第三章 Arduino互動程式設計入門

- Arduino程式基礎
- 認識變數
- 認識數字系統
- 認識常數

Arduino程式設計基礎

Arduino的程式要配合硬體的規劃,而且指令敘述要具體、明確,像「開始閃爍LED」這個指示,對電腦來說太抽象了。

1. 將第13腳設定成「輸出」狀態
 2. 向第13腳輸出「高電位」(點亮LED)
 3. 維持1秒鐘
 4. 向第13腳輸出「低電位」(關閉LED)
 5. 維持1秒鐘
 6. 重複執行步驟1~5

Arduino程式的基本架構

微處理器只認得0和1構成的機械碼(machine code)。

高階程式語言必須經過**編譯** (compile),才能交給微電腦執行。

```
digitalWrite(LED, HIGH);
delay(1000);
digitalWrite(LED, LOW);
delay(1000);

高階語言(high level language)

周答單英文稱成的敘述

1100010101010101110
0111110...
```

所有Arduino程式都是由參數 設置(setup)和迴圈(loop)兩大區塊所組成,這個「區 塊」的正式名稱叫做函數(function)。

```
大括號用於與定程 Void setup() 
定跟著小括號
式區塊的却始範圍 

void loop()
{

void loop()
{

}
```


基本指令

設定接腳的工作模式:輸入(INPUT)或輸出(OUTPUT)

在指定接腳輸出數位訊號

在設定延遲時間

LED閃爍的程式碼

變數

在程式中,暫存資料的容器叫做變數。

變數有助於管理程式碼,像底下的程式碼,若要更改接腳,只需修改變數值:

```
byte led = 13;

void setup() {
  pinMode(led, OUTPUT);
}

void loop() {
  digitalWrite(led, HIGH);
  delay(1000);
  digitalWrite(led, LOW);
  delay(1000);
}
```


資料類型

資料類型用於設定「資料容器」的格式和容量。在宣告變數的同時,必須設定該變數所能儲存的資料類型。

也能	鳥成bool					
類型 /	中文名稱	佔用記憶體	大小	數值範圍		
boolean	布林	8位元(1Byte)		1或0(true或false)		
byte	位元組	8位元	(1Byte)	0~255		
char	字元	8位元	(1Byte)	-128~127		
int	整數	16	5位元(2Bytes)	-32768~32767		
long	長整數		32位元(4Bytes)	-2147483648~2147483647		
float	浮點數		32位元(4Bytes)	±3.4028235E+38		
double	雙倍精確度浮點數		32位元(4Bytes)	±3.4028235E+38		
			F是科學記號, F+3	3.8 H ₺ 1038 ✓		

數字系統(一)

每個數字所在的位置,代表不同的權值(weight)。

二進位數字乘上它所代表的權值的總和,即可換算成10 進位數字。

2進位數字換算成 16進位數字

數字系統(二)

十進位		十六進位		二進位	十進位		十六進位		二進位
0	=	0	=	0000	8	=	8	=	1000
1	=	1	=	0001	9	=	9	=	1001
2	=	2	=	0010	10	=	Α	=	1010
3	=	3	=	0011	11	=	В	=	1011
4	=	4	=	0100	12	=	C	=	1100
5	=	5	=	0101	13	=	D	=	1101
6	=	6	=	0110	14	=	E	=	1110
7	=	7	=	0111	15	=	F	=	1111

不同進位數字的表示方法

```
int al = 362;

int a2 = 0b101101010;

int a3 = 0x16A;

代表「76進位值」

代表「76進位值」
```


常數

存放固定、不變數值的容 器,稱為「常數」。

保存變數的容器,將在執行階段被建立在內容可隨意更換的SRAM(主記憶體)中。

Com Port

- Serial.begin(9600);
- Serial.print(變數);// 印出
- Serial.print("文字");
- Serial.println(); //跳行
- Serial.read(); // 輸入
- 試看看....

- 一分鐘回饋:
- https://goo.gl/forms/0C6jWOW5MTX9paos1

