

BIOS 6612 Lecture 4

Logistic Regression III Wald, Score, & LRT

KKMN Chapters 21, 22

Agresti (2002) Catgorical Data Analysis, 2nd Edition. Section 4.2, Chapter 5 up to 5.1.3, Section 6.6 Vittinghoff. Regression Methods in Biostatistics. Chapter 6

BIOS 6612: Lecture 4 p. 2

Review (Lecture 3)/ Current (Lecture 4)/ Preview (Lecture 5)

- Lecture 3: Logistic Regression II
 - Maximum Likelihood Estimation
 - Analytic solution for intercept only model
 - No analytic solution for more complicated models
 - Newton Raphson Algorithm
- Lecture 4: Logistic Regression III
 - Hypothesis testing
 - Wald
 - Score
 - Likelihood Ratio Test (LRT)
- Lecture 5: Logistic Regression IV
 - o Comparing Models
 - LRTs
 - o Interactions

Likelihood Ratio Test

- Likelihood Ratio Test / Likelihood Ratio Statistic
 - The ratio of the likelihood at the hypothesized parameter values to the likelihood of the data at the MLE

 $LR = -2 \log([Likelihood at H_0] / [Likelihood at MLE]) = -2LogL(H_0) - -2LogL(MLE)$

- For large n, the LRT statistic has a chi-square distribution with degrees of freedom based on the number of parameters being estimated.
- The Likelihood Ratio Test Statistic can also be viewed as the change in value of the log-likelihood (Log L) between two <u>nested</u> models (a full model with and reduced model without the parameter(s) of interest).

$$-2 \text{LogL}(\text{reduced}) - -2 \text{LogL}(\text{full}) \sim \chi^2_{p(\textit{full}) - p(\textit{reduced})}$$

you can use
AIC or SC(BIC)
for non-nested
models.

- This test is similar to the multiple partial F test in ideology
- o Performs best in small samples

BIOS 6612: Lecture 4 p. 4

- Wald (Chi-Square) Test Statistic (reported as Z or $Z^2=\chi^2$)
 - o The Wald Chi-Square Statistic is a function of the difference in the MLE and the hypothesized value, normalized by an estimate of the standard error which is calculated by the inverse of the information matrix

Wald Test

- o This is the p-value reported in many parameter estimate tables
- Wald tests are constructed using MLE's and estimates of their variance obtained by maximizing the likelihood under the alternative hypothesis
- It has long been known that Wald tests and confidence intervals can behave in an aberrant manner (e.g., Fears et al., Am. Stat., 1996, Hauck and Donner, JASA, 1977, Meeker and Escobar, Am. Stat., 1995)
- For example, Hauck and Donner (1977) have shown that the power of Wald tests for logistic regression decreases to its Type I error rate for alternative values sufficiently far from the null value
- However, Wald tests easily come out of any software package and they relate to CI estimation

Score Test

- Score Test / Score Statistic
 - The score test statistic is based on the first derivative of the log-likelihood evaluated under the null hypothesis
 - o Score functions can be interpreted as the slope at a point on the likelihood function
 - The variance of the score function is equal to the expected information
 - The information is a function of the curvature at a point on the likelihood function, and hence of the speed with which the slope changes

Consider testing H_0 : $\theta = \theta^*$

o The first derivative of the log-likelihood denoted by

$$U(\theta) = \frac{\partial \log L(\theta)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log L_i(\theta)}{\partial \theta}$$

where $L_i(\theta)$ is the likelihood from the ith observation

• Since the score can be written as a sum of independent observations, we can apply the Central Limit Theorem

$$U(\theta^*) \sim N(0, \text{Var}[U(\theta^*)]) \ b/c \ \text{E}[U(\theta^*)] = 0 \ under \ H_0$$

