Exhibit 17

Kimberly Kaal, Environmental Manager, Shell Chemical Appalachia LLC, to Mark Gorog P.E., Regional Manager, Air Quality Program, DEP Southwest Regional Office, April 2023 Monthly Submittal of Information Requested from Shell Chemical Appalachia LLC (Apr. 21, 2023).

Shell Chemical Appalachia LLC 300 Frankfort Rd Monaca, PA 15061

April 21, 2023

BY ELECTRONIC MAIL

Mark Gorog P.E., Regional Manager Air Quality Program Pennsylvania Department of Environmental Protection Southwest Regional Office 400 Waterfront Drive Pittsburgh, PA 15222

RE: April 2023 Monthly Submittal of Information Requested from Shell Chemical Appalachia LLC

Dear Mark:

Shell Chemical Appalachia LLC (Shell), located in Beaver County, Pennsylvania is submitting this monthly information request per the Pennsylvania Department of Environmental Protection's (PADEP) request.

As requested, the data associated with this submittal include:

- Current 12-month emission data for each source and permitted pollutant per Plan Approval PA-04-00740C for the period through end of March 31, 2023.
- Updated emissions calculations protocol.
- List of Malfunction Reports submitted to the Department for 2022 and March 2023.
- Fence line monitoring data for March, 2023.

If you have any questions or comments concerning the information included in this letter or the attached documentation, please feel free to contact me at kimberly.kaal@shell.com, or (724) 709-2467.

Sincerely,

Kimberly J. Kaal

Kimberly Kaal Environmental Manager, Attorney in Fact

CC: Jim Miller, Regional Director

Elizabeth Speicher, Environmental Group Manager Scott Beaudway, Air Quality Specialist

SHELL POLYMERS MONACA AIR EMISSIONS PROTOCOL for PADEP's INVENTORY PROGRAM Date: as of April 14, 2023

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
031: Ethane Cracking Furnace #1	1. NOx, CO	<u>PI Inputs</u>
032: Ethane Cracking Furnace #2	 Temporary analyzer data used for Furnaces 2, 3, 5, 6, 7 during refractory dry-out (April through June 11, 	1. Fuel Gas Mass Combusted Burners A-D (kg/hr)
033: Ethane Cracking Furnace #3	2022)	2. Fuel Gas Mass Combusted Burners E-H (kg/hr)
034: Ethane Cracking Furnace #4	 Raw permanent analyzer data, where available used for all furnaces starting on June 24, 2022 (first valid PI 	3. Fuel Gas Composition (% mol)
035: Ethane Cracking Furnace #5	data at furnaces) through November 11, 2022, where available. When analyzer data was not available,	4. NG Sulfur (S) Content (ppmv), converted to wt % by assuming 16.92 ppmv per 1 grain/100 scf
036: Ethane Cracking Furnace #6	used emission factors from vendor data as contained in Feb. 2020 Update Plan Approval Application:	gas at 60F and 14.73 psia
037: Ethane Cracking Furnace #7	o Normal Mode: CO − 0.035 lb/MMBtu; NOx − 0.015 lb/MMBtu	https://www.interline.nl/media/1000030/handbooksulfurmeasurements_002.pdf
	o Decoke Mode: CO − 0.290 lb/MMBtu; NOx − 0.015 lb/MMBtu	5. NOx, CO Raw permanent hourly data (ppmvd – minute)
Main Burners Fuel Gas (Tail Gas, Natural Gas	o Feed In/Out Mode: CO − 0.035 lb/MMBtu; NOx − 0.015 lb/MMBtu	6. NOx, CO Analyzer Data (Block Average) (lbs/hr)
or Mixture of Tail gas and Natural Gas)	○ Hot Steam Stand-by Mode: CO – 0.035 lb/MMBtu; NOx – 0.025 lb/MMBtu	7. NH3 Analyzer Data (ppmvd)
,	o Startup/Shutdown Mode: CO − 0.290 lb/MMBtu; NOx − 0.180 lb/MMBtu	8. Feed Rate Ethane (tonne/hr)
Rated Capacity: 620 MMBtu/hr, each	 CEMS analyzer hourly-block average output used starting November 12, 2022. 	9. Feed Rate Ethane (tonne/hr)
	2. PM-filt [all operating modes except decoke]: AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998. Site-	10. Furnace feed (tonne/hr)
	specific emission factors to be developed after stack testing.	11. Decoke Status (Open/Closed)
	3. PM10, PM 2.5 [all operating modes except decoke]: Vendor Data at 0.005 lb/MMBtu [Feb. 2020 Update Plan	12. Coil temperature (C)
	Approval Application]. Site-specific emission factors to be developed after stack testing.	
	4. PM-filt, PM10, PM2.5 [de-coking]: 1.86 lbs/hr / 180 MMBtu/hr = 0.0103 lb/MMBtu (preliminary vendor data at	Calculated/Miscellaneous Inputs
	1.86 lbs/hr and estimated heat input during decoking). [Feb. 2020 Update Plan Approval Application]. Site-	Fuel Gas Molecular Weight: Fuel Gas Composition and Standard Molecular Weight of
	specific emission factors to be developed after stack testing.	Constituents
	5. PM-cond [all operating modes but decoke]: PM – PM filt. PM-cond emissions are negligible.	2. HHV of Fuel Gas: Fuel Gas Composition and Standard Heat of Combustion for Constituents
	6. VOC: LAER emission factor at 0.0019 lb/MMBtu. [Feb. 2020 Update Plan Approval Application]. Site-specific	3. % Carbon by weight and % H2 by weight: Fuel Gas Composition
	emission factors to be developed after stack testing.	4. Heat Rate of Fuel Gas: Fuel Gas Mass and HHV of Fuel Gas
	7. SO2: material balance based on mass of fuel gas combusted, taking out the H2 portion of the mass and using	5. H2 HHV Heat Release in Fuel Gas: H2 Composition (%mol), H2 Molecular Weight, Fuel Gas
	the sulfur content in natural gas. Equation: FUEL GAS MASS - H2 (WT%) /100] * S CONTENT (WT%) / 100 * MW	Molecular Weight, Fuel Gas HHV, H2 Heat of Combustion
	SO2 / MW S.	6. Furnace Operating Mode
	8. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission	a. Normal Mode: Feed Rate Ethane > 43 tonne/hr
	factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010.	b. Feed IN/Out Mode: Feed Rate Ethane < 43 tonne/hr
	9. Total HAPs (minus lead and E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998. Site-	c. Hot Steam Standby Mode: Furnace feed <0.1 tonne/hr
	specific emission factors to be developed after stack testing.	d. Decoke Mode: Open/Closed
	10. Lead: AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998, but only considering the natural gas portion by	e. SU/SD Mode: Coil temperature <750
	removing the H2 content in the HHV of the fuel gas, consistent with the Feb. 2020 Plan Approval Application.	
	11. n-Hexane: 0.0063 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	
	Factors, May 17, 2001, <10 MMBtu/hr (highest of external combustion factor). VCAPCD AB2588	
	combem[2].pdf	
	12. NH3 (ammonia slip): In-stack analyzer data.	
	13. CO2: Material balance based on mass of fuel gas combusted and carbon content in fuel. Equation: FUEL GAS	
	MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C.	
	14. CH4: 40 CFR Part 98 Subpart C Table C-2 emission factor for natural gas, but only considering the natural gas	
	portion by removing the H2 content in the HHV of the fuel gas, consistent with the Feb. 2020 Plan Approval	
	Application. 15. N2O: 40 CER Part 08 Subpart C Table C 2 emission factor for natural gas	
	15. N2O: 40 CFR Part 98 Subpart C Table C-2 emission factor for natural gas.	

