Analízis szigorlati tételsor

Vághy Mihály

Tartalomjegyzék

1. 7	Γéte		7
		Cantor-féle közöspont tétel	7
		Teljes indukció	7
_		1.2.1. Példa teljes indukcióra	7
1	1.3.	Számtani és mértani közép közti egyenlőtlenség	7
		Háromszög egyenlőtlenség	7
		Infimum	8
1	1.0.	1.5.1. Tétel	8
1	1.6.	Szuprémum	8
1	1.0.	1.6.1. Tétel	8
1	1.7.	Másodrendű Taylor formula	8
1	1.1.	Masodrendu Taylor formula	C
2.	Γéte		10
2	2.1.	Mértani sor	10
			10
2	2.2.		10
2			10
2			10
2	2.5.		11
2	2.6.		11
2			11
			11
			12
2	2.9.		12
3. 7	Γ ét ϵ		13
3			13
3	3.2.	Egyoldali határérték	13
3	3.3.	Átviteli elv	13
3	3.4.	Határérték fogalom kiterjesztése	14
3	3.5.	Weierstrass tétel	14
3	3.6.	Heine-tétel	14
3	3.7.	Kétváltozós függvény határértéke	15
3	3.8.	Folytonosság pontban	15
4 .	Тал -	.1	10
	$oldsymbol{\Gammacute{e}te}_{1/1}$		16
			16
			17
	4.3.	L'Hospital-szabály	17

5 .	Téte	el	19
	5.1.	Integrálszámítás első alaptétele	19
	5.2.		19
	5.3.		19
		v 1	20
	5.4.		20
			20
c	Téte	-1	ด1
0.	6.1.		2121
	_		21
	6.2.		
	6.3.		21
	6.4.		22
			22
			22
			22
	6.5.	Primitív függvény	23
	6.6.	Vonalintegrál	23
		6.6.1. Vonalintegrál tulajdonságai	23
		6.6.2. Vonalintegrál kiszámítása	24
	6.7.	Cauchy féle alaptétel analitikus függvény integráljáról	24
7	Téte		25
••			2 5
	1.1.		25
	7.2.		²⁵
	7.3.		26
	7.4.	Lagrange-féle multiplikátor szabály	26
8.	Téte	el	27
		Folytonosság pontban	
	8.2.	Sorozatfolytonosság pontban	27
	8.3.		27
	8.4.	Homogén lineáris differenciálegyenlet általános megoldása	27
	8.5.	Inhomogén lineáris differenciálegyenlet általános megoldása	28
	8.6.		28
			28
O	Téte		3 0
Э.			3 0
	9.1.		
			30
	0.0		30
	9.2.	· · · · · · · · · · · · · · · · · · ·	30
	9.3.	· · · · · · · · · · · · · · · · · · ·	30
	9.4.		30
		9.4.1. Konvergenciasugár meghatározása	31

9.5.	Taylor sor	31
9.6.	Elemi függvények Taylor sora	31
	9.6.1. e^x	31
	9.6.2. $\sin x$	32
	9.6.3. $\cos x$	32
$10.{ m T\'et}$	\mathbf{el}	33
10.1	. Fourier transzformáció	
		33
		33
		34
		35
		35
$11.{ m T\'et}$	\mathbf{el}	36
11.1		36
		36
	90 1	36
	S	36
		37
11.6	. Nyeregpont	37
11.7	. Elégséges feltétel szélsőértékre kétváltozós függvények esetén I	37
11.8	. Elégséges feltétel szélsőértékre kétváltozós függvények esetén II	37
$12.{ m T\'et}$	el :	38
12.1	. Parciális deriváltak kétváltozós függvényre	38
12.2	. Bolzano tétel egyváltozós függvényekre	38
		38
	12.3.1. Parciális derivált geometriai jelentése	38
12.4	. Magasabb rendű parciális deriváltak	39
	12.4.1. Másodrendű parciális deriváltak	39
	12.4.2. <i>n</i> -edrendű parciális deriváltak	39
12.5	. Parciális deriválások sorrendje	39
12.6	. Érintősík	39
12.7	v	40
	12.7.1. Tétel	4(
$13.{ m T\'et}$	el .	41
13.1	. Helyettesítés integrálban egyváltozós függvényekre	41
13.2	300 v	$\frac{41}{41}$
13.3		$\frac{1}{41}$
		$\frac{1}{41}$
		$\frac{1}{41}$
		$\frac{1}{42}$
	. Hengerkoordináták, és a koordináta transzformáció Jacobi determinánsa	

14.Tétel	43
14.1. Integrálfüggvény	43
14.2. Integrálszámítás második alaptétele	
14.3. Integrál középértéktétel	43
14.4. Kétváltozós függvény integrálása téglalapon	
14.5. Síkbeli normáltartomány	44
14.6. Kettős integrál normáltartományon	44
14.7. Helyettesítés integrálban általános koordináta-transzformációval	44
15.Tétel	45
15.1. Rendőrelv	45
15.2. Bolzano-Weierstrass tétel számsorozatokra	45
15.2.1. Csúcselem	
15.2.2. Lemma	
15.3. Számsorozat torlódási pontja	45
15.4. Kétváltozós valós értékű függvény integrálja vonal mentén	45
15.5. Vektormező vonalintegrálja vonal mentén	
15.6. Potenciálos vektormező	46
15.6.1. Tétel	46
15.7. Potenciálkeresés	46
15.7.1. Potenciál létezésének szükséges és elégséges feltétele	46
16. Tétel	48
16.1. Differenciálhányados	
16.2. Derivált geometriai és fizikai jelentés	
16.3. Folytonosság és derviálhatóság kapcsolata	
16.4. Teljes differenciálhatóság	
16.5. Kapcsolat a parciális deriváltakkal	
16.6. Komplex függvény differenciálhatósága	
16.7. Cauchy-Riemann egyenletek	
17.Tétel	51
17.1. Számsorozat határértéke	51
17.2. Divergens sorozat	51
17.2.1. Típusai	51
17.3. Cauchy kritérium	51
17.3.1. Tétel	
17.4. Cauchy-féle integrálformula analitikus függvényekre	
17.5. Taylor sorfejtés komplex analitikus függvényre	53
17.6. Laurent sorfejtés	53
18.Tétel	54
18.1. Gömbi polárkoordináták	
18.2. Elsőrendű szeparábili DE megoldása	54
18.3. Gömbi polárkoordináta-transzformáció Jacobi determinánsa	
18.4. Magasabb rendű homogén lineáris DE megoldásai	
0 00 00 00 00 00 00 00 00 00 00 00 00 0	

	18.5. Állandó együttható HLDE alapmegoldásai, karakterisztikus polinom	55
	18.5.1. Első eset	55
	18.5.2. Második eset	56
	18.5.3. Harmadik eset	
	18.5.4. Negyedik eset	56
19	$\mathbf{0.T\acute{e}tel}$	57
	19.1. Fourier sor	57
	19.2. Számtani átlag sorozat	
	19.2.1. Tétel	
	19.2.2. Tétel	
	19.3. Trigonometrikus függvényrendszer	
	19.3.1. Tétel	
	19.4. Fourier sor komplex alakja	
	19.5. Komplex függvény kanonikus alakja	
	19.6. Exponenciális függvény	
	19.7. Logaritmus függvény	

1. Tétel

1.1. Cantor-féle közöspont tétel

Adottak az $I_1, I_2, \dots, I_n, \dots \subset \mathbb{R}$ egymásba skatulyázott, zárt intervallumok, melyekre

$$I_n \subset I_{n+1}$$
.

Ha $\lim_{n\to\infty} |I_n| = 0$, akkor $\exists ! x \in \mathbb{R}$ amire $x \in I_n \quad \forall n$ esetén.

1.2. Teljes indukció

Adottak az A_1, \ldots, A_n, \ldots állítások. A bizonyítási elv:

- 1. Belátjuk, hogy A_1 teljesül.
- 2. Belátjuk, hogy ha A_n teljesül valamilyen $n \in \mathbb{N}$ esetén, akkor A_{n+1} is.

Ezzel bebizonyítottuk az A_n állításokat.

1.2.1. Példa teljes indukcióra

Bizonyítsuk be, hogy $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ (ez az A_n állítás).

- 1. n=1 esetén $1=\frac{1\cdot 2}{2}$ (tehát A_1 teljesül).
- 2. Tegyük fel, hogy valamilyen n-re teljesül az állítás. Ekkor

$$\sum_{k=1}^{n+1} k = n+1 + \sum_{k=1}^{n} k = n+1 + \frac{n(n+1)}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2}.$$

(Tehát ha A_n igaz, akkor A_{n+1} is).

Ezzel beláttuk az állítást, az indukciós eljárást befejeztük.

1.3. Számtani és mértani közép közti egyenlőtlenség

Legyen $a_1, a_2, \ldots, a_n \geq 0 \in \mathbb{R}$, ekkor

$$\sqrt[n]{\prod_{i=1}^{n} a_i} \le \frac{\sum_{i=1}^{n} a_i}{n}.$$

Egyenlőség, ha $\forall i, j \quad a_i = a_j$.

1.4. Háromszög egyenlőtlenség

Legyen $a_1, a_2, \ldots, a_n \in \mathbb{R}$, ekkor

$$\left| \sum_{i=1}^{n} a_i \right| \le \sum_{i=1}^{n} |a_i|.$$

Egyenlőség, ha $\forall i, j \quad a_i = a_j$.

1.5. Infimum

Adott H alulról korlátos halmaz. Ekkor a legnagyobb alsó korlát a halmaz infimuma, $\inf(H)$

1.5.1. Tétel

Adott H alulról korlátos halmaz esetén létezik $\inf(H)$.

Bizonyítás

Legyen a_1 az alsó korlát. Ha $a_1 \in H$ akkor kész vagyunk. Tehát legyen $a_1 \notin H$, és legyen $b_1 \in H$ egy tetszőleges elem, ahol $b_1 > a_1$. Legyen $I_1 = [a_1, b_1]$ és definiáljuk a $c_1 := \frac{a_1 + b_1}{2}$ számot.

Ha c_1 alsó korlát, akkor legyen $a_2 := c_1$ és $b_2 := b_1$. Ha c_1 nem alsó korlát, akkor legyen $a_2 := a_1$ és $b_2 := c_1$. Legyen továbbá $I_2 = [a_2, b_2]$.

Ezt a lépést a végtelenségig ismételve egy egymásba skatulyázott, zárt intervallumrendszert kapunk, melyre $\lim_{n\to\infty} |I_n| = 0$, hiszen minden lépésben feleződik az intervallum hossza. Tehát a Cantor-féle közöspont tétel miatt létezik egy darab közös pont. Ez a közös pont kisebb vagy egyenlő, mint a b_k számok, tehát biztosan alsó korlát. Továbbá nagyobb vagy egyenlő az összes a_k számnál, így nincs nála nagyobb alsó korlát. Tehát valóban létezik infimum.

1.6. Szuprémum

Adott H felülről korlátos halmaz. Ekkor a legkisebb felső korlát a halmaz szuprémuma, sup(H).

1.6.1. Tétel

Adott H felülről korlátos halmaz esetén létezik $\sup(H)$.

Bizonyítás

Az infimum analógiájára.

1.7. Másodrendű Taylor formula

Tegyük fel, hogy $f:D\mapsto\mathbb{R}$ kétszer differenciálható $(x_0,y_0)\in intD$ -ben. Ekkor

$$f(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial y \partial x} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right) + L_2$$

ahol L_2 a Lagrange-féle maradéktag.

Bizonyítás

Legyen $F:[0,1]\mapsto \mathbb{R}$ függvény és

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y).$$

Ekkor

$$\begin{split} F'(t) &= \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \\ F''(t) &= \frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2. \end{split}$$

Felírva F-re a másodrendű Taylor formulát

$$F(1) - F(0) = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right) + L_2$$

azonban $F(1) - F(0) = f(x, y) - f(x_0, y_0)$. Ezzel kapjuk is a bizonyítandót.

2. Tétel

2.1. Mértani sor

Legyen $a_n = q^{n-1}$, ekkor $\left(\sum a_n\right)$ egy mértani sor.

2.1.1. Mértani sor összege

Adott $a_n = q^{n-1}$ mértani sor. Ekkor

$$\sum_{n=1}^{\infty} a_n = \begin{cases} \frac{1}{1-q}, & \text{ha } |q| < 1\\ \infty, & \text{ha } q \ge 1\\ \nexists, & \text{ha } q \le -1. \end{cases}$$

2.2. Végtelen számsor összege

Adott egy (a_n) sorozat, ekkor

$$\sum_{n=1}^{\infty} a_n$$

egy végtelen sor.

2.3. Divergencia-teszt

Ha (a_n) nem nullsorozat, akkor $(\sum a_n)$ divergens.

