$Solutions \ Exercices \ MP/MP^*$

Table des matières

1	Algèbre Générale	2
2	Séries numériques et familles sommables	38
3	Probabilités sur un univers dénombrable	41
4	Calcul matriciel	41
5	Réduction des endomorphismes	41
6	Espaces vectoriels normés	44
7	Fonction d'une variable réelle	84
8	Suites et séries de fonctions	95
9	Séries entières	95
10	Intégration	95
11	Espaces préhilbertiens	95
12	Espaces euclidiens	95
13	Calcul différentiel	95
14	Équation différentielles linéaires	95

2 Séries numériques et familles sommables

Solution 2.1.

On a b₀ = a₁ = 5, b₁ = a₃ = 13 et pour p ≥ 2, b_p = 2b_{p-1} + 3b_{p-2}.
 On a donc l'équation caractéristique x² - 2x - 3 = 0. Les deux solutions sont 3 et -1.
 Donc il existe (λ, μ) ∈ ℝ², b_p = λ3^p + μ(-1)^p.

On a alors $b_0 = 5 = \lambda + \mu$ et $b_1 = 13 = 3\lambda - \mu$. On trouve alors $\lambda = \frac{9}{2}$ et $\mu = \frac{1}{2}$.

- 2. On le montre par récurrence sur $p \in \mathbb{N}$.
- 3. Si $3^p \le n < 3^{p+1}$, on a $a_n = b_p = \frac{9}{2}3^p + \frac{1}{2}(-1)^p$. Alors

$$\frac{3}{2} + \frac{1}{2}(-1)^p \frac{1}{3^{p+1}} < \frac{a_n}{n} \leqslant \frac{9}{2} + \frac{1}{2}(-1)^p \frac{1}{3^p}$$

Soit $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que

$$\frac{a_{\sigma(n)}}{\sigma(n)} \xrightarrow[n \to +\infty]{} \lambda$$

Soit $p_n \in \mathbb{N}$ tel que $3^{p_n} \leqslant \sigma(n) < 3^{p_n+1}$. On a

$$p_n = \lfloor \log_3(\sigma(n)) \rfloor \xrightarrow[n \to +\infty]{} +\infty$$

En reportant, on a $\frac{3}{2} \leqslant \lambda \leqslant \frac{9}{2}$.

 $Si \ \sigma(n) = 3^n, \ on \ a$

$$\frac{a_{3^n}}{3^n} = \frac{b_n}{3^n} = \frac{9}{2} + \frac{1}{2} \frac{(-1)^n}{3^n} \xrightarrow[n \to +\infty]{} \frac{9}{2}$$

 $Si \ \sigma(n) = 3^{n+1} - 1, \ on \ a$

$$\frac{a_{3^n}}{3^n} = \frac{b_n}{3^{n+1} - 1} \xrightarrow[n \to +\infty]{3}$$

Soit $\mu \in [1, 3[$ et $\sigma(n) = \lfloor 3^n \mu \rfloor \underset{n \to +\infty}{\sim} 3^n \mu$. Alors

$$\frac{a_{\sigma(n)}}{\sigma(n)} = \frac{b_n}{\left[3^n \mu\right]} \underset{n \to +\infty}{\sim} \frac{b_n}{3^n \mu} = \frac{9}{2\mu} + \frac{1}{2\mu} \frac{(-1)^n}{3^n} \xrightarrow[n \to +\infty]{} \frac{9}{2\mu}$$

Donc tout réel compris dans $\left[\frac{3}{2},\frac{9}{2}\right]$ est valeur d'adhérence.

Solution 2.2.

1.

$$g: [a,b] \rightarrow \mathbb{R}$$

$$x \mapsto f(x) - x$$

est continue, $g(a) \ge 0$ et $g(b) \le 0$, donc le théorème des valeurs intermédiaires affirme qu'il existe $l \in [a,b]$ avec g(l) = 0, d'où f(l) = l.

