Overview

Linear Regression: The Basics

Ken Stiller

12th January 2024

Syllabus: Data Analysis in R

- 1. Introduction
- 2. Causality & Basics of Statistics
- 3. Sampling & Measurement
- 4. Prediction
- 5. Multivariate Regression
- 6. Probability & Uncertainty
- 7. Hypothesis Testing
- 8. Assumptions & Limits of OLS
- 9. Interactions & Non-Linear Effects

Table of Contents

Overview

The Big Picture

Linear Regression: The Basics

Regression Anatomy

Predicting Brexit I

The Big Picture $0 \bullet 00$

- Context:
 - ▶ On the 23rd of June 2016 the UK voted to leave the EU
 - ▶ 51.89% of voters who turned out (72.21%), voted to leave the EU

Predicting Brexit II

- ▶ We want to predict the % Vote Leave in a given constituency.
- ▶ We want to minimise errors (in stats generally) and be parsimonious (e.g. don't add variables unless we learn from them)
- ▶ All we know is the actual Leave Vote in each constituency.
 - ▶ We want to take one at random, predict its % Vote leave. How?

- Now let's say that we know one other variable that we can use as
 - ▶ Does this help us? What would you do with it?

Predicting Brexit II

- ▶ We want to predict the % Vote Leave in a given constituency.
- ► We want to minimise errors (in stats generally) and be parsimonious (e.g. don't add variables unless we learn from them)
- ▶ All we know is the actual Leave Vote in each constituency.
 - ▶ We want to take one at random, predict its % Vote leave. How?

- Now let's say that we know one other variable that we can use as a predictor: mean age in constituency.
 - ▶ Does this help us? What would you do with it?

The Big Picture

- ▶ Our goal always is to make statements (predictions) about a population, minimising errors
- ▶ We can add increasingly more information about the data to help predict an outcome
- ▶ You might think of tools to do this as a continuum:
 - 1. Descriptive statistics: we draw upon one variable only
 - 2. Bivariate regression: we draw upon two variables
 - 3. Multivariate regression: we draw upon more than two variables

Overview

► How would you summarize the relationship between X and Y?

- ▶ It seems that counties with older population also have a higher leave vote
- ▶ What we are interested in now: By how much? (Note that correlation can't tell!)

Linear Regression: Intuition

What we often want to summarise is conditional expectation of a variable (Y) dependent on another variable (X)

Linear Regression: The Basics

- \blacktriangleright This is written as E[Y|X], where E stands for expectation
- \triangleright E[Y] is the population mean and known as expectation only
- ightharpoonup E[Y|X=x] is the expectation of Y given a value of x

Regression allows us to provide overall estimates about how Y changes with X - without having to rely on specific values of X.

- \blacktriangleright Linear regression assumes Y varies in X in the same way through the range of values of X
- ▶ This allows us to predict the value of Y for each value of X
- ► It's a simple linear form of the conditional expectation function:

$$E[Y|X] = \beta_0 + \beta_1 X$$

Linear Regression: Equation

$$E[Y|X] = \beta_0 + \beta_1 X$$

What does β_0 stand for?

$$E[Y|X=0]$$

And β_1 ?

Linear Regression: The Basics

$$E[Y|X=x] - E[Y|X=x-1]$$

Does the value of X matter?

Linear Regression: Equation

$$E[Y|X] = \beta_0 + \beta_1 X$$

What does β_0 stand for?

$$E[Y|X=0]$$

And β_1 ?

Linear Regression: The Basics

$$E[Y|X=x] - E[Y|X=x-1]$$

Does the value of X matter? **No** - there is a single, uniform slope.

So, a linear regression model is a *linear* approximation of the relationship between explanatory variables X and a dependent variable Y

$$E[Y|X] = \underbrace{\beta_0}_{\text{Intercept}} + \underbrace{\beta_1}_{\text{Slope}} X$$

Linear Regression: The Basics

- ► Y: Dependent variable (outcome)
- ► X: Explanatory/independent variable
- \triangleright β_0 : Intercept (or constant)
- \blacktriangleright β_1 : Slope coefficient (association between X and Y)

Quick interpretation:

- \triangleright $\beta_0 + \beta_1 X$: Conditional mean of Y given a value of X
- \triangleright β_0 : Value of Y when X=0
- \triangleright β_1 : Change in Y associated with a one unit increase in X across

Linear Regression: Notation II

$$E[Y|X] = \underbrace{\beta_0}_{\text{Intercept}} + \underbrace{\beta_1}_{\text{Slope}} X$$

- ► Sign: denotes the direction of the relationship:
 - \triangleright $\beta_1 > 0$: Increase in X is associated with an increase in values of Y

- \triangleright $\beta_1 < 0$: Increase in X is associated with a decrease in values of Y
- \blacktriangleright Magnitude: β_1 tells us the extent to which Y changes with a one unit increase in X

Linear Regression: Prediction v Causality

Prediction

Regression allows us to predict the value of Y for any value of X, even if the specific x is not included in the sample

$$E[Y \mid X = x_{any}] = \hat{\beta}_0 + \hat{\beta}_1 \times x_{any}$$

In a predictive model, $\hat{\beta_1}$ is interpreted as the expected difference in Y when there is a one unit increase in X

Causality

Prediction \neq **causality!** Predicting Y on the basis of X does not imply that it is the change in X that causes Y!

