Adatbázisrendszerek

A relációs modell

Relációséma, reláció, integritási megszorítások

Tartomány fogalma

Egy D tartomány atomi értékek egy halmaza.

Jellemzői:

- név
- adattípus
- formátum
- korlátozás
- további információk az értelmezéshez

Példák

- Mobiltelefonszámok: 11 decimális számjegy +dd-dd-dddddd formátumban.
- Személyi számok: 11 decimális számjegy d dddddd dddd formátumban.
- Nevek: tetszőleges hosszúságú karaktersorozat.
- Tömegek: nem negatív valós szám mértékegységgel (font vagy kg).

Relációséma

Relációséma alatt az $R(A_1, A_2, ..., A_n)$ jelölést értjük, ahol R a relációséma neve, $A_1, A_2, ..., A_n$ pedig attribútumok. Minden A_i attribútum egy szerepkör neve, amelyet valamely D tartomány játszik. D-t az A_i attribútum tartományának nevezzük, és dom (A_i) -vel jelöljük.

Példák

- HALLGATÓ (Név, Személyi_szám, Lakcím, Szak, Évfolyam, Neptun_kód)
- TANSZÉK (Tanszék_név, Tanszékvezető_neve, Kar)
- AUTÓ (Márka, Típus, Gyártási_év, Motorszám, Rendszám)

Megjegyzés

- Előfordulhat, hogy több attribútumnak is azonos a tartománya.
- Az attribútumok különböző szerepköreit, interpretációit jelölik ki a tartományoknak.

Reláció

Az $R(A_1, A_2, ..., A_n)$ relációséma egy r relációja – amit szokás r(R)-rel is jelölni – elem n-eseknek egy halmaza:

$$r = \{t_1, t_2, ..., t_m\}$$
.

Minden t_i elem n-es $(1 \le i \le m)$ n darab értéknek egy rendezett listája:

$$t_i = \langle v_1, v_2, ..., v_n \rangle$$

ahol minden v_j érték ($1 \le j \le n$) vagy dom(A_j)-nek az eleme, vagy egy speciális NULL érték.

Megjegyzések

- A definícióban említett elem n-eseket rekordoknak is nevezzük.
- Egy t rekordban szereplő j-edik értékre, amely az A_j attribútumhoz tartozik, $t[A_j]$ -vel (vagy röviden t[j]-vel) hivatkozhatunk.

Reláció – más megközelítésben

A relációs adatmodellben egy r(R) reláció nem más, mint egy $dom(A_1)$, $dom(A_2)$, ..., $dom(A_n)$ tartományokon értelmezett n-ed fokú matematikai reláció, amely részhalmaza azon tartományok Descartes-szorzatának, amelyek R-et definiálják:

$$r(R) \subseteq dom(A_1) \times dom(A_2) \times ... \times dom(A_n)$$
:

Ebben a definícióban a NULL értéket beleértjük a A_i attribútumok tartományaiba.

Megjegyzés

• A Descartes-szorzat tartalmazza a tartományok értékeinek összes lehetséges kombinációját. |D|-vel jelölve egy D tartomány számosságát, a Descartes-szorzatban szereplő elem *n*-esek (rekordok) száma:

$$|\operatorname{dom}(A_1)| \cdot |\operatorname{dom}(A_2)| \cdot ... \cdot |\operatorname{dom}(A_n)|$$

Megjegyzések

- Az összes lehetséges kombináció közül a reláció egy adott pillanatban csak azokat a rekordokat tartalmazza, amelyek a valós világ pillanatnyi állapotát tükrözik: ez a reláció aktuális állapota. Ahogyan a valós világ változik, úgy változik a reláció (állapota) is.
- A reláció sémája az előzőekkel ellentétben viszonylag statikus, nem változik, néhány ritka esetet leszámítva.

