Informática II Comunicación serie y estándar RS-232

Gonzalo F. Perez Paina

Universidad Tecnológica Nacional Facultad Regional Córdoba UTN-FRC

-2024 -

Introducción

En informática, la comunicación o transmisión de datos entre dispositivos se puede realizar de forma paralela o serie.

Introducción

En informática, la comunicación o transmisión de datos entre dispositivos se puede realizar de forma paralela o serie.

- 1. Comun. paralela: permite transmitir varios bits de forma simultanea.
- 2. Comun. serie: se transmite un único bit a la vez de forma secuencial.

Introducción

En informática, la comunicación o transmisión de datos entre dispositivos se puede realizar de forma paralela o serie.

- 1. Comun. paralela: permite transmitir varios bits de forma simultanea.
- 2. Comun. serie: se transmite un único bit a la vez de forma secuencial.

La transmisión de datos permite comunicar equipos electrónicos tales como:

- ▶ PC (Computadoras Personales), PLC (Controladores Lógicos Programables), instrumentos de laboratorios (multímetros, osciloscopios, etc.).
- ▶ Placas de desarrollo de sistemas embebidos (Arduino, Raspberry Pi, etc.).
- ► Componentes internos de una PC.

Comunicación serie y paralela

Comunicación serie y paralela

- ► En la comunicación paralela se necesitan tantas conexiones como bits se quieran transmitir.
- En la comunicación serie en un solo sentido se necesitan solo una conexión.

Interfaces o buses de comunicación entre comp. internos de una PC son:

ISA: Industry Standard Architecture.

PCI: Peripheral Component Interconnect.

ATA/IDE: Advanced Technology Attachment/Integrated Drive Electronics.

Interfaces o buses de comunicación entre comp. internos de una PC son:

ISA: Industry Standard Architecture.

PCI: Peripheral Component Interconnect.

ATA/IDE: Advanced Technology Attachment/Integrated Drive Electronics.

- Interfaces de comunicación externa en paralelo:
 - IEEE-1284: Incluido en la primeras PC de IBM y luego estandarizado por el Institute of Electrical and Electronics Engineers (IEEE).
 - IEEE-488: Desarrollado originalmente por Hewlett-Packard para conectar dispositivos de testeo y medición con una PC. Luego estandarizado por el IEEE.

4 / 20

- Interfaces de comunicación externa en paralelo:
 - IEEE-1284: Incluido en la primeras PC de IBM y luego estandarizado por el Institute of Electrical and Electronics Engineers (IEEE).
 - IEEE-488: Desarrollado originalmente por Hewlett-Packard para conectar dispositivos de testeo y medición con una PC. Luego estandarizado por el IEEE.

IEEE-1284

IEEE-488

▶ Interfaces de comunicación externa en serie: RS-232/EIA-232 (a estudiar en detalle) y RS-485/EIA-485 estándar de comunicaciones en bus diferencial de la capa física (modelo OSI –ISO/IEC 7498-1).

▶ Interfaces de comunicación externa en serie: RS-232/EIA-232 (a estudiar en detalle) y RS-485/EIA-485 estándar de comunicaciones en bus diferencial de la capa física (modelo OSI –ISO/IEC 7498-1).

RS-232

RS-485

▶ Interfaces de comunicación externa en serie: RS-232/EIA-232 (a estudiar en detalle) y RS-485/EIA-485 estándar de comunicaciones en bus diferencial de la capa física (modelo OSI –ISO/IEC 7498-1).

RS-232

RS-485

 \blacktriangleright Intefaces de com. en Sistemas Embebidos (SE): SPI, I²C/TWI, 1-Wire, etc.

Ejemplo de comunicación paralela en SE

Conexión entre placa Arduino UNO y LCD de 16×2

- ▶ Utiliza 8 bits de datos en paralelo.
- ▶ Bits de control: RS (Register Select), E (Enable) y R/W (Read/Write).

Ejemplo de comunicación serie en SE

Conexión entre placa Arduino UNO con módulos Bluetooth y GPS a través de interfaz serie UART-TTL.

► Cuando dos dispositivos se comunican intercambian algún tipo de señal detectable que representa los datos (sin comunicación no se enviará ninguna señal a través del canal de comunicación).

- Cuando dos dispositivos se comunican intercambian algún tipo de señal detectable que representa los datos (sin comunicación no se enviará ninguna señal a través del canal de comunicación).
- Cuando haya datos para enviar, el dispositivo de envío comenzará a enviar señales.

