SELEÇÃO RECORRENTE FENOTÍPICA NO FEIJOEIRO VISANDO A RESISTÊNCIA A

Phaeoisariopsis griseola

GEOVANI BERNARDO AMARO

2006

GEOVANI BERNARDO AMARO

SELEÇÃO RECORRENTE FENOTÍPICA NO FEIJOEIRO VISANDO A RESISTÊNCIA A Phaeoisariopsis griseola

Tese apresentada à Universidade Federal de Lavras como parte das exigências do Programa de Pós-Graduação em Agronomia, área de concentração em Genética e Melhoramento de Plantas, para a obtenção do título de "Doutor".

Orientadora

Dra. Ângela de Fátima Barbosa Abreu

LAVRAS MINAS GERAIS - BRASIL 2006

Ficha Catalográfica Preparada pela Divisão de Processos Técnicos da Biblioteca Central da UFLA

Amaro, Geovani Bernardo

Seleção recorrente fenotípica no feijoeiro visando a resistência a *Phaeoisariopsis griseola* / Geovani Bernardo Amaro. -- Lavras : UFLA, 2006. 90 p. : il.

Orientadora: Ângela de Fátima Barbosa Abreu. Tese (Doutorado) – UFLA. Bibliografía.

1. Feijão. 2. *Phaseolus vulgaris*. 3. Genética quantitativa. 4. Seleção recorrente. 5. Grão. 6. Cruzamento dialélico. 7. Mancha angular. I. Universidade Federal de Lavras. II. Título.

CDD-635.65223

GEOVANI BERNARDO AMARO

SELEÇÃO RECORRENTE FENOTÍPICA NO FEIJOEIRO VISANDO A RESISTÊNCIA A

Phaeoisariopsis griseola

Tese apresentada à Universidade Federal de Lavras como parte das exigências do Programa de Pós-Graduação em Agronomia, área de concentração em Genética e Melhoramento de Plantas, para a obtenção do título de "Doutor".

Aprovada em 22 de março de 2006.

Prof. Dr Antônio Alves Soares - UFLA

Prof. Dr. José Eustáquio de Souza Carneiro - UFV

Dr. Leonardo Cunha Melo Embrapa Arroz e Feijão - CNPAF

Prof. Dr. Magno Antonio Patto Ramalho - UFLA

Dra. Ângela de Fátima Barbosa Abreu Embrapa Arroz e Feijão/ UFLA/DBI (Orientadora)

> LAVRAS MINAS GERAIS – BRASIL

"É glória de Deus ocultar-se e aos seus caminhos, não para manter os homens na ignorância da luz e do conhecimento celestial, mas, por ultrapassar a máxima capacidade humana para entender."

E. G. White

"Sublime amor, o amor de Deus. Que a lira não traduzirá. Maior que o mar, maior que o céu. Jamais alguém compreenderá. Se em tinta o mar se transformasse e em papel o céu também. E a pena ágil deslizasse, dizendo o que esse amor contém. Daria fim ao grande mar ao esse amor descrever. E o céu seria mui pequeno para tal relato conter."

HASD

Aqueles que muito amo. À minha esposa, Eliene Lucas Lacerda Amaro. Aos meus filhos, Lara e Daniel Lacerda Amaro. À minha mãe, Maria da Conceição Teixeira e à minha irmã, Neiva Helena Teixeira. Que no calor do seu amor me motivaram com alegria a alcançar esta grande conquista.

À memória de meu pai, Divino Amaro Teixeira Primo.

DEDICO

AGRADECIMENTOS

Dou graças ao bom Deus e Pai, por nosso Senhor Jesus Cristo, criador e mantenedor da vida. Ao Espírito Santo, fonte de toda iluminação e ciência.

Sou eternamente grato a todos os que contribuíram para a realização deste trabalho.

À minha mãe amorosa, compreensiva e dedicada, que me incentivou com seu exemplo de trabalho e dedicação. À minha irmã, Neiva, que, desde a meninice, foi meu exemplo de dedicação, responsabilidade e qualidade em tudo que se faz. À minha esposa Eliene e meus filhos Lara e Daniel que, com amor, suportaram as dificuldades deste trabalho.

A Dra. Ângela de Fátima Barbosa Abreu, pela orientação, dedicação, disponibilidade, exemplo de trabalho e conselhos dados durante este curso, manifesto minha gratidão especial. Também, ao professor Magno Antonio Patto Ramalho manifesto, o agradecimento pelos ensinos, auxílio nos trabalhos e pela sua dedicada co-orientação.

Aos membros da banca, por dedicarem o seu tempo visando à melhoria deste trabalho.

Ao CNPq e a CAPES, que financiaram este trabalho.

Aos professores do curso de Genética e Melhoramento de Plantas, em especial aos professores João Bosco dos Santos, João Cândido de Souza, Elaine de Souza, Lisete Chamma Davide e César Augusto Brasil Pereira Pinto. Demais professores que contribuíram para minha formação: Antônio Carlos de Oliveira, Daniel, Samuel, Giovana, Wagner, Maluf, Iara e Renato Paiva.

Aos meus amigos do GEN e a todos os colegas e amigos do curso de Genética e Melhoramento de Plantas, especialmente os que me acompanharam nos campos experimentais: Adriano Bruzi, Flávia Barbosa, Alexander Moreto, Marcos Sena, Elton, Marcelo, Renato, Isabela, Diego, Airton, Welcimar e Willian. Aos meus amigos de aulas, Ildon e Rose.

A todos os funcionários do Departamento de Biologia, em especial a nossa atenciosa e dedicada secretária Elaine, a Erondina, Rosângela, Zélia, Rafaela, Raimundo, Leonardo e Lindolfo. Aos funcionários das Estações Experimentais EPAMIG de Lambari e Patos de Minas, pelo auxílio e apoio nos campos experimentais. Ao José Eustáquio Carneiro e Flávia Avelar, pelo auxílio no início do trabalho e apoio nos campos experimentais de Viçosa.

Aos familiares de minha esposa, que torceram por mim e ficaram orgulhosos de nossa conquista: Tim, Lourdes e demais familiares. Aos meus amigos e irmãos de fé da Igreja Adventista de Lavras e da FADMINAS, pela motivação, amizade e amor fraternal.

SUMÁRIO

	Página
RESUMO	i
ABSTRACT	iii
1 INTRODUÇÃO	01
2 REFERENCIAL TEÓRICO	03
2.1 Mancha angular	03
2.1.1 Agente causal	03
2.1.2 Variabilidade do patógeno	05
2.1.3 Fontes de resistência e controle genético da reação a <i>P. griseola</i>	10
2.2 Seleção recorrente em plantas autógamas	12
2.3 Estimativa de parâmetros genéticos e fenotípicos na cultura do)
feijoeiro	18
2.4 Estimativa do progresso genético em programas de seleção)
recorrente	21
3 MATERIAL E MÉTODOS	25
3.1 Obtenção da população base (ciclo 0) e populações dos ciclos I a V do)
programa de seleção recorrente	25
3.2 Obtenção e avaliação das famílias dos ciclos I ao V do programa de	;
seleção recorrente	. 27
3.3 Manejo dos experimentos	30
3.4 Análises genético-estatísticas	30
3.5 Progresso genético.	35
$3.5.1$ Por meio das médias das progênies da geração $S_{0:1}$ dos ciclos l]
ao ciclo V	36
3.5.2 Utilizando as melhores linhagens identificadas nos ciclos I, II e	;
III	37

4 RESULTADOS E DISCUSSÃO	38
4.1 Avaliação da severidade de mancha angular	38
4.2 Avaliação da produtividade de grãos	45
4.3 Progresso genético	56
5 CONCLUSÕES	68
REFERÊNCIAS BIBLIOGRÁFICAS	69
ANEXOS	80

RESUMO

AMARO, Geovani Bernardo. **Seleção recorrente fenotípica no feijoeiro visando a resistência a** *Phaeoisariopsis griseola*. 2006. 90 p. Tese (Doutorado em Genética e Melhoramento de Plantas) — Universidade Federal de Lavras, Lavras, MG.*

Visando à avaliação da eficiência da seleção recorrente fenotípica na obtenção de linhagens de feijoeiro resistentes a Phaeoisariopsis griseola, foi conduzido o presente trabalho. A população base foi obtida a partir do cruzamento dialélico parcial entre sete linhagens com grãos tipo carioca (Carioca MG, CI-140, CI-128, ANPAT 8.12, IAPAR 81, ESAL 693 e Pérola) e dez fontes de resistência a P. griseola (AN 512561, AND 277, Ouro Negro, Compuesto Negro Chimaltenango, CAL 143, MAR 2, MAR 1, G 5686, MA 4.137 e Jalo) de diversos tipos de grãos, obtendo-se 29 híbridos F₁. Na geração F_2 (S_0) do ciclo 0 (C-0), foram selecionadas, fenotipicamente, as plantas mais resistentes ao patógeno. Para a obtenção do ciclo I (C-I), foram intercruzadas as melhores plantas da geração S_{0:1} do C-0 e que apresentaram grãos tipo carioca o mais próximo possível ao padrão exigido pelo mercado, ou seja, de fundo bege e rajas marrom-claras. O mesmo procedimento foi adotado para a obtenção dos ciclos II ao V. Na geração S₀ de cada ciclo de seleção recorrente, além de selecionar as melhores plantas para a recombinação e obtenção do ciclo seguinte, 20 a 30 plantas de cada população, selecionadas fenotipicamente para resistência a P. griseola, foram avançadas até a geração S_{0:4} em experimentos, utilizando-se sempre como testemunhas as cultivares Carioca MG (suscetível ao patógeno) e Pérola (bom nível de resistência). Nas avaliações, foram consideradas as seguintes características: resistência ao patógeno (avaliada por meio de uma escala de notas de 1 a 9, em que 1 representa ausência de sintomas e 9 representa plantas totalmente atacadas), tipo de grão dentro do padrão carioca e produtividade de grãos. Utilizando os dados da avaliação da geração S_{0.1} dos diferentes ciclos seletivos, sempre conduzida na safra da "seca", e tendo como padrão de referência do efeito ambiental a cultivar suscetível Carioca MG, foi estimado o progresso genético com a seleção para mancha angular. O valor obtido foi de 6,4% por ciclo. A resposta na produtividade de grãos pela seleção efetuada visando a resistência ao patógeno foi de 8,9% por ciclo em condições de incidência natural de mancha angular. O progresso genético também foi estimado utilizando-se as sete melhores linhagens (progênies S_{0:5}) obtidas em

^{*} Comitê de orientação: Ângela de Fátima Barbosa Abreu – Embrapa Arroz e Feijão/UFLA (Orientadora); Magno Antonio Patto Ramalho – UFLA (Co-orientador).

cada ciclo seletivo. Essas linhagens foram avaliadas na safra da "seca" de 2005, em Lavras, Lambari e Patos de Minas. Os caracteres considerados foram a severidade de mancha angular utilizando a escala de notas descrita anteriormente e a produtividade de grãos. Com os dados médios foram estimados os progressos genéticos de 13,8% para a reação ao patógeno e de 2,1% para a produtividade de grãos. Constatou-se também a existência de variabilidade para se continuar tendo sucesso com a seleção. Evidenciou-se, assim, que a seleção recorrente fenotípica é eficiente na seleção de linhagens de feijoeiro com grãos tipo carioca que associem resistência a *P. griseola* e maior produtividade de grãos.

ABSTRACT

AMARO, Geovani Bernardo. **Phenotypic recurrent selection in common bean for resistance to** *Phaeoisariopsis griseola.* 2006. 90 p. Thesis – (Doctoral in Genetics and Plant Breeding) – Federal University of Lavras, Lavras, Minas Gerais, Brazil.*

The present work was carried out to evaluate the efficiency of phenotypic recurrent selection to obtain common bean lines resistant to Phaeoisariopsis griseola. The base population was obtained from a partial diallel cross involving seven parents with carioca-grain type (Carioca MG, CI-140, CI-128, ANPAT 8,12, IAPAR 81, 693 ESAL and Pérola) and ten sources of resistance to P. griseola (AN 512561, AND 277, Ouro Negro, Compuesto Negro Chimaltenango, CAL 143, MAR 2, MAR 1, G 5686, MA 4.137 and Jalo), with several grain types. Twenty-nine F_1 hybrids were obtained. In the F_2 (S_0) generation of cycle 0 (C-0), resistant plants to the pathogen were phenotypicaly selected. To obtain the cycle I (C-I) the best plants from S_{0:1} of C-0 showing carioca grain type, with grains cream background-colored and light brown stripes were intercrossed. The same procedure was carried out to obtain cycles II to V. In the S₀ generation of each cycle of recurrent selection, besides selecting the best plants for recombination and to obtain the following cycle, 20-30 plants of each population, were phenotypicaly selected for resistance to P. griseola, and advanced up to the S0:4 generation using cultivars Carioca MG (susceptible) and Pérola (good level of resistance) as controls. Pathogen resistance (based on a scale from 1= absence of symptoms to 9= plants totally attacked); grain type within Carioca group; and grain yield were considered in the evaluations. Using the S_{0:1} generation data from the dry season experiments different of the selective cycles, and having as reference of the environmental variation data from cultivar Carioca MG, the genetic progress from selection for angular leaf spot was estimated. The genetic gain was 6.4% for each cycle. The selection response for grain yield from selection for angular leaf spot was 8.9% for each cycle. The genetic progress was also estimated using the best seven lines ($S_{0.5}$ families) from each cycle of selection. These families were evaluated in the dry season of 2005, in Lavras, Lambari and Patos de Minas counties. The considered characters were the severity of angular leaf spot using the previously described scale and grain yield. The estimated genetic progresses were 13.8% for the

_

^{*} Guidance Committee: Ângela de Fátima Barbosa Abreu — Embrapa Arroz e Feijão/UFLA (Major Professor); Magno Antonio Patto Ramalho — UFLA.

reaction to the pathogen and 2.1% for grain yield. The existence of genetic variability was also evidenced to allow a continuing success with selection. Phenotypic recurrent selection is efficient and should be used to select common bean lines with carioca-grain type, associated with resistance to *P. griseola* and higher grain yields.

1 INTRODUÇÃO

Com a intensificação do cultivo do feijoeiro no Brasil nos últimos 20 anos, os problemas com patógenos se agravaram. Entre esses patógenos, *Phaeoisariopsis griseola*, agente causal da mancha angular, tem se destacado devido aos expressivos danos causados à cultura (Sartorato & Rava, 1992; Correa-Victoria et al., 1994; Jesus Júnior et al., 2001).

Em Minas Gerais, especialmente na denominada safra da "seca", semeadura em fevereiro-março, devido às condições climáticas favoráveis ao desenvolvimento do patógeno, a sua importância é crescente. Como o meio de controle mais viável, devido menor custo e menor impacto ambiental, é o uso de cultivares resistentes, vários trabalhos foram conduzidos a esse respeito (Sartorato et al., 1991; Sartorato & Rava, 1992). Contudo, ficou evidenciada a dificuldade de se obter linhagens com resistência duradoura e em bom nível. Ainda há dúvida com relação ao controle genético deste caráter, contudo, devem estar envolvidos vários genes (Caixeta et al., 2002; Mahuku et al., 2004), sobretudo devido à existência já comprovada de várias raças do patógeno (Aparício, 1998; Nietsche et al., 2001; Sartorato, 2002; Sartorato & Alzate-Marin, 2004).

Numa situação como essa, uma das alternativas para acumular os vários alelos de resistência é por meio de seleção recorrente (Ramalho et al., 2001). Nesse caso particular, como o caráter, provavelmente, tem herdabilidade relativamente alta, a seleção dos indivíduos para a recombinação pode ser fenotípica já na geração F₂.

O progresso genético de um programa de melhoramento pode ser estimado por várias metodologias. Seis dessas metodologias foram comparadas por Fonseca Jr. (1997) para a cultura do feijoeiro, e todas, inclusive a

metodologia da regressão linear, apresentaram resultados que indicam a eficiência de sua utilização. Abreu et al. (1994) também utilizaram a metodologia da regressão linear para a estimativa do progresso no melhoramento genético do feijoeiro.

Como não foram encontrados relatos do emprego da seleção recorrente fenotípica (SRF) visando à resistência a patógenos no feijoeiro, foi realizado o presente trabalho para avaliar a eficiência da SRF na obtenção de progênies resistentes a *P. griseola* e, ao mesmo tempo, verificar o efeito da seleção realizada, na produtividade de grãos.

2 REFERENCIAL TEÓRICO

2.1 Mancha angular

A mancha angular é, provavelmente, uma das doenças mais importantes da parte aérea do feijoeiro. Até o final da década de 1980, a mancha angular era conhecida como doença de pequena importância econômica. Alguns fatores, entretanto, fizeram com que ela se tornasse um problema sério na cultura do feijoeiro em Minas Gerais, como: plantio da cultura no outono-inverno, quando as temperaturas são favoráveis à doença; presença de plantas de feijoeiro ou restos de cultura contaminados no campo durante todo o ano; emprego de irrigação por aspersão, que propicia condições de umidade favoráveis à doença; emprego de cultivares suscetíveis à doença e possíveis alterações das raças do patógeno ao longo dos anos (Paula Júnior et al., 2004). Todos esses fatores, aliados, têm levado a surtos cada vez mais precoces e intensos da doença, que resultam em grandes perdas na produção. Dependendo da suscetibilidade das cultivares e patogenicidade das raças predominantes, as perdas podem atingir até 80% se as condições ambientais forem favoráveis (Correa-Victoria et al., 1994; Jesus Júnior et al., 2001)

2.1.1 Agente causal

O fungo *Phaeoisaripsis griseola* (Sacc.) Ferraris é o agente causal da mancha angular no feijoeiro comum (*Phaseolus vulgaris* L.) e pode ser encontrado em mais de 60 países produtores de feijão em todo o mundo (Guzmán et al., 1995). Esse fungo foi descrito pela primeira vez como *Isariopsis*

griseola, por Saccardo, em 1878 (Nietsche, 1997). É um fungo imperfeito, que pertence à classe dos Deuteromicetos, ordem Moniliales, família Stilbaceae. Seus conidióforos são produzidos em grupos, chamados de sinêmios ou corêmios, compostos de oito a quarenta conidióforos, os quais crescem formando tufos. Na parte superior dos conidióforos, os esporos do fungo formam os conidiósporos ou conídios. Suas estruturas são facilmente observadas a olho nu nas manchas, nas faces inferiores das folhas infectadas. A doença é favorecida por ambiente seco-úmido intermitente e temperaturas ao redor de 24°C (Bianchini et al., 1997). A esporulação do patógeno é favorecida a temperaturas entre 16°C e 26°C (Bianchini et al., 1997; Hall, 1991). Estas condições favoráveis são encontradas principalmente na safra da "seca", na região Centro-Sul do Brasil.

Os conídios de *P. griseola* germinam sobre a superfície das folhas sob condições de alta umidade e, três dias após a inoculação, as hifas penetram pelos estômatos, crescendo entre as células. As membranas das células infectadas se desintegram, o citoplasma celular se desorganiza e as células são destruídas com a proliferação do fungo. Assim, o patógeno coloniza extensivamente os tecidos, causando as lesões necróticas e posterior esporulação (Monda et al., 2001). Esse fungo sobrevive por um período de até 19 meses em resíduos de cultura na superfície do solo, podendo sobreviver também em sementes infectadas. Seus principais agentes de disseminação são as chuvas, os ventos e partículas do solo infestadas.

Os principais sintomas da doença são lesões nas folhas, caule, ramos, pecíolos e vagens. As lesões nas folhas podem ser visualizadas a partir dos oito aos doze dias após a infecção. Formam-se manchas, inicialmente irregulares, cinzas ou marrons e, cerca de nove dias após a infecção, inicia-se o processo necrótico. Assim, as lesões delimitadas pelas nervuras assumem formato angular e, quando atingem um grande número, coalescem, causando o amarelecimento e

desfolhamento prematuro da planta. O desfolhamento prematuro prejudica o enchimento das vagens, reduzindo o tamanho dos grãos e, consequentemente, a produção. As lesões nas vagens são, a princípio, superficiais, de coloração castanho-avermelhada, quase circulares e com bordas escuras; são de tamanho variável e, quando numerosas, coalescem, cobrindo toda a largura da vagem. As vagens infectadas podem produzir sementes mal desenvolvidas e ou totalmente enrugadas. As lesões nos ramos, caule, e pecíolos são alongadas e de coloração castanho-escura (Bianchini et al., 1997; Nietsche, 2000).

