Regression and Classification

PSC 8185: Machine Learning for Social Science

Iris Malone

January 24, 2021

Materials adapted from Sergio Ballacado and Rochelle Terman

Announcements

Problem Set 1 Released

Where We've Been:

Where We've Been:

• 2 classes of ML: supervised and unsupervised

Where We've Been:

- 2 classes of ML: supervised and unsupervised
- ullet 2 types of ML uses: inference and prediction

Where We've Been:

- · 2 classes of ML: supervised and unsupervised
- 2 types of ML uses: inference and prediction
- Model selection depends on model performance and bias-variance trade-off

Where We've Been:

- 2 classes of ML: supervised and unsupervised
- 2 types of ML uses: inference and prediction
- Model selection depends on model performance and bias-variance trade-off
- Model performance aims to minimize loss function $(y_i \hat{y}_i)$

Where We've Been:

- 2 classes of ML: supervised and unsupervised
- · 2 types of ML uses: inference and prediction
- Model selection depends on model performance and bias-variance trade-off
- Model performance aims to minimize loss function $(y_i \hat{y}_i)$

New Terminology:

- Supervised Learning
- · Prediction Problem
- · Loss Function
- Test MSE

Unit 1 Overview: Supervised Learning

Where We're Headed:

• Focus mostly on prediction problems

Unit 1 Overview: Supervised Learning

Where We're Headed:

- Focus mostly on prediction problems
- · Overview of different models:
 - Estimation Goals
 - · Basic Model Intuition
 - · Loss Function (and some technical details)

Unit 1 Overview: Supervised Learning

Where We're Headed:

- · Focus mostly on prediction problems
- · Overview of different models:
 - Estimation Goals
 - · Basic Model Intuition
 - Loss Function (and some technical details)
- · Overview of different model selection techniques:
 - · Advantages and Disadvantages
 - · Assessment/Performance Metrics
 - Potential Applications

Agenda

1. Review: Regression Methods

Estimation Goals

Model Assessment

2. Classification Methods

Estimation Goals

Conditional Expectation

3. Classification Models

Logistic

K-Nearest Neighbors

Linear Discriminant Analysis (LDA)

Regression vs Classification

Regression Problems:

Classification Problems:

Regression vs Classification

Regression Problems:

- · Predict quantitative or continuous outcome
- 1 Explanatory Variable o Bivariate Regression
- 2+ Explanatory Variables → Multivariate Regression
- Example: Stock Price, Test Scores, Vote Share

Classification Problems:

Regression vs Classification

Regression Problems:

- · Predict quantitative or continuous outcome
- 1 Explanatory Variable o Bivariate Regression
- 2+ Explanatory Variables → Multivariate Regression
- Example: Stock Price, Test Scores, Vote Share

Classification Problems:

- Predict qualitative, categorical, or discrete outcome
- 2 Discrete Outcome Classes \rightarrow Two-Class or Binary Classification Problem
- 3+ Discrete Outcome Classes o K-Class or Multi-Class Problem
- Example: Oscar Winner, Covid Exposure, Ethnic Exclusion

Review: Regression Methods

What is Linear Regression?

Linear regression aims to understand the linear relationship between quantitative response y and explanatory variable(s) x:

- Truth: $y \sim \beta_0 + \beta_1 d + \dots + \beta_p x_p + \epsilon_i$
- Estimate: $\hat{y} \sim \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots \hat{\beta}_p X_p$

What is Linear Regression?

Linear regression aims to understand the linear relationship between quantitative response y and explanatory variable(s) x:

- Truth: $y \sim \beta_0 + \beta_1 d + \cdots + \beta_p x_p + \epsilon_i$
- Estimate: $\hat{y} \sim \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots \hat{\beta}_p X_p$
- Interpretation: β_i explains how a one-unit increase in x_i is associated with a change in y (controlling for other factors)

What is Linear Regression?