2.4. Hányados-kritérium (d'Alembert féle)

1. Tegyük fel, hogy $\exists q < 1$, amire

$$\left| \frac{a_{n+1}}{a_n} \right| \le q < 1$$

teljesül $\forall n \in \mathbb{N}$ esetén. Ekkor a sor abszolút konvergens.

2. Tegyük fel, hogy

$$\left| \frac{a_{n+1}}{a_n} \right| \ge 1$$

teljesül $\forall n \in \mathbb{N}$ esetén. Ekkor a sor divergens.

Bizonyítás

1. Tudjuk, hogy

$$\left| \frac{a_2}{a_1} \right| \le q \quad \left| \frac{a_3}{a_2} \right| \le q \quad \dots \quad \left| \frac{a_{n+1}}{a_n} \right| \le q.$$

Ezeket összeszorozva kapjuk, hogy

$$\left| \frac{a_{n+1}}{a_1} \right| \le q^n \implies |a_{n+1}| \le q^n |a_1|.$$

Ez azt jelenti, hogy a sort majorálhatjuk egy 1-nél kisebb kvóciensű mértani sorral, ami nyilván konvergens.

2. A divergencia-teszt miatt egyből kapjuk a bizonyítandót.

2.5. Gyökkritérium (Cauchy féle)

- 1. Tegyük fel, hogy $\exists 0 < q < 1 \in \mathbb{R}$, melyre $\sqrt[n]{|a_n|} \le q$ teljesül $\forall n \in \mathbb{N}$ esetén. Ekkor a $(\sum a_n)$ sor abszolút konvergens.
- 2. Tegyük fel, hogy $\sqrt[n]{|a_n|} \ge 1$ teljesül $\forall n \in \mathbb{N}$. Ekkor a $(\sum a_n)$ sor divergens.

Bizonyítás

1. Tudjuk, hogy

$$|a_n| \le q^n < 1$$

azaz a sort majorálhatjuk egy 1-nél kisebb kvóciensű mértani sorral, ami nyilván konvergens.

2. A divergencia-teszt miatt egyből kapjuk a bizonyítandót.

2.6. Abszolút konvergencia

Azt mondjuk, hogy a $(\sum a_n)$ sor abszolút konvergens, ha $(\sum |a_n|)$ konvergens.

2.7. Feltételes konvergencia

Azt mondjuk, hogy a $(\sum a_n)$ feltételesen konvergens, ha konvergens, de nem abszolút konvergens.

2.8. Leibniz-típusú sor

Azt mondjuk, hogy $(\sum a_n)$ Leibniz-típusú sor, ha az (a_n) sorozatra

- 1. oszcilláló sorozat, azaz $a_n \cdot a_{n+1} < 0$ teljesül $\forall n \in \mathbb{N}$ esetén
- 2. $(|a_n|)$ monoton fogyó
- 3. (a_n) nullsorozat.

2.8.1. Tétel

A Leibniz-típusú sorok konvergensek.

Bizonyítás

Legyen $a_1 > 0$. Ekkor a páratlan indexű tagok pozitívak, a páros indexú tagok pedig negatívak. Legyen továbbá

$$\alpha_k := \sum_{i=1}^{2k} a_i$$
$$\beta_k := \sum_{i=1}^{2k-1} a_i$$
$$I_k := [\alpha_k, \beta_k].$$

Ekkor az I_k intervallumsorozat teljesíti a Cantor-féle közöspont tétel feltételeit, így létezik egy közöspont, azaz

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = \sum_{n=1}^{\infty} a_n.$$

2.9. Kétváltozós függvény felületének felszíne

Adott $f: R \mapsto \mathbb{R}$ kétváltozós függvény, ahol $R \subset \mathbb{R}^2$. A felület

$$S = \left\{ \left(x, y, f(x, y) \right) \in \mathbb{R}^3 \middle| (x, y) \in R \right\}.$$

A felszínt síkdarabkákkal közelítjük (egyváltozós függvénnyel analóg módon, ahol húrokkal közelítettünk). A keresett felszín

$$A(S) = \iint_{R} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2}(x, y) + \left(\frac{\partial f}{\partial y}\right)^{2}(x, y)} d(x, y).$$

12

3. Tétel

3.1. Függvény határértéke véges pontban

Adott $f:D\mapsto\mathbb{R}$ függvény és tegyük fel, hogy x_0 olyan $U_{x_0}=(x_0-r,x_0+r)$ környezete, amire

$$U_{x_0} \setminus \{x_0\} \subset D$$

teljesül. Ekkor $\lim_{x\to x_0}f(x)=\alpha$ ha $\forall \varepsilon>0$ -hoz $\exists \delta>0,$ melyre $\forall x\in D,\, 0<|x-x_0|<\delta$ esetén

$$|f(x) - \alpha| < \varepsilon$$

teljesül.

3.2. Egyoldali határérték

Adott az $f: D \mapsto \mathbb{R}$ függvény és tegyük fel, hogy $\exists U_{x_0} = (x_0 - r, x_0) \subset D$ ($\exists U_{x_0} = (x_0, x_0 + r) \subset D$). Ekkor f baloldali (jobboldali) határértéke az x_0 pontban α , azaz

$$\lim_{x \to x_0 -} f(x) = \alpha$$

$$\left(\lim_{x \to x_0 +} f(x) = \alpha\right)$$

ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $\forall x \in (x_0 - \delta, x_0) \ (\forall x \in (x_0, x_0 + \delta))$ esetén

$$|f(x) - \alpha| < \varepsilon$$

teljesül.

3.3. Átviteli elv

Adott $f: D \mapsto \mathbb{R}$ függvény.

1. $\lim_{x\to x_0} f(x) = \alpha$ akkor és csak akkor teljesül, ha $\forall (x_n) \subset D$ sorozatra $\lim_{n\to\infty} x_n = x_0$ $(x_n \neq x_0)$ esetén

$$\lim_{n \to \infty} f(x_n) = \alpha.$$

2. $\lim_{x\to x_0+} f(x) = \alpha$ akkor és csak akkor teljesül, ha $\forall (x_n)\subset D$ sorozatra $\lim_{n\to\infty} x_n = x_0$, $x_n>x_0$ esetén

$$\lim_{n \to \infty} f(x_n) = \alpha.$$

3. $\lim_{x\to x_0-} f(x)=\alpha$ akkor és csak akkor teljesül, ha $\forall (x_n)\subset D$ sorozatra $\lim_{n\to\infty} x_n=x_0,$ $x_n< x_0$ esetén

$$\lim_{n \to \infty} f(x_n) = \alpha.$$

3.4. Határérték fogalom kiterjesztése

Adott $f: D \mapsto \mathbb{R}$ függvény.

- 1. $\lim_{x \to \pm \infty} f(x) = \alpha$ ha $\forall \varepsilon > 0$ -hoz $\exists K \in \mathbb{R}$, melyre $\forall x > K \in D \ (\forall x < K \in D)$ esetén $|f(x) \alpha| < \varepsilon$ teljesül.
- 2. $\lim_{x\to x_0} = \pm \infty$, ha $\forall K \in \mathbb{R}$ -hez $\exists \delta > 0$, melyre $\forall 0 < |x x_0| < \delta$ esetén f(x) > K (f(x) < K) teljesül.
- 3. $\lim_{x\to\infty} f(x) = \pm \infty$ ha $\forall K \in \mathbb{R}$ -hez $\exists L \in \mathbb{R}$, melyre $\forall x > L \in D$ esetén f(x) > K (f(x) < K).

3.5. Weierstrass tétel

Adott $f:[a,b]\mapsto \mathbb{R}$ folytonos függvény. Ekkor R_f korlátos és zárt.

Bizonyítás

Tegyük fel, hogy f felülről nem korlátos. Ekkor $\forall n$ -hez $\exists x_n \in [a,b]$, melyre $f(x_n) > n$. Ez az (x_n) sorozat korlátos, hiszen $a \leq x_n \leq b$, így a Bolzano-Weierstrass tétel miatt $\exists (x_{n_k})$ konvergens részsorozata, melyre

$$\lim_{n_k \to \infty} x_{n_k} = \xi$$

ahol $\xi \in [a, b]$. Mivel a függvény folytonos, sorozatfolytonos is, tehát

$$\lim_{n_k \to \infty} f(x_{n_k}) = f(\xi).$$

Azonban ez ellentmondás, hiszen $f(x_{n_k}) > n_k$. Tehát valóban korlátos. Legyen $\beta = \sup \{f(x) | x \in [a, b]\}$. Ekkor nyilván $\forall n$ -hez $\exists x_n \in [a, b]$, melyre

$$\beta - \frac{1}{n} < f(x_n) \le \beta$$

azaz

$$\lim_{n\to\infty} f(x_n) = \beta.$$

Azonban a Bolzano-Weierstrass tétel miatt $\exists (x_{n_k})$ konvergens részsorozat, amelyre

$$\lim_{n_k \to \infty} x_{n_k} = \xi$$

ahol $\xi \in [a,b].$ Azonban a sorozatfolytonosság miatt

$$\lim_{n_k \to \infty} f(x_{n_k}) = f(\xi).$$

Tehát $\beta = f(\xi)$, azaz $\beta = \max \{f(x) | x \in [a, b]\}$.

3.6. Heine-tétel

Adott $f:[a,b]\mapsto \mathbb{R}$ folytonos függvény. Ekkor f egyenletesen folytonos.

3.7. Kétváltozós függvény határértéke

Adott $f: S \mapsto \mathbb{R}$ függvény, és legyen $(x_0, y_0) \in \mathbb{R}^2$ torlódási pont D_f -ben. Azt mondjuk, hogy

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $(x,y) \in S$, $0 < \|(x,y) - (x_0,y_0)\| < \delta$ esetén $|f(x,y) - L| < \varepsilon$.

3.8. Folytonosság pontban

Adott f kétváltozós függvény és $(x_0, y_0) \in D_f$. Ekkor f folytonos az (x_0, y_0) pontban, ha $\forall \varepsilon > 0$ esetén $\exists \delta > 0$, melyre $\forall (x, y) \in D_f$, $\|(x, y) - (x_0, y_0)\| < \delta$ esetén $|f(x, y) - f(x_0, y_0)| < \varepsilon$.

4. Tétel

4.1. Differenciálási szabályok

Legyenek f és g differenciálható függvények.

1. Hányados deriváltja Legyen $q(x) \neq 0$.

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

2. Kompozíció deriváltja Legyen f differenciálható g(x)-ben.

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

3. Inverz deriváltja Legyen f szigorúan monoton, és legyen $f'(x) \neq 0$.

$$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$$

4. Szorzat deriváltja

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

Bizonyítás

1. Tudjuk, hogy

$$\left(\frac{1}{g(x_0)}\right)' = -\frac{g'(x_0)}{g^2(x_0)}$$

illetve

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Ezekből azonnal következik a bizonyítandó.

2. $\lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} \cdot \frac{g(x) - g(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(g(x_0))g'(x_0)$

3.
$$\left(f(f^{-1}(x)) \right)' = f'(f^{-1}(x)) (f^{-1}(x))' = 1 \implies (f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$$

4.2. Monoton függvények jellemzése

Adott $f: D \mapsto \mathbb{R}$ függvény.

- 1. f monoton növő akkor és csak akkor, ha $f'(x) \ge 0$ teljesül $\forall x \in D$ esetén.
- 2. f monoton fogyó akkor és csak akkor, ha $f'(x) \leq 0$ teljesül $\forall x \in D$ esetén.

