Measurement of $D\overline{D}$ Decays from the $\psi(3770)$ Resonance

Andy Julin

University of Minnesota - Twin Cities

May 11th, 2017

Andy Julin (UMN) Thesis Defense May 11th, 2017 1 / 71

Overview

- Introduction
- 2 Theoretical Background
- 3 Accelerator and Detector
- 4 Analysis Software
- **5** Measurement of the $D\overline{D}$ Cross Section
- **6** Measurement of the Non- $D\overline{D}$ Branching Fraction
- Conclusion

Introduction

Introduction

Describe basic meaning of $\psi(3770) o D\overline{D}$ cross section

Andy Julin (UMN) Thesis Defense May 11th, 2017 4 / 71

Previous Measurements

Show list of previous experimental results Explain need for interference

5 / 71

Really Quick Overview

Describe need to measure decay products
Describe background subtraction
Describe getting counts to determine cross section

Theoretical Background

Fundamental Forces

- 1) Electromagnetic (QED)
 - Responsible for attracting / repelling electrically charged objects
 - Mediated by the massless photon (γ)
 - Very precisely calculable using perturbation theory
- 2) Weak
 - Responsible for radioactive decays and flavor changes
 - ullet Mediated by the very heavy W^\pm and Z
 - Led to discovery of C and CP violation
- 3) Strong (QCD)
 - Responsible for binding together hadrons
 - Mediated by the massless gluon (g)
 - Complicated calculations not described by perturbation theory
- 4) Gravity Negligible at this mass scale

Andy Julin (UMN) Thesis Defense May 11th, 2017 8 / 71

Standard Standard Model Slide

Charmonium

Resonances formed by a $c\bar{c}$ pair: J/ψ , $\psi(2S)$, $\psi(3770)$, ...

- ullet $\psi(2S)$ and $\psi(3770)$ originally interpreted as excited states of J/ψ
- Evidence of mixed-states suggests more complicated picture

Andy Julin (UMN) Thesis Defense May 11th, 2017 10 / 71

OZI Rule

- Requires three gluons for decay
- Very narrow decay width
 - $\Gamma_{\psi(2S)} = 0.286 \, \text{MeV}$

- Decays via open charm $(D\overline{D})$
- Much wider decay width
 - $\Gamma_{\psi(3770)} = 27.5 \,\mathrm{MeV}$

Addition of $D\overline{D}$ decays introduces drastically different behavior!

4 D > 4 B > 4 E > 4 E > 9 Q (*)

Accelerator and Detector

Institute of High Energy Physics (IHEP)

BESIII is hosted at the IHEP Campus located in Beijing, China

Accelerator - Beijing Electron-Positron Collider II (BEPCII)

- Oreate positrons by firing electrons into stationary material
 - Generates high energy γ s which interact with material to form e^+e^-
- Separate newly created positrons magnetically
- Accelerate positrons in linear accelerator and feed into storage ring
- Accelerate electrons and feed into the oppositely circulating ring
 - Electrons readily available, so extraction from photons unnecessary
- Focus each beam using magnets along storage rings until collision

Detector - Beijing Spectrometer III (BESIII)

Collision of beams tuned to occur at central point of detector

• Beams angled during collision to improve integrated luminosity

Four main subdetector systems:

- Main Drift Chamber
- Time-of-Flight
- Electromagnetic Calorimeter
- Muon Identifier

Main Drift Chamber (MDC)

- Reconstruct charged tracks from interactions with sense wires (hits)
 - Wires surrounded by ionizable gas
 - Initial ionization due to particle triggers avalanche of electrons
 - High electric field near wires draws in released electrons to measure energy deposited
- Determine properties of particle from curvature in magnetic field
 - Radius determines momentum
 - Direction determines charge
- Energy deposition rate (dE/dx) helps determine particle candidate

BESIII Event Display

16 / 71

Andy Julin (UMN) Thesis Defense May 11th, 2017

Time-of-Flight (ToF)

- Measure particle velocity using travel time after initial collision
 - Scintillator bands located at 0.81 m and 0.86 m from interaction point
 - Attached to photomultiplier tubes to measure light output
- Helps distinguish between K^{\pm} and π^{\pm} candidates at lower momenta
 - Combined with dE/dx measurements in MDC to set particle hypothesis

ToF Measurements

17 / 71

Andy Julin (UMN) Thesis Defense May 11th, 2017

Electromagnetic Calorimeter (EMC)

- Measure energy deposited by electron and photon tracks
 - Other particles are generally relativistic and thereby minimum ionizing
 - These deposit relatively constant energy, independent of momenta
 - Use CsI(TI) crystals attached to photodiodes to measure energy
 - Energy lost primarily in gaps of arrangement or out the back of crystals
- Allows reconstruction of purely neutral decays, such as $\pi^0 o \gamma \gamma$

Andy Julin (UMN) Thesis Defense May 11th, 2017 18 / 71

Muon Identifier (MUC)

- Identify tracks traversing through multiple layers as muons
 - Most particle types will be stopped before reaching the MUC
 - Electrons susceptible to Bremsstrahlung radiation
 - Kaons and pions susceptible to strong interactions
 - Requires muons with $p > 0.4 \,\text{GeV}$ for appropriate curvature

Triggering System

- Events filtered through two-step process
 - L1: Hardware Extracts information from various subdetectors
 - MDC
 - Examines the number of superlayers each track passes through Superlayer: a collection of wires at same radial distance
 - Applies a cut on minimum transverse momentum for each
 - ToF
- Examines number of hits in barrel and endcap regions
- Checks for hits which are on opposite sides of the detector
- EMC
 - Examines clustering of deposited energy around local maximum
- L3: Software Assembles information to decide if potentially relevant
- Quickly and efficiently removes non-physics background events
 - \bullet e.g., reduces beam-related backgrounds from ${\sim}13\,\text{MHz}$ to ${\sim}1\,\text{kHz}$

