INTERPRETING PRETRAINED CONTEXTUALIZED REPRESENTATIONS VIA REDUCTIONS TO STATIC EMBEDDINGS

RISHI BOMMASANI

KELLY DAVIS

CLAIRE CARDIE

BACKDROP

- Interpreting Pretrained Contextualized Representations
 - BERTology, ACL Interpretability Track, BlackBoxNLP

- New Interpretability Techniques
 - Probing Classifiers, Attention (Heads), Edge Probing

PREMISE

Contextualized ——— Context-Agnostic

dog	-0.606	0.044	0.002
sesame	-0.222	-0.382	0.339
street	0.921	0.991	-0.922
natural	0.789	0.827	-0.648
language	0.669	-0.448	-0.685
processing	0.738	0.199	0.017

METHODOLOGY

REMOVING CONTEXT – SUBWORD POOLING

■ Contextualized Subword Vector(s) → Contextualized Word Vector

context c, word $w \in c$, subwords w^1, \ldots, w^k

Input: Contextual subword vectors $\mathbf{w}_c^1, \dots, \mathbf{w}_c^k$

Output: Contextual word vector $\mathbf{w}_c \triangleq f\left(\mathbf{w}_c^1, \dots, \mathbf{w}_c^k\right)$

 $f \in \{min, max, mean, last\}$

REMOVING CONTEXT – CONTEXT COMBINATION

- Contextualized Word Vector(s) → Context-Agnostic Word Vector
 - **Decontextualize**: Specify a single context c = w
 - Aggregate: Pool across many contexts $c_1, ..., c_n$; $w \in c_i$
 - min, max, or mean pooling
 - Sample contexts from bot-filtered English Wikipedia

PRETRAINED REPRESENTATIONS

- GPT-2, BERT, XLNet, RoBERTa
 - Small (12 layer); large (24 layer)
- DistilBERT
 - 6 layer
- Word2Vec, GloVe

EXPERIMENT I: SETUP

- Task: Word Similarity / Relatedness
 - Method: Cosine similarity between representations
 - Metric: Spearman correlation coefficient
- Datasets:
 - RG65, WS353, SimLex999, SimVerb3500

Mean-pool across contexts

Decontextualized performs poorly

Visual Cue: Red braces in figures

Finding:
Mean-pool across subwords

Visual Cue: Red arrows in figures

Model	N	RG65	WS353	SIMLEX999	SIMVERB3500
Word2Vec	-	0.6787	0.6838	0.4420	0.3636
GloVe	-	0.6873	0.6073	0.3705	0.2271
BERT-12 (1)	500K	0.7206	0.7038	0.5019	0.3550
BERT-24 (1)	500K	0.7367	0.7074	0.5114	0.3687
BERT-24 (6)	500K	0.7494	0.7282	0.5116	0.4062
BERT-12	10K	0.5167 (1)	0.6833 (1)	0.4573 (1)	0.3043 (1)
BERT-12	100K	0.6980 (1)	0.7023 (1)	0.5007 (3)	0.3494 (3)
BERT-12	500K	0.7262 (2)	0.7038 (1)	0.5115 (3)	0.3853 (4)
BERT-12	1M	0.7242 (1)	0.7048 (1)	0.5134 (3)	0.3948 (4)
BERT-24	100K	0.7749 (2)	0.7179 (6)	0.5044 (1)	0.3686 (9)
BERT-24	500K	0.7643 (2)	0.7282 (6)	0.5116 (6)	0.4146 (10)
BERT-24	1M	0.7768 (2)	0.7301 (6)	0.5244 (15)	0.4280 (10)

Finding:More contexts is better

Visual Cue: Red braces in figure

Model	N	RG65	WS353	SIMLEX999	SIMVERB3500
Word2Vec	-	0.6787	0.6838	0.4420	0.3636
GloVe		0.6873	0.6073	0.3705	0.2271
BERT-12 (1)	500K	0.7206	0.7038	0.5019	0.3550
BERT-24 (1)	500K	0.7367	0.7074	0.5114	0.3687
BERT-24 (6)	500K	0.7494	0.7282	0.5116	0.4062
BERT-12	10K	0.5167 (1)	0.6833 (1)	0.4573 (1)	0.3043 (1)
BERT-12	100K	0.6980 (1)	0.7023 (1)	0.5007 (3)	0.3494 (3)
BERT-12	500K	0.7262 (2)	0.7038 (1)	0.5115 (3)	0.3853 (4)
BERT-12	1M	0.7242 (1)	0.7048 (1)	0.5134 (3)	0.3948 (4)
BERT-24	100K	0.7749 (2)	0.7179 (6)	0.5044 (1)	0.3686 (9)
BERT-24	500K	0.7643 (2)	0.7282 (6)	0.5116 (6)	0.4146 (10)
BERT-24	1M	0.7768 (2)	0.7301 (6)	0.5244 (15)	0.4280 (10)

