Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Math for Machine Learning

Linear algebra - Week 3

Vectors

Matrices

Dot product

Matrix multiplication

Linear transformations

Vectors and Linear Transformations

Machine Learning motivation

Neural Networks - Al generated images

Al-generated human faces.

Generative learning: Generating realistic looking images.

Text-to-image and image-to-text generation

Vectors and Linear Transformations

Vectors and their properties

Pythagorean Theorem

Norms

Norms

L1-norm = $|(a,b)|_1 = |a| + |b|$

Norms

L1-norm = $|(a,b)|_1 = |a| + |b|$

L2-norm =
$$|(a,b)|_2 = \sqrt{a^2 + b^2}$$

Norm of a vector

Norm of a vector

Norm of a vector

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$\tan(\theta) = \frac{3}{4}$$

$$\tan(\theta) = \frac{3}{4}$$

$$\theta = \arctan(3/4) = 0.64$$

$$\tan(\theta) = \frac{3}{4}$$

$$\theta = \arctan(3/4) = 0.64 = 36.87^{\circ}$$

Vectors and Linear Transformations

Sum and difference of vectors

$$u + v = (4 + 1, 1 + 3) = (5,4)$$

$$u + v = (4 + 1, 1 + 3) = (5,4)$$

$$u + v = (4 + 1, 1 + 3) = (5,4)$$

$$u - v = (4 - 1, 1 - 3) = (3, -2)$$

$$u - v = (4 - 1, 1 - 3) = (3, -2)$$

$$u - v = (4 - 1, 1 - 3) = (3, -2)$$

$$u - v = (4 - 1, 1 - 3) = (3, -2)$$

Vectors and Linear Transformations

Distance between vectors

$$|u-v|_1 = |5| + |-3| = 8$$

L1-distance

$$|u-v|_1 = |5| + |-3| = 8$$
L1-distance

$$|u-v|_1 = |5| + |-3| = 8$$

$$|u-v|_1 = |5| + |-3| = 8$$
L1-distance

$$|u - v|_2 = \sqrt{5^2 + 3^2} = 5.83$$

L2-distance

$$|u-v|_1 = |5| + |-3| = 8$$

$$|u - v|_2 = \sqrt{5^2 + 3^2} = 5.83$$

L2-distance

 $cos(\theta)$

Cosine distance

Vectors and Linear Transformations

$$u = (1,2)$$

$$u = (1,2)$$

$$\lambda = 3$$

$$u = (1,2)$$

$$\lambda = 3$$

$$\lambda u = (3,6)$$

$$u = (1,2)$$

$$\lambda = 3$$

$$\lambda u = (3,6)$$

$$u = (1,2)$$

$$u = (1,2)$$
$$\lambda = -2$$

$$\lambda = -2$$

$$u = (1,2)$$

$$\lambda = -2$$

$$\lambda u = (-2, -4)$$

$$u = (1,2)$$

$$\lambda = -2$$

$$\lambda u = (-2, -4)$$

$$u = (1,2)$$

$$\lambda = -2$$

$$\lambda u = (-2, -4)$$

Vectors and Linear Transformations

The dot product

A shortcut for linear operations

A shortcut for linear operations

Quantities

2 apples

4 bananas

1 cherry

Quantities

2 apples

4 bananas

1 cherry

Prices

apples: \$3

bananas: \$5

cherries: \$2

Quantities

2 apples

4 bananas

1 cherry

Prices

apples: \$3

bananas: \$5

cherries: \$2

Total price

Quantities

2 apples

4 bananas

1 cherry

Prices

apples: \$3

bananas: \$5

cherries: \$2

Total price

Quantities

2 apples 4 bananas

1 cherry

Prices

apples: \$3

bananas: \$5

cherries: \$2

5

Total price

$$2 \cdot 3 + 4 \cdot 5 + 1 \cdot 2 = 28$$

$$2 \cdot 3 + 4 \cdot 5 + 1 \cdot 2 = 28$$

$$2 \cdot 3 + 4 \cdot 5 + 1 \cdot 2 = 28$$

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$L2-norm = \sqrt{dot\ product(u,u)}$$

