

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMPUTER SCIENCE

0478/21

Paper 2 Algorithms, Programming and Logic

May/June 2023

1 hour 45 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 (a) Four descriptions of stages in the program development life cycle are shown.

Draw **one** line to link each description to its most appropriate program development life cycle stage.

Not all program development life cycle stages will be used.

Pr	ogran	n developmeı	nt life cycle description	Program development life cycle stage)
		ing structure d	m to solve the problem iagrams, flowcharts or docode	analysis	
				coding	
	dete	ect and fix the	errors in the program	design	
	identi	ify the problen	n and its requirements	evaluation	
	write		ent the instructions to be problem	testing	
	(b)	Identify three	e of the component parts after a	problem has been decomposed.]
		2			
				[3	 3]
2		x (√) one box ne data type.	to show the name of the data s	ructure used to store a collection of data of th	е
	Α	Array			
	В	Constant			
	С	Function			
	D	Variable		[′]

© UCLES 2023 0478/21/M/J/23

(a)	Describe what is meant by data validation.
	[2
(b)	A validation check is used to make sure that any value that is input is an integer between 30 and 200 inclusive.
	Give one example of each type of test data to check that the validation check is working as intended. Each example of test data must be different.
	Give a reason for each of your choices of test data.
	Normal test data
	Reason
	Abnormal test data
	Reason
	Extreme test data
	Reason
	[6]
Exp	lain the purpose of the library routines DIV and ROUND
DIV	,
ROU	ND
	[4]

5 An algorithm has been written in pseudocode to allow some numbers to be input. All the positive numbers that are input are totalled and this total is output at the end.

An input of 0 stops the algorithm.

```
01 Exit \leftarrow 1
02 WHILE Exit <> 0 DO
03 INPUT Number
      IF Number < 0
05
        THEN
06
           Total \leftarrow Total + Number
07
       ELSE
8 0
          IF Number = 0
09
            THEN
10
              Exit \leftarrow 1
11
          ENDIF
12 ENDIF
13 ENDIF
14 OUTPUT "The total value of your numbers is ", Number
```

(a) Identify the **four** errors in the pseudocode and suggest a correction for each error.

Error 1
Correction
Error 2
Correction
Error 3
Correction
Error 4
Correction

[4]

© UCLES 2023 0478/21/M/J/23

	You do not need to rewrite the algorithm.	
Stat		
	te two features that should be included to create a maintainable program.	
Give	te two features that should be included to create a maintainable program.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	
Give	te two features that should be included to create a maintainable program. e a reason why each feature should be used.	

7 The flowchart represents an algorithm.

The table represents the two-dimensional (2D) array Word[] which stores the first half of the phonetic alphabet used for radio transmission. For example, Word[10,1] is 'J'.

Index	1	2
1	А	Alpha
2	В	Bravo
3	С	Charlie
4	D	Delta
5	Е	Echo
6	F	Foxtrot
7	G	Golf
8	Н	Hotel
9	I	India
10	J	Juliet
11	K	Kilo
12	L	Lima
13	М	Mike

(a) Complete the trace table for the algorithm by using the input data: F, Y, D, N

Pointer	Letter	Choice	OUTPUT

(b)	Identify the type of algorithm used.
	[1
(c)	Describe one problem that could occur with this algorithm if an invalid character was input.
	[2

BLANK PAGE

The	function LENGTH (Phrase) calculates the length of a string Phrase
(a)	 Write the pseudocode statements to: store the string "The beginning is the most important part" in Phrase calculate and output the length of the string output the string in upper case.
(b)	Write the output your pseudocode should produce.

© UCLES 2023 0478/21/M/J/23

9 Consider this logic expression.

Z = (NOT A OR B) AND (B XOR C)

(a) Draw a logic circuit for this logic expression.

Each logic gate must have a maximum of **two** inputs.

Do not simplify this logic expression.

(b) Complete the truth table from the given logic expression.

