Resource Analysis Lecture 4

June 22, 2019

1 Recap: Soundness

Theorem 1.2 (Preservation). If $|_{q'}^q e : \tau$, $p \ge q$ and $\langle e, p \rangle \mapsto \langle e', p' \rangle$ then $|_{q'}^{p'} e' : \tau$.

Proof notes. Proved by nested induction on $|\frac{q}{q'}|e:\tau$ and $\langle e,p\rangle\mapsto\langle e',p'\rangle$.

Alternative soundness theorem: Recall the judgement $V \vdash e \Downarrow v \mid (q, q')$

Definition 1.2.1.
$$\phi(V:\Gamma) = \sum_{x \in dom(\Gamma)} \phi(V(x):\Gamma(x))$$

where Γ assigns types to variables.

Theorem 1.3. Let $V:\Gamma$ and $\Gamma \mid_{q'}^{q} e:\tau$ and $V \vdash e \Downarrow v \mid (p,p')$ then $\phi(V:\Gamma)+q \geq p$ and $\phi(V:\Gamma)+q-\phi(v:\tau)-q' \geq p-p'$

This theorem shows that the type derivation is a certificate for bound correctness.

2 Type inference

Example 1. We want to find a derivation for:

$$\ \stackrel{0}{\vdash_0} fix \big(id.\ \lambda(x:L(unit))\ matL(x;\ nil;\ y,ys.cons(y;\ tick\{2\}(id(ys)))\big): L^2(unit) \rightarrow^{0/0} L^0(unit)$$

See figure 1 for the deriviation tree, where $e_{id} = fix(id. \lambda(x : L(unit)) matL(x; nil; y, ys.cons(y; tick{2})(id and \tau_{id} = L^2(unit) \rightarrow 0/0 L^0(unit).$

For type inference we need algorithmic (or syntax-directed) rules. We change all the typing rules to incorporate the structural rules:

Example 2.
$$\frac{q \ge q' \qquad \tau <: \tau'}{\Gamma, x : \tau \mid_{q'}^{q} x : \tau'}$$

Algorithm for type inference:

- 1. Infer usual tpyes (without annotations), which results in a type derivation (like example in figure 1 with all annotations removed);
- 2. Add potential variables where a potential annotation is required, both in τ_{id} and in the derivation. See figure 2. Note the this step is only partially done in the figure;

$$\tau_{id}$$
 becomes $L^p(unit) \to^{q/q'} L^{p'}(unit)$

3. Derive from the typing rules linear constraints on potential variables;

Example 3. For the fix example, some of the constraints are:

$$r_0 \ge r_0' \qquad r_2 \le q \qquad p_1 \le p \qquad r_3 \ge r_3' \qquad p_2 \le p_1$$

$$r_1 = 0 \qquad r_2' \ge q' \qquad p_1' \ge p' \qquad r_3 \le r_2 \qquad p_2' \ge p_2$$

$$r_1' = 0$$

$$r_4 \le r_3' + p_1 \qquad r_4' < r_2'$$

$$s_1 \ge s_2 + 2 \qquad s_1' = s_2'$$

- 4. Solve constraints with LP solver;
- 5. Objective is the sum of initial potential annotations.

Example 4. For the fix example the objective is to minimize p + q.

3 Implementation in RAML and examples

Live RAML (Resource aware ML) demo showing binary counter, using the source code displayed in figure 3. Second example with queue.

relax $\frac{\text{app}}{y:1 \stackrel{?}{_{2}} y:1}$ $\frac{id:\tau_{id}, ys:L^{2}(1) \stackrel{!0}{_{0}} id(ys):L^{0}(1)}{id:\tau_{id}, ys:L^{2}(1) \stackrel{!2}{_{0}} tick\{2\}(id(ys)):L^{0}(1)}$	$id: au_{id}, y: 1, ys :: L^2(1) \stackrel{1}{\cap} cons(y, tick\{2\}(id(ys)): L^0(1)$	$id: au_{id}, x: L^2(1) \vdash e_{id}: L^0(1)$	$id: au_{id} dot_0^{Q} \lambda(x) e_{id}: au_{id}$	$\int fix(id\lambda(x)e_{id}: au_{id})$
	$id: au_{id} \stackrel{IQ}{ ext{0}} nil: L^0(1)$	$id: au_{id},$: <i>pi</i>	(Ol
	$x: L^2(1) \stackrel{10}{\mid_0} x: L^2(1)$			

Figure 1: Example of type inference

 $id: \tau_{id}, ys: L(1) \stackrel{|\mathcal{S}|}{\mapsto_{1}} tick\{2\} (id(ys)): L(1)$ $id: \tau_{id}, y: 1, ys :: L^2(1) \stackrel{\Gamma^4}{\vdash_{r'_4}} cons(y, tick\{2\}(id(ys)): L(1)$ app $\overline{id : \tau_{id}, ys : L(1) \stackrel{|S_2|}{\sim} id(ys) : L(1)}$ $id: \tau_{id}, x: L^{p_1}(1) \stackrel{L_3}{r_3} e_{id}: L^{p'_1}(1)$ relax $\frac{}{y:1 \vdash y:1}$ $id: \tau_{id} \stackrel{|\Gamma_1|}{r_1'} \lambda(x) e_{id}: \tau_{id}$ $\frac{|\Gamma_0|}{r_0'} fix(id\lambda(x)e_{id}: \tau_{id})$ $id: \tau_{id} \vdash nil: L(1)$ $x: L^{p_2}(1) \stackrel{\Gamma^3}{\vdash_{r_3}} x: L^{p_2'}(1)$

Figure 2: Type inference, step 2 of the algorithm

```
let rec id x =
    match x with
    | [] -> []
    | y::ys -> y::(let _ = Raml.tick 2.0 in ys)

type bit = Zero | One

let rec inc counter =
    match counter with
    | [] -> [One]
    | Zero::bs -> One::bs
    | One::bs -> Zero::(inc bs)

let rec in_many n =
    match n with
    | Z -> []
    | S n'-> inc (inc_many n')
```

Figure 3: Code for binary counter example