A NOTE ON PRESENTABLE ∞-CATEGORIES

KEIMA AKASAKA

Abstract. We summarize key concepts and results on presentable ∞ -categories, focusing on their foundational aspects.

Contents

1. In	troduction transfer the second se	1
1.1.	Notations	1
2. Y	oneda's Lemma	1
2.1.	Small Simplicial Sets	1
2.2.	The Yoneda embedding	2
3. T	he ∞-Category of Ind-objects	4
3.1.	Filtered ∞ -Categories	4
3.2.	Compact Objects	4
3.3.	The ∞ -Category of Ind-objects	5
4. P	resentable ∞ -Categories	7
4.1.	Accessible ∞ -Categories	7
4.2.	Presentable ∞-Categories	8
4.3.	Compactly Generated ∞-Categories	9
Refere	ences	g

1. Introduction

We summarize key concepts and results on presentable ∞ -categories, focusing on their foundational aspects. We primarily refer to [HTT, Chapter 5], but we also make use of [KNP24; kerodon; Lan21].

Many categories which arise naturally is *large*: They have a class of objects. However, large categories \mathcal{C} can be determined by "small" categories \mathcal{C}_0 in some sense: That is, \mathcal{C} is the equivalent to the category of Ind-objects of \mathcal{C}_0 .

The aim of this note is to study these "good" large categories, called presentable categories in the setting of ∞ -categories.

- 1.1. Notations. From here all categories are assumed to be ∞ -categories. We let
 - An denote the category of small anima.
 - CAT denote the category of (not necessarily small) categories.
 - \bullet $\Pr^{\mathcal{L}}$ denote the category of presentable categories with left adjoint functors.

2. Yoneda's Lemma

2.1. Small Simplicial Sets. We recall the size conditions of simplicial sets. Let κ be a regular cardinal.

Definition 2.1 ([kerodon] Definition 03S2). Let K be a simplicial set. We will say that K is κ -small if the collection of non-degenerate simplices of K is κ -small as a set. We will say that K is small if it is κ -small for some κ .

Definition 2.2 ([HTT] Definition 5.4.1.3). Let \mathcal{C} be a category. We will say that \mathcal{C} is essentially κ -small if there exist a κ -small category \mathcal{C}' and an equivalence of categories $\mathcal{C}' \to \mathcal{C}$. We will say that \mathcal{C} is essentially small if it is essentially κ -small for some κ .

Definition 2.3 ([HTT] Section 5.4.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is locally κ -small if, for every pair of objects X and Y of \mathcal{C} , the mapping anima $\operatorname{Map}_{\mathcal{C}}(X,Y)$ is essentially κ -small. We will say that \mathcal{C} is locally small if it is locally κ -small for some κ .

Definition 2.4 ([HTT] Definition 1.2.13.4). Let \mathcal{C} be a category, and let $f: K \to \mathcal{C}$ be a diagram of simplicial sets. We will refer to an initial object in the category $\mathcal{C}_{f/}$ as a *colimit* for f. Dually, we will refer to a final object in the category $\mathcal{C}_{/f}$ as a *limit* for f. If K is κ -small, then a colimit for f is called κ -small.

Definition 2.5 ([HTT] Definition 5.1.5.7). Let \mathcal{C} be a category, and let \mathcal{C}' be a full subcategory of \mathcal{C} . We will say that \mathcal{C}' is *stable under colimits* if, for every small diagram $f: K \to \mathcal{C}$ which admits a colimit $\overline{f}: K^{\triangleright} \to \mathcal{C}$, then the map \overline{f} factors through \mathcal{C}' .

Let \mathcal{C} be a category with small colimits, and let S be a collection of objects of \mathcal{C} . We will say that S generates \mathcal{C} under colimits if the following condition is satisfied: For every full subcategory \mathcal{C}' of \mathcal{C} containing all elements of S, if \mathcal{C}' is stable under colimits, then \mathcal{C}' is equal to \mathcal{C} .

Let $f: S \to \mathcal{C}$ be a functor between categories. We will say that f generates \mathcal{C} under colimits if its image f(S) generates \mathcal{C} under colimits.

2.2. The Yoneda embedding.

Definition 2.6 ([Lan21] Definition 4.2.3). Let \mathcal{C} be a category. The twisted arrow category $\operatorname{TwAr}(\mathcal{C})$ of \mathcal{C} is the simplicial set defined by

$$\operatorname{TwAr}(\mathcal{C})_n := \operatorname{Hom}_{\operatorname{sSet}}([n] \star [n]^{\operatorname{op}}, \mathcal{C})$$

for every $n \geq 0$, where \star denotes the join operator.

Remark 2.7. Let C be a category. Then there are two projections

$$s: \operatorname{TwAr}(\mathcal{C}) \to \mathcal{C}$$
 and $t: \operatorname{TwAr}(\mathcal{C}) \to \mathcal{C}^{\operatorname{op}}$

which are defined as follows: They send each n-simplex σ of TwAr(\mathcal{C}) to the composition

$$[n] \hookrightarrow [n] \star [n]^{\operatorname{op}} \xrightarrow{\sigma} \mathcal{C}$$
 and $[n]^{\operatorname{op}} \hookrightarrow [n] \star [n]^{\operatorname{op}} \xrightarrow{\sigma} \mathcal{C}$.

respectively. Then these projections induce a right fibration

$$(s,t): \operatorname{TwAr}(\mathcal{C}) \to \mathcal{C} \times \mathcal{C}^{\operatorname{op}}.$$

As a consequence, for a category C, TwAr(C) is also a category.

Definition 2.8 ([Lan21] Definition 4.2.5). Let C be a category. We let

$$\operatorname{Map}_{\mathcal{C}}(-,-): \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \operatorname{An}$$

denote the functor obtained by the straightening of the right fibration (s,t): TwAr(\mathcal{C}) $\to \mathcal{C} \times \mathcal{C}^{op}$.

Definition 2.9 ([Lan21] Definition 4.2.9). Let C be a category. We let

$$\sharp : \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An})$$

denote the right adjoint functor to $\operatorname{Map}_{\mathfrak{C}}(-,-): \mathfrak{C}^{\operatorname{op}} \times \mathfrak{C} \to \operatorname{An}$. We will refer to it as the (contravariant) Yoneda embedding. Similarly, we can define the covariant Yoneda embedding

$$\mathfrak{Z}: \mathfrak{C}^{\mathrm{op}} \to \mathrm{Fun}(\mathfrak{C}, \mathrm{An})$$

as the right adjoint functor to $\operatorname{Map}_{\mathcal{C}}(-,-): \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \operatorname{An}$.

There are other constructions of the Yoneda embedding. These are at least objectwise equivalent to each other.

Remark 2.10. Recall that there exists the adjunction between the 1-category sSet of simplicial sets and the 1-category Cat_{Δ} of sSet-enriched 1-categories:

$$\mathfrak{C}: \mathrm{sSet} \rightleftarrows \mathrm{Cat}_{\Delta}: \mathrm{N}_{\Delta}$$

where \mathfrak{C} is the rigidification functor and N_{Δ} is the simplicial nerve or (homotopy) coherent nerve.

Construction 2.11 ([HTT] Section 5.1.3). Let K be a simplicial set. We have a simplicial functor

$$\mathfrak{C}[K]^{\mathrm{op}} \times \mathfrak{C}[K] \to \mathrm{Kan} : (X,Y) \mapsto \mathrm{Sing}|\, \mathrm{Map}_{\mathfrak{C}[K]}(X,Y)|$$

where Kan is the 1-category of anima. The functor \mathfrak{C} , in general, does not commute with products, but there is a natural map

$$\mathfrak{C}[K^{\mathrm{op}} \times K] \to \mathfrak{C}[K]^{\mathrm{op}} \times \mathfrak{C}[K].$$

Thus we can obtain a simplicial functor

$$\mathfrak{C}[K^{\mathrm{op}} \times K] \to \mathfrak{C}[K]^{\mathrm{op}} \times \mathfrak{C}[K] \to \mathrm{Kan}.$$

Using the adjunction $\mathfrak{C} \dashv N_{\Delta}$ and the fact that $An \simeq N_{\Delta}(Kan)$, we get a map of simplicial sets

$$K^{\mathrm{op}} \times K \to \mathrm{An}$$
.

