MG26018 Simulation Modeling and Analysis 仿真建模与分析

Lecture 2: Queueing Models

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

- ★ shenhaihui.github.io/teaching/mg26018
- shenhaihui@sjtu.edu.cn

Fall 2019

Contents

- Queueing Systems and Models
 - ▶ Introduction
 - ► Characteristics & Terminology
 - ► Kendall Notation
- 2 Poisson Process
 - ▶ Definition
 - Properties
- 3 Single-Station Queues
 - ▶ Notations
 - ► General Results
 - ► Little's Law
 - ▶ M/M/1 Queue
 - ightharpoonup M/M/s Queue
 - ▶ $M/M/\infty$ Queue
 - $\blacktriangleright M/M/1/K$ Queue
 - ightharpoonup M/M/s/K Queue
 - ightharpoonup M/G/1 Queue
- 4 Queueing Networks
 - ► Jackson Networks

- Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
 - E.g., in hospital, stores, bank, call center (online service), etc.
 - Although we don't like standing in a queue, we appreciate the fairness that it imposes.
- Queues are not just for humans, however.
 - E.g., email system, printer, manufacturing line, etc.
 - Manufacturing systems maintain queues (called inventories) of raw materials, partly finished goods, and finished goods via the manufacturing process.

Figure: Queues in Hospital

Figure: Queues in Store (from The Sun)

Figure: Queues in Bank

Figure: Queues in Bank (No requirement to stand physically in queues)

Figure: Queue in Online Service

Figure: Queue in Mail Server (from OASIS)

Figure: Queue in Printer

Figure: Queues (Inventories) in Manufacturing Line (from Estes)

- Typically, a queueing system consists of a stream of "customers" (humans, goods, messages) that
 - · arrive at a service facility;
 - · wait in the queue according to certain discipline;
 - get served;
 - finally depart.
- A lot of real-world systems can be viewed as queueing systems, e.g.,
 - service facilities
 - production systems
 - repair and maintenance facilities
 - communications and computer systems
 - transport and material-handling systems, etc.
- Queueing models are mathematical representation of queueing systems.

- · Queueing models may be
 - analytically solved using queueing theory when they are simple (highly simplified); or
 - analyzed through simulation when they are complex (more realistic).
- Studied in either way, queueing models provide us a powerful tool for designing and evaluating the performance of queueing systems.
- They help us do this by answering the following questions (and many others):
 - How many customers are there in the queue (or station) on average?
 - 2 How long does a typical customer spend in the queue (or station) on average?
 - 3 How busy are the servers on average?

- Simple queueing models solved analytically:
 - Get rough estimates of system performance with negligible time and expense.
 - More importantly, understand the dynamic behavior of the queueing systems and the relationships between various performance measures.
 - Provide a way to verify that the simulation model has been programmed correctly.
- Complex queueing models analyzed through simulation:
 - Allow us to incorporate arbitrarily fine details of the system into the model.
 - Estimate virtually any performance measure of interest with high accuracy.
- This lecture focuses on the classical analytically solvable queueing models.

- The key elements of a queueing system are the customers and servers.
 - The term customer can refer to anything that arrives and requires service.
 - The term server can refer to any resource that provides the requested service.
- The term station means the entire or part of the system, which contains all the identical servers and the queue.
- Suppose that there is only one queue in one station.
- Capacity is the maximal number of customers allowed in the station.
 - Number waiting in queue + number having service.
 - Finite or infinite.

- Single-station queueing system.
 - · Customers simply leave after service.
 - E.g., customers arrive to buy coffee and then leave.
- Multiple-station queueing system (queueing network).
 - Customers can move from one station to another (for different service), before leaving the system.
 - E.g., patients wait and get service at several different units inside a hospital.

- The arrival process describes how the customers come.
 - Arrivals may occur at scheduled times or random times.
 - When at random times, the interarrival times are usually characterized by a probability distribution.
 - Customers may arrive one at a time or in batch (with constant or random batch size).
 - Different types of customers.
- An customer arriving at a station will
 - if the station capacity is full, leave immediately (called lost);
 - if the station capacity is not full, enter the station:
 - if there is idle server in the station, get service immediately;
 - if all servers are busy, wait in the queue.

- Queue discipline: Which customer to serve first.
 - First-in-first-out (FIFO), or first-come-first-served (FCFS).
 - Last-in-first-out (LIFO), or last-come-first-served (LCFS).
 - Shortest processing time first.
 - Service according to priority (more than one customer types).
- Queue behavior: Actions of customers while waiting.
 - Balk: leave when they see that the line is too long.
 - Renege: leave after being in the line when they see that the line is moving too slowly.
- Service time is the duration of service in a server.
 - Constant or random duration.
 - May depend on the customer type.
 - May depend on the time of day or the queue length.

- When without specification, the queueing models considered in this lecture shall satisfy the following:
 - 1 One customer type.
 - 2 Random arrivals (i.e., random interarrival times, iid.).
 - 3 No batch (or say, batch size is 1).
 - One queue in one station.
 - 5 First-come-first-served (FCFS).
 - O No balk, no renege.
 - Random service time (depends on nothing else), iid.
- Even so, it is not that easy to analyze the queueing models!

Queueing Systems and Models

- Canonical notational system proposed by Kendall (1953): X/Y/s/K.
 - X represents the interarrival-time distribution.
 - M: Memoryless, i.e., exponential interarrival times;
 - G: General;
 - D: Deterministic.
 - Y represents the service-time distribution.
 - Same letters as the interarrival times.
 - s represents the number of parallel servers.
 - Finite value.
 - For infinite number of servers, s is replaced by ∞ .
 - K represents the station capacity.
 - Finite value.
 - For infinite capacity, K is replaced by ∞ , or simply omitted.
- Examples: M/M/1, M/G/1, M/M/s/K.

