학번: 2013311659

이름 : 곽창근

1. What are the outputs if x = 1 and y = 1, and x = 1 and y = 0, respectively? A step function is used in each neuron. $w_1 = w_2 = w_4 = w_6 = 1$, $w_3 = -1.5$, $w_5 = -2$ and $w_7 = -0.5$.

그림과 가운데 앞의 노드를 A, 뒤의 노드를 B라고 하자.

i) x=1, y=1의 경우,

A에 들어오는 input은 $xw_1 + yw_2 + w_3 = 1 + 1 - 1.5 = 0.5$ 이다. 이는 0보다 크므로, sigmoid를 통과하면 1이 된다.

그리고 B로 들어오는 input은 $xw_4 + Aw_5 + yw_6 + w_7 = 1 - 2 + 1 - 0.5 = -0.5$ 이다. 이는 0보다 작으므로, 최종 output Z는 0이다.

∴ output Z는 0이다.

ii) x=1, y=0의 경우,

A에 들어오는 input은 $xw_1 + yw_2 + w_3 = 1 + 0 - 1.5 = -0.5$ 이다. 이는 0보다 작으므로, sigmoid를 통과하면 0이 된다.

그리고 B로 들어오는 input은 $xw_4 + Aw_5 + yw_6 + w_7 = 1 + 0 + 0 - 0.5 = 0.5$ 이다. 이는 0보다 크므로, 최종 output Z는 1이다.

∴ output Z는 1이다.

2. Set w_1 , w_2 , w_3 , w_4 so that the output is 1 only if at least one of inputs is 1s, where f is a step function.

 w_4 를 -0.5로 하고, w_1, w_2, w_3 가 w_4 보다 큰 양수, 예를 들어 1이라면 x1, x2, x3가 모두 0이라면 output도 0이고, 이 중 하나라도 1이 된다면 output도 1이 된다. 그러므로,

 $w_4 = -0.5$, $w_1, w_2, w_3 = 1$ 이면 된다.

3. Fill out the tables on the slides $4 \sim 7$ in "9-3. Neural Networks-EBP-3.pptx" for the second iteration of the XOR neural network training.

아래 테이블들은 Second iteration일 때의 값을 채운 것들이다.

n	x_{n1}	x_{n2}	t_{n1}	net_{n1}	net_{n2}	h_{n1}	h_{n2}	net_{n1}	o_{n1}
1	1	1	0	0.03085	0.01765	0.50771	0.50441	0.06284	0.51570
2	1	0	1	0.00290	0.08775	0.50072	0.52192	0.06355	0.51588
3	0	1	1	0.11980	-0.08025	0.52991	0.47995	0.06248	0.51561
4	0	0	0	0.09185	-0.01015	0.52295	0.49746	0.06319	0.51579

n	$\frac{\partial E_n}{\partial w_{13}}$	$\frac{\partial E_n}{\partial w_{12}}$	$\frac{\partial E_n}{\partial w_{11}}$	$\frac{\partial E_n}{\partial w_{23}}$	$rac{\partial E_n}{\partial w_{22}}$	$\frac{\partial E_n}{\partial w_{21}}$	$\frac{\partial E_n}{\partial w_{13}}$	$\frac{\partial E_n}{\partial w_{12}}$	$\frac{\partial E_n}{\partial w_{11}}$
1	0.12880	0.06497	0.06539	0.00196	0.00196	0.00196	0.00164	0.00164	0.00164
2	-0.12091	-0.06310	-0.06054	-0.00184	0.00000	-0.00184	-0.00154	0.00000	-0.00154
3	-0.12098	-0.05806	-0.06411	-0.00184	-0.00184	0.00000	-0.00154	-0.00154	0.00000
4	0.12882	0.06408	0.06737	0.00196	0.00000	0.00000	0.00163	0.00000	0.00000

$$\frac{\partial E}{\partial w} = \sum_{n=1}^{N} \frac{\partial E_n}{\partial w}$$

$$\frac{\partial E}{\partial w} = \sum_{n=1}^{N} \frac{\partial E_n}{\partial w}$$
0.01573 | 0.00789 | 0.00811 | | 0.00024 | 0.00012 | 0.00012 | 0.00019 | 0.00010 | 0.00010

4. Implement the error back propagation algorithm for the y = x(1 - x) neural network on slide 12 in "9-3. Neural Networks-EBP-3.pptx". You may change the number of hidden nodes, iterations, learning rate. Submit the followings:

- the code
- the final values of weights
- draw a graph for the output of neural network for x = 0.00, 0.01, 0.02, 0.03, 0.04, ..., 1

- the final values of weights

Hidden layer 1층, 노드 수는 3개로 구성하였다. 그 중 한 노드는 무조건 1을 주는 노드이기에 이 노드에 연결된 weight를 제외하면 final values of weights는 아래와 같이 된다.

w0[0][0] = 5.36, w0[0][1] = -5.47

w0[1][0] = 5.72, w0[1][1] = -0.12

w1[0] = -14.81, w1[1] = 13.07, w1[2] = -8.70

이를 그림으로 표현하면 아래와 같이 되었다.

