Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Temporada Académica de Verano 2014

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : I1

Profesores : Ricardo Aravena, Ricardo Olea y Claudia Wehrhahn Ayudantes : Daniela Castro, Erwin Agüero y Carlos Cayuman.

Problema 1 [10 %]

Sean A, B y C, tres eventos posibles. Muestre que si

$$P(A \mid C) \ge P(B \mid C)$$
 y $P(A \mid \overline{C}) \ge P(B \mid \overline{C})$,

entonces $P(A) \geq P(B)$.

Solución

Tenemos que

$$P(A) = P(A \cap S) \quad [1\%]$$

$$= P(A \cap [C \cup \overline{C}]) \quad [1\%]$$

$$= P([A \cap C] \cup [A \cap \overline{C}]), \text{ por ley distributiva} \quad [1\%]$$

$$= P(A \cap C) + P(A \cap \overline{C}), \text{ por ser eventos disjunto} \quad [1\%]$$

Análogamente,

$$P(B) = P(B \cap C) + P(B \cap \overline{C})$$
 [1 %]

Por otra parte, tenemos del enunciado que

$$P(A \mid C) \ge P(B \mid C) \quad [1\%]$$

$$\Rightarrow P(A \mid C) \cdot P(C) \ge P(B \mid C) \cdot P(C), \quad \text{por } P(\cdot) \ge 0 \quad [1\%]$$

$$\Rightarrow P(A \cap C) \ge P(B \cap C) \quad [1\%] \tag{1}$$

Análogamente

$$P(A \mid C) \ge P(B \mid C) \Rightarrow P(A \cap \overline{C}) \ge P(B \cap \overline{C}) \quad [1\%]$$
 (2)

Sumando (1) y (2) se tiene que

$$P(A \cap C) + P(A \cap \overline{C}) > P(B \cap C) + P(B \cap \overline{C}) \Rightarrow P(A) > P(B)$$
 [1%]

Problema 2 [10%]

Sean E_1 y E_2 dos eventos posibles que al condicionar su ocurrencia a un evento posible A, estos se comportan de manera independiente, muestre entonces que

$$P(E_1 \cap E_2 | A) = P(E_1 | A) \cdot P(E_2 | A)$$

Solución

Dos eventos E_1 y E_2 , se dicen independientes si:

$$P(E_1) = P(E_1 \mid E_2)$$
 o $P(E_2) = P(E_2 \mid E_1)$ (3)

Notemos que

$$P(E_1) = P(E_1 \mid S), \quad P(E_2) = P(E_2 \mid S), \quad S \cap E_1 = E_1, \quad S \cap E_2 = E_2$$

Luego (3) es equivalente a

$$P(E_1 | S) = P(E_1 | E_2 \cap S)$$
 o $P(E_2 | S) = P(E_2 | E_1 \cap S)$ (4)

Es decir, E_1 y E_2 , serían eventos independientes condicionales a la ocurrecia del evento S.

Del enunciado nos dicen que E_1 y E_2 son independientes condicionados a la ocurrencia del evento A, entonces

$$P(E_1 \mid A) = P(E_1 \mid A \cap E_2) \quad [5\%]$$

$$= \frac{P(E_1 \cap A \cap E_2)}{P(A \cap E_2)}, \quad \text{por definición de probabilidad condicional} \quad [2\%]$$

$$= \frac{P(E_1 \cap A \cap E_2)}{P(A \cap E_2)} \cdot \frac{P(A)}{P(A)} \quad [1\%]$$

$$= \frac{P(E_1 \cap E_2 \mid A)}{P(E_2 \mid A)} \quad [1\%]$$

Por lo tanto, se tiene que

$$P(E_1 \cap E_2 | A) = P(E_1 | A) \cdot P(E_2 | A)$$
 [1 %]

Problema 3 [15%]

Suponga que en cierto rio (Jau-Jau) se construirá un puente basculante. En general, este tipo de puentes está constituido por 6 componentes tal como muestra la figura a continuación:

Como puede apreciar, para su correcto funcionamiento, las basculas $(B_1 \ y \ B_2)$ tienen una única posición. En cambio, técnicamente son intercambiable LI_1 con LI_2 , y de igual forma LD_1 con LD_2 . Si las basculas y componentes del puente son instaladas al azar, ¿cuál sería la probabilidad que el puente funcione correctamente?

