ВОСХОДЯЩИЕ МП-РАСПОЗНАВАТЕЛИ

- 1. $S \rightarrow (AS)$
- 2. $S \rightarrow (b)$
- 3. $A \rightarrow (SaA)$
- $4. A \rightarrow (a)$

Правый вывод:

$$S_1 => (AS_2) => (A_3(b)) => ((SaA_4)(b)) => ((S_2a(a))(b)) => (((b)a(a))(b))$$

Процесс, обратный правому выводу — разбор.

Восходящий МПР выполняет разбор.

Пусть α — промежуточная или терминальная цепочка в правом выводе.

Тогда правило, которое применялось при правом выводе цепочки α последним — основывающее, а самое левое вхождение правой части основывающего правила в цепочку α — основа.

Принцип работы.

Входная цепочка: αβ-

Магазин: $\Delta \gamma$

α — обработанная часть цепочки;

β — необработанная часть цепочки;

 $\alpha\beta$ не отвергается, если $\gamma = > *\alpha$;

 $\gamma\beta$ — промежуточная цепочка в правом выводе.

МПР выполняет операции:

 $\Pi E P E H O C = (втолк(x), сдвиг), x — обрабатываемый символ цепочки.$

ОПОЗНАНИЕ — определяет, находится ли в верху магазина основа. Если да, то выполняет СВЁРТКУ по основывающему правилу.

СВЁРТКА(#i) — выталкивает из магазина правую часть i-го правила и вталкивает его левую часть.

ДОПУСТИТЬ.

ОТВЕРГНУТЬ.

В начале

$$\alpha = \gamma = \epsilon$$

МПР многократно выполняет ПЕРЕНОС.

Если вверху магазина основа, то выполняет СВЁРТКУ по основывающему правилу.

Если нет смысла выполнять ПЕРПЕНОС или СВЁРТКУ, то ОТВЕРГНУТЬ.

Если цепочка закончилась и в магазине только начальный нетерминал, то ДОПУСТИТЬ, иначе — ОТВЕРГНУТЬ.

- 1. $S \rightarrow (AS)$
- 2. $S \rightarrow (b)$
- 3. $A \rightarrow (SaA)$
- 4. A \rightarrow (a)

Правый вывод:

S

A

)

a

b

Δ

$$S_1 => (AS_2) => (A_3(b)) => ((SaA_4)(b)) => ((S_2a(a))(b)) => (((b)a(a))(b))$$

	(((b)	a	(a))	(b))	4
Δ															

()	a	b	4
	П	П		ОП
П	П			
П		П	П	
ОП	ОП	ОП		ОП
П	П			
	П			
П				

Н.с.м.: ∆

Правила заполнения таблицы:

 $T[m,x] := O\Pi$, если

- 1) m = S и $x = -\frac{1}{3}$;
- 2) есть правило $A \rightarrow \alpha m$ и $x \in CЛЕД(A)$.

 $T[m,x] := \Pi$, если

- 1) $m = \Delta$ и $x \in \Pi EPB(S)$;
- 2) есть правило $A \rightarrow \alpha m \beta$ и $x \in \Pi EPB(\beta)$.

ОПОЗНАНИЕ

Магазин	Действие
ΔS	допустить
$\Delta \dots (AS)$	CB(#1)
Δ (b)	CB(#2)
Δ (SaA)	CB(#3)
Δ (a)	CB(#4)
иначе	отвергнуть

Правила заполнения таблицы:

 $T[m,x] := O\Pi$, если

1) $m = S u x = -\frac{1}{3}$;

2) есть правило $A \to \alpha m$ и $x \in CЛЕД(A)$.

 $T[m,x] := \Pi$, если

1) $m = \Delta$ и $x \in \Pi EPB(S)$;

2) есть правило $A \rightarrow \alpha m \beta$ и $x \in \Pi EPB(\beta)$.

 $1. S \rightarrow bASB$

 $2. S \rightarrow bA$

3. $A \rightarrow dSca$

 $4. A \rightarrow e$

5. B \rightarrow cAa

 $6. B \rightarrow c$

	ПЕРВ	СЛЕД
S	b	- c
A	d e	b - c a
В	С	- c

	a	b	c	d	e	4
S			П			ОП
A	П	П	ОП			ОП
В			ОП			ОП
a	ОП	ОП	ОП			ОП
b				П	П	
c	П		ОП	П	П	ОП
d		П				
e	ОП	ОП	ОП			ОП
Δ		П				

- $1. S \rightarrow bASB$
- $2. S \rightarrow bA$
- 3. A -> dSca
- 4. A -> e
- $5. B \rightarrow cAa$
- 6. B -> c

Описанные методы построения применимы к классу грамматик, которые мы назовем «бессуффиксными». Цепочка α называется суффиксом цепочки β, если β оканчивается цепочкой α. Заметим, в частности, что всякая цепочка является своим собственным суффиксом и ε является суффиксом любой цепочки.

Мы называем грамматику бессуффиксной, если правая часть любого ее правила не является суффиксом правой части какого-либо другого правила или суффиксом цепочки $\nabla \langle S \rangle$. Мы называем бессуффиксную грамматику, не имеющую конфликтов переноса — опознания бессуффиксной ПО-грамматикой.

Задача

Определить множество символов, которые могут быть в магазине непосредственно после символа m при обработке допустимой цепочки.

Если символ m вверху магазина, то в результате выполнения ПЕРЕНОС после него окажется терминал.

Если в магазине mα и A -> α основывающее правило, то в результате выполнения СВЁРТКА цепочка α будет вытолкнута из магазина, а нетерминал A будет втолкнут в магазин непосредственно после m. Символ x может следовать непосредственно после символа m, если:

- 1) $m = \Delta и x \in \mathbf{\Pi EPB(S)};$
- 2) есть правило $A -> \alpha m\beta$ и $x \in \Pi EPB(\beta)$.

