Isotherms of Real Gases - W12e

```
md""" # Isotherms of Real Gases - W12e
```

```
begin

using Pkg
using LsqFit
using CSV
using PlutoUI
using Plots
using LsqFit
import Pkg; Pkg.add("ORCA")
using ORCA
plotly()
theme(:bright)
```

Importing Experimental Data Bellow

o (ba	Pressure (bar) 40	Pressure (bar) 35	Pressure (bar) 30	Pressure (bar) 25	Pressure (bar) 20	Pressure (bar) 15	Pressure (bar) 10	Volume (ml)	
8.5	8.5	8.43	8.0	8.0	7.82	7.5	7.5	4.0	1
8.91	8.5	8.5	8.29	8.0	8.0	7.5	7.63	3.9	2
9.0	8.98	8.79	8.5	8.37	8.0	8.0	8.0	3.8	3
9.48	9.0	9.0	8.99	8.5	8.3	8.35	8.38	3.7	4
9.5	9.5	9.39	9.0	8.5	8.5	8.5	8.5	3.6	5
10.0	9.95	9.5	9.35	9.0	8.79	8.5	8.79	3.5	6
10.0	10.0	9.98	9.5	9.42	9.0	8.86	9.0	3.4	7
10.5	10.3	10.0	9.92	9.5	9.48	9.0	9.32	3.3	8
10.8	10.5	10.32	10.0	10.0	9.5	9.32	9.5	3.2	9
11.6	11.0	10.93	10.5	10.0	10.0	9.87	9.91	3.1	10
								nore	; m
	11.0	10.93	10.5		10.0	9.87 e("P_Data.orame(csv_f	9.91	3.1 egin csv_fil data_ba	10 : n

1.

Measuring the isotherms of a substance for eight temperatures.

```
md"""
##### 1.
###### Measuring the isotherms of a substance for eight temperatures.
"""
```

As the pressure is Close to the critical point, the substance is a mix of solid and liquid states. As a plot projection, this can be seen as the sudden flattening of the slopes in the Figure below, i.e constant pressure value for a changing volume. This flattening of the curve or the width, ΔV , of the flat slope gets smaller and smaller as the temperature is increased.

```
md"""As the pressure is Close to the critical point, the substance is a mix of solid and liquid states. As a plot projection, this can be seen as the sudden flattening of the slopes in the Figure below, i.e constant pressure value for a changing volume. This flattening of the curve or the width, \Delta V, of the flat slope gets smaller and smaller as the temperature is increased.
```

```
▶Float64[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
```

▶Union{Missing, Float64}[9.0, 9.49, 9.5, 9.94, 10.0, 10.43, 10.5, 11.0, 11.42, 11.5,

2.

Plotting isotherms and determining the saturation vapour pressure p_s in the region of Maxwell line.

```
md"""
  #### 2.
  ###### Plotting isotherms and determining the saturation vapour pressure $p_{s}$ in the region of Maxwell line.
"""
```

Slider to fetch the data at palce of intrest on the graph $% \left(x\right) =\left(x\right) \left(x\right)$


```
begin
scatter(volume, p10,label="T = 283.15 K", size(1000,1000),xlabel="Volume
[ml]",ylabel="Pressure [Bar]",title="Isotherms")
scatter!(volume, p15,label ="T = 288.15 K")
scatter!(volume, p20,label ="T = 293.15 K")
scatter!(volume, p25,label ="T = 298.15 K")
scatter!(volume, p30,label ="T = 303.15 K")
scatter!(volume, p35,label ="T = 308.15 K")
scatter!(volume, p40,label ="T = 313.15 K")
plot!(volume, p45,label ="T = 318.15 K")
plot!(volume, p50,label ="T = 323.15 K")
plot!(volume, p55,label ="T = 328.15 K")
plot!(volume, ones(length(volume))*i, label="Search Parameter",color="red")
end
```

Above is the plot of pressure against volume measurements of all the given temperatures. It can be seen that the flattened slopes are not a straight line along the x-axis and have a slight tilt along the y-axis. For this reason, a slider is coded in to find the areas of interest within a particular temperature plot. Once we determined the start and finish of a flattened slope for a particular temperature, we take the average of the corresponding y-axis values, i.e presure value.

Below is the table of final obtained values of saturation pressure to the corresponding temperature.

```
Temperature
              T=10 T=15 T=20 T=25
                                       T=30
                                              T=35
                                                    T=40 T=45 T=50 T=5!
 [°C]
 Average
 saturation
            16.342 18.525 21.25 23.783 26.774 30.164 33.332 36.37 N.A N.A
pressure( P_s)[Bar]
    Temperature [°C]|T=10|T= 15|T=20|T=25|T=30|T=35|T=40|T=45|T=50|T=55|
               | Average saturation pressure( $P_{s}$)[Bar]
   16.342 18.525 21.25 23.783 26.774 30.164 33.332 36.37 N.A N.A | "
16.342
  pp[1]=sum(p10[27:36])/length(p10[27:36]) #takes the average of these values
18.525
   pp[2]=sum(p15[length(p15)-11:length(p15)-4])/length(p15[length(p15)-11:length(p15)-4]
21.25
   pp[3]=sum(p20[length(p20)-10:length(p20)-1])/length(p20[length(p20)-10:length(p20)-1]
23.78375
  pp[4]=sum(p25[length(p25)-8:length(p25)-1])/length(p25[length(p25)-8:length(p25)-1])
26.774
  pp[5]=sum(p30[length(p30)-6:length(p30)-2])/length(p30[length(p30)-6:length(p30)-2])
30.16399999999998
  pp[6]=sum(p35[length(p35)-5:length(p35)-1])/length(p35[length(p35)-5:length(p35)-1])
33.331999999999994
  pp[7]=sum(p40[length(p40)-5:length(p40)-1])/length(p40[length(p40)-5:length(p40)-1])
T=[283.15,288.15,293.15,298.15,303.15,308.15,313.15]
3.
```

