Third Assignment, due October 12

- 1. This problem involves a large number of verifications. Try to be succinct: you need not include every last detail; on the other hand, there must be enough information to provide a clear idea of the arguments. Let p be a prime number, and let \mathbb{Q}_p , \mathbb{Z}_p denote the sets of p-adic numbers, respectively the set of p-adic integers. In other words, \mathbb{Q}_p is the completion of \mathbb{Q} with respect to the p-adic absolute value, and \mathbb{Z}_p the closure of \mathbb{Z} in \mathbb{Q}_p . Further notation: S_p is the set $\{0, 1, \ldots, p-1\}$. a) Show that the algebraic operations on \mathbb{Q} addition, multiplication, taking the negative and the reciprocal of a non-zero number extend naturally to \mathbb{Q}_p . Also show that the p-adic absolute value extends.
- **b)** Verify that these algebraic operations turn \mathbb{Q}_p into a field i.e., addition and multiplication are associative, commutative, have neutral elements as well as inverses, and the distributive law holds.
- c) Show: every strictly positive integer n can be expressed uniquely as a finite sum $n = \sum_{0 \le k \le N} a_k p^k$, with coefficients $a_0, a_1, \ldots a_N$ in the set S_p .
- **d)** Show: there exists a convergent series $s = \sum_{0 \le k < \infty} a_k p^k$, with $a_0, a_1, \dots \in S_p$, such that s = -1 (Hint: $-1 = (p-1)(1-p)^{-1}$).
- e) Show: if n is a positive integer relatively prime to p, there exists a convergent infinite series $s = \sum_{0 \le k < \infty} a_k p^k$, with $a_0, a_1, \dots \in S_p$, such that s = 1/n.
- f) Deduce that every $q \in \mathbb{Q}_p$ can be expressed uniquely as a finite or infinite series $q = \sum_{v \leq k} a_k p^k$, with $a_v, a_{v+1}, \dots \in S_p$ and $v = v_p(q) = p$ -adic valuation of q, and that conversely every such series represents a p-adic number. Prove that such series can be added and multiplied (careful: S_p is not closed under multiplication), and that this formal addition and multiplication coincides with the operations defined in a).
- **g)** Prove that the ring of p-adic integers \mathbb{Z}_p is both compact and open in \mathbb{Q}_p . Is \mathbb{Q}_p compact?
- **2.** Define a distance function d on $X =_{\text{def}}$ set of sequences in [0,1] by the formula $d(\{x_k\}, \{y_k\}) = \sup_k |x_k y_k|$, and show that d has all the required properties of a metric. Then show that the metric space (X, d) is bounded i.e., there exists some constant M > 0 such that the distance between any two points in X is bounded by M but not totally bounded. Is every totally bounded metric space bounded?