Linear regression aims to understand the linear relationship between quantitative response y and explanatory variable(s) x:

- Truth: $y \sim \beta_0 + \beta_1 d + \cdots + \beta_p x_p + \epsilon_i$
- Estimate: $\hat{y} \sim \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots \hat{\beta}_p X_p$
- Interpretation: β_i explains how a one-unit increase in x_i is associated with a change in y (controlling for other factors)

Estimation Goals:

- 1. Infer how well explanatory variables X predict Y
- 2. Estimate parameters $(\beta_1,\ldots\beta_p)$ to minimize ϵ_i or $y_i-\hat{y}_i$

Estimate Parameters using Loss Function

Regression aims to estimate $\hat{\beta}_0$, $\hat{\beta}_1$, ... $\hat{\beta}_p$

- Estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ chosen to optimize least squares loss function.
- Loss function minimizes residual sum of squares (RSS)

•

$$RSS = \sum_{i=1}^{n} \epsilon_i^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i,1} - \dots \beta_p x_{ip})$$

Regression Assessment Tools

To assess the fit using RSS, we focus on the residuals:

- · Mean Squared Error
- Residual Standard Error (RSE)
- F-Test

Mean Squared Error (MSE)

• Main Idea: Determine how well model minimizes ϵ

Mean Squared Error (MSE)

- Main Idea: Determine how well model minimizes ϵ
- Estimation Equation:

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Mean Squared Error (MSE)

- Main Idea: Determine how well model minimizes ϵ
- Estimation Equation:

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Residual Standard Error (RSE)

· Estimation Equation:

$$\mathsf{RSE} = \sqrt{\frac{\mathsf{RSS}}{n-p-1}}$$

Residual Standard Error (RSE)

· Estimation Equation:

$$\mathsf{RSE} = \sqrt{\frac{\mathsf{RSS}}{n-p-1}}$$

- · Relation to MSE:
 - MSE $\approx \frac{1}{n}$ RSS
 - · Will produce similar results

F-Test

• Main Idea: Determine whether a variable or set of variables is important

F-Test

- Main Idea: Determine whether a variable or set of variables is important
- · Analysis of Variance Test:

$$F = \frac{\mathsf{RSS}_0 - \mathsf{RSS}_1/q}{\mathsf{RSS}_1/(n-p-1)}$$

- RSS₀ from Null or Base Model
- RSS₁ from Model 1 (more complex/incl. variable of interest)
- p is the number of variables in null model
- q is the number of new variables in model 1
- F-statistic tells us likelihood more complex model better fit to the data

Warning: R-Squared is a Poor Model Assessment Measure

 \mathbb{R}^2 tells us proportion of variation in Y explained by X

Warning: R-Squared is a Poor Model Assessment Measure

 \mathbb{R}^2 tells us proportion of variation in Y explained by X

$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}}$$

• TSS =
$$1 - \sum_{i=1}^{n} (y_i - \bar{y})$$

Warning: R-Squared is a Poor Model Assessment Measure

 \mathbb{R}^2 tells us proportion of variation in Y explained by X

$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}}$$

- TSS = $1 \sum_{i=1}^{n} (y_i \bar{y})$
- · Risks:
 - Adding more terms \to model always decreases RSS, but not TSS (essentially can't minimize ϵ_i^2 as much when there are more parameters)
 - R^2 rewards more complex models and overfitting
- Advice: $MSE > R^2$

Gauss-Markov Assumptions Often Violated:

1. Variables Interact or Non-Additive

- 1. Variables Interact or Non-Additive
- 2. Non-Linear Relationships

- 1. Variables Interact or Non-Additive
- 2. Non-Linear Relationships
- 3. Heteroskadsticity (Non-Normal Errors)

- 1. Variables Interact or Non-Additive
- 2. Non-Linear Relationships
- 3. Heteroskadsticity (Non-Normal Errors)
- 4. Collinearity

Limits to Linear Regression

Gauss-Markov Assumptions Often Violated:

- 1. Variables Interact or Non-Additive
- 2. Non-Linear Relationships
- 3. Heteroskadsticity (Non-Normal Errors)
- 4. Collinearity
- 5. High leverage/outlier observations

Classification Methods

What is a Classification Model?

Classification model aims to understand how different indicators (x) explain patterns in qualitative response y:

Truth: No fixed f to describe data

• Estimate: \hat{f} is "black box"

What is a Classification Model?

Classification model aims to understand how different indicators (x) explain patterns in qualitative response y:

- Truth: No fixed f to describe data
- Estimate: \hat{f} is "black box"

Estimation Goals:

- 1. Assess **conditional probability** of observing outcome given indicators $(P(y \mid x))$
- 2. Classify probabilities into distinct categories given threshold t $(I(P(y \mid x) > t))$, e.g.

$$P(y \mid x) \ge t = 1$$

$$P(y \mid x) < t = 0$$

Classification Model

Different Algorithms

Different Evaluation Tools

Classification Model

Different Algorithms

- Logit
- K-Nearest Neighbors (KNN)
- Linear Discriminant Analysis (LDA)

Different Evaluation Tools

Classification Model

Different Algorithms

- Logit
- K-Nearest Neighbors (KNN)
- Linear Discriminant Analysis (LDA)

Different Evaluation Tools

- · Accuracy (Classification Rate)
- Precision
- Recall
- Area Under the Curve (AUC)

Conditional Expectation \rightarrow Bayes Theorem

Main Idea: Our predicted probability $p(y \mid x)$ depends on available data and the model we use to fit the data.

