MATH 6122: Algebra II

Frank Qiang Instructor: Matthew Baker

Georgia Institute of Technology Spring 2025

Contents

1	Jan. 7 — Motivation for Algebraic Number Theory	2
	1.1 Motivation: Fermat's Last Theorem	
	1.2 Algebraic Integers	3
2	Jan. 9 — Algebraic Integers and Dedekind Domains	4
	2.1 More on Algebraic Integers	4
	2.2 Dedekind Domains	6
3	Jan. 14 — Unique Factorization of Ideals	8
	3.1 Norm in a Field	8
	3.2 Unique Factorization of Ideals	9
	3.3 Inverse Ideals	10

Lecture 1

Jan. 7 — Motivation for Algebraic Number Theory

1.1 Motivation: Fermat's Last Theorem

Theorem 1.1 (Fermat's last theorem¹). $x^n + y^n = z^n$ has no nonzero integer solutions when $n \ge 3$.

Remark. The n=3 case was solved by Euler, and the n=4 case was solved by Fermat. So we will assume $n \ge 5$. We can also assume n is prime, since if n=pm, then we can instead consider

$$(x^m)^p + (y^m)^p = (z^m)^p.$$

Thus any nonzero solution to $x^n + y^n = z^n$ also yields a nonzero solution to $x^p + y^p = z^p$. So let $p \ge 5$ be prime, and let $\zeta = \zeta_p$ be a primitive pth root of 1. Then consider

$$x^{p} + y^{p} = (x + y)(x + \zeta y)(x + \zeta^{2}y) \dots (x + \zeta^{p-1}y) = z^{p}.$$

Note that $x + \zeta^j y \in \mathbb{Z}[\zeta] \subseteq \mathbb{C}$. Let us pretend for the moment that $\mathbb{Z}[\zeta]$ is a UFD.² One can check that

$$\gcd(x+\zeta^j y, x+\zeta^k y) = 1$$

whenever $j \neq k$. If $\mathbb{Z}[\zeta]$ were a UFD, then we could conclude that

$$x + y\zeta = u\alpha^p$$

for some $u \in \mathbb{Z}[\zeta]^{\times}$ and $\alpha \in \mathbb{Z}[\zeta]$. For the sake of illustration, suppose $u = \pm \zeta^{j}$ for some j. Then

$$\alpha = a_0 + a_1 \zeta + \dots + a_{p-2} \zeta^{p-2}$$

for $a_i \in \mathbb{Z}$. This gives

$$\alpha^p = a_0 + a_1 + \dots + a_{p-2} \pmod{p},$$

using Fermat's little theorem, $\zeta^p = 1$, and the binomial theorem. So $\alpha^p = a \pmod{p}$ with $z \in \mathbb{Z}$, and

$$x + y\zeta = \pm a\zeta^j \pmod{p}$$

for some $0 \le j \le p-1$. Note that $\zeta^{p-1} = -(1+\zeta+\cdots+\zeta^{p-2})$, and one can check as an exercise that this implies p|x or p|y. This would have proved the "first case" of Fermat's last theorem.

 $^{^{1}}$ This problem was finally resolved by Wiles-Taylor in 1995.

²It is far from it, and this is likely the mistake that Fermat originally made.

³In a UFD, if a product of relatively prime elements is a pth power, then each factor must itself be a pth power.

Remark. However, Kummer (c. 1850) observed that $\mathbb{Z}[\zeta]$ is rarely a UFD (in fact, $\mathbb{Z}[\zeta]$ is a UFD if and only if $p \leq 19$).⁴ Also, when $p \geq 5$, the unit group of $\mathbb{Z}[\zeta]$ is always infinite (so that $\mathbb{Z}[\zeta]^{\times} \neq \{\pm \zeta^{j}\}$).

Theorem 1.2 (Kummer). Fermat's last theorem holds for all "regular" primes.⁵

Remark. The first irregular prime is 37, so Kummer's method works for $3 \le n \le 36$.

1.2 Algebraic Integers

Remark. To resolve these issues, Kummer realized that one can replace elements of $\mathbb{Z}[\zeta]$ by "ideal elements." Later on, Dedekind look at Kummer's work and introduced the modern notion of an ideal. We will be working towards the *unique factorization of ideals into prime ideals* in certain cases.

Remark. We will work at the level of generality of Dedekind rings (as opposed to just number rings). This is because there is an analogue of such a unique factorization of ideals for function fields of curves in algebraic geometry, and this framework is general enough to capture both cases.

Definition 1.1. Let K/\mathbb{Q} be a finite extension (i.e. a number field). Then $\alpha \in K$ is an algebraic integer if there exists a monic polynomial $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

Theorem 1.3. Let $A \subseteq B$ be rings and let $b \in B$. Then the following are equivalent:

- 1. b is integral over A (i.e. there exists a monic $f \in A[x]$ such that f(b) = 0).
- 2. A[b] is a finitely generated A-module.⁶
- 3. A[b] is contained in a subring $C \subseteq B$ which is finitely generated as an A-module.

Proof. $(1 \Rightarrow 2)$ This direction is standard, one only needs powers up to deg f since f(b) = 0.

 $(2 \Rightarrow 3)$ This direction is clear since A[b] itself satisfies the desired conditions.

 $(3\Rightarrow 1)$ The idea is to argue via determinants and use the Cayley-Hamilton theorem for modules. \Box

Corollary 1.3.1. Integrality is transitive, i.e. if B is integral over A and C is integral over B, then C is integral over A.

Proof. A finitely generated module over a finitely generated module is finitely generated. \Box

Corollary 1.3.2. If α, β are integral over A, then $\alpha \pm \beta, \alpha\beta$ are also integral over A.

Proof. This is because $\alpha \pm \beta$, $\alpha\beta \subseteq C = A[\alpha][\beta]$.

Theorem 1.4. The set of all algebraic integers in K (denoted \mathcal{O}_K) forms a subring of K.

Remark. This theorem is not obvious: Given $f(\alpha) = 0$ and $g(\beta) = 0$, one must find a polynomial h such that $h(\alpha + \beta) = 0$. It is not immediately obvious how to do this.

⁴Kummer made the first real progress on Fermat's last theorem in a long time.

⁵A prime p is regular if p does not divide the order of the ideal class group of $\mathbb{Z}[\zeta]$.

⁶Here A[b] is the smallest subring of B containing A and b, so $A[b] = \{a_0 + a_1b + a_2b^2 + \cdots + a_kb_k : a_i \in A\}$.

⁷We say that B is integral over A if every $b \in B$ is integral over A.

⁸The ring of algebraic integers \mathcal{O}_K of a number field K is called a number ring.

Lecture 2

Jan. 9 — Algebraic Integers and Dedekind Domains

2.1 More on Algebraic Integers

Proposition 2.1. Suppose $\alpha, \beta \in \overline{\mathbb{Z}} \subseteq \mathbb{C}$, then $\alpha + \beta, \alpha\beta \in \overline{\mathbb{Z}}$.

Proof. First, note that every algebraic integer is an eigenvalue of some integer matrix (e.g. take the companion matrix for the minimal polynomial). So take linear maps $T_{\alpha}: V_{\alpha} \to V_{\alpha}$ and $T_{\beta}: V_{\beta} \to V_{\beta}$ which have α and β as eigenvalues, respectively. Then one can check that the map on the direct sum

$$T_{\alpha} \oplus T_{\beta} : V_{\alpha} \oplus V_{\beta} \to V_{\alpha} \oplus V_{\beta}$$

has $\alpha + \beta$ as an eigenvalue. Similarly, by looking at the map on the tensor product

$$T_{\alpha} \otimes T_{\beta} : V_{\alpha} \otimes V_{\beta} \to V_{\alpha} \otimes V_{\beta}$$

has $\alpha\beta$ as an eigenvalue. Hence we see that $\alpha+\beta, \alpha\beta\in\overline{\mathbb{Z}}$ as well.

