Machine Learning for Data Science (CS4786) Lecture 11

Spectral Embedding + Clustering

THOUGHT EXPERIMENT

- For each user i we specify embedding (location) y_i
- How do we find good locations y_1, \ldots, y_n ?
- What are good properties?

- Points are centered at 0
- Keep your Friends close (sum of distances between linked nodes should be small)
- Variance or spread amongst the nodes should be large

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close
- Variance or spread should be large

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close
- Variance or spread should be large

REPRESENTING THE GRAPH

REPRESENTING THE GRAPH

THE LAPLACIAN MATRIX

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close $minimize y^{\top}Ly$
- Variance or spread should be large

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close $minimize y^{\top}Ly$
- Variance or spread should be large $\frac{1}{m} \|y\|_2^2$

Minimize
$$\frac{y^{\top}Ly}{\|y\|_2^2}$$
 s.t. $y \perp \mathbf{1}$

Minimize
$$y^{\top}Ly$$
 s.t. $||y||_2^2 = 1$ $y \perp \mathbf{1}$

- Points are centered at 0 $y^{\top} \mathbf{1} = 0$
- Keep your Friends close $minimize y^{\top}Ly$
- Variance or spread should be large $\frac{1}{n} ||y||_2^2$

Minimize
$$y^{\top}Ly$$
 s.t. $||y||_2^2 = 1$ $y \perp \mathbf{1}$

y =Second smallest eigenvector of L

SPECTRAL CLUSTERING ALGORITHM (UNNORMALIZED)

- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- ② Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of L (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on y_1, \ldots, y_n

TROUBLE MAKERS

TROUBLE MAKERS

- Variance is high
- Almost all connected nodes have same (small value)

What was the problem?

- Pushing few nodes far away from the rest increased variance
- But these nodes were ones with one or few links
- We want nodes with fewer links to account for lesser of the variance

- Nodes linked to each other are close to each other
- Variance or spread should be large
 - But variance under what distribution?
 - Higher degree nodes are more important!
 - Lets try a distribution where probability of picking node is proportional to its degree
 - so pushing loners away does not account for much variance
 - There is more incentive to push the famous people outwards

Define distribution with
$$p_i = \frac{D_{i,i}}{\sum_{j=1}^n D_{j,j}} = \frac{D_{i,i}}{|E|}$$

- Keep your Friends close $\underset{}{\operatorname{minimize}}$ $y^{\top}Ly$
- Points are centered at 0 $\sum_{i=1}^n p_i y_i = 0$ $\sum_{i=1}^n D_{i,i} y_i = 0$
- Variance or spread should be large

Maximize
$$\sum_{i=1}^{n} p_i y_i^2 = \frac{1}{|E|} \sum_{i=1}^{n} D_{i,i} y_i^2 = \frac{1}{|E|} y^{\top} D y$$

- Keep your Friends close $\underset{}{\operatorname{minimize}}$ $y^{\top}Ly$
- Points are centered at 0 $\sum_{i=1}^{n} D_{i,i} y_i = 0$
- Variance or spread should be large $\frac{\text{Maximize}}{\text{Maximize}} y^{\top} D y$

Minimize
$$\frac{y^{\top}Ly}{y^{\top}Dy}$$
 s.t. $\sum_{i=1}^{n} D_{i,i}y_i = 0$

Define
$$u = D^{1/2}y$$
 so that $\frac{y^{\top}Ly}{y^{\top}Dy} = \frac{u^{\top}D^{-1/2}LD^{-1/2}u}{\|u\|^2}$

and
$$\sum_{i=1}^{n} D_{i,i} y_i = \sum_{i=1}^{n} D_{i,i}^{1/2} u_i = 0 \Rightarrow \operatorname{diag}(D^{1/2}) \perp u$$

- Keep your Friends close $\underset{}{\operatorname{minimize}}$ $y^{\top}Ly$
- Points are centered at 0 $\sum_{i=1}^{n} D_{i,i} y_i = 0$
- Variance or spread should be large $\frac{\text{Maximize}}{\text{Maximize}} y^{\top}Dy$

Minimize
$$u^{\top}D^{-1/2}LD^{-1/2}u$$
 s.t. $||u|| = 1 \& u \perp \text{diag}(D^{1/2})$

Solution: Second smallest eigen vector of $D^{-1/2}LD^{-1/2}$

- More generally if probability of a node i is proportional to some pi then solution to normalized spectral clustering is
 - Second smallest eigen vector of $P^{-1/2}LP^{-1/2}$ where $P=\mathrm{diag}(p)$
 - For K dimensional representation, we can take 2nd to K+1'th smallest eigenvectors say u_{2,...}, u_{K+1}
- $\bullet \quad Y = P^{-1/2}U$

Clustering

- Grouping sets of data points s.t.
 - points in same group are similar
 - points in different groups are dissimilar

 A form of unsupervised classification where there are no predefined labels

- Partition data into K disjoint groups
- Compression or Quantization
 - Compress n points into K representatives/groups
- Visualization or Understanding
 - Taxonomy: Animals Vs plants Vs Microbes, Science Vs Math Vs Social Sciences
 - Segmentation: different types of customers, students etc. Find natural groupings in data

What this does not include: items belonging to more than one type

- Grouping sets of data points s.t.
 - points in same group are similar
 - points in different groups are dissimilar

 A form of unsupervised classification where there are no predefined labels

SOME NOTATIONS

- *K*ary clustering is a partition of $x_1, ..., x_n$ into *K* groups
- For now assume the magical *K* is given to use
- Clustering given by C_1, \ldots, C_K , the partition of data points.
- Given a clustering, we shall use $c(\mathbf{x}_t)$ to denote the cluster identity of point \mathbf{x}_t according to the clustering.
- Let n_j denote $|C_j|$, clearly $\sum_{j=1}^K n_j = n$.

How do we formalize a good clustering objective?

How do we formalize?

Say dissimilarity $(\mathbf{x}_t, \mathbf{x}_s)$ measures dissimilarity between $\mathbf{x}_t \ \& \ \mathbf{x}_s$

Given two clustering $\{C_1, \ldots, C_K\}$ (or c) and $\{C'_1, \ldots, C'_K\}$ (or c')

How do we decide which is better?

- points in same cluster are not dissimilar
- points in different clusters are dissimilar

CLUSTERING CRITERION

Minimize total within-cluster dissimilarity

$$M_1 = \sum_{j=1}^K \sum_{s,t \in C_j} \text{dissimilarity}(x_t, x_s)$$

Maximize between-cluster dissimilarity

$$M_2 = \sum_{\mathbf{x}_s, \mathbf{x}_t : c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$$

Maximize smallest between-cluster dissimilarity

$$M_3 = \min_{\mathbf{x}_s, \mathbf{x}_t : c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \text{dissimilarity}(x_t, x_s)$$

Minimize largest within-cluster dissimilarity

$$M_4 = \max_{j \in [K]} \max_{s,t \in C_j} \text{dissimilarity}(x_t, x_s)$$