

DEADLOCK

بررسی ددلاک و نخهای POSIX

حسین تاتار - 40133014

پیش گزارش دهم ازمایشگاه سیستم عامل

1404/03/06

- وضعیتی که در آن چند فرآیند منتظر منابعی مستند که توسط یکدیگر اشغال شدهاند.
 - منجر به توقف دائمی اجرای فرآیندها
 - وابستگی چرخشی بین فرآیندها

(Mutual Exclusion) تخصیص انحصاری

(Hold and Wait) حر حال انتظار با حفظ منابع (

(No Preemption) عدم پیشگیری (●

(Circular Wait) انتظار چرخشی (—

شرایط لازم برای وقوع ددلک

مثلاً با تخصیص همه منابع در ابتدای اجرا

اجتناب

Banker's Algorithm - RAG

کشف و بازیابی

تشخیص چرخه، خاتمه دادن به فرآیند

نادیده گرفتن

Ostrich Algorithm

روشهای مقابله با ددلاک

آشنایی با نخهای POSIX

• استانداردی برای ایجاد و مدیریت نخها در یونیکس/لینوکس

• شامل توابعی مانند pthread_create, pthread_join, pthread_mutex_lock

• اجرا موازی کدها توسط چند نخ دریک فرآیند

```
#include <pthread.h>
void* my_function(void* arg) {
 عملیات نخ//
 return NULL;
int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, my_function, NULL);
 pthread_join(t1, NULL);
 return 0;
```

نحوه ایجاد نخ POSIX

ایجاد نخ POSIX با کد روبرو:

Race Condition

شرایط مسابقه و جلوگیری از آن

شرایط مسابقه (Race Condition)

- زمانی رخ میدهد که دو نخ به طور همزمان به داده مشترک دسترسی دارند.
 - منجر به رفتار غیرقابل پیشبینی و خطاهای همزمانی میشود.

روشهای جلوگیری

استفاده از Semaphore

استفاده الستفاده (pthread_mutex_t)

رعایت نظم دسترسی به منابع مشترک

```
pthread_mutex_t lock;
pthread_mutex_init(&lock, NULL);
pthread_mutex_lock(&lock);
کد بحرانی//
pthread_mutex_unlock(&lock);
pthread_mutex_destroy(&lock);
```

الستفاده از POSIX می Mutex

کد نمونه کنترل دسترسی با Mutex:

- نخ 1: گرفتن lock A، سیس تلاش برای lock B
- نخ 2: گرفتن lock B، سیس تلاش برای lock A
- نتیجه: هر دو نخ در انتظار یکدیگر میمانند.

مثالی از ددلاک بین نخما

ممنون از توجه شما