 $outcome \propto model \times data$

$$p(y \mid x) \propto p(x \mid y)p(x)$$

- p(x): prior probability (data)
- $p(x \mid y)$: likelihood function (model)
- $p(y \mid x)$: posterior probability (outcome)

An Analogy

Question: Will the sun rise tomorrow?

Bayesian: Given prior information that the sun routinely rises p(yesterday), we can create a model $\hat{f} = p$ (yesterday | tomorrow) to make – with relative confidence – a posterior prediction that the sun will rise again p(tomorrow | yesterday).

How Bayes Theorem Affects Classification

We often use Bayes theorem to estimate classification model.

- Outcome variable is conditional probability $p(y \mid x)$
- May manipulate Bayes equation to estimate $p(y \mid x)$ given beliefs about data and model, e.g. LDA

3 Classification Models

So You Have a Classification Problem...

If you have a binary dependent variable, you could use a special type of linear regression \to Linear Probability Model

$$P(y=1 \mid x) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

So You Have a Classification Problem...

If you have a binary dependent variable, you could use a special type of linear regression \rightarrow Linear Probability Model $P(y=1 \mid x) = \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n$

Problems:

- · Allows probabilities outside [0, 1] range
- · Difficult to extend to more than 2 classes

So You Have a Classification Problem...

If you have a binary dependent variable, you could use a special type of linear regression \rightarrow Linear Probability Model $P(y=1 \mid x) = \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n$

Problems:

- Allows probabilities outside [0, 1] range
- Difficult to extend to more than 2 classes

Solution: Logistic regression?

3 Classification Models

- 1. Logistic
- 2. K-Nearest Neighbors
- 3. LDA

Logistic Regression

Main Aim:

- · Model a binary dependent variable using a logit function
- Assumes parametric relationship such that $P(y \mid x) = f(X\beta)$

Logistic Regression

Main Aim:

- · Model a binary dependent variable using a logit function
- Assumes parametric relationship such that $P(y \mid x) = f(X\beta)$

Estimation Goals:

- Assess probability of observing each outcome $P(y \mid x)$:
 - $Pr(y=1\mid x)$, e.g. event occurs, outcome present
 - $Pr(y=0 \mid x)$, e.g. event doesn't occur, outcome not present
- Estimate parameters $(\beta_1, \dots, \beta_p)$ to optimize maximum likelihood function

Logit Function

Given an input x_0 , we predict the response using a logit function:

$$\hat{y_0} = \operatorname{argmax}[P(y=1 \mid x=x_0)]$$

Logit Function

Given an input x_0 , we predict the response using a logit function:

$$\hat{y_0} = \operatorname{argmax}[P(y = 1 \mid x = x_0)]$$

Logit Function (Sigmoid Function):

$$P(y = 1 \mid x) = f(X\beta) = \frac{e^{X\beta}}{1 + e^{X\beta}} = \frac{1}{1 + e^{-X\beta}}$$

Fitting a logistic regression

We model the joint probability using logit function:

$$P(y = 1 \mid X) = \frac{e^{X\beta}}{1 + e^{X\beta}} = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$

$$P(y = 0 \mid X) = 1 - P(y = 1 \mid X) = \frac{1}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$

This is the same as using a linear model for the log odds:

$$log[\frac{P(y=1 \mid X)}{P(Y=0 \mid X)}] = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Loss Function

Logistic functions are usually fit by maximum likelihood estimation

Procedure:

• Find model that maximizes likelihood ($L(x \mid y)$) or probability of observing outcome given data $p(y \mid x)$.

$$L(x \mid y) = \prod_{i=1}^{n} p(y = y_i \mid x_i)$$

This is often written as the log-likelihood:

$$lnL(x \mid y) = \sum_{i=1}^{n} p(y = y_i \mid x_i)$$

- Choose estimates $\hat{eta}_0, \dots \hat{eta}_p$ which maximize this likelihood
- Solve with analytical, grid-search, or numerical methods, e.g. Newton's algorithm

