

Université Abdelmalek Essandi Ecole Normale Supérieure

Année scolaire : 2022/2023 Prof : EL ALAMI LAAROUSSI Adil

Licence d'éducation Spécialité : Maths

Matière : calcul différentiel

SERIE 1

Exercice 1:

Soient $n \in \mathbb{N}^*$, E un k espace vectoriel de dimension finie n et $B = (e_1, ..., e_n)$.

Soit N₁ la norme usuelle définie par :

$$N_1: E \to \mathbb{R}^+$$

 $x = \sum_{i=1}^n x_i e_i \to N_1(x) = \sum_{i=1}^n |x_i|$

- Montrer que N₁ est une norme sur E.
- Soit N une norme quelconque définie sur E.
 - a) Montrer que $N(x) \le \beta N_1(x)$.
 - b) Montrer que $|N(x) N(y)| \le \beta N_1(x y)$.
- 3) Soit l'ensemble $S = \{x \in E, N_1(x) = 1\}$.
 - a) Montrer que S est un compact.
 - b) Montrer qu'il existe $\alpha \in \mathbb{R}^{+*}$ tel que $\alpha = \inf_{x \in S} N(x)$, en déduire que $N(x) \ge \alpha N_1(x)$.
- 4) Montrer que les normes N_1 et N sont équivalentes.

Exercice 2

- 1) Montrer que si N_1 et N_2 sont équivalentes alors elles définissent la même topologie.
- Montrer que si N₁ et N₂ sont équivalentes sur un k espace vectoriel, si (E, N₁) est complet alors (E, N₂) l'est.
- 3) En déduire que tous les espaces de dimensions finies sont des espaces de Banach.

Exercice 3

Soit $(E, ||.||_E)$ un espace vectoriel normé de dimension finie et soit $(F, ||.||_F)$ un espace vectoriel de dimension quelconque alors toute application linéaire de $(E, ||.||_E)$ dans $(F, ||.||_F)$ est continue.

Exercice 4

Soient $(a,b) \in \mathbb{R}^2$ tel que a < b, E le \mathbb{R} espace vectoriel des applications Lipchitziennes de [a,b] dans \mathbb{R} .

1) Montrer que l'application $N: E \to \mathbb{R}^+$ définie par :

$$\forall f \in E, N(f) = ||f||_{\infty} + \sup_{x,y \in ([a,b])^2 et \ x \neq y} \frac{|f(x) - f(y)|}{|x - y|}$$

est une norme.

2) (E, N) est- il complet ?

Exercice 5

On note $U = \{z \in \mathbb{C} / |z| = 1\}$

Montrer que l'application N: C(X) → R⁺ définie par :

$$\forall P \in \mathbb{C}(X), N(P) = sup_{z \in U} |P(z)|$$

est une norme.

2) (C(X), N) est- il complet ?

Exercice 6

Soit $L_c(E; F)$ l'espace des fonctions continues de E dans F

1) Montrer que

$$||u|| = \sup_{x \in E/||x|| < 1} ||u(x)||_F$$

est une norme sur $L_c(E; F)$.

2) Montrer que

$$||u|| = \sup_{x \in E/||x||=1} ||u(x)||_F = \sup_{x \in E \setminus \{0\}} \frac{||u(x)||_F}{||x||_E}$$

3) Montrer que

$$\forall u\; L_c(E;\,F);\,\forall x\in\,E;\,\|u(x)\|_F\leq\,\|u\|\|x\|_E$$

et

$$||u|| = \inf\{k \in \mathbb{R} / \forall x \in E; ||u(x)||_F \le k||x||_E\}.$$

4) Montrer que

$$\forall u\; L_c(E;\; F)\; \forall u\; L_c(F;\; G)\; \|uv\|\leq \|u\|\|v\|.$$

Exercice 7

Soit l'application T: IR2 -> IR3 définie par T(1,4) = (3x+4, x-34,44)

- 1) montrer que T est linéaire borné
- 2) Trouver la norme de T

Exercice 8

Considérons l'espace normé (C[0,1], II·lla) et définissons $T: C[0,1] \rightarrow C[0,1]$ par la formule $(T\infty)(t) = \beta(t)\infty(t)$ où $\beta \in C[0,1]$ et $t \in [0,1]$ montrez que T est linéaire borné. Trouvez IITII

