1	Fon	action exponentielle.	1
2	\mathbf{Log}	arithme népérien.	2
3	Puis	ssances.	4
	3.1	Fonctions $x \mapsto x^p$, où p est entier	4
	3.2	Puissances d'exposant réel.	5
	3.3	Fonctions $x \mapsto x^a$, où a est réel	7
	3.4	Croissances comparées	9
Exercices			10

1 Fonction exponentielle.

Définition 1.

La fonction **exponentielle** est l'unique fonction $\exp : \mathbb{R} \to \mathbb{R}$ dérivable sur \mathbb{R} et telle que

$$\exp(0) = 1$$
 et $\forall x \in \mathbb{R}$ $\exp'(x) = \exp(x)$.

Remarque. L'unicité de la fonction exponentielle comme solution du problème posé est un exercice de TD. Pour ce qui concerne l'existence, il faudra attendre. Le nombre $\exp(x)$ pour x réel sera défini un jour par

$$\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}.$$

Pour l'instant, cette somme infinie... c'est de la science-fiction!

Proposition 2 (Faits).

- 1. La fonction exp prend ses valeurs dans $]0, +\infty[$.
- 2. Elle est strictement croissante sur \mathbb{R} .
- 3. Le graphe de l'exponentielle a une tangente en 0 d'équation y = x + 1. De plus,

$$\forall x \in \mathbb{R} \quad \exp(x) \ge x + 1.$$

Théorème 3 (Propriété de morphisme de l'exponentielle).

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \quad \exp(x+y) = \exp(x) \exp(y),$$

Il découle de cette propriété que

- $\forall x \in \mathbb{R}$ $\exp(-x) = \frac{1}{\exp(x)}$.
- $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \exp(x y) = \frac{\exp(x)}{\exp(y)}$ $\forall x \in \mathbb{R} \ \forall p \in \mathbb{Z} \ \exp(px) = \exp(x)^p$.

2 Logarithme népérien.

La fonction exp est une bijection de \mathbb{R} dans $]0,+\infty[$. Plus précisément, tout élément $y\in\mathbb{R}_+^*$ possède un unique antécédent par exp dans \mathbb{R} , que l'on va noter $\ln(y)$.

Définition 4.

On appelle **logarithme népérien** la fonction $\ln :]0, +\infty[\to \mathbb{R},$ réciproque de l'exponentielle.

La réciprocité de ln et de exp implique notamment

$$\forall x \in \mathbb{R} \ \ln(\exp(x)) = x$$
 et $\forall y \in \mathbb{R}_+^* \ \exp(\ln(y)) = y$.

Proposition 5.

La fonction ln est dérivable sur $]0, +\infty[$ de dérivée la fonction inverse : $\forall y \in]0, +\infty[$ $\ln'(y) = \frac{1}{y}$. Le graphe de ln a une tangente en 1 d'équation y = x - 1. De plus,

$$\forall x \in]0, +\infty[\quad \ln(x) \le x - 1.$$

Proposition 6 (Propriété de morphisme du logarithme).

$$\forall x \in \mathbb{R}_+^* \ \forall y \in \mathbb{R}_+^* \quad \ln(xy) = \ln(x) + \ln(y).$$

Il découle de cette propriété que

- $\forall x \in \mathbb{R}_+^* \ln\left(\frac{1}{x}\right) = -\ln(x).$ $\forall p \in \mathbb{Z} \ \forall x \in \mathbb{R}_+^* \ \ln(x^p) = p\ln(x).$

Exemple 7.

Le logarithme de dix milliards, c'est grand comment?

Définition 8.

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. La fonction **logarithme en base** a, notée \log_a , est définie par

$$\log_a : \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & \log_a(x) := \frac{\ln(x)}{\ln(a)} \end{array} \right.$$

Proposition 9 (sa raison d'être).

$$\forall a \in \mathbb{R}_+^* \setminus \{1\} \quad \forall N \in \mathbb{N} \qquad \log_a(a^N) = N.$$

En informatique, on pourra apprécier le logarithme en base 2.

