Convertina To Binary

1. KNOW your powers of 2:

2. Decimal (base 10) to Binary (Base 2)

ex) 72 1

- a. Find the largest power of 2 that 15 less than oxequal to your #.
- 64 (26) b. SUBTRACT That power of a from your #.
- C. Repeat steps a + b until your reach o.
- d. Note the powers of a that you used to complete a-c. 26 , 23

each blank is marked W/a power of 2starting wil of on the Right most blank.

e set up a set of blanks: Specifically one more than the largest power of a from step d. 16 t 1 = 7 6 lanks)

conclusion:

 $\frac{1}{2^{6}} \stackrel{\cancel{0}}{\cancel{0}} \stackrel{$

F. For each power of a from step d-mark a 1 on the blank. For all other blanks - mark &.

Converting From Binary

1. Biwary to Decimal

10010002

a. Find the powers of 2 that belong to the 1's in your binary #.

we are checking which powers which powers of a are used in the decimal distinction $2^{1/2}$ $2^{3/2}$ $2^{3/2}$ $2^{3/2}$ $2^{3/2}$ $2^{3/2}$

INTRO TO SETS

1. set: we say x is an element of X ($x \in X$) to mean x is an element of the set X.

a. AUB: A union B > X E AUB IF and only IF (IFF)

b. A N B: A INTERSECT B > X E A NB IFF X E A and YEB

The area that is both orange and Black is part of the set AMB

C. $X \in \overline{A}$ (A complement) IFF X is not an element ($X \notin A$)

OF A, in a given <u>universe</u>

State of avecn is ϵ

all numbers is dictated by this rule.

d. Null set: \emptyset The empty set - no elements 4 2 9 5 15 not the null set. (x) (x)

e carpinality of a set: 15 the # of &'s in that set.

teopositions + Truth Tables

1. a proposition: must be either true or false.

propositions:

NOT propositions.

(rot au equation!

2. It is rainings (True)

2. shut the door

2. IF p and q are propositions - then we can make other propositions by combining p = q usina the logical connections:

b. prq -panoq

c- pra -por 9

d. $p \rightarrow q$ * if p then q.

2. Truth tables:

P	79	P	9	P19
TFT	F	TTFF	7 4 7 4	F

p l	9,	p V	۹
寸	7	17	٧
7	F	\ T	
7	1 6	7	

P	9	p->9.	PI
T	T	'T "	T
	F	F	Ť
F	T	7	F
F	F	T	F

TRUTH TABLES IL

 $a. p \rightarrow q$: conditional statement

P 9 P 79 T T F F T T

IF P, then q: IF a condition is met, then something elk will happen.

p: math dept gets additional \$60K

q: math dept hines 1 new faculty

TIT: If moth deat gets bok, They have IT

TF: math dept got money, didn't hinex F FT: math dept got money, hined faculty

* Tricky & managed to hime Faculty thru other means!

+ so this is considered TRUE

F F math alpt doesn't get &) ATrue

b. p xoe q : exclusive or

p or g but not both

p: prisoner executed by hangman q: prisoner executed by Firina squad

P | q | p xorq T T F T F T F T F

+ pxor q es faluble can't die twice TF to ok ble died by hanging
FT to ok ble died by squad
FFF to both false, so overall false.

Systems in Depth

- a. We study # systems blc computers only unverstand binary signals -> binary signals are best translated into binary numbers.
- b. in machine language programming:
 - use hexadecimal
 - -b it snortens the binary representation.
 - -D hcx
 - -> buce the \$-9, A-F
 - 少 5+810 =
 - 10010000102 = compressed!
 - 24216
- C. Base-a # systems will have a digits to work with
 - ex) base-2 was 2 diants: Ø, 1
 - · base-8 has 8 diaits: Ø, 1, 2, 3, 4, 5, 6, 7
 - · base 10 has 1\$ diatr: \$ --- 1\$
- d. understanding Base-10
- + enis + 54 p + (4 * 10°) + (5 * 10°)

 tenis place place 4 + 50 = 4 + 5p = 54
 - · 281 10 (1 + 10°) + (8 + 10°) + (2 + 10°)
 - 100's # 1 16 1's 1 + 80 + 200 = 261
 - e. understanding Base-2
 - $2^{3} = \begin{cases} 0 \\ 1 \\ 2^{2} \end{cases} + \begin{cases} 0 \\ 1 \\ 2^{2}$
 - الريغ

(OCTAI TOO)

BINARY SYSTEM CONT'D

- + Binary Diaits > BITS: 9 or 1
- counting in Binary;

$$\phi$$
, 1 , 1ϕ , 11 , $1\phi\phi$, $1\phi1$, 11ϕ , 111 .

