

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15090069805

FCC REPORT (BLE)

Applicant: Skycom Telecommunications Co Limited

Address of Applicant:

Room 604, East Block, Shengtang Building, Futian District,

Shenzhen, China

Equipment Under Test (EUT)

Product Name: GSM WCDMA SMART Phone with Bluetooth

Model No.: Skycom Monkey, Skycom Monkey 6582M, Monkey, PCD

E501, E501, S501, E502, S502

FCC ID: 2AFWJ-PCDE501

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 06 Sep., 2015

Date of Test: 06 Sep., to 21 Sep., 2015

Date of report issued: 22 Sep., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	22 Sep., 2015	Original

Tested by:

| Cong | Date: 22 Sep., 2015

| Test Engineer | Date: 22 Sep., 2015

| Reviewed by: Date: 22 Sep., 2015

Project Engineer

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page				
1	COV	ER PAGE	1				
2	2 VERSION						
3		TENTS					
4	TES	SUMMARY	4				
5	GEN	ERAL INFORMATION	5				
	5.1	CLIENT INFORMATION	5				
	5.2	GENERAL DESCRIPTION OF E.U.T.					
	5.3	TEST ENVIRONMENT AND MODE					
	5.4	DESCRIPTION OF SUPPORT UNITS					
	5.5	LABORATORY FACILITY	7				
	5.6	LABORATORY LOCATION					
	5.7	TEST INSTRUMENTS LIST	8				
6	TEST	FRESULTS AND MEASUREMENT DATA	9				
	6.1	ANTENNA REQUIREMENT:	9				
	6.2	CONDUCTED EMISSION	10				
	6.3	CONDUCTED OUTPUT POWER	13				
	6.4	OCCUPY BANDWIDTH	15				
	6.5	POWER SPECTRAL DENSITY	18				
	6.6	BAND EDGE	20				
	6.6 6.6.1	Conducted Emission Method	20				
		Conducted Emission Method	20				
	6.6.1	Conducted Emission MethodRadiated Emission Method					
	6.6.1 6.6.2	Conducted Emission Method					
	6.6.1 6.6.2 6.7	Conducted Emission Method					
	6.6.1 6.6.2 6.7 6.7.1 6.7.2	Conducted Emission Method					

4 Test Summary

Test Item	Section in CFR 47	Uncertainty	Result
Antenna requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	±3.28dB	Pass
Conducted Peak Output Power	15.247 (b)(3)	±1.50dB	Pass
6dB Emission Bandwidth	15.247 (a)(2)	±1.50dB	Pass
Power Spectral Density	15.247 (e)	±1.50dB	Pass
Band Edge	15.247(d)	±1.50dB	Pass
Spurious Emission	15.205/15.209	±4.88dB	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Skycom Telecommunications Co Limited
Address of Applicant:	Room 604, East Block, Shengtang Building, Futian District, Shenzhen, China
Manufacturer:	Skycom Telecommunications Co Limited
Address of Manufacturer:	Room 604, East Block, Shengtang Building, Futian District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	GSM WCDMA SMART Phone with Bluetooth
Model No.:	Skycom Monkey, Skycom Monkey 6582M, Monkey, PCD E501, E501, S501, E502, S502
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Input:100-240V AC,50/60Hz 0.2A Output:5V DC MAX 1A
Remark:	Model No.: Skycom Monkey, Skycom Monkey 6582M, Monkey, PCD E501, E501, E501, E502, S502 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model No. and exterior colours.

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency			
The lowest channel	2402MHz			
The middle channel	2442MHz			
The Highest channel	2480MHz			

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCIS15090069805

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	t Equipment Manufacturer		Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
7	Pre-amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016		
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016		

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016			
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Deguirement	CCC Port 15 C Continu 15 207	7					
Test Requirement:	FCC Part 15 C Section 15.207						
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
	 a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
Test setup:	Refere	nce Plane					
	AUX Equipment E.U Test table/Insulation pla Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Neutral:

Trace: 5

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : GSM WCDMA SMART Phone with Bluetooth EUT

: Skycom Monkey : BLE mode Model Test Mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: YT

