Plan

- 1. Introduction
- 2. Graphe planaire
- 3. Notions de face
- 4. Notions d'équivalence de représentations
- 5. Isomorphisme
- 6. Propriétés
- 7. Formule d'Euler
- 8. Caractérisations des graphes planaires

Introduction

- La question de la planarité des graphes est un problème typiquement humain.
- C'est juste un problème de représentation de graphe dans une forme particulière dans le but de mieux l'étudier.
- D'un point de vue purement informatique : pas de différence de représentation entre le graphes (planaire ou non)
- D'un point de vue humain : la représentation planaire permet de/d' :
 - avoir une meilleure compréhension d'un graphe;
 - trouver la solution d'un problème plus facilement.

Un graphe planaire est un graphe qui peut être représenté dans un plan de telle sorte que les arêtes ne se croisent pas.

• Exemple : En (b) une représentation planaire du graphe en (a)

<u>Définition : (Courbes)</u>

- \circ **Une courbe** est une application continue de [0, 1] dans R^2 .
- OUne courbe polygonale est une courbe composée d'un ensemble fini de segments.
- Une (u, v) courbe est une courbe dont les extrémités sont les points u et v.

Une **représentation d'un graphe G = (V, E)** est une fonction f définie sur l'ensemble de ses sommets V et de ses arêtes E :

$$\begin{cases} v \in V ---- > un \ point \ f(v) du \ plan \\ (u, v) \in E---- > (f(u), f(v)) - courbe \end{cases}$$

Exemple : G = (V, E) tel que V= $\{x_1, x_2, x_3, x_4, x_5\}$ et E = $\{\{x_1, x_2\}, \{x_1, x_5\}, \{x_5, x_4\}, \{x_3, x_2\}, \{x_3, x_4\}\}$

Une représentation est dite planaire si les courbes correspondant aux arêtes ne se coupent qu'au niveau de leurs extrémités. [De telles représentations ne sont absolument pas uniques.]

Un graphe planaire est un graphe qui a une représentation planaire.

Isomorphisme entre représentations

Un isomorphisme f entre un graphe G = (V, E) et un graphe H = (V', E') est une bijection entre les sommets de G et ceux de H, telle que : pour tous sommets u et v de G on a $(u, v) \in E$ si et seulement si $(f(u), f(v)) \in E'$.

Notion de face

Une représentation planaire engendre une partition du plan en différentes portions appelées **faces**, séparées par des arêtes.

L'ensemble des arêtes délimitant une face constituent son pourtour qui induit un cycle de graphe.

Notion de face

Exemple: Deux représentations d'un graphe n'ayant pas les même faces

Théorème 1. (Euler) Si un graphe planaire connexe possédant \mathbf{n} sommets, \mathbf{e} arêtes, a une représentation planaire à \mathbf{f} faces, alors la relation $\mathbf{n} - \mathbf{e} + \mathbf{f} = \mathbf{2}$ est vérifiée.

Théorème 1. (Euler) Si un graphe planaire connexe possédant \mathbf{n} sommets, \mathbf{e} arêtes, a une représentation planaire à \mathbf{f} faces, alors la relation $\mathbf{n} - \mathbf{e} + \mathbf{f} = \mathbf{2}$ est vérifiée.

Théorème 2. Un graphe planaire simple, sans arêtes multiples, à n sommets et m arêtes vérifie $m \le 3n - 6$

Le Théorème de Kuratowski donne la caractérisation la plus connue des graphes planaires.

Nous avons besoin de présenter la notion de subdivisions, et de mineurs avant de parler de ce résultat.

Définition 4.

- 1. Une subdivision d'une arête (u,v) d'un graphe est l'opération de la remplacer par un chemin [uwv] en ajoutant un sommet w.
- 2. Un graphe G' est une subdivision de G s'il peut être obtenu à partir de G par une série de subdivisions.

Théorème 3. (Kuratowski) Un graphe est planaire si et seulement si il ne contient pas de subdivisions de K_5 ou de $K_{3,3}$.

