~ Seminar 3 ~

Automatul minimal (metoda 1: cu teorema Myhill-Nerode)

Pentru explicații și exemplu → vezi CURS 5

Automatul minimal (metoda 2: cu partiționarea mulțimii stărilor)

Se pornește de la un AFD <u>complet definit</u> (adică pentru orice stare din mulțimea Q și pentru orice caracter din alfabetul Σ , funcția δ este definită), fără stări inaccesibile. Se cere un AFD echivalent (care acceptă același limbaj), care să aibă număr minim de stări.

Ideea algoritmului de minimizare a unui AFD este de a găsi acele stări care au comportament echivalent, pentru a le grupa și a obține o unică stare nouă în locul acestora.

- Două stări sunt "**echivalente**" dacă pentru orice cuvânt am alege, plecând din cele două stări, fie ajungem în două stări finale, fie ajungem în două stări nefinale.

$$\forall p, q \in Q, p \equiv q \Leftrightarrow [\forall w \in \Sigma^*, \delta(p, w) \in F \leftrightarrow \delta(q, w) \in F]$$

- Două stări sunt "**separabile**" dacă există un cuvânt pentru care plecând din cele două stări ajungem într-o stare finală și într-una nefinală.

$$\forall p, q \in Q, p \neq_{w} q \Leftrightarrow [\exists w \in \Sigma^{*}, \delta(p, w) \in F \leftrightarrow \delta(q, w) \notin F]$$

Algoritmul de minimizare a unui AFD (cu partiționarea mulțimii Q a stărilor)

Ideea algoritmului este de a împărți mulțimea Q în partiții din ce în ce mai mici (pe măsură ce descoperim că două stări din *aceeași* partiție sunt separabile, le vom pune în partiții *diferite*), astfel încât la final orice partiție să conțină doar stări echivalente între ele.

Pas 0: Împărțim mulțimea Q în două partiții, una care conține stările nefinale $(A_0 = Q \setminus F)$ și una care conține stările finale $(B_0 = F)$. Orice stare din A_0 este separabilă de orice stare din B_0 prin cuvântul λ de lungime 0.

Pas $k \in \{1, 2, ...\}$:

- a) În cadrul fiecărei partiții X_{k-1} (cu $|X_{k-1}| \ge 2$, $X \in \{A, B, C, ...\}$), verificăm pentru orice pereche de două stări $(q_i \in X_{k-1} \text{ si } q_j \in X_{k-1})$ dacă sunt separabile, adică dacă există vreo literă α din alfabetul Σ pentru care $\delta(q_i, \alpha) \in Y_{k-1}$ și $\delta(q_j, \alpha) \in Z_{k-1}$, cu $Y_{k-1} \ne Z_{k-1}$ (adică tranzițiile de la cele două stări q_i și q_j , cu o aceeași literă α , duc spre stări aflate deja (la pasul k-1) în partiții diferite).
- \rightarrow Dacă duc către aceeași partiție $(Y_{k-1} = Z_{k-1})$, atunci stările q_i și q_j vor rămâne la pasul k în aceeași partiție T_k , pentru că $p \hat{a} n \check{a} a c u m$ (pasul k) sunt echivalente (pentru orice cuvânt $\forall w \in \Sigma^*$, cu $0 \le |w| \le k$).
- \rightarrow Iar dacă duc spre partiții diferite $(Y_{k-1} \neq Z_{k-1})$ atunci vom separa stările q_i și q_j în partiții diferite S_k și T_k , cu $S_k \neq T_k$ (există un cuvânt de lungime k, având ultima literă α , pentru care stările q_i și q_j sunt separabile).
- **b**) Dacă la **pasul k, a**) s-a modificat vreo partiție, continuăm cu **pasul k+1, a**). Altfel, algoritmul se oprește și în cadrul fiecărei partiții X_k avem doar stări echivalente între ele.

Atenție! La pasul k a) nu verificăm niciodată două stări aflate deja în partiții diferite (știm deja că stările sunt separabile), ci doar pe cele aflate în *aceeași* partiție.

Întrebări:

- (1) Dacă AFD-ul dat era deja minimal, în ce situatie vom ajunge la finalul algoritmului?
- (2) Care este valoarea maximă la care poate ajunge k? (Adică maxim câți pași putem avea?)

Exemplu: Să se minimizeze următorul AFD.

