1 Algebraic Closure II

Theorem 1.1. Let E be an algebraic extension of K with $K \subseteq E$, and let \overline{K} be an algebraic closure of K.

Given a homomorphism $\varphi: K \to \overline{K}$, the map φ can be extended to a homomorphism from E into \overline{K} .

Theorem 1.2. If L and M are both algebraic closures of K, then $L \cong M$.

Corollary 1.3. Let L: K be an extension with $K \subseteq L$. Suppose that $g \in L[t]$ is irreducible over L, and that $g \mid f$ in L[t], where $f \in K[t] \setminus \{0\}$. The g divides a factor of f that is irreducible over K.

Thus, there exists an irreducible $h \in K[t]$ having the property that $h \mid f$ in K[t], and $g \mid h$ in L[t].

Definition 1 (Normal extension). The extension L: K is <u>normal</u> if it is algebraic, and every irreducible polynomial $f \in K[t]$ either splits over L or has no root in \overline{L} .

Theorem 1.4. $K(\alpha): K$ is normal \iff all conjugates of α are contained in $K(\alpha)$.

Theorem 1.5. A finite extension L: K is normal $\iff L$ is a splitting field extension for some $f \in K[t] \setminus K$.