- Cuando dos dispositivos se comunican intercambian algún tipo de señal detectable que representa los datos (sin comunicación no se enviará ninguna señal a través del canal de comunicación).
- Cuando haya datos para enviar, el dispositivo de envío comenzará a enviar señales.
- Debe entonces haber una forma para que el dispositivo de destino sepa cuándo comenzar a leer datos.

- Cuando dos dispositivos se comunican intercambian algún tipo de señal detectable que representa los datos (sin comunicación no se enviará ninguna señal a través del canal de comunicación).
- Cuando haya datos para enviar, el dispositivo de envío comenzará a enviar señales.
- ▶ Debe entonces haber una forma para que el dispositivo de destino sepa cuándo comenzar a leer datos.
- ▶ Se debe establecer y mantener algún tipo de sincronización entre los dispositivos para que las señales se produzcan y detecten con precisión.

- Cuando dos dispositivos se comunican intercambian algún tipo de señal detectable que representa los datos (sin comunicación no se enviará ninguna señal a través del canal de comunicación).
- Cuando haya datos para enviar, el dispositivo de envío comenzará a enviar señales.
- Debe entonces haber una forma para que el dispositivo de destino sepa cuándo comenzar a leer datos.
- ➤ Se debe establecer y mantener algún tipo de sincronización entre los dispositivos para que las señales se produzcan y detecten con precisión.

Comun. síncrona: la sincronización se mantiene mediante un bit especial en cada bloque de datos proporcionado por una señal adicional de reloj.

- Cuando dos dispositivos se comunican intercambian algún tipo de señal detectable que representa los datos (sin comunicación no se enviará ninguna señal a través del canal de comunicación).
- Cuando haya datos para enviar, el dispositivo de envío comenzará a enviar señales.
- ▶ Debe entonces haber una forma para que el dispositivo de destino sepa cuándo comenzar a leer datos.
- ➤ Se debe establecer y mantener algún tipo de sincronización entre los dispositivos para que las señales se produzcan y detecten con precisión.

Comun. síncrona: la sincronización se mantiene mediante un bit especial en cada bloque de datos proporcionado por una señal adicional de reloj.

Comun. asíncrona: la sincronización se restablece con la transmisión de cada caracter mediante el uso de bits de inicio y parada.

Comunicación síncrona

Comunicación asíncrona

9/20

- En ambos casos, los dos dispositivos pueden transmitir y recibir información.
- ► En la comunicación sícrona además de las señales de transmisión y recepción de datos se incluye también una señal de reloj o clock.
- ▶ En la comunicación asíncrona la señal de reloj no es necesaria.

- Las sesiones de comunicación de datos son en general de naturaleza bidireccional.
- Incluso si el objetivo de la comunicación es enviar un archivo desde el remitente al destino.
- ▶ Generalmente alguna comunicación debe ir desde el destino de regreso al remitente.

- Las sesiones de comunicación de datos son en general de naturaleza bidireccional.
- ► Incluso si el objetivo de la comunicación es enviar un archivo desde el remitente al destino.
- ▶ Generalmente alguna comunicación debe ir desde el destino de regreso al remitente.

Comunicación Full-Duplex

Ambos dispositivos pueden transmitir al mismo tiempo (análogo a una conversación en persona).

10 / 20

- Las sesiones de comunicación de datos son en general de naturaleza bidireccional.
- ▶ Incluso si el objetivo de la comunicación es enviar un archivo desde el remitente al destino.
- ▶ Generalmente alguna comunicación debe ir desde el destino de regreso al remitente.

Comunicación Full-Duplex

Ambos dispositivos pueden transmitir al mismo tiempo (análogo a una conversación en persona).

Comunicación Half-Duplex

Uno de los dispositivos puede oír o hablar en un momento determinado (similar a una conversación con walkie-talkies donde solo puede hablar aquel que presione el botón).

- Las sesiones de comunicación de datos son en general de naturaleza bidireccional.
- Incluso si el objetivo de la comunicación es enviar un archivo desde el remitente al destino.
- ▶ Generalmente alguna comunicación debe ir desde el destino de regreso al remitente.

Comunicación Full-Duplex

Ambos dispositivos pueden transmitir al mismo tiempo (análogo a una conversación en persona).

Comunicación Half-Duplex

Uno de los dispositivos puede oír o hablar en un momento determinado (similar a una conversación con walkie-talkies donde solo puede hablar aquel que presione el botón).

Cuando la comunicación es unidireccional, se conoce con el nombre de Simplex.

