TERMODINÂMICA QUÍMICA

Prof. Marcos Bertani Gazola 2015

PROCESSO ESPONTÂNEO

PROCESSO NÃO ESPONTÂNEO

TERMODINÂMICA

Estuda a diferença entre as transformações espontâneas e não espontâneas, definida como o estudo das alterações ou transformações de energia que acompanham as transformações físicas e químicas da matéria.

Fornece meios para prever se uma transformação química tem possibilidade de ocorrer ou não, isto é, se uma reação é espontânea ou não, sob um dado conjunto de condições.

$$2Na_{(s)} + Cl_{2(g)} \rightarrow 2NaCl_{(s)}$$
 (espontânea)

$$2\text{NaCl}_{(s)} \rightarrow 2\text{Na}_{(s)} + \text{Cl}_{2(g)}$$
 (não espontânea)

TERMODINÂMICA

$$2Na_{(s)} + Cl_{2(g)} \rightarrow 2NaCl_{(s)}$$
 (espontânea)

$$2\text{NaCl}_{(s)} \rightarrow 2\text{Na}_{(s)} + \text{Cl}_{2(g)} \qquad (ns)$$

(não espontânea)

Pode-se "forçar" a segunda reação, assim como pode-se erguer-se um livro do chão para a mesa, fornecendo energia.

Iniclamente realiza-se a fusão do $NaCl_{(s)}$ Após, aplica-se corrente elétrica sobre o líquido Desta maneira, há produção de $Na_{(s)}$ e $Cl_{2(g)}$

TERMODINÂMICA

Governada por Leis:

1. Lei Zero da Termodinâmica

2. Primeira Lei da Termodinâmica

3. Segunda Lei da Termodinâmica

4. Terceira Lei da Termodinâmica

DEFINIÇÕES Energia

- Potencial ou capacidade de mover a matéria.
- É uma propriedade da matéria.

• Existem muitas formas de energia, como por exemplo, mecânica, elétrica, calor, nuclear, química e radiante, todas interconversíveis.

• Energia é a capacidade de produzir trabalho.

DEFINIÇÕES Calor

- Calor (ou energia calorífica) é uma forma de energia que é diretamente transferida de um objeto mais quente para um mais frio.
- Tal energia não está na forma de calor antes ou depois da transferência, somente durante a transferência.
- Em outras palavras, calor é energia em trânsito.
- Após a absorção de energia calorífica por um objeto, não é correto dizer que o objeto "contém mais calor". Neste caso, o objeto contém mais energia, mas não calor.

DEFINIÇÕES Calor

DEFINIÇÕES Temperatura

• A temperatura de um objeto mede a energia cinética média de suas partículas.

(Energia cinética é chamada de energia de movimento)

• Algumas vezes, a transferência de calor para um objeto não provoca o aumento da temperatura. Isto significa que a energia cinética média não está aumentando. Em tal situação, o que ocorreu com a energia calorífica transferida?

DEFINIÇÕES Temperatura

• Esta energia está aumentando a energia potencial média das partículas do objeto.

(Energia potencial é a energia que pode ser armazenada em um sistema e tem a capacidade de ser transformada em energia cinética)

DEFINIÇÕES Temperatura

• Isto ocorre quando uma substância sofre uma mudança de estado. A adição de calor ao gelo a 0°C, por exemplo, não causa aumento de temperatura (a energia cinética média das moléculas permanece constante). O gelo funde, contudo, formando água

líquida, ainda a 0°C.

A energia potencial média das moléculas na água líquida é maior do que a das moléculas de gelo, na mesma temperatura.

DEFINIÇÕES Sistema Termodinâmico

- Sistema Termodinâmico: qualquer quantidade de matéria, ou região do espaço, que se escolhe com o objetivo de estudar o seu comportamento.
- Vizinhança: matéria ou região exterior ao sistema.
- Contorno ou fronteira: superfície, real ou imaginária (sem massa), que separa o sistema de sua vizinhança. A fronteira pode ser fixa ou móvel.

Sistema Termodinâmico Classificação

• *Aberto*: Pode haver troca de massa e de energia entre o sistema aberto e a vizinhança.

Sistema Termodinâmico Classificação

• *Fechado*: quantidade fixa de matéria. Não pode ocorrer transferência de massa entre o sistema e a vizinhança. No entanto, pode haver troca de energia: trabalho, calor, onde seu volume pode variar.

• *Isolado:* além de fechado, não há troca de energia e/ou matéria com a vizinhança.

Sistema Termodinâmico Classificação

EM UM SISTEMA ISOLADO A ENERGIA SE CONSERVA, OU SEJA, ELA É SEMPRE A MESMA

ENTÃO PODE-SE DIZER QUE A ENERGIA DO UNIVERSO É CONSTANTE.

Lei Zero da Termodinâmica

• Quando dois corpos (sistemas) de temperaturas diferentes são postos em contato, o corpo com temperatura maior esfria, enquanto que o corpo com temperatura menor esquenta, até que não ocorra mais mudanças. Quando as mudanças térmicas terminam, diz-se que os dois sistemas estão em equilíbrio térmico.

Energia é trocada sem haver trabalho macroscópico

Lei Zero da Termodinâmica

Equilíbrio Térmico: Quando dois ou mais corpos em contato térmico atingem a mesma temperatura.

<u>Lei Zero</u>: Se dois corpos estão em equilíbrio térmico com um terceiro, então eles estão em equilíbrio térmico entre si.

CALORIMETRIA

O PROCESSO DE MEDIDA DO FLUXO DE CALOR DE REAÇÃO É DENOMINADO *CALORIMETRIA*.

O APARELHO QUE MEDE O CALOR LIBERADO OU ABSORVIDO DURANTE AS TRANSFORMAÇÕES FÍSICAS E QUÍMICAS É DENOMINADO CALORÍMETRO.

Calor Específico (c)

O calor específico de uma substância é a quantidade de calor necessária para aumentar de 1 °C a temperatura de 1 g da substância.

