# Zkoumání parametrů řešiče Rubikovy kostky

### Viktor Číhal

## Úvod

V této práci jsem se rozhodl zkoumat určité parametry svého řešiče Rubikovy kostky. Zdrojový kód a notebook s experimenty se dá nalézt na https://github.com/Reblexis/rubik-solver.

## Popis řešiče

### Algoritmus

Řešič funguje na základě opakovaného prohledávání stavového prostoru metodou DFS s dodatečným přidáváním náhodných tahů, pokud není nalezen zlepšující stav kostky. K rozhodnutí o tom, zda je nalezen zlepšující stav, se používá metrika, počítající správné kostičky v kostce. Hledání je rozděleno do 2 fází. V první fázi se hledá řešení, které dostane kostku do podgrupy G1 a ve druhé fázi se pomocí menšího počtu různých tahů (a tedy i větší hloubky) hledá již úplné řešení.

Řešič tedy většinou nenalezne nejkratší řešení.

#### **Parametry**

Při spouštění lze nastavovat tyto parametry:

- Počet tahů zamíchání kostky (n)
- Časový limit pro hledání řešení (v milisekundách) (t)
- $\bullet$  Maximální hloubka hledání v první fázi (d1)
- Maximální hloubka hledání ve druhé fázi (d2)

Více informací se nachází v README.md souboru.

# Vliv počtu tahů při míchání na dosažené skóre

Rozhodl jsem se prozkoumat tento vztah, neboť se hodí vědět kolik stačí tahů při míchání, aby byla kostka 'dostatečně náhodná'.

#### Graf závislosti

Skóre je počítáno jako počet správně umístěných kostiček v kostce (tedy na správné pozici a zároveň správně otočených). Pro každou testovanou hodnotu n spustíme 100-krát řešič a ostatní parametry zafixujeme na  $t=100,\,d1=4$  a d2=5.

Algoritmus sice řeší kostku jiným způsobem než člověk, ale je založený na podobném principu postupného přesouvání kostiček na správné pozice.



Figure 1: Vliv počtu tahů při míchání na dosažené skóre

Z grafu můžem vypozorovat, že 15 míchacích tahů nejspíš nestačí a od 20 míchacích tahů by již kostka mohla být dostatečně náhodná, ale stále je nějaký rozdíl mezi 20 a více tahy zamíchání.

Jelikož je maximální možný počet tahů k nejkratšímu vyřešení kostky 20 (God's Number), mohl by tento počet stačit.

#### Test normality distribuce

Raději ale tuto hypotézu otestujeme. Nejprve provedeme test, zda mají distribuce skóre normální rozdělení. Provedeme tedy Shapiro-Wilkův test s nulovou hypotézou, že data pocházejí z normálního rozdělení.

Spustíme tedy 300-krát řešič jednotlivě pro hodnoty n=15, n=20 a n=50 a zafixujeme t=100, d1=4 a d2=5. Z testu nám vyšla p-hodnota výrazně menší než 0.05, což znamená, že zamítáme nulovou hypotézu a můžeme tedy říct, že distribuce skóre není normální.



Figure 2: Histogram skóre pro  $n=15,\,n=20$  a n=50

### KS test

Jelikož distribuce není normální, použiji dvouvýběrový KS test, kde porovnám postupně n=15 a n=20 s n=50.