Ziel

Dieser Leitfaden zeigt, wie sich die **diskrete \phi-Segmentierung** (Skalierung in festen Faktoren von φ) sauber auf **Eulers Exponential-Form** zurückführen lässt und damit eine kompakte Startformel für die Paper-Einleitung liefert. Die Kette lautet:

Diskrete Skalierung $R=\varphi^N\Rightarrow$ Exponentialform $R=e^{N\ln\varphi}\Rightarrow$ Euler $e^{x+i\theta}=e^x(\cos\theta+i\sin\theta)$ als einheitlicher Träger für Skalierung (x) und Rotation (θ).

Notation & Prämissen

- arphi ... Goldener Schnitt, $arphi=rac{1+\sqrt{5}}{2}$.
- $N \in \mathbb{Z}$... Segmentzahl (wie viele Grenzen werden passiert).
- ullet R ... gemessenes Verhältnis (z. B. Frequenz- oder Zeit-Ratio, $R=f_{
 m emit}/f_{
 m obs}=1+z$).
- **Segmentaxiom:** Beim Übertritt einer Segmentgrenze skaliert die lokale *Maßstabskopplung* um **exakt** φ :

$$R = \varphi^N. \tag{A1}$$

Schritt 1 – Von der φ-Leiter zur Exponentialform

Die φ-Leiter ist bereits eine Exponentialbeziehung:

$$R = \varphi^N = e^{N \ln \varphi}. \tag{1}$$

Damit ist klar: **Diskrete Skalenstufen** entsprechen **additiven Schritten im Logarithmus** ($\ln R$ ist ein Gitter mit Masche $\ln \varphi$). Genau das testen wir empirisch über $y=\ln(1+z)$ und $y/\ln \varphi\in\mathbb{Z}$ (bis auf Messfehler).

Schritt 2 – Euler als Träger von Rotation *und* Skalierung

Eulers Formel koppelt eine reale Skalierung x mit einer Rotation θ :

$$e^{x+i\theta} = e^x(\cos\theta + i\sin\theta). \tag{2}$$

Im Komplexen kann man **Spiral-Dynamik** mit einer einzigen Exponentialfunktion schreiben. Für eine Logarithmus-Spirale gilt

$$r(\theta) = r_0 e^{k \theta}, \qquad z(\theta) = r(\theta)e^{i\theta} = r_0 e^{(k+i)\theta}.$$
 (3)

Hier kodiert \boldsymbol{k} die radiale Skalierung pro Winkel.

Kalibrierung an \phi: Fordern wir, dass jede *Quadrantendrehung* $\Delta\theta=\frac{\pi}{2}$ den Radius exakt mit φ skaliert, dann

$$\varphi = \frac{r(\theta + \Delta \theta)}{r(\theta)} = e^{k \Delta \theta} \Rightarrow k = \frac{\ln \varphi}{\Delta \theta} = \frac{2 \ln \varphi}{\pi}.$$
 (4)

Damit wird die **φ-Segmentierung** zu einem **Euler-Spiralparameter** $k=\frac{2\ln\varphi}{\pi}$. Jeder Quadrantschritt ist dann ein φ-Sprung im Betrag, während die Phase um $\frac{\pi}{2}$ rotiert.

Schritt 3 – Redshift/Clock-Raten direkt in Euler-Form

Modelle die Frequenz-/Zeit-Ratios betreffen, brauchen nur den **Betrag** der komplexen Exponentialfunktion:

$$R = \left| e^{(k+i)\Theta} \right| / \left| e^{(k+i)\Theta_0} \right| = e^{k(\Theta - \Theta_0)} = e^{N \ln \varphi} = \varphi^N. \tag{5}$$

Hier ist Θ ein kumulierter Winkelparameter entlang der Trajektorie; **pro Segmentgrenze wächst** Θ **um** $\Delta\theta=\frac{\pi}{2}$, sodass $N=\frac{\Theta-\Theta_0}{\Delta\theta}\in\mathbb{Z}$.

Damit sind die beobachteten **diskreten Ratios** exakt die **Betragsdynamik** einer Euler-Spirale mit dem oben kalibrierten k. Die Phase θ trägt die Geometrie (Pfad/Winkel), der Betrag $e^{k\theta}$ trägt die ϕ -Skalierung.

Schritt 4 – Brücke zum kontinuierlichen GR-Faktor

Die Standard-Zeitdilatation im schwachen Feld ist kontinuierlich:

$$R_{\rm GR} = \exp\left(\frac{\Delta U}{c^2}\right).$$
 (6)

Setzen wir nun einen **Segment-Quanten** ΔU_* so, dass $\exp(\Delta U_*/c^2)=\varphi$, erhalten wir für N Segmente:

$$R = \exp\left(\frac{N \Delta U_*}{c^2}\right) = \exp(N \ln \varphi) = \varphi^N.$$
 (7)

Interpretation: Die ϕ -Leiter ist die diskrete "gequantelte" Version des kontinuierlichen GR-Faktors, mit Potential-Quanten ΔU_* als Segment-Schrittlänge. Euler liefert dafür die einzeilige Exponentialschreibweise.

