3基于松弛测度的模型(SBM) 及分解

在线视频+DVD播放+现场培训 专注软件学习(www.peixun.net)

径向和非径向问题(Radial or Non-radial)

径向:非有效DMU沿到原点的射线方向进行改进,即同比例缩减投入或同比例扩大产出

非径向:非有效DMU不必遵循射线方向进行同比例改进,可以最大化提高(improvement)改善程度,如同时考虑投入产出松弛测度的SBM模型(包括修正的SBM)、加法模型(投入产出合力方向)、方向距离函数等。

SBM的一般模型(非角度)

(SBM)
$$\min_{\boldsymbol{\lambda}, \boldsymbol{s}^-, \boldsymbol{s}^+} \rho = \frac{1 - \frac{1}{m} \sum_{i=1}^m s_i^- / x_{io}}{1 + \frac{1}{s} \sum_{r=1}^s s_r^+ / y_{ro}}$$
 subject to
$$\boldsymbol{x}_o = X\boldsymbol{\lambda} + \boldsymbol{s}^-$$

$$\boldsymbol{y}_o = Y\boldsymbol{\lambda} - \boldsymbol{s}^+$$

$$\boldsymbol{\lambda} \geq \boldsymbol{0}, \ \boldsymbol{s}^- \geq \boldsymbol{0}, \ \boldsymbol{s}^+ \geq \boldsymbol{0}.$$

$$0 \le \rho \le 1$$
 即是效率值

SBM的模型(投入角度)

$$(SBM-I)$$
 $ho_I^* = \min_{oldsymbol{\lambda}, oldsymbol{s}^-} 1 - \frac{1}{m} \sum_{i=1}^m s_i^-/x_{io}$ subject to $oldsymbol{x}_o = X oldsymbol{\lambda} + oldsymbol{s}^ oldsymbol{y}_o \leq Y oldsymbol{\lambda}$ $oldsymbol{\lambda} \geq oldsymbol{0}, \ oldsymbol{s}^- \geq oldsymbol{0}.$

即把一般SBM模型的分母去掉

SBM的模型 (产出角度)

$$(SBM-O)$$
 $ho_o^* = \min_{oldsymbol{\lambda}, oldsymbol{s}^+} rac{1}{1+rac{1}{s}\sum_{r=1}^s s_r^+/y_{ro}}$ subject to $oldsymbol{x}_o \geq Xoldsymbol{\lambda}$ $oldsymbol{y}_o = Yoldsymbol{\lambda} - oldsymbol{s}^+$ $oldsymbol{\lambda} \geq oldsymbol{0}, \ oldsymbol{s}^+ \geq oldsymbol{0}.$

即把一般SBM模型的分子去掉

SBM模型效率值间的关系

$$\rho_I^* \ge \rho^*$$

$$\rho_O^* \ge \rho^*$$

即投入/产出角度的SBM技术效率>= 非角度的SBM技术效率

SBM的模型(非角度)效率值的 分解

$$\rho^* = \frac{1 - \sum_{i=1}^{m} \alpha_i}{1 + \sum_{r=1}^{s} \beta_r}$$

$$\alpha_i = \frac{1}{m} \frac{s_i^{-*}}{x_{io}} \ (i = 1, \dots, m)$$

$$\beta_r = \frac{1}{s} \frac{s_r^{+*}}{y_{ro}}. \quad (r = 1, \dots, s)$$
 $\beta_r = \frac{1}{s} \frac{s_r^{+*}}{y_{ro}}$

$$\rho^* = (1 - \alpha_i)/(1 + \boldsymbol{\beta}_r)$$

SBM的模型(投入角度)效率值 与CCR、BCC效率值比较

把CCR TE分解成纯技术效率PTE*规模效率SE

$$\theta^*_{CCR} = \theta^*_{BCC} \times SE$$

考虑松弛测度的SBM模型(投入角度)的TE《=CCR TE(投入角度)

$$\rho_{in}^* \leq \theta_{CCR}^*$$

由于SBM和CCR分别是非径向和径向的度量方法, 所以定义混合效率MIX TE

$$\text{MIX} = \frac{\rho_{in}^*}{\theta_{CCR}^*}$$

这样,把SBM(投入角度) 的技术效率分解成三个部分

$$\rho_{in}^* = [\text{MIX}] \times [\text{PTE}] \times [\text{SE}]$$

DMU	$_{\rho_{in}^{*}}^{\mathrm{SBM}}$	CCR TE	BCC PTE	Mix Eff MIX	Scale Eff SE
\overline{A}	1	1	1	1	1
B	1	1	1	1	1
C	0.852	0.883	0.896	0.965	0.985
D	1	1	1	1	1
E	0.756	0.763	0.882	0.99	0.866
F	0.704	0.835	0.939	0.843	0.889
G	0.895	0.902	1	0.992	0.902
H	0.774	0.796	0.799	0.972	0.997
I	0.905	0.96	0.989	0.942	0.971
J	0.781	0.871	1	0.896	0.871
K	0.866	0.955	1	0.907	0.955
L	0.936	0.958	1	0.977	0.958

主要包含基本模型

SBM-角度: SBM-I-(C/V/GRS)投入角度不同RTS

SBM-O-(C/V/GRS)产出角度不同RTS

合计6种组合

SBM-非角度: SBM-(C/V/GRS) 不同RTS

合计3种组合

