ระบบคอมพิวเตอร์และสถาปัตยกรรม (Computer System and Architecture)

Chapter 5 ใมโครโพรเซสเซอร์เบื้องต้น

โดย ผู้ช่วยศาสตราจารย์ภานุวัฒน์ เมฆะ

สาขาวิชาวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์ มหาวิทยาลัยแม่โจ้

รหัสคำสั่งแบบ 4-Address Instruction

รหัสคำสั่งแบบ 3-Address Instruction

add, Op2, Op1 (Op2 ← Op2 + Op1)

รหัสคำสั่งแบบ 2-Address Instruction

รหัสคำสั่งแบบ 1-Address Instruction

การเขียนคำสั่ง

รหัสช่วยจำ	ความหมาย	
ADD	Addition	
SUB	Subtraction	
MPY	Multiply	
DIV	Divide	
LOAD	Load Data from Memory	
STOR	Store Data to Memory	

Y = (A - B) % (C + D * E)

Instruction		Comment	
SUB	Y, A, B	Y ← A - B	
MPY	T, D, E	$\mathbf{T} \leftarrow \mathbf{D} \times \mathbf{E}$	
ADD	T, T, C	$\mathbb{T} \leftarrow \mathbb{T} + \mathbb{C}$	
DIV	Y, Y, T	$\mathbf{Y} \leftarrow \mathbf{Y} \div \mathbf{T}$	

(1) รหัสคำสั่งแบบ 3-Address Instruction

Instruc	tion	Comment
MOVE	Υ, Α	$Y \leftarrow A$
SUB	Ү, В	$\mathtt{Y} \leftarrow \mathtt{Y} - \mathtt{B}$
MOVE	T, D	$T \leftarrow D$
MPY	T, E	$T \leftarrow T \times E$
ADD	T, C	$\mathbb{T} \leftarrow \mathbb{T} + \mathbb{C}$
DIV	Y, T	$\mathbf{Y} \leftarrow \mathbf{Y} \div \mathbf{T}$

(2) รหัสคำสั่งแบบ 2-Address Instruction

Instruction		Comment
LOAD	D	$AC \leftarrow D$
MPY	E	$AC \leftarrow AC \times E$
ADD	C	$AC \leftarrow AC + C$
STOR	Y	$Y \leftarrow AC$
LOAD	Α	$AC \leftarrow A$
SUB	В	$AC \leftarrow AC - B$
DIV	Y	$AC \leftarrow AC \div Y$
STOR	Y	$Y \leftarrow AC$

(3) รหัสคำสั่งแบบ 1-Address Instruction

โครงสร้างพื้นฐานของไมโครโพรเซสเซอร์

โครงสร้างอย่างง่ายภายในซีพียู

โครงสร้างพื้นฐานของไมโครโพรเซสเซอร์

โครงสร้างอย่างง่ายของ ALU

รูปแบบคำสั่งและโหมดของแอดเดรส

Ex.

MOV Oper1, Oper2

: เป็นการใช้คำสั่งโอนย้ายข้อมูลจากโอเปอร์แรนค์ตัวที่ 2 ไปยัง โอเปอร์แรนค์ตัวที่ 1

การกำหนดแอดเดรสแบบให้ค่าตรง (Immediate Address Mode)

การกำหนดแอดเดรสโดยใช้รีจิสเตอร์

(Register Addressing Mode)

การกำหนดแอดเดรสโดยตรง

(Direct Addressing Mode)

การกำหนดแอดเดรสผ่านรีจิสเตอร์โดยอ้อม

(Register Indirect Addressing Mode)

การกำหนดแอดเดรสแบบแทนที่ (Indexed Addressing Mode)

การกำหนดแอดเดรสแบบสัมพันธ์

(Relative Addressing Mode)

เป็นการอ้างถึงตำแหน่งหน่วยความจำที่อ้างอิงกับโปรแกรมเคาน์เตอร์ (PC) โดยจะนำค่าคงที่ไปบวกกับค่าของโปรแกรมเคาน์เตอร์ ค่าที่ได้จะ เป็นแอดเดรสของหน่วยความจำที่ต้องการอ้างอิงถึง

การกำหนดแอดเดรสโดยใช้สแตก

(Stack Addressing Mode)

ตัวอย่างสแตกในหน่วยความจำ

การกำหนดแอดเดรสโดยใช้สแตก

(Stack Addressing Mode)

