

DEUTSO

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 57 049.3

CERTIFIED COPY OF PRIORITY DOCUMENT

Anmeldetag:

06. Dezember 2002

Anmelder/Inhaber:

SCHOTT GLAS, Mainz/DE

Bezeichnung:

Verfahren zur Herstellung von Borosilicatgläsern,

Boratgläsern und kristallisierenden borhaltigen

Werkstoffen

IPC:

C 03 C, C 03 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 17. Dezember 2003 **Deutsches Patent- und Markenamt**

Der Präsident Im Auftrag

Agurka

COMPLIANCE WITH RULE 17.1(a) OR (b)

Schott Glas

Verfahren zur Herstellung von Borosilicatgläsern, Boratgläsern und kristallisierenden borhaltigen Werkstoffen

Beschreibung

Die Erfindung betrifft ein Verfahren zum Herstellen von borhaltigen Werkstoffen. Insbesondere betrifft die Erfindung ein Verfahren zur Herstellung borhaltiger, alkaliarmer Werkstoffe mittels induktiver Beheizung des Schmelzguts.

10

15

In der Technik werden Borosilicatgläser wegen ihrer guten chemischen Resistenz und ihrer relativ geringen Wärmeausdehnung als Laborglas, für Ampullen in der Pharmaindustrie und als Glühlampengläser verwendet. Diese Gläser besitzen einen hohen SiO_2 -Gehalt von 73 - 86 %, einen B_2O_3 -Gehalt von 6 - 13%, einen Al_2O_3 -Gehalt von 1 - 5% und einen Alkaligehalt von 2 - 9% (Mol %).

Bei den optischen Gläsern kann der B₂O₃-Gehalt auch über 13%
liegen und bis auf über 75 mol % ansteigen. Der hohe B₂O₃ Gehalt bewirkt hohe Abbézahlen, d.h. eine geringe
Lichtzerstreuung. Diese Gläser finden daher in Linsensystemen
Verwendung zur Korrektur der chromatischen Aberration.

Gläser, die als Netzwerkbildner nur oder in überwiegendem Maße B₂O₃ besitzen, werden analog den Silicatgläsern Boratgläser genannt. Die Borosilicatgläser enthalten als Netzwerkbildner sowohl SiO₂ als auch B₂O₃ und liegen in ihrer Zusammensetzung somit zwischen den Silicat- und den

Boratgläsern.

10

15

20

25

30

35

Die Borosilicatgläser mit einem niedrigen B_2O_3 – Gehalt, insbesondere bei unter 15% B_2O_3 , unterscheiden sich gegenüber Borosilicat- und Boratgläsern mit einem hohen B_2O_3 – Gehalt (über 15% B_2O_3) deutlich in ihren physikalischen, chemischen und optischen Eigenschaften. So weisen die Borosilicatgläser mit dem hohen B_2O_3 -Gehalt und die Boratgläser üblicherweise eine sehr steile Viskositätskurve mit hoher

Transformationstemperatur T_g , aber niedriger Verarbeitungstemperatur VA und somit niedrigen Einschmelz- und Läutertemperaturen auf. Die optische Lage dieser Gläser ist bei sehr hohen Abbezahlen angesiedelt, und die chemische Beständigkeit ist im allgemeinen deutlich schlechter als bei den Borosilicatgläsern mit niedrigem B_2O_3 -Gehalt und den Silicatgläsern.

Es kommen bei den Borosilicatgläser und den Boratgläsern mit hohem B_2O_3 -Gehalt im allgemeinen auch keine oder nur wenige Prozente von Alkalioxiden zum Einsatz, da sie zum einen aufgrund des Viskositätsverlaufs zum Einschmelzen nicht benötigt werden und zum anderen die chemische Beständigkeit noch weiter verschlechtern. Auch für die angestrebten hohe Abbezahlen sind mit alkalioxdhaltigen Boratgläsern nicht erreichbar.

Glasschmelzen von Silicatgläser und Borosilicatgläser mit hohem B_2O_3 -Gehalt haben den Nachteil, dass sie chemisch sehr aggressiv sind. Es sei hier nur auf den Borsäureaufschluss in der chemischen Analytik verwiesen.

Silicatgläser und Borosilicatgläser mit niedrigem B_2O_3 -Gehalt lassen sich gut in keramischen Feuerfestmaterialien schmelzen. Für optische Anwendungen werden jedoch meistens höhere Anforderungen an die Lichttransmission und damit

verbunden an die Reinheit der Gläser gestellt. Silicatgläser und Borosilicatgläser mit niedrigem B_2O_3 -Gehalt für optische Anwendungen werden daher oft in Platingefäßen oder in Kieselglasapparaturen hergestellt.

5

Im Gegensatz zu den Silicatgläsern und Borosilicatgläsern mit niedrigem B_2O_3 -Gehalt greifen die Borosilicat- und Boratgläser mit hohem B_2O_3 -Gehalt die Kieselglasaggregate so stark an, daß sich in der Glasschmelze leicht SiO_2 - Schlieren bilden. Diese SiO_2 -Schlieren lassen sich selbst bei intensivem Rühren nicht mehr vollständig auflösen. Kritischer ist auch, daß durch das gelöste SiO_2 die Eigenschaften der Borosilicat- und Boratgläser mit hohem B_2O_3 -Gehalt zum Teil erheblich verändert werden.

15

20

10

Als weitere Folgen des starken Angriffs des
Feuerfestmaterials ergeben sich, neben der deutlichen
Verschlechterung der Eigenschaften und der Homogenität, sehr
kurze Standzeiten der Kieselglasapparaturen, was erhebliche
Kosten verursacht. Zum einen entstehen Kosten für die
Erneuerung der Kieselglasaggregate und zum anderen durch den
wiederholten Stillstand der Produktion.

25

30

35

Die Borosilicat- und Boratgläser mit hohem B_2O_3 - Gehalt greifen aber nicht nur die Kieselglasaggregate an, sondern auch Platingeräte. Auch durch das gelöste Platin werden die Eigenschaften der Gläser deutlich verschlechtert. Je nach Oxidationszustand der Glasschmelze enthält die Glasschmelze metallische Platinteilchen oder Platin-Ionen. Die färbenden Platin-Ionen erniedrigen die Transmission dieser Gläser insbesondere im Ultraviolettbereich in einem Maße, welches für viele Anwendungen nicht mehr vertretbar ist.

Der starke chemische Angriff der Borosilicat- und Boratgläser mit hohem B_2O_3 - Gehalt führt dazu, daß diese nach

herkömmlichen Schmelzverfahren geschmolzenen optischen Gläser für einige Anwendungen nicht mehr den gestiegenen technischen Anforderungen bezüglich der Transmission und Homogenität genügen.

5

Darüber hinaus entstehen durch den erhöhten chemischen Angriff der Gläser auf die Edelmetall-Schmelzaggregate oder die keramischen Schmelzaggregate erhebliche Zusatzkosten, die einen breiten Einsatz dieser Gläser behindert.

10

Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren anzugeben mit welchem es ermöglicht wird, borhaltige, insbesondere borathaltige, alkaliarme Werkstoffe, wie etwa alkaliarme oder sogar alkalifreie Borosilicatgläser mit hohem B_2O_3 -Gehalt und Boratgläser hoher Reinheit und Homogenität beziehungsweise alkaliarme/ alkalifreie kristallisierende borathaltige Werkstoffe oder Gemenge für derartige Werkstoffe zu schmelzen und die Werkstoffe so in hochreiner Form herzustellen.

20

15

Diese Aufgabe wird bereits in höchst überraschend einfacher Weise durch ein wie in Anspruch 1 angegebenes Verfahren gelöst. Vorteilhafte Weiterbildungen des Verfahrens sind in den Unteransprüchen angegeben.

25

.30

Dementsprechend wird bei dem erfindungsgemäßen Verfahren zur Herstellung eines borathaltigen alkaliarmen Werkstoffes in einem Aggregat mit einem elektromagnetischen Wechselfeld direkt induktiv beheizt, wobei das Schmelzgut als Bestandteil zumindest ein Metalloxid, dessen Metallionen zwei- oder höherwertig sind mit einem Stoffmengenanteil von zumindest 25 mol % aufweist und wobei das Verhältnis der Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner oder gleich 0,5 ist.

Als elektromagnetisches Wechselfeld ist dabei besonders ein Hochfrequenzfeld geeignet, mit welchem sich große Energiemengen induktiv in eine Schmelze eintragen lassen.

Die Erfinder haben überraschend erkannt, dass borhaltige Schmelzen, wie insbesondere solche aus alkaliarmen oder alkalifreien Borosilicatgläsern mit hohem B_2O_3 -Gehalt und alkaliarme oder alkalifreie Boratgläser dann mit Hochfrequenz ankoppeln, wenn das Molverhältnis von B_2O_3 / $(B_2O_3 + SiO_2)$ > 0,5 ist, wenn also das Verhältnis der Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner oder gleich 0,5 ist.