Remark

Kemark		Read	LISN	Cable		Limit Line	Over	Remark
	Freq	rever	Factor	Loss	Level	Line	LIMIT	Kemark
	MHz	dBu∀	₫B	₫B	dBu∀	dBu∀	₫B	
1	0.410	37.39	0.25	10.72	48.36	57.64	-9.28	QP
2	0.410	30.50	0.25	10.72	41.47	47.64	-6.17	Average
1 2 3 4 5 6 7 8 9	0.521	32.04	0.28	10.76	43.08	56.00	-12.92	QP
4	0.529	24.44	0.27	10.76	35.47	46.00	-10.53	Average
5	1.000	17.36	0.22	10.87	28.45	46.00	-17.55	Average
6	1.781	36.08	0.28	10.95	47.31	56.00	-8.69	QP
7	1.858	20.53	0.28	10.95	31.76	46.00	-14.24	Average
8	3.140	33.69	0.29	10.91	44.89	56.00	-11.11	QP
9	4.926	32.94	0.28	10.85	44.07	56.00	-11.93	QP
10	5.031	18.86	0.28	10.85	29.99	50.00	-20.01	Average
11	13.127	31.16	0.25	10.91	42.32	60.00	-17.68	QP
12	15.470	18.46	0.25	10.90	29.61	50.00	-20.39	Average

Report No: CCIS15090069805

Line:

Trace: 7

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : GSM WCDMA SMART Phone with Bluetooth Condition EUT

Model : Skycom Monkey Test Mode : BLE mode

Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

NEMAIK.	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu∜	dB	
1	0.410	34.38	0.28	10.72	45.38	57.64	-12.26	QP
2	0.410	26.97	0.28	10.72	37.97	47.64	-9.67	Average
3	0.527	20.49	0.28	10.76	31.53	46.00	-14.47	Average
1 2 3 4 5 6 7 8 9	0.994	17.05	0.25	10.87	28.17	46.00	-17.83	Average
5	1.060	31.96	0.25	10.88	43.09	56.00	-12.91	QP
6	1.352	32.76	0.25	10.91	43.92	56.00	-12.08	QP
7	2.346	33.99	0.26	10.94	45.19	56.00	-10.81	QP
8	2.448	17.53	0.27	10.94	28.74	46.00	-17.26	Average
9	4.027	33.72	0.28	10.89	44.89	56.00	-11.11	QP
10	5.305	33.64	0.30	10.84	44.78	60.00	-15.22	QP
11	5.333	17.67	0.30	10.84	28.81	50.00	-21.19	Average
12	15.388	17.81	0.32	10.90	29.03	50.00	-20.97	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.1.1
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-6.83		
Middle	-6.70	30.00	Pass
Highest	-7.20		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.758		
Middle	0.790	>500	Pass
Highest	0.764		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.046		
Middle	1.046	N/A	N/A
Highest	1.046		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2		
Limit:	8 dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-7.94		
Middle	-7.76	8.00	Pass
Highest	-8.23		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	E.U.T				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Test Requirement: FCC Part 15 C Section 15.209 and 15.205 Test Method: ANSI C63.10: 2013 and KDB 558074v03r03 section 12.1 Test Frequency Range: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value Above 1GHz Peak 1MHz 3MHz Average Value Frequency Limit (dBuVin @3m) Remark Above 1GHz 74.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 380 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	 					
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz RMS 1MHz 3MHz Peak Value Above 1GHz RMS 1MHz 3MHz Average Value Frequency Limit (BbuV/m @3m) Remark Above 1GHZ 74.00 Peak Value Frequency Limit (BbuV/m @3m) Remark Above 1GHZ 74.00 Peak Value Frequency Limit (BbuV/m @3m) Remark Above 1GHZ 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details	Test Requirement:	FCC Part 15 C	Section 15.20	09 and 15.205		
Test site: Measurement Distance: 3m Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz T4.00 Peak Value Above 1GHz T4.00 Peak Value	Test Method:	ANSI C63.10:	2013 and KD	B 558074v03r	03 section	12.1
Receiver setup: Frequency	Test Frequency Range:	2.3GHz to 2.50	GHz			
Above 1GHz RMS 1MHz 3MHz Average Value RMS 1MHz 3MHz Average Value Frequency Limit (dBuV/m @3m) Remark Above 1GHz 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to we meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details	Test site:	Measurement	Distance: 3m			
Limit: Frequency Limit (dBuV/m @3m) Remark Above 1 GHz S4.00 Average Value Above 1 GHz T4.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. Test setup:	Receiver setup:	Frequency				
Limit: Frequency		Above 1GHz				
Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.7 for details Refer to section 5.3 for details	I imit:	Frequ			•	
Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.7 for details Refer to section 5.3 for details			-	54.0	00	
the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.7 for details Refer to section 5.3 for details						
Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details		the ground to determine to determine to determine to determine the EUT antenna, with tower. 3. The antenna the ground Both horize make the 4. For each see and meters and to find the 5. The test-respecified 6. If the emise the limit seed of the EUT have 10 depeak or average of the EUT to determine the limit seed to depeak or average to determine the EUT to determi	d at a 3 meter ne the position was set 3 met which was mo na height is vide to determine ontal and vert measurement suspected emote then the antered the rota table maximum reaseceiver system Bandwidth with the control of the control of the pecified, then I would be rep margin wou	camber. The n of the higher ers away from unted on the taried from one the maximunical polarization ission, the EU ina was turned ading. In was set to Pich Maximum He EUT in peatesting could borted. Otherwild be re-tested	table was rest radiation. If the interference meter to for value of the consofthe art to heights from 0 degreeak Detect lold Mode. It was arranded to heights from 0 degreeak Detect lold Mode. It was a round to heights from 0 degreeak Detect lold mode was to be stopped wise the emid one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to a
Test mode: Refer to section 5.3 for details	Test setup:	80CM	Furntable)	3m June Reference Plane		wer
	Test Instruments:	Refer to sectio	n 5.7 for detai	ls		
Test results: Passed	Test mode:	Refer to sectio	n 5.3 for detai	ls		
	Test results:	Passed				

