MA 205, Discrete Mathematics

Problem Sheet 3, August 28, 2020

- 1. Suppose that g is a function from A to B and f is a function from B to C.
 - Show that if both f and g are one-to-one functions, then $f \circ g$ is also one-to-one.
 - Show that if both f and g are onto functions, then $f \circ g$ is also onto.
- 2. Suppose that f is a function from A to B, where A and B are finite sets with |A| = |B|. Show that f is one-to-one if and only if it is onto.
- 3. Determine whether each of these sets is finite, countably infinite (an infinite set which is countable). For those that are countably infinite, exhibit a one-to-one correspondence between \mathbb{N} and that set. (Explain why your mapping is one -one and onto.)
 - a) the odd positive integers
 - b) the integers
 - c) the integers that are multiples of 7
 - d) the integers greater than 10
 - e) all bit strings not containing the bit 0
- 4. Show that subset of any countable set is countable.
- 5. Show that if A and B are sets and $A \subset B$ then $|A| \leq |B|$. (Hint: Apply definition in Slide 24, Lec 8).