CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Parsing CFGs

- Consider the problem of parsing with arbitrary CFGs
- For any input string, the parser has to produce a parse tree
- The simpler problem: print **yes** if the input string is generated by the grammar, print **no** otherwise
- This problem is called *recognition*

CKY Recognition Algorithm

- The Cocke-Kasami-Younger algorithm
- As we shall see it runs in time that is polynomial in the size of the input
- It takes space polynomial in the size of the input
- Remarkable fact: it can find all possible parse trees (exponentially many) in polynomial time

Chomsky Normal Form

- Before we can see how CKY works, we need to convert the input CFG into Chomsky Normal Form
- CNF means that the input CFG G is converted to a new CFG G' in which all rules are of the form:

$$A \rightarrow B C$$

$$A \rightarrow a$$

Epsilon Removal

• First step, remove epsilon rules

$$A \rightarrow B C$$

 $C \rightarrow \varepsilon \mid C D \mid a$
 $D \rightarrow b \quad B \rightarrow b$

• After ε-removal:

$$A \rightarrow B \mid B \mid C \mid D \mid B \mid a$$

 $C \rightarrow D \mid C \mid D \mid a \mid D \mid a$
 $D \rightarrow b \mid B \rightarrow b$

Removal of Chain Rules

• Second step, remove chain rules

$$A \rightarrow B C \mid C D C$$

 $C \rightarrow D \mid a$
 $D \rightarrow d \quad B \rightarrow b$

• After removal of chain rules:

$$A \rightarrow B a \mid B D \mid a D a \mid a D D \mid D D a \mid D D$$

 $D \rightarrow d \quad B \rightarrow b$

Eliminate terminals from RHS

• Third step, remove terminals from the rhs of rules

$$A \rightarrow B a C d$$

• After removal of terminals from the rhs:

$$A \rightarrow B N_1 C N_2$$
 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

Binarize RHS with Nonterminals

• Fourth step, convert the rhs of each rule to have two non-terminals

$$A \rightarrow B N_1 C N_2$$

 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

• After converting to binary form:

$$A \rightarrow B N_3$$
 $N_1 \rightarrow a$
 $N_3 \rightarrow N_1 N_4$ $N_2 \rightarrow d$
 $N_4 \rightarrow C N_2$

CKY algorithm

- We will consider the working of the algorithm on an example CFG and input string
- Example CFG:

$$S \rightarrow A X \mid Y B$$

 $X \rightarrow A B \mid B A \qquad Y \rightarrow B A$
 $A \rightarrow a \quad B \rightarrow a$

• Example input string: aaa

CKY Algorithm

$ \begin{array}{c cccc} A, B & X, Y \\ A \rightarrow a & X \rightarrow A B \mid B A \end{array} $		O	1	2	3
$\begin{vmatrix} A \rightarrow a \\ X \rightarrow A B \mid B A \end{vmatrix}$	0		$A \rightarrow a$	$X \rightarrow A B \mid B A$	S $S \to A_{(0,1)} X_{(1,3)}$ $S \to Y_{(0,2)} B_{(2,3)}$
	1				X, Y $X \rightarrow A B \mid B A$ $Y \rightarrow B A$
$ \begin{array}{c c} A, B \\ A \rightarrow a \\ B \rightarrow a \end{array} $	2				A, B $A \rightarrow a$

a

a

a

Parse trees

CKY Algorithm

```
Input string input of size n
Create a 2D table chart of size n^2
for i=0 to n-1
    chart[i][i+1] = A if there is a rule A \rightarrow a and input[i]=a
for j=2 to N
    for i=j-2 downto 0
       for k=i+1 to j-1
          chart[i][j] = A if there is a rule A \rightarrow B C and
            chart[i][k] = B and chart[k][j] = C
return yes if chart[0][n] has the start symbol
else return no
```

CKY algorithm summary

- Parsing arbitrary CFGs
- For the CKY algorithm, the time complexity is $O(|G|^2 n^3)$
- The space requirement is $O(n^2)$
- The CKY algorithm handles arbitrary ambiguous CFGs
- All ambiguous choices are stored in the chart
- For compilers we consider parsing algorithms for CFGs that do not handle ambiguous grammars

