

Рисунок 4.5 – Метод діаграм Вейча

 $f_{4MH/I}\phi = (X1) \ v \ (X4\overline{X2}) \ v \ (\overline{X3}X2)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

KO	K1	K2
0000 (1,2,3)	000X (1,2)	OXXO (1,3)
<i>0001 (1,2)</i>	00X0 (1,2,3)	X0X0 (3)
0010 (1,2,3)	OXOO (1,3)	OXXO (1,3)
0100 (-1,3)	X000 (1,2,3)	XX00 (1,3)
0110 (1,-2,-3)	OX10 (1,2,3)	X0X0 (3)
0111 (-1,-2,3)	X010 (3)	XX00 (1,3)
1000 (1,2,3)	01X0 (1,3)	X1X0 (1)
-1001 (3)	X100 (1,3)	X1X0 (1)
-1010 (3)	011X (1,2,3)	X11X (1,2)
-1100 (1,-2,3)	X110 (1,2)	X11X (1,2)
-1101 (1,2)	X111 (1,2,3)	11XX (1,2)
-1110 (1,2)	100X (3)	11XX (1,2)
-1111 (1,2,3)	10X0 (3)	-
	1X00 (1,2,3)	
	110X (1,2)	•
	11X0 (1,2)	
	11X1 (1,2)	
	111X (1,2)	

Рисунок 4.6 – Склеювання і поглинання термів системи

3M.	Арк.	№ докум.	Підп.	Дата	

IA/IЦ.463626.004 ПЗ

Арк.

Таблиця 4.5 – Таблиця покриття системи

	0000(F1)	0001/F1/	0010/F1/	0110IF1)	1000lF1)	1100IF1)	1101/F1)	1110IF1)	1111/F1)	0000(F2)	0001lF2)	0010(F2)	1000lF2)	11011F2)	1110IF2)	1111/F2/	0000(F3)	0010IF3J	0100lF3/	0111F3J	1000lF3/	1001F3J	1010IF3J	1100IF3J	1111/F3/
000X (1,2)	+	+								+	+														
00X0 (1,2,3)																									
X000 (1,2,3)													+												
OX10 (1,2,3)			+	+								+													
011X (1,2,3)																									
X111 (1,2,3)																				+					+
100X (3)																					+	+			
1X00 (1,2,3)																								+	
OXXO (1,3)																	+	+	+						
X0X0 (3)																							+		
XX00 (1,3)					+																				
X1X0 (1)																									
X11X (1,2)																									
11XX (1,2)						+	+	+	+					+	+	+									

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MJH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (X4X3)$

 $f3_{MZH\Phi} = (X3X2X1) \ v \ (X4\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X3}\overline{X1})$

Проведемо <u>мініміз</u>ацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

Зм.	Арк.	№ докум.	Підп.	Дата

KO	K1	K2
<i>0001 (3)</i>	00X1 (3)	01XX (2)
0011 (1,2,3)	OX01 (3)	01XX (2)
0100 (-1,2)	OX11 (1,2)	
0101 (1,2,3)	X011 (1,2,3)	
0110 (-2,-3)	010X (1,2)	
0111 (-1,-2)	01X0 (2)	
1001 (1,2)	X100 (2)	
-1010 (1,2)	01X1 (1,2)	
1011 (1,2,3)	X101 (3)	
-1100 (-2)	011X (2)	
-1101 (3)	X110 (3)	
-1110 (3)	10X1 (1,2)	
	101X (1,2)	

Рисунок 4.7 – Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.6 – Таблиця покриття системи

	0011/F1/	01011F1	1001/F1/	1010IF1)	1011/F1)	0011/F2J	0100lF2)	0101F2J	1001/F2/	1010IF2I	1011/F2J	00011F31	0011F3J	0101F3J	1011F3J	11011F3J	1110IF3J
0101 (1,2,3)																	
0110 (-2,-3)																	
00X1 (3)												+	+				
OXO1 (3)																	
OX11 (1,2)																	
X011 (1,2,3)	+				+	+									+		
010X (1,2)		+					+	+									
X100 (2)																	
01X1 (1,2)																	
X101 (3)														+		+	
X110 (3)																	+
10X1 (1,2)			+						+								
101X (1,2)				+						+	+						
01XX (2)																	

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

 $f1_{MDH\phi}=(\overline{X3}X2X1) \ v \ (\overline{X4}X3\overline{X2}) \ v \ (X4\overline{X3}X1) \ v \ (X4\overline{X3}X2)$

 $f2_{MJH\phi} = (\overline{X3}X2X1) \ v \ (\overline{X4}X3\overline{X2}) \ v \ (X4\overline{X3}X1) \ v \ (X4\overline{X3}X2)$

 $f3_{MDH\phi}=(\overline{X4}\overline{X3}X1) \ v \ (\overline{X3}X2X1) \ v \ (X3\overline{X2}X1) \ v \ (X3X2\overline{X1})$

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО—НЕ. Розглянемо програмування ПЛМ для системи перемикальних функцій, що подана в формі I/AБО.

 $f1_{MJH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (X4X3)$

 $f3_{MJH\phi} = (X3X2X1) \ v \ (X4\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X3}\overline{X1})$

Зм.	Арк.	№ докум.	Підп.	Дата

Позначимо терми системи:

$$P1 = \overline{X4}\overline{X3}\overline{X2}$$

$$P2 = \overline{X4}X2\overline{X1}$$

$$P4 = \overline{X3}\overline{X2}\overline{X1}$$

$$P5 = X4X3$$

$$P7 = X4\overline{X}3\overline{X}2$$

$$P8 = X4\overline{X}2\overline{X}1$$

$$P9 = \overline{X4}\overline{X1}$$

$$P10 = \overline{X3}\overline{X1}$$

Тоді функції виходів описуються системою:

 $f1_{MRHD} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3) = P1 \ v \ P2 \ v \ P3 \ v \ P5$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X3}\overline{X2}\overline{X1}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (X4X3) = P1 \ v \ P4 \ v \ P2 \ v \ P5$

 $f3_{MJH\phi} = (X3X2X1) \ v \ (X4\overline{X3}\overline{X2}) \ v \ (X4\overline{X2}\overline{X1}) \ v \ (\overline{X4}\overline{X1}) \ v \ (\overline{X3}\overline{X1}) = P6 \ v \ P7 \ v \ P8 \ v \ P9$

v P10

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

р = 10 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему П/ІМ(4,10,3) (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

X1 X2 X3 X4

Рисунок 4.8 – Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,10,3) (таблиця 4.7).

Таблиця 4.7 – Карта програмування ПЛМ

Nº		Вхи	оди		В	ססאט	ע
ШИНИ	<i>X</i> 4	<i>X3</i>	<i>X2</i>	<i>X1</i>	<i>f1</i>	<i>f2</i>	f3
P1	0	0	0	ı	1	1	0
<i>P2</i>	0	-	1	0	1	1	0
<i>P3</i>	-	-	0	0	1	0	0
P4	_	0	0	0	0	1	0
<i>P5</i>	1	1	ı	ı	1	1	0
P6	-	1	1	1	0	0	1
<i>P7</i>	1	0	0	ı	0	0	1
P8	1	-	0	0	0	0	1
<i>P9</i>	0	-	1	0	0	0	1
P10	-	0	1	0	0	0	1

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІАЛЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2015р.

Зм.	Арк.	№ докум.	Підп.	Дата