General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CONTRACTOR REPORT 166417

(NASA-CR-166417) UTILIZATION OF UREA, N83-16039
AMMONIA, NITRITE, AND NITRATE BY CROP PLANTS
IN A CONTROLLED ECOLOGICAL LIFE SUPPORT
SYSTEM (CELSS) (California Univ.) 50 p
Unclas
HC A03/MF A01 CSCL 06K G3/54 08002

Utilization of Urea, Ammonia, Nitrite, and Nitrate by Crop Plants in a Controlled Ecological Life Support System (CELSS)

R. C. Huffaker /

D. W. Rains

C. O. Qualset

University of California, Davis

October 1982

NASA Cooperative Agreement No. NCC 2-99

NASA CONTRACTOR REPORT 166417

ORIGINAL PAGE IS

Utilization of Urea, Ammonia, Nitrite, and Nitrate by Crop Plants in a Controlled Ecological Life Support System (CELSS)

R. C. Huffaker D. W. Rains

C. O. Qualset

Plant Growth Laboratory
Department of Agronomy & Range Science
University of California
Davis, California 95616

Prepared for Ames Research Center under Cooperative Agreement No. NCC 2-99

Ames Research Center Moffett Field, California 94035

PREFACE

This report contains 2 papers which consider the utilication of various nitrogen compounds by crop plants in controlled ecological life support systems. Discussed are the selection of crop varieties for efficient production using urea, ammonia, nitrite, and nitrate, and the assimilation of mixed nitrogen sources by cereal leaves and roots.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

	Page
Preface	iii
Selection of crop varieties for efficient production using urea, ammonia, nitrite, and nitrate	1
Assimilation of mixed-N sources, NO ₃ , NO ₂ , NH ₄ +, and urea by cereal leaves and roots	24
Bibliography of CELSS Reports	33
Tables	35

PRECEDING PAGE BLANK NOT FILMED

Selection of Crop Varieties for Efficient Production Using Urea, Ammonia, Nitrite, and Nitrate

Introduction

Our work is determining how the presence of each of the expected N products from waste processing -- NO_3^- , NO_2^- , NH_4^+ and urea -- affect the assimilation of the others by wheat seedlings.

The plant can assimilate these compounds in both leaves and roots. We first determined the interactions in detached leaves and roots to ascertain where the different N sources were mainly metabolized and which were more sensitive to interactions. The N compounds had a relatively small effect on each other's metabolism in leaves; however, the effects were profound in detached roots. Nitrate had little effect on the uptake and assimilation of NO_2^- and NH_4^+ in roots. In contrast, both NO_2^- and NH_4^+ inhibited NO_3^- uptake. Ammonium slightly decreased NO_3^- reduction while NO_2^- almost totally inhibited NO_3^- reduction. NH_4^+ slightly decreased NO_2^- uptake and reduction. Nitrite almost totally inhibited NH_4^+ uptake.

During the past year we have begun studies to determine the interactions of the N sources on each other's assimilation using intact plants. We have also increased the N sources up to three components: NO_3^- , NO_2^- , and NH_4^+ . This report will deal with the results obtained using intact wheat seedlings.

Materials and Methods

Wheat seeds (variety Yecora Rojo) were soaked overnight in Vita-Vax fungicide, then thoroughly rinsed and germinated on cheesecloth suspended over a 1/4 strength Hoagland's solution in darkness at 25°C and 65% relative humidity. Maintenance of a relative humidity of 65% or less was necessary to prevent fungal contamination. The seedlings were grown 4 days in darkness, then 6 days with a 16 h day (500 μ E/m $^{-2}$ sec $^{-1}$), 8 h night cycle at a 25°C day temperature and 15°C nighttime temperature. Relative humidity was maintained at 65%.

Ten to 15 seedlings were then placed in 40 to 50 ml of 1/4 strength Hoagland's solution containing 1 mM of each N compound to be studied. Water-saturated air was bubbled through the test solutions. Samples of 0.4 ml were removed at 0.5 h intervals to determine the disappearance of each N source. Uptake was determined as the amount disappearing from solution. This method mimics the manner of nutrient removal from the substrate medium expected when crops are grown in solution culture.

Assimilation of N sources. This was determined by subtracting the concentration of each N source in the plant from the amount that was taken up.

 NO_3^- , NO_2^- , and NH_4^+ analyses. NO_3^- was determined by HPLC. NO_2^- and NH_4^+ were determined by HPLC and colorimetrically. Both methods gave consistently close and reproducible results.

Analysis of plant samples. Plants from each treatment were ground in water in mortar and pestle and centrifuged at 30,000

 $K \times g$ for 15 min. Aliquots of the supernatant were analyzed for NO_3^- , NO_2^- , and NH_4^+ as described above.

The experiments were all replicated at least 3 times, and 3 applicates per treatment were used. The error bars on the graphs represent the variation occurring at each point on the curve.

Results and Discussion

Lower concentrations of N sources were used in these initial experiments since any interactions are more rapidly seen. The lower concentrations (1 to 3 mm) are also considered to be more "physiological." During the next year, concentrations of N sources will be increased up to 10 mm, that commonly used in many nutrient solutions and which will likely be used in CELSS.

 NO_3^- uptake. Nitrate uptake had a lag period of about 2 h before linear uptake occurred with time and concentration (Fig. 1A, B). The wheat plants were capable of totally depleting the solution of NO_3^- (Table 1).

The lag period is apparently the time required for induction of the NO_3^- uptake system. NO_3^- uptake was linear from about 1 mM NO_3^- to total depletion of NO_3^- from the solution. Other work has shown a typical Michaelis-Menten plot for NO_3^- uptake between 0 and 1 mM NO_3^- with a steady-state rate between 0.5 and 1 mM NO_3^- . When plants are allowed to deplete the NO_3^- from the nutrient solution from a high to a low concentration, they did not show such a mechanism. Apparently their ability increased to take up NO_3^- from a solution becoming progressively more dilute.

 NO_2^- uptake. The concentration of NO_2^- often rapidly decreased when the plants were added to the solution (Fig. 2A, B). We do not understand this, and we are setting up experiments to determine why NO_2 was lost. Subsequently, a long lag of about 4 h occurred before NO_2^- was taken up linearly. The plants also completely depleted the concentration of NO_2^- (Table 1). The lag in the rate of uptake could also be partially due to the necessity to induce an NO_2^- uptake system.

 NH_{4}^{+} uptake. Uptake of NH_{4}^{+} began immediately after the plants were placed in the uptake solution and was linear with time and concentration to total depletion of NH_{4}^{+} from the solution (Fig. 3A, B; Table 1). The plants took up NH_{4}^{+} extremely efficiently.

Uptake from a solution containing NO_3^- and NO_2^- . Nitrate was not taken up for about 7 h when present with NO_2^- (Fig. 4A, B). After uptake began, it was linear with time and concentration to total depletion of NO_3^- from solution (Table 1).

Nitrite showed an initial early loss from solution as pointed out above. After about 2.5 h uptake was slow but quite linear with time and concentration of NO_2^- in solution until all of it was depleted (Fig. 4 AB; Table 1). Nitrate uptake did not begin until the NO_2^- concentration decreased to about 0.1 mM (Fig. 4A). After NO_3^- uptake began, its rate was almost identical to that where only NO_3^- was present (Table 2). The rate of uptake of NO_2^- was less in the presence of NO_3^- (Table 2).

