Accurate CCG Parsing with Approximate Language Intersection and Task-specific Optimization

Michael Auli

joint work with Adam Lopez (Johns Hopkins University)

Marcel proved completeness

language-specific information in *lexicon*

Marcel proved completeness

language-specific information in *lexicon*

$$\begin{array}{ccc} \underline{Marcel} & \underline{proved} & \underline{completeness} \\ NP & (S \backslash NP)/NP & NP \end{array}$$

language-specific information in *lexicon*

language-specific information in *lexicon*

Over 22 tags per word! (Clark & Curran 2004)

Hard parsing task

Overview

- Part I: Search in Lexicalized Grammar Parsing
 Pruning and Optimality
- Part II: More Accurate Search with Combined Models with Loopy Belief Propagation and Dual Decomposition (Auli & Lopez 2011)
- Part III: Task-specific Optimization
 with Softmax-Margin using Exact and Approximate Loss Functions

Overview

- Part I: Search in Lexicalized Grammar Parsing
 Pruning and Optimality
- Part II: More Accurate Search with Combined Models with Loopy Belief Propagation and Dual Decomposition (Auli & Lopez 2011)
- Part III: Task-specific Optimization
 with Softmax-Margin using Exact and Approximate Loss Functions

time flies like an arrow

time	flies	like	an	arrow
\overline{NP}	$S \setminus NP$	$((S \setminus NP) \setminus (S \setminus NP))/NP$	NP/NP	\overline{NP}

time	flies	like	an	arrow
NP	$S \setminus NP$	$((S \setminus NP) \setminus (S \setminus NP))/NP$	NP/NP	NP
			NP	>
		$(S\NP)\(S\NP)$	>	
	5	S\NP		
	5			

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP
				>
			NP	
			>	
		$S \setminus NP$		

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP
			NP	>
		S\NP	>	

time	flies	like	an	arrow
\overline{NP}	$\overline{S \setminus NP}$	$(S \setminus NP)/NP$	NP/NP	\overline{NP}

time	flies	like	an	arrow
NP	$S \setminus NP$	$(S \setminus NP)/NP$	NP/NP	NP
NP/NP	NP	• • • •	• • •	• • •
• • •	•••	$((S \setminus NP) \setminus (S \setminus NP))/NP$		
		• • • •		

Adaptive Supertagging

Adaptive Supertagging

- Algorithm:
 - Run supertagger.
 - Return tags with posterior higher than some alpha.
 - Parse by combining tags (CKY).
 - If parsing succeeds, stop.
 - If parsing fails, lower alpha and repeat.

Adaptive Supertagging

- Algorithm:
 - Run supertagger.
 - Return tags with posterior higher than some alpha.
 - Parse by combining tags (CKY).
 - If parsing succeeds, stop.
 - If parsing fails, lower alpha and repeat.
- Q: are parses returned in early rounds suboptimal?

Answer...

Answer...

- Oracle parsing (Huang 2008):
 - With tight beam: 94.35
 - With loose beam: 97.65

Answer...

- Oracle parsing (Huang 2008):
 - With tight beam: 94.35
 - With loose beam: 97.65
- Standard parsing task (Clark & Curran 2007):
 - With tight (adaptive) beam: 87.38 (labeled F-measure)
 - With loose (*reverse*) beam: 87.36

Oracle Parsing

Note: only sentences parsable at all beam settings.

Oracle Parsing

Note: only sentences parsable at all beam settings.

What's happening here?

What's happening here?

- Supertagger keeps parser from making serious errors.
- But it also occasionally prunes away useful parses.

What's happening here?

- Supertagger keeps parser from making serious errors.
- But it also occasionally prunes away useful parses.
- Why not combine supertagger and parser into one?

Overview

- Part I: Search in Lexicalized Grammar Parsing
 Pruning and Optimality
- Part II: More Accurate Search with Combined Models with Loopy Belief Propagation and Dual Decomposition (Auli & Lopez 2011)
- Part III: Task-specific Optimization
 with Softmax-Margin using Exact and Approximate Loss Functions

Integrated Model

- Supertagger and parser are both undirected models.
- **Idea**: combine their features into one model.
- Problem: Exact computation of marginal or maximum quantities becomes very expensive because parsing and tagging submodels must agree on the tag sequence.

Integrated Model

- Supertagger and parser are both undirected models.
- **Idea**: combine their features into one model.
- Problem: Exact computation of marginal or maximum quantities becomes very expensive because parsing and tagging submodels must agree on the tag sequence.

