Q.1] For an NMOS differential pair with a common-mode voltage v_{CM} applied, as shown in Fig.1, let $V_{DD} = V_{ss} = 2.5 \text{ V}$, $k'_n W/L = 3 \text{ mA/V}^2$, $V_{tn} = 0.7 \text{ V}$, I = 0.2 mA, and $R_D = 5\text{k}\Omega$.

- (a) Find V_{OV} and V_{GS} for each transistor.
- (b) For $v_{CM} = 0$, find v_S , i_{Dl} , i_{D2} , v_{Dl} , and v_{D2} .
- (c) Repeat (b) for $v_{CM} = +1 \text{ V}$.
- (d) Repeat (b) for $v_{CM} = -1 \text{ V}$.

Fig. 1

Q.2] For the PMOS differential amplifier shown in Fig. 2 let $V_{tp} = -0.8$ V and k'_p W/L = 3.5 mA/V². For $v_{GI} = v_{G2} = 0$ V, find V_{OV} and V_{GS} for each of Q_I and Q_2 . Also find v_S , v_{DI} , and

Q.3] An NMOS differential amplifier is operated at a bias current *I* of 0.5 mA and has a *W/L* ratio of 50, $\mu_n C_{ox} = 250 \,\mu\text{A/V2}$, $V_A = 10 \,\text{V}$, and $R_D = 4 \,\text{k}\Omega$. Find V_{OV} , g_m , r_o , and A_d .

Q.4] An NMOS differential pair is biased by a current source I = 0.2 mA having an output resistance $R_{SS} = 100 \text{ k}\Omega$. The amplifier has drain resistances $R_D = 10 \text{ k}\Omega$, using transistors with k'_n $W/L = 3 \text{ mA/V}^2$, and r_o that is large. If the output is taken differentially and there is a 1% mismatch between the drain resistances, find $|A_d|$, $|A_{cm}|$, and CMRR.

Q.5] For the differential amplifier shown in Fig. 2, let Q_1 and Q_2 have $k_p'(W/L) = 3.5 \text{ mA/V}^2$, and assume that the bias current source has an output resistance of 30 K Ω . Find V_{OV} , g_m , $|A_d|$, $|A_{cm}|$, and CMRR (in dB) obtained with the output taken differentially. The drain resistances are known to have a mismatch of 2%.

Q.6] The differential amplifier in Fig.3 utilizes a resistor R_{SS} to establish a 1-mA dc bias current. Note that this amplifier uses a single 5-V supply and thus needs a dc common-mode voltage V_{CM} . Transistors Q_1 and Q_2 have $k'_nW/L = 2.5$ mA/V², and $V_t = 0.7$ V.

- (a) Find the required value of V_{CM} .
- (b) Find the value of R_D that results in a differential gain A_d of 8 V/V.
- (c) Determine the dc voltage at the drains.

Q.7] For the differential amplifier of Fig. 4 let I = 1 mA, $V_{CC} = 5$ V, $v_{CM} = -2$ V, $R_C = 3$ k Ω , and $\beta = 100$. Assume that the BJTs have $v_{BE} = 0.7$ V at $i_C = 1$ mA. Find the voltage at the emitters and at the outputs.

Fig. 4

Q.8] For a differential amplifier to which a total difference signal of 10 m V is applied, what is the equivalent signal to its corresponding CE half-circuit? If the emitter current source is 100 μ A, what is r_e of the half-circuit? For a load resistance of 10 K Ω in each collector, what is the half-circuit gain? What magnitude of signal output voltage would you expect at each collector?

Q.9] Find the voltage gain and the input resistance of the amplifier shown in Fig. 5 assuming $\beta = 100$.

Fig. 5

- **Q.10**] The differential amplifier circuit of Fig. 6 utilizes a resistor connected to the negative power supply to establish the bias current *I*.
- (a) For $v_{Bl} = v_{id}/2$ and $v_{B2} = -v_{id}/2$, where vid is a small signal with zero average, find the magnitude of the differential gain, $|v_O/v_{id}|$.
- (b) For $v_{Bl} = v_{icm}$, find the magnitude of the common-mode gain, $|v_O/v_{icm}|$.
- (c) Calculate the CMRR.

Fig. 6

Best wishes