Neural Networks

モデル化とシミュレーション特論 2023 年度前期 佐賀大学理工学研究科 只木進一

- 1 Introduction: Neurons and Brains
- Mathematical model of neurons
- Perceptron
- 4 3-layer perceptron

Introduction: Neurons and Brains

- Neural networks (神経回路網)
 - Generate collective responses to stimuli (刺激).
- Single cell organisms (単細胞生物)
 - Lacks neurons
 - Respond to external stimuli.
- Plants (植物)
 - Lacks neurons
- Multi-cell animals (多細胞動物)
 - Neurons through cell differentiation (細胞分化)

Neural systems in multi-cell animals

- Poriferan (海綿動物) and Placozoa (平板動物)
 - Lacks neurons
 - Minimum cell differentiation
- Animals with scattered neural systems (散在神経系)
 - Neural network on body surface
 - Not posses a central neural system (中枢神経)
 - Coelenterate (腔腸動物): jellyfish (くらげ), coral (さんご) etc.

Animals with cage-shaped neural system (かご型神経系をもつ動物)

- Ganglion (神経節) as a center of neural system at head
- Cage-shaped neural network on body surface
- Flatworm (扁形動物): Planaria (プラナリア) etc.

Animals with ladder-shaped neural system (はしご型神経系をもつ動物)

- Brains evolved through ganglion at heads
- Central neural system at abdomens (腹面)
- Ganglions at each somites (体節)
- Arthropod (節足動物): insects (昆虫) etc.
- Annelid (環形動物): earthworm (ミミズ) etc.

Animals with tubular neural system (管状神経系をもつ動物)

- Brains evolved through ganglion at heads
- Central neural system at body center
- Chordate (脊索動物)
- Vertebrate (脊椎動物)

Neurons (神経細胞)

- Receive pulses from other neurons through synapses
- Electric pulses using ions
- Coding scheme are not clearly understood
- Two states: fire and rest
- Neuron fires if pulses from other neurons exceed some threshold

- Soma (細胞体)
 - Keep living activities such as normal cells
- Dendrite (樹状突起)
 - Receive pulses from other neurons
- Axon (軸索)
 - Send pulses to other neurons
 - Tip divided into 10,000 synaptic buttons for human neurons
- Cell division almost finished during early childhood
- Body cells keep dividing lifelong

Synapse

McCulloch-Pitts model

ullet Stimuli for neuron j from neurons i

$$x_j = \phi\left(\sum_i w_{ji} x_i - h_j\right) \tag{2.1}$$

- x_i : output from neuron i
- w_{ii} : synaptic connection
- h_j : threshold
- $\bullet \ \phi$: response function, usually has a sigmoidal shape

McCulloch-Pitts neuron as a logical gate

1 AND 1/2

- \bullet Encode $\{T,F\}$ by $\{1,-1\}$
- Threshold values are shown as numerical values in nodes
- Assume step response functions.

logic gates

Step function

$$\theta(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

NOT

$$\theta(-x - 0) = \begin{cases} -1 & x = 1\\ 1 & x = -1 \end{cases}$$

AND

$$\theta\left(x+y-\frac{1}{2}\right) = \begin{cases} 1 & x=1, \ y=1\\ -1 & \text{otherwise} \end{cases}$$

• OR

$$\theta\left(x+y-1\right) = \begin{cases} -1 & x=0, \ y=0\\ 1 & \text{otherwise} \end{cases}$$

13/37

(2.5)

(2.2)

(2.3)

(2.4)

Classes in model package

- Neuron Class
 - Constructor with weight and response function
 - response() with input
- McCullochPitts class
 - Show response of AND, OR, and NOT gates.
- CorrectResponse class
- AbstractMultiLayer class

Perceptron : Rosenblatt (1966)

Learning and recognition by neural networks

Two-layer perceptron

Two-layer perceptron

- Response unit receives $\{a_i\}$ from sensory units
- ullet Response unit outputs η

$$\eta = \theta \left(\sum_{j} \xi_{j} a_{j} \right) \tag{3.1}$$

- ξ_i : weight for input
- The threshold is placed as the last element of the weight. And the last element of input is constant.
- \bullet θ : Step function

$$\theta\left(\vec{\xi}\cdot\vec{a}\right) = \begin{cases} 1 & \vec{\xi}\cdot\vec{a} \ge 0\\ -1 & \vec{\xi}\cdot\vec{a} < 0 \end{cases}$$
(3.2)

