# **Data Management**

## Table of contents

| 0.1 | Introd  | $\operatorname{uction}$                                                   |  |  |  |  |  |  |  |
|-----|---------|---------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 0.2 | Filter  | ing Data                                                                  |  |  |  |  |  |  |  |
|     | 0.2.1   | Check data prior to filtering                                             |  |  |  |  |  |  |  |
|     | 0.2.2   | Filtering the data                                                        |  |  |  |  |  |  |  |
|     | 0.2.3   | Check data after filtering                                                |  |  |  |  |  |  |  |
|     | 0.2.4   | Drop variables                                                            |  |  |  |  |  |  |  |
| 0.3 | Addres  | ssing Missing Values                                                      |  |  |  |  |  |  |  |
| 0.4 | Creati  | ng Total Score for Measurements                                           |  |  |  |  |  |  |  |
|     | 0.4.1   | Statistics Anxiety, STARS                                                 |  |  |  |  |  |  |  |
|     | 0.4.2   | Mathematics Anxiety, R-MARS                                               |  |  |  |  |  |  |  |
|     | 0.4.3   | Trait Anxiety, STICSA                                                     |  |  |  |  |  |  |  |
|     | 0.4.4   | Test Anxiety, Revised Test Anxiety Scale (R TAS)                          |  |  |  |  |  |  |  |
|     | 0.4.5   | .5 Fear of Negative Evaluation, Brief Fear of Negative Evaluation Scale - |  |  |  |  |  |  |  |
|     |         | Straightforward (BNFE-S)                                                  |  |  |  |  |  |  |  |
|     | 0.4.6   | Social Interaction Anxiety and Performance Anxiety, Liebowitz Social      |  |  |  |  |  |  |  |
|     |         | Anxiety Scale - Self Report (LSAS-SR)                                     |  |  |  |  |  |  |  |
|     | 0.4.7   | Intolerance of Uncertainty Scale - Short Form (IUS-SF)                    |  |  |  |  |  |  |  |
|     | 0.4.8   | Creativity Anxiety Scale (CAS)                                            |  |  |  |  |  |  |  |
|     | 0.4.9   | Analytic Thinking, Cognitive Reflection Task (CRT)                        |  |  |  |  |  |  |  |
|     | 0.4.10  | Self efficacy, New General Self Efficacy Scale (NGSE)                     |  |  |  |  |  |  |  |
|     | 0.4.11  | Persistence, Attitude Towards Mathematics Survey (ATMS) 18                |  |  |  |  |  |  |  |
| 0.5 | Split I | Split Data                                                                |  |  |  |  |  |  |  |

## 0.1 Introduction

#### Goal:

• Create an organized dataset that focuses on my variables of interests.

• Create additional variables that I will need to analyze.

**Dataset:** International Multi-Centre Study of Statistics and Mathematics Anxieties and Related Variables in University Students (the SMARVUS Dataset)

Source: "This large, international dataset contains survey responses from N=12,570 students from 100 universities in 35 countries, collected in 21 languages. We measured anxieties (statistics, mathematics, test, trait, social interaction, performance, creativity, intolerance of uncertainty, and fear of negative evaluation), self-efficacy, persistence, and the cognitive reflection test, and collected demographics, previous mathematics grades, self-reported and official statistics grades, and statistics module details. Data reuse potential is broad, including testing links between anxieties and statistics/mathematics education factors, and examining instruments' psychometric properties across different languages and contexts." (https://osf.io/mhg94/)

#### Variables of Interest:

- 'Var1': [Variable description]
- 'Var2': [Variable description]

#### Goals:

- Filter dataset to English speakers (my language) and Psychology Majors (majority of participants).
- Create total scores for measures.
- Create a new file with my filtered data.

