VERSUCH 302

Brückenschaltung

Tabea Hacheney tabea.hacheney@tu-dortmund.de

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 30.11.2021 Abgabe: 07.12.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3				
2	Theorie 2.1 Wheatstonesche Brückenschaltung	3				
3	Durchführung	4				
4	Auswertung4.1 Wheatston'sche Messbrücke	5 5 6				
5	Diskussion	6				
6	Messwerte	7				
Lit	eratur 13					

1 Zielsetzung

In diesem Versuch werden Brückenschaltungen dazu verwendet verschiedene unbekannte Ohm'sche Widerstände, Kapazitäten und Induktivitäten zu bestimmen. Zudem wird die Wien-Robinson-Brücke dazu verwendet um die Frequenzabhängigkeit dieser Schaltung zu untersuchen.

Dabei werden bisher nur in der Theorie benutze Konzepte angewendet, wie beispielsweise die Abgleichbedingung und die Kirchhoff'schen Gesetze.

2 Theorie

Brückenschaltungen werden dazu benutzt, durch bereits bekannte Widerstände Unbekannte zu bestimmen. Zu diesen Widerständen zählen Ohm'sche Widerstände, induktive Widerstände und kapazitative Widerstände. Bei den letzteren Beiden handelt es sich um komplexe Widerstände.

Allgemein werden bei allen folgenden Schaltungen die Kirchhoffschen Gesetze

$$\sum_{k} I_k = 0 \tag{1}$$

$$\sum_{k} U_k = \sum_{k} I_k R_k \tag{2}$$

verwendet, wobei bei Gleichung 2 alle I_k im Uhzeigersinn als positiv und alle gegen den Uhzeigersinn als negativ zu werten sind.

Aus diesen grundlegenden Gesetzten Gleichung 1 und Gleichung 2 lässt sich die Abgleichbedingung herleiten:

$$R_1 R_4 = R_2 R_3 \tag{3}$$

Diese Formel ist nur erfüllt wenn die Brückenspannung minimal wird.

2.1 Wheatstonesche Brückenschaltung

Die meisten Brückenschaltungen bestehen aus einer Speisespannung U_S , bekannten Widerständen, einem unbekannten Widerstand und einem Spannungsmessgerät. Der einfachste Aufbau besteht aus drei bekannten und einem unbekannten Widerstand, welche wie in Abbildung 1 aufgebaut werden.

Bei Abbildung 1 handelt es sich um eine Wheatstonesche Brückenschaltung. Sie kann sowohl mit Gleichstrom, als auch mit Wechselstrom betrieben werden. Diese Schaltung zur Bestimmung des Widerstands R_X benutzt. Die Widerstände R_3 und R_4 können in diesem Fall durch ein Potentiometer ersetzt werden, da nur das Verhätnis der beiden Widerstände relevant zur Bestimmung von R_X ist.

[1]

Abbildung 1: Wheatstonesche Brückenschaltung

3 Durchführung

4 Auswertung

4.1 Wheatston'sche Messbrücke

Der relative Fehler für $\frac{R_3}{R_4}$ ist mit $0,5\,\%$ und der für R_2 ist mit $0,2\,\%$ angegeben. Die Werte für R_{14} und R_{13} sind in Tabelle 1 und 2 zu finden. Mit Hilfe von () lassen sich die Werte

$$\begin{split} R_{14} &= (704 \pm 631)\,\Omega \\ R_{13} &= (1724 \pm 1440)\,\Omega \end{split}$$

bestimmen. Die Fehler aus der Standarabweichung sind wesentlich größer als die angegeben relativen Fehler.

Tabelle 1: Messung von ${\cal R}_3$ und ${\cal R}_4$ für ${\cal R}_{14}$

R_2/Ω	R_3/Ω	R_4/Ω	R_{14}/Ω
332	243	757	106,6
664	392	608	428,1
1000	612	388	1577,3

Tabelle 2: Messung von ${\cal R}_3$ und ${\cal R}_4$ für ${\cal R}_{13}$

R_2/Ω	R_3/Ω	R_4/Ω	R_{13}/Ω
332	579	421	456,6
664	595	405	975,5
1000	789	211	3739,3

4.2 Kapazitätsmessbrücke

Der relative Fehler für R_2 beträgt 3% und der für C_2 ist mit 0,2% angegeben. Der relative Fehler des Potentiometers ist gleich geblieben. C_2 ist als $C_2=597\cdot 10^{-9}\,\mathrm{F}$ angegeben. Die Werte für C_8 und R_8 lassen sich in Tabelle 3 finden. Mit Hilfe von () und () sind C_8 und R_8 bestimmt als

$$C_8 = (578 \pm 146) \cdot 10^{-9} \,\mathrm{F}$$

$$R_8 = (787 \pm 73) \,\Omega$$

Auch hier sind die Fehler aus der Standarabweichung wesentlich größer als die angegebenen relativen Fehler.

