

Teorija informacije

Entropijsko kodiranje

Kodiranje i kompresija

- Kodiranje: dodjela kodnih riječi simbolima poruke
- Kompresija: kodiranje koje smanjuje broj bitova potreban za izražavanje poruke
- U jasnom kontekstu, koristimo ove pojmove kao sinonime
- Kompresija se vrši u koderu informacije

Entropijsko kodiranje

- Uvod u kodiranje i kompresiju
 - Definicije, podjela metoda kompresije
 - Uvod u entropijsko kodiranje
- Karakteristike izvora informacije
 - Stacionarni izvor, ergodički izvor, izvori s memorijom (Markovljevi)
- Vrste kodova i njihova svojstva
 - Singularni, nesingularni, jednoznačno dekodabilni, prefiksni kodovi
- Optimalno kodiranje
- Metode entropijskog kodiranja
 - Shannon-Fanoovo kodiranje
 - Huffmanovo kodiranje
 - Aritmetičko kodiranje
 - Metode rječnika (LZ77, LZ78, LZW)
 - Metode skraćivanja niza (potiskivanje nula, slijedno kodiranje)

Osnovna svojstva kompresije

- Kompresija bez gubitaka
 - Komprimirani podaci mogu se dekomprimiranjem rekonstruirati bez gubitka informacije (*reverzibilno*)
 - Primjene: npr. tekst, medicinske slike, satelitske snimke
- Kompresija s gubicima
 - Cilj je ili dobiti najbolju vjernost rekonstruiranih podataka za zadanu brzinu (bit/s) ili postići najmanju brzinu za zadanu granicu vjernosti
 - Primjene: npr. govor, slika, video
- Važan parametar je omjer kompresije
 - Omjer veličine komprimiranih i originalnih podataka, npr. 1:10

Klasifikacija postupaka kodiranja

Uvod u entropijsko kodiranje

- Osnovna ideja: skraćeno zapisati višestruko ili često ponavljane simbole ili nizove simbola
- Zajedničko svim metodama entropijskog kodiranja:
 - temelje se direktno na teoriji informacije
 - kodiranje <u>bez</u> gubitaka
 - omjer kompresije ovisi samo o statističkim svojstvima izvora informacije
 - poruka se promatra isključivo kao niz niz slučajnih vrijednosti, ne uzimaju se u obzir svojstva medija (za razliku od izvornog kodiranja)

Karakteristike izvora informacije

Matematički model izvora informacije

- Izvor informacije promatramo kao stohastički proces, tj. niz slučajnih varijabli: X₁, X₂,..., X_r,...,X_n
 - \blacksquare $A = {\alpha_1, ..., \alpha_m} \text{abeceda izvora}$
 - Poruku od n znakova moguće je zapisati kao niz od n članova $x = (a_1, a_2, ..., a_n); a_i \in A, i = 1, ..., n$
 - $x \in A^n$, $A^n = \{(a_1, a_2, ..., a_n); a_i \in A, i = 1, ..., n\}$
 - skup Aⁿ (Kartezijev produkt skupa A) je skup svih poruka od n članova abecede A; njihov broj je mⁿ
- Diskretni izvor (A, P) definiramo pomoću abecede
 A i razdiobe vjerojatnosti na skupu Aⁿ:

$$P(x) = P(X_1 = a_1, X_2 = a_2, ..., X_n = a_n), (a_1, a_2, ..., a_n) \in A^n$$

 $\sum_{x \in A^n} P(x) = 1$

Osnovne karakteristike izvora

- svaki simbol kojeg izvor generira ima određen stupanj neodređenosti (nepredvidivosti)
 - veća nepredvidivost slijeda znači i prijenos veće količine informacije po simbolu
 - ako izvor nametne određenu strukturu slijedu simbola, nepredvidivost se smanjuje, a s njom i količina informacije po simbolu
- izvor bez memorije
 - promatrano u različitim vremenskim trenucima nema korelacije između simbola na izlazu izvora
- izvori s memorijom
 - u bilo kojem trenutku simbol na izlazu izvora ovisi o jednom ili više simbola koji su generirani prije njega
 - primjer: markovljevi izvori

Stacionarni izvor

- Statistička svojstva se ne mijenjaju s vremenom
- Matematički, za svaki par prirodnih brojeva n i k vrijedi: $P(X_{k+1} = a_1, X_{k+2} = a_2, ..., X_{k+n} = a_n) =$

=
$$P(X_1 = a_1, X_2 = a_2, ..., X_n = a_n) = P(a_1, a_2, ..., a_n)$$

- Trivijalan primjer stacionarnog izvora:
 - generira naizmjenični slijed simbola A i E koji može započeti sa slovom A ili sa slovom E:
 - mogući ishodi procesa su:
 - AEAEAEAEAEAEAE...
 - EAEAEAEAEAEAEA...
 - promatrano po vremenu, u svakom trenutku podjednaka je vjerojatnost nastupa simbola A i E

DEFINICIJA

Ergodični izvor

- Izvor kao skup svih mogućih proizvedenih nizova
 - Prosjek po skupu: prosjek pojavljivanja simbola na nekom mjestu u nizu, gledano među svim nizovima
 - Prosjek po vremenu: učestalost pojavljivanja simbola unutar pojedinog niza
- Ergodičnost: prosjek po skupu = prosjek po vremenu
- Svaki proizvedeni niz ima ista svojstva i ona se ne mijenjaju u vremenu
- Za entropijsko kodiranje promatramo ergodičke izvore (aproksimacija stvarnih izvora)

Ergodičnost izvora – primjer

- Izvor počinje 1/3 sa A, 1/3 B i 1/3 E
 - Ako počne sa A ili B ponavlja ih izmjenično
 - Ako počne sa E, ponavlja samo E
 - Skup mogućih nizova:

Niz 1: ABABABABABABAB...

Niz 2: BABABABABABA...

Niz 3: EEEEEEEEEEE...

