Data Analysis in Environmental Applications (SEE5211/SEE8212)

Sem B 2023/24 (15 Jan – 20 Apr)

Prof. Yiming QIN
Assistant Professor
School of Energy and Environment
City University of Hong Kong

Lecture Hours: Tue 19:00 – 21:50; Venue: YEUNG LT-13

Data Analysis in Environmental Applications

L00: Course Information

Prof. Yiming QIN
Assistant Professor
School of Energy and Environment
City University of Hong Kong

Who we are

Instructor: Prof. Yiming QIN

Email: ymqin3@cityu.edu.hk

Office: YEUNG- B5428

TAs:

HAO Xinya

Xyhao5-c@my.cityu.edu.hk

ZHENG Siwen

siwezheng4-c@my.cityu.edu.hk

Course Description

- The course will provide the knowledge of using statistical methods in energy and environmental science.
- Analysis methods, such as probability, random variable (discrete & continuous), parameter estimation, confidence internal and hypothesis testing involving one and two populations, simple linear regression, analysis of variance, and goodness-of-fit test, are very helpful to understand the physical processes occurring in the environment, and to work on climate prediction.
- You are required to use the knowledge learnt from this course to analyse the data with computational tools, such as Python.

What will You Learn from this Course?

- 1) Understand the concepts of basic statistical methods;
- Use probability, random variable (discrete & continuous), parameter estimation, confidence internal and hypothesis testing involving one and two populations, simple linear regression, analysis of variance, and goodness-of-fit test to describe energy and environmental datasets and solve energy and environmental problems creatively;
- 3) Use correlation method to analyse energy and environmental data and discover the linkage between the data results and energy and environmental problems;
- 4) Apply the statistical methods creatively to explain the problems in energy and environmental science.

Textbooks

- ➤ Statistics: The exploration and analysis of data, 7th Edition, 2012. Roxy Peck Jay L DeVore.
- ➤ Statistics for Environmental Engineers, 2nd Edition, 2002. Linfield C. Brown, Paul Mac Berthouex.

 A set of lecture notes will be provided on the web phase by phase

SEE5211/SEE8212 Class Schedule (Sem B 2023/24)

Week 1	L00 Course Information	Week 8	Mid-term Discussion
(Jan 16)	L01 Introduction to Statistics	(Mar 12)	L08 Hypothesis Testing – Two Population
	L02 Descriptive Statistics		
	Python Programming Tutorial		
Week 2	L03 Probability	Week 9	L09 Simple Linear Regression
(Jan 23)	Python Programming Tutorial	(Mar 19)	L10 Analysis of Variance
			In-class Quiz 4: L07-L08
Week 3	L04 Random Variable – Discrete	Week 10	P01 Project
(Jan 30)	Python Programming Tutorial	(Mar 26)	L11 Goodness-of-fit Test
			In-class Quiz 5: L09-L10
Week 4	L05 Random Variable - Continuous	Week 11	L12 Time Series Analysis
(Feb 6)	• In-class Quiz 1: L01-L03	(Apr 2)	Final Exam Review
			In-class Quiz 6: L11
Feb 13	Lunar New Year Break	Week 12	L13 Principal Component Analysis
	• (Feb 9-15)	(Apr 9)	P02 Python Programming Tutorial for the Project
Week 5	L06 Estimation and Confidence Interval	Week 13	P03 Python Programming Tutorial for the Project
(Feb 20)	Mid Term Review	(Apr 16)	
, , ,	• In-class Quiz 2: L04-L05	, , ,	
Week 6	L07 Hypothesis Testing – One Population	Week 14	• Apr 22-27
	• In-class Quiz 3: L06		Student Revision Period
(Feb 27)			
Week 7	Mid Term Exam (2.5 hrs); Venue: LT- 13	TBC	Final Exam. TBD
(Mar 5)	• Up to L05		

Grading

 In-Class Quiz (30 mins, the best 	4 out of 6): 20%)
Open book, no electronic devices		

•	Mid-term Exam (2.5 hrs, Week 7, March 5):	20%
	Close-book, only one page of specified cheat sheet and	

calculators are allowed

• Group Project (Week 14): 20%

A written report with at least 15 pages

• Final Exam (TBD): 40%

Close-book, only one page of specified cheat sheet and calculators are allowed

Guidelines for Students

- Being in class on time. Being attentive, polite, respectful, and no disruptive in class.
- No academic dishonesty, e.g., plagiarism, cheating, etc., is allowed for all assessment tasks.
- Work hard!

