Extending the ArXiv Citation Network

Lennart Purucker RWTH Aachen University Aachen, Germany lennart.purucker@rwth-aachen.de Svetlana Kalyagina RWTH Aachen University Aachen, Germany svetlana.kalyagina@rwth-aachen.de Konrad Ostrowski RWTH Aachen University Aachen, Germany konrad.ostrowski@rwth-aachen.de

ABSTRACT

Citation networks are used to trace citations between publications. They enable analysis of the impact of specific publications or the calculation of bibliographic metrics. Our project focused on extending an internal citation network created by Clement et al., which was built upon the open-access scholarly publication archive arXiv.org. We extend their result in three ways: 1) Adding references from new publications using previous work by Clement et al.; 2) Extracting references of an arXiv publication from the Microsoft Academic Graph; 3) Mining arXiv PDFs for references using Science Parse. The new methods 2. and 3. enabled us to extend the citation network with citations of external—not on arXiv—publications. As a result, we were able to expand the initial internal citation network with 1.79 million nodes and 10 million edges to a citation network with 7.36 million nodes and 48.8 million edges which also captures outgoing citations. In particular, the number of internal edges was also increased from 10 million to 23.9 million.

1 INTRODUCTION

This report has 17 references. Each reference in turn has several references. Representing these connections between different articles, papers or reports can be done by a citation network (also called citation graph). A citation network consists of nodes corresponding to papers and edges corresponding to citations. One publicly available citation network is the arXiv citation network from 2019 by Clement et al.[5]¹. Since 1991, more than 1.8 Million² articles have been submitted to arXiv³. The arXiv provides a place to share articles for researchers of many different disciplines. In 2019, Clement et al. worked on an open-source pipeline⁴ with the goal to make arXiv an easily accessible public dataset. At one point, the pipeline used regular expressions (regex) to extract citations between papers of arXiv. This output of the pipeline instantiates the internal arXiv citation network [5]. In the subsequent year, the metadata of arXiv papers was uploaded to Kaggle⁵ while the PDFs of papers on arXiv were uploaded to a public Google Cloud Storage (GCS) bucket⁶.

Such networks are of great interest as they enable the analysis of the interconnected world of scientific publications. They contain useful information for bibliographic metrics [13] or make it possible to determine the importance of a publication [17]. They also help highlight relationships between research fields, e.g. a paper from physics connected to a computer science paper.

An arXiv citation network in particular features more than 29 years of publications across multiple research fields. The PDF text and submission metadata of every such publication can be looked up for an estimated total of about 10¹⁰ words. The network by Clement et al. is, however, limited to papers that have been submitted to arXiv, showing only a slice of research of certain research fields and limit their citations to this bubble. Consequently, the internal regex-based arXiv citation network produced by Clement et al. is a good start to represent the citations within arXiv, but has multiple problems which this project aims to compensate for. We extend on the features that were already present and provide additionally an external perspective on arXiv-internal papers by adding their references to papers outside of arXiv. Consequently, this project's results aim to enable better arXiv focused analysis of, for example bibliographic metrics, and to provide additional metadata in form of citation relationships to publications on arXiv.

This report describes the work done to this end, while the code can be more closely inspected on the RWTH GitLab⁷. In detail, the goal was to extend the arXiv citation network of Clement et al. and to also add external —non-arXiv papers'—citations and corresponding nodes without outgoing edges. Specifically, external citations enable the citation network to model citations that "leave" arXiv. This corresponds to the research question: *How can the internal regex-based arXiv citation graph be extended?*

The answer to this question and the structure of the report are aligned to the problems of the citation network by Clement et al. First of all, the pipeline and the latest release of the internal citation network by Clement et al. is outdated. The pipeline used a payto-download Amazon Web Service (AWS) to acquire the dataset, instead of the free-to-download GCS bucket which was established in 2020. Similarly, the latest release of the internal arXiv citation network is based on the state of arXiv in 2019. Hence, a script was created to download all PDFs on the mentioned GCS bucket. Afterwards, the work done by Clement et al. is used as part of this script to convert all PDFs into text files and extract the internal citation network from these text files. Its final result is a dataset of PDFs, text files and the internal citation network (as JSON). This is discussed in Section 3.

Secondly, the arXiv citations are only extracted by Clement et al. via regex based on arXiv identifiers⁸, which limits the amount of possibly extracted citations. Likewise, thirdly, it is an internal citation network. No external citations, i.e. citations of papers not found on arXiv, are extracted. These limitations reduce the representative power of the citation network. Thus, extending the network to

 $^{^1\}mathrm{Clement}$ et al., called their network a co-citation network in line with the names of similarly structured networks in work they build upon. Here, it is called a citation network because it is a network in which nodes are papers and edges are citations but not a dataset of co-citation couples.

²https://arxiv.org/stats/monthly_submissions

³https://arxiv.org/

⁴https://github.com/mattbierbaum/arxiv-public-datasets

 $^{^5} https://www.kaggle.com/Cornell-University/arxiv\\$

 $^{^6}https://console.cloud.google.com/storage/browser/arxiv-dataset\\$

 $^{^7} RWTH\text{-}internal: https://git.rwth-aachen.de/lennart.purucker/fodas_arxiv$

⁸https://arxiv.org/help/arxiv_identifier

include more citation provides added value. To this end, various methods to find more citations were explored. Two of them were implemented: one based on parsing the text files with Science Parse and the other based on data extracted from the Microsoft Academic Graph (MAG). Both were capable of extracting distinct additional citations. At the end, all citations were merged together with the internal arXiv citation network by Clement et al. to create a new arXiv citation network which also distinguishes between internal and external papers. Details on this can be found in Section 4.

A more elaborate look at the result, the new arXiv citation network, is presented in Section 5. The results as well the methods used for extraction of citations are analyzed and discussed in Section 6. Finally, the work of this report is reflected upon in section 7.

2 DATASET

The arXiv as a public dataset consists of the metadata on Kaggle and the papers' data on a public GCS bucket⁹. Weekly updates are planned for both data sources [14].

The bucket data consists of PDFs whose filenames correspond to an arXiv identifier. This set of PDFs may include multiple versions of the same article indicated by version abbreviations at the end of the filename. The state this project is built upon is from the start of December 2020 (2020-12-1). From now on, this state is referenced when talking about the data on arXiv. This corresponds to 1,791,489 PDFs of articles excluding version duplicates. According to the metadata provided by the bucket, the size of all these PDFs combined is ~1.8 TB. However, the actual download size may vary due to compression. Other formats, like text files, are currently not available on the bucket or anywhere else¹⁰. Yet, the bucket also hosts two other formats like a Postscript version or a HTML version of the article if any of these formats were uploaded by the submitter. In general, for any given article the PDF version exists while the other two formats are less likely to exist. The PDFs are downloadable for free from the bucket. The original pipeline provided by Clement et al. downloads the data from storage based on AWS for which one needs to pay. Therefore, the AWS dataset storage can be regarded as outdated at least from a cost perspective. To add to this, downloading from a public GCS bucket does not require an account.