• The score test statistic for H_0 : $\theta = \theta^*$ is

$$\chi_S^2 = \frac{U(\theta^*)^2}{Var[U(\theta^*)]}$$

Notes

p. 6

- The sampling distributions for Wald, score, and likelihood ratio test statistics are asymptotically chi-square when the null hypothesis is true, and subject to the usual assumptions
- Degrees of freedom for these test statistics are equal to the numbers of parameters being tested
- Degrees of freedom can also be determined as the difference in the number of unknown parameters under the alternative and the null hypothesis
- Wald, score, and likelihood ratio test statistics are asymptotically equivalent when the null hypothesis is true
- They differ in small samples or when the alternative hypothesis is true
 - Score tests tend to give Type I error rates closest to the nominal levels when the sample size is small
 - o Likelihood ratio tests tend to have the greatest power

Confidence Interval Construction

- Each of the three test statistics (Wald, Score, and Likelihood Ratio) can be inverted to construct confidence intervals (Alho, Statistics in Medicine, 1992) for $H_0: \beta_1 = \beta_1^*$
- The 95% confidence interval for an odds ratio obtained by inverting a Wald test constructed using logistic regression is given by

$$\left\{ \exp\left(\hat{\beta}_{1} - 1.96\hat{S}E[\hat{\beta}_{1}]\right), \exp\left(\hat{\beta}_{1} + 1.96\hat{S}E[\hat{\beta}_{1}]\right) \right\} =$$

• The 95% confidence interval for an odds ratio obtained by inverting a likelihood ratio test is found by solving the equation

$$2\log\left(\frac{L(\hat{\beta}_0,\hat{\beta}_1)}{L(\tilde{\beta}_0 \mid \beta_1 = {\beta_1^*})}\right) \leq \chi_{1,1-\alpha}^2$$

- where $\chi_{1,1-\alpha}^2$ is the $(1-\alpha)$ th quantile from a chi- square distribution with 1 degree of freedom. Accordingly $\chi_{1,1-0.05}^2 = 3.841$
- These CI's are called profile likelihood-based confidence intervals
- Confidence intervals obtained by inverting likelihood ratio and score tests require iterative solutions for even quite simple problems

Bernoulli Example: LRT

- Recall:
 - Pr(Y=1)=p and the likelihood of the data $L = \prod_{i=1}^{n} p^{Y_i} (1-p)^{1-Y_i}$
 - Log Likelihood $LL = \ln(L) = \ln\left(\prod_{i=1}^{n} p^{Y_i} (1-p)^{1-Y_i}\right) = \left(\sum_{i=1}^{n} Y_i\right) \ln(p) + \left(n \sum_{i=1}^{n} Y_i\right) \ln(1-p)$
 - The MLE, which maximizes the log likelihood is $\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n}$
- For the null hypothesis: H0:p= p_0 vs HA: $p \neq p_0$

- Log L(H₀) =
$$\left(\sum_{i=1}^{n} Y_{i}\right) \ln(p_{0}) + \left(n - \sum_{i=1}^{n} Y_{i}\right) \ln(1 - p_{0})$$

- Log L(MLE) =
$$\left(\sum_{i=1}^{n} Y_{i}\right) \ln(\hat{p}) + \left(n - \sum_{i=1}^{n} Y_{i}\right) \ln(1 - \hat{p})$$

The LRT statistic = $-2\left[\left(\sum_{i=1}^{n} Y_{i}\right) \ln\left(\frac{p_{0}}{\hat{p}}\right) + \left(n - \sum_{i=1}^{n} Y_{i}\right) \ln\left(\frac{1 - p_{0}}{1 - \hat{p}}\right)\right] \sim \chi_{1}^{2}$

Bernoulli Example: Wald Test

• Fisher information

$$I(p) = E\left[-\frac{\partial^2 LL}{\partial p^2}\right] = E\left[\frac{\sum_{i=1}^n Y_i}{p^2} + \frac{n - \sum_{i=1}^n Y_i}{\left(1 - p\right)^2}\right] = \frac{n}{p(1 - p)}$$

- Substituting the MLE of *p* into I(p), yielding: $I(\hat{p}) = \frac{n}{\hat{p}(1-\hat{p})}$
- The inverse of the information evaluated at the MLE: $var(\hat{p}) = I(\hat{p})^{-1} = \frac{\hat{p}(1-\hat{p})}{n}$
- For the null hypothesis: H0:p= p_0 vs HA: $p \neq p_0$