Tabelle 3: Messung von C_8 und R_8

R_2/Ω	R_3/Ω	R_4/Ω	$C_8/10^{-9}{ m F}$	R_8/Ω
500	640	360	336	889
600	580	420	432	829
700	480	520	647	646
800	491	509	619	772
900	470	530	673	789
1000	440	560	760	786

4.3 Induktivitätsmessbrücke

Tabelle 4: Messung von L_{16} und R_{16}

R_2/Ω	R_3/Ω	R_4/Ω	$L_{16}/10^{-3}{\rm H}$	R_{16}/Ω
500	342	638	268,0	7,8
600	430	570	$452,\!6$	11,0
700	492	508	678,0	14,1
800	445	555	$641,\!4$	11,7
900	527	473	1002,7	16,3
1000	532	568	936,6	13,7

4.4 Maxwellbrücke

Tabelle 5: Messung von ${\cal L}_{16}$ und ${\cal R}_{16}$

R_3/Ω	R_4/Ω	$L_{16}/10^{-3}{\rm H}$	R_{16}/Ω
222	500	132,5	444
218	600	130,1	363
210	700	$125,\!4$	300
175	800	104,5	219
95	900	56,7	106
4	1000	0,2	4

4.5 Wien-Robinson-Brücke

Abbildung 2: Plot.

Siehe Abbildung 2!

5 Diskussion

6 Messwerte

Brückenschaltung	en
a) 1. Unbehannte: West 14	
R2: 1000 D	
R3, R4: 612	
Rz: 664 SZ	
K3.R4:392	ne
R ₂ :332 Q	201
Ls, Ry: 243	n
2. Unbeliannte: West 13	
Re: 1000 D Ks. Ru: 789	
K2: 332 52	
Ru, Ru: 579	
Rz: 664 , Rz, Ru: 595	

Abbildung 3: Messdaten 1

```
6) Wet 8 C2: 597nF
   Rz: 500 Rz. Ru: 640
              1 " : 580
   R2:600
   Ry: 700
               . :480
              " : 491
   Rg: 800
                 : 470
  Rt : 900
                : 448
  R2: 1000
 Wed 15 G: 597NF
 R; 500 R3, R4:
R2:600
" : 700
 : 800
: 1000
```

Abbildung 4: Messdaten 2

c) Not 16 Lx und Rx R: 50052 L2: 14,6 mlt Kz, Ru 342 R2: 600 SZ R3, Ru: 430 L: 700 sz R3, Ru: 492 R: 800 SZ R3, R4: 445 R, : 900 SZ Ry Ru: 527 12:1000 SL Hailu 532

Abbildung 5: Messdaten 3

\$10 Pr 000 Pr 50 St St	Date
d) West	(6
Rz: 1KD	
C4:597NF	
H5 1500 (34)	1/4/5/6/6/
## ## / / / / / / / / / / / / / / / / /	18/36/19
V/ 246///	18/1/26881
	700
Rz: 222	, Ry: 500 SZ
R 3: 238	, Ry: 600 SZ
R3: 210	1R4:700s
Rs: 175	, Ru: 800 52
(3: 95	1Ru . 90052
Rs: 4	Ry: 1000.

Abbildung 6: Messdaten 4

e)	e) $C = 660nF$ R' = 332Q 2R' = 664Q						
	R= 14 D						
Upr: 560	6=20	1 Us					
880 510	40	2500 V					
390	80 usr	2600					
EAR 150	160 /220 40	2700					
100	320 280 60	2750					
320	640 300	2300					
560	1280 7380	2600					
560	1560 P420	2600 260					
600	4405 5820	2600 2500					
580	10240	2600 2500					
400	20480	-2600 2300					
300	40 968 30000	2600 1000					
		K.POPP					

Abbildung 7: Messdaten 5

Literatur

 $[1] \quad \text{TU Dortmund. } \textit{Versuch zum Literaturverzeichnis. } 2014.$