4.3. L'Hospital-szabály

Adott $g, f: I \mapsto \mathbb{R}$ differenciálhatóak az $x_0 \in int(I)$ pont egy U_{x_0} környezetében. Tegyük fel, hogy

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \qquad (vagy \pm \infty)$$

Ekkor ha létezik a

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

határérték, akkor

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Bizonyítás

Legyen $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$. Ekkor

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)}.$$

A Cauchy-féle középérték-tétel miatt $\exists \xi \ x \text{ és } x_0 \text{ között, amire}$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f'(\xi)}{g'(\xi)} = \lim_{\xi \to x_0} \frac{f'(\xi)}{g'(\xi)}.$$

Így valóban

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

4.4. Láncszabály

1. Kétváltozós belső függvény, egyváltozós külső függvény. Legyen $f: \mathbb{R} \mapsto \mathbb{R}$, illetve $\phi: \mathbb{R}^2 \mapsto \mathbb{R}$. Ekkor $F: \mathbb{R}^2 \mapsto \mathbb{R}$, és

$$F(x,y) = f(\phi(x,y)).$$

Tegyük fel, hogy ϕ differenciálható (x,y)-ban, illetve f differenciálható $\phi(x,y)$ -ban. Ekkor F is differenciálható, és

$$\nabla F(x,y) = \left(f' \big(\phi(x,y) \big) \frac{\partial \phi}{\partial x}(x,y), f' \big(\phi(x,y) \big) \frac{\partial \phi}{\partial y}(x,y) \right) = f' \big(\phi(x,y) \big) \nabla \phi(x,y).$$

2. Két darab egyváltozós belső függvény, kétváltozós külső függvény. Legyen $f: \mathbb{R}^2 \to \mathbb{R}$, illetve $\varphi, \psi: \mathbb{R} \to \mathbb{R}$. Ekkor $F: \mathbb{R} \to \mathbb{R}$, és

$$F(t) = f(\varphi(t), \psi(t)).$$

Tegyük fel, hogy φ, ψ differenciálhatók t-ben, illetve f differenciálható $(\varphi(t), \psi(t))$ -ben. Ekkor F is differenciálható, és

$$F'(t) = \frac{\partial f}{\partial x} (\varphi(t), \psi(t)) \varphi'(t) + \frac{\partial f}{\partial y} (\varphi(t), \psi(t)) \psi'(t).$$

3. Két darab kétváltozós belső függvény, kétváltozós külső függvény. Legyen $f(u,v): \mathbb{R}^2 \mapsto \mathbb{R}$, illetve $\phi, \psi: \mathbb{R}^2 \mapsto \mathbb{R}$. Ekkor $F: \mathbb{R}^2 \mapsto \mathbb{R}$, és

$$F(x,y) = f(\phi(x,y), \psi(x,y)).$$

Tegyük fel, hogy ϕ , ψ differenciálhatók (x, y)-ban, illetve f differenciálható $(\phi(x, y), \psi(x, y))$ -ban. Ekkor F is differenciálható, és

$$\frac{\partial F}{\partial x}(x,y) = \frac{\partial f}{\partial u} \left(\phi(x,y), \psi(x,y) \right) \frac{\partial \phi}{\partial x}(x,y) + \frac{\partial f}{\partial v} \left(\phi(x,y,\psi(x,y)) \frac{\partial \psi}{\partial x}(x,y) \right) \frac{\partial \psi}{\partial x}(x,y)$$

$$\frac{\partial F}{\partial y}(x,y) = \frac{\partial f}{\partial u} \big(\phi(x,y),\psi(x,y)\big) \frac{\partial \phi}{\partial y}(x,y) + \frac{\partial f}{\partial v} \big(\phi(x,y),\psi(x,y)\big) \frac{\partial \psi}{\partial y}(x,y)$$

azaz

$$\nabla F(x,y) = \nabla f(u,v) \begin{pmatrix} \nabla \phi(x,y) \\ \nabla \psi(x,y) \end{pmatrix}.$$

5. Tétel

5.1. Integrálszámítás első alaptétele

Adottak $g, f : [a, b] \mapsto \mathbb{R}$ differenciálható függvények, melyekre $f'(x) = g'(x) \ \forall x \in (a, b)$ esetén. Ekkor

$$f(x) = g(x) + c.$$

5.2. Középérték tételek

1. Rolle-tétel

Legyen $f:[a,b]\mapsto\mathbb{R}$ folytonos, (a,b)-n differenciálható függvény, ahol f(a)=f(b). Ekkor $\exists \xi\in(a,b)$ amire

$$f'(\xi) = 0.$$

2. Lagrange-féle középérték-tétel

Legyen $f:[a,b]\mapsto\mathbb{R}$ folytonos, (a,b)-n differenciálható függvény. Ekkor $\exists\xi\in(a,b)$ amire

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Bizonyítás

Legyen

$$h(x) := \frac{f(b) - f(a)}{b - a} \cdot (x - a) + f(a).$$

Ekkor h(a) = f(a) és h(b) = f(b). Emiatt a

$$q(x) := f(x) - h(x)$$

függvényhez a Rolle-tétel miatt $\exists \xi \in (a, b)$, amire

$$g'(\xi) = f'(\xi) - h'(\xi) = 0 \implies f'(\xi) = h'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

3. Cauchy-féle középérték-tétel

Legyen $f, g : [a, b] \to \mathbb{R}$ folytonos, (a, b)-n differenciálható függvények. Tegyük fel, hogy $g(a) \neq g(b)$ és $g'(x) \neq 0$. Ekkor $\exists \xi \in (a, b)$ amire

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

5.3. Taylor-polinom

Tegyük fel, hogy az f függvény n-szer differenciálható az $x_0 \in D_f$ pontban. Ekkor

$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

az f függvény x_0 -hoz tartozó n-edik Taylor-polinomja.

5.3.1. Tétel

Pontosan egy olyan $P_n(x)$ polinom létezik, amire

$$P_n^{(k)}(x_0) = f_n^{(k)}(x_0)$$

ha $k \leq n$ és

$$P_n^{(n+1)}(x_0) = 0$$

ez a polinom pedig $T_n(x)$.

5.4. Lagrange-féle maradéktag

Az $L_n(x) := f(x) - T_n(x)$ a Lagrange-féle maradéktag.

5.5. Lagrange-féle középértéktétel

Adott $f: D \to \mathbb{R}$ függvény. Legyen $(x_0, y_0) \in intD$, és U egy olyan környezete, ahol f differenciálható és $U \subset D$. Ekkor $\forall (x, y) \in U$ -hoz $\exists \theta \in (0, 1)$, melyre

$$f(x,y) - f(x_0, y_0) = \nabla f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

ahol $\Delta x = x - x_0$, illetve $\Delta y = y - y_0$.

Bizonyítás

Legyen

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$$

ahol $F:[0,1]\mapsto \mathbb{R}$ differenciálható. Ekkor $F(0)=f(x_0,y_0)$ és F(1)=f(x,y). A Lagrange-féle középértéktétel miatt $\exists \theta \in (0,1)$, melyre

$$F'(\theta) = F(1) - F(0).$$

Továbbá a láncszabály miatt

$$F'(t) = \nabla f(x_0 + t\Delta x, y_0 + t\Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}.$$

Azt kaptuk tehát, hogy θ -ra

$$F'(\theta) = F(1) - F(0) = f(x, y) - f(x_0, y_0) = \nabla f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}.$$

Éppen ezt kellett bizonyítanunk.

6. Tétel

6.1. Newton-Leibniz-formula

Adott $f:[a,b]\mapsto \mathbb{R}$ integrálható függvény. Legyen f egy primitív függvénye F. Ekkor

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = \left[F(x) \right]_{a}^{b} = F(x) \Big|_{a}^{b}.$$

Bizonyítás

Legyen \mathcal{F}_n egy felosztása [a,b]-nek. Ekkor f primitív függvényének megszorítása a részintervallumokon $F:[x_{k-1},x_k] \to \mathbb{R}$ differenciálható. Ekkor a Lagrange-féle középérték-tétel miatt $\exists \xi_k \in (x_{k-1},x_k)$, melyre

$$F'(\xi_k) = \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}} = f(\xi_k).$$

Ekkor írjuk fel azt a Riemann-összeget, melyben ezeket a ξ_k számokat választjuk ki. Ekkor

$$\sigma(\mathcal{F}_n) = \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^n F'(\xi_k)(x_k - x_{k-1}) = \sum_{k=1}^n \left(F(x_k) - F(x_{k-1})\right) = F(b) - F(a).$$

Világos, hogy ekkor

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sigma(\mathcal{F}_n) = F(b) - F(a).$$

6.2. Riemann-integrál

Adott $f:[a,b]\mapsto \mathbb{R}$ korlátos függvény. Azt mondjuk, hogy f Riemann-integrálható az [a,b] intervallumon, ha

$$\sup \{s(\mathcal{F}) \big| \mathcal{F} \in \mathbb{F}\} = \inf \{S(\mathcal{F}) \big| \mathcal{F} \in \mathbb{F}\}.$$

Ekkor

$$\int_{a}^{b} f(x)dx = \sup \left\{ s(\mathcal{F}) \middle| \mathcal{F} \in \mathbb{F} \right\} = \inf \left\{ S(\mathcal{F}) \middle| \mathcal{F} \in \mathbb{F} \right\}.$$

6.3. Riemann-integrál tulajdonságai

1.

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

2.

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

3.

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

4.

$$f(x) \le 0 \quad \forall x \in [a, b] \implies \int_a^b f(x) dx \le 0$$

 $f(x) \ge 0 \quad \forall x \in [a, b] \implies \int_a^b d(x) dx \ge 0$

5.

$$f(x) \le g(x) \quad \forall x \in [a, b] \implies \int_a^b f(x) dx \le \int_a^b g(x) dx$$

6.

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f(x) \right| dx$$

6.4. Elégséges feltételek integrálhatóságra

6.4.1. Tétel

Adott $f:[a,b]\mapsto\mathbb{R}$ korlátos és monoton függvény integrálható.

Bizonyítás

Tegyük fel, hogy f monoton növő. Ekkor $\forall \varepsilon > 0$ esetén

$$o(\mathcal{F}) = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) \Delta x_k \le \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) \delta(\mathcal{F}) = (f(b) - f(a)) \delta(\mathcal{F}).$$

Ekkor $\delta(\mathcal{F}) < \frac{\varepsilon}{f(b) - f(a)}$ esetén $o(\mathcal{F}) < \varepsilon$.

6.4.2. Tétel

Adott $f:[a,b] \mapsto \mathbb{R}$ folytonos függvény integrálható.

Bizonyítás

A Heine-tétel miatt a függvény egyenletesen is folytonos. Ekkor $\forall \frac{\varepsilon}{b-a} > 0$ esetén $\exists \delta$, melyre $\forall |x_k - x_{k-1}| < \delta$ esetén $|f(x_k) - f(x_{k-1})| < \frac{\varepsilon}{b-a}$. Ekkor

$$o(\mathcal{F}) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k \le \frac{\varepsilon}{b-a} \sum_{k=1}^{n} (x_k - x_{k-1}) = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

6.4.3. Tétel

Adott $f:[a,b]\mapsto \mathbb{R}$ korlátos, és véges sok szakadási helytől eltekintve folytonos függvény integrálható.

Bizonyítás

Legyen szakadási pont $x^* \in [a, b]$. Legyen továbbá

$$[a,b] = I_1 \cup I_2 \cup I_3 = [a, x^* - \delta] \cup (x^* - \delta, x^* + \delta) \cup [x^* + \delta, b].$$

Ekkor f folytonos az I_1 és I_3 intervallumokon, azaz $\exists \mathcal{F}_1$ felosztás, melyre $o(\mathcal{F}_1) < \frac{\varepsilon}{3}$, illetve $\exists \mathcal{F}_3$, melyre $o(\mathcal{F}_3) < \frac{\varepsilon}{3}$. Ekkor az I_2 intervallumon egy \mathcal{F}_2 felosztásra

$$o(\mathcal{F}_2) = (M - m)2\delta \le 4K\delta$$

ahol $M := \sup \{f(x) | x \in (x^* - \delta, x^* + \delta)\}, m := \inf \{f(x) | x \in (x^* - \delta, x^* + \delta\}, \text{ és } |f(x)| \leq K$. Ekkor $\delta < \frac{\varepsilon}{12K}$ esetén $o(\mathcal{F}_2) < \frac{\varepsilon}{3}$. Ekkor

$$o(\mathcal{F}) = o(\mathcal{F}_1) + o(\mathcal{F}_2) + o(\mathcal{F}_3) < \varepsilon.$$

6.5. Primitív függvény

Adott egy $f:I\mapsto\mathbb{R}$ függvény, ahol $I\subset\mathbb{R}$. Ekkor az $F:I\mapsto\mathbb{R}$ differenciálható függvény az f primitív függvénye, ha $\forall x\in I$ esetén

$$F'(x) = f(x)$$

teljesül.

6.6. Vonalintegrál

Legyen az L görbe egy felosztása $\alpha = t_0 < t_1 < \cdots < t_n = \beta$, illetve legyen a k-adik ív tetszőleges pontja ξ_k . Ekkor

$$\int_{L} f(z)dz = \lim_{\substack{n \to \infty \\ \delta_n \to 0}} \sum_{k=1}^{n} f(\xi_k) \left(z(t_k) - z(t_{k-1}) \right)$$

ahol δ_n a leghosszabb ív hossza. Ha a görbe zárt, akkor az \oint_L jelölést használjuk.