Fie automatul AFD complet definit din desen. Se cere automatul minimal echivalent cu el.

Pas 0:

Orice stare nefinală este separabilă prin λ de orice stare finală.

Deci împărțim stările din mulțimea Q în cele două partiții inițiale, A₀ și B₀.

Apoi în interiorul tabelului cu tranziții, pentru fiecare stare destinație scriem din ce partiție de la pasul curent face parte.

Partițiile	δ	a	b
	q_0	$q_1 \in A_0$	$q_3 \in A_0$
	q_1	$q_3 \in A_0$	$q_2 \in A_0$
$\mathbf{A_0} =$	q_2	$q_3 \in A_0$	$q_2 \in A_0$
$\mathbf{Q} \setminus \mathbf{F}$	q_3	$q_6 \in B_0$	$q_5 \in A_0$
	q_4	$q_6 \in B_0$	$q_5 \in A_0$
	q_5	$q_6 \in B_0$	$q_2 \in A_0$
$\mathbf{B}_0 = \mathbf{F}$	\overline{q}_6	$q_4 \in A_0$	$q_5 \in A_0$

Obs: La fiecare pas k o să redenumim partițiile Ak, Bk, Ck, etc.

Pas k = 1:

- \rightarrow Verificăm toate perechile de stări aflate în A_0 și observăm că stările din $\{q_0, q_1, q_2\}$ sunt separabile pe coloana literei "a" de cele din $\{q_3, q_4, q_5\}$, pentru că tranzițiile primelor ajung cu "a" în A_0 , iar pentru celelalte tot cu "a" ajung în B_0 .
- → Partiția B₀ conține o singură stare, deci aici nu avem ce compara.

Partițiile	δ	a	b
	q_0	$q_1 \in A_1$	$q_3 \in B_1$
$\mathbf{A_1}$	q_1	$q_3 \in B_1$	$q_2 \in A_1$
	q_2	$q_3 \in B_1$	$q_2 \in A_1$
B ₁	q_3	$q_6 \in C_1$	$q_5 \in B_1$
	q_4	$q_6 \in C_1$	$q_5 \in B_1$
	q_5	$q_6 \in C_1$	$q_2 \in A_1$
C_1	\overline{q}_6	$q_4 \in B_1$	$q_5 \in B_1$

Pas k = 2:

- \rightarrow Verificăm toate perechile de stări aflate în A_1 și observăm că starea q_0 este separabilă de stările din $\{q_1, q_2\}$ (atât pe coloana "a", cât și pe coloana "b").
- \rightarrow Verificăm toate perechile de stări aflate în B_1 și observăm că starea q_5 este separabilă de stările din $\{q_3, q_4\}$ (pe coloana "b").
- → Partiția C₁ conține o singură stare, deci aici nu avem ce compara.

Partițiile	δ	a	b
\mathbf{A}_2	q_0	$q_1 \in B_2$	$q_3 \in C_2$
\mathbf{B}_2	q_1	$q_3 \in C_2$	$q_2 \in B_2$
	q_2	$q_3 \in C_2$	$q_2 \in B_2$
$\mathbf{C_2}$	q_3	$q_6 \in E_2$	$q_5 \in D_2$
	q_4	$q_6 \in E_2$	$q_5 \in D_2$
\mathbf{D}_2	q_5	$q_6 \in E_2$	$q_2 \in B_2$
\mathbf{E}_2	\overline{q}_6	$q_4 \in C_2$	$q_5 \in D_2$

Pas k = 3:

- \rightarrow Verificăm perechea de stări din partiția B_2 și observăm că q_1 și q_2 rămân echivalente (pentru fiecare coloană în parte, cele două stări din pereche duc către aceeași partiție).
- \rightarrow Verificăm perechea de stări din partiția C_2 și observăm că q_3 și q_4 rămân echivalente (pentru fiecare coloană în parte, cele două stări din pereche duc către aceeași partiție).
- → Partițiile A₂, D₂ și E₂ conțin fiecare câte o singură stare, deci aici nu avem ce compara.

Nicio partiție nu s-a mai modificat, deci algoritmul se termină cu concluzia stărilor echivalente: $q_1 \equiv q_2$ și $q_3 \equiv q_4$.

Automatul AFD minimal obținut va avea $Q = \{q_0, q_{12}, q_{34}, q_5, q_6\}$ și $F = \{q_6\}$. Tranzițiile le desenăm conform automatului inițial, dar ținând cont de această grupare a stărilor.

