Question 1: Lagrangian

Define $F = (f(x_1), ..., f(x_N))$ and $Y = (y_1, ..., y_N)$. Let f in \mathcal{H} , ξ , α , μ be vectors in \mathbb{R}^N with $\alpha \geq 0$ and $\eta \geq 0$. The Lagrangian is defined

$$L(f, b, \xi, \alpha, \eta) = \frac{1}{2} \|f\|^2 + C\xi^{\top} \mathbb{1} - (Y \odot \alpha)^{\top} F$$
$$-\alpha^{\top} (bY - \mathbb{1} + \xi) - \mu^{\top} \xi.$$
$$= \frac{1}{2} \|f\|^2 - \langle f, (Y \odot \alpha)^{\top} \tilde{K} \rangle_{\mathcal{H}} - b\alpha^{\top} Y + \alpha^{\top} \mathbb{1}$$
$$+ \xi^{\top} (C\mathbb{1} - \alpha - \mu).$$

We used that $(Y \odot \alpha)^{\top} F = \langle f, (Y \odot \alpha)^{\top} \tilde{K}, \text{ with } \rangle$

$$(Y \odot \alpha)^{\top} \tilde{K} = \sum_{i=1}^{N} \alpha_i y_i k(x_i,.).$$

Question 1: Dual problem

$$L(f, b, \xi, \alpha, \eta) = \frac{1}{2} \|f\|^2 - \langle f, (Y \odot \alpha)^\top \tilde{K} \rangle_{\mathcal{H}} - b\alpha^\top Y + \alpha^\top \mathbb{1}$$

+ $\xi^\top (C\mathbb{1} - \alpha - \mu).$

with $(Y \odot \alpha)^{\top} \tilde{K} = \sum_{i=1}^{N} \alpha_i y_i k(x_i, .)$. Stationarity conditions in primal variables:

$$\nabla_f L = 0$$
, $\nabla_b L = 0$, $\nabla_{\xi} L = 0$.

Question 1: Dual problem

$$L(f, b, \xi, \alpha, \eta) = \frac{1}{2} \|f\|^2 - \langle f, (Y \odot \alpha)^\top \tilde{K} \rangle_{\mathcal{H}} - b\alpha^\top Y + \alpha^\top \mathbb{1}$$

+ $\xi^\top (C\mathbb{1} - \alpha - \mu).$

with $(Y \odot \alpha)^{\top} \tilde{K} = \sum_{i=1}^{N} \alpha_i y_i k(x_i, .)$. Stationarity conditions in primal variables:

$$f = (Y \odot \alpha)^{\top} \tilde{K}, \qquad \alpha^{\top} Y = 0, \qquad C \mathbb{1} - \alpha - \mu = 0.$$

Question 1: Dual problem

$$L(f, b, \xi, \alpha, \eta) = \frac{1}{2} \|f\|^2 - \langle f, (Y \odot \alpha)^\top \tilde{K} \rangle_{\mathcal{H}} - b\alpha^\top Y + \alpha^\top \mathbb{1} + \xi^\top (C \mathbb{1} - \alpha - \mu).$$

with $(Y \odot \alpha)^{\top} \tilde{K} = \sum_{i=1}^{N} \alpha_i y_i k(x_i,.)$.

Stationarity conditions in primal variables:

$$f = (Y \odot \alpha)^{\top} \tilde{K}, \qquad \alpha^{\top} Y = 0, \qquad C \mathbb{1} - \alpha - \mu = 0.$$

Replacing the above in the Lagrangian:

$$L(f, b, \xi, \alpha, \eta) = -\frac{1}{2} \|f\|^2 + \alpha^{\top} \mathbb{1} = -\frac{1}{2} \alpha^{\top} G \alpha + \alpha^{\top} \mathbb{1}$$

with $G_{ij}=y_iy_jk(x_i,x_j)$. Recall that: $\alpha\geq 0$ and $C\mathbb{1}-\alpha=\mu\geq 0$, hence the dual problem is

$$\min_{\alpha} \frac{1}{2} \alpha^{\top} G \alpha - \alpha^{\top} \mathbb{1},$$
 s.t. : $\alpha^{\top} Y = 0, \qquad 0 \le \alpha \le C \mathbb{1}.$

Question 1: Boundary points

► Complementary slackness:

$$\alpha_i(y_i(f(x_i) + b) - 1 + \xi_i) = 0, \quad \mu_i \xi_i = 0$$

In the homework, we are interested in finding sufficient conditions on the dual parameter α_i so that (x_i, y_i) are support vector points that fall on the margin of the separating hyper-surface:

$$y_i(f(x_i)+b)-1=0$$

▶ By looking for indices i such that $\alpha_i > 0$, the complementary slackness implies:

$$y_i(f(x_i) + b) - 1 + \xi_i = 0$$

- ▶ If in addition $\mu_i > 0$, then again by complementary slackness it holds that $\xi_i = 0$, so that $y_i(f(x_i) + b) 1$.
- ▶ The constraint $C \alpha_i = \mu_i > 0$ implies that $\alpha_i < 0$.
- ▶ Hence, we are looking for points such that $0 < \alpha_i < C$.
- For a strict margin point: $b = y_i f(x_i)$.

