5. Field Theory Basics

Basics of field theory

Things to remember from before.

We already know quite a bit about fields.

Characteristic

If F is a field, then there is a ring homomorphism $\mathbb{Z} \to F$ sending $1 \to 1$. If this map is injective, then:

- we say F has characteristic zero
- F contains a copy of the rational numbers
- The field \mathbb{Q} is the *prime subfield* of F.

Otherwise the kernel of this map must be a prime ideal $p\mathbb{Z}$ of \mathbb{Z} . In this case:

- we say that F has characteristic p
- F contains a copy of $\mathbb{Z}/p\mathbb{Z}$.
- $\mathbb{Z}/p\mathbb{Z}$ is the *prime subfield* of F.

Maps

If $f: F \to E$ is a homomorphism of fields, it is automatically injective (or zero).

The only field maps $f: \mathbb{Q} \to \mathbb{Q}$ and $f: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ are the identity.

Extensions

If F is a field, and $F \subset E$ where E is another field, then we call E an extension field of F.

E is automatically a vector space over F. The degree of E/F, written [E:F], is the dimension of E as an F-vector space.

Polynomials, quotient rings, and fields

We have the division algorithm for polynomials. F[x] is a PID. An ideal is prime iff it is generated by an irreducible polynomial.

Let p(x) be an irreducible polynomial of degree d over F. Then:

- K = F[x]/(p(x)) is a field
- It is of degree d over F.
- p(x) has a root in K (namely the residue class of x)
- The elements $1, x, \ldots, x^{d-1}$ are a basis for K/F.

Adjoining roots of polynomials

If $F \subset K$ is a field extension, and $\alpha \in K$, then $F(\alpha)$ is the smallest subfield of K containing F and α . Similarly for $F(\alpha_1, \alpha_2, \dots, \alpha_n)$.

If p(x) is irreducible over F, and has a root α in K, then $F(\alpha)$ is isomorphic to F[x]/p(x) via the map $x \mapsto \alpha$.

Key Theorem

Let K be a field extension of F and let p(x) be an irreducible polynomial over F. Suppose K contains two roots α and β of p(x). Then $F(\alpha)$ and $F(\beta)$ are isomorphic via an isomorphism that is the identity on F.

More generally:

Theorem: (See Theorem 8, DF, page 519) Let $\phi: F \to F'$ be an isomorphism of fields. Let p(x) be an irreducible polynomial in F[x] and let p'(x) be the polynomial in F'[x] obtained by applying ϕ to the coefficients of p(x). Let K be an extension of F containing a root α of p(x), and let K' be an extension of F' containing a root β of p'(x). Then there is an isomorphism $\sigma: F(\alpha) \to F'(\beta)$ such that the restriction of σ to F is ϕ .

Algebraic Extensions

Definition

Definition: Let $F \subset K$ be a field extension. An element $\alpha \in K$ is algebraic over F if it is the root of a nonzero polynomial in F[x]. Elements that aren't algebraic are called *transcendental*.

An extension K/F is algebraic if every element of K is algebraic over F.

Basics

- If α is algebraic over F, there is unique monic polynomial $m_{\alpha,F}(x)$ of minimal degree with coefficients in F such that $m_{\alpha}(\alpha) = 0$. (This follows from the division algorithm). This polynomial is called the *minimal polynomial* of α over F. Its degree is the *degree* of α .
- If $F \subset L$, then the minimal polynomial $m_{\alpha,L}(x) \in L[x]$ of α over L divides the minimal polynomial $m_{\alpha,F}(x)$. Again, this follows from the division algorithm for L[x].
- $F(\alpha)$ is isomorphic to $F[x]/m_{\alpha,F}(x)$; and the degree $[F(\alpha):F]$ is the degree of α .

Examples

If n > 1 and p is a prime, then the polynomial $x^n - p$ is irreducible over \mathbb{Q} , so $\alpha = \sqrt[n]{p}$ has degree n over \mathbb{Q} .