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Parsing
 - recursive-descent
 - table-driven
- LR(k) Parsing
 - -LR(0), SLR(1), LR(1), LALR(1)

Top-Down vs. Bottom Up

Grammar: $S \rightarrow A B$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/leftmost		Bottom-Up/rightmost	
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c
⇒cB	A→c	← AcbB	B→ca
⇒ ccbB	B→cbB	← AB	B→cbB
⇒ ccbca	B→ca		S→AB

Top-Down: Backtracking

Transition Diagram

$$S \rightarrow cAa$$
 S: $C \rightarrow A \rightarrow a$
 $A \rightarrow cB \mid B$ A: $C \rightarrow B \rightarrow bcB \mid \epsilon$ B: $C \rightarrow B \rightarrow bcB \mid \epsilon$ B:

Predictive Top-Down Parser

- Knows which production to choose based on single lookahead symbol
- Need LL(1) grammars

First L: reads input Left to right

Second L: produce Leftmost derivation

- 1: one symbol of lookahead

- Can't have left-recursion
- Must be left-factored (no left-factors)
- Not all grammars can be made LL(1)

Leftmost derivation for id + id * id

$$E \rightarrow E + E \qquad E \Rightarrow E + E$$

$$E \rightarrow E * E \qquad \Rightarrow id + E$$

$$E \rightarrow (E) \qquad \Rightarrow id + E * E$$

$$E \rightarrow -E \qquad \Rightarrow id + id * E$$

$$E \rightarrow id \qquad \Rightarrow id + id * id$$

Predictive Parsing Table

Productions			
1	$T \rightarrow F T'$		
2	T' → ε		
3	T' → * F T'		
4	$F \rightarrow id$		
5	$\mathbf{F} \rightarrow (\mathbf{T})$		

	*	()	id	\$
T		T → F T'		$T \rightarrow F T'$	
T'	T' → * F T'		Τ' → ε		T' → ε
F		$\mathbf{F} \rightarrow (\mathbf{T})$		F → id	

Trace "(id)*id"

Stack	Input	Output
\$T	(id)*id\$	
\$T'F	(id)*id\$	T → F T'
\$T')T((id)*id\$	$\mathbf{F} \rightarrow (\mathbf{T})$
\$T')T	id)*id\$	
\$T')T'F	id)*id\$	T → F T'
\$T')T'id	id)*id\$	F → id
\$T')T')*id\$	
\$T'))*id\$	Τ' → ε

Trace "(id)*id"

Stack	Input	Output
\$T'	*id\$	
\$T'F*	*id\$	T' → * F T'
\$T'F	id\$	
\$T'id	id\$	F → id
\$T'	\$	
\$	\$	Τ' → ε

Table-Driven Parsing

```
stack.push($); stack.push($);
a = input.read();
forever do begin
  X = stack.peek();
  if X = a and a = $ then return SUCCESS;
  elsif X = a and a != \$ then
    pop X; a = input.read();
  elsif X != a and X \in \mathbb{N} and M[X,a] then
    pop X; push right-hand side of M[X,a];
  else ERROR!
end
```

Predictive Parsing table

- Given a grammar produce the predictive parsing table
- We need to to know for all rules $A \rightarrow \alpha \mid \beta$ the lookahead symbol
- Based on the lookahead symbol the table can be used to pick which rule to push onto the stack
- This can be done using two sets: FIRST and FOLLOW

FIRST and FOLLOW

$$a \in \text{FIRST}(\alpha) \text{ if } \alpha \Rightarrow^* a\beta$$

if $\alpha \Rightarrow^* \epsilon \text{ then } \epsilon \in \text{FIRST}(\alpha)$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A a \beta$
 $a \in \text{FOLLOW}(A) \text{ if } S \Rightarrow^* \alpha A \gamma a \beta$

and $\gamma \Rightarrow^* \epsilon$

Conditions for LL(1)