• A stochastic process $\{N(t),\ t\geq 0\}$ is said to be a *counting process* if N(t) represents the total number of arrivals that have occurred up to time t.

- Let $\{X_n, n \ge 1\}$ denote the *interarrival times*:
 - X_1 denotes the time of the first arrival;
 - For $n \ge 2$, X_n denotes the time between the (n-1)st and the nth arrivals.

- The **Poisson process** with rate λ is a special *counting* process $\{N(t), t \geq 0\}$:
 - N(0) = 0;
 - {X_n, n ≥ 1} is a sequence of independent identically distributed (iid) exponential random variables with mean 1/λ;
- More details about the exponential interarrival times:
 - For $n \ge 1$, X_n is a continuous random variable with density $f(x) = \lambda e^{-\lambda x}, \ x \ge 0$ (i.e., $X_n \sim \operatorname{Exp}(\lambda)$);
 - $\mathbb{P}(X_n < x) = 1 e^{-\lambda x}$, $\mathbb{P}(X_n > x) = e^{-\lambda x}$;
 - $\mathbb{E}[X_n] = \frac{1}{\lambda}$, $\operatorname{Var}(X_n) = \frac{1}{\lambda^2}$.
- What is the distribution of N(t)?
 - $\mathbb{P}{N(t) = n} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \ n = 0, 1, 2, \dots$
 - It's a Poisson distribution with mean λt (i.e., $Poisson(\lambda t)$).

• Let $S_n = X_1 + X_2 + \cdots + X_n$ be the arrival time of the nth arrival.

Fact

If X_1,\ldots,X_n are iid random variables and $X_i\sim \mathrm{Exp}(\lambda)$, then $S_n\sim \mathrm{Gamma}(n,\lambda)$ (in shape & rate parametrization), i.e., its pdf is $f(x)=\lambda e^{-\lambda x}\frac{(\lambda x)^{n-1}}{(n-1)!},\ x\geq 0.$

Proof.

$$\mathbb{P}\{N(t) \ge n\} = \mathbb{P}\{S_n \le t\} = \int_0^t f(x) dx = \int_0^t \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} dx$$

$$= \frac{1}{(n-1)!} \int_0^{\lambda t} e^{-y} y^{n-1} dy$$

$$= \frac{1}{(n-1)!} \left\{ -y^{n-1} e^{-y} \Big|_0^{\lambda t} + \int_0^{\lambda t} e^{-y} (n-1) y^{n-2} dy \right\}$$

$$= -e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} + \frac{1}{(n-2)!} \int_0^{\lambda t} e^{-y} y^{n-2} dy.$$

$$\mathbb{P}\{N(t) \ge n\} = \frac{1}{(n-1)!} \int_0^{\lambda t} e^{-y} y^{n-1} dy
= -e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} + \frac{1}{(n-2)!} \int_0^{\lambda t} e^{-y} y^{n-2} dy
= -e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} - e^{-\lambda t} \frac{(\lambda t)^{n-2}}{(n-2)!} - \dots - e^{-\lambda t} \frac{(\lambda t)^1}{1!} + \frac{1}{0!} \int_0^{\lambda t} e^{-y} y^0 dy
= -e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} - e^{-\lambda t} \frac{(\lambda t)^{n-2}}{(n-2)!} - \dots - e^{-\lambda t} \frac{(\lambda t)^1}{1!} - e^{-\lambda t} \frac{(\lambda t)^0}{0!} + 1.$$

$$\mathbb{P}\{N(t) = n\} = \mathbb{P}\{N(t) \ge n\} - \mathbb{P}\{N(t) \ge n + 1\}$$
$$= e^{-\lambda t} \frac{(\lambda t)^n}{n!}. \quad \blacksquare$$

Question 1: When will the next appear?

Standing here, ask, when will the 3rd arrival occur?

$$\begin{split} \mathbb{P}(X_3-a>x|X_3>a) &= \frac{\mathbb{P}(X_3-a>x,X_3>a)}{\mathbb{P}(X_3>a)} \\ &= \frac{\mathbb{P}(X_3>a+x,X_3>a)}{\mathbb{P}(X_3>a)} \\ &= \frac{\mathbb{P}(X_3>a+x)}{\mathbb{P}(X_3>a)} \\ &= \frac{e^{-\lambda(a+x)}}{e^{-\lambda a}} = e^{-\lambda x}. \quad \text{(Not related to $a!$)} \end{split}$$

The Poisson process has no memory!

• Due to the lack of memory and N(0) = 0,

$$\mathbb{P}\{N(t+h) - N(t) = n\} = \mathbb{P}\{N(t+h-t) - N(0) = n\}$$
$$= \mathbb{P}\{N(h) = n\}.$$

Property 1 (No Memory)

The Poisson process has *independent* and *stationary* increments.

- Independent: Number of arrivals in disjoint time intervals are independent.
- Stationary: Distribution of the number of arrivals in any time interval depends only on its length.

- Question 2: If I only know there are n arrivals up to time t, what can I say about the n arrival times S_1, \ldots, S_n ?
- A simplified case:

- Intuition:
 - Since Poisson process possesses independent and stationary increments, each interval of equal length in [0,t] should have the same probability of containing the arrival.
 - Hence, the arrival time should be uniformly distributed on [0, t].

