高等数学

Thursday $9^{\rm th}$ October, 2025

目录

Ι	极限	6
1	基础	6
	1.1 常用极限	
	1.2 常用等价无穷小	
	1.3 泰勒展开	6
2	间断点	7
	2.1 第一类间断点	7
	2.1.1 可去间断点	7
	2.1.2 跳跃间断点	7
	2.2 第二类间断点	7
	2.2.1 振荡间断点	7
	2.2.2 无穷间断点	7
3	洛必达法则	7
	3.1 使用条件	7
	3.2 结论	
1	极限审敛	8
4	4.1 单调有界准则	
	4.2 一类二重极限	
	4.2	O
II	·····································	8
5	基础	8
	5.1 定义	
	5.1.1 导数	
	5.1.2 偏导	
	5.1.3 可微	
	5.1.4 关联	
	5.2 求导法则	
	5.3 常用高阶导数	9
	5.4 极值和凹凸	10
	5.4.1 一般情况	
	5.4.2 必要条件	
	5.4.3 充分条件 1	10
	5.4.4 充分条件 2	10
	5.5 渐近线	10
	5.5.1 铅直渐近线	10

		5.5.2 水平渐近线	.1
		5.5.3 斜渐近线	.1
	5.6	莱布尼茨公式	.1
	5.7	中值定理 1	.1
	5.8	泰勒中值定理	.1
		5.8.1 佩亚诺型余项	.2
		5.8.2 * 拉格朗日型余项 1	2
		5.8.3 * 误差估计式	2
		5.8.4 * 特别的: 麦克劳林公式	2
		5.8.5 麦克劳林公式(在 0 处的泰勒展开式) 1	.3
	5.9	极值(拉格朗日乘数法) 1	.3
	5.10	隐函数存在定理	4
	5.11	雅可比行列式	4
п	т 17	l分	4
11	1 作	l分 1	4
6	基础	1	5
	6.1	牛顿-莱布尼茨公式	.5
	6.2	第一类换元(凑微分)法 1	.5
	6.3	第二类换元法	5
	6.4	分部积分 1	.5
	6.5	常用积分表	6
		6.5.1 三角函数总表	6
		6.5.2 其他	6
		6.5.3 华里士公式	6
	6.6	有理函数不定积分 1	7
		6.6.1 * 通解(递推式) 1	7
	6.7	* 万能代换	.8
	6.8	反常(广义)积分 1	8
		6.8.1 常见判敛	.8
	6.9	区间再现 1	.8
		6.9.1 对称区间 1	9
	6.10	累次积分	9
		6.10.1 积分换序	9
	6.11	应用	9
		6.11.1 极坐标图形面积	9
		6.11.2 旋转体体积(参数方程) 1	
		6.11.3 旋转体侧面积(参数方程) 2	
		6.11.4 平面曲线曲率(参数方程)	
		6.11.5 平面曲线弧长	

7	重积	分	2 0
	7.1	二重积分	20
		7.1.1 换元	21
		7.1.2 广义极坐标变换	21
	7.2	三重积分	21
		7.2.1 换元	21
		7.2.2 柱面坐标	21
		7.2.3 球面坐标	22
	7.3	轮换对称性	22
	7.4	应用	22
		7.4.1 质量	22
		7.4.2 质心	23
		7.4.3 转动惯量	23
		7.4.4 古尔丁定理	23
		7.4.5 曲面面积	23
8			2 3
	8.1	曲线积分	
		8.1.1 格林公式	
		8.1.2 斯托克斯公式	
		8.1.3 平面曲线积分路径无关	
		8.1.4 空间曲线积分路径无关	
	8.2		
		8.2.1 三合一投影法	
			25
		8.2.3 曲面积分路径无关	
	8.3	应用	
		8.3.1 梯度	25
		8.3.2 散度	
		8.3.3 旋度	26
a	关联		2 6
J	74		20
IV	/ 空	间解析几何	27
10	空间	曲面	27
	10.1	基础	27
		10.1.1 法向量	27
		10.1.2 方向导数	27
	10.2	平面	27
		10.2.1 平面点法式	27
		10.2.2 平面截距式	27

		10.2.3 点面距离公式	28
11	空间	曲线	28
	-		
		切向量	
		直线	
		直线对称式(点向式)方程	
		直线参数方程	
	11.5	且线参数刀性	<i>2</i> 0
12	特殊	曲面	2 9
	12.1	椭圆锥面	29
	12.2	椭球面	29
	12.3	椭圆抛物面	29
	12.4	双曲抛物面(马鞍面)	29
	12.5	单叶双曲面	29
	12.6	双叶双曲面	29
\mathbf{V}	微:	分方程	29
13	ո Mì	线性微分方程 线性微分方程	3 0
		3	
		伯努利方程	
		欧拉方程	
	10.0	5/12/J	00
14		···-·······	3 0
	14.1	通解	31
15	n Mo	常系数线性齐次微分方程	31
		#	
		通解对应项	
	10.2	短件对应次	91
16	二阶	常系数线性微分方程	31
	16.1	非齐次通解	31
		16.1.1 大致形式	31
		16.1.2 运算关系	32
	16.2	齐次微分方程	32
		16.2.1 特征方程	32
		16.2.2 通解	
	16.3		32
		16.3.1 特解	
		16.3.2 算子法求特解	
			_

17 全微分万程	34
17.1 条件(微分换序)	. 34
VI 无穷级数	34
18 收敛与发散	34
18.1 绝对收敛	. 34
18.2 条件收敛	. 34
18.3 运算关系	. 35
18.4 无穷大比较	. 35
19 任意项级数	35
19.1 比值审敛法(达朗贝尔判别法)	. 35
19.2 根值审敛法(柯西判别法)	. 35
20 正项级数	35
20.1 积分审敛法	. 36
20.2 比较审敛法	. 36
21 交错级数	36
21.1 莱布尼兹判别法	. 36
22 幂(泰勒)级数	36
22.1 阿贝尔定理	. 36
22.2 系数模比值法	. 36
22.3 系数模根值法	. 36
22.4 加减运算	. 37
22.5 逐项求导、积分运算	. 37
22.6 泰勒级数	. 37
23 三角(傅里叶)级数	37
23.1 傅里叶级数	. 37
23.2 特殊情况	. 37
23.2.1 正弦级数	. 37
23.2.2 余弦级数	. 37
23.3 狄利克雷收敛定理	. 38

