Relative full completeness for bicategorical cartesian closed structure

Marcelo Fiore[†] and Philip Saville[⋄]

[†]University of Cambridge Department of Computer Science and Technology [©]University of Oxford Department of Computer Science

$$\begin{split} & \text{STLC} = \text{simply-typed lambda calculus with } \times \\ & \text{STPC} = \text{products but no exponentials} \end{split}$$

$$\label{eq:STLC} \begin{split} & \text{STLC} = \text{simply-typed lambda calculus with } \times \\ & \text{STPC} = \text{products but no exponentials} \end{split}$$

The classical story

STLC conservatively extends STPC

"CC-structure conservatively extends cartesian structure"

$$\begin{split} &\mathsf{STLC} = \mathsf{simply-typed} \ \mathsf{lambda} \ \mathsf{calculus} \ \mathsf{with} \ \times \\ &\mathsf{STPC} = \mathsf{products} \ \mathsf{but} \ \mathsf{no} \ \mathsf{exponentials} \end{split}$$

The classical story

STLC conservatively extends STPC

"CC-structure conservatively extends cartesian structure"

This paper \leadsto replace $\beta\eta$ -equalities by witnessing isomorphisms

"up-to-isomorphism CC-structure conservatively extends up-to-isomorphism cartesian structure"

"STLC-rewriting conservatively extends STPC-rewriting" [modulo equations]

The classical story

$$\begin{split} & \mathsf{STLC} = \mathsf{simply-typed} \ \mathsf{lambda} \ \mathsf{calculus} \ \mathsf{with} \ \times \\ & \mathsf{STPC} = \mathsf{products} \ \mathsf{but} \ \mathsf{no} \ \mathsf{exponentials} \end{split}$$

$$\begin{split} & \text{STLC} = \text{simply-typed lambda calculus with } \times \\ & \text{STPC} = \text{products but no exponentials} \end{split}$$

Syntactic: STLC is a conservative extension of STPC

$$\begin{split} & \mathsf{STLC} = \mathsf{simply-typed} \ \mathsf{lambda} \ \mathsf{calculus} \ \mathsf{with} \ \times \\ & \mathsf{STPC} = \mathsf{products} \ \mathsf{but} \ \mathsf{no} \ \mathsf{exponentials} \end{split}$$

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful

$$\begin{split} &\mathsf{STLC} = \mathsf{simply-typed} \ \mathsf{lambda} \ \mathsf{calculus} \ \mathsf{with} \ \times \\ &\mathsf{STPC} = \mathsf{products} \ \mathsf{but} \ \mathsf{no} \ \mathsf{exponentials} \end{split}$$

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful [relative full completeness]

$$\begin{split} \mathsf{STLC} &= \mathsf{simply-typed\ lambda\ calculus\ with\ \times} \\ \mathsf{STPC} &= \mathsf{products\ but\ no\ exponentials} \end{split}$$

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful [relative full completeness]

i.e.
$$\mathbb{F}^{\mathsf{x}}[\mathbb{C}](A,B) \stackrel{\iota_{A,B}}{\cong} \mathbb{F}^{\mathsf{x},\to}[\mathbb{C}](\iota A,\iota B) = \mathbb{F}^{\mathsf{x},\to}[\mathbb{C}](A,B)$$

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful [relative full completeness]

free cartesian category on
$$\mathbb{C}$$

$$\mathbb{F}^{\mathbf{x}}[\mathbb{C}] \xrightarrow{-\iota} \mathbb{F}^{\mathbf{x}, \to}[\mathbb{C}] \xrightarrow{\text{free CCC}}$$
 any category
$$\mathbb{C}$$

i.e.
$$\mathbb{F}^{\mathsf{x}}[\mathbb{C}](A,B) \stackrel{\iota_{A,B}}{\cong} \mathbb{F}^{\mathsf{x},\to}[\mathbb{C}](\iota A,\iota B) = \mathbb{F}^{\mathsf{x},\to}[\mathbb{C}](A,B)$$

i.e. for A, B types without \rightarrow ,

$$\left(\mathsf{STPC\text{-}terms}\;x\text{:}A \vdash t\text{:}B\right)_{\!\!\left/\alpha\beta\eta\right.} \overset{\iota_{A,B}}{\cong} \left(\mathsf{STLC\text{-}terms}\;x\text{:}A \vdash t\text{:}B\right)_{\!\!\left/\alpha\beta\eta\right.}$$

$$\begin{split} & \mathsf{STLC} = \mathsf{simply-typed} \ \mathsf{lambda} \ \mathsf{calculus} \ \mathsf{with} \ \times \\ & \mathsf{STPC} = \mathsf{products} \ \mathsf{but} \ \mathsf{no} \ \mathsf{exponentials} \end{split}$$