En physique et en SI, le logarithme en base 10.

3 Puissances.

3.1 Fonctions $x \mapsto x^p$, où p est entier.

• Exposants entiers positifs.

Soit n un entier naturel non nul et x un nombre réel. Le nombre x^n « x puissance n » est défini par

$$x^n := x \times x \times \ldots \times x$$
. (facteur x présent n fois).

Il vient immédiatement $\forall m, n \in \mathbb{N}^* \quad x^m \cdot x^n = x^{m+n}$

Quel sens donner alors à l'écriture x^0 ? Si on veut que la relation $x^0 \cdot x^n = x^{0+n}$ soit vraie pour tout entier naturel n, on posera

$$x^0 := 1.$$

Définition 10.

Si n est un entier naturel, la fonction $x \mapsto x^n$, est définie sur \mathbb{R} .

Définition 11.

Soit a un réel positif. L'équation $x^2=a$ possède deux solutions dans $\mathbb R$ qui sont de signes opposés. La solution positive de cette équation est appelée **racine carrée** de a et notée \sqrt{a} . Dans le cas de l'équation $x^2=0$, les deux solutions sont confondues et $\sqrt{0}=0$.

La fonction $x \mapsto \sqrt{x}$ est définie sur \mathbb{R}_+ .

On peut démontrer à partir de cette définition que si x et y sont deux réels positifs,

$$\sqrt{xy} = \sqrt{x}\sqrt{y}$$
 et $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$ $(y \neq 0)$.

Proposition 12.

$$\forall a \in \mathbb{R} \quad \sqrt{a^2} = |a|.$$

• Exposants entiers négatifs.

Soit x un nombre réel <u>non nul</u> et $n \in \mathbb{N}^*$, de sorte que $-n \in \mathbb{Z} \setminus \mathbb{N}$. Le nombre x^n , non nul, possède un inverse : on peut poser :

$$x^{-n} := \frac{1}{x^n}.$$

On peut alors prouver (laissé au lecteur) que $\forall p, q \in \mathbb{Z}$ $x^p \cdot x^q = x^{p+q}$.

Définition 13.

Si p est un entier strictement négatif $(p \in \mathbb{Z} \setminus \mathbb{N})$, la fonction $x \mapsto x^p$, est définie sur \mathbb{R}^* .

3.2 Puissances d'exposant réel.

On souhaite maintenant donner un sens à l'écriture x^a , avec a un réel quelconque, non forcément entier. Pour cela, remarquons que si p est un entier relatif, et si $x \in \mathbb{R}_+^*$, en utilisant la propriété de morphisme,

$$x^p = (\exp(\ln(x)))^p = \exp(p \ln(x)).$$

Définition 14.

Pour x > 0 et $a \in \mathbb{R}$, on définit le réel x^a (« x puissance a ») par

$$x^a = \exp(a\ln(x)).$$

Exemple. L'écriture π^3 a toujours eu un sens pour nous : $\pi \times \pi \times \pi$. En revanche, l'écriture 3^{π} n'en avait pas. Désormais si! il s'agit de $\exp(\pi \ln(3))$. **Remarque.** Si $p \in \mathbb{Z}$ et $x \in \mathbb{R}_+^*$, (*) montre que la "nouvelle" définition de x^p est cohérente avec l'ancienne. On peut donc dire que l'on a *étendu* la définition de x^a des puissances au cas d'un exposant a réel (au prix d'une contrainte de stricte positivité pour x).

Proposition 15 (Notation puissance pour exp).

Notons e le nombre $\exp(1)$. Ce nombre vaut environ 2,71 et il est tel que $\ln(e) = 1$. On a

$$\forall x \in \mathbb{R} \quad \exp(x) = e^x.$$

La propriété de morphisme se récrit

$$\forall (x,y) \in \mathbb{R}^2 \quad e^{x+y} = e^x e^y.$$

De plus,

$$\forall a \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad \forall y \in \mathbb{R}_+^* \qquad (e^x)^a = e^{ax} \quad \text{et} \quad \ln(y^a) = a \ln(y).$$

Proposition 16.