การดำเนินการหลังจากการ Push และการ Pop

สถาปัตยกรรมของ CPU

- สถาปัตยกรรมของซีพียูเป็นตัวบ่งบอกถึงลักษณะเฉพาะ และลักษณะ การทำงานที่สำคัญของซีพียู
- อาจจะเรียกอีกแบบหนึ่งว่า "สถาปัตยกรรมชุดคำสั่ง" (ISA :Instruction Set Architecture)
- ลักษณะเฉพาะของซีพียูนี้กล่าวรวมไปถึง จำนวนและประเภทของ รีจิสเตอร์, วิธีการกำหนดโหมดของ address ของหน่วยความจำและการ ออกแบบชุดคำสั่งต่าง ๆ (Instruction Sets)
- ปัจจุบันนี้แบ่งออกเป็น 2 กลุ่มคือ CISC (Complex Instruction Set Computers) และ RISC (Reduced Instruction Set Computers)

การทำคำสั่งของคำสั่งแบบ CISC และ RISC

คุณลักษณะของคอมพิวเตอร์แบบ CISC

- มีการรวมเอาคุณสมบัติด้านต่าง ๆ เช่น การกำหนดโหมดของ address (Addressing Mode) หรือประเภทคำสั่ง (Instruction Type) เข้าด้วยกันเพื่อ ปรับปรุงขีดความสามารถในการทำงาน
- นักออกแบบมองว่าปริมาณการใช้หน่วยความจำ และเวลาที่ใช้ในการเข้าถึง ต่าง ๆในการทำงานของคอมพิวเตอร์ต้องมองเป็นราคาต่อหน่วย
- สถาปัตยกรรมแบบ CISC มีจำนวน Addressing Mode หลายแบบ
- ลักษณะนี้ส่งผลให้ชุดคำสั่งที่ใช้มีขนาด และใช้เวลาในการประมวลผล แตกต่างกัน
- ผู้ใช้ยอมรับและพอใจ เนื่องจากผู้ใช้สามารถเพิ่มจำนวน operation บน โปรแกรมที่มีขนาดเท่าเดิมได้

คุณลักษณะของคอมพิวเตอร์แบบ RISC

- เดิมคอมพิวเตอร์ยุคแรกจะประมวลผลชุดคำสั่งที่ละคำสั่งในหนึ่งช่วงเวลา
- นักออกแบบได้พยายามที่จะปรับปรุงอัตราการประมวลผลชุดคำสั่งให้เพิ่ม มากขึ้นโดยใช้วิธีการโอเวอร์แลป (Overlap) ชุดคำสั่งให้มีมากกว่าชุดคำสั่งใน การประมวลผลแต่ละครั้ง
- วิธีการโอเวอร์แลปดังกล่าวนี้ต่อมารู้จักกันในชื่อของ Pipelining และ Superscalar
- หลักการทั่ว ๆ ไป ของการประมวลผลชุดคำสั่งคือคอมพิวเตอร์จะโหลด ชุดคำสั่งที่ต้องการประมวลผลมาจากหน่วยความจำ เราเรียกขั้นตอนนี้ว่าดึง หรือเฟ็ตช์คำสั่ง (Fetch)

คุณลักษณะของคอมพิวเตอร์แบบ RISC

- หลังจากนั้นก็จะทำการประมวลผลหรือเอ็กซิคิวต์ (Execute) แล้วจึงจะเฟ็ตช์ ชุดคำสั่งต่อไปเข้ามาหลังจากประมวลผลชุดคำสั่งแรกเสร็จสิ้น
- วิธีการเพิ่มประสิทธิภาพด้วยการ โอเวอร์แลปก็คือการเฟ็ตช์ชุดคำสั่งถัดไปเข้า มาก่อนที่ชุดคำสั่งแรกจะทำเสร็จ เราเรียกว่า พรีเฟ็ตช์ (Prefetch)
- อีก เทคนิคที่คล้ายกันเรียกว่าซุปเปอร์สเกลลาร์ (Superscalar) ซึ่งเป็นเทคนิคที่ ใช้กับโปรเซสเซอร์ที่มีความสามารถรับชุคคำสั่งเข้าไปประมวลผลได้ทีละ หลาย ๆ ชุดคำสั่งพร้อม ๆ กัน
- เทคนิคไปป์ไลน์และซุปเปอร์สเกลลาร์ไม่สามารถนำมาใช้กับ CISC ได้ เนื่องจาก CISC มีความยาวของชุดคำสั่งที่ไม่แน่นอน และ Addressing mode ที่หลากหลายและซับซ้อนทำให้ลดประสิทธิภาพของ CISC ลง

End of Chapter 5