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful [relative full completeness]

i.e.
$$\mathbb{F}^{\mathsf{x}}[\mathbb{C}](A,B) \stackrel{\iota_{A,B}}{\cong} \mathbb{F}^{\mathsf{x},\to}[\mathbb{C}](\iota A,\iota B) = \mathbb{F}^{\mathsf{x},\to}[\mathbb{C}](A,B)$$

- *i.e.* for A, B types without \rightarrow ,
 - 1. Every STLC-term t:B is $\beta\eta$ -equal to some STPC term t':B,
 - 2. $u =_{\beta\eta} u'$ as STPC-terms iff $u =_{\beta\eta} u'$ as STLC-terms.

$$\begin{split} &\mathsf{STLC} = \mathsf{simply-typed} \ \mathsf{lambda} \ \mathsf{calculus} \ \mathsf{with} \ \times \\ &\mathsf{STPC} = \mathsf{products} \ \mathsf{but} \ \mathsf{no} \ \mathsf{exponentials} \end{split}$$

How to prove it?

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful

[relative full completeness]

$$\begin{split} \mathsf{STLC} &= \mathsf{simply-typed\ lambda\ calculus\ with\ } \times \\ \mathsf{STPC} &= \mathsf{products\ but\ no\ exponentials} \end{split}$$

How to prove it?

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful

[relative full completeness]

Syntactic: proof-theoretic techniques

 $STLC = simply-typed lambda calculus with \times STPC = products but no exponentials$

How to prove it?

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful

[relative full completeness]

Syntactic: proof-theoretic techniques

Semantic: "Lafont's argument"

STLC = simply-typed lambda calculus with × STPC = products but no exponentials

How to prove it?

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful

[relative full completeness]

Syntactic: proof-theoretic techniques

Semantic: "Lafont's argument"

22222

Some setup, but simple once you're there

How to prove it?

Syntactic: STLC is a conservative extension of STPC

Semantic: the inclusion ι is full and faithful

[relative full completeness]

Syntactic: proof-theoretic techniques

Semantic: "Lafont's argument"

Some setup, but simple once you're there

Ingredients:

- (1) Universal property of $\mathbb{F}^{\mathsf{x}}[\mathbb{C}]$, $\mathbb{F}^{\mathsf{x},\to}[\mathbb{C}]$,
- (2) Glueing $gl(F) = (id \downarrow F)$ of a functor,
- (3) Sufficient conditions for gl(F) to be a CCC,
- (4) Version of Yoneda lemma,
- (5) Simple facts about full / faithful functors.

$$\begin{split} \mathsf{STLC} &= \mathsf{simply-typed} \ \mathsf{lambda} \ \mathsf{calculus} \ \mathsf{with} \ \times \\ \mathsf{STPC} &= \mathsf{products} \ \mathsf{but} \ \mathsf{no} \ \mathsf{exponentials} \end{split}$$

The classical story

- 1. The inclusion ι is full and faithful [relative full completeness]
- 2. Proof is categorical [Lafont's argument]
- 3. Hence: STLC is conservative over STPC.

Proof principle:

can prove facts about STPC $\!\!\!/$ cartesian categories using STLC $\!\!\!\!/$ CCCs.

