

#5 OIPE

DATE: 07/09/2002 RAW SEQUENCE LISTING TIME: 15:03:42 PATENT APPLICATION: US/10/074,328

Input Set : N:\Crf3\RULE60\10074328.raw Output Set: N:\CRF3\07092002\J074328.raw

SEQUENCE LISTING

```
ENTERED
       (1) GENERAL INFORMATION:
             (i) APPLICANT: BROW, MARY ANN D.
      6
                            GROTELUESCHEN HALL, JEFF S.
      7
                            LYAMICHEV, VICTOR
      8
                            OLIVE, DAVID M.
      9
                            PRUDENT, JAMES R.
            (ii) TITLE OF INVENTION: DETECTION OF NUCLEIC ACID SEQUENCES BY
     11
     12
                                      INVADER-DIRECTÉD CLEAVAGE
     14
           (iii) NUMBER OF SEQUENCES: 48
            (iv) CORRESPONDENCE ADDRESS:
     16
     17
                  (A) ADDRESSEE: MEDLEN & CARROLL
     18
                  (B) STREET: 220 MONTGOMERY STREET, SUITE 2200
     19
                  (C) CITY: SAN FRANCISCO
     20
                  (D) STATE: CALIFORNIA
                  (E) COUNTRY: UNITED STATES OF AMERICA
     21
     22
                  (F) ZIP: 94104
             (V) COMPUTER READABLE FORM:
     24
     25
                  (A) MEDIUM TYPE: Floppy disk
                  (B) COMPUTER: IBM PC compatible
     26
                  (C) OPERATING SYSTEM: PC-DOS/MS-DOS
     27
                  (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
     28
     30
            (vi) CURRENT APPLICATION DATA:
C--> 31
                  (A) APPLICATION NUMBER: US/10/074,328
C--> 32
                  (B) FILING DATE: 12-Feb-2002
     33
                  (C) CLASSIFICATION:
     36
           (vii) PRIOR APPLICATION DATA:
                  (A) APPLICATION NUMBER: US/08/599,491
     37
     38
                  (B) FILING DATE: 23-JAN-1996
     40
          (viii) ATTORNEY/AGENT INFORMATION:
     41
                  (A) NAME: INGOLIA, DIANE E.
                  (B) REGISTRATION NUMBER: P-40,027
     42
     43
                  (C) REFERENCE/DOCKET NUMBER: FORS-01802
     45
            (ix) TELECOMMUNICATION INFORMATION:
     46
                  (A) TELEPHONE: (415) 705-8410
                  (B) TELEFAX: (415) 397-8338
     47
     50 (2) INFORMATION FOR SEQ ID NO: 1:
     52
             (i) SEQUENCE CHARACTERISTICS:
     53
                  (A) LENGTH: 2506 base pairs
     54
                  (B) TYPE: nucleic acid
     55
                  (C) STRANDEDNESS: double
     56
                  (D) TOPOLOGY: linear
```

(ii) MOLECULE TYPE: DNA (genomic)

