ENVIRONMENTAL SERVICES, LLC

SITE REHABILIATION PLAN

OF

MIAMI FREEDOM PARK
(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)
1802 NW 37TH AVENUE
MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125
FOLIO NO: 30-3129-000-0160, 30-3129-000-0050,
01-3132-000-0080, and 01-3132-000-0090 (partial)
DERM Facility ID: AW-284/HWR-594

Prepared For:

Miami-Dade County Department of Regulatory and Economic Resources
Division of Environmental Resources Management (DERM)
701 Northwest 1st Court, Suite 400
Miami, FL 33136-3912

Prepared on Behalf Of:

Miami Freedom Park, LLC c/o Greenberg Traurig, P.A. 333 Southeast 2nd Avenue, Suite 4400 Miami, Florida 33131

Prepared by:

EE&G Environmental Services, LLC 5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305) 374-8300

Report Date: August 14, 2019 Project No: 2018-3057

TABLE OF CONTENTS

	<u>Page</u>
CTION	1
L HYDROGEOLOGY	2
TORY & HISTORICAL REVIEW	3
ESSMENT METHODOLOGY & FINDINGS	6
WATER ASSESSMENT METHODOLOGY & FINDINGS	11
OR FIELD SCREENING METHODOLOGY & FINDINGS	14
ENDED SITE REHABILITATION STRATEGY	15
IONAL CERTIFICATION	16
2016 Aerial Photograph Site Layout & Sampling Location Map Soil Sampling Location Map Inferred Extent of Buried Debris Map OVA Results Map Soil Results Map (Metals, PAHs, & Dioxin/Furan) Expanded Soil Results Map (Maintenance Area) Monitoring Well Location Map Groundwater Results Map (Metals) Groundwater Results Map (Other Parameters) Groundwater Results Map (Iron) Groundwater Results Map (Arsenic) Groundwater Results Map (Ammonia) Groundwater Flow Map Shallow Monitoring Well Construction Detail	
	Inferred Extent of Buried Debris Map OVA Results Map Soil Results Map (Metals, PAHs, & Dioxin/Furan) Expanded Soil Results Map (Maintenance Area) Monitoring Well Location Map Groundwater Results Map (Metals) Groundwater Results Map (Other Parameters) Groundwater Results Map (Iron) Groundwater Results Map (Arsenic) Groundwater Results Map (Ammonia) Groundwater Flow Map

TABLES

- 1 Lithologic Logs
- 2 OVA/FID Field Screening Results
- 3 TE Soil Analytical Results
- 4 TE Benzo(a)pyrene Conversion Tables
- 5 TE Soil Dioxin/Furan Results
- 6 SB Soil Analytical Results (As, Ba, Pb)
- 7 SB Soil Analytical Results (Other COCs)
- 8 SB Benzo(a)pyrene Conversion Tables
- 9 SB Soil Dioxin/Furan Results
- 10 TCLP Results
- 11 Groundwater Analytical Results
- 12 Groundwater Dioxin/Furan Results
- 13 Well Detail and Groundwater Elevation Measurements
- 14 Vapor Well Field OVA Screening Results
- 15 Vapor Well 4-Gas Meter Field Screening Results

APPENDICES

- A Property Appraiser Information
- B Historical and Regulatory Excerpts
- C Soil Results
- D Groundwater Results
- E Preliminary Design Documents

SECTION 1.0 INTRODUCTION

EE&G Environmental Services, LLC (EE&G) was retained by Greenberg Traurig, P.A., on behalf of Miami Freedom Park, LLC, to prepare this Site Rehabilitation Plan (SRP) for the proposed Miami Freedom Park, which is the current location of the International Links Melreese Country Club. The approximately 160-acre golf course is located at 1802 Northwest 37th Avenue, Miami, Miami-Dade County, Florida 33125. The property was identified by the Miami-Dade County Property Appraiser with folio numbers: 30-3129-000-0160, 30-3129-000-0050, 01-3132-000-0080 and 01-3132-000-0090 (partial – northern half). Miami-Dade County Property Appraiser information is provided in **Appendix A**. The property is developed with an 18-hole golf course, a driving range, a clubhouse and maintenance building, a small pump-house building and restroom building, and scattered man-made lakes. A Site Location/Topographic Map is provided as **Figure 1**. A recent aerial photograph is provided as **Figure 2**. A Site Layout Map is provided as **Figure 3**.

The property is a known contaminated site, and is currently tracked by the Miami-Dade County Division of Environmental Resources Management (DERM) using AW-284, and shares a regulatory file with the southeastern adjoining Grapeland Heights Park (HWR-594). This SRP includes updated site assessment data collected as part of the recent environmental due diligence testing. Additionally, this SRP includes a conceptual site rehabilitation strategy to address the contamination using Engineering Control and Institutional Control tools to achieve a No Further Action with Conditions (NFAC) closure.

SECTION 2.0 AREA SETTING & HYDROGEOLOGIC SETTING

The property is surrounded to the east by a residential neighborhood, to the southeast by Grapeland Heights Park, to the south by Interstate 836 (beyond which is a residential neighborhood, to the west NW 42nd Avenue (beyond which is a parking lot), to the northwest by Miami International Airport, and to the north by a canal (beyond which was a hotel and the MIA Intermodal Station).

The regional hydrogeology was assessed by reviewing the U.S. Geological Survey Water Resources Investigations Report No. 90-4108, *Hydrogeology of the Surficial Aquifer System, Dade County, Florida,* dated 1991. The surficial aquifer system, in which an unconfined groundwater flow system exists, is comprised of sediments from surface grade to the top of a regionally persistent zone of low permeability called the intermediate confining unit. The aquifer system materials vary from clays to cavernous limestone in composition, with the upper, more permeable sediments grouped together as the Biscayne Aquifer. The surficial aquifer is approximately 310-feet deep beneath the *Property*, and consisted of the following formations:

- The Pamlico Sand, quartz sand that included marine deposits from grade to approximately sea level.
- The Miami Limestone Formation (formerly the Miami Oolite Formation), a limestone formation consisted of an oolitic and a bryozoan facies from sea level to a depth of approximately 10-feet BLS.
- The Anastasia Formation, sand with sandstone concretions and marine shells, documented from approximately 10 to 40-feet BLS.
- Key Largo Limestone, limestone with rock fragments and marine shells documented from approximately 40 to 60-feet BLS.
- The Fort Thompson Formation comprised of a combination of sand, limestone, marine shells and some rock fragments documented from approximately 60 to 110-feet BLS.
- The Tamiami Formation comprised of unconsolidated sandstone, porous limestone, and marine shell from approximately 110 to 230-feet BLS.
- The Hawthorn Formation comprised of limestone and marine shells, which forms the base of the Biscayne Aquifer at approximately 230 to 310-feet BLS in the vicinity of the *Property*.

The property was not located within a Maximum Drawdown Area of a Miami-Dade County Wellfield Protection area. Depth-to-groundwater was encountered on the average at 4 to 6-feet BLS, with higher/lower measurements as a result of the irregular topography.

SECTION 3.0 REGULATORY & HISTORICAL REVIEW

The following is a summary of the site history and regulatory history based on a review of the Miami-Dade County DERM regulatory file. **Appendix B** contains excerpts of aerial photographs and previous assessment documentation.

Based on historical research, the property appeared to be utilized as agricultural and/or pastoral land circa 1938. The 1951 aerial photograph documented evidence of widespread dumping of incineration ash and debris across the property. By the early-1960s the property was redeveloped with a golf course, and lakes were excavated. In the mid-1990s, the golf course was renovated, the topography re-worked, and lakes modified (current condition). The club house was added in the late-2000s.

The following is a summary of the DERM regulatory file review:

Melreese Golf Course (Ash Investigation)

1802 Northwest 37th Avenue

DERM Facility ID: AW-284/HWR-594

- DERM has a combined regulatory file for the Melreese Golf Course (AQ-284) and the southeastern adjoining Grapeland Heights Park (HWR-594).
- The presence of incineration debris was initially reported to DERM in March 2005 during an evaluation of the southeastern adjoining Grapeland Heights Park prior to its redevelopment to the current park configuration. Petro Hydro initially conducted the excavation of 12 test pits to assess for the presence of previously landfilled and improperly buried materials. Due to the initial western and northern boundary test results, the assessment expanded to the Melreese Golf Course.
- A Limited Phase II ESA, prepared by Petro Hydro and dated October 26, 2005, was the
 first documentation of incineration debris on the Melreese Golf Course. A Supplemental
 Site Assessment Report (SSAR), dated September 14, 2006, was conducted to further
 delineate the impact of the incineration debris on the soil and groundwater at the
 Property.
- Primary contaminants of concern in soils included arsenic, lead, dioxins/furans, and benzo(a)pyrene (BaP), which are common incineration ash compounds.
- The presence of arsenic in the soils was also attributed to golf course application of agrochemicals. The SSAR proposed that the arsenic was consistent with other municipal golf courses that were part of a Miami-Dade County DERM study, and that the arsenic was primarily attributed to the legal application of herbicides by the golf course.
 - EE&G took the arsenic results from Petro Hydro's SSAR and calculated a 95% Upper Confidence Limit (UCL) of 15.11 mg/Kg for the 0 to 0.5-feet BLS interval.
- DERM approved the SSAR in February 2007. DERM requested a Remedial Action Plan (RAP) to be submitted. DERM sent numerous letters requesting a response, and in

2013 sent an enforcement letter, and conducted a site inspection during which they identified areas of exposed debris.

- In response, SCS Engineers were retained and provided the April 16, 2014 Corrective Action Plan and "temporary" ECP that would mitigate exposure of workers and golfers to solid waste/incineration debris. SCS indicated that the existing fairway/green/sand trap cover provided reasonable protection from exposure to the buried waste. In addition, three to four inches of mulch would be maintained in the landscaped/tree areas. Routine inspections, conducted by golf course maintenance staff would be required to ensure ECP measures were in place.
- DERM approved the ECP on December 8, 2015, and has required that periodic inspections of the golf course areas be conducted and updated mulch-covering for the base of trees.
- Surface water samples from lakes did not contain concentrations of arsenic or lead above the applicable surface water cleanup target levels.
- Groundwater samples were analyzed for arsenic, barium, copper, lead, PAHs, Dioxins/Furans, and PCBs. None of the tested constituents were detected Groundwater Cleanup Target Level (GCTL), with the exception of arsenic. SCS Engineers conducted a groundwater Monitoring Only Plan (MOP) for five quarters. Results on Melresse were below GCTLs. Elevated arsenic was limited to one monitoring well (MW-31) located on the boundary with Grapeland Park, SCE proposed that source of the arsenic was the park and that the ongoing MOP for Grapeland Park should incorporate MW-31 into its sampling protocol. DERM's June 13, 2017 correspondence acknowledged that the groundwater monitoring plan had been discontinued at Melreese, as this was going to be combined with Grapeland for a join restrictive covenant. Monitoring continued at Grapeland.

Grapeland Heights Site Development (Southeastern-Adjoining Property)

1550 Northwest 37th Avenue

DERM Facility ID: AW-284/HWR-594

- DERM has a combined regulatory file for the Grapeland Heights Site Development and the northwestern adjoining Melreese Golf Course.
- Elevated arsenic was detected at the northeastern boundary of Grapeland Park. The
 area was delineated and excavated. Groundwater monitoring has continued in that
 area, and elevated arsenic persists in MW-31. DERM issued a letter on March 20, 2019
 requesting an additional quarterly groundwater monitoring event. In addition, DERM
 requested corrective action with regard to the existing engineering control installations.
- The presence of incineration debris was initially reported to DERM in March 2005 during an evaluation of the southeastern adjoining Grapeland Park prior to its redevelopment to the current park configuration. As a result of the site assessment activities of the Grapeland Park site, Petro Hydro implemented a soil source removal, which resulted in the excavation and offsite disposal of 86,676 tons of soil contaminated with arsenic mixed with municipal incinerator ash.

Melreese Maintenance Facility

FDEP Facility ID: 8622193; DERM Facility ID: UT-3576

FDEP Facility ID: 9602446

 FDEP tank registration records indicated that one 1,000-gallon fuel AST was removed from the *Property* in March 1995. No further regulatory or tank closure information was available for review.

A Discharge Notification Form (DNF) was submitted following the discovery of petroleum impacted groundwater during the excavation of one 1,000 gasoline UST on April 26, 1995 at the maintenance facility. Tank registration records indicated that the UST was installed in December 1983. In addition, two 500-gallon ASTs, containing gasoline and diesel fuel, were identified as "in service" in 1995. A Tank Closure Assessment Report (TCAR) was submitted to DERM on August 7, 1995. According to the TCAR, once the excavation was complete, no petroleum impacted soil was identified; however elevated levels of benzene and methyl tert-butyl ether (MTBE) were detected above the applicable guidelines in the groundwater referenced in Chapter 62-770, FAC. According to the DERM inspection report, one sample of groundwater from the bottom of the exaction was sampled for analysis. None of the tested constituents, including MTBE and benzene, were identified above the applicable guidelines referenced in Chapter 62-770, FAC. No records of further testing was identified; however on October 12, 1995, DERM issued a letter approving the TCAR and released the facility from further site investigation. On September 30, 2008 DERM issued a letter to FDEP requesting that the 1995 discharge be deleted based upon the TCAR approval. FDEP responded on October 24, 2008 and issued a No Cleanup Required status to the facility.

Delucca Enterprises

DERM Facility ID: GDO-3835, IW5-15642

- Delucca Enterprises aka International Links of Miami operated the Melreese Golf Course
 maintenance facility under the IW5 permit #15642. The maintenance facility operated as
 an equipment washing and maintenance area as well as a storage facility for pesticides
 and fertilizers. DERM inspection records, dating back to 1995, indicated that the facility
 operated utilizing a septic tank system from approximately 1961 until present day.
 Routine sampling of the septic tank by DERM inspectors revealed evidence of industrial
 waste discharges.
- URS performed an Environmental Site Assessment (ESA) in February 2004 following repeated inspections by DERM where evidence of hazardous waste discharges to the onsite septic tank system was identified. URS installed two soil borings and one monitoring well in the vicinity of the septic tank drainfield. Based upon the analytical data, URS determined that none of the tested constituents were above the applicable soil and/or groundwater guidelines.
- Subsequent DERM compliance inspections in 2006, 2011, and 2016 have resulted in enforcement action and the subsequent required pump out of the septic tank. The most recent inspection, conducted in July 2018, identified no compliance violations.

SECTION 4.0 SOIL ASSESSMENT METHODOLOGY & FINDINGS

EE&G documented the soil assessment activities that were conducted between March 11 and April 10, 2019. Due to schedule restrictions, access was granted only Monday – Wednesday each week. The soil sampling was done concurrently with NV5's geotechnical evaluation. EE&G provided the environmental oversight of the test excavations being conducted by NV5, and supplemented those findings with additional environmental soil borings. A site map showing the soil sampling locations is provided as **Figure 4**. Sampling was conducted in accordance with Florida Department of Environmental Protection's (FDEP's) Standard Operating Procedures (SOPs) as specified in Chapter 62-160 of the Florida Administrative Code (FAC). Selected soil samples were collected in laboratory supplied, pre-cleaned sample bottles, placed on ice and transported to National Environmental Laboratory Accreditation Conference (NELAC)-certified laboratories for analyses.

Test Excavations (TEs)

A total of 33 TEs were excavated using a mini-excavator, labeled TE-1 through TE-33. The TEs were approximately 2.5-feet wide by 6-feet long, and were excavated to depths of approximately 6 to 8 feet below land surface (BLS). The soils were inspected for evidence of incineration-related debris or other environmental concerns.

EE&G selected total of 14 soil samples collected from sidewalls of the TEs for confirmation laboratory analyses. The samples were collection from various locations representing the site, and based on field observations. Seven soil samples were collected the surficial interval (0 to 1-ft, 1 to 2-ft, or 0 to 2-ft BLS). A majority of these surficial soil samples selected for analysis contained some evidence of incineration debris. However, three of the samples did not have evidence of debris and were selected to evaluate the golf course cap above the debris. Seven additional soil samples were collected from the underlying 2 to 4-ft BLS interval, a majority of which contained varying amounts of incineration debris.

All 14 TE soil samples were analyzed for:

Total Arsenic, Barium and Lead by EPA Method 6010.

Additionally, nine of the samples also were analyzed for the following list of expanded parameters:

- Volatile Organic Compounds (VOCs) by EPA Method 8260 (only TE-1)
- Polynuclear Aromatic Hydrocarbons (PAHs) by EPA Method 8270
- Total Petroleum Hydrocarbons (TPHs) by Method FL-PRO
- Total Cadmium, Chromium, Mercury, Selenium and Silver by EPA Methods 6010/7470
- Dioxin/Furans by EPA Method 8290

Three additional TE soil samples collected during the final day of test pits also were analyzed for Dioxin/Furans by EPA Method 8290.

Soil Borings (SBs)

EE&G oversaw the advancement of 38 soil borings using a truck-mounted direct-push technology (DPT) drilling rig, labeled SB-1 through SB-37 and SB-A. Soil boring locations were spread across the property to provide additional coverage and fill in gaps between the TE locations, and to focus on the maintenance area. Soil samples were collected from the 0 to 0.5-feet, 0.5 to 2-feet, and 2 to 4-feet BLS interval of 37 borings. Additionally, 21 deeper soil samples were collected from borings advanced on hills and areas with deeper water tables, representing the 4 to 6-feet and a few 6 to 8-feet BLS intervals.

- A total of 132 soil samples were analyzed for:
 - Total Arsenic, Barium and Lead by EPA Method 6010.

The soil sample collected from SB-9 (2 to 4-feet BLS), located in the maintenance area septic tank drainfield, was also analyzed for the following list of expanded parameters:

- Volatile Organic Compounds (VOCs) by EPA Method 8260
- Organochlorine Pesticides by EPA Method 8081
- Organophosphorus Pesticides by EPA Method 8141
- Chlorinated Herbicides by EPA Method 8151
- Total Cadmium, Chromium, Mercury, Selenium and Silver by EPA Methods 6010/7470 Polynuclear Aromatic Hydrocarbons (PAHs) by EPA Method 8270
- Total Petroleum Hydrocarbons (TPHs) by Method FL-PRO
- Dioxin/Furans by EPA Method 8290

The soil sample collected from SB-12 (6 to 7-feet BLS), located in the northern portion of the property adjacent to TE-2 (which contained heavy deep debris), also was analyzed for the following additional parameters:

- Total Cadmium, Chromium, Mercury, Selenium and Silver by EPA Methods 6010/7470
- PAHs by EPA Method 8270
- TPHs by Method FL-PRO
- Dioxin/Furans by EPA Method 8290

Three additional soil samples from SB-1, SB-3 and SB-4 also were analyzed for:

- PAHs by EPA Method 8270
- Dioxin/Furans by EPA Method 8290

Soil Findings

A Site Map illustrating the inferred extent of incineration debris is provided as Figure 5. A summary of field observation is provided in Table 1. A majority of the sampling locations contain visible evidence of incineration debris and/or construction & demolition debris. While there are a few small areas where a soil boring or test excavation did not exhibit debris, they were located in areas that clearly were disturbed in the 1951 and/or 1961 aerial photographs. Therefore, the entire site is considered to be impacted with buried incineration ash debris, and some areas of historic deposition have since been reworked. The ash/debris thicknesses varied from as thin as 1-foot to as thick as 10-feet, with the average thickness of approximately 4-feet. The original deposition of debris was disrupted in the mid-1990s when the golf course was redesigned and the topography altered. Debris extended beneath the water table in several TEs. Debris was encountered in several surficial soils (0 to 2-feet BLS), and debris was found as shallow as 0.5-feet BLS in several locations. The debris included fragments of tile, metal, and glass, mixed with fine-grain sands, which often exhibited a rusty color. Intermittent wood fragments were encountered, along with concrete and other non-native materials, but no evidence of municipal garbage. Native limestone was encountered at a depth of approximately 5 to 8 feet BLS, often directly beneath the debris and sand layer.

Soils from 13 soil borings were collected in 2-foot intervals and screened in the field using an Organic Vapor Analyzer (OVA), equipped with a Flame Ionization Detector (FID), to assess for petroleum-affected soils. The OVA/FID was utilized with and without a charcoal filter to assess for the presence of naturally occurring methane interferences. OVA/FID results generated from field-testing of soils were compared with the FDEP's "Guidelines for Assessment and Source Removal of Petroleum Contaminated Soils", dated May 1998, which identified an action level of 10 parts per million (ppm) for petroleum-affected soils collected above the water table. The OVA/FID results are summarized in **Table 2** and depicted in **Figure 6**.

 OVA results were detected above the 10-ppm action level in half of the borings. However, no evidence of petroleum odors was observed, except SB-A in the former UST area. It is likely that methane influenced the field readings. Two borings in particular exhibited higher OVA readings, which extinguished the meter, including SB-5 (central-northeastern portion) and SB-11 (northwestern corner).

Soil analytical results were compared with the FDEP Contaminant Cleanup Target Levels, per Chapter 62-777, FAC, which regulates Soil Cleanup Target Levels (SCTLs) for residential-use direct exposure (SCTL-R), commercial-use direct exposure (SCTL-C) and leachability (SCTL-L) concerns. A copy of the soil analytical results, chain of custody form and logs are provided in **Appendix C**. A summary of the Soil Analytical Results and Benzo(a)pyrene (BaP) Conversion Tables are provided in **Tables 3 thru 10**. A summary of the soil results maps are provided as **Figure 7** (entire site) and **Figure 8** (expanded maintenance area map).

The following is a summary of the laboratory results for soil assessment (combined both SB and TE samples):

Arsenic: 146 soil samples were analyzed for total arsenic. The concentrations ranged from below laboratory method detection limits (MDLs) to a high of 275 milligrams per kilogram (mg/Kg). 90% (131) of the soil samples contained arsenic at concentrations in excess of the 2.1 mg/Kg SCTL-R, and 46% (67)of the soil samples contained concentrations in excess of 12 mg/Kg SCTL-C.

- Overall soils in the shallow interval (0 to 0.5-feet BLS) contained higher concentrations of arsenic. 62% of the soils in this shallow interval exceeded the 12 mg/Kg SCTL-C, as compared with the underlying layers, which drop to 36% in 0.5 to 2-feet BLS interval and 35% in the 2 to 4-feet BLS interval. EE&G ran the ProUCL 95% UCL calculator on the SB data and the results are below (see backup in Appendix C):
 - 0 to 0.5-feet BLS 95% UCL = 26.45 mg/Kg
 - ✓ Note: When the one highest outlier value (156 mg/Kg) was removed from the dataset, the revised 95% UCL = 18.95 mg/Kg.
 - ✓ The revised UCL was relatively similar to the 95% UCL EE&G calculated using the 50 soil samples from the initial 2005 SSAR, which was 15.11 mg/Kg.
 - 0.5 to 2-feet BLS 95% UCL = 15.5 mg/Kg (Note highest value 275 mg/Kg was removed, as program indicated the dataset was not compliant with the options)
 - 2 to 4-feet BLS 95% UCL = 27.28 mg/Kg
 - 4 to 6-feet BLS 95% UCL = 33.64 mg/Kg
- The three highest arsenic samples (152, 156, and 275 mg/Kg) were selected and reanalyzed using the Toxicity Characteristic Leaching Procedure (TCLP), and results were all below the 5.0 milligram per liter (mg/L) hazardous waste criteria.

Barium: 117 soil samples were analyzed for total barium. The concentrations ranged from below laboratory MDLs to a high of 4,000 mg/Kg. 21% (25) of the soil samples contained barium at concentrations in excess of the 120 mg/Kg SCTL-R. Results were below SCTL-C.

Lead: 146 soil samples were analyzed for total lead. The concentrations ranged from below laboratory MDLs to a high of 7,650 mg/Kg. 20% (29) of the soil samples contained lead at concentrations in excess of the 400 mg/Kg SCTL-R, and 10% (15) of the soil samples contained concentrations in excess of 1,400 mg/Kg SCTL-C.

12 soil samples with varying total lead concentrations ranging from 150 mg/Kg to 7,240 mg/Kg, were reanalyzed using the TCLP method. The results were all below the 5.0 mg/L hazardous waste criteria.

Dioxin/Furans: 17 soil samples were analyzed for dioxin/furans. The TEF concentrations ranged from 0.46 nanograms per kilogram (ng/Kg) to a high of 177.47 ng/Kg. Eight of the soil samples (47%) contained dioxin/furan TEF concentrations in excess of the 7.0 ng/Kg SCTL-R. Two soil samples also exceeded the 30 ng/Kg SCTL-C. The following three samples were the three highest detected:

- The soil sample SB-1 (3.5 to 4.5-feet BLS), located in the southeastern portion, contained 75.87 ng/Kg.
- The soil samples collected from TE-33, located in the central-eastern portion of the golf course north of the maintenance facility, contained 24.58 (0 to 2-feet BLS) and 177.47 ng/Kg (2 to 4-feet BLS).

Other COCs: The other COCs tested were below SCTLs, with the exception of SB-9 (2 to 4-feet BLS), which contained 0.0050(I) mg/Kg of dieldrin, which slightly exceeded the 0.002 mg/Kg SCTL-L. The laboratory data, the reported results were qualified (I) as they were below the 0.022 mg/Kg Practical Quantitation Limit (PQL). Therefore, the laboratory was unable to report the actual dieldrin value with certainty. The results were below the 0.06 mg/Kg SCTL-R.

SECTION 5.0 GROUNDWATER ASSESSMENT METHODOLOGY & FINDINGS

EE&G supervised the installation of monitoring wells, and collected groundwater samples from pre-existing and newly-installed monitoring wells to assess the groundwater quality. A site map illustrating the monitoring well location is provided as **Figure 9**. Sampling was conducted in accordance with FDEP's SOPs as specified in Chapter 62-160, FAC. Groundwater samples were collected in laboratory supplied, pre-cleaned sample bottles, placed on ice and transported to NELAC-certified laboratories for analyses.

EE&G supervised the installation of five monitoring wells (designated as MW-1 through MW-5) on March 13, 2016. The monitoring wells MW-1, MW-2 and MW-3 were installed at the soil boring locations, SB-1, SB-3 and SB-6, respectively. The monitoring wells MW-4 and MW-5 were located on the southeastern portion of the *Property*. The monitoring well consisted of a 1.5-inch diameter, pre-pack screened interval (ranging from approximately 2.9 to 12.9-feet BLS to 3.2 to 13.2-feet BLS; screened across the water table interface, which was observed to range from approximately 4.6 to 6.7-feet BLS), and a sufficient solid PVC riser to reach the surface. The riser was sealed with a water-tight cap. The well construction and development logs and the groundwater sampling logs are provided in **Appendix D**.

- EE&G initially collected groundwater samples from six existing monitoring wells on March 4, 2019, including MW-31, MW-39, MW-42, MW-44, SCS-MW-1, and SCS-MW-2. The groundwater samples were analyzed for the following parameters:
 - VOCs by EPA Method 8260
 - PAHs by EPA Method 8270
 - TPHs by Method FL-PRO
 - Organochlorine Pesticides by EPA Method 8081
 - Organophosphorus Pesticides by EPA Method 8141
 - Chlorinated Herbicides by EPA Method 8151
 - Total Aluminum, Arsenic, Barium Cadmium, Chromium, Iron, Lead, Mercury, Selenium and Silver by EPA Methods 6010/7470
 - Dioxin/Furans by EPA Method 8290
 - Ammonia (as N) by EPA Method 350.1
 - Nitrates/Nitrites by EPA Method 300.0

Based on these results, EE&G modified the remaining groundwater sampling parameters to focus on the primary COCs.

- EE&G collected groundwater samples from a pre-existing monitoring well (labeled MW-9 from this report) on March 26, 2019, located in the maintenance area adjacent to the septic tank. These groundwater samples were analyzed for the following parameters:
 - VOCs by EPA Method 8260
 - PAHs by EPA Method 8270
 - TPHs by Method FL-PRO
 - Organochlorine Pesticides by EPA Method 8081
 - Organophosphorus Pesticides by EPA Method 8141
 - Chlorinated Herbicides by EPA Method 8151
 - Total Arsenic, Barium, Iron, Lead, by EPA Method 6010
 - Ammonia (as N) by EPA Method 350.1

- EE&G found one additional pre-existing monitoring well, MW-38, which was sampled on March 26, 2019, and analyzed for the following parameters:
 - Total Arsenic, Barium, Iron, Lead, by EPA Method 6010
 - Organochlorine Pesticides by EPA Method 8081
- A total of 11 new monitoring wells were installed, which were labeled MW-1 through 8, and MW-10 through 12. The wells were constructed of 1.5-inch diameter PVC casings, with 10-feet of pre-packed slotted well screen and sufficient solid riser to reach the surface. The wells were topped with water-tight caps within a protective manhole. The shallow monitoring wells were installed to depths of approximately 12 to 15 feet BLS, designed to intersect the groundwater table interface. EE&G collected groundwater samples from the 11 newly-installed monitoring wells on March 26 & 27 and April 8, 2019. Groundwater samples were analyzed for the following parameters:
 - Total Arsenic Iron, Lead, by EPA Method 6010 (all 11 samples)
 - Barium by EPA Method 6010 (only MW-1 through MW-8)
 - Organochlorine Pesticides by EPA Method 8081 (only MW-1 through MW-8)
 - Ammonia (as N) by EPA Method 350.1 (only MW-3, MW-4 and MW-5)
 - Dioxins/Furans by EPA Method 8290 (only MW-3 and MW-4)
- EE&G collected one direct-push groundwater grab sample, GW-1, from the former UST area north of the maintenance building, which was analyzed for the following parameters:
 - VOCs by EPA Method 8260
 - PAHs by EPA Method 8270
 - TPHs by Method FL-PRO
- Based on the sampling results, EE&G resampled the following wells for specific COCs:
 - Dieldrin MW-31, MW-44 and SCS-MW-1 on March 27, 2019
 - Iron MW-31, MW-44, SCS-MW-1 on March 27, 2019
 - Iron MW-2, MW-5, MW-9, and MW-38 on April 8, 2019
 - Arsenic –MW-2 on April 8, 2019

Groundwater Findings

Groundwater analytical results were compared with the FDEP Contaminant Cleanup Target Levels, per Chapter 62-777, FAC, which regulates the Groundwater Cleanup Target Levels (GCTLs, a.k.a. No Further Action criteria) and Natural Attenuation Default Source Concentrations (NADSCs; a.k.a., Monitoring Only criteria). Copies of the groundwater analytical results, sampling logs and chain of custody forms are provided in **Appendix D**. A summary of the groundwater laboratory results are provided in **Tables 11** and **12**. Well details and groundwater elevation measurements are provided in **Table 13**. A summary of the groundwater results map is provided in **Figures 10** through **16**.

The following is a summary of the groundwater sampling results:

Former UST Area (GW-1): A hydrocarbon odor was observed during the sampling of GW-1, located in the former UST area on the north side of the maintenance building. However, the VOCs, PAHs, and TPHs were below GCTLs.

Arsenic: Two of the 19 wells sampled contained total arsenic above the 10 microgram per liter (ug/L) GCTL:

- MW-2 (southwestern corner) contained 13.2 ug/L of total arsenic. This well was resampled on April 8, 2019 and the result was 20.9 ug/L.
- MW-31 (east-southeastern boundary sample attributed to Grapeland Park) contained 92 ug/L of total arsenic. This well was resampled on April 8, 2019 and the result was 85.2 ug/L. This finding confirmed previous monitoring results on file with DERM.
- None of the arsenic concentrations exceeded the 100 ug/L NADSC.

Ammonia: Three of the 10 wells sampled contained ammonia above the 2.8 mg/L GCTL:

- MW-5 (central-northeastern portion) contained 3.0 mg/L.
- MW-9 (maintenance area) contained 9.3 mg/L.
- MW-44 (northeastern portion) contained 3.5 mg/L.
- None of the ammonia concentrations exceeded the 28 mg/L NADSC.

Iron: 12 of the 19 wells sampled contained total iron above the 706 (ug/L Miami-Dade County Natural Background Level:

- Four wells (SCS-MW-1, MW-5, MW-31, and MW-35) contained higher total iron concentrations ranging from 2,000 ug/L to 2,950 ug/L. These were isolated areas of exceedances, while a majority of the site concentrations were less than 1,000 ug/L.
- None of the iron concentrations were confirmed to exceed the 3,000 ug/L NADSC.

Dieldrin: Two of the 16 wells sampled contained low concentrations of dieldrin just above the 0.002 ug/L GCTL. The laboratory data, the reported results were qualified (I) as they were below the Practical Quantitation Limit (PQL). Therefore, the laboratory was unable to report the actual dieldrin value with certainty. These wells were resampled and dieldrin was below the GCTL.

Other COCs: The other COCs tested were below laboratory reporting limits and below GCTLs, with the exception of three PAH constituents, which were not detected, but the laboratory MDLs could not meet the GCTLs. Considering no evidence of other petroleum compounds were detected, the MDLs were considered sufficient to demonstrate that a release has not occurred with respect to these compounds.

SECTION 6.0 SOIL GAS VAPOR SCREENING METHODOLOGY & FINDINGS

EE&G documented the installation of eight soil-vapor wells, which were designated VW-1 through VW-8. Based on preliminary results, EE&G installed three additional confirmation vapor wells, VW-9 (adjacent to VW-2), VW-10 (adjacent to VW-7), and VW-11 (adjacent to VW-8). A site layout map illustrating the soil vapor well locations is provided as **Figure 17**. The 1-inch diameter vapor wells were installed to depths ranging from approximately 3-feet to 7-feet BLS (adjusted to terminate above the water table), and included approximately 2-feet to 5-feet of slotted screen and sufficient solid riser to reach the surface. The wells were fitted with gas sampling ports within a protective manhole.

On April 2 and 9, 2019, EE&G screened the soil vapor in the field using an OVA/FID and a 4-gas meter. The vapor results are summarized in **Tables 14** and **15**. The following is a summary of the soil vapor assessment findings:

- VW-2 was located in the southwestern corner of the property, and exhibited elevated readings above the 5% LEL for methane. The adjoining confirmation well VW-9 did not exhibit elevated readings above the LEL.
- VW-7 was located in the northwestern corner of the property and exhibited elevated readings above the 5% Lower Explosivity Limit (LEL) for methane. The adjoining confirmation well VW-10 also exhibited elevated readings above the LEL.
- The other wells did not exhibit elevated LEL readings.

SECTION 7.0 RECOMMENDED ITE REHABILITATION STRATEGY

The Miami Freedom Park Project will include a soccer stadium, commercial/retail development, and parking across the western/northwestern portion. The Project will also include the construction of a public park across the east-southeastern portion of the property. Miami Freedom Park, LLC and the City of Miami should meet with DERM to develop a site rehabilitation plan. The objective of the site rehabilitation plan would be to implement construction of the proposed Miami Freedom Park Project in an environmentally-safe manner and utilize the proposed development to create an Engineering Control cap across the entire site to obtain a No Further Action with Conditions (NFAC) closure.

SECTION 8.0 PROFESSIONAL CERTIFICATION

I, Craig C. Clevenger, P.G. #1666, certify that I currently hold an active license in the state of Florida and am competent through education and experience to provide the geological consulting services documented in the aforementioned Site Rehabilitation Plan (SRP). I further certify that, in my professional judgment, this report meets the general requirements of Chapter 24-44, Code of Miami-Dade County, and Chapter 492, F.S., and was prepared by me with field sampling completed under my direction. Moreover, I certify that EE&G holds an active certificate of authorization #GB483 to provide geological services in the state of Florida.

Craig C. Clevenger, P.G. #1666

C C. Co

August 14, 2019 Date **FIGURES**

5751 Miami Lakes Drive Miami Lakes, Florida 33014 Phone (305)374-8300 Fax (305)374-9004

Proposed Miami Freedom Park (International Links Melreese Country Club) 1802 NW 37th Avenue, Miami, FL 33125 Project #: 2018-3057.JPH1

SITE LAYOUT MAP (USGS TOPOGRAPHIC MAP) FIGURE 1

5751 Miami Lakes Drive Miami Lakes, Florida 33014 Phone (305)374-8300 Fax (305)374-9004

Proposed Miami Freedom Park (International Links Melreese Country Club) 1802 NW 37th Avenue, Miami, FL 33125 Project #: 2018-3057

2019 AERIAL PHOTOGRAPH

Services, LLC

5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305)374-8300 (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

FIELD NET OVA / FID RESULTS MAP

Dwg. Date:	6/17/2019	
Job No.:	2018-3057	
Drawn By:	JML	
App. By:		
Scale:	JML	
Cad File:	FIG-6	
Revisions:		
Figure No.		

EE&G Environmental Services, LLC

5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305)374-8300 (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

SOIL BORING &
TEST EXCAVATION
RESULTS MAP

Dwg. Date:	6/17/2019	
Job No.:	2018-3057	
Drawn By:	JML	
App. By:		
Scale:	JML	
Cad File:	FIG-7	
Revisions:		
Figure No.		

5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305)374-8300 (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

SOIL BORING RESULTS MAP (MAINTENANCE AREA)

Dwg. Date:	6/17/2019	
Job No.:	2018-3057	
Drawn By:	JML	
App. By:		
Scale:	JML	
Cad File:	FIG-8	
Revisions:		
Figure No.		

8

<u>LEGEND:</u>

▲ = SOIL BORING

BOLD= ANALYTICAL RESULT EXCEEDED THE SCTL-R

BOLD= ANALYTICAL RESULT EXCEEDED THE SCTL-C AND/OR SCTL-L

NT = NOT TESTED

*** = LEACHABILITY DETERMINED VIA SPLP ANALYSIS

PARAMETERS	SCTL-R	SCTL-C	SCTL-L
ARSENIC	2.1	12	***
BARIUM	120***	130,000	1,600
LEAD	400	1,400	***
BaP-TEF	0.1	0.7	N/A
DIOXIN-FURANS	7	30	3,000

All values given in mg/kg with the exception of Dioxin-Furans which are reported in ng/kg

500'

SCALE:

EE&G Environmental Services, LLC

5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305)374-8300 (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

GROUNDWATER
RESULTS MAP
(METALS)

Dwg. Date:	6/17/2019	
Job No. :	2018-3057	
Drawn By:	JML	
App. By:		
Scale:	JML	
Cad File:	FIG-10	
Revisions:		
Figure No.		