10

- 15 Diese Erkenntnis war um so überraschender, als selbst alkalihaltige Borosilicatgläser mit niedrigem B2O3-Gehalt deren Molverhältnis von B_2O_3 / ($B_2O_3 + SiO_2$) < 0,5 ist, nur bei hohen Temperaturen oder in der Praxis gar nicht ankoppeln. Gegen das Schmelzen von Borosilicatgläser mit hohem B₂O₃-Gehalt und Boratgläsern in mit elektromagnetischer : 20 Hochfrequenzenergie beheizten Skulltiegeln spricht zum einen die eigentlich zu erwartende geringe Ankopplungsfähigkeit der alkaliarmen/alkalifreien Borosilicatgläser mit hohem B₂O₃-Gehalt und der Boratgläser mit elektromagnetischen 25 Wechselfeldern, und zum anderen die Gefahr des Durchbruchs der Glasschmelze bedingt durch die sehr niedrige Viskosität dieser Gläser und die damit verbundene Gefahr von Überschlägen. .
- 30 Eine Erklärung für das Phänomen, daß die erfindungsgemäßen Schmelzen entgegen der Erwartung doch an ein elektromagnetisches Hochfrequenzfeld ankoppeln, könnte sein, dass bei einem Molverhältnis von B_2O_3 / (B_2O_3 + SiO_2) < 0,5 das SiO_2 als Netzwerkbildner dominiert und erst bei einem Molverhältnis von B_2O_3 / (B_2O_3 + SiO_2) > 0,5 das B_2O_3 die

Struktur bestimmt.

Aus dem Artikel "Inorganic Glass-Forming Systems von H. Rawson, Academic Press London and New York 1967, Seite 107 ist bekannt, dass Aluminoborat-Systeme hervorragende elektrische Isolationseigenschaften aufweisen. Diese Gläser besitzen sogar einen höheren elektrischen Widerstand als "fused silica". Das bedeutet, das diese Gläser in festem Zustand eine extrem schlechte elektrische Leitfähigkeit aufweisen. Überraschend zeigt sich aber, daß sich solche Gläser, sofern sie eine wie in Anspruch 1 angegebene Zusammensetzung aufweisen, dennoch mit Hochfrequenz ankoppeln und sich mit dem erfindungsgemäßen Verfahren herstellen lassen.

15

Die direkte induktive Beheizung der Schmelze mittels eines hochfrequenten Wechselfeldes ermöglicht die Herstellung besonders reiner Werkstoffe, da kein unmittelbarer Kontakt der Schmelze mit dem Material einer Heizvorrichtung vorhanden ist. Außerdem werden Verunreinigungen, wie etwa Rückstände und Verbrennungsprodukte, die bei der Verbrennung organischer Brennstoffe in der Oberofenatmosphäre entstehen können, vermieden.

25

30

20.

Als Ankopplung der Schmelze an das elektromagnetische Wechselfeld, wie insbesondere in Form eines Hochfrequenzfeldes wird in diesem Zusammenhang verstanden, daß der Energieeintrag in die Schmelze durch induktive Kopplung größer als der Energieaustrag aus der Schmelze durch die Wärmeabfuhr ist. Erst wenn eine Schmelze also an das Hochfrequenzfeld ankoppelt, ist überhaupt eine Erwärmung oder Aufrechterhaltung der Schmelze durch Hochfrequenzbeheizung möglich.

Silicatgläser und insbesondere Aluminosilicatgläser mit einem hohen Alkaligehalt besitzen eine ausreichende elektrische Leitfähigkeit und koppeln daher gut mit Hochfrequenz an, während alkaliarme Silicatgläser erst bei sehr hohen Temperaturen oder gar nicht an ein elektromagnetisches Wechselfeld ankoppeln.

Im allgemeinen nimmt die elektrische Leitfähigkeit mit steigender Temperatur zu. Aber die hoch borsäurehaltigen Gläser können nicht sehr hoch erhitzt werden, da sonst die Alkaliborate oder die Borsäure stark verdampfen und sich damit die Zusammensetzung unkontrolliert verändert. Unter anderem kann dies zu einer unerwünschten Knotenbildung führen.

15

20

25

10

Es ist zu erwarten, daß Borosilicatgläser mit niedrigem B2O3-Gehalt bei gleich hohem Alkali-Gehalt bereits deutlich schlechter als Silicatgläser an ein elektromagnetisches Feld ankoppeln, da die Beweglichkeit der Alkaliionen in der Glasstruktur durch das Boroxid behindert wird. Dies zeigt sich auch daran, dass Borosilicatgläsern im Gegensatz zu den Aluminosilicatgläsern für den chemischen Ionenaustausch schlecht geeignet sind. Die Ankopplung von Boratgläsern wird dementsprechend noch schlechter oder ist gar nicht mehr möglich, wenn solche Gläser alkaliarm oder alkalifrei sind. Erst das erfindungsgemäße Verfahren ermöglicht in überraschender Weise dennoch die Ankopplung borathaltiger Schmelzen an ein Hochfrequenzfeld.

Überraschend zeigt sich dabei der Effekt, daß diese Schmelzen ankoppeln, wenn Borat gegenüber Siliziumoxid der überwiegende Netzwerkbildner ist, wenn also im Falle von Borosilicatgläsern der Stoffmengenanteil von Borat den des Siliziumoxids übertrifft. In diesem Falle können dann auch die sonst für eine Ankopplung hinreichende Leitfähigkeit der

Schmelze wichtigen Alkaliionen durch andere Metallionen ersetzt werden. Es hat sich gezeigt, daß dabei ein Stoffmengenanteil von 25% von Oxiden mit zwei- oder mehrwertigen Metallionen, wie beispielsweise Erdalkalioxiden ausreicht.

Als borathaltige Werkstoffe sind dabei insbesondere alkaliarme hochborsäurehaltigen Borosilicatgläsern, Boratgläser, sowie auch kristallisierende borathaltige
Werkstoffe geeignet, um mit dem erfindungsgemäßen Verfahren hergestellt zu werden.

Obwohl die Metalloxide mit einwertigen Metallen, wie insbesondere Alkalioxide die Leitfähigkeit der Gläser und damit das Ankoppelverhalten deutlich erhöhen, kann der Stoffmengenanteil alkalimetallhaltiger Verbindungen im Schmelzgut, wie insbesondere der Stoffmengenanteil der einwertigen Metalloxide vorteilhaft auf kleiner oder gleich 0,5 % beschränkt werden, um die physikalischen und chemischen Eigenschaften der Gläser zu verbessern, ohne daß die Schmelze ihre Ankoppelbarkeit verliert.

15

20

25

30

Es sei hier darauf hingewiesen, dass bei den Borosilicatgläsern mit hohem B₂O₃-Gehalt und Boratgläsern das Ankoppelverhalten für das erfindungsgemäße Schmelzen mit Hochfrequenzbeheizung besser ist, wenn den Alkaligehalt über 0,5 % liegt. Ein besonders gute Ankopplung wird bereits mit etwa 2% Stoffmengenanteil alkalihaltiger Verbindungen erreicht. Als alkaliarme Schmelze wird insbesondere eine derartige Schmelze mit einem Stoffmengenanteil von Alkaliverbindungen von höchstens 2 %, bevorzugt von höchstens 0,5 % verstanden.

Zum erfindungsgemäßen Schmelzen von Keramiken und Gläsern 35 können neben den herkömmlichen keramischen Tiegeln oder den Edelmetallgefäßen insbesondere auch Skulltiegel eingesetzt werden. Besonders geeignete Vorrichtungen zur Durchführung des erfindungsgemäßen Herstellungsverfahrens werden dabei unter anderem in der früheren deutschen Anmeldung der Anmelderin mit der Anmeldenummer 102 44 807.8 beschrieben, deren Offenbarungsgehalt vollumfänglich auch zum Gegenstand der vorliegenden Erfindung gemacht wird. Geeignete Skulltiegel sind auch beispielsweise aus der EP 0 528 025 B1 bekannt.

10

· 15

Die Skulltiegel umfassen eine gekühlte Tiegelwandung. Diese kann beispielsweise zylindrisch und aus einem Kranz von vertikalen Rohren, vorzugsweise Metallrohre, aufgebaut sein. Als Kühlfluid wird bevorzugt Wasser eingesetzt. Es ist jedoch auch die Kühlung mit anderen Kühlfluiden, wie beispielsweise mit Luft oder einem Aerosol möglich.

Zwischen einander benachbarten Rohren verbleiben Schlitze. Auch der Tiegelboden kann aus Rohren aufgebaut sein. An ihren Enden sind die Rohre an vertikale Rohre zur Kühlmittelzufuhr beziehungsweise zur Kühlmittelabfuhr angeschlossen.

25

30

35

20

Die Beheizung erfolgt durch eine Induktionsspule, welche die Tiegelwandung umgibt und über welche elektromagnetische Energie, vorzugsweise in Form eines elektromagnetischen Hochfrequenzfeldes in den Tiegelinhalt einkoppelbar ist.

Gemäß einer bevorzugten Ausführungsform wird ein Wechselfeld mit einer Frequenz im Bereich von 50 kHz bis 1500 kHz zur direkten induktiven Beheizung der Schmelze verwendet. Hierbei werden vorteilhaft die postalisch zugelassenen Frequenzen, wie etwa 386 kHz in Deutschland verwendet. Die Wahl einer geeigneten Frequenz hängt außerdem vom Fassungsvermögen des verwendeten Tiegels ab. Mit steigender Frequenz sinkt die Eindringtiefe des Feldes in die Schmelze. Daher sind für

große Tiegel eher niedrigere Frequenzen und für kleinere Tiegel höhere Frequenzen vorteilhaft, um eine hinreichend hohe Heizleistung auch in der Mitte des Tiegels zu erreichen.