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr
           1.1.4
                                  2.1.5
                     v readr
v forcats
           1.0.0
                      v stringr
                                  1.5.1
v ggplot2
           3.5.1
                                 3.2.1
                      v tibble
v lubridate 1.9.4
                      v tidyr
                                  1.3.1
v purrr
            1.0.4
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                 masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

```
[1] "Data successfully loaded."
```

source("loadData.R")

#### head(df)

```
# A tibble: 6 x 788
 unique id survey id country language incentive participation context progress
            <chr>
                      <chr>
                               <chr>
                                                  <chr>
 <chr>>
                                        <chr>
                                                                           <dbl>
1 01057178 airlangga Indones~ Bahasa ~ Prize Dr~ Remotely, in own time
                                                                             100
2 0300b5f2 airlangga Indones~ Bahasa ~ Prize Dr~ Remotely, in own time
                                                                             100
3 03f6503b airlangga Indones~ Bahasa ~ Prize Dr~ Remotely, in own time
                                                                             100
4 0601d699 airlangga Indones~ Bahasa ~ Prize Dr~ Remotely, in own time
                                                                              78
5 08b6cb02 airlangga Indones~ Bahasa ~ Prize Dr~ Remotely, in own time
                                                                             100
6 0903d70d airlangga Indones~ Bahasa ~ Prize Dr~ Remotely, in own time
                                                                             100
# i 781 more variables: duration <dbl>, start_date <chr>, end_date <chr>,
   university <chr>, eligibility_ug <chr>, eligibility_stats <chr>,
   degree_major <chr>, degree_minor <chr>, degree_level_maths <chr>,
   degree_level_maths_specify <chr>, degree_year <chr>, age <chr>,
   gender <chr>, spld <chr>, attention_amnesty <chr>, Q7.1_1 <dbl>,
   Q7.1_2 <dbl>, Q7.1_3 <dbl>, Q7.1_4 <dbl>, Q7.1_5 <dbl>, Q7.1_6 <dbl>,
   Q7.1_7 <dbl>, Q7.1_8 <dbl>, Q7.1_9 <dbl>, Q7.1_10 <dbl>, Q7.1_11 <dbl>, ...
# Alternative example
# Define the file path
# Load the CSV file
#df <- file.path("..", "data", "data.csv") %>%
# read csv()
# View the first few rows
#head(df)
```

#### 0.2 Filtering Data

#### 0.2.1 Check data prior to filtering

Review the majors and minors of participants. I will use this information to be aware of the levels of the variable when filtering.

```
freq(as.ordered(df$degree_major), plot = FALSE)
```

```
as.ordered(df$degree_major)

Frequency Percent Valid Percent Cum Percent
```

| Arts & Humanities  | 232   | 1.8457   | 2.1007   | 2.101   |
|--------------------|-------|----------|----------|---------|
| Business & Finance | 768   | 6.1098   | 6.9540   | 9.055   |
| Education          | 397   | 3.1583   | 3.5947   | 12.649  |
| Maths              | 153   | 1.2172   | 1.3854   | 14.035  |
| Psychology         | 8759  | 69.6818  | 79.3100  | 93.345  |
| Sciences           | 456   | 3.6277   | 4.1289   | 97.474  |
| Social Sciences    | 247   | 1.9650   | 2.2365   | 99.710  |
| Uncategorised      | 32    | 0.2546   | 0.2898   | 100.000 |
| NA's               | 1526  | 12.1400  |          |         |
| Total              | 12570 | 100.0000 | 100.0000 |         |

## freq(as.ordered(df\$degree\_minor), plot = FALSE)

## as.ordered(df\$degree\_minor)

|                    | Frequency | Percent   | Valid Percent | Cum Percent |
|--------------------|-----------|-----------|---------------|-------------|
| Arts & Humanities  | 15        | 0.11933   | 6.4935        | 6.494       |
| Business & Finance | 30        | 0.23866   | 12.9870       | 19.481      |
| Education          | 61        | 0.48528   | 26.4069       | 45.887      |
| Maths              | 4         | 0.03182   | 1.7316        | 47.619      |
| Psychology         | 107       | 0.85123   | 46.3203       | 93.939      |
| Sciences           | 2         | 0.01591   | 0.8658        | 94.805      |
| Social Sciences    | 12        | 0.09547   | 5.1948        | 100.000     |
| NA's               | 12339     | 98.16229  |               |             |
| Total              | 12570     | 100.00000 | 100.0000      |             |