Simbol	Prosjek po vremenu za niz 1	Prosjek po vremenu za niz 2	Prosjek po vremenu za niz 3	Prosjek po skupu
Α	1/2	1/2	0	1/3
В	1/2	1/2	0	1/3
E	0	0	1	1/3

Entropija diskretnog izvora informacije

Zavod za telekomunikacije

za n ≥ 1 moguće je definirati veličinu

$$H_n = \frac{1}{n} H(X_1, X_2, ..., X_n) = -\frac{1}{n} \sum_{x \in A^n} P(a_1, ..., a_n) \log P(a_1, ..., a_n)$$

• a za $n \ge 2$

$$h_n = H(X_n | (X_1, X_2, ..., X_{n-1})) = -\sum_{x \in A^n} P(a_1, ..., a_n) \log P(a_n | (a_1, ..., a_{n-1}))$$

- u oba izraza vrijedi $x = (a_1, a_2, ..., a_n) \in A^n$
- moguće interpretacije:
 - veličina H_n je srednja vlastita informacija simbola u nčlanoj poruci
 - h_n je uvjetna entropija n-tog simbola ako je poznato prethodnih n-1 simbola

Entropija diskretnog izvora informacije (2)

Zavod za telekomunikacije

Teorem:

- ako je niz h_n (n = 2, 3, ...) konvergentan,
- ako je niz H_n (n = 1, 2, ...) konvergentan,
- tada vrijedi: $\lim_{n\to\infty} h_n = \lim_{n\to\infty} H_n = H < \infty$
- veličinu $H_n \ge 0$ nazivamo **entropija** zadanog diskretnog stacionarnog **izvora informacije**
 - prosječna informacija koju "nosi" svaki pojedini simbol poslan iz zadanog izvora informacije

Entropija izvora bez memorije

Zavod za telekomunikacije

• ako diskretni stacionarni izvor emitira simbole iz A s jednakom vjerojatnošću, tj. $P(\alpha_i) = p_i \ge 0$ u bilo kojem trenutku t_k tada vrijedi

$$P(a_1,a_2,\ldots,a_n)=P(a_1)\cdot P(a_2)\cdot \ldots \cdot P(a_n)$$

- nadalje vrijedi: $P(a_n | (a_1, a_2, ..., a_{n-1})) = \frac{P(a_1, a_2, ..., a_n)}{P(a_1, a_2, ..., a_{n-1})} = P(a_n)$
- ovakav se izvor naziva izvor bez memorije
 - slanje simbola u sadašnjem trenutku stohastički je neovisno o prethodno poslanim simbolima
- entropija izvora bez memorije

$$H_n = \frac{1}{n} [H(X_1) + ... + H(X_n)] = H(X_1) = -\sum_{i=1}^{m} p_i \log(p_i)$$

■ također vrijedi: $h_n = H_n$

Markovljevi izvori model izvora s memorijom

Markovljevi izvori – pregled sadržaja

- Markovljevi lanci podloga za Markovljeve izvore
 - Definicija
 - Matrica prijelaznih vjerojatnost
 - Dijagram stanja grafički prikaz Markovljevog lanca
 - Ergodičnost i stacionarne vjerojatnosti
- Markovljevi izvori
 - Definicija
 - Vrste Markovljevih izvora
 - Unifilarni Markovljev izvor
 - Markovljev izvor m-tog reda
 - Jednostavni Markovljev izvor (Markovljev izvor prvog reda)
- Entropija Markovljevog izvora

Markovljevi lanci

Zavod za telekomunikacije

Stohastički lanac:

- niz diskretnih slučajnih varijabli X₀, X₁, X₂, ...
- koje opisuju stanje nekog sustava u trenucima t_0 , t_1 , t_2 , ...
- Skup svih stanja u kojima se lanac može nalaziti: $S = \{\sigma_1, \sigma_2, \sigma_3, ...\}$
 - Skup S može biti konačan ili beskonačan
 - Za modeliranje većine izvora pretpostavka je da je skup S konačan

Definicija Markovljevog lanca:

- Lanac $X_0, X_1, X_2, ...$ je **Markovljev** ako za sve izbore stanja $s_1, ..., s_n \in S$ vrijedi $P(X_{n+1} = s_{n+1} | X_n = s_n, ..., X_0 = s_0) = P(X_{n+1} = s_{n+1} | X_n = s_n)$
- t_n predstavlja sadašnjost
- stanje u budućnosti ovisi samo o sadašnjem stanju, ali ne i o načinu na koji je slučajni proces došao u to stanje

Matrica prijelaznih vjerojatnosti

- Ako vrijedi: $p_{ij} = P(X_{n+1} = \sigma_j | X_n = \sigma_i) = P(X_1 = \sigma_j | X_0 = \sigma_i)$
 - lanac je homogen, tj. prijelazne vjerojatnosti se ne mijenjaju ovise samo o stanjima σ_i i σ_i , a ne o trenutku prijelaza
- Matrica prijelaznih vjerojatnosti daje vjerojatnosti prijelaza iz jednog stanja u drugo, u jednom koraku Markovljevog lanca
- Ako je skup stanja $S = \{\sigma_1, \sigma_2, \sigma_3, ..., \sigma_N\}$, tada je matrica prijelaznih vjerojatnosti matrica dimenzije $N \times N$

$$\Pi = P(\sigma_{j}|\sigma_{i}) = [p_{ij}]$$

$$= \begin{bmatrix} P(\sigma_{1}|\sigma_{1}) & P(\sigma_{2}|\sigma_{1}) & \dots & P(\sigma_{N}|\sigma_{1}) \\ P(\sigma_{1}|\sigma_{2}) & P(\sigma_{2}|\sigma_{2}) & \dots & P(\sigma_{N}|\sigma_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ P(\sigma_{1}|\sigma_{N}) & P(\sigma_{2}|\sigma_{N}) & \dots & P(\sigma_{N}|\sigma_{N}) \end{bmatrix}$$