2.1.2 Variabilidade do patógeno

As primeiras evidências de variabilidade entre isolados de *P. griseola* foram reportadas no início dos anos 1950 (Brock, 1951). Posteriormente, evidências mais conclusivas de variabilidade na patogenicidade foram apresentadas, baseadas no diferencial de patogenicidade em cultivares de feijão (Alvarez-Ayala & Schawartz, 1979; CIAT, 1986; Correa-Victoria, 1987). Utilizando análise de isoenzimas, 55 isolados de *P. griseola* provenientes dos Estados Unidos, América Latina e África foram divididos em dois grupos (Correa-Victoria, 1987). Todos isolados africanos tinham padrão 1 para cada isoenzima, enquanto os isolados latino-americanos exibiam padrão 1 ou 2. Os isolados de padrão 1 foram associados com cultivares de feijão de sementes grandes, originadas da região andina da América do Sul, enquanto os isolados de padrão 2 foram associados às cultivares de sementes pequenas da América Central e do Norte (Correa-Victoria, 1987).

Com base em várias evidências, como análise de proteína na semente, estudos com marcadores de aloenzimas, marcadores de RFLP e RAPD, caracteres morfológicos e agronômicos e incidência de alelos letais no híbrido

F₁, as cultivares de feijão foram separadas em dois grupos distintos chamados de "pools" gênicos andino e mesoamericano (Gepts, 1988; Gepts, 1993; Gepts & Bliss, 1985; Singh et al., 1991a; Singh et al., 1991b). Esses "pools" gênicos surgiram, um nos Andes da América do Sul e o outro no México e ou América Central, em eventos de domesticação independentes (Gepts & Debouck, 1991; Gepts et al., 1988). Populações silvestres de P. vulgaris também podem ser separadas nesses dois "pools" gênicos maiores e o padrão geográfico da diversidade morfológica e bioquímica e das barreiras de isolamento reprodutivo encontradas nas cultivares de feijão são semelhantes aos dos seus ancestrais silvestres (Koenig & Gepts, 1989; Koinange & Gepts, 1992). Isso sugere que a divergência desses dois "pools" gênicos ocorreu antes dos eventos independentes de domesticação (Gepts & Debouck, 1991). Gepts & Bliss (1985) levantaram a hipótese de que a existência de dois "pools" gênicos de hospedeiros pode ter surgido paralelamente pela existência de dois "pools" gênicos nos organismos associados com o feijoeiro comum, como os patógenos ou simbiontes.

Essa constatação de que houve uma co-evolução entre as populações do patógeno e seu hospedeiro (Gepts & Bliss, 1985) levou à necessidade de se utilizar dois grupos de cultivares diferenciadoras para a identificação das raças de *P. griseola*. Foi observado que os isolados andinos de *P. griseola*, atacam com mais freqüência cultivares andinas, mostrando uma maior virulência nelas (Pastor-Corrales & Jara, 1995). Por outro lado, isolados obtidos de cultivares mesoamericanas possuem um espectro de virulência mais amplo. Apesar de atacarem preferencialmente feijões mesoamericanos, alguns também atacam cultivares andinas (Pastor-Corrales et al., 1998). De acordo com Guzmán et al. (1995), a distinção da patogenicidade entre esses dois grupos parece não ser absoluta porque as cultivares de um determinado grupo podem não ser

totalmente resistentes aos isolados do outro grupo, sugerindo a ocorrência de possíveis hibridações entre os genótipos hospedeiros e ou isolados do patógeno.

Diante desse fato, no "International Workshop on the Angular Leaf Spot of Common Beans", realizado no Centro Internacional de Agricultura Tropical (CIAT), em 1995, decidiu-se pela adoção de um conjunto de cultivares diferenciadoras e uma nova nomenclatura de raças do patógeno da mancha angular (Pastor-Corrales & Jara, 1995). Até então, não existia um grupo padrão de cultivares diferenciadoras, o que dificultava a comparação entre as raças fisiológicas que eram encontradas.

A nomenclatura preconizada é baseada em um sistema binário proposta por Habgood (1970). São utilizadas 12 cultivares diferenciadoras de feijão, sendo seis de origem andina (d_i) e seis mesoamericanas (d_i). Seis cultivares de cada grupo são identificadas ordenadamente pelos números de 1 a 6. A designação de uma determinada raça é feita empregando-se dois números separados por um traço. O primeiro número corresponde à soma dos valores binários para as cultivares andinas (2^{di-1}) e o segundo relaciona-se às cultivares mesoamericanas (2^{dj-1}) e são obtidos pela soma dos valores numéricos de cada cultivar diferenciadora que é suscetível a esse isolado (Tabela 1). Por exemplo, se um isolado ataca as cultivares andinas Don Timóteo (valor binário 1), G11796 (valor binário 2), Bolón Bayo (valor binário 4) e Montcalm (valor binário 8) e as mesoamericanas Pan 72 (valor binário 1), G 2858 (valor binário 2), Flor de Mayo (valor binário 4) e Cornell 49-242 (valor binário 32), sua designação será raça 15-39. O número 15 é obtido pela soma dos valores 1+2+4+8 referentes às cultivares andinas suscetíveis, enquanto que o número 39 vem da soma dos valores 1+2+4+32, atribuídos às cultivares mesoamericanas suscetíveis.

TABELA 1. Cultivares diferenciadoras de feijão utilizadas para a classificação das raças de *P. griseola* pelo sistema binário.

Cultivares	Valor binário	Cultivares	Valor binário (2 ^{dj-1})
andinas (d_i)	(2^{di-1})	$mesoamericanas (d_j) \\$	
1. Don Timóteo	1	1. Pan 72	1
2. G 11796	2	2. G 2858	2
3. Bolón Bayo	4	3. Flor de Mayo	4
4. Montcalm	8	4. México 54	8
5. Amendoim	16	5. Bat 332	16
6. G 5686	32	6. Cornell 49-242	32

Fonte: Pastor-Corrales & Jara, 1995.

Diversos estudos têm sido realizados visando conhecer a variabilidade de *P. griseola*, não só utilizando a série de cultivares diferenciadoras (Aparício, 1998; Nietsche et al., 2001; Pastor-Corrales & Jara, 1995; Sartorato, 2002; Sartorato & Alzate-Marin, 2004; Stenglein et al., 2005), bem como técnicas moleculares (Guzmán et al., 1995; Nietsche et al., 2001; Pastor-Corrales & Jara, 1995; Pastor-Corrales et al., 1998; Stenglein et al., 2005). No Brasil, utilizando a série de cultivares diferenciadoras, de 1996 a 2002, foi identificado um total de 51 raças do patógeno, distribuídas em vários estados em que se cultiva o feijoeiro (Sartorato & Alzate-Marin, 2004) (Tabela 2). Estes últimos autores verificaram que as raças 31-39, 63-31, 63-23, 63-39, 63-47, 63-55 e 63-63 foram as mais freqüentes e amplamente distribuídas e são comumente encontradas nos estados de Goiás e Minas Gerais. Só em Minas Gerais foram identificadas 20 raças diferentes. A constatação de que vários isolados foram classificados como raça 63-63, ou seja, apresentam reação de virulência em todas as cultivares

diferenciadoras, sugere que a série de cultivares diferenciadoras necessita ser revista, incluindo novas fontes de resistência (Nietsche et al., 2001).

TABELA 2. Raças de *P. griseola* identificadas em vários estados do Brasil (Sartorato & Alzate-Marin, 2004).

						Esta	dos				
Raças	GO	MG	RR	SC	PE	ES	PB	BA	MS	AL	PR
05-07			X								
02-23	X										
07-23					X						
07-31					X						
07-39	X										
09-23	X										
11-19								X			
11-39	X										
13-23	X										
13-55			X								
15-07			X								
15-23	X										
15-31		X									
15-33							X				
15-39	X	X									
15-47		X									
15-55			X								
29-55				X							
31-07		X									
31-15	X										
31-17		X									
31-21		X									
31-23	X	X									
31-31	X										
31-33		X									
31-39	X	X	X							X	
31-47	X										
31-53		X									
31-55						X					
39-23										X ' Cont	·in

"...Continua..."

"TABE	LA 2,	Cont."	1								
Raças	GO	MG	RR	SC	PE	ES	PB	BA	MS	ΑL	PR
45-39					X						
47-31	X										
47-39	X				X						
47-47			X								
55-23			X								
55-31	X	X									
55-39									X		
57-23	X										
59-23	X										
59-47	X										
61-41		X									
63-07	X	X									
63-15	X			X							
63-19		X				X					
63-23	X	X		X							
63-31	X	X		X		X			X		X
63-35				X							
63-39		X				X	X				
63-47	X	X					X	X			
63-55	X	X			X						
63-63	X	X		X							

2.1.3 Fontes de resistência e controle genético da reação a P. griseola

Total

As principais medidas de controle da mancha angular são uso de sementes sadias, eliminação dos restos culturais infestados por meio da queimada ou incorporação profunda, rotação de cultura, aplicações de fungicidas foliares e plantio de cultivares resistentes (Bianchini et al., 1997). A utilização de defensivos agrícolas como medida de controle dessa doença é realizada, principalmente, pelos grandes produtores. Contudo, os pequenos e médios produtores são responsáveis pela maior parte da produção e encontram dificuldades para adotar essas medidas.

Assim, a adoção de cultivares resistentes pode ser considerada a alternativa mais viável, devido ao seu menor custo e também ao menor impacto ambiental. Há, no entanto, o problema da durabilidade de uma cultivar resistente, quando portadora de apenas um alelo de resistência, devido à ampla variabilidade do patógeno. Nesse caso, a piramidação de vários alelos de resistência em uma mesma cultivar seria a estratégia de melhoramento mais eficiente. Contudo, para a utilização dessa estratégia é necessária a identificação das possíveis fontes de resistência, bem como o conhecimento do seu controle genético.

Com o objetivo de identificar fontes de resistência, Sartorato (2005) avaliou a reação de 179 linhagens de feijão mesoamericanas e andinas a oito raças de *P. griseola* (63-39, 63-23, 63-15, 31-31, 63-55, 63-63, 63-31 e 63-47). Verificou que, dessas, somente 39 mostraram resistência a uma ou mais raças. A maioria das linhagens foi resistente a poucas raças. Somente a cultivar Ouro Negro apresentou resistência a todas elas, indicando que pode ser uma boa alternativa como genitor nos programas de melhoramento.

Outra boa fonte de resistência é a linhagem CAL 143. Aggarwal et al. (2004) inocularam essa linhagem com quatro raças de *P. griseola*, caracterizadas como andinas e cinco mesoamericanas. Verificaram que ela foi suscetível a apenas uma raça mesoamericana, caracterizada como raça 63-21.

Testando vários patótipos de *P. griseola*, Sartorato (2004) verificou-se que as cultivares mais resistentes foram a Cornell 49-242 (mesoamericana) e a AND 277 (andina). Caixeta et al. (2002) mostraram que a cultivar Cornell 49-242 contém somente um gene, cujo alelo dominante Phg-3 confere resistência. Testes de alelismo feitos por esses autores revelaram que a cultivar AND 277 possui quatro genes de resistência à mancha angular, designados Phg-1, Phg-2², Phg-3² e Phg-4². A cultivar México 54, outra fonte de resistência, possui três

genes, Phg-2, Phg-5 e Phg-6; MAR 2 é portadora de dois genes, Phg-4 e Phg-5 e BAT 332 possui o gene Phg-6² (Caixeta et al., 2002).

Estudando a herança da resistência à mancha angular da linhagem G 10474, Mahuku et al. (2004) verificaram que o gene de resistência dessa linhagem ocupa um loco diferente daqueles descritos por Caixeta et al. (2002). A maioria das raças de *P. griseola* que causaram reação de suscetibilidade nas cultivares México 54, MAR 1, MAR 2, AND 277, BAT 332 e Cornell 49-242 não infectou a linhagem G 10474. Assim, os autores concluíram que é provável que G 10474 seja portadora de um gene diferente daqueles encontrados naquelas cultivares.

No Brasil, os produtores cultivam feijões tanto mesoamericanos como andinos, mas, a grande maioria é de origem mesoamericana. Conseqüentemente, a pressão de seleção favoreceu a seleção de patótipos de origem mesoamericana, os quais possuem genes de virulência que, apesar de causarem doença em cultivares dos dois conjuntos gênicos, são mais patogênicos para as de origem mesoamericana, conforme já mencionado. Assim, a utilização de cultivares andinas como fontes de resistência pode ser uma boa estratégia a ser empregada nos programas de melhoramento, visando resistência a essa doença, no Brasil (Guzmán et al., 1995).

2.2 Seleção recorrente em plantas autógamas

Diversas características de importância para o melhoramento de plantas são controladas por muitos genes. Quando se utilizam as metodologias tradicionais de melhoramento por meio de hibridações e condução de populações segregantes, a probabilidade de encontrar, em um único ciclo seletivo, um indivíduo que contenha todos os alelos favoráveis, é muito baixa.

Considerando n locos segregando, a probabilidade de se encontrar uma planta com todos os alelos favoráveis na geração F_m é dada pela expressão: $P=[(2^{m-1}-1)/2^m]^n$ (Ramalho et al., 2001). Dessa forma, considerando um caráter controlado por 10 genes, a probabilidade de se encontrar um único indivíduo na geração F_6 que contenha todos os alelos favoráveis será de 1/1.406, ou seja, seria necessária a avaliação de, pelo menos, 1.406 progênies para se obter o genótipo desejado. O modo de reunir o maior número de alelos favoráveis em uma linhagem é por meio de sucessivos ciclos de seleção e recombinação das melhores famílias, ou seja, a seleção recorrente (Ramalho et al., 2001).

A seleção recorrente foi originalmente proposta na década de 1940, no melhoramento do milho. Posteriormente, foi adotada também para culturas autógamas. Em meados da década de 1960 foi empregada no melhoramento da aveia (Khadr & Frey, 1965). Desde então, houve uma aceitação progressiva do método no melhoramento de plantas autógamas e, mais recentemente, tem sido utilizada no melhoramento de diversas culturas, como, por exemplo, de arroz (Morais et al., 2003; Rangel et al., 1998) e feijão (Cunha, 2005; Abreu et al., 2003; Ramalho et al., 2003).

A seleção recorrente envolve, basicamente, três etapas: obtenção da população base, avaliação de progênies e recombinação das progênies selecionadas para formar a próxima geração. Geraldi (1997) cita, como principais vantagens da seleção recorrente: obtenção de maior variabilidade genética pelo intercruzamento de múltiplos genitores, maior oportunidade de recombinação genética, devido aos sucessivos ciclos de cruzamentos, maior eficiência no acúmulo de alelos favoráveis, devido ao processo repetitivo de seleção e viabilidade de incorporação de germoplasma exótico na população. O método ainda permite a obtenção de linhagens superiores a cada ciclo seletivo e inclusão de novas linhagens no processo de recombinação.

Um outro argumento a favor da seleção recorrente foi apresentado por Fouilloux & Bannerot (1988). Esses autores argumentam que, considerando uma planta F_1 heterozigótica para n locos, em cada loco, a probabilidade de se tomar um descendente qualquer, ao acaso, e ele conter o alelo B ou b, é de ½. Para vários locos, tem-se uma distribuição binomial, cuja média será μ =np. Sendo p=1/2 e μ =n/2. Já, a variância é fornecida pela expressão σ^2 =np(1-p)=n/4. Quando n é grande, a distribuição binomial se aproxima da normal. Assim, utilizando-se as propriedades da distribuição normal, o número de alelos favoráveis esperado em uma dada linhagem (l_i) será: l_i = μ +z σ , uma vez que, em uma distribuição normal padronizada, Z=(l_i - μ)/ σ . Dessa forma, l_i =n/2+z \sqrt{n} /4, sendo z a variável referente à distribuição normal padronizada.

A partir dessa expressão, Fouilloux & Bannerot (1988) fizeram a predição do número de alelos favoráveis (r_1 e r_2) que a melhor linhagem (L_1) resultante do primeiro ciclo seletivo irá conter, considerando diferentes números de locos segregando e diferentes números de famílias sendo avaliadas, pela expressão: $l_i=n/2+z$ l_Q $\sqrt{n/4}$, em que l_Q é referente à distribuição de máximo e corresponde ao desvio esperado do melhor indivíduo em relação à média de uma amostra de tamanho q com distribuição normal. Substituindo zL_Q pela intensidade de seleção padronizada (i), a melhor linhagem em uma população de 50 famílias irá ocorrer com a freqüência de 1/50, ou seja, 2%. O i, nesse caso, será de 2,431 desvios padrões acima da média. Com um caráter controlado por n=10 genes, tem-se $L_1=10/2+i_{2\%}(2,431)$ $\sqrt{10/4}=8,70$. Ou seja, após um ciclo seletivo, avaliando-se no final, 50 famílias, é esperado que a melhor linhagem acumule 8,7 alelos favoráveis.

Considerando, agora, que as duas melhores linhagens (L_1 e L_2), resultantes do primeiro ciclo seletivo, com r_1 e r_2 alelos favoráveis e n locos

segregando, sejam cruzadas para a condução do segundo ciclo seletivo, poderse-á ter três situações:

- 1) locos para os alelos favoráveis em homozigose, cuja frequência esperada será: $a=(r_1 \times r_2)/n$;
- 2) locos fixados com alelos desfavoráveis e não há possibilidade de se obter alelos favoráveis para esses locos no segundo ciclo de seleção. A frequência desses locos será: c=[(n-r₁)(n-r₂)]/n;
- 3) os locos em que as duas linhagens se complementam estão em heterozigose, cuja freqüência será: b=n-a-c, ou b=r₁+r₂-2r₁r₂/n.

Com base nesse conhecimento, Fouilloux & Bannerot (1988) estimam o número de alelos favoráveis nas duas linhagens (L₁ e L₂) e também após o segundo ciclo seletivo, considerando o mesmo número de famílias sendo avaliadas. Conclui que, quando, nos dois ciclos seletivos, forem avaliadas 100 famílias de cada vez, a melhor linhagem deverá conter 32,6 alelos favoráveis, considerando 40 locos segregando. Para se ter essa mesma linhagem com um ciclo seletivo, seria necessário avaliar 18.800 famílias. Como é fácil visualizar, dois ciclos seletivos são muito mais eficientes que um ciclo para acumular alelos favoráveis.

Conforme já mencionado, a condução de um programa de seleção recorrente envolve basicamente três etapas: a formação da população base, a avaliação e a seleção das famílias e o intercruzamento das melhores. Em todas essas fases, têm-se inúmeras alternativas, cuja decisão é dependente de uma série de fatores.

Na formação da população base, deve-se procurar utilizar genitores que tenham o melhor desempenho possível para o caráter sob seleção. A decisão sobre o número de genitores também é importante. Se for um número muito grande, a probabilidade de encontrar todos os genitores com boa expressão para o caráter é muito pequena. Se o número for muito pequeno, a chance de associar

a maioria dos alelos favoráveis, para o caráter em questão, é também pequena. De acordo com Ramalho et al. (2001), de 10 a 20 genitores é um número satisfatório.

Escolhidos os genitores, a próxima etapa é definir como eles serão cruzados, tendo-se também várias opções. Uma delas é a realização de cruzamentos múltiplos. Teoricamente, os cruzamentos múltiplos fornecem a oportunidade para combinar alelos favoráveis que se encontram presentes em vários genitores. Uma restrição é que quanto maior o número de genitores envolvidos para formar a população, maior o número de ciclos de cruzamentos necessários e maior deve ser o tamanho da população F1, para se manterem os alelos favoráveis de todos os genitores. Ramalho et al. (1993) simulam uma situação envolvendo oito genitores e um gene favorável com distribuição independente para cada um dos genitores. As estimativas do número de sementes híbridas necessárias em cada ciclo para se obter, pelo menos, uma planta com todos os alelos favoráveis, serão 4, 32 e 256, para primeiro, segundo e terceiro ciclos de cruzamentos, respectivamente. Considerando uma probabilidade de 95% de que esta planta ocorra no último ciclo, o número de híbridos necessários seria de 765. Nesse caso, a dificuldade para a obtenção de tal quantidade de sementes híbridas é apontada como principal limitação desse método.

Outra opção é a combinação dos pais no esquema cônico, conforme proposto por Bearzoti, citado por Ramalho (1997). Supondo, por exemplo, 20 pais (1, 2, 3 ... 20), eles são cruzados para a obtenção do ciclo 0, em um esquema de dialelo circulante em que um pai será cruzado com dois outros. Desse modo, são geradas 20 populações híbridas.

Obtida a população base, a próxima etapa é a seleção, que pode ser fenotípica – massal – ou utilizando algum tipo de família. A primeira opção é aconselhável quando o caráter apresenta alta herdabilidade e pode ser

selecionado visualmente com eficiência (Ramalho et al., 2001). Para os caracteres com menor herdabilidade, a seleção deve ser efetuada a partir da avaliação de famílias, em experimentos com repetição. Pode-se utilizar, à semelhança das plantas alógamas, famílias de meios-irmãos, irmãos germanos ou endógamas (S_1 , S_2 , etc.). Na maioria dos casos, as famílias endógamas são as preferidas, sendo avaliadas, principalmente, as famílias $S_{0:1}$ e $S_{0:2}$ (Ramalho et al., 2001).

