Deep Learning

Lecture 11

Fernando Perez-Cruz based on Thomas Hofmann lectures

Swiss Data Science Center
ETH Zurich and EPFL - datascience.ch

December 10, 2018

Overview

1. Implicit Models

2. VAE Models

3. Deep Gaussian Models

4. Generative Adverserial Models

Section 1

Implicit Models

Implicit Models

- Statistical models via: generating stochastic mechanism or simulation process
 - ▶ aka: 'implicit' models
- Deep implicit models
 - ▶ latent code $\mathbb{R}^d \ni \mathbf{z} \sim \pi(\mathbf{z})$, e.g. $\pi(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - parameterized mechanism $F_{\theta}: \mathbb{R}^d \to \mathbb{R}^m$
 - induced distribution $\mathbb{R}^m \ni \mathbf{x} \sim p_{\theta}(\mathbf{x})$
 - ▶ sampling is easy: random vector + forward propagation

Noise Contrastive Estimation

- Bootstrap generative models via classification problems
- Reduce density estimation to binary classification (Gutmann, Hyvärinen, 2012)
- ▶ Define joint probability (p_n : 'contrastive' distribution)

$$\tilde{p}(\mathbf{x}, y = 1) = \frac{1}{2}p(\mathbf{x}), \quad \tilde{p}(\mathbf{x}, y = 0) = \frac{1}{2}p_n(\mathbf{x}).$$

• Probabilistic classifier (induced by \bar{p}_{θ})

$$q_{\theta} = \frac{\alpha \bar{p}_{\theta}}{\alpha \bar{p}_{\theta} + p_n}, \quad \alpha > 0$$

- Bayes optimal if $\alpha \bar{p}_{\theta} = p$
- minimize logistic loss with regard to θ and $\alpha > 0$

Noise Contrastive Estimation: Theory

- ▶ NCE has a theory behind it ...
- ▶ Question #1: Is this estimator for θ consistent? Yes!
 - ▶ Gutmann, Hyvärinen, 2012, Theorem 2: as long as p_n is dominating p
- Question #2: Is the estimator statistically efficient? Sometimes, but generally 'no'.
 - ▶ Gutmann, Hyvärinen, 2012, Theorem 3: much worse than Cramer-Rao bound if p_n very different from p
- NCE is not the final answer

Section 2

VAE Models

Variational Auto Encoder

(Kingma and Welling., 2014)

- Use a neural network for generative modeling.
- Posterior non-tractable, approximate by another NN.

► The marginal log-likelihood:

$$p_{\boldsymbol{\theta}}(\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(N)}) = \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)})$$

where

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) = D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})||p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}^{(i)})) + \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)})$$

▶ The second term is the variational lower bound:

$$\begin{split} &\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \geq \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[-\log q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) + \log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) \right] \\ &\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)}) || p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}|\mathbf{z}) \right] \end{split}$$

Variational Lower Bound derivatives

- We want to differentiate it with respect to θ and ϕ .
- Naïve Monte Carlo Estimate:

$$\begin{array}{l} \nabla_{\boldsymbol{\phi}} \bar{\mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})}} \left[f(\mathbf{z}) \right] = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})} \left[f(\mathbf{z}) \nabla_{q_{\boldsymbol{\phi}}(\mathbf{z})} \log q_{\boldsymbol{\phi}}(\mathbf{z}) \right] \overset{\cdot}{\simeq} \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}) \nabla_{q_{\boldsymbol{\phi}}(\mathbf{z}^{(l)})} \log q_{\boldsymbol{\phi}}(\mathbf{z}^{(l)}) \end{array}$$
 with

$$\mathbf{z}^{(l)} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$$

yields high variance estimators.

