TA: Nhan Huynh PSTAT 172A - Winter 2019

Review some important notations:

1. Select and ultimate mortality

- (a) [x] Individual is select at age x. Square brackets denote underwritten or otherwise a preferred risk. Opposite of select is ultimate. It is often the case that the select group has a better health than the ultimate group. Hence: $q_{[x]} < q_x$.
- (b) $q_{[x]+k}$ denotes the one year mortality probability for an individual at exact age x+k who passed a selection procedure k years earlier at age x. For positive selection (such as medical examination): $q_{|x|+k} < q_{x+k}$, for negative selection (such as disability): $q_{[x]+k} > q_{x+k}$.
- (c) The select period is the smallest n for which the select mortality probability are equal to the ultimate mortality probability: $q_{[x]+n} = q_{x+n}.$
- (d) Note: $_kp_{[x]}=\frac{l_{[x]+k}}{l_{[x]}}$ (not $\frac{l_{[x+k]}}{l_{[x]}}$), $_{n|m}q_{[x]}=\frac{l_{[x]+n}-l_{[x]+n+m}}{l_{[x]}}$
- 2. Some important assumptions on the distribution of T_{τ}
 - (a) Uniform distribution (De Moivre's Law): Under this model, $\forall x \in [0, \omega] : T_x \sim \text{Uniform}[0, \omega x]$

i.
$$f_x(t) = \frac{1}{\omega - x}$$

ii. $l_x = k(\omega - x)$

iii.
$$_np_x = \frac{l_{x+n}}{l_x} = 1 - \frac{n}{\omega - x}$$

v.
$$\mathring{e}_x = E[T_x] = \frac{\omega - x}{2}$$

vii.
$$\mathring{e}_{x:\overline{n}|} = n - \frac{n^2}{2(\omega - x)}$$

ii.
$$l_x = k(\omega - x)$$

iii.
$${}_{n}p_{x}=\frac{l_{x+n}}{l_{x}}=1-\frac{n}{\omega-x}$$
 v. $\mathring{e}_{x}=E[T_{x}]=\frac{\omega-x}{2}$ vii. $\mathring{e}_{x:\overline{n}|}=n-\frac{n^{2}}{2(\omega-x)}$ iv. $\mu_{y}=\frac{1}{\omega-y},$ for $0\leq y\leq \omega$ vi. $Var[T_{x}]=\frac{(\omega-x)^{2}}{12}$ viii. $e_{x}=\frac{\omega-x-1}{2}$

viii.
$$e_x = \frac{\omega - x - 1}{2}$$

(b) Uniform distribution of deaths (UDD): Under this assumption, l_{x+t} is a linear function for t where $0 \le t \le 1$: $l_{x+t} = l_x - td_x \rightarrow tp_x = 1 - tq_x$, or $tq_x = tq_x$. Following formulas are true for $0 \le t \le 1$:

i.
$$\mu_{x+t} = \frac{f_x(t)}{S_x(t)} = \frac{\frac{d}{dt}F_x(t)}{1-tq_x} = \frac{\frac{d}{dt}(tq_x)}{1-tq_x} = \frac{q_x}{1-tq_x}$$

iii.
$$_tp_{x+s} = \frac{l_x - (t+s)d_x}{l_x - sd_x} = \frac{1 - (t+s)q_x}{1 - sq_x}$$
 if $0 \le s + t \le 1$ iv. $_tq_{x+s} = 1 - _tp_{x+s} = \frac{tq_x}{1 - sq_x}$ if $0 \le s + t \le 1$

ii.
$$f_x(t) = {}_t p_x \mu_{x+t} = q_x$$

iv.
$$_tq_{x+s} = 1 - _tp_{x+s} = \frac{tq_x}{1 - sq_x}$$
 if $0 \le s + t \le 1$

(c) Constant force of mortality (CFM): Under this assumption, l_{x+t} has the form: $l_{x+t} = (l_x)^{1-t}(l_{x+1})^t = l_x(p_x)^t$ for $0 \le t \le 1 \to {}_t p_x = (p_x)^t$. Following formulas are true for $0 \le t \le 1$:

i.
$$\mu_{x+t} = \frac{-\frac{d}{dt}tp_x}{tp_x} = \frac{-\frac{d}{dt}(p_x)^t}{(p_x)^t} = \frac{-lnp_xp_x^t}{p_x^t} = -ln(p_x)$$
 ii. $tp_x = tp_{x+s} = e^{-t\mu_x} = (p_x)^t$ if $0 \le t+s \le 1$

ii.
$$_tp_x = _tp_{x+s} = e^{-t\mu_x} = (p_x)^t$$
 if $0 \le t + s \le 1$

HOMEWORK 3 (LIFE TABLE)

Problem 10

Given $l_x = 1000$, $l_{x+1} = 900$, and $l_{x+2} = 800$.

Find $0.8q_{x+0.7}$ under: (a) UDD

Problem 9

You are given a life table with a one-year select period:

x	$l_{[x]}$	$d_{[x]}$
85	1000	100
86	850	100

Given also that $\mathring{e}_{[85]} = 5.556$, and that deaths are uniformly distributed over the year of age. Find $\mathring{e}_{[86]}$.

Problem 14

If death are uniformly distributed over each year of age and $\mu_{45.5} = 0.5$, calculate $e_{45:1}$.

Problem 19

A disease has a constant force of mortality μ . Historically 10% of all people with the disease die within 20 years. A more virulent strain of the disease is encountered with a constant force of mortality 2μ . What is the probability of an individual who has the new strain of the disease dying within 20 years?

Problem 11

On a certain life table, the average force of mortality between ages 90 and 92 is 0.2. If $q_{90} = .17$, find q_{91} .