			•
Q1. The differential equation a) $\frac{\delta M}{\partial x} = \frac{\delta N}{\partial y}$	tion of the form $Mdx + Ndy$ b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	= 0 is said to be exact if c) $\frac{\delta M}{\partial y} + \frac{\delta N}{\partial x} = 0$	$d)\frac{\delta M}{\partial y} - \frac{\delta N}{\partial y} = 0$
The interpretation and the	regrating factor is	= 0 is of homogeneous type	
a) $\frac{1}{My-Nx}$	b) $\frac{1}{Mx-Ny}$	C) $\frac{1}{Mx+Ny}$	d) $\frac{1}{My+Nx}$
Q3. Solution of $xdy + yd$	dx = 0 is		
a) $xy = c$	b) x + y = c	c) $x - y = c$	d) none of these
actor is	ferential equation $Mdx + Nd$	$dy = 0$, if $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f($	x), Then the integrating
a) $e^{f(x)}$	b) $\frac{1}{f(x)}$	c) $e^{\int f(x)dx}$	d) $\int f(x)dx$
Q5. Integrating Factor of	$ydx - xdy + a(x^2 + y^2)dx$	= 0 is	
a) $\frac{1}{x^2}$	b) $\frac{1}{y^2}$	c) $\frac{1}{x^2y^2}$	$d) \frac{1}{(x^2+y^2)}$
Q6. The general solution	of equation $xp^2 - yp + a$	= 0, where $p = \frac{dy}{dx}$, is given	by
$a) y = cx - e^c$	b) $y = cx + \frac{a}{c}$	c) $y = cx - sin^{-1}c$	d) $(y - cx)^2 = a^2c^2 + b^2$
Q7. The equation having a) y'' -4 y' +4=0	e^{2x} and xe^{2x} as independ (b) y'' -5 y' +4=0	lent solution is (c) y'' -4y=0	(d) y''-3y'+2=0
Q8. The solution of $y'' - 4$ a) $Ae^{-2x} + Be^{2x}$ b) $(A + Bx)e^{2x}$	4y'+4y = 0 is b) $Ae^{-2x} + Be^{x}$ d) $(A + Bx)e^{-2x}$		
Q9. The wronskian of the i) -1	function 1, sin x, cos x is b) 1	c) 0	d) 2
	ndependent solution of $\frac{d^4y}{dx^4}$. (b) $\{1, x, e^{-x}, xe^{-x}\}$		(d) $\{1, x, e^x, xe^{-x}\}$
Q11. The general solution a) $e^x (c_1 x^2 + c_2 x + c_3)$ c) $e^x (c_1 x^2 + (c_2 + c_3)x)$		3y=0 is) $e^{3x} (c_1 cos2x + c_2 sin2x)$) $e^{2x} (c_1 sin^2 x + c_2 cosx + c_3)$)
Q12. The general solution a) $c_1e^{2x} + c_2e^x + (c_3 + c_4)$ c) $c_1e^{-x} + c_2e^x + (c_3 + c_4)$	of the equation $\frac{d^5y}{dx^5} - \frac{d^3y}{dx^3} = x + c_5x^2$	0 is (b) $c_1e^{-x} + c_2e^x$ (d) $c_1e^{-x} + c_2e^x + (c_1 + c_2)$	$x + c_c x^2$

Page 1 of 7

Q13. The value of $\frac{1}{f(D)}$.1 when $f(D) = D^n$ is

(d) None of these

Q14. The particular integral of $\frac{d^2y}{dx^2} + y = x^2$ is

Q15. The general solution of $(D^2 + D - 2)y = e^x$ is

 $(c)x^2$

(a) $y = Ae^x + Be^{-2x} + \frac{1}{3}xe^x$ (c) y=Ae^x+Be^{-2x}+ $\frac{1}{6}$ (x²e^x)

(b) $y = Ae^x + Be^{-2x}$ (d) $y = (A + Bx)e^{-2x} + \frac{1}{3}xe^x$

Q16. Particular integral of $\frac{d^2y}{dx^2} + y = 1$ is

(a)0

(c)1

(d) x^2

(d)None of these

Q17. The complementary function for the solution of the differential equation $2x^2y''+3xy'-3y=x^3$ is

(a) Ax^2+Bx

(b) $Ax^{\frac{3}{2}} + Bx^{\frac{3}{2}}$

Q18. On putting $x = e^{z}$, the transformed differential equation of $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = x$ is

 $(a)\frac{d^2y}{dz^2} + y = e^z$ $(b)\frac{d^2y}{dz^2} - y = e^z$

 $(c)\frac{dy}{dz} + y = e^z \qquad (d)\frac{dy}{dz} - y = e^{z^2}$

Q19. The initial solution taken by method of separation of variables for the differential equation

 $\frac{\partial u}{\partial t} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} \right)$ is

(a) u(x,t) = X(x)T(t)

(b) u(v,t) = Y(v)T(t)

(c) u(x, y, t) = X(x)Y(y)T(t)

(d) u(x, y, t) = X(y) Y(x) T(t)

Q20. Which of the following represent one dimensional wave equation?