Part I

极限

1 基础

1.1 常用极限

$$\lim_{x \to 0^{+}} \left(1 + \frac{1}{x} \right)^{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} = e$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) = \int_{0}^{1} f(x) dx$$

$$\lim_{n \to \infty} \sqrt[n]{\sum a_{i}^{n}} = \max \{a_{i}\}$$

1.2 常用等价无穷小

x 为函数, $\lim_{x\to 0}$ 时, 可对乘除因子替换

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$

$$x \sim (e^x - 1) \sim \ln(x + 1) \sim \ln\left(x + \sqrt{1 + x^2}\right)$$

$$x^3 \sim 6(x - \sin x) \sim 6(\arcsin x - x) \sim 3(\tan x - x)$$

$$x^3 \sim 3(x - \arctan x) \sim 2(\tan x - \sin x)$$

$$1 - \cos x \qquad \sim \frac{x^2}{2}$$

$$\log_a(1 + x) \qquad \sim \frac{x}{\ln a}$$

$$\log_a (1+x) \sim \frac{x}{\ln a}$$

$$(1+x)^a \sim ax+1$$

$$a^x - 1 \sim x \ln a (0 < a \neq 1)$$

$$(1+ax)^{\frac{1}{bx}} \sim e^{\frac{a}{b}} (1 - \frac{a^2}{2b}x)$$

1.3 泰勒展开

详见5.8.5

- 2 间断点
- 2.1 第一类间断点

$$\exists \lim_{x \to x_0^-} \mathbb{H} \exists \lim_{x \to x_0^+}$$

2.1.1 可去间断点

$$\lim_{x \to x_{0}^{-}} f(x) = \lim_{x \to x_{0}^{+}} f(x) = A \left(\iff \lim_{x \to x_{0}} f(x) = A \right)$$

2.1.2 跳跃间断点

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$$

2.2 第二类间断点

$$\lim_{x \to x_0^-}$$
, $\lim_{x \to x_0^+}$ 至少满足有一个#

2.2.1 振荡间断点

左、右极限至少一个为振荡不存在

2.2.2 无穷间断点

左、右极限至少一个为∞

- 3 洛必达法则
- 3.1 使用条件

去心邻域内导数存在(不能只是一个点导数存在)

$$x \in \mathring{U}(x_0)(x_0$$
可取 ∞) , $\exists f'(x_0)$, $\exists g'(x_0)$

极限存在或为无穷

$$g'(x_0) \neq 0, \exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \vec{p} = \infty$$

符合 $\frac{0}{0}$ 或 $\frac{任意}{\infty}$

3.2 结论

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = A$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \infty \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \implies \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

4 极限审敛

4.1 单调有界准则

单调有界必有极限

4.2 一类二重极限

$$\lim_{\substack{x\to 0^+\\y\to 0^+}}\frac{x^py^q}{x^m+y^n}$$
 m 、 n 全为偶数且 $\frac{p}{m}+\frac{q}{n}>1$ 时 $\lim_{\substack{x\to 0^+\\y\to 0^+}}\frac{x^py^q}{x^m+y^n}=0$,否则不存在
$$\frac{p}{m}+\frac{q}{n}\leqslant 1$$
 时,路径 $y=kx^{\frac{m-p}{q}}$ 可说明极限不存在

Part II

导数

5 基础

5.1 定义

$$\Delta x = x - x_0$$

5.1.1 导数

$$\frac{\mathrm{d}f(x_0, y_0)}{\mathrm{d}x} = f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

5.1.2 偏导

$$\frac{\partial f\left(x_{0},y_{0}\right)}{\partial x}=\partial_{x} f\left(x_{0},y_{0}\right)=f_{x}'\left(x_{0},y_{0}\right)=\lim_{x\rightarrow x_{0}}\frac{f\left(x,y_{0}\right)-f\left(x_{0},y_{0}\right)}{x-x_{0}}=\lim_{\Delta x\rightarrow 0}\frac{f\left(x_{0}+\Delta x,y_{0}\right)-f\left(x_{0},y_{0}\right)}{\Delta x}$$

5.1.3 可微

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} \frac{f(x,y) - f(x_0, y_0) - f'_x(x_0, y_0)(x - x_0) - f'_y(x_0, y_0)(y - y_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} = 0$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) - f'_x(x_0, y_0) \Delta x - f'_y(x_0, y_0) \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

5.1.4 关联

5.2 求导法则

$$(f(x) + g(x))' = f'(x) + g'(x)$$

$$(f(x)g(x))' = f(x)g'(x) + f'(x)g(x)$$

$$(f(g(x)))' = f'(g(x))g'(x)$$

$$\left(\int_{v(x)}^{u(x)} f(t) dt\right)' = f[u(x)]u'(x) - f[v(x)]v'(x)$$

$$\left(\int_{v(x)}^{u(x)} f(x,t) dt\right)' = \int_{v(x)}^{u(x)} f'_x(x,t) dt + f[x,u(x)]u'(x) - f[x,v(x)]v'(x)$$

5.3 常用高阶导数

$$\sin^{(n)} \omega x = \omega^n \sin\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\cos^{(n)} \omega x = \omega^n \cos\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\ln^{(n)} (1+x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \quad (n \in \mathbb{N}^+)$$

$$\ln^{(n)} (1-x) = -\frac{(n-1)!}{(1-x)^n} \quad (n \in \mathbb{N}^+)$$

5.4 极值和凹凸

5.4.1 一般情况

$$f'(x_0) > 0 \implies x_0$$
处是单调递增的 \nearrow $f'(x_0) < 0 \implies x_0$ 处是单调递减的 \searrow $f''(x_0) > 0 \implies x_0$ 处是凹的 $f''(x_0) < 0 \implies x_0$ 处是凸的

极值点处 f(x) 可以不连续 拐点处 f(x) 必须连续

5.4.2 必要条件

$$x_0$$
是极值点, $\exists f'(x) \implies f'(x_0) = 0$
 x_0 是拐点, $\exists f''(x) \implies f''(x_0) = 0$

5.4.3 充分条件 1

$$f'(x_0)$$
 在 x_0 两侧异(同)号 $\Longrightarrow x_0$ 是(不是)极值点 $f''(x_0)$ 在 x_0 两侧异(同)号 $\Longrightarrow x_0$ 是(不是)拐点

5.4.4 充分条件 2

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, f^{(n)}(x_0) \neq 0 \ (n \geq 2)$$

$$\begin{cases} n \text{为奇数} \implies x_0 \text{是拐点} \\ n \text{为偶数} \implies x_0 \text{是极值点} \end{cases}$$

5.5 渐近线

5.5.1 铅直渐近线

$$x = x_0$$

$$\lim_{x \to x_0^{\pm}} f\left(x\right) = \infty$$

5.5.2 水平渐近线

$$y = A$$

$$\lim_{x \to \pm \infty} f(x) = A$$

5.5.3 斜渐近线

$$y = kx + b$$

$$\lim_{x \to \pm \infty} f(x) = kx + b$$

$$\begin{cases} \lim_{x \to \pm \infty} \frac{f(x)}{x} = k \\ \lim_{x \to \pm \infty} f(x) - kx = b \end{cases}$$

5.6 莱布尼茨公式

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)}$$

5.7 中值定理

定理	公式	约束
积分中值定理	$f(\xi) = \frac{\int_{a}^{b} f(x) dx}{x \Big _{a}^{b}}$	$\xi \in [a,b]$
罗尔中值定理	$a = b \Rightarrow f'(\xi) = 0$	$\xi \in (a,b)$
拉格朗日中值定理	$f'(\xi) = \frac{f(x) _a^b}{x _a^b}$	$\xi \in (a,b)$
柯西中值定理	$\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) _a^b}{g(x) _a^b}$	$\xi \in (a,b)$