The metadata from Kaggle is a key-value mapping of arXiv identifier to metadata about the corresponding article including information like category (e.g.: computer science). The state used here is from update 18, which corresponds to the last update before December 2020 (2020-12-1). It consists of 1,796,907 entries and has a size of \sim 3 GB.

2.1 Noteworthy Problems

As of January 2021, the weekly updates for the dataset are on hold. Both data sources, Kaggle and the GCS bucket, have not been updated for two months. This is the first time in the lifetime of this dataset on Kaggle according to its update history. Consequently, this report only works with the latest state as mentioned above. Some articles are uploaded twice to arXiv. See for example https:

//arxiv.org/abs/quant-ph/0012088 and its duplicate https://arxiv. org/abs/0704.0516. The latter seems to be a newer version of the former but is not associated within arXiv to its predecessor such that they both have a unique arXiv identifier (ID). This disassociation might be based on the change of arXiv IDs that happened in 2007 or by re-submission of an article. Some of these can be found based on title duplicates. Overall, ~3,000 title duplicates exist on arXiv. Such duplicates prevail throughout the results of the pipeline by Clement et al. and the results of this report because the arXiv ID is used as a unique identifier of distinct individual articles throughout all implementations. This problem does not necessarily require fixing as its impact with only around 3,000 duplicates (assuming all title duplicates are actual article duplicates) is quite small and does not falsify citations. Furthermore, another article might cite such a duplicate based on the duplicate's arXiv ID. Hence, removing them would eliminate a valid citation.

One minor difference between the data on the bucket and the metadata exists. The metadata does not have an entry for the article https://arxiv.org/abs/acc-phys/9607002 while a PDF for this article exists in the bucket. This is the only case of a missing entry in the metadata. Since this article is from 1996, it is unlikely that a synchronization problem between the metadata and the bucket data, resulting from the recent stop of updates, is the cause of this problem.

3 DOWNLOAD, CONVERSION AND EXTRACTION

Downloading the PDFs, converting them into text files (.txt) and extracting references from these text files based on regex was implemented by us as a script. This script has four steps. The first and second step were created by us while the third and fourth step reuse previous work by Clement et al. First, information on the PDFs of the bucket like size, version and arXiv ID are collected. Second, a selected subset of the PDFs is downloaded. The first and second step both use the g
sutil $\operatorname{Tool}^{11}.$ Here, g
sutil instead of another Google Cloud Client Library was chosen because it requires no Google Cloud Account and is explicitly made for downloading a lot of objects at the same time unlike the Client which requires an account and is not made explicitly for storage management [7]. Next, as a third step, the downloaded PDFs are converted to plaintext using the work by Clement et al. Lastly, the fourth step again uses the work by Clement et al. to extract the internal regex-based arXiv citation network from all converted text files. Both times, not the whole pipeline by Clement et al. is used but instead the needed code is reused and adapted to the structure of the script. For example, this includes minor changes in the resulting directory structure of the output.

For this project, the script was executed on two separate machines 12 . The results presented in the following correspond to the combined results of both machines. Overall, the script was able to download all 1,791,489 PDFs of the GCS bucket with a final size of \sim 1.7 TB. The conversion to text files worked for 1,791,470 PDFs (\sim 87 GB). The conversion of 19 PDFs failed. These PDFs have either an encoding error or UTF-8 errors. From all successfully converted text files

⁹While other public GCS buckets share the configuration information of the bucket, the arXiv bucket does not share this information at the moment. This prevents a user from knowing whether the bucket has pay-to-download activated.

¹⁰https://www.kaggle.com/Cornell-University/arxiv/discussion/173959

 $^{^{11}}https://cloud.google.com/storage/docs/gsutil?hl=de$

 $^{^{12}}$ 2 x Intel i7-8700K CPU @ 3.70GHz with 12 cores and 64 GB RAM

an internal citation network with 1,791,470 entries was extracted (\sim 182 MB as JSON; \sim 87 MB as gzip-compressed JSON). More details about the internal citation network are shown in the section 5. The added up time needed on both machines for these steps was as follows: the download took \sim 64 hours, the conversion took \sim 24 hours and the extraction took \sim 7 hours.

4 METHODS OF FINDING CITATIONS FOR ARXIV PAPERS

As part of this project six possible methods to find citations for a given arXiv paper were explored. The context for these methods is the dataset which was created by the means of the previous section. In detail, the methods were: using a parser on the arXiv papers' converted text files; extracting information from the metadata of PDF files; utilizing the source files of arXiv papers stored on arXiv; deploying a web crawler; extending the regex-based extraction and working with additional (offline-available) datasets like a university version of the Microsoft Academic Graph (MAG). In the end, only the method using a parser and the MAG were viable. The following described the individual methods and their applicability in more detail

4.1 Text Mining with a Parser

This method is based on the idea of extracting references using existing open-source bibliographic reference parsers. In general, there are two categories of such tools: pure reference parsers whose input should be a raw reference string and more powerful tools which are able to extract more information from scientific documents. Since raw references extracted from original arXiv papers are not provided, the parsers from the first group could not be used. There are 5 reference parsers in the second group. In order to select the one which would be used in this project, we explored all of them. The selection criteria were previous evaluation results [15], the references output format and the execution speed. As a result, Science Parse¹³ was chosen. This tool is based on Conditional Random Fields (CRF), can parse multiple files in parallel and has the highest precision score for parsing authors.

This approach is not error-free. Due to different types of referenced objects (a journal article, a conference publication, etc.), different bibliography styles and errors introduced by humans or during converting PDF to raw text, the parser can sometimes extract no references from a document or provide a wrong result. In scope of this project, only a simplified evaluation of Science Parse was done. The details are in section 6. One of its issues is that the extracted titles seems to have uni-code errors quite often. A possible extension in the future could be to add a step that removes such problems in postprocessing.

4.2 Metadata of PDF files

In general, metadata of PDF files are understood to be information like filename, year, author and title. This metadata is also called header metadata and some tools exist to extract them [1, 9, 10]. However, this does not provide information on citations. Similarly, no tools or explicit literature was found which searches for citations as part of metadata of PDF files. Usually, citations are part of more

general text mining of PDFs like in the examples of the parser discussed above. Yet, for such text mining, the PDF is often first converted into a text file to avoid dealing with, for example, the structure of PDF files. Consequently, using a PDF's metadata is not applicable as a method for finding arXiv citations because no such tools exist and the alternative of using a text file is more suitable. The most useful information that we were able to find as part of this investigation is that the metadata sometimes contains information about the paper's structure. For example, sometimes the metadata was able to indicate on which page the references are. However, this information is only useful in connection to additional tools that then parses the according page and it is not necessarily contained within the PDF's code. Therefore, this was also not used as part of any other method.