By further using the adjunction $(K^{op} \times -) \dashv \operatorname{Fun}(K^{op}, -)$, we have a map

$$\sharp: K \to \operatorname{Fun}(K^{\operatorname{op}}, \operatorname{An}).$$

We will refer to the functor \sharp constructed above (or more generally, to every functor equivalent to j) as the (contravariant) Yoneda embedding. Similarly, we can define the (covariant) Yoneda functor $\sharp : K^{\mathrm{op}} \to \mathrm{Fun}(K, \mathrm{An})$.

Proposition 2.13 ([HTT] Proposition 5.1.3.2). Let \mathcal{C} be a small category. Then the Yoneda embedding \sharp preserves small limits which exist in \mathcal{C} .

For a category \mathcal{C} , Fun(\mathcal{C}^{op} , An) is freely generated by the Yoneda embedding \sharp under small colimits.

Theorem 2.14 ([HTT] Theorem 5.1.5.6). Let C be a small category, and let D with small colimits. Then the functor \bot induces an equivalence of categories

$$\operatorname{Fun}^{\operatorname{colim}}(\operatorname{Fun}(\mathfrak{C}^{\operatorname{op}},\operatorname{An}),\mathcal{D}) \to \operatorname{Fun}(\mathfrak{C},\mathcal{D}).$$

The inverse is given by a left Kan extension along \sharp .

$$\begin{array}{ccc}
\operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An}) \\
& & \operatorname{Lan}_{\sharp} f \\
& & \operatorname{C} \xrightarrow{f} \mathcal{D}
\end{array}$$

4

3. The ∞ -Category of Ind-objects

3.1. Filtered ∞ -Categories.

Definition 3.1 ([HTT] Definition.5.3.1.7). Let \mathcal{I} be a category. We will say that \mathcal{I} is κ -filtered if, for every κ -small simplicial set K and every diagram $f: K \to \mathcal{I}$, there exists a map $\overline{f}: K^{\triangleright} \to \mathcal{I}$ extending f.

$$K \xrightarrow{f} \mathfrak{I}$$

$$i \downarrow \qquad \qquad f$$

$$K^{\triangleright}$$

We will say that \mathcal{C} is *filtered* if it is ω -filtered. If a category \mathcal{I} is κ -filtered, then a diagram $\mathcal{I} \to \mathcal{C}$ is called κ -filtered. Similarly, in this case, a colimit for $\mathcal{I} \to \mathcal{C}$ is called κ -filtered.

Remark 3.2 ([HTT] Remark.5.3.1.9). Let C be a category. The following conditions are equivalent:

- (1) The category \mathcal{C} is κ -filtered.
- (2) For every diagram $f: K \to \mathcal{C}$ where K is a κ -small simplicial set, the category $\mathcal{C}_{f/}$ is not empty.

Let $q: \mathcal{C} \to \mathcal{C}'$ be a categorical equivalence. It is obvious that $\mathcal{C}_{p/}$ is not empty if and only if $\mathcal{C}_{qp/}$ is not empty. Consequently, \mathcal{C} is κ -filtered if and only if \mathcal{C}' is κ -filtered.

We provide a characterization of κ -filtered categories using colimit diagrams.

Definition 3.3 ([HTT] Definition.5.3.3.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is κ -closed if every diagram $p: K \to \mathcal{C}$ where K is a κ -small simplicial set, admits a colimit $\overline{p}: K^{\triangleright} \to \mathcal{C}$.

If a category \mathcal{C} is κ -closed, we can construct κ -small colimits functionally.