Escolhidas as melhores famílias (ou indivíduos), essas deverão ser intercruzadas, visando obter a população do ciclo seguinte. Esse intercruzamento pode ser feito artificialmente ou em espécies nas quais é possível, utilizando a macho-esterilidade. Uma boa opção é a utilização do esquema cônico mencionado anteriormente. Nesse caso, a recombinação é efetuada utilizando-se novamente um dialelo circulante, em que cada família selecionada é cruzada com outras duas, com o cuidado de não envolver famílias oriundas dos mesmos genitores da etapa anterior (Ramalho, 1997).

Esse procedimento de recombinação tem algumas vantagens: i) a recombinação é dirigida reduzindo a probabilidade de perda de alelos dos pais originais. Bearzotti, citado por Ramalho (1997), simulou o efeito de 36 ciclos seletivos, utilizando esse procedimento para um caráter com herdabilidade de 10%. Observou que, mesmo após 36 ciclos seletivos, ainda havia resposta positiva à seleção, isto é, a fixação de alelos até esse ciclo seletivo não havia ocorrido; ii) menor número de cruzamentos em relação ao dialelo completo ou até mesmo parcial; iii) facilidade de identificação dos cruzamentos, pois, em cada caso, o mesmo genitor é cruzado com apenas dois outros.

A seleção recorrente tem sido empregada com sucesso em vários programas de melhoramento de plantas autógamas. É evidente que, de acordo com as características de cada cultura, ocorrem variações na metodologia de condução do programa, principalmente no que se refere ao número de genitores

empregados, a forma de realizar as recombinações e no método de avaliação das populações geradas. Mas, a principal diferença entre os vários procedimentos está na unidade seletiva, ou seja, no tipo de progênies utilizadas.

2.3 Estimativa de parâmetros genéticos e fenotípicos na cultura do feijoeiro

As estimativas de parâmetros genéticos e fenotípicos auxiliam os melhoristas na tomada de decisões a respeito do método de melhoramento a ser empregado e de como melhorar sua eficiência. Essas estimativas podem ser obtidas utilizando componentes de médias e ou variâncias. O emprego de variâncias é o preferido porque os efeitos dos alelos não se anulam, além de permitir obter estimativas da herdabilidade e do ganho esperado com a seleção. A herdabilidade corresponde à proporção da variância genética em relação à variância fenotípica total (Ramalho et al., 1993) e pode ser no sentido amplo quando, no numerador da expressão, tem-se a variância genética total, isto é, a aditiva e a não aditiva, ou, no sentido restrito, se for utilizada apenas a variância aditiva.

Na obtenção das estimativas de parâmetros genéticos são utilizados diferentes procedimentos, tais como o emprego de linhas puras (Pereira Filho et al., 1987; Ramalho et al., 1979; Ramalho et al., 1982; Santos et al., 2002) ou famílias de populações segregantes da hibridação de dois ou mais genitores (Abreu, 1989; Aguiar et al., 2000; Carneiro, 2002; Collicchio, 1995; Cunha, 2005; Faleiro et al., 2002; Mendonça, 2001; Takeda, 1990; Teixeira, 2004). Vale ressaltar que, quando se avaliam linhas puras, toda a variância genética entre as famílias é do tipo aditiva e, nesse caso, a herdabilidade estimada é equivalente àquela no sentido restrito (Ramalho et al., 1993).

Estimativas de parâmetros genéticos e fenotípicos de caracteres de importância agronômica no feijoeiro têm sido obtidas frequentemente nos programas de melhoramento dessa cultura (Melo, 2000; Mendonça, 2001; Pereira, 2003; Teixeira, 2004; Couto, 2005). Entre esses, a produtividade de grãos tem recebido maior atenção, obtendo-se, frequentemente, estimativas de variância genética e fenotípica, coeficiente de variação e herdabilidade para esse caráter, conforme apresentado por Teixeira (2004). Todavia, outros caracteres também têm sido considerados, como arquitetura da planta, qualidade de grãos e reação a patógenos (Couto, 2005; Cunha, 2005; Pereira, 2003; Teixeira, 2004).

Na avaliação da reação à mancha angular, normalmente têm sido utilizadas escalas descritivas de notas, que podem variar de 1 a 5 ou de 1 a 9 (Couto, 2005; Pereira, 2003; Teixeira, 2004) e que indicam a severidade da doença. Nos dois casos, a nota 1 representa plantas sem sintomas da doença e a nota maior da escala, plantas totalmente infectadas pelo patógeno. A possibilidade de que dados obtidos por meio de escala de notas sejam submetidos à análise de variância foi verificada por Marques Júnior et al. (1997), que demonstraram que as pressuposições da análise de variância são aceitas. Algumas estimativas de herdabilidade para a severidade de mancha angular são apresentadas na Tabela 3. Como se constata, há ampla variação nas estimativas. Esta variação é esperada em função das condições ambientais em que as estimativas foram obtidas, da variabilidade presente nos materiais utilizados e também do método utilizado para a obtenção da estimativa.

TABELA 3. Estimativas de herdabilidade (h_a²) no sentido amplo para o caráter severidade de mancha angular na cultura do feijoeiro, avaliadas em diferentes tipos de famílias.

Tipos de famílias	h _a ² (%)	Fonte
Linhagens recombinantes	44,4 a 58,9	Melo (2000)
Linhagens originadas de famílias F ₅ RC ₁ e F ₃ RC ₂	41,29 a 76,5	Pereira (2003)
Famílias F _{2:4} e F _{2:6}	50,9 a 79,5	Teixeira (2004)
Linhagens originadas de famílias F _{1:4} RC ₂ e F _{4:7} RC ₂	19,15 a 79,22	Couto (2005)

Um complicador na estimativa de parâmetros genéticos e fenotípicos e que interfere sobremaneira na magnitude das estimativas é a interação genótipos x ambientes. A manifestação fenotípica em um determinado ambiente é o resultado da ação do genótipo sob influência do meio ambiente. Quando se consideram vários ambientes, detecta-se, além dos efeitos genéticos e de ambientes, um efeito adicional, proporcionado pela interação entre os genótipos e os ambientes. Essa interação ocorre porque o desempenho dos genótipos não é consistente nos vários ambientes, o que se deve ao comportamento diferenciado dos genótipos em resposta às variações ambientais. Quando ocorre resposta diferencial dos genótipos com a variação dos ambientes, mas, a classificação não é alterada, a interação é denominada de simples e não acarreta maiores problemas para a seleção. Por outro lado, quando ocorre alteração na ordem de classificação dos genótipos, a interação é denominada complexa (Cruz & Regazzi, 1997). A interação complexa diminui a eficiência dos programas de melhoramento porque a seleção, normalmente, é realizada na média dos vários ambientes, o que não garante a seleção das melhores progênies para cada ambiente.

Efeito marcante da interação, principalmente para produtividade de grãos, tem sido observado em vários estudos realizados no feijoeiro em que se avaliaram progênies em diferentes gerações e ou locais (Carneiro et al., 2002; Pirola et al., 2002; Santos et al., 2001). No caso de reação a patógenos, Melo (2000) também verificou grande efeito da interação genótipos x ambientes ao avaliar a severidade de mancha angular e oídio em famílias de feijoeiro, indicando a necessidade de avaliação dos genótipos em vários ambientes, pois, as famílias apresentaram comportamento específico nos diferentes locais. O autor atribui essa interação principalmente às diferenças na quantidade e na qualidade dos isolados que atuaram em cada um dos locais, uma vez que as avaliações foram realizadas com incidência natural do patógeno em cada área. Esse é um sério problema no melhoramento do feijoeiro, pois, com raras exceções, as populações segregantes são avançadas ou submetidas à seleção em um único local. Assim, pode-se estar selecionando linhagens com adaptação a um ambiente específico, o que reduz a região de abrangência de recomendação da cultivar e a eficiência dos programas de melhoramento.

2.4 Estimativa do progresso genético em programas de seleção recorrente

Estimar o ganho com a seleção recorrente é importante para orientar os futuros ciclos seletivos. No caso das plantas alógamas, isso é facilmente realizado utilizando as populações em equilíbrio dos diferentes ciclos seletivos, que foram armazenadas em câmara com condições controladas. Nesse caso, a população permanece em equilíbrio após uma geração de intercruzamento. Em plantas autógamas, isso não é possível, pois, com a endogamia, a população não fica em equilíbrio. Por essa razão, outras alternativas têm sido empregadas. Uma delas compara as progênies de cada ciclo na mesma geração de endogamia.

Singh et al. (1999) utilizaram famílias S₂ para as comparações. Após três ciclos seletivos, estimaram ganho médio de 15% para produtividade de grãos.

Uma outra metodologia utiliza, nas avaliações das progênies, uma ou mais testemunhas comuns. Desse modo, o desempenho dessas testemunhas é o indicador da variação ambiental e o das progênies, da variação ambiental e genética se estiver ocorrendo alteração nas propriedades genéticas da população com a seleção (Corte et al., 2002).

Uma terceira opção seria avançar as progênies sob seleção com endogamia até a obtenção de linhagens. Assim, a cada ciclo seletivo seriam obtidas algumas linhagens. Essas ficariam armazenadas em câmara fria. Após alguns ciclos, as linhagens desse diferentes ciclos seriam comparadas em experimentos com repetição. Esse procedimento foi utilizado por Ramalho et al. (2005b) para estimar o ganho genético em quatro ciclos de seleção recorrente no melhoramento do feijoeiro para os caracteres produtividade e tipo de grãos. As cinco melhores linhagens S_{0:3} de cada ciclo foram avaliadas em duas safras. O ganho médio anual em quatro ciclos de seleção foi de 10% para o tipo de grãos e de 5,7% para produtividade.

Na Tabela 4 é apresentado um resumo do resultado de vários programas de melhoramento de plantas autógamas em que tem sido empregada a seleção recorrente, onde se verifica que, na maioria dos casos, tem sido obtido sucesso.

23

TABELA 4. Resultados de programas de seleção recorrente em plantas autógamas.

Cultura	Característica selecionada	Número genitores	Nº de ciclos de seleção	Progresso genético por ciclo	Fonte
Trigo	Proteína	18	2	2,5%	McNeal et al. (1978)
Trigo	Peso de grãos	10	4	7,0%	Busch & Kofoid (1982)
Trigo	Produtividade de grãos	19	2	30 kg/ha	Olmedo et al. (1995)
Trigo	Peso de grãos	10	8	4,5%	Wiersma et al.(2001)
Soja	Produtividade de grãos	10	3	134 kg/ha	Kenworthy & Brim, 1979
Soja	Produtividade de grãos	40	3	120 kg/ha	Sumarno & Fehr (1982)
Soja	Produtividade de grãos	5	3	5,4 g/planta	Werner & Wilcox (1990)
Soja	Proteína	3	4	0,8%	Xu & Wilcox (1992)
Soja	Maturidade	3	4	2,7 dias	Xu & Wilcox (1992)
Soja	Tolerância à deficiência de ferro	20	3	4,5%	Prohaska & Fehr (1981)
Aveia	Produtividade de grãos	12	3	4,0%	Payne et al. (1986)
Aveia	Proteína	14	3	7 a 9 kg/ha	McFerson & Frey (1991)
Feijão	Produtividade de grãos	18	3	30%	Beaver & Kelly (1994)
Feijão	Produtividade de grãos	23	1	7,9 a 13,2%	Singh et al. (1999)
Feijão	Produtividade de grãos	23	2	3 a 4%	Singh et al. (1999)
Feijão	Produtividade de grãos	6	2	55%	Ranalli (1996)
Feijão	Produtividade de grãos	6	3	25%	Ranalli (1996)
Feijão	Fixação de N		3	13%	Barron et al. (1999)
Feijão	Produtividade de grãos		3	11%	Barron et al. (1999)
Feijão	Resistência ao mofo branco		3	31 a 50%	Lyons et al. (1987)
Feijão	Patógenos do solo		6	9%	Garcia et al. (2003)

[&]quot;...Continua..."

"TABELA 4, Cont."

C14	Compotenties	Mr	N10 da aialaa	D.,	Earta
Cultura	Característica	Número	Nº de ciclos	Progresso	Fonte
	selecionada	genitores	de seleção	genético por ciclo	
Feijão	Proteína		2	21,9 a 24,6%	Sullivan & Bliss (1983)
	Arquitetura da planta e				
Feijão	tipo e produtividade de	10	2	3,1%	Cunha (2005)
	grãos				
Feijão	Produtividade de grãos	17	4	5,7%	Ramalho et al., 2003
Feijão	Tipo de grãos	17	4	5,7%	Ramalho et al., 2003

3 MATERIAL E MÉTODOS

3.1 Obtenção da população base (ciclo 0) e populações dos ciclos I a V do programa de seleção recorrente

Inicialmente, foi realizado um cruzamento dialélico parcial entre sete linhagens com grãos tipo carioca (Carioca MG, CI-140, CI-128, ANPAT 8.12, IAPAR 81, ESAL 693 e Pérola) e dez fontes de resistência a *P. griseola* (AN 512561, AND 277, Ouro Negro, Compuesto Negro Chimaltenango, CAL 143, MAR 2, MAR 1, G 5686, MA 4.137 e Jalo) de diversos tipos de grãos. Os cruzamentos foram realizados em casa de vegetação do Departamento de Biologia, da Universidade Federal de Lavras, na safra do inverno de 1998 (semeadura em julho). Cada parental foi representado por seis plantas cultivadas em dois vasos, obtendo-se 29 híbridos F₁. Esses híbridos foram semeados no campo, em novembro do mesmo ano para a obtençao das sementes F₂ (S₀) que constituiram a população base, ou população do ciclo 0 (C-0) do programa de seleção recorrente. Em 1999, na safra da "seca", que apresenta condições ambientais que favorecem a incidência e o desenvolvimento da mancha angular, essa população foi semeada no campo e, ao final do ciclo, foram selecionadas, fenotipicamente, as plantas mais resistentes de cada cruzamento.

Para a obtenção da população do ciclo I (C-I), foram intercruzadas em casa de vegetação as melhores plantas S_{0:1} do C-0, selecionadas fenotipicamente para resistência ao fungo e, entre essas, aquelas que apresentassem grãos tipo carioca o mais próximo possível ao padrão exigido pelo mercado, ou seja, grãos de fundo bege e rajas marrom-claras. Na recombinação, cada planta selecionada foi intercruzada com outras duas conforme esquema apresentado por Ramalho (1997). O mesmo procedimento foi adotado para a obtenção do ciclo II (C-II),

ciclo III (C-III), ciclo IV (C-IV) e ciclo V (C-V). Em cada ciclo de recombinação, os cruzamentos eram direcionados de maneira a não ocorrer coincidência de genitores em cada população. Em todos os ciclos, a geração S₀, na qual foi feita a seleção fenotípica das plantas mais resistentes para serem intercruzadas para a obtenção do ciclo seguinte, foi conduzida no campo, na safra da "seca", uma vez que, nessa safra é grande a incidência do patógeno, conforme já mencionado. O número de populações obtidas em cada ciclo, com o ano de avaliação, é apresentado na Tabela 5.

TABELA 5. Número de populações S₀ de cada ciclo de seleção recorrente com os respectivos anos e safras de avaliação.

Ciclo	Nº de populações	Safras
0	29	Seca 1999
I	18	Seca 2000
II	24	Seca 2001
III	17	Seca 2002
IV	18	Seca 2003
V	16	Seca 2004

3.2 Obtenção e avaliação das famílias dos ciclos I ao V do programa de seleção recorrente

Em cada ciclo de seleção recorrente, na geração S₀, além de selecionar as melhores plantas para a recombinação e a obtenção do ciclo seguinte, 20 a 30 plantas de cada população, selecionadas fenotipicamente para resistência a *P. griseola*, também eram avançadas das gerações S_{0:1} até a geração S_{0:4} em experimentos utilizando-se sempre, como testemunhas, as cultivares Carioca MG (suscetível ao patógeno) e Pérola (bom nível de resistência). As sementes de cada planta constituíam uma progênie.

Na geração S_{0:1}, devido à pequena disponibilidade de sementes, o experimento era conduzido apenas em Lavras. A partir da geração S_{0:2}, as avaliações eram realizadas em Lavras, na área experimental do Departamento de Biologia da Universidade Federal de Lavras (UFLA); em Lambari e Patos de Minas, em fazendas experimentais da Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG) e, em alguns casos, em Viçosa, no campo experimental da Universidade Federal de Viçosa (UFV) (Tabela 6).

Lavras situa-se na região sul do estado de Minas Gerais, a 918m de altitude, 21°14'S de latitude e 45°00'W de longitude; Lambari, também na região Sul, a 845 m de altitude, 21°31'S de latitude e 45°22'W de longitude; Patos de Minas, na região Alto Paranaíba, a 944m de altitude, 18°35'S de latitude e 46°31'W de longitude e Viçosa na Zona da Mata do estado, a 690 metros de altitude, 20°45'S de latitude e 42°51'W de longitude.

Os detalhes sobre o número de progênies avaliadas em cada geração e ciclo de seleção recorrente, o delineamento experimental, o tamanho das parcelas, os locais e as safras são apresentados na Tabela 6.

Nos experimentos conduzidos na safra da "seca", foi avaliada a severidade de mancha angular em todas as parcelas, por meio da escala de notas

de nove graus proposta pelo CIAT e adaptada por Nietschie (2000), sendo: 1 - plantas sem sintomas da doença; 2 - presença de até 3% de lesões; 3 - presença de até 5% de lesões não-esporuladas; 4 - presença de lesões esporuladas, que cobrem aproximadamente 10% da área foliar; 5 - presença de várias lesões esporuladas entre 2 a 3 mm, que cobrem aproximadamente 10% a 15% da área foliar; 6 - presença de numerosas lesões esporuladas maiores que 3 mm, que cobrem de 15% a 20% da área foliar; 7 - presença de numerosas lesões esporuladas maiores que 3 mm, que cobrem de 20% a 25% da área foliar; 8 - presença de numerosas lesões esporuladas maiores que 3 mm, que cobrem de 25% a 30% da área foliar, geralmente associadas a tecidos cloróticos, os quais podem coalescer e formar extensas áreas infectadas; 9 - sintomas severos da doença, resultando em queda prematura de folhas e morte. Foi utilizada a média das notas de dois a três avaliadores. Em todos os experimentos e safras também foi avaliada a produtividade de grãos.

TABELA 6. Número de progênies de cada ciclo e geração do programa de seleção recorrente, delineamento experimental, locais e safras de avaliação.

Ciclo	Gerações	Nº de progênies	Delineamento experimental	Tamanho de parcela	Locais ¹	Semeadura
I	$S_{0:1}$	223	Látice simples 15 x 15	1 linha de 2 metros	LV	Fevereiro 2001
I	$S_{0:2}$	79	Látice triplo 9 x 9	2 linhas de 2 metros	LB, LV e VS	Julho 2001
I	$S_{0:3}$	79	Látice triplo 9 x 9	2 linhas de 2 metros	LB, LV, E PM	Fevereiro 2002
I	$S_{0:4}$	23	Látice triplo 5 x 5	2 linhas de 2 metros	LV, PM e VS	Julho 2002
II	$S_{0:1}$	322	Látice simples 18 x 18	1 linhas de 2 metros	LV	Fevereiro 2002
II	$S_{0:2}$	98	Látice triplo 10 x 10	2 linhas de 2 metros	LV, PM e VS	Julho 2002
II	$S_{0:3}$	62	62 Látice triplo 2 linhas de 8 x 8 2 metros		LB, LV e PM	Fevereiro 2003
II	S _{0:4}	34	Látice triplo 6 x 6	2 linhas de 2 metros	LB e LV	Julho 2003
III	S _{0:1}	194	Látice simples 14 x 14	1 linhas de 2 metros	LV	Fevereiro 2003
III	$S_{0:2}$	98	Látice triplo 10 x 10	2 linhas de 2 metros	LB e LV	Julho 2003
III	S _{0:3}	62	Látice triplo 8 x 8	2 linhas de 2 metros	LB, LV e PM	Fevereiro 2004
III	S _{0:4}	34	Látice triplo 6 x 6	2 linhas de 2 metros	LB, LV e PM	Julho 2004
IV	S _{0:1}	287	Látice simples 17 x 17	1 linhas de 2 metros	LV	Fevereiro 2004
IV	S _{0:2}	142	Látice triplo 12 x 12	2 linhas de 2 metros	LB, LV e PM	Julho 2004
IV	S _{0:3}	62	Látice triplo 8 x8	2 linhas de 2 metros	LB, LV e PM	Fevereiro 2005
V	S _{0:1}	254	Látice simples 16 x 16	1 linhas de 2 metros	LV	Fevereiro 2005

TLV= Lavras; LB=Lambari; PM=Patos de Minas; VS=Viçosa

3.3 Manejo dos experimentos

Em todos os experimentos, na semeadura foi utilizada, como adubação, 400 kg/ha da fórmula 8-28-16 de N, P₂O₅ e K₂O. Aos 25 dias após a emergência das plantas, era feita a adubação em cobertura com 150 kg/ha de sulfato de amônio. A cultura foi submetida à irrigação por aspersão, quando necessário. O controle de plantas daninhas foi realizado por meio de herbicidas de pósemergência.

