Roger C. ELOBO

Statistiques

Chapitre 1 : Les données statistiques

01

Organisation, intérêt et limites de la statistique descriptive

02

Le langage des pourcentages

- Les chiffres et la société
- La production de statistiques
- Les acteurs de la production de la statistique
- Les domaines de la statistique

Les chiffres et la société

Quotidiennement nous sommes confrontés à un grand nombre d'informations chiffrés, dans la presse, la télévision, la radio, internet. La difficulté est de les rendre intelligible.

L'information n'est pas toujours exploitable. Elle peut présenter des limites. C'est le cas par exemple lorsque les données ont des grandeurs non comparables.

Les chiffres et la société

Exemple de tableau de données statistiques : salaires versés dans différentes entreprises depuis 1996.

	A	В	C	D	E	F	G	H	1	J	
L	Date	AA	AB	AC	AD	AE	AF	AG	AH	Al	A.
2	01/01/1996	823 430	8 695	255 567	398 023	767 249	309 515	731 333	67 083	479 107	
3	01/02/1996	767 967	122 512	617305	199 372	640 067	445 094	247 577	953 613	240 036	
	01/03/1996	496 903	679 621	622 327	745 114	437300	108 501	18 570	325 556	786 061	
	01/04/1996	157 345	517 264	786 091	210 457	921 858	912 528	994 622	632 626	421 138	
	01/05/1996	41 459	500 187	972 839	6 249	956 332	567 804	945 376	841 297	855 871	
	01/06/1996	305 859	394 662	711 694	180 881	554 764	883 288	538 463	384 680	419 613	
	01/07/1996	673 602	234 397	431 814	583 853	10 704	295 018	231 627	727 646	294 031	
	01/08/1996	748 414	914 961	88 373	499 441	355 470	119 400	177 827	954 287	358 044	
)	01/09/1996	353 570	575 662	918 612	189 140	506 980	503 629	995 956	874 107	978 406	
ı	01/10/1996	916 131	464 256	526 103	733 150	51 583	149 611	794 534	890 870	210 698	
2	01/11/1996	848 716	886 451	235 406	322 663	301 858	589 957	300 903	688 082	392 347	
3	01/12/1996	397 060	866 150	141 208	130 807	599 400	272 429	919 125	32 269	827 937	
4	01/01/1997	396 600	968 452	916 639	559 890	613 696	953 960	482 276	661 743	207 173	
5	01/02/1997	359 922	615 968	637 479	643 108	323 558	8 373	819 354	867 193	387 925	
5	01/03/1997	453 236	949 528	389 392	778 771	330 826	331 732	271 637	468 755	587 039	
7	01/04/1997	453 652	962 159	76 667	224 972	797 020	221 856	520 825	185 249	962 623	
3	01/05/1997	614 891	391 790	921 263	366 340	327 048	991 869	247 807	263 451	836 768	
9	01/06/1997	211 726	822 224	577 199	939 686	491 004	16 076	508 579	173 705	445 239	
0	01/07/1997	902 691	854 419	566 350	486 860	724 663	292 493	497 300	385 532	593 013	
1	01/08/1997	930 457	428 217	395 730	292 116	259 091	341 078	990 533	640 545	609 595	
2	01/09/1997	648 874	897 280	781 238	417 826	62 023	279 009	911 308	277 153	802 313	
3	01/10/1997	702 522	393 275	898 707	292 112	564 318	38 469	513 716	67 550	277 876	
4	01/11/1997	414 029	277 077	275 296	873 783	174 171	473 714	767 880	731 060	480 205	
5	01/12/1997	354 986	184 019	780 702	600 321	25 836	485 850	511 492	262 448	359 400	
6	n1/n1/1998 Salaires	118 517	212 724	331 036	297.212	185 394	121 256	520 217	671 219	522 125	

Les chiffres et la société

Les données d'un tableau statistique peuvent être représentées graphiquement. Il existe plusieurs types de graphiques.

