SYLOW THEOREM

Cosets

Author

Tom Jeong

October 21, 2024

Contents

1	Sylow	3
	1.1 Exmaples of Sylow Theorems	4

1 Sylow

Proof of the first sylow theorem:

Proof. Let $S = \{X \subseteq G | |X| = p^r\}$ Define $\alpha : G \times S \to S$ group action.

$$\alpha(g, X) = \{gx | x \in X\}$$

Since multiplication by g is a bijection, $\alpha(g, X) \in S$

Exercise: Check that α is a group action. Observe that the number of subsets, X of G with $|X| = p^r$ is

$$|S| = \binom{p^r m}{p^r}$$

Exercise: The highest power of p dividing $p^r - i$ is the highest power of p dividing $p^r m - i$ for $i = 0, 1, p^r - 1$

show that p doens't deivide the size of s

By proposition (2,19.5 - 2) The set of G orbits partitions S so \exists orbit $G \cdot X, X \in S$ such that $p \nmid |G \cdot X|$ because if $p \mid |G \cdot X| \forall X \in S$ then $p \mid |S|$

By Lagrnage's theorem and Proposition 2.10.2 (3)

$$|G| = |G \cdot X||G_X|$$

where G_X (is the stabilizer) = $\{g \in G | gX = X\}$

So $p^r \mid |G_X|$ since $p \nmid |G \cdot X|$

Claim: $|G_X| = p^r$ and profe of claim $G_X \circ X$ and orbit are right cosets. $G_X \cdot g$ (each coset has $|G_X|$ elements)

 $|G_X| = |G_X|$

since orbits partition X

 $|G_X| \mid |X|$

so $|G_X| | p^r$

hence $|G_X| = p^r$, so G_X is the desired Sylow *p*-subgroup of G.

See textbook for proofs of 2nd and 3rd Sylow Theorems.

1.1 Exmaples of Sylow Theorems

Example: prove that any group G of order 35 is isomprhic to $\mathbb{Z}/35\mathbb{Z}$ PF: since $35 = 5 \times 7$ the third sylo theorem implies:

$$\begin{split} |Syl_7(G)| &= \{1,5\} \\ |Syl_5(G)| &= \{1,7\} \\ |Syl_7(G)| &\equiv 1 \bmod 7 \\ |Syl_5(G)| &\equiv 1 \bmod 5 \\ \text{so } \exists ! \text{ Sylow 7-Subgroup P of G} \\ \exists ! \text{ Sylow 5-Subgroup Q of G} \end{split}$$

Hence by Corollary to 2nd Sylow Theorem. P and Q are normal in G.

BY Lemma 2.3.6, PQ is a subgroup of G containing P and Q as subgroups, Ten |PQ|=35

$$|P| = 7$$
 divides $|PQ|$

$$|Q| = 5$$
 divides $|PQ|$

Hence PQ = G and Since $P \cap Q$ is a propeor subgroup of Q, we have that $P \cap Q = \{e\}$ by Lagrange. Tehn by lemma 2.8.11

$$\Pi: P \times Q \to PQ = G$$

$$\pi(p,q) = pq$$

is an isomorphism. SO $G \cong \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ and by proposition 2.8.2, beginalign* $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/35\mathbb{Z}$

Rings

Q: What would happen if a set had two different operations on it? EX: we know $(\mathbb{Z}, +)$ are a group mltiplication is a binary operation on Z. $a \cdot (b+c) = a \cdot b + a \cdot c$ ObserveL (\mathbb{Z}, \cdot) is not a group no inverse

Definition 1.1. Deifine a <u>ring</u> is an abelian group (R, +) with an additional binary operation.

$$\cdot: R \times R \to R$$

called multiplication. Multiplication satisfies the following $\forall x, y, z \in \mathbb{R}$:

- 1. multilpication is associative
- 2. there exists a multiplicative identity
- 3. Multi. distributes over addition x(y+z) = xzxy

(some books dont require an identity and its call this a ring with unity)

Notes for $x \in R$ there is always an additive inverse -x. There might not be a multiplicative invers. nOtation.

- 1. we will generally write xy for $x \cdot y$.
- 2. we will write 0 for the additive identity

```
exercise: provet htat 0 \cdot x = x \cdot 0 = 0 \forall x \in \mathbb{R} ex.r Ringss (\mathbb{Z}, +, \cdot), (\mathbb{Z}/n\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot)
```

Definition 1.2. Let R be a ring.

- 1. A subset $S \subset R$ is called a subring of R S is a subgroup of (R, +) and
 - (a) $1 \in S$
 - (b) if $x, y \in S$ then $x \cdot y \in S$
- 2. An element $x \in R \setminus \{0\}$ is called a zero divisor if $\exists y \in \mathbb{R} \setminus \{0\}$
- 3. An element $x \in R$ is called a unit if $\exists y \in R$ such that xy = 1 = yx we denote y by x^{-1} and y is called the multiplicative inverse of x. The set of units in R is denoted R^*
- 4. We say R commutative ring if $xy = yx \forall x, y \in R$

From now on we will restrit oursekves to commutative rings for the rest of the semester.