Aufgabe 1

Zeichnen Sie eine Wahrheitstabelle für die folgenden Ausdrücke:

$$\neg a \lor b, \neg (a \land \neg b), a \Rightarrow b$$

Was fällt Ihnen auf?

Lösung

a	b	$\neg a \lor b$	$\neg(a \land \neg b)$	$a \Rightarrow b$
W	W	W	w	w
w	f	f	f	f
f	w	w	w	w
f	f	w	w	w

Die Ausdrücke sind äquivalent.

Aufgabe 2

Erinnerung (vgl. Def 1.10 im Buch):

Ein Prädikat $\varphi(x)$ ist Komprehensionsformel einer Menge M, falls

$$x \in M$$
 gdw. $\varphi(x)$

für alle Objekte x gilt.

a) Finden Sie Komprehensionsformeln für die folgenden Mengen:

$$A \cup B$$
, $A \setminus B$, \emptyset (leere Menge)

b) Begründen Sie: Falls $\varphi(x)$ Komprehensionsformel von M ist, dann gilt:

$$M = \{x \mid \varphi(x)\}$$

Lösung

a)
$$-A \cup B : \varphi(x) \Leftrightarrow (x \in A \lor x \in B)$$

$$-A \setminus B : \varphi(x) \Leftrightarrow (x \in A \land x \not\in B)$$

$$-\emptyset : \varphi(x) \Leftrightarrow \bot$$

$$(\bot \text{ heisst } \textit{Falsum } \text{ und steht für den konstanten Wahrheitswert "falsch".)}$$

b) " $\varphi(x)$ ist Komprehensionsformel von M" bedeutet, dass $x \in M$ g.d.w. $\varphi(x)$. Also ist $M = \{x \mid x \in M\} = \{x \mid \varphi(x)\}$

Aufgabe 3

Gegeben seien folgende drei Relationen:

- $R_1 = \{(1, a), (1, b), (1, b)\}$
- $R_2 = \{(2, c), (2, d)\}$
- $R_3 = \{(3, e, A), (3, f, B)\}$

Bestimmen Sie:

- a) $R_3 \times R_2$
- b) $(R_1 \times R_2) \times R_3$
- c) $R_1 \times (R_2 \times R_3)$
- d) $(R_2 \times R_3) \times R_1$

Lösung

In Mengen werden gleiche Elemente nur einmal gezählt.

- a) $R_3 \times R_2 = \{(3, e, A, 2, c), (3, e, A, 2, d), (3, f, B, 2, c), (3, f, B, 2, d)\}$
- b) $(R_1 \times R_2) \times R_3 = \{(1, a, 2, c, 3, e, A), (1, a, 2, c, 3, f, B), (1, a, 2, d, 3, e, A), (1, a, 2, d, 3, f, B), (1, b, 2, c, 3, e, A), (1, b, 2, c, 3, f, B), (1, b, 2, d, 3, e, A), (1, b, 2, d, 3, f, B)\}$
- c) $R_1 \times (R_2 \times R_3) = (R_1 \times R_2) \times R_3$ (Das Kartesische Produkt ist assoziativ.)
- d) $(R_2 \times R_3) \times R_1 = \{(2, c, 3, e, A, 1, a), (2, c, 3, e, A, 1, b), (2, c, 3, f, B, 1, a), (2, c, 3, f, B, 1, b), (2, d, 3, e, A, 1, a), (2, d, 3, e, A, 1, b), (2, d, 3, f, B, 1, a), (2, d, 3, f, B, 1, b)\}$

Aufgabe 4

Finden Sie zu den folgenden Aussagen jeweils ein Gegenbeispiel!

- a) Falls $A \cup B = A \cup C$, dann folgt B = C, für beliebige Mengen A, B und C
- b) $R \times P = P \times R$ für beliebige Relationen R und P

Lösung

- a) $A = \{0, 1\}, B = \{0\}, C = \{1\}$ Dann ist $A \cup B = \{0, 1\} = A \cup C$ aber $B \neq C$
- b) Siehe Aufgabe 3 c) d).(In Tupeln spielt die Reihenfolge eine Rolle.)