CSC3001 Discrete Mathematics

Mid-term Examination

November 5, 2022: 9:00am - 11:30am

Name:	Student ID:
	Answer AII questions in the Answer Rock

Question	Points	Score
1	20	
2	20	
3	20	
4	16	
5	16	
6	8	
Total:	100	

- 1. (20 points) For $n \in \mathbb{Z}^+$, let $A(n) = \{b \in \mathbb{Z}^+ \mid n|b\}$ and $B(n) = \{b \in \mathbb{Z}^+ \mid b|n\}$.
 - (a) (10 points) Find B(6) and |B(6)|.
 - (b) (10 points) Show that there is a unique element in $A(n) \cap B(n)$.

Solution:

Part (a) $B(6) = \{1, 2, 3, 6\}. |B(6)| = 4.$

Part (b) As n|n, we have $n \in A(n)$ and $n \in B(n)$, and subsequently $n \in A(n) \cap B(n)$. Meanwhile, any element in B(n) is at most n and any element in A(n) is at least n. As such n is the unique element in $A(n) \cap B(n)$.

- 2. (20 points) Let p, q, r be statements.
 - (a) (10 points) Determine whether $p \to (q \to r)$ is logically equivalent to $(p \to q) \to r$. Please justify your answer.
 - (b) (10 points) Find a logical formula that only contains the logical operators \land, \lor, \neg and the statements p, q for **the negation of** $p \leftrightarrow q$.

Solution:

Part (a) The two formulas are not equivalent. If p, q, r are all false, then $p \to (q \to r)$ is true while $(p \to q) \to r$ is false.

Part (b) Recall that $p \to q \equiv \neg p \lor q$. Then

$$\neg(p \leftrightarrow q) \equiv \neg((p \to q) \land (q \to p))$$

$$\equiv \neg((\neg p \lor q) \land (\neg q \lor p))$$

$$\equiv (\neg(\neg p \lor q) \lor \neg(\neg q \lor p))$$

$$\equiv (p \land \neg q) \lor (q \land \neg p).$$

- 3. (20 points) Let n, a, b be positive integers. We say an integer n is (a, b)-makeable if n can be written as a nonnegative integer linear combination of a and b, i.e., n = xa + yb where x, y are nonnegative integers.
 - (a) (10 points) Show that every integer $n \ge 4$ is (2,5)-makeable.
 - (b) (10 points) Show that every integer $n \geq 12$ that is divisible by 3 is (6,15)-makeable.

Solution:

Part (a) Let us prove by induction on n. It is clear that 4 and 5 are (2,5)-makeable as $4 = 2 \cdot 2 + 0 \cdot 5$ and $5 = 0 \cdot 2 + 1 \cdot 5$. Assume every integer m that satisfies $4 \le m < n$ for some $n \ge 6$ is (2,5)-makeable. Then we have $4 \le n - 2 < n$. Since (n-2) is (2,5)-makeable by the induction hypothesis, we can write n-2=2x+5y for some nonnegative integers x,y. It follows that n=2(x+1)+5y and thus n is (2,5)-makeable. In conclusion, every integer $n \ge 4$ is (2,5)-makeable.

Part (b) Observe that gcd(6,15) = 3. From Part (a), every integer $n \ge 4$ can be written as n = 2x + 5y for some nonnegative integers x, y. Therefore, for every $n \ge 4$ we have 3n = 6x + 15y for some nonnegative integers x, y. In other words, every integer no smaller than 12 and divisible by 3 is (6,15)-makeable.

4. (16 points) For $n \in \mathbb{Z}^+$, a degree-n polynomial c(x) is an expression $c_n x^n + \cdots + c_1 x + c_0$ with real variable $x \in \mathbb{R}$ and real coefficients c_n, \ldots, c_1, c_0 , where $c_n \neq 0$. A nonzero constant is regarded as a degree-0 polynomial and the zero constant is regarded as the degree-(-1) polynomial.

For polynomials a(x), r(x), b(x), where the degree of b(x) is positive, define the following congruence relation

$$a(x) \equiv r(x) \pmod{b(x)}$$

to mean that there exists a polynomial q(x) such that a(x) = q(x)b(x) + r(x) holds for every x. In the lectures, we defined a congruence relation between integers. In this question, the congruence relation is defined on polynomials.

