LinAlgDM I. 22. gyakorlat: Lineáris leképezések

2023. december 7.

1 Elméleti összefoglaló

Definition 1. (Homogén) lineáris leképezés

Legyenek V és W vektorterek. Az $L:V\to W$ függvényt (homogén) lineáris leképezésnek nevezzük, ha teljesíti az alábbi két tulajdonságot:

- (a) (linearitás) minden $\underline{u}, \underline{v} \in V$ esetén $L(\underline{u} + \underline{v}) = L(\underline{u}) + L(\underline{v})$,
- (b) (homogenitás) minden $\underline{u} \in V$ és minden $\lambda \in \mathbb{R}$ esetén $L(\lambda \underline{u}) = \lambda L(\underline{u})$.

Két fontos elnevezés: Ha $\underline{w} = L(\underline{u})$, akkor \underline{w} az \underline{u} vektor képe, míg \underline{u} a \underline{w} vektor őse (vagy ősképe).

Megjegyzés 1. A lineáris leképezés és a homogén lineáris leképezés kifejezések pontosan ugyanazt jelentik! Ha a definícióban szereplő két tulajdonság közül csak az egyik teljesül, *L*-et sem homogén lineáris leképezésnek, sem lineáris leképezésnek nem nevezhetjük!

Megjegyzés 2. A definícióban szereplő két feltétel egy feltételként is leírható:

(a,b) (homogenitás + linearitás) minden $\underline{u}, \underline{v} \in V$ és minden $\lambda \in \mathbb{R}$ esetén $L(\underline{u} + \lambda \underline{v}) = L(\underline{u}) + \lambda L(\underline{v})$.

Megjegyzés 3. Ha az értelmezési tartomány és az értékkészlet ugyanaz a vektortér (V = W), akkor az $L: V \to V$ (homogén) lineáris leképezést (homogén) lineáris transzformációnak nevezzük.

Theorem 2. Két (homogén) lineáris leképezés összetett függvénye

Két tetszőleges (homogén) lineáris leképezésből képzett összetett függvény – ha létezik –, szintén (homogén) lineáris leképezés.

Egy $L:V\to W$ (homogén) lineáris leképezés további fontos tulajdonságai:

- 1. Nullvektor képe: Jelölje $\underline{0}_{v} \in V$ és $\underline{0}_{w} \in W$ a V és W vektorterek összeadásra vonatkoztatott egységelemeit (azaz nullvektorait). Ekkor $L(\underline{0}_{v}) = \underline{0}_{w}$.
- 2. **Kivonás:** $L(\underline{u} \underline{v}) = L(\underline{u}) L(\underline{v})$ mivel $L(\underline{u} \underline{v}) = L(\underline{u} + (-1)\underline{v}) = L(\underline{u}) + (-1)L(\underline{v})$.
- 3. Lineáris kombinációt lineáris kombinációba visz át: $L(c_1\underline{v}_1 + \cdots + c_m\underline{v}_m) = c_1L(\underline{v}_1) + \cdots + c_mL(\underline{v}_m)$
- 4. Bázis leképezése: Ha V egy n-dimenziós vektortér, aminek $v=\{\underline{v}_1,\ldots,\underline{v}_n\}$ egy bázisa, akkor minden $\underline{u}\in V$ vektor $L(\underline{u})$ képe felírható a V bázisvektorai képeinek, vagyis az $L(\underline{v}_1),\ldots,L(\underline{v}_n)$ vektoroknak a lineáris kombinációjaként, azaz

minden
$$\underline{u} \in V$$
 esetén létezik $c_1, \ldots, c_n \in \mathbb{R}$, amelyre $L(\underline{u}) = c_1 L(\underline{v}_1) + \cdots + c_n L(\underline{v}_n)$.

Azonban a bázisvektorok képei, vagyis az $L(\underline{v}_1), \dots, L(\underline{v}_n)$ vektorok nem feltétlenül alkotnak bázist W-ben. Ilyen például, ha W dimenziója (m) magasabb, mint a V kiindulási tér dimenziója (n), vagyis n < m.

2 Feladatok

Feladat 1. Legyen L a térbeli vektorok merőleges vetítése az xy-síkra: $L: \mathbb{R}^3 \to \mathbb{R}^2$, $L(\begin{pmatrix} x \\ y \\ z \end{pmatrix}) = \begin{pmatrix} x \\ y \end{pmatrix}$. Igazoljuk, hogy L lineáris leképezés!

Megoldás. A feladatokat először geometriai úton oldjuk meg, utána tekintsük a megoldásban szereplőket!