6.6.1. Vonalintegrál tulajdonságai

1. Linearitás

$$\int_{L} (\alpha f + \beta g) dz = \alpha \int_{L} f dz + \beta \int_{L} g dz$$

2.

$$\int_{-L} f dz = -\int_{L} f dz$$

3. Ha $L = L_1 + L_2$, ahol $L_1 \cap L_2 = \emptyset$, akkor

$$\int_{L} f dz = \int_{L_1} f dz + \int_{L_2} f dz.$$

- 4. Ha f folytonos, akkor létezik $\int_L f dz$.
- 5. Hafkorlátos és $\big|f(z)\big| \leq M \ \forall z \in L$ esetén, akkor

$$\left| \int_L f dz \right| \le Ms(L).$$

6.6.2. Vonalintegrál kiszámítása

Legyen az L görbe paraméteres megadása

$$z(t) = x(t) + iy(t) = r(t)e^{i\theta(t)}$$
 $t \in [\alpha, \beta]$

Ekkor

$$\int_{L} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt = \int_{\alpha}^{\beta} f(x(t) + iy(t))(x'(t) + iy'(t))dt =$$

$$= \int_{\alpha}^{\beta} f(r(t)e^{i\theta(t)})(r'(t)e^{i\theta(t)} + ir(t)e^{i\theta(t)}\theta'(t))dt.$$

6.7. Cauchy féle alaptétel analitikus függvény integráljáról

Tegyük fel, hogy $D\subset\mathbb{C}$ egyszeresen összefüggő tartomány és $L\subset D$ egy sima, zárt görbe. Ekkor ha az $f:D\mapsto\mathbb{C}$ függvény analitikus, akkor

$$\oint_L f(z)dz = 0.$$

7. Tétel

7.1. Parciális integrálás

Adottak $f,g:[a,b]\mapsto \mathbb{R}$ differenciálható függvények. Ekkor

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$

$$\int_a^b f'(x)g(x)dx = f(x)g(x)\bigg|_a^b - \int_a^b f(x)g'(x)dx.$$

7.1.1. Parciális integrálás alapesetei

1.

$$\int \text{polinom} \cdot e^x dx$$

Ekkor legyen $f'(x) = e^x$ és g(x) = polinom.

2.

$$\int \text{polinom} \cdot \begin{Bmatrix} \sin x \\ \cos x \\ \sin x \\ \cot x \end{Bmatrix} dx$$

Ekkor legyen f'(x) a trigonometrikus függvény és g(x) a polinom.

3.

$$\int e^x \cdot \begin{Bmatrix} \sin x \\ \cos x \end{Bmatrix} dx$$
 Ekkor legyen $f'(x)$ és $g(x) = \begin{Bmatrix} \sin x \\ \cos x \end{Bmatrix}$.

7.2. Hatványfüggvény integrálja a (0,1] intervallumon

Tudjuk, hogy a hatványfüggvény primitív függvénye

$$\int \frac{1}{x^{\alpha}} dx = \begin{cases} \ln|x|, & \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha}, & \alpha \neq 1. \end{cases}$$

1. $\alpha = 1$ esetén

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \ln|x| \bigg|_0^1 = \infty.$$

2. $\alpha \neq 1$ esetén

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \frac{x^{1-\alpha}}{1-\alpha} \bigg|_0^1 = \begin{cases} \frac{1}{1-\alpha}, & 1-\alpha > 0\\ \infty, & 1-\alpha < 0. \end{cases}$$

Azt kaptuk tehát, hogy

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha}, & \alpha < 1 \\ \infty, & \alpha \ge 1. \end{cases}$$

7.3. Feltételes szélsőérték feladat megfogalmazása

Adott $f:S\mapsto \mathbb{R}$ kétválzotós differenciálható függvény és $\phi(x,y)=0$ feltétel. A feladat, hogy megkeressük a

$$\min_{\phi(x,y)=0} f(x,y) \qquad \max_{\phi(x,y)=0} f(x,y)$$

szélsőértékhelyeket és szélsőértékeket.

7.4. Lagrange-féle multiplikátor szabály

Adott f kétváltozós, differenciálható függvény, melynek tekintsük a megszorítását az $\{(x,y) | \phi(x,y) = 0\}$ halmazon. Legyen $F: \mathbb{R}^3 \mapsto \mathbb{R}$ olyan függvény, melyre

$$F(x, y, \lambda) = f(x, y) - \lambda \phi(x, y).$$

Ekkor ha (x_0, y_0) -ban feltételes szélsőértéke van f-nek a $\phi(x, y) = 0$ feltétel mellett, akkor $\exists \lambda_0 \in \mathbb{R}$, melyre

$$\nabla F(x_0, y_0, \lambda_0) = 0.$$

8. Tétel

8.1. Folytonosság pontban

Adott $f: X \mapsto \mathbb{R}$ folytonos az $x_0 \in D_f$ pontban, ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $\forall |x - x_0| < \delta$ esetén

$$|f(x) - f(x_0)| < \varepsilon.$$

8.2. Sorozatfolytonosság pontban

Adott $f: X \to \mathbb{R}$ folytonos az $x_0 \in D_f$ pontban, ha $\forall (x_n) \subset X$ sorozatra, melyre $\lim_{n \to \infty} x_n = x_0$,

$$\lim_{n \to \infty} f(x_n) = f(x_0)$$

teljesül.

8.3. Szakadási helyek

1. Az f függvénynek elsőfajú szakadása van x_0 -ban, ha léteznek a

$$\lim_{x \to x_0+} f(x) < \infty \qquad \lim_{x \to x_0-} f(x) < \infty$$

határértékek. Ha

$$\lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x)$$

akkor megszüntethető a szakadás.

2. Az f függvénynek másodfajú szakadása van x_0 -ban, ha nem elsőfajú a szakadás.

8.4. Homogén lineáris differenciálegyenlet általános megoldása

Legyen

$$y' = a(x)y$$

és legyen

$$A(x) = \int a(x)dx.$$

Ekkor

$$y(x) = ce^{A(x)}$$

valamilyen $c \in \mathbb{R}$ konstanssal.

Bizonyítás

Vegyük észre, hogy az y' = a(x)y egy szeparábilis differenciálegyenlet így

$$\frac{y'}{y} = a(x) \implies \int \frac{y'}{y} dx = \ln|y| = \int a(x) dx = A(x) + c.$$

Ebből azonnal kapjuk, hogy

$$|y| = e^{A(x)+c} \implies y = ce^{A(x)}$$

ahol c előjele tetszőleges, ezért elhagyható az abszolútértékjel.

8.5. Inhomogén lineáris differenciálegyenlet általános megoldása

Legyen

$$y' = a(x)y + b(x)$$

és legyen

$$A(x) = \int a(x)dx.$$

Ekkor

$$y(x) = ce^{A(x)} + e^{A(x)} \int b(x)e^{-A(x)}dx.$$

8.6. IDE megoldásai

Adott L[y] = f(x) IDE. Ha y_1, y_2 megoldások, akkor $y = y_1 - y_2$ megoldása az L[y] = 0 HDE-nek. Ha y_1 megoldása az HDE-nek és y_2 megoldása a IDE-nek, akkor $y = y_1 + y_2$ megoldása az IDE-nek.

8.6.1. Állandók variálása

Adott

$$L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x).$$

Legyenek az L[y]=0 homogén differenciálegyenlet alapmegoldásai az y_1,y_2,\ldots,y_n függvények. Ekkor a partikuláris megoldás

$$y_p(x) = \sum_{k=1}^n \gamma_k(x) y_k(x)$$

ahol

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix} = \int W^{-1} \begin{pmatrix} 0 & 0 & \dots & f \end{pmatrix}^{\mathrm{T}} d \begin{pmatrix} x \\ x \\ \vdots \\ x \end{pmatrix}.$$

ahol W a Wronski mátrix. Ekkor az általános megoldás

$$y(x) = y_p(x) + \sum_{k=1}^{n} c_k y_k(x).$$

Bizonyítás

Állítsuk az γ_k, y_k függvényekre a következő feltételeket

$$\sum_{k=1}^{n} \gamma_k' y_k = 0$$

$$\sum_{k=1}^{n} \gamma_k' y_k' = 0$$
:

$$\sum_{k=1}^{n} \gamma_{k}' y_{k}^{(n-1)} = f$$

azaz

$$W \begin{pmatrix} \gamma_1' \\ \gamma_2' \\ \vdots \\ \gamma_n' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ f \end{pmatrix}.$$

Ekkor $y_p = \sum_{k=1}^n \gamma_k y_k$ esetén

$$y'_p = \sum_{k=1}^n \gamma'_k y_k + \sum_{k=1}^n \gamma_k y'_k = \sum_{k=1}^n \gamma_k y'_k.$$

Hasonlóan

$$y_p^{(m)} = \sum_{k=1}^n \gamma_k' y_k^{(m-1)} + \sum_{k=1}^n \gamma_k y_k^{(m)} = \sum_{k=1}^n \gamma_k y_k^{(m)}$$

illetve

$$y_p^{(n)} = \sum_{k=1}^n \gamma_k' y_k^{(n-1)} + \sum_{k=1}^n \gamma_k y_k^{(n)} = f + \sum_{k=1}^n \gamma_k y_k^{(n)}.$$

Ebből

$$L[y_p] = f + \sum_{k=1}^{n} \gamma_k L[y_k] = f.$$

Tehát $y_p = \sum_{k=1}^n \gamma_k y_k$ valóban megoldása az IDE-nek. Mivel $W \neq 0$, így a feltételekből azonnal következik, hogy

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix} = \int W^{-1} \begin{pmatrix} 0 & 0 & \dots & f \end{pmatrix}^{\mathrm{T}} d \begin{pmatrix} x \\ x \\ \vdots \\ x \end{pmatrix}.$$

9. Tétel

9.1. Az e szám

9.1.1. Sorozat határértéke

Az e szám az alábbi sorozat határértéke

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

9.1.2. Sor összege

Az e szám az alábbi sor összege

$$\sum_{n=1}^{\infty} \frac{1}{n!}.$$

9.2. Hatványsor

Hatványsoron egy

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

sort értünk, ahol x_0 rögzített valós szám.

9.3. Konvergencia-tartomány

Adott

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

hatványsor. Ennek konvergencia-tartománya

$$\mathcal{H} = \left\{ x \in \mathbb{R} \middle| \sum_{n=0}^{\infty} c_n (x - x_0)^n < \infty \right\}.$$

9.4. Konvergenciasugár

Adott hatványsor konvergenciasugara

$$\rho := \sup \{|x - x_0| | x \in \mathcal{H} \}.$$

30

Ha
$$\mathcal{H} = \{x_0\}$$
, akkor $\rho := 0$.

Ha
$$\mathcal{H} = \mathbb{R}$$
, akkor $\rho := \infty$.

9.4.1. Konvergenciasugár meghatározása

Adott $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ hatványsor. Ekkor ha létezik a

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \gamma$$

vagy a

$$\lim_{n \to \infty} \sqrt[n]{|c_n|} = \gamma$$

határérték, akkor $\rho = \frac{1}{\gamma}$.

Bizonyítás

1. A végtelen sorokra vonatkozó gyengített hányadoskritérium miatt ha

$$\lim_{n \to \infty} \left| \frac{c_{n+1}(x - x_0)^{n+1}}{c_n(x - x_0)^n} \right| = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| |x - x_0| = \gamma |x - x_0| < 1$$

akkor a sor konvergens. Ekkor azonban

$$|x - x_0| < \frac{1}{\gamma} \implies x_0 - \frac{1}{\gamma} < x < x_0 + \frac{1}{\gamma}.$$

Azt látjuk, hogy valóban $\rho = \frac{1}{\gamma}$.

2. A végtelen sorokra vonatkozó gyengített gyökkritérium miatt ha

$$\lim_{n \to \infty} \sqrt[n]{|c_n(x - x_0)^n|} = \lim_{n \to \infty} \sqrt[n]{|c_n|} |x - x_0| = \gamma |x - x_0| < 1$$

akkor a sor konvergens. Ekkor azonban

$$|x - x_0| < \frac{1}{\gamma} \implies x_0 - \frac{1}{\gamma} < x < x_0 + \frac{1}{\gamma}.$$

Azt látjuk, hogy valóban $\rho = \frac{1}{\gamma}$.

9.5. Taylor sor

Legyen adott $f:[a,b]\mapsto \mathbb{R}$ függvény, mely egy $x_0\in(a,b)$ pontban végtelen sokszor differenciálható. Ekkor az f függvény x_0 körüli Taylor sora

$$T(x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

9.6. Elemi függvények Taylor sora

9.6.1. e^x

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Bizonyítás

Mivel $(e^x)^{(k)} = e^x$, 0 körüli sorbafejtéssel azonnal kapjuk az állítást.

9.6.2. $\sin x$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

Bizonyítás

Tudjuk, hogy

$$(\sin x)^{(4k+1)} = \cos x \quad (\sin x)^{(4k+2)} = -\sin x \quad (\sin x)^{(4k+3)} = -\cos x \quad (\sin x)^{(4k)} = \sin x.$$

Ekkor 0 körüli sorbafejtéssel kapjuk is a bizonyítandót.

9.6.3. $\cos x$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

Bizonyítás

Tudjuk, hogy

$$(\cos x)^{(4k+1)} = -\sin x \quad (\cos x)^{(4k+2)} = -\cos x \quad (\cos x)^{(4k+3)} = \sin x \quad (\cos x)^{(4k)} = \cos x.$$

Ekkor 0 körüli sorbafejtéssel kapjuk is a bizonyítandót.

