

Приватное машинное обучение

Денисенко Наталья, ВШЭ, ФКН Миронов Алексей, ВШЭ, ФКН Сидоренко Артур, МГУ, мехмат

Руководители проекта: Деркач Денис, PhD, ВШЭ Казеев Никита, ВШЭ Устюжанин Андрей, к.ф.-м.н., ВШЭ

Задача

Яндекс

Владелец

Данные

kaggle

Третье лицо

Основная идея

Яндекс

Приватные данные

Нейросеть

Третье лицо

Синтетические данные

Есириус Основная проблема Яндекс

Приватные данные

Некоторый метод

Третье лицо

Синтетические данные

: Сириус Актуальность проблемы

Яндекс

• Массовая обеспокоенность сохранением приватности данных

• Утечки частных сведений

Сириус Актуальность проблемы

MLaaS – Machine Learning as a Service

Облачные сервисы для ML??

Могут ли данные утечь с чужого сервера????

Цели работы

- Проанализировать статьи по приватному обучению
- Воспроизвести основные результаты
 - оОбучение нейросетей
 - ○Атаки на нейросети
 - оПовышение устойчивости к атакам

План презентации

Яндекс

- 1. Определение GAN
- 2. Анализ статей
- 3. Отбор данных
- 4. Обучение различных GAN (Silly GAN, DCGAN)
- 5. Проведение атак на нейронные сети
- 6. Сравнение результатов
- 7. Выводы

Определение GAN

GAN

Яндекс

Анализ статей

Статьи

- 1. LOGAN: Membership Inference Attacks Against Generative Models (https://arxiv.org/pdf/1705.07663.pdf)
 - Методы проведения атак
- 2. PATE-GAN: GENERATING SYNTHETIC DATA WITH DIFFERENTIAL PRIVACY GUARANTEES (https://openreview.net/pdf?id=S1zk9iRqF7)
 - Больше математики
 - PATE-GAN
 - Схема контроля приватности

Отбор датасетов

Отбор датасетов

kaggle

MNIST

Kaggle Credit Scoring

Обучение GAN для MNIST

Структура Silly GAN

Генератор

- Dense (ELU)
- Dropout
- Conv2d (kernel_size=3, ELU)
- Dropout
- ConvTranspose2d
- Dropout
- Conv2d и Dropout
- Conv2d и Dropout

Дискриминатор

- Conv2d (ELU, kernel_size=3)
- Dropout
- MaxPool2d(2)
- Conv2d(ELU,kernel_size=3) и Dropout
- Conv2d(ELU,kernel_size=3) и Dropout
- Conv2d(ELU,kernel_size=3) и Dropout
- Linear() with sigmoid

Обучение своей Silly GAN

- Jensen-Shannon GAN со шумом в losses, регуляризацией градиента и техникой Dropout
- Обучение происходило на сервере ШАД almaren
- Сгенерированные цифры слева

DCGAN for MNIST

- Использовали предобученную модель (<u>ссылка</u>)
- Jensen-Shannon без шумов, регуляризаций и Dropout

Обучение GAN для CreditFraud

Структура GAN

Генератор

• Полносвязные слои с ReLU активацией

Дискриминатор

• Полносвязные слои с ReLU активацией

Результаты обучения

В статье было указано, что сеть обучается и переобучается, но у нас GAN не смогла научиться воспроизводить табличные данные. Далее исследовали только GAN, обученные на MNIST.

Атаки на GAN

Нейросеть как массовый подгон

Яндекс

Слои

LOSS

Оптимизатор

Learning rate

: Сириус Атака на GAN. Общая идея ЯНДекс

Запись

Дискриминатор

Была ли она в тренировочной выборке?

: Сириус Атака на GAN. Общая идея ЯНДекс

А дискриминаторы на деревьях растут???

Запись

Дискриминатор

Была ли она в тренировочной выборке?

Атака на GAN

А дискриминаторы на деревьях растут???

ДА!

White-box attack

Нет, конечно, сам делай

Black-box attack (with or without leakages)

Атака на GAN

Яндекс

Black-box + leakage Black-box

White-box

Атаки на GAN. White-box

White-box attack

• Задача. Пусть преступник получил дискриминатор, и он хочет узнать, является ли данный элемент частью тренировочной выборки.

White-box attack

- Задача. Пусть преступник получил дискриминатор, и он хочет узнать, является ли данный элемент частью тренировочной выборки.
- Идея: переобученный дискриминатор сохраняет в себе информацию о тренировочной выборке.

