Outils Logiques Groupe 3 & 4 – DM 2 (Correction)

Chaitanya Leena Subramaniam

à rendre avant le 15 février 2021 par email à chaitanya@irif.fr

Exercice 1

Soit $\Sigma = \{a^0, b^1, x^1, \neg^2\}$ une signature. Pour chacune des expressions ci-dessous, dire si elle correspond à un élément de T_{Σ} . Justifier.

- (1) x
- (2) $(b, (\neg, a, x))$
- (3) $(\neg, (b, (b, a)), a)$
- $(4) (\neg, (\neg, b, a), a)$
- (5) $(x, (\neg, a, (\neg, a, (x, a))))$

Solution

- (1) Non, car $x^1 \in \Sigma$ est d'arité 1 et non 0.
- (2) Non, car $x^1 \in \Sigma$ est d'arité 1 et non 0.
- (3) Oui. D'abord, a est un élément de T_{Σ} car $a^0 \in \Sigma$ est d'arité 0. Donc (b,a) est un élément de T_{Σ} car $b^1 \in \Sigma$ est d'arité 1. De même pour (b,(b,a)). Donc enfin, $\neg^2 \in \Sigma$ étant d'arité 2, on conclut que $(\neg,(b,(b,a)),a)$ est un élément de T_{Σ} .
- (4) Non, car $b^1 \in \Sigma$ est d'arité 1 et non 0.
- (5) Oui. D'abord, $a^0 \in \Sigma$ est d'arité 0 et $x^1 \in \Sigma$ est d'arité 1, donc a et (x,a) sont des éléments de T_{Σ} . Donc, en suite, $(\neg, a, (x, a))$ et $(\neg, a, (\neg, a, (x, a)))$ sont des éléments de T_{Σ} car $\neg^2 \in \Sigma$ est d'arité 2. Donc enfin, $(x, (\neg, a(\neg, a, (x, a))))$ est un élément de T_{Σ} car $x^1 \in \Sigma$ est d'arité 1.

Exercice 2

Soit $\Sigma = \{\varepsilon^0, a^1, b^1\}$. Considérer la structure de Σ -algèbre suivante sur \mathbb{N} :

$$f_{\varepsilon} = 1$$

 $f_a \colon \mathbb{N} \to \mathbb{N} \quad ; \quad f_a(x) = 3 \times x$
 $f_b \colon \mathbb{N} \to \mathbb{N} \quad ; \quad f_b(x) = x + 1$

- (1) Quel est l'alphabet X tel que T_{Σ} est en bijection avec l'ensemble X^* des mots sur X? Par la suite nous allons identifier $X^* = T_{\Sigma}$.
- (2) Soit $\mu: T_{\Sigma} \longrightarrow \mathbb{N}$ le morphisme d'algèbre depuis l'algèbre initiale $\underline{T_{\Sigma}}$. Quelle est la valeur de $\mu(abab)$? (Ici le mot abab correspond à un arbre de syntaxe grâce au point précédent.)
- (3) Montrer que pour tout mot $v \in T_{\Sigma}$, on a $\mu(abv) > \mu(bbav)$ pour l'ordre habituel sur \mathbb{N} . (Indice : calculer $\mu(abv), \mu(bbav)$ en fonction de $\mu(v)$.)
- (4) Montrer que pour tous mots $u, v, w \in T_{\Sigma}$, si on a $\mu(v) > \mu(w)$, alors on a $\mu(uv) > \mu(uw)$. (Indice: pour cela, commencer en montrant que si on a $\mu(v) > \mu(w)$, alors on a $\mu(av) > \mu(aw)$ et $\mu(bv) > \mu(bw)$. Puis conclure.)
- (5) En déduire que pour tous mots $u, v \in T_{\Sigma}$, on a $\mu(uabv) > \mu(ubbav)$.

(6) Soit \rightarrow la relation suivante sur T_{Σ} : pour tous mots $u, v \in T_{\Sigma}$, on a

$$uabv \rightarrow ubbav$$

Montrer que la relation \rightarrow termine.

Solution

- (1) L'alphabet est $X = \{a, b\}$.
- (2) Rappelons que $abab = (a, (b, (a, (b, \varepsilon))))$. On a

$$\mu(abab) = f_a(\mu(bab)) = f_a(f_b(\mu(ab)))$$

$$= f_a(f_b(f_a(\mu(b))))$$

$$= f_a(f_b(f_a(f_b(\mu(\varepsilon)))))$$

$$= f_a(f_b(f_a(f_b(f_\varepsilon))))$$

$$= 3 \times (3 \times (1+1) + 1) = 21.$$

- (3) Pour tout $v \in T_{\Sigma}$, on a $\mu(abv) = f_a(f_b(\mu(v))) = 3\mu(v) + 3$ et $\mu(bbav) = f_b(f_b(f_a(\mu(v)))) = 3\mu(v) + 2$, donc $\mu(abv) > \mu(bbav)$ dans \mathbb{N} .
- (4) Soit $v, w \in T_{\Sigma}$ deux mots tels que $\mu(v) > \mu(w)$ dans \mathbb{N} . Alors on a $\mu(av) = 3\mu(v) > 3\mu(w) = \mu(aw)$ et $\mu(bv) = \mu(v) + 1 > \mu(w) + 1 = \mu(bw)$ dans \mathbb{N} . Donc, par récurrence, pour tout mot $u \in T_{\Sigma}$, on a $\mu(uv) > \mu(uw)$.
- (5) Soit $u, v \in T_{\Sigma}$ deux mots, alors par (3) on a que $\mu(abv) > \mu(bbav)$ dans \mathbb{N} . Donc, par (4), on a que $\mu(uabv) > \mu(bbav)$ dans \mathbb{N} .
- (6) Par (5), $\mu: T_{\Sigma} \longrightarrow \mathbb{N}$ est une fonction de T_{Σ} dans un ordre bien fondé, telle que pour tous mots $w, w' \in T_{\Sigma}$ tels que $w \to w'$, on a que $\mu(w) > \mu(w')$ dans \mathbb{N} . Donc la relation \to sur T_{Σ} termine.