- The Wald statistic
$$\frac{\left(\hat{p} - p_0\right)^2}{I(\hat{p})^{-1}} = \frac{\left(\hat{p} - p_0\right)^2}{\left(\frac{\hat{p}(1-\hat{p})}{n}\right)} \sim \chi_1^2$$

- Issues for \hat{p} near 0 or 1
- In R, it reports the square root of the above test statistic, which is distributed N(0,1)

Bernoulli Example: Score Test

• The score function $U(p) = \frac{\partial LL}{\partial p} = \frac{\sum_{i=1}^{n} Y_i}{p} - \frac{n - \sum_{i=1}^{n} Y_i}{1 - p}$

• Fisher's Information
$$I(p) = E\left[-\frac{\partial^2 LL}{\partial p^2}\right] = E\left[\frac{\sum_{i=1}^n Y_i}{p^2} + \frac{n - \sum_{i=1}^n Y_i}{\left(1 - p\right)^2}\right] = \frac{n}{p(1 - p)}$$

• For the null hypothesis: H0:p= p_0 vs HA: $p \neq p_0$

The score test=
$$\frac{U(p_0)^2}{I(p_0)} = \frac{\left(\frac{\sum_{i=1}^n Y_i}{p_0} - \frac{n - \sum_{i=1}^n Y_i}{1 - p_0}\right)^2}{\left(\frac{n}{p_0(1 - p_0)}\right)} \sim \chi_1^2$$

BIOS 6612: Lecture 4 p. 11

Multiple Logistic Regression

$$logit(\pi_i) = \mathbf{X}_i^T \boldsymbol{\beta} = \beta_0 + \beta_1 X_{1i} + ... + \beta_p X_{pi} where \ \pi_i = P(\mathbf{Y}_i = 1 \mid \mathbf{X}_i)$$

$$L(\beta) = \prod_{i=1}^{n} \left\{ \pi_{i}^{Y_{i}} \left(1 - \pi_{i} \right)^{1 - Y_{i}} \right\} = \prod_{i=1}^{n} \left\{ \left(\frac{\exp(\mathbf{X}_{i}^{T} \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}^{T} \boldsymbol{\beta})} \right)^{Y_{i}} \left(\frac{1}{1 + \exp(\mathbf{X}_{i}^{T} \boldsymbol{\beta})} \right)^{1 - Y_{i}} \right\} = \frac{\exp\left[\sum_{i=1}^{n} Y_{i} \left(\mathbf{X}_{i}^{T} \boldsymbol{\beta} \right) \right]}{\prod_{i=1}^{n} \left[1 + \exp\left(\mathbf{X}_{i}^{T} \boldsymbol{\beta} \right) \right]}$$

$$U = \begin{bmatrix} U_0 \\ U_1 \\ \vdots \\ U_p \end{bmatrix} = \sum_{i=1}^n \begin{bmatrix} 0 \\ X_{1i} \\ \vdots \\ X_{pi} \end{bmatrix} (\mathbf{Y}_i - \hat{\pi}_i) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow \sum_{i=1}^n \mathbf{X}_i \left(Y_i - \hat{\pi}_i \right) = 0 \text{ where } \mathbf{X}_i^T = (1 \quad X_{1i} \quad \dots \quad X_{pi})$$

$$I(\beta) = \sum_{i=1}^{n} \pi_i \left(1 - \pi_i \right) \mathbf{X}_i \mathbf{X}_i^T$$

In large samples $\hat{\beta} \sim MVN_{(p+1)}(\beta, Var(\hat{\beta}))$ where $Var(\hat{\beta}) = [I(\beta)]^{-1}$

• There is usually no closed form solution for the MLE. (Newton-Raphson)

