Automobile Engine Fault Diagnosis Using Machine Learning Method

School of Mechanical & Control Engineering Handong Global Univ.

Oct.22.2024

Industrial AI & Automation
Project 1
Prof. Young-Keun Kim

CONTENTS

- 1. Proposal Review
- 2. Baseline Journal Implementation
- 3. Data Preprocessing
- 4. Classification Model Improvement
- 5. Result & Discussion
- 6. Additional Research BOSCH Engine Datasets

- Objective -

By **Developing a Model** that Outperforms those Implemented in **Existing Journals**, Accurately **Identify** types of **Engine faults**, Providing Greater Speed and Precision in Engine Repairs.

- Goal -

A machine learning model that diagnoses 4 types of defects using 14 input variables.

Over the Journal F-1 Score ($\geq 75.1\%$)

- Expected Effective -

By building a model capable of early **diagnosis** of **automotive defects**, expect positive effects on **time**, **cost**, and **safety**.

By Applying Machine Learning, Classification to Identify Types of Engine Faults.

Quickly Diagnose and resolve Engine Faults, Enabling Fast, and Efficient Repairs.

- Data Sets Name-

EngineFaultDB (Supervised Learning)

- Acquisition -

DAQ, Gas Analyzer

< Engine Data Collection / Gas Analyzer Device>

- Input -

MAP, TPS, Force, Power, RPM,

Consumption(L/H),

Consumption(L/100), Speed, CO,

HC, CO2, O2, Lambda, AFR

- Output -

Fault type 0: Normal (16,000 entries)

Fault type 1: Rich mixture - High Pressure, Incorrect Sensor, etc. (10,988 entries)

Fault type 2: Lean mixture – Low Pressure, Incorrect Sensor, etc. (15,000 entries)

Fault type 3: Low Voltage – Worn Spark, Defective Coil, etc. (14,001 entries)

- How Baseline Journal did-

2. Tendency & Outlier

$$X_{\text{scaled}} = \frac{X - X_{\min}}{X_{\max} - X_{\min}}$$

3. Min-Max Scaling

< Journal Performance >

Classifier	Accuracy	Precision	Recall	F1-score
LR	0.576	0.574	0.576	0.574
DT	0.750	0.750	0.750	0.750
RF	0.748	0.748	0.748	0.748
SVC	0.747	0.768	0.747	0.715
KNN	0.751	0.751	0.751	0.751
NB	0.394	0.370	0.394	0.353
Neural Net.	0.749	0.748	0.749	0.748

Best Model Performance of Baseline

→ 75.1%

Following Journal's Method in MATLAB

Identified trends using a correlation table.

A box plot examines the distribution of **outliers**.

Following Journal's Method in MATLAB

Applied min-max scaling to ensure effective training.

Achieved **similar outcomes** to those reported in the paper.

< Journal Performance >

Classifier	Accuracy	Precision	Recall	F1-score
LR	0.576	0.574	0.576	0.574
DT	0.750	0.750	0.750	0.750
RF	0.748	0.748	0.748	0.748
SVC	0.747	0.768	0.747	0.715
KNN	0.751	0.751	0.751	0.751
NB	0.394	0.370	0.394	0.353
Neural Net.	0.749	0.748	0.749	0.748

Almost Same!!

< Following Journal Performance >

	SVM	TREE	KNN	LR
Accuracy	0.59	0.74	0.75	0.48
Precision	0.58	0.75	0.76	0.48
Recall	0.59	0.75	0.76	0.50
F1 Score	0.57	0.75	0.76	0.48

Feature Extraction / Feature

educti	on / Se	lecti	ng Fe	eature	S
	Accuracy	0.59	0.74	0.75	0.48
	Precision	0.58	0.75	0.76	0.48
	Recall	0.59	0.75	0.76	0.50
	F1 Score	0.57	0.75		0.48