5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305)374-8300 (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

GROUNDWATER RESULTS MAP (OTHER PARAMETERS TESTED)

Dwg. Date:	6/17/2019	
Job No.:	2018-3057	
Drawn By:	JML	
App. By:		
Scale:	JML	
Cad File:	FIG-11	
Revisions:		
Figure No.		
-		

5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305)374-8300 TEL (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

GROUNDWATER RESULTS MAP (IRON)

Dwg. Date:	6/17/2019	
Job No.:	2018-3057	
Drawn By:	JML	
App. By:		
Scale:	SEEDRAWING	
Cad File:	FIG-12	
Revisions:		
Figure No.		

EE&G Environmental Services, LLC

5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305)374-8300 Tel (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

GROUNDWATER
RESULTS MAP
(ARSENIC)

6/17/2019	
2018-3057	
JML	
JML	
FIG-13	
	2018-3057 JML JML

5751 Miami Lakes Drive Miami, Florida 33014 (305)374-8300 TEL (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

GROUNDWATER RESULTS MAP (AMMONIA)

Dwg. Date:	6/17/2019	
Job No.:	2018-3057	
Drawn By:	JML	
App. By:		
Scale:	JML	
Cad File:	FIG-14	
Revisions:		
Figure No.		

(305) 374-8300 (305) 374-9004 FAX

Dwg. Scale: As Noted

5751 Miami Lakes Drive Miami Lakes, Florida 33014 (305)374-8300 (305)374-9004 :FAX

PROJECT:

PROPOSED MIAMI FREEDOM PARK

(INTERNATIONAL LINKS MELREESE COUNTRY CLUB)

1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

SHEET TITLE:

VAPOR WELL LOCATION & **RESULTS MAP**

Dwg. Date:	6/17/2019	
Job No. :	2018-3057	
Drawn By:	JML	
App. By:		
Scale:	JML	
Cad File:	FIG-17	
Revisions:		
Figure No.		

17

TEST EXCAVATION DEBRIS INTERVALS MELREESE GOLF COURSE

1802 NW 37TH AVENUE

MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

PROJECT NO.: 2018-3057

st Area	T		l	Total Depth (feet-	Groundwater	Debris Interval	<u> </u>	Soil Sample (feet-
ignation [Date Performed	Latitude (N)	Longitude (W)	BLS)	Depth (feet-BLS)	(feet-BLS)	Lithology	BLS)
CAVATIONS								
	12-Mar-2019	25 47.577	-80 15.832	6.0	Not Encountered	0.5 - 6.0+	Golf course base sand 0 - 0.5, incinerator debris 0.5 - 6.0.	1.0 - 2.0
	12-Mar-2019	25 47.587	-80 15.721	7.0	5	1.5 - 7.0+	Golf course base sand 0 - 1.5, incinerator debris 1.5 - 7.0.	N/A
	42.14 2040	25 47 624	00.45.645	F 0	Not East along	40.45	Golf course base sand 0 - 1.0, incinerator debris 1.0 - 4.5, tan silty clay w/ trace	21/2
	12-Mar-2019	25 47.621	-80 15.645	5.0	Not Encountered	1.0 - 4.5	roots 4.5 - 5.0.	N/A
	12 May 2010	25 47 642	00.45.520	F 0	F 0	15 20	Golf course base sand 0 - 1.5, incinerator debris 1.5 - 2.0, organic/peat material	20.40
	12-Mar-2019	25 47.612	-80 15.538	5.0	5.0	1.5 - 2.0	2.0 - 3.0, tan silty clay w/ trace roots 3.0 - 5.0. Golf course base sand 0 - 0.5, woody debris & fill 0.5 - 1.5, sandy fill & concrete	2.0 - 4.0
	18-Mar-2019	25 47.625	-80 15.444	6.0	5.0	2.0 - 4.5	1.5 - 2.0, incinerator debris 2.0 - 4.5, silt w/ trace roots 4.5 - 6.0.	N/A
	10-IVId1-2019	23 47.023	-60 13.444	0.0	3.0	2.0 - 4.3	1.3 - 2.0, inclinerator debris 2.0 - 4.3, slit w/ trace roots 4.3 - 0.0.	IN/ A
	13-Mar-2019	25 47.548	-80 15.773	5.0	4.0	1.0 - 5.0+	Golf course base sand 0 - 1.0, incinerator debris 1.0 - 5.0.	N/A
	13 14101 2013	25 47.540	00 13.773	5.0	4.0	1.0 3.01	Golf course base sand 0 - 0.5, woody & some incinerator debris 0.5 - 2.5, brown	·
	18-Mar-2019	25 47.583	-80 15.628	6.0	6.0	0.5 - 2.5	sandy limestone 2.5 - 4.0, gray sandy limestone 4.0 - 5.5.	N/A
			00 20:020			5.5 -1.5	Golf course base sand 0 - 0.5, woody debris & fill 0.5 - 1.0, sandy fill 1.0 - 1.5,	.,,
	18-Mar-2019	25 47.583	-80 15.439	5.0	4.5	1.5 - 4.0	incinerator debris 1.5 - 4.0, silt w/ trace roots 4.0 - 5.0.	N/A
							Golf course base sand 0 - 1.5, woody debris & fill 1.5 - 4.0, incinerator debris 4.0	·
	18-Mar-2019	25 47.584	-80 15.383	6.0	5.5	4.0 - 6.0+	6.0.	2.0 - 4.0
	13-Mar-2019	25 47.541	-80 15.669	6.5	4.5	1.0 - 6.5+	Golf course base sand & tree roots 0 - 1.0, incinerator debris 1.0 - 6.5.	N/A
	18-Mar-2019	25 47.564	-80 15.513	3.5	3.0	1.0 - 3.5+	Golf course base sand 0 - 1.0, incinerator debris 1.0 - 3.5.	N/A
							Golf course base sand 0 - 1.0, incinerator debris 1.0 - 3.0, gray sand & limerock	
	18-Mar-2019	25 47.539	-80 15.618	4.5	4.5	1.0 - 3.0	3.0 - 4.5.	N/A
	13-Mar-2019	25 47.500	-80 15.728	6.0	Not Encountered	1.0 - 6.0+	Golf course base sand 0 - 1.0, incinerator debris 1.0 - 6.0.	2.0 - 4.0
	10 May 2010	25 47 524	00.45.570		F 0	05.50		0.20
	18-Mar-2019	25 47.521	-80 15.570	5.5	5.0	0.5 - 5.0	Golf course base sand 0 - 0.5, incinerator debris 0.5 - 5.0, tan sand 5.0 - 5.5.	0 - 2.0
	18-Mar-2019	25 47.471	-80 15.801	6.0	c c	0.5 - 5.5	Golf course base sand 0 - 0.5, incinerator debris 0.5 - 5.5, tan sand & limestone 5.5 - 6.0.	N/A
	TO-IAIGI - 5013	23 47.471	-00 13.801	0.0	5.5	0.5 - 5.5	3.3 - 0.0.	IN/A
	13-Mar-2019	25 47.480	-80 15.649	6.0	3.5	0.5 - 6.0+	Golf course base sand 0 - 0.5, incinerator debris 0.5 - 6.0.	N/A
	13-IVIGI 22013	23 47.400	-00 13.043	0.0	5.5	0.5 - 0.0+	John Course base sand 0 - 0.5, inclinerator debris 0.5 - 0.0.	IV/ A
	13-Mar-2019	25 47.454	-80 15.686	4.0	3.0	0.5 - 4.0+	Golf course base sand and organics 0 - 1.5, incinerator debris 1.5 - 6.0.	N/A
	20 11.0. 2013	20 171101	33 13.000		3.0	0.0 1.0	21 11.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,, .
	18-Mar-2019	25 47.397	-80 15.829	3.5	3.0	Not Encountered	Golf course base sand 0 - 1.5, sand with organics 1.5 - 3.0, tan sand 3.0 - 3.5.	N/A
	13-Mar-2019 18-Mar-2019	25 47.454	-80 15.686 -80 15.829	3.5	3.0	Not Encountered		

TEST EXCAVATION DEBRIS INTERVALS MELREESE GOLF COURSE 1802 NW 37TH AVENUE

MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125 PROJECT NO.: 2018-3057

Test Area Designation	Date Performed	Latitude (N)	Longitude (W)	Total Depth (feet- BLS)	Groundwater Depth (feet-BLS)	Debris Interval (feet-BLS)	Lithology	Soil Sample (feet- BLS)
TEST EXCAVATIONS		Latitude (N)	Longitude (W)	5237	Deptii (leet DES)	(icet bis)	Lithology	5237
TEST EXCAPATIONS							Golf course base sand 0 - 1.0, construction debris (rubble and sand) 1.0 - 3.5, tan	
TE-19	18-Mar-2019	25 47.411	-80 15.773	5.0	4.0	1.0 - 3.5 *	sand & limestone 3.5 - 5.0.	2.0 - 4.0
11-13	18-14141-2013	25 47.411	-60 15.775	5.0	4.0	1.0 - 3.3	Golf course base sand 0 - 1.0, tan concrete debris (rubble and sand) 1.0 - 3.5,	2.0 - 4.0
TE-20	13-Mar-2019	25 47.407	-80 15.659	3.5	Not Encountered	1.0 - 3.5*	refusal at former roadway at 3.5.	N/A
	20 11101 2020		00 20:000	0.0		2.0 0.0	Golf course base sand 0 - 1.0, construction debris (rubble and sand) 1.0 - 3.5, tan	
TE-21	25-Mar-2019	25 47.377	-80 15.733	5.0	5.0	1.5 - 4.0*	sand & limestone 3.5 - 5.0.	N/A
							Golf course base sand 0 - 1.5, tan sand & limestone 1.5 - 2.5, incinerator debris	
TE-22	13-Mar-2019	25 47.388	-80 15.601	6.5	5.5	2.5 - 6.5+	2.5 - 6.5.	N/A
							Golf course base sand 0 - 1.0, organics 1 2.0, construction debris 2.0 - 4.0, tan	
TE-23	18-Mar-2019	25 47.358	-80 15.787	4.5	4.0	2.0 - 4.0*	sand & limestone 4.0 - 4.5.	N/A
							Golf course base sand 0 - 0.5, tan construction debris (rubble, fiber and sand)	
TE-24	18-Mar-2019	25 47.319	-80 15.827	5.0	5.0	0.5 - 5.0*	0.5 - 6.0, tan sand and limestone 6.0 - 6.5.	0 - 2.0 , 2.0 - 4.0
							Golf course base sand 0 - 1.0, tan concrete debris (rubble and sand) 1.0 - 4.0,	
TE-25	25-Mar-2019	25 47.329	-80 15.668	4.5	4.0	1.0 - 4.5*	tan sand and limestone 4.0 - 4.5.	0 - 2.0
							Golf course base sand as 0 - 1.0, incinerator debris 1.0 - 3.5, organics 3.5 - 4.5,	
TE-26	13-Mar-2019	25 47.310	-80 15.620	5.0	5.0	1.0 - 3.5	tan sand 4.5 - 5.0.	N/A
							Golf course base sand 0 - 0.2.5, tan concrete debris (rubble and sand) 0.25 - 2.5,	
TE-27	25-Mar-2019	25 47.291	-80 15.732	3.0	3.0	0.25 - 2.5*	tan sand and limestone 2.5 - 3.0.	0 - 2.0
							Golf course base sand 0 - 0.5, tan concrete debris (rubble and sand) 0.5 - 2.5,	
TE-28	25-Mar-2019	25 47.274	-80 15.798	6.0	Not Encountered	0.5 - 6.0*	tan sand and limestone 2.5 - 3.0.	0 - 2.0
	40.44 0040		00.45.554		- 0		Golf course base sand 0 - 2.0, incinerator debris 2.0 - 5.0, tan sand & limerock	
TE-29	13-Mar-2019	25 47.279	-80 15.571	5.5	5.0	2.0 - 5.0	5.0 - 5.5.	0 - 1.0
TF 20	25 May 2040	25 47 254	00.45.666	6.0	6.0	0.25 5.75	Golf course base sand 0 - 0.25, incinerator debris 0.250 - 5.75, tan sand &	N1/A
TE-30	25-Mar-2019	25 47.254	-80 15.666	6.0	6.0	0.25 - 5.75	limerock 5.75 - 6.0.	N/A
TF 21	25-Mar-2019	25 47.201	00 1F 721	6.0		0.5 - 5.5*	Golf course base sand 0 - 0.5, tan sandy fill with some brick, concrete and	20.40
TE-31	25-Mar-2019	25 47.201	-80 15.731	6.0	5.5	0.5 - 5.5	limerock 0.5 - 5.5, tan sand and limestone 5.5 - 6.0.	2.0 - 4.0
TE-32	13-Mar-2019	25 47.342	-80 15.635	3.0	Not Encountered	Not Encountered	Golf course base sand 0 - 1.0, sand and gravel - septic drain field 1.0 - 3.0.	N/A
1L-34	13-IVIAI-2019	23 47.342	-00 13.033	3.0	NOT ENCOUNTERED	NOT ENCOUNTERED	John Course base samu 0 - 1.0, samu amu graver - septic uram meiu 1.0 - 5.0.	IN/A
TE-32A	25-Mar-2019	25 47.222	-80 15.519	5.5	5.5	1.0 - 5.5*	Golf course base sand 0 - 1.0, tan concrete debris (rubble and sand) 1.0 - 5.5.	N/A
12 32/1	25 WIGH 2015	25 T/.222	00 13.313	5.5	5.5	1.0 3.3	Golf course base sand 0 - 1.5, incinerator debris 1.5 - 6.0, tan sand & limerock	14/ 🗥
TE-33	25-Mar-2019	25 47.409	-80 15.514	6.5	5.5	1.5 - 6.0	6.0 - 6.5.	0 - 2.0 , 2.0 - 4.0

^{*} Denotes tan colored fill material comprised of construction debris, concrete, bricks, fiber (carpet) and sand.

EE SOIL BORING OVA/FID FIELD SCREENING RESULTS MELREESE GOLF COURSE

1802 NORTHWEST 37TH AVENUE

MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

PROJECT NO.: 2018-3057

SOIL BORING DESIGNATION	DATE	DEPTH (FEET- BLS)	PARTS PER MILLION (TOTAL)	PARTS PER MILLION (WITH CARBON FILTER)	PARTS PER MILLION (NET)		
		0 – 2	< 1	NF	< 1		
SB-1	3/25/2019	2 – 4	356	93	263		
3D-1	3/23/2019	4 – 6	408	204	204		
		6 – 8	71	31	40		
		0 – 2	119	42	77		
SB-2	3/25/2019	2 – 4	143	64	79		
30-2	3/23/2019	4 – 6	18	7	11		
		6 – 8	208	133	75		
		0 – 2	2	NF	2		
00.0	0/05/0040	2 – 4	< 1	NF	< 1		
SB-3	3/25/2019	4 – 6	< 1	NF	< 1		
		6 – 8	< 1	NF	< 1		
		_	<u>, </u>				
		0 – 2	< 1	NF	< 1		
		2 – 4	< 1	NF	< 1		
SB-4	3/25/2019	4 – 6	219	56	163		
		6 – 8	651	176	475		
		ů ů	001	170	410		
		0 – 2	7	NF	7		
		2 – 4	396	102	294		
		4-6	216	81	135		
SB-5	3/25/2019	6 – 8	>6,740 (O/R)	NF	>6,740 (O/R)		
		8 – 10	< 1	NF	< 1		
		10 – 12	< 1	NF	< 1		
		10 – 12	` 1	INI	`		
		0 – 2	114	17	97		
		2 – 4	18	8	10		
SB-A	3/26/2019	4 – 6	85	16	69		
		6 – 8	198	104	94		
		0-0	190	104	34		
		0 – 2	< 1	NF	< 1		
SB-6	3/26/2019	2 – 4	< 1	NF NE	< 1		
		4 – 6	< 1	NF NE	< 1		
		6 – 8	< 1	NF	< 1		
				A I E	, A		
		0 – 2	1	NF NE	1		
SB-7	3/26/2019	2 – 4	< 1	NF 10	< 1		
		4 – 6	95	46	49		
		6 – 8	< 1	NF	< 1		
			1	4:			
		0 – 2	43	11	32		
SB-8	3/26/2019	2 – 4	< 1	NF	< 1		
		4 – 6	29	10	19		
		6 – 8	6	NF	6		

TABLE 2 EE SOIL BORING OVA/FID FIELD SCREENING RESULTS MELREESE GOLF COURSE

1802 NORTHWEST 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

PROJECT NO.: 2018-3057

SOIL BORING DESIGNATION	DATE	DEPTH (FEET- BLS)	PARTS PER MILLION (TOTAL)	PARTS PER MILLION (WITH CARBON FILTER)	PARTS PER MILLION (NET)
		0 – 2	33	7	26
SB-10	3/26/2019	2 – 4	< 1	NF	< 1
3D-10	3/20/2019	4 – 6	18	6	12
		6 – 8	11	2	9
		0 – 2	< 1	NF	< 1
		2 – 4	161	17	144
SB-11	3/26/2019	4 – 6	624	73	551
3D-11		6 – 8	464	79	385
		8 – 10	>6,000 (O/R)	NF	>6,000 (O/R)
		10 – 12	4,334	580	3,754
		0 – 2	< 1	NF	< 1
		2 – 4	20	3	17
SB-12	3/26/2019	4 – 6	1	NF	1
OD-12	3/20/2013	6 – 8	2,348	318	2,030
		8 – 10	298	29	269
		10 – 12	27	4	23
		0 – 2	1,100	280	820
SB-32	4/8/2019	2 – 4	1,300	540	760
30-32	4/0/2013	4 – 6	630	52	578
		6 – 8	450	103	347

Notes:

NF = Not Charcoal Filtered

O/R = Over Range

Bold = Result above 10 parts per million action level

TABLE 3 TEST EXCAVATION SOIL ANALYTICAL RESULTS MELREESE GOLF COURSE 1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125 PROJECT No.: 2018-3057

			Sample Designation:	TE-1	TE-4	TE-13	TE-29	TE-9	TE-14	TE-24	TE-24	TE-19	TE-31	TE-27	TE-25	TE-33	TE-33
			Date Collected:	3/12/19	3/12/19	3/13/19	3/13/19	3/18/19	3/18/19	3/18/19	3/18/19	3/18/19	3/25/19	3/25/19	3/25/19	3/25/19	3/25/19
			Depth (Feet-BLS):	1 - 2	2 - 4	2 - 4	0 - 1	2 - 4	0 - 2	0 - 2	2 - 4	2 - 4	2 - 4	0 - 2	0 - 2	0 - 2	2 - 4
		Soil Cleanup Target Levels (SCTLs					· ·		, , , , , , , , , , , , , , , , , , ,	<u> </u>				V 2	, , , , , , , , , , , , , , , , , , ,	V 2	
Parameter	Residential	Commercial/Industrial	Leachability														1
Total Metals by 6010 (mg/kg)			•														
Arsenic	2.1	12	***	14.3	3.8	9.7	47.6	56.6	10	10.9	7.1	6.1	4.0	13.2	3.5	36.8	58.1
Barium	120**	130,000	1,600	33.6	21.4	65.6	14.4	141	38.8	26.4	35.3	56.7	9.3	29.4	6.9	29.6	329
Cadmium	82	1,700	7.5	0.61	0.89	1.2	0.44	1.8	0.73	0.60	0.38	0.32	NT	NT	NT	NT	NT
Chromium	210	470	38	21.8	8.1	33.9	13.6	34.3	13.5	17.2	29.3	9.9	NT	NT	NT	NT	NT
Lead	400	1,400	***	105	181	202	28.7	361	120	99.7	49.4	69.7	14.8	169	15.0	159	1,890
Selenium	440	11.000	5.2	0.51 (U)	0.53 (U)	0.63 (U)	0.56 (I)	3.0 (U)	0.53 (U)	0.40 (U)	0.42 (U)	0.44 (U)	NT	NT	NT	NT	NT
Silver	410	8,200	17	0.89	0.73	0.98	0.35	4.2	1.6	0.56	0.67	0.65	NT	NT	NT	NT	NT
Total Metals by 7471 (mg/kg)																	
Mercury	3	17	2.1	0.093	0.31	0.14	0.024	0.080	0.085	0.096	0.075	0.061	NT	NT	NT	NT	NT
TCLP Metals by 1311 (mg/L)																	
Lead	5.0	5.0		0.046 (U)	0.046 (U)	0.046 (U)	NT	0.046 (U)	0.046 (U)	NT	NT	NT	NT	NT	NT	NT	NT
VOCs by 8260 (mg/kg)	1			/ . /		/ . /		1	1								
MTBE	4.400	24.000	0.009	0.0026 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Benzene	1.2	1.7	0.007	0.0026 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Toluene	7,500	60,000	0.5	0.0028 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Ethylbenzene	1,500	9.200	0.6	0.0029 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total Xvlenes	130	700	0.2	0.0053 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Tetrachloroethene (PCE)	8.8	18	0.03	0.0026 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trichloroethene (TCE)	6.4	9.3	0.003	0.0029 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Cis-1.2-Dichloroethene	33	180	0.4	0.0026 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trans-1,2-Dichloroethene	53	290	0.7	0.0031 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Vinvl Chloride	0.2	0.8	0.007	0.0028 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Isopropylbenzene (IPB)	220	1,200	0.2	0.0030 (U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Acetone	11.000	68,000	25	0.031	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Other VOCs Tested	,	Varies Per Constituent	-	(U)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PAHs by 8270 (mg/kg)				` ′													
Naphthalene	55	300	1.2	0.013 (U)	0.015 (U)	0.021 (I)	0.016 (U)	0.14	0.014 (U)	0.012 (U)	0.014 (U)	0.17	NT	NT	NT	NT	NT
1-Methyl Naphthalene	200	1.800	3.1	0.015 (U)	0.017 (U)	0.018 (U)	0.018 (U)	0.039 (I)	0.016 (U)	0.014 (U)	0.015 (U)	0.062	NT	NT	NT	NT	NT
2-Methyl Naphthalene	210	2,100	8.5	0.015 (U)	0.017 (U)	0.018 (U)	0.018 (U)	0.049 (I)	0.016 (U)	0.014 (U)	0.015 (U)	0.077	NT	NT	NT	NT	NT
Acenaphthene	2,400	20,000	2	0.013 (U)	0.015 (U)	0.016 (U)	0.016 (U)	0.024 (I)	0.014 (U)	0.012 (U)	0.014 (U)	0.024 (I)	NT	NT	NT	NT	NT
Acenaphthylene	1,800	20,000	27	0.012 (U)	0.014 (U)	0.015 (U)	0.015 (U)	0.023 (I)	0.013 (U)	0.011 (U)	0.012 (U)	0.024 (I)	NT	NT	NT	NT	NT
Anthracene	21.000	300.000	2,500	0.014 (U)	0.016 (U)	0.017 (U)	0.016 (U)	0.016 (U)	0.015 (U)	0.013 (U)	0.014 (U)	0.025 (I)	NT	NT	NT	NT	NT
Benzo(a)Anthracene	#	#	0.8	0.011 (U)	0.022 (I)	0.020 (I)	0.015 (I)	0.013 (U)	0.020 (I)	0.011 (I)	0.012 (I)	0.012 (I)	NT	NT	NT	NT	NT
Benzo(a)Pyrene	0.1	0.7	8	0.0097 (U)	0.018 (I)	0.014 (I)	0.012 (U)	0.011 (U)	0.014 (I)	0.0089 (U)	0.0098 (U)	0.0091 (U)	NT	NT	NT	NT	NT
Benzo(b)Fluoranthene	#	#	2.4	0.010 (U)	0.026 (I)	0.021 (I)	0.017 (I)	0.012 (U)	0.020 (I)	0.011 (I)	0.010 (U)	0.011 (I)	NT	NT	NT	NT	NT
Benzo(ghi)Perylene	2,500	52,000	32,000	0.0098 (U)	0.016 (I)	0.012 (U)	0.012 (U)	0.012 (U)	0.013 (I)	0.0090 (U)	0.0099 (U)	0.0092 (U)	NT	NT	NT	NT	NT
Benzo(k)Fluoranthene	#	#	24	0.010 (U)	0.012 (I)	0.013 (U)	0.012 (U)	0.012 (U)	0.011 (U)	0.0096 (U)	0.011 (U)	0.0098 (U)	NT	NT	NT	NT	NT
Chrysene	#	#	77	0.012 (U)	0.019 (I)	0.015 (U)	0.015 (U)	0.015 (U)	0.015 (I)	0.011 (U)	0.012 (U)	0.013 (I)	NT	NT	NT	NT	NT
Dibenzo(a,h)Anthracene	#	#	0.7	0.0090 (Ú)	0.010 (U)	0.011 (U)	0.011 (U)	0.011 (U)	0.0095 (U)	0.0082 (Ú)	0.0091 (Ú)	0.0084 (U)	NT	NT	NT	NT	NT
Fluoranthene	3,200	59,000	1,200	0.013 (U)	0.027 (I)	0.019 (I)	0.015 (U)	0.020 (I)	0.014 (I)	0.012 (U)	0.013 (U)	0.039	NT	NT	NT	NT	NT
Fluorene	2,600	33,000	160	0.014 (U)	0.016 (U)	0.017 (U)	0.017 (U)	0.037 (I)	0.015 (U)	0.013 (U)	0.014 (U)	0.043	NT	NT	NT	NT	NT
Indeno(123-cd)Pyrene	#	#	6.6	0.0089 (U)	0.011 (I)	0.011 (U)	0.011 (U)	0.011 (Ú)	0.0095 (Ú)	0.0082 (Ú)	0.0090 (Ú)	0.0083 (U)	NT	NT	NT	NT	NT
Phenanthrene	2,200	36,000	250	0.013 (U)	0.015 (Ú)	0.015 (U)	0.015 (U)	0.063	0.014 (U)	0.012 (U)	0.013 (U)	0.099	NT	NT	NT	NT	NT
Pyrene	2,400	45,000	880	0.012 (U)	0.026 (I)	0.019 (I)	0.015 (U)	0.024 (I)	0.014 (I)	0.011 (U)	0.012 (U)	0.044	NT	NT	NT	NT	NT
BaP TEF Equivalents	0.1	0.7		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NT	NT	NT	NT	NT
TPH by FL-PRO (mg/kg)																	
TPH, Total	460	2,700	340	38.1	128	3.6 (U)	52.3	189	9.7	4.5	3.0 (U)	238	NT	NT	NT	NT	NT
Dioxins/Furans by 8290 (ng/kg)																	
Dioxins/Furans, Total	7	30	3.000	3.79	11.18	3.23	0.46	15.49	4.42	5.97	1.97	6.84	1.55	NT	NT	24.58	177.47

mg/kg = milligrams per kilograms mg/L = milligrams per liter

ng/kg = nanograms per kilograms
TCLP = Toxicity Characteristic Leaching Procedure

Bold = Analytical result exceeded the Residential SCTL

Bold = Analytical result exceeded the Commercial and/or Leachability SCTL

U = Results below the laboratory method detection limits
I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit

NT = Not Tested

*** = Direct exposure value based on acute toxicity considerations

*** = Leachability determined via SPLP analysis

= Must be converted to benzo(a) pyrene equivalent

Benzo(a)pyrene Conversion Table

Benzo(a)pyrene Conversion Table

For Direct Exposure Soil Cleanup Target Levels

Instructions can be found below the table

SCTL Type

Value

Units

Facility/Site Name:	Melreese Golf Course
Site Location:	1802 NW 37th Avenue, Miami, FL 33125
Facility/Site ID No.:	

1802 NW 37th Avenue, Miami, FL 33125		Residential Direct Exposure SCTL	0.1	mg/k
		Industrial Direct Exposure SCTL	0.7	mg/k
	-	Alternative SCTL (Optional)		mg/k
EF = Toxic Equivalency Factor		Site Specific Background (Optional)		mg/k

						Alternative 30 L (Optional) ing/kg					
	TEF = Toxic Ed	quivalency Factor				Site Specific Back	(ground (Optional)		mg/kg		
	Soil Sample #	TE-1	TE-4	TE-9	TE-14	TE-19	TE-24	TE-24	TE-13	TE-29	
	Sample Date	3/12/2019	3/12/2019	3/18/2019	3/18/2019	3/18/2019	3/18/2019	3/18/2019	3/13/2019	3/13/2019	
	Sample Location:										
	Depth (ft):	1.0 - 2.0	2.0 - 4.0	2.0 - 4.0	0.0 - 2.0	2.0 - 4.0	0.0 - 2.0	2.0 - 4.0	2.0 - 4.0	0.0 - 1.0	
				C	ontaminant Cond	centrations					
Contaminant	TEF	TE-1 (mg/kg)	TE-4 (mg/kg)	TE-9 (mg/kg)	TE-14 (mg/kg)	TE-19 (mg/kg)	TE-24 (mg/kg)	TE-24 (mg/kg)	TE-13 (mg/kg)	TE-29 (mg/kg)	
Benzo(a)pyrene	1.0	0.00485	0.018	0.0055	0.014	0.00455	0.00445	0.0049	0.014	0.006	
Benzo(a)anthracene	0.1	0.0055	0.022	0.0065	0.02	0.012	0.011	0.012	0.02	0.015	
Benzo(b)fluoranthene	0.1	0.005	0.026	0.006	0.02	0.011	0.011	0.005	0.021	0.017	
Benzo(k)fluoranthene	0.01	0.005	0.012	0.006	0.0055	0.0049	0.0048	0.0055	0.0065	0.006	
Chrysene	0.001	0.006	0.019	0.0075	0.015	0.013	0.0055	0.006	0.0075	0.0075	
Dibenz(a,h)anthracene	1.0	0.0045	0.005	0.0055	0.00475	0.0042	0.0041	0.00455	0.0055	0.0055	
Indeno(1,2,3-cd)pyrene	0.1	0.00445	0.011	0.0055	0.00475	0.00415	0.0041	0.0045	0.0055	0.0055	
	-			E	Benzo(a)pyrene E	quivalents			-		
Contaminant	TEF	TE-1 (mg/kg)	TE-4 (mg/kg)	TE-9 (mg/kg)	TE-14 (mg/kg)	TE-19 (mg/kg)	TE-24 (mg/kg)	TE-24 (mg/kg)	TE-13 (mg/kg)	TE-29 (mg/kg)	
Benzo(a)pyrene	1.0	0.0049	0.0180	0.0055	0.0140	0.0046	0.0045	0.0049	0.0140	0.0060	0.0000
Benzo(a)anthracene	0.1	0.0006	0.0022	0.0007	0.0020	0.0012	0.0011	0.0012	0.0020	0.0015	0.0000
Benzo(b)fluoranthene	0.1	0.0005	0.0026	0.0006	0.0020	0.0011	0.0011	0.0005	0.0021	0.0017	0.0000
Benzo(k)fluoranthene	0.01	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0001	0.0001	0.0001	0.0000
Chrysene	0.001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Dibenz(a,h)anthracene	1.0	0.0045	0.0050	0.0055	0.0048	0.0042	0.0041	0.0046	0.0055	0.0055	0.0000
Indeno(1,2,3-cd)pyrene	0.1	0.0004	0.0011	0.0006	0.0005	0.0004	0.0004	0.0005	0.0006	0.0006	0.0000
					Total Equiva	lents					
Total Benzo(a)pyrene	Equivalents	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					Comparisons to	SCTLs					

Does This Sample Exceed:	TE-1 (mg/kg)	TE-4 (mg/kg)	TE-9 (mg/kg)	TE-14 (mg/kg)	TE-19 (mg/kg)	TE-24 (mg/kg)	TE-24 (mg/kg)	TE-13 (mg/kg)	TE-29 (mg/kg)	
The Residential Direct Exposure SCTL of 0.1 mg/kg?	ок	ок	ОК	ок	ок	ок	ок	ок	ок	ок
The Industrial Direct Exposure SCTL of 0.7 mg/kg?	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок
No Alternative SCTL Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
No Site Specific Background Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

TABLE 5 TEST EXCAVATION DIOXIN/FURAN CONGENER SUMMARY RESULTS MARCH 2019

MELREESE GOLF COURSE 1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

Congener	TEF	TE-1 (1'-2')	Converted Results*	TE-4 (2'-4')	Converted Results*	TE-9 (2'-4')	Converted Results*	TE-13 (2'-4')	Converted Results*	TE-14 (0'-2')	Converted Results*	TE-19 (2'-4')	Converted Results*
2,3,7,8-TCDD	1	0.44	0.44	0.27	0.27	1.5	1.5	0.11	0.105	0.35	0.35	0.395	0.395
1,2,3,7,8-PeCDD	1	0.82	0.82	1.70	1.7	4.6	4.6	0.75	0.75	0.25	0.25	2.0	2
1,2,3,4,7,8-HxCDD	0.1	0.66	0.066	1.90	0.19	3.7	0.37	0.80	0.08	1.50	0.15	1.8	0.18
1,2,3,6,7,8-HxCDD	0.1	4.10	0.41	5.40	0.54	14	1.4	3.30	0.33	7.20	0.72	7.3	0.73
1,2,3,7,8,9-HxCDD	0.1	2.60	0.26	3.30	0.33	11	1.1	1.90	0.19	4.90	0.49	5.0	0.5
1,2,3,4,6,7,8-HpCDD	0.01	100.00	1	43.00	0.43	370	3.7	90	0.9	190	1.9	190	1.9
OCDD	0.0001	830.00	0.083	240.00	0.024	3400	0.34	690	0.069	960	0.096	1200	0.12
2,3,7,8-TCDF	0.1	0.82	0.082	2.00	0.2	4.3	0.43	0.75	0.075	0.45	0.045	1.2	0.12
1,2,3,7,8-PeCDF	0.05	0.38	0.019	2.10	0.105	0.79	0.0395	0.37	0.0185	0.16	0.008	0.69	0.0345
2,3,4,7,8-PeCDF	0.5	0.74	0.37	11.00	5.5	1.2	0.6	0.81	0.405	0.36	0.18	1.0	0.5
1,2,3,4,7,8-HxCDF	0.1	0.49	0.049	3.00	0.3	0.91	0.091	0.63	0.063	0.45	0.045	0.55	0.055
1,2,3,6,7,8-HxCDF	0.1	0.53	0.053	4.90	0.49	4.5	0.45	0.75	0.075	0.46	0.046	1.20	0.12
2,3,4,6,7,8-HxCDF	0.1	0.63	0.063	7.70	0.77	1.4	0.14	0.76	0.076	0.46	0.046	0.95	0.095
1,2,3,7,8,9-HxCDF	0.1	0.08	0.008	1.20	0.12	0.12	0.012	0.18	0.018	0.07	0.007	0.32	0.032
1,2,3,4,6,7,8-HpCDF	0.01	6.10	0.061	19.00	0.19	71	0.71	7.40	0.074	8.60	0.086	5.2	0.052
1,2,3,4,7,8,9-HpCDF	0.01	0.15	0.00145	1.80	0.018	0.375	0.00375	0.45	0.0045	0.15	0.0015	0.81	0.0081
OCDF	0.0001	13.00	0.0013	15.00	0.0015	39	0.0039	13.00	0.0013	18.00	0.0018	13	0.0013
Total Concentration of Dioxin/Furan	Congeners =		3.79		11.18		15.49		3.23		4.42		6.84

Congener	TEF	TE-24 (0'-2')	Converted Results*	TE-24 (2'-4')	Converted Results*	TE-29 (0'-1')	Converted Results*	TE-31 (2'-4')	Converted Results*	TE-33 (0'-2')	Converted Results*	TE-33 (2'-4')	Converted Results*
2,3,7,8-TCDD	1	0.18	0.18	0.38	0.38	0.12	0.115	0.09	0.085	1.20	1.2	17.00	17
1,2,3,7,8-PeCDD	1	1.5	1.5	0.225	0.225	0.065	0.065	0.280	0.28	7.100	7.1	43.000	43
1,2,3,4,7,8-HxCDD	0.1	1.5	0.15	0.38	0.038	0.08	0.0075	0.14	0.0135	8.00	0.8	60.00	6
1,2,3,6,7,8-HxCDD	0.1	5.7	0.57	1.5	0.15	0.5	0.049	1.1	0.11	19.0	1.9	200.0	20
1,2,3,7,8,9-HxCDD	0.1	4.3	0.43	1.1	0.11	0.3	0.031	0.7	0.066	13.0	1.3	160.0	16
1,2,3,4,6,7,8-HpCDD	0.01	150	1.5	44	0.44	9	0.094	31	0.31	190	1.9	6000	60
OCDD	0.0001	1200	0.12	430	0.043	100	0.01	320	0.032	1100	0.11	69000	6.9
2,3,7,8-TCDF	0.1	0.97	0.097	0.405	0.0405	0.085	0.0085	0.295	0.0295	4.100	0.41	3.900	0.39
1,2,3,7,8-PeCDF	0.05	0.31	0.0155	0.245	0.01225	0.090	0.0045	0.205	0.01025	5.200	0.26	2.900	0.145
2,3,4,7,8-PeCDF	0.5	1.6	0.8	0.61	0.305	0.07	0.035	0.69	0.345	11.00	5.5	5.80	2.9
1,2,3,4,7,8-HxCDF	0.1	1.50	0.15	0.48	0.048	0.09	0.009	0.77	0.077	10.00	1	4.10	0.41
1,2,3,6,7,8-HxCDF	0.1	1.40	0.14	0.45	0.045	0.07	0.0065	0.50	0.05	9.50	0.95	2.80	0.28
2,3,4,6,7,8-HxCDF	0.1	1.50	0.15	0.65	0.065	0.07	0.007	0.67	0.067	13.00	1.3	9.70	0.97
1,2,3,7,8,9-HxCDF	0.1	0.11	0.011	0.085	0.0085	0.080	0.008	0.120	0.012	2.800	0.28	1.800	0.18
1,2,3,4,6,7,8-HpCDF	0.01	14	0.14	5.50	0.055	1.20	0.012	6.20	0.062	52.00	0.52	300.00	3
1,2,3,4,7,8,9-HpCDF	0.01	1.1	0.011	0.23	0.0023	0.07	0.0007	0.20	0.002	4.90	0.049	18.00	0.18
OCDF	0.0001	24	0.0024	11.00	0.0011	2.20	0.00022	15.00	0.0015	52.00	0.0052	1100.00	0.11
Total Concentration of Dioxin/Furan	Congeners =		5.97		1.97		0.46		1.55		24.58		177.47