Project

Scope of work:

- Form a group of 4-5 members. Each group needs to pick up one environmental pollutant or energy related problem to investigate. You are required to analyze the data by statistical methods and computational tools, such as Python, learned from the lecture. Relevant information sources, i.e. data, should be available online (e.g. EPD, Journal Paper, other Hong Kong government websites, etc.). For each group, send your topic and your group members to the TA and instructor **on Week 10.**
- Report: At least a 15-page report needs to be written.
- Please send the report to the TA and Instructor via Canvas in PDF or Word format.

Project Objectives:

- To investigate environmental or energy-related problems by statistical methods;
- To practice the use of computational tools and learn how to analyze real data by statistical methods;
- To foster how to solve the problems <u>creatively</u> and <u>innovatively</u>;
- To develop <u>critical thinking</u> and <u>teamwork</u> capability.

Project

Information Collection (some references for you):

- Environmental Data available from HKEPD website:
 - https://www.epd.gov.hk/epd/english/resources_pub/envir_info/envir_info.html
- Energy Data available from Census and Statistics department website:
 - https://www.censtatd.gov.hk/hkstat/sub/sp90.jsp?productCode=B1100002
- Climatological Information available from HKO website:
 - https://www.hko.gov.hk/en/cis/climat.htm
- The interest of the project is not only limited to Hong Kong, for example data in US:
 - https://www.epa.gov/air-trends

Project

Suggested format of the report and assessment criteria:

- Abstract (5%)
- Introduction (10%)
- Methodology (15%)
- Results & Discussion (20%)
- Recommendations (20%)
- Conclusions (10%)
- References (5%)
- Appendix (e.g. programming code in Jupyter notebook) (5%)
- English Writing (10%)

Outline

Chapter 0	Course Introduction
	Introduction to the course and the required contribution and learning outcome
Chapter 1	Introduction to Statistics
	Concepts in statistics, common terminology and methods
Chapter 2	Descriptive Statistics
	Types of variables, data presentation (graphical and numerical)
Chapter 3	Probability
	Basic set theory, Venn diagram, properties of probability and conditional probability
Chapter 4	Random Variable – Discrete
	Discrete probability distribution, population mean and variance, Binomial and Poisson
	distribution
Chapter 5	Random Variable – Continuous
	Continuous probability distribution, population mean and variance, Normal
	distribution

Related energy and environmental issues will be discussed in each chapter

Outline

Chapter 6	Estimation and Confidence Interval
	Estimator and estimate, accuracy and precision, maximum likelihood estimator, random
	interval, confidence interval, t-distribution
Chapter 7	Hypothesis Testing - One Population
	Null hypothesis, alternative hypothesis, type I error, type II error, probability-value
	approach, classical approach, binomial probability of success
Chapter 8	Hypothesis Testing - Two Population
	Independent versus dependent samples, compare two populations
Chapter 9	Simple Linear Regression
	Paired data, regression coefficients, least squares approach, fitted regression line, residual
	sum of squares, confidence intervals and hypothesis testing for regression coefficients
Chapter 10	Analysis of Variance (ANOVA)
	Main objectives of ANOVA models, one-way ANOVA analysis
Chapter 11	Goodness-of-fit Test
	Principles and usage of Goodness-of-fit test in discrete & continuous cases
Chapter 12	Time Series analysis
Chapter 13	Principal Component Analysis

Computational Tool for Data Analysis

Energy and Environmental Problems in Python

Why Python and jupyter notebook?

- An open source
- Libraries for data analysis tasks
- Easy to learn and use

Free software, open standards, and web services for interactive computing across all programming languages

How to install it?

Essential Python Libraries

NumPy

Multidimensional array object, linear algebra operations, Fourier transform, and random number generation.

Pandas

High-level data structures and functions designed to achieve fast, easy, and expressive data manipulation.

Matplotlib

Plots and two-dimensional visualizations.

Essential Python Libraries

SciPy

Standard continuous and discrete probability distributions, various statistical tests, and more descriptive statistics.

Statsmodels

A statistical analysis package which contains regression models, analysis of variance, time series analysis, non-parametric methods.

Jupyter Notebook

Installation

Starting the Jupyter Notebook Server

To get started, all you need to do is open up your terminal application.

This will start up Jupyter and your default browser should start (or open a new tab) to the following URL: http://localhost:8888/tree

Your browser should now look something like this:

Jupyter Notebook

Creating a Notebook

All you need to do is click on the New button (upper right).

Your web page should now look like this:

