Introduction to algorithms

Fall 2017

IFT2125-6001

TA: Maëlle Zimmermann

Demonstration 4

1

Q. Let $f \in O$ (n $_{log \ b}$ $_{a-\epsilon}$) o`u $\epsilon > 0$. Let $T: N \to R _{\geq 0}$ such that

$$T\;(b_{k)} = \; \begin{cases} c & \text{if } k = k_{0},\\ & \text{aT}\;(b_{k-1}) + f\left(b_{k}\right) \text{ otherwise} \end{cases} \label{eq:total_total_total_total}$$

Show that $T \in \Theta$ (n $_{log \ b}$ a: n is a power of b).

Solution: Let g (k b $_0) = c$ / a $_k$ $_0$, and g (b $_k) = f$ (b $_k)$ / a $_k$ for all k > k $_0$. We have being shown by induction that T (b $_k) = a$ $_k$ [g $_k$ b $_0) + g$ (b $_k$ $_0 + 1) + ... + g$ (b $_k)]$, which proves that $T \in \Omega$ (n $_{log}$ $_b$ $_a$ $_n$ is a power of b) as a $_k = (b$ $_k)$ $_{log}$ $_b$ $_a$.

It remains to prove that `T \in O (n $_{log\ b\ a:}$ n is a power of b). Since $f \in$ O (n $_{log\ b\ a-\epsilon)}$, there are $n \in$ N $_0$, $d \in$ R> 0 such that $f(n) \le dn$ $_{log\ b\ a-\epsilon}$ for all $n \ge n$ 0.

Let $i \ge max (n_0, k_0)$, then:

$$\begin{split} g_{\ (i)} b) &= f\left(b_{\ i)} \, / \, a_{\ i} \\ &\leq d\left(b_{\ i)} \, \log_{\ b} a_{\text{-}E} \, / \, a_{\ i} \\ \\ Db &= {_i} \left(\log_{\ b} a_{\text{-}E}\right) \, / \, b_{\ \log_{\ b} a_{\ i}} \\ &= D \, / \, b_{\ ei.} \end{split}$$

Thus for $k \ge max$ (n 0, k 0), we have

$$\begin{split} T & (b \mid_{k}) = a \mid_{k} \left[\begin{array}{c} g & (b \mid_{k \mid_{0}} + g \mid_{k \mid_{0}} + 1) + ... + g \mid_{k} (b \mid_{k}) \end{array} \right] \\ & = \prod_{Ak} \left[\begin{array}{c} \sum_{k \mid_{0}} g & (b \mid_{k \mid_{0}} + 1) + ... + g \mid_{k} (b \mid_{k}) \end{array} \right] \\ & = \prod_{Ak} \left[\begin{array}{c} \sum_{k \mid_{0}} g & (b \mid_{i}) + \sum_{k \mid_{0}} g \mid_{k} (b \mid_{i}) \end{array} \right] \\ & = \prod_{k \mid_{0}} x & (n \mid_{0} \mid_{k} \mid_{0} - 1) & k & k \mid_{0} \end{array} \right] \\ & \leq a \mid_{k} \left[\begin{array}{c} \sum_{k \mid_{0}} g & (b \mid_{i}) + \sum_{k \mid_{0}} d \mid_{k} b \mid_{i} \end{array} \right] \\ & = \prod_{k \mid_{0}} x & (n \mid_{0} \mid_{k} \mid_{0} - 1) & k \mid_{0} \end{array} \right] \\ & \leq a \mid_{k} \left[\begin{array}{c} \sum_{k \mid_{0}} g & (i \mid_{0} + 1) + d \mid_{k} (1 - (1 \mid_{k} \mid_{0} b)) \end{array} \right] . \\ & = \prod_{k \mid_{0}} x & (n \mid_{0} \mid_{k} \mid_{0} - 1) & k \mid_{0} \end{array} \right] \\ & = \prod_{k \mid_{0}} x & (n \mid_{0} \mid_{k} \mid_{0} - 1) & k \mid_{0} \end{aligned} \right] \\ & = \prod_{k \mid_{0}} x & (n \mid_{0} \mid_{k} \mid_{0} - 1) & k \mid_{0} \end{aligned}$$

Since a $k = (b \mid_{b \mid_{\log b} a})$, we conclude that $T \in O(n \mid_{\log b} a)$ is a power of b) and so we have $T \in O(n \mid_{\log b} a)$ is a power of b).

2

Question: Show that all conditions in order to apply the harmony rule are required. Specifically, exhibit $b \ge 2$, and $f, t : N \to R$ 30 such as $t(n) \in \Theta$ (f(n): n is a power of b), but $t \ne \Theta$ (f). Give three pairs of functions f, t subject with the following additional conditions:

- 1. f is harmonious, but t is not possibly non-decreasing
- 2. f and t are possibly non-decreasing but f (bn) / \in O (f (n))
- (F (n)) and t is non-decreasing, but f is not possibly non-decreasing.

