PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-176332

(43)Date of publication of application: 09.07.1996

(51)Int.CI.

CO8J 9/04 CO8J 3/24 CO8J 3/28 CO8J 9/16

// CO8L 23:04

(21)Application number: 07-264940

(71)Applicant:

SENTINEL PROD CORP

(22)Date of filing:

19.09.1995

(72)Inventor:

HURLEY ROBERT F

KOZMA MATTHEW L

FEICHTINGER KURT A

(30)Priority

Priority number: 94 308801

Priority date: 19.09.1994

Priority country: US

(54) CROSSLINKED FOAM STRUCTURE OF LINEAR POLYOLEFIN AND ITS PRODUCTION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the title substance having good physical properties, good toughness and processability and moderate resin flexibility by polymerizing ethylene with an α-ethylenically unsaturated monomer.

SOLUTION: The objective substance is obtained by polymerizing (A) ethylene with (B) a 3-20C α-ethylenically unsaturated monomer to obtain a copolymer (C) featured by a resin density of about 0.86 to about 0.96 g/cm3, a melt index of about 0.5 to about 100 dg/min, a molecular weight distribution of about 1.5 to about 3.5, and a compositional distribution index of above about 45% and subsequently crosslinking and foaming the copolymer. It is desirable that component C additionally contains at least one polymerized 3-20C polyene, is substantially free from long chains, especially, 20C or higher side chains, and that the composition contains a mixture containing at least about 5 to about 100% polyolefin copolymer and further contains a blowing agent and a crosslinking agent.

LEGAL STATUS

[Date of request for examination]

18.09.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-176332

(43)公開日 平成8年(1996)7月9日

識別記号	庁内整理番号	FΙ	技術表示箇所
CES			
CES A			
CES			
CES			
		永韓查審	未請求 請求項の数22 FD (全 20 頁)
特顧平7-264940		(71)出顧人	595145083
			センチネル・プロダクツ・コープ
平成7年(1995)9月	引19日		アメリカ合衆国,マサチューセッツ
			02601, エアポート・ロード 70
08/308, 80	1	(72)発明者	ロバート・エフ・ハーレイ
1994年9月19日			アメリカ合衆国、マサチューセッツ セン
米国(US)			ターピレ(番地なし)
		(72)発明者	マットウ・エル・コズマ
			アメリカ合衆国,マサチューセッツ オス
			ターピレ(番地なし)
		(72)発明者	カート・エー・フェヒテインガー
			アメリカ合衆国,ニューヨーク サラト
			ガ・スプリングス(番地なし)
		(74)代理人	弁理士 朝倉 勝三
	CES CES A CES CES CES ***************************	CES CES A CES CES CES 特顯平7-264940 平成7年(1995)9月19日 08/308,801 1994年9月19日	CES CES A CES CES CES CES (71)出願人 平成7年(1995) 9月19日 08/308,801 (72)発明者 1994年9月19日 米国(US) (72)発明者

(54) 【発明の名称】 線状ポリオレフィンの架橋フォーム構造及びその製造方法

(57)【要約】

【課題】 強度、靱性、柔軟性、耐熱性及び熱シール温 度範囲が改善された新規な架橋ポリマーフォーム組成物 の製造方法を提供することを目的とする。

【解決手段】 エチレンと1種又はそれ以上のα-不飽 和エチレン性モノマーから製造された、少なくとも約5 %、約100%までのポリオレフィンコポリマーからな り、実質的に長鎖分枝を含まないポリマー組成物を提供 する工程、架橋反応を誘引する工程、及び組成物を発泡 させる工程を具備することを特徴とする。

【特許請求の範囲】

【請求項1】 エチレンとC3~C20, α-不飽和エチレン性モノマーとを重合して、

(i)約0.86g/cm³~約0.96g/cm³の 樹脂密度、

(ii)約0.5 d g/分~約100 d g/分のメルトインデックス、

(iii)約1.5~約3.5の分子量分布、及び

(iv)約45%よりも大きい組成物分布広さインデック マ

により特徴づけられるコポリマーを与える工程、

組成物に架橋を誘引する工程、及び組成物を発泡させる 工程を具備する発泡物質の製造方法。

【請求項2】 前記コポリマーは、少なくとも1種のC3~C20ポリエンによっても重合される請求項1に記載の方法。

【請求項3】 前記コポリマーは、実質的に長鎖分枝がない請求項1に記載の方法。

【請求項4】 前記コポリマーは、実質的に20炭素原子を越える側鎖長がない請求項3に記載の方法。

【請求項5】 前記組成物は、前記ポリオレフィンコポリマーを少なくとも約5%、約100%までを含む混合物を包含する請求項1に記載の方法。

【請求項6】 前記組成物は、化学的に分解し得る発泡 剤を更に含む請求項1に記載の方法。

【請求項7】 前記発泡剤は、架橋を行う前に添加される請求項6 に記載の方法。

【請求項8】 前記発泡剤は、架橋を行った後に添加される請求項6に記載の方法。

【請求項9】 前記組成物は、更に物理的発泡剤を含む 30 のよりも低い。 請求項1に記載の方法。 【0003】通

【請求項10】 前記発泡剤は、架橋を行う前に添加される請求項9に記載の方法。

【請求項11】 前記発泡剤は、架橋を行った後に添加される請求項9に記載の方法。

【請求項12】 前記架橋は、重合組成物をシラン架橋 剤と反応させることにより行われる請求項1に記載の方 法。

【請求項13】 前記架橋は、遊離基発生開始剤により 行われる請求項1に記載の方法。

【請求項14】 前記架橋は、照射により行われる請求項1に記載の方法。

【請求項15】 追加の反応性モノマーが架橋剤として 含まれる請求項1に記載の方法。

【請求項16】 追加のポリマー樹脂が、グラフトの後、架橋の誘引前に組成物に加えられる請求項11に記載の方法

【請求項17】 物質の密度は、22pcf未満、0.7cfを越える値である請求項1に記載の方法。

【請求項18】 物質中、少なくとも70%のセルが閉 50 E)は、より大きな数の短鎖分枝(炭素原子1000あ

ざされている請求項1 に記載の方法。

【請求項19】 前記組成物は、約5%を越え、約40%未満のポリオレフィンコポリマーを含む請求項1に記載の方法。

【請求項20】 前記組成物は、約70%を越えるポリオレフィンコポリマーを含む請求項1に記載の方法。

【請求項21】 前記物質はビーズである請求項1に記載の方法。

【請求項22】 請求項1により製造された物質。 10 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、一般にポリマーフォームの技術に係り、特に、新規な架橋ポリオレフィンフォーム組成物、及びその製造方法に関する。

[0002]

【従来の技術】架橋ポリオレフィンフォーム構造の製造の最近の技術は、通常の高圧反応器で製造された低密度ポリエチレン(LDPE)の使用を含む。LDPEは、"長く、可変の分枝"及び一般に約3.5を越える分子20 量分布(Mw/Mn)により最もよく特徴づけられる、広い側鎖鎖長を含む。得られたバルク特性である剛性に直接関係するLDPE樹脂の密度は、典型的には、約0.915~約0.930であり、そのため、LDPEのセカントモジュールの下限が約20ksiなので、そのフォーム構造の機械的柔軟性の程度を制限する。LDPEの加工性は非常に良好なので、物理特性、特に引っ張り強度、低温柔軟性及び制性は、一部、LDPEの実質的非線状性及び"長鎖分枝"が豊富であるため、低密度ポリエチレン(LLDPE)から得られるであろうものより、

【0003】通常の線状低密度ポリエチレン(LLDP E) は、同じ範囲の樹脂密度でLDPEのそれよりも優 れている物理特性を示すが、かなり高いスカントモジュ -ルを示し、製造が困難であり、劣ったセル構造と、所 望のフォーム構造の密度よりも高いフォームが得られ る。エチレンと1種又はそれ以上のα-不飽和モノマー との共重合において、通常のチグラー遷移金属触媒によ り製造されたLLDPE樹脂は、LDPEよりかなり狭 い分子量範囲、高い分子量、及び典型的には、1000 40 炭素原子あたり約15-20の"短鎖分枝"を示す。-般に溶融工程、及び特に発泡工程は、一般に"剪断減粘 性"に対する樹脂の能力により強化され、又は剪断速度 に対する溶融粘度の強い、逆の依存性を示す。"剪断減 粘性"は、LLDPE及び特にHDPEの相対剪断-無 感覚性において例示される、分枝の程度とともに増加す る。約0.910g/cc以下の密度を有する市販され ているLLDPE樹脂は、入手出来ず、そのため、その フォーム構造の柔軟性を更に制限する。

【0004】非常に低密度のポリエチレン(VLDP F)は、よれ大きな数の短鎖分類(栄養原子1000素

たり約30-50)が、LLDPEよりも非常に低い樹 脂密度、例えば0.88g/cc~0.91g/ccが 得られるように、適当なレベルのコモノマーにより生ず るLLDPEの特別のサブセットである。これらの物質 は、このように、LLDPEよりも大きな柔軟性を示 す。しかし、一般に通常のポリオレフィンでは、短鎖分 枝の数が大きくなればなるほど、得られる樹脂密度は低 くなるだけでなく、分子の骨格の長さが短くなる。より 大きなコモノマー含量において、より短い分子骨格の存 在は、"溶融破壊"として知られた現象に導く。この現 10 象は、剪断速度の増加に従って、押出し物の表面におけ る撹乱の開始として証明され、そのような側面を持つ、 押し出し可能な物質の品質の制御の喪失をもたらす。 【0005】所定の他の不所望の構造上の特徴は、分子

の骨格における分枝の分布の不均一性の増加のような、 通常の線状ポリエチレン技術を採用しつつ、"短鎖分 枝"を増加させる努力を伴っている。付加的に、通常の 線状ポリエチレン技術は、低分子量部分へのα-不飽和 コモノマーの導入のより大きな傾向をもつ分子量の分布 に導き、それによって、溶融破壊をもたらす。また、こ 20 【0011】 の分子量の不均一及びその分布内のコモノマー種の分布 の結果として、線状ポリオレフィンは、特に低温におけ る靱性、及び特に高速度における押し出しの安定性のよ うな、様々な標準パラメーターにおいて、最適な性能よ り低い性能を示す。

[0006]

【発明が解決しようとする課題】発泡可能なポリオレフ ィン技術の上述の欠点の多くは、基本的に"長鎖分枝" のない、溶融破壊を排除するに充分に高い分子量、かな りの溶融粘度/剪断速度感受性、及び全範囲の樹脂密度 30 を有する、線状オレフィン性樹脂の使用により満たされ 得る。そのような線状ポリオレフィンは、物理特性の好 ましい均衡を示し、良好な靭性及び加工性を示し、ある 範囲の樹脂柔軟性で入手し得る。

【0007】このように、本発明の目的は、これらの特 性を有する線状オレフィン性樹脂を提供することにあ

【0008】様々な触媒が、ポリオレフィンフォームの 技術に知られている。"メタロセン (Metalloc enes)"は、ポリエチレン及びエチレンと α -不飽 40 和エチレン性モノマーとの共重合体の製造技術において 良く知られている、1つのクラスの高度に活性のオレフ ィン触媒である。米国特許第4.937.299号(E wen et al)は、メタロセン触媒の構造が、水 がトリアルキルアルミニウムと反応したときに形成され るアルモキサンを含み、反応によりメタンを放出して、 メタロセン化合物と錯体を作り、活性触媒を形成すると とを示している。特に、ジルコニウム、チタン、及びハ フニウムのような第IVB遷移金属に基づくこれらの触 媒は、エチレン重合において極めて髙い活性を示す。

【0009】メタロセン触媒は、触媒組成や反応器条件 のようなプロセス条件の操作により、それらは約200 ないし約100万又はそれ以上の制御された分子量を有 するポリオレフィンを提供するために作られ得ることに おいて、大きな多用性を有している。100万以上の分 子量の例は、超高分子量線状ポリエチレンである。同時 に、ポリマーの分子量分布は、極めて狭い範囲から極め て広い範囲まで、即ち、2未満から8を越える値まで制 御され得る。

【0010】メタロセン触媒は、平均分子量及び平均値 についての分子量の分布を別々に制御しつつ、それぞれ 及びすべての分子骨格内のコモノマーの高度にランダム な分布を提供する、エチレンと1種またはそれ以上のα - 不飽和オレフィンコモノマーとのコポリマーの製造に おいて有利である。とのように、本発明の目的は、上述 の特性を有する線状オレフィン性樹脂を製造するため に、メタロセン触媒の多用性を用いることにある。これ ら及び他の目的は、とこに開示された本発明により理解 される。

【課題を解決するための手段】本発明の1つの態様によ ると、(a)エチレンと1種又はそれ以上のα-不飽和 エチレン性モノマーから製造された、少なくとも約5 %、約100%までのポリオレフィンコポリマーからな り、実質的に長鎖分枝を含まないポリマー組成物を提供 する工程、(b)架橋反応を誘引する工程、及び(c) 組成物を発泡させる工程を具備する発泡物質の製造方法 を提供する。この態様において、ポリオレフィンコポリ マーは、少なくとも1種のα-不飽和C3~C20コモ ノマーと、任意に少なくとも1種のC3~C20ポリエ ンとからなる群から選ばれた少なくとも1種のコモノマ により重合されたエチレンの群から選ばれたボリマー を含み、約0.86g/cm³~約0.96g/cm³ の樹脂密度、約0.5 dg/分~約100 dg/分のメ ルトインデックス、約1.5~約3.5の分子量分布、 及び約45%よりも大きい組成物分布広さインデックス を有する。