SCTL-R = 7 ng/kg	
SCTL-C = 30 ng/kg	
SCTL-L = 3,000 ng/kg	

Notes

All values given in nanograms per kilogram (ng/kg)

* Compounds that were below laboratory method
detection limits were reported as 1/2 of the method
detection limit concentration for assessment of the TEQ.
SCTL-R = Residential Soil Cleanup Target Level
SCTL-C = Commercial/Industrial Soil Cleanup Target Level
SCTL-L = Leachability Soil Cleanup Target Level
Bold = Analytical result exceeded the Residential SCTL
Bold = Analytical result exceeded the Commercial
and/or Leachability SCTL

TABLE 6 EE&G SOIL BORING ANALYTICAL RESULTS (ARSENIC, BARIUM, LEAD) MELREESE GOLF COURSE 1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125 PROJECT No.: 2018-3057

Soli Boring Date SB-1 3/25/2019 SB-2 3/25/2019 SB-3 3/25/2019 SB-4 3/25/2019 SB-5 3/25/2019 SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	Depth (Feet-BLS) 0 - 0.5 0.5 - 2 2 - 4 3.5 - 4.5 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4	16.9 15.5 6.2 NT 17.3 2.3 0.97 4.2 23.0 6.7 0.43 (I) 156 12.0 89.4 47.8 7.0 24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.2 10.0 8.2 36.1 11.3 5.0 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 10.4 3.0 3.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 12.9 28.9 29.9 20.9 20.9 20.9 20.9 20.9 20.9 20	10.8 11.4 41.5 NT 9.3 5.0 3.5 9.6 6.5 7.8 4.4 41.9 48.9 527 17.5 16.3 59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 29.2 278 698 11.8 49.9 182 36.3 12.9 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 3.4 20.4 20.7 29.7 29.1 21.1 216 13.2 216 13.2 217 278 31.5 219 29.7 28.2 254 254 20.3 255.5 254 255.5 255 255 256 266 27 27 287 297 2888888888888888888888888	10.1 27.2 98.0 NT 5.8 3.3 6.5 47.6 7.0 19.6 0.66 212 145 2,410 62.3 29.7 430 16.2 8.7 5.3 174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 7,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 188 5,7 3.4 1890 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6 4,990 8,6	NT N	NT
SB-2 3/25/2019 SB-3 3/25/2019 SB-4 3/25/2019 SB-5 3/25/2019 SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-21 3/27/2019	2 - 4 3.5 - 4.5 0 - 0.5 0 - 0.5 0 - 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	6.2 NTT 17.3 2.3 0.97 4.2 2.3.0 6.7 0.43 (I) 156 12.0 89.4 47.8 7.0 24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 9.8 9.9 18.2 13.6 13.3 9.8 9.9 18.2 13.6 13.3 9.8 9.9 18.2 13.6 13.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9	41.5 NT 9.3 5.0 3.5 9.6 6.5 7.8 4.4 41.9 48.9 527 17.5 16.3 59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 251.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1 11.7	98.0 NT 5.8 3.3 6.5 47.6 7.0 19.6 0.66 212 145 2,410 62.3 29.7 430 16.2 8.7 5.3 174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 16.6 395 165 1,1110 11,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT N	NT
SB-3 3/25/2019 SB-4 3/25/2019 SB-5 3/25/2019 SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	17.3 2.3 0.97 4.2 23.0 6.7 0.43 (I) 156 12.0 89.4 47.8 7.0 24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.19 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 17.9 18.8 18.2 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	9.3 5.0 3.5 9.6 6.5 7.8 4.4 41.9 48.9 527 17.5 16.3 59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 7114 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1 11.7	5.8 3.3 6.5 47.6 7.0 19.6 0.66 212 145 2,410 62.3 29.7 430 16.2 8.7 5.3 174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,990 4,510 13.7 11.0 16.6 395 165 1,110 16.6 395 165 1,1110 16.6 395 165 1,1110 16.6 395 165 1,1110 18.8 8.8 85.7 168 1,870 61.8 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT N	NT
SB-3 3/25/2019 SB-4 3/25/2019 SB-5 3/25/2019 SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019	2 - 4 4 - 6 0 - 0.5 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4	0.97 4.2 23.0 6.7 0.43 (I) 156 12.0 89.4 47.8 7.0 24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.9	3.5 9.6 6.5 7.8 4.4 41.9 48.9 527 17.5 16.3 59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	6.5 47.6 7.0 19.6 0.66 212 145 2,410 62.3 29.7 430 16.2 8.7 5.3 174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,990 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524 42.1	NT	NT
SB-4 3/25/2019 SB-5 3/25/2019 SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	23.0 6.7 0.43 (I) 156 12.0 89.4 47.8 7.0 24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.3 14.3 9.8 9.9 18.2 13.6 13.3 14.3 9.8 9.9 18.2 13.6 13.3 14.3 9.8 9.9 18.2 13.6 13.3 14.3 9.8 9.9 18.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9	6.5 7.8 4.4 4.1.9 48.9 527 17.5 16.3 59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1 11.7	7.0 19.6 0.66 212 145 2,410 62.3 29.7 430 16.2 8.7 5.3 174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 16.6 395 165 1,110 1,210 8.8 85.7 168 1,670 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT	NT
SB-4 3/25/2019 SB-5 3/25/2019 SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-7 0-0.5 0.5-2 2-4 4-6 6-7 0-0.5 0.5-2 2-4 4-6 6-7 0-0.5 0.5-2 2-4 4-6 6-7 0-0.5 0.5-2 2-4 4-6 6-7 0-0.5 0.5-2 2-4 4-6 6-7 0-0.5 0.5-2 2-4 4-6 6-7 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4	0.43 (I) 156 12.0 89.4 47.8 7.0 24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 12.0 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 12.0 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9 8.2 12.9	4.4 41.9 48.9 48.9 527 17.5 16.3 59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1 11.7	0.66 212 145 2,410 62.3 29.7 430 16.2 8.7 5.3 174 1,550 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT 0.071 (U) NT	NT
SB-5 3/25/2019 SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	12.0 89.4 47.8 7.0 24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 12.0 14.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9 8.2 22.9	48.9 527 17.5 16.3 59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 29.2 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	145 2,410 62.3 29.7 430 16.2 8.7 5.3 174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT N	NT
SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	47.8 7.0 24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 15.2 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 9.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	17.5 16.3 59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 2131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1 11.7	62.3 29.7 430 16.2 8.7 5.3 174 1,550 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,450 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT N	NT
SB-6 3/26/2019 SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0	24.3 13.3 0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5 19.5	59.6 20.5 6.2 3.3 29.2 278 698 11.8 49.9 182 36.3 22.5 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5,3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	430 16.2 8.7 5.3 174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 8.8 8.5.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT N	NT
SB-7 3/26/2019 SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	0.30 (U) 0.52 (I) 18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 25.5 1.7 22.9 8.2	6.2 3.3 29.2 278 698 111.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 29.2 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 20.7 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	8.7 5.3 174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,1110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT	NT
SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	18.8 275 32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	29.2 278 698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 89.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	174 1,560 3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,990 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT	NT
SB-8 3/26/2019 SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 0-0.5 0.5-2 2-4 4-6 0-0.5 0.5-2 2-4 4-6 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2	32.0 29.8 17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	698 11.8 49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 6.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	3,090 7.3 152 525 69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195	NT N	0.13
SB-9 3/26/2019 SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0	17.9 26.9 2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	49.9 182 36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	152 525 68.9 63.6 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,1110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT N	NT
SB-10 3/26/2019 SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	2.3 14.9 7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 152 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	36.3 225 129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	69.9 636 409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT N	NT
SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	7.8 12.6 13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 152 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	129 7.4 31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	409 7.9 259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524	NT N	NT
SB-11 3/26/2019 SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	13.7 0.53 (I) 8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 3.10 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	31.5 12.9 8.5 30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	259 5.2 10.1 92.9 160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT N	NT
SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4	8.7 8.2 10.0 8.2 36.1 11.3 5.0 8.3 78.1 152 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	30.0 41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	92.9 160 64.3 1,850 10.8 23.2 62.1 1,990 4,510 13.7 11.0 16.6 395 165 1,1110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT N	NT
SB-12 3/26/2019 SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019	2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0	10.0 8.2 36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 3.10 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	41.0 50.7 292 10.3 1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	160 64.3 1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,1110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT N	NT
SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 0.5 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5	36.1 11.3 5.0 8.3 78.1 1552 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	292 10.3 1,270 28.2 25.4 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	1,850 10.8 23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT N	NT
SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019	0.5 - 2 2 - 4 4 - 6 6 - 7 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2	5.0 8.3 78.1 152 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	1,270 28.2 254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	23.2 62.1 1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT NT NT O.071 (U) NT	NT
SB-13 3/27/2019 SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	4-6 6-7 0-0.5 0.5-2 2-4 4-6 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 0-0.5 0.5-2 2-4 4-7 4-6 0-0.5 0.5-2 2-4 4-7 4-6 0-0.5 0.5-2 2-4 4-7 4-6 0-0.5 0.5-2 2-4 4-7 4-7 4-8 0-0.5 0.5-2 2-4 4-9 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4	78.1 152 2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	254 4,020 7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	1,900 4,510 13.7 11.0 16.6 395 165 1,110 1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524	NT 0.071 (U) NT	NT
SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5	2.5 1.7 47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	7.8 88.8 19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	13.7 11.0 16.6 395 16.6 395 165 1,110 1,210 8.8 8.5.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524	NT N	NT
SB-14 3/27/2019 SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	2 - 4 4 - 6 0 - 0.5 0 - 0.5 0 - 0.5 - 2 2 - 4 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0 - 5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5	47.0 3.6 31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	19.4 22.3 25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	16.6 395 165 1,110 1,210 8.8 85,7 168 1,870 61.8 5.7 3.4 1113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176	NT N	NT
SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0	31.0 15.8 63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	25.5 145 523 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	165 1,110 1,210 8.8 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524	NT N	NT
SB-15 3/27/2019 SB-16 3/27/2019 SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019	2 - 4 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2	63.0 2.8 12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	523 7.7 15.3 7.7 15.3 124 714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	1,210 8.8 85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524	NT N	NT
\$B-16 3/27/2019 \$B-17 3/27/2019 \$B-18 3/27/2019 \$B-19 3/27/2019 \$B-20 3/27/2019 \$B-21 3/27/2019 \$B-21 3/27/2019 \$B-22 3/27/2019	0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	12.0 14.4 40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	15.3 124 714 39.3 10.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	85.7 168 1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524	NT N	NT
\$B-16 3/27/2019 \$B-17 3/27/2019 \$B-18 3/27/2019 \$B-19 3/27/2019 \$B-20 3/27/2019 \$B-21 3/27/2019 \$B-21 3/27/2019 \$B-22 3/27/2019	4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4	40.0 25.0 0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	714 39.3 5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	1,870 61.8 5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524	NT N	NT
SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2	0.94 10.4 3.0 3.4 25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	5.3 10.3 33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	5.7 3.4 113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524 42.1	NT N	NT
SB-17 3/27/2019 SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	3.0 3.4 225.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	33.4 20.4 207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	113 26.5 4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524	NT N	NT
SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2	25.3 14.3 9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	207 9.2 51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	4,980 5.2 142 699 1,090 8.6 29.3 46.0 167 624 195 176 524 42.1	NT N	NT NT NT NT NT NT NT NT NT NT NT
SB-18 3/27/2019 SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0.5 - 2 2 - 4 4 - 6 0 - 0.5 0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2	9.8 9.9 18.2 13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5 19.5	51.2 131 216 13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1	142 699 1,090 8.6 29.3 46.0 167 624 195 176 524 42.1	NT	NT NT NT NT NT NT NT NT NT NT
SB-19 3/27/2019 SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	4-6 0-0.5 0.5-2 2-4 4-6 6-8 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 2-4 0-0.5 2-4 0-0.5 2-4 0-0.5 2-4 0-0.5 2-4	13.6 13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5	13.2 13.7 20.9 29.1 278 31.9 54.1 208 18.1 11.7	8.6 29.3 46.0 167 624 195 176 524 42.1	NT NT NT NT NT NT NT	NT NT NT NT NT NT NT
\$B-19 3/27/2019 \$B-20 3/27/2019 \$B-21 3/27/2019 \$B-22 3/27/2019 \$B-23 3/27/2019	0.5 - 2 2 - 4 4 - 6 6 - 8 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 2 - 4 0 - 0.5 2 - 2 2 - 4 0 - 0.5 2 - 4 0 - 0.5 0.5 - 2	13.3 4.0 6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5 19.5	13.7 20.9 29.1 278 31.9 54.1 208 18.1 11.7	29.3 46.0 167 624 195 176 524 42.1	NT NT NT NT NT NT NT	NT NT NT NT NT NT
\$B-19 3/27/2019 \$B-20 3/27/2019 \$B-21 3/27/2019 \$B-22 3/27/2019 \$B-23 3/27/2019	4-6 6-8 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 0-0.5 0.5-2 2-4 2-4 2-4 2-5	6.4 29.7 22.9 8.2 12.8 27.8 1.2 29.5 19.5	29.1 278 31.9 54.1 208 18.1 11.7	167 624 195 176 524 42.1	NT NT NT NT NT NT	NT NT NT NT NT
SB-20 3/27/2019 SB-21 3/27/2019 SB-22 3/27/2019 SB-23 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	8.2 12.8 27.8 1.2 29.5 19.5	54.1 208 18.1 11.7	195 176 524 42.1	NT NT NT	NT NT NT
\$B-21 3/27/2019 \$B-22 3/27/2019 \$B-23 3/27/2019	0 - 0.5 0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	27.8 1.2 29.5 19.5	18.1 11.7	42.1	NT	NT
\$B-21 3/27/2019 \$B-22 3/27/2019 \$B-23 3/27/2019	0.5 - 2 2 - 4 0 - 0.5 0.5 - 2 2 - 4	29.5 19.5		8.3	NT	
SB-22 3/27/2019 SB-23 3/27/2019	0.5 - 2 2 - 4		212	500	NT	NT
SB-22 3/27/2019 SB-23 3/27/2019	2 - 4	16.1	10.5 24.2	12.0 91.2	NT NT	NT NT
SB-23 3/27/2019		49.7 12.4	85.5 148	661 298	NT NT	NT NT
SB-23 3/27/2019	6 - 8 0 - 0.5	85.0 12.8	507 7.5	393 9.2	NT NT	NT NT
	0.5 - 2 2 - 4	0.73 0.27 (U)	5.8 4.0	9.3 3.0	NT NT	NT NT
	4 - 6 0 - 0.5	47.7 30.2	215 7.5	3,180 16.8	NT NT	NT NT
	0.5 - 2 2 - 4	30.4 12.8	14.0 22.1	70.7 53.3	NT NT	NT NT
	4 - 6 0 - 0.5	0.56 29.3	4.1 6.6	3.3 7.7	NT NT	NT NT
SB-24 3/27/2019	0.5 - 2 2 - 4	36.4 26.4	20.1 82.4	3,140 255	NT NT	NT NT
	4 - 6 0 - 0.5	22.5 19.4	150 9.2	299 23.9	NT NT	NT NT
SB-25 3/27/2019	0.5 - 2 2 - 4	2.7	22.9 26.2	69.8 41.6	NT NT	NT NT
	4 - 6 0 - 0.5	6.8 19.5	20.4	56.5 29.8	NT NT	NT NT
SB-26 3/27/2019	0.5 - 2 2 - 4	9.6 1.6	12.6 3.5	15.3 3.4	NT NT	NT NT
SB-27 3/27/2019	0 - 0.5 0.5 - 2	5.5 2.0	7.2 7.3	5.1	NT NT	NT NT
	2 - 4 0 - 0.5	2.3 3.6	7.7	14.4	NT NT	NT NT
SB-28 3/27/2019	0.5 - 2 2 - 4	0.29 (U) 0.71	6.9 4.7	13.7	NT NT	NT NT
	4 - 6 0 - 0.5	4.8 27.5	24.1 NT	85.4 5.8	NT NT	NT NT
SB-29 4/8/2019	0.5 - 2 2 - 4	12.5 2.4	NT NT	116 381	NT NT	NT NT
SB-30 4/8/2019	0 - 0.5 0.5 - 2	2.4 27.7 5.1	NT NT	5.9 78.6	NT NT	NT NT
	2 - 4 0 - 0.5	4.1 6.0	NT NT	26.3 7.4	NT NT	NT NT
SB-31 4/8/2019	0 - 0.5 0.5 - 2 2 - 4	5.1 3.5	NT NT	10.1 25.5	NT NT	NT NT
	4 - 6 0 - 0.5	2.2 7.7	NT NT	96.7 28.2	NT NT	NT NT
SB-32 4/8/2019	0.5 - 2 2 - 4	22.7 10.0	NT NT	5,820 1,020	NT NT	0.17 NT
SB-33 4/8/2019	0 - 0.5 0.5 - 2	0.56 (I) 1.4	NT NT	3.9 3.3	NT NT	NT NT
,, 3/2010	2 - 4 0 - 0.5	16.6 9.2	NT NT	42.0 49.8	NT NT	NT NT
SB-34 4/8/2019	0.5 - 2 2 - 4	52.8 49.3	NT NT	216 7,650	NT NT	NT 0.50
SB-35 4/8/2019	0 - 0.5 0.5 - 2	3.4 7.4	NT NT	6.3 97.7	NT NT	NT NT
4,012018	0.5 - 2 2 - 4 0 - 0.5	10.4 20.4	NT NT	1,720 21.1	NT NT	NT NT
SB-36 4/8/2019	0.5 - 2	12.0 19.1	NT NT	462 106	NT NT NT	NT NT
SB-37 4/8/2019	2 - 4 0 - 0.5 0.5 - 2	19.1 12.0 12.7	NT NT NT	106 10.0 224	NT NT NT	NT NT
	0.5 - 2 2 - 4	75.9	NT NT	1,920	NT NT	NT NT
milligrams per kilograms milligrams per liter Analytical result exceeded the Residential SCTL Analytical result exceeded the Commercial and/or Leachabil R = Soil Cleanup Target Level Residential Exposure Limit C = Soil Cleanup Target Level Commercial/Industrial Exposu L = Soil Cleanup Target Level Leachability Exposure Limit RL = Toxicity Characteristic Leaching Procedure Regulatory I sample not tested for indicated parameter	ility SCTL ure Limit					

TABLE 7 EE&G SOIL BORING ANALYTICAL RESULTS MELREESE GOLF COURSE 1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125 PROJECT No.: 2018-3057

				Sample Designation: Date Collected: Depth (Feet-BLS):	SB-1 3/25/19 3.5 - 4.5	SB-3 3/25/19 0.5 - 2	SB-4 3/25/19 0.5 - 2	SB-9 3/26/19 2 - 4	SB-12 3/26/19 6 - 7
Parameter		Soil Cleanup Target Levels (SCTL	s)	TCLP					
	Residential	Commercial/Industrial	Leachability	Regulatory Level					
Total Metals by 6010 (mg/kg)									
Arsenic	2.1	12	***	NA	NT	6.7	12.0	7.8	152
Barium	120**	130,000	1,600	NA	NT	7.8	48.9	129	4,020
Cadmium	82	1,700	7.5	NA NA	NT	NT NT	NT NT	2.2	18.3
Chromium	210	470	38	NA	NT NT	NI 19.6	NI 145	23.1	78.2 4,510
Lead	400 440	1,400	5.2	NA NA	NT	NT	NT	409 2.1 (U)	63.5 (U)
Selenium Silver	440	11,000 8,200	17	NA NA	NT	NT	NT	1.6	7.3
Total Metals by 7471 (mg/kg)	410	6,200	17	INA	INI	INI	INI	1.0	7.3
Mercury Mercury	3	17	2.1	NA NA	NT	NT	NT	0.34	0.42
TCLP Metals by 1311 (mg/L)		.,	2.1	ING.				0.01	0.12
Arsenic	NA	NA	NA	5.0	NT	NT	NT	NT	0.071 (U)
Lead	NA NA	NA NA	NA NA	5.0	NT	NT	NT	NT	0.34
VOCs by 8260 (mg/kg)	103		100	0.0					
MTBE	4,400	24,000	0.009	NA	NT	NT	NT	0.0030 (U)	NT
Benzene	1.2	1.7	0.007	NA NA	NT	NT	NT	0.0030 (U)	NT
Toluene	7,500	60,000	0.5	NA NA	NT	NT	NT	0.0032 (U)	NT
Ethylbenzene	1,500	9.200	0.6	NA NA	NT	NT	NT	0.0033 (U)	NT
Total Xylenes	130	700	0.2	NA NA	NT	NT	NT	0.0061 (U)	NT
Tetrachloroethene (PCE)	8.8	18	0.03	NA NA	NT	NT	NT	0.011	NT
Trichloroethene (TCE)	6.4	9.3	0.003	NA	NT	NT	NT	0.0033 (U)	NT
Cis-1,2-Dichloroethene	33	180	0.4	NA	NT	NT	NT	0.0030 (U)	NT
Trans-1,2-Dichloroethene	53	290	0.7	NA	NT	NT	NT	0.0036 (U)	NT
Vinyl Chloride	0.2	0.8	0.007	NA	NT	NT	NT	0.0032 (U)	NT
Isopropylbenzene (IPB)	220	1,200	0.2	NA	NT	NT	NT	0.0034 (U)	NT
Acetone	11,000	68,000	25	NA	NT	NT	NT	0.083	NT
Other VOCs Tested		Varies Per Constituent		NA	NT	NT	NT	(U)	NT
PAHs by 8270 (mg/kg)									
Naphthalene	55	300	1.2	NA	0.014 (U)	0.013 (U)	0.013 (U)	0.044 (U)	0.053 (U)
1-Methyl Naphthalene	200	1,800	3.1	NA	0.016 (U)	0.015 (U)	0.015 (U)	0.050 (U)	0.060 (U)
2-Methyl Naphthalene	210	2,100	8.5	NA	0.015 (U)	0.015 (U)	0.014 (U)	0.049 (U)	0.058 (U)
Acenaphthene	2,400	20,000	2	NA	0.014 (U)	0.014 (U)	0.013 (U)	0.044 (U)	0.053 (U)
Acenaphthylene	1,800	20,000	27	NA	0.012 (U) 0.014 (U)	0.012 (U) 0.014 (U)	0.012 (U) 0.013 (U)	0.040 (U)	0.048 (U) 0.054 (U)
Anthracene	21,000	300,000	2,500	NA NA	0.014 (U)	0.014 (U)	0.013 (U) 0.014 (I)	0.045 (U) 0.037 (U)	0.054 (U) 0.044 (U)
Benzo(a)Anthracene	#	# 0.7	0.8	NA NA	0.0098 (U)	0.011 (U)	0.014 (I) 0.012 (I)	0.037 (U)	0.044 (U) 0.038 (U)
Benzo(a)Pyrene	0.1	0.7 #	8	NA NA	0.0098 (U) 0.011 (U)	0.0097 (U) 0.010 (U)	0.012 (I) 0.020 (I)	0.032 (U)	0.038 (U) 0.041 (U)
Benzo(b)Fluoranthene Benzo(ghi)Perylene	# 2,500	52,000	2.4 32,000	NA NA	0.011 (U)	0.0098 (U)	0.0094 (U)	0.032 (U)	0.041 (U)
Benzo(k)Fluoranthene	2,500	52,000	32,000	NA NA	0.010 (U)	0.010 (U)	0.010 (U)	0.032 (U)	0.039 (U) 0.041 (U)
Chrysene	#	#	77	NA NA	0.013 (U)	0.012 (U)	0.013 (I)	0.041 (U)	0.049 (U)
Dibenzo(a,h)Anthracene	#	#	0.7	NA NA	0.0091 (U)	0.0090 (U)	0.0086 (U)	0.029 (U)	0.035 (U)
Fluoranthene	3,200	59,000	1,200	NA NA	0.013 (U)	0.013 (U)	0.017 (I)	0.042 (U)	0.050 (U)
Fluorene	2,600	33.000	160	NA NA	0.014 (U)	0.014 (U)	0.013 (U)	0.046 (U)	0.055 (U)
Indeno(123-cd)Pyrene	#	#	6.6	NA NA	0.0091 (U)	0.0090 (U)	0.0086 (U)	0.029 (U)	0.035 (U)
Phenanthrene	2,200	36,000	250	NA NA	0.013 (U)	0.013 (U)	0.012 (U)	0.042 (U)	0.050 (U)
Pyrene	2,400	45,000	880	NA	0.013 (U)	0.012 (U)	0.016 (I)	0.040 (U)	0.048 (U)
BaP TEF Equivalents	0.1	0.7		NA	0.0	0.0	0.0	0.0	0.0
TPH by FL-PRO (mg/kg)									
TPH, Total	460	2,700	340	NA	NT	NT	NT	222	436
Dioxins/Furans by 8290 (ng/kg)									
Dioxins/Furans, Total	7	30	3,000	NA	75.87	0.72	11.21	7.09	10.40
Chlorinated Pesticides by 8081 (mg/kg)									
Aldrin	0.06	0	0.2	NA	NT	NT	NT	0.00075 (U)	NT
Chlordane (Technical)	2.8	14	9.6	NA	NT	NT	NT	0.28	NT
4,4'-DDE	2.9	15	18	NA	NT	NT	NT	0.012 (I)	NT
4,4'-DDT	2.9	15	11	NA	NT	NT	NT	0.0012 (U)	NT
Dieldrin	0.06	0	0.002	NA	NT	NT	NT	0.0050 (I)	NT
Other Chlorinated Pesticdies Tested		Varies Per Constituent		NA	NT	NT	NT	(U)	NT
Organophosphorous Pesticides by 8141 (mg		Varian Ban Constitute :		N/A	NT	NIT	NIT	(1.0)	NT
All Organophosphorous Pesticides Tested		Varies Per Constituent		NA	NT	NT	NT	(U)	NT
Chlorophenoxy Herbicides by 8151 (mg/kg)	1	Varian Ban Constitute :		N.	NT	NT	NT	(U)	NT
All Chlorophenoxy Herbicides Tested		Varies Per Constituent		NA	INI	INI	INI	(0)	INI

Notes:

Notes:

mg/kg = milligrams per kilograms
mg/Lg = milligrams per liter
mg/kg = nanograms per kilograms
TGLP = Toxicity Characteristic Leaching Procedure
Bold = Analytical result exceeded the Residential SCTL
Bold = Analytical result exceeded the Commercial and/or Leachability SCTL

Bola = Analytical result exceeded the Commercial and/or Leachability SCI L

U = Results below the laboratory method detection limits

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit

NT = Sample not tested for indicated parameter

** = Direct exposure value based on acute toxicity considerations
*** = Leachability determined via SPLP analysis

= Must be converted to benzo(a)pyrene equivalent

Benzo(a)pyrene Conversion Table

Benzo(a)pyrene Conversion Table

For Direct Exposure Soil Cleanup Target Levels

Instructions can be found below the table

Facility/Site Name:	Melreese Golf Course
Site Location:	1802 NW 37th Avenue, Miami, FL 33125
Facility/Site ID No.:	

SCTL Type	Value	Units
Residential Direct Exposure SCTL	0.1	mg/kg
Industrial Direct Exposure SCTL	0.7	mg/kg
Alternative SCTL (Optional)		mg/kg
Site Specific Background (Optional)		mg/kg

	Soil Sample #	SB-1	SB-3	SB-4	SB-9	SB-12					
	Sample Date	3/25/2019	3/25/2019	3/25/2019	3/26/2019	3/26/2019					
	Sample Location:										
	Depth (ft):	3.5 - 4.5	0.5 - 2.0	0.5 - 2.0	2.0 - 4.0	6.0 - 7.0					
	_ 0 ().	0.0 1.0	0.0 2.0		ontaminant Con						
Contaminant	TEF	SB-1 (mg/kg)	SB-3 (mg/kg)	SB-4 (mg/kg)	SB-9 (mg/kg)	SB-12 (mg/kg)					
Benzo(a)pyrene	1.0	0.0049	0.00485	0.012	0.016	0.019					
Benzo(a)anthracene	0.1	0.0055	0.0055	0.014	0.0185	0.022					
Benzo(b)fluoranthene	0.1	0.0055	0.005	0.02	0.017	0.0205					
Benzo(k)fluoranthene	0.01	0.0055	0.005	0.005	0.017	0.0205					
Chrysene	0.001	0.0065	0.006	0.013	0.0205	0.0245					
Dibenz(a,h)anthracene	1.0	0.00455	0.0045	0.0043	0.0145	0.0175					
Indeno(1,2,3-cd)pyrene	0.1	0.00455	0.0045	0.0043	0.0145	0.0175					
				E	Benzo(a)pyrene E	quivalents					
Contaminant	TEF	SB-1 (mg/kg)	SB-3 (mg/kg)	SB-4 (mg/kg)	SB-9 (mg/kg)	SB-12 (mg/kg)					
Benzo(a)pyrene	1.0	0.0049	0.0049	0.0120	0.0160	0.0190	0.0000	0.0000	0.0000	0.0000	0.0000
Benzo(a)anthracene	0.1	0.0006	0.0006	0.0014	0.0019	0.0022	0.0000	0.0000	0.0000	0.0000	0.0000
Benzo(b)fluoranthene	0.1	0.0006	0.0005	0.0020	0.0017	0.0021	0.0000	0.0000	0.0000	0.0000	0.0000
Benzo(k)fluoranthene	0.01	0.0001	0.0001	0.0001	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
Chrysene	0.001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Dibenz(a,h)anthracene	1.0	0.0046	0.0045	0.0043	0.0145	0.0175	0.0000	0.0000	0.0000	0.0000	0.0000
Indeno(1,2,3-cd)pyrene	0.1	0.0005	0.0005	0.0004	0.0015	0.0018	0.0000	0.0000	0.0000	0.0000	0.0000
					Total Equiva	lents					
Total Benzo(a)pyrene I	Equivalents	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
					Comparisons to	o SCTLs					
Does This Sample	Exceed:	SB-1 (mg/kg)	SB-3 (mg/kg)	SB-4 (mg/kg)	SB-9 (mg/kg)	SB-12 (mg/kg)					
The Residential Direct Exp 0.1 mg/kg?		ок	ок	ок	ок	ок	ок	ок	ок	ок	ок
The Industrial Direct Expo 0.7 mg/kg?		ок	ок	ок	ок	ок	ок	ок	ок	ок	ок
No Alternative SCT	L Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
No Site Specific Backg	round Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

TABLE 9 EE SOIL BORING DIOXIN ANALYTICAL RESULTS MELREESE GOLF COURSE 1802 NW 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

PROJECT No.: 2018-3057

Congener	TEF	SB-1 (3.5'-4.5')	Converted Results*	SB-3 (0.5'-2.0')	Converted Results*	SB-4 (0.5'-2.0')	Converted Results*	SB-9 (2.0'-4.0')	Converted Results*	SB-12 (6.0'-7.0')	Converted Results*
2,3,7,8-TCDD	1	3.5	3.5	0.25	0.25	1.4	1.4	0.91	0.91	0.98	0.98
1,2,3,7,8-PeCDD	1	12.00	12	0.21	0.205	3.1	3.1	0.33	0.325	2.70	2.7
1,2,3,4,7,8-HxCDD	0.1	5.50	0.55	0.25	0.0245	2.8	0.28	1.90	0.19	3.00	0.3
1,2,3,6,7,8-HxCDD	0.1	250.00	25	0.25	0.025	11	1.1	9.10	0.91	11.00	1.1
1,2,3,7,8,9-HxCDD	0.1	120.00	12	0.38	0.038	8	0.78	5.80	0.58	8.10	0.81
1,2,3,4,6,7,8-HpCDD	0.01	1200.00	12	3.80	0.038	280	2.8	240	2.4	260	2.6
OCDD	0.0001	6800.00	0.68	20.00	0.002	1900	0.19	1800	0.18	2100	0.21
2,3,7,8-TCDF	0.1	4.20	0.42	0.17	0.017	2.2	0.22	1.50	0.15	2.50	0.25
1,2,3,7,8-PeCDF	0.05	3.00	0.15	0.17	0.00825	0.94	0.047	0.32	0.016	0.22	0.011
2,3,4,7,8-PeCDF	0.5	9.50	4.75	0.09	0.0425	1.6	0.8	1.90	0.95	1.90	0.95
1,2,3,4,7,8-HxCDF	0.1	19.00	1.9	0.18	0.0175	1.40	0.14	0.81	0.081	0.82	0.082
1,2,3,6,7,8-HxCDF	0.1	5.90	0.59	0.17	0.0165	0.9	0.089	1.50	0.15	2.00	0.2
2,3,4,6,7,8-HxCDF	0.1	7.90	0.79	0.12	0.0115	1.1	0.11	1.30	0.13	1.10	0.11
1,2,3,7,8,9-HxCDF	0.1	2.70	0.27	0.13	0.013	0.31	0.031	0.17	0.0165	0.10	0.0095
1,2,3,4,6,7,8-HpCDF	0.01	110.00	1.1	0.80	0.008	11	0.11	10.00	0.1	8.00	0.08
1,2,3,4,7,8,9-HpCDF	0.01	15.00	0.15	0.16	0.0016	0.980	0.0098	0.17	0.0017	0.94	0.0094
OCDF	0.0001	210.00	0.021	0.33	0.000033	28	0.0028	23.00	0.0023	16.00	0.0016
Sum Total Concentration	of Weighted Dioxin/Furan	Congeners =	75.87		0.72		11.21		7.09	·	10.40

SCTL-R = 7 ng/kg SCTL-C = 30 ng/kg

SCTL-L = 3,000 ng/kg

All values given in nanograms per kilogram (ng/kg)

* Compounds that were below laboratory method dectection limits were reported at 1/2 of the method detection limit concentration for assessment of the TEQ.