Andy Julin (UMN) Thesis Defense May 11th, 2017 20 / 71

Analysis Software

Monte Carlo Generation

- Create simulations of detector construction and particle interactions
 - Model material composition and detector arrangement in GEANT4
 - Simulate particle decay behavior using physics generators
 - Generate decays which could be mistaken as $D\overline{D}$ in reconstruction $e^+e^- \to \tau^+\tau^-, \quad e^+e^- \to \gamma\psi(2S), \quad e^+e^- \to q\bar{q}, \quad \dots$
- Process samples using BESIII Offline Software System (BOSS)
 - Use information gathered by subdetectors to reconstruct events
 - ullet Extract relevant physical parameters ($\Delta E,\ m_{BC},\ \ldots$) from each
- Identify contributions of generated background samples seen in data
 - Process both data and Monte Carlo (MC) samples identically
 - Subtract background components from data to determine signal events

◆ロ > ◆同 > ◆ き > ◆ き * り Q (

D-Tagging

• Reconstruct D candidates from decays $D \to \{\pi^{\pm}, \ K^{\pm}, \ \pi^{0}, \ K_{S}^{0}\}$

- Modes selected based on reconstruction efficiency
 - High branching fractions
 - Manageable number of tracks (multiplicity)
- Search through track combinations for those matching reconstructed modes
 - Take best set per mode based on

$$\Delta E = |E_{ ext{beam}} - E_{ ext{tag}}|$$
 $m_{ ext{BC}} = \sqrt{E_{ ext{beam}}^2 - |ec{p_{ ext{tag}}}|^2}$

• Allows multiple candidates per event

Reconstructed Modes*

- (0) $D^0 \to K^- \pi^+$
 - (1) $D^0 \to K^- \pi^+ \pi^0$
 - (3) $D^0 \to K^- \pi^+ \pi^+ \pi^-$
- (200) $D^+ \to K^- \pi^+ \pi^+$
- (201) $D^+ \to K^- \pi^+ \pi^+ \pi^0$
- (202) $D^+ o K_S^0 \pi^+$
- (203) $D^+ \to K_S^0 \pi^+ \pi^0$
- (204) $D^+ \to K_S^0 \pi^+ \pi^+ \pi^-$
- (205) $D^+ \to K^+ K^- \pi^+$

^{*}Charge conjugation implied

Measurement of the $D\overline{D}$ Cross Section

Procedure

Derive theoretical model used to describe cross section List data samples used for measurement Determine $E_{\rm cm}$ and $\mathcal L$ for each data point Identify signal and background components Measure efficiency of reconstruction Combine everything to determine cross section Assess systematic uncertainties

Derivation of $\sigma(\psi(3770) \to D\overline{D})$

Need to convert integral expression into measurable function

$$\sigma_{D\overline{D}}^{RC}(W) = \int \mathbf{z}_{D\overline{D}}(W\sqrt{1-x})\,\sigma_{D\overline{D}}(W\sqrt{1-x})\,\mathcal{F}(x,W^2)\,dx$$

- $\mathbf{z}_{D\overline{D}}$: Coulomb interaction (D^+D^-) and mass constraints
- $\sigma_{D\overline{D}}$: Born level (lowest order) cross section
- F: Initial State Radiation (ISR) correction
- x: Approximation for fraction of energy radiated away
- Strategy: Split integral over x into small intervals and sum results
 - \bullet Treat $z_{D^+D^-}$ and $\sigma_{D\overline{D}}$ as constant in each interval
 - Use value at midpoint of interval for approximation
 - Integrate simple function of $\mathcal{F}(x, W^2) = \beta x^{\beta-1} F(W^2)$ over x
 - ullet Obtain complicated, but calculable function for $D\overline{D}$ cross section

Andy Julin (UMN) Thesis Defense May 11th, 2017 26 / 71

Form Factors

Need to parameterize the form factor in the Born level cross section

$$\sigma_{D\overline{D}}(W) = \frac{\pi\alpha^2}{3W^2} \beta_D^3 |F_D(W)|^2, \qquad \beta_D = \sqrt{1 - \frac{4m_D^2}{W^2}}$$

• Comprised of resonant (R) and non-resonant (NR) components

$$F_D(W) = F_D^{NR}(W) + \sum_r F_D^{R_r}(W) e^{i\phi_r}$$

Resonant components parametrized by Breit-Wigner shape

$$F_D^R(W) = \frac{6 W \sqrt{(\Gamma_{ee}/\alpha^2)(\Gamma_{D\overline{D}}(W)/\beta_D^3)}}{M^2 - W^2 - iM\Gamma(W)}, \qquad \Gamma_{D\overline{D}}(W) = \Gamma(W) \times \mathcal{B}_{D\overline{D}}$$

- Non-resonant component has no definitive parametrization
 - Investigate two potential models for analysis
 - Exponential: generic form to approximate shape
 - Vector Dominance Model (VDM): physically based parameters

4 □ Þ 4 ∰ Þ 4 ᢓ Þ 4 ᢓ Þ € *)((*

Form Factor Models

Exponential Model

$$F_D^{NR} = F_{NR} \exp(-q_D^2/a_{NR}^2)$$

- Fit Parameters
 - F_{NR}: Amplitude
 - a_{NR}: Width
- Used for systematic check

