Введение

Одним из стандартных способов задания функций k-значной логики являются поляризованные полиномиальные формы (ППФ), которые также называются обобщенными формами Рида-Мюллера, или каноническими поляризованными полиномами. В ППФ каждая переменная имеет определенную поляризацию. Длиной полиномиальной формы называется число попарно различных слагаемых в ней. Длиной функции F в классе ППФ называется наименьшая длина среди длин всех поляризованных полиномиальных форм, реализующих F. Функция Шеннона $L_k^K(n)$ длины определяется как наибольшая длина среди всех функций k-значной логики в классе K от n переменных, если K опущено, то подразумевается класс ППФ. Практическое применение ППФ нашли при построении программируемых логических матриц (ПЛМ) [1, 2], сложность ПЛМ напрямую зависит от длины ППФ, по которой она построена. Поэтому в ряде работ исследуется сложность ППФ различных функций.

В 1993 В. П. Супрун [3] получил первые оценки функции Шеннона для функций алгебры логики :

$$L_2(n) \geqslant C_n^{\left[\frac{n}{2}\right]},$$

$$L_2(n) < 3 \cdot 2^{n-1}.$$

где [a] обозначает целую часть a.

Точное значение функции Шеннона для функций алгебры логики в 1995 г. было найдено Н. А. Перязевым [4] :

$$L_2(n) = \left[\frac{2^{n+1}}{3}\right].$$

Функции k-значных логик являются естественным обобщением функций ал-

гебры логики. Для функций k-значной логики верхняя оценка функции Шеннона была получена в 2002 г. С. Н. Селезневой [5] :

$$L_k(n) < \frac{k(k-1)}{k(k-1)+1}k^n.$$

При построении ПЛМ рассматривают и другие полиномиальные формы. Например класс обобщенных полиномиальных форм. В классе обобщенных полиномиальных форм, в отличие от класса поляризованных полиномиальных форм, переменные могут иметь различную поляризацию в разных слагаемых. В статье К. Д. Кириченко [6], опубликованной в 2005 г., получена верхняя оценка функции Шеннона в классе обобщенных полиномиальных форм функций алгебры логики:

 $L_2^{\text{O.II.}}(n) < \frac{2^{n+1}(\log_2 n + 1)}{n}.$

Верхняя оценка функции Шеннона в классе обобщенных полиномиальных форм функций k-значной логики была получена С. Н. Селезневой А. Б. Дайняком в 2008 г. [7]:

$$L_k^{\text{O.П.}}(n) \lesssim 2 \cdot \frac{k^n}{n} \cdot \ln n$$
 при $n \to \infty$.

В 2012 г. Н. К. Маркеловым была получена нижняя оценка функции Шеннона для функции трехзначной логики в классе поляризованных полиномов [8]:

$$L_3(n) \geqslant \left[\frac{3}{4}3^n\right].$$

Основные определения

Пусть $k\geqslant 2$ — натуральное число, $E_k=\{0,1,\ldots,k-1\}$. Весом набора $\alpha=(a_1,\ldots,a_n)\in E_k^n$ назовем число $|\alpha|=\sum\limits_{i=1}^n a_i$. Моном $\prod\limits_{a_i\neq 0} x_i^{a_i}$ назовем соответ-

ствующим набору $\alpha=(a_1,\ldots,a_n)\in E_k^n$ и обозначим через K_α . По определению положим, что константа 1 соответствует набору из всех нулей. Функцией k-значной логики называется отображение $f^{(n)}:E_k^n\to E_k,\ n=0,1,\ldots$. Множество всех k-значных функций обозначим через P_k , множество всех k-значных функций, зависящих от переменных x_1,\ldots,x_n , обозначим через P_k^n .

Если k – простое число, то каждая функция k-значной логики $f(x_1,\ldots,x_n)$ может быть однозначно задана формулой вида

$$f(x_1, \dots, x_n) = \sum_{\alpha \in E_k^n : c_f(\alpha) \neq 0} c_f(\alpha) K_\alpha ,$$

где $c_f(\alpha) \in E_k$ – коэффициенты, $\alpha \in E_k$, и операции сложения и умножения рассматриваются по модулю k. Это представление функций k-значной логики называется ее полиномом по модулю k. При простых k однозначно определенный полином по модулю k для функции k-значной логики f будем обозначать через P(f).

Определим поляризованные полиномиальные формы по модулю k. Поляризованной переменной x_i с поляризацией $d, d \in E_k$, назовем выражение вида (x_i+d) . Поляризованным мономом по вектору поляризации $\delta, \delta = (d_1, \ldots, d_n) \in E_k^n$, назовем произведение вида $(x_{i_1} + d_{i_1})^{m_1} \cdots (x_{i_r} + d_{i_r})^{m_r}$, где $1 \leqslant i_1 < \ldots < i_r \leqslant n$, и $1 \leqslant m1, \ldots, m_r \leqslant k-1$. Обычный моном является мономом, поляризованным по вектору $\tilde{0} = (0, \ldots, 0) \in E_k^n$.

Выражение вида $\sum_{i=1}^{l} c_i \cdot K_i$, где $c_i \in E_k \setminus \{0\}$ – коэффициенты, K_i – попарно различные мономы, поляризованные по вектору $\delta = (d_1, \ldots, d_n) \in E_k^n$, $i = 1, \ldots, l$, назовем поляризованной полиномиальной нормальной формой (ППФ) по вектору поляризации δ . Мы будем считать, что константа 0 является ППФ по произвольному вектору поляризации. Заметим, что при простых k для каждого вектора поляризации каждую функцию k-значной логики можно однозначно представить

 $\Pi\Pi\Phi$ по этому вектору поляризации [5]. При простых k однозначно определенную $\Pi\Pi\Phi$ по вектору поляризации $\delta\in E^n_k$ для функции $f\in P^n_k$ будем обозначать через $P^\delta(f)$.

Длиной l(p) ППФ p назовем число попарно различных слагаемых в этой ППФ. Положим, что l(0)=0. При простых k длиной функции k-значной логики в классе ППФ называется величина $l^{\Pi\Pi\Phi}(f)=\min_{\delta\in E_r^n}l(P^\delta(f))$.

Сложностью системы ППФ, имеющих один и тот же вектор поляризации, называется число попарно различных слагаемых, встречающихся во всех этих ППФ. При простых k сложностью $L_k^{\Pi\Pi\Phi}(F)$ системы функций k-значной логики $F = \{f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)\}$ в классе ППФ называется минимальная сложность среди всех таких систем ППФ $\{p_1,\ldots,p_m\}$, что все ППФ p_1,\ldots,p_m имеют один и тот же вектор поляризации, и ППФ p_j реализует функцию $f_j, j = 1,\ldots,m$. Понятно, что для произвольной системы функций k-значной логики $F = \{f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)\}$ верна оценка $L_k^{\Pi\Pi\Phi}(F) \leqslant k^n$.

Пусть k – простое число, и $A_k \subseteq P_k$, а $A_k^n = A_k \cap P_k^n$. Введем функцию Шеннона $L_{A_k}^{\Pi\Pi\Phi}(m,n)$ сложности систем функций k-значной логики, принадлежащих множеству A, в классе $\Pi\Pi\Phi$:

$$L_{A_k}^{\Pi\Pi\Phi}(m,n) = \max_{B \subseteq A_k^n, |B|=m} L_k^{\Pi\Pi\Phi}(B).$$

Если $A_k=P_k$, то функцию Шеннона будем обозначать через $L_{A_k}^{\Pi\Pi\Phi}(m,n)$. Функция k-значной логики $f(x_1,\ldots,x_n)$ называется симметрической, если

$$f(\pi(x_1),\ldots,\pi(x_n))=f(x_1,\ldots,x_n)$$

для произвольной перестановки π на множестве переменных $\{x_1,\ldots,x_n\}$. Множество всех симметрических функций k-значной логики обозначим через S_k . Сим-

метрическая функция $f(x_1,\ldots,x_n)$ называется периодической с периодом $\tau=$ $=(\tau_0\tau_1\ldots\tau_{T-1})\in E_k^T$, если $f(\alpha)=\tau_j$ при $|\alpha|=j(\mod T)$ для каждого набора $\alpha\in E_k^n$. При этом число T называется длиной периода. Периодическую функцию k-значной логики $f(x_1,\ldots,x_n)$ с периодом $\tau=(\tau_0\tau_1\ldots\tau_{T-1})\in E_k^T$ будем обозначать через $f_{(\tau_0\tau_1\ldots\tau_{T-1})}^{(n)}$. Понятно, что такое обозначение полностью определяет эту функцию.

