US Crime Predictions

MSBA 273 - Group #9
Chengwu Weng
Mira Daya
Misha Khan
Yue Fang

Overview

Objective

With our project, we examined the data collected throughout the nation and evaluated which certain attributes contribute to higher rates of violent crime.

Data Collection

tate	county	community	communityn fold		population	householdsiz ra	cepctblack	racePctWhite	racePctAsian rac	ePctHisp	agePct12t21	agePct12t29	agePct16t24	agePct65up
	B ?	?	Lakewoodcit	1	0.19	0.33	0.02	0.9	0.12	0.17	0.34	0.47	0.29	0.32
5	3 ?	?	Tukwilacity	1	0	0.16	0.12	0.74	0.45	0.07	0.26	0.59	0.35	0.27
2	4 ?	?	Aberdeentov	1	0	0.42	0.49	0.56	0.17	0.04	0.39	0.47	0.28	0.32
3-	4	5 81440	Willingborot	1	0.04	0.77	1	0.08	0.12	0.1	0.51	0.5	0.34	0.21
4:	2 9	5 6096	Bethlehemto	1	0.01	0.55	0.02	0.95	0.09	0.05	0.38	0.38	0.23	0.36
)	6 ?	?	SouthPasade	1	0.02	0.28	0.06	0.54	1	0.25	0.31	0.48	0.27	0.37
4	4	7 41500	Lincolntown	1	0.01	0.39	0	0.98	0.06	0.02	0.3	0.37	0.23	0.6
	6 ?	?	Selmacity	1	0.01	0.74	0.03	0.46	0.2	1	0.52	0.55	0.36	0.35
2	1 ?	?	Hendersoncit	1	0.03	0.34	0.2	0.84	0.02	0	0.38	0.45	0.28	0.48
2	9 ?	?	Claytoncity	1	0.01	0.4	0.06	0.87	0.3	0.03	0.9	0.82	0.8	0.39
	6 ?	?	DalyCitycity	1	0.13	0.71	0.15	0.07	1	0.41	0.4	0.52	0.35	0.33
3	6 ?	?	RockvilleCen	1	0.02	0.46	0.08	0.91	0.07	0.1	0.34	0.36	0.22	0.57
2	5 2	1 44109	Needhamtov	1	0.03	0.47	0.01	0.96	0.13	0.02	0.29	0.32	0.2	0.52
5	5 8	7 30075	GrandChutet	1	0.01	0.44	0	0.98	0.04	0.01	0.35	0.53	0.32	0.23
	6 ?	?	DanaPointcit	1	0.04	0.36	0.01	0.85	0.14	0.26	0.32	0.46	0.3	0.31
1	9 18	7 91370	FortDodgecit	1	0.03	0.34	0.06	0.93	0.03	0.03	0.39	0.41	0.28	0.58
3	6	1 1000	Albanycity	1	0.15	0.31	0.4	0.63	0.14	0.06	0.58	0.72	0.65	0.47
3-	4 2	7 17650	Denvilletowr	1	0.01	0.53	0.01	0.94	0.2	0.03	0.34	0.39	0.27	0.36
1	8 ?	?	Valparaisocit	1	0.02	0.47	0.01	0.97	0.07	0.02	0.7	0.67	0.63	0.37
4.	2 12	9 66376	Rostravertov	1	0	0.41	0.05	0.96	0.01	0.01	0.37	0.37	0.24	0.55
	6 ?	?	Modestocity	1	0.25	0.54	0.05	0.71	0.48	0.3	0.42	0.48	0.28	0.32
1	2 3	1 ?	Jacksonvillec	1	1	0.42	0.47	0.59	0.12	0.05	0.41	0.53	0.34	0.33
4	1 ?	?	KlamathFalls	1	0.01	0.34	0.02	0.87	0.07	0.11	0.49	0.56	0.43	0.47

• What?

- US Communities & Crime
- 128 attributes

• When?

- o 1990 US Census
- 1990 US Law Enforcement
- o 1995 FBI crime data

Data Overview

Data	Variable		
	state		
	county		
Non-predictive Attributes	community		
	communityname		
	fold		
	demographic (70)		
	income (20)		
Predictive Attributes	education (3)		
	employment (6)		
	police-related (21)		
	crime-related (2)		
Goal Attributes	"ViolentCrimesPerPop"		

Data Cleaning

Step 1: Convert ?'s to NaN

If NaN values were larger than 50% of the column, we removed the variable from our dataset.

We eliminated 22 columns.

LemasSwFTPerPop	PctPolicHisp
LemasSwFTFieldOps	PctPolicAsian
LemasSwFTFieldPerPop	PctPolicMinor
LemasTotalReq	OfficAssgnDrugUnits
LemasTotReqPerPop	NumKindsDrugsSeiz
PolicReqPerOffic	PolicAveOTWorked
PolicPerPop	PolicCars
RacialMatchCommPol	PolicOperBudg
PctPolicWhite	LemasPctPolicOnPatr
PctPolicBlack	LemasGangUnitDeploy
LemasSwFTPerPop	PolicBudgPerPop

Preprocessing

Set threshold using median 0.15 to determine HighCrime rate

- HighCrime areas = 49.8%
- LowCrime areas = 50.2%

$$HighCrime = \begin{cases} 1, & if \ ViolentCrimesPrerPop \ge 0.15 \\ 0, & Otherwise \end{cases}$$

Preprocessing

Principal Component Analysis (PCA)

PCA is useful to reduce the number of variables from a large dataset and transforms a set of variables into a new set of uncorrelated variables.

Data Visualization

Data Visualization

Data Visualization

State	City	Violent Crimes Per Pop		
Alabama	Gadsdencity	0.9		
Arkansas	Blythevillecity	0.9		
California	EastPaloAltocity	0.97		
	Comptoncity	0.9		
	SantaFeSpringscity	0.86		
	Inglewoodcity	0.86		
Connecticut	Hartfordtown	0.94		
	NewHaventown	0.88		
Florida	Orlandocity	0.95		
	LakeCitycity	0.87		
	DaytonaBeachcity	0.86		
Georgia	Brunswickcity	0.86		
Indiana	Garycity	0.89		
Maryland	Salisburycity	0.91		
Massachusetts	Lawrencecity	0.88		
Mississippi	Grenadacity	0.96		
New Jersey	Bridgetoncity	0.93		
	Trentoncity	0.85		
	AsburyParkcity	0.85		
New York	NewYorkcity	0.87		
North Carolina	NewBerncity	0.91		
	Fayettevillecity	0.86		
Ohio	Limacity	0.97		
	Youngstowncity	0.95		

Models Overview

Models Overview

Training: 80%

	Accuracy	Precision	Recall
Naive Bayes(Benchmark)	0.794486	0.837500	0.705263
PCA&Naive Bayes	0.706767	0.710983	0.647368
Decision Tree(Benchmark)	0.827068	0.807107	0.836842
Random Forest	0.849624	0.838542	0.847368
PCA&Random Forest	0.746867	0.708920	0.794737

10-Fold Cross Validation

Random Forest w/ 10-Fold Cross Validation

Optimal depth

Decision Tree Model to pick optimal depth

Optimal Depth = 4

Random Forest w/ 10-Fold Cross Validation

Naive Bayes w/ 10-Fold Cross Validation

PCA & Naive Bayes

ROC Curve

Additional Due Diligence

- Explore attributes
- Incomplete dataset
 - Cities missing
 - o Time not given
- Focusing modeling to one state

Thank you!