4.3 Source Files of ArXiv Papers

When submitting a paper to arXiv, the submitter might provide a source of the document in TeX/LaTeX format. Furthermore, in case the paper was originally written in TeX/LaTeX it is required [2]. ArXiv processes the TeX/LaTeX to serve the rendered PDF from an own managed Postscript version. The team behind arXiv provides several reasons why this is the case, including, for example, the loss of contextual information [3]. As a result, the source in newer submissions often consists of TeX/LaTeX formats. Additionally, the GCS bucket stores a few —not explicitly specified —Postscript files for some submissions.

Despite all this potentially useful data, the use of the source files on arXiv for this project is non-existing. The submission of TeX/LaTeX source is only enforced for newer papers and not for all papers dating back to 1991. Furthermore, even for the most recent month considering the state of the dataset for this project, November 2020, the bucket only has ~2,000 Postscript files but ~10,000 PDFs. Hence, using the bucket data is also not sufficient. Alternatively, web crawling the source files is also not advisable because the time needed while obeying to the download rate limit of arXiv is too huge. Moreover, the format of the TeX/LaTeX source can still vary widely since the usage of .bib files, potential packages and other TeX/LaTeX specifics is not standardized¹⁴. Similar, the type of the source is diverse (e.g. compression, directory structure). In short, acquiring this source is complicated and mining the TeX/LaTeX is not more applicable than text mining by using a parser as described above. Nevertheless, the existing Postscript files could have been mined for citations. However, Postscript files would need to be heavily standardized for such mining and without further provided specification the bucket's Postscript files are not helpful. In addition, no tool for postscript mining exist as postscript files are usually simply converted to text files and then text mined. In spite of this, some (old) research in this area exists [6]. To conclude, the usage of source files of arXiv papers turned out to be not suitable for this project.

4.4 Web Crawler

For this method, the idea was to use web crawlers to query citation information based on arXiv IDs or DOIs from public data sources.

 $^{^{13}} https://github.com/allenai/science-parse$

 $^{^{14}.\}mbox{bib}$ files are especially problematic in case the file has not used citations stored, i.e. it is a multipurpose .bib file

But no adequately usable public data sources exist. Either the manual usable source does not support machine readable protocols, e.g. Google Scholar¹⁵, or the download rate of its API is too heavily limited. For example, querying citations for all arXiv papers from Semantic Scholar¹⁶ while obeying to the rate limiting would have required 60+ days. Potential partner programs or pay-to-download solutions might bypass the rate limit, but these require too much organizational commitment for the scope of this project.

In theory the idea of extending the citation graph by the means of some online-available and queryable public dataset is still valid. With unlimited access to such datasets, the citation network could be greatly and easily extended. The only downside would be to find feasible query terms. For arXiv papers such a term could be the arXiv ID. Alternatively, the metadata can be used to find author names, title or DOI.

4.5 Regular Expression

Besides using RegEx to find citations based on arXiv IDs like Clement et al. did as part of their pipeline, RegEx can be used to find citations in general. By building specific expressions for references of a paper, the citation information could be extracted. This very manual and reference style dependent approach seems plausible. However, the implementation of a regex parser that pickups different reference styles is problematic for the arXiv dataset. The reference styles within categories like computer science can already be quite different. In addition, arXiv hosts multiple different categories from different scientific fields which follow own standards and best practices for references. Besides, the papers on arXiv span a time of 30 years in which the style within categories might have evolved. As a result, a potential regex parser would need to manually consider all these different versions of reference styles. Moreover, the usage of RegEx itself can be quite complicated.

Considering these constraints, using RegEx was deemed not appropriate for the scope of the project, because creating a tool that would incorporate all these possible reference styles seemed to require more time than was available. Although, such a tool could be quite useful in general.

4.6 Microsoft Academic Graph

Several datasets about scientific publications, like Google Scholar or Microsoft Academic, exist. The Microsoft Academic Graph (MAG)¹⁷ is a different approach to such a dataset. By making relationships between properties like authors, institutions, journals, conferences and papers the focus, it provides a new perspective for analysis. Microsoft uses the MAG for several products including Microsoft Academic¹⁸ [12, 16]. This project was able to get an offline version, i.e. a snapshot, of the MAG for research purposes because of its affiliation with the RWTH Aachen University, specifically the chair of Computational Social Sciences and Humanities. The state of the snapshot is from September 2020 (2020-09-14).

As a result of the easy accessibility to this dataset, it was initially deemed useful for our project. After a more thorough investigation of the dataset the idea to use the MAG as part of this project

was ratified. As a result, the MAG is used to match arXiv papers to papers in the MAG. Afterwards, references of these papers are extracted from MAG. These steps are implemented by a MAG Extractor (MAGE).

Matching an arXiv paper to a MAG paper is done based on metadata information. In particular, the matching uses the DOI, associated URLs in the MAG and the title of the paper. In this exact order, an implemented script tries to find an entry in the MAG that corresponds to the arXiv paper. If a match is found based on the DOI, the alternative methods for matching are not attempted anymore. Only if neither the DOI nor the associated URLs match an arXiv paper, a method of matching based on the title is used. Therefore, the uniqueness of titles is assumed. As a result, this part of the method might be unsafe in the sense that papers are matched incorrectly and faulty entries are added to the citation network. This is discussed in more detail in the subsequent sections.

4.6.1 Remarks on the Dataset. In practice, the dataset consists of multiple files interconnected by primary keys with a static data schema¹⁹. For this project, the files corresponding to papers, URLs and references are of interest. The data of the MAG is collected by several automated processes. Publisher feeds, the Web index and Microsoft internal data from Bing are read by these processes to fill the MAG with data. These processes are based on several distinct technologies including applications of artificial intelligence. Additionally, the data of Microsoft Academic and the MAG are connected [12, 16]. Hence, the community driven feedback about potential errors in Microsoft Academic or related products can also influence the MAG²⁰. While working with this dataset, some noteworthy properties of the data were found which are presented in the following.

