Aleksander Kmita AGH EAIiIB AiR

PROJEKT TECHNICZNY CHWYTAKA

1. Założenia projektowe

Celem jest zaprojektowanie chwytaka do manipulatora wg zadanego schematu kinetycznego spełniającego następujące wymagania:

- Urządzenie chwytające ma za zadanie pobrać(uchwycić) transportowany przedmiot w położeniu początkowym, utrzymać go podczas transportu i uwolnić go w miejscu docelowym.
- Transportowanymi przedmiotami są miedziane wałki o średnicy 48 mm oraz długości z zakresu od 50 do 100 mm.
- Manipulator jest zasilany sprężonym powietrzem o ciśnieniu nominalnym 0,6MPa.
- Projektowany chwytak ma zadany schemat kinetyczny:

2. Obliczenia

2.1 Obliczenie ruchliwości chwytaka

Do wyliczenia ruchliwości układów płaskich możemy się posłużyć wzorem:

$$w = 3n - 2 p_5 - p_4$$

gdzie:

w - ruchliwość chwytaka

n – liczba członów ruchomych

 p_5 – liczba par kinematycznych klasy piątej

 p_4 – liczba par kinematycznych klasy czwartej

Dla powyższego chwytaka mamy dane:

n = 5 (1; 2; 2'; 3; 3')

$$p_5$$
 = 7 [(0;1),(1;2),(1;2'),(2;3),(2';3'),(3;0),(3';0)]
 p_4 = 0
 w = 3*5 - 2*7 - 0 = 1

Ruchliwość chwytaka została obliczona na *w*=1, więc do jego napędu zastosuję siłownik pneumatyczny o ruchu liniowym.

2.2 Analiza zadania projektowego

Powyższy rysunek przedstawia schemat kinetyczny chwytaka z odpowiednimi założonymi proporcjami części.

2.2.1 Podstawowe wymiary i wielkości.

Do obliczeń przyjmuję następujące wielkości:

 $l_{3-4} = 40 \text{mm}$

 $l_{3-5/4-8} = 28$ mm

 $l_{7-6/9-10} = 78 \text{ mm}$

 $l_{7-5/10-8} = 50$ mm

 $l_{5-6/8-9} = 28$ mm

 $2\beta = 120^{\circ}$ (kat rozwarcia szczęk chwytaka)

d = 48 mm (średnica transportowanych przedmiotów)

 $l_{max} = 100 \text{ mm}$ (maksymalna długość transportowanego przedmiotu)

2.2.2 Maksymalny ciężar transportowanego przedmiotu

 $\gamma = 8920 \text{ kg/m}^3$ - ciężar właściwy miedzi

$$Q_{max} = g \frac{\pi d_{max}^2}{4} l_{max} \gamma [N]$$

gdzie:

d_{max} – maksymalna średnica przenoszonego obiektu [m] (tutaj stała 48 mm)

 l_{max} – maksymalna długość przenoszonego obiektu [m]

γ – ciężar właściwy miedzi [kg/m³]

g – przyśpieszenie grawitacyjne ziemi [m/s²]

$$Q_{max} = 9.81 \frac{m}{s^2} \cdot \frac{\pi \cdot 0.048 \, m^2}{4} \cdot 0.1 \, m \cdot 8920 \frac{kg}{m^3} = 15.8341 \, N \approx 16 \, N$$

W dalszych obliczeniach będę stosował ciężar przedmiotu 16 N.

2.2.3 Siła chwytu

W celu rozwiązaniu tego zagadnienia przyjmuję, że sposób utrzymania obiektu przez chwytak jest siłowy.

 $\mu = 0,53$ (współczynnik tarcia statycznego dla miedzi i stali, źr.:

https://pl.wikipedia.org/wiki/Wsp%C3%B3%C5%82czynnik_tarcia)

n=2 (współczynnik przeciążenia chwytaka, ten współczynnik uwzględnia siły bezwładności oddziałującej na transportowany obiekt, tutaj zostało przyjęte, że chwytak doznaje przyśpieszenia równego g)

Powyższy rysunek przedstawia rozkład sił tarcia podczas chwytania obiektu.

Powyższy rysunek przedstawia dokładniejszy rozkład sił, oraz od czego zależy minimalna długość szczęk.