Введем функцию $\operatorname{rol}(\alpha,i) \in E_k^n \times E_k \to E_k^n$, производящую чиклический сдвиг вектора α влево. Пусть $\alpha = (a_1,\ldots,a_n)$, тогда $\operatorname{rol}(\alpha,i) = (a_{(1+i) \mod k},\ldots,a_{(n+i) \mod k})$.

Класс функций A называется вырожденным, если при $n \to \infty$ для любой функции $f_n \in A_n$ выполняется: $l(f_n) = \overline{o}(5^n)$.

В данной работе рассматривается класс функций \mathcal{A} , состоящий из всех линейных комбинаций функций f и g, где f – это периодическая симметрическая функция с периодом (1,1,4,4), а g – это периодическая симметрическая функция с периодом (1,4,4,1). А также его подкласс \mathcal{F} состоящий из следующих четырех функций: f,g,f+g,f+4g.

Результаты

Поляризованные полиномы для функций из класса \mathcal{A}

Теорема 1. При $n \geqslant 1$ для периодических функций пятизначной логики $f_n = f_{(1144)}^{(n)}, g_n = f_{(1441)}^{(n)}$ верны следующие равенства:

$$f_{n+1} = j_0(x_{n+1})f_n + j_1(x_{n+1})g_n + 4j_2(x_{n+1})f_n + 4j_3(x_{n+1})g_n + j_4(x_{n+1})f_n = 4f_nx_{n+1}^4 + (3f_n + 2g_n)x_{n+1}^3 + 3(f_n + g_n)x_{n+1}^2 + (4f_n + g_n)x_{n+1} + f_n = 4f_n(x_{n+1} + 1)^4 + 2(f_n + g_n)(x_{n+1} + 1)^3 + (3f_n + 2g_n)(x_{n+1} + 1)^2 + (f_n + g_n)(x_{n+1} + 1) + 4f_n(x_{n+1} + 2)^4 + (f_n + 2g_n)(x_{n+1} + 2)^3 + (f_n + g_n)(x_{n+1} + 2)^2 + 3g_n(x_{n+1} + 2) + 4g_n = 4f_n(x_{n+1} + 3)^4 + 2g_n(x_{n+1} + 3)^3 + 2f_n(x_{n+1} + 3)^2 + 2g_n(x_{n+1} + 3) + 4f_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^2 + 3g_n(x_{n+1} + 4) + g_n = 4f_n(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^3 + (f_n + 4g_n)(x_{n+1} + 4)^4 + 2(2f_n + g_n)(x_{n+1} + 4)^4 + 2(2f_n + g_n)$$

Доказательство. Первое равенство следует из теоремы 1.

$$f_{n+1}(\bar{x}_n, 0) = 0 + 0 + 0 + 0 + f_n = f_n$$

$$f_{n+1}(\bar{x}_n, 1) = 4 f_n + 3 f_n + 2 g_n + 3 f_n + 3 g_n + 4 f_n + g_n + f_n = g_n$$

$$f_{n+1}(\bar{x}_n, 2) = 4 f_n + 4 f_n + g_n + 2 f_n + 2 g_n + 3 f_n + 2 g_n + f_n = 4 f_n$$

$$f_{n+1}(\bar{x}_n, 3) = 4 f_n + f_n + 4 g_n + 2 f_n + 2 g_n + 2 f_n + 3 g_n + f_n = 4 g_n$$

$$f_{n+1}(\bar{x}_n, 4) = 4 f_n + 2 f_n + 3 g_n + 3 f_n + 3 g_n + f_n + 4 g_n + f_n = f_n$$

$$f_{n+1}(\bar{x}_n, 0) = 4 f_n + 2 f_n + 2 g_n + 3 f_n + 2 g_n + f_n + g_n + f_n = f_n$$

$$f_{n+1}(\bar{x}_n, 1) = 4 f_n + f_n + g_n + 2 f_n + 3 g_n + 2 f_n + 2 g_n + f_n = g_n$$

$$f_{n+1}(\bar{x}_n, 2) = 4 f_n + 4 f_n + 4 g_n + 2 f_n + 3 g_n + 3 f_n + 3 g_n + f_n = 4 f_n$$

$$f_{n+1}(\bar{x}_n, 3) = 4 f_n + 3 f_n + 3 g_n + 3 f_n + 2 g_n + 4 f_n + 4 g_n + f_n = 4 g_n$$

$$f_{n+1}(\bar{x}_n, 4) = 0 + 0 + 0 + 0 + f_n = f_n$$

При поляризации x_{n+1} , когда $d_{n+1}=2$

$$f_{n+1}(\bar{x}_n, 0) = 4 f_n + 3 f_n + g_n + 4 f_n + 4 g_n + g_n + 4 g_n = f_n$$

$$f_{n+1}(\bar{x}_n, 1) = 4 f_n + 2 f_n + 4 g_n + 4 f_n + 4 g_n + 4 g_n + 4 g_n = g_n$$

$$f_{n+1}(\bar{x}_n, 2) = 4 f_n + 4 f_n + 3 g_n + f_n + g_n + 2 g_n + 4 g_n = 4 f_n$$

$$f_{n+1}(\bar{x}_n, 3) = 0 + 0 + 0 + 0 + 4 g_n = 4 g_n$$

$$f_{n+1}(\bar{x}_n, 4) = 4 f_n + f_n + 2 g_n + f_n + g_n + 3 g_n + 4 g_n = f_n$$

$$f_{n+1}(\bar{x}_n, 0) = 4 f_n + 4 g_n + 3 f_n + g_n + 4 f_n = f_n$$

$$f_{n+1}(\bar{x}_n, 1) = 4 f_n + 3 g_n + 2 f_n + 3 g_n + 4 f_n = g_n$$

$$f_{n+1}(\bar{x}_n, 2) = 0 + 0 + 0 + 0 + 4 f_n = 4 f_n$$

$$f_{n+1}(\bar{x}_n, 3) = 4 f_n + 2 g_n + 2 f_n + 2 g_n + 4 f_n = 4 g_n$$

$$f_{n+1}(\bar{x}_n, 4) = 4 f_n + g_n + 3 f_n + 4 g_n + 4 f_n = f_n$$

$$f_{n+1}(\bar{x}_n, 0) = 4 f_n + f_n + 3 g_n + f_n + 4 g_n + 2 g_n + g_n = f_n$$

$$f_{n+1}(\bar{x}_n, 1) = 0 + 0 + 0 + 0 + g_n = g_n$$

$$f_{n+1}(\bar{x}_n, 2) = 4 f_n + 4 f_n + 2 g_n + f_n + g_n + 3 g_n + g_n = 4 f_n$$

$$f_{n+1}(\bar{x}_n, 3) = 4 f_n + 2 f_n + g_n + 4 f_n + g_n + g_n + g_n = 4 g_n$$

$$f_{n+1}(\bar{x}_n, 4) = 4 f_n + 3 f_n + 4 g_n + 4 f_n + g_n + 4 g_n + g_n = f_n$$

Теорема 2. При $n \geqslant 1$ для периодических функций пятизначной логики $f_n = f_{(1144)}^{(n)}, g_n = f_{(1441)}^{(n)}$ верны следующие равенства:

$$g_{n+1} = j_0(x_{n+1})g_n + 4j_1(x_{n+1})f_n + 4j_2(x_{n+1})g_n + j_3(x_{n+1})f_n + j_4(x_{n+1})g_n =$$

$$4g_nx_{n+1}^4 + 3(f_n + g_n)x_{n+1}^3 + (2f_n + 3g_n)x_{n+1}^2 + 4(f_n + g_n)x_{n+1} + g_n =$$

$$4g_n(x_{n+1} + 1)^4 + (3f_n + 2g_n)(x_{n+1} + 1)^3 + 3(f_n + g_n)(x_{n+1} + 1)^2 + (4f_n + g_n)(x_{n+1} + 1)$$

$$4g_n(x_{n+1} + 2)^4 + (3f_n + g_n)(x_{n+1} + 2)^3 + (4f_n + g_n)(x_{n+1} + 2)^2 + 2f_n(x_{n+1} + 2) + f_n =$$

$$4g_n(x_{n+1} + 3)^4 + 3f_n(x_{n+1} + 3)^3 + 2g_n(x_{n+1} + 3)^2 + 3f_n(x_{n+1} + 3) + 4g_n =$$

$$4g_n(x_{n+1} + 4)^4 + (3f_n + 4g_n)(x_{n+1} + 4)^3 + (f_n + g_n)(x_{n+1} + 4)^2 + 2f_n(x_{n+1} + 4) + 4f_n =$$

Доказательство. Первое равенство следует из теоремы 1.