Vector Dominance Model

$$F_D^{NR}(W) = F_D^{\psi(2S)}(W) + F_0$$

- Fit Parameters
 - $\Gamma^{\psi(2S)}$: Decay width for $\psi(2S)^*$
 - F_0 : Higher resonances ($\psi(4040)$)
- Used for final results
- Use $M^{\psi(3770)}$ in place of $M^{\psi(2S)}$
 - Avoid mass below $D\overline{D}$ threshold
 - *Unclear physical meaning

28 / 71

Data Samples

- Use scan data to determine overall cross section shape
 - Taken over an energy range of 3.643 GeV to 3.890 GeV
 - ullet Split into 34 bins based on measurements of $E_{\rm cm}$
 - ullet Luminosity measured using $e^+e^ightarrow e^+e^-(\gamma)$ events $(\mathcal{L}=69.80\,\mathrm{pb}^{-1})$
 - Chosen to be above $D^0\overline{D^0}$ threshold and below $D^{*0}\overline{D^0}$ threshold
 - ullet Includes two bins below D^+D^- threshold which have zero production
- Use additional high statistics samples for comparison measurements

Name	$E_{\rm cm}$ [GeV]	$\mathcal L$
On-Peak ψ (3770) †	3.773	$2.93{ m fb}^{-1}$
XYZ-Scan	3.810	$50.54{ m pb}^{-1}$
R-Scan	3.850	$7.95{ m pb}^{-1}$

 $^{^{\}dagger}$ Analysis of $D\overline{D}$ cross section performed independently

Andy Julin (UMN) Thesis Defense May 11th, 2017 29 / 71

Center-of-Mass Energy

Accurate E_{cm} required for precise determination of $M^{\psi(3770)}$

- Measure $E_{\rm cm}$ using $M_{\rm inv}$ of 'On-Peak $\psi(3770)$ ' $e^+e^- o \mu^+\mu^-$ events
- ullet Compare results to separate, trustworthy procedure using $D\overline{D}$ events
 - \bullet Difference in average values determines correction to $\mu^+\mu^-$ procedure
- Measure E_{cm} for scan data using $\mu^+\mu^-$ procedure
 - Shift values by correction from $D\overline{D}$ procedure to get final results

30 / 71

Andy Julin (UMN) Thesis Defense May 11th, 2017

Monte Carlo Generation

- Generate MC samples to help identify signal and background rates
 - Signal: $\psi(3770) \rightarrow D^0 \overline{D^0}, \qquad \psi(3770) \rightarrow D^+ D^-$
 - Background: $q\bar{q}, \quad \tau^+\tau^-, \quad \gamma J/\psi, \quad \gamma \psi(2S)$
 - ullet Events per sample of ${\sim}10^6\text{-}10^7$ depending on decay type
 - ullet Decays simulated using run-dependent $E_{\rm cm}$ and accelerator conditions

- ullet Samples of $\psi(3770) o D\overline{D}$ generated using our cross section results
 - Use Born cross section from final fit results to improve MC generator
 - Requires iteration of MC generation to properly reflect true shape
 - Performed 5 iterations of input shapes for analysis

Signal Determination

- Measure $D^0\overline{D^0}$ / D^+D^- yields separately with 2D fit
 - Use *D*-tagging code to identify candidates in each sample (data / MC)
 - Extract ΔE and m_{BC} distributions and arrange MC samples into groups
 - (1) Proper *D*-tags

- $(3) q\bar{q}$
- (2) Improper *D*-tags
- (4) $\tau^{+}\tau^{-} + \gamma J/\psi + \gamma \psi(2S)$
- Float normalizations of each group to match data distributions (χ^2)

Bin 14 - D⁰

May 11th, 2017

Efficiency Correction

- Correct for *D* reconstruction efficiency to determine total production
 - Average MC candidate amounts (N_{prop} vs. N_{gen}) over decay modes

$$\epsilon_D = \sum_i \epsilon_i _{\mathsf{rec}} \mathcal{B}_i = \sum_i \left(\frac{N_{i \mathsf{prop}}}{N_{i \mathsf{gen}}} \right) \mathcal{B}_i$$

Decay Mode (i)	PDG \mathcal{B}_i [%]	MC Efficiency $\epsilon_{i \text{ rec}}$	
$D^0 o K^- \pi^+$	3.89 ± 0.05	0.7002 ± 0.0011	
$D^0 o \mathcal{K}^- \pi^+ \pi^0$	13.93 ± 0.50	0.3794 ± 0.0004	
$D^0 ightarrow \mathcal{K}^- \pi^+ \pi^+ \pi^-$	8.11 ± 0.21	0.3988 ± 0.0006	
$\epsilon_{D^0} = (11.245 \pm 0.020)\%$			
$D^+ o K^- \pi^+ \pi^+$	9.13 ± 0.19	0.5471 ± 0.0007	
$D^+ ightarrow K^- \pi^+ \pi^+ \pi^0$	5.99 ± 0.18	0.2739 ± 0.0006	
$D^+ o K^0_S\pi^+$	1.47 ± 0.07	0.3883 ± 0.0014	
$D^+ o K^0_S\pi^+\pi^0$	6.99 ± 0.27	0.2079 ± 0.0005	
$D^+ ightarrow \mathit{K}^0_\mathit{S} \pi^+ \pi^+ \pi^-$	3.12 ± 0.11	0.2237 ± 0.0007	
$D^+ ightarrow K^+ K^- \pi^+$	0.95 ± 0.03	0.4317 ± 0.0018	
$\epsilon_{D^+} = (9.770 \pm 0.063)\%$			

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Andy Julin (UMN) Thesis Defense May 11th, 2017 33 / 71

Cross Section Fitting

- Use signal amount, efficiency, and luminosity to find cross sections:
 - Include factor of 2 to correct for double counting $(D \text{ vs. } D\overline{D})$

$$\sigma_{D\overline{D}}^{RC}(E_i) = \frac{N_D(E_i)}{2 \epsilon_D(E_i) \mathcal{L}(E_i)}$$