Intersection of a regular and context-free language (Bar-Hillel et al. 1964)

Integrated Model

- Supertagger and parser are both undirected models.
- **Idea**: combine their features into one model.
- Problem: Exact computation of marginal or maximum quantities becomes very expensive because parsing and tagging submodels must agree on the tag sequence.

original parsing problem:

 $A \rightarrow B C$

 $O(Gn^3)$

Intersection of a regular and context-free language (Bar-Hillel et al. 1964)

Integrated Model

- Supertagger and parser are both undirected models.
- Idea: combine their features into one model.
- Problem: Exact computation of marginal or maximum quantities becomes very expensive because parsing and tagging submodels must agree on the tag sequence.

original parsing problem:

$$A \rightarrow B C$$

$$O(Gn^3)$$

new parsing problem:

$$_{q}A_{r} \rightarrow _{q}B_{s} _{s}C_{r}$$
 $O(G^{3}n^{3})$

$$O(G^3n^3)$$

Intersection of a regular and context-free language (Bar-Hillel et al. 1964)

Approximate Algorithms

- Loopy belief propagation: approximate calculation of marginals. (Pearl 1988; Smith & Eisner 2008)
- Dual decomposition: exact (sometimes) calculation of maximum. (Dantzig & Wolfe 1960; Komodakis et al. 2007; Koo et al. 2010)

Forward-backward is belief propagation (Smyth et al. 1997)

Forward-backward is belief propagation (Smyth et al. 1997)

emission message: $e_{i,j}$

forward message: $f_{i,j} = \sum_{j'} f_{i-1,j'} e_{i-1,j'} t_{j',j}$

backward message: $b_{i,j} = \sum_{j'} b_{i+1,j'} e_{i+1,j'} t_{j,j'}$

belief (probability) that tag j is at position i: $p_{i,j} = \frac{1}{Z} f_{i,j} e_{i,j} b_{i,j}$

Forward-backward is belief propagation (Smyth et al. 1997)

Notational convenience: one factor describes whole distribution over supertag sequence...

We can also do the same for the distribution over parse trees (Case-factor diagrams: McAllester et al. 2008)

Marcel proved completeness

We can also do the same for the distribution over parse trees (Case-factor diagrams: McAllester et al. 2008)

Marcel

proved

completeness

We can also do the same for the distribution over parse trees (Case-factor diagrams: McAllester et al. 2008)

Marcel proved completeness

Inside-outside is belief propagation (Sato 2007)

Graph is not a tree!

Converges to bounded approximate marginals (Yedidia et al. 2001)

Graph is not a tree!

Converges to bounded approximate marginals (Yedidia et al. 2001)

Graph is not a tree!

Converges to bounded approximate marginals (Yedidia et al. 2001)

- Computes approximate marginals.
- Complexity is additive: $O(Gn^3 + Gn)$
- In training: use for gradient optimization (e.g. SGD).
- In decoding: compute minimum-risk parse (Goodman 1996).

$$\arg\max_{y,z} f(y) + g(z) \qquad \text{s.t. } y(i,t) = z(i,t) \text{ for all } i$$

s.t.
$$y(i,t) = z(i,t)$$
 for all i

$$\operatorname{arg} \max_{y,z} f(y) + g(z)$$
 s.t. $y(i,t) = z(i,t)$ for all i

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

$$\arg\max_{y,z} f(y) + g(z)$$

s.t. y(i,t) = z(i,t) for all i

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
 original
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$
 problem

$$\arg\max_{y,z} f(y) + g(z)$$

s.t. y(i,t) = z(i,t) for all i

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

$$\operatorname{arg} \max_{y,z} f(y) + g(z)$$
 s.t. $y(i,t) = z(i,t)$ for all i

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

u(i,t) (Lagrange multipliers) are messages!

$$\arg\max_{y,z} f(y) + g(z)$$

s.t. y(i,t) = z(i,t) for all i

$$L(u) = \max_{y} f(y) + \sum_{i,t} u(i,t) \cdot y(i,t)$$
$$+ \max_{z} g(z) - \sum_{i,t} u(i,t) \cdot z(i,t)$$

u(i,t) (Lagrange multipliers) are messages!

$$u(i,t) = u(i,t) + \alpha \cdot [y(i,t) - z(i,t)]$$

- Computes *exact* maximum, *if* it converges.
 - Otherwise: return best parse seen (approximation).
- Complexity is additive: $O(Gn^3 + Gn)$
- In training: use with margin-based optimizers.
- In decoding: compute Viterbi parse.

- Standard parsing task:
 - C&C Parser and supertagger (Clark & Curran 2007).
 - CCGBank standard train/dev/test splits.
 - Separate L-BFGS optimization for each submodel (pseudolikelihood: Besag 1975).
 - Features as in baseline: dependency-features, trigram features etc.
 - Approximate algorithms used to decode test set.

• Baseline results on test:

• tight beam: 87.73

• loose beam: 87.65

- Baseline results on test:
 - tight beam: 87.73
 - loose beam: 87.65
- Belief propagation (1 iter):
 - tight beam: 88.19
 - loose beam: **88.80**

- Baseline results on test:
 - tight beam: 87.73
 - loose beam: 87.65
- Belief propagation (1 iter):
 - tight beam: 88.19
 - loose beam: **88.80**
- Dual decomposition (25 iter):
 - tight beam: 88.14
 - loose beam: **88.80**

- Baseline results on test:
 - tight beam: 87.73
 - loose beam: 87.65
- Belief propagation (1 iter):
 - tight beam: 88.19
 - loose beam: **88.80**
- Dual decomposition (25 iter): Best performance in larger search space
 - tight beam: 88.14
 - loose beam: **88.80**

Oracle Results Again

Oracle Results Again

Summary

• Parser and supertagger interaction exploited in combined model.

Summary

- Parser and supertagger interaction exploited in combined model.
- By far best performance with loose supertagger beam.
 Better models can exploit larger search spaces.

Summary

- Parser and supertagger interaction exploited in combined model.
- By far best performance with loose supertagger beam.
 Better models can exploit larger search spaces.
- Accurate parsing possible in a combined model.

Overview

- Part I: Search in Lexicalized Grammar Parsing
 Pruning and Optimality
- Part II: More Accurate Search with Combined Models with Loopy Belief Propagation and Dual Decomposition (Auli & Lopez 2011)
- Part III: Task-specific Optimization
 with Softmax-Margin using Exact and Approximate Loss Functions

Conditional Random Fields (CRF; Lafferty et al. 2001).

e.g. Clark & Curran (2007) and Finkel et al. (2008)

- Conditional Random Fields (CRF; Lafferty et al. 2001).
 e.g. Clark & Curran (2007) and Finkel et al. (2008)
- Maximizing conditional log-likelihood (CLL).

- Conditional Random Fields (CRF; Lafferty et al. 2001).
 e.g. Clark & Curran (2007) and Finkel et al. (2008)
- Maximizing conditional log-likelihood (CLL).
- Optimizing for task-specific metrics leads to better performance (Goodman, 1996; Och, 2003).

- Conditional Random Fields (CRF; Lafferty et al. 2001).
 e.g. Clark & Curran (2007) and Finkel et al. (2008)
- Maximizing conditional log-likelihood (CLL).
- Optimizing for task-specific metrics leads to better performance (Goodman, 1996; Och, 2003).
- Softmax-Margin (SMM) objective (Sha & Saul, 2006; Povey & Woodland, 2008; Gimpel & Smith, 2010).

Softmax-Margin

- Retains probabilistic interpretation.
- Allows optimization towards loss function.
- Convex.
- Minimizes bound on expected risk (Gimpel & Smith, 2010).
- Requires little change to existing CLL implementation.

CLL:
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

CLL: $\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$

CLL: weights features
$$\prod_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

weights features input

CLL:
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

weights features input true output

CLL:
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

CLL: weights features input true output proposed output $\prod_{\theta}^{m} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$ SMM: $\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y) + \ell(y^{(i)}, y)\} \right]$

weights features input true output proposed output $\prod_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$

SMM:
$$\min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y) + \ell(y^{(i)}, y)\} \right]$$

$$\text{CLL:} \quad \min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} \right]$$

$$\text{SMM:} \quad \min_{\theta} \sum_{i=1}^{m} \left[-\theta^{\mathsf{T}} f(x^{(i)}, y^{(i)}) + \log \sum_{y \in \mathcal{Y}(x^{(i)})} \exp\{\theta^{\mathsf{T}} f(x^{(i)}, y)\} + \ell(y^{(i)}, y)\} \right]$$

- Re-weights outcomes by risk.
- Risk is the *loss* incurred.
- Loss function an *unweighted feature* -- if **decomposable**.

