Name:	Student number:

- Some general data are provided on this page.
- A Periodic Table with atomic weights is provided on the next page.

$R = 8.3145 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1} = 0.08206 \mathrm{L} \mathrm{atm} \mathrm{K}^{-1} \mathrm{mol}^{-1}$	$N_{\rm A} = 6.022 \times 10^{23} {\rm mol}^{-1}$
$c = 2.9979 \times 10^8 \mathrm{m s^{-1}}$	$h = 6.6256 \times 10^{-34} \mathrm{Js}$
$m_{\rm e} = 9.10 \times 10^{-31} \rm kg$	density(H_2O , I) = 1.00g/mL
Specific heat of $H_2O(s) = 2.03 \text{ J/g} \cdot ^{\circ}C$	$\Delta H^{o}_{fus}[H_{2}O] = 6.01 \text{ kJ mol}^{-1}$
Specific heat of $H_2O(I) = 4.18 \text{ J} / \text{g} \cdot ^{\circ}\text{C}$	$\Delta H^{o}_{vap}[H_2O] = 44.0 \text{ kJ mol}^{-1}$
1 atm = 101.325 kPa = 760 mm Hg	0°C = 273.15 K
$1 J = 1 kg m^2 s^{-2} = 1 kPa L = 1 Pa m^3$	$1 \text{ m} = 10^9 \text{ nm} = 10^{10} \text{ Å}$
$1 \text{ cm}^3 = 1 \text{ mL}$	$1 g = 10^3 mg$

De Broglie wavelength:

$$\lambda = h / mv = h / p$$

1 Hz = 1 cycle/s

Hydrogen atom energy levels:

$$E_n = -R_H / n^2 = -2.178 \times 10^{-18} \,\mathrm{J} / n^2$$

Gibbs free energy of reaction: $\Delta G = \Delta G^{\circ} + RT \ln Q$

Entropy change: $\Delta S = \frac{q_{\text{rev}}}{T}$

Solubility Guidelines for Common Ionic Solids

TABLE 5.1 Solubility Guidelines for Common Ionic Solids

Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases.

- 1. Salts of group 1 cations (with some exceptions for Li⁺) and the NH₄⁺ cation are soluble.
- 2. Nitrates, acetates, and perchlorates are soluble.
- 3. Salts of silver, lead, and mercury(I) are insoluble.
- 4. Chlorides, bromides, and iodides are soluble.
- 5. Carbonates, phosphates, sulfides, oxides, and hydroxides are insoluble (sulfides of group 2 cations and hydroxides of Ca²⁺, Sr²⁺, and Ba²⁺ are slightly soluble).
- 6. Sulfates are soluble except for those of calcium, strontium, and barium.

Copyright © 2007 Pearson Prentice Hall, Inc.