## freq(as.ordered(df\$language), plot = 0)

## as.ordered(df\$language)

|                  | Frequency | Percent | Cum | Percent |
|------------------|-----------|---------|-----|---------|
| Arabic           | 1490      | 11.8536 |     | 11.85   |
| Bahasa Indonesia | 697       | 5.5449  |     | 17.40   |
| Chinese          | 323       | 2.5696  |     | 19.97   |
| Dutch            | 394       | 3.1344  |     | 23.10   |
| English          | 5427      | 43.1742 |     | 66.28   |
| Estonian         | 98        | 0.7796  |     | 67.06   |
| French           | 432       | 3.4368  |     | 70.49   |
| German           | 736       | 5.8552  |     | 76.35   |
| Greek            | 99        | 0.7876  |     | 77.14   |
| Hebrew           | 285       | 2.2673  |     | 79.40   |
| Hungarian        | 206       | 1.6388  |     | 81.04   |
| Italian          | 248       | 1.9730  |     | 83.02   |

```
Polish
                         69
                              0.5489
                                            83.56
                              0.5410
                                            84.11
Portuguese
                         68
Romanian
                        317
                              2.5219
                                            86.63
Serbian
                        117
                              0.9308
                                            87.56
Slovakian
                         88
                              0.7001
                                            88.26
Slovenian
                         94
                              0.7478
                                            89.01
Spanish
                        523
                              4.1607
                                            93.17
Turkish
                        834
                              6.6348
                                            99.80
Ukrainian
                         25
                              0.1989
                                          100.00
Total
                      12570 100.0000
```

```
freq(as.ordered(df$attention_amnesty), plot = 0)
```

#### as.ordered(df\$attention\_amnesty)

|       | Frequency | ${\tt Percent}$ | Valid | ${\tt Percent}$ | Cum | ${\tt Percent}$ |
|-------|-----------|-----------------|-------|-----------------|-----|-----------------|
| No    | 172       | 1.368           |       | 1.645           |     | 1.645           |
| Yes   | 10281     | 81.790          |       | 98.355          |     | 100.000         |
| NA's  | 2117      | 16.842          |       |                 |     |                 |
| Total | 12570     | 100.000         |       | 100.000         |     |                 |

#### 0.2.2 Filtering the data

Eliminate any participants that did not pass the attention check items. Participants were directed to provide a particular response to each of the attention check items.

```
filtered_df <- df %>%
  filter(
    attention_amnesty == "Yes") %>%
  filter(
    Q7.1_24 == 1,
    Q8.1_21 == 5,
    Q9.1_22 == 1,
    Q11.1_9 == 3,
    Q13.1_17 == 2,
    Q15.1_9 == 4) \%>\%
  filter(
    degree_major == "Psychology" |
    degree_minor == "Psychology") %>%
  filter(
    progress == 100) %>%
  filter(
    language == "English")
```

```
#View(filtered_df)
```

#### 0.2.3 Check data after filtering

Use frequency tables to check filtered data.

```
attention_check_items <- c(
   "Q7.1_24",
   "Q8.1_21",
   "Q9.1_22",
   "Q11.1_9",
   "Q15.1_9"
)

# Generate frequency tables for each variable
invisible(lapply(attention_check_items, function(var) {
   cat("\n----\n")
   cat("Frequency Table for", var, "\n")
   print(table(filtered_df[[var]]))
}))</pre>
```

```
Frequency Table for Q7.1_24

1
3077

Frequency Table for Q8.1_21

5
3077

Frequency Table for Q9.1_22

1
```

```
3077
Frequency Table for Q11.1_9
   3
3077
Frequency Table for Q13.1_17
   2
3077
Frequency Table for Q15.1_9
   4
3077
freq(as.ordered(filtered_df$attention_amnesty), plot = 0)
as.ordered(filtered_df$attention_amnesty)
      Frequency Percent Cum Percent
Yes
           3077
                    100
                                100
Total
           3077
                    100
freq(as.ordered(filtered_df$degree_major), plot = 0)
as.ordered(filtered_df$degree_major)
           Frequency Percent Cum Percent
Psychology
                3077
                         100
                                     100
Total
                3077
                         100
freq(as.ordered(filtered_df$degree_minor), plot = 0)
as.ordered(filtered_df$degree_minor)
      Frequency Percent Valid Percent Cum Percent
NA's
           3077
                    100
```

0

Total

3077

100

```
freq(as.ordered(filtered_df$progress), plot = 0)
as.ordered(filtered_df$progress)
      Frequency Percent Cum Percent
100
           3077
                    100
                                 100
           3077
                    100
Total
freq(as.ordered(filtered_df$language), plot = 0)
as.ordered(filtered_df$language)
        Frequency Percent Cum Percent
English
             3077
                       100
                                   100
Total
             3077
                       100
```