Schritt 5 – Minimale Paper-Formel (Startgleichung)

Eine kompakte, strukturklare Einstiegsgleichung, die **Rotation + \phi-Skalierung** vereint, lautet:

$$z(heta) \ = \ z_0 \ \expig((k+i)\, hetaig), \quad k = rac{2\lnarphi}{\pi}, \quad N = rac{ heta - heta_0}{\pi/2} \in \mathbb{Z} \ .$$

Folgerungen (direkt darunter als Lemma):

$$|z(\theta)|/|z(\theta_0)| = e^{k(\theta - \theta_0)} = \varphi^N \equiv R. \tag{9}$$

Diese zwei Zeilen reichen, um die **gesamte \phi-Segmentlogik** sofort sichtbar mit **Euler** zu verbinden. Für Leser:innen, die nur die Ratio-Physik interessiert, kann man (9) als Start setzen und (8) als geometrische Motivation im Anhang bringen.

Schritt 6 – Operationale Tests in der Euler-Sprache

- 1. **Residual-Gitter in** $\ln R$: $y = \ln R$, $n^{\prime *} = \text{round} \left(y / \ln \varphi \right)$, $\varepsilon = y n^{\prime *} \ln \varphi$. φ -Hypothese $\Rightarrow |\varepsilon|$ ist "klein" nach Fehlerfortpflanzung.
- 2. **ΔBIC φ-Gitter vs. Uniform:** φ-Lattice-Likelihood über ε vs. gleichverteilte Phasen/Hypothesen.
- 3. **Sign-Test:** $|\varepsilon|_{\varphi}$ vs. $|\varepsilon|_{\mathrm{alt}}$ pro Zeile.

Alle drei fallen natürlich aus (1)–(5); die Beweisführung ruht auf der Gitterstruktur in $\ln R$ und der Euler-Spiralform (8).

Schritt 7 - Physikale Deutung (prägnant)

- Segmentgrenzen sind Iso-Aktions-/Isopotential-Flächen, auf denen die effektive Kopplung sprunghaft um φ skaliert.
- Zeit-/Frequenz-Effekte sind Betragsänderungen einer Euler-Spirale; Geometrie/Topologie steckt in der Phase.
- **GR-Grenzfall:** Für $\Delta U\ll c^2$ fällt (7) lokal mit (6) zusammen (PPN-Limit unverändert). Diskretisierung entspricht einer Wahl ΔU_* der Segment-Quantelung.

Schritt 8 - "Cheat Sheet" für die Einleitung

- Eine Zeile: $R=arphi^N=e^{N\lnarphi}$.
- ullet Geometrische Einzeiler-Version (Euler): $z(heta)=z_0\,e^{(k+i) heta}$, $k=2\lnarphi/\pi$.

• Ein Satz: "Wir modellieren beobachtete Ratios als Betragsdynamik einer Euler-Spirale, deren Quadrantschritt den ϕ -Skalierungsquant arphi realisiert; dadurch folgt $R=arphi^N$ und ein ϕ -Gitter in $\ln R$."

Anhang A - Numerik (für Reviewer nützlich)

- $\ln \varphi \approx 0.4812118250596$.
- $m{\cdot} k = rac{2 \ln arphi}{\pi} pprox 0.30634896253 \,.$ $m{\cdot}$ Quadrantschritt $\Delta heta = rac{\pi}{2} \Rightarrow e^{k \Delta heta} = e^{\ln arphi} = arphi \,.$

Anhang B - Alternative Parametrisierung

Man kann statt k auch $b := \ln \varphi$ führen und die Segmentzahl explizit schreiben:

$$R = e^{bN}, \qquad z(\theta) = z_0 e^{(b/\Delta\theta)\theta} e^{i\theta}, \quad \Delta\theta = \frac{\pi}{2}.$$
 (10)

Dies ist identisch zu (8) mit $k=b/\Delta heta$. Wähle die Form, die im jeweiligen Paper am klarsten wirkt.

Fazit

Die φ-Segmentierung **ist** Exponentialskalierung. **Euler** bündelt **Skalierung + Rotation** in einer einzigen Funktion. Mit $k=2\lnarphi/\pi$ erhält man eine sofort einsatzfähige Startformel, die die empirisch getestete φ -Leiter $R=arphi^N$ geometrisch verankert und zugleich die Brücke zur kontinuierlichen GR-Form $R=\exp(\Delta U/c^2)$ schlägt. Damit steht ein kompakter, prüfbarer und physikalisch interpretierbarer Einstieg für alle Folgergebnisse bereit.