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
031: Ethane Cracking Furnace #1	1. NOx, CO: AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998 until CEMS is online and verified.	PI Inputs
032: Ethane Cracking Furnace #2	2. PM-filt, PM-cond, PM10, PM2.5, VOC, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas	1. Pilot Natural Gas Mass Combusted (kg/hr)
033: Ethane Cracking Furnace #3	Combustion", 7/1998.	2. Natural Gas HHV (Btu/scf), converted to Btu/lb using Natural Gas Density
034: Ethane Cracking Furnace #4	3. n-Hexane: 0.0063 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	3. Natural Gas Specific Gravity, density calculated assuming density of air at 1.2041 kg/Nm3 at
035: Ethane Cracking Furnace #5	Factors, May 17, 2001, <10 MMBtu/hr. VCAPCD AB2588 combem[2].pdf	20 C and 1 atm (Normal)
036: Ethane Cracking Furnace #6	4. SO2: Material balance based on mass of natural gas combusted and sulfur content in natural gas. Equation: NG	4. Natural Gas Composition C1 – C6+ (%mol)
037: Ethane Cracking Furnace #7	FUEL MASS * S CONTENT NG (WT%) / 100 * MW SO2 / MW S.	5. Natural Gas Sulfur (S) Content (ppmv) converted to wt % by assuming 16.92 ppmv per 1
557. Ethane cracking ramace ii/	5. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission	grain/100 scf gas at 60F and 14.73 psia
Pilots (Natural Gas)	factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010.	https://www.interline.nl/media/1000030/handbooksulfurmeasurements_002.pdf
Thous (Natural Gas)	6. CO2: Material balance based on mass of natural gas combusted and carbon content in fuel. Equation: NG FUEL	
	MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C.	<u>Calculated/Miscellaneous Inputs</u>
	7. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	1. Heat Rate (MMBtu/hr)of Pilot: Pilot Natural Gas Mass and Natural Gas HHV
	8. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	2. Natural Gas Carbon (C) Content (wt%): Calculated based on Natural Gas Composition
• 101: Combustion Turbine/Duct Burner	1. NOx, CO: Certified CEMS using analyzer data and 40 CFR Part 75 Appendix D and F equations.	PI Inputs
Unit #1	2. NH3 (ammonia slip): In-stack analyzer data when feasible.	Fuel Gas Mass Combusted Combustion Turbine (kg/hr)
• 102: Combustion Turbine/Duct Burner	3. PM-filt, PM-cond, PM10, PM2.5: Stack test factors (most recent).	2. Fuel Gas Mass Combusted Duct Burners (kg/hr)
Unit #2	4. VOC: Stack test factors (most recent).	3. Natural Gas Gross Calorific Value (kJ/kg)
• 103: Combustion Turbine/Duct Burner	5. HCHO (formaldehyde), benzene, toluene: Stack test factors developed from retest Nov/Dec 2022 using	4. Natural Gas Composition C1 – C6+ (%mol)
Unit #3	approved alternative test methods with lower detection limits.	5. Natural Gas Sulfur (S) Content (ppmv) converted to wt % by assuming 16.92 ppmv per 1
	6. Total HAPs (minus formaldehyde, benzene, toluene): AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998.	grain/100 scf gas at 60F and 14.73 psia
	7. SO2: Material balance based on mass of natural gas combusted and sulfur content in natural gas. Equation: NG	https://www.interline.nl/media/1000030/handbooksulfurmeasurements_002.pdf
	FUEL MASS * S CONTENT NG (WT%) / 100 * MW SO2 / MW S.	
	8. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission	
	factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010.	<u>Calculated/Miscellaneous Inputs</u>
	9. CO2: Material balance based on mass of natural gas combusted and carbon content in fuel. Equation: NG FUEL	1. Natural Gas Gross Calorific Value (kJ/kg)
	MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C.	2. Total Heat Input: Natural Gas Rate and Gross Calorific Value
	10. CH4, N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	3. Fuel Gas Molecular Weight: Fuel Gas Composition and Standard Molecular Weight of
		Constituents
		4. Natural Gas Carbon (C) Content (wt%): Calculated based on Natural Gas Composition
105: Diesel-Fired Emergency Generator	1. NOx, CO, HC (VOC), PM-filt: Manufacturer Data Sheet (g/bhp).	<u>Data Inputs</u>
Engines (2 unit)	2. PM10, PM2.5: AP-42, Appendix B.2, "Generalized Particle Size Distribution", 9/90, PM10 = 0.96*PM and PM2.5	1. Operating Hours – collected internally on monthly basis
	= 0.90*PM.	2. Brake Specific Fuel Consumption: 7,000 Btu/hp-hr (AP-42 Chapter 3.3)
 Parking Garage Diesel Generator, 103 	3. PM-cond: AP-42, Chapter 3.4, "Large Stationary Diesel and All Stationary Dual-Fuel Engines, 10/96.	3. Diesel HHV: 139,600 Btu/gal
bhp, Cummins QSB5-G3	4. SO2: Material balance based on estimated diesel mass and fuel sulfur content of diesel. Equation: DIESEL	4. Diesel Density: 7.674 lb/gal
 Communications Tower Diesel 	MASS * S CONTENT DIESEL (ppmw) / 10000 ppmw / 100 * MW SO2 / MW S.	5. Sulfur Content of Diesel: 15 ppmw
Generator, 67 bhp, Kohler KDI 3404 TM	5. HAP: AP-42, Chapter 3.3, "Gasoline and Diesel Industrial Engines", 10/96.	
	6. CO2: 40 CFR Part 98 Subpart C, Table C-1 emission factor for Distillate Fuel Oil No. 2.	Calculated/Miscellaneous Inputs
	7. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for Distillate Fuel Oil No. 2.	1. Heat Input (MMBtu/hr): Engine capacity and BSFC
	8. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for Distillate Fuel Oil No. 2.	2. Hourly Fuel Consumption: Heat Input and Diesel Density
106: Fire Pump Engines (2 units)	1. NOx, CO, NMNH (VOC), PM-filt: Manufacturer Data Sheet (g/bhp).	<u>Data Inputs</u>
	2. PM10, PM2.5: AP-42, Appendix B.2, "Generalized Particle Size Distribution", 9/90, PM10 = 0.96*PM and PM2.5	1. Operating Hours – collected internally on monthly basis
• Fire Pump A (Diesel), 488 hp, Cummins	= 0.90*PM.	2. Brake Specific Fuel Consumption: 7,000 Btu/hp-hr (AP-42 Chapter 3.3)
CFP15E-F10	3. PM-cond: AP-42, Chapter 3.4, "Large Stationary Diesel and All Stationary Dual-Fuel Engines, 10/96.	3. Diesel HHV: 139,600 Btu/gal
• Fire Pump B (Diesel), 488 hp, Cummins	4. SO2: Material balance based on estimated diesel mass and fuel sulfur content of diesel. Equation: DIESEL	4. Diesel Density: 7.674 lb/gal
CFP15E-F10	MASS * S CONTENT DIESEL (ppmw) / 10000 ppmw / 100 * MW SO2 / MW S.	5. Sulfur Content of Diesel: 15 ppmw
	5. HAP: AP-42, Chapter 3.3, "Gasoline and Diesel Industrial Engines", 10/96.	
	6. CO2: 40 CFR Part 98 Subpart C, Table C-1 emission factor for Distillate Fuel Oil No. 2.	Calculated/Miscellaneous Inputs
	7. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for Distillate Fuel Oil No. 2.	1. Heat Input (MMBtu/hr): Engine capacity and BSFC
	8. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for Distillate Fuel Oil No. 2.	2. Hourly Fuel Consumption: Heat Input and Diesel Density