Uptake from a Solution Containing NO_2^- and NH_4^+ . The uptake rate of both NH_4^+ and NO_2^- was decreased in the combined solution. The rate of NH_4^+ uptake from a solution containing only

NH $_4^+$ was 2 µmoles/g fresh weight x h; in the present of NO $_2^-$ the rate decreased to about 1 µmole/g fresh weight x h (Table 2). The rate of NO $_2^-$ uptake from a solution containing only NO $_2^-$ was 1 µmole/g fresh weight x h and was half that in the presence of NH $_4^+$ (Table 2). Although the rates were slower, both NO $_2^-$ and NH $_4^+$ were totally depleted during the course of the experiment (Table 1).

Uptake from a Solution Containing NO_3^- and NH_4^+ . The lag period before NO_3^- uptake became linear was about 2 h longer in the presence of NH_4^+ (Fig. 6 AB). The rate of NO_3^- uptake was slightly (about 20%) decreased in the presence of NH_4^+ (Table 2). Nitrate uptake was slow until about 70% of the NH_4^+ had disappeared from the solution, showing the preferential use of NH_4^+ (Fig. 6C). Nitrate uptake then proceeded until the solution was depleted (Table 1).

Ammonium uptake began immediately and proceeded linear at a rate twice that of NO_3^- until the solution was depleted (Fig. 6CD; Table 2).

Uptake from a Solution Containing NO_3^- , NO_2^- , and NII_4^+ . It appeared that NO_3^- uptake was inhibited until about 60% of the NO_2^- and about 35% of the NII_4^+ had disappeared from solution (Fig. 7 A-F). After 4 h NO_3^- uptake became linear and occurred until it was depleted from solution (Table 1). Its rate was about half of that when it was alone in solution (Table 2).

Nitrite uptake consistently showed quite mixed kinetics (Fig. 7 CD) with an initial rate that was almost twice that of the final (Table 2). Nitrite uptake ceased for about 3 h in the middle of

the time course (from 4 to 7.5 h). Uptake then occurred until almost all of the NO_2^- was depleted from solution. Ammonium uptake began immediately and proceeded until it was almost totally depleted (Fig. 7 EF; Table 1).

Sometimes we detected a severe inhibition of uptake of each of the three sources when all three were present in the nutrient solution which lasted for up to 10 h. This occurred more often in plants which were grown under low N conditions before initiation of the experiments. When plants were grown in higher concentrations of both NO_3^- and NH_4^+ before initiating the experiments, the plants quite efficiently utilized all three sources.

Assimilation of N sources. Nitrite and NH_4^+ were very efficiently assimilated whether or not they were present singly or in the presence of the other two N sources (Table 3). In contrast, NO_3^- assimilation decreased when NO_2^- and NH_4^+ were present in the same solution. The percentage of total N assimilated decreased when NO_3^- was present in the solution since it was not as rapidly assimilated and instead was stored in the tissues.

Control of pH. The pH drops rapidly in nutrient solutions containing NH_{II}^{+} as the N source (Fig. 8). In contrast, the pH increases when NO_{3}^{-} and NO_{2}^{-} are the sources. We have used two methods to maintain pH between about 6.5 to 7.0. These are: Adding a K^{+} charged cation exchange resin to the solution to adsorb H^{+} ions or adding $CaCO_{3}$ to buffer either H^{+} or OH^{-} coming out of plant roots. Of the two methods, the use of $CaCO_{3}$ was superior.

ORIGINAL PAGE IS OF POOR QUALITY

The use of appropriate mixtures of mixed N sources may partially allow pH regulation. However, this depends on how the inhibitory effects on uptake are finally overcome.

Summary

The wheat plants readily take up NH_4^+ and NO_2^- but discriminate against NO_3^- especially in the presence of NO_2^- . The N status of the plant before it receives the combined N sources seems to be important to its ability to take up and assimilate them. The plants store more NO_3^- in the presence of the combined sources apparently because NO_3^- reduction is somewhat inhibited. Overall the wheat plant shows a great ability to use the combined sources even though it appears to sequentially use NO_3^- .

Table 1. Percent removal of each N component from nutrient solutions by wheat plants during 13 h.

N Components in Nutrient Solution		% Uptak ch Comp NO ₂		Total Utilization of all N Sources
NO ₃ (Fig. 1)	100			100
NO_2^- (Fig. 2)		100		100
NH ₄ (Fig. 3)			100	100
$NO_3^- + NO_2^-$ (Fig. 4)	100	100		100
$NO_{2}^{-} + NH_{4}^{+}$ (Fig. 5)		100	100	100
$NO_3^- + NH_{I_1}^+$ (Fig. 6)	100		100	100
$NO_3^- + NO_2^- + NII_4^+$	80	95	99	89

Table 2. Uptake rates determined from linear portions of curves from figures 1 through 6.

N Components in Nutrient Solution	Uptake $\mu moles/g$ fresh_weight \times 1 NO $_3$ NO $_2$ NH $_4^+$					
NO ₃ (Fig. 1 AB)	1.5					
NO_2^- (Fig. 2 AB)		1.0				
NH ₄ (Fig. 3 AB)			2.0			
$NO_3^- + NO_2^-$ (Fig. 4 AB)	1.4	0.6				
$NH_{4}^{+} + NO_{2}^{-}$ (Fig. 5 AB)		0.5	1.1			
$NO_3^- + NH_4^+$ (Fig. 6 A-D)	1.2		2.0			
$NO_3^- + NO_2^- + NH_4^+$ (Fig. 7 A-F)		.5 initial)).8 final)				

ORIGINAL PAGE IS OF POOR QUALITY

Table 3. Assimilation of N sources from nutrient solutions.

OF POOR QUALITY								
ion		+ # H Z		10.57	19.98 ^a	16.12 ^b	19.10 ^C	26.86 ^b
Assimilation	µmoles/g	NO ₂	5.00		19,99	4.85	9.00	11.40
		NO.	6.25		8.95	4.85		3.96
t _{12h}	מ	+ # H R		4.30	4.00	3.47	4.75	3.46
At	μmoles/g	NO ₂	00.00		0.25	0.00	00.00	0.00
Concn		NO 3	6.03		1.59	7.11		8.0¢
To T		+ HN		3.71	4.01	3.30	3.71	3.30
At	µmoles/g	NO ₂	00.00		00.00		00.00	0.00
Concn		Z O 3	0.86		0.04	98.0		0.86
		+ # H N		11.16		11.44	11,14	11.66
Uptake	proles/g	NO2	5.00		11.29		9.00	11.40
		1 °E O 2	11.42		10.50	11.10		11.10
	.i	N components in nutrient solutions 1 mM each	NO33	+ #HN	$NO_3^- + NO_2^-$	$NO_3^- + NH_4^+$	$NO_2^- + NH_4^+$	$NO_3^- + NO_2^- + NH_4^+ 11.10$

Rable 3. (Continued)

Total N Assimilation Through NH ⁺ (100)	Total Untake of all Sources	55	100	95	92	72	95	79
	+ [†]			92	100	66	95	66
8 Assimilation	NO_2^-	100	100		66	100	100	100
% As	NO.3	55			85	<u> </u>		36
lB.		NO.	NO_2^-	+ [†] T	$NO_3^- + NO_2^-$	$NO_3^- + NH_4^+$	$^{1}_{2}HN + ^{2}_{2}CN$	$NO_3^- + NO_2^- + NH_4^+$

 $^{^{}a}$ NO $_{3}^{-}$ assimilated + NO $_{2}^{-}$ assimilated b NO $_{3}^{+}$ assimilated + NO $_{2}^{-}$ assimilated

 $^{^{\}rm C}$ NO $_2^{\rm L}$ assimilated + NH $_4^{\rm +}$ assimilated

Figure Legends

Fig. 1. The uptake of NO_3^- from a nutrient solution containing only NO_3^- (at 1 mM) as the N source.