O calor específico é típico da substância. Quanto maior o calor específico da substância, mais calor é necessário fornecer para aumentar a temperatura ou mais calor é necessário retirar para diminuir a temperatura.

Calor Específico (c)

$$q = mc\Delta T$$

```
q = quantidade de calor (J ou cal)

m = massa (g ou kg)

c = calor específico (cal g<sup>-1</sup> ^{\circ}C<sup>-1</sup> ou J kg<sup>-1</sup> ^{\circ}C<sup>-1</sup>)

\DeltaT = variação de temperatura (^{\circ}C)
```

Capacidade Calorífica

A capacidade calorífica de um sistema é a quantidade de calor necessária para elevar a temperatura de um sistema em 1 °C.

Para uma substância pura como a água num calorímetro, a capacidade calorífica é muitas vezes expressa por mol daquela substância e então é chamada capacidade calorífica molar (C_m) .

Unidade no SI para a capacidade calorífica molar:

$$\frac{J}{^{\circ}C \text{ mol}}$$

$$J ^{\circ}C^{-l} \text{ mol}^{-l}$$

$$1 \text{ cal} = 4.18 \text{ J}$$
 $1 \text{ kcal} = 1000 \text{ cal}$ $1 \text{ kJ} = 1000 \text{ J}$

Capacidade Calorífica (C)

A capacidade calorífica relaciona a quantidade de calor (q) absorvida por uma substância ao aumento de temperatura de um sistema.

Representando ΔT como a variação de Temperatura ($\Delta T = T$ final – T inicial), C_m como a capacidade calorífica molar, e n como o número de mols de substância, então:

C varia pouco com a temperatura e depende de a pressão ou o volume serem constantes

$$q = n C_m \Delta T$$

$$C_{\rm m} = \frac{q}{n.\Delta T}$$

Capacidade Calorífica (C)

Exemplo 1: Uma amostra de 15,0 g de ouro (capacidade calorífica 25,4 J °C⁻¹ mol⁻¹) é aquecida de 16,1 °C para 49,3 °C. Na hipótese de que a capacidade calorífica do ouro seja constante neste intervalo, calcule a quantidade de calor absorvida pelo ouro. (massa molar do ouro = 197 g mol⁻¹)

Capacidade Calorífica (C)

Exercício 1: Um pedaço de cobre de 75,0 g é resfriado de 128,2 para 24,1 °C. Sabendo que a capacidade calorífica do cobre é 24,4 J °C⁻¹ mol⁻¹, calcule quanto calor é liberado pelo cobre. (massa molar do cobre = 63,55 g mol⁻¹)

Trabalho (w) é uma medida da energia transferida pela aplicação de uma força ao longo de um deslocamento.

$$\mathbf{w} = \mathbf{F} \cdot \mathbf{d}$$

w: trabalho

F: força

d: deslocamento

Trabalho de Expansão é o trabalho provocado pela variação de volume do sistema contra uma pressão externa.

Este tipo de trabalho é realizado pelo gás ao se expandir e deslocar a atmosfera.

Expressão geral do trabalho

O trabalho é a energia produzida pelo deslocamento de uma força (pressão externa).

Seja o pistão de área A, se deslocando numa distância infinitamente pequena dl sob o efeito da força aplicada F, temos:

De onde:

$$dw = - F.dl$$

(negativo pois é expansão)

Como:

$$F = P_{\text{externa}}.A$$

Então:

$$dw = -P_{externa}.A.dl$$

Neste caso como:

$$A \cdot dl = dV$$

Portanto:

$$dw = -P_{externa} \cdot dV$$

Integrando a equação entre os volumes inicial e final, temos:

$$w = -\int_{V_{inicial}}^{V_{final}} P_{externa} \cdot dV$$

1) Expansão contra pressão constante

$$w = -P_{\text{externa}} \int_{V_{\text{inicial}}}^{V_{\text{final}}} dV$$

E, portanto, geralmente, simplifica-se a escrita na forma:

$$w = -P.\Delta V$$

Grandeza	Medida
Trabalho	Joule (J)
Pressão	Pascal (Pa)
Volume	metros cúbicos (m³)

2) Expansão isotérmica reversível

$$dw_{rev} = -P_{ext} \cdot dV$$
 Como: $P_{gas}V = nRT$

Se o processo é reversível, durante a expansão p_{ext}≈p_{gas}.

Então:
$$P_{\text{ext}} = nRT / V$$

$$dw_{rev} = -\frac{nRTdV}{V}$$

$$w = -nRT \ln \frac{V_{final}}{V_{inicial}}$$

- Exemplo 2: Uma amostra de 6,56 g de argônio gasoso ocupa o volume de 18,5 L a 305 K . (massa molar Ar = 40 g mol⁻¹)
- (a) Calcule o trabalho feito quando o gás se expande isotermicamente contra a pressão externa constante de 7,7 kPa até o seu volume **aumentar de** 2,5 L .
- (b) Calcule o trabalho realizado se a mesma expansão fosse reversível.

Exercício 2: Calcular o trabalho desenvolvido por uma substância quando ela se expande, passando seu volume de 14,00 a 18,00 litros, contra uma pressão externa constante de 1,00 atm. Dê a sua resposta em:

a) litros-atmosfera

b) joule (1 litro-atm = 101,3 J)

Exercício 2': Uma amostra de 1,00 mol de Ar que se expande isotermicamente a 0 °C, de 22,4 L até 44,8 L. Calcule o trabalho realizado por este gás nas seguintes condições:

- a) Expansão isotérmica reversível
- b) Expansão contra uma pressão externa de 5,50 kPa
- c) Expansão livre (pressão externa nula)

Dado: Massa molar $Ar = 40 \text{ g mol}^{-1}$

• Em um sistema isolado não há passagem de matéria ou energia para dentro ou para for a do sistema. Logo, se a energia não pode nem entrar ou sair, a energia interna do sistema não varia.

• Logo, pode-se afirmar que:

A energia interna de um sistema isolado é constante.

• Cuidado!!!!! Isto não significa que o sistema permanece estático ou imutável.