It's Important to Focus on Data Distribution

→ Data Preprocessing is Necessary

18

Proposal Objective	New Objective
Preprocessing	Preprocessing (Scaling, Train & Test Data)
Feature Extraction Feature Reduction Selecting Features	?
Classification (SVM, Tree, KNN etc)	Classification (SVM, Tree, KNN etc)
Evaluation	Evaluation

1. Selection

Fault type 0: Normal (16,000 entries) \rightarrow (10,000 entries)

Fault type 1: Rich mixture - High Pressure, Incorrect Sensor, etc. (10,988 entries) \rightarrow (10,000 entries)

Fault type 2: Lean mixture – Low Pressure, Incorrect Sensor, etc. (15,000 entries) \rightarrow (10,000 entries)

Fault type 3: Low Voltage – Worn Spark, Defective Coil, etc. (14,001 entries) \rightarrow (10,000 entries)

✓ Equalize the number of normal and defective data

 \checkmark 10,000 = 1,000 × 10 Cases

- **✓** All the Preprocessing Method Should Apply to each Cases
- Outlier Replacement
- Min-Max Scaling
- Filtering

2. Replacement Outlier

Replace the Outliers: Used Linear Interpolation

3. Min-Max scaling

- 14 Variables have different magnitude ranges (ex. %, rpm, Pa etc.).
- \rightarrow Min-Max Scaling [0, 1].

4. Butterworth Low Pass Filter

Don't Focus on Changes Over Time Focus on the **Distribution** of Variables

Noise → Distributed with a **Large Standard Deviation**

4. Classification Model Improvement

Test / Train Datasets Split

StratifiedKFold: The Kfold is designed for label datasets with **imbalanced distributions**.

Fault type 0: Normal (10,000 entries)

Fault type 1: Rich mixture - High Pressure, Incorrect Sensor, etc. (10,000 entries)

Fault type 2: Lean mixture – Low Pressure, Incorrect Sensor, etc. (10,000 entries)

Fault type 3: Low Voltage – Worn Spark, Defective Coil, etc. (10,000 entries)

Choose: (Train: 32,000, Test: 8,000)

The Same Number of Train & Test → Fairness Train

4. Classification Model Improvement

Accuracy: 0.99

Recall: 0.99

Precision: 0.99

F1-Score: 0.99

==	=======================================								
I	ter	Eval	Objective	Objective	BestSoFar	BestSoFar	NumNeighbors	Distance	Ĺ
		result		runtime	(observed)	(estim.)			
==									
Ĺ	1	Best	0.16416	3.4096	0.16416	0.16416	103	seuclidean	Ĺ
	2	Best	0.064031	2.2297	0.064031	0.068012	16	cityblock	
i i	3	Accept	0.75	11.597	0.064031	0.080004	4717	hamming	Ĺ
	4	Accept	0.62934	41.8	0.064031	0.087232	11982	cityblock	Ĺ
	5	Accept	0.082187	3.5239	0.064031	0.064168	22	cityblock	
	6	Best	0.004625	3.1968	0.004625	0.0046084	1	cityblock	
	7	Accept	0.70094	60.35	0.004625	0.004651	15779	seuclidean	
	8	Accept	0.013875	4.6199	0.004625	0.0046277	1	seuclidean	
	9	Accept	0.01825	3.9159	0.004625	0.0046241	1	chebychev	
	10	Accept	0.19809	6.1951	0.004625	0.0046263	338	chebychev	Ĺ
	11	Best	0.0036562	3.1542	0.0036562	0.0036813	1	correlation	
	12	Accept	0.18462	4.8023	0.0036562	0.0036877	240	correlation	ſ
	13	Accept	0.0037187	2.8983	0.0036562	0.0036849	1	cosine	
	14	Accept	0.18262	4.9677	0.0036562	0.0036849	224	cosine	