【0012】本発明の他の態様によると、(a)エチレ ンと1種又はそれ以上のα-不飽和エチレン性モノマー から製造された、少なくとも約5%、約100%までの ポリオレフィンコポリマーからなり、実質的に20炭素 原子を越える側鎖長を含まないポリマー組成物を提供す る工程、(b)架橋反応を誘引する工程、及び(c)組 成物を発泡させる工程を具備する発泡物質の製造方法を 提供する。

【0013】組成物の膨脹は、分解し得る発泡剤の使用 により、又は物理的に膨脹する揮発性膨脹剤の使用によ り実施され得る。架橋は、フォーム組成物とシラン架橋 剤とを反応させ、その後、他のポリマー樹脂と組合わ 50 せ、次いで、場合によって適切なシラノール縮合触媒の 使用とともに、混合物を湿分にさらすことにより、実施 され得る。

【0014】他の態様では、ポリマー組成物の架橋は、 遊離基反応開始剤により、又は照射により行われる。 【0015】好ましい態様では、架橋したフォーム構造 組成物は、70%以上の閉鎖セルと、約0.71b/立 方フィートを越え、約221b/立方フィート未満の密

度とを示す。

【0016】本発明はまた、他の樹脂、粒状又は繊維状 及び着色剤、タルクのようなセル成長核、脂肪酸又はア ミドのようなセル構造安定化剤、特性修正剤、加工助 剤、添加剤、架橋及び他の反応を促進させるための触 媒、及び当業者に明らかなたの物質の添加をも含む。 [0017]

【発明の実施の形態及び発明の効果】本発明は、新規な クラスの架橋したポリオレフィン発泡組成物に係り、特 に、モノマー性α-オレフィンからその調製において使 用される触媒技術および方法のために、それから多孔性 れた物理特性を示す分子構造を有する、新規なクラスの 架橋したポリオレフィン発泡組成物に関する。

【0018】加工特性およびポリマーの基本的な物理特 性の両方をもたらし、こうして、架橋された組成物自体 の処理および基本的特性に直接影響を及ぼすポリオレフ ィンコポリマーには、多くの構造上の変数が存在する。 最も重要な2つは、分子量の均一性およびそのなかのコ モノマーの分布均一性であり、とりわけ、ポリマー性分 子の主鎖の均一性である。

性は、特に低温において、ポリマー性材料およびそれか ら得られた製品の靱性に影響を及ぼす。同様に、これら の要因はまた、高い剪断速度における溶融処理性の安定 性に影響を及ぼすとともに、製造された製品が達成し得 る他の物理特性のレベルおよびバランスにも影響を及ぼ す。さらに、重合においてエチレンとともに使用される コモノマーのタイプおよび量、平均分子量、メルトイン デックスおよび比重は全て、当該ポリオレフィンコポリ マーの特性に影響を及ぼす。コポリマーの相対的な量、 ボリオレフィンコボリマーの本来的な特性は、組成物の 利点に関与する主な要因である。

【0020】本発明のポリオレフィン樹脂は、狭い分子 量分布を与え、「実質的に線状」であるが、均一に分布 した所望のレベルと、高く制御された「短鎖の分枝(sho rt-chain branching) 」とを有する。この組み合わせの 結果として、樹脂は、線状低密度ポリオレフィンに近い 強度と靱性とを示すが、高圧反応器で製造された低密度 ポリエチレンと同等の処理性を有する。この"実質的に 線状"のポリオレフィン樹脂は、約0.86g/cm'

~約0.96g/cm³の範囲の樹脂密度、約0.5d g/分~約100dg/分の範囲のメルトインデック ス、約1.5~約3.5の範囲の分子量分布、および4 5%を越える組成物分布幅指数 (composition distribu tion breadth index) を特徴とする。

【0021】との開示において、「線状ポリオレフィ ン」の用語は、「長鎖分枝」を有しないオレフィンポリ マーを表わし、「長鎖分枝」は、例えば、通常的に製造 された低密度ポリエチレン、またはチーグラー重合プロ フィラー、酸化防止剤、紫外線及び熱的安定化剤、顔料 10 セス、米国特許第4,076,698号および米国特許第3,645,9 92号に開示されているようにして得られた線状高密度ボ リエチレンポリマーを表わす。この用語は、高圧反応器 で製造された分枝ポリエチレン:エチレンとビニルアセ テート、ビニルアルコール、エチルアクリレート、メチ ルアクリレート、またはアクリル酸との共重合体; 高圧 技術を用いて製造された共重合体:および多くの長鎖分 枝を有する共重合体を意味するものではない。

【0022】本発明において用いられる「実質的に線 状」とは、「長鎖分枝」を事実上含まず、炭素原子10 製品を製造する際に、処理を著しく促進するとともに優 20 00個当たり、「長鎖分枝」が約0.01未満である分 子の主鎖を有する「線状ポリマー」を表わす。同様に、 本発明において、「長鎖分枝を実質的に有しない」と は、炭素原子1000個当たり、約0.01未満の「長 鎖分枝」を含む分子主鎖を有する「線状ポリマー」を表

【0023】本発明において用いられる「長鎖分枝」と いう用語は、少なくとも6つの炭素原子の分子主鎖の分 子鎖を表わし、その長さは、13C核磁気共鳴分光法 (NMR)を用いて識別することができる。長鎖分枝 【0019】分子量およびコモノマー分布の両方の均一 30 は、分子の主鎖と同等の長さとすることができる。13 CNMR分光法を用いた長鎖分枝の定量方法は、Randal 1(Rev.Macromol.Chem.Phys.,C29(2&3),p.285~297) ⟨С よって開示されている。

> 【0024】本発明における「短鎖分枝」とは、炭素分 子が6未満の分子主鎖の分子鎖として定義され、上述の ように13CNMR分光法によって識別されるである

【0025】本発明において「コポリマー」は、2また はこれ以上のモノマー種の重合から得られた物質を表わ 付加的なポリマー樹脂のタイプおよび量に加えて、当該 40 し、特に、ターポリマー(例えば、3つまたはこれ以上 のモノマー種の重合から得られた物質)、セスキポリマ ー、およびこれ以上のモノマー種の組み合わせを包含す る.

> 【0026】ととに開示された樹脂の密度または比重 は、密度測定の前に室温(23℃)の周囲の温度に48 時間保持することによって付加的に調節した以外は、AS TM-D-792法を用いて測定された。本発明で開示された実 質的に線状のポリオレフィン樹脂は、一般に、約0.8 6g/cm³~約0.96g/cm³、好ましくは約 50 0.86g/cm³~約0.91g/cm³の範囲の樹

脂密度を有することを特徴とする。

【0027】「メルトインデックス(MI)」は、 AST M D-1238条件(190℃/2.16kg)にしたがって、低剪断速度でのもとでの処理性の測定である。本発明で開示された実質的に線状のボリオレフィンについては、MIは、一般的に約0.2 dg/分~約100dg/分の範囲である。好ましくは、MIは、約1dg/分~約10dg/分の範囲であり、最も好ましくは、約2dg/分~約8dg/分の範囲である。

【0028】分子量分布(MWDまたはMw/Mn)は、複数の混合多孔性カラムを用いて、ゲルバーミエーションクロマトグラフィを用いて測定されたパラメータであり、未知の狭いMWDを有するポリスチレン標準の溶出体積との比較である。対応は、ポリスチレン標準についての適切なマークーホウウインクMark-Houwink係数と、次の文献にしたがって製造されたポリエチレン未知物とを用いることによって達成される。("Journal of Polymer Science, Polymer Letters", Vol.6(621)1968, Williams and Word、この文献は本明細書の一部をなす。)

【0029】組成分布幅指数(CDBI)は、コポリマー分子へのコモノマーの分布の均一性の測定であり、例えば、"J.Poly.Sci.,Poly.Phys.Phys.Ed.,Vol.20,p.44 1 (1982), (Wild et al)" に記載されているような、温度上昇溶出分別(TREF,Temperature Rising Elution Fractionation)の技術によって測定することができる。この物性は、ポリマーの結晶性、光学特性、靱性および本発明の組成物の他の多くの重要な特性に関連する。例えば、高いCDBIを有する高密度ポリオレフィン樹脂は、低CDBIの樹脂よりも容易に結晶化しないが、同等のコモノマー含有量およびその他の特性を有し、本発明の目的である高められた靱性を有する。狭い組成分布の実質的に線状のポリオレフィンコポリマーの特定の用途によって生じる本発明の利点は、後述の説明で明らかとなる。

【0030】本明細書において、CDBIは、メジアン全モルコモノマー含有量の50%以内(すなわち、+/-50%)のコモノマー含有量を有するコポリマー分子の重量%として定義される。特に示さない限りは、「コモノマー含有量」、「平均コモノマー含有量」等の用語 40は、示されたポリマー間ブレンド、ブレンド成分またはモル基準の分率のバルクコモノマー含有量を表わす。比較のために、コモノマーを有しない線状のポリ(エチレン)のCDBIを100%として定義する。CDBIの決定は、一般に55%未満のCDBI値によって評価される広い組成分布を有するような、通常の線状触媒技術によって製造された非常に低密度のポリオレフィンと、本発明の低密度ポリオレフィンとを明らかに識別する。本発明の低密度ポリオレフィンは、一般的に70%を越えるCDBI値で評価されるような狭い組成分布を示 50

す。本発明で開示された実施的に線状のポリオレフィンコポリマーのCDBI値は、一般に約45%またはこれ以上であり、好ましくは、約50%またはこれ以上である。より好ましくは、CDBIは約60%またはこれ以上であり、最も好ましくは、CDBIは、約70%またはこれ以上である。

【0031】本発明の「実質的に線状」のポリオレフィ ンコポリマーは、好ましくは、任意の適切な重合プロセ スによってメタロセン触媒を用いて製造され、このプロ 10 セスは、気相重合法、スラリー重合法、および高圧重合 法を含む。しかしながら、本発明の方法は、メタロセン 触媒の使用に限定されない。好ましくは、本発明の発泡 組成物に使用される「実質的に線状」のポリオレフィン は、気相重合によって製造される。気相重合プロセス は、一般に、超大気圧および約50℃~約120℃の範 囲の温度を用いる。そのような重合は、未反応ガスから の生成粒子の分離を促進するために適合された加圧容器 内において、撹拌されたまたは流動化された触媒および 生成粒子の床で行なうことができる。温度の維持は、エ 20 チレン、コモノマー、水素、または窒素等の不活性ガス の循環によって達成することができる。水、酸素および その他の望ましくない不純物のスカベンジャーとして、 必要に応じてトリエチルアルミニウムを加えてもよい。 製造されたポリマーは、反応器内に一定の生成物を維持 するのに必要な速度で、連続的にまたは半連続的に引き 出される。

この物性は、ポリマーの結晶性、光学特性、靱性および 本発明の組成物の他の多くの重要な特性に関連する。例 たコポリマーは、任意の適切な手段によって回収することがきる。商業的には、ポリマー生成物は、窒素パージは、低CDBIの樹脂よりも容易に結晶化しないが、同 30 をともなって残留モノマーを除去した気相反応器から、等のコモノマー含有量およびその他の特性を有し、本発 明の目的である高められた靱性を有する。狭い組成分布 ができる。

【0033】また、本発明の実質的に線状のポリオレフィンコポリマーは、メタロセンアルモキサン(alumoxan e) 触媒システムの存在下で、所望のモノマーと組み合わせてエチレンを重合させることによって高圧プロセスを用いて製造してもよい。この方法は、重合温度が120℃より高く、生成物の分解温度より低いこと、および重合圧力が約500kg/cm²より高いことが臨界である。生成物の分子量を制御する必要がある場合には、水素の使用または反応器温度など、分子量の制御のための当業者に既知の任意の適切な技術を用いて、その制御を行なうことができる。

【0034】本発明の実質的に線状のオレフィン性コポリマーは、少なくとも1つのα-不飽和C3~C20コモノマー、場合によっては、1またはこれ以上のC3~C20ポリエンから選択された少なくとも1つのコモノマーとのエチレンの重合から好ましく誘導される。本発明において用いられる、実質的に線状のポリマーを製造50 するために選択されるコモノマーのタイプは、経済性、