5 Ein Skulltiegel arbeitet im wesentlichen wie folgt: Der Tiegel wird mit Gemenge oder Scherben oder einem Gemisch von beidem befüllt. Das Glas beziehungsweise die Glasschmelze müssen zunächst vorgeheizt werden, um eine elektrische Mindestleitfähigkeit der Glasschmelze zu erreichen. Ist die Kopplungstemperatur erreicht, dann kann die weitere Energiezufuhr über die Einstrahlung von Hochfrequenzenergie erfolgen.

Der Vorteil des Schmelzens durch direkte induktive Beheizung in einem Skulltiegel liegt darin, dass sich an den gekühlten Wänden, wie etwa Wänden aus wassergekühlten Metallrohren eine Skullschicht aus arteigenem Material bilden kann. Dadurch wird nicht nur ein Kontakt der Schmelze mit einer Heizvorrichtung sondern auch mit der Tiegelwandung vermieden. Somit können in einem derartigen Tiegel besonders reine Werkstoffe erschmolzen werden, da kein Eintrag von Fremdmaterial, wie beispielsweise färbende Ionen aus der Wandung in die Schmelze vorhanden ist.

15

20.

Die Skullschicht bildet sich an den gekühlten Rohren aus.

Zwischen den Rohren dringt die Glasschmelze etwas in den

Zwischenraum ein bis sie von beiden Seiten soweit abgekühlt

ist, daß sich ebenfalls eine dünne Glasschicht ausbildet und

die Lücke zwischen den Rohren schließt. Ist der Abstand

zwischen den Metallrohen zu weit oder ist die Skullschicht zu

dünn, kann es dazu kommen, daß die Skullschicht dem Druck der

Glasschmelze nicht mehr widerstehen kann, so daß das Glas

zwischen den Metallrohren ausfließt.

Das Schmelzen mit einem induktiv beheizten Skulltiegel wird bevorzugt zum Schmelzen von Kristallen oder von hochschmelzenden Gläsern eingesetzt. Beim Schmelzen von Kristallen besteht die Skullschicht aus leicht angesintertem Kristallpulver und bei Gläsern bildet sich eine glasige oder kristalline Schicht aus.

Um mit Hochfrequenz in einem Skulltiegel schmelzen zu können, muss die Energie, die durch die Hochfrequenz in die Glasschmelze eingetragen wird, größer sein, als die Energie, die durch Strahlung oder Wärmeabfuhr, über die Skullschicht und die gekühlten Wände des Skulltiegels abgeführt wird. Dies ist nur dann der Fall, wenn die Glasschmelze eine ausreichende elektrische Leitfähigkeit und damit ein ausreichend gutes Ankopplungsverhalten besitzt.

10

15

20

25

30

Borosilicatgläser mit hohem B2O3-Gehalt und Boratgläser weisen im Gegensatz zu den Silicatgläsern und den Borosilicatgläsern mit niedrigem B2O3-Gehalt bei der Schmelztemperatur eine extrem niedrige Viskosität auf. Diese Borosilicatgläser mit hohem B₂O₃-Gehalt und die Boratgläser sind sehr kurz. Dies bedeutet, daß der Übergang vom hochviskosen in den niedrigviskosen Zustand in einem sehr engen Temperaturintervall stattfindet. Bei der Schmelztemperatur sind diese Gläser daher ähnlich dünnflüssig wie Wasser. Bei diesen niedrigen Viskositäten ist zu erwarten, daß sich nur eine sehr dünne Skullschicht ausbildet die dem Gewicht der Schmelze nicht widerstehen kann und es dadurch zum Durchbruch der Schmelze kommt. Unter einem Durchbruch der Schmelze wird hier ein Auslaufen der Glasschmelze zwischen den wassergekühlten Metallrohren eines Skulltiegels verstanden.

Die Erfinder haben erkannt, daß dieses Ausfließen um so kritischer ist, je dünnflüssiger die Glasschmelze ist. Es hat sich gezeigt, daß bei hochschmelzenden Gläsern bei einem größeren Abstand der Metallrohre die Schmelze relativ tief in den Zwischenraum zwischen den Metallrohren eindringt und noch eine Skullschicht zwischen den Metallrohren ausbilden.

Bei dünnflüssigen Glasschmelzen kann die Fließgeschwindigkeit zwischen der Glasschmelze zwischen den Metallrohren so hoch, dass die Wärmeabfuhr über die Metallrohre nicht mehr ausreicht, um den Glasstrom zu stoppen und eine Skullschicht zu bilden.

10

15

35

Wird ein Skultiegel für das Schmelzen eines "kurzen" borathaltigen Werkstoffes verwendet, so ist also ein geringer Abstand der Metallrohre des Tiegels vorteilhaft, um das Durchbrechen der Schmelze zu verhindern. Dennoch muß zwischen den Rohren noch ein gewisser Abstand vorhanden sein, um unter anderem eine Abschirmung des Hochfrequenzfeldes zu vermeiden.

Besonders für hochschmelzende, hochviskose Schmelzen kann dazu ein Zwischenraum von 5mm oder kleiner gewählt werden.

Es hat sich gezeigt, dass ein Auslaufen insbesondere von Borosilicatgläsern mit hohem B₂O₃-Gehalt und Boratgläsern wirkungsvoll verhindert werden kann, wenn der Abstand zwischen den gekühlten Rohren des Skulltiegels kleiner/gleich 4 mm, vorzugsweise kleiner/gleich 3,5 mm beträgt. Für zähere Gläser wird vorzugsweise der größere Abstand gewählt.

Der Abstand wird vorteilhaft um so geringer gewählt, je niedriger die Viskosität der Glasschmelze ist.

Die Abstände zwischen den Metallrohren können nicht beliebig klein gewählt werden, da zum einen die Herstellung des Skulltiegels, d.h. das Verlöten oder Verschweißen der Metallrohre immer schwieriger wird und zum anderen die Gefahr von Überschlägen zwischen den Metallrohren zunimmt. Es hat sich gezeigt, dass ein Abstand zwischen den Metallrohren von größer/gleich 2mm, vorzugsweise von größer/gleich 2.5 mm am günstigsten sowohl für die Herstellung als auch für das Beherrschen der Überschläge ist.

Um beide Bedingungen erfüllen zu können ist es von Vorteil, wenn der Abstand zwischen den Rohrwandungen der Metallrohre zwischen 2 mm und 4mm, vorzugsweise zwischen 2,5 mm und 3,5 mm liegt. Bei sehr niedrigschmelzenden Gläsern ist dabei eher ein Abstand von 2,5mm vorteilhaft.

10

20

25

30

Beim Schmelzen von Gläsern kann es darüber hinaus zu Überschlägen in der Schmelze von einem gekühlten Metallrohr zum nächsten kommen. Diese Gefahr ist um so größer je geringer die isolierende Wirkung der Skullschicht ist. Bei sehr dünnflüssigen Schmelzen ist aufgrund der dünnen Skullschicht diese Gefahr dementsprechend besonders groß . Insbesondere bei Borosilicatgläsern mit hohem B2O3-Gehalt und Boratgläsern, die beide im allgemeinen nur dünne Skullschichten aufbauen, besteht die Neigung zu Überschlägen zwischen den Metallrohren. Der Überschlag erfolgt über die Glasschmelze und die dünne Skullschicht. Die Wahrscheinlichkeit eines Überschlages wird um so größer, je dünner die Skullschicht und um so geringer ihr elektrischer Widerstand der Skullschicht ist.

Wie bereits erwähnt, soll die Skullschicht nicht nur das Auslaufen der Glasschmelze, sondern auch einen Überschlag zwischen den Metallrohren über die Glasschmelze verhindern. Die Isolationswirkung ist um so größer, je dicker die Skullschicht und je größer der Abstand zwischen den gekühlten Metallrohren ist.

Versuche haben gezeigt, daß für die beanspruchten Gläser die Dicke der Skullschicht und der beanspruchte Abstand zwischen den Metallrohren oft nicht ausreicht um einen Überschlag über die Glasschmelze zu vermeiden.

Überschläge zwischen den Metallrohren lassen sich aber vorteilhaft in einfacher Weise dadurch vermeiden, daß die Metallrohre insbesondere im Bereich der Induktionsspule zur Emission des elektromagnetischen Wechselfelds, wie beispielsweise einer Hochfrequenzspule kurzgeschlossen werden. Durch den Kurzschluß wird vermieden, daß sich zwischen den Rohren im elektromagnetischen Wechselfeld große Potentialdifferenzen aufbauen können.

15

10

Die Erfinder haben weiterhin erkannt, daß es beim Schmelzen in einem Skulltiegel einen sehr engen Zusammenhang zwischen der Viskosität der Glasschmelze, dem Auslaufen der Glasschmelze und den Überschlägen in der Schmelze gibt.

20

25

Es hat sich überraschender Weise gezeigt, dass es für einen Zusammensetzungsbereich von niedrigschmelzenden Borosilicatgläsern mit hohem B_2O_3 -Gehalt und Boratgläsern möglich ist, beim erfindungsgemäßen Schmelzen mit einem Skulltiegel, einen Bereich für den Abstand zwischen den gekühlten Metallrohren zu finden, bei dem die Glasschmelze noch nicht ausfließt und Überschläge mit Hilfe zusätzlicher Maßnahmen verhindert werden können.

