UT7_PD1

Property	COMPLETED
∄ Date	@June 20, 2022
■ BLOCKED	

Ejercicio 1:

	A	В	С	D	E
A	-	1	2	7	-
В	7	-	1	2	-
C	-	-	-	3	-
D	6	-	4	-	4
E	-	2	-	8	-

Matriz de adyacencia del grafo

a) **GRAFO**:

LISTA DE ADYACENCIA:

Α	$\to B \to C \to D$
В	$\rightarrow A \rightarrow C \rightarrow D$
С	→ D
D	$\to C \to E$
Е	$\to B \to D$

b) Aplicando el algoritmo de Dijkstra:

I	S	w	D[A]	P[A]	D[C]	P[C]	D[D]
1	{B}	-	7	В	1	В	2
2	{B,C}	С	7	В	1	В	2
3	{B,C,D}	D	7	В	1	В	2
4	{B,C,D,E}	E	7	В	1	В	2

5 {B,C,D,E,A} A 7 B 1 B 2

c) (Pedir ayuda con esto !!!!)

de B a A: $B \rightarrow A$ (costo 7) de B a C: $B \rightarrow C$ (costo 1) de B a D: $B \rightarrow D$ (costo 2) de B a E: $B \rightarrow D \rightarrow E$ (costo 6)

d)

LN:

Recorro recursivamente el grafo recuperando a partir del vector de predecesores,

PRECONDICIONES:

- Existe un vector de predecesores no nulo
- El vértice de Origen y el vértice de Llegada

POSTCONDICIONES:

• El grafo no se ve alterado

PSEUDO:

```
// P[] vector de predecesores
TGrafo.caminoamino(verticeOrigen, verticeLlegada)
    COM
    k = P[Origen, destino]
    SI k = 0:
        return
    SINO
        camino(origen, k)
        imprimir(k)
        camino(k, destino)
    FIN SI
```

Ejercicio 2:

Lista adyacencia:

Α	$\to C \to D$
В	$\to A \to E$
С	→E
D	→ C
E	$\rightarrow A$

b) Algoritmo de Floyd

Se adjunta una planilla con las diferentes matrices utilizadas paso a paso. (PD1.xlsx)

	Α	В	C	D	E
Α	0	3	1	4	2
В	6	0	7	10	3
С	4	2	0	8	1
D	9	7	5	0	6
F	3	6	4	7	0

Matriz de Floyd aplic	cada al grafo
-----------------------	---------------

	Α	В	С	D	E
Α	0	0	0	0	С
В	0	0	Α	Α	0
С	Е	0	0	E	0
D	E	С	0	0	С
E	0	С	Α	Α	0

Matriz del grafo

UT7_PD1

c)

Supongamos que queremos ir de C a A:

$$C \to E \to A$$

d) de A a E:

 $A \rightarrow C \rightarrow E$ (costo: 2)

- **e)** Excentricidad = [9,7,7,10,6]
- f) Centro del grafo: E (porque la excentricidad del vértice es 6, la menor de todas las excentricidades)

Ejercicio 3:

Lista de adyacencia:

Α	$\to \ B \ \to \ C \ \to \ D$
В	→ F
С	→ E
D	→ E
E	→ F
F	→ C

b)

	Α	В	С	D	Е	F
Α	0	1	1	1	1	1
В	0	0	1	0	1	1
С	0	0	0	0	1	1
D	0	0	1	0	1	1
Е	0	0	1	0	0	1
F	0	0	1	0	1	0

Matriz cerradura transitiva

(En el PD1.xlsx, esta todos los pasos)