ONE
BIT

2 BITS

3 BITS

+ conclusion: with n bits, we can represent 2n Binary #s.

$$\frac{n=1 \text{ bit}}{p_1 = 0}$$
 $1_2 = 1_{10}$

$$N = 2 \text{ bits}$$

$$\emptyset \psi = \emptyset \emptyset 2$$

$$1 \psi = \emptyset 1 2$$

$$2 \psi = 1 \emptyset 2$$

$$3 \psi = 1 1 2$$

$$n = 3 \text{ bits}$$
 $0 = 000_{1}$
 $0 = 001_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$
 $0 = 010_{2}$

- · lowest # : all \$5
- · largest #: all 15

$$(1 + 2^{6}) + (1 + 2^{1}) + (1 + 2^{2})$$

$$(1 + 2 + 4 = 7)$$

1	OPI	p (1) 1912
2	Ø 1 Ø	Puly 1
3	Ø 1 1	(\$\$\dag{\psi}
4	I pp	1 1
5	1 \$1	\$11.10\$ 1\$ 1, = 345
6	110	\$11.10\$ 10 12 = 345
7	111	* leading by can be dropped! 4

SYSTEMS (ONT D

a. octal:

$$3458 \Rightarrow (5*8°) + (4*8') + 3(8²)$$

 $(5*1) + (4*8) + (3*64)$
 $5 + 32 + 192 = 229_{18}$

b. Why can we just substitute binary bits

FOR OCTAL?

Up re call: \$11/100/10/2

3 4 5 $= 345_8$

- D we can do this substitute method be caux:

 $0CTal - 8blts = 2^3$

- groups of 3
- 2. abb leading \$3 to any group who 3
- 3. Substitute the binary # for each group

There is a perfect power of 2
which matches the # of
blaits in the octal system.

· hexadecimal - 16 bits = 24

Lo substitution nill nork here as well.

· necimal - ip bits -t no even power of 2 cannot substitute

SYSTEMS: HEXADEUMAL Hex Binary 1010- A2DE16 popp 0 0010 111 Ø Ø Ø Ø 1 1 1101 2 p Ø 1 Ø 3 ø 011 1P10 00101101 1110 2 = A2DE16 4 0 100 G TO CONVERT TO OCTAL: BYCAK INTO 5 Ø 101 GROUDS OF 3: 0 110 6 0010101001011011102 0111 7 1 21 3 3 8 1 9 9 9 9 1 901 = 12,13368 = A2DE16 A 1 Ø 1 Ø (A + 163) + (2 + 163) + (D > 16 - 16) B 1 811 (10 + 4094) + (2 + 256) + (13.16) + (14.1) C 1 1 0 0 = 416941\$ D 1 1 1 1 E -> converting binary to hix: 1 1 1 9 1. Break into aroups of 4 F 1 1 1 1 1 2- ADD (CADING Ø) 5. convert the groups of 4: 001100101101, 3 = 32D16

Representing SIGNED MARGERS:

* a complement is a number such that $x + (-x) = \emptyset$ $37 + (-37) = \emptyset$

one solu:

Use A scil (-) to store

In memory, and represent the sian, it just understands

to But: Waste of memory! Signals, binary ones.

(18-16 bits for it)

TUST learning the Rules of complementing

a. $\frac{15}{101_2}$ complement: $\frac{1}{101_2}$ complement of $\frac{1}{101_2}$ complement of $\frac{1}{101_2}$ complement

b. 2's complement:

1. Carry out 1's complement on the binary #.

$$\frac{(0100)}{010112}$$
 + Review ADDING BINARY + 1 $\frac{1}{01199}$ = $\frac{1199}{11992}$ + $\frac{25}{11992}$ complement

```
() Ne's
                       Complement:
                    1. THE GET One's complement to
          $ $$
  1
                         FIND The (-) of a #.
         ØØ 1
                     ex) 000 = $\phi \ \phi 1 = 1 \ \phi 1 = 2
  2
         Ø1 Ø
                          111 = -0 110 = -1 101 = -2 \cdots
  3
         911
                      OBservations 1
 -3
         100
                          1. all (-) #'s start w 1'1'
         1 01
                          2. There are 2 codes for Ø
         119
                                - wasteful ...?
         111
                          3. Total combos - 2", where
                               n 11 # 06 bits
                         4. 4) Decimal range: $ - 2n-1
** keep in mind
 In the above examples 5. (-) Decimal range: -0 - -2n-2
 We are working in a 3 bit system!
      ex) convert 1112 to Drumal, in a 4 bit sys
      leable 0 1 1 1 2 42 1 0 0 : positive 0 = [7,0]
                                1. CHECK IF leading 1 or $
                                     2 - # 15 (-)
Ø - # 15 (+)
                                2. carry out 1's complement
                                   only IF the # 15 (-)
 ex) convert 1011, to decimal
                                     + blc we only complement
      in 4 bit binary systm
                                       to get (-) #s!
         10172
                                3. convert to peamal.
Icadinus A
  so... 0 (00<sub>2</sub>
              => 410 > [-410]
```

21's complement System:

ର୍ବ୍ୟର	0
podi	1
0010	2
9011	3
0 (ø ø	4
0 101	5
Ø (\ 0	6
0111	7
1000	-8
1001	-7
1010	- 4
1 ø 11	- 5
1 100	-4
1101	-3
1110	-1
1111	-1

OBSCRVATION

+ very useful!

+ very useful!

+ also 2 is complant

just movies better

with hardware.

use 25 cmpl mt to convert

-42 of binary $42: \qquad \text{(in an 8 bit system)}$ $-32 \rightarrow 25$ -10 $-6 \rightarrow 23$ $2 \rightarrow 21$

\$\$ 1010101, 1. Blc # is 11010101, nave to complement

-D convertina From binary to beamal:

1101011102 IN 8 bit

2's complement system.

1. BIC starts n 1 + (-) #, some have to complement it!

2. now convert back to decimal $31 + 8 + 12 = 42_{10}$