When the parameter is: a mean of differences µdiff

CHOOSE: 1-Sample T-Interval to estimate μ_{diff} , or 1-Sample T-Test to test H_0 : $\mu_{diff} = 0$.

CHECK:

- There is paired data from a random sample or matched pairs experiment.
- $n_{diff} \ge 30$, OR population of differences known to be nearly normal, OR population of differences could be nearly normal because observed differences have no excessive skew or outliers (draw graph of differences).

CALCULATE: (TInterval or T-Test) point estimate: mean of sample difference \bar{x}_{diff} SE of estimate: $\frac{s_{diff}}{\sqrt{n_{diff}}}$ $df = n_{diff} - 1$

When the parameter is: the slope β of a regression line

CHOOSE: **T-Interval for the slope** to estimate β , or **T-Test for the slope** to test H_0 : $\beta = 0$.

CHECK:

- There is (x, y) data from a random sample or experiment.
- The residual plot shows no pattern making a linear model reasonable. (More specifically, the residuals should be independent, nearly normal, and have constant standard deviation.)

CALCULATE: (LinRegTInt or LinRegTTest)

point estimate: sample slope *b*

SE of estimate: SE of slope (from computer output)

df = n - 2

The $\chi 2$ tests for categorical variables: chi-square statistic = $\sum \frac{(observed - expected)^2}{expected}$

When comparing the distribution of one categorical variable to a fixed/specified population distribution

CHOOSE: **\chi2 Goodness of Fit Test**

CHECK:

- Data come from a random sample or process.
- All expected counts \geq 5. (To calculate expected counts for each category, multiply the sample size by the expected proportion under H_0 .)

CALCULATE: $(\chi 2 \text{GOF-Test})$ $\chi^2 = df = \# \text{ of categories} - 1$

When comparing the distribution of a categorical variable across 2 or more populations/treatments

CHOOSE: x2 Test for Homogeneity

CHECK:

- Data come from 2 or more independent random samples or 2 or more randomly assigned treatments.
- All expected counts ≥ 5. (Calculate expected counts and verify this to be true.)

CALCULATE: (χ 2-Test, then 2ND MATRIX, EDIT, 2: [B] to find expected counts) $\chi^2 = df = (\# \text{ of rows} - 1)(\# \text{ of cols} - 1)$

When looking for association or dependence between two categorical variables

CHOOSE: x2 Test for Independence

CHECK:

- Data come from a random sample or process.
- All expected counts ≥ 5. (Calculate expected counts and verify this to be true.)

CALCULATE: (χ 2-Test, then 2ND MATRIX, EDIT, 2: [B] to find expected counts) $\chi^2 = df = (\# \text{ of rows} - 1)(\# \text{ of cols} - 1)$