RecSys'24 | 阿里MLoRA:将LoRA用于多域CTR预估

原创 州懂学习笔记 州懂学习笔记 2024年10月19日 00:27 广东

州懂学习笔记

分享大模型推荐系统相关知识和学习笔记 53篇原创内容

公众号

RecSys'24 | 阿里MLoRA:将LoRA用于多域CTR预估

标题: MLoRA: Multi-Domain Low-Rank Adaptive Network for Click-Through Rate

Prediction

地址: https://dl.acm.org/doi/pdf/10.1145/3640457.3688134

公司: 阿里

会议: RecSys'24

1. 前言

主流的App基本上都会有很多推荐场景以满足用户各方面的需求,比如下图中亚马逊也会有Banner、Selected for you、Recommend after card等推荐场景, 这里的推荐场景也常被称域。

如果每个场景都独立建模, 会有几个弊端:

- 数据稀疏问题: 不同场景的数据量级是不同的, 有些小场景的数据稀疏, 单场景的模型容易 欠学习,
- 场景关联问题: 各场景独立建模忽视了各场景间的内在联系, 天花板受限
- 训练&维护成本高: 每个场景都要单独训练&维护, 新场景的接入成本过高

因此,业内一般都会采用多域/跨域建模来解决跨场景推荐问题,比如业内用的最多的MMoE、PLE、STAR方法,它们会将参数划分成所有场景共享模块以及各场景内部私有模块。这些方法一定程度上解决了问题,但会使得模型参数量显著增加,并且对于一些数据量不足的场景,还是会存在训练不充分的问题。

为此,作者借鉴LLM高效参数微调的思想,将LoRA引入进来,为每个域都增加了个专门的LoRA模块。关于LoRA,如有想更进一步了解的,也可以查看公众号的历史文章《大模型微调技术:LoRA及24年顶会若干改进方法》。

2. 方法

2.1 LoRA方法简介

LoRA(Low Rank Adaption)是LLM高效参数微调的最经典方法,它的思想很直接,如下图所示:

左侧是预训练模型的一个参数权重 $\mathbf{W}\in R^{d_{in}\times d_{out}}$, 在微调过程中是被冻结的, 不会进行梯度更新。右边是额外加的低秩权重矩阵 $\Delta W=BA$, 这部分在Finetune的过程中, 是会更新的:

$$\mathbf{h} = \mathbf{W}'\mathbf{x} = \mathbf{W}\mathbf{x} + \mathbf{B}\mathbf{A}\mathbf{x}$$

这里 \mathbf{x} 为输入, \mathbf{h} 为输出, $A\in\mathbb{R}^{d_{in} imes r},B\in\mathbb{R}^{r imes d_{out}}$,由线性代数的基础知识可知,两者权重矩阵BA的秩是 $\leq r$,并且 $r\ll\min(d_{in},d_{out})$ 。

在初始化时,会随机高斯分布初始化A,用0矩阵初始化B,保证训练开始时此旁路矩阵依然是0矩阵,且不影响微调过程中正常的梯度更新。多提一下,如果两个矩阵都用0矩阵初始化,那这些参数的梯度更新是有问题的。

2.2 MLoRA用于多域CTR预估

2.2.1 整体框架

多域的MLoRA的CTR模型框架如下图所示, 也是比较直观的。

2.2.2 模型&训练细节

在训练CTR模型时,有两部分需要去学习拟合的: 泛化的公共信息以及个性化的独特信息,这样CTR预估可以表述成:

$$\hat{y} = F(\mathbf{x}) = F_0(\mathbf{x}) + \Delta F(\mathbf{x})$$

考虑到单个域的稀疏性,使用低秩矩阵作为参数的模型L(x)用于学习每个域的个性化信息,这样,第t个域的CTR预估可以表示成:

$$\hat{y_t} = F_0(\mathbf{x}) + L_t(\mathbf{x})$$

MLoRA将模型的每一层都拆分为公共部分和个性化部分,而不是将模型作为一个整体来处理。单层可以表示为:

$$\mathbf{h}_t = \mathbf{W}\mathbf{x} + \Delta \mathbf{W}_t = \mathbf{W}\mathbf{x} + \mathbf{B}_t \mathbf{A}_t \mathbf{x}$$

与NLP模型不同,CTR模型通常在层之间的网络宽度是不同的,因此在不同层之间的秩r在设

计时是不同的。本文设计了一个温度系数α来计算r

与NLP模型不同,CTR模型通常在层与层之间的网络宽度是不一样的,如下图所示,因此,不同层使用同样的秩r肯定是不合理的。

为此,作用在MLoRA采用了固定比例因子,称为温度系数 α ,这样,各个层的秩r可以通过下式计算:

$$r = \max(rac{d_{out}}{lpha}, 1)$$

MLoRA采用两阶段训练策略。在预训练阶段,骨干网络使用大规模预训练数据进行训练,以学习可以泛化到各个领域的信息。在微调阶段,添加了MLoRA网络,同时冻结骨干网络。微调阶段只关注A和B更新来学习每个域的个性化信息。

可能有读者会有疑问,骨干网络完全冻结住不会影响性能吗,这里笔者的理解是,CTR模型的参数分成Sparse参数和Dense参数,MLoRA方法针对的就是对Dense 参数的处理逻辑,Sparse 参数还是会例行会更新的,而Dense参数一般又是比较稳定的,在例行更新时,更新A和B就可以让模型的Dense参数也能稳定更新,性能理论上不会折损太多。

3. 实验

3.1 整体效果

在各种主干网络下, MLoRA的效果提升

Dataset	Approach	MLP	STAR	WDL	NFM	AutoInt	PNN	DCN	FiBiNET	DeepFM	xDeepFM	Avg
	Base	72.92	75.51	73.12	76.88	75.56	76.42	72.07	76.51	75.01	75.26	74.93
Taobao-10	Base+MLoRA	74.53	76.17	73.51	77.08	75.83	76.74	72.14	76.77	75.66	75.64	75.41
	Δ	+1.61	+0.66	+0.39	+0.20	+0.27	+0.32	+0.07	+0.26	+0.65	+0.38	+0.48
Amazon-6	Base	75.07	77.26	73.25	65.07	74.10	74.03	75.61	74.93	73.55	74.64	73.75
	Base+MLoRA	77.48	77.28	74.25	67.41	74.46	75.18	75.62	75.27	74.08	74.83	74.58
	Δ	+2.41	+0.02	+1.00	+2.34	+0.36	+1.15	+0.01	+0.34	+0.53	+0.19	+0.83
	Base	80.15	80.18	80.17	80.57	80.25	80.26	80.28	80.47	80.24	80.26	80.28
Movielens-gen	Base+MLoRA	80.39	80.36	80.41	80.59	80.41	80.39	80.42	80.74	80.46	80.44	80.46
	Δ	+0.24	+0.18	+0.24	+0.02	+0.16	+0.13	+0.14	+0.27=	+0.22	学0.18 学	+0.18
	Avg(Δ)	+1.42	+0.29	+0.54	+0.85	+0.26	+0.53	+0.07	+0.29	+0.47	+0.25	+0.50

3.2 分场景效果

在各个子场景下, MLoRA都能有稳定提升

Approach	0	1	2	3	4	5	6	7	8	9	WAUC
MLP	69.09	58.23	68.17	77.29	79.70	74.21	56.56	75.47	64.43	70.21	72.92
MLP+MLoRA	70.40	62.24	69.03	79.11	80.87	74.47	60.12	76.61	65.90	72.46	74.53
Δ	+1.31	+4.02	+0.86	+1.82	+1.17	+0.26	+3.55	+1.14	+1.47	+2.25	+1.61
FiBiNET	71.90	63.13	70.43	79.28	81.19	78.11	68.04	82.54	65.42	76.08	76.51
FiBiNET+MLoRA	72.56	63.70	70.65	79.35	81.20	78.58	68.58	83.25	65.55	76.08	76.77
Δ	+0.67	+0.57	+0.22	+0.07	+0.01	+0.47	+0.54	+0.71	+0.13	+0.00	+0.26
DeepFM	72.44	64.27	66.60	76.46	81.36	76.56	66.85	83.53	67.34	72.69	75.01
DeepFM+MLoRA	72.81	64.41	67.21	77.80	81.65	77.41	67.11	83.65	67.58	72.79	75.66
Δ	+0.37	+0.14	+0.61	+1.34	+0.29	+0.85	+0.26	+0:12	+0.24	+0.10	¥0,65
Avg(Δ)	+0.78	+1.57	+0.56	+1.08	+0.49	+0.53	+1.45	+0.66	+0.61	+0.78	+0.84

3.3 消融实验

不同温度系数α的影响

在不同数量级(10/20/30)的场景下, MLoRA的效果

Dataset	Approach	MLP	STAR	WDL	NFM	AutoInt	PNN	DCN	FiBiNET	DeepFM	xDeepFM	Avg
	Base	72.92	75.51	73.12	76.88	75.56	76.42	72.07	76.51	75.01	75.26	74.93
Taobao-10	Base+MLoRA	74.53	76.17	73.51	77.08	75.83	76.74	72.14	76.77	75.66	75.64	75.41
	Δ	+1.61	+0.66	+0.39	+0.20	+0.27	+0.32	+0.07	+0.26	+0.65	+0.38	+0.48
	Base	77.05	77.89	77.33	78.55	77.50	79.13	79.32	79.27	79.52	79.13	78.27
Taobao-20	Base+MLoRA	77.54	78.66	77.83	78.84	78.09	79.21	79.49	79.29	79.81	79.45	78.62
	Δ	+0.49	+0.77	+0.50	+0.29	+0.59	+0.08	+0.17	+0.02	+0.29	+0.32	+0.35
	Base	76.96	77.03	77.74	78.09	78.34	78.66	75.81	76.38	76.13	79.27	77.44
Taobao-30	Base+MLoRA	77.15	78.29	77.90	78.32	78.36	78.72	76.46	76.59	76.25	79.29	77.73
	Δ	+0.19	+1.26	+0.16	+0.23	+0.02	+0.06	+0.65	+0.21	=+0.12	#0.02	+0.29
-	$Avg(\Delta)$	+0.76	+0.90	+0.35	+0.24	+0.29	+0.15	+0.30	+0.16	+0.35	+0.24	+0.37

预训练模型的不同参数量级的影响

MLoRA	1x	2x	3x	4x	5x	
WAUC	75.39	75.82	75.99	76.68	76.93	懂学习笔记

3.4 线上AB实验

CTR相对提升+1.49%, CVR相对提升+3.37%, 付费用户数提升+2.71%。