The bicategorical story

```
objects A, B, ...
1-cells f, g: A \to B
2-cells \tau, \sigma: f \Rightarrow g: A \to B
(f \circ g) \circ h \cong f \circ (g \circ h)
f \circ Id \cong f \cong Id \circ f
```

objects A, B, \dots

1-cells $f, g : A \rightarrow B$ 2-cells $\tau, \sigma : f \Rightarrow g : A \rightarrow B$

 $(f \circ g) \circ h \cong f \circ (g \circ h)$ $f \circ \mathrm{Id} \cong f \cong \mathrm{Id} \circ f$

hom-categories $f, g \in C(A, B)$

objects A, B, ...1-cells $f, g: A \rightarrow B$ 2-cells $\tau, \sigma: f \Rightarrow g: A \rightarrow B$

$$(f \circ g) \circ h \cong f \circ (g \circ h)$$

 $f \circ \operatorname{Id} \cong f \cong \operatorname{Id} \circ f$

hom-categories $f,g \in \mathcal{C}(A,B)$ with hom-sets $\tau,\sigma \in \mathcal{C}(A,B)(f,g)$

```
objects A, B, \ldots

1-cells f, g: A \to B

2-cells \tau, \sigma: f \Rightarrow g: A \to B

(f \circ g) \circ h \cong f \circ (g \circ h)

f \circ \mathrm{Id} \cong f \cong \mathrm{Id} \circ f

hom-categories f, g \in \mathcal{C}(A, B)

with hom-sets \tau, \sigma \in \mathcal{C}(A, B)(f, g)

e.g. Cat, Prof, bicategories of spans, ...
```

```
objects A, B, \ldots

1-cells f, g: A \to B

2-cells \tau, \sigma: f \Rightarrow g: A \to B

(f \circ g) \circ h \cong f \circ (g \circ h)

f \circ \mathrm{Id} \cong f \cong \mathrm{Id} \circ f

hom-categories f, g \in \mathcal{C}(A, B)

with hom-sets \tau, \sigma \in \mathcal{C}(A, B)(f, g)

e.g. Cat, Prof, bicategories of spans, ...
```

"CCCs up to isomorphism"

objects A, B, ...1-cells $f, g: A \rightarrow B$ 2-cells $\tau, \sigma: f \Rightarrow g: A \rightarrow B$

$$(f \circ g) \circ h \cong f \circ (g \circ h)$$

 $f \circ \mathrm{Id} \cong f \cong \mathrm{Id} \circ f$

hom-categories $f, g \in \mathcal{C}(A, B)$ with hom-sets $\tau, \sigma \in \mathcal{C}(A, B)(f, g)$

e.g. Cat, Prof, bicategories of spans, ...

\frac{\}{\}

objects A, B, \ldots

1-cells $f, g: A \rightarrow B$

2-cells $\tau, \sigma : f \Rightarrow g : A \rightarrow B$

$$(f \circ g) \circ h \cong f \circ (g \circ h)$$

 $f \circ \operatorname{Id} \cong f \cong \operatorname{Id} \circ f$

hom-categories $f, g \in C(A, B)$ with hom-sets $\tau, \sigma \in C(A, B)(f, g)$

e.g. Cat, Prof, bicategories of spans, ...

"CCCs up to isomorphism"

$$\begin{array}{ll} \pi_i \langle f_1, f_2 \rangle = f_i & \quad f = \langle \pi_1 \circ f, \pi_2 \circ f \rangle \\ \mathrm{eval} \circ (\lambda g \times A) = g & \quad g = \lambda \big(\mathrm{eval} \circ (g \times A) \big) \end{array}$$

objects A,B,\ldots 1-cells $f,g:A\to B$ "CCCs up to isomorphism"
2-cells $\tau,\sigma:f\Rightarrow g:A\to B$ " $\pi_i\langle f_1,f_2\rangle\cong f_i$ $f\cong\langle \pi_1\circ f,\pi_2\circ f\rangle$ eval $\circ(\lambda g\times A)\cong g$ $g\cong\lambda(\operatorname{eval}\circ(g\times A))$ hom-categories $f,g\in\mathcal{C}(A,B)$ with hom-sets $\tau,\sigma\in\mathcal{C}(A,B)(f,g)$ e.g. Cat, Prof, bicategories of spans, \ldots

objects A, B, \dots

1-cells $f, g: A \rightarrow B$

2-cells $\tau, \sigma : f \Rightarrow g : A \rightarrow B$

$$(f \circ g) \circ h \cong f \circ (g \circ h)$$

 $f \circ \operatorname{Id} \simeq f \simeq \operatorname{Id} \circ f$

hom-categories $f, g \in C(A, B)$ with hom-sets $\tau, \sigma \in C(A, B)(f, g)$

e.g. Cat, Prof, bicategories of spans, ...