- ullet Fit to theoretical formulation to determine $\psi(3770)$ parameters
 - $M^{\psi(3770)}$ $\Gamma^{\psi(3770)}$ $\Gamma^{\psi(3770) \to D\overline{D}}_{ee}$ $\phi^{\psi(3770)}$
 - Use $\Gamma_{\text{ee}}^{\psi(3770)\to D\overline{D}}$ in place of known $\mathcal{B}_{nD\overline{D}}$ or $\Gamma_{\text{ee}}^{\psi(3770)}$
- Two additional fit parameters depending on form factor choice
 - Exponential: F_{NR} a_{NR} VDM: $\Gamma^{\psi(2S)}$ F_0
- ullet Minimize sum of χ^2 distributions for D^0 and D^+

Exponential Results

Exponential Fit Results

```
† Data

Fit σ<sup>κc</sup><sub>DD</sub>

σ<sub>gen</sub>

Resonant - ψ(3770) → DD

Non-resonant - Exponential

BESIII On-peak Data [2.921b<sup>2</sup>]

BESIII XYZ Scan Data

BESIII R Scan Data
```

$$\begin{split} M_{\rm v}^{V(3770)} &= (3.7821 \pm 0.0003) \\ \Gamma_{\rm v}^{V(3770)} &= (2.6004 \pm 0.0597) \times 10^{-2} \\ \Gamma_{\rm ee}^{V(3770)} &= (2.3313 \pm 0.1016) \times 10^{-7} \\ \phi_{\rm v}^{V(3770)} &= (3.7455 \pm 0.0388) \end{split}$$

$$F_{NR} = (2.0844 \pm 0.0752) \times 10$$

 $A_{NR} = (4.2701 \pm 0.1336) \times 10^{-1}$

$$\chi^2$$
 / D.o.F. = 110 / 59 = 1.86

35 / 71

Vector Dominance Model Results

VDM Fit Results

$$M_{eq}^{V(3770)} = (3.7808 \pm 0.0002)$$

 $\Gamma^{V(3770)} = (2.4098 \pm 0.0534) \times 10^{-2}$
 $\Gamma_{ee}^{V(3770)} = (2.1583 \pm 0.0867) \times 10^{-7}$
 $\rho^{V(3770)} = (3.6149 \pm 0.0435)$

= $(1.1491 \pm 0.1236) \times 10^{-2}$ = (-2.8845 ± 0.4462)

36 / 71

Results Overview

- Both form factor choices show generally good agreement
 - ullet Excess in χ^2 largely due to two D^0 points just above 3.81 GeV
 - Could indicate need for improved model in higher energy region
- ullet Values for $\psi(3770)$ parameters primarily dependent on peak region
 - Consistent shape in this region emphasizes quality of results
- Inteference related to behavior of Born level cross section
 - Reappearance of Born level events is strong indication of interference
 - Impossible to reproduce with two non-interfering Breit-Wigner shapes

Born Level Event Contribution in m_{BC}

Coulomb Interaction

- Significantly worse results when including value for $\mathbf{z_{D^+D^-}}$ $(\chi^2 \approx 5)$
 - Results shown previously use $z_{D^+D^-} = 1$ for calculations
- Ratio of cross sections $(\sigma_{D^+}/\sigma_{D^0})$ prefers excluding value
 - Unclear explanation for behavior, but consistent with $\Upsilon \to B\overline{B}$ studies

Systematic Uncertainties

- Examine uncertainty from parameters involved throughout procedure
 - Individually increase / decrease value by the uncertainty of each
 - Re-fit cross section with altered values and take maximal variation
- Many uncertainties adjust overall scale of cross section normalization
 - Only affects the value of $\Gamma_{ee}^{\psi(3770)\to D\overline{D}}$

Name	Change	Description
Luminosity	\mathcal{L}	1.0 %
$\pi^{\pm}/{\it K}^{\pm}$ Tracking	$\epsilon_{i \text{ rec}}$	1.0% per π^\pm or K^\pm in the mode
π^0 Tracking	$\epsilon_{i \text{ rec}}$	2.0% per π^0 in the mode
K_S^0 Tracking	$\epsilon_{i \text{ rec}}$	1.5% per K_S^0 in the mode
Single Tag Fits	N_D	Adjust by fit difference (small)
PDG Branching Fractions	$\epsilon_{i \text{ rec}}$	Adjust by PDG errors

May 11th, 2017

Systematic Uncertainties

Meson Radii

- Adjust values of $R_{\psi(2S)}$ and $R_{\psi(3770)}$ by 25 % (from KEDR)
- Take max variation over all four combinations of up / down on each
- Accounts for most significant source of systematic uncertainty
- MC Iteration (negligible)
 - Take difference in parameters before / after Born level modification
- MC ISR Generation (negligible)
 - Take difference in fit results with KKMC vs. ConExc generators
- Intermediate Resonances (negligible)
 - \bullet Examine effects of $\rho^0 \to \pi^+\pi^-$ in the mode $D^+ \to {\it K}^-\,\pi^+\,\pi^+$
 - ullet Take difference in $K\pi$ vs. $\pi\pi$ invariant mass splits using 'On-Peak' data

Andy Julin (UMN) Thesis Defense May 11th, 2017 41 / 71

Systematic Uncertainties

- Uncertainties summed in quadrature (assumed independent)
- Total contribution similar to statistical error for most parameters
 - Value for $M^{\psi(3770)}$ is small, but has very small statistical error

