11/11

Nathan Keough

Acknowledgements: Utilized the study session: Worked independently and checked work cooperatively with other classmates on this practice set.

1. Prove if a < x < b, then there exists M so that |x| < M.

$$\begin{split} & Proof. \\ & \text{Let } a, x, b \in \mathbb{R}. \\ & a < x < b \implies x \in (a, b), \\ & \text{So, set } M = \max\{|a|, |b|\} \in \mathbb{R}. \\ & M = \max\{|a|, |b|\} \implies -M < x < M = |x| < M. \\ & \therefore \text{ if } a < x < b, \text{ then there exists } M \text{ so that } |x| < M. \end{split}$$

2. Prove f(x) = |x| is continuous on \mathbb{R} .

Proof. Let f(x) = |x| and $a \in \mathbb{R}$. Let $\epsilon > 0$. Set $\delta = \epsilon$. Assume $|x - a| < \delta$. Notice $|x - a| < \epsilon$.

Then,
$$|f(x) - f(a)| < ||x| - |a||$$

 $\leq |x - a|$

Thus, $|x - a| < \delta \implies |f(x) - f(a)| < \epsilon$. $a \in \mathbb{R}$ is arbitrary, f(x) is continuous at x = a, $\therefore f(x) = |x|$ is continuous on \mathbb{R} .