

Guía Álgebra Booleana

Tema I: Álgebra de Boole

AXIOMAS DEL ALGEBRA DE BOOLE

Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de \vee y \wedge respectivamente), y una operación unaria, denotada '. Entonces a la terna (B, +, *) se le denomina **Algebra Booleana** si se cumplen los siguientes axiomas o leyes:

B1) Leyes Conmutativas. Las dos operaciones son conmutativas:

Para todos los elementos $x, y \in B$, se cumple que:

1A)
$$x + y = y + x$$

1B)
$$x * y = y * x$$

B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra:

Para todos los elementos $x, y, z \in B$, se cumple que:

2A)
$$x + (y * z) = (x + y) * (x + z)$$
 2B) $x * (y + z) = (x * y) + (x * z)$

2B)
$$x * (y + z) = (x * y) + (x * z)$$

B3) Leyes Modulativas. Cada operación binaria es modulativa y los módulos son diferentes:

Para todo $x \in B$, existen dos elementos diferentes 0 y 1 en B tales que:

3A)
$$x + 0 = 0 + x = x$$

3B)
$$x * 1 = 1 * x = x$$

B4) Leyes de Complemento.

Para todo elemento $x \in B$ existe un elemento $x' \in B$ tal que:

4A)
$$x + x' = 1$$

4B)
$$x * x' = 0$$

Ejemplos de estructuras booleanas

Ejemplo 1. La siguiente es una de las Álgebras Booleanas con aplicación directa a los circuitos de distribución. Para futuras referencias se denominará Álgebra Binaria de Boole.

Sea el conjunto $B = \{0, 1\}$ en el cual se definen las operaciones + y * de acuerdo a las siguientes tablas:

+	0	1	
0	0	1	
1	1	1	

*	0	1
0	0	0
1	0	1

Supongamos que los complementos se definen por $1' \equiv 0$ y $0' \equiv 1$.

(Observe la relación de estas tablas con la disyunción (∨) y la conjunción (∧) respectivamente, y la relación de los complementos con la negación de una proposición)

Demostrar que (B, +, *, ') es un álgebra booleana, mostrando que se satisfacen los axiomas B1 a B4.

Solución:

B1) Las leyes conmutativas de las operaciones + y * se evidencian en la simetría de la matriz de resultados en ambas tablas.

B2) Establecer la distributividad de cada una de las operaciones con respecto a la otra exige calcular el resultado de ocho combinaciones posibles en cada caso.

Para **2A)** x + (y * z) = (x + y) * (x + z):

				А			В
Х	у	Z	y * z	x + (y * z)	x + y	X + Z	(x+y)*(x+z)
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1

1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

Observe que las columnas A y B son iguales

Para la forma **2B)** x * (y + z) = (x * y) + (x * z)

				Α			В
X	у	Z	y + z	x * (y + z)	x * y	X * Z	(x * y) + (x * z)
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1

ONNEWLY,	Universidad de San Buenaventura cali
----------	--

1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Observe que las columnas A y B son iguales

B3) En la tabla de la operación + es fácil observar que 0 es el módulo de esta operación y en la tabla de * análogamente se puede ver que 1 es el módulo; en efecto:

$$0+0=0;$$
 $1+0=1$ y $0*1=0;$ $1*1=1.$

B4) Se han definido 1' = 0 y 0' = 1, de esta manera se puede observar que para cada elemento de B existe un complemento tal que:

$$0 + 0' = 0 + 1 = 1$$
 y $1 + 1' = 1 + 0 = 1$

$$0*0'=0*1=0$$
 y $1*1'=1*0=0$

De esta manera se ha demostrado que (B, +, *, ') es una Algebra Booleana.

Ejemplo 2. Sea la familia P(U) de conjuntos de U, demostrar que $\langle P(U), \cup, \cap, ' \rangle$ es un Álgebra de Boole para cada conjunto U.

Sugerencia:
$$B \equiv P(U)$$
, $+ \equiv \cup$, $* \equiv \cap$, $0 \equiv \emptyset$ y $1 \equiv U$

Solución: A continuación se verifican los cuatro axiomas de las álgebras booleanas:

B1) Las dos operaciones unión (\cup) e intersección (\cap) son conmutativas para todo A, B \in P(U):

1A)
$$A \cup B = B \cup A$$

1B)
$$A \cap B = B \cap A$$

B2) La unión es distributiva con respecto a la intersección para todos los conjuntos A, B, $C \in P(U)$, y recíprocamente:

2A)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 2B) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

2B)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

B3) Para todo $A \in P(U)$ existen $\phi \in P(U)$ y $U \in P(U)$ tal que

3A)
$$A \cup \phi = A$$

3A)
$$A \cap U = A$$

B4) Para cada $A \in P(U)$, existe el complemento de A, esto es A' = U - A, con $A' \in P(U)$, tal que satisface las siguientes relaciones:

4A)
$$A \cup A' = U$$

4B)
$$A \cap A' = \emptyset$$

Así queda demostrado que $\langle P(U), \cup, \cap, ' \rangle$ es un Álgebra de Boole.