Logistic Interpretation

 eta_i tells us average change in $log\ odds$ with 1-unit increase in x_i

- Amount that p(x) changes due to 1-unit change in X depends on current value of X
- Odds ratio: $exp(\beta_i)$ tells us how the odds change with 1-unit increase in β_i holding all other variables constant

Transform Probabilities into Distinct Categories

To interpret odds back to binary outcome, classify logit probabilities into distinct categories based on given threshold t, e.g. $(I(P(y \mid x) > t))$

$$P(y \mid x) \ge t = 1$$
$$P(y \mid x) < t = 0$$

Rule of Thumb for 2 Class Problem is t = 0.5:

$$P(y = 1 \mid x) \ge 0.5 = 1$$

 $P(y = 0 \mid x) < 0.5 = 0$

Advantages and Disadvantages to Logit

Advantages:

Disadvantages:

Advantages and Disadvantages to Logit

Advantages:

- · Workhorse model for binary DV
- Fits most binary classification problems
- · Lots of technical support available

Disadvantages:

Advantages and Disadvantages to Logit

Advantages:

- · Workhorse model for binary DV
- Fits most binary classification problems
- · Lots of technical support available

Disadvantages:

- Algorithm convergence problems
- Collinearity \rightarrow unstable coefficients (p > n)
- Well-separated class \rightarrow unstable coefficients
- Standard error estimates for panel data a mess (heteroskedasticity)

Is My Logit Model Any Good?

Model Assessment Tools for Classification Problems:

- Test Prediction Error (Test Error Rate)
- Accuracy
- Sensitivity (Recall)
- Specificity
- Precision
- F-Score (F1 Score)

Test Error Rate

One of the most common ways to assess classification model is the test error rate (0-1 loss).

- AKA MSE for Classification Problems
- Assign \hat{y} to 0/1 categories based on $I(P(y \mid x) > t)$
- Compare average test prediction error using test data $(x'_1, y'_1), (x'_2, y'_2), \dots (x_m, y_m)$

$$\frac{1}{m} \sum_{i=1}^{m} 1(y_i' \neq \hat{y}_i')$$

	Actual	
Guess	0	1
0	True Negative (TN)	False Negative (FN)
1	False Positive (FP)	True Positive (TP)

	Actual	
Guess	0	1
0	True Negative (TN)	False Negative (FN)
1	False Positive (FP)	True Positive (TP)

$$\mathsf{Accuracy} = \mathsf{Error} \ \mathsf{Rate} = \tfrac{TN + TP}{TN + FN + FP + TP}$$

	Actual	
Guess	0	1
0	True Negative (TN)	False Negative (FN)
1	False Positive (FP)	True Positive (TP)

$$\begin{aligned} & \mathsf{Accuracy} = \mathsf{Error} \ \mathsf{Rate} = \frac{TN + TP}{TN + FN + FP + TP} \\ & \mathsf{Sensitivity/Recall} = \frac{TP}{TP + FN} \end{aligned}$$

	Actual	
Guess	0	1
0	True Negative (TN)	False Negative (FN)
1	False Positive (FP)	True Positive (TP)

$$\begin{aligned} &\mathsf{Accuracy} = \mathsf{Error} \ \mathsf{Rate} = \frac{TN + TP}{TN + FN + FP + TP} \\ &\mathsf{Sensitivity/Recall} = \frac{TP}{TP + FN} \\ &\mathsf{Specificity} = \frac{TN}{TN + FP} \end{aligned}$$

	Actual	
Guess	0	1
0	True Negative (TN)	False Negative (FN)
1	False Positive (FP)	True Positive (TP)

Accuracy = Error Rate =
$$\frac{TN+TP}{TN+FN+FP+TP}$$

Sensitivity/Recall =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

$$Precision = \frac{TP}{TP + FP}$$

	Actual	
Guess	0	1
0	True Negative (TN)	False Negative (FN)
1	False Positive (FP)	True Positive (TP)

Accuracy = Error Rate =
$$\frac{TN+TP}{TN+FN+FP+TP}$$

Sensitivity/Recall =
$$\frac{TP}{TP+FN}$$

Specificity =
$$\frac{TN}{TN+FP}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F\text{-Score} = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Comparing Difference Performance Metrics

Compare performance to the No Information Rate (NIR) No Information Rate (NIR):

Accuracy: Overall Classification Rate

Sensitivity/Recall: True Positive Rate

Specificity: True Negative Rate

Comparing Difference Performance Metrics

Compare performance to the No Information Rate (NIR) No Information Rate (NIR):