および得られる架橋発泡構造体の所望の最終用途に依存 するであろう。

【0035】一般に、本発明での使用に適切なa-不飽 和オレフィンコモノマーは、約3ないし約20の範囲の 炭素原子を含む。好ましくは、α-不飽和オレフィン は、約3ないし約16の範囲の炭素原子を含み、最も好 ましくは、約3ないし約8の範囲の炭素原子を含む。例 示すると、エチレンとの共重合体として使用されるその ようなα-不飽和オレフィンコモノマーの例は、プロピ メチル-1-ペンテン、4-メチル-1-ペンテン、1 -オクテン、1-デセン、1-ドデセン、スチレン、ハ ローまたはアルキル置換されたスチレン、テトラフルオ ロエチレン、ビニルシクロヘキセン、およびビニルーベ ンゾシクロブテン等を含むが、これらに限定されない。 【0036】一般に、本発明に使用されるポリエンは、 約3ないし約20の炭素原子を含む。好ましくは、ポリ エンは、約4ないし約20の炭素原子を含み、より好ま しくは約4ないし約15の炭素原子を含む。好ましく 直鎖の、分枝のまたは環状の炭化水素ジェンであり、よ り好ましくは炭素原子数は、約4ないし約15であり、 最も好ましくは約6ないし約15である。また、ジエン は、共役していないことが好ましい。そのようなジエン 類としては、1,3-ブタジエン、1,4-ヘキサジエ ン、1、6-オクタジエン、5-メチル-1、4-ヘキ サジエン、3,7-ジメチル-1,6-オクタジエン、 3, 7-ジメチル-1, 7-オクタジエン、5-エチリ デン-2-ノルボルネン、およびジシクロペンタジエン 等が挙げられるが、これらの限定されない。特に好まし 30 くは、1,4-ヘキサジエンである。

【0037】好ましくは、本発明のポリマー性発泡組成 物は、(エチレン/α-不飽和オレフィン)コポリマ ー、または(エチレン/α-不飽和オレフィン/ジエ ン) ターポリマーのいずれかを含有するであろう。最も 好ましくは、実質的に線状のコポリマーは、エチレン/ 1-ブテンまたはエチレン/1-ヘキセンである。

【0038】本発明に用いられるオレフィンコポリマー のコモノマー含有量は、典型的には、約1%ないし約3 2% (モノマーの全モル数を基準にして)の範囲であ り、好ましくは、約2%ないし約26%であり、最も好 ましくは約6%ないし約25%の範囲である。

【0039】本発明の生成物を製造するのに用いられる 実質的に線状の好ましいオレフィンコポリマーは、 Exa ct(「"/登録商標)の商品名で、Exxon Chemical Company (Baytown, Texas) から市販されており、 Exact 3022, Exa ct3024,Exact3025,Exact3027,Exact3028,Exact3031,Exa ct3034,Exact3035,Exact3037,Exact4003,Exact4024,41, Exact4049,Exact4050,Exact4051,Exact5008および Exac t8002が含まれる。最も好ましくは、実質的に線状のオ

レフィンコポリマーは、 Exact3024,Exact4041および E xact5008からなる群から選択される。しかしながら、当 業者は、長鎖分枝を有しないこと、分子量分布の範囲、 組成分布幅指数の範囲、樹脂密度の範囲、およびメルト フローインデックスの範囲の条件を満たす他の樹脂もま た、本発明の範囲から逸脱せずに使用できることを理解 するであろう。

【0040】上述の実質的に線状のオレフィンコポリマ ーは、本発明の組成物として最も好ましいものである一 レン、イソブチレン、1-ブテン、1-ヘキセン、3- 10 方、他のポリマーまたは樹脂を、グラフトまたは架橋の 前後にこの組成物に加えることは、経済性、および本発 明にしたがって得られる製品の物理的特性および取扱い 特性にある種の利点をもたらし得る。都合よく加えられ るポリマーおよび樹脂としては、低密度ポリエチレン、 高密度ポリエチレン、線状低密度ポリエチレン、中程度 の密度のポリエチレン、ポリプロピレン、エチレンプロ ピレンゴム、エチレプロピレンジエンモノマーターポリ マー、ポリスチレン、ポリ塩化ビニル、ポリアミド、ポ リアクリル酸系誘導体、セルロース系誘導体、ポリエス は、ポリエンは、約3ないし約20の炭素原子を有する 20 テルおよびポリハロカーボンが挙げられる。また、エチ レンと以下のモノマーとの共重合体も使用することがで きる。かかるモノマーは、例えば、プロピレン、イソブ テン、ブテン、ヘキセン、オクテン、酢酸ビニル、塩化 ビニル、プロピオン酸ビニル、イソブチル酸ビニル、ビ ニルアルコール、アリルアルコール、アリルアセテー ト、アリルアセトン、アリルベンゼン、アリルエーテ ル、アクリル酸エチル、アクリル酸メチル、メタクリル 酸メチル、アクリル酸およびメタクリル酸である。ま た、過酸化硬化または加硫されたゴム製品に広く使用さ れる種々のポリマーおよび樹脂も加えることができる。 例えば、ポリクロロプレン、ポリブタジエン、ポリイソ プレン、ポリ(イソブチレン)、ニトリルーブタジエン ゴム、スチレンーブタジエンゴム、塩素化ポリエチレ ン、クロロスルホン化ポリエチレン、エピクロロヒドリ ンゴム、ポリアクリレート、およびブチルまたはハロー ブチルゴムが挙げられる。当業者に知られているような 他の樹脂もまた使用可能であり、前述の材料の混合物も 含まれる。付加的なポリマーまたは樹脂の任意または全 ては、組み合わせてまたは個々に、本発明の範囲内で都 40 合よくグラフトまたは架橋させることができる。

> 【0041】本発明のコポリマーに加えるのに好ましい 樹脂は、ポリプロピレン、ポリスチレン、低密度ポリエ チレン、線状低密度ポリエチレン、エチレン/エチルア クリレート、およびエチレン/メチルアクリレート、お よびこれらの2つまたはそれ以上の組み合わせを含む。 実質的に線状のポリオレフィンコポリマーの好ましいレ ベルは、全ポリマー樹脂のパーセンテージとして、約5 %ないし約100%の範囲であり、より好ましくは約1 0%ないし約60%であり、最も好ましくは約10%な 50 いし約40%である。

【0042】本発明の実施において有用な、組成物の架 橋は、化学的架橋試薬または髙エネルギー照射の使用に よって好ましく達成される。化学的架橋の適切な方法 は、分解性のフリーラジカル発生種の使用、またはシラ ングラフトの使用を含み、この方法においては、組成物 の成分の分子主鎖は、後の架橋し得る化学種と化学的に 反応する。後者の場合、架橋は、グラフト工程に続い て、場合によっては適切な触媒を用いて、加熱された湿 気のある条件のもとで適切に行なわれる。架橋方法の組 み合わせは、制御の程度を促進し、架橋の所望のレベル 10 を制御するために使用することができる。

【0043】本発明において有効に用いられる典型的な 化学的架橋剤は、有機過酸化物;アジドおよびビニル官 能基シラン;多官能基ビニルモノマー;オルガノチタネ ート;オルガノジルコネートおよびp-キノンジオキシ ムを含む。化学的架橋剤は、所望の架橋反応における処 理温度および許容される時間について、都合よく選択す ることができる。換言すると、架橋が行なわれる好まし い温度において、1分から60分の間の半減期を示す化 れた架橋の速度を迅速に誘くことができる。架橋の際の 処理温度および許容される時間は、例えば、合理的な速 度で押出器を通過する組成物の適切な輸送等の材料の取 扱いの必要性にしばしば左右される。

【0044】本発明の組成物のために適切な化学的架橋 剤は、有機過酸化物、好ましくはアルキルおよびアラル キル過酸化物を含むが、これらに限定されるものではな い。そのような過酸化物として、以下のものが挙げられ る。すなわち、ジクミルパーオキサイド、2,5-ジメ チル-2、5-ジ(t-ブチルパーオキシ)へキサン、 1, 1-ビス(t-ブチルパーオキシ)-3, 3, 5-トリメチルシクロヘキサン、1, 1-ジ-(t-ブトキ シパーオキシ) -シクロヘキサン、2, 2´-ビス(t - ブチルパーオキシ) ジイソプロピルベンゼン、4,4 ´ービス(t-ブチルパーオキシ)ブチルバレレート、 t-ブチルーパーベンゾエート、t-ブチルパーテレフ タレート、および t - ブチルパーオキサイド等であり、 最も好ましくは、架橋剤はジクミルバーオキサイドであ

【0045】化学的に架橋した組成物は、「共試薬(co 40 agent)」と呼ばれる多官能価のモノマー種の添加によっ て改善される。以下に限定されるものではないが、本発 明の化学架橋における使用に適切な共試薬の例として は、ジーおよびトリーアリルシアヌレートおよびイソシ アヌレート;アルキルジーおよびトリーアクリレートお よびメタクリレート;亜鉛ベースのジメタクリレートお よびジアクリレート;および1,2-ポリブタジエン樹 脂が挙げられる。

【0046】本発明に使用され得る架橋剤には、一般式 RR´SiY,で表わされるアジド官能基シランが含ま 50 度まで加熱することによって、都合よく水分を放出し

れる。ことで、Rは、Si-C結合を介してシリコンに 結合したアジド官能基ラジカルを表わし、炭素、水素、 場合によっては硫黄および酸素から構成され、Yは加水 分解性の有機ラジカル、R は1価の炭化水素ラジカル または加水分解性の有機ラジカルを表わす。

12

【0047】アジドーシラン化合物は、ナイトライン (nitrine)挿入反応によってオレフィンポリマーにグラ フトする。シラノールへのシランの加水分解による架橋 に続いて、シロキサンのシラノールの縮合が生じる。シ ロキサンへのシラノールの縮合は、ジブチル錫ジラウレ ート、またはジブチル錫マレエート等のある種の金属石 鹸触媒によって触媒化される。適切なアジド−多官能基 シランは、2-(トリメトキシシリル)エチルフェニル スルフォニルアジドおよび (トリエトキシシリル) ヘキ シルスルフォニルアジド等のトリアルコキシシランを含

【0048】本発明の実施に有用な他の適切なシラン架 橋剤は、ビニルトリメトキシシランおよびビニルトリエ トキシシラン等のビニル官能基アルコキシシランを含 学架橋剤を選択することによって、所望の程度に制御さ(20)む。これらのシラン架橋剤は、一般式RR^SiY。で 表わすことができ、Rは、Si-C結合を介してシリコ ンに結合したビニル官能基ラジカルを表わし、炭素、水 素、および場合によっては、酸素または窒素で構成され る。各Yは、加水分解性有機ラジカルを表わし、R´は 炭化水素ラジカルまたはYを表わす。

> 【0049】通常、上述の有機過酸化物のようなフリー ラジカル開始剤は、ビニルアルコキシシランとともに取 り込まれて、ポリマー分子の主鎖から水素抽出を行な い、そこで、ビニル官能基シランが反応してグラフトす 30 る。米国特許第3,646,155号には、そのようなシランの 例が示されている。次いで、グラフトしたポリマー性組 成物は、水分に曝されてシラノール縮合反応が行なわ れ、そこで、複数の側鎖のシランのグラフトが架橋す る。好ましくは、組成物は適切な縮合触媒を含み、さら に、水分に接触する前に、所望のプロファイルまたは形 状に成形されることは好ましい。最も好ましくは、シラ ン架橋剤は、2,2~-ビス(t-ブチルパーオキシ) ジイソプロピルベンゼンによって開始されたフリーラジ カル反応によって、ポリマーの主鎖へグラフトしたビニ ルトリメトキシシランである。最も好ましいシラノール 縮合触媒は、ジブチル錫ジラウレートであり、これは、 水分の存在下、好ましくは熱水の存在下で側鎖のシラン 基の架橋を著しく促進する。

【0050】シラングラフトの縮合による水分の誘発さ れた架橋を行なう方法は、従来技術に広く開示されてい る。熱水に曝すことは別として、好ましくは、組成物の 軟化点を越える温度で、石膏、他の水溶性物質または吸 水性物質等の水和した無機化合物は、組成物中に取り込 まれることができ、これは、水和-遊離温度を越える温

て、シラン側鎖基の縮合を行なう。あるいは、水分は、 押出器等の連続的な溶融処理装置内で単独でまたは組成 物の成分の1つとともに直接導入される。好ましくは、 供給ポートの下流において、場合によっては、物理的に 膨脹する発泡剤とともに導入される。例えば、米国特許 第4,058,583号(Glander) には、窒素等の湿った不活性 ガスを異形材押出機の下流ポートに注入して、シランー グラフトした組成物の膨脹およびシランの縮合の両方を 行なうことが記載されている。

期にわたって水分の安定したシステムは必須であり、米 国特許第4,837,272号(Kelley) には、シランーグラフト した組成物とオレガノチタネートとを反応させた後に、 比較的湿分安定性の付加物が得られることが開示されて いる。この付加物は、大気中の水分の存在下で容易に架 橋し、シラノール縮合触媒が存在しなくても架橋構造を 形成する。

【0052】高エネルギーのイオン化照射でオレフィン 組成物を架橋する適切な方法には、電子、X線、β線ま 照射」は、電磁波、あるいは直接または間接的に物質と 相互作用し、次いで物質をイオン化する性質を有する荷 電粒子を示す。「髙エネルギー」は、そのような照射の 比較的高いポテンシャルを示し、本発明の組成物の製品 を均一かつ十分に浸透するために必須である。

