

## MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

## (An Institution of National Importance under NITs Act, Established by Govt. of India) मालवीय राष्ट्रीय प्रौद्योगिकी संस्थान जयपुर JLN Marg, Jaipur-302017 (India)

| Code: CST204     | Discrete Structures                                                                                                                                                                                                                                           | Credit: 03     |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                  |                                                                                                                                                                                                                                                               | L-T-P: (3-0-0) |
| Course Content   | Mathematical Reasoning – Induction; Counting – Pigeonhole principle, permutation, combination, probability Sets, relations, functions, operations, and equivalence Relations, relation of partial order, partitions, binary relations, Equivalence relations. |                |
|                  | Recursion, Number-theoretic algorithms: Greatest Common Divisor, Chinese Remainder Theorem, Primality testing, polynomial representation of binary number, Galois fields, primitive roots, discrete logarithms.                                               |                |
|                  | Graph Theory: Connectivity, Binary tree, Spanning tree, tree enumeration, cycles, Planarity, cut-set, coverings, colourings, matroid.                                                                                                                         |                |
| Important Text   | 1. Kolman B., Busby R: Discrete Mathematical Structures for Compute Science, PHI.                                                                                                                                                                             |                |
| Books/References | 2. Liu: Introduction to Discrete Mathemetics, McGraw-Hill.                                                                                                                                                                                                    |                |
|                  | 3. Graham, Knuth, Pratshnik: Concrete Mathematics.                                                                                                                                                                                                            |                |
|                  | 4. Grimaldi: Discrete Mathematical Structures.                                                                                                                                                                                                                |                |
|                  | 5. Rosen, Discrete Mathematics and Its Applications, McGraw Hill.                                                                                                                                                                                             |                |
|                  | 6. Koshy, Discrete Mathematics with Applications, Elsevier.                                                                                                                                                                                                   |                |
|                  | 7. Foulds: Graph Theory Applications, Narosa.                                                                                                                                                                                                                 |                |
|                  | 8. Harary: Graph Theory, Narosa.                                                                                                                                                                                                                              |                |
|                  | 9. N. Deo: Graph Theory, PHI.                                                                                                                                                                                                                                 |                |