

Readings for today

• Timme, N. M., & Lapish, C. (2018). A tutorial for information theory in neuroscience. eneuro, 5(3).

Biologically Intelligent eXploration (BIX)

Topics

- Entropy
- Mutual information
- Transfer entropy

Entropy

Information theory

Goal: A formal theory for the transmission, processing, extraction, and utilization of information.

Approach: Quantify the amount of information a channel, c, can convey about a signal,

s, to a receiver, r.

Information theory

Information theory is largely a projection of statistics, converting probabilities to bits (~log probabilities)

Information theory in neuroscience

Role in neuroscience & psychology:

- Data analysis
- Generative modeling

Amount of information in S

Question: What is the average amount of information conveyed by s?

Example:

Discretizing your signal

Entropy and structure

Mutual information

Joint entropy

Question: What is the <u>average</u> amount of uncertainty in s and r?

$$H(S,R) = -\sum_{\substack{S \in S,r \in R}} p(s,r) \log_2 p(s,r)$$

Example:
$$H(S, R) = 4[\frac{1}{4}\log_2(\frac{1}{4})]$$

Conditional entropy

Question: What is the <u>average</u> amount of uncertainty in r after seeing s?

$$H(R \mid S) = -\sum_{\substack{S \in S, r \in R}} p(s,r) \log_2 p(r \mid s)$$
Joint entropy of signal S
& receiver R

$$S \in S, r \in R$$
Joint probability distribution
Conditional probability distribution

Example:
$$H(R|S) = 2[0.4(\frac{1}{0.8})] + 2[0.1\log_2(\frac{1}{0.2})]$$

Conditional entropy

Example:

Table 1. Marginal and joint probability distributions for an example system of two dependent coins.

$$c_1 = heads \qquad c_1 = tails \qquad \text{Marginal Distributions} \\ c_2 = heads \qquad p(c_1 = heads, c_2 = heads) = 0.4 \\ c_2 = tails \qquad p(c_1 = heads, c_2 = tails) = 0.1 \\ p(c_1 = heads, c_2 = tails) = 0.1 \\ p(c_1 = tails, c_2 = heads) = 0.1 \\ p(c_1 = tails, c_2 = tails) = 0.4 \\ p(c_1 = tails, c_2 = tails) = 0.5 \\ p(c_1 = tails) = 0.5 \\ p(c_1 = tails) = 0.5$$

The joint distribution describe the likelihood for each possible combination of the two coins. The marginal distributions describe the likelihood for each coin alone. Marginal distributions can be found by summing across rows or columns of the joint distribution (Eqn. 1).

$$H(R \mid S) = 2[0.4(\frac{1}{0.8})] + 2[0.1\log_2(\frac{1}{0.2})]$$

I(S;R) mutual information

mutual information between signal and receiver

I(S;R): The information transmitted from s to r is the total amount of information available at r, H(R), minus noise.

I(S;R) mutual information

Mutual information:

$$I(S; R) = H(S) - H(S|R)$$

$$= H(R) - H(R|S)$$

$$= \sum_{s \in S, r \in R} p(s, r) \log_2(\frac{p(s, r)}{p(s)p(r)})$$

Examples mutual information

Transfer entropy

$T(S \rightarrow R)$ Transfer entropy

Question: How much information is transferred $s \rightarrow r$?

Measuring the flow of information

Take home message

- Information is defined by its uncertainty. We call this entropy.
- Mutual information reflects the degree of association between signals.
- Transfer entropy quantifies how much information transfers from one signal to another.

Lab time!

https://coaxlab.github.io/BIX-book/notebooks/lab1-information.html

