"Software Quality Engineering

Testing, Quality Assurance, and Quantiable Improvement

Tian Siyuan tiansiyuan@gmail.com

Chapter 14. Inspection

- Basic Concept and Generic Process
- Fagan Inspection
- Other Inspection and Related Activities
- Other Issues

QA Alternatives

- Defect and QA
 - Defect: error/fault/failure
 - Defect prevention/removal/containment
 - · Map to major QA activities
- Defect prevention

Error blocking and error source removal

- Defect removal
 - Inspection this chapter
 - · Testing, etc
- Defect containment: Fault tolerance and failure containment (safety assurance)

Inspection as Part of QA

- Throughout the software process
 - Coding phase: code inspection
 - Design phase: design inspection
 - Inspection in other phases and at transitions from one phase to another
- Many different software artifacts
 - program code, typically
 - requirement/design/other documents
 - charts/models/diagrams/tables/etc
- Other characteristics

- People focus
- Not waiting for implemented system
- Complementary to other QA activities

Generic Inspection Process

- Generic process/steps: Fig 14.1 (p.238)
 - 1. Planning and preparation (individual)
 - 2. Collection (group/meeting)
 - 3. Repair (followup)

Inspection Process Variations

- Overall planning
 - who? team organization/size/roles/etc
 - what? inspection objects
 - objectives?
 - number/coordination of multiple sessions?
- Technique
 - for preparation (individual inspection)
 - for collection
- · What to do with defects?
 - always: detect and confirm defects
 - classify/analyze defects for feedback?
- Use of post-collection feedback?

Fagan Inspection

- · General description
 - · Earliest, Fagan at IBM
 - Lead to other variations
 - Generic process and steps

- Six steps of Fagan inspection
 - 1. Planning
 - 2. Overview (1-to-n meeting)
 - 3. Preparation (individual inspection)
 - 4. Inspection (n-to-n meeting)
 - 5. Rework
 - 6. Follow-up
- Mapping to generic inspection process in Fig 14.1 (p.238)

Fagan Inspection

- 1. Planning
 - · Entry criteria: what to inspect
 - Team size: about 4 persons
 - Developers/testers from similar projects
 - Effectiveness concerns (assumptions)
 - Inspectors not authors
- 2. Overview
 - · Author-inspectors meeting
 - General background information
 - functional/structural/information/intentions
 - Assign individual tasks
 - coverage of important areas
 - moderate overlap
- 3. Preparation or individual inspection
 - Independent analysis/examination
 - Code as well as other document
 - Individual results
 - questions/guesses
 - potential defects
- 4. Inspection (generic: collection)
 - Meeting to collect/consolidate
 - individual inspection results
 - Team leader/meeting moderator (1)
 - Reader/presenter: summarize/paraphrase for individual pieces (assignment)
 - Defect identification, but not solutions, to ensure inspection effectiveness
 - No more than 2 hours
 - Inspection report
- 5. Rework

- Author's response
- Defect fixing (solutions)
- 6. Follow-up
 - · Resolution verification by moderator
 - · Re-inspection?
- 7. Fagan inspection in practice
 - · Widely used in industry
 - Evaluation studies
 - Variations and other inspections

Fagan Inspection: Findings

- Importance of preparation
 - Most defect detected
 - Meetings to consolidate defects
 - => alternatives focusing on preparation
- · Other important findings
 - Important role of the moderator
 - Team size and #sessions tailored to env
 - Prefer systematic detection techniques to ad-hoc ones
 - More use of inspection feedback/analysis

Other Inspection Methods

- Variations to Fagan inspection size/scope and formality variations
- Alternative inspection techniques/processes
 - Two-person inspection
 - Meetingless inspections
 - Gilb inspection
 - Phased inspections
 - N-fold inspections
 - Informal check/review/walkthrough
 - Active design reviews
 - Inspection for program correctness
 - Code reading
 - Code reading with stepwise abstraction

Reduced Size/Scope Inspection

• Two-person inspection

- · Fagan inspection simplified
- Author-inspector pair
 - reciprocal: mutually beneficial
- Smaller scale program
- Meetingless inspections
 - Importance of preparation (individual inspection) (most defects found during preparation)
 - · Empirical evidence
 - 1-on-1 instead of team meetings (or other feedback mechanisms)

Gilb Inspection (Expanded Fagan)

- Key: A "process brainstorming" meeting
 - · root cause analysis
 - right after inspection meeting
 - parallel to edit (rework)
 - aim at preventive actions/improvement
- Other characteristics
 - Clearly identified input, checklists/rules extensively used
 - Output include change request and suggested process improvement, in addition to inspected documents
 - Team size: 4-6 people
 - More emphasis on feedback loop more closely resemble our SQE process (Fig 5.1, p.54)

Other Expanded Fagan Inspections

- Phased inspections
 - · Expand Fagan inspection
 - Multiple phases/meetings
 - Each on a specific area/problem-type
 - o Dynamic team make-up
- N-fold inspections
 - Idea similar to NVP
 - N parallel inspections, 1 moderator
 - Duplications => cost increase
 - Discussed in connection to NVP (Chapter 16)

Informal Inspection

- Desk check (self conducted)
 - Should focus on conceptual problems
 - Use tools for problems with syntax/spelling/format/etc
- Informal review (by others)
 - · Similar to desk check, but by others
 - Benefit from independent/orthogonal views
 - · Group reviews for phase transitions
- Walkthroughs
 - · More organized, but still informal
 - · Leading role of author/moderator
 - Less preparation by other participants than in inspection

Formal Inspection: Code Reading

1	input(x);	1	$y \leftarrow x$;
2	if(x > 0) then	2	if(x > 0) then
3	$y \leftarrow x$;	3	else
4	else	4	$\mathtt{output}(y);$
5	$y \leftarrow -x$;	5	$y \leftarrow -x$;
6	$\mathtt{output}(y);$	6	input(x);

- Program comprehension: Fig 14.2 (p.245)
 - a program (left) and its permutation (right)
 - o different effort in comprehension
 - different recall accuracy
 - experience factor (expert vs novice)
- Related to top-down design and code reading/abstraction (bottom-up)

Formal Inspection: Code Reading

- Code reading
 - o focus on code
 - o optional meetings
- · Code reading by stepwise abstraction
 - o basis: program comprehension studies
 - variation to code reading
 - formalized code reading technique
 - top-down decomposition and bottom-up abstraction

Formal Inspection: ADR & Correctness

- Active design reviews (ADR)
 - Another formal inspection, for designs
 - Inspector active vs. passive
 - Author prepares questionnaires
 - · More than one meeting
 - Scenario based (questionnaires)
 - Overall ADR divided into small ones
 - 2-4 persons (for each smaller ADR)
- Inspection for program correctness
 - o Correctness (vs. questionnaire) of
 - topology (decomposition, hierarchy)
 - algebra (equivalence of refinements)
 - invariance (variable relations)
 - robustness (error handling)
 - Close to formal verification

Extending Inspection: Analysis

- Inspection as analysis
 - Program/document/etc. analysis
 - Inspection as statics analysis
 - Testing as dynamic analysis
- Other analyses
 - Static: algorithm, decision table, boundary value, control flow, data flow, etc
 - Dynamic: symbolic execution, simulation, prototyping, timing, in-field execution, etc
 - Covered in SQE (various chapters), with pointers in Section 14.3.5
 - o Detailed reference: Wallace et al 1996

(NIST Special Publication 500-234) available online

Defect Detection Techniques

- Ad-hoc vs. systematic ones below checklist-/scenario-/abstraction-based
- Checklist-based inspection

- Similar to testing checklists (Chapter 8)
- Basic types: artifact-/property-based
- Scenario-based inspection
 - · Similar to usage-based testing
 - Scenarios ties multiple components
 - More a usage/external view
 - Suitable for OOS
- Abstraction-based inspection: Similar to code reading with stepwise abstraction

Implementation and Effectiveness

- Implementation support
 - Process and communication support
 - Repository management tools
 - Defect tracking and analysis as followup
 - Still human intensive
- · Effectiveness studies
 - Measurement: defect or effort
 - Defect detection technique important
 - Inspector skills/expertise also important
 - · Other factors, less than unanimous
 - Many individual variations

Summary

- Key advantages
 - Wide applicability and early availability
 - Complementary to testing/other QA
 - Many techniques/process to follow/adapt
 - Effective under many circumstances
- Key limitations
 - Human intensive
 - Dynamic/complex problems and interactions: Hard to track/analyze
 - Hard to automate
- Comparison to other QA: Chapter 17