Lecture 10: Bernoulli and Geometric Random Variables

Chapter 3.3-3.5

Goals for Today

Define

- ► Bernoulli random variables
- Geometric random variables

Mathematical Definition of a Bernoulli Random Variable

A random variable X is a random process or variable with a numerical outcome. The behavior of random variables is described in terms of their distribution.

Say we have an experiment where each trial (or instance) has two possible outcomes. Examples:

Say we have an experiment where each trial (or instance) has two possible outcomes. Examples:

- Coin flips: heads vs tails
- ▶ Medical test (for a disease): positive vs negative
- Rolling a die and getting a 6 vs not getting a 6

Say we have an experiment where each trial (or instance) has two possible outcomes. Examples:

- Coin flips: heads vs tails
- Medical test (for a disease): positive vs negative
- Rolling a die and getting a 6 vs not getting a 6

In each case we can define the outcomes to be a success or a failure. No moral judgement; just labels.

Definition of a Bernoulli Random Variable

Example of Bernoulli Distribution

- A success as rolling a 6. So $P(X = 1) = P(\text{success}) = p = \frac{1}{6}$.
- A failure as rolling anything else So $P(X = 0) = P(\text{failure}) = 1 - p = \frac{5}{6}$.

Intuition Behind σ

Sample Proportion

Back to Lecture 3.1: Population vs Sample Values

	True Population Value	Sample Value
Mean	μ	\overline{X}
Variance	σ^2	s^2
Standard Deviation	σ	S
Proportion	р	\widehat{p}

Back to Lecture 3.1: Population vs Sample Values

	True Population Value	Sample Value
Mean	μ	\overline{X}
Variance	σ^2	s^2
Standard Deviation	σ	S
Proportion	р	p

The sample proportion \hat{p} is a specific kind of sample mean for Bernoulli random variables, which estimates p, a specific kind of population mean.

Scenario

Geometric Random Variables

Intuition Behind μ