30

Versuche haben gezeigt das die beanspruchten Borosilicatgläser mit hohem B_2O_3 -Gehalt und Boratgläser nur eine sehr dünne Skullschicht ausbilden und daher sehr stark zum Auslaufen der Schmelze neigen.

Die Erfinder haben erkannt, dass die Überschläge nicht nur von der Skullschicht und dem Abstand der Metallrohre abhängt, sondern auch von der elektrischen Leitfähigkeit der verwendeten Metallrohre.

5

10

Insbesondere bei der Verwendung von wassergekühlten, hoch elektrisch leitfähigen Rohren, wie beispielsweise bei Kupferrohren reicht eine Kurzschlussstelle aus. Aufgrund der hohen Leitfähigkeit können sich keine großen Potentialdifferenzen zwischen den Rohren aufbauen, wenn diese wenigstens eine Kurzschlussstelle aufweisen, beziehungsweise, wenn die Metallrohre an jeweils einer Stelle kurzgeschlossen werden.

15

Kommen andererseits Rohre mit einer schlechteren
Leitfähigkeit, wie etwa Rohre aus Inconel anstelle der
Kupferrohre zum Einsatz, dann sind zwei Kurzschlussstellen
vorteilhaft, wobei diese bevorzugt an den Enden der Rohre
angeordnet sind, beziehungsweise, wobei die Metallrohre
jeweils an ihren Enden kurzgeschlossen werden.

Ein weiteres Ziel der Erfindung ist die Herstellung von hochreinen Borosilicatgläser und Boratgläser mit hohem B_2O_3 -Gehalt.

25

30

20

Es wurde überraschend festgestellt, dass unter anderem die sehr aggressiven Borosilicatgläser mit hohem B₂O₃-Gehalt und Boratgläser die Metallrohre sogar durch die dünne Skullschicht hindurch angreifen, oder daß auch Reaktionen der Skullschicht mit dem Material der Rohre des Skulltiegels auftreten können. Auch oberhalb der Glasschmelze können die Rohre, insbesondere solche aus Metall durch die Verdampfungsprodukte und das Gemenge dieser Gläser angegriffen werden.

Werden an die optischen Gläser extrem hohe Anforderungen bezüglich Transmission und damit der Reinheit der Schmelze gestellt, dann ist es insbesondere bei der Schmelze von Borosilicatgläsern und Borat-Gläsern mit hohem B₂O₃-Gehalt von Vorteil, wenn die wassergekühlten Metallrohre Rohre aus Platin, einer Platinlegierung oder Aluminium umfassen, oder die Rohre wie zum Beispiel solche aus Kupfer, Messing oder Inconel werden mit Platin oder einer Platinlegierung beschichtet.

10

15

30

35

Für die erfindungsgemäß geschmolzenen Gläser und Werkstoffe hat sich auch bewährt, die Rohre mit Kunststoff, vorzugsweise mit einem fluorhaltigen Kunststoff zu beschichten, da die fluorhaltigen Schichten auch von den sehr aggressiven Gläsern nicht angegriffen werden, wie in DE 100 02 019 gezeigt wurde, deren Offenbarungsgehalt vollumfänglich auch zum Gegenstand der vorliegenden Erfindung gemacht wird.

Die Gemenge der Borosilicatgläser mit hohem B₂O₃-Gehalt und Boratgläser neigen sehr stark zur Verstaubung. Die starke Verstaubung ist aus der Sicht des Umweltschutzes in hohem Maße unerwünscht. Die starke Verstaubung einzelner Komponenten führt aber auch zu Brechwertschwankungen, die durch Nachkorrigieren des Gemenges nicht in ausreichendem Maße ausgeglichen werden können.

Erfindungsgemäß kann die Verstaubung des Gemenges stark unterdrückt werden, wenn das Gemenge in Form von Pellets zugegeben wird.

In der Glasindustrie ist zwar das Pelletieren von Gemenge bekannt. Das Ziel für das Pelletieren an technischen Wannen ist aber, die Wärme des Schmelzofens zurück zu gewinnen. Im allgemeinen gibt es bei technischen Gläsern keine großen Probleme bezüglich der Verstaubung

10

15

20

25

30

35

Der Einsatz von Pellets ist in der Glasindustrie noch umstritten, da sich die Kosten für das Pelletieren in den meisten Fällen nicht lohnen.

Die Erfinder haben aber überraschend festgestellt, dass bei einem Gemenge, dass im wesentlichen aus Oxiden oder Silicaten besteht, die Pellets direkt in die Glasschmelze eingerührt werden können. Durch das direkte Einrühren der Pellets in die Glasschmelze kann die Verstaubung beim Einschmelzen des Gemenges extrem stark herabgesetzt werden. Die starke Herabsetzung der Verstaubung beim Einschmelzen in einem Skulltiegel wird darauf zurück geführt, dass die Pellets durch die sehr hohe Konvektion im Skulltiegel sehr schnell in die Glasschmelze eintauchen und so von der Glasschmelze umgeben werden.

Es wurde weiterhin überraschend gefunden, daß durch den Einsatz der Pellets anstelle von losem Gemenge neben der Verminderung der Verstaubung auch die Einschmelzzeit wesentlich verringert und dadurch der Durchsatz wesentlich erhöht werden kann. Dies führt außerdem dazu, daß aufgrund der geringeren Verweilzeit des Schmelzguts im Aggregat das Verdampfen leichter flüchtiger Komponenten und damit nachteilige stöchiometrische Veränderungen während des Herstellungsprozesses vermindert werden kann. Bei sehr hohen Anforderungen bezüglich Homogenität sollte eine starke Verdampfung von Komponenten der Schmelze weitgehend unterdrückt werden, so daß der Einsatz von Pellets insbesondere auch zur Herstellung hochwertiger Gläser, wie beispielsweise von optischen Gläsern von Vorteil ist.

Eine weitere Steigerung des Durchsatzes kann vorteilhaft dadurch erreicht werden, indem die Schmelze während des

Aufschmelzens von Gemenge gerührt wird. Dies kann beispielsweise in einem Einschmelzteil eines Skulltiegels vorgenommen werden.

Eine gute Rührwirkung läßt sich insbesondere auch dadurch erreichen, indem ein Gas in die Schmelze eingeblasen wird. Auf diese Weise kann die Schmelze berührungslos gerührt werden, so daß ein Eintrag von Fremdionen oder Reaktionen mit der Oberfläche eines Rührers vermieden werden.

10

15

20

25

30

So kann beispielsweise in das Aggregat, wie beispielsweise in einen Skulltiegel ein Bubblingrohr in die Schmelze eingeführt oder eingesetzt und durch eine Düse des Bubblingrohrs ein Gas in die Schmelze eingeblasen werden. Bei dem Eintragen von Gas in die Schmelze muß jedoch darauf geachtet werden, welche chemische Reaktionen ablaufen können. Beim Einleiten von sauerstoffhaltigem Gas kann es zur Aufoxidation der Glasschmelze kommen.

Lä er Z

Vorteilhaft kann das erfindungsgemäße Verfahren auch das Läutern des Schmelzguts umfassen, um Blasen im erfindungsgemäß hergestellten Werkstoff zu vermeiden. Zur Durchführung des erfindungsgemäßen Verfahrens kann das Gemenge sowohl diskontinuierlich, als auch kontinuierlich im Aggregat geschmolzen werden.

Insbesondere beim kontinuierlichen Schmelzen kann das Einschmelzen von Gemenge und Läutern entweder in ein und dem selben Tiegel erfolgen oder in zumindest zwei hintereinander geschalteten Tiegeln oder Aggregaten. Vorzugsweise werden Skulltiegel verwendet, da sie ein Schmelzen im eigenen Material ermöglichen und so besonders reine Werkstoffe erzeugt werden können.

Durch das Heizen mit Hochfrequenz entsteht in einem Tiegel, insbesondere jedoch in einem Skulltiegel ein starker Temperaturgradient zwischen Wandbereich und Tiegelmitte. Durch diesen Temperaturgradient entsteht ein Auftrieb und es kommt zur Konvektion in der Schmelze, durch welche die Schmelze im Randbereich nahe den Wänden nach unten gezogen wird. Dadurch ist es auch vorteilhaft möglich, insbesondere in einem Skulltiegel sowohl das Einschmelzen des Gemenges als auch das Läutern durchzuführen. Bei der Abwärtsbewegung wird das Gemenge aufgeschmolzen und während der Aufwärtströmung geläutert.

Insbesondere bei schwerer aufschmelzenden Gläsern oder zur Erzielung höherer Durchsätze ist es zweckmäßig, für das Einschmelzen und Läutern zwei getrennte Tiegel oder Aggregate zu verwenden. Da der stärkere chemische Angriff beim Einschmelzen erfolgt, sollte zumindest der Einschmelztiegel ein Skulltiegel sein. Bei sehr hohen Reinheitsforderungen kann auch der Läutertiegel aus einem Skulltiegel bestehen. Es ist möglich, zwei Skulltiegel hintereinander zu schalten.

