A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EM

Bookmark

Show all steps: ON

ON

Problem

Let p be a prime number. A finite group G is called a p-group if the order of every element x in G is a power p. (The orders of different elements may be different powers of p.) If H is a subgroup of any finite group G, and H is a p-group, we call H a p-subgroip of G. Finally, if K is a p-subgroup of G, and G is maximal (in the sense that G is not contained in any larger G subgroup of G), then G is called a G subgroup of G.

Let $a \in N$, and suppose the order of Ka in N/K is a power of p. Let $S = \langle Ka \rangle$ be the cyclic subgroup of N/K generated by Ka. Prove that N has a subgroup S^* such that S^*/K is a p-group. (HINT: See Exercise J4.)

Step-by-step solution

Step 1 of 3

Suppose that G is a p-group, so order of each element x in G will be the power of p. Let K is a p-Sylow subgroup of G and N = N(K) be the normalizer of K.

Assume that $a \in N$, and the order of coset Ka in N/K is a power of p. Let $S = \langle Ka \rangle$ is the cyclic subgroup of N/K generated by Ka.

Objective is to prove that N has a subgroup S^* such that S^*/K is a p-group.

Consider the following result:

Suppose that *G* is any group. Let the mapping

$$f:G_{\kappa}\to H$$

is a homomorphism from G onto H with kernel K. Assume that S is any subgroup of H and consider the following set:

$$S^* = \{x \in G : f(x) \in S\}$$

Note that, the set S^* forms a subgroup of G. Consider the following restriction map $g: S^* \to S$ defined as

$$g(x) = f(x)$$
 for every $x \in S^*$.

Then $S \cong S^* / K$.

Step 2 of 3
According to the question, $S = \langle Ka \rangle$ is the cyclic subgroup of quotient group N/K . Choose S^* to be the set of pre-images of this subgroup. Then, by the above mentioned result, it can be conclude that S^*/K is isomorphic to S . That is, S^*/K will also form the cyclic subgroup of N/K .
Observe that N/K is well defined group, so K will be normal in N . Since K is a p -Sylow subgroup of G , so the order of N will also be some power of p . Thus, the order of S^*/K will be some power of p , that is, a p -group. Since S^*/K is a p -group of N/K , therefore S^* will be the subgroup of N .

Step 3 of 3

Hence, N has a subgroup S^* such that S^* / K is a p-group.

Comment