Rubens Zimbres

Probability

Marginal Probability

long hair

$$\sum Prob = 1 \quad P(A) = \frac{P(A)}{\sum P(A,B)}$$

$$0 < Prob < 1$$
 $P(\tilde{A}) = 1 - A$

Conditional Probability (Bayes)

long hair, given that is woman

$$P(A|B) = \frac{P(B|A).P(A)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

Joint Probability

long hair and woman

$$P(A \cap B) = P(A).P(B)$$

long hair or woman

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

not long hair and not woman

$$P(\overline{A \cap B}) = 1 - P(A) \cdot P(B)$$

neither long hair nor woman

 $P(\overline{A \cup B}) = 1 - (P(A) + P(B) - P(A \cap B))$

Independent events

coins

$$P(A \cap B) = P(A).P(B)$$

Dependent events

$$P(A \cap B) = P(A) \cdot P(B|A)$$

Disjoint Probability Mutually Exclusive weather and coins

 $P(A \cap B) = \{\}$ P(AUB) = P(A) + P(B)