Machine Learning – January 19, 2021

Time limit: 2 hours 15 minutes.

EXERCISE 1

Consider the following dataset, containing samples of a function f:

x_1	x_2	x_3	f
0.6	3	1	4.6
1	2	3	2.1
4	4	1	10

- 1. Assume you want to estimate f. What problem are we dealing with? Provide the mathematical formulation of a model that could be used for this problem.
- 2. Illustrate an algorithmic technique that can be used to train the chosen model.

EXERCISE 2

Consider the following dataset (with red and green classes).

- 1. Is this dataset linearly separable? Explain your answer.
- 2. Which approach could reasonably produce the shown boundary?
- 3. Which approach would you expect NOT to produce the separation boundary shown in the figure? Why?

EXERCISE 3

Consider binary classification (classes: + and -):

- 1. Show an example consisting of a classifier and a simple dataset where the *accuracy* metric fails to correctly quantify the classifier quality.
- 2. Discuss whether more reliable metrics exist and provide the details.

EXERCISE 4

- 1. Give a short explanation of the *Kernel trick* (kernel substitution). What is the necessary condition for applying the kernel trick? What is a kernel?
- 2. Consider a linear model for binary classification, i.e. $\mathbf{y}(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$, without regularization. Provide an example of applying the kernel trick on this problem. In detail:
 - provide the mathematical formulation of the model before applying the kernel trick;
 - explain why it is possible to apply the kernel trick;
 - provide the "kernelized" formulation of the model.

EXERCISE 5

Consider designing an Artificial Neural Network for a multi-class classification problem.

- 1. Provide a formal definition of the output unit
- 2. Provide a formal definition of the loss function

EXERCISE 6

- 1. Describe the kinds of problems for which Principal components Analisis (PCA) can be used.
- 2. Provide an example of a practical problem (not just an abstract one) for which PCA is useful, describe a possible outcome of PCA on such problem, and discuss the practical utility of such solution.