. 15

20

25

30

35

Mit dem erfindungsgemäßen Verfahren ist auch die Herstellung von Lanthanborosilicat-Gläsern möglich. Diese Gläser werden auch als Lanthan-Kron-, Lanthan-Flint- oder Lanthan-Schwerflint-Gläser bezeichnet. Die erfindungsgemäß hergestellten Gläser zeichnen sich bei ihren optischen Eigenschaften gegenüber bekannten Gläsern insbesondere durch eine deutlich verbesserte Transmission aus und können mit dem Verfahren außerdem auch zu niedrigeren Kosten hergestellt werden.

Da alle Computerprogramme zur Berechnung von speziellen Linsensystemen auf die im Handel befindlichen Gläser und deren Eigenschaften abgestimmt sind, ist es vorteilhaft, für die erfindungsgemäße Herstellung von Gläsern für derartige Linsensysteme deren Zusammensetzung so zu wählen, daß die optischen Eigenschaften, wie Brechungsindex und Dispersion mit denen im Handel befindlicher Gläser übereinstimmen.

Neben der Glasstruktur spielen auch die Netzwerkwandler für das Ankoppelverhalten eine wichtige Rolle. Am wichtigsten für das Ankoppelverhalten sind die zweiwertigen und dreiwertigen Metalloxide. Die Zusammensetzung des Schmelzguts wird gemäß einer Ausführungsform der Erfindung vorteilhaft so gewählt, daß die Konzentration an zweiwertigen und dreiwertigen Metalloxiden, beziehungsweise deren Stoffmengenanteil im Schmelzgut zumindest 25 mol % beträgt.

Während bei den Boratgläsern und den kristallisierenden borathaltigen Werkstoffen der Gehalt an Al_2O_3 , Ga_2O_3 und In_2O_3 in Summe 25 % betragen kann, sollte insbesondere bei Borosilicatgläsern mit hohem B_2O_3 -Gehalt der Gehalt der Netzwerkbildner Al_2O_3 , Ga_2O_3 und In_2O_3 in Summe 10% nicht überschreiten.

20

25

30

15

Gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens wird ein borathaltiger, alkaliarmer Werkstoff, wie insbesondere ein alkaliarmes oder alkalifreies hochborsäurehaltigen Borosilicatglas oder ein Boratglas oder ein kristallisierender borathaltiger Werkstoff hergestellt, wobei zur Herstellung des Werkstoffe eine Zusammensetzung des borathaltigen Schmelzguts gewählt wird, bei welcher:

 B_2O_3 zu 15 bis 75 mol %, SiO_2 zu 0 bis 40 mol %, Al_2O_3 , Ga_2O_3 , In_2O_3 zu 0 bis 25 mol %,

 $\Sigma M(II)O, M_2(III)O_3$ zu 15 bis 85 mol %,

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 zu 20 mol %, und

 $\Sigma M(I)_2O$ zu weniger als 0,50 mol % vorhanden

sind, und wobei

Mit dem Summenzeichen " Σ " wird dabei die Summe aller nach dem Summenzeichen aufgelisteten Stoffmengenanteile bezeichnet. Die Prozentangaben sind Stoffmengenanteile in mol %. $X(B_2O_3)$ = $B_2O_3/(B_2O_3 + SiO_2)$ bezeichnet weiterhin den Molenbruch der Stoffmengenanteile der Netzwerkbildner B_2O_3 zu SiO_2 .

Weitere Oxide der Elemente des Periodensystems (Ge, P, Sn, Farboxide), sowie Läutermittel in den üblichen Mengen sind je nach Anwendung möglich, aber für die Eigenschaften des Werkstoffes und die Ankoppelfähigkeit der Schmelze nicht essentiell.

Innerhalb dieses Zusammensetzungsbereiches wird insbesondere zur Herstellung glasartiger Werkstoffe, wie hoch borsäurehaltige Borosilikatgläser oder Boratgläser dabei die Zusammensetzung der Schmelze vorteilhaft so gewählt, daß der Stoffmengenanteil von B_2O_3 15 bis 75 mol % beträgt und der Molenbruch $X(B_2O_3) > 0,52$ ist. Besonders bevorzugt wird für die Zusammensetzung des Schmelzguts der Anteil von B_2O_3 im Bereich zwischen 20 bis 70 mol %, der Anteil von $\Sigma M(II)O, M_2(III)O_3$, also der Summe der Stoffmengenanteile von Oxiden mit zwei- und dreiwertigen Metallionen im Bereich zwischen 15 bis 80 mol %, und $X(B_2O_3) > 0,55$ gewählt.

Innerhalb der oben angegebenen Bereiche von Zusammensetzungen des borhaltigen Schmelzguts ist weiterhin ein

Zusammensetzungsbereich für die optischen Eigenschaften der Gläser besonders vorteilhaft, bei welchen im Schmelzgut der

Anteil von

B₂O₃ 28 bis 70 mol %, der Anteil von $B_2O_3 + SiO_2$ 50 bis 73 mol %, der Anteil von Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 10 mol % und der Anteil von $\Sigma M(II)O_1M_2(III)O_3$ 27 bis 50 mol % beträgt, und $X(B_2O)$ >0,55 ist.

10

Besonders bevorzugt wird dabei zur Herstellung von hochborsäurehaltigen Borosilicatgläsern und Boratgläsern eine Zusammensetzung des Schmelzguts bewählt, bei welcher:

15. B_2O_3 zu 36 bis 66 mol %. SiO₂ zu 0 - 40 mol %, $B_2O_3 + SiO_2$ zu 55-68 mol%, Al_2O_3 , Ga_2O_3 , In_2O_3 zu 0 - 2 mol %. $\Sigma M(II)O, M_2(III)O_3$ zu 27 bis 40 mol %, und

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ zu 0 bis 15 mol % vorhanden ist und

20 $X(B_2O_3)$ >0,65 beträgt.

Gemäß einer weiteren Ausführungsform der Erfindung, die besonders zur Herstellung von hochborsäurehaltigen

25 Borosilicatgläsern und Boratgläsern für optische Anwendungen geeignet ist, wird die Zusammensetzung des Schmelzguts so gewählt, daß der Stoffmengenanteil von:

 B_2O_3 45 bis 66 mol %, von SiO_2 0 bis 12 mol %, von

30∙ $B_2O_3 + SiO_2$ 55 bis 68 mol %, von Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 0,5 mol %, von

 $\Sigma M(II).O$ 0 bis 40 mol %, von

 $\Sigma M_2(III)O_3$ 0 bis 27 mol %, von

 $\Sigma M(II)O, M_2(III)O_3$ 27 bis 40 mol %, und von Σ M(IV)O₂,M₂(V)O₅,M(VI)O₃ 0 bis 15 mol % beträgt. Dabei werden die Stoffmengenanteile von B₂O₃ und SiO₂ außerdem so gewählt, daß X(B₂O₃) > 0,78 ist. Bei dieser Variante des Verfahrens werden als zweiwertige Metallionen, M(II) insbesondere Mg, Ca, Sr, Ba, Zn, Cd, Pb zugesetzt. Die Transmission der damit erhaltenen optischen Gläser kann ferner dadurch verbessert werden, indem das Schmelzgut kein stark färbendes CuO aufweist. Die Netzwerkwandler PbO und CdO sind hinsichtlich ihrer Toxischen Wirkung bekannt. Es ist daher vorteilhaft und teilweise sogar vom Gesetzgeber verlangt auf diese Komponenten beim Zusammensetzen der Schmelze zu verzichten und PbO- und CdO-freie Zusammensetzungen zu wählen.

Wird eine Zusammensetzung des Schmelzguts gewählt, bei welchem:

 B_2O_3

10

25

30

zu 30 bis 75 mol %,

SiO₂

zu < 1 mol %,

 Al_2O_3 , Ga_2O_3 , In_2O_3

zu 0 bis 25 mol %,

 $\Sigma M(II) O_1 M_2(III) O_3$

zu 20 bis 85 mol %, und

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ zu 0 bis 20 mol %, vorhanden sind, und wobei das Verhältnis der Stoffmengen von Borat und Siliziumoxid so gewählt wird, daß $X(B_2O_3)>0.90$ ist, so lassen sich beispielsweise neben Boratgläsern auch kristallisierende borhaltige Werkstoffe, wie insbesondere

Glaskeramiken mit dieser Ausführungsform des erfindungsgemäßen Verfahrens herstellen.

Gemäß einer weiteren Ausführungsform des Verfahrens, die besonders für die Herstellung kristallisierender borhaltiger Werkstoffe, wie etwa Glaskeramiken wird eine Zusammensetzung des Schmelzguts gewählt, bei welcher die Stoffmengenanteile von

 B_2O_3

20 bis 50 mol %, von

SiO₂ 0 bis 40 mol %, von Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 25 mol %, von $\Sigma M(II)O_1M_2(III)O_3$ 15 bis 80 mol %, und von $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 bis 20 mol %, betragen, und wobei $X(B_2O_3)$ >0,52 ist.

Vorteilhaft kann bei dieser Ausführungsform des erfindungsgemäßen Verfahrens, um eine gute Ankopplung zu erreichen, die Zusammensetzung des Schmelzguts so gewählt werden, daß $X(B_2O_3) > 0.55$ ist.

