Capture-mark-recapture methods for abundance estimation

ABUNDANCE ESTIMATION

Same old equation:

$$\hat{N} = \frac{n}{\hat{p}}$$

- N is abundance (population size)
- n is the number of individuals detected
- \hat{p} is an estimate of detection probability: The probability of detecting an individual

ABUNDANCE ESTIMATION

Same old equation:

$$\hat{N} = \frac{n}{\hat{p}}$$

- N is abundance (population size)
- n is the number of individuals detected
- \hat{p} is an estimate of detection probability: The probability of detecting an individual

Most methods differ in how they estimate p

Overview

Estimating p

• Set traps in a study area and mark each captured individual

Overview[']

- Set traps in a study area and mark each captured individual
- ullet Repeat the trapping on K occasions

Overview[']

- Set traps in a study area and mark each captured individual
- ullet Repeat the trapping on K occasions
- On each occasion, mark new individuals and record recaptures

Overview |

- Set traps in a study area and mark each captured individual
- Repeat the trapping on K occasions
- On each occasion, mark new individuals and record recaptures
- If capture probability is high...

Overview

- Set traps in a study area and mark each captured individual
- ullet Repeat the trapping on K occasions
- On each occasion, mark new individuals and record recaptures
- If capture probability is high...
 - You will detect most of the population on the first occasion

OVERVIEW

- Set traps in a study area and mark each captured individual
- ullet Repeat the trapping on K occasions
- On each occasion, mark new individuals and record recaptures
- If capture probability is high...
 - You will detect most of the population on the first occasion
 - Most of the captures on subsequent occasions will be recaptures

Overview

- Set traps in a study area and mark each captured individual
- ullet Repeat the trapping on K occasions
- On each occasion, mark new individuals and record recaptures
- If capture probability is high...
 - You will detect most of the population on the first occasion
 - Most of the captures on subsequent occasions will be recaptures
- And vice versa

ENCOUNTER HISTORIES

n=5 individuals captured over 3 sampling occasions

	Occasion 1	Occasion 2	Occasion 3
Animal 1	0	0	1
Animal 2	1	1	0
Animal 3	1	1	1
Animal 4	1	0	0
Animal 5	0	1	0

ENCOUNTER HISTORIES

n=5 individuals captured over 3 sampling occasions

	Occasion 1	Occasion 2	Occasion 3
Animal 1	0	0	1
Animal 2	1	1	0
Animal 3	1	1	1
Animal 4	1	0	0
Animal 5	0	1	0

These data tell us about p and hence N. Estimation is usually acheived using maximum likelihood methods.

LINCOLN-PETERSON METHOD

The original method was first used by Pierre-Simon LaPlace to estimate the human population in France.

LINCOLN-PETERSON METHOD

The original method was first used by Pierre-Simon LaPlace to estimate the human population in France.

Later it was used by Lincoln (shown above) and Peterson to estimate fish and wildlife populations

LINCOLN-PETERSON STUDY DESIGN

• There are only 2 capture occasions

LINCOLN-PETERSON STUDY DESIGN

- There are only 2 capture occasions
- ullet On the first, n_1 animals are captured and marked

LINCOLN-PETERSON STUDY DESIGN

- There are only 2 capture occasions
- ullet On the first, n_1 animals are captured and marked
- \bullet On the second, n_2 animals are captured and m_2 of them are recaptures

LINCOLN-PETERSON ABUNDANCE ESTIMATOR

How can we use n_1 , n_2 , and m_2 to estimate N?

LINCOLN-PETERSON ABUNDANCE ESTIMATOR

How can we use n_1 , n_2 , and m_2 to estimate N?

$$\frac{n_1}{N} = \frac{m_2}{n_2}$$

LINCOLN-PETERSON ABUNDANCE ESTIMATOR

How can we use n_1 , n_2 , and m_2 to estimate N?

$$\frac{n_1}{N} = \frac{m_2}{n_2}$$

And so...

$$\hat{N} = \frac{n_1 n_2}{m_2}$$

LINCOLN-PETERSON ASSUMPTIONS

- (1) Population closure
 - No births
 - No deaths
 - ► No immigration or emigration

LINCOLN-PETERSON ASSUMPTIONS

- (1) Population closure
 - No births
 - No deaths
 - No immigration or emigration
- (2) All individuals are assumed to have the same capture probability

LINCOLN-PETERSON ASSUMPTIONS

- (1) Population closure
 - No births
 - No deaths
 - ► No immigration or emigration
- (2) All individuals are assumed to have the same capture probability
- (3) No tag loss or mis-identification

K-Sample $\overline{\mathrm{CMR}}$

Using more than 2 sampling occasions has many advantages, including the ability to account for:

Temporal variation

K-Sample $\overline{\mathrm{CMR}}$

- Temporal variation
- Behavioral effects

K-Sample $\overline{\mathrm{CMR}}$

- Temporal variation
- Behavioral effects
 - Trap happiness

K-Sample CMR

- Temporal variation
- Behavioral effects
 - Trap happiness
 - Trap shyness

K-Sample CMR

- Temporal variation
- Behavioral effects
 - ► Trap happiness
 - Trap shyness
- Individual heterogeneity

K-sample CMR

- Temporal variation
- Behavioral effects
 - Trap happiness
 - ► Trap shyness
- Individual heterogeneity
- Combinations of the above

COMMON MODELS

Model	Description
$\overline{M_0}$	The most basic model in which p and c are constant
M_t	p differs among sampling occasions and $p_t = c_t$.
M_b	Behavioral response model in which p and c differ. Can
	describe trap happiness or trap shiness.
M_{tb}	A combination of models M_t and M_b .

where

```
p= capture probability p_t= capture probability on occasion t c= recapture probability
```

REMOVAL SAMPLING

Suppose you remove individuals on each survey

Removal sampling

Suppose you remove individuals on each survey

Eventually you should deplete the population

Removal sampling

Suppose you remove individuals on each survey

Eventually you should deplete the population

The number of captures you would expect on each occasion:

Occasion	Expected count
1	pN
2	p(1-p)N
3	$p(1-p)^{2}N$
4	$p(1-p)^3N$
<u>:</u>	<u>:</u>
K	$p(1-p)^{K-1}N$

EXAMPLE

The rate at which the population is depleted tells us about p.

Key points

- Capture-recapture methods use information about recapture rates to estimate capture probability and abundance
- More advanced methods can be used to estimate density and vital rates
- Modern field methods use camera traps or DNA sampling techniques to collect non-invasive capture-recapture data

ESTIMATING DENSITY

Lingering questions

- How do we convert abundance to density?
- What is the area surveyed?

ESTIMATING DENSITY

Lingering questions

- How do we convert abundance to density?
- What is the area surveyed?

Read Chapter 11

Introduction Lincoln-Peterson K-sampler CMR Removal sampling $15 \ / \ 15$