Array – tidskomplexitet

Skemaer - til sammenligning

Arrays er den simplest mulige datastruktur, som altid har en fast størrelse, og elementer kan hverken tilføjes eller fjernes.

Elementer ligger endvidere altid i en fast rækkefølge og kan ikke flyttes, men pladsernes værdi kan overskrives med andre værdier.

Datastrukturnavn

Læs et element¹	første	sidste	midterste	i'te	næste²
	O(1)	O(1)	O(1)	O(1)	$O(n)^3$
Find element ⁴	eksisterer usorteret liste	eksisterer sorteret liste	eksisterer ikke usorteret liste	eksisterer ikke sorteret liste	
	O(n)	O(log(n))	O(n)	O(log(n))	
Indsæt nyt element	i starten	i slutningen	i midten		
	N/A	N/A	N/A		
Fjern element	første	sidste	i'te		
	N/A	N/A	N/A		
Byt om på to elementer	første og sidste	første og i'te	sidste og i'te	i'te og j'te	
	O(1)	O(1)	O(1)	O(1)	

¹ At læse et element er som regel det samme som at skrive nyt indhold i et eksisterende element

² Hvis vi allerede har fat i ét element i en datastruktur, kan vi måske læse det "næste" hurtigere end i+1'te

³ Eller O(1) hvis vi kender index.

⁴ Find et element med en bestemt værdi – alt efter om vi ved at listen er sorteret eller ej, og om elementet findes eller ej.