4. Derivatives

4.1 The derivative

Let I be an interval, let $f:I \to \mathbb{R}$ and $c \in I$. If the limit

$$L = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists, then we say f is differentiable at c, L is the derivative of f at c, f'(c) = L.

If f is differentiable at all $c\in I$, we say f is differentiable, and we get $f':I\to\mathbb{R}$, also written as $\frac{df}{dx}$, $\frac{d}{dx}(f(x))$.

Prop. Let $f:I \to \mathbb{R}$ be differentiable at $c \in I$, then it is continuous at c.

Pf.
$$\lim_{x o c}f(x)-f(c)=\lim_{x o c}rac{f(x)-f(c)}{x-c}\lim_{x o c}(x-c)=f'(c)\cdot 0=0$$

$$_{
ightarrow} \lim_{x
ightarrow c} f(x) = f(c)$$
 $_{
ightarrow}$ continous at c

Prop. Let I be an interval, let $f,g:I\to\mathbb{R}$, $c\in I$, and $\alpha\in\mathbb{R}$.

1.
$$h:I o\mathbb{R}$$
, $h(x)=f(x)+g(x)$ is differential at c , with $h'(c)=f'(c)\pm g'(c)$

2.
$$h(x) := f(x)g(x), h'(c) = f(c)g'(c) + f'(c)g(c)$$

3.
$$h(x) \coloneqq \frac{f(x)}{g(x)}, h'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}$$

4. Chain rule:
$$h(x) \coloneqq (f \circ g)(x), h'(x) = f'(g(c))g'(c)$$

4.2 Mean value theorem

Let $S\subset\mathbb{R}$, $f:S\to\mathbb{R}$. We say f has a relative maximum at c if there exists $\delta>0$ s.t. for all $x\in S$, $|x-c|<\delta$, $f(c)\geq f(x)$.

Lemma. Suppose $f:[a,b] o \mathbb{R}$ is differentiable at $c\in(a,b)$, and f has a relative min/max at c. Then f'(c)=0.

Rolle's Theorem. Let $f:[a,b]\to\mathbb{R}$ be a continuous function differentialable on [a,b] such that f(a)=f(b). Then there exists $c\in(a,b)$ s.t. f'(c)=0.

Pf.
$$K = f(a) = f(b)$$
. If $\exists x$ s.t. $f(x) > K$, c = abs max. If $\exists x$ s.t. $f(x) < K$, c = abs min. Else, $\forall x, f(x) = K$, any $c \in (a,b)$.

Mean Value Theorem. Let $f:[a,b]\to\mathbb{R}$ be a continuous function differentialable on [a,b] such that f(a)=f(b). Then there exists $c\in(a,b)$ s.t. $f'(c)=\frac{f(b)-f(a)}{b-a}$.

Pf.
$$g(x):=f(x)-f(b)-\frac{f(b)-f(a)}{b-a}(x-b)$$
, since $g(a)=g(b)=0$, by Rolle's Theorem, $\exists c\in(a,b)$ s.t. $0=g'(c)=f'(c)-\frac{f(b)-f(a)}{b-a}$.

Prop. Let $f:I o\mathbb{R}$ be a differentiable function s.t. f'(x)=0 for all $x\in I$. Then f is a constant.

Pf. By Mean Value Theorem, $\forall x,y \in I, f(y)-f(x)=f'(c)(y-x)=0.$

Prop. (Sign of derivative as inc/dec) Let $f:I\to\mathbb{R}$ be a differentiable function. Then:

- 1. f is increasing $\iff f'(x) \geq 0, \forall x \in I$
- 2. f is strictly increasing $\iff f'(x) > 0, \forall x \in I$

Pf.
$$f$$
 is increasing \neg if $x>c$, then $f(x)\geq f(c)$ \neg $\frac{f(x)-f(c)}{x-c}\geq 0$ \neg $f(c)\geq 0$ $f'(x)\geq 0, \forall x\in I$ \neg take $x,y\in I, x>y$, by MVT, $\exists c\in (x,y)$ s.t. $f(y)=f(x)+f'(c)(y-x)\geq f(x)$

4.3 Taylor's theorem

If $f:I \to \mathbb{R}$ is differentiable, $f':I \to \mathbb{R}$ is the first derivative of f.