Remark. This is a constructive proof of what we showed via finitely generated modules last time.

Lemma 2.1. Let $\alpha \in K$ be an algebraic number. Then α is an algebraic integer, i.e. $\alpha \in \mathcal{O}_K$, if and only if the minimal polynomial of α over \mathbb{Q} , call it $f_{\alpha} \in \mathbb{Q}[x]$, has integer coefficients.

Proof. (\Leftarrow) This direction is clear by the definition of an algebraic integer.

(\Rightarrow) We need to show that if $\alpha \in \mathcal{O}_K$, then $f_{\alpha} \in \mathbb{Z}[x]$. By assumption, there exists some monic integer polynomial $h \in \mathbb{Z}[x]$ such that $h(\alpha) = 0$. From this, we know that $f_{\alpha}|h$ in $\mathbb{Q}[x]$. Let $\alpha_1, \ldots, \alpha_n$ be the roots of f_{α} with $\alpha_1 = \alpha$. Since $f_{\alpha}|h$, we know that $h(\alpha_i) = 0$ for every i, so $h \in \mathbb{Z}[x]$ implies that $\alpha_i \in \mathbb{Z}$ for each i. Thus the coefficients of f_{α} are elementary symmetric functions of the α_i , so

$$f_{\alpha} \in (\overline{\mathbb{Z}} \cap \mathbb{Q})[x].$$

Thus it suffices to show that $\overline{\mathbb{Z}} \cap \mathbb{Q} = \mathbb{Z}$ to conclude the result. For this, suppose $r/s \in \mathbb{Q}$ is the root of

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} \in \mathbb{Z}[x].$$

¹Here $\overline{\mathbb{Z}}$ is the set of algebraic integers.

²Note that it suffices to show that $f_{\alpha}|h$ in $\mathbb{Z}[x]$, so alternatively, a suitable version of Gauss's lemma immediately implies the desired result.

³These operations preserve the notion of being an algebraic integer.

We can assume (r, s) = 1 without loss of generality.⁴ Plugging in, we obtain

$$(r/s)^n + a_{n-1}(r/s)^{n-1} + \dots + a_1(r/s) + a_0 = 0.$$

Clearly denominators by multiplying by s^n , we obtain

$$r^{n} + a_{n-1}sr^{n-1} + \dots + a_{1}s^{n-1}r + a_{0}s^{n} = 0$$

The right-hand side is divisible by s and every term on the left-hand side except r^n is divisible by s, so we must have $s|r^n$. Since (r,s)=1, this implies that $s=\pm 1$, i.e. $r/s\in\mathbb{Z}$.

Example 2.0.1. For $K = \mathbb{Q}$, we have $\mathcal{O}_K = \mathbb{Z}$. This follows from the previous lemma since the minimal polynomial of $a \in \mathbb{Q}$ is x - a, which has integer coefficients precisely when $a \in \mathbb{Z}$.

Example 2.0.2. Let $K = \mathbb{Q}(\sqrt{d})$, i.e. K is quadratic number field. Clearly $\mathbb{Z}[\sqrt{d}] \subseteq \mathcal{O}_K$, but this is not always an equality. For example,

$$\phi = \frac{1 + \sqrt{5}}{2} \notin \mathbb{Z}[\sqrt{5}],$$

but $x^2 - x - 1$ has ϕ as a root.

Exercise 2.1. Let d be a square-free integer and $K = \mathbb{Q}(\sqrt{d})$. Show that

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \equiv 2, 3 \pmod{4}, \\ \mathbb{Z}[(1+\sqrt{d})/2] & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

Definition 2.1. Let S be a ring. If $R \subseteq S$ is a subring, then we say that R is *integrally closed* in S if whenever $\alpha \in S$ is integral over R, then $\alpha \in R$.