BIOS 6612: Lecture 4 p. 12

Multiple Logistic Regression: Likelihood Ratio Tests

- Hypothesis tests for two or more parameters are usually constructed using likelihood ratio tests
- For example, for the logistic regression model
 - $H_0: \beta_1 = \beta_2 = 0 \text{ vs}$
 - H_A : At least one of β_1 or β_2 does not = 0
- Can be tested using the two degree of freedom likelihood ratio statistic given by

$$\operatorname{logit}(\pi_{i}) = \mathbf{X}_{i}^{T} \boldsymbol{\beta} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i}$$

$$\chi_{LR}^{2} = 2\left\{\log[L(\hat{\beta} \mid \mathbf{H}_{A})] - \log[L(\hat{\beta} \mid \mathbf{H}_{0})]\right\} = 2\sum_{i=1}^{n} \left[Y_{i} \log\left(\frac{\hat{\pi}_{i}}{\tilde{\pi}_{i}}\right) + (1 - Y_{i}) \log\left(\frac{1 - \hat{\pi}_{i}}{1 - \tilde{\pi}_{i}}\right)\right]$$

Multiple Logistic Regression: Wald Tests and Confidence Intervals

• In large samples

$$\hat{\boldsymbol{\beta}}_{j} \sim N(\boldsymbol{\beta}_{j}, \operatorname{Var}(\hat{\boldsymbol{\beta}}_{j})), j = 0,...,p$$

$$\mathbf{H}_o: \boldsymbol{\beta}_j = \boldsymbol{\beta}_{j0}$$

$$\chi_W^2 = \frac{(\hat{\beta}_j - \beta_{j0})^2}{V \hat{a} r(\hat{\beta}_j)}$$

95%CI for
$$\exp(\hat{\beta}_j) \Rightarrow \left(\exp(\hat{\beta}_j - 1.96S\hat{E}(\hat{\beta}_j)) - \exp(\hat{\beta}_j + 1.96S\hat{E}(\hat{\beta}_j))\right)$$

• Multiple Logistic Regression: Score Tests

• Score tests for single parameters, e.g., H_0 : $\beta_1 = 0$ can be written as

$$\chi_S^2 = \frac{\left\{\sum_{i=1}^n X_{i1}(Y_i - \tilde{\pi}_i)\right\}^2}{V\hat{a}r\left\{\sum_{i=1}^n X_{i1}(Y_i - \tilde{\pi}_i)\right\}} \text{ where } \tilde{\pi}_i \text{ denotes the estimate obtained under the null hypothesis}$$

- In general iteration is required to obtain π the MLE (i.e. Newton Raphson)
- Simple algebraic expressions are assured only when the model specified under the null is saturated
 - o i.e., there are as many data points as there are parameters, e.g., logistic regression models with a single factor taking on K levels modeled using K-1 dummy variables
- Score tests and confidence intervals?
 - o Conceptually straightforward, somewhat difficult to compute

Example: Logistic regression model examining factors associated with post-surgery hypothermia at PACU entry (tympanic temperature \leq 96.8 degrees).

```
PROC LOGISTIC;
MODEL hypotherm (EVENT= 'Yes') = age surgtime bmi blanket;
RUN;
```

The LOGISTIC Procedure

Model Information

Data Set WORK.BODYCOVERS

Response Variable hypotherm Hypothermia

Number of Response Levels 2 Number of Observations 60

Model binary logit
Optimization Technique Fisher's scoring

Response Profile

Ordered		Total
Value	hypotherm	Frequency
1	Yes	14
2	No	46

Probability modeled is hypotherm='Yes'.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	67.193	59.199
SC	69.287	69.670
-2 Log L	<u>65.193</u>	49.199

MODEL 1:

Age

Surgery Time

BMI

Use of Warmed Blanket

-2LL for Intercept and Covariates: See Next Page

-2LL for Intercept Only:

$$\hat{p} = 14/60 = 0.23333$$

$$LL = 14LN(0.2333) + 46LN(1-.23333) = -32.596$$

$$-2LL = -2 \times -32.596 = 65.193$$

VAR 11;

RUN;