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : GSM WCDMA SMART Phone with Bluetooth Condition

EUT

Model : Skycom Monkey Test mode : BLE-L Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

Remark

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBu√/m	dBu√/m	dB	
1 2	2390.000 2390.000								

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : GSM WCDMA SMART Phone with Bluetooth Condition

EUT

: Skycom Monkey Model Test mode : BLE-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT

Remark

	Freq		Antenna Factor						Remark	
	MHz	dBu₹	$-\overline{dB/m}$	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB		-
2	2390.000 2390.000									

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : GSM WCDMA SMART Phone with Bluetooth Condition

EUT

Model : Skycom Monkey Test mode : BLE-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT

Re

emar.	k :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	dB/m	dB	<u>ab</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	2483.500	30.74	27.52	6.85	0.00	65.11	74.00	-8.89	Peak
2	2483 500	17 78	27 52	6 85	0.00	52 15	54 00	-1.85	Average

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : GSM WCDMA SMART Phone with Bluetooth Condition

EUT

GSM WCDMA SMART Phone
Model : Skycom Monkey
Test mode : BLE-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remarb

Remark

	Freq		Antenna Factor						
-	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBu}\overline{V}/\overline{m}$	<u>dB</u>	
	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2009 and KDB558074 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.7 for details							
Test results:	Passed							

Test plot as follows:

Lowest channel

Date: 21.SEP.2015 20:37:41

30MHz~25GHz

Middle channel

Date: 21.SEP.2015 20:39:01

30MHz~25GHz

Highest channel

Date: 21.SEP.2015 20:58:16

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205							
Test Method:	ANSI C63.10:2009									
Test Frequency Range:	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:		Francisco Detector DDW VDW Description								
, , , , , , , , , , , , , , , , , , ,	Frequency Detector RBW VBW Remark									
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value									
	Above 1CUz	Peak	1MHz	3MHz	Peak Value					
	Above 1GHz	RMS	1MHz	3MHz	Average Value					
Limit:										
	Frequency		Limit (dBuV/m	@3m)	Remark					
	30MHz-88MHz		40.0		Quasi-peak Value					
	88MHz-216MHz		43.5		Quasi-peak Value					
	216MHz-960MH		46.0		Quasi-peak Value					
	960MHz-1GHz		54.0		Quasi-peak Value					
	Above 1GHz		54.0		Average Value					
			74.0		Peak Value					
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the make the for each so case and the meters and to find the meters and to find the meters and the find the find the meters and the find the meters and the find the f	at a 3 meter e the position was set 3 m hich was mount a height is voto determine ontal and vertue assurement. Suspected emaximum reaction level of the cified, then to would be reparation of the margin would	camber. The of the highes eters away funted on the taried from or the maximulation in the taried from the maximulation in the taried from the was turned ding. In was set the maximum Hale EUT in peresting could be orted. Other did be re-tested.	table was at radiation. From the in op of a variance meter to um value of ions of the EUT was a dot to height from 0 deg to Peak Dold Mode. The ak mode we stopped wise the erd one by on	ele 0.8 meters above rotated 360 degrees aterference-receiving lable-height antenna of four meters above of the field strength, antenna are set to arranged to its worst as from 1 meter to 4 rees to 360 degrees letect Function and las 10 dB lower than and the peak values missions that did not e using peak, quasimare ported in a data					

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : GSM WCDMA SMART Phone with Bluetooth Condition

EUT

: GSM WCDMA SMART Phone
Model : Skycom Monkey
Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remark