Die Ankopplung einer derartigen Schmelze läßt sich dabei noch verbessern, wenn die Stoffmengenanteile von

 $\Sigma M(II)O$ 15 bis 80 mol % und

20

15 $M_2(III)O_3$ 0 bis 5 mol % im Schmelzgut betragen, und $X(B_2O_3)$ >0,60 ist.

Gemäß noch einer vorteilhaften Variante dieses Verfahrens wird der Stoffmengenanteil von Substanzen aus einer Gruppe, die Al_2O_3 , Ga_2O_3 und In_2O_3 umfaßt, außerdem so gewählt, daß er 5 mol % nicht überschreitet.

Besonders bevorzugt wird eine Variante dieser Ausführungsform des erfindungsgemäßen Verfahren, bei welchem der Stoffmengenanteil von Substanzen aus einer Gruppe, die Al_2O_3 , Ga_2O_3 und In_2O_3 umfaßt, 3 mol % nicht überschreitet und bei welchem der Stoffmengenanteil von $\Sigma M(II)O$ in der Schmelze im Bereich von 15 bis 80 mol % liegt, wobei M(II) aus einer Gruppe ausgewählt wird, die Zn,Pb und Cu umfaßt. Dabei wird die Zusammensetzung der Schmelze außerdem so gewählt, daß $X(B_2O_3) > 0,65$ ist.

Gemäß einer weiteren Ausführungsform wird für das Schmelzgut eine Zusammensetzung gewählt, bei welcher die

Stoffmengenanteile von:

 B_2O_3 20 bis 50 mol %, von SiO_2 0 bis 40 mol %, von Al_2O_3 0 bis 3 mol %, von $\Sigma ZnO, PbO, CuO$ 15 bis 80 mol %, von Bi_2O_3 0 bis 1 mol %, und von $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 bis 0,05 mol % betragen. Bei dieser Ausführungsform wird die Zusammensetzung außerdem so gewählt, daß $X(B_2O_3) > 0,65$ ist.

10

15

Gemäß einer bevorzugten Variante dieser Ausführungsform des Verfahrens werden folgende Stoffmengenanteile gewählt:

 B_2O_3 20 bis 50 mol %, SiO_2 0 bis 40 mol %,

Al $_2O_3$ 0 bis 3 mol %,

ΣZnO, PbO, CuO 15 bis 80 mol %,

 Bi_2O_3 0 bis 1 mol %, und

 Σ M(IV)O₂,M₂(V)O₅,M(VI)O₃ 0 bis 0,05 mol %. Dabei werden die Stoffmengenanteile von Borat und Siliziumoxid vorteilhaft so gewählt, daß $X(B_2O_3) > 0,65$ ist.

20

30

Die Erfindung wird nachfolgend anhand einiger Beispiele weiter ausgeführt.

25 Beispiel 1:

Für die Ankopplungsversuche wurden die Gläser in einem 30 l Skulltiegel getestet. Hierzu wurde das Gemenge in den Skulltiegel eingegeben und mit einem Brenner aufgeschmolzen. Nach dem Aufschmelzen wird die Hochfrequenz eingeschaltet und der Brenner ausgeschaltet. Die Glasschmelze wird danach mit der Hochfrequenz weiter erhitzt. Lässt sich die Glasschmelze auf höhere Temperaturen aufheizen, dann koppelt das Glas mit der Hochfrequenz an.

Ist das nicht möglich oder koppelt die Hochfrequenz nicht gut ein, sodass die Glasschmelze wieder abkühlt, dann gilt die Glasschmelze als nicht ankoppelbar.

Koppelt die Glasschmelze aus, dann ist die durch den Skulltiegel und die Glasoberfläche abgegebene Wärmemenge größer als die durch die Hochfrequenz eingekoppelte Energie.

In der Tabelle 1 sind Beispiele von Borosilicatgläsern mit hohem B_2O_3 - Gehalt und Boratgläser aufgeführt, die nicht ankoppeln.

Tabelle 1: Nichtkoppelnde Gläser, Angaben in Mol %.

15

·						
Glas	1	2	. 3	4	5	
Oxid			- ,			
B ₂ O ₃	18	. 25	32,5	28	80	
SiO ₂	60	52	44,5	32,5	-	
Al ₂ O ₃	2	2,5	2,5	_	_	
PbO	20	20,5	20.5	- .	_	
La ₂ O ₃	-		<u>-</u>	4,5		
BaO	-	_	-	34,4	20	
TiO ₂	·	-		_	_	
ZrO ₂	-	_	-	0,4	_	
WO ₃	-	_		0,04	-	
Sb ₂ O ₃	-	_		0,06		
Summe	100	100	100	100	100	
B ₂ O ₃ /	0,23	0,32	0,42	0,46	1,00	

B ₂ O ₃ +			
SiO ₂			

Bei den nichtkoppelnden Gläsern 1 bis 4 liegt das Verhältnis der Stoffmengen von Borat zu Siliziumoxid unterhalb von 0,5. Dementsprechend ist bei diesen Gläsern Siliziumoxid der überwiegende Netzwerkbildner. Aufgrund der nicht oder nur in geringen Mengen vorhandenen Alkaliionen und dieses Stoffmengenverhältnisses von Borat, B₂O₃ zu Siliziumoxid, SiO₂, ist eine induktive Ankopplung dieser Schmelzen an das Hochfrequenzfeld im Skulltiegel nicht möglich. Beim Glas 5 der Tabelle 1 ist zwar Borat der einzige Netzwerkbildner, jedoch liegt der Stoffmengenanteil von Metalloxid, dessen Metallionen zwei- oder höherwertig sind, bei lediglich 20%. Auch damit ist die Leitfähigkeit der Schmelze für eine Ankopplung in einem Skulltiegel nicht ausreichend.

In der Tabelle 2 handelt es sich mit den Beispielen 6 bis 8 um Grenzfälle von Borosilicat – und Boratgläsern mit hohem B_2O_3 – Gehalt, bei denen die experimentellen Bedingungen sehr sorgfältig gewählt werden müssen, um noch eine Ankopplung zu erreichen. So ist eine Temperatur von > 1300 °C, eine hohe Spannung an der die Hochfrequenz induzierenden Spule und eine ausreichende Leistung des Hochfrequenzgenerators nötig um eine ausreichende Energiemenge einzukoppeln. Andererseits sollte die Temperatur nicht zu hoch gewählt werden, um ein Verdampfen von B_2O_3 zu vermeiden. Das hat die Folge, dass das Prozessfenster für diese Gläser sehr klein sein kann.

Tabelle 2: - Grenzfälle von koppelnden Gläsern (Angaben in mol %)

Glas	6	7	8
Oxid			
B ₂ O ₃	75	34	. 40
SiO ₂		32	36,5
Al ₂ O ₃		-	2,5
PbO		_	21
La ₂ O ₃		2	_
BaO	25	. 31	- :
ZrO2		0,9	. –
Sb ₂ O ₃		0,1	-
Summe		100	100
B ₂ O ₃ / B ₂ O ₃ +SiO ₂	1,00	0,52	0,52

- In der Tabelle 3 sind Beispiele an Borosilicatgläsern und Boratgläsern mit hohem B_2O_3 Gehalt zusammengestellt, die problemlos mit Hochfrequenz ankoppeln und in einem Skulltiegel geschmolzen werden können.
- Tabelle 3: Koppelnde Gläser (Angaben in mol %)

Glas	9	10	11	12	13	14	15	16	17	18
Oxid										
B ₂ O ₃	34	26	22,5	40	52	60	65,5	50	62	31,7
SiO ₂	-	12.6	9	36,5	11,5	4	-	9	_	-
Al ₂ O ₃	_	-	2	2,5	-	_	_	_	-	13,9

[n; n	T		T = = =		T	·	·			
PbO	. 66	1	23,5	21		-	-	·		-
ZnO	-	60	36	-	5	7,5	_	5		 .
				· .			,		-	
La ₂ O ₃	-	-	-	-	18,5	13,5	-	. 20	-	
Y ₂ O ₃	-	-		· -	4,5	-	-	5,5	–	
CaO	-	. –	_		-	11.	21	-	-	
BaO	<u> </u>	_	-	-	_	_	-	-	38	48,8
TiO ₂	_			_	0,5	_	-	-	_	-
ZrO ₂	-	_	-	-	8	4	1,5	9	-	5,6
Nb ₂ O ₅	-	-	_	- ,	_	_	_	1	_	_
Ta ₂ O ₅		_	_	_		_	_	0,5	-	-
Nd ₂ O ₃	_	_	_	-	-	_	9		-	-
Pr ₂ O ₃	-	-		_	-		. 3	_		_
CuO	_	-	. 7	- .	_	- ;	-	-	-	
CeO₂	- .	0,25	- '	_	. –	_	. –	_	-	_
As ₂ O ₃	_		_	-	_	_	0,02	-	-	
Sb ₂ O ₃		0,15		- .	0,04	0,02	-	0,05	-	-
Summe	100	100	100	100	100,	100,	100,	100,	100	100
				•	04	02 ⁻	02	05		
B ₂ O ₃ /	1,00	0,67	0,71	0,52	0,82	0,94	1,00	0,85	1,00	1.00
B ₂ O ₃ +SiO ₂										

Beispiel 2:

An dem ankopplungsfähigen Glas 14 der Tabelle 3 wird beispielhaft die Verbesserung der Lichttransmission durch den Einsatz der Skullschmelztechnik in Verbindung mit der Hochfrequenzbeheizung gegenüber der konventionellen Schmelze in einem Platintiegel gezeigt. Es wurde ein optisches Glas aus der Familie der Lanthanborosilcat-Gläser in einem mit Platin beschichteten Edelstahlskulltiegel geschmolzen. Folgende Schmelzparameter

wurden verwendet:

.Einlegen: 1240-1260°C

Läutern:1280°C

30

Abstehen:1240-1200°C

Guss: ca. 1200°C im Tiegel; ca. 1100°C im Speiser

Die Schmelze wurde in Formen verschiedener Geometrien gegossen (Scheiben, Stäbe, Riegel) und von 650°C auf Raumtemperatur gekühlt.

