

LEAD SCORING CASE STUDY

By - Vyankatesh Kale

upGrad

INTRODUCTION

Company named X Education gets a lot of leads. However, its lead conversion rate is very poor. For example, if, say, they acquire 100 leads in a day, only about 30 of them are converted. To make this process more efficient, the company wishes to identify the most potential leads, also known as 'Hot Leads'. If they successfully identify this set of leads, the lead conversion rate should go up as the sales team will now be focusing more on communicating with the potential leads rather than making calls to everyone. X Education has appointed you to help them select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires you to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance.

upGrad

PROBLEM STATMENT

X Education need help to select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires you to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

BUSINESS OBJECTIVE

Build a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads. A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.

There are some more problems presented by the company which your model should be able to adjust to if the company's requirement changes in the future so you will need to

ble to adjust to if the company's requirement changes in the future so you will need to handle these as well. These problems are provided in a separate doc file. Please fill it based on the logistic regression model you got in the first step

APPROACH

- 1. Import the packages
- 2. Read the data (Leads.csv)
- 3. Check the null/missing values
- 4. Replace null values with 'Not Provided'
- 5. Remove columns having 35% null values and remaining missing values were imputed using Mode and Median
- 6. Perform Exploratory Data Analysis
- 7. Change the multicategorical lebels into dummy variables and binary
- 8. Split data into Train set and Test set
- 9. Build a Model
- 10. Firstly RFE was done to attain the top 15 variables
- 11. Calculate Accuracy for both the Train and Test set data
- 12. Calculate Precision and Recall Score
- 13. Conclusion

DATA VISUALIZATION

- Maximum leads are from Landing page submission but Lead Add Form have a good conversion rate
- Maximum leads are genrerated from Lead Source "Google"
- "Reference" and "Welingak website" have the higher conversion rate

- Last Activity as "Email Opened" have the highest lead but conversion rate is not good
- "SMS sent" have high conversion rate
- Most of the data is from Country "India" so it is not that insightful.

- Totalvisit and Page Views Per Visit have same median for converted non converted so we can not conclude anything
- Total Time Spent on Website: Median of converted is higher than non converted
- Converted leads are those who have spend more time on the website

- Highest correlation is between 'Lead Import' and 'Lead Source_Facebook' -(0.96)
- correlation between Lead Add Form and Lead Source_Referance - (0.86)
- correlation between TotalVisits and Page
 Views per visits (0.49)

- The value of ROC Curve should be near to 1 and we are getting 0.87 which is good predictive model
- Optimal Cutoff for Accuracy, Sensitivity, Specificity is 0.35

Out[117]:	Generalized Linear N	Model Regression Re	sults						
	Dep. Variable:	Converted	No. Observatio	ns:	7392				
	Model:	GLM	Df Residua	als:	7379				
	Model Family:	Binomial	Df Mod	del:	12				
	Link Function:	Logit	Sca	ale:	1.0000				
	Method:	IRLS	Log-Likeliho	od:	-3201.2				
	Date:	Wed, 23 Aug 2023	Devian	ce:	6402.4				
	Time:	16:03:04	Pearson ch	ni2: 1	1.07e+04				
	No. Iterations:	7	Pseudo R-squ. (C	S):	0.3716				
	Covariance Type:	nonrobust							
				cc	ef stden	r z	P> z	[0.025	0.975]
			const	-0.63	90 0.217	-2.946	0.003	-1.064	-0.214
			Do Not Email	-0.35	80 0.041	-8.763	0.000	-0.438	-0.278
		Total Time	Spent on Website	1.10	05 0.036	30.485	0.000	1.030	1.171
			Lead Add Form	3.43	40 0.188	18.568	0.000	3.072	3.797
		Lead \$	Source_Click2call	-2.64	34 1.314	-2.012	0.044	-5.218	-0.069
		Lead S	ource_Olark chat	0.83	65 0.089	9.421	0.000	0.662	1.011
		Lead Source_	Welingak website	2.75	76 0.740	3.729	0.000	1.308	4.207
	Sp	ecialization_Hospit	ality Management	-0.74	87 0.300	-2.494	0.013	-1.337	-0.160
		our current occupat		-0.78	21 0.217	-3.601	0.000	-1.208	-0.356
	What is your curre	nt occupation_Wor	_	1.83		6.678	0.000	1.295	2.372
			e_Lateral Student				0.010	0.653	4.890
			le_Potential Lead	1.72		19.563		1.548	1.893
		Lead Profile_Studer	nt of SomeSchool	-2.45	38 0.431	-5.699	0.000	-3.298	-1.610

Calculating VIF

11

8 What is your current occupation_Working Profes... 1.26

Total Time Spent on Website 1.24

Lead Source_Click2call 1.01

Lead Profile_Lateral Student 1.01

Specialization_Hospitality Management 1.02

Lead Profile_Student of SomeSchool 1.02

Do Not Email 1.02

- All the variables have good p-value (p-value < 0.05)
- Also all variables have a good VIF value(VIF value < 5)

CONCLUSION

Accuracy Score in predicting Train dataset - 79.96%

Accuracy Score in predicting Test dataset - 79.54%

Precesion Score in predicting Test dataset - 73.22%

Recall Score in predicting Test dataset - 76.22%

The Accuracy, Presicion, Recall Score we got on Test set is in Acceptable range We were looking a high recall Score than Precision score and we got that The accuracy from Train set and Test set both are close to each other Hence the Model looks good

THANK YOU!