- Aprendizaje supervisado
- Clasificadores binarios
- Aspectos teóricos:
 - ¿Es una red neuronal?
 - ¿Es un sistema lineal o no lineal?
 - ¿Que clase de problemas podemos encarar?

La red neuronal mas simple posible: el perceptrón

Si la entrada es el vector \mathbf{x}_i y la salida deseada es \mathbf{y}_i :

$$\mathbf{w} \cdot \mathbf{x}_{i} + \mathbf{b} \ge 0$$
 para $\mathbf{y}_{i} = 1$

$$\mathbf{w} \cdot \mathbf{x}_{i} + \mathbf{b} < 0 \text{ para } \mathbf{y}_{i} = -1$$

O

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) \ge 0$$

Este sistema resuelve problemas de clasificación que son *linealmente separables*

Problemas linealmente separables

Si el problema es linealmente separable hay un algoritmo (algoritmo del perceptrón) que encuentra una solución en tiempo finito

Problemas linealmente separables: p entradas en N dimensiones

¿Cual es el número total de problemas que se pueden definir si tengo p entradas?

Problemas linealmente separables:

¿Cual es el número total de problemas que se pueden definir si tengo p entradas? \rightarrow 2^p

Si estoy p entradas en dimensión N, el número de problemas linealmente separables es denotado por C(p,N)

La fracción de problemas linealmente separables es C(p,N)/2^p

Esta cantidad se puede calcular con métodos de geometría combinatoria (para puntos en posición general)

Problemas linealmente separables:

Esta cantidad se puede calcular con métodos de geometría combinatoria (Hertz p. 112):

FIGURE 5.11 The function $C(p, N)/2^p$ given by (5.67) plotted versus p/N for N = 5, 20, and 100.

Problemas linealmente separables:

Para dimensión grande TODO problema es linealmente separable si p<2N

Si un problema no es linealmente separable se lo puede transformar en uno mapeándolo a dimensión alta

$$\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$$

 $\phi: \mathbb{R}^{N} \to \mathbb{R}^{N'}$ transformación no lineal, N' > N (quizás N' >> N)

Una vez que le problema es *linealmente separable* se puede utilizar algún método de aprendizaje tipo algoritmo del perceptrón

El número de parámetros es tan grande que voy a tener una situación de *overfitting*

La solución no es única

¿Que solución tendrá menor error de generalización?

Es la que tiene el mayor margen de separación:

Supongamos que los hiperplanos están definidos por

$$\mathbf{\hat{w} \cdot x} + \beta = c \qquad \mathbf{\hat{w} \cdot \Delta x} = 2 c$$

$$\mathbf{\hat{w} \cdot x} + \beta = -c$$

O equivalentemente:

$$\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 1$$
 $\mathbf{w} \cdot \Delta \mathbf{x} = 2$
 $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = -1$ donde $\mathbf{w} = \mathbf{\hat{w}}/\mathbf{c}$, $\mathbf{b} = \mathbf{\beta}/\mathbf{c}$

La distancia entre los hiperplanos es $2 \rho_0 = 2/|\mathbf{w}|$

Es decir que el mejor hiperplano es el que minimiza |w|

En este contexto el clasificador óptimo es que se obtiene de mimimizar $|\mathbf{w}|$ (o $|\mathbf{w}|^2$) con los constraints

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$
 (o $y_i(\mathbf{w} \cdot \phi(\mathbf{x}_i) + b) \ge 1$) para i=1,...,p

Problema de programación cuadrática.

Es decir que el mejor hiperplano es el que minimiza |w|

Esto es compatible con la teoría de generalización

Si $|\mathbf{x}|^2 \le D$, la dimensión VC está acotada por

$$d_{VC} \le \min\{D^2 |\mathbf{w}|^2, N\} + 1$$

Es decir controlando el tamaño de los pesos controlamos la complejidad de la red

Los constraints definen un poliedro irregular

La solución involucra una búsqueda por las aristas de este objeto

Se puede pasar al problema *dual* introduciendo multiplicadores de Lagrange α_i (1 \le i \le p) (ver libro Haykin p. 345-346).

