Introdução a Lógica para a programação

Marcio Michelluzzi

Aula I: Começando do Começo

- A palavra "computador" vem do verbo "computar" que, por sua vez, significa "calcular".
- Sendo assim, podemos pensar que a criação de computadores começa na idade antiga, já que a relação de contar já intrigava os homens.

Dessa forma, uma das primeiras máquinas de computar foi o "ábaco", instrumento mecânico de origem chinesa criado no século V a.C.

Por volta de 1640, o matemático francês Blaise Pascal inventa a primeira máquina de calcular automática. Essa máquina foi sendo aperfeiçoada nas décadas seguintes até chegar no conceito que conhecemos hoje.

- A primeira calculadora de bolso capaz de efetuar os quatro principais cálculos matemáticos, foi criada por Gottfried Wilhelm Leibniz.
- Esse matemático alemão desenvolveu o primeiro sistema de numeração binário moderno que ficou conhecido com "Roda de Leibniz".

Concebida em 1673 mas construída apenas em 1694, a máquina de leibniz foi a primeira máquina feita com o propósito de multiplicar

- A primeira máquina mecânica programável foi introduzida pelo matemático francês Joseph-Marie Jacquard. Tratava-se de um tipo de tear capaz de controlar a confecção dos tecidos através de cartões perfurados.
- George Boole (1815-1864) foi um dos fundadores da lógica matemática. Essa nova área da matemática, se tornou uma poderosa ferramenta no projeto e estudo de circuitos eletrônicos e arquitetura de computadores.

- ▶ Já no século XIX, o matemático inglês Charles Babbage criou uma máquina analítica que, a grosso modo, é comparada com o computador atual com memória e programas.
- Assim, as máquinas de computar foram cada vez mais incluindo a variedade de cálculos matemáticos (adição, subtração, divisão, multiplicação, raiz quadrada, logaritmos, etc).

A Histórica Evolução da Computação Moderna!

A Histórica Evolução da Computação Moderna!

- O computador, tal qual conhecemos hoje, passou por diversas transformações e foi se aperfeiçoando ao longo do tempo, acompanhando o avanço das áreas da matemática, engenharia, eletrônica. É por isso que não existe somente um inventor.
- De acordo com os sistemas e ferramentas utilizados, a história da computação está dividida em **quatro períodos**.

Primeira Geração (1951–1959)

- Os computadores de primeira geração funcionavam por meio de circuitos e válvulas eletrônicas. Possuíam o uso restrito, além de serem imensos e consumirem muita energia.
- ▶ Um exemplo é o ENIAC (*Eletronic Numerical Integrator and Computer*) que consumia cerca de 200 quilowatts e possuía 19.000 válvulas.

Primeira Geração (1951–1959)

Como vocês podem reparar na foto acima, o ENIAC era gigantesco comparado aos nossos atuais computadores.

Segunda Geração (1959–1965)

Ainda com dimensões muito grandes, os computadores da segunda geração funcionavam por meio de transistores, os quais substituíram as válvulas que eram maiores e mais lentas. Nesse período já começam a se espalhar o uso comercial.

Segunda Geração (1959–1965)

Acima vemos exemplares de Computadores da IBM de segunda Geração, sendo um deles o IBM 1401.

Terceira Geração (1965–1975)

- Os computadores da terceira geração funcionavam por circuitos integrados.
 Esses substituíram os transistores e já apresentavam uma dimensão menor e maior capacidade de processamento.
- Foi nesse período que os chips foram criados e a utilização de computadores pessoais começou.

Terceira Geração (1965–1975)

Foi nesse período que os chips foram criados e a utilização de computadores pessoais começou.

Quarta Geração (1975-até os dias atuais)

- Com o desenvolvimento da tecnologia da informação, os computadores diminuem de tamanho, aumentam a velocidade e capacidade de processamento de dados. São incluídos os microprocessadores com gasto cada vez menor de energia.
- Nesse período, mais precisamente a partir da década de 90, há uma grande expansão dos computadores pessoais. Após a virada do milênio os computadores continuaram a seguir a tendência de miniaturização de seus componentes e, tornando dessa forma os computadores mais maleáveis e práticos nas tarefas diárias. Além disso, há um investimento maciço em seu design.

Quarta Geração (1975-até os dias atuais)

Além disso, surgem os softwares integrados e a partir da virada do milênio, começam a surgir os computadores de mão. Ou seja, os smartphones, iPod, iPad e tablets, que incluem conexão móvel com navegação na web.