"CCCs up to isomorphism"

$$\pi_{i}\langle f_{1}, f_{2}\rangle \cong f_{i} \qquad f \cong \langle \pi_{1} \circ f, \pi_{2} \circ f \rangle$$

$$\operatorname{eval} \circ (\lambda g \times A) \cong g \qquad g \cong \lambda(\operatorname{eval} \circ (g \times A))$$

$$\left(\pi_i(f) \xrightarrow{\pi_i(\eta)} \pi_i(\langle \pi_1(f), \pi_2(f) \rangle) \xrightarrow{\beta_i} \pi_i(f)\right) = id$$

objects A, B, \dots 1-cells $f, g: A \to B$ 2-cells $\tau, \sigma: f \Rightarrow g: A \to B$ $(f \circ g) \circ h \cong f \circ (g \circ h)$ $f \circ \mathrm{Id} \cong f \cong \mathrm{Id} \circ f$ $(\pi_i(f) \xrightarrow{\pi_i(\eta)} \pi_i(\langle \pi_1(f), \pi_2(f) \rangle) \xrightarrow{\beta_i} \pi_i(f) = \mathrm{id}$ with hom-sets $\tau, \sigma \in \mathcal{C}(A, B)$ with hom-sets $\tau, \sigma \in \mathcal{C}(A, B)(f, g)$ $(\pi_i(f) \xrightarrow{\pi_i(\eta)} \pi_i(\langle \pi_1(f), \pi_2(f) \rangle) \xrightarrow{\beta_i} \pi_i(f) = \mathrm{id}$

cartesian closed categories was cartesian closed bicategories

e.g. Cat, Prof, bicategories of spans, ...

objects A, B, \dots 1-cells $f, g: A \to B$ 2-cells $\tau, \sigma: f \Rightarrow g: A \to B$ $(f \circ g) \circ h \cong f \circ (g \circ h)$ $f \circ \mathrm{Id} \cong f \cong \mathrm{Id} \circ f$ $hom-categories f, g \in \mathcal{C}(A, B)$ with hom-sets $\tau, \sigma \in \mathcal{C}(A, B)(f, g)$ (CCCs up to isomorphism'' $\pi_i \langle f_1, f_2 \rangle \cong f_i \qquad f \cong \langle \pi_1 \circ f, \pi_2 \circ f \rangle \\ \mathrm{eval} \circ (\lambda g \times A) \cong g \qquad g \cong \lambda(\mathrm{eval} \circ (g \times A))$ $\left(\pi_i(f) \xrightarrow{\pi_i(\eta)} \pi_i(\langle \pi_1(f), \pi_2(f) \rangle) \xrightarrow{\beta_i} \pi_i(f)\right) = \mathrm{id}$

cartesian closed categories \longrightarrow cartesian closed bicategories $\beta\eta$ -equalities \longrightarrow witnessing isomorphisms

e.g. Cat, Prof, bicategories of spans, ...

 $\beta\eta$ -equalities \leadsto witnessing isomorphisms

$\beta\eta$ -equalities \rightsquigarrow witnessing isomorphisms

Cartesian closed structure

```
bicategorical models of STLC

[Seely, Hilken, Hirschowitz, Olimpieri,...]
bicategorical models of linear logic

[Hyland-Fiore-Gambino-Winskel, Melliès, ...]
in general: Kleisli bicategories + conditions
```

$\beta\eta$ -equalities \rightsquigarrow witnessing isomorphisms

Cartesian closed structure

```
bicategorical models of STLC

[Seely, Hilken, Hirschowitz, Olimpieri,...]
bicategorical models of linear logic

[Hyland-Fiore-Gambino-Winskel, Melliès, ...]
in general: Kleisli bicategories + conditions
```

$\beta\eta$ -equalities \rightsquigarrow witnessing isomorphisms

Cartesian closed structure

```
bicategorical models of STLC
[Seely, Hilken, Hirschowitz, Olimpieri,...]
bicategorical models of linear logic
[Hyland-Fiore-Gambino-Winskel, Melliès, ...]
in general: Kleisli bicategories + conditions
also: concurrent games, operads, ...
[Paquet, Gambino ...]
```

$\beta\eta$ -equalities \rightsquigarrow witnessing isomorphisms

Cartesian closed structure

```
bicategorical models of STLC

[Seely, Hilken, Hirschowitz, Olimpieri,...]
bicategorical models of linear logic

[Hyland-Fiore-Gambino-Winskel, Melliès, ...]
in general: Kleisli bicategories + conditions
also: concurrent games, operads, ...

[Paquet, Gambino ...]
```

Question: does relative full completeness hold for bicategories?