Calculation of -2LL

PROC MEANS DATA=phat N SUM;

```
DATA phat;
SET phat;
11 = hypotherm*LOG(phat)+(1-hypotherm)*LOG(1-phat);
RUN;
PROC PRINT DATA=phat;
RUN;
```

```
Standard
Parameter
             DF
                    Estimate
                                   Error
Intercept
                      2.8881
                                  2.6575
                                  0.0242
age
                      0.0143
surgtime
                     1.0930
                                  0.5332
                     -0.2413
                                  0.0963
bmi
blanket
                     -0.9906
                                  0.8068
```

p. 16

ID #1: phat = 1/(1+e-(2.8881+0.0143*59+1.0930*1.2)-0.2431*19.2-0.9905*1II = LN(0.35863)

0bs	id	age	surgtime	bmi	blanket	hypotherm	phat	11
1	1	59	1.2	19.2	Warmed	No	0.35853	-0.44400
2	2	39	1.3	26.6	Unwarmed	Yes	0.17468	-1.74482
3	3	75	1.7	23.7	Unwarmed	Yes	0.52444	-0.64543
4	4	34	0.8	24.0	Warmed	No	0.07352	-0.07636
5	5	71	1.3	18.2	Unwarmed	Yes	0.71721	-0.33239
55	55	34	1.5	20.4	Warmed	Yes	0.28902	-1.24127
56	56	70	1.3	27.5	Warmed	No	0.08963	-0.09390
57	57	41	1.3	27.4	Warmed	Yes	0.06251	-2.77244
58	58	43	1.3	24.6	Warmed	No	0.11881	-0.12648
59	59	65	2.1	24.8	Unwarmed	No	0.53168	-0.75860
60	60	45	1.9	21.5	Warmed	Yes	0.36091	-1.01913

The MEANS Procedure Analysis Variable : 11

Ν

- 24.5993579

Sum

-2LL for Intercept and Covariates: -24.599357*2 = 49.1987

Model with age, bmi, blanket, surgery time

Analysis of Maximum Likelihood Estimates

			Standard	Wald		
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq	
Intercept	1	2.8881	2.6575	1.1810	0.2771	
age	1	0.0143	0.0242	0.3465	0.5561	
surgtime	1	1.0930	0.5332	4.2013	0.0404	
bmi	1	-0.2413	0.0963	6.2738	0.0123	
blanket	1	-0.9906	0.8068	1.5075	0.2195	

Odds Ratio Estimates

	Point	95% Wai	ld
Effect	Estimate	Confidence	Limits
age	1.014	0.967	1.064
surgtime	2.983	1.049	8.483
bmi	0.786	0.650	0.949
blanket	0.371	0.076	1.805

Interpretation: Length of surgery is a significant predictor of post-surgery hypothermia after adjusting for age, BMI, and use of a warmed blanket during surgery (p = 0.0404). Each one-hour increase in the length of surgery is associated with a 2.98-fold increase in the odds of post-surgery hypothermia (95% CI: 1.05,8.48).

Wald Test Statistic:
$$Z = 1.0930 / 0.5332 = 2.0499 \sim N(0,1)$$
, $p = 0.0404$
 $Z^2 = 4.20 \sim \chi_1^2$, $p = 0.0404$

Likelihood Ratio Test Statistic:

To perform the likelihood ratio test for the effect of surgery time, we need to compare the likelihood in the model above $(-2\text{LogL} = \underline{49.199})$ to the likelihood for the model without surgery time included $(-2\text{LogL} = \underline{54.107})$:

The LOGISTIC Procedure Model Information

Data Set TEACH.BODYCOVERS

Response Variable hypotherm Hypothermia

Number of Response Levels 2 Number of Observations 60

Model binary logit
Optimization Technique Fisher's scoring

Response Profile

Ordered		Total
Value	hypotherm	Frequency
1	Yes	14
2	No	46

Probability modeled is hypotherm='Yes'.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	67.193	62.107
SC	69.287	70.484
-2 Log L	65.193	54.107

MODEL 2:

Age

BMI

Use of Warmed Blanket

The LOGISTIC Procedure

Odds Ratio Estimates

	Point	95% Wa	ıld
Effect	Estimate	Confidence	Limits
age	1.023	0.978	1.071
bmi	0.824	0.695	0.975
blanket	0.316	0.072	1.379

Recall (from p.17/18): Wald Chi-Square was $4.2 \sim \chi^2$, p = 0.0404

Likelihood Ratio Test Statistic:

Model with age, bmi, blanket, surgery time and cover type

In the study, patients were randomized to one of four experimental groups to test the effect of different aluminum covers (no cover, cover A, cover B, cover C) on hypothermia.

