GATE ALL BRANCHES CRASH COURSE 2025

ENGINEERING MATHEMATICS Numerical Techniques

DPP

- Q1 The root of the equation $x^2 3 \sin x + 2 \ln(x + 1) =$ 3.5 evaluated using Newton-Raphson method with initial guess x_o = 2 is _____ (Correct to three decimal places).
- Q2 Which of the following interval consists of a root for the equation

 $(x+4)^3 - e^{1.92x} + 5 \cdot \cos \frac{x}{3} = 9.$

- (B) (1, 2)
- (C)(2,3)
- (D)(3,4)
- Q3 The order of convergence of secant method is (Round off to two decimal places).
- **Q4** The real root of the equation $3\ln x + 4x = 5$ is (Round off to two decimal places).
- Q5 The critical frequencies of oscillation 'x' of a loaded spring is given by $x^3 - 3.250 x^2 + x -$ 0.063 = 0.If initial guess is '3' in newton-Raphson method; then x =
 - (A) 2.9143
- (B) 1.7864
- (C) 3.4261
- (D) 3.4261
- **Q6** Three variables x, y, z are connected by the following equations.

6.2x + 7.9y + 12.6z = 18.0

$$7.5x + 4.8y + 4.8z = 6.39$$

$$13x + 3.5y - 13z = -17.4$$

Value of 'z' evaluated using gauss elimination is

Q7 A car starts from rest and it's speed is measured for first '6' seconds as below.

Time t(s):	0	1	2	3	4	5	6
Speed v(m/s)0	0	2.5	5.5	8.75	12.5	17.5	24.0

- The distance travelled in 1st 6-seconds using Simpson's 1/3 rd rule is _____ m. (Round off to three decimal places).
- For $0 < x_1 < x_2$, the value of $\int_{-\infty}^{x_2} e^x dx$ is calculated using analytical integration & trapezoidal rule. If 'I' is the analytical value & 'T' is the trapezoidal value then (Assume single step for trapezoidal rule)
 - (A) I > T
 - (B) T > I
 - (C) T = I
 - (D) Can't decide until x_1 and x_2 are known
- Q9 The difference between the value evaluated using Simpson's 1/3rd rule and analytical integration of

$$\int\limits_{2.946}^{3.946} \big(2.786x^2 + 9.81x + 4.8967\big) dx$$

where number of subintervals in Simpson's 1/3rd rule is 8 is

- Q10 The order of the fitting polynomial in Simpson's 3/8th rule is
 - (A) 1
- (B) 2
- (C)3
- (D) 4
- Q11 For the differential equation,

$$rac{dy}{dx}=3\left(1+x
ight)-y ext{ Where y } (1)=4.$$
 The value of y(1.2) evaluated using modified-

Euler method with step size of h = 0.2 is _

Q12 For the equation $\frac{dy}{dx}=3\left(1+x\right)-y,$ if the exact solution is given by $y = 3x + e^{1-x}$, then the

error in the value of y(1.6) evaluated using forward Euler method with y(1) = 4 and h = 0.2 is

Q13

Using Runge-kutta 4th order method, the value of y(0.1) for the DE $\frac{dy}{dx}=y-x$ with y(0) = 2 and step size = 0.1 is . (Round off to two decimal places)

- Q14 The order of error of the solution at a point for a 1st order DE evaluated by taking step size 'h' and using Runge-Kutta 4th order method is of O(h^k). The value of 'k' is _____.
 - (A) 4

(B) 5

(C) 6

- (D) 3
- Q15 For the DE with $\frac{dy}{dx}=\frac{y^2-x^2}{y^2+x^2}$ with y(0) =1. The value at x = 0.2 by taking h = 0.2 and using R-k 4th order method is _____ (Round off to two decimal places).

Answer Key

Q1	2.001~2.008	Q9	0~0
Q2	(D)	Q10	(C)
Q3	1.6~1.64	Q11	4.2~4.6
Q4	1.1~1.18	Q12	0.5~0.8
Q5	(A)	Q13	2.1~2.4
Q6	1~1.4	Q14	(B)
Q7	58~59	Q15	1.05~1.29
Q8	(B)		