Jelölések

- R(A₁, A₂, ..., A_n) egy n-ed fokú relációséma
- Q, R, S relációsémák nevei
- q, r, s reláció(állapoto)k nevei
- t, u, v rekordok
- Egy reláció neve a reláció aktuális állapotát jelöli (azaz magát a relációt), míg az $R(A_1, A_2, ..., A_n)$ alak kizárólag a relációsémára hivatkozik.
- Egy A attribútum minősíthető annak a R relációsémának a nevével, amelyhez tartozik: R.A
- $t = \langle v_1, v_2, ..., v_n \rangle$ egy t elem n-es egy r(R) relációban, ahol v_j az A_j attribútumnak megfelelő érték.
 - $t[A_i]$ és $t.A_i$ az A_i attribútumnak megfelelő v_i érték a t rekordban
 - $t[A_u, A_w, A_z]$ és $t.(A_u, A_w, A_z)$ a listában megadott attribútumoknak megfelelő $< v_u, v_w, ..., v_z >$ értékű részrekord a t rekordból

A relációs modell megszorításai

Az adatmodell megszorításainak csoportosítása:

- Az adatmodellben benne rejlő megszorítások: modell alapú, implicit megszorítások.
- Az adatmodell sémáiban közvetlenül kifejezett megszorítások: séma alapú, explicit megszorítások.
- Olyan megszorítások, amelyeket nem lehet közvetlenül az adatmodell sémáiban kifejezni, és ezért az alkalmazói programokkal kell kifejezni és érvényre juttatni őket: alkalmazás alapú, szemantikus megszorítások vagy üzleti szabályok.

Séma alapú megszorítások

tartománymegszorítások

kulcsmegszorítás és a NULL értékekre vonatkozó megszorítás

egyedintegritási megszorítások

hivatkozásintegritási megszorítások

Tartománymegszorítások

A tartománymegszorítás kimondja, hogy minden rekordban minden egyes A attribútumhoz tartozó értéknek a dom(A) tartományból kell származnia, és ezen dom(A) tartományok minden elemének atomi értéknek kell lennie.

Megjegyzés

A tartományokra jellemző adattípusok:

- numerikus
 - egész
 - valós
- karakter
- logikai
- sztring (fix és változó hosszúságú)
- dátum
- egyéb speciális adattípusok (idő, időbélyeg, pénz stb.)

Szuperkulcs

Definíció szerint egy relációban minden rekord különböző, azaz egy relációban nincs két olyan rekord, amelynek minden attribútum értéke azonos lenne.

Definíció

Az R relációsémának létezik egy olyan attribútumhalmaza, amely olyan tulajdonságú, hogy tekintve R bármelyik r relációját, az adott relációban nincs két olyan rekord, amelynek az értékei azonosak lennének ezen attribútumokra vonatkozóan.

Az attribútumoknak egy ilyen részhalmazát SK-val jelölve, bármely két különböző t₁ és t₂ rekordot kiválasztva R egy r relációjából:

$$t_1[SK] \neq t_2[SK]$$
.

Minden ilyen SK attribútumhalmaz az R relációséma szuperkulcsa.

Minden relációnak van legalább egy szuperkulcsa – az összes attribútumának a halmaza, melyet triviális szuperkulcsnak nevezünk.

Kulcs

Egy szuperkulcsnak lehetnek szükségtelen attribútumai, így sokkal hasznosabb fogalom a kulcsé, amely nem tartalmaz felesleges attribútumokat.

Definíció

Egy R relációséma K kulcsa R-nek egy olyan szuperkulcsa, amelyből bármely A attribútumot elhagyva, az így kapott K' attribútumhalmaz már nem szuperkulcsa R-nek.

Egy kulcs kielégíti a következő két feltételt:

- Bármilyen relációt tekintve, a reláció két különböző rekordjának nem lehetnek azonosak a kulcsban szereplő attribútumokhoz tartozó értékei.
- Minimális szuperkulcs, azaz egy szuperkulcs, amelyből nem tudunk úgy eltávolítani egyetlen attribútumot sem, hogy az egyediségre vonatkozó feltétel továbbra is fennálljon.