Folgende Werte wurden gemessen:

Dabei bezeichnet nd den Brechungsindex bei der Fraunhoferschen Linie d bei $\lambda = 587,5618$ nm, ν_d ist die Abbe'sche Zahl bei dieser Fraunhofer'schen Linie. $\Delta P_{g,F}$ entspricht der Anomalie der relativen Teildispersion $P_{g,F}$ gemessen an den Fraunhofer'schen Linien g und F. τ i bezeichnet die Reintransmission.

Die in Klammern angegebenen Referenzwerte wurden an einem Glas der selben Zusammensetzung gemessen, dass mit der herkömmlichen Schmelztechnologie d.h. in einem induktiv beheizten Platin-Tiegel geschmolzen wurde.

Die Verbesserung ist daran zu erkennen, dass die Reintransmission im blauen Spektralbereich entscheidend angestiegen ist. Absorptionen im Blauen verursachen einen gelblichen Farbstich, so dass bei Beobachtungs-Anwendungen wie Photographie, Mikroskopie und Fernrohren eine möglichst geringe Absorption gewünscht ist. Die Abweichungen bei Brechwert und Abbezahl sind durch die etwas höheren Verstaubungsrate der neuen Technologie bedingt und lassen sich durch Feineinstellungen am Gemenge oder durch den Einsatz von Pellets an Stelle von losem Gemenge leicht korrigieren.

10 Ein kontinuierlicher Schmelzversuch mit dem gleichen Glas unter folgenden Schmelzbedingungen:
Einschmelzen in einem Hochfrequenz beheizten Skulltiegel bei

1280 °C. Nach der Läuterung in einer Platinläuterkammer bei 1400 °C ergaben sich folgende Werte:

15 nd = 1,70712; (1,71300)

vd = 53,68; (53,83)

 $\Delta Pg, F = -0,0084$ (-0,0084)

 $\tau i (400nm; 25mm) = 0,965 : (0,94)$

 $\tau i (365 nm; 25 mm) = 0.831 (0.72).$

20

Die in Klammern angegebenen Referenzwerte beziehen sich wie oben auf Meßwerte an einem Glas der selben Zusammensetzung, dass mit einem induktiv beheizten Platin-Tiegel geschmolzen wurde.

25

Hier wurde der für viele UV-Anwendungen charakteristische Wert der Transmission bei 365 nm mit bestimmt. Diese Wellenlänge entspricht einer wichtigen Emissionslinie von Hg-Dampflampen, die für viele Anwendungen genutzt wird. Die Lichtausbeute bei dieser Wellenlänge kann bei einem erfindungsgemäß hergestellten Glas gegenüber einem aus dem Stand der Technik bekannten Glas um 0,111 oder 15% gesteigert werden, was zu einem deutlichen Produktvorteil führt. Man erkennt des weiteren an der Brechwertabweichung zu

niedrigeren Werten die Möglichkeiten der oben angesprochenen Korrekturmaßnahmen.

Für die Gläser nach Beispiel 2 sind die Komponenten B_2O_3 und Ln_2O_3 ($Ln=Sc,\ Y,\ La,\ Gd,\ Yb,\ Lu$) charakteristisch. Sie können in einem weiten Konzentrationsbereich variiert werden. Alle anderen Komponenten sind optional und können um weitere ergänzt werden. Es können hiermit optische Gläser der Familien LaK, LaF, und LaSF in einem weiten Brechwert- und Abbezahlbereich realisiert werden.

Beispiel 3:

10.

Anhand einer Schmelze des ankopplungsfähigen Glases 8 der

Tabelle 2 wird gezeigt, dass die Abstände zwischen den
wassergekühlten Metallrohren < 4mm , vorzugsweise < 3,5 mm
sein sollten, um ein Auslaufen der Glasschmelze zu
verhindern.

In einem 10 Liter Skulltiegel, dessen Metallrohre einen Abstand von maximal 4,5 mm betrugen, wurde Gemenge eingelegt und zunächst mit einem Brenner aufgeschmolzen. Nachdem die erste Gemengeeinlage aufgeschmolzen war, wurde die Hochfrequenz eingeschaltet und der Brenner ausgeschaltet. Ab jetzt erfolgte das Einschmelzen des Gemenges ausschließlich durch die Hochfrequenz. Nachdem der Skulltiegel etwa zu dreiviertel voll war mit Glasschmelze, kam es zu einem Durchbruch der Glasschmelze. Die Glasschmelze lief zwischen zwei wassergekühlten Metallrohren sehr schnell aus.

In einem zweiten Versuch wurde ein Skulltiegel verwendet dessen Metallrohre einen Abstand von 3,5 mm aufwiesen. Der Versuch wurde wie oben beschrieben wiederholt. Der Skulltiegel konnte ohne Probleme mit Gemenge vollgeschmolzen werden, ohne dass es zu einem Durchbruch der Glasschmelze

30

35

kam.

10

20

Beispiel 4:

In der beigefügten Figur ist ein Diagramm dargestellt, welches die Veränderung der Leitfähigkeit einer Schmelze mit einer Zusammensetzung des Schmelzguts, bei welcher das Verhältnis der molaren Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner als 0,5 ist, dargestellt. Dabei wurde der Strom durch die Schmelze und die zur Erzielung des Stroms angelegte Spannung gemessen. Die Meßwerte sind als Funktion des Stoffmengenanteils von BaO, also einem Metalloxid mit zweiwertigen Metallionen aufgetragen.

Anhand des Diagramms ist zu erkennen, daß sich bei einem Stoffmengenanteil von 25 Mol % BaO eine sprunghafte Steigerung des Stroms durch die Schmelze zeigt. Ab diesem Stoffmengenanteil kommt es dann auch zu einer starken Abnahme der zur Erzielung dieses Stroms notwendigen Spannung und damit zu einer weiteren Erhöhung der Leitfähigkeit der Schmelze. Aufgrund dieses in der Figur beispielhaft für BaO gezeigten Effektes ist es möglich, erfindungsgemäß ab einem Stoffmengenanteil zwei- oder mehrwertiger Metalloxide von 25% oder mehr auch Schmelzen anzukoppeln, bei welchen das Verhältnis der molaren Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner als 0,5 ist.

Patentansprüche

- 1. Verfahren zur Herstellung eines borathaltigen
 alkaliarmen Werkstoffes, wobei ein borhaltiges
 Schmelzgut in einem Aggregat mit einem
 elektromagnetischen Wechselfeld direkt induktiv beheizt
 wird und wobei das Schmelzgut als Bestandteil zumindest
 ein Metalloxid, dessen Metallionen zwei- oder
 höherwertig sind, mit einem Stoffmengenanteil von
 zumindest 25 mol % aufweist, und wobei das Verhältnis
 der molaren Stoffmengen von Siliziumdioxid zu Borat im
 Schmelzgut kleiner oder gleich 0,5 ist.
- 15 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Schmelze mit einem Hochfrequenzfeld direkt induktiv beheizt wird.
- 3. Verfahren gemäß Anspruch 1 oder 2, dadurch
 20 gekennzeichnet, daß die Schmelze mit einem
 elektromagnetischen Wechselfeld mit einer Frequenz im
 Bereich von 50 kHz bis 1500 kHz direkt induktiv beheizt
 wird.
- 25 4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der borathaltige alkaliarme Werkstoff ein hochborsäurehaltiges Borosilicatglas, ein Boratglas oder einen borathaltigen Werkstoff umfasst.
- Jo 5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Stoffmengenanteil alkalihaltiger Verbindungen im Schmelzgut kleiner als 2%, bevorzugt kleiner als 0,5% ist.

- Verfahren nach einem der vorstehenden Ansprüche, dadurch qekennzeichnet, daß das Aggregat einen Skulltiegel umfaßt, in welchem das Schmelzgut geschmolzen wird.
- Verfahren nach Anspruch 6, wobei das Schmelzgut in einem Skulltiegel geschmolzen wird, dessen Wandung gekühlte Rohre umfassen, die so zueinander beabstandet sind, daß die Rohrwandungen einem Abstand zwischen 2mm bis 4mm vorzugsweise 2,5mm bis 3,5mm einnehmen.

10

Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die gekühlten Rohre des Skulltiegels insbesondere im Bereich einer Hochfrequenzspule zur Emission des elektromagnetischen Wechselfelds kurzgeschlossen sind.

Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Rohre an jeweils einer Stelle kurzgeschlossen werden.

20

Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß 10. die Rohre jeweils an ihren Enden kurzgeschlossen werden.