- draw a graph for the output of neural network for x = 0.00, 0.01, 0.02, 0.03, 0.04, ..., 1

Iteration = 100000 으로 진행하였다. X=0, 1 부분에서 살짝 올라가긴 하지만 우리가 원하는 그래

프와 거의 일치하는 그래프가 나왔다. 해당 그래프의 값들은 아래 표와 같다.

0.01 0.08 0.02 0.1 0.03 0.11 0.04 0.13 0.05 0.15 0.06 0.18 0.07 0.21 0.08 0.24 0.09 0.27 0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88 0.33	0	0.07	
0.03 0.11 0.04 0.13 0.05 0.15 0.06 0.18 0.07 0.21 0.08 0.24 0.09 0.27 0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.01	0.08	
0.04 0.13 0.05 0.15 0.06 0.18 0.07 0.21 0.08 0.24 0.09 0.27 0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.02	0.1	
0.05 0.15 0.06 0.18 0.07 0.21 0.08 0.24 0.09 0.27 0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.03	0.11	
0.06 0.18 0.07 0.21 0.08 0.24 0.09 0.27 0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.04	0.13	
0.07 0.21 0.08 0.24 0.09 0.27 0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.05	0.15	
0.08 0.24 0.09 0.27 0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.06	0.18	
0.09 0.27 0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.07	0.21	
0.1 0.31 0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.08	0.24	
0.11 0.34 0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.09	0.27	
0.12 0.38 0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.1	0.31	
0.13 0.42 0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.11	0.34	
0.14 0.46 0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.12	0.38	
0.15 0.5 0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.13	0.42	
0.16 0.54 0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.14	0.46	
0.17 0.58 0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.15	0.5	
0.18 0.61 0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.16	0.54	
0.19 0.65 0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.17	0.58	
0.2 0.68 0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.18	0.61	
0.21 0.71 0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.19	0.65	
0.22 0.73 0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.2	0.68	
0.23 0.76 0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.21	0.71	
0.24 0.78 0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.22	0.73	
0.25 0.8 0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.23	0.76	
0.26 0.81 0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.24	0.78	
0.27 0.83 0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.25	0.8	
0.28 0.84 0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.26	0.81	
0.29 0.86 0.3 0.87 0.31 0.88 0.32 0.88	0.27	0.83	
0.3 0.87 0.31 0.88 0.32 0.88	0.28	0.84	
0.31 0.88 0.32 0.88	0.29	0.86	
0.32 0.88	0.3	0.87	
	0.31	0.88	
0.33 0.89	0.32	0.88	
	0.33	0.89	

0.34	0.9
0.35	0.9
0.36	0.91
0.37	0.91
0.38	0.92
0.39	0.92
0.4	0.93
0.41	0.93
0.42	0.93
0.43	0.93
0.44	0.93
0.45	0.94
0.46	0.94
0.47	0.94
0.48	0.94
0.49	0.94
0.5	0.94
0.51	0.94
0.52	0.94
0.53	0.94
0.54	0.94
0.55	0.93
0.56	0.93
0.57	0.93
0.58	0.93
0.59	0.93
0.6	0.92
0.61	0.92
0.62	0.92
0.63	0.91
0.64	0.91
0.65	0.9
0.66	0.9
0.67	0.89

0.68	0.88
0.69	0.87
0.7	0.86
0.71	0.85
0.72	0.84
0.73	0.83
0.74	0.81
0.75	0.8
0.76	0.78
0.77	0.76
0.78	0.73
0.79	0.71
0.8	0.68
0.81	0.65
0.82	0.62
0.83	0.58
0.84	0.54
0.85	0.51
0.86	0.47
0.87	0.43
0.88	0.39
0.89	0.35
0.9	0.31
0.91	0.27
0.92	0.24
0.93	0.21
0.94	0.18
0.95	0.15
0.96	0.13
0.97	0.11
0.98	0.09
0.99	0.08
1	0.06

- the code

아래는 작성된 코드 내용이다. 따로 첨부파일로도 압축되어 있다.