• After adjusting for age, BMI, length of surgery, and use of a warmed blanket, is treatment group associated with hypothermia at PACU entry?

```
PROC LOGISTIC;

CLASS covertype (REF='None') /PARAM=REF;

MODEL hypotherm (EVENT='Yes') = age bmi blanket surgtime covertype;

RUN;

/* Request Reference Coding with 'None' as Reference Group */
```

The LOGISTIC Procedure

Model Information

Data Set	WORK.BODYCOVERS	
Response Variable	hypotherm	Hypothermia
Number of Response Levels	2	
Number of Observations	60	
Model	binary logit	
Optimization Technique	Fisher's scoring	

Response Profile Ordered Total Value hypotherm Frequency 1 Yes 14 2 No 46

Probability modeled is hypotherm='Yes'.

Model with age, bmi, blanket, surgery time and cover type

Class Level Information
Design Variables

Class	Value	1	2	3
covertype	Cover A	1	0	0
	Cover B	0	1	0
	Cover C	0	0	1
	None	0	0	0

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	67.193	57.335
SC	69.287	74.090
-2 Log L	65.193	41.335

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	23.8572	7	0.0012
Score	19.5466	7	0.0066
Wald	12.7202	7	0.0792

Model with age, bmi, blanket, surgery time and cover type

Type III Analysis of Effects

		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
age	1	0.6687	0.4135
bmi	1	6.5588	0.0104
blanket	1	4.0341	0.0446
surgtime	1	5.1234	0.0236
covertype	3	5.7673 🔪	0.1235

 H_0 : LnOdds(coverA) = LnOdds(coverB) = LnOdds|coverC) = LnOdds(None)

H₀: $\beta_{coverA} = \beta_{coverB} = \beta_{coverC} = 0$

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	4.1550	3.1010	1.7953	0.1803
age	1	0.0240	0.0293	0.6687	0.4135
bmi	1	-0.2808	0.1097	6.5588	0.0104
blanket	1	-2.0345	1.0129	4.0341	0.0446
surgtime	1	1.3908	0.6144	5.1234	0.0236
covertype Cover A	1	0.0640	1.1156	0.0033	0.9543
covertype Cover B	1	-3.1271	1.4774	4.4805	0.0343
covertype Cover C	1	-0.9523	1.2347	0.5949	0.4405

Model with age, bmi, blanket, surgery time and cover type

Odds Ratio Estimates

	Point	95% Wald
Effect	Estimate	Confidence Limits
age	1.024	0.967 1.085
bmi	0.755	0.609 0.936
blanket	0.131	0.018 0.952
surgtime	4.018	1.205 13.398
covertype Cover A vs None	1.066	0.120 9.493
covertype Cover B vs None	0.044	0.002 0.793
covertype Cover C vs None	0.386	0.034 4.339

Likelihood Ratio Test:

 H_0 : Log-odds|coverA = Log-odds|coverB = Log-odds|coverC = Log-odds|None

-2LogL(reduced) - -2LogL(full) ~
$$\chi^2_{p(full)-p(reduced)}$$

LR =
$$49.199 - 41.335 = 7.864 \sim \chi_3^2$$
, p = $.0489$

After adjusting for age, length of surgery, BMI, and use of a warmed blanket, treatment cover is significantly associated with hypothermia at PACU entry (p = .0489).

Practice Problem: Post-Surgery Hypothermia and Use of a Warmed Blanket.

