Problem 1 (6.2). Let f be a bounded measurable function on [0,1]. Then $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.

Proof. First, I will note that $\lim_{p\to\infty} ||f||_p \le ||f||_\infty$ follows pretty readily from the definition of $||\cdot||$. This is because

$$||f||_p = \left\{ \int_0^1 |f|^p \right\}^{1/p} \le \left\{ \int_0^1 ||f||_\infty^p \right\}^{1/p} = ||f||_\infty$$

and so as we take the limit of $||f||_p$ as $p \to \infty$, we get $\lim_{p \to \infty} ||f||_p \le ||f||_{\infty}$. Now we must also show that $\lim_{p \to \infty} ||f||_p \ge ||f||_{\infty}$. To that end, let $\varepsilon > 0$ be chosen. Define the set $A = \{x \in [0,1] : |f(x)| > ||f||_{\infty} - \varepsilon\}$. Then we have that

$$||f||_p = \left\{ \int_0^1 |f|^p \right\}^{1/p} \ge \left\{ \int_A |f|^p \right\}^{1/p}$$

$$\ge \left\{ \int_A (||f||_\infty - \varepsilon)^p \right\}^{1/p}$$

$$= (||f||_\infty - \varepsilon)^p \cdot m(A).$$

This implies that

$$||f||_{\infty} - \varepsilon \cdot (m(A))^p \le ||f||_p.$$

Because $||f||_{\infty}$ is the essential supremum (i.e. the smallest, greatest value not on a set of measure zero), we know that m(A) > 0. Thus, taking the limit of both sides as $p \to \infty$, we get that

$$\lim_{p \to \infty} ||f||_{\infty} - \varepsilon \cdot (m(A))^p = ||f||_{\infty} - \varepsilon \le \lim_{p \to \infty} ||f||_p,$$

Since ε is arbitrary, then $\lim_{p\to\infty} \|f\|$ is a superior bound i.e., $\|f\|_{\infty} \leq \lim_{p\to\infty} \|f\|$. Thus we get $\|f\|_{\infty} = \lim_{p\to\infty} \|f\|$.

Problem 2 (6.8). Young's Inequality

(a) Let $a, b \ge 0, 1 . Establish Young's inequality$

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Proof. Not assigned.

(b) Use Young's inequality to give a proof of the Hölder inequality.

Proof. Let p and q be nonnegative extended real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Suppose $f \in L^p$ and $g \in L^q$. Without loss of generality, assume that $||f||, ||g|| \ge 0$. With $a = \frac{|f|}{||f||_p}$ and $b = \frac{|g|}{||g||_q}$, by Young's Inequality from part (a), we have that

$$\frac{|f|}{\|f\|_p} \frac{|g|}{\|g\|_q} \le \frac{|f|^p}{p \|f\|_p^p} \frac{|g|_p^q}{q \|g\|_q^q}.$$

From the monotonocity of integrals, this implies that

$$\int \frac{|f|}{\|f\|_p} \frac{|g|}{\|g\|_q} \le \int \frac{|f|^p}{p \|f\|_p^p} + \frac{|g|^q}{q \|g\|_q^q} = \frac{1}{p \|f\|_p^p} \int |f|^p + \frac{1}{q \|g\|_q^q} \int |g|^q.$$

However, the the integral of $|f|^p$ is the same as $||f||_p^p$ and the same argument for $|g|^p$. So by cancelling out $||f||_p^p$ and $||g||_q^q$, we get that

$$\int \frac{|f|}{\|f\|_p} \frac{|g|}{\|g\|_q} \le \frac{1}{p} + \frac{1}{q} = 1.$$

Multiplying both sides by $||f||_p \cdot ||g||_q$ and so

$$\int |fg| \le ||f||_p \cdot ||g||_q.$$

Young's inequality is equality if and only $a^p = b^q$ and so the Hölder inequality is equality if and only if $\frac{|f|^p}{\|f\|_p^p} = \frac{|g|^q}{\|g\|_q^q}$. Thus there exists $\alpha, \beta \neq 0$ such that $\alpha |f|^p = \beta |g|^q$ almost everywhere and so this completes the proof.

Problem 3 (6.10). Let $\{f_n\}$ be a sequence of functions in L^{∞} . Prove that $\{f_n\}$ converges to f in L^{∞} if and only if there is a set E of measure zero such that f_n converges to f uniformly on $E^{\mathfrak{C}}$.

Proof. We will need to complete two directions and so let $\{f_n\}$ be a sequence of functions in L^{∞} .

(⇒) First, suppose that $\{f_n\} \to f$, and let $\varepsilon > 0$ be chosen. Because $f_n \to f$ in L^{∞} , there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$||f_n - f||_{\infty} = \inf \{ M : m \{ t : |f_n(t) - f(t) > M \} = 0 \} < \varepsilon.$$

Let $E = \{t : |f_n(t) - f| \ge \varepsilon\}$. Per the above expression, for any $n \ge N$, we have that m(E) = 0 and $||f_n - f||_{\infty} < \varepsilon$ on the set $L^{\infty} \setminus E = E^{\mathfrak{C}}$. Thus, since $\varepsilon > 0$ is arbitrary, f_n converges uniformly to f on $E^{\mathfrak{C}}$.

(\Leftarrow) Conversely, suppose there exists a set E with m(E) = 0 such that $f_n \to f$ uniformly on $E^{\mathfrak{C}}$. Let $\varepsilon > 0$ be chosen. Since $f_n \to f$ uniformly on $E^{\mathfrak{C}}$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ and $t \in E^{\mathfrak{C}}$,

$$|f_n(t) - f(t)| < \frac{\varepsilon}{2}.$$

But then this means that the set $\left\{t: f_n(t) - f(t) > \frac{\varepsilon}{2}\right\} \subset E$. By the definition of the infimum, for our fixed $\varepsilon > 0$ and any $n \geq N$,

$$\inf \{M : m \{t : |f_n(t) - f(t)| > M\} = 0\} < \varepsilon.$$

This is the essential supremum and so this means $||f_n - f||_{\infty} < \varepsilon$. Therefore, since ε is arbitrary, $||f_n - f|| < \varepsilon$ and which implies that $f_n \to f$ pointwise on L^{∞} .

Thus, having completed the forward and backwards implication, this completes the proof.