Esta é uma lista de exercícios adicional e não pontua na nota.

1) A figura abaixo representa o gráfico de uma função quadrática:

Dado que o par (3,y) pertence ao gráfico, determine y. Resposta: y= -4

- 2) A quantidade de elementos inteiros, não negativos que pertencem ao conjunto solução da inequação $\frac{x^2 3x}{x 1} < 0$ é:
 - () 3 ()2 ()1 ()0 ()4

Resposta: 1

3) A metade do número $2^{21} + 4^{12}$ é:

()
$$2^{20} + 2^{23}$$
 () $2^{\frac{21}{2}} + 4^6$ () $2^{12} + 4^{21}$ () $2^{20} + 4^{11}$ () $2^{22} + 4^{13}$

4) Dentre os gráficos a segur, o que melhor representa a função $f(x) = e^x + 2$ é:

- 5) Considere $f(x) = \left(\frac{5}{4}\right)^x$ para todo $x \in \mathbb{R}$, pode-se afirmar que:
- () O gráfico de f intersecta o eixo x em apenas um ponto
- () f é decrescente
- () O conjunto imagem de f é dado por $Im(f) = (0, +\infty)$
- () O gráfico de f intersecta o eixo y no ponto $\left(0, \frac{5}{4}\right)$
- $() f(-1) = -\frac{5}{4}$
- 6) O domínio da função real $f(x) = \log_{x+1} 2x^2 5x + 2$ é o conjunto:
 - () $\{x \in \mathbb{R} \mid -1 < x < \frac{1}{2} \text{ ou } x > 2 \text{ e } x \neq 0\}$
 - () $\{x \in \mathbb{R} \mid -1 \le x \le \frac{1}{2} \text{ ou } x > 2 \text{ e } x \ne 0\}$
 - $() \left[-1, \frac{1}{2} \right] \cup (2, \infty)$
 - $(\quad)\left(-1,\frac{1}{2}\right)\cup(2,\infty)$
 - $\left(\right) \left(-1, \frac{1}{2} \right) \cup \left[2, \infty \right)$
- 7) A figura a seguir é um esboço do gráfico da função $f(x) = \log_b x$ com alguns pontos destacados.

Supondo que a abscissa do ponto A seja igual a 9, assinale a alternativa INCORRETA:

- () a base b é igual a 3
- () a abscissa de C é igual a 1
- () f(x) < 0 para todo $x \in (0,1)$
- () f(x) é crescente
- ()a abscissa de B é igual a 2

8) Na figura a seguir, estão representados um esboço do gráfico da função $y = 2^x$, os números a, b e c e suas imagens:

Observando a figura, pode-se concluir que, em função de a, os valores de b e c são, respectivamente:

()
$$a+1 = a-2$$
 () $a+\frac{1}{2}e-\frac{3}{2}a$ () $a-1 = a+2$ () $2a = \frac{a}{4}$

9) Uma das raízes da equação	$2^{2x} - 8 \cdot 2^x + 12 = 0$ é x=1. A outra raiz é:
------------------------------	--

$$() 1 + \frac{\log_{10} 3}{\log_{10} 2} () 1 + \log_{10} \left(\frac{3}{2} \right) () \log_{10} 3 () \frac{\log_{10} 6}{2} () \log_{10} \left(\frac{3}{2} \right)$$

- 10) Espera-se que a população de uma cidade, hoje com 250.000 habitantes, cresça 2,5% a cada ano. Segundo esta previsão, a população da cidade, daqui a n anos, será igual a:
 - () $250.000 \cdot (1,025)^n$ () $250.000 \cdot (1,25)^n$ () $250.000 \cdot (0,025)^n$ () $250.000 \cdot (0,25)^n$ () $250.000 \cdot (0,25)^n$
- 11) Para determinar a intensidade luminosa L, em medida de lumens, a uma profundidade de x centímetros num determinado lago, utiliza-se a lei de Beer-Lambert, dada pela fórmula $\log_{10}\left(\frac{L}{15}\right) = -0.08x$. Qual a intensidade luminosa L a uma profundidade de 12,5 cm?
- () 1,5 lúmen () 150 lumens () 15 lumens () 10 lumens () 1 lúmen