Remark. Recall that for a domain R, its field of fractions K is the localization

$$K = S^{-1}R$$

where $S = R \setminus \{0\}$. There is a natural embedding of R into K via $r \mapsto r/1$.

Lemma 2.2. The fraction field of \mathcal{O}_K is K. More precisely, for every $\alpha \in K$, there exists $m \in \mathbb{Z}$, $m \neq 0$, such that $m\alpha \in \mathcal{O}_K$.

Proof. Since α is algebraic, there exists some monic polynomial $f_{\alpha} \in \mathbb{Q}[x]$ such that $f_{\alpha}(\alpha)$. By clearing denominators, there exists $m \in \mathbb{Z}$ such that $mf_{\alpha} \in \mathbb{Z}[x]$. So we have

$$m\alpha^{n} + b_{n-1}\alpha^{n-1} + \dots + b_{1}\alpha + b_{0} = 0,$$

and multiplying by m^{n-1} on both sides, we obtain

$$m^n \alpha^n + m^{n-1} b_{n-1} \alpha^{n-1} + \dots + m^{n-1} b_1 \alpha + m^{n-1} b_0 = 0,$$

which implies

$$(m\alpha)^n + b_{n-1}(m\alpha)^{n-1} + \dots + m^{n-2}b_1(m\alpha) + m^{n-1}b_0 = 0.$$

This shows that $m\alpha$ is integral over \mathbb{Z} , i.e. $m\alpha \in \mathcal{O}_K$.

⁴Here we write (r, s) to denote gcd(r, s).

Theorem 2.1. The ring of integers \mathcal{O}_K is integrally closed (in its fraction field).

Proof. Transitivity of integrality implies that \mathcal{O}_K is integrally closed in K. The theorem then follows from the fact that K is the fraction field of \mathcal{O}_K .

Remark. This theorem says that (it implies the second equality)

$$\mathcal{O}_K = \{ \alpha \in K \mid \alpha \text{ is integral over } \mathbb{Z} \} = \{ \alpha \in K \mid \alpha \text{ is integral over } \mathcal{O}_K \}.$$

2.2 Dedekind Domains

Definition 2.2. A *Dedekind domain* is a Noetherian integrally closed domain of dimension 1.

Remark. Recall that all rings in this class are commutative and have a 1. A dimension 1 domain is a domain which is not a field and in which every nonzero prime ideal is maximal. In general, the dimension of a ring R is the maximum length of a chain of prime ideals of the form

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$$
.

In dimension 1, this corresponds to $(0) \subseteq \mathfrak{p}$ being the maximum chain for every nonzero prime ideal \mathfrak{p} , which is equivalent to the other definition.

Remark. Our goal for now will be to show that \mathcal{O}_K is a Dedekind domain.

Definition 2.3. Let k be either \mathbb{Q} or \mathbb{R} and V be a finite-dimensional k-vector space. A *complete lattice* in V is a discrete additive subgroup Λ of V which spans V, where discrete means that any bounded subset of Λ is finite (equivalent to being discrete in the sense of topology).

Proposition 2.2. Let V be as above (dimension n over k) and $\Lambda \subseteq V$ an additive subgroup which spans V. Then the following are equivalent:

- 1. Λ is discrete.
- 2. Λ is generated by n elements.
- 3. $\Lambda \cong \mathbb{Z}^n$ as \mathbb{Z} -modules.

Proof. $(2 \Leftrightarrow 3)$ This follows by the structure theorem (Λ is torsion-free since $\Lambda \subseteq V$).

 $(1 \Rightarrow 2)$ Suppose Λ is discrete, and let $x_1, \ldots, x_n \in \Lambda$ be a basis for V. Let Λ_0 be the \mathbb{Z} -module which is spanned by x_1, \ldots, x_n . We claim that Λ/Λ_0 is finite, which implies that Λ is also generated by n elements (exercise). To see the claim, we note that there exists an integer M > 0 such that if $x = \sum \lambda_i x_i \in \Lambda$ with $\lambda_i \in k$ and all $|\lambda_i| < 1/M$, then x = 0. This is standard and follows from all norms being equivalent in a finite-dimensional vector space and the assumption that Λ is discrete.