积分中值定理推广: 使用拉格朗日中值定理可得开区间约束 $\xi \in (a,b)$

5.8 泰勒中值定理

 $R_n(x)$ 为余项

$$f(x) = \sum_{i=0}^{n} (x - x_0)^i \frac{f^{(i)}(x_0)}{i!} + R_n(x)$$
$$f(x, y) = \sum_{i=0}^{n} [(x - x_0) \partial_x + (y - y_0) \partial_y]^i \frac{f(x_0, y_0)}{i!} + R_n(x, y)$$

5.8.1 佩亚诺型余项

$$R_n(x) = o[(x - x_0)^n]$$

 $R_n(x, y) = o\left[\sqrt{(x - x_0)^2 + (y - y_0)^2}\right]^n$

5.8.2 * 拉格朗日型余项

 ξ 介于 x, x_0 η 介于 y, y_0

$$R_n(x) = (x - x_0)^{n+1} \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

$$R_n(x,y) = [(x - x_0) \partial_x + (y - y_0) \partial_y]^{n+1} \frac{f(\xi, \eta)}{(n+1)!}$$

5.8.3 * 误差估计式

$$n \in \mathbb{N}; \exists M > 0 \forall x \in D \to M \geqslant \left| f^{(n+1)}(\xi) \right|$$

$$\implies |R_n(x)| \leqslant M \cdot \frac{|x - x_0|^{n+1}}{(n+1)!}$$

5.8.4 * 特别的: 麦克劳林公式

$$(5.8.2) \atop x_{0} = y_{0} = 0 \end{cases} \implies \begin{cases} P_{n}(x) = \sum_{i=0}^{n} x^{i} \frac{f^{(i)}(0)}{i!} + R_{n}(x) \\ P_{n}(x,y) = \sum_{i=0}^{n} (x\partial_{x} + y\partial_{y})^{i} \frac{f(0,0)}{i!} + R_{n}(x,y) \end{cases}$$

5.8.5 麦克劳林公式 (在 0 处的泰勒展开式)

f(x)	0处泰勒展开式前部分项	0处泰勒展开式通项	收敛区间
e^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$	$\sum_{n \in \mathbb{N}} \frac{x^n}{n!}$	\mathbb{R}
$\sin x$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)$	$\sum_{n \in \mathbb{N}} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	\mathbb{R}
$\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o\left(x^4\right)$	$\sum_{n \in \mathbb{N}} (-1)^n \frac{x^{2n}}{(2n)!}$	\mathbb{R}
$\tan x$	$x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$	$\sum_{n \in \mathbb{N}^+} \frac{B_{2n} (-4)^n (1 - 4^n)}{(2n)!}^{2n-1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$\arctan x$	$x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5)$	$\sum_{n\in\mathbb{N}} \frac{(-1)^n}{2n+1} x^{2n+1}$	[-1, 1]
$\arcsin x$	$x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^5)$	$\sum_{n \in \mathbb{N}} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}$	(-1,1)
$\ln\left(1+x\right)$	$x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$	$\sum_{n \in \mathbb{N}^+} -\frac{\left(-x\right)^n}{n}$	(-1,1]
	$-x - \frac{x^2}{2} - \frac{x^3}{3} + o\left(x^3\right)$	$\sum_{n \in \mathbb{N}^+} -\frac{x^n}{n}$	(-1,1]
1 + u	$1 - x + x^2 - x^3 + o(x^3)$	$\sum_{n\in\mathbb{N}} \left(-x\right)^n$	(-1,1)
$\frac{1}{1-x}$	$1 + x + x^2 + x^3 + o(x^3)$	$\sum_{n\in\mathbb{N}} x^n$	(-1,1)
$(1+x)^{\alpha}$	$1 + \alpha x + \frac{\alpha (\alpha - 1)}{2!} x^2 + o(x^2)$	$\sum_{n\in\mathbb{N}} \binom{\alpha}{n} x^n$	(-1,1)

5.9 极值(拉格朗日乘数法)

二元情况

$$\begin{cases} \text{约束条件: } \varphi(x,y) = 0 \\ \text{目标函数: } f(x,y) \\ \begin{cases} \nabla f = \lambda \nabla \varphi \left(\text{即} \nabla f \parallel \nabla \varphi \right) \\ \varphi(x,y) = 0 \end{cases} \end{cases} \Longrightarrow \begin{cases} \text{解得几组 } (x_i,y_i) \text{ 即为可能的极值点} \\ \text{活无约束条件 } \varphi(x,y) = 0, \\ \text{可设约束为 } 0 = 0, \text{ 即} \nabla \varphi = (0,0) \\ \text{则 } \nabla f = (0,0) \end{cases}$$

检验可能的极值点 (x_0, y_0)

$$\begin{cases}
f_{xy}''^{2}(x_{0}, y_{0}) < f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \\
f_{xx}''(x_{0}, y_{0}) > 0
\end{cases} \implies f(x_{0}, y_{0}) 为极小值点$$

$$f_{xy}''^{2}(x_{0}, y_{0}) < f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \\
f_{xx}''(x_{0}, y_{0}) < 0
\end{cases} \implies f(x_{0}, y_{0}) 为极大值点$$

$$f_{xy}''^{2}(x_{0}, y_{0}) > f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies f(x_{0}, y_{0})$$
不取极值
$$f_{xy}''^{2}(x_{0}, y_{0}) = f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies$$
需进一步讨论

n 元情况

育况
$$\begin{cases} \text{约束条件\Phi: } \varphi_1\left(x_1,x_2,\cdots,x_n\right) = 0 \\ \varphi_2\left(x_1,x_2,\cdots,x_n\right) = 0 \\ \vdots \\ \varphi_{n-1}\left(x_1,x_2,\cdots,x_n\right) = 0 \\ \text{目标函数: } f\left(x_1,x_2,\cdots,x_n\right) \end{cases} \Longrightarrow 解得几组 \left(x_1,x_2,\cdots,x_n\right)$$
即为可能的极值点
$$\begin{cases} \nabla f = \sum_i \lambda_i \nabla \varphi_i (\Xi \pi \text{时共面}) \\ \text{约束条件\Phi} \end{cases}$$

5.10 隐函数存在定理

$$F(x,y)$$
 (二元)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'} \left(F_y' \neq 0 \right)$$

$$F(x,y,z)$$
 (多元)

$$\frac{\partial y}{\partial x} = -\frac{F_x'}{F_y'} \left(F_y' \neq 0 \right)$$

5.11 雅可比行列式

$$\frac{\partial (\mathbf{u}_1, u_2, \cdots, u_n)}{\partial (x_1, x_2, \cdots, x_n)} = \begin{vmatrix} \partial_{x_1} \mathbf{u}_1 & \partial_{x_2} \mathbf{u}_1 & \cdots & \partial_{x_n} \mathbf{u}_1 \\ \partial_{x_1} u_2 & \partial_{x_2} u_2 & \cdots & \partial_{x_n} u_2 \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1} u_n & \partial_{x_2} u_n & \cdots & \partial_{x_n} u_n \end{vmatrix}$$