58

RAW SEQUENCE LISTING DATE: 07/09/2002 PATENT APPLICATION: US/10/074,328 TIME: 15:03:42

```
62
        (xi) SEQUENCE DESCRIPTION: SEO ID NO: 1:
64 ATGAGGGGGA TGCTGCCCCT CTTTGAGCCC AAGGGCCGGG TCCTCCTGGT GGACGGCCAC
                                                                            60
66 CACCTGGCCT ACCGCACCTT CCACGCCCTG AAGGGCCTCA CCACCAGCCG GGGGGAGCCG
                                                                           120
68 GTGCAGGCGG TCTACGGCTT CGCCAAGAGC CTCCTCAAGG CCCTCAAGGA GGACGGGGAC
                                                                           180
70 GCGGTGATCG TGGTCTTTGA CGCCAAGGCC CCCTCCTTCC GCCACGAGGC CTACGGGGGG
                                                                           240
72 TACAAGGCGG GCCGGGCCCC CACGCCGGAG GACTTTCCCC GGCAACTCGC CCTCATCAAG
                                                                           300
74 GAGCTGGTGG ACCTCCTGGG GCTGGCGCGC CTCGAGGTCC CGGGCTACGA GGCGGACGAC
                                                                           360
76 GTCCTGGCCA GCCTGGCCAA GAAGGCGGAA AAGGAGGGCT ACGAGGTCCG CATCCTCACC
                                                                           420
78 GCCGACAAAG ACCTTTACCA GCTCCTTTCC GACCGCATCC ACGTCCTCCA CCCCGAGGGG
                                                                           480
80 TACCTCATCA CCCCGGCCTG GCTTTGGGAA AAGTACGGCC TGAGGCCCGA CCAGTGGGCC
                                                                           540
82 GACTACCGGG CCCTGACCGG GGACGAGTCC GACAACCTTC CCGGGGTCAA GGGCATCGGG
                                                                           600
84 GAGAAGACGG CGAGGAAGCT TCTGGAGGAG TGGGGGAGCC TGGAAGCCCT CCTCAAGAAC
                                                                           660
86 CTGGACCGGC TGAAGCCCGC CATCCGGGAG AAGATCCTGG CCCACATGGA CGATCTGAAG
                                                                           720
88 CTCTCCTGGG ACCTGGCCAA GGTGCGCACC GACCTGCCCC TGGAGGTGGA CTTCGCCAAA
                                                                           780
90 AGGCGGGAGC CCGACCGGGA GAGGCTTAGG GCCTTTCTGG AGAGGCTTGA GTTTGGCAGC
                                                                           840
92 CTCCTCCACG AGTTCGGCCT TCTGGAAAGC CCCAAGGCCC TGGAGGAGGC CCCCTGGCCC
                                                                           900
94 CCGCCGGAAG GGGCCTTCGT GGGCTTTGTG CTTTCCCGCA AGGAGCCCAT GTGGGCCGAT
                                                                           960
96 CTTCTGGCCC TGGCCGCCGC CAGGGGGGGC CGGGTCCACC GGGCCCCCGA GCCTTATAAA
                                                                          1020
98 GCCCTCAGGG ACCTGAAGGA GGCGCGGGGG CTTCTCGCCA AAGACCTGAG CGTTCTGGCC
                                                                          1080
100 CTGAGGGAAG GCCTTGGCCT CCCGCCCGGC GACGACCCCA TGCTCCTCGC CTACCTCCTG
                                                                           1140
102 GACCCTTCCA ACACCACCCC CGAGGGGGTG GCCCGGCGCT ACGGCGGGGA GTGGACGGAG
                                                                           1200
104 GAGGCGGGG AGCGGGCCGC CCTTTCCGAG AGGCTCTTCG CCAACCTGTG GGGGAGGCTT
                                                                           1260
106 GAGGGGGAGG AGAGGCTCCT TTGGCTTTAC CGGGAGGTGG AGAGGCCCCT TTCCGCTGTC
                                                                           1320
108 CTGGCCCACA TGGAGGCCAC GGGGGTGCGC CTGGACGTGG CCTATCTCAG GGCCTTGTCC
                                                                           1380
110 CTGGAGGTGG CCGAGGAGAT CGCCCGCCTC GAGGCCGAGG TCTTCCGCCT GGCCGGCCAC
                                                                           1440
112 CCCTTCAACC TCAACTCCCG GGACCAGCTG GAAAGGGTCC TCTTTGACGA GCTAGGGCTT
                                                                           1500
114 CCCGCCATCG GCAAGACGGA GAAGACCGGC AAGCGCTCCA CCAGCGCCGC CGTCCTGGAG
                                                                           1560
116 GCCCTCCGCG AGGCCCACCC CATCGTGGAG AAGATCCTGC AGTACCGGGA GCTCACCAAG
                                                                          1620
118 CTGAAGAGCA CCTACATTGA CCCCTTGCCG GACCTCATCC ACCCCAGGAC GGGCCGCCTC
                                                                          1680
120 CACACCCGCT TCAACCAGAC GGCCACGGCC ACGGGCAGGC TAAGTAGCTC CGATCCCAAC
                                                                          1740
122 CTCCAGAACA TCCCCGTCCG CACCCCGCTT GGGCAGAGGA TCCGCCGGGC CTTCATCGCC
                                                                          1800
124 GAGGAGGGT GGCTATTGGT GGCCCTGGAC TATAGCCAGA TAGAGCTCAG GGTGCTGGCC
                                                                          1860
126 CACCTCTCCG GCGACGAGAA CCTGATCCGG GTCTTCCAGG AGGGGCGGGA CATCCACACG
                                                                          1920
128 GAGACCGCCA GCTGGATGTT CGGCGTCCCC CGGGAGGCCG TGGACCCCCT GATGCGCCGG
                                                                          1980
130 GCGGCCAAGA CCATCAACTT CGGGGTCCTC TACGGCATGT CGGCCCACCG CCTCTCCCAG
                                                                          2040
132 GAGCTAGCCA TCCCTTACGA GGAGGCCCAG GCCTTCATTG AGCGCTACTT TCAGAGCTTC
                                                                          2100
134 CCCAAGGTGC GGGCCTGGAT TGAGAAGACC CTGGAGGAGG GCAGGAGGCG GGGGTACGTG
                                                                          2160
136 GAGACCCTCT TCGGCCGCCG CCGCTACGTG CCAGACCTAG AGGCCCGGGT GAAGAGCGTG
                                                                          2220
138 CGGGAGGGG CCGAGCGCAT GGCCTTCAAC ATGCCCGTCC AGGGCACCGC CGCCGACCTC
                                                                          2280
140 ATGAAGCTGG CTATGGTGAA GCTCTTCCCC AGGCTGGAGG AAATGGGGGC CAGGATGCTC
                                                                          2340
142 CTTCAGGTCC ACGACGAGCT GGTCCTCGAG GCCCCAAAAG AGAGGGCGGA GGCCGTGGCC
                                                                          2400
144 CGGCTGGCCA AGGAGGTCAT GGAGGGGGTG TATCCCCTGG CCGTGCCCCT GGAGGTGGAG
                                                                          2460
146 GTGGGGATAG GGGAGGACTG GCTCTCCGCC AAGGAGTGAT ACCACC
                                                                          2506
148 (2) INFORMATION FOR SEQ ID NO: 2:
150
         (i) SEQUENCE CHARACTERISTICS:
151
              (A) LENGTH: 2496 base pairs
152
              (B) TYPE: nucleic acid
153
              (C) STRANDEDNESS: double
154
              (D) TOPOLOGY: linear
```

