# Matching for Credit: Implications for Econometric Analysis and Market Design

#### Thilo Klein

Centre for European Economic Research (ZEW) Mannheim

January 25, 2018

# Motivation: one-sided matching

#### Economists often observe data on interactions...

- which students teamed up in study groups;
- which characters formed entrepreneurial teams;
- which firms merged with each other.

### Example 1: Rules on inter-cultural mix of an organisation

- **direct effect**: Do communication problems outweigh the synergies within mixed teams?
- ② direct effect is net of sorting bias: Are open-minded workers more likely to sort into mixed teams?
- participation effect: Does the applicant pool change if the management stipulates mixed teams?



### Motivation: microcredit

### Lending to the poor without any financial securities

- 2005: UN declared "International Year of Microcredit"
- 2006: Muhammad Yunus awarded Nobel Peace Prize
- 2010: First IPO of Indian microfinance institute SKS

### Enabled by innovation in contract design

- high screening, monitoring and enforcement costs
- joint-liability delegates responsibilities to self-selected groups
- But: groups avoid liability payments if projects fail concurrently
- $\rightarrow$  Is there a role for rules to diversify groups?

### Example 2: Group lending (sequence of events)



### Market design question

Should MFIs prevent the grouping together of borrowers who are exposed to similar income shocks?

### Econometric problem and identification strategy



### Contributions

### **Empirical** work

- ambigous empirical results: three studies find a negative effect and one - Ahlin/Townsend (2007) - finds the opposite
- sorting bias is well recognised in literature, but experimental studies fail to estimate policy-relevant parameters
- current paper is the first to simultaneously account for group selection and outcomes with credible exclusion restriction

### Theoretical models of joint-liability lending

- this is not a paper that considers what is the optimal contract. Instead, it informs the optimal design of market rules
- it develops the key trade-offs of conflicting predictions of asymmetric information models in Ahlin/Townsend (2007) and Ghatak (2000)

- Motivation
- One-sided matching
  - Model set-up
  - Participation effect
- - Direct effect
  - Monte-Carlo simulations
- - Data
  - Direct effect

## Model set-up (Stiglitz/Weiss 1981)

### Agents and projects

- risk neutral agents with no collateral invest in ind. projects
- inherently different prob. of success,  $p \in [p, 1]$
- same expected returns, i.e.  $p \cdot y(p) = E$
- project covariation modelled by adding/subtracting const.  $\bar{\epsilon}$

|                              | $j$ succeeds $(p_j)$            | $j$ fails $(1 - p_j)$                 |
|------------------------------|---------------------------------|---------------------------------------|
| i succeeds (p <sub>i</sub> ) | $p_i p_j + \bar{\epsilon}$      | $p_i(1-p_j)-\bar{\epsilon}$           |
| i fails $(1 - p_i)$          | $(1 - p_i)p_j - \bar{\epsilon}$ | $(1-\rho_i)(1-\rho_j)+\bar{\epsilon}$ |

#### Information and contract

- agents know each others' risk-type, p, but lender does not
- pooling contract with fixed interest payment, r
- liability payment, q, is due if group member's project fails

$$ightarrow$$
 Expected payoff:  $u_i = E - rp_i - q[p_i(1-p_j) - \bar{\epsilon}]$ 

Thilo Klein Matching for Credit

8 / 22

# Participation effect

### Expected payoff of agent i matching with agent i

• 
$$u_i = \underbrace{E}_{return} - \underbrace{rp_i}_{interest} - \underbrace{q[p_i(1-p_j) - \overline{\epsilon}]}_{joint \ liability}$$

### Matching on risk type (Ghatak 1999) and credit rationing

- homogenous matching in equilibrium, thus  $p_i = p_i$
- cut-off type  $\hat{p}$  solves participation equation with equality  $E - r\hat{p} - q[\hat{p}(1-\hat{p}) - \bar{\epsilon}] = \bar{u}.$
- i.e. credit is rationed for agents with projects safer than  $\hat{p}$ .

### Repayment effects of increased project covariation $\bar{\epsilon}$

- + draws safer types into the portfolio (Ahlin/Townsend 2007)
- but overall, does not offset loss of liability payment (this paper)

# Participation effect (cont'd)

Conditions for positive repayment effect of project correlation for uniform distribution of risk type



$$ightarrow \partial \tilde{y}/\partial \epsilon < 0$$
 if  $\hat{p} < 0.75$  or  $q/r < 0.6$ 

### Outline

- Motivation
- - Model set-up
  - Participation effect
- Empirical strategy
  - Direct effect
  - Monte-Carlo simulations
- - Data
  - Direct effect

#### Motivation One-sided matching Empirical strategy Results

# Empirical strategy: direct effect

Sorting bias: Let a group's expected repayment be given as

$$Y_{ij} = \mathbb{1}[Y^* > c]$$
 with:  $Y_{ij}^* = \beta_0 + \beta_1 \cdot \gamma_i \gamma_j + \delta \cdot (d_i + d_j) + \zeta_{ij}$ . (1)

If  $(d_i + d_i)$  is unobserved, then  $\hat{\beta}_1^{ols}$  is biased upwards when  $\delta < 0$ and  $cov(\gamma_i\gamma_i,(d_i+d_i))<0$ .

Empirical strategy: Estimate unobserved group risk as a residual in the matching model

$$D_{ij} = \mathbb{1}[V_{ij} \in \Gamma_{\mu}]$$
 with:  $V_{ij} = \alpha \cdot \gamma_i \gamma_j + (d_i + d_j)$ 

and selection-correct repayment equation (1).