SCTL-R = Residential Soil Cleanup Target Level

SCTL-C = Commercial/Industrial Soil Cleanup Target Level

SCTL-L = Leachability Soil Cleanup Target Level

Bold = Analytical result exceeded the Residential SCTL

Bold = Analytical result exceeded the Commercial and/or Leachability SCTL

TCLP ARSENIC & LEAD RESULTS MELREESE GOLF COURSE

1802 NW 37TH AVENUE

MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

PROJECT No.: 2018-3057

		Parameter:	Lead (mg/kg)	TCLP-Lead (mg/L)
		SCTL-R	400	NA
		SCTL-C	1,400	NA
		TCLP-RL	NA	5.0
Soil Boring	Date	Depth (Feet-BLS)		
SB-4	3/25/2019	0 - 0.5	212	0.046 (U)
36-4	3/23/2019	2 - 4	2,410	0.29
SB-7	3/26/2019	0.5 - 2	1,560	0.12
36-7	3/20/2019	2 - 4	3,090	0.13
SB-12	3/26/2019	6 - 7	4,510	0.34
SB-32	4/8/2019	0.5 - 2	5,820	0.17
SB-34	4/8/2019	2 - 4	7,650	0.50
Test Excavation	Date	Depth (Feet-BLS)		
TE-1	3/12/2019	1 - 2	105	0.046 (U)
TE-4	3/12/2019	2 - 4	181	0.046 (U)
TE-9	3/18/2019	2 - 4	361	0.046 (U)
TE-13	3/13/2019	2 - 4	202	0.046 (U)
TE-14	3/18/2019	0 - 2	120	0.046 (U)

		Parameter:	Arsenic (mg/kg)	TCLP-Arsenic (mg/L)
		SCTL-R	2.1	NA
		SCTL-C	12	NA
		TCLP-RL	NA	5.0
Soil Boring	Date	Depth (Feet-BLS)		
SB-4	3/25/2019	0 - 0.5	156	0.071 (U)
SB-7	3/26/2019	0.5 - 2	275	0.15
SB-12	3/26/2019	6 - 7	152	0.071 (U)

Notes:

mg/kg = milligrams per kilograms

mg/L = milligrams per liter

Bold = Analytical result exceeded the Residential SCTL

Bold = Analytical result exceeded the Commercial and/or Leachability SCTL

SCTL-R = Soil Cleanup Target Level Residential Exposure Limit

SCTL-C = Soil Cleanup Target Level Commercial/Industrial Exposure Limit

SCTL-L = Soil Cleanup Target Level Leachability Exposure Limit

TCLP-RL = Toxicity Characteristic Leaching Procedure Regulatory Level

NT = Sample not tested for indicated parameter

NA = Not Applicable

U = Results below the laboratory method detection limits

I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit

** = Direct exposure value based on acute toxicity considerations

^{*** =} Leachability determined via SPLP analysis

TABLE 11 GROUNDWATER ANALYTICAL RESULTS MELREESE GOLF COURSE 1802 NORTHWEST 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

		Sample Designation:	MW-1	M	N-2	MW-3	MW-4	M	W-5	MW-6	MW-7	MW-8	М	W-9	MW-10	MW-11	MW-12
I.	1	Date Sampled:	3/26/2019	3/26/2019	4/8/2019	3/26/2019	3/26/2019	3/26/2019	4/8/2019	3/27/2019	3/27/2019	3/27/2019	3/26/2019	4/8/2019	4/9/2019	4/9/2019	4/9/2019
Parameter	Groundwater Cleanup Target Levels ¹	Natural Attenuation Default Source Concentrations ¹															
Total Metals by 6010 (ug/L)																	
Arsenic	10	100	7.1 (U)	13.2	20.9	7.4 (I)	7.1 (U)	7.1 (U)		7.1 (U)	7.1 (U)	7.1 (U)	7.1 (U)		9.5 (I)	7.1 (U)	7.1 (U)
Barium Lead	2,000 15	20,000 150	46.5 4.6 (U)	21.9 4.6 (U)		21.8 4.6 (U)	61.7 4.6 (U)	187 9.0 (I)		13.3 4.6 (U)	174 6.9 (I)	88.3 4.6 (U)	95.1 4.6 (U)		4.6 (U)	4.6 (U)	4.6 (U)
Aluminum	200	2,000	4.0 (0)	4.6 (0)		4.0 (0)	4.0 (0)	9.0 (1)		4.6 (0)	0.9 (1)	4.0 (0)	4.6 (0)		4.6 (0)	4.0 (0)	4.6 (0)
Iron	300	3,000	333	1,010	1,600	785	530	3,420	2,560	87.6	884	793	4,030	1,750	1,060	842	427
Cadmium	5	50		,	,			,	,,,,,,						,		
Chromium	100	1,000															
Silver	100	1,000															
Selenium	50	500															
Total Metals by 7470 (ug/L) Mercury	2	20															
Organochlorine Pesticides by 8081 (μg/L)		20															
Dieldrin	0.002	0.20	0.0019 (U)	0.0019 (U)		0.0019 (U)	0.0020 (U)	0.0019 (U)		0.0019 (U)	0.0019 (U)	0.0019 (U)	0.0019 (U)				
Endosulfan I	42	420	0.0049 (U)	0.0049 (U)		0.0049 (U)	0.0052 (U)	0.0049 (U)		0.0049 (U)	0.0049 (U)	0.0049 (U)	0.0049 (U)				
Heptachlor epoxide	*	***	0.052	0.052		0.053	0.055	0.088		0.0050 (U)	0.0050 (U)	0.0050 (U)	0.063				
Other Chlorinated Pesticides Tested	Varies	Per Constituent	(U)	(U)		(U)	(U)	(U)		(U)	(U)	(U)	(U)				
Organophosphorus Pesticides by 8141 (μg/L)																	
Diazinon	6.3	63											0.377 (U)				
Disulfoton Phorate	0.3 1.4	3 14											0.277 (U) 0.282 (U)				
Phorate Other Chlorinated Pesticides Tested		Per Constituent											(J and/or U)				
Chlorophenoxy Herbicides by 8151 (µg/L)	valles												(0 00/0/ 0)				
2,4-D	70	700											0.744 (U)				
Dalapon	200	2,000											1.04 (U)				
2,4-DB	56	560											0.775 (U)				
Dicamba	210	2,100											0.813 (U)				
Dichloroprop	35	350											0.778 (U)				
Dinoseb	7	70											0.795 (U)				
MCPA MCPP	3.5	35 70											13.1 (U) 7.15 (J U)				
2,4,5-T	70	700											0.843 (U)				
2,4,5-TP	50	500											0.845 (U)				
VOCs by 8260 (μg/L)	-																
MTBE	20	200											0.58 (I)				
Benzene	1	100											0.30 (U)				
Toluene	40	400											0.33 (U)				
Ethylbenzene	30	300											0.30 (U)				
Total Xylenes	20	200											2.1 (U) 0.38 (U)				
Tetrachloroethene (PCE) Trichloroethene (TCE)	3	300 300											0.36 (U)				
Cis-1,2-Dichloroethene	70	700											0.27 (U)				
Trans-1,2-Dichloroethene	70	700											0.23 (U)				
Vinyl Chloride	1	100											0.39 (U)				
Isopropylbenzene (IPB)	0.8	8											0.30 (U)				
Acetone	6,300	63,000											14.2 (I)				
1,2,4-Trimethylbenzene	10	100											0.24 (U)				
1,3,5-Trimethylbenzene Other VOCs Tested	10	100 Per Constituent											0.24 (U)				
PAHs by 8270 (µg/L)	varies	Per Constituent											(U)				
Naphthalene	14	140											0.29 (U)				
1-Methyl Naphthalene	28	280											0.19 (U)				
2-Methyl Naphthalene	28	280											0.68 (U)				
Acenaphthene	20	200											0.040 (U)				
Acenaphthylene	210	2,100											0.030 (U)				
Anthracene	2,100	21,000											0.043 (U)				
Benzo(a)Anthracene	0.05	5											0.055 (U)				
Benzo(a)Pyrene Benzo(b)Fluoranthene	0.2 0.05	20 5											0.12 (U) 0.027 (U)				
Benzo(ghi)Perylene	210	2,100											0.027 (U) 0.15 (U)				
Benzo(k)Fluoranthene	0.5	50											0.15 (U)				
Chrysene	4.8	480											0.026 (U)				
Dibenz(a,h)Anthracene	0.005	0.5											0.13 (U)				
Fluoranthene	280	2,800											0.018 (U)				
Fluorene	280	2,800											0.088 (U)				
Indeno(123-cd)Pyrene	0.05	5											0.12 (U)				
Phenanthrene Pyrene	210 210	2,100 2,100											0.16 (U) 0.032 (U)				
TPH by FL-PRO (mg/L)	∠10	2,100											0.032 (U)				
TPH by FL-PRO (mg/L) TPH, Total (C8-C40)	5,000	50,000											0.88 (U)				
Ammonia (as N) by 350.1 (mg/L)	0,000	50,000											0.00 (0)				
Nitrogen	2.8	28				0.47	0.64	3.0					9.3				
Nitrates/Nitrites by 300.0 (mg/L)																	
Nitrate as N	10,000	100,000															
Nitrite as N Dioxins/Furans by 8290 (pg/L)	1,000	10,000															
		i e	i	1	1	1	1	I	1	1	1	1	i .	1	1	1	1

- Notes:

 '= Groundwater cleanup target levels as established in Chapter 62-777 of the Florida Administrative Code (F.A.C.).

 *= As provided in Chapter 62-520, F.A.C.

 **** = Groundwater criteria as provided in Chapter 62-520, F.A.C., multiplied by 100X.

 µg/L = micrograms per liter

 µg/L = milligrams per liter

 pg/L = picograms per liter

 pg/L = picograms per liter

 VOCs = Volatile Organic Compounds

 PAHs = Polynuclear Aromatic Hydrocarbons

 TPH = Total Petroleum Hydrocarbon

 Bold = Value exceeds GCTL

 Bold = Value exceeds NADSC

 (U) = Analytical resulted below the laboratory Method Detection Limit.

 (I) = Analytical resulted between the laboratory Method Detection Limit.

 (J) = Analytical resulted between the laboratory Method Detection Limit and Practical Quantitation Limit.

 (J) = Analytical resulted outside laboratory established criteria.

 Shaded cell indicates parameter was not tested.

TABLE 11 GROUNDWATER ANALYTICAL RESULTS MELREESE GOLF COURSE 1802 NORTHWEST 37TH AVENUE MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

		Sample Designation:	MW	V-31	l MV	<i>I</i> -38	MW-39	MW-42	l mv	1-44	SCS-	MW-1	SCS-M\	W-2	GW-1
		Date Sampled:	3/4/2019 3/27/2019		3/26/2019	4/8/2019	3/4/2019	3/4/2019	3/4/2019	3/27/2019	3/4/2019	3/27/2019	3/4/2019	3/11/2019	3/26/2019
Porot	Groundwater Cleanup	Natural Attenuation Default													
Parameter	Target Levels 1	Source Concentrations 1													
Total Metals by 6010 (ug/L)															
Arsenic	10	100	92.0	85.2	7.1 (U)		7.1 (U)	7.1 (U)	7.1 (U)		7.1 (U)		7.1 (U)		
Barium	2,000	20,000	16.6		75.3		11.5	20.8	51.2		41.4		23.0		
Lead Aluminum	15 200	150 2,000	4.6 (U) 30.7 (U)		4.6 (U)		4.6 (U) 30.7 (U)	4.6 (U) 30.7 (U)	4.6 (U) 30.7 (U)		4.6 (U) 30.7 (U)		4.6 (U) 30.7 (U)		
Iron	300	3,000	2,820	2,430	3,830	2,000	369	621	766	795	1,350	2.950	208		
Cadmium	5	50	0.33 (U)	2,430	3,030	2,000	0.33 (U)	0.33 (U)	0.33 (U)	133	0.33 (U)	2,330	0.33 (U)		
Chromium	100	1,000	1.7 (U)				1.7 (U)	1.7 (U)	1.7 (U)		1.7 (U)		1.7 (U)		
Silver	100	1,000	1.0 (U)				1.0 (U)	1.0 (U)	1.0 (U)		1.0 (U)		1.0 (U)		
Selenium	50	500	8.5 (U)				8.5 (U)	8.5 (U)	8.5 (U)		8.5 (U)		8.5 (U)		
Total Metals by 7470 (ug/L)															
Mercury	2	20	0.10 (U)				0.10 (U)	0.10 (U)	0.10 (U)		0.10 (U)		0.10 (U)		
Organochlorine Pesticides by 8081 (µg/L)			0.0000 (1)	0.0040 (11)	0.0040 (11)		0.0040 (11)	0.0040 (11)	0.0040 (11)	0.0040 (11)	0.0000 (1)	0.0040 (U)	0.0040 (11)		
Dieldrin	0.002	0.20	0.0023 (I) 0.0049 (U)	0.0019 (U) 0.0049 (U)	0.0019 (U) 0.0049 (U)		0.0019 (U) 0.0049 (U)	0.0019 (U) 0.0049 (U)	0.0019 (U) 0.0049 (U)	0.0019 (U) 0.0049 (U)	0.0032 (I) 0.0049 (U)	0.0019 (U) 0.0049 (U)	0.0019 (U) 0.014		
Endosulfan I Heptachlor epoxide	42	420	0.0049 (U)	0.0049 (U)	0.0049 (0)		0.0050 (U)	0.0049 (U)	0.0049 (U)	0.0049 (U) 0.0050 (U)	0.0049 (U) 0.0050 (U)	0.0049 (U) 0.0050 (U)	0.0050 (U)		
Other Chlorinated Pesticides Tested	Varies	Per Constituent	(U)	(U)	(U)		(U)	(U)	(U)	(U)	(U)	(U)	(U)		
Organophosphorus Pesticides by 8141 (µg/L)	Valled	or conductorn	(0)	(0)	(3)		(0)	(3)	(0)	(0)	(0)	(0)	(6)		
Diazinon	6.3	63	0.377 (U)				0.377 (U)	0.377 (U)	0.377 (U)		0.377 (U)			0.377 (U)	
Disulfoton	0.3	3	0.277 (U)				0.277 (U)	0.277 (U)	0.277 (U)		0.277 (U)			0.277 (U)	
Phorate	1.4	14	0.282 (U)				0.282 (U)	0.282 (U)	0.282 (U)		0.282 (U)			0.282 (U)	
Other Chlorinated Pesticides Tested	Varies	Per Constituent	(J and/or U)				(J and/or U)	(J and/or U)	(J and/or U)		(J and/or U)			(U)	
Chlorophenoxy Herbicides by 8151 (µg/L)			0.744.00				0.744 (11)	0.744.00	0.744 (11)		0.744 (11)		0.744 (1)		
2,4-D	70	700	0.744 (U)				0.744 (U)	0.744 (U)	0.744 (U)		0.744 (U)		0.744 (U)		
Dalapon	200	2,000	1.04 (U)				1.04 (U)	1.04 (U)	1.04 (U)		1.04 (U)		1.04 (U)		
2,4-DB Dicamba	56 210	560 2,100	0.775 (U) 0.813 (U)				0.775 (U) 0.813 (U)	0.775 (U) 0.813 (U)	0.775 (U) 0.813 (U)		0.775 (U) 0.813 (U)		0.775 (U) 0.813 (U)		
Dicamba Dichloroprop	35	2,100 350	0.813 (U) 0.778 (U)				0.813 (U) 0.778 (U)	0.813 (U) 0.778 (U)	0.813 (U) 0.778 (U)		0.813 (U) 0.778 (U)		0.813 (U) 0.778 (U)		
Dinoseb	7	70	0.795 (U)				0.795 (U)	0.795 (U)	0.795 (U)		0.795 (U)		0.795 (U)		
MCPA	3.5	35	13.1 (J U)				13.1 (J U)	13.1 (J U)	13.1 (J U)		13.1 (J U)		13.1 (J U)		
MCPP	7	70	7.15 (U)				7.15 (U)	7.15 (U)	7.15 (U)		7.15 (U)		7.15 (U)		
2,4,5-T	70	700	0.843 (U)				0.843 (U)	0.843 (U)	0.843 (U)		0.843 (U)		0.843 (U)		
2,4,5-TP	50	500	0.845 (U)				0.845 (U)	0.845 (U)	0.845 (U)		0.845 (U)		0.845 (U)		
VOCs by 8260 (μg/L)															
MTBE	20	200	0.51 (U)				0.51 (U)	0.51 (U)	0.51 (U)		0.51 (U)		0.51 (U)		2.4
Benzene	1	100	0.30 (U)				0.30 (U)	0.30 (U)	0.30 (U)		0.30 (U)		0.30 (U)		0.30 (U)
Toluene	40 30	400 300	0.33 (U) 0.30 (U)				0.33 (U) 0.30 (U)	0.33 (U) 0.30 (U)	0.33 (U) 0.30 (U)		0.33 (U) 0.30 (U)		0.33 (U) 0.30 (U)		0.41 (I) 0.30 (U)
Ethylbenzene Total Xylenes	20	200	2.1 (U)				2.1 (U)	2.1 (U)	2.1 (U)		2.1 (U)		2.1 (U)		2.1 (U)
Tetrachloroethene (PCE)	3	300	0.38 (U)				0.38 (U)	0.38 (U)	0.38 (U)		0.38 (U)		0.38 (U)		0.38 (U)
Trichloroethene (TCE)	3	300	0.36 (U)				0.36 (U)	0.36 (U)	0.36 (U)		0.36 (U)		0.36 (U)		0.36 (U)
Cis-1,2-Dichloroethene	70	700	0.27 (U)				0.27 (U)	0.27 (U)	0.27 (U)		0.27 (U)		0.27 (U)		0.27 (U)
Trans-1,2-Dichloroethene	70	700	0.23 (U)				0.23 (U)	0.23 (U)	0.23 (U)		0.23 (U)		0.23 (U)		0.23 (U)
Vinyl Chloride	1	100	0.39 (U)				0.39 (U)	0.39 (U)	0.39 (U)		0.39 (U)		0.39 (U)		0.39 (U)
Isopropylbenzene (IPB)	0.8	8	0.30 (U)				0.30 (U)	0.30 (U)	0.30 (U)		0.30 (U)		0.30 (U)		0.30 (U)
Acetone	6,300	63,000	5.3 (U)				5.3 (U)	5.3 (U)	5.4 (I)		5.3 (U)		5.3 (U)		6.9 (I)
1,2,4-Trimethylbenzene	10	100	0.24 (U)				0.24 (U)	0.24 (U)	0.24 (U)		0.24 (U)		0.24 (U)		0.24 (U)
1,3,5-Trimethylbenzene Other VOCs Tested	10	100 Per Constituent	0.24 (U) (U)				0.24 (U) (U)	0.24 (U) (U)	0.24 (U) (U)		0.24 (U) (U)		0.24 (U) (U)		0.24 (U) (U)
PAHs by 8270 (μg/L)	Valles	i ei constituerit	(0)				(0)	(0)	(0)		(0)		(0)		(0)
Naphthalene	14	140	0.29 (U)				0.29 (U)	0.29 (U)	0.29 (U)		0.29 (U)		0.29 (U)		0.29 (U)
1-Methyl Naphthalene	28	280	0.19 (U)				0.19 (U)	0.19 (U)	0.19 (U)		0.19 (U)		0.19 (U)		0.19 (U)
2-Methyl Naphthalene	28	280	0.68 (U)				0.68 (U)	0.68 (U)	0.68 (U)		0.68 (U)		0.68 (U)		0.68 (U)
Acenaphthene	20	200	0.040 (U)				0.040 (U)	0.040 (U)	0.040 (U)		0.040 (U)		0.040 (U)		0.040 (U)
Acenaphthylene	210	2,100	0.030 (U)				0.030 (U)	0.030 (U)	0.030 (U)		0.030 (U)		0.030 (U)		0.030 (U)
Anthracene	2,100	21,000	0.043 (U)				0.043 (U)	0.043 (U)	0.043 (U)		0.043 (U)		0.043 (U)		0.043 (U)
Benzo(a)Anthracene	0.05	5	0.055 (U)				0.055 (U)	0.055 (U)	0.055 (U)		0.055 (U)		0.055 (U)		0.055 (U)
Benzo(a)Pyrene	0.2	20	0.12 (U)				0.12 (U)	0.12 (U)	0.12 (U)		0.12 (U)		0.12 (U)		0.12 (U)
Benzo(b)Fluoranthene Benzo(ghi)Perylene	0.05 210	5 2.100	0.027 (U) 0.15 (U)				0.027 (U) 0.15 (U)	0.027 (U) 0.15 (U)	0.027 (U) 0.15 (U)		0.027 (U) 0.15 (U)		0.027 (U) 0.15 (U)		0.027 (U) 0.15 (U)
Benzo(k)Fluoranthene	0.5	2,100	0.15 (U) 0.16 (U)				0.15 (U) 0.16 (U)	0.15 (U) 0.16 (U)	0.15 (U) 0.16 (U)		0.15 (U) 0.16 (U)		0.15 (U) 0.16 (U)		0.15 (U) 0.16 (U)
Chrysene	4.8	480	0.026 (U)				0.026 (U)	0.026 (U)	0.16 (U)		0.026 (U)		0.026 (U)		0.026 (U)
Dibenz(a,h)Anthracene	0.005	0.5	0.13 (U)				0.13 (U)	0.13 (U)	0.13 (U)		0.13 (U)		0.13 (U)		0.13 (U)
Fluoranthene	280	2,800	0.018 (U)				0.018 (U)	0.018 (U)	0.018 (U)		0.018 (U)		0.018 (U)		0.018 (U)
Fluorene	280	2,800	0.088 (U)				0.088 (U)	0.088 (U)	0.088 (U)		0.088 (U)		0.088 (U)		0.088 (U)
Indeno(123-cd)Pyrene	0.05	5	0.12 (U)				0.12 (U)	0.12 (U)	0.12 (U)		0.12 (U)		0.12 (U)		0.12 (U)
Phenanthrene	210	2,100	0.16 (U)				0.16 (U)	0.16 (U)	0.16 (U)		0.16 (U)		0.16 (U)		0.16 (U)
Pyrene	210	2,100	0.032 (U)				0.032 (U)	0.032 (U)	0.032 (U)		0.032 (U)		0.032 (U)		0.032 (U)
TPH by FL-PRO (mg/L) TPH, Total (C8-C40)	5,000	50,000	0.77 (U)				0.79 (U)	0.77 (U)	0.78 (U)		0.77 (U)		0.76 (U)		0.79 (U)
	5,000	50,000	U.11 (U)				U./9 (U)	U.11 (U)	U./6 (U)		U.11 (U)		U./6 (U)		U.19 (U)
Ammonia (as N) by 350.1 (mg/L) Nitrogen	2.8	28	0.58				0.67	0.69	3.5		0.23		1.1		
Nitrates/Nitrites by 300.0 (mg/L)			0.50				5.07	0.00			5.20				
Nitrate as N	10,000	100,000	0.025 (U)				0.025 (U)	0.025 (U)	0.025 (U)		0.025 (U)		0.025 (U)		
Nitrite as N	1,000	10,000	0.025 (U)				0.025 (U)	0.025 (U)	0.025 (U)		0.025 (U)		0.025 (U)		
Dioxins/Furans by 8290 (pg/L)							` ′	` ′	` '		, ,		,		
Dioxins/Furans, Total	30	3,000	2.87				2.84	3.71	3.32		2.89		3.65		

- Notes:

 1 = Groundwater cleanup target levels as established in Chapter 62-777 of the Florida Administrative Code (F.A.C.

 ** = As provided in Chapter 62-520, F.A.C.

 *** = Groundwater criteria as provided in Chapter 62-520, F.A.C., multiplied by 100X.

 µg/L = micrograms per liter

 µg/L = milligrams per liter

 µg/L = picograms per liter

 pg/L = picograms per liter

 yCCs = Volatile Organic Compounds

 PAHs = Polynuclear Aromatic Hydrocarbons

 TPH = Total Petroleum Hydrocarbon

 Bold = Value exceeds GCTL

 Bold = Value exceeds NADSC

 (U) = Analytical resulted below the laboratory Method Detection Limit.

 (I) = Analytical resulted between the laboratory Method Detection Limit and Practical Quantitation Limit.

 (J) = Analytical resulted between the laboratory wethod Detection Limit and Practical Quantitation Limit.

 Shaded cell indicates parameter was not tested.

TABLE 12 GROUNDWATER DIOXIN-FURAN ANALYTICAL RESULTS

MELREESE GOLF COURSE 1802 NW 37TH AVENUE

MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125 PROJECT No: 2018-3057

		M۱	N-3	MV	N-4	MW	V-31	MW	/ -39	MW	I-42	MV	V-44	SCS-	MW-1	SCS-	MW-2
	Date Sampled	3/26	/2019	3/26/	/2019	3/4/2	2019	3/4/	2019	3/4/	2019	3/4/	2019	3/4/	2019	3/4/2	2019
Compound	TEF	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ
2,3,7,8-TCDD	1	1.3 (U)	0.65	1.3 (U)	0.65	1.7 (U)	0.85	1.8 (U)	0.9	2.5 (U)	1.25	2.3 (U)	1.15	2.0 (U)	1.0	2.5 (U)	1.25
1,2,3,7,8-PeCDD	1	3.4 (U)	1.7	3.2 (U)	1.6	1.7 (U)	0.85	1.4 (U)	0.7	1.9 (U)	0.95	1.9 (U)	0.95	1.6 (U)	0.8	2.1 (U)	1.05
1,2,3,4,7,8-HxCDD	0.1	0.76 (U)	0.038	1.2 (U)	0.06	2.4 (U)	0.12	2.5 (U)	0.125	3.5 (U)	0.175	2.8 (U)	0.14	1.7 (U)	0.085	3.0 (U)	0.15
1,2,3,6,7,8-HxCDD	0.1	2.1 (U)	0.105	1.9 (U)	0.095	2.4 (U)	0.12	2.7 (U)	0.135	4.4 (U)	0.22	3.0 (U)	0.15	2.1 (U)	0.105	2.4 (U)	0.12
1,2,3,7,8,9-HxCDD	0.1	1.4 (U)	0.07	1.9 (U)	0.095	2.7 (U)	0.135	2.9 (U)	0.145	2.4 (U)	0.12	2.5 (U)	0.125	2.1 (U)	0.105	2.8 (U)	0.14
1,2,3,4,6,7,8-HpCDD	0.01	1.6	0.016	1.4 (U)	0.007	4.9 (U)	0.0245	3.1 (U)	0.0155	4.5 (U)	0.0225	3.6 (U)	0.018	3.7 (U)	0.0185	4.6 (U)	0.023
OCDD	0.0001	5.4	0.00054	8.2	0.00082	13 (U)	0.00065	12 (U)	0.0006	17 (U)	0.00085	13 (U)	0.00065	11 (U)	0.00055	12 (U)	0.0006
2,3,7,8-TCDF	0.1	0.91 (U)	0.0455	1.4 (U)	0.07	1.2 (U)	0.06	1.3 (U)	0.065	1.7 (U)	0.085	1.1 (U)	0.055	1.3 (U)	0.065	1.5 (U)	0.075
1,2,3,7,8-PeCDF	0.05	1.8 (U)	0.045	1.7 (U)	0.0425	1.7 (U)	0.0425	1.8 (U)	0.045	1.8 (U)	0.045	1.5 (U)	0.0375	1.4 (U)	0.035	1.8 (U)	0.045
2,3,4,7,8-PeCDF	0.5	1.5 (U)	0.375	1.7	0.85	1.2 (U)	0.3	0.89 (U)	0.2225	1.3 (U)	0.325	1.1 (U)	0.275	1.0 (U)	0.25	1.2 (U)	0.3
1,2,3,4,7,8-HxCDF	0.1	2.4	0.24	0.70 (U)	0.035	1.7 (U)	0.085	1.9 (U)	0.095	2.2 (U)	0.11	2.0 (U)	0.1	2.3 (U)	0.115	2.2 (U)	0.11
1,2,3,6,7,8-HxCDF	0.1	1.4 (U)	0.07	0.98 (U)	0.049	1.5 (U)	0.075	2.1 (U)	0.105	2.0 (U)	0.1	1.8 (U)	0.09	1.8 (U)	0.09	1.8 (U)	0.09
2,3,4,6,7,8-HxCDF	0.1	0.66 (U)	0.033	0.95 (U)	0.0475	1.2 (U)	0.06	2.1 (U)	0.105	2.0 (U)	0.1	1.6 (U)	0.08	1.5 (U)	0.075	2.0 (U)	0.1
1,2,3,7,8,9-HxCDF	0.1	0.53 (U)	0.0265	1.4 (U)	0.07	2.0 (U)	0.1	2.6 (U)	0.13	2.9 (U)	0.145	2.1 (U)	0.105	2.1 (U)	0.105	2.6 (U)	0.13
1,2,3,4,6,7,8-HpCDF	0.01	1.8 (U)	0.009	1.2 (U)	0.006	3.5 (U)	0.0175	3.6 (U)	0.018	5.2 (U)	0.026	3.5 (U)	0.0175	3.2 (U)	0.016	5.1 (U)	0.0255
1,2,3,4,7,8,9-HpCDF	0.01	2.4 (U)	0.012	1.4 (U)	0.007	6.6 (U)	0.033	6.1 (U)	0.0305	7.7 (U)	0.0385	5.6 (U)	0.028	5.1 (U)	0.0255	7.2 (U)	0.036
OCDF	0.0001	3.5 (U)	0.000175	3.0 (U)	0.00015	13 (U)	0.00065	11 (U)	0.00055	15 (U)	0.00075	11 (U)	0.00055	11 (U)	0.00055	14 (U)	0.0007
Total Concentration of	Dioxin/Furan C	ongeners :	3.44		3.68		2.87		2.84		3.71		3.32		2.89		3.65
GCTL = 30																	
NADSC = 3,000																	

Notes:

All results reported in picograms per liter (pg/L)

Groundwater Cleanup Target Levels (GCTLs) Regulated Under Chapter 62-777, FAC.

* Compounds that were below laboratory method detection limits were reported as 1/2 of the method detection limit concentration for assessment of the TEQ.

TEF = Toxicity Equivalent Factor

TEQ = Toxicity Equivalent Quotient

GCTL = Groundwater Cleanup Target Level

NADSC = Natural Attenuation Default Source Concentration

U = Below Estimated Detection Limit

TABLE 13 WELL DETAIL AND GROUNDWATER ELEVATIONS MELREESE GOLF COURSE 1802 NW 37TH AVENUE

MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125 PROJECT No.: 2018-3057

Well Number	SCS-	MW-1	SCS-	MW-2	MV	V-31	MV	V-38	MV	V-39	MW	<i>I</i> -42
Well Depth	11	.77	11	.86	1:	2.6	12	.38	11	1.6	12	.13
Screen Interval	1.77 to	11.77	1.86 to	11.86	2.6 to	o 12.6	2.38 to	12.38	1.6 to	o 11.6	2.13 to	12.13
TOC	-0.	.35	-0).3	-(0.5	-0	.37	-().3	-0	.15
Date	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV
03/04/19	4.15		3.92		4.08		NM		3.51		4.97	
03/26/19	NM		NM		NM		4.40		NM		NM	
03/27/19	4.00		NM		3.85		NM		NM		NM	
04/08/19	NM		NM		NM		3.71		NM		NM	
04/09/19	3.76		3.44		3.53		3.72		3.02		3.50	

Well Number	MW	<i>I</i> -44	MV	V-1	M'	W-2	MV	N-3	MV	N-4	MV	V-5
Well Depth	11	.88	1	3	14	1.69	12	87	12	89	13	.05
Screen Interval	1.88 to	11.88	3 to	13	4.69 t	o 14.69	2.87 to	o 12.87	2.89 to	12.89	3.05 to	13.05
TOC	-0).2	-0	0.3	-0	.28	-0	.27	-0	.29	-0	.35
Date	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV
03/04/19	4.01		NM		NM		NM		NM		NM	
03/26/19	NM		4.70		6.66		4.58		4.46		4.50	
03/27/19	4.00		NM		NM		NM		NM		NM	
04/08/19	NM		NM		6.40		NM		NM		4.24	
04/09/19	4.53		4.12		6.40		4.25		4.23		4.22	

Well Number	MV	V-6	MV	N-7	M\	N-8	MV	V-9	MV	V-10	MW	/-11
Well Depth	13	3.0	11	.92	12	2.89	12	.97	13	3.6	11	1.5
Screen Interval	3 to	o 13	1.92 to	11.92	2.89 t	o 12.89	2.97 to	12.97	3.6 to	13.6	1.5 to	11.5
TOC	-0).2	-0).2	-0	.17	-0.	.27	-0	.32	-0	.19
Date	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV
03/04/19	NM		NM		NM		NM		NM		NM	
03/26/19	NM		NM		NM		4.07		NM		NM	
03/27/19	5.10		3.64		4.30		NM		NM		NM	
04/08/19	NM		NM		NM		3.73		NM		NM	
04/09/19	3.61		3.22		4.02		3.76		5.75		3.49	

Well Number	MW	/-12					
Well Depth	12	.35					
Screen Interval	2.35 to	12.35					
TOC	-0.	.28					
Date	DTW	ELEV					
03/04/19	NM						
03/26/19	NM						
03/27/19	NM						
04/08/19	NM						
04/09/19	3.3						
	•						

Notes:

All measurements in feet unless otherwise noted

NM = Not Measured

DTW = Depth to water measurement

TOC = Top of well casing measurement

ELEV = Elevation = (Top of Casing - Static Depth to Water)

VAPOR WELL OVA/FID FIELD SCREENING RESULTS MELREESE GOLF COURSE

1802 NORTHWEST 37TH AVENUE

MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125

PROJECT NO.: 2018-3057

VAPOR WELL DESIGNATION	SCREENED INTERVAL (FEET- BLS)	Date	PARTS PER MILLION (TOTAL)	PARTS PER MILLION (WITH CARBON FILTER)	PARTS PER MILLION (NET)
VW-1	1 - 3.5	4/2/2019	11.0	1.8	9.2
V VV - 1	1 - 3.5	4/9/2019	22.5	4.1	18.4
VW-2	2 - 5	4/2/2019	*198	NT	NT
V V V Z	2 0	4/9/2019	*6,062 (O/R)	NT	NT
VW-3	1 - 3.5	4/2/2019	1.0	NF	1.0
*** 0	1 0.0	4/9/2019	<1	NF	<1
			•		
VW-4	1 - 3	4/2/2019	<1	NF	<1
		4/9/2019	<1	NF	<1
		4/0/0040	NT	NIT	NIT
VW-5	1 - 3	4/2/2019	NT	NT	NT
		4/9/2019	27.3	2.0	25.3
	I I	4/2/2019	<1	NF	<1
VW-6	1 - 3	4/9/2019	1.8	NF	1.8
		0. = 0 . 0			
VW-7	2 - 7	4/2/2019	*229	NT	NT
V VV - 7	2 - 1	4/9/2019	*956	NT	NT
VW-8	1 - 3	4/2/2019	<1	NF	<1
V VV-0	1-5	4/9/2019	<1	NF	<1
VW-9	1 - 4	4/9/2019	599.8	448.7	151.1
\/\/\/\ 40	1 0	4/0/0040	*4.404	NIT	NIT
VW-10	1 - 6	4/9/2019	*1,191	NT	NT
VW-11	1 - 3	4/9/2019	*1,075	NT	NT
V V V - 1 1	1 - 3	7/3/2013	1,075	INI	141

Notes:

* = Last reading displayed before OVA/FID flame-out.

O/R = Over Range

NF = Not Charcoal Filtered

NT = Not Tested

Bold = Result above 10 parts per million action level

TABLE 15 VAPOR WELL GAS METER FIELD SCREENING RESULTS

MELREESE GOLF COURSE

1802 NORTHWEST 37TH AVENUE

MIAMI, MIAMI-DADE COUNTY, FLORIDA 33125 PROJECT NO.: 2018-3057

VAPOR WELL DESIGNATION	SCREENED INTERVAL (FEET- BLS)	Date	*LEL (%)	**CH4 (%)	**O2 (%)	*VOC (ppm)
VW-1	1 - 3.5	4/2/2019	0.0	0.1	13.7	0.2
V V V - 1	1 - 3.5	4/9/2019	0.0	0.0	19.0	1.0
		4/0/0040	. 00 (11/4)	44.5	0.0	0.0
VW-2	2 - 5	4/2/2019 4/9/2019	>60 (H/A) >100 (H/A)	14.5 14.3	0.2	0.0 0.3
		4/9/2019	>100 (H/A)	14.3	0.0	0.3
		4/2/2019	2.0	0.2	13.7	0.3
VW-3	1 - 3.5	4/9/2019	0.0	0.0	11.5	0.4
VW-4	1 - 3	4/2/2019	0.0	0.2	17.2	0.0
V VV-4	1-3	4/9/2019	0.0	0.0	13.0	0.6
VW-5	1 - 3	4/2/2019	4.0	0.3	20.3	0.0
		4/9/2019	0.0	0.0	19.8	0.4
		1/0/00 10	0.0	0.1	15.0	
VW-6	1 - 3	4/2/2019	0.0	0.1	15.6	0.0
		4/9/2019	0.0	0.0	16.7	1.5
	Г	4/2/2019	>60 (H/A)	4.1	0.9	0.0
VW-7	2 - 7	4/9/2019	>100 (H/A)	4.1	0.5	0.4
VW-8	1 - 3	4/2/2019	0.0	0.2	1.3	0.0
V VV-0	1 - 3	4/9/2019	0.0	0.0	2.2	1.8
VW-9	1 - 4	4/9/2019	0.0	0.0	20.1	0.7
						T
VW-10	1 - 6	4/9/2019	>100 (H/A)	3.6	0.6	0.5
VW-11	1 - 3	4/9/2019	15.0	0.4	0.0	0.6
V VV-11	1-3	4/3/2013	10.0	U. 4	0.0	0.0

Notes:

LEL = Lower Explosive Limit

CH4 = Methane

O₂ = Oxygen

VOC = Volatile Organic Compound

H/A = High Alarm

Equipment:

*MultiRae Plus

**Landtec GEM

APPENDIX A PROPETY APPRAISER INFORMATION

Summary Report

Generated On: 4/5/2019

Property Information	
Folio:	30-3129-000-0050
Property Address:	
Owner	CITY OF MIAMI-DEPT OF P&D ASSET MANAGEMENT DIVISION
Mailing Address	444 SW 2 AVE STE #325 MIAMI, FL 33130-1910
PA Primary Zone	7300 INDUSTRIAL - HEAVY MFG
Primary Land Use	8080 VACANT GOVERNMENTAL : VACANT LAND - GOVERNMENTAL
Beds / Baths / Half	0/0/0
Floors	0
Living Units	0
Actual Area	0 Sq.Ft
Living Area	0 Sq.Ft
Adjusted Area	0 Sq.Ft
Lot Size	217,800 Sq.Ft
Year Built	0

Assessment Informat	Assessment Information								
Year	2018	2017	2016						
Land Value	\$3,811,500	\$3,811,500	\$3,593,700						
Building Value	\$0	\$0	\$0						
XF Value	\$0	\$0	\$0						
Market Value	\$3,811,500	\$3,811,500	\$3,593,700						
Assessed Value	\$3,811,500	\$3,811,500	\$3,593,700						

Benefits Information								
Benefit	Туре	2018	2017	2016				
Municipal	Municipal Exemption \$3,811,500 \$3,811,500 \$3,593,700							
Note: Not all benefits are applicable to all Taxable Values (i.e. County, School								

Short Legal Description

Board, City, Regional).

29 53 41 5 AC ALL THAT PART OF SE1/4 LYING S OF TAMIAMI CANAL & W OF SAL RY R/W LOT SIZE 217800 SQUARE FEET

Taxable Value Informa	ation		
	2018	2017	2016
County			
Exemption Value	\$3,811,500	\$3,811,500	\$3,593,700
Taxable Value	\$0	\$0	\$0
School Board			
Exemption Value	\$3,811,500	\$3,811,500	\$3,593,700
Taxable Value	\$0	\$0	\$0
City			
Exemption Value	\$0	\$0	\$0
Taxable Value	\$0	\$0	\$0
Regional			
Exemption Value	\$3,811,500	\$3,811,500	\$3,593,700
Taxable Value	\$0	\$0	\$0

Sales Information									
Previous Sale	Price	OR Book-Page	Qualification Description						

The Office of the Property Appraiser is continually editing and updating the tax roll. This website may not reflect the most current information on record. The Property Appraiser and Miami-Dade County assumes no liability, see full disclaimer and User Agreement at http://www.miamidade.gov/info/disclaimer.asp

Detailed Report

Generated On: 4/5/2019

Property Information			
Folio:	01-3132-000-0080		
Property Address:	1400 NW 37 AVE Miami, FL 33125-1738		
Owner	CITY OF MIAMI-DEPT OF P&D ASSET MANAGEMENT DIVISION		
Mailing Address	444 SW 2 AVE STE #325 MIAMI, FL 33130-1910		
PA Primary Zone	8002 PARKS & RECREATION		
Primary Land Use	8940 MUNICIPAL : MUNICIPAL		
Beds / Baths / Half	0/0/0		
Floors	1		
Living Units	0		
Actual Area	7,789 Sq.Ft		
Living Area	7,789 Sq.Ft		
Adjusted Area	7,789 Sq.Ft		
Lot Size	5,677,174.8 Sq.Ft		
Year Built	Multiple (See Building Info.)		

Assessment Information				
Year	2018	2017	2016	
Land Value	\$2,345,940	\$2,345,940	\$2,345,940	
Building Value	\$176,363	\$177,716	\$170,542	
XF Value	\$0	\$0	\$0	
Market Value	\$2,522,303	\$2,523,656	\$2,516,482	
Assessed Value	\$2,522,303	\$2,523,656	\$2,516,482	

Benefits Information				
Benefit	Туре	2018	2017	2016
Municipal	Exemption	\$2,522,303	\$2,523,656	\$2,516,482
Note: Not all benefits are applicable to all Taxable Values (i.e. County, School				
Board, City, Regional).				