Α	В	С	Working space	Z
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

10 A database table called TVRange shows the main features and prices of a range of televisions.

TVCode	ScreenSize	Satellite	SmartTV	SoundBar	Price\$
TV90SaSmSd	90	YES	YES	YES	9750.00
TV75SaSmSd	75	YES	YES	YES	8500.00
TV75SaSd	75	YES	NO	YES	8000.00
TV65SaSmSd	65	YES	YES	YES	6000.00
TV65SmSd	65	NO	YES	YES	5000.00
TV65SaSd	65	YES	NO	YES	5000.00
TV55SaSmSd	55	YES	YES	YES	4000.00
TV55SaSd	55	YES	NO	YES	3500.00
TV55SmSd	55	NO	YES	YES	3500.00
TV50SaSmSd	50	YES	YES	YES	2500.00
TV50Sa	50	YES	NO	NO	1750.00
TV50Sm	50	NO	YES	NO	1750.00
TV40Sa	40	YES	NO	NO	1200.00
TV40	40	NO	NO	NO	950.00
TV32	32	NO	NO	NO	650.00

State the reason for this choice.
Field
Reason

[2]

(a) Give the name of the field that is most suitable to be the primary key.

© UCLES 2023 0478/21/M/J/23

(b)	The database uses the data types:
. ,	• text
	 character
	 Boolean
	 integer
	• real
	date/time.

Complete the table to show the most appropriate data type for each field. Each data type must be different.

Field	Data type
TVCode	
ScreenSize	
SmartTV	
Price\$	

1	2	
		۰

(c)	Complete the structured query language (SQL) query to return the television (TV) code screen size and price of all Smart TVs in the database table.
	SELECT TVCode,,
	TVRange
	WHERE SmartTV =;

[4]

11	A one-dimensional (1D) array <code>Days[]</code> contains the names of the days of the week. A two-dimensional (2D) array <code>Readings[]</code> is used to store 24 temperature readings, taken once
	an hour, for each of the seven days of the week. A 1D array AverageTemp[] is used to store the average temperature for each day of the week.
	The position of any day's data is the same in all three arrays. For example, if Wednesday is

The position of any day's data is the same in all three arrays. For example, if Wednesday is in index 4 of <code>Days[]</code>, Wednesday's temperature readings are in index 4 of <code>Readings[]</code> and Wednesday's average temperature is in index 4 of <code>AverageTemp[]</code>

The temperature readings are in Celsius to one decimal place. Temperatures can only be from -20.0 °C to +50.0 °C inclusive.

Write a program that meets the following requirements:

- input and validate the hourly temperatures for one week
- calculate and store the average temperature for each day of the week
- calculate the average temperature for the whole week
- convert all the average temperatures from Celsius to Fahrenheit by using the formula Fahrenheit = Celsius * 9/5 + 32
- output the average temperature in Celsius and in Fahrenheit for each day
- output the overall average temperature in Celsius and in Fahrenheit for the whole week.

You must use pseudocode or program code and add comments to explain how your code works.

You do **not** need to declare any arrays, variables or constants; you may assume that this has already been done.

All inputs and outputs must contain suitable messages.

All data output must be rounded to one o	tecimal	place.
--	---------	--------

You will need to initialise and populate the array <code>Days[]</code> at the start of the program.

© UCLES 2023 0478/21/M/J/23

	••
	••
	••
	• •
	••
	• •
	••
	••
	• •
[15]	51

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge IGCSE™

COMPUTER SCIENCE

Paper 2 Algorithms, Programming and Logic

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Cambridge IGCSE – Mark Scheme

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond
 the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2023 Page 2 of 18