При поляризации x_{n+1} , когда $d_{n+1} = 0$

$$g_{n+1}(\bar{x}_n, 0) = 0 + 0 + 0 + 0 + g_n = g_n$$

$$g_{n+1}(\bar{x}_n, 1) = 4 g_n + 3 f_n + 3 g_n + 2 f_n + 3 g_n + 4 f_n + 4 g_n + g_n = 4 f_n$$

$$g_{n+1}(\bar{x}_n, 2) = 4 g_n + 4 f_n + 4 g_n + 3 f_n + 2 g_n + 3 f_n + 3 g_n + g_n = 4 g_n$$

$$g_{n+1}(\bar{x}_n, 3) = 4 g_n + f_n + g_n + 3 f_n + 2 g_n + 2 f_n + 2 g_n + g_n = f_n$$

$$g_{n+1}(\bar{x}_n, 4) = 4 g_n + 2 f_n + 2 g_n + 2 f_n + 3 g_n + f_n + g_n + g_n = g_n$$

$$g_{n+1}(\bar{x}_n, 0) = 4 g_n + 3 f_n + 2 g_n + 3 f_n + 3 g_n + 4 f_n + g_n + g_n = g_n$$

$$g_{n+1}(\bar{x}_n, 1) = 4 g_n + 4 f_n + g_n + 2 f_n + 2 g_n + 3 f_n + 2 g_n + g_n = 4 f_n$$

$$g_{n+1}(\bar{x}_n, 2) = 4 g_n + f_n + 4 g_n + 2 f_n + 2 g_n + 2 f_n + 3 g_n + g_n = 4 g_n$$

$$g_{n+1}(\bar{x}_n, 3) = 4 g_n + 2 f_n + 3 g_n + 3 f_n + 3 g_n + f_n + 4 g_n + g_n = f_n$$

$$g_{n+1}(\bar{x}_n, 4) = 0 + 0 + 0 + 0 + g_n = g_n$$

При поляризации x_{n+1} , когда $d_{n+1}=2$

$$g_{n+1}(\bar{x}_n, 0) = 4 g_n + 4 f_n + 3 g_n + f_n + 4 g_n + 4 f_n + f_n = g_n$$

$$g_{n+1}(\bar{x}_n, 1) = 4 g_n + f_n + 2 g_n + f_n + 4 g_n + f_n + f_n = 4 f_n$$

$$g_{n+1}(\bar{x}_n, 2) = 4 g_n + 2 f_n + 4 g_n + 4 f_n + g_n + 3 f_n + f_n = 4 g_n$$

$$g_{n+1}(\bar{x}_n, 3) = 0 + 0 + 0 + 0 + f_n = f_n$$

$$g_{n+1}(\bar{x}_n, 4) = 4 g_n + 3 f_n + g_n + 4 f_n + g_n + 2 f_n + f_n = g_n$$

$$g_{n+1}(\bar{x}_n, 0) = 4 g_n + f_n + 3 g_n + 4 f_n + 4 g_n = g_n$$

$$g_{n+1}(\bar{x}_n, 1) = 4 g_n + 2 f_n + 2 g_n + 2 f_n + 4 g_n = 4 f_n$$

$$g_{n+1}(\bar{x}_n, 2) = 0 + 0 + 0 + 0 + 4 g_n = 4 g_n$$

$$g_{n+1}(\bar{x}_n, 3) = 4 g_n + 3 f_n + 2 g_n + 3 f_n + 4 g_n = f_n$$

$$g_{n+1}(\bar{x}_n, 4) = 4 g_n + 4 f_n + 3 g_n + f_n + 4 g_n = g_n$$

$$g_{n+1}(\bar{x}_n, 0) = 4 g_n + 2 f_n + g_n + f_n + g_n + 3 f_n + 4 f_n = g_n$$

$$g_{n+1}(\bar{x}_n, 1) = 0 + 0 + 0 + 0 + 4 f_n = 4 f_n$$

$$g_{n+1}(\bar{x}_n, 2) = 4 g_n + 3 f_n + 4 g_n + f_n + g_n + 2 f_n + 4 f_n = 4 g_n$$

$$g_{n+1}(\bar{x}_n, 3) = 4 g_n + 4 f_n + 2 g_n + 4 f_n + 4 g_n + 4 f_n + 4 f_n = f_n$$

$$g_{n+1}(\bar{x}_n, 4) = 4 g_n + f_n + 3 g_n + 4 f_n + 4 g_n + f_n + 4 f_n = g_n$$

Теорема 3. При $n \geqslant 1$ для периодических функций пятизначной логики $f_n = f_{(1144)}^{(n)}, g_n = f_{(1441)}^{(n)}$ верны следующие равенства:

$$s_{n+1}^{1} = f_{n+1} + g_{n+1} =$$

$$(4 f_n + 4 g_n)x^4 + f_n x^3 + g_n x^2 + 3 f_n x + f_n + g_n =$$

$$(4 f_n + 4 g_n)(x+1)^4 + 4 g_n (x+1)^3 + f_n (x+1)^2 + 2 g_n (x+1) + f_n + g_n =$$

$$(4 f_n + 4 g_n)(x+2)^4 + (4 f_n + 3 g_n)(x+2)^3 + 2 g_n (x+2)^2 + (2 f_n + 3 g_n)(x+2) + f_n + 4 g_n + 2 g_n + 2$$

Доказательство. Первое равенство следует из теоремы 1.

При поляризации x_{n+1} , когда $d_{n+1} = 0$

$$s_{n+1}^{1}(\bar{x}_{n},0) = 0 + 0 + 0 + 0 + f_{n} + g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},1) = 4 f_{n} + 4 g_{n} + f_{n} + g_{n} + 3 f_{n} + f_{n} + g_{n} = 4 f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},2) = 4 f_{n} + 4 g_{n} + 3 f_{n} + 4 g_{n} + f_{n} + f_{n} + g_{n} = 4 f_{n} + 4 g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},3) = 4 f_{n} + 4 g_{n} + 2 f_{n} + 4 g_{n} + 4 f_{n} + f_{n} + g_{n} = f_{n} + 4 g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},4) = 4 f_{n} + 4 g_{n} + 4 f_{n} + g_{n} + 2 f_{n} + f_{n} + g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},0) = 4 f_{n} + 4 g_{n} + 4 g_{n} + f_{n} + 2 g_{n} + f_{n} + g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},1) = 4 f_{n} + 4 g_{n} + 2 g_{n} + 4 f_{n} + 4 g_{n} + f_{n} + g_{n} = 4 f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},2) = 4 f_{n} + 4 g_{n} + 3 g_{n} + 4 f_{n} + g_{n} + f_{n} + g_{n} = 4 f_{n} + 4 g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},3) = 4 f_{n} + 4 g_{n} + g_{n} + f_{n} + 3 g_{n} + f_{n} + g_{n} = f_{n} + 4 g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},4) = 0 + 0 + 0 + 0 + 0 + f_{n} + g_{n} = f_{n} + g_{n}$$