If $f':I o\mathbb{R}$ is differentiable, $f'':I o\mathbb{R}$ is the second derivative of f .

We similarly obtain the nth derivative of $f - f^{(n)}$.

If f possesses n derivatives, we say f is n times differentiable.

For an n times differentiable function f defined near a point $x_0 \in \mathbb{R}$, define the nth order Taylor polynomial for f at x_0 as

$$egin{align} P_n^{x_0}(x) \coloneqq \sum_{k=0}^n rac{f^{(k)(x_0)}}{k!} (x-x_0)^k \ &= f(x_0) + f'(x_0)(x-x_0) + rac{f''(x_0)}{2} (x-x_0)^2 + ... + rac{f^{(n)}(x_0)}{n!} (x-x_0)^n \ \end{split}$$

Taylor Theorem. Suppose $f:[a,b]\to\mathbb{R}$ is a function with n continuous derivatives on [a,b] and such that $f^{(n+1)}$ exists on (a,b). Given distinct points x_0 and x in [a,b], we can find a point c strictly between x_0 and x ($c\in(x_0,x)$) or $c\in(x,x_0)$) such that

$$f(x) = P_n^{x_0}(x) + rac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

where $R_n^{x_0}(x)=rac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$ is called the remainder term.

Two ways to read the equation:

- $f(x) = \text{Taylor polynomial} + O((x x_0)^{n+1})$
- ullet There exists a solution c that depends on $x,x_0,f,f',...,f^{(n+1)}$: $rac{f^{(n+1)}(c)}{(n+1)!}=rac{f(x)-P_n^{x_0}(x)}{(x-x_0)^{n+1}}$

Pf. Similar to pf of MVT, define $M\coloneqq rac{f(x)-P_n^{x_0}(x)}{(x-x_0)^{n+1}},$ $g(s)\coloneqq f(s)-P_n^{x_0}(s)-M(s-x_0)^{n+1}$

$$_{
ightarrow} g(x_0) = g'(x_0) = ... g^{(n)}(x_0) = 0$$

In particular, $g(x)=g(x_0)=0$, by MVT, $\exists x_1$ between x and x_0 s.t. $g'(x_1)=0$

Similarly, $\exists x_2$ between x_0 and x_1 s.t. $g''(x_2) = 0$

 $\exists x_{n+1}$ between x_0 and x_n s.t. $g^{(n+1)}(x_{n+1}) = 0$

let $c=x_{n+1}$, so c between x and x_0 , $0=g^{(n+1)}(c)=f^{(n+1)}(c)-(n+1)!M$

$$_{ o}$$
 $M=rac{f^{(n+1)}(c)}{(n+1)!}$ Q.E.D.

Example. $f(x)=\sin x$, n=3 , $orall x\in [-1,1]$, $x_0=0$,

 $\exists c ext{ s.t. } \sin(x) = x - rac{x^3}{3!} + \sin(c)rac{x^4}{4!}$ where we know $|\sin(c)| \leq 1$

Prop. (Second derivative test) Suppose $f:(a,b)\to\mathbb{R}$ is twice continously differentiable, $x_0\in(a,b)$, $f'(x_0)=0$, $f''(x_0)>0$. Then f has a strict relative minimum at x_0 .

4. Derivatives 2

Pf. f'' is continous $\exists \delta>0$ s.t. $f''(c)>0, \forall c\in(x_0-\delta,x_0+\delta)$ take $x\in(x_0-\delta,x_0+\delta), x\neq x_0$, by Taylor Theorem, $\exists c, f(x)=f(x_0)+rac{f''(c)}{2}(x-x_0)^2>f(x_0)$

4. Derivatives 3