A lógica no mundo

A lógica no mundo

Não podemos dizer que a lógica em si foi criada, mas sim descoberta. Desde que existe racionalidade, a lógica existe.

a área da filosofia que estuda a **validade** formal das proposições linguísticas e matemáticas.

conjunto
de **regras racionais** para a
obtenção de um
conhecimento

Quem a descobriu foi Aristóteles.

A lógica aristotélica, também chamada de lógica clássica, sustenta-se com base em princípios racionais e nos silogismos (argumentações válidas).

A lógica no mundo

A lógica, enquanto **propriedade linguística**, não se preocupa com a veracidade dos enunciados, mas com a validade formal lógica, ou seja, com a possibilidade de sentido da frase dada por sua estrutura.

► A lógica consiste na construção racional e coerente do raciocínio.

Se a estrutura de uma frase é correta, isto é, se ela segue um **padrão formal correto**, podemos dizer que a frase é logicamente válida.

A lógica nos computadores

- ► A lógica só passou a ser uma área da Matemática a partir dos trabalhos de George Boole (1815-1864) e Augustus de Morgan (1806-1871), quando eles apresentaram os fundamentos da lógica algébrica.
- Isso possibilitou o aprofundamento na programação, o que, por sua vez, forneceu bases para a criação da informática e dos computadores.

Isto se mostrou mais difícil que o esperado em função da complexidade do raciocínio humano.

- Nas décadas de 50 e 60, pesquisadores previram que quando o conhecimento humano pudesse ser expresso usando lógica com notação matemática, supunham que seria possível criar uma máquina com a capacidade de pensar, ou seja, inteligência artificial.
- Na lógica simbólica e lógica matemática, demonstrações feitas por humanos podem ser auxiliadas por computador. Usando prova automática de teoremas os computadores podem achar e verificar demonstrações.
- A lógica está diretamente relacionada tanto com a construção de softwares como com a construção de hardwares

	Hardware	Software
Definição	São os elementos físicos de um computador ou eletrônico.	São os programas ou sistemas que irão fazer o computador funcionar e rodar programas.
Natureza	Física.	Lógica.
Função	O hardware serve como um sistema de entrega do software.	O software é utilizado para executar uma tarefa específica. Para isso, ele fornece um conjunto ordenado de instruções ao hardware.
Divisão	Possui quatro categorias principais: dispositivos de entrada, saída, componentes internos e dispositivos de armazenamento secundários.	Geralmente dividido em software de sistema e software de aplicativo.
Durabilidade	Tende a estragar com o tempo.	Não estraga com o tempo, porém pode se tornar desatualizado.

	Hardware	Software
Desenvolvimen to	É criado utilizando materiais eletrônicos.	Os softwares são criados por meio de códigos e linguagem de programação.
Inicialização	Começa a funcionar no momento que o software é carregado.	Deve ser instalado em um computador para começar a funcionar.
Substituição	Quando danificado, as peças podem ser substituídas por outras.	Pode ser reinstalado, usando uma cópia de <i>backup</i> .
Vírus	Não consegue ser atacado diretamente por vírus.	Pode ser atacado por vírus.
Falha	A falha do hardware é aleatória, tendendo a aumentar de acordo com o tempo.	Sistemática, e não muda de acordo com o tempo.
Exemplos	Monitor, placa de vídeo, processador, mouse, disco rígido.	Sistemas operacionais, aplicativos, programas de edição.

Funcionam da mesma forma, seguem uma mesma arquitetura

Processador - Circuito integrado que realiza as funções de cálculo e tomada de decisão de um computador (executa comandos).

Placa Mãe - Parte do computador responsável por conectar e interligar todos os componentes do computador

Memórias Primárias (RAM) – Responsáveis por armazenar temporariamente os dados que estão em uso nesse momento. (Memórias geralmente voláteis)

Memórias Secundárias (HD) – Responsáveis por armazenar os dados por tempo indeterminado. (Memórias geralmente não voláteis)

Software

Software

- Software é o conjunto de instruções dadas a um computador, de modo que ele execute determinada tarefa. É a parte intangível de uma máquina, desenvolvida por meio de códigos e linguagem de programação.
- Por exemplo, quando ligamos um computador, é o software que transmite as informações necessárias para que o hardware funcione. E cada parte do hardware é controlada por um software específico.

Tipos de software

- Os softwares de sistema são os que operam o hardware do computador de forma direta. Entre eles estão o sistema operacional, responsável por executar o gerenciamento de tarefas, de memória, de arquivos, entre outros.
- Os drivers de dispositivos, que controlam e monitoram o funcionamento de dispositivos específicos, também são softwares de sistema.
- ▶ Já os softwares de aplicativo são os que chegam ao usuário final, como editores de imagem, processadores de textos, entre outros.