Question 1: Boundary points

- ▶ Points for which $\alpha_i > 0$ are on the wrong side of the margin.
- ▶ Points for which $\alpha_i = C$ are strictly on the wrong side of the margin.
- ▶ Points for which $0 < \alpha_i < C$ are exactly on the margin.

Question 2: Lagrangian

Define $F=(f(x_1),...,f(x_N))$ and $Y=(y_1,...,y_N)$. Let f in \mathcal{H} , $\xi=(\xi^+,\xi^-)$, $\alpha=(\alpha^+,\alpha^-)$, $\mu=(\mu^+,\mu^-)$ be vectors in \mathbb{R}^{2N} with $\alpha\geq 0$ and $\mu\geq 0$. The Lagrangian is defined

$$L(f, b, \xi, \alpha, \mu) = \frac{1}{2} ||f||^2 + C(\xi^+ + \xi^-)^\top \mathbb{1}$$

$$+ (Y - F - (b + \eta) \mathbb{1} - \xi^+)^\top \alpha^+ - (\mu^+)^\top \xi^+$$

$$+ (-Y + F + (b - \eta) \mathbb{1} - \xi^-)^\top \alpha^- - (\mu^-)^\top \xi^-$$

Stationarity conditions

$$f = (\alpha^{+} - \alpha^{-})^{\top} \tilde{K}, \qquad \mathbb{1}^{\top} (\alpha^{+} - \alpha^{-}) = 0,$$

 $C\mathbb{1} - \alpha^{+} - \mu^{+} = C\mathbb{1} - \alpha^{-} - \mu^{-} = 0.$

$$L(f, b, \xi, \alpha, \mu) = -\frac{1}{2} ||f||^2 + Y^{\top}(\alpha^+ - \alpha^-) - \eta \mathbb{1}^{\top}(\alpha^+ + \alpha^-).$$

Question 2: Lagrangian

Stationarity conditions

$$f = (\alpha^{+} - \alpha^{-})^{\top} \tilde{K}, \qquad \mathbb{1}^{\top} (\alpha^{+} - \alpha^{-}) = 0,$$

 $C\mathbb{1} - \alpha^{+} - \mu^{+} = C\mathbb{1} - \alpha^{-} - \mu^{-} = 0.$

Hence, Lagrangian becomes:

$$L(f, b, \xi, \alpha, \mu) = -\frac{1}{2} \|f\|^2 + Y^{\top}(\alpha^+ - \alpha^-) - \eta \mathbb{1}^{\top}(\alpha^+ + \alpha^-)$$
$$= -\frac{1}{2} \delta^{\top} K \delta + Y^{\top} \delta - \eta \mathbb{1}^{\top}(\alpha^+ + \alpha^-),$$

with $\delta = \alpha^+ - \alpha^-$.

Dual problem:

$$\min_{\alpha} \frac{1}{2} \delta^{\top} K \delta - Y^{\top} \delta + \eta \mathbb{1}^{\top} (\alpha^{+} + \alpha^{-}),$$

s.t. $0 \le \alpha^{+} \le C \mathbb{1}, 0 \le \alpha^{-} \le C \mathbb{1}, \delta^{\top} \mathbb{1}.$

Question 2: Boundary points

Complementary slackness (CS):

$$\alpha_i^+(y_i - f(x_i) - b - \eta - \xi_i^+) = 0, \qquad \mu_i^+ \xi_i^+ = 0$$

$$\alpha_i^-(-y_i + f(x_i) + b - \eta - \xi_i^-) = 0 \qquad \mu_i^- \xi_i^-$$

- In the homework, we are interested in finding sufficient conditions on the dual parameters α_i^+ , α_i^- so that $y_i f(x_i) b = \eta$ or $-y_i + f(x_i) + b = \eta$.
- First, if $\alpha_i^+ > 0$ or $\alpha_i^- > 0$, then by CS:

$$\begin{cases} y_{i} - f(x_{i}) - b - \eta - \xi_{i}^{+} = 0, & \alpha_{i}^{+} > 0 \\ -y_{i} + f(x_{i}) + b - \eta - \xi_{i}^{-} = 0, & \alpha_{i}^{-} > 0 \end{cases}$$
(1)

- Moreover, if $\mu_i^+>0$ in case 1 or $\mu_i^->0$ in case 2, then by CS: $C-\alpha_i^+=\mu_i^+>0$ or $C-\alpha_i^-=\mu_i^->0$.
- Need points such that $0 < \alpha_i^+ < C$ or $0 < \alpha_i^- < C$.
- Also note that if $0 < \alpha_i^+ < C$, then $\alpha_i^- = 0$ and vice-versa (otherwise, we get $-2\eta = \xi_i^- < 0$ contradiction). Hence, need points s.t. $0 < |\alpha_i^+ \alpha_i^-| < C$.

Question 2: Boundary points

For a boundary point:

$$\begin{cases} b=y_i-f(x_i)-\eta, & 0<\alpha_i^+$$

Regression function:

$$f(x) = \sum_{\{i \mid \alpha_i^+ > 0\} \cup \{i \mid \alpha_i^- > 0\}} (\alpha_i^+ - \alpha_i^-) k(x_i, x)$$