Construction 3.4. Let \mathcal{C} be a category, and let K be a simplicial set. Suppose that every diagram $p:K\to\mathcal{C}$ admits a colimit in \mathcal{C} . We let \mathcal{D} denote the full subcategory of $\operatorname{Fun}(K^{\triangleright},\mathcal{C})$ spanned by the colimit diagrams. [HTT] Proposition.4.3.2.15 implies that the restriction $\mathcal{D}\to\operatorname{Fun}(K,\mathcal{C})$ is a trivial fibration. Thus it has a section $s:\operatorname{Fun}(K,\mathcal{C})\to\mathcal{D}$. Let $\operatorname{ev}_{\infty}:\operatorname{Fun}(K^{\triangleright},\mathcal{C})\to\mathcal{C}$ be a functor defined by evaluation at the cone point of K^{\triangleright} . We will refer to the composition

$$\operatornamewithlimits{colim}_K : \operatorname{Fun}(K, \mathfrak{C}) \xrightarrow{s} \mathfrak{D} \subseteq \operatorname{Fun}(K^{\triangleright}, \mathfrak{C}) \xrightarrow{\operatorname{ev}_{\infty}} \mathfrak{C}$$

as a *colimit functor* for p.

Proposition 3.5 ([HTT] Proposition.5.3.3.3). Let \mathcal{I} be a category. The following conditions are equivalent:

- (1) The category \mathcal{I} is κ -filtered.
- (2) The colimit functor colim: Fun(\mathcal{I}, An) \to An preserves κ -small limits.

3.2. Compact Objects.

Definition 3.6 ([HTT] Definition.5.3.4.5). Let $\mathfrak C$ with κ -filtered small colimits, and let $f: \mathfrak C \to \mathfrak D$ be a functor of categories. We will say that f is κ -continuous if it preserves κ -filtered colimits. Let $\mathfrak C$ be a category with κ -filtered colimits, and let X be an object of $\mathfrak C$. We will say that X is κ -compact if the functor $\mathfrak L_X: \mathfrak C \to \mathrm{An}$ is κ -continuous. We will say that X is compact if it is ω -compact.

Remark 3.7. In [KNP24], they define a κ -compact object X as follows: We will say that X is κ -compact if the canonical map

$$\operatorname{colim}_{i \in \mathcal{I}} \operatorname{Map}_{\mathcal{C}}(X, Y_i) \to \operatorname{Map}_{\mathcal{C}}(X, \operatorname{colim}_{i \in \mathcal{I}} Y_i)$$

is an equivalence for every κ -filtered small diagram $Y: \mathcal{I} \to \mathcal{C}$.

Notation 3.8 ([HTT] Notation.5.3.4.6). Let \mathcal{C} be a category with κ -filtered colimits. We let \mathcal{C}^{κ} denote the full subcategory of \mathcal{C} spanned by the κ -compact objects of \mathcal{C} .

Proposition 3.9 ([HTT] Corollary.5.3.4.15). Let \mathcal{C} be a category with small κ -filtered colimits. Then \mathcal{C}^{κ} is stable under the κ -small colimits which exist in \mathcal{C} . That is, a κ -small colimit of the κ -compact objects is κ -compact.

Proof. Let $Y: \mathcal{I} \to \mathcal{C}$ be a κ -filtered small diagram, and let $X: \mathcal{J} \to \mathcal{C}$ be a κ -small diagram of κ -compact objects. We want to show that a map

$$\operatornamewithlimits{colim}_{i\in \mathbb{J}}\operatorname{Map}_{\mathfrak{C}}(\operatornamewithlimits{colim}_{j\in \mathcal{J}}X_j,Y_i)\to \operatorname{Map}_{\mathfrak{C}}(\operatornamewithlimits{colim}_{j\in \mathcal{J}}X_j,\operatornamewithlimits{colim}_{i\in \mathbb{J}}Y_i)$$

is an equivalence. We may write

$$\begin{aligned} \operatorname*{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\mathbb{C}}(\operatorname*{colim}_{j \in \mathbb{J}} X_{j}, Y_{i}) &\simeq \operatorname*{colim}_{i \in \mathbb{J}} \lim_{j \in \mathbb{J}} \operatorname{Map}_{\mathbb{C}}(X_{j}, Y_{i}) \\ &\simeq \lim_{j \in \mathbb{J}} \operatorname*{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\mathbb{C}}(X_{j}, Y_{i}) \\ &\simeq \lim_{j \in \mathbb{J}} \operatorname{Map}_{\mathbb{C}}(X_{j}, \operatorname*{colim}_{i \in \mathbb{J}} Y_{i}) \\ &\simeq \operatorname{Map}_{\mathbb{C}}(\operatorname*{colim}_{j \in \mathbb{J}} X_{j}, \operatorname*{colim}_{i \in \mathbb{J}} Y_{i}). \end{aligned}$$

3.3. The ∞ -Category of Ind-objects. We showed that the category Fun(\mathcal{C}^{op} , An) is freely generated by the functor \mathcal{L} under small colimits (theorem 2.14). We next consider the analogue situation only under κ -filtered small colimits.