Proof.

$$\begin{split} \mathbb{P}\{X_1 < s | N(t) = 1\} &= \frac{\mathbb{P}\{X_1 < s, N(t) = 1\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s), 0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \\ &= \frac{\mathbb{P}\{1 \text{ arrival in } [0, s)\} \, \mathbb{P}\{0 \text{ arrival in } [s, t)\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(independent)} \\ &= \frac{\mathbb{P}\{N(s) = 1\} \, \mathbb{P}\{N(t - s) = 0\}}{\mathbb{P}\{N(t) = 1\}} \quad \text{(stationary)} \\ &= \frac{e^{-\lambda s} \lambda s e^{-\lambda (t - s)}}{e^{-\lambda t} \lambda t} \\ &= \frac{s}{t}. \quad \blacksquare \end{split}$$

• Remark: This result can be generalized to n arrivals.

Property 2 (Conditional Distribution of Arrival Times)

Given that N(t) = n, the n arrival times S_1, \ldots, S_n have the same distribution as the order statistics corresponding to n independent RVs uniformly distributed on the interval (0,t).

Illustration:

Given N(t) = n, how can I generate a sample of $\{S_1, S_2, ..., S_n\}$?

- 1. Uniformly and independently sample n points on [0, t].
- 2. From small to large, call them $S_1, S_2, ..., S_n$.
- This is very nice for simulation!

• Let L(t) denote the number of customers in the station at time t.

Figure: Illustration of L(t) (from Banks et al. (2010))

• Let $\widehat{L}(T)$ denote the (time-weighted) average number of customers in the station up to time T:

$$\widehat{L}(T) := \frac{1}{T} \int_0^T L(t) dt.$$

• Another expression of $\widehat{L}(T)$: Let T_n denote the total time during [0,T] in which the station contains exactly n customers.

Figure: Illustration of L(t) (from Banks et al. (2010))

•
$$\widehat{L}(T) := \frac{1}{T} \int_0^T L(t) dt = \frac{1}{T} \sum_{n=0}^\infty n T_n = \sum_{n=0}^\infty n \left(\frac{T_n}{T}\right).$$

- Suppose during time [0,T], totally N(T) customers have enter the station, and let $W_1,W_2,\ldots,W_{N(T)}$ denote the time each customer spends in the station up to time $T.^{\dagger}$
- Let $\widehat{W}(T)$ denote the average sojourn time (逗留时间) in the station up to time T:

$$\widehat{W}(T) := \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i.$$

- In a similar way, we can also define
 - $\widehat{L}_Q(T)$ The average number of customers in the *queue* up to time T.
 - $\widehat{W}_{Q}(T)$ The average waiting time in the queue up to time T.

 $^{^\}dagger$ The time includes both the waiting time in queue and the time in server. The part after T is not counted.

- Now we consider the long-run measures.
 - ullet L The long-run average number of customers in the station:

$$L := \lim_{T \to \infty} \widehat{L}(T).$$

• W – The long-run average sojourn time in the station:

$$W := \lim_{T \to \infty} \widehat{W}(T).$$

• L_Q – The long-run average number of customers in the queue:

$$L_Q := \lim_{T \to \infty} \widehat{L}_Q(T).$$

• W_Q – The long-run average waiting time in the queue:

$$W_Q := \lim_{T \to \infty} \widehat{W}_Q(T).$$

• Question: When will L, W, L_Q and W_Q exist (and $< \infty$)?

 We also define the *limiting probability* that there will be exactly n customers in the station as time goes to infinity:

$$P_n := \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, \quad n = 0, 1, 2, \dots$$

- Question: When will P_n exist?
 - Moreover, for an arbitrary X/Y/s/K queue
 - Let λ denote the arrival rate, i.e.,

$$\mathbb{E}[\text{interarrival time}] = \frac{1}{\lambda}.$$

• Let μ denote the service rate in one server, i.e.,

$$\mathbb{E}[\mathsf{service\ time}] = \frac{1}{\mu}.$$

- Question: When will L, W, L_O, W_O and P_n exist?
- Answer: When the queue is **stable**[†].
- Question: When will the queue be stable?!

Theorem 1 (Condition of Stability)

For an $X/Y/s/\infty$ queue (i.e., infinite capacity) with arrival rate λ and service rate μ , it is stable if

$$\lambda < s\mu$$
.

And, an X/Y/s/K queue (i.e., finite capacity) will always be stable.

[†]That is to say, the underlying Markov chain is positive recurrent.

- Recall that $P_n := \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, \ n = 0, 1, 2, \dots$
- P_n is also called the probability that there are exactly n
 customers in the station when it is in the steady state.
 - Since the system is stable and run for infinitely long time, it should enters some steady state (i.e., has nothing to do with the initial state).
- L can also be written as $L := \sum_{n=0}^{\infty} n P_n$ (see next slide).
 - L is also called the expected number of customers in the station in steady state;
 - W is also called the expected sojourn time in the station in steady state;
 - L_Q is also called the expected number of customers in the queue in steady state;
 - ${\cal W}_Q$ is also called the expected waiting time in the queue in steady state.

