BABEŞ-BOLYAI UNIVERSITY OF CLUJ-NAPOCA FACULTY OF MATHEMATICS AND INFORMATICS SPECIALIZATION: COMPUTER SCIENCE

Diploma Thesis

Critical node detection problem in complex networks

Abstract

EZ AZ OLDAL NEM RÉSZE A DOLGOZATNAK!

Ezt az angol kivonatot külön lapra kell nyomtatni és alá kell írni!

A DOLGOZATTAL EGYÜTT KELL BEADNI!

Kötelező befejezés:

This work is the result of my own activity. I have neither given nor received unauthorized assistance on this work.

2020 BÉCZI ELIÉZER

ADVISOR: ASSIST PROF. DR. GASKÓ NOÉMI Babeş-Bolyai University of Cluj-Napoca Faculty of Mathematics and Informatics Specialization: Computer Science

Diploma Thesis

Critical node detection problem in complex networks

ADVISOR: STUDENT:
ASSIST PROF. DR. GASKÓ NOÉMI BÉCZI ELIÉZER

Universitatea Babeş-Bolyai, Cluj-Napoca Facultatea de Matematică și Informatică Specializarea Informatică

Lucrare de licență Titlu lucrare licență

CONDUCĂTOR ȘTIINȚIFIC: LECTOR DR. GASKÓ NOÉMI ABSOLVENT: BÉCZI ELIÉZER

Babeş-Bolyai Tudományegyetem Kolozsvár Matematika és Informatika Kar Informatika Szak

Szakdolgozat

Kritikus csomópontok meghatározása komplex hálózatokban

TÉMAVEZETŐ:

Szerző:

DR. GASKÓ NOÉMI, EGYETEMI ADJUNKTUS BÉCZI ELIÉZER

Tartalomjegyzék

	Bevezető	3
	1.1. Áttekintés	3
	Egycélú CNDP	4
	2.1. Páronkénti konnektivitás	4
	2.3. Genetikus algoritmus	5
3.	Kétcélú CNDP	7

1. fejezet

Bevezető

1.1. Áttekintés

Hálózatok terén nem minden csomópont egyforma fontosságú. A kulcsfontosságú csomópontok keresésével hálózatokban széles körben foglalkoznak, különösképpen olyan csomópontok esetén, melyek a hálózat konnektivitásához köthetők. Ezeket a csomópontokat általában úgy nevezzük, hogy Kritikus Csomópontok.

Kritikus Csomópontok Meghatározásának Problémája (CNDP) egy optimalizációs feladat, amely egy olyan csoport csomópont megkereséséből áll, melyek törlése maximálisan rontja a hálózat konnektivitását bizonyos predefiniált konnektivitási metrikák szerint.

A CNDP számos alkalmazási területtel rendelkezik. Például, közösségi hálók nagy befolyással bíró egyedeinek azonosítása, komputációs biológiában kapcsolatok definiálására jelút vagy fehérje-fehérje kölcsönhatás hálózatokban, smart grid sebezhetőségének vizsgálata, egyének meghatározása védőoltással való ellátásra vagy karanténba való zárásra egy fertőzés terjedésének gátlása érdekében.

A CNDP egy \mathcal{NP} -teljes feladat. Adva van egy G=(V,E) gráf, ahol |V|=n a csomópontok száma, és |E|=m pedig az élek száma. A feladat k kritikus csomópont meghatározása, amelyek törlése a bemeneti gráfból minimalizálja a hálózat páronkénti konnektivitását. Az alapján, hogy mit értünk egy hálózat konnektivitása alatt, a CNDP-nak van egycélú illetve többcélú megfogalmazása is.

1.2. Hozzájárulásaink

Ebben a dolgozatban többek között egy bi-objektív megfogalmazásával fogunk foglalkozni a CNDP-nak. Standard evolúciós algoritmusokat fogunk összehasonlítani egymással különböző szintetikus bemenetekre, illetve való világból inspirált bemenetekre, ugyanakkor célunk egy új hibrid algoritmus fejlesztése, melynek eredményei összehasonlíthatók a standard algoritmusok eredményeivel.

Az algoritmusokat Python-ban fogjuk bemutatni, és a NetworkX könyvtárat [Hagberg et al., 2008] fogjuk használni ahhoz, hogy gráfokat tudjunk manipulálni.

Benchmark tesztelés végett egy olyan gráfhalmazt fogunk használni, amelyben 4 alapvető típus jelenik meg, mindegyik a maga jellegzetességeivel.