Remark

MICHEL	•								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	93.440	40.39	12.58	0.92	29.56	24.33	43.50	-19.17	QP
2	101.289	34.94	13.02	0.97	29.52	19.41	43.50	-24.09	QP
3	189.739	33.61	10.48	1.37	28.90	16.56	43.50	-26.94	QP
1 2 3 4 5	285.978	32.39	12.78	1.73	28.47	18.43	46.00	-27.57	QP
5	360.448	31.81	14.43	1.98	28.61	19.61	46.00	-26.39	QP
6	463.970	44.16	15.71	2.30	28.89	33.28	46.00	-12.72	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : GSM WCDMA SMART Phone with Bluetooth Condition

EUT

Model : Skycom Monkey Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: YT

Remark

Freq							Over Limit	
MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
43.353	34.84	13.56	0.55	29.87	19.08	40.00	-20.92	QP
85.598	40.51	10.60	0.88	29.60	22.39	40.00	-17.61	QP
96.775	41.90	12.97	0.94	29.54	26.27	43.50	-17.23	QP
379.914	32.05	14.59	2.05	28.69	20.00	46.00	-26.00	QP
463.970	47.22	15.71	2.30	28.89	36.34	46.00	-9.66	QP
537.589	32.76	17.36	2.51	29.06	23.57	46.00	-22.43	QP
	MHz 43.353 85.598 96.775 379.914 463.970	Freq Level MHz dBuV 43.353 34.84 85.598 40.51 96.775 41.90 379.914 32.05	Freq Level Factor MHz dBuV dB/m 43.353 34.84 13.56 85.598 40.51 10.60 96.775 41.90 12.97 379.914 32.05 14.59 463.970 47.22 15.71	Freq Level Factor Loss MHz dBuV dB/m dB 43.353 34.84 13.56 0.55 85.598 40.51 10.60 0.88 96.775 41.90 12.97 0.94 379.914 32.05 14.59 2.05 463.970 47.22 15.71 2.30	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 43.353 34.84 13.56 0.55 29.87 85.598 40.51 10.60 0.88 29.60 96.775 41.90 12.97 0.94 29.54 379.914 32.05 14.59 2.05 28.69 463.970 47.22 15.71 2.30 28.89	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 43.353 34.84 13.56 0.55 29.87 19.08 85.598 40.51 10.60 0.88 29.60 22.39 96.775 41.90 12.97 0.94 29.54 26.27 379.914 32.05 14.59 2.05 28.69 20.00 463.970 47.22 15.71 2.30 28.89 36.34	MHz dBuV dB/m dB dB dBuV/m dBuV/m 43.353 34.84 13.56 0.55 29.87 19.08 40.00 85.598 40.51 10.60 0.88 29.60 22.39 40.00 96.775 41.90 12.97 0.94 29.54 26.27 43.50 379.914 32.05 14.59 2.05 28.69 20.00 46.00 463.970 47.22 15.71 2.30 28.89 36.34 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 43.353 34.84 13.56 0.55 29.87 19.08 40.00 -20.92 85.598 40.51 10.60 0.88 29.60 22.39 40.00 -17.61 96.775 41.90 12.97 0.94 29.54 26.27 43.50 -17.23 379.914 32.05 14.59 2.05 28.69 20.00 46.00 -26.00 463.970 47.22 15.71 2.30 28.89 36.34 46.00 -9.66

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.90	31.53	10.57	40.24	47.76	74.00	-26.24	Vertical
4804.00	45.44	31.53	10.57	40.24	47.30	74.00	-26.70	Horizontal

Test channel:			Lowest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.24	31.53	10.57	40.24	37.10	54.00	-16.90	Vertical
4804.00	35.59	31.53	10.57	40.24	37.45	54.00	-16.55	Horizontal

Test channel:			Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.02	31.58	10.66	40.15	47.11	74.00	-26.89	Vertical
4884.00	44.60	31.58	10.66	40.15	46.69	74.00	-27.31	Horizontal

Test channel:			Middle		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	35.84	31.58	10.66	40.15	37.93	54.00	-16.07	Vertical
4884.00	34.25	31.58	10.66	40.15	36.34	54.00	-17.66	Horizontal

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	44.19	31.69	10.73	40.03	46.58	74.00	-27.42	Vertical
4960.00	45.00	31.69	10.73	40.03	47.39	74.00	-26.61	Horizontal

Test channel:			Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	34.74	31.69	10.73	40.03	37.13	54.00	-16.87	Vertical
4960.00	34.15	31.69	10.73	40.03	36.54	54.00	-17.46	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366