При поляризации x_{n+1} , когда $d_{n+1}=2$

$$s_{n+1}^{1}(\bar{x}_{n},0) = 4f_{n} + 4g_{n} + 2f_{n} + 4g_{n} + 3g_{n} + 4f_{n} + g_{n} + f_{n} + 4g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},1) = 4f_{n} + 4g_{n} + 3f_{n} + g_{n} + 3g_{n} + f_{n} + 4g_{n} + f_{n} + 4g_{n} = 4f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},2) = 4f_{n} + 4g_{n} + f_{n} + 2g_{n} + 2g_{n} + 3f_{n} + 2g_{n} + f_{n} + 4g_{n} = 4f_{n} + 4g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},3) = 0 + 0 + 0 + 0 + f_{n} + 4g_{n} = f_{n} + 4g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},4) = 4f_{n} + 4g_{n} + 4f_{n} + 3g_{n} + 2g_{n} + 2f_{n} + 3g_{n} + f_{n} + 4g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},0) = 4f_{n} + 4g_{n} + f_{n} + 4g_{n} + 3f_{n} + 3g_{n} + 4f_{n} + g_{n} + 4f_{n} + 4g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},1) = 4f_{n} + 4g_{n} + 2f_{n} + 3g_{n} + 2f_{n} + 2g_{n} + 2f_{n} + 3g_{n} + 4f_{n} + 4g_{n} = 4f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},2) = 0 + 0 + 0 + 0 + 4f_{n} + 4g_{n} = 4f_{n} + 4g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},3) = 4f_{n} + 4g_{n} + 3f_{n} + 2g_{n} + 2f_{n} + 2g_{n} + 3f_{n} + 2g_{n} + 4f_{n} + 4g_{n} = f_{n} + 4g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},4) = 4f_{n} + 4g_{n} + 4f_{n} + g_{n} + 3f_{n} + 3g_{n} + f_{n} + 4g_{n} + 4f_{n} + 4g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},0) = 4 f_{n} + 4 g_{n} + 3 f_{n} + 4 g_{n} + 2 f_{n} + 3 f_{n} + 2 g_{n} + 4 f_{n} + g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},1) = 0 + 0 + 0 + 0 + 4 f_{n} + g_{n} = 4 f_{n} + g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},2) = 4 f_{n} + 4 g_{n} + 2 f_{n} + g_{n} + 2 f_{n} + 3 g_{n} + 4 f_{n} + g_{n} = 4 f_{n} + 4 g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},3) = 4 f_{n} + 4 g_{n} + f_{n} + 3 g_{n} + 3 f_{n} + 4 f_{n} + g_{n} + 4 f_{n} + g_{n} = f_{n} + 4 g_{n}$$

$$s_{n+1}^{1}(\bar{x}_{n},4) = 4 f_{n} + 4 g_{n} + 4 f_{n} + 2 g_{n} + 3 f_{n} + f_{n} + 4 g_{n} + 4 f_{n} + g_{n} = f_{n} + g_{n}$$

Теорема 4. При $n \ge 1$ для периодических функций пятизначной логики $f_n = f_{(1144)}^{(n)}$, $g_n = f_{(1441)}^{(n)}$ верны следующие равенства:

$$s_{n+1}^{2} = f_{n+1} + 2 g_{n+1} = (4 f_{n} + 3 g_{n})x^{4} + (4 f_{n} + 3 g_{n})x^{3} + (2 f_{n} + 4 g_{n})x^{2} + (2 f_{n} + 4 g_{n})x + f_{n} + 2 g_{n} = (4 f_{n} + 3 g_{n})(x + 1)^{4} + (3 f_{n} + g_{n})(x + 1)^{3} + (4 f_{n} + 3 g_{n})(x + 1)^{2} + (4 f_{n} + 3 g_{n})(x + 1) + (4 f_{n} + 3 g_{n})(x + 2)^{4} + (2 f_{n} + 4 g_{n})(x + 2)^{3} + (4 f_{n} + 3 g_{n})(x + 2)^{2} + (4 f_{n} + 3 g_{n})(x + 2) + (4 f_{n} + 3 g_{n})(x + 3)^{4} + (f_{n} + 2 g_{n})(x + 3)^{3} + 2 (f_{n} + 2 g_{n})(x + 3)^{2} + (f_{n} + 2 g_{n})(x + 3) + 4 (4 f_{n} + 3 g_{n})(x + 4)^{4} + (3 f_{n} + g_{n})(x + 4)^{2} + (4 f_{n} + 3 g_{n})(x + 4) + 3 f_{n} + g_{n} = (4 f_{n} + 3 g_{n})(x + 4)^{4} + (3 f_{n} + g_{n})(x + 4)^{2} + (4 f_{n} + 3 g_{n})(x + 4) + 3 f_{n} + g_{n} = (4 f_{n} + 3 g_{n})(x + 4)^{4} + (3 f_{n} + g_{n})(x + 4)^{2} + (4 f_{n} + 3 g_{n})(x + 4) + 3 f_{n} + g_{n} = (4 f_{n} + 3 g_{n})(x + 4)^{4} + (3 f_{n} + g_{n})(x + 4)^{2} + (4 f_{n} + 3 g_{n})(x + 4) + 3 f_{n} + g_{n} = (4 f_{n} + 3 g_{n})(x + 4)^{4} + (3 f_{n} + g_{n})(x + 4)^{2} + (4 f_{n} + 3 g_{n})(x + 4) + 3 f_{n} + g_{n} = (4 f_{n} + 3 g_{n})(x + 4)^{4} + (3 f_{n} + g_{n})(x + 4)^{2} + (4 f_{n} + 3 g_{n})(x + 4) + 3 f_{n} + g_{n} = (4 f_{n} + 3 g_{n})(x + 4)^{4} + (3 f_{n} + g_{n})(x + 4)^{2} + (4 f_{n} + 3 g_{n})(x + 4) + 3 f_{n} + g_{n} = (4 f_{n} + 3 g_{n})(x + 4)^{4} + (4 f_{n} + 3 g_{n})(x + 4)^{2} + (4$$

Доказательство. Первое равенство следует из теоремы 1.

При поляризации x_{n+1} , когда $d_{n+1} = 0$

$$s_{n+1}^{2}(\bar{x}_{n},0) = 0 + 0 + 0 + 0 + f_{n} + 2g_{n} = f_{n} + 2g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},1) = 4f_{n} + 3g_{n} + 4f_{n} + 3g_{n} + 2f_{n} + 4g_{n} + 2f_{n} + 4g_{n} + f_{n} + 2g_{n} = 3f_{n} + g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},2) = 4f_{n} + 3g_{n} + 2f_{n} + 4g_{n} + 3f_{n} + g_{n} + 4f_{n} + 3g_{n} + f_{n} + 2g_{n} = 4f_{n} + 3g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},3) = 4f_{n} + 3g_{n} + 3f_{n} + g_{n} + 3f_{n} + g_{n} + f_{n} + 2g_{n} + f_{n} + 2g_{n} = 2f_{n} + 4g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},4) = 4f_{n} + 3g_{n} + f_{n} + 2g_{n} + 2f_{n} + 4g_{n} + 3f_{n} + g_{n} + f_{n} + 2g_{n} = f_{n} + 2g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},0) = 4 f_{n} + 3 g_{n} + 3 f_{n} + g_{n} + 4 f_{n} + 3 g_{n} + 4 f_{n} + 3 g_{n} + f_{n} + 2 g_{n} = f_{n} + 2 g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},1) = 4 f_{n} + 3 g_{n} + 4 f_{n} + 3 g_{n} + f_{n} + 2 g_{n} + 3 f_{n} + g_{n} + f_{n} + 2 g_{n} = 3 f_{n} + g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},2) = 4 f_{n} + 3 g_{n} + f_{n} + 2 g_{n} + f_{n} + 2 g_{n} + 2 f_{n} + 4 g_{n} + f_{n} + 2 g_{n} = 4 f_{n} + 3 g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},3) = 4 f_{n} + 3 g_{n} + 2 f_{n} + 4 g_{n} + 4 f_{n} + 3 g_{n} + f_{n} + 2 g_{n} + f_{n} + 2 g_{n} = 2 f_{n} + 4 g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},4) = 0 + 0 + 0 + 0 + 0 + f_{n} + 2 g_{n} = f_{n} + 2 g_{n}$$

