

IN THE CLAIMS

1. (withdrawn) A system for removing mercury in exhaust gas, in which mercury is removed from exhaust gas of a boiler, characterized in that

an NH₃ decomposition catalyst for decomposing NH₃, flowing down from the outlet of said denitrification apparatus and a mercury oxidation catalyst for oxidizing mercury into mercury chloride on the downstream side of said NH₃ decomposition catalyst are provided between a denitrification apparatus and a wet type desulfurization apparatus, and mercury having been oxidized into mercury chloride is removed by said wet type desulfurization apparatus.

2. (withdrawn) The system for removing mercury in exhaust gas according to claim 1, characterized in that

in the mercury removing system in which heating means and a heat exchanger are provided between said denitrification apparatus and wet type desulfurization apparatus,

said mercury oxidation catalyst is installed at least at one location of between the downstream side of said NH₃ decomposition catalyst and the upstream of said heating means, between the downstream side of said heating means and the upstream of said heat exchanger, and between the downstream side of said heat exchanger and the upstream side of said wet type desulfurization apparatus.

3. (withdrawn) The system for removing mercury in exhaust gas according to claim 1 or 2, characterized in that said mercury oxidation catalyst is a catalyst in which at least one kind selected from a group consisting of TiO₂, SiO₂, ZrO₂, Al₂O₃ and zeolite is used as a carrier, and at least one kind selected from a group consisting of Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu and Mn is carried on said carrier as an active component.

4. (withdrawn) The system for removing mercury in

exhaust gas according to claim 1 or 2, characterized in that said NH₃ decomposition catalyst is a catalyst in which at least one kind selected from a group consisting of TiO₂, SiO₂, ZrO₂, Al₂O₃ and zeolite is used as a carrier, and at least one kind selected from a group consisting of Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu and Mn is carried on said carrier as an active component.

5. (currently amended) A method for removing mercury in exhaust gas, in which mercury is removed from exhaust gas of a boiler, characterized in that

the said mercury removing method comprises an NH₃ decomposition process for decomposing excess NH₃ flowing down from a denitrification process and a mercury oxidation process for oxidizing mercury into mercury chloride on the downstream side of said NH₃ decomposition process, which are provided between said denitrification process and a wet desulfurization process, and mercury having been oxidized into mercury chloride is removed in said wet desulfurization process, said NH₃ decomposition process is separate from said denitrification process.

6. (original) The method for removing mercury in exhaust gas according to claim 5, characterized in that

in the mercury removing method comprising a heating process and a heat recovery process, which are provided between said denitrification process and wet desulfurization process,

the said NH₃ decomposition process is carried out in a temperature zone of 300 to 450°C on the downstream side of said denitrification process, and

the said mercury oxidation process is carried out at least in one location of a temperature zone of 300 to 450°C on the downstream side of said NH₃ decomposition process, a temperature zone of 120 to 200°C on the downstream side of said heating

process, or a temperature zone of 60 to 120°C on the downstream side of said heat recovery process.

7. (original) The method for removing mercury in exhaust gas according to claim 5, characterized in that when said mercury oxidation process is carried out on the downstream side of said heating process, the temperature is controlled to a predetermined temperature in the range of 60 to 200°C.

8. (original) The method for removing mercury in exhaust gas according to claim 5 or 6, characterized in that the temperature in said mercury oxidation process is controlled by measuring the concentration of metallic mercury or mercury chloride in an oxidation catalyst outlet gas in said mercury oxidation process.

9. (original) The method for removing mercury in exhaust gas according to claim 5 or 6, characterized in that in said NH₃ decomposition process, NH₃ is treated so that the concentration of NH₃ at the outlet is 1 ppm or lower, and then mercury is oxidized in said mercury oxidation process.

10. (new) The method for removing mercury in exhaust gas according to claims 5 or 6, further comprising a NH₃ decomposition catalyst, said NH₃ decomposition catalyst comprises a carrier and an active component, said carrier is selected from the group consisting of TiO₂, SiO₂, ZrO₂, Al₂O₃, and zeolite, and said active component is selected from the group consisting of Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu, and Mn.

11. (new) The method for removing mercury in exhaust gas according to claims 5 or 6, further comprising a mercury oxidation catalyst, said mercury oxidation catalyst comprising a carrier and an active component, said carrier is selected from the group consisting of TiO₂, SiO₂, ZrO₂, Al₂O₃, and zeolite, and said active component is selected from the group consisting of Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu, and Mn.

12. (new) A method for removing mercury in exhaust gas, in which mercury is removed from exhaust gas of a boiler, characterized in that

said mercury removing method comprises a NH_3 decomposition process for decomposing excess NH_3 flowing down from a denitrification process and a mercury oxidation process for oxidizing mercury into mercury chloride on the downstream side of said NH_3 decomposition process, which are provided between said denitrification process and a wet desulfurization process, and mercury having been oxidized into mercury chloride is removed in said wet desulfurization process, said NH_3 decomposition process is separate from said denitrification process, and

wherein said NH_3 decomposition occurs over a catalyst comprising a carrier and an active component, said carrier is selected from the group consisting of TiO_2 , SiO_2 , ZrO_2 , Al_2O_3 , and zeolite, and said active component is selected from the group consisting of Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu, and Mn.

13. (new) The method for removing mercury in exhaust gas according to claim 12, further comprising a mercury oxidation catalyst, said mercury oxidation catalyst comprising a carrier and an active component, said carrier is selected from the group consisting of TiO_2 , SiO_2 , ZrO_2 , Al_2O_3 , and zeolite, and said active component is selected from the group consisting of Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu, and Mn.

14. (new) A method for removing mercury in exhaust gas, in which mercury is removed from exhaust gas of a boiler, characterized in that

said mercury removing method comprises an NH_3 decomposition process for decomposing excess NH_3 flowing down from a denitrification process and a mercury oxidation process for oxidizing mercury into mercury chloride on the downstream side

of said NH₃ decomposition process, which are provided between said denitrification process and a wet desulfurization process, and mercury having been oxidized into mercury chloride is removed in said wet desulfurization process, said NH₃ decomposition process is separate from said denitrification process,

wherein said mercury oxidation occurs over a catalyst comprising a carrier and an active component, said carrier is selected from the group consisting of TiO₂, SiO₂, ZrO₂, Al₂O₃, and zeolite, and said active component is selected from the group consisting of Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu, and Mn.

15. (new) The method for removing mercury in exhaust gas according to claim 14, further comprising a NH₃ decomposition catalyst, said NH₃ decomposition catalyst comprises a carrier and an active component, said carrier is selected from the group consisting of TiO₂, SiO₂, ZrO₂, Al₂O₃, and zeolite, and said active component is selected from the group consisting of Pt, Ru, Rh, Pd, Ir, V, W, Mo, Ni, Co, Fe, Cr, Cu, and Mn.