Tarea #3

(Entrega 31 de agosto de 2017)

Construcción de una biblioteca de componentes para la descripción estructural

OJO Al igual que en la **Tarea #1** tome el tiempo que demora en hacer cada una de las cosas solicitadas: búsqueda de información, diseño, elaboración de las pruebas, ejecución de las simulaciones, etc.

Trabajo a realizar sobre el dispositivo a diseñar

Para esta tarea se deben completar los siguientes puntos:

- 1. Desarrollar una biblioteca de dispositivos lógicos basada en componentes electrónicos disponibles en el mercado. El propósito final de esta biblioteca es poder construir una descripción estructural del registro desplazable que simule el diseño lo más apegado a la realidad posible. El objetivo de esta tarea es elaborar la biblioteca de componentes. La elaboración del registro desplazable estructural queda para la tarea #4. La biblioteca consistirá de cinco componentes: flip-flop, compuerta NAND de dos entradas, compuerta NOR de dos entradas, inversor y multiplexor de 2:1. En detalle, se requiere realizar las siguientes tareas:
 - a) Busque en internet (<u>www.ti.com</u> es un excelente sitio para comenzar) y seleccione los componentes que se tendrán en la biblioteca.
 - b) Para cada componente seleccionado, recoja la siguiente información:
 - Costo por componente, ya sea precio unitario o precio por lote de unidades.
 - Baje la hoja de datos del fabricante para obtener las características de temporización del componente y el consumo de potencia.
 - c) Escriba una descripción en Verilog para cada uno de los componentes seleccionados que incluya los detalles de temporización como tiempos de propagación (t_{pdh} y t_{pdl}) entre las distintas entradas y las salidas, tiempos de contaminación, que son los mínimos de t_{pdh} y t_{pdl}, y para el caso de componentes de almacenamiento como latches y flip flops, el tiempo de preparación o "setup" (t_{su}) y el tiempo de sostenimiento o "hold" (t_{hold}). Esto posiblemente requiera de programación adicional conocida como código de instrumentación.
 - d) A las descripciones en Verilog de los componentes, agregue código de instrumentación para poder contabilizar la actividad de las salidas y poder así estimar el consumo de potencia de cada componente utilizado en el diseño.
 - e) Defina un plan de pruebas para cada componente de la biblioteca para validar tanto su comportamiento funcional lógico como su comportamiento temporal. Observe que en el caso de los tiempos t_{su} y t_{hold}, el modelo debe de ser capaz de reportar cuándo se comete una violación a estos parámetros y proceder con la simulación de manera de excepción.

Rúbrica de Calificación

Tarea #3 Construcción de una biblioteca de componentes para la				
descripción estructural	Plin	Categoria	Pcat	Ptot
Existe una descripción conductual en Verilog del diseño solicitado.	1 1111	Categoria	Teat	1 101
Esta descripción al menos tiene un módulo de banco de pruebas,				
un módulo probador y un módulo que contiene al dispositivo bajo				
prueba (DUT).	8%	Simulacion	30%	2,40%
Existe una descripción en Verilog de una biblioteca elaborada	070	Simulation	3070	2,1070
manualmente de componentes electrónicos con parámetros de				
temporización y código de instrumentación para verificar				
restricciones de temporización y estimar la potencia consumida.	8%	Simulacion	30%	2,40%
Las dscripciones en Verilog se entregan en archivos distintos al	0,1	<u> </u>	3075	2,1070
reporte, listos para poder ser simulados.	5%	Simulacion	30%	1,50%
Las descripciones en Verilog estan comentadas adecuadamente	0,1		3075	1,0070
para que otras personas entiendan la lógica de la descripción.	4%	Simulacion	30%	1,20%
Las descripciones en Verilog compilan sin producir errores.	50%	Simulacion	30%	15,00%
Las descripciones en Verilog ejecutan correctamente. Es decir,				- ,
corren, entregan algunos resultados y finalizan.	25%	Simulacion	30%	7,50%
, 5 5				,
El reporte contiene las siguientes secciones: (i) Resumen, (ii)				
Descripción Arquitectónica, (iii) Plan de pruebas, (iv) Instrucciones				
de utilización de la simulación, (v) Ejemplos de los resultados, y				
(vi) Conclusiones y recomendaciones. Una explicación de este				
contenido se adjunta al final del enunciado de la Tarea #2.	40%	Reporte	15%	6,00%
Longitud del reporte no excede a 10 paginas.	10%	Reporte	15%	1,50%
		-		
El reporte explica con claridad los detalles relevantes del diseño				
particular que se hizo, las partes del diseño que dieron más trabajo				
para completar y porqué fue asi, y una explicación de los				
problemas que se presentaron y cómo éstos fueron solucionados.	50%	Reporte	15%	7,50%
Se ha construido manualmente una biblioteca de componentes por				
ejemplo: latch, NAND, MUX, etc y se ha probado				
satisfactoriamente para verificar que cumple con los requisitos de				
temporización (tiempos de propagación, contaminación, setup y				
hold) y es capaz de contabilizar el nivel de actividad de las salidas				
durante simulación para estimar el consumo de potencia.	100%	Pruebas	30%	30,00%
Se incluyen las hojas de datos de los dispositivos usados en el		Elementos		
diseño y una referencia de precio de venta de los mismos.	33%	varios	25%	8,25%
Se incluye una tabla donde se contabiliza el número de horas				
dedicadas a las distintas actividades que se realizaron para		Elementos		
completar la tarea.	67%	varios	25%	16,75%
	Nota Proyecto			100,00