Gate Questions

EE24BTECH11013-DASARI MANIKANTA

- 1) The number of subgroups of a cyclic group of order 12 is [February 2022]
- 2) The radius of convergence of the series

$$\sum_{n>0} 3^{n+1} z^{2n}, z \in \mathbb{C}$$
 (2.1)

[February 2022]

3) The number of zeroes of the polynomial

$$2z^7 - 7z^5 + 2z^3 - z + 1 \tag{3.1}$$

in the unit disc $\{z \in \mathbb{C} : |z| < 1\}$ is _

[February 2022]

4) If P(x) is a polynomial of degree 5 and

$$\alpha = \sum_{i=0}^{6} P(x_i) \left(\prod_{\substack{j=0\\j\neq i}}^{6} \left(x_i - x_j \right)^{-1} \right), \tag{4.1}$$

where x_0, x_1, \dots, x_6 are distinct points in the interval [2, 3], then the value of $\alpha^2 - \alpha + 1$

- 5) If the function $f(x,y) = x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}$, $x \ne 0$, $y \ne 0$ attains its local minimum value at the point (a,b), then the value of $a^3 + b^3$ is [February 2022] (round off to two decimal places).
- 6) The maximum value of $f(x, y) = 49 x^2 y^2$ on the line x + 3y = 10[February 2022]
- 7) If the ordinary differential equation

$$x^{2} \frac{d^{2} \phi}{dx^{2}} + x \frac{d\phi}{dx} + x^{2} \phi = 0, x > 0$$
 (7.1)

has a solution of the form $\phi(x) = x^r \sum_{n=0}^{\infty} a_n x^n$, where a_n 's are constants and $a_0 \neq 0$,

- then the value of r^2+1 is _____. [February 2022] 8) The Bessel functions $J_{\alpha}(x)$, x>0, $\alpha\in\mathbb{R}$ satisfy $J_{\alpha-1}(x)+J_{\alpha+1}(x)=\frac{2\alpha}{x}J_{\alpha}(x)$. Then, the value of $(\pi J_{\frac{3}{2}}(\pi))^2$ is _ [February 2022]
- 9) The partial differential equation

$$7\frac{\partial^2 u}{\partial x^2} + 16\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} = 0$$
 (9.1)

is transformed to

$$A\frac{\partial^2 u}{\partial \xi^2} + B\frac{\partial^2 u}{\partial \xi \partial \eta} + C\frac{\partial^2 u}{\partial \eta^2} = 0,$$
(9.2)

using $\xi = y - 2x$ and $\eta = 7y - 2x$. Then, the value of $\frac{1}{12^3} \left(B^2 - 4AC \right)$ is [February 2022]

- 10) Let $\mathbb{R}[X]$ denote the ring of polynomials in X with real coefficients. Then, the quotient ring $\mathbb{R}[X]/(X^4+4)$ is [February 2022]
 - a) a field
 - b) an integral domain, but not a field
 - c) not an integral domain, but also has 0 as the the only nilpotent element
 - d) a ring which contains non zero nilpotent elements
- 11) Consider the following conditions on two proper non-zero ideals J_1 and J_2 of a non-zero commutative ring R.

P: For any $r_1, r_2 \in R$, there exists a unique $r \in R$ such that $r - r_1 \in J_1$ and $r - r_2 \in J_2$. **Q**: $J_1 + J_2 = R$ Then, which of the following statements is TRUE? [February 2022]

- a) P implies Q does not imply P
- b) Q implies P but P does not imply Q
- c) P implies Q and Q implies P
- d) P does not imply Q and Q does not imply P
- 12) **P**: Suppose that $\sum_{n=0}^{\infty} a_n x^n$ converges at x=-3 and diverges at x=6. Then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.

Q: The interval of convergence of the series $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{4^n \log_e n}$ is [-4,4]. Which of the following statements is TRUE? [February 2022]

- a) P is true and Q is true
- b) **P** is false and **Q** is false
- c) **P** is true and **Q** is false
- d) P is false and Q is true
- 13) Let $f: [-\pi, \pi] \to \mathbb{R}$ be a continuous function such that $f(x) > \frac{f(0)}{2}$, $|x| < \delta$ for some δ satisfying $0 < \delta < \pi$. Define $P_{n,\delta}(x) = (1 + \cos x \cos \delta)^n$, for n = 1, 2, 3, ... Then, which of the following statements is TRUE? [February 2022]
 - a) $\lim_{n\to\infty} \int_0^{2\delta} f(x) P_{n,\delta}(x) dx = 0$
 - b) $\lim_{n \to \infty} \int_{-2\delta}^{0} f(x) P_{n,\delta}(x) dx = 0$
 - c) $\lim_{n\to\infty} \int_{-\delta}^{\delta} f(x) P_{n,\delta}(x) dx = 0$
 - d) $\lim_{n\to\infty} \int_{[-\pi,\pi]\setminus[-\delta,\delta]}^{\delta} f(x) P_{n,\delta}(x) dx = 0$