10. Tétel

10.1. Fourier transzformáció

Legyen $f:\mathbb{R}\mapsto\mathbb{R}$ szakaszonként folytonosan differenciálható, abszolút integrálható függvény, azaz

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty$$

melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor a függvény Fourier transzformáltja $\hat{f}:\mathbb{R}\mapsto\mathbb{C}$

$$\mathcal{F}(f,s) = \hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx}dx.$$

10.2. Hatványfüggvény integrálja az $[1,\infty)$ intervallumon

Tudjuk, hogy a hatványfüggvény primitív függvénye

$$\int \frac{1}{x^{\alpha}} dx = \begin{cases} \ln|x|, & \alpha = 1\\ \frac{x^{1-\alpha}}{1-\alpha}, & \alpha \neq 1. \end{cases}$$

1. $\alpha = 1$ esetén

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \ln|x| \bigg|_{1}^{\infty} = \infty.$$

2. $\alpha \neq 1$ esetén

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \frac{x^{1-\alpha}}{1-\alpha} \bigg|_{1}^{\infty} = \begin{cases} \infty, & 1-\alpha > 0\\ \frac{1}{1-\alpha}, & 1-\alpha < 0. \end{cases}$$

Azt kaptuk tehát, hogy

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} \infty, & \alpha \le 1 \\ \frac{1}{1-\alpha}, & \alpha > 1. \end{cases}$$

10.3. Valós függvény gráfjának hossza

Adott $f:[a,b]\mapsto\mathbb{R}$ differenciálható függvény gráfjának hossza az [a,b] intervallumon

$$\int_{a}^{b} \sqrt{1 + \left(f'(t)\right)^2} dt.$$

10.4. Fourier transzformáció alaptulajdonságai

1. Ha f páros, akkor

$$\hat{f}(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \cos(st) dt.$$

2. Ha f páratlan, akkor

$$\hat{f}(s) = -i\sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \sin{(st)} dt.$$

- 3. \hat{f} folytonos
- 4. Linearitás

$$\mathcal{F}(\alpha f + \beta g, s) = \alpha \mathcal{F}(f, s) + \beta \mathcal{F}(g, s)$$

5. Átskálázás

$$\mathcal{F}(f(ax), s) = \frac{1}{|a|} \mathcal{F}(f(x), \frac{s}{a}) \qquad (a \neq 0)$$

6. Időeltolás

$$\mathcal{F}(f(x-x_0),s) = e^{-ix_0s}\mathcal{F}(f(x),s)$$

7. Frekvenciaeltolás

$$\mathcal{F}\Big(e^{ikx}f(x),s\Big) = \mathcal{F}\big(f(x),s-k\big)$$

Bizonyítás

1. Tudjuk, hogy

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin(st) dt.$$

Ekkor ha f páros, akkor

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos(st) dt.$$

2. Tudjuk, hogy

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin(st) dt.$$

Ekkor ha f páratlan, akkor

$$\hat{f}(s) = -i\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin(st) dt = -i\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin(st) dt.$$

3. Az egyenletes konvergenciából következik.

4. Az integrálás linearitásából következik.

5.
$$\mathcal{F}(f(ax),s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(ax)e^{-isx}dx = \frac{1}{\frac{1}{a}y=x} \frac{1}{\sqrt{2\pi}} \int_{-\operatorname{sgn} a\infty}^{\operatorname{sgn} a\infty} f(y)e^{-i\frac{s}{a}y} \frac{1}{a}dy = \frac{1}{|a|\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-i\frac{s}{a}y}dy = \frac{1}{|a|}\mathcal{F}\left(f(x), \frac{s}{a}\right)$$
6.
$$\mathcal{F}(f(x-x_0),s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-x_0)e^{-isx}dx = \frac{1}{y=x-x_0} \frac{1}{dy=dx}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-is(y+x_0)}dy = e^{-isx_0}\mathcal{F}(f(x),s)$$
7.
$$\mathcal{F}\left(e^{ikx}f(x),s\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i(s-k)x}dx = \mathcal{F}(f(x),s-k)$$

10.5. Inverz Fourier transzformáció

Legyen $f: \mathbb{R} \mapsto \mathbb{R}$ szakaszonként folytonosan differenciálható, abszolút integrálható függvény, azaz

$$\int_{-\infty}^{\infty} |f(x)| dx < \infty$$

melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s)e^{isx}ds.$$

10.6. Parseval egyenlőség

Tegyük fel, hogy

$$\int_{-\infty}^{\infty} |f'(x)| dx < \infty \qquad \int_{-\infty}^{\infty} |f''(x)| dx < \infty.$$

Ekkor

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds.$$

11. Tétel

11.1. Polárkoordináták

Adott P(x,y) pont a síkon. Ennek a pontnak a polárkoordinátái (r,ϕ) , ahol r az origótól vett tálvság, ϕ pedig az x-tengellyel bezárt szög. Ekkor

$$r = \sqrt{x^2 + y^2}$$

$$\phi = \arcsin \frac{y}{x^2 + y^2} = \arccos \frac{x}{x^2 + y^2} = \arctan \frac{y}{x}$$

illetve

$$x = r\cos\phi$$
$$y = r\sin\phi.$$

11.2. Egyváltozós valós függvény esetén lokális szélsőérték szükséges feltétele

Ha f-nek lokális szélsőértéle van $x_0 \in int(D_f)$ -ben, akkor

$$f'(x_0) = 0.$$

Bizonyítás

Tegyük fel, hogy x_0 -ban lokális minimuma van a függvénynek. Ez azt jelenti, hogy $\exists U_{x_0}$ környezet, melyre $f(x_0) \leq f(x)$ teljesül $\forall x \in U_{x_0}$ esetén. Világos, hogy ekkor $x < x_0$ esetén

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0.$$

Azonban $x > x_0$ esetén

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Ekkor $0 \le f'(x_0) \le 0$, amiből $f'(x_0) = 0$.

11.3. Egyváltozós valós függvény esetén lokális szélsőérték elégséges feltétele

Legyen $f: D \to \mathbb{R}$ kétszer differenciálható, és legyen $f'(x_0) = 0$ valamilyen x_0 -ra. Ekkor x_0 lokális szélsőérték, ha $f''(x_0) \neq 0$. Továbbá x_0 lokális maximum (minimum), ha $f''(x_0) < 0$ $(f''(x_0) > 0)$.

Ha $f'(x_0) = 0$ és f'(x) előjelet vált x_0 -ban, akkor x_0 lokális szélsőérték.

11.4. Szükséges feltétel szélsőértékre többváltozós függvényre

Adott $f: S \to \mathbb{R}$, ahol $S \subset \mathbb{R}^n$. Ekkor $x_0 \in S$ lokális minimum (maximum), ha $\exists U$ környezete, ahol $\forall x \in U$ esetén

$$f(x) \ge f(x_0)$$
 $\Big(f(x) \le f(x_0)\Big).$

Ha $U = D_f$, akkor x_0 globális szélsőérték.

Szükséges feltétele a szélsőérték létezésének, hogy $\nabla f = 0$ legyen.

Bizonyítás

Legyen $f_1(x) = f(x, x_2, ..., x_n)$ az n-válzotós függvény egyik metszetfüggvénye. Ekkor ha y_0 szélsőérték, akkor $f_1'(y_0) = 0$ kell, azonban $f_1'(y_0) = \frac{\partial f}{\partial x_1}(y_0)$. Hasonlóan belátható, hogy $\forall \frac{\partial f}{\partial x_k}(y_0) = 0$ szükséges.

11.5. Stacionárius pont

Azt mondjuk, hogy (x, y) stacionárius pontja f-nek, ha

$$\nabla f(x,y) = (0,0).$$

11.6. Nyeregpont

Azt mondjuk, hogy (x, y) nyeregpont, ha stacionárius pont, de nem szélsőérték.

11.7. Elégséges feltétel szélsőértékre kétváltozós függvények esetén I.

Tegyük fel, hogy f kétszer differenciálható (x_0, y_0) -ban, és $\nabla f(x_0, y_0) = 0$. Ekkor

- 1. det H > 0 esetén (x_0, y_0) -ban lokális szélsőérték van, ami
 - (a) $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0$ esetén maximum
 - (b) $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$ esetén minimum
- 2. $\det H = 0$ esetén további vizsgálat szükséges
- 3. $\det H < 0$ esetén (x_0, y_0) nyeregpont.

11.8. Elégséges feltétel szélsőértékre kétváltozós függvények esetén II.

Tegyük fel, hogy f kétszer differenciálható (x_0, y_0) -ban, és $\nabla f(x_0, y_0) = 0$. Ekkor

- 1. H > 0 esetén (x_0, y_0) lokális minimumhely
- 2. H < 0 esetén (x_0, y_0) lokális maximumhely
- 3. ha H szemidefinit, akkor további vizsgálat szükséges.
- 4. ha H indefinit, akkor (x_0, y_0) nyeregpont.

12. Tétel

12.1. Parciális deriváltak kétváltozós függvényre

Adott $f: S \to \mathbb{R}$ kétváltozós valós függvény. Legyen $(x_0, y_0) \in intS$. Ekkor a függvény x szerinti parciális deriváltja az (x_0, y_0) pontban

$$f'_x(x_0, y_0) = \frac{\partial}{\partial x} f(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}.$$

Hasonlóan a függvény y szerinti parciális deriváltja az (x_0, y_0) pontban

$$f'_y(x_0, y_0) = \frac{\partial}{\partial y} f(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}.$$

12.2. Bolzano tétel egyváltozós függvényekre

Legyen $f:[a,b] \mapsto \mathbb{R}$ folytonos függvény, ahol f(a) < 0 és f(b) > 0. Ekkor $\exists \xi \in [a,b]$, amire $f(\xi) = 0$.

Tehát zárt intervallumon folytonos függvénynek, amelyik pozitív és negatív értékeket is fölvesz, van zérushelye.

Bizonyítás

Legyen $c_1 := \frac{a+b}{2}$. Legyen továbbá

$$a_2 := a_1 \qquad b_2 := c_1$$

ha $f(c_1) > 0$, és

$$a_2 := c_1 \qquad b_2 := b_1$$

ha $f(c_2) > 0$. Hasonlóan konstruáljuk az $I_k := [a_k, b_k]$ intervallumsorozatot. Nyilván az I_k invervallumsorozat teljesíti a Cantor-féle közöspont tétel feltételeit, így létezik egy közös pont, azaz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \xi$$

tehát

$$\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n) = f(\xi).$$

Mivel $f(a_n) \le 0 \le f(b_n)$ ezért $f(\xi) \le 0 \le f(\xi)$. Emiatt nyilván $f(\xi) = 0$.

12.3. Bolzano tétel kétváltozós függvényekre

Adott $f: S \mapsto \mathbb{R}$ folytonos függvény, ahol S összefüggő. Legyen $(x_1, y_1), (x_2, y_2) \in S$, melyekre $a = f(x_1, y_1) < f(x_2, y_2) = b$. Ekkor $\forall c \in (a, b)$ számhoz $\exists (x_0, y_0) \in S$, melyer $f(x_0, y_0) = c$.

12.3.1. Parciális derivált geometriai jelentése

Rögzített y_0 mellett definiáljuk az $f_1(x) = f(x, y_0)$ függvényt. Ekkor $f'_1(x) = \frac{\partial f}{\partial x}(x, y_0)$, tehát a definiált metszetfüggvény meredekségét kapjuk meg. Ez azt jelenti, hogy a parciális deriváltak a felület érintősíkjának x és y irányú meredekségét adják meg.

12.4. Magasabb rendű parciális deriváltak

12.4.1. Másodrendű parciális deriváltak

Tegyük fel, hogy f kétváltozós függvény kétszer differenciálható az értelmezési tartomány (x,y) belső pontjában. Ekkor a másodrendű parciális deriváltak a $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ parciális deriváltjai az (x,y) pontban. A másodrendű parciális deriváltak

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$
$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right).$$

12.4.2. n-edrendű parciális deriváltak

Tegyük fel, hogy f kétváltozós függvény n-szer differenciálható az értelmezési tartomány (x, y) belső pontjában. Az n-edrendű parciális deriváltak

$$\frac{\partial^n f}{\partial y^k \partial x^m} \qquad \frac{\partial^n f}{\partial x^k \partial y^m}$$

alakúak, ahol k + m = n.

12.5. Parciális deriválások sorrendje

Adott $f: S \to \mathbb{R}$, és legyen $(x_0, y_0) \in intD_f$. Tegyük fel, hogy $\exists U$ környezete (x_0, y_0) -nak, amiben $\exists \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$ és folytonosak az (x_0, y_0) pontban. Ekkor

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y)$$

teljesül $\forall (x,y) \in U$ esetén.