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
107: Natural Gas Fired Emergency Generator	1. NOx + THC (assumed NOx), CO, CO2: Manufacturer Data Sheet (g/bhp).	Data Inputs
Engines (3)	2. VOC, SO2, PM-filt, PM-cond, PM10, PM2.5, HAP, CH4, CO2 (Intermediate Lift Station Only for CO2): AP-42,	1. Operating Hours – collected internally on monthly basis
	Chapter 3.2, "Natural Gas-Fired Reciprocating Engines", 7/2000.	2. Maximum fuel consumption: provided on Manufacturer Data Sheets (scf/hr)
Backup Generator Lift Station A, 50 bhp,	3. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	3. Natural Gas HHV: 1000 Btu/scf
GM Vortec 3.0L I-4 (4SLB)		· ·
Backup Generator Intermediate Lift		Calculated/Miscellaneous Inputs
Station, 158 bhp, GM Vortec 5.7L V-8		1. Heat Input (MMBtu/hr): Maximum fuel consumption and Natural Gas HHV
(4SRB)		
PGT Building (Shell Visitor Center Backup)		
Generator), 113 bhp, GM 5.7L V-8 (4SLB)		
204: Low Pressure (LP) Header System	1. NOx: 0.068 lb/MMBtu, John Zink Design Specification, 1/4/2018. Site-specific emission factors to be developed	PI Inputs
Continuous Vent Thermal Oxidizer (CVTO)	after stack testing.	1. CVTO/MPGF Header 3 Vent Gas Mass (kg/hr)
	2. CO: 0.0824 lb/MMBtu, John Zink Design Specification, 1/4/2018. Site-specific emission factors to be developed	· ·
Process Vents	after stack testing.	3. CVTO/MPGF Header 3 Vent Gas Composition (% mol)
	3. PM10 and PM2.5: 0.0075 lb/MMBtu, John Zink Design Specification, 1/4/2018. Site-specific emission factors to	, · · · · · ·
	be developed after stack testing.	2, 2 2 2 2 2 2
	4. VOC: Material balance based on quantity of vent gas flared, VOC content of the vent gas and VOC destruction	Calculated/Miscellaneous Inputs
	efficiency. Equation: VENT GAS MASS TO FLARE * VOC CONTENT (WT%) / 100 * (1-DRE).	1. CVTO Vent Gas Mass: CVTO/MPGF Header 3 Vent Gas Mass – MPGF Header 3 Vent Gas Mass
	5. SO2: Material balance based on mass of vent gas flared and sulfur content in vent gas to flare. Equation: VENT	2. Molecular Weight of CVTO/MPGF Header 3 Vent Gas: CVTO/MPGF Header 3 Vent Gas
	GAS MASS TO FLARE * S CONTENT (WT%) / 100 * MW SO2 / MW S.	Composition and Standard Molecular Weight of Constituents.
	6. PM-filt, PM-cond, Total HAPs (except e-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion",	3. HHV of CVTO/MPGF Header 3 Vent Gas: CVTO/MPGF Header 3 Vent Gas Composition and
	7/1998. Site-specific emission factors for HAPs to be developed after stack testing.	Standard Heat of Combustion for Constituents.
	7. n-Hexane: 0.029 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	4. % Carbon by weight: CVTO/MPGF Header 3 Vent Gas Composition
	Factors, May 17, 2001, Flares. VCAPCD AB2588 combem[2].pdf	5. Heat Input of CVTO Vent Gas: CVTO Vent Gas Mass and HHV of CVTO/MPGF Header 3
	8. CO2: Material balance based on mass of vent gas to flare, carbon content in vent gas to flare, and destruction	
	efficiency. Equation: VENT GAS MASS TO FLARE * C CONTENT (WT%) / 100 * MW CO2 / MW C * DRE.	
	9. CH4: Material balance based on quantity of vent gas to flare, CH4 content of the vent gas to flare and CH4	
	destruction efficiency. Equation: VENT GAS MASS TO FLARE * CH4 CONTENT (WT%) / 100 * (1-DRE).	
	10. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for fuel gas.	
	11. Thermal Oxidizer DRE: 99.9% John Zink Design Specification, 1/4/2018.	
204: Low Pressure (LP) Header System	1. NOx, 0.068 lb/MMBtu, John Zink Design Specification, 1/4/2018. Site-specific emission factors to be developed	PI Inputs
Continuous Vent Thermal Oxidizer (CVTO)	after stack testing.	1. Natural Gas Flow Rate (Nm3/hr)
,	2. CO: 0.0824 lb/MMBtu, John Zink Design Specification, 1/4/2018. Site-specific emission factors to be developed	, ,
Primary Firing Fuel (Natural Gas)	after stack testing.	3. Natural Gas Specific Gravity, density calculated assuming density of air at 1.2041 kg/Nm3 at
	3. PM10 and PM2.5: 0.0075 lb/MMBtu, John Zink Design Specification, 1/4/2018. Site-specific emission factors to	20 C and 1 atm (Normal)
	be developed after stack testing.	4. Natural Gas Composition C1 – C6+ (%mol)
	4. PM-filt, PM-cond, VOC, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion",	5. Natural Gas Sulfur (S) Content (ppmv), converted to wt %by assuming 16.92 ppmv per 1
	7/1998. Site-specific emission factors for HAPs to be developed after stack testing.	grain/100 scf gas at 60F and 14.73 psia
	5. n-Hexane: 0.0046 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	https://www.interline.nl/media/1000030/handbooksulfurmeasurements 002.pdf
	Factors, May 17, 2001, 10-100 MMBtu/hr). VCAPCD AB2588 combem[2].pdf	
	6. SO2: Material balance based on mass of natural gas combusted and sulfur content in natural gas. Equation: NG	Calculated/Miscellaneous Inputs
	FUEL MASS * S CONTENT NG (WT%) / 100 * MW SO2 / MW S.	1. Natural Gas Mass: Calculated using Natural Gas Flow Rate and Density of Natural Gas
	7. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission	2. Heat Rate (MMBtu/hr): Natural Gas Mass and Natural Gas HHV
	factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010.	1. Natural Gas Carbon (C) Content (wt%): Calculated based on Natural Gas Composition
	8. CO2: Material balance based on mass of natural gas combusted and carbon content in fuel. Equation: NG FUEL	
	MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C.	
	9. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	
	10. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
204: Low Pressure (LP) Header System	1. NOx, CO, PM-filt, PM-cond, PM10, PM2.5, VOC, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4,	PI Inputs
Continuous Vent Thermal Oxidizer (CVTO)	"Natural Gas Combustion", 7/1998.	1. Natural Gas HHV (Btu/scf), converted to Btu/lb using Natural Gas Density
, ,	2. n-Hexane: 0.0063 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	2. Natural Gas Specific Gravity, density calculated assuming density of air at 1.2041 kg/Nm3 at
Pilot (Natural Gas)	Factors, May 17, 2001, <10 MMBtu/hr. VCAPCD AB2588 combem[2].pdf	20 C and 1 atm (Normal)
,	3. SO2: Material balance based on mass of natural gas combusted and sulfur content in natural gas. Equation:	3. Natural Gas Composition C1 – C6+ (%mol)
	NG FUEL MASS * S CONTENT NG (WT%) / 100 * MW SO2 / MW S.	4. Natural Gas Sulfur (S) Content (ppmv) converted to wt % by assuming 16.92 ppmv per 1
	4. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission	grain/100 scf gas at 60F and 14.73 psia
	factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010.	https://www.interline.nl/media/1000030/handbooksulfurmeasurements 002.pdf
	5. CO2: Material balance based on mass of natural gas combusted and carbon content in fuel. Equation: NG FUEL	
	MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C.	Calculated/Miscellaneous Inputs
	6. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	1. Pilot Heat Rate: Constant at 0.5023 MMBtu/hr based on design specifications
	7. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	2. Natural Gas Mass: Calculated using Pilot Heat Input, HHV of Natural Gas, and natural Gas
	7. N20. 40 CFR Full 50 Subput C, Tubic C 2 Chilosion factor for natural gas.	Density
		3. Natural Gas Carbon (C) Content (wt%): Calculated based on Natural Gas Composition
204. Law Procesure (LD) Hondor System	1 NOvember CO. AD 42 Chapter 12 F. "Industrial Flores", 2/2019	
204: Low Pressure (LP) Header System	1. NOx and CO: AP-42, Chapter 13.5, "Industrial Flares", 2/2018.	Pl Inputs 1 Vant Gas Mass to Flare – MPGF Header 1 (kg/hr)
Multipoint Ground Flare (MPGF)	2. VOC: Material balance based on quantity of vent gas flared, VOC content of the vent gas and VOC destruction efficiency. Equation: VENT GAS MASS TO FLARE * VOC CONTENT (WT%) / 100 * (1-DRE).	 Vent Gas Mass to Flare – MPGF Header 1 (kg/hr) Supplemental Natural Gas Flow to Flare (Nm3/hr), mixed with vent gas mass MPGF Header 1,
DE 1/DE 2 Enicodia Vant Flavian		
PE 1/PE 2 Episodic Vent Flaring	3. SO2: Material balance based on mass of vent gas flared and sulfur content in vent gas to flare. Equation: VENT	converted to lbs/hr using natural gas specific gravity
(Supplemental gas added with vent gas if	GAS MASS TO FLARE * S CONTENT (WT%) / 100 * MW SO2 / MW S.	3. Natural Gas Specific Gravity, density calculated assuming density of air at 1.2041 kg/Nm3 at
needed)	4. PM-filt, PM-cond, PM10, PM2.5, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas	20 C and 1 atm (Normal)
	Combustion", 7/1998.	4. Total Vent Gas to Flare Composition (% mol), includes supplemental natural gas
	5. n-Hexane: 0.029 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	5. Total Vent Gas to Flare Sulfur Content (% wt), includes supplemental natural gas
	Factors, May 17, 2001, Flares. VCAPCD AB2588 combem[2].pdf	
	6. CO2: Material balance based on mass of vent gas to flare, carbon content in vent gas to flare, and destruction	Calculated/Miscellaneous Inputs
	efficiency. Equation: VENT GAS MASS TO FLARE * C CONTENT (WT%) / 100 * MW CO2 / MW C * DRE.	1. Molecular Weight of Total Vent Gas to Flare: Total Vent Gas to Flare Composition and
	7. CH4: Material balance based on quantity of vent gas to flare, CH4 content of the vent gas to flare and CH4	Standard Molecular Weight of Constituents
	destruction efficiency. Equation: VENT GAS MASS TO FLARE * CH4 CONTENT (WT%) / 100 * (1-DRE).	2. HHV of Total Vent Gas to Flare: Total Vent Gas to Flare Composition and Standard Heat of
	8. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for fuel gas.	Combustion for Constituents
	9. Flare DRE: 99% DRE for compounds containing three (3) or fewer carbon atoms and 98% for compounds with	3. Supplemental Natural Gas Mass: Supplemental Natural Gas to Flare (Nm3/hr) and specific
	greater than three (3) carbon atoms, Texas Commission on Environmental Quality Air Permits Division, "New	gravity of natural gas
	Source Review (NSR) Emission Calculations" (APD-ID 6v1, Revised March 2021).	4. Total Vent Gas Mass to Flare: Vent Gas Mass to Flare + Supplemental Natural Gas Mass
		5. % Carbon by weight: Total Vent Gas to Flare Composition
		6. Heat Input of Total Vent Gas to Flare: Total Vent Gas Mass to Flare and HHV of Vent Gas to
		Flare
204: Low Pressure (LP) Header System	1. NOx and CO: AP-42, Chapter 13.5, "Industrial Flares", 2/2018.	<u>PI Inputs</u>
Multipoint Ground Flare (MPGF)	2. VOC: Material balance based on quantity of vent gas flared, VOC content of the vent gas and VOC destruction	1. Vent Gas Mass to Flare – MPGF Header 2 (kg/hr)
	efficiency. Equation: VENT GAS MASS TO FLARE * VOC CONTENT (WT%) / 100 * (1-DRE).	
Ethylene Storage Tank Vent Flaring	3. SO2: No Sulfur in Vent Gas.	Calculated/Miscellaneous Inputs
	4. PM-filt, PM-cond, PM10, PM2.5, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas	1. Composition is 100% ethylene
	Combustion", 7/1998.	2. Flare DRE: 99% DRE for ethylene.
	5. n-Hexane: 0.029 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	
	Factors, May 17, 2001, Flares. VCAPCD AB2588 combem[2].pdf	Note: for initial startup (a portion of 9/2022 only), supplemental natural gas was used to ensure
	6. CO2: Material balance based on mass of vent gas to flare, carbon content in vent gas to flare, and destruction	proper heating value of vent gas since it was mainly nitrogen. Additionally, an alternative
	efficiency. Equation: VENT GAS MASS TO FLARE * C CONTENT (WT%) / 100 * MW CO2 / MW C * DRE.	method was utilized to account for the high amounts of nitrogen and one-time only use of
	7. CH4: Material balance based on quantity of vent gas to flare, CH4 content of the vent gas to flare and CH4	natural gas.
	destruction efficiency. Equation: VENT GAS MASS TO FLARE * CH4 CONTENT (WT%) / 100 * (1-DRE).	
	8. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for fuel gas.	
	9. Flare DRE: 99% DRE for compounds containing three (3) or fewer carbon atoms and 98% for compounds with	
	greater than three (3) carbon atoms, Texas Commission on Environmental Quality Air Permits Division, "New	
	Source Review (NSR) Emission Calculations" (APD-ID 6v1, Revised March 2021).	

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
204: Low Pressure (LP) Header System	1. NOx and CO: AP-42, Chapter 13.5, "Industrial Flares", 2/2018.	<u>PI Inputs</u>
Multipoint Ground Flare (MPGF)	2. VOC: Material balance based on quantity of vent gas flared, VOC content of the vent gas and VOC destruction efficiency. Equation: VENT GAS MASS TO FLARE * VOC CONTENT (WT%) / 100 * (1-DRE).	 Vent Gas Mass to Flare – MPGF Header 3 (kg/hr) CVTO/MPGF Header 3 Vent Gas to Flare Composition (% mol)
Continuous Vent Thermal Oxidizer (CVTO) Trips	 SO2: Material balance based on mass of vent gas flared and sulfur content in vent gas to flare. Equation: VENT GAS MASS TO FLARE * S CONTENT (WT%) / 100 * MW SO2 / MW S. PM-filt, PM-cond, PM10, PM2.5, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998. n-Hexane: 0.029 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission Factors, May 17, 2001, Flares. VCAPCD AB2588 combem[2].pdf CO2: Material balance based on mass of vent gas to flare, carbon content in vent gas to flare, and destruction efficiency. Equation: VENT GAS MASS TO FLARE * C CONTENT (WT%) / 100 * MW CO2 / MW C * DRE. CH4: Material balance based on quantity of vent gas to flare, CH4 content of the vent gas to flare and CH4 destruction efficiency. Equation: VENT GAS MASS TO FLARE * CH4 CONTENT (WT%) / 100 * (1-DRE). 	 CVTO/MPGF Header 3 Vent Gas to Flare Composition (% mol) CVTO/MPGF Header 3 Vent Gas Sulfur Content (% wt) Calculated/Miscellaneous Inputs Molecular Weight of CVTO/MPGF Header 3 Vent Gas: CVTO/MPGF Header 3 Vent Gas Composition and Standard Molecular Weight of Constituents. HHV of CVTO/MPGF Header 3 Vent Gas: CVTO/MPGF Header 3 Vent Gas Composition and Standard Heat of Combustion for Constituents. % Carbon by weight: CVTO/MPGF Header 3 Vent Gas Composition Heat Input of Vent Gas to Flare: Vent Gas Mass to Flare and HHV of Vent Gas to Flare
	 N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for fuel gas. Flare DRE: 99% DRE for compounds containing three (3) or fewer carbon atoms and 98% for compounds with greater than three (3) carbon atom, , Texas Commission on Environmental Quality Air Permits Division, "New Source Review (NSR) Emission Calculations" (APD-ID 6v1, Revised March 2021). 	
204: Low Pressure (LP) Header System Multipoint Ground Flare (MPGF)	 NOx, CO, PM-filt, PM-cond, PM10, PM2.5, VOC, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998. n-Hexane: 0.0063 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission 	 PI Inputs 1. Natural Gas HHV (Btu/scf), converted to Btu/lb using Natural Gas Density 2. Natural Gas Specific Gravity, density calculated assuming density of air at 1.2041 kg/Nm3 at
Pilot (Natural Gas)	 Factors, May 17, 2001, <10 MMBtu/hr. VCAPCD AB2588 combem[2].pdf SO2: Material balance based on mass of natural gas combusted and sulfur content in natural gas. Equation: NG FUEL MASS * S CONTENT NG (WT%) / 100 * MW SO2 / MW S. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010. CO2: Material balance based on mass of natural gas combusted and carbon content in fuel. Equation: NG FUEL MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas. 	 Natural Gas Sulfur (S) Content (ppmv) converted to wt % by assuming 16.92 ppmv per 1 grain/100 scf gas at 60F and 14.73 psia https://www.interline.nl/media/1000030/handbooksulfurmeasurements 002.pdf Calculated/Miscellaneous Inputs Pilot Heat Rate. Constant at 2.47 MMBtu/hr based on design specifications. Natural Gas Mass: Calculated using Pilot Heat Input, HHV of Natural Gas, and natural Gas
		Density 3. Natural Gas Carbon (C) Content (wt%): Calculated based on Natural Gas Composition