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/074,328

DATE: 07/09/2002 TIME: 15:03:42

156												
160												
	ATGGCGATGC						60					
	CTGGCCTACC						120					
	CAGGCGGTCT						180					
	GTGGTGGTGG						240					
	AAGGCGGGCC						300					
	TTGGTGGACC						360					
174	CTGGCCACCC	TGGCCAAGCG	GGCGGAAAAG	GAGGGGTACG	AGGTGCGCAT	CCTCACTGCC	420					
176	GACCGCGACC	TCTACCAGCT	CCTTTCGGAG	CGCATCGCCA	TCCTCCACCC	TGAGGGGTAC	480					
	CTGATCACCC						540					
	TACCGGGCCC						600					
	AAGACCGCCC						660					
184	GACCAGGTGA	AGCCCTCCTT	GCGGGAGAAG	CTCCAGGCGG	GCATGGAGGC	CCTGGCCCTT	720					
	TCCCGGAAGC						780					
188	CGCACACCCA	ACCTGGAGGG	TCTGCGGGCT	TTTTTGGAGC	GGTTGGAGTT	TGGAAGCCTC	840					
190	CTCCACGAGT	TCGGCCTCCT	GGAGGGGCCG	AAGGCGGCAG	AGGAGGCCCC	CTGGCCCCCT	900					
192	CCGGAAGGGG	CTTTTTTGGG	CTTTTCCTTT	TCCCGTCCCG	AGCCCATGTG	GGCCGAGCTT	960					
194	CTGGCCCTGG	CTGGGGCGTG	GGAGGGGCGC	CTCCATCGGG	CACAAGACCC	CCTTAGGGGC	1020					
	CTGAGGGACC						1080					
	CGGGAGGCC						1140					
200	CCCTCCAACA	CCACCCTGA	GGGGGTGGCC	CGGCGTTACG	GGGGGGAGTG	GACGGAGGAT	1200					
202	GCGGGGGAGA	GGGCCCTCCT	GGCCGAGCGC	CTCTTCCAGA	CCCTAAAGGA	GCGCCTTAAG	1260					
	GGAGAAGAAC						1320					
	GCCCGGATGG						1380					
	GAGGTGGAGG						1440					
	TTCAACCTCA						1500					
	GCCATCGGCA						1560					
	CTGCGAGAGG						1620					
	AAGAACACCT						1680					
	ACCCGCTTCA						1740					
	CAGAACATCC						1800					
	GAGGGCTGGG						1860					
	CTCTCCGGGG						1920					
	ACCGCCAGCT						1980					
	GCCAAGACCA						2040					
	CTTTCCATCC						2100					
	AAGGTGCGGG						2160					
	ACCCTCTTCG						2220					
	GAGGCGGCGG						2280					
	AAGCTGGCCA						2340					
240	CAGGTGCACG	ACGAGCTGGT	CCTCGAGGCC	CCCAAGGACC	GGGCGGAGAG	GGTAGCCGCT	2400					
242	TTGGCCAAGG	AGGTCATGGA	GGGGGTCTGG	CCCCTGCAGG	TGCCCCTGGA	GGTGGAGGTG	2460					
	GGCCTGGGGG						2496					
	5 (2) INFORMATION FOR SEQ ID NO: 3:											
248												
249	• •		2504 base j									
250												
251			DNESS: doub	le								
	,	(-,										

