Sprawozdanie

Kajetan Bilski 244942

24 listopada 2019

1 Zadanie 1.

W tym zadaniu trzeba napisać funkcję znajdującą miejsce zerowe podanej funkcji metodą bisekcji według specyfikacji podanej w poleceniu zadania. Kod funkcji do zadań 1 - 3 jest w pliku zad123.jl, a testy w testy.jl. Funkcja najpierw sprawdza znaki wartości funkcji na końcach danego przedziału. Jeśli $sign(f(a_0)) = sign(f(b_0))$ to zwraca kod błędu 1. W przeciwnym wypdaku liczy $c_0 = \frac{b_0 - a_0}{2} + a_0$ i wchodzi do pętli while. Przed każdą iteracją sprawdzane jest, czy $b_n - a_n > \delta$ i $|f(c_n)| > \epsilon$. Jeśli tak to program porównuje znaki $f(a_n)$ i $f(c_n)$. W przypadku, gdy są równe to $a_{n+1} = x_n$ i $b_{n+1} = b_n$, inaczej $a_{n+1} = a_n$ i $b_n + 1 = x_n$. Potem liczone jest c_{n+1} takim samym sposobem jak wcześniej, licznik it się zwiększa i pętla wraca na początek. Po wyjściu z pętli program zwraca $(c_{it}, f(c_{it}), it, 0)$.

2 Zadanie 2.

W tym zadaniu trzeba napisać funkcję znajdującą miejsce zerowe podanej funkcji metodą Newtona (stycznych) według specyfikacji podanej w poleceniu zadania.

Kod funkcji do zadań 1 - 3 jest w pliku zad123.jl, a testy w testy.jl. Funkcja najpierw sprawdza, czy $|f(x_0)| \le \epsilon$. Jeśli tak to zwraca $(x_0, f(x_0), 0, 0)$. Następnie sprawdza, czy $|f'(x_0)| \le \epsilon$ i zwraca $(x_0, f(x_0), 0, 2)$ jeśli tak. Następnie deklaruje ona $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ i it = 1. Potem wchodzi do pętli, której warunkami wykonywania kolejnych iteracji są $|x_{it} - x_{it-1}| > \delta$, $|f(x_{it})| > \epsilon$, it < maxit i $|f'(x_{it})| > \epsilon$ w tej kolejności. Wewnątrz pętli liczone jest $x_{it+1} = x_{it} - \frac{f(x_{it})}{f'(x_{it})}$, a następnie it zwiększa się o 1. Po wyjściu z pętli sprawdzany jest powód zakończenia się pętli (przypisana jest wartość err) i funkcja zwraca $(x_{it}, f(x_{it}), it, err)$.

3 Zadanie 3.

W tym zadaniu trzeba napisać funkcję znajdującą miejsce zerowe podanej funkcji metodą siecznych według specyfikacji podanej w poleceniu zadania. Kod funkcji do zadań 1 - 3 jest w pliku zad123.jl, a testy w testy.jl.

Funkcja napierw sprawdza, czy szukane miejsce zerowe nie znajduje się w x_0 lub x_1 . Jeśli nie to liczy ona $x_2 = x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} f(x_1)$ i deklaruje it = 1. Następnie wchodzi do pętli z warunkami $|x_{it+1} - x_{it}| > \delta$, $|f(x_{it+1})| > \epsilon$ i it < maxit wewnątrz której liczone jest x_{it+2} według poprzedniego wzoru i it zwiększane o 1. Po wyjściu z pętli funkcja przypisuje wartość err na podtawie powodu wyjścia z pętli i zwraca $(x_{it+1}, f(x_{it+1}), it, err)$.

4 Zadanie 4.

W tym zadaniu trzeba znaleźć miejsce zerowe funkcji $sin(x)-(\frac{1}{2}x)^2$ za pomocą każdej z wcześniej napisanych funkcji dla podanych argumentów.