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$L2-norm = \sqrt{dot \ product(u,u)}$$

$$|u|_2 = \sqrt{\langle u, u \rangle}$$

Vectors and Linear Transformations

Geometric dot product

$$\langle u, v \rangle = 0$$

$$\langle u, u \rangle = |u|^2$$

$$\langle u, u \rangle = |u|^2$$

$$\langle u, u \rangle = |u|^2$$

$$\langle u, v \rangle = 0$$

$$\langle u, u \rangle = |u|^2 = |u| \cdot |u|$$

$$\langle u, u \rangle = |u|^2 = |u| \cdot |u|$$

$$\langle u, v \rangle = |u| \cdot |v|$$

$$\langle u, v \rangle = |u'| \cdot |v|$$

$$\langle u, u \rangle = |u|^2 = |u| \cdot |u|$$

$$\langle u, v \rangle = |u| \cdot |v|$$

$$\langle u, v \rangle = |u'| \cdot |v|$$

$$\langle u, v \rangle = 0$$

$$\langle u, v \rangle > 0$$

$$\langle u, v \rangle = 0$$

Deept

Vectors and Linear Transformations

Multiplying a matrix by a vector

$$2a + 4b + c = 28$$

2 4 1 · \$ \(b \) b = \$ 28

\$ \(c \)

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

$$a + b + c = 10$$

$$a + b + 2c = 12$$

$$a + b + 2c = 12$$

$$a + b + 2c = 12$$

$$a + b + 2c = 12$$

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

Equations as dot product

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

Equations as dot product

System of equations

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

Matrix product

Equations as dot product

System of equations

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

Matrix product

1	1	1	а		10
1	2	1	b	=	15
1	1	2	С		12

Vectors and Linear Transformations

Vectors and Linear Transformations

Vectors and Linear Transformations

Matrix multiplication

$$\begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 2 & 4 \end{bmatrix}$$

Vectors and Linear Transformations

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

1	0	0	0	0	а
0	1	0	0	0	b
0	0	1	0	0	С
0	0	0	1	0	d
0	0	0	0	1	е

1	0	0	0	0	а		а
0	1	0	0	0	b		b
0	0	1	0	0	С	=	С
0	0	0	1	0	d		d
0	0	0	0	1	е		е

Vectors and Linear Transformations

a b c d

а	b		3	1
С	d	•	1	2

а	b		3	1		1	0
С	d	•	1	2	=	0	1

$$\begin{array}{c|c} c & d & \frac{3}{1} = 0 \end{array}$$

$$\begin{array}{c|c} c & d & \frac{1}{2} = 1 \end{array}$$

a b
$$\frac{3}{1} = 1$$

$$3a + 1b = 1$$

a b
$$\frac{1}{2} = 0$$

$$1a + 2b = 0$$

$$\begin{array}{c|c} c & d & \frac{3}{1} = 0 \end{array}$$

$$3c + 1d = 0$$

$$\begin{array}{c|c} c & d & \frac{1}{2} = 1 \end{array}$$

$$1c + 2d = 1$$

$$3a + 1b = 1$$

$$a = \frac{2}{5}$$

a b
$$\frac{1}{2} = 0$$

$$1a + 2b = 0$$

$$b = -\frac{1}{5}$$

$$\begin{array}{c|c} c & d & \frac{3}{1} = 0 \end{array}$$

$$3c + 1d = 0$$

$$c = -\frac{1}{5}$$

$$\begin{array}{c|c} c & d & \frac{1}{2} = 1 \end{array}$$

$$1c + 2d = 1$$

$$d = \frac{3}{5}$$

Quiz

• Find the inverse of the following matrix. If you find that the task is impossible, feel free to click on "I couldn't find it"

5 2 1 2

By solving the corresponding system of linear equations, we get the
following

$$\begin{array}{c|c} 5 & 2 & b \\ \hline d & = 0 \end{array}$$

5	2	а		4
5		С	=	
		b		
5	2	d	=	0
1	2	а	=	0
		С	'	
4	0	b		4
	2	d	=	1

By solving the corresponding system of linear equations, we get the following.

