

PreOM 2023 - 20.03.2023 Dzień 4

PreOM 2023 - Dzień 4

Zadanie 1. Wyznacz wszystkie wielomiany P(x) spełniające:

$$P(x^2 - 2x) = (P(x - 2))^2$$

Rozwiązanie:

Udowodnimy, że wielomian spełniający tożsamość $P(x^2) = (P(x))^2$ musi być wielomianem zerowym lub równym x^n . Załóżmy, że dany wielomian ma postać: $P(x) = a_n x^n + ... + a_0$. (przyjmijmy, że a_n jest niezerowy oraz co najmniej jeden z pozostałych współczynników jest niezerowy. Wtedy $P(x^2) = a_n x^{2n} + ... + a_1 x^2 + a_0 = (a_n x^n + ... + a_0)^2 = (P(x))^2$. Przyrównując współczynniki przy x^{n+k} otrzymujemy równość $0 = 2 \cdot a_n \cdot a_k$, która przeczy wcześniejszemu założeniu o niezerowości a_n i niezerowności jakiegoś a_k . Ale z warunku $a_n x^{2n} = P(x^2) = (P(x))^2 = a_n^2 \cdot x^{2n}$ otrzymujemy $a_n = 1$. Tak więc $P(x) = x^n$ lub gdy wszystkie współczynniki są zerowe to P(x) = 0.

Podstawiając y = x - 1 i Q(y) = P(y - 1) otrzymamy: $(P(x - 2))^2 = (P(y - 1))^2 = (Q(y))^2$ $P(x^2 - 2x) = (P(x - 1))^2 = Q(y^2)$ Wobec tego $P(x^2 - 2x) = (P(x - 2))^2$ wtedy i tylko wtedy, gdy $Q(y^2) = (Q(y))^2$, a to na mocy lematu jest równoważne, że $Q(y) = y^n$, czyli $P(x) = (x + 1)^n$.

Zadanie 2. Niech n=4k+3. Pokazać, że istnieje $d\mid n-1$, takie że n nie dzieli $d-a^2$ dla każdego $a\in\mathbb{Z}.$

Rozwiązanie:

Ponieważ n=4k+3, to -1 jest nieresztą kwadratową. Iloczyn reszt kwadratowych jest resztą kwadratową. Gdyby wszystkie czynniki pierwsze n-1 były resztami kwadratowymi, to ich iloczyn też by był. Ale ich iloczyn to n-1=-1 mod n, nie jest resztą kwadratową.

Zadanie 3. 49 uczniów pisze sprawdzian z analizy, który składa się z 3 zadań. Każde jest punktowane w skali od 0 do 7. Udowodnij, że istnieją tacy uczniowie A i B, że A z każdego zadania uzyskał niegorszy wynik punktowy niż B.

Rozwiązanie:

Zdefiniujmy sobie relację \leq , że $(a,b,c) \leq (x,y,z)$, gdy $a \leq x,b \leq y,c \leq z$. Podobnie zdefiniujmy dla par (a,b). Chcemy pokazać, że wśród 49 trójek gdzie liczby są od 0 do 7 jakieś dwie są porównywalne. Jeśli jest dwóch uczniów, którzy uzyskali takie same oceny za zadanie pierwsze i drugie to są porównywalni, zatem załóżmy, że każdy uzyskał inną parę ocen za zadanie pierwsze

PreOM 2023 - 20.03.2023 Dzień 4

i drugie. Rozważmy poniższe łańcuchy:

$$(0,0) \leqslant (0,1) \leqslant (0,2) \leqslant (0,3) \leqslant (0,4) \leqslant (0,5) \leqslant (0,6) \leqslant (0,7) \leqslant \leqslant (1,7) \leqslant (2,7) \leqslant (3,7) \leqslant (4,7) \leqslant (5,7) \leqslant (6,7) \leqslant (7,7)$$

$$(1,0) \leqslant (1,1) \leqslant (1,2) \leqslant (1,3) \leqslant (1,4) \leqslant (1,5) \leqslant (1,6) \leqslant (2,6) \leqslant \leqslant (3,6) \leqslant (4,6) \leqslant (5,6) \leqslant (6,6) \leqslant (7,6)$$

$$(2,0) \leqslant (2,1) \leqslant (2,2) \leqslant (2,3) \leqslant (2,4) \leqslant (2,5) \leqslant (3,5) \leqslant (4,5) \leqslant \leqslant (5,5) \leqslant (6,5) \leqslant (7,5)$$

$$(3,0) \leqslant (3,1) \leqslant (3,2) \leqslant (3,3) \leqslant (3,4) \leqslant (4,4) \leqslant (5,4) \leqslant (6,4) \leqslant (7,4)$$

Każdego ucznia mogę utożsamić z parą ocen za pierwsze i drugie zadanie. W każdym łańcuchu może być maksymalnie 8 uczniów, w przeciwnym wypadku jakiś dwóch uzyskałoby tą samą ocenę za trzecie zadanie, więc byliby porównywalni. Ponadto 16 par nie znajduje się w żadnym łańcuchu. Stąd mogę mieć maksymalnie $4 \cdot 8 + 16 = 48$ uczniów, żeby żadni nie byli porównywalni.

Zadanie 4. Niech ABCD będzie wypukłym czworokątem, w którym kąty $\triangleleft BAD$ i $\triangleleft BCD$ są równe. Niech M i N będą punktami leżącymi odpowiednio na bokach AB i BC takimi, że prosta MN jest równoległa do prostej AD i MN = 2AD. Niech H oznacza ortocentrum trójkąta ABC, a K oznacza środek odcinka MN. Udowodnij, że proste KH i CD są prostopadłe.

Rozwiązanie:

Oznaczmy odbicie punktu M względem A jako T. Możemy zauważyć, że AK||TN, ponieważ AK jest linią środkową trójkąta MNT. AKND jest równoległobokiem, więc DN||AK. Pokazaliśmy więc, że punkty T, D, N są współliniowe oraz TD = DN = AK. Oznaczmy przez C' taki punkt na BC, że DC||TC'. Punkt D jest środkiem TN, więc C jest środkiem C'N. Korzystając z następującej równości kątów: $\triangleleft DAB = \triangleleft TC'B = 180^{\circ} - \triangleleft AMN$ otrzymujemy cykliczność czworokąta TMNC'. Wiemy, że CH jest prostopadłe do AB oraz że AH jest prostopadłe do BC. W takim razie KH jest prostopadłe do TC', co należało udowodnić.

2/2