The MAG stores papers multiple times in association with distinct publications. As a result, a paper with the same title might exist as an entity in the MAG several times. For example, the paper entity with the MAG ID "2953327271" is called "The Adaptive Priority Queue with Elimination and Combining" and was published to arXiv. Additionally, the paper entity with the ID "14558443" has the identical name but is stored as part of a publication at a conference. Both entities correspond to the same paper. In the case where only one of these duplicates is connected to the appropriate references by the automated processes, a problem for this project arises. Depending on which duplicate is matched to the arXiv paper the results might differ. For this project, it was decided to ignore such duplicates. In other words, the first duplicate that is found is taken. This decision does not increase faulty entries but might decrease the number of potential entries. The reasons for this decision is similar to the reasons, which are described next, for why uniqueness of titles is assumed.

Duplicates as described above have the same title. However, for duplicates of such a type, the initial assumption of uniqueness of titles is not a problem if both entries are adequately connected to the references because no faulty entries would be created. The potential for problematic title duplicates persists, if two actual distinct papers (e.g.: distinguishable by authors or content) with the

¹⁵ https://scholar.google.de/

¹⁶ https://www.semanticscholar.org/

¹⁷https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/

¹⁸https://academic.microsoft.com/home

 $[\]overline{^{19}} \rm https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema$

²⁰https://academic.microsoft.com/faq

same title exist. As a result, matching based on the title would associate distinct papers. In general, additionally considering the authors, dates or other features of a paper could resolve potential problematic title duplicates. However, for this project the shortcut of assuming uniqueness of titles was taken. The number of title duplicates corresponds to 4.59% (~ 11 Million) of the MAG papers. In an analysis of these duplicates, by looking at small subsets, all of them were non-problematic entity duplicates as above. Obviously, the subsets might have missed examples that correspond to problematic duplicates. Furthermore, it seems to be highly unlikely that no problematic title duplicates exist. Yet, the number and impact of such title duplicates is rather small. Besides, using additional data like authors, content, year or other alternatives have their own problems (like author name formats). However, the bigger drawback is the increases in complexity of title matching. The drawback of the complexity increase becomes much more apparent after considering the problem of implementing title matching in the next subsection. Moreover, the scope of this project was too small to include these additional steps for the MAGE. As the MAGE, one of several examined methods, was implemented closer to a prototype than a fully functional library. Considering all this information, it was decided to assume uniqueness of titles for this project. However, a more thorough analysis of duplicates might prove useful for the MAG in general. Likewise, an extension of the MAGE to handle these cases would improve the result's quality.

4.6.2 MAG Extractor. The MAGE uses the files of the MAG as follows. First, it matches arXiv IDs to MAG IDs using the "Papers.txt" based on DOI. Next, the "PaperUrls.txt" file is used to find MAG IDs that are associated to an URL which includes a valid arXiv ID. Afterwards, all remaining unmatched arXiv IDs are tried to be matched to an MAG ID based on their title using the "Papers.txt". Then, it associates each found MAG ID to all its referenced MAG IDs in the "PaperReferences.txt". Afterwards, the "Papers.txt" is used again to find the title and, if it exists, the DOI of the referenced MAG IDs. Matching based on DOIs is simply testing if the DOIs are equal. The DOI of an arXiv paper is gathered from the arXiv metadata while the DOI of a MAG paper is found in the "Papers.txt". The format used for comparison is the DOI string in all upper cases which corresponds to the format used by the MAG.

The "PaperReferences.txt" stores URLs which are associated to a paper. These URLs are sometimes arXiv related URLs. The URL to a paper on arXiv includes the arXiv ID (e.g.: https://arxiv.org/abs/ 1905.00075 includes the ID "1905.00075"). Consequently, the URLs of the "PaperReferences.txt" are scanned for valid arXiv IDs that are not already matched. If such a URL is found, the MAG ID that is associated to this URL is selected as a match for the arXiv ID. Each entry in the "Papers.txt" corresponds to a paper. Such an entry also has two strings corresponding to the "paper" and "original" title of the paper. The original title seems to be the title found by the automated processes while the paper title was run through some formatting tool (e.g. paper titles are in all lower cases or removal of certain symbols). As part of the title matching both titles are used because both were able to create valid matches to arXiv papers' titles. The format in which titles are compared throughout all parts of this project is all lower cases and no whitespace (from now on called simple title matching).

Table 1: Comparison of Title Matching Approaches: Levenshtein, SequenceMatcher and simple title matching tested without parallelization for 650,000 titles on a 102,800,000-line subset of the "Papers.txt" of the MAG. Both MAG titles were tried for matching whereby only one title is compared if it immediately resulted in a match. Per line time approximated to all lines (242,996,163) of the full "Papers.txt". Of these approaches, only the SequenceMatcher implementation scaled with reading an increased number of lines at once. The results presented here are for reading 1,000 lines at once. Time rounded up in milliseconds (ms), seconds (s), minutes (m) or days (d).

Approach	Per Line	Approximate for all Lines		
Levenshtein	10,57s	29,728d		
SequenceMatcher	1,27s	3,572d		
Simple	0.0039ms	15,8m		

Initially, it was tried to compare titles based on edit distances[11]. For this the Python internal SequenceMatcher and a python implementation of the Levenshtein distance were tested. Both were used to define a similarity percentage between two given titles. Then, a cutoff value was chosen (e.g. 95%) and if the similarity was higher than the cutoff the titles were declared equal. However, this approach of comparing titles had two disadvantages, namely time complexity and safety. Regarding time complexity, both approaches took too long to parse a single line of which $\sim\!\!242$ million exist in the "Papers.txt". See table 1 for an overview.

The time these methods need would appropriately increase if the set of titles to match increased. The bottlenecks of this implementation are the comparison methods. The complexity of Levenshtein is O(mn) with m and n being the length of the compared titles. The complexity of the used SequenceMatcher function is quadratic in the worst case while the best case is linear. This is understandable considering that titles are on average multiple words long and that ~242 million of such strings are compared two times to 650,000 strings. In contrast, the simple title matching only tests for each line if any of the two titles exist in the set of strings that need to be matched which is comparably extremely efficient in Python. On that note, the implementation in Python and the implementation in general could be greatly accelerated (e.g. by using C++ instead or adding parallelization). However, any meaningful speed up would not be enough in the context of the methods' concepts and this dataset such that it does not justify re-implementing the whole project in a new language. Furthermore, this approach is less safe in regard to adding faulty entries.

Using a similarity measure like an edit distance instead of a equality comparison might declare titles equal that a human would not deem equal. If the tiles of two papers have only minor differences while the minor differences are some practices of commenting on a paper, then the similarity percentage could falsely make two titles equal (besides the problem of title duplicates as discussed above). For example, one paper has the title X and the other has the title "Comment on: X", "Rel: X" or "On: X". The percentage of similarity could meet the cutoff percentage if |X| is high enough.