2. On note $A = \{\lambda \mid \lambda \text{ est valeur d'adhérence}\}$. Le théorème de Bolzano-Weierstrass indique que A est non vide. De plus, A est borné car $A \subset [a,b]$. Soit $\lambda = \inf(A)$ et $\mu = \sup(A)$.

Si $\lambda = b$, on a $\mu = b$ et $A = \{b\} = \{\lambda\} = \{\mu\}$.

Si $\lambda < b$, soit $\varepsilon > 0$. Si $\lambda \notin A$, $\{k \in \mathbb{N} \mid x_k \in]\lambda, \lambda + \varepsilon[\}$ est infini. Par définition, λ est valeur d'adhérence. Donc $\lambda \in A$, et de même $\mu \in A$.

Soit $\nu \in]\lambda, \mu[$ avec $\lambda < \mu$. Si $\nu \notin A$, il existe $\varepsilon_0 > 0$ tel que $\{k \in \mathbb{N} \mid |x_k - \nu| < \varepsilon_0\}$ est fini. Donc il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$, $x_n \notin]\nu - \varepsilon_0, \nu + \varepsilon_0[$. Comme $\lim_{n \to +\infty} |x_{n+1} - x_n| = 0$, il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geqslant N_1$, $|x_{n+1} - x_n| < 2\varepsilon_0$. Soit alors $n \geqslant \max(N_0, N_1)$. Si $x_n \leqslant \nu - \varepsilon_0$, alors $x_{n+1} \leqslant \nu - \varepsilon_0$. Si $x_n \geqslant \nu + \varepsilon_0$, alors $x_{n+1} \geqslant \nu + \varepsilon_0$. Ceci contredit que λ et μ sont valeur d'adhérence. Ainsi, $\nu \in A$ et $[\lambda, \mu]$ est le segment des valeurs d'adhérence.

3. Si (x_n) converge, alors $\lim_{n \to +\infty} x_{n+1} - x_n = 0$. Réciproquement, si $\lim_{n \to +\infty} x_{n+1} - x_n = 0$, d'après 2., on a $A = [\lambda, \mu]$. On suppose $\lambda < \nu$. Ainsi, $\frac{\lambda + \nu}{2} = \alpha$ est valeur d'adhérence. Donc il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $x_{\sigma(n)} \xrightarrow[n \to +\infty]{} \alpha$. Alors $\lim_{n \to +\infty} x_{\sigma(n)+1} = f(\alpha)$ par continuité de f et c'est aussi égale à $\lim_{n \to +\infty} x_{\sigma(n)} = \alpha$ car $\lim_{n \to +\infty} x_{n+1} - x_n = 0$. Ainsi, $f(\alpha) = \alpha$.

Par ailleurs, il existe $n_0 \in \mathbb{N}$ tel que $x_{n_0} \in [\lambda, \mu]$ et $f(x_{n_0}) = x_{n_0} \in A$, alors pour tout $n \geqslant n_0$, on a $x_n = x_{n_0}$. Donc $(x_n)_{n \in \mathbb{N}}$ converge et $\lambda = \mu : (x_n)_{n \in \mathbb{N}}$ est bornée et a une unique valeur d'adhérence, donc $(x_n)_{n \in \mathbb{N}}$ converge.

Solution 2.3. On a $u_n = e^{i2^n\theta}$ pour tout $n \in \mathbb{N}$.

Si $(u_n)_{n\in\mathbb{N}}$ converge, alors $\lim_{n\to+\infty}u_n=1$ car $l=l^2$ et |l|=1.

 $Si\ (u_n)_{n\in\mathbb{N}}$ est périodique au-delà d'un certain rang, il existe $T\in\mathbb{N}^*$, il existe $N_0\in\mathbb{N}$ tel

que pour tout $n \geqslant N_0$, $u_{n+T} = u_n$. En particulier, $u_{N_0+T} = u_{N_0}$. On veut alors $2^{N_0+T}\theta \equiv 2^{N_0}\theta[2\pi]$. $D'où\ 2^{N_0+T}\theta = 2\theta + 2k\pi\ donc\ 2^{N_0}(2^T - 1)\theta = 2k\pi$. Donc $\frac{\theta}{2\pi} \in \mathbb{Q}$.