Significantly outperform Word2Vec, GloVe

Visual Cue: Red, blue arrows in figure

Model	N	RG65	WS353	SIMLEX999	SIMVERB3500
Word2Vec GloVe	-	0.6787 0.6873	0.6838 0.6073	0.4420 0.3705	0.3636 0.2271
BERT-12 (1)	500K	0.7206	0.7038	0.5019	0.3550
BERT-24 (1) BERT-24 (6)	500K 500K	0.7367 0.7494	0.7074 0.7282	0.5114 0.5116	0.3687 0.4062
BERT-12	10K	0.5167 (1)	0.6833 (1)	0.4573 (1)	0.3043 (1)
BERT-12	100K	0.6980(1)	0.7023 (1)	0.5007 (3)	0.3494 (3)
BERT-12	500K	0.7262(2)	0.7038(1)	0.5115 (3)	0.3853 (4)
BERT-12	1M	0.7242(1)	0.7048(1)	0.5134(3)	0.3948 (4)
BERT-24	100 K	0.7749(2)	0.7179 (6)	0.5044(1)	0.3686 (9)
BERT-24	500K	0.7643 (2)	0.7282 (6)	0.5116(6)	0.4146 (10)
BERT-24	1M	0.7768 (2)	0.7301 (6)	0.5244 (15)	0.4280 (10) ←

Best layer is higher as # contexts increases

Visual Cue:Blue, red arrows in figure

Model	RG65	WS353	SIMLEX999	SIMVERB3500
BERT-12	0.6980(1)	0.7023 (1)	0.5007 (3)	0.3494 (3)
BERT-24	0.7749 (2)	0.7179 (6)	0.5044 (1)	0.3686 (9)
GPT2-12	0.5156(1)	0.6396(0)	0.4547 (2)	0.3128 (6)
GPT2-24	0.5328(1)	0.6830(0)	0.4505 (3)	0.3056(0)
RoBERTa-12	0.6597(0)	0.6915 (0)	0.5098 (0)	0.4206(0)
RoBERTa-24	0.7087 (7)	0.6563 (6)	0.4959 (0)	0.3802(0)
XLNet-12	0.6239(1)	0.6629 (0)	0.5185 (1)	0.4044 (3)
XLNet-24	0.6522 (3)	0.7021 (3)	0.5503 (6)	0.4545 (3)
DistilBERT-6	0.7245 (1)	0.7164(1)	0.5077 (0)	0.3207 (1)

Absolute performance is quite different across models

EXPERIMENT I: INTERPRETABILITY / UNDERSTANDING

- ☑ Many patterns generalize across all 9 weights, all 4 datasets
 - ☑ Absolute performance differences are not explained
- ✓ Clarification on where lexical semantics is best encoded
 - ✓ Dependence on number of contexts
- ☑ Evidence that representations are over-contextualized
 - ☑ Potentially related to anisotropy (Ethayarajh, 2019)
- ☑ High quality word embedding can be easily extracted
 - ☑ Evaluation is restricted to intrinsic word similarity / relatedness tasks

EXPERIMENT I: ENGINEERING / MODELLING

- ✓ Mean-pooling across subwords, contexts
- ✓ Variance reduction across contexts may be desirable
 - ☑ Especially since later model layers are usually used
- ✓ High quality word embeddings
 - ✓ Easier to use
 - ☑ On-device computation / resource-constrained settings
 - ✓ Faster / environmental concerns

EXPERIMENT 2: SOCIAL BIAS

EXPERIMENT 2: SETUP

- Groups
 - Gender (male, female)
 - Race (white, Hispanic, Asian)
 - Religion (Christianity, Islam)
- Normative Considerations
 - Representational Harms
 - Measuring bias with respect to stereotypes within pretrained representations
 - Stereotypes pertaining to adjectives, professions may precipitate allocative harms

EXPERIMENT 2: METHODS

- Bolukbasi Binary, PCA, aligned
- Garg-Cos Binary, average, unaligned
- Garg-Cos Binary, average, unaligned
- Manzini Multiclass, average, unaligned

Stark inconsistency in bias estimators

Visual Cue: Red brace in figure

Relative trends stable to target word list

Finding:

Data does *not* fully determine bias

CONCLUSIONS

WHAT TO REMEMBER ABOUT THIS WORK: 3 CONCRETE TAKEAWAYS + 2 LESSONS

- Reductions from Contextualized to Static
 - Interpretability, Bias, Dimensionality Reduction, Debiasing
- High quality word embeddings
- Social bias estimators are wildly inconsistent

- Breadth (many models, many layers, many estimators, many word lists, many social biases)
- Viewing aspects of social bias research as special cases of interpretability research

ACKNOWLEDGEMENTS

- Ge Gao, Marty van Schijndel, Forrest Davis
- Mozilla DeepSpeech
- Cornell NLP