【0053】イオン化照射に曝すことによってオレフィ ン組成物を架橋する最も好ましい方法は、電子ビーム照 射源を使用することである。電子ビーム照射架橋の使用 によって、微細なセル構造および優れた表面品質がもた らされ、これは、大部分が、膨脹処理工程の開始の前 に、架橋が完了することによるものである。単一の電子 ビーム源のみが、多くの連続的な押出しラインによって 経済的にサポートされているので、この方法の欠点は、 装置の高い費用、およびこの方法を用いた連続操作が実 行不可能なことである。さらに、ある種のポリマーは、 所望の架橋反応を行なう代わりに、優先的な側鎖の分断 または分解の影響を受けやすい。

【0054】本発明の組成物をイオン化照射に曝すこと は、約0.1ないし40メガラド、好ましくは約1ない し20メガラドの範囲の放射量で達成することができ る。米国特許第4,203,815号(Noda) には、髙エネルギー および低エネルギーの両方のイオン化照射に組成物を曝 して、表面品質、強度および後のヒートシーリング処理 またはエンボス処理の改善を行なう方法が開示されてい る。架橋の量は、イオン化照射の放射量によって適切に 制御することができ、本発明の最終用途の必要性によっ て左右される優先性を有する。場合によっては、上述の 共試薬は、照射 - 架橋された組成物中に取り込まれると とができ、硬化速度および架橋の均一性のための有利な 結果を与える。

14

【0055】使用される架橋方法とは無関係に、許容し 得る程度に発泡した製品は、架橋剤密度またはレベルの ある程度の範囲を越えた架橋を行なうことのみによって 得ることができる。発泡の前の過剰な架橋は、発泡組成 物を非弾性的にし過ぎるので、最適な膨脹より低い膨脹 と、発泡剤の与えられたレベルについての最適密度より 大きな密度とをもたらす。膨脹後の架橋を引き起こす処 理に関しては、過剰の架橋は、経済的に効率がよくな い。最適な架橋より劣った架橋は、圧縮硬化特性または 【0051】湿分硬化したポリオレフィンのために、長 10 熱抵抗等の物理的特性にとって不利益である。架橋の程 度を定量するための1つのパラメータは、組成物の「ゲ ル含有量」である。本発明において、「ゲル含有量」と いう用語は、約50mgの架橋生成物サンプルを、25 mlのモレキュラーシーブ乾燥キシレン中に120℃で 24時間浸漬した後に残留した架橋生成物(乾燥基準) の不溶性部分の重量%を示すことが意図される。架橋さ れた発泡構造を与える場合には、処理条件は、得られる ゲル濃度が、好ましくは約5%ないし約95%の範囲、 より好ましくは約10%ないし約40%の範囲、最も好 たはγ線を発生する装置の使用が含まれる。「イオン化 20 ましくは約12%ないし約25%の範囲となるように使 用するべきである。

> 【0056】本発明を実施するのに有用な膨脹媒体また は発泡剤は、通常の気相、液体または固体化合物または 成分、あるいはそれらの混合物とすることができる。一 般に、これらの発泡剤は、物理的膨脹または化学的分解 のいずれかを特徴とする。物理的膨脹発泡剤において、 「通常の気相」という用語は、用いられる膨脹媒体が、 発泡性化合物の製造の間に経る温度および圧力において ガスであること、および、利益が要求される際に、この 30 媒体が、気相または液相のいずれかに導かれることが意 図される。

> 【0057】通常の気相および液体発泡剤に含まれるの は、以下のようなメタンおよびエタンのハロゲン誘導体 であり、具体的には、メチルフルオライド、メチルクロ ライド、ジフルオロメタン、メチレンクロライド、パー フルオロメタン、トリクロロメタン、ジフルオロークロ ロメタン、ジクロロフルオロメタン、ジクロロジフルオ ロメタン(CFC-12)、トリフルオロクロロメタ ン、トリクロロモノフルオロメタン(CFC-11)、 40 エチルフルオライド、エチルクロライド、2,2,2-トリフルオロ-1, 1-ジクロロエタン(HCFC-1 23)、1,1,1-トリクロロエタン、ジフルオロー テトラクロロエタン、1,1-ジクロロ-1-フルオロ エタン (HCFC-141b)、1, 1-ジフルオロー 1-クロロエタン (HCFC-142b)、ジクロロー テトラフルオロエタン (CFC-114)、クロロトリ フルオロエタン、トリクロロトリフルオロエタン (CF C-113), 1-200-1, 2, 2, 2-7ルオロエタン (HCFC-124)、1, 1-ジフルオ 50 ロエタン (HFC-152a)、1, 1, 1-トリフル

オロエタン (HFC-143a)、1, 1, 1, 2-テ トラフルオロエタン (HFC-134a)、パーフルオ ロエタン、ペンタフルオロエタン、2,2-ジフルオロ プロパン、1, 1, 1-トリフルオロプロパン、パーフ ルオロプロパン、ジクロロプロパン、ジフルオロプロパ ン、クロロヘプタフルオロプロバン、ジクロロヘキサフ ルオロプロバン、パーフルオロブタン、パーフルオロシ クロブタン、六フッ化硫黄およびこれらの混合物であ る。使用し得る他の通常の気相および液体発泡剤は、炭 化水素および他の有機化合物である。具体的には、アセ 10 その他の粒径減少を行なってもよい。溶融配合は、回分 チレン、アンモニア、ブタジエン、ブタン、ブテン、イ ソブテン、イソブチレン、ジメチルアミン、プロパン、 ジメチルプロパン、エタン、エチルアミン、メタンモノ メチルアミン、トリメチルアミン、ペンタン、シクロペ ンタン、ヘキサン、プロパン、プロピレン、アルコー ル、エーテル、およびケトン等である。窒素、アルゴ ン、ネオンまたはヘリウム等の不活性ガスおよびその化 合物は、発泡剤として使用することができ、満足な結果 が得られる。

【0058】高められた温度において分解してガスを発 生する、固体の化学的分解性発泡剤は、本発明の組成物 を膨脹させるために使用され得る。一般に、分解性固体 は、130℃ないし135℃の分解温度(気相物質の遊 離を伴う)を有する。典型的な化学的発泡剤としては、 アゾジカルボンアミド、p, p ´ーオキシビス (ベンゼ ン) スルホニルヒドラジド、p-トルエンスルホニルヒ ドラジド、p-トルエンスルホニルセミカルバジド、5 -フェニルテトラゾール、エチル-5-フェニルテトラ ゾール、ジニトロソペンタメチレンテトラアミン、およ ルホニルヒドラジド、および加熱により分解する種々の 酸/炭酸水素塩化合物が挙げられる。好ましい揮発性の 液体発泡剤としては、イソブタン、ジフルオロエタンま たはこれらの混合物が挙げられる。分解性固体発泡剤と しては、アゾジカルボンアミドが好ましく、一方、不活 性ガスとしては二酸化炭素が好ましい。

【0059】架橋発泡構造体を製造する技術は公知であ り、特にポリオレフィン組成物については、よく知られ ている。本発明の発泡構造体は、シート、プランク、そ 的または不規則的な成型されたバンブロック等、公知の いかなる物理的形状としてもよい。発泡したまたは発泡 し得る物品の公知の他の有用な形状の例は、膨脹性また は発泡性粒子、成型性発泡粒子、またはビーズ、および そのような粒子の膨脹および/または凝集および融合に よって形成された製品である。発泡性製品または粒子組 成物は、膨脹の前に架橋させることができ、例えば、フ リーラジカルで開始された化学的架橋またはイオン化照 射、または膨脹後の架橋のプロセスなどである。膨脹後 行なうことができ、あるいは、シラングラフトされたポ

リマーが用いられる際には、場合によっては、適切なシ ラノール化触媒とともに水分に曝すことによって行なう

16

ととができる。

【0060】発泡性組成物の種々の成分を組み合わせる 手段の例としては、限定されるものではないが、以下の ようなものが挙げられる。すなわち、溶融配合、拡散を 制限した膨潤、および液体ミキシング等であり、場合に よっては、任意のまたは全ての成分の予備微粉砕または 式または連続プロセスで達成することができ、温度制御 とともに行なうことが好ましい。さらに、溶融配合のた めの多くの適切な装置が知られており、単一のまたは複 数のアルキメデススクリュー輸送バレル、高剪断バンバ リー (Banbury) 型ミキサー、および他のインターナル ミキサーが含まれる。そのような配合またはミキシング の目的は、成分の物理的処理特性に適切な方法および条 件によるものであり、均一な混合物を与える。1または それ以上の成分は、行なわれている混合操作の間、後続 20 の混合操作の間;または押出し機を用いる場合には、下 流に位置する1またはこれ以上のバレル内に段階的に導

【0061】膨脹可能な又は発泡可能な粒子は、組成物 が、熱、及び任意ではあるが圧力の突然の放出にさらさ れるときに膨脹を起こすように、分解可能な、又は物理 的に膨脹可能な化学膨脹剤のような発泡剤を有するであ ろう。

【0062】本発明のシート体を提供する1つの好まし い方法は、シランーグラフト、その後の溶融混合された びその他のアゾ、N-ニトロソ、カルボネートおよびス 30 プロフィルの押し出し、プロフィルの湿分誘引架橋、及 び最後にプロフィルのオーブン膨脹を含む。第1の工程 では、ことに開示された基本的に線状のオレフィンコポ リマーの少なくとも1部を含む、フォーム組成物のポリ マー樹脂の少なくとも1部は、押出し機中でビニルトリ メトキシシラン(VTMOS)とジクミルペルオキシド との20:1混合物と溶融混合され、ポリマーへのVT MOSのグラフトが生ずる。この組成物は、マルチスト ランドダイ面から押し出され、水中で冷やされ、次いで ペレット化される。その後の工程では、未グラフトポリ の他の規則的または不規則的な押出し形材、および規則 40 マー樹脂、化学的に分解し得る発泡剤、着色剤、顔料、 ジブチルスズジラウレートからなるシラノール反応触 媒、又は任意ではあるが酸化防止剤及び安定化剤ととも に、シラングラフト組成物を溶融混合し、シートダイか ら押し出し、次いで三本ロールスタックを通して正しい 寸法のプロフィルに成形する。未押し出しのシートは、 架橋を生ずるに十分な時間、温水タンクを通され、次い でガス加熱の温風炉を通され、発泡剤の分解及び膨脹を 生ずる。

【0063】他の好ましい方法では、上記方法からの押 の架橋は、化学的架橋剤または照射に曝すことによって 50 出されたプロフィルは、温水にさらされる前に、マルチ 積層され、発泡剤の分解温度以下の温度で適切なモール ド内でプレス固化される。その後、シラノール反応によ り架橋を生ずるに充分な時間、温水にさらされる。任意 ではあるが、この時点で、得られたプレフォームを再び 適切なモールド内の高圧プレス下に置き、発泡剤の分解 を開始させる。最後に、部分的に膨脹したプレフォーム を、温風強制対流オーブン内で充分に膨脹させる。

【0064】他の手順では、グラフト組成物、及び他の 未グラフト樹脂並びに成分の混合物を溶融するために、 される。溶融した混合物は、次いで、プレフォームに成 型され、温水にさらすことにより架橋され、次いで上述 のように膨脹させられる。

【0065】更に他の好ましい方法では、シランーグラ フト組成物は、イソブタンのような物理的に膨脹する発 泡剤、追加の未グラフトポリマー樹脂、ジブチルスズジ ラウレートのシラノール反応触媒、タルクのような核 剤、及び任意に酸化防止剤及び安定化剤と、シングルス クリュー押出し機内で溶融混合される。任意ではある 成物は、コートハンガーダイから押出され、そこでは発 泡剤が膨脹し、充分に膨脹した発泡シート又はプランク が得られる。ネット状シート、プランク、又はボード は、架橋を生ずるに充分な時間、湿度のある貯蔵庫内に

*明の範囲を逸脱することなく、本発明の組成物に添加さ れ得る。特に、補強、強化、又はフォーム組成物のレオ ロジー特性を修正するために、粒状及びファイバー状フ ィラーのような、架橋フォーム構造の組成の開発及び製 造に対し適切な物質を添加することが考えられる。ま た、酸化防止剤(例えばアーガノックス(Irgano x) 1010のようなヒンダードフェノール、アーガフ ォス (Irgafos) 168のような亜燐酸塩、又は アジェライト (Agerite) AK、樹脂D若しくは "バンバリー (Banbury)"型のミキサーが使用 10 フレクトール (Flectol H)のような重合した トリメチルージヒドロキノリン)、紫外線及び熱的安定 化剤、顔料又は着色剤、タルク等のようなセルー成長核 剤、脂肪酸、エステル (例えばグリセロールモノステア レート) 又はアミド、特性修正剤、加工助剤、添加剤、 架橋又はたの反応を促進させるための触媒、上述の物質 の2種又はそれ以上の混合物の添加もまた、考えられ

18

【0067】下記表1は、本発明に使用するに適切な、 幾つかの基本的に線状のポリオレフィンコポリマーの或 が、ツインスクリュー押出し機を用いてもよい。この組 20 るパラメーター特性の非限定的な表である。表1に記載 された物質は、市販されており、米国、テキサス州、ベ イタウンの工場において、エクソンケミカルカンパニー により製造されたものである。

