Tarea 2 Informática Teórica

Matías Peñaloza 202373037-8

2024-2

Concepto	Tiempo [min]
Revisión	60
Desarrollo	90
Informe	90

1 Enunciado

1. Describa concisamente el lenguaje aceptado por el autómata de la figura 1. (40 puntos)

Figure 1: Un autómata finito

2. Construya un DFA lo más simple posible que reconozca el lenguaje aceptado por el autómata de la figura 1.

(60 puntos)

2 Desarrollo

2.1 Lenguaje aceptado por el autómata

Para describir el lenguaje aceptado por el autómata utilizaremos expresiones regulares.

Escribiremos las expresiones regulares que nos llevan del estado q_i al q_{i+1} , con las cuales podremos armar la expresión regular que nos llevará de q_0 a q_n .

Ahora, para el estado q_0 podemos ver que podemos llegar a él con:

$$\varepsilon, 0, 1$$

Luego 0 y 1 son parte de un bucle, teniendo eso en cuenta la expresión regular que nos lleva al primer estado q_0 sería:

$$(0|1)^*$$

Para llegar al estado q_1 únicamente tenemos:

1

por lo que este mismo símbolo sería la expresión regular que nos lleva de q_0 a q_1 .

Para llegar al estado q_2 tenemos:

 $0, \varepsilon$

de los cuales ninguno forma parte de un bucle, lo que nos lleva a la siguiente expresión:

 $(0|\varepsilon)$

la cual nos lleva del estado q_1 al q_2 .

Para llegar al estado final q_3 únicamente tenemos:

1

por lo que este mismo símbolo representa la expresión regular que nos lleva de q_2 al estado final q_3 .

Finalmente, la expresión regular que describe el lenguaje aceptado por el autómata es:

$$(0|1)^*1(0|\varepsilon)1$$

2.2 DFA mínimo

Podemos identificar que el autómata de la figura es un NFA, por lo que primero lo convertiremos en un DFA utilizando ε -closure. Notar que los únicos conjuntos que serán distintos de sí mismos al aplicar ε -closure son aquellos que contienen al estado q_1 , ya que:

$$\begin{array}{l} \varepsilon\text{-closure}(\{q_0\}) = \{q_0\} \\ \varepsilon\text{-closure}(\{q_1\}) = \{q_1, q_2\} \\ \varepsilon\text{-closure}(\{q_2\}) = \{q_2\} \\ \varepsilon\text{-closure}(\{q_3\}) = \{q_3\} \end{array}$$

Una vez dicho esto, armamos la tabla del algoritmo:

Tag	conjunto	ε -closure	0	1	Tipo
A	$\{q_{0}\}$	$\{q_{0}\}$	A	В	Inicial
В	$\{q_0,q_1\}$	$\{q_0, q_1, q_2\}$	С	D	Intermedio
С	$\{q_0,q_2\}$	$\{q_0,q_2\}$	A	D	Intermedio
D	$\{q_0, q_1, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	С	D	Final

Ahora, a partir de la tabla armaremos nuestro DFA:

Figure 2: DFA

Ahora utilizaremos el algoritmo de Moore para encontrar el DFA mínimo, por lo que procedemos a hacer la tabla de transición del DFA encontrado:

Grupo		0	1
	A	Q	Q
No final Q	В	Q	F
	\mathbf{C}	Q	F
Final F	D	Q	F

Luego dividimos Q:

Grupo		0	1
Q_1	A	Q_1	Q_2
Q_2	В	Q_2	F
	\mathbf{C}	Q_1	F
F	D	Q_2	F

En este punto, podemos ver que al dividir Q_2 obtendremos los mismos estados y, por lo tanto, el mismo DFA. Así que concluimos que el DFA de la figura 2 es el DFA mínimo y, por lo tanto, el más simple.