Matrix Multiplication

#matrix multiplication

Let A be a $m \times n$ matrix, and B be a $n \times p$ matrix. The product is AB an $m \times p$ matrix, equal to:

$$AB = A (\mathbf{b_1} \dots \mathbf{b_p}) = (A\mathbf{b_1} \dots A\mathbf{b_p})$$

$$AB = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} & \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix} & \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 5 & 4 & 0 \end{bmatrix}$$

(Note: This is very similar to Matrix Vector Product)

Important!

Let A,B,C be matrices of the sizes needed for the matrix multiplication to be defined, and A is a $m \times n$ matrix.

- 1. (Associative) (AB)C = A(BC)
- 2. (Left Distributive) A(B+C) = AB + AC
- 3. (Right Distributive) (A+B)C = AC + AC
- 4. (Identity for matrix multiplication) $I_m A = A I_n$

Warnings:

- 1. (non-commutative) In general, $AB \neq BA$.
- 2. (non-cancellation) AB = AC does not mean B = C.
- 3. (Zero divisors) AB=0 does not mean that either A=0 or B=0.