BIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Diseño de Máquinas

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto Semestre	140603	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al estudiante conocimientos y la habilidad para conocer comprender y resolver problemas relacionados con el diseño de elementos de máquinas que le permitan tener la capacidad para identificar su aplicación en el diseño de sistemas mecatrónicos.

TEMAS Y SUBTEMAS

1. Introducción al diseño mecánico

- 1.1 Proceso de diseño
- 1.2 Modelo de ingeniería
- 1.3 Diseño e ingeniería asistidos por computadora
- 1.4 Códigos y normas
- 1.5 Factor de diseño y factor de seguridad
- 1.6 Límites y ajustes
- 1.7 Dimensiones y tolerancias

2. Diseño de flechas, cuñas y acoplamientos

- 2.1 Introducción
- 2.2 Materiales para flechas
- 2.3 Diseño de flechas
- 2.4 Deflexión en flechas
- 2.5 Velocidad crítica de las flechas
- 2.6 Diseño de cuñas y cuñeros
- 2.7 Ranuras
- 2.8 Acoplamientos

3. Diseño de tornillos, sujetadores y uniones no permanentes

- 3.1 Introducción
- 3.2 Normas y definiciones de roscas
- 3.3 Tornillos de potencias
- 3.4 Tipos de sujetadores de tornillos
- 3.5 Manufactura de sujetadores
- 3.6 Sujetadores precargados a tensión
- 3.7 Factor de rigidez de la junta
- 3.8 Sujetadores al cortante

4. Soldadura, adhesión y diseño de uniones permanentes

- 4.1 Símbolos para soldadura
- 4.2 Soldadura a tope y de filete
- 4.3 Esfuerzos en uniones soldadas sujetas a tensión
- 4.4 Esfuerzos en uniones soldadas sujetas a flexión
- 4.5 Resistencia de las uniones soldadas
- 4.6 Soldadura por resistencia

- 4.7 Uniones con pernos y remaches sujetas a carga cortante
- 4.8 Uniones con adhesivo y consideraciones de diseño

5. Diseño de resortes

- 5.1 Introducción
- 5.2 Tasa de resorte
- 5.3 Configuración de resortes
- 5.4 Materiales para resortes
- 5.5 Resortes helicoidales de compresión
- 5.6 Diseño de resortes helicoidales de compresión para cargas estáticas y a la fatiga
- 5.7 Resortes helicoidales a la extensión
- 5.8 Resorte helicoidales a la torsión
- 5.9 Roldanas de resorte Belleville

6. Cojinetes de contacto rodante

- 6.1 Tipos de cojinetes
- 6.2 Vida de los cojinetes
- 6.3 Selección de cojinetes de bola y rodillos cilíndricos
- 6.4 Selección de cojinetes de rodillos cónicos
- 6.5 Lubricación
- 6.6 Montaje y alojamiento

7. Cojinetes de contacto deslizante y lubricación

- 7.1 Tipos de lubricación
- 7.2 Consideraciones de diseño
- 7.3 Holgura
- 7.4 Cojinetes con lubricación a presión
- 7.5 Cargas y materiales
- 7.6 Tipos de cojinetes
- 7.7 Cojinetes de empuje
- 7.8 Cojinetes de lubricación marginal

8. Engranes rectos

- 8.1 Introducción
- 8.2 Teoría de los dientes de engrane
- 8.3 Nomenclatura de los dientes de engrane
- 8.4 Trenes de engranes
- 8.5 Fabricación de engranes
- 8.6 Cargas y esfuerzos
- 8.7 Materiales para engranes
- 8.8 Lubricación de engranes
- 8.9 Diseño de engranes

9. Engranes helicoidales, cónicos y de tornillo sinfín

- 9.1 Introducción
- 9.2 Engranes helicoidales
- 9.3 Engranes cónicos
- 9.4 Engranes de sinfín

10. Embragues, frenos y volantes de inercia

- 10.1 Introducción
- 10.2 Tipos de frenos y embragues
- 10.3 Selección y especificación de embragues y frenos
- 10.4 Materiales para embragues y frenos
- 10.5 Embragues de disco
- 10.6 Frenos de disco
- 10.7 Frenos de tambor
- 10.8 Diseño de volantes de inercia

11. Armazones o bastidores de máquinas, conexiones atornilladas y ensambles

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrá una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y Nº DE EDICIÓN)

Libros Básicos:

Mechanical Engineering Design, Shigley, Joseph E., Mischke, Charles R. y Budynas, Richard G., The McGraw Hill Companies, Seventh Edition, 2004.

Diseño de máquinas, Norton, Robert L., Prentice Hall Hispanoamericana S. A., México, Primera Edición, 1999.

Diseño de Máquinas: Teoría y Practica, Deutschman, Aarón D. \ Michels, Walter J. \ Wilson, Charles E. México: Compañía Editorial Continental, 1999.

Libros de Consulta:

An Engineering Approach To Digital Design, Fletcher, William I. USA: Prentice Hall, 1980.

Diseño de Elementos de Máquinas, Faires, Virgil Moring. México: Limusa, 1997.

Diseño de Elementos de Máquinas, Mott, Robert L. México: Pearson Educación, 2001.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero mecánico de preferencia con Postgrado y experiencia en el área de diseño de máquinas o estructuras.