Systematic	$M^{\psi(3770)}$ [%]	$\Gamma^{\psi(3770)}$ [%]	$\Gamma_{ee}^{\psi(3770) o D\overline{D}}$ [%]	$\phi^{\psi(3770)}$ [%]
Luminosity	0.000	0.004	1.005	0.014
${\it K}^{\pm}/\pi^{\pm}$ Tracking	0.000	800.0	2.646	0.033
π^{0} Tracking	0.000	0.012	0.746	0.028
K_S^0 Tracking	0.000	0.004	0.260	0.019
Single Tag Fits	0.000	0.012	0.213	0.008
PDG Errors	0.000	0.017	2.840	0.036
Meson Radii	0.016	2.411	3.512	1.477
Total [%]	0.016	2.411	5.389	1.479
Relative Stat. Error $[\sigma]$	3.000	1.088	1.342	1.229

Form Factor Uncertainty

- Notable discrepancy between choices of non-resonant form factor
 - Both methods provide reasonably good fit with data
 - Use difference of Exponential and VDM fit values as uncertainty
 - Follow example of KEDR by treating as model-dependent uncertainty

Form Factor	$M^{\psi(3770)}$ [GeV]	$\Gamma^{\psi(3770)}$ [MeV]	$\Gamma_{ee}^{\psi(3770) o D\overline{D}}$ [eV]	$\phi^{\psi(3770)}$ [°]
Exponential	3.7821	26.004	233.13	214.60
VDM	3.7808	24.098	215.83	207.12
Difference	0.0013	1.906	17.30	7.48

Final Results

Results limited by systematics and model-dependency

$M^{\psi(3770)}$	$3780.8 \pm 0.2 \pm 0.6 \pm 1.3$	[MeV]
$\Gamma^{\psi(3770)}$	$24.1 \pm 0.5 \pm 0.6 \pm 1.9$	[MeV]
$\Gamma_{ee}^{\psi(3770) o D\overline{D}}$	$216~\pm~9~\pm11~\pm17$	[eV]
ϕ^{ψ} (3770)	$207~\pm~3~\pm~3~\pm~7$	[°]

Errors are statistical, systematic, and model-dependent, respectively

Results consistent with KEDR and very inconsistent with PDG

$\mathcal{M}^{\psi(3770)}$ [MeV]	$\Gamma^{\psi(3770)}$ [MeV]	$ \overline{\Gamma_{ee}^{\psi(3770)\to D\overline{D}}} \text{ [eV]} $
$3782.1 \pm 0.3 \pm 0.6$	$26.0 \pm 0.6 \pm 0.7$	$233\pm10\pm13$
$3780.8 \pm 0.2 \pm 0.6$	$24.1 \pm 0.6 \pm 0.6$	$216 \pm 9 \pm 12$
$3779.2^{+1.8+0.5+0.3}_{-1.7-0.7-0.3}$	$24.9^{+4.6+0.5+0.2}_{-4.0-0.6-0.9}$	$154^{+79+17+13}_{-58-9\ -25},\\ 414^{+72+24+90}_{-80-26-10}$
3773.15 ± 0.33		$[262 \pm 18] \times \mathcal{B}_{D\overline{D}}$
3	$782.1 \pm 0.3 \pm 0.6$ $780.8 \pm 0.2 \pm 0.6$ $779.2^{+1.8+0.5+0.3}_{-1.7-0.7-0.3}$	$782.1 \pm 0.3 \pm 0.6$ $26.0 \pm 0.6 \pm 0.7$ $780.8 \pm 0.2 \pm 0.6$ $24.1 \pm 0.6 \pm 0.6$ $779.2^{+1.8+0.5+0.3}_{-1.7-0.7-0.3}$ $24.9^{+4.6+0.5+0.2}_{-4.0-0.6-0.9}$

Andy Julin (UMN) Thesis Defense May 11th, 2017 44 / 71

Measurement of the Non-DD Branching Fraction

Procedure

Event Selection Hadron Cut Methods Signal Counting Fits MC Background Subtraction Efficiency Extrapolation $D\overline{D}$ Multiplicity Correction Examination of Results for $\psi(3770)$ Data Background Investigation Examination of Results for Scan Data

Data Samples

 \bullet Use data from continuum (Old / New), $\psi(\mbox{3770})$ (R1 / R2), and scan

- E_{cm} measured as before
 - 4-6 MeV shift in new continuum samples
 - No shift for old continuum samples

Sample Name	E _{cm} [GeV]	Luminosity $[pb^{-1}]$
3500 (New)	3.496	3.680 ± 0.009
3542 (New)	3.538	$\boldsymbol{3.481 \pm 0.009}$
3600 (New)	3.596	$\textbf{0.395} \pm \textbf{0.019}$
3650 (New)	3.644	$\boldsymbol{5.420 \pm 0.009}$
3671 (New)	3.665	4.669 ± 0.009
3650 (Old)	3.650	44.334 ± 0.009
ψ (3770) (R1)	3.773	926.922 ± 0.092
ψ (3770) (R2)	3.773	1978.920 ± 0.091

- Requires precise E_{cm} measurement for extrapolation procedure
 - ullet Cross section of $\psi(2S)$ rapidly changes near its peak

Event Selection Criteria

- Apply cuts on charged (neutral) tracks in the MDC (EMC)
- Apply cuts on highest energy / momentum to remove $e^+e^- \to \{e^+e^-,\,\gamma\gamma\}$ backgrounds
- Apply groups of cuts to select multihadron events
 - Number of Tracks
 - Visible Energy
 - Visible Momentum (z-direction)
 - Max Shower Energy
 - Total Shower Energy
- Values for group cuts dependent on level of impact
 - Standard (SHAD), Loose (LHAD), Tight (THAD)