Egy K kulcs egyszerű, ha egyetlen attribútum alkotja, egyébként összetett.

Kulcsjelölt, elsődleges kulcs

Egy relációsémának egynél több attribútuma is alkalmas lehet kulcsnak. Ezek mindegyikét kulcsjelöltnek hívjuk.

Az elsődleges kulcs a modellező által a relációséma kulcsjelöltjei közül kiválasztott kulcs, melynek az értékeit a relációkban szereplő rekordok azonosítására használjuk.

Megjegyzés

- Egy relációséma elsődleges kulcsát alkotó attribútumo(ka)t aláhúzással szoktuk jelölni.
- Amikor egy relációsémának több kulcsjelöltje is van, bizonyos szempontok szem előtt tartása mellett tetszőlegesen lehet közülük elsődleges kulcsot választani.

Kulcsmegszorítás és a NULL értékre vonatkozó megszorítás

A kulcsmegszorítás szerint egy relációsémának mindig rendelkeznie kell elsődleges kulccsal.

A NULL értékre vonatkozó megszorítás kimondja, hogy egy adott attribútum értéke lehet-e NULL érték vagy sem.

Egyedintegritási megszorítás

Az egyedintegritási megszorítás kimondja, hogy egyetlen elsődleges kulcsérték sem lehet NULL érték. Ha az elsődleges kulcs összetett, akkor annak egyik komponense sem lehet NULL érték.

Megjegyzés

- Megengedve a NULL értékeket az elsődleges kulcs számára, nem tudnánk egyértelműen azonosítani minden rekordot.
- Például ha két vagy több rekordnál NULL érték tartozna az elsődleges kulcsukhoz, akkor nem tudnánk megkülönböztetni őket, ha megpróbálnánk más relációkból hivatkozni rájuk.

Hivatkozásintegritási megszorítás

A hivatkozásintegritási megszorítást két reláció között értelmezzük, és a két relációban lévő rekordok közötti konzisztencia megteremtése érdekében használjuk.

Definíció

Egy R_1 relációséma FK-val jelölt attribútumhalmaza külső (idegen) kulcsa R_1 -nek, amely hivatkozik az R_2 relációsémára, ha eleget tesz a következő feltételeknek:

- Az FK-beli attribútumoknak és az R₂ PK-val jelölt elsődleges kulcsattribútumainak páronként azonos a tartománya; ekkor azt mondjuk, hogy az FK attribútumok hivatkoznak az R₂ relációsémára.
- Bármely $r_1(R_1)$ aktuális állapotának egy t_1 rekordjában egy FK-beli érték vagy megjelenik egy $r_2(R_2)$ aktuális állapotának valamely t_2 rekordjában PK értékeként, vagy az értéke NULL. Az előbbi esetben $t_1[FK] = t_2[PK]$, ekkor azt mondjuk, hogy a t_1 rekord hivatkozik a t_2 rekordra.

A külső kulcs definíciója, egyben hivatkozásintegritási megszorítást definiál R_1 -ről R_2 -re vonatkozóan.

Egyéb típusú megszorítások

Szemantikus integritási megszorítások

Példa

- A dolgozó fizetése nem lehet nagyobb a főnökénél.
- Egy héten egy dolgozó maximum 56 órát dolgozhat egy projekten.

Adatok közti függések – lásd később

- funkcionális függés
- többértékű függés

Átmenet megszorítás

Példa

A dolgozó fizetése csak nőhet.

Relációs adatbázisséma és relációs adatbázis

Egy relációs adatbázis rendszerint számos relációt tartalmaz, a relációkban rekordokkal, amelyek különböző módokon vannak egymással kapcsolatban.