Definition 3.10 ([HTT] Section.5.3.5). Let \mathcal{C} be a small category. We define $\operatorname{Ind}_{\kappa}(\mathcal{C})$ as the smallest full subcategory of $\operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An})$ which contains the image of \mathcal{L} and is stable under κ -filtered colimits. When $\kappa = \omega$, we will write $\operatorname{Ind}(\mathcal{C})$ for $\operatorname{Ind}_{\kappa}(\mathcal{C})$. We will refer to $\operatorname{Ind}(\mathcal{C})$ as the category of $\operatorname{Ind}\operatorname{objects}$ of \mathcal{C} .

If a category \mathcal{C} admits κ -small colimits, we can easily characterize the category $\operatorname{Ind}_{\kappa}(\mathcal{C})$.

Proposition 3.11 ([HTT] Corollary.5.3.5.4). Let \mathcal{C} be a small category with κ -small colimits, and let $F: \mathcal{C}^{op} \to An$ be a functor. The following conditions are equivalent:

- (1) The functor F belongs to $\operatorname{Ind}_{\kappa}(\mathcal{C})$.
- (2) The functor F preserves κ -small limits.

In particular, if \mathcal{C} admits κ -small colimits, $\operatorname{Ind}_{\kappa}(\mathcal{C})$ admits small limits.

Proposition 3.12 ([HTT] Proposition.5.3.5.5). Let \mathcal{C} be a small category, and let $\mathcal{L}: \mathcal{C} \to \operatorname{Ind}_{\kappa}(\mathcal{C})$ be the Yoneda embedding. Then for every object X of \mathcal{C} , $\mathcal{L}X$ is κ -compact of $\operatorname{Ind}_{\kappa}(\mathcal{C})$.

Proof. Let $Y: \mathcal{I} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An})$ be a κ -filtered small diagram. We may write

$$\begin{split} \operatorname*{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\mathop{\not\downarrow} X, Y_i) &\simeq \operatorname*{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\operatorname{Fun}(\mathfrak{C}^{\operatorname{op}}, \operatorname{An})}(\mathop{\not\downarrow} X, Y_i) \\ &\simeq \operatorname*{colim}_{i \in \mathbb{J}} (Y_i(X)) \\ &\simeq (\operatorname*{colim}_{i \in \mathbb{J}} Y_i)(X) \\ &\simeq \operatorname{Map}_{\operatorname{Fun}(\mathfrak{C}^{\operatorname{op}}, \operatorname{An})}(\mathop{\not\downarrow} X, \operatorname*{colim}_{i \in \mathbb{J}} Y_i) \\ &\simeq \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\mathop{\not\downarrow} X, \operatorname*{colim}_{i \in \mathbb{J}} Y_i). \end{split}$$

We show that the category $\operatorname{Ind}_{\kappa}(\mathcal{C})$ is freely generated by \mathcal{C} under κ -filtered colimits.

Proposition 3.13 ([HTT] Proposition.5.3.5.10). Let \mathcal{C} be a small category, and let \mathcal{D} be a category with small κ -filtered colimits. Then the functor $\mathcal{L}: \mathcal{C} \to \operatorname{Ind}_{\kappa}(\mathcal{C})$ induces an equivalence of categories

$$\operatorname{Fun}^{\operatorname{colim}_{\kappa\text{-filt}}}(\operatorname{Ind}_{\kappa}(\mathcal{C}), \mathcal{D}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{D}).$$

The inverse is given by a left Kan extension ([HTT] Lemma.5.3.5.8).

$$\begin{array}{c} \operatorname{Ind}_{\kappa}(\mathfrak{C}) \\
 & \downarrow \\
 & \downarrow \\
 & \mathfrak{C} \xrightarrow{f} \mathfrak{D}
\end{array}$$

We will refer to this inverse as the $\operatorname{Ind}_{\kappa}$ -extension $F: \operatorname{Ind}_{\kappa}(\mathcal{C}) \to \mathcal{D}$ of the functor $f: \mathcal{C} \to \mathcal{D}$.