EXERCIȚII: Să se minimizeze următoarele AFD-uri.

Expresii regulate

Se numește familia expresiilor regulate peste Σ și se notează REX(Σ) mulțimea de cuvinte peste alfabetul $\Sigma \cup \{(,),+,\cdot,*,\varnothing,\lambda\}$ definită recursiv astfel:

- i) $\emptyset, \lambda \in REX$; $a \in REX$ pentru $\forall a \in \Sigma$
- ii) $e_1, e_2 \in REX \Rightarrow (e_1 + e_2) \in REX$
- iii) $e_1, e_2 \in REX \Rightarrow (e_1 \cdot e_2) \in REX$
- iv) $e \in REX \Rightarrow (e^*) \in REX$

Precedența operațiilor $*, \cdot, +$

Obs: Atenție la ordinea în care se evaluează operațiile: întâi stelarea, apoi concatenarea și apoi reuniunea. (Dacă vreți să fiți siguri că nu le încurcați, puteți să faceți o analogie cu operațiile aritmetice, unde se evaluează întâi ridicarea la putere, apoi înmulțirea și apoi adunarea.)

Operații cu limbaje

Reuniune $L = L_1 \bigcup L_2$

 $L = \{w \mid w \in L_1 \ sau \ w \in L_2\}$

Exemplu:

 $L_1 = \{a, ab, abc\}$

 $L_2 = \{a, bd, cd\}$

 \rightarrow L = {a, ab, abc, bd, cd}

Concatenare $L = L_1 \cdot L_2$

$$L = \{ w_i w_i \mid w_i \in L_1 \text{ si } w_i \in L_2 \}$$

Obs: Atentie, concatenarea NU este comutativă!

Exemplu:

 $L_1 = \{a, ab, abc\}$

 $L_2 = \{a, bd, cd\}$

 \rightarrow L = {aa, abd, acd, aba, abbd, abcd, abca, abcbd, abccd}

Stelare
$$L = L_1^* = \bigcup_{n \geq 0} (L_1^n)$$

 $L_1^n = \{w_1w_2...w_n \mid w_i \in L_1 \ pentru \ orice \ 1 \leq i \leq n\}$

Exemplu:

 $L_1 = \{a, ab, abc\}$

 \rightarrow $(L_1)^* = \{\lambda ; a, ab, abc; aa, aab, aabc, aba, abab, ababc, abca, abcab, abcabc; ... \}$

Obs: Cuvântul vid λ va aparține limbajului stelat, indiferent dacă înainte aparținea sau nu limbajului inițial.

Ridicare la putere nenulă $L = L_1^+ = \bigcup_{n > 1} (L_1^n)$

La fel ca la stelare, doar că nu mai există cuvântul vid. $L^+ = L^* \setminus \{\lambda\}$

Obs: Atenție la ridicarea la putere a cuvintelor! (Să nu distribuiți puterea ca la înmulțire, ci concatenați cuvântul cu el însuși de câte ori spune puterea.)

$$(abc)^2 = abcabc$$
 ; $(abc)^2 \neq aabbcc = a^2b^2c^2$

Transformarea expresie regulată → automat_finit

Expresie regulată	Limbaj	Automat finit
Ø	Ø	$Q = \{q_0\}, F = \varnothing, \delta = \varnothing$
λ	{λ}	$Q = \{q_0\}, F = \{q_0\}, \delta = \varnothing$
a	$\{a\}, a \in \Sigma$	$Q = \{q_0, q_1\}, F = \{q_1\}, \delta(q_0, a) = q_1$
$e_1 + e_2$	$L(e_1+e_2)$	$Q = Q_1 \cup Q_2 \cup \{q_0\}; F = F_1 \cup F_2; V = V_1 \cup V_2;$
	$=L(e_1)\cup L(e_2)$	$\delta = \delta_1 \cup \delta_2 \cup \{\delta(q_0, \lambda) = \{q_{01}, q_{02}\}\}\$
0.0	$L(e_1 \cdot e_2)$	$Q = Q_1 \cup Q_2, q_0 = q_{01}; F = F_2; V = V_1 \cup V_2;$
$e_1 \cdot e_2$	$=L(e_1)\cdot L(e_2)$	$\delta = \delta_1 \cup \delta_2 \cup \{\delta(q_{f1}, \lambda) = q_{02}, pentru \forall q_{f1} \in F_1\}$
$(e_1)^*$	$L(e_1^*) = (L(e_1))^*$	$Q = Q_1 \cup \{q_0\}; F = \{q_0\}; V = V_1;$
		$\delta = \delta_1 \cup \{\delta(q_0, \lambda) = q_{01}\} \cup \{\delta(q_{f1}, \lambda) = q_0, pentru \forall q_{f1} \in F_1\}$

Descrierea în cuvinte a ultimelor trei linii ale tabelului o găsiți la secțiunea "compunerea automatelor finite" de mai jos.

