دانشکدهی مهندسی برق و کامپیوتر – معماری کامپیوتر کوییز دوم – بهار ۱۳۹۱

شماره دانشجويي:

نام و نام خانوادگي:

۱. شکل پیوست شده، یک پردازنده MIPS با ۵ طبقه خط لوله مجهز به پیشفرستادن، تشخیص و رفع مخاطره و مدیریت استثنا را نشان می دهد. برنامه زیر بر روی این پردازنده اجرا می شود.

آدرس دستور	دستور
0x00003000	lw \$1,0(\$0)
0x00003004	lw \$2,4(\$0)
0x00003008	lw \$3,8(\$0)
0x0000300C	add \$1,\$1,\$2
0x00003010	add \$1,\$1,\$3
0x00003014	addi \$1,\$1,15
0x00003018	sw \$1,12(\$0)
0x0000301C	lui \$10,0x7FFF
0x00003020	ori \$10,\$10,0xFFFF
0x00003024	add \$1,\$10,\$10
0x00003028	sw \$1,12(\$0)
0x0000302C	add \$1,\$2,\$3
0x00003030	xor \$7,\$8,\$9
0x00003034	slt \$10,\$11,\$12

اگر فرض کنیم در هر خانه از حافظه داده، عدد معادل با اندیس آن خانه قرار گرفته باشد (یعنی مثلاً در خانه با اندیس ۷ عدد ۷ قرار گرفته باشد) مقدار سینگالهای خواسته شده را در سیکلهای مورد نظر بنویسید. (اولین سیکل را سیکل ۱ مینامیم)

	سيکل ١٣	سيکل ۱۲	سیکل ۹	سیکل ۸
ForwardA				
ForwardB				
EX/MEM.RegisterRd				
MEM/WB.RegisterRd				
IF/ID.Regwrite				
ID/EX.Regwrite				
EX/MEM.Regwrite				
MEM/WB.Regwrite				
PC				
PcWrite				
ID.Flush				
IF.Flush				
EX.Flush				
EPC				

دانشکدهی مهندسی برق و کامپیوتر - معماری کامپیوتر

نام و نام خانواد ًي

شماره دانشجويي:

برسش ای چند کرندای: لطفا برای هر سوال علاوه بر انتخاب گزینه، پاسخ مشروح هم بنویسید.

۲. یک واحد محاسباتی مجهز به خط لوله دارای پنج قسمت با زمانهای اجرای ۳۹، ۳۹، ۳۹، ۲۷ و ۱۶ نانوثانیه است. اگر از ثباتهایی با تاخیر یک نانوثانیه در بین قسمتهای مختلف خط لوله استفاده شده باشد. حداکثر تسریع این واحد محاسباتی در صورت استفاده از خط لوله چقدر است؟

٧/٩٢ (ع ٢/٩٢ ج) ٥ (ج ٢/٩٢ الف)

۳. در پردازندهای با ساختار خط لوله دستورات در هشت مرحله اجرا می شوند. چنانچه دستوری از نوع پرش شرطی (branch) باشد، به دستورهای بعدی اجازه ی ورود به خط لوله داده نمی شود تا این که دستور پرش به پایان برسد. برنامهای در حال اجراست که ۱۰۰ دستور دارد و در آن بعد از هر ۱۹ دستور معمولی یک دستور پرش شرطی ظاهر می شود.اگر تاخیر هر مرحله و ثباتهای وابسته به آن ۱۰ نانو ثانیه باشد، اجرای این برنامه چقدر طول می کشد؟

الف) ۱۷۰۰ (ج) ۱۳۵۰ (ج) ۱۳۵۰

3. در یک پردازنده دارای خط لوله از یک خط لولهی یازده سطحی برای واکشی و اجرای دستورات استفاده می شود. اکر ده درصد دستورات برنامه پرش باشد، حداکثر و حداقل تسریع قابل احتصال توسط این پردازنده نسبت به پردازندهی مشابه بدون خط لوله چقدر خواهد بود؟ (فرض کنید مشکلات وابستگی داده و دسترسی حافظه برای اجرای دستورات وجود ندارد)

الف) حداكثر ۱۰ و حداقل ۸٫۵ با و حداقل ۸٫۵ با و حداقل ۹٫۵ با و حدا

ه فرض داشتن خط لولهی چهارسطحی برای اجرای دستورات در یک پردازنده، اگر در یک برنامه به طور متوسط در هر ۱۰ دستور یک پرش شرطی وجود داشته باشد و به احتمال پنجاه درصد پرش انجام شود، حداکثر تسریع به دست آمده برای اجرای این برنامه نسبت به زمانی که پردازنده به خط لوله مجهز نیست چقدر خواهید بود؟

دانشکدهی مهندسی برق و کامپیوتر – معماری کامپیوتر کوییز دوم – بهار ۱۳۹۱

شماره دانشجويي:

نام و نام خانوادگي:

7. یک پردازنده دارای چهار گروه دستورالعملهای نوع الف تا د میباشدو نسبت وقوع این دستورالعملها در یک برنامه bench mark در جدول زیر نشان داده شده است.علاوه بر آن در جدول مشخص شده است که هر گروه از دستورالعملها نیاز به چه مراحلی در اجرا دارند و زمان اجرای هر مرحله چه مقدار است. نسبت افزایش سرعت اجرای این برنامه در صورت پیادهسازی خط لوله نسبت به پیادهسازی معمولی آن چقدر است؟

F	D	EXE	MEM	WB		
						نوع دستور
10ns	7ns	10ns	12ns	7ns	درصد وقوع	دست <i>و</i> ر
$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$	20%	الف
$\sqrt{}$	√	√	-	$\sqrt{}$	40%	·
$\sqrt{}$	√	√	\checkmark	-	20%	ج
$\sqrt{}$	V	V	-	-	20%	د

الف) ٥ ج) ٣,٦ ج

دانشکده ی مهندسی برق و کامپیوتر – معماری کامپیوتر کوییز دوم – بهار ۱۳۹۱

شماره دانشجويي:

نام و نام خانوادگي:

