

ECON 202 - MACROECONOMIC PRINCIPLES

Instructor: Dr. Juergen Jung

Towson University

Disclaimer

These lecture notes are customized for the Macroeconomics Principles 202 course at Towson University. They are not guaranteed to be error-free. Comments and corrections are greatly appreciated. They are derived from the Powerpoint© slides from online resources provided by Pearson Addison-Wesley. The URL is: http://www.pearsonhighered.com/osullivan/

These lecture notes are meant as complement to the textbook and not a substitute. They are created for pedagogical purposes to provide a link to the textbook. These notes can be distributed with prior permission.

This version was compiled on: May 4, 2016.

Chapter 16 - The Dynamics of Inflation and Unemployment

The Dynamics of Inflation and Unemployment - Topics

- Describe how an economy at full unemployment with inflation differs from one without inflation
- Explain the relationship between inflation and unemployment in the short run and long run
- 3 Discuss why increasing the credibility of a central bank can reduce inflation
- 4 Define the velocity of money
- 5 Identify the origins and causes of hyperinflation

Money Growth, Inflation and Interest Rates

- Money illusion
- Nominal interest rate = real interest rate + Expected rate of inflation

Real Wages over Time

Bigger Paychecks, But Little Change in Purchasing Power

Average hourly wages, seasonally adjusted

Note: Data for production and non-supervisory employees on private non-farm payrolls.

Source: Bureau of Labor Statistics

PEW RESEARCH CENTER

How much Inflation?

- In theory any rate of inflation can occur at full employment
- Remember the Fed can set the money supply which determines the rate of inflation in the long run
- After a while people form expectations about future inflation and base their decision upon them

Monetary Policy and Interest in the Long Run

TABLE 16.1 Money, Inflation, and Interest Rates in a Steady-State Economy						
Money Growth Rate	Inflation	Growth in Money Demand	Real Interest Rate	Nominal Interest		
4%	4%	4%	2%	6%		
5%	5%	5%	2%	7%		

Expected Inflation

- Say the Fed wants a lower inflation rate and decreases money growth but the public still believes in the higher money growth rate
- Short-Run→ contractionary policy in the short run
- $lue{}$ Long-Run \rightarrow the real world stays the same

Summary

- Tight monetary policy in the short run
 - Slower money growth
 - Raised interest rates
- Tight monetary policy in the long run
 - Reduced money growth leads to Lower inflation and
 - Lower nominal interest rates

Expectations Phillips Curve

■ Is the relationship between unemployment and expected inflation

TABLE 16.2 Expectations and Business Fluctuations					
When the economy experiences a	Unemployment is	Inflation is			
boom	below the natural rate.	higher than expected.			
recession	above the natural rate.	lower than expected.			

And the other way round

- Likewise, a temporary decrease in the inflation rate is likely to be associated with temporary increases in unemployment
- Friedman and Phelps worked the expectations into this model
- How are expectations formed
 - Rule of thumb
 - Taking all available info into account
 - A mix?

Are the Public's Expectations About Inflation Rational?

- There are two broad classes of theories of how the public forms its expectations:
 - Some economists and psychologists, including Nobel laureate Herbert Simon, believe that the public uses simple rules-of-thumb to predict future inflation
 - An alternative view, called the theory of rational expectations, holds that workers and firms base their expectations on all available information

U.S. Inflation and Unemployment in the 1980s

- In the early 1980s, high, real interest rates eventually caused the unemployment rate to rise to over 10% by 1983
- As the actual unemployment exceeded the natural rate of unemployment, the inflation rate fell, just as was predicted by the expectations Phillips curve
- The severe recession had done its job in reducing the inflation rate

U.S. Inflation and Unemployment in the 1980s (cont.)

U.S. Inflation and Unemployment in the 1980s (cont.)

- After 1986, the unemployment rate began to fall again, and as the actual unemployment fell below the natural rate, inflation began to rise
- In 1989, the Fed raised interest rates to combat inflation
- This reduced output and increased unemployment to over

Shifts in the Natural Rate of Unemployment

- The natural rate of unemployment can shift over time
- The factors that cause this include:
 - Demographics, and the composition of the workforce
 - Institutional changes, or changes in laws and regulations that affect unemployment benefits and restrictions placed on employers that make it difficult to fire workers
 - The state of the economy
 - Changes in the growth of labor productivity

How the Credibility of a Nation's Central Bank Affects Inflation

How the Credibility of a Nation's Central Bank Affects Inflation (cont.)

Inflation and the Velocity of Money

The rate at which money turns over during the year

velocity of money =
$$\frac{\text{nominal GDP}}{\text{money Supply}}$$

 Velocity is the number of times that money must change hands in economic transactions during a given year for an economy to reach its GDP level

velocity of money =
$$\frac{\$5 \text{ trillion per year}}{\$1 \text{ trillion}} = 5 \text{ times per year}$$

■ The equation of exchange, or quantity equation, links the money supply and velocity to nominal GDP:

money supply \times velocity = nominal GDP,

Inflation and the Velocity of Money (cont.)

Quantity equation:

$$M \times V = P \times y$$

Inflation and the Velocity of Money (cont.)