Na podstawie wcześniejszych rysunków możemy wyprowadzić wzory na wymaganą siłę ścisku na szczękach oraz minimalną długość szczęk(γ z ryzunku zostało zamienione na β we wzorze, aby uniknąć konfliktu oznaczeń ze wzoru na ciężar przenoszonego obiektu). Wzór na siłę chwytu możemy przedstawić za pomocą następującego wzoru:

$$F_{ch} = 2N\cos(90^{\circ} - \beta)$$

$$N = \frac{F_{ch}}{2\cos(90^{\circ} - \beta)} = \frac{F_{ch}}{2\sin\beta}$$

$$T = \mu N = \frac{F_{ch} \mu}{2\sin\beta}$$

$$4T = \frac{2F_{ch} \mu}{\sin\beta} \ge Q \cdot n$$

$$F_{ch} \ge \frac{Q_{max} \cdot n \sin\beta}{2\mu}$$

$$\frac{Q_{max} \cdot n \sin\beta}{2\mu} = \frac{16N \cdot 2 \cdot \frac{\sqrt{3}}{2}}{2 \cdot 0.53} = 26.144163 N$$

$$F_{ch} = 27 N > 26.144163 N$$

Dla dalszych obliczeń przyjmuję siłę chwytu $F_{ch} = 27 \text{ N}$.

2.2.4 Wyliczenie minimalnej długości szczęk

$$tg\beta = \frac{d}{2e_{min}}$$

$$e_{min} = \frac{d}{2 t g \beta}$$

$$e \ge e_{min}$$

$$e_{min} = \frac{48 mm}{2 \cdot \sqrt{3}} \approx 13,86 mm$$

Przyjmuję e = 20 mm.

2.3 Charakterystyka przesunięciowa chwytaka Zarówno ta jak i kolejne charakterystyki zostały wykonane w programie SAM.

Szczęki zamknięte na trzymanym przedmiocie

2.4 Charakterystyka prędkościowa chwytaka

2.5 Charakterystyka siłowa chwytaka

Wykres przedstawia wymaganą siłę na siłowniku zależną od jego skoku, aby siła ścisku na szczękach wynosiła $F_{chw} = 27N$.

Z wykresu można odczytać, że potrzebna maksymalna siła wynosi około $F_s = 94N$ (wykres pomija tarcie oraz masy elementów chwytaka)

Na potrzeby projektu potrzebujemy przełożenia siłowego jedynie w miejscu zacisku szczęk. Odczytując wartość z powyższego wykresu i zakładają siłę ścisku na szczękach F_{chw} =27N, możemy odczytać wymaganą siłę na siłowniku na około 94N, co po podstawieniu.do wzoru:

$$f_F = \frac{F_s}{F_{ch}} = \frac{2.27 \, N}{94 \, N} \approx 0.57$$

2.6 Obliczanie minimalnej średnicy tłoka siłownika napędowego

$$p_n = \frac{F_s}{S} = \frac{4F_s}{\pi D^2}$$
 $D_{min} = \sqrt{\frac{4F_s}{\pi p_n}}$ $D_{min} = \sqrt{\frac{4.94\text{N}}{\pi \cdot 0.6 MPa}} \approx 14\text{mm}$ Przyjmuję D = 20mm

Należy jednak zauważyć, że wymagana siła jest ciągnąca więc musimy skorzystać z warunku:

$$p_n = \frac{F_s}{S} = \frac{4 F_s}{\pi (D^2 - d^2)}$$

Z powyższego równania mamy warunek:

$$d \leq \sqrt{D^2 - \frac{4F_s}{\pi p_n}}$$

$$d \leq \sqrt{(20 mm)^2 - \frac{4.94N}{3,1415 \cdot 0,6 MPa}}$$

$$d \leq 14mm$$

3. Dobór siłownika oraz sprawdzenie wytrzymałości elementów konstrukcyjnych

3.1 Dobór siłownika

Na podstawie wcześniej wyliczonych warunków:

 $D=20 \, mm$; $d \le 14 \, mm$; $skok=8 \, mm$; $wymagana \, silq \, ciqgnaca \, 94 \, N$ Został dobrany siłownik: 536416 AEN-20-10-A-P-A z katalogu firmy Festo.

Karta danych

Ogólna karta daných - pojedyncze dane będą zależały od konfiguracji.