1A: The disappearance of NO_3^- from solution Fresh weight of plant material was 3.91 g.

1B: The uptake of NO_3^- on a g fresh weight basis.

Fig. 2. The uptake of NO_2^- from a nutrient solution containing only NO_2^- (at 1 mM) as the N source.

1A: The disappearance of NO_2^- from solution. Fresh weight of plants was 4.09 g.

1B: The uptake of NO_2 on a g weight basis.

Fig. 3. The uptake of NH $^+_{\mu}$ from a nutrient solution containing only NH $^+_{\mu}$ (at 1 mM) as the N source.

1A: The disappearance of NO_2^- from solution. Fresh weight of plants was 4.01.

1B: The uptake of NO_2^- on a g fresh weight basis.

Fig. 4. The uptake of NO_3^- and NO_2^- from a nutrient solution containing both N sources (each at 1 mM).

1A: The disappearance of NO_3^- and NO_2^- from solution. Fresh weight of plant material was 3.81 g.

1B: The uptake of NO_3^- and NO_2^- on a g fresh weight basis.

Fig. 5. The uptake of NO_2^- and NH_4^+ from a nutrient solution containing both N sources (each at 1 mM).

1A: The disappearance of NO_2^- and NH_4^+ from solution. Fresh weight of plants was 3.94 g.

1B: The uptake of NO_2^- and NH_4^+ on a g fresh weight basis.

- Fig. 6. The uptake of NO_3^- and NH_4^+ from a nutrient solution containing both N sources (each at 1 mM).
 - 1A: The disappearance of NO_3^- and NH_4^+ from solution. Fresh weight of plant material was 3.02.

1B: The uptake of NO_3^- and NH_4^+ on a g fresh weight basis.

- Fig. 7. Uptake of NO_3^- , NO_2^- , and NH_4^+ from a nutrient solution containing the three N sources (each at 1 mM).
 - 1A: The disappearance of NO_3^- , NO_2^- and NH_4^+ from solution. Fresh weight of plant material was 3.00.

 1B: The uptake of NO_3^- , NO_2^- , and NH_4^+ on a g fresh weight basis.
- Fig. 8. Changes in pH of nutrient solutions as wheat plants take up NO_3^- . Nutrient solutions were $\frac{1}{4}$ strength Hoagland's with 1 mm KNO3.

OF POOR QUALITY

Fig. 1A

Fig. 1B

Fig. 2A

Fig. 3A

Fig. 3B

CHIGINAL PAGE IS OF POOR QUALITY

Fig. 4A

Fig. 4B

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 5A

Fig. 5B

OF POOR QUALITY

Fig. 6A

Fig. 6B

OF POOR QUALITY

Fig. 6D

 \emptyset

of Poor Quality

Fig. 7B

Fig. 7C

Fig. 7D

ORIGINAL PASE IN OF POOR QUALITY

Fig. 7E

Fig. 7F

Fig. 8

Assimilation of Mixed-N Sources, NO₃, NO₂, NH₄, and Urea by Cereal Leaves and Roots

I. Introduction

The results discussed below represent those obtained during our current NASA Grant NSG NCC 2-99. The beginning phase was designed to determine how the presence of each of the expected N products from waste processing — NO₃⁻. NO₂⁻, NH₄⁺, and urea — would affect the assimilation of the others. Since the plant can metabolize each of these compounds in both roots and leaves, the assimilation of each in leaves, roots, and the whole plant must be determined. As described in the proposal, it is critical to determine where each is metabolized (roots or leaves), since that greatly affects the overall efficiency. The studies were done initially using detached cereal leaves. Studies with urea have just begun. The test of the proposal gives a description of NO₃⁻, NO₂⁻, NH₄⁺, and urea assimilation.

Initially we had great difficulty growing wheat plants hydroponically without fungal contamination. Our initial experiments showed that wheat and barley leaves responded essentially identically to the mixed N sources. Since barley had no fungal problem, we began studies with it while determining how to grow wheat hydroponically without fungal contamination. We can now grow wheat in nutrient solution without fungal contamination and are using it for all further experimentation.

II. Materials and Methods

Ten centimeters from each leaf tip were detached from 8-day old barley plants and placed base down in the treatment solutions. The N compounds are taken into the leaves primarily via the transpiration stream. At the end of the specified incubation periods, leaves were homogenized and assayed for N compounds. Uptake of each N component was determined by its disappearance from the external solution. The internal leaf concentration of each N component was determined from a sample of homogenate. The difference between the uptake of each specific N compound and its internal concentration represents the amount reduced or assimilated. Excised roots from wheat (Yecora Rojo) were placed in treatment solutions, and the experiments were conducted as described above for leaves. To determine the effect of one N compound on the others, the concentration of one was maintained constant while the others were varied. Nitrate and NO2 were determined by HPLC (Thayer and Huffaker, 1980), and NH4 + was determined first by an ammonium-specific electrode; we currently use HPLC to assay for ammonium, since it is more sensitive and reproducible than the ammonium-specific electrode.

III. Results

A. Barley Leaves

Effect of NO2 on NO3 assimilation (Tables I and II)

In light, the reduction of NO_3 decreased about 17% as NO_2 was increased in concentration in the external solution (Table I,

line E). Ninety-nine percent of the NO_2^- absorbed from the external solution and the NO_2^- resulting from NO_3^- reduction was inhibited (line H). Since essentially all the NO_2^- in the plant is reduced, the total N reduced from both sources (line 1) increased as NO_2^- increased in the external solution. In darkness, NO_2^- had little effect on NO_3^- reduction (Table II, line E). Again, all of the NO_2^- in the plant was further reduced (line H), whereas about 40% of the NO_3^- was reduced (line G). The presence of NO_2^- increased the total N reduced in darkness (37 to 76%, line I).

Effect of NO₃ on NO₂ assimilation (Tables III and IV)

Increasing NO_3^- in the substrate solution had no effect on NO_2^- assimilation in light or darkness (line H). Again 98% of the NO_2^- taken up from the external solution and that formed from NO_3^- reduction was reduced. Because less NO_3^- is reduced than NO_2^- , the total N reduced decreased as NO_3^- increased in the substrate solution (line I).

Effect of NH₄⁺ on NO₃⁻ assimilation (Tables V and VI)

As $\mathrm{NH_4}^+$ was increased in the external nutrient solution, $\mathrm{NO_3}^-$ reduction was somewhat decreased in both light and dark (line G). In light a constant amount of $\mathrm{NH_4}^+$ was utilized (Table V, line H), whereas in darkness, $\mathrm{NH_4}^+$ utilization increased as $\mathrm{NH_4}^+$ increased (Table VI, line H). In light the presence of external $\mathrm{NH_4}^+$ slightly decreased the total utilization from both sources, whereas in darkness, the presence of $\mathrm{NH_4}^+$ increased the total utilization of both sources (line I). Since the leaf $\mathrm{NO_2}^-$ concentration was negligible, essentially all $\mathrm{NO_3}^-$ reduced was converted

OAIGHAL PAGE IS OF POOR QUALITY

to $\mathrm{NH_4}^+$. The extent of utilization of $\mathrm{NO_3}^-$ and $\mathrm{NH_4}^+$ was more complete in light than darkness.

Effect of NO₃ on NH₄ assimilation (Tables VII and VIII)

As external NO_3^- increased, more NH_4 was assimilated (line H), although the total N assimilated was affected little in light (line I). In darkness, NH_4^+ assimilation also increased in the presence of NO_3^- (line H); however, overall assimilation of total N decreased somewhat as NO_3^- increased (Table VIII, line I). because of low assimilation of NO_3^- . More NH_4^+ was assimilated than NO_3^- .

