

NOTA FINALĂ

Numele:..... Prezenta lucrare conține _____pagini Inițiala prenumelui tatălui: Prenumele: TESTARE JUDEȚEANĂ Scoala de proveniență: CLASA a VIII-a 11 decembrie Centrul de examen: **Anul scolar 2024 – 2025** Localitatea: Județul: Matematică Nume şi prenume asistent Semnătura NUMELE ȘI PRENUMELE A COMISIA DE EVALUARE NOTA (CIFRE ŞI LITERE) SEMNĂTURA PROFESORULUI **EVALUATOR I EVALUATOR II EVALUATOR III EVALUATOR IV** NOTA FINALĂ NUMELE ȘI PRENUMELE COMISIA DE EVALUARE NOTA (CIFRE ŞI LITERE) SEMNĂTURA В **PROFESORULUI EVALUATOR I** EVALUATOR II **EVALUATOR III EVALUATOR IV** NOTA FINALĂ NUMELE ȘI PRENUMELE \mathbf{C} COMISIA DE EVALUARE NOTA (CIFRE ŞI LITERE) SEMNĂTURA **PROFESORULUI EVALUATOR I EVALUATOR II EVALUATOR III EVALUATOR IV**

- Toate subjectele sunt obligatorii.
- Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de două ore.

SUBIECTUL I (30 de puncte)

5р	1. Rezultatul calculului $-2\sqrt{3} +10\sqrt{6}$: $(-5\sqrt{2})$ este egal cu: a) 0 b) $-4\sqrt{6}$ c) $-4\sqrt{3}$ d) -4
5р	 2. Cel mai mic multiplu comun al numerelor 14; 21; 42 este : a) 7 b) 14 c) 21 d) 42
5р	3. Cel mai mare număr întreg mai mic decât - $3\sqrt{5}$ este: a) -8 b) -5 c) -6 d) -7
5p	 4. Scrisă sub formă de interval mulțimea A={x ∈ R / -1 < 3-2x ≤ 5 } este: a) (-2;1) b) (-2;1] c) (-1;2)\ d) [-1:2)
5р	5. Patru elevi, Dan, Marius, Ion, George au calculat media geometrică a numerelor a= $6-2\sqrt{5}$ și b= $6+2\sqrt{5}$ Conform indicațiilor din tabel , dintre cei patru elevi , cel care a răspuns corect este:

a) Dan

b) Marius

c) Ion

5p

d) George

Dan	+4
Marius	0
Ion	+6
George	+16

6. În tabelul de mai jos sunt prezentate temperaturile înregistrate la ora 8, la o stație meteo, în fiecare zi a unei săptămâni.

Ziua	Luni	Marţi	Miercuri	Joi	Vineri	Sâmbătă	Duminică
Temperatura (°C)	-1	-8	-10	-5	1	3	8

Afirmația "Conform indicațiilor din tabel, media aritmetică a temperaturilor pozitive este egală cu 4" este:

- a) adevărată
- b) falsă

SUBIECTUL I I (30 de puncte)

1. În figura următoare se dă segmentul AB =10 cm . Dacă M este mijlocul lui AB iar C 5p este simetricul lui M față de B, atunci lungimea segmentului AC este egală cu:

- a) 5 cm
- b) 10 cm
- c) 15 cm
- d) 20 cm

2. În figura alăturată , dreptele a și b sunt paralele. Valoarea lui x este egală cu : 5p

- a) 67⁰
 - b) 1170
 - c) 63°
 - d) 113⁰

3. Figura alăturată reprezintă schema unui loc de joacă, sub forma unui triunghi ABC, 5p dreptunghic în A. Dacă AC= 20 m și unghiul C este dublul unghiului B, atunci perimetrul locului de joacă este egal cu:

- a) $(60+20\sqrt{3})$ m
- b) 200 m
- c) $400\sqrt{3}$ m
- d) $200\sqrt{3}$ m

4. În figura următoare este reprezentat un depozit format din pătratul ABCD și triunghiul dreptunghic isoscel ABE cu ∡E=90⁰ și AE= 6 m. Suprafața depozitului este egală cu:

- a) 108 m²
- b) 90 m²
- c) $(18\sqrt{2} + 12) \text{ m}^2$
- d) 54 m^2

5p 5. În figura alăturată se dă cercul C (O;10 cm) cu punctele A,B,C ∈ C (O;10 cm) şi măsura arcului mic AB =120º. Dacă punctele C, B puncte diametral opuse , atunci distanța dintre punctele A şi B este egală cu:

- a) 10 cm
- b) 20 cm
- c) $10\sqrt{3}$ cm
- d) $10 \sqrt{2}$ cm

6. În figura alăturată este reprezentat un cub ABCDA`B`C`D`. Suma lungimilor tuturor muchiilor cubului este egală cu 120 cm. Aria unei fețe a cubului este egală cu:

- a) 100 cm²
- b) 400 cm²
- c) 600 cm²
- d) 1000 cm³

SUBIECTUL III Scrieți rezolvările complete:

(30 de puncte)

5p 1. Se consideră mulțimile A = $\{x \in R / 4 \cdot (x - 1) + 5 \ge -3\}$ şi B = $\{x \in R / -2 \le \frac{3x + 2}{5} < 4\}$. **(2p) a)** Deteminați mulțimea A.