При поляризации x_{n+1} , когда $d_{n+1}=2$

$$s_{n+1}^{2}(\bar{x}_{n},0) = 4f_{n} + 3g_{n} + f_{n} + 2g_{n} + f_{n} + 2g_{n} + 3f_{n} + g_{n} + 2f_{n} + 4g_{n} = f_{n} + 2g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},1) = 4f_{n} + 3g_{n} + 4f_{n} + 3g_{n} + f_{n} + 2g_{n} + 2f_{n} + 4g_{n} + 2f_{n} + 4g_{n} = 3f_{n} + g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},2) = 4f_{n} + 3g_{n} + 3f_{n} + g_{n} + 4f_{n} + 3g_{n} + f_{n} + 2g_{n} + 2f_{n} + 4g_{n} = 4f_{n} + 3g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},3) = 0 + 0 + 0 + 0 + 2f_{n} + 4g_{n} = 2f_{n} + 4g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},4) = 4f_{n} + 3g_{n} + 2f_{n} + 4g_{n} + 4f_{n} + 3g_{n} + 4f_{n} + 3g_{n} + 2f_{n} + 4g_{n} = f_{n} + 2g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},0) = 4f_{n} + 3g_{n} + 2f_{n} + 4g_{n} + 3f_{n} + g_{n} + 3f_{n} + g_{n} + 4f_{n} + 3g_{n} = f_{n} + 2g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},1) = 4f_{n} + 3g_{n} + 4f_{n} + 3g_{n} + 2f_{n} + 4g_{n} + 4f_{n} + 3g_{n} + 4f_{n} + 3g_{n} = 3f_{n} + g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},2) = 0 + 0 + 0 + 0 + 4f_{n} + 3g_{n} = 4f_{n} + 3g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},3) = 4f_{n} + 3g_{n} + f_{n} + 2g_{n} + 2f_{n} + 4g_{n} + f_{n} + 2g_{n} + 4f_{n} + 3g_{n} = 2f_{n} + 4g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},4) = 4f_{n} + 3g_{n} + 3f_{n} + g_{n} + 3f_{n} + g_{n} + 2f_{n} + 4g_{n} + 4f_{n} + 3g_{n} = f_{n} + 2g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},0) = 4f_{n} + 3g_{n} + 0 + 3f_{n} + g_{n} + f_{n} + 2g_{n} + 3f_{n} + g_{n} = f_{n} + 2g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},1) = 0 + 0 + 0 + 0 + 3f_{n} + g_{n} = 3f_{n} + g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},2) = 4f_{n} + 3g_{n} + 0 + 3f_{n} + g_{n} + 4f_{n} + 3g_{n} + 3f_{n} + g_{n} = 4f_{n} + 3g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},3) = 4f_{n} + 3g_{n} + 0 + 2f_{n} + 4g_{n} + 3f_{n} + g_{n} + 3f_{n} + g_{n} = 2f_{n} + 4g_{n}$$

$$s_{n+1}^{2}(\bar{x}_{n},4) = 4f_{n} + 3g_{n} + 0 + 2f_{n} + 4g_{n} + 2f_{n} + 4g_{n} + 3f_{n} + g_{n} = f_{n} + 2g_{n}$$

Теорема 5. При $n \geqslant 1$ для периодических функций пятизначной логики $f_n = f_{(1144)}^{(n)}, g_n = f_{(1441)}^{(n)}$ верны следующие равенства:

$$s_{n+1}^{3} = f_{n+1} + 3 g_{n+1} = (4 f_n + 2 g_n) x^4 + (2 f_n + g_n) x^3 + (4 f_n + 2 g_n) x^2 + (f_n + 3 g_n) x + f_n + 3 g_n = (4 f_n + 2 g_n) (x + 1)^4 + (f_n + 3 g_n) (x + 1)^3 + (2 f_n + g_n) (x + 1)^2 + (3 f_n + 4 g_n) (x + 1) + f_n + (4 f_n + 2 g_n) (x + 2)^4 + (3 f_n + 4 g_n) (x + 2)^2 + (f_n + 3 g_n) (x + 2) + 3 f_n + 4 g_n = (4 f_n + 2 g_n) (x + 3)^4 + (4 f_n + 2 g_n) (x + 3)^3 + 2 (f_n + 3 g_n) (x + 3)^2 + (4 f_n + 2 g_n) (x + 3) + (4 f_n + 2 g_n) (x + 4)^4 + (3 f_n + 4 g_n) (x + 4)^3 + (4 f_n + 2 g_n) (x + 4)^2 + (f_n + 3 g_n) (x + 4) + 2 g_n + 2 g_n + 3 g_n$$

Доказательство. Первое равенство следует из теоремы 1.

$$s_{n+1}^{3}(\bar{x}_{n},0) = 0 + 0 + 0 + 0 + f_{n} + 3 g_{n} = f_{n} + 3 g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},1) = 4 f_{n} + 2 g_{n} + 2 f_{n} + g_{n} + 4 f_{n} + 2 g_{n} + f_{n} + 3 g_{n} + f_{n} + 3 g_{n} = 2 f_{n} + g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},2) = 4 f_{n} + 2 g_{n} + f_{n} + 3 g_{n} + f_{n} + 3 g_{n} + 2 f_{n} + g_{n} + f_{n} + 3 g_{n} = 4 f_{n} + 2 g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},3) = 4 f_{n} + 2 g_{n} + 4 f_{n} + 2 g_{n} + f_{n} + 3 g_{n} + 3 f_{n} + 4 g_{n} + f_{n} + 3 g_{n} = 3 f_{n} + 4 g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},4) = 4 f_{n} + 2 g_{n} + 3 f_{n} + 4 g_{n} + 4 f_{n} + 2 g_{n} + 4 f_{n} + 2 g_{n} + f_{n} + 3 g_{n} = f_{n} + 3 g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},0) = 4f_{n} + 2g_{n} + f_{n} + 3g_{n} + 2f_{n} + g_{n} + 3f_{n} + 4g_{n} + f_{n} + 3g_{n} = f_{n} + 3g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},1) = 4f_{n} + 2g_{n} + 3f_{n} + 4g_{n} + 3f_{n} + 4g_{n} + f_{n} + 3g_{n} + f_{n} + 3g_{n} = 2f_{n} + g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},2) = 4f_{n} + 2g_{n} + 2f_{n} + g_{n} + 3f_{n} + 4g_{n} + 4f_{n} + 2g_{n} + f_{n} + 3g_{n} = 4f_{n} + 2g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},3) = 4f_{n} + 2g_{n} + 4f_{n} + 2g_{n} + 2f_{n} + g_{n} + 2f_{n} + g_{n} + f_{n} + 3g_{n} = 3f_{n} + 4g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},4) = 0 + 0 + 0 + 0 + 0 + f_{n} + 3g_{n} = f_{n} + 3g_{n}$$

При поляризации x_{n+1} , когда $d_{n+1}=2$

$$\begin{split} s_{n+1}^3(\bar{x}_n,0) &= 4\,f_n + 2\,g_n + 0 + 2\,f_n + g_n + 2\,f_n + g_n + 3\,f_n + 4\,g_n = f_n + 3\,g_n \\ s_{n+1}^3(\bar{x}_n,1) &= 4\,f_n + 2\,g_n + 0 + 2\,f_n + g_n + 3\,f_n + 4\,g_n + 3\,f_n + 4\,g_n = 2\,f_n + g_n \\ s_{n+1}^3(\bar{x}_n,2) &= 4\,f_n + 2\,g_n + 0 + 3\,f_n + 4\,g_n + 4\,f_n + 2\,g_n + 3\,f_n + 4\,g_n = 4\,f_n + 2\,g_n \\ s_{n+1}^3(\bar{x}_n,3) &= 0 + 0 + 0 + 0 + 3\,f_n + 4\,g_n = 3\,f_n + 4\,g_n \\ s_{n+1}^3(\bar{x}_n,4) &= 4\,f_n + 2\,g_n + 0 + 3\,f_n + 4\,g_n + f_n + 3\,g_n + 3\,f_n + 4\,g_n = f_n + 3\,g_n \end{split}$$

$$s_{n+1}^{3}(\bar{x}_{n},0) = 4f_{n} + 2g_{n} + 3f_{n} + 4g_{n} + 3f_{n} + 4g_{n} + 2f_{n} + g_{n} + 4f_{n} + 2g_{n} = f_{n} + 3g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},1) = 4f_{n} + 2g_{n} + f_{n} + 3g_{n} + 2f_{n} + g_{n} + f_{n} + 3g_{n} + 4f_{n} + 2g_{n} = 2f_{n} + g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},2) = 0 + 0 + 0 + 0 + 4f_{n} + 2g_{n} = 4f_{n} + 2g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},3) = 4f_{n} + 2g_{n} + 4f_{n} + 2g_{n} + 2f_{n} + g_{n} + 4f_{n} + 2g_{n} + 4f_{n} + 2g_{n} = 3f_{n} + 4g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},4) = 4f_{n} + 2g_{n} + 2f_{n} + g_{n} + 3f_{n} + 4g_{n} + 4f_{n} + 2g_{n} = f_{n} + 3g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},0) = 4f_{n} + 2g_{n} + 2f_{n} + g_{n} + 4f_{n} + 2g_{n} + 4f_{n} + 2g_{n} + 2f_{n} + g_{n} = f_{n} + 3g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},1) = 0 + 0 + 0 + 0 + 2f_{n} + g_{n} = 2f_{n} + g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},2) = 4f_{n} + 2g_{n} + 3f_{n} + 4g_{n} + 4f_{n} + 2g_{n} + f_{n} + 3g_{n} + 2f_{n} + g_{n} = 4f_{n} + 2g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},3) = 4f_{n} + 2g_{n} + 4f_{n} + 2g_{n} + f_{n} + 3g_{n} + 2f_{n} + g_{n} = 3f_{n} + 4g_{n}$$

$$s_{n+1}^{3}(\bar{x}_{n},4) = 4f_{n} + 2g_{n} + f_{n} + 3g_{n} + f_{n} + 3g_{n} + 2f_{n} + g_{n} = f_{n} + 3g_{n}$$

