Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Artem Gorodilov Naměřeno: 5. října 2023

Obor: Astrofyzika **Skupina:** Čt 8:00 **Testováno:**

Úloha č. 3: Elektrické pole, můstkové metody měření $T=24.5~^{\circ}\mathrm{C}$ odporu

p = 998 hPa

 $\varphi = 38 \%$

1. Zadání

Pomocí Wheatsonova můstku změřit odpor dvou rezistorů v sériovém a paralelním zapojení. Určit rozložení potenciálů v bezprostřední blízkosti dvou vodičů.

Porovnat získané experimentální výsledky s teoretickými.

2. Teorie

2.1. Měření odporu můstkovou metodou

K určení odporu rezistoru použijeme můstkovou metodu. Můstkový obvod je znázorněn na obrázku (??).

Rovnováha nastane, když galvanometrem G neprotéká žádný proud. V tomto případě platí vztah (1):

$$\frac{R_1}{R_2} = \frac{R_3}{R_4} \longrightarrow R_1 = \frac{R_3}{R_4} R_2 \tag{1}$$

V tomto experimentu jsem použil Wheatstonův můstek, v němž odpory R_3 a R_4 jsou nahrazeny reostatem, což je vodič délky l s variabilním kontaktem.

Schéma tohoto obvodu je na obrázku (??).

V tomto případě platí vztah (2) o odporu R_x :

$$R_x = \frac{a}{l-a}R_N \tag{2}$$

Obrázek (1) Obecné zapojení stejnosměrného můstku

Tímto můstkem budu měřit odpor dvou samostatných rezistorů. Poté změřím jejich odpor při sériovém a paralelním zapojení.

Při sériovém zapojení se odpor R_s vypočítá podle následujícího vzorce:

$$R_s = R_1 + R_2 \tag{3}$$

Nejistotu vypočítáme podle následujícího vzorce:

$$u(R_s) = \sqrt{u^2(R_1) + u^2(R_2)} \tag{4}$$

2.2. Rozložení potenciálu v okolí dvouvodičového vedení

Budu měřit rozložení elektrického potenciálu v blízkosti dvou vodičů v lázni s elektrolytem pomocí zařízení znázorněného na obrázku (??).

Netriviálním technickým řešením bylo připojení pohyblivého kontaktu, který je umístěn v rovině elektrolytové lázně a může se v ní volně pohybovat, ke grafickému tabletu, který bude snímat polohy pohyblivého kontaktu v rovině x y.

Každý bod na přímce příslušného potenciálu lze popsat veličinami r_1 a r_2 .

Poloměrem r_1 a r_2 je parametr λ , který lze získat z následujícího vzorce:

$$\lambda = e^{\left(\frac{2U}{\Delta U} - 1\right)ln\left(\frac{h+a}{R}\right)} \tag{5}$$

kde U je potenciál hladiny, ΔU je rozdíl napětí mezi vodiči, a je vzdálenost mezi středem vodiče a bodem měření potenciálu, h je vzdálenost mezi středy vodičů, R je poloměr vodičů (vodiče jsou válce).

Pro Apollonovy kružnice dále určím jejich y-novou souřadnici středu:

$$y_s = a\frac{\lambda^2 + 1}{\lambda^2 - 1} \tag{6}$$

$$a = \sqrt{h^2 - R^2} \tag{7}$$

A jejich poloměr:

$$r_s = \sqrt{y_s^2 - a^2} \tag{8}$$

Obrázek (3) Střídavý můstek pro měření v elektrolytické vaně (a). Náhradní schéma elektrolytické vany (b)

Obrázek (4) Výpočet potenciálu v bodě M od dvou válcových nekonečných vodičů s poloměrem R, mezi nimiž je rozdíl potenciálů U

Při paralelním zapojení se odpor R_p vypočítá podle následujícího vzorce:

$$R_p = \frac{R_1 R_2}{R_1 + R_2} \tag{9}$$

Nejistotu vypočítáme podle následujícího vzorce:

$$u(R_p) = \frac{1}{(R_1 + R_2)^2} \sqrt{R_1^4 u^2(R_1) + R_2^4 u^2(R_2)}$$
(10)

Při statistickém zpracování dat budu za hodnotu považovat aritmetický průměr a za nejistotu nejistotu aritmetického průměru.

