Mestrado Integrado em Engenharia de Telecomunicações e Informática Redes Móveis

Projeto laboratorial

Gilberto Morim A65214 Rui Silva A69987 Sara Pereira A75494

Colocação dos beacons

- •Foram observados, através do Google Maps e de sites de informação de trânsito em tempo real, locais com maior densidade de trânsito. Estes foram os locais escolhidos para a ocorrência de acidentes;
- •Foram inseridos 10 veículos nos locais assinados a vermelho na Figura.

Modelo de mobilidade para veículos

- Para os *beacons* foi utilizado **StationaryMovement** sendo este o tipo de movimento adequado para nós que se pretendem não ter movimento, apenas sendo necessário definir as coordenadas geográficas destes nós. A fim de simular um acidente a velocidade destes foi colocada a 0.0 Km/h;
- Para os carros foi utilizado ShortestPathMapbasedMovement. Aqui, os carros têm um destino aleatório e seguem o caminho mais curto para alcançá-lo. Uma vez alcançado, param por um curto interval de tempo e escolhem outro destino aleatório.

Protocolo de encaminhamento

- Para a transmissão de mensagens na rede foi utilizado o protocolo **EpidemicRouter**. Este protocolo fornece entrega de mensagens para destinos aleatórios baseado no conhecimento mínimo da topologia e conectividade da rede. A entrega de mensagens depende apenas da conectividade periódica entre outros nós.
- Por outras palavras, EpidemicRouter baseia-se no flooding, ou seja, cada nó está constantemente a enviar e replicar mensagens para os seus vizinhos que ainda não possuam estas.

Interfaces de rede

- Em todos os nós da rede foram implementadas interfaces Bluetooth;
- Os parâmetros das interfaces foram baseados nas versões 4.0 e
 5.0 do Bluetooth;
- O Bluetooth 4 tem 20 metros de alcance e datarate de 1 Mbps;
- O Bluetooth 5 tem 40 metros de alcance e datarate de 2 Mbps.

Geração de mensagens

- A cada beacon está associado um MessageEventGenerator que irá gerar mensagens a serem difundidas pela rede;
- As mensagens são criadas de 10 em 10 minutos porém só são criadas a partir do minuto 10 da simulação;
- Cada mensagem tem um campo adicional, payload, que contém as coordenadas geográficas do local onde ocorreu o acidente;
- As mensagens são geradas com um destino mas esse não é verificado. Assim, tentámos assegurar que as mensagens são difundidas por toda a rede.

Resultados da simulação

- Da simulação 1 a 9 foi utilizada a versão 4 do Bluetooth numa duração de 5 horas utilizando o EpidemicRouter, variando o tamanho do buffer entre 1, 5 e 10 MB e o TTL das mensagens entre 10, 30 e 60 minutos;
- Da simulação 10 a 18 foi utilizado o Bluetooth 5 numa duração de 5 horas utilizando o EpidemicRouter, variando o tamanho do buffer entre 1, 5 e 10 MB e o TTL das mensagens entre 10, 30 e 60 minutos.

Resultados da simulação

	Atraso médio	Mediana do atraso	Atraso máximo	% máxima de entrega	% mínima de entrega
SIM1	203,25949	191,5	599,9004	99,52	23,69
SIM2	199,05885	188,09998	593,5	99,5	12,79
SIM3	197,67677	186,40039	599,5	99,5	0,4
SIM4	206,32863	190,69	1799,69	100	11,3
SIM5	212,288	196,9	1798,5	100	3,7
SIM6	209,7	191,7	1799,69	99,5	1,8
SIM7	207,3567	189,3999	3592,8	99,5	2,84
SIM8	211,04	194	3599,5	99,5	0,9
SIM9	207,34	188,09	3595,59	99,4	2,88

Resultados da simulação

	Atraso médio	Mediana do atraso	Atraso máximo	% máxima de entrega	% mínima de entrega
SIM10	141,16	131,799	598,8	99,5	28,43
SIM11	139,9	132,29	599,9	99,3	34,5
SIM12	135,8	128,4	598,5	100	7,5
SIM13	145,5	131,09	1799,6	100	31,7
SIM14	148,59	133,5	1799,5	100	20,3
SIM15	145,55	130,7	1799,5	100	37,9
SIM16	152,5	135,5	3599,5	100	30,8
SIM17	148,4	131,79	3598,8	100	19,9
SIM18	151,24	133,69	3599,6	100	9,95

Discussão dos resultados

- Após estas simulações, o que sobressai é a variação dos resultados de acordo com a versão do Bluetooth, sendo que os restantes parâmetros não influenciam muito nos atrasos de propagação das mensagens;
- O atraso máximo na receção das mensagens está associado ao valor de TTL da mensagem, o que significa que existem nós que receberão algumas mensagem perto do fim do tempo de simulação ou então nem chegar a recebê-las;
- Com o Bluetooth 5 há maior probabilidade das mensagens serem recebidas, obtendo melhores resultados da simulação;

Discussão dos resultados

- A percentagem mínima de entrega está associada ao tempo de simulação uma vez que esta pode acabar antes da mensagem ser propagada;
- Neste tipo de redes, os atrasos esperados são muito grandes quando comparados a uma rede infraestruturada, andando na ordem dos 2 minutos. No entanto para este cenário, estes atrasos são muito bons pois consegue-se uma boa propagação de informação acerca do acidente;
- As tabelas do atraso máximo e as tabelas de percentagens de entrega não estão associadas;

Discussão dos resultados

- As percentagens de entrega estão muito altas, que é improvável na vida real;
- Os bons valores são obtidos porque as simulações que o grupo testou tinham um grande número de mensagens a ser enviadas. Numa mesma simulação, um mesmo acidente iria enviar muitas mensagens;
- Assim, é de esperar que os resultados convirjam em valores muito positivos.