Warmed	Hypothermia		
Blanket	Yes	No	
No (0)	10	20	30
Yes (1)	4	26	30
	14	46	60

$$p_1 = 10/30 = 0.3333$$

$$p_2 = 4/30 = 0.1333$$

$$\overline{p} = 14/60 = .23333$$

Find β_0 and β_1 for the logistic regression equation predicting post-surgery hypothermia from use of a warmed blanket:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_{blanket}blanket$$

$$\log\left(\frac{\hat{p}_{hypothermia|blanket=0}}{1-\hat{p}_{hypothermia|blanket=0}}\right) = \hat{\beta}_0 \Rightarrow \hat{\beta}_0 = \log\left(\frac{\frac{10}{30}}{1-\frac{10}{30}}\right) = -0.693$$

$$\log\left(\frac{\hat{p}_{hypothermia|blanket=1}}{1-\hat{p}_{hypothermia|blanket=1}}\right) = \hat{\beta}_0 + \hat{\beta}_{blanket} \Rightarrow \log\left(\frac{\frac{4}{30}}{1-\frac{4}{30}}\right) = \hat{\beta}_0 + \hat{\beta}_{blanket} \Rightarrow \hat{\beta}_{blanket} \Rightarrow \hat{\beta}_{blanket} \Rightarrow \hat{\beta}_{blanket} = \log\left(\frac{\frac{4}{30}}{1-\frac{4}{30}}\right) - \log\left(\frac{\frac{10}{30}}{1-\frac{10}{30}}\right) = -1.179$$

Warmed	Hypothe		
Blanket(E)	Yes (1)	No (0)	
No (0)	$10=n_{(O=1\&E=0)}$	$20=n_{(O=0\&E=0)}$	$30=n_{(E=0)}$
Yes (1)	$4=n_{(O=1\&E=1)}$	$26=n_{(O=0\&E=1)}$	$30=n_{(E=1)}$
	$14=n_{(O=1)}$	$46=n_{(O=0)}$	60=n

$$p_1 = 10/30 = 0.3333$$

 $p_2 = 4/30 = 0.1333$
 $\overline{p} = 14/60 = .23333$

Perform a Likelihood Ratio test for the effect of a warmed blanket on post-surgery hypothermia:

$$-2\log L(\text{null}) = -2\left[\sum_{i=1}^{n} Y_{i} \log \left(\frac{e^{\beta_{0}}}{1 + e^{\beta_{0}}}\right) + \left(n - \sum_{i=1}^{n} Y_{i}\right) \log \left(1 - \frac{e^{\beta_{0}}}{1 + e^{\beta_{0}}}\right)\right]$$

$$= -2 \left[n_{O=1} \log \left(\hat{p}_{hypothermia} \right) + n_{O=0} \log \left(\hat{p}_{NOhypothermia} \right) \right] = -2 \left[n_{O=1} \log \left(\frac{n_{O=1}}{n} \right) + n_{O=0} \log \left(\frac{n_{O=0}}{n} \right) \right]$$

$$= -2 \left\lceil 14 \log \left(\frac{14}{60} \right) + 46 \log \left(\frac{46}{60} \right) \right\rceil = 65.19273$$

Warmed	Hypothe	rmia (O)	
Blanket(E)	Yes (1)	No (0)	
No (0)	$10=n_{(O=1\&E=0)}$	$20 = n_{(O=0\&E=0)}$	$30=n_{(E=0)}$
Yes (1)	$4=n_{(O=1\&E=1)}$	$26 = n_{(O=0\&E=1)}$	$30=n_{(E=0)}$ $30=n_{(E=1)}$
	$14=n_{(O=1)}$	$46=n_{(O=0)}$	60=n
-2 log <i>L</i> (full) =	$= -2 \left[\sum_{n=0}^{\infty} Y \log \left(\frac{e^{\beta_0}}{n} \right) \right]$	$+\beta_{blanket}blanket_i$ $+$ $n-$	$-\sum_{i=1}^{n} Y_{i} \log \left(1 - \frac{1}{n}\right)$

