INDIAN INSTITUTE OF TECHNOLOGY BHILAI CS203: Theory of Computation I

Tutorial Sheet 2

• Solve the following problems before the Tutorial.

1. Two DFAs, M_1 and M_2 are given below. Answer the following questions for each of these machines.

Figure 1: M_1

Figure 2: M_1

- (a) What is the start state?
- (b) What is the set of accept states?
- (c) What sequence of states does the machine go through on input aabb?
- (d) Does the machine accept the string aabb?
- (e) Does the machine accept the string ϵ ?

Solution:

Part	Question	M_1	M_2
a	Start State?	$\{q_1\}$	$\{q_1\}$
b	Accepting States	$\{q_2\}$	$\{q_1, q_4\}$
c	Sequence of states for input aabb	$q_1q_2q_3q_1q_1$	$q_1q_1q_1q_2q_4$
d	Acceptance for string aabb	No	Yes
е	Acceptance for string ϵ	No	Yes

2. The formal description of a DFA, M is $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$, where δ is given by the following table. Give the state diagram of this machine.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Solution:

- 3. Construct and give the state diagram of DFAs for the following given languages. In all parts $\Sigma = \{a, b\}$.
 - (a) $\{ w | w \text{ has at least three } a$'s $\}$

(b) $\{ w | w \text{ has exactly two } b$'s $\}$

Solution:

(c) $\{ w | w \text{ contains substring } ba \}$

Solution:

(d) $\{ w | w \text{ does not contain substring } abab \}$

Solution:

(e) $\{ w | w \text{ is any string except } a \text{ and } b \}$

- 4. Give state diagrams of DFAs recognizing the following languages. In all parts the alphabet $\Sigma = \{0, 1\}$.
 - (a) $\{ w | w \text{ begins with a 1 and ends with a 0} \}$

(b) { w|w contains the substring 0101, i.e., w = x0101y for some x and y}

(c) $\{ w | w \text{ does not contain the substring } 110 \}$

(d) $\{ w | \text{ every odd position of } w \text{ is a } 1 \}$

(e) $\{\epsilon, 0\}$

- 5. Construct and give the state diagram of NFAs for the following given languages.
 - (a) Set of all string in $\{0,1\}$ which are the binary representation of integers divisible by 2.

(b) Set of strings consisting all strings over $\{0,1\}$ starts and ends with same symbol.

(c) Set of strings consisting all strings over $\{0,1\}$ does not start and end with same symbol.

(d) Set of strings consisting all strings over $\{0\}$ of the form 0^k , for k is even.

(e) Set of strings consisting all strings over $\{0\}$ of the form 0^k , for k is even and not divisible by 3.

(f) Set of strings consisting all strings over $\{0,1\}$ containing an 1 in the 2nd position from end.

(g) Set of strings over $\{0,1\}$ of length either divisible by 2 or 3.

start
$$\longrightarrow$$
 q_1 $0,1$ q_2 $0,1$ q_3 $0,1$

6. Prove that if $M_1 = \{Q, \sum, \delta, q_0, F\}$ is a DFA recognizes a language A, Then $M_1 = \{Q, \sum, \delta, q_0, Q \setminus F\}$ recognizes A^c .

Solution: $M_1 = \{Q, \sum, \delta, q_0, F\}$ is a DFA recognizes a language A.

 $M_2 = \{Q, \sum, \delta, q_0, Q \backslash F\}$ recognizes A^c .

Reasons why M_2 recognizes A^c . Since M_1 and M_2 have the same transition function δ , therefore if M_1 is deterministic, M_2 is also deterministic. Consider any string $w \in \sum^*$. Running M_1 on string w will result in M_1 ending in some state $q_r \in Q$. Since M_1 is deterministic, there is only one possible state that M_1 can end in on input w. If we run M_2 on the same input w, then M_2 will end in the same state q_r since M_1 and M_2 have the same transition function. Also, since M_2 is deterministic, there is only one possible ending state that M_2 can be in on input w.

Now suppose that $w \in A$. Then, M_1 will accept w, which means that the ending state $q_r \in F$, i.e., q_r is an accept state of M_1 . But then $q_r \notin Q \setminus F$, so M_2 does not accept w since M_2 has $Q \setminus F$ as its set of accept states. Similarly, suppose that $w \notin A$. Then, M_1 will not accept w, which means that the ending state $q_r \notin F$. But then $q_r \in Q \setminus F$, so M_2 accepts w. Therefore, M_2 accepts string w if and only M_1 does not accept string w, so M_2 recognizes language A^c .