Discrete Random Variables

 A random variable is a real-valued function defined on the sample space:

$$X:\Omega\to\mathbb{R}$$

• The notation $\{X = x\}$ denotes an event:

$${X = x} = {\omega \in \Omega | X(\omega) = x} \subseteq \Omega$$

• The **probability mass function (PMF)** for the random variable X assigns a probability to each event $\{X = x\}$:

$$p_X(x) = \mathbf{P}(\{X = x\}) = \mathbf{P}(\{\omega \in \Omega | X(\omega) = x\})$$

PMF Properties

- Let X be a random variable and S a countable subset of the real line
- The axioms of probability hold:
 - 1. $p_X(x) \ge 0$
 - 2. $\mathbf{P}(X \in S) = \sum_{x \in S} p_X(x)$
 - 3. $\sum_{x} p_X(x) = \overline{1}$
- If g is a real-valued function, then Y = g(X) is a random variable:

$$\omega \stackrel{X}{\rightarrow} X(\omega) \stackrel{g}{\rightarrow} g(X(\omega)) = Y(\omega)$$

with PMF

$$p_Y(y) = \sum_{x \mid g(x) = y} P_X(x)$$

Expectation

Given a random variable X with PMF $p_X(x)$:

- $\mathbf{E}[X] = \sum_{x} x p_X(x)$
- Given a derived random variable Y = g(X):

$$\mathbf{E}[g(X)] = \sum_{x} g(x)p_X(x) = \sum_{y} yp_Y(y) = E[Y]$$
$$\mathbf{E}[X^n] = \sum_{x} x^n p_X(x)$$

• Linearity of Expectation: $\mathbf{E}[aX + b] = a\mathbf{E}[X] + b$.

Variance

The expected value of a derived random variable g(X) is

$$\mathbf{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

The variance of X is calculated as

- $var(X) = \mathbf{E}[(X \mathbf{E}[X])^2] = \sum_{X} (X \mathbf{E}[X])^2 p_X(X)$
- $var(X) = \mathbf{E}[X^2] \mathbf{E}[X]^2$
- $var(aX + b) = a^2 var(X)$

Multiple Random Variables

Let X and Y denote random variables defined on a sample space Ω .

The joint PMF of X and Y is denoted by

$$p_{X,Y}(x,y) = \mathbf{P}(\{X = x\} \cap \{Y = y\})$$

 The marginal PMFs of X and Y are given respectively as

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$
$$p_Y(y) = \sum_{y} p_{X,Y}(x,y)$$

Functions of Multiple Random Variables

Let Z = g(X, Y) be a function of two random variables

• PMF:

$$p_Z(z) = \sum_{(x,y)|g(x,y)=z} p_{X,Y}(x,y)$$

Expectation:

$$\mathbf{E}[Z] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$$

• Linearity: Suppose g(X, Y) = aX + bY + c.

$$\mathbf{E}[g(X,Y)] = a\mathbf{E}[X] + b\mathbf{E}[Y] + c$$

Conditioned Random Variables

• If A is an event with P(A) > 0, then

$$p_{X|A}(x) = \mathbf{P}(\lbrace X = x \rbrace | A) = \frac{\mathbf{P}(\lbrace X = x \rbrace \cap A)}{\mathbf{P}(A)}$$

• If Y is a random variable and $P_Y(y) > 0$, then

$$p_{X|Y}(x|y) = \frac{\mathbf{P}(\{X = x\} \cap \{Y = y\})}{\mathbf{P}(\{Y = y\})} = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

• $p_X(x) = \sum_{i=1}^n \mathbf{P}(A_i) p_{X|A_i}(x)$

Conditional Expectation

Let X and Y be random variables on a sample space Ω .

• Given an event A with P(A) > 0

$$\mathbf{E}[X|A] = \sum_{x} x p_{X|A}(x)$$

• If $P_Y(y) > 0$, then

$$\mathbf{E}[X|\{Y=y\}] = \sum_{x} x p_{X|Y}(x|y)$$

• Total Expectation Theorem: Let A_1, \ldots, A_n be a partition of Ω . If $\mathbf{P}(A_i) > 0 \ \forall i$, then

$$\mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{P}(A_i) \mathbf{E}[X|A_i]$$

Independence

Let X and Y be random variables defined on Ω and let A be an event with $\mathbf{P}(A) > 0$.

• *X* is independent of *A* if either of the following hold:

$$p_{X|A}(x) = p_X(x)$$

 $p_{X,A}(x) = p_X(x)\mathbf{P}(A)$

for each x.

 X and Y are independent if, for each x and y, either of the following hold:

$$p_{X|Y}(x|y) = p_X(x)$$

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

Independence

If X and Y are independent, then the following hold:

- If g and h are real-valued functions, then g(X) and h(Y) are independent.
- E[XY] = E[X]E[Y]
- var(X + Y) = var(X) + var(Y)

Given independent random variables X_1, \ldots, X_n ,

$$var(X_1+X_2+\cdots+X_n) = var(X_1)+var(X_2)+\cdots+var(X_n)$$

Canonical Discrete Distributions

	X	$p_X(k)$	E [X]	var(X)
Bernoulli	1 success	$\begin{cases} p & k=1\\ 1-p & k=0 \end{cases}$	р	p(1 - p)
	0 failure	,		
Binomial	Number of successes	$\binom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)
	in n Bernoulli trials	$\hat{k}=0,1,\ldots,n$	p	
Geometric	Number of trials	$(1-p)^{k-1}p$	1	1-p
	until first success	$k=1,2,\ldots$	p	$\frac{1-p}{p^2}$
Uniform	An integer in	$\begin{cases} \frac{1}{b-a+1} & k = a, \dots, b \\ 0 & \text{otherwise} \end{cases}$	$\frac{a+b}{2}$	(b-a)(b-a+2)
	the interval [a,b]	0 otherwise	2	12
Poisson	Number of rare events	$k = \stackrel{\frac{e^{-\lambda}\lambda^k}{k!}}{0,1,2,\ldots}$	λ	λ