Now let $y_1, y_2, ...$ be coset representatives for Λ/Λ_0 . Without loss of generality (by translating in the coset), assume each $y_i \in C$, where C is the unit cube. Cover C by M^n boxes of the form

$$\frac{m_i}{M} \le \lambda_i < \frac{m_i + 1}{M}$$

with $m_i \in \mathbb{Z}$ and $0 \le m_i < M$. We must have $|\Lambda/\Lambda_0| \le M^n$, since otherwise we end up with two $y_i \ne y_j$ in the same box by the pigeonhole principle, and $y_i - y_j \in C[1/M] \cap \Lambda = \{0\}$ leads to a contradiction.

$$(2 \Rightarrow 1)$$
 This proof is to be finished next class.

Theorem 2.2. If I is a nonzero ideal in a number ring \mathcal{O}_K , then \mathcal{O}_K/I is finite.

Proof. The strategy is to show that if $[K : \mathbb{Q}] = n$, then $\mathcal{O}_K \cong \mathbb{Z}^n$ and $I \cong \mathbb{Z}^n$ as \mathbb{Z} -modules. This will imply that \mathcal{O}_K/I is finite, which follows from the proof of the structure theorem. In fact, we will show that I and \mathcal{O}_K are lattices in $K \cong \mathbb{Q}^n \subseteq \mathbb{R}^n$. Note that it suffices to show that \mathcal{O}_K is a lattice, since it immediately follows that $I \subseteq \mathcal{O}_K$ is also discrete, hence also a lattice as I is an additive subgroup.

The proof is to be finished next class.

Corollary 2.2.1. A number ring \mathcal{O}_K is Noetherian.

Proof. Suppose that we have an ascending chain of ideals

$$I = I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots$$

Suppose without loss of generality that $I_0 \neq 0$. Since \mathcal{O}_K/I is finite, by an isomorphism theorem we see that there are only finitely many ideals in \mathcal{O}_K containing I. This implies that the chain must eventually stabilize, i.e. that \mathcal{O}_K is Noetherian.

Corollary 2.2.2. A number ring \mathcal{O}_K is 1-dimensional.

Proof. Verify as an exercise that \mathcal{O}_K is not a field. Now let \mathfrak{p} be a nonzero prime ideal, so that $\mathcal{O}_K/\mathfrak{p}$ is a finite domain, hence a field. This implies that \mathfrak{p} is maximal, so \mathcal{O}_K is 1-dimensional.

Theorem 2.3. A number ring \mathcal{O}_K is a Dedekind domain.

Lecture 3

Jan. 14 — Unique Factorization of Ideals

3.1 Norm in a Field

Remark. Let K/\mathbb{Q} be a finite extension of degree n. Our goal will be to define a norm $N_{K/\mathbb{Q}}: K \to \mathbb{Q}$ which also sends $\mathcal{O}_K \to \mathbb{Z}$. Note that there are n distinct embeddings $\sigma_1, \ldots, \sigma_n: K \to \mathbb{C}$, e.g. choose a primitive element $\theta \in K$ (so that $K = \mathbb{Q}(\theta)$) with minimal polynomial f of degree n and define $\sigma: K \to \mathbb{C}$ by sending θ to some root of f, of which there are n choices.

Definition 3.1. Given a finite extension K/\mathbb{Q} , define the norm $N_{K/\mathbb{Q}}: K \to \mathbb{Q}$ by

$$N_{K/\mathbb{Q}}(x) = \prod_{i=1}^{n} \sigma_i(x),$$

where $\sigma_1, \ldots, \sigma_n : K \to \mathbb{C}$ are the *n* distinct embeddings of *K* into \mathbb{C} .

Exercise 3.1. Show that in fact $N_{K/\mathbb{Q}}(\gamma) \in \mathbb{Q}$. (Hint: One way is via Galois theory.)