Effect of NH₄ on NO₂ assimilation (Tables IX and X)

Increasing NH_4^+ did not affect NO_2^- assimilation in either light or dark (line G). Each was utilized in nearly the same percentage and the total amount of N utilized from each source (line I) was affected little by increasing NH_4^+ .

Effect of NO₂ on NH₄ assimilation (Tables XI and XII)

Almost all NO_2^- absorbed was reduced (96% or more, line G). Total utilization of NH_4^+ increased in the presence of NO_2^- , from 64 to 82% in light and 59 to 81% in darkness, as NO_2^- increased in the external solution (line H). Total assimilation from both N sources (line I) increased as external NO_2^- increased.

Effect of urea on NO_3 assimilation (Tables XIII and XIV)

Urea, supplied at a similar concentration to NO_3 or NH_4 , caused a 3-fold increase in both NO_3 and NH_4 concentrations, respectively, and inhibited NO_3 reduction about 24% in light (Table XIII, lines B, H, and C, respectively). Urea was metabolized

to NH₄⁺ very rapidly inside the leaves (line F); the resulting NH₄⁺ was also rapidly assimilated (lines F and L). Increasing urea had little effect on the ratio of the N used versus the total available from all sources (line M).

In darkness urea inhibited NO_3^- reduction by 88% (lines C and D) at one-half equimolar concentration, and it totally inhibited NO_3^- reduction at an equimolar concentration (Table XIV). Urea was completely metabolized (line F); the resulting NH_4^+ was also efficiently assimilated (lines K, L). The great decrease in NO_3^- reduction in the presence of urea may be due to its rapid conversion to NH_4^+ , which would produce an NH_4^+ concentration equal to 2 times that of NO_3^- . Because more urea and NH_4^+ were assimilated than NO_3^- , the presence of urea increased the percentage of total assimilation from all N sources (line M).

Effect of NO3 on urea assimilation (Tables XV and XVI)

 NO_3 had no effect on urea metabolism (line F) or the resulting NH_4 assimilation in light (lines G, H, I, J) (Table XV). NO_3 also had no effect on the percentage of total N assimilation from any N source (line K).

In darkness NO_3^- , also had no effect on either urea or NH_4^+ assimilation (Table XVI). As NO_3^- concentration increased, the percentage of N metabolized from the total available amount decreased (line L) because of total inhibition of NO_3^- reduction in the presence of urea and NH_4^+ (line C).

B. Wheat Roots

Effect of NH4 on assimilation of NO3 (Table XVII)

The presence of NH_4^+ at equimolar concentration with NO_3^- in the external solution inhibited NO_3^- uptake 50% (line A) but only slightly decreased the NO_3^- reduced as a percentage of that taken up (line D). Hence, the major effect of NH_4^+ on NO_3^- assimilation was inhibition of NO_3^- uptake. Because more NH_4^+ was assimilated than NO_3^- , the total utilization from both N sources increased as NH_4^+ increased (line L).

Effect of NO2 on NO3 assimilation (Table XVIII)

 NO_{2}^{-} greatly inhibited both NO_{3}^{-} uptake (by 50% at one-half the concentration of NO_{3}^{-} and by 75% at equimolar concentration in the nutrient solution (Line A). NO_{3}^{-} reduction was totally inhibited at the lowest concentration of NO_{2}^{-} in the external solution (line C). Because 94 to 100% of the NO_{2}^{-} was assimilated (line K), total N utilization increased as NO_{2}^{-} increased in the nutrient solution (line L).

Effect of NO₂ on NH₄ assimilation (Table XIX)

Nitrite at one-half the concentration of NH_4^+ in the external solution inhibited NH_4^+ uptake 99.9% (line A); hence, essentially no NH_4^+ from the external solution was utilized by the plant in the presence of a 1/2 equimolar concentration of nitrite.

Effect NO₃ on NH₄ assimilation (Table XX)

Nitrate in the external solution slightly enhanced the utilization of $\mathrm{NH_4}^+$ (lines I and K) because it had no effect on $\mathrm{NH_4}^+$ uptake and slightly increased the percentage of $\mathrm{NH_4}^+$ assimilated.

Effect of NO3 on NO2 assimilation (Table XXI)

External NO₃ had no effect on NO₂ uptake (line A) or NO₂ reduction (lines H, J). Since NO₂ totally inhibited NO₃ reduction (line E), the percentage of N used from all N sources decreased (line K) as NO₃ increased in the external solution.

Effect of NH₄⁺ on NO₂⁻ assimilation (Table XXII)

The presence of $\mathrm{NH_4}^+$ in the external solution inhibited $\mathrm{NO_2}^-$ uptake 25% (line A) and reduction 30% (line E), at an equimolar concentration. This resulted in an overall decrease in N utilization (line M), since $\mathrm{NH_4}^+$ uptake (line F) was totally inhibited and $\mathrm{NO_2}^-$ reduction (lines D, E) was somewhat inhibited.

The effects of NO_2^- and NH_4^+ on urea metabolism and, conversely, the effect of urea on NO_2^- and NH_4^+ assimilation remain to be investigated in leaves in light and darkness. Remaining to be examined as well are the interactions of urea with NO_3^- , NO_2^- , and NH_4^+ in roots in this phase of the study. It will be interesting to determine whether NO_2^- will inhibit the absorption of urea as it does NH_4^+ .

IV. Summary

In leaves, the presence of NO_2^- in the external solution increased the overall utilization of mixed N sources because of the great efficiency with which leaves reduce NO_2^- . Although NO_3^- reduction decreased as NO_2^- increased, the great utilization of NO_2^- more than made up for the decreased NO_3^- reduction in both light and darkness. As NO_3^- increased in the external solution in the presence of NO_2^- , the overall utilization of N decreased,

because a smaller portion of the NO_3^- absorbed was reduced. The assimilation of NH_4^+ was increased as NO_3^- increased in the external solution in both light and darkness whereas NH_4^+ tended to inhibit NO_3^- reduction. NH_4^+ had no effect on NO_2^- assimilation in either light or dark; NO_2^- , on the other hand, increased the overall NH_4^+ utilization in both light and dark. The leaves preferentially reduce NO_2^- , perhaps because of its toxicity.

The cereal leaves metabolized urea and the resulting NH₄⁺ extremely efficiently. Urea influenced NO₃⁻ assimilation then in essentially the same way NH₄⁺ did in light. In darkness, urea inhibited NO₃⁻ reduction almost totally. By contrast, NH₄⁺ inhibited NO₃⁻ reduction only slightly. The greater effect by urea may have been due to the systems having to assimilate twice as much NH₄⁺ per molecule of urea; nevertheless, the steady-state NH₄⁺ concentration was almost the same in the presence or absence of urea; so, the reasons for the great inhibition of NO₃⁻ reduction by urea in darkness remain to be worked out.

The major effect of $\mathrm{NH_4}^+$ on $\mathrm{NO_3}^-$ assimilation in wheat roots was an inhibition of $\mathrm{NO_3}^-$ uptake. The amount of $\mathrm{NO_3}^-$ reduced compared with the amount absorbed was affected only slightly by $\mathrm{NH_4}^+$. The presence of $\mathrm{NO_2}^-$ in external solutions containing $\mathrm{NO_3}^-$ or $\mathrm{NH_4}^+$ had greatly affected on the assimilation of $\mathrm{NO_3}^-$ or $\mathrm{NH_4}^+$.

 NO_2 substantially inhibited NO_3 uptake and totally inhibited NO_3 reduction at half the concentration of NO_3 . Nitrite at half the concentration of NH_4 totally inhibited NH_4 uptake. Low levels of NO_2 may have devastating effects on assimilation of

mixed-N nources that must be taken up by roots. The presence of NO_3^- , on the other hand, had little effect on the metabolism of either NO_2^- or NH_4^+ .