> [0068] 【表1】

【0066】従来知られている幾つかの添加剤が、本発*

生成物		メルト	密度	コモノマー			
名称		インデックス (dg/分)	(g∕cc)	タイプ	含量	CDB1 (%)	Mw/Mn
Exact TH	4041	3. 0	0.878	1-ブテン	23.5%	NA .	2. 0 + 0. 2
Exact TX	5008	10	0.865	1 - ブテン	31.6%	NA	2.0 + 0.2
Exact TH	4028	10	0.880	1 - ブテン	23.1%	NA	2.0 + 0.2
Exact TM	4017	4. 0	0.885	1ープテン	20.2%	NA	2.0 + 0.2
Exact TX	3024	4. 5	0.905	1ープテン	11. 2%	83. 7%	2.0 + 0.2
Exact Til	3025	1. 2	0.910	1-プテン	9.6%	>83%	2.0 + 0.2
Exact Th	3012	4. 5	0.910	1-ヘキセン	10.4%	88. 2%	2.0 + 0.2
Exact TH	3011	3. 5	0.910	1-ヘキセン	11.1%	92. 0%	2.0 + 0.2
Exact TM	3030	2. 25	0. 905	1 - ヘキセン	12.9%	92. 2%	2.0 + 0.2
Exact TM	3031	3. 5	0. 900	1-ヘキセン	15. 4%	>88%	2.0 + 0.2

注:NA=適用不可、ポリマーはTREFを決定するには溶解性が高すぎる

[0069]

【実施例】以下の実施例は、本発明の所定の特徴を例示 するするものであり、何ら本発明を限定することを意図 するものではない。

【0070】実施例1-7は、本発明の連続押出しブロ セスを示す。

【0071】実施例1

主として本発明の樹脂、及び柔軟剤としてポリエチレン 50 粒機によりペレット状に切断した。このペレットの組成

/エチルアクリレート(EEA)からなるシランーグラ フト組成物を、約200℃に維持された、60mm径、 24:1のL/Dの、シングルスクリュー押出し機を用 いて、約301b/hrの速度で製造した。有機過酸化 物及びビニルトリメトキシシランの混合物を、押出し機 の供給口に直接供給した。グラフト組成物を、水冷トラ フを通してマルチストランドダイヘッドを通過させ、造

は、以下の通りである。

* * [0072]

pbw 物質

19

90 Exact ('''/登録商標) 4041、エクソンケミカル社

- DPDA 6182 (0.930 g/cm³, 1.5MI) 10 ポリエチレン/エチルアクリレート、15%エチルアクリレート 含量、ユニオンカーバイド社
 - #CV4917、ビニルトリメトキシシラン、フルス(Huls)アメリカ社
- 0.02 バルカップ (Vulcup) -R、2,2´ービス (tert-ブチ ルペルオキシ) ジイソプロビルベンゼン、ハーキュレス (Her cules) ケミカル社

【0073】薄片状グラフト組成物を、追加の薄片状成 ※4インチの幅の三本ロールスタックを通過させ、以下の 分と5ガロンのドラムタンブラー内で混合し、計量し て、約200℃に維持され、14インチの幅のコートハ ンガーダイヘッドを備えた、2.5インチの径、24:

組成の、9インチの幅×0.069インチの厚さの未膨 脹シ-トを形成した。

[0074]

1のL/Dのシングルスクリュー押出し機に供給し、2%

物質 рbw

- 78.9 Exact("// 登録商標) 4041/DPDA 6182 グ ラフト、上述のものから
 - 3. 3 DFDA-1173 NT, LDPE (0. 92g/cm³, 2 . Omi) 中1%ジブチルスズジラウレート濃縮物、ユニオンカ ーバイド社
- EEA-6182中ベイヤーADC/Fアゾジカルボンアミド4 11.6 0%濃縮物
 - 3. 9 高圧LDPE (7-8MI) 中20%ジンクステアレート、30 %ジンクオキシド濃縮物
 - 白色濃縮物、高圧LDPE(7-8MI)中50%酸化チタン 2. 3

度に80分間さらし、シラノール反応架橋を行った。そ - ターを備えた発泡炉を通過させ、表面温度を670° Fに維持し、追加の空気で730°Fに維持したとこ ろ、架橋組成物は20インチの幅×0.150インチの 厚さに膨脹した。得られた密度は6pcfであり、追加 の特性を表2に示す。

【0076】比較例1A

【0075】このシートを190°F及び95%相対湿 ★トされた薄片状組成物を、約200°Cに維持された、4 インチ径、44:1のL/Dの、シングルスクリュー押 の後、このシートを、一定温度に制御された、赤外線ヒ 30 出し機を用いて、約4001b/hrの速度で製造し た。有機過酸化物及びビニルトリメトキシシランの混合 物を、押出し機の供給口に直接供給した。グラフト組成 物を、水冷トラフを通してマルチストランドダイヘッド を通過させ、造粒機によりペレット状に切断した。この

ペレットの組成は、以下の通りである。

[0077]

LDPE及びLLDPEの混合物を含むシランーグラフ★

物質 pbw

- LF 0219A, LDPE (0.919g/cm³, 1.5M)67 I)、ノバコア(Novacor)ケミカル社
- 3 3 ETS 9078, LLDPE (0. 910 g/cm3, 2. 5 MI)、ユニオンカーバイド社
 - #CV4917、ビニルトリメトキシシラン、フルス(Huls)アメリカ社
 - 0.02 バルカップ (Vulcup) -R、2,2´-ビス (tert-ブチ ルベルオキシ) ジイソプロビルベンゼン、ハーキュレス (Her cules)ケミカル社

【0078】薄片状グラフト組成物を、追加の薄片状成 幅のコートハンガーダイヘッドを備えた、6インチの 分と200ガロンのリボンブレンダー内で混合した。混 径、24:1のL/Dのシングルスクリュー押出し機に 合物を計量して、約125℃に維持され、30インチの 50 供給し、52インチの幅の三本ロールスタックを通過さ

せ、以下の組成の未膨脹シートを形成した。

* * (0079)

p b w 物質

21

- 67.5 LF-0219A/ETS9078グラフト、上述のものから
- 11.2 LF - 0219A, LDPE (0.919g/cm³, 1.5M)

I)、ノバコア(Novacor)ケミカル社

- 3. 5 DFDA-1173 NT, LDPE $(0.92 \,\mathrm{g/cm^3}, 2)$ Omi)中1%ジブチルスズジラウレート濃縮物、ユニオンカ バイド社
- LDPE (0. 919g/cm³、1. 5MI) 中ベイヤーAD 9.8 C/Fアゾジカルボンアミド40%濃縮物
- 6.0 高圧LDPE (7-8MI) 中20%ジンクステアレート、30 %ジンクオキシド濃縮物
- 白色濃縮物、高圧LDPE(7-8MI)中50%酸化チタン 2. 0

【0080】上述のように、とのシートを190°Fの ※との実施例は、本発明の方法に従った、2pcfの密度 湿った雰囲気中にさらし、シラノール反応架橋を行い、 次いで、一定温度に制御された発泡炉を通過させた。得 られた密度は6pcfであり、比較特性を表2に示す。 基本的に線状の本発明のオレフィンコポリマーを含む、 実施例1の対象架橋フォーム構造は、この例のLLDP 度、伸び、圧縮永久歪、及びより微細なセルサイズを示 した。

のフォーム構造の製造を示すものである。

【0082】基本的に線状の本発明のオレフィンコポリ マーのシランーグラフト組成物を追加の薄片状成分と混 合し、コートハンガーダイを有するシートライン上に押 出し、5インチの幅と0.070インチの厚さの連続シ E/LDPEフォーム製品に比較し、優れた引っ張り強 20 -トの形に裂いた。このシートは、以下の組成を有して いる。

[0083]

【0081】実施例2

×

pbw 物質

- Exact (**/登録商標) 4041/DPDA 6182 グ 56.7 ラフト、上述の実施例1から
 - 3. 6 DFDA-1173 NT, LDPE (0. 92g/cm³, 2 . Omi) 中1%ジブチルスズジラウレート濃縮物、ユニオンカ ーバイド社
- EEA-6182中ベイヤーADC/Fアゾジカルボンアミド4 33.2 0%濃縮物
 - 3. 9 高圧LDPE(7-8MI)中20%ジンクステアレート、30 %ジンクオキシド濃縮物
 - 白色濃縮物、高圧LDPE(7-8MI)中50%酸化チタン 2. 3

【0084】 このシートを200° F/95% 相対湿度 ★追加の特性を表2に示す。 に60分間さらし、シラノール反応及び架橋を行った。 その後、このシートを、一定温度に制御された、赤外線 ヒーターを備えた発泡炉を通過させ、表面温度を680 °Fに維持し、追加の空気で730°Fに維持したとこ ろ、架橋組成物は20インチの幅×0.365インチの 40 成物を製造した。

【0085】比較例2A LDPE及びLLDPEの混合物を用いたことを除い て、比較例1Aに記載したのと同一の装置及び方法を用 いて、以下の組成の、シランーグラフトされた薄片状組

厚さに膨脹した。得られた密度は2.2pcfであり、★ [0086]

pbw

- 8 0 LF = 0.219A, LDPE(0.919g/cm³, 1.5M1)、ノバコア(Novacor)ケミカル社
- ETS 9078, LLDPE (0. 910 g/cm^3 , 2. 5 20 MI)、ユニオンカーバイド社
 - #CV4917、ビニルトリメトキシシラン、フルス(Huls 0.4)アメリカ社
 - 0. 02 バルカップ (Vulcup) -R、2, 2´-ビス (tert-ブチ ルベルオキシ) ジイソプロビルベンゼン、ハーキュレス (Нег

cules)ケミカル社

[0087]比較例1Aに記載されているように、薄片 *シートライン上に押出し、以下の組成の押出し物を得 状グラフト組成物を、追加の薄片状成分と混合し、コー tc. トハンガーダイヘッド及び三本ロールスタックを備えた* [0088]

> pbw 物質

- 56.7 LF-0219A/ETS9078グラフト、上述のものから
 - DFDA-1173 NT, LDPE (0. 92g/cm³) 2. 0mi) 中1%ジブチルスズジラウレート濃縮物、ユニオン カーバイド社
- 33.2 LDPE (0. 919g/cm³、1. 5MI) 中ベイヤーAD C/Fアゾジカルボンアミド40%濃縮物
 - 4. 0 高圧LDPE (7-8MI) 中20%ジンクステアレート、30 %ジンクオキシド濃縮物
 - 2. 5 白色濃縮物、高圧LDPE(7-8MI)中50%酸化チタン

湿った雰囲気中にさらし、シラノール反応架橋を行い、 次いで、一定温度に制御された発泡炉を通過させた。得 られた密度は2 p c f であり、比較特性を表2に示す。 基本的に線状の本発明のオレフィンコポリマーを含む、 E/LDPEフォーム製品に比較し、優れた引っ張り強 度、伸び、及びより微細なセルサイズを示した。

【0090】実施例3

【0089】上述のように、このシートを190°Fの ※のフォーム構造の製造を示すものである。

【0091】基本的に線状の実施例1のオレフィンコポ リマーのシランーグラフト組成物を追加の薄片状成分と 混合し、実施例1に記載されているように、コートハン ガーダイ及び三本ロールスタックを備えたシートライン 実施例2の対象架橋フォーム構造は、この例のLLDP 20 上に押出し、5インチの幅と0.070インチの厚さの 連続シートの形に裂いた。このシートは、以下の組成を 有している。

[0092]

この実施例は、本発明の方法に従った、3pcfの密度※

p h w 物質

- Exact (**/登録商標) 4041/DPDA 6182 グ 68.1 ラフト、上述の実施例1から
 - 3. 4 DFDA-1173 NT, LDPE (0. 92g/cm³, 2 . 0 m i) 中1%ジブチルスズジラウレート濃縮物、ユニオンカ ーバイド社
- 22.3 EEA-6182中ベイヤーADC/Fアゾジカルボンアミド4 0%濃縮物
 - 3. 7 高圧LDPE(7-8MI)中20%ジンクステアレート、30 %ジンクオキシド濃縮物
 - 2. 5 白色濃縮物、高圧LDPE(7-8MI)中50%酸化チタン

【0093】実施例1に記載されているように、このシ ★表2に示す。 -トを150°F及び95%相対湿度に18時間さら を、一定温度に制御された、赤外線ヒーターを備えた発

し、シラノール反応架橋を行った。その後、このシート の空気で750°Fに維持したところ、架橋組成物は1

6. 5インチの幅×0. 350インチの厚さに膨脹し た。得られた密度は3.0pcfであり、追加の特性を★

【0094】比較例3A

LDPE及びLLDPEの混合物を用いたことを除い て、比較例1Aに記載したのと同一の装置及び方法を用 泡炉を通過させ、表面温度を700° Fに維持し、追加 40 いて、以下の組成の、シラン-グラフトされた薄片状組 成物を製造した。

[0095]

pbw 物質

- LF = 0219A, LDPE(0.919g/cm³, 2.0M67 1)、ノバコア(Novacor)ケミカル社
- ETS 9078, LLDPE (0. 910g/cm³, 2. 5 3 3 MI)、ユニオンカーバイド社
 - #CV4917、ビニルトリメトキシシラン、フルス(Huls 0.4)アメリカ社

0.02 バルカップ (Vulcup) -R、2、2 ーピス (tert-ブチ ルベルオキシ) ジイソプロピルベンゼン、ハーキュレス (Her cules)ケミカル社