Множество **ПЕРВ**(β) — это множество ПЕРВ(β), расширенное нетерминалами, определяется следующим образом:

$$\Pi EPB(\beta) = \{x \mid \beta => *x\delta\}$$

Алгоритм определения множества **ПЕРВ**(β) отличается от алгоритма определения множества ПЕРВ(β) только отсутствием различия между терминалами и нетерминалами.

В дальнейшем будем так строить процедуру опознания, чтобы после магазинного символа m вталкивался только тот нетерминал, который может непосредственно следовать после символа m при обработке допустимой цепочки.

1. $E \rightarrow E+T$

2. E -> T

3. T -> T*P

4. T -> P

5. P -> (E)

6. P -> a

	ПЕРВ	СЛЕД
Е	ЕТР(а	+)
T	TP(a	+)*
P	P(a	+)*

	+	*	()	a	4	E	T	P
E	П			П		ОП			
T	ОП	П		ОП		ОП			
P	ОП	ОП		ОП		ОП			
+			П		П			ВТ	ВТ
*			П		П				ВТ
(П		П		ВТ	ВТ	ВТ
)	ОП	ОП		ОП		ОП			
a	ОП	ОП		ОП		ОП			
Δ			П		П		ВТ	ВТ	ВТ

	+	*	()	a	4	E	T	P
E	П			П		ОΠ			
T	ОП	П		ОП		ОП			
P	ОП	ОП		ОП		ОП			
+			П		П			втолк	втолк
*			П		П				втолк
(П		П		втолк	втолк	втолк
)	ОП	ОП		ОП		ОП			
a	ОП	ОП		ОП		ОΠ			
Δ		-	П		П		втолк	втолк	толк

1.
$$E \rightarrow E+T$$

3. T ->
$$T*P$$

5.
$$P \rightarrow (E)$$

Грамматика называется *грамматикой слабого предшествова*ния тогда и только тогда, когда справедливы четыре следующих условия:

- 1. В грамматике нет конфликтов переноса опознания.
- 2. Правые части любых двух правил не совпадают.
- 3. Для любых двух правил вида

$$\langle A \rangle \rightarrow \alpha y \gamma$$

 $\langle B \rangle \rightarrow \gamma$

где α и γ — цепочки, а y — символ, отношение y ПОД $\langle B \rangle$

не имеет места.

4. Неверно, что $\langle S \rangle \Rightarrow ^+ \langle S \rangle$, где $\langle S \rangle$ — начальный символ. (Это условне введено для того, чтобы исключить особый вид грамматической неоднозначности, который не всегда исключается остальными условиями. В разд. 12.1 мы сказали, что все грамматики, рассматриваемые в этой главе, предполагаются однозначными. Включая в определение грамматик слабого предшествования условие 4, мы тем самым гарантируем, что любая грамматика, удовлетворяющая этому определению, однозначна.)

0. **S** -> **S**

 $1. S \rightarrow Bv$

3. A -> u

5. B -> u

7. C -> Bv

 $2. S \rightarrow vC$

4. A -> vBS 6. B -> yw

8. C -> yAw

	ПЕРВ	СЛЕД
S	S S B v u y	-
S	SBvuy	- w
A	A u v	W
В	Buy	v u y
С	СВуи	- w

	V	u	y	W	4	S	S	A	В	C
S					ОП					
S				ОП	ОП					
A				П						
В	П	П	П				ВТ		ВТ	
C				ОП	ОП					
V		П	П	ОП	ОП				ВТ	ВТ
u	ОП	ОП	ОП	ОП						
y	П	П		П				ВТ		
W	ОП	ОП	ОП	ОП	ОП					
Δ	П	П	П			ВТ	ВТ		ВТ	

	V	u	У	W	4	S	S	A	В	C
S					ОП					
S				ОП	ОП					
A				П						
В	П	П	П				ВТ		ВТ	
C				ОП	ОП					
V		П	П	ОП	ОП				ВТ	ВТ
u	ОП	ОП	ОП	ОП						
y	П	П		П				ВТ		
W	ОП	ОП	ОП	ОП	ОП					
Δ	П	П	П			ВТ	ВТ		ВТ	

0.
$$S -> S$$

$$1. S \rightarrow Bv$$

3.
$$A -> u$$

7.
$$C -> Bv$$

$$2. S \rightarrow vC$$

Грамматики без конфликтов переноса — опознания, для которых все проблемы опознания можно разрешить методами этого и предыдущего раздела, известны под названием простые грамматики смешанной стратегии предшествования. Более точно, грамматика называется простой грамматикой смешанной стратегии предшествования (простой ССП-грамматикой) тогда и только тогда, когда выполняются четыре следующих условия:

- 1. В грамматике нет конфликтов переноса опознания.
- 2. Для любых двух правил с одной и той же правой частыо:

$$\langle A \rangle \rightarrow \alpha$$

 $\langle B \rangle \rightarrow \alpha$

не существует такого символа X, что одновременно X ПОД $\langle A \rangle$ и X ПОД $\langle B \rangle$

3. Для любых двух правил вида

$$\langle A \rangle \rightarrow \alpha y \gamma$$

 $\langle B \rangle \rightarrow \gamma$

где α и γ — цепочки, а y — символ грамматики, отношение y ПОД $\langle B \rangle$ не имеет места.

4. Неверно, что $\langle S \rangle \Rightarrow + \langle S \rangle$, где $\langle S \rangle$ — начальный символ.

Условия 1, 3 и 4 — те же, что и для грамматик слабого предшествования; условие 2 новое, оно должно выполняться для правил с одинаковыми правыми частями.