 $^{^{21}} https://docs.python.org/3/library/difflib.html\\$

Consequently, using the simple title matching approach is safer and the only computational feasible approach for this implementation and dataset. Moreover, if one would add additional code to check if matched titles are not a problematic title duplicate, then this complexity would only increase and would perhaps also make the simple title matching infeasible for the dataset.

The results of a run of the MAGE are now shown exemplary. In the following sections these results are examined in more detail. The start data is the pre-processed arXiv metadata consisting of 1,796,907 arXiv IDs with 51.75% DOIs and 99.81% unique Titles. Overall, the MAGE was able to match 96.12% (1,727,262) of all arXiv IDs to MAG IDs using DOIs, URLs and title matching. Unmatched arXiv papers could come from a difference in the state of the MAG dataset compared to the arXiv dataset, incompleteness of the MAG or missing sufficient data for matching (e.g. URLs or DOI). All these matches were created in a safe fashion when assuming uniqueness of titles. For 78.45% (1,409,753) arXiv papers at least one reference could be found. These arXiv papers reference (with duplicates) 39,327,188 papers. These references are made up of 5,446,651 unique papers, making 86.15% of all references duplicates. Each paper references on average 27.89 papers. This run of the MAGE took ~50 minutes and produced two outputs. One corresponding to a mapping from arXiv IDs to all referenced MAG IDs (~570 MB) and the other to a mapping from MAG IDs to their data (\sim 1.1 GB).

5 RESULTS

The results from our methods, i.e. the parser's and the MAGE's results, as well as the internal arXiv citation network by Clement et al. were merged into a new citation network. The responsible script handles all the different results and, first, applies pre-processing to align the format of each input, trim faulty entries or add additional information needed for merging. Next, the data is individually added to the citation network whereby a distinction between internal and external papers is made. Internal papers are arXiv papers and are stored based on their arXiv ID. External papers are non-arXiv papers and are stored based on their title. For all possible external papers it is first tested, by simple title matching or using associated arXiv IDs, if it is an arXiv paper.

See table 2 for an overview of the different methods and the final citation network for which all methods' results were merged. Additionally, a table that shows different combinations created by pairwise merging of these results is provided in the appendix (see table 7).

The output of work by Clement et al. has around 26,586 referenced arXiv IDs which do not exist in the network itself. These were created by extraction errors most likely. For example, one extracted invalid arXiv ID is "hep-th/0211416" which presumably should have been the valid arXiv ID "hep-ph/0211416". Such IDs and any other ID which is not in the arXiv metadata have been removed before merging it into the new citation network. This validation step is also done any time an arXiv ID is added to the network. As a result, the problematic entry "acc-phys/9607002" which is not in the arXiv metadata is not part of the final citation network. Moreover, the resulting citation network does not include version numbers of the arXiv IDs unlike the internal citation network by Clement et al. Similar, the internal citation network also includes papers without

references. In contrast, the MAGE does not return any results for papers without references. As a result, the internal nodes column is underrepresented for the MAGE. In general, the methods do not need to store empty nodes since the citation network can be initialized based on the arXiv metadata with every node being empty or using the internal citation network.

Science parse is only applied to all arXiv papers for which the MAGE was not able to find references in the MAG. The MAGE either did not match the ID or did not find any associated references. The parser is not applied to other papers because of its unsafe nature. It is much more likely to produce faulty entries compared to the MAGE and the work by Clement et al. Hence, parsing all papers would provide more quantity but less quality. It was decided that quality is more important to minimize the number of faulty entries in the final citation network. In short, the final citation network aims for quality over quantity.

Since merging the results requires to match entities of one result dataset to the entities of another result dataset, it is required to check if these entities correspond to the same paper. This is done, depending on the datasets that needs to be merged, based on the DOI, arXiv ID or title. This brings up the problem of title duplicates again. However, here we assume uniqueness of titles again for similar reasons as above for the MAGE and since this is in accordance with the work so far. Consequently, the number of results may be lower than the numbers from the methods itself since duplicates or faulty entries were removed.

Lastly, our implementation of merging the methods' results is very specific to the output of the individual methods. We are using a newly created general purpose data structure which corresponds to a citation network that stores metadata and distinguishes between internal and external nodes as well as internal and external edges. However, the code to feed this structure with data from the results is not general purpose but specific to the method. Thus, the usability of our work suffers from this design choice. Additionally, the structure stores more information than a common citation network but diverges from the commonly used structure. The final output is again more closely to a common structure to accommodate for this differences but drops all metadata but the distinction between external and internal. For example, our work collects metadata like a paper's ID in the MAG which one can not inject into is current structure without diverging even more from common citation networks.

6 ANALYSIS

6.1 Methods

The results of the work by Clement et al., Science parse and the MAGE are compared in the following. In particular, the results are compared from a quantitative and qualitative perspective. To this end, a subset of papers was selected on which these methods are evaluated.

The subset consists of a random sample of 100,000 papers from the whole (downloaded) dataset. It is important to note that the arXiv papers have a categorical and temporal component. The properties of the papers—like having a DOI, how often they are cited and if they cite arXiv papers—might change across time or different categories. For example, the computer science papers might be

Table 2: Citation Network Results: Internal nodes and citations correspond to arXiv papers. External nodes and citations correspond to non-arXiv papers. Here, citations correspond to edges. N_{nodesI}/N_{edgesI} stands for the number of internal nodes/edges and N_{nodesE}/N_{edgesE} stands for the number of external nodes/edges. All results are rounded to two decimals and were computed as part of this project. Duplicates are excluded and removed from the citation network of all results merged.

Method	N _{nodesI}	N_{nodesE}	N_{edgesI}	N_{edgesE}	N _{nodes}	N_{edges}
Clement et al.					1.79×10^{6}	
MAGE					5.50×10^{6}	
Science Parse	0.38×10^{6}	2.02×10^{6}	0.98×10^{6}	4.49×10^{6}	2.40×10^{6}	5.47×10^{6}
All Results Merged	1.79×10^{6}	5.57×10^{6}	2.39×10^{7}	2.49×10^{7}	7.36×10^{6}	4.88×10^{7}

Table 3: Quantitative Comparison of each Method: For each method the percentage of papers/arXiv IDs from the sample of 100,000 on which the method was successfully applied (i.e. matched for MAGE or parsed for Science Parse), the number of overall references extracted and the number as well as percentage of unique references extracted are given. All numbers are rounded to two decimals.