Linguagens de Programação

- Se o software é um conjunto de instruções, é papel do programador montar essas instruções e para tal ele utiliza o que é conhecido como linguagem de programação.
- Existem diversas linguagens de programação, cada qual com suas características, vantagens e desvantagens.
- Uma das classificações para linguagens de programação, divide-as em compiladas e interpretadas

Linguagens de Programação compiladas

É uma linguagem de programação em que o código fonte, nessa linguagem, é executado diretamente pelo sistema operacional ou pelo processador, após ser traduzido por meio de um processo chamado compilação, usando um programa de computador chamado compilador.

Linguagem de máquina, assembly e assembler

- Assembly: é uma linguagem de programação composta por comandos simples.
 Escrevendo código Assembly você sabe exatamente o que o processador esta fazendo;
- Assembler: é um programa que lê o arquivo contendo os comandos simples da linguagem Assembly e transforma em linguagem de máquina.
- Linguagem de máquina: é a única coisa que o processador consegue interpretar, e são apenas códigos, não da para ser lido por humanos

Linguagem de máquina, assembly e assembler

Código assembly

Código de máquina

```
ORG 100h
section .text
   MOV AH, 40h
                       B4 40 BB 01 00 B9 0B 00
   MOV BX, 1
   MOV CX, 11
                       BA 14 01 CD 21 B0 01 B4
   MOV DX, msg
   INT 21h
                        4C CD 21 00 68 65 6C 6C
   MOV AL, 1
                       6F 20 77 6F 72 6C 64
   MOV AH, 4Ch
   INT 21h
section .data
   msg db "hello world"
```

Linguagens de Programação interpretadas

▶ É uma linguagem de programação em que o código fonte nessa linguagem é executado por um programa de computador chamado interpretador, que em seguida é executado pelo sistema operacional ou processador

Linguagens de alto e baixo nível

Outra classificação das linguagens de programação as divide em linguagens de alto nível e linguagens de baixo nível.

Linguagem de alto nível

```
<u>inicio</u>
// Seção de Comandos
escreva("hello world")
fimalgoritmo
```

Linguagem de baixo nível

```
; Hello World for Intel Assembler (MSDOS)
mov ax,cs
mov ds,ax
mov ah,9
mov dx, offset Hello
int 21h
xor ax,ax
int 21h
Hello:
   db "Hello World!",13,10,"$"
```

Linguagens de compiladas X interpretadas

Como tudo isso funciona: Hardware X Software

Hardware – Execução de um software

Uso da lógica na solução de problemas

Uso da lógica na solução de problemas

- Partindo-se do princípio que muitas das nossas tarefas diárias são uma:
 - sequência ações que
 - obedecem uma determinada ordem, de um
 - **estado inicial**, através de um
 - período de tempo finito e que nesse período produzimos
 - resultados esperados e bem definidos

Usando conceitos da **lógica formal**

Usando conceitos da **lógica algébrica**

Lógica formal

- Ferramenta para desenvolver cadeia de **pensamentos**, que permitem reconhecer contradições e eliminar possibilidades de erros.
- Visa desenvolver a capacidade de discernimento: identificar raciocínios validos e não válidos
- Baseado em:

Lógica formal

- Exemplos de proposições:
 - ► A lua é o único satélite natural da terra;
 - ► Florianópolis é a capital de São Paulo;
 - ▶ O Brasil fica no hemisfério sul;
- Exemplos de não proposições:
 - Tenha um bom dia;
 - O dia está bonito hoje;

Princípios da lógica formal

- Nem todo raciocínio é lógico. Para ser lógico é necessário 3 princípios:
- Principio da identidade: Cada coisa é igual a si mesma;
 - Ex: Cadeira é uma cadeira
- Principio da não contradição: Uma proposição é verdadeira ou falsa, mas nunca verdadeira e falsa ao mesmo tempo;
 - Ex: Pedro é médico
- Principio do 3° excluído: Uma proposição é verdadeira ou falsa, não há uma terceira opção.
 - Ex: Maria está grávida

Álgebra booleana / Lógica matemática

- Desenvolveu-se no século XIX, sobretudo por meio das idéias de George Boole, criador da Álgebra Booleana, que utiliza símbolos e operações algébricas para representar proposições e suas inter-relações.
- A lógica matemática (ou álgebra booleana), trata do estudo das sentenças declarativas também conhecidas como proposições.
- Diz-se então que uma proposição verdadeira possui valor lógico V (Verdade) e uma proposição falsa possui valor lógico F (Falso).