 Através de investigações de variações de energia em sistemas não isolados, verificou-se que a energia total de um sistema varia como trabalho e/ou calor.

 Portanto a 1ª Lei da Termodinâmica, aplicada em um sistema fechado, relaciona a energia interna (U) deste sistema com o calor (q) e o trabalho (w):

$$\Delta U = q + w$$

$$\Delta U = q - P\Delta V$$

q: calor

w: trabalho

w < 0 → o sistema realizou trabalho sobre a vizinhança

w > 0 → a vizinhança realizou trabalho sobre o sistema

q < 0 → o sistema perdeu calor

q > 0 \rightarrow o sistema recebeu calor

Exemplo 3: Um motor de automóvel realiza 520 kJ de trabalho e perde 220 kJ de energia como calor. Qual é a variação da energia interna do motor? Tratar motor, combustível e gases do escapamento como um sistema fechado.

1^a Lei da Termodinâmica

Exercício 3: Quando uma bateria elétrica aciona um tocador de CD, realiza 250 J de trabalho em um dado período. Enquanto a bateria está operando, 35 J de energia são perdidos como calor. Qual é a variação de energia interna da bateria?

Termoquímica

TERMOQUÍMICA

Estuda as variações de energia que ocorrem junto a uma reação química

Ao ocorrer uma reação química sempre haverá uma variação de energia.

Essa energia provém de um novo arranjo das ligações químicas

• ENTALPIA DE UM SISTEMA (H):

Pode ser conceituada como o conteúdo energético do sistema, medido à pressão constante.

VARIAÇÃO DE ENTALPIA (ΔΗ)

$$\Delta H = H_{\text{final}} - H_{\text{inicial}} \qquad A + B \rightarrow C + D$$

$$\Delta H = H_{\text{P}} - H_{\text{R}} \qquad H_{\text{P}}$$

 H_P é a entalpia dos produtos e H_R é a entalpia dos reagentes.

Reações Químicas e o calor

Em relação às trocas de calor, as reações químicas podem ser classificadas em:

Reações Exotérmicas

Reações Endotérmicas

Equação geral

$$A + B \longrightarrow AB +$$
 Calor $\stackrel{\frown}{\longrightarrow}$

Ocorre liberação de energia na forma de calor

Exemplos:

Respiração Animal

Processos de queima (Combustão)

Representação

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$
 $\Delta H = -94.0 \text{ Kcal/mol}$

ou

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} + 94,0 \text{ Kcal/mol}$$

ou

$$C_{(s)} + O_{2(g)} - 94,0 \text{ Kcal } \rightarrow CO_{2(g)}$$

Análise Gráfica

Equação geral

$$AB + Calor \rightarrow A + B$$

Ocorre absorção de energia na forma de calor

Exemplos:

Fotossíntese

Cozimento de alimentos

Representação:

$$N_{2(1)} + O_{2(g)} \rightarrow 2NO_{(g)}$$
 $\Delta H = +42 \text{ Kcal/mol}$

ou

$$N_{2(l)} + O_{2(g)} + 42 \text{ Kcal} \rightarrow 2 \text{ NO}_{(g)}$$

ou

$$N_{2(l)} + O_{2(g)} \rightarrow 2 NO_{(g)} - 42 Kcal$$

Análise Gráfica

Reações Exotérmicas x Endotérmicas (Resumo)

REAÇÃO ENDOTÉRMICA:

- Absorção de calor
- Vizinhança resfria
- $\Delta H > 0$

REAÇÃO EXOTÉRMICA:

- Liberação de calor
- Vizinhança aquece
- $-\Delta H < 0$

Imagem: Divulgação

Equações Termoquímicas

Uma equação termoquímica é formalmente uma equação química com a correspondente variação na entalpia para os números estequiométricos de mols de substâncias.

A entalpia de reação é a variação de entalpia por mol de substância, expressa pelos números estequiométricos na equação química.

Equações Termoquímicas

• Valores de variação de entalpia são apresentados após a equação.

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$$
 $\Delta H = -890,3 \text{ kJ}$

$$Ba(OH)_2.8H_2O_{(s)} + 2NH_4NO_{3(s)} \rightarrow 2NH_{3(g)} + 10H_2O_{(l)} + Ba(NO_3)_2; \Delta H = +170,4 \text{ kJ}$$

$$\frac{1}{2} N_{2(g)} + O_{2(g)} \rightarrow NO_{2(g)}$$
 $\Delta H = +33.2 \text{ kJ}$

- * Convencionou-se entalpia zero para determinadas substâncias simples, em razão de não ser possível medir o valor real da entalpia de uma substância.
 - * Foram escolhidas condições-padrão para estabelecer medidas relativas.
 - * Terá entalpia zero qualquer substância simples que se apresente nos estados físico e alotrópico mais comum, a 25°C e 1 bar de pressão.

Condições Padrão

Temperatura de 25°C;

Pressão de 1 bar (≈ 1atm);

• Estrutura cristalina ou alotrópica mais estável (se for o caso);

• Estado físico usual da substância

Elemento	Forma alotrópica mais estável	Forma alotrópica menos estável
Oxigênio	O_2	O ₃
Carbono	$C_{ m grafite}$	C _{diamante}
Enxofre	S _{rômbico}	Smonoclínico
Fósforo	P _{vermelho}	P _{branco}

 \mathbf{O}_{2}

O₃(OZÔNIO)

CARBONO GRAFITE

Imagem: Ana Karoline Maia; Ronne Viana

CARBONO DIAMANTE

FÓSFORO VERMELHO

FÓSFORO BRANCO

Imagem: Ana Karoline Maia; Ronne Viana

• ΔH necessário para formação de 1 mol de uma substância a partir da reação de suas moléculas simples constituintes (no estado padrão → estado mais estável do elemento a 25 °C e 1 bar).

O índice sobrescrito o significa estado padrão.