Legyenek
$$\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 és $\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ térbeli vektorok, $\lambda \in \mathbb{R}$. Ellenőrizzük a két tulajdonság teljesülését:

$$\begin{split} linearit\'{as:} \ L(\underline{u}+\underline{v}) &= L(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}) = L(\begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}) = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} = \\ &= \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = L(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}) + L(\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}) = L(\underline{u}) + L(\underline{v}), \\ homogenit\'{as:} \ L(\lambda \cdot \underline{u}) &= L(\lambda \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}) = L(\begin{pmatrix} \lambda \cdot u_1 \\ \lambda \cdot u_2 \\ \lambda \cdot u_3 \end{pmatrix}) = \begin{pmatrix} \lambda \cdot u_1 \\ \lambda \cdot u_2 \end{pmatrix} = \lambda \cdot L(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}) = \lambda \cdot L(\underline{u}) \end{split}$$

Mivel mindkét tulajdonságot teljesíti, L lineáris leképezés.

Ha valaki jobban szeretné, a fenti két vizsgálatot egyszerre is elvégezheti Megjegyzés 2 alapján:

$$L(\underline{u} + \lambda \cdot \underline{v}) = L(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}) = L(\begin{pmatrix} u_1 + \lambda \cdot v_1 \\ u_2 + \lambda \cdot v_2 \\ u_3 + \lambda \cdot v_3 \end{pmatrix}) = \begin{pmatrix} u_1 + \lambda \cdot v_1 \\ u_2 + \lambda \cdot v_2 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = L(\underline{u}) + \lambda \cdot L(\underline{v})$$

Mivel ez a feltétel teljesül, L lineáris leképezés.

Feladat 2. Legyen L a térbeli vektorok nyújtása/zsugorítása: $L: \mathbb{R}^3 \to \mathbb{R}^3$, $L(\begin{pmatrix} x \\ y \\ z \end{pmatrix}) = c \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, ahol c rögzített pozitív szám (c > 1 esetén nyújtásról, 0 < c < 1 esetén zsugorításról beszélünk). Igazoljuk, hogy L lineáris transzformáció!

Megoldás. Tekintsük az $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ és $\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ tetszőleges \mathbb{R}^3 -beli vektorokat, és legyen $\lambda \in \mathbb{R}$ tetszőleges. A linearitást és a homogenitást ellenőrizhetjük külön-külön, de megtehetjük ezt egyszerre is Megjegyzés 2 alapján:

$$\begin{split} L(\underline{u} + \lambda \cdot \underline{v}) &= L(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}) = L(\begin{pmatrix} u_1 + \lambda \cdot v_1 \\ u_2 + \lambda \cdot v_2 \\ u_3 + \lambda \cdot v_3 \end{pmatrix}) = c \cdot \begin{pmatrix} u_1 + \lambda \cdot v_1 \\ u_2 + \lambda \cdot v_2 \\ u_3 + \lambda \cdot v_3 \end{pmatrix} = \\ &= c \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + c \cdot \begin{pmatrix} \lambda \cdot v_1 \\ \lambda \cdot v_2 \\ \lambda \cdot v_3 \end{pmatrix} = c \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \lambda \cdot (c \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}) = L(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}) + \lambda \cdot L(\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}) = L(\underline{u}) + \lambda \cdot L(\underline{v}) \end{split}$$

Mivel az összevont feltétel teljesül, L lineáris transzformáció.

Feladat 3. Igazoljuk, hogy a térbeli vektorok tükrözése az origóra: $L: \mathbb{R}^3 \to \mathbb{R}^3$, $L\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ -z \end{pmatrix}$ lineáris transzformáció!

 $\textbf{Megold\'as.} \ \ \textit{Legyenek} \ \underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \ \textit{\'es} \ \underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \ \textit{tetsz\"oleges} \ \mathbb{R}^3 \text{-beli vektorok \'es legyen } \lambda \in \mathbb{R} \ \textit{tetsz\"oleges}. \ \textit{Megje-legeney}$

gyzés 2 alapján egyszerre megvizsgálhatjuk a linearitást és a homogenitást:

$$L(\underline{u}+\lambda\cdot\underline{v})=L(\begin{pmatrix}u_1+\lambda\cdot v_1\\u_2+\lambda\cdot v_2\\u_3+\lambda\cdot v_3\end{pmatrix})=\begin{pmatrix}-(u_1+\lambda\cdot v_1)\\-(u_2+\lambda\cdot v_2)\\-(u_3+\lambda\cdot v_3)\end{pmatrix}=\begin{pmatrix}-u_1-\lambda\cdot v_1\\-u_2-\lambda\cdot v_2\\-u_3-\lambda\cdot v_3\end{pmatrix}=\begin{pmatrix}-u_1\\-u_2\\-u_3\end{pmatrix}+\lambda\cdot\begin{pmatrix}-v_1\\-v_2\\-v_3\end{pmatrix}=L(\underline{u})+\lambda\cdot L(\underline{v}).$$

Mivel a fenti feltétel teljesül, L lineáris transzformáció.