0	Exercice 12
	4) Simple,
	2) a = on a: $N(x) = N\left(\sum_{i=1}^{n} x_i e_i\right)$ (*)
	$\left(\sum_{i=1}^{\infty}N(x_ie_i)^{-1}\right)$
	d'où $N(x) \left(\sum_{i=1}^{n} x_i N(e_i) \right)$
	Soit B = sup N(e)
	donc. N(x) & = xi B
	(B) = 1 xil
	alons: $N(x) \leq \beta N_2(x)$
	2) b pursque N est une norme
	on a. Va, y e E, N(x) - N(y) (N(x-y) (B N_1(x-y)
	3)a Sest un compact.
	3) b S est compact et N'est continue,
	donc: N(5) est un compact,
- 1	Natteint ses bornes, en particulier la borne inf
	d'oui, 3x, c, N(x,) = inl N(x)
	puisque of \$ S,
	days: N(x0) = d>0
	alors 3d EIR , d = in PN(21)
	Sout y = x
	$P.uisque: N_2(y) = 1$
	donce yes
	$d'ou'$, $N(y) \gg d \Rightarrow \frac{N(x)}{N(x)} \gg d$
	$\Rightarrow N(n) \Rightarrow dN_1(n)$
	4) puisque 34,β>0, αΝ ₁ (π) (Ν(π) (βΝ ₁ (π))
	d'où. Net N sont Équivalentes.
	Exercice 28
	4) Evident
	2) Na et Na sont équivalentes
21/0	
	Alors (3) (B) 0, d N2(21) (N2(21) (B) N2(21) (N)

18>0, 3N>0, VP, qc iN, P, q>N => N((ap-xq) (E)
$N_2(x_{p-x_q}) \left\langle \frac{\varepsilon}{2} = \varepsilon' \right\rangle$
done (2m) est une suite de Cauchy dans (E, N2),
et perioque (E. Na) est complet,
done x x dans (d, Na)
4E>0, 3 n >0, 4n>n => N2 (2m-2) (E
=> dN2(x-x) < 8
$V_2(x_n-x) \left(\frac{\xi}{\lambda} - \xi\right)$
donce x and x days (E, Na)
d'out (E, No) est complet.
3) Evident!
Exercice 3:
Sou A: (E, 11-11) -> (E, 11-11)
Sout B= (e = , en) une base de E
On pose $x = \sum_{i=1}^{n} x_i e_i$
$\ u(x)\ _{F} = \ u(\tilde{\Sigma}_{i}x_{i}e_{i})\ _{F}$
$= \sum_{i=1}^{\infty} x_i \ \mu(e_i)\ _{E}$
B = Sup u(e,1) =
donc. $\ \mu(x)\ _{E} \langle \beta \frac{2}{\xi} x_{i} $
=> u(x) = (3 N/ (x) \ 3 a x =
d'où, 114(=)11= (Bd 121)=
on pose K = B d
alow: 1/4 (x) 1/2 (15 1/4) 1/2
closic: a est continue.
Exercice 4:
1) Simple.
2) Soit (by) une suite de Cauchy dans (E, N)
VESO, 3NEIN, VP, 9> NOT 18,(x) - Bq(x) & 18p-Bq 110 & N(8p-Bq) < E


```
||T|| = \sup \left\{ \frac{||Tx||_{R}}{||x||_{L}}, x \neq 0 \right\}
(6,1) = \frac{||Tx_{0}||_{L}}{||x_{0}||_{L}} - \frac{\sqrt{(1,-3,4)}}{\sqrt{0+1}} - \sqrt{26}
= > ||T|| > \sqrt{26}
                         => ||T||= V2C
Exercice 80
            11 TI = sup 1/2 1/00
            ||Tx|| = sup | (Tx)(t) | = sup | B(x)x(x) |

||Tx|| = sup | (Tx)(t) | = sup | B(x)x(x) |

||Tx|| = sup | (Tx)(t) | = sup | B(x)x(x) |
       => 117x1100 ( 1181100

=> 1x1100 | 11x1100 ( 1181100

=> 1x10 | 1x1100 ( 1181100

=> 11T11 ( 1181100
on considere : xo: + - xo(+)=1, VIE[0,1]
                               => ||x0 || = 1
             11 Tx. 11 = sup | f(x) | = 11 f 11 co
        d'on, ||T1) = 1181100
```