- Predicted accuracy if we always predicted majority class (o)
- Imbalanced data (large majority class) \rightarrow large NIR

Accuracy: Overall Classification Rate

Sensitivity/Recall: True Positive Rate

Specificity: True Negative Rate

Comparing Difference Performance Metrics

Compare performance to the No Information Rate (NIR) No Information Rate (NIR):

- Predicted accuracy if we always predicted majority class (o)
- Imbalanced data (large majority class) \rightarrow large NIR

Accuracy: Overall Classification Rate

- · Good for general model performance
- Bad model: accuracy < NIR

Sensitivity/Recall: True Positive Rate

Specificity: True Negative Rate

Comparing Difference Performance Metrics

Compare performance to the No Information Rate (NIR) No Information Rate (NIR):

- Predicted accuracy if we always predicted majority class (o)
- Imbalanced data (large majority class) \rightarrow large NIR

Accuracy: Overall Classification Rate

- · Good for general model performance
- Bad model: accuracy < NIR

Sensitivity/Recall: True Positive Rate

- · Strive for high sensitivity
- · Will be low if there is class imbalance

Specificity: True Negative Rate

Comparing Difference Performance Metrics

Compare performance to the No Information Rate (NIR) No Information Rate (NIR):

- Predicted accuracy if we always predicted majority class (o)
- Imbalanced data (large majority class) \rightarrow large NIR

Accuracy: Overall Classification Rate

- Good for general model performance
- Bad model: accuracy < NIR

Sensitivity/Recall: True Positive Rate

- · Strive for high sensitivity
- · Will be low if there is class imbalance

Specificity: True Negative Rate

- · Strive for high specificity
- Will be **high** if there is class imbalance

3 Classification Models

- 1. Logistic
- 2. K-Nearest Neighbors
- 3. LDA

Main Idea:

· "birds of a feather flock together"

Main Idea:

• "birds of a feather flock together" (similar observations exist in close proximity to each other)

Main Idea:

- "birds of a feather flock together" (similar observations exist in close proximity to each other)
- Non-parametric approach to understand relation between \boldsymbol{x} and \boldsymbol{y}

Main Idea:

- "birds of a feather flock together" (similar observations exist in close proximity to each other)
- Non-parametric approach to understand relation between \boldsymbol{x} and \boldsymbol{y}

Estimation Goal:

Assign observation to most likely class j given neighboring values (N_0) :

$$p(y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = j)$$

KNN Loss Function

Procedure:

- Given integer K and test observation x_0 , we identify K points in training data that are closest to x_0
- Label these neighboring points ${\cal N}_0$

KNN Loss Function

Procedure:

- Given integer K and test observation x_0 , we identify K points in training data that are closest to x_0
- Label these neighboring points N_0
- Estimate conditional probability $p(y = j \mid X = x_0)$ as fraction of N_0 points equal to j (Bayes Classifier):

$$p(y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = j)$$

KNN Loss Function

Procedure:

- Given integer K and test observation x_0 , we identify K points in training data that are closest to x_0
- Label these neighboring points N_0
- Estimate conditional probability $p(y = j \mid X = x_0)$ as fraction of N_0 points equal to j (Bayes Classifier):

$$p(y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N_0} I(y_i = j)$$

• Apply Bayes rule and classify test observation x_0 to class with largest probability $p(x_0 \mid y=j)$

Example: KNN assigns color based on nearest observations

Want to assign input data (x) a color (orange or purple) based on K=3 nearest neighbors. Predict color of the majority of neighbors.

Figure 1: Figure 2.14

KNN has a decision boundary

Bayes Decision Boundary (dashed line) travels through points where probability of belonging to either class is 50%.

$\textbf{Higher K} \rightarrow \textbf{Smoother Decision Boundary}$

Figure 3: Figure 2.16

KNN Model Performance

Assess KNN Model Based on Test Error Rate (Accuracy):

$$\frac{1}{m}\sum_{i=1}^{m}1(y_i'\neq\hat{y}_i')$$

Advantages and Disadvantages to KNN

Advantages:

Advantages and Disadvantages to KNN

Advantages:

- ullet Very few assumptions about true f
- · Flexibility
- ullet Better than regression and logit if true f non-parametric

Advantages and Disadvantages to KNN

Advantages:

- ullet Very few assumptions about true f
- Flexibility
- Better than regression and logit if true f non-parametric

- Hard to determine optimal K
 - Small K overly flexible and high variance
 - ullet Large K too inflexible (linear) and high bias
- Performs poorly as p increases (curse of dimensionality)