Single-Station Queues

- Recall that $P_n \coloneqq \lim_{t \to \infty} \mathbb{P}\{L(t) = n\}, \ n = 0, 1, 2, \dots$
- It turns out that, when the queue is stable, P_n also equals the long-run proportion of time that the station contains exactly n customers, \dagger i.e., with probability 1, for all n,

$$P_n = \lim_{T \to \infty} \frac{\text{amount of time during } [0,T] \text{ that station contains } n \text{ customers}}{T}$$

• Recall $\widehat{L}(T) \coloneqq \frac{1}{T} \int_0^T L(t) \mathrm{d}t = \sum_{n=0}^\infty n\left(\frac{T_n}{T}\right)$, then

$$\begin{split} L \coloneqq \lim_{T \to \infty} \widehat{L}(T) &= \lim_{T \to \infty} \sum_{n=0}^{\infty} n \left(\frac{T_n}{T} \right) \\ &= \sum_{n=0}^{\infty} \lim_{T \to \infty} n \left(\frac{T_n}{T} \right) \quad \text{(by DCT)} \\ &= \sum_{n=0}^{\infty} n P_n. \end{split}$$

 $^{^{\}dagger}$ A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.

- Little's Law (守恒方程) is one of the most general and versatile laws in queueing theory.
 - It is named after John D.C. Little, who was the first to prove a version of it, in 1961.
 - When used in clever ways, Little's Law can lead to remarkably simple derivations.

Theorem 2 (Little's Law - Empirical Version)

Define the observed entering rate $\widehat{\lambda} \coloneqq N(T)/T$, then

$$\widehat{L}(T) = \widehat{\lambda}\widehat{W}(T), \quad \widehat{L}_Q(T) = \widehat{\lambda}\widehat{W}_Q(T).$$

Verify Little's Law.

Figure: Illustration of L(t) and W_i (from Banks et al. (2010))

$$\hat{\lambda} = N(T)/T = 5/20 = 0.25.$$

$$\widehat{W}(T) = \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \frac{1}{5} (2+5+5+7+4) = \frac{23}{5} = 4.6.$$

$$\widehat{L}(T) = \frac{1}{T} \sum_{n=0}^{\infty} nT_n = \frac{1}{20} (0 \times 3 + 1 \times 12 + 2 \times 4 + 3 \times 1) = \frac{23}{20} = 1.15.$$

So,
$$\widehat{\lambda}\widehat{W}(T)=0.25\times 4.6=1.15=\widehat{L}(T)$$
. (Why it always holds?)

Single-Station Queues

Verify Little's Law.

Figure: Illustration of L(t) and W_i (from Banks et al. (2010))

Why it always holds?

$$\begin{split} \widehat{L}(T) &= \tfrac{1}{T} \sum_{n=0}^{\infty} n T_n = \tfrac{1}{T} \times \text{area.} \\ \widehat{\lambda} \widehat{W}(T) &= \tfrac{N(T)}{T} \tfrac{1}{N(T)} \sum_{i=1}^{N(T)} W_i = \tfrac{1}{T} \sum_{i=1}^{N(T)} W_i = \tfrac{1}{T} \times \text{area.} \end{split}$$

So, $\widehat{L}(T)=\widehat{\lambda}\widehat{W}(T)$ always holds.

Theorem 3 (Little's Law – Limit/Expectation Version)

For a stable queue, let λ^* denote the arrival rate or entering rate, then

$$L = \lambda^* W, \quad L_Q = \lambda^* W_Q.$$

Caution: When λ^* is the arrival rate, the time average $(W,\,W_Q)$ is based on all customers (who enters the station and who are lost); When λ^* is the entering rate, the time average is only based on the customers who enters the station.

- Some Remarks:
 - For a customer who is lost (due to the finite capacity), he spends 0 amount of time in the station (or queue).
 - Once we know L, we can compute quantities like W, W_Q, L_Q using Little's Law.

- M/M/1 Queue[†]
 - The interarrival times are iid random variables with $\operatorname{Exp}(\lambda)$ distribution, that is to say, customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with $\mathrm{Exp}(\mu)$ distribution.
 - The customers are served in an FCFS fashion by a single server.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/M/1 queue is stable if and only if $\lambda < \mu$.
 - Due to unlimited capacity, arrival rate = entering rate.
- We now want to compute all the measures P_n , L, W, L_Q and W_Q .

 $^{^\}dagger M/M/1$ Queue \subset Birth and Death Process with Infinite Capacity \subset Continuous-Time Markov Chain.

- Recall that L can be computed via $L = \sum_{n=0}^{\infty} n P_n$, where P_n has several interpretations:
 - Long-run proportion of time that the station contains exactly n customers:
 - Probability that there are exactly n customers in the station as time goes to infinity (or equivalently, in the steady state).
- Define the **state** as the the number of customers in the system.
- The state space diagram is as follows:

Key Observation 1

Rate at which the process leaves state n

= Rate at which the process enters state n.

Heuristic Proof.

- In any time interval, the number of transitions into state n must equal to within 1 the number of transitions out of state n. (Why?)
- Hence, in the long run, the rate into state n must equal the rate out
 of state n.

Single-Station Queues

Key Observation 2

Rate at which the process leaves state $0=P_0\lambda;$ Rate at which the process leaves state $n=P_n(\mu+\lambda),\, n\geq 1;$ Rate at which the process enters state $0=P_1\mu;$ Rate at which the process enters state $n=P_{n-1}\lambda+P_{n+1}\mu,\, n\geq 1.$

Fact

If X_1, \ldots, X_n are independent random variables, and $X_i \sim \operatorname{Exp}(\lambda_i)$, $i=1,\ldots,n$, then $\min\{X_1,\ldots,X_n\} \sim \operatorname{Exp}(\lambda_1+\cdots+\lambda_n).$

Theorem 4 (Limiting Distribution of M/M/1 Queue)

For an M/M/1 queue, when it is stable ($\lambda < \mu$), its limiting (steady-state) distribution is given by

$$P_n = (1 - \rho)\rho^n, \quad n \ge 0,$$

where $\rho := \lambda/\mu < 1$. (ρ is called the *server utilization*.)