Ejemplo 3. Sean $D_{15} = \{1, 3, 5, 15\}$, los divisores enteros positivos de 15. Se definen +, * y ' de la siguiente manera:

 $x + y \equiv MCM(x, y)$: mínimo común múltiplo de x y y;

 $x * y \equiv MCD(x, y)$: máximo común divisor de x y y, y

 $x' \equiv 15/x$.

Demuestre que esta estructura así definida $\langle D_{15}, +, *, ' \rangle$ es un Álgebra Booleana.

Solución: Verifiquemos los axiomas del álgebra booleana:

B1) La conmutatividad de las operaciones se evidencia, pues x + y = y + x, equivale a MCM (x, y) = MCM (y, x) y x * y = y * x, significa que MCD (x, y) = MCD (y, x). Es decir, no importa el orden al obtener los resultados de un par de elementos del conjunto D_{15} para el MCM y el MCD. Esto se muestra en la simetría de la matriz de resultados en cada una de las siguientes tablas:

+	1	3	5	15
1	1	3	5	15
3	3	3	15	15
5	5	15	5	15
15	15	15	15	15

*	1	3	5	15
1	1	1	1	1
3	1	3	1	3
5	1	1	5	5
15	1	3	5	15

B2) Examinemos la distributividad de una operación respecto a la otra:

2A) Para la forma
$$x + (y * z) = (x + y) * (x + z)$$
 es equivalente a tener

$$MCM[x, (y * z)] = MCD[(x + y), (x + z)]$$

$$MCM[x, MCD(y, z)] = MCD[MCM(x, y), MCM(x, z)]$$

veamos algunos ejemplos que se condensan en la siguiente tabla:

				А			В
			y * z	x + (y * z)	<i>x</i> + <i>y</i>	X + Z	(x+y)*(x+z)
X	У	Z	MCD (<i>y</i> , <i>z</i>)	MCM[x, MCD(y, z)]	MCM (<i>x, y</i>)	MCM (x, z)	MCD [MCM (x, y), MCM (x, z)]
1	3	5	1	1	3	5	1
3	5	15	5	15	15	15	15
5	15	3	3	15	15	15	15
15	1	3	1	15	15	15	15

Observe que las columnas A y B son iguales

2B) Para la forma
$$x * (y + z) = (x * y) + (x * z)$$
 es equivalente a tener

$$MCD[x, (y + z)] = MCM[(x * y), (x * z)]$$

$$MCD[x, MCM(y, z)] = MCM[MCD(x, y), MCD(x, z)]$$

veamos algunos casos en la siguiente tabla:

				А			В
X	у	Z	y + z	x * (y + z)	x * y	x * z	(x * y) + (x * z)
	,		MCM (<i>y</i> , <i>z</i>)	MCD[x, MCM(y, z)]	MCD (x, y)	MCD(x, z)	MCM [MCD (x, y), MCD (x, z)]
1	3	5	15	1	1	1	1
3	5	3	15	3	1	3	3
5	5	1	5	5	5	1	5
15	1	3	3	3	1	3	3

Observe que las columnas A y B son iguales

Por lo tanto, cada operación es distributiva con respecto a la otra.

B3) Sean $0 \equiv 1$, $1 \in D_{15}$ es el módulo de +, y $1 \equiv 15$, $15 \in D_{15}$ es el módulo de *.

3A) Así x + 0 = 0 + x = x; esto es, para todo $x \in D_{15}$,

$$MCM(x, 1) = MCM(1, x) = x.$$

3B)
$$x * 1 = 1 * x = x$$
, es decir, para todo $x \in D_{15}$,

$$MCD(x, 15) = MCD(15, x) = x.$$

Por lo tanto, las dos operaciones son modulativas.

B4) Para cada
$$x \in D_{15}$$
 existe $x' \in D_{15}$ tal que $x + x' = 1$ y $x * x' = 0$. Esto es:

4A) Para
$$x + x' \equiv MCM(x, x') = MCM(x, 15/x) = 15;$$

veamos un caso, $5 + 5' \equiv MCM(5, 5') = MCM(5, 3) = 15.$

4B) Para
$$x * x' \equiv MCD(x, x') = MCD(x, 15/x) = 1$$
,
un caso es $3 * 3' \equiv MCD(3, 3') = MCD(3, 15/3) = MCD(3, 5) = 1$.

