Symax and Semandics of Propositional logic

Content

- Knowledge
- **Types of knowledge**
- Techniques of knowledge representation
- Logical representation
- Syntax and semantics
- **Propositional logic**
- Types of prepositional logic
- Logical connectives
- Logical equivalence
- **Rule of inference**
- **Types of inference rules**
- Limitations of propositional logic

Knowledge?

- Consists of facts, concepts and rules.
- awareness or familiarity gained by experiences of facts, data, and situations.
- Study of knowledge is called epistemology.

- there is one decision maker which:
- \square act by sensing the environment and using knowledge.
- But if the knowledge part will not present then,
- it cannot display intelligent behavior.

Figure1

Types of knowledge

Declarative Knowledge:

- Declarative knowledge is to know about something.
- It includes concepts, facts, and objects.

Procedural Knowledge

- It is also known as imperative knowledge.
- Procedural knowledge is a type of knowledge which is responsible for knowing how to do something
- t includes rules, strategies, procedures, agendas, etc.

Meta-knowledge:

Knowledge about the other types of knowledge is called Meta-knowledge.

Heuristic knowledge:

- Heuristic knowledge is representing knowledge of some experts in a filed or subject.
- Heuristic knowledge is rules of thumb based on previous experiences, awareness of approaches, and which are good to work but not guaranteed.

Structural knowledge:

- Structural knowledge is basic knowledge to problem-solving.
- It describes relationships between various concepts such as kind of, part of, and grouping of something.
- It describes the relationship that exists between concepts or objects.

Techniques of knowledge representation

Logical Representation

- language with some concrete rules which deals with propositions
- means drawing a conclusion based on various conditions.
- consists of precisely defined **syntax** and **semantics**
- categorised into mainly two logics:
 - **Propositional Logics**
 - Predicate logics

Syntax and Semantics

Syntax

- rules which decide how we can construct legal sentences in the logic.
- determines which symbol we can use in knowledge representation.
- How to write those symbols.

Sementics

- Semantics are the rules by which we can interpret the sentence in the logic.
- Semantic also involves assigning a meaning to each sentence.

Propositional Logic

- A proposition is a declarative statement which is either true or false
- technique of knowledge representation in logical and mathematical form.
- Propositional logic is also called Boolean logic as it works on 0 and 1.
- Propositions can be either true or false, but it cannot be both.
- consists of an object, relations or function, and **logical connectives**.
- Examples:
- 3+3=7(False proposition)
- 5 is a prime number.

Syntax of propositional logic

The syntax of propositional logic defines the allowable sentences for the knowledge representation

Types of Propositions:

- There are two types of Propositions:
- **Atomic Propositions**
- **Compound propositions**

Atomic Propositions

- Atomic propositions are the simple propositions.
- It consists of a single proposition symbol.
- These are the sentences which must be either true or false.
- $\sqrt{2+2}$ is 4, it is an atomic proposition
- "The Sun is cold" is also a proposition

Compound propositions

- constructed by combining simpler or atomic propositions
- using parenthesis and logical connectives.

- 'It is raining today, and street is wet."

Logical Connectives:

- used to connect two simpler propositions
- representing a sentence logically.
- We can create compound propositions with the help of logical connectives.
- There are mainly five connectives
- Negation
- Conjunction
- Disjunction
- Implication
- Biconditional

Summarized table for Propositional Logic Connectives:

Connective symbols	Word	Technical term	Example
Λ	AND	Conjunction	AΛB
V	OR	Disjunction	ΑVΒ
\rightarrow	Implies	Implication	$A \rightarrow B$
\Leftrightarrow	If and only if	Biconditional	A⇔ B
¬or∼	Not	Negation	¬ A or ¬ B

Negation:

- \square A sentence such as \neg P is called negation of P.
- A literal can be either Positive literal or negative literal.

For Negation:

Р	¬₽	
True	False	
False	True	

Conjunction

A sentence which has \wedge connective such as, **P** \wedge **Q** is called a conjunction.