【0096】比較例1Aに記載されているように、薄片 *シートライン上に押出し、以下の組成の押出し物を得 状グラフト組成物を、追加の薄片状成分と混合し、コー [0097]

トハンガーダイヘッド及び三本ロールスタックを備えた*

pbw 物質

- 59.6 LF-0219A/ETS9078グラフト、上述のものから
- 9.0 LF-0219A, LDPE (0. 919g/cm³, 2. 0M I)、ノバコア(Novacor)ケミカル社
- 3. 5 DFDA-1173 NT, LDPE (0. 92g/cm³, 2 . Omi) 中1%ジブチルスズジラウレート濃縮物、ユニオンカ ーバイド社
- 22.3 LDPE (0. 919g/cm³、1. 5M1) 中ベイヤーAD C/Fアゾジカルボンアミド40%濃縮物
 - 4. 1 高圧LDPE (7-8MI) 中20%ジンクステアレート、30 %ジンクオキシド濃縮物
 - 白色濃縮物、高圧LDPE (7-8MI) 中50%酸化チタン 2. 5

湿った雰囲気中にさらし、シラノール反応架橋を行い、 20 のフォーム構造の製造を示すものである。 次いで、一定温度に制御された発泡炉を通過させた。得 られた密度は3pcfであり、比較特性を表2に示す。 基本的に線状の本発明のオレフィンコポリマーを含む、 実施例3の対象架橋フォーム構造は、この例のLLDP E/LDPEフォーム製品に比較し、優れた引っ張り強 度、伸び、圧縮永久歪、及びより微細なセルサイズを示 した。

【0099】実施例4

【0098】上述のように、このシートを190°Fの ※この実施例は、本発明の方法に従った、4pcfの密度

【0100】主として本発明の樹脂、及び柔軟剤として ポリエチレン/エチルアクリレート(EEA)、及びS AX7401と名付けられた、少量のフルオロエラスト マー加工助剤からなるシランーグラフトされた薄片状組 成物を、実施例1に記載されているのと同一の装置及び 方法を用いて製造した。この組成物は、以下の成分から なる。

[0101] Ж

p b w 物質

- Exact(""/登録商標) 4041、エクソンケミカル社 8 5
- 10 DPDA 6182 (0.930 g/cm³, 1.5MI) ポリエチレン/エチルアクリレート、15%エチルアクリレート 含量、ユニオンカーバイド社
 - SAX7401、フルオロエラストマー加工助剤、デュポンケミ 5 カル社
 - 0.4 #CV4917、ビニルトリメトキシシラン、フルス(Huls)アメリカ社
 - 0.02 バルカップ (Vulcup) -R、2, 2´ービス (tert-ブチ ルベルオキシ) ジイソプロピルベンゼン、ハーキュレス (Her cules)ケミカル社

- のシラン - グラフト組成物を追加の薄片状成分と混合 し、実施例1に記載されているように、コートハンガー ダイ及び三本ロールスタックを備えたシートライン上に★

【0102】基本的に線状の上述のオレフィンコポリマ ★押出し、8インチの幅と0.041インチの厚さの連続 シートの形に裂いて、以下の組成の押出し物を得た。 [0103]

物質 p b w

- Exact (TM/登録商標) 4041/DPDA 6182/S 72.0 AX 7401グラフト、上述のものから
 - DFDA-1173 NT, LDPE (0. 92g/cm³, 2 3. 5 . 0 m i) 中1%ジブチルスズジラウレート濃縮物、ユニオンカ ーバイド社

- EEA-6182中ベイヤーADC/Fアゾジカルボンアミド4 18.5 0%濃縮物
 - 4. 0 高圧LDPE(7-8MI)中20%ジンクステアレート、30 %ジンクオキシド濃縮物
 - 白色濃縮物、高圧LDPE(7-8MI)中50%酸化チタン 2. 0

【0104】実施例1に記載されているように、このシ *示す。

- トを150° F及び95%相対湿度に16時間さら し、シラノール反応架橋を行った。その後、このシート を、一定温度に制御された、赤外線ヒーターを備えた発 泡炉を通過させ、表面温度を700°Fに維持し、追加 10 いて、以下の組成の、シランーグラフトされた薄片状組 の空気で750°Fに維持したところ、架橋組成物は2 1インチの幅×0. 150インチの厚さに膨脹した。得 られた密度は4.1pcfであり、追加の特性を表2に*

【0105】比較例4A LDPE及びLLDPEの混合物を用いたことを除い

て、比較例1Aに記載したのと同一の装置及び方法を用 成物を製造した。

[0106]

n h w 物質

- LF 0219A, LDPE (0.919g/cm³, 2.0M)67 I)、ノパコア(Novacor)ケミカル社
- 33 ETS 9078, LLDPE (0. 910 g/cm³, 2. 5 MI)、ユニオンカ-バイド社
 - #CV4917、ビニルトリメトキシシラン、フルス(Huls 0.4)アメリカ社
 - 0.02 バルカップ (Vulcup) -R、2,2´ービス (tert-ブチ ルペルオキシ) ジイソプロビルベンゼン、ハーキュレス (Her cules)ケミカル社

【0107】比較例1Aに記載されているように、薄片 ※シートライン上に押出し、以下の組成の押出し物を得 状グラフト組成物を、追加の薄片状成分と混合し、コー た。 トハンガーダイヘッド及び三本ロールスタックを備えた※ [0108]

> 物質 pbw

- 73.1 LF-0219A/ETS9078グラフト、上述のものから
 - DFDA-1173 NT, LDPE (0. 92g/cm³, 2 3. 5 . Omi) 中1%ジブチルスズジラウレート濃縮物、ユニオンカ ーバイド社
- LDPE (0. 919g/cm³、1. 5MI) 中ベイヤーAD 15.2 C/Fアゾジカルボンアミド40%濃縮物
 - 6.0 高圧LDPE(7-8MI)中20%ジンクステアレート、30 %ジンクオキシド濃縮物
 - 白色濃縮物、高圧LDPE(7-8MI)中50%酸化チタン 2. 0

【0109】実施例1Aに示すように、このシートを1 90°Fの湿った雰囲気中にさらし、シラノール反応架 橋を行い、次いで、一定温度に制御された発泡炉を通過 2に示す。基本的に線状の本発明のオレフィンコポリマ -を含む、実施例4の対象架橋フォーム構造は、この例 のLLDPE/LDPEフォーム製品に比較し、優れた 引っ張り強度、伸び、及びより微細なセルサイズを示し た。

【0110】実施例5

この実施例は、本発明い従って製造された物質のオーム 特性のプロセス依存性を示す。

【0111】実施例4からの、押し出され、カレンダー 成型されたサンブルを、0.75インチの合計の厚さと 50 セス依存性をもつことを示している。

なるように重ね、型に入れ、300°Fの一定の温度に 維持されたプラテンを有する200トンの圧縮成型プレ スにより、67分間プレスした。圧力を解放し、プレス させた。得られた密度は4pcfであり、比較特性を表 40 を開け、圧力の減少に応じて、成型されたロールパン状 のものを部分的に膨脹させた。圧縮成型時の塑性物中の 残留湿分の効果によってのみ架橋が誘引される。得られ た密度は3.2pcfであり、追加の特性を表 I に示 す。この対象物は、比較例3AのLLDPE/LDPE フォーム製品に比較し、優れた引っ張り強度、伸び、圧 縮永久歪、及びより微細なセルサイズを示した。本発明 の3pcfの密度を有するものでもある実施例3のフォ - ム横造と比較して、所定の特性が優れており、このと とは、本発明の発見に係るフォーム特性が、かなりプロ

【0112】実施例6

この実施例は、ポリプロピレンと、本発明の基本的に線 状のオレフィンポリマーに基づく、3pcfの密度のフ ォーム構造の製造を示すものである。主として3 M I ポ リプロピレンと、本発明の3MI樹脂とからなるシラン* *-グラフトされた薄片状組成物を、実施例1に記載され ているのと同一の装置及び方法を用いて製造した。この 組成物は、以下の組成を有する。

30

[0113]

pbw 物質

70 Exact (**/登録商標) 4041、エクソンケミカル社

EscorennTM PD 9272 (0.89g/cm³, 3 0 3. 1 M I)、ポリプロピレン、エクソンケミカル社

0.5 #CV4917、ビニルトリメトキシシラン、フルス(Huls)アメリカ社

0.025 バルカップ (Vulcup) -R、2, 2´ービス (tert-ブチ ルペルオキシ) ジイソプロピルベンゼン、ハーキュレス (Her cules)ケミカル社

- のシランーグラフト組成物を追加の薄片状成分と混合 し、実施例1に記載されているように、コートハンガー ダイ及び三本ロールスタックを備えたシートライン上に※

【0114】基本的に線状の上述のオレフィンコポリマ ※押出し、7インチの幅と0.052インチの厚さの連続 シートの形に裂いて、以下の組成の押出し物を得た。

[0115]

pbw 物質

72.0 Exact (**/登録商標) 4041/EscorennTM PD 9272グラフト、上述のものから

3. 6 DFDA-1173 NT, LDPE (0. 92g/cm³, 2 . 0 m i) 中1%ジブチルスズジラウレート濃縮物、ユニオンカ ーバイド社

23.8 EEA-4041中ベイヤーADC/Fアゾジカルボンアミド4 0%濃縮物

【0116】実施例1に記載されているように、このシ - トを 1 5 0° F 及び 9 5 % 相対 湿度 に 3 2 時間 さら し、シラノール反応架橋を行った。その後、このシート 泡炉を通過させ、表面温度を700°Fに維持し、追加 の空気で750° Fに維持したところ、架橋組成物は2 0インチの幅×0.190インチの厚さに膨脹した。得 られた密度は2.8pcfであり、追加の特性を表3に 示す。比較及び対照のため、3pcfの密度の競合する 有機過酸化物架橋フォーム生成物を示す。

★【0117】実施例7

この実施例では、主としてLDPEと、本発明の基本的 に線状の少量のオレフィンポリマーのシラングラフト組 を、一定温度に制御された、赤外線ヒーターを備えた発 30 成物に基づく、4pcfの密度のフォーム構造が製造さ れる。

> 【0118】シランーグラフトされた薄片状組成物を、 実施例1に記載されているのと同一の装置及び方法を用 いて製造した。この組成物は、以下の組成を有する。 [0119]

pbw

30 Exact (TM/登録商標) 4041、エクソンケミカル社

70 LF - 0219A, LDPE (0.919g/cm³, 2.0M)

I)、ノバコア (Novacor) ケミカル社

0.5 #CV4917、ビニルトリメトキシシラン、フルス(Huls

バルカップ (Vulcup) -R、2, 2 ーピス (tert-ブチ 0.02 ルベルオキシ) ジイソプロピルベンゼン、ハーキュレス (Her cules)ケミカル社

- のシラン - グラフト組成物を追加の薄片状成分と混合 し、実施例1に記載されているように、コートハンガー ダイ及び三本ロールスタックを備えたシートライン上に☆

【0120】基本的に線状の上述のオレフィンコポリマ ☆押出し、8インチの幅と0.041インチの厚さの連続 シートの形に裂いて、以下の組成の押出し物を得た。 [0121]

> pbw 物質

- 72.0 Exact ('"/登録商標) 4017/Escorenn PD 9272グラフト、上述のものから
- 3. 5 DFDA-1173 NT, LDPE (0. 92g/cm³, 2 . Omi) 中1%ジブチルスズジラウレート濃縮物、ユニオンカ ー バイド社
- 18.5 EEA-4041中ベイヤーADC/Fアゾジカルボンアミド4 0%濃縮物
 - 4.0 高圧LDPE (7-8MI) 中20%ジンクステアレート、30 %ジンクオキシド濃縮物
 - 2. 0 黒色濃縮物、高圧LDPE(7-8MI)中45%カーボンブラ ック

【0122】実施例1に記載されているように、このシ - トを 1 5 0° F 及び 9 5 % 相対湿度に 1 6 時間さら し、シラノール反応架橋を行った。その後、このシート を、一定温度に制御された、赤外線ヒーターを備えた発 泡炉を通過させ、表面温度を700°Fに維持し、追加 の空気で750°Fに維持したところ、架橋組成物は2 1インチの幅×0.150インチの厚さに膨脹した。得 られた密度は4.1pcfであり、追加の特性を表3に 示す。比較及び対照のため、4pcfの密度の競合する 20 るために調整された。この実施例では、架橋したLDP 照射架橋フォーム生成物を示すが、これは、引張り強度 及び伸びの特性に対する本発明の発見の対象物が優れて いることを示している。

【0123】実施例8-14は、圧縮成型の使用により 製品の製造を示す。

【0124】実施例8

pbw 物質

Exact (「M/登録商標) 4041、エクソンケミカル社 100

10 アゾジカルボンアミド、10ミクロン粒子サイズ

0.25 カドックス(Kadox)911C、酸化亜鉛、米国ジンク社

0.5 ジクミルベルオキシド、99%活性

【0126】発泡剤の分解温度以下である約240°F で、混合物を溶融させることにより、内部高剪断"バン バリー(Banbury)"型ミキサー内で組成物を混 合した。得られた混合物を、1.25インチの深さの矩 形のモールドキャビティを満たすように、カレンダー成 型してプレフォームとした。中にプレフォームを有する モールドを、200トンの圧縮モールドプレス内に30 5° Fで55分間保持した。プレスから取り出した後、

