

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Direction Générale de la Recherche Scientifique et du Développement Technologique

Centre de Développement des Energies Renouvelables

http://www.cder.dz

Les Energies Renouvelables Levier de Développement Local

Prof. Noureddine Yassaa Directeur du CDER

Alger, 2 Juin 2018

Sommaire

- Objectifs stratégiques.
- Ressources humaines disponibles au niveau local.
- Retour d'expérience des différents programmes.
- Création d'emplois.
- Quels rôles des collectivités locales en matière du développement des Energies Renouvelables.
- Recommandations.

Objectifs stratégiques

Nécessité d'opérer un changement de paradigme à l'échelon local

Transformer les collectivités locales d'un simple consommateur client de Sonelgaz à un partenaire contractuel de Sonelgaz, en produisant de l'énergie localement avec des sources locales (solaire, éolien, géothermie, bioénergie,....)

Sécurité d'approvisionnement en énergie locale accrue, des distances de transport écourtées et une réduction des pertes liées au transport d'énergie.

Cette décentralisation favorise également le développement des collectivités locales via la création d'emplois à l'échelon local et le développement d'activités économiques non délocalisables.

Développer le renouvelable résidentiel et tertiaire et les solutions hors réseau.

Ressources humaines disponibles au niveau local

Le réseau national des EnR

CRTSE

مر گزالپچٹ و الخطویر للگیرپاء و الغاز de insunapparami de identification de crimo aut ut to Walderfill

Unité de Développement des Equipements Solaires

CDER, Bowzaréah

Unité de Recherche Appliquée en Energies Renouvelables

Unité de Recherche en Energies Renouvelables en Milieu Saharien

CRTSE: Centre de Recherche En Technologie des Semi Conducteurs Pour l'Energetique

Liste non exhaustive des Laboratoires couvrant le domaine des énergies renouvelables

Modelisation Des Dispositifs À Energie Renouvelable	2011	Huisanité Mantauri de Canatantina d	
Et Nanometriques	2011	Université Mentouri de Constantine -1-	
Physique Énergétique	2001	Université Mentouri de Constantine -1-	
Energie Et Environnement	2009	Université Mentouri de Constantine -3-	
Mathématiques Et Sciences Appliquées	2011	Université de Ghardaïa	
Energies Renouvelables	2012	Université Abdelhak Benhamouda de Jijel	
Energie Et Des Systèmes Intelligents	2010	Université de Khemis Miliana	
Mécanique	2009	Université Omar Telidji de Laghouat	
Génie Électronique Automatique	2014	Université Larbi Ben Mhidi de Oum El Bouaghi	
Etude Des Matériaux Et Instrumentations Optiques	2014	Université El Djilali Liabès de Sidi Bel Abbès	
Interaction Réseau Électrique Convertisseurs-Machines	2000	Université El Djilali Liabès de Sidi Bel Abbès	
Matériaux Et Systèmes Réactifs	2000	Université El Djilali Liabès de Sidi Bel Abbès	
Electrotechnique Et Energies Renouvelables	2012	Université de Souk Ahras	
	2006	Université des Sciences et de la Technologie	
Environnement, Eau, Géomécanique Et Ouvrages		Houari Boumediène -USTHB	
Mécanique Énergétique Et Systèmes De Conversion	2013	Université des Sciences et de la Technologie	
		Houari Boumediène -USTHB	
Thermodynamique Et Systèmes Energétiques	2002	Université des Sciences et de la Technologie	
		Houari Boumediène -USTHB	
Génie Energétique Et Génie Informatique	2012	Université Ibn Khaldoun de Tiaret	
Génie Electrique	2008	Université Mouloud Maameri de Tizi Ouzou	
Commande Des Processus	2000	Ecole Nationale Polytechnique	
Electrotechnique	2000	Ecole Nationale Polytechnique	
Unité De Recherche: Matériaux Et Énergies			
Renouvelables (En Remplacement Du Lr Matériaux Et	2003	Université Aboubeker Belkaid de Tlemcen	
Energies Renouvelables Agréé En 2000)			