Since $\mathrm{NH_4}^+$ assimilation by roots was much more efficient than $\mathrm{NO_3}^-$ assimilation, the efficiency of utilization from these mixed sources increased as $\mathrm{NH_4}^+$ increased.

GENERAL PROAFS OF POOR QUALITY

Controlled Ecological Life Support Systems (CELSS):
A Bibliography of CELSS Documents Published as NASA Reports

- 1. Johnson, Emmett J.: Genetic Engineering Possibilities for CELSS: A Bibliography and Summary of Techniques. (NASA Purchase Order No. A73308B.) NASA CR-166306, March 1982.
- 2. Hornberger, G.M.; and Rastetter, E.B.: Sensitivity Analysis as an Aid in Modelling and Control of (Poorly-Defined) Ecological Systems. (NASA Purchase Order No. A77474.) NASA CR-166308, March 1982.
- 3. Tibbitts, T.W.; and Alford, D.K.: Controlled Ecological Life Support System: Use of Higher Plants. NASA CP-2231, 1982.
- 4. Mason, R.M.; and Carden, J.L.: Controlled Ecological Life Support System: Research and Development Guidelines. NASA CP-2232, 1982.
- 5. Moore, B.; and R.D. MacElroy: Controlled Ecological Life Support System: Biological Problems. NASA CP-2233, 1982.
- 6. Aroeste, H.: Application of Guided Inquiry System Technique (GIST) to Controlled Ecological Life Support Systems (CELSS). (NASA Purchase Order Nos. A82705B and A89697B.) NASA CR-166312, January 1982.
- 7. Mason, R.M.: CELSS Scenario Analysis: Breakeven Calculation. (NASA Purchase Order No. A70035B.) NASA CR-166319, April 1980.
- 8. Hoff, J.E.; Howe, J.M.; and Mitchell, C.A.: Nutritional and Cultural Aspects of Plant Species Selection for a Controlled Ecological Life Support System. (NASA Grant Nos. NSG-2401 and 2404.) NASA CR-166324, March 1982.
- 9. Averner, M.: An Approach to the Mathematical Modelling of a Controlled Ecological Life Support System. (NASA Contract No. NAS2-10133.) NASA CR-166331, August 1981.
- 10. Maguire, B.: Bibliography of Human Carried Microbes' Interaction with Plants. (NASA Purchase Order No. A77042.) NASA CR-16630, August 1980.
- 11. Howe, J.M.; and Hoff, J.E.: Plant Diversity to Support Humans in a CELSS Ground-Eased Demonstrator. (NASA Grant No. NSG-2401.) NASA CR-166357, June 1982.
- 12. Young, G.: A Design Methodology for Nonlinear Systems Containing Parameter Uncertainty: Application to Nonlinear Controller Design. (NASA Cooperative Agreement No. NCC 2-67) NASA CR-166358, May 1982.

ORIGINAL IN THE IU

- 13. Karel, M.: Evaluation of Engineering Foods for Controlled Ecological Life Support Systems (CELSS). (NASA Contract No. NAS 9-16008.) NASA CR-166359, June 1982.
- 14. Stahr, J.D.; Auslander, D.M.; Spear, R.C.; and Young, G.E.: An Approach to the Preliminary Evaluation of Closed-Ecological Life Support System (CELSS) Scenarios and Control Strategies. (NASA Cooperative Agreement No. NCC 2-67) NASA CR-166368, July 1982.
- 15. Radmer, R.; Ollinger, O.; Venables, A.; Fernandez, E.: Algal Culture Studies Related to a Closed Ecological Life Support System (CELSS). (NASA Contract No. NAS 2-10969) NASA CR-166375, July 1982.
- 16. Auslander, D.M.; Spear, R.C.; and Young, G.E.: Application of Control Theory to Dynamic Systems Simulation. (NASA Cooperative Agreement No. NCC 2-67) NASA CR-166383, August 1982.
- 17. Fong, F. and Funkhouser, E.A.: Air Pollutant Production by Algal Cell Cultures. (NASA Cooperative Agreement No. NCC 2-102) NASA CR-166384, August 1982.
- 18. Ballou, E. V.: Mineral Separation and Recycle in a Controlled Ecological Life Support System (CELSS). (NASA Cooperative Agreement No. NCC 2-53) NASA CR-166388, March 1982.
- 19. Moore, B., III; Wharton, R. A., Jr.; and MacElroy, R. D.: Controlled Ecological Life Support System: First Principal Investigators Meeting. NASA CP-2247, 1982.
- 20. Carden, J. L. and Browner, R.: Preparation and Analysis of Standardized Waste Samples for Controlled Ecological Life Support Systems (CELSS). (NASA Cooperative Agreement No. NCA 2-OR260-102) NASA CR-166392, August 1982.
- 21. Huffaker, R. C.; Rains, D. W.; and Qualset, C. O.: Utilization of Urea, Ammonia, Nitrite, and Nitrate by Crop Plants in a Controlled Ecological Life Support System (CELSS) (NASA Cooperative Agreement No. NCC 2-99) NASA-CR 166417, October 1982.

OTHERMAL PRICE IS OF POOR QUALITY

Table I.	Effect	of NO ₂ o	on NO ₃ A	ssimilat	ion in Li	ght (µmo]	les/g × 8	h except	Assimilation in Light (µmoles/g \times 8 h except for $\%$ columns)
Treatment NO ₂ NO ₃ (mM)	r NO3- uptake A	NO ₂ - uptake B	NO ₃ - in leaves C	NO ₂ — in leaves D	NO ₃ reduced	Total NO ₂ reduced F	NO ₃ reduced	% NO ₂ - reduced	N reduced (%) N available I
0 5	19.5	0	0.9	0.05	13.5	13.5	69	100	69
2.5 5	23.0	16.9	6.6	0.18	13.1	29.8	57	66	75
5 5	19.4	29.8	9.3	0.53	10.1	39.4	52	66	80
	A	æ	ပ	Q	E=A-C	F=B+E-D	G=E(100) A	H=F(100) B+E	$\frac{I=F(100)}{A+B}$
Tab]	Table II. Ef	Effect of NO ₂	NO ₂ on NO ₃	ı	imilation 3 % columns)	Assimilation in Darkness for % columns)	oss (pmol	(umoles/s × 12 h except	h except
Treatment NO ₂ NO ₃ (mM)	: NO ₃ - uptake A	NO ₂ " uptake B	NO ₃ in leaves	NO ₂ - in leaves D	NO3 reduced	$egin{array}{c} ext{Fotal} & ext{NO}_z \ ext{reduced} & ext{F} \end{array}$	% NO3 reduced G	% NO ₂ reduced	N reduced (%) N available I
0 5	3.8	0	2.4	0.03	1.4	1.4	37	100	37
2.5 5	4.2	8.9	2.6	0.05	1.6	8.4	38	100	76
	A	В	၁	О	E=A-C	F=B+E-D	G=E(100) A	H=F(100) B+E	$\frac{I=r(100)}{A+B}$

of ${\rm NO_3}^-$ on ${\rm NO_2}^-$ Assimilation in Light (µmoles/g $ imes$ 8 h except for % columns)	N reduced (%) N available	86	86	77	I=F(100) A+B
h except	$^{2}_{ m NO_{2}}$ reduced	98	86	86	H=F(100) B+E
oles/g × 8	% NO ₃ -	0	54	52	G=E(100) A
Light (µm	${ m Total} { m NO}_2^{-}$	14.6	19.5	22.3	F=B+E -D
ation in	NO ₃ -	0	3.4	6.7	E=A-C
Assimi1	NO ₂ - in leaves	0.33	0.43	0.55	A
on NO ₂	NO ₃ - in leaves	1.0	2.9	6.3	ပ
1	NO2 ⁻ uptake	14.9	16.5	16.1	æ
Effect	E NO3 ⁻ uptake	0	6.3	13.0	A
Table III. Effect	reatment O2 NO3 (mM)	0	2.5	5.0	
Ta	Tr NO	Ŋ	5	Ŋ	

