2. Consider the following joint probability distribution p(x, y) of two discrete random variables X and Y:

		3		
		1	2	$p_{\mathrm{Y}}(y)$
	1	0.14	0.06	0.20
у	2	0.12	0.18	0.30
	3	0.14	0.36	0.50
	$p_{X}(x)$	0.40	0.60	1.00

Recall STAT 400:

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$
 provided $P(B) > 0$.

$$\Rightarrow P(Y=y \mid X=x) = \frac{P(X=x, Y=y)}{P(X=x)}, \text{ provided } P(X=x) > 0.$$

Def Conditional probability mass function of Y given X = x is defined by

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}.$$

For a fixed x,

- $p_{Y|X}(y|x) \ge 0 \quad \forall y$
- $\sum_{y} p_{Y|X}(y|x) = \sum_{y} \frac{p(x,y)}{p_X(x)} = \frac{1}{p_X(x)} \sum_{y} p(x,y) = \frac{1}{p_X(x)} p_X(x) = 1.$

Similarly,
$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
, provided $P(Y = y) > 0$.

Def Conditional probability mass function of X given Y = y is defined by

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}.$$

For a fixed y,

•
$$p_{X|Y}(x|y) \ge 0 \quad \forall x.$$

•
$$\sum_{x} p_{X|Y}(x|y) = \sum_{x} \frac{p(x,y)}{p_{Y}(y)} = \frac{1}{p_{Y}(y)} \sum_{x} p(x,y) = \frac{1}{p_{Y}(y)} p_{Y}(y) = 1.$$

Y given $X = 1$				
у	$p_{Y X}(y 1)$			
1	0.14 / 0.40 = 0.35			
2	0.12 / 0.40 = 0.30			
3	0.14 / 0.40 = 0.35			
	1.00			

Y given
$$X = 2$$

$$y \qquad p_{Y|X}(y|2)$$

$$1 \qquad 0.06 / 0.60 = 0.10$$

$$2 \qquad 0.18 / 0.60 = 0.30$$

$$3 \qquad 0.36 / 0.60 = 0.60$$

$$1.00$$

For example,

$$P(Y \ge 2 \mid X = 1) = 0.65.$$

$$P(Y \ge 2 \mid X = 1) = 0.65.$$
 $P(Y \le 2 \mid X = 2) = 0.40.$

Def
$$E(Y|X=x) = \sum_{y} y P(Y=y|X=x) = \sum_{y} y p_{Y|X}(y|x).$$

Y given $X = 1$					
у	$p_{Y X}(y 1)$				
1	0.35	0.35			
2	0.30	0.60			
3	0.35	1.05			
	1.00	2.00			

$$E(Y|X=1) = 2.00$$

$$\begin{array}{c|cccc} y & p_{Y|X}(y|2) \\ \hline 1 & 0.10 & 0.10 \\ \hline 2 & 0.30 & 0.60 \\ \hline 3 & 0.60 & 1.80 \\ \hline \end{array}$$

Y given X = 2

$$E(Y|X=2) = 2.50$$

1.00

2.50

Denote by E(Y|X) that function of the random variable X whose value at X = x is E(Y|X = x). Note that E(Y|X) is itself a random variable, it depends on the (random) value of X that occurs.

$$E(Y|X)$$
:

	values	probabilities
X	E(Y X=x)	$p_{X}(x)$
1	2.00	0.40
2	2.50	0.60
	•	1.00

$$E[E(Y|X)] = 2.00 \cdot 0.40 + 2.50 \cdot 0.60 = 2.30 = E(Y).$$

Fact:
$$E[E(Y|X)] = E(Y)$$
.

<u>Proof</u>: E(Y|X) is a function of X.

If
$$X = x$$
, then $E(Y | X) = E(Y | X = x)$.

Recall:
$$E[g(X)] = \sum_{\text{all } x} g(x) \cdot p_X(x).$$

$$E[E(Y|X)] = \sum_{\text{all } x} E(Y|X=x) \cdot p_X(x)$$

$$= \sum_{\text{all } x} \left[\sum_{\text{all } y} y \cdot p_{Y|X}(y|x) \right] \cdot p_X(x)$$

$$= \sum_{\text{all } x} \left[\sum_{\text{all } y} y \cdot \frac{p(x,y)}{p_X(x)} \right] \cdot p_X(x)$$

$$= \sum_{\text{all } x} \sum_{\text{all } y} y \cdot p(x,y)$$

$$= E(Y).$$

X given $Y = 1$		X given $Y = 2$		X given $Y = 3$			
X	$p_{X Y}(x 1)$	-	x	$p_{X Y}(x 2)$		X	$p_{X Y}(x 3)$
1	$\frac{0.14}{0.20} = 0.70$		1	$\frac{0.12}{0.30} = 0.40$		1	$\frac{0.14}{0.50} = 0.28$
2	$\frac{0.06}{0.20} = 0.30$		2	$\frac{0.18}{0.30} = 0.60$		2	$\frac{0.36}{0.50} = 0.72$
	1.00			1.00			1.00
E(X	Y = 1) = 1.30	Е	(X)	Y = 2) = 1.60		E(X	Y = 3) = 1.72