Example:

- Rohan is intelligent and hardworking.
- It can be written as,

P= Rohan is intelligent,

Q= Rohan is hardworking. \rightarrow **P** \land **Q**.

For Conjunction:

P	Q	PΛQ	
True	True	True	
True	False	False	
False	True	False	
False	False	False	

Disjunction

A sentence which has v connective, such as **P** v **Q**. is called disjunction, where P and Q are the propositions.

Example: "Ritika is a doctor or Engineer",

Here P= Ritika is Doctor.

Q= Ritika is Doctor, so we can write it as $\mathbf{P} \vee \mathbf{Q}$.

For disjunction:

P	Q	P V Q.	
True	True	True	
False	True	True	
True	False	True	
False	False	False	

Implication

- \square A sentence such as $P \rightarrow Q$, is called an implication.
- Implications are also known as if-then rules.
- ☐ /It can be represented as

If it is raining, then the street is wet.

Let P= It is raining,

Q= Street is wet,

so it is represented as $P \rightarrow Q$

For Implication:

P	Q	P→ Q	
True	True	True	
True	False	False	
False	True	True	
False	False	True	

Biconditional

- A sentence such as $P \Leftrightarrow Q$ is a Biconditional sentence,
- example If I am breathing, then I am alive

P= I am breathing,

Q= I am alive, it can be represented as $P \Leftrightarrow Q$.

For Biconditional:

P	Q	P⇔ Q	
True	True	True	
True	False	False	
False	True	False	
False	False	True	

Logical equivalence

- Logical equivalence is one of the features of propositional logic.
- Two propositions are said to be logically equivalent if and only if
- the columns in the truth table are identical to each other.

Α	В	¬A	¬A∨ B	A→B	
T	T	F	Т	T	3
T	F	F	F	F	
F	Т	Т	Т	Т	
F	F	Т	Т	Т	

Rules of Inference

- we need intelligent computers which can create new logic from old logic or by evidence,
- so generating the conclusions from evidence and facts is termed as Inference.
- terminologies related to inference rules are:
- Converse
- Contrapositive
- Inverse

Terminologies

- Implication: It is one of the logical connectives which can be represented as $P \rightarrow Q$. It is a Boolean expression.
- Converse: The converse of implication, which means the right-hand side proposition goes to the left-hand side and vice-versa. It can be written as $Q \rightarrow P$.
- Contrapositive: The negation of converse is termed as contrapositive, and it can be represented as $\neg Q \rightarrow \neg P$.
- Inverse: The negation of implication is called inverse. It can be represented as $\neg P \rightarrow \neg Q$.

Truth table, we can prove that $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$, and $Q \rightarrow P$ is equivalent to $\neg P \rightarrow \neg Q$.

P	Q	P → Q	Q→ P	$\neg Q \rightarrow \neg P$	$\neg P \rightarrow \neg Q$.
T	T	Т	Т	Т	Т
T	F	F	Т	F	T
F	T	T	F	T	F
F	F	T	Т	T	Т

Types of Inference rules

1. Modus Ponens

if P and P \rightarrow Q is true, then we can infer that Q will be true.

Notation for Modus ponens: $\frac{P \rightarrow Q, P}{\therefore Q}$

Proof by Truth table:

P	Q	$P \rightarrow Q$
0	0	0
0	1	1
1	0	0
1	1	1 .

2. Modus Tollens

if $P \rightarrow Q$ is true and $\neg Q$ is true, then $\neg P$ will also true

Notation for Modus Tollens:
$$\frac{P \rightarrow Q, \sim Q}{\sim P}$$

Proof by Truth table:

P	Q	~ <i>P</i>	$\sim Q$	P -	→ Q
0	0	1	1	1	+
0	1	1	0	1	
1	0	0	1	0	
1	1	0	0	1	

3. Hypothetical Syllogism

if $P \rightarrow R$ is true whenever $P \rightarrow Q$ is true, and $Q \rightarrow R$ is true. It can be represented as the following notation

Example:

Statement-1: If you have my home key then you can unlock my home. P→Q

Statement-2: If you can unlock my home then you can take my money. Q→R

Conclusion: If you have my home key then you can take my money. P→R

Proof by truth table:

Р	Q	R	P o Q	$Q \rightarrow R$	i	$P \to R$
0	0	0	1	1	1	4
0	0	1	1	1	1	+
0	1	0	1	0	1	
0	1	1	1	1	1	4
1	0	0	0	1	1	
1	0	1	0	1	1	
1	1	0	1	0	0	
1	1	1	1	1	1	4

4. Disjunctive Syllogism

if $P \lor Q$ is true, and $\neg P$ is true, then Q will be true.

Notation of Disjunctive syllogism:
$$\frac{P \lor Q, \neg P}{Q}$$

Proof by truth-table:

Р	Q	$\neg P$	$P \lor Q$
0	0	1	0
0	1	1	1 -
1	0	0	1
1	1	0	1

5. Addition

 \Box it states that If P is true, then P \vee Q will be true.

Notation of Addition:
$$\frac{P}{P \lor Q}$$

Example:

Statement: I have a vanilla ice-cream. ==> P

Statement-2: I have Chocolate ice-cream.

Conclusion: I have vanilla or chocolate ice-cream. ==> (PvQ)

Proof by Truth-Table:

Р	Q	$P \lor Q$
0	0	0
1	0	1 +
0	1	1
1	1	1 4

6. Simplification

if $\mathbf{P} \wedge \mathbf{Q}$ is true, then \mathbf{Q} or \mathbf{P} will also be true. It can be represented as

Notation of Simplification rule:
$$\frac{P \wedge Q}{Q}$$
 Or $\frac{P \wedge Q}{P}$

Proof by Truth-Table:

Р	Q	$P \wedge Q$
0	0	0
1	0	0
0	1	0
1	1	1

Limitations of Propositional logic:

- We cannot represent relations like ALL, some, or none with propositional logic. Example:
 - All the girls are intelligent.
 - Some apples are sweet.
- Propositional logic has limited expressive power.
- In propositional logic, we cannot describe statements in terms of their properties or logical relationships.

First-Order Logic

- in propositional logic, we can only represent the facts, which are either true or false
- PL is not sufficient to represent the complex sentences or natural language statements
- The propositional logic has very limited expressive power.
- Consider the following sentence, which we cannot represent using PL logic.
- □ "Some humans are intelligent", or
- □ "Sachin likes cricket."

First-Order logic

- FOL is sufficiently expressive to represent the natural language statements in a concise way.
- First-order logic is also known as **Predicate logic or First-order predicate logic**.
- also assumes the following things in the world:

Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus,

Relations: sister,brother

Function: Father of,,

- First-order logic statements can be divided into two parts:
- ☐ **Subject:** Subject is the main part of the statement.
- Predicate: A predicate can be defined as a relation, which binds two atoms together in a statement.
- Opnsider the statement: "x is an integer.",
- the first part x is the subject of the statement and second part "is an integer," is known as a predicate.

Quantifiers in First-order logic

- A quantifier is a language element which generates quantification,
- quantification specifies the quantity of specimen in the universe of discourse.
- There are two types of quantifier:
 - Universal Quantifier, (for all, everyone, everything)
 - **Existential quantifier, (for some, at least one).**

Universal Quantifier

- Universal quantifier is a symbol of logical representation,
- which specifies that the statement within its range is true for everything or every instance of a particular thing.
- represented by a symbol \(\neg \)

 $\forall x \text{ man}(x) \rightarrow \text{drink } (x, \text{ coffee}).$

Existential Quantifier

- which express that the statement within its scope is true for at least one instance of something.
- It is denoted by the logical operator **3**
- If x is a variable, then existential quantifier will be $\exists x$ or $\exists (x)$. And it will be read as:
- ☐ There exists a 'x.'
- **□** For some 'x.'
- **□** For at least one 'x.'

 $\exists x: boys(x) \land intelligent(x)$