Problem Set 10

Discrete Mathematics

Due on the 22nd of April, 2024

(20 pts) 1. Construct—with proof—the explicit functions requested below.

- (a) A bijection from $\{x \in \mathbb{R} \mid -1 < x < 1\}$ to $\{x \in \mathbb{R} \mid -\pi < x < \pi\}$.
- (b) A surjection from \mathbb{N} to $\{p \mid p \text{ is prime}\}.$
- (c) An injection from X to $\mathbb{P}(X)$ for *every* set X.
- (d) A surjection from $\mathbb{P}(X)$ to X for *every* set X.

(20 pts) 2. Justify each answer below with proof.

- (a) How many infinite binary strings have digits whose sum is 2?
- (b) How many infinite decimal strings have finitely many 7s?
- (c) How many infinite decimal strings have infinitely many 7s?
- (d) Is there a set x such that $\forall y (|x| \ge |y|)$?

(30 pts) 3. Let *A* be an arbitrary finite set of cardinality |A| = n, where $n \in \mathbb{N}$. How many finite strings over *A* are there?

(30 pts) 4. Imagine that, one day, you encounter a library. At the entrance of this library is an enormous tome \mathscr{B} listing *all* of the *possible* sentences in the English language, indexed by natural numbers.

Walking past the entrance, you see that the library has rows of bookshelves numbered $0, 1, 2, \ldots$, so that there is exactly one row of books for each $n \in \mathbb{N}$. A great owl—perched on the pedestal that supports \mathscr{B} —informs you that, for each $n \in \mathbb{N}$, the n^{th} row of bookshelves contains all of the books that could possibly ever be that begin with the n^{th} sentence in \mathscr{B} . With the sound of granite scraping against marble, the doors to the library close behind you. The owl makes you the following proposal: you will be free to go *if and only if* you can read every book in the library *in a countable amount of time*.

Will you be set free? The owl demands a proof to justify your answer.