Feladat 4. Legyen $L: \mathbb{R}^2 \to \mathbb{R}^2$ a síkbéli helyvektorok rögzített ϕ szöggel pozitív (óramutató járásával ellentétes) irányban való elforgatása. Ennek hozzárendelési szabálya a következőképpen adható meg:

Igazoljuk, hogy L lineáris transzformáció!

Megoldás. Először geometriai úton oldjuk meg!

Ezt a feladatot visszavezetjük egy sokkal általánosabb problémára:

Legyen $L: V \to W$, $L(\underline{v}) = A \cdot \underline{v}$, ahol V és W vektorterek (dim(V) = n, dim(W) = m) és $A \in \mathbb{R}^{m \times n}$. Vajon (homogén) lineáris leképezés-e L?

Ennek megválaszolásához a linearitást és a homogenitást kell ellenőriznünk. Legyenek az $\underline{u},\underline{v} \in V$ vektorok és $\lambda \in \mathbb{R}$ tetszőlegesek. Ekkor:

$$\begin{aligned} &linearit\acute{a}s:\ L(\underline{u}+\underline{v})=A\cdot(\underline{u}+\underline{v})=A\cdot\underline{u}+A\cdot\underline{v}=L(\underline{u})+L(\underline{v}),\\ &homogenit\acute{a}s:\ L(\lambda\,\underline{u})=A\cdot(\lambda\,\underline{u})=\lambda\,(A\cdot\underline{u})=\lambda\,L(\underline{u}). \end{aligned}$$

A mátrixműveletek tulajdonságait felhasználva láthatjuk, hogy mindkét kritérium teljesül. Tehát a fenti módon (egy mátrix és a változóvektor szorzataként) megadott függvények homogén lineáris leképezések.

Mivel a példában szereplő forgatást is egy ilyen mátrix segítségével adtuk meg, ezért ez is lineáris leképezés lesz. Ezzel a feladatot meg is oldottuk.

(Kiegészítő anyag.) De vajon miért ez a síkbéli forgatás hozzárendelési szabálya?

Legyen az $\begin{pmatrix} x \\ y \end{pmatrix}$ vektor képe az $\begin{pmatrix} x' \\ y' \end{pmatrix}$ vektor: $\begin{pmatrix} x' \\ y' \end{pmatrix} = L(\begin{pmatrix} x \\ y \end{pmatrix})$. Írjuk fel az $\begin{pmatrix} x \\ y \end{pmatrix}$ vektort polárkoordinátás alakban:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix}, \tag{1}$$

ahol r az $\begin{pmatrix} x \\ y \end{pmatrix}$ vektor hosszát, θ pedig az x-tengely pozitív felével bezárt szögét jelöli.

Írjuk fel az $\begin{pmatrix} x' \\ y' \end{pmatrix}$ képvektort is polárkoordinátás alakban:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} r\cos(\theta + \phi) \\ r\sin(\theta + \phi) \end{pmatrix} \tag{2}$$

Felhasználva az ismert trigonometrikus azonosságokat:

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)$$
$$\sin(\theta + \phi) = \cos(\theta)\sin(\phi) + \sin(\theta)\cos(\phi)$$

valamint az (1) és (2) összefüggéseket, megkapjuk a forgatás hozzárendelési szabályát:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} r\cos(\theta)\cos(\phi) - r\sin(\theta)\sin(\phi) \\ r\cos(\theta)\sin(\phi) + r\sin(\theta)\cos(\phi) \end{pmatrix} = \begin{pmatrix} x\cos(\phi) - y\sin(\phi) \\ x\sin(\phi) + y\cos(\phi) \end{pmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Feladat 5. Igazoljuk, hogy az az L térbeli transzformáció, amely először az origóra tükrözi, majd duplájára nyújtja a vektorokat, lineáris transzformáció! Adjuk meg a hozzárendelési szabályt is!