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
205: High Pressure (HP) Header System (Flares)	 NOx and CO for Totally Enclosed Ground Flares (TEGFs) from Zeeco Manufacturer Data: a. NOx: 0.068 lb/MMBtu b. CO: 0.038 lb/MMBtu for Total Heat Input ≥ 8,396 MMBtu/hr; 0.2755 lb/MMBtu for Heat Input <8,396 MMBtu/hr NOx and CO for Elevated Flare from Zeeco Manufacturer Data:	PI Inputs 1. Vent Gas Flow to Flare (Actual m3/hr), includes Supplemental Natural Gas 2. Vent Gas to Flare Pressure (bar-g) 3. Vent Gas to Flare Temperature (C) 4. Vent Gas to Flare Composition (% mol), includes Supplemental Natural Gas from inline analyzer 5. Vent Gas to Flare Sulfur Content (% wt) Calculated/Miscellaneous Inputs 1. Molecular Weight of Vent Gas to Flare: Vent Gas to Flare Composition and Standard Molecular Weight of Constituents 2. HHV of Vent Gas to Flare: Vent Gas to Flare Composition and Standard Heat of Combustion for Constituents 3. Vent Gas to Flare Density: Molecular Weight, Pressure and Temperature of Vent Gas to Flare 4. Vent Gas Mass to Flare: Vent Gas Flow to Flare (actual m3/hr) and Vent Gas to Flare Density 5. % Carbon and H2 by weight: Vent Gas to Flare Composition 6. Heat Input of Vent Gas to Flare: Vent Gas Mass to Flare and HHV of Vent Gas to Flare 7. C3+ Composition: Laboratory Data
205: High Pressure (HP) Header System (Flares) • TGEF #1 Pilot • TGEF #2 Pilot • Elevated Flare Pilot	 compounds with greater than three (3) carbon atoms, , Texas Commission on Environmental Quality Air Permits Division, "New Source Review (NSR) Emission Calculations" (APD-ID 6v1, Revised March 2021). 1. NOx, CO, PM-filt, PM-cond, PM10, PM2.5, VOC, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998. 2. n-Hexane: 0.0063 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission Factors, May 17, 2001, <10 MMBtu/hr. VCAPCD AB2588 combem[2].pdf 3. SO2: Material balance based on mass of natural gas combusted and sulfur content in natural gas. Equation: NG FUEL MASS * S CONTENT NG (WT%) / 100 * MW SO2 / MW S. 4. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010. 5. CO2: Material balance based on mass of natural gas combusted and carbon content in fuel. Equation: NG FUEL MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C. 6. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas. 7. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas. 	Pl Inputs 1. Natural Gas HHV (Btu/scf) 2. Natural Gas Specific Gravity, density calculated assuming density of air at 1.2041 kg/Nm3 at 20 C and 1 atm (Normal) 3. Natural Gas Composition C1 – C6+ (%mol) 4. Natural Gas Sulfur (S) Content (ppmv) converted to wt % by assuming 16.92 ppmv per 1 grain/100 scf gas at 60F and 14.73 psia https://www.interline.nl/media/1000030/handbooksulfurmeasurements 002.pdf Calculated/Miscellaneous Inputs 1. Pilot Natural Gas Mass Combusted • TGEF #1 and #2: Constant at 1.105 MMBtu/hr per TGEF per design specifications. • Elevated Flare Pilot: Constant at 0.26 MMBtu/hr per design specifications] 2. Natural Gas Mass: Calculated using Pilot Heat Input, HHV of Natural Gas, and natural Gas Density 3. Natural Gas Carbon (C) Content (wt%): Calculated based on Natural Gas Composition