Part III

积分

- 6 基础
- 6.1 牛顿-莱布尼茨公式

$$\int_{a}^{b} f'(x) dx = f(x)|_{a}^{b}$$

6.2 第一类换元(凑微分)法

$$\int f(x) g(x) dx = \int f(x) d\left(\int g(x) dx\right)$$

6.3 第二类换元法

$$\int f(x) dx = \int f(t) dt \Big|_{t=\varphi(x)}$$

$$\int_{a}^{b} f[\varphi(x)] dx = \int_{\varphi(a)}^{\varphi(b)} f(t) \frac{d\varphi^{-1}(t)}{dt} dt \Big|_{t=\varphi(x)}$$

6.4 分部积分

$$\begin{cases} u = u(x) \\ v = v(x) \end{cases}$$

$$uv = \int u dv + \int v du$$

$$uv|_a^b = \int_a^b u dv + \int_a^b v du$$

6.5 常用积分表

6.5.1 三角函数总表

$\int f(x) \mathrm{d}x + C$	f(x)	f'(x)	$\int f(x) \mathrm{d}x + C$	f(x)	f'(x)
$-\cos x$	$\sin x$	$\cos x$	$\sin x$	$\cos x$	$-\sin x$
$-\ln \cos x $	$\tan x$	$\sec^2 x$	$\ln \sin x $	$\cot x$	$-\csc^2 x$
$\ln \sec x + \tan x $	$\sec x$	$\sec x \tan x$	$-\ln \csc x + \cot x $	$\csc x$	$-\csc x \cot x$
	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$		$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
	$\arctan x$	$\frac{1}{1+x^2}$		$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$
	arcsecx	$\frac{1}{ x \sqrt{x^2-1}}$		arccscx	$-\frac{1}{ x \sqrt{x^2-1}}$
$\cosh x$	$\sinh x$	$\cosh x$	$\sinh x$	$\cosh x$	$\sinh x$
$\ln \cosh x $	$\tanh x$	$\mathrm{sech}^2 x$	$\ln \sinh x $	$\coth x$	$-\operatorname{csch}^2 x$
$2\arctan\left(\mathrm{e}^{x}\right)$	$\operatorname{sech} x$	$-\mathrm{sech}x\tanh x$	$-\ln \mathrm{csch}x + \coth x $	$\operatorname{csch} x$	$-\operatorname{csch} x \operatorname{coth} x$
	arsinhx	$\frac{1}{\sqrt{x^2+1}}$		$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$
	$\left \operatorname{artanh} x \right $	$\frac{1}{1-x^2}$		$\operatorname{arcoth} x$	$\frac{1}{x^2 - 1}$
	arsechx	$-\frac{1}{ x \sqrt{1-x^2}}$		arcschx	$-\frac{1}{ x \sqrt{1+x^2}}$

6.5.2 其他

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$

$$\int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = \ln \left| x + \sqrt{x^{2} \pm a^{2}} \right| + C$$

$$\int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \arcsin \frac{x}{a} + C$$

6.5.3 华里士公式

6.6 有理函数不定积分

设原式为假分式:

$$\int \frac{\mathcal{U}(x)}{\mathcal{V}(x)} \mathrm{d}x$$

先转为多项式加真分式:

$$\frac{\mathcal{U}(x)}{\mathcal{V}(x)} = \mathcal{U}_1(x) + \frac{r(x)}{\mathcal{V}(x)}$$

在实数范围内因式分解分母:

$$\frac{r\left(x\right)}{\mathcal{V}\left(x\right)} = \frac{r\left(x\right)}{\prod \left(x-A\right)^{p}\left(x^{2}+Mx+N\right)}$$

拆分:

$$\frac{r(x)}{\mathcal{V}(x)} = \sum \left[\sum_{i=1}^{p} \frac{a_i}{(x-A)^i} + \frac{bx+c}{x^2 + Mx + N} \right]$$

使用留数法等方法求出系数 a,b,c, 后分别积分。

其中二次多项式分母积分方法 (为方便起见 A, B, C 代替了部分常数):

$$\int \frac{bx+c}{x^2 + Mx + N} dx = \int \frac{\frac{b}{2} (2x+M)}{x^2 + Mx + N} dx + \int \frac{c - \frac{Mb}{2}}{x^2 + Mx + \frac{M^2}{4} + N - \frac{M^2}{4}} dx$$

$$= B \int \frac{1}{x^2 + Mx + N} d(x^2 + Mx + N) + C \int \frac{1}{(x + \frac{M}{2})^2 + A^2} d(x + \frac{M}{2})$$

$$= B \ln|x^2 + Mx + N| + \frac{C}{A} \arctan \frac{x + \frac{M}{2}}{A} + C$$

6.6.1 * 通解(递推式)

$$\int \frac{x+N}{(x^2+px+q)^{\lambda}} dx \begin{cases}
0 > p^2 - 4q \\
a = \sqrt{q - \frac{p^2}{4}} \\
b = N - \frac{p}{2}
\end{cases}$$

$$= \begin{cases}
\frac{2bx + bp - 2a^2}{4(\lambda - 1) a^2 (x^2 + px + q)^{\lambda - 1}} + \frac{b(2\lambda - 3)}{2(\lambda - 1) a^2} \int \frac{dx}{(x^2 + px + q)^{\lambda - 1}} & (\lambda > 1) \\
\frac{\ln(x^2 + px + q)}{2} + \frac{b}{a} \arctan \frac{x + 2p}{2a} + C & (\lambda = 1)
\end{cases}$$

6.7 * 万能代换

$$x = 2 \arctan u \implies \begin{cases} \sin x = \frac{2u}{1+u^2} \\ \cos x = \frac{1-u^2}{1+u^2} \\ dx = \frac{2}{1+u^2} du \end{cases}$$

6.8 反常(广义)积分

$$\int_{a}^{x_{0}} f(x) dx = \lim_{x \to x_{0}^{-}} \int_{a}^{x} f(x) dx (x_{0} > a)$$

其中 x_0 为瑕点或正负无穷大,则若 f(x) 在 $[a,x_0)$ 上连续,且右式极限存在,则左式反常积分收敛,且值等于右式极限

若上下限都是瑕点 x_0, x_1 或无穷大

$$\int_{x_0}^{x_1} f(x) dx = \int_{x_0}^{c} f(x) dx + \int_{c}^{x_1} f(x) dx$$

或区间 [a,b] 包含瑕点 x_0

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{0}} f(x) dx + \int_{x_{0}}^{b} f(x) dx$$

则需拆分区间分别判断,只有分别都收敛才整体收敛

6.8.1 常见判敛

$$\int \frac{1}{x^{\alpha} \ln^{\beta} x} \mathrm{d}x$$

瑕积分

$$x \to 0$$

$$\begin{cases} \alpha < 1 \\ \alpha = 1; \beta > 1 \end{cases}$$
, 收敛

无穷区间反常积分

$$x \to +\infty$$

$$\begin{cases} \alpha > 1 \\ \alpha = 1; \beta > 1 \end{cases}$$
 ,收敛

其他均发散

6.9 区间再现

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

6.9.1 对称区间

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx$$

Definition 6.9.1 (以下极坐标方程中都有).