O índice subscrito **f** significa formação.

$$C_{\text{(grafite)}} + O_{2(g)} \rightarrow CO_{2(g)}$$
 $\Delta H^{\text{o}f} = -393,3 \text{ kJ mol}$
 $C_{\text{(grafite)}} + 1/2 O_{2(g)} \rightarrow H_2O_{(l)}$ $\Delta H^{\text{o}f} = -68 \text{ kcal mol}^{-1}$

$$\Delta H^{o}f = -393,3 \text{ kJ mol}^{-1}$$

$$\Delta H^{o}f = -68 \text{ kcal mol}^{-1}$$

Os valores de $\Delta \mathbf{H}$ são pré-estabelecidos e encontrados em tabelas, para aqueles compostos que estejam na sua forma mais estável a 1 atm de pressão, ou seja, no **estado padrão**.

Valores de Entalpia de Formação Padrão de Algumas Substâncias

SUBSTÂNCIA	H°f kJ/mol	SUBSTÂNCIA	H°f kJ/mol
$C_2H_2(g)$	226,8	C diamante	+2,1
CH ₄ (g)	-74,8	$NH_3(g)$	-45,9
CO(g)	-110,3	NaCl (s)	-412,1
CO ₂ (g)	-393,3	O ₃ (g)	+143
$H_2O(v)$	-242	$SO_{2}(g)$	-297
$H_2O(1)$	-286	SO ₃ (g)	-396

$$\begin{array}{cccc} & ENTALPIA\ ZERO \\ & H^o=0 \end{array} & ENTALPIA\ DIFERENTE \\ & DE\ ZERO\ H^o\neq 0 \end{array}$$

$$\begin{array}{cccc} & & & & \\ & H_{2(g)},\ N_{2(g)\ e\ etc} & & & \\ & O_{2(g)} & & O_{3(g)} \\ & C_{(grafite)} & & C_{(diamante)} \\ & S_{(r\hat{o}mbico)} & & S_{(monoclínico)} \\ & P_{(vermelho)} & & P_{(branco)} \end{array}$$

* A forma alotrópica menos estável tem entalpia diferente de zero.

Observe a reação de formação (síntese) de um mol de água, a 25°C e 1 atm de pressão.

$$H_{2(g)} + 1/2O_{2(g)} \rightarrow H_2O_{(l)}$$

Cálculo da entalpia de formação:

$$\Delta H = H_{(produtos)} - H_{(reagentes)}$$

$$\mathbf{H}_{2(g)} + 1/2 \, \mathbf{O}_{2(g)} \rightarrow \mathbf{H}_2 \mathbf{O}_{(l)} \, \Delta \mathbf{H} = ?$$

$$\Delta H = H_{(produtos)} - H_{(reagentes)}$$

$$\Delta H = H^o \text{H}_2 \text{O}_{\text{(l)}^-} \left(\, H^o \, \, \text{H}_{2\text{(g)}^+} \, \, 1/2 \, \, H^o \, \, \text{O}_{2\text{(g)}} \right)$$

COMO

$$H^{o} H_{2(g)} = H^{o} O_{2(g)} = zero$$

$$\Delta H = H^{o}H_{2}O_{(l)}$$
 e $H^{o}H_{2}O_{(l)} = -68,4$ kcal/mol

$$\Delta H = -68,4$$
kcal/mol

Entalpia de uma Reação

A variação de entalpia de uma reação pode ser calculada, conhecendo-se apenas as entalpias de formação dos seus reagentes e produtos.

$$\Delta H = \sum \Delta H_{(produtos)} - \sum \Delta H_{(reagentes)}$$

Exemplo 4:

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)} \Delta H = ? - kcal/mol$$

Consultando a tabela de calores de formação:

SUBSTÂNCIAS	ΔΗ
$C_3H_{8(g)}$	-24,8kcal/mol
$CO_{2(g)}$	-94,1kcal/mol
$H_2O_{(g)}$	-57,8kcal/mol
$O_{2(g)}$	zero

Exemplo 4:

$$C_{3}H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_{2}O_{(g)} \Delta H = ? - \text{kcal/mol}$$

$$\Delta H = \sum \Delta H_{(produtos)} - \sum \Delta H_{(reagentes)}$$

$$\Delta H = \left[3\Delta H CO_{2(g)} + 4\Delta H H_2 O_{(g)} \right] - \left(\Delta H C_3 H_{8(g)} + 5\Delta H O_{2(g)} \right)$$

$$\Delta H = [3(-94,1) + 4(-57,8)] - (-24,8 + zero)$$

$$\Delta H = -488,7 \text{ kcal/mol}$$

Exercício 4: Calcule a variação de entalpia da reação abaixo:

$$C_2H_5OH_{(1)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(1)}$$

Dados:
$$\Delta H^0_f$$
 $C_2H_5OH_{(1)} = -277,6 \text{ kJ.mol}^{-1}$
 ΔH^0_f $CO_{2(g)} = -393,5 \text{ kJ.mol}^{-1}$
 ΔH^0_f $H_2O_{(1)} = -285,8 \text{ kJ.mol}^{-1}$

Calor Padrão de Combustão ou Entalpia Padrão de Combustão

 ΔH observada na combustão total de 1 mol de moléculas da substância no estado padrão (25°C e 1 atm)

$$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(l)}$$
 $\Delta H = -2.220 \text{ kJ/mol}$

$$C_2H_5OH_{(l)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(l)}$$
 $\Delta H = -325 \text{ kcal/mol}$

• Combustão: reação de uma substância com o oxigênio (O_2) em que ocorre liberação de energia (reação exotérmica)

Exemplo 5: A equação termoquímica para a combustão do metano está representada abaixo. Que massa de butano necessita ser queimada para fornecer 350 kJ de calor?

$$2 C_4 H_{10(g)} + 13 O_{2(g)} \rightarrow 8 CO_{2(g)} + 10 H_2 O_{(l)}$$
 $\Delta H^0 = -5.756 \text{ kJ}$

Lei de Hess

Germain Henri Hess

A variação de entalpia (ΔH) de uma reação depende **apenas** do estado inicial dos reagentes e do final dos produtos (não depende dos estados intermediários).

