Flowcharts & Decision Tables

 An algorithm is a sequence of steps that can be carried out to perform a task

▼ Flowcharts

- A flowchart is a common way of visually representing an algorithm
- ▼ 4 Standard Symbols Used in Flowcharts

▼ Terminator

- · Rectangle with rounded corners
- Represents the beginning or end of a set of steps, and usually contains either the START or STOP command

▼ Data

- Parallelogram
- Represents the step of either receiving input data from outside the algorithm using the INPUT command or producing output from within the algorithm using the OUTPUT command

▼ Decision

- Diamond
- Represents a step involving a question
- The outgoing arrows represent the possible outcomes to the question and are usually labelled "Yes" and "No"
- Only one of these outgoing arrows should be followed when performing the algorithm

▼ Process

Rectangle

- Represents a step involving an action or operation
- Usually involves changing the value of a variable or performing more complex actions

▼ 4 Rules Adhered to By Flowcharts

- 1. A flowchart must start with one terminator symbol and end with one terminator symbol.
- 2. The data symbol must have one entry point and one exit point.
- 3. The decision symbol must have one entry point but may have more than one exit point.
- 4. The flow lines should not cross one another

▼ Decision Tables

- A decision table is a visual way to model logic
- Possible combinations of conditions are considered before deciding on the final action required
- The '-' symbol is used when the condition can be either true or false and the action will be the same
- To check for redundancies, we inspect every action and check if all the conditions are required for that action to take place
- ▼ Example of Decision Table
 - ▼ With All Possible Conditions

Serving NS

<u>Aa</u> - 9	≡ -7	=	= - 6	= - 5	= - 8	= - 2	≡ - 1	≡ - 4	≡ - 3
Conditions	Male	Υ	Υ	Υ	Υ	N	N	N	N
Conditions	SGP/PR	Υ	Υ	N	N	N	N	Υ	Υ
Conditions	Healthy	Υ	N	Υ	N	N	Υ	N	Υ
<u>Actions</u>	Serve NS	~							
<u>Actions</u>	Don't Serve NS		~	~	~	~	~	~	✓

▼ Simplified (No Redundancies)

Serving NS (No Redundancies)

<u>Aa</u> - 5	= -3	≡ -	≡ -2	≣ -1	≡ -4
Conditions	Male	Υ	N	-	-
Conditions	SGP/PR	Υ	-	N	-
Conditions	Healthy	Υ	-	-	N
<u>Actions</u>	Serve NS	~			
<u>Actions</u>	Don't Serve NS		~	~	~

- Decision tables are used to analyse situations where the conditions and actions are more complex
- They can be also be used to define outputs dependent on inputs, and are hence useful for program testing