$$= \begin{bmatrix} P(\sigma_{1}|\sigma_{1}) & P(\sigma_{2}|\sigma_{1}) & \dots & P(\sigma_{N}|\sigma_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ P(\sigma_{1}|\sigma_{N}) & P(\sigma_{2}|\sigma_{N}) & \dots & P(\sigma_{N}|\sigma_{N}) \end{bmatrix}$$

$$P(\sigma_j | \sigma_i) \ge 0$$

 $\sum_{j=1}^{N} P(\sigma_j | \sigma_i) = 1, \forall i = 1, ..., N$

Dijagram stanja

Zavod za telekomunikacije

Prikaz Markovljevog lanca grafom

$$\Pi = P(\sigma_i | \sigma_i) = [p_{ij}]$$

$$\Pi = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix}$$

$$\Pi = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 \\ 0 & 0.4 & 0 & 0.6 \\ 0.2 & 0 & 0.8 & 0 \\ 0.2 & 0 & 0.8 & 0 \end{bmatrix}$$

Svojstva matrice prijelaznih vjerojatnosti

Zavod za telekomunikacije

- Vjerojatnost da se izvor nalazi u nekom određenom stanju varira tijekom vremena
- Vjerojatnost da sustav pređe iz stanja σ_i u stanje σ_j u m koraka:

$$p_{ij}(m) = P(X_{n+m} = \sigma_j | X_n = \sigma_i)$$

- pri čemu vrijedi: $p_{ij}(1) = p_{ij} = P(\sigma_j | \sigma_i)$ i $\Pi(1) = \Pi$
- Vjerojatnosti p_{ij}(m) zadovoljavaju Chapman-Kolmogorovljeve jednadžbe

$$p_{ij}(m) = \sum_{k} p_{ik}(r) p_{kj}(m-r), \forall r=1,2,...,m-1$$

• odnosno u matričnom obliku $\Pi(m) = \Pi(r)\Pi(m-r)$ $\Pi(m) = \Pi^m$

Stanje izvora u nekom trenutku

Zavod za telekomunikacije

- Označimo vjerojatnost da se izvor u trenutku t_n nalazi u stanju σ_i kao $p_i(n) := P(X_n = \sigma_i)$
- Tada je razdiobu tih vjerojatnosti moguće opisati vektorom

$$\mathbf{p}(n) = \left[p_1(n), p_2(n), ..., p_N(n) \right] \qquad \sum_{i=1}^{N} p_i(n) = 1, \forall n \in \mathbf{N}$$

• Ako je $\mathbf{p}(0)$ vektor početnih vjerojatnosti, tada se stanje izvora u trenutku t_n može opisati kao

$$\mathbf{p}(n) = \mathbf{p}(0)\mathbf{\Pi}^n$$

• a vezu između dva uzastopna vremenska trenutka opisuje izraz $\mathbf{p}(n)=\mathbf{p}(n-1)\Pi$

Stacionarne vjerojatnosti

- Ponekad je važno poznavati ponašanje izvora nakon duljeg vremenskog razdoblja
- Ako postoji broj n takav da su svi elementi matrice Πⁿ strogo pozitivni (to znači da se u n koraka može iz svakog stanja preći u bilo koje drugo stanje), tada za svaki j postoji (i ne ovisi o i):

$$\pi_{j} = \lim_{n \to \infty} p_{ij}(n)$$

- π_j su **stacionarne vjerojatnosti** predstavljaju vjerojatnosti da će izvor u nekom dalekom trenutku (kad nestane utjecaj početnog stanja) generirati simbol *j*
- Markovljev lanac za kojeg postoje stacionarne vjerojatnosti naziva se ergodični ili regularan

Ergodičnost - primjeri

$$\Pi = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 \\ 0 & 0.4 & 0 & 0.6 \\ 0.2 & 0 & 0.8 & 0 \\ 0.2 & 0 & 0.8 & 0 \end{bmatrix}$$

$$\Pi^2 = \begin{bmatrix} 0,1 & 0,2 & 0,4 & 0,3 \\ 0,12 & 0,16 & 0,48 & 0,24 \\ 0,16 & 0,1 & 0,64 & 0,1 \\ 0,16 & 0,1 & 0,64 & 0,1 \end{bmatrix}$$

$$\Pi = \begin{bmatrix} 0 & 0.5 & 0 & 0.5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0.2 & 0 & 0.8 & 0 \end{bmatrix}$$

$$\Pi^2 = \begin{bmatrix} 0.1 & 0.5 & 0.4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0.1 & 0.8 & 0.1 \end{bmatrix}$$

$$\Pi^3 = \begin{bmatrix} 0 & 0,55 & 0,4 & 0,05 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0,02 & 0,1 & 0,88 & 0 \end{bmatrix}$$

Određivanje stacionarnih vjerojatnosti

Zavod za telekomunikacije

Početne jednadžbe:

$$\mathbf{p}(n) = \mathbf{p}(n-1)\mathbf{\Pi}$$
$$p_{j}(n) = \sum_{k} p_{k}(n-1) p_{kj}$$

Ako postoje stacionarne vjerojatnosti, onda vrijedi:

$$\pi_j = \lim_{n \to \infty} p_j, \quad \pi_j = \sum_k \pi_k p_{kj}, \forall j, \quad \sum_k \pi_k = 1$$

ili u matričnom obliku:

$$\Pi^{\mathrm{T}}\pi = \pi$$

Primjer: Markovljev lanac sa tri stanja

Zavod za telekomunikacije

Zadana je matrica prijelaznih vjerojatnosti

$$\Pi = \begin{bmatrix} 0,25 & 0,5 & 0,25 \\ 0,5 & 0,0 & 0,5 \\ 0,0 & 0,25 & 0,75 \end{bmatrix}$$

Dijagram stanja:

Određivanje stacionarnih vjerojatnosti:

$$\mathbf{\Pi}^{\mathrm{T}}\mathbf{\pi}\!=\!\mathbf{\pi}$$

$$oldsymbol{\Pi}^{\mathrm{T}} egin{bmatrix} \pi_1 \ \pi_2 \ \pi_3 \end{bmatrix} = egin{bmatrix} \pi_1 \ \pi_2 \ \pi_3 \end{bmatrix}$$

$$\mathbf{\Pi}^{\mathrm{T}}\boldsymbol{\pi} = \boldsymbol{\pi} \qquad \mathbf{\Pi}^{\mathrm{T}} \begin{vmatrix} \pi_{1} \\ \pi_{2} \\ \pi \end{vmatrix} = \begin{vmatrix} \pi_{1} \\ \pi_{2} \\ \pi \end{vmatrix} = \begin{bmatrix} 0,25 & 0,5 & 0,0 \\ 0,5 & 0,0 & 0,25 \\ 0,25 & 0,5 & 0,75 \end{bmatrix} \begin{bmatrix} \pi_{1} \\ \pi_{2} \\ \pi_{3} \end{bmatrix} = \begin{bmatrix} \pi_{1} \\ \pi_{2} \\ \pi_{3} \end{bmatrix}$$

$$\begin{bmatrix} \pi_1 \\ \pi_2 \\ \pi_3 \end{bmatrix} = \begin{bmatrix} \frac{2}{13} \\ \frac{3}{13} \\ \frac{8}{13} \end{bmatrix}$$

Primjer: Markovljev lanac s dva stanja

Zavod za telekomunikacije

- Skup stanja $S = \{0,1\}$
- Zadane prijelazne vjerojatnosti:

$$\alpha = P(X_1 = 0 | X_0 = 0), \ \beta = P(X_1 = 1 | X_0 = 1)$$

- \blacksquare 0 < α , β < 1
- Dijagram stanja:

Vrijedi:

$$1 - \alpha = P(X_1 = 1 | X_0 = 0), 1 - \beta = P(X_1 = 0 | X_0 = 1)$$

■
$$0 < \alpha, \beta < 1$$

• Stacionarne vjerojatnosti:
$$\pi_1 = \frac{1-\beta}{2-\alpha-\beta}, \pi_2 = \frac{1-\alpha}{2-\alpha-\beta}$$

 $\Pi = \begin{vmatrix} \alpha & 1-\alpha \\ 1-\beta & \beta \end{vmatrix}$

Markovljevi izvori

Zavod za telekomunikacije

- Podsjetnik izvor informacije:
 - Niz slučajnih varijabli X_1 , X_2 ,..., X_n opisuje izlaze izvora u vremenu
 - $A = \{\alpha_1, ..., \alpha_m\}$ abeceda izvora
 - Poruka od *n* znakova: $x \in A^n$ tj. $x = (a_1, a_2, ..., a_n)$; $a_i \in A$; $\sum_{x \in A^n} P(x) = 1$
- Podsjetnik Markovljev lanac:
 - Niz slučajnih varijabli X_0 , X_1 , X_2 , ... opisuje stanja lanca u vremenu
 - $S = {\sigma_1, \sigma_2, \sigma_3, ...}$ skup stanja u kojima se lanac može nalaziti

Markovljev izvor:

- izvor informacije čiju dinamiku određuje Markovljev lanac mapiranjem $S \times S \rightarrow A$
- Drugim riječima, svaki prijelaz stanja iz σ_i u σ_j generira jedan simbol α_k iz abecede izvora

Vrste Markovljevih izvora

Zavod za telekomunikacije Općeniti Markovljev izvor Unifilarni Markovljev izvor Markovljev izvor *m*-tog reda Jednostavni Markovljev izvor (Markovljev izvor prvog reda)

Unifilarni Markovljev izvor

Zavod za telekomunikacije

 Unifilarni MI je MI sa svojstvom da sve tranzicije iz pojedinog stanja generiraju različite simbole.

- Za unifilarni izvor, iz početnog stanja i niza generiranih simbola možemo jednoznačno odrediti niz stanja kojim su generirani ti simboli.
- U primjerima lijevo, početno stanje σ_0 i niz simbola 00 jednoznačno određuju niz stanja $\sigma_0\sigma_0$ ali u primjeru desno može biti $\sigma_0\sigma_0$ ili $\sigma_0\sigma_1$

Markovljev izvor *m*-tog reda

- MI m-tog reda je MI čija stanja su nizovi od posljednjih m generiranih simbola iz abecede izvora A
- Primjer: MI drugog reda s binarnom abecedom
 - Abeceda izvora: $A = \{0,1\}$
 - Skup stanja: $S = \{00,01,10,11\}$
- Prijelazne vjerojatnosti
 Markovljevog lanca su ujedno
 i uvjetne vjerojatnosti izvora:

$$p(s_n|s_{n-1})=p(a_n|(a_{n-m},...,a_{n-1}))$$

Jednostavni Markovljev izvor

- Jednostavni MI je MI kod kojeg su stanja lanca ujedno i simboli izvora
- To je MI prvog reda, te ima memoriju prvog reda (pamti jedan simbol)

Entropija jednostavnog Markovljevog izvora

Zavod za telekomunikacije

Uvjetna entropija n-tog simbola za općeniti izvor:

$$h_n = H(X_n | (X_1, X_2, ..., X_{n-1})) = -\sum_{x \in A^n} P(a_1, ..., a_n) \log P(a_n | (a_1, ..., a_{n-1}))$$

 Iz definicije Markovljevog lanca, za jednostavan Markovljev izvor vrijedi:

$$P(a_n | (a_1, ..., a_{n-1})) = P(a_n | a_{n-1}), (a_1, ..., a_n) \in A^n$$

pa je entropija jednostavnog Markovljevog izvora:

$$H = \lim_{n \to \infty} (h_n) = -\sum_{i=1}^{N} p_i \sum_{j=1}^{N} p_{ij} \log(p_{ij})$$