Obs: La construirea automatelor compuse se ține cont de precedența operațiilor (întâi stelarea, apoi concatenarea, apoi reuniunea) și de parantezele din expresie.

"Compunerea" automatelor finite

Reuniune

Dacă avem deja construite două automate finite (având stările inițiale q_{01} și q_{02} și mulțimile stărilor finale F1 și F2) care acceptă respectiv limbajele L1 și L2 și dorim să obținem un automat finit care să accepte limbajul $L = L_1 \bigcup L_2$:

- introducem o nouă stare q₀ care va fi noua stare inițială
- adăugăm două λ-tranziții de la q₀ spre q₀₁ și de la q₀ spre q₀₂
- noua mulțime de stări finale va fi $F = F_1 \bigcup F_2$

Concatenare

Dacă avem deja construite două automate finite (având stările inițiale q_{01} și q_{02} și mulțimile stărilor finale F1 și F2) care acceptă respectiv limbajele L1 și L2 și dorim să obținem un automat finit care să accepte limbajul $L = L_1 \cdot L_2$:

- noua stare inițială va fi q01, starea inițială a primului automat
- adăugăm λ-tranziții de la fiecare stare finală din F1 spre q₀₂
- noua mulțime de stări finale va fi F = F2

Stelare

Dacă avem deja construit un automat finit (având starea inițială q_{01} și mulțimea stărilor finale F1) care acceptă limbajul L1 și dorim să obținem un automat finit care să accepte limbajul $L = L_1^*$:

- introducem o nouă stare q₀ care va fi noua stare inițială
- adăugăm o λ-tranziție de la q₀ spre q₀₁
- adăugăm λ-tranziții de la fiecare stare finală din F1 spre q₀
- noua mulțime de stări finale va fi F = $\{q_0\}$ (sau putem lăsa $F = \{q_0\} \bigcup F_1$)

EX_4: Desenați 3 automate finite pentru $L_1 = a^*$, $L_2 = bc^*$, $L_3 = ac$, apoi folosind algoritmii pentru reuniune, concatenare, stelare și ținând cont de paranteze și de ordinea operațiilor, desenați automatul pentru $L_4 = (a^* + bc^*) \cdot (ac)^* = (L_1 + L_2) \cdot (L_3)^*$.

Transformarea automat_finit → expresie_regulată

Se numește AFE (automat finit extins), $M=(Q,\Sigma,et,q_0,F)$, unde, la fel ca la celelalte automate finite, Q este mulțimea stărilor, Σ este alfabetul, q_0 este starea inițială, F este mulțimea stărilor finale. Aici avem funcția de etichetare $et: Q \times Q \to REX(\Sigma)$.

Notăm et(p,q) prin e_{pq} .

Ideea algoritmului este de a transforma automatul finit într-un automat finit extins, și apoi a elimina una câte una stările până ajungem la o expresie regulată echivalentă cu automatul inițial.

Pas 1: Transformăm automatul finit dat într-un AFE: dacă de la starea q_x către starea q_y există *mai multe tranziții*, atunci le înlocuim cu *expresia regulată* obținută prin reunirea (operatorul "+") simbolurilor de pe acele tranziții.

$$et(q_x, q_y) = \{ w \in REX(\Sigma) \mid w = a_1 + a_2 + \ldots + a_n ; q_y \in \delta(q_x, a_i), a_i \in (\Sigma \cup \{\lambda\}), \forall i \in \{1, \ldots, n\} \}$$

Pas 2: Dacă există săgeți care ajung către starea inițială, atunci se adaugă la automat o nouă stare care va fi inițială și va avea o săgeată cu expresia λ către fosta stare inițială.

Pas 3: Dacă există mai multe stări finale sau dacă există săgeți care pleacă din vreo stare finală, atunci se adaugă la automat o nouă stare care va fi singura finală și va avea săgeți cu expresia λ din toate fostele stări finale către ea.