RAW SEQUENCE LISTING DATE: 07/09/2002 PATENT APPLICATION: US/10/074,328 TIME: 15:03:42

252	(D) TOPOLOGY: linear													
254	(ii) M	(ii) MOLECULE TYPE: DNA (genomic)												
258	(xi) Si	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:												
260	ATGGAGGCGA	TGCTTCCGCT	CTTTGAACCC	AAAGGCCGGG	TCCTCCTGGT	GGACGGCCAC	60							
262	CACCTGGCCT	ACCGCACCTT	CTTCGCCCTG	AAGGGCCTCA	CCACGAGCCG	GGGCGAACCG	120							
264	GTGCAGGCGG	TCTACGGCTT	CGCCAAGAGC	CTCCTCAAGG	CCCTGAAGGA	GGACGGGTAC	180							
266	AAGGCCGTCT	TCGTGGTCTT	TGACGCCAAG	GCCCCCTCCT	TCCGCCACGA	GGCCTACGAG	240							
268	GCCTACAAGG	CGGGGAGGGC	CCCGACCCCC	GAGGACTTCC	CCCGGCAGCT	CGCCCTCATC	300							
270	AAGGAGCTGG	TGGACCTCCT	GGGGTTTACC	CGCCTCGAGG	TCCCCGGCTA	CGAGGCGGAC	360							
272	GACGTTCTCG	CCACCCTGGC	CAAGAAGGCG	GAAAAGGAGG	GGTACGAGGT	GCGCATCCTC	420							
274	ACCGCCGACC	GCGACCTCTA	CCAACTCGTC	TCCGACCGCG	TCGCCGTCCT	CCACCCGAG	480							
276	GGCCACCTCA	TCACCCCGGA	GTGGCTTTGG	GAGAAGTACG	GCCTCAGGCC	GGAGCAGTGG	540							
278	GTGGACTTCC	GCGCCCTCGT	GGGGGACCCC	TCCGACAACC	TCCCCGGGGT	CAAGGGCATC	600							
280	GGGGAGAAGA	CCGCCCTCAA	GCTCCTCAAG	GAGTGGGGAA	GCCTGGAAAA	CCTCCTCAAG	660							
282	AACCTGGACC	GGGTAAAGCC	AGAAAACGTC	CGGGAGAAGA	TCAAGGCCCA	CCTGGAAGAC	720							
284	CTCAGGCTCT	CCTTGGAGCT	CTCCCGGGTG	CGCACCGACC	TCCCCCTGGA	GGTGGACCTC	780							
286	GCCCAGGGGC	GGGAGCCCGA	CCGGGAGGG	CTTAGGGCCT	TCCTGGAGAG	GCTGGAGTTC	840							
288	GGCAGCCTCC	TCCACGAGTT	CGGCCTCCTG	GAGGCCCCCG	CCCCCTGGA	GGAGGCCCCC	900							
290	TGGCCCCCGC	CGGAAGGGGC	CTTCGTGGGC	TTCGTCCTCT	CCCGCCCCGA	GCCCATGTGG	960							
292	GCGGAGCTTA	AAGCCCTGGC	CGCCTGCAGG	GACGGCCGGG	TGCACCGGGC	AGCAGACCCC	1020							
294	TTGGCGGGGC	TAAAGGACCT	CAAGGAGGTC	CGGGGCCTCC	TCGCCAAGGA	CCTCGCCGTC	1080							
			AGACCTCGTG				1140							
			CACCCCGAG				1200							
300	ACGGAGGACG	CCGCCCACCG	GGCCCTCCTC	TCGGAGAGGC	TCCATCGGAA	CCTCCTTAAG	1260							
			GCTCCTTTGG				1320							
304	CGGGTCCTGG	CCCACATGGA	GGCCACCGGG	GTACGGCTGG	ACGTGGCCTA	CCTTCAGGCC	1380							
			GGAGATCCGC				1440							
			CTCCCGGGAC				1500							
			GACGCAAAAG				1560							
			CCACCCCATC				1620							
			CGTGGACCCC				1680							
			CCAGACGGCC				1740							
			CGTCCGCACC				1800							
			GTTGGTGGCC				1860							
			CGAAAACCTG				1920							
			GATGTTCGGC				1980							
			GAACTTCGGC				2040							
			CTACGAGGAG				2100							
			TGGATAGAAA				2160							
			AGAAGGCGCT				2220							
			CGCATGGCCT				2280							
			GTGAAGCTCT				2340							
			GAGCTCCTCC				2400							
			GCCATGGAGA			CCCCTGGAGG	2460							
	TGGAGGTGGG GATGGGGGAG GACTGGCTTT CCGCCAAGGG TTAG 2504													
	4 (2) INFORMATION FOR SEQ ID NO: 4:													
346	\-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \													
347	, , ,													
348	348 (B) TYPE: amino acid													