Megoldás. Az előző példákban láthattuk, hogy a tükrözés és a nyújtás is lineáris transzformáció. Az eme két transzformációból képzett összetett függvény szintén lineáris transzformáció lesz Tétel 2 szerint. A hozzárendelési szabályt az összetett függvényeknél szokásos módon határozhatjuk meg:

$$\begin{pmatrix} x \\ y \end{pmatrix} \quad \overset{t\ddot{u}kr\ddot{o}z\acute{e}s}{\longrightarrow} \quad \begin{pmatrix} -x \\ -y \end{pmatrix} \quad \overset{ny\acute{u}jt\acute{a}s}{\longrightarrow} \quad 2 \cdot \begin{pmatrix} -x \\ -y \end{pmatrix} = \begin{pmatrix} -2x \\ -2y \end{pmatrix},$$

 $vagy is \ L(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} -2x \\ -2y \end{pmatrix}.$

Feladat 6. Tekintsük az $L: \mathbb{R}^3 \to \mathbb{R}^2$ leképezést, amelyre $L(\begin{pmatrix} x \\ y \\ z \end{pmatrix}) = \begin{pmatrix} xy \\ z \end{pmatrix}$. Lineáris leképezés-e L?

Megoldás. Legyenek $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ és $\underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in \mathbb{R}^3$ valamint $\lambda \in \mathbb{R}$ tetszőlegesek. Ellenőrizzük a homogenitást!

Ennek bal oldala:

$$L(\lambda \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}) = L(\begin{pmatrix} \lambda u_1 \\ \lambda u_2 \\ \lambda u_3 \end{pmatrix}) = \begin{pmatrix} (\lambda u_1)(\lambda u_2) \\ \lambda u_3 \end{pmatrix} = \begin{pmatrix} \lambda^2 u_1 u_2 \\ \lambda u_3 \end{pmatrix},$$

Ámde a homogenitás a jobb oldalról indulva mást ad:

$$\lambda L(\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}) = \lambda \begin{pmatrix} u_1 u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} \lambda u_1 u_2 \\ u_3 \end{pmatrix} \neq \begin{pmatrix} \lambda^2 u_1 u_2 \\ \lambda u_3 \end{pmatrix}.$$

Vagyis $L(\lambda \underline{u}) \neq \lambda L(\underline{u})$, ezért a homogenitás nem teljesül. Ennek következtében az L nem lineáris leképezés! (A másik tulajdonságot már meg sem kell vizsgálni.)

A feladatot már megoldottuk, ám ha valaki nem a homogenitást, hanem a linearitást ellenőrzi először, szintén eljut a megoldásig:

$$L(\underline{u}+\underline{v}) = L(\begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix}) = \begin{pmatrix} (u_1 + v_1)(u_2 + v_2) \\ u_3 + v_3 \end{pmatrix} = \begin{pmatrix} u_1u_2 + u_1v_2 + v_1u_2 + v_1v_2 \\ u_3 + v_3 \end{pmatrix} \neq \begin{pmatrix} u_1u_2 + v_1v_2 \\ u_3 + v_3 \end{pmatrix} = L(\underline{u}) + L(\underline{v}).$$

Tehát $L(\underline{u} + \underline{v}) \neq L(\underline{u}) + L(\underline{v})$, ezért a linearitás nem teljesül, vagyis L nem lineáris leképezés! (És a másik tulajdonságot már meg sem kell vizsgálni.)

Feladat 7. Kiegészítő anyag. Tekintsük a $D: P_n \to P_{n-1}$ leképezést, amelyre D(p) = p', ahol p' a p polinom x szerinti deriváltja, azaz a leképezés minden n-edfokú polinomhoz a deriváltját rendeli:

$$(D(p))(x) = \frac{\mathrm{d}p}{\mathrm{d}x}(x) = p'(x).$$

Igazoljuk, hogy D egy homogén lineáris leképezés!

Megoldás. Legyenek $p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ és $q(x) = b_0 + b_1x + b_2x^2 + \dots + b_nx^n$ tetszőleges "vektorok" P_n -ben.

 $A p \in P_n$ polinom esetén a leképezés eképpen értelmezhető:

$$(D(p))(x) = p'(x) = a_1 + 2a_2x + \dots + n a_n x^{n-1}$$

A definíció alapján beláthatjuk a homogén és lineáris tulajdonságokat:

$$(D(p+q))(x) = (a_1+b_1) + 2(a_2+b_2)x + \dots + n(a_n+b_n)x^{n-1} = (a_1+2a_2x+\dots+na_nx^{n-1}) + (b_1+2b_2x+\dots+nb_nx^{n-1}) = (D(p))(x) + (D(q))(x),$$

azaz lineáris, valamint

$$(D(\lambda p))(x) = \lambda a_1 + 2\lambda a_2 x + \dots + n\lambda a_n x^{n-1} = \lambda (a_1 + 2a_2 x + \dots + n a_n x^{n-1}) = \lambda \cdot (D(p))(x),$$

tehát homogén.