

Choosing GPU Programming Approaches

Sebastian Kuckuk, Erlangen National High Performance Computing Center (NHR@FAU)

Before We Start

- Remember to set your Zoom name otherwise we cannot grant certificates
- We will be using reserved resources on our local cluster
 - Don't forget to de-allocate them at the end of the session
 - I will forget to remind you with 90% probability :)
- Ask questions and provide feedback at the end
- What is your background?

Introduction

GPUs in HPC – Motivation

- Promises
 - Massive parallelism and performance
 - Good performance in relation to energy (FLOPs per Watt)
- Already widespread in the HPC landscape
 - c.f. Top500 list (https://www.top500.org/lists/top500/2025/06/)
 - 9 out of the top 10 supercomputers are equipped with GPUs
 - 4 NVIDIA (2 x GH200, H100, A100)
 - 4 AMD (MI300A, 3 x MI250X)
 - 1 Intel (GPU Max Series)

Where does the performance come from?

Helma is #51 Alex is #290 Fritz is #321

GPU Performance

- If GPUs are mainly about performance what is performance?
- Two primary factors
 - How fast can the meaningful computation be done?
 Usually given as computational throughput, e.g. FLOP/s
 - How fast can the data be transferred to where the computation is happening (and back)?
 Usually given as sustained bandwidth, e.g. GB/s
- What are GPUs doing differently?

 CPUs have few (~100) powerful cores

Organized in sockets

 GPUs have many simplistic 'cores' (10 000s)

 Organized in 100s of streaming multiprocessors (SMs)

Both CPU and GPU have a distinct main memory (for most architectures)

- The memory of GPUs
 - Is optimized for bandwidth
 - Has a high latency

- The memory of CPUs
 - Is optimized for latency
 - Has a high capacity

- Both CPU and GPU have a distinct main memory
- They communicate via slow interconnects

(for most architectures)

(for most architectures)

Introduction – CPU vs GPU

- Why not use GPUs exclusively?
 - Let's consider a simple vector copy benchmark to assess sustained bandwidths
- One A100 40GB GPU (Alex) vs one Sapphire Rapids node (Fritz)
 - ~ 1.3 TB/s vs ~ 260 GB/s => 5x faster
- But: One SM of one A100: ~ 90 GB/s => 3x slower
- Serial execution
 - ~ 0.3 GB/s vs ~ 20 GB/s => 67x slower

Introduction – CPU vs GPU

- Why not use GPUs exclusively?
- GPUs deal best with
 - Massive parallelism
 at least 10 000s of threads to saturate computation
 at least 100 000s of threads to saturate memory
 - Structured computations
 Ideally each thread does the same operation but on different parts of a structured data set
- CPUs deal much better with unstructured, low-parallelism computations

GPU Programming

- without the actual programming

GPU Programming Considerations

- Generally, we require concepts for
- Execution spaces: where is the meaningful computation happening and

Memory spaces: where are input and output data located

Memory spaces are separate for host and device

- Requirements
 - Allocate/ deallocate data on host/device
 - Move data between host and device

Memory spaces are separate for host and device

- Requirements
 - Allocate/ deallocate data on host/device
 - Move data between host and device

- Memory spaces are physically separate for host and device
- But they can be organized in a virtual unified address space
- Data access triggers data migration (usually via page faulting)

sebastian.kuckuk@fau.de 04.09.2025

16

- Memory spaces are physically separate for host and device
- But they can be organized in a virtual unified address space
- Data access triggers data migration (usually via page faulting)

sebastian.kuckuk@fau.de

Explicit Memory vs Managed Memory

Explicit memory management

- Allocations are done either for host or for device
- Data transfers are explicit,
 e.g. via copy operations between host and device allocations
- Data structures are managed as pairs of host and device instances
- Both can be modified concurrently

Unified/ managed memory

- Allocations are done for a unified memory space
- Data transfers are *implicit* and follow a given granularity

- Data structures are managed as single instances
- Concurrent modification reduces performance

Explicit Memory vs Managed Memory

Explicit memory management

 Allocations are done either for host for device

- Potential Performance ↑

 Effort required ↑

 Error-proneness ↑
- Data tures are managed as pairs of ost and device instances
- ➤ Both can be modified concurrently

Unified/ managed memory

 Allocations are done for a unified memory space

↑ Implementation simplicity↑ Robustness

as

- Data structures are ma single instances
- Concurrent modification reduces performance

- Execution spaces are separate for host and device
 - > GPU execution is generally *asynchronous* w.r.t. host execution
 - > Host and device can do independent work concurrently

20

Execution usually starts on the host

- Execution usually starts on the host
- At some point, concurrent execution on the device is started

sebastian.kuckuk@fau.de 04.09.2025

22

- Execution usually starts on the host
- At some point, concurrent execution on the device is started ...
- ... and threads are spawned for parallel execution

23

- Execution usually starts on the host
- At some point, concurrent execution on the device is started ...
- ... and threads are spawned for parallel execution

- Execution usually starts on the host
- At some point, concurrent execution on the device is started ...
- ... and threads are spawned for parallel execution
- When the host requires the result of the computation, it must wait ...

