Match anchors and faces with a smaller IoU threshold (0.35-0.4, it is 0.5 in generic object detection). (to assign enough anchors for each faces)
- Data Augmentation: Random crop for multi-scale training.

^[1] S. Zhang, X. Zhu, and et al. S3FD: Single Shot Scale-invariant Face Detector. ICCV, 2017.

^[2] X. Tang, D. K. Du, and et al. PyramidBox: A Context-assisted Single Shot Face Detector. ECCV, 2018.

^[3] C. Chi, S. Zhang, and et al. Selective Refinement Network for High Performance Face Detection, AAAI, 2019.

^[4] J. Li, Y. Wang, and et al. DSFD: Dual-Shot Face Detector. CVPR, 2019.

^[5] S. Zhang, C. Chi, and et al. RefineFace: Refinement Neural Network for High Performance Face Detection, TPAMI, 2020.

Our ACFD

- A one-stage anchor-based pipeline with the ability to extract diverse features by employing **asymmetric conv.** layers.
- Data augmentation for better handling the faces hard to detect, e.g., too small and too large faces, blur and occluded faces, etc.
- **Dynamic match strategy** to sample high-quality anchors for training, providing enough anchors for each face.
- Margin loss for enhancing the power of discrimination especially for those faces similar to the background, e.g., robot face.

Pipeline

Data Augmentation

- Random crop to generate large training samples. (zoom in)
- Random expansion to generate **small** samples. (zoom out)
- Random tile faces to anchor scale for better align the receptive field.

Asymmetric Conv Block (ACB)

- [1] S. Zhang, C. Chi, and et al. RefineFace: Refinement Neural Network for High Performance Face Detection, TPAMI, 2020.
- [2] X. Ding, Y. Guo, and et al. Acnet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks. ICCV, 2019.

A-VoVNet51[1]

• 6 stages with strides from 4 to 128

Layer	Output	Stride	Repeat	Channel
Image	640×640	-	-	-
Conv1	320×320	2	1	64
Conv2	320×320	1	1	64
Conv3	160×160	2	1	128
Stage1	160×160	1	1	256
Down-sampling	80×80	2	1	256
Stage2	80×80	1	1	512
Down-sampling	40×40	2	1	512
Stage3	40×40	1	2	768
Down-sampling	20×20	2	1	768
Stage4	20×20	1	2	1024
Down-sampling	10×10	2	1	1024
Stage5	10×10	1	1	128
Down-sampling	5×5	2	1	128
Stage6	5×5	1	1	128

A-VoVNet51[1]

• 6 stages with strides from 4 to 128

Layer	Output	Stride	Repeat	Channel
Image	640×640	-	-	-
Conv1	320×320	2	1	64
Conv2	320×320	1	1	64
Conv3	160×160	2	1	128
Stage1	160×160	1	1	256
Down-sampling	80×80	2	1	256
Stage2	80×80	1	1	512
Down-sampling	40×40	2	1	512
Stage3	40×40	1	2	768
Down-sampling	20×20	2	1	768
Stage4	20×20	1	2	1024
Down-sampling	10×10	2	1	1024
Stage5	10×10	1	1	128
Down-sampling	5×5	2	1	128
Stage6	5×5	1	1	128

backbone	АР	
ResNet50	0.9018	
SE-ResNet50	0.9023	
Res2Net50	0.8959	
ResNeSt50	0.8997	
EfficientNet-B3	0.8863	
VoVNet51	0.9037	
A-VoVNet51	0.9074	

^[1] Y. Lee, J. Park, and et al. CenterMask: Real-Time Anchor-Free Instance Segmentation. CVPR, 2020.

A-BiFPN[1]

Top-down path:

$$P_i^{td} = Conv(\frac{\omega_1 \cdot P_i^{in} + \omega_2 \cdot Resize(P_{i+1}^{td})}{\omega_1 + \omega_2 + \epsilon})$$

Bottom-up path:

$$P_i^{bu}$$
= $Conv((\omega_1 \cdot P_i^{in} + \omega_2 \cdot P_i^{td} + \omega_3 \cdot Resize(P_{i-1}^{td}))/(\omega_1 + \omega_2 + \omega_3 + \epsilon))$

Exp:	Feature Module	АР
	A-BiFPN	0.9036
	BiFPN	0.9018
	SEPC (CVPR'20)	0.8880
	FPN	0.8830

Dynamic Match Strategy

- First step: the faces match anchors with IoU higher than a small threshold, usually 0.35~0.45.
- Second step: a anchor would be matched when IoU of its regressed box with any box greater than a large threshold, usually 0.7~0.8.

Loss Design

Regression loss

$$\ell_{reg} = \frac{1}{N_1} \sum_{i \in \psi_1} \mathcal{L}_{smoothL1}(x_i, x_i^*) + \frac{\lambda_{reg}}{N_2} \sum_{i \in \psi_2} \mathcal{L}_{smoothL1}(x_i, x_i^*)$$

Classification loss

$$\ell_{cls} = \frac{1}{N_1} \sum_{i \notin \psi_2} \mathcal{L}_{focal}(f_{margin}(p_i), p_i^*) + \frac{\lambda_{cls}}{N_2} \sum_{i \in \psi_2} \mathcal{L}_{focal}(f_{margin}(p), p_i^*)$$

$$f_{margin}(x, x^o) = [x^o = 1] \cdot (x - m) + [x^o = 0] \cdot x$$

model	AP	model	AP
Baseline	0.8765	Baseline	0.9048
+ dynamic match	0.8890	+ margin loss	0.9073

Experimental Details

Training

- Split 50000 pictures into 45000 for training and 5000 for validating.
- Sample size: 640×640, batch size: 16×4 Tesla V100 GPUs.
- SGD with learning rate 0.04, multiplied by 0.1 at 200, 250 and 280 epoch, stop at 300 epoch.
- IoU thresholds for first and second match: 0.35 and 0.7, $\lambda_{reg} = \lambda_{cl.s} = 0.8$.
- The margin of classification loss is 0.2.

Testing

- Test scale: (480, 645), (640, 860), (800, 1075)
- Top-1000 predictions with confidence scores higher than 0.08 are processed by NMS with IoU threshold 0.55, top-100 boxes would be preserved as the final results.

Time-Consuming Analysis

- Time-consuming optimization
 - Fuse conv. and BN layer. (accelerate about 3 ms when batch=1)
 - Batch processing. (speed up to 60+ ms without post-processing)
 - Convert PyTorch model to TensorRT by a simple torch2trt toolbox available at https://github.com/z-bingo/torch2trt. (average runtime: 48~49 ms)

Results on Leaderboard

Visualization

Conclusion

Asymmetric Conv Block (ACB)

- Provide the backbone network with the ability to generate features with more diverse receptive fields.
- BiFPN with ACB could aggregate and enhance multi-scale features at the same time, previous methods achieved these by two separate modules.

Dynamic Match Strategy

 Instead of matching anchors and faces by a simple IoU threshold, it is employed for mining enough high-quality anchors for each face.

Margin Loss

• Enhance the power of discrimination, especially for those faces who are similar to the background, e.g., blur face, robot face.

Data Augmentation

Augment the faces that are too small and too large to be accurately located.

Bin Zhang*, Jian Li*, Yabiao Wang, Zhipeng Cui {* Equal Contribution}
Contact e-mail: swordli@tencent.com

Youtu Lab, Tencent Southeast University

该二维码7天内(6月23日前)有效, 重新讲入将更新

