#### Introduction to machine learning

## 1 Warm-up: Bayes classifier for scalar Gaussian mixtures

Let  $(X_i, Y_i)_{1 \le i \le n}$  be independent variables in  $\mathbb{R} \times \{0, 1\}$ . Assume that  $\mathbb{P}(Y_1 = 0) = 1/2$ . Assume also that the distribution of  $X_1$  given  $\{Y_1 = 0\}$  (resp.  $\{Y_1 = 1\}$ ) is Gaussian with mean  $\mu_0$  (resp.  $\mu_1$ ) and variance 1. The probability density function of  $X_1$  is written g. Write

$$g_0: x \mapsto (2\pi)^{-1/2} \exp(-(x-\mu_0)^2/2)$$
 and  $g_1: x \mapsto (2\pi)^{-1/2} \exp(-(x-\mu_1)^2/2)$ .



Figure 1: Samples and density when  $\mu_0 = -2$  et  $\mu_1 = 0$  (left) and  $\mu_0 = -2$  and  $\mu_1 = 2$  (right).

- 1. Recall the definition of the Bayes classifier.
- 2. Using Bayes rule, show that  $h_*$  depends only on  $g_1/g_0$ .
- 3. Show that the Bayes classifier uses the mean between  $\mu_0$  and  $\mu_1$  to classify samples.

# 2 Bayes classifier

#### 2.1 Uniform distributions

Assume that  $(X,Y) \in \mathbb{R} \times \{0,1\}$  is defined on  $(\Omega, \mathcal{F}, \mathbb{P})$  with  $\mathbb{P}(Y=1) = \pi \in (0,1)$ . Assume that conditionally on  $\{Y=0\}$  (resp.  $\{Y=1\}$ ) X has a uniform distribution on  $[0,\theta]$  with  $\theta \in (0,1)$  (resp. on [0,1]). Compute  $\eta(X) = \mathbb{P}(Y=1|X)$ .

#### 2.2 Weighted risk

Assume that  $(X,Y) \in \mathbb{R} \times \{0,1\}$  is defined on  $(\Omega, \mathcal{F}, \mathbb{P})$ . Using  $\omega_0, \omega_1 > 0$ , with  $\omega_0 + \omega_1 = 1$ , we consider the weighted risk:

$$\mathsf{R}(h) = \mathbb{E}[2\omega_Y \mathbb{1}_{Y \neq h(X)}].$$

Compute the Bayes classifier and its associated risk.

### 3 Additional exercises

### 3.1 Bayes classifier: excess risk

Let  $(X,Y) \in \mathbb{R}^d \times \{0;1\}$  be random variables defined on the same probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . For any classifier  $h: \mathcal{X} \to \{0,1\}$ , define its classification error by

$$R(h) = \mathbb{P}(Y \neq h(X))$$
.

The best classifier in terms of the classification error R is the Bayes classifier

$$h_*(x) = \operatorname{sign}(\eta(x) - 1/2),$$

where

$$\eta(X) = \mathbb{P}(Y = 1|X).$$

1. Prove that

$$\mathsf{R}(h_*) = \mathbb{E}\left[\eta(X) \wedge (1 - \eta(X))\right] \leqslant \frac{1}{2}.$$

2. Prove that for all classifiers h, the excess risk is given by

$$R(h) - R(h_*) = \mathbb{E}[|1 - 2\eta(X)| |h(X) - h_*(X)|].$$

#### 3.2 Plug-in classifier

Let  $(X,Y) \in \mathbb{R}^d \times \{-1;1\}$  be random variables defined on the same probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . For any classifier  $h: \mathcal{X} \to \{-1,1\}$ , define its classification error by

$$R(h) = \mathbb{P}(Y \neq h(X))$$
.

The best classifier in terms of the classification error R is the Bayes classifier

$$h_*(x) = \operatorname{sign}(\eta(x) - 1/2),$$

where

$$\eta(X) = \mathbb{P}(Y = 1|X).$$

Given n independent couples  $\{(X_i, Y_i)\}_{1 \leq i \leq n}$  with the same distribution as (X, Y), an empirical surrogate for  $h_*$  is obtained from a possibly nonparametric estimator  $\widehat{\eta}_n$  of  $\eta$ :

$$\widehat{h}_n: x \mapsto \operatorname{sign}(\widehat{\eta}_n(x) - 1/2)$$
.

1. Prove that for any classifier  $h: \mathcal{X} \to \{-1, 1\}$ ,

$$\mathbb{P}(Y \neq h(X)|X) = (2\eta(X) - 1)\mathbb{1}_{h(X) = -1} + 1 - \eta(X)$$

and

$$\mathsf{R}(h) - \mathsf{R}(h_*) = 2\mathbb{E}\left[\left|\eta(X) - \frac{1}{2}\right| \, \mathbb{1}_{h(X) \neq h_*(X)}\right] \, .$$

2. Prove that

$$|\eta(x) - 1/2| \mathbb{1}_{\widehat{h}_n(x) \neq h_*(x)} \le |\eta(x) - \widehat{\eta}_n(x)| \mathbb{1}_{\widehat{h}_n(x) \neq h_*(x)}$$

where

$$\widehat{h}_n: x \mapsto \operatorname{sign}(\widehat{\eta}_n(x) - 1/2).$$

Deduce that

$$\mathsf{R}(\widehat{h}_n) - \mathsf{R}(h_*) \leqslant 2\mathbb{E}[|\eta(X) - \widehat{\eta}_n(X)|^2]^{1/2}$$
.