1.

$\int dx$	x + C
$\int kx dx$	kx + C
$\int x^n dx (n \neq -1)$	$\frac{x^{n+1}}{n+1} + C$
$\int \frac{1}{x} dx$ $\int \frac{e^x}{x} dx$	$\ln x + C$
$\int e^x dx$	$e^x + C$
$\int a^x dx (a > 0, a \neq 1)$	$\frac{1}{1-c} + C$
$\int \ln x dx$	$x \ln x - x + C$

2.

$\int \sin x dx$	$-\cos x + C$
$\int \cos x dx$	$\sin x + C$
$\int \tan x dx$	$-\ln \cos x + C$
$\int \cot x dx$	$\ln \sin x + C$
$\int \sec x dx$	$ \ln \sec x + \tan x + C$
$\int \csc x dx$	$ \ln \csc x - \cot x + C $
$\int \sec^2 x dx$	$\tan x + C$
$\int \csc^2 x dx$	$-\cot x + C$
$\int \sec x \tan x dx$	$\sec x + C$
$\int \csc x \cot x dx$	$-\csc x + C$

3.

$\int \sinh x dx$	$ \cosh x + C $
$\int \cosh x dx$	$\sinh x + C$
$\int \tanh x dx$	$\ln \cosh x + C$
$\int \operatorname{sech}^2 x dx$	$\tanh x + C$

4.

$\int \frac{dx}{x^2 + a^2}$	$\frac{1}{-\arctan \frac{x}{-}} + C$
$x^2 + a^2$	a a
ax	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right + C$
$\int \frac{1}{x^2 - a^2}$	$ 2a^{m} x+a $
$\int dx$	$\arcsin \frac{x}{-} + C$
$\int \sqrt{a^2-x^2}$	$\frac{\arcsin - + C}{a}$
$\int \frac{dx}{\sqrt{x^2 + a^2}}$	$\left \ln \left x + \sqrt{x^2 + a^2} \right + C \right $
$\int \frac{dx}{\sqrt{x^2 - a^2}}$	$\left \ln \left x + \sqrt{x^2 - a^2} \right + C \right $

5.

$\int xe^x dx$	$(x-1)e^x + C$
$\int x \sin x dx$	$\sin x - x \cos x + C$
$\int x \cos x dx$	$\cos x + x \sin x + C$
$\int x^n \ln x dx$	$x^{n+1} \left[\frac{\ln x}{n+1} - \frac{1}{(n+1)^2} \right] + C$

6. - (

$\int \arcsin x dx$	$x \arcsin x + \sqrt{1 - x^2} + C$
$\int \arccos x dx$	$x\arccos x - \sqrt{1 - x^2} + C$
$\int \arctan x dx$	$x \arctan x - \frac{1}{2}\ln(1+x^2) + C$

7.

•
$$: \int u \, dv = uv - \int v \, du$$

• :
$$u = g(x)$$
, $\int f(g(x))g'(x) dx = \int f(u) du$

•
$$\int \frac{P(x)}{Q(x)} dx, \quad P(x) \quad Q(x) - \qquad .$$