PART A: Consider the function g that is defined over $]0; +\infty[$ as: $g(x)=1-\frac{1}{x}+\ln(x)$.

Let (C) be its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$. G.U = 2 cm.

- 1. Calculate $\lim_{x\to 0^+} [g(x)]$ and $\lim_{x\to +\infty} [g(x)]$. Deduce an asymptote to the curve (C).
- 2. Calculate g (1), g (2) and g (e).
- 3. Calculate g'(x), then study the variations of function g.
- 4. Write an equation of the tangent line (T) to (C) at a point A of abscissa 1.
- 5. Draw (T) and (C).

PART B: Consider the function f that is defined over $]0; +\infty[$ as: $f(x) = -1 + (x-1)\ln(x)$.

The below table is the table of variations of the function f over $]0;+\infty[$:

X	0	1	+∞
f'(x)	_	0	79
f(x)	+∞	→ ₋₁ /	>+\infty

- 1. Prove that the equation f(x) = 0 has exactly two roots α and β such that: $0.2 < \alpha < 0.3$ and 2.2 < B < 2.3.
- 2. Designate by (E) the region bounded by the curve (C) of the function g, the x-axis and the two straight lines $x = \alpha$ and $x = \beta$. Let A be the area of the region (E).
 - a- Prove that for all $x \in]0; +\infty[$ we have: f'(x) = g(x).
 - b- Prove that: $A = \int_{1}^{\alpha} g(x) dx + \int_{1}^{\beta} g(x) dx$.
 - c- Deduce the value of A in terms of α and β .

PART A: Consider the function g that is defined over $]0; +\infty[$ as: $g(x)=1-\frac{1}{x}+\ln(x)$.

Let (C) be its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$. G.U = 2 cm.

- 1. Calculate $\lim_{x\to 0^+} [g(x)]$ and $\lim_{x\to \infty} [g(x)]$. Deduce an asymptote to the curve (C).
- 2. Calculate g (1), g (2) and g (e).
- Calculate g'(x), then study the variations of function g.
- Write an equation of the tangent line (T) to (C) at a point A of abscissa 1.
- 5. Draw (T) and (C).

PART B: Consider the function f that is defined over $]0; +\infty[$ as: $f(x) = -1 + (x-1)\ln(x)$.

The below table is the table of variations of the function f over $]0;+\infty[$:

X	0	1	+∞
f'(x)		0	
f(x)	+∞	→ ₋₁ /	+∞

- 1. Prove that the equation f(x) = 0 has exactly two roots α and β such that: $0.2 < \alpha < 0.3$ and 2.2 < B < 2.3.
- 2.2 < B < 2.3. 2. Designate by (E) the region bounded by the curve (C) of the function g, the x-axis and the two $g'(x) = \frac{1}{x^2} + \frac{1}{x} > 0$ for every $x \in Df$ straight lines $x = \alpha$ and $x = \beta$. Let A be the area of the region (E).
 - a- Prove that for all $x \in [0, +\infty)$ we have: f'(x) = g(x).
 - b- Prove that: $A = \int_{0}^{\alpha} g(x)dx + \int_{0}^{\beta} g(x)dx$.
 - Deduce the value of A in terms of α and β .

1)
$$\lim_{x \to 0} g(x) = 0 - \frac{1}{0} - \infty$$

$$\lim_{x \to +\infty} g(x) = 1 - 0 + \infty$$

$$= + \infty$$

X = 0 is V.A at $-\infty$

2)
$$g(1) = 1 - 1 + 0$$
 $g(2) = 1.2$
= 0

$$\Rightarrow$$
 g(e) = $1 - \frac{1}{e} + lne$
= $-\frac{1}{e} = -0.36$

3)
$$g'(x) = -(-\frac{1}{x^2}) + \frac{1}{x}$$

$$g'(x) = \frac{1}{x^2} + \frac{1}{x} > 0$$
 for every $x \in Df$

Let (C) be its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$. G.U = 2 cm.

- 1. Calculate $\lim_{x\to 0^+} [g(x)]$ and $\lim_{x\to +\infty} [g(x)]$. Deduce an asymptote to the curve (C).
- 2. Calculate g (1), g (2) and g (e).
- 3. Calculate g'(x), then study the variations of function g.
- 4. Write an equation of the tangent line (T) to (C) at a point A of abscissa 1.
- 5. Draw (T) and (C).

PART B: Consider the function f that is defined over $]0; +\infty[$ as: $f(x) = -1 + (x-1)\ln(x)$.

The below table is the table of variations of the function f over $]0;+\infty[$:

X	0	1	+∞
f'(x)	_		
f(x)	+∞		100

- 1. Prove that the equation f(x) = 0 has exactly two roots α and β such that: $0.2 < \alpha < 0.3$ and 2.2 < B < 2.3.
- 2. Designate by (E) the region bounded by the curve (C) of the function g, the x-axis and the two straight lines $x = \alpha$ and $x = \beta$. Let A be the area of the region (E).
 - a- Prove that for all $x \in]0; +\infty[$ we have: f'(x) = g(x).
 - b- Prove that: $A = \int_{1}^{\alpha} g(x) dx + \int_{1}^{\beta} g(x) dx$.
 - c- Deduce the value of A in terms of α and β .

4) equation of tangent:

(T):
$$y - y_A = g'(x_A) (x - x_A)$$

$$y-0=2(x-1)$$

$$y = 2x - 2$$

$$g'(1) = 1 + 1 = 2$$

 $g(1) = 0$

5) Draw

$$x = 0$$
 V.A

(1,0)

(2, 1.2)

(e, 0.36)

Consider the function f that is defined over $]0;+\infty[$ as: $f(x)=-1+(x-1)\ln(x)$.

The below table is the table of variations of the function f over $]0;+\infty[$:

$$f'(x) = g(x)$$

1. Prove that the equation
$$f(x) = 0$$
 has exactly two roots α and β such that: $0.2 < \alpha < 0.3$ and $2.2 < B < 2.3$.

- 2. Designate by (E) the region bounded by the curve (C) of the function g, the x-axis and the two b) $A = \int_{\alpha}^{\beta} g(x) dx$ straight lines $x = \alpha$ and $x = \beta$. Let A be the area of the re
 - a- Prove that for all $x \in]0; +\infty[$ we have: f'(x) = g(x).

b- Prove that: $A = \int g(x)dx + \int g(x)dx$.

) f(x) is continuous and strictly decreasing f admit a unique root
$$\alpha$$
.
For $f(0.2) = 0.28 > 0$

$$> f(0.3) = -0.15 < 0$$
 f(x) is continuous and strictly increasing from

$$\rightarrow$$
 f(2.2) = -0.05 < 0

it admit a unique root β .

$$\rightarrow$$
 f(2.3) = 0.08 > 0

(b) A =
$$\int_{\alpha}^{r} g(x)dx$$

Using Chasles' rule for integrals

$$A = -\int_{\alpha}^{1} g(x)dx + \int_{1}^{\beta} g(x)dx$$
$$= \int_{1}^{\alpha} g(x)dx + \int_{1}^{\beta} g(x)dx$$

c)
$$A = \int_1^{\alpha} g(x)dx + \int_1^{\beta} g(x)dx$$

=
$$[-1 + (x - 1)] \ln x]_1^{\alpha} + [-1 + (x - 1)] \ln x]_1^{\beta}$$

$$= 2 \times 4 = 8 \text{ cm}^2$$