ECE-219

Data Representation and Clustering

Team Member Names:

Tianpei Gu, 405863048 Yuxin Huang, 105711853 Yilin Xie, 405729012

- The dimensions of the TF-IDF matrix obtained = (7,882, 23,522)

Question 2

- The contingency matrix should be squared.

Question 3

- Homogeneity: 0.572286669402203 - Completeness: 0.5883415696007297 - V-measure: 0.580203076269998 - Adjusted Rand: 0.6283142568971879 - Adjusted mutual info: 0.5801641116732054

- Percentage of Variance Plot from r = 1 to 1,000

- Based on the measure score comparison based on different Ks above, the best choice of r for SVD is 100 and that for NMF is 2.

- Based on the results in question 5, we can see that as r increases, the performance of K-Means clustering gets better for SVD but as r gets too large the performance gets worse a little bit. The same pattern is also observed in NMF but a little bit broken.
- This is mainly because the greater the number of principal components is, the higher dimensions that K-Means needs to perform clustering will be. As the instruction mentioned in section "Clustering with Dense Text Representation", the Euclidean distance is not a good metric for higher-dimensional space because the distances between data points tends to be almost the same. In other words, the marginal information gained per number of principal components is decreasing. Therefore, this explains the non-monotonic behavior in measure scores as r increases.

Question 7

No, the measure score in question 3 is better than the average score of SVD or NMF.

Question 8

- SVD: r = 100

NMF r = 2

Best NMF Visualization

Question 9

- Comparing the K-Means clustering results with ground truth labels, the clustering result with either SVD or NMF reaches reasonable performance. The datapoints of two classes are approximately separated by the border line. It is comparatively ideal compared to sparse data.

- Dimension Reduction used: Compared with NMF, we observe SVD is faster and more accurate. Hence we choose to use SVD with n_components = 100 according to the five clustering evaluation metrics.
- SVD Metrics Report

```
==== n components: 5 ====
                        0.32467718611007096
Homogeneity:
Completeness:
                        0.35279326312000675
V-measure:
                        0.33815179415890084
Adjusted Rand:
                        0.12839451940791383
Adjusted mutual info:
                        0.3359186292650956
==== n components: 20 ====
Homogeneity:
                        0.32203003750180664
Completeness:
                        0.36925763276468926
V-measure:
                        0.3440305807311734
Adjusted Rand:
                        0.10456513767905536
Adjusted mutual info:
                        0.34175927413275015
==== n components: 100 ====
Homogeneity:
                        0.35213081962046117
Completeness:
                        0.4334267387430322
```

V-measure: 0.3885721959749402
 Adjusted Rand: 0.11948852937487153
 Adjusted mutual info: 0.3863690421217935

- ==== n_components: 200 ====

- Homogeneity: 0.31632490981493006 - Completeness: 0.4074222375789923 - V-measure: 0.35614040904433697 - Adjusted Rand: 0.09276539932106924 - Adjusted mutual info: 0.3537741974913982

Contingency Matrix (n_components = 100)

600

500

400

300

200

Question 11

- Using Euclidean Distance

- For n_components = [5,20,200], we choose n_components = 20

- Adjusted mutual info: 0.004302396679702002

Using Cosine

For n_components = [5,20,200], we choose n_components = 20

- ==== n components: 5 ====

- Homogeneity: 0.5611270649073593 - Completeness: 0.5796345993293621 - V-measure: 0.570230700482139 - Adjusted Rand: 0.4391848180501076 - Adjusted mutual info: 0.5688089018119032

- ==== n components: 20 ====

- Homogeneity: 0.5629311494502759 - Completeness: 0.5873873534964182 - V-measure: 0.574899277424936 - Adjusted Rand: 0.45065869176728857 - Adjusted mutual info: 0.5734844834119995

- ==== n_components: 200 ====

- Homogeneity: 0.5695623708583318
- Completeness: 0.5958570228831612
- V-measure: 0.5824130617157027
- Adjusted Rand: 0.4484053805159569
- Adjusted mutual info: 0.5810229819906624

