CART - GINI

Derivation of Gini Index

This impurity is the overall probability of misclassifying an item if you were to lazily classify it based on the probabilities of the overall distribution.

- The probability you correctly lazily classify an item in category j is p_j
- The probability you lazily misclassify an item actually in category j is 1-p_i
- The overall probability you lazily misclassify an item is then

$$\sum p_{j}(1-p_{j}) = \sum (p_{j}-p_{j}^{2}) = (\sum p_{j}) - (\sum p_{j}^{2}) = 1 - \sum p_{j}^{2}$$

Measure of Impurity: GINI INDEX $= \sum_{j} p(j|t) \times (1 - p(j|t))$

• Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0	
C2	6	
Gini=0.000		

C1	1	
C2	5	
Gini=0.278		

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

P(C1) =
$$2/6$$
 P(C2) = $4/6$
Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at parent node p.

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini = 0.500	

Gini(N1) $= 1 - (5/7)^2 - (2)$

$$=1-(5/7)^2-(2/7)^2$$

	N1	N2
C1	5	1
C2	2	4
Gini=0.371		

Gini(Children) = 7/12 * 0.408 + 5/12 * 0.32 = .371

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType		
	Family	Sports	Luxury
C1	1	2	1
C2	4	1	1
Gini	0.393		

Two-way split (find best partition of values)

	CarType	
	{Sports, Luxury}	{Family}
C1	3	1
C2	2	4
Gini	0.400	

	CarType	
	{Sports}	{Family, Luxury}
C1	2	2
C2	1	5
Gini	0.419	

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$