Теорема 6. При $n \geqslant 1$ для периодических функций пятизначной логики $f_n = f_{(1144)}^{(n)}, g_n = f_{(1441)}^{(n)}$ верны следующие равенства:

$$s_{n+1}^{4} = f_{n+1} + 4g_{n+1} = (4f_n + g_n)x^4 + 4g_nx^3 + f_nx^2 + 2g_nx + f_n + 4g_n = (4f_n + g_n)(x+1)^4 + 4f_n(x+1)^3 + 4g_n(x+1)^2 + 2f_n(x+1) + f_n + 4g_n = (4f_n + g_n)(x+2)^4 + (3f_n + g_n)(x+2)^3 + 2f_n(x+2)^2 + (3f_n + 3g_n)(x+2) + 4f_n + 4g_n = (4f_n + g_n)(x+3)^4 + (2f_n + 2g_n)(x+3)^3 + 2(f_n + 4g_n)(x+3)^2 + (2f_n + 2g_n)(x+3) + 4g_n = (4f_n + g_n)(x+4)^4 + (f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (3f_n + 3g_n)(x+4) + f_n + g_n = (4f_n + g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (4f_n + 3g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (4f_n + 3g_n)(x+4)^4 + (4f_n + 3g_n)(x+4)^3 + 3g_n(x+4)^2 + (4f_n + 3g_n)(x+4)^4 + (4f_n + 3g_n)(x+$$

Доказательство. Первое равенство следует из теоремы 1.

$$s_{n+1}^{4}(\bar{x}_{n},0) = 0 + 0 + 0 + 0 + f_{n} + 4g_{n} = f_{n} + 4g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},1) = 4f_{n} + g_{n} + 4g_{n} + f_{n} + 2g_{n} + f_{n} + 4g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},2) = 4f_{n} + g_{n} + 2g_{n} + 4f_{n} + 4g_{n} + f_{n} + 4g_{n} = 4f_{n} + g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},3) = 4f_{n} + g_{n} + 3g_{n} + 4f_{n} + g_{n} + f_{n} + 4g_{n} = 4f_{n} + 4g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},4) = 4f_{n} + g_{n} + g_{n} + f_{n} + 4g_{n} = f_{n} + 4g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},0) = 4f_{n} + g_{n} + 4f_{n} + 4g_{n} + 2f_{n} + 0g_{n} + f_{n} + 4g_{n} = f_{n} + 4g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},1) = 4f_{n} + g_{n} + 2f_{n} + g_{n} + 4f_{n} + 0g_{n} + f_{n} + 4g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},2) = 4f_{n} + g_{n} + 3f_{n} + g_{n} + f_{n} + 0g_{n} + f_{n} + 4g_{n} = 4f_{n} + g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},3) = 4f_{n} + g_{n} + f_{n} + 4g_{n} + 3f_{n} + 0g_{n} + f_{n} + 4g_{n} = 4f_{n} + 4g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},4) = 0 + 0 + 0 + 0 + 0 + f_{n} + 4g_{n} = f_{n} + 4g_{n}$$

При поляризации x_{n+1} , когда $d_{n+1}=2$

$$s_{n+1}^4(\bar{x}_n,0) = 4\,f_n + g_n + 4\,f_n + 3\,g_n + 3\,f_n + f_n + g_n + 4\,f_n + 4\,g_n = f_n + 4\,g_n$$

$$s_{n+1}^4(\bar{x}_n,1) = 4\,f_n + g_n + f_n + 2\,g_n + 3\,f_n + 4\,f_n + 4\,g_n + 4\,f_n + 4\,g_n = f_n + g_n$$

$$s_{n+1}^4(\bar{x}_n,2) = 4\,f_n + g_n + 2\,f_n + 4\,g_n + 2\,f_n + 2\,f_n + 2\,g_n + 4\,f_n + 4\,g_n = 4\,f_n + g_n$$

$$s_{n+1}^4(\bar{x}_n,3) = 0 + 0 + 0 + 0 + 4\,f_n + 4\,g_n = 4\,f_n + 4\,g_n$$

$$s_{n+1}^4(\bar{x}_n,4) = 4\,f_n + g_n + 3\,f_n + g_n + 2\,f_n + 3\,f_n + 3\,g_n + 4\,f_n + 4\,g_n = f_n + 4\,g_n$$

$$s_{n+1}^{4}(\bar{x}_{n},0) = 4f_{n} + g_{n} + 4f_{n} + 4g_{n} + 3f_{n} + 2g_{n} + f_{n} + g_{n} + 4f_{n} + g_{n} = f_{n} + 4g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},1) = 4f_{n} + g_{n} + 3f_{n} + 3g_{n} + 2f_{n} + 3g_{n} + 3f_{n} + 3g_{n} + 4f_{n} + g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},2) = 0 + 0 + 0 + 0 + 4f_{n} + g_{n} = 4f_{n} + g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},3) = 4f_{n} + g_{n} + 2f_{n} + 2g_{n} + 2f_{n} + 3g_{n} + 2f_{n} + 2g_{n} + 4f_{n} + g_{n} = 4f_{n} + 4g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},4) = 4f_{n} + g_{n} + f_{n} + g_{n} + 3f_{n} + 2g_{n} + 4f_{n} + 4g_{n} + 4f_{n} + g_{n} = f_{n} + 4g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},0) = 4 f_{n} + g_{n} + 4 f_{n} + 2 g_{n} + 0 f_{n} + 3 g_{n} + 2 f_{n} + 2 g_{n} + f_{n} + g_{n} = f_{n} + 4 g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},1) = 0 + 0 + 0 + 0 + f_{n} + g_{n} = f_{n} + g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},2) = 4 f_{n} + g_{n} + f_{n} + 3 g_{n} + 0 f_{n} + 3 g_{n} + 3 f_{n} + 3 g_{n} + f_{n} + g_{n} = 4 f_{n} + g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},3) = 4 f_{n} + g_{n} + 3 f_{n} + 4 g_{n} + 0 f_{n} + 2 g_{n} + f_{n} + g_{n} + f_{n} + g_{n} = 4 f_{n} + 4 g_{n}$$

$$s_{n+1}^{4}(\bar{x}_{n},4) = 4 f_{n} + g_{n} + 2 f_{n} + g_{n} + 0 f_{n} + 2 g_{n} + 4 f_{n} + 4 g_{n} + f_{n} + g_{n} = f_{n} + 4 g_{n}$$

Обобщение результатов в таблицах

Полученные результаты можно выразить следующей таблицей:

q_{n+1}	0	1	2	3	4
f_{n+1}	$fs^4s^1s^4f$	$fs^1s^4s^1f$	fs^2s^1gg	fgfgf	fs^3s^4gg
g_{n+1}	$gs^1s^4s^1g$	$gs^4s^1s^4g$	gs^2s^4ff	gfgfg	gs^3s^1ff
s_{n+1}^1	$s^1 f g f s^1$	s^1gfgs^1	$s^1s^2gs^4s^4$	$s^1s^4s^1s^4s^1$	$s^1s^3fs^4s^4$
s_{n+1}^2	$s^2s^2s^2s^2s^2$	$s^2s^2s^2s^2s^2$	$s^2s^2s^2s^2s^2$	$s^2s^2s^2s^2s^2$	$s^2s^2s^2s^2$
s_{n+1}^3	$s^3s^3s^3s^3s^3$	$s^3s^3s^3s^3s^3$	$s^3s^3s^3s^3$	$s^3s^3s^3s^3s^3$	$s^3s^3s^3s^3s^3$
s_{n+1}^4	s^4gfgs^4	s^4fgfs^4	$s^4s^2fs^1s^1$	$s^4s^1s^4s^1s^4$	$s^4s^3gs^1s^1$

Таблица 1: Выражения функций

Теорема 7. При $n \geqslant 1$ длина полинома периодической функции пятизначной логики $s_n^2 = f_n + 2 g_n$ при поляризации $\delta = (d_1, \ldots, d_n)$ выражается следующей

формулой:

$$l(P^{\delta}(s_n^2)) = 5^{n-m} \cdot 4^m,$$

 $\epsilon de\ m\ - \kappa o$ личе ϵm во $4\ в\ векторе\ \delta$.