12.6. Érintősík

Ha az f függvény differenciálható az (x_0, y_0) pontban, akkor az ehhez a ponthoz tartozó érintősík egyenlete

S:
$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0.$$

Ekkor a sík normálvektora

$$\mathbf{n} = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right).$$

12.7. Iránymenti derivált

Adott f kétváltozós függvény és $\alpha \in [0, 2\pi)$. Ekkor az α irányú iránymenti derivált (ha létezik a határérték)

$$D_{\alpha}f(x_0, y_0) = \frac{\partial f}{\partial \alpha}(x_0, y_0) = \lim_{\varrho \to 0} \frac{f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0)}{\varrho}.$$

Adott $v(v_1, v_2) \in \mathbb{R}^2$ irány esetén, ahol ||v|| = 1, az iránymenti derivált

$$D_v(x_0, y_0) = \frac{\partial f}{\partial v}(x_0, y_0) = \lim_{\varrho \to 0} \frac{f(x_0 + \varrho v_1, y_0 + \varrho v_2) - f(x_0, y_0)}{\varrho}.$$

12.7.1. Tétel

Ha f differenciálható az (x_0, y_0) pontban, akkor itt létezik az iránymenti derivált tetszőleges $\alpha \in [0, 2\pi)$ esetén, és

$$\frac{\partial f}{\partial \alpha}(x_0, y_0) = \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0) = \nabla f(x_0, y_0) \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}.$$

Hasonlóan

$$\frac{\partial f}{\partial v}(x_0, y_0) = v_1 \frac{\partial f}{\partial x}(x_0, y_0) + v_2 \frac{\partial f}{\partial y}(x_0, y_0) = \nabla f(x_0, y_0)v.$$

Bizonyítás

A differenciálhatóság miatt

$$f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0) = \varrho \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \varrho \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0) + o(|\varrho|).$$

Ekkor

$$\frac{f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0)}{\varrho} = \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0) + \frac{o(|\varrho|)}{\varrho}$$

így nyilván

$$\lim_{\varrho \to 0} \frac{f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0)}{\varrho} = \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0).$$

13. Tétel

13.1. Helyettesítés integrálban egyváltozós függvényekre

Adott $f:[a,b]\mapsto\mathbb{R}$ integrálható függvény, és $\phi:[\alpha,\beta]\mapsto\mathbb{R}$ szigorúan monoton, differenciálható függvény, melyre

$$\phi(\alpha) = a \qquad \phi(\beta) = b.$$

Ekkor

$$\int f(\varphi(x))\varphi'(x)dx = \int f(t)dt \Big|_{t=\varphi(x)}$$
$$\int_a^b f(x)dx = \int_\alpha^\beta f(\varphi(t))\varphi'(t)dt = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t))\varphi'(t)dt.$$

13.2. Konvex és konkáv függvények, ezek jellemzése

Egy $f: D \mapsto \mathbb{R}$ függvény $(a, b) \subset D$ -ben konvex (konkáv), ha $\forall a \leq x_1 < x_2 \leq b$ és $\forall t \in [0, 1]$ esetén

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

teljesül. Egy f függvény konkáv, ha -f konvex.

13.2.1. Tétel

Legyen $f: D \mapsto \mathbb{R}$ differenciálható fügvény. Ekkor f konvex (konkáv) $I \subset D$ -ben akkor és csak akkor, ha $f''(x) \geq 0$ ($f''(x) \leq 0$) $\forall x \in D$ esetén.

13.3. Függvényrendszer

Adottak $\Phi, \Psi : D \to \mathbb{R}$, ahol $D \subset \mathbb{R}^2$. Legyen továbbá $\Phi(x,y) = \xi$ és $\Psi(x,y) = \eta$. Ekkor $F : D \to \mathbb{R}^2$ egy függvényrendszer vagy vektormező, melyre

$$F(x,y) = (\Phi(x,y), \Psi(x,y)) = (\xi, \eta).$$

13.4. Jacobi mátrix

Ha a Φ, Ψ függvények differenciálhatóak, akkor F is differenciálható, és a derivált a Jacobi mátrix

$$\mathcal{J}(x,y) = \begin{pmatrix} \frac{\partial \Phi}{\partial x}(x,y) & \frac{\partial \Phi}{\partial y}(x,y) \\ \frac{\partial \Psi}{\partial x}(x,y) & \frac{\partial \Psi}{\partial y}(x,y) \end{pmatrix} = \begin{pmatrix} \nabla \Phi(x,y) \\ \nabla \Psi(x,y) \end{pmatrix}.$$

13.5. Függvényrendszer invertálhatósága

Tegyük fel, hogy a Φ , Ψ függvények injektívek. Ekkor az F leképezés invertálható, és az inverz rendszer alakja

$$x = g(\xi, \eta)$$
$$y = h(\xi, \eta).$$

13.6. Kettős integrálban helyettesítés polárkoordinátákkal

Az áttérés során az (x, y) koordinátákról térünk át az (r, ϕ) koordinátkra, ahol r az origótól vett távolság, ϕ pedig az x-tengellyel bezárt szög. Ekkor

$$x = r\cos\phi$$
$$y = r\sin\phi$$

így a Jacobi mátrix

$$\mathcal{J}(r,\phi) = \begin{pmatrix} \cos\phi & -r\sin\phi \\ \sin\phi & r\cos\phi \end{pmatrix}$$

amiből a Jacobi determináns $D(r, \phi) = r \cos^2 \phi + r \sin^2 \phi = r$.

Legyen adott $f: D \mapsto \mathbb{R}$ függvény és T az integrálás tartománya. Legyen továbbá a koordinátatranszformáció után az integrálási tartomány T'. Az integrál

$$\iint_T f(x,y)d(x,y) = \iint_{T'} f(r\cos\phi, r\sin\phi)rd(r,\phi).$$

13.7. Hengerkoordináták, és a koordináta transzformáció Jacobi determinánsa

Egy (x, y, z) pont hengerkoordinátái (r, θ, z) ahol (r, θ) a pont vetületének polárkoordinátái és

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z.$$

A Jacobi mátrix

$$\mathcal{J}(r,\theta,z) = \begin{pmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Jacobi determinánsa (harmadik sor szerint kifejtve)

$$D(r, \theta, z) = r \cos^2 \theta + r \sin^2 \theta = r.$$

14. Tétel

14.1. Integrálfüggvény

Adott $f:[a,b]\mapsto \mathbb{R}$ integrálható függvény. Ekkor az f integrálfüggvénye $F:[a,b]\mapsto \mathbb{R}$

$$F(x) = \int_{a}^{x} f(t)dt.$$

14.2. Integrálszámítás második alaptétele

Adott függvény
 integrálfüggvénye folytonos. Haf folytonos
 x_0 egy környezetében, akkor ${\cal F}$ differenciálható, és

$$F'(x_0) = f(x_0).$$

Bizonyítás

Tudjuk, hogy f korlátos, így legyen $|f(x)| \leq K$. Ekkor

$$\left| F(x) - F(x_0) \right| = \left| \int_{x_0}^x f(t)dt \right| \le K|x - x_0|$$

tehát F Lipschitz-folytonos, így folytonos is.

Legyen továbbá x_0 rögzített. Ekkor

$$F'(x_0) = \lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\int_{x_1}^x f(t)dt}{x - x_0} = \lim_{\substack{x \to x_0 \\ \xi \in (x, x_0)}} f(\xi) = f(x_0).$$

14.3. Integrál középértéktétel

Adott $f:[a,b]\mapsto\mathbb{R}$ integrálható, folytonos függvény. Ekkor $\exists\xi\in[a,b]$, melyre

$$f(\xi) = \kappa = \frac{\int_a^b f(x)dx}{b-a}.$$

Bizonyítás

A Weierstrass-tétel miatt tudjuk, hogy $\exists \xi_1, \xi_2 \in [a, b]$, melyre

$$m = f(\xi_1)$$
 $M = f(\xi_2)$.

Ekkor a Bolzano-tétel miatt $\exists \xi \in (\xi_1, \xi_2)$, melyre

$$f(\xi) = \kappa$$
.

14.4. Kétváltozós függvény integrálása téglalapon

Legyen $R = [a, b] \times [c, d]$. Ekkor

$$\iint_{R} f(x,y)d(x,y) = \int_{a}^{b} \int_{c}^{d} f(x,y)dydx = \int_{c}^{d} \int_{a}^{b} f(x,y)dxdy.$$

14.5. Síkbeli normáltartomány

Adott $R \subset \mathbb{R}^2$ x szerinti normáltartomány, ha $\exists [a,b]$, továbbá $\exists \Phi_1 \leq \Phi_2 : [a,b] \mapsto \mathbb{R}$ szakaszonként folytonos függvények, melyekre

$$R = \left\{ (x, y) \in \mathbb{R}^2 \middle| x \in [a, b], y \in \left[\Phi_1(x), \Phi_2(x) \right] \right\}.$$

Hasonlóan $R\subset\mathbb{R}^2$ y szerinti normáltartomány, ha $\exists [c,d]$, továbbá $\exists \Psi_1\leq\Psi_2:[c,d]\mapsto\mathbb{R}$ szakaszonként folytonos függvények, melyekre

$$R = \{(x, y) \in \mathbb{R}^2 | y \in [c, d], x \in [\Psi_1(y), \Psi_2(y)] \}.$$

14.6. Kettős integrál normáltartományon

Legyen R egy x szerinti normáltartomány. Ekkor

$$\iint_R f(x,y)d(x,y) = \int_a^b \int_{\Phi_1(x)}^{\Phi_2(x)} f(x,y)dydx.$$

Hasonlóan, ha R egy y szerinti normáltartomány, akkor

$$\iint_R f(x,y)d(x,y) = \int_c^d \int_{\Psi_1(y)}^{\Psi_2(y)} f(x,y)dxdy.$$

14.7. Helyettesítés integrálban általános koordináta-transzformációval

Legyen $f:R\mapsto\mathbb{R}$ integrálható függvény. Legyen

$$x = \Phi(u, v)$$

$$y = \Psi(u, v)$$

invertálható és differenciálható függvényrendszer. Legyen továbbá

$$R' = \left\{ (u, v) \in \mathbb{R}^2 \middle| \left(\Phi(u, v), \Psi(u, v) \right) \in R \right\}.$$

Ekkor

$$\iint_R f(x,y)d(x,y) = \iint_{R'} f(\Phi(u,v), \Psi(u,v)) D(u,v)d(u,v)$$

ahol D(u, v) a Jacobi determináns.

15. Tétel

15.1. Rendőrelv

Legyen $a_n < b_n < c_n$ valamilyen küszöbindex után. Legyen továbbá

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n.$$

Ekkor (ha léteznek a határértékek)

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n.$$

15.2. Bolzano-Weierstrass tétel számsorozatokra

Minden korlátos sorozatnak van konvergens részsorozata.

15.2.1. Csúcselem

Adott (a_n) sorozatban a_m csúcselem, ha $\forall n > m$ esetén $a_n \leq a_m$.

15.2.2. Lemma

Minden sorozatnak van monoton részsorozata.

Bizonyítás

Legyen először az (a_n) sorozatnak végtelen sok csúcseleme. Ekkor legyen e csúcselemek indexe n_k ahol $n_i < n_j$ ha i < j. Ekkor az (a_{n_k}) sorozat monoton fogyó.

Tegyük fel, hogy az (a_n) sorozatnak csak véges sok csúcseleme van. Legyen ekkor az utolsó csúcs indexe n, és legyen $n_1 := n+1$. Mivel a_{n_1} már nem lehet csúcs, ezért létezik nála nagyobb elem, legyen ez a_{n_2} . Mivel a_{n_2} sem csúcs, ennél is létezik nagyobb elem. Ezt a végtelenségig folytatva tudunk konstruálni egy (a_{n_k}) monoton növő sorozatot.

Bizonyítás

Beláttuk, hogy korlátos sorozatnak létezik monoton részsorozata. Mivel ez a részsorozat korlátos és monoton, konvergens is. Ezzel beláttuk a Bolzano-Weierstrass tételt.

15.3. Számsorozat torlódási pontja

Az adott (a_n) sorozatban $t \in \mathbb{R}$ torlódási pont, ha $\forall \varepsilon > 0$ -ra a $(t - \varepsilon, t + \varepsilon)$ intervallum végtelen sok elemét tartalmazza az (a_n) sorozatnak.

15.4. Kétváltozós valós értékű függvény integrálja vonal mentén

Adott $f: R \mapsto \mathbb{R}$ kétváltozós függvény és

$$\Gamma = \left\{ \gamma(t) \middle| t \in [a, b] \right\} \in R$$

sima görbe, ahol $\gamma(t) = (x(t), y(t))$. Ekkor f Γ görbe menti vonalintegrálja

$$\int_{\Gamma} f(x,y)ds = \int_{a}^{b} f(x(t),y(t))\sqrt{x'(t)^{2} + y'(t)^{2}}dt.$$

15.5. Vektormező vonalintegrálja vonal mentén

Adott $F: R \mapsto \mathbb{R}^2$

$$F(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

vektormező és

$$\Gamma = \Big\{ \gamma(t) \Big| t \in [a,b] \Big\} \in R$$

sima görbe. Ekkor a vektormező vonalintegrálja

$$\int_{\Gamma} F(\underline{r}) d\underline{r} = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt = \int_{a}^{b} (f(\gamma(t))\dot{x}(t) + g(\gamma(t))\dot{y}(t)) dt.$$

15.6. Potenciálos vektormező

Azt mondjuk, hogy F potenciálos vektormező, ha $\exists f$ differenciálható függvény, melyre $F = \nabla f$.

