HPO	MLS	OLS	GEM	FSR(*)	PCR(AICc)	PLS(GMDL)	BST(AICc)	RBST(AIC)	BST(ICM)	RBST(ICM)
Ridge	automobile	95.52(8)	17.94(2)	19.91(6)	404.62(9)	18.17(3)	19.91(6)	19.10(5)	18.72(4)	17.60(1)
	fertility	2.21e+13(9)	109.04(8)	106.65(6)	106.25(4)	106.17(3)	106.65(6)	106.65(6)	106.10(2)	104.79(1)
	flow	1.79e + 8(9)	66.03(7)	64.26(3)	67.89(8)	64.45(5)	64.26(3)	64.26(3)	64.96(6)	63.94(1)
	forest	3.75e+10(9)	109.82(8)	102.13(4)	102.21(6)	101.42(1)	102.13(4)	102.13(4)	102.31(7)	101.76(2)
	servo	3.25e + 9(9)	63.55(8)	61.51(4)	61.38(2)	61.66(7)	61.51(4)	61.51(4)	60.28(1)	61.63(6)
	slump	7.37e + 8(9)	90.11(7)	86.94(4)	94.97(8)	86.52(1)	86.94(4)	86.94(4)	89.46(6)	86.65(2)
	traffic	7.81e+12(9)	47.18(7)	45.01(5)	47.22(8)	43.91(2)	45.01(5)	45.01(5)	43.26(1)	44.98(3)
	wine_red	3.20e+4(9)	64.95 (1)	65.01(4)	68.89(8)	65.93(7)	65.01(4)	65.01(4)	64.98(2)	65.03(6)
	wine_white	1.85e + 5(9)	73.08(1)	73.10(4)	74.78(8)	74.76(7)	73.10(4)	73.10(4)	73.11(6)	73.10(2)
Avg. Rank		(8.89)	(5.44)	(4.50)	(6.78)	(4.00)	(4.50)	(4.33)	(3.89)	(2.67)
SVR	automobile	6.89e+12(9)	39.11(7)	19.48(3)	420.25(8)	19.99(5)	19.48(3)	19.48(3)	19.39(1)	20.74(6)
	fertility	715.72(9)	106.37(3)	108.31(5)	122.70(8)	121.15(7)	108.31(5)	108.31(5)	103.77(2)	102.99(1)
	flow	3.71e + 9(9)	74.95(6)	69.56(3)	918.02(8)	68.17(2)	65.89 (1)	69.56(3)	72.36(5)	83.51(7)
	forest	427.50(9)	100.18(1)	101.88(4)	105.63(8)	100.88(2)	101.88(4)	101.88(4)	102.03(6)	102.14(7)
	servo	5.91e+15(9)	16.98(6)	15.07 (1)	20.48(8)	18.91(7)	15.07(1)	16.75(5)	15.10(3)	15.10(4)
	slump	3.52e+10(9)	99.10(7)	83.74(4)	571.01(8)	80.94(3)	79.90(2)	83.74(4)	78.87(1)	85.01(6)
	traffic	5.17e+4(9)	42.32(3)	57.27(7)	538.36(8)	40.92(1)	55.75(6)	47.10(4)	50.72(5)	41.02(2)
	wine_red	65.93(8)	60.32(4)	65.68(6)	68.98(9)	58.35(3)	61.60(5)	65.68(6)	57.45 (1)	57.67(2)
	wine_white	59.41(5)	62.79(7)	73.34(9)	71.67(8)	58.30(3)	58.81(4)	61.10(6)	58.04 (1)	58.16(2)
Avg. Rank		(8.44)	(4.89)	(4.89)	(8.11)	(3.67)	(3.50)	(4.61)	(2.78)	(4.11)
RF	automobile		19.07(7)	12.49(3)	407.79(9)	16.72(6)	12.49(3)	12.49(3)	12.27(1)	14.10(5)
	fertility	142.69(9)	97.08(1)	102.29(2)	111.04(7)	111.11(8)	107.67(6)	102.29(2)	102.42(4)	105.65(5)
	flow	133.57(8)	62.30(2)	67.06(5)	882.23(9)		67.06(5)	67.06(5)	67.35(7)	64.85(3)
	forest	266.18(9)	126.63(8)		104.31 (1)		123.56(6)	123.56(6)	108.86(3)	110.63(4)
	servo	28.74(9)	17.84 (1)	18.08(3)	22.66(7)		18.08(3)	18.08(3)	18.29(5)	19.35(6)
	slump	109.28(8)	68.30 (1)	71.35(4)	531.38(9)		71.35(4)	71.35(4)	74.45(7)	72.73(6)
	traffic	100.75(9)	43.77(2)	45.28(4)	72.05(8)	48.33(7)	45.28(4)	45.28(4)	42.76(1)	48.05(6)
	wine_red	59.71(7)	57.32(2)	59.09(5)	70.56(9)	61.65(8)	59.09(5)	59.09(5)	58.67(3)	57.25 (1)
	wine_white	60.12 (1)	61.09(7)	60.67(4)	69.18(9)	68.41(8)	60.67(4)	60.67(4)	60.53(2)	60.69(6)
Avg. Rank		(7.56)	(3.44)	(4.06)	(7.56)	(5.56)	(4.44)	(4.06)	(3.67)	(4.67)
Mean Rank		(8.30)	(4.59)	(4.48)	(7.48)	(4.41)	(4.15)	(4.33)	(3.44)	(3.81)

Table 2: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when OLS and GEM and the best stop criteria among AIC, AICc, BIC, HQIC, GMDL for FSR, PCR, PLS, BST and RBST and the novel stop criterion ICM for BST and RBST, taking into account some baseline systems (Ridge, SVR and RF) and the RS sampling strategy.