

Преобразователь сопротивления в температуру (Pt100)

Обсуждение на форуме

Рисунок 1 – Условное обозначение

Применение на контроллерах		ПР 200-ххх		
данных	Пояснения			
R, Om	float	Значение сопротивления	18.52-390.48	
Кпровода, Ом	float	Значение сопротивления подключающих проводов	*	
Выходы	Тип	December	Пиотором	
	данных	Пояснения	Диапазон	
t, °C	float	Результат преобразования	-200.0-850.0	
		0		
		Ошибка преобразования:		
	:	0 — норма	0.3	
error	int		0-2	

^{*-} измеряется при подключении

Описание работы макроса

Макрос позволяет:

- 1. При подаче на вход переменной содержащей значение сопротивления в омах, получить на выходе значение температуры в °C, в соответствии с таблицей НСХ ТСП Pt100, для W_{100} =1.385 (α =0,00385) по ГОСТ 6651-2009.
- 2. При значительной длине подключающих проводов, когда их сопротивление может вносить погрешность в результат измерения, возможно компенсировать данное сопротивление, подачей его значения на вход Кпровода.

Структура макроса

Макрос представляет собой интерполяционное уравнение для платинового TC с температурным коэффициентом сопротивления $\alpha = 0,00385 \, ^{\circ}\text{C}^{-1}$. Структурная схема макроса представлена на рис.2

В диапазоне температур от -200 °C до 0 °C приближенная обратная функция, позволяющая проводить расчет температуры по сопротивлению ТС, следующая:

$$t = \sum_{i=1}^4 D_i \left(\frac{R_t}{R_0} - 1\right)^i,$$

где t – температура на выходе макроса, °C;

 R_t – сопротивление на входе макроса, Ом;

 R_0 – номинальное сопротивление при температуре 0 °C, Ом;

 D_i – постоянные коэффициенты;

 $D_1 = 255,819$ °C;

 $D_2 = 9,14550$ °C;

 $D_3 = -2,92363$ °C;

 $D_4 = 1,79090$ °C.

В диапазоне температур от 0 °C до 850 °C обратная функция для НСХ следующая:

$$t = \frac{\sqrt{A^2 - 4B(1 - R_t/R_0)} - A}{2B},$$

где t – температура на выходе макроса, °C;

 R_t – сопротивление на входе макроса, Ом;

 R_0 – номинальное сопротивление при температуре 0 °C, Ом;

 $A = 3,9083 \cdot 10^{-3} \, {}^{\circ}\text{C}^{-1};$

 $B = -5,775 \cdot 10^{-7} \, {}^{\circ}\text{C}^{-1}.$

Рисунок 2 – Структурная (функциональная) схема макроса

Пример работы

На вход макроса подается значение сопротивления равное 143,5 Ом, измеренное сопротивление проводов соединяющих термосопротивление с аналоговым входом оказалось равным 5 Ом, данное значение необходимо подать на вход Кпровода. В макросе осуществляется компенсация сопротивления кабеля и на выходе получаем значение температуры 100 °C, что соответствует значению сопротивления 138,5 Ом.

В случае если значение входного сопротивления подаваемого на вход макроса, выйдет за диапазон сопротивлений соответствующей характеристики ТС, макрос выдаст ошибку error. Если error=1, значит сопротивление ниже диапазона (например, произошел обрыв датчика). Если error=2, значит сопротивление выше диапазона (например, ухудшился контакт в месте соединения выводов датчика). При значении ошибки error>0, на выходе температуры сохраняется последнее вычисленное значение из диапазона.

Рисунок 3 – Пример работы макроса

Область применения макроса:

1) Во всех алгоритмах где используется значение сопротивления с платинового TC HCX Pt100 для получения значения температуры

Разработчик	Версия	Дата изменения	
Ревака Ю.Н.	1.0	06.07.16]4