$\beta\eta$ -equalities \rightsquigarrow witnessing isomorphisms

Cartesian closed structure

```
bicategorical models of STLC
[Seely, Hilken, Hirschowitz, Olimpieri,...]
bicategorical models of linear logic
[Hyland-Fiore-Gambino-Winskel, Melliès, ...]
in general: Kleisli bicategories + conditions
also: concurrent games, operads, ...
[Paquet, Gambino ...]
```

Question: does relative full completeness hold for bicategories?

Answer: yes!

$\beta\eta$ -equalities \rightsquigarrow witnessing isomorphisms

Cartesian closed structure

```
bicategorical models of STLC
[Seely, Hilken, Hirschowitz, Olimpieri,...]
bicategorical models of linear logic
[Hyland-Fiore-Gambino-Winskel, Melliès, ...]
in general: Kleisli bicategories + conditions
also: concurrent games, operads, ...
[Paquet, Gambino ...]
```

Question: does relative full completeness hold for bicategories?

Answer: yes! what about the syntactic side?

```
cartesian categories = models of STPC cartesian closed categories = models of STLC
```

```
\begin{array}{l} \text{finite product bicategories} = \text{models of } \Lambda^{\times}_{\mathrm{ps}} \\ \text{cartesian closed bicategories} = \text{models of } \Lambda^{\times,\rightarrow}_{\mathrm{ps}} \end{array}
```

```
finite product bicategories = models of \Lambda^{\times}_{\mathrm{ps}} cartesian closed bicategories = models of \Lambda^{\times,\rightarrow}_{\mathrm{ps}}
```

Judgements

```
\Gamma \vdash t : A [1-cells] \Gamma \vdash \tau : t \Rightarrow t' : A [2-cells] \Gamma \vdash \tau \equiv \sigma : t \Rightarrow t' : A
```

$$\label{eq:loss_product_bicategories} \begin{split} &\text{finite product bicategories} = \mathsf{models} \text{ of } \Lambda^x_\mathrm{ps} \\ &\text{cartesian closed bicategories} = \mathsf{models} \text{ of } \Lambda^{\times,\to}_\mathrm{ps} \end{split}$$

Judgements

$$\begin{array}{ll} \Gamma \vdash t : A & \text{[1-cells]} \\ \Gamma \vdash \tau : t \Rightarrow t' : A & \text{[2-cells]} \\ \Gamma \vdash \tau \equiv \sigma : t \Rightarrow t' : A \end{array}$$

$$\Gamma \vdash \pi_{i} \left\{ \left\langle t_{1}, t_{2} \right\rangle \right\} \stackrel{\beta_{i}}{\Longrightarrow} t_{i} : A_{i}$$

$$\Gamma \vdash t \stackrel{\eta}{\Longrightarrow} \left\langle \pi_{1} \left\{ t \right\}, \pi_{2} \left\{ t \right\} \right\rangle : A_{1} \times A_{2}$$

$$\label{eq:loss_product_bicategories} \begin{split} &\text{finite product bicategories} = \mathsf{models} \text{ of } \Lambda^x_\mathrm{ps} \\ &\text{cartesian closed bicategories} = \mathsf{models} \text{ of } \Lambda^{\times,\to}_\mathrm{ps} \end{split}$$

Judgements

$$\Gamma \vdash t : A$$
 [1-cells]
$$\Gamma \vdash \tau : t \Rightarrow t' : A$$
 [2-cells]
$$\Gamma \vdash \tau \equiv \sigma : t \Rightarrow t' : A$$

$$\Gamma \vdash \pi_{i} \left\{ \left\langle t_{1}, t_{2} \right\rangle \right\} \stackrel{\beta_{i}}{\Longrightarrow} t_{i} : A_{i}$$

$$\Gamma \vdash t \stackrel{\eta}{\Longrightarrow} \left\langle \pi_{1} \left\{ t \right\}, \pi_{2} \left\{ t \right\} \right\rangle : A_{1} \times A_{2}$$

$$\label{eq:loss_product_bicategories} \begin{split} &\text{finite product bicategories} = \mathsf{models} \text{ of } \Lambda^{\times}_{\mathrm{ps}} \\ &\text{cartesian closed bicategories} = \mathsf{models} \text{ of } \Lambda^{\times,\to}_{\mathrm{ps}} \end{split}$$

