Matematika I

02. február 2017 09:00

Meno a priezvisko: Podpis: Podpis:
Ročník: Študijný program:
1. (7b) Daná je všeobecná rovnica kužeľosečky $y^2 - 4x^2 + 8x - 8y - 4 = 0$. Doplňte
a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b) (1b) Typ kužeľosečky je
c) (3b) Napíšte súradnice
c_1) stredu kužeľosečky: c_2) ohnísk kužeľosečky: c_3) vrcholov kužeľosečky:
d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \ln(x^2 + y^2 - 1) + \sqrt{4 - x^2 - y^2}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \sqrt{x^2 + y^2 - 1} - \ln(4 - x^2 - y^2)$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, \mathrm{d}x \mathrm{d}y,$$

kde množina Mje trojuholník s vrcholmi $A=[1,1],\, B=[1,2]$ a C=[2,2].

Výsledok:

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave súradnice: $M = \left[2\sqrt{3}, \frac{\pi}{6}, -2\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [-3, -\sqrt{3}, -2]$$

c)
$$M = [3, -\sqrt{3}, -2]$$

b)
$$M = [3, \sqrt{3}, -2]$$

d)
$$M = [-3, \sqrt{3}, -2]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna diferenciálna rovnica (LDR) $y'' + 5y' + 4y = 2x + 1$.
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení LDR je
b) (2b) Napíšte tvar vhodného partikulárneho riešenia.
Partikulárne riešene je
c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie LDR je
$\lim_{[x,y]\to[1,1]} \frac{2-\sqrt{4-xy}}{xy}.$
$ m V\acute{y}sledok:$
7. (6b) Nájdite všeobecnú rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\sqrt{9-x^2-y^2}$ v bode $T=[-1,-2,z_0].$
Všeobecná rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y)=\frac{1}{x^2-2y^2}$, bod $A=[-1,1]$ a vektor $\vec{l}=(2,-2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=x^3+3xy^2-51x-24y$ a oblasť M . Oblasť M je mnohouholník $ABCD$, ktorého vrcholy majú súradnice $A=[0,0],\ B=[6,0],\ C=[2,2]$ a $D=[6,4].$	
a) Načrtnite oblasť M :	
Náčrt:	
Pomocou rovníc popíšte hranice oblasti M :	
(a) (2b) AB	
(b) (2b) AC	
(c) (2b) <i>BD</i>	
(d) (2b) CD	
b) (5b) Nájdite lokálne extrémy funkcie v oblasti M .	
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne	
c) Nájdite viazané lokálne extrémy funkcie na hraniciach oblasti $M.$ Na hranici	
(a) (3b) AB má funkcia $f(x,y)$ má v bode viazané lokálne	
(b) (3b) AC má funkcia $f(x,y)$ má v bode viazané lokálne	
(c) (3b) BD má funkcia $f(x,y)$ má v bode viazané lokálne	
(d) (3b) CD má funkcia $f(x,y)$ má v bode viazané lokálne	
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti M .	
Najväčšia hodnota funkcie $f(x,y)$ je:	
Najmenšia hodnota funkcie $f(x,y)$ je:	