HW3

Li Haolun 2022011545

November 24, 2023

1. net surplus =
$$\int_0^3 (150 - 30q) dq - 3 \times 60 = 135$$
.

2.
$$(1,2): x_1 = 10, x_2 = 0, U = 10$$
.

$$(4,2): x_1 = 0, x_2 = 5, U = 5.$$

$$\Rightarrow$$
 CV = 20 - 10 = 10, EV = 10 - 5 = 5.

3. (a)
$$D(50) = 50$$
.

(b)
$$\int_0^{50} D(p) dp = \int_0^{50} (100 - p) dp = 3750$$
.

(d)
$$3750 - 2500 = 1250$$
.

4. (a)
$$\epsilon = \frac{\frac{\mathrm{d}D}{D}}{\frac{\mathrm{d}p}{p}} = \frac{\mathrm{d}D}{\mathrm{d}p} \frac{p}{D} = \frac{p}{p-40}$$
.

(b)
$$\epsilon = \frac{d}{dp} \frac{p}{D} = -60p^{-4} \frac{p}{20p^{-3}} = -3$$
.

(c)
$$\epsilon = \frac{dD}{dp} \frac{p}{D} = -2(p+4)^{-3} \frac{p}{(p+4)^{-2}} = \frac{-2p}{p+4}$$
.

5. (a)
$$P(q) = 10 - q$$
.

(b) total revenue =
$$10q - q^2$$
, average revenue = $10 - q$, marginal revenue = $10 - 2q$.

(c)
$$q = 5 \Rightarrow p = 5$$
.

(d)
$$q = 5$$
, $\epsilon = \frac{dq}{dp} \frac{p}{q} = -\frac{p}{10-p} = -1$

6. (a) equilibrium price
$$= 20$$
, equilibrium quantity $= 60$.

(b)
$$p_D = p_S + 10$$

$$D = 100 - 2(p_S + 10) = S = 3p_S$$

(c)
$$\Rightarrow p_S = 16$$
, $p_D = 26$, $q = 48$.

7. (a) equilibrium price
$$= 20$$
, equilibrium quantity $= 100$.

(b)
$$p_D + 10 = p_S \Rightarrow p_D = 15$$
, $p_S = 25$, $q = 125$.

8. (a)

$$\begin{cases} \text{decreasing returns to scale} & \text{if } a+b>1\\ \text{constant returns to scale} & \text{if } a+b=1\\ \text{increasing returns to scale} & \text{if } a+b<1 \end{cases} \tag{1}$$

(b)
$$\frac{\partial^2 f}{\partial x_1^2} = Ca(a-1)x_1^{a-2}x_2^b < 0 \Rightarrow a < 1$$
.

(c)
$$\frac{\partial^2 x_2}{\partial x_1^2} = (1 + \frac{a}{b}) \frac{af^{\frac{1}{b}}}{bc^{\frac{1}{b}}} x_1^{-2 - \frac{a}{b}} > 0 \Rightarrow a, b, c > 0$$
.

9. (a)
$$\Pi(x) = 400\sqrt{x} - 50x$$
.

(b)
$$x^* = 16$$
, $\max(\Pi) = \Pi(16) = 800$.

(c)
$$\Pi'(x) = 320\sqrt{x} - 40x \Rightarrow x'^* = 16$$
, $\max(\Pi') = 640$.

(d)
$$\Pi_{\text{after-tax}} = 200\sqrt{x} - 25x \Rightarrow x^*_{\text{after-tax}} = 16$$
, $\max(\Pi_{\text{after-tax}}) = 400$.

10. (a)
$$4\times (\frac{1}{2}x_1^{-\frac{1}{2}}x_2^{\frac{1}{4}})=\omega_1$$
 , $4\times (\frac{1}{4}x_1^{\frac{1}{2}}x_2^{-\frac{3}{4}})=\omega_2$.

(b)
$$\Rightarrow x_1 = \frac{8}{\omega_1^3 \omega_2}$$
, $x_2 = \frac{4}{\omega_1^2 \omega_2^2}$.