Lei de Hess

$$\Delta \mathbf{H} = \Delta \mathbf{H}_1 + \Delta \mathbf{H}_2$$

Exemplo 6: Cálculo da entalpia da reação de formação do gás carbônico:

$$C_{\text{(grafite)}} + O_{2(g)} \rightarrow CO_{2(g)} \qquad \Delta H = ? \text{ kcal/mol}$$

OBSERVE AS EQUAÇÕES:

$$C_{\text{(grafite)}} + 1/2O_{2(g)} \rightarrow CO_{(g)} \Delta H = -26,4 \text{kcal/mol}$$

$$CO_{(g)} + 1/2O_{2(g)} \rightarrow CO_{2(g)} \Delta H = -67,6kcal/mol$$

Exemplo 6:

EFETUAMOS A SOMA ALGÉBRICA DAS MESMAS.

Note que os termos semelhantes em membros opostos se anulam.

1ª etapa:
$$C_{(grafite)} + 1/2O_{2(g)} \rightarrow CO_{(g)}$$
 $\Delta H_1 = -26,4$ kcal/mol 2ª etapa: $CO_{(g)} + 1/2O_{2(g)} \rightarrow CO_{2(g)}$ $\Delta H_2 = -67,6$ kcal/mol

Etapa final:
$$C_{\text{(grafite)}} + O_{2(g)} \rightarrow CO_{2(g)} \Delta H = -94,0 \text{kcal/mol}$$

CONCLUINDO
$$\Delta \mathbf{H} = \Delta \mathbf{H}_1 + \Delta \mathbf{H}_2$$
$$\Delta \mathbf{H} = -94,0 \text{kcal/mol}$$

Exemplo 7: Dadas as equações:

$$C_{(grafite)} + O_{2(g)} \rightarrow CO_{2(g)}$$
 $\Delta H_1 = -94,0 \text{kcal/mol}$ $H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2 O_{(l)}$ $\Delta H_2 = -68,4 \text{kcal/mol}$ $C_{(grafite)} + 2H_{2(g)} \rightarrow CH_{4(g)}$ $\Delta H_3 = -17,9 \text{kcal/mol}$

Calcule a entalpia da reação:

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)}$$

Exemplo 7:

Observe os cortes:

$$C_{(grafite)} + O_{2(g)} \rightarrow CO_{2(g)}$$
 $\Delta H_1 = -94,0 \text{ kcal/mol}$ $2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(l)}$ $\Delta H_2 = -136,8 \text{ kcal/mol}$ $CH_{4(g)} \rightarrow C_{(grafite)} + 2H_{2(g)}$ $\Delta H_3 = +17,9 \text{ kcal/mol}$

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(l)} \Delta H = -212,9 \text{ kcal/mol}$$

$$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$$

Exercício 5: Calcule a entalpia de combustão do CH_{4(g)}, conhecendo-se:

$$2 H_{2(g)} + C_{(graf)} \longrightarrow CH_{4(g)} \Delta H_1 = -75,00 \,\mathrm{kJ}$$
 $2 H_{2(g)} + O_{2(g)} \longrightarrow 2 H_2O_{(1)} \Delta H_2 = -572,35 \,\mathrm{kJ}$
 $C_{(graf)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H_3 = -394,27 \,\mathrm{kJ}$

Exercício 6: Determine a energia liberada, na respiração celular aeróbia, na queima de 1 mol de glicose na presença de oxigênio.

Dados:

Combustão da glicose :

$$C_6H_{12}O_{6(aq)} + 6O_{2(g)} \longrightarrow 6CO_{2(g)} + 6H_2O_{(1)}$$

Lei de Hess – Observações

• Somar equações: como se fossem equações matemáticas, visando obter a equação desejada.

• Inverter equações, e com isso, invertendo o sinal do ΔH da reação.

• Multiplicar ou dividir equações por um numero diferente de zero, multiplicando ou dividindo também o valor do ΔH .

• Energia necessária para romper (quebrar) 1,0 mol de ligações, supondo todas as substâncias no estado gasoso a 25°C e 1 atm.

EX. Para romper um mol de ligação **H** – **O** são necessárias 110kcal. Para romper um mol de ligação **H** – **C** são necessárias 100kcal. Para romper um mol de ligação **O** = **O** são necessárias 118kcal.

* esses valores são tabelados

Exemplo 8:

Para romper um mol de água no estado gasoso, teremos:

$$H_2O_{(g)} \rightarrow 2H_{(g)} + O_{(g)} \Delta H = ? kcal$$

$$H_2O_{(g)} \rightarrow 2H_{(g)} + O_{(g)} \Delta H = 220 \text{ kcal}$$

Maior agitação → rompimento da ligação

A quebra de ligação envolve absorção de calor

 $H \neq H$

Processo endotérmico

Processo exotérmico

A formação de ligação envolve liberação de calor

H-H

... REAGENTES

A quebra de uma ligação é um processo endotérmico.

$$(\Delta H > 0)$$
: SINAL $(+)$

... PRODUTOS

A formação de uma ligação é um processo exotérmico.

$$(\Delta H < 0)$$
: SINAL (-)

Exemplo 9:

Observe a reação em que todos os participantes estão no estado gasoso:

Para romper as ligações intramoleculares do metanol e do oxigênio, serão absorvidos, para:

1 mol de
$$\mathbf{O} - \mathbf{H} \implies +464,0 \text{ kj}$$
 + 464,0 kj
1 mol de $\mathbf{C} - \mathbf{O} \implies +330,0 \text{ kj}$ + 330,0 kj
3 mols de $\mathbf{C} - \mathbf{H} \implies 3 (+413,0 \text{ kj})$ + 1.239,0 kj
3/2 mols de $\mathbf{O} = \mathbf{O} \implies 3/2 (+493,0 \text{ kj})$ + 739,5 kj
TOTAL ABSORVIDO + 2.772,5 kj

Exemplo 9:

Cômputo dos produtos:

Para formar as ligações intramoleculares do CO₂ e da água, serão liberadas:

2 mols de
$$C = O \implies 2 \ (-744,0 \ kj)$$
 -1.488,0 kj
4 mols de $H - O \implies 4 \ (-464,0 \ kj)$ -1.856,0 kj
TOTAL LIBERADO -3.344,0 kj