➤ Se utiliza ampliamente en la industria debido principalmente a su relativa simplicidad en el hardware.

- ➤ Se utiliza ampliamente en la industria debido principalmente a su relativa simplicidad en el hardware.
- Estándares de comunicación en serie más utilizado: EIA/TIA-232-E.

- ➤ Se utiliza ampliamente en la industria debido principalmente a su relativa simplicidad en el hardware.
- ▶ Estándares de comunicación en serie más utilizado: EIA/TIA-232-E.

El estándar se refiere a la comunicación de datos entre un sistema host (DTE, Data Terminal Equipment) y un sistema periférico (DCE, Data Circuit-Terminating Equipment o Data Communication Equipment).

- ➤ Se utiliza ampliamente en la industria debido principalmente a su relativa simplicidad en el hardware.
- ▶ Estándares de comunicación en serie más utilizado: EIA/TIA-232-E.

El estándar se refiere a la comunicación de datos entre un sistema host (DTE, Data Terminal Equipment) y un sistema periférico (DCE, Data Circuit-Terminating Equipment o Data Communication Equipment).

- ➤ Se utiliza ampliamente en la industria debido principalmente a su relativa simplicidad en el hardware.
- ▶ Estándares de comunicación en serie más utilizado: EIA/TIA-232-E.

El estándar se refiere a la comunicación de datos entre un sistema host (DTE, Data Terminal Equipment) y un sistema periférico (DCE, Data Circuit-Terminating Equipment o Data Communication Equipment).

El EIA/TIA-232-E fue desarrollado por:

Electronic Industry Association y la Telecommunications Industry Association, se conoce más popularmente simplemente como RS-232, donde "RS" significa Recommended Standard.

➤ Gran parte de la terminología RS-232 refleja su origen como estándar para las com. entre un terminal de computadora (PC) y un módem externo.

- ► Gran parte de la terminología RS-232 refleja su origen como estándar para las com. entre un terminal de computadora (PC) y un módem externo.
- ▶ En la actualidad resulta más frecuente el uso del puerto RS-232 para conectar una PC a un sistema embebido o bien dos sistemas embebidos entre sí (UART-TTL).

- ► Gran parte de la terminología RS-232 refleja su origen como estándar para las com. entre un terminal de computadora (PC) y un módem externo.
- ▶ En la actualidad resulta más frecuente el uso del puerto RS-232 para conectar una PC a un sistema embebido o bien dos sistemas embebidos entre sí (UART-TTL).

El EIA-TIA-232 es un estándar "completo" que garantiza la compatibilidad entre el host y los sistemas periféricos mediante la especificación de:

El estándar RS-232

- ► Gran parte de la terminología RS-232 refleja su origen como estándar para las com. entre un terminal de computadora (PC) y un módem externo.
- ▶ En la actualidad resulta más frecuente el uso del puerto RS-232 para conectar una PC a un sistema embebido o bien dos sistemas embebidos entre sí (UART-TTL).

El EIA-TIA-232 es un estándar "completo" que garantiza la compatibilidad entre el host y los sistemas periféricos mediante la especificación de:

1. señales y niveles comunes de voltaje (caract. eléctricas),

El estándar RS-232

- ► Gran parte de la terminología RS-232 refleja su origen como estándar para las com. entre un terminal de computadora (PC) y un módem externo.
- ▶ En la actualidad resulta más frecuente el uso del puerto RS-232 para conectar una PC a un sistema embebido o bien dos sistemas embebidos entre sí (UART-TTL).

El EIA-TIA-232 es un estándar "completo" que garantiza la compatibilidad entre el host y los sistemas periféricos mediante la especificación de:

- 1. señales y niveles comunes de voltaje (caract. eléctricas),
- 2. configuraciones de pines y cableado (caract. mecánicas) e

12 / 20

El estándar RS-232

- ► Gran parte de la terminología RS-232 refleja su origen como estándar para las com. entre un terminal de computadora (PC) y un módem externo.
- ▶ En la actualidad resulta más frecuente el uso del puerto RS-232 para conectar una PC a un sistema embebido o bien dos sistemas embebidos entre sí (UART-TTL).

El EIA-TIA-232 es un estándar "completo" que garantiza la compatibilidad entre el host y los sistemas periféricos mediante la especificación de:

- 1. señales y niveles comunes de voltaje (caract. eléctricas),
- 2. configuraciones de pines y cableado (caract. mecánicas) e
- 3. información de control mínima entre el host y los sistemas periféricos (caract. funcionales).

