Dummit & Foote Ch. 1.6: Homomorphisms and Isomorphisms

Scott Donaldson

Mar. 2023

1. (3/25/23)

Let $\varphi:G\to H$ be a homomorphism.

(a) Prove that $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}^+$.

Proof. By induction. When $n = 1, \varphi(x^1) = \varphi(x) = \varphi(x)^1$.

Suppose for some n, $\varphi(x^n)=\varphi(x)^n$. Then $\varphi(x^{n+1})=\varphi(x^nx)$. By definition, because φ is a homomorphism from G to H, $\varphi(ab)=\varphi(a)\varphi(b)$ for all $a,b\in G$. So $\varphi(x^nx)=\varphi(x^n)\varphi(x)$. By the induction hypothesis, $\varphi(x^n)=\varphi(x)^n$, so this equals $\varphi(x)^{n+1}$.

Therefore $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}^+$.

(b) Do part (a) for n = -1 and deduce that $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}$. This proof diverges slightly from the directions but arrives at the same result.

Note that, for all $x \in G$, $\varphi(x) = \varphi(1 \cdot x) = \varphi(1)\varphi(x)$. Therefore $\varphi(1) = 1$ (in H). Now $1 = \varphi(1) = \varphi(x^n \cdot x^{-n}) = \varphi(x^n)\varphi(x^{-n})$. From part a), this equals $\varphi(x)^n \varphi(x^{-n})$. Left-multiplying both sides by $\varphi(x)^{-n}$, we obtain $\varphi(x^{-n}) = \varphi(x)^{-n}$, as desired.

2. (3/26/23)

If $\varphi: G \to H$ is an isomorphism, prove that $|\varphi(x)| = |x|$ for all $x \in G$. Deduce that any two isomorphic groups have the same number of elements of order n for each $n \in \mathbb{Z}^+$.

Proof. Let $\varphi: G \to H$ be an isomorphism and let $x \in G$. If |x| is finite, then (from 1.a) $\varphi(x^n) = \varphi(x)^n$ and (from 1.b) $\varphi(1) = \varphi(x^n) = \varphi(x)^n = 1 \in H$. The order of the element $\varphi(x)^n \in H$ is therefore at most n. Because φ is an

isomorphism, there is only one element whose image is 1, and that is $\varphi(1) = 1$. Therefore for no m < n do we have $\varphi(x)^m = 1$, and so the $|\varphi(x)| = n$.

Next, suppose that x has infinite order in G. Then $x^n \neq 1$ for all n > 0. Because φ is an isomorphism, we know that only $\varphi(1) = 1 \in H$. Therefore $\varphi(x^n) = \varphi(x)^n \neq 1$ for all n > 0. Therefore $|\varphi(x)| = \infty$.

This result is not necessarily true if φ is a homomorphism. For example, φ could send every element of G to the identity in H. (This is a homomorphism: $\varphi(x)\varphi(y)=1\cdot 1=1$ and $\varphi(x)\varphi(y)=\varphi(xy)=1$.) Then for all $x\in G$, $|\varphi(x)|=1$, regardless of the order of x.

3. (3/27/23)

If $\varphi: G \to H$ is an isomorphism, prove that G is abelian if and only if H is abelian. If φ is a homomorphism, what additional conditions on φ (if any) are sufficient to ensure that if G is abelian, then so is H?

Proof. First, let G be an abelian group and $\varphi: G \to H$ be an isomorphism. Given arbitrary distinct elements of H, because φ is surjective, there are two distinct elements in G whose images are these elements in H. Let $\varphi(x), \varphi(y) \in H$ be distinct elements and $x, y \in G$. Then $\varphi(xy) = \varphi(x)\varphi(y)$. Also, because x and y commute, $\varphi(xy) = \varphi(yx) = \varphi(y)\varphi(x)$. Therefore $\varphi(x)\varphi(y) = \varphi(y)\varphi(x)$, so H is an abelian group.

Next, let H be an abelian group. Again let $\varphi(x), \varphi(y) \in H$ and $x, y \in G$. Then $\varphi(x)\varphi(y) = \varphi(xy)$. Also, $\varphi(x)\varphi(y) = \varphi(y)\varphi(x) = \varphi(yx)$. So $\varphi(xy) = \varphi(yx)$. Because φ is one-to-one, this implies that xy = yx, and so G is an abelian group.

If φ is a homomorphism, then G being an abelian group does not imply that H is abelian. For example, H could be a non-abelian group and φ could send every element of G to the identity in H.

A sufficient condition for a homomorphism $\varphi: G \to H$ to ensure that if G is abelian, then so is H, is that φ is surjective. Then for all $h \in H$, $h = \varphi(x)$ for some $x \in G$ (possibly more than one x). Let $h_1, h_2 \in H$ with $h_1 = \varphi(x_1) = \varphi(x_2) = \dots$ and $h_2 = \varphi(y_1) = \varphi(y_2) = \dots$ and with $x_i, y_j \in G$. φ is a homomorphism, so for any $i, j, \varphi(x_iy_j) = \varphi(x_i)\varphi(y_j) = h_1h_2$. Also, because G is abelian, $\varphi(x_iy_j) = \varphi(y_jx_i) = \varphi(y_j)\varphi(x_i) = h_2h_1$. Therefore $h_1h_2 = h_2h_1$, so H is abelian.

4. (3/27/23)

Prove that the multiplicative groups $\mathbb{R} - \{0\}$ and $\mathbb{C} - \{0\}$ are not isomorphic.

Proof. For any $x \in \mathbb{R} - \{0\}$, $x \neq \pm 1$, x has infinite order. The proof of this is as follows: Let $x \in \mathbb{R} - \{0, \pm 1\}$. If the absolute value of x is greater than 1, then the absolute value of x^n is greater than 1 for all n, and by induction x has infinite order. If the absolute value of x is less than 1, then the absolute value

of x^n is less than 1 for all n, and by induction x has infinite order. So 1 and -1 are the only elements of $\mathbb{R} - \{0\}$ with finite order.

In $\mathbb{C} - \{0\}$, i and -i have order 4. From 2., isomorphic groups have the same number of elements of order n for each $n \in \mathbb{Z}^+$. However, $\mathbb{R} - \{0\}$ has no elements of order 4, and $\mathbb{C} - \{0\}$ has at least 2. Therefore they are not isomorphic.