Exemplo 9:

O cálculo final será:

$$\Delta H = 2.772,5 kj - 3.344,0 kJ$$

$$\frac{\text{CALOR}}{\text{ABSORVIDO}}$$

$$\frac{\text{CALOR}}{\text{LIBERADO}}$$

$$\Delta H = -571,5kJ$$

Exercício 7: Determine a variação de entalpia na reação:

Exercício 8: Calcule variação de entalpia na reação:

$$CH_{4(g)} + Cl_{2(g)} \longrightarrow CH_{3}Cl_{(g)} + HCl_{(g)}$$

Dados: $C - H = 414,0 \text{ kJ.mol}^{-1}$
 $Cl - Cl = 243,0 \text{ kJ.mol}^{-1}$
 $C - Cl = 331,0 \text{ kJ.mol}^{-1}$
 $H - Cl = 431,0 \text{ kJ.mol}^{-1}$

Processos espontâneos = uma vez iniciados prosseguem sem a necessidade de ajuda externa.

Ex = A dissolução do sal em água, a queima de carvão

Processos não-espontâneos = são aqueles que apenas são possíveis através do fornecimento contínuo de energia.

<u>Ex</u> = O cozimento de alimentos, a obtenção de metais

Combustão da Gasolina

Espontâneo!?

Para iniciar a combustão há necessidade de chama ou faísca. Mas, a combustão continua sem nenhuma intervenção adicional.

Combustão completa da gasolina

Princípio de Thompsen e Berthelot (1867)

"Dentre um conjunto de reações químicas possíveis, ocorrerá primeiro, espontaneamente, aquela que for mais exotérmica."

A reação mais exotérmica é aquela que libera maior quantidade de energia na forma de calor.

Nesta época cientistas tinham a consciência que uma reação química acontece espontaneamente se, e somente se, os produtos forem menos energéticos que os reagentes, ou seja, mais estáveis. Portanto:

- Quanto mais estável um composto, menos energético ele é;
- Quanto menos energético um composto, menor a variação de entalpia da sua reação de formação (lembrando que, como o sinal da entalpia é negativo para as reações exotérmicas, os números decrescem com o módulo: logo, -50 é maior que -51);
- Quanto menor a variação da entalpia de formação, mais espontânea ela é.

A constatação de que a maioria dos processos espontâneos ocorre com liberação de energia, levou à idéia de que apenas processos exotérmicos, que ocorriam com diminuição de energia do sistema, eram espontâneos.

De fato, isto é verdade para muitas reações; existem, no entanto, *processos espontâneos que absorvem calor*.

Portanto, além do fator energia, existe um outro que influencia a espontaneidade de um processo.

Entropia (S).

ENTROPIA

CICLO DE CARNOT

A soma de q/T em torno do ciclo é zero, logo, deve haver uma função de estado que seja determinada por essa expressão.

No Ciclo de Carnot, um gás ideal sofre uma série de quatro processos. Dois desses (rotulados como 1 e 3 na figura) são isotérmicos, ou seja, ocorrem a temperatura constante. As outras duas etapas (2 e 4) são adiabáticas, ou seja, não há troca de calor (q=0). Carnot demonstrou que a soma da quantidade q/T para todo o ciclo é igual a zero. Uma vez que o ciclo começa e termina com o sistema no meso estado, isso significa que deve haver uma função de estado igual a q/T. Essa função é chamada de entropia.

Fonte:

Brown; Holme, 2009

Segunda Lei da Termodinâmica

Entropia é a grandeza física proporcional ao grau de desordem de um sistema.

É uma função de estado (é uma medida da desordem de um sistema e depende somente de seu estado atual e é independente de como este estado foi atingido)

A entropia total de um sistema termodinâmico isolado tende a aumentar com o tempo, aproximando-se de um valor máximo.

(A entropia de um sistema isolado aumenta em qualquer processo espontâneo).

- A entropia é representada pelo símbolo S;
- Quando comparada com a mesma substância ou com substâncias similares, valores de entropia de gases são muito maiores do que de líquidos e os líquidos maiores do que de sólidos;
- valores de entropia de moléculas mais complexas são maiores do que de moléculas mais simples, especialmente em séries relacionadas; Ex.: $S^0 C_3H_8(g) > S^0 C_2H_6(g) > S^0 CH_4(g)$;
- Geralmente, a entropia aumenta quando um líquido puro ou um sólido puro é dissolvido em um solvente;
- A entropia aumente quando um gás dissolvido escapa da solução;

- A dissolução de qualquer substância em um liquido também produz um sistema em que a desorganização é maior.

Ex:
$$C_6H_{12}O_{6(s)} \rightarrow C_6H_{12}O_{6(aq)}$$

$$\Delta S > 0$$

- O aumento do número de moléculas aumenta a entropia do sistema.

Ex:
$$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$$

$$\Delta S > 0$$

- Para moléculas assemelhadas, as mais complexas possuem uma entropia maior.

Ex:
$$CH_{4(g)} \rightarrow C_2H_{6(g)}$$

$$\Delta S > 0$$

A variação da entropia pode ser calculada pela expressão:

$$\Delta S = \frac{q_{rev}}{T}$$

$$\frac{J}{K}$$
 ou JK^{-1}

q: energia transferida como calor (J)

T: temperatura (K)

rev: indica que a energia foi transferida reversivelmente.

Para que uma trabsferência reversível de energia como calor, a temperatura das vizinhanças deve ser a mesma que a do sistema. Um aumento infinitesimal na temperatura das vizinhanças resulta em um fluxo de energia para o sistema; uma diminuição infinitesimal na temperatura resulta em um fluxo de energia do sistema.

Se uma grande quantidade de energia é transferida como calor (q_{rev} grande), uma grande desordem é provocada no sistema e esperamos um correspondente aumento na entropia.

Espera-se uma maior variação na desodem (variação de entropia) quano a temperatura é baixa que quando é alta. As moléculas de um sistema frio tem pouco movimento térmico, então o aumento de energia agita-as mais do que o sistema já estivesse quente com as moléculas se agitando vigorosamente.

$$\Delta S = \frac{q_{rev}}{T}$$

 q_{rev} é proporcional a ΔS

T é inversamento proporcional a ΔS

Exemplo 10: Um frasco grande de água foi colocado em contato com um aquecedor, e 100 J de energia foram transferidos reversivelmente à água a 25 °C. A variação de entropia da água é?

$$\Delta S = \frac{q_{rev}}{T} = \frac{100 \text{ J}}{(273 + 25)\text{K}} = +0.33 \text{ JK}^{-1}$$

Observe que a entropia da água aumenta como resultado do fluxo de calor para ela.

Exercício 9: Calcule a variação na entropia de uma amostra grande de gelo quando 50 J de energia na forma de calor são removidos reversivelmente dela a 0 °C em uma geladeira.

Variação de Entropia (ΔS) com Variação de Energia

$$\Delta S = \frac{q_{rev}}{T}$$
, somente quando T for constante

Para uma transferência infinitesimal (dq) à temperatura T, o amento de entropia também é infinitesimal, portanto:

$$dS = \frac{dq_{rev}}{T}$$

Quando uma quantidade infinitesimal de energia dq é fornecida como calor, a temperatura aumenta uma quantidade infinitesimal dT, logo:

$$dq = CdT$$

Variação de Entropia (ΔS) com Variação de Energia

Se a variação na temperatura é feita a volume constante, usamos a capacidade calorífica a volume constante (C_V .) Se a variação ocorrer à pressão constante, usamos C a pressão constante (C_P). Se a transferência for reversível, temos:

$$dS = \frac{CdT}{T}$$

Supondo que a temperatura de uma amostra aumenta de T_1 para T_2 , a variação global na entropia é soma (integral) de todas as variações infinitesimais: (assumindo que C é independente da temperatura no intervalo de interesse)

$$\Delta S = \int_{T_1}^{T_2} \frac{CdT}{T} = C \int_{T_1}^{T_2} \frac{dT}{T} = C \ln \frac{T_2}{T_1}$$

Variação de Entropia (ΔS) com Variação de Energia à Pressão Constante

$$\Delta S = C_P \ln \frac{T_2}{T_1}$$

Observe que, como $T_2 > T_1$, $\Delta S > 0$, indicando aumento na entropia quando a temperatura é aumentada.

Exemplo 11: A temperatura de 100 g de água, à pressão constante (C_P = 418 JK⁻¹), foi aumentada de 0 °C (273 K) para 100 °C (373 K). Determine a variação de entropia.

$$\Delta S = (418 \,\text{JK}^{-1}).\ln \frac{373 \,\text{K}}{273 \,\text{K}} = +130 \,\text{JK}^{-1}$$

Variação de Entropia (ΔS) com Variação de Energia à Pressão Constante

Exercício 10: A temperatura de 1,00 mol de $He_{(g)}$ é aumentada de 25 °C para 300 °C à pressão constante. Qual é a variação na entropia do hélio? Assuma comportamento ideal e usar $C_{Pm} = 5/2$ R.

$$\Delta S = C_P \ln \frac{T_2}{T_1} = nC_{P,m} \ln \frac{T_2}{T_1}$$

Variação de Entropia (ΔS) com Temperatura Constante

Lei de Boyle: "O volume de certa quantidade fixa de um gás mantido à temperatura constante é inversamente proporcional à pressão".

$$\frac{\mathbf{V}_2}{\mathbf{V}_1} = \frac{\mathbf{P}_1}{\mathbf{P}_2}$$

$$\Delta S = nR ln \frac{P_1}{P_2}$$

P₁: Pressão inicial

P₂: Pressão final

Variação de Entropia (ΔS) com Temperatura Constante

Exercício 11: Calcule a variação de entropia quando a pressão de 70,9g de gás cloro aumenta isotermicamente de 3,00 kPa para 24,00 kPa. Assuma comportamento ideal. (Massa molar do gás cloro: 71 g mol⁻¹.)

Terceira Lei da Termodinâmica

Sabendo que a entropia é uma medida de desordem, pode-se imaginar um estado perfeitamente ordenado da matéria (sem desordem alguma), que corresponde à entropia zero: um "zero absoluto" da entropia.

A entropia de um cristal perfeito de qualquer substância pura aproxima-se de zero à medida que a temperatura aproxima-se do zero absoluto.

Cristal Perfeito: substância na qual todos os átomos estão em um arranjo perfeitamente ordenado.

Terceira Lei da Termodinâmica

Tendo em vista que todas as substâncias (em princípio) poderiam ser resfriadas até temepraturas próximas de zero, é possível estimar a entropia de um mol de qualquer substância sob condições padrão, determinando a variação na entropia de 0 K a 298 K, sob pressão de 1 bar, fornencendo a entropia padrão (S°) da substância.

Composto	S ^o (J mol ⁻¹ K ⁻¹)	Composto	S ^o (J mol ⁻¹ K ⁻¹)
$H_{2(g)}$	130,6	$NH_{3(g)}$	213,6
$O_{2(g)}$	205,0	$\mathrm{CH}_{4(\mathrm{g})}$	186,2
$H_2O_{(l)}$	69,91	$C_2H_{4(g)}$	219,5
$H_2O_{(g)}$	188,7	$C_4H_{10(g)}$	310,03

Variação da Entropia Padrão em uma Reação

$$\Delta S^{o} = \sum_{i} v_{i} S^{o} (produto)_{i} - \sum_{j} v_{j} S^{o} (reagente)_{j}$$

ΔS°: variação da entropia padrão molar

Sº: entropia padrão molar

υ(nu): coeficiente estequiométrico

i e j: referem-se às espécies individuais do produto e do reagente

Variação da Entropia Padrão em uma Reação

Exemplo 12: Calcule o ΔS^o para a reação abaixo: $2 C_2 H_{4(g)} + H_{2(g)} \rightarrow C_4 H_{10(g)}$

Se um sistema não está isolado, podendo, portanto trocar energia com as suas vizinhanças, o sistema e as suas vizinhanças podem ser considerados como um sistema único, maior e isolado.

