Outils avancés pour la statistique - Projet

Travail à effectuer

- Un fichier de script pour la Partie 1 et un fichier de script pour la Partie 2. Dans ces deux fichiers, le code devra pouvoir être exécuté ligne par ligne, en suivant l'ordre des questions.
- Un document PDF contenant les réponses aux questions et décrivant votre démarche lorsque cela est pertinent. Les calculs devront être clairs et détaillés, ainsi que la démarche utilisée.
- Le barème provisoire est donné dans le Tableau 1.

	Exercice 1		Exercice 2							
	Q1	Q2	Q1	Q2	Q3	Q4	Q5	Q6		
	6pts	1pt	1pt	$1 \mathrm{pt}$	1pt	1pt	$1 \mathrm{pt}$	8pts		
ĺ	7pts		$13 \mathrm{pts}$							

Tableau 1 – Barème.

1 Algorithme EM et survie

On s'intéresse au temps passé sans emploi sur un échantillon de personnes de taille n=12. L'étude s'arrête au bout de 5 ans et il reste encore 2 personnes qui n'ont pas trouvé d'emploi. Les données sont présentées dans le Tableau 2. On suppose que les temps Y_i sont i.i.d. de loi exponentielle de paramètre inconnu λ .

- 1. À l'aide d'un algorithme EM, estimer le paramètre de cette loi exponentielle.
- 2. Existe-t-il une solution explicite à l'estimation de λ ? (C'est-à-dire que l'on peut l'obtenir sans exécuter la boucle de l'algorithme et sans utiliser une autre modélisation.)

Indication: $\sum_{i=1}^{10} Y_i = 36860$.

Ind. i	1	2	3	4	5	6	7	8	9	10	11	12
X_i	1274	4860	2376	10567	526	1323	1890	2307	3042	1999	5106	833
Z_i	913	510	1224	63	326	305	486	213	1813	843	1826*	1826*
Y_i	2187	5370	3600	10630	852	1628	2376	2520	4855	2842	NA	NA

Tableau 2 – Nombre de jours passés sans emploi sur un échantillon de 12 individus, sans emploi au début de l'étude. L'individu i était sans emploi depuis X_i jours au début de l'étude. Il est resté Z_i jours sans emploi avant d'en trouver un. Les individus 1 à 10 ont donc passé $Y_i = X_i + Z_i$ jours sans emploi. (Aucun des individus n'a quitté l'emploi qu'il a trouvé au cours de l'étude.) Les individus 11 et 12 n'ont pas trouvé d'emploi au cours de l'étude mais on sait qu'ils auront passé au moins $X_i + Z_i$ jours sans emploi.

^{*} la durée de l'étude est de 1826 jours.

2 Biais corrigé et biais corrigé et accéléré

Pour améliorer les intervalles de confiance (IC) bootstrap percentiles, Efron a proposé :

- les IC bootstrap avec biais corrigé ou BC;
- les IC avec biais corrigé et accéléré ou BC_a , décrits dans Efron (1987).

En reprenant les notations de l'article d'Efron (1987), on dispose d'un échantillon (X_1, \ldots, X_n) i.i.d. de fonction de répartition F et on veut construire un intervalle de confiance pour un paramètre $\theta = t(F)$. Nous nous intéresserons exclusivement à l'IC non paramétrique, même si l'article propose aussi la construction d'un IC paramétrique. On note Φ la fonction de répartition d'une loi $\mathcal{N}(0; 1)$.

On peut introduire $\hat{\theta} = t(\hat{F}_n)$ avec

$$\hat{F}_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1} \{X_j \le x\}$$

et $\hat{\theta}^* = t\left(\hat{F}_n^*\right)$ avec

$$\hat{F}_n^*(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1} \left\{ X_j^* \le x \right\}$$

où (X_1^*, \ldots, X_n^*) est un échantillon issu d'un tirage avec remise dans (X_1, \ldots, X_n) , de sorte que l'on est capable de générer autant de réalisations de $\hat{\theta}^*$ que l'on veut :

- Pour $b = 1, \ldots, B$
 - Tirer un échantillon $\left(X_1^{*\{b\}},\ldots,X_n^{*\{b\}}\right)$ avec remise dans (X_1,\ldots,X_n) .
 - Calculer $\hat{\theta}^{*\{b\}} = t\left(\hat{F}_n^{*\{b\}}\right)$ avec

$$\hat{F}_n^{*\{b\}}(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1} \left\{ X_j^{*\{b\}} \le x \right\}.$$

On estime la fonction de répartition de $\hat{\theta}^*$ par la fonction de répartition empirique

$$\hat{G}(t) = \frac{1}{B} \sum_{b=1}^{B} \mathbf{1} \left\{ \hat{\theta}^{*\{b\}} \le t \right\} = \frac{\# \left\{ \hat{\theta}^{*\{b\}} \le t, \ 1 \le b \le B \right\}}{B}.$$

 $\hat{G}^{-1}(\alpha)$ est alors le quantile empirique d'ordre α calculé sur la base de l'échantillon $\{\hat{\theta}^{*\{b\}}, 1 \leq b \leq B\}$, que l'on avait noté \hat{q}_{α}^{*} dans le cours. L'intervalle de confiance BC_{a} non paramétrique pour θ est

$$\left[\hat{G}^{-1}\left(\Phi\left(z[\alpha/2]\right)\right);\,\hat{G}^{-1}\left(\Phi\left(z[1-\alpha/2]\right)\right)\right]$$