Kodiranje

Kodiranje

Zavod za telekomunikacije

Dodjela kodnih riječi simbolima poruke

$$X = \{x_1, x_2, ..., x_i, ..., x_n\}$$

$$x_i \in X \xrightarrow{KODIRANJE} C(x_i)$$

$$C(x_i) \in D^*, D = \{a_1, a_2, ..., a_d\},$$

- Kodiranje sa svojstvom sažimanja: kompresija
- U praksi gotovo uvijek binarna abeceda
 - d = 2, $D = \{0,1\}$
 - Izlaz kodera: struja bitova (engl. bitstream)

Prosječna duljina kodne riječi

Zavod za telekomunikacije

- Duljina pojedine kodne riječi: I(x_i), skraćeno I_i
 - broj simbola koji čine tu kodnu riječ
- Prosječna duljina kodne riječi (prosječna duljina koda): $L = \sum_{i=1}^{n} p(x_i) l(x_i) = \sum_{i=1}^{n} p_i l_i$

 Za dugačku poruku od N simbola, očekivana duljina kodirane poruke je NL

L [bit/simbol] je mjera efikasnosti koda

Primjer kodiranja 1

Zavod za telekomunikacije

SIMBOL (x _i)	VJEROJATNOST POJAVLJIVANJA $p(x_i) = p_i$	KODNA RIJEČ (C _i)	DULJINA KODNE RIJEČI (I _i)
1	1/2	0	1
2	1/4	10	2
3	1/8	110	3
4	1/8	111	3

Prosječna duljina kodne riječi:

$$L = \sum_{i=1}^{n} p_i l_i = 0.5 \cdot 1 + 0.25 \cdot 2 + 0.125 \cdot 3 + 0.125 \cdot 3 = 1.75 [bit / simbol] = H(X)$$

Primjer kodiranja 2

SIMBOL (x _i)	VJEROJATNOST POJAVLJIVANJA $p(x_i) = p_i$	KODNA RIJEČ (C _i)	DULJINA KODNE RIJEČI (I _i)
1	1/3	0	1
2	1/3	10	2
3	1/3	11	2

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i = -\log \frac{1}{3} = 1.58 \text{ [bit/simbol]},$$

$$L = \sum_{i=1}^{n} p_i l_i = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 2 = 1.66 \text{ [bit/simbol]}.$$

Vrste kodova

Nesingularni kodovi

Zavod za telekomunikacije

 Kod je nesingularan ako svakom simbolu dodjeljuje drugačiju kodnu riječ

$$x_i \neq x_j \Longrightarrow C(x_i) \neq C(x_j)$$

- To nije garancija jednoznačnosti
- Primjer:
 - Simboli A, B, C; kod: C(A) = 0, C(B) = 01 i C(C) = 1
 - "ABC" → "0011"
 - **■** "0011" → ?

Jednoznačno dekodabilni kodovi

$$x \xrightarrow{KOD} C(x)$$

$$x_1 x_2 ... x_n \xrightarrow{PROŠIRENIKOD} C(x_1 x_2 ... x_n) = C(x_1) C(x_2) ... C(x_n)$$

- Kod jednoznačno dekodabilan ako je proširenje nesingularno
 - Različite poruke → različite kodirane poruke
- Primjer:
 - Simboli A, B, C; kod: C(A) = 0, C(B) = 01 i C(C) = 011
 - "ABC" → ""001011" → "ABC"
 - **■** "001…" → ?
- Ne može se trenutno dekodirati

Prefiksni (trenutni) kodovi

- Prefiksni kod je kod u kojem niti jedna kodna riječ nije prefiks neke druge kodne riječi
- Svaka kodna riječ se može trenutno dekodirati, bez znanja iduće kodne riječi
- U prethodnom primjeru, problem je upravo u tome što su kodne riječi jedna drugoj prefiks

Vrste kodova: primjer

	VRSTA KODA				
SIMBOL (x _i)	SINGULARNI	NESINGULARNI	JEDINSTVENO DEKODABILNI	PREFIKSNI	
1	0	0	10	0	
2	0	010	00	10	
3	0	01	11	110	
4	0	10	110	111	
"1234"→	0000	00100110	100011110	010110111	
Dekodirano	?	?	1234	1234	
Prvih 6 simbola	?	?	? (123 ili 124)	123	

Kraftova nejednakost

Zavod za telekomunikacije

 Za svaki prefiksni kod sa abecedom od d simbola i duljinama kodnih riječi l₁, l₂, ..., l_n vrijedi:

$$\sum_{i=i}^{n} d^{-l_i} \le 1$$

i obrnuto, za bilo koji skup duljina kodnih riječi li koje zadovoljavaju ovu nejednakost, postoji prefiksni kod s takvim duljinama kodnih riječi.

 Određuje minimalne duljine kodnih riječi potrebne za prefiksni kod

Kraftova nejednakost – primjeri

- 1. Prethodni primjer koda {0, 10, 110, 111}
 - Binarna abeceda, *d*=2

$$\sum_{i=i}^{n} 2^{-l_i} \le 1$$

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-3} = 1$$

- Nema kraćeg koda
- 2. Tražimo kod za tri simbola

$$2^{-1} + 2^{-2} + 2^{-2} = 1$$
 =>mora postojati pref. kod duljina 1, 2, 2

Optimalni kodovi (1/2)

- Općenito, više kodova zadovoljava K.N.; koji je optimalan?
 - npr: {0, 10, 110, 111}, {111, 0, 10, 110}...
- Optimalan kod: prefiksni kod sa najmanjom mogućom prosječnom duljinom kodne riječi

$$\min \left[L = \sum_{i=1}^{n} p_i l_i \right] \text{ uz uvjet } \sum_{i=1}^{n} d^{l_i} \le 1$$

Optimalni kodovi (2/2)

Zavod za telekomunikacije

Minimum se dobiva za:

$$l_i^* = -\log_d p_i \Longrightarrow L = -\sum_{i=1}^n p_i \log_d p_i = H(X)$$

 Ali l_i moraju biti cijeli brojevi, pa se ne može uvijek postići L=H:

$$L \ge H(X)$$

- * Za optimalni kod, prosječna duljina kodne riječi je unutar jednog bita od entropije: $H(X) \le L < H(X) + 1$
- Efikasnost koda: $\varepsilon = \frac{H(X)}{I}$

