

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta026

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

* Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

În sistemul cartezian de coordonate Oxyz se consideră punctele A(1,2,3), B(2,3,1), C(3,3,3)

- (4p) a) Să se determine distanța dintre punctele A și C.
- (4p) b) Să se determine distanța de la punctul A la planul (xOy).
- (4p) c) Să se demonstreze că triunghiul ABC este isoscel.
- (4p) d) Să se rezolve în mulțimea numerelor complexe ecuația $z^2 + 1 = 0$.
- (2p) e) Să se determine $a, b \in \mathbb{R}$ astfel încât să aibă loc următoarea egalitate în mulțimea \mathbb{C} : $\left(\cos\frac{\pi}{6} + i \cdot \sin\frac{\pi}{6}\right) \cdot \left(\cos\frac{\pi}{3} + i \cdot \sin\frac{\pi}{3}\right) = a + ib.$
- (2p) f) Să se calculeze aria cercului de ecuație $x^2 + y^2 4y = 0$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze $C_{10}^2 C_{10}^8$.
- (3p) b) Să se determine $a \in \mathbb{R}$ astfel încât polinomul g = X a să dividă polinomul $f = X^3 1$.
- (3p) c) Să se determine numărul funcțiilor injective $f:\{1,2\} \rightarrow \{3,4,5\}$.
- (3p) d) Să se rezolve ecuația $\log_3^2(3x) = 1$, $x \in (0, \infty)$.
- (3p) e) Să se determine probabilitatea ca un element din (\mathbf{Z}_8, \cdot) să fie inversabil .
 - 2. Se consideră funcția $f: \mathbf{R} \setminus \{-1\} \to \mathbf{R}$, $f(x) = \frac{x}{x+1}$.
- (3p) a) Să se calculeze f(f(-2)).
- (3p) b) Să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
- (3p) c) Să se calculeze f'(x), pentru $x \in \mathbb{R} \setminus \{-1\}$.
- (3p) d) Să se arate că funcția f este concavă pe intervalul $(-1, \infty)$.
- (3p) e) Să se calculeze $\lim_{x \to \infty} \int_{0}^{x} f(t) dt$.

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră matricele I_3 , A_0 , $A \in M_3(\mathbf{Z})$, cu $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $A_0 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$,

funcția $f_A: \mathbf{R} \to \mathbf{R}$, $f_A(x) = \det(A + xI_3)$ și polinomul $g \in \mathbf{Z}[X]$.

- (4p) a) Să se calculeze $\det(A_0)$
- (4p) b) Pentru $x \in \mathbb{R}$, să se calculeze $\det(A_0 + xI_3)$.
- (4p) c) Să se demonstreze că există $a, b, c \in \mathbb{Z}$ astfel încât $\forall x \in \mathbb{R}$, $f_A(x) = x^3 + a \cdot x^2 + b \cdot x + c.$
- (2p) d) Să se demonstreze că $\det(A) = c$.
- (2p) e) Dacă $\det(A + \sqrt{2} \cdot I_3) = 0$, să se demonstreze că funcția f_A are o rădăcină întreagă.
- (2p) **f**) Dacă există $t \in \mathbb{Z}$ astfel încât g(t) și g(t+1) sunt impare, să se demonstreze că polinomul g nu are rădăcini întregi.
- (2p) g) Dacă $\det(A)$ și $\det(A+I_3)$ sunt impare, să se demonstreze că $\forall q \in \mathbf{Q}$, $\det(A+qI_3) \neq 0$.

SUBIECTUL IV (20p)

Se consideră funcțiile $(f_n)_{n\in\mathbb{N}^*}$, $f_n: \mathbb{R} \to \mathbb{R}$, cu $f_1(x) = x$, $f_2(x) = x^2 - 2$ și astfel încât $\forall n \in \mathbb{N}$, $n \ge 3$, $\forall x \in \mathbb{R}$, $f_n(x) = x \cdot f_{n-1}(x) - f_{n-2}(x)$. Se consideră cunoscute formulele $\sin(x+y) + \sin(x-y) = 2\sin x \cdot \cos y$, $\cos(x+y) + \cos(x-y) = 2\cos x \cdot \cos y$, $\forall x, y \in \mathbb{R}$.

- (4p) a) Să se calculeze $\int_{-2}^{2} f_1(x) dx \quad \text{si} \quad \int_{-2}^{2} f_2(x) dx.$
- (4p) b) Să se calculeze $f_3(x)$, pentru $x \in \mathbb{R}$.
- (4p) c) Să se arate că $\forall x \in \mathbb{R}, f_2(2\cos x) = 2\cos 2x$.
- (2p) d) Folosind eventual inducția matematică, să se demonstreze că $\forall n \in \mathbb{N}^*, \ \forall \ x \in \mathbb{R}, \ f_n(2\cos x) = 2\cos nx.$
- (2p) e) Să se demonstreze că $\forall n \in \mathbb{N}^*$, $\int_{-2}^2 f_n(x) dx = 2 \cdot \int_0^{\pi} f_n(2\cos t) \cdot \sin t \, dt$.
- (2p) f) Să se demonstreze că șirul $(f_n(1))_{n \in \mathbb{N}^*}$ este divergent.
- (2p) g) Să se demonstreze că $\lim_{n \to \infty} \int_{-2}^{2} x \cdot f_n(x) dx = 0$.

2