$$r = r(\theta)$$

6.10 累次积分

Definition 6.10.1 (例: 二次积分).

$$\int_{y_1}^{y_2} \int_{x_1(y)}^{x_2(y)} f(x, y) \, dx dy$$

6.10.1 积分换序

$$\int_{y_1}^{y_2} \int_{x_1(y)}^{x_2(y)} f(x, y) \, dx dy = \int_{x_3}^{x_4} \int_{y_3(x)}^{y_4(x)} f(x, y) \, dy dx$$

其中 $x_1(y), x_2(y), y_1, y_2$ 与 $x_3, x_4, y_3(x), y_4(x)$ 围成的区域相同

积分直接换序 若内层积分上下限不包含外层自变量,则可直接换序

$$\int_{y_1}^{y_2} \int_{x_1}^{x_2} f(x, y) \, dx dy = \int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) \, dy dx$$

(求和、连乘等运算同理)

6.11 应用

6.11.1 极坐标图形面积

$$A = \iint_{D} r dr d\theta = \frac{1}{2} \int_{\alpha}^{\beta} r^{2} d\theta$$

Definition 6.11.1 (以下参数方程中都有,且都可轮换).

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

6.11.2 旋转体体积(参数方程)

绕 x 轴

圆盘法

$$V = \pi \int_a^b x' y^2 dt = \pi \int_a^b y^2 dx$$

柱壳法

$$V = 2\pi \int_{a}^{b} xy'y dt = 2\pi \int_{a}^{b} xy dy$$

6.11.3 旋转体侧面积(参数方程)

绕 x 轴

$$S = 2\pi \int_{A}^{B} y \mathrm{d}s$$

6.11.4 平面曲线曲率(参数方程)

曲率半径 $\rho = K^{-1}$

$$K = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

在点 M(x,y) 处的曲率中心 (α,β) (曲率圆圆心) 其中 y=y(x) (不是参数方程)

$$\begin{cases} \alpha = x - \frac{y'(1 + y'^2)}{y''} \\ \beta = y + \frac{1 + y'^2}{y''} \end{cases}$$

曲率圆方程:

$$(x - \alpha)^2 + (y - \beta)^2 = \rho^2$$

6.11.5 平面曲线弧长

$$s_L = \int_L \mathrm{d}s$$

7 重积分

7.1 二重积分

Definition 7.1.1 $(d\sigma = dxdy)$.

$$\iint_{\mathbb{R}} f(x,y) \, \mathrm{d}\sigma$$

7.1.1 换元

$$\begin{cases} x = x (u, v) \\ y = y (u, v) \end{cases} \implies \iint_{D} f(x, y) \, dx dy = \iint_{D'} f(x, y) |J| \, du dv$$

$$J = \frac{\partial (x, y)}{\partial (u, v)} \Big|_{D'} \neq 0$$

7.1.2 广义极坐标变换

$$\begin{cases} x = x_0 + ar\cos\theta \\ y = y_0 + br\sin\theta \end{cases} \implies \iint_D f(x, y) \, dx dy = \iint_D f(x, y) \, abr dr d\theta$$

7.2 三重积分

Definition 7.2.1 (dV = dxdydz).

$$\iiint\limits_{\Omega} f\left(x,y,z\right) \mathrm{d}V$$

7.2.1 换元

$$\begin{cases}
x = x(u, v, w) \\
y = y(u, v, w) \\
z = z(u, v, w)
\end{cases}
\implies \iiint_{\Omega} f(x, y, z) \, dx dy dz = \iiint_{\Omega'} f(x, y, z) \, |J| \, du dv dw$$

$$J = \frac{\partial (x, y, z)}{\partial (u, v, w)} \Big|_{\Omega'} \neq 0$$

7.2.2 柱面坐标

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

$$\iiint_{\Omega} f(x, y, z) dxdydz = \iiint_{\Omega} f(x, y, z) r drd\theta dz$$

7.2.3 球面坐标

r ≥ 0 径向距离

 $\theta \in [0,2\pi]$ 方位角

 $\varphi \in [0,\pi]$ 天顶角

$$\begin{cases} x = \rho \sin \varphi \cos \theta \\ y = \rho \sin \varphi \sin \theta \\ z = \rho \cos \varphi \end{cases}$$
$$\iiint_{\Omega} f(x, y, z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint_{\Omega} f(x, y, z) \, \rho^2 \sin \varphi \mathrm{d}\rho \mathrm{d}\varphi \mathrm{d}\theta$$

7.3 轮换对称性

若积分区域约束中,所有自变量任意交换次序,区域不变,则称该积分具有轮换对称性,且积分目标 函数可轮换

例:二重积分轮换对称 即 D 关于 x=y 对称

$$D = \{(x,y) \mid x \in X; y \in Y\} = \{(y,x) \mid y \in X; x \in Y\} \implies \iint\limits_{D} f(x,y) \, \mathrm{d}\sigma = \iint\limits_{D} f(y,x) \, \mathrm{d}\sigma$$

7.4 应用

密度为 $\rho(x,y)$ 或 $\rho(x,y,z)$

7.4.1 质量

$$M = \iint\limits_{D} \rho\left(x, y\right) d\sigma, M = \iiint\limits_{\Omega} \rho\left(x, y, z\right) dV$$

7.4.2 质心

质心的 x 坐标为

$$\bar{x} = \frac{\iint\limits_{D} x\rho\left(x,y\right) d\sigma}{M}, \bar{x} = \frac{\iint\limits_{\Omega} x\rho\left(x,y,z\right) dV}{M}$$

 $\rho(\cdots) \equiv 1$ 时, 质心相当于形心

7.4.3 转动惯量

绕x轴时

$$I_{x} = \iint_{D} y^{2} \rho(x, y) d\sigma, I_{x} = \iiint_{\Omega} (y^{2} + z^{2}) \rho(x, y, z) dV$$

7.4.4 古尔丁定理

旋转体体积(平面图形 D 绕直线 l:Ax+By+C=0 旋转)

$$V = \iint_{D} 2\pi d_{l}(x, y) d\sigma = 2\pi \iint_{D} \frac{|Ax + By + C|}{\sqrt{A^{2} + B^{2}}} d\sigma$$

若 D 形心为 (x_0, y_0)

$$V = 2\pi d_l(x_0, y_0) S_D = 2\pi \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \iint_D d\sigma$$

7.4.5 曲面面积

$$S_{\Sigma} = \iint_{\Sigma} \mathrm{d}S$$

8 曲线与曲面积分

8.1 曲线积分

Definition 8.1.1.