El Lagrangiano es

$$L(\mathbf{w},b,\alpha) = \binom{1}{2} \mathbf{w} \mathbf{w}^{T} - \sum_{1 \le i \le p} \alpha_{i} [y_{i} (\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1]$$

Tomando las derivadas:

$$aL/aw=0$$
 $aL/ab=0$

El vector w puede ser escrito como $\mathbf{w} = \sum_{1 \le i \le p} \alpha_i y_i \mathbf{x}_i$ (o $\mathbf{w} = \sum_{1 \le i \le p} \alpha_i y_i \boldsymbol{\varphi}(\mathbf{x}_i)$)

$$\begin{array}{ll} Y \ además \\ \Sigma_{1 \leq i \leq p} \ \alpha_{i} \ y_{i} = 0 \end{array}$$

Los α maximizan la función

$$Q(\lbrace \alpha_{i}^{1} \rbrace) = \sum_{1 \leq i \leq p} \alpha_{i} - \frac{1}{2} \sum_{1 \leq i, j \leq p} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}_{j})$$

Con los constraints $\alpha_i \ge 0$, $\sum_{1 \le i \le p} \alpha_i y_i = 0$ (Haykin, p. 344-346)

Notar que la función $Q(\{\alpha_i\})$ solo depende de los datos de entrenamiento a través de pxp productos escalares $\mathbf{x}_i \cdot \mathbf{x}_j$ (o $\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$) $(1 \le i, j \le p)$

Se define el $kernel k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$

El vector de peso óptimo es una combinación lineal de los x para los cuales los α son no nulos — vectores de apoyo

 $k(\mathbf{X}_i, \mathbf{X}_j)$ es el kernel

Kernels usuales:

- Polynomial (homogeneous): $k(\overrightarrow{x_i}, \overrightarrow{x_j}) = (\overrightarrow{x_i} \cdot \overrightarrow{x_j})^d$.
- Polynomial (inhomogeneous): $k(\overrightarrow{x_i}, \overrightarrow{x_j}) = (\overrightarrow{x_i} \cdot \overrightarrow{x_j} + 1)^d$.
- ullet Gaussian <u>radial basis function</u>: $k(\overrightarrow{x_i},\overrightarrow{x_j}) = \exp(-\gamma \|\overrightarrow{x_i}-\overrightarrow{x_j}\|^2)$ for $\gamma>0$. Sometimes parametrized using $\gamma=1/(2\sigma^2)$.
- ullet Hyperbolic tangent: $k(\overrightarrow{x_i},\overrightarrow{x_j})= anh(\kappa\overrightarrow{x_i}\cdot\overrightarrow{x_j}+c)$ for some (not every) $\kappa>0$ and c<0.

Una vez que los coeficientes α_i han sido evaluados la predicción de la red en el punto \mathbf{x} esta dada por

$$\mathbf{w} \cdot \phi(\mathbf{x}) + \mathbf{b} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \ \mathbf{y}_i \ \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}) + \mathbf{b} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \ \mathbf{y}_i \ \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + \mathbf{b}$$

Observar que:

- -α son no nulos SOLO para los vectores de apoyo: predicción eficiente
- -NO es necesario dar una forma explícita de la transformación no-lineal φ. La dimensionalidad N' es potencialmente infinita (ver teorema de Mercer, Haykin p. 354)

A veces queremos tolerarar tener cierto número de errores, si eso mejora el error de generalización

Podemos buscar cual es la solución que minimiza el número de errores:

Soft-margin SVM linear (o ni linear)

Término de error:

$$E_{i} = \max(0, 1-y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b))$$

$$(o \max(0,1-y_i(\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_i)+b)))$$

Soft-margin SVM linear (o no linear)

Queremos minimizar

$$E = 1/p \sum_{1 \le i \le p} E_i + \lambda |\mathbf{w}|^2$$

El parámetro λ controla cuan fuertemente controlamos el tamaño de los pesos

Soft-margin SVM linear (o no linear)

Pasando al problema dual tenemos:

$$\mathbf{w} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \ \mathbf{y}_i \ \mathbf{x}_i \ (o \ \mathbf{w} = \mathbf{\Sigma}_{1 \le i \le p} \ \alpha_i \ \mathbf{y}_i \ \mathbf{\phi}(\mathbf{x}_i))$$

Donde a maximizan la función

$$Q(\{\alpha_i\}) = \sum_{1 \le i \le p} \alpha_i - \frac{1}{2} \sum_{1 \le i, j \le p} \alpha_i \alpha_j y_i y_j \phi(x_i) \cdot \phi(x_j)$$

Con los constraints $(2p\lambda)^{-1} \ge \alpha_i \ge 0$, $\sum_{1 \le i \le p} \alpha_i y_i = 0$

Comparación SVM vs. redes multicapa

C	7	N	1
0	V	1	1

Funcion a optimizar cuadrática (t=O(p³))

Generalización óptima garantizada

Requiere memoria $O(p^2)$

Redes Multicapa

Función a optimizar extremadamente complicada, múltiples mínimos locales

Generalización óptima determinada empíricamente

Requiere memoria O(batch size)

Implementación: scikit-learn

https://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation

https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python

- -Que kernel utilizar
- -Parámetros del kernel: γ, κ, c, etc
- -Parámetro de regularización: $C = (p\lambda)^{-1}$
- -Optativo: clases desbalanceadas