2. fejezet

Egycélú CNDP

2.1. Páronkénti konnektivitás

Egycélú CNDP esetén a kihívás abban áll, hogy találjunk egy olyan konnektivitási metrikát, amely alkalmazási területtől függően megfelelően leírja egy gráf összefüggőségét. S-el fogjuk jelölni a törlendő csomópontok halmazát, míg azf(S) jóság függvény fogja jellemezni a $G[V\setminus S]$ feszített részgráf összefüggőségét. Ha H-val jelöljük a $G[V\setminus S]$ feszített részgráf összefüggő komponenseinek a halmazát, akkor a jóságfüggvény a következő képlettel írható le:

$$f(S) = \sum_{h \in H} \frac{|h| \cdot (|h| - 1)}{2},\tag{2.1}$$

amelyet az irodalom [Aringhieri et al., 2016; Ventresca, 2012] úgy tart számon, hogy **páronkénti konnektivitás**. Tehát a feladat a 2.1 függvénynek a minimalizálása:

$$\min_{S \subset V} f(S). \tag{2.2}$$

A 2.1 fitness függvény implementációját a 2.1 kódrészlet szemlélteti Python-ban. A továbbiakban tárgyalt 3 algoritmus ezt a fitness függvényt fogja használni.

Listing 2.1. Páronkénti konnektivitás

```
def pairwise_connectivity(G):
    components = networkx.algorithms.components.connected_components(G)
    result = 0

for component in components:
    n = len(component)
    result += (n * (n - 1)) // 2

return result
```

2.2. Mohó algoritmus

Egy mohó algoritmus egy egyszerű és intuitív algoritmus, amely gyakran használt optimalizációs feladatok megoldására. Az algoritmus helyi optimumok megvalósításával próbálja megtalálni a globális optimumot.

2. FEJEZET: EGYCÉLÚ CNDP

Habár a mohó algoritmusok jól működnek bizonyos feladatok esetében, mint pl. Dijkstra-algoritmus, amely egy csomópontból kiindulva meghatározza a legrövidebb utakat, vagy Huffman-kódolás, amely adattömörítésre szolgál, de sok esetben nem eredményeznek optimális megoldást. Ez annak köszönhető, hogy míg a mohó algoritmus függhet az előző lépések választásától, addig a jövőben meghozott döntésektől független.

Az algoritmus minden lépésben mohón választ, folyamatosan lebontva a feladatot kisebb feladattá. Más szavakkal, a mohó algoritmus soha nem gondolja újra választásait.

A CNDP esetén a mohó algoritmust a 2.2 kódrészlet szemlélteti.

Listing 2.2. Mohó algoritmus

```
def greedy_cnp(G, k):
    S = networkx.algorithms.approximation.min_weighted_vertex_cover(G)

    while len(S) > k:
        B = objective_function.minimize_pairwise_connectivity(G, S)
        i = random.choice(B)
        S.discard(i)

return S
```

A mohó algoritmus kiindul a gráf csúcslefedéséből. 1 Ez lesz a kezdeti S megoldásunk. A maradék csomópontok $V\setminus S$ a gráf maximális független csúcshalmazát 2 MIS alkotják. Mivel majdnem biztos, hogy |S|>k, ezért mohón elkezdünk kivenni csomópontokat S-ból, majd ezeket hozzáadni MIS-hoz, amíg |S|>k. A hozzáadott csomópont az lesz, amelyiket ha visszatesszük az eredeti gráfba, akkor a minimum értéket téríti vissza a páronkénti konnektivitásra a keletkezett gráfban.

Mivel több olyan csomópont lehet, amelyeket ha visszateszünk az eredeti gráfba, akkor ugyanazt a minimális értéket adják vissza a páronkénti konnektivitásra, ezért ezeket eltároljuk a B halmazban, és minden lépésben random módon határozzuk meg, hogy melyik kerüljön vissza a *MIS*-ba.

Ezzel az eljárással garantáljuk, hogy a mohó algoritmusunk különböző megoldásokat fog adni többszöri futtatások esetén.

2.3. Genetikus algoritmus

A genetikus algoritmus a metaheurisztikák osztályába tartozik, és a természetes kiválasztódás inspirálta. Egy globális optimalizáló, amely gyakran használt optimalizációs és keresési problémák esetében, ahol a sok lehetséges megoldás közül a legjobbat kell megkeresni. Azt hogy egy megoldás mennyire jó, a fitness függvény mondja meg.

A genetikus algoritmus mindig egy populációnyi megoldással dolgozik. A populációba egyedek tartoznak, amelyek egyenként egy-egy megoldásai a feladatnak. Az algoritmus minden iterációban egy új populációt állít elő az aktuális populációból úgy, hogy a **szelekciós operátor** által kiválasztott legrátermettebb szülőkön alkalmazza a **rekombinációs** és **mutációs operátorokat**.

^{1.} Angolul: vertex cover.

^{2.} Angolul: maximal independent set.

2. FEJEZET: EGYCÉLÚ CNDP

Ezen algoritmusok alapötlete az, hogy minden újabb generáció az előzőnél valamelyest rátermettebb egyedeket tartalmaz, és így a keresés folyamán egyre jobb megoldások születnek.

3. fejezet

Kétcélú CNDP

Irodalomjegyzék

- Aringhieri, R., Grosso, A., Hosteins, P., és Scatamacchia, R. A general evolutionary framework for different classes of critical node problems. *Engineering Applications of Artificial Intelligence*, 55: 128–145, 2016.
- Hagberg, A., Swart, P., és S Chult, D. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.
- Ventresca, M. Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. *Computers & Operations Research*, 39(11):2763–2775, 2012.