Proof. Due to Observations 1 & 2,

Rewriting these equations gives

$$P_0 \lambda = P_1 \mu,$$

 $P_n \lambda = P_{n+1} \mu + (P_{n-1} \lambda - P_n \mu), \quad n \ge 1.$

Recall that

$$P_0 \lambda = P_1 \mu,$$

 $P_n \lambda = P_{n+1} \mu + (P_{n-1} \lambda - P_n \mu), \quad n \ge 1.$

Or, equivalently,

$$\begin{split} P_0\lambda &= P_1\mu, \\ P_1\lambda &= P_2\mu + (P_0\lambda - P_1\mu) = P_2\mu, \\ P_2\lambda &= P_3\mu + (P_1\lambda - P_2\mu) = P_3\mu, \\ P_n\lambda &= P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu) = P_{n+1}\mu, \quad n \geq 1. \end{split}$$

Let
$$\rho\coloneqq\lambda/\mu$$
 (< 1), solving in terms of P_0 yields
$$P_1=P_0\rho,$$

$$P_2=P_1\rho=P_0\rho^2,$$

$$P_n=P_{n-1}\rho=P_0\rho^n,\quad n>1.$$

Since
$$1=\Sigma_{n=0}^{\infty}P_n=P_0\Sigma_{n=0}^{\infty}\rho^n=P_0/(1-\rho)$$
, we have
$$P_0=1-\rho,\quad\text{and}\quad P_n=(1-\rho)\rho^n,\quad n\geq 1.\quad\blacksquare$$

Single-Station Queues

- $L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n (1 \rho) \rho^n = \frac{\rho}{1 \rho}$.
- Using Little's Law, $W=L/\lambda=\frac{1}{\lambda}\frac{\rho}{1-\rho}=\frac{1}{\mu-\lambda}.$
- $L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \sum_{n=1}^{\infty} (n-1)(1-\rho)\rho^n = \frac{\rho^2}{1-\rho}$.
- Using Little's Law, $W_Q=L_Q/\lambda=\frac{1}{\lambda}\frac{\rho^2}{1-\rho}=\frac{1}{\mu}\frac{\rho}{1-\rho}=\frac{\rho}{\mu-\lambda}.$
- Or, $W_Q = W \mathbb{E}[\text{service time}] = \frac{1}{\mu \lambda} \frac{1}{\mu} = \frac{\lambda}{\mu(\mu \lambda)} = \frac{\rho}{\mu \lambda}$.
- Using Little's Law, $L_Q = \lambda W_Q = \lambda \frac{\rho}{\mu \lambda} = \frac{\rho^2}{1 \rho}$.
- Remark: Due to unlimited capacity, arrival rate = entering rate, so the time average (W, W_Q) is based on all customers.
- Note: As $\rho \to 1$, all L, W, L_Q and W_Q tend to ∞ .
- $\mathbb{P}[\text{the server is idle}] = P_0 = 1 \rho.$

- M/M/s Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with $Exp(\mu)$ distribution.
 - There are s parallel servers.
 - The customers form a single queue and get served by the next available server in an ECES fashion.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/M/s queue is stable if and only if $\lambda < s\mu$.
 - Due to unlimited capacity, arrival rate = entering rate.
- M/M/s queue is a generalized version of M/M/1 queue. Let s=1, all results should degenerate to those of M/M/1.

Fall 2019

• The state space diagram is as follows:

Theorem 5 (Limiting Distribution of M/M/s Queue)

For an M/M/s queue, when it is stable ($\lambda < s\mu$), its limiting (steady-state) distribution is given by

$$P_{n} = \left[\sum_{i=0}^{s} \frac{1}{i!} \left(\frac{\lambda}{\mu} \right)^{i} + \frac{s^{s}}{s!} \frac{\rho^{s+1}}{1-\rho} \right]^{-1} \rho_{n} , \quad n \ge 0,$$

where the server utilization $\rho := \lambda/(s\mu) < 1$, and

$$\rho_n := \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n, & \text{if } 0 \le n \le s, \\ \frac{s^s}{s!} \rho^n, & \text{if } n \ge s+1. \end{cases}$$

- $L_Q = \sum_{n=s}^{\infty} (n-s) P_n = \sum_{n=s}^{\infty} (n-s) P_0 \rho_n = \sum_{k=0}^{\infty} k P_0 \rho_{s+k}$ = $\sum_{k=1}^{\infty} k P_0 \rho_s \rho^k = \sum_{k=1}^{\infty} k P_s \rho^k = \frac{P_s \rho}{(1-\rho)^2}$.
- Using Little's Law, $W_Q=L_Q/\lambda=\frac{1}{\lambda}\frac{P_s\rho}{(1-\rho)^2}=\frac{P_s}{s\mu(1-\rho)^2}.$
- $W = W_Q + \mathbb{E}[\text{service time}] = \frac{P_s}{s\mu(1-\rho)^2} + \frac{1}{\mu}.$
- Using Little's Law, $L=\lambda W=\lambda(W_Q+\tfrac{1}{\mu})=L_Q+\tfrac{\lambda}{\mu}=\tfrac{P_s\rho}{(1-\rho)^2}+\tfrac{\lambda}{\mu}.$
- Remark: Due to unlimited capacity, arrival rate = entering rate, so the time average (W, W_Q) is based on all customers.
- Note: As $\rho \to 1$, all L, W, L_Q and W_Q tend to ∞ .