- (a) (8 points) Let a(x), b(x) be polynomials, where the degree of b(x) is positive. Show that there is a unique polynomial r(x) with degree smaller than b(x) such that $a(x) \equiv r(x) \pmod{b(x)}$.
- (b) (8 points) A fundamental lemma in algebra states that when f(x) is a polynomial and $x^*, y^* \in \mathbb{R}$, $f(x) \equiv y^* \pmod{x x^*}$ if and only if $f(x^*) = y^*$. You could use this lemma without proof.

Let $k \in \mathbb{Z}^+$, $k \geq 2$. Let x_1, \ldots, x_k be distinct real numbers, and y_1, \ldots, y_k be real numbers. Show that there exists a unique polynomial f(x) of degree at most k-1, such that $f(x_i) = y_i$ holds for every $i = 1, \ldots, k$.

Solution:

Part (a) Let $S = \{r(x) \text{ is a polynomial } | a(x) \equiv r(x) \text{ mod } b(x)\}$. Let $D = \{\text{degree of } r(x) | r(x) \in S\}$. Because $a(x) \in S$, D is nonempty. Let the minimum element of D be n' and let the degree of b(x) be n.

Existence: We prove this by contradiction. If $n' \ge n$, then specify one polynomial $r(x) = r_{n'}x^{n'} + \cdots + r_1x_1 + r_0$ in S with degree n'. Write $b(x) = b_nx^n + \cdots + b_1x_1 + b_0$.

Then $r(x) - \frac{r_{n'}}{b_n} x^{n'-n} b(x)$ does not have the $x^{n'}$ term and hence has a degree at most n'-1. Meanwhile, as $r(x) \in S$, then there is a q(x) such that a(x) = q(x)b(x) + r(x). Then $a(x) = (q(x) + \frac{r_{n'}}{b_n} x^{n'-n})b(x) + r(x) - \frac{r_{n'}}{b_n} x^{n'-n}b(x)$, which implies $r(x) - \frac{r_{n'}}{b_n} x^{n'-n}b(x) \in S$. This contradicts the minimality of n' in D. We conclude that n' < n.

Uniqueness: If there are two polynomials $r_1(x)$ and $r_2(x)$ then we could write $a(x) = q_1(x)b(x) + r_1(x)$ and $a(x) = q_2(x)b(x) + r_2(x)$. Then $(q_1(x) - q_2(x))b(x) = r_2(x) - r_1(x)$. Because the RHS polynomial has a degree smaller than b(x), for this equation to hold the LHS polynomial must have a degree smaller than b(x) as well. Otherwise for some sufficiently large x the LHS will be strictly larger. The only way this happens is when $q_1(x) - q_2(x) = 0$, and otherwise LHS has a degree at least that of b(x). Then we conclude $r_1(x) = r_2(x)$.

Part (b)

Existence: Let

$$f(x) = \frac{y_1(x - x_2)(x - x_3)\cdots(x - x_k)}{(x_1 - x_2)(x_1 - x_3)\cdots(x_1 - x_k)} + \dots + \frac{(x - x_1)(x - x_2)\cdots(x - x_{k-1})y_k}{(x_k - x_1)(x_k - x_2)\cdots(x_k - x_{k-1})}.$$

The degree of f(x) is at most k-1 by its explicit formula. Plugging x_i into f(x), there is only one term that is nonzero, which is y_i .

Uniqueness: Suppose that both $f_1(x)$ and $f_2(x)$ satisfy $f(x_i) = y_i$ for all i. As $f(x_i) = y_i$ is satisfied for both $f_1(x)$ and $f_2(x)$, by the lemma we have $f_1(x) - f_2(x) \equiv 0 \mod (x - x_i)$ for every i. We thus write $f_1(x) - f_2(x) = q(x)(x - x_1)$. Because $q(x_2)(x_2 - x_1) = 0$ we have $q(x_2) = 0$. Then by the lemma again $q(x) \equiv 0 \mod (x - x_2)$, and therefore $f_1(x) - f_2(x) = q'(x)(x - x_2)(x - x_1)$ for some q'(x). Repeat this process and use the lemma for k - 2 more times. We have $f_1(x) - f_2(x) \equiv 0 \mod (x - x_1) \cdots (x - x_k)$, which by part (a) guarantees that at most one of $f_1(x)$ and $f_2(x)$ could be of degree at most k - 1.