15.6.1. Tétel

Adott F potenciálos vektormező, aminek potenciálja f és adott

$$\Gamma = \left\{ \gamma(t) \middle| t \in [a, b] \right\}$$

sima görbe. Ekkor

$$\int_{\Gamma} F(\underline{r}) d\underline{r} = f(\gamma(b)) - f(\gamma(a)).$$

15.7. Potenciálkeresés

Adott

$$F(x,y) = \begin{pmatrix} g(x,y) \\ h(x,y) \end{pmatrix}$$

vektormező. Ahhoz, hogy F potenciálos legyen

$$\frac{\partial g}{\partial y} = \frac{\partial h}{\partial x}$$

kell. Ekkor g-t integrálva x szerint, illetve h-t integrálva y szerint kapjuk a G(x,y), H(x,y) függvényeket. Ezen függvények közös része lesz a keresett potenciál.

15.7.1. Potenciál létezésének szükséges és elégséges feltétele

Adott F vektormező és Γ zárt, sima görbe. Ekkor F potenciálos akkor és csak akkor, ha

$$\oint_{\Gamma} F(\underline{r}) d\underline{r} = 0.$$

Bizonyítás

(Csak szükségesség)

Tegyük fel, hogy F potenciálos, potenciálja f. Ekkor

$$\oint_{\Gamma} F(\underline{r}) d\underline{r} = f(b) - f(a) = 0.$$

16. Tétel

16.1. Differenciálhányados

Azt mondjuk f differenciálható x_0 -ban, ha létezik

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

azaz létezik és véges a differenciálhányados.

16.2. Derivált geometriai és fizikai jelentés

A differenciálhányados a függvény grafikonjának adott $(x_0, f(x_0))$ pontjához tartozó érintő meredekségét adja meg.

Legyen adott s(t) útfüggvény. Ekkor t_0 időpillanatban a pillanatnyi sebesség $v(t_0) = \dot{s}(t_0)$.

16.3. Folytonosság és derviálhatóság kapcsolata

Ha f differenciálható x_0 -ban, akkor folytonos x_0 -ban.

Bizonyítás

f differenciálhatósága azt jelenti, hogy

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

azaz $\forall \varepsilon > 0\text{-hoz } \exists \delta > 0,$ melyre $|x-x_0| < \delta$ esetén

$$f'(x_0) - \varepsilon \le \frac{f(x) - f(x_0)}{x - x_0} \le f'(x_0) + \varepsilon.$$

Ekkor

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| \le K$$

ahol

$$K = \max \{|f'(x_0) - \varepsilon|, |f'(x_0) + \varepsilon|\}.$$

Ekkor nyilván

$$|f(x) - f(x_0)| \le K|x - x_0|.$$

Ez azt jelenti, hogy $\delta = \frac{\varepsilon}{K}$ esetén

$$|f(x) - f(x_0)| \le K|x - x_0| < K \cdot \frac{\varepsilon}{K} = \varepsilon$$

tehát valóban folytonos.

16.4. Teljes differenciálhatóság

Adott $f: S \mapsto \mathbb{R}$ és legyen $(x_0, y_0) \in intD_f$. Azt mondjuk, hogy a függvény differenciálható az (x_0, y_0) pontban, ha $\exists A, B, C \in \mathbb{R}$, melyekre

$$f(x_0 + \Delta x, y_0 + \Delta y) = A\Delta x + B\Delta y + C + o(\sqrt{\Delta x^2 + \Delta y^2})$$

teljesül elegendően kicsi $\Delta x, \Delta y$ esetén, ahol A, B, C függetlenek Δx -től és Δy -tól.

16.5. Kapcsolat a parciális deriváltakkal

Ha f differenciálható az $(x_0, y_0) \in intD_f$ pontban, akkor

$$A = \frac{\partial f}{\partial x}(x_0, y_0)$$
 $B = \frac{\partial f}{\partial y}(x_0, y_0)$ $C = f(x_0, y_0).$

Bizonyítás

1. Legyen $\Delta x = \Delta y = 0$. Ekkor valóban

$$f(x_0, y_0) = C.$$

2. Legyen $\Delta y = 0$. Ekkor

$$f(x_0 + \Delta x, y_0) = A\Delta x + f(x_0, y_0) + o(|\Delta x|).$$

Ebből kapjuk, hogy

$$\frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = A + \frac{o(|\Delta x|)}{\Delta x}$$

amiből nyilván

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \frac{o(|\Delta x|)}{\Delta x} \right) = A.$$

3. Az előzőhöz analóg módon kapjuk, hogy

$$B = \frac{\partial f}{\partial y}(x_0, y_0).$$

16.6. Komplex függvény differenciálhatósága

Adott $f:\mathbb{C}\mapsto\mathbb{C}$ komplex függvény. Ekkor f differenciálható a $z_0\in intD_f$ pontban, ha

$$\exists \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} < \infty.$$

16.7. Cauchy-Riemann egyenletek

Adott $f: \mathbb{C} \to \mathbb{C}$ komplex függvény. f differenciálható a $z_0 \in intD_f$ pontban akkor és csak akkor, ha

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$
$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$

Bizonyítás

Tegyük fel, hogy f differenciálható a z_0 pontban. Ekkor

$$f'(z_0) = \lim_{r \to 0} \frac{u(x_0 + r, y_0) + iv(x_0 + r, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{r} =$$

$$= \lim_{r \to 0} \frac{u(x_0 + r, y_0) - u(x_0, y_0)}{r} + i\lim_{r \to 0} \frac{v(x_0 + r, y_0) - v(x_0, y_0)}{r} = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$$

Hasonlóan

$$f'(z_0) = \lim_{s \to 0} \frac{u(x_0, y_0 + s) + iv(x_0, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{is} = \lim_{s \to 0} \frac{u(x_0, y_0 + s) - u(x_0, y_0)}{is} + i\lim_{s \to 0} \frac{v(x_0, y_0 + s) - v(x_0, y_0)}{is} = \frac{\partial v}{\partial y}(x_0, y_0) - i\frac{\partial u}{\partial x}(x_0, y_0).$$

Ebből azonnal kapjuk az állítást.

Most tegyük fel, hogy a függvény kielégíti a Cauchy-Riemann egyenleteket. Ekkor

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{r + is \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} =$$

$$= \lim_{r + is \to 0} \frac{\frac{\partial u}{\partial x}r + \frac{\partial u}{\partial y}s + i\frac{\partial v}{\partial x}r + i\frac{\partial v}{\partial y}s + o(|h|)}{r + is} = \lim_{r + is \to 0} \frac{\frac{\partial u}{\partial x}r - \frac{\partial v}{\partial x}s + i\frac{\partial v}{\partial y}r + i\frac{\partial u}{\partial x}s + o(|h|)}{r + is} =$$

$$= \lim_{r \to 0} \frac{\frac{\partial u}{\partial x}(r + is) + \frac{\partial v}{\partial x}(-s + ir) + o(|h|)}{r + is} = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$$

Azt kaptuk tehát, hogy a határérték létezik, így a függvény differenciálható.

17. Tétel

17.1. Számsorozat határértéke

Azt mondjuk, hogy az (a_n) sorozat konvergens, és

$$\lim_{n \to \infty} a_n = A$$

ha $\forall \varepsilon > 0$ -hoz $\exists n_0$ küszöbindex, melyre $\forall n > n_0$ esetén

$$|a_n - A| < \varepsilon$$
.

Ekkor

$$\lim_{n \to \infty} a_n = A$$

egyértelmű.

17.2. Divergens sorozat

Ha (a_n) nem konvergens, akkor divergens.

17.2.1. Típusai

1. Azt mondjuk, hogy

$$\lim_{n \to \infty} a_n = \pm \infty$$

ha $\forall K \in \mathbb{R}$ -hez ($\forall k \in \mathbb{R}$ -hez) $\exists n_0$ küszöbindex, melyre $\forall n > n_0$ esetén $a_n > K$ ($a_n < k$).

2. Divergens az olyan (a_n) sorozat, melynek több torlódási pontja van (de adott esetben korlátos lehet a sorozat). Ilyen például az $a_n = (-1)^n$ sorozat.

17.3. Cauchy kritérium

Azt mondjuk, hogy az (a_n) Cauchy sorozat, vagy teljesíti a Cauchy kritériumot, hogyha $\forall \varepsilon > 0$ -hoz $\exists n_0$ küszöbindex, melyre $\forall n, m > n_0$ esetén

$$|a_n - a_m| < \varepsilon$$

teljesül.

17.3.1. Tétel

Az (a_n) sorozat akkor és csak akkor konvergens, hogyha teljesíti a Cauchy kritériumot.

Bizonyítás

Legyen (a_n) konvergens. Azt fogjuk belátni, hogy ekkor Cauchy sorozat. Tudjuk, hogy valamilyen küszbindex után

$$|a_n - A| < \frac{\varepsilon}{2} \qquad |a_m - A| < \frac{\varepsilon}{2}.$$

Ekkor

$$|a_n - a_m| = |a_n - A + A - a_m| \le |a_n - A| + |a_m - A| < \varepsilon.$$

Legyen (a_n) Cauchy sorozat. Azt fogjuk belátni, hogy ekkor konvergens.

Először lássuk be, hogy egy Cauchy sorozat korlátos!

Tudjuk, hogy valamilyen n_0 küszöbindex után $|a_n - a_m| < \varepsilon$, azaz $a_n \in (a_m - \varepsilon, a_m + \varepsilon)$. Ekkor ezen az invertvallumon kívül csak véges sok eleme van a sorozatnak, azaz

$$K := \max\{|a_m| + \varepsilon, |a_k| | k < n_0\}$$

jó korlát. Tehát az (a_n) Cauchy sorozat korlátos, emiatt van konvergens részsorozata.

Legyen a részsorozat (a_{n_k}) ahol $\lim_{\infty} a_{n_k} = A$.

Tudjuk, hogy valamilyen küszöbindex után

$$|a_n - a_m| < \frac{\varepsilon}{2} \qquad |a_{n_k} - A| < \frac{\varepsilon}{2}$$

teljesül. Ekkor

$$|a_n - A| = |a_n - a_{n_k} + a_{n_k} - A| = |a_n - a_{n_k}| + |a_{n_k} - A| \le \varepsilon.$$

17.4. Cauchy-féle integrálformula analitikus függvényekre

Legyen $D \subset \mathbb{C}$ egyszeresen összefüggő tartomány és $f: D \mapsto \mathbb{C}$ analitikus függvény. Adott $z_0 \in intD$ és $L \subset D$ olyan görbe, amely körbeveszi z_0 -t. Ekkor

$$f(z_0) = \frac{1}{2\pi i} \oint_L \frac{f(z)}{z - z_0} dz.$$

Bizonyítás

$$\oint_{L} \frac{f(z)}{z - z_{0}} dz = \oint_{L} \frac{f(z) - f(z_{0})}{z - z_{0}} dz + \oint_{L} \frac{f(z_{0})}{z - z_{0}} dz$$

Mivel f differenciálható, így korlátos z_0 környezetében, így a Cauchy-féle alaptétel miatt

$$\oint_L \frac{f(z) - f(z_0)}{z - z_0} dz = 0.$$

Ekkor

$$\oint_{L} \frac{f(z)}{z - z_{0}} dz = \oint_{L} \frac{f(z_{0})}{z - z_{0}} dz = f(z_{0}) 2\pi i$$

Vághy Mihály

amiből kapjuk a bizonyítandót.

