МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Операционные системы»

Тема: Исследование организации управления основной памятью

Студент гр. 7383	 Васильев А.И.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2019

Цель работы.

Исследовать структуры данных и работу функций управления памятью ядра операционной системы.

Выполнение работы.

Для исследования организации управления памятью необходимо ориентироваться на тип основной памяти, реализованной в компьютере и способ организации, принятый в ОС. В лабораторной работе рассматривается нестраничная память и способ управления динамическими разделами. Для реализации управления памятью в этом случае строится список занятых и свободных участков памяти. Функции ядра, обеспечивающие управление основной памятью, просматривают и преобразуют этот список.

В лабораторной работе исследуются структуры данных и работа функций управления памятью ядра операционной системы.

Описание функций приведено в табл. 1, описание структур данных – в табл. 2. Результаты работы программ представлены на рис. 1 – 4.

Таблица 1. Описание функций.

Название функции	Назначение	
BYTE_TO_HEX	перевод байта в AL в два числа в 16-	
	ой c/c в АХ, в АL старшая цифра, в	
	АН младшая	
TETR_TO_HEX	вспомогательная функция для работы	
	функции BYTE_TO_HEX	
WRD_TO_HEX	перевод в 16с/с 16-ти разрядного	
	числа, в АХ - число, DI - адрес	
	последнего символа	
BYTE_TO_DEC	перевод в 10c/c, SI – адрес поля	
	младшей цифры	
TO_DEC	перевод шестнадцатеричных чисел в	
	десятичные	
WriteStr	вывод строки на экран	
AV_MEM	вывод размера доступной памяти	
EX_MEM	вывод размера расширенной памяти	
MCB	вывод цепочки блоков управления	
	памятью	

Таблица 2. Описание структур данных.

Название	Тип	Назначение
AV_MEM_STR	db	строка для записи размера
		доступной памяти
EX_MEM_STR	db	строка для записи размера
		расширенной памяти
MCB_HEAD	db	заголовок для вывода цепочки
		блоков управления памятью
MCB_MEM_STR	db	строка для записи цепочки
		блоков управления памятью
ENDL	db	перенос строки
ERROR_STR	db	строка, содержащая
		сообщение об ошибке

Результат работы программы.

```
Available memory: 648912 B
Extended memory: 15360 KB
               Size
Address Owner
                      Name
  016F
        0008
                 16
                     DPMILOAD
  0171
        0000
                 64
  0176
        0040
                 256
        0192
                 144
  0187
  0191 0192 648912 L3_1
```

Рисунок 1 – Результат выполнения программы lr3_1.com

```
:\>13_2.com
Available memory: 648912 B
Extended memory: 15360 KB
Address Owner
               Size
                       Name
  016F
        0008
                 16
        0000
                     DPMILOAD
  0171
                 64
  0176
        0040
                256
  0187
        0192
                 144
  0191
        0192
                6432
                     L3_2
        0000 642464
  0324
```

Рисунок 2 – Результат выполнения программы lr3_2.com

```
C:\>13_3.com
Available memory: 648912 B
Extended memory: 15360 KB
                Size
Address Owner
                        Name
   016F
        0008
                  16
  0171
        0000
                  64
                      DPMILOAD
   0176
         0040
                 256
   0187
         0192
                 144
   0191
         0192
                6432
                      L3_3
         0192
               65536 L3_3
   0324
         0000 576912 шр∲ ให<sup>ู</sup>ป
   1325
```

Рисунок 3 – Результат выполнения программы lr3_3.com

```
C:N>13_4.com
Available memory: 648912 B
Extended memory: 15360 KB
Error with memory
Address Owner Size Name
016F 0008 16
0171 0000 64 DPMILOAD
0176 0040 256
0187 0192 144
0191 0192 6432 L3_4
0324 0000 642464
```

Рисунок 4 – Результат выполнения программы lr3_4.com

Выводы.

В процессе выполнения данной лабораторной работы были исследованы структуры данных и работа функций управления памятью ядра операционной системы.

Ответы на контрольные вопросы.

1) Что означает "доступный объем памяти"?

Это объем памяти, в который можно загружать пользовательские программы.

- 2) Где МСВ блок Вашей программы в списке?
- 13.1: последняя строка списка (см. рисунок 1);
- 13.2: предпоследняя строка списка (см. рисунок 2). В последней строке блок освобожденной памяти;
- 13.3: пятая строка, далее идут блоки выделенной по запросу и свободной памяти (см. рисунок 3);
- 13.4: предпоследняя строка (см. рисунок 4).
 - 3) Какой размер памяти занимает программа в каждом случае?
- 13.1: всю доступную память, 64 8912 б;
- 13.2: только свой объем, 6 432 б;
- 13.3: свой объем 6 432 б и объем выделенной памяти 65 536 б;
- 13.4: так как выделить память не получилось, только свой объем 6 432 б.