- Necessary conditions:
 - no ambiguity
 - no left recursion
 - Left factored grammar
- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$
 - 1. First(α) \cap First(β) = \emptyset
 - 2. $\alpha \Rightarrow * \epsilon \text{ implies } !(\beta \Rightarrow * \epsilon)$
 - 3. $\alpha \Rightarrow^* \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$

proc First(α: string of symbols)

```
// assume \alpha = X_1 X_2 X_3 \dots X_n
if X_1 \in T then First(\alpha) := \{X_1\}
else begin
  i:=1; First(\alpha) := First(X_1)\{\varepsilon};
  while X_i \Rightarrow^* \epsilon do begin
     if i < n then
        First(\alpha) := First(\alpha) \cup First(X_{i+1}) \setminus \{\epsilon\};
     else
       First(\alpha) := First(\alpha) \cup \{\epsilon\};
     i := i + 1;
  end
end
```

proc First(X); modified

```
foreach X \in T do First(X) := X;
foreach p \in P : X \rightarrow \varepsilon do First(X) := \{\varepsilon\};
repeat foreach X \in \mathbb{N}, p: X \to Y_1 Y_2 Y_3 \dots Y_n do
   begin i:=1;
     while Y_i \Rightarrow^* \varepsilon and i \le n do begin
       First(X) := First(X) \cup First(Y_i) \setminus \{\epsilon\};
       i := i+1:
     end
    if i = n+1 then First(X) := First(X) \cup \{\epsilon\};
    else First(X) := First(X) \cup First(Y_i);
until no change in any First(X);
```

proc Follow(N: non-terminal)

```
Follow(S) := \{\$\};
repeat
 for each p \in P do
     case p = A \rightarrow \alpha B\beta begin
       Follow(B) := Follow(B) \cup First(\beta)\{\epsilon};
       if \varepsilon \in First(\beta) then
         Follow(B) := Follow(B) \cup Follow(A);
     end
    case p = A \rightarrow \alpha B
       Follow(B) := Follow(B) \cup Follow(A);
until no change in any Follow(N)
```

Example First/Follow

$$S \rightarrow AB$$

$$A \rightarrow c \mid \epsilon$$

Not an LL(1) grammar

$$B \rightarrow cbB \mid ca$$

$$First(A) = \{c, \epsilon\}$$

$$Follow(A) = \{c\}$$

$$First(B) = \{c\}$$

$$Follow(A) \cap$$

$$First(cbB) =$$

$$First(c) = \{c\}$$

$$First(ca) = \{c\}$$

$$Follow(B) = \{\$\}$$

$$First(S) = \{c\}$$

$$Follow(S) = \{\$\}$$

Converting to LL(1)

$$S \rightarrow AB$$

$$A \rightarrow c \mid \epsilon$$

$$B \rightarrow cbB \mid ca$$

Note that grammar

is regular: c? (cb)* ca

same as:

$$S \rightarrow cAa$$

$$A \rightarrow cB \mid B$$

$$B \rightarrow bcB \mid \epsilon$$

Verifying LL(1) using F/F sets

$$S \rightarrow cAa$$

$$A \rightarrow cB \mid B$$

$$B \rightarrow bcB \mid \epsilon$$

$$First(A) = \{b, c, \epsilon\}$$
 $Follow(A) = \{a\}$

First(B) =
$$\{b, \epsilon\}$$
 Follow(B) = $\{a\}$

$$First(S) = \{c\} \qquad Follow(S) = \{\$\}$$

Building the Parse Table

- Compute First and Follow sets
- For each production $A \rightarrow \alpha$
 - foreach a ∈ First(α) add A → α to M[A,a]
 - If ε ∈ First(α) add A → α to M[A,b] for each b in Follow(A)
 - If ε ∈ First(α) add A → α to M[A,\$] if \$ ∈ Follow(α)
 - All undefined entries are errors

Revisit conditions for LL(1)

- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$
 - 1. First(α) \cap First(β) = \emptyset
 - 2. $\alpha \Rightarrow^* \epsilon \text{ implies } !(\beta \Rightarrow^* \epsilon)$
 - 3. $\alpha \Rightarrow * \epsilon \text{ implies First}(\beta) \cap \text{Follow}(A) = \emptyset$
- No more than one entry per table field

Error Handling

- Reporting & Recovery
 - Report as soon as possible
 - Suitable error messages
 - Resume after error
 - Avoid cascading errors
- Phrase-level vs. Panic-mode recovery

Panic-Mode Recovery

- Skip tokens until synchronizing set is seen
 - Follow(A)
 - garbage or missing things after
 - Higher-level start symbols
 - First(A)
 - garbage before
 - Epsilon
 - if nullable
 - Pop/Insert terminal
 - "auto-insert"
- Add "synch" actions to table

Summary so far

- LL(1) grammars
 - necessary conditions
 - No left recursion
 - Left-factored
- Not all languages can be generated by LL(1) grammar
- LL(1) grammars can be parsed by simple predictive recursive-descent parser
 - Alternative: table-driven top-down parser

Bottom-up parsing overview

- Start from terminal symbols, search for a path to the start symbol
- Apply shift and reduce actions: postpone decisions
- LR parsing:
 - L: left to right parsing
 - R: rightmost derivation (in reverse or bottom-up)
- $LR(0) \rightarrow SLR(1) \rightarrow LR(1) \rightarrow LALR(1)$
 - − 0 or 1 or *k* lookahead symbols

Actions in Shift-Reduce Parsing

- Shift
 - add terminal to parse stack, advance input
- Reduce
 - If α w on stack, and $A \rightarrow$ w, and there is a $\beta \in T^*$ such that $S \Rightarrow^* \alpha A \beta \Rightarrow \alpha w \beta$ then we can *prune the handle* w; we reduce α w to αA on the stack
 - αw is a *viable prefix*
- Error
- Accept

Questions

- When to shift/reduce?
 - What are valid handles?
 - Ambiguity: Shift/reduce conflict
- If reducing, using which production?
 - Ambiguity: Reduce/reduce conflict

Rightmost derivation for id + id * id

$$E \rightarrow E + E$$

$$E \Rightarrow E * E$$

$$E \rightarrow E * E$$

$$\Rightarrow$$
 E * id

$$E \rightarrow (E)$$

$$\Rightarrow$$
 E + E * id

$$\Rightarrow$$
 E + id * id

reduce with
$$E \rightarrow id$$

$$E \rightarrow id$$

$$\Rightarrow$$
 id + id * id

LR Parsing

- Table-based parser
 - Creates rightmost derivation (in reverse)
 - For "less massaged" grammars than LL(1)
- Data structures:
 - Stack of states/symbols {s}
 - Action table: **action**[s, a]; $a \in T$
 - Goto table: $goto[s, X]; X \in \mathbb{N}$

]	Proc	ductions				
1	T -	→ F	A	, •		
2	T -	→ T*F	A	ctic		
3	F -	→ id	*	(
4	F -	→ (T)		S5		
		U				
		1	R1	R1		
		2	S 3			
		3		S5		
		4	R2	R2		
		5		S 5		

Action/Goto Table

→ (T)			(,	Iu	Ψ	1	1
			S5		S 8		2	1
I	1	R1	R1	R1	R1	R1		
I	2	S 3				Acc!		
	3		S5		S 8			4
	4	R2	R2	R2	R2	R2		
I	5		S5		S 8		6	1
I	6	S 3		S7				
	7	R4	R4	R4	R4	R4		
	8	R3	R3	R3	R3	R3		

Trace "(id)*id"

Stack	Input	Action
0	(id) * id \$	Shift S5
0 5	id)*id\$	Shift S8
058) * id \$	Reduce 3 F→id,
		pop 8, goto [5,F]=1
051) * id \$	Reduce 1 $T \rightarrow F$,
		pop 1, goto [5,T]=6
056) * id \$	Shift S7
0567	* id \$	Reduce 4 $F \rightarrow (T)$,
		pop 7 6 5, goto [0,F]=1
0 1	* id \$	Reduce $1 T \rightarrow F$
		pop 1, goto [0,T]=2