 $\ensuremath{\mathcal{A}\!o} \kappa a s a meль c m s o$. Так как s_n^2 симметрическая функция, то можно считать, что

$$d_i \in \{0,1,2,3\}, i = 1,\ldots,n-m \quad d_i = 4, i = n-m+1,\ldots,n.$$

Доказательство проведем индукцией по n — числу переменных функции s_n^2 . При n=1 получаем если m=0, то $l(P^\delta(s_1^2))=5$, а если m=1, то $l(P^\delta(s_1^2))=4$ — верно. Введем c — число функций s_{n-1}^2 , через которые выражается s_n^2 . Пусть формула верна для n-1, тогда из таблицы 1 видно, что s_n^2 выражается через c=5 функций s_{n-1}^2 , если $d_n\in\{0,1,2,3\}$ и через c=4 функции s_{n-1}^2 , если $d_n=4$ при каждой из которых x_n стоит в различных степенях. Пусть m' — количество 4 в векторе $(d_1,\ldots,n-1)$. Поэтому $l(P^\delta(s_n^2))=5^{n-1-m'}\cdot 4^{m'}\cdot c=5^{n-m}\cdot 4^m$.

Теорема 8. При $n \geqslant 1$ длина полинома периодической функции пятизначной логики $s_n^3 = f_n + 3 g_n$ при поляризации $\delta = (d_1, \ldots, d_n)$ выражается следующей формулой:

$$l(P^{\delta}(s_n^3)) = 5^{n-m} \cdot 4^m,$$

где m – количество 2 в векторе δ .

 $\ensuremath{\mathcal{A}o\kappa asame \wedge bcm 60}.$ Так как s_n^3 симметрическая функция, то можно считать, что

$$d_i \in \{0,1,3,4\}, i = 1,\ldots,n-m \quad d_i = 2, i = n-m+1,\ldots,n.$$

Доказательство проведем индукцией по n – числу переменных функции s_n^3 . При n=1 получаем если m=0, то $l(P^\delta(s_1^3))=5$, а если m=1, то $l(P^\delta(s_1^3))=4$ – верно. Введем c – число функций s_{n-1}^3 , через которые выражается s_n^3 . Пусть

формула верна для n-1, тогда из таблицы 1 видно, что s_n^3 выражается через c=5 функций s_{n-1}^3 , если $d_n\in\{0,1,3,4\}$ и через c=4 функции s_{n-1}^3 , если $d_n=2$ при каждой из которых x_n стоит в различных степенях. Пусть m' – количество 4 в векторе $(d_1,\ldots,n-1)$. Поэтому $l(P^\delta(s_n^3))=5^{n-1-m'}\cdot 4^{m'}\cdot c=5^{n-m}\cdot 4^m$.

Обозначим s^1 и s^4 через h и t соответственно. Для удобства перепишем таблицу 1 в новых обозначениях:

q_{n+1}	0	1	2	3	4
$\int f_{n+1}$	fthtf	fhthf	fs^2hgg	fgfgf	fs^3tgg
g_{n+1}	ghthg	gthtg	gs^2tff	gfgfg	gs^3hff
h_{n+1}	hfgfh	hgfgh	hs^2gtt	hthth	hs^3ftt
t_{n+1}	tgfgt	tfgft	ts^2fhh	ththt	ts^3ghh

Таблица 2: Выражения функций

Рассмотрим функции f_1, g_1, h_1, t_1 . В следующей таблице приведены длины этих функций, в зависимости от поляризации:

q_1	0	1	2	3	4
f_1	3	4	5	5	4
g_1	4	3	4	5	5
h_1	5	5	3	3	3
t_1	3	3	4	2	4

Таблица 3: Длины функций

Оценки для функций из класса $\mathcal F$

Нижняя оценка

Лемма 1. При векторе поляризации $\delta = (d_1, \ldots, d_n), d_i \in \{0,1,3\}, i = 1, \ldots, n$ и φ_n – любой функции из \mathcal{F}^n верно:

$$l(P^{\delta}(\varphi_n)) \geqslant \frac{2}{5} \cdot 5^n.$$

Доказательство. Из таблицы 3 видно, что при $n=1, l(P^{\delta}(\varphi_1)) \geqslant 2$. По теореме 7 $l(P^{\delta}(s_n^2)) = 5^n$, а по теореме 8 $l(P^{\delta}(s_n^3)) = 5^n$. Функция φ_n выражается (см. таблицу 2) через 5 функций из \mathcal{F}^{n-1} или через 4 функции из \mathcal{F}^{n-1} и одну из функций $\{s_{n-1}^2, s_{n-1}^3\}$, поэтому

$$l(P^{\delta}(\varphi_n)) \geqslant \min(\frac{2}{5} \cdot 5^{n-1} \cdot 5, \frac{2}{5} \cdot 5^{n-1} \cdot 4 + 1 \cdot 5^{n-1}) = \frac{2}{5} \cdot 5^n.$$

Лемма 2. При векторе поляризации $\delta = (d_1, \dots, d_n), d_i \in \{0, 1, 3, 4\}, i = 1, \dots, n$ и φ_n – любой функции из \mathcal{F}^n верно:

$$l(P^{\delta}(\varphi_n)) \geqslant \frac{2}{5} \cdot 5^n.$$

Доказательство. Пусть m – количество 4 в векторе δ . Так как φ_n симметрическая функция, то можно считать, что

$$d_i \in \{0,1,3\}, i = 1, \dots, n-m \quad d_i = 4, i = n-m+1, \dots, n.$$

Если m=0, то $l(P^{\delta}(\varphi_n))\geqslant \frac{2}{5}\cdot 5^n$ по предыдущей лемме. Если $m\neq 0$, то по предыдущей лемме для всех $\varphi\in\{f,g,h,t\}$ $l(P^{\delta}(\varphi_{n-m}))\geqslant \frac{2}{5}\cdot 5^{n-m}$. При переходе от n-m к n-m+1 переменная x_{n-m+1} имеет поляризацию 4 и φ_{n-m+1} выражается через 4 функции из \mathcal{F}^{n-m} и одну функцию s_{n-m}^3 , причем по теореме 8 $l(P^{(d_1,\dots,d_{n-m})}(s_{n-m}^3))=5^{n-m}$, поэтому $l(P^{\delta}(\varphi_{n-m+1}))\geqslant \frac{2}{5}\cdot 5^{n-m}\cdot 4+5^{n-m}>\frac{2}{5}\cdot 5^{n-m+1}$. Пусть k=n-m+1, пока k< n продолжим аналогичные рассуждения, переходя от k к k+1. Получим, что

 $l(P^{\delta}(\varphi_n)) \geqslant \frac{2}{5} \cdot 5^n.$

5

Лемма 3. При векторе поляризации $\delta = (d_1, \dots, d_n), d_i = 2, i = 1, \dots, n$ и φ_n - любой функции из \mathcal{F}^n верно:

$$l(P^{\delta}(\varphi_n)) \geqslant 5^n - \frac{1}{2}4^n.$$

Доказательство. При поляризации 2k+1-ой переменной φ_{k+1} выражается через четыре функции из \mathcal{F}^k и одну функцию s_k^2 , причем $l(P^\delta(s_k^2)) = 5^k$, а из таблицы 3 видно, что длина минимальная длина среди функций из \mathcal{F}^1 при поляризации 2 равна 3. Поэтому выражение для длины φ_k можно получить решая следующую линейную неоднородную задачу:

$$x_{k+1} = 4x_k + 5^k$$
$$x_1 = 3$$

Решая эту задачу получим $l(P^{\delta}(\varphi_n)) \geqslant 5^n - \frac{1}{2}4^n$.