Re-parametrization trick, substitute

$$\widetilde{\mathbf{z}} \sim q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})$$

by

$$\widetilde{\mathbf{z}} = g_{\phi}(\boldsymbol{\epsilon}, \mathbf{x})$$
 with $\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon})$

General Stochastic Gradient Variational Bayes

▶ We can now form the following Monte Carlo Estimates:

$$\mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}^{(i)})}\left[f(\mathbf{z})\right] = \mathbb{E}_{p(\boldsymbol{\epsilon})}\left[f(g_{\boldsymbol{\phi}}(\boldsymbol{\epsilon},\mathbf{x}^{(i)}))\right] \simeq \frac{1}{L}\sum_{l=1}^{L}f(g_{\boldsymbol{\phi}}(\boldsymbol{\epsilon}^{(l)},\mathbf{x}^{(i)}))$$

with

$$\epsilon^{(l)} \sim p(\epsilon)$$

▶ Leading to the General Stochastic Gradient Variational Bayes:

$$\widetilde{\mathcal{L}}^A(oldsymbol{ heta}, oldsymbol{\phi}; \mathbf{x}^{(i)}) = rac{1}{L} \sum_{l=1}^L \log p_{oldsymbol{ heta}}(\mathbf{x}^{(i)}, \mathbf{z}^{(i,l)}) - \log q_{oldsymbol{\phi}}(\mathbf{z}^{(i,l)}|\mathbf{x}^{(i)})$$

with

$$\mathbf{z}^{(i,l)} = g_{\phi}(\boldsymbol{\epsilon}^{(i,l)}, \mathbf{x}^{(i)})$$
 and $\boldsymbol{\epsilon}^{(l)} \sim p(\boldsymbol{\epsilon})$

Section 3

Deep Gaussian Models

Deep Latent Gaussian Models

- two coupled networks: top-down (generative) and bottom-up (recognition)
- forward pass: deterministic recognition, sampled generative
- backward pass: deterministic, but: stochastic backpropagation
- cf. Rezende, Mohamed & Wierstra. 2014

Deep Latent Gaussian Model

Generalize factor analysis idea with depth (Rezende et al., 2014).

Noise variables

$$\mathbf{z}^l \overset{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad l = 1, \dots, L$$

Hidden activities (top-down: $\mathbf{h}^L \to \mathbf{h}^1$)

$$\mathbf{h}^L = \mathbf{W}^L \mathbf{z}^L, \quad \mathbf{h}^l = \underbrace{F^l(\mathbf{h}^{l+1})}_{\text{deterministic}} + \underbrace{\mathbf{W}^l \mathbf{z}^l}_{\text{stochastic}}$$

Hidden layer (conditional) distribution [vs. factor analysis]

$$\mathbf{h}|\mathbf{h}^{+} \sim \mathcal{N}\left(F(\mathbf{h}^{+}), \mathbf{W}\mathbf{W}^{\top}\right) \quad \left[\text{vs.} \quad \mathbf{x}|\mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{T} + \boldsymbol{\Sigma})\right]$$

ELBO: Evidence Lower BOund

Restrict q to (possibly) simpler family

Variational distributions, e.g.:

$$q(\mathbf{z}; \mathbf{x}) = \prod_{l=1}^{L} q(\mathbf{z}^{l}; \mathbf{x}), \quad \mathbf{z}^{l} \sim \mathcal{N}(\boldsymbol{\mu}^{l}(\mathbf{x}), \boldsymbol{\Sigma}^{l}(\mathbf{x}))$$

We need to learn functions $\mathbf{x}\mapsto oldsymbol{\mu}^l(\mathbf{x})$ (similarly for the covariance)

Use another DNN: inference (or recognition) network

Inference Network

Recognition model

$$\mathbf{x} \stackrel{\vartheta}{\mapsto} (\boldsymbol{\mu}^l, \boldsymbol{\Sigma}^l)_{l=1}^L \mapsto q \sim \mathcal{N}(\dots)$$

- mapping can be realized by independent (deep) network
- ▶ parametric form with parameters ϑ : generalization across \mathbf{x} , aka amortized inference
- ▶ KL-divergence can be though of as regularization
- practicalities: constrained precision matrix, e.g.

$$\mathbf{\Sigma}^{-1} = \mathbf{D} + \mathbf{u}\mathbf{u}^{\top}$$
rank 1

Generative Model Optimization

First assume that for given \mathbf{x} , $q(\mathbf{z}|\mathbf{x})$ is fixed. How can we optimize θ ?

Sample noise variables $(\mathbf{z}^1, \dots, \mathbf{z}^L) \sim q(\mathbf{z}|\mathbf{x})$.

Perform backpropagation and SGD step for θ .

- ▶ If *q* is simple, sampling is efficient (no MCMC necessary).
- ▶ Unbiased estimate of gradient, small variance overhead.
- ▶ May even be beneficial (training w/ noise).