Solution:

1. Necessity of t .nd: Let f(n) = n and

$$t(n) = \begin{cases} n \text{ if } n \text{ is a power of b,} \\ 1 \text{ otherwise} \end{cases}$$

When n is a power of b, we have t (n) = f (n) = n. Let us show that $t / \in \Theta$ (f). Suppose the opposite is absurd. Then there exists $n \in N$ 0, $c \in \mathbb{R} > 0$

such that $\forall n \ge n$ % we have $t(n) \ge cf(n)$. Let m > max (d % 1/c) a number which is not a power of b. According to our assumption, we have $t(m) \ge cf(m) = cm > c$. C = 1. Now by definition t(m) = 1, which is a contradiction with the above.

2. Necessity of $f(bn) \in O(f(n))$ Let b = 2,

$$t(n) = 2 \operatorname{n \lceil \log n \rceil},$$

$$f(n) = 2 \operatorname{n \lceil \log n \rceil}.$$

By definition, t and f are not decreasing, and we have t $(2_{i}) = f_{(i)}(2) = 2_{2i+1}$. Suppose $f(2n) \in O(f(n))$, then $\exists n \in C \in \mathbb{R} \setminus O$ such that $n \ge 0 \forall n$ we $f(2n) \le cf(n)$. Let $m = max(d_0, \lceil C \rceil + 1)$. We have $f_{(2m+1)} / f_{(m)}(2) \le c$, or

$$\frac{f\left(2_{\,\,\mathrm{m}\,+\,1}\right)}{f\left(\mathrm{m}\,2\right)} \;\; = \;\; \frac{2_{\,\,2m\,+\,1}\,\left(\mathrm{m}\,+\,1\right)}{2_{\,\,2m\,\,m}} \;\; \geq \;\; \frac{2_{\,\,2m\,+\,1}\,\left(\mathrm{m}\,+\,1\right)}{2_{\,\,2m\,+\,1}\,\,m} \;\; = 2_{\,\,2m\,+\,1} \;\; \geq m > c\,,$$

which is a contradiction.

Let us now show that $t \, / \, \in \Theta$ (f). Suppose that $t \in \Theta$ (f), then $\exists n \, _0 \in N, c \in R > 0$ such that $\forall \, n \geq n \, 0$ we have $t \, (n) \leq c f \, (n).$ Let $m = \max \, (d \, 0, \lceil c \rceil + 1).$ We $t_{\, (2m} + 1) \, / \, f_{\, (2m} + 1) \leq c, \, or$

$$\frac{t\;(2\;{}_{m}+1)}{f\;(2\;{}_{m}+1)}\;\;=\;\;\frac{2\;{}_{(2\;{}_{m}+1)\;(m+1)}}{2\;{}_{(2\;{}_{m}+1)\;m}}\;\;=2\;{}_{2m+1}\;\;\geq m\!\!>\!c,$$

which is a contradiction. Thus, $t \in \Theta$ (f).

3. Necessity of f end: Let t(n) = n and

$$f(n) = \begin{cases} n \text{ if } n \text{ is a power of b,} \\ 1 \text{ otherwise} \end{cases}$$

When n is a power of b, we have t(n) = f(n) = n. Moreover, $f(bn) \in O(f(n))$. Indeed, if b = k we have

$$f(bn) = f(b_{k+1}) = b_{k+1} = bf(b_k) = bf(n),$$

and if n is not a power of b we have

$$f(bn) = 1 \le b = bf(n).$$

Now, t $/\!\in\!\Theta$ (f), by an argument similar to that given in point 1.

3

Page 4

3

Question: Consider a function t: $N \to {}_{R \succ 0}$ eventually nondecreasing such than

$$\forall n \ge n_0$$
 $t(n) \le t(\lfloor n/2 \rfloor) + t(\lceil n/2 \rceil) + t(1 + \lceil n/2 \rceil) + cn.$

Borne t with O notation.