Judgements

$$\Gamma \vdash t : A$$
 [1-cells]
$$\Gamma \vdash \tau : t \Rightarrow t' : A$$
 [2-cells]
$$\Gamma \vdash \tau \equiv \sigma : t \Rightarrow t' : A$$

Rewrites describe $\beta\eta$ -rewriting [modulo equations]

where $t \cong_B^A t'$ iff there exists a rewrite $x : A \vdash \tau : t \Rightarrow t' : B$:

$$\left.\left(\Lambda_{\mathrm{ps}}^{\times,\rightarrow\text{-terms }x:A\vdash t:B}\right)\right/_{\alpha\cong_{B}^{A}}\cong\left.\left(\mathsf{STLC\text{-terms }x:}A\vdash t:B\right)\right/_{\alpha\beta\eta}$$

i.e.
$$\mathbb{F}^{\mathsf{x}}[\mathbb{C}](A,B) \stackrel{\iota_{A,B}}{\cong} \mathbb{F}^{\mathsf{x},\to}[\mathbb{C}](\iota A,\iota B) = \mathbb{F}^{\mathsf{x},\to}[\mathbb{C}](A,B)$$

- *i.e.* for A, B types without \rightarrow ,
 - 1. Every STLC-term t: B is $\beta \eta$ -equal to some STPC term t': B,
 - 2. $u =_{\beta \eta} u'$ as STPC-terms iff $u =_{\beta \eta} u'$ as STLC-terms.

equivalence on hom-categories free finite-product \sim $\mathbb{F}^{\mathbf{x}}[\mathcal{B}]$ $---\frac{\iota}{\mathsf{def}}$ $---\to\mathbb{F}^{\mathbf{x},\to}[\mathcal{B}]$ \sim free cartesian closed bicategory on \mathcal{B} i.e. $\mathbb{F}^{\times}[\mathcal{B}](A,B) \stackrel{\iota_{A,B}}{\simeq} \mathbb{F}^{\times,\to}[\mathcal{B}](A,B)$ i.e. $\mathbb{F}^{\times}[\mathcal{B}](A,B)(t,t') \stackrel{\iota_{A,B,t,t'}}{\cong} \mathbb{F}^{\times,\to}[\mathcal{B}](A,B)(t,t')$ i.e. "conservativity of 2-cells": for A, B without \rightarrow (2-cells $\sigma: t \Rightarrow t': A \rightarrow B$ built with product structure) (2-cells $\sigma: t \Rightarrow t': A \rightarrow B$ built with CC-structure)

free finite-product
$$\mathbb{F}^{\times}[\mathcal{B}]$$
 $--\frac{t}{\det --}$ $\mathbb{F}^{\times}, \to [\mathcal{B}]$ \sim free cartesian closed bicategory on \mathcal{B} i.e. $\mathbb{F}^{\times}[\mathcal{B}](A,B) \overset{t_{A,B}}{\simeq} \mathbb{F}^{\times}, \to [\mathcal{B}](A,B)$
i.e. $\mathbb{F}^{\times}[\mathcal{B}](A,B)(t,t') \overset{t_{A,B,t,t'}}{\cong} \mathbb{F}^{\times}, \to [\mathcal{B}](A,B)(t,t')$
i.e. "conservativity of rewriting": for A,B without \to

$$(\Lambda_{\mathrm{ps}}^{\times}\text{-rewrites } x:A \vdash \tau:t \Rightarrow t':B)/\equiv$$

$$(\Lambda_{\mathrm{ps}}^{\times}, \to -\text{rewrites } x:A \vdash \tau:t \Rightarrow t':B)/\equiv$$

equivalence on hom-categories

i.e.
$$\mathbb{F}^{\times}[\mathcal{B}](A,B) \stackrel{\iota_{A,B}}{\simeq} \mathbb{F}^{\times,\to}[\mathcal{B}](A,B)$$

i.e.
$$\mathbb{F}^{\times}[\mathcal{B}](A,B)(t,t') \stackrel{\iota_{A,B,t,t'}}{\cong} \mathbb{F}^{\times,\to}[\mathcal{B}](A,B)(t,t')$$