Pour $a, b \in \mathbb{R}$ et $x, y \in \mathbb{R}_+^*$,

$$x^{a+b} = x^a x^b$$
 $x^{-a} = \frac{1}{x^a}$ $(xy)^a = x^a y^a$.
$$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$$
 $(x^a)^b = x^{ab}$.

Corollaire 17.

$$\forall x \in \mathbb{R}_+^*$$
 $\sqrt{x} = x^{1/2}$ et $\frac{1}{\sqrt{x}} = x^{-1/2}$.

Proposition 18 (Comparer deux puissances).

Soient a, b deux réels. On a

$$\forall x \in]0,1[\qquad a \le b \iff x^a \ge x^b$$

$$\forall x \in]1, +\infty[\qquad a \leq b \iff x^a \leq x^b$$

Remarque. Par exemple, l'inégalité $x^2 \le x^3$ est fausse lorsque 0 < x < 1!

On l'écrit en remarque car cette erreur grossière demeure assez fréquente. Voir le graphe de comparaison dans la proposition 24

Exemple 19.

Domaine de définition et simplification de $x\mapsto x^{\frac{\ln(\ln(x))}{\ln(x)}}$.

3.3 Fonctions $x \mapsto x^a$, où a est réel.

Définition 20.

Pour un réel a quelconque, la fonction $x \mapsto x^a$ est définie sur \mathbb{R}_+^* .

Comme on va le voir ci-dessous, lorsque $\underline{a>0}$, cette fonction peut être prolongée en 0 en une fonction continue, en posant $0^a:=0$.

Soit $a \in \mathbb{R}$. Dans la suite, on notera f_a la fonction $f_a : \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & x^a \end{array} \right.$

Proposition 21.

La fonction f_a est dérivable sur \mathbb{R}_+^* et $\forall x \in \mathbb{R}_+^*$ $f_a'(x) = ax^{a-1}$.

Proposition 22 (cas a > 0).

Soit a > 0. Alors f_a est strictement croissante sur \mathbb{R}_+^* et

$$\lim_{x \to 0} x^a = 0 \qquad \lim_{x \to +\infty} x^a = +\infty$$

Proposition 23 (cas a < 0).

Soit a < 0. Alors f_a est strictement décroissante sur \mathbb{R}_+^* et

$$\lim_{x \to 0} x^a = +\infty \qquad \lim_{x \to +\infty} x^a = 0$$

Proposition 24 (comparaison).

Si a < b, alors

$$\forall x \in]0,1] \quad : \quad x^b \le x^a$$
$$\forall x \in [1,+\infty[\quad : \quad x^a \le x^b.$$

Proposition 25.

Soit a un réel non nul. Pour tout réel strictement positif y, le nombre $y^{\frac{1}{a}}$ est l'unique solution sur \mathbb{R}_+^* de l'équation $x^a = y$.

La fonction $f_a: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R}_+^* \\ x & \mapsto & x^a \end{array} \right.$ est donc <u>bijective</u>, et sa réciproque est la fonction $x \mapsto x^{1/a}$.

Notation.

Mentionnons que la puissance d'exposant 1/n, peut être notée avec un symbole radical :

$$\forall x \in \mathbb{R}_+^* \quad \sqrt[n]{x} := x^{1/n}.$$

Fonctions puissances d'exposant positif.

3.4 Croissances comparées.

On compare les fonctions puissances avec les fonctions exponentielle et logarithme, et ce du point de vue asymptotique (celui des limites).

Lemme 26.

Soit $a \in \mathbb{R}_+^*$. Il existe une constante $C_a \in \mathbb{R}_+$ telle que $\forall x \in \mathbb{R}_+^*$ $\frac{x^a}{e^x} \leq C_a x^{-a}$.

