Contents

0.1	Permu	ntations and the symmetric group	1
	0.1.1	The symmetric group	1
	0.1.2	Permutation groups	1

0.1 Permutations and the symmetric group

A permutation is defined as a bijection from a set to itself.

For a set of size n, the number of permutations is n!. This is because there are n possibilities for the first item, n-1 for the second and so on.

0.1.1 The symmetric group

The set of all permutations forms a group, the symmetric group. This forms a group because:

- There is an identity element
- Each combination of permutations is also in the group.
- Each permutation has an inverse in the group.

0.1.2 Permutation groups

A subgroup of the symmetric group is called a permutation group.