Specification of Thermoelectric Module TEC1-12704

Description

The 127 couples, 40 mm × 40 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 70 °C or larger delta T max, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Peformance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
$\mathrm{DT}_{\mathrm{max}}(\mathfrak{C})$	70	79	79 Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	16	17.2	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	4.9	4.9	DC current through the modules at DT _{max}	
Q _{C max} (Watts)	49.2	53.4	Cooling capacity at cold side of the module under DT=0 ℃	
AC resistance (Ohms)	2.55	2.75	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

1. T100: BiSn (Melting Point=138℃)

2. T200: CuSn (Melting Point= 227 °C)

B. Sealant:

- 1. NS: No sealing (Standard)
- 2. SS: Silicone sealant
- 3. EPS: Epoxy sealant
- 4. Customer specify sealing

C. Ceramics:

- 1. Alumina (Al_2O_3 , white 96%)(AlO)
- 2. Aluminum Nitride (AlN)

D. Ceramics Surface Options:

- 1. Blank ceramics (not metalized)
- 2. Metalized (Copper-Nickel plating)

Naming for the Module

8 1					
Suffix	Thickness	Flatness/	Lead wire length (mm)		
Sullix	H / (mm)	Parallelism (mm)	Standard/Optional length		
TF	0:4.0±0.1	0:0.05/0.05	150±3/Specify		
TF	1:4.0±0.05	1:0.025/0.025	150±3/Specify		
TF	2:4.0±0.025	2:0.015/0.015	150±3/Specify		
Eg. TF01: Thickness 4.0+0.1(mm) and Flatness 0.025/0.025(mm)					

Ordering Option

TEC1-12704- X-X-X-X Flatness/ Parallelism TEC1-12704-T100 -NS-TF01 -AIO

T100: BiSn (Tmelt=138°C)

NS: No sealing AlO: Alumina white 96% TF01: Thickness ± 0.1 (mm) and Flatness/Parallelism (mm): 0.025/0.025

Specification of Thermoelectric Module

TEC1-12704

Performance Curves at Th=27 ℃

Performance Curves at Th=50 °C

Standard Performance Graph Qc = f(DT)

Standard Performance Graph $V= f(\Delta T)$

Standard Performance Graph Qc = f(V)

0

Specification of Thermoelectric Module

TEC1-12704

DT=30 °C DT=20 °C DT=10 °C DT=0 °C DT=0 °C

Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V \times I).

Operation Cautions

- Cold side of the module stuck on the object being cooled
- Hot side of the module mounted on a heat radiator
- Operation below I_{max} or V_{max}
- Work under DC