17 U)	N reduced (2)	86	81	77	I=F(100) A+B
priece of mos on mos assimilation in Daikness (pulles/g x 12 m)	$^{2}_{N0_{2}}$ reduced	86	86	66	H=F(106) B+E
arkiless (p	Total $\%$ 100^{2} 100^{3} reduced reduced	0	20	09	G=E(100) H= A
יים ווו דוו חסד-	Total NO ₂	5.5	7.4	10.3	F=B+E-D
WSSTIIITTG!	100^3 10^3 10^3 10^3 10^3 10^3 10^3	0	1.6	4.3	E=A-C
OII NO2	NO ₃ NO ₂ in in leaves	0.09	0.09	60.0	Q
EON TO	NO ₃ - in leaves	0.1	1.6	2.9	ပ
חדדבר	NO ₂ - uptake	5.6 0.1	5.9	6.0	В
table iv.	NO ₃ - uptake	0	3.2	7.2	Ą
10	Freatment 402 NO3 (mM)	0	2.5	2	
	Tre NO ₂	5	5	5	

CRIMINAL FROM IS OF POUR QUALITY

h)	N reduced (%) N available	86	75	74	$\frac{I=F(100)}{A+B}$
Effect of NH4 on NO3 Assimilation in Light (pmoles/g × 8 h)	% NH ₄ + utilized	86	06	88	H=F(100) B+E
Light (um	% NO3	85	77	71	$\frac{G=E(100)}{A}$
ilation in	${ m NO_3}^ { m NH_4}^+$ reduced utilized	9.0	15.4	19.2	F=B+E-D
O3 Assim	NO3 ⁻	10.5	10.7	9.6	E=A-C
t, + on N(NH ₄ + in leaves	1.5	1.8	2.6	D
cr of MH	NO ₃ in	1.8	3.2	3.0 9.0	U
	NH ₄ + uptake	0	6.5	12.2	В
Table V.	NO ₃ uptake	12.3	13.9	13.6	A
	Treatment NO ₃ NH ₄ + (mM)	5 0	5 2.5	5 5	

12 h)	N reduced (%) N available	76	†	58	649	$\frac{I=F(100)}{A+B}$
Effect of NH4 on NO3 Assimilation in Darkness (umoles/g x 12 h)	% NH ₄ + utilized	35	0 0	8/	69	H=F(100) B+E
arkness (% NO ₃	61	i (ט נ	20	$\frac{G=E(100)}{A}$
tion in D	$NO_3^ NH_4^+$ $2 NO_3$ reduced utilized reduced	1.5	· ·	ָרָ ה די ה	χ. Υ	F=B+E-D
Assimila	NO3- reduced	2.7	2 0	, ,	6.3	E=A-C
on NO3	NH ₄ in leaves	1.2	1,3			Q
of NH4	NO ₃ - in leaves	1.7	2.0	2.2	1	U
Effect	NH ₄ + uptake	0	2.9	3.2	!	æ
Table VI.	NO ₃ - uptake	4.4	6.4	4.5	l	Ą
T.	eatment 13 NH ₄ + (mM)	0	2.5	5		
l	Tr NO	5	5	5		

8 h)	% NH ₄	69	7.5	75	<u>I=F(100)</u> A+B
Effect of NO_3 on Assimilation of NH_4 in Light (µmoles/g \times 8 h)	$^{\prime}_{ m NNH_{t}}$ utilized	69	84	88	H=F(100) B+E
n Light (µ	% NO ₃ reduced	0	69	71	G=E(100) A
of NHt i	$^{ m H}_{ m utilized}$	0.9	12.8	19.3	F=B+E-D
similation	NO ₃ - reduced	0	3.8	7.6	E=A-C
on Ass	NH _t + in	2.7	2.5	2.6	ပ
of NO3	NO3 NH4 in in Leaves leaves	0	1.8	3.9	υ
. Effect	NH ₄ † uptake	8.7	11.5	12.2	В
Table VII.	NO ₃ - uptake	0	5.5	13.6	Ą
Ĥ	Creatment NO3 NH4 (mM)	5	5	5	
	Trea NO3	0	2.5	7	

[-4	Table VIII.	Effect	of NO3	on Assi	milation	Effect of ${\rm NO_3}^-$ on Assimilation of ${\rm NH_4}^+$ in Darkness (µmoles/g \times 12 h)	Darkness	(ymoles/g	× 12 h)
Treatment NO ₃ NH ₄ ⁺ (mM)	t NO3 - uptake	NH _t + uptake	NO3 ⁻ in leaves	NH4 in leaves	NO ₃ - reduced	NO ₃ - NH ₄ + reduced utilized	% NO ₃ reauced	$\%$ NH_{4}^{+}	$% = \frac{1}{N} \times $
0 5	0	2.5	0	0.91	0	1.6	0	64	99
2.5 5	1.3	1.8	6.0	0.74	0.4	1.5	31	99	47
5 5	2.3	2.9	1.7	0.82	9.0	2.7	26	77	52
	A	æ	ပ	Q	E=A-C	F=B+E-D	$\frac{G=E(100)}{A}$	$\frac{\mathrm{H=F}(100)}{\mathrm{B+E}}$	$\frac{I=F(100)}{A+B}$

ORIGINAL PAGE IS

	Tab	Table IX.	Effect o	of NHt o	n Assimi	lation of	NO2 in L	ight (µmol	on Assimilation of $\mathrm{NO_2}^-$ in Light (µmoles/g fr wt $ imes$ 8 h)	× 8 h)
Tres NO2	Treatment NO ₂ NH ₄ ⁺ (mM)	NO ₂ " uptake	NH _t uptake	NO ₂ - in leaves	NH ₄ + in leaves	NO ₂ reduced	$^{\mathrm{NH}_{\mathrm{t}}}_{\mathrm{utilized}}$	% NO ₂ -	$^{*}_{ m NH_{th}}$ utilized	N reduced (100) N available
5	0	11.3	0	0.1	1.6	11.2	9.6	66	98	86
5	2.5	11.4	9.4	0.1	1.7	11.3	14.2	66	89	89
5	5	12.0	8.1	0.2	2.4	11.8	17.5	86	88	87
		А	В	ပ	Д	E=A-C	F=B+E-D	$\frac{G=E(100)}{A}$	H=F(100) B+E	<u>I=F(100)</u> A+B
1	Tal	Table X.	Effect or	of NH4 or	n Assimi	lation of	NO ₂ in D	arkness (µ	on Assimilation of $\mathrm{NO_2}^-$ in Darkness (µmoles/g $ imes$ 12	12 h)
Tree NO ₂	Treatment NO ₂ NH ₄ + (mM)	NO2 ⁻ uptake	NH ₄ uptake	NO ₂ - in leaves	NH ₄ + in	${ m NO}_2^ { m NH}_4^+$ reduced utilized	$^{+}_{ m NH_4}$ utilized	% NO ₂ reduced	$\%$ $\mathrm{NH_{t}}^{+}$ utilized	N reduced (100) N available
Ŋ	0	2.6	0	0.01	9.0	2.6	2.0	100	7.7	77
5	2.5	2.1	9.0	0.01	0.8	2.1	1.9	100	70	70
5	5	2.7	2.1	0.01	6.0	2.7	3.9	100	81	81
ĺ	,	A	В	U	D	E=A-C	F=B+E-D	$\frac{G=E(100)}{A}$	H=F(100) B+E	$\frac{I=F(100)}{A+B}$