- Execution usually starts on the host
- At some point, concurrent execution on the device is started ...
- ... and threads are spawned for parallel execution
- When the host requires the result of the computation, it must wait ...

- Execution usually starts on the host
- At some point, concurrent execution on the device is started ...
- ... and threads are spawned for parallel execution
- When the host requires the result of the computation, it must wait ...
- ... before continuing with its execution

Execution Spaces – Required Concepts

- Initiate execution on GPU
- Parallelization control how many threads (and how are they organized)?
- Thread mapping which part of the problem is computed by each thread?
- Synchronization

Workflow of GPU-Accelerated Applications

- Allocate data for CPU/GPU
- 2. Initialize data on CPU
- 3. Copy data from CPU to GPU
- 4. Launch GPU kernels
- 5. Do independent work on CPU (optional)
- 6. Synchronize GPU
- 7. Copy data from GPU to CPU
- 8. Post-process data on CPU
- 9. De-Allocate data

Workflow of GPU-Accelerated Applications

- Allocate data for CPU/GPU
- 2. Initialize data on CPU
- 3. Copy data from CPU to GPU
- 4. Launch GPU kernels
- 5. Do independent work on CPU (optional)
- 6. Synchronize GPU
- Copy data from GPU to CPU
- 8. Post-process data on CPU
- 9. De-Allocate data

sebastian.kuckuk@fau.de 04.09.2025

30

GPU Programming Considerations – Summary

- Memory spaces
 - Allocate/ deallocate data on host/device
 - Move data between host and device
- Execution spaces
 - Transfer execution to device
 - Coordinate parallel threads
 - Synchronization
- Fine-grained asynchronicity and overlap

Options are plentiful

- Avoid GPU programming all together
- > GPU-accelerated libraries
- 2. Let the compiler do the job
- ➤ Modern C++
- Pragma-based approaches (OpenMP, OpenACC)

- 3. Get your hands dirty and do the technical work
- > CUDA, HIP, oneAPI, ...
- 4. Do all the work but now with added performance portability
- ➤ Software layers (Kokkos, ...)

GPU-accelerated libraries and frameworks

- Developed by academia, companies and/ or GPU vendors
- Ranging from very small building blocks to whole applications
- Support for various application areas
- Usually well optimized
- (Performance) Portability can be limited
- Combining frameworks or interfacing own GPU code can be challenging
- Software stability and longevity may be limited

Modern C++

- Implementation directly in C++
- Many parts are already part of the C++ standard
- Works well for codes already using STL algorithms
- Ideal language integration (in extension also IDE support)
- Feature stability
- Limited implementation options may require algorithm reformulation
- Limited optimization possibilities and potentially lower performance
- Language specification and compiler support is still in development

Thrust

- Like the STL but GPU aware
- Couples with lower-level approaches such as CUDA
- Implementation directly in C++
- All the benefits of modern C++
- Natively GPU aware
- More tuning and optimization options
- Vendor portability may be limited
- May require reformulation of the algorithm to fit existing concepts

Pragma-based approaches (OpenMP, OpenACC)

- Implementation as comments in the source code
- Organized as an open standard
- Works well for codes based on loop nests (and others)
- Easy to integrate into existing code
- No vendor-lock
- Compiler tries to optimize automatically
- Optimization possibilities can be limited
- Compiler support and performance may vary

CUDA, HIP, oneAPI, ...

- Implementation using language extensions and API functions
- Exposes all features and capabilities of the hardware
- Full control and maximized optimization potential
- May require substantially more coding effort
- Portability between vendors can be limited

Software layers (Kokkos, ...)

- Implementation using a thin abstraction layer
- (Performance) Portability
- More control compared to other approaches
- Requires an abstraction design exposing all vital hardware capabilities
- Performance may be dependent on the quality of the back end

Course Overview

Course Overview

- Two alternative paths
 - Breadth-first
 - Depth-first
- Programming Challenge
- Access via JupyterHub
- Material is available at https://github.com/SebastianKuckuk/gpu-programming-approaches

Thank you for your attention