Université Abdelmalek Essaâdi Ecole Normale Supérieure

Licence d'éducation

Matière : calcul différentiel

SERIE 2

Année scolaire : 2022/2023

Prof: EL ALAMI LAAROUSSI Adil

Exercice 1

Soit l^2 l'ensemble de toutes les suites complexes $x = (x_n)_{n=1}^{+\alpha}$ qui sont carré sommables, c'est-à-dire satisfont $\sum_{n=1}^{+\infty} |x_n|^2 < +\infty$; on écrit

$$l^2 = \left\{ (x_1, \dots, x_n, \dots) / x_i \in \mathbb{C}, \quad \forall i \in \mathbb{N} \ et \ \sum_{n=1}^{+\infty} |x_n|^2 < +\infty \right\}$$

 $\mathbb{C}^{\mathbb{N}} = \{(x_1, \dots, x_n, \dots) / \, x_i \in \mathbb{C}, \ \forall \ i \in \mathbb{N} \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \ x_2 + y_2, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \dots, x_n + y_n, \dots) \, \} \, avec \, x + y = (x_1 + y_1, \dots, x_n + y_n, \dots) \, \}$

$$\alpha x = (\alpha x_1, \ \alpha x_2, ..., \alpha x_n,)$$

- Montrer que l² est un sous-espace vectoriel de C^N.
- 2) Montrer que $(l^2, ||.||_2)$ est un espace normé, où $||x||_2 = (\sum_{n=1}^{+\infty} |x_n|^2)^{\frac{1}{2}}$.

Exercice 2

Soit l^1 l'ensemble de toutes les suites réelles $x = (x_n)_{n=1}^{+\infty}$ qui sont carré sommables, c'est-à-dire satisfont $\sum_{n=1}^{+\infty} |x_n| < +\infty$; on écrit

$$l^1 = \left\{ (x_1, \dots, x_n, \dots) / \, x_i \in \mathbb{R}, \forall \, i \in \mathbb{N} \, \, \text{et} \, \, \sum_{n=1}^{+\infty} |x_n| < +\infty \right\}$$

Pour $f \in C^1(\mathbb{R})$ telle que f(0) = 0, on considère $F : l_1(\mathbb{R}) \to l_1(\mathbb{R}), x \to F(x) = (f(x_i))_{i \in \mathbb{N}}$

Montrer que F est bien définie et partout différentiable et calculer F'.

Exercice 3

Montrer que l'application $f: ||.||_2^2: l_1(\mathbb{R}) \to \mathbb{R}$ est bien définie et de classe C^1 , et calculer f'.

Exercice 4

Soit E l'espace vectoriel des fonctions $f:[0,1]\to\mathbb{R}^2$ qui sont C^1 sur]0,1[et dont les composantes sont continument dérivables à gauche en 0 et à droite en 1. On prolonge f' par continuité en 0 et en 1. On munit cet espace de la norme $||f|| = \sup_{0 \le t \le 1} ||f(t)|| + ||f'(t)||$. Montrer que :

 $F: E \to \mathbb{R}, f \to \int det(f(t), f'(t))dt$ est C^1 et calculer sa différentielle.

Exercice 5

Soit

$$\phi:]0,\infty[\to C^0([0,1]),\alpha\to (\phi_\alpha:[0,1]\to\mathbb{R},t\to t^\alpha).$$

On munit $C^0([0,1])$ de la norme $\|.\|_1$. Montrer que ϕ est différentiable et calculer ϕ' .

Exercice 6

La fonction $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \to \frac{x^3y}{x^4+y^2}$, prolongée par 0 à l'origine, est-elle continue, différentiable, C^1 ?

Exercice 7

Soit $E = \mathbb{R}^2 \setminus \{(0,0)\}$, démontrer que l'application $f: E \to E$ définie par $f(x,y) = (x^2 - y^2, 2xy)$ définit en tout point de E un C^1 -difféomorphisme local, mais que f n'est pas un C^1 -difféomorphisme global.

Exercice 8

- 1) Pour quelles valeurs de $a,b \in \mathbb{R}$, l'application : $\mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) \to (x + a \sin y, y + a \sin y, y)$ b sin x) est-elle un difféomorphisme local en tout point?
- 2) Soit $v \in \mathbb{R}$. On définit $g: \mathbb{R} \to \mathbb{R}$ par g(x) = x + asin(v bsinx). Démontrer que g réalise une
- 3) Montrer qu'alors c'est un C¹-difféomorphisme deR² sur lui-même.

