MAST30001 Stochastic Modelling

Tutorial Sheet 8

- 1. A CTMC $(X_t)_{t\geq 0}$ with state space $\mathcal{S}=\{1,2,3,4\}$ has non-zero transition rates $q_{1,2}=4,\ q_{2,1}=1=q_{2,4}$ and $q_{2,3}=3$. Suppose that $\mathbb{P}(X_0=1)=1$ (i.e. the chain starts in state 1), and let $T_1=\inf\{t>0:X_t\neq X_0\}$ be the first jump time of $(X_t)_{t\geq 0}$, and $T_2=\inf\{t>T_1:X_t\neq X_{T_1}\}$ denote the time of the second jump.
 - (a) Draw the transition diagram for the CTMC $(X_t)_{t\geq 0}$
 - (b) Describe the communicating classes of $(X_t)_{t\geq 0}$
 - (c) Find $h_{1,3}$, the probability of ever reaching state 3.
 - (d) What is the distribution of T_1 ?
 - (e) What is the distribution of X_{T_1} ?
 - (f) Find $\mathbb{E}[T_2]$.
 - (g) What is the distribution of X_{T_2} ?
 - (h) Find $m_{1,\{3,4\}}$, which is the expected time until $(X_t)_{t\geq 0}$ reaches state 3 or 4.
 - (i) Find the limiting proportion of time spent in each state.
- 2. Let A is a parameter of transition rates are $q_{i,i+1} = \lambda$ and $q_{i+1} = (i+1)\mu$ for each $t \in \mathbb{Z}_+$.
 - (a) Explain intuitively why this CTMC is positive recurrent.
 - (b) Find the attorsy dispowcoder.com
 - (c) Find the limiting distribution, starting from initial distribution a.
 - (d) Find the limiting proportion of time spent in each state.
- 3. (CTMCs as limits of DTMCs) Let P be a mochastic matrix with i, j-th entry $p_{i,j}$, and such that $p_{i,i} = 0$ for all i. For $(\lambda_i)_{i \in \mathcal{S}}$ and for each integer $m > \sup_{i \in \mathcal{S}} \lambda_i$, define a DTMC $(Y_n^{(m)})_{n \in \mathbb{Z}_+}$ by

$$\mathbb{P}(Y_{n+1}^{(m)} = i | Y_n^{(m)} = i) = \left(1 - \frac{\lambda_i}{m}\right),$$

and for $i \neq j$

$$\mathbb{P}(Y_{n+1}^{(m)} = j | Y_n^{(m)} = i) = \frac{\lambda_i}{m} p_{ij}.$$

Define a continuous time process (not a CTMC though) by

$$X_t^{(m)} = Y_{|mt|}^{(m)},$$

where |a| is the greatest integer not bigger than a.

- (a) What does a typical trajectory of $X^{(m)}$ look like? At what times does it jump?
- (b) Given $X_0^{(m)} = i$, what is the distribution of the random time

$$T^{\scriptscriptstyle (m)}(i) = \min\{t \geq 0: X_t^{\scriptscriptstyle (m)} \neq i\}$$

- (c) As $m \to \infty$, to what distribution does that of the previous item converge?
- (d) It turns our that $X^{(m)}$ converges (in a certain sense) as $m \to \infty$ to a continuous time Markov chain. What are its transition rates?