Дискриминатор

White-box attack

Отклик дискриминатора

White-box attack

Accuracy of the attack against the GANs on an perfectly balanced sample

Атаки на GAN. Black-box + leakage

Black-box attack with a 20% leakage

• Задача. Произошла утечка части обучающей выборки. Злоумышленник имеет доступ к генератору.

Black-box attack with a 20% leakage

- Задача. Произошла утечка части обучающей выборки. Злоумышленник имеет доступ к генератору.
- Идея. Создать свой классификатор.

Black-box attack with a 20% leakage

Генератор изначальной модели

Обученный преступником классификатор

Black-box attack with a 20% leakage

Accuracy of the attack against the GANs on an perfectly balanced sample

Яндекс

Атаки на GAN. Black-box without any leakage

• Задача. Злоумышленник имеет доступ к генератору, но не к обучающей выборке.

- Задача. Злоумышленник имеет доступ к генератору, но не к обучающей выборке.
- Идея. Обучить доморощенный GAN.

- Задача. Злоумышленник имеет доступ к генератору, но не к обучающей выборке.
- **Идея.** Обучить доморощенный GAN.
- **Метод.** Обучается GAN на синтетической выборке, как если бы это были настоящие данные.

преступником

дискриминатор

Black-box attack without any leakage

Яндекс

Отклик дискриминатора

Accuracy of the attack against the GANs on an perfectly balanced sample

Яндекс

Сравнение результатов

Сравнение качества атак

Яндекс

Black-box + leakage

• Наиболее успешная атака, но требует утечку данных

Black-box

 Результат сильно зависит от навыков злоумышленника

White-box

• Атака может быть успешной только при переобученном дискриминаторе

Сравнение DCGAN и Silly GAN

Яндекс

Silly GAN

• Устойчива к атакам

DCGAN

• Может взломать ребёнок

Сравнение DCGAN и Silly GAN

Как противостоять атакам?

- Борьба с переобучением
 - ✓ Dropout techniques
 - ✓Зашумление loss
 - ✓ Регуляризация градиента

Как противостоять атакам?

- Борьба с переобучением
 - ✓ Dropout techniques
 - ✓Зашумление loss
 - ✓ Регуляризация градиента
- Баланс генератора и дискриминатора

Как противостоять атакам?

- Борьба с переобучением
 - ✓ Dropout techniques
 - ✓Зашумление loss
 - ✓ Регуляризация градиента
- Баланс генератора и дискриминатора
- Имитирование атак во время обучения, перед выпуском модели

Яндекс

Заключение

Что же мы сделали?

- Научились делать GAN с нуля
- Проанализировали статьи по атакам на GAN

Что же мы сделали?

- Научились делать GAN с нуля
- Проанализировали статьи по атакам на GAN
- Сделали несколько атак на GAN
- Сравнили качество разных типов атак на GAN

Что же мы сделали?

- Научились делать GAN с нуля
- Проанализировали статьи по атакам на GAN
- Сделали несколько атак на GAN
- Сравнили качество разных типов атак на GAN
- Поняли, что даже GAN со страшными названиями **легко** поддаются атакам
- Разработали рекомендации по созданию устойчивых к атакам сетей

Перспективы и планы на будущее

Яндекс

• Экстенсивное исследование связи переобучения и уязвимости к атакам

Перспективы и планы на будущее

- Экстенсивное исследование связи переобучения и уязвимости к атакам
- Математическая теория дифференциальной приватности
 - ≻Работает ли она на практике?
 - ▶Зачем нужны сложные методы, когда и простые, но грамотно составленные нейросети работают?

Перспективы и планы на будущее

- Экстенсивное исследование связи переобучения и уязвимости к атакам
- Математическая теория дифференциальной приватности
 - ▶Работает ли она на практике?
 - ▶Зачем нужны сложные методы, когда и простые, но грамотно составленные нейросети работают?
- Ведёт ли сохранение приватности к ухудшению качества?

Спасибо за внимание!

Задавайте вопросы

Ссылка на наш репозиторий в Github: https://github.com/Private-ML/gan

Differential privacy

- Two datasets D and D' are said to be neighbouring if there is such x in D that $D \setminus \{x\} = D'$.
- Let (Ω, \mathcal{F}, P) be a probability space, let (X, S) be a measurable space representing datasets, and let (Y, T) be a measurable space of outcomes.
- Let M be a randomised algorithm, i.e. a measurable mapping

$$M: X \times \Omega \rightarrow Y$$

The algorithm is said to be (ε, δ) -private, if for all neighbouring datasets D and D' and for all sets $Y \in T$: $P(M(D) \in Y) < e^{\varepsilon}P(M(D') \in Y) + \delta$

Differential privacy