3.4 Análises genético-estatísticas

Os dados obtidos quanto à severidade de mancha angular (notas de 1 a 9) e produtividade de grãos (g/2m²) das progênies de cada geração e local foram submetidos à análise de variância (ANAVA), considerando-se todos os efeitos aleatórios, exceto a média.

O modelo estatístico utilizado foi o seguinte:

$$Y_{iqj} = \mu + t_i + r_j + b_{q(j)} + e_{ijq}$$

em que:

 Y_{iqj} : é a observação referente ao tratamento i no bloco q dentro da repetição j; μ : é o efeito fixo da média geral do ensaio;

 t i: é o efeito aleatório do tratamento i, sendo i = 1, 2, ..., n, sendo n o número de tratamentos avaliados em cada geração (Tabela 6);

 r_j : é o efeito aleatório da repetição j, sendo j = 1,2 na avaliação da geração $S_{0:1}$ e j = 1, 2, 3 nas demais gerações;

 $b_{q(j)}$: é o efeito aleatório do bloco q, na repetição j;

 $e_{i\,q\,j}$: erro experimental associado à observação Y_{iqj} , assumindo que os erros são independentes e normalmente distribuídos, com média zero e variância σ_e^2 .

As análises de variância individuais foram realizadas utilizando-se o programa MSTAT-C (1991). O esquema da análise de variância com as respectivas esperanças dos quadrados médios são apresentados na Tabela 7.

TABELA 7. Esquema da análise de variância utilizada nos experimentos de avaliação das gerações $S_{0:1}$, $S_{0:2}$, $S_{0:3}$ e $S_{0:4}$ para os caracteres severidade de mancha angular (notas de 1 a 9) e produtividade de grãos (g/2m²), com as respectivas esperanças dos quadrados médios – E(QM).

FV	QM	E(QM)
Tratamentos (Trat.)		
Progênie (Prog.)	$Q_{ m l}$	$\sigma_e^2 + r \sigma_G^2$
Testemunhas (Test.)		
Prog. vs. Test.		
Erro	Q_2	σ_e^2

 $[\]sigma_e^2$: variância do erro; σ_G^2 : variância genética entre progênies e r: número de repetições.

A partir das esperanças dos quadrados médios apresentados na Tabela 7, foram estimadas a variância genética (σ_G^2), a variância fenotípica ($\hat{\sigma}_F^2$) e a herdabilidade no sentido amplo (h^2), obtidas na avaliação da geração $S_{0:1}$ de cada ciclo de seleção recorrente, pelos seguintes estimadores:

$$\sigma^2_G = (Q_1 - Q_2)/r$$

em que:

 Q_1 : quadrado médio de progênies

 Q_2 : quadrado médio do erro

$$\hat{\sigma}_F^2 = Q_1/r$$

$$h^2 = \frac{Q_1 - Q_2}{Q_1} \times 100$$

em que:

 Q_1 : quadrado médio das progênies;

 Q_2 : quadrado médio do erro.

Para determinar os intervalos de confiança para as estimativas da herdabilidade, foram obtidos os limites inferiores (LI) e superiores (LS) das estimativas de h², de acordo com as expressões apresentadas por Knapp et al. (1985):

$$LI = 1 - [(Q_1/Q_2)F_{(1-\alpha/2)}]^{-1}$$

$$LS = 1 - [(Q_1 / Q_2) F_{(\alpha/2)}]^{-1}$$

em que:

F: valor tabelado da distribuição F de Snedecor a partir dos graus de liberdade de tratamentos (gl₁) e resíduo (gl₂) e do nível de significância (α = 0,05);

 Q_1 : quadrado médio de tratamentos;

 Q_2 : quadrado médio do resíduo.

A partir da geração $S_{0:2}$, quando os experimentos foram conduzidos em mais de um local, utilizando-se as médias ajustadas dos tratamentos procedeu-se a análise conjunta dos locais para cada geração para a produtividade de grãos e para nota de severidade da doença. O modelo adotado, considerando todos os efeitos aleatórios, exceto a média, foi o seguinte:

$$Y_{iql} = m + t_i + b_{q(l)} + a_l + (ta)_{il} + e_{iql}$$

em que:

 Y_{iql} : valor observado na parcela que recebeu o tratamento i, no bloco q, dentro do local l;

m: média geral do experimento;

 t_i : efeito do tratamento i, sendo i = 1, 2, 3, ..., n, sendo n o número de tratamentos avaliados em cada geração (Tabela 6);

 $b_{q(l)}$: efeito do bloco q dentro do local l, sendo q = 1, 2 e 3;

 a_l : efeito do local l, sendo l = 1, 2 e 3;

 $(ta)_{il}$: efeito da interação entre o tratamento i e o local l;

 e_{iql} : erro efetivo médio associado à observação Y_{iql} .

As análises de variância conjuntas foram realizadas utilizando-se o programa MSTAT-C (1991). As esperanças dos quadrados médios, E(QM), das análises de variância conjuntas, encontram-se na Tabela 8.

TABELA 8. Esquema da análise de variância conjunta dos locais em uma mesma geração, com as respectivas esperanças dos quadrados médios

FV	QM	E(QM) ¹
Locais (Loc.)		
Tratamentos (Trat.)		
Progênies (Prog.)	Q_3	$\sigma_e^2 + r \; \hat{\sigma}_{GxL}^2 + r l \; \hat{\sigma}_G^2$
Testemunhas (Test.)		
Prog. vs Test.		
Locais x Tratamentos		
Loc. x Prog.	Q_4	$\sigma_e^2 + r \ \hat{\sigma}_{GxL}^2$
Loc. x Test.		
Loc. x Prog. vs Test.		
Erro efetivo médio	Q_5	σ_e^2

¹ Foram colocadas as E(QM) apenas para as fontes de variação em que foram estimados os componentes de variância.

A partir das esperanças dos quadrados médios apresentados na Tabela 8, foram estimadas, em cada geração ($S_{0:2}$, $S_{0:3}$ e $S_{0:4}$) de cada ciclo de seleção recorrente, a variância genética entre as médias das progênies ($\hat{\sigma}_{G}^{2}$), variância fenotípica ($\hat{\sigma}_{F}^{2}$), variância da interação entre as médias das progênies x locais ($\hat{\sigma}_{GxL}^{2}$) e a herdabilidade no sentido amplo (h_{a}^{2} %), com seus limites inferiores (LI) e superiores (LS) pelos seguintes estimadores:

$$\hat{\sigma}_G^2 = (Q_3 - Q_4)/rl$$

$$\hat{\sigma}_F^2 = Q_3/rl$$

$$\hat{\sigma}_{GxL}^2 = (Q_4 - Q_5)/r$$

$$h_a^2 = [(Q_3 - Q_4)/Q_3] \times 100$$

$$LI = 1 - [(Q_3 / Q_4) F_{(1-\alpha/2)}]^{-1}$$

$$LS = 1 - [(Q_3 / Q_4) F_{(\alpha/2)}]^{-1}$$

Foram também estimadas as correlações (r_G) para produtividade de grãos e nota de severidade de mancha angular em cada geração entre os locais dois a dois, pela seguinte expressão:

$$r_G = COV_{qq} / \sigma_q \sigma_{q'}$$

em que:

 COV_{qq} : covariância genética entre médias das progênies nos locais q e q ', em cada geração;

 σ_{qq} : desvio genético entre as progênies, nos locais q e q ', em cada geração.

3.5 Progresso genético

Foi estimado o progresso genético obtido com os ciclos de seleção recorrente para os caracteres reação à mancha angular e produtividade de grãos utilizando duas metodologias, descritas a seguir.

3.5.1 Por meio das médias das progênies da geração $S_{0:1}$ do ciclos I ao ciclo V

Por essa metodologia, semelhante à empregada por Ramalho et al. (2005b), inicialmente foi obtido o desvio genético entre a nota média de severidade de mancha angular das progênies $S_{0:1}$ de cada ciclo de seleção recorrente e a média da testemunha suscetível, cultivar Carioca MG, visando atenuar o efeito ambiental, uma vez que as progênies $S_{0:1}$ de cada ciclo foram avaliadas em anos diferentes. Posteriormente, foi obtida a equação de regressão linear entre o número de ciclos, variável independente (x), e o desvio genético, variável dependente (y). O progresso genético porcentual foi obtido pelo seguinte estimador:

$$PG(\%) = \left(\frac{b}{\overline{X}_{CI}}\right) * 100$$

em que:

PG(%): progresso genético porcentual por ciclo de seleção recorrente em relação às progênies $S_{0:1}$ do C-I;

b : coeficiente de regressão linear;

 \overline{X}_{CI} : média das progênies $S_{0:1}$ do C-I.

Para a estimativa do progresso genético para a produtividade de grãos, foi utilizado o mesmo procedimento, só que o desvio genético das progênies $S_{0:1}$ foi estimado em relação à média das duas testemunhas.

3.5.2 Utilizando as melhores linhagens identificadas nos ciclos I, II e III

Para emprego dessa metodologia, foram selecionadas sete linhagens (progênies $S_{0:5}$) com menor nota média de severidade de mancha angular dos três primeiros ciclos de seleção recorrente (C-I, C-II e CIII). Essas linhagens, juntamente com as testemunhas, Carioca-MG e Pérola, mais a cultivar Carioca e a linhagem OPNS-331, foram avaliadas na safra da "seca" de 2005, em Lavras, Lambari e Patos de Minas. O delineamento experimental foi o de látice triplo 5 x 5 e as parcela de duas linhas de 2m. Foi avaliada a severidade de mancha angular utilizando-se a escala de notas descrita anteriormente e a produtividade de grãos em $g/2m^2$.

Os dados obtidos foram submetidos à análise de variancia individual e conjunta, utilizando os mesmos modelos descritos anteriormente, só que, nesse caso, os tratamentos foram considerados como de efeito fixo.

Utilizando a nota média de severidade de mancha angular das linhagens de cada ciclo de seleção recorrente (C-I, C-II e C-III) em cada local e na média dos locais, foram estimadas as equações de regressão entre os ciclos (variável independente x) e as notas (variável dependente y). O b_1 da regressão forneceu o ganho por ciclo de seleção recorrente. O progresso genético porcentual foi obtido pela expressão:

$$PG$$
 (%) = $(b_1/b_0) * 100$

O mesmo prodedimento foi utilizado para estimar o progresso genético para a produtividade de grãos.

4 RESULTADOS E DISCUSSÃO

4.1 Avaliação da severidade de mancha angular

Constatou-se, em todas as análises de variância por geração, nos diferentes ciclos, que ocorreu diferença significativa ($P \le 0.05$) entre as progênies para as notas de severidade de mancha angular, exceto na geração $S_{0:3}$ do ciclo I em Lambari (Tabelas 1A a 5A). Isso evidencia a existência de variabilidade genética entre as progênies, condição essa favorável para o sucesso com a seleção recorrente.

No método de seleção recorrente adotado, a seleção fenotípica foi sempre efetuada nas plantas da geração S₀. Na região, as condições favoráveis para o desenvolvimento do patógeno ocorrem na denominada safra da "seca", semeadura em fevereiro-março. Assim, a geração S₀ sempre foi conduzida nessa safra. Nessa geração foram identificadas as plantas com menor incidência do patógeno para a recombinação e, ao mesmo tempo, para o avanço das gerações com endogamia. Na safra "de inverno", foi efetuada a recombinação das plantas selecionadas, sendo obtida a geração F₁, cujas sementes foram semeadas na safra "das águas", para a obtenção das sementes S₀ do ciclo seguinte. Desse modo, foi possível conduzir um ciclo seletivo por ano.

A cada ciclo seletivo, as plantas S_0 selecionadas para o avanço das gerações, como já comentado, eram colhidas individualmente, obtendo-se as progênies $S_{0:1}$. Essas eram armazenadas para posterior avaliação na safra da "seca" do ano seguinte. Nessa geração, as avaliações foram realizadas apenas em Lavras, devido à pequena disponibilidade de sementes. A partir da geração $S_{0:2}$, os experimentos eram conduzidos em vários locais, porém, apenas na geração $S_{0:3}$, que coincidia com a safra da "seca", era avaliada a severidade de

ocorrência do patógeno. O resumo das análises de variância conjunta dos locais, na geração S_{0:3}, nos diferentes ciclos são apresentados na Tabela 9. Novamente, foi detectada diferença significativa (P≤0,01) entre as progênies em todos os ciclos, evidenciando, em princípio, que, mesmo com a seleção, a variabilidade genética detectada entre as progênies não foi exaurida, condição essa primordial em um programa de seleção recorrente (Hallauer, 1986). Chama a atenção, nas análises de notas de severidade de mancha angular na geração S_{0:3} (Tabela 9), que a fonte de variação progênies x locais foi significativa (P≤0,01) em todos os ciclos, exceto no ciclo IV. Em princípio, esse resultado é uma indicação da existência de diferença de raças do patógeno entre os locais. A existência de diferença entre raças de P. griseola no estado de Minas e em outras regiões do Brasil é frequentemente relatada na literatura (Nietsche et al., 2001; Sartorato & Alzate-Marín, 2004). A ocorrência de interação progênies x locais também é indicativo de que a seleção recorrente está proporcionando a seleção de progênies com resistência vertical (Parlevliet & Zadoks, 1977; Vanderplank, 1968).

As estimativas dos parâmetros genéticos e fenotípicos obtidos com a geração $S_{0:1}$ e $S_{0:3}$ evidenciam também que as progênies diferiam com relação à severidade de ocorrência do patógeno (Tabelas 10 e 11). Veja, por exemplo, que as estimativas de h^2 foram, na maioria das situações, elevadas e superiores a 60%. As estimativas do limite inferior da h^2 positivas indicam que as estimativas obtidas, com 95% de probabilidade, devem ser diferentes de zero, com exceção da geração $S_{0:1}$ do ciclo V. Esses valores estão coerentes com os obtidos por vários autores, que avaliaram a severidade de ocorrência do patógeno utilizando diferentes tipos de progênies (Couto, 2005; Melo, 2000; Pereira, 2003; Teixeira, 2004).

TABELA 9. Resumo das análises de variância conjunta dos três locais: Lavras, Lambari e Patos de Minas, para o caráter reação à mancha angular, avaliado por meio de nota de severidade da doença (1-9), para as progênies da geração S_{0:3} dos quatro ciclos de seleção recorrente.

FV		C-I			C-II			C-III			C-IV		
ΓV	GL	QM	Prob	GL	QM	Prob	GL	QM	Prob	GL	QM	Prob	
Locais (Loc.)	2	300,882	0,000	2	11,353	0,000	2	35,508	0,000	2	25,659	0,000	
Tratamentos (Trat.)	80	5,055	0,000	63	4,127	0,000	63	3,868	0,000	63	2,752	0,000	
Progênies (Prog.)	78	4,789	0,000	61	2,933	0,000	61	2,629	0,000	61	1,389	0,000	
Testemunhas (Tes.)	1	19,078	0,000	1	17,556	0,000	1	8,795	0,000	1	10,881	0,000	
Prog. vs Tes.	1	12,610	0,000	1	63,516	0,000	1	74,505	0,000	1	77,762	0,000	
Loc. x Trat.	160	1,632	0,000	126	1,029	0,000	126	0,585	0,002	126	0,501	0,026	
Loc. x Prog.	156	1,629	0,000	122	0,905	0,002	122	0,549	0,007	122	0,444	0,168	
Loc. x Tes.	2	0,726	0,481	2	0,072	0,873	2	1,248	0,040	2	1,062	0,065	
Loc.x Prog. vs Tes.	2	2,772	0,062	2	7,751	0,000	2	2,118	0,004	2	3,417	0,000	
Erro Médio	408	0,991	-	280	0,529	-	315	0,382	-	336	0,386	-	
Média das progênies		3,715			2,661			3,557			2,778		
Média Carioca MG		5,592			5,733			6,323			5,667		
Média Pérola 3,533			3,638			4,925			4,112				
<i>CV</i> (%)		19,740			21,380	1		12,200			14,360		

TABELA 10. Estimativas da variância genética ($\hat{\sigma}_G^2$), variância fenotípica ($\hat{\sigma}_F^2$) entre médias das progênies e herdabilidade no sentido amplo (h_a^2), com seu respectivo limite inferior (LI) e limite superior (LS) da geração S_{0:1} do primeiro ao quinto ciclo de seleção recorrente para nota de severidade da doença mancha angular (1-9).

Ciclo	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$\hat{\sigma}_{\scriptscriptstyle F}^{\scriptscriptstyle 2}$	h_a^2 (%)	LI	LS
Ι	0,904	1,644	55,005	40,97	65,78
II	1,048	1,619	64,738	55,87	71,87
III	0,354	0,558	63,524	48,81	72,83
IV	0,469	0,665	70,582	62,66	76,85
V	0,038	0,173	21,814	-0,64	39,52

TABELA 11. Estimativas da variância genética $(\hat{\sigma}_G^2)$, variância fenotípica $(\hat{\sigma}_F^2)$ entre médias das progênies e herdabilidade no sentido amplo (h_a^2) , com seu respectivo limite inferior (LI) e limite superior (LS) da geração $S_{0:3}$ do primeiro ao quarto ciclo de seleção recorrente para nota de severidade da doença mancha angular (1-9) das análises de variâncias conjuntas dos locais.

Ciclo	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$\hat{\sigma}_{\scriptscriptstyle F}^{\scriptscriptstyle 2}$	h_a^2 (%)	LI	LS
I	0,351	0,532	65,98	49,29	76,60
II	0,225	0,326	69,12	51,41	79,76
III	0,231	0,292	79,12	67,11	86,30
IV	0,105	0,154	68,03	49,66	79,03

Embora haja controvérsias com relação ao controle genético da resistência a P. griseola, em principio, há indícios de que ocorra dominância no seu controle (Caixeta et al., 2002). Desse modo, a h^2 obtida é no sentido amplo, já que, entre progênies $S_{0:1}$, ocorre $\sigma^2_A + \frac{1}{4} \sigma^2_D$. Veja, contudo, que a variância genética entre progênies $S_{0:3}$ contém $\sigma^2_A + \frac{1}{64} \sigma^2_D$. Se a contribuição da variância de dominância fosse expressiva, a h^2 deveria ser menor na geração $S_{0:3}$,

o que não ocorreu. Parte dessa diferença deve ser atribuída ao efeito ambiental. As progênies $S_{0:3}$ foram avaliadas com melhor precisão, uma vez que as parcelas eram maiores e a média era de nove repetições, isto é, três por local. Mesmo assim, pode-se inferir que a contribuição da variância de dominância não é expressiva.

A participação da variância da interação progênies x locais em relação à variância genética variou entre os ciclos (Tabela 12). Ela foi mais expressiva nos ciclos I e II. Observe, contudo, que as estimativas das correlações das notas médias de severidade de mancha angular nas progênies entre os locais dois a dois, foram de pequena magnitude e não diferiram acentuadamente entre os ciclos (Tabela 12). Como já mencionado, pode-se deduzir que o comportamento das progênies não foi coincidente nos diferentes locais, com relação à reação a mancha angular.

A existência de variabilidade entre as progênies, tanto na geração $S_{0:1}$ como na $S_{0:3}$, pode ser observada também nas Tabelas 13 e 14. Veja que, em todos os ciclos, a amplitude das notas de severidade de mancha angular foi expressiva.

TABELA 12. Estimativas da variância da interação genótipos por locais ($\hat{\sigma}_{GxL}^2$), variância genotípica ($\hat{\sigma}_{G}^2$), relação entre a variância da interação genótipos por locais e variância genotípica ($\hat{\sigma}_{GxL}^2/\hat{\sigma}_{G}^2$)x100, correlações entre locais (r_{Gij}) das médias das progênies da geração S_{0:3}, do primeiro ao quarto ciclo de seleção recorrente para o caráter nota de severidade de mancha angular (1-9) em três locais Lambari (1), Lavras (2) e Patos de Minas (3), MG.