3. Měření

3.1. Měření odporu můstkovou metodou

Po zapojení rezistoru podle obvodu znázorněného na obrázku $(\ref{eq:constraint})$ jsem změnou hodnoty a a změnou hodnot R_N získal hodnoty R_1 a R_2 podle vzorce (2).

Hodnota
$$l = 100.0(1) [cm]$$

a $[cm]$	$R_{N_1} [\Omega]$	$R_1 [\Omega]$	$R_{N_2} [\Omega]$	$R_2 [\Omega]$
30	240.0	102.9(5)	1580.0	677(3)
50	90.1	90.1(4)	680.0	680(3)
70	43.0	100.3(6)	294.0	686(4)

Tabulka (1) Odpory pro jednotlivé rezistory

Z tabulki (1) vyplývá, že hodnoty odporu rezistorů R_1 a R_2 se rovnají:

$$R_1 = 98(6) [\Omega]$$

 $R_2 = 681(4) [\Omega]$

Ze vzorců (3) a (5) vyplývá, že teoretické hodnoty odporů R_{T_s} a R_{T_p} se rovnají:

$$R_{T_s} = 779(7) [\Omega]$$

 $R_{T_p} = 85(4) [\Omega]$

a [cm]	$R_{N_s} [\Omega]$	$R_s [\Omega]$	$R_{N_p} [\Omega]$	$R_p [\Omega]$
30	1473.0	631(3)	260.0	111(6)
50	573.0	573(3)	88.2	88.2(4)
70	187.0	436(3)	34.4	87.3(5)

Tabulka (2) Odpory rezistorů v sériovém a paralelním zapojení

Z tabulki (2) vyplývá, že hodnoty odporu rezistorů R_s a R_p se rovnají:

$$R_s = (550 \pm 80) [\Omega]$$

 $R_p = (96 \pm 10) [\Omega]$

3.2. Rozložení potenciálu v okolí dvouvodičového vedení

Změnou hodnot U získám polohy ekvipotenciálních čar pro různé hodnoty směru. Poté získám teoretické hodnoty poloh ekvipotenciálních čar.

Z měření se získají hodnoty poloměrů elektrod R a vzdálenosti mezi nimi h:

$$R = 1.5 \ [cm] \\ h = 15 \ [cm] \\ a = 14.9 \ [cm] \\ \Delta U = 2 \ [V]$$

Pro výpočty Apollónových kružnic použiji vzorce (7), (8), (9), (10).

U [V]	λ	y_s [cm]	r_s [cm]
0.25	0.11	-15.3	3.2
0.5	0.22	-16.5	7.0
0.75	0.47	-23.5	18.2
1	1	-	-
1.25	2.11	23.5	18.2
1.5	4.47	16.5	7.0
1.75	9.44	15.3	3.2

Tabulka (3) Teoretické výpočty rozložení ekvipotenciálních čar

Dále do grafu zakreslím všechny ekvipotenciální body odpovídající jednotlivým napětím U. Ekvipotenciály získané z hodnot y_s a r_s vyneseme do grafu.

Získaný výsledek je vidět na obrázku (??).

Obrázek (5) Umístění ekvipotenciálů

4. Závěr

4.1. Měření odporu můstkovou metodou

Získané hodnoty odporu jednotlivých rezistorů $R_1=98(6)$ $[\Omega]$ a $R_2=681(4)$ $[\Omega]$ poměrně dobře odpovídají nominálním hodnotám uvedeným na rezistorech $R_{1nom}=101$ $[\Omega]$ a $R_{2nom}=670$ $[\Omega]$. Na druhé straně se teoretické $(R_{T_s}=779(7)$ $[\Omega],$ $R_{T_p}=85(4)$ $[\Omega])$ a experimentální $(R_s=(550\pm80)$ $[\Omega],$ $R_p=(96\pm10)$ $[\Omega])$ hodnoty odporů rezistorů v sériovém a paralelním zapojení od sebe výrazně liší (v rozmezí 1 σ). To může být způsobeno nepřesností měření. Například když byl R_N zvolen v závislosti na a, lze jej přesněji nastavit zvýšením přesnosti měření galvanometrem G.

4.2. Rozložení potenciálu v okolí dvouvodičového vedení

Jak je patrné z obrázku (??), teoretické a experimentální hodnoty ekvipotenciálů se neshodují. Zvláště výrazně se liší blíže ke středu mezi elektrodami. To může být způsobeno nepřesností měření vlnových minim na osciloskopu a také možným posunem polohy elektrod během měření.