< Final Performance Each Model>

	SVM	TREE	KNN	LR
Accuracy	0.69	0.97	0.99	0.65
Precision	0.69	0.97	0.99	0.65
Recall	0.69	0.97	0.99	0.66
F1 Score	0.68	0.97	0.99	0.65

	SVM	TREE	KNN	LR
Accuracy	0.59	0.74	0.75	0.48
Precision	0.58	0.75	0.76	0.48
Recall	0.59	0.75	0.76	0.50
F1 Score	0.57	0.75	0.76	0.48

< Final Performance Each Model>

	SVM	TREE	KNN	LR
Accuracy	0.69	0.97	0.99	0.65
Precision	0.69	0.97	0.99	0.65
Recall	0.69	0.97	0.99	0.66
F1 Score	0.68	0.97	0.99	0.65

$$\checkmark 76\% \rightarrow 99\% (+23\%)$$

Why KNN & Tree Model has Better Performance than others?

- ✓ KNN has benefited from having variables with similar patterns
- ✓ Decision Tree(clear classification rules) has advantage in multiple input
 - **❖** KNN & Tree is vulnerable to **noise** → **Butterworth Lowpass Filter**

- ✓ Fault2 & Fault3 Show Similar Tendency. → Difficult to Classification
- ✓ AFR, CO, CO2, O2 Correlation: Exhaust, Combustion Process.(Fault3)
- ✓ MAP, TPS, Power, Force Correlation: Engine Intake System. (Fault3)

6. Additional Research- BOSCH Datasets

Further Study

Apply the Model to the Open BOSCH Engine Dataset Available on BOSCH's Official GitHub.

Strategy:

- ① Using regression techniques, output variables can be predicted from input variables.
- ② In other words, **physical data that is easily obtainable**, such as engine speed, load, fuel cutoff, etc., **can be used to predict**CO, CO2, HC, etc., as well as temperatures within the engine manifold data that typically requires a gas analyzer.
- 3 This allows for identifying types of engine faults using only easily accessible data and the predicted output variables.

$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

* < Gaussian Process Regression >

Non-parametric, probabilistic regression method that learns the **distribution** of functions.

Measures the **correlation** (similarity) between data points.

Data points that are **closer** to each other have **higher similarity**.

Provides **uncertainty estimates** for the data, allowing evaluation of predictions along with **confidence intervals**.

- ✓ Fuel Cutoff data represents the state or timing when
 the fuel supply to the engine is cut off.
- ✓ Fuel Cutoff data is binary, with values of 0 or 1
- ✓ Excluded from preprocessing
- $\begin{cases}
 Fuel Cutoff < 0 : Fuel Cutoff = 0 \\
 Fuel Cutoff \ge 0 : Fuel Cutoff = 1
 \end{cases}$

- ✓ Linear interpolation was used to replace outliers.
- ✓ A box plot was utilized to assess the improvement in outlier reduction.

✓ A Butterworth low-pass filter was used to manage noise introduced during data acquisition.

- ✓ Scaling was applied due to the differing ranges across variables.
- ✓ Min-Max Scaling was used to normalize the data within a [0, 1] range.

$$X_{\text{scaled}} = \frac{X - X_{\min}}{X_{\max} - X_{\min}}$$

- ✓ Re-importing Preprocessed Cutoff Data from Step 1
- ✓ The binary data for Fuel Cutoff was not subjected to additional preprocessing.