Exercice 3

Considérons l'alphabet $\{a, b, c\}$.

- (1) Définissez une signature Σ telle que T_{Σ} est en bijection avec l'ensemble $\{a,b,c\}^*$ des mots sur $\{a,b,c\}$.
- (2) Définissez une structure de Σ -algèbre sur \mathbb{N} telle que la fonction canonique $\mu \colon T_{\Sigma} \longrightarrow \mathbb{N}$ envoie un mot w sur le nombre de caractères dans w (la longueur du mot w).
- (3) Définissez une structure de Σ -algèbre sur \mathbb{N} telle que la fonction canonique $\mu \colon T_{\Sigma} \longrightarrow \mathbb{N}$ envoie un mot w sur le nombre de a et de c qui apparaissent dans w.
- (4) Soit \rightarrow la relation suivante sur $\{a,b,c\}^*$: pour tous mots $u,v\in\{a,b,c\}^*$, on a

$$uacv \rightarrow uabbv \qquad ucbav \rightarrow ucav \qquad uaav \rightarrow uabv$$

Montrer qu'il existe une fonction $f: \{a, b, c\}^* \longrightarrow \mathbb{N} \times \mathbb{N}$ telle que pour tout pair de mots $w, w' \in \{a, b, c\}^*$, si on a $w \to w'$, alors on a $f(w) >_{lex} f(w')$. (Ici, $>_{lex}$ est l'ordre lexicographique habituel sur $\mathbb{N} \times \mathbb{N}$).

(5) En déduire que la relation \rightarrow termine.

Solution

- (1) La signature est $\Sigma = \{\varepsilon^0, a^1, b^1, c^1\}.$
- (2) Soit la structure de Σ -algèbre suivante sur $\mathbb N$:

$$\begin{split} f_{\varepsilon} &= 0 \in \mathbb{N} \\ f_{a} \colon \mathbb{N} &\longrightarrow \mathbb{N} \\ f_{b} \colon \mathbb{N} &\longrightarrow \mathbb{N} \\ f_{c} \colon \mathbb{N} &\longrightarrow \mathbb{N} \\ \end{split} \qquad \begin{array}{l} f_{a}(n) &= n+1 \\ f_{b}(n) &= n+1 \\ f_{c}(n) &= n+1 \\ \end{array}$$

Soit $\mu_1: \underline{T_{\Sigma}} \longrightarrow \underline{\mathbb{N}}$ le morphisme canonique associé. Alors on a $\mu_1(aw) = \mu_1(bw) = \mu_1(cw) = \mu_1(w) + 1$ pour tout mot $w \in T_{\Sigma}$. Donc μ_1 envoie un mot sur le nombre de caractères dans ce mot.

(3) Soit la structure de Σ -algèbre suivante sur \mathbb{N} :

$$\begin{split} g_{\varepsilon} &= 0 \in \mathbb{N} \\ g_{a} \colon \mathbb{N} \longrightarrow \mathbb{N} & g_{a}(n) = n + 1 \\ g_{b} \colon \mathbb{N} \longrightarrow \mathbb{N} & g_{b}(n) = n \\ g_{c} \colon \mathbb{N} \longrightarrow \mathbb{N} & g_{c}(n) = n + 1 \end{split}$$

Soit $\mu_2 : \underline{T_{\Sigma}} \longrightarrow \underline{\mathbb{N}}$ le morphisme canonique associé. Alors on a $\mu_2(aw) = \mu_2(cw) = \mu_2(w) + 1$ et $\mu_2(bw) = \mu_2(w)$ pour tout mot $w \in T_{\Sigma}$. Donc μ_2 envoie un mot sur le nombre de a et de c dans ce mot.

(4) Soit $u, v \in T_{\Sigma}$ deux mots. Alors on a

$$\mu_2(uacv) > \mu_2(abbv)$$
 $\mu_2(ucbav) = \mu_2(ucav)$ $\mu_2(uaav) > \mu_2(uabv)$

dans \mathbb{N} par définition de μ_2 .

On a aussi $\mu_1(ucbav) = \mu_1(ucav)$ dans \mathbb{N} par définition de μ_1 .

Donc on a

$$(\mu_2(uacv), \mu_1(uacv)) >_{lex} (\mu_2(abbv), \mu_1(abbv))$$

 $(\mu_2(ucbav), \mu_1(ucbav)) >_{lex} (\mu_2(ucav), \mu_1(ucav))$
 $(\mu_2(uaav), \mu_1(uaav)) >_{lex} (\mu_2(uabv), \mu_1(uabv))$

dans $\mathbb{N} \times \mathbb{N}$ pour l'ordre lexicographique habituel. On a donc que la fonction $(\mu_2(-), \mu_2(-)) : T_{\Sigma} \longrightarrow \mathbb{N} \times \mathbb{N}$ qui envoie un mot w sur $(\mu_2(w), \mu_1(w))$ est telle que pour tous mots $w, w' \in T_{\Sigma}$ tels que $w \to w'$, on a que $(\mu_2(w), \mu_1(w)) >_{lex} (\mu_2(w'), \mu_1(w'))$ dans $\mathbb{N} \times \mathbb{N}$. On conclut que la relation \to sur T_{Σ} termine.