0 -	557	1	0	0	1	3	1	1	4	0	1	1	14	7	5	175	10	14	4	0	0
1 -	2	3	71	2	110	603	10	7	3	2	3	2	140	2	7	1	3	2	0	0	1
2 -	1	5		33	130	238	8	3	7	1	1	11	51	2	6	1	2	1	0	10	2
3 -	3	2	85	304	440	31	49	8	2	0	2	2	43	2	6	1	2	0	0	0	3
4 -	2	5	62	152	512	60	64	16	6	7	4	4	48	1	7	2	8	1	2	0	4
5 -	1	2	74	1	19	792	7	7	2	2	0	1	61	1	10	2	4	1	1	0	5
6 -	5	7	48	89	128	24	438	55	14	25	7	2	102	9	8	3	8	0	3	0	6
7 -	3	1	5	5	2	6	18	772	65	3	7	2	53	11	15	4	16	1	1	0	7
8 -	5	1	3	6	6	3	22	74	796	5	7	2	40	4	4	6	10	2	0	0	8
9 -	6	3	1	0	1	3	12	23	6	813	51	1	47	4	5	6	10	0	2	0	9
10 -	1	2	0	1	1	4	6	6	10	24	901	2	26	2	2	3	4	4	0	0	10
11 -	9	0	15	1	3	19	7	6	1	2	1	817	44	4	2	2	58	0	0	0	11
12 -	10	0	48	25	135	42	375	125	12	3	2	4	157	6	28	6	3	2	1	0	12
13 -	38	1	8	1	6	14	13	14	16	5	1	2	104	681	47	15	15	0	9	0	13
14 -	15	1	5	1	2	30	7	18	6	3	4	2	54	10	805	3	20	1	0	0	14
15 -	30	0	3	1	0	3	2	3	1	1	0	1	42	16	9	831	12	18	24	0	15
16 -	8	0	2	3	1	3	7	14	6	4	1	8	24	13	8	8	792	0	8	0	16
17 -	15	0	1	0	0	1	4	5	5	3	2	2	23	7	2	11	55	802	2	0	17
18 -	21	2	4	0	0	1	4	6	11	2	2	3	21	66	11	10	386	19	206	0	18
19 -	149	1	0	0	1	5	1	3	3	0	2	0	19	47	8	288	83	6	12	0	19
	19	6	16	4	12	5	Ó	13	9	17	3	ż	18	11	10	7	14	8	i	15	1

- Based on the contingency matrix from question 11, we can see that using Euclidean distance performs poorly whereas by using cosine, we can see a much more clear diagonal line.

Question 13

- We compare each method with different parameter selection. Detailed results can be found in our jupyter notebook. Here we only show the best parameter results for each method.
- We set **n_components = 20** for KMeans function for all the four following approaches.
- After comparing the adjusted rand index, **UMAP** is the best approach for the K-Means clustering task on the 20-class text data.
- Sparse Representation :

-	Homogeneity:	0.34790859768457				
-	Completeness:	0.39677714833899				
-	V-measure:	0.37073942131701093				
-	Adjusted Rand:	0.12210793219608113				
-	Adjusted mutual info:	0.36856401463430694				

- NMF (r = 5):

- Homogeneity: 0.26968243804071834 - Completeness: 0.32136572364263605 - V-measure: 0.29326439865012643 - Adjusted Rand: 0.0884926868130358 - Adjusted mutual info: 0.2907395776701989

- SVD (r = 100):

- Homogeneity: 0.35213081962046117
- Completeness: 0.4334267387430322
- V-measure: 0.3885721959749402
- Adjusted Rand: 0.11948852937487153
- Adjusted mutual info: 0.3863690421217935

- UMAP (n_components = 20, metric = 'cosine') :

- Homogeneity: 0.5629311494502759 - Completeness: 0.5873873534964182 - V-measure: 0.574899277424936 - Adjusted Rand: 0.45065869176728857 - Adjusted mutual info: 0.5734844834119995

- UMAP parameters: n_components = 20, metric = 'cosine'
- Ward:
 - Homogeneity: 0.559171437894619

- Completeness: 0.5931374880726187 - V-measure: 0.5756538626069768 - Adjusted Rand: 0.43301259088929217 - Adjusted mutual info: 0.5742292249253264

- Single:

- Homogeneity: 0.005462116819168942 - Completeness: 0.23702279614125754 - V-measure: 0.010678158781292099 - Adjusted Rand: 9.375957767499856e-06 - Adjusted mutual info: 0.005714325642047656

- We can observe that 'ward' performs better than 'single'.

Question 15

DBSCAN:

- We experiment on the hyperparameter "eps".

- eps = [0.1, 0.3, 0.5, 5] reaches the best result when eps = 0.3.

- ==== DBSCAN eps = 0.1 ====

- Homogeneity: 0.42381395664827637 - Completeness: 0.34644828520616694 - V-measure: 0.3812457901966913 - Adjusted Rand: 0.007227676224187832 - Adjusted mutual info: 0.3151205280085486

- ==== DBSCAN eps = 0.3 ====

- Homogeneity: 0.46616919918527683 - Completeness: 0.5338539200765448 - V-measure: 0.49772100186585105 - Adjusted Rand: 0.25010682757064484 - Adjusted mutual info: 0.48326378343030063

- ==== DBSCAN eps = 0.5 ====

- Homogeneity: 0.11541745319628637 - Completeness: 0.5540264372727398 - V-measure: 0.19103713187562596 - Adjusted Rand: 0.02041413479283596 - Adjusted mutual info: 0.18289747176681573

- ==== DBSCAN eps = 5 ====

- Homogeneity: 0.0007970663392060461 - Completeness: 0.16274015024007613 - V-measure: 0.0015863630127374007 - Adjusted Rand: -2.107260284165674e-06 - Adjusted mutual info: 0.0008481663845411296