-	P	rodu	ctions					*	()	id	\$	Т	F
1	Ī	T →	F				0		S5		S8		2	1
2		T →	T*F	666	d)*id''		1	R1	R1	R1	R1	R1		
3		$F \rightarrow id$			u) Iu		2	S 3				A		
4	+				Input	A	3		S5		S8			4
_		$F \rightarrow (T)$			(id) * id \$	Sh	4	R2	R2	R2	R2	R2		
			$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		` ′)		S5		S8		6	1
			0 5		id)*id\$		U	S 3		S7				
			058) * id \$	Re	7	R4	R4	R4	R4	R4		
						po	8	R3	R3	R3	R3	R3		
		051) * id \$ Reduce $1 T \rightarrow F$,									
					po	pop 1, goto [5,T]=6								
			056) * id \$	Shift S7								
	0567				Reduce $4 \text{ F} \rightarrow (\text{T})$,									
			pop 7 6 5, goto [0,F]=1											
	0				* id \$ Reduce $1 T \rightarrow F$									
				pop 1, goto [0,T]=2										
						po	h T	, go	ւս լւ	', 1]	=			

Trace "(id)*id"

Stack	Input	Action
0 1	* id \$	Reduce 1 T→F,
		pop 1, goto [0,T]=2
0 2	* id \$	Shift S3
023	id \$	Shift S8
0238	\$	Reduce 3 F→id,
		pop 8, goto [3,F]=4
0234	\$	Reduce 2 T→T * F
		pop 4 3 2, goto [0,T]=2
0 2	\$	Accept

]	Produ	ctions					*	()	id	\$	Т	F	
1	T →	F						S5		S8		2	1	
$2 T \rightarrow T*F$ '(id)*id''						1	R1	R1	R1	R1	R1			
3	$3 \text{ F} \rightarrow \text{id}$					2	S 3				A			
4	F →	(T)				3		S5		S8			4	
_	•	Stack		Input	Actio	4	R2	R2	R2	R2	R2			
				*		3		S5		S8		6	1	
		0 1		* id \$	Reduc	6	S 3		S7					
					pop 1,	7	R4	R4	R4	R4	R4			
	0 2		* id \$	Shift S	8	R3	R3	R3	R3	R3				
	023			id \$	Shift S8									
		0238	8	\$	Reduce 3 F→id,									
	pop 8, ge						o [3	,F]=	-4					
							Reduce 2 T→T * F							
					pop 4 3 2, goto [0,T]=2									
						Accept								

Tracing LR: action[s, a]

- case **shift** *u*:
 - push state *u*
 - read new a
- case **reduce** *r*:
 - lookup production $r: X \rightarrow Y_1...Y_k$;
 - pop k states, find state u
 - − push **goto**[*u*, *X*]
- case accept: done
- no entry in action table: error

Configuration set

- Each set is a parser state
- Consider

$$T \rightarrow T * \bullet F$$

$$F \rightarrow \bullet (T)$$

$$F \rightarrow \bullet id$$

• Like NFA-to-DFA conversion

Closure

Closure property:

- If $T \to X_1 \dots X_i$ $X_{i+1} \dots X_n$ is in set, and X_{i+1} is a nonterminal, then $X_{i+1} \to Y_1 \dots Y_m$ is in the set as well for all productions $X_{i+1} \to Y_1 \dots Y_m$
- Compute as fixed point

Starting Configuration

- Augment Grammar with S'
- Add production $S' \rightarrow S$
- Initial configuration set is

$$closure(S' \rightarrow \bullet S)$$

Example: $closure(S' \rightarrow \bullet T)$

$$S' \rightarrow \bullet T$$
 $T \rightarrow \bullet T * F$
 $T \rightarrow \bullet F$
 $F \rightarrow \bullet id$
 $F \rightarrow \bullet (T)$

$$S' \to T$$

$$T \to F \mid T * F$$

$$F \to id \mid (T)$$

Successor(C, X)

Informally: "move by symbol X"