The polynomial $x^3 - x - 1$ is irreducible over \mathbb{Q} and has one real root α . So α has degree 3 over \mathbb{Q} but degree 1 over \mathbb{R} .

Finite extensions are algebraic

Suppose K/F is finite and let α be an element of K. Then there is an n so that the set $1, \alpha, \alpha^2, \ldots, \alpha^n$ are linearly dependent over F; so α satisfies a polynomial with F coefficients, and is therefore algebraic.

As a partial converse, if $F(\alpha)/F$ is finite if and only if α is algebraic. If α is algebraic of degree d over F, $F(\alpha) = F[x]/(m_{\alpha}(x))$ which is finite dimensional (with basis $1, x, x^2, \ldots, x^{d-1}$.)

Field Degrees

Multiplicativity of degrees

Proposition: Suppose that L/F and K/L are extensions. Then [K:F] = [K:L][L:F].

Proof: If $\alpha_1, \ldots, \alpha_n$ are a basis for L/F, and β_1, \ldots, β_k are a basis for K/L, then the products $\alpha_i \beta_i$ are a basis for K/F.

Corollary: If L/F is a subfield of K/F, then [L:F] divides [K:F].

Finitely generated extensions

A field K/F is finitely generated if $K = F(\alpha_1, \ldots, \alpha_n)$ for a finite set of α_i in K.

Proposition: $F(\alpha, \beta) = F(\alpha)(\beta)$.

Proof: $F(\alpha, \beta)$ contains $F(\alpha)$ and also β . Therefore $F(\alpha)(\beta) \subset F(\alpha, \beta)$. On the other hand, since α and β are in $F(\alpha)(\beta)$, we know that $F(\alpha, \beta) \subset F(\alpha)(\beta)$.

Finite is finitely generated

Proposition: A field K/F is finite if and only if it is finitely generated. If it is generated by $\alpha_1, \ldots, \alpha_k$ then it is of degree at most $n_1 n_2 \ldots n_k$ where n_i is the degree of α_i over F.

Proof: If it's finitely generated, then it's a sequence of extensions $F(\alpha_1, \ldots, \alpha_{s-1})(\alpha_s)$ each of degree at most n_i . So K/F is finite. Conversely, if K/F is finite (and of degree greater than 1), choose $\alpha_1 \in K$ of degree greater than 1. Then $F(\alpha) \subset K$ and $[K:F(\alpha)]$ is smaller than [K:F]. Now choose α_2 in K but not $F(\alpha_1)$, and so on. This process must terminate.

Corollary: If α and β are algebraic over F, so are $\alpha + \beta$, $\alpha\beta$, and (if $\beta \neq 0$) α/β .

Proof: All these elements lie in $F(\alpha, \beta)$ which is finite over F.

Corollary: If K/F is a field extension, the subset of K consisting of algebraic elements over F is a field (called the *algebraic closure of* F *in* K).

Towers of algebraic extensions are algebraic

Propositoin: If L/K is algebraic and K/F is algebraic so is L/F.

Proof: Choose $\alpha \in L$. Then α satisfies a polynomial $f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0$ where the a_i are in K. Therefore α is algebraic over $E = F(a_0, a_1, \ldots, a_{d-1})$. But E/F is finitely generated hence finite. Therefore $[E(\alpha):F] = [E(\alpha):E][E:F]$ is finite. Thus every element of L is algebraic over F.

Composites

If K_1 and K_2 are subfields of a field K, then K_1K_2 is the smallest subfield of K containing these two fields. Then $[K_1K_2:F]$ is divisible by both $[K_1:F]$ and $[K_2:F]$ and in addition

$$[K_1K_2:F] \le [K_1:F][K_2:F].$$

In particular, if $[K_1:F]$ and $[K_2:F]$ are relatively prime, then $[K_1K_2:F] = [K_1:F][K_2:F]$.

View as slides