Stochastic Backpropagation

Optimizing over q involves gradients of expectations! How does a change of the q-distributions change q-averages?

Stochastic backpropagation

$$\begin{split} \mathbf{z} &\sim \mathcal{N}(\pmb{\mu}, \pmb{\Sigma}), \quad f \text{: smooth and integrable}, \ \text{then} \\ &\nabla_{\pmb{\mu}} \mathbf{E}[f(\mathbf{z})] = \mathbf{E}\left[\nabla_{\mathbf{z}} f(\mathbf{z})\right], \quad \nabla_{\pmb{\Sigma}} \mathbf{E}[f(\mathbf{z})] = \frac{1}{2} \mathbf{E}\left[\nabla_{\mathbf{z}}^2 f(\mathbf{z})\right], \end{split}$$

- ▶ due to Bonnet, 1964, Price, 1958; Kingma & Welling, 2014
- proof (Bonnet's theorem): integration by parts

$$\nabla_{\boldsymbol{\mu}} \mathbf{E} f(\mathbf{z}) = -\int \nabla_{\mathbf{z}} \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) f(\mathbf{z}) d\mathbf{z} = \int \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \nabla_{\mathbf{z}} f(\mathbf{z}) d\mathbf{z}$$

simple Monte Carlo integration (!) of RHS integral

Section 4

Generative Adverserial Models

From Optimal Discrimination to Generation

- ▶ Proposed by Goodfellow et al., 2014
- ► Classification problem: distinguish between data & model

$$\tilde{p}_{\theta}(\mathbf{x}, y = 1) = \frac{1}{2}p(\mathbf{x}), \quad \tilde{p}_{\theta}(\mathbf{x}, y = 0) = \frac{1}{2}p_{\theta}(\mathbf{x}).$$

▶ Bayes optimal classifier: posterior

$$q_{\theta} = p/(p+p_{\theta})$$
.

► Train generator via minimizing the logistic likelihood

$$\theta \xrightarrow{\min} \ell^*(\theta) := \mathbf{E}_{\tilde{p}_{\theta}} \left[y \ln q_{\theta}(\mathbf{x}) + (1 - y) \ln(1 - q_{\theta}(\mathbf{x})) \right]$$

 generator's goal: generate samples that are indistinguishable from real data, even for the best possible classifier

Minimzing Jensen-Shannon Divergence (1 of 2)

- 0. Given: distribution p over $(\mathbf{x}, y) \in \mathbb{R}^m \times \{0, 1\}$ with $p(y) = \frac{1}{2}$.
- 1. Entropy = minimizer of cross entropy.

$$\min_{q} \{ H(p,q) := -p \ln q - (1-p) \ln(1-q) \} = H(p)$$

2. Hence: maximum of logistic log-likelihood at a fixed x

$$\max_{q} \{ p(y = 1 | \mathbf{x}) \ln q + p(y = 0 | \mathbf{x}) \ln(1 - q) \} = -H(y; \mathbf{x})$$

3. and in expectation

$$\ell^*(\theta) = -H(y|\mathbf{x}) = H(\mathbf{x}) - H(\mathbf{x}, y)$$
$$= H(\mathbf{x}) - H(y) - H(\mathbf{x}|y)$$

Minimzing Jensen-Shannon Divergence (2 of 2)

4. Note that: $H(y) = \ln 2$ and $H(\mathbf{x}|y) = \frac{1}{2}H(\mathbf{x};0) + \frac{1}{2}H(\mathbf{x};1)$.

$$\ell^*(\theta) = H(\frac{1}{2}p + \frac{1}{2}p_{\theta}) - \frac{1}{2}H(p) + \frac{1}{2}H(p_{\theta}) - \ln 2$$

5. Identify w/ Jensen-Shannon divergence

$$\mathsf{JS}(p,p_\theta) = \tfrac{1}{2}\mathsf{KL}(p,\tfrac{1}{2}p + \tfrac{1}{2}p_\theta) + \tfrac{1}{2}\mathsf{KL}(p_\theta,\tfrac{1}{2}p + \tfrac{1}{2}p_\theta)$$