Wyniki dla każdej funkcji: Jak widać wszystkie metody dały podobne wyniki z

Tabela 1: Wyniki				
Metoda	r	f(r)	iteracja	
bisekcji	1.9337539672851562	-2.7027680138402843e-7	15	
Newtona	1.933753779789742	-2.2423316314856834e-8	4	
siecznych	1.933753644474301	1.564525129449379e-7	4	

wynikim metody Newtona będącym trochę bliżej miejsca zerowego. Wszystkie metody znalazły miejsce zerowe blisko 2, pomimo tego że funkcja ma 2 miesjca zerowe. Dla metody bisekcji jest to spowodowane zadanym przedziałem początkowym [1.5, 2], w którym znajduje się tylko 1 miejsce zerowe a < r < b. Podobnie dla metody Newtona jest to spowodowane wyborem $x_0 = 1.5$, gdzie $f'(x_0) < 0$, dlatego funkcja szuka miejsca zerowego $r > x_0$. Podobnie dla metody siecznych, gdzie zadane mamy $x_0 = 1$, $x_1 = 2$, $f(x_0) > 0$ i $f(x_1) < 0$, więc funkcja szuka r takiego, że $x_0 < r < x_1$.

Istotna różnica w wynikach jest w ilośći iteracji. Metoda bisekcji swoją niezawodność przypłaca wykładnikiem zbieżności rzędu 1, czyli gorszym od pozostałych metod, przez co znajduje miejsce zerowe wolniej.

5 Zadanie 5.

W tym zadaniu trzeba znaleźć oba miejsca zerowe funkcji $e^x - 3x$ za pomocą funkcji z zadania 1.

W związku z tym, że funkcja ma 2 miejsca zerowe, żeby znaleźć je oba trzeba dać funkcji odpowiednie przedziały początkowe. Wiedząc że $1>0,\ e<3$ i $e^2>6,$ ustaliłem przedziały dla oby uruchomień funkcji na [0,1] i [1,2]. Jak widać oba wywołania funkcji faktycznie znalazły różne miejsca zerowe.

nn 1 1	\circ	TT 7	•1 •
Tahala	٠,٠	1/1/ 371	กปรา
Tabela	4.	V V V J	111111

Przedział	r	f(r)	iteracja
[0, 1]	0.619140625	-9.066320343276146e-5	8
[1, 2]	1.5120849609375	-7.618578602741621e-5	12

6 Zadanie 6.

W tym zadaniu trzeba znaleźć miejsca zerowe obu zadanych funkcji f_1 i f_2 za pomocą wszystkich metod z zadań 1 - 3.

Otrzymane wyniki:

Jak widać dla wybranych przeze mnie danych początkowych wszystkie funk-

Tabela 3: Wyniki dla f_1

Metoda	Dane początkowe	r	f(r)	iteracja
bisekcji	[0, 1.5]	1.0000076293945312	-7.6293654275305656e-6	15
Newtona	0.5	0.9999850223207645	1.4977791401582508e-5	3
siecznych	0, 2	1.0000017597132702	-1.7597117218937086e-6	6

Tabela 4: Wyniki dla f_2

Metoda	Dane początkowe	r	f(r)	iteracja
bisekcji	[-0.5, 1]	6.103515625e-5	6.1031431073386065e-5	12
Newtona	0.5	-3.0642493416461764e-7	-3.0642502806087233e-7	5
siecznych	1,0.5	4.0393027637051994e-7	4.0393011321088476e-7	9

cje znajdują miejsca zerowe obu funkcji, a jedyna istotna różnica leży w ilości potrzebnych iteracji, gdzie ilość iteracji jest odwrotnie proporcjonalna do wykładnika zbieżności danej metody.

Ciekawsze rzeczy dzieją się dla innych punktów startowych w metodach Newtona i siecznych. W przypadku metody Newtona dla f_1 jeśli weżmiemy $x_0 > 1$ to zaczynają się dziać dziwne rzeczy. Dla x_0 bliskiego 1 funkcja daje jeszcze dokładne wyniki, ale dla większych x_0 pochodna w x_0 staje się bardzo bliska 0, co powoduje że x_1 jest bardzo daleko na minusie, przy większych x_0 do tego stopnia, że Julia zaokrągla $f(x_1) = \infty$ i $f'(x_1) = -\infty$, co potrafi spowodować że dostajemy na wyniku NaNy.

Dla metody Newtona w f_2 jeśli weźmiemy $x_0 > 1$ to $f'(x_0) < 0$, więc funkcja znajduje następne punkty na prawo od poprzednich, chociaż jedyne miejsce zerowe jest w 0. Pomimo tego f_2 maleje, więc funkcja znajduje pierwszy punkt

gdzie f_2 jest wystarczająco blisko 0, chociaż nie ma tam miejsca zerowego.

$$\lim_{n \to \infty} x_n = \infty$$

 x_0 nie może równać się 1, ponieważ $f_2^\prime(1)=0$ i funkcja zwróciła by kod błędu 2.