#include <iostream>

```
#include <cstdlib>
#include <ctime>
#include <cmath>
#define NUM_TDATA
                                                                               11
using namespace std;
int main(void) {
                            srand(time(NULL));
                            int num;
                            double w0[2][2] = {0}; //첫번째 weight 층
                            double w1[3] = {0}; //두번째 weight 층
                            double h[3] = \{0, 0, 1\}; // hidden layer output
                            double o[NUM_TDATA] = {0}; //output layer. [4]는 test data가 4개이기 때문
                            double net_x1[2] = {0}; // 첫번째 hidden layer의 sum
                            double e_w0[NUM_TDATA][2][2] = {0}; // 첫번째 weight층의 dE/dw; [4]는 test data가
4개이기 때문
                            double e_w1[NUM_TDATA][3] = {0}; // 두번째 weight층의 dE/dw
                            double sum:
                            double I_rate = 0.5; // learning rate
                            double x[NUM\_TDATA][2] = \{ \{0.00, 1\}, \{0.10, 1\}, \{0.20, 1\}, \{0.30, 1\}, \{0.40, 1\}, \{0.50, 1\}, \{0.60, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.10, 1\}, \{0.1
1}, {0.70, 1}, {0.80, 1}, {0.90, 1}, {1.00, 1} }; // xor 학습 데이터
                            double t[NUM_TDATA] = { 0.00, 0.36, 0.64, 0.84, 0.96, 1.00, 0.96, 0.84, 0.64, 0.36, 0.00}; //
xor 학습 데이터의 답
                            cout<< "Input the num of Iteration : ";</pre>
                            cin>>num;
```

```
cout << endl;
cout << "Start Training..." << endl;</pre>
/* weight 랜덤하게
for(int i = 0; i < 2; i++) {
         for(int j = 0; j < 3; j++) {
                  w0[i][j] = (double) ( rand()%2000 - 1000 ) / 1000;
         }
}
for(int i = 0; i < 3; i++) {
         w1[i] = (double) ( rand()%2000 - 1000 ) / 1000;
}
*/
//ppt에 주어진 weight값
w0[0][0] = -0.089; w0[0][1] = 0.028; w0[1][0] = 0.098; w0[1][1] = -0.07;
w1[0] = 0.056; w1[1] = 0.067; w1[2] = 0.016;
for(int i = 0; i < num; i++) {
         for(int j = 0; j < NUM_TDATA; j++) {
                  //Step 1.
                  net_x1[0] = x[j][0]*w0[0][0] + x[j][1]*w0[0][1];
                  net_x1[1] = x[j][0]*w0[1][0] + x[j][1]*w0[1][1];
                  h[0] = 1/(1 + exp(-net_x1[0]));
                  h[1] = 1/(1 + exp(-net_x1[1]));
                  h[2] = 1;
                  net_x2 = h[0]*w1[0] + h[1]*w1[1] + h[2]*w1[2];
```

```
o[j] = 1/(1 + exp(-net_x2));
                                                                                                                     //Step 2.
                                                                                                                      for(int k = 0; k < 3; k++) {
                                                                                                                                                            e_w1[j][k] = -(t[j] - o[j]) * o[j] * (1 - o[j]) * h[k];
                                                                                                                                                            //cout << "e_w1" << j << k << " : " << e_w1[j][k] << endl;
                                                                                                                     }
                                                                                                                      for(int k = 0; k < 2; k++) {
                                                                                                                                                             for(int I = 0; I < 2; I++) {
                                                                                                                                                                                                     e_w0[j][k][l] = -x[j][l] * h[k] * (1 - h[k]) * ( w1[k] * (t[j] - h[k]) * ( w1[k] - h[k
o[j]) * o[j] * (1 - o[j]) );
                                                                                                                                                                                                    //cout << "e_w0" << j << k << l << " : " << e_w0[j][k][l]
 << endl;
                                                                                                                                                            }
                                                                                                                     }
                                                                              }
                                                                              //Step 3
                                                                              for(int j = 0; j < 2; j++) {
                                                                                                                     for(int k = 0; k < 2; k++) {
                                                                                                                                                             sum = 0;
                                                                                                                                                             for(int I = 0; I < NUM_TDATA; I++) {
                                                                                                                                                                                                    sum += e_w0[l][j][k];
                                                                                                                                                            }
                                                                                                                                                             w0[j][k] -= I_rate * sum;
                                                                                                                     }
                                                                              }
                                                                              for(int j = 0; j < 3; j++) {
                                                                                                                      sum = 0;
```

```
for(int I = 0; I < NUM_TDATA; I++) {
                           sum += e_w1[l][j];
                  }
                  w1[j] -= I_rate * sum;
        }
}
/*
//Print
cout << fixed;
cout.precision(2);
for(int i = 0; i < NUM_TDATA; i++) {
        cout << x[i][0] <<" : " << o[i] << endl;
}
cout < < endl;
*/
cout << "Training finish\foralln" << endl;
cout << "values of weight" << endl;</pre>
for(int i = 0; i < 2; i++) {
         for(int j = 0; j < 2; j++) {
                 cout << w0[i][j] << ' ';
         }
         cout << endl;
}
for(int i = 0; i < 3; i++) {
```

```
cout << w1[i] << ' ';
}
cout << endl;
cout << endl;
//Test
double result;
double v;
cout << "Start test!" << endl;</pre>
for(int i = 0; i <= 100; i++) {
         v = (double)i/100;
         //Test
         net_x1[0] = v^*w0[0][0] + 1^*w0[0][1];
         net_x1[1] = v^*w0[1][0] + 1^*w0[1][1];
         h[0] = 1/(1 + \exp(-net_x 1[0]));
         h[1] = 1/(1+exp(-net_x1[1]));
         h[2] = 1;
         net_x2 = h[0]*w1[0] + h[1]*w1[1] + h[2]*w1[2];
         result = 1/(1+\exp(-\text{net}_x2));
         cout << v <<"₩t" << result << endl;
}
cout << "Test Finished.";</pre>
return 0;
```

}