Method	%success	N_{refs}	$N_{refsUnique}$
Clement et al.	100.00%	2.14×10^{6}	$0.29 \times 10^{6} (52.15\%)$
Science Parse	99.99%		$1.16 \times 10^{6} (54.36\%)$
MAGE	96.19%		$1.10 \times 10^{6} (49.79\%)$

more present on arXiv than economics papers. Similar, in 2007 arXiv was not as popular as in 2020 and thus other arXiv papers were cited less often. However, for this project we decided that random sampling over all papers (i.e. across all categories and all time) provides enough randomness to avoid drastic statistical problems from these differences. Additionally, these differences are not explicitly relevant for our analysis. Yet, a more detailed look at time and categorical differences for citation networks might be of interest in the future.

The statistics of the sample also support this claim empirically. To illustrate, in this sample set 52.02% of all papers have a DOI similar to the observation that 51.75% of all papers in the complete dataset have a DOI. Similar, it has 99.98% of unique titles to the whole dataset's 99.81%. Lastly, this consistency of percentages also prevails in the methods since, for example, the MAGE is able to match 96.19% of this random sample to a MAG paper which is close to the 96.12% matched arXiv IDs overall. This shows that the idea of random sampling is empirically sufficient as the results are almost identical (in relation to percentages) to the results on the whole dataset. Moreover, it empirically demonstrates that the distribution of the sampled data is remarkably similar to the distribution of the actual dataset.

6.1.1 Quantitative Comparison. See table 3 for a quantitative comparison of each method. Here the work of Clement et al. is obviously less dominant because it only extracts internal arXiv references but no external reference like the other methods. But their work is able to parse all selected papers successfully unlike Science Parse which was able to successfully parse all but 14 PDFs.

These results show that both Science Parse and the MAGE are able

Table 4: Comparison of MAGE Matching Approaches: For each matching approach the percentage of arXiv IDs which were successfully matched from the sample of 100,000, a number as well as percentage of unique matches for the given approach, the number of overall references extracted and the number as well as percentage of unique references extracted are given. The unique matches of one approach are the matches not found by any other approach. All numbers are rounded to two decimals.

Method	%matched	$N_{matchedUnique}$	N_{refs}	$N_{refsUnique}$
DOI	51.17%	6,010(11.74%)	1.54×10^{6}	$0.76 \times 10^6 (49.47\%)$
URL	57.17%	2, 145 (3.75%)	1.24×10^{6}	$0.71 \times 10^6 (57.28\%)$
Title	78.45%	18,741(23.89%)	1.67×10^{6}	$0.92 \times 10^6 (54.93\%)$

to extract a huge number of references. Science parse is able to find more unique reference while less overall references, which is presumably because the parsing creates more unique names which can correspond to faulty entries. Therefore, original identical references are identified as separate references and become unique by artifacts of the title extraction, e.g. created by Unicode errors or only partially extracted titles of references. However, the parsing is good enough to extract references titles in such a way that extracting the same reference from another paper results in the same title for 45,64% of the references.

When considering that the MAG is handmade and not complete, it is still remarkable that MAGE is able to find that many references, especially comparing it to the work of Clement et al. To inspect the MAGE results in more detail see table 4 which provides an overview of the different matching approaches included in the MAGE and how they perform on the sampled arXiv IDs.

URL matching is the quantitative worst of these three approaches and only finds a small number of matches not found by the other two approaches. Furthermore, even though it is able to match more papers than the DOI approach, these papers seem to have less references associated in the MAG. Likewise, the title approach finds more matches than the DOI approach, but this does not proportionally increase the number of overall references. However, the number of unique references increases accordingly. It follows that the matches found by title matching are more dissimilar than matches found by the other methods. The title-based approach also finds a lot of unique matches. This concludes that a lot of papers exist which are not DOI associated or—even though they are on arXiv—are not associated to their corresponding arXiv submission. A simplified

Table 5: Qualitative Comparison of Methods: The ground truth (GT) corresponds to the MAGE results. For both compared methods the percentage of successfully parsed papers from the 10,000 sampled papers, overall number of extracted references as well as percentage of how many were found compared to the GT, the number of references identically to entries in the GT and the number of references not found in the GT are shown. All numbers are rounded to two decimals. The last two columns exclude $\sim 9,000$ self-references extracted by the work of Clement et al. and 39 self-references produced by the Science parse.

Method	%parsed	N_{refs}	N_{refsGT}	$N_{refsNotGT}$
GT (MAGE)	-	292, 432	-	-
Clement et al. Science Parse	100.00% 99.97%	70, 675 (24.17%) 196, 164 (67.08%)	39, 355 51, 678	22, 323 144, 447

visualization of intersections between these results can be found in the appendix, see figure 1.

6.1.2 Qualitative Comparison. Comparing the quality of the different results is a lot more complicated than the quantity. No ground truth dataset is available which could have been used to determine the accuracy values of the results for all 100,000 sampled papers. If such a ground truth would have been publicly available in general, then the work of this project would have been not needed anyways. Moreover, manually creating such a ground truth dataset requires to much manual labor. Therefore, an alternative automatic method of comparison is needed. This alternative was to use the MAG data as a substitute ground truth and compare the other methods to it. The MAG might be incomplete, i.e. on the side of quantity problematic, but the quality seems to be sufficient in general due to the concept of its creation [12, 16] and the community driven feedback. Additionally, using DOI matching, the MAGE can extract all available references for a given paper with absolute certainty. In other words, the data gather by extracting references of DOI-matched papers is the closest to a ground truth which is available to us. Consequently, it was decided to use this data as a substitute for the ground truth. To this end, from the 100,000 sampled arXiv papers, 10,000 that have a DOI were sampled and compared, see table 5. The results of the work by Clement et al. often included self-references to previous versions as the RegEx picked up footnotes referring to previous versions which were not formally included in the reference section. The Parser might capture similar self-references. Both were removed for the qualitative comparison to the MAG data because the MAG does not include such self-references. Hence, the reference not in the ground truth would have been inflated unnecessarily. In our final result graph these self-references still exist as they represent noteworthy references.

From the data in table 5, the following can be concluded. While the work by Clement et al. is able to find much less references overall, the references found are at least to 50% correct according to the ground truth (GT). In contrast, Science parse is able to find a lot more references (\sim ×2.7) but most of these references (\sim 73.64%) are unknown to the GT despite having extracted fewer overall references than the GT. This indicates that Science Parse either finds a lot less correct references or finds a lot references not existing

in the MAG. On the contrary, the work by Clement et al. mainly finds correct references and only the minority is either incorrect or unknown. Yet, the number of self-references is extremely high with ~9,000 meaning that the work by Clement et al. extracted a self-reference for almost every paper. If projected to all papers, this would make for $\sim 1.6 \times 10^6$ references without any further uses but the knowledge of the existence of older versions which is redundant if one gathers this form the metadata. As a result, the quality of the work by Clement et al. can be regarded as higher but quantitatively underwhelming compared to Science parse. To further analyze the quality of results extracted by Science parse, one can consult [15] which examined Science parse and other tools in more detail. To conclude the analysis of methods, overall, the quality of the MAGE and work by Clement et al. seem to be higher than the quality of Science Parse. However, the quantity of references extracted by Science Parse is remarkable. Compared to this, it is even more remarkable that the MAGE is able to top this while having a higher quality. Additionally, it was shown that the different matching approaches of the MAGE all add to the final result and are not redundant.

