

	$\omega_{0}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2$	$-\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	0	0
$f_{0}^{#1}$ †	$\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	$2 \beta_2 k^2$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0^{-}}^{\#1}$ †	0	0	0	$\frac{\alpha_0}{2} + 4\beta_3 + (\alpha_2 + \alpha_3) k^2$

	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\sharp 1}{}_{lphaeta\chi}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_4)k^2$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_2)k^2$

Total #:	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
10	3	3	3	1	#	

Laglaniyani delisity 1-2 αο ω _{αχβ} ω ^{αβχ} - 2 αο ω ^{αβ} ω _δ ω ^{χδ} + 3 β1 ω ^{αβ} ω ^{χδ} α ω ^{χδ} α + 3 β2 ω ^{αβ} ω ω ^{χδ} α α α α ω ^{χδ} α ω ^{χδ} α ω ^{χδ} α α α α ω ^{χδ} α α α α α ω ^{χδ} α α α α α α α α α α α α α α α α α α α
--

	$\omega_{1^{+}lphaeta}^{\sharp 1}$	$\omega_{1^{+}lphaeta}^{\#2}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_1^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}$ α
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 8 \beta_3) + (\alpha_2 + \alpha_5) k^2$	$\frac{3\alpha_0-4\beta_1+16\beta_3}{6\sqrt{2}}$	$\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{2}{3}\left(\beta_1+2\beta_3\right)$	$\frac{2}{3}i(\beta_1+2\beta_3)k$	0	0	0	0
$f_1^{#1} \dagger^{\alpha\beta}$	$-\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	$-\frac{2}{3}\bar{i}\left(\beta_1+2\beta_3\right)k$	$\frac{2}{3}(\beta_1 + 2\beta_3)k^2$	0	0	0	0
$\omega_1^{\#_1} \dagger^{\alpha}$	0	0	0	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 2 \beta_2) + (\alpha_4 + \alpha_5) k^2$	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	0	$-\frac{1}{6}i(3\alpha_0-4\beta_1+4\beta_2)k$
$\omega_{1}^{#2} + \alpha$	0	0	0	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	$\frac{1}{3}\left(2\beta_1+\beta_2\right)$	0	$\frac{1}{3} \bar{l} \sqrt{2} (2 \beta_1 + \beta_2) k$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{6}$ i (3 α_0 - 4 β_1 + 4 β_2) k	$-\frac{1}{3}i\sqrt{2}(2\beta_1+\beta_2)k$	0	$\frac{2}{3} (2 \beta_1 + \beta_2) k^2$

	$\sigma_{0}^{\sharp 1}$	$ au_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$-\frac{4 \beta_2}{{\alpha_0}^2 + 2 \alpha_0 \beta_2 - 4 (\alpha_4 + \alpha_6) \beta_2 k^2}$	$\frac{i\sqrt{2}(\alpha_0+2\beta_2)}{-\alpha_0(\alpha_0+2\beta_2)k+4(\alpha_4+\alpha_6)\beta_2k^3}$	0	0
$ au_{0^{+}}^{#1}$ †	$\frac{i\sqrt{2}(\alpha_0+2\beta_2)}{\alpha_0(\alpha_0+2\beta_2)k-4(\alpha_4+\alpha_6)\beta_2k^3}$	$\frac{\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2}{\frac{1}{2} \alpha_0 (\alpha_0 + 2 \beta_2) k^2 + 2 (\alpha_4 + \alpha_6) \beta_2 k^4}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{#1}$ †	0	0	0	$\frac{2}{(x_0 + 8)(x_0 + 2)(x_0 + x_0) k^2}$

 $\frac{\frac{4}{3}}{\beta_1} \beta_1 \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\chi\beta} - \frac{2}{3} \beta_3 \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\chi\beta} +$ $\frac{2}{3} \beta_1 \partial^{\chi} f_{\zeta\delta} \partial^{\zeta} f_{\chi}^{\delta} + \frac{2}{3} \beta_3 \partial^{\chi} f_{\zeta\delta} \partial^{\zeta} f_{\chi}^{\delta}$

 $\chi \partial_{\zeta} \omega_{\delta}^{\zeta}{}_{\beta} + \alpha_{5} \partial^{\delta} \omega^{\beta \chi}{}_{\chi} \partial_{\zeta} \omega_{\delta}^{\zeta}{}_{\beta}$

