COMPSCI 589 Lecture 19: Principal Components Analysis

Benjamin M. Marlin

College of Information and Computer Sciences University of Massachusetts Amherst

Slides by Benjamin M. Marlin (marlin@cs.umass.edu). Created with support from National Science Foundation Award# IIS-1350522.

The Dimensionality Reduction Task

Definition: The Dimensionality Reduction Task

Given a collection of feature vectors $\mathbf{x}_i \in \mathbb{R}^D$, map the feature vectors into a lower dimensional space $\mathbf{z}_i \in \mathbb{R}^K$ where K < D while preserving certain properties of the data.

estimated manifold

Linear Dimensionality Reduction

■ The simplest dimensionality reduction methods assume that the observed high dimensional data vectors $\mathbf{x}_i \in \mathbb{R}^D$ lie on a K-dimensional linear manifold within \mathbb{R}^D .

PCA

■ Mathematically, the linear sub-space assumption can be written as $X = Z \times B$

Learning

- The learning problem for linear dimensionality reduction is to estimate values for both **Z** and **B** given only the noisy observations **X**.
- One possible learning criteria is to minimize the sum of squared errors when reconstructing **X** from **Z** and **B**. This leads to:

$$\underset{\mathbf{Z},\mathbf{B}}{\operatorname{arg\,min}} ||\mathbf{X} - \mathbf{Z}\mathbf{B}||_F$$

where $||\mathbf{A}||_F$ is the Frobenius norm of matrix **A** (the sum of the squares of all matrix entries).

Singular Value Decomposition

• We can pick a unique representation for the subspace by specifying additional criteria. Classical Rank-K Singular Value Decomposition (K-SVD) corresponds to the following restriction:

$$\underset{\mathbf{U},\mathbf{S},\mathbf{V}}{\operatorname{arg\,min}} ||\mathbf{X} - \mathbf{U}\mathbf{S}\mathbf{V}^T||_F$$

PCA

where S is a $K \times K$ diagonal matrix with positive elements, U is an $N \times K$ matrix such that $\mathbf{U}^T \mathbf{U} = I$, and V is a DxK matrix such that $\mathbf{V}^T\mathbf{V} = I$.

■ The matrix product $\mathbf{Z} = \mathbf{US}$ gives the optimal rank-K representation of X with respect to Frobenius norm minimization, with V^T acting as the basis for the space.

Eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{D \times D}$ be a matrix, $\mathbf{v} \in \mathbb{R}^D$ be a vector, and λ be scalar.

PCA

- If $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a right eigenvector of A with eigenvalue λ .
- If $\mathbf{A}^T \mathbf{v} = \lambda \mathbf{v}$ then \mathbf{v} is a left eigenvector of A with eigenvalue λ (equivalently $\mathbf{v}^T \mathbf{A} = \lambda \mathbf{v}^T$).
- If **A** is symmetric so that $\mathbf{A} = \mathbf{A}^T$, then the left and right eigenvectors of **A** are the same with the same eigenvalues.

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = 3 \begin{bmatrix} 1 & 1 \end{bmatrix}$$

A full-rank (invertible) matrix $\mathbf{A} \in \mathbb{R}^{DxD}$ will have D linearly independent eigenvectors.

Eigendecomposition

■ Let $\mathbf{V} \in \mathbb{R}^{DxD}$ be a matrix whose columns \mathbf{v}_d are D linearly independent eigenvectors of \mathbf{A} with Λ the corresponding diagonal matrix of eigenvalues such that $\Lambda_{dd} = \lambda_d$. Then:

$$\mathbf{AV} = \mathbf{V}\Lambda$$

$$\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$$

$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \Lambda$$

■ Without loss of generality, we can assume that

Eigendecomposition of a Symmetric Matrix

■ If **A** is symmetric, we can choose *D* orthonormal eigenvectors so that $||\mathbf{v}_d||_2 = 1$, $\mathbf{v}_d^T \mathbf{v}_{d'} = 0$ and D real eigenvalues $\lambda_d \in \mathbb{R}$. This representation of **A** is unique. As a result, we have:

$$\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^T = \sum_{d=1}^D \lambda_d \mathbf{v}_d \mathbf{v}_d^T$$
$$\mathbf{V}^T \mathbf{A} \mathbf{V} = \Lambda$$

Similarly, if **a** is an arbitrary vector, then we can also represent **a** using the basis provided by the eigevectors V of a real symmetric matrix A. We obtain:

$$\mathbf{a} = \sum_{d=1}^{D} \alpha_d \mathbf{v}_d \tag{1}$$

$$\alpha_d = \mathbf{a}^T \mathbf{v}_d \tag{2}$$

$$\alpha_d = \mathbf{a}^T \mathbf{v}_d \tag{2}$$

Geometry

■ If **A** is a real symmetric matrix with positive eigenvalues, then the quadratic equation $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$ defines an ellipsoid in a D-dimensional space, which provides a different way of thinking about these operations:

Principal Component Analysis

• Given a data matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$, the goal of Principal Component Analysis (PCA) is to identify the directions of maximum variance contained in the data.

