00 ikanot

Ex. continues - time periodic signals: $\chi(t) = \sum_{-\infty}^{\infty} Q_{k} C$ Forsier Series: 2(t) (F5) [az] continuas-time Q.) In general, for aperiodic, signals, when can se have a complete representation using a discrete-set of values? Periodic / uniform sampling: $\chi_{c}(t)$ samples: $\chi[n] = \chi_{c}(t) = \chi_{c}(nT)$ Ts - sampling period/interval fs = 1 - sampling frequency (in Hz) ws = 277 - Sampling freq. (in rad/5) $\chi_{c}(t)$ A/D $\chi(n)$ Analog-to-Digital Convertors (ADC) Analog continuous-time signds -> discrete-time signds -> digital signals (continuous-valued) (discrete-valued) (continuos - valved) * Bandlimited Signols: A (continuous-time) signal x=(4) is Said to be bandlimited if these is some frequency WB such that, $\chi_c(t) \stackrel{FT}{\longleftrightarrow} \chi_c(\omega) \qquad \chi_c(\omega) = 0 \quad for \quad |\omega| > \omega_g$ Ex.

& Sampling Theorem: A band limited signal with maximum frequency WB can be perfectly recovered/reconstructed from its samples if the sampling frequency ws satisfies $\omega_3 > 2\omega_B$. $2\omega_B - Nyquist rate$ Shaman

intuition: large ω_B => large $\omega_S = \frac{2\pi}{T_S}$ => Small T_S .

-21s -7s 0 7s 27g

understanding of sampling theorem we use impulse-train sampling

n is always integer

impulse - train: $\chi_{c}(1) \longrightarrow \chi(n)$

 $\rho(t) = \sum_{n=-\infty} S(t-nT_s)$

periodic -T 0 T5 2T5 t

 $p(t) \stackrel{\text{FT}}{\longleftrightarrow} P(\omega) = ?$

 $p(t) \stackrel{FS}{\longleftrightarrow} a_k = 1 \quad \forall k = 5 \quad P(\omega) = 5 \quad 2\pi a_k \quad S(\omega - k \omega_r) ; \omega_r = 2\pi a_r$

$$P(t) \stackrel{F5}{\longleftrightarrow} a_{k} = \frac{1}{T_{5}} \quad \forall k \qquad \Rightarrow P(\omega) = \frac{5}{5} \quad 2\pi a_{k} \quad S(\omega - k \omega_{5}) \quad ; \quad \omega_{5} = \frac{2\pi i}{T_{5}}$$

$$\Rightarrow P(\omega) = \frac{2\pi i}{T_{5}} \quad S(\omega - \frac{2\pi}{T_{5}}k)$$

let ne(+) be bandlimited signal with a manimum frequency wn:

consider: $n_p(t) = n_c(t) p(t)$

Find & Sketch Fourier Transform of 29(t).