17.5. Taylor sorfejtés komplex analitikus függvényre

Legyen $f:D\mapsto\mathbb{C}$ függvény, amely differenciálható z_0 környezetében. Ekkor f z_0 -ban Taylor sorba fejthető és

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

ahol $L\subset D$ olyan görbe, amely körbeveszi $z_0\text{-t}$ és

$$c_n = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

17.6. Laurent sorfejtés

Legyen f analitikus egy

$$D = \left\{ z \in \mathbb{C} \middle| |z - z_0| \in (r, R) \right\}$$

körgyűrűben. Ekkor ebben a körgyűrűben f Laurent sorba fejthető és

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

ahol $L \subset D$ olyan görbe, amely körbeveszi z_0 -t és

$$c_n = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

 $ext{T\'ETEL}$ Szigorlat - Analízis 18

18. Tétel

18.1. Gömbi polárkoordináták

Egy (x, y, z) pont gömbi polárkoordinátái (r, θ, ϕ) , ahol r az origótól vett távolság, θ a pontba mutató vektor vetületének az x-tengellyel bezárt szöge, ϕ pedig a pontba mutató vektor ztengellyel bezárt szöge.

$$x = r \sin \phi \cos \theta$$
$$y = r \sin \phi \sin \theta$$
$$z = r \cos \phi$$

18.2. Elsőrendű szeparábili DE megoldása

Egy differenciálegyenlet szeparábilis, ha a jobboldala

$$f(x,y) = h(x)g(y)$$

vagy

$$f(x,y) = \frac{\alpha(x)}{\beta(y)}$$

alakú, azaz

$$y' = h(x)g(y)$$

vagy

$$y' = \frac{\alpha(x)}{\beta(y)}.$$

Bizonyítás Legyen $y' = \frac{\alpha(x)}{\beta(y)}$. Ekkor

$$\beta(y)y' = \alpha(x) \implies \int \beta(y)y'dx = \int \alpha(x)dx.$$

Bevezetve a

$$B(y) = \int \beta(y)dy$$
 $A(x) = \int \alpha(x)dx$

primitív függvényeket

$$B(y) = A(x) + c$$

ebből pedig y kifejezhető.

18.3. Gömbi polárkoordináta-transzformáció Jacobi determinánsa

A Jacobi mátrix

$$\mathcal{J}(r,\theta,\phi) = \begin{pmatrix} \sin\phi\cos\theta & r\cos\phi\cos\theta & -r\sin\phi\sin\theta\\ \sin\phi\sin\theta & r\cos\phi\sin\theta & r\sin\phi\cos\theta\\ \cos\phi & -r\sin\phi & 0 \end{pmatrix}$$

A Jacobi determinána (utolsó sor szerint kifejtve

$$D(r, \theta, \phi) = \cos \phi \left(r^2 \sin \phi \cos \phi \cos^2 \theta + r^2 \sin \phi \cos \phi \sin^2 \theta \right) + r \sin \phi \left(r \sin^2 \phi \cos^2 \theta + r \sin^2 \phi \sin^2 \theta \right) = r^2 \sin \phi \cos^2 \phi + r^2 \sin^3 \phi = r^2 \sin \phi.$$

18.4. Magasabb rendű homogén lineáris DE megoldásai

Az $L[y] = \sum_{k=0}^n a_{n-k} y^{(k)} = 0$ egyenletnek létezik n darab lineárisan független megoldása, melyekre az összes többi megoldás ezek lineáris kombinációja.

18.5. Állandó együttható HLDE alapmegoldásai, karakterisztikus polinom

Ebben az esetben

$$L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$
 $a_k \in \mathbb{R}$.

A differenciálegyenlet karakterisztikus polinomja

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n.$$

A HDE megoldásait $y = e^{\lambda x}$ alakban keresve

$$L[e^{\lambda x}] = e^{\lambda x} P(\lambda) = 0 \implies P(\lambda) = 0.$$

18.5.1. Első eset

Tegyük fel, hogy P n különböző gyöke mind valós, legyenek a gyökök $\lambda_1, \lambda_2, \ldots, \lambda_n$. Ekkor az alapmegoldások

$$y_1(x) = e^{\lambda_1 x}$$
$$y_2(x) = e^{\lambda_2 x}$$
$$\vdots$$
$$y_n(x) = e^{\lambda_n x}$$

illetve az általános megoldás

$$y(x) = \sum_{k=1}^{n} c_k e^{\lambda_k x}$$
 $c_k \in \mathbb{R}$.

18.5.2. Második eset

Tegyük fel, hogy P m darab gyöke k_m -szeres gyök, ahol nyilván $\sum_{j=1}^m k_j = n$. Ekkor az alapmegoldások

$$y_{1}(x) = e^{\lambda_{1}x}$$

$$\vdots$$

$$y_{k_{1}}(x) = x^{k_{1}-1}e^{\lambda_{1}x}$$

$$y_{k_{1}+1}(x) = e^{\lambda_{2}x}$$

$$\vdots$$

$$y_{k_{1}+k_{2}}(x) = x^{k_{2}-1}e^{\lambda_{2}x}$$

$$\vdots$$

$$y_{k_{1}+k_{2}+\dots+1}(x) = e^{\lambda_{m}x}$$

$$\vdots$$

$$y_{n}(x) = x^{k_{m}-1}e^{\lambda_{m}x}$$

illetve az általános megoldás

$$y(x) = \sum_{j=1}^{m} \sum_{l=0}^{k_j - 1} c_{jl} x^l e^{\lambda_j x}.$$

18.5.3. Harmadik eset

Tegyük fel, hogy az egyenletnek gyöke a $\lambda=\alpha+i\beta$ komplex szám. Ekkor tudjuk, hogy $\overline{\lambda}=\alpha-i\beta$ is gyök. A két alapmegoldás

$$u_1(x) = e^{\lambda x} = e^{\alpha x} (\cos(\beta x) + i\sin(\beta x))$$

$$u_2(x) = e^{\overline{\lambda}x} = e^{\alpha x} (\cos(\beta x) - i\sin(\beta x)).$$

Tudjuk, hogy alapmegoldások lineáris kombinációja is megoldás, ezért a fenti megoldásokból definiáljuk az új, valós alapmegoldásokat

$$y_1(x) = \frac{u_1(x) + u_2(x)}{2} = e^{\alpha x} \cos(\beta x)$$
$$y_2(x) = \frac{u_1(x) - u_2(x)}{2i} = e^{\alpha x} \sin(\beta x).$$

18.5.4. Negyedik eset

Többszörös komplex gyököknél hasonlóan kell eljárni, mint többszörös valós gyököknél.

19. Tétel

19.1. Fourier sor

Az $f:[-\pi,\pi]\mapsto \mathbb{R}\ [-\pi,\pi]$ -n integrálható függvény Fourier sora

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

ahol a Fourier együtthatók

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$

és

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$

A sort közelíthetjük az n-edik Fourier polinommal

$$s_n = \frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

19.2. Számtani átlag sorozat

Adott (a_n) sorozat számtani átlag sorozata az

$$A_n := \frac{\sum_{i=1}^n a_i}{n}.$$

19.2.1. Tétel

Ha (a_n) nullsorozat, akkor (A_n) is nullsorozat.

Bizonyítás

A háromszög-egyenlőtlenség miatt

$$|A_n| = \frac{1}{n} \left| \sum_{k=1}^n a_k \right| \le \frac{1}{n} \sum_{k=1}^n |a_k|.$$

Legyen az (a_n) sorozatnál az $\frac{\varepsilon}{2}$ számhoz tartozó küszöbindex n_1 . Legyen továbbá a $n_2 = \frac{2n_1K}{\varepsilon}$ ahol $|a_n| \leq K$. Világos, hogy létezik ilyen K, hiszen a sorozat konvergens. Ekkor

$$|A_n| \le \frac{1}{n} \sum_{k=1}^n |a_k| = \frac{1}{n} \sum_{k=1}^{n_1} |a_k| + \frac{1}{n} \sum_{k=n_1+1}^n |a_k| \le \frac{n_1}{n} \cdot K + \frac{\varepsilon}{2} \cdot \frac{n-n_1}{n_1} < \frac{n_1}{n} \cdot K + \frac{\varepsilon}{2}.$$

Világos, hogy $n \ge \max(n_1, n_2) = \max\left(n_1, \frac{2n_1K}{\varepsilon}\right)$ esetén

$$|A_n| < \frac{n_1}{n} \cdot K + \frac{\varepsilon}{2} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

19.2.2. Tétel

Ha (a_n) konvergens, akkor (A_n) is konvergens, és

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} A_n.$$

Bizonyítás

Felhasználva az előző tételt egyből kapjuk a bizonyítandót.

19.3. Trigonometrikus függvényrendszer

Definiáljuk az alábbi függvényrendszert, ahol minden függvény $[-\pi,\pi]$ megszorítását nézzük

$$\phi_0 = 0$$

$$\phi_1 = \sin x \qquad \phi_2 = \cos x$$

$$\vdots \qquad \vdots$$

$$\phi_{2k-1} = \sin (kx) \qquad \phi_{2n} = \cos (kx)$$

$$\vdots \qquad \vdots$$

Tekintsük továbbá a

$$C = \left\{ f : [-\pi, \pi] \mapsto \mathbb{R} \middle| ffolytonos \right\}$$

halmazt az alábbi skalárszorzattal, illetve normával

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$$

$$||f|| = \sqrt{\int_{-\pi}^{\pi} f^2(x)dx}.$$

Ekkor \mathcal{C} vektortér az összeadásra, illetve a fent definiált skalárszorzatra nézve.

19.3.1. Tétel

A (ϕ_n) függvényrendszer ortogonális a \mathcal{C} vektortérben.

Bizonyítás

1.
$$n = m = 0$$

$$\int_{-\pi}^{\pi} \phi_n(x)\phi_m(x)dx = \int_{-\pi}^{\pi} 1dx = 2\pi$$

2. $n = m \neq 0$ Vegyük észre, hogy

$$\int_{-\pi}^{\pi} \phi_n(x)\phi_m(x)dx = \begin{cases} \int_{-\pi}^{\pi} \sin^2(x)dx \\ \int_{-\pi}^{\pi} \cos^2(x)dx. \end{cases}$$

Könnyen láthatjuk, hogy

$$\int_{-\pi}^{\pi} \sin^2(x) dx = \int_{-\pi}^{\pi} \cos^2(x) dx.$$

Ugyanakkor

$$\int_{-\pi}^{\pi} \left(\sin^2(x) + \cos^2(x) \right) dx = 2\pi.$$

Ebből

$$\int_{-\pi}^{\pi} \phi_n(x)\phi_m(x)dx = \pi.$$

3. $n \neq m$

$$\int_{-\pi}^{\pi} \phi_n(x)\phi_m(x)dx = \begin{cases} \int_{-\pi}^{\pi} \sin\left(\frac{n+1}{2}x\right) \sin\left(\frac{m+1}{2}x\right) dx = \int_{-\pi}^{\pi} \frac{\cos\left(\frac{n-m}{2}x\right) - \cos\left(\frac{n+m+2}{2}x\right)}{2} dx \\ \int_{-\pi}^{\pi} \sin\left(\frac{n+1}{2}x\right) \cos\left(\frac{m}{2}x\right) dx = \int_{-\pi}^{\pi} \frac{\sin\left(\frac{n+m+1}{2}x\right) + \sin\left(\frac{m-n}{2}x\right)}{2} dx \\ \int_{-\pi}^{\pi} \cos\left(\frac{n}{2}x\right) \sin\left(\frac{m+1}{2}x\right) dx = \int_{-\pi}^{\pi} \frac{\sin\left(\frac{n+m+1}{2}x\right) + \sin\left(\frac{n-m}{2}x\right)}{2} dx \\ \int_{-\pi}^{\pi} \cos\left(\frac{n}{2}x\right) \cos\left(\frac{m}{2}x\right) = \int_{-\pi}^{\pi} \frac{\cos\left(\frac{n+m+1}{2}x\right) + \cos\left(\frac{n-m}{2}x\right)}{2} dx. \end{cases}$$

Ebből láthatjuk, hogy

$$\int_{-\pi}^{\pi} \phi_n(x)\phi_m(x)dx = 0.$$

19.4. Fourier sor komplex alakja

Legyen $f: \mathbb{R} \mapsto \mathbb{R}$ 2π szerint periodikus, szakaszonként folytonosan differenciálható függvény, melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor

$$f(x) = \sum_{n = -\infty}^{\infty} \alpha_n e^{inx}$$

ahol

$$\alpha_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx.$$

19.5. Komplex függvény kanonikus alakja

Adott $f: \mathbb{C} \mapsto \mathbb{C}$. Ekkor a függvény kanonikus alakja

$$f(z) = u(x, y) + iv(x, y)$$

ahol $u, v : \mathbb{R}^2 \to \mathbb{R}$.

19.6. Exponenciális függvény

Az exponenciális függvény

$$e^z = e^x(\cos y + i\sin y).$$

- 1. A függvény analitikus és $\left(e^{z}\right)'=e^{z}.$
- 2. $z_1, z_2 \in \mathbb{C}$ esetén

$$e^{z_1 + z_2} = e^{z_1} e^{z_2}.$$

3. A függvény $2\pi i$ szerint periodikus.

19.7. Logaritmus függvény

A logaritmus függvény $z \neq 0$ esetén

$$\ln z = \ln |z| + i(\operatorname{arc} z + 2k\pi) \qquad k \in \mathbb{Z}.$$

A logaritmus főértéke $\operatorname{Ln} z = \ln |z| + i \operatorname{arc} z$.

1.

$$e^{\ln z} = z$$

2. $z_1, z_2 \in \mathbb{C}$ esetén

$$\ln(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2 + 2k\pi i \qquad k \in \mathbb{Z}.$$

3.

$$\frac{d}{dz} \operatorname{Ln} z = \frac{1}{z}$$