#### 0.2.4 Drop variables

Remove variables that have be used in the filter and are no longer meaningful to include.

```
filtered_df <- filtered_df %>%
    select(
        -Q7.1_24,
        -Q8.1_21,
        -Q9.1_22,
        -Q11.1_9,
        -Q13.1_17,
        -Q15.1_9,
        -attention_amnesty,
        -degree_major,
        -degree_minor,
        -language,
        -progress)
```

```
#View(filtered_df)
```

#### 0.3 Addressing Missing Values

Missing values do not appear to be an issue for the scale variables.

Some students provided a zero for their grade but some students were using zero to represent in NA. Due to this discrepancy, grades of zero will be coded as in NA.

```
#How many students listed 0 as their grade? Math grade and Stats grade.
#freq(as.order(filtered_df$))
```

#### 0.4 Creating Total Score for Measurements

My dataset contains the individual items on several measures. I will need to create a total score for total scores and sub-scales. Variables appear to be doubles, which will work for creating the total scores and subscales. Output will be hidden below to save space.

```
#Check that new reverse coded columns exist
print(colnames(filtered_df)[endsWith(colnames(filtered_df), "_rev")])
```

```
[1] "Q16.1_2_rev" "Q16.1_3_rev" "Q16.1_4_rev" "Q16.1_5_rev" "Q16.1_7_rev"
```

#### 0.4.1 Statistics Anxiety, STARS

(Cruise et al., 1985; Hanna et al., 2008; Papousek et al., 2012)

Scale consists of 23 items: tests and class anxiety (8 items), interpretation anxiety (11 items), and fear of asking for help (4 items).

Uses Likert scale ranging from 1 = "no anxiety" to 5 = "a great deal of anxiety."

#### 0.4.1.1 STARS modified for math

#### 0.4.2 Mathematics Anxiety, R-MARS

```
(Baloğlu & Zelhart, 2007)
```

Subscales: Mathematics test anxiety (15 items), numerical task anxiety (5 original plus 4 modified items), and mathematics course anxiety (5 items).

Uses Likert-type scale ranging from 1 = "no anxiety" to 5 = "a great deal of anxiety".

#### 0.4.2.1 R-MARS modified for stats

#### 0.4.3 Trait Anxiety, STICSA

(Ree et al., 2008)

Subscales: cognitive (10 items) and somatic symptoms (11 items).

Uses Likert scale ranging from 1 = "not at all" to 4 = "very much so".

#### 0.4.4 Test Anxiety, Revised Test Anxiety Scale (R TAS)

(Benson & El-Zahhar, 1994)

Subscales: worry (7 items), tension (6 items), test-irrelevant thinking (5 items), bodily symptoms (7 items). Secondary items may be removed. See citation above.

Uses Likert scale ranging from 1 = "almost never" to 4 = "almost always".

# 0.4.5 Fear of Negative Evaluation, Brief Fear of Negative Evaluation Scale - Straightforward (BNFE-S)

(Leary, 1983; Rodebaugh et al., 2004)

8 items.

Uses Likert scale ranging from 1 = "not at all characteristic of me" to 5 = "extremely characteristic of me".

# 0.4.6 Social Interaction Anxiety and Performance Anxiety, Liebowitz Social Anxiety Scale - Self Report (LSAS-SR)

(Baker et al., 2002; Liebowitz, 1987)

Subscales: interaction anxiety (fear/anxiety in social interactions, such as conversations or meeting new people; 12 items) and performance anxiety (fear/anxiety in performance-based situations, such as speaking in public; 12 items).

Uses Likert scale ranging from 0 = "not at all" to 3 = "very much so".

#### 0.4.7 Intolerance of Uncertainty Scale - Short Form (IUS-SF)

(Carleton et al. 2007)

Subscales: prospective anxiety (fear of the future and uncertainty-related anticipation; 6 items) and inhibitory anxiety (avoidance behavior due to uncertainty; 6 items).