※熱した。得られた密度は2pcfであり、追加の特性を 表4に示す。内部空隙及び過剰架橋の傾向、及び未膨 服、同様に硬化したLLPDE応答の徴候がことに観察 された。

* この実施例は、化学的架橋(有機過酸化物)及びシラン - グラフトの両方の使用、及びその後の湿度分を含む熱

にさらしてシラノール縮合及び架橋を行うことにより、

プレス硬化されたフォームバン (ロールパン状のもの)

を製造するために、基本的に線状のオレフィンコポリマ - を使用することを示す。プロセス条件、架橋シーケン

ス、及び膨脹の手順は、架橋方法の特定の選択のため、

この技術分野の架橋したフォーム構造の製造を最適化す

E成型フォームバンの製造のために一般に採用される方

法により、本発明のオレフィンコポリマーの対象物につ

いて、有機過酸化物架橋システムが用いられた。使用し

た組成物は、以下のものを含む。

[0125]

【0127】実施例9

この実施例では、本発明のオレフィンコポリマー対象物 は、以下の組成に従って、実施例1に記載された方法に より、シランーグラフトされた。

得られたバンを熱風炉内で330°Fで40分間更に加※40【0128】

pbw 物質

Exact (「M/登録商標) 4041、エクソンケミカル社 100

0.4 #CV4917、ビニルトリメトキシシラン、フルス(Huls)アメリカ社

0.02 ルペルオキシ) ジイソプロピルベンゼン、ハーキュレス (Her cules)ケミカル社

【0129】上記シラン-グラフト組成物を用いて、発 泡剤の分解温度以下である約240°Fで、混合物を溶 融させることにより、内部髙剪断"バンバリー(Ban 50

bury)"型ミキサー内で以下の組成を混合した。 [0130]

*

pbw 物質

- 100 Exact (**/登録商標) 4041/VTESOS-、グラフト樹脂、上述のものから
 - 14 アゾジカルボンアミド、10ミクロン粒子サイズ
- 0.3 カドックス (Kadox) 911C、酸化亜鉛、米国ジンク社
- 6.0 DFDA-1173 NT, LDPE(0.92g/cm³、2 .0mi)中1%ジブチルスズジラウレート濃縮物、ユニオンカ

ー バイド社 ショニクラインチの

【0131】得られた混合物を、1.25インチの深さの矩形のモールドキャビティを満たすように、カレンダー成型してプレフォームとした。次いで、このプレフォームを95%の相対密度の条件に架橋を生ずるに十分な時間さらした。このプレフォームをモールドに入れ、200トンの圧縮モールドプレス内に290°Fで75分間保持した。プレスから取り出した後、得られたバンを熱風炉内で330°Fで40分間更に加熱した。得られた密度は2pcfであり、追加の特性を表IIに示す。

【0132】実施例10

ことでは、シランーグラフトされ、架橋した、実施例9*

【0131】得られた混合物を、1.25インチの深さ *のプレフォームを、炉内で330°Fで60分間、プレの矩形のモールドキャビティを満たすように、カレンダ 10 ス操作なしに、即ち自由膨脹させた。得られた密度は - 成型してプレフォームとした。次いで、このプレフォ 2.7pcfであり、追加の特性を表4に示す。

【0133】実施例11

この実施例では、以下の組成を有する、エチレンビニルアセテート(EVA)、エチレンメチルアクリレート(EMA)、及びエチレン/プロピレンジエンモノマーターポリマー(EPDM)の混合された組成物中内における本発明のオレフィンコポリマーの対象物について、有機過酸化物架橋システムが用いられた。

[0134]

pbw	物質
-----	----

- 30 Exact (「*/登録商標) 4041、エクソンケミカル社
- 5 AT-1070、EVA、9%ビニルアセテート含量、 ATプラスチック社
- 30 AT-1070、EVA、17%ビニルアセテート含量、 ATプラスチック社
- 30 XV53-04、EMA、15%メチルアクリレート含量、0.7M.I.、エクソンケミカル社
- 5 ノルデル (Nordel) 1440、EPDM、45ム-ニー 粘度、55%エチレン含量、5%ジエン含量、デュポン社
- 10 アゾジカルボンアミド、10ミクロン粒子サイズ
- 0.11 カドックス (Kadox) 911C、酸化亜鉛、米国ジンク社
- 0.9 ジクミルベルオキシド、99%活性
- 0.05 アーガノックス(Irganox)1010、酸化防止剤、 チバガイギー社

【0135】組成物を、実施例8に記載されたように混 ※ この 合し、同様にカレンダー成型した。中にプレフォームを すするモールドを、200トンの圧縮モールドプレス内 に290°Fで60分間保持した。プレスから取り出し た後、得られたバンを熱風炉内で330°Fで60分間 比重 更に加熱した。得られた密度は1.5pcfであり、追 40 た。 加の特性を表4に示す。

※この実施例では、以下の組成を有する、エチレンビニルアセテート(EVA)及びエチレン/プロビレンジエンモノマーターポリマー(EPDM)の混合された組成物内における本発明のオレフィンコポリマーの対象物の低比重型について、有機過酸化物架橋システムが用いられ

[0137]

【0136】実施例12

Ж

pbw 物質

- 50 Exact ('"/登録商標) 4041、エクソンケミカル社
- 10 AT-2306、EVA、23%ビニルアセテート含量、 ATプラスチック社
- 30 AT-2803、EVA、28%ビニルアセテート含量、 ATプラスチック社
- 10 ノルデル (Nordel) 1440、EPDM、45ム-ニー 粘度、55%エチレン含量、5%ジエン含量、デュポン社

- 14 アゾジカルボンアミド、10ミクロン粒子サイズ
- 0.2 カドックス (Kadox) 911C、酸化亜鉛、米国ジンク社
- 1.0 ジクミルペルオキシド、99%活性
- 0.5 アーガノックス(Irganox)1010、酸化防止剤、 チバガイギー社
- 0.6 シリコーンオイル
- 0.4 コージェント
 - 20 炭酸カルシウム

【0138】この組成物を、実施例8に記載されたよう ムを有するモールドを、200トンの圧縮モールドプレ ス内に290°Fで60分間保持した。プレスから取り 出した後、得られたバンを熱風炉内で330°Fで60 分間更に加熱した。得られた密度は2 p c f であり、追 加の特性を表4に示す。

*【0139】比較例13

に混合し、同様にカレンダー成型した。中にプレフォー 10 この例では、架橋LDPEモールドフォームバンの製造 に一般に使用されている方法により、LDPEについ て、有機過酸化物架橋システムが用いられた。この組成 物は、以下の成分を含む。

[0140]

物質 pbw

100 ダウレックス (Dowlex) 510、LDPE (0.919g /cm³、2.0MI)、ダウケミカル社

- 14.4 アゾジカルボンアミド、10ミクロン粒子サイズ
- 0.25 カドックス(Kadox)911C、酸化亜鉛、米国ジンク社
- ジクミルペルオキシド、99%活性 0.52
- 0.53 パラフィンオイル

【0141】との組成物を、実施例8に記載されたよう に混合し、同様にカレンダー成型した。中にプレフォー ムを有するモールドを、200トンの圧縮モールドプレ ス内に310°Fで40分間保持した。プレスから取り 出した後、得られたバンを熱風炉内で320°Fで25 分間更に加熱した。得られた密度は2 p c f であり、追 加の特性を表4に示す。

※【0142】比較例14

この例では、架橋EVAモールドフォームバンの製造に 一般に使用されている方法により、EVAについて、有 機過酸化物架橋システムが用いられた。この組成物は、 以下の成分を含む。

[0143]

pbw 物質

- ダウレックス (Dowlex) 510、LDPE (0.919g 100 /cm³、2.0MI)、ダウケミカル社
- 14.4 アゾジカルボンアミド、10ミクロン粒子サイズ
- 0.25 カドックス(Kadox)911C、酸化亜鉛、米国ジンク社
- ジクミルペルオキシド、99%活性 0.52
- 0.53 パラフィンオイル

【0144】この組成物を、実施例8に記載されたよう に225° Fの溶融温度で混合し、同様にカレンダー成 型した。中にプレフォームを有するモールドを、200 トンの圧縮モールドプレス内に295°Fで40分間保 40 【表2】 持した。ブレスから取り出した後、得られたバンを熱風

炉内で320°Fで25分間更に加熱した。得られた密 度は2.1pcfであり、追加の特性を表4に示す。 [0145]

	連続プロセス例の比較特性								
	実施例	実施例	実施例	実施例	実施例	実施例	実施例	実施例	
	1	1 A	2	2 A	3	3 A	4	4 A	
密度(pcf)	6	6	2. 2	2	2	2	4. 1	4	
引っ張り強度	235	154	77	40	113	53	132	91	
(1 a q)								••	
伸び (%)	562	350	474	235	533	360	475	345	
引裂き強度	29. 3	38	11.6	11.6	18. 1	14.5	22. 3	26. 5	
(pli)								CO. 0	
25%における	10. 9	17	3. 3	4. 9	4. 6	5. 1	5. 7	8. 9	
圧縮抵抗 (psi)						• • •	D. 1	0. 3	
圧縮永久歪 50%(%)	9	15	32. 8	30	17.6	25	20	20	
COMPR							20	20	
セルサイズモード	0. 1	0.3	0. 2	0.4	0. 2	0. 4	0. 2	0.3	
熱安定性 (%)							٧. د	5. 5	
収縮 250°F						•			
3時期									

[0146]

* *【表3】

	実施例	実施例	実施例	実施例	3PCF XLP	E実施例	4PCF RADIATIONS
	5	5	5	3 A	TORAY	7	XL 71-646719
	自由膨脹	自由膨脹					(Volata #4A)
密度(pcf)	4. 1	3. 2	2. 8	3	3	4.1	4
引っ張り強度	132	116	94	53	132	108	
(psi)							
伸び (%)	475	460	405	360	124	475	162
引裂き強度	22. 3	17.6	14. 5	235	22.3	20	
(p ! i)	·						
25%における	5. 7	5	5. 1	5.7	10		
圧縮抵抗(psi)							
圧縮永久歪 50%(%)	20	14.5	25	20	16		
COMPR							
セルサイズモード	0. 2	0. 15	0. 4	0. 2	DK		
熱安定性(%)			31. 3	1.9			
収縮 250°F							
3 時間							

[0147]

※ ※【表4】 成型されたパンの比較特性

組成:	8	9	1 0	1 1	1 2	1 3	1 4
密度(PCF)	2	2. 09	2. 66	1. 5	2. 0	2. 06	2. 1
引張り強度(psi)	ND	55	ND	35	75	50	61
極限伸び(%)	ND	440	ND	280	260	180	370
25%CD (psi)	ND	3. 4	ND	2. 3	2. 3	10	5. 1
50%CS(%)	ND	30	ND	35	35	20	16
セルサイズモード (mm)	気孔潰れ ⁸	0. 5 ^b	1.0 ^b	0. 1	0. 2	0. 14	0. 15

注 & :低品質フォーム

b : 1. 5 m m セルを伴う

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分

【発行日】平成11年(1999)10月26日

【公開番号】特開平8-176332

【公開日】平成8年(1996)7月9日

【年通号数】公開特許公報8-1764

【出願番号】特願平7-264940

【国際特許分類第6版】

C083 9/04 CES
3/28 CES
9/16 CES
// C08L 23:04
(F I)
C083 9/04 CES
3/24 CES A
3/28 CES

【手続補正書】

【提出日】平成9年7月29日

9/16

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

CES

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 エチレンとC3~C20, α-不飽和エチレン性モノマーとを重合して、