La production de statistiques : les enquêtes

L'opération technique qui consiste à élaborer des statistiques s'appelle l'enquête. Il en existe deux types :

Le recensement ou l'enquête exhaustive

Les sondages ou enquêtes partielles. Ils mettent en œuvre les méthode d'échantillonnage (quotas, sondages probabilistes)

- Les acteurs de la production de la statistique
- La statistique publique en France
- La statistique communautaire européenne
- La statistique privée

Les acteurs de la production de la statistique

1. La statistique publique en France

Le service statistique public :

- L'INSEE,
- les services statistiques ministériels

Le conseil national de l'information statistiques (CNIS).

Il assure la concertation en amont entre les producteurs et les utilisateurs.

L'Autorité de la statistique publique.

Elle garantie l'indépendance, l'objectivité, la pertinence et la qualité de l'élaboration des statistiques publiques.

Les acteurs de la production de la statistique

2. La gouvernance européenne

Eurostat.

Assure la coordination de la production statistique au niveau communautaire.

ESAC (European Statistical Advisory Committee).

Il est consulté par commission pour donner son avis sur le programme de travail statistique communautaire.

ESGAB (European Statistical Governance Advisory Board).

Il assure la bonne mise en œuvre du code européen des bonnes pratiques en matière statistique.

Les acteurs de la production de la statistique

3. La statistique privée

Instituts

Associations spécialisées

Bureaux d'études

Agences de notations,

Etc...

- Les domaines de la statistique
- La statistique descriptive
- La statistique probabiliste
- La statistique mathématique

Les domaines de la statistique

La statistique descriptive

Elle a pour objet la description et la synthèse formalisée d'informations réunies de façon exhaustive.

Son rôle est donc celui d'un outil d'analyse. En soi, les outils développés n'apportent pas d'information supplémentaire par rapport à celle contenue dans les données.

- Les domaines de la statistique
- La statistique probabiliste

Elle a pour objet l'analyse des évènements aléatoires.

Les domaines de la statistique

La statistique mathématique

Elle a pour objet la formulation des lois de comportement à partir d'observations incomplètes. Son rôle est explicatif et prévisionnel.

La statistique mathématique est utilisée lors de la réalisation d'estimations, de procédures d'échantillonnages, dans la mise en œuvre et la conception des sondages

- Les pourcentages
- Le taux de croissance
- Les évolutions successives
- L'évolution des grandeurs liées

Les pourcentages

Le caractère % (pourcentage) signifie diviser par 100. Ainsi donc :

$$15\% = \frac{15}{100} = 0.15$$

Rigoureusement, il est faux d'écrire ceci : $0.25 \times 100 = 25\%$

car on a plutôt ceci :
$$0.25 \times 100 = 25 = \frac{2500}{100} = 2500\%$$

Il est donc commode d'effectuer l'opération multiplier par 100 sans l'écrire X 100.

En général les % sont exprimés à 0,1 près

Les pourcentages

On utilise les pourcentages pour :

Décrire une proportion

Décrire une évolution dans le temps

Les pourcentages : La proportion

La proportion mesure l'importance de la partie d'un tout. Si N est l'effectif d'un ensemble et n, l'effectif de la partie, alors le pourcentage p de la partie est :

$$p = \frac{n}{N}$$

Exemple:

Si 368 étudiants sur 575 ont eu plus de 10 au partiel cela veut dire que $\frac{368}{575} = 0,64 = 64,0\%$ des étudiants ont validé la matière.

Les pourcentages : Taux de croissance (1/4)

Une grandeur qui varie dans le temps et prend successivement les valeurs V_o et V_t enregistre une variation absolue de : $(V_t - V_o)$

La variation relative est de:

$$t = \frac{V_t - V_0}{V_0} = \frac{V_t}{V_0} - \frac{V_0}{V_0} = \frac{V_t}{V_0} - 1$$

Le rapport $c = \frac{v_t}{v_0}$ est le coefficient multiplicateur donc

$$t = c - 1$$

Les pourcentages : Taux de croissance (2/4)

Exemple

Si en 1 an le nombre d'étudiants passe de 575 à 600

Sa variation absolue est: 600 - 575 = +25 étudiants.

