A clean way to handle the situation in which the denominator vanishes is to work in a projective space. Intuitively, this means viewing a rational curve in  $\mathbb{A}^n$  as some appropriate projection of a polynomial curve in  $\mathbb{A}^{n+1}$ , back onto  $\mathbb{A}^n$ .

Given an affine space  $\mathcal{E}$ , for any hyperplane H in  $\mathcal{E}$  and any point  $a_0$  not in H, the central projection (or conic projection, or perspective projection) of center  $a_0$  onto H, is the partial map p defined as follows: For every point x not in the hyperplane passing through  $a_0$  and parallel to H, we define p(x) as the intersection of the line defined by  $a_0$  and x with the hyperplane H; see Figure 26.1.



Figure 26.1: A central projection in  $\mathbb{A}^3$  through  $a_0$  onto the yellow hyperplane H. This central projection is not defined for any points in the peach hyperplane.

For example, we can view G as a rational curve in  $\mathbb{A}^3$  given by

$$G_1(t) = a_0 + t^2 e_1 + e_2 + t e_3.$$

If we project this curve  $G_1$  (in fact, a parabola in  $\mathbb{A}^3$ ) using the central projection (perspective projection) of center  $a_0$  onto the plane of equation  $x_3 = 1$ , we get the previous hyperbola; see Figure 26.2. For t = 0, the point  $G_1(0) = a_0 + e_2$  in  $\mathbb{A}^3$  is in the plane of equation  $x_3 = 0$ , and its projection is undefined. We can consider that  $G_1(0) = a_0 + e_2$  in  $\mathbb{A}^3$  is projected to infinity in the direction of  $e_2$  in the plane  $x_3 = 0$ . In the setting of projective spaces, this direction corresponds rigorously to a point at infinity; see Figure 26.2.

Let us verify that the central projection used in the previous example has the desired effect. Let us assume that  $\mathcal{E}$  has dimension n+1 and that  $(a_0, (e_1, \ldots, e_{n+1}))$  is an affine