(a) $\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = 0$

(b) $\left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2}\right) = 0$ (c) $\left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t}\right) = 0$

(d) None of these

Q21. Which of the following represent two dimensional Heat equation.

(a) $\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2}\right) C^2 = \frac{\partial u}{\partial t}$

(b) $\left(\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial v^2}\right) C^2 = \frac{\partial^2 u}{\partial t^2}$

(c) $\left(\frac{\partial^2 u}{\partial r^2} - \frac{\partial u}{\partial t}\right) = 0$

(d) None of these

Q22. Which of the following is one dimensional Heat equations?; (a) $\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0$ (b) $\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0$ (c) $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = 0$

 $(d) \frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} = 0$

Q23. Which of the following represents the solution of $\frac{\partial^2 u}{\partial r^2}c^2 = \frac{\partial u}{\partial r}$;

u(0,t) = 0; u(L,t) = 0; u(x,0) = f(x)

(a) $u(x,t) = \sum_{n} b_n \sin\left(\frac{n\pi x}{I}\right) e^{\frac{-n^2\pi^2c^2}{L^2}t}$

(b) $u(x,t) = \sum_{n} b_n \sin\left(\frac{n\pi x}{L}\right) \cdot \cos\left(\frac{n\pi ct}{L}\right)$

(c) $u(x,t) = \sum b_n \sin\left(\frac{n\pi \ ct}{L}\right) \cdot \cos\left(\frac{n\pi x}{L}\right)$

(d) Both (b) and (c)

Q24. The possible solution of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$;

(a)
$$u(x,t) = (C_1 \cos kx + C_2 \sin kx)(C_3 e^{ky} + C_4 e^{-ky})$$

(b)
$$u(x,t) = (C_1 + C_2 x)(C_3 + C_4 t)$$

(c)
$$u(x,t) = (C_1 \cos ky + C_2 \sin ky)(C_3 e^{kx} + C_4 e^{-kx})$$

(d) All of the above

Q25. If The solution of $\frac{\partial^2 u}{\partial x^2}C^2 = \frac{\partial^2 u}{\partial t^2}$; u(0,t) = 0; u(L,t) = 0; $\left(\frac{\partial u}{\partial t}\right) = 0$; u(x,0) = f(x)

is $u(x,t) = \sum_{n} b_n \sin\left(\frac{n\pi x}{L}\right) \cdot \cos\left(\frac{n\pi ct}{L}\right)$ then the value of b_n is given by

(a)
$$b_n = \frac{1}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

(b)
$$b_n = \frac{1}{L} \int_0^L f(x) \sin\left(\frac{\pi x}{L}\right) dx$$

(c)
$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{\pi x}{L}\right) dx$$

(d) None of these

Q26. The solution of $2x\frac{\partial u}{\partial x} - 3y\frac{\partial u}{\partial y} = 0$ by separation of variable is

(a)
$$u = cx^k y^k$$

$$(b) u = cx^{k/2} y^k$$

(c)
$$u = cx^k y^{k/3}$$

(b)
$$u = cx^{k/2}y^k$$
 (c) $u = cx^k y^{k/3}$ (d) $u = cx^{k/2}y^{k/3}$

Q27. If The solution of $\frac{\partial^2 u}{\partial r^2}c^2 = \frac{\partial^2 u}{\partial t^2}$; u(0,t) = 0; u(L,t) = 0; $\left(\frac{\partial u}{\partial t}\right) = 0$; $u(x,0) = \sin^3\left(\frac{\pi x}{L}\right)$

is $u(x,t) = \sum b_n \sin\left(\frac{n\pi x}{I}\right) \cdot \cos\left(\frac{n\pi ct}{I}\right)$ then the value of b_1, b_3 is