Exercise 3.2. Define $[\gamma]: K \to K$ by $x \mapsto \gamma x$, which is a \mathbb{Q} -linear map. Show that $N_{K/\mathbb{Q}}(\gamma) = \det[\gamma]$.

Proposition 3.1. We have the following properties of the norm $N = N_{K/\mathbb{Q}}$:

- 1. $N(\gamma) = 0$ if and only if $\gamma = 0$;
- 2. if $\gamma \in \mathcal{O}_K$, then $N(\gamma) \in \mathbb{Z}$.

Proof. Check these properties as an exercise.

Theorem 3.1. A number ring \mathcal{O}_K is a complete lattice in $K \cong \mathbb{Q}^n \subseteq \mathbb{R}^n$.

Proof. We need to show that \mathcal{O}_K is discrete. Note that there exists a basis $\alpha_1, \ldots, \alpha_n$ for K/\mathbb{Q} such that $\alpha_i \in \mathcal{O}_K$ for every i. Now suppose otherwise that \mathcal{O}_K is not discrete, so there are arbitrarily small $\lambda_1, \ldots, \lambda_n \in \mathbb{Q}$ such that $\alpha = \sum \lambda_i \alpha_i$ is nonzero and in \mathcal{O}_K . Then

$$N_{K/\mathbb{Q}}(\alpha) = \phi(\lambda_1, \dots, \lambda_n)$$

for some homogeneous polynomial ϕ of degree n (since each $\sigma(\alpha) = \sum \lambda_i \sigma(\alpha_i)$). Thus if $|\lambda_i| \ll 1$, the polynomial ϕ also gets small and we can obtain $0 < |N_{K/\mathbb{Q}}(\alpha)| < 1$, a contradiction since $N_{K/\mathbb{Q}}(\alpha) \in \mathbb{Z}$. \square

Corollary 3.1.1. If $I \subseteq \mathcal{O}_K$ is a nonzero ideal, then I is also a complete lattice in \mathbb{R}^n .

As an example of having n embeddings, consider $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R} \subseteq \mathbb{C}$, where we can send $\sqrt{2} \mapsto \pm \sqrt{2}$.

Proof. One needs to show that I contains a basis for K/\mathbb{Q} . Choose any nonzero $c \in I$ and consider $c\alpha_1, \ldots, c\alpha_n \in I$ (since I is an ideal). This will also be a basis for K/\mathbb{Q} since $c \neq 0$.

Corollary 3.1.2. We have $|\mathcal{O}_K/I| < \infty$ for every nonzero ideal $I \subseteq \mathcal{O}_K$.

Proof. This is because $\mathcal{O}_K \cong I \cong \mathbb{Z}^n$ as \mathbb{Z} -modules, so the result follows by the structure theorem. \square

Remark. These details complete the proof from last time that \mathcal{O}_K is a Dedekind domain.

Remark. The following is a preview of what we will do later in the class: We will define the *norm* of an ideal to be $N(I) = |\mathcal{O}_K/I|$. One can show that if $I = (\gamma)$, then $N(I) = N(\gamma)$. An extension of the previous techniques then leads to a proof of the finiteness of the *ideal class group*.

3.2 Unique Factorization of Ideals

Remark. Recall that for ideals $I = (\alpha_1, \dots, \alpha_k)$ and $J = (\beta_1, \dots, \beta_\ell)$, their product is $IJ = (\alpha_i \beta_j)_{i,j}$.