Linearly Separability

- ullet Consider a input space spanned by $ec{a}$
- ullet Divide the space by a hyper space normal to the weight vector $ec{\xi}$

$$\begin{cases} \vec{\xi} \cdot \vec{a} \ge 0 & \vec{a} \in \Sigma^+ \\ \vec{\xi} \cdot \vec{a} < 0 & \vec{a} \in \Sigma^- \end{cases}$$
 (3.3)

Learning by error-correction

$$\begin{cases} \vec{\xi} \to \vec{\xi} + c\vec{a} & \text{if } \eta = -1 \text{ for } \vec{a} \in \Sigma^+ \\ \vec{\xi} \to \vec{\xi} - c\vec{a} & \text{if } \eta = 1 \text{ for } \vec{a} \in \Sigma^- \end{cases}$$
(3.4)

• Correct reusponce $\eta_{\rm corect}$

$$\eta_{\text{correct}} = \begin{cases} 1 & \vec{a} \in \Sigma^+ \\ -1 & \vec{a} \in \Sigma^- \end{cases}$$
(3.5)

$$\vec{\xi} \to \vec{\xi} - \frac{c}{2} \left(\eta - \eta_{\text{correct}} \right) \vec{a}$$
(3.6)

Example: Perceptron learning NOT gate

Example: Perceptron learning AND and OR gates

Classes in twoLayer package

- TwoLayer class: general two layer model
- LearningLogicGate class: general learning model
- LearningAndGate, LearningOrGate, and LearningNotGate

Experiments

- \bullet $\vec{\xi_0}$: Correct answers
- $\vec{\xi} : Initial random vectors$
- At each learning step
 - learning
 - o normalize vector
 - **3** evaluation: $m = \vec{\xi_0} \cdot \vec{\xi}$

3-layer perceptron

3-layer perceptron

- Outputs from sensory units: $\{a_i\}$
- Outputs from association units: $\{x_i\}$

$$x_i = f\left(\sum_j w_{ij} a_j\right) \tag{4.1}$$

 w_{ij} : weight

• Output from response unit: η

$$\eta = g\left(\sum_{k} s_k x_i\right) \tag{4.2}$$

 s_k : weight

Example XOR Note that XOR is not liniearly separable

p	q	p XOR q
0	0	0
0	1	1
1	0	1
1	1	0

Example: XOR logical circuit

Implement as 3-layer perceptron of XOR

Example: XOR logical circuit: another version

Real implementation

Back propagation method

Minimize square error

$$E = \frac{1}{2} \left(\eta - \eta_{\text{correct}} \right)^2 \tag{4.3}$$

Continuous output from any elements

$$x_i = f\left(\sum_j w_{ij} a_j\right)$$

$$\eta = g\left(\sum_{k} s_k x_k\right)$$

(4.5)

(4.4)

Update weights in response unit

$$\frac{\partial E}{\partial s_k} = (\eta - \eta_{\text{correct}}) g' \left(\sum_j s_j x_j \right) x_k$$

$$\equiv r x_k \tag{4.6}$$

$$s_k \to s_k - crx_k \tag{4.7}$$

Update weights in association unit

$$\frac{\partial E}{\partial w_{ij}} = (\eta - \eta_{\text{correct}}) g' \left(\sum_{k} s_k x_k \right) s_i f' \left(\sum_{\ell} w_{i\ell} a_{\ell} \right) a_j$$

$$\equiv \tilde{r}_i a_j \tag{4.8}$$

$$\tilde{r}_i \equiv r s_i f'\left(\sum_{\ell} w_{i\ell}\right) \tag{4.9}$$

$$w_{ij} \to w_{ij} - c\tilde{r}_i a_j \tag{4.10}$$

- Errors seem to propagate backwardly from the response unit to the association units
- Updates possibly be trapped at local minima

Simulation setups

Response function

$$f(x) = g(x) = \tanh(\alpha x) \tag{4.11}$$

- random initial value: $\{w_{ij}\}$, $\{s_k\}$
- Observe error at every step

$$\bar{E} = \frac{1}{4} \sum_{a_0 = \{-1,1\}} \sum_{a_1 = \{-1,1\}} \frac{1}{2} (\eta - \eta_{\text{correct}})^2$$
 (4.12)

Responce of output unit

Output unit works like AND gate.

Responces of associative units

p	q	o_1	o_2
-1	-1	-0.92	1
-1	1	0.85	0.84
1	-1	0.86	0.85
1	1	1	-0.92

The 1st unit works like $p \vee q$. and 2nd one $\neg p \vee \neg q$.