Son taux de croissance est :

$$t = \frac{25}{575} = 0.043478 \approx +4.3\%$$

Les pourcentages : Taux de croissance (3/4)

Formules pratiques

$$t = \frac{v_t}{v_0} - 1 = c - 1 \Longrightarrow c = 1 + t$$

$$c = \frac{V_t}{V_0} \Rightarrow \begin{cases} V_t = V_0 \ x \ c \\ ou \\ V_0 = \frac{V_t}{c} \end{cases}$$

Les pourcentages : Taux de croissance (4/4)

Exemples

1) Une prime de 200 € augmente de 3,5% en un an. Elle vaut donc :

$$200 x (1 + 3.5\%) = 207 \in (calcul de V_t)$$

2) En 2 ans l'effectif des 183 membres d'une association sportive a baissé de 8,5%. Il était donc de :

$$\frac{183}{(1-8,5\%)} = 200$$
 (calcul de V_0)

3) Une grandeur qui double (c = 2) augmente donc de :

$$t = 2 - 1 = 1 = 100\%$$

Les évolutions successives

Lorsqu'une grandeur subit plusieurs variations successives $t_1, t_2, t_3, ..., t_n$ le taux d'évolution globale s'obtient par :

$$t = [(1 + t_1)x(1 + t_2)x(1 + t_3)x ... x (1 + t_n)] - 1$$

Si les variations successives sont identiques et égales à r alors on a :

$$t = (1+r)^n - 1$$

Exemples

1) Une prime qui augmente de 5,5% puis de 8,5% varie globalement de :

$$t = (1 + 5.5\%)x(1 + 8.5\%) - 1 = 0.1436 \approx +14.4\%$$

2) Un effectif qui baisse de 10,0% suivie d'une hausse de 15,0% varie globalement de :

$$(1-10\%)x(1+15\%)-1=0.035=+3.5\%$$

L'évolution des grandeurs liées (1/2)

Supposons une grandeur $G = P \times Q$ si P varie i (en %) et Q de j (en %) alors G varie de :

$$t = (1+i) x (1+j) - 1$$

Exemple

Si le prix de vente d'un produit augmente 7,4% et le volume des ventes de 15,0% alors le chiffre d'affaires varie de :

$$(1 + 7,4\%) x (1 + 15\%) - 1 = 0,2351 \approx +23,5\%$$

L'évolution des grandeurs liées (2/2)

Supposons une grandeur $G = \frac{S}{P}$ si S varie i (en %) et P de j (en %) alors G varie de :

$$t = \frac{(1+i)}{(1+j)} - 1$$

Exemple

Si un salaire augmente de 8,55% et les prix à la consommation de 3,20% alors le pouvoir d'achat augmente de :

$$t = \frac{(1+8,55\%)}{(1+3,20\%)} - 1 = 0,0518 \approx +5,18\%$$

(résultat à 0,01 près car les taux proposés sont à 0,01 près)

L'évolution moyenne

Lorsqu'une période se subdivise en plusieurs sous périodes, l'accroissement périodique moyen, r, est donné par :

$$r = \sqrt[n]{\left(\frac{V_t}{V_0}\right)} - 1 \text{ ou } r = \left[\frac{V_t}{V_0}\right]^{\frac{1}{n}} - 1$$

Exemple

En 5 ans un chiffre d'affaires est passé de 100 000 à 145 000€. Il a donc varie de $r=\sqrt[5]{\frac{145000}{100000}-1}=0,077144\approx+7,7\%$ par an en moyenne.

A savoir

Calculer avec les exposants

Le produit d'un nombre x, n fois par lui-même s'écrit x^n . L'exposant n peut être un nombre entier positif ou négatif ou un nombre fractionnaire. Voici des règles de calcul simples, à connaître et/ou à ré-apprendre.

Liste 1

- $a^1 = a$
- $a^0 = 1$
- $\bullet (a^m)^n = a^{(m \times n)}$
- $a^{-m} = \frac{1}{a^m}$
- $\bullet \ \frac{a^m}{a^n} = a^{(m-n)}$

Liste 2

- $a^{1/2} = \sqrt{a}$
- $a^{1/3} = \sqrt[3]{a}$
- $\bullet (abc)^m = a^m \times b^m \times c^m$
- $a^m \times a^n \times a^p = a^{m+n+p}$
- $\bullet \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

Chapitre 1