Ciclos	$\hat{\sigma}_{\it GxL}^{\it 2}$	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$(\hat{\sigma}_{GxL}^2/\hat{\sigma}_G^2)x100$	r_{G12}	r_{G13}	r_{G23}
I	0,213	0,351	60,59	0,391**	0,339**	0,519**
II	0,125	0,225	55,70	0,551**	0,376**	0,505**
III	0,056	0,231	24,10	0,542**	0,635**	0,640**
IV	0,019	0,105	18,41	0,257*	0,444**	0,644**

^{*} e **: significativo, a 1 % e 5 % de probabilidade, pelo teste t, respectivamente; ns: não significativo pelo teste t.

O grande problema na avaliação comparativa da severidade de ocorrência de patógenos entre anos diferentes e ou locais, é o efeito ambiental. Para atenuar esse problema, a principal alternativa é o emprego de uma testemunha suscetível, como, no caso, a cultivar Carioca MG. Veja que, nas avaliações da geração S_{0:1} (Tabela 13), a nota média atribuída a essa cultivar sofreu uma pequena variação, porém, com altos valores, indicando, como já mencionado, que, na época da "seca", as condições para o desenvolvimento do patógeno foram favoráveis.

Tomando como referência a média geral de notas de severidade de mancha angular das progênies ao longo dos ciclos seletivos, verifica-se a tendência de redução, evidenciando que o nível de resistência foi crescente ao longo dos ciclos. Esse mesmo fato pode ser observado tomando como referência a cultivar Pérola, que possui bom nível de resistência a esse patógeno nos locais

sob avaliação, como já foi constatado em outras oportunidades (Carneiro et al., 1999; Ramalho et al., 1999). Veja que, com o decorrer dos ciclos seletivos, a nota média de severidade da doença das progênies tendeu a ser inferior ao da 'Pérola' (Tabela 13).

Resultados semelhantes ao da geração $S_{0:1}$ foram obtidos com as médias da geração $S_{0:3}$ (Tabela 14). Novamente chama a atenção o desempenho relativo da média das progênies em relação à 'Carioca MG'. Veja que a estimativa de d foi crescente com os ciclos seletivos. Esse fato evidencia que as notas de severidade da doença na média das progênies reduziram em relação à testemunha suscetível, mostrando a eficiência da seleção realizada. O mesmo fato foi constatado também em relação à 'Pérola'.

TABELA 13. Número de progênies S_{0:1} avaliadas do primeiro (C-I) ao quinto ciclo (C-V) de seleção recorrente, nota de severidade de mancha angular (notas de 1 a 9) das progênies e das testemunhas Carioca MG (CMG) e Pérola.

Ciclo	Número de	Nota de s	severidade da	doença
Cicio	progênies	Progênies	CMG	Pérola
I	223	$3,95(1,7-7,9)^1$	5,7	4,2
II	322	4,46 (2,1-7,8)	7,6	5,2
III	194	3,32 (1,8-5,9)	7,2	3,1
IV	287	3,80 (1,5-7,5)	6,5	4,9
V	254	2,83 (1,8-4,3)	6,0	3,6

Entre parênteses, a variação para nota de severidade de mancha angular e produtividade de grãos.

TABELA 14. Médias das notas de severidade de mancha angular (1-9) da avaliação conjunta dos locais para as progênies da geração $S_{0:3}$ com seus respectivos limites inferirores (LI) e limites superiores (LS), desvios percentuais das médias das progênies em relação às médias das testemunhas Carica MG (d_1) e Pérola (d_2) e médias das testemunhas.

Ciclo			Progênie	Testemunhas			
	Médias	LI	LS	$d_{1}(\%)^{1}$	$d_2(\%)^2$	Carioca MG	Pérola
I	3,715	2,169	5,430	33,566	-5,151	5,592	3,533
II	2,661	1,738	4,582	53,584	26,855	5,733	3,638
III	3,557	2,613	5,808	43,745	27,777	6,323	4,925
IV	2,778	1,995	4,220	64,796	32,442	5,667	4,112

^{1: [(}Média da cultivar Carioca MG – Média das progênies)/Média da cultivar Carioca MG] x 100.

4.2. Avaliação da produtividade de grãos

No caso desse caráter, as avaliações foram realizadas sempre na safra da "seca" e de inverno em todas as gerações. Os resumos das análises de variância por geração e por local são apresentados nas Tabelas 6A a 10A. Verifica-se que ocorreu diferença significativa entre as progênies ($P \le 0.03$) em todos os casos, exceto nos experimentos conduzidos em Lavras, quando foi avaliada a geração $S_{0:4}$ dos ciclos II e III e $S_{0:3}$ do ciclo IV em Lambari.

Nas análises conjuntas, foram detectadas diferenças significativas (P≤0,06) entre as progênies em todas as gerações e de todos os ciclos (Tabelas 15 a 18). Esses resultados mostram a existência de variabilidade genética entre as progênies e que, como ocorrera para a mancha angular, ela não foi exaurida com o decorrer dos ciclos.

²: [(Média da cultivar Pérola – Média das progênies)/Média da cultivar Pérola] x

As interações progênies x locais dentro de um mesmo ciclo seletivo foram, na maioria dos casos, também significativas, assim como ocorrera com a mancha angular. A ocorrência de interação com ambientes para a produtividade de grãos é freqüente nos trabalhos que são conduzidos com o feijoeiro no estado de Minas Gerais (Pirola et al., 2002; Ramalho et al., 1998; Silva et al., 2004). Como a interação progênies x locais também foi expressiva para a nota de severidade de mancha angular (Tabela 9), é possível inferir que, pelo menos em parte, a interação observada para a produtividade de grãos seja devido ao comportamento não coincidente das progênies em relação à reação a esse patógeno.

A contribuição da variância da interação progênies x locais em relação à variância genética variou entre os ciclos, porém, na maioria dos casos ela foi expressiva (Tabelas 19, 20 e 21). Verifica-se que as estimativas das correlações do desempenho médio das progênies nos locais, dois a dois, foram de pequena magnitude, comprovando que o desempenho das progênies não foi coincidente nos locais de avaliação nos diferentes ciclos.

A fonte de variação da análise de variância que avalia o contraste da média das progênies versus média das duas testemunhas, no decorrer dos ciclos seletivos, fornece informações importantes. Observe (Tabela 15) que, no ciclo I, a média das progênies foi igual à média das testemunhas. Esse resultado já indica que o potencial produtivo da população base utilizada na seleção recorrente era alto, sobretudo porque as testemunhas, especialmente a 'Pérola', está entre as cultivares mais utilizadas no estado e, normalmente, com grande produtividade (Carneiro et al., 1999; Ramalho et al., 1999). É mais expressivo o fato que, nos ciclos seletivos III e IV, o contraste progênies versus testemunhas passou a ser significativo (P≤0,01),. Observe que, nesses casos, a média das progênies quase sempre foi superior à das testemunhas, permitindo deduzir, a priori, que a seleção realizada visando a maior resistência a *P. griseola*

proporcionou também ganho na produtividade de grãos, principalmente na safra da "seca" quando ocorre maior incidência da doença mancha angular. Fica também evidenciado que esse patógeno afeta a produtividade de grãos, como já foi constatado em outras oportunidades (Correa-Victoria et al., 1994; Jesus Júnior et al., 2001)

TABELA 15. Resumo da análise de variância conjunta dos locais: Lavras, Lambari e Patos de Minas ou Viçosa, MG, para o caráter produtividade de grãos (g/2m²) das progênies nas gerações S_{0:2}, S_{0:3} e S_{0:4} do primeiro ciclo (C-I) de seleção recorrente.

FV		Geração S _{0:2}			Geração S _{0:3}			Geração S _{0:4}	
I' V	GL	QM	Prob	GL	QM	Prob	GL	QM	Prob
Locais (Loc.)	2	28210998,7	0,000	2	8906668,575	0,000	2	370897,416	0,000
Tratamentos (Trat.)	80	61765,911	0,000	80	38412,538	0,000	24	34940,322	0,000
Progênies (Prog.)	78	62458,050	0,000	78	39210,714	0,000	22	36163,152	0,000
Testemunhas (Test.)	1	39718,020	0,083	1	6485,352	0,358	1	41443,493	0,006
Prog. vs Test.	1	29825,217	0,133	1	8082,032	0,305	1	1534,371	0,588
Loc. x Trat.	160	22018,482	0,000	160	8694,723	0,164	48	20960,745	0,000
Loc. x Prog.	156	21798,171	0,000	156	8769,966	0,150	44	20338,110	0,000
Loc. x Test.	2	25112,448	0,150	2	5699,025	0,928	2	23972,487	0,012
Loc. x Prog. vs Test.	2	36108,774	0,099	2	5821,467	0,469	2	31646,973	0,003
Erro Médio	408	13184,140	-	408	7669,575	-	108	5188,006	-
Média das Progênies		806,852			415,290			463,632	
Média Carioca MG		718,660			455,728			406,023	
Média Pérola		812,608			417,765			501,990	
CV (%)		10,630			12,950			18,060	

TABELA 16. Resumo da análise de variância conjunta dos locais: Lavras, Lambari e Patos de Minas ou Viçosa, MG, para o caráter produtividade de grãos $(g/2m^2)$ das progênies nas gerações $S_{0:2}$, $S_{0:3}$ e $S_{0:4}$ do segundo ciclo (C-II) de seleção recorrente.

FV		Geração S _{0:2}			Geração S _{0:3}			Geração S _{0:4}	
I' V	GL	QM	Prob	GL	QM	Prob	GL	QM	Prob
Locais (Loc.)	2	3347718,057	0,000	2	4594171,902	0,000	1	1511020,11	0,000
Tratamentos (Trat.)	99	29574,723	0,000	63	12181,815	0,000	35	21425,736	0,083
Progênies (Prog.)	97	29875,130	0,000	61	12521,180	0,000	33	22307,880	0,064
Testemunhas (Test.)	1	21020,906	0,050	1	3380,886	0,457	1	6,986	0,999
Prog. vs Test.	1	8989,413	0,200	1	281,284	0,830	1	13735,864	0,341
Loc. x Trat.	198	16893,105	0,000	126	11058,480	0,000	35	17340,678	0,284
Prog. x Loc.	194	17039,646	0,000	122	11332,848	0,000	33	18372,462	0,217
Loc. x Test.	2	13803,009	0,081	2	789,042	0,879	1	215,478	0,905
Loc.x Prog. vs Test.	2	5768,724	0,349	2	4591,47	0,472	1	417,006	0,867
Erro Médio	513	5463,992	-	315	6094,594	-	125	15066,054	-
Média das Progênies		509,126			353,512			494,760	
Média Carioca MG		520,725			371,233			528,811	
Média Pérola		452,378			343,823			530,337	
CV (%)		14,750			17,170			15,310	

TABELA 17. Resumo da análise de variância conjunta dos locais: Lavras, Lambari e Patos de Minas ou Viçosa, MG, para o caráter produtividade de grãos $(g/2m^2)$ das progênies nas gerações $S_{0:2}$, $S_{0:3}$ e $S_{0:4}$ do terceiro ciclo (C-III) de seleção recorrente.

FV		Geração S _{0:2}			Geração $S_{0:3}$			Geração S _{0:4}		
I' V	GL	QM	Prob	GL	QM	Prob	GL	QM	Prob	
Locais (Loc.)	1	8249006,50	0,000	2	1610107,554	0,000	2	3216665,670	0,000	
Tratamentos (Trat.)	99	22296,033	0,004	63	16313,977	0,000	35	25366,893	0,000	
Progênies (Prog.)	97	22054,544	0,005	61	14008,235	0,000	33	23883,170	0,000	
Testemunhas (Test.)	1	6551,079	0,507	1	22430,891	0,027	1	13865,121	0,171	
Prog. vs Test.	1	61465,905	0,043	1	150847,333	0,000	1	85831,527	0,001	
Loc. x Trat.	99	20208,315	0,023	126	8234,283	0,000	70	15119,817	0,000	
Prog. x Loc.	97	20091,579	0,025	122	8178,780	0,000	66	15557,232	0,000	
Loc. x Test.	1	20801,682	0,237	2	1109,118	0,783	2	14279,766	0,146	
Loc.x Prog. vs Test.	1	30938,340	0,150	2	18745,131	0,017	2	1525,173	0,813	
Erro Médio	369	14854,207	-	315	4538,533	-	165	7349,367	-	
Média progênies		470,120			328,806			492,617		
Média Carioca MG		511,355		200,49		6 535		535,919		
Média Pérola		558,085			271,098			591,427		
CV (%)		17,430			16,080			14,300		

TABELA 18. Resumo da análise de variância conjunta dos locais: Lavras, Lambari e Patos de Minas, MG, para o caráter produtividade de grãos $(g/2m^2)$ das progênies nas gerações $S_{0:2}$ e $S_{0:3}$ do quarto ciclo (C-IV) de seleção recorrente.

FV		Geração S _{0:2}			Geração S _{0:3}	
ΓV	GL	QM	Prob	GL	QM	Prob
Locais (Loc.)	2	9509016,078	0,000	2	862799,811	0,000
Tratamentos (Trat.)	143	44079,405	0,000	63	18815,544	0,000
Progênies (Prog.)	141	42830,721	0,000	61	16299,339	0,001
Testemunhas (Test.)	1	27524,915	0,096	1	13,297	0,975
Prog. vs Test.	1	236698,317	0,000	1	191106,276	0,000
Loc. x Trat.	286	30433,440	0,000	126	11577,423	0,043
Prog. x Loc.	282	30661,977	0,000	122	11606,448	0,043
Loc. x Test.	2	11483,187	0,313	2	4218,885	0,627
Loc. x Prog. vs Test.	2	17159,976	0,177	2	17165,436	0,151
Erro Médio	759	9882,058	-	315	9022,433	_
Média progênies		495,550			462,629	
Média Carioca MG		571,923			358,801	
Média Pérola		650,132			357,082	
CV (%)		20,260			13,520	

TABELA 19. Estimativas da variância da interação genótipos por locais ($\hat{\sigma}_{GxL}^2$), variância genotípica ($\hat{\sigma}_G^2$), relação entre a variância da interação genótipos por locais e variância genotípica ($\hat{\sigma}_{GxL}^2/\hat{\sigma}_G^2$)x100, correlações entre locais (r_{Gij}) das médias das progênies da geração S_{0:2}, do primeiro ao quarto ciclo de seleção recorrente para o caráter produtividade de grãos (g/2m²), em três locais: Lambari (1), Lavras (2), Patos de Minas (3) e Viçosa (4), MG.

Ciclos	$\hat{\boldsymbol{\sigma}}_{\textit{GxL}}^{2}$	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$(\hat{\sigma}_{GxL}^2/\hat{\sigma}_G^2)x100$	r_{G12}	r_{G13}	r_{G14}	r_{G23}	r_{G24}	r_{G34}
I	2871,344	4517,764	63,56	0,428**	-	0,342**	-	0,384**	-
II	3858,551	1426,165	270,55	-	-	-	0,056 ns	0,348**	0,211*
III	1745,791	327,161	533,62	0,054 ns	-	-	-	-	-
IV	6926,640	1352,083	512,29	0,125 ns	-0,039 ns	-	0,251**	-	-

^{*} e **: significativo, a 1% e 5% de probabilidade, pelo teste t, respectivamente;

ns: não significativo pelo teste t.

TABELA 20. Estimativas da variância da interação genótipos por locais ($\hat{\sigma}_{GxL}^2$), variância genotípica ($\hat{\sigma}_G^2$), relação entre a variância da interação genótipos por locais e variância genotípica ($\hat{\sigma}_{GxL}^2 / \hat{\sigma}_G^2$)x100, correlações entre locais (r_{Gij}) das médias das progênies da geração S_{0:3}, do primeiro ao quarto ciclo de seleção recorrente para o caráter produtividade de grãos (g/2m²), em três locais: Lambari (1), Lavras (2) e Patos de Minas (3), MG.

Ciclos	$\hat{\sigma}_{\scriptscriptstyle GxL}^{\scriptscriptstyle 2}$	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$(\hat{\sigma}_{GxL}^2/\hat{\sigma}_G^2)x100$	r_{G12}	r_{G13}	r_{G23}
I	244,531	4030,498	6,977	0,532**	0,669**	0,696**
II	1164,056	714,065	163,018	-0,004 ^{ns}	$0,010^{\text{ ns}}$	$0,117^{\text{ns}}$
III	808,944	647,717	76,882	$0,192^{\text{ns}}$	0,034 ns	0,346**
IV	861,338	521,432	165,19	0,150 ns	0,046 ns	0,179 ns

^{*} e **: significativo, a 1% e 5% de probabilidade, pelo teste t, respectivamente; ns. não significativo pelo teste t.

Corroborando com os resultados das análises de variância estão as estimativas dos parâmetros genéticos e fenotípicos (Tabelas 22, 23, 24 e 25). Considerando a geração $S_{0:1}$ nos diferentes ciclos (Tabela 22), verifica-se que as estimativas da h_a^2 foram superiores a 25%, valores esses semelhantes ao que tem sido encontrado para esse caráter em outras condições (Couto, 2005; Melo, 2000; Mendonça, 2001; Pereira, 2003; Teixeira, 2004). Observe, contudo, que ocorreu pequena redução na estimativa de h_a^2 com o decorrer dos ciclos seletivos. Nas demais gerações, as estimativas de h_a^2 , quase sempre, foram de maior magnitude, como era esperado, devido à melhoria na precisão experimental, com exceção da geração $S_{0:4}$, devido ao pequeno número de progênies (Tabelas 23, 24 e 25). Nessas gerações, embora ocorressem flutuações nas estimativas nos diferentes ciclos, não se constatou tendência de redução com o decorrer dos ciclos seletivos.

TABELA 21. Estimativas da variância da interação genótipos por locais ($\hat{\sigma}_{GxL}^2$), variância genotípica ($\hat{\sigma}_G^2$), relação entre a variância da interação genótipos por locais e variância genotípica ($\hat{\sigma}_{GxL}^2/\hat{\sigma}_G^2$)x100, correlações entre locais (r_{Gij}) das médias das progênies da geração S_{0:4}, do primeiro ao quarto ciclo de seleção recorrente para o caráter produtividade de grãos (g/2m²), em três locais: Lambari (1), Lavras (2), Patos de Minas (3) e Viçosa (4), MG.

Ciclos	$\hat{\sigma}_{\scriptscriptstyle GxL}^{\scriptscriptstyle 2}$	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$(\hat{\sigma}_{\scriptscriptstyle GxL}^2/\hat{\sigma}_{\scriptscriptstyle G}^2)x100$	r_{G12}	r_{G13}	r_{G23}	r_{G24}	r_{G34}
I	5050,035	1758,338	287,205	-	-	-0,040 ns	0,548**	-0,002 ns
II	1102,136	655,903	168,033	0,096 ^{ns}	-	-	-	-
III	2735,955	925,104	295,746	$0,135^{\text{ns}}$	$0,050^{\text{ ns}}$	$0,276^{\text{ns}}$	-	-

^{*} e **: significativo, a 1% e 5% de probabilidade, pelo teste t, respectivamente;

ns: não significativo pelo teste t.

TABELA 22. Estimativas da variância genética $(\hat{\sigma}_G^2)$, variância fenotípica $(\hat{\sigma}_F^2)$ entre médias das progênies e herdabilidade no sentido amplo (h_a^2) , com seu respectivo limite inferior (LI) e limite superior (LS) da geração $S_{0:1}$ do primeiro ao quinto ciclo de seleção recorrente para o caráter produtividade de grãos $(g/2m^2)$.

Ciclo	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$\hat{\sigma}_{\scriptscriptstyle F}^2$	h_a^2 (%)	LI	LS
I	4500,504	10621,136	43,373	24,390	56,180
II	9316,662	18795,522	49,569	36,870	59,760
III	9040,534	15578,646	58,032	43,820	68,730
IV	3708,126	9616,154	38,561	22,030	51,660
V	4010,842	15625,540	25,668	4,210	42,430

TABELA 23. Estimativas da variância genética ($\hat{\sigma}_G^2$), variância fenotípica ($\hat{\sigma}_F^2$) entre médias das progênies e herdabilidade no sentido amplo (h_a^2), com seu respectivo limite inferior (LI) e limite superior (LS) da geração S_{0:2} do primeiro ao quarto ciclo de seleção recorrente para a o caráter produtividade de grãos (g/2m²) das análises de variâncias conjuntas dos locais.

