Формальные языки

домашнее задание до 23:59 05.03

- 1. Доказать или опровергнуть утверждение: произведение двух минимальных автоматов всегда дает минимальный автомат (рассмотреть случаи для пересечения, объединения и разности языков).
- 2. Для регулярного выражения:

$$(a \mid b)^+(aa \mid bb \mid abab \mid baba)^*(a \mid b)^+$$

Построить эквивалентные:

(а) Недетерминированный конечный автомат

(b) Недетерминированный конечный автомат без ε -переходов

Solution. Заметим, что

$$(a \mid b)^+(aa \mid bb \mid abab \mid baba)^*(a \mid b)^+$$

это в точности

$$(a \mid b)^+(a \mid b)^+,$$

поэтому недетерминированный конечный автомат без ε -переходов выглядит так:

(с) Минимальный полный детерминированный конечный автомат

3. Построить регулярное выражение, распознающее тот же язык, что и автомат:

Solution.

$$(a \mid b \mid c)^*((a(b \mid c)^*a) \mid (b(a \mid c)^*b) \mid (c(a \mid b)^*c))$$

<u>Lemm</u> (обратная формулировка леммы о накачке). Если для языка L над алфавитом V имеет место:

 $\forall n \in \mathbb{N} \ \exists \alpha \in L \colon |\alpha| \geqslant n, \ \forall u, v, w \in V^* \colon (\alpha = uvw) \land (|v| \geqslant 1) \land (|uv| \leqslant n) \ \exists i \in \mathbb{N} \cup \{0\} \colon uv^iw \notin L$, то язык L – неавтоматный.

4. Определить, является ли автоматным язык $\{\omega\omega^r\mid \omega\in\{0,1\}^*\}$. Если является — построить автомат, иначе — доказать.

<u>Solution</u>. Пусть L – язык из условия. Докажем с помощью леммы, что L неавтоматный. По данному n возьмем слово $\alpha = (10^n 1)^2 \in L$. $(\alpha = uvw) \land (|v| \geqslant 1) \land (|uv| \leqslant n)$. Если $u = \varepsilon$, то $v = 10^{< n}$, т.е. в v одна единица, тогда при i = 2: $|uv^iw|_1 = |vvw|_1 = 1 + 1 + 3 = 5$ – нечетное $\Rightarrow uv^2w \notin L$. А если $u \neq \varepsilon$, то $v = 0^k$, где $1 \leqslant k < n$, тогда при i = 3 размер первой половины uv^iw равен $\frac{|uv^3w|}{2} = \frac{|uvw| + 2|v|}{2} = \frac{|\alpha|}{2} + |v|$. То есть после того как мы вставили 2 копии v в α , середина слова сдвинулась вправо на $|v| \geqslant 1$. Значит, вторая слева единица в α после этой операции оказалась в правой половине слова, тогда полученное слово $uv^3w \notin L$, потому что в его левой и правой половинах не поровну единиц. ■

5. Определить, является ли автоматным язык $\{uaav \mid u,v \in \{a,b\}^*, |u|_b \geq |v|_a\}$. Если является — построить автомат, иначе — доказать.

Solution. Пусть L – язык из условия. Докажем с помощью леммы, что L неавтоматный. По данному n возьмем слово $\alpha = b^n a a (ba)^n \in L$. $(\alpha = uvw) \wedge (|v| \geqslant 1) \wedge (|uv| \leqslant n) \Rightarrow v = b^k$, где k > 0. При i = 0: $uv^i w = uw = b^{n-k} a a (ba)^n \notin L$, так как n - k < n.

Пример применения алгоритма минимизации

Минимизируем данный автомат:

Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное δ отображение.

δ^{-1}	0	1
A	_	В
В	_	A
С	ΑВ	_
D	С	\mathbf{C}
\mathbf{E}	D	_
F	E F	DFG
G	G	${ m E}$
_	•	

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом ε : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары

$$(A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)$$

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста.

(A,F) не дает нам новых неэквивалентных пар. Для (B,F) находится 2 пары: (A,D),(A,G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

	Α	В	С	D	Ε	F	G
Α							
В							
С	\checkmark	\checkmark					
D	\checkmark	\checkmark	\checkmark				
Е	√	√	√	√			
F	✓	\checkmark	✓	\checkmark	\checkmark		
G	√	√	√	√	√		

Очередь:

$$(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C)$$

В таблице выделились классы эквивалентных вершин: $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$. Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какого-нибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