Neste caso, a variação de entropia total ΔS_{total} é igual à soma das variações das entropias do sistema (original), $\Delta S_{sistema}$, e das vizinhanças, $\Delta S_{vizinhancas}$. Isto é:

$$\Delta S_{\text{total}} = \Delta S_{\text{sistema}} + \Delta S_{\text{vizinhanças}}$$

Se $\Delta S_{total} > 0$: processo espontâneo

À pressão constante:

$$\Delta H = q$$

Sabendo que:

$$\Delta S_{\text{vizinhanças}} = \frac{calor\,absorvido\,pelas\,vizinhanças}{T_{\text{vizinhanças}}}$$

E que o calor absorvido pelas vizinhanças é –q (calor absorvido pelo sistema), temos que, à pressão constante:

$$q = \Delta H_{\text{sistema}}$$

Então para as vizinhanças, à temperatura e pressão constantes:

$$\Delta S_{\text{vizinhanças}} = \frac{-\Delta H_{\text{sistema}}}{T}$$

$$\Delta S_{\text{total}} = \Delta S_{\text{sistema}} + \Delta S_{\text{vizinhanças}}$$

$$\Delta S_{\text{total}} = \Delta S_{\text{sistema}} - \frac{\Delta H_{\text{sistema}}}{T}$$

Exemplo 13: Calcule a variação de entropia das vizinhanças quando 1,00 mol de H₂O₍₁₎ vaporiza a 90 °C e 1 bar. Considere a entalpia de vaporização da ága como 40,7 kJ mol⁻¹.

- A espontaneidade de um processo é determinada pelos fatores entalpia e entropia. São espontâneos os processos que ocorrem com diminuição de entalpia e aumento de entropia.
- Não são espontâneos os processos que ocorrem com aumento de entalpia e diminuição de entropia.
- Quando um processo ocorre com aumento ou diminuição simultânea de entalpia e entropia, para se prever a espontaneidade ou não da reação é necessário uma grandeza que relaciona a entropia e a entalpia.

• Esta grandeza, que é uma função de estado, é a **energia livre de Gibbs (G)** e é dada pela equação:

$$G = H - TS$$

• Gibbs percebeu que as variações nessa função poderiam prever se um processo é ou não espontâneo, sob condições de pressão e temperatura constantes.

$$\Delta G = \Delta H - T\Delta S$$

• Anteriormente verificou-se que, para um processo à pressão e temperatura constantes:

$$\Delta S_{\text{total}} = \Delta S_{\text{sistema}} - \frac{\Delta H_{\text{sistema}}}{T}$$

Multiplicando ambos os lados por T:

$$T\Delta S_{total} = T\Delta S_{sistema} - T\frac{\Delta H_{sistema}}{T}$$

$$T\Delta S_{total} = T\Delta S_{sistema} - \Delta H_{sistema}$$

• Sabendo:

$$\Delta G = \Delta H - T\Delta S_{sistema}$$
 $-\Delta G = -\Delta H + T\Delta S_{sistema}$

• Tem-se:

$$\Delta G = -T\Delta S_{total}$$

Fatores que Favorecem a Espontaneidade

$\Delta \mathbf{H}$	ΔS	Espontâneo?	
-	+	Sim, $\Delta G < 0$	
-	-	Sim, se $ T\Delta S < \Delta H $, $\Delta G < 0$	
+	+	Sim, se $ T\Delta S > \Delta H $, $\Delta G < 0$	
+	-	Não, $\Delta G > 0$	

Os processos espontâneos à temperatura e pressão constantes são acompanhados por uma diminuição da energia livre de Gibbs.

Energia Livre de Gibbs e Reações Químicas

- Estado Padrão:
 - Pressão de 1 bar
 - Soluções com concentrações de 1 mol L⁻¹
- Nas condições do estado padrão, a variação de energia livre é a variação da energia livre de Gibbs padrão (ΔG^{o}).

$$\Delta G^{o} = \sum_{i} v_{i} \Delta G_{f}^{o} (produto)_{i} - \sum_{j} v_{j} \Delta G_{f}^{o} (reagente)_{j}$$

ΔG°: variação da energia livre de Gibbs padrão

ΔG^o_f: energia livre de formação

υ(nu): coeficiente estequiométrico

i e j: referem-se às espécies individuais do produto e do reagente

Energia Livre de Gibbs e Reações Químicas

• ΔG^{o}_{f} é zero para elementos em seus estados padrão.

Composto	$\Delta G_{f}^{0}(kJ \text{ mol}^{-1})$	Composto	$\Delta G_{f}^{o}(kJ mol^{-1})$
$H_{2(g)}$	0	$NH_{3(g)}$	-16,3
$O_{2(g)}$	0	$CH_{4(g)}$	-50,75
$H_2O_{(l)}$	-237,2	$C_2H_{4(g)}$	68,12
$H_2O_{(g)}$	-228,6	$C_4H_{10(g)}$	-15,71

Energia Livre de Gibbs e Reações Químicas

Exemplo 14: Calcule a variação da energia livre padrão para a reação abaixo:

$$2 C_2 H_{4(g)} + H_{2(g)} \rightarrow C_4 H_{10(g)}$$

Exercício 12: Calcule a variação da energia livre padrão para a reação abaixo:

$$CH_{4(g)} + O_{2(g)} \rightarrow 2 H_2O_{(g)} + CO_{2(g)}$$

Dados:

 $\Delta G_{f}^{o} CH_{4(g)} = -50,7 \text{ kJ mol}^{-1}$ $\Delta G_{f}^{o} O_{2(g)} = 0,0 \text{ kJ mol}^{-1}$ $\Delta G_{f}^{o} H_{2}O_{(g)} = -228,6 \text{ kJ mol}^{-1}$ $\Delta G_{f}^{o} CO_{2(g)} = -394,4 \text{ kJ mol}^{-1}$

LISTA DE EXERCÍCIOS

LE-TQ 01