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 3 of 18

Question	Answer	Marks
1(a)	One mark for each correct line.	4
	Program development life cycle description Program development life cycle stage	
	develop an algorithm to solve the problem using structure diagrams, flowcharts or pseudocode	
	detect and fix the errors in the program design	
	identify the problem and its requirements evaluation	
	write and implement the instructions to solve the problem testing	
1(b)	One mark for naming or describing each component part, max three	3
	For example:	
	inputs // what is put into the system processes // actions taken to achieve a result outputs // what is taken out of the system storage // what needs to be kept for future use	

© UCLES 2023 Page 4 of 18

Question	Answer	Marks	
2	A	1	

Question	Answer	Marks
3(a)	One mark per mark point, max two	2
	 Validation is an automated check carried out by a computer to make sure the data entered is sensible/acceptable/reasonable 	
3(b)	One mark for each appropriate test data, max three One mark for each correct accompanying reason, max three	6
	For example:	
	Normal – 75 Reason – the data lies within the required range and should be accepted	
	Abnormal – Sixty Reason – this is the wrong data type and should be rejected	
	Extreme – 200 Reason – the highest value in the required range that should be accepted	

© UCLES 2023 Page 5 of 18

Question	Answer	Marks
4	One mark per mark point, max four	4
	 DIV, max two To perform integer division Meaning only the whole number part of the answer is retained Example of DIV For example DIV (9, 4) = 2 	
	 ROUND, max two To return a value rounded to a specified number of digits / decimal places The result will either be rounded to the next highest or the next lowest value depending on whether the value of the preceding digit is >=5 or <5 Example of ROUND for example, ROUND (4.56, 1) = 4.6 	

© UCLES 2023 Page 6 of 18

Question	Answer	Marks
5(a)	One mark per mark point, max four	4
	• Line 04 / IF Number < 0 should be IF Number > 0	
	• Line 10 / Exit ← 1 // Line 01/ Exit ← 1 and Line 02 / WHILE Exit <> 0 should be Exit ← 0 // should be Exit ← 0 and WHILE Exit = 0	
	• Line 13 / ENDIF should be ENDWHILE	
	• Line 14/OUTPUT "The total value of your numbers is ", Number should be OUTPUT "The total value of your numbers is ", Total	
	Correct algorithm:	
	01 Exit ← 1 02 WHILE Exit <> 0 DO 03 INPUT Number	
	04 IF Number > 0 05 THEN	
	06 Total ← Total + Number 07 ELSE 08 IF Number = 0	
	09 THEN 10 Exit ← 0 11 ENDIF	
	12 ENDIF 13 ENDWHILE 14 OUTPUT "The total value of your numbers is ", Total	

© UCLES 2023 Page 7 of 18

Question	Answer	Marks
5(b)	 One mark per mark point, max four Initialise a new (counting) variable Count ← 0 // to count the acceptable numbers Insert a counting statement between lines 05 and 07 Count ← Count + 1 Add a new output after the loop/after line 13 / at the end (of the program) OUTPUT Count 	4

Question	Answer	Marks
6	One mark for each correct feature, max two One mark for each correct accompanying reason, max two	4
	For example:	
	Meaningful identifiers – to enable the programmer (or future programmers) to easily recognize the purpose of a variable / array / constant // to enable easy tracking of a variable / constant / array through the program	
	Use of comments – to annotate each section of a program so that a programmer can find specific sections / so that the programmer knows the purpose of that section of code	
	Procedures and functions – to make programs modular and easier to update / add functionality	

© UCLES 2023 Page 8 of 18

Question	Answer					
7(a)	One mark pe	er correct co	olumn, max f o	our		
	Pointer	Letter	Choice	OUTPUT		
	1	F				
	2					
	3					
	4					
	5					
	6			Letter F is represented by Foxtrot		
				Another Letter? (Y or N)		
			Y			
	1	D				
	2					
	3					
	4			Letter D is represented by Delta		
				Another Letter? (Y or N)		
			N			
7(b)	(Linear) sea	rch				