- ✓ The computational load of Gaussian Process Regression increases exponentially with the number of input data points.
- ✓ Down-sampling was applied to reduce the data size while preserving trends.
- ✓ Data Entries: 49007 → 4907

- ✓ Since MATLAB lacks Multi-Output Gaussian Process functions, separate GPR models were trained for each output variable.
- ✓ Confidence intervals and predicted values can be compared to actual values.
 - ✓ GPR Average RMSE = 0.1174


```
RandomForest Model - Output Variables 1 - RMSE: 0.1180
LinearRegression Model - Output Variables 1 - RMSE: 0.1373
                                                                                                                        SVM Model - Output Variables 1 - RMSE: 0.1378
LinearRegression Model - Output Variables 2 - RMSE: 0.1526
                                                             RandomForest Model - Output Variables 2 - RMSE: 0.1269
                                                                                                                        SVM Model - Output Variables 2 - RMSE: 0.1564
LinearRegression Model - Output Variables 3 - RMSE: 0.1944
                                                             RandomForest Model - Output Variables 3 - RMSE: 0.1529
                                                                                                                        SVM Model - Output Variables 3 - RMSE: 0.2031
LinearRegression Model - Output Variables 4 - RMSE: 0.1411
                                                                                                                        SVM Model - Output Variables 4 - RMSE: 0.1456
                                                             RandomForest Model - Output Variables 4 - RMSE: 0.1149
LinearRegression Model - Output Variables 5 - RMSE: 0.1296
                                                             RandomForest Model - Output Variables 5 - RMSE: 0.1023
                                                                                                                        SVM Model - Output Variables 5 - RMSE: 0.1312
LinearRegression Model - Output Variables 6 - RMSE: 0.0781
                                                             RandomForest Model - Output Variables 6 - RMSE: 0.0656
                                                                                                                        SVM Model - Output Variables 6 - RMSE: 0.0810
LinearRegression Model - Output Variables 7 - RMSE: 0.1513
                                                             RandomForest Model - Output Variables 7 - RMSE: 0.1272
                                                                                                                        SVM Model - Output Variables 7 - RMSE: 0.1530
LinearRegression Model - Output Variables 8 - RMSE: 0.1438
                                                             RandomForest Model - Output Variables 8 - RMSE: 0.1195
                                                                                                                        SVM Model - Output Variables 8 - RMSE: 0.1444
```

- ✓ Three additional regression models were trained to compare performance with Gaussian Process Regression (GPR).
 - ✓ Linear Regression Average RMSE = 0.1410
 - ✓ Random Forest Regression Average RMSE = 0.1159
 - ✓ SVR Average RMSE = 0.1441

- ✓ MATLAB does not support Multi-Output Gaussian Process (MOGP), but Python does through the GPy module.
- ✓ MOGP Average RMSE = 0.1188

5. Additional Research – Result & Discussion

	GPR	Linear Regression	Random Forest	SVR	MOGP
RMSE	0.1174	0.1405	0.1180	0.1424	0.1188

✓ Advantages of GPR/MOGP Over Other Regression Models

- ① Interdependency Modeling: MOGP captures relationships between multiple output variables, improving accuracy.
- 2 Uncertainty Estimation: Provides confidence intervals, enhancing reliability in applications like fault detection.
- 3 Non-Linear Capability: GPR's kernel-based approach effectively models complex, non-linear relationships.

✓ Computational Considerations of GPR/MOGP

- **① High Cost:** GPR/MOGP is computationally intensive due to the large kernel matrix.
- 2 Benefit of Large Data: More data improves accuracy and reliability but increases computational load.

✓ Conclusion

GPR/MOGP's advantages in accuracy and uncertainty estimation make it highly **suitable** for **complex, interdependent datasets** like BOSCH Engine Datasets.

✓ Adaption

Output Variables must be measured with expensive equipment such as a Gas Analyzer, but if Output Variables can be accurately estimated with Input Variables, the status or defect of the engine can be identified using the data.

Reference

[1] Vergara, M., Ramos, L., Rivera-Campoverde, N. D., & Rivas-Echeverría, F. (2023). Enginefaultdb: a novel dataset for automotive engine fault classification and baseline results. *IEEE Access*, *11*, 126155-126171.

[2] Li, C. Y., Rakitsch, B., & Zimmer, C. (2022, May). Safe active learning for multi-output gaussian processes. In International Conference on Artificial Intelligence and Statistics (pp. 4512-4551). PMLR.