Esto demuestra que D₁₅ con las operaciones MCM y MCD es un Algebra Booleana.

RESULTADOS QUE SE DERIVAN DE LOS AXIOMAS DE LAS ALGEBRAS DE BOOLE

EXPRESIONES BOOLEANAS.

Definición. Sea B = $\{x_1, x_2, \dots x_n\}$ un conjunto de n símbolos o variables. Una **expresión booleana** $E(x_1, x_2, \dots x_n)$ o un **polinomio booleano** en $x_1, x_2, \dots x_n$ se define recursivamente como sigue:

- 1. Los símbolos o variables $x_1, x_2, \dots x_n$ son expresiones booleanas.
- 2. Los símbolos 0 y 1 son expresiones booleanas.
- 3. Si $E_1(x_1, x_2, ... x_n)$ y $E_2(x_1, x_2, ... x_n)$ son expresiones booleanas en $x_1, x_2, ... x_n$ entonces también los son $E_1(x_1, x_2, ... x_n) + E_2(x_1, x_2, ... x_n)$, $E_1(x_1, x_2, ... x_n) * E_2(x_1, x_2, ... x_n)$, y $[E_1(x_1, x_2, ... x_n)]'$.

Observación: De acuerdo al uso en el álgebra clásica, se abrevia x * y como xy. Igualmente se asume que * se evalúa antes que +; esto permite en algunos casos eliminar ciertos paréntesis. Por ejemplo, se puede escribir xy + z en lugar de (x * y) + z.

B5) TEOREMA 1. Leyes de Idempotencia. Todo elemento de un Álgebra Booleana es idempotente. Para todo elemento $x \in B$; se cumple que:

5A)
$$x + x = x$$

5B)
$$x * x = x$$
.

Demostración:

Demostración de **5A**:

$$x + x = (x + x) * 1$$

$$= (x+x) * (x+x')$$

B4 (Ley de complemento)

$$= x + (x * x')$$

B2 (Ley distributiva)

$$= x + 0$$

B4 (Ley de complemento)

B3 (Ley modulativa)

Demostración de 5B:

$$x * x = (x * x) + 0$$
 B3 (Ley modulativa)
$$= (x * x) + (x * x')$$
 B4 (Ley de complemento)
$$= x * (x + x')$$
 B2 (Ley distributiva)
$$= x * 1$$
 B4 (Ley de complemento)
$$= x$$
 B3 (Ley modulativa)

DEFINICION DE DUAL. El dual de una expresión E de un Álgebra Booleana, es la expresión que resulta a partir de E intercambiando + por * y 0 por 1 y recíprocamente, en cada operación de estos símbolos.

Ejemplo ilustrativo:

- **1.** Sea la expresión $E_1 = x + y * (z + 1)$, el dual es la expresión $E_1^d = x * (y + z * 0)$.
- **2.** Dada la ecuación $E_2 = x + xz' = x$, su dual es la ecuación $E_2^d = x * (x + z') = x$

PRINCIPIO DE LA DUALIDAD. Si el teorema T es deducible de los axiomas de un Algebra de Boole, entonces el dual de T, que se denota por T^d, es también deducible y para deducirlo basta cambiar cada expresión surgida en la demostración de T, por su dual.

Observe la demostración del Teorema 1, realizada anteriormente, la demostración de **5B** se obtiene a partir de **5A**, realizando los cambios respectivos previstos + por * y 1 por 0, y recíprocamente. **5B** es el T^d de **5A**.

B6) TEOREMA 2. Leyes de acotamiento. Para todo $x \in B$, se verifica que:

6A)
$$x + 1 = 1$$

6B)
$$x * 0 = 0$$
.

Demostración:

Demostración de 6A:

$$x + 1 = 1 * (x + 1)$$

B3 (Ley modulativa)

$$= (x + x') * (x + 1)$$

B4 (Ley de complemento)

$$= x + (x' * 1)$$

B2 (Ley distributiva)

$$= \chi + \chi'$$

B3 (Ley modulativa)

B4 (Ley de complemento)

La demostración de **6B** x * 0 = 0 se omite, ya que por el principio de la dualidad se puede deducir de manera análoga tomando el dual en cada paso de la demostración de **6A** (el lector puede demostrarlo).