- By letting $s \to \infty$ we get the $M/M/\infty$ queue as a limiting case of the M/M/s queue.
- Note: $M/M/\infty$ queue is always stable! (The *server utilization* is always 0.)
- All the measures can be obtained by letting $s \to \infty$ for those in the case of M/M/s queue. †
- Or, one can still derive P_n via the state space diagram:

Theorem 6 (Limiting Distribution of $M/M/\infty$ Queue)

For an $M/M/\infty$ queue, its limiting (steady-state) distribution is given by

$$P_n = e^{-\lambda/\mu} \frac{(\lambda/\mu)^n}{n!}, \quad n \ge 0.$$

- Note: In steady state, the number of customers in an $M/M/\infty$ station $\sim \mathrm{Poisson}(\lambda/\mu)$.
- Hence, $L=\sum_{n=0}^{\infty}nP_n=\mathbb{E}\left[\text{Poisson RV with mean } \frac{\lambda}{\mu} \right] = \frac{\lambda}{\mu}.$
- Using Little's Law, $W=L/\lambda=\frac{1}{\mu}$.
- $L_Q = 0$, $W_Q = 0$.

- M/M/1/K Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with $\operatorname{Exp}(\mu)$ distribution.
 - The customers are served in an FCFS fashion by a single server.
 - The capacity is K $K \ge 1$, i.e., the maximal number of customers waiting in queue + customers in server $\le K$.
 - A customer who finds the station is full (K customers there) leaves immediately (lost).
 - The entering rate, denoted as λ_e , is smaller than the arrival rate λ .
 - It is always stable (due to the finite capacity).
- In steady state
 - $\mathbb{P}[\mathsf{station} \; \mathsf{is} \; \mathsf{full}] = P_K$.
 - Entering rate $\lambda_e = \lambda(1 P_K)$.

 $^{^{\}dagger}M/M/1/K$ Queue \subset Birth and Death Process with Finite Capacity \subset Continuous-Time Markov Chain.

The state space diagram is as follows:

Theorem 7 (Limiting Distribution of M/M/1/K Queue)

For an M/M/1/K queue, its limiting (steady-state) distribution is given by

$$P_n = \begin{cases} \frac{(1-\rho)\rho^n}{1-\rho^{K+1}}, & \text{if } \rho \neq 1, \\ \frac{1}{K+1}, & \text{if } \rho = 1, \end{cases} 0 \le n \le K,$$

where $\rho := \lambda/(s\mu)$. (ρ is not the server utilization!)

Proof. Due to Observations 1 & 2,

Rewriting these equations gives

$$P_0\lambda = P_1\mu,$$

 $P_n\lambda = P_{n+1}\mu + (P_{n-1}\lambda - P_n\mu), \quad 1 \le n \le K - 1,$
 $P_K\mu = P_{K-1}\lambda.$

Or, equivalently,

$$P_{0}\lambda = P_{1}\mu,$$

$$P_{1}\lambda = P_{2}\mu + (P_{0}\lambda - P_{1}\mu) = P_{2}\mu,$$

$$P_{2}\lambda = P_{3}\mu + (P_{1}\lambda - P_{2}\mu) = P_{3}\mu,$$

$$P_{n}\lambda = P_{n+1}\mu + (P_{n-1}\lambda - P_{n}\mu) = P_{n+1}\mu, \quad 1 \le n \le K - 2,$$

$$P_{K-1}\lambda = P_{K}\mu.$$

Let $\rho \coloneqq \lambda/\mu$, solving in terms of P_0 yields

$$P_1 = P_0 \rho,$$

 $P_2 = P_1 \rho = P_0 \rho^2,$
 $P_n = P_{n-1} \rho = P_0 \rho^n, \quad 1 \le n \le K.$

Since
$$1=\Sigma_{n=0}^K P_n=P_0\Sigma_{n=0}^K \rho^n=\begin{cases} P_0\frac{1-\rho^{K+1}}{1-\rho}, & \text{if } \rho\neq 1,\\ P_0(K+1), & \text{if } \rho=1, \end{cases}$$
 we have, if $\rho\neq 1, \quad P_0=\frac{1-\rho}{1-\rho^{K+1}}, \quad \text{and} \quad P_n=\frac{(1-\rho)\rho^n}{1-\rho^{K+1}}, \quad 1\leq n\leq K;$ if $\rho=1, \quad P_0=\frac{1}{K+1}, \quad \text{and} \quad P_n=\frac{1}{K+1}, \quad 1\leq n\leq K.$

- If $\rho \neq 1$, $L = \sum_{n=0}^{K} n P_n = \sum_{n=0}^{K} n \frac{(1-\rho)\rho^n}{1-\rho^{K+1}} = \frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n \rho^n$ $= \frac{1-\rho}{1-\rho^{K+1}} \frac{\rho (K+1)\rho^{K+1} + K\rho^{K+2}}{(1-\rho)^2} = \frac{\rho}{1-\rho} \frac{1 (K+1)\rho^K + K\rho^{K+1}}{1-\rho^{K+1}}.$
- If $\rho=1$, $L=\sum_{n=0}^K nP_n=\sum_{n=0}^K n\frac{1}{K+1}=\frac{1}{K+1}\frac{(K+1)K}{2}=\frac{K}{2}.$
- $\mathbb{P}[\mathsf{station} \; \mathsf{is} \; \mathsf{full}] = P_K.$
- Entering rate $\lambda_e = \lambda(1 P_K)$.
- The server utilization = $\lambda_e/\mu = \rho(1 P_K)$.
- Note: As $\rho \to \infty$, $L \to K$, $1 P_K \to 0$, $\rho(1 P_K) \to 1$.