Taxable Value Information					
	2018	2017	2016		
County					
Exemption Value	\$2,522,303	\$2,523,656	\$2,516,482		
Taxable Value	\$0	\$0	\$0		
School Board					
Exemption Value	\$2,522,303	\$2,523,656	\$2,516,482		
Taxable Value	\$0	\$0	\$0		
City					
Exemption Value	\$2,522,303	\$2,523,656	\$2,516,482		
Taxable Value	\$0	\$0	\$0		
Regional					
Exemption Value	\$2,522,303	\$2,523,656	\$2,516,482		
Taxable Value	\$0	\$0	\$0		

The Office of the Property Appraiser is continually editing and updating the tax roll. This website may not reflect the most current information on record. The Property Appraiser and Miami-Dade County assumes no liability, see full disclaimer and User Agreement at http://www.miamidade.gov/info/disclaimer.asp

Detailed Report

Generated On: 4/5/2019

Property Information	
Folio:	01-3132-000-0090
Property Address:	1550 NW 37 AVE Miami, FL 33125-1740
Owner	CITY OF MIAMI-DEPT OF P&D ASSET MANAGEMENT DIVISION
Mailing Address	444 SW 2 AVE STE #325 MIAMI, FL 33130-1910
PA Primary Zone	8002 PARKS & RECREATION
Primary Land Use	8940 MUNICIPAL : MUNICIPAL
Beds / Baths / Half	0/0/0
Floors	1
Living Units	0
Actual Area	Sq.Ft
Living Area	Sq.Ft
Adjusted Area	39,726 Sq.Ft
Lot Size	2,109,175.2 Sq.Ft
Year Built	Multiple (See Building Info.)

Assessment Information				
Year	2018	2017	2016	
Land Value	\$871,560	\$827,982	\$827,982	
Building Value	\$3,133,825	\$3,167,499	\$3,048,737	
XF Value	\$1,825,256	\$1,845,013	\$1,864,772	
Market Value	\$5,830,641	\$5,840,494	\$5,741,491	
Assessed Value	\$5,830,641	\$5,813,626	\$5,285,115	

Benefits Information						
Benefit	Туре	2018	2017	2016		
Non-Homestead Cap	Assessment Reduction		\$26,868	\$456,376		
Municipal Exemption \$5,830,641 \$5,813,626 \$5,285,115						
Note: Not all benef	ts are applicable to al	I Tavahle Val	ues (i.e. Cou	inty School		

Note: Not all benefits are applicable to all Taxable Values (i.e. County, Schoo Board, City, Regional).

	NW 19TH TER NW 19TH TER NW 17TH ST NW 16TH TER NW 16TH ST
Mary Control of the C	NW 1STH ST
	nw 14th d
2016 Aerial Ph	otography NW 2 3700 ST

Taxable Value Information						
	2018	2017	2016			
County						
Exemption Value	\$5,830,641	\$5,813,626	\$5,285,115			
Taxable Value	\$0	\$0	\$0			
School Board						
Exemption Value	\$5,830,641	\$5,840,494	\$5,741,491			
Taxable Value	\$0	\$0	\$0			
City	City					
Exemption Value	\$5,830,641	\$5,813,626	\$5,285,115			
Taxable Value	\$0	\$0	\$0			
Regional						
Exemption Value	\$5,830,641	\$5,813,626	\$5,285,115			
Taxable Value	\$0	\$0	\$0			

The Office of the Property Appraiser is continually editing and updating the tax roll. This website may not reflect the most current information on record. The Property Appraiser and Miami-Dade County assumes no liability, see full disclaimer and User Agreement at http://www.miamidade.gov/info/disclaimer.asp

Summary Report

Generated On: 4/5/2019

Property Information	
Folio:	30-3129-000-0160
Property Address:	
Owner	CITY OF MIAMI-DEPT OF P&D ASSET MANAGEMENT DIVISION
Mailing Address	444 SW 2 AVE STE #325 MIAMI, FL 33130-1910
PA Primary Zone	8900 INTERIM-AWAIT SPECIFIC ZO
Primary Land Use	8080 VACANT GOVERNMENTAL : VACANT LAND - GOVERNMENTAL
Beds / Baths / Half	0/0/0
Floors	0
Living Units	0
Actual Area	0 Sq.Ft
Living Area	0 Sq.Ft
Adjusted Area	0 Sq.Ft
Lot Size	87,120 Sq.Ft
Year Built	0

Assessment Information					
Year	2018	2017	2016		
Land Value	\$871,200	\$871,200	\$871,200		
Building Value	\$0	\$0	\$0		
XF Value	\$0	\$0	\$0		
Market Value	\$871,200	\$871,200	\$871,200		
Assessed Value	\$871,200	\$871,200	\$871,200		

Benefits Information					
Benefit	Туре	2018	2017	2016	
Municipal Exemption \$871,200 \$871,200 \$871,200					
N. J. N. J.					

Note: Not all benefits are applicable to all Taxable Values (i.e. County, School Board, City, Regional).

Short Legal Description

29 53 41 2 AC THAT PART OF SE1/4 OF SE1/4 OF SE1/4 LYING S OF CENTER LINE OF TAMIAMI CANAL LOT SIZE 87120 SQUARE FEET

Taxable Value Information				
	2018	2017	2016	
County				
Exemption Value	\$871,200	\$871,200	\$871,200	
Taxable Value	\$0	\$0	\$0	
School Board				
Exemption Value	\$871,200	\$871,200	\$871,200	
Taxable Value	\$0	\$0	\$0	
City				
Exemption Value	\$0	\$0	\$0	
Taxable Value	\$0	\$0	\$0	
Regional				
Exemption Value	\$871,200	\$871,200	\$871,200	
Taxable Value	\$0	\$0	\$0	

Sales Information					
Previous Sale	Price	OR Book-Page	Qualification Description		

The Office of the Property Appraiser is continually editing and updating the tax roll. This website may not reflect the most current information on record. The Property Appraiser and Miami-Dade County assumes no liability, see full disclaimer and User Agreement at http://www.miamidade.gov/info/disclaimer.asp

APPENDIX B HISTORICAL & REGULATORY EXCERPTS

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

March 20, 2019

CERTIFIED MAIL NO. 7014 1200 0002 0826 9220 RETURN RECEIPT REQUESTED

Emilio T. Gonzalez, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 331300

Re:

Response to March 5, 2018 DERM letter dated November 30, 2018 and Quarterly Groundwater Monitoring Report dated December 13, 2018 and prepared by E-Sciences for the Grapeland Heights Park (HWR-594/File-9442) located at, near, or in the vicinity of 1550 NW 37 Avenue, Miami, Miami-Dade County, Florida.

Dear Mr. Gonzalez:

The Department of Regulatory and Economic Resources-Division of Environmental Resources Management (DERM) has reviewed the above-referenced documents received December 3 and December 18, 2018, respectively. The following comments are provided:

1. Previous Engineering Control inspection reports for several of the other City of Miami Parks documented damage to the bonded rubber mulch (BRM), which provides the EC for portions of those sites. In some instances, the BRM layer is no longer present. Additionally, at several locations the BRM was compromised by growing tree roots. Based on these observation, DERM requires the City to re-evaluate the use of the BRM and to propose an alternate or modified EC for existing areas with BRM at the Grapeland Park; or to submit a modified EC Maintenance Plan which will ensure that the BRM can and will be adequately maintained. Please provide for a current inspection of the Areas 1-7 and Area 9 locations at Grapeland Park where BRM was previously installed. Additional corrective action will be required if this product has not been maintained in the approved installation condition.

Furthermore and based on the above, DERM cannot accept the proposal for the use of BRM in the additional areas proposed in the report pending the requirements stipulated above being addressed and approved. Be advised that the previously proposed use of 1' of clean fill on top of a high visibility geotextile fabric is an acceptable option.

2. For any area beyond the property boundary where an engineering control is required or where the institutional control must extend, the receiving entity (i.e. Miami Dade Expressway Authority) must accept the condition of the property and the installation and maintenance of any required engineering control. The report indicates that the City of Miami has already been in contact with and has coordinated this effort and installation of the engineering control. Please provide the documentation and details of this agreement along with a timeline for implementation. Please note that the engineering control area extends to the off-site delineating soil borings, not just the small strip of open ground abutting the fence area. In addition, DERM is copying Claudio Diaferia with MDX who was notified of the pending issues pertaining to the NW 14 Street pending issues.

Mr. Gonzalez HWR-594/AW-284 March 20, 2019 Page 2 of 2

- 3. Provide details and photographs of the existing shrubs to determine if they will provide an adequate engineering control for a portion of the site.
- 4. Please provide an update to your Figure 4 proposed EC area so that it depicts the location and boundary of each type of engineering control being proposed. Please ensure that the report encompasses all of the remaining proposed or existing engineering controls (i.e. also extending to the off-site delineating borings to the south, etc.)
- 5. Complete one additional quarterly sampling event for groundwater. Upon receipt of the results, an evaluation can be made if groundwater sampling can be discontinued or the frequency reduced.

DERM has the option to split any samples deemed necessary with the consultant or laboratory at the subject site. The consultant collecting the samples shall perform field sampling work in accordance with the Standard Operating Procedures provided in Chapter 62-160, Florida Administrative Code (FAC), as amended. The laboratory analyzing the samples shall perform laboratory analyses pursuant to the National Environmental Laboratory Accreditation Program (NELAP) certification requirements. If the data submitted exhibits a substantial variance from DERM split sample analysis, a complete resampling using two independent certified laboratories will be required.

DERM shall be notified in writing a minimum of three (3) working days prior to the implementation of any sampling or field activities. Email notifications shall be directed to DERMPCD@miamidade.gov. Please include the DERM file number on all correspondence.

Therefore, within sixty (60) days of receipt of this letter, you are hereby required to submit to DERM for review the next report addressing the above comments.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

Any person aggrieved by any action or decision of the DERM Director may appeal said action or decision to the Environmental Quality Control Board (EQCB) by filing a written notice of appeal along with submittal of the applicable fee, to the Code Coordination and Public Hearings Section of DERM within fifteen (15) days of the date of the action or decision by DERM.

If you have any questions concerning the above, please contact Thomas Kux, P.G., (kuxt@miamidade.gov) of DERM at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief Environmental Monitoring & Restoration Division

ΤK

pc: Nadia Locke, P.E., ESciences, <u>nlocke@esciencesinc.com</u> Keith Ng, City of Miami, <u>KeithNg@miamigov.com</u> Claudio Diaferia, MDX, <u>CDiaferia@mdxway.com</u>

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

June 13, 2017

CERTIFIED MAIL NO. 7014 1200 0002 0826 2306 RETURN RECEIPT REQUESTED

Daniel J. Alfonso, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 331300

Re:

Quarterly Sampling Report (QSR) dated March 20, 2017 and prepared by AECOM for the Grapeland Heights Park and Melreese Golf Course (HWR-594/AW-284/File-9442) located at, near, or in the vicinity of 1550 NW 37 Avenue, Miami, Miami-Dade County, Florida.

Dear Mr. Alfonso:

The Department of Regulatory and Economic Resources-Division of Environmental Resources Management (DERM) has reviewed the above-referenced document received April 11, 2017. The following comments are provided:

- 1. The groundwater monitoring program may be amended to only require sampling and analyzing MW-A, MW-B, MW-9R and the irrigation well for Arsenic.
- As previously elected, the Melreese groundwater monitoring program has been discontinued as both the Melrese and Grapeland Park sites will be addressed under a single No Further Action with Conditions.
- 3. Be advised that the following reports are past due for this site:
 - The Interim Monthly Engineering Control Inspection Reports.
 - The report addressing the southern and off-site contamination impacts from the Grapeland Park site as required per the August 22, 2016 DERM letter.

DERM has the option to split any samples deemed necessary with the consultant or laboratory at the subject site. The consultant collecting the samples shall perform field sampling work in accordance with the Standard Operating Procedures provided in Chapter 62-160, Florida Administrative Code (FAC), as amended. The laboratory analyzing the samples shall perform laboratory analyses pursuant to the National Environmental Laboratory Accreditation Program (NELAP) certification requirements. If the data submitted exhibits a substantial variance from DERM split sample analysis, a complete resampling using two independent certified laboratories will be required.

DERM shall be notified in writing a minimum of three (3) working days prior to the implementation of any sampling or field activities. Email notifications shall be directed to DERMPCD@miamidade.gov. Please include the DERM file number on all correspondence.

Delivering Excellence Every Day

Mr. Alfonso HWR-594 June 13, 2017 Page 2 of 2

Therefore, within ninety (90) days of receipt of this letter, you are hereby required to submit to DERM for review the next QSR and prepared in accordance with Chapter 24, Code of Miami-Dade County.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

Any person aggrieved by any action or decision of the DERM Director may appeal said action or decision to the Environmental Quality Control Board (EQCB) by filing a written notice of appeal along with submittal of the applicable fee, to the Code Coordination and Public Hearings Section of DERM within fifteen (15) days of the date of the action or decision by DERM.

If you have any questions concerning the above, please contact Thomas Kux, P.G., (kuxt@miamidade.gov) of DERM at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief

Environmental Monitoring & Restoration Division

TK

pc: Harry James, City of Miami, hjames@miamigov.com

Steve Starke, P.G., AECOM, Steve.Starke@aecom.com

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

December 8, 2015

CERTIFIED MAIL NO. 7013 2630 0001 2416 1757 RETURN RECEIPT REQUESTED

Daniel J. Alfonso, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 331300

Re:

Response to June 15, 2015 DERM Review Letter dated September 22, 2015 and updated on November 24, 2015 and prepared by SCS Engineers for the Melreese Golf Course (AW-284/File-9442) located at, near, or in the vicinity of 1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Mr. Alfonso:

The Department of Regulatory and Economic Resources- Division of Environmental Resources Management (DERM) has reviewed the above referenced reports, received October 16, 2015 and November 24, 2015, respectively.

The Engineering Control Plan is hereby approved. Therefore, implement the approved engineering control inspection and monitoring program and continue with the required groundwater monitoring plan.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions concerning the above, please contact Thomas Kux, P.G., at (305) 372-6700.

Sincerely.

Wilbur Mayorga, P.E., Chief Environmental Monitoring and Restoration Division

WM/tk

ec:

Jeovanny Rodriguez, City of Miami, jeovannyrodriguez@miamigov.com Eduardo Smith, P.E., SCS, ESmith@scsengineers.com

Delivering Excellence Every Day

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

May 31, 2016

CERTIFIED MAIL NO. 7013 2630 0001 2416 8800 RETURN RECEIPT REQUESTED

Daniel J. Alfonso, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Re:

Fifth Quarterly Groundwater Monitoring Report in Support of No Further Action with Conditions (NFAC) dated April 1, 2016 and prepared by SCS Engineers for the Melreese Golf Course (AW-284/File-9442) located at, near, or in the vicinity of 1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Mr. Alfonso:

The Department of Regulatory and Economic Resources- Division of Environmental Resources Management (DERM) has reviewed the above referenced report, April 4, 2016. The following comments are provided:

- 1. The Grapeland Park site and the Melreese Golf Course are both impacted with groundwater concentrations above applicable cleanup target levels (CTLs). Since both sites are abutting and are under the same ownership, please advise if you intend to obtain separate individual closures, each requiring separate deed restrictions for groundwater and soil impacts. Please note that part of the Grapeland Park site and Melreese Golf Course share the same folio in a North-South direction. Furthermore, if you intend to separate the sites, it will be necessary to establish the current east/west boundary condition. Therefore, obtain a current groundwater sample for arsenic from MW-33, MW-34, MW-35, and MW-36.
- 2. In response to the request to incorporate MW-31 into the Grapeland Park monitoring program, be advised that MW-32R to the north of MW-31 has already established the northern boundary of the plume. Based on the groundwater data provided, it does not appear that MW-31 will achieve levels below groundwater CTLs and will not be incorporated into the monitoring program as it is not a plume boundary well.
- 3. Please refer to the RBCA 7F Guidance document on the conditional closure process which may be found at the following website: http://www.miamidade.gov/environment/pollution-remediation.asp

DERM has the option to split any samples deemed necessary with the consultant or laboratory at the subject site. The consultant collecting the samples shall perform field sampling work in accordance with the Standard Operating Procedures provided in Chapter 62-160, Florida Administrative Code (FAC), as amended. The laboratory analyzing the samples shall perform laboratory analyses pursuant to the National Environmental Laboratory Accreditation Program (NELAP) certification requirements. If the data submitted exhibits a substantial variance from DERM split sample analysis, a complete resampling using two independent certified laboratories will be required.

Delivering Excellence Every Day

Mr. Alfonso May 31, 2016 AW-284 Page 2 of 2

DERM shall be notified in writing a minimum of three (3) working days prior to the implementation of any sampling or field activities. Email notifications shall be directed to DERMPCD@miamidade.gov. Please include the DERM file number on all correspondence.

Therefore, within sixty (60) days upon receipt of this letter, submit to DERM the appropriate report addressing the above comments.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions concerning the above, please contact Thomas Kux, P.G., at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief
Environmental Monitoring and Rest

Environmental Monitoring and Restoration Division

WM/tk

ec:

John Andersen - DERM

Jeovanny Rodriguez, City of Miami, jeovannyrodriguez@miamigov.com

Maria Giudici, P.G., SCS, MGiudici@scsengineers.com

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

June 15, 2015

CERTIFIED MAIL NO. 7013 2630 0001 2419 5929 RETURN RECEIPT REQUESTED

Alice Bravo, Deputy City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Re: Response to DERM May 30 and November 7, 2014 Review Letters dated March 26, 2015 and Second Quarterly Groundwater Monitoring Report dated June 9, 2015 and prepared by SCS

Engineers for the Melreese Golf Course (AW-284/File-9442) located at, near, or in the vicinity of

1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Ms. Bravo:

The Department of Regulatory and Economic Resources- Division of Environmental Resources Management (DERM) has reviewed the above referenced reports, received March 30, 2015 and June 11, 2015, respectively, and offers the following comments in the same order as presented in the report:

- DERM will accept the response provided that a Certified Golf Course Superintendent certifies that the required cover of 2 feet of clean fill is in place on all of the greens and shall include the date the fill was placed and that is was completed for all greens. Please note that the current response in the report is specific to only the SCS-14 location.
- 2. Based on an Inspection conducted by DERM on June 8, 2015, the engineering control in place for the sand traps is approved.

Regarding the waste bunkers. Be advised that an approved engineering control is also required for these former areas unless it can be demonstrated that a sufficient cover of 1-foot of clean fill is present and subject to approval based on an inspection verifying the thickness. The grass cover alone is insufficient. You have the option of installing representative soil borings throughout each of the former waste bunkers to establish the depth to solid waste for determining the appropriate remedy, as applicable.

- 3. DERM acknowledges the use of standard mulch along with the proposed inspection frequency and daily replenishment in the tree areas.
- 4. DERM will accept a more focused and increased frequency of inspection for the areas identified as not having the minimum 1-foot of cover. However, the engineering control plan and report logs shall clearly identify the boundary of these areas as extending to the next soil boring in each direction that has the minimum of 1-foot of required clean fill cover. Any exposed solid waste shall be immediately removed and disposed. If frequent surface exposure of solid waste is noted during the inspections, DERM will require additional fill cover for these areas.

Deliverny Excellence Every Day

Ms Bravo June 15, 2014 AW-284 Page 2 of 2

- 5. DERM acknowledges receipt of the groundwater sampling results. Continue with the approved groundwater sampling plan in accordance with the November 7, 2014 DERM approval. However, please include scaled site diagrams and also depicting the entire sampling area in future groundwater sampling reports. The site diagrams shall be consistent with those presented in Figure 4 of the Response to DERM Review Letters report.
- 6. DERM concurs with the proposal to submit a Site-Specific Work Plan to address sub-surface work on an as-needed basis throughout the golf course.

DERM has the option to split any samples deemed necessary with the consultant or laboratory at the subject site. The consultant collecting the samples shall perform field sampling work in accordance with the Standard Operating Procedures provided in Chapter 62-160, Florida Administrative Code (FAC), as amended. The laboratory analyzing the samples shall perform laboratory analyses pursuant to the National Environmental Laboratory Accreditation Program (NELAP) certification requirements. If the data submitted exhibits a substantial variance from DERM split sample analysis, a complete resampling using two independent certified laboratories will be required.

DERM shall be notified in writing a minimum of three (3) working days prior to the implementation of any sampling or field activities. Email notifications shall be directed to DERMPCD@miamidade.gov. Please include the DERM file number on all correspondence.

Therefore, within sixty (60) days of receipt of this letter, you are hereby required to submit to DERM for review two copies of a supplemental report, one paper and one electronic PDF on CD, prepared in accordance with Section 24-44(2)(j)(iv), Code of Miami-Dade County, which shall address the above comments as applicable. A review fee of \$675 shall be included with the submittal.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions concerning the above, please contact Thomas Kux, P.G., at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief

Environmental Monitoring and Restoration Division

WM/tk

ec: Jose Gonzalez, P.E. – DERM

Donna Gordon - DERM

Jeovanny Rodriguez, City of Miami, jeovannyrodriguez@miamigov.com

Eduardo Smith, P.E., SCS, ESmith@scsengineers.com

SCS ENGINEERS

April 1, 2016 File No. 09213010.65

Mr. Wilbur Mayorga, P.E., Chief Department of Regulatory and Economic Resources Division of Environmental Resources Management 701 Northwest 1st Court, 4th Floor Miami, Florida 33136 April 4, 2016

Re:

Melreese Golf Course (AW-284/File-9442) 1802 NW 37th Avenue

Miami, Florida

Subject:

Fifth Quarterly Groundwater Monitoring Report

Dear Mr. Mayorga:

SCS Engineers (SCS), on behalf of the City of Miami (the City), submits this Fifth Quarterly Groundwater Monitoring Report (GMR) for the above referenced site (the Site) in response to the December 17, 2015 Department of Regulatory and Economic Resources, Division of Environmental Resource Management (DERM) correspondence (attached). Quarterly groundwater sampling activities are conducted in accordance with the DERM approved Monitoring Only Plan (MOP) dated November 7, 2014. A site location map is provided as **Figure 1**.

The December 17, 2015 DERM correspondence requested groundwater samples from monitoring wells MW-1 and MW-42 however based on the Fourth Quarter Groundwater Sampling Report submitted by SCS on December 2, 2015, MW-1 reported three consecutive quarters of arsenic concentrations below the Groundwater Cleanup Target Level (GCTL) so an additional sampling event did not appear warranted. However, it was recommended by SCS that an additional quarter of sampling be conducted for MW-31 and MW-42, which is described below.

GROUNDWATER QUALITY ASSESSMENT

GROUNDWATER ELEVATION

A Site Plan depicting onsite monitoring wells is included as **Figure 2.** On February 15, 2016, SCS recorded depth-to-water (DTW) measurements from onsite monitoring wells to determine groundwater elevation. Monitoring well construction details, top-of-casing (TOC) elevation data and depth to water measurements are summarized in **Table 1**. Groundwater elevations are provided on **Figure 3**.

TABLE 2 GROUNDWATER ANALYTICAL SUMMARY MELREESE GOLF COURSE

(AW-284/FILE-9442)

Sample			
Sample Location/ Sample ID	Date Collected	Arsenic	Lead
		(µg/L)	(µg/L)
Groundwater Cleanup To	arget Levels	10	15
	9-Feb-15	18	2.0 U
SCS-MW-1	11-May-15	4.0 U	NS
3C3-//(VV-1	12-Aug-15	4.7 I	NS
	12-Nov-15	4.8 I	NS
	9-Feb-15	4.0 U	2.0 U
SCS 44147.0	11-May-15	4.4 I	NS
SCS-MW-2	12-Aug-15	6.8 I	NS
	12-Nov-15	7.2 I	NS
	11-Feb-15	4.6 I	2.0 U
565 1111 2	11-May-15	4.0 U	NS
SCS-MW-3	12-Aug-15	4.0 U	NS
	12-Nov-15	4.0 U	NS
	9-Feb-15	130	2.0 U
	11-May-15	130	NS
MW-31	12-Aug-15	150	NS
	12-Nov-15	180	NS
	15-Feb-16	140	NS
	9-Feb-15	9.0 I	2.0 U
AANA/ 22	11-May-15	4.0 U	NS
MW-33	12-Aug-15	4.7 I	NS
	12-Nov-15	4.0 U	NS
	9-Feb-15	4.4 I	2.0 U
	11-May-15	4.0 U	NS
MW-42	12-Aug-15	52	NS
/V\ V V -4 Z	1-Sep-1 <i>5</i>	15	NS
	12-Nov-15	10	NS
	15-Feb-16	9.5 I	NS
	9-Feb-15	4.0 U	2.0 U
MW-44	11-May-15	4.0 U	NS
/V\ VV -44	12-Aug-15	9.1 I	NS
	12-Nov-15	4.0 U	NS

Notes -

 $\mu g/L$ - micrograms per liter

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

U - Not detected at the laboratory method detection limit (MDL)

 ${\sf I}$ - Estimated value, the reported value is between the MDL and the practical quantitaion limit (PQL)

Bold - Indicates an exceedance of the applicable GCTL

NS = Not Sampled

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

October 2, 2013

CERTIFIED MAIL NO. 7011 0470 0002 4387 4512 RETURN RECEIPT REQUESTED

Alice Bravo, Assistant City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Re: Melreese Golf Course site (AW-284/File-9442) located at, near, or in the vicinity of

1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Ms. Bravo:

Please be advised that the Department of Regulatory and Economic Resources- Division of Environmental Resources Management (DERM) conducted an inspection of this site on September 27, 2013. Based on the Inspection and past due environmental report, DERM is providing the following comments:

- During the referenced inspection, a random visual survey was conducted of the golf course. Melted glass pieces were observed at the base of one of the Ficus trees. The location of the Ficus tree and the temporary remedy to address this matter was provided to you in an email on September 27, 2013. However, DERM acknowledges receipt of a September 30, 2013 email from City of Miami staff regarding this matter and this issue has been satisfactorily addressed.
- 2. As also discussed in the September 27, 2013 DERM email, City of Miami park staff were requested to conduct a full visual inspection of the golf course to identify any additional potential incinerator ash material (i.e. melted/fused glass, etc.) exposed at the surface. Please provide the results of this survey within seven (7) days upon receipt of this letter. Please notify DERM of any additional areas identified as a result of that survey.
- 3. DERM requires that a weekly inspection be conducted for the golf course to ensure that required surface cover remains intact. Schedules may require adjustments such as conducting immediate inspections following significant events (i.e. heavy storms, etc.). Please be advised that there shall be no digging, tree or landscape planting, or any subsurface disturbance activities at this site without prior review and approval from DERM. Notification shall be provided immediately to DERM of findings that require corrective action. Furthermore, monthly reports documenting the inspection results shall be provided to DERM in the interim.

Delivering Excellence Every Day

Ms Bravo October 2, 2013 AW-284 Page 2 of 2

4. In accordance with the February 21, 2007 Supplemental Site Assessment Report approval letter, DERM requires that a Remedial Action Plan (RAP)/Engineering Control Plan (ECP) be submitted to address the remaining issues for this site.

Therefore, unless otherwise noted above, within sixty (60) days of receipt of this letter, submit to this Department for review the required report addressing the above comments along with the applicable review fee.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions concerning the above, please me at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief

Environmental Monitoring and Restoration Division

WM/tk

Enclosures

ec: Lee Hefty – DERM

Donna Gordon - DERM

Environmental Resources Management

Pollution Control Division Pollution Remediation Section 33 SW 2nd Avenue • 7th Floor Miami, Florida 33130-1540 T 305-372-6700 F 305-372-6729

miamidade.gov

ADA Coordination Agenda Coordination

Animal Services
Art in Public Places

Audit and Management Services

Aviation Building

Building Code Compliance

Business Development

Capital Improvements

Citizens' Independent Transportation Trust

Commission on Ethics and Public Trust

Communications

Community Action Agency

Community & Economic Development

Community Relations

Consumer Services

Corrections & Rehabilitation
Cultural Affairs

Elections

Emergency Management

Employee Relations

Empowerment Trust

Enterprise Technology Services

Environmental Resources Management

Fair Employment Practices

rinanci

Fire Resci

General Services Administration

Historic Preservation

Homeless Trust

Housing Agency

Housing Finance Authority

Human Services

Independent Review Panel

International Trade Consortium

Juvenile Services

Medical Examiner

Metro-Miami Action Plan Metropolitan Planning Organization

Park and Recreation

Planning and Zoning

Police

Procurement Management

Property Appraisal Public Library System

Public Works

Safe Neighborhood Parks

Cannor

Solid Waste Management

Strategic Business Management

Team Metro

Transi

pc: Petro Hydro, 10450 NW 31 Terr., Miami, FL 33172

February 21, 2007

CERTIFIED MAIL NO. 7006 0810 0000 7018 2950 RETURN RECEIPT REQUESTED

Pedro Hernandez, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

RE:

Supplemental Site Assessment Report (SSAR) dated September 14, 2006 and prepared by Petro Hydro, Inc. for the Melreese Golf Course (AW-284/File-9442) located at, near, or in the vicinity of 1802 NW 37th Ave, Miami, Miami-Dade County, Florida.

Dear Mr. Hernandez:

The Pollution Remediation Section of the Department of Environmental Resources Management (DERM) has reviewed the referenced submittal, received, January 8, 2007, and hereby approves the report.

Pursuant to the above, a Remedial Action Plan (RAP)/Engineering Control Plan (ECP) prepared in accordance with Chapter 24, Code of Miami-Dade County that proposes a course of action in order to successfully remediate/address the property is required.

However, DERM requires that a meeting be scheduled to discuss alternatives available for this site. You are required to contact Thomas Kux, P.G., at the number listed below within thirty (30) days upon receipt of this letter to schedule the referenced meeting.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions regarding this letter, please contact me at (305) 372-6700.

Sincerely.

Wilbur Mayorga, P.E., Chief Pollution Control Division

WM/tk

Task Force on Urban Economic Revitalization
Vizcava Museum And Gardens

Water & Sewer

Date:

July 9, 2013

To:

Donna Gordon, Chief

Enforcement Section, RER

From:

Wilbur Mayorga, P.E., Chief

Environmental Monitoring & Restoration Division, RER

Subject:

City of Miami Melrese Golf Course and Grapeland Park

HWR-594 AW-284 File-9442

Past Due Reports

The Environmental Monitoring and Restoration Division is referring the above two abutting sites to you for enforcement action. The City has not complied with submitting the required reports in accordance with Courtesy Letters issued on January 15, 2009, April 13, 2009, and January 5, 2010 and Extension Request issued on March 2, 2011 provided for this site.

Please contact Thomas Kux, P.G. at ext. 6520 if you have any questions.

WM/tk

Carlos Alvarez, Mayor

Environmental Resources Management

Pollution Control Division 701 NW 1st Court • 4th Floor Miami, Florida 33136-3912 T. 305-372-6700 F 305-372-6982

miamidade.gov

March 2, 2011

CERTIFIED MAIL NO. 7010 1870 0000 2691 3876 RETURN RECEIPT REQUESTED

Tony E. Crapp Jr., City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Re:

Extension Request dated February 22, 2011 for the Quarterly Monitoring Report at Grapeland Park and submitted by the City of Miami and past due environmental reports for the Melreese Golf Course site (AW-284/File-9442) and Grapeland Park site (HWR-594/File-9442) located at, near, or in the vicinity of 1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Mr. Crapp Jr.:

The Environmental Assessment Section (EAS) of the Department of Environmental Resources Management (DERM) has received your request for extension. DERM does not object to granting the sixty (60) day extension to submit the next quarterly groundwater sampling report as required in item 2 of the October 4, 2010 DERM letter. However, item number 1 of the referenced letter is past due and it is critical that the information be provided as soon as possible and without further delay.

In addition, be advised that there are additional past due environmental issues still pending for these sites as referenced in the attached DERM letters dated January 5, 2010, April 13, 2009, and January 15, 2009. To date, DERM has not received the required environmental reports for the above referenced sites.

Therefore in addition to the requirements of the October 4, 2010 DERM letter as discussed above, within thirty (30) days upon receipt of this letter, submit the Engineering Control Plan (implemented in July 2008) and outstanding items due for the Grapeland Park and the Remedial Action Plan (RAP) due for the Melreese Golf Course.

Failure to comply with the above may result in enforcement action for this site.

If you have any questions concerning the above, please contact me at (305) 372-6700.

Sincerely

Wilbur Mayorga, P.E., Chief Pollution Control Division

WM/tk

Pc Harry James, City of Miami

Environmental Resources Management
Pollution Control Division
701 NW 1st Court • 4th Floor
Miami, Florida 33136-3912

T 305-372-6700 F 305-372-6729

miamidade.gov

January 5, 2010

CERTIFIED MAIL NO. 7007 2680 0000 0620 0783 RETURN RECEIPT REQUESTED

Pedro Hernandez, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Re: Past due environmental reports for the Melreese Golf Course site (AW-284/File-9442) and Grapeland Park site (HWR-594/File-9442) located at, near, or in the vicinity of 1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Mr. Hernandez:

The Environmental Assessment Section (EAS) of the Department of Environmental Resources Management (DERM) has not received the required environmental reports for the above referenced sites. These reports are past due as of May 13, 2009 (Melreese Golf Course) and July 31, 2009 (Grapeland Park).

Therefore, within thirty (30) days upon receipt of this letter, submit the Engineering Control Plan (implemented in July 2008) and outstanding items due for the Grapeland Park and the Remedial Action Plan (RAP) due for the Melreese Golf Course.

Failure to comply with the above may result in enforcement action for this site.

If you have any questions concerning the above, please contact me at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief Pollution Control Division

WM/tk

Pc Glendon Hall, City of Miami (gphall@miamigov.com)

Environmental Resources Management

Pollution Control Division 701 NW 1st €ourt • 4th Floor Miámi, Florida 33136-3912 T 305-372-6700 F 305-372-6729

miamidade.gov

April 13, 2009

CERTIFIED MAIL NO. 7007 2680 0000 0710 9665 RETURN RECEIPT REQUESTED

Pedro Hernandez, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Re:

Environmental reports for the Melreese Golf Course site (AW-284/File-9442) and Grapeland Park site (HWR-594/File-9442) located at, near, or in the vicinity of 1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Mr. Hernandez:

Please be advised that the Environmental Assessment Section (EAS) of the Department of Environmental Resources Management (DERM) has not received the required reports for the above referenced facilities. In accordance with the attached January 15, 2009 courtesy letter issued by DERM, the reports were to be submitted by February 14, 2009. To date, the required documents have not been submitted.

Be advised that the levels of groundwater and/or soil analytical results submitted for this site constitute violations of Chapter 24, Code of Miami-Dade County (the Code), specifically, Section 24-44, 24-27, 24-28, and 24-29 of the Code.

Based on the above, and pursuant to Sections 24-7(15), 24-7(26), and 24-44(2)(g) of the Code, you are hereby required to submit to this office for review, within thirty (30) days of receipt of this letter, the past due assessment and/or remedial reports required for these sites.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions concerning the above, please contact me at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief Pollution Control Division

WM/tk Attach

Environmental Resources Management

Pollution Control Division 701 NW 1st Court • 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6729

miamidade.gov

January 15, 2009

CERTIFIED MAIL NO. 7007 2680 0000 0710 9337 RETURN RECEIPT REQUESTED

Pedro Hernandez, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Re:

Environmental reports for the Melreese Golf Course site (AW-284/File-9442) and Grapeland Park site (HWR-594/File-9442) located at, near, or in the vicinity of 1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Mr. Hernandez:

Please be advised that the Environmental Assessment Section of the Department of Environmental Resources Management (DERM) has not received the required reports for the above referenced facilities. In accordance with the October 10, 2008 email form the City of Miami, the reports were to be submitted by December 9, 2008 for the Melreese Golf Course facility and by November 24, 2008 for the Grapeland Park facility.

Therefore, within thirty (30) days of receipt of this letter, submit to this Department for review the required documents along with the applicable review fees.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions concerning the above, please me at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief Pollution Control Division

WM/tk Attach

2 to the Expellence For the

SCS ENGINEERS

April 16, 2014 SCS File No. 09213010.25

Mr. Wilbur Mayorga, P.E., Chief Department of Regulatory and Economic Resources Division of Environmental Resources Management 701 Northwest 1st Court, 4th Floor Miami, Florida 33136-6982

Re: Melreese Golf Course

1802 Northwest 37th Avenue

Miami, Florida

Subject: Corrective Action Plan

SCS Engineers (SCS), on behalf of the City of Miami (City) and DeLucca Enterprises (DeLucca), herein submits this Corrective Action Plan (CAP) for Melreese Golf Course (site) to the Department of Regulatory and Economic Resources, Division of Environmental Resources Management (DERM). Melreese is an active golf course that is owned by the City and operated by DeLucca. The corrective actions proposed herein are consistent with the remedies discussed with DERM during our February 20, 2014, meeting.

PREVIOUS INVESTIGATORS

Buried incinerator ash was discovered at the site during a 2005 Limited Phase II Soil Assessment. In response to the discovery, DERM issued a letter, dated December 20, 2005, requiring further delineation and remediation of three localized areas where ash had been reported in the upper six inches of soil. The three localized areas were addressed by source removal on May 8, 2008, and subsequent assessments were conducted to address the delineation requirements. A summary of the assessment findings is as follows:

- Buried solid waste (incinerator ash and/or glass and metal fragments) was encountered at various depths throughout the site and has been delineated to the south, east and west by soil borings. The site is bound to the north by the Tamiami Canal.
- Concentrations of the chemicals of concern [COCs, i.e., arsenic, barium, copper, lead, polychlorinated biphenyls (PCBs), polynuclear aromatic hydrocarbons (PAHs) and dioxins] in soil samples were generally below the applicable soil cleanup target levels (SCTLs). Arsenic was present throughout the site at concentrations that are generally consistent with levels found at other golf courses. The 95% upper confidence limit of the mean concentration of lead was calculated below the residential SCTL. Copper concentrations were below the residential SCTL, with the exception of one out of 21 samples tested. Total dioxins/furans were reported at concentrations ranging from 2.01 ng/kg to 22.6 ng/kg. The remaining COC concentrations were below the residential SCTLs or the laboratory detection limits.

CENSE NO:	B)	NOLLHINOSIG	3TAQ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SHECIAL INSPECTION AREAS NELREESE GOLF COURSE 1802 NW 37th AVENUE 1807 NW 37th AVENUE	сивит СПТҮ ОF МІАМІ	E COLUMB TABLE STATE OF THE STA		AUGUST 2015 SCALE: AS NOTED	PRAWING NO. Fig. 3	SHEET 1 of 2
-----------	----	-------------	------	---	--	---------------------	--	--	-----------------------------------	-----------------------	--------------

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

May 30, 2014

CERTIFIED MAIL NO. 7013 2630 0001 2427 5808 RETURN RECEIPT REQUESTED

Alice Bravo, Assistant City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Re: Corrective Action Plan dated April 16, 2014 and prepared by SCS ES Consultants for the Melreese Golf Course (AW-284/File-9442) located at, near, or in the vicinity of 1550/1802 NW 37 Avenue, Miami-Dade County, Florida.