Andy Julin (UMN) Thesis Defense May 11th, 2017 48 / 71

Signal Counting

- ullet Identify events using average distance of closest approach in z (V_z)
 - Signal tracks will originate within few cm of vertex
 - Background tracks can originate away from collision point
- ullet Fit with a double Gaussian (sig) + 2nd-order polynomial (bkg) shape

49 / 71

Background Subtraction

Need to determine background contributions seen in data

$$N_{\mathsf{had}} = \mathcal{L} imes \sigma imes \epsilon_{\mathsf{MC}} = \mathcal{L} imes \sigma imes \left(rac{N_{\mathsf{rec}}}{N_{\mathsf{gen}}}
ight)$$

3650 (Old) Reconstruction					
σ [nb]	ϵ_{MC} (SHAD) [%]	ϵ_{MC} (LHAD) [%]	ϵ_{MC} (THAD) [%]		
554.562	0.0006 ± 0.0002	0.0008 ± 0.0002	0.0001 ± 0.0001		
5.560	0.0033 ± 0.0004	0.0044 ± 0.0005	0.0029 ± 0.0004		
1.844	12.8351 ± 0.0255	28.7692 ± 0.0382	9.9371 ± 0.0224		
1.260	45.9222 ± 0.0482	55.1722 ± 0.0529	34.1250 ± 0.0416		
21.530	0.0009 ± 0.0002	0.0010 ± 0.0002	0.0005 ± 0.0002		
1.257	2.4109 ± 0.0110	4.6297 ± 0.0153	1.6468 ± 0.0091		
0.150	62.9891 ± 0.0078	69.2882 ± 0.0082	51.6942 ± 0.0071		
	554.562 5.560 1.844 1.260 21.530 1.257	$\begin{array}{c cccc} \sigma & [\text{nb}] & \epsilon_{\text{MC}} & (\text{SHAD}) & [\%] \\ \hline 554.562 & 0.0006 \pm 0.0002 \\ 5.560 & 0.0033 \pm 0.0004 \\ 1.844 & 12.8351 \pm 0.0255 \\ 1.260 & 45.9222 \pm 0.0482 \\ 21.530 & 0.0009 \pm 0.0002 \\ 1.257 & 2.4109 \pm 0.0110 \\ \hline \end{array}$	$\begin{array}{c ccccc} \sigma & [\text{nb}] & \epsilon_{\text{MC}} & (\text{SHAD}) & [\%] & \epsilon_{\text{MC}} & (\text{LHAD}) & [\%] \\ \hline 554.562 & 0.0006 \pm 0.0002 & 0.0008 \pm 0.0002 \\ 5.560 & 0.0033 \pm 0.0004 & 0.0044 \pm 0.0005 \\ 1.844 & 12.8351 \pm 0.0255 & 28.7692 \pm 0.0382 \\ 1.260 & 45.9222 \pm 0.0482 & 55.1722 \pm 0.0529 \\ 21.530 & 0.0009 \pm 0.0002 & 0.0010 \pm 0.0002 \\ 1.257 & 2.4109 \pm 0.0110 & 4.6297 \pm 0.0153 \\ \hline \end{array}$		

 † Contribution from $\psi(2S)$ assumes standard Breit-Wigner shape

Andy Julin (UMN)

Background Subtraction

- Subtract backgrounds from total data events to get signal hadrons
 - Ignore negligible samples for extrapolation $\{e^+e^-,\ \mu^+\mu^-,\ \gamma\gamma\}$

	3650 (Old) Results					
Sample	N _{had} (SHAD)	N _{had} (LHAD)	N _{had} (TH	N _{had} (THAD)		
Data	477001 ± 691	546546 ± 739	375380 \pm	613		
$e^+e^-{}^*$	149 ± 43	187 ± 48	12 \pm	12		
$\mu^+\mu^-*$	8 ± 1	11 ± 1	$7 \pm$	1		
$ au^+ au^-$	10490 ± 30	23514 ± 59	8122 \pm	25		
$\gamma J/\psi$	25658 ± 60	30826 ± 71	19067 \pm	46		
$\gamma\gamma^*$	9 ± 2	10 ± 2	4 \pm	1		
2γ	1443 ± 7	2771 ± 11	986 \pm	6		
ψ (2 ${\cal S})^{\dagger}$	4175 \pm 9	4593 ± 10	3427 \pm	7		
Hadrons	435234 ± 694	484842 ± 745	343779 \pm	615		

 $^{^{\}dagger}$ Contribution from $\psi(2S)$ assumes standard Breit-Wigner shape

Efficiency Extrapolation

- ullet Contribution of $qar{q}$ events above $D\overline{D}$ threshold not well modeled
 - Repeat procedure for new continuum data to extrapolate

$$\frac{\epsilon(E_{cm})}{\epsilon(3650)} = \left[\frac{N_{had}(E_{cm})}{N_{had}(3650)}\right] \left[\frac{\mathcal{L}(3650)}{\mathcal{L}(E_{cm})}\right] \left[\frac{E_{cm}}{3650}\right]^2$$

- **↓ロト ∢御 ▶ ∢**돌 ▶ ∢돌 ▶ · 돌 · 釣�♡

Procedure for $\psi(3770)$ Data

- Repeat procedure for $\psi(3770)$ data samples
 - ullet Use extrapolation to determine $qar{q}$ background contribution
- Modify included backgrounds to account for $D\overline{D}$ threshold
 - Use measurement of $\psi(3770) o D\overline{D}$ cross section for $D\overline{D}$ component
 - Use measurement from 'On-Peak' sample for initial exploration
 - Switch direct contribution from $\psi(2S)$ to radiative decays $(\gamma\psi(2S))$
 - Use measurements from CLEO-c and BESIII for cross section value
 - ullet Neglect 2γ events due to minimal contribution in this region
- Need data-driven procedure to correctly determine $D\overline{D}$ efficiencies
 - MC samples unreliable at modeling track multiplicities
 - Re-weight MC samples based off differences seen in data
 - Scale by track multiplicity ratios for data / MC

