Elettronica T 28-1-2025	Ritirato	A	D	Totale
cognome	matricola			
nome	firma			

 $oldsymbol{A1}$ Calcolare la relazione V_{IN} - V_{OUT} del circuito in figura. Assemere l'OPAMP ideale ed in alto guadagno. Esplicitare i passaggi

A2

$$v_{OUT} = -\frac{12}{7}v_{IN}$$

Sia ora $v_{IN} = V_M \cdot \sin(\omega_0 t)$ con $V_M = 500 \text{mV}$. Sia inoltre SR=1V/ μ s. Calcolare II massimo valore di ω_0 che garantisce il funzionamento in alto guadagno dell' OPAMP. Esplicitare i passaggi

- D
- 1. Disegnare lo schema in logica statica che realizzi la seguente funzione O = (A * B + C + D) * (E * C + A)
- 2. Dimensionare i transistori in modo che il tempo di discesa sia inferiore o uguale a 150pS e il tempo di salita inferiore o uguale a 300pS, al nodo F. Si ottimizzi il progetto per minimizzare l'area occupata dai transistori.
- 3. Calcolare l'area totale occupata dai transistori, comprendendo quelli dell'inverter.

Si tenga conto che i transistori dell'inverter di uscita hanno le seguenti geometrie : Sp=400, Sn= 200.

Parametri tecnologici:

Rrif p = 10Kohm

Rrif n=5Kohm

 $Cox = 7 \text{ fF/}\mu\text{m}^2$

 $Lmin = 0.12 \mu m$

 $V_{CC} = 3.3V$

Area totale = $9.53 \mu m^2$