© UCLES 2023 Page 9 of 18

Question	Answer	Marks				
7(c)	7(c) One mark per mark point, max two					
	 The algorithm would not stop because it would not have found the item it was seeking 					
	Or					
	 The array would run out of values after the pointer reached 13 the algorithm will crash 					

Question	Answer	Marks
8(a)	One mark per mark point, max three Storing string in Phrase Correct use of LENGTH function Correct use of UCASE function Correct outputs of LENGTH and UCASE	3
	For example:	
	Phrase ← "The beginning is the most important part" OUTPUT LENGTH(Phrase) OUTPUT UCASE(Phrase)	
8(b)	One mark for each correct line, max two	2
	40 THE BEGINNING IS THE MOST IMPORTANT PART	

© UCLES 2023 Page 10 of 18

© UCLES 2023 Page 11 of 18

Question					Answer	Marks
9(b)	Three Two	e mark marks	s for s for fo	six or s ur or f	orrect outputs. seven correct outputs. ive correct outputs. ree correct outputs	4
	Α	В	С	Z		
	0	0	0	0		
	0	0	1	1		
	0	1	0	1		
	0	1	1	0		
	1	0	0	0		
	1	0	1	0		
	1	1	0	1		
	1	1	1	0		

Question	Answer	Marks	
10(a)	One mark for the correct field name One mark for the correct reason	2	
	For example:		
	TVCode Each entry in this field is a unique identifier		

© UCLES 2023 Page 12 of 18

			1 OBEIOTED		
Question			Answer	Marks	
10(b)	Two marks for four correct answers. One mark for two or three correct answers.				
	Field	Data type			
	TVCode	Text			
	ScreenSize	Integer			
	SmartTV	Boolean			
	Price\$	Real			
10(c)	One mark for ea	ach correct ansv	ver	4	
	ScreenSize Price\$ FROM YES				
	Correct code:				
	SELECT TVCoc FROM TVRange WHERE Smart1		ze, Price\$		

© UCLES 2023 Page 13 of 18

Question	Answer	Marks
11	Read the whole answer: Check if each requirement listed below has been met. Requirements may be met using a suitable built-in function from the programming language used (Python, VB.NET or Java). On place a SEEN mark if requirement met, cross if no attempt seen, omission mark and/or comment if partially met (see marked scripts). Use the tables for AO2 and AO3 below to award a mark in a suitable band using a best fit approach, then add up the total: • AO2 (maximum 9 marks) • AO3 (maximum 6 marks) Data structures required: The names underlined must match those given in the scenario:	15
	Arrays or lists Days[] , Readings[] , AverageTemp[] Variables WeekLoop , DayLoop ,	

© UCLES 2023 Page 14 of 18

Question	Answer	Marks
11	Example 15 mark answer in pseudocode	
	// meaningful identifiers and appropriate data structures for	
	// all data required	
	DECLARE Days : ARRAY[1:7] OF STRING	
	DECLARE Readings : ARRAY[1:7, 1:24] OF REAL	
	DECLARE AverageTemp : ARRAY[1:7] OF REAL	
	DECLARE WeekLoop : INTEGER	
	DECLARE DayLoop : INTEGER	
	DECLARE InTemp : REAL	
	DECLARE TotalDayTemp : REAL	
	DECLARE TotalWeekTemp : REAL	
	<pre>DECLARE AverageWeekTemp : REAL // initial population of Days[] array</pre>	
	// input and a loop are also acceptable	
	Days[1] ← "Sunday"	
	Days[2] "Monday"	
	Days[3] ← "Tuesday"	
	Days[4] ← "Wednesday"	
	Days[5] ← "Thursday"	
	Days[6] ← "Friday"	
	Days[7] ← "Saturday"	
	// input temperatures inside nested loop	
	FOR WeekLoop \leftarrow 1 TO 7	
	TotalDayTemp ← 0	
	FOR DayLoop \leftarrow 1 TO 24	
	OUTPUT "Enter temperature ", DayLoop, " for ", Days[WeekLoop]	