### Identification

(a) One-sided matching and exogenous variation



(b) Regression bias and resolution with exogenous variation



$$\rightarrow$$
 Recall:  $Y_{ij} = \delta \cdot (d_i + d_i)$ 

# Estimation: Gibbs sampler for matching model

### Matching estimator (illustrated)

Draw match valuations for unobserved groups



(b) Draw match valuations for 1st observed group



Posterior distributions of parameters for 40 two-group markets based on 1,000 draws. True slope parameter  $\beta = -1$ .



**Benchmark**: All members (6/6); all counterfactuals (922/922)

**Experiment 1**: 5 randomly sampled group members

**Experiment 2**: 250 randomly sampled counterfactual groups

### Outline

- Motivation
- - Model set-up
  - Participation effect
- Empirical strategy
  - Direct effect
  - Monte-Carlo simulations
- Results
  - Data
  - Direct effect

#### Data

### Robert M. Townsend (2000) data on BAAC groups in Thailand

- BAAC is largest lender in rural Thailand
- 39 villages from 2 regions randomly sampled with stratification
- in every village, as many BAAC groups as possible were surveyed, up to two: 68 groups and 316 borrowers in total

#### **Variables**

- wst: coincidence of economically bad years
- $p_i p_j$ : interaction of groups' project success probability, with

$$p_i = \frac{E_i - L_i}{H_i - L_i}$$

based on borrower i's expected income in an average year  $E_i$ , good year  $H_i$  and bad year  $L_i$ .

|                                                                    | Probit 1       | Probit 2       | Structural        |  |
|--------------------------------------------------------------------|----------------|----------------|-------------------|--|
| Outcome equation                                                   |                |                |                   |  |
| Response: repayment_outcome = 1 if group never repaid late         |                |                |                   |  |
| Risk type                                                          |                |                |                   |  |
| <ul> <li>success_prob p<sub>i</sub></li> </ul>                     | -              | +1             | +1                |  |
| - success_prob_int $p_i p_j$                                       | -              | 0.238 (1.606)  | 1.571 (1.813)     |  |
| Project covariation                                                |                |                |                   |  |
| - same_worst_year <i>wst</i>                                       | 0.170 (0.289)  | -0.015 (0.219) | -0.586 (0.243)**  |  |
| Controls                                                           |                |                |                   |  |
| - loan_size                                                        | -              | 0.263 (0.421)  | 0.970 (0.362)**   |  |
| <ul> <li>loan_size_sqrd</li> </ul>                                 | -              | -0.050 (0.088) | -0.187 (0.080)*   |  |
| <ul><li>- In(group_age)</li></ul>                                  | -0.040 (0.054) | -0.116 (0.161) | -0.395 (0.109)*** |  |
| - FE for two-group vill's                                          | YES            | YES            | YES               |  |
|                                                                    | N=68           | N=68           | N=68              |  |
| Matching equation                                                  |                |                |                   |  |
| Response: group observability indicator $= 1$ if group is observed |                |                |                   |  |
| Risk type                                                          |                |                |                   |  |
| <ul> <li>success_prob_int p<sub>i</sub>p<sub>j</sub></li> </ul>    | _              | _              | -0.778 (0.992)    |  |
| Project covariation                                                |                |                |                   |  |
| - same_worst_year wst                                              | -              | -              | 0.356 (0.119)**   |  |
|                                                                    | _              | _              | N=5,342           |  |
| Variance                                                           |                |                |                   |  |
| covariance $\delta$                                                | _              | -              | 0.512 (0.127)***  |  |

S.E. in parentheses; one-sided significance at 0.1, 1, 5, 10% denoted by \*\*\*, \*\*, \*, and .

### Direct effect: Probit vs. structural model

### Decomposition of sorting bias and direct effect.

(a) Equilibrium groups with high project covariation have better unobservables



(b) Probit predictions (dashed line) comprise direct effect (straight line) and sorting bias



- wst: coincidence of economically bad years
- $\rightarrow$  A one s.d. increase in *wst* has two opposing effects.
- 1. drop in prob. of timely payment by 22 percentage points (p.p.).
- 2. groups have observables and unobs. that are on avg. 28 p.p. safer.

# Direct effect: Assumptions

#### Preferences

- aligned in risk type  $p \in [0.5, 1)$ , in that borrowers always prefer a safer partner (irrespective of their own type), but also
- assortative in exposure type  $s \in \{A, B\}$ , in that borrowers only value partners of their own type.

### Matching on risk type (horizontal axis) and exposure type

(a) Aligned preferences I



(b) Aligned preferences II



# Direct effect: Assumptions (cont'd)

### Validation of assumptions underlying the matching model

(a) Assumption of independence  $p \perp s$ 



(b) Assumption of aligned preferences



Motivation One-sided matching Empirical strategy Results Data Direct effect

### Conclusion

### Empirical analysis of endogenous groups

- distinction between participation and direct effect allows test of ex-ante versus ex-post mechanisms
- useful where evaluation of adverse selection models requires that moral hazard effects are not in force, and vice versa
- method is implemented in R package matchingMarkets

#### Economic theories of microfinance

 theories must consider that matching also takes place on other dimensions – such as common shocks – with adverse effects

### Microfinance practice

 group lending clients – about 65 million worldwide – could benefit if lenders were to actively diversify borrower groups