Example 3.1.1. Consider $R = \mathbb{Z}[\sqrt{-5}]$, which is the ring of integers \mathcal{O}_K in $K = \mathbb{Q}(\sqrt{-5})$. Note that

$$6 = 2(3) = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

and these elements are irreducible and not associates, so R is not a UFD. However, let

$$\mathfrak{p}_1 = (2, 1 + \sqrt{-5}), \quad \mathfrak{p}_2 = (2, 1 - \sqrt{-5}), \quad \mathfrak{p}_3 = (3, 1 + \sqrt{-5}), \quad \mathfrak{p}_4 = (3, 1 - \sqrt{-5}).$$

None of these ideals are principal, but they are all prime ideals. One can check that

$$\mathfrak{p}_1\mathfrak{p}_2 = (4, 2 - 2\sqrt{-5}, 2 + 2\sqrt{-5}, 6) = (2),$$

that $\mathfrak{p}_3\mathfrak{p}_4=(3)$, that

$$\mathfrak{p}_1\mathfrak{p}_3 = (6, 2 + 2\sqrt{-5}, 3 + 3\sqrt{-5}, 6) = (1 + \sqrt{-5}),$$

and finally that $\mathfrak{p}_2\mathfrak{p}_4=(1-\sqrt{-5})$. At the level of ideals, the original equation then becomes

$$(6) = (2)(3) = (\mathfrak{p}_1\mathfrak{p}_2)(\mathfrak{p}_3\mathfrak{p}_4) = (\mathfrak{p}_1\mathfrak{p}_3)(\mathfrak{p}_2\mathfrak{p}_4) = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

In fact, the previous nonunique factorization is now the same factorization in the language of ideals.

Lemma 3.1. Let I_1, \ldots, I_n be ideals in a commutative ring R, and let \mathfrak{p} be a prime ideal. Suppose that $I_1I_2\ldots I_n\subseteq \mathfrak{p}$. Then $I_j\subseteq \mathfrak{p}$ for some j.

Proof. Check this as an exercise, it follows from the definition of a prime ideal.

Lemma 3.2. Let R be a Noetherian ring, and $I \subseteq R$ be a nonzero ideal. Then there exist nonzero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ such that $\mathfrak{p}_1\mathfrak{p}_2 \ldots \mathfrak{p}_r \subseteq I$.

Proof. Let Σ be the set of all I for which the lemma is false. If $\Sigma \neq \emptyset$, then since R is Noetherian, Σ has a maximal element (pick $I_1 \in \Sigma$, if it is not maximal, then we can find $I_2 \in \Sigma$ with $I_1 \subsetneq I_2$, and we obtain $I_1 \subsetneq I_2 \subsetneq \ldots$ by continuing; this chain must terminate since R is Noetherian). Let J be such a maximal element. Now J cannot be prime, so there exist $a, b \in R$ such that $ab \in J$ but $a, b \notin J$. Let

$$\mathfrak{a} = (J, a) \supseteq J$$
 and $\mathfrak{b} = (J, b) \supseteq J$.

Then $\mathfrak{a} \supseteq \mathfrak{p}_1\mathfrak{p}_2 \dots \mathfrak{p}_m$ and $\mathfrak{b} \supseteq \mathfrak{q}_1\mathfrak{q}_2 \dots \mathfrak{q}_n$. Since $\mathfrak{ab} = (J^2, Ja, Jb, ab) \subseteq J$, we obtain

$$J \supseteq \mathfrak{ab} \supseteq \mathfrak{p}_1 \dots \mathfrak{p}_m \mathfrak{q}_1 \dots \mathfrak{q}_n$$

which is a contradiction. Thus we must have $\Sigma = \emptyset$, so the lemma holds for every nonzero ideal I. \square

3.3 Inverse Ideals

Example 3.1.2. Consider the problem of finding $(2)^{-1}$ in \mathbb{Z} . Logically, the answer should be something like $(1/2) = (1/2)\mathbb{Z} \subseteq \mathbb{Q}$, which is not an ideal in \mathbb{Z} .² This will satisfy $2((1/2)\mathbb{Z}) = \mathbb{Z}$.

