LAB QUESTIONS ON SIMPLEX METHOD

Instructions: Make a menu driven program with the following options (a) List of all BFS (b) Number of Iterations to solve the problem (c) List of all Non-basic variables along with net evaluations in i^{th} (user input) iteration (d) List of Basic variables along with min ratios in i^{th} iteration (e) simplex table of i^{th} (user input) iteration (f) optimal solution (if exists otherwise generate report showing reason for infeasibility, unboundedness, alternative optimum etc.)

FOLLOW THE INSTRUCTIONS ABOVE CAREFULLY

Consider the following LPP:

$$\max c^T x \quad s.to \quad Ax = b, x \ge 0, b_i \ge 0$$

where $c = (c_1, c_2, ..., c_n)$, a column vector. A is a $m \times n$ real matrix (a_{ij}) , i = 1, 2, ..., m; j = 1, 2, ..., n

$$b = (b_1, b_2, ..., b_m).$$
 $x = (1, 2, ..., n).$

- 1. Write code to express any LPP in standard form as above using slack/surplus variables.
- 2. Write code to print
 - $a^{(j)} = col(a_{1j}, a_{2j}, ..., a_{mj})$
 - $\bullet \ \ A = [a^{(1)}, a^{(2)}, ..., a^{(j)}, ... a^{(n)}]$
 - $B = (b^{(1)}, b^{(2)}, ..., b^{(m)})$, which is basis matrix.
 - Basic solution $x_B = B^{-1}b = col(x_{B_i}, i = 1, 2, ..., m)$
 - $c_B = col(c_{B_1}, c_{B_2}, ..., c_{B_m}), c_{B_i}$ being the coefficient of basic variable $x_{B_i}, i = 1, 2, ..., m$ in the objective function.
 - $y^{(j)} = col(y_{1j}, y_{2j}, ..., y_{ij}, ..., y_{mj}) = B^{-1}a^{(j)}, j = 1, 2, ..., n$

•
$$z(x_B) = c_B^T x_B$$
 and $z_j = c_B^T y^{(j)}, j = 1, 2, ..., n$

- 3. Write code to calculate $z_j c_j$ for all j.
- 4. Write code to determine pivot element and minimum ratio. Declare pivot row and pivot column.
- 5. Write code to revise the simplex table and complete one iteration. Then print next solution, objective value.
- 6. Write code to solve the following LPP by SIMPLEX method.

$$\max s.to Ax \leq b, x_i \geq 0, bi \geq 0$$

- 7. Test the following numerical problems using your code.
- (A) MAX Z = 5x1 + 10x2 + 8x3subject to $3x1 + 5x2 + 2x3 \le 60$ $4x1 + 4x2 + 4x3 \le 72$ $2x1 + 4x2 + 5x3 \le 100$ and $x1,x2,x3 \ge 0$
- (B) MAX Z = 4x1 + 3x2subject to $2x1 + x2 \le 1000$ $x1 + x2 \le 800$ $x1 \le 400$ $x2 \le 700$ and $x1,x2 \ge 0$
- (C) MAX Z = 3x1 + 3x2 + 2x3 + x4subject to $2x1 + 2x2 + 5x3 + x4 \le 12$ $3x1 + 3x2 + 4x3 \le 11$ and $x1,x2,x3,x4 \ge 0$

(D) MAX
$$Z = 3x1 + 5x2 + 4x3$$

subject to
$$2x1 + 3x2 \le 8$$
$$2x2 + 5x3 \le 10$$
$$3x1 + 2x2 + 4x3 \le 15$$
and $x1,x2,x3 \ge 0$

(E) MIN
$$Z = 3x1 + 3x2 + 2x3 - x4$$

subject to
 $2x1 + 2x2 + 5x3 + x4 \ge 43$
 $3x1 - 3x2 + 4x3 \ge 11$
 $4x1 - 2x2 + 3x3 - x4 \ge 25$
and $x1,x2,x3,x4 \ge 0$

(F) MAX
$$Z = 6x1 + 4x2$$

subject to
 $2x1 + 3x2 \le 30$
 $3x1 + 2x2 \le 24$
 $x1 + x2 \ge 3$
and $x1,x2 \ge 0$