6. Where we use simple identities

$$\begin{split} \mathsf{KL}(p, \tfrac{1}{2}p + \tfrac{1}{2}p_\theta) &= H(p, \tfrac{1}{2}p + \tfrac{1}{2}p_\theta) - H(p) \\ \\ H(p, \tfrac{1}{2}p + \tfrac{1}{2}p_\theta) &+ H(p_\theta, \tfrac{1}{2}p + \tfrac{1}{2}p_\theta) = 2H(\tfrac{1}{2}p + \tfrac{1}{2}p_\theta) \end{split}$$

Hence: $\ell^*(\theta) = \mathsf{JS}(p, p_\theta) - \ln 2$

From Real Discrimination to Generation

- Optimal classifier is in general inaccessible
- ▶ Instead: define a classification model

$$q_{\phi}: \mathbf{x} \mapsto [0; 1], \quad \phi \in \Phi$$

Define objective via bound

$$\ell^*(\theta) \ge \sup_{\phi \in \Phi} \ell(\theta, \phi)$$
$$\ell(\theta, \phi) := \mathbf{E}_{\tilde{p}_{\theta}} \left[y \ln q_{\phi}(\mathbf{x}) + (1 - y) \ln(1 - q_{\phi}(\mathbf{x})) \right]$$

- find best classifier within restricted family
- typically: $\Phi =$ weight space of DNN
- training objective for generator is defined implicitly over sup

Optimizing GANs

► Saddle-point problem

$$\theta^* := \underset{\theta \in \Theta}{\operatorname{argmin}} \{ \sup_{\phi \in \Phi} \ell(\theta, \phi) \}$$

- explicitly performing inner sup is impractical
- various methods from optimization / solving games
- ▶ SGD as a heuristic (may diverge!)

$$\theta^{t+1} = \theta^t - \eta \nabla_{\theta} \ell(\theta^t, \phi^t)$$
$$\phi^{t+1} = \phi + \eta \nabla_{\phi} \ell(\theta^{t+1}, \phi^t)$$

► Ongoing research: find better optimization methods (e.g. better gradients Goodfellow et al. 2014 unrolled GANs, Metz et al. 2016; regularization Roth et al 2017)

Example: Image Generation

From Radford et al. 2015 - DC GAN paper

Architecture

Examples of generated images (bedroom scenes)

Example: Image Generation

From Radford et al. 2015 - DC GAN paper

Architecture

Examples of generated images (bedroom scenes)

Evaluating GANs

- ▶ Convergence to $p(\mathbf{x})$:
 - ▶ it is analyzed in Goodfellow et al. 2014.
 - moment matching (Liu, Bousquet and Chaudhuri 2017).
 - AdaGAN (Tolstikhin et al. 2017)
- How to measure quality of implicit models? (fundamental question)
 - out-of-sample evaluations is not available for implicit models.
 - visual inspection (inception score).
- ▶ Trade-offs:
 - 1. noisy samples (e.g. blurry images), but adequate representation of the variability.
 - faithful (as in good looking) samples, but lack of representation ("mode dropping").

which one is better?

Evaluation that is based on each application.

Password learning and generation

General Results

Approach	(1) Unique Passwords	(2) Matches	
JTR Spyderlab	10 ⁹	461,395 (23.32%)	
Markov Model 3-gram	$4.9 \cdot 10^{8}$	532,961 (26.93%)	
HashCat gen2	10 ⁹	597,899 (30.22%)	
HashCat Best64	$3.6 \cdot 10^{8}$	630,068 (31.84%)	
PCFG	10 ¹⁰	650,695 (32.89%)	
FLA 10 ⁻¹⁰	$7.4\cdot 10^8$	652,585 (32.99%)	
PassGAN	$2.1 \cdot 10^{9}$	515,079 (26.04%)	
PassGAN	$3.6 \cdot 10^{9}$	584,466 (29.54%)	
PassGAN	$4.9 \cdot 10^{9}$	625,245 (31.60%)	
PassGAN	$6.0 \cdot 10^{9}$	653,978 (33.06%)	
PassGAN	$7.1 \cdot 10^{9}$	676,439 (34.19%)	

Unique Passwords	(1) PassGAN	(2) FLA	(3) PassGAN ∪ FLA	(4) PassGAN, and not from FLA	(5) FLA, and not from PassGAN
10^{4}	14	2	16	14	2
10^{5}	95	40	133	93	38
10^{6}	881	1,183	2,016	833	1,135
10 ⁷	7,633	16,330	22,203	5,873	14,570
10 ⁸	44,490	117,262	137,415	20,153	92,925
10 ⁹	155,369				
7 . 109	320 365	1			