- i.e. "conservativity of rewriting": for A, B without \rightarrow
 - 1. Every $\Lambda_{\rm ps}^{\times,\rightarrow}$ -rewrite $\tau:t\Rightarrow t'$ is \equiv -equal to some $\Lambda_{\rm ps}^{\times}$ -rewrite,
 - 2. $\sigma \equiv \sigma'$ as Λ^{\times}_{ps} -rewrites iff $\sigma \equiv \sigma'$ as $\Lambda^{\times, \rightarrow}_{ps}$ -rewrites.

$$\begin{split} & \mathsf{STLC} = \mathsf{simply-typed} \ \mathsf{lambda} \ \mathsf{calculus} \ \mathsf{with} \ \times \\ & \mathsf{STPC} = \mathsf{products} \ \mathsf{but} \ \mathsf{no} \ \mathsf{exponentials} \end{split}$$

This paper: the bicategorical story

- 1. The inclusion ι is locally an equivalence [relative full completeness]
- 2. Proof is bicategorical [Lafont's argument]
- 3. Hence: STLC-rewriting is conservative over STPC-rewriting [modulo equations] [modulo equations]

Proof principle:

can prove facts about STPC-rewriting / fp-bicategories using STLC-rewriting / cartesian closed bicategories.

What's in the paper?

Lafont's argument, bicategorically

Lafont's argument, bicategorically

1. Introduce glueing of bicategories [defined as a comma bicategory $id \downarrow F$]

Lafont's argument, bicategorically

- 1. Introduce glueing of bicategories [defined as a comma bicategory $id \downarrow F$]
- 2. Prove "fundamental lemma",

Lafont's argument, bicategorically

- Introduce glueing of bicategories
 [defined as a comma bicategory id ↓ F]
- 2. Prove "fundamental lemma",

Theorem

If $\mathbb C$ and $\mathbb D$ are cartesian closed categories, $\mathbb D$ has pullbacks, and $F:\mathbb C\to\mathbb D$ preserves products, then

- 1. The glueing category gl(F) is cartesian closed,
- 2. The forgetful functor $U : \operatorname{gl}(F) \to \mathbb{C}$ strictly preserves cartesian closed structure.

Lafont's argument, bicategorically

- Introduce glueing of bicategories
 [defined as a comma bicategory id ↓ F]
- 2. Prove "fundamental lemma",

Theorem

If $\mathbb C$ and $\mathbb D$ are cartesian closed bicategories, $\mathbb D$ has bipullbacks, and $F:\mathbb C\to\mathbb D$ preserves products, then

- 1. The glueing bicategory gl(F) is cartesian closed,
- 2. The forgetful pseudofunctor $U : gl(F) \to \mathbb{C}$ strictly preserves cartesian closed structure.

Lafont's argument, bicategorically

- Introduce glueing of bicategories
 [defined as a comma bicategory id ↓ F]
- 2. Prove "fundamental lemma",
- 3. Show $\iota: \mathbb{F}^{\mathsf{x}}[\mathcal{B}] \hookrightarrow \mathbb{F}^{\mathsf{x}, \to}[\mathcal{B}]$ is locally an equivalence. [relative full completeness]

Lafont's argument, bicategorically

- Introduce glueing of bicategories
 [defined as a comma bicategory id ↓ F]
- 2. Prove "fundamental lemma",
- 3. Show $\iota: \mathbb{F}^{\mathsf{x}}[\mathcal{B}] \hookrightarrow \mathbb{F}^{\mathsf{x}, \to}[\mathcal{B}]$ is locally an equivalence. [relative full completeness]

Type-theoretic interpretation

if t, t' in STPC and $\tau : t \Rightarrow t'$ constructed using CC-structure, there exists $\sigma : t \Rightarrow t'$ such that

- 1. $\sigma \equiv \tau$,
- 2. σ constructed using finite product structure.