T(y) = set of actions to build parse y

T(y) = set of actions to build parse y

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

T(y) = set of actions to build parse y

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

T(y) = set of actions to build parse y

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

Recall
$$DecR(y) = \sum_{t \in T(y)} c_+(t) - n_+(t)$$

T(y) = set of actions to build parse y

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

Recall
$$DecR(y) = \sum_{t \in T(y)} c_+(t) - n_+(t)$$

$$F_1$$
 $DecF1(y) = DecP(y) + DecR(y)$

T(y) = set of actions to build parse y

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

Recall
$$DecR(y) = \sum_{t \in T(y)} c_+(t) - n_+(t)$$

$$F_1$$
 $DecF1(y) = DecP(y) + DecR(y)$

Losses are *decomposable --* only use information within local sub-structure (Taskar et al., 2004)

Approximate Losses for Parsing

T(y) = set of actions to build parse y

 $d_{+}(t)$ = number of dependencies introduced by $t \in T(y)$

 $n_+(t)$ = number of correct dependencies introduced by $t \in T(y)$

Precision
$$DecP(y) = \sum_{t \in T(y)} d_{+}(t) - n_{+}(t)$$

Recall
$$DecR(y) = \sum_{t \in T(y)} c_+(t) - n_+(t)$$

efficient but approximate!

$$F_1$$
 $DecF1(y) = DecP(y) + DecR(y)$

Losses are *decomposable --* only use information within local sub-structure (Taskar et al., 2004)

Exact Loss Functions for Parsing

Exact Loss Functions for Parsing

y = dependencies in ground truth

y' = dependencies in proposed output

Labelled, directed dependency recovery

(Clark & Hockenmaier, 2002)

Exact Loss Functions for Parsing

y = dependencies in ground truth y' = dependencies in proposed output

$$P(y, y') = \frac{|y \cap y'|}{|y'|}$$

Labelled, directed dependency recovery

(Clark & Hockenmaier, 2002)

y = dependencies in ground truth y' = dependencies in proposed output

Precision
$$P(y,y') = \frac{|y \cap y'|}{|y'|}$$
 Recall
$$R(y,y') = \frac{|y \cap y'|}{|y|}$$

Labelled, directed dependency recovery (Clark & Hockenmaier, 2002)

y = dependencies in ground truth

y' = dependencies in proposed output

Precision
$$P(y, y') = \frac{|y \cap y'|}{|y'|}$$

Recall
$$R(y, y') = \frac{|y \cap y'|}{|y|}$$

F-measure
$$F_1(y, y') = \frac{2PR}{P+R} = \frac{2|y \cap y'|}{|y|+|y'|}$$

Labelled, directed dependency recovery

(Clark & Hockenmaier, 2002)

y = dependencies in ground truth

y' = dependencies in proposed output

Precision

$$P(y,y') = \frac{|y \cap y'|}{|y'|}$$

Recall

$$R(y, y') = \frac{|y \cap y'|}{|y|}$$

F-measure

$$F_1(y,y') = \frac{2PR}{P+R} = \frac{2|y \cap y'|}{|y|+|y'|}$$

Metrics do not decompose over parses

Labelled, directed dependency recovery (Clark & Hockenmaier, 2002)

y = dependencies in ground truth

y' = dependencies in proposed output

$$P(y,y') = \frac{|y \cap y'|}{|y'|}$$

$$R(y, y') = \frac{|y \cap y'|}{|y|}$$

Metrics do not decompose over parses

... but statistics do!

$$F_1(y, y') = \frac{2PR}{P+R} = \frac{2|y \cap y'|}{|y|+|y'|}$$

Labelled, directed dependency recovery

(Clark & Hockenmaier, 2002)

y = dependencies in ground truth

y' = dependencies in proposed output

$$P(y,y') = \frac{|y \cap y'|}{|y'|}$$

$$R(y, y') = \frac{|y \cap y'|}{|y|}$$

Metrics do not decompose over parses

... but statistics do!

$$F_1(y, y') = \frac{2PR}{P+R} = \frac{2|y \cap y'|}{|y|+|y'|}$$

Use state-split dynamic program to compute F₁-augmented expectations for losses on sentence-level!