Dear Ms. Bravo:

The Department of Regulatory and Economic Resources- Division of Environmental Resources Management (DERM) has reviewed the above referenced report, received April 17, 2014. The following comments are provided:

- Provide documentation that each of the 18 greens, including practice greens, were constructed with the 2 feet of cover as depicted in Figure 3 of the report. Please note that the lithology from boring SCS-14 does not correlate with that depicted in Figure 3.
- The proposed control for the sand traps is approved. However, identify each of the waste bunkers on the site diagram. Be advised that if waste bunkers receive routine play or access as do other areas of the golf course, the same controls proposed for the sand traps will also be necessary for the waste bunkers.
- 3. The proposed approach to mulch the landscaped tree areas is acceptable. DERM recommends that a bonded rubber mulch be used for increased durability.
- 4. During previous DERM inspections, considerable elevation changes were noted throughout the golf course, including lower elevations throughout the fairway play area. Furthermore, large distances between soil borings such as at location SCS-4 (several hundred feet between delineating borings) infer potential large areas of solid waste within the surface interval. Therefore, the proposal to not implement additional engineering controls for the fairways, tees, roughs, and approaches is not approved at this time pending further investigation. At a minimum, a plan to provide sufficient soil boring coverage shall be required. Furthermore, those areas with solid

Delivering Excellence Every Day

Ms Bravo May 30, 2014 AW-284 Page 2 of 2

waste in the upper 2-feet will be required to be addressed and the next report shall also include an engineering control proposal.

- 5. A current round of groundwater samples shall be required for lead and arsenic from all site monitoring wells.
- Any redevelopment or sub-surface work will require review and approval from DERM. Furthermore, disposal manifest shall be provided to DERM for any solid waste material removed from the site.
- Although a projected start date to implement some of the engineering controls is provided, a more detailed timeline is required for review and approval that shall include projected completion dates for individual areas.
- 8. Inspection reports and engineering control maintenance records proposed in Appendix D shall be maintained on-site and available for review. Furthermore, Semi-annual maintenance reports shall be submitted to DERM that document the repair of any engineering controls established for the site.

Based on the above, an addendum to the Corrective Action Plan is required to be submitted within thirty (30) days upon receipt of this letter.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions concerning the above, please contact Thomas Kux, P.G., at (305) 372-6700.

Sincerely.

Wilbur Mayorga, P.E., Chief

Environmental Monitoring and Restoration Division

WM/tk

Enclosures

ec: Lee Hefty – DERM

Donna Gordon - DERM

and the property of the company of the property of the company of the company of the company of the company of

Environmental Resources Management

Pollution Control Division Pollution Remediation Section 33 SW 2nd Avenue • 7th Floor Miami, Florida 33130-1540 T 305-372-6700 F 305-372-6729

miamidade.gov

ADA Coordination

Agenda Coordination

Animal Services

Art in Public Places

Audit and Management Services

Aviation

Building

Building Code Compliance

Business Development

Capital Improvements

Citizens' Independent Transportation Trust

Commission on Ethics and Public Trust

Communications

Community Action Agency

Community & Economic Development

Community Relations

Consumer Services

Corrections & Rehabilitation

Cultural Affairs Elections

Emergency Management

Employee Relations

Empowerment Trust

Enterprise Technology Services Environmental Resources Management

Fair Employment Practices

Finance Fire Rescue

General Services Administration

Historic Preservation

Homeless Trust

Housing Agency Housing Finance Authority

Human Services

Independent Review Panel

International Trade Consortium

Juvenile Services Medical Examiner

Metro-Miami Action Plan

Metropolitan Planning Organization

Park and Recreation

Planning and Zoning

Police

Procurement Management

Property Appraisal **Public Library System**

Public Works

Safe Neighborhood Parks

Solid Waste Management

Strategic Business Management

Team Metro

Task Force on Urban Economic Revitalization

Vizcava Museum And Gardens

Water & Sewer

February 21, 2007

CERTIFIED MAIL NO. 7006 0810 0000 7018 2950 RETURN RECEIPT REQUESTED

Pedro Hernandez, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

RE:

Supplemental Site Assessment Report (SSAR) dated September 14, 2006 and prepared by Petro Hydro, Inc. for the Melreese Golf Course (AW-284/File-9442) located at, near, or in the vicinity of 1802 NW 37th Ave, Miami, Miami-Dade County, Florida.

Dear Mr. Hernandez:

The Pollution Remediation Section of the Department of Environmental Resources Management (DERM) has reviewed the referenced submittal, received, January 8, 2007, and hereby approves the report.

Pursuant to the above, a Remedial Action Plan (RAP)/Engineering Control Plan (ECP) prepared in accordance with Chapter 24, Code of Miami-Dade County that proposes a course of action in order to successfully remediate/address the property is required.

However, DERM requires that a meeting be scheduled to discuss alternatives available for this site. You are required to contact Thomas Kux, P.G., at the number listed below within thirty (30) days upon receipt of this letter to schedule the referenced meeting.

Failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

If you have any questions regarding this letter, please contact me at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief Pollution Control Division

WM/tk

pc: Petro Hydro, 10450 NW 31 Terr., Miami, FL 33172

PETRO HYDRO, INC.

TECHNICAL REPORT

TK

Environmental Engineering, General Contractors & Underground Utilities.

G.C. License #: CG-C051799

SSA

SUPPLEMENTAL SITE ASSESSMENT REPORT

Melreese Golf Course Section 1 of 2

1802 Northwest 37th Avenue Miami, Miami-Dade County, Florida 33125 DERM HWR-594/AW-284/File-9442

DERM POLLUTION REMEDIATION SECTION

September 14, 2006

Prepared for:

City of Miami - Department of Economic Development Miami Riverside Center 444 Southwest 2nd Avenue, 3rd Floor Miami, Florida 33130

Submitted by:

Petro Hydro, Inc. 10450 NW 31st Terrace Miami, Florida 33172 PHI Project #05E031.01

Greg A. Mohr, P.G. - Fla. License No. PG1403

Environmental Division Manager Date: 7-

Supplemental Site Assessment Report
Melreese Golf Course
1802 Northwest 37th Avenue
Miami, Miami-Dade County, Florida
September 14, 2006

5.0 CONCLUSIONS

The conclusions provided below are based on the combined information obtained by PHI during implementation of the Limited Phase II Soil Assessment conducted in August 2005 and this Supplemental Site Assessment investigation. Based upon these investigations, indications are that the burial of the incinerator ash throughout the Site has only resulted in minimal Dioxin/Furans and Lead soil impacts only marginally above the MDC Chapter 24-11 Residential Exposure SCTLs. None of the detected Dioxin/Furans and Lead soil impacts exceeded the MDC Chapter 24-11 Commercial/Industrial Exposure SCTLs.

The limited soil Lead impacts detected above the MDC Chapter 24-11 Residential Exposure SCTLs were either delineated horizontally onsite along the property boundaries or vertically by the surface of the water table. Although TCLP Lead concentrations previously suggested the potential for leachate generation, groundwater data from 40 separate monitoring wells failed to detect any groundwater Lead concentrations in excess of the laboratory detection limit of 5 ug/L. Trace Dioxin/Furans groundwater concentrations were consistently detected; however the concentrations detected were significantly below the applicable GCTLs. The combined results of the soil and groundwater PCBs and PAHs analyses were consistently below acceptable laboratory detection limits, or MDC Chapter 24-11 Residential Exposure SCTLs or MDC Chapter 24-11 GCTLs.

Arsenic was consistently detected in the soils beneath the Melreese Golf Course, which has been in continuous operation for over 40 years. The detection of the elevated Arsenic concentrations is a common occurrence in Miami-Dade County golf courses and was the subject of a December 2002 DERM Technical Report entitled "Environmental Quality Monitoring at Five Municipal Golf Course in Miami-Dade". This technical report concluded that, based on DERM-sponsored sampling and analyses results, 94% of the surficial soil samples at the five golf courses exceeded the then applicable Residential MDC Chapter 24-11 SCTL of 0.7 mg/kg and that 87% of the soil samples exceeded the MDC Chapter 24-11 Commercial /Industrial SCTL of 3.7 mg/kg. The findings of the report further concluded that the golf course surficial soils contained a medial Arsenic concentration of 15.10 mg/kg and that all golf course soils contained a median Arsenic concentration of 5.6 mg/kg. Arsenic concentrations detected at the Melreese Golf Course are statistically similar to the DERM reported arsenic concentrations present at the five municipal golf courses in Miami Dade County

Supplemental Site Assessment Report
Melreese Golf Course
1802 Northwest 37th Avenue
Miami, Miami-Dade County, Florida
September 14, 2006

6.0 RECOMMENDATIONS

Based on the results of this assessment, PHI recommends the City/DERM work together to prepare and implement a No Further Action with Conditions (Conditional Closure) for this Site. A Conditional Closure is recommended for this Site to address the soil Dioxin/Furans and Lead concentrations detected in excess of the applicable MDC Chapter 24-11 Residential Exposure SCTLs. The elevated Arsenic concentrations would be representative of a secondary contaminant source since their presence is partially the result of agrochemicals that were applied over time after the burial of the incinerator ash and in accordance with then-applicable EPA guidelines. Since the City intends to maintain this property as a golf course in perpetuity, it is reasonable to consider scheduling a meeting with DERM to discuss the implications of this potential closure options.

PETRO HYDRO, INC.

10450 NW 31 Terrace, Miami, Florida Phone: 305-477-0878 Fax: 305-594-8982 CITY OF MIAMI
MELREESE GOLF COURSE

1802 NW 37th Avenue Miami, Florida FIGURE 2 SOIL BORING LOCATION MAP

←(8) Surface water sample (SW)

PETRO HYDRO, INC.

10450 NW 31 Terrace. Miami, Florida Phone: 305-477-0878 Fax: 305-594-8982

CITY OF MIAMI MELREESE GOLF COURSE

1802 NW 37th Avenue Miami, Florida

Figure 6 SOIL DIOXIN-FURANS CONCENTRATION MAP

TABLE 7 SOIL ANALYTICAL RESULTS - As & Pb (Page 1 of 6)

Melreese Golf Course 1802 Northwest 37th Avenue Miami, Miami-Dade County, Florida DERM AW-284/File-9442

Soil Boring Location & Date	Sample Interval (Feet, BG)	Percent Moisture	Lead mg/kg	TCLP Lead ug/L	Arsenic mg/kg	SPLP Arsenic ug/L
SB-1	0.0 - 0.5	35.0%	13.2	ns	8.09	ns
8-29-05	0.5 - 1.0	13.6%	68.7	ns	3.62	ns
0-29-03	1.0 - 3.0	13.3%	464	ns	4.94	ns
00.0	0.0 - 0.5	23.6%	9.91	ns	4.42	ns
SB-2	0.5 - 1.0	17.9%	11.2	ns	1.77	ns
8-29-05	1.0 - 3.0	1.53%	43.1	ns	1.53	ns
00.0	0.0 - 0.5	12.6%	46.5	ns	37.9	15
SB-3	0.5 - 1.0	28.2%	51.0	ns	17.0	ns
8-29-05	1.0 - 3.0	17.7%	71.5	ns	1.57	ns
	0.0 - 0.5	17.8%	62.5	ns	11.5	8
SB-4 8-29-05	0.5 - 1.0	13.3%	69.2	ns	7.38	ns
8-29-05	1.0 - 3.0	23.6%	23.9	ns	6.33	ns
SB-5 8-29-05	0.0 - 0.5	26.1%	3.21	ns	5.13	ns
	0.5 - 1.0	20.5%	4.33	ns	2.73	ns
0-29-05	1.0 - 3.0	7.99%	1.00	ns	0.554	ns
05.0	0.0 - 0.5	41.5%	4.39	ns	13.6	ns
SB-6 8-29-05	0.5 - 1.0	30.9%	9.34	ns	4,22	ns
0-29-05	1.0 - 3.0	15.6%	27.2	ns	21.9	ns
	0.0 - 0.5	36.2%	5.17	ns	2.32	ns
SB-7	0.5 - 1.0	27.4%	17.1	ns	2.95	ns
8-29-05	1.0 - 3.0	17.7%	36.6	ns	6.32	ns
	0.0 - 0.5	37.4%	3.91	ns	2,38	ns
SB-8	0.5 - 1.0	9.10%	11.1	ns	2.48	ns
8-29-05	1.0 - 3.0	32.7%	10.4	ns	2.33	ns
SB-9	0.0 - 0.5	31.7%	30.3	ns	32.5	ns
8-29-05	0.5 - 1.0	15.9%	*130	ns	23.8	ns
0-23-03	1.0 - 3.0	10.3%	12.2	ns	1.06	ns
SB-10	0.0 - 0.5	23.9%	1.43	ns	10.9	ns
8-29-05	0.5 - 1.0	27.8%	*225	283	3.05	ns
MDC Chapter 34	1.0 -3.0 11, Residential Ex	11.6%	*135	ns	1.95	ns
SCTLs (mg/kg)			400	NA	2.1	NA
MDC Chapter 24- SCTLs (mg/kg)	11, Commercial/In	dustriai	1400	NA	12	NA
MDC Chapter 24-	11 Groundwater C	riteria (ug/L)	NA	15	NA	10

Note:

NS - Sample archived at laboratory but Not Submitted for analysis.

BDL - Below laboratory detection limit

TABLE 7 SOIL ANALYTICAL RESULTS - As & Pb (Page 2 of 6)

Melreese Golf Course 1802 Northwest 37th Avenue Miami, Miami-Dade County, Florida DERM AW-284/File-9442

Soil Boring Location & Date	Sample Interval (Feet, BG)	Percent Moisture	Lead mg/kg	TCLP Lead ug/L	Arsenic mg/kg	SPLP Arsenic ug/L
CD 44	0.0 - 0.5	14.4%	42.0	ns	34.5	ns
SB-11 8-29-05	0.5 - 1.0	19.7%	51.3	ns	4.36	ns
0-29-03	1.0 - 3.0	19.2%	61.9	ns	3.43	ns
OD 40	0.0 - 0.5	27.8%	*135	ns	4.55	ns
SB-12	0.5 - 1.0	18.8%	30.8	ns	1.37	ns
8-29-05	1.0 - 3.0	13.9%	5.07	ns	1.32	ns
	0.0 - 0.5	12.6%	50.9	ns	27.1	17
SB-13 8-29-05	0.5 - 1.0	36.1%	*133	ns	10.9	ns
0-29-05	1.0 - 3.0	40.3%	16.6	ns	2.93	ns
0.0	0.0 - 0.5	37.9%	4.25	ns	4.26	ns
SB-14 8-29-05	0.5 - 1.0	31.6%	*129	ns	16.5	ns
0-29-05	1.0 - 3.0	14.3%	61.9	ns	8.55	ns
	0.0 - 0.5	32.9%	14.5	ns	16.4	ns
SB-15 8-30-05	0.5 - 1.0	14.7%	15.9	ns	2.84	ns
8-30-05	1.0 - 3.0	29.7%	86.3	ns	5.01	ns
05.40	0.0 - 0.5	13.4%	5.98	ns	18.2	11
SB-16 8-30-05	0.5 - 1.0	16.2%	10.3	ns	2.81	ns
0-30-03	1.0 - 3.0	23.8%	9.30	ns	1.93	ns
05.45	0.0 - 0.5	35.1%	88.3	ns	8.29	ns
SB-17 8-30-05	0.5 - 1.0	27.7%	82.8	ns	11.6	ns
0-30-03	1.0 - 3.0	28.2%	66.0	ns	4,99	ns
OD 40	0.0 - 0.5	21.6%	52.3	ns	23.5	ns
SB-18 8-30-05	0.5 - 1.0	31.6%	1070	219	15.3	ns
0-30-03	1.0 - 3.0	14.7%	*106	124	2,58	ns
SB-19	0.0 - 0.5	29.7%	10.7	ns	11.2	ns
8-30-05	0.5 - 1.0	16.6%	66.5	ns	4.78	ns
	1.0 - 3.0	48.4%	553	ns	7.62	ns
SB-20	0.0 - 0.5	28.9%	2.45	ns	1.15	ns
8-30-05	0.5 - 1.0	18.2% 25.3%	74.6 1140	ns	5.37	ns
MDC Chapter 24- SCTLs (mg/kg)	MDC Chapter 24-11, Residential Exposure			ns NA	12.0 2.1	ns NA
	-11, Commercial/In	dustrial	1400	NA	12	NA
MDC Chapter 24-	-11 Groundwater C	riteria (ug/L)	NA	15	NA.	10

Note:

NS - Sample archived at laboratory but Not Submitted for analysis.

BDL - Below laboratory detection limit

TABLE 7 SOIL ANALYTICAL RESULTS - As & Pb (Page 3 of 6)

Melreese Golf Course 1802 Northwest 37th Avenue Miami, Miami-Dade County, Florida DERM AW-284/File-9442

Soil Boring Location & Date	Sample Interval (Feet, BG)	Percent Moisture	Lead mg/kg	TCLP Lead ug/L	Arsenic mg/kg	SPLP Arsenic ug/L
SB 24	0.0 - 0.5	30.1%	26.1	ns	12.0	ns
SB-21 8-30-05	0.5 - 1.0	28.3%	76.2	ns	4.51	ns
0-30-03	1.0 - 3.0	25.9%	57.6	ns	2.58	ns
00.00	0.0 - 0.5	18.4%	*144	ns	23.4	ns
SB-22 8-30-05	0.5 - 1.0	12.6%	*147	ns	8.21	ns
	1.0 - 3.0	19.6%	*386	268	7.11	ns
27.00	0.0 - 0.5	22.3%	16.5	ns	14.1	ns
SB-23	0.5 - 1.0	23.2%	2.63	ns	4.92	ns
8-30-05	1.0 - 3.0	9.65%	*344	115	4.45	ns
	0.0 - 0.5	22.9%	*190	ns	6:19	ns
SB-24 8-30-05	0.5 - 1.0	22.6%	78.2	ns	4.77	ns
0-30-05	1.0 - 3.0	12.2%	64.4	ns	1.26	ns
	0.0 - 0.5	24.5%	*130	ns	5.23	ns
SB-25 8-30-05	0.5 - 1.0	20.0%	*155	158	8.18	ns
8-30-05	1.0 - 3.0	30.7%	1270	104	8.22	ns
00.00	0.0 - 0.5	11.5%	*186	ns	13.9	ns
SB-26 8-30-05	0.5 - 1.0	11.4%	*215	ns	7:29	ns
0-30-03	1.0 - 3.0	15.4%	*144	ns	4.09	ns
CD 07	0.0 - 0.5	16.8%	8.52	ns	20.8	ns
SB-27 8-30-05	0.5 - 1.0	21.6%	48.1	ns	33.3	ns
0-30-03	1.0 - 3.0	16.4%	33.2	ns	8.98	ns
	0.0 - 0.5	12.7%	15.6	ns	15.9	ns
SB-28 8-30-05	0.5 - 1.0	17.3%	40.6	ns	6.48	ns
0-30-03	1.0 - 3.0	8.04%	*111	ns	1.87	ns
SB-29	0.0 - 0.5	18.1%	1.94	ns	10.6	ns
8-31-05	0.5 - 1.0	17.3%	2.37	ns	2.85	ns
001-00	1.0 - 3.0	17.6%	20.1	ns	3190	ns
SB-30	0.0 - 0.5	13.0%	27.7	ns	16.7	ns
8-31-05	0.5 - 1.0	8.24%	27.3	ns	9.84	. ns
SCTLs (mg/kg)	1.0 -3.0 -11, Residential Ex	•	12.0 400	NA NA	7.20 2.1	ns NA
MDC Chapter 24- SCTLs (mg/kg)	-11, Commercial/In	dustrial	1400	NA	12	NA
MDC Chapter 24-	-11 Groundwater C	riteria (ug/L)	NA	15	NA	10

Note:

NS - Sample archived at laboratory but Not Submitted for analysis.

BDL - Below laboratory detection limit

TABLE 7 SOIL ANALYTICAL RESULTS - As & Pb (Page 4 of 6)

Melreese Golf Course 1802 Northwest 37th Avenue Miami, Miami-Dade County, Florida DERM AW-284/File-9442

Soil Boring Location & Date	Sample Interval (Feet, BG)	Percent Moisture	Lead mg/kg	TCLP Lead ug/L	Arsenic mg/kg	SPLP Arsenic ug/L
CD 24	0.0 - 0.5	13.5%	62	ns	4.97	ns
SB-31 8-31-05	0.5 - 1.0	18.4%	53.0	ns	2.61	ns
0-31-03	1.0 - 3.0	15.7%	*231	ns	5.32	ns
00.00	0.0 - 0.5	28.7%	4.30	ns	8.72	ns
SB-32	0.5 - 1.0	19.2%	67.9	ns	3.81	ns
8-31-05	1.0 - 3.0	11.4%	*186	ns	2.55	ns
	0.0 - 0.5	9.60%	2.98	ns	2.25	ns
SB-33	0.5 - 1.0	20.6%	21.2	ns	3.98	ns
8-31-05	1.0 - 3.0	26.7%	647	ns	8.97	ns
	0.0 - 0.5	19.8%	20.6	ns	16.4	ns
SB-34	0.5 - 1.0	11.5%	51.2	ns	7.74	6
8-31-05	1.0 - 3.0	13.7%	89.7	ns	4.22	ns
	0.0 - 0.5	31.1%	3.97	ns	3.63	ns
SB-35	0.5 - 1.0	21.3%	8.42	ns	3,99	ns
8-31-05	1.0 - 3.0	11.9%	9.58	ns	1.37	ns
	0.0 - 0.5	21.2%	2.06	ns	4.75	ns
SB-36	0.5 - 1.0	21.4%	20.5	ns	14.4	ns
8-31-05	1.0 - 3.0	21.6%	25.4	ns	111.9	ns
	0.0 - 0.5	27.1%	4.36	ns	17.0	ns
SB-37 8-31-05	0.5 - 1.0	25.4%	21.1	ns	9.79	ns
0-31-05	1.0 - 3.0	11.2%	1.15	ns	0.732	ns
	0.0 - 0.5	19.0%	1.53	ns	21.5	ns
SB-38	0.5 - 1.0	10.9%	1.55	ns	9.84	ns
8-31-05	1.0 - 3.0	16.1%	5.11	ns	3.51	ns
CD 20	0.0 - 0.5	19.6%	2.54	ns	3,63	ns
SB-39 9-1-05	0.5 - 1.0	29.3%	14.6	ns	4.20	ns
3-1-03	1.0 - 3.0	21.4%	63.8	ns	7.65	ns
SB-40	0.0 - 0.5	29.1%	3.75	ns	10.7	ns
9-1-05	0.5 - 1.0	21.2%	*155	ns	5.19	ns
MDC Chantar 24	1.0 -3.0 11, Residential Ex	47.2%	*102	ns	7.87	ns
SCTLs (mg/kg)		•	400	NA	2.1	NA
MDC Chapter 24- SCTLs (mg/kg)	11, Commercial/In	dustrial	1400	NA	12	NA
MDC Chapter 24-	11 Groundwater C	riteria (ug/L)	NA	15	NA	10

Note:

NS - Sample archived at laboratory but Not Submitted for analysis.

BDL - Below laboratory detection limit

TABLE 7 SOIL ANALYTICAL RESULTS - As & Pb (Page 5 of 6)

Melreese Golf Course 1802 Northwest 37th Avenue Miami, Miami-Dade County, Florida DERM AW-284/File-9442

Soil Boring Location & Date	Sample Interval (Feet, BG)	Percent Moisture	Lead mg/kg	TCLP Lead ug/L	Arsenic mg/kg	SPLP Arsenic ug/L
OD 44	0.0 - 0.5	20.4%	6.29	ns	12.9	ns
SB-41 9-1-05	0.5 - 1.0	23.4%	*205	59	7.61	ns
3-1-03	1.0 - 3.0	24.6%	414	136	6.01	ns
07.40	0.0 - 0.5	44.7%	462	ns	11.7	ns
SB-42	0.5 - 1.0	16.2%	4.11	ns	5.01	ns
9-1-05	1.0 - 3.0	18.9%	9.19	ns	2.32	ns
	0.0 - 0.5	34.7%	3.06	ns	8.72	ns
SB-43	0.5 - 1.0	16.4%	5.94	ns	2.73	ns
9-1-05	1.0 - 3.0	21.4%	15.8	ns	8.62	ns
	0.0 - 0.5	29.6%	2.93	ns	27.4	ns
SB-44	0.5 - 1.0	12.8%	1.05	ns	5,72	ns
9-1-05	1.0 - 3.0	13.2%	1.12	ns	0.645	ns
	0.0 - 0.5	27.4%	1.16	ns	11,6	ns
SB-45 9-1-05	0.5 - 1.0	26.2%	*226	ns	7.60	ns
	1.0 - 3.0	17.7%	714	754	7.32	ns
	0.0 - 0.5	24.7%	10.4	ns	3.74	ns
SB-46	0.5 - 1.0	19.6%	99.2	ns	13.3	ns
9-1-05	1.0 - 3.0	17.6%	74.4	ns	2,55	ns
	0.0 - 0.5	20.1%	8.74	ns	17.3	ns
SB-47	0.5 - 1.0	12.0%	22.0	ns	5.80	7
9-1-05	1.0 - 3.0	12.6%	2.32	ns	4.03	ns
	0.0 - 0.5	31.9%	20.0		9.58	
SB-48	0.5 - 1.0	17.4%	76.6	ns	3.57	ns
9-1-05	1.0 - 3.0	14.7%	0.879	ns	0.774	ns
	0.0 - 0.5	28.5%	*213	ns ns	13.7	ns
SB-49	0.5 - 1.0	30.3%	4.19	ns	6.66 ve	ns
9-1-05	1.0 - 3.0	33.5%	*117	ns	2.50	ns
SB-50	0.0 - 0.5	32.7%	440	ns	23.9	ns
9-1-05	0.5 - 1.0	23.6%	*227	ns	6.22	ns
	1.0 -3.0	24.2%	*249	ns	3.68	ns
SCTLs (mg/kg)	-11, Residential Ex		400	NA	4.3 2.1	NA
MDC Chapter 24- SCTLs (mg/kg)	11, Commercial/In	dustrial	1400	NA	12	NA
MDC Chapter 24-	11 Groundwater C	riteria (ug/L)	NA	15	NA	10

Note:

NS - Sample archived at laboratory but Not Submitted for analysis.

BDL - Below laboratory detection limit

Limited Phase II Soil Assessment Report
Melreese Golf Course
1802 Northwest 37th Avenue
Miami, Miami-Dade County, Florida
October 26, 2005

4.0 CONCLUSIONS

The conclusions provided below are based on information obtained by PHI during implementation of the Limited Phase II Soil Assessment and our experience at somewhat similar sites incinerator ash and agrochemical-applied Arsenic sites in Miami-Dade County. Since the utilization and contaminant history of no two sites are ever the same, PHI reserves the right to make corrections or revisions to our recommendations based upon the availability of new or additional information. Based upon this investigation, indications are that portions of the subject property appear to have been affected through two distinct site activities that have resulted in the detection of elevated levels of Arsenic and Lead.

Arsenic

Arsenic was detected in the soils beneath the Melreese Golf Course, which has been in continuous operation for over 40 years. The detection of the elevated Arsenic concentrations is a common occurrence in Miami-Dade County golf courses and was the technical subject of a December 2002 DERM Technical Report entitled "Environmental Quality Monitoring at Five Municipal Golf Course in Miami-Dade". This technical report concluded that, based on DERM-sponsored sampling and analyses results, 94% of the surficial soil samples at the five golf courses exceeded the Residential MDC Chapter 24-11 SCTL of 0.7 mg/kg and that 87% of the soil samples exceeded the MDC Chapter 24-11 Commercial /Industrial SCTL of 3.7 mg/kg. The findings of the report further concluded that the golf course surficial soils contained a medial Arsenic concentration of 15.10 mg/kg and that all golf course soils contained a median Arsenic concentration of 5.6 mg/kg. Arsenic concentrations detected at the Melreese Golf Course are statistically similar to the DERM reported arsenic concentrations present at the five municipal golf courses in Miami Dade county summarized by PHI in **Table 2, Appendix A.**

Quite simply the elevated Arsenic concentrations detected at this site are the result of over 40 years of continuous application of various EPA-approved Arsenic-containing agrochemicals. Since these agrochemicals were applied in accordance with then-applicable EPA guidelines, their presence should be no surprise; and based on MDC Chapter 24-11, Section 24-11.1(2)(E)(3) guidelines should not be the source of any future regulatory action. It should also be understood that the City of Miami has no intentions of converting this

PETRO HYDRO, INC.

Environmental Engineering, General Contractors & Underground Utilities. G.C. License #: CG-C051799

TECHNICAL REPORT

TK Sheet 2

SURFACE WATER QUALITY REPORT

Melreese Golf Course

1802 Northwest 37th Avenue Miami, Miami-Dade County, Florida 33125 DERM AW-284/File-9442 PHI Project #05E031

November 2, 2005

DERM
POLLUTION CONTROL
DIVISION

Prepared for:

City of Miami – Department of Economic Development Miami Riverside Center 444 Southwest 2nd Avenue, 3rd Floor Miami, Florida 33130

Submitted by:

Petro Hydro, Inc. 10450 NW 31st Terrace Miami, Florida 33172 PHI Project #05E031

Prepared and Reviewed by:

Bahram Armakan, P.E. – Vice President Fla. Reg. Engineer No. 51280

1112105

Greg A. Mohr, P.G. – Senior Project Manager Fla. Lic. No. PG1403

Soil boring location (conducted August 29 - September 2, 2005)

Apparent incinerator ash

No apparent incinerator ash

Surface water sample location (conducted October 18, 2005)

←(8) Surface water sample (SW)

PETRO HYDRO, INC.

10450 NW 31 Terrace, Miami, Florida Phone: 305-477-0878 Fax: 305-594-8982

Sample Locations Arsenic (ug/L) Lead (ug/L)

250' Scale in feet

CITY OF MIAMI MELREESE GOLF COURSE

1802 NW 37th Avenue Miami, Florida

FIGURE 2

Surface Water Concentration Map

TABLE 1 SURFACE WATER ANALYTICAL RESULTS

Melreese Golf Course 1802 Northwest 37th Avenue Miami, Miami-Dade County, Florida DERM AW-284/File-9442 October 18, 2005

Surface Water Location	Sample Depth (below surface)	Arsenic (ug/L)	Lead (ug/L)	
SW-1	6 - 12 Inches	26	<5	
SW-2	6 - 12 Inches	41	<5	
SW-3	6 - 12 Inches	28	<5	
SW-4	6 - 12 Inches	28	<5	
SW-5	6 - 12 Inches	27	<5	
SW-6	6 - 12 Inches	29	<5	
SW-7	6 - 12 Inches	30	<5	
SW-8	6 - 12 Inches	20 36	<5	
SW-9	6 - 12 Inches		<5	
SW-10	6 - 12 Inches	<5	<5	
SW-11	6 - 12 Inches	<5	<5	
MDC Chapter 24-11 Gro	oundwater Criteria (ug/L)	10	15	
IDC Chapter 24-11 Fre criteria (ug/L)	shwater Surface Water	50	***	
MDC Chapter 24-11 Ma Criteria (ug/L)	rine Surface Water	50	8.5	

Note:

^{*** -} Not to exceed 10% above ambient, as set forth in MDC Section 24-42(4). Surface water samples collected in accordance with DEP-SOP-001/01 FS 21000 Surface Water Sampling procedures.

MIAMI-DADE COUNTY, FLORIDA

ENVIRONMENTAL RESOURCES MANAGEMENT
POLLUTION CONTROL DIVISION

33 S.W. 2nd AVENUE SUITE 800 MIAMI, FLORIDA 33130-1540 (305) 372-6817

July 8, 2004

CERTIFIED MAIL NO. 7000 1670 0005 4645 3468 RETURN RECEIPT REQUESTED

Joe Arriola, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

RE: Site Assessment Report Addendum (SARA)/No Further Action Plan (NFAP) dated June 14, 2004 and prepared by URS Corporation for the Notice of Violation dated March 11, 2003 for the International Links of Miami facility (AW-284/File# 9442) located at, near, or in the vicinity of 1802 NW 37th Avenue, Miami, Miami-Dade County, Florida.

Dear Mr. Arriola:

The Pollution Remediation Section of the Department of Environmental Resources Management (DERM) has reviewed the analytical results received June 22, 2004, for the above-referenced site. Based on the information, no further remedial action is required by the Pollution Remediation Section at this time. This approval pertains only to that area of this site addressed in the above-referenced report and does not relieve responsibility for any other areas of this site that may be found to be contaminated. If subsequent evidence indicates that undiscovered contamination remains from a previous discharge or if a new discharge has occurred, then further action will be required to address the contamination.

You are required to properly abandon all monitoring wells, except compliance wells required by DERM for release detection, within 60 days of receipt of this letter. The monitoring wells must be abandoned in accordance with the requirements of Rule 62-532.500(4), Florida Administrative Code. Any monitoring wells remaining are the responsibility of the property owner(s) and must be equipped with tight-sealing, locking caps and maintained to prevent any direct discharge to the groundwater of Miami-Dade County.

If you have any questions regarding this letter, please contact Rodolfo Rego of the Pollution Remediation Section at (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief
Pollution Remediation Section

RR pc:

Alberto Ruder, Director, City of Miami Parks and Recreation Department, 444 SW 2nd Ave, 8th Floor, Miami, Florida 33130

Paula Sessions, P.G., URS Corp., 7650 Corporate Center Drive, Suite 401, Miami, FL 33126 Charles DeLucca, Bunkers of Miami, 1802 NW 37th Ave, Miami, FL 33125

Environmental Resources Management

Pollution Control Division 33 SW 2nd Avenue • 7th Floor Miami, Florida 33130-1540 T 305-372-6700 F 305-372-6729

miamidade.gov

ADA Coordination Agenda Coordination Animal Services Art in Public Places Audit and Management Services

> Aviation Building

Building Code Compliance Business Development

Capital Improvements

Citizens' Independent Transportation Trust Commission on Ethics and Public Trust

Communications

Community Action Agency Community & Economic Development

Community Relations

Consumer Services

Corrections & Rehabilitation

Cultural Affairs Elections RE:

Emergency Management

Employee Relations

Empowerment Trust

rvironmental Resources Management

Fair Employment Practices

Enterprise Technology Services

Finance

Fire Rescue

General Services Administration Historic Preservation

Homeless Trust

Housing Agency

Housing Finance Authority

Human Services

Independent Review Panel

International Trade Consortium

luvenile Assessment Center Medical Examiner

Metro-Miami Action Plan

Metropolitan Planning Organization

Park and Recreation

Planning and Zoning Police

Procurement Management

Property Appraisal

Public Library System

Public Works Safe Neighborhood Parks

Solid Waste Management

Strategic Business Management

Team Metro

Task Force on Urban Economic Revitalization Vizcava Museum And Gardens

Water & Sewer

September 28, 2006

CERTIFIED MAIL NO. 7006 0810 0000 7057 2225 RETURN RECEIPT REQUESTED

Pedro Hernandez, City Manager City of Miami 444 Southwest 2nd Avenue Miami, Florida 33130

Section 18 Section

Northern Arsenic Area Supplemental Site Assessment Report dated August 15, 2006; Soil Sampling and Analyses Plan-Western Tree Area dated August 24, 2006; and Source Removal Soil Waste Disposal Tracking Manifests document dated September 19, 2006 and prepared by Petro Hydro, Inc. for the Grapeland Heights Park (HWR-594/File-9442) located at, near, or in the vicinity of 1550 NW 37th Ave, Miami, Miami-Dade County, Florida.

Dear Mr. Hernandez:

The Pollution Remediation Section of the Department of Environmental Resources Management (DERM) has reviewed the referenced submittals, received August 16, August 25, and September 19, 2006, respectively, and hereby offers the following comments:

Northern (TP-11) Arsenic Area:

1. The arsenic groundwater plume has been adequately defined in this area. Be advised that, based on the conditional closure option elected for this site, a proposal for groundwater monitoring, at a minimum, will be required upon completion of the site assessment activities. Furthermore, monitoring wells that have been destroyed may require replacement upon the proposal for the groundwater remedy (i.e. groundwater monitoring).

Be advised that DERM does not object to re-sampling the monitoring wells in this area to confirm the results prior to proposing a remedy (i.e. groundwater monitoring). However, if this is elected, monitoring well MW-29 shall be replaced and shall be sampled and analyzed for arsenic along with MW-30, MW-31, and MW-32.