Plotting $ln(p_s)$ as function of "1/T". Fitting this plot with the vapour pressure equation to determine the average molar latent heat of vaporization of the substance under study i.e Q_{23}

```
md"""
    #### 3.
    ##### Plotting $ln(p_{s})$ as function of "1/T". Fitting this plot with the vapour pressure equation to determine the average molar latent heat of vaporization of the substance under study i.e $Q_{23}$
    """
```

 $\verb| LsqFit.LsqFitResult{Array{Float64,1},Array{Float64,1},Array{Float64,2},Array{Float64,1}}| ($

```
begin

linefittwo(c,stuff)=stuff[1]*c + stuff[2]

ran2=[1.2,1.0]

fit2= curve_fit(linefittwo, T, pp,ran2)
end
```



```
dpdt = 0.569800000034192
    dpdt = fit2.param[1]
```

▶ LsqFit.LsqFitResult{Array{Float64,1},Array{Float64,1},Array{Float64,2},Array{Float64,1}}(

```
begin

linefit(c,stuff)=stuff[1]*c + stuff[2]

ran=[1.2,1.0]

fit1= curve_fit(linefit, (1 ./T), log.(pp),ran)
end
```


Slope = -2119.7918237326458

$$ln(p_s) = rac{Q_{23}}{R} \cdot rac{1}{T} + ln(p_{s0})$$

Using the above formula \mathcal{Q}_{23} can be equated with the slope of the fit

The Calculated value $Q_{23} = (1.7236 \pm 0.01) \cdot rac{J}{mol}$

4.

Determining the amount of the substance under study.

3.624
• @bind j Slider(0.0:0.001:3.9, show_value=true) #3.624

Interpreting from the equation $\lim_{v\to\infty}(p,V)=nRT$, we particularly look for a region where the P.V value approximately stabilizes around a constant value, i.e value of P.V when $V\to\infty$.

Further using $n=rac{p.V}{RT}$

we obtain the calulated value of $n=(1537\pm 5)\cdot 10^{-6} mol$

5.

Use the Clausius-Clapeyron equation to determine the molar heat of vaporization as a function of temperature. Plot the latent heat as a function of the reduced temperature $\frac{T}{T_K}$ and make a power fit on the data.

$$egin{align} Q_{23}(T) &= rac{dp_s}{dT} \cdot Trac{\Delta V_m}{n}[1] \ & as.\, \Delta V = V_g - V_l \ & and.\, rac{dp_s}{dT} = p_{s0} \cdot rac{Q_{23}}{RT_2} \cdot e^{-Q_{23}/RT} \ & \Delta V_m = rac{V_g - V_l}{n} \ \end{pmatrix}$$

we can use Equation [1] to plot Q_23 as a function of 'T'. To get further we also need to find the values of ΔV , this is done using the graph below. Using the slider different region of interest is examined; After the values around are searched for the best results and line is plotted as a reference.


```
scatter!(volume, p25,label = "T = 298.15 K")
scatter!(volume, p30,label = "T = 303.15 K")
scatter!(volume, p35,label = "T = 303.15 K")
scatter!(volume, p40,label = "T = 313.15 K")
plot!(volume, p45,label = "T = 318.15 K")
plot!(volume, p50,label = "T = 328.15 K")
plot!(volume, p55,label = "T = 328.15 K")
plot!(ones(length(volume))*0.5,p10,color="blue")
plot!(ones(length(volume))*1.7,p10,color="blue")
plot!(ones(length(volume))*1.7,p10,color="blue")
plot!(ones(length(volume))*1.7,p10,color="orange")
plot!(ones(length(volume))*1.45,p15,color="orange")
plot!(ones(length(volume))*1.45,p15,color="orange")
plot!(ones(length(volume))*1.32,p20,color="green")
plot!(ones(length(volume))*1.32,p20,color="green")
plot!(ones(length(volume))*1.12,p25,color="purple")
plot!(ones(length(volume))*0.511,p30,color="brown")
plot!(ones(length(volume))*0.511,p30,color="brown")
plot!(ones(length(volume))*0.94,p30,color="brown")
plot!(ones(length(volume))*0.81,p35,color="green")
plot!(ones(length(volume))*0.81,p35,color="green")
plot!(ones(length(volume))*0.81,p35,color="green")
plot!(ones(length(volume))*0.81,p35,color="green")
plot!(ones(length(volume))*0.68,p40,color="red")
plot!(ones(length(volume))*0.68,p40,color="red")
plot!(ones(length(volume))*0.6,p45,color="yellow")
end
```

 $\Delta V = Float64[1.2, 0.945, 0.811, 0.61, 0.429, 0.299, 0.168, 0.0]$

newv =

▶Float64[0.5, 0.505, 0.509, 0.51, 0.511, 0.511, 0.512, 0.6, 0.68, 0.81, 0.94, 1.12

Q23 (generic function with 1 method)

 $\verb| LsqFit.LsqFitResult{Array{Float64,1},Array{Float64,1},Array{Float64,2},Array{Float64,1}}| ($

▶ LsqFit.LsqFitResult{Array{Float64,1},Array{Float64,1},Array{Float64,2},Array{Float64,1}}(

Though the Q-{23} is defined as $Q_{23}(T)=rac{dp_s}{dT}\cdot Trac{\Delta V_m}{n}[1]$ we use the equation below to make power fit to the graph below $Q-23=Q_{23}(0)\cdot (1-rac{T}{T_k})^{3/8}$