Лемма 4. При векторе поляризации $\delta = (d_1, \dots, d_n), d_i = 2, i = 1, \dots, m, d_i = 1, \dots, m$

 $i=4,\ i=n-m+1,\ldots,n$ и $arphi_n$ – любой функции из \mathcal{F}^n верно:

$$l(P^{\delta}(\varphi_n)) \geqslant \left(\left(\frac{5}{4} \right)^m - \frac{3}{2} \right) \cdot 4^n + 4^m \cdot 5^{n-m}.$$

Доказательство. Если n=m, то утверждение этой леммы следует из леммы 3, поэтому будем считать, что n>m. При k>m при поляризации 4 k+1-ой переменной φ_{k+1} выражается через четыре функции из \mathcal{F}^k и одну функцию s_k^3 , причем $l(P^\delta(s_k^3))=5^{k-m}\cdot 4^m$, а по лемме 3 $l(P^\delta(\varphi_m))\geqslant 5^m-\frac{1}{2}4^m$. Поэтому выражение для длины φ_n можно получить решая следующую линейную неоднородную задачу:

$$x_{k+1} = 4x_k + 5^{k-m} \cdot 4^m$$

$$x_m = 5^m - \frac{1}{2}4^m$$

Решая эту задачу получим $l(P^{\delta}(\varphi_n)) \geqslant \left(\left(\frac{5}{4}\right)^m - \frac{3}{2}\right) \cdot 4^n + 4^m \cdot 5^{n-m}$.

Теорема 9. При векторе поляризации $\delta = (d_1, \ldots, d_n)$ и φ_n – любой функции из \mathcal{F}^n верно:

$$l(P^{\delta}(\varphi_n)) \geqslant \left(\left(\left(\frac{5}{4} \right)^{m_2} - \frac{3}{2} \right) \cdot 4^{m_2 + m_4} + 4^{m_2} \cdot 5^{m_4} \right) \cdot 5^{n - m_2 - m_4}, \ \epsilon \partial e^{-\frac{1}{2}} \partial e^{$$

 m_2 – число 2 в δ , а m_4 – число 4.

Доказательство. Пусть в векторе δ сначала идут m_2 2, затем m_4 4 и $n-m_2-m_4$ чисел из $\{0,1,3\}$. Тогда по лемме 4 $l(P^{\delta}(\varphi_{m_2+m_4})) \geqslant (\left(\frac{5}{4}\right)^{m_2}-\frac{3}{2})\cdot 4^{m_2+m_4}+4^{m_2}\cdot 5^{m_4}$. При поляризации из 0,1,3 k+1-ой переменной φ_{k+1} выражается через пять функции из \mathcal{F}^k . Из этого следует, что $l(P^{\delta}(\varphi_n))\geqslant \left(\left(\frac{5}{4}\right)^{m_2}-\frac{3}{2}\right)\cdot 4^{m_2+m_4}+4^{m_2}\cdot 5^{m_4}\right)\cdot 5^{n-m_2-m_4}$.

Верхняя оценка

Теорема 10. Для любой функции φ_n из \mathcal{F}^n , при n четном верно:

$$l(\varphi_n) \leqslant 4^n \left(2 \cdot \left(\frac{5}{4} \right)^{\frac{n}{2}} - 1 \right).$$

Доказательство. Пусть $m = \frac{n}{2}$. Рассмотрим вектор $\delta = (d_1, \ldots, d_n), d_i = 2, i = 1, \ldots, m, d_i = 4, i = m+1, \ldots, n$. Сложность любой функции от k переменных не больше 5^k , поэтому $l(P^{\delta}(\varphi_m)) \leqslant 5^m$. При k > m при поляризации 4 k + 1-ой переменной φ_{k+1} выражается через четыре функции из \mathcal{F}^k и одну функцию s_k^3 , причем $l(P^{\delta}(s_k^3)) = 5^{k-m} \cdot 4^m$. Поэтому выражение для длины φ_n можно получить решая следующую линейную неоднородную задачу:

$$x_{k+1} = 4x_k + 5^{k-m} \cdot 4^m$$
$$x_m = 5^m$$

Решая эту задачу получим
$$l(P^{\delta}(\varphi_n)) \leqslant \left(\left(\frac{5}{4}\right)^m - 1\right) \cdot 4^n + 4^m \cdot 5^{n-m} = 4^n \left(2 \cdot \left(\frac{5}{4}\right)^{\frac{n}{2}} - 1\right).$$

Следствие. *Класс функций* ${\cal A}$ *является вырожденным.*

Доказательство. По теоремам 7, 8 $l(s_n^2) = l(s_n^3) = 4^n = \overline{o}(5^n)$. По теореме 10 $l(\varphi_n) \leqslant 4^n \left(2 \cdot \left(\frac{5}{4}\right)^{\frac{n}{2}} - 1\right)$, для любой функции $\varphi_n \in \mathcal{F}_n$. И $\lim_{n \to \infty} \frac{4^n \left(2 \cdot \left(\frac{5}{4}\right)^{\frac{n}{2}} - 1\right)}{5^n} = 0$, поэтому $4^n \left(2 \cdot \left(\frac{5}{4}\right)^{\frac{n}{2}} - 1\right) = \overline{o}(5^n)$.

Заключение

Математические результаты

- 1. Для всех функций из класса \mathcal{A} были построены построены все поляризованные полиномы, выражающие функции от n+1 переменных через функции от n переменных также принадлежащих классу \mathcal{A} ;
- 2. Установле точная длина, в зависимости от поляризации, для функций: s_n^2 и s_n^3 ;
- 3. Доказано несколько теорем и лемм, из которых получается нижняя оценка для функций из класса \mathcal{F} ;
- 4. Установлена верняя оценка для функций из класса \mathcal{F} ;
- 5. Доказана вырожденность класса ${\cal A}$.

Программные результаты

Для получения результатов были написаны следующие программы:

- Программа на языке C++, реализующая построение поляризованных полиномов по модулю k, где $k \in 2,3,5,7$, в программе используется алгоритм, описанный в [9];
- Для этой программы был написан интерфейс на языке Perl, передставленный на рисунке 1;
- Программа на языке C++, осуществляющая для заданного числа пременных n "быстрый" поиск функций длина которых, в классе пляризованных по-

Рис. 1: Вид интерфейса

линомов, больше заданного порога, среди заданного класса симметрических ϕ ункций от n переменных;

• С помощью системы компьютерной алгебры Sage [10] были произведены: получение полиномиальных форм, поляризованных по разным векторам поляризации и подстановка значений в полиномы для проверки правильности их построения.

Коды всех программ доступны в моем репозитории, располеженном по адресу: https://www.github.com/obirvalger/diploma.

Содержание

Введение	1
Основные определения	2
Результаты	3
Поляризованные полиномы для функций из класса \mathcal{A}	3
Обобщение результатов в таблицах	12
Оценки для функций из класса ${\mathcal F}$	13
Нижняя оценка	13
Верхняя оценка	15
Заключение	16
Математические результаты	16
Программные результаты	16
Список литературы	19

Список литературы

- 1. Угрюмов Е. П. Цифровая схемотехника. СПб.: БХВ-Петербург, 2004.
- 2. Sasao T., Besslich P. On the complexity of mod-2 sum PLA's // IEEE Trans.on Comput. 39. N 2. 1990. P. 262–266.
- 3. Супрун В. П. Сложность булевых функций в классе канонических поляризованных полиномов // Дискретная математика. 5. №2. 1993. С. 111–115.
- 4. Перязев Н. А. Сложность булевых функций в классе полиномиальных поляризованных форм // Алгебра и логика. 34. №3. 1995. С. 323–326.
- 5. Селезнева С. Н. О сложности представления функций многозначных логик поляризованными полиномами. Дискретная математика. 14. №2. 2002. С. 48–53.
- 6. Кириченко К.Д. Верхняя оценка сложности полиномиальных нормальных форм булевых функций // Дискретная математика. 17. №3. 2005. С. 80–88.
- 7. Селезнева С. Н. Дайняк А. Б. О сложности обобщенных полиномов k-значных функций // Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. №3. 2008. С. 34–39.
- 8. Маркелов Н. К. Нижняя оценка сложности функций трехзначной логики в классе поляризованных полиномов // Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. №3. 2012. С. 40–45.
- 9. Селезнева С. Н. Маркелов Н. К. Быстрый алгоритм построения векторов коэффициэнтов поляризованных полиномов k-значных функций // Ученые записки Казанского университета. Серия Физико-математические науки. 2009. 151. №2 С. 147-151.
- 10. [Sage] William A. Stein et al., Sage Mathematics Software (Version 6.4). The Sage Development Team, 2015, http://www.sagemath.org.