Ciclo	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$\hat{\sigma}_{\scriptscriptstyle F}^2$	h_a^2 (%)	LI	LS
I	4517,764	6939,783	65,100	47,970	75,990
II	1426,165	3319,459	42,960	18,540	59,250
III	327,161	3675,757	8,900	-35,970	38,950
IV	1352,083	4758,969	28,410	3,960	45,890

TABELA 24. Estimativas da variância genética ($\hat{\sigma}_G^2$), variância fenotípica ($\hat{\sigma}_F^2$) entre médias das progênies e herdabilidade no sentido amplo (h_a^2), com seu respectivo limite inferior (LI) e limite superior (LS) da geração S_{0:3} do primeiro ao quarto ciclo de seleção recorrente para a o caráter produtividade de grãos (g/2m²) das análises de variâncias conjuntas dos locais.

Ciclo	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$\hat{\sigma}_{\scriptscriptstyle F}^{\scriptscriptstyle 2}$	h_a^2 (%)	LI	LS
I	3382,305	4356,746	77,634	66,66	84,61
II	132,037	1391,242	9,49	-42,53	40,64
III	647,717	1556,471	41,61	8,05	61,71
IV	521,432	1811,038	28,79	-12,14	53,30

TABELA 25. Estimativas da variância genética ($\hat{\sigma}_G^2$), variância fenotípica ($\hat{\sigma}_F^2$) entre médias das progênies e herdabilidade no sentido amplo (h_a^2), com seu respectivo limite inferior (LI) e limite superior (LS) da geração S_{0:4} do primeiro ao terceiro ciclo de seleção recorrente para a o caráter produtividade de grãos (g/2m²) das análises de variâncias conjuntas dos locais.

Ciclo	$\hat{\sigma}_{\scriptscriptstyle G}^{\scriptscriptstyle 2}$	$\hat{\sigma}_{\scriptscriptstyle F}^{\scriptscriptstyle 2}$	h_a^2 (%)	LI	LS
I	1758,338	4018,128	43,76	-23,28	71,89
II	655,903	3717,980	17,64	-64,92	58,87
III	925,104	2653,686	34,86	-22,23	63,13

4.3 Progresso genético

Neste trabalho, as estimativas do progresso genético para resistência a mancha angular e produtividade de grãos, foram obtidas por meio de duas metodologias: com base nas médias das progênies da geração $S_{0:1}$ dos ciclos I ao V e utilizando o desempenho das melhores linhagens de cada ciclo. Para o caráter severidade de mancha angular foi utilizada como referência à geração

 $S_{0:1}$ dos cinco primeiros ciclos (Tabela 26). Visando atenuar o efeito ambiental, os dados foram ajustados em relação à média da cultivar suscetível, Carioca MG. Observe-se que o desvio da média das progênies em relação à 'Carioca MG' tendeu a crescer com o decorrer dos ciclos, como já comentado anteriormente. A equação de regressão linear entre o número de ciclos, variável independente (x) e o desvio genético, variável dependente (y), apresentada na Figura 1, comprova essa observação. Pode-se observar que a estimativa de b foi positiva e diferente de zero, indicando que a diferença entre as notas médias das progênies e a 'Carioca MG' se acentuou com o decorrer dos ciclos, ou seja, o nível de resistência aumentou com a seleção. Tomando como referência a média das progênies $S_{0:1}$ do primeiro ciclo, o ganho com a seleção foi de 6,4% por ciclo seletivo.

TABELA 26. Médias das progênies da geração S_{0:1} do primeiro ao quinto ciclo de seleção recorrente e da cultivar Carioca MG (CMG) e o desvio da média das progênies em relação à média da cultivar Carioca MG, para a nota de severidade de mancha angular (1-9)¹.

Ciclo	Média das progênies	Média da CMG	dg^2
I	3,95	5,67	1,72
II	4,46	7,62	3,16
III	3,32	7,20	3,88
IV	3,80	6,51	2,71
V	2,83	6,04	3,21

^{1: 1:} plantas sem sintomas da doença, 9: sintomas severos da doença.

²: dg = Média da cultivar Carioca MG – Média das progênies.

FIGURA 1. Regressão dos desvios das médias das progênies da geração $S_{0:1}$ em relação à cultivar Carioca MG, para a nota da severidade da doença mancha angular (1-9) do primeiro ao quinto ciclo de seleção recorrente [$b \neq 0$ ($P \leq 0.01$)].

A outra metodologia utilizada para estimar o progresso genético envolveu a avaliação das linhagens S_{0:5} com menor nota de severidade de mancha angular, obtidas ao final de cada ciclo seletivo. Após a avaliação em experimentos, constatou-se diferença (P≤0,01) entre as linhagens para a nota de severidade da doença, bem como para a interação linhagens x locais (Tabelas 11A e 12A). As notas médias de severidade da doença das linhagens variaram dentro do mesmo ciclo, contudo, a diferença mais expressiva foi entre os ciclos. Notou-se que as médias tenderam a reduzir com o avanço dos ciclos, especialmente em Lavras, local em que se concentrou a maioria dos trabalhos de seleção (Tabela 27).

Para estimar o ganho, foram obtidas as equações de regressão linear por local e na média dos locais (Tabela 28). Em todos os ambientes, o coeficiente de

regressão linear (b₁) foi negativo, indicando redução na nota de severidade da doença. Na média dos três locais, o ganho percentual por ciclo foi de 13,8%. Comparando-se o progresso percentual entre os locais verifica-se que, muito embora ocorresse interação progênies x locais e linhagens x locais, o ganho percentual foi expressivo. Inclusive, ele foi superior em Lambari (17,3%) e inferior em Patos de Minas (10,6%). Esse resultado pode ser explicado considerando que, em Lambari, a incidência de *P. griseola* é muito maior do que em Lavras e, principalmente, do que em Patos de Minas.

TABELA 27. Médias das notas de severidade de mancha angular (1-9) das linhagens na geração $S_{0:5}$ dos três primeiros ciclos de seleção recorrente e das testemunhas Carioca, Carioca MG, OP-NS-331 e Pérola, avaliadas em três locais, na safra da "seca" de 2005.

Ciclos	Linhagana		Loca	is	Médias
Cicios	Linhagens	Lambari	Lavras	Patos de Minas	iviedias
I	1	4,667	3,953	2,835	3,820
I	2	1,333	3,224	2,165	2,240
I	3	2,333	2,906	2,331	2,523
I	4	2,000	2,906	2,165	2,360
I	5	2,000	3,776	2,833	2,870
I	6	2,667	3,031	2,503	2,733
I	7	1,333	2,302	1,668	1,767
Média do C-I		2,333	3,157	2,357	2,616
II	8	2,000	2,953	2,664	2,537
II	9	3,333	2,938	2,335	2,870
II	10	2,667	3,365	3,165	3,070
II	11	2,000	3,193	2,167	2,453
II	12	1,000	2,620	2,334	1,983
II	13	2,333	2,604	2,665	2,533
II	14	3,000	2,891	2,166	2,687
Média do C-II		2,333	2,938	2,499	2,590
III	15	1,333	2,635	1,500	1,823
III	16	1,333	2,286	1,501	1,707
III	17	1,333	1,938	1,998	1,757
III	18	1,000	2,078	1,665	1,583
III	19	1,333	2,031	2,167	1,843
III	20	1,667	2,078	1,997	1,917
III	21	1,000	2,078	1,503	1,527
Média do C-III		1,286	2,161	1,762	1,737
	Carioca	7,667	6,047	6,503	6,740
Médias das	Carioca MG	6,667	5,411	5,832	5,970
testemunhas	OP-NS-331	2,333	3,187	2,171	2,563
	Pérola	3,000	3,568	3,336	3,303

TABELA 28. Coeficientes de regressão linear para as notas de severidade de mancha angular (1 a 9) e progresso com a seleção, obtidos na avaliação das progênies S_{0:5} dos três primeiros ciclos de seleção recorrente em três locais, na safra da seca de 2005.

Locais	b_0	b_1	Prob	R^{2} (%)	Progresso percentual
					$(b_1/b_0)*100$
Lavras	3,750	-0,498	0,091	90,4	13,28
Lambari	3,030	-0,523	0,225	75,0	17,26
Patos de Minas	2,800	-0,298	0,362	57,9	10,64
Média	3,190	-0,439	0,207	77,3	13,76

Em ambos os procedimentos utilizados, foram detectados ganhos expressivos com a seleção recorrente para a resistência a P. griseola. Como ocorreu discrepância entre os resultados, poder-se-ia questionar qual o melhor procedimento para se estimar o progresso. Em princípio, é preciso salientar que a comparação das duas estimativas, a utilização das progênies S_{0:1}, que foi de 6,4% e aquela com as linhagens (13,8%), não é muito válida porque a primeira envolveu cinco ciclos seletivos e a segunda, apenas três. A primeira opção tem a vantagem de não exigir nenhum trabalho adicional. É necessário, contudo, colocar mais de uma testemunha e, para um caráter de menor herdabilidade, utilizar como referência à geração $S_{0:2}$, que pode ser avaliada com melhor precisão que a S_{0:1}. O uso de linhagens, além do trabalho adicional de ter que conduzir experimento específico para se estimar o progresso, não avalia especificamente o resultado da seleção recorrente, mas, a eficiência da seleção efetuada em cada geração até atingir a homozigose completa. Contudo, é a estimativa do ganho que foi realmente realizado, o que não deixa de ter enorme vantagem.

Poucos são os relatos encontrados, para a cultura do feijoeiro, spbre o emprego da seleção recorrente visando resistência a patógenos (Lyons et al., 1987; Garcia et al., 2003). Contudo, o ganho obtido neste trabalho foi

expressivo. Considerando que os estudos do controle genético da resistência a *P. griseola* apontam que a resistência é monogênica e ou oligogênica (Caixeta et al., 2002; Mahuku et al., 2004), o emprego da seleção recorrente poderia ser questionado. Entretanto, esse patógeno possui várias raças (Nietsche et al., 2001; Sartorato, 2002; Sartorato & Alzate-Marin, 2004) e, no controle genético da resistência a todas essas raças, certamente estarão envolvidos inúmeros genes. Além do mais, nota-se gradação nos sintomas entre linhagens consideradas resistentes. Parte dessa gradação pode ser atribuída ao efeito ambiental, porém, a existência de controle poligênico do caráter não deve ser desconsiderada. As estimativas do progresso genético com a seleção recorrente reforçam essa observação.

O emprego da seleção recorrente para esse caráter deve ter continuidade, pois se constatou que ainda existe variabilidade para a seleção mesmo após o quinto ciclo. Além do mais, o processo é dinâmico. Se novas fontes de resistência forem identificadas, poderão ser incluídas na recombinação. Desse modo, certamente, a variabilidade poderá ser mantida em longo prazo.

Destaque deve ser dado para o fato de que é possível realizar um ciclo seletivo a cada ano. Desse modo, o argumento de que a seleção recorrente é um processo demorado, não procede, sobretudo porque, a cada ciclo, o processo de avanço da endogamia é realizado até a obtenção de linhagens, como em qualquer outro método de melhoramento aplicado às plantas autógamas.

Também foi estimado o progresso genético com a seleção na produtividade de grãos utilizando as duas metodologias. Usando o desempenho médio das progênies na geração $S_{0:1}$, o progresso foi estimado em relação à média das testemunhas para reduzir as diferenças do efeito dos ambientes, uma vez que essa geração foi avaliada em anos agrícolas diferentes, embora sempre na mesma safra, como já salientado. Observa-se que os valores do desvio (dg) da média das progênies em relação às testemunhas foram crescentes com os ciclos

(Tabela 29). A estimativa do coeficiente de regressão linear (b_1) foi de 31,7 $g/2m^2$, o que corresponde ao ganho percentual médio de 8,9% por ciclo, em relação à produtividade média do primeiro ciclo (Figura 2).

Para esse caráter, também constatou-se diferença significativa ($P \le 0,01$) entre as linhagens $S_{0:5}$ representativas dos três primeiros ciclos de seleção recorrente. Nesse caso, também a interação linhagens x locais foi significativa ($P \le 0,01$) (Tabela 12A). Os resultados médios da produtividade de grãos evidenciam diferença entre as linhagens dentro do mesmo ciclo, porém, a diferença mais marcante foi, de modo geral, entre os ciclos. A maior variação foi entre a média do ciclo I em relação ao ciclo II, em todos os locais (Tabela 30).

TABELA 29. Médias das progênies da geração S_{0:1} do primeiro ao quinto ciclo de seleção recorrente, médias das testemunhas cultivar Carioca MG e Pérola nos cinco ciclos e o desvio da média das progênies em relação à média das testemunhas, para a produtividade de grãos (g/2m²).

Ciclo	Média das progênies	Média das testemunhas	$dg (g/2m^2)^1$
I	355,30	393,27	- 37,97
II	527,60	411,40	+ 116,20
III	486,40	360,80	+ 125,60
IV	520,40	439,40	+ 81,00
V	515,00	372,80	+ 138,20

^{1:} Média das progênies – média das testemunhas.

FIGURA 2 Regressão dos desvios das médias das progênies da geração $S_{0:1}$ em relação às testemunhas, às cultivares Carioca MG e Pérola, para produtividade de grãos $(g/2m^2)$ do primeiro ao quinto ciclo de seleção recorrente $[b \neq 0 \ (P \leq 0.01)]$.

As estimativas dos coeficientes de regressão linear (b₁) foram todas positivas, embora não significativas com a precisão que foram obtidas. Na média dos três locais, o ganho observado foi de 2,1% (Tabela 31). É preciso enfatizar que grande parte desse progresso na produtividade de grãos deve ser atribuído ao incremento na resistência a *P. griseola* das progênies. Isto porque a ênfase no processo seletivo, sobretudo nas progênies a serem recombinadas, foi direcionada à resistência à doença, muito embora só tenham sido mantidas as plantas com pouco sintomas, porém, com produção de sementes suficiente para

o avanço das progênies. Nas gerações posteriores, visando obter as linhagens no final do processo, a produtividade de grãos foi também considerada.

Como já enfatizado, na produtividade de grãos, o que se teve foi uma resposta correlacionada com a seleção para resistência ao patógeno. Como se constatou, o progresso foi expressivo, especialmente quando se considerou o ganho a partir do desempenho das progênies S_{0:1}, valor esse que foi semelhante ou até superior ao que tem sido relatado com a seleção realizada diretamente no caráter produtividade de grãos (Singh et al., 1999; Ramalho et al., 2005a; Ranalli, 1996). Essa resposta correlacionada expressiva, na safra da "seca" quando ocorre maior incidência de mancha angular, é mais uma evidência de que esse patógeno é importante no estado de Minas Gerais, causando grandes danos na produtividade de grãos (Correa-Victoria et al., 1994; Jesus Júnior et al., 2001). Além do mais, reforça a necessidade dos programas de melhoramento do feijoeiro concentrarem sua atenção na obtenção de linhagens resistentes a esse patógeno.

É também marcante o fato de que a população original envolvia grãos com pequena probabilidade de aceitação comercial. Ela foi gerada por meio de um dialelo parcial envolvendo fontes de resistência com diversos tipos de grãos, sem aceitação comercial, e linhagens de grãos tipo carioca. Muito embora no controle genético do aspecto dos grãos estejam envolvidos vários genes (Basset 1996; Leakey, 1988), houve progresso acentuado com a seleção também para esse caráter. Em realidade, na identificação das progênies para a recombinação ou avanço da endogamia, o tipo de grão foi considerado. Embora não fosse quantificado o progresso genético para esse caráter, as progênies do último ciclo, por exemplo, têm aspecto de grãos bem superior ao das linhagens parentais com grãos tipo carioca. Na literatura, há relatos de sucesso com a seleção para tipo de grãos, como ocorreu neste trabalho (Cunha, 2005; Ramalho et al., 2005a).

TABELA 30. Médias da produtividade de grãos ($g/2m^2$) das linhagens na geração $S_{0:5}$ dos três primeiros ciclos de seleção recorrente e das testemunhas Carioca, Carioca MG, OP-NS-331 e Pérola, avaliadas em três locais, na safra da "seca" de 2005.

Ciclos	Linhagana		Loca	is	Médias
Cicios	Linhagens	Lambari	Lavras	Patos de Minas	Medias
I	1	471,427	594,934	523,333	529,897
I	2	504,176	454,037	386,667	448,297
I	3	376,482	545,064	373,333	431,623
I	4	497,248	521,582	450,000	489,610
I	5	425,257	488,473	356,667	423,467
I	6	347,394	658,072	276,667	427,380
I	7	433,789	540,993	436,667	470,483
Média do C-I		436,539	543,308	400,476	460,108
II	8	510,874	570,586	548,333	543,263
II	9	515,659	653,612	448,333	539,200
II	10	487,787	639,442	428,333	518,520
II	11	479,113	574,640	505,000	519,583
II	12	513,946	611,397	468,333	531,227
II	13	439,676	591,474	331,667	454,273
II	14	381,906	564,733	381,667	442,770
Média do C-II		475,566	600,841	444,524	506,977
III	15	447,053	607,071	400,000	484,707
III	16	400,802	412,072	463,333	425,400
III	17	468,086	616,101	385,000	489,730
III	18	410,587	568,348	320,000	432,980
III	19	460,797	655,424	405,000	507,073
III	20	487,389	544,661	443,333	491,793
III	21	404,655	567,007	611,667	527,780
Média do C-III		439,910	567,241	432,619	479,923
	Carioca	338,293	442,544	381,667	387,500
Médias das	Carioca MG	314,913	502,062	396,667	404,547
testemunhas	OP-NS-331	529,227	557,975	405,000	497,403
	Pérola	333,798	524,363	391,667	416,610

TABELA 31. Coeficientes de regressão linear para produtividade de grãos $(g/2m^2)$ e progresso com a seleção, obtidos na avaliação das progênies $S_{0:5}$ dos três primeiros ciclos de seleção recorrente em três locais, na safra da seca de 2005.

Locais	b_0	b_1	Prob	R ² (%)	Progresso percentual
					$(b_1/b_0)*100$
Lavras	546,53	11,967	0,694	17,1	2,19
Lambari	447,30	1,686	0,945	0,6	0,38
Patos de Minas	393,73	16,071	0,425	49,7	4,08
Média	462,52	9,908	0,688	17,7	2,14

5 CONCLUSÕES

O progresso genético com a seleção recorrente fenotípica visando à resistência a *P. griseola* foi superior a 6,4% por ciclo, refletindo em incremento superior a 2,1% por ciclo na produtividade de grãos. Constatou-se também a existência de variabilidade para se continuar tendo sucesso com a seleção. Depreende-se que a seleção recorrente fenotípica é eficiente na seleção de linhagens com grãos tipo Carioca, produtivas e resistentes à mancha angular.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABREU, A. de F. B. **Avaliação de progênie de feijoeiro do cruzamento 'Carioca 80' x 'Rio Tibagi' em diferentes densidades de plantio**. Lavras: ESAL, 1989. 63 p. Dissertação (Mestrado em Genética e Melhoramento de Plantas) Escola Superior de Agricultura de Lavras, Lavras, MG.
- ABREU, A. de F. B.; RAMALHO, M.A.P.; SANTOS, J.B. dos; MARTINS, L.A. Progresso do melhoramento genético do feijoeiro nas décadas de setenta e oitenta nas regiões Sul e Alto Paranaíba em Minas Gerais. **Pesquisa Agropecuária Brasileira**, v.29, n.1, p.105-112, Jan., 1994.
- ABREU, A. de F. B.; RAMALHO, M. A. P.; SANTOS, J. B. dos. Seleção recorrente no melhoramento do feijoeiro de grãos tipo carioca. In: CONGRESSO BRASILEIRO DE MELHORAMENTO DE PLANTAS, 2., 2003, Porto Seguro. **Anais**... Porto Seguro, 2003. 1CD-ROOM.
- AGGARWALL, V. D.; PASTOR-CORRALES, M. A.; CHIRWA, R. W. Andean beans (*Phaseolus vulgaris* L.) with resistance to the angular leaf spot pathogen (*Phaeisariopsis griseola*) in southern and eastern Africa. **Euphytica**, Wageningen, v. 136, n. 2, p. 201-210, 2004.
- AGUIAR, A. M.; RAMALHO, M. A. P.; SOUZA, E. A. de; Comparação entre látice e blocos aumentados na avaliação de famílias segregantes em um programa de melhoramento do feijoeiro. **Ciência e Agrotecnologia**, Lavras, v. 24, n. 4, p. 857-860, out./dez. 2000.
- ALVAREZ-AYALA, G.; SCHWARTZ, H. F. Preliminary investigations of pathogenic variability expressed by *Phaeoisariopsis griseola*. **Annual Report of the Bean Improvement Cooperative**, Fort Collins, v. 22, p. 86-87, 1979.
- APARICIO, B. H. E. Caracterización de la diversidad molecular y la virulencia de aislamentos del hongo Phaeoisariopsis griseola de Brasil e Bolivia. Cali, Colombia: Universidade del Valle, 1998. Trabalho de grado.
- BARRON, J. E.; PASINI, R. J.; DAVIS, D. W.; STUTHMAN, D. D.; GRAHAM, P. H. Response to selection for seed yield and nitrogen (N2) fixation in common bean (*Phaseolus vulgaris* L.). **Field Crops Research**, Amsterdam, v. 62, n. 2/3, p. 119-128, June 1999.