- ightharpoonup Causality implies that we make sure other factors (confounders) that can cause a change in both X and Y are being accounted for
- ► Regression is helpful only because it provides a framework to account for other observed confounders
- ▶ It's a means to end not more, not less

- ▶ How do we choose which line to fit to the data?
- ► In principle, infinite number of lines available
- ► Recall our aims as social scientists

Why choose this line though?

Compare with Benchmark

Our benchmark is the veil of ignorance: predicting Y without knowledge of x.

Compare with Benchmark II

Is this helpful? Let's decompose the distance between Y_i and \overline{Y} to find out.

From $\overset{-}{Y}$ to \hat{Y}_i : Improvement in prediction from veil of ignorance: Predicted Y

From \hat{Y}_i to Y_i : Remaining mistakes we make in prediction: Residual

Linear Regression Model

► Model:

$$Y = \underbrace{\alpha}_{\text{Intercept}} + \underbrace{\beta}_{\text{Slope}} X + \underbrace{\epsilon}_{\text{Error Term}}$$

Linear Regression: The Basics

- \triangleright (α, β) : coefficients (parameters of the model)
- \bullet : unobserved error/disturbance term (mean zero)
- ► Fitted model:

 $\hat{Y} = \hat{\alpha} + \hat{\beta}x$: predicted/fitted values

 $\hat{\mu} = Y - \hat{Y}$: residuals

 \triangleright $(\hat{\alpha}, \hat{\beta})$: estimated coefficients

Ordinary Least Squares: OLS

- Estimating the model parameters from the data, we usually obtain these estimates via the least squares method
- ► Minimise the sum of squared residuals (SSR):

SSR =
$$\sum_{i=1}^{n} (Y_i - \hat{Y})^2 = \sum_{i=1}^{n} (\hat{\mu}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta}X_i)^2$$

- ► There is only one line that satisfies this criteria: Ordinary Least Squares (OLS) regression. OLS estimates β_0 and β_1 in so that SSR are being minimised
- \triangleright Simply speaking, OLS estimates a β_1 that on average minimises the (squared) errors between the dots and the line.

Overview

Overview o

Overview o

OLS III

Overview

► In OLS, the mean of residuals is always zero (only one possible line satisfies the condition):

mean of
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \hat{\alpha} - \hat{\beta} X_i \right) = \bar{Y} - \hat{\alpha} - \hat{\beta} \bar{X} = 0$$

▶ How do we compute the OLS estimators? The slope....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \bar{Y}) (X_i - \bar{X})}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\text{COV}(X, Y)}{\text{VAR}(X)}$$

- ▶ Notice that, unlike with correlation, order matters
- ▶ ...and the intercept:

$$\hat{\beta_0} = \bar{Y} - \hat{\beta_1} \bar{X}$$

Goodness of Fit

Overview

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \text{TSS}$$

▶ This represents the sum of squares in the *null modell* - i.e., when we don't know anything but values of the dependent variable

Linear Regression: The Basics

▶ You can think about it as a measure of how "off" your prediction is from the real data, if all you rely on is the average

Overview

$$\sum_{i=1}^{n} (y_i - \widehat{y})^2 = RSS$$

▶ This represents the sum of squares in the *model* i.e., when we do know something beyond values of the dependent variable

Linear Regression: The Basics

▶ You can think about it as a measure of how "off" your prediction is from the real data, if you rely on an independent variable to explain variation in Y

Model Fit - Goodness of Fit

- ► How well does our model perform? Do we learn anything from adding the independent variable (vis-a-vis the null model)?
- ► The R-squared gives us a measure of this

$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_i^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$

- \triangleright R^2 represents the proportion of total variation in the outcome variable explained by the predictor(s) included in the model
- $ightharpoonup R^2$ is bounded between 0 and 1
- ▶ Do we care?

- $ightharpoonup R^2$ denotes the goodness of fit, but not relevance of the variable in explaining the outcome
- ▶ We are interested in β_1 , statistical significance, slope and its magnitude

$$\text{\%VoteLeave}|\text{MeanAge}| = \underbrace{2.61}_{\text{intercept}} + \underbrace{1.28}_{\text{slope}} \text{MeanAge}$$

▶ Magnitude: Can you interpret what the slope means here?

Take Away

Always interpret the magnitude of the findings. A finding may be significant but too small for us to care; or vice-versa.