Probability Density Functions (PDF)

For a continuous RV X with PDF $f_X(x)$ (≥ 0),

$$P(a \le X \le b) = \int_{a}^{b} f_{X}(x) dx$$

$$P(x \le X \le x + \delta) \approx f_{X}(x) . \delta$$

$$P(X \in A) = \int_{A}^{b} f_{X}(x) dx$$

Remarks:

- if X is continuous, $P(X = x) = 0 \ \forall x!!$
- $f_X(x)$ may take values larger than 1.

Normalization property:

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Mean and variance of a continuous RV

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$Var(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx$$

$$= E[X^2] - (E[X])^2 (\ge 0)$$

$$E[aX + b] = aE[X] + b$$

$$Var(aX + b) = a^2 Var(X)$$

Cumulative Distribution Functions

Definition:

$$F_X(x) = P(X \le x)$$

monotonically increasing from 0 (at $-\infty$) to 1 (at $+\infty$).

Continuous RV:

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt$$
 (continuous)
$$f_X(x) = \frac{dF_X}{dx}(x)$$

Cumulative Distribution Functions

Definition:

$$F_X(x) = P(X \le x)$$

monotonically increasing from 0 (at $-\infty$) to 1 (at $+\infty$).

Discrete RV:

$$F_X(x) = P(X \le x) = \sum_{k \le x} p_X(k)$$
 (piecewise constant)

$$p_X(k) = F_X(k) - F_X(k-1)$$
 (height of step at k)

Normal/Gaussian Random Variables

Standard Normal RV: N(0,1):

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

 $E[X] = 0, Var(X) = 1$

General normal RV: $N(\mu, \sigma^2)$:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

$$E[X] = \mu, \quad Var(X) = \sigma^2$$

Normal/Gaussian Random Variables

- if Y = aX + b, then $Y \sim N(a\mu + b, a^2\sigma^2)$.
- CDF for standard normal $\phi(.)$ can be read in a table.
- To evaluate CDF of a general standard normal, express it as a function of a standard normal:

$$X \sim N(\mu, \sigma^2) \Leftrightarrow \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = \phi\left(\frac{x - \mu}{\sigma}\right)$$

where $\phi(.)$ denotes the CDF of a standard normal.

Derived distributions

Def: PDF of a *function* of a RV X with known PDF: Y = g(X). Method:

• Get the CDF:

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = \int_{x|g(x) \le y} f_X(x) dx$$

• Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Law of iterated expectations

E[X|Y] is a random variable that is a function of Y (the expectation is taken with respect to X). To compute E[X|Y], first express E[X|Y=y] as a function of y.

Law of iterated expectations:

$$E[X] = E[E[X|Y]]$$

(equality between two real numbers)

Law of conditional variances

Var(X|Y) is a random variable that is a function of Y (the variance is taken with respect to X).

To compute Var(X|Y), first express

$$Var(X|Y = y) = E[(X - E[X|Y = y])^{2}|Y = y]$$

as a function of y.

Law of conditional variances:

$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$

(equality between two real numbers)

Sum of a random number of iid RVs

N discrete RV, X_i i.i.d and independent of N. $Y = X_1 + ... + X_N$. Then: E[Y] = E[X]E[N]

 $Var(Y) = E[N]Var(X) + (E[X])^{2}Var(N)$

Covariance and Correlation

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Correlation: (has no dimension)

$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} \in [-1, 1]$$

By definition, X, Y are uncorrelated if and only if Cov(X, Y) = 0.

Remark: X, Y independent $\Rightarrow \operatorname{Cov}(X, Y) = 0$ (the converse is not true)

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

Some Continuous Random Variables

	$f_X(x)$	$F_X(x)$	$\mathbf{E}[X]$	var(X)
Uniform $([a,b])$	$\begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0 & \text{o.w.} \end{cases}$	$ \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & \text{o.w.}(x > b) \end{cases} $	<u>a+b</u> 2	(b-a) ² 12
Exponential (λ)	$\begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{o.w.} \end{cases}$	$\begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & \text{o.w.} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normal	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$		μ	σ^2
(μ, σ^2)	V			

Markov Inequality

 If X is a random variable that is nonnegative with probability 1,then

$$\mathbf{P}(X \ge a) \le \frac{\mathbf{E}[X]}{a}$$
, for all $a > 0$.

- Intuitive meaning if a nonnegative random variable has a small expectation, then the probability that it takes on a large value must be small.
- There are simple examples which prove that the Markov inequality can be tight. However, in general, the Markov inequality is quite loose.

Chebyshev Inequality

• For any random variable X with finite mean μ and variance σ^2 ,

$$\mathbf{P}(|X-\mu| \geq k) \leq \frac{\sigma^2}{k^2}$$
, for all $k > 0$.

$$\mathbf{P}(|X - \mu| \ge c\sigma) \le \frac{1}{c^2}$$
, for all $c > 0$.

Chebyshev Inequality

- The Chebyshev inequality is just a special case of the Markov inequality. As such, the bounds it gives are often quite loose.
- Intuitive meaning a random variable with small variance cannot deviate far from its expected value.
- Common Question Use Chebyshev inequality to estimate probability a sample average deviates far from its mean.