Assignment7

Aravind A Anil

March 20, 2021

Problem Statement:(6.17):A person plays a game of tossing a coin thrice. For each head, he is given Rs 2 by the organiser of the game and for each tail, he has to give Rs 1.50 to the organiser. Let X denotes the amount gained or lost by the person show that X is random variable and exhibit it as a function on the sample space of the experiment.

1 Condition-1

Solution:, here we are tossing a coin three times so,

.Let X_i , i = 0, 1, 2, be the value at the end of each toss.

Then
$$X_i = X_{i-1} + Y$$
, Where $Y \in \{2, -1.5\}$

$$X_0 = Y$$

$$X_1 = X_0 + Y$$

$$X_2 = X_1 + Y$$

 $Z \in 0, 1$, where 0 represent getting a tail and 1 represents getting a head

	head	tail
Z	1	0

Let,

 \mathbb{Z}_0 represents toss 1

 Z_1 represents toss 2

 \mathbb{Z}_2 represents toss 3

There can be eight cases

1. Case-i

• when
$$Z_0 = 0, Z_1 = 0, Z_2 = 0$$

$$X_0 = -1.5$$

 $X_1 = -1.5 - 1.5$
 $= -3$
 $X_2 = -3 - 1.5$
 $= -4.5$

$$Pr(Z_0 = 0, Z_1 = 0, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

2. Case-ii

• when
$$Z_0 = 0, Z_1 = 1, Z_2 = 1$$

$$X_0 = -1.5$$

 $X_1 = -1.5 + 2$
 $= .5$
 $X_2 = -.5 + 2$
 $= 2.5$

$$Pr(Z_0 = 0, Z_1 = 1, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

3. Case-iii

• when
$$Z_0 = 0, Z_1 = 0, Z_2 = 1$$

$$X_0 = -1.5$$

 $X_1 = -1.5 + -1.5$
 $= -3$
 $X_2 = -3 + 2$

= -1

$$Pr(Z_0 = 0, Z_1 = 0, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
 $Pr(Z_0 = 1, Z_1 = 0, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $= \frac{1}{8}$

4. Case-iv

• when
$$Z_0 = 1, Z_1 = 1, Z_2 = 1$$

$$X_0 = 2$$
 $X_1 = 2 + 2$
 $= 4$
 $X_2 = 4 + 2$
 $= 6$

$$Pr(Z_0 = 1, Z_1 = 1, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

5. Case-v

• when
$$Z_0 = 1, Z_1 = 0, Z_2 = 1$$

$$X_0 = 2$$

 $X_1 = 2 - 1.5$
 $= .5$
 $X_2 = .5 + 2$
 $= 2.5$

$$Pr(Z_0 = 1, Z_1 = 0, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

6. Case-vi

• when
$$Z_0 = 1, Z_1 = 0, Z_2 = 0$$

$$X_0 = 2$$
 $X_1 = 2 - 1.5$
 $= .5$
 $X_2 = .5 + -1.5$
 $= -1$

$$Pr(Z_0 = 1, Z_1 = 0, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

7. Case-vii

• when
$$Z_0 = 1, Z_1 = 1, Z_2 = 0$$

$$X_0 = 2$$
 $X_1 = 2 + 2$
 $= 4$
 $X_2 = 4 + -1.5$
 $= 2.5$

$$Pr(Z_0 = 1, Z_1 = 1, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
 $Pr(Z_0 = 1, Z_1 = 1, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $= \frac{1}{8}$

8. Case-viii

• when
$$Z_0 = 0, Z_1 = 1, Z_2 = 0$$

$$X_0 = -1.5$$

 $X_1 = -1.5 + 2$
 $= .5$
 $X_2 = .5 + -1.5$
 $= -1$

$$Pr(Z_0 = 1, Z_1 = 0, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
 $Pr(Z_0 = 0, Z_1 = 1, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $= \frac{1}{2}$