- BASSET, M. J. List of genes *Phaseolus vulgaris* L. **Annual Report of the Bean Improvement Cooperative**, 39, p. 1-19, 1996.
- BEAVER, J. S.; KELLY, J. D. Comparison of selection methods for dry bean populations derived from crosses between gene pools. **Crop Science**, Madison, v. 34, n. 1, p. 34-37, Jan./Feb. 1994.
- BIANCHINI, A.; MARINGONI, A. C.; CARNEIRO, S. M. T. P. G. Doenças do feijoeiro (*Phaseolus vulgaris*). In: KIMATI, H.; AMORIM, L.; BERGAMIM FILHO, A.; CAMARGO, L. E. A.; REZENDE, J. A. M. **Manual de fitopatologia, doenças das plantas cultivadas**. 3. ed. São Paulo: Ceres, 1997. v. 2, p. 376-379.
- BROCK, R. D. Resistance to angular leafspot among varieties of beans. **Journal Australian Institute Agricultural Science**, Melbourne, v. 17, n. 1, p. 25-30, 1951.
- BUSCH, R. H.; KOFOID, K. Recurrent selection for kernel weight in spring wheat. **Crop Science**, Madison, v. 22, n. 3, p. 568-572, May/June 1982.
- CAIXETA, E. T.; BORÉM, A.; FAGUNDES, S. de A.; BARROS, E. G. de; MOREIRA, M. A.; Herança da resistência à mancha-angular e identificação de marcadores moleculares ligados a genes de resistência do cultivar de feijão BAT 332. In: CONGRESSO NACIONAL DE PESQUISA DE FEIJÃO, 7., 2002, Viçosa, MG. **Anais...** Viçosa: Universidade Federal de Viçosa-MG. 2002. p. 38-41.
- CARNEIRO, G. E. S.; ZIMMERMANN, F. J.; DEL PELOSO, M. J. Avaliação de linhagens de feijão dos grupos carioca e preto nas regiões sudeste e centro-oeste do Brasil. In: REUNIÃO NACIONAL DE PESQUISA DE FEIJÃO, 6., 1999, Salvador. **Anais...** Santo Antônio de Goiás: Embrapa Arroz e Feijão, 1999, v. 1, p. 280-282. (Embrapa Arroz e Feijão. Documentos, 99.
- CARNEIRO, J. E. de S. **Alternativas para obtenção e escolhas de populações segregantes no feijoeiro**. 2002. 134 p. Tese (Doutorado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras, MG.
- CARNEIRO, J. E. S.; GONÇALVES, F. M. . A.; RAMALHO, A. P.; ABREU, A. de F. B.; CARNEIRO, P. C. S.; Comportamento de linhagens de feijão Carioca no estado de Minas Gerais. In: CONGRESSO NACIONAL DE

- PESQUISA DE FEIJÃO, 7., 2002, Viços, MG. **Anais...** Viçosa: Universidade Federal de Viçosa, 2002. p. 348-351.
- CARNEIRO, J. E. de S.; RAMALHO, M. A. P.; ABREU, A. de F. B.; GONÇALVES, F. M. A. Consequences of early selection for grain type in common bean breeding. **Crop Breeding and Applied Biotechnology**, Londrina, v. 2, n. 4, p. 515-524, Oct. Dec. 2001.
- CENTRO INTERNACIONAL DE AGRICULTURA TROPICAL CIAT. **Annual Report 1985:** Bean Program. Cali, 1986. p. 27-34. (Working Document, n. 14).
- COLLICHIO, E. **Associação entre porte da planta do feijoeiro e o tamanho dos grãos**. 1995. 98 p. Dissertação (Mestrado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras, MG.
- CORREA-VICTORIA, F. J. **Pathogenic variation, production of toxic metabolites, and isozyme analysis in** *Phaeoisariopsis griseola* (Sacc.) Ferr. 1987. 120 p. Thesis (Ph. D) Michigan State University, East Lansing, MI, USA.
- CORREA-VICTORIA, F. J.; PASTOR-CORRALES, M. A.; SAETLER, A. W. Mancha angular de la hoja. In: PASTOR-CORRALES, M. A.; SCHWARTZ, H. F. (Ed.). **Problemas de producción del frijol em los trópicos**. Cali, Colômbia: CIAT, 1994. p. 67-86.
- CORTE, H. R.; RAMALHO, M. A. P.; AVELAR, F. M. G., Natural selection for grain yield in dry bean populations bred by the bulk method. **Euphytica**, Wageningen, v. 123, n. 3, p. 387-393, 2002
- COUTO, M. A. **Seleção de linhagens de feijão tipo carioca com resistência à antracnose e à mancha angular.** 2005. 78 p. Dissertação (Mestrado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras, MG.
- CRUZ, C. D.; REGAZZI, A. J. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV, 1997. 390 p.
- CUNHA, W. G. da. **Seleção recorrente em feijão do tipo carioca para porte ereto**. 2005. 130 p. Dissertação (Mestrado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras, MG.

- FALEIRO, F. G.; CRUZ, C. D.; CASTRO, C. de; MOREIRA, M. A.; BARROS, E. G. de. Comparação de blocos casualizados e testemunhas intercalares na estimação de parâmetros genéticos em feijoeiro. **Pesquisa Agropecuária Brasileira**, Brasília, v. 37, n. 12, p. 1675-1680, dez. 2002.
- FONSECA JR., N. da S. **Progresso genético na cultura do feijão no estado do Paraná para o período de 1977 a 1995**.1997. 168p. Tese (Doutorado em Genética e Melhoramento) Escola Superior de Agricultura "Luiz de Queiroz", da Universidade de São Paulo, Piracicaba, SP.
- FOUILLOUX, G.; BANNEROT, H. Selection methods in the common bean (*Phaseolus vulgaris*). In: GEPTS, P. (Ed.). **Genetic resources of Phaseolus Beans**. Dordrecht: Kluwer Academic Publishers, 1988. p. 503-542.
- GARCIA, R. E.; ROBINSON, R. A.; AGUILAR, J. A. P.; SANDOVAL, S. S.; GUZMAN, R. P. Recurrent selection for quantitative resistance to soil borne diseases in beans in the Mixteca region, México. **Euphytica**, Wageningen, v. 130, n. 2, p. 241-247, 2003.
- GEPTS, P. A Midlle American and Andean gene pool. In: GEPTS, P. (Ed.). **Genetic resources of** *Phaseolus* **beans.** Dordrecht: Kluwer, 1988. p. 375-390.
- GEPTS, P. The use of molecular and biochemical markers in crop evolution studies. **Evolutionary Biology**, New York, v. 27, n. 1, p. 51-94, 1993.
- GEPTS, P.; BLISS, F. A. F₁ hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. **Journal of Heredity**, Cary, v. 76, n. 6, p. 447-450, Nov./Dec. 1985.
- GEPTS, P.; DEBOUCK, D. G. Origin, domestication, and evolution of the common bean, *Phaseolus vulgaris*. In: VAN SCHOONHOVEN, A.; VOYSEST, O. (Ed.). **Common beans:** research for crop improvement. Cali: CIAT, 1991. p. 7-53.
- GEPTS, P.; KMIECIK, K.; PEREIRA, P.; BLISS, F. A. Dissemination pathways of common bean (*Phaseolus vulgaris*, Fabaceae) deduced from phaseolin electrophoretic variability. I. The Americas. **Economic Botany**, Bronx, v. 42, n. 1, p. 73-85, Jan./Mar. 1988.
- GERALDI, I. O. Selección recurrente en el mejoramiento de plantas. In: GUIMARÃES, E. P. (Ed.). **Seleccion recurrente en arroz.** CIAT: Cali, 1997. p. 3-11.

- GUSMÁN, P.; GILBERTSON, R. L.; NODARI, R.; JOHNSON, W. C.; TEMPLE, S. R.; MANDALA, D.; MKANDAWIRE, A. B. C.; GEPTS, P. Characteruzation of variavility in the fungus *Phaeoisariopsis griseola* suggest coevolution with the common bean (*Phaseolus vulgaris*). **Phytopathology**, St. Paul, v. 85, n. 5, p. 600-607, May 1995.
- HABGOOD, R.M. Designation of physiological races of plant pathogens. **Nature**, London, v. 227, n. 19, p. 1268-1269, Sep. 1970.
- HALL, R. **Compendium of bean diseases**. Ontário: The American Phytopathological Society, 1991. p. 1-17.
- HALLAUER, A. R. Compedium of recurrent selection methods and their applications. **CRC Review in Plant Science**, Boca Raton, v. 3, p. 1-33, 1986.
- JESUS JÚNIOR, W. C. de; VALE, F. X. R. do; COELHO, R. R.; HAU, B.; ZAMBOLIN, L.; COSTA, L. C.; BERGAMIN FILHO, A. Effects of angular leaf spot and rust on yield loss of *Phaseolus vulgaris*. **Phytopathology**, St. Paul, v. 92, n. 11, p. 1045-1053, Nov. 2001.
- KENWORTHY, W. J.; BRIM. C. A. Recurrent selection in soybeans. I. Seed yield. **Crop Science**, Madison, v. 19, n. 3, p. 315-318, May/June 1979.
- KHADR, F. H.; FREY, K. J. Effectiveness of recurrent selection in oat breeding (*Avena sativa* L.). **Crop Science**, Madison, v. 5, n. 4, p. 349-354, July/Aug. 1965.
- KNAPP, S. J.; STOUP, W. W.; ROSS, W. M. Exact confidence intervals for heritability on a progeny mean basis. **Crop Science**, Madison, v. 25, n. 1, p. 192-194, Jan./Fev. 1985.
- KOENIG, R.; GEPTS, P. Allozyme diversity in wild *Phaseolus vulgaris*: further evidence for two major centers of diversity. **Theorethical Applied Genetics**, Berlin, v. 78, n. 6, p. 809-817, 1989.
- KOINANGE, E. M. K.; GEPTS, P. Hybrid weakness in wild *Phaseolus vulgaris* L. **Journal of Heredity**, Cary, v. 83, n. 2, p. 135-139, Mar./Apr. 1992.
- LEAKEY, C. L. A. Genotypic and phenotypic markes in common bean. In: GEPTS, P. (Ed.). **Genetic resources in Phaseolus beans**. Boston: Klumer Academic, 1988. p. 245-327.

- LYONS, M. E.; DICKSON, M. H.; HUNTER, J. E. Recurrent selection for resistance to white mold in *Phaseolus* species. **Journal of the American Society for Horticultural Science,** Alexandria, v. 112, n. 1, p. 149-152, Jan. 1987.
- MAHUKU, G.; MONTOYA, C.; HENRIQUEZ, M. A. Inheritance and characterization of angular leaf spot resistance gene present in common bean accession G 10474 and identification of na AFLP marker to the resistance gene. **Crop Science**, Madison, v. 44, n. 5, p. 1817-1824, Sept./Oct. 2004.
- MARQUES JÚNIOR, O. G. **Eficiência de experimentos com a cultura do feijão**. 1997. 80 p. Tese (Doutorado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras, MG.
- McFERSON, J. K.; FREY, D. J. Recurrent selection for protein yield of oat. **Crop Science**, Madison, v. 31, n. 1, p. 1-8, Jan./Feb. 1991.
- McNEAL, F. H.; McGUIRE, C. F.; BERG, M. A. Recurrent selection for grain protein content in spring wheat. **Crop Science**, Madison, v. 18, n. 5, p. 779-782, Sept./Oct. 1978.
- MELO, L. C. **Mapeamento de QTLs em feijoeiro por meio de marcadores RAPD, em diferentes ambientes**. 2000. 148 p. Tese (Doutorado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras MG.
- MENDONÇA, H. A. de. **Escolha de populações segregantes de feijoeiro utilizando parâmetros genéticos, fenotípicos e marcadores RAPD**. 2001. 100 p. Tese (Doutorado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras, MG.
- MONDA, E. O.; SANDERS, F. E.; HICK, A. Infection and colonization of bean leaf by *Phaeoisariopsis griseola*. **Plant Pathology**, Osney Mead, v. 50, n. 1, p. 103-110, Feb. 2001.
- MORAIS, P. de M.; CASTRO, E. da M. de; SOARES, A. A.; PEREIRA, J. de A.; UTUMI, M. Performance da população CG1 em seu terceiro ciclo de seleção. In: CONGRESSO BRASILEIRO DE MELHORAMENTO DE PLANTAS, 2., 2003, Porto Seguro. **Anais**... Porto Seguro, 2003. 1CD-ROM.

- MSTAT-C. A software program for the design, management and analysis of agronomic research experiments. [S. 1]: Michigan State University, 1991. p. ir.
- NIETSCHE, S. Identificação de raças de *Phaeoisariopsis griseola* e determinação de fontes de resistência em *Phaseolus vulgaris*. 1997. 47 p. Dissertação (Mestrado em Genética e Melhoramento) Universidade Federal de Viçosa, Viçosa, MG.
- NIETSCHE, S. Mancha-angular do feijoeiro-comum: variabilidade genética do patógeno e identificação de marcadores moleculares ligados dentificação de raças de *Phaeoisariopsis griseola* e determinação de à resistência. 2000. 56 p. Tese (Doutorado em Genética e Melhoramento) Universidade Federal de Viçosa, Viçosa, MG.
- NIETSCHE, S.; BORÉM, A.; CARVALHO, G. A.; PAULA JÚNIOR, T. J.; FERREIRA, C. F.; BARROS, E. G.; MOREIRA, M. A. Genetic diversity of *Phaeoisariopsis griseola* in the State of Minas Gerais, Brazil. **Euphytica**, Wageningen, v. 117, n. 1, p. 77-84, 2001.
- NIETSCHE, S.; BORÉM, A.; CARVALHO, G. A.; ROCHA, R. C.; PAULA JR., T. J.; BARROS, E. G.; MOREIRA, M. A. RAPD and SCAR markers linked to a gene conferring resistance to angular leaf spot in common bean. **Phytopathology**, Berlin, v. 148, n. 2, p. 117-121, Feb. 2000.
- OLMEDO, A. O. B.; ELIAS, E. M.; CANTRELL, R. G. Recurrent selection for grain yield in durum wheat. **Crop Science**, Madison, v. 35, n. 3, p. 714-719, May/June 1995.
- PARLEVLIET, J. E.; ZADOKS, J. C. The integrated concpt of disease resistance; a new view including horizontal and vertical resistance in plants. **Euphytica**, Wageningen, v. 26, n. 1, p. 5-21, 1977.
- PASTOR-CORRALES, M. A.; JARA, C. E. La evolución de *Phaeoisariopsis griseola* com el frijol común em América Latina. **Fitopatologia Colombiana**, Santa Fe de Bogota, v. 19, n. 1, p. 15-24, 1995.
- PASTOR-CORRALES, M. A.; JARA, C. E.; SINGH, S. Pathogenic variation in, source of, and breeding for resistance to *Phaeoisariopsis griseola* causing angular leaf spot in common bean. **Euphytica**, Wageningen, v. 103, n. 2, p. 161-171, 1998.

- PAULA Jr., T. J.; VIEIRA, R. F.; ZAMBOLIM, L. Manejo integrado de doenças dos feijoeiro. **Informe Agropecuário**, Belo Horizonte, v. 25, n. 223, p. 99-112, 2004.
- PAYNE, T. S.; STUTHMAN, D. D.; MCGRAW, R. L.; BREGITZER, P. P. Physiological changes associated with three cycles of recurrent selection for grain yield improvement in oats. **Crops Science**, Madison, v. 26, n. 4, p. 734-736, July/Aug. 1986.
- PEREIRA, H. S. **Seleção de linhagens de feijão tipo carioca com pirâmide de alelos de resistência à antracnose e outros fenótipos favoráveis.** 2003. 95 p. Dissertação (Mestrado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras, MG.
- PEREIRA FILHO, I. A.; RAMALHO, M. A. P.; FERREIRA, S. Avaliação de progênies de feijão e estimativas de parâmetros genéticos na região do Alto São Francisco em Minas Gerais. **Pesquisa Agropecuária Brasileira**, Brasília, v. 22, n. 9/10, p. 987-993, Set./Out. 1987.
- PIROLA, L. H.; RAMALHO, M. A. P.; CARNEIRO, J. E. de S.; ABREU, A. de F. B. Natural selection and families x locations interaction in the common (dry) bean. **Genetics and Molecular Biology**, Ribeirão Preto, v. 25, n. 3, p. 343-347, Sept. 2002.
- RAMALHO, M. A. P. Seleção recorrente. In: REUNIÃO NACIONAL DE PESQUISA DE FEIJÃO, 5., 1996, Goiânia. **Anais**... Goiânia: EMBRAPA-CNPAF-APA, 1997. v. 2, p. 153-165. (EMBRAPA-CNPAF-APA. Documentos, 70).
- RAMALHO, M. A. P.; ABREU, A. de F. B.; GONÇALVES, F. M. A.; CORTE, H. R. Desempenho de linhagens do programa de melhoramento da UFLA/EPAMIG em vários ambientes. In: REUNIÃO NACIONAL DE PESQUISA DE FEIJÃO, 6., 1999, Salvador. **Anais...** Santo Antônio de Goiás: Embrapa Arroz e Feijão, 1999, v. 1, p. 335-338. Embrapa Arroz e Feijão. Documentos, 99.
- RAMALHO, M. A. P.; ABREU, A. de F. B.; SANTOS, J. B. dos. Genetic progress after four cycles of recurrent selection for yield and grain traits in common bean. **Euphytica**, Wageningen, v. 144, n. 1, p. 23-29, 2005a.
- RAMALHO, M. A. P.; ABREU, A. de F. B.; SANTOS, J. B. Melhoramento de espécies autógamas. In: NASS, L. L.; VALOIS, A. C. C.; MELO, I. S. de;

- VALADARES-INGLIS, M. C. (Ed.). **Recursos genéticos e melhoramento-plantas**. Rondonópolis: Fundação MT, 2001. p. 201-230.
- RAMALHO, M. A. P.; ABREU, A. de F. B.; SANTOS, J. B. dos. Progresso genético após quatro ciclos de seleção recorrente no melhoramento do feijoeiro. In: CONGRESSO BRASILEIRO DE MELHORAMENTO DE PLANTAS, 2., 2003, Porto Seguro. **Anais...** Porto Seguro, 2003. 1CD-ROM.
- RAMALHO, M. A. P.; ABREU, A. de F. B.; SANTOS, P. S. J. dos. Interação genótipos x épocas de semeadura, anos e locais na avaliação de cultivares de feijoeiro nas regiões Sul e Alto Paranaíba em Minas Gerais. **Ciência e Agrotecnologia**, Lavras, v. 22, n. 2, p. 176-181, abr./jun. 1998.
- RAMALHO, M. A. P.; ABREU, A. de F. B.; SILVA, F. B.; SILVA, V. M. P. e. Progresso genético do quinto ao sétimo ciclo de seleção recorrente no melhoramento genético do feijoeiro. In: REUNIÃO NACIONAL DE PESQUISA DE FEIJÃO, 8., 2005, Goiânia. **Anais...** Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2005b, v. 1, p. 543-546. (Embrapa Arroz e Feijão. Documentos, 182).
- RAMALHO, M. A. P.; ANDRADE, L. A. B.; TEIXEIRA, N. C. S. Correlações genéticas e fenotípicas entre caracteres do feijão (*Phaseolus vulgaris* L.). **Ciência e Prática**, Lavras, v. 3, n. 1, p. 63-70, Jan./June 1979.
- RAMALHO, M. A. P.; FERREIRA, D. F.; OLIVEIRA, A. C. **Experimentação em Genética e Melhoramento de Plantas**. Lavas: UFLA, 2000. 303 p.
- RAMALHO, M. A. P.; PINTO, C. A. B. P.; SANTA CECÍLIA, F. C. Avalição de amostras de cultivares de feijão roxo e seleção de progênies. **Ciência e Prática**, Lavras, v. 6, n. 1, p. 35-43, Jan./June 1982.
- RAMALHO, M. A. P.; SANTOS, J. B.; ZIMMERMANN, M. J. Genética quantitativa em plantas autógamas aplicações ao melhoramento do feijoeiro. Goiânia: Editora UFG, 1993. 271 p.
- RANALLI, P. Phenotypic recurrent selection in common bean (*Phaseolus vulgaris* L.) basead on performance of S₂ progenies. **Euphytica**. Wageningen, v. 87, n. 2, p. 127-132, 1996.
- RANGEL, P. H. N.; ZIMMERMANN, F. J. P.; NEVES, P. C. F. Estimativas de parâmetros genéticos e resposta à seleção nas populações de arros irrigado

- CNA-IRAT 4 PR e CNA-IRAT 4 ME. **Pesquisa Agropecuária Brasileira**, Brasília, v. 33, n. 6, p. 905-912, jun. 1998.
- RAPOSO, F. V.; RAMALHO, M. A. P.; ABREU, A. de F. B.; Comparação de métodos de condução de populações segregantes do feijoeiro. **Pesquisa Agropecuária Brasileira**, Brasília, v. 35, n. 10, p. 1991-1997, Out. 2000.
- SANTOS, P. S. J. dos; ABREU, A. de F. B. Seleção de linhas puras no feijão "Carioca". **Ciência e Agrotecnologia**, v. 26, p. 1492-1498, dez. 2002. Edição especial.
- SANTOS, V. da S.; RAMALHO, M. A. P.; CARNEIRO, J. E. de S.; ABREU, A. de F. B. Consequences of early selection for grain type in common bean breeding. **Crop Breeding and Applied Biotechnology**, Londrina, v. 1, n. 4, p. 347-354, Oct./Dec. 2001.
- SARTORATO, A.; RAVA, C.A. Influência da cultivar e do número de inoculações na severidade da mancha angular (*Isariopsis griseola*) e nas perdas na produção do feijoeiro comum (*Phaseolus vulgaris*). **Fitopatologia Brasileira**, v.17, p.247-251, 1992.
- SARTORATO, A.; RAVA, C.A.; MENTEN, J.O.M. et al. Resistência vertical do feijoeiro comum (*Phaseolus vulgaris* L.) a *Isariopsis griseola* Sacc. **Fitopatologia Brasileira**, v.16, n.1, p.43-46, 1991.
- SARTORATO, A. Pathogenic variability and genetic diversity of *Phaeoisariopsis griseola* isolates from two counties in the state of Goias, Brazil. **Journal Phytopathology**, Berlin, v. 152, n. 7, p. 385-390, Aug. 2004.
- SARTORATO, A. Resistance of Andean and Mesoamerican common bean genotypes to *Phaeoisariopsis griseola*. **Annual Report of the Bean Improvement Cooperative**, Fort Collins, v. 48, p. 88-89, 2005.
- SARTORATO, A. Variabilidade de *Phaeoisariopsis griseola* em dois municípios do estado de Goiás. In: CONGRESSO NACIONAL DE PESQUISA DE FEIJÃO, 7., 2002, Viçosa, MG. **Anais... Viçosa:** Universidade Federal de Viçosa-MG. 2002. p. 120-124. (Deve ser este, estuda a variabilidade de *P. griseola*)
- SARTORATO, A.; ALZATE-MARIN, A. L. Analysis of the pathogenic variability of *Phaeoisariopsis griseola* in Brazil. **Annual Report of the Bean Improvement Cooperative**, Fort Collins, v. 47, p. 235-237, 2004.