Metode entropijskog kodiranja

- Shannon-Fanoovo kodiranje
- Huffmanovo kodiranje
 - optimalno kodiranje
 - binarno stablo
 - kraći zapis čestih znakova
- Aritmetičko kodiranje
 - poopćenje Huffmanovog kodiranja
 - cijela poruka se pretvara u jednu kodnu riječ
- Metode rječnika
 - isti rječnik kodnih riječi na strani pošiljatelja i primatelja
 - dinamička konstrukcija rječnika
 - Lempel-Ziv (LZ77, LZ78), Lempel-Ziv-Welch (LZW)
- Metode skraćivanja niza
 - potiskivanje nula, slijedno kodiranje

Shannon-Fanoovo kodiranje

- Jedna je od prvih metoda kodiranja utemeljenih na teoriji informacije
- Ne daje uvijek optimalan kod
 - Vrlo rijetko se koristi
- Zasniva se na željenim svojstvima kôda:
 - Niti jedna kodna riječ ne smije biti prefiks neke druge kodne riječi;
 - Želimo da se u kodiranim porukama simboli 0 i 1 pojavljuju s podjednakom vjerojatnošću.

Shannon-Fanoovo kodiranje: postupak

- Posložiti simbole po padajućim vjerojatnostima
- Podjela simbola u grupe
- Dodjela znamenke 0 jednoj, a 1 drugoj grupi
- Postupak se ponavlja dok se grupe ne svedu na 1 simbol

Shannon-Fanoovo kodiranje: primjer

X _i	p(x _i)	KORAK 1	KORAK 2	KORAK 3	KORAK 4	KODNA RIJEČ	DULJINA KODNE RIJEČI
x_1	0.25	0	0			00	2
x_2	0.25	0	1			01	2
x_3	0.125	1	0	0		100	3
x_4	0.125	1	0	1		101	3
x_5	0.0625	1	1	0	0	1100	4
x_6	0.0625	1	1	0	1	1101	4
x_7	0.0625	1	1	1	0	1110	4
x_8	0.0625	1	1	1	1	1111	4
Prosječna duljina kodne riječi:						2.75	

Huffmanovo kodiranje

- D. A. Huffman,1952. godine
- Kodira pojedinačne simbole kodnim riječima promjenjive duljine, ovisno o (poznatim!) vjerojatnostima njihova pojavljivanja
- Temelji se na dvije jednostavne činjenice:
 - (1) U optimalnom kodu, simboli s većom vjerojatnošću pojavljivanja imaju kraće kodne riječi od onih s manjom vjerojatnošću
 - (2) U optimalnom kodu, dva simbola s najmanjim vjerojatnostima imaju kodne riječi jednake duljine (vrijedi za prefiksni kod)
- Ishod: sažetiji zapis (npr. tipičan tekst se sažima za 45%)

Huffmanovo kodiranje: postupak

- Algoritam stvaranja koda:
 - 1. Sortiraj simbole po padajućim vjerojatnostima
 - 2. Pronađi dva simbola s najmanjim vjerojatnostima
 - 3. Jednom od njih dodijeli simbol "0", drugom "1"
 - 4. Kombiniraj ta dva simbola u jedan nadsimbol (nadsimbol je novi simbol čija je vjerojatnost pojavljivanja jednaka zbroju vjerojatnosti pojavljivanja dvaju simbola od kojih je nastao) i zapiši ih kao dvije grane binarnog stabla, a nadsimbol kao račvanje iznad njih
 - 5. Ponavljaj 1-4 dok ne dobiješ samo jedan nadsimbol
 - 6. Povratkom kroz stablo očitaj kodove
- Podatkovna struktura algoritma je binarno stablo
- Algoritam dekodiranja koristi isti postupak za gradnju stabla
 - Dekoder mora znati vjerojatnosti pojavljivanja simbola

Huffmanovo kodiranje: primjer

Zavod za telekomunikacije

- Skup simbola {A, B, C, D, E} s vjerojatnostima pojavljivanja
 p(A) = 0.16, p(B) = 0.51, p(C) = 0.09, p(D) = 0.13, p(E) = 0.11
- * Za uniformni kod, prosječna duljina koda je **3 bit/simbol** (jer je $2^2 \le 5 \le 2^3$).
- Entropija: 1.96 bit/simbol

B ... 1
$$p(B) = 0.51$$
 — 0.51 — 0.51 — 0.51 — 1.00
A ... 011 $p(A) = 0.16$ — 0.13 — 0.13 — 0.13 — 0.49 — 1.00
E ... 001 $p(E) = 0.11$ — 0.20 — 0.20 — 0.20 — 0

Prosječna duljina dobivenog koda u našem slučaju je:

$$L = \sum_{x \in X} p_x l_x = 3 \times (0.09 + 0.11 + 0.13 + 16) + 0.51 = 1.98 \text{ bit/simbol}$$

Huffmanovo kodiranje: svojstva

- kodiranje je idealno ako su vjerojatnosti 1/2, 1/4, ..., 1/2ⁿ
- u stvarnim slučajevima to obično nije slučaj, te rezultat ovisi o vjerojatnostima pojavljivanja simbola
- prednosti:
 - jednostavan za izvedbu
 - vrlo dobro kodiranje za "dobre" vjerojatnosti pojavljivanja simbola
- nedostaci:
 - vjerojatnosti pojavljivanja simbola moraju biti poznate; ovise o primjeni (tekst, slika)
 - za "loše raspoređene" vjerojatnosti pojavljivanja dobiju se izrazito loši kodovi

Primjer lošeg koda i prošireni Huffmanov kod

Simbol	Vjerojatnost	Kodna riječ
a ₁	0.95	0
a_2	0.02	10
a_3	0.03	11

PROSIRENI KOD				
Simbol	Vjerojatnost	Kodna riječ		
a ₁ a ₁	0.9025	0		
a ₁ a ₂	0.0190	111		
a₁a₃	0.0285	100		
a ₂ a ₁	0.0190	1101		
a_2a_2	0.0004	110011		
a ₂ a ₃	0.0006	110001		
a ₃ a ₁	0.0285	101		
a_3a_2	0.0006	110010		
a_3a_3	0.0009	110000		