Leis fundamentais

- Lei do meio excluído
 - ▶ Uma proposição é falsa (F) ou verdadeira (V): não há meio termo
- Lei da contradição
 - ▶ Uma proposição não pode ser simultaneamente, V e F.
- Lei da funcionalidade
 - O valor lógico (V ou F) de uma proposição composta é unicamente determinada pelos valores lógicos de suas proposições constituintes.

Tabela verdade

- A tabela verdade é uma estrutura lógica que facilita o raciocínio humano. É utilizada por programadores como forma de facilitar a construção de algoritmos de programação .
- O nome "tabela verdade" é apenas intuitivo. Ela é muito útil para representar as proposições e combinações entre elas (negação , conjunção e disjunção).
- Para todos os exemplos a seguir, vamos considerar duas proposições, p e q. Para cada operação, será mostrada a tabela com explicações e exemplos.

Operadores

- Negação
 - O operador de negação quando aplicado a uma proposição faz com que o valor desta proposição inverta;
- Conjunção
 - ▶ O operador de conjunção requer que todas as partes de uma proposição composta sejam verdadeiros para que o resultado final da proposição seja verdadeiro. Caso haja uma falsidade, a sentença como um todo torna-se falsa;
- Disjunção
 - O operador de disjunção requer que apenas uma das partes da proposição composta seja verdadeira para que o resultado final da proposição composta seja verdadeiro.

Tabelas verdade usando os operadores lógicos

Negação

Р	~P
V	F
F	V

Conjunção

Р	Q	PeQ
V	V	V
V	F	F
F	V	F
F	F	F

Disjunção

Р	Q	P ou Q
V	V	V
V	F	V
F	V	V
F	F	F

Algoritmos

Algoritmo

 Conjunto das regras e procedimentos lógicos perfeitamente definidos que levam à solução de um problema em um número finito de etapas.

> Bem definido: os passos devem ser definidos de modo a serem entendidos, não podem haver ambiguidades.

Finito: deve eventualmente resolver o problema. Deve ter um início e um fim.

Completo: deve prever todas as coisas que são necessárias para resolver o problema

Exemplo

IMPORTANTE

- A ordem lógica da execução das tarefas é importante;
- Todo algoritmo tem inicio e fim;
- Um algoritmo tem que ser completo;
- Um algoritmo deve ter alto índice de detalhamento;
- Cada tarefa ou etapa é chamado de instrução;

Resolução de problemas

Problema

Solução do problema em forma de algoritmo

Codificação em uma linguagem

Solução como programa de computador

Resolução de problemas

A melhor codificação será alcançada quanto melhor for o algoritmo que representa seu problema.

Se você passar direto do problema para a codificação, sem a solução em forma de algoritmos, certamente estará criando um outro problema e, nesse caso, você terá dois problemas para resolver

o segundo é o problema criado por você mesmo na codificação em uma linguagem de programação, onde você gastará horas tentando corrigir e fazer com que o mesmo resolva o seu problema inicial.

o primeiro e o próprio problema inicial que você gostaria de estar resolvendo Formas de representação de um

algoritmo

Fluxograma

É uma representação gráfica de algoritmos onde formas geométricas diferentes implicam ações (instruções, comandos) distintos. Tal propriedade facilita o entendimento das idéias contidas nos algoritmos e justifica sua popularidade.

Fluxograma

Regras para a construção do algoritmo

- Usar somente um verbo por frase:
 - Imaginar que você esta desenvolvendo um algoritmo para pessoas que não trabalham com informática;
 - Usar frases curtas e simples;
- Ser objetivo:
 - Procurar usar palavras que não tenham sentido dúbio.

Fases para a construção do algoritmo

Ao montar um algoritmo, precisamos primeiro dividir o problema apresentado em três fases fundamentais:

Exercícios

- Faça um algoritmo que receba dois números e ao final mostre o resultado da soma dos dois números lidos;
- ► Faça um algoritmo para informar à Joãozinho se ele foi aprovado na matéria de Lógica para programação. Joãozinho fez 3 provas e a média necessária para ser aprovado é de 7;
- Faça um algoritmo para preparar um macarrão instantâneo. Parta do principio que você está na cozinha e deve prepará-lo e servi-lo.
- Escreva um algoritmo para determinar o consumo médio de um automóvel sendo fornecida a distância total percorrida pelo automóvel e o total de combustível gasto;
- Faça um algoritmo para realizar a tarefa de tomar banho;