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
206: Spent Caustic Vent Header System	1. NOx: 0.068 lb/MMBtu, John Zink Design Specification, 7/12/2017. Site-specific emission factors to be	Calculated/Miscellaneous Inputs
	developed after stack testing.	1. Heat Rate: 0.7 MMBtu/hr [Design Basis Heat Input from VOC]
Process Vents	2. CO: 0.0824 lb/MMBtu, John Zink Design Specification, 7/12/2017. Site-specific emission factors to be	
	developed after stack testing.	
	3. PM10 and PM2.5: 0.0075 lb/MMBtu, John Zink Design Specification, 7/12/2017. Site-specific emission factors	
	to be developed after stack testing.	
	4. VOC: 0.0303 lb/MMBtu based on 3.2 g/Nm3 VOC, design basis. [Feb. 2020 Update Plan Approval Application]	
	5. SO2: 0.0879 lb/MMBtu based on 0.05 g/Nm3 H2S, design basis. [Feb. 2020 Update Plan Approval Application]	
	6. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission	
	factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010.	
	7. PM-filt, PM-cond, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion",	
	7/1998. Site-specific emission factors for HAP to be developed after stack testing.	
	8. n-Hexane: 0.029 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	
	Factors, May 17, 2001, Flares. VCAPCD AB2588 combem[2].pdf	
	9. CO2: 7.8 lb/MMBtu based on 8.4 g/Nm3 CO2, design basis plus 40 CFR Part 98 Subpart C, Table C-2 emission	
	factor for natural gas . [Feb. 2020 Update Plan Approval Application]	
	10. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	
	11. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	
	12. Thermal Oxidizer DRE: 99.9% John Zink Design Specification, 7/12/2017.	
206: Spent Caustic Vent Header System	1. NOx: 0.068 lb/MMBtu, John Zink Design Specification, 7/12/2017. Site-specific emission factors to be	PI Inputs
	developed after stack testing.	1. Natural Gas Flow Rate (Nm3/hr)
Primary Firing Fuel (Natural Gas)	2. CO: 0.0824 lb/MMBtu, John Zink Design Specification, 7/12/2017. Site-specific emission factors to be	2. Natural Gas HHV (Btu/scf), converted to Btu/lb using Natural Gas Density
	developed after stack testing.	3. Natural Gas Specific Gravity, density calculated assuming density of air at 1.2041 kg/Nm3 at
	3. PM10 and PM2.5: 0.0075 lb/MMBtu, John Zink Design Specification, 7/12/2017. Site-specific emission factors	20 C and 1 atm (Normal)
	to be developed after stack testing.	4. Natural Gas Composition C1 – C6+ (%mol)
	4. PM-filt, PM-cond, VOC, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion",	5. Natural Gas Sulfur (S) Content (ppmv), converted to wt %by assuming 16.92 ppmv per 1
	7/1998. Site-specific emission factors for HAP to be developed after stack testing, 5. n-Hexane: 0.0063 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission	grain/100 scf gas at 60F and 14.73 psia https://www.interline.nl/media/1000030/handbooksulfurmeasurements_002.pdf
	Factors, May 17, 2001, <10 MMBtu/hr. VCAPCD AB2588 combem[2].pdf	https://www.interline.m/media/1000030/handbooksunurmeasurements_002.pdf
	6. SO2: Material balance based on mass of natural gas combusted and sulfur content in natural gas. Equation: NG	Calculated/Miscellaneous Inputs
	FUEL MASS * S CONTENT NG (WT%) / 100 * MW SO2 / MW S.	Natural Gas Mass: Calculated using Natural Gas Flow Rate and Density of Natural Gas
	7. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission	2. Heat Rate (MMBtu/hr): Natural Gas Mass and Natural Gas HHV
	factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010.	3. Natural Gas Carbon (C) Content (wt%): Calculated based on Natural Gas Composition
	8. CO2: Material balance based on mass of natural gas combusted and carbon content in fuel. Equation: NG FUEL	Tractarar das danson (e) content (we/s). Calculated susca on reaction das composition
	MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C.	
	9. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	
	10. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas.	
	10. 1420. 10 CHAT are 30 Subpart C, Tubic C 2 Chilission factor for flucturingus.	1

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
206: Spent Caustic Vent Header System Pilot (Natural Gas)	 NOx, CO, PM-filt, PM-cond, PM10, PM2.5, VOC, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998. n-Hexane: 0.0063 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission Factors, May 17, 2001, <10 MMBtu/hr. VCAPCD AB2588 combem[2].pdf SO2: Material balance based on mass of natural gas combusted and sulfur content in natural gas. Equation: NG FUEL MASS * S CONTENT NG (WT%) / 100 * MW SO2 / MW S. H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010. CO2: Material balance based on mass of natural gas combusted and carbon content in fuel. Equation: NG FUEL MASS * C CONTENT (WT%) / 100 * MW CO2 / MW C. CH4: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas. 	 PI Inputs Natural Gas HHV (Btu/scf), converted to Btu/lb using Natural Gas Density Natural Gas Specific Gravity, density calculated assuming density of air at 1.2041 kg/Nm3 at 20 C and 1 atm (Normal) Natural Gas Composition C1 – C6+ (%mol) Natural Gas Sulfur (S) Content (ppmv) converted to wt % by assuming 16.92 ppmv per 1 grain/100 scf gas at 60F and 14.73 psia https://www.interline.nl/media/1000030/handbooksulfurmeasurements 002.pdf Calculated/Miscellaneous Inputs Pilot Heat Rate. Constant at 0.5023 MMBtu/hr, per design specifications. Natural Gas Mass: Calculated using Pilot Heat Input, HHV of Natural Gas, and natural Gas Density Natural Gas Carbon (C) Content (wt%): Calculated based on Natural Gas Composition
104: Cogeneration Plant Cooling Tower	 PM-filt: 0.0005% wt / 100 * Circulation Rate (gal/hr) x 8.34 lb/gal (water density) x TDS Correlation Factor (ppmx/uS/cm) x Conductivity (uS.cm) / 1000000 [Feb. 2020 Plan Approval Application] PM-10 and PM2.5: 63.5% and 0.21 % wt fraction of PM-filt based on "Calculating Realistic PM10 Emissions from Cooling Towers"; Reisman & Frisbie [Feb. 2020 Plan Approval Application] 	Pl Inputs 1. Water conductivity 2. Water Discharge Flow 3. Water Make-up Flow Calculated/Miscellaneous Inputs 1. Cogen Cooling Water TDS Sampling Results 2. Circulation Rate = Discharge Flow plus Make-Up Flow
203: Process Cooling Tower	 PM-filt: 0.0005% wt / 100 * Circulation Rate (gal/hr) x 8.34 lb/gal (water density) x TDS Correlation Factor (ppmx/uS/cm) x Conductivity (uS.cm) / 1000000 [Feb. 2020 Plan Approval Application] PM10 and PM2.5: 63.5% and 0.21 % wt fraction of PM-filt based on "Calculating Realistic PM10 Emissions from Cooling Towers"; Reisman & Frisbie [Feb. 2020 Plan Approval Application] VOC: Process Water VOC (ppmw)/1,000,000 * Circulation Rate (gal/hr) * 8.34 lb/gal (water density). 	PI Inputs 1. Water conductivity 2. Water Discharge Flow 3. Water Make-up Flow Calculated/Miscellaneous Inputs 1. Circulation Rate = Discharge Flow plus Make-Up Flow 2. Process Cooling Water TDS Sampling Results 3. Process Cooling Water VOC Sampling Results
202:Polyethylene Manufacturing Lines	1. PM-Filt: Outlet Grain Loading and Flow Rate or Vendor Emissions Estimations to yield an tons/day rate.	Pl Inputs 1. PE 1, PE 2, PE 3 Ethylene Feed Rates – used for operational time since ethylene feed is required to operate the unit and correlates directly to run time.
301: Polyethylene Pellet Material Storage, Handling and Loadout	 PM-filt: Outlet Grain Loading and Flow Rate or Inlet Grain Loading, Control Efficiency (%) and Flow Rate (dscf/hr). VOC: Periodic Sampling of VOC Headspace. 	Calculated/Miscellaneous Inputs 1. Vendor-Provided Outlet Grain Loading and Flow Rate 2. Vendor-Provided Inlet Grain Loading and Control Efficiency and Flow Rate 3. Polyethylene mass produced at each reactor grade per sample
302: Liquid Loadout (Recovered Oil)	VOC, HAP: AP-42 Chapter 5.2, "Transportation and Marketing of Petroleum Liquids", 6/2008.	Calculated/Miscellaneous Inputs 1. Quantity of material loaded 2. Stream composition data from engineering heat and material balance (wt% VOC, HAP, CH4
303: Liquid Loadout (Pyrolysis Fuel Oil, Light Gasoline)	VOC, HAP: Hose disconnect loss from TODO dry disconnect couple loss per disconnect manufacturer data.	Pl Inputs 1. Truck Loading Connection Valve (Open/Close) Calculated/Miscellaneous Inputs 1. Manufacturer Hose Coupling Disconnect Factor (ml/disconnect)

