MA 102 (Mathematics II) IIT Guwahati

Tutorial Sheet No. 3

Linear Algebra

January 31, 2019

- 1. True or False? Give justifications.
 - (a) Let A be an $m \times n$ matrix. Then there exist **b** and **b**' such that $A\mathbf{x} = \mathbf{b}$ has a unique solution but $A\mathbf{x} = \mathbf{b}'$ has infinitely many solutions.
 - (b) Let \mathbf{x} and \mathbf{y} be nonzero vectors in \mathbb{R}^n such that $\mathbf{x}^T\mathbf{y} = 0$. Then \mathbf{x} and \mathbf{y} are linearly independent (LI).
 - (c) Let S_1, S_2 and S_3 be distinct subsets of \mathbb{R}^n such that $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1 \cup S_3)$. Then $\operatorname{span}(S_2) = \operatorname{span}(S_3)$.
 - (d) The column spaces of A and rref(A) are equal.
- $\text{2. Check whether the set } S = \left\{ \begin{bmatrix} 3 \\ 0 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\} \text{ is LI.}$
- 3. Let S be a subspace of \mathbb{R}^4 and $\mathbf{x}, \mathbf{y} \in S$ be LI.
 - (a) Show that if $\mathbf{u} \in \mathbb{R}^4 \setminus S$ then $\{\mathbf{x}, \mathbf{y}, \mathbf{u}\}$ is LI.
 - (b) If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^4 \setminus S$ are LI then does it imply that $\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$ is LI?
- 4. Let $A \in \mathcal{M}_n(\mathbb{R})$. Show that $\operatorname{row}(A^T A) = \operatorname{row}(A)$, that is, $A^T A$ and A are row equivalent.
- 5. Show that the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ are LI if and only if $P\mathbf{x}, P\mathbf{y}, P\mathbf{z}$ are LI for any $n \times n$ invertible matrix P.
- 6. Let $A \in \mathcal{M}_5(\mathbb{R})$ be such that $\operatorname{rref}(A)$ has the 1^{st} , 3^{rd} and the 5^{th} column as the only pivot columns.
 - (a) Find two LI solutions of $A\mathbf{x} = \mathbf{0}$.
 - (b) Show that the columns \mathbf{a}_1 , \mathbf{a}_3 and \mathbf{a}_5 (the 1^{st} , 3^{rd} and the 5^{th} column of A) are LI and spans the column space of A.
 - (c) Can the sets $\{\mathbf{a}_1,\mathbf{a}_2\},\, \{\mathbf{a}_1,\mathbf{a}_3,\mathbf{a}_4\}$ and $\{\mathbf{a}_3,\mathbf{a}_4,\mathbf{a}_5\}$ be LI?
- 7. True or False? Give justifications.
 - (a) If $\{\mathbf{x}, \mathbf{y}\}$ and $\{\mathbf{u}, \mathbf{v}\}$ are two different LI subsets of \mathbb{R}^2 , then $\{\mathbf{x}, \mathbf{u}\}$ and $\{\mathbf{y}, \mathbf{v}\}$ are also LI sets.
 - (b) If $\left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right\}$ is LI in \mathbb{R}^3 then $\left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\}$ is LI in \mathbb{R}^2 .
 - (c) If S is a subspace of \mathbb{R}^n then $\mathbf{x} + S$ is a subspace if and only if $\mathbf{x} \in S$.
 - (d) If the diagonal entries of a 4×4 upper triangular matrix A are 1, 2, 3 and 4 then $S_1 = \{\mathbf{x} \in \mathbb{R}^4 \mid A\mathbf{x} = 2\mathbf{x}\}$ is a subspace of \mathbb{R}^4 but $S_2 = \{\mathbf{x} \in \mathbb{R}^4 \mid A\mathbf{x} = 5\mathbf{x}\}$ is not.
- 8. Let $S = \left\{ \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} a \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \right\}$. Find the values of a for which $\operatorname{span}(S) \neq \mathbb{R}^3$.

- 9. If a diagonal entry of a 3×3 upper triangular matrix is zero, then show that the columns are linearly dependent.
- 10. True or False? Give justifications.
 - (a) If S is a subspace of \mathbb{R}^n of dimension n, then $S = \mathbb{R}^n$.
 - (b) For any two matrices A and B for which AB is defined, $rank(AB) \leq min(rank(A), rank(B))$.
 - (c) If $C = [A \mid B]$, then $rank(C) \le rank(A) + rank(B)$.
 - (d) If $C = \begin{bmatrix} A & B \\ \mathbf{0} & D \end{bmatrix}$, then $rank(C) \ge rank(A) + rank(D)$.
- 11. If $\operatorname{rank}(A) = \operatorname{rank}(A^2)$ then show that $\operatorname{rank}(A^2) = \operatorname{rank}(A^3)$. Is $\operatorname{rank}(A^5) = \operatorname{rank}(A^6)$?

Hint: Note that $col(A^2) \subseteq col(A)$, $rank(A^2) = rank(A)$ implies $col(A^2) = col(A)$. Again note that $col(A^3) \subseteq col(A^2)$, show $col(A^3) = col(A^2)$, and so on.

- 12. (a) Show that for any two $m \times n$ matrices A and B, $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$. Hint: $A+B = [A|B] \left[\begin{array}{c} I_n \\ I_n \end{array} \right]$.
 - (b) Hence show that if A is an $m \times n$ matrix and B is the matrix obtained by changing exactly k entries of A, then $\operatorname{rank}(A) k \le \operatorname{rank}(B) \le \operatorname{rank}(A) + k$.

Hint: B = A + C, where C has exactly k nonzero entries.

**** End ****