Use Velocity to Predict Inflation

Example:

$$10\% + 0\% = \text{Growth rate of money } +3\%$$

can be solved for the inflation rate as

Growth rate of money (inflation) =
$$7\%$$

Hyperinflation

Hyperinflation

- Economists call very high inflation rates—
 - over 50% per month, which is approximately
 - 13,000% per year—hyperinflation

TABLE 16.3 Hyperinflations and Velocity							
Country	Dates	Monthly Rate of Inflation	Monthly Rate of Money Growth	Approximate Increase in Velocity			
Greece	November 1943 to November 1944	365%	220%	14.00			
Hungary	August 1945 to July 1946	19,800%	12,200%	333.00			
Russia	December 1921 to January 1924	57%	49%	3.70			

SOURCE: Adapted from Phillip Cagan, "The Monetary Dynamics of Hyperinflation," in Studies in the Quantity Theory of Money, ed. Milton Friedman (Chicago: University of Chicago Press, 1956), 26.

Hyperinflation (cont.)

■ A monthly rate of inflation of 365% means that the price level rises by a factor of 4.65 each month

$$\frac{4.65-1}{1} = 3.65 \text{ or } 365\%$$

At the end of the month, it will take \$4.65 to buy a good that was \$1.
The dollar is worth:

$$\frac{1}{4.65} = 0.215$$
 or 21.5cents

And, at the end of two months:

$$0.215 \times 0.215 = 0.046$$
 or 4.6 cents

Hyperinflation (cont.)

TABLE 16.4 Hyperinflations in the 1980s						
Country	Year	Yearly Rate of Inflation	Monthly Rate of Inflation	Monthly Money Growth Rate		
Bolivia	1985	1,152,200%	118%	91%		
Argentina	1989	302,200	95	93		
Nicaragua	1988	975,500	115	66		

SOURCE: International Financial Statistics, International Monetary Fund.

- During hyperinflations, we would expect that people wouldn't want to hold money very long but would immediately try to spend it
- In other words, we would expect the velocity of money to increase sharply

How Budget Deficits Lead to Hyperinflation

- Hyperinflation arises when governments allow the money supply to grow in order to finance the gap between government spending and revenues—the budget deficit
- \blacksquare Seignorage Revenue \to raised from money creation \to inflate debt away
- In principle, governments could use a mix of borrowing funds from the public and printing money to cover the deficit:
 - $\label{eq:Government} \mbox{Government deficit} = \mbox{New borrowing from public} + \mbox{New money created}$
- Hyperinflations occur when governments cannot borrow from the public and are forced to print new money
- To stop hyperinflation, it is necessary to eliminate the government deficit
- Once the government stops printing money, the hyperinflation will end

How Budget Deficits Lead to Hyperinflation (cont.)

- Economists who emphasize the role that the supply of money plays in determining nominal income and inflation are called monetarists
- Today, most economists agree with the monetarists that, in the long run, inflation is caused by growth in the money supply

Cost of Hyperinflation

- Hyperinflation causes large costs (search costs) since money cannot fulfill its functions anymore:
 - Medium of exchange
 - Store of value
 - Unit of account
- No country can maintain a hyperinflation over a longer time period
- Hyperinflation destroys economic systems

Cause of Inflation

- Anticipated Inflation
 - Menu costs
 - Have to change prices on menus, catalogs, ...
 - These costs tend to be low
 - Shoe leather costs
 - People hold less money (since opportunity costs are higher when inflation is high) and have to go to the bank more often
 - Can be as large as 1% of GDP
 - Other costs: taxes are based on nominal income, interest rate ceilings based on nominal rates → can lead to distortions
- Unanticipated Inflation
 - "unfair" redistributions, lenders lose, borrowers gain
 - Anyone making a nominal contract to sell something based on expected inflation would lose, if "surprise" inflation turns out to be higher (wage contracts,...)
 - People would start taking measures against unanticipated inflation which imposes real costs

Indexing Contracts

 Indexing might build inflation into the system and makes it difficult to reduce inflation

Inflation and Unemployment

Cost of Unemployment

- lacktriangle When unemployment is above the potential rate a society is wasting resources \rightarrow this can be substantial
- Immediate hardship on HH
- Unemployment insurance is only a temporary cushion
- When unemployed people might also lose some of their skills and "good" work habits
- This is not only a financial but also a social question (increased crime, divorce, and suicidal rates)

Original Phillips Curve: 1954-1970

Original Phillips Curve: 1954-1970 (cont.)

- The Phillips Curve appears to present a trade-off between inflation and unemployment:
 - Higher inflation, lower unemployment and vice versa
- But is this trade-off exploitable by policy makers?
- Let's check more data

Original Phillips Curve: 1954-1970 (cont.)

Original Phillips Curve: 1954-1970 (cont.)

■ What do you think of the Friedman/Phelps argument now?

Rational Expectations

- Lucas 1970s:
 - Individuals form their expectations such that, on average, they anticipate the future correctly
- Do the Math:
 - Money growth is 10%
 - Real GDP growth 3%
 - Velocity has zero growth \rightarrow inflation is: ?
- Empirically given link
- Growth rate of real GDP and growth rate of velocity influence this relationship