(3p) b) Calculați suma numerelor naturale din mulțimea A∩B.

5p 2. Fie numărul a = $\sqrt{7} - \sqrt{2}$ şi b = $\sqrt{7} + \sqrt{2}$ **(2p)** a) Calculați valoarea numărului $(a - b + \sqrt{8})^{2025}$.

(3p) b) Arătaţi că $\frac{1}{a} + \frac{1}{b} \in (\frac{4}{5}, \frac{6}{5})$.

5p 3. Fie $E(x) = (2x + 1)^2 - (2x - 1)^2 - 4(2x + 3x) + 2$, unde $x \in \mathbb{R}$. **(2p) a)** Arătați că E(x) = 2 - 12x, pentru orice număr real x.

- **5p 5.** In tetraedrul regulat ABCD, cu AB=8cm, se consideră punctul N pe muchia AB astfel încât măsura unghiul ADN să fie de 30° . Fie P un punct pe muchia AC astfel încât BP= $4\sqrt{3}cm$.
 - (2p) a) Arătați că aria triunghiului BCD este de $16\sqrt{3}$ cm²;

(2p) b) Demonstraţi că NP // (BCD).

- 5p 6. Se consideră cubul ABCDA'B'C'D' şi punctele M şi N pe diagonalele BD şi respectiv BC', astfel încât BM = ³/₄ BD, C'N = ¹/₄BC'.
 (2p) a) Arătaţi că unghiul dintre dreptele B'C si A'D' are măsura de 45°;

(3p) b) Demonstrați că dreptele AM și B'N sunt concurente.

TESTARE JUDEȚEANĂ CLASA a VIII-a 11 decembrie Anul școlar 2024 – 2025

Matematică

BAREM DE EVALUARE SI DE NOTARE

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I ŞI SUBIECTUL al II-lea:

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie cinci puncte, fie zero puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al III-lea:

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se acordă punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	(c)	5p
2.	(d)	5p
3.	(d)	5p
4.	(d)	5p
5.	a)	5p
6.	(a)	5p

SUBIECTUL al II-lea (30 de puncte)

	· · · · · · · · · · · · · · · · · ·	
1.	(c)	5p
2.	(a)	5p
3.	(a)	5p
4.	b)	5p
5.	(c)	5p
6.	a)	5p

SUBIECTUL al III-lea (30 de puncte)

1.	a) $x \ge -1$ $A = [-1, \infty)$	1p 1p
	b) B = [-4, 6)	1p
	$A \cap B = [-1, 6)$	1p
	Suma este 15	1p

2.	a) $\sqrt{8} = 2\sqrt{2}$	1p
	$(a-b+\sqrt{8})^{2025}=0$	1p
	$1 \ 1 \ 2\sqrt{7}$	1p
	$\begin{vmatrix} b \\ a \end{vmatrix} = {5}$	
	$\frac{4}{6} < \frac{2\sqrt{7}}{6} < \frac{6}{6}$	1p
	5_ 5 _ 5 _	
	b) $\frac{1}{a} + \frac{1}{b} = \frac{2\sqrt{7}}{5}$ $\frac{4}{5} < \frac{2\sqrt{7}}{5} < \frac{6}{5}$ $\frac{\sqrt{16}}{5} < \frac{2\sqrt{7}}{5} < \frac{\sqrt{36}}{5}$ a) $E(x) = 4x^2 + 4x + 1 - 4x^2 + 4x - 1 - 8x - 12x + 2$.	1p
3.	a) $E(x) = 4x^2 + 4x + 1 - 4x^2 + 4x - 1 - 8x - 12x + 2$.	1p
	E(x) = 2 - 12x	1p
	b) $E(a) = 2 - 12a$	1p
	$2a \le 2\sqrt{3}$	1p
	$a \in \{0, 1\}$	1p
4.	a) MN//B'C	1p
	$B'C // A'D \Rightarrow MN//A'D \subset (ADD') \Rightarrow MN//(ADD')$	1p
	b) O ₁ O ₂ //A'D//B'C, D'D//B'B	1p
	<(O ₁ O ₂ ,DD')=<(B'C, B'B)= <bb'c< td=""><td>1p</td></bb'c<>	1p
	$tg < BB'C = \frac{1}{4}$	1p
5.	a) $\triangle ABC$ echilateral $\Rightarrow A = \frac{l^2 \sqrt{3}}{4}$	1p
	4	1p
	$A=18\sqrt{3} \text{ cm}^2$	1
	b) N mijlocul lui AB	1p
	BP= $4\sqrt{3}$ cm \Rightarrow BP este înățime în ΔABC \Rightarrow P mijlocul lui AC	1p
_	NP linie mijlocie \Rightarrow NP//BC şi cum BC \subset (BCD) \Rightarrow NP // (BCD)	1p
6.	a) $A'D' // B'C' \Rightarrow < (B'C, A'D') = <(B'C, B'C') = $	1p
	$\langle B'C'B = 45^{\circ} \rangle$	1p
	b) MN // DC'(reciproca teoremei lui Thales în ΔBDC')	1p
	$DC' // AB' \Rightarrow MN // AB'$	1p
	MNB'A trapez și , deci AM și B'N sunt concurente	1p