RAW SEQUENCE LISTING DATE: 07/09/2002 PATENT APPLICATION: US/10/074,328 TIME: 15:03:42

240																
349) ST				_	le								
350) TO													
352			MOLECULE TYPE: protein													
356	(xi)	SEQ	SEQUENCE DESCRIPTION: SEQ ID NO: 4:													
358	Met	. Arg	Gly	Met	Leu	Pro	Leu	Phe	Glu	Pro	Lys	Gly	Arq	Val	Leu	Leu
359	1				5					10	_	-	_		15	
361	Val	Asp	Gly	His	His	Leu	Ala	Tyr	Arq	Thr	Phe	His	Ala	Leu		Gly
362				20				-	25					30	-10	0-1
364	Leu	Thr	Thr	Ser	Arq	Gly	Glu	Pro	Val	Gln	Ala	Va 1	Tvr		Dhe	Ala
365			35		-	_		40				,	45	017	1 110	ALU
367	Lys	Ser	Leu	Leu	Lvs	Ala	Leu	Lvs	Glu	Asn	Glv	Δen		Val	Tlo	Val
368	_	50			_		55	-1-				60	mu	vul	116	Val
370	Val	Phe	Asp	Ala	Lvs	Ala		Ser	Phe	Δra	Hic		λla	Фил	C1 77	Gly
371	65				-1-	70		001	1 110	9	75	GIU	. пта	1 Y 1	GIY	
373		Lvs	Ala	Glv	Arα		Pro	Thr	Dro			Dho	Dro	7 ~~	Gln	80
374	-1-	-1-		011	85		110	1111	110	90	изр	FIIE	PIO	AIG		Leu
376	Ala	Leu	Tle	Lvs		T.e.11	Val	λen	Lau		C111	T 011	. ד ג	7 ~~	95 Leu	a 1
377				100	CIU	пси	vul	дор	105		СТУ	neu	Ата			GIU
379	Val	Pro	Glv		Glu	λls	λαη	λan			71-	0	T	110	Lys	_
380	, 41	110	115	- y -	GIU	Ата	nsp	120	vaı	ьец	Ald	ser			ьys	гĀЗ
382	Δla	Glu		Glu	G1 tr	Птт	Clu		7 ~~	т1.	т	m 1	125		_	_
383	1114	130	цуз	GIU	СТУ	TÄT	135	Val	Arg	тте	ьeu		Ата	Asp	Lys	Asp
385	Len	-	Gln	Lon	T 011	Cor		7	T1 -	TT 2 -	17- 1	140		_		
386	145	1 Y 1	GIII	пец	ьец		ASP	Arg	rre	HIS		Leu	HIS	Pro	Glu	
388		Lou	т1а	Thr	Dwo	150	(T)	T	m	a 1	155	_		_	_	160
389	тАт	ьец	TTG	TIII		Ala	Trp	Leu	Trp		Lys	Tyr	GLy	Leu	Arg	Pro
391	A an	C1 n	Ш х хх	7 J -	165	m			_	170		_			175	
392	ASP	GIII	ттр	Ald	Asp	туr	Arg	Ата		Thr	GLy	Asp	Glu		Asp	Asn
	T	D	a 1	180	_	~ 3			185		_			190		
394	Leu	Pro	GIY	vaı	ràs	GIY	Ile		Glu	Lys	Thr	Ala		Lys	Leu	Leu
395	a 1	a 1	195	~ 3	_	_		200					205			
397	GIU	GIU	Trp	GTÄ	ser	Leu		Ala	Leu	Leu	Lys		Leu	Asp	Arg	Leu
398	_	210				_	215					220				
400	Lys	Pro	Ala	Ile	Arg		Lys	Ile	Leu	Ala	His	Met	Asp	Asp	Leu	Lys
401	225		_			230					235					240
403	Leu	Ser	Trp	Asp		Ala	Lys	Val	Arg	Thr	Asp	Leu	Pro	Leu	Glu	Val
404					245					250					255	
406	Asp	Phe	Ala	Lys	Arg	Arg	Glu	Pro	Asp	Arg	Glu	Arg	Leu	Arg	Ala	Phe
407				260					265					270		
409	Leu	Glu	Arg	Leu	Glu	Phe	Gly	Ser	Leu	Leu	His	Glu	Phe	Gly	Leu	Leu
410			275					280					285			
412	Glu	Ser	Pro	Lys	Ala	Leu	Glu	Glu	Ala	Pro	Trp	${\tt Pro}$	Pro	Pro	Glu	Gly
413		290					295					300				
415	Ala	Phe	Val	Gly	Phe	Val	Leu	Ser	Arg	Lys	Glu	Pro	Met	Trp	Ala	Asp
416	305					310					315					320
418	Leu	Leu	Ala	Leu	Ala	Ala	Ala	Arg	Gly	Gly	Arg	Val	His	Arg	Ala	Pro
419					325					330					335	
421	Glu	Pro	Tyr	Lys	Ala	Leu	Arg	Asp	Leu	Lys	Glu	Ala	Arg	Gly	Leu	Leu
422				340					345					350		
424	Ala	Lys	Asp	Leu	Ser	Val	Leu	Ala	Leu	Arg	Glu	Gly	Leu	Gly	Leu	Pro
										-		-		- 4		

