# SoftwarePilot: An Open Source Middleware for Fully Autonomous Aerial Systems

Jayson Boubin, Zichen Zhang, Shiqi Zhang, Christopher Stewart

#### INTRODUCTION

- UAS application domains are many
- Agriculture, Surveillance, Photography, etc
- Each domain requires different configurations
- Fully Autonomous Aerial Systems (FAAS):
- UAV, Edge systems, cloud systems
- Fly dynamic missions with little operator interference
- Many software suites exist for UAV, but none that support FAAS
- Autonomous decision-making does not exist in UAS siutes
- SoftwarePilot:
- A programmable middleware that supports FAAS
- Dispatches microservices for FAAS tasks like:
- Pathfinding, computer vision, flight control, autonomy policies

## DESIGN

- 4 layers to control different components across the stack
- Hardware: UAVs, Edge systems, etc needed for FAAS
- Runtime Management: Containers and VMs for software support
- API: Custom interface between FAAS Hardware and SP apps
- Application: Java apps that use SP API to implement FAAS
- Software Support:
- reinforcement-learning based pathfinding methods for autonomous navigation of unknown environments
- Docker Container and VM for platform independence
- Implementations of key FAAS kernels
- Heterogeneous computing support

#### unmanned aerial systems (UAS) operator defined mission unmanned goals flight path goals not met operator sensed mission analysis complete goals met data fully autonomous aerial systems (FAAS) mission \_\_ path finding \_\_ software manages \_\_ unmanned goals software flight path flight goals not met mission sensed complete 1 analysis goals met data



### **IMPLEMENTATION** and **RESULTS**

SoftwarePilot Implementations in Different Domains:

#### **Autonomous Photography**

- Key kernel to autonomous photography: Target recognition and optimization (TRO)
  - Find a target in an open environment
  - Capture a quality picture of that target for future analysis
- We used SoftwarePilot to implement a TRO FAAS [1]
- Our TRO FAAS includes reinforcement learning based A\* pathfinding to decrease search waypoints
- Optimal autonomy settings speed up TRO by 4.1X
- System management techniques also speed up execution:
- Adaptive GPU duty cycling: 1.3X
- Appropriate hardware selection: 2.25X
- By combining all of these techniques, we were able to increase TRO throughput by 10x and reduce costs by 87% over naive approaches

### **Fully Autonomous Precision Agriculture**

- SoftwarePilot is being used to construct yield maps for crop fields [2]
- Yield Map: Crop growth predictions for individual zones within a crop field; Inform farmers of under-performing areas



- Autonomous pathfinding allows us to sample the field intelligently and key regions useful for predicting field outcomes
- SofrwarePilot FAPA can produce accurate yield maps by sampling only 40% of a crop field, saving energy and compute resources

Citations:

[1] J. Boubin, N. T.R. Babu, C. Stewart, J. Chumley, and S. Zhang, "Managing edge resources for fully autonomous aerial systems," in 2019 IEEE/ACM Symposium on Edge Computing (SEC), IEEE, 2019

[2] Jayson Boubin, John Chumley, Christopher Stewart, and Sami Khanal. Autonomic computing challenges in fully autonomous precision agri-culture. In 2019 IEEE International Conference on Autonomic Computing (ICAC). IEEE, 2019.

Acknowledgment:his work was funded in part by NSFGrants 1749501, 1350941, and DGE-1343012 and with support from NSF CENTRAcollaborations (grant 1550126)



## THE OHIO STATE UNIVERSITY

College of Engineering

Department of Computer Science and Engineering

Reroutlab.org/SoftwarePilot
Github.com/boubinjg/SoftwarePllot