Mathematical Logic, Part 1 – Answers to Tutorial Questions

1. If P, Q and R represent the following statements: P: 2 x 25 = 50

Q: Germany is in Asia.

R: 3.65 is an integer

What is the value of

a) $P \wedge R$

- b) $P \vee Q$
- c) $Q \vee R$?

<u>Solution</u>

P is true

Q is false

R is false

- a) $P \wedge R \equiv T \wedge F \equiv F$
- b) $P \lor Q \equiv T \lor F \equiv T$
- c) $Q \vee R \equiv F \vee F \equiv F$

2. Let P be "It is summer" and Q be "Leon is playing tennis". Give simple sentences which represent the following statements:

a)
$$\neg P$$

$$P \wedge \neg Q$$

c)
$$\neg P \lor$$

$$\neg \neg Q$$

Solution

- a) It is not summer.
- b) It is summer and Leon is not playing tennis.
- c) It is not summer or Leon is playing tennis.
- d) Leon is playing tennis.

Let P be "She is a scientist" and Q be "She is intelligent". Express each of the following statements symbolically:

- She is intelligent, but she is not a scientist.
- She is a scientist, and she is intelligent.
- She is a scientist, or she is not intelligent.
- It is not true that she is a scientist or that she is intelligent.

a)
$$Q \wedge \neg P$$

b)
$$P \wedge Q$$

c)
$$P \vee \neg Q$$

a)
$$Q \wedge \neg P$$
 b) $P \wedge Q$ c) $P \vee \neg Q$ d) $\neg (P \vee Q)$

4. Construct a truth table for the following expression:

$$\neg (P \land Q) \lor \neg Q$$

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg Q$	$\neg (P \land Q) \lor \neg Q$
Т	Т	Т	F	F	F
Т	F	F	Т	Т	Т
F	Т	F	Т	F	Т
F	F	F	Т	Т	Т

5. Show that the expression $P \Rightarrow (P \lor Q)$ is a tautology by constructing a truth table

P	Q	$P \vee Q$	$P \Rightarrow (P \vee Q)$
Т	Т	T	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т

6. Consider the following statement:

$$P \Rightarrow \neg Q$$

- What is a) the converse;
 - b) the inverse;
 - c) the contrapositive?

Solution

- a) $\neg Q \Rightarrow P$
- b) $\neg P \Rightarrow \neg \neg Q \equiv \neg P \Rightarrow Q$
- c) $\neg \neg Q \Rightarrow \neg P \equiv Q \Rightarrow \neg P$
- 7. Use De Morgan's law to show that:

$$\neg(\neg P \land (P \lor Q)) \equiv P \lor (\neg P \land \neg Q)$$

$$\neg (\neg P \land (P \lor Q)) \equiv P \lor \neg (P \lor Q)$$

$$\equiv P \vee (\neg P \wedge \neg Q)$$

8. Use the distributive law to simplify the following expression:

$$\neg Q \land (\neg P \lor Q)$$

Solution

$$\neg Q \land (\neg P \lor Q) \equiv (\neg Q \land \neg P) \lor (\neg Q \land Q)$$

$$\equiv (\neg Q \land \neg P) \lor \mathsf{F}$$

$$\equiv (\neg Q \land \neg P)$$
Complement Law
$$\equiv (\neg Q \land \neg P)$$
Identity Law

9. Negate the following expression, and simplify your answer (hint: use De Morgan's Law):

$$(P \Rightarrow Q) \wedge Q$$

$$\neg ((P \Rightarrow Q) \land Q)) \equiv \neg (P \Rightarrow Q) \lor \neg Q)$$
 De Morgan's Law
$$\equiv (P \land \neg Q) \lor \neg Q$$
 Identity 2

10. In question 5 you drew a truth table to show that $P \Rightarrow (P \lor Q)$ is a tautology.

Now do this using algebra

$$P \Rightarrow (P \lor Q) \equiv \neg P \lor (P \lor Q)$$
 Identity 1
$$\equiv (\neg P \lor P) \lor Q$$
 \lor is associative
$$\equiv \mathsf{T} \lor Q$$
 Complement Law
$$\equiv \mathsf{T}$$
 Identity Law

P	Q	$\neg Q$	$P \lor \neg Q$
Т	Т	F	Т
Т	F	Т	Т
Т	Undefined	Undefined	Т
F	Т	F	F
F	F	Т	Т
F	Undefined	Undefined	Undefined
Undefined	Т	F	Undefined
Undefined	F	Т	Т
Undefined	Undefined	Undefined	Undefined