6.2 Resulting Data

The dataset extracted by us, when viewed as a directed graph G = (V, E) with a vertex for each paper mentioned, and an edge e = (v, w) for each paper v citing another paper w, spans a total of 7,363,810 papers/vertices, consisting of 1,793,794 papers coming from the arXiv as well as 5,570,016 papers being added via outside citations.

This expands the data previously made available by Clement et al.[5] by a factor of ~ 1.33 only from the arXiv library growing since their last update. When considering the papers outside the scope of arXiv we expand the vertices by a factor of ~ 5.45 . The total edge count of the graph is 48,826,943, increasing by a factor of ~ 7.27 from the graph over arXiv only. This makes the average degree in our graph 13.261.

In stark contrast to the arXiv-internal citation network provided by Clement et al. previously, which had a largest Weakly Connected Component (WCC) of about 62% of all vertices, our largest WCC consists of 99.11% of the graph's vertices. Compared to before this makes for an over 50% increase. Fully isolated vertices went down from 31% to less than 0.1% at 6,583. This means that not only did we find references for almost the full 31% of papers that had no arXivinternal references, but they are now also almost all connected to the main corpus of the largest WCC.

6.2.1 Large clusters. The entry referencing the most other entries is a "Bibliographic guide to the foundations of quantum mechanics and quantum information" [4], at 6,155 counted references. Since the Semantic Scholar extension of arxiv.org lists this work as having only 4,847 references, but its PDF mentions over 10,000 references, we have come closer to listing them all, but are still far from complete. The missing $\sim\!\!4,000$ most likely refer to works that cannot be found on the web at all, thus featuring no arXiv IDs or DOIs to go by

The most cited entry is mentioned 132,236 times and is named "Phys", which stands for "Physical Review Letters". This is a journal

Table 6: Comparison of datasets: Expanding on a table given by Clement et al., we compare our dataset to previously available citation networks. $\langle k \rangle$ denotes the average degree (in+out combined). α_{in} and α_{out} are exponents for a best-fit powerlaw distribution of in- and outdegree respectively, with $x_{min}^{in}=204$ and $x_{min}^{out}=75$. All numbers are rounded to two decimals. arXiv (expanded) also includes external vertices and edges.

Dataset	#Vertices	#Edges	$\langle k \rangle$	α_{in}	α_{out}	%WCC
arXiv (expanded)	7.36×10^{6}	4.88×10^{7}	13.26	2.71	3.97	99.15
arXiv (Early 2019)	1.35×10^{6}	6.72×10^{6}	9.93	2.93	3.93	62
Web of Science	1.4×10^{5}	2.14×10^{6}	9.11	2.39	3.88	97
CiteSeer	3.84×10^{5}	2.21×10^{6}	9.08	2.28	3.82	95
KDD2003	3.34×10^4	4.21×10^{5}	24.5	2.54	3.45	99.6

which exists since 1958 and covers the full range of applied, fundamental, and interdisciplinary physics research topics. Articles from this journal should be cited the following way: "Phys. Rev. Lett. 79, 3116", where two numbers refer to volume and pages respectively. Science Parse does fail to extract these numbers. Thus, capturing only "Phys" is considered as a parsing error and falsifies the most cited entry.

6.2.2 Shortcomings. Seeing as we only collected references of papers from within arXiv, any vertices corresponding to papers not found on there will be without outgoing edges. Many of the external papers cannot be matched via any identifier on the web, and thus cannot get associated to metadata like the research domain. This means that analysis of the form: "How are publications in the field xyz split up between arXiv and non-arXiv" can only be performed for a subset of the data, as many of the external entries can only be associated to possible metadata based on title.

7 CONCLUSION

Concluding this report, the research question can be answered. Two approaches have been presented and implemented to extend the internal regex-based arXiv citation network of Clement et al., namely using Science Parse (parsing papers) and extracting data from the MAG (extracting references from an offline-available bibliographic dataset). Furthermore, as part our investigation it became clear that it would also have been possible to implement a Web crawler for online-available bibliographic datasets if download rate limiting can be resolved. Similarly, extending the regex-based extraction could be done with enormous manual effort. However, the approaches of using a PDF's metadata or an arXiv paper's source files seem implausible.

Our results show that the approach of using bigger datasets like the MAG to extract references is valid. This method could be further extended or standardized such that other datasets could be similarly mined for references resulting in a more complete citation network. This further enables the creation of citation networks more useful and valuable for analysis like determining bibliographic metric or determining the importance of publications. All in all, the citation network resulting from this project is already a bigger step towards providing a dataset for analysis focused on arXiv than previous work. Hence, it makes the relationships of publications on arXiv and its text more easily usable for future work. In other words,

we were able to add to the machine-readable metadata of arXiv publications by extending the information about a paper's citation. Nonetheless, our results also have some caveats. The final citation network does not include versions of papers but only works implicitly with the newest version. A citation network that could incorporate multiple versions would perhaps provide additional benefit to analysis the development of papers over time with regard to citations. Similar, our methods of extracting citations only work on publications available on the web (e.g. indexed by Google, Bing or on arXiv)

As a result of the analysis, it became apparent that our initial understanding of the MAG was faulty. The MAG is not as complete as thought. Thus, executing the parser on all PDFs and merging the corresponding results might prompt better quantitative results than executing the parser only on papers for which the MAGE did not prompt results. However, this would increase the faulty citation entries of the resulting citation network, i.e. decrease the quality of the network. Therefore, we decided to choose quality over quantity in this trade-off. A less error prone parser or a method to adequately verify extracted citation entries (e.g. by citizen science) could prevent such a trade-off.

The caveats of potential title duplicates still persists. Our solution of ignoring title duplicates in favor of simplicity might not be sufficient enough for every application. Hence, an approach to adequately match publications based on the title and perhaps additional metadata is of high interests. Especially, if one would be able to implement an approach that is also fast enough for larger datasets.

The final structure of our citation network which can differentiate between internal and external for papers and citations is new compared to related work. Therefore, it could provide additional benefit to standardize a more general purpose structure of citation networks in the future. In particular a structure that includes more metadata.

Our work could be reused in the future to analyze categorical and time difference of arXiv paper's citations. A citation network can be build for which internal nodes are of one specific category and external nodes are of all other categories.