Pas 4: În orice ordine, se elimină pe rând, una câte una, toate stările în afară de cea inițială și cea finală. Presupunem că vrem să eliminăm starea q_k și că există etichetele $et(q_i, q_k)$, $et(q_k, q_j)$ și eventual bucla

 $et(q_k,q_k)$. Atunci obținem noua etichetă între stările q_i și q_j reunind [(fosta etichetă directă de la q_i la q_j), sau nimic (Ø) dacă nu există drum direct] cu [(eticheta de la q_i la q_k) concatenată cu (stelarea etichetei buclei de la q_k la q_k , sau λ dacă bucla nu există) concatenată cu (eticheta de la q_k la q_j)]. (Vezi desenul de mai jos.)

Pas 5: Atunci când rămân doar două stări, expresia obținută între starea inițială și cea finală este răspunsul final (o expresie regulată echivalentă cu automatul finit dat).

Observatii:

(1) La pas4, pentru starea q_k pe care dorim să o eliminăm (împreună cu toate săgețile lipite de ea), trebuie să găsim orice "predecesor" $q_i \neq q_k$ (adică există o săgeată de la q_i la q_k) și orice "succesor" $q_j \neq q_k$ (adică există săgeată de la q_k la q_j). Deci făcând abstracție de eventuala buclă a lui q_k , căutăm și *grupăm orice săgeată care intră* spre q_k *cu orice săgeată care iese* din q_k și astfel obținem expresia de pe săgeata de la q_i la q_j cu formula explicată mai sus. Atenție, dacă $q_i = q_j$, înseamnă că veți obține o buclă.

→ Vrem să eliminăm q și avem un p ("predecesor") și un s ("succesor").

- (2) Dacă una din expresii conține reuniune ("+"), o includeți între paranteze, pentru a se executa întâi acea reuniune și abia apoi concatenarea cu expresiile de pe alte săgeți. Fiecare expresie obținută între q_i și q_j încercăm să o simplificăm cât mai mult folosind formulele de mai jos.
- (3) În funcție de *ordinea* în care alegeți să eliminați stările la pasul 4, veți obține o anumită expresie, dar toate sunt echivalente între ele. *Sfat:* În general, eliminați starea care are momentan cele mai puține săgeți pentru a calcula cât mai puține drumuri.

Câteva formule utile

- (A) $e \cdot \emptyset = \emptyset$; $\emptyset \cdot e = \emptyset$ (\emptyset este pentru concatenare cum este 0 pentru înmulțire)
- (B) $e \cdot \lambda = e$; $\lambda \cdot e = e$ (λ este pentru concatenare cum este 1 pentru înmulțire)
- (C) $e^* \cdot e = e^+$; $e \cdot e^* = e^+$ (asta nu va fi folosită în REX, pt că nu respectă definiția lor)
- (D) $\{e_1, e_2\}^* = (e_1 + e_2)^* = (e_1^* \cdot e_2^*)^*$ (formulă valabilă pentru oricâte expresii, nu doar 2)

(E)
$$e_1 \cdot (e_2 + e_3) = (e_1 \cdot e_2) + (e_1 \cdot e_3)$$
 ; $(e_1 + e_2) \cdot e_3 = (e_1 \cdot e_3) + (e_2 \cdot e_3)$

Atenție să nu confundați semnul "+" dintre expresii (folosit pentru *reuniunea* lor) cu semnul "+" pus la putere (folosit pentru *concatenare repetată*, cel puțin puterea 1).

Obs: Algoritmul de mai sus descoperă și *reunește expresiile regulate corespunzătoare tuturor drumurilor de la starea inițială la o stare finală*. Puteți verifica asta pe exemplele următoare, comparând automatul finit dat cu expresia regulată obținută la finalul algoritmului.

Exemplul 1: Să se transforme următorul automat finit într-o expresie regulată echivalentă. ... *TO DO* ...

... se vor obtine expresii diferite (dar echivalente) in functie de ordinea eliminarii starilor

Exemplul 2: Să se transforme următorul automat finit într-o expresie regulată echivalentă.

EX_5: Transformați următorul automat finit într-o expresie regulată echivalentă, folosind algoritmul de mai sus.

Concluzii pentru capitolul "Limbaje regulate"

... TO DO