(i)約0.86g/cm3~約0.96g/cm3の 樹脂密度

(i i) 約0.5 d g / 分~約100 d g / 分のメルト インデックス、

(i i i)約1.5~約3.5の分子量分布、及び

(iv)約45%よりも大きい組成物分布広さインデッ ゥュ

により特徴づけられるコポリマーを与える工程、組成物 に架橋を誘引する工程、及び組成物を発泡させる工程を 具備する発泡物質の製造方法。

【請求項2】 前記コポリマーは、少なくとも1種のC3~C20ポリエンによっても重合される請求項1に記載の方法。

【請求項3】 前記コポリマーは、実質的に長鎖分枝がない請求項1 に記載の方法。

【請求項4】 前記コポリマーは、実質的に20炭素原子を越える側鎖長がない請求項3に記載の方法。

【請求項5】 前記組成物は、前記ポリオレフィンコポリマーを少なくとも約5%、約100%までを含む混合物を包含する請求項1に記載の方法。

【請求項6】 前記組成物は、化学的に分解し得る発泡 剤を更に含む請求項1に記載の方法。

【請求項7】 前記発泡剤は、架橋を行う前に添加される請求項6 に記載の方法。

【請求項8】 前記発泡剤は、架橋を行った後に添加される請求項6に記載の方法。

【請求項9】 前記組成物は、更に物理的発泡剤を含む 請求項1に記載の方法。

【請求項10】 前記発泡剤は、架橋を行う前に添加される請求項9に記載の方法。

【請求項11】 前記発泡剤は、架橋を行った後に添加される請求項9に記載の方法。

【請求項12】 前記架橋は、重合組成物をシラン架橋 剤と反応させることにより行われる請求項1に記載の方 注

【請求項13】 前記架橋は、遊離基発生開始剤により 行われる請求項1に記載の方法。

【請求項14】 前記架橋は、照射により行われる請求項1に記載の方法。

【請求項15】 追加の反応性モノマーが架橋剤として 含まれる請求項1に記載の方法。

【請求項16】 追加のポリマー樹脂が、グラフトの後、架橋の誘引前に組成物に加えられる請求項11に記載の方法。

【請求項17】 物質の密度は、22pcf未満、0.7cfを越える値である請求項1に記載の方法。

【請求項18】 物質中、少なくとも70%のセルが閉ざされている請求項1に記載の方法。

【請求項19】 前記組成物は、約5%を越え、約40

%未満のポリオレフィンコポリマーを含む請求項1 に記載の方法。

【請求項20】 前記組成物は、約70%を越えるポリオレフィンコポリマーを含む請求項1に記載の方法。

【請求項21】 前記物質はビーズである請求項1に記載の方法。

【請求項22】 請求項1により製造された物質。

【請求項23】 ポリプロピレンと、シラン-グラフトされた、基本的に線状のポリオレフィンとの混合物を含む、発泡可能な、架橋可能な組成物。

【請求項24】 前記ポリプロピレンは、95/5と60/40の間の重量比で前記ポリオレフィンと混合される請求項23に記載の組成物。

【請求項25】 実質的にグラフトされていないホモポリマーまたはコポリマーポリプロピレンと、シランーグラフトされた、基本的に線状の、メタロセン触媒反応されたLLDPEとの混合物を含み、前記LLDPEは、ビニルトリメトキシシランおよびビニルトリエトキシシランからなる群から選ばれた多官能ビニルシランによりシランーグラフトされており、前記ポリオレフィンは、約0.86g/cm3~約0.96g/cm3の樹脂密度、約0.5dg/分~約100dg/分のメルトインデックス、約1.5~約3.5の分子量分布、及び約45%よりも大きい組成物分布広さインデックスを有している、架橋された発泡組成物。

【請求項26】 ポリプロピレンと、シラン-グラフトされた、基本的に線状ポリオレフィンとの混合物を含む、発泡可能な、架橋可能な組成物を提供する工程、前記組成物に発泡剤を導入する工程、および前記組成物を発泡させてフォームとする工程を具備する、発泡組成物の製造方法。

【請求項27】 シランーグラフトされた、基本的に線 状ポリオレフィンを得る工程、

ポリプロピレンを得る工程、

マーを得る工程、

前記ポリオレフィンとポリプロピレンの混合物を形成する工程、および前記混合物を発泡剤により発泡させる工程を具備する発泡組成物の製造方法。

【請求項28】 エチレンと約3~約20の炭素原子を含む、 α -不飽和エチレン性モノマーとを共重合して、(i)約0.86g/cm3~約0.96g/cm3の樹脂密度、(ii)約0.5dg/分~約100dg/分のメルトインデックス、(iii)約1.5~約3.5の分子量分布、及び(iv)約45%よりも大きい組成物分布広さインデックスにより特徴づけられるコポリ

前記コポリマーをシラングラフト剤でグラフトする工 程、

前記コポリマーとポリプロピレンを混合して樹脂を形成 する工程、

前記樹脂に架橋を誘引する工程、及び前記樹脂を発泡さ

せる工程を具備する発泡組成物の製造方法。

【請求項29】 エチレンおよびプロピレンを含むポリオレフィンの40重量%までを有する、単一部位で重合開始されたポリオレフィンを含み、一部が架橋され、発泡可能であるポリマー混合物。

【請求項30】 前記エチレンおよびプロピレンを含むボリオレフィンは、エチレンープロピレンージエンモノマーの3元共重合体である請求項29に記載のボリマー混合物。

【請求項31】 エチレンおよびプロピレンを含むポリオレフィンの40重量%までを有する、単一部位で重合開始されたポリオレフィン樹脂を含むポリマー混合物を提供する工程、および前記ポリマー混合物を架橋する工程を具備する架橋したポリマー混合物の製造方法。

【請求項32】 前記エチレンおよびプロビレンを含む ポリオレフィンは、エチレン-プロビレン-ジエンモノ マーの3元重合体である請求項31に記載の方法。

【請求項33】 前記ポリマー混合物を発泡させる工程を更に具備する請求項31に記載の方法。

【請求項34】 前記ポリマー混合物を発泡させる工程は、前記ポリマー混合物を増加した温度および圧力下で 圧縮成型することからなる請求項31に記載の方法。

【請求項35】 低密度ポリエチレン樹脂と、少なくとも1種のシラングラフトされた、単一部位で重合開始されたポリオレフィン樹脂とのポリマー混合物を含む、物理的に発泡された発泡体。

【請求項36】 低密度ポリエチレン樹脂と、少なくとも1種のシラングラフトされた、単一部位で重合開始されたポリオレフィン樹脂との混合物を提供する工程、前記混合物を押し出す工程、および混合物を発泡させて発泡体を形成する工程を具備する物理的に発泡された、シラングラフトされた発泡体の製造方法。

【請求項37】 シラングラフトされた、基本的に線状のオレフィンコポリマーを含み、前記基本的に線状のオレフィンコポリマーは、約0.86g/cm3~約0.96g/cm3の樹脂密度、約1.5~約3.5の分子量分布、約0.5dg/分~約100dg/分のメルトインデックス、及び約45%よりも大きい組成物分布広さインデックスを有しており、前記シランはC2アルコキシ基を有するビニルシランであるポリオレフィン製品

【請求項38】 シラングラフトされた、基本的に線状のオレフィンコポリマーと発泡剤とを含む混合物を提供する工程、および前記ポリマー混合物を架橋する工程とを具備し、前記シランはC2アルコキシ基を有するビニルシランである、ポリマー製品の製造方法。

【請求項39】 発泡工程前に、ポリマー混合物を部分的に架橋する工程を更に具備する請求項38に記載の方注

【請求項40】 ポリマー混合物を部分的に架橋する工

程は、ポリマー混合物を過酸化物と反応させることを含む請求項38に記載の方法。

【請求項41】 前記ポリマー混合物を発泡させる工程は、前記ポリマー混合物を増加した温度および圧力下で圧縮成型することからなる請求項38に記載の方法。 【請求項42】 約0.86g/cm3~約0.96g/cm3の樹脂密度、約1.5~約3.5の分子量分 布、約0.5 dg/分~約100 dg/分のメルトインデックス、及び約45%よりも大きい組成物分布広さインデックスを有する、シラングラフトされた、基本的に線状のオレフィンコポリマーを含み、前記シランはC2アルコキシ基を有するビニルシランである発泡ポリオレフィン製品。

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第3部門第3区分

【発行日】平成14年12月18日(2002.12.18)

【公開番号】特開平8-176332

【公開日】平成8年7月9日(1996.7.9)

【年通号数】公開特許公報8-1764

[出願番号] 特願平7-264940

【国際特許分類第7版】

C08J 9/04 CES 3/24 CES 3/28 CES 9/16 CES // C08L 23:04 (FI) C08J CES 9/04 3/24 CES A 3/28 CES

9/16

【手続補正書】

【提出日】平成14年9月18日 (2002. 9. 18)

CES

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】シランが少なくとも1つの加水分解基を有する、メタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂を含む混合物を架橋する工程を具備する物質の製造方法。

【請求項2】前記メタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂はポリエチレン、エチレンとC3-C20アルファオレフィンのコポリマー、スまチレンとC3-C20アルファオレフィンとC4-C20ジェンのコポリマーであり、オレフィンコポリマー樹脂は、0.96g/cm³以下の密度、1.5~3.5の分子量分布、0.5~100dg/分のメルトレンジインデックス、及び45パーセントを超える組成物分布幅インデックスを有し、前記メタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂へグラフト化されたシランは、少なくとも1つの加水分解基を有するビニルシランを含む請求項1に記載の方法。

【請求項3】前記メタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂と、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、及びエチレンープ

ロビレンゴム、エチレン-プロビレン-ジエンモノマーターポリマー、エチレン-ビニルアセテートコポリマー、エチレン-マレイン酸無水物コポリマー、又はエチレン-エチルアセテートコポリマーとを混合して、ポリマーブレンドを形成する工程を更に具備する請求項1に記載の方法。

【請求項4】前記混合物はシラン架橋性ポリマーブレンドであり、5~100重量%の、メタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂を含む請求項1に記載の方法。

【請求項5】前記ポリマーブレンドは、5~95重量% のゲル含量を有する請求項3又は4に記載の方法。

【請求項6】前記混合物の一部をシラングラフト化する 工程を更に具備する請求項1に記載の方法。

【請求項7】前記ビニルシランは、2又は3個の加水分解基を有する請求項1に記載の方法。

【請求項8】前記ビニルシランは、ビニルトリメトキシシラン及びビニルトリエトキシシランからなる群から選ばれる請求項1に記載の方法。

【請求項9】前記混合物は、発泡剤を更に含む請求項1 に記載の方法。

【請求項10】前記混合物を発泡させる工程を更に具備する請求項1、2、又は3に記載の方法。

【請求項11】前記発泡工程は、昇温及び昇圧下において前記混合物を圧縮成形することを含む請求項10に記載の方法。

【請求項12】架橋前又は架橋後に、前記発泡剤が前記 混合物に加えられる請求項9に記載の方法。

【請求項13】前記発泡前に前記混合物が部分的に架橋

される請求項10に記載の方法。

11に記載の方法。

【請求項14】前記混合物の架橋は、前記混合物を湿分にさらすことを含む請求項1、2又は3に記載の方法。 【請求項15】前記混合物の架橋は、前記混合物を過酸化物と反応させることを含む請求項1、9、10、又は

【請求項16】前記架橋は、シラン架橋剤、フリーラジカル発生開始剤、照射、又はそれらの少なくとも1種を含む組合せにより行われる請求項1、9、10、又は11に記載の方法。

【請求項17】前記混合物を押出し成形する工程を更に 具備する請求項1、9、又は10に記載の方法。

【請求項18】前記混合物は、セル核形成剤及びガス交換添加剤を更に含む請求項1に記載の方法。

【請求項19】前記混合物は、更に $353kg/m^3$ 未満、 $11.2kg/m^3$ を超える密度を有するフォーム に押出し成形されることを特徴とする請求項1 に記載の方法。

【請求項20】前記物質は、ビーズ、シート、厚板、成形されたバン素材、粒子、及びそれらの形状を組み合わせることにより得られた他の形状に成形されることを特徴とする請求項1、9、10、又は17に記載の方法。 【請求項21】請求項1の方法から製造された製品。

【請求項22】メタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂と発泡剤を含む混合物を架橋する工程、

前記混合物を押出し成形する工程、及び前記混合物を発泡させる工程を具備する発泡ポリマー製品の製造方法。 【請求項23】前記メタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂は、ポリエチレン、エチレンとC3-C20アルファオレフィンのコポリマー、エチレンとスチレンのコポリマー、ポリプロピレン、又はエチレンとC3-C20アルファオレフィンとC4-C20ジエンのコポリマーであり、オレフィンコポリマー樹脂は、0.96g/cm³以下の密度、1.5~3.5の分子量分布、0.5~100dg/分のメルトレンジインデックス、及び45パーセントを超える組成物分布幅インデックスを有し、前記メタロセン触媒を用 いてシランをグラフト化されたポリオレフィン樹脂へグラフト化されたシランは、少なくとも1つの加水分解基を有するビニルシランを含む請求項22に記載の方法。 「請求項24」前記メタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂と、低密度ポリエチレン、棉状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン・ポリプロピレン・ジエンモノマーターポリマー、エチレン・ビニルアセテートコポリマー、エチレン・マレン・エチルアセテートコポリマーとを混合して、ポリマーブレンドを形成する工程を更に具備する請求項22

【請求項25】前記混合物はシラン架橋性ポリマーブレンドであり、5~100重量%のメタロセン触媒を用いてシランをグラフト化されたポリオレフィン樹脂を含む請求項22に記載の方法。

に記載の方法。

【請求項26】前記ポリマーブレンドは、5~95重量 %のゲル含量を有する請求項24又は25に記載の方 注

【請求項27】前記ビニルシランは、2又は3個の加水 分解基を有する請求項22に記載の方法。

【請求項28】前記ビニルシランは、ビニルトリメトキシシラン及びビニルトリエトキシシランからなる群から 選ばれる請求項22に記載の方法。

【請求項29】前記混合物の架橋は、前記混合物を湿分 にさらすことを含む請求項22に記載の方法。

【請求項30】前記混合物の架橋は、前記混合物を過酸化物と反応させることを含む請求項22又は29に記載の方法。

【請求項31】前記発泡工程は、昇温及び昇圧下において前記混合物を圧縮成形することを含む請求項22に記載の方法。

【請求項32】前記発泡体は、353kg/m³未満、11.2kg/m³を超える密度を有する請求項22に記載の方法。

【請求項33】請求項22の方法から製造された製品。