Théorème 27 (Croissances comparées).

Soit $a \in \mathbb{R}_+^*$. On a les limites suivantes.

$$\lim_{x\to +\infty}\frac{x^a}{e^x}=0;\quad \lim_{x\to -\infty}|x|^ae^x=0;\quad \lim_{x\to +\infty}\frac{\ln(x)}{x^a}=0;\quad \lim_{x\to 0_+}x^a\ln(x)=0.$$

Exemple 28.

Donner les limites suivantes (en précisant lorsque vous utilisez les croissances comparées)

$$\lim_{x \to +\infty} x e^{-x}, \qquad \lim_{x \to -\infty} x e^{-x}, \qquad \lim_{x \to +\infty} \frac{\ln(x)}{\sqrt{x}}, \qquad \lim_{x \to 0_+} \frac{\ln(x)}{\sqrt{x}}.$$

Pour se ramener à une limite connue, il faut parfois **factoriser par le terme prépondérant** dans une somme, comme dans l'exemple suivant.

Exemple 29.

Calculer

$$\lim_{x \to +\infty} \frac{x + \ln(x^2)}{\sqrt{x^2 + 1}} \quad \text{et} \quad \lim_{x \to -\infty} \frac{x + \ln(x^2)}{\sqrt{x^2 + 1}}$$

Exercices

- **3.1** $[\phi \diamondsuit \diamondsuit]$ Résoudre $2 \ln \left(\frac{x+3}{2}\right) = \ln(x) + \ln(3)$, sur \mathbb{R}_+^* .
- **3.2** $[\phi \diamondsuit \diamondsuit]$ Résoudre sur \mathbb{R}_+^* l'équation $x^{\sqrt{x}} = \sqrt{x}^x$.
- $\boxed{\mathbf{3.4}} \ \boxed{\blacklozenge \diamondsuit \diamondsuit} \ \text{Donner le tableau de variations complet de}$

$$f: x \mapsto x^{\frac{1}{x}}.$$

Nécessite de se souvenir comment on dérive une composée.

 $\boxed{\mathbf{3.5}} \ \boxed{\blacklozenge \diamondsuit}$ Donner le tableau de variations complet de

$$f: x \mapsto x^{x \ln(x)}$$
.

Nécessite de se souvenir comment on dérive une composée.

[**3.7** [**♦♦♦**]

- 1. Étudier les variations de $f: x \mapsto \sqrt[3]{x} \sqrt[3]{x+1}$.
- 2. Des deux nombres $\sqrt[3]{2} + \sqrt[3]{4}$ et $\sqrt[3]{24}$, lequel est le plus grand?

3.8 [♦♦♦]

- 1. Soit α un réel et x > -1. Comparer $(1+x)^{\alpha}$ et $1+\alpha x$ (on discutera selon les valeurs de α).
- 2. Soit $\alpha \in [0,1]$ et $n \in \mathbb{N}^*$. Montrer que

$$\prod_{k=1}^{n} \left(1 + \frac{\alpha}{k} \right) \ge (n+1)^{\alpha}.$$

[3.9] [♦♦♦] [Unicité de la fonction exponentielle comme solution d'un problème de Cauchy]

On dit qu'une fonction $y:\mathbb{R}\to\mathbb{R}$ satisfait le problème (*) si

$$y$$
 est dérivable sur \mathbb{R} , $y(0) = 1$, $\forall x \in \mathbb{R}$ $y'(x) = y(x)$.

- 1. Soit f une fonction satisfaisant le problème (*) et $u: x \mapsto f(x)f(-x)$. Démontrer que u est constante sur \mathbb{R} . En déduire que f ne s'annule pas sur \mathbb{R} .
- 2. Soient f et g deux fonctions satisfaisant le problème (*). En considérant le quotient des deux fonctions, démontrer que f = g.