CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

SPANNING TREE

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

Exam

- Sept 30th
 - 55 minutes 11:15AM-12:10PM
 - If you have a conflict, let me know NOW!
 - Location iLearn
- Open book but you may not have time to look things up.
- Only from the book and lecture notes, no programming questions

Project groups

- Let me know by 09/25, Friday.
 - Groups of 3.
- If I don't hear from you by Friday, you will be assigned to a random group!

So far...

- we saw how to build a local network
- How do we interconnect different types of networks to build a large global network?

Switching

- Switch
 - A mechanism to interconnect links to form a large network
 - Forward frames
 - Separate the collision domains
 - Filter packets between LANs

Connects two or more LAN segments - Bridging

LAN 1
Collision domain 1

Collision domain 2

LAN 2

Switch 2

Host E

Host F

Switches are self learning!

- Inspect the source MAC address
 - What is a mac address?
- Associate mac address and incoming interface
- Store this association for later use, (for some time)
 - aging-timer

Switching Table 64

 64
 48
 48
 16
 32

 Preamble
 Dest addr
 Src addr
 Type
 Body
 CRC

To decide how to forward a packet, a switch consults a

forwarding table

Destination, Port	
Α	3
В	0
С	3
D	3
Е	2
F	1
G	0
Н	0
Forwarding Table for Switch 2	

Switching Table

- Unknown destination → send out on all Interfaces (flooding)
 - Skip the incoming interface

Loop

Spot the loop Why?

Solution? Spanning Tree

Think of the extended LAN as being represented by a graph that possibly has loops (cycles)

- A spanning tree is a sub-graph of this graph that covers all the vertices but contains no cycles
- Spanning tree keeps all the vertices of the original graph but throws out some of the edges

Example of (a) a cyclic graph; (b) a corresponding spanning tree.

How do we create a spanning tree?

- Properties: No loops
- How?
 - Selectively flood
 - Distributed algorithm, no coordination!
 - Automatic reconciliation when failure occurs

How do we create a spanning tree?

- Properties: No loops
- How?
 - Selectively flood
 - Distributed algorithm, no coordination!
 - Automatic reconciliation when failure occurs
- Switches elect a root
 - The switch with the smallest identifier
 - Each switch identifies if its interface is on the shortest path from the root
 - Exclude if not
- Send message (Y,d,X)
- From x, claims Y is the root, distance is d

How do we create a spanning tree?

- Message (Y, d, X) (to, distance, from)
- 4 thinks it's the root
- Sends (4, 0, 4) to 3 and 5
- Receives (3,0,3) from 3
 - Sets it to as the root since 3 < 4
- Receives (3,1,5) from 5
 - Sees that this is a longer path to 3
 - 2 hops vs direct path (1 hop)
 - Removes 4-5 link from the tree

What does 4 do when it hears from 2?

- Message (Y, d, X) (to, distance, from)
- 2 hears (1, 0, 1) from 1
- 2 sends (1, 1, 2) to 3
- 3 sends (1, 2, 3) to 5 and 4
- 4 receives (1, 2, 3) from 3
- 4 receives (1, 3, 5) from 5
- Sets 1 as root (id=1 is < id=4)
- Prunes the 4-5 path since it is 4 hops compared to 3 hops via 3

Failure and Downsides

- Even after the system has stabilized, the root continues to send messages periodically
 - Other bridges continue to forward these messages
- When a bridge fails, the downstream bridges will not receive the configuration messages
 - After waiting a specified period of time, they will once again claim to be the root and the algorithm starts again
- No load balancing

Virtual LAN (VLANs)

- LANs are on the same Ethernet segments
- Does not scale very well too many wires
- How can we put multiple people in different locations on the same Ethernet segment (LAN)?
- How do we create multiple LANs over the same wire?

Why separate at all?

- LANs are on the same Ethernet segments! Security.
- Isolation sensitive traffic vs normal traffic
- Containment of traffic your for loop broke the internet
- How do we create multiple LANs over the same wire?

VLANs

 Switches specify which VLAN is accessible over which interface

- Each interface can have a VLAN color
- Each Mac address can have a interface color
- Add VLAN tag to the Ethernet header

Link Layer Recap – All this for a cat picture