Solución

Definamos como A al evento en que el puente queda operativo después de ensamblar al azar.

Tenemos

$$\#S = 2! \cdot 4! = 48$$
 [6 %]

maneras de ensamblar las componentes de manera aleatoria y

$$\#A = 1 \cdot 2! \cdot 2! = 4$$
 [6 %]

en que el puente queda operativo dadas las indicaciones del enunciado.

Luego, si se ensambla al azar el puente sobre el río Jau-Jau queda operativo con probabilidad:

$$P(A) = \frac{\#A}{\#S} = \frac{1}{12}$$
 [3 %]

Problema 4 [25%]

Las estadísticas en los últimos años muestran que los alumnos inscritos en el EYP1113 y que han ingresado a la carrera por las tres vías posibles se distribuye de la siguiente manera: PSU (80%), inclusión (10%) y traspaso por college o admisión especial (10%). Por otra parte, solo el 71.25% de los inscritos se encuentra en el semestre ideal, es decir, su avance ha sido de acuerdo a lo esperado o mejor. Además, se sabe que solo el 75% de los inscritos que iban en el semestre ideal aprueban históricamente el curso, independiente de su vía de ingreso, y un 50% en otro caso. Si la probabilidad de encontrase en el semestre ideal, con respecto a los que ingresan vía PSU, es un 30% y 20% menos para los alumnos de inclusión y traspaso respectivamente:

- (a) [15 %] Calcule la probabilidad que un alumno repruebe.
- (b) [10%] Calcule la probabilidad que un alumno haya ingresado por inclusión, dado que aprueba el curso.

Solución

- (a) Definamos los siguientes eventos:
 - A: Alumno aprueba.
 - B: Alumno se encuentra en semestre ideal.
 - C_1 : Alumno ingresó vía PSU.
 - C_2 : Alumno ingresó vía Inclusión.
 - C_3 : Alumno ingresó vía Traspaso.

Del enunciado tenemos que:

$$P(A \mid B) = 0.7500 = P(A \mid B \cap C_1) = P(A \mid B \cap C_2) = P(A \mid B \cap C_3)$$
 [1%]

$$P(A \mid \overline{B}) = 0.5000 = P(A \mid \overline{B} \cap C_1) = P(A \mid \overline{B} \cap C_2) = P(A \mid \overline{B} \cap C_3)$$
 [1%]

$$P(B) = 0.7125 \Rightarrow P(\overline{B}) = 0.2875$$
 [1%]

$$P(C_1) = 0.8000$$
 [1%]

$$P(C_2) = 0.1000$$
 [1%]

$$P(C_3) = 0.1000$$
 [1%]

Además se indica que

$$P(B \mid C_1) = q$$
; $P(B \mid C_2) = 0.7 \cdot q$; $P(B \mid C_3) = 0.80 \cdot q$ [1%]

Reemplazando

$$P(B) = P(B \mid C_1) \cdot P(C_1) + P(B \mid C_1) \cdot P(C_1) + P(B \mid C_1) \cdot P(C_1)$$
 [1 %]

se tiene que q = 0.75. [1 %]