▶ Idle: Ocioso, no hay transferencia de datos (TxD y RxD) [Logic 1]

- ▶ Idle: Ocioso, no hay transferencia de datos (TxD y RxD) [Logic 1]
- ► St: Start bit (bit de arranque) [Logic 0]

- ▶ Idle: Ocioso, no hay transferencia de datos (TxD y RxD) [Logic 1]
- ► St: Start bit (bit de arranque) [Logic 0]
- ▶ (n): Bits de datos

- ▶ Idle: Ocioso, no hay transferencia de datos (TxD y RxD) [Logic 1]
- ▶ St: Start bit (bit de arranque) [Logic 0]
- ▶ (n): Bits de datos
- P: Parity bit (bit de paridad)

- ▶ Idle: Ocioso, no hay transferencia de datos (TxD y RxD) [Logic 1]
- ▶ St: Start bit (bit de arranque) [Logic 0]
- ► (n): Bits de datos
- P: Parity bit (bit de paridad)
- ➤ Sp: Stop bit (bit de parada) [Logic 1]

- ▶ Idle: Ocioso, no hay transferencia de datos (TxD y RxD) [Logic 1]
- ▶ St: Start bit (bit de arranque) [Logic 0]
- ► (n): Bits de datos
- P: Parity bit (bit de paridad)
- ➤ Sp: Stop bit (bit de parada) [Logic 1]

El bit menos significativo (LSb) se envía primero.

- ▶ Idle: Ocioso, no hay transferencia de datos (TxD y RxD) [Logic 1]
- ► St: Start bit (bit de arranque) [Logic 0]
- ► (n): Bits de datos
- ► P: Parity bit (bit de paridad)
- ► Sp: Stop bit (bit de parada) [Logic 1]

El bit menos significativo (LSb) se envía primero.

Algunas alternativas de tramas

- ▶ 8N1: 8 bits de datos, sin (N) bit de paridad y 1 bit de stop.
- ▶ 5E2: 5 bits de datos, paridad par (E) y 2 bits de stop.

- ▶ Idle: Ocioso, no hay transferencia de datos (TxD y RxD) [Logic 1]
- ➤ St: Start bit (bit de arranque) [Logic 0]
- ► (n): Bits de datos
- P: Parity bit (bit de paridad)
- ► Sp: Stop bit (bit de parada) [Logic 1]

El bit menos significativo (LSb) se envía primero.

Algunas alternativas de tramas

- ▶ 8N1: 8 bits de datos, sin (N) bit de paridad y 1 bit de stop.
- ▶ 5E2: 5 bits de datos, paridad par (E) y 2 bits de stop.

¿Qué duración tiene cada bit?

El estándar RS-232 – Características eléctricas

Especificaciones eléctricas del puerto serie o RS-232:

- ▶ Un cero lógico o *espacio* entre +5 y +15V (transmisor).
- ▶ Un uno lógico o marca entre -5 y -15V (transmisor).
- Los niveles de tensión de entrada tienen un margen de ruido de 2V.
- ► Los valores entre +3V y -3V representan estados indefinidos.

El estándar RS-232 – Características eléctricas

Especificaciones eléctricas del puerto serie o RS-232:

- ▶ Un cero lógico o *espacio* entre +5 y +15V (transmisor).
- ▶ Un uno lógico o marca entre -5 y -15V (transmisor).
- Los niveles de tensión de entrada tienen un margen de ruido de 2V.
- ► Los valores entre +3V y -3V representan estados indefinidos.

El estándar RS-232 – Características eléctricas

Especificaciones eléctricas del puerto serie o RS-232:

- ightharpoonup Un cero lógico o *espacio* entre +5 y +15V (transmisor).
- ▶ Un uno lógico o marca entre -5 y -15V (transmisor).
- Los niveles de tensión de entrada tienen un margen de ruido de 2V.
- ► Los valores entre +3V y -3V representan estados indefinidos.

(Otros parámetros son: corriente de cortocircuito, capacitancia máxima de línea, tasa de cambio del niveles de las señales, impedancia de la línea, etc.)

El estándar RS-232 – Características mecánicas

- ▶ El RS-232 especifica un conector de 25 pines (tamaño mínimo para albergar todas las señales definidas en la parte funcional del estándar).
- ▶ El conector para el DTE tiene una carcasa hembra con pines de conexión macho, y para el DCE es macho para la carcasa y hembra para los pines.
- ► El conector más popular es el DB9 (9 pines).

