Análise Comparativa de Erros em Métodos Computacionais para Cálculo de e^x e Raiz Quadrada

Eduardo Emílio dos Santos¹, Vitor Felipe de Souza Siqueira¹

¹Departamento de Informática (DIN) – Universidade Estadual de Maringá (UEM)

ra124501@uem.br, ra122907@uem.br

Abstract. In this report, we explore computational mathematics concepts focusing on accuracy, precision, and error in the context of square root and exponential function approximations. We implement and analyze three algorithms: a square root approximation method, Bailey's method for calculating e^x , and the Nice Number method for e^x calculation. Our objective is to evaluate each algorithm's performance in terms of mathematical accuracy and computational efficiency, by analyzing the error margins through graphical representations.

Resumo. Neste relatório, exploramos conceitos de matemática computacional com foco em acurácia, precisão e erro no contexto de aproximações da raiz quadrada e da função exponencial. Implementamos e analisamos três algoritmos: um método de aproximação da raiz quadrada, o método de Bailey para cálculo de e^x , e o método Nice Numbers para cálculo de e^x . Nosso objetivo é avaliar o desempenho de cada algoritmo em termos de precisão matemática e eficiência computacional, analisando as margens de erro por meio de representações gráficas.

1. Introdução

A matemática computacional desempenha um papel fundamental na Ciência da Computação, especialmente no desenvolvimento de algoritmos eficientes para cálculos numéricos. Neste relatório, exploramos a análise de algoritmos para a aproximação da raiz quadrada e o cálculo de funções exponenciais, duas operações essenciais em diversas áreas da computação e discutidas em sala de aula com o Prof. Dr. Airton Marco Polidório. Comparando esses algoritmos com as funções da biblioteca Numpy, da linguagem de programação Python, investigamos sua precisão e eficiência.

2. Objetivo

Nosso objetivo é implementar e analisar três algoritmos distintos: um para a aproximação da raiz quadrada, o método de Bailey para e^x , e o método Nice Numbers para e^x , comparando-os com as implementações da biblioteca Numpy. Buscamos avaliar o erro associado a cada algoritmo e, consequentemente, como se comporta os conceitos de precisão e eficácia.

3. Construção de Funções Personalizadas

Para a análise dos algoritmos de aproximação, foi necessário construir funções personalizadas para operações matemáticas básicas, a fim de evitar o uso de funções de bibliotecas que poderiam introduzir suas próprias aproximações e otimizações. Abaixo estão as descrições dessas funções e suas implementações.

3.1. Função Pow

A função pow implementa a exponenciação por meio de uma abordagem recursiva. A exponenciação é definida matematicamente pela relação de recorrência:

$$x^{y} = \begin{cases} 1, & \text{se } y = 0 \\ x \cdot x^{y-1}, & \text{se } y > 0 \text{ e impar} \\ (x^{y/2})^{2}, & \text{se } y > 0 \text{ e par} \end{cases}$$

Esta função utiliza divisão e conquista para dividir o problema em subproblemas menores, minimizando o número total de multiplicações necessárias.

```
def pow(x: float, y: int):
    if y == 0:
        return 1
    elif y == 1:
        return x
    elif y < 0:
        return 1 / pow(x, -y)
    elif y % 2 == 0:
        half_pow = pow(x, y // 2)
        return half_pow * half_pow
    else:
        return x * pow(x, y - 1)</pre>
```

3.2. Função Log Base 2

A função log_base_2 calcula o logaritmo de um número na base 2. A implementação se baseia na ideia de que o logaritmo na base 2 é o número de vezes que um número pode ser dividido por 2 antes de chegar a 1. Para valores menores que 1, o processo é invertido, e o expoente é negativo.

3.3. Método de Horner para Exponenciação Fracionária

O método de Horner é uma técnica numérica eficiente para avaliação de polinômios e foi adaptado neste trabalho para aproximar a exponenciação fracionária, mais especificamente, a exponencial de um número r que surge no cálculo de e^x pelo método de Bailey.

A série de Taylor para a exponencial é reescrita utilizando o método de Horner para otimizar as operações de multiplicação.

A implementação de Horner para exponenciação fracionária é dada por:

```
def horner(x):
    result = 1
    for i in range(10, 0, -1):
        result = 1 + x * result / i
    return result
```

Esta função é utilizada para calcular e^r onde r é o valor fracionário obtido após a redução de x no método de Bailey. Ao invés de calcular e^r diretamente, que poderia resultar em uma profunda recursão com a função pow, utilizamos o método de Horner para uma aproximação eficiente e robusta. A função horner é chamada com o valor de r e um grau predeterminado que define a precisão da aproximação do polinômio.