High probability passwords

Password	Occurrence	Frequency	GAN
Password	in Training Data	in Training Data	Estimated Frequency
123456	232,844	0.98%	100,971,288 (1.0%)
12345	63,135	0.27%	21,614,548 (0.22%)
123456789	61,531	0.26%	22,208,040 (0.22%)
password	47,507	0.20%	85,889 (8.6e-4%)
iloveyou	40,037	0.17%	10,056,700 (0.10%)
princess	26,669	0.11%	190,796 (0.0019%)
1234567	17,399	0.073%	7,545,708 (0.075%)
rockyou	16,765	0.071%	55,515 (5.5e-4%)
12345678	16,536	0.070%	5,070,673 (0.051%)
abc123	13,243	0.056%	6,545 (6.5e-5%)
nicole	12,992	0.055%	206,277 (0.0021%)
daniel	12,337	0.052%	3,304,567 (0.033%)
babygirl	12,130	0.051%	13,076 (1.3e-4%)
monkey	11,726	0.050%	116,602 (0.0012%)
lovely	11,533	0.049%	1,026,362 (0.010%)
jessica	11,262	0.048%	220,849 (0.0022%)
654321	11,181	0.047%	19,912 (1.9e-4%)
michael	11,174	0.047%	517 (5.2e-6%)
ashley	10,741	0.045%	116,858 (0.0012%)
qwerty	10,730	0.045%	135,124 (0.0013%)
iloveu	10,587	0.045%	4,839,368 (0.048%)
111111	10,529	0.044%	101,903 (0.0010%)
000000	10,412	0.044%	108,300 (0.0011%)
michelle	10,210	0.043%	739,220 (0.0073%)
tigger	9,381	0.040%	658,360 (0.0066%)
sunshine	9,252	0.039%	3,628 (3.6e-5%)
chocolate	9,012	0.038%	12 (1.2e-7%)
password1	8,916	0.038%	6,427 (6.4e-5%)
soccer	8,752	0.037%	25 (2.5e-7%)
anthony	8,752	0.036%	not generated

High probability passwords

Password	Rank in Training Set	Frequency in Training Set	Probability assigned by FLA
123456	1	0.9833%	2.81E-3
12345	2	0.2666%	1.06E-3
123457	3,224	0.0016%	2.87E-4
1234566	5,769	0.0010%	1.85E-4
1234565	9,692	0.0006%	1.11E-4
1234567	7	0.0735%	1.00E-4
12345669	848,078	0.0000%	9.84E-5
123458	7,359	0.0008%	9.54E-5
12345679	7,818	0.0007%	9.07E-5
123459	8,155	0.0007%	7.33E-5
lover	457	0.0079%	6.73E-5
love	384	0.0089%	6.09E-5
223456	69,163	0.0001%	5.14E-5
22345	118,098	0.0001%	4.61E-5
1234564	293,340	0.0000%	3.81E-5

Password	Rank in Training Set	Frequency in Training Set	Probability in PassGAN's Output
123456	1	0.9833%	1.01E-2
123456789	3	0.25985%	2.2E-3
12345	2	0.26662%	2.16E-3
iloveyou	5	0.16908%	1.01E-3
1234567	7	0.07348%	7.6E-4
angel	33	0.03558%	6.4E-4
12345678	9	0.06983%	5.1E-4
iloveu	21	0.04471%	4.9E-4
angela	109	0.01921%	3.4E-4
daniel	12	0.0521%	3.3E-4
sweety	90	0.02171%	2.6E-4
angels	57	0.02787%	2.5E-4
maria	210	0.01342%	1.6E-4
loveyou	52	0.0287%	1.5E-4
andrew	55	0.02815%	1.3E-4

FLA GAN

Conclusion about PassGANs

- PassGAN is comparable to current Passwords guessing procedures.
- PassGANs provides better density estimate (not good anyway).
- New structures are needed to improve in the mid-range estimates.
- ▶ Passwords is a good benchmark for text generation GANs:
 - ▶ It is a relevant problem.
 - It is easier than natural language.
 - ▶ It has an *on-the-job* performance measure: number of guess passwords.
 - It can help with density estimation evaluation, as the choices are discrete and repeatable.