Massive particle

Pole residue:	$(3 (\alpha_0^2 (3 \alpha_2 + 3 \alpha_5 + 2 \beta_1 + 4 \beta_3) - 8 \alpha_0 (\beta_1^2 + \alpha_2 (\beta_1 - 4 \beta_3) + \alpha_5 (\beta_1 - 4 \beta_3) - 4 \beta_3^2) + 16 (-4 \beta_1 \beta_3 (\beta_1 + 2 \beta_3) + \alpha_2 (\beta_1^2 + 8 \beta_3^2) + \alpha_5 (\beta_1^2 + 8 \beta_3^2)))))/$
	$8 \alpha_0 (\beta_1^2 + \alpha_2 (\beta_1 - 4 \beta_3) + \alpha_5 (\beta_1 - 4 \beta_3) - 4 \beta_3^2) +$
	$16(-4\beta_1\beta_3(\beta_1+2\beta_3)+\alpha_2(\beta_1^2+8\beta_3^2)+\alpha_5(\beta_1^2+8\beta_3^2))))/$
	$(2(\alpha_2 + \alpha_5)(\beta_1 + 2\beta_3)(3\alpha_0^2 - 12\alpha_0(\beta_1 - 2\beta_3) +$
	$16 (\alpha_5 \beta_1 + 2 \alpha_5 \beta_3 - 6 \beta_1 \beta_3 + \alpha_2 (\beta_1 + 2 \beta_3)))) > 0$
Polarisations:	3

Square mass:	$\frac{\frac{3(\alpha_0 - 4\beta_1)(\alpha_0 + 8\beta_3)}{16(\alpha_2 + \alpha_5)(\beta_1 + 2\beta_3)}}{16(\alpha_2 + \alpha_5)(\beta_1 + 2\beta_3)} > 0$
Spin:	1
Parity:	Even

Massive particle

Parity:

Odd

Pole residue:	$\begin{aligned} &-((3(\alpha_0^2(3\alpha_4 + 3\alpha_5 + 4\beta_1 + 2\beta_2) + \\ &4\alpha_0(-2\alpha_4\beta_1 - 2\alpha_5\beta_1 - 4\beta_1^2 + 2\alpha_4\beta_2 + 2\alpha_5\beta_2 + \beta_2^2) + \\ &8(-2\beta_1\beta_2(2\beta_1 + \beta_2) + \alpha_4(2\beta_1^2 + \beta_2^2) + \alpha_5(2\beta_1^2 + \beta_2^2))))/\\ &(2(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)(3\alpha_0^2 + 6\alpha_0(-2\beta_1 + \beta_2) + \\ &4(2\alpha_5\beta_1 + \alpha_5\beta_2 - 6\beta_1\beta_2 + \alpha_4(2\beta_1 + \beta_2))))) > 0 \end{aligned}$
Polarisations:	3
Square mass:	$\frac{\frac{3(\alpha_0 - 4\beta_1)(\alpha_0 + 2\beta_2)}{8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)}}{ 8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)} > 0$
Coin	

			1	+6	
	·~)´			`.~	
Parity:	Spin:	Square mass:	Polarisations: 5	Pole residue:	Massive particle
Even	2	$\frac{\alpha_0 (\alpha_0 - 4\beta_1)}{16 (\alpha_1 + \alpha_4) \beta_1} > 0$	5	$-\frac{2}{\alpha_0} + \frac{\alpha_1 + \alpha_4 + 2\beta_1}{2\alpha_1\beta_1 + 2\alpha_4\beta_1} > 0$	e

	.~)			±	
Parity:	Spin:	Square mass:	₂ Polarisations:	Pole residue:	Massive particle
Even	0	$\frac{\alpha_0 (\alpha_0 + 2\beta_2)}{4(\alpha_4 + \alpha_6)\beta_2} > 0$	1	$\frac{1}{\alpha_0} + \frac{\alpha_4 + \alpha_6 + 2\beta_2}{2\alpha_4\beta_2 + 2\alpha_6\beta_2}$	le

	.~)	$\frac{k^{\mu}}{k^{\mu}}$	3	$\frac{1}{5}$		
Parity:	Spin:	Square mass:	Polarisations:	Pole residue:	Massive particle	
Odd	0	$-\frac{\alpha_0+8\beta_3}{2(\alpha_2+\alpha_3)}>0$	1	$-\frac{1}{\alpha_2 + \alpha_3} > 0$	e	

Unitarity conditions

Massive particle Pole residue: $-\frac{1}{\alpha_2 + \alpha_3} > 0$ Polarisations: 1	? Massive Pole resi
1 1	Massive Pole resi
1 1 1	Massive Pole resi
1 1 1	Massive Pole resi
1 1	Massive Pole resi Polarisat
1 1 1	par due
$\begin{vmatrix} \alpha_2 + c \end{vmatrix}$	S: S: E:
	$\frac{1}{\alpha_2 + \epsilon}$

(Unitarity is demonstrably impossible)

	.~				
Parity:	Spin:	Square mass:	Polarisations:	Pole residue:	Massive particle
Odd	2	$\frac{\alpha_0 - 4\beta_1}{4(\alpha_1 + \alpha_2)} > 0$	5	$-\frac{1}{\alpha_1 + \alpha_2} > 0$	е

.~)		\cdot
	\searrow	
	\bigvee_{i}	_
		7
	$\langle \rangle$	_
.~/		\·~
	- ?	
Ро	? Pole residue:	Q
lari	le r	adı
sat	esi	rati
ion	du	C p
Polarisations: 2	Ω	Quadratic pole
2	$\frac{1}{\alpha_0}$,,,
	0 > 0	
	0	

 $\sigma_{2}^{\#1} \alpha \beta \chi$

0