Cada uma dessas funções foi projetada para garantir que os algoritmos de aproximação pudessem ser avaliados sem influência externa.

4. Metodologia

A metodologia analisa detalhadamente os algoritmos para aproximação da raiz quadrada e cálculo de e^x , destacando os fundamentos matemáticos e suas implementações em Python. Além disso, algumas constantes como $\ln(2)$, $\sqrt{2}$ e e foram introduzidas como constantes no começo do projeto.

4.1. Método para Aproximação da Raiz Quadrada

Este método envolve várias etapas matemáticas para decompor o número x e calcular sua raiz quadrada aproximada.

4.1.1. Decomposição de x em e e f

Inicialmente, o número x é decomposto em duas partes distintas, e e f, onde:

- $e = \lfloor \log_2(x) \rfloor$, representando a maior potência de 2 não superior a x.
- $f = \frac{x}{2^e} 1$, a parte fracionária após subtrair a base da potência de 2 mais significativa de x.

A implementação dessa decomposição é realizada pela função calcula_e_f (x):

```
def calcula_e_f(x):
    e = log_base_2(x)
    f = x / pow(2, e) - 1
    return e, f
```

4.1.2. Cálculo de $\sqrt{2^e}$

Dependendo do valor de e, a raiz quadrada de 2^e é calculada diferentemente:

```
• Para e = 1, \sqrt{2^e} = \sqrt{2}.

• Para e par, \sqrt{2^e} = 2^{e/2}.

• Para e impar, \sqrt{2^e} = 2^{(e-1)/2} \cdot \sqrt{2}.

A função sqrt_2e (e) realiza este cálculo:

def sqrt_2e (e):

if e == 0:

return 1

elif e == 1:

return sqrt2

elif e \% 2 == 0:

return pow(2, e // 2)

else:

return pow(2, (e - 1) // 2) * sqrt2
```

• Para $e = 0, \sqrt{2^e} = 1$.

4.1.3. Cálculo da Raiz Quadrada Aproximada de x

A raiz quadrada aproximada de x é então dada por:

$$\sqrt{x} \approx \sqrt{2^e} \cdot (1 + f/2)$$

Essa aproximação combina os resultados anteriores para obter uma estimativa da raiz quadrada de x. O algoritmo que propõe essa solução é:

```
def raiz_calculada(x):
    e, f = calcula_e_f(x)
    sqrt_2e_val = sqrt_2e(e)
    return sqrt_2e_val * (1 + f / 2)
```

4.2. Algoritmo Bailey para e^x

O algoritmo de Bailey para o cálculo de e^x envolve a redução do argumento x para aproximar e^x com precisão.

4.2.1. Redução de x e Cálculo de e^x

A abordagem inicia com a redução de x usando técnicas aditivas e multiplicativas para simplificar o cálculo de e^x . A redução é seguida pelo cálculo de e^x com base nos valores reduzidos de x.

A implementação deste algoritmo é exemplificada pela função bailey_e_x (x):

```
def bailey_e_x(x):
    n = np.ceil((x - ln2 / 2) / ln2)
    r = (x - n * ln2) / 256
    e_elevado_r = horner(r)
    return pow(2, n) * pow(e_elevado_r, 256)
```

4.3. Algoritmo Nice Number para e^x

O algoritmo Nice Number aproveita uma Tabela de Consulta (LUT) para otimizar o cálculo de e^x , realizando iterações baseadas em valores pré-definidos e^x .

4.3.1. Construção da LUT e Processo Iterativo

A LUT contém valores precalculados de e^k para diferentes potências de 2, facilitando o cálculo iterativo de e^x até a convergência. O intervalo que vai até -53 foi calculado e é o limite que a linguagem Python conseguiu realizar as operações da LUT com precisão.

```
def criar_LUT():
     lut = \{2**(-i): np.exp(2**(-i)) \text{ for } i \text{ in } range(53)\}
     return lut
Este processo é implementado pela função calculo_ex_usando_lut(x, lut):
def calculo_ex_usando_lut(x, lut):
     y = 1
     while x > 0:
          keys = [k \text{ for } k \text{ in } lut.keys() \text{ if } k \le x]
          if keys:
              \max_{k} = \max(keys)
              x = max_k
              y = lut[max_k]
          else:
               break
     if x < min(lut.keys()):
          y *= (1 + x)
     return y
```

5. Resultados

Os gráficos a seguir ilustram a comparação dos erros entre os algoritmos implementados e as operações realizadas pela biblioteca Numpy. A análise foca na diferença de precisão, demonstrando como cada método se comporta em relação às funções otimizadas da Numpy para cálculos de raiz quadrada e exponenciação.

