75%%483*	
	 שם הסטודנט/ית:
	מספר תעודת זהות:

בוחן אמצע בחישוביות 2.5.2006

- ענו על 10 מתוך 11 השאלות (10 נק' על כל שאלה) או על כל 11 השאלות (9 נק' על כל שאלה + 1 נקודה בונוס).
 - סמנו את תשובותיכם בטבלה שבעמוד זה. (רק הטבלה תילקח לבדיקה.)
- הקיפו בעיגול את מספר השאלה שבחרתם לא לענות עליה (אם יש כזו).

iv	iii	ii	i	
				1
				2
				3
				4
				5
				6
				7
				8
				9
				10
				11

- ומהוה דוגמה ל- L, ומהוה חסרת הקשר, כי בהינתן קבוע ניפוח ל, המילה $0^p 1^p 0^p$ שייכת ל- L, ומהוה דוגמה נגדית לקיום למת הניפוח.
 - הוא שיוצר שיובר, והדקדוק הקשר, ווL (ii

 $.S \rightarrow S0S0S1S \mid S0S1S0S \mid S1S0S0S \mid S0 \mid \epsilon$

- $\{0^n 1^n 0^n : n \ge 0\} = L \cap 0^n 1^n 0^n : n \ge 0\} = L \cap 0^n 1^n 0^n$ אינה חסרת הקשר כי
 - וע אר אחת מהתשובות לעיל אינה נכונה. (iv
- תקבלת ממקבלת (מילה g(w) נתון א"ב ב ופונקציה ב $g:\Sigma \to \Sigma$ עבור מילה g נגדיר את נגדיר את פעלת מהפעלת עבור שפה g על אותיות g עבור שפה g נגדיר את g כשפה המתקבלת מהפעלת g על המלים ב- g.

לפניכם שתי טענות:

- רגולרית, g(L) אם L רגולרית שפה $g:\Sigma \to \Sigma$ הנקציה Σ , פונקציה לכל א"ב (a
- רגולרית אז L רגולרית אם g(L) אם אם $g:\Sigma \to \Sigma$ פונקציה $\Sigma \to \Sigma$ לכל א"ב (b
 - ו) שתי הטענות נכונות.
 - טענה a נכונה, וטענה b טענה (ii
 - טענה a אינה נכונה, וטענה (iii
 - iv) שתי הטענות אינן נכונות.
 - בעל n מצבים. DFA בעל n יהי (3 בתונה מילה $w \mid > n$ כך ש- $w \in L(A)$
 - A יש ל-w רישא (שונה מ-w) המתקבלת ע"י (i
 - A יש ל-w סיפא (שונה מ-w) המתקבלת ע"י (ii
 - A כך ש $\cdot y \cdot y$ בשפה של (iii קיים $y \neq \varepsilon$
 - iv) אף אחת מהתשובות לעיל אינה נכונה.
- נתון NFA מעל $\{0,1\}$ מעל ($\{0,1\}$ מעל במחסנית כך: $\mathcal{L}=\{0,1\}$ מעל ($\{0,1\}$ מעל במחסנית כך: בכל מעבר שבו נקראת האות $\{0,1\}$ דוחף $\{0,1\}$ דוחף למחסנית. בכל מעבר שבו נקראת האות $\{0,1\}$ אם המחסנית ריקה, $\{0,1\}$ דוחה. אחרת, $\{0,1\}$ מוציא $\{0,1\}$ מהמחסנית. בכוף קריאת המילה, $\{0,1\}$ מקבל אמ"מ הוא במצב מקבל.
 - $L(A') = L(A) \cap \{w : \#1 < \#0, w \}$ של על (i
 - $L(A') = L(A) \cap \{w : \#1 \ge \#0, w \}$ (ii
 - $L(A') = L(A) \cap \{w : \#1 < \#0, w \}$ של של (iii)
 - $L(A') = L(A) \cap \{w : \#1 \ge \#0, w \}$ (iv

- w=xyz מהצורה פירוק א שעבורן לא שעבורן שפת כל המילים שפת L' שפת רגולרית שפה עד תהי (5 $i \geq 0$ לכל $xy^iz \in L$ ומתקיים | $y \mid > 0$ -ש
 - . בהכרח ריקה L' (i
 - ריקה. בהכרח רגולרית, אך לא בהכרח ריקה. L' (ii
 - לא בהכרח רגולרית. L' (iii
 - בהכרח לא רגולרית. L' (iv
 - (6) איזה ביטוי רגולרי מתאר את השפה של האוטומט הבא:

- (0+1)* 00*0(0+1)* (i (0*+1*) 000*1* (ii
- $(0+1)^*00(0^*+1^*)$ (iii $(0^*+1^*)^*00(0^*+1^*)1^*$ (iv
- .inside(L₁,L₂)={ xyz Σ^* | y L₁, xz L₂ } נגדיר את השפה L₁,L₂ Σ^* עבור שפות עבור עבור את נגדיר את השפה (7

.inside(L_1,L_2) כ L_1,L_2 כל כל שומרת הפנמה אם שומרת כי נאמר כי נאמר נאמר עבור מחלקת שפות עבור

לפניכם שתי טענות:

- a) מחלקת השפות הרגולריות שומרת הפנמה.
- b) מחלקת השפות חסרות ההקשר שומרת הפנמה.
 - ו) שתי הטענות נכונות.
 - טענה a נכונה, וטענה b טענה a טענה (ii
 - טענה a טענה a טענה (iii
 - וער הטענות אינן נכונות. (iv
- השקילות השקילות כי מספר מחלקות שפות א"ב ב". נניח מעל שפות אור סופי של אוסף אוסף אוסף מחלקות אור $C = \{L_1, \ldots, L_m\}$ יהי .n אל באוסף מהשפות (Myhill-Nerode) על פי מייהיל-נרוד (Myhill-Nerode) על פי מייהיל-גרוד על פי את השפה (א שייכת לבדיוק א שפות את ב $k \ge 1$ את השפה את בור $k \ge 1$

מהו החסם המינימלי שניתן לתת על מספר מחלקות השקילות על פי מייהיל-נרוד (Myhill-Nerode) $angle \, L^k$ של השפה

- $.nk+2^{m}$ (i
 - $.n2^k$ (ii
 - .n^m (iii
 - ∞ (iv

- 9) דקדוק חסר הקשר הוא בצורה נורמלית של חד משתנה אחורי אם בכל כלל גזירה בצד ימין (כלומר בצד הנגזר) יש לכל היותר משתנה אחד, ואם יש משתנה הוא מופיע אחרון.
- לדוגמא, הכלל S \rightarrow abcX עשוי להופיע בדקדוק הנמצא בצורה נורמלית של חד משתנה אחורי אך לא S \rightarrow abXc כך לגבי הכללים S \rightarrow AbXc או S \rightarrow abXc כך לגבי
- בהנתן דקדוק חסר הקשר ובו n כללי גזירה נרצה למצוא דקדוק שקול בצורה נורמלית של חד משתנה אחורי ובו מספר כללי גזירה מינימלי. מהו סדר הגודל של המספר המינימלי של כללי גזירה הדרושים?
 - .O(n) (i
 - . כללי גזירה O(n^k) עבורו עבורו א ≥ 1 כללי כללי פיים Poly(n) (ii
 - $.2^{\hat{O}(n)}$ (iii
- משתנה משתנה נורמלית של הקדוק משר הקשר הקשר הקדוק של מצוא לכל לא ניתן למצוא לכל הקדוק מסר הקשר הקשר אחורי.
- עפה בעל מצב מקבל החיד, כך אם קיים אוטומט מופי דטרמיניסטי בעל מצב מקבל החיד, כך על שפה הגולרית נקראת שפ*ת מטרה* אם קיים אוטומט סופי דטרמיניסטי בעל מצב מקבל החיד, כך ש- L(A)=L
 - i) כל שפה רגולרית היא שפת מטרה.
 - (ii כל שפה רגולרית היא איחוד סופי של שפות מטרה.
 - יש שפות רגולריות שאינן איחוד סופי של שפות מטרה, אך כל שפה רגולרית היא איחוד אינסופי של שפות מטרה.
 - iv) אף אחת מהתשובות לעיל אינה נכונה.
 - L איזו מהטענות הבאות מהוה הוכחה לכך ששפה L היא רגולרית?
 - . הקשר שפות חסרות של שתי של איחוד של המשלים L (i
 - תלקית לשפה רגולרית. L (ii
 - . שפה חיתוך של שפה חסרת הקשר ושפה סופית. L (iii
 - . מקיימת את למת הניפוח לשפות רגולריות L (iv