4 □ > 4 ② > 4 ③ > 4 ③ > 4 ③ > 3 ③

$D\overline{D}$ Efficiency Correction

Group	Multiplicity
SHAD	$N_{\rm tracks} > 2$
LHAD	$N_{ m tracks} > 1$
THAD	$N_{\rm tracks} > 3$

ψ (3770) R1 - D^0			
Group	$(\epsilon_{Data}/\epsilon_{MC})$		
SHAD	0.9751		
LHAD	0.9930		
THAD	0.9662		

ψ (3770) R1 - D^+		
Group	$(\epsilon_{Data}/\epsilon_{MC})$	
SHAD	0.9992	
LHAD	1.0018	
THAD	1.0064	

Hadronic Counts - $\psi(3770)$ (R1)

	ψ (3770) (R1) Reconstruction				
Sample	σ [nb]	ϵ_{MC} (SHAD) [%]	ϵ_{MC} (LHAD) [%]	ϵ_{MC} (THAD) [%]	
$D^0\overline{D^0}$	3.615	73.9324 ± 0.0142	79.8496 ± 0.0147	60.3601 ± 0.0128	
D^+D^-	2.830	61.4048 ± 0.0146	68.8212 ± 0.0154	49.4007 ± 0.0131	
$ au^+ au^-$	2.652	12.7566 ± 0.0253	28.0142 ± 0.0374	9.8776 ± 0.0222	
$\gamma {m J}/\psi$	0.986	46.6185 ± 0.0206	56.2494 ± 0.0227	34.7544 ± 0.0178	
$\gamma\psi$ (2 S)	3.009	63.2551 ± 0.0137	69.9696 ± 0.0144	51.5643 ± 0.0123	

ψ (3770) (R1) Results				
Sample	N _{had} (SHAD)	N _{had} (LHAD)	N _{had} (THAD)	
Data	15694505 ± 3962	17722728 ± 4210	12580701 ± 3547	
$qar{q}^\dagger$	8522688 ± 71353	9330411 ± 76320	6789405 ± 61599	
$D^0\overline{D^0}$	2477345 ± 534	2675620 ± 560	2022561 ± 473	
D^+D^-	1610764 ± 414	1805311 ± 442	1295875 ± 366	
$ au^+ au^-$	313542 ± 622	688559 ± 922	242781 ± 547	
$\gamma J/\psi$	425891 \pm 193	513875 ± 213	317504 ± 166	
$\gamma\psi$ (2 S)	1764254 ± 419	1951528 ± 445	1438185 ± 372	
Hadrons	490569 ± 71795	658730 ± 76807	401064 ± 61995	

Initial Exploration of $\psi(3770)$ Data

- Convert hadronic signal to non- $D\overline{D}$ cross section
 - Assume efficiency is similar to that for $\gamma \psi(2S)$ decays

$$\sigma(\psi(3770) o \mathsf{non-}D\overline{D}) = rac{N_{\mathsf{non-}D\overline{D}}}{\epsilon_{\mathsf{non-}D\overline{D}} imes \mathcal{L}}$$

Sample	$\sigma_{non\text{-}D\overline{D}}$ (SHAD)	$\sigma_{non ext{-}D\overline{D}}$ (LHAD)	$\sigma_{non ext{-}D\overline{D}}$ (THAD)
ψ (3770) (R1)	0.9892 ± 0.1219	1.1679 ± 0.1179	0.9925 ± 0.1291
ψ (3770) (R2)	1.0877 ± 0.1224	1.2926 ± 0.1183	1.1142 ± 0.1298
Lum. Weighted	1.0563 ± 0.1223	1.2528 ± 0.1182	1.0754 ± 0.1296

- ullet Likely overestimated due to assumption of Breit-Wigner for $\psi(2S)$
- ullet Convert cross section to branching fraction using $D\overline{D}$ measurements

$$\Gamma(\psi(3770) o \mathsf{non}\text{-}D\overline{D}) = \frac{\sigma(\psi(3770) o \mathsf{non}\text{-}D\overline{D})}{\sigma(\psi(3770) o D\overline{D}) + \sigma(\psi(3770) o \mathsf{non}\text{-}D\overline{D})}$$

Begin exploratory analysis - NOT OFFICIAL MEASUREMENTS

Andy Julin (UMN) Thesis Defense May 11th, 2017 56 / 71

Investigation I: Standard Breit-Wigner for $\psi(2S)$

- $\psi(2S)$ calculated as standard Breit-Wigner
- Significant drop in last point of efficiency ratio
- Upper bound for branching fraction

Sample	$\Gamma_{\text{non-}D\overline{D}}$ (SHAD)	$\Gamma_{\text{non-}D\overline{D}}$ (LHAD)	$\Gamma_{\text{non-}D\overline{D}}$ (THAD)
ψ (3770) (R1)	0.1331 ± 0.0183	0.1534 ± 0.0185	0.1334 ± 0.0190
ψ (3770) (R2)	0.1444 ± 0.0186	0.1671 ± 0.0189	0.1474 ± 0.0193
Lum. Weighted	0.1408 ± 0.0185	0.1627 ± 0.0187	0.1430 ± 0.0192