Table XI. Effect of NO2 on Assimilation of NH $_4^+$ in Light (µmoles/g \times 8 h)

	iced (100)	64	74	80	I=F(100) A+B
•	N redu N ava			~	
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	$\% \text{ NO}_2^ \% \text{ NH}_4^+$ N reduced (10G) reduced utilized N available	64	75	82	H=F(100) B+E
) 	% NO ₂ "	0	86	96	G=E(100) E
	$^{\mathrm{NH}_{\mathrm{t}}}_{\mathrm{utilized}}$	4.5	7.1	7.6	F=B+E-D
	+ NO ₂ - reduced u	0	4.1	7.2	E=A-C
	NO_2 NH_4 in in eaves	2.5	2.4	2.2	Q
	NO ₂ - in leaves	0.05	0.08	0.28	U
	$^{+}_{ m NH_4}$ uptake	7.0	5.4	4.7	В
	Treatment NO ₂ NH ₄ NO ₂ NH ₄ (mM) uptake uptake	0	4.2	7.5	A
	eatment 2 NH ₄ (mM)	5	2	5	
	Trea NO2	0	2.5	5	

N reduced (1,00) N available I=F(100) A+B 81 Effect of NO_2^- on Assimilation of NH_4^+ in Darkness (µmoles/g \times 12 h) $% NH_{4}^{+}$ utilized H=F(100) B+E 81 71 G=E(100) % NO₂ reduced 100 100 100 utilized F=B+E-D NH" 2.4 reduced NO_2 E=A-C leaves + *HN 0.9 NO2 in leaves 0.009 0.005 0.007 ပ $^{
m NH_4}$ uptake 2.9 1.7 2.1 Ø Table XII. $N0_2^-$ uptake A Treatment NO₂ NH₄+ (MM)

2.5

Effect of Urea on NO₃ Assimilation in Light by Excised Cereal Leaves (µmoles/g \times 8 h except for % columns) Table XIII.

N used (100) N avail-able	73	79	77	4=K(100) A+2E+H
z z				A 1
N pesu	80	89	98	$K=I-J \frac{L=K(100)}{I}$
NH4 tused	6.71	16.19	22.28	K=I-J
Total NH ₄ + available from NO ₃ - and urea	8.32	18.12	25.81	J=C+2G+H
NH ₄ in in leaves at T ₈ h	1.61	1.93	3.53	ı
NH4 in leaves at To	1.22	1.22	1.22	н
Urea used	0	5.45	9.51	G=E-F
Urea in leaves	0	0	0	ĬΨ
Urea uptake	0	5.45	4.51	斑
% NO3 reduced	88	72	99	D=C(100) A
NO3 ⁻ reduced	7.10	0.9	5.57	C=B-A
NO3 ⁻ in leaves	0.96			В
NO3 ⁻ uptake	8.06	8.35	8.70	A
Treatment NO3 urea (mM)	0	2.5	5.0	
Tr NO	5	7	2	

Table XIV. Effect of Urea on NO3 Assimilation by Excised Cereal Leaves in Darkness (µmoles/g × 12 h)

% NH ₄ (100) used N avail- able	20	47	59	M=K(100) A+2E+H
% NH4 tused	0.73 40	73.8	6.48 82.2	$K=I-J \frac{L=K(100)}{I}$
NH _t +	0.73	3.12 7	6.48	K=I-J
Total NH4 available from NO3 and urea	1.82	4.23		J=C+2G+H
NH _t in leaves at T ₈ h	1.09	1.11	1.40	н
NH4 in leaves at To	0.7	0.7	0.7	缸
Urea	0	1.7	3.59 0.7	G=E-F
Urea in leaves	0	0	0	ഥ
Urea uptake	0	1.70	3.59	E
% NO3_reduced	35.5	5	0,	$\frac{D=C(100)}{A}$
NO3 7	1.12	0.13	0.0	C=B-A
NO3 in leaves	2.10	2.60	3.91	щ
NO3 ⁻ uptake	3.0	2.49	3.09	А
Treatment NO3 urea (mM)	5 0	5 2.5	5 5.0	

OFFICE PROPERTY					
OF POOR QUALITY	N used (165) N avail- able	84	81	77	K=J-I L=K(100) M=K(100) J A+2E+H
.i. w w	% NHt +	84	87	98	L=K(100)
(pmoles/	NH [†] +N	15.63	21.68	22.29	K=J~L
Table XV. Effect of NO3 on Assimilation of Urea by Excised Cereal Leaves in Light (pmoles/g / 8 î.,	Total NH4+ available from NO3 and urea	18.64	25.0	25.82	J=C+2G+H
l Leaves	NH4 in leaves at T ₈ h	3.01	3.32	3.53	н
ed Cerea	NH _t in in leaves at T _O	1.22	1.22	1.22	н
y Excise	Urea	8.71	10.8	9.51	G=E-F
Urea b	Urea in leaves	0	0	0	댅
ation of	Urea uptake	8.71	10.8	9.51	ьī
n Assimila	% NO3 reduced	0	55	99	D=C(100) A
of NO ₃ c	NO3 ⁻ reduced	0	2.18	5.58	C=B-A
Effect	NO3 in leaves	0	1.76	3.13	д
ble XV.	NO3 ⁻ uptake	0	3.94	8.71	A
Tal	Treatment NO3 urea (mM)	0	2.5	5.0	
	Tre No	2	5.	5	

; h)	N used (100) N avail- able	83.2	72.6	59.0	$K=I-J$ $\frac{L=K(100)}{I}$ $\frac{M=K(100)}{A+2E+H}$
s/g × 12	, NH ₄ N	7.12 83.2	82.4	82.2	L=K(100) I
(µmole	NH _t +	7.12	5.95	6.48	K=I-J
Table XVI. Effect of ${\rm NO_3}^-$ on Assimilation of Urea by Excised Cereal Leaves in Darkness (umoles/g \times 12 h)	Total NH ₄ + available from NO ₃	8.56	7.22	7.88	J=C+2G+H
Leaves	$^{+}_{\mathrm{NH}_{4}}$ in leaves at $^{-}_{\mathrm{1gh}}$	1.44	1.27	1.40	н
d Cereal	NH4 in leaves at T ₀	0.7	0.7	0.7	Ħ
Excise	Urea used	3.93 0.7	3.26	3.59	G=E-F
Urea by	Urea in Leaves	0	Ú	0	ĺΉ
ion of	Urea uptake	3.93	3.26	3.59	ы
n Assimilat	% NO ₃ reduced	0	0	0	$\frac{D=C(100)}{A}$
f NO3 o	NO3_ reduced	0	0	0	C=B-A
Effect o	NO ₃ - in leaves	0	1.63	4.04	а
e XVI.	NO3 ⁻ uptake	0	0.97	3.09	Ą
Tabl	Treatment NO ₃ urea (mM)	0 5	2.5 5	5.0 5	
	Tr NO	0	2.	5.	

