Fathur 2025-09-05

1) Apa yang dimaksud dengan hold-out validation dan k-fold cross-validation?

Hold-out validation adalah pembagian tunggal dataset menjadi train–validasi–(opsional) test, melatih pada train dan menilai pada validasi. Metode ini cepat dan mencerminkan alur produksi yang langsung, tetapi estimasinya ber-varian tinggi karena bergantung pada satu irisan data—bila split "beruntung" atau "sial", metrik bisa bias. **k-fold cross-validation** membagi data menjadi *k* lipatan, melatih *k* kali dengan tiap lipatan bergiliran menjadi validasi, lalu merata-ratakan skor. Ini mengurangi varians estimasi dan memaksimalkan pemakaian data latih, namun biaya komputasinya kira-kira *k* kali lebih besar dan implementasi ceroboh (mis. preprocessing di luar loop fold) mudah menimbulkan kebocoran.

2) Kapan hold-out lebih baik dibanding k-fold, dan sebaliknya?

Hold-out lebih tepat ketika satu split sudah representatif—misalnya pada data sangat besar—sehingga k-fold hanya menambah waktu tanpa manfaat material; saat sumber daya komputasi terbatas atau model mahal dilatih; serta pada skenario non-IID seperti deret waktu, di mana pemisahan temporal (latih masa lalu -> validasi masa depan) wajib agar kausalitas terjaga. k-fold lebih unggul pada data kecil—menengah, hasil model yang labil, atau kelas tak seimbang; rata-rata lintas fold memberi estimasi lebih stabil untuk pemilihan model/hyperparameter. Pada data dengan unit berulang (pasien/pengguna/sekolah), gunakan variasi group-aware; untuk deret waktu gunakan TimeSeriesSplit—"k-fold acak" bukan solusi universal.

3) Apa yang dimaksud dengan data leakage?

Data leakage adalah masuknya informasi yang tidak akan tersedia saat prediksi ke proses pelatihan/validasi. Bentuk umum: target leakage (fitur menyiratkan label/masa depan), preprocessing leakage (normalisasi/imputasi/seleksi fitur dihitung dari seluruh data sebelum split atau di luar loop CV), kontaminasi lintas split (duplikasi/entitas sama di train & validasi), serta tuning leakage (test set dipakai berulang untuk memilih hyperparameter). Semua ini membuat evaluasi terlihat lebih baik daripada kemampuan generalisasi yang sesungguhnya.

4) Bagaimana dampak data leakage terhadap kinerja model?

Kebocoran hampir selalu menghasilkan metrik validasi yang **terlalu optimistis** dan *ranking* model yang menipu. Akibatnya, kita memilih model/hyperparameter yang salah, lalu performa ambruk saat berhadapan dengan data nyata. Secara statistik, terjadi **overestimation** pada akurasi/ROC-AUC/F1, varians tersembunyi tidak terukur, dan stabilitas model menurun—yang berujung pada keputusan bisnis/riset yang keliru serta hasil sulit direproduksi.

5) Solusi untuk mengatasi data leakage

Fathur 2025-09-05

Pegang prinsip "fit hanya pada data latih" dan bungkus seluruh preprocessing di dalam pipeline yang dieksekusi per-split/per-fold. Praktiknya: lakukan split terlebih dahulu; tempatkan scaler, imputasi, seleksi fitur, dan resampling (SMOTE/oversampling) di pipeline yang di-fit pada train saja di setiap fold. Pilih skema split yang sesuai struktur data: Stratified untuk ketidakseimbangan kelas, GroupKFold untuk entitas berulang, TimeSeriesSplit untuk deret waktu (sertakan temporal gap bila perlu). Jaga test set benar-benar perawan dan pakai sekali di akhir; untuk tuning agresif, gunakan nested CV (inner untuk tuning, outer untuk estimasi generalisasi). Lengkapi dengan audit kausalitas fitur (hindari sinyal masa depan), pembersihan duplikasi lintas split, serta logging seed/versi data/konfigurasi split agar bisa diaudit dan direproduksi.