- For those entered the station
 - The expected sojourn time $W=L/\lambda_e=\frac{L}{\lambda(1-P_K)}$.
 - The expected waiting time $W_Q=W-rac{1}{\mu}=rac{L}{\lambda(1-P_K)}-rac{1}{\mu}.$
- For ALL the arrivals (those who are lost have 0 sojourn time and waiting time)
 - The expected sojourn time $W' = L/\lambda = (1 P_K)W + 0$.
 - The expected waiting time $W_Q' = (1-P_K)W_Q + 0 = \frac{L}{\lambda} \frac{1-P_K}{\mu}$.
- The expected queue length $L_Q=\lambda_e W_Q=L-\rho(1-P_K)$, or, $=\lambda W_Q'=L-\rho(1-P_K)$.
- As $\rho \to \infty$, $1 P_K \to 0$, $\rho(1 P_K) \to 1$, $L_Q \to L 1$.
 - If μ is fixed and $\lambda \to \infty$: $\lambda(1-P_K) \to \mu$, $W \to \frac{K}{\mu}$, $W_Q \to \frac{K-1}{\mu}$, $W' \to 0$, $W'_Q \to 0$.
 - If λ is fixed and $\mu \to 0$: $\frac{1}{\mu}(1-P_K) \to \frac{1}{\lambda}, \ W \to \infty, \ W_Q \to \infty, \ W' \to \frac{K}{\lambda}, \ W'_Q \to \frac{K-1}{\lambda}.$

- M/M/s/K queue[†] is a generalized version of M/M/1/K queue. $(K \ge s)$
- The state space diagram is as follows:

- Let s=1, it becomes the M/M/1/K queue.
- Let s=K, it becomes the M/M/K/K queue.
- There is no $M/M/\infty/K$ queue!

 $^{^{\}dagger}M/M/1/K$ Queue $\subset M/M/s/K$ Queue \subset Birth and Death Process with Finite Capacity \subset CTMC.

Theorem 8 (Limiting Distribution of M/M/s/K Queue)

For an M/M/s/K queue, its limiting (steady-state) distribution is given by

$$P_n = \left[\sum_{i=0}^s \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^i + \varrho\right]^{-1} \rho_n , \quad 0 \le n \le K,$$

where $\rho \coloneqq \lambda/(s\mu)$, (ρ is not the *server utilization*!) and

$$\varrho \coloneqq \begin{cases} \frac{s^s}{s!} \frac{\rho^{s+1}(1-\rho^{K-s})}{1-\rho}, & \text{if } \rho \neq 1, \\ \frac{s^s}{s!}(K-s), & \text{if } \rho = 1, \end{cases}$$

and

$$\rho_n := \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n, & \text{if } 0 \leq n \leq s, \\ \frac{s^s}{s!} \rho^n, & \text{if } s+1 \leq n \leq K, \ K \geq s+1. \end{cases}$$

• The server utilization = $\lambda_e/(s\mu) = \rho(1 - P_K)$.

Single-Station Queues

- M/G/1 Queue[†]
 - Customers arrive according to a Poisson process with rate λ .
 - The service times are iid random variables with **arbitrary** distribution (mean: $\frac{1}{\mu}$, variance: σ^2).
 - The customers are served in an FCFS fashion by a *single* server.
 - The capacity is unlimited, i.e., waiting space is unlimited.
 - M/G/1 queue is stable if and only if $\lambda < \mu$.
- Let $m^2 \coloneqq \left(\frac{1}{\mu}\right)^2 + \sigma^2$, and the server utilization $\rho \coloneqq \lambda/\mu < 1$.
 - $\mathbb{P}[\mathsf{the}\;\mathsf{server}\;\mathsf{is}\;\mathsf{idle}] = 1 \rho.$
 - $W_Q = \frac{\lambda m^2}{2(1-\rho)}$.
 - $L_Q = \lambda W_Q = \frac{\lambda^2 m^2}{2(1-\rho)}$.
 - $W = W_Q + \frac{1}{\mu} = \frac{\lambda m^2}{2(1-\rho)} + \frac{1}{\mu}$.
 - $L = \lambda W = L_Q + \lambda/\mu = \frac{\lambda^2 m^2}{2(1-\rho)} + \rho.$
- For $M/G/\infty$, the measures are the same as those in $M/M/\infty$.

 $^{^{\}dagger}M/G/1$ gueue has an embedded discrete-time Markov chain.

Queueing Networks

- Queueing Network (multiple-station queueing system)
 - Customers can move from one station to another (for different service), before leaving the system.

Figure: Illustration of Queueing Networks

- Jackson Queueing Network (first identified by Jackson (1963))[†]
 - f 1 The network has J single-station queues.
 - 2 The jth station has s_j servers and a *single* queue.
 - 3 There is unlimited waiting space at each station (infinite capacity).
 - 4 Customers arrive at station j from outside according to a Poisson process with rate λ_j . All arrival processes are independent of each other.
 - **5** The service times at station j are iid random variables with $\text{Exp}(\mu_j)$ distribution.
 - **6** Customers finishing service at station i join the queue (if any) at station j with **routing probability** p_{ij} , or leave the network with probability p_{i0} , independently of each other.
 - A customer finishing service may be routed to the same station (i.e., re-enter).