2. There are no further requirements for arsenic in soil in this area.

Debring Excellence Frem Day

Quarterly Groundwater Monitoring Report

Grapeland Park Assessment 1550 NW 37th Avenue Miami, Florida HWR-0594/File# 9442

December 13, 2018 E Sciences Project Number 7-0189-008

ENGINEERING ENVIRONMENTAL ECOLOGICAL

Prepared for:

City of Miami 444 SW 2nd Avenue, 8th Floor Miami, Florida 33130

Submitted to:
Miami Dade County Department of Regulatory and Economic Resources
701 NW 1st Court, 4th Floor
Miami, Florida 33136

224 SE 9th Street • Fort Lauderdale, FL 33316 • Tel 954-484-8500 • Fax 954-484-5146 • www.esciencesinc.com

Table 1: Groundwater Analytical Summary
Grapeland Park
1550 NW 37th Avenue, Miami, Florida
HWR-0594/File#9442

Sample ID	Date	Arsenic (μg/L)
	04/19/2010	36
	05/27/2010	39
	05/29/2015	100
	08/21/2015	80.2
	12/03/2015	42.2
	03/16/2016	48.5
MW-A	01/09/2017	21.7
IVIVV-A	06/26/2017	15.0
	10/12/2017	4.5
	01/19/2018	17.7
	04/23/2018	41
	07/24/2018	1.49 U
	11/13/2018	1.49 U
	04/22/2010	7.4
	05/29/2015	5.0 U
	08/21/2015	21.9
	12/03/2015	5.21
	03/16/2016	6.61
	01/09/2017	7.91
MW-B	06/26/2017	5.0 U
	10/12/2017	17.2
	01/19/2018	10.00
	04/23/2018	8.3 I
	07/24/2018	5.59 I
	11/13/2018	7.3i
	07/13/2005	13
	10/06/2006	<5
	03/13/2009	<8.5 U
	07/01/2009	3.4
	07/30/2009	NS
	10/08/2009	2.2
MW-3R	04/19/2010	NS
	08/21/2015	6.61
	12/03/2015	5.0 U
	03/16/2016	5.0 U
	01/09/2017	3.11

0

 Θ

Table 1: Groundwater Analytical Summary Grapeland Park 1550 NW 37th Avenue, Miami, Florida HWR-0594/File#9442

Sample ID	Date	Arsenic (μg/L)
Sample ID		19
1	07/12/2005	15
-	10/06/2006	
	03/13/2009	<8.5 U
	07/01/2009	55
	07/30/2009	58
	10/08/2009	92
	04/19/2010	180
	05/29/2015	93.8
MW-9R	08/21/2015	99.6
	12/03/2015	101
	03/16/2016	110
	01/09/2017	61.4
	06/26/2017	26.2
	10/12/2017	19.4
	01/19/2018	29.0
	04/23/2018	8.7 I
	07/24/2018	5.76 I
	10/22/2009	5.8
	12/11/2009	6.4
GHP-IW (Former Irrigation Well)	04/19/2010	14
	05/27/2010	4.7
	05/29/2015	15.7
	08/21/2015	12.1
	02/10/2016	5.0 U
	01/09/2017	2.5 U
	07/19/2017	5.0 U
	09/26/2017	1.49 U
IW-R (Replacement Irrigation Well)	01/19/2018	3.61
	04/23/2018	1.49 U
	08/08/2018	1.49U
	00/00/2020	
	07/11/2005	20
	11/11/2005	40
	03/13/2009	<8.5 U
	07/01/2009	49
MW-29R		50
	07/30/2009	70
	10/08/2009	
	04/19/2010	51
	11/11/2005	40
	06/29/2006	30
	03/13/2009	<8.5 U
	07/01/2009	27
MW-30R	07/30/2009	41
	10/08/2009	49
	04/19/2010	NS NS
	1 12/14/3010	

Table 1: Groundwater Analytical Summary Grapeland Park 1550 NW 37th Avenue, Miami, Florida HWR-0594/File#9442

Sample ID	Date	Arsenic (μg/L)
	11/11/2005	76
	06/27/2006	32
	03/17/2009	<u>360</u>
	07/01/2009	100
MW-31	07/30/2009	<u>180</u>
	10/08/2009	<u>280</u>
	04/19/2010	NS
	01/09/2017	114
	08/03/2006	<5
	03/17/2009	<8.5 U
	07/01/2009	1.3
MW-32R	07/30/2009	NS
	10/09/2009	<.36 U
	04/19/2010	NS
		10
		100

Notes:

μg/L: micrograms per liter

U: flag indicates concentration was below the method detection limit (MDL).

I: flag indicates concentration was between the MDL and practical quantitation limit (PQL).

GCTL: Groundwater Cleanup Target Level as per Chapter 24 of Miami-Dade Code of Ordinances

NADC: Natural Attenuation Default Concentration as per Table V, Ch. 62-777, FAC.

IW-R (Replacement Irrigation Well)

Bold: Indicates an exceedance of the applicable GCTL. **Bold:** Indicates an exceedance of the applicable NADC.

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

Melreese Golf Course 1400 NW 37th Ave & 1550 NW 37th Ave Miami, FL 33125 Project #: 2018-3057.JPH1

EE&G: Site Rehabilitation Plan August 2019

APPENDIX C

SOIL FIELD LOGS, 95% UCL CALCUTIONS & RESULTS
NOTE: LABORATORY DATA PROVIDED ON SEPARATE FILE DUE TO SIZE
RESTRICTIONS

Petro Hydro Soil Results - Supplemental SAR - September 2006 Melreese Golf Course 0 to 0.5-feet BLS Interval

Normal UCL Statistics for Unce	nsored Full Data Sets			Data Set
				8.09
User Selected Options	D11CL E 4C /4E /2040 43	2.20.40.414		4.42
Date/Time of Computation	ProUCL 5.16/15/2019 12	2:39:19 AM		37.9
From File	WorkSheet.xls			11.5
Full Precision	OFF			5.13
Confidence Coefficient	95%			13.6
				2.32 2.38
60				
CO				32.5
Carranal Statistics				10.9
General Statistics		FO Newsberr of Distinct Observations	47	34.5
Total Number of Observations		50 Number of Distinct Observations	47	4.55
A distance		Number of Missing Observations	0	27.1
Minimum		1.15 Mean	13.02	4.26
Maximum		37.9 Median	11.55	16.4
SD		8.848 SD of logged Data	0.795	18.2
Coefficient of Variation		0.68 Skewness	0.952	8.29
				23.5
Normal GOF Test				11.2
Shapiro Wilk Test Statistic		0.916 Shapiro Wilk GOF Test		1.15
5% Shapiro Wilk Critical Value		0.947 Data Not Normal at 5% Significance Level		12
Lilliefors Test Statistic		0.111 Lilliefors GOF Test		23.4
5% Lilliefors Critical Value		0.125 Data appear Normal at 5% Significance Level		14.1
Data appear Approximate Norr	nal at 5% Significance Level			6.19
				5.23
Assuming Normal Distribution				13.9
95% Normal UCL		95% UCLs (Adjusted for Skewness)		12.9
95% Student's-t UCL		15.11 95% Adjusted-CLT UCL (Chen-1995)	15.25	11.7
		95% Modified-t UCL (Johnson-1978)	15.14	8.72
				27.4
Suggested UCL to Use				11.6
95% Student's-t UCL		15.11		3.74
		The state of the same of		17.3
	, , ,	ribution passing one of the GOF test		9.58
When applicable, it is suggeste	d to use a UCL based upon a	a distribution (e.g., gamma) passing both GOF tests in ProUG	IL .	13.7
				23.9
		e provided to help the user to select the most appropriate 9	15% UCL.	20.8
Recommendations are based u	•	·	()	15.9
	•	simulation studies summarized in Singh, Maichle, and Lee	,	10.6
However, simulations results w	ill not cover all Real World (data sets; for additional insight the user may want to consu	lt a statistician.	16.7
				4.97
				8.72
				2.25
				16.4
				3.63
				4.75
				17
				21.5
				3.63
				10.7

Table A - 95% UCL

Arsenic in Soils @ 0 to 0.5-feet BLS

Gamma UCL Statistics for Uncensored Full Data Sets

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations	ProUCL 5.15/1/2019 3:43:11 PM WorkSheet.xls OFF 95% 2000			0 - 0.5 (Feet BLS) 16.9 17.3 23.0 156 47.8 13.3 18.8 29.8 2.3
General Statistics				12.6
Total Number of Observations	33	7 Number of Distinct Observations	36	8.7
		Number of Missing Observations	0	11.3
Minimum	0.0	6 Mean	19.67	2.5
Maximum	150	6 Median	14.3	31.0
SD	25.4	1 SD of logged Data	1.1	2.8
Coefficient of Variation	1.29	2 Skewness	4.496	0.94
				14.3
Gamma GOF Test				13.6
A-D Test Statistic	0.693	1 Anderson-Darling Gamma GOF Test		22.9
5% A-D Critical Value	0.774	4 Data appear Gamma Distributed at 5% Significance Level		27.8
K-S Test Statistic	0.149	9 Kolmogorov-Smirnov Gamma GOF Test		19.5
5% K-S Critical Value	0.149	9 Data Not Gamma Distributed at 5% Significance Level		12.8
Data appear to Follow Approxim	ate Gamma Distribution at 5% Sigr	nificance Level		30.2
				29.3
Gamma Statistics				19.4
k hat (MLE)	1.14	4 k star (bias corrected MLE)	1.066	19.5
Theta hat (MLE)	17.20	6 Theta star (bias corrected MLE)	18.46	5.5
nu hat (MLE)	84.3!	5 nu star (bias corrected)	78.85	3.6
MLE Mean (bias corrected)	19.6	7 MLE Sd (bias corrected)	19.06	27.5
		Approximate Chi Square Value (0.05)	59.39	27.7
Adjusted Level of Significance	0.043	1 Adjusted Chi Square Value	58.66	6.0
				7.7
Assuming Gamma Distribution				0.6
95% Approximate Gamma UCL	(use when n>=50) 26.13	2 95% Adjusted Gamma UCL (use when n<50)	26.45	9.2
				3.4
Suggested UCL to Use				20.4
95% Adjusted Gamma	UCL 26.45			12.0

Data Set:

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Table A-2 - 95% UCL

Arsenic in Soils @ 0 to 0.5-feet BLS (Less 156 mg/Kg Hotspot - Removed From Dataset)

Normal UCL Statistics for Uncensored Full Data Sets

Normal UCL Statistics for Uncens	sored Full Data Sets			
				Data Set:
User Selected Options				0 - 0.5 (Feet BLS)
Date/Time of Computation	ProUCL 5.16/15/2019 12:52:19 AN	Л		16.9
From File	WorkSheet.xls			17.3
Full Precision	OFF			23.0
Confidence Coefficient	95%		Note: 156 mg/Kg Removed	
				47.8
				13.3
C0				18.8
				29.8
General Statistics				2.3
Total Number of Observations	36	Number of Distinct Observations	35	12.6
		Number of Missing Observations	0	8.7
Minimum	0.6	Mean	15.89	11.3
Maximum	47.8	Median	13.95	2.5
SD		SD of logged Data	1.025	31.0
Coefficient of Variation	0.685	Skewness	0.666	2.8
				0.94
Normal GOF Test				14.3
Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test		13.6
5% Shapiro Wilk Critical Value	0.935	Data appear Normal at 5% Significance Level		22.9
Lilliefors Test Statistic	0.0857	Lilliefors GOF Test		27.8
5% Lilliefors Critical Value	0.145	Data appear Normal at 5% Significance Level		19.5
Data appear Normal at 5% Signif	icance Level			12.8
				30.2
Assuming Normal Distribution				29.3
95% Normal UCL		95% UCLs (Adjusted for Skewness)		19.4
95% Student's-t UCL	18.95	95% Adjusted-CLT UCL (Chen-1995)	19.09	19.5
		95% Modified-t UCL (Johnson-1978)	18.99	5.5
				3.6
Suggested UCL to Use				27.5
95% Student's-t UCL	18.95			27.7
				6.0
Note: Suggestions regarding the	selection of a 95% UCL are provided	to help the user to select the most appropria	ate 95% UCL.	7.7
	on data size, data distribution, and s			0.6
·		n studies summarized in Singh, Maichle, and	Lee (2006).	9.2
	•	for additional insight the user may want to co	, ,	3.4
				20.4
				12.0

Table B - 95% UCL

Arsenic Soils @ 0.5 to 2-ft BLS (Less Highest Arsenic Value)

Gamma UCL Statistics for Uncens	ored Full Data Sets				0.5 - 2 (Feet E	BLS)
					15.5	
User Selected Options					2.3	
Date/Time of Computation	ProUCL 5.15/1/2019 3:5	52:59 PM			6.7	
From File	WorkSheet.xls				12	
Full Precision	OFF				7	
Confidence Coefficient	95%				0.15	
Number of Bootstrap Operations	2000				275	Removed from Data Set
					17.9	
					14.9	
CO					13.7	
					8.2	
General Statistics					5	
Total Number of Observations		36	Number of Distinct Observations	32	1.7	
			Number of Missing Observations	0	15.8	
Minimum		0.145	Mean	11.26	12	
Maximum		52.8	Median	9.7	10.4	
SD		10.78	SD of logged Data	1.342	9.8	
Coefficient of Variation		0.957	Skewness	2.093	13.3	
					8.2	
Gamma GOF Test					1.2	
A-D Test Statistic			Anderson-Darling Gamma GOF Test		16.1	
5% A-D Critical Value			Data appear Gamma Distributed at 5% Significance Level		0.73	
K-S Test Statistic			Kolmogorov-Smirnov Gamma GOF Test		30.4	
5% K-S Critical Value		0.151	Data appear Gamma Distributed at 5% Significance Level		36.4	
Data appear Gamma Distributed	at 5% Significance Level				2.7	
					9.6	
Gamma Statistics					2	
k hat (MLE)			k star (bias corrected MLE)	0.957	0.145	
Theta hat (MLE)			Theta star (bias corrected MLE)	11.78	12.5	
nu hat (MLE)			nu star (bias corrected)	68.87	5.1	
MLE Mean (bias corrected)		11.26	MLE Sd (bias corrected)	11.52	5.1	
			Approximate Chi Square Value (0.05)	50.77	22.7	
Adjusted Level of Significance		0.0428	Adjusted Chi Square Value	50.06	1.4	
					52.8	
Assuming Gamma Distribution					7.4	
95% Approximate Gamma UCL	(use when n>=50)	15.28	95% Adjusted Gamma UCL (use when n<50)	15.5	12	
_					12.7	J
Suggested LICL to Lise						

Suggested UCL to Use 95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

15.5

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Table C - 95% UCL

Arsenic Soil @ 2 to 4-ft BLS

Gamma UCL Statistics for Uncensored Full Data Sets 2 to 4-feet BLS 6.2 **User Selected Options** 0.97 Date/Time of Computation ProUCL 5.15/1/2019 4:03:49 PM 0.43 From File WorkSheet.xls 89.4 **Full Precision** OFF 24.3 **Confidence Coefficient** 0.52 95% **Number of Bootstrap Operations** 2000 32 26.9 7.8 C0 0.53 10 **General Statistics** 8.3 **Total Number of Observations** 37 Number of Distinct Observations 35 47 **Number of Missing Observations** 0 63 Minimum 18.46 0.135 Mean 14.4 Maximum 89.4 Median 10 3.0 SD 22.36 SD of logged Data 1.611 9.9 Coefficient of Variation 1.211 Skewness 1.718 4 12.8 Gamma GOF Test 29.5 A-D Test Statistic 0.208 Anderson-Darling Gamma GOF Test 49.7 5% A-D Critical Value 0.795 Data appear Gamma Distributed at 5% Significance Level 0.135 K-S Test Statistic 0.0711 Kolmogorov-Smirnov Gamma GOF Test 12.8 5% K-S Critical Value 0.151 Data appear Gamma Distributed at 5% Significance Level 26.4 Data appear Gamma Distributed at 5% Significance Level 7.1 1.6 **Gamma Statistics** 2.3 k hat (MLE) 0.678 k star (bias corrected MLE) 0.641 0.71 Theta hat (MLE) 27.21 Theta star (bias corrected MLE) 28.78 2.4 nu hat (MLE) 50.19 nu star (bias corrected) 47.46 4.1 MLE Mean (bias corrected) 18.46 MLE Sd (bias corrected) 23.05 3.5 Approximate Chi Square Value (0.05) 32.65 10 Adjusted Level of Significance 0.0431 Adjusted Chi Square Value 32.11 16.6 49.3

26.83 95% Adjusted Gamma UCL (use when n<50)

Suggested UCL to Use 95% Adjusted Gamma UCL

95% Approximate Gamma UCL (use when n>=50)

Assuming Gamma Distribution

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

27.28

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Data Set:

10.4

19.1 75.9

27.28

Table D - 95% UCL Arsenic Soils @ 4 to 6-ft BLS

Gamma UCL Statistics for Uncensored Full Data Sets

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations	ProUCL 5.15/1/2019 4:13 WorkSheet.xls OFF 95% 5 2000	:39 PM		
со				
General Statistics				
Total Number of Observations		15	Number of Distinct Observations	15
			Number of Missing Observations	0
Minimum		0.56	Mean	17.27
Maximum		78.1	Median	6.8
SD		21.9	SD of logged Data	1.302
Coefficient of Variation		1.268	Skewness	1.916
Canada COF Task				
Gamma GOF Test		0.456	Andrews Bading Course COSTest	
A-D Test Statistic			Anderson-Darling Gamma GOF Test	
5% A-D Critical Value K-S Test Statistic			Data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value			Data appear Gamma Distributed at 5% Significance Level	
Data appear Gamma Distributed	at 5% Significance Level	0.229	Data appear Gamma Distributed at 5% Significance Level	
Data appear Gamma Distributed	at 3/0 Significance Level			
Gamma Statistics				
k hat (MLE)		0.828	k star (bias corrected MLE)	0.707
Theta hat (MLE)		20.85	Theta star (bias corrected MLE)	24.42
nu hat (MLE)		24.85	nu star (bias corrected)	21.22
MLE Mean (bias corrected)		17.27	MLE Sd (bias corrected)	20.54
			Approximate Chi Square Value (0.05)	11.75
Adjusted Level of Significance		0.0324	Adjusted Chi Square Value	10.89
Assuming Gamma Distribution				
95% Approximate Gamma UCL	(use when n>=50)	31.18	95% Adjusted Gamma UCL (use when n<50)	33.64
Suggested UCL to Use				

95% Adjusted Gamma UCL 33.64

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 $These\ recommendations\ are\ based\ upon\ the\ results\ of\ the\ simulation\ studies\ summarized\ in\ Singh,\ Maichle,\ and\ Lee\ (2006).$

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Data Set:

4 to 6-ft BLS 4.2 8.2 78.1 3.6 40 3.4 18.2 6.4 12.4 47.7 0.56 22.5 6.8 4.8 2.2

EE&G: Site Rehabilitation Plan

APPENDIX D

GROUNDWATER FIELD LOGS & RESULTS
NOTE: LABORATORY DATA PROVIDED ON SEPARATE FILE DUE TO SIZE
RESTRICTIONS

CALIBRATION AND VERIFICATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000)

Boldly"X" this box if there is qualified data on this page.

Meter ID:

YSI 556 MPM # 7

Project:

Melreese Golf Course (2018-3057)

Notes: (1) Numbers ≤ 4 , are rounded down; numbers ≥ 5 are rounded up (e.g., 5.15 becomes 5.2).

- (2) Always wait for meter to stabilize before recording any readings.
- (3) For Calibrations, record calibrated meter reading. Do not record initial meter reading before calibration.

Circle/Fill In: Lab Calibration or Calibration/Verification on Site 3-04-2019

<u>Temperature (Quarterly) FT 1400</u> Date of Last Temperature Verification 2-18-2019

DO DEP SOP FT 1500	Name	Date	Time CT-ET	Temp	D.O. Chart mg/L	Meter D.O. mg/L	% DO	Probe Charge	Probe Gain	Pass / Fail	Lab / Field
Calibr.	Michael Van Ry/EE&G	3-04-2019	0820	25.2 C	100 %	8/ =	100			P	Р
ICV	Michael Van Ry/EE&G	3-04-2019	0825	25.2 C	100 %		100			Р	Р
CCV	Michael Van Ry/EE&G	3-04-2019	1555	26.7 C	100 %		101			Р	Р
CCV											

Report DO mg/L with one decimal figure and DO % saturation as a whole number with no decimals.

DO Acceptance criteria from Table ±0.3 mg/L.

Rapid-Pulse Sensors: DO Gain Range 0.7 to 1.4; DO Charge Range 25-75.

Optical: DO gain range 0.85 to 1.15; DO charge N/A. Steady-state & Galvanic Sensors: DO Gain & Charge N/A.

Spec. Cond. FT 1200	Name	Date	Time CT-ET	Lot#	Expir. Date	Standard µmhos/cm	Meter Reading µmhos/cm	Pass / Fail	Lab / Field
Calibr.	Michael Van Ry/EE&G	3-04-2019	0750	8GG805	7/2019	1.413	1.413	Р	Р
ICV	Michael Van Ry/EE&G	3-04-2019	0755	8GG805	7/2019	1.413	1.413	Р	Р
CCV	Michael Van Ry/EE&G	3-04-2019	1540	8GG805	7/2019	1.413	1.412	Р	Р
CCV									

Report specific conductance as a whole number with no decimal figure.

Conductivity Acceptance criteria ± 5%

pH DEP SOP FT 1100	Name	Date	Time CT-ET	Lot#	Expir. Date	pH Buffer SU	Meter reading SU	mV	Pass / Fail	Lab / Field
Calibr.	Michael Van Ry/EE&G	3-04-2019	0800	8GH706	8/2020	7.0	7.0		Р	Р
Calibr.	Michael Van Ry/EE&G	3-04-2019	0805	8GG386	7/2020	4.0	4.0		Р	Р
Calibr.	Michael Van Ry/EE&G	3-04-2019	0810	8GG016	7/2020	10.0	10.0		Р	Р
ICV	Michael Van Ry/EE&G	3-04-2019	0815	8GH706	8/2020	7.0	7.0		Р	Р
CCV	Michael Van Ry/EE&G	3-04-2019	1536	8GH706	8/2020	7.0	6.9		Р	Р
CCV										

Report pH with one decimal place; pH Acceptance criteria ±0.2 SU; mV pH7 Range 0±50; mV pH 4 Range +180±50; mV pH 10 Range -180±50; Slope from 7 to 10 and 4 to 7 must be between 165 and 180 mV

Depth (Quarterly)

Date of Last Depth Verification

Depth Sensor (Daily)	Name	Date	Time CT-ET	Zero the Sensor	ICV Value	Pass / Fail	Lab / Field
Pressure mode in air				0.000			

Turbidity Calibration Log (DEP SOPs FT1000 FT1600) Regional Operations Centers

Me	Date of La	ast Calib	ration: 3-04	1-2019 Pro		Melreese Golf Course Name: (2018-3057)			
QUARTERLY CALIBRATION:			Sampler Name:				te:		
All	Times Are : ETZ or	CTZ (circle one)		Tin	ne Performed	d (24 hr):			
Standard V Use Primary Formazin		Exp. Date	Lot#		librated 'es/No)	Next Value Show	<u>wn</u>		or Fail? cle One)
	_NTU	<u> </u>				NT	·U	F	F
	_NTU					NT	·U	F	P F
	_NTU					NT	'U	F	P F
	_NTU					NT	'U	F	P F
INITIAL CALIBRAT	ION VERIFICATION:		Sample	er Name	·	Date	/Time (24 hr):	
, , ,	ediately after quarterly cali	bration.							
PRIMARY FORMA Standard V		Exp. Date	<u>Lot #</u>	<u>R</u>	eading	Pass or Fail? *See Acceptance		v	
	NTU				NTU	Р			
Standard Valu	STANDARD QUARTERI Le Range Prev	ious Reading	Exp. Date		Lot #	New Reading	*Calcu	ılate us	able Range
	NTU	NTU				NT		eptance	e criteria below.
	NTU	NTU				NT			
	NTU	NTU				NT			
DAILY CONTINUE	IC CALIDDATION VEDI	FIGATION							
Date/Time (24 hr)	NG CALIBRATION VERI Sampler Name	Standard Type (circle one)	Standard \	/alue	Exp. Date	<u>Lot #</u>	Reading		Pass or Fail?* (Circle One)
	Michael Van Ry/EE&G	Formazin / Gel	10	NTU	12/2019	24641-01	10	_NTU	P F
3-04-2019 / 0822	Michael Van Ry/EE&G	Formazin / Gel	20	NTU	12/2019	24641-02	19.7	_NTU	P F
3-04-2019 / 0823	Michael Van Ry/EE&G	Formazin / Gel	100	— NTU	12/2019	24641-03	100.2	- NTU	P F
3-04-2019 / 0823	Michael Van Ry/EE&G	Formazin / Gel	800	— ntu	12/2019	24641-04	799	- _NTU	P F
3-04-2019 / 1600	Michael Van Ry/EE&G	Formazin / Gel	10	T U	12/2019	24641-01	10.1	_NTU	P F
3-04-2019 / 1600	Michael Van Ry/EE&G	Formazin / Gel	20	T U	12/2019	24641-02	19.9	_NTU	P F
3-04-2019 / 1601	Michael Van Ry/EE&G	Formazin / Gel	100	NTU	12/2019	24641-03	100	_NTU	PF
3-04-2019 / 1601	Michael Van Ry/EE&G	Formazin / Gel	800	NTU	12/2019	24641-04	797	_NTU	_
									P F
		_ Formazin / Gel		NTU				_NTU	P F
	·	_ Formazin / Gel		NTU				_NTU	P F
		_ Formazin / Gel		NTU				_NTU	ΡF
		_ Formazin / Gel		NTU				_NTU	ΡF

^{*}Acceptance Criteria:

CALIBRATION AND VERIFICATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000)

Boldly"X" this box if there is qualified data on this page.

Meter ID:

YSI 556 MPM # 7

Project:

Melreese Golf Course (2018-3057)

2-18-2019

Notes: (1) Numbers \leq 4, are rounded down; numbers \geq 5 are rounded up (e.g., 5.15 becomes 5.2).

- (2) Always wait for meter to stabilize before recording any readings.
- (3) For Calibrations, record calibrated meter reading. Do not record initial meter reading before calibration.

Circle/Fill In: Lab Calibration or Calibration/Verification on Site 3-11-2019

<u>Temperature (Quarterly) FT 1400</u> Date of Last Temperature Verification _

DO DEP SOP FT 1500	Name	Date	Time CT-ET	Temp	D.O. Chart mg/L	Meter D.O. mg/L	% DO	Probe Charge	Probe Gain	Pass / Fail	Lab / Field
Calibr.	Michael Van Ry/EE&G	3-11-2019	0820	26.4 C	100 %		100			Р	Р
ICV	Michael Van Ry/EE&G	3-11-2019	0825	26.4 C	100 %		100			Р	Р
CCV	Michael Van Ry/EE&G	3-11-2019	1545	28.9 C	100 %		100			Р	Р
CCV											

Report DO mg/L with one decimal figure and DO % saturation as a whole number with no decimals.

DO Acceptance criteria from Table ±0.3 mg/L.

Rapid-Pulse Sensors: DO Gain Range 0.7 to 1.4; DO Charge Range 25-75.

Optical: DO gain range 0.85 to 1.15; DO charge N/A. Steady-state & Galvanic Sensors: DO Gain & Charge N/A.

Spec. Cond. FT 1200	Name	Date	Time CT-ET	Lot#	Expir. Date	Standard µmhos/cm	Meter Reading µmhos/cm	Pass / Fail	Lab / Field
Calibr.	Michael Van Ry/EE&G	3-11-2019	0925	8GG805	7/2019	1.413	1.413	Р	Р
ICV	Michael Van Ry/EE&G	3-11-2019	0930	8GG805	7/2019	1.413	1.413	Р	Р
CCV	Michael Van Ry/EE&G	3-11-2019	1530	8GG805	7/2019	1.413	1.413	Р	Р
CCV									

Report specific conductance as a whole number with no decimal figure.

Conductivity Acceptance criteria ± 5%

pH DEP SOP FT 1100	Name	Date	Time CT-ET	Lot#	Expir. Date	pH Buffer SU	Meter reading SU	mV	Pass / Fail	Lab / Field
Calibr.	Michael Van Ry/EE&G	3-11-2019	0935	8GH706	8/2020	7.0	7.0		Р	Р
Calibr.	Michael Van Ry/EE&G	3-11-2019	0940	8GG386	7/2020	4.0	4.0		Р	Р
Calibr.	Michael Van Ry/EE&G	3-11-2019	0945	8GG016	7/2020	10.0	10.0		Р	Р
ICV	Michael Van Ry/EE&G	3-11-2019	0950	8GH706	8/2020	7.0	7.0		Р	Р
CCV	Michael Van Ry/EE&G	3-11-2019	1536	8GH706	8/2020	7.0	6.9		Р	Р
CCV										

Report pH with one decimal place; pH Acceptance criteria ±0.2 SU; mV pH7 Range 0±50; mV pH 4 Range +180±50; mV pH 10 Range -180±50; Slope from 7 to 10 and 4 to 7 must be between 165 and 180 mV

Depth (Quarterly)

Date of Last Depth Verification

Depth Sensor (Daily)	Name	Date	Time CT-ET	Zero the Sensor	ICV Value	Pass / Fail	Lab / Field
Pressure mode in air				0.000			

Turbidity Calibration Log (DEP SOPs FT1000 FT1600) Regional Operations Centers

Meter ID:_Hach 2100Q Unit #2			Date of L	ast Calik	oration: 3-1	1-2019 Pr	oject Name:		se Golf Course 3057)
QUARTERLY CAL	IBRATION:		Sample	er Name):	Da	ite:		
Al	II Times Are : ETZ or	CTZ (circle one)		Tin	ne Performed	d (24 hr):			
<u>Standard</u> Use Primary Formazi		Exp. Date	Lot#		librated Yes/No)	Next Value Sho	<u>wn</u>		or Fail? cle One)
	NTU					NT	ſU	F	P F
	NTU					NT	ſU	F	P F
	NTU					NT	ſU	F	P F
	NTU					NT	ΓU	F	P F
INITIAL CALIBRA	TION VERIFICATION:		Sample	er Name	::	Date		r):	
, , ,	mediately after quarterly cal	bration.							
PRIMARY FORM. Standard		Exp. Date	<u>Lot #</u>	<u>R</u>	<u>eading</u>	Pass or Fail? *See Acceptance		w	
	NTU				NTU	,			
Standard Val	<u>STANDARD QUARTERI</u> ue Range <u>Prev</u>	ious Reading	Exp. Date		<u>Lot #</u>	New Reading	*Calc	ulate us	able Range sing new reading e criteria below.
	NTU	NTU				NT		.eptunci	e criteria below.
	NTU	NTU				NT	 [U		
	NTU	NTU				NT			
DAILY CONTINUE	INC CALIDDATION VEDI	FICATION							
Date/Time (24 hr)	NG CALIBRATION VERI	Standard Type (circle one)	Standard \	<u>/alue</u>	Exp. Date	<u>Lot #</u>	Reading		Pass or Fail?* (Circle One)
3-11-2019 / 0830	Michael Van Ry/EE&G	Formazin / Gel	10	NTU	12/2019	24641-01	10	_NTU	P F
3-11-2019 / 0830	Michael Van Ry/EE&G	Formazin / Gel	20	NTU	12/2019	24641-02	19.9	NTU	P F
3-11-2019 / 0831	Michael Van Ry/EE&G		100	— NTU	12/2019	24641-03	100.1	- NTU	P F
3-11-2019 / 0831	Michael Van Ry/EE&G		800	NTU	12/2019	24641-04	800	NTU	P F
3-11-2019 / 1600	Michael Van Ry/EE&G	Formazin / Gel	10	T U	12/2019	24641-01	10.1	v.o	P F
3-11-2019 / 1600	Michael Van Ry/EE&G	Formazin / Gel	20	NTU	12/2019	24641-02	20	v.o	P F
3-11-2019 / 1601	Michael Van Ry/EE&0		100		12/2019	24641-03	100		
3-11-2019 / 1601	Michael Van Ry/EE&G	Formazin / Gel	800	NTU	12/2019	24641-04	799	_NTU	P F
		Formazin / Gel		NTU			-	_NTU	P F
		_ Formazin / Gel		NTU			<u> </u>	_NTU	P F
		_ Formazin / Gel		NTU			-	_NTU	PΕ
	_	_ Formazin / Gel	·	NTU				_NTU	PΕ
		_ Formazin / Gel		NTU				_NTU	ΡF

^{*}Acceptance Criteria:

CALIBRATION AND VERIFICATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000)

Boldly"X" this box if there is qualified data on this page.

Meter ID:

YSI 556 MPM # 7

Project:

Melreese Golf Course (2018-3057)

Notes: (1) Numbers ≤ 4 , are rounded down; numbers ≥ 5 are rounded up (e.g., 5.15 becomes 5.2).

- (2) Always wait for meter to stabilize before recording any readings.
- (3) For Calibrations, record calibrated meter reading. Do not record initial meter reading before calibration.

Circle/Fill In: Lab Calibration or Calibration/Verification on Site 3-26-2019

<u>Temperature (Quarterly) FT 1400</u> Date of Last Temperature Verification 2-18-2019

DO DEP SOP FT 1500	Name	Date	Time CT-ET	Temp	D.O. Chart mg/L	Meter D.O. mg/L	% DO	Probe Charge	Probe Gain	Pass / Fail	Lab / Field
Calibr.	Jennifer Vega/EE&G	3-26-2019	0825	24.9 C	100 %		100			Р	Р
ICV	Jennifer Vega/EE&G	3-26-2019	0835	24.9 C	100 %		100			Р	Р
CCV	Jennifer Vega/EE&G	3-26-2019	0355	26.5 C	100 %		99			Р	Р
CCV											

Report DO mg/L with one decimal figure and DO % saturation as a whole number with no decimals.

DO Acceptance criteria from Table ±0.3 mg/L.

Rapid-Pulse Sensors: DO Gain Range 0.7 to 1.4; DO Charge Range 25-75.

Optical: DO gain range 0.85 to 1.15; DO charge N/A. Steady-state & Galvanic Sensors: DO Gain & Charge N/A.

Spec. Cond. FT 1200	Name	Date	Time CT-ET	Lot#	Expir. Date	Standard µmhos/cm	Meter Reading µmhos/cm	Pass / Fail	Lab / Field
Calibr.	Jennifer Vega/EE&G	3-26-2019	0745	8GG805	7/2019	1.413	1.413	Р	Р
ICV	Jennifer Vega/EE&G	3-26-2019	0750	8GG805	7/2019	1.413	1.413	Р	Р
CCV	Jennifer Vega/EE&G	3-26-2019	0340	8GG805	7/2019	1.413	1.411	Р	Р
CCV									

Report specific conductance as a whole number with no decimal figure.

Conductivity Acceptance criteria ± 5%

pH DEP SOP FT 1100	Name	Date	Time CT-ET	Lot#	Expir. Date	pH Buffer SU	Meter reading SU	mV	Pass / Fail	Lab / Field
Calibr.	Jennifer Vega/EE&G	3-26-2019	0755	8GH706	8/2020	7.0	6.9		Р	Р
Calibr.	Jennifer Vega/EE&G	3-26-2019	0800	8GG386	7/2020	4.0	4.0		Р	Р
Calibr.	Jennifer Vega/EE&G	3-26-2019	0805	8GG016	7/2020	10.0	10.1		Р	Р
ICV	Jennifer Vega/EE&G	3-26-2019	0810	8GH706	8/2020	7.0	7.0		Р	Р
CCV	Jennifer Vega/EE&G	3-26-2019	0345	8GH706	8/2020	7.0	6.9		Р	Р
CCV										

Report pH with one decimal place; pH Acceptance criteria ±0.2 SU; mV pH7 Range 0±50; mV pH 4 Range +180±50; mV pH 10 Range -180±50; Slope from 7 to 10 and 4 to 7 must be between 165 and 180 mV

Depth (Quarterly)

Date of Last Depth Verification

Depth Sensor (Daily)	Name	Date	Time CT-ET	Zero the Sensor	ICV Value	Pass / Fail	Lab / Field
Pressure mode in air				0.000			

Turbidity Calibration Log (DEP SOPs FT1000 FT1600) Regional Operations Centers

Meter ID: Hach 2100Q Unit #2		Date of L	ast Calik	oration: 3-26	6-2019 Pro	۸ ز) oject Name:		se Golf Course (057)	
QUARTERLY CAL	IBRATION:		Sample	er Name	:	Da	te:		
Al	ll Times Are : ETZ or	CTZ (circle one)		Tin	ne Performed	d (24 hr):			
<u>Standard</u> Use Primary Formazi		Exp. Date	Lot#		librated (es/No)	Next Value Show	<u>wn</u>		or Fail? le One)
	NTU _					NT	'U	Р	F
	NTU _					NT	·U	Р	F
	NTU _					NT	·U	Р	F
	NTU _					NT	·U	Р	F
	TION VERIFICATION: mediately after quarterly ca	libration.	Sample	er Name	:	Date	/Time (24 hr)	:	
PRIMARY FORM									
<u>Standard</u>	<u>Value</u>	Exp. Date	Lot #	<u>R</u>	<u>eading</u>	Pass or Fail? *See Acceptance			
	NTU _				NTU	Р	F		
SECONDARY GEL	. STANDARD QUARTER	LY VERIFICATION:							
Standard Val		vious Reading	Exp. Date		Lot#	New Reading	*Calcul	late usi	ble Range ing new reading criteria below.
	NTU	NTU_				NT		prance	errierra berow.
	NTU	NTU				NT	·U		
	NTU	NTU				NT	·U		
DAILY CONTINUI	NG CALIBRATION VER	IFICATION:							
<u>Date/Time</u> (24 hr)	Sampler Name	Standard Type (circle one)	Standard \	<u>/alue</u>	Exp. Date	Lot#	Reading		Pass or Fail?* (Circle One)
3-26-2019 / 0840	Jennifer Vega/EE&G	Formazin / Gel	10	NTU	12/2019	24641-01	10	NTU	P F
3-26-2019 / 0840	Jennifer Vega/EE&G	Formazin / Gel	20	NTU	12/2019	24641-02	19.7	NTU	P F
3-26-2019 / 0841	Jennifer Vega/EE&G	Formazin / Gel	100	NTU	12/2019	24641-03	100.2	NTU	P F
3-26-2019 / 0841	Jennifer Vega/EE&G	Formazin / Gel	800	NTU	12/2019	24641-04	799	NTU	P F
3-26-2019 / 1600	Jennifer Vega/EE&G	Formazin / Gel	10	NTU	12/2019	24641-01	10.1	NTU	P F
3-26-2019 / 1600	Jennifer Vega/EE&G	Formazin / Gel	20	— NTU	12/2019	24641-02	40.0	NTU	P F
3-26-2019 / 1601	Jennifer Vega/EE&G	Formazin / Gel	100	NTU	12/2019	24641-03	100	NTU	P F
3-26-2019 / 1601	Jennifer Vega/EE&G	Formazin / Gel	800	_NTU	12/2019	24641-04	797	NTU	P F
		Formazin / Gel		 NTU				NTU	P F
		Formazin / Gel	-	NTU				NTU	' ' P F
	_	Formazin / Gel		NTU				NTU	P F
		Formazin / Gel		NTU				NTU	
		FOITHAZIH / GEI		INTO				INIU	ΡF

^{*}Acceptance Criteria:

CALIBRATION AND VERIFICATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000)

Boldly"X" this box if there is qualified data on this page.