Definition 3.2. Let R be an integral domain with fraction field K, and let I be a nonzero ideal in R. Then the *inverse ideal* I^{-1} of I is

$$I^{-1} = \{ x \in K \mid xI \subseteq R \}.$$

Example 3.2.1. Let $R = \mathbb{Z}$ and I = (2). Then we can see that

$$I^{-1} = \{ x \in \mathbb{Q} \mid x(2) \subseteq \mathbb{Z} \} = \frac{1}{2} \mathbb{Z}.$$

Remark. Our goal at this point is to show that if R is Dedekind, then $II^{-1} = R$. Note that if M, N are two R-submodules of K, then their product is well-defined:

MN = R-submodule of K generated by $\{xy \mid x \in M, y \in N\}$,

e.g. $((1/2)\mathbb{Z})((1/3)\mathbb{Z}) = (1/6)\mathbb{Z}$. This is how we will make sense of the product II^{-1} .

Lemma 3.3. If I = (a), then $I^{-1} = (a^{-1})$ and $II^{-1} = (1) = R$.

Proof. Check this as an exercise.

Proposition 3.2. If R is Dedekind, $I \neq 0$ is an ideal, and $\mathfrak{p} \neq 0$ is a prime ideal, then $\mathfrak{p}^{-1}I \neq I$.

Proof. First consider the special case I = R, and we want to show that $\mathfrak{p}^{-1} \neq R$. We will find $x \in \mathfrak{p}^{-1}$ which is not in R. To do this, we will take $x = a^{-1}b = b/a$ for some $a, b \in R$. We want $(b/a)\mathfrak{p} \subseteq R$, so we should look for $b\mathfrak{p} \subseteq (a)$ with $b \notin (a)$. Let $a \in \mathfrak{p}$ be any nonzero element, and we will find a suitable b.

Since R is Noetherian, there exists \mathfrak{p}_i such that $\mathfrak{p}_i \dots \mathfrak{p}_r \subseteq (a) \subseteq \mathfrak{p}$. Without loss of generality, we can assume r is minimal. This then implies that $\mathfrak{p}_i \subseteq \mathfrak{p}$ for some i, which implies $\mathfrak{p}_i = \mathfrak{p}$ since R is 1-dimensional. Assume without loss of generality that i = 1, so $\mathfrak{p}_1 = \mathfrak{p}$.

If r=1, then $\mathfrak{p}=(a)$, so that $\mathfrak{p}^{-1}=(a^{-1})\neq R$ since a is not a unit. So now assume $r\geq 2$. Then

$$\mathfrak{p}_2 \dots \mathfrak{p}_r \not\subseteq (a)$$

by the minimality of r, so there exists $b \in \mathfrak{p}_2, \ldots, \mathfrak{p}_r$ such that $b \notin (a)$. But $b\mathfrak{p} = b\mathfrak{p}_1 \subseteq (a)$, so the element $x = b/a \in \mathfrak{p}^{-1}$ but is not in R. This proves that I = R.

²Note that this is not an ideal of \mathbb{Q} either since it is not closed under multiplication by elements of \mathbb{Q} . The inverse ideal $(2)^{-1}$ is instead a \mathbb{Z} -submodule of \mathbb{Q} .

In the general case, using the hypothesis that R is Noetherian, we can write $I = (\alpha_1, \dots, \alpha_n)$. Assume otherwise that $\mathfrak{p}^{-1}I = I$. Then for $x \in \mathfrak{p}^{-1}$, we can write

$$x\alpha_i = \sum_{j=1}^n a_{ij}\alpha_j, \quad a_{ij} \in R.$$

Let $A = (a_{ij})$ and define $T = xI_n - A$. Check as an exercise that $\det T = 0$. Since $\det T$ is a monic polynomial in x with coefficients in R, we see that x is integral over R. Since R is integrally closed, we must have $x \in R$, so we get $\mathfrak{p}^{-1} = R$. This contradicts the above special case.

Remark. The key idea of the proof is Cayley-Hamilton for modules: Let R be a commutative ring and M a finitely generated R-module. Then if JM = M, there exists a with $1 - a \in J$ such that aM = M. The proof above uses a similar strategy to the proof of this statement.