APPENDIX

A. Proof of Proposition 1

As shown in Algorithm 2, the first step (Line 1) constructs distance matrices for all attributes by calling the algorithm PDM. For each attribute A_j , PDM divides the rows of the distance matrix among the $|\mathcal{P}|$ processors so that each processor computes the distances for all tuple pairs in its assigned rows. After combining partial results, this yields the entire distance matrix. Since there are m attributes and $n \times n$ tuple pairs, the overall cost is $O\left(\frac{m \cdot n^2}{|\mathcal{P}|}\right)$.

Next, Algorithm 2 invokes TAGC (Line 3) to generate clusters for each attribute, as presented in Algorithm 1. In particular, Line 1 sorts the thresholds Θ_j in constant time, because the size of Θ_j is small, while Line 2 must traverse the entire distance matrix in $O\left(n^2\right)$ time to obtain $C_j\left[\theta_j^{\max}\right]$. Then, in Lines 3–5, TAGC refines that maximum-threshold clustering without a second full traversal, instead iterating over the previously computed clusters and thus costing less than $O\left(n^2\right)$. Throughout this process, the distance matrix rows are partitioned among the $|\mathcal{P}|$ processors, so that each processor handles clustering for all relevant thresholds Θ_j within its assigned rows. Consequently, generating clusters for every attribute in parallel over m attributes requires $O\left(\frac{m \cdot n^2}{|\mathcal{P}|}\right)$ time overall.

Afterward, in Lines 4-16, Algorithm 2 conducts the complete error detection process for every constraint $\varphi \in \Sigma$. Specifically, in Line 6, the algorithm ASPT partitions the tuple pair sets from all relevant attribute clusters of φ across $|\mathcal{P}|$ processors in parallel. Since these tuple pair sets are assigned by rows and the distance matrix is of size $n \times n$ with m attributes, ASPT takes $O\left(\frac{m \cdot n}{|\mathcal{P}|}\right)$ time. Next, in Line 7, Algorithm 2 calls PFVP to find violating tuple pairs by performing set operations (intersection and difference) among the tuple pair sets derived from each attribute cluster of φ . Because each cluster can contain up to $O(n^2)$ tuple pairs, the row-based partitioning strategy also applies here: each processor works on the subset of rows assigned to it, carrying out intersection and difference in parallel. As a result, executing these set operations for *m* attributes among $|\mathcal{P}|$ processors costs $O\left(\frac{m \cdot n^2}{|\mathcal{P}|}\right)$. Having obtained all violating tuple pairs C_{φ}^{p} , Lines 8–16 traverse each pair (t_{i}, t_{j}) to identify erroneous cells in constant time, thus taking $O(n^2)$ time overall in that final step.

Summing up, for each constraint φ in Σ , the cost is $O\left(\frac{m \cdot n^2}{|\mathcal{P}|}\right)$. Because there are $|\Sigma|$ such constraints, the total time complexity of PED is $O\left(\frac{|\Sigma| \cdot m \cdot n^2}{|\mathcal{P}|}\right)$ as stated in proposition 1.

B. Proof of Proposition 2

Algorithm IPED begins by calling IPDM, which incrementally updates the distance matrix from size $n \times n$ to $(n + \Delta n) \times (n + \Delta n)$. Since only rows $1 \dots (n + \Delta n)$ and columns $n \dots (n + \Delta n)$ must be filled, each of the $|\mathcal{P}|$ processors is assigned a subset of these rows and computes the tuple pair distances within them, resulting in a total cost of $O\left(\frac{m \cdot (n + \Delta n) \cdot \Delta n}{|\mathcal{P}|}\right)$ for m attributes.

Next, the algorithm IPED invokes TAGC to build incremental clusters ΔC_j for each attribute A_j based on the new incremental distance matrix ΔD_j . TAGC partitions the rows $1 \dots (n+\Delta n)$ among

the $|\mathcal{P}|$ processors, generating the clusters for its assigned rows. Because the relevant tuple pairs now total $(n+\Delta n)\cdot \Delta n$ instead of n^2 , the cost to generate clusters for m attributes is $O\left(\frac{m\cdot (n+\Delta n)\cdot \Delta n}{|\mathcal{P}|}\right)$.

Afterward, for each constraint $\varphi \in \Sigma$, the algorithm IPED detects errors incrementally. First, ASPT distributes the tuple pair sets derived from the clusters of φ among the $|\mathcal{P}|$ processors by rows, so traversing $(n+\Delta n)$ rows with m attributes costs $O\left(\frac{m\cdot(n+\Delta n)}{|\mathcal{P}|}\right)$. Then, PFVP finds violating tuple pairs by set operations (intersection and difference) over these tuple pair sets. Each cluster contains up to $(n+\Delta n)\cdot \Delta n$ tuples pairs, so carrying out these operations for m attributes in parallel takes $O\left(\frac{m\cdot(n+\Delta n)\cdot \Delta n}{|\mathcal{P}|}\right)$. Once PFVP identifies the violating tuple pairs ΔC_{φ}^p , the algorithm IPED scans each tuple pair (t_i,t_j) in constant time to detect erroneous cells, taking $O\left((n+\Delta n)\cdot \Delta n\right)$ time overall for that final step.

Hence, each constraint $\varphi \in \Sigma$ requires $O\left(\frac{m \cdot (n + \Delta n) \cdot \Delta n}{|\mathcal{P}|}\right)$ time for incremental detection, and thus the total complexity over all $|\Sigma|$ constraints is $O\left(\frac{|\Sigma| \cdot m \cdot (n + \Delta n) \cdot \Delta n}{|\mathcal{P}|}\right)$ as stated in proposition 2.

Figure 11: An Overview of Our Incremental Parallel Detection (IPED)