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} \begin{cases} P = P(x, y, z) \\ Q = Q(x, y, z) \\ R = R(x, y, z) \end{cases}$$

Definition 8.1.2 (第一类). $t \in [\alpha, \beta]$ $\theta \in [\theta_1, \theta_2]$

$$\int_{L} f(x,y) ds = \int_{\alpha}^{\beta} f(x,y) \sqrt{x'^{2} + y'^{2}} dt = \int_{\theta_{2}}^{\theta_{1}} f(x,y) \sqrt{r^{2} + r'^{2}} d\theta$$

$$\int_{\Gamma} f(x,y,z) ds = \int_{\alpha}^{\beta} f(x,y,z) \sqrt{x'^{2} + y'^{2} + z'^{2}} dt$$

Definition 8.1.3 (第二类(坐标积分)). $t: \alpha \rightarrow \beta$

$$\int_{L} P dx + Q dy = \int_{\alpha}^{\beta} (Px' + Qy') dt$$

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{\alpha}^{\beta} (Px' + Qy' + Rz') dt$$

8.1.1 格林公式

$$\oint_{L} P dx + Q dy = \iint_{D} \begin{vmatrix} \partial_{x} & \partial_{y} \\ P & Q \end{vmatrix} dx dy = \iint_{D} (Q'_{x} - P'_{y}) dx dy$$

8.1.2 斯托克斯公式

$$\oint_{\Gamma} P dx + Q dy + R dz = \iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \partial_{x} & \partial_{y} & \partial_{z} \\ P & Q & R \end{vmatrix}$$

$$= \iint_{\Sigma} \left(R'_{y} - Q'_{z} \right) dy dz + \left(P'_{z} - R'_{x} \right) dz dx + \left(Q'_{x} - P'_{y} \right) dx dy$$

8.1.3 平面曲线积分路径无关

 $\int_{T} P dx + Q dy$ 与积分路径无关

$$\int_{L} P dx + Q dy = \int_{A}^{B} P dx + Q dy$$

$$\iff \oint_{L} P dx + Q dy = 0$$

$$\iff D \not \cap_{L} Q'_{x} = P'_{y}$$

$$\iff \exists u = u (x, y), du = P dx + Q dy$$

8.1.4 空间曲线积分路径无关

 $\int_{\Gamma} P dx + Q dy + R dz$ 与积分路径无关

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{A}^{B} P dx + Q dy + R dz$$

$$\iff \oint_{\Gamma} P dx + Q dy + R dz = 0$$

$$\iff \sum \dot{P}, \begin{cases} R'_{y} = Q'_{z} \\ P'_{z} = R'_{x} \\ Q'_{x} = P'_{y} \end{cases}$$

8.2 曲面积分

Definition 8.2.1.

$$F = F(x, y, z) \begin{cases} \psi = \{P, Q, R\} \\ P = P(x, y, z) \\ Q = Q(x, y, z) \\ R = R(x, y, z) \end{cases}$$

Definition 8.2.2 (第一类(可轮换)).

$$\iint\limits_{\Sigma} f\left(x,y,z\right) \mathrm{d}S = \iint\limits_{D_{xy}} f\left(x,y,z\right) \|\nabla F\| \, \mathrm{d}x \mathrm{d}y = \iint\limits_{D_{xy}} f\left(x,y,z\right) \sqrt{z_x'^2 + z_y'^2 + 1} \mathrm{d}x \mathrm{d}y$$

Definition 8.2.3 (第二类(坐标积分)). 投影到 xOy 坐标面后若所积面与 z 轴方向相同则取正,反之取负

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \pm \iint_{\Sigma} \psi \cdot (\nabla F)^{0} dx dy = \pm \iint_{\Sigma} \frac{-Pz'_{x} - Qz'_{y} + R}{\sqrt{z''_{x}^{2} + z''_{y}^{2} + 1}} dS$$

8.2.1 三合一投影法

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \pm \iint_{D_{xy}} \psi \cdot \nabla F dx dy = \pm \iint_{D_{xy}} \left(-P z_x' - Q z_y' + R \right) dx dy$$

8.2.2 高斯公式

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} (P'_x + Q'_y + R'_z) dV$$

8.2.3 曲面积分路径无关

$$\iint\limits_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y \iff \Omega \dot{\square}, P'_x + Q'_y + R'_z = 0$$

8.3 应用

Definition 8.3.1 (向量场).

$$\boldsymbol{\psi} = \{P, Q, R\}$$

8.3.1 梯度

Definition 8.3.2 (向量微分算子).

$$\nabla = \{\partial_x, \partial_y, \partial_z\}$$

Theorem 8.3.1 (梯度).

$$\nabla F = \left\{ F_x', F_y', F_z' \right\}$$

8.3.2 散度

Definition 8.3.3 (通过 Σ 流向指定侧的通量).

$$\Phi = \iint\limits_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y$$

Theorem 8.3.2 (散度).

$$\operatorname{div} \psi = \nabla \cdot \psi = P'_x + Q'_y + R'_z$$

8.3.3 旋度

Definition 8.3.4 (沿封闭曲线 Γ 的环流量).

$$\oint_{\Gamma} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$$

Theorem 8.3.3 (旋度).

$$rot\psi = \nabla \times \psi = \left\{ R'_y - Q'_z, P'_z - R'_x, Q'_x - P'_y \right\}$$

9 关联

Part IV

空间解析几何

10 空间曲面

10.1 基础

Definition 10.1.1.

$$F\left(x, y, z\right) = 0$$

10.1.1 法向量

 ∇F

10.1.2 方向导数

1 方向向量

$$m{l}^0 = rac{m{l}}{\|m{l}\|} = egin{bmatrix} \cos lpha \ \cos eta \ \cos \gamma \end{bmatrix}$$
 方向余弦(单位方向向量)

$$\frac{\partial F}{\partial \boldsymbol{l}} = \nabla F \cdot \boldsymbol{l}^0$$

梯度的方向为方向导数最大时的方向,梯度的模为方向导数的最大值

$$\max\left\{\frac{\partial F}{\partial \boldsymbol{l}}\right\} = \|\nabla F\|$$

10.2 平面

Definition 10.2.1.

$$Ax + By + Cz + D = 0$$

10.2.1 平面点法式

过
$$(x_0,y_0,z_0)$$
,法向量 $\begin{bmatrix} A \\ B \\ C \end{bmatrix}$
$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$

10.2.2 平面截距式

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

27

10.2.3 点面距离公式

点
$$(x_0, y_0, z_0)$$

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

11 空间曲线

Definition 11.0.1.

$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

11.1 参数方程

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

11.2 切向量

$$\tau = \nabla F \times \nabla G$$

11.3 直线

Definition 11.3.1.

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

11.4 直线对称式(点向式)方程

过
$$(x_0,y_0,z_0)$$
,方向向量 $\begin{bmatrix} m\\n\\p \end{bmatrix}$
$$\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t$$

11.5 直线参数方程

$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$

12 特殊曲面

Definition 12.0.1 (绕 z 轴旋转曲面: (原曲线为 $f(y_1, z) = 0$).

$$\begin{cases} f(y_1, z) = 0 \\ \sqrt{x^2 + y^2} = |y_1| \end{cases} \implies f(\pm \sqrt{x^2 + y^2}, z) = 0$$

12.1 椭圆锥面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$

Definition 12.1.1 (以下二次曲面方程中都有).