© UCLES 2023 Page 15 of 18

Question	Answer	Marks		
11	INPUT InTemp			
	// validation of input for between -20 and +50 inclusive			
	WHILE InTemp < -20.0 OR InTemp > 50.0 DO			
	OUTPUT "Your temperature must be between -20.0 and +50.0 inclusive. Please try			
	again" INPUT InTemp			
	ENDWHILE			
	Readings[WeekLoop, DayLoop] ← InTemp			
	// totalling of temperatures during the day			
	TotalDayTemp ← TotalDayTemp + ROUND(InTemp, 1)			
	NEXT DayLoop			
	// average temperature for the day			
	AverageTemp[WeekLoop] ← ROUND(TotalDayTemp / 24,1)			
	NEXT WeekLoop			
	// calculate the average temperature for the week			
	TotalWeekTemp \leftarrow 0			
	FOR WeekLoop \leftarrow 1 TO 7			
	NEXT WeekLoop			
	AverageWeekTemp ← ROUND(TotalWeekTemp / 7,1)			
	// outputs in Celsius and Fahrenheit			
	FOR WeekLoop \leftarrow 1 TO 7			
	OUTPUT "The average temperature on ", Days[WeekLoop], " was ", AverageTemp[WeekLoop], "			
	Celsius and ", ROUND(AverageWeekTemp * 9 / 5 + 32), 1, " Fahrenheit"			
	NEXT WeekLoop			
	OUTPUT "The average temperature for the week was ",			
	AverageWeekTemp, "Celsius and ", ROUND(AverageWeekTemp * 9 / 5 + 32, 1), " Fahrenheit"			

© UCLES 2023 Page 16 of 18

Marking Instructions in italics

AO2: Apply knowledge and understanding of the principles and concepts of computer science to a given context, including the analysis and design of computational or programming problems

0	1–3	4–6	7–9
	At least one programming technique has been used.	Some programming techniques used are appropriate to the problem.	The range of programming techniques used is appropriate to the problem.
No creditable	Any use of selection, iteration, counting, totalling, input and output.	More than one technique seen applied to the scenario, check the list of techniques needed.	All criteria stated for the scenario have been covered by the use of appropriate programming techniques, check the list of techniques needed.
response.	Some data has been stored but not appropriately.	Some of the data structures chosen are appropriate and store some of the data required.	The data structures chosen are appropriate and store all the data required.
	Any use of variables or arrays or other language dependent data structures e. Python lists.	More than one data structure used to store data required by the scenario.	The data structures used store all the data required by the scenario.

© UCLES 2023 Page 17 of 18

Marking Instructions in italics

AO3: Provide solutions to problems by:

- evaluating computer systems
- making reasoned judgements
- presenting conclusions

0	1–2	3–4	5–6
	Program seen without relevant comments.	Program seen with some relevant comment(s).	The program has been fully commented.
	appropriate. appropriat Some of the data structures used have Most of the	The majority of identifiers used are appropriately named. Most of the data structures used have meaningful names.	Suitable identifiers with names meaningful to their purpose have been used throughout. All of the data structures used have meaningful names.
	The solution is illogical.	The solution contains parts that may be illogical.	The program is in a logical order.
No creditable response.	The solution is inaccurate in many places. Solution contains few lines of code with errors that attempt to perform a task given in the scenario.	The solution contains parts that are inaccurate. Solution contains lines of code with some errors that logically perform tasks given in the scenario. Ignore minor syntax errors.	The solution is accurate. Solution logically performs all the tasks given in the scenario. Ignore minor syntax errors.
	The solution attempts at least one of the requirements.	The solution meets most of the requirements.	The solution meets all the requirements given in the question.
	Solution contains lines of code that attempt at least one task given in the scenario.	Solution contains lines of code that perform most tasks given in the scenario.	Solution performs all the tasks given in the scenario.

© UCLES 2023 Page 18 of 18