Furthermore, one could, for example, feed the network generated by our tools back into the MAGE. This would yield additional citations being extracted from the MAG, expanding our result by another "layer" from the outside as well as filling in citations by the external entries already present in our network. Iterating this can lead to a network containing all works reachable from the starting space of arXiv along with a metric for "distance from arXiv".

Finally, general analysis of the publications on arXiv can use our results. This large-scale dataset now has, additional to its rich annotations like authorship or category, an arXiv specific relationship representation with external and internal perspectives. For example, determining co-citations or bibliographic coupling can be done more precisely and easily. Other machine learning applications could greatly benefit using these additional information. These applications could then perhaps predict our following 17 references.

REFERENCES

- Leon Andretti Abdillah. 2013. PDF articles metadata harvester. arXiv preprint arXiv:1301.6591 (2013).
- [2] ArXiv. 2020. arXiv Submission Guidelines. Retrieved January 13, 2021 from https://arxiv.org/help/submit
- [3] ArXiv. 2020. Why Submit the TeX/LaTeX Source? Retrieved January 13, 2021 from https://arxiv.org/help/faq/whytex
- [4] Adán Cabello. 2000. Bibliographic guide to the foundations of quantum mechanics and quantum information. arXiv preprint quant-ph/0012089 (2000).
- [5] Colin B Clement, Matthew Bierbaum, Kevin P O'Keeffe, and Alexander A Alemi. 2019. On the Use of ArXiv as a Dataset. arXiv preprint arXiv:1905.00075 (2019).
- [6] G. Giuffrida, E. Shek, and J. Yang. 2000. Knowledge-based metadata extraction from PostScript files. In DL '00.
- [7] Google. 2020. Google Cloud Documentation. Retrieved January 13, 2021 from https://cloud.google.com/storage/docs/gsutil Additonal: https://cloud.google.com/storage/docs/downloading-objects.
- [8] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.
- [9] Mario Lipinski, Kevin Yao, Corinna Breitinger, Joeran Beel, and Bela Gipp. 2013. Evaluation of Header Metadata Extraction Approaches and Tools for Scientific PDF Documents. In Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries (Indianapolis, Indiana, USA) (JCDL '13). Association for Computing Machinery, New York, NY, USA, 385–386. https://doi.org/10.1145/2467696. 2467753
- [10] Simone Marinai. 2009. Metadata extraction from PDF papers for digital library ingest. In 2009 10th International conference on document analysis and recognition. IEEE. 251–255.
- [11] Gonzalo Navarro. 2001. A guided tour to approximate string matching. ACM computing surveys (CSUR) 33, 1 (2001), 31–88.
- [12] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan Wang. 2015. An overview of microsoft academic service (mas) and applications. In Proceedings of the 24th international conference on world wide web. 243–246.
- [13] Lovro Šubelj, Dalibor Fiala, and Marko Bajec. 2014. Network-based statistical comparison of citation topology of bibliographic databases. Scientific reports 4, 1 (2014), 1–10.
- [14] Kaggle Team. 2020. Leveraging ML to Fuel New Discoveries with the arXiv Dataset. Retrieved January 13, 2021 from https://medium.com/@kaggleteam/leveraging-ml-to-fuel-new-discoveries-with-the-arxiv-dataset-981a95bfe365
- [15] Dominika Tkaczyk, Andrew Collins, Paraic Sheridan, and Joeran Beel. 2018. Machine Learning vs. Rules and Out-of-the-Box vs. Retrained: An Evaluation of Open-Source Bibliographic Reference and Citation Parsers. arXiv:1802.01168 [cs.DL]
- [16] Kuansan Wang, Zhihong Shen, Chi-Yuan Huang, Chieh-Han Wu, Darrin Eide, Yuxiao Dong, Junjie Qian, Anshul Kanakia, Alvin Chen, and Richard Rogahn. 2019. A review of Microsoft academic services for science of science studies. Frontiers in Big Data 2 (2019), 45.
- [17] Karol Życzkowski. 2010. Citation graph, weighted impact factors and performance indices. Scientometrics 85, 1 (2010), 301–315.

A CONTRIBUTION PARAGRAPHS

A.1 Lennart Purucker

As part of this project, I developed the script used to download all PDFs from the GCS bucket, convert all of them to text files and extract the internal arXiv citation network. In addition, I investigated all the different methods to find citations for arXiv papers with exception of the parser method (Section "Text Mining with a Parser"). This mainly included the implementation of the Microsoft Academic Graph Extractor. Next, I implemented the script used to merge all method's results and create the final citation network. Lastly, I analyzed the methods from a quantitative and qualitative perspective. For the report, I wrote the section corresponding to my work, the introduction, conclusion and the dataset section.

A.2 Svetlana Kalyagina

In the scope of this project, I explored the method of extracting references from original PDFs using bibliographic reference parsers. It included analysis, installation, and testing of available open-source tools. Next, I implemented the script to parse a given batch of PDFs using Science Parse. For the report, I wrote the section corresponding to my work.

A.3 Konrad Ostrowski

During this project I worked on a Python application to extract statistics from the dataset we created. I replicated the results of Clement et al. to make sure that we are getting the adequate data comparison points, and I explored into the option of calculating co-citations and bibliographic coupling for our data, which turned out infeasible with the available computing power. For the report, I authored the section on Resulting data, co-authored on abstract, introduction and conclusion and did multiple editing passes for structure and correctness.

B ADDITIONAL FIGURES AND TABLES

Table 7: Citation Network for Pairwise Combinations: Combinations are presented without duplicates. All results are rounded to two decimals and were computed as part of this project.

Method	N _{nodesI}	N_{nodesE}	N_{edgesI}	N_{edgesE}	N _{nodes}	N_{edges}
Clement et al. + MAGE	1.79×10^{6}	4.01×10^6	2.32×10^{7}	2.04×10^{7}	5.80×10^{6}	4.36×10^{7}
MAGE + Science Parse	1.79×10^{6}	5.57×10^{6}	1.94×10^{7}	2.49×10^{7}	7.36×10^6	4.43×10^{7}
Science Parse + Clement et al.	1.79×10^{6}	2.02×10^{6}	1.07×10^{7}	4.49×10^{6}	3.81×10^{6}	1.52×10^{7}

Figure 1: Intersection of MAGE Matches: Intersections of Matches for the different matching approaches of the MAGE visualized. Circle size are proportional to the number of matches found by the associated matching approach (see table 4 for details on matching numbers). Intersection area size is not exactly proportional to the size of intersection set for the sake of visual clarity. Size of the intersection sets between different approaches are shown at the end of the dotted lines.