PCA •0000000000

Sample Variance in a Given Direction

- Let $\mathbf{w} \in \mathbb{R}^D$ such that $||\mathbf{w}||_2 = \sqrt{\mathbf{w}^T \mathbf{w}} = 1$.
- The sample estimate of the variance in the direction w given the data set **X** is given by the expression:

$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{X}_{i} \mathbf{w} - \mu)^{2} \text{ where } \mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i} \mathbf{w}$$

Pre-Centering

■ Under the assumption that the data are pre-centered so that $\frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i} = 0$, this expression simplifies to:

$$\frac{1}{N} \sum_{i=1}^{N} (\mathbf{X}_i \mathbf{w})^2 = (\mathbf{X} \mathbf{w})^T (\mathbf{X} \mathbf{w}) = \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}$$

Suppose we want to identify the direction \mathbf{w}_1 of maximum variance given the data matrix **X**. We can formulate this optimization problem as follows:

$$\mathbf{w}_1 = \max_{\mathbf{w}} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \dots \text{ st } ||\mathbf{w}||_2 = 1$$

PCA 00000000000

■ How can we solve this problem?

- I et $\Sigma = \mathbf{X}^T \mathbf{X}$
- Σ is real and symmetric, so it admits an eigendecomposition of the form:

$$\Sigma = \sum_{d=1}^{D} \sigma_d \mathbf{V}_d \mathbf{V}_d^T$$

- $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_D \geq 0$ are the eigenvalues of Σ .
- $\mathbf{V}_d \in \mathbb{R}^D$ are the eigenvectors of Σ . They satisfy:

$$||\mathbf{V}_d||_2 = \sqrt{\mathbf{V}_d^T \mathbf{V}_d} = 1 \dots \text{ for all } d$$

$$\mathbf{V}_d^T \mathbf{V}_{d'} = 0 \dots \text{ for all } d \neq d'$$

Using this result, we can write the optimization problem as:

$$\max_{\mathbf{w}} \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w} \dots \text{ st } ||\mathbf{w}||_{2} = 1$$

$$\max_{\mathbf{w}} \mathbf{w}^{T} \left(\sum_{d=1}^{D} \sigma_{d} \mathbf{V}_{d} \mathbf{V}_{d}^{T} \right) \mathbf{w} \dots \text{ st } ||\mathbf{w}||_{2} = 1$$

$$\max_{\mathbf{w}} \sum_{d=1}^{D} \sigma_{d} (\mathbf{w}^{T} \mathbf{V}_{d})^{2} \dots \text{ st } ||\mathbf{w}||_{2} = 1$$

• w can also be expressed in the orthonormal basis $V_1, ..., V_D$ by letting $\mathbf{w} = \sum_{d=1}^{D} \omega_d V_d$.

- The constraint that $||\mathbf{w}||_2 = 1$ becomes $\sqrt{\sum_{d=1}^D \omega_d^2} = 1$.
- This means $\sum_{d=1}^{D} \omega_d^2 = 1$ and $\omega_d^2 > 0$, so the ω_d^2 values act like a discrete probability distribution.

Plugging this back into the objective function, we have:

$$\begin{aligned} \max_{\mathbf{w}} \sum_{d=1}^{D} \sigma_d(\mathbf{w}^T \mathbf{V}_d)^2 & \dots \text{ st } ||\mathbf{w}||_2 = 1 \\ \max_{\omega} \sum_{d=1}^{D} \sigma_d \left(\sum_{d'=1}^{D} \omega_{d'} \mathbf{V}_{d'}^T \mathbf{V}_d \right)^2 & \dots \text{ st } \sum_{d=1}^{D} \omega_d^2 = 1 \\ \max_{\omega} \sum_{d=1}^{D} \sigma_d \omega_d^2 & \dots \text{ st } \sum_{d=1}^{D} \omega_d^2 = 1 \end{aligned}$$

- At this point, the solution is clear.
- To maximize the variance, we need to set $\omega_1 = 1$ and set $\omega_d = 0$ otherwise. This put's all the weight on the maximum eigenvalue of Σ , which is σ_1 by assumption.

- Working our way back to \mathbf{w}_1 , we put all our weight on the maximum eigenvalue, so $\mathbf{w} = \sum_{d=1}^{D} \omega_d \mathbf{V}_d = \mathbf{V}_1$.
- This shows that the maximum variance direction given a data matrix X is the eigenvector of X^TX with the largest eigenvalue.

