

CLAIMS

We claim:

1. A polymer electrolyte comprising:
 - 2 a modified polymeric material, said modified polymeric material including a
 - 3 halogen containing polymer having an enhanced halogen level, said enhanced halogen level relative to a halogen content of said halogen containing polymer formed from polymerization of its monomer;
 - 4 a salt of an alkali metal; and
 - 5 an aprotic solvent, wherein said salt and said aprotic solvent are integrated with
 - 6 said modified polymeric material.
- 7 2. The polymer electrolyte of claim 1, wherein said halogen containing polymer
- 8 includes at least one chlorine containing polymer.
- 1 3. The polymer electrolyte of claim 2, wherein said chlorine containing polymer is
- 2 polyvinylchloride (PVC).
- 1 4. The polymer electrolyte of claim 3, wherein said polyvinylchloride (PVC) is
- 2 suspension polyvinylchloride (PVC).

1 5. The polymer electrolyte of claim 3, wherein said polyvinylchloride (PVC) is
2 emulsion polyvinylchloride (PVC).

1 6. The polymer electrolyte of claim 1, wherein said modified polymeric material
2 comprises C-PVC, said C-PVC having 60-72 wt % chlorine.

1 7. The polymer electrolyte of claim 6, wherein said polymer electrolyte comprises
2 10-40 wt % of said C-PVC.

1 8. The polymer electrolyte of claim 1, wherein said alkali metal salt is at least one
2 selected from the group consisting of LiClO₄, LiBF₄, LiAsF₆, LiPF₆, LiCF₃SO₃ and
3 LiN(CF₃SO₂)₂.

1 9. The polymer electrolyte of claim 1, wherein said electrolyte comprises from 3-20
2 wt % of said salt of an alkali metal.

1 10. The polymer electrolyte of claim 1, wherein as said aprotic solvent is at least one
2 selected from the group consisting of propylene carbonate, ethylene carbonate, dimethyl
3 carbonate, gamma-butyrolactone, 1,3-dioxolane and dimethoxyethane.

1 11. The polymer electrolyte of claim 1, wherein said electrolyte comprises 40-82 wt
2 % of said aprotic solvent.

1 12. A rechargeable battery, comprising:
2 an anode containing an alkali metal;
3 a cathode; and
4 a polymer electrolyte formed from a modified polymeric material, said modified
5 polymeric material including a halogen containing polymer having an enhanced halogen level,
6 said enhanced halogen level relative to a halogen content of said halogen containing polymer
7 formed from polymerization of its monomer, a salt of an alkali metal and an aprotic solvent,
8 wherein said salt and said aprotic solvent are integrated with said modified polymeric material.

1 13. The rechargeable battery of claim 12, wherein said halogen containing polymer
2 comprises at least one chlorine containing polymer.

1 14. The rechargeable battery of claim 13, wherein said modified polymeric material
2 comprises chlorinated polyvinylchloride (C-PVC).

1 15. The rechargeable battery of claim 12, wherein in said anode comprises lithium.

1 16. The rechargeable battery of claim 12, wherein said anode comprises a lithium
2 alloy.

1 17. The rechargeable battery of claim 16, wherein as said lithium alloy is at least one
2 selected from the group consisting of lithium-aluminum, lithium-aluminum-silicon, lithium-
3 aluminum-cadmium, lithium-aluminum-bismuth and lithium-aluminum-tin.

1 18. The rechargeable battery of claim 12, wherein said anode comprises a lithium-ion
2 material.

1 19. The rechargeable battery of claim 12, wherein said cathode comprises a metal
2 oxide.

1 20. The rechargeable battery of claim 12, wherein said cathode comprises a lithium-
2 transition metal oxide.

1 21. The rechargeable cell of claim 12, wherein said cathode is at least one selected
2 from the group consisting of MnO_2 , $LiMn_2O_4$ and vanadium oxides (V_xO_y).

1 22. The rechargeable cell of claim 12, wherein said cathode comprises a organic
2 polymer.

1 23. The rechargeable cell of claim 12, wherein said cathode is at least one selected
2 from the group consisting of polyviologen, polyacetylene and polypyrrole.

1 24. The rechargeable cell of claim 12, wherein said cathode comprises a sulfur
2 containing material.

1 25. The rechargeable cell of claim 12, wherein said cathode is at least one selected
2 from the group consisting of TiS₂, S, polysulphide and polythiophene.

1 26. A polymer comprising:
2 a modified polymeric material, said modified polymeric material including a
3 halogen containing polymer having an enhanced halogen level, said enhanced halogen level
4 relative to a halogen content of said halogen containing polymer formed from polymerization of
5 its monomer.

1 27. A method for preparing solid polymer electrolytes, comprising the steps of:
2 providing a halogen containing polymer;
3 halogenating said halogen containing polymer, wherein an enhanced halogen
4 containing modified polymer material results, said enhanced halogen level relative to a halogen
5 content of said halogen containing polymer formed from polymerization of its monomer;
6 blending together said modified polymer material, at least one salt of an alkali
7 metal and at least one aprotic solvent.

1 28. The method of claim 27, wherein said halogen containing polymer comprises at
2 least one chlorine containing polymer.

1 29. The method of claim 28, wherein said chlorine containing polymer comprises
2 polyvinylchloride (PVC).

1 30. The method of claim 29, wherein said polyvinylchloride (PVC) is suspension
2 polyvinylchloride (PVC).

1 31. The method of claim 29, wherein said polyvinylchloride (PVC) is emulsion
2 polyvinylchloride (PVC).

1 32. The method of claim 27, wherein said modified polymeric material comprises
2 chlorinated polyvinylchloride (C-PVC).

1 33. The method of claim 32, wherein said halogenation comprises chlorination, said
2 PVC being chlorinated by a process of homogeneous or heterogeneous chlorination.

1 34. The method of claim 27, wherein said blending step includes comprises addition
2 of a volatile solvent.

1 35. The method of claim 34, further comprising the step of removing said volatile
2 solvent.

1 36. The method of claim 35, wherein said removing step comprises vacuum
2 processing at room temperature.