El estándar RS-232 – Características mecánicas

- ► El RS-232 especifica un conector de 25 pines (tamaño mínimo para albergar todas las señales definidas en la parte funcional del estándar).
- ► El conector para el DTE tiene una carcasa hembra con pines de conexión macho, y para el DCE es macho para la carcasa y hembra para los pines.
- ► El conector más popular es el DB9 (9 pines).

- ▶ El RS-232 define la función de las diferentes señales que se utilizan en la interfaz.
- ▶ Pocas aplicaciones requieren todas estas señales definidas en el estándar.
- ▶ De hecho, aplicaciones como la comunicación por módem requiere solo nueve señales (dos señales de datos, seis señales de control y referencia).

- ► El RS-232 define la función de las diferentes señales que se utilizan en la interfaz.
- ▶ Pocas aplicaciones requieren todas estas señales definidas en el estándar.
- ▶ De hecho, aplicaciones como la comunicación por módem requiere solo nueve señales (dos señales de datos, seis señales de control y referencia).

Interfaz entre DTE y DCE

DB-9 (DB-25) Pin No.	Abbrev.	Full name	
3 (2)	TD	Transmit Data	
2 (3)	RD	Receive Data	
7 (4)	RTS	Request To Send	
8 (5)	CTS	Clear To Send	
6 (6)	DSR	Data Set Ready	
5 (7)	SG	Signal Ground	
1 (8)	DCD	Data Carrier Detect	
4 (20)	DTR	Data Tearminal Ready	
9 (22)	RI	Ring Indicator	

DB-9 (DB-25) Pin No.	Abbrev.	Full name	PC — Perif.
3 (2)	TD	Transmit Data	$\mathrm{DTE} \to \mathrm{DCE}$
2 (3)	RD	Receive Data	
7 (4)	RTS	Request To Send	
8 (5)	CTS	Clear To Send	
6 (6)	DSR	Data Set Ready	
5 (7)	SG	Signal Ground	
1 (8)	DCD	Data Carrier Detect	
4 (20)	DTR	Data Tearminal Ready	
9 (22)	RI	Ring Indicator	

TD: Salida de datos seriales, TxD

DB-9 (DB-25) Pin No.	Abbrev.	Full name	PC — Perif.
3 (2)	TD	Transmit Data	$\mathrm{DTE} \to \mathrm{DCE}$
2 (3)	RD	Receive Data	$DTE \leftarrow DCE$
7 (4)	RTS	Request To Send	
8 (5)	CTS	Clear To Send	
6 (6)	DSR	Data Set Ready	
5 (7)	SG	Signal Ground	
1 (8)	DCD	Data Carrier Detect	
4 (20)	DTR	Data Tearminal Ready	
9 (22)	RI	Ring Indicator	

RD: Entrada de datos seriales, RxD

DB-9 (DB-25) Pin No.	Abbrev.	Full name	PC — Perif.
3 (2)	TD	Transmit Data	$\mathrm{DTE} \to \mathrm{DCE}$
2 (3)	RD	Receive Data	$DTE \leftarrow DCE$
7 (4)	RTS	Request To Send	$DTE \rightarrow DCE$
8 (5)	CTS	Clear To Send	
6 (6)	DSR	Data Set Ready	
5 (7)	SG	Signal Ground	
1 (8)	DCD	Data Carrier Detect	
4 (20)	DTR	Data Tearminal Ready	
9 (22)	RI	Ring Indicator	

RTS: Le indica al módem que la UART está lista para comunicarse

DB-9 (DB-25) Pin No.	Abbrev.	Full name	PC — Perif.
3 (2)	TD	Transmit Data	$\mathrm{DTE} \to \mathrm{DCE}$
2 (3)	RD	Receive Data	$DTE \leftarrow DCE$
7 (4)	RTS	Request To Send	$\text{DTE} \to \text{DCE}$
8 (5)	CTS	Clear To Send	$DTE \leftarrow DCE$
6 (6)	DSR	Data Set Ready	
5 (7)	SG	Signal Ground	
1 (8)	DCD	Data Carrier Detect	
4 (20)	DTR	Data Tearminal Ready	
9 (22)	RI	Ring Indicator	

CTS: Indica que el módem está listo para comunicarse

DB-9 (DB-25) Pin No.	Abbrev.	Full name	PC — Perif.
3 (2)	TD	Transmit Data	$\mathrm{DTE} \to \mathrm{DCE}$
2 (3)	RD	Receive Data	$DTE \leftarrow DCE$
7 (4)	RTS	Request To Send	$\mathrm{DTE} \to \mathrm{DCE}$
8 (5)	CTS	Clear To Send	$DTE \leftarrow DCE$
6 (6)	DSR	Data Set Ready	$DTE \leftarrow DCE$
5 (7)	SG	Signal Ground	
1 (8)	DCD	Data Carrier Detect	
4 (20)	DTR	Data Tearminal Ready	
9 (22)	RI	Ring Indicator	