E(X|Y):

	values	probabilities
У	E(X Y=y)	$p_{\rm Y}(y)$
1	1.30	0.20
2	1.60	0.30
3	1.72	0.50
		1.00

Def Conditional probability density function of Y given X = x is defined by

$$f_{\mathbf{Y}|\mathbf{X}}(y|x) = \frac{f(x,y)}{f_{\mathbf{X}}(x)}.$$

For a fixed x,

• $f_{Y|X}(y|x) \ge 0 \quad \forall y.$

$$\int_{-\infty}^{\infty} f_{Y|X}(y|x) dy = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_X(x)} dy = \frac{1}{f_X(x)} \int_{-\infty}^{\infty} f(x,y) dy$$

$$= \frac{1}{f_X(x)} f_X(x) = 1.$$

Def
$$E(Y|X=x) = \int_{-\infty}^{\infty} y \cdot f_{Y|X}(y|x) dy.$$

Def Conditional probability density function of X given Y = y is defined by

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

For a fixed y,

• $f_{X|Y}(x|y) \ge 0$ $\forall x$.

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_{Y}(y)} dx = \frac{1}{f_{Y}(y)} \int_{-\infty}^{\infty} f(x,y) dx$$

$$= \frac{1}{f_{Y}(y)} f_{Y}(y) = 1.$$

Def
$$E(X|Y=y) = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) dx.$$

1. Consider two continuous random variables X and Y with joint p.d.f.

$$f_{X,Y}(x,y) = \frac{4}{3} x^3 y$$
, $0 < x < 1$, $0 < y < 3x$, zero otherwise.

 $f_{\mathbf{X}}(x) = 6x^5, \qquad 0 < x < 1.$ Recall:

 $f_{Y}(y) = \frac{1}{3}y - \frac{1}{243}y^{5}, \qquad 0 < y < 3.$

Find $P(Y > 1 | X = \frac{2}{3})$.

$$f_{X}(x) = \int_{0}^{3x} \frac{4}{3} x^{3} y \, dy = 6 x^{5}, \quad 0 < x < 1.$$

$$f_{Y|X}(y|x) = \frac{4}{3} \frac{x^{3} y}{6x^{5}} = \frac{2y}{9x^{2}}, \quad 0 < y < 3x.$$

$$f_{Y|X}(y|^{2}_{3}) = \frac{4}{2}, \quad 0 < y < 2.$$

$$f_{Y|X}(y|^{2}_{3}) = \frac{1}{2} dy = \frac{1}{2} dy = \frac{3}{4} dy.$$

Find E(Y | X = x). i)

$$E(Y|X=x) = \int_0^3 y \cdot \frac{2y}{9x^2} dy = \frac{2}{3} \frac{(3x)^3}{9x^2} = 2x$$
,

j) Find
$$P(X < \frac{2}{3} | Y = 1)$$
.

$$f_{Y}(y) = \int_{3/3}^{1} \frac{4}{3} x^{3} y \, dx = \left(\frac{1}{3} x^{4} y\right)_{x=\frac{1}{3}}^{x=1}$$

$$= \frac{1}{3} y - \frac{1}{243} y^{5}, \quad 0 < y < 3.$$

$$f_{XY}(xy) = \frac{4}{3} x^{3} y \, dx = \frac{4 x^{3}}{1 - \frac{1}{3}}, \quad \frac{4}{3} < x < 1.$$

$$f_{XY}(xy) = \frac{1}{3} y - \frac{1}{243} y^{5} = \frac{4 x^{3}}{1 - \frac{1}{3}}, \quad \frac{4}{3} < x < 1.$$

$$f_{XY}(xy) = \frac{81}{3} x^{3} y \, dx = \frac{81}{3} x^{4} |_{y_{3}}^{2/3} = \frac{15}{80} = \frac{3}{16}.$$

$$f(x) = \frac{1}{3} y - \frac{1}{243} y^{5} = \frac{1}{3} x^{3} + \frac{1}{3} x^{3} + \frac{1}{3} x^{4} + \frac{1}{3} x^$$

k) Find
$$E(X \mid Y = y)$$
.

$$E(X|Y=g) = \int_{3/3}^{1} x \cdot \frac{4x^{3}}{1-\frac{y}{81}} dx = \frac{4}{5} \cdot \frac{1-\frac{y}{243}}{1-\frac{y}{81}} = \frac{4}{15} \cdot \frac{243-y^{5}}{81-y^{4}},$$

$$0 < y < 3.$$