Definíció

Egy S relációs adatbázisséma az

$$S = \{R_1, R_2, ..., R_m\}$$

relációséma-halmaz, valamint integritási megszorítások – IC-vel jelölt – halmazának az együttese.

Definíció

S egy DB relációs adatbázis(állapot)a olyan

$$DB = \{r_1, r_2, ..., r_m\}$$

reláció(állapoto)k halmaza, ahol minden r_i az R_i séma egy relációja, és minden r_i reláció kielégíti az IC-ben megadott integritási megszorításokat.

Példa relációs adatbázissémára

Példa relációs adatbázisra

DOLGOZÓ

Vnév	Knév	Szsz	Szdátum	Lakcím	Nem	Fizetés	Főnök_szsz	Osz
Kovács	László	1 650109 0812	1965. január 9.	4033 Debrecen	F	390000	2 551208 2219	5
Szabó	Mária	2 551208 2219	1955. december 8.	1097 Budapest	N	520000	1 371110 4519	5
Kiss	István	1 680119 6749	1968. január 19.	1172 Budapest	F	325000	1 410620 4902	4
Takács	József	1 410620 4902	1941. június 20.	4027 Debrecen	F	559000	1 371110 4519	4
Horváth	Erzsébet	2 620915 3134	1962. szeptember 15.	1092 Budapest	N	494000	2 551208 2219	5
Tóth	János	1 720731 2985	1972. július 31.	6726 Szeged	F	325000	2 551208 2219	5
Fazekas	Ilona	2 690329 1099	1969. március 29.	3535 Miskolc	N	325000	1 410620 4902	4
Nagy	Zoltán	1 371110 4519	1937. november 10.	1061 Budapest	F	715000	NULL	1

OSZTÁLY

Onév	Oszám	Vez_szsz	Vez_kezdő_dátum	
Kutatás	5	$2\ 551208\ 2219$	1988. május 22.	
Humán erőforrás	4	2 690329 1099	1995. január 1.	
Központ	1	1 371110 4519	1981. június 19.	

OSZT_HELYSZÍNEK

Oszám	Ohelyszín
1	Budapest
4	Kecskemét
5	Vác
5	Tiszafüred
5	Budapest

$DOLGOZIK_RAJTA$

Dszsz	Psz	Órák			
$1\ 650109\ 0812$	1	32.5			
$1\ 650109\ 0812$	2	7.5			
$2\ 620915\ 3134$	3	40.0			
1 720731 2985	1	20.0			
1 720731 2985	2	20.0			
$2\ 551208\ 2219$	2	10.0			
$2\ 551208\ 2219$	3	10.0			
$2\ 551208\ 2219$	10	10.0			
$2\ 551208\ 2219$	20	10.0			
1 680119 6749	30	30.0			
1 680119 6749	10	10.0			
$2\ 690329\ 1099$	10	35.0			
$2\ 690329\ 1099$	30	5.0			
1 410620 4902	30	20.0			
1 410620 4902	20	15.0			
$1\ 371110\ 4519$	20	NULL			

PROJEKT

Pnév	Pszám Phelyszín		Osz
X termék	1	Vác	5
Y termék	2	Tiszafüred	5
Z termék	3	Budapest	5
Komputerizáció	10	Kecskemét	4
Reorganizáció	20	Budapest	1
Új fejlesztések	30	Kecskemét	4

HOZZÁTARTOZÓ

Dszsz	Hozzátartozó_név	Nem	Szdátum	Kapcsolat
2 551208 2219	Anna	N	1986. április 5.	lánya
2 551208 2219	Bence	F	1983. október 25.	fia
2 551208 2219	Máté	F	1958. május 3.	házastársa
1 410620 4902	Viktória	N	1942. február 28.	házastársa
1 650109 0812	Balázs	F	1988. január 4.	fia
1 650109 0812	Anna	N	1988. december 30.	lánya
1 650109 0812	Réka	N	1967. május 5.	házastársa