Labelled, directed dependency recovery (Clark & Hockenmaier, 2002)

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

target analysis

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

items $A_{i,j}$

 $NP_{0,2}$ $NP/NP_{0,1}$ $NP_{0,1}$ $MP_{0,1}$ flies₂

items $A_{i,j}$

 $NP_{0,2}$ $DecF_1(0,1)$ $NP/NP_{0,1} \quad NP_{0,1}$ $flies_2$

State-Split CKY

items $A_{i,j,n,d}$

correct dependencies all dependencies

State-Split CKY

items $A_{i,j,n,d}$

correct dependencies all dependencies

State-Split CKY

items $A_{i,j,n,d}$

correct dependencies all dependencies

items $A_{i,j,n,d}$

correct dependencies all dependencies

Exact versus approximate loss functions on test:

Loss Approx Exact

Exact versus approximate loss functions on test:

Loss	Approx	Exact
Precision	87.34	87.23

Exact versus approximate loss functions on test:

Loss	Approx	Exact
Precision	87.34	87.23
Recall	87.42	87.51

Exact versus approximate loss functions on test:

Loss	Approx	Exact
Precision	87.34	87.23
Recall	87.42	87.5 I
Fı	87.69	87.71

Exact versus approximate loss functions on test:

Loss	Approx	Exact
Precision	87.34	87.23
Recall	87.42	87.5 I
Fı	87.69	87.71

Approximate loss functions very competitive!

- Results in large scale training setting on test:
- CLL
 - tight beam: 87.73
 - loose beam: 87.65

- Results in large scale training setting on test:
- CLL
 - tight beam: 87.73
 - loose beam: 87.65
- DecF1
 - tight beam: 88.09
 - loose beam: **88.58**

- Results in large scale training setting on test:
- CLL
 - tight beam: 87.73
 - loose beam: 87.65
- DecF1
 - tight beam: 88.09
 - loose beam: **88.58**

Best performance

in larger search space

Results with integrated model using BP:

CLL 87.65

Results with integrated model using BP:

CLL	87.65
BP	88.78

Results with integrated model using BP:

CLL	87.65
BP	88.78
+ DecF _I	89.06

Results with integrated model using BP:

CLL	87.65	
BP	88.78	
+ DecFı	89.06	parser loss
+ SA	89.24	supertagger loss

Results with integrated model using BP:

CLL	87.65	
BP	88.78	
+ DecFı	89.06	parser loss
+ SA	89.24	supertagger loss

Gains are additive!

CLL	85.74	
Petrov I-5	86.01	Fowler & Penn (2010)

CLL	85.74	
Petrov I-5	86.01	Fowler & Penn (2010)
BP	86.73	

CLL	85.74	
Petrov I-5	86.01	Fowler & Penn (2010)
BP	86.73	
+ DecF _I	87.02	

CLL	85.74	
Petrov I-5	86.01	Fowler & Penn (2010)
BP	86.73	
+ DecF ₁	87.02	parser loss
+ SA	87.17	supertagger loss

• What is the performance when speed is important?

- What is the performance when speed is important?
- Results with tight beam (AST):

- What is the performance when speed is important?
- Results with tight beam (AST):

CLL	87.73	
BP	88.20	
+ DecF _I	88.28	parser loss
+ SA	88.46	supertagger loss

• Pruning with supertagging comes at a cost.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.
- Task specific optimization improves performance.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.
- Task specific optimization improves performance.
- Approximate loss functions very competitive to exact counterparts -- they are simple and efficient.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.
- Task specific optimization improves performance.
- Approximate loss functions very competitive to exact counterparts -- they are simple and efficient.
- Methods are generally applicable, gains are additive.

- Pruning with supertagging comes at a cost.
- Better models can exploit larger search spaces.
- Supertagger and parser interaction can be exploited in a combined model.
- Task specific optimization improves performance.
- Approximate loss functions very competitive to exact counterparts -- they are simple and efficient.
- Methods are generally applicable, gains are additive.
- Best reported results for CCG parsing.

Future Directions

- Integration of POS sequence model.
- Grammar induction with combined model.
- Application to other grammar formalisms & problems.

Thanks!

Thanks!

Phil Blunsom Prachya Boonkwan Christos Christodoulopoulos Stephen Clark Michael Collins Chris Dyer Timothy Fowler Mark Granroth-Wilding Philipp Koehn

Terry Koo
Tom Kwiatkowski
André F. T. Martins
Matt Post
David A. Smith
David Sontag
Mark Steedman
Charles Sutton

References

- A Comparison of Loopy Belief Propagation and Dual Decomposition for Integrated CCG Supertagging and Parsing. Michael Auli and Adam Lopez. To appear in Proceedings of ACL, June 2011.
- Efficient CCG Parsing: A* versus Adaptive Supertagging.
 Michael Auli and Adam Lopez. To appear in *Proceedings of ACL*, June 2011.