Пусть (\cdot,\cdot) — стандартное евклидово скалярное произведение

$$(u, v) = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

Заметим, что $(v\cdot v^{\mathrm{T}})x=v\cdot v^{\mathrm{T}}x=(v,x)v$. Пространство V, на котором действует наш линейный оператор, раскладывается в прямую сумму $V=< v>\oplus < v>^\perp$. Нетрудно видеть, что оба слагаемых являются собственными подпространствами для $v\cdot v^{\mathrm{T}}$ с собственными значениями $|v|^2$ и 0 соответственно:

$$w = \lambda v \Rightarrow (v \cdot v^{\mathrm{T}})w = \lambda v \cdot (v^{\mathrm{T}}v) = |v|^{2} \cdot \lambda v;$$

$$w \perp v \Rightarrow (v \cdot v^{\mathrm{T}})w = v \cdot (v^{\mathrm{T}}w) = (v, w)v = 0.$$