(a)
$$\frac{3}{4}$$
, $\frac{1}{4}$

(b)
$$\frac{1}{4}, \frac{3}{4}$$

(c)
$$\frac{3}{4}$$
, $-\frac{1}{4}$

(d)
$$-\frac{1}{4}, \frac{3}{4}$$

Q28. If the following represents the solution of $\frac{\partial^2 u}{\partial x^2}c^2 = \frac{\partial u}{\partial x^2}$

u(0,t) = 0; u(2,t) = 0; $u(x,0) = \sin\left(\frac{3\pi x}{2}\right) - 3\sin\left(\frac{2\pi x}{2}\right)$ is $u(x,t) = \sum_{n=0}^{\infty} b_n \sin\left(\frac{n\pi x}{2}\right) e^{-\frac{n^2\pi^2c^2}{4}t}$ then the

value of b_1, b_2 is

$$(c)1,-3$$

$$(d)0,-3$$

Q29. The solution of the equation

$$\frac{\partial^2 u}{\partial x^2}C^2 = \frac{\partial^2 u}{\partial t^2}: u(0,t) = 0; u(l,t) = 0: u(x,0) = f(x); \left(\frac{\partial u}{\partial t}\right)_{t=0} = h(x) \text{ by D'Alembert's method is }$$

(a)
$$u(x,t) = \frac{1}{2} [f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(x) dx$$

(b)
$$u(x,t) = [f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(x) dx$$

(c)
$$u(x,t) = \frac{1}{2} [f(x+ct) + f(x-ct)] + \frac{1}{c} \int_{x-ct}^{x+ct} g(x) dx$$

(d)
$$u(x,t) = \frac{1}{2} [f(x+ct) + f(x-ct)] + \frac{1}{2} \int_{x-ct}^{x+ct} g(x) dx$$

(a) $\frac{11}{5}$	Evaluation of $f = xyz$ at $(1, 4, 3)$ (b) $-\frac{11}{\sqrt{5}}$) in the direction of line from (1,2 (c) 11	2,3) to (1,-1;-3) is (d) None of these
Q45. If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + (a) 0$	$z\hat{k}$, then the value of $div(\vec{r})$) is (c) 2	(d) 3
Q46. If divergence o	f a vector function $ec{F}$ is zero (b) Solenoida	then it said to be	
Q47. If $\vec{V} = x\hat{\imath} + y\hat{\jmath} + (a) 2x\hat{\imath} + 2y\hat{\jmath} + 2z\hat{k}$	$z\hat{k}$, then $curl(\vec{V})$ is (b) $x\hat{i} + y\hat{j} + z$	\hat{k} (c) 0	(d) None of these
Q48. If $\vec{r} = x^2 \hat{\imath} + y^2 \hat{\jmath}$ (a) 0	$+z^2\hat{k}$, then the value of div (b) 1	$(Curl \vec{r})$ is (c) 2	(d) 3
Q49. If \vec{V} be a differential (a) -1	ntiable vector field then the to (b) 1 (c) 2	value of div $(curl\ ec{V})$ is $(d)\ 0$	
Q50. If $\vec{r} = x\hat{i} + y\hat{j} + z$ (a) 3	\hat{k} and $ec{a}$ is a constant vecto (b) 0	r then $div(\vec{a} \times \vec{r})$ is (c) 1	(d) None of these
Q51. If $\vec{V} = (2x + 3y)\hat{\imath}$ (a) $y\hat{\imath} + z\hat{\jmath} + x\hat{k}$	$+(x-y)\hat{j}-(x+y+z)\hat{k}$, (b) 0	then $div(ec{V})$ is (c) $(2\hat{\imath}-\hat{k})$	(d) None of these
Q52. Let f be a difference	rentiable scalar field then ca	url(grad f) is	
a) 0	b) 1	c) 2	d) None of these
Q53. The value of line	integral $\int (x^2 v dx + x^2 dv)$	where C is the boundary descri	hed counter clockwise
	<i>C</i>		bed codifier clockwise
5 ,	ces (0, 0), (1, 0), (1, 1) (By 12	using of green's theorem} is 5	12
a) $-\frac{1}{12}$	b) 5	c) 12	d) $-\frac{1}{5}$
Q54. The value of line in	ntegral $\int_{C} (x^2 + xy) dx + (x^2 + xy) dx$	$(x^2 + y^2)dy$, where C is the squa	re formed by
$x = \pm 1$, $y = \pm 1$ {By usin	C		
a) 0	b) -1	c) 1	d) None of these
Q55. The value of $\iiint_{\nu} L$	iv \vec{F} dv, where $\vec{F} = 3x\hat{i}$	$(1+4y\hat{j}+5z\hat{k})$ over the region bo	ounded by the sphere
$x^2 + y^2 + z^2 = 1$ is			
a) $\frac{3584}{3}\pi$	b) $\frac{3584}{4}\pi$ $dx + 3xdy - y^3dz, where$	$\frac{-\frac{3584}{3}\pi}{}$	d) None of these
Q56. The value of $\int x^2 z dx$	$dx + 3xdy - y^3dz$, where	$cis x^2 + y^2 = 1$	
a) 3π	$_{\rm b)}$ -3π	c) #	d) None of these
Q57. By using stock's the	orem the value of the $\int x^2 dx$	$dx + y^2 dy + z^2 dz$ is, where c is	x>0,y>0, x+y=1
a) 2	b) 1	c) -1	d) None of these

Q58. The value of lin	ne integral $\int_{C} (2ydx + 3xdy)$, where C is the region bo	unded by $0 \le x \le 1, 0 \le y \le 1$	
(By green's theorem) a) 2) is b) 1	c) 0	d) None of these	
Q59. If $\phi(x,y), \psi(x,y)$	$(y), \frac{\partial \phi}{\partial y}, \frac{\partial \psi}{\partial x}$ are continuous	function over a region R l	oounded by simple closed	
curve C in x-y plane,	then according to Greens th	eorem		
a) $ \oint_C (\psi dx + \phi dy) = $	K \ -> /			
b) $ \oint_C (\psi dx - \phi dy) =$	K \ 2)			
c) $ \oint_C (\phi dx + \psi dy) = \int_C \phi dx + \psi dy $	$\iint_{\partial x} \left(\frac{\partial \psi}{\partial x} - \frac{\partial \phi}{\partial y} \right) dx dy$		IK.,	
d) $\oint_C (\phi dx - \psi dy) = \int_C (\phi dx - \psi dx) = \int$	$\iint_{\mathbb{R}} \left(\frac{\partial \psi}{\partial x} - \frac{\partial \phi}{\partial y} \right) dx dy$	•		
Q60. By using stoke's t	heorem the value of the \int_{c}^{c}	$2x - y)dx - yz^2dy - y^2z$	zdz is, where c is	
$x^2 + y^2 = 1$	c			
a) $-\pi$	b) π	c) $\pi/2$	d) None of these	
Q61. If $\iint (\vec{F} \cdot \hat{n}) ds = 0$ the	han $ec{F}$ is			
a) Irrotational vector both solenoidal and irrotational		b) Solenoidal vector d) None of these		
Q62. By using stoke's the	eorem the value of the $\int_{c} x dx$	dx + ydy + zdz is, where	$c is x^2 + y^2 = 1$	
a) 0	b) 1	c) -1	d) None of these	
Q63. The value of line inte	egral $\int (xdx + ydy)$, where	C is the region bounded	If by $0 \le x \le 1, 0 \le y \le 1$ (By	
green's theorem) is	č		, , , , , , , , , , , , , , , , , , , ,	
a) 1	b) -1	c) 0	d) None of these	
Q64. Which of the following	g is the mathematical expr	ession of stokes' theorem		
a) $\oint \vec{F} \cdot d\vec{r} = \iint_{S} Curl \vec{F} \cdot ds$ b) $\oint \vec{F} \cdot d\vec{r} = \iint_{S} Curl \vec{F} \cdot \hat{n} ds$ c) $\oint \vec{F} \cdot \hat{n} d\vec{r} = \iint_{S} Curl \vec{F} ds$				
Š		p) 2		
c) $\oint \vec{F} \cdot \hat{n} d\vec{r} = \iint Curl$	' 🗗 ds		•	
\$		d) None of these	e	
Q65. The $\iint curl \vec{v} \cdot \hat{n} ds$, w	where $\vec{v} = y\hat{i} + z\hat{j} + x\hat{k}$ and	d s is the surface $z=1$	$-x^2-y^2, z \ge 0$, is	
a) $-\pi$	•			
b) π				
d) None of these				

Q66. Green's Theorem is a special case of;
a) Stoke's Theorem
b) Gauss Theorem
c) All of the above

d) None of these

Q67. The mathematical form of Gauss divergence theorem is

a)
$$\oint \vec{F} \cdot d\vec{r} = \iint_S Curl \vec{F} \cdot ds$$

b) $\oint \vec{F} \cdot d\vec{r} = \iint_S Curl \vec{F} \cdot \hat{n} \, ds$
c) $\oint \vec{F} \cdot \hat{n} \, ds = \iiint_S div \vec{F} \, dv$
d) None of these

Q68. The work done in moving a particle by the force field $\vec{A} = 3x^2\hat{i} - y\hat{j} + z\hat{k}$ along (0,0,0) to (2,1,3) is a) 10 b) 11 c) 12 d) 13

Q69. Stoke's Theorem gives the relationship between;

- a) Surface and volume integral
- b) Line and volume integral
- c) Line and surface integral
- d) None of these

Q70. The value of $\iiint\limits_{y} Div \ \vec{A} \ dv, \ where \ \vec{A} = 3y^3 \hat{i} + 4z^3 \hat{j} + 5x^3 \hat{k} \text{ over the region bounded by the}$

sphere $x^2 + y^2 + z^2 = 1$ is a) 1 b) 0 c) -1 d) None of these