EL68B - Comunicações Digitais Probabilidade de Erro - Binária Ortogonal

Professor: Bruno Sens Chang

Universidade Tecnológica Federal do Paraná - UTFPR Departamento Acadêmico de Eletrônica - DAELN

As respostas ao impulso dos filtros casados são

$$h_0(t) = s_0(Ts - t)/A$$
 e $h_1(t) = s_1(Ts - t)/A$

Sejam
$$\int_0^{T_S} s_0^2(\tau) d\tau = \int_0^{T_S} s_1^2(\tau) d\tau = E_s = E_b = A^2 E_{MF}$$
.

• Se bit 0 é transmitido,
$$y_0[k] = A \cdot E_{MF} + w_0[k]$$
 e $y_1[k] = 0 + w_1[k]$

• Se bit 1 é transmitido,
$$y_0[k] = 0 + w_0[k]$$
 e $y_1[k] = A \cdot E_{MF} + w_1[k]$.

Sejam
$$\int_0^{T_S} s_0^2(\tau) d\tau = \int_0^{T_S} s_1^2(\tau) d\tau = E_s = E_b = A^2 E_{MF}$$
.

- Se bit 0 é transmitido, $y_0[k] = A \cdot E_{MF} + w_0[k]$ e $y_1[k] = 0 + w_1[k]$
- Se bit 1 é transmitido, $y_0[k] = 0 + w_0[k]$ e $y_1[k] = A \cdot E_{MF} + w_1[k]$.

Sejam
$$\int_0^{T_S} s_0^2(\tau) d\tau = \int_0^{T_S} s_1^2(\tau) d\tau = E_s = E_b = A^2 E_{MF}$$
.

- Se bit 0 é transmitido, $y_0[k] = A \cdot E_{MF} + w_0[k]$ e $y_1[k] = 0 + w_1[k]$
- Se bit 1 é transmitido, $y_0[k] = 0 + w_0[k]$ e $y_1[k] = A \cdot E_{MF} + w_1[k]$.

Sejam
$$\int_0^{T_S} s_0^2(\tau) d\tau = \int_0^{T_S} s_1^2(\tau) d\tau = E_s = E_b = A^2 E_{MF}$$
.

- Se bit 0 é transmitido, $y_0[k] = A \cdot E_{MF} + w_0[k]$ e $y_1[k] = 0 + w_1[k]$
- Se bit 1 é transmitido, $y_0[k] = 0 + w_0[k]$ e $y_1[k] = A \cdot E_{MF} + w_1[k]$.

Note que
$$\sigma_{w_0}^2=\sigma_{w_1}^2=\frac{E_{MF}N_0}{2}=\sigma_w^2.$$

Saída do MF - Com Ruído

Supondo transmissão de $s_1(t)$, bit 1, temos então que

Saída do MF - Com Ruído

Supondo transmissão de $s_1(t)$, bit 1, temos então que

pdf da saída de MF1

$$p(y_1[k]|s_1(t)) = \frac{1}{\sqrt{2\pi}\sigma_w}e^{\frac{-(y_1[k]-A\cdot E_{MF})^2}{2\sigma_w^2}}$$

Saída do MF - Com Ruído

Supondo transmissão de $s_1(t)$, bit 1, temos então que

pdf da saída de MF1

$$p(y_1[k]|s_1(t)) = \frac{1}{\sqrt{2\pi}\sigma_w} e^{\frac{-(y_1[k] - A \cdot E_{MF})^2}{2\sigma_w^2}}$$

pdf da saída de MF0

$$p(y_0[k]|s_1(t)) = \frac{1}{\sqrt{2\pi}\sigma_w}e^{\frac{-(y_0[k])^2}{2\sigma_w^2}}$$

Saída do MF - Com Ruído - $s_1(t)$ Transmitido

Figura: pdfs nas saídas de MF0 e MF1 supondo transmissão de $s_1(t)$.

Se $s_1(t)$ é transmitido, um erro ocorre se $y_0[k] > y_1[k]$. Ou seja:

Condição para erro se $s_1(t)$ é transmitido

$$w_0[k] > A \cdot E_{MF} + w_1[k]$$

$$w_0[k] - w_1[k] > A \cdot E_{MF}$$

Se $s_1(t)$ é transmitido, um erro ocorre se $y_0[k] > y_1[k]$. Ou seja:

Condição para erro se $s_1(t)$ é transmitido

$$w_0[k] > A \cdot E_{MF} + w_1[k]$$

$$w_0[k] - w_1[k] > A \cdot E_{MF}$$

Se
$$w'[k] = w_0[k] - w_1[k]$$
, então

Se $s_1(t)$ é transmitido, um erro ocorre se $y_0[k] > y_1[k]$. Ou seja:

Condição para erro se $s_1(t)$ é transmitido

$$w_0[k] > A \cdot E_{MF} + w_1[k]$$

 $w_0[k] - w_1[k] > A \cdot E_{MF}$

Se
$$w'[k] = w_0[k] - w_1[k]$$
, então

$$E[(w')^{2}] = E[(w_{0} - w_{1})^{2}]$$

$$= E[(w_{0})^{2}] + E[(w_{1})^{2}] - 2E[w_{0}w_{1}]$$

$$= E[(w_{0})^{2}] + E[(w_{1})^{2}] = 2 \cdot E[(w_{0})^{2}]$$

$$= 2\frac{E_{MF}N_{0}}{2} = \sigma_{w'}^{2} = 2\sigma_{w}^{2}$$

Matematicamente:

$$\Pr(w_0[k] - w_1[k] > A \cdot E_{MF}) = \Pr(w'[k] > A \cdot E_{MF})$$

Matematicamente:

$$\Pr(w_0[k] - w_1[k] > A \cdot E_{MF}) = \Pr(w'[k] > A \cdot E_{MF})$$

$$\Pr\left(w'[k] > A \cdot E_{MF}\right) = \frac{1}{\sqrt{2\pi}\sigma_{w'}} \int_{A \cdot E_{MF}}^{\infty} e^{\frac{-(w')^2}{2\sigma_{w'}^2}} dw'$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\frac{A \cdot E_{MF}}{\sigma_{w'}}}^{\infty} e^{\frac{-u^2}{2\sigma_{w'}^2}} du$$

$$= Q\left(\frac{A \cdot E_{MF}}{\sigma_{w'}}\right) = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Supondo transmissão de $s_0(t)$ temos o mesmo resultado.

Supondo bits equiprováveis, a probabilidade de erro de bit final é:

Supondo transmissão de $s_0(t)$ temos o mesmo resultado.

Supondo bits equiprováveis, a probabilidade de erro de bit final é:

P_b modulação binária ortogonal

$$Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Antipodal vs Ortogonal

Antipodal vs Ortogonal

Reflexão

Por que o binário antipodal tem probabilidade de erro de bit menor que o ortogonal?

Tarefas

- Descreva um modelo discreto de simulação da probabilidade de erro de bit da modulação binária ortogonal.
- ② Como fica a probabilidade de erro de bit no caso da modulação OOK (on-off keying), em que um pulso de amplitude A é transmitido para o bit 1 e nada é transmitido para o bit 0 (ou vice versa)?
- Como ficam a probabilidade de erro de símbolo e a probabilidade de erro de bit para o caso do 4-PAM? Estude o caso geral M-PAM para o Teste!!!