- Entropija: 0.335 bit/simbol
- Prosječna duljina:1.05 bit/simbol: 213% više od entropije!!
- Prošireni kod: 1.222 / 2 = 0.611 bit/simbol: 72% više od entropije.
- Bolje je kodirati duže sekvence, ali tada broj kodnih riječi raste eksponencijalno

Huffmanovo kodiranje: primjene

Zavod za telekomunikacije

Česta primjena unutar složenijih algoritama

- Primjeri:
 - standardi za telefaks (T.4, T.6)
 - standard za nepomičnu sliku JPEG

Aritmetičko kodiranje

- Autori Pasco & Rissanen (nezavisno), 1976. godine
- Algoritam uzima kao ulaz cijele nizove simbola ("poruke") i preslikava ih na realne brojeve, ovisno o (poznatim!) statističkim svojstvima

Aritmetičko kodiranje: postupak

- Podijeli interval [0, 1) u n podintervala koji odgovaraju simbolima iz abecede; duljina svakog podintervala proporcionalna vjerojatnosti odgovarajućeg simbola
- 2. Iz promatranog skupa podintervala, odaberi podinterval koji odgovara sljedećem simbolu u poruci
- 3. Podijeli taj podinterval u n novih podintervala, proporcionalno vjerojatnostima pojavljivanja simbola iz abecede; tako nastaje novi skup podintervala koji promatramo
- 4. Ponavljaj korake 2 i 3 dok cijela poruka nije kodirana
- 5. Konačni kod za čitavu poruku je jedan broj iz intervala u binarnom obliku

Aritmetičko kodiranje: primjer (1)

- *M*=2
- simboli: X, Y p(X) = 2/3p(Y) = 1/3
- poruka duljine 2
 (moguće poruke
 XX, XY, YX, YY)
 kodira se onim
 brojem bita
 dovoljnim za
 jedinstveno
 određivanje
 intervala
 (binarni razlomak!)

Aritmetičko kodiranje: primjer (2)

Zavod za telekomunikacije

- primjer za poruku duljine 3
- *M*=2
- simboli:

09/05

$$X, Y$$
 $p(X) = 2/3$
 $p(Y) = 1/3$

Postupak dekodiranja

Zavod za telekomunikacije

- 1. Podijeli početni interval [0, 1) u podintervale po vjerojatnostima pojavljivanja simbola
- 2. Uzmi primljeni kod kao realni broj
- 3. Pronađi podinterval u kojem se nalazi broj (kod)
- Zapiši simbol koji odgovara tom podintervalu
- 5. Podijeli taj podinterval u n novih podintervala, proporcionalno vjerojatnostima pojavljivanja simbola iz abecede; tako nastaje novi skup podintervala koji promatramo
- 6. Ponavljaj korake 3-5 dok ne dođe kraj poruke

09/05

Dekodiranje: primjer

 primjer za poruku duljine 3

- *M*=2
- simboli:

$$p(X) = 2/3$$

$$p(Y) = 1/3$$

Primljeni kod 1111
 tj. 15/16

Odabir koda

- Kojim brojem iz podintervala kodirati poruku?
- Može se uzeti bilo koja vrijednost iz podintervala
- Dovoljan broj znamenki:

$$l(x) = \left\lceil \log \frac{1}{P(x)} \right\rceil + 1 \text{ [bit]}$$

Na ovakav način dobiva se uvijek prefiksni kod

Implementacija

- Do sada opisani algoritam neupotrebljiv
 - Neprihvatljivo čekanje do kraja poruke
 - Algoritam podrazumijeva beskonačnu preciznost realnih brojeva – na računalu prikaz s pomičnim zarezom
 - Operacije s realnim brojevima su skupe
- Potreban je algoritam koji:
 - Koristi operacije sa cijelim brojevima
 - Koristi prikaz sa fiksnim brojem bitova
 - Proizvodi simbole koda tokom postupka kodiranja, a ne na kraju

Aritmetičko kodiranje: praktičan postupak

- Osnovni postupak podjele na podintervale je isti
- Koristi se fiksni broj znamenki za prikaz intervala
- Kada je prva znamenka u prikazu gornje i donje granice ista, interval se renormalizira:
 - Prvih n znamenki se šalje na izlaz kodera
 - Znamenke se pomiću ulijevo za jedno mjesto
 - Desno se dodaje znamenka: 0 na donju, 1 na gornju granicu intervala (ako su znamenke binarne)

Renormalizacija: primjer

FER

X	p(x)
RAZMAK	1/10
A	1/10
В	1/10
Е	1/10
G	1/10
I	1/10
L	2/10
S	1/10
Т	1/10

	GORNJA GRANICA	DONJA GRANICA	DULJINA INTERVALA	KUMULATIVNI IZLAZ
Početno stanje	99999	00000	100000	
Kodiraj B (0.2-0.3)	29999	20000		
Renormalizacija, izlaz: 2	99999	00000	100000	.2
Kodiraj I (0.5-0.6)	59999	50000		.2
Renormalizacija, izlaz: 5	99999	00000	100000	.25
Kodiraj L (0.6-0.8)	79999	60000	20000	.25
Kodiraj L (0.6-0.8)	75999	72000		.25
Renormalizacija, izlaz: 7	59999	20000	40000	.257
Kodiraj RAZMAK (0.0-0.1)	23999	20000		.257
Renormalizacija, izlaz: 2	39999	00000	40000	.2572
Kodiraj G (0.4-0.5)	19999	16000		.2572
Renormalizacija, izlaz: 1	99999	60000	40000	.25721
Kodiraj A (0.1-0.2)	67999	64000		.25721
Renormalizacija, izlaz: 6	79999	40000	40000	.257216
Kodiraj T (0.9-1.0)	79999	76000		.257216
Renormalizacija, izlaz: 7	99999	60000	40000	.2572167
Kodiraj E (0.3-0.4)	75999	72000		.2572167
Renormalizacija, izlaz: 7	59999	20000	40000	.25721677
Kodiraj S (0.8-0.9)	55999	52000		.25721677
Renormalizacija, izlaz: 5	59999	20000		.257216775
Renormalizacija, izlaz: 2				.2572167752
Renormalizacija, izlaz: 0				.25721677520

