FORMULAE

Mode, grouped data

$$Mode = L_m + \frac{(f_m - f_b)}{2f_m - (f_b + f_a)} \times c_m \qquad Median = L_m + \frac{c_m}{f_m} \left(\frac{n}{2} - \sum f_{m-1}\right)$$

Sample mean, raw data

$$\overline{X} = \frac{\sum x}{n}$$

Sample mean, grouped data

$$\overline{X} = \frac{\sum fx}{\sum f}$$

Population standard deviation, raw data

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$
 or $\sqrt{\frac{\sum x^2}{N} - \mu^2}$

Sample standard deviation, raw data

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} \quad \text{or} \quad \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n - 1}}$$

Population standard deviation, grouped data

$$\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Sample standard deviation, grouped data

$$s = \sqrt{\frac{\sum fx^2 - \frac{\left(\sum fx\right)^2}{\sum f}}{\sum f - 1}}$$

Median, grouped data

Median =
$$L_m + \frac{c_m}{f_m} \left(\frac{n}{2} - \sum f_{m-1} \right)$$

Product moment coefficient of correlation

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

Spearman's rank correlation coefficient

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Least squares regression line: y = a + bx

$$b = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

$$a = \frac{\sum y}{n} - b \frac{\sum x}{n}$$

Binomial Probability Function

$$P(X = x) = {}^{n}C_{x} p^{x} (1-p)^{n-x}; x = 0,1,\dots,n$$

Poisson Probability Function

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}; \quad \lambda > 0, \quad x = 0, 1, 2, \dots$$

Test Statistic for One Population Confidence Interval for One Population

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

$$\overline{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$Z = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$
 (for big sample)

$$\overline{X} \pm Z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$$
 (for big sample)

$$Z = \frac{\hat{p} - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

$$\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

AREAS IN TAIL OF THE NORMAL DISTRIBUTION

The function tabulated is 1 - $\Phi(u)$ where $\Phi(u)$ is the cumulative distribution function of a standardised Normal variable u. Thus 1 - $\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_u^\infty e^{-u^2/2} du$ is the probability that a

standardised Normal variable selected at random will be greater than a value of u $\left(=\frac{x^-\mu}{\sigma}\right)$

σ										
							() u	
$\frac{(x - \mu)}{\sigma}$.00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0 0.1 0.2 0.3 0.4	. 5000 . 4602 . 4207 . 3821 . 3446	. 4960 . 4562 . 4168 . 3783 . 3409	.4920 .4522 .4129 .3745 .3372	.4880 .4483 .4090 .3707 .3336	.4840 .4443 .4052 .3669 .3300	.4801 .4404 .4013 .3632 .3264	.4761 .4364 .3974 .3594 .3228	.4721 .4325 .3936 .3557 .3192	.4681 .4286 .3897 .3520	.4641 .4247 .3859 .3483 .3121
0.5 0.6 0.7 0.8 0.9	. 3085 . 2743 . 2420 . 2119 . 1841	.3050 .2709 .2389 .2090 .1814	.3015 .2676 .2358 .2061 .1788	.2981 .2643 .2327 .2033 .1762	.2946 .2611 .2296 .2005	. 2912 . 2578 . 2266 . 1977 . 1711	.2877 .2546 .2236 .1949 .1685	.2843 .2514 .2206 .1922 .1660	.2810 .2483 .2177 .1894 .1635	.2776 .2451 .2148 .1867 .1611
1.0 1.1 1.2 1.3 1.4	. 1587 . 1357 . 1151 . 0968 . 0808	. 1562 . 1335 . 1131 . 0951 . 0793	. 1539 . 1314 . 1112 . 0934 . 0778	.1515 .1292 .1093 .0918	. 1492 . 1271 . 1075 . 0901 . 0749	. 1469 . 1251 . 1056 . 0885 . 0735	. 1446 . 1230 . 1038 . 0869 . 0721	.1423 .1210 .1020 .0853 .0708	.1401 .1190 .1003 .0838 .0694	.1379 .1170 .0985 .0823 .0681
1.5 1.6 1.7 1.8 1.9	. 0668 . 0548 . 0446 . 0359 . 0287	. 0655 . 0537 . 0436 . 0351 . 0281	. 0643 . 0526 . 0427 . 0344 . 0274	. 0630 . 0516 . 0418 . 0336 . 0268	. 0618 . 0505 . 0409 . 0329 . 0262	. 0606 . 0495 . 0401 . 0322 . 0256	. 0594 . 0485 . 0392 . 0314 . 0250	. 0582 . 0475 . 0384 . 0307 . 0244	. 0571 . 0465 . 0375 . 0301 . 0239	. 0559 . 0455 . 0367 . 0294 . 0233
2.0 2.1 2.2 2.3 2.4	. 02275 . 01786 . 01390 . 01072 . 00820	. 02222 . 01743 . 01355 . 01044 . 00798	. 02169 . 01700 . 01321 . 01017 . 00776	.02118 .01659 .01287 .00990 .00755	. 02068 . 01618 . 01255 . 00964 . 00734	. 02018 . 01578 . 01222 . 00939 . 00714	.01970 .01539 .01191 .00914 .00695	.01923 .01500 .01160 .00889 .00676	.01876 .01463 .01130 .00866 .00657	.01831 .01426 .01101 .00842 .00639
2.5 2.6 2.7 2.8 2.9	. 00621 . 00466 . 00347 . 00256 . 00187	. 00604 . 00453 . 00336 . 00248 . 00181	. 00587 . 00440 . 00326 . 00240 . 00175	.00570 .00427 .00317 .00233 .00169	. 00554 . 00415 . 00307 . 00226 . 00164	. 00539 . 00402 . 00298 . 00219 . 00159	.00523 .00391 .00289 .00212 .00154	. 00508 . 00379 . 00280 . 00205 . 00149	. 00494 . 00368 . 00272 . 00199 . 00144	.00480 .00357 .00264 .00193
3.0 3.1 3.2 3.3 3.4	. 00135 . 00097 . 00069 . 00048 . 00034									
3.5 3.6 3.7 3.8 3.9	. 00023 . 00016 . 00011 . 00007 . 00005									
4.0	. 00003									

PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

The table gives the 100α percentage points, u_{α} , of a standardised Normal distribution where $\alpha = \frac{1}{\sqrt{2\pi}} \int_{u_{\alpha}}^{\infty} e^{-u^2/2} du$. Thus u_{α} is the value of a standardised Normal variate which has probability α of being exceeded.

α	$^{\mathrm{u}}_{lpha}$	α	$^{\mathrm{u}_{lpha}}$	α	$^{\mathrm{u}}_{lpha}$	α	$^{\mathrm{u}}{_{lpha}}$	α	$^{\mathrm{u}}lpha$	α	\mathtt{u}_{lpha}
. 50	0.0000	. 050	1.6449	. 030	1.8808	. 020	2.0537	.010	2.3263	. 050	1.6449
.45	0.1257 0.2533	.048	1.6646 1.6849	.029	1.8957 1.9110	.019	2.0749	.009	2.3656	.010	2.3263 3.0902
.35 .30	0.3853 0.5244	.044	1.7060 1.7279	. 027 . 026	1.9268 1.9431	.017	2.1201 2.1444	. 007	2.4573 2.5121	.0001	3.7190 4.2649
.25 .20	0.6745 0.8416	.040	1.7507 1.7744	. 025	1.9600 1.9774	.015	2.1701 2.1973	. 005	2.5758 2.6521	.025	1.9600 2.5758
. 15	1.0364	. 036	1.7991	. 023	1.9954	. 013	2.2262	.003	2.7478	. 0005	3.2905
.10 .05	1.2816 1.6449	.034	1.8250 1.8522	.022	2.0141 2.0335	.012	2.2571 2.2904	.002	2.8782 3.0902	.00005	3.8906 4.4172

Taken from Statistical Tables by J Murdoch and JA Barnes