上海える大学 SHANGHAI JIAO TONG UNIVERSIT

 $^{^\}dagger$ Jackson network is an N-dimensional continuous-time Markov chain.

• The routing probabilities p_{ij} can be put in a matrix form as follows:

$$\boldsymbol{P} \coloneqq \left[\begin{array}{ccccc} p_{11} & p_{12} & p_{13} & \cdots & p_{1J} \\ p_{21} & p_{22} & p_{23} & \cdots & p_{2J} \\ p_{31} & p_{32} & p_{33} & \cdots & p_{3J} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{J1} & p_{J2} & p_{J3} & \cdots & p_{JJ} \end{array} \right].$$

- The matrix P is called the routing matrix.
- Since a customer leaving station i either joints some other station, or leaves, we must have

$$\sum_{j=1}^{J} p_{ij} + p_{i0} = 1, \quad 1 \le i \le J.$$

Example 1: Tandem Queue

• Example 2: General Network

- Recall that customers arrive at station j from outside with rate λ_j .
- Let b_j be the rate of internal arrivals to station j.
- Then the total arrival rate to station j, denoted as a_j , is given by $a_i = \lambda_i + b_i, \quad 1 < j < J.$
- If the stations are all stable
 - The departure rate of customers from station i will be the same as the total arrival rate to station i, namely, a_i .
 - The arrival rate of internal customers from station i to station j is a_ip_{ij} .
- Hence, $b_j = \sum_{i=1}^J a_i p_{ij}, \quad 1 \leq j \leq J.$
- Substituting in the pervious equation, we get the **traffic** equations: $a_i = \lambda_i + \sum_{i=1}^{J} a_i p_{ij}, \quad 1 \leq j \leq J.$

Queueing Networks

• Let $\boldsymbol{a}^{\mathsf{T}} = [a_1 \ a_2 \ \cdots \ a_J]$ and $\boldsymbol{\lambda}^{\mathsf{T}} = [\lambda_1 \ \lambda_2 \ \cdots \ \lambda_J]$, the traffic equations can be written in matrix form as

$$\boldsymbol{a}^\intercal = \boldsymbol{\lambda}^\intercal + \boldsymbol{a}^\intercal \boldsymbol{P}$$
,

or

$$oldsymbol{a}^\intercal(oldsymbol{I}-oldsymbol{P})=oldsymbol{\lambda}^\intercal$$
 ,

where \boldsymbol{I} is the $J \times J$ identity matrix.

• Suppose the matrix $m{I} - m{P}$ is invertible, the above equation has a unique solution given by

$$\boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1}.$$

 The next theorem states the stability condition for Jackson networks in terms of the above solution.

Theorem 9 (Stability of Jackson Networks)

A Jackson network with external arrival rate vector λ and routing matrix P is stable if:

- (1) I P is invertible; and
- (2) $a_i < s_i \mu_i$ for all i = 1, 2, ..., J, where a_i is given by the traffic equations.
- Example 1: Tandem Queue

$$\boldsymbol{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{\lambda} = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix}, \quad \boldsymbol{a}^{\mathsf{T}} = \boldsymbol{\lambda}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{P})^{-1} = [10 \ 10 \ 10].$$
 Stable.

Example 2: General Network

$$\boldsymbol{\lambda} = \begin{bmatrix} 8 \\ 1 \\ 3 \end{bmatrix}, \quad \boldsymbol{a}^{\intercal} = \boldsymbol{\lambda}^{\intercal} (\boldsymbol{I} - \boldsymbol{P})^{-1} = [8\ 10.7\ 9.9] \Rightarrow \mathsf{Stable}.$$

If λ_2 is increased to 4,

$$\boldsymbol{\lambda} = \begin{bmatrix} 8 \\ 4 \\ 3 \end{bmatrix}, \quad \boldsymbol{a}^\intercal = \boldsymbol{\lambda}^\intercal (\boldsymbol{I} - \boldsymbol{P})^{-1} = [8 \ 14.6 \ 11.6] \Rightarrow \mathsf{Unstable}.$$

- Let $L_j(t)$ be the number of customers in the jth station in a Jackson network at time t.
- Then the state of the network at time t is given by $[L_1(t), L_2(t), \dots, L_J(t)].$
- When the Jackson network is stable, the limiting distribution of the sate of the network is

$$P(n_1, n_2, ..., n_J)$$

$$= \lim_{t \to \infty} \mathbb{P}\{L_1(t) = n_1, L_2(t) = n_2, ..., L_J(t) = n_J.\}$$

• It is a joint probability.

Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) distribution is given by

$$P(n_1, n_2, \dots, n_J) = P_1(n_1)P_2(n_2)\cdots P_J(n_J),$$

for $n_j=0,1,2,\ldots$ and $j=1,2,\ldots,J$, where $P_j(n)$ is the limiting probability that there are n customers in an $M/M/s_j$ queue with arrival rate a_j and service rate μ_j .

- The limiting **joint** distribution of $[L_1(t), \ldots, L_J(t)]$ is a **product** of the limiting **marginal** distribution of $L_j(t)$, $j=1,\ldots,J$. \Rightarrow Limiting behavior of all stations are independent of each other.
- The limiting distribution of station j is the same as that in an **isolated** $M/M/s_j$ queue with arrival rate a_j and service rate μ_j . (a_j 's are solved from the **traffic equations**.)

