Artificial Intelligence Overview

Logic Programming weeks 2 & 3

Propositional logic e.q. $(A \land B) \rightarrow C$

Proofs, truth tables, proof procedures.

Predicate calculus e.g. likes(bob, X)

Constants, functions, predicates, variables, relationships, unification.

Backtracking

Tracing steps backwards to re-satisfy goals.

Artificial Neural Networks weeks 4 & 5

Neurons

Dendrites/input, axons/output, synapses/connections, strength thresholds.

Training

Data in \rightarrow output \rightarrow comparison \rightarrow weights modified.

Single layer

Linear combination, activation function, bias, weights, linear.

Multi-layer

Input, hidden, and output layers, non-linear, many uses, parallel/real-time.

Games as a Context for Al week 6

Specifications

Quick/real-time, predictable resources, understandable behaviour.

Pathfinding

Breadth/depth first searches, node graphs.

Dijkstra's Algorithm week 7

Key ideas

Planning, divide and conquer, all possible paths, general graphs.

Method

Find lowest cost, close that node, re-estimate neighbour costs, then update and link.

Limitations

Entire solution in advance, does not react to changes or other moving objects.

A* and Further Optimisations week 8

Heuristics

Manhattan, diagonal, or Euclidian distance.

Optimisations

3D map conversion, path patching, pre-calculating, symmetry.

Al Planning weeks 9 and 10

Requirements

Initial and goal states, actions, preconditions, effects, parameters.

Heuristic functions

Informed searching.

Bayes' Theorem week 14