Emission Source or Activity	Emissions Approach/Methodology	Data Inputs
304: Liquid Loadout (C3+, Butene, Isopentane, Isobutane, C3+ Ref)	VOC , HAP: Hose disconnect loss from TODO dry disconnect couple loss per disconnect manufacturer data.	PI Inputs 1. Truck Loading Connection Valve (Open/Close)
		Calculated/Miscellaneous Inputs 1. Manufacturer Hose Coupling Disconnect Factor (ml/disconnect)
305: Liquid Loadout (Coke Residue, Tar)	VOC, HAP: AP-42 Chapter 5.2, "Transportation and Marketing of Petroleum Liquids", 6/2008.	 Calculated/Miscellaneous Inputs Quantity of material loaded Stream composition data from engineering heat and material balance (wt% VOC, HAP, CH4)
401-409: Storage Tanks	 Non-diesel VOC and HAP: Controlled and accounted for in the flares. Diesel VOC: VOC and HAP: AP-42 Chapter 7.1, "Organic Liquid Storage Tanks", 6/2020. 	Calculated/Miscellaneous Inputs 1. Diesel fuel throughput
501: Equipment Components	 VOC, CH4, HAP (unmonitored): EPA Protocol for Equipment Leak Emission Estimates Chapter 2.3 November 1995. SOCMI Average Emission Factors (lb/hr/src) * Equipment Type Count (src) * Chemical Composition (wt%VOC/CH4/HAP) * Operating Hours (hr). VOC, CH4, HAP (monitored): EPA Protocol for Equipment Leak Emission Estimates Chapter 2.3 November 1995. SOCMI Leak Rate/Screening Value Correlation Equations, Leak Rate (lb) = Correlation Factor (lb/hr/src/ppm) * Screening Value Factor (ppm) * Equipment Type Count (src) * Chemical Composition (wt%VOC/CH4/HAP) * Operating Hours (hr). 	 Calculated/Miscellaneous Inputs Monitored leak rates into LeakDAS (ppm) Stream composition data from engineering heat and material balance (wt% VOC, HAP, CH4)
502: Wastewater Treatment Plant	USEPA Water9, Version 3 (or similar)	Pl Inputs 1. Wastewater flow rate to Biotreaters A/B Calculated/Miscellaneous Inputs 1. Wastewater composition data from laboratories. 2. Various Water 9 Inputs on stream characteristics and unit dimensions/data provided by Operations.
503: Plant Roadways	PM-filt, PM10, PM2.5: AP-42, Chapter 13.2.1, "Paved Roads", 1/2011 using the following Equation: Emission Factor (lb/VMT) = k (sL) ^{0.91} (W) ^{1.02} (1 – P/(4*N)). • k = particle size multiplier = 0.011 for PM-filt, 0.0022 for PM10 and 0.00054 for PM2.5 [Table 13.2.1 AP-42] • SL = Road Surface Silt Content = 0.2 g/m3 [LAER per Feb.2020 Plan Approval Application] • W = Average Weight of Vehicle (tons) = 25 tons average [Feb.2020 Plan Approval Application] • P = Number of Days with rainfall greater than 0.01 inch = 150 days [Figure 13.2.1-2 AP-42] • N = Number of days in period.	Calculated/Miscellaneous Inputs 1. Number of Trips 2. Road Length
Building Utilities (Heat and Water) Natural Gas Combustion	 NOx, CO, PM-filt, PM-cond, PM10, PM2.5, VOC, SO2, Total HAPs (except E-rated n-hexane): AP-42, Chapter 1.4, "Natural Gas Combustion", 7/1998. n-Hexane: 0.0063 lb/MMBtu, Ventura County Air Pollution Control District, AB 2588 Combustion Emission Factors, May 17, 2001, <10 MMBtu/hr. VCAPCD AB2588 combem[2].pdf H2SO4: Multiplication of SO2 emissions and the SO3/SO2 Ratio of 5.7/142 based on the SO3 and SO2 emission factor for distillate oil in Table 1.3-1 of AP-42, Chapter 1.3, "Fuel Oil Combustion", 5/2010. CO2: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas. N2O: 40 CFR Part 98 Subpart C, Table C-2 emission factor for natural gas. 	Calculated/Miscellaneous Inputs 1. Natural Gas Consumption – Peoples Invoices