12.2 椭球面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

12.3 椭圆抛物面

$$\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

12.4 双曲抛物面(马鞍面)

$$-\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

$$z = xy$$

12.5 单叶双曲面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

12.6 双叶双曲面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Part V

微分方程

13 n 阶线性微分方程

Definition 13.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i(x) y^{(i)} = f(x)$$

13.1 线性相关

$$\frac{f(x)}{g(x)} = C(C \in \mathbb{C})$$

13.2 伯努利方程

$$y' + P(x) y = Q(x) y^{\alpha} \xrightarrow{z=y^{1-\alpha}} z' + (1-\alpha) P(x) z = (1-\alpha) Q(x)$$

13.3 欧拉方程

$$x^{n}y^{(n)} + \sum_{i=0}^{n-1} p_{i}x^{i}y^{(i)} = 0$$

令
$$x = e^t$$
 换元
记 $D = \frac{d}{dt}$

$$xy'_{x} = Dy$$

$$x^{2}y''_{xx} = D(D-1)y$$

$$\vdots$$

$$x^{n}y_{x}^{(n)} = D(D-1)(D-2)\cdots(D-n+1)y = \prod_{i=1}^{n}(D-i+1)y$$

14 一阶线性微分方程

Definition 14.0.1 $(f(x) \equiv 0$ 时,为齐次).

$$(13.0.1)$$

$$n = 1$$

$$\Longrightarrow y' + P(x)y = f(x)$$

14.1 通解

$$y = \frac{\int f(x) \exp(\int P(x) dx) dx + C}{\exp(\int P(x) dx)}$$

15 n 阶常系数线性齐次微分方程

Definition 15.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i y^{(i)} = 0 (p_i \in \mathbb{C})$$

15.1 特征方程

$$r^n + \sum_{i=0}^{n-1} p_i r^i = 0$$

15.2 通解对应项

k 重实根 r 在通解中对应项

$$y_r = \sum_{i=1}^k C_i x^{i-1} \cdot e^{rx}$$

特别的: r 为共轭复根($r = \alpha \pm \beta i$)时,可改写为两个实根

$$y_r = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

16 二阶常系数线性微分方程

Definition 16.0.1.

$$y'' + P(x)y' + Q(x)y = f(x)$$

16.1 非齐次通解

16.1.1 大致形式

16.1.2 运算关系

齐特 + 齐特(线性无关) = 齐通

齐通 + 非特 = 非通

齐特 + 非特 = 非特

非特 - 非特 = 齐特

16.2 齐次微分方程

Definition 16.2.1.

$$y'' + py' + qy = 0$$

16.2.1 特征方程

$$r^2 + pr + q = 0$$

16.2.2 通解

 $r_1 \neq r_2$

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

 $r_1 = r_2$

$$y = (C_1 + C_2 x) e^{r_1 x}$$

 $r_{1,2} = \alpha \pm \beta i$

$$y = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

16.3 非齐次微分方程

Definition 16.3.1.

$$y'' + py' + qy = f(x)$$

16.3.1 特解

 \mathcal{P}_n 表示 n 次多项式

$$(16.3.1)$$

$$f(x) = \left[\mathcal{P}_{n_1}(x)\cos\omega x + \mathcal{P}_{n_2}(x)\sin\omega x\right]e^{\lambda x}$$

$$m = \max\{n_1, n_2\}$$

$$\Longrightarrow$$

$$y^* = x^k \left[\mathcal{U}_m(x) \cos \omega x + \mathcal{V}_m(x) \sin \omega x \right] e^{\lambda x} \begin{cases} k = 0 & (\lambda \pm \omega i$$
 不是特征方程根)
$$k = 1 & (\lambda \pm \omega i$$
 是特征方程根)

当 $\omega = 0$ 时, $m = n_1$

$$(16.3.1)$$

$$f(x) = \mathcal{P}_m(x) e^{\lambda x}$$

$$\Longrightarrow y^* = x^k \mathcal{Q}_m(x) e^{\lambda x} \begin{cases} k = 0 & (\lambda \text{ 不是特征方程根}) \\ k = 1 & (\lambda \text{ 是特征方程单根}) \\ k = 2 & (\lambda \text{ 是特征方程重根}) \end{cases}$$

16.3.2 算子法求特解

Definition 16.3.2 (D 算子).

$$Df(x) = f'(x), \frac{1}{D}f(x) = \int f(x) dx$$

对于 (16.3.1):

$$y^* = \frac{1}{D^2 + pD + q} f(x) = \frac{1}{\mathcal{F}(D)} f(x)$$

若代入 D 后分母 $\mathcal{F}(D)$ 出现为 0 的状况,则(可多次使用,D 算子只对右侧 f(x) 有效):

$$y^* = x^n \frac{1}{\mathcal{F}(D)} f(x) \longrightarrow y^* = x^{n+1} \frac{1}{\mathcal{F}'(D)} f(x)$$

 $f(x) = e^{kx}$: D 换为 k

$$y^* = \frac{1}{\mathcal{F}(D)} e^{kx} = e^{kx} \frac{1}{\mathcal{F}(k)}$$

 $f(x) = \sin ax$ 或 $\cos ax$: D^2 换为 $-a^2$

$$y^* = \frac{1}{D^2 + a} \sin ax = \sin ax \frac{1}{-a^2 + a}$$

若代入 D^2 后,分母有 mD + n (mn > 0) 一次多项式,可以配平方将一次多项式化到分子,再代入 D^2 后直接使用 D 算子求导

$$y^* = \frac{1}{D^2 + pD + q} \sin ax = \frac{1}{-a^2 + pD + q} \sin ax$$

$$= \frac{1}{pD - (a^2 - q)} \sin ax = \frac{pD + (a^2 - q)}{[pD - (a^2 - q)][pD + (a^2 - q)]} \sin ax$$

$$= \frac{pD + a^2 - q}{p^2D^2 - (a^2 - q)^2} \sin ax = \frac{pD + a^2 - q}{-p^2a^2 - (a^2 - q)^2} \sin ax$$

 $f(x)=\mathcal{P}(x)$: 使用 $\frac{1}{1-x}=\sum\limits_{n\in\mathbb{N}}x^n$ 泰勒展开 $\frac{1}{\mathcal{F}(D)}$ (不考虑收敛域),使得展开后 D 的最高次幂不小于 $\mathcal{P}(x)$ 即可

$$y^* = \frac{1}{\mathcal{F}(D)}\mathcal{P}(x) = \frac{1}{1 - (1 - \mathcal{F}(D))}\mathcal{P}(x) = \left[1 - \mathcal{F}(D) + (1 - \mathcal{F}(D))^2 + \cdots\right]\mathcal{P}(x)$$

若 $\mathcal{F}(D)$ 不含常数项,则先提出 $\frac{1}{D}$

$$y^{*} = \frac{1}{D^{2} + pD} \mathcal{P}\left(x\right) = \frac{1}{pD} \cdot \frac{1}{1 + \frac{D}{p}} \mathcal{P}\left(x\right)$$

展开时将 $1 - \mathcal{F}(D)$ 当作 x, 但 $1 - \mathcal{F}(D)$ 中不应含有常数项

$$y^* = \frac{1}{D^2 + pD + q} \mathcal{P}(x) = \frac{1}{q} \cdot \frac{1}{1 + \frac{D^2 + pD}{q}} \mathcal{P}(x)$$