The following proposition will be useful throughout this paper.

Proposition 3.14 ([HTT] Proposition.5.3.5.11). Let $f: \mathcal{C} \to \mathcal{D}$ be a functor between categories. Suppose that \mathcal{D} admits small κ -filtered colimits. Let $F: \operatorname{Ind}_{\kappa}(\mathcal{C}) \to \mathcal{D}$ be the $\operatorname{Ind}_{\kappa}$ -extension of f. Then

- (1) If the functor f is fully faithful and its essential image consists of κ -compact objects of \mathcal{D} , then F is fully faithful.
- (2) If additionally to (1), the image of f generate $\mathcal D$ under κ -filtered colimits, then F is an equivalence.

Proof. (1): Let X and Y be objects of $\operatorname{Ind}_{\kappa}(\mathcal{C})$. From the definition of $\operatorname{Ind}_{\kappa}(\mathcal{C})$, X and Y are of the form

$$X \simeq \underset{i \in \mathcal{I}}{\operatorname{colim}} \ \sharp X_i, \ \ \text{and} \ Y \simeq \underset{i \in \mathcal{I}}{\operatorname{colim}} \ \sharp Y_j$$

for some filtered diagrams $\mathcal{I} \to \mathcal{C}$ and $\mathcal{J} \to \mathcal{C}$. We want to show that a map

$$\operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathcal{C})}(X,Y) \to \operatorname{Map}_{\mathcal{D}}(F(X),F(Y))$$

is an equivalence. We may write

$$\operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(X,Y) \simeq \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\operatorname{colim}_{i \in \mathfrak{I}} \sharp X_{i}, \operatorname{colim}_{j \in \mathfrak{J}} \sharp Y_{j})$$

$$\simeq \lim_{i \in \mathfrak{I}} \operatorname{colim}_{j \in \mathfrak{J}} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\sharp X_{i}, \sharp Y_{j})$$

$$\simeq \lim_{i \in \mathfrak{I}} \operatorname{colim}_{j \in \mathfrak{J}} \operatorname{Map}_{\mathfrak{C}}(X_{i}, Y_{j})$$

$$\simeq \lim_{i \in \mathfrak{I}} \operatorname{colim}_{j \in \mathfrak{J}} \operatorname{Map}_{\mathfrak{D}}(f(X_{i}), f(Y_{j}))$$

$$\simeq \operatorname{Map}_{\mathfrak{D}}(\operatorname{colim}_{i \in \mathfrak{I}} f(X_{i}), \operatorname{colim}_{j \in \mathfrak{J}} f(Y_{j}))$$

$$\simeq \operatorname{Map}_{\mathfrak{D}}(\operatorname{colim}_{i \in \mathfrak{I}} F(\sharp X_{i}), \operatorname{colim}_{j \in \mathfrak{J}} F(\sharp Y_{j}))$$

$$\simeq \operatorname{Map}_{\mathfrak{D}}(F(\operatorname{colim}_{i \in \mathfrak{I}} \sharp X_{i}), F(\operatorname{colim}_{j \in \mathfrak{J}} \sharp Y_{j}))$$

$$\simeq \operatorname{Map}_{\mathfrak{D}}(F(X), F(Y)).$$

(2): The essential image of F contains the image of f and is stable under small κ -filtered colimits. Thus F is essentially surjective.

Proposition 3.15 ([HTT] Proposition.5.3.5.14). Let \mathcal{C} be a small category with κ -small colimits. Then the functor $\mathcal{L}: \mathcal{C} \to \operatorname{Ind}_{\kappa}(\mathcal{C})$ preserves κ -small colimits which exist in \mathcal{C} .