List of Malfunction Reports Shell Polymers Monaca Date: April 19, 2023

							Initially	
	Unit		Incident Start	Incident Start	Incident End	Incident End		Date Final Malfunction
E&R ID	Implicated	Incident Description	Date	Time	Date	Time	PADEP Date	
MAL1	PE3	PE3 reactor blowdown due to pump failure	9/3/2022	15:40	9/4/2022	17:15	9/16/2022	10/4/2022
MAL2	ECU	TEGF visible emissions	9/6/2022	~7:30	9/24/2022	09:00	9/6/2022	9/20/2022
MAL4-a/b	ECU	ECU Demethanizer Cold Drum 3 Leak During Startup - Flaring and Flange	9/8/2022	14:25	9/8/2022	22:45	9/16/2022	10/7/2022
		Leak						
MAL5-a/b	ECU	ECU Cold Flare Drum Inlet Flange Leak V-19031 During Startup - Flaring	9/8/2022	22:45	9/10/2022	9:26	9/16/2022	10/7/2022
		and Flange Leak						
MAL6-a/b	ECU	ECU ERC and CGC trip during startup and Reestablishing previous	9/10/2022	9:26	9/13/2022	15:10	9/16/2022	10/11/2022
		conditions						
MAL7-a/b	ECU	ECU CGC Trip of 4th stage level transmitter failure and reestablishing	9/15/2022	23:05	9/18/2022	12:02	9/16/2022	10/16/2022
		previous conditions						
MAL8-a/b	ECU	ECU P3R Compressor Low Suction P Trip and reestablishing previous	9/18/2022	12:02	9/21/2021	2:01	9/18/2022	10/20/2022
		conditions						
MAL9-a/b	ECU	ECU AC Reactor Trip due to Methanol Drum High Level and reestablishing	9/21/2022	2:01	9/24/2022	22:40	9/21/2022	10/22/2022
		previous conditions						
MAL10	UGF	Visible Emissions from CVTO Trip	9/25/2022	15:30	9/25/2022	16:50	9/26/2022	Report not submitted
MAL12	PE	PE3 reactor blowdowns due to circulation pump seal leak (HP Flare)	10/2/2022	14:30	10/2/2022	17:00	N/A	11/2/2022
MAL13-a-c	ECU	ECU Offspec Ethylene (Plugged C2 Inlet Strainer) Outage -	10/5/2022	19:15	10/22/2022	14:00	10/6/2022	11/16/2022
WIALIS & C	200	Shutdown/Restartup	10/5/2022	15.15	10/22/2022	14.00	10/0/2022	11/10/2022
MAL15	ECU	Ethylene Tank BOG Compressor A & B Malfunction	10/17/2022	16:30	11/25/2022	08:15	10/21/2022	11/17/2022
MAL16	ECU	TEGF Smoke Malfunction	10/22/2022	15:34	10/22/2022	17:15	10/24/2022	Report not submitted
MAL17	ECU	ECU AC Reactor Malfunction (Elevated Flare)	10/24/2022	14:30	10/26/2022	16:30	10/24/2022	11/25/2022
MAL18-a	ECU	Furnace 2 Excess NOx	10/22/2022	14:00	10/23/2022	03:00	11/7/2022	11/23/2022
MAL18-b	ECU	Furnace 6 Excess NOx	10/22/2022	14:00	10/23/2022	04:00	11/7/2022	11/23/2022
MAL18-c	ECU	Furnace 4 Excess NOx	10/31/2022	4:47	10/31/2022	11:00	11/7/2022	12/1/2022
MAL20	UGF	Cogen Unit 2 Nox	11/5/2022	22:16	11/5/2022	23:16	11/7/2022	12/7/2022
MAL20	UGF	Cogen Units 1, 2, 3 Nox	11/7/2022	9:30	11/7/2022	10:30	11/7/2022	12/7/2022
MAL20	UGF	Cogen Unit 3 Restart Nox	11/17/2022	15:00	11/17/2022	20:00	11/21/2022	12/7/2022
MAL23	ECU/UGF	Malodor from WWTP (PFO)	11/7/2022	TBD	12/13/2022	TBD	11/7/2022	1/13/2023
MAL21	ECU	ECU AC Reactor Malfunction (Ground Flare)	11/15/2022	22:50	11/16/2022	5:32	11/17/2022	12/16/2022
MAL22	ECU	ECU C2 Offspec (Ground Flare)	11/20/2022	02:59	11/20/2022	07:17	11/21/2022	12/19/2022
MAL19	ECU/UGF	ECU SHP Steam Loss (Cogen Trip) AC Rx Offspec (Ground Flare)	11/28/2022	15:03	11/29/2022	23:50	11/29/2022	12/8/2022
MAL25	PE2	MPGF (PE1/2 Episodic) Visible Emissions During PE2 SD	12/14/2022	07:45	12/14/2022	08:30	12/15/2022	1/13/2023
MAL27	Site	Boiler Feedwater Loss and Site Shutdown Flaring (Elevated Flare)	12/24/2022	07:05	12/24/2022	11:50	12/24/2022	2/6/2023
MAL28	UGF	Cogen Units 1, 2, 3 CO (Recurring/Ongoing)	12/21/2022	00:00	12/28/2022	10:00	12/27/2022	1/23/2023
MAL29	UGF	Cogen Unit 3 Nox SCR Heater Trip	12/23/2022	13:15	12/23/2022	18:00	12/27/2022	1/23/2023
MAL30	UGF	Cogen Unit 2 Nox (Restart after Trip)	12/24/2022	11:38	12/24/2022	15:25	12/27/2022	1/23/2023
MAL31	UGF	Cogen Unit 1 Nox (Startup)	12/24/2022	5:50	12/25/2022	11:00	12/27/2022	1/23/2023
MAL32	UGF	SCTO Trip on Low Fuel Pressure (Regulator)	1/4/2023	20:38	1/10/2023	12:00	1/6/2023	2/9/2023
MAL33	ECU	ECU Demethanizer Malfunction (Ground Flare)	1/20/2023	7:17	1/20/2023	11:28	1/20/2023	2/6/2023
MAL34	ECU/UGF	Malodor from WWTP	1/25/2023	9:45	2/16/2023	13:58	1/25/2023	3/27/2023
MAL35	ECU	Furnace Nox Ammonia System Failure	2/1/2023	9:35	2/1/2023	10:35	2/3/2023	3/2/2023
MAL36	ECU	ECU AC Reactor Malfunction following Steam Generator SU	2/3/2023	2:17	2/3/2023	6:55	2/3/2023	3/6/2023

Case 2:23-cv-00794-RJC Document 1-19 Filed 05/11/23 Page 14 of 14

List of Malfunction Reports Shell Polymers Monaca Date: April 19, 2023

							Initially	
	Unit		Incident Start	Incident Start	Incident End	Incident End	Reported to	Date Final Malfunction
E&R ID	Implicated	Incident Description	Date	Time	Date	Time	PADEP Date	Report Sent to PADEP
MAL37	PE	PE3 LPSR Blower Start CVTO Trip Shear Pin Passthrough NHV < 500	2/11/2023	23:59	2/12/2023	9:21	2/13/2023	3/7/2023
		Btu/scf						
MAL38-a-d	ECU		2/13/2023	15:25	2/18/2023	3:33	2/13/2023	3/13/2023 and
and MAL39		ECU DCS Logic Issue CGC and AC Reactor Trip (Elevated Flare and TEGF B						3/15/2023
		VE > 5 mins); UGF Cogen Unit 2 Nox (Site Steam System Upset)						
MAL42-a/b	ECU	ECU CGC High Level Trip Flaring (TEGF) (Shutdown/Restart Flaring)	3/14/2023	21:50	3/17/2023	15:30	3/15/2023	4/11/2023
MAL44-a	ECU	ECU Caustic Leak SD Flaring (TEGF) (VE > 5 Mins)	3/25/2023	14:00	3/26/2023	2:00	3/25/2023	Forthcoming