Oil and Gas Flowline Prioritization

A Geographic Model for Identifying Flowlines that Require Review, Inspection, and/or Testing

GIS Specialist: Jim Milne Colorado Energy & Carbon Management Commission (ECMC)

Which Flowlines Need ECMC Attention First?

Flowlines located in Geographically Sensitive Areas can be identified using a GIS Model.

Geographic Priority Factors

- Population Density (Buildings)
- Streams, Lakes, Wetlands
- Public Supply Surface Water
- Public Supply Groundwater
- Domestic Water Wells
- Shallow Groundwater
- Soil Classification
- Sensitive Wildlife Habitats

Model Process Steps

Geographic

Sensitivity

Scores in

ECMC DB

Assemble GIS Layers

- Need Statewide GIS Layers
- Data will be used as basis for Priority Buffers
- Groups will be used for Scoring

Group	Population	Surface Water	Groundwater	
	Building Footprints	Public Water System Surface Water Protection Zones (Rule 411a)	Public Water System Groundwater Protection Zones (Rule 411b)	
	Address Points	Rivers & Streams	Domestic Water Wells	
	Disproportionately Impacted Communities	Lakes & Wetlands	Springs	
	Municipal Boundaries	Flood Plains	Soil Surveys – High Permeability Areas	
	School Buildings	Aquatic High Priority Habitat Buffers (Rule 1202c)	CGS Mapped Alluvium (Shallow Groundwater Areas)	

Create Simple Buffers

500-foot buffers

Stream Buffers

Water Well Buffers

Two Basic GIS Intersect Operations

INTERSECT

Is there a Flowline within the 500-foot building footprint buffer? TRUE or FALSE

COUNT

How many 500-foot building footprint buffers intersect a Flowline?

COUNT = 3

Intersect Flowline Polylines with Buffers & Polygons

Flowline Intersect Results Obtained from ArcGIS Geoprocessing Model

Working with ECMC Flowline GIS Data

- Submitted by Multiple Operators
- No consistent approach to line geometry
- Very short line segments & very long line segments
- Duplicate Lines
- Incomplete networks with disconnected lines

Define Geographic Analysis Unit as a Section of Land

- Perform Flowline Analysis based on PLSS Section Grid
- Duplicate Lines and inconsistent line segments not an Issue
- Allow for Sections to be prioritized based on Flowline Intersects within a Section
- All Flowline Intersects with other GIS Layers can be visualized on a map as Priority colors.
- Split Flowlines on Section Lines Prior to GIS Intersect analysis (Flowlines cannot touch Section Lines)

6	5	4	3	2	1	
7	8	9	10	11	12	
18	17	16	15	14	13	
19	20	21	22	23	24	
30	29	28	27	28	25	
31	32	33	34	35	38	

Set Up Flowlines for Section Level Analysis

- 1. Need to Split Flowlines on Section Lines Prior to GIS Intersect analysis (Flowlines cannot touch Section Lines)
- 2. Set Up Section Grid for Analysis by creating a negative 10-foot buffer layer using the Section Grid
- 3. Split Flowlines on the -10 foot Section buffer layer
- 4. Select Flowlines within the -10 foot Section Buffer Layer
- 5. Save as a new Flowline Layer that is now clipped within the Section Layer

Results of GIS Intersections are written to the Flowline Attribute Table

73 buildings are within 200 feet of this flowline

Transfer Flowline Values to Section Grid for Visualization (Max Value per Section)

73 buildings are within 200 feet of this flowline

h	ADP_200_CT_							
24	73)						
24	73							
32	68							
32	68							
32	68							
78	61							
78	61							
43	56							
38	56							
43	56							
36	52							
36	52							
59	46							
78	46							
78	46							
65	46							

Section Grid Results – 200 feet from a Building

Crude Oil – Produced Water Transfer Lines

This Section contains a Transfer Line that is within 200 feet of between 6 and 39 Building Footprints

Section Grid Results – Stream Crossings

Off Location Flowlines

This Section contains at least 1 Flowline that crosses a Stream

Scoring & Prioritizing by Groups

Example Scoring Worksheet for Population Group

GROUP	Priority	CRITERIA	DB ABBREVIATION	VALUE 1	SCORE 1	VALUE 2	SCORE 2	VALUE 3	SCORE 3
	Priority 1: Score >=20 Count of Address Points or Buildings within of a Flowline		ADPBldg_200_CT	>20	20	1-20	5	0	0
		Count of Address Point or Buildings in Disprortionately Impacted Communities within 200 feet of a Flowline	ADPBldg_200_DIC	>20	10	1-20	5	0	0
		Within 200 feet of a School Bldg	School200	TRUE	10	FALSE	0		
		Within a Municipal Boundary	MunBdry	TRUE	0	FALSE	0	Not Scored-Ir	formational

- Qualitative Scoring Approach
- Relative scores for criteria based on ECMC Staff field knowledge
- Each Group (Population, Surface Water, Groundwater) scored independently
- Highest Priority Group is promoted to the Overall Geographic Priority

GIS Priority Matrix		Priority Levels					
		Priority 1 Priority 2		Priority 3			
Geographic Group	Population	P1	P2	Р3			
	Surface Water	P1	P2	Р3			
	Groundwater	P1	P2	Р3			
	Overall Geographic Priority	GEOGRAPHIC PRIORITY 1, if any of the 3 Groups = P1	GEOGRAPHIC PRIORITY 2, if no P1s and any of the 3 Groups = P2	GEOGRAPHIC PRIORITY 3, if no P1s or P2s and any of the 3 Groups = P3			

Overall Geographic Priority by Section

Priority 1 = Red

Priority 2 = Blue

Priority 3 = Green

Questions?

Jim Milne Geologist, GIS Specialist Jim.Milne@state.co.us