Usporedba aritmetičko - Huffman

Huffman	Aritmetičko kodiranje
Kodira svaki simbol posebno	Kodira cijelu poruku jednim kodom: realni broj 0 - 1
Minimalno 1 bit/simbol	Moguće < 1 bit/simbol
Duljina poruke nije važna	Teoretski optimalno za dugačke poruke
Kodiranje niza simbola moguće samo proširenim Huffman kodom	Uvijek se kodira cijela poruka
Jednostavno za računanje	Zahtjevnije za računanje

Aritmetičko kodiranje: primjene

 Primjena kao komponente u raznim standardima i za razne vrste medija

- Dokumenti
 - JBIG (Joint Bi-level Image Processing Group)
- Slika
 - JPEG
- Sintetički sadržaji/animacija
 - MPEG-4 FBA (Face and Body Animation)

Metode rječnika

- Algoritmi kodiranja metodama rječnika uzimaju kao ulaz nizove simbola ("riječi") promjenjive duljine i kodiraju ih kodnim riječima stalne duljine iz rječnika
- Ne trebaju znati vjerojatnosti pojavljivanja simbola, nazivaju se i univerzalni koderi
- Koder i dekoder moraju imati isti rječnik
- Rječnik moze biti statičan, no najčešće je prilagodljiv

Metode s prilagodljivim rječnikom

- Koder i dekoder dinamički grade rječnik
 - LZ77: Rječnik je posmični prozor
 - LZ78: riječi se grade dodavanjem slova na postojeće riječi (u početku rječnik je prazan)
 - Lempel-Ziv-Welch (LZW) algoritam
 - izvorni algoritam smislili Ziv i Lempel (1977 LZ77, 1978 -LZ78), a Welch ga je doradio i poboljšao 1984 (zato LZW)
 - algoritam relativno jednostavan, iako složeniji od Huffmanovog
 - izvorni LZW algoritam koristi rječnik s 4K riječi, s tim da su prvih 256 riječi standardni ASCII kodovi

Algoritam LZ77

- Rječnik je posmični prozor od N zadnjih simbola
- U svakom koraku traži se u rječniku najduži niz simbola jednak nadolazećim simbolima, te se kodira kao uređena trojka (pomak, duljina, sljedeći_simbol)
- Nedostatak: "kratka" memorija

LZ77: primjer kodiranja

Algoritmi LZ78 i LZW

- Umjesto posmičnog prozora, zasebna memorija za rječnik
 - Rječnik je poredana lista riječi (nizova simbola)
 - Riječ se dovaća pomoću indeksa (rednog broja)
- LZ78

09/05

- Rječnik u početku prazan
- U svakom koraku šalje se (*indeks*, *idući simbol*)
 - Indeks pokazuje na najdulju riječ u rječniku jednaku nadolazećem nizu simbola
 - Rječnik se nadopunjava novim riječima tijekom kodiranja

LZW algoritam

Zavod za telekomunikacije

Algoritam kodiranja:

```
1. RadnaRiječ = slijedeći simbol sa ulaza
 2. WHILE (ima još simbola na ulazu) DO
 3.
      NoviSimbol = slijedeći simbol sa ulaza
      IF RadnaRiječ+NoviSimbol postoji u rječniku THEN
5.
         RadnaRiječ = RadnaRiječ+NoviSimbol
     ELSE
7.
         IZLAZ: kod za RadnaRiječ
8.
         dodaj RadnaRiječ+NoviSimbol u rječnik
9.
         RadnaRiječ = NoviSimbol
10.
      END IF
11. END WHILE
12. IZLAZ: kod za RadnaRiječ
```

Kodiranje algoritmom LZW: primjer

Sadržaj rječnika na početku:

kodna riječ	znak
(1)	Α
(2)	В
(3)	C

Niz znakova koje treba kodirati:

Mjesto Simbol

LZW:

korak	mjesto	sadržaj rječnika	izlaz iz kodera
1.	1	(4) A B	(1)
2.	2	(5) BB	(2)
3.	3	(6) BA	(2)
4.	4	(7) ABA	(4)
5.	6	(8) ABAC	(7)
6.	9		(3)

LZW kodiranje: primjer dekodiranja

KORAK	RADNA RIJEČ	ULAZ DEKODERA	DEKODIRA NI SIMBOLI	SADRŽAJ RJEČNIKA
1		(1)	A	
2	А	(2)	В	(4) AB
3	В	(2)	В	(5) BB
4	В	(4)	AB	(6) BA
5	AB	(7)	ABA	(7) ABA
6	ABA	(3)	С	

Metode rječnika: primjene

- LZW
 - UNIX compress
 - GIF
 - Modem V.24 bis
- * LZ77
 - ZIP

Metode skraćivanja niza

Zavod za telekomunikacije

- potiskivanje ponavljanja (engl. repetition supression)
- zastavica (flag)
 koja označuje nule

 →

 894

 †
 broj ponavljanja

- slijedno kodiranje (engl. run-length encoding)
- algoritam kodiranja temelji se na kraćem zapisu ponavljanih simbola pomoću specijalnog znaka (!)
- primjer: ABCCCCCCDEFFFABC...

ABCCCCCCC DEFFFABC...
8 okteta 3 okteta

AB<u>C!8</u> DE<u>FFF</u>ABC... 3 okteta 3 okteta

← "isplati" se za 4+ znakova

Primjena: prva generacija telefaksa, unutar JPEG-a