TYLER W. HUGHES

Computational Physicist \$\diamond 619 770 9446 \$\diamond \text{tylerwhughes91@gmail.com}\$

ABOUT

I have a strong background in photoncs, machine learning, and software engineering. My main focuses are:

- Developing **simulation software** for computational electromagnetics, specifically combining numerical simulations with automatic differentiation for automated device design.
- Exploring novel approaches to **analog computing** in the optical domain for machine learning applications. Topics include optical backpropagation training, wave-based recurrent neural networks, among others.

EDUCATION

PhD, Applied Physics

Sept 2014 - August 2019

Stanford University, Stanford, CA

PhD Thesis: Adjoint-Based Optimization and Inverse Design of Photonic Devices

Advisor: Prof. Shanhui Fan

Master of Science, Applied Physics

Sept 2014 - June 2016

Stanford University, Stanford, CA

Bachelor of Science, Physics

Sept 2009 - May 2013

University of Michigan, Ann Arbor, MI

With Distinction and Highest Honors —— GPA: 3.82/4.0

SELECTED WORK EXPERIENCE

Research Scientist

Flex compute

Sept 2019 - present

flex compute.com

- · Leading development of the open source python frontend for the commercial simulation tool "Tidy3D".
- · Main developer of the "adjoint" plugin for automatic differentiaion of Tidy3D simulations using JAX.
- · Wrote an electromagnetic solver based on the boundary element method (BEM) for optical scattering.

Graduate Research Assistant

Sept 2014 - Aug 2019

Stanford University, Shanhui Fan Group

https://web.stanford.edu/group/fan/

- · Invented novel approaches to analog machine learning in the optical domain. Work focused on optical backpropagation training, optical nonlinear activation functions, and analog RNNs, among other topics.
- · Developed mathematical extensions to the "adjoint" method, used for gradient-based optimization of photonic devices. Wrote open source simulation packages showcasing these techniques with automatic differentiation.

Machine Learning Intern

June 2018 - Sept 2018

Rasa Technologies

rasa.com

- · Researched strategies for extracting relevant information from text using named-entity recognition techniques.
- · Contributed major feature to widely used open source software, enabling lookup table matching.

Junior Software Engineer

Jan 2014 - Aug 2014

GudTech Inc.

gudtech.com

- · Performed full stack development of commercial software for inventory management applications.
- · Designed a business intelligence tool based on multi-dimensional databases.

SELECTED PUBLICATIONS

Hughes, T. et al. Training of photonic neural networks through in situ backpropagation. Optica (2018). Pai, S., Sun, Z., **Hughes, T.** et al. Experimentally realized in situ backpropagation for deep learning in nanophotonic neural networks. Science (2023).

Hughes, T. et al. Wave Physics as a Recurrent Neural Network. Science Advances (2019).

Hughes, T. et al. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics (2018).

Hughes, T. et al. Forward-mode differentiation of Maxwells equations. ACS Photonics (2019).

Hughes, T. et al. A perspective on the pathway toward full wave simulation of large area metalenses. APL (2021).

Yamilov, A., Skipetrov, S.E., **Hughes, T.** et al. Anderson localization of electromagnetic waves in three dimensions. Nature Physics (2023).

Williamson, I. A. D., **Hughes, T.** et al. Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks. IEEE JSTQE (2018).

Minkov, M. et al. Inverse Design of Photonic Crystals through Automatic Differentiation. ACS Photonics (2020).

Hughes, T. et al. Reconfigurable Photonic Circuit for Controlled Power Delivery to Laser-Driven Accelerators on a Chip. Physical Review Applied (2019).

Hughes, T. et al. Method for Computationally Efficient Design of Dielectric Laser Accelerator Structures. Optics Express (2017).

Hughes, T. et al. On Chip laser power delivery system for dielectric laser accelerators. Physical Review Applied (2018).

Hughes, T., Fan, S. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot. Nano Letters (2016).

PATENTS

- Efficient Analog Backpropagation Training Architecture for Photonic Neural Networks (2023).
- Simultaneous measurements of gradients in optical networks (2022).
- Training Wave-Based Physical Systems as Recurrent Neural Networks (2022).
- Systems and Methods for Activation Functions for Photonic Neural Networks (2022).
- Training of Photonic Neural Networks Through in situ Backpropagation (2021).

SKILLS

Programming Python, C/C++, Julia (+ various others).

Technologies Scientific python (numpy, scipy, xarray), jax, autograd, pytorch, Tensorflow.

OPEN SOURCE PROJECTS

${f Tidy3D}$	Hardware-accelerated FDTD Simulation Tool.	link
Ceviche	Electromagnetic FDFD Simulator with Automatic Differentiation.	link
Wavetorch	Pytorch-Based Wave Equation Solver and Analog RNN Design Tool.	link
${f Angler}$	Inverse Design Simulation Tool for Nonlinear Optics.	link
Symbolic Regression	Machine Learning Tool For Converting Raw Data into Equations.	link
Neuroptica	Optical Neural Network Systems Level Modeling and Simulation.	link
Rasa	Machine Learning Framework to Automate Text-Based Conversations	link

LINKS

Personal Website twhughes.github.io

Google Scholar scholar.google.com/citations?user=-AHhToYAAAAJ&hl=en

Github github.com/twhughes

LinkedIn linkedin.com/in/tylerwhughes