5	2	а	= 1	• 5a + 2c = 1	
5 2	С		• Ja + ZC = 1		
		b			
5	2	d	= 0	• $5b + 2d = 0$	
1	2	а	= 0	• $a + 2c = 0$	
		С			
1	2	b	= 1	• b + 2d = 1	
- 1	_		_	~ · _u _ ·	

d

			1		2	С	a
-	2	а					
5	2		=	1			•

•
$$b + 2d = 1$$

•
$$5a + 2c = 1$$

•
$$a = 1/4$$

$$\frac{b}{d} = 0$$

•
$$5b + 2d = 0$$

•
$$b = -1/4$$

$$\begin{array}{c|c} 1 & 2 & \hline & a \\ \hline & & \end{array} = \begin{array}{c} 0 \\ \hline \end{array}$$

•
$$a + 2c = 0$$

•
$$b + 2d = 1$$

					_		
1	2	•	С	d	=	0	1

•
$$5a + 2c = 1$$

•
$$a = 1/4$$

$$\frac{b}{d} = 0$$

•
$$5b + 2d = 0$$

•
$$b = -1/4$$

$$\begin{array}{c|c} 1 & 2 & a \\ \hline \end{array} = \begin{array}{c} 0 \\ \end{array}$$

•
$$a + 2c = 0$$

•
$$c = -1/8$$

•
$$b + 2d = 1$$

5	5 2		_	1
5		_	=	- 1
		C		

•
$$a = 1/4$$

$$\frac{b}{d} = 0$$

•
$$5b + 2d = 0$$

•
$$b = -1/4$$

$$\begin{array}{c|c} 1 & 2 & \hline & a \\ \hline & & & \end{array} = \begin{array}{c} 0 \\ \hline \end{array}$$

•
$$a + 2c = 0$$

•
$$c = -1/8$$

•
$$b + 2d = 1$$

•
$$d = 5/8$$

Quiz

• Find the inverse of the following matrix. If you find that the task is impossible, feel free to click on "I'm reaching a dead end"

1 1 2 2

• The inverse doesn't exist!

We need to solve the following system of linear equations:

$$a + c = 1$$

$$2b + 2d = 1$$

$$2a + 2c = 0$$

$$b + d = 0$$

This is clearly a contradiction, since equation 1 says a+c=1, and equation 3 says 2a+2c=0.

Vectors and Linear Transformations

$$5^{-1} = 0.2$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$\frac{1}{2} \quad \frac{1}{2} = \frac{?}{?} \quad ?$$

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$\frac{1}{2} \quad \frac{1}{2} = \frac{?}{?} \quad ?$$

Non-singular matrix

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

Non-singular matrix

Non-singular matrix

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

Non-singular matrix

Non-singular matrix

Singular matrix

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$\begin{array}{c|ccc}
 1 & 1 \\
 2 & 2
 \end{array}
 = \begin{array}{c|ccc}
 ? & ? \\
 ? & ?
 \end{array}$$

Non-singular matrix Invertible Non-singular matrix

Singular matrix

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

Non-singular matrix Invertible

Non-singular matrix Invertible

Singular matrix

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

Non-singular matrix Invertible Non-singular matrix Invertible Singular matrix Non-invertible

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

Non-singular matrix Invertible

Singular matrix Non-invertible

Det = 5

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

Non-singular matrix Invertible

$$Det = 5$$

Non-singular matrix Invertible

$$Det = 8$$

Singular matrix Non-invertible

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

$$\begin{array}{c|ccc}
 1 & 1 \\
 2 & 2
 \end{array}
 = \begin{array}{c|ccc}
 ? & ? \\
 ? & ?
 \end{array}$$

Non-singular matrix Invertible

$$Det = 5$$

Non-singular matrix Invertible

$$Det = 8$$

Singular matrix Non-invertible

$$Det = 0$$

Which matrices have inverses?

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

Non-singular matrix Invertible Non-singular matrix Invertible

Det = 8

Non-zero determinants

Singular matrix Non-invertible

$$Det = 0$$

Which matrices have inverses?

$$5^{-1} = 0.2$$

$$8^{-1} = 0.125$$

$$0^{-1} = ???$$

5	2	- 1	0.25	-0.25
1	2	=	-0.125	0.625

1	1	_	?	?
2	2	=	?	?

Non-singular matrix Invertible Non-singular matrix Invertible

Det = 8

Non-zero determinants

Singular matrix Non-invertible

Zero determinant

Vectors and Linear Transformations

Neural networks and matrices

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Scores:

Lottery: ____ points

Win: ____ points

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Scores:

Lottery: ____ points

Win: ____ points

Examples

Lottery: 3 point

Win: 2 points

"Win, win the lottery!": 7points

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Scores: Examples

Win: ____ points "Win, win the lottery!" : 7points

Rule:

If the number of points of the sentence is bigger than _____, then the email is spam.

