3. feladatsor: Relációk kompozíciója

1. feladat

Legyen $A = \{1, 2, 3\}, B = \{a, b, c, d, e, f\}, C = \{2, 4, 6, 8\}$ továbbá $R \subset A \times B, S \subset B \times C$ $R = \{(1, a), (1, b), (2, c), (2, f), (3, d), (3, e), (3, f)\} \text{ \'es } S = \{(a, 2), (a, 4), (c, 6), (c, 8), (d, 2), (d, 4), (c, 8), (d, 2), (d, 4), ($ (d,6),(f,8). Határozza meg az $S \circ R$ kompozíciót.

2. feladat

Legyen $A = \{1, 2, 3, 4, 5, 6, 7, 8\}; S, R \subset A \times A$. Határozza meg az $S \circ R$ kompozíciót.

- (a) $R = \{(1,2), (1,3), (2,2), (3,3), (3,4), (4,1)\}\$ és $S = \{(1,6), (2,3), (2,4), (3,1)\}\$
- (b) $R = \{(1,3), (1,4), (2,2), (2,4), (3,5), (5,6), (6,7)\}$ és $S = \{(1,2), (1,4), (2,3), (3,1), (3,2), (3,1), (3,2), (3,1), (3,2), (3$ (4,2), (4,6), (5,6), (7,2)
- (c) $R = \{(2,2), (2,4), (3,1), (3,4), (4,4), (5,3)\}\$ és $S = \{(2,6), (3,7), (5,1), (5,6), (5,8), (6,2), ($ (7,7)
- (d) $R = \{(6,1), (6,2), (7,3), (8,7)\}\$ és $S = \{(1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), ($ (2,5), (2,6), (2,7), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4), (5,1), (5,3), (5,5),(7,1),(7,2)

Kommutatív-e a kompozíció? Határozza meg például az (a) esetben az $R \circ S$ kompozíciót.

3. feladat

Legyenek $R, S \subset A \times A$ szimmetrikus relációk. Bizonyítsuk be, hogy $R \circ S$ szimmetrikus akkor és csak akkor, ha $R \circ S = S \circ R$.

4. feladat

Legyen $R, S \subset \mathbb{R} \times \mathbb{R}$. Határozza meg az $S \circ R$ és $R \circ S$ kompozíciót.

- (a) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 4x = y^2 + 6\} \text{ és } S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x 1 = y\}$
- (b) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = 2y\}$ és $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^3\}$
- (c) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \frac{1}{x} = y^2\} \text{ és } S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \sqrt{x 2} = 3y\}$ (d) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 6x + 5 = y\} \text{ és } S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 = y \land 2y = x\}$

5. feladat

Tekintsük a következő relációkat:

$$\begin{split} & \rho = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid |x-y| \leq 3\}, \ \varphi = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 6x-1 = 4y+5\}, \\ & \lambda = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 4 \mid 2x+3y\}, \ \alpha = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 1,5x-1,5 \leq y\} \\ & \text{Határozza meg a következő kompozíciókat.} \end{split}$$

$$\rho \circ \varphi$$
 $\varphi \circ \lambda$ φ^3 $\alpha \circ \rho$ $\rho \circ \alpha$