Proof. Let $X: \mathcal{I} \to \mathcal{C}$ be a κ -small diagram. We want to show that a map

$$\underset{i\in\mathcal{I}}{\operatorname{colim}} \ \sharp X_i \to \ \sharp \ \underset{i\in\mathcal{I}}{\operatorname{colim}} \ X_i$$

is an equivalence. By Yoneda's lemma, it is enough to show that a map

$$\operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathcal{C})}(\sharp \operatorname{colim}_{i\in \mathcal{I}} X_i, F) \to \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathcal{C})}(\operatorname{colim}_{i\in \mathcal{I}} \sharp X_i, F)$$

is an equivalence for every functor $F: \mathcal{C}^{\mathrm{op}} \to \mathrm{An}$. We have equivalences

$$\begin{aligned} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\mathop{\sharp} \operatorname{colim}_{i \in \mathcal{I}} X_i, F) &\simeq F(\operatorname{colim}_{i \in \mathcal{I}} X_i) \\ \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\operatorname{colim}_{i \in \mathcal{I}} \mathop{\sharp} X_i, F) &\simeq \lim_{i \in \mathcal{I}} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\mathop{\sharp} X_i, F) &\simeq \lim_{i \in \mathcal{I}} F(X_i). \end{aligned}$$

Since F preserves κ -small limit from proposition 3.11, these are equivalent.

Corollary 3.16 ([HTT] Example.5.3.6.8). Let \mathcal{C} be a small category with κ -small colimits. Then $\operatorname{Ind}_{\kappa}(\mathcal{C})$ admits small colimits. Moreover, for every category \mathcal{D} with small colimits, the restriction along \mathcal{L} induces an equivalence of categories

$$\operatorname{Fun}^{\operatorname{colim}}(\operatorname{Ind}_{\kappa}(\mathcal{C}), \mathcal{D}) \to \operatorname{Fun}^{\operatorname{colim}_{\kappa\text{-filt}}}(\mathcal{C}, \mathcal{D}).$$

Proof. Every small colimit can be written as a κ -filtered colimit of κ -small colimits. It follows from the definition of $\operatorname{Ind}_{\kappa}(\mathcal{C})$ and proposition 3.15.

4. Presentable ∞-Categories

4.1. Accessible ∞ -Categories.

Definition 4.1 ([HTT] Definition.5.4.2.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is κ -accessible if there exist a small category \mathcal{C}^0 and an equivalence of categories

$$\operatorname{Ind}_{\kappa}(\mathcal{C}^0) \to \mathcal{C}.$$

We will say that \mathcal{C} is accessible if it is κ -accessible for some κ .

Definition 4.2 ([HTT] Definition.5.4.2.5). Let $f: \mathcal{C} \to \mathcal{D}$ be a functor between categories. We will say that f is *accessible* if it is κ -continuous for some κ .

We can characterize accessible categories as follows:

Proposition 4.3 ([HTT] Proposition.5.4.2.2). Let C be a category. Then C is accessible if and only if the following conditions are satisfied:

- (1) The category \mathcal{C} is locally small, and the category \mathcal{C}^{κ} is essentially small.
- (2) The category \mathcal{C} admits κ -filtered small colimits.
- (3) The category \mathcal{C}^{κ} generates \mathcal{C} under κ -filtered small colimits.

4.2. Presentable ∞ -Categories.

Definition 4.4 ([HTT] Definition.5.5.0.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is presentable if \mathcal{C} is accessible and admits small colimits.

Theorem 4.5 ([HTT] Theorem.5.5.1.1). Let C be a category. The following conditions are equivalent:

- (1) The category C is presentable.
- (2) The category \mathbb{C} is accessible, and the full subcategory \mathbb{C}^{κ} admits κ -small colimits for every regular cardinal κ .
- (3) There exists a regular cardinal κ such that \mathfrak{C} is κ -accessible, and \mathfrak{C}^{κ} admits κ -small colimits.
- (4) There exist a regular cardinal κ , a small category \mathcal{D} which admits κ -small colimits, and an equivalence of categories $\mathrm{Ind}_{\kappa}(\mathcal{D}) \to \mathfrak{C}$.
- (5) There exists a small category \mathbb{D} such that \mathbb{C} is an accessible localization of Fun(\mathbb{D}^{op} , An).

Remark 4.6. Let C be a presentable category. It follows from proposition 3.11 and theorem 4.5 that C admits small limits.

The following theorem is the adjoint functor theorem in the setting of ∞ -categories.