× 8 ħ)	N used (100) N available	23	54	58	$\frac{L=I(100)}{K}$
(µmoles/g	Total N available in roots	24.61	36.97	47.47	K=A+E+F
Table XVII. Effect of NH4 on Assimilation of NO3 by Excised (Yecora Rojo) Wheat Roots (µmoles/g × 8 h)	NH ₄	75	86	92	J=I(100)
Rojo) W	NH4 used	5.7	20.08	27.57	1=H-G
(Yecora	Total NH ₄ avail- able	7.65	23.34	36.27	H=C+k+F
Excised	NH, + NH, + in in roots roots roots at t ₀ at t ₈ h	1.95	3.26	8.70	უ
NO3 by	NH ₄ tin roots	1.61	1.61	1.61	ĮΉ
tion of	NH4 uptake	ł	18.08	32.08	띠
Assimilat	% NO3 reduced	26	21	19	D=C(100) A
f NH4 or	NO3 % % J	16.43 6.04	13.63 3.6	11.20 2.58	C=A-B
ffect o	NO3 ⁻ in roots	16.43	13.63	11.20	æ
XVII. E	Treatment NO3 NO3 (mM) uptake	23.0	17.28	13.78	A
Table	atment NH ₄ (mM)	0	0.5	1.0	ļ
	Tre NO3	-	-	⊷	

3	N used (100) N avail-able	20.3	47.8	0.99	$\frac{L=I(100)}{K}$
les/g × 8 l	% NO2 reduced of total NO2 avaliable	100	98.7	94.0	K=A+E+F
on Assimilation of ${\rm NO_3}^-$ by Yecora Rojo Wheat Roots (µmoles/g \times 8 h)	Total N Total N NO2 available reduced from NO3	5.09 25.05	21.47	21.35	$\frac{J=I(100)}{G}$
o Wheat	Total N NO ₂ reduced	5.09	10.26	14.09	1=H-G
ecora Roj	Total NO2- avail- able	5.09	10.39	14.98	H=C+E+F
3 by Ye	NO ₂ NO ₂ in in roots at t _o at t _{ah}	0.0	0.13	0.89	ڻ
n of NO	NO ₂ in roots at t _o	0.0	0.0	0.0	ÍT-4
imilatio	NO ₂ uptake	-	10.39	14.98	ш
. 1	% NO3 reduced u	20.2	0	0	$\frac{D=C(100)}{A}$
Table XVIII. Effect of NO2	NO3 % NO	19.95 5.09	0	0	C=A-B
I. Eff	NO3 in roots	19.95	11.59	6.66 0	В
ble XVII	NO3 ⁻ uptake	25.04	11.08	6.37	А
Ta	Treatment NO ₃ NO ₂ (mM)	0	0.5	1.0	
	Tre NO3	П		-	

OF POOR QUALITY

(8 h)	N used (100) N avail-	
oles/g ×	" NH" ns ed	
t Roots (un	Total N available in roots	
jo Whea	NH ⁴ + us eq	
. Yecora Ro	Total NH4+ available in roots	
by Excised	% NO2 reduced	
OI NH¢	NO ₂ reduced	
Lable also filed of NO2 on uprake and utilization of NH $_4$ by Excised Yecora Rojo Wheat Roots (µmoles/g × 8 h)	${ m NO_2}^-$ in roots at to at t_8h	
прсаке	NO ₂ - uptake	
ect of NU2 or	$_{ m NH_4}^{+}$ in roots at t $_{ m O}$ at t $_{ m 8h}$	
TV. ELI	NH ₄ uptake	
V ATOPT	Treatment NO ₂ NH ₄ (mM)	

 $\frac{L=J(100)}{I} \frac{M=J(100)}{K}$

K=A+B+D

J=I-C

I=A+B+G

H=G(100)

G=D-F

ഥ

口

О

ပ

В

Ą

79 68 59

797468

12.15 10.62

43.21 11.16 9.34

90

0.0

1.28

10.12 8.34

8.95 2.95 3.03

0.046

1.95
 1.97
 1.97

41.24

0

43.21

/g × 8 h)	N used (100)	able	67	62	28	L=I(100)
(µmoles	+ HN %	n Sen	67	77	9/	K=I (100) H
Table XX. Effect of NO3 on Uptake and Utilization of NH4 by Excised Yecora Rojo Wheat Roots (umoles/g × 8 h)	Total N available	in roots	33,73	46.86	57.57	J=A+B+D
a Rojo	NH4+		22.68	29.02	27.57	I=H-B
cised Yecor	Total NH ₄ +	in roots	33.73	37.56	36.27	H=A+B+F
VHt by Exe	% NO3		i i	19	19	$\frac{G=F(100)}{D}$
tion of N	NO3 reduced			2.24	2.58	F=D-E
Utiliza	NO3 -	roots	-	9.3	11.2	떠
ake and	NO ₃ uptake	3		11.55	13.78	D
on Upt	+ _t oots	at t_0 at t_{8h}	11.05	8.54	8.7	ပ
of NO3	$^{ m NH_{t}}_{ m in\ roots}$	at to	1.61	1.61	1.61	В
Effect	NH ₄ uptake		1.0 32.12 1.61 11.05	33.71	32.08	Ą
le XX.	$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$	(mm)	1.0	0.5 1.0	1.0 1.0	
Tab	Trea NO3	ן כֿ	0	0.5	1.0	

Effect of ${\rm NO_3}^-$ on Uptake and Utilization of ${\rm NO_2}^-$ by Excised Yecora Rojo Wheat Roots (${\rm \mu moles/g} \times 8$ h) Table XXI.

Treatment NO ₃ NO ₂ (mM)	nent NO ₂	NO ₂ - uptake		10^{-1} in roots at t_{o} at t_{sh}	NO3 ⁻ uptake	NO3 ⁻ in roots	NO ₃ -	% NO ₃ reduced	Total NO ₂ available in roots	Total NO2 reduced	Total N available in roots	% NO ₂ N reduced of of N available NO ₂	N used (100) N avail-able
0 1	0:1	0 1.0 18.87	0.0	1.39		-	-		18.87	17.48	18.87	94.8	94.8
0.5 1	1.0	0.5 1.0 17.92	0.0	0.44	8.82	10.13	0	0	17.92	17.48	26.64	97.5	65.6
1.0 1.0	1.0	18.07	0.0	0.59	11.37	12.48	0	0	18.07	16.48	30.55	7.96	57.2
	:	A	В	၁	Q	ы	ĨΞ	ტ	H=A+F	I=A+B+F-C	J=A+B+D	K=I(100) I	$\frac{L=I(100)}{J}$

Table XXII. Effect of NH $_{
m t}^+$ on Uptake and Utilization of NO $_2^-$ by Excised Yecora Rojo Wheat Roots (µmoles/g imes B h)

(11)	N used (%)	able	79	99	09	M=J(100)
(II O & 9 /correct the contract of the correct of t	Total N available	in roots	13.15	11.58	10.60	L=A+B+F+G
	% NHt tused	available	82	77	89	$K = \frac{J(100)}{I}$
of our	NH _t +		10.37	7.7	6.31	J=I-H
	Total NH ₄		12.65	10.02	9.34	I=D+F+G
	$^{+}_{ m NH_4}$ in roots	at t_0 at t_{8h}	2.27	2.32	3.03	Ħ
'	NH. in r	at to	1.97	1.97	1.97	ტ
	$^{+}_{ m NH_4}$	4	1	0	0	[** 1
	NO2 % NO2 cduced		93	83	85	E=D
•	$\frac{NO_2}{reduced}$		10.67	8.05	7.37	D=A-C
	${ m NO}_2^-$ in roots	at t_o at $t_{\rm sh}$	0.81	0.0 1.56	1.26	ပ
	NO ₂ in root	at to	0.0	0.0	0.0	д
	NO ₂ - uptake			9.61	8.64	A
	Treatment $NO_2^ NH_4^+$ UD_2^-	(EMIII)	0.1 0.0 11.48	0.1 0.5 9.61	0.1 1.0	

oriental Labority