K Largest Directions of Variance

■ Suppose instead of just the direction of maximum variance, we want the K largest directions of variance that are all mutually orthogonal.

PCA 0000000000

■ Finding the second-largest direction of variance corresponds to solving the problem:

$$\mathbf{w}_2 = \max_{\mathbf{w}} \sum_{d=1}^{D} \sigma_d(\mathbf{w}^T \mathbf{V}_d)^2 \dots \text{ st } ||\mathbf{w}||_2 = 1 \text{ and } \mathbf{w}^T \mathbf{w}_1 = 0$$

- It's easy to see that this is going to be the eigenvector corresponding to the second largest eigenvalue.
- In general, the top K directions of variance $w_1, ..., w_K$ are given by the K eigenvectors corresponding to the K largest eigenvalues of $\mathbf{X}^T\mathbf{X}$.

Dimensionality Reduction with PCA

Given centered data matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$, compute unscaled sample covariance matrix $\Sigma = \mathbf{X}^T \mathbf{X}$.

- 2 Compute the K leading eigenvectors $w_1, ..., w_K$ of Σ where $\mathbf{w}_{k} \in \mathbb{R}^{D}$.
- 3 Stack the eigenvectors together into a $D \times K$ matrix **W** where each column k of W corresponds to \mathbf{w}_k .
- 4 Project the matrix **X** into the rank-K sub-space of maximum variance by computing the matrix product $\mathbf{Z} = \mathbf{X}\mathbf{W}$.
- 5 To reconstruct **X** given **Z** and **W**, we use $\hat{\mathbf{X}} = \mathbf{Z}\mathbf{W}^T$.

■ Last class we saw that the minimum Frobenius norm linear dimensionality reduction problem could be solved using the the rank-K SVD of X:

$$\underset{\mathbf{U},\mathbf{S},\mathbf{V}}{\arg\min} ||\mathbf{X} - \mathbf{U}\mathbf{S}\mathbf{V}^T||_F$$

where the matrix product $\mathbf{Z} = \mathbf{U}\mathbf{S}$ gives the optimal rank-K representation of \mathbf{X} with respect to Frobenius norm minimization.

If we let K = D then $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ and $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{S}\mathbf{U}^T\mathbf{U}\mathbf{S}\mathbf{V}^T$.

- Due to orthogonality of *U* this gives: $\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{S}^2\mathbf{V}^T$.
- This means that the right singular vectors of \mathbf{X} are exactly the eigenvectors of $\mathbf{X}^T\mathbf{X}$, so SVD's \mathbf{V} and PCA's \mathbf{W} are identical (assuming \mathbf{X} is centered).
- We can also see that the eigenvalues of $\mathbf{X}^T\mathbf{X}$ are the squares of the diagonal elements of \mathbf{S} .
- This means that the *K* largest singular values and *K* largest eigenvalues correspond to the same *K* basis vectors.

- \blacksquare According to PCA, the projection operation is $\mathbf{Z} = \mathbf{X}\mathbf{W}$.
- Using $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ and $\mathbf{V} = \mathbf{W}$ we have:

$$\mathbf{Z} = \mathbf{X}\mathbf{W} = (\mathbf{U}\mathbf{S}\mathbf{V}^T)(\mathbf{V}) = \mathbf{U}\mathbf{S}$$

■ Finally, note that if the decompositions are based only on the K leading basis vectors, which are identical under both PCA and SVD, the projections **Z** = **XW** and **Z** = **US** will still be identical.

■ These manipulations show that PCA on $\mathbf{X}^T\mathbf{X}$ and SVD on \mathbf{X} identify exactly the same sub-space and result in exactly the same projection of the data into that sub-space.

- As a result, generic linear dimensionality reduction simultaneously minimizes the Frobenius norm of the reconstruction error of X and maximizes the retained variance in the learned sub-space.
- Both SVD and PCA provide the same refinement of generic linear dimensionality reduction: an orthogonal basis for exactly the same optimal linear subspace.

Issues

- The computational complexity of PCA is $O(D^2N + D^3)$ if the full eigendecomposition is obtained and then truncated, compared to $O(min(DN^2, ND^2))$ for SVD.
- If $K \ll D$, then PCA can also be computed iteratively, as can SVD.
- The basic SVD and PCA algorithms are not suitable for large-scale data. Instead, randomized algorithms are often used.
- The value of *K* can sometimes be chosen based on looking for eigenvalue gaps in the eigenspectrum of the covariance matrix. Otherwise, a supervised end/side-task is needed or a criteria like AIC/BIC must be applied.