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Scores:	Examples	
Lottery: points	Lottery: 3 point Win: 2 points	
Win: points	"Win, win the lottery!" : 7points	
Rule: If the number of points of the sentence is bigger than then the email is spam.		
Goal: Find the best point Lottery: point Win: point	nts and threshold	

Threshold: ____ points

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Score	> 1.5?
2	Yes
3	Yes
0	No
2	Yes
1	No
1	No
4	Yes
2	Yes
3	Yes

Solution:

Lottery: 1 point Win: 1 point

Threshold: 1.5 points

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Model
1
1

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

		Model	
2	1	1	= 3
2	I	1	_ 0

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

		Model	
2	4	1	= 3
2	2 1		_ 0

Check: > 1.5?

Spam

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Model
1
1

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Model
1
1

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

		2
	ı	3
Model		0
1	=	2
1		1
		1
		4
		2
		3

Prod

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

	ı	3
Model		0
1	=	2
1		1
		1
		4

Prod Check: >1.5?

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

		3
Model		0
1	=	2
1		1
		1
		4

Check
Yes
Yes
No
Yes
No
No
Yes
Yes
Yes

Perceptrons

Spam	Word1	Word2	 WordN			Prod		Check
Yes								Yes
Yes				Model			Check:	Yes
No							Oncok:	No
Yes					_			Yes
No					=			No
No								No
Yes								Yes
Yes								Yes
Yes								Yes

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Model
1
1

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Model 1

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Threshold

$$1 \cdot \text{Win} + 1 \cdot \text{Lottery} - 1.5 > 0$$

$$1 \cdot \text{Win} + 1 \cdot \text{Lottery} - 1.5 > 0$$
 Bias

Model
1
1

Spam	Lottery	Win	Bias
Yes	1	1	1
Yes	2	1	1
No	0	0	1
Yes	0	2	1
No	0	1	1
No	1	0	1
Yes	2	2	1
Yes	2	0	1
Yes	1	2	1

Check

Threshold

 $1 \cdot \text{Win} + 1 \cdot \text{Lottery} - 1.5 > 0$

 $1 \cdot \text{Win} + 1 \cdot \text{Lottery} - 1.5 > 0$ Bias

Model 1 1

Spam	Lottery	Win	Bias
Yes	1	1	1
Yes	2	1	1
No	0	0	1
Yes	0	2	1
No	0	1	1
No	1	0	1
Yes	2	2	1
Yes	2	0	1
Yes	1	2	1

Check

Threshold

 $1 \cdot \text{Win} + 1 \cdot \text{Lottery} - 1.5 > 0$

 $1 \cdot \text{Win} + 1 \cdot \text{Lottery} -1.5 > 0$

Bias

Check: > 1.5?

1 1 -1.5

Bias

Spam	Lottery	Win	Bias
Yes	1	1	1
Yes	2	1	1
No	0	0	1
Yes	0	2	1
No	0	1	1
No	1	0	1
Yes	2	2	1
Yes	2	0	1
Yes	1	2	1

Check

Threshold

 $1 \cdot \text{Win} + 1 \cdot \text{Lottery} - 1.5 > 0$

 $1 \cdot \text{Win} + 1 \cdot \text{Lottery} - 1.5 > 0$

Bias

Check: > 0?

AND	X	у
No	0	0
No	1	0
No	0	1
Yes	1	1

AND	X	у
No	0	0
No	1	0
No	0	1
Yes	1	1

Model	
1	
1	

AND	X	у
No	0	0
No	1	0
No	0	1
Yes	1	1

Model	
1	
1	

Dot prod	
0	
1	
1	
2	

AND	X	у
No	0	0
No	1	0
No	0	1
Yes	1	1

1	Model
1	1
Į.	1

Dot prod
0
1
1
2

AND	X	у
No	0	0
No	1	0
No	0	1
Yes	1	1

Model
1
1

Dot prod	
0	
1	
1	
2	

Check
No
No
No
Yes

AND	X	у
No	0	0
No	1	0
No	0	1
Yes	1	1

AND	Х	у
No	0	0
No	1	0
No	0	1
Yes	1	1

The perceptron

The perceptron

Vectors and Linear Transformations

Conclusion