Investigation II: Continuum Ratio Estimation

 \bullet $\psi(2S)$ approximated by

$$rac{\sigma_{
m res}}{\sigma_{
m cont}(E_{
m cm})} = rac{\sqrt{2\pi}\,(M_{
m res} - E_{
m cm})^2}{\Gamma_{
m res} imes \delta_{E_{
m cm}}}$$

- Use $\sigma_{\psi(2S)}$ from BESIII
 - \bullet $\delta_{E_{\rm cm}}pprox 1.5\,{
 m MeV}$
- Estimated value for branching fraction

Sample	$\Gamma_{\text{non-}D\overline{D}}$ (SHAD)	$\Gamma_{\text{non-}D\overline{D}}$ (LHAD)	$\Gamma_{\text{non-}D\overline{D}}$ (THAD)
ψ (3770) (R1)	0.1149 ± 0.0180	0.1361 ± 0.0181	0.1152 ± 0.0188
ψ (3770) (R2)	0.1267 ± 0.0183	0.1504 ± 0.0185	0.1297 ± 0.0190
Lum. Weighted	0.1230 ± 0.0182	0.1458 ± 0.0183	0.1251 ± 0.0190

4D > 4A > 4B > 4B > 300

Andy Julin (UMN) Thesis Defense May 11th, 2017 58 / 71

Investigation III: No $\psi(2S)$ Contribution

- $\psi(2S)$ ignored
- Inaccurate assumption
- Lower bound for branching fraction

Sample	$\Gamma_{\text{non-}D\overline{D}}$ (SHAD)	$\Gamma_{\text{non-}D\overline{D}}$ (LHAD)	$\Gamma_{\text{non-}D\overline{D}}$ (THAD)
ψ (3770) (R1)	0.0876 ± 0.0178	0.1102 ± 0.0176	0.0878 ± 0.0187
ψ (3770) (R2)	0.1002 ± 0.0180	0.1254 ± 0.0179	0.1033 ± 0.0188
Lum. Weighted	0.0962 ± 0.0179	0.1205 ± 0.0178	0.0983 ± 0.0188

Andy Julin (UMN) Thesis Defense May 11th, 2017 59 / 71

Inclusive Cross Section for Scan Data

Inclusive hadronic cross section useful for analyses in $\psi(3770)$ region

$Non-D\overline{D}$ Cross Section for Scan Data

Non- $D\overline{D}$ Branching Fraction for Scan Data

Conclusion

Conclusion

Show overview of measurements for $D\overline{D}$ cross section and non- $D\overline{D}$ branching fraction List results of parameters for $\psi(3770)$ List branching fraction range for non- $D\overline{D}$

Backup Slides

Monte Carlo Generators

KKMC

- Used to model electroweak interactions: $e^+e^- \rightarrow f\bar{f} + (n)\gamma$ $f = \{\mu^-, \tau^-, u, d, s, c, b\}$ and $(n)\gamma = (additional photons)$
- Decays $f\bar{f}$ pair based on involved fermions (TAUOLA, PYTHIA)
- Takes into account initial- and final-state radiation (ISR / FSR)
 - \bullet For resonances, only handles ISR, then passes off γ^* to BesEvtGen

BesEvtGen

- Handles resonance decay as well as radiative effects
 - ullet Reduced E_{cm} such that only lower mass resonances can be produced
- Babayaga
 - Used to model QED processes: $e^+e^- \to \{e^+e^-,\ \mu^+\mu^-,\ \gamma\gamma\}$
 - ullet Very accurate results; estimated theoretical uncertainty of 0.1 %
 - High precision required for determination of integrated luminosity

Selection Cuts

π^\pm and ${\mathcal K}^\pm$ Selection			
Vertex (xy) $V_{xy} < 1 \text{cm}$			
Vertex (z) $ Vz < 10 \mathrm{cm}$			
MDC Angle	$ \cos \theta < 0.9$	93	
Pion Probability	$P(\pi) > 0$,	$P(\pi) > P(K)$	
Kaon Probability	P(K) > 0	$P(K) > P(\pi)$	

γ Selection

Min. Energy (Barrel)	$E_{EMC} > 25MeV$	$(\cos\theta <0.80)$
Min. Energy (Endcap)	$E_{EMC} > 50MeV$	$(0.84 < \cos \theta < 0.92)$
TDC Timing	$(0 \le t \le 14) \times 50 \mathrm{ns}$	

	$\pi^0 o \gamma \gamma$ Selection	$K_S^0 o \pi^+\pi^-$ Selection
Nominal Mass	$115 < m_{\pi^0} [{ m MeV}] < 150$	$487 < m_{K_s^0} [\text{MeV}] < 511$
Fit Quality	$\chi^2 <$ 200, Converged	$\chi^2 < 100$, Converged

Derivation of $\sigma(\psi(3770) \to D\overline{D})$

•
$$\mathcal{F}(x, W^2) = \beta x^{\beta-1} \left[1 + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) + \frac{3}{4}\beta + \beta^2 \left(\frac{37}{96} - \frac{\pi^2}{12} - \frac{L}{72} \right) \right] = \beta x^{\beta-1} \mathcal{F}(W^2),$$
 $\beta = \frac{2\alpha}{\pi} (L-1),$ $L = \log \left(\frac{W^2}{m_\pi^2} \right)$

Andy Julin (UMN) Thesis Defense May 11th, 2017 68 / 71

CP Violation Correction

Quickly list process of correcting for CP

Andy Julin (UMN) Thesis Defense May 11th, 2017 69 / 71

Hadronic Selection Event Cuts

Show charged / neutral / QED cut tables

Andy Julin (UMN) Thesis Defense May 11th, 2017 70 / 71

Hadronic Selection Group Cuts

Show SHAD, LHAD, and THAD cut tables

Andy Julin (UMN) Thesis Defense May 11th, 2017 71 / 71