

Speech Representation Learning through Self-supervised Pretraining and Multi-task Finetuning

Yi-Chen Chen, Shu-wen Yang, Cheng-Kuang Lee, Simon See, Hung-yi Lee

Motivation - Representation Learning via Pretraining

- For example,
 - ImageNet pretraining in CV -> object detection
 - BERT in NLP -> question answering
 - wav2vec in speech -> automatic speech recognition

Motivation - Representation Learning via SSL Pretraining

- Self-supervised Learning (SSL)
 - Generative losses
 - APC, Mockingjay, Tera, DeCoAR, ...
 - Discriminative losses
 - CPC, wav2vec (2.0), HuBERT, ...
 - Multiple losses
 - PASE(+), ...

Motivation - Representation Learning via Multi-task Learning

- General representation learning for a variety of speech processing tasks
- Supervised multi-task learning (MTL) is to train a shared model on various downstream tasks.
- There has not been a systematic study of general representation learning models trained by MTL of various speech processing tasks.
- We want to investigate if MTL on various downstream tasks can further improve the representations from SSL.
- SUPERB Benchmark (Unconstrained)

SUPERB

- Since no downstream model training is required in QbE, we only perform MTL experiments and compare the results on the other nine tasks.
 - Content
 - Phoneme Recognition (PR)
 - Automatic Speech Recognition (ASR)
 - Keyword Spotting (KS)
 - Speaker
 - Speaker Identification (SID)
 - Automatic Speaker Verification (ASV)
 - Speaker Diarization (SD)
 - Semantics
 - Intent Classification (IC)
 - Slot Filling (SF)
 - Paralinguistics
 - Emotion Recognition (ER)

Experimental Setup

- The SSL pretraining approach used in experiments:
 - HuBERT achieves the overall best performance on SUPERB.
 - We use a weighted sum of hidden representations of all layers in the HuBERT model as the representations for downstream heads, as in SUPERB.
- The model architecture and implementation details:
 - HuBERT Base is adopted as our shared model architecture.
 - For task-specific head architectures, we simply follow the settings in SUPERB.
 - The code is released: https://github.com/s3prl/s3prl/tree/multi-task-distributed

Training Scenarios

(b-1) All-task MTL Finetuning SSL Pretrained **Shared Model** (finetuned) (a) SSL Pretraining The shared model is pretrained with SSL and Head 1 then further finetuned with MTL on all tasks. SSL Pretrained Shared Model Head 2 (frozen) (b-2) Leave-one-out MTL Finetuning Head 3 1. The shared model is pretrained with SSL. SSL Pretrained 2. The shared model is frozen when the heads Shared Model are trained. (finetuned)

(c) Task Transfer Learning

Head 1

Head 2

Head 3

Head 1

Head 2

Head 3

The shared model is pretrained with SSL and then further finetuned with MTL on all but one tasks.

- 1. The shared model is pretrained with SSL and then further finetuned with MTL on all but one tasks.
- 2. The shared model is frozen when the head of the remaining task is trained.

Experimental Results

Scenario	Tasks for MTL	ASR	PR	S	SF	SD	ER	IC	KS	ASV	SID
Scenario	Finetuning	WER↓	PER↓	F1↑	CER↓	DER↓	ACC↑	ACC↑	ACC↑	EER↓	ACC↑
(a) SSL	N/A	6.42	5.41	88.53	25.20	5.88	64.24	98.34	96.30	5.11	81.42
(b-1) SSL+MTL	all	6.22	3.61	87.56	26.76	4.93	67.28	99.60	97.34	6.76	90.86
	all but ASR	X	3.63	87.28	<u>27.11</u>	4.89	65.07	99.63	97.57	7.78	90.69
	all but PR	6.79	X	86.94	<u>27.66</u>	4.81	66.73	99.66	97.44	7.94	91.16
	all but SF	6.10	3.39	X	X	4.73	<u>65.71</u>	<u>99.58</u>	<u>97.18</u>	<u>7.61</u>	<u>90.70</u>
	all but SD	6.28	3.54	87.94	26.31	X	66.73	99.63	<u>97.11</u>	<u>7.49</u>	<u>90.79</u>
(b-2): SSL+MTL	all but ER	6.17	3.40	87.45	26.90	4.77	X	99.55	97.27	7.19	90.51
927	all but IC	6.13	3.34	87.65	26.94	4.78	66.08	X	97.27	6.74	90.55
	all but KS	6.17	3.55	87.83	26.88	4.91	66.27	99.71	X	<u>7.86</u>	90.67
	all but ASV	5.90	2.79	87.88	26.52	3.61	64.88	99.58	97.44	X	85.06
	all but SID	5.95	3.25	<u>87.33</u>	<u>27.39</u>	4.50	68.66	<u>99.55</u>	<u>97.27</u>	<u>9.00</u>	X
(c) Task Transfer	N/A	6.27	5.79	88.14	26.24	5.80	64.24	97.42	96.33	7.55	62.05

(a) SSL Pretraining

- 1. The shared model is pretrained with SSL.
- 2. The shared model is frozen when the heads are trained.

- 1. The shared model is pretrained with SSL.
- 2. The shared model is frozen when the heads are trained.