Se pide

$$\begin{split} P(\overline{A}) &= P(\overline{A} \,|\, B \cap C_1) \cdot P(B \,|\, C_1) \cdot P(C_1) + P(\overline{A} \,|\, \overline{B} \cap C_1) \cdot P(\overline{B} \,|\, C_1) \cdot P(C_1) + \\ &\quad P(\overline{A} \,|\, B \cap C_2) \cdot P(B \,|\, C_2) \cdot P(C_2) + P(\overline{A} \,|\, \overline{B} \cap C_2) \cdot P(\overline{B} \,|\, C_2) \cdot P(C_2) + \\ &\quad P(\overline{A} \,|\, B \cap C_3) \cdot P(B \,|\, C_3) \cdot P(C_3) + P(\overline{A} \,|\, \overline{B} \cap C_3) \cdot P(\overline{B} \,|\, C_3) \cdot P(C_3) \quad \textbf{[2\%]} \\ &= 0.250 \cdot 0.750 \cdot 0.800 + 0.500 \cdot 0.250 \cdot 0.800 + \\ &\quad 0.250 \cdot 0.525 \cdot 0.100 + 0.500 \cdot 0.475 \cdot 0.100 + \\ &\quad 0.250 \cdot 0.600 \cdot 0.100 + 0.500 \cdot 0.400 \cdot 0.100 \quad \textbf{[2\%]} \\ &= 0.356 \quad \textbf{[2\%]} \\ \Rightarrow P(A) &= 0.644 \end{split}$$

(b) Se pide

$$P(C_{2}|A) = \frac{P(C_{2} \cap A)}{P(A)} \quad [2\%]$$

$$= \frac{P(C_{2} \cap A \cap S)}{P(A)} \quad [1\%]$$

$$= \frac{P(C_{2} \cap A \cap [B \cup \overline{B}])}{P(A)} \quad [2\%]$$

$$= \frac{P([C_{2} \cap A \cap B] \cup [C_{2} \cap A \cap \overline{B}])}{P(A)} \quad [1\%]$$

$$= \frac{P(C_{2} \cap A \cap B) + P(C_{2} \cap A \cap \overline{B})}{P(A)}, \quad \text{por ser disjuntos} \quad [1\%]$$

$$= \frac{P(A|C_{2} \cap B) \cdot P(B|C_{2}) \cdot P(C_{2}) + P(A|C_{2} \cap \overline{B}) \cdot P(\overline{B}|C_{2}) \cdot P(C_{2})}{P(A)} \quad [1\%]$$

$$= \frac{0.750 \cdot 0.525 \cdot 0.100 + 0.500 \cdot 0.475 \cdot 0.100}{0.644}, \quad \text{por (a)} \quad [1\%]$$

$$= 0.09802019 \quad [1\%]$$

Problema 5 [20 %]

Considere una variable aleatoria continua X, cuya función de densidad esta definida como sigue

$$f_X(x) = \exp\left\{-\left(\frac{x-\mu}{\sigma}\right) - \exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right\}, \quad x \in \mathbb{R}, \quad \mu \in \mathbb{R}, \quad \sigma > 0$$

Calcule su moda y mediana.

Solución

Para obtener la moda, basta con encontrar donde f_X se maximiza.

Primero derivamos f_X con respecto a x:

$$\frac{d}{dx}f_X(x) = \exp\left\{-\left(\frac{x-\mu}{\sigma}\right) - \exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right\} \cdot \left\{-\frac{1}{\sigma} - \exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right] \cdot \left(-\frac{1}{\sigma}\right)\right\} \quad [2\%]$$

Igualando a cero tenemos que

$$\frac{1}{\sigma} = \frac{1}{\sigma} \exp \left[-\left(\frac{x-\mu}{\sigma}\right) \right] \Rightarrow x = \mu \quad [2\%]$$