Theorem 4.7 ([HTT] Corollary.5.5.2.9). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor between presentable categories. Then

- (1) The functor F has a right adjoint if and only if F preserves small colimits.
- (2) The functor F has a left adjoint if and only if F is accessible and preserves small limits.

Theorem 4.7 suggests that an appropriate concept of morphisms between presentable categories are described by pairs of adjoint functors.

Definition 4.8 ([HTT] Definition.5.5.3.1). Let $Pr^{L} \subseteq CAT$ denote the (very big) category whose objects are presentable categories and whose morphisms are left adjoint (or colimit-preserving) functors.

The next results imply that the category \Pr^{L} is stable under various categorical constructions.

Example 4.9. The category An is presentable.

If \mathcal{C} is a small category, then the category $\operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An})$ is presentable ([HTT] Proposition.5.5.3.6).

If \mathcal{C} is a small category, then the categories $\mathcal{C}_{/f}$ and $\mathcal{C}_{f/}$ are presentable for every diagram $f: K \to \mathcal{C}$, where K is a small simplicial set. ([HTT] Proposition.5.5.3.10, 5.5.3.11).

Proposition 4.10 ([HTT] Proposition.5.5.3.6). Let \mathcal{C} be a small category, and let \mathcal{D} be a presentable category. Then the category Fun(\mathcal{C} , \mathcal{D}) is presentable.

Proposition 4.11 ([HTT] Proposition.5.5.3.8). Let \mathcal{C} and \mathcal{D} be presentable categories. Then the category Fun^{colim}(\mathcal{C}, \mathcal{D}) is presentable.

REFERENCES 9

Proposition 4.11 implies that the category $\operatorname{Fun}^{\operatorname{colim}}(\mathcal{C}, \mathcal{D})$ can be regarded as an internal mapping object in Pr^L . We can show that there exists a *tensor product* \otimes left adjoint to this functor. The operation \otimes endows a symmetric monoidal structure on Pr^L . Proposition 4.11 shows that this symmetric monoidal structure is closed.

Proposition 4.12 ([HTT] Proposition.5.5.3.13). The category Pr^{L} admits small colimits, and the inclusion $Pr^{L} \subseteq CAT$ preserves small limits.

4.3. Compactly Generated ∞ -Categories.

Definition 4.13 ([HTT] Definition.5.5.7.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is κ -compactly generated if \mathcal{C} is presentable and κ -accessible. We will say that \mathcal{C} is compactly generated if it is ω -compactly generated.

Proposition 4.14 ([HTT] Section.5.5.7). Let C be a category. The following conditions are equivalent:

- (1) The category \mathcal{C} is κ -compactly generated.
- (2) There exist a small category \mathcal{D} which admits κ -small colimits and an equivalence $\operatorname{Ind}_{\kappa}(\mathcal{D}) \to \mathcal{C}$. Moreover, we can choose \mathcal{D} to be the full subcategory \mathcal{C}^{κ} of κ -compact objects of \mathcal{C} .

Proposition 4.15 ([HTT] Proposition.5.5.7.2). Let \mathfrak{C} and \mathfrak{D} be categories with κ -filtered colimit, and $L: \mathfrak{C} \rightleftharpoons \mathfrak{D}: R$ be an adjunction. Then

- (1) If the functor R is κ -continuous, then the functor L preserves κ -compact objects.
- (2) If \mathcal{C} is κ -accessible and the functor L preserves κ -compact objects, then the functor R is κ -continuous.

References

[HTT] Jacob Lurie. *Higher Topos Theory*. 2009. URL: https://people.math.harvard.edu/~lurie/papers/highertopoi.pdf.

[kerodon] Jacob Lurie. Kerodon. https://kerodon.net. 2024.

- [KNP24] Achim Krause, Thomas Nikolaus, and Phil Pützstück. Sheaves on Manifolds. 2024.

 URL: https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/
 sheaves-on-manifolds.pdf.
- [Lan21] M. Land. Introduction to Infinity-Categories. Compact Textbooks in Mathematics. Springer International Publishing, 2021. ISBN: 9783030615246. URL: https://books.google.co.jp/books?id=1sMqEAAAQBAJ.