Advanced Programming Practice Vehicle Control

2023 Fall, CSE4152 Sogang University

Modular Pipeline

- Low-level Perception & Scene Parsing: Lecture 1
- Path training: Lecture 2
- Vehicle Control: Lecture 3

Vehicle Control

- Key objects: Controller and Object
 - Controller will give an action to the object for given status.
 - Object (vehicle) takes and processes the action and the state of it changes.
- Goal of vehicle control
 - Achieve the target state of the vehicle comfortably.
 - No oscillation, less damping.
 - Keeping speed at 60 km/h
 - Driving the curve regularly
 - Follow the way points

CS4010

Two Major Types of Controller

Open-loop Control

- No feedback → off guard for unknown disturbance → severe drift
- The controller must be thoroughly calibrated.
- E.g. Immersion water heater and toaster

CS4010

Two Major Types of Controller

Closed-loop Control

Minimize error between observation and reference.

Closed-Loop Control: Centrifugal Governor

- Classic closed-loop control
- Controls the speed of engine by regulating the flow of fuel or working fluid to keep a near-constant speed.

CS4010

Black-Box Control

Black-box controllers don't know anything about processing

Bang-Bang Control

- Often used like house heater or conditioner.
- Mathematical formation

$$u(t) = \begin{cases} u_1, & \text{if } e(t) \ge \tau \\ u_2, & \text{otherwise} \end{cases}$$

Mathematical formation of Proportional-Integral-Derivative (PID) control

$$u(t) = K_p e(t) + K_i \int_0^t e(t') dt' + K_d \frac{de(t)}{dt}$$

P Control only

- Controlled Variable: Position y(t) = x(t)
- Correcting Variable: Acceleration $u(t) = a(t) = \ddot{x}(t)$

- Controlled Variable: Position y(t) = x(t)
- Correcting Variable: Acceleration $u(t) = a(t) = \ddot{x}(t)$

Longitudinal Vehicle Control

$$v(t) = v_{\text{max}} \left(1 - \exp\left(-\theta_1 d(t) - \theta_2\right) \right)$$

v(t): target velocity at time t

d(t): distance to preceding car

reference variable: r(t) = v(t) = target velocity

correcting variable: u(t) = gas/brake pedal

controlled variable: y(t) = current velocity

error: e(t) = v(t) - y(t)

Lateral Vehicle Control

Reference variable: r(t) = 0 = no cross-track error

Correcting variable: $u(t) = \delta$ = steering angle

Controlled variable: y(t) = cross track error

Error: e(t) = -y(t) = cross track error

Geometric Control

exploit geometric relationships between the vehicle and the path

Stanley Control

Control Law used by Stanley in DARPA Challenge:

$$\delta = \psi + \tan^{-1} \left(\frac{ke}{v} \right)$$

 $v = \text{speed}, \ \psi = \text{heading err.}, \ e = \text{crosstrack err.}$

Combines heading and cross-track error.

Stanley Control

- First term heading error
- Second term considering cross-track error $\delta = \psi + \tan^{-1}$

$$\delta = \psi + \tan^{-1} \left(\frac{ke(t)}{k_s + v} \right)$$

17

CS4010

Assignments

Ex1. Implement and Compare Controls

- Implement bang-bang control, P control, and PD Control in discrete version.
- Our discrete simulation uses the explicit Euler method.
 - https://en.wikipedia.org/wiki/Euler_method
 - https://research.ncl.ac.uk/game/mastersdegree/gametechnologies/previousinformation/physics2numericalintegrationmethods/2017%20Tutorial%202%20-%20Numerical%20Integration%20Methods.pdf
- Reference position is given and correcting variable is acceleration.

$$v_{i+1} = v_i + a_i \Delta t$$
 $r_i = x_{ref}$ $p_{i+1} = p_i + v_i \Delta t$ $p_0 = x_0$ u_i : acceleration

Describe how each control behave.

Ex 2. Autonomous Driving: Lateral Control

- Template
 - lateral control.py
 - test lateral control.py for testing
- a) Stanley Controller:
 - Read section 9.2 in the Stanley paper <u>http://isl.ecst.csuchico.edu/DOCS/darpa2005/DARPA%202005%20Stanley.pdf</u>
 - Understand the parts of the heuristic control law

$$\delta = \psi + \tan^{-1} \left(\frac{ke}{v + \varepsilon} \right)$$

Ex 2. Autonomous Driving: Lateral Control

Stanley Controller:

- Implement controller function given waypoints and speed
 - → LateralController.stanley()
- Orientation error $\psi(t)$ is the angle between the first path segment and the car orientation
- Cross track error e(t) is distance between desired waypoint at a spline parameter of zero and the position of the car
- Prevent division by zero by adding as small epsilon
- Check the behavior of your car

Ex 2. Autonomous Driving: Lateral Control

- c) Damping:
- Damping the difference between the steering command and the steering wheel angle of the previous step

$$\delta = \delta_{SC}(t) - D \cdot (\delta_{SC}(t) - \delta(t-1))$$

Describe the behavior of your car

Ex 2. Autonomous Driving: Longitudinal Control

Template

- longitudinal control.py
- test longitudinal control.py for testing
- PID Controller:
 - Implement a PID control step for gas and braking
 - Use a discretized version:

$$e(t) = v_{\text{target}} - v(t)$$

$$u(t) = K_p e(t) + K_d \left[e(t) - e(t-1) \right] + K_i \left[\sum_{t_i=0}^{t} e(t_i) \right]$$

Ex 2. Autonomous Driving: Longitudinal Control

PID Controller

- Due to integral windup, implement an upper bound for integral term.
- From control signal to gas and brake action values

$$a_{gas}(t) = \begin{cases} 0, & u(t) < 0 \\ u(t), & u(t) \ge 0 \end{cases} \qquad a_{brake}(t) = \begin{cases} 0, & u(t) \ge 0 \\ -u(t), & u(t) < 0 \end{cases}$$

Ex 2. Autonomous Driving: Longitudinal Control

Parameter Search

- Run test lateral control.py and have a look at plots of the target speed and the actual speed
- tune parameters (K_p, K_i, K_d) and (v_{max}, v_{min}, K_v)
- Start with $(K_p = 0.01, K_i = 0, K_d = 0)$ and $(v_{max} = 60, v_{min} = 30, K_v = 4.5)$
- Only modify a single term at a time!