Here values of X_2 can be 6,2.5,-1,-4.5 All these are real values Hence, $X_2 = \{6,2.5,-1,-4.5\}$ & X_2 is a Random Variable

X_2	-4.5	-1	2.5	6
$Pr(X_2)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Table 1: Probability Distribution of X_2

Figure 1: CDF

Figure 2: PMF

2 Condition-2

$$X_0 = Y$$

 $X_1 = X_0 + Y$
 $X_2 = X_1 + X_0 + Y$
There can be eight cases

1. Case-i

• when
$$Z_0 = 0, Z_1 = 0, Z_2 = 0$$

$$X_0 = -1.5$$

$$X_1 = -1.5 - 1.5$$

$$= -3$$

$$X_2 = -3 - 1.5 - 1.5$$

$$= -6$$

$$Pr(Z_0 = 0, Z_1 = 0, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

2. Case-ii

• when
$$Z_0 = 0, Z_1 = 1, Z_2 = 1$$

$$X_0 = -1.5$$

 $X_1 = -1.5 + 2$
 $= .5$
 $X_2 = -.5 + -1.5 + 2$
 $= 1$

$$Pr(Z_0 = 0, Z_1 = 1, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

3. Case-iii

• when
$$Z_0 = 0, Z_1 = 0, Z_2 = 1$$

$$X_0 = -1.5$$

$$X_1 = -1.5 + -1.5$$

$$= -3$$

$$X_2 = -3 + -1.5 + 2$$

$$= -2.5$$

$$Pr(Z_0 = 0, Z_1 = 0, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
 $Pr(Z_0 = 1, Z_1 = 0, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $= \frac{1}{8}$

4. Case-iv

• when
$$Z_0 = 1, Z_1 = 1, Z_2 = 1$$

$$X_0 = 2$$
 $X_1 = 2 + 2$
 $= 4$
 $X_2 = 4 + 2 + 2$
 $= 8$

$$Pr(Z_0 = 1, Z_1 = 1, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

5. Case-v

• when
$$Z_0 = 1, Z_1 = 0, Z_2 = 1$$

$$X_0 = 2$$

 $X_1 = 2 - 1.5$
 $= .5$
 $X_2 = .5 + 2 + 2$
 $= 4.5$

$$Pr(Z_0 = 1, Z_1 = 0, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

6. Case-vi

• when
$$Z_0 = 1, Z_1 = 0, Z_2 = 0$$

$$X_0 = 2$$

 $X_1 = 2 - 1.5$
 $= .5$
 $X_2 = .5 + 2 + -1.5$
 $= 1$

$$Pr(Z_0 = 1, Z_1 = 0, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

7. Case-vii

• when
$$Z_0 = 1, Z_1 = 1, Z_2 = 0$$

$$X_0 = 2$$
 $X_1 = 2 + 2$
 $= 4$
 $X_2 = 4 + 2 + -1.5$
 $= 4.5$

$$Pr(Z_0 = 1, Z_1 = 1, Z_2 = 1) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{8}$$
 $Pr(Z_0 = 1, Z_1 = 1, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$

$$= \frac{1}{8}$$

8. Case-viii

• when
$$Z_0 = 0, Z_1 = 1, Z_2 = 0$$

$$X_0 = -1.5$$

$$X_1 = -1.5 + 2$$

$$= .5$$

$$X_2 = .5 + -1.5 - 1.5$$

$$= -2.5$$

$$Pr(Z_0 = 0, Z_1 = 1, Z_2 = 0) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

= $\frac{1}{8}$

X_2	6	-2.5	1	4.5	8
$Pr(X_2)$	$\frac{1}{8}$	$\frac{2}{8} = \frac{1}{4}$	$\frac{2}{8} = \frac{1}{4}$	$\frac{2}{8} = \frac{1}{4}$	$\frac{1}{8}$

Table 2: Probability Distribution of X_2

Figure 3: CDF

Figure 4: PMF