Uses Likert scale ranging from 1 = "not at all characteristic of me" to 5 = "entirely characteristic of me".

```
IUS_prospective_items <- c(</pre>
  "Q14.1_1",
  "Q14.1_2",
  "Q14.1_4",
  "Q14.1_5",
  "Q14.1_8",
  "Q14.1_9"
IUS_inhibitory_items <- c(</pre>
  "Q14.1_3",
  "Q14.1_6",
  "Q14.1_7",
  "Q14.1 10",
  "Q14.1_11",
  "Q14.1 12"
  )
filtered_df <- filtered_df %>%
  mutate(
    IUS_Prospective = rowSums(select(., all_of(IUS_prospective_items)), na.rm = TRUE),
    IUS_Inhibitory = rowSums(select(., all_of(IUS_inhibitory_items)), na.rm = TRUE)
```

```
filtered_df <- filtered_df %>%
  mutate(IUS_Total = IUS_Prospective + IUS_Inhibitory)
print("IUS Prospective Anxiety")
[1] "IUS Prospective Anxiety"
summary(filtered_df$IUS_Prospective)
                         Mean 3rd Qu.
   Min. 1st Qu. Median
                                          Max.
   0.00
         13.00
                18.00 17.73
                                 22.00
                                         30.00
print("IUS Inhibitory Anxiety")
[1] "IUS Inhibitory Anxiety"
summary(filtered_df$IUS_Inhibitory)
   Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
    0.0
          12.0
                17.0
                          16.7 21.0
                                          30.0
print("Total IUS-SF Score")
[1] "Total IUS-SF Score"
summary(filtered_df$IUS_Total)
   Min. 1st Qu. Median Mean 3rd Qu.
                                          Max.
   0.00
         26.00 34.00 34.43 42.00
                                         60.00
hist(filtered_df$IUS_Prospective,
     main="IUS Prospective Anxiety",
     xlab="Score",
     col="lightblue"
```

## **IUS Prospective Anxiety**



```
hist(filtered_df$IUS_Inhibitory,
    main="IUS Inhibitory Anxiety",
    xlab="Score",
    col="lightgreen"
)
```

## **IUS Inhibitory Anxiety**



```
hist(filtered_df$IUS_Total,
    main="Total IUS-SF Score",
    xlab="Score",
    col="lightgray"
)
```

## **Total IUS-SF Score**



#### 0.4.8 Creativity Anxiety Scale (CAS)

(Daker et al., 2020)

Subscales: creativity (8 items) and non-creativity (8 items).

Uses Likert scale ranging from 0 = "not at all" to 4 = "very much".

Sum.

```
#Create list of items for each subscale

CAS_creativity_items <- c(
    "Q13.1_1",
    "Q13.1_2",
    "Q13.1_3",
    "Q13.1_5",
    "Q13.1_6",
    "Q13.1_7",
    "Q13.1_8"
    )

CAS_non_creativity_items <- c(
```

```
"Q13.1_9",
"Q13.1_10",
"Q13.1_11",
"Q13.1_12",
"Q13.1_13",
"Q13.1_14",
"Q13.1_15",
"Q13.1_16"
)

#Generate subscale scores
filtered_df <- filtered_df %>%
mutate(
    CAS_creativity = rowSums(select(., all_of(CAS_creativity_items)), na.rm = TRUE),
    CAS_noncreativity = rowSums(select(., all_of(CAS_non_creativity_items))), na.rm = TRUE)
)
```

#### freq(as.ordered(filtered\_df\$CAS\_creativity), plot = 0)

#### as.ordered(filtered\_df\$CAS\_creativity)

|    | Frequency | Percent | Cum Percent |
|----|-----------|---------|-------------|
| 8  | 61        | 1.9825  |             |
| 9  | 81        | 2.6324  | 4.615       |
| 10 | 72        | 2.3399  | 6.955       |
| 11 | 67        | 2.1774  | 9.132       |
| 12 | 68        | 2.2099  | 11.342      |
| 13 | 100       | 3.2499  | 14.592      |
| 14 | 98        | 3.1849  | 17.777      |
| 15 | 108       | 3.5099  | 21.287      |
| 16 | 134       | 4.3549  | 25.642      |
| 17 | 130       | 4.2249  | 29.867      |
| 18 | 146       | 4.7449  | 34.612      |
| 19 | 148       | 4.8099  | 39.422      |
| 20 | 125       | 4.0624  | 43.484      |
| 21 | 137       | 4.4524  | 47.936      |
| 22 | 142       | 4.6149  | 52.551      |
| 23 | 157       | 5.1024  | 57.654      |
| 24 | 158       | 5.1349  | 62.788      |
| 25 | 162       | 5.2649  | 68.053      |
| 26 | 125       | 4.0624  | 72.116      |
| 27 | 116       | 3.7699  | 75.886      |
| 28 | 124       | 4.0299  | 79.916      |
|    |           |         |             |