Como la segunda derivada esta dada por:

$$\frac{d^2}{dx^2} f_X(x) = \exp\left\{-\left(\frac{x-\mu}{\sigma}\right) - \exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right\} \cdot \left\{-\frac{1}{\sigma} - \exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right] \cdot \left(-\frac{1}{\sigma}\right)\right\}^2 + \exp\left\{-\left(\frac{x-\mu}{\sigma}\right) - \exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right\} \cdot \frac{1}{\sigma} \exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right] \cdot \left(-\frac{1}{\sigma}\right) \quad [2\%]$$

$$= g(x)$$

Al evaluar en μ vemos que

$$g(\mu) = -\frac{1}{\sigma e} \left(1 + \frac{1}{\sigma} \right) < 0 \quad [2\%]$$

Lo que confirma que f_X se maximiza en μ . Por lo tanto la moda es igual a μ . [2%]

Para obtener la mediana, necesitamos obtener una expresión para F_X :

$$F_X(x) = \int_{-\infty}^x f_X(u) \, du \quad [1\%]$$

$$= \int_{-\infty}^x \exp\left\{-\left(\frac{u-\mu}{\sigma}\right) - \exp\left[-\left(\frac{u-\mu}{\sigma}\right)\right]\right\} \, du \quad [1\%]$$

$$= \int_{-\infty}^{\frac{x-\mu}{\sigma}} \exp\left[-z - \exp\left(-z\right)\right] \, dz \quad [1\%]$$

$$= \exp\left[-\exp(-z)\right] \begin{vmatrix} \frac{x-\mu}{\sigma} \\ -\infty \end{vmatrix} \quad [1\%]$$

$$= \exp\left\{-\exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right\} - 0 \quad [1\%]$$

$$= \exp\left\{-\exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right\}, \quad x \in \mathbb{R} \quad [1\%]$$

Por definición

[2%]
$$F_X(x_{\text{mediana}}) = \frac{1}{2} \Rightarrow x_{\text{mediana}} = \mu - \sigma \cdot \ln[\ln(2)]$$
 [2%]

Problema 6 [20%]

El Dakar 2014, Argentina-Bolivia-Chile, consiste en trece etapas. La cuarta etapa que se corrió anteayer, entre San Juan y Chilecito consistía en un tramo de 573 kilómetros. Los pilotos, en promedio, demoraron 7 horas con un coeficiente de variación (c.o.v.) del 35 %. Suponiendo que los tiempos se comportan según una distribución lognormal:

- (a) [15%] ¿Cuál es la probabilidad que un piloto cualquiera haya demorado más de 7 horas?
- (b) [5 %] ¿Cuántas horas como máximo le tomo al 30 % de los pilotos más rápidos?

Solución

(a) Sea X el tiempo que demora un pilote en completar la cuarta etapa del Dakar 2014.

Del enunciado tenemos que

$$\mu_X = 7$$
 y $\delta_X = 0.35$ [1%]

Luego

$$\zeta^2 = \ln(\delta_x^2 + 1) = \ln(0.35^2 + 1) = 0.1155 \Rightarrow \zeta = \sqrt{0.1155} = 0.3399 \quad [3\%]$$
$$\lambda = \ln(\mu_X) - \frac{\zeta^2}{2} = \ln(7) - \frac{0.1155}{2} = 1.8881 \quad [3\%]$$

Entonces

$$X \sim \text{Log-Normal}(\lambda = 1.8881, \zeta = 0.3399)$$
 [1 %]

Se pide

$$P(X > 7) = 1 - P(X \le 7) \quad [2\%]$$

$$= 1 - \Phi\left(\frac{\ln(7) - 1.8881}{0.3399}\right) \quad [2\%]$$

$$\approx 1 - \Phi(0.17) \quad [1\%]$$

$$= 1 - 0.5675 \quad [1\%]$$

$$= 0.4325 \quad [1\%]$$

(b) Se pide el valor de x que cumple con que $P(X \le x) \le 0.30$.