Perform a Likelihood Ratio test for the effect of a warmed blanket on post-surgery hypothermia:

$$-2\log L(\text{full}) = -2\left[\sum_{i=1}^{n} Y_{i} \log \left(\frac{e^{\beta_{0} + \beta_{blanket}blanket_{i}}}{1 + e^{\beta_{0} + \beta_{blanket}blanket_{i}}}\right) + \left(n - \sum_{i=1}^{n} Y_{i}\right) \log \left(1 - \frac{e^{\beta_{0} + \beta_{blanket}blanket_{i}}}{1 + e^{\beta_{0} + \beta_{blanket}blanket_{i}}}\right)\right]$$

$$= -2 \Bigg[n_{O=1\&E=1} \log \Bigg(\frac{e^{\hat{\beta}_0 + \hat{\beta}_{blanket}}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_{blanket}}} \Bigg) + n_{O=1\&E=0} \log \Bigg(\frac{e^{\hat{\beta}_0}}{1 + e^{\hat{\beta}_0}} \Bigg) + n_{O=0\&E=1} \log \Bigg(\frac{1}{1 + e^{\hat{\beta}_0 + \hat{\beta}_{blanket}}} \Bigg) + n_{O=0\&E=0} \log \Bigg(\frac{1}{1 + e^{\hat{\beta}_0}} \Bigg) \Bigg]$$

$$= -2 \Big\lceil n_{O=1\&E=1} \log \Big(\, \hat{p}_{O=1\mid E=1} \, \Big) + n_{O=1\&E=0} \log \Big(\, \hat{p}_{O=1\mid E=0} \, \Big) + n_{O=0\&E=1} \log \Big(\, \hat{p}_{O=0\mid E=1} \, \Big) + n_{O=0\&E=0} \log \Big(\, \hat{p}_{O=0\mid E=0} \, \Big) \Big\rceil$$

$$= -2 \Bigg[n_{O=1\&E=1} \log \Bigg(\frac{n_{O=1\&E=1}}{n_{E=1}} \Bigg) + n_{O=1\&E=0} \log \Bigg(\frac{n_{O=1\&E=0}}{n_{E=0}} \Bigg) + n_{O=0\&E=1} \log \Bigg(\frac{n_{O=0\&E=1}}{n_{E=1}} \Bigg) + n_{O=0\&E=0} \log \Bigg(\frac{n_{O=0\&E=0}}{n_{E=0}} \Bigg) \Bigg]$$

$$= -2\left[4\log\left(\frac{4}{30}\right) + 10\log\left(\frac{10}{30}\right) + 26\log\left(\frac{26}{30}\right) + 20\log\left(\frac{20}{30}\right)\right] = 61.75132$$

$$LR = -2\log L(\text{null}) - -2\log L(\text{full}) = 65.19273 - 61.75132 = 3.44141 \sim \chi_1^2 \implies p = 0.0636$$

The LOGISTIC Procedure

Data Set

p. 27

Hypothermia

Model Information

TEACH.BODYCOVERS

Response Variable hypotherm

Number of Response Levels

Model binary logit Optimization Technique Fisher's scoring

> Number of Observations Read 60 Number of Observations Used 60

> > Response Profile

Total		Ordered
Frequency	hypotherm	Value
46	No	1
14	Yes	2

Probability modeled is hypotherm='Yes'.

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

		Intercept
	Intercept	and
Criterion	Only	Covariates
AIC	67.193	65.751
SC	69.287	69.940
-2 Log L	65.193	61.751

PROC LOGISTIC; MODEL hypotherm (EVENT= 'Yes') = blanket; RUN;

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	3.4414	1	0.0636
Score	3.3540	1	0.0670
Wald	3.1684	1	0.0751

Analysis of Maximum Likelihood Estimates

			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	-0.6931	0.3873	3.2030	0.0735
<mark>blanket</mark>	1	-1.178 <mark>6</mark>	0.6622	3.1684	0.0751

The LOGISTIC Procedure

Odds Ratio Estimates

	Point	95% Wa	ald
Effect	Estimate	Confidence	e Limits
blanket	0.308	0.084	1.127