RAW SEQUENCE LISTING ERROR SUMMARY PATENT APPLICATION: US/10/074,328

DATE: 07/09/2002 TIME: 15:03:43

Input Set : N:\Crf3\RULE60\10074328.raw
Output Set: N:\CRF3\07092002\J074328.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the $\langle 220 \rangle$ to $\langle 223 \rangle$ fields of each sequence which presents at least one n or Xaa.

Seq#:7; N Pos. 4,5,181,182,190,366,617,628,685,714,722,738,784,1022,1029
Seq#:7; N Pos. 1038,1053,1098,1105,1206,1227,1244,1251,1252,1253,1350,1380
Seq#:7; N Pos. 1497,1530,1569,1572,1641,1653,1655,1770,1812,2319,2346,2396
Seq#:8; Xaa Pos.2,63,109,186,205,209,227,228,233,240,243,244,247,260,290
Seq#:8; Xaa Pos.329,336,340,368,414,417,418,431,551,605,773,794,798,823,833

VERIFICATION SUMMARY DATE: 07/09/2002 PATENT APPLICATION: US/10/074,328 TIME: 15:03:43

Input Set: N:\Crf3\RULE60\10074328.raw
Output Set: N:\CRF3\07092002\J074328.raw

L:31 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:] L:32 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:] L:970 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:0 L:979 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:48 L:988 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:96 L:1003 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:176 L:1006 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:192 $L\!:\!1009~M\!:\!341~W\!:$ (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:208 L:1012 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:224 $L:1015 \ M:341 \ W: \ (46)$ "n" or "Xaa" used, for SEQ ID#:8 after pos.:240 L:1018 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:256 L:1024 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:288 L:1030 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:320 L:1033 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:336 L:1036 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:352 $L:1045 \ M:341 \ W:$ (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:400 L:1048 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:416 $L:1072\ M:341\ W:$ (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:544 $L:1081 \ M:341 \ W:$ (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:592 L:1114 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:768 L:1117 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:784 L:1123 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:816 L:1126 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:8 after pos.:832

. . .