Priority Queues and Binary Heaps (Part 1)

Binary heaps, types of heaps, and complexity analysis

Connor Baker

Priority Queues and Binary Heaps (Part 1)

Review: Queues

- First in, first out (FIFO)
- · Operations:
 - getFront(), enqueue(T t), and dequeue()
 - size() and isEmpty()
- Applications
 - Simulate a process with FIFO ordering
 - Scheduling the queue in a CPU, disk, or printer
 - Buffer for file I/O, network communication, or other transmissions
- A lot of the time, tasks in a queue have priorities
 - Dequeue should remove or return the one with the best priority
- Common priority queue operations
 - add(T t, int p) and enqueue(T t, int p): enqueue item t with priority p
 - peek() and findMin(): return the object with the best priority
 - * Per convention, lower is better
 - * Symmetric code if higher is better
 - dequeue() and deleteMin(): remove and return the object with the best priority

Priority Queue Implementation

Data Structure	enqueue(T t)	peek*	dequeue*	Notes
Unsorted List	O(1)	O(n)	O(n)	best priority can be any location
Sorted Array	O(n)	O(1)	O(1)	best priority at high index
Sorted Linked List	O(n)	O(1)	O(1)	best at head or tail
Multiple Queues	O(1)	O(m)	O(m)	-
Binary Search Tree	O(height)	O(height)	O(height)	min at left-most

- *: assuming best priority
- n: the number of items in a queue
- *m*: the number of priority levels

Connor Baker 1 of 8

Binary Heap

- A binary heap is a binary tree but not a binary search tree
- Differences:
 - Sort of sorted: each node is smaller than, or equal to, both its children
 - Must be a complete binary tree

Figure 1: BST Example

Figure 2: Binary Heap Example

Connor Baker 2 of 8

Sorted Binary Heap Example

Figure 3: Sorted Binary Heap Example

Heap Order

- Max heap
 - The node is always larger than, or equal to, any of its descendants
- Min heap
 - The node is always smaller than, or equal to, any of its descendants
- Idea: we want to find the min, or max, quickly
 - Keep at the root of the tree
 - Recursive definition: every subtree should have the largest, or smallest, item at the root of the subtree

Binary Heap Examples

- Is it a heap or not?
 - If it is, what kind of heap is it?

Figure 4: Examples

Connor Baker 3 of 8

Complete Trees

- Could only be missing nodes in their bottom row
- Nodes in the bottom row are as far lest as possible

Figure 5: Incomplete Trees

Figure 6: Complete Trees

Connor Baker 4 of 8

Trees and Heaps in Arrays

Figure 7: A complete binary tree and its array representation

- The root is at index 1
- Binary tree
 - left(i)= 2 * i
 right(i)= 2 * i + 1
 parent(i)= i / 2

Road Map

- Priority queue
 - insert(T t), findMin(), deleteMin()
- Heap
 - Complete binary tree
 - Heap order
 - * Min heap
 - * Max heap
 - Operations and complexity
 - * Insert: percolate up
 - * Delete: percolate down
- Heap sort

Connor Baker 5 of 8

Priority Queue Operations with Binary Heaps

- Use an internal T array[] for queue contents
 - Maintain min-heap order in array
 - Make sure it is always a complete tree
- T findMin()

```
- return array[root()];
```

- insert(T t, int p)
 - Insert at the end of the array, increment size
 - * Might violate the min-heap order property
 - Fix by swimming the new element up (percolate up)
- deleteMin()
 - Simply removing the root will leave a hole
 - We can swap the last value and the root to fill the hole
 - * **null** out the last value (which prevents loitering)
 - * Decrement the size
 - * The new root *might* not be minimal
 - Percolate the new root value down the tree
- Max heap follows the same ideas

Binary Heap Demo

- Starting from a min-heap like Example 2
 - Insert 50, 18, and 10
 - deleteMin()
- Starting form an empty max-heap
 - Insert 2, 3, 5, 3, and 9
 - deleteMax() five times

Operation Details

- Basic questions
 - With whom do we compare or swap?

Connor Baker 6 of 8

- When do we stop moving?
- Percolate up (bubble up)
 - Compare / swap with the parent
 - Halting condition: when we reach the top (the root) or no longer violate the heap order
- Percolate down (sink down)
 - Compare / swap with a child
 - Halting condition: when we reach the bottom (a leaf) or no longer violate the heap order

Weiss Code Example

```
1 /**
2 * Removes the smallest item in the priority queue.
3 * @return the smallest item.
    * @throws NoSuchElementException if empty.
5 */
6 public T remove() {
    T minItem = element();
7
     // Move the tail element to the root
8
    array[1] = array[currentSize--];
9
     // Sink the new root down to fix the heap order
     percolateDown(1);
12 }
13
14
    * Internal method to percolate down in the heap.
     * @param hole the index at which to percolate begins.
17
     */
18 private void percolateDown(int hole) {
19
     int child;
     T tmp = array[hole];
21
     // Decide which child to compare/swap
22
     for (; hole * 2 <= currentSize; hole = child) {</pre>
23
       child = hole * 2;
24
       if (child != currentSize && compare(array[child+1], array[child]) < 0) {</pre>
         child++;
25
       }
26
       // Keep swapping with children until parent-child comparison result is
28
       // satisfactory, or the bottom is reached
       if (compare(array[child], tmp) < 0) {</pre>
29
         array[hole] = array[child];
       } else {
```

Connor Baker 7 of 8

```
32     break;
33     }
34     array[hole] = tmp;
35     }
36 }
```

Complexity Analysis

- findMin() is clearly O(1)
- What about insert(T t) and deleteMin()?
 - Percolation does most of the work
 - Worst case: O(height)
 - * Complete binary tree: $O(\log(n))$
- Note: no get(T t) or remove(T t)

Priority Queues Comparison

Data Structure	enqueue(T t)	peek*	dequeue*	Notes
Unsorted List	O(1)	O(n)	O(n)	best priority can be any location
Sorted Array	O(n)	O(1)	O(1)	best priority at high index
Sorted Linked List	O(n)	O(1)	O(1)	best at head or tail
Multiple Queues	O(1)	O(m)	O(m)	-
Binary Search Tree	O(height)	O(height)	O(height)	min at left-most
Binary Heap	$O(\log(n))$	O(1)	$O(\log(n))$	best priority at root

- *: assuming best priority
- ullet n: the number of items in a queue
- ullet m: the number of priority levels

Connor Baker 8 of 8