Figura 1. Comparação do erro na aproximação da raiz quadrada.

O erro na aproximação da raiz quadrada aumenta com o valor de x, o que é consistente com as limitações da aproximação linear da série de Taylor em torno de 1 para $\sqrt{1+f}$. Esse aumento é mais significativo para valores maiores de x, onde a parcela fracionária f se torna maior, e a aproximação linear se desvia mais do valor real. A função sqrt_2e calcula a raiz quadrada de 2^e de maneira exata quando e é par e uma aproximação quando e é ímpar.

Figura 2. Erro no cálculo de e^x pelo método de Bailey.

Para o cálculo de e^x usando o método de Bailey, o algoritmo é muito preciso para a maioria do intervalo, exceto nos extremos onde os picos de erro são notáveis. Esses picos podem ser atribuídos à precisão finita e aos erros de arredondamento que se acumulam durante o cálculo, especialmente ao lidar com potências muito altas. O uso da função horner para calcular e^r ajuda a minimizar esses erros, pois é uma técnica eficiente para avaliar polinômios, reduzindo o número de operações e potencialmente os erros de arredondamento.

Figura 3. Erro no cálculo de e^x pelo método Nice Numbers.

O erro associado ao método Nice Number é baixo para valores menores de x, e cresce com o aumento de x. Isso é esperado, pois a LUT fornece uma cobertura adequada para valores menores, mas não possui entradas suficientes para valores maiores, o que torna a aproximação menos precisa. À medida que x aumenta, a chance de um valor específico de x não corresponder exatamente a uma entrada na LUT aumenta, resultando em erros maiores.

6. Conclusão

Neste trabalho, exploramos e implementamos três algoritmos distintos para a aproximação da raiz quadrada e o cálculo da função exponencial e^x , evidenciando suas peculiaridades e aplicabilidades. A análise comparativa com as funções da biblioteca Numpy permitiu avaliar a precisão e eficiência computacional desses métodos sob diferentes condições.

O método de aproximação da raiz quadrada demonstrou ser eficaz para valores menores de x, com limitações na precisão para valores maiores. O método de Bailey para o cálculo de e^x se destacou pela sua alta precisão em grande parte do intervalo considerado, ressaltando a eficiência do método de Horner na minimização dos erros de arredondamento e na otimização das operações matemáticas. Por sua vez, o método Nice Number, através do uso de uma Tabela de Consulta, forneceu resultados precisos para valores menores de x, evidenciando a importância de estratégias eficientes de pré-cálculo e acesso rápido a dados.

Concluímos que a seleção de um algoritmo deve considerar não somente a precisão desejada, mas também as características específicas do problema, como o intervalo de valores a serem calculados e os recursos computacionais disponíveis. Este estudo contribui para o entendimento dos métodos computacionais aplicados à matemática, destacando a relevância de técnicas otimizadas para o cálculo numérico em variadas aplicações da Ciência da Computação.

Referências

[1] Airton Marco Polidório. *Cálculo da Raiz Quadrada*. Notas de aula para a disciplina de Matemática Computacional. Universidade Estadual de Maringá. 2022.

- [2] Airton Marco Polidório. *Ponto Flutuante*. Notas de aula para a disciplina de Matemática Computacional. Universidade Estadual de Maringá. 2022.
- [3] Airton Marco Polidório. *A Representação Interna dos Números*. Notas de aula para a disciplina de Matemática Computacional. Universidade Estadual de Maringá. 2022.
- [4] Airton Marco Polidório. $z=x^y$. Notas de aula para a disciplina de Matemática Computacional. Universidade Estadual de Maringá. 2022.
- [5] Airton Marco Polidório. $z=x^yXPadr\tilde{a}oIEE-754$. Notas de aula para a disciplina de Matemática Computacional. Universidade Estadual de Maringá. 2022.
- [6] Airton Marco Polidório. *Funções Elementares Transcendentais*. Notas de aula para a disciplina de Matemática Computacional. Universidade Estadual de Maringá. 2022.
- [7] José Carlos Polidório. "Arredondamento para o Par". Em: *Revista Brasileira de Computação* 15.4 (dez de 2000). Discussão sobre métodos de arredondamento em sistemas de ponto flutuante, pp. 34–45.