- 1. move dot to the right in all items where dot is before X
- 2. remove all other items (viable prefixes only!)
- 3. compute closure

Successor Example

$$C = \{S' \rightarrow \bullet T,$$

$$T \rightarrow \bullet F,$$

$$T \rightarrow \bullet T * F,$$

$$F \rightarrow \bullet id,$$

$$F \rightarrow \bullet (T) \}$$

$$S' \to T$$

$$T \to F \mid T * F$$

$$F \to id \mid (T)$$

Compute **Successor**(C, "(")

$$\{ F \rightarrow (\bullet T), T \rightarrow \bullet F, T \rightarrow \bullet T * F, F \rightarrow \bullet id, F \rightarrow \bullet (T) \}$$

Sets-of-Items Construction

```
Family of configuration sets  \begin{aligned}  & \textbf{function} \text{ items}(G') \\ & C = \{ \ closure(\{S' \rightarrow \bullet \ S\}) \ \}; \\ & \textbf{do for each} \ I \in C \ \textbf{do} \\ & \textbf{for each} \ X \in (\textbf{N} \cup \textbf{T}) \ \textbf{do} \\ & C = C \cup \{ \ \textbf{Successor}(I, X) \ \}; \\ & \textbf{while} \ C \ changes; \end{aligned}
```


LR(0) Construction

- 1. Construct $F = \{I_0, I_1, ... I_n\}$
- 2. a) if $\{A \rightarrow \alpha^{\bullet}\} \in I_i$ and A != Sthen action[i, _] := reduce $A \rightarrow \alpha$
 - b) if $\{S' \rightarrow S^{\bullet}\} \in I_i$ then action[i,\$] := accept
 - c) if $\{A \rightarrow \alpha \bullet a\beta\} \in I_i$ and $Successor(I_i,a) = I_j$ then action[i,a] := shift j
- 3. if Successor(I_i ,A) = I_j then goto[i,A] := j

LR(0) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(0) always reduces if $\{A \rightarrow \alpha^{\bullet}\} \in I_i$, no lookahead
- Shift and reduce items can't be in the same configuration set
 - Accepting state doesn't count as reduce item
- At most one reduce item per set

LR(0) conflicts:

```
S' \rightarrow F
F \rightarrow id \mid (T)
F \rightarrow id = T;
T \rightarrow T * F
T \rightarrow id
```

```
5: F → id •
F → id • = T
Shift/reduce conflict
```

```
2: F → id •

T → id •

Reduce/Reduce conflict
```

Need more lookahead: SLR(1)

SLR(1): Simple LR(1) Parsing

```
0: S' \rightarrow \bullet T
                                                           S' \rightarrow T
     T \rightarrow \bullet F
                                                          T \rightarrow F \mid T * F \mid C (T)
     T \rightarrow \bullet T * F
    T \rightarrow \bullet C(T)
                                                          F \rightarrow id \mid id ++ \mid (T)
                                          id
    F \rightarrow \bullet id
                                                          C \rightarrow id
     F \rightarrow \bullet id ++
    F \rightarrow \bullet (T)
                                       1: F \rightarrow id \bullet
                                                                           Follow(F) = \{ *, ), $ \}
     C \rightarrow \bullet id
                                            F \rightarrow id \bullet ++
                                                                           Follow(C) = \{ ( \} 
                                            C \rightarrow id \bullet
```

action[1,*]= action[1,)] = action[1,\$] = Reduce
$$F \rightarrow id$$

action[1,(] = Reduce $C \rightarrow id$
action[1,++] = Shift

SLR(1) Construction

- 1. Construct $F = \{I_0, I_1, ... I_n\}$
- 2. a) if $\{A \rightarrow \alpha^{\bullet}\} \in I_i$ and A := S'then action[i, b] := reduce $A \rightarrow \alpha$ for all $b \in Follow(A)$
 - b) if $\{S' \rightarrow S^{\bullet}\} \in I_i$ then action[i, \$] := accept
 - c) if $\{A \rightarrow \alpha \bullet a\beta\} \in I_i$ and $Successor(I_i, a) = I_j$ then action[i, a] := shift j
- 3. if Successor(I_i , A) = I_j then goto[i, A] := j

