P1 Research

Austin Spencer 09/29/2020

Below is a summary of the research I, Austin Spencer, did for the CSE 310 encoding/decoding project.

COMPRESSION RATIO:

Hypothesis for compression ratio:

My hypothesis for the compression ratio is that multiple lines encoded at once will increase the compression ratio. I believe this will happen since with multiple lines there will inevitably be more characters per encoded line. With more characters there will also, more than likely, be more repeat characters allowing more clusters.

This first plot is of all example inputs given of compression ratio of encoding 1 line at a time.

Small Input	1 line
Haiku1	8%
Haiku2	8%
Haiku3	7%
Haiku4	3%
Medium Input	
Medium1	14%
Medium2	14%
Medium3	15%
Large Input	
Large1	13%
Large2	13%
Large3	14%

Next plot also includes these

Large Input

Massive1 34%
Tongue Twisters 32%

Compression Ratio encoding 1 line at a time.

Medium Input

Medium1	14%
Medium2	14%
Medium3	15%
Large Input	
Large1	13%
Large2	13%
Large3	14%
Massive1	34%
Tongue Twisters	32%

	STDEV	AVG	MIN	MAX	
	8.91126895	18.625	13	34	
400		on Ratio Box Medium files			
40%					
35%			-		
30%					
25%					
20%					
15%			-		
25% 20% 15%					
15%					
10%					

Compression ratio with 2 lines encoded at once

16%

Medium Input Medium1

Medium2	21%
Medium3	19%
Large Input	
Large1	15%
Large2	16%
Large3	17%
Massive1	34%
Tongue Twisters	37%

Compression Ratio 4 lines encoded at once

19%

Medium Input

Medium1

Medium2	25%
Medium3	23%
Large Input	
Large1	19%
Large2	20%
Large3	21%
Massive1	44%
Tongue Twisters	40%

Compression Ratio 8 lines encoded at once.

23%

Medium Input

Medium1

Medium2	29%
Medium3	28%
Large Input	
Large1	23%
Large2	24%
Large3	26%
Massive1	54%
Tongue Twisters	39%

	STDEV	AVG	MIN	MAX		
	10.7404443	30.75	23	54		
		ession Ratio			ot	
40%						
35%						
₹ 30%						
D 25%						
25% 25% 20% 20% 15% 15% 10%						
ress						
15% E						
Ö 10%						
5%						
0%						

Here is a graph of the average compression ratio per line encoded.

Conclusion for compression ratio:

I expected there to be an increase in the compression ratio with each increase in the number of lines encoded. This is clearly the case for the input I used. I do think that this change is rather significant and might be worth encoding multiple lines for this reason.

Time to encode each input for each type of sort:

Time to encode all sample inputs using insertion/quick sort.

Time to encode using quick/insertion sort. However, this includes a 2mb file to show the difference quick sort can make the bigger the file is.

Now for the time to decode using quick/insertion sort. Something interesting I noticed here. Using the same quick sort method we don't see nearly the same difference running quick vs insertion sort that we do with the encode program. My guess is that this is because there are other methods in my decode function that aren't as efficient as my encode.

Here is where we can really see there isn't the same drastic drop with quick sort vs insertion sort.