| 29    | 99   | 3.2174   | 83.133  |
|-------|------|----------|---------|
| 30    | 107  | 3.4774   | 86.610  |
| 31    | 74   | 2.4049   | 89.015  |
| 32    | 92   | 2.9899   | 92.005  |
| 33    | 54   | 1.7550   | 93.760  |
| 34    | 43   | 1.3975   | 95.158  |
| 35    | 41   | 1.3325   | 96.490  |
| 36    | 29   | 0.9425   | 97.433  |
| 37    | 21   | 0.6825   | 98.115  |
| 38    | 26   | 0.8450   | 98.960  |
| 39    | 24   | 0.7800   | 99.740  |
| 40    | 8    | 0.2600   | 100.000 |
| Total | 3077 | 100.0000 |         |

## freq(as.ordered(filtered\_df\$CAS\_noncreativity), plot = 0)

### as.ordered(filtered\_df\$CAS\_noncreativity)

| as.01 | dered (TII be | sied_diwor | rp_noncreativi |
|-------|---------------|------------|----------------|
|       | Frequency     | Percent    | Cum Percent    |
| 8     | 176           | 5.7199     | 5.72           |
| 9     | 146           | 4.7449     | 10.46          |
| 10    | 139           | 4.5174     | 14.98          |
| 11    | 127           | 4.1274     | 19.11          |
| 12    | 134           | 4.3549     | 23.46          |
| 13    | 120           | 3.8999     | 27.36          |
| 14    | 166           | 5.3949     | 32.76          |
| 15    | 166           | 5.3949     | 38.15          |
| 16    | 205           | 6.6623     | 44.82          |
| 17    | 169           | 5.4924     | 50.31          |
| 18    | 163           | 5.2974     | 55.61          |
| 19    | 149           | 4.8424     | 60.45          |
| 20    | 160           | 5.1999     | 65.65          |
| 21    | 120           | 3.8999     | 69.55          |
| 22    | 113           | 3.6724     | 73.22          |
| 23    | 103           | 3.3474     | 76.57          |
| 24    | 107           | 3.4774     | 80.05          |
| 25    | 87            | 2.8274     | 82.87          |
| 26    | 73            | 2.3724     | 85.25          |
| 27    | 78            | 2.5349     | 87.78          |
| 28    | 63            | 2.0474     | 89.83          |
| 29    | 59            | 1.9175     | 91.75          |
| 30    | 40            | 1.3000     | 93.05          |
| 31    | 50            | 1.6250     | 94.67          |
|       |               |            |                |

| 32    | 37   | 1.2025   | 95.87  |
|-------|------|----------|--------|
| 33    | 34   | 1.1050   | 96.98  |
| 34    | 19   | 0.6175   | 97.60  |
| 35    | 22   | 0.7150   | 98.31  |
| 36    | 13   | 0.4225   | 98.73  |
| 37    | 9    | 0.2925   | 99.03  |
| 38    | 13   | 0.4225   | 99.45  |
| 39    | 8    | 0.2600   | 99.71  |
| 40    | 9    | 0.2925   | 100.00 |
| Total | 3077 | 100.0000 |        |

### 0.4.9 Analytic Thinking, Cognitive Reflection Task (CRT)

(Frederick, 2005; Shenhav et al. 2012)

Responses must be coded. Skipped.

#### 0.4.10 Self efficacy, New General Self Efficacy Scale (NGSE)

(Chen et al., 2001)

8 items.

Uses Likert scale of 1 = "strongly disagree" to 5 = "strongly agree".

#### 0.4.11 Persistence, Attitude Towards Mathematics Survey (ATMS)

(Miller et al., 1996)

8 items.

Uses Likert scale of 1 = "strongly disagree" to 5 = "strongly agree".

### 0.5 Split Data