DSR: Le indica a la UART que el módem está listo para establecer una conexión

DB-9 (DB-25) Pin No.	Abbrev.	Full name	PC — Perif.
3 (2)	TD	Transmit Data	$\mathrm{DTE} \to \mathrm{DCE}$
2 (3)	RD	Receive Data	$DTE \leftarrow DCE$
7 (4)	RTS	Request To Send	$\text{DTE} \to \text{DCE}$
8 (5)	CTS	Clear To Send	$DTE \leftarrow DCE$
6 (6)	DSR	Data Set Ready	$DTE \leftarrow DCE$
5 (7)	SG	Signal Ground	DTE — DCE
1 (8)	DCD	Data Carrier Detect	$DTE \leftarrow DCE$
4 (20)	DTR	Data Tearminal Ready	
9 (22)	RI	Ring Indicator	

DCD: Indica que el módem detecta "portadora"

DB-9 (DB-25) Pin No.	Abbrev.	Full name	PC — Perif.
3 (2)	TD	Transmit Data	$\mathrm{DTE} \to \mathrm{DCE}$
2 (3)	RD	Receive Data	$DTE \leftarrow DCE$
7 (4)	RTS	Request To Send	$\text{DTE} \to \text{DCE}$
8 (5)	CTS	Clear To Send	$DTE \leftarrow DCE$
6 (6)	DSR	Data Set Ready	$DTE \leftarrow DCE$
5 (7)	SG	Signal Ground	DTE — DCE
1 (8)	DCD	Data Carrier Detect	$DTE \leftarrow DCE$
4 (20)	DTR	Data Tearminal Ready	$\mathrm{DTE} \to \mathrm{DCE}$
9 (22)	RI	Ring Indicator	

DTR: Opuesto a DSR. Le indica al módem que la UART está lista para establecer conexión

DB-9 (DB-25) Pin No.	Abbrev.	Full name	PC — Perif.
3 (2)	TD	Transmit Data	$\mathrm{DTE} \to \mathrm{DCE}$
2 (3)	RD	Receive Data	$DTE \leftarrow DCE$
7 (4)	RTS	Request To Send	$\text{DTE} \to \text{DCE}$
8 (5)	CTS	Clear To Send	$DTE \leftarrow DCE$
6 (6)	DSR	Data Set Ready	$DTE \leftarrow DCE$
5 (7)	SG	Signal Ground	DTE — DCE
1 (8)	DCD	Data Carrier Detect	$DTE \leftarrow DCE$
4 (20)	DTR	Data Tearminal Ready	$\mathrm{DTE} \to \mathrm{DCE}$
9 (22)	RI	Ring Indicator	$DTE \leftarrow DCE$

RI: Se activa ante la presencia de llamada

- Las señales necesarias para la comunicación en serie son generadas y recibidas por un circuito integrado (CI) conocido como UART (Universal Asynchronous Receiver/Transmitter).
- Este circuito integrado hace de conversor paralelo/serie para "serializar/des-serializar" los datos.

- Las señales necesarias para la comunicación en serie son generadas y recibidas por un circuito integrado (CI) conocido como UART (Universal Asynchronous Receiver/Transmitter).
- Este circuito integrado hace de conversor paralelo/serie para "serializar/des-serializar" los datos.
- ▶ La UART del sistema host genera los bits de inicio y parada para indicar al sistema periférico cuándo se inicia y termina la comunicación.
- ▶ Hay otro CI que hace de driver de entrada/salida del RS-232 y adapta los nivel de tensión necesarios entre la UART y el RS-232.

- Las señales necesarias para la comunicación en serie son generadas y recibidas por un circuito integrado (CI) conocido como UART (Universal Asynchronous Receiver/Transmitter).
- Este circuito integrado hace de conversor paralelo/serie para "serializar/des-serializar" los datos.
- ▶ La UART del sistema host genera los bits de inicio y parada para indicar al sistema periférico cuándo se inicia y termina la comunicación.
- ▶ Hay otro CI que hace de driver de entrada/salida del RS-232 y adapta los nivel de tensión necesarios entre la UART y el RS-232.

La UART del μ C ATmega328