Solution: Let m 0 `the threshold from which t is nondecreasing. Let $n \ge max (2m \, 0, n \, 0)$,

then $\lfloor n/2 \rfloor \ge 0$ m. Thus $t(\lfloor n/2 \rfloor) \le t(\lceil n/2 \rceil) \le t(1 + \lceil n/2 \rceil)$ and of the blow

$$t(n) \le 3t(1 + \lceil n/2 \rceil) + cn. \tag{1}$$

Let T (n) = t (n + 2). Let $n \ge max (2m_0, n_0)$, then

$$T(n) = t(n+2)$$

$$\leq 3t(1+\lceil (n+2)/2\rceil) + c(n+2)$$

$$= 3t(2+\lceil n/2\rceil) + c(n+2)$$

$$\leq 3t(2+\lceil n/2\rceil) + c \cdot 2n$$

$$= 3T(\lceil n/2\rceil) + 2cn.$$

Thus, T (n) \leq 3T ($\lceil n/2 \rceil$) + (2c) for all $n \geq n$ max (2 m 0, n 0). By applying a theorem in class (theorem on asymptotic recurrences) with

$$a = 3, b = 2, f(n) = n, \varepsilon = 1/2 > 0$$

we get $T \in O$ (n log 2 3). Since t (n) = T (n - 2) \leq T (n), we conclude that $t \in O$ (n log 2 3) = O (n log 2 3).

4

Question: Solve the following recurrence exactly

$$t_{\,n} = \begin{array}{ll} \{n+1 & & \text{if } n=0 \text{ or if } n=1, \\ 3t_{\,n-1} - 2t_{\,n-2} + 3 \cdot 2_{\,n-2} & & \text{if not} \end{array} \label{eq:tn}$$

Solution: For n> 1 we have $t_n - 3t_{n+1} + n 2t_2 = (3/4) \cdot 2n$. Thus the polynomial Characteristic of recurrence is $p(x) = (x_2 - 3x + 2)(x-2) = (x-1)(x-2)(x-2)$. The roots are 1 and 2 (multiplicity 2). The root 2 generates

$$(c_1 + c_2 n) \cdot 2_n$$

4

Page 5

and the root 1 generates

So,

$$t_n = a_1 + c_2_{n} 2_{n} n + c_3$$

Using the initial conditions given by (2) we get the following system

As we have

So we get $t_n = -2 \cdot 2_n + (3/2) \cdot 2_n \cdot n + 3 = (3n - 4) \cdot 2_{n-1} + 3$.

Question: Solve the following recurrence exactly

$$T\left(n\right) = \begin{array}{c} \left\{ \begin{array}{c} at & \text{if } n=0 \text{ or if } n=1, \\ T\left(n-1\right) + T\left(n-2\right) + c \text{ otherwise} \end{array} \right. \end{array}$$

Solution: For n> 1 we have T (n) - T (n - 1) - T (n - 2) = c = 1 n c. Thus the Characteristic polynomial recurrence is p (x) = (x 2 - x - 1) (x - 1). Thus the roots of p are 1 and $\frac{1}{2}$ 5, All of multiplicity 1. Denoting $\phi = \frac{1}{2}$ 5, We have

$$T(n) = c_1 + c_2 \varphi_n + c_3 (1 - \varphi)_n$$

We obtain the system

We can solve the system either by directly applying the Gauss-Jordan as previously on the matrix

$$\left[\begin{array}{ccc} 1 \ 1 & 1 & at \\ 1 \ \varphi & 1 \ -\varphi & at \\ 1 \ 2 \ \varphi & (1 \ -\varphi) \ 2 & 2a + c \end{array} \right]$$

5

Page 6

or by proceeding first by substitution, which gives:

$$c_1 = a - c_2 - c_3$$

The system then becomes

$$(\varphi - 1) c_2 - 3 \varphi c = 0$$

$$(\varphi - 1) + c_2 (\varphi - 2\varphi) c = a + c$$

With Gauss-Jordan we get

6

Question: Bound the following recurrence for n a power of 2

$$T(n) = \{1_{2T(n/2)} + \log n \text{ otherwise}\}$$

Solution: We can use the lemma of the powers of b. If n = 2k we

$$T (2_{k}) = \begin{cases} 1 & \text{if } k = 0, \\ 2T (2_{k-1}) + k \text{ if} \end{cases}$$

We find the general case the lemma with a = 2, b = 2 log $_b$ a = log $_2$ 2 $_{\sqrt[4]{7}}$ 1 and f (n) = log (n). Since we can bound f (n) by n, we can apply query the case 1 of the lemma with $\epsilon = 1/2$. Indeed we have found $\epsilon > 0$ such that f (n) \in O (n $_{log \ b \ a:\epsilon}$) as O (n $_{log \ b \ a:\epsilon}$) as O (n $_{log \ b \ a:\epsilon}$) as O (n $_{log \ b \ a:\epsilon}$) as O (n $_{log \ b \ a:\epsilon}$) as O (n $_{log \ b \ a:\epsilon}$) as O (n $_{log \ b \ a:\epsilon}$) as O (n $_{log \ b \ a:\epsilon}$) as O (n $_{log \ b \ a:\epsilon}$) as D