Meter ID:

YSI 556 MPM # 7

Project:

Melreese Golf Course (2018-3057)

Notes: (1) Numbers ≤ 4 , are rounded down; numbers ≥ 5 are rounded up (e.g., 5.15 becomes 5.2).

- (2) Always wait for meter to stabilize before recording any readings.
- (3) For Calibrations, record calibrated meter reading. Do not record initial meter reading before calibration.

Circle/Fill In: Lab Calibration or Calibration/Verification on Site 3-26-2019

<u>Temperature (Quarterly) FT 1400</u> Date of Last Temperature Verification 3-02-2019

DO DEP SOP FT 1500	Name	Date	Time CT-ET	Temp	D.O. Chart mg/L	Meter D.O. mg/L	% DO	Probe Charge	Probe Gain	Pass / Fail	Lab / Field
Calibr.	Kelsey Cortina - EE&G	3-26-2019	0915	25.3 C	100 %		100			Р	Р
ICV	Kelsey Cortina - EE&G	3-26-2019	0925	25.3 C	100 %		100			Р	Р
CCV	Kelsey Cortina - EE&G	3-26-2019	1350	27.8 C	100 %		97			Р	Р
CCV											

Report DO mg/L with one decimal figure and DO % saturation as a whole number with no decimals.

DO Acceptance criteria from Table ±0.3 mg/L.

Rapid-Pulse Sensors: DO Gain Range 0.7 to 1.4; DO Charge Range 25-75.

Optical: DO gain range 0.85 to 1.15; DO charge N/A. Steady-state & Galvanic Sensors: DO Gain & Charge N/A.

Spec.	Name	Date	Time	Lot #	Expir.	Standard	Meter	Pass	Lab
Cond. FT 1200			CT-ET		Date	μmhos/cm	Reading µmhos/cm	/ Fail	/ Field
Calibr.	Kelsey Cortina - EE&G	3-26-2019	0840	8GG805	7/2019	1.413	1.413	Р	Р
ICV	Kelsey Cortina - EE&G	3-26-2019	0845	8GG805	7/2019	1.413	1.413	Р	Р
CCV	Kelsey Cortina - EE&G	3-26-2019	1330	8GG805	7/2019	1.413	1.410	Р	Р
CCV									

Report specific conductance as a whole number with no decimal figure.

Conductivity Acceptance criteria ± 5%

pH DEP SOP FT 1100	Name	Date	Time CT-ET	Lot#	Expir. Date	pH Buffer SU	Meter reading SU	mV	Pass / Fail	Lab / Field
Calibr.	Kelsey Cortina - EE&G	3-26-2019	0850	8GH706	8/2020	7.0	7.0		Р	Р
Calibr.	Kelsey Cortina - EE&G	3-26-2019	0900	8GG386	7/2020	4.0	4.0		Р	Р
Calibr.	Kelsey Cortina - EE&G	3-26-2019	0905	8GG016	7/2020	10.0	10.0		Р	Р
ICV	Kelsey Cortina - EE&G	3-26-2019	0910	8GH706	8/2020	7.0	7.0		Р	Р
CCV	Kelsey Cortina - EE&G	3-26-2019	1340	8GH706	8/2020	7.0	6.9		Р	Р
CCV										

Report pH with one decimal place; pH Acceptance criteria ±0.2 SU; mV pH7 Range 0±50; mV pH 4 Range +180±50; mV pH 10 Range -180±50; Slope from 7 to 10 and 4 to 7 must be between 165 and 180 mV

Depth (Quarterly)

Date of Last Depth Verification

Depth Sensor (Daily)	Name	Date	Time CT-ET	Zero the Sensor	ICV Value	Pass / Fail	Lab / Field
Pressure mode in air				0.000			

Turbidity Calibration Log (DEP SOPs FT1000 FT1600) Regional Operations Centers

М	Date of Last Calibration: 3-26-2019 Project Name: (2018-30)							
QUARTERLY CAL	IBRATION:		Sampl	er Name	:	Dat	e:	
Al	ll Times Are : ETZ or	CTZ (circle one)		Tin	ne Performed	d (24 hr):	_	
<u>Standard</u> Use Primary Formazi		xp. Date	<u>Lot #</u>		<u>librated</u> /es/No)	Next Value Show	<u>ın F</u>	Pass or Fail? (Circle One)
	NTU					NTU	J	P F
	NTU					NTU	J	P F
	NTU			<u> </u>		NTU	J	P F
	NTU					NTU	J	P F
INITIAL CALIBRA	TION VERIFICATION:		Sampl	er Name	:	Date/		
	mediately after quarterly calil	bration.						
PRIMARY FORMA Standard		xp. Date	<u>Lot #</u>	<u>R</u>	eading	Pass or Fail?		
	NTU				NTU	P	F	
SECONDARY GEL	. STANDARD QUARTERL	Y VERIFICATION:						
Standard Val		ous Reading	Exp. Date		Lot#	New Reading		eptable Range te using new reading
	NTU	NTU				NTU		tance criteria below.
	NTU	NTU				NTU		
	NTU	NTU				NTU		
DAILY CONTINUI	NG CALIBRATION VERIF	ICATION:						
Date/Time (24 hr)	Sampler Name	Standard Type (circle one)	Standard '	<u>Value</u>	Exp. Date	<u>Lot #</u>	<u>Reading</u>	Pass or Fail?* (Circle One)
3-26-2019 / 0930	Kelsey Cortina - EE&G	Formazin / Gel	10	NTU	12/2019	24641-01	10N	ITU P F
3-26-2019 / 0930	Kelsey Cortina - EE&G	Formazin / Gel	20	NTU	12/2019	24641-02	20N	ITU P F
3-26-2019 / 0931	Kelsey Cortina - EE&G	Formazin / Gel	100	NTU	12/2019	24641-03	99.5	ITU P F
3-26-2019 / 0931	Kelsey Cortina - EE&G	Formazin / Gel	800	NTU	12/2019	24641-04	799 N	ITU P F
3-26-2019 / 1400	Kelsey Cortina - EE&G		10	NTU	12/2019	24641-01	10.2 N	ITU P F
3-26-2019 / 1400	Kelsey Cortina - EE&G	Formazin / Gel	20	 NTU	12/2019	24641-02		ITU P F
3-26-2019 / 1401	Kelsey Cortina - EE&G		100	— NTU	12/2019	24641-03		ITU P F
3-26-2019 / 1401	Kelsey Cortina - EE&G	Formazin / Gel	800	NTU	12/2019	24641-04		ITU P F
		Formazin / Gel		 NTU				ITU P F
		Formazin / Gel		 NTU				ITU P F
		Formazin / Gel		NTU				ITU P F
		Formazin / Gol		MTH.				ITII DE

^{*}Acceptance Criteria:

CALIBRATION AND VERIFICATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000)

Boldly"X" this box if there is qualified data on this page.

Meter ID:

YSI 556 MPM # 7

Project:

Melreese Golf Course (2018-3057)

Notes: (1) Numbers ≤ 4 , are rounded down; numbers ≥ 5 are rounded up (e.g., 5.15 becomes 5.2).

- (2) Always wait for meter to stabilize before recording any readings.
- (3) For Calibrations, record calibrated meter reading. Do not record initial meter reading before calibration.

Circle/Fill In: Lab Calibration or Calibration/Verification on Site 3-27-2019

<u>Temperature (Quarterly) FT 1400</u> Date of Last Temperature Verification 3-02-2019

DO DEP SOP FT 1500	Name	Date	Time CT-ET	Temp	D.O. Chart mg/L	Meter D.O. mg/L	% DO	Probe Charge	Probe Gain	Pass / Fail	Lab / Field
Calibr.	Kelsey Cortina - EE&G	3-27-2019	0830	25.3 C	100 %		100			Р	Р
ICV	Kelsey Cortina - EE&G	3-27-2019	0835	25.3 C	100 %		100			Р	Р
CCV	Kelsey Cortina - EE&G	3-27-2019	1045	27.8 C	100 %		97			Р	Р
CCV											

Report DO mg/L with one decimal figure and DO % saturation as a whole number with no decimals.

DO Acceptance criteria from Table ±0.3 mg/L.

Rapid-Pulse Sensors: DO Gain Range 0.7 to 1.4; DO Charge Range 25-75.

Optical: DO gain range 0.85 to 1.15; DO charge N/A. Steady-state & Galvanic Sensors: DO Gain & Charge N/A.

Spec.	Name	Date	Time	Lot #	Expir.	Standard	Meter	Pass	Lab
Cond.			CT-ET		Date	μmhos/cm	Reading	/	/ 5:-1-1
FT 1200							μmhos/cm	Fail	Field
Calibr.	Kelsey Cortina - EE&G	3-27-2019	0830	8GG805	7/2019	1.413	1.413	Р	Р
ICV	Kelsey Cortina - EE&G	3-27-2019	0835	8GG805	7/2019	1.413	1.413	Р	Р
ccv	Kelsey Cortina - EE&G	3-27-2019	1050	8GG805	7/2019	1.413	1.410	Р	Р
CCV									

Report specific conductance as a whole number with no decimal figure.

Conductivity Acceptance criteria ± 5%

pH DEP SOP FT 1100	Name	Date	Time CT-ET	Lot#	Expir. Date	pH Buffer SU	Meter reading SU	mV	Pass / Fail	Lab / Field
Calibr.	Kelsey Cortina - EE&G	3-27-2019	0848	8GH706	8/2020	7.0	7.0		Р	Р
Calibr.	Kelsey Cortina - EE&G	3-27-2019	0851	8GG386	7/2020	4.0	4.0		Р	Р
Calibr.	Kelsey Cortina - EE&G	3-27-2019	0854	8GG016	7/2020	10.0	10.0		Р	Р
ICV	Kelsey Cortina - EE&G	3-27-2019	0858	8GH706	8/2020	7.0	7.0		Р	Р
CCV	Kelsey Cortina - EE&G	3-27-2019	1055	8GH706	8/2020	7.0	6.9		Р	Р
CCV										

Report pH with one decimal place; pH Acceptance criteria ±0.2 SU; mV pH7 Range 0±50; mV pH 4 Range +180±50; mV pH 10 Range -180±50; Slope from 7 to 10 and 4 to 7 must be between 165 and 180 mV

Depth (Quarterly)

Date of Last Depth Verification

Depth Sensor (Daily)	Name	Date	Time CT-ET	Zero the Sensor	ICV Value	Pass / Fail	Lab / Field
Pressure mode in air				0.000			

Turbidity Calibration Log (DEP SOPs FT1000 FT1600) Regional Operations Centers

Meter ID: Hach 2100Q Unit #1			Date of L	ast Calib	ration: 3-27	7-2019 Pro	oject Name:		se Golf Course 3057)
QUARTERLY CALIB	RATION:		Sample	er Name	:	Dat	:e:		
All 1	Times Are : ETZ or	CTZ (circle one)		Tin	ne Performed	l (24 hr):	_		
Standard Va		xp. Date	<u>Lot #</u>		librated 'es/No)	Next Value Show	<u>/n</u>		or Fail? cle One)
	NTU			<u> </u>		NT	J	F	P F
	NTU					NT	J	F	P F
	NTU					NT	J	F	P F
	NTU					NT	J	F	P F
	ediately after quarterly calib	pration.	Sample	er Name	:	Date,	/Time (24 h	r):	
PRIMARY FORMAZ Standard Va		xp. Date	<u>Lot #</u>	<u>R</u>	eading	Pass or Fail? *See Acceptance		w	
	NTU			<u> </u>	NTU	Р	F		
Standard Value	TANDARD QUARTERLE Range Previ	Y VERIFICATION: ous ReadingNTU	Exp. Date		Lot#	New Reading	*Calc	culate us	able Range sing new reading e criteria below.
		NTU				NT	J		
		NTU				NT	J		
DAILY CONTINUING	G CALIBRATION VERIF	ICATION:							
<u>Date/Time</u> (24 hr)	Sampler Name	Standard Type (circle one)	Standard '	<u>Value</u>	Exp. Date	<u>Lot #</u>	Reading		Pass or Fail?* (Circle One)
	Kelsey Cortina - EE&G	Formazin / Gel	10	NTU	12/2019	24641-01	10.1	_NTU	P F
3-27-2019 / 0915	Kelsey Cortina - EE&G	Formazin / Gel	20	NTU	12/2019	24641-02	19.8	_NTU	ΡF
3-27-2019 / 0915	Kelsey Cortina - EE&G	Formazin / Gel	100	NTU	12/2019	24641-03	99.5	_NTU	P F
3-27-2019 / 0915	Kelsey Cortina - EE&G	Formazin / Gel	800	NTU	12/2019	24641-04	797	NTU	P F
3-27-2019 / 1100	Kelsey Cortina - EE&G	Formazin / Gel	10	NTU	12/2019	24641-01	10.2	NTU	P F
3-27-2019 / 1100	Kelsey Cortina - EE&G	Formazin / Gel	20	NTU	12/2019	24641-02	19.8	NTU	P F
3-27-2019 / 1100	Kelsey Cortina - EE&G	Formazin / Gel	100	 NTU	12/2019	24641-03	99.5	 NTU	P F
3-27-2019 / 1100	Kelsey Cortina - EE&G	Formazin / Gel	800	NTU	12/2019	24641-04	796	NTU	PF
		Formazin / Gel		NTU				 NTU	P F
		Formazin / Gel		 NTU				 NTU	P F
		Formazin / Gel		NTU				NTU	P F
		Formazin / Gel		NTU				NTU	P F

^{*}Acceptance Criteria:

CALIBRATION AND VERIFICATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000)

Boldly"X" this box if there is qualified data on this page.

Meter ID:

YSI 556 MPM # 7

Project:

Melreese Golf Course (2018-3057)

Notes: (1) Numbers \leq 4, are rounded down; numbers \geq 5 are rounded up (e.g., 5.15 becomes 5.2).

- (2) Always wait for meter to stabilize before recording any readings.
- (3) For Calibrations, record calibrated meter reading. Do not record initial meter reading before calibration.

Circle/Fill In: Lab Calibration or Calibration/Verification on Site 3-27-2019

<u>Temperature (Quarterly) FT 1400</u> Date of Last Temperature Verification 2-17-2019

DO DEP SOP FT 1500	Name	Date	Time CT-ET	Temp	D.O. Chart mg/L	Meter D.O. mg/L	% DO	Probe Charge	Probe Gain	Pass / Fail	Lab / Field
- 111	Russell Fernandez/EE&G	3-27-2019	0650	24.9 C	100 %	8/ =	100			P	P
ICV	Russell Fernandez/EE&G	3-27-2019	0700	24.9 C	100 %		100			Р	Р
CCV	Russell Fernandez/EE&G	3-27-2019	1325	26.5 C	100 %		99			Р	Р
CCV											

Report DO mg/L with one decimal figure and DO % saturation as a whole number with no decimals.

DO Acceptance criteria from Table ±0.3 mg/L.

Rapid-Pulse Sensors: DO Gain Range 0.7 to 1.4; DO Charge Range 25-75.

Optical: DO gain range 0.85 to 1.15; DO charge N/A. Steady-state & Galvanic Sensors: DO Gain & Charge N/A.

Spec. Cond. FT 1200	Name	Date	Time CT-ET	Lot#	Expir. Date	Standard µmhos/cm	Meter Reading µmhos/cm	Pass / Fail	Lab / Field
Calibr.	Russell Fernandez/EE&G	3-27-2019	0620	8GG805	7/2019	1.413	1.413	Р	Р
ICV	Russell Fernandez/EE&G	3-27-2019	0625	8GG805	7/2019	1.413	1.413	Р	Р
CCV	Russell Fernandez/EE&G	3-27-2019	1310	8GG805	7/2019	1.413	1.411	Р	Р
CCV									

Report specific conductance as a whole number with no decimal figure.

Conductivity Acceptance criteria ± 5%

pH DEP SOP FT 1100	Name	Date	Time CT-ET	Lot #	Expir. Date	pH Buffer SU	Meter reading SU	mV	Pass / Fail	Lab / Field
Calibr.	Russell Fernandez/EE&G	3-27-2019	0630	8GH706	8/2020	7.0	6.9		Р	Р
Calibr.	Russell Fernandez/EE&G	3-27-2019	0635	8GG386	7/2020	4.0	4.0		Р	Р
Calibr.	Russell Fernandez/EE&G	3-27-2019	0640	8GG016	7/2020	10.0	10.1		Р	Р
ICV	Russell Fernandez/EE&G	3-27-2019	0645	8GH706	8/2020	7.0	7.0		Р	Р
CCV	Russell Fernandez/EE&G	3-27-2019	1315	8GH706	8/2020	7.0	6.9		Р	Р
CCV										

Report pH with one decimal place; pH Acceptance criteria ±0.2 SU; mV pH7 Range 0±50; mV pH 4 Range +180±50; mV pH 10 Range -180±50; Slope from 7 to 10 and 4 to 7 must be between 165 and 180 mV

Depth (Quarterly)

Date of Last Depth Verification

Depth Sensor (Daily)	Name	Date	Time CT-ET	Zero the Sensor	ICV Value	Pass / Fail	Lab / Field
Pressure mode in air				0.000			

Turbidity Calibration Log (DEP SOPs FT1000 FT1600) Regional Operations Centers

Meter ID: Hach 21000	Date of La	ast Calib	ration: 3-27	7-2019 Pr	oject Name:		se Golf Course 3057)	
QUARTERLY CALIBRATION:		Sample	r Name	<u> </u>	Da	ite:		
All Times Are : ETZ	or CTZ (circle one)		Tin	ne Performed	d (24 hr):			
<u>Standard Value</u> Use Primary Formazin Standards	Exp. Date	Lot#		librated 'es/No)	Next Value Show	<u>wn</u>		or Fail? cle One)
NTU					NT	·U	F	P F
NTU					NT	·U	F	P F
NTU					NT	·U	F	P F
NTU					NT	-U	F	P F
INITIAL CALIBRATION VERIFICATION	=	Sample	er Name	:	Date	:/Time (24 hr	-):	
Only perform ICV immediately after quarterly PRIMARY FORMAZIN ICV:	calibration.							
Standard Value	Exp. Date	<u>Lot #</u>	<u>R</u>	eading	Pass or Fail? *See Acceptance		W	
NTU				NTU	Р	F		
SECONDARY GEL STANDARD QUART	ERLY VERIFICATION:							
	Previous Reading	Exp. Date		<u>Lot #</u>	New Reading	*Calcı	ulate us	able Range
NTU	NTU				NT		ершинс	e criteria below.
 NTU	NTU				NT			
NTU	NTU				NT			
DAILY CONTINUING CALIBRATION V	FRIFICATION:							
<u>Date/Time</u> <u>Sampler Name</u>	Standard Type (circle one)	Standard V	/alue	Exp. Date	<u>Lot #</u>	Reading		Pass or Fail?* (Circle One)
3-27-2019 / 0705 Russell Fernandez/E	E&G Formazin / Gel	10	_NTU	12/2019	24641-01	10	_NTU	P F
3-27-2019 / 0705 Russell Fernandez/E	E&G Formazin / Gel	20	_NTU	12/2019	24641-02	19.7	_NTU	P F
3-27-2019 / 0706 Russell Fernandez/E	E&G Formazin / Gel	100	_NTU	12/2019	24641-03	100.2	_NTU	P F
3-27-2019 / 0706 Russell Fernandez/E	E&G Formazin / Gel	800	NTU	12/2019	24641-04	800	NTU	P F
3-27-2019 / 1330 Russell Fernandez/E		10	_ _NTU	12/2019	24641-01	10.1	_ _NTU	P F
3-27-2019 / 1330 Russell Fernandez/E		20	— NTU	12/2019	24641-02	19.9	– _NTU	P F
3-27-2019 / 1331 Russell Fernandez/E		100	NTU	12/2019	24641-03	100	_NTU	P F
3-27-2019 / 1311 Russell Fernandez/E		800	_NTU	12/2019	24641-04	798	 _NTU	P F
	Formazin / Gel		NTU				_NTU	<u>'</u> '' Р F
	- 							
	Formazin / Gel		_NTU				_NTU	P F
	Formazin / Gel		_NTU			<u> </u>	_NTU	P F
	Formazin / Gel		NTU				_NTU	ΡF

^{*}Acceptance Criteria:

CALIBRATION AND VERIFICATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000)

Boldly"X" this box if there is qualified data on this page.

Meter ID:

YSI 556 MPM # 7

Project:

Melreese Golf Course (2018-3057)

2-17-2019

Notes: (1) Numbers ≤ 4 , are rounded down; numbers ≥ 5 are rounded up (e.g., 5.15 becomes 5.2).

- (2) Always wait for meter to stabilize before recording any readings.
- (3) For Calibrations, record calibrated meter reading. Do not record initial meter reading before calibration.

Circle/Fill In: Lab Calibration or Calibration/Verification on Site 4-08-2019

<u>Temperature (Quarterly) FT 1400</u> Date of Last Temperature Verification ____

DO DEP SOP FT 1500	Name	Date	Time CT-ET	Temp	D.O. Chart mg/L	Meter D.O. mg/L	% DO	Probe Charge	Probe Gain	Pass / Fail	Lab / Field
Calibr.	Russell Fernandez/EE&G	4-08-2019	0920	25.5 C	100 %		100			Р	Р
ICV	Russell Fernandez/EE&G	4-08-2019	0930	25.5 C	100 %		100			Р	Р
CCV	Russell Fernandez/EE&G	4-08-2019	1450	27.2 C	100 %		99			Р	Р
CCV											

Report DO mg/L with one decimal figure and DO % saturation as a whole number with no decimals.

DO Acceptance criteria from Table ±0.3 mg/L.

Rapid-Pulse Sensors: DO Gain Range 0.7 to 1.4; DO Charge Range 25-75.

Optical: DO gain range 0.85 to 1.15; DO charge N/A. Steady-state & Galvanic Sensors: DO Gain & Charge N/A.

Spec. Cond.	Name	Date	Time CT-ET	Lot #	Expir. Date	Standard µmhos/cm	Meter Reading	Pass /	Lab /
FT 1200							μmhos/cm	Fail	Field
Calibr.	Russell Fernandez/EE&G	4-08-2019	0850	8GG805	7/2019	1.413	1.411	Р	Р
ICV	Russell Fernandez/EE&G	4-08-2019	0855	8GG805	7/2019	1.413	1.413	Р	Р
CCV	Russell Fernandez/EE&G	4-08-2019	1430	8GG805	7/2019	1.413	1.413	Р	Р
CCV									

Report specific conductance as a whole number with no decimal figure.

Conductivity Acceptance criteria ± 5%

pH DEP SOP FT 1100	Name	Date	Time CT-ET	Lot#	Expir. Date	pH Buffer SU	Meter reading SU	mV	Pass / Fail	Lab / Field
Calibr.	Russell Fernandez/EE&G	4-08-2019	0900	8GH706	8/2020	7.0	7.0		Р	Р
Calibr.	Russell Fernandez/EE&G	4-08-2019	0905	8GG386	7/2020	4.0	4.2		Р	Р
Calibr.	Russell Fernandez/EE&G	4-08-2019	0910	8GG016	7/2020	10.0	10.1		Р	Р
ICV	Russell Fernandez/EE&G	4-08-2019	0915	8GH706	8/2020	7.0	7.1		Р	Р
CCV	Russell Fernandez/EE&G	4-08-2019	1440	8GH706	8/2020	7.0	7.0		Р	Р
CCV										

Report pH with one decimal place; pH Acceptance criteria ±0.2 SU; mV pH7 Range 0±50; mV pH 4 Range +180±50; mV pH 10 Range -180±50; Slope from 7 to 10 and 4 to 7 must be between 165 and 180 mV

Depth (Quarterly)

Date of Last Depth Verification

Depth Sensor (Daily)	Name	Date	Time CT-ET	Zero the Sensor	ICV Value	Pass / Fail	Lab / Field
Pressure mode in air				0.000			

Turbidity Calibration Log (DEP SOPs FT1000 FT1600) Regional Operations Centers

Meter ID: Hach 21000	Q Unit #2	Date of La	ast Calib	oration: 4-08	3-2019 Pr		Melreese Golf Course nme: (2018-3057)		
QUARTERLY CALIBRATION:		Sample	r Name	:	Da	ite:			
All Times Are : ETZ	or CTZ (circle one)		Tin	ne Performed	d (24 hr):				
<u>Standard Value</u> Use Primary Formazin Standards	Exp. Date	<u>Lot #</u>		librated /es/No)	Next Value Show	<u>wn</u>		or Fail? cle One)	
NTU					NT	·U	F	P F	
NTU					NT	·U	F	P F	
NTU			-		NT	·U	F	P F	
NTU					NT	-U	F	P F	
INITIAL CALIBRATION VERIFICATION		Sample	er Name	:	Date	e/Time (24 hr)):		
Only perform ICV immediately after quarterly PRIMARY FORMAZIN ICV :	o calibration.								
Standard Value	Exp. Date	<u>Lot #</u>	<u>R</u>	eading	Pass or Fail? *See Acceptance		,		
NTU				NTU	Р	F			
SECONDARY GEL STANDARD QUART	ERLY VERIFICATION:								
•	Previous Reading	Exp. Date		Lot#	New Reading	*Calcu	late us	able Range ing new reading e criteria below.	
NTU	NTU				NT		:pturice	e cinteria below.	
NTU	NTU				NT	 :U			
NTU	NTU				NT	·			
DAILY CONTINUING CALIBRATION V	ERIFICATION:								
<u>Date/Time</u> <u>Sampler Name</u> (24 hr)		Standard \	<u>/alue</u>	Exp. Date	<u>Lot #</u>	<u>Reading</u>		Pass or Fail?* (Circle One)	
4-08-2019 / 0935 Russell Fernandez/E	E&G Formazin / Gel	10	_NTU	12/2019	24641-01	10.2	_NTU	P F	
4-08-2019 / 0935 Russell Fernandez/E	E&G Formazin / Gel	20	_NTU	12/2019	24641-02	19.8	_NTU	P F	
4-08-2019 / 0936 Russell Fernandez/E	E&G Formazin / Gel	100	_NTU	12/2019	24641-03	100	_NTU	P F	
4-08-2019 / 0936 Russell Fernandez/E	E&G Formazin / Gel	800	_NTU	12/2019	24641-04	798	_NTU	P F	
4-08-2019 / 1455 Russell Fernandez/E		10	_ _NTU	12/2019	24641-01	10.1	- NTU	P F	
4-08-2019 / 1455 Russell Fernandez/E		20	 NTU	12/2019	24641-02	40.0	- _NTU	P F	
4-08-2019 / 1456 Russell Fernandez/E		100	NTU	12/2019	24641-03	100	_NTU	P F	
4-08-2019 / 1456 Russell Fernandez/E		800	_NTU	12/2019	24641-04	800	_NTU	P F	
	Formazin / Gel		NTU				_NTU	<u>'</u> '' Р F	
			NTU				_NTU	P F	
	Formazin / Gel						=		
	Formazin / Gel		NTU				_NTU	P F	
	Formazin / Gel		NTU				NTU	ΡF	

^{*}Acceptance Criteria:

CALIBRATION AND VERIFICATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000)

Boldly"X" this box if there is qualified data on this page.

Meter ID:

YSI 556 MPM # 7

Project:

Melreese Golf Course (2018-3057)

Notes: (1) Numbers \leq 4, are rounded down; numbers \geq 5 are rounded up (e.g., 5.15 becomes 5.2).

- (2) Always wait for meter to stabilize before recording any readings.
- (3) For Calibrations, record calibrated meter reading. Do not record initial meter reading before calibration.

Circle/Fill In: Lab Calibration or Calibration/Verification on Site 4-09-2019

<u>Temperature (Quarterly) FT 1400</u> Date of Last Temperature Verification 2-17-2019

DO DEP SOP FT 1500	Name	Date	Time CT-ET	Temp	D.O. Chart mg/L	Meter D.O. mg/L	% DO	Probe Charge	Probe Gain	Pass / Fail	Lab / Field
Calibr.	Russell Fernandez/EE&G	4-09-2019	0900	24.3 C	100 %		99			Р	Р
ICV	Russell Fernandez/EE&G	4-09-2019	0910	24.2 C	100 %		100			Р	Р
CCV	Russell Fernandez/EE&G	4-09-2019	1350	27.0 C	100 %		100			Р	Р
CCV											

Report DO mg/L with one decimal figure and DO % saturation as a whole number with no decimals.

DO Acceptance criteria from Table ±0.3 mg/L.

Rapid-Pulse Sensors: DO Gain Range 0.7 to 1.4; DO Charge Range 25-75.

Optical: DO gain range 0.85 to 1.15; DO charge N/A. Steady-state & Galvanic Sensors: DO Gain & Charge N/A.

Spec. Cond. FT 1200	Name	Date	Time CT-ET	Lot#	Expir. Date	Standard µmhos/cm	Meter Reading µmhos/cm	Pass / Fail	Lab / Field
Calibr.	Russell Fernandez/EE&G	4-09-2019	0830	8GG805	7/2019	1.413	1.412	Р	Р
ICV	Russell Fernandez/EE&G	4-09-2019	0835	8GG805	7/2019	1.413	1.413	Р	Р
CCV	Russell Fernandez/EE&G	4-09-2019	1330	8GG805	7/2019	1.413	1.411	Р	Р
CCV									

Report specific conductance as a whole number with no decimal figure.

Conductivity Acceptance criteria ± 5%

pH DEP SOP FT 1100	Name	Date	Time CT-ET	Lot#	Expir. Date	pH Buffer SU	Meter reading SU	mV	Pass / Fail	Lab / Field
Calibr.	Russell Fernandez/EE&G	4-09-2019	0840	8GH706	8/2020	7.0	6.9		Р	Р
Calibr.	Russell Fernandez/EE&G	4-09-2019	0845	8GG386	7/2020	4.0	3.8		Р	Р
Calibr.	Russell Fernandez/EE&G	4-09-2019	0850	8GG016	7/2020	10.0	10.0		Р	Р
ICV	Russell Fernandez/EE&G	4-09-2019	0855	8GH706	8/2020	7.0	7.0		Р	Р
CCV	Russell Fernandez/EE&G	4-09-2019	1340	8GH706	8/2020	7.0	6.9		Р	Р
CCV										

Report pH with one decimal place; pH Acceptance criteria ±0.2 SU; mV pH7 Range 0±50; mV pH 4 Range +180±50; mV pH 10 Range -180±50; Slope from 7 to 10 and 4 to 7 must be between 165 and 180 mV

Depth (Quarterly)

Date of Last Depth Verification

Depth Sensor (Daily)	Name	Date	Time CT-ET	Zero the Sensor	ICV Value	Pass / Fail	Lab / Field
Pressure mode in air				0.000			

Turbidity Calibration Log (DEP SOPs FT1000 FT1600) Regional Operations Centers

All Times Are : ETZ or CTZ (circle one) Time Performed (24 hr): Pass or Fail?	Meter ID: Hach 21000	Q Unit #2	Date of La	ast Calib	oration: 4-09	9-2019 Pr	Me oject Name: <u>(20</u>	elreese Golf Course 018-3057)
Standard Value Stan	QUARTERLY CALIBRATION:		Sample	r Name	:	Da	te:	
NTU	All Times Are : ETZ	or CTZ (circle one)		Tin	ne Performed	d (24 hr):		
NTU	<u>Standard Value</u> Use Primary Formazin Standards	Exp. Date	<u>Lot #</u>		-	Next Value Show	<u>wn </u> <u>F</u>	
NTU NTU	NTU					NT	Ū	P F
NTU	NTU					NT	U	P F
Note	NTU			-		NT	U	P F
Standard Value Exp. Date Lot # Reading Pass or Fail? (circle one) *See Acceptance Criteria Below *See Acceptance Crite	NTU					NT	U	P F
Standard Value Exp. Date Lot # Reading Pass or Fail? Idircle one **See Acceptance Criteria Below		_	Sample	r Name	:	Date	/Time (24 hr):	
Standard Value		y calibration.						
SECONDARY GEL STANDARD QUARTERLY VERIFICATION: Standard Value Range Previous Reading Exp. Date Lot # New Reading Acceptable Range *Calculate using new reading & acceptance criterio below.		Exp. Date	<u>Lot #</u>	<u>R</u>	<u>eading</u>			
Standard Value Range Previue Reading Exp. Date Lot # New Reading Acceptable Range *Colculate using new reading & occeptance criteria below.	NTU				NTU	Р	F	
Standard Value Range Previue Reading Exp. Date Lot # New Reading Acceptable Range *Colculate using new reading & occeptance criteria below.	SECONDARY GEL STANDARD QUART	TERLY VERIFICATION:						
NTU	•		Exp. Date		Lot #	New Reading	*Calcula	ite using new reading
NTU NTU	NTU	NTU				NT	•	tunce criteria below.
DAILY CONTINUING CALIBRATION VERIFICATION: Date/Time	NTU	NTU				NT	.U	
Date/Time Sampler Name Standard Type (circle one) Standard Value Exp. Date Lot # Reading Pass or Fail?** (Circle One) (ci	NTU	 NTU				NT	 	
Date/Time Sampler Name Standard Type (circle one) Standard Value Exp. Date Lot # Reading Pass or Fail?** (Circle One) (ci	DAILY CONTINUING CALIBRATION V	ERIFICATION:						
4-09-2019 / 0912 Russell Fernandez/EE&G Formazin / Gel 20 NTU 12/2019 24641-02 20.0 NTU P F 4-09-2019 / 0913 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 100.2 NTU P F 4-09-2019 / 0913 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 799 NTU P F 4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 10 NTU 12/2019 24641-01 10.1 NTU P F 4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 20 NTU 12/2019 24641-02 19.9 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 99.8 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 800 NTU P F Formazin / Gel NTU NTU P F	<u>Date/Time</u> <u>Sampler Name</u>	e Standard Type	Standard V	<u>/alue</u>	Exp. Date	<u>Lot #</u>	<u>Reading</u>	•
4-09-2019 / 0913 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 100.2 NTU P F 4-09-2019 / 0913 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 799 NTU P F 4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 10 NTU 12/2019 24641-01 10.1 NTU P F 4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 20 NTU 12/2019 24641-02 19.9 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 99.8 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 800 NTU P F Formazin / Gel NTU 12/2019 24641-04 NTU P F Formazin / Gel NTU NTU P F	4-09-2019 / 0912 Russell Fernandez/E	EE&G Formazin / Gel	10	_NTU	12/2019	24641-01	10.0	NTU P F
4-09-2019 / 0913 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 799 NTU P F 4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 10 NTU 12/2019 24641-01 10.1 NTU P F 4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 20 NTU 12/2019 24641-02 19.9 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 99.8 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 800 NTU P F F F F F F F F F F F F F F F F F F	4-09-2019 / 0912 Russell Fernandez/E	E&G Formazin / Gel	20	_NTU	12/2019	24641-02	20.0	NTU P F
4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 10 NTU 12/2019 24641-01 10.1 NTU P F 4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 20 NTU 12/2019 24641-02 19.9 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 99.8 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 800 NTU P F Formazin / Gel NTU NTU P F Formazin / Gel NTU NTU P F	4-09-2019 / 0913 Russell Fernandez/E	EE&G Formazin / Gel	100	_NTU	12/2019	24641-03	100.2	NTU P F
4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 20 NTU 12/2019 24641-02 19.9 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 99.8 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 800 NTU P F Formazin / Gel NTU NTU NTU P F Formazin / Gel NTU NTU P F	4-09-2019 / 0913 Russell Fernandez/E	E&G Formazin / Gel	800	_NTU	12/2019	24641-04	799 N	NTU P F
4-09-2019 / 1355 Russell Fernandez/EE&G Formazin / Gel 20 NTU 12/2019 24641-02 19.9 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 99.8 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 800 NTU P F Formazin / Gel NTU NTU NTU P F Formazin / Gel NTU NTU P F	4-09-2019 / 1355 Russell Fernandez/E	EE&G Formazin / Gel	10	NTU	12/2019	24641-01	10.1	NTU P F
4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 100 NTU 12/2019 24641-03 99.8 NTU P F 4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 800 NTU P F Formazin / Gel NTU NTU NTU P F Formazin / Gel NTU NTU P F	4-09-2019 / 1355 Russell Fernandez/E		20		12/2019	24641-02	40.0	
4-09-2019 / 1356 Russell Fernandez/EE&G Formazin / Gel 800 NTU 12/2019 24641-04 800 NTU P F Formazin / Gel NTU NTU P F Formazin / Gel NTU NTU P F	4-09-2019 / 1356 Russell Fernandez/E		100		12/2019	24641-03	00.9	
Formazin / Gel NTU NTU P F	4-09-2019 / 1356 Russell Fernandez/I	EE&C	800		12/2019	24641-04	800	
Formazin / GelNTUNTU P F				_				_
								
Formazin / GelNTU NTU P F								

^{*}Acceptance Criteria:

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE	elreese Golf Cour	·oo (2019 2057	١			TE CATION: 190)	7 th Avo. M	iami, FL 33125				
WELL NO:		se (2016-3037)	SAMPLE II		DOATION. 160	JZ INVV 3	r Ave, ivi		DATE: 3/	1/20	10	
WELL NO.	10100-44					DATA (O.	OD / O	`		DATE. 37	4 / 20		
WELL (PV	(C.)	TUBING	3		SCREEN II	DATA (2/		<i>)</i> STATIC D	FPTH		PI	JRGE PUM	P TYPE
,	R (inches): 2.0		ΓER (inches): 0			t to 11.88 feet			R (feet BLS): 4.01			R BAILER:	
WELL VOL	UME PURGE: 1		. ,	WELL DEPTH -	STATIC D	EPTH TO WA							
(only fill out	t if applicable)		= (11	.88 feet –	4.01 fe	eet) X 0.16	aallo	ons/foot	= 1.26 gallo	าร			
		RGE: 1 EQUIP	,	PUMP VOLUME -					ENGTH) + FLOW		.UME		
(only fill out	t if applicable)		= (gallons + (gallons	/foot X	feet) +		gallons =	gallons			
_	IMP OR TUBING		_	IP OR TUBING	-	PURGIN	G		PURGING			TOTAL VOL	
DEPTH IN	WELL (feet): 8	CUMUL.	DEPTH IN	WELL (feet): 8 DEPTH		INITIATE	D AT: 0	09:36	ENDED AT:	10:