B7) TEOREMA 3. Leyes de absorción. Para todo $x, y \in B$, se verifica que:

7A)
$$x + (x * y) = x$$

7B)
$$x * (x + y) = x$$
.

Demostración:

Demostración de **7A**:

$$x + (x * y) = x * 1 + (x * y)$$

B3 (Ley modulativa)

$$= x * (1 + y)$$

B2 (Ley distributiva)

$$= x * (y + 1)$$

B1 (Ley conmutativa)

$$= x * 1$$

B6 (Teorema 2: Ley de acotamiento)

$$= x$$

B3 (Ley modulativa)

La parte **7B** se da por demostrada por el principio del dualismo (el lector puede demostrarlo)

B8) TEOREMA 4. Unicidad del complemento. Para cada $x \in B$, siendo B un Algebra de Boole, el complemento de x, denotado por x', es único.

Demostración: La demostración se hará por contradicción.

Supongamos que $x \in B$ tiene dos complementos diferentes y y z, es decir, con $y \ne z$, entonces satisfacen las condiciones del axioma **B4**: por **4A**) x + y = 1 (2) y x + z = 1 (3), y por **4B**) x * y = 0 (4) y x * z = 0 (1)

$$y = y + 0$$

$$y = y + (x * z)$$

Sustitución de (1) en 0

$$y = (y + x) * (y + z)$$

B2

$$= (x + y) * (y + z)$$

В1

$$= 1 * (y + z)$$

Sustitución de (2)

$$= (x+z) * (y+z)$$

Sustitución de (3)

$$=(x*y)+z$$

B2

$$= 0 + z$$

Sustitución de (4)

$$=z$$

В3

Entonces y = z. Lo cual es una contradicción (contradice la condición de la hipótesis $y \neq z$).

B9) TEOREMA 5. Leyes de D'Morgan. Para todo $x, y \in B$, se verifica que:

8A)
$$(x + y)' = x' * y'$$

У

8B)
$$(x * y)' = x' + y'$$
.

Demostración:

Demostración de 8A): Mostraremos que x' * y' satisface las condiciones que caracterizan el complemento de (x + y), que es único.

1º)
$$(x + y) + (x' * y') = (x + y + x') * (x + y + y')$$

$$= (x + x' + y) * (x + y + y')$$

В1

$$= (1 + y) * (x + 1)$$

В4

B6: Teorema 2

В3

2º)
$$(x + y) * (x' * y') = x * (x' * y') + y * (x' * y')$$

= $(x * x') y' + (y * y') x'$

B1 y Propiedad asociativa

= $0 * y' + 0 * x'$

B4

= $0 + 0$

B6: Teorema 2

= 0

B3

En conclusión (x + y)' = x' * y'.

Por el principio del dualismo 8B se da por demostrado (el lector puede comprobarlo).

B10) TEOREMA 6. Leyes asociativas. Para todo $x, y, z \in B$, se verifica que:

Demostración:

Demostraremos **9B)**: Sea L = (x * y) * z y R = x * (y * z); entonces tenemos que demostrar que L = R. Primero demostraremos que x + L = x + R.

$$x + L = x + [(x * y) * z]$$

$$= [x + (x * y)] * (x + z)$$

$$= x * (x + x)$$

$$= x$$

$$x + R = x + [x * (y * z)]$$

$$= (x + x) * (x + (y * z)]$$

$$= x * [x + (y * z)]$$

$$= x$$

Así, x + L = x + R.

Ahora demostremos que x' + L = x' + R.

$$x' + L = x' + [(x * y) * z]$$

$$= [x' + (x * y) * (x' + z)]$$

$$= [(x' + x) * (x' + y') * (x' + z)]$$

$$= [1 * (x' + y) * (x' + z)]$$

$$= (x' + y) * (x' + z)$$

$$= x' + (y * z)$$

$$x' + R = x' + [x * (y * z)]$$

$$= (x' + x) * [x' + (y * z)]$$

$$= 1 * [x' + (y * z)]$$

$$= x' + (y * z)$$

De donde x' + L = x' + R. En consecuencia,

$$L = L + 0 = L + (x * x')$$

$$= (L + x) * (L + x')$$

$$= (x + L) * (x' + L)$$

$$= (x + R) * (x' + R)$$

$$= (R + x) * (R + x')$$

$$= R + (x * x') = R + 0 = R$$

Por el principio de dualismo **9A** se da por demostrado.

B11) TEOREMA 7. Ley de involución. Para cada $x \in B$, (x')' = x.

B12) TEOREMA 8. Leyes para el **0** y el **1.** 0' = 1 y 1' = 0.