3 Classification Models

- 1. Logistic
- 2. K-Nearest Neighbors
- 3. **LDA**

Linear Discriminant Analysis (LDA)

Main Idea:

- Indirect approach to estimate $P(y = j \mid X = x)$
- Estimate posterior probability observation belongs in j class given prior probability (data) and likelihood function (model)

Linear Discriminant Analysis (LDA)

Main Idea:

- Indirect approach to estimate $P(y = j \mid X = x)$
- Estimate posterior probability observation belongs in j class given prior probability (data) and likelihood function (model)

Estimation Goals:

- Predict $P(y = j \mid X = x)$ for multi-class problem ($K \ge 2$)
- Estimate parameters $(\beta_1, \dots \beta_p)$ to optimize Bayes classifier

Return of the Bayes

- In logit and KNN, we estimate $P(y = j \mid x)$ directly.
- In LDA, we estimate $P(y=j\mid x)$ indirectly. Specifically, we estimate:
 - $\hat{p}(x \mid y)$: given the data, what is the distribution of classes?
 - $\hat{p}(y)$: how likely is each class to occur?
- Use this information to re-arrange Bayes rule and estimate $p(y=j\mid x)$

posterior \sim likelihood \times data

$$\hat{p}(y = j \mid X = x) = \frac{\hat{p}(X = x \mid y = j)\hat{p}(y = j)}{\sum_{j} \hat{p}(X = x \mid y = j)\hat{p}(y = j)}$$

Plugging in LDA Values

- We model $\hat{p}(x \mid y) = \hat{f}_j(x)$ as a multivariate normal distribution
- We model $\hat{p}(y=j)$ as fraction of training sample observations in class j
- Assign class based on largest posterior probability $\hat{p}(y=j\mid X=x)$

$$\hat{p}(y = j \mid X = x) = \frac{\hat{p}(X = x \mid y = j)\hat{p}(y = j)}{\sum_{j} \hat{p}(X = x \mid y = j)\hat{p}(y = j)}$$

LDA has linear decision boundaries

Similar to KNN decision boundaries, but less flexible.

Figure 4: Figure 4.6

LDA Model Assessment

Rule of Thumb: Determine threshold for given class j and create a confusion matrix to examine metrics for j ...

- Accuracy (but careful)
- Sensitivity/Recall
- Specificity
- Precision
- F-Score (F1 Score)

Advantages and Disadvantages to LDA

Advantages:

Advantages and Disadvantages to LDA

Advantages:

- Similar estimates as logit regression
- Performs better than logit if n is small
- · Performs better than logit if classes well-separated
- ullet Performs better than logit and KNN if true f linear
- Good for 3+ response classes

Advantages and Disadvantages to LDA

Advantages:

- Similar estimates as logit regression
- Performs better than logit if n is small
- · Performs better than logit if classes well-separated
- ullet Performs better than logit and KNN if true f linear
- Good for 3+ response classes

- Greedy algorithm \rightarrow minimize global not local error
- Poor performance if Gauss-Markov assumptions violated

- Regression \rightarrow quantitative responses; classification \rightarrow qualitative responses

- Regression \rightarrow quantitative responses; classification \rightarrow qualitative responses
- · Loss functions vary by method:
 - Regression estimates \hat{y} minimizes RSS
 - Logistic estimates $\hat{p}(y \mid x)$ by maximum likelihood
 - KNN and LDA estimate $\hat{p}(y \mid x)$ by Bayes classifier

- Regression \rightarrow quantitative responses; classification \rightarrow qualitative responses
- · Loss functions vary by method:
 - Regression estimates \hat{y} minimizes RSS
 - Logistic estimates $\hat{p}(y \mid x)$ by maximum likelihood
 - KNN and LDA estimate $\hat{p}(y \mid x)$ by Bayes classifier
- Lots of different performance metrics: accuracy, sensitivity, specificity, etc.

- Regression \rightarrow quantitative responses; classification \rightarrow qualitative responses
- · Loss functions vary by method:
 - Regression estimates \hat{y} minimizes RSS
 - Logistic estimates $\hat{p}(y \mid x)$ by maximum likelihood
 - KNN and LDA estimate $\hat{p}(y \mid x)$ by Bayes classifier
- Lots of different performance metrics: accuracy, sensitivity, specificity, etc.
- Best classification model depends on beliefs about true f and number of: classes (j), parameters (p), and observations (n)