Réciproquement, si $\frac{\theta}{2\pi} \in \mathbb{Q}$, son développement binaire est périodique à partir d'un certain rang, et donc $(u_n)_{n\in\mathbb{N}}$ l'est aussi.

Si $(u_n)_{n\in\mathbb{N}}$ est stationnaire, il existe $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$, $U_{N+1}=U_N=U_{N^2}$. Comme $|U_N|=1$, alors $2^n\theta\in 2\pi\mathbb{N}$ et $\frac{\theta}{2\pi}$ est dyadique.

Réciproquement, s'il existe $p \in \mathbb{N}$, $u_0 \in \mathbb{N}$ tel que $\frac{\theta}{2\pi} = \frac{p}{2^{n_0}}$ (nombre dyadique). Alors pour tout $n \geqslant n_0$, $2^n \theta \in 2\pi \mathbb{N}$ et $u_n = u_{n_0} = 1$.

Pour la densité, on prend une suite $(a_n)_{n\in\mathbb{N}}$ en écrivant successivement, pour tout $k\in\mathbb{N}^*$, tous les paquets de k entiers sont dans $\{0,1\}^k$. Soit $x\in[0,1[$ tel que

$$x = \sum_{n=1}^{+\infty} \frac{a_n}{2^n}$$

Soit $N \in \mathbb{N}$, il existe $p_N \in \mathbb{N}$,

$$2^{p_N}\theta = 2\pi \underbrace{(\dots)}_{\in \mathbb{N}} + 2\pi \left(\frac{a_1}{2} + \dots + \frac{a_N}{2^N} + \dots \right)$$

On a alors

$$e^{\mathrm{i}2^{p_N}\theta} = e^{\mathrm{i}2\pi(\frac{a_1}{2} + \dots + \frac{a_N}{2^N} + \dots)}$$

et

$$\left| \frac{a_1}{2} + \dots + \frac{a_N}{2^N} - x \right| \leqslant \frac{1}{2^N}$$

 $D'où \lim_{N\to +\infty} u_{p_N} = e^{i2\pi x} \ et \ (u_n)_{n\in\mathbb{N}} \ est \ dense \ dans \ \mathbb{U}.$

Solution 2.4. Si a = 0 et b = 0, $u_n \xrightarrow[n \to +\infty]{} 0$.

Si
$$a = 0$$
 et $b \neq 0$ (ou inversement), $u_n \underset{n \to +\infty}{\sim} \left(\frac{1}{2}\right)^{n^2} \xrightarrow[n \to +\infty]{} 0$.

 $Si \ a > 0 \ ou \ b > 0, \ on \ a$

$$u_n = \exp\left(n^2 \ln\left(\frac{e^{\frac{1}{n}\ln(a)} + e^{\frac{1}{n}\ln(b)}}{2}\right)\right)$$

$$= \exp\left(n^2 \ln\left(1 + \frac{1}{2n}\ln(ab) + \frac{1}{4n^2}(\ln(a)^2 + \ln(b)^2)\right) + o\left(\frac{1}{n^2}\right)\right)$$

$$= \exp\left(\frac{n}{2}\ln(ab) + \frac{1}{4}(\ln(a)^2 + \ln(b)^2 + o(1))\right)$$

Si
$$ab > 1$$
, on $a \lim_{n \to +\infty} u_n = +\infty$.

Si
$$ab < 1$$
, on $a \lim_{n \to +\infty} u_n = 0$.

Si
$$ab = 1$$
, on $a \lim_{n \to +\infty} u_n = e^{\frac{1}{2}\ln(a)^2}$.

3 Probabilités sur un univers dénombrable

4 Calcul matriciel

- 8 Suites et séries de fonctions
- 9 Séries entières
- 10 Intégration
- 11 Espaces préhilbertiens
- 12 Espaces euclidiens
- 13 Calcul différentiel
- 14 Équation différentielles linéaires