25

Verfahren nach einem der Ansprüche 6 bis 10, dadurch 11. gekennzeichnet, daß die gekühlten Rohre Rohre aus Platin, einer Platinlegierung oder Aluminium umfassen.

30

35

Verfahren nach einem der Ansprüche 6 bis 11, dadurch 12. gekennzeichnet, dass die Rohre des Skulltiegels mit einer Schicht aus Platin oder einer Platinlegierung beschichtet sind.

13. Verfahren nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß die Rohre des Skulltiegels mit Kunststoff, insbesondere mit fluorhaltigem Kunststoff

beschichtet sind.

- 14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Gemenge in Form von Pellets zugegeben wird.
- 15. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Schmelze während des Aufschmelzens des Gemenges gerührt wird.

10

- 16. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß ein Gas in die Schmelze eingeblasen wird.
- 15 17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß ein Bubblingrohr in die Schmelze eingeführt und durch eine Düse des Bubblingrohrs ein Gas in die Schmelze eingeblasen werden.
- 20 18. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Schmelzgut geläutert wird.

25

- 19. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet, daß in zumindest zwei hintereinander geschalteten Aggregaten das Gemenge eingeschmolzen und geläutert wird.
- 20. Verfahren gemäß Anspruch 18 dadurch gekennzeichnet, daß Gemenge im selben Aggregat eingeschmolzen und geläutert wird.

30

21. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Schmelzgut im Aggregat diskontinuierlich einschmolzen wird.

- 22. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Schmelzgut im Aggregat kontinuierlich eingeschmolzen wird.
- 5 23. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Schmelzgut eine Zusammensetzung aufweist, bei welcher:

 B_2O_3 zu 15 bis 75 mol %, SiO_2 zu 0 bis 40 mol %,

 Al_2O_3 , Ga_2O_3 , In_2O_3 zu 0 bis 25 mol %,

 $\Sigma M(II)O, M_2(III)O_3$ zu 15 bis 85 mol %,

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ zu 0 bis 20 mol %, und

 $\Sigma M(I)_2O$ zu <0,50 mol %, vorhanden sind

und wobei

 $X(B_2O_3)$ >0,50 beträgt,

mit

10

15

20

 $X(B_2O_3) = B_2O_3/(B_2O_3 + SiO_2),$

M(I) =Li, Na, K, Rb, Cs,

M(II) = Mg, Ca, Sr, Ba, Zn, Cd, Pb, Cu,

 $M(III) = Sc, Y, ^{57}La-^{71}Lu, Bi,$

M(IV) = Ti, Zr, Hf,

M(V) = Nb, Ta,

M(VI) = Mo, W.

- 25 24. Verfahren gemäß Anspruch 23, dadurch gekennzeichnet, dass im Schmelzgut der Anteil von B_2O_3 15 bis 75 mol % beträgt und $X(B_2O_3)$ > 0,52 ist.
- 25. Verfahren gemäß Anspruch 23 oder 24, wobei im Schmelzgut 30 der Anteil von

 B_2O_3 20 bis 70 mol %, der Anteil von .

 $\Sigma M(II)O, M_2(III)O_3$ 15 bis 80 mol % beträgt, und

 $X(B_2O_3) > 0.55 ist.$

Verfahren gemäß einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, dass im Schmelzgut der Anteil von B_2O_3 28 bis 70 mol %, der Anteil von $B_2O_3 + SiO_2$ 50 bis 73 mol %, der Anteil von Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 10 mol % und der Anteil von $\Sigma M(II)O, M_2(III)O_3$ 27 bis 50 mol % beträgt, und

 $X(B_2O)$ >0,55 ist.

15

20

27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass für das Schmelzgut eine Zusammensetzung gewählt wird, bei welcher:

 $X(B_2O_3)$ >0,65 beträgt.

28. Verfahren gemäß einem der vorstehenden Ansprüche, insbesondere zur Herstellung von hochborsäurehaltigen Borosilicatgläsern und Boratgläsern für optische Anwendungen,

dadurch gekennzeichnet,

dass das Schmelzgut die folgende Zusammensetzung

aufweist:

 B_2O_3 45 bis 66 mol %, SiO_2 0 bis 12 mol %, $B_2O_3 + SiO_2$ 55 bis 68 mol %, Al_2O_3 , Ga_2O_3 , In_2O_3 0 bis 0,5 mol %, $\Sigma M(II)O$ 0 bis 40 mol %, $\Sigma M_2(III)O_3$ 0 bis 27 mol %, $\Sigma M(II)O_3$ 27 bis 40 mol %,

 $\Sigma M(IV)O_2, M_2(V)O_5, M(VI)O_3$ 0 bis 15 mol %, und wobei $X(B_2O_3)$ >0,78 beträgt, mit M(II)=Mg, Ca, Sr, Ba, Zn, Cd, Pb.

Verfahren gemäß einem der vorstehenden Ansprüche, 29. insbesondere zur Herstellung von Boratgläsern und kristallisierenden borhaltigen Werkstoffen, dadurch gekennzeichnet, dass das Schmelzgut eine Zusammensetzung aufweist, bei welcher die Anteile von 30 bis 75 mol %, von 10 B_2O_3 < 1 mol %, von SiO₂ 0 bis 25 mol %, von Al_2O_3 , Ga_2O_3 , In_2O_3 20 bis 85 mol %, und von $\Sigma M(II)O_1M_2(III)O_3$ 0 bis 20 mol % betragen, und $\Sigma M(IV) O_2, M_2(V) O_5, M(VI) O_3$ 15 wobei $X(B_2O_3)$ > 0,90 ist.

30. Verfahren gemäß einem der vorstehenden Ansprüche, insbesondere zur Herstellung von kristallisierendem borathaltigem Werkstoff, dadurch gekennzeichnet, daß das Schmelzgut eine Zusammensetzung aufweist, bei welcher:

20

31. Verfahren gemäß Anspruch 30, dadurch gekennzeichnet, daß $X(B_2O_3) > 0.55$ ist.

32. Verfahren gemäß Anspruch 30 oder 31, dadurch gekennzeichnet, dass die Stoffmengenanteile

 $\Sigma M(II)O$

15 bis 80 mol % und

 $M_2(III)O_3$

0 bis 5 mol % betragen, und

 $X(B_2O_3)$

>0,60 ist.

33. Verfahren gemäß einem der Ansprüche 30 bis 32, dadurch gekennzeichnet, daß der Stoffmengenanteil von Substanzen aus einer Gruppe, die Al₂O₃, Ga₂O₃ und In₂O₃ umfaßt, 5 mol % nicht überschreitet.

10

15

34. Verfahren gemäß einem der Ansprüche 30 bis 33, dadurch gekennzeichnet, dass die Zusammensetzung des Schmelzguts so gewählt wird, dass der Stoffmengenanteil von Substanzen aus einer Gruppe, die Al_2O_3 , Ga_2O_3 und In_2O_3 umfasst, 3 mol % nicht überschreitet und bei welcher der Stoffmengenanteil von $\Sigma M(II)O$ im Bereich von 15 bis 80 mol % liegt, und wobei $X(B_2O_3) > 0,65$ ist, mit M(II)=Zn,Pb,Cu.

20

25

35. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß für das Schmelzgut eine Zusammensetzung gewählt wird, bei welcher:

B₂O₃

zu 20 bis 50 mol %,

SiO₂

zu 0 bis 40 mol %,

Al₂O₃

zu 0 bis 3 mol %,

ΣZnO, PbO, CuO

zu 15 bis 80 mol %,

Bi₂O₃ .

zu 0 bis 1 mol %, und

 $\Sigma M(IV) O_2, M_2(V) O_5, M(VI) O_3$

zu 0 bis 0,05 mol % vorhanden

30 sind, und wobei

 $X(B_2O_3) > 0,65 \text{ ist.}$

36. Verfahren gemäß Anspruch 35, dadurch gekennzeichnet, daß eine Zusammensetzung des Schmelzguts gewählt wird, bei

welcher die Stoffmengen von

 $X(B_2O_3) > 0,65 \text{ ist.}$

 B_2O_3 20 bis 42 mol %, von SiO_2 0 bis 38 mol %, von $\Sigma ZnO, PbO$ 20 bis 68 mol %, von CuO 0 bis 10 mol %, von $\Sigma ZnO, PbO, CuO$ 20 bis 68%, und von Bi_2O_3 0 bis 0,1 mol % betragen, und wobei

10

37. Verfahren gemäß einem der Ansprüche 1 bis 36, dadurch gekennzeichnet, daß eine Zusammensetzung des Schmelzguts gewählt wird, die frei von PbO und CdO ist.

Zusammenfassung

Um alkaliarme Werkstoffe mit hoher Reinheit und Homogenität herstellen zu können, sieht die Erfindung ein Verfahren zur Herstellung eines borathaltigen alkaliarmen Werkstoffes vor, bei welchem ein borhaltiges Schmelzgut in einem Aggregat mit einem elektromagnetischen Wechselfeld direkt induktiv beheizt wird und wobei das Schmelzgut als Bestandteil zumindest ein Metalloxid, dessen Metallionen zwei- oder höherwertig sind, mit einem Stoffmengenanteil von zumindest 25 mol % aufweist, und wobei das Verhältnis der molaren Stoffmengen von Siliziumdioxid zu Borat im Schmelzgut kleiner oder gleich 0,5 ist.

ΤÜ

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.