- 5. (16 points) Let n be a nonnegative integer and s(n) be the number of sequences $(x_1, x_2, ..., x_k)$ of integers satisfying $1 \le x_i \le n$ for i = 1, 2, ..., k and $x_{i+1} \ge 2x_i$ for i = 1, 2, ..., k 1. The length of the sequence is not specified; in particular, the empty sequence is included. For example, s(0) = 1 since only the empty sequence occurs and s(4) = 10 since the set of all possible sequences in this case is {the empty sequence, (1), (2), (3), (4), (1, 2), (1, 3), (1, 4), (2, 4), (1, 2, 4)}.
 - (a) (8 points) Fine a recurrence relation for $s(n), n \ge 1$.
 - (b) (8 points) Show that the generating function $S(t) = s(0) + s(1)t + s(2)t^2 + \dots$ of the sequence s(n) satisfies

$$(1-t)S(t) = (1+t)S(t^2)$$
.

Solution:

Part (a) Let us divide the sequences counted by s(n) into two classes: those not containing n and those containing n. There are s(n-1) sequences in the first class. For every sequence in the second class, all terms other than n are at most n/2 so every sequence in the second class is obtained from a sequence of integers with $1 \le x_i \le \lfloor n/2 \rfloor$ and $x_{i+1} \ge 2x_i$ by adjoining n. It follows that there are $s(\lfloor n/2 \rfloor)$ sequences in the second class. Thus, we obtain the recurrence:

$$s(n) = s(n-1) + s(|n/2|), \quad n \ge 1.$$

Part (b) We have the following one-to-one correspondences between sequences and their respective generating functions:

Therefore, the coefficient of t^n , $n \ge 1$ in tS(t) is s(n-1) and that in $(1+t)S(t^2)$ is $s(\lfloor n/2 \rfloor)$. Moreover, the constant term of $tS(t) + (1+t)S(t^2)$ is s(0). Thus, by Part (a), we have $S(t) = tS(t) + (1+t)S(t^2)$, i.e., $(1-t)S(t) = (1+t)S(t^2)$.

6. (8 points) For $x \in \mathbb{R}$, denote $\lfloor x \rceil$ as the nearest integer rounding of x. That is, if $x - \lfloor x \rfloor \ge 0.5$, then $\lfloor x \rceil = \lfloor x \rfloor + 1$, and if $x - \lfloor x \rfloor < 0.5$ then $\lfloor x \rceil = \lfloor x \rfloor$.

Show that for $n \in \mathbb{Z}^+$, $\lfloor \sqrt{2n+1} \rfloor$ is the largest positive integer p such that

$$1+2+\cdots+(p-1)\leq n.$$

Solution:

As $1+2+\cdots+(p-1)=(p-1)p/2$, we obtain that if and only if $p\leq \frac{1}{2}+\sqrt{\frac{1}{4}+2n}$, $1+2+\cdots+(p-1)\leq n$. The largest such p will therefore be $\lfloor \frac{1}{2}+\sqrt{\frac{1}{4}+2n}\rfloor$, which is by definition equivalent to $\lfloor \sqrt{2n+\frac{1}{4}} \rfloor$.

It amounts to showing $\lfloor \sqrt{2n+\frac{1}{4}} \rceil = \lfloor \sqrt{2n+1} \rceil$. Because $\sqrt{2n+1} - \sqrt{2n+\frac{1}{4}} < \frac{1}{2}$, the only way $\lfloor \sqrt{2n+\frac{1}{4}} \rceil$ is smaller than $\lfloor \sqrt{2n+1} \rceil$ is when the latter ends with a (proper) fraction at least 0.5 while the former ends with a fraction smaller than 0.5, with the same integer part. When 8n+1 is a perfect square, $\sqrt{2n+\frac{1}{4}}$ ends with 0.5, and this must not be the case. When 8n+1 is not a perfect square, then for some k, 8(n+k)+1 must be the next odd perfect square, because all odd

perfect squares are in the form of 8m + 1. As 2n + 1 is smaller than $2(n + k) + \frac{1}{4}$ for any k, its fractional part must not exceed 0.5, as we desired.

CSC3001 Midterm Exam November 5, 2022