SLR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: SLR(1) only reduces
 {A → α•} if lookahead in Follow(A)
- Shift and reduce items or more than one reduce item can be in the same configuration set as long as lookaheads are disjoint

SLR(1) Conditions

- A grammar is SLR(1) if for each configuration set:
 - For any item $\{A \rightarrow \alpha \bullet x \beta : x \in T\}$ there is no $\{B \rightarrow \gamma \bullet : x \in Follow(B)\}$
 - For any two items {A → α •} and {B → β •} Follow(A) ∩ Follow(B) = Ø

LR(0) Grammars \subseteq SLR(1) Grammars

SLR limitation: lack of context

Solution: Canonical LR(1)

- Extend definition of configuration
 - Remember lookahead
- New closure method
- Extend definition of Successor

LR(1) Configurations

- [A $\rightarrow \alpha \bullet \beta$, a] for a \in T is valid for a viable prefix $\delta \alpha$ if there is a rightmost derivation $S \Rightarrow^* \delta A \eta \Rightarrow^* \delta \alpha \beta \eta$ and $(\eta = a\gamma)$ or $(\eta = \epsilon \text{ and } a = \$)$
- Notation: [A $\rightarrow \alpha \circ \beta$, a/b/c]
 - if [A → α•β, a], [A → α•β, b], [A → α•β, c] are valid configurations

LR(1) Closure

Closure property:

- If $[A \rightarrow \alpha \bullet B\beta, a]$ is in set, then $[B \rightarrow \bullet \gamma, b]$ is in set if $b \in First(\beta a)$
- Compute as fixed point
- Only include contextually valid lookaheads to guide reducing to B

Starting Configuration

- Augment Grammar with S' just like for LR(0), SLR(1)
- Initial configuration set is

 $closure([S' \rightarrow \bullet S, \$])$

Example: $closure([S' \rightarrow \bullet S, \$])$

- $[S' \rightarrow \bullet S, \$]$
- $[S \rightarrow \bullet L = R, \$]$
- $[S \rightarrow \bullet R, \$]$
- $[L \rightarrow \bullet * R, =]$
- $[L \rightarrow \bullet id, =]$
- $[R \rightarrow \bullet L, \$]$
- $[L \rightarrow *R, \$]$
- $[L \rightarrow \bullet id, \$]$

$$S' \rightarrow S$$

$$S \rightarrow L = R \mid R$$

$$L \rightarrow *R \mid id$$

$$R \rightarrow L$$

LR(1) Successor(C, X)

- Let $C = [A \rightarrow \alpha \cdot B\beta, a]$
- Successor(C, B) = closure([A $\rightarrow \alpha$ B • β , a])

LR(1) Example: id = id

LR(1) Construction

- 1. Construct $F = \{I_0, I_1, ... I_n\}$
- 2. a) if $[A \rightarrow \alpha^{\bullet}, a] \in I_i$ and A != S' then action[i, a] := reduce $A \rightarrow \alpha$
 - b) if $[S' \rightarrow S^{\bullet}, \$] \in I_i$ then action[i, \$] := accept
 - c) if $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$ and $Successor(I_i, a)=I_j$ then action[i, a] := shift j
- 3. if Successor(I_i , A) = I_j then goto[i, A] := j

LR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(1) only reduces using $A \rightarrow \alpha$ for $[A \rightarrow \alpha^{\bullet}, a]$ if a follows
- LR(1) states remember context by virtue of lookahead
- Possibly many states!
 - LALR(1) combines some states

LR(1) Conditions

- A grammar is LR(1) if for each configuration set holds:
 - For any item $[A \rightarrow \alpha \bullet x \beta, a]$ with $x \in T$ there is no $[B \rightarrow \gamma \bullet, x]$
 - For any two complete items $[A \rightarrow \gamma \bullet, a]$ and $[B \rightarrow \beta \bullet, b]$ it follows a and a != b.
- Grammars:
 - $-LR(0) \subset SLR(1) \subset LR(1) \subset LR(k)$
- Languages expressible by grammars:
 - $-LR(0) \subset SLR(1) \subset LR(1) = LR(k)$