οù

$$z[\alpha] = z_0 + \frac{z_0 + z^{(\alpha)}}{1 - a(z_0 + z^{(\alpha)})}$$

et $z^{(\alpha)}=\Phi^{-1}\left(\alpha\right)$ est le quantile d'ordre α d'une loi $\mathcal{N}\left(0\,;\,1\right).$

La constante de biais z_0 et la constante d'accélération a sont calculées de la manière suivante

$$z_0 = \Phi^{-1} \left(\hat{G} \left(\hat{\theta} \right) \right)$$
 et $a = \frac{\sum_{i=1}^n U_i^3}{6 \left(\sum_{i=1}^n U_i^2 \right)^{3/2}}$

avec

$$U_{i} = \lim_{\Delta \to 0} \frac{t\left((1-\Delta)\hat{F}_{n} + \Delta D_{i}\right) - t\left(\hat{F}_{n}\right)}{\Delta}$$

où 1 $D_{i}(x) = 1 \{X_{i} \leq x\}$. Les intervalles de confiance BC sont obtenus pour a = 0.

- 1. Montrer que lorsque $z_0=a=0$, on retrouve l'intervalle de confiance percentile d'Efron vu en cours.
- 2. Montrer que pour $\theta_1 = t_1(F) = \mathbf{E}[X]$ que l'on estime par $\hat{\theta}_1 = t_1(\hat{F}_n) = \overline{X}_n = n^{-1} \sum_{j=1}^n X_j$, on a

$$U_{i,1} = X_i - \overline{X}_n.$$

3. Montrer que pour $\theta_2 = t_2(F) = \operatorname{Var}(X) = \sigma^2(X) = \mathbf{E}\left[\left(X - \mathbf{E}[X]\right)^2\right]$ que l'on estime par $\hat{\theta}_2 = t_2\left(\hat{F}_n\right) = n^{-1}\sum_{j=1}^n \left(X_j - \overline{X}_n\right)^2$, on a

$$U_{i,2} = (X_i - \overline{X}_n)^2 - \frac{1}{n} \sum_{j=1}^n (X_j - \overline{X}_n)^2.$$

4. Montrer que pour $\theta_3 = t_3(F) = \sigma(X) = \sqrt{\mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right)^2\right]}$ que l'on estime par

$$\hat{\theta}_3 = t_3 \left(\hat{F}_n \right) = \sqrt{n^{-1} \sum_{j=1}^n \left(X_j - \overline{X}_n \right)^2},$$

on a

$$U_{i,3} = \frac{U_{i,2}}{2\hat{\theta}_2}.$$

5. Montrer que pour $\theta_4 = t_4(F) = \frac{\mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right)^3\right]}{\sigma^3(X)}$ que l'on estime par

$$\hat{\theta}_4 = t_4 \left(\hat{F}_n \right) = \frac{n^{-1} \sum_{j=1}^n \left(X_j - \overline{X}_n \right)^3}{\left[n^{-1} \sum_{j=1}^n \left(X_j - \overline{X}_n \right)^2 \right]^{3/2}},$$

on a

$$U_{i,4} = \frac{\left(X_i - \overline{X}_n\right)^3 - \frac{3}{n}\left(X_i - \overline{X}_n\right)\sum_{j=1}^n \left(X_j - \overline{X}_n\right)^2 - \frac{1}{n}\sum_{j=1}^n \left(X_j - \overline{X}_n\right)^3}{\left[n^{-1}\sum_{j=1}^n \left(X_j - \overline{X}_n\right)^2\right]^{3/2}}.$$

- 6. Faire une étude des longueurs et des taux de couverture des intervalles de confiance percentile d'Efron, BC et BC_a sur la base de N=1000 échantillons i.i.d. de taille n=20 et de loi $\Gamma(5;1/2)$, et pour les paramètres θ_1 , θ_2 , θ_3 , θ_4 et θ_5 . On utilisera un nombre d'échantillons bootstrap adéquat et on construira des intervalles à 90%.
- 1. Ici c'est bien D_i et non pas la masse de Dirac δ_i en X_i , qu'il faut ajouter.

Remarque 1. La notation t(F) signifie que le paramètre ne dépend que de F. Par exemple, pour t_2 on a bien

$$t_{2}(F) = \int x^{2} F(dx) - \left[\int x F(dx) \right]^{2}$$

$$= \int x^{2} f(x) dx - \left[\int x f(x) dx \right]^{2}$$
(1)

où f est la densité de X, égale à la dérivée de F presque partout. La quantité $t_2\left(\hat{F}_n\right)$ s'obtient en remplaçant chaque occurence de F par \hat{F}_n dans (1), ce qui donne

$$t_{2}(\hat{F}_{n}) = \int x^{2} \hat{F}_{n}(dx) - \left[\int x \hat{F}_{n}(dx)\right]^{2}$$
$$= n^{-1} \sum_{j=1}^{n} X_{j}^{2} - \left[n^{-1} \sum_{j=1}^{n} X_{j}\right]^{2}.$$

Concernant le mélange $(1 - \Delta) \hat{F}_n + \Delta D_i$ on a

$$t_2 \left((1 - \Delta) \, \hat{F}_n + \Delta D_i \right) = \frac{1 - \Delta}{n} \sum_{j=1}^n X_j^2 + \Delta X_i^2 - \left[\frac{1 - \Delta}{n} \sum_{j=1}^n X_j + \Delta X_i \right]^2.$$

Références

Bradley Efron. Better bootstrap confidence intervals. J. Amer. Statist. Assoc., 82(397):171-200, 1987. ISSN 0162-1459. URL http://links.jstor.org/sici?sici=0162-1459(198703) 82:397<171:BBCI>2.0.CO;2-H&origin=MSN. With comments and a rejoinder by the author.