Experimental Results - All-task MTL Finetuning

Scenario	Tasks for MTL	ASR	PR	S	SF	SD	ER	IC	KS	ASV	SID
	Finetuning	WER↓	PER↓	F1↑	CER↓	DER↓	ACC↑	ACC↑	ACC↑	EER↓	ACC ↑
(a) SSL	N/A	6.42	5.41	88.53	25.20	5.88	64.24	98.34	96.30	5.11	81.42
(b-1) SSL+MTL	all	6.22	3.61	87.56	26.76	4.93	67.28	99.60	97.34	6.76	90.86

- Serve as a strong baseline for SSL pretraining or other representation learning approaches.
- How to select the model checkpoint based on validation scores of tasks?
 - ASV suffers from overfitting.

The shared model is pretrained with SSL and then further finetuned with MTL on all but one tasks.

Experimental Results - Removing One Task In MTL

Scenario	Tasks for MTL	ASR	PR	S	SF	SD	ER	IC	KS	ASV	SID
Scenario	Finetuning	WER↓	PER↓	F1↑	CER↓	DER↓	ACC↑	ACC↑	ACC↑	EER↓	ACC↑
			I.S.								
(b-1) SSL+MTL	all	6.22	3.61	87.56	26.76	4.93	67.28	99.60	97.34	6.76	90.86
(b-2): SSL+MTL	all but ASR	X	3.63	87.28	<u>27.11</u>	4.89	65.07	99.63	97.57	7.78	90.69
	all but PR	6.79	X	86.94	<u>27.66</u>	4.81	66.73	99.66	97.44	<u>7.94</u>	91.16
	all but SF	6.10	3.39	X	X	4.73	<u>65.71</u>	<u>99.58</u>	<u>97.18</u>	<u>7.61</u>	90.70
	all but SD	6.28	3.54	87.94	26.31	X	66.73	99.63	<u>97.11</u>	<u>7.49</u>	<u>90.79</u>
	all but ER	6.17	3.40	<u>87.45</u>	<u>26.90</u>	4.77	X	99.55	<u>97.27</u>	7.19	90.51
	all but IC	6.13	3.34	87.65	26.94	4.78	66.08	X	<u>97.27</u>	6.74	90.55
	all but KS	6.17	3.55	87.83	26.88	4.91	66.27	99.71	X	<u>7.86</u>	90.67
	all but ASV	5.90	2.79	87.88	26.52	3.61	64.88	99.58	97.44	X	85.06
	all but SID	5.95	3.25	<u>87.33</u>	<u>27.39</u>	4.50	68.66	<u>99.55</u>	<u>97.27</u>	<u>9.00</u>	X

Experimental Results - Removing One Task In MTL

The improvement relations of tasks.

The hurt relations of tasks.

• If we focus on a certain primary task, we may select proper auxiliary tasks to assist the primary task based on these MTL experimental results.

Experimental Results - Removing One Task In MTL

The improvement relations of tasks.

The hurt relations of tasks.

• If we focus on a certain primary task, we may select proper auxiliary tasks to assist the primary task based on these MTL experimental results.

(b-1) All-task MTL Finetuning Head 1 SSL Pretrained **Shared Model** Head 2 (finetuned) (a) SSL Pretraining Head 3 The shared model is pretrained with SSL and Head 1 then further finetuned with MTL on all tasks. SSL Pretrained Shared Model Head 2 (frozen) Head 3 (b-2) Leave-one-out MTL Finetuning Head 1 1. The shared model is pretrained with SSL. SSL Pretrained 2. The shared model is frozen when the heads Shared Model Head 2 are trained. (finetuned) Head 3 The shared model is pretrained with SSL and then

further finetuned with MTL on all but one tasks.

(c) Task Transfer Learning

- 1. The shared model is pretrained with SSL and then further finetuned with MTL on all but one tasks.
- The shared model is frozen when the head of the remaining task is trained.

Experimental Results - Task Transfer Learning

Scenario	Tasks for MTL	ASR	PR	S	SF	SD	ER	IC	KS	ASV	SID
	Finetuning	WER↓	PER↓	F1 ↑	CER↓	DER↓	ACC ↑	ACC↑	ACC ↑	EER↓	ACC ↑
(a) SSL	N/A	6.42	5.41	88.53	25.20	5.88	64.24	98.34	96.30	5.11	81.42
(b-1) SSL+MTL	all	6.22	3.61	87.56	26.76	4.93	67.28	99.60	97.34	6.76	90.86

(c) Task Transfer	N/A	6.27	5.79	88.14	26.24	5.80	64.24	97.42	96.33	7.55	62.05

• Whether a task is involved in MTL is crucial to the performance of this task.

Conclusion and Discussion

- In this work, we investigate different training scenarios of supervised MTL as a speech representation learning approach along with SSL pretraining on a benchmark with various speech processing tasks.
 - We analyze the generalizability of representations learned with supervised MTL empirically.
- The performance of MTL is dependent on many factors.
 - the amount of data
 - task relationships
 - noise
 - These factors should be isolated and investigated with more analyses.

Future directions:

- exploring a better method to select the model checkpoint with MTL
- o more in-depth research of MTL and its optimization on speech processing tasks
- trying to train the shared model with both SSL, MTL and self training simultaneously as a semi-supervised representation learning approach