$$\begin{split} P(X \leq x) \leq 0.3 &\iff \Phi\left(\frac{\ln(x) - 1.8881}{0.3399}\right) \leq 0.3 \quad \textbf{[1\%]} \\ &\iff \frac{\ln(x) - 1.8881}{0.3399} \leq -\Phi^{-1}(0.7) \quad \textbf{[1\%]} \\ &\iff \frac{\ln(x) - 1.8881}{0.3399} \leq -0.52 \quad \textbf{[1\%]} \\ &\iff x \leq \exp\left(-0.52 \cdot 0.3399 + 1.8881\right) \quad \textbf{[1\%]} \\ &\iff x \leq \exp(1.7111) = 5.5364 \quad \textbf{[1\%]} \end{split}$$

Los 30 pilotos más rápidos se demoraron a lo más 05:32:18 horas.

Formulario

Principio de la Multiplicación

Si un experimento está compuesto de k experimentos con tamaños muestrales n_1, \ldots, n_k , entonces

$$S = n_1 \times n_2 \times \cdots \times n_k$$

Permutación

Consideremos un conjunto de objetos

$$C = \{c_1, \dots, c_n\}$$

y queremos seleccionar una muestra de r objetos. ¿De cuántas maneras lo podemos hacer?

- Muestreo Con Reemplazo: n^r .
- Muestreo Sin Reemplazo: $n \times (n-1) \times (n-2) \times \cdots \times (n-r+1)$.

Combinación

Consideremos un Muestreo Sin Reemplazo. Si nos interesa una muestra sin importar el orden de ingreso, la cantidad de muestras distintas de tamaño r son

$$\binom{n}{r} = \frac{n!}{r! \times (n-r)!}$$

Estos "números" se conocen como coeficientes binomiales y tienen la siguiente propiedad

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Ordenamiento Multinomial

Queremos asignar n objetos a k grupos distintos de tamaños n_1, \ldots, n_k , con $\sum_{i=1}^k n_i = n$. El número de grupos distintos con las características dadas son

$$\binom{n}{n_1 \, n_2 \, \cdots \, n_k} = \frac{n!}{n_1! \, \times \cdots \, \times \, n_k!}$$

Estos "números" se conocen como ordenamientos multinomiales y tienen la siguiente propiedad

$$(x_1 + \dots + x_k)^n = \sum_{n_1=0}^n \sum_{n_1 = 0}^{n-n_1} \dots \sum_{n_k = 0}^{n-n_1 - \dots - n_{k-1}} \frac{n!}{n_1! \times \dots \times n_k!} x_1^{n_1} \times \dots \times x_k^{n_k}$$

Igualdades

$$\sum_{k=0}^{n} \binom{n}{k} a^{x} b^{n-k} = (a+b)^{n}, \quad \sum_{k=x}^{\infty} \phi^{k} = \frac{\phi^{x}}{1-\phi} \quad \text{si } |\phi| < 1, \quad \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = \exp(\lambda)$$

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza, Varianza y fgm
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	μ , σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M_X(t) = \exp\left(\mu_X t + \frac{1}{2} \sigma_X^2 t^2\right)$
Log-Normal	$\frac{1}{\sqrt{2\pi}} \frac{1}{(x\zeta)} \exp\left\{-\frac{1}{2} \left[\frac{\ln(x) - \lambda}{\zeta}\right]^2\right\}$	$x \ge 0$	λ,ζ	$\mu_X = \exp(\lambda + \zeta^2/2)$ $\sigma_X^2 = \mu_X^2 (e^{\zeta^2} - 1)$
				$E(X^k) = \exp(\lambda k) M_Z(\zeta k)$, con $Z \sim \text{Normal}(0,1)$

Tabla Normal Estándar

Distribución Normal Estándar												
S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359		
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753		
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141		
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517		
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879		
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224		
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549		
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852		
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133		
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389		
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621		
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830		
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015		
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177		
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319		
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441		
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545		
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633		
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706		
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767		
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817		
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857		
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890		
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916		
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936		
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952		
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964		
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974		
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981		
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986		
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990		
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993		
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995		
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997		
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998		
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998		