CAS ETH Machine Learning in Finance and Insurance. Mini-exercises - Lecture 3.

Andrea Ferrario

Version of March 21, 2024

Activation functions

- 1. (Linear activation). Plot the linear activation function $f(x) = x, x \in \mathbb{R}$.
- 2. (Heaviside function). Plot the Heaviside function $H(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{if } x \ge 0 \end{cases}$
- 3. (Sigmoid functions). Consider the sigmoid functions $\sigma_c(x) = \frac{1}{1+e^{-cx}}$, where c > 0 and $x \in \mathbb{R}$. Compute $\sigma_c(0)$ and plot $\sigma_1(x)$. What is the name of $\sigma_1(x)$? Finally, prove the following results:
 - (a) $\lim_{c \to +\infty} \sigma_c(x) = H(x) \ x \neq 0.$
 - (b) $\sigma_c(-x) = 1 \sigma_c(x)$.
 - (c) $\frac{d\sigma_c}{dx} = c\sigma_c(1 \sigma_c)$.
- 4. (Bipolar step function). Plot the bipolar step function $S(x) = \begin{cases} -1, & \text{if } x < 0 \\ 1, & \text{if } x \ge 0 \end{cases}$. Prove that S(x) = 2H(x) 1, for all $x \in \mathbb{R}$.
- 5. (Hockey stick functions). The hockey stick functions have graphs that resemble a hockey stick or an increasing L-shaped curve. There exists different types of hockey stick functions. Here, consider the class of *parametric rectified linear unit functions*

$$PReLu_{\alpha}(x) = \begin{cases} \alpha x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

and $\alpha \geq 0$. Plot $\text{PReLu}_{\alpha}(x)$, for different values of α . The function $\text{PReLu}_0 := \text{ReLu}$ is called the *rectified linear unit function*. Then, consider the following exercises:

- (a) Prove that $ReLu(x) = \frac{1}{2}x(S(x) + 1)$.
- (b) Compute the first derivative of ReLu(x) (where is it defined?). Express it in terms of the Heaviside function H(x).

6. (Softmax function). Let
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
. $||z||_1$ denotes the L-1 norm of any vector z in \mathbb{R}^n , i.e., $||z||_1 = \sum_{i=1}^n |z_i|$. The function

$$\operatorname{softmax}(x) = \begin{pmatrix} \frac{e^{x_1}}{\|e^{x}\|_1} \\ \vdots \\ \frac{e^{x_n}}{\|e^{x}\|_1} \end{pmatrix}$$

is called the n- valued softmax function. Here, $e^x=\begin{pmatrix}e^{x_1}\\\vdots\\e^{x_n}\end{pmatrix}$. Then, consider the following exercises:

- (a) Compute $\|\operatorname{softmax}(\mathbf{x})\|_1$, $\forall x \in \mathbb{R}^n$.
- (b) Show that the softmax function is invariant with respect to addition of constant

vectors
$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_1 \end{pmatrix} \in \mathbb{R}^n$$
, i.e.,

 $\operatorname{softmax}(x+c) = \operatorname{softmax}(x), \text{ for all } x \in \mathbb{R}^n.$

Remark: this property is used in classification problems with $c = \begin{pmatrix} \max_{i=1,\dots,n} x_i \\ \vdots \\ \max_{i=1,\dots,n} x_i \end{pmatrix}$ to obtain a more stable numerically variant of the softmax function.

Abstract neurons

- 1. Explain the concept of an abstract neuron and its role in artificial neural networks.
- 2. Describe the mathematical representation of a perceptron, sigmoid and linear neurons.
- 3. Prove that the number of k-ary Boolean functions is 2^{2^k} , $k \ge 1$.
- 4. Recall that $\neg x$ is the negation of the Boolean variable x. In formulae: $\neg x = \begin{cases} 1, & \text{if } x = 0 \\ 0, & \text{if } x = 1 \end{cases}$
 - (a) Show that a perceptron can learn the Boolean function $f(x) = \neg x$, with $x \in \{0, 1\}$. Can a linear abstract neuron learn the same function?
 - (b) Show that a perceptron can learn the Boolean function $f(x_1, x_2) = x_1 \land \neg x_2$, with $x_1, x_2 \in \{0, 1\}$.

- (c) Show that a perceptron can learn the Boolean function $f(x_1, x_2) = x_1 \vee \neg x_2$, with $x_1, x_2 \in \{0, 1\}$.
- (d) Prove graphically that a perceptron cannot learn the XOR function. (Remember that $XOR(x_1, x_2) = \neg(x_1 \land x_2) \land (x_1 \lor x_2)$)
- (e) Prove analytically that a perceptron cannot learn the XOR function.
- 5. Consider the function $f(x_1, x_2, x_3) = (x_1 \wedge x_2) \wedge x_3$, with $x_1, x_2, x_3 \in \{0, 1\}$.
 - (a) Prove that \wedge is associative, namely, $f(x_1, x_2, x_3) = (x_1 \wedge x_2) \wedge x_3 = x_1 \wedge (x_2 \wedge x_3)$ for all $x_1, x_2, x_3 \in \{0, 1\}$. Hints: (1) introduce the Boolean variables $z_{12} := x_1 \wedge x_2$ and $z_{23} := x_2 \wedge x_3$. (2) Using the definition of \wedge , fill-out the table below for all combinations (x_1, x_2, x_3) . Prove that the two rightmost columns are equal.

x_1	x_2	x_3	z_{12}	z_{23}	$z_{12} \wedge x_3$	$x_1 \wedge z_{23}$
0	0	0				

(b) Prove graphically that there exists a perceptron that can learn the function f. Hints: (1) draw the set of all combinations (x_1, x_2, x_3) in \mathbb{R}^3 , with $x_1, x_2, x_3 \in \{0, 1\}$. (2) Remember that a plane in \mathbb{R}^3 is a set $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_0 = 0\}$ for some parameters $\theta_0, \ldots, \theta_2 \in \mathbb{R}$. (3) Use the table in (a) to determine if a plane exists that can separate the triples (x_1, x_2, x_3) such that $f(x_1, x_2, x_3) = 0$ from those satisfying $f(x_1, x_2, x_3) = 1$.