HDBSCAN

- We experiment on the hyperparameter "min_cluster_size".
- min_cluster_size = [100, 170, 200] reaches the best result when min_cluster_size = 200 comparing the adjusted rand index.
- We use min cluster size = 100 in this question.

```
- ==== HDBSCAN min_cluster_size = 100 ====
- Homogeneity: 0.42533582661541225
                      0.6185199576492612
- Completeness:
                      0.5040518075975402
- V-measure:
- Adjusted Rand:
                      0.2125326667023847
- Adjusted mutual info: 0.5029521923361047
- ==== HDBSCAN min cluster size = 170 ====
- Homogeneity:
                      0.42437314223474704
- Completeness:
                      0.6137889329829664
- V-measure:
                      0.5018012974597816
- Adjusted Rand: 0.21355033403002427
- Adjusted mutual info: 0.5006991637167756
- ==== HDBSCAN min cluster size = 200 ====
- Homogeneity:
                      0.42041044830587443
- Completeness: 0.6155440699375601
                      0.4995994589284899
- V-measure:
- Adjusted Rand: 0.21879853457021733
- Adjusted mutual info: 0.49858984875380913
```

- By comparing all **adjusted index scores** in Q15 using min_cluster_size = 100 for HDBSCAN, **DBSCAN with eps = 0.3 reached the best result.**
- For the DBSCAN model(eps = 0.3), there are 155 clusters.
- Noisy samples are given the label -1.

- For reference we also plot HDBSCAN contingency matrix with min_cluster_size = 100.
- There are 11 clusters.

- We've made a table according to our results. Details can be found in the code.
- According to the adjusted rand index matrix, it seems that **UMAP** as dimensionality reduction method with **K-means clustering** method work best together for 20-class text data.

Module	Alternatives	Hyperparameters	Adjusted Rand Index				
	None (with K-Means)	N/A	0.1221				
Dimensionality Reduction	SVD (with K-Means)	r = [5, 20, 100, 200]	r = 5: 0.1284 r = 20: 0.1046 r = 100: 0.1195 r = 200: 0.0928				
Reduction	NMF (with K-Means)	r = [5, 20, 100, 200]	r = 5: 0.0885 r = 20: 0.0785 r = 100: 0.0094 r = 200: 0.0065				
	UMAP (with K-Means)	n_components = [5, 20, 200] metric = 'cosine'	n_components = 5 : 0.4392 n_components = 20 : 0.4507 n_components = 200 : 0.4484				
	K-Means (with UMAP)	k = [10, 20, 50]	k = 10: 0.3349 k = 20: 0.4592 k = 50: 0.3929				
Clustering	Agglomerative Clustering (with UMAP)	n_clusters = [20] linkage criteria = 'ward'	n_clusters = 20 : 0.4330				
	DBSCAN (with UMAP)	eps = [0.1, 0.3, 0.5, 5]	eps = 0.1 : 0.0072 eps = 0.3 : 0.2501 eps = 0.5 : 0.0204 eps = 0.5 : -2.107e-06				
	HDBSCAN (with UMAP)	min_cluster_size = [100, 170, 200]	min_cluster_size = 100 : 0.2125 min_cluster_size = 170 : 0.2136 min_cluster_size = 200 : 0.2188				

Question 18 (Bonus)

Question 19

Networks can generally learn global representation of an image, and such a representation has discriminative power for a custom dataset. For example, the network can learn color representation regardless of the actual label. Lions and tigers have different labels during training, the network will first learn the low-level color information of the images, then learn to use more dense features like shape to discriminate between the two species. Although the high-level feature learned by the network will no longer be valid in customer dataset, the low-level feature will also help to have discriminative power.

- The helper code first uses VGG-16 feature layers to extract raw features, then uses a pooling layer to compress the feature, and finally performs a linear transformation to obtain the final feature representation.

Question 21

The image size is 224*224, in total 50176 pixels. The feature dimension is 4096 for one image.

Question 22

Compared with sparse TF-IDF features in text, features extracted from image are dense,
 since the feature vectors are 100% non-zero or non-empty in our experiment.

Question 23

- From the t-NSE plot we can observe that all five types of flowers are clearly classified and clustered. There are intersections between clusters which indicate some of the images are incorrectly classified, however the intersection area is very small and most instances are clustered very well.

Question 24

UMAP + K-Means is the best combination together.

Module	Alternatives	Hyperparameters	Adjusted Rand Index			
	None (with K-Means)	N/A	0.1898			
Dimensionality	SVD (with K-Means)	r = 50	0.1949			
Reduction	UMAP (with K-Means)	n_components = 50	0.4660			
	Autoencoder (with K-Means)	n_features = 50	0.1660			
	K-Means (with UMAP)	k = 50	0.4651			
Clustering	Agglomerative Clustering (with UMAP)	n_clusters = 5	0.4591			
	HDBSCAN (with UMAP)	min_cluster_size =170 Min_samples = None	0.0941			

- We use UMAP as our dimension reduction method. By using reduced-dimension features, the accuracy drops from 91.0% to 85.8%. Our model suffers from reduced-dimension features but we do not think it is significant. We also try different reduced-dimensions with UMAP and we find the accuracy fluctuates along the dimension size, and achieves highest accuracy at dimension=10.
- Correlating with Question 24, we can see that VGG features are rich enough in information about the data classes -- both the original VGG features and the reduced-dimension features achieve high accuracy scores for the MLP classifier. Yet on the other hand, clustering results obtained for the same features in Question 24 rely highly on dimension reduction.