學號:B03502040 系級: 資工三 姓名:劉君猷

1. (1%)請比較有無normalize(rating)的差別。並說明如何normalize.

答:一開始取得全部 rating 的 mean 和 standard deviation,接著運算

rating = (rating - mean) / (std + 1e-100)

將此處理過的 rating 拿去給 model fit。而在 test 的時候,把預測出來的 predict 做以下運算

predict = predict * std + mean

處理過後的 predict 才是最終預測的 rating 結果。

而經過測試,上傳到 kaggle 的分數如下表。發現這樣的 normalization 效果有些許進步。

operation	Public score
無 normalization	0.87147
有 normalization	0.86403

2. (1%)比較不同的latent dimension的結果。

答:先說明一下我測試時 collaborative filtering 的架構。optimizer 使用 adamax,然後切 10% 測資作為 validation set 並使用其 rmse 作為收斂標準,batch size 是 256。然後調整不同的 embedding dimension 來看效果如何。發現 dimension 改變,效果並沒有比較好。

Dimension	Training loss	Training RMSE	Valid loss	Valid RMSE
16	0.6344	0.7947	0.7537	0.8653
64	0.5672	0.7512	0.7412	0.8580
120	0.5465	0.7374	0.7477	0.8618
256	0.4762	0.6881	0.7356	0.8550
512	0.4275	0.6520	0.7395	0.8573

3. (1%)比較有無bias的結果。

答:沿用跟上題一樣的架構,但是在 dot 後多加上 users bias 和 movies bias,結果如下, 發現有 bias 效果會好一點。若是再加上 normalization 的話,效果會再更好一點。

	Training loss	Training RMSE	Valid loss	Valid RMSE	Public score
無 bias	0.5459	0.7370	0.7341	0.8542	0.86054
有 bias	0.5472	0.7379	0.7305	0.8525	0.85983

4. (1%)請試著用DNN解決這個問題,並說明實作的方法(方法不限)。並比較MF和NN的結果, 討論結果的差異。

答:我把 users 跟 movies 做 embedding 後,將他們兩個 vector concatenate 起來,接著 丟進一個 dense layer 中,最後接上一個 output dense layer,輸出就是預測的 rating 值。詳細結構如下圖。

```
def build_deep_model(n_users, n_movies, dim, dropout=0.1):
    u_input = Input(shape=(1,))
    u = Embedding(n_users, dim)(u_input)
    u = Reshape((dim,))(u)

m_input = Input(shape=(1,))
    m = Embedding(n_movies, dim)(m_input)
    m = Reshape((dim,))(m)

out = concatenate([u, m])
    out = Dropout(dropout)(out)
    out = Dense(dim, activation='relu')(out)
    out = Dropout(dropout)(out)
    out = Dense(1, activation='relu')(out)

model = Model(inputs=[u_input, m_input], outputs=out)
    return model
```

在經過測試後,在 public score 的呈現如下表,deep model 比純粹的 cf model 效果好。我 覺得是因為 cf 的話是把兩個 embedding 相乘起來成一個數字,這樣的話,多出來的維度儲存的資訊就沒有發揮到太大的用處;而 deep model 是使用 concatenate 的方式,在訓練過程中從每個維度獲得的資訊就會比 cf 多出不少。

operation	Public score
CF model	0.87147
Deep model	0.86175

5. 請試著將movie的embedding用tsne降維後,將movie category當作label來作圖。

答:下圖是我的分類。由圖中可以發現 Drama | Musical 散落在各處,比較沒有規律,但 Action | Romance 集中在左上角、左下角跟右上角;然後 Horror | Thriller | Mystery 類的集中在左上角;Children's | Animation集中在左上角;War 類的在中間跟右上角。

6. (BONUS)(1%)試著使用除了rating以外的feature,並說明你的做法和結果,結果好壞不會影響評分。

答:我多使用 users.csv 和 movies.csv 兩份資料。在 users.csv 中,我抽出UserID, Gender, Age, Occupation 四個 features 並做成 categorical;在 movies.csv 中,我抽出 movieID,

Genres, Genres 的部分做成 one-hot encoding。所以我對於 user input 就變成 4 項 (有 user embedding, gender, age, occupation), movie input 的話則是 19 項 (movie embedding, 18 種 movie genre 的 one-hot encoding), 架構則是 deep model。

將這兩個 input 輸入後通過 keras 的 embedding layer,然後 Flatten 後 concatenate 起來,接著通過三層 dense layer 做預測,其中穿插著 dropout,詳細架構如下圖,丟上去 kaggle 發現在 public score 的表現可以到 0.849 左右。

```
def build_deep_model(n_users, n_movies, dim, dropout=0.1):
    u_input = Input(shape=(4,))
    u = Embedding(n_users, dim)(u_input)
    u = Flatten()(u)
    m input = Input(shape=(19,))
    m = Embedding(n_movies, dim)(m_input)
    m = Flatten()(m)
    out = concatenate([u, m])
    out = Dropout(dropout)(out)
    out = Dense(256, activation='relu')(out)
    out = Dropout(dropout)(out)
    out = Dense(128, activation='relu')(out)
    out = Dropout(dropout)(out)
    out = Dense(64, activation='relu')(out)
    out = Dropout(0.15)(out)
    out = Dense(dim, activation='relu')(out)
    out = Dropout(0.2)(out)
    out = Dense(1, activation='relu')(out)
    model = Model(inputs=[u_input, m_input], outputs=out)
    return model
```