- SILVA, N. O.; RAMALHO, M. A. P.; ABREU, A. de F. B.; CARNEIRO, J. E. de S. Performance of common bean families after different generations under natural selection. **Genetics and Molecular Biology**, Ribeirão Preto, v. 27, n. 4, p. 574-578, Dec. 2004.
- SINGH, S.; GUTIÉRREZ, J. A; MOLINA, A.; URREA, C.; GEPTS, P. Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits. **Crop Science**, Madison, v. 31, n. 1, p. 23-29, Jan./Feb. 1991a.
- SINGH, S.; NODARI, R.; GEPTS, P. Genetic diversity in cultivated common bean. I. Allozymes. **Crop Science**, Madison, v. 31, n. 1, p. 19-23, Jan./Feb. 1991b.
- SINGH, S. P.; TERÁN, H.; MUÑOZ, C. G.; TAKEGAMI, J. C. Two cycles of recurrent selection for seed yield in common bean. **Crop Science**, Madison, v. 39, n. 2, p. 391-397, Mar./Apr. 1999.
- STENGLEIN, S. A.; FERMOSELLE, G. E.; BALLATI, P. A. Pathogenic and molecular studies of Phaeoisariopsis griseola in Argentina. **Annual Report of the Bean Improvement Cooperative**, Fort Collins, v. 48, p. 92-93, 2005.
- TAKEDA, C. SANTOS, J. B. dos, RAMALHO, M. A. P. Progeny test for the "ESAL-501" x "A 354" common bean (Phaseolus vulgaris L.) hybrid at different locations. **Revista Brasileira de Genética**, Ribeirão Preto, v. 14, n. 3, p. 771-779, Sept. 1990.
- TEIXEIRA, F. F. Uso de marcadores microssatélites no mapeamento e identificação de QTL para caracteres de importância agronômica do feijão. 2004. 170 p. Tese (Doutorado em Genética e Melhoramento de Plantas) Universidade Federal de Lavras, Lavras MG.
- VANDERPLANK, J. E. **Disease Resistance in Plants**. New York: Academic Press, 1968.
- XU, H.; WILCOX, J. R. Recurrent selection for maturity and percent seed protein in Glycine max based on S₀ plant evaluations. **Euphytica**, Wageningen, v. 62, n. 1, p. 51-57, 1992.

ANEXOS

ANEXO A		Página
TABELA 1A	Resumo das análises de variância para o caráter nota de severidade de mancha angular (1-9) das progênies da geração $S_{0:1}$ avaliadas em Lavras (LV), do primeiro (C-I)	02
TABELA 2A	ao quinto (C-V) ciclo de seleção recorrente	82
TABELA 3A	Lavras (LV), Lambari (LB) e Patos de Minas (PM)	82
TABELA 4A	Lavras (LV), Lambari (LB) e Patos de Minas (PM)	83
TABELA 5A	Lavras (LV), Lambari (LB) e Patos de Minas (PM)	83
TABELA 6A	Lavras (LV), Lambari (LB) e Patos de Minas (PM)	84
TABELA 7A	quinto (C-V) ciclo de seleção recorrente	84 85
	Lambari (LB), Patos de Minas (PM) e Viçosa (VS)	83

TABELA 8A	Resumo das análises de variância das avaliações das progênies das gerações S _{0:2} , S _{0:3} e S _{0:4} , por local, para o caráter produtividade de grãos (g/2m ²), para o segundo ciclo de seleção recorrente (C-II), nos locais: Lavras (LV), Lambari (LB), Patos de Minas (PM) e Viçosa (VS)	86
TABELA 9A		
	progênies das gerações S _{0:2} , S _{0:3} e S _{0:4} , por local, para o caráter produtividade de grãos (g/2m ²), para o terceiro ciclo de seleção recorrente (C-III), nos locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM)	87
TABELA 10A	Resumo das análises de variância das avaliações das	0,
	progênies das gerações $S_{0:2}$ e $S_{0:3}$, por local, para o caráter produtividade de grãos (g/2m²), para o quarto ciclo de seleção recorrente (C-IV), nos locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM)	88
TABELA 11A	Resumo das análises de variância, por local, para os carateres nota de severidade da doença (1-9) e produtividade de grãos (g/2m²) das linhagens da geração	
	S _{0:5} dos ciclos I, II e II de seleção recorrente, em três locais: Lavras (LV), Lambari (LB) e Patos de Minas	89
TARELA 12A	(PM)	89
INDLEA 12A	Lavras, Lambari e Patos de Minas, para os carateres nota de severidade da doença mancha angular (1-9) e produtividade de grãos (g/2m²), das linhagens da geração	
	Son do C-I. C-II e C-III de seleção recorrente	90

82

TABELA 1A. Resumo das análises de variância para o caráter nota de severidade de mancha angular (1-9) das progênies da geração S_{0:1} avaliadas em Lavras (LV), do primeiro (C-I) ao quinto (C-V) ciclo de seleção recorrente.

Ciclo		Progênies ¹			Erro	Média das	CV (%)
	GL^2	QM	Prob	GL^2	QM	progênies	CV (70)
I	221	3,287	0,000	196	1,479	3,946	30,719
II	321	3,239	0,000	289	1,142	4,46	24,136
III	193	1,116	0,000	169	0,407	3,32	19,129
IV	286	1,329	0,000	256	0,391	3,80	16,378
V	253	0,347	0,029	225	0,271	2,83	18,296

^{1:} Não foram incluídas as testemunhas;

TABELA 2A. Resumo das análises de variância, por local, para o caráter nota de severidade de mancha angular (1-9), no primeiro ciclo de seleção recorrente (C-I), em que as progênies da geração S_{0/3} foram avaliadas em três locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM).

Geração/Local		Progênies ¹			Erro	Média das	CV (%)
Geração/Locar	GL^2	QM	Prob	GL^2	QM	progênies	CV (70)
S _{0:3} / LB	78	0,882	0,103	136	0,688	2,507	32,715
$S_{0:3}$ / LV	78	3,936	0,000	136	1,588	4,700	26,630
$S_{0:3}$ / PM	78	3,221	0,000	136	0,696	3,936	21,191

²: Grau de liberdade associado à fonte de variação.

^{1:} Não foram incluídas as testemunhas;
2: Grau de liberdade associado à fonte de variação.

TABELA 3A. Resumo das análises de variância, por local, para o caráter nota de severidade de mancha angular (1-9), no segundo ciclo de seleção recorrente (C-II), em que as progênies da geração S_{0:3} foram avaliadas em três locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM).

Geração/Local		Progênies	1	Erro		Média das	CV (%)
Geração/Locar	GL^2	QM	Prob	GL^2	QM	progênies	CV (70)
S _{0:3} / LB	61	1,027	0,000	126	0,444	2,42	26,935
$S_{0:3}$ / LV	61	1,179	0,000	105	0,543	2,91	24,654
$S_{0:3}$ / PM	61	2,142	0,000	49	0,718	2,64	31,249

TABELA 4A. Resumo das análises de variância, por local, para o caráter nota de severidade de mancha angular (1-9), no terceiro ciclo de seleção recorrente (C-III), em que as progênies da geração S_{0:3} foram avaliadas em três locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM).

Garação/Local		Progênies ¹		E	rro	Média das	CV (%)
Geração/Local	GL^2	QM	Prob	GL^2	QM	progênies	CV (70)
S _{0:3} / LB	61	0,778	0,001	105	0,384	3,08	19,827
$S_{0:3}$ / LV	61	2,065	0,000	105	0,469	3,78	17,728
$S_{0:3}$ / PM	61	0,887	0,000	105	0,294	3,81	13,984

^{1:} Não foram incluídas as testemunhas; 2: Grau de liberdade associado à fonte de variação.

^{1:} Não foram incluídas as testemunhas;
2: Grau de liberdade associado à fonte de variação.

84

TABELA 5A. Resumo das análises de variância, por local, para o caráter nota de severidade de mancha angular (1-9), no quarto ciclo de seleção recorrente (C-IV), em que as progênies da geração $S_{0:3}$ foram avaliadas em três locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM).

Carra 2 % a /I a a a	o1	Progênies ¹			rro	Média das	CV (%)
Geração/Loca	$\frac{\text{GL}^2}{\text{GL}^2}$	QM	Prob	GL^2	QM	progênies	CV (%)
S _{0:3} / LB	61	0,995	0,016	126	0,628	2,33	32,718
$S_{0:3}$ / LV	61	0,786	0,000	105	0,293	3,00	17,810
$S_{0:3}$ / PM	61	0,499	0,000	105	0.190	3,00	14,218

TABELA 6A. Resumo das análises de variância para o caráter produtividade de grãos (g/2m²) das progênies da geração S_{0:1} avaliadas em Lavras (LV), do primeiro (C-I) ao quinto (C-V) ciclo de seleção recorrente.

Ciclo		Progênies ¹			Erro	Média das	CV (%)	
	GL^2	QM	Prob	GL^2	QM	progênies	CV (70)	
I	221	21242,272	0,000	196	12241,264	355,30	31,122	
II	321	37591,044	0,000	289	18957,720	528,30	26,098	
III	193	31157,292	0,000	169	13076,224	487,82	23,503	
IV	286	19232,308	0,000	256	11816,056	521,00	20,887	
V	253	31251,080	0,012	225	23229,396	515,04	29,656	

^{1:} Não foram incluídas as testemunhas;
2: Grau de liberdade associado à fonte de variação.

^{1:} Não foram incluídas as testemunhas; 2: Grau de liberdade associado à fonte de variação.

TABELA 7A. Resumo das análises de variância das avaliações das progênies das gerações S_{0:2}, S_{0:3} e S_{0:4}, por local, para o caráter produtividade de grãos (g/2m²), para o primeiro ciclo de seleção recorrente (C-I), nos locais: Lavras (LV), Lambari (LB), Patos de Minas (PM) e Viçosa (VS).

Geração/Local -	Progênies ¹]	Erro	Média das	CV (9/)	
Geração/Locar	GL^2	QM	Prob	GL^2	QM	progênies	<i>CV</i> (%)	
S _{0:2} / LB	78	31243,215	0,000	136	9461,508	707,46	13,761	
$S_{0:2}$ / LV	78	43854,008	0,000	136	19649,251	919,93	15,226	
$S_{0:2} / VS$	78	30950,609	0,000	136	10441,661	793,15	12,934	
$S_{0:3}$ / LB	78	13322,264	0,004	136	7857,282	530,33	16,685	
$S_{0:3}$ / LV	78	35106,244	0,000	136	13121,126	520,34	21,971	
$S_{0:3}$ / PM	78	8322,170	0,000	136	2030,317	195,20	23,128	
$S_{0:3} / VS$	78	34129,666	0,000	136	5314,695	637,43	11,446	
$S_{0:4}$ / LV	22	21192,194	0,001	36	6161,088	532,96	14,825	
$S_{0:4}$ / PM	22	12615,866	0,016	36	5684,731	383,16	19,366	
S _{0:4} / VS	22	43031,311	0,000	36	3718,200	474,78	12,980	

^{1:} Não foram incluídas as testemunhas;
2: Grau de liberdade associado à fonte de variação.

86

TABELA 8A. Resumo das análises de variância das avaliações das progênies das gerações S_{0:2}, S_{0:3} e S_{0:4}, por local, para o caráter produtividade de grãos (g/2m²), para o segundo ciclo de seleção recorrente (C-II), nos locais: Lavras (LV), Lambari (LB), Patos de Minas (PM) e Viçosa (VS).

Garação/Local	Progênies ¹			I	Erro	Média das	CV (0/)
Geração/Local -	GL^2	QM	Prob	GL^2	QM	progênies	<i>CV</i> (%)
S _{0:2} / LV	97	11956,175	0,000	171	4939,392	527,04	13,362
$S_{0:2}$ / PM	97	11156,629	0,000	171	5167,171	395,24	18,178
$S_{0:2}$ / VS	97	40830,720	0,000	171	6285,055	604,99	13,113
$S_{0:3}$ / LB	61	6513,251	0,034	105	4345,368	340,71	19,391
$S_{0:3}$ / LV	61	24381,869	0,000	105	11612,576	513,72	20,936
$S_{0:3}$ / PM	61	4291,763	0,003	105	2325,838	206,11	23,383
$S_{0:3}$ / VS	61	19088,446	0,000	105	7864,715	427,73	20,738
$S_{0:4}$ / LB	33	19527,955	0,033	70	11514,583	410,78	25,979
S _{0:4} / LV	33	21152,350	0,393	55	19586,108	578,73	24,116

^{1:} Não foram incluídas as testemunhas;
2: Grau de liberdade associado à fonte de variação.

87

TABELA 9A. Resumo das análises de variância das avaliações das progênies das gerações S_{0:2}, S_{0:3} e S_{0:4}, por local, para o caráter produtividade de grãos (g/2m²), para o terceiro ciclo de seleção recorrente (C-III), nos locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM).

Geração/Local -	Progênies ¹]	Erro	Média das	CV (%)
	GL^2	QM	Prob	GL^2	QM	progênies	CV (70)
S _{0:2} / LB	97	13318,867	0,001	171	7540,160	351,42	24,547
$S_{0:2}$ / LV	97	28949,240	0,034	198	21170,884	587,98	24,735
$S_{0:3}$ / LB	61	10257,116	0,017	105	6407,231	266,10	30,594
$S_{0:3}$ / LV	61	13006,223	0,000	105	4967,081	434,04	16,361
$S_{0:3}$ / PM	61	7102,478	0,000	105	2241,286	286,28	16,594
$S_{0:4}$ / LB	33	11150,674	0,024	55	6130,069	494,07	15,741
$S_{0:4}$ / LV	33	14366,514	0,314	55	12456,719	665,21	16,690
$S_{0:4}$ / PM	33	29480,433	0,000	55	3461,312	318,57	18,183

^{1:} Não foram incluídas as testemunhas;
2: Grau de liberdade associado à fonte de variação.

TABELA 10A. Resumo das análises de variância das avaliações das progênies das gerações $S_{0:2}$ e $S_{0:3}$, por local, para o caráter produtividade de grãos (g/2m²), para o quarto ciclo de seleção recorrente (C-IV), nos locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM).

Caração/Local	progênies ¹			I	Erro	Média das	CV (%)
Geração/Local -	GL^2	QM	Prob	GL^2	QM	progênies	CV (70)
S _{0:2} / LB	141	13285,752	0,000	253	7562,728	427,71	20,285
$S_{0:2}$ / LV	141	30174,666	0,000	253	14284,764	665,97	17,909
$S_{0:2}$ / PM	141	61141,861	0,000	253	7798,684	392,91	22,336
$S_{0:3}$ / LB	61	7875,432	0,435	105	7621,910	454,51	19,347
$S_{0:3}$ / LV	61	25443,710	0,013	105	15484,305	535,05	23,475
$S_{0:3}$ / PM	61	6192,960	0,022	105	3961,084	398,32	15,863

^{1:} Não foram incluídas as testemunhas; 2: Grau de liberdade associado à fonte de variação.

TABELA 11A. Resumo das análises de variância, por local, para os carateres nota de severidade de mancha angular (1-9) e produtividade de grãos (g/2m²) das linhagens da geração S_{0:5} dos ciclos I, II e II de seleção recorrente, em três locais: Lavras (LV), Lambari (LB) e Patos de Minas (PM), safra da "seca" de 2005.

Local		Linhagens ¹			Erro	Média das	CV (0/)
	GL^2	QM	Prob	GL^2	QM	linhagens	<i>CV</i> (%)
LB^3	20	2,516	0,000	48	0,580	1,984	31,043
LV^3	20	0,978	0,001	36	0,291	2,206	17,741
PM^3	20	0,665	0,007	36	0,269	2,752	20,192
LB^4	20	7414,484	0,142	36	4945,016	450,672	16,011
LV^4	20	12405,736	0,470	36	12173,353	570,736	19,693
PM^4	20	18923,800	0,000	48	3576,236	425,873	14,214

^{1:} Não foram incluídas as testemunhas;
2: Grau de liberdade associado à fonte de variação.
3: Nota de severidade de mancha angular;

⁴: Produtividade de grãos.

TABELA 12A. Resumo da análise das variância conjuntas dos locais: Lavras, Lambari e Patos de Minas, para os carateres nota de severidade da doença mancha angular (1-9) e produtividade de grãos $(g/2m^2)$, das linhagens da geração $S_{0:5}$ do C-I, C-II e C-III de seleção recorrente.

FV	Nota d	e severidade da	doença	P	rodutividade de grã	OS
ΓV	GL	QM	Prob	GL	QM	Prob
Locais (Loc.)	2	7,281	0,000	2	430800,351	0,000
Tratamentos (Trat.)	24	13,995	0,000	24	19934,817	0,001
Linhagens (Linh.)	20	3,061	0,000	20	16002,778	0,002
Linh. Ciclo I	6	3,696	0,000	6	13819,639	0,058
Linh. Ciclo II	6	1,067	0,004	6	15203,191	0,038
Linh. Ciclo III	6	0,180	0,758	6	12695,668	0,081
Entre Ciclos	2	15,779	0,000	2	34872,286	0,006
Testemunhas (Test.)	3	36,841	0,000	3	21383,942	0,024
Linh. Vs Test.	1	164,110	0,000	1	94227,357	0,000
Loc. X Trat.	48	0,753	0,000	48	10681,041	0,018
Linh. X Loc.	40	0,552	0,012	40	11370,516	0,012
Loc. X Test.	6	1,254	0,001	6	8178,471	0,288
Loc. X Linh. Vs Test.	2	3,270	0,000	2	4399,251	0,514
Erro Médio	120	0,319		120	6566,005	
Média Tratamentos		2,687			473,405	
CV (%)		18,650			12,600	