 $f(x) = e^{kx}y(x)$: 移位定理

$$y^* = \frac{1}{\mathcal{F}(D)} e^{kx} y(x) = e^{kx} \frac{1}{\mathcal{F}(D+k)} y(x)$$

 $f(x) = \mathcal{P}(x) \sin ax$:

$$y^* = \frac{1}{\mathcal{F}(D)} \mathcal{P}(x) \sin ax = \operatorname{Im} \left[\frac{1}{\mathcal{F}(D)} \mathcal{P}(x) e^{iax} \right] = \operatorname{Im} \left[e^{iax} \frac{1}{\mathcal{F}(D+ia)} \mathcal{P}(x) \right]$$

 $f(x) = \mathcal{P}(x) \cos ax$:

$$y^* = \frac{1}{\mathcal{F}(D)} \mathcal{P}(x) \cos ax = \operatorname{Re}\left[\frac{1}{\mathcal{F}(D)} \mathcal{P}(x) e^{iax}\right] = \operatorname{Re}\left[e^{iax} \frac{1}{\mathcal{F}(D+ia)} \mathcal{P}(x)\right]$$

17 全微分方程

17.1 条件(微分换序)

$$P(x,y) dx + Q(x,y) dy = 0$$
是全微分方程 $\iff P'_y = Q'_x$

Part VI

无穷级数

18 收敛与发散

18.1 绝对收敛

$$\sum_{n \in \mathbb{N}^+} |u_n| = s, s \in \mathbb{C}$$

且
$$\sum_{n\in\mathbb{N}^+} u_n$$
 一定收敛

18.2 条件收敛

18.3 运算关系

收敛 + 收敛 = 收敛

收敛 + 发散 = 发散

发散 + 发散 = 不确定

绝对收敛 + 绝对收敛 = 绝对收敛

绝对收敛 + 条件收敛 = 条件收敛

条件收敛 + 条件收敛 = 收敛(不确定条件还是绝对)

绝对收敛 × 条件收敛 = 绝对收敛

18.4 无穷大比较

$$n \to +\infty$$

$$n^{n} \gg n! \gg a^{n} (a > 1) \gg n^{p} (p > 1) \gg | \gg n^{p} (1 \ge p > 0) \gg (\ln n)^{q} (q > 0)$$

 $\sum_{n \in \mathbb{N}^+} \frac{1}{u_n} \text{ 中,若 } u_n \text{ 在 | 记号左侧则收敛,在 | 记号右侧则发散}$ $\sum_{n \in \mathbb{N}^+} \frac{v_n}{u_n} \text{ 中,若 } u_n \text{ 在 | 记号左侧,且 } v_n \text{ 在 } u_n \text{ 右侧时收敛,否则发散(} \frac{n^p (1 \geqslant p > 0)}{n^q (q > 1)} \text{ 除外,需进 } -步 p > q+1 \text{ 才收敛)}$

任意项级数 19

19.1 比值审敛法(达朗贝尔判别法)

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| \begin{cases} <1 & \Longrightarrow \sum u_n$$
绝对收敛
$$=1 & \Longrightarrow \sum u_n$$
可能收敛可能发散
$$>1 & \Longrightarrow \sum u_n$$
发散

根值审敛法(柯西判别法) 19.2

$$\lim_{n \to \infty} \sqrt[n]{|u_n|} \begin{cases} <1 & \Longrightarrow \sum u_n$$
绝对收敛
$$= 1 & \Longrightarrow \sum u_n$$
可能收敛可能发散
$$>1 & \Longrightarrow \sum u_n$$
发散

正项级数 20

收敛 ← 绝对收敛

20.1 积分审敛法

$$\sum_{n \in \mathbb{N}^{+}} f(n) \otimes \mathbb{R} = \int_{1}^{+\infty} f(x) dx$$

20.2 比较审敛法

大收敛则小收敛, 小发散则大发散

$$\lim_{n\to\infty}\frac{u_n}{v_n}\begin{cases} =0 &\Longrightarrow \sum v_n \text{ wath } \Rightarrow \sum u_n \text{ wath } \Rightarrow \sum v_n \text{ wath } \Rightarrow \sum$$

21 交错级数

21.1 莱布尼兹判别法

正项级数
$$u_n \setminus \lim_{n \to \infty} u_n = 0$$
 \Longrightarrow 交错级数 $\sum (-1)^{n(\vec{u}n-1)} u_n$ 收敛

22 幂(泰勒)级数

Definition 22.0.1 (以下默认幂级数形式).

$$\sum_{n\in\mathbb{N}} a_n x^n, 收敛半径为R$$

22.1 阿贝尔定理

$$\begin{cases} |x| < R & 绝对收敛 \\ |x| = R & 单独讨论(可能条件收敛) \\ |x| > R & 发散 \end{cases}$$

收敛区间为 (-R,R), 收敛域需要讨论端点 |x|=R 处的值

22.2 系数模比值法

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \implies R = \frac{1}{\rho}$$

22.3 系数模根值法

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \rho \implies R = \frac{1}{\rho}$$

22.4 加减运算

$$\left. \frac{\sum a_n x^n \psi \text{ 敛域为} I_a}{\sum b_n x^n \psi \text{ 敛域为} I_b} \right\} \implies \sum a_n x^n \pm \sum b_n x^n = \sum (a_n \pm b_n) x^n, x \in I_a \cap I_b$$

22.5 逐项求导、积分运算

幂级数对 *x* 逐项求导、积分后,收敛半径不变求导后,收敛域可能缩小(边界点可能发散)积分后,收敛域可能扩大(边界点可能收敛)

22.6 泰勒级数

$$f(x) \sim \sum_{n \in \mathbb{N}} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

23 三角(傅里叶)级数

23.1 傅里叶级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n \in \mathbb{N}^+} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

f(x) 周期为 T=2l 时 (l 常取 $\pi)$, 有傅里叶系数:

$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, n \in \mathbb{N} \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx, n \in \mathbb{N}^+ \\ \omega = \frac{2\pi}{T} = \frac{\pi}{l} \end{cases}$$

23.2 特殊情况

23.2.1 正弦级数

若 f(x) 是在一个周期上是奇函数,则 $a_n = 0$

$$f(x) \sim \sum_{n \in \mathbb{N}^+} b_n \sin \frac{n\pi x}{l}$$

23.2.2 余弦级数

若 f(x) 是在一个周期上是偶函数,则 $b_n = 0$

$$f(x) \sim \frac{a_0}{2} + \sum_{n \in \mathbb{N}^+} a_n \cos \frac{n\pi x}{l}$$

23.3 狄利克雷收敛定理

f(x) 在一个周期内有:

- 1. 连续或只有有限个第一类间断点
- 2. 只有有限个极值点

即 f(x) 的傅里叶级数在 \mathbb{R} 连续,且

- 1. x_0 连续时,级数收敛于 $f(x_0)$
- 2. x_0 是第一类间断点时,级数收敛于 $\frac{f(x_0^-)+f(x_0^+)}{2}$