מיון מיזוג, חיפוש בינארי, אסימפטוטיקה ועוד...

אסימפטוטיקה

$$1 < log(n) < nlogn < n^2 < n^3 < ... < 2^n < 3^n < n^n$$

Data Structure	Time Complexity							Space Complexity	
	Average Worst					Worst			
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
<u>Array</u>	0(1)	<mark>Θ(n)</mark>	Θ(n)	Θ(n)	0(1)	O(n)	0(n)	O(n)	0(n)
<u>Stack</u>	0(n)	0(n)	Θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	0(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	O(n)
Singly-Linked List	0(n)	0(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	O(n)	Θ(n)	Θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	O(n)
Skip List	$\Theta(\log(n))$	O(log(n))	$O(\log(n))$	$O(\log(n))$	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table	N/A	Θ(1)	Θ(1)	Θ(1)	N/A	O(n)	0(n)	0(n)	O(n)
Binary Search Tree	$\Theta(\log(n))$	O(log(n))	$\Theta(\log(n))$	O(log(n))	0(n)	0(n)	0(n)	0(n)	O(n)
Cartesian Tree	N/A	O(log(n))	$\Theta(\log(n))$	$O(\log(n))$	N/A	0(n)	0(n)	0(n)	O(n)
B-Tree	$\Theta(\log(n))$	O(log(n))	$\Theta(\log(n))$	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(log(n))	0(n)
Red-Black Tree	$\Theta(\log(n))$	$O(\log(n))$	$O(\log(n))$	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(log(n))	0(n)
Splay Tree	N/A	O(log(n))	$\Theta(\log(n))$	O(log(n))	N/A	O(log(n))	O(log(n))	0(log(n))	0(n)
AVL Tree	$\Theta(\log(n))$	O(log(n))	O(log(n))	$\Theta(\log(n))$	O(log(n))	O(log(n))	O(log(n))	0(log(n))	0(n)
KD Tree	O(log(n))	Θ(log(n))	Θ(log(n))	O(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)

Algorithm	Time Comp	olexity	Space Complexity	
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	$\Theta(n \log(n))$	O(n^2)	0(log(n))
<u>Mergesort</u>	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	O(n)
<u>Timsort</u>	$\Omega(n)$	O(n log(n))	O(n log(n))	O(n)
<u>Heapsort</u>	$\Omega(n \log(n))$	O(n log(n))	O(n log(n))	0(1)
Bubble Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)
Insertion Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)
Selection Sort	$\Omega(n^2)$	Θ(n^2)	O(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	O(n log(n))	O(n^2)	O(n)
Shell Sort	$\Omega(n \log(n))$	Θ(n(log(n))^2)	O(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	O(n+k)	O(n^2)	O(n)
Radix Sort	$\Omega(nk)$	O(nk)	O(nk)	O(n+k)
Counting Sort	$\Omega(n+k)$	Θ(n+k)	O(n+k)	O(k)
Cubesort	$\Omega(n)$	Θ(n log(n))	O(n log(n))	O(n)

Merge Sort

$$\Omega(n \cdot log(n))$$
 $\Theta(n \cdot log(n))$ $O(n \cdot log(n))$ סיבוכיות

מיון זה הוא רקורסיבי. הוא מחלק את המערך לשתי קבוצות, כל קבוצה הוא שוב מחלק לשניים וכן האלה (באופן רקורסיבי) עד תנאי העצירה – קבוצות בנות איבר אחד.

בשלב השני הפונקציה ממזגת כל תת-קבוצה עם תת-קבוצה אחרת, באמצעות מיזוג של שתי קבוצות ממוינות, וכן הלאה עד להיווצרות מערך ממוין.

הסבר

בכל קריאה לפונקציה **Merge-Sort** מחלקים את המערך לשניים, לכן עלינו לחשב כמה פעמים יש לחלק מספר בשניים עד שנגיע ל-0. במילים אחרות, כמה פעמים נצטרך להכפיל את 2 בעצמו (חזקה) על מנת להגיע למספר המבוקש:

$$2^x = N \implies x = log_2 N \implies O(log_2 N)$$

לאחר כל חלוקה קוראים לפונקציה Merge. הסיבוכיות שלה היא O(n) משום שהיא עוברת באופן סדרתי על שני חלקי של המערך ומשוואה איבר לאיבר. בנוסף לזה הפונקציה עוברת עוד 3 פעמים על המערך:

$$3 \cdot O(n) + O(n) = O(n)$$

היא: Merge-Sort היא:

$$O(log_2 n) \cdot O(n) = O(n \cdot log_2 n)$$

<u>סרטון אלגוריתם</u>

מימוש

```
private static void mergeSort(int[] arr) {
    mergeSort(arr,0,arr.length-1);
}

private static void mergeSort(int[] arr, int left, int right) {
    if(left < right) {
        int middle = (left+right)/2;

        mergeSort(arr,left,middle); // left
        mergeSort(arr,middle+1,right); // right
        Merge(arr,left,middle,right);
}</pre>
```

```
}
private static void Merge(int[] arr, int left, int middle, int right) {
   int[] temp = new int[right - left + 1];
   int i = left; // left half
   int j = middle + 1; // right half
   int k = 0; // The Running Pointer
   while( i <= middle && j <= right) {</pre>
       if(arr[i] < arr[j])</pre>
           temp[k++] = arr[i++];
       else
           temp[k++] = arr[j++];
   }
   while(i <= middle)</pre>
       temp[k++] = arr[i++];
   while(j <= right)</pre>
       temp[k++] = arr[j++];
   for(i = left, k = 0; k < temp.length && i <= right; k++, i++)</pre>
       arr[i] = temp[k];
}
public static void main(String[] args) {
   int[] arr = {48,3,7,9,43,1,2,4,6,8};
   mergeSort(arr);
   System.out.println(Arrays.toString(arr));
```


Binary Search

 $\Omega(log(n))$ $\Theta(log(n))$ O(log(n)) סיבוכיות

הסבר

בכל קריאה לפונקציה **binarySearch** אנו מחלקים את המערך לשניים, על כן עלינו לחשב את מספר הפעמים שבהן נצטרך לחלק מספר בשניים עד שנגיע ל-0. במילים אחרות, כמה פעמים נצטרך להכפיל את 2 בעצמו (חזקה) על מנת להגיע למספר המבוקש:

$$2^x = N \implies x = log_2 N \implies O(log_2 N)$$

<u>סרטון אלגוריתם</u>

מימוש

```
public static int binarySearch(int arr[], int left, int right, int x) {
    if(right >= 1) {
        int middle = left + (right - left)/2;
        if(arr[middle] == x)
            return middle;

    if(arr[middle] > x)
        return binarySearch(arr, left, middle - 1 , x);

    else
        return binarySearch(arr, middle + 1 , right, x);
    }
    return -1;
}

public static void main(String[] args) {
    int[] arr = {48,3,7,9,43,1,2,4,6,8};
    System.out.println(binarySearch(arr,0,arr.length-1,43)); // 4
}
```