Cecha	Wartość			
Skok	1 25 mm			
Średnica tłoka	20 mm			
W oparciu o norme	ISO 21287			
Amortyzacja	P: Elastyczne pierścienie / płytki amortyzacyjne z obu stron			
Pozycja zabudowy	Dowolna			
Konstrukcja	Tłok			
· ·	Tłoczyskowy			
	Korpus z profilu			
Sygnalizacja położenia	Przy pomocy czujników			
Warianty	Tłoczysko aluminiowe			
	Wydłużona część gwintowana tłoczyska – gwint zewnętrzny			
	Tłoczysko z gwintem specjalnym			
	Wydłużone tłoczysko			
	Z zabezpieczeniem przed obrotem			
	Uszczelnienia odporne na temp. Do maks. +120°C Opis wypalany laserem			
	Ciagnacy			
	Jednostronne tloczysko			
Ciśnienie robocze	1 10 bar			
Tryb pracy	Jednostronnego działania			
Tryo pracy	Pchaiacy			
	Ciagnacy			
Medium robocze	Spreżone powietrze wg ISO8573-1:2010 [7:4:4]			
Uwagi odnośnie medium roboczego	Możliwa praca na powietrzu olejonym (po rozpoczęciu olejenia jest ono			
	wymagane przy dalszej pracy)			
Klasa odporności na korozje CRC	2 – Średnia odporność na korozję			
Temperatura otoczenia	-20 120 °C			
Siła teoretyczna przy 6 bar, skok powrotny	105 N			
Siła teoretyczna przy 6 bar, wysuw	152 N			
Przemieszczana masa własna przy 0 mm skoku	30 g			
Ciężar dodatkowy na 10 mm skoku	21 g			
Ciężar podstawowy dla 0 mm skoku	131 g			
Dodatkowy współczynnik przemieszczanej masy własnej na 10 mm	8 g			
skoku				
Sposób montażu	Do wyboru:			
	Przy pomocy otworów przelotowych			
	Przy pomocy gwintów wewnętrznych			
	Przy pomocy osprzętu			
Przyłącza pneumatyczne	M5			
Uwaga dotycząca materiałów	Zgodne z RoHS			
Materiał pokrywy	Aluminium			
	Anodowanie			
Materiał tłoczyska	Stal wysokostopowa			
Materiał rury siłownika	Stop aluminium			
	Anodowany			

3.2 Dobór średnicy najbardziej obciążonego sworznia.

Za pomocą programu SAM została wyznaczona siła tnąca na najbardziej obciążonym sworzniu – sworzniu łożyskowym dźwigni ramienia chwytaka i wynosi

ona $F_{t max}$ = 45N. Przyjmując, że sworznie zostaną wykonane ze stali C45 o wytrzymałości na ścinanie k_t =130MPa. Korzystając z warunku wytrzymałościowego na ścinanie może wyprowadzić wzór na minimalną średnicę sworznia:

$$\tau_{max} = \frac{F_{tmax}}{2A} = \frac{4 F_{tmax}}{2 \pi} \frac{d^2}{d^2}$$

$$d_{min} = \sqrt{\frac{2 F_{tmax}}{\pi \tau_{max}}}$$

Po podstawieniu wartości otrzymujemy:

$$d_{min} = \sqrt{\frac{2.45 N}{3,1415.130 MPa}}$$

$$d_{min} = 0.5 mm.$$

Na podstawie tego wyniku dobrałem sworznie o średnicy 4mm.

3.3 Sprawdzanie wytrzymałości ramienia na zginanie.

Problem wytrzymałości ramienia został rozwiązany za pomocą programu Inventor, a dokładniej mówiąc jego narzędzi do przeprowadzania analizy naprężeń.

Jak na następnej stronie będzie można zauważyć, naprężenia na ramionach nie przekraczają 5 MPa, a naprężenie dopuszczalne dla stopów aluminium waha się między 113 a 130 MPa. Na podstawie takiego wyniku zatwierdzam zaproponowane przez siebie rozwiązanie.

Bibliografia:

dr inż. Józef Felis – Wykłady
http://home.agh.edu.pl/~kmtmipa/dydaktyka/index.php?kind=stacjonarne
dr inż. Radosław Marczuk – zajęcia
www.wikipedia.pl
www.festo.com

Dalej zostały załączone odpowiednie rysunki.

10	Zawleczka 0,	,8 x 8	6	ISO 1234				
9	Sworzeń B-4	x 24	6	ISO 2341				
8	Śruba M5 x2	.5	4	ISO 4162				
7	Śruba M4 x 2	20	4	ISO 4015				
6	Siłownik 536		1	www.festo.com		Wg. producenta		
	AEN-20-10-A	∖-P-A						
5	Nakładka mo	ocująca	1	CH.06.05		EN-AW-60	061	
4	Szczęka		2 CH.06.04			C45		
3	Ramię chwyt	taka	a 2 CH.06.03			EN-AW-60	061	
2	Cięgno		4	CH.06.02		EN-AW-6061		
1	Belka na tłoc	czysko	1	CH.06.01		EN-AW-6061		
Lp.	Nazwa p	rzedmiotu	Licz. szt.	Nr. normy/rysunku		Materiał		Uwagi
projektowany przez		Zatwierdzony przez		Data		Skala		
eksander Kmita		Aleksander Kmita		2018-06-05		1:1		
			•	Chwytak typu P(O-O-O)				•
AiR WEAIiIB			CH.06.00			Wydanie	Arkusz	

A