S/R & ambiguous grammars

- Lx(k) Grammar vs. Language
 - Grammar is Lx(k) if it can be parsed by Lx(k) method –
 according to criteria that is specific to the method.
 - A Lx(k) grammar may or may not exist for a language.
- Even if a given grammar is not LR(k), shift/reduce parser can *sometimes* handle them by accounting for ambiguities
 - Example: 'dangling' else
 - Preferring shift to reduce means matching inner 'if'

Dangling 'else'

- 1. $S \rightarrow \text{if E then S}$
- 2. $S \rightarrow \text{if E then S else S}$
- Viable prefix "if E then if E then S"
 - Then read else
- Shift "else" (means go for 2)
- Reduce (reduce using production #1)
- NB: dangling else as written above is ambiguous
 - NB: Ambiguity can be resolved, but there's still no LR(k) grammar

Precedence & Associativity

Handling S/R & R/R Conflicts

- 1. Have a conflict?
 - No? Done, grammar is compliant.
- 2. Already using most powerful parser available?
 - No? Upgrade and goto 1
- 3. Can the grammar be rearranged so that the conflict disappears?
 - While preserving the language!

Conflicts revisited (cont'd)

- 3. Can the grammar be rearranged so that the conflict disappears?
 - 1. No?
 - 1. Is the conflict S/R and does shift-to-reduce preference yield desired result?
 - 1. Yes: Done. (Example: dangling else)
 - 2. Else: Bad luck
 - 2. Yes: Is it worth it?
 - 1. Yes, resolve conflict.
 - 2. No: live with default or specified conflict resolution (precedence, associativity)

Using precedence

- Precedence can be associated with tokens and productions
- If no precedence is associated:
 - Resolve S/R conflicts in favor of shift
 - Result R/R conflicts by picking productions that is listed first
- Tokens can have precedence & associativity

Using precedence (cont'd)

- Choice is between shifting token a and reducing by Rule $X \rightarrow \alpha$:
- Shift, unless:
 - Precedence (X) > Precedence(a)
 - Or Precedence(X) == Precedence(a)And Associativity(X) == left.

Canonical LR(1) Recap

- LR(1) uses left context, current handle and lookahead to decide when to reduce or shift
- Most powerful parser so far
- LALR(1) is practical simplification with fewer states

Merging States in LALR(1)

- $S' \rightarrow S$ $S \rightarrow XX$ $X \rightarrow aX$ $X \rightarrow b$
- Same CoreSet
- Different lookaheads

R/R conflicts when merging

•
$$B \rightarrow d$$

 $B \rightarrow f X g$
 $X \rightarrow ...$

• If R/R conflicts are introduced, grammar is not LALR(1)!

LALR(1)

- LALR(1) Condition:
 - Merging in this way does not introduce reduce/reduce conflicts
 - Shift/reduce can't be introduced
- Merging brute force or step-by-step
- More compact than canonical LR, like SLR(1)
- More powerful than SLR(1)
 - Not always merge to full Follow Set

GLR – Generalized LR Parsing

- Works for any CFG (just like CKY algorithm)
- Invented by Masaru Tomita [1986]
- If you have shift/reduce conflict, just clone your stack and shift in one clone, reduce in the other clone
 - proceed in lockstep
 - parser that get into error states die
 - merge parsers that lead to identical reductions (graph structured stack)

Parsing - Summary

- Parsing arbitrary CFGs: $O(n^3)$ time complexity
- Top-down vs. bottom-up
- Lookahead: FIRST and FOLLOW sets
- LL(1) Parsing: O(n) time complexity
 - recursive-descent and table-driven predictive parsing
- LR(k) Parsing : O(n) time complexity
 - -LR(0), SLR(1), LR(1), LALR(1)
- Resolving shift/reduce conflicts
 - using precedence, associativity