	Année	
Intitulé Labo en Arabes	d'Agrément	Etablissement
Génie Industrielle Et Développement Durable.	2013	Centre Universitaire Relizane
Développement Durable Et Information	2011	Université Ahmed Draya d'Adrar
Energie, Environnement Et Système D'Information	2011	Université Ahmed Draya d'Adrar
Modélisation Mathématique Et Simulation Numérique	2012	Université Badji Mokhtar de Annaba
Risques Industriels / Cnd / Sureté De Fonctionnement	2012	Université Badji Mokhtar de Annaba
Etudes Des Systèmes Énergétiques Industriels	2001	Université El Hadj Lakhdar de Batna
Physique Energétique Appliquée	2003	Université El Hadj Lakhdar de Batna
Commande Analyse Et Optimisation Des Systémes Électro Énergétiques	2009	Université de Béchar
Génie Électrique	2000	Université Abderrahmane Mira de Béjaia
Maitrise Des Energies Renouvelables	2012	Université Abderrahmane Mira de Béjaia
Mécanique, Matériaux Et Énergétique	2013	Université Abderrahmane Mira de Béjaia
Technologie Industrielle Et De L'Information	2000	Université Abderrahmane Mira de Béjaia
Génie Civil Et Hydraulique, Développement Durable Et Environnement	2011	Université Mohamed Khider de Biskra
Génie Électrique De Biskra	2003	Université Mohamed Khider de Biskra
Génie Énergétique Et Matériaux	2012	Université Mohamed Khider de Biskra
Génie Mécanique	2006	Université Mohamed Khider de Biskra
Analyse Fonctionnelle Des Procédés Chimiques	2002	Université Saad Dahlab de Blida -1-
Applications Énergétiques De L'Hydrogène	2003	Université Saad Dahlab de Blida -1-
Procédés Pour Matériaux, Énergie, Eau Et Environnement	2013	Université de Bouira
Energies Renouvelables Et Développement Durable	2012	Université Mentouri de Constantine -1-

Formation Ingénieur, Master et Doctorat en « Energies Renouvelables » Listes non exhaustives

Etablissement	Filières	Spécialité
U Blida 1	Energies renouvelables	Energies renouvelables et habitat bioclimatique
U Blida 1	Energies renouvelables	Conversion photovoltaïque
U Blida 1	Energies renouvelables	Conversion thermique
U Biskra	Electrotechnique	Energies renouvelables
U Blida	Physique	Energies renouvelables : Conversion photovoltaïque
U Blida	Physique	Energies renouvelables : Conversion thermique
U Bechar	Physique	Energies renouvelables
U Blida 1	Physique	Energies renouvelables : Conversion photovoltaïque
U Blida 1	Physique	Energies renouvelables : Conversion thermique
U Sidi Bel Abbes	Physique appliquée	Energies renouvelables
U Tiaret	Physique	Energie Solaire
U M'Sila	Physique	Energie solaire
U Batna	Génie Electrique	Energies renouvelables
U Bejaia	Electrotechnique	Energies renouvelables
U Biskra	Electrotechnique	Energies renouvelables
U Blida 1	Génie mécanique	Énergies renouvelables
U Bouira	Génie Mécanique	Energies nouvelles et renouvelables
U Ghardaia	Electronique	Energies renouvelables
U Jijel	Génie Electrique	Energies renouvelables
U Laghouat	Electronique	Energies renouvelables
U Médéa	Electrotechnique	Energies solaires et éolienne
U Mostaganem	Electrotechnique	Energie renouvelable et développement durable
U Ouargla	Génie mécanique	Energies renouvelables
U Saida	Electrotechnique	Energies renouvelables et gestion de l'énergie électrique
U Sidi Bel Abbes	Electronique	Energie solaire photovoltaïque
U Sidi Bel Abbes	Génie Mécanique	Energie solaire dans le bâtiment
USTHB	Génie Electrique	Energies renouvelables: Energie solaire
USTHB	Génie mécanique	Energies renouvelables
U Blida	Génie mécanique	Énergies renouvelables

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR & DE LA RECHERCHE SCIENTIFIQUE

Mise en place d'un Commission de Révision de la Carte de Formation Universitaire (CRCFU)

Consolider quatre (04) filières principales, à savoir :

- > Industrie
- Energies renouvelables
- Agronomie
- > TIC

Feuille de route déjà tracée et en cours de concrétisation.

Formation professionnelle:

Inscription des énergies renouvelables dans la nomenclature des formation.

Technicien, Technicien Supérieur,...

- ☐ Installation
- ☐ Maintenance,....

Séminaire de sensibilisation sur la promotion de l'Utilisation des Energies Renouvelables au profit des cadres des collectivités locales (Wilayas de l'Est) le 15 et 16 Octobre 2017 à Constantine

- ☐ Faire participer les jeunes diplômés des universités et des centres de formation dans le développement des énergies renouvelables à l'échelon local à travers la création des start-up en mettant en place des incubateurs d'entreprises,
- □ Développer l'industrie de savoir et d'engineering au niveau local.

► Retour d'expérience en Algérie

Réalisations avant 2011

Repères chronologiques

des Energies Renouvelables

1er Programme National d'électrification 1995-1999

Electrification rurale par solaire PV de 18 villages dans 04 wilayas du Sud

Capacité installée: 0,454 MWc

2eme Programme National d'électrification 2006-2010

Total:

16 villages (548 Foyers)

Capacité installée 0,5 MWc

Wilaya	Villages	Foyer/Unité	Distance du réseau (Km)
Tamanrasset	Abdnizi	3	270
	Ait Ouklan	20	150
	In Azarou	26	90
	Tigannouine	70	70
	Idikel	25	50
	Tit Loukten	15	44
	llamane	20	25
	Tensou	20	120
El-Oued	El Ghanemi	40	45
	El Maklia	60	40
M'Sila	Zbiret	100	50
Illizi	Ikabren Tarat	20	70
	Arrikine	25	140
	Issendiline	12	90
	Dider	20	50
Ghardaia	Hassi Ghanem	72	60

3. Electrification rurale et installation des systèmes de pompage PV et éolien par le Haut Commissariat au Développement de la Steppe (HCDS)

Capacité totale Installée:

1.160 MW

Electrification de plus de 4000 foyers

Capacité installée :

0,**800 MWc.**

Installation de plusieurs pompes

Capacité installée:

0,**240 MWc.**

* Installations de plusieurs pompes éoliennes

Capacité installée :

0,120 kWc

Filiale ER2 /CDER

Alimentation en électricité par voie solaire PV:

- plus de 2000 foyers ruraux,
- plus de 300 pompes opérant avec le solaire,....

Puits de Forage à Reggane (Wilaya d'Adrar), alimenté 100 % en énergie solaire. Profondeur de 70 m, débit de 180 mètre cube par jour, financement international

Energie solaire

Générateur Photovoltaïque Installé au Centre de Recherche de la station de l'Assekrem - Tamanrasset pour une puissance de 5kW

Installation Photovoltaïque d'un Village Isolé situé dans la région de Djanet Willaya d'Illizi d'une puissance totale de 8kW financé par le Groupe Sonatrach (1er expérience après les centrales PV)

D'autres secteurs ont mis en place des programme d'installation de kits solaires mais les données sur la puissance installée ne sont pas disponibles.

Electrification en énergie solaire direction de l'environnement d'Illizi

Système de Surveillance alimenté par panneaux Photovoltaïque en collaboration avec CDMI 1^{er} prototype

Pompage de l'eau par système photovoltaïque direction des forets d'Illizi

Electrification par l'énergie solaire les postes de surveillance OPNT d'Illizi

Programme de kit solaire (sites isolés) initié par le ministère de l'agriculture

- Les solutions énergétiques doivent être adaptées aux conditions locales en tenant compte des spécificités géographiques, sociales et environnementales des territoires.
- ☐ Un système énergétique développé pour le Nord ne donne pas forcément des bonnes résultats dans le Sud ou dans les Hauts Plateaux.

Création d'emplois au niveau local

Création d'emplois au niveau local:

Selon le PNUE, le solaire off-grid emploie près 30 personnes pour une population de 10 000 personnes vivant dans des zones rurales comparé au groupe électrogène qui n'emploie qu'une personne pour 10 000 personnes.

A Bangladesh, l'industrie du solaire off-grid emploie déjà environ 127 000 personnes.

A l'échelle globale, il est prévu que le renouvelable décentralisé y compris les mini-réseaux et les solutions hors réseau créent environ 4,5 millions d'emplois directs en 2030.

Création de valeur locale : la sous-traitance l

Phase panification du projet :

- Étude de faisabilité
- Bureaux d'études : impacts environnementaux
- Experts nationaux (procédures, connaissance du marché, administration)

Manufacturing (reconversion):

- Industrie locale activant dans le secteur de l'énergie
- Les composantes électriques
- Câblage

• Installation réalisation:

- Génie civil
- Assemblage (techniciens)

Technologie	Phases : Fabrication, construction, installation
Solaire PV	5,76 – 6,21
Éolienne	0,43 – 2,51
Biomasse	0,40

Source: PNUE/OIT/OIE/CSI, 2008.

Réalisateurs des centrales conventionnelles.

Création de valeur locale : la sous-traitance II

Connexion au réseau:

- Les entreprises nationales spécialisées
- Possibilités des développeurs de solution (smart grid).
- Compétences locales spécialisées dans le réseau national.

Exploitation et maintenance (activité de long terme)

- Sécurité et nettoyage
- Gestion et maintenance
- Gestion technique et assistance

Démantèlement

- Société spécialisée dans la destruction
- Recyclage
- Traitement de déchets spéciaux

Exemple de composantes d'un système photovoltaïque I

(ce n'est pas uniquement le panneau)

Panneaux

Onduleur

Appareils de contrôle et de mesure

• Système de montage et de composante

Accessoires

Exemple de composantes d'un système photovoltaïque II

Autre accessoires

• Système de stockage

Support et service

Logiciels

Quelles rôles des collectivités en matière d'énergies renouvelables ?

☐ Un rôle de facilitateur et d'exemple des autorités locales. ☐ Un rôle de pédagogie, d'impulsion et de sensibilisation. Un rôle d'animation et de coordination des acteurs locaux. ☐ Un rôle de prescripteur en matière d'urbanisme et d'aménagement du territoire.

Mise en place d'une stratégie de sobriété et d'efficacité énergétique au niveau local

- ✓ Communiquer, sensibiliser et informer les particuliers et les entreprises aux EnR;
- ✓ Former les professionnels de la filière et les utilisateurs aux nouvelles technologies, mettre à disposition des experts pour adapter les activités des entreprises et faire évoluer les comportements individuels, etc. ;
- ✓ Accompagner les projets innovants « Smart » et mettre en relation les acteurs : organiser la filière liée à la production d'EnR;
- ✓ Inciter au développement des EnR locales via des subventions et la mise à disposition des assiettes de terrain pour l'implantation des projets;

Recommandations

- ✓ Encourager le renouvelable résidentiel et tertiaire;
- ✓ Elaborer des partenariats avec les professionnels en matière d'efficacité énergétique ou d'énergie renouvelable;
- ✓ Faire participer la société civile dans la mise en œuvre de la stratégie de sobriété et d'efficacité énergétique au niveau local à travers la création d'un réseau de soutien local entre professionnels, administrations publiques et société civile;
- ✓ Développement des compétences des concepteurs et des installateurs (une liste des installateurs qualifiés et audités);
- ✓ Qualité des installations et des équipements;
- √ Campagnes de sensibilisation du public.

Propositions de produits développés au CDER

Lampadaire solaire site Bouzaréah -CDER

Bioclimatique, éco-construction, efficacité énergétique, bâtiments intelligents, intégration du renouvelable dans les bâtiments.

Réalisation des chauffe eau solaires pour construction bioclimatique pilote avec une mini-centrale photovoltaïque de 3 KW, CDER-Bouzaréah

Eclairage centralisé du C.E.T de Tipaza par l'énergie solaire 1er prototype

Abris de parkings solaires

Table de recharge solaire pour espace public

Borne de recharge solaire

Espace éco-éducatif
Pour la sensibilisation, la formation et la vulgarisation dans chaque wilaya