Exercice 9

Montrer que la relation $x^4 + x^3y^2 - y + y^2 + y^3 = 1$ définit y comme fonction de x au voisinage du point (-1,1) Calculer alors $\frac{df}{dy}$ en ce point.

Exercice 10

Soit E un espace de Banach et $\phi \in L_c(E,E)$ une application linéaire continue vérifiant $\|\phi - idE\| < 1$.

Exercice 11

Soient E et F deux espaces de Banach. L'ensemble $L_c^*(E,F)$ des isomorphismes de E sur F est ouvert et l'application $T \to T^{-1}$ de $L_c^*(E,F)$ dans $L_c^*(E,F)$ est continue.

Exercice 12

Montrer que pour $k \in \mathbb{N}$, l'application $L(E) \to L(E)$, $u \to u^k$ est C^1 et calculer sa différentielle.

Montrer que si E est un espace de Banach, elors l'application $L(E) \to L(E)$, $u \to u^{-1}$ est C^1 et calculer sa

3

		X
	= 24(x, 4)	
	=2 < n, h >	1
- International	= 2 < \alpha, \beta \\ = \frac{2}{2} \alpha, \\ = \frac{2}{2} \\ = \frac{2}{2} \alpha, \\ = \frac{2}{2} \alph	
	Exercicele	=
	on considère. I. E -> IR	
	B -> S B(+) -U	
	D: ExE _s IR	
7 1 3 2 4 3 4	$(\beta,3)$ \rightarrow $det(\beta,3)$	
	A. E. SEE	
Secretary total	I, Det u sont de classe C1 et comme F= IODou, donc F es	
	de clane C4.	
3-x 11-11	de F = de (IoDou)	
	= d(8,81) (IOD) a	
	= dole gi) To (dog gi) D) ou	
	df-h = I o(d(8,8), D) o (h, h')	
	= To (det(B, h') + det(h, B!))	
	= \ det(\(\beta(x), \(\beta'(x)) + det(\(\beta(x), \beta'(x))\) dt	
	Exercice 5:	7 =
	$\phi:]0, \infty [\longrightarrow C'([0,4])$	1 =
	d , - , - , (xd), = (eqg(x)),	
a para	Pa: [0,1] -> 1R = ln(+)+d	
	D Websell as did all	
	montrons que lim Φ(α+h)-Φ(α)-dαΦ.h 1 = 0	
	11 φ(d+ h) - φ(d) - dd φ. h 11/2 = \$1/4 + d+ 2 - + d - hit + d + l dt	
	or: th 1 - R h (+) = e R e (+) 1 - 1 - 2 h (+) h dt	
		1-
	$= e^{\frac{\pi}{2}} 1 - \frac{\pi}{2} 0, \forall x > 0 \text{avec } x = \text{Rent}$	1
	donc: 110(0+ B) - 0(d) - da op - B 11 = 52 + d+B + x en(x) B + d dt	d
	$= \begin{bmatrix} x d + R + 2 & x^{d+1} \end{bmatrix}^{d} R \int_{0}^{d} \ln(x)^{d} dx$	

		1							
									17-
									1/4
Flory 212 (40) 18									
1000 C 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		LACX) = 11				-
	2		6	中 【]	AL bo	m 26			
A. 12. 28. 1 Land	11.	5.		La	160				
		7 12 3 61	, 'c	=) { y = =) { y = y =	8-2 (m)			
	11		1	- ly=	N- 6	sin(9-2)	(u))		
						1-1-1-2	0.00		
					1		D 1		
			9 1			111			
				-					
					-6120				-
		-							
						20 - 3	3		
				++-	-	1 500			
		17	1000	1 - 60 - 1	1.		201 200		
					-0				
							1 5		
			- X		Z 0		-		
	4-/								
							1		
							177		
						15-1/2-5			
						3. \			
			107	100					
			F						
	300	W-1-1-2	-	-	14.6		3.03	1-1-	
	-(-,						1 2/2/		
							10.	6	
									1
					12.5			1	
			17. 4	1 1-1	-	enditain.			(J_
			1 5					1-1-	
									12,039
			1						
							5	3canné ave	ec CamScanner