

Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра автоматики та управління в технічних системах

Лабораторна робота №1 Моделювання методом Монте-Карло

Виконала	
студентка групи IT-91:	Перевірила:
Пуцай Катепина	Сокупьський О. Е.

Мета: Ознайомлення з методикою вирішення задач моделювання методом Монте-Карло.

- 1. Визначення площі фігури.
- А) Використовуючи будь-який програмний математичний пакет за допомогою методу Монте-Карло обчислити площу фігури (15) ромб а=4 α =30°
- Б) Результати експерименту необхідно виразити у вигляді довірчих інтервалів, що вказують величину відхилення від точного значення
- 2. Обчислення одномірних інтегралів.
- А) Використовуючи будь-який програмний математичний пакет за допомогою методу Монте-Карло обчислити одномірний інтеграл

15
$$\int_{0}^{3} \frac{\sqrt[3]{-7x^{4} - 3x + 11}}{\sqrt[4]{-2x^{6} - 14x - 8}}$$

- Б) Обчислити точне значення інтегралу за допомогою засобів символьної математики будь-якого програмного математичного пакету та порівняйте значення.
- 3. Обчислення багатомірних інтегралів.
- А) Використовуючи будь-який програмний математичний пакет за допомогою методу Монте-Карло обчислити багатомірний інтеграл

$$\int_{0}^{2} \int_{0}^{1} 7x_{1}^{2}x_{2}^{5}dx_{1}dx_{2}$$

Б) Обчислити точне значення інтегралу за допомогою засобів символьної математики будь-якого програмного математичного пакету та порівняйте значення

```
Лістинг програми:
```

```
import numpy as np
import pandas as pd
from scipy import integrate
# area of romb, side = 4, angle = 30
xmin, xmax = -4 * np.sin(np.deg2rad(15)), 4 *
np.sin(np.deg2rad(15)) # x domain
ymin, ymax = -4 * np.sin(np.deg2rad(75)), 4 *
np.sin(np.deg2rad(75)) # y domain
t = 2.2622 # t-crit
n \text{ random} = [100, 200, 500, 1000, 2000, 5000, 10000, 20000]
indexes = [*range(1, 11, 1)] + ["M", "D"]
results = pd.DataFrame(columns=n random, index=indexes)
# get n random points from domains
def random points(n):
    x random = (xmax - xmin) * np.random.random sample(n) + xmin
    y random = (ymax - ymin) * np.random.random_sample(n) + ymin
    points = np.concatenate((x random.reshape(n, 1),
y random.reshape(n, 1)), axis=1)
    return points.reshape(n, 2) # array of n*2
# get number of points inside the figure
def inside count(points):
    shift = 4 * np.sin(np.deg2rad(75)) # y shift
    coef = np.tan(np.deg2rad(75)) # angle
    inside = 0
    for p in points:
        cur shift = -shift if p[1] < 0 else shift # y pos/neg</pre>
check
        cur coef = -coef if p[0] * p[1] > 0 else coef # y and x
both pos/neg
        cur val = cur shift + cur coef * p[0] # function of one
side
        inside += int(p[1] < cur val) if p[1] > 0 else int(p[1] >
cur val) # above/below side line
    return inside
print("Trust intervals for n random points:")
for n in n random:
    for r in range(1, 11):
        results.loc[r][n] = (xmax-xmin) * (ymax-ymin) *
inside count(random points(n))/n # area
    mean = results[n].mean()
```

```
std = results[n].std()
    results.loc['M'][n] = mean
    results.loc['D'][n] = std
    print(f"{n}:\t{round(mean - np.sqrt(std) * t / np.sqrt(n), 4)}
< S < {round(mean + np.sqrt(std) * t / np.sqrt(n), 4)}")
print(results)
# integral
a, b = 0, 3
n = 1000000
x = np.random.uniform(a, b, n) # random points
f x = np.power(np.abs(np.abs(-7*x)**4 - 3*x + 11),
(1/3))/np.power(np.abs(np.abs(-2*x)**6 - 14*x - 8), (1/4)) # func
print(f"Monte Carlo:\t{np.mean(f x)*(b-a)}")
res = integrate.quad(lambda x: np.power(np.abs(np.abs(-7*x)**4 -
3*x + 11), (1/3))/np.power(np.abs(np.abs(-2*x)**6 - 14*x - 8),
(1/4)), a, b)
print(f"Scipy:\t\t{res[0]}")
# double integral
a, b = 0, 2
c, d = 0, 1
n = 10000000
x, y = np.random.uniform(c, d, n), np.random.uniform(a, b, n) #
random points
f xy = 7 * np.power(x, 2) * np.power(y, 5) # func
print(f"Monte Carlo:\t{np.mean(f xy)*(b-a)*(d-c)}")
res = integrate.dblquad(lambda x, y: 7 * np.power(x, 2) *
np.power(y, 5), a, b, c, d)
print(f"Scipy:\t\t{res[0]}")
```

Результат:

Trust intervals for n random points:								
100: 7	: 7.9776 < S < 8.3104							
200: 7	9: 7.6765 < S < 7.9075							
500: 7	00: 7.7983 < S < 7.9329							
1000: 8	9: 8.0181 < S < 8.0843							
2000: 7.957 < S < 7.9982								
5000: 8	00: 8.0085 < S < 8.0273							
10000: 8	0000: 8.0128 < S < 8.0243							
20000: 7	000: 7.97 < S < 7.9771							
10	00 200	500		5000	10000	20000		
1 8	3.48 7.36	8.352		8.0288	8.0304	7.9232		
2 7	7.84 7.92	7.552		7.9808	8.048	8.0112		
3 7	7.68 7.6	8.0		8.0608	7.9616	7.9128		
4 7	7.52 8.32	8.224		8.048	8.0224	7.9912		
5 8	3.16 7.84	6.912		8.0864	8.0	7.9352		
6 8	8.48 8.32	7.84		7.9744	7.992	7.9656		
7 7	7.68 6.72	7.712		8.0352	8.104	7.9488		
8 9	7.68	7.68		8.1568	8.136	7.9608		
9 8	7.68	7.968		7.8304	7.9536	8.0752		
10 7	7.84 8.48	8.416		7.9776	7.9376	8.0112		
M 8.	144 7.792	7.8656		8.01792	8.01856	7.97352		
D 0.541	0.521468	0.442583		0.086409	0.064276	0.049457		

Monte Carlo: 12.174645816321108

Scipy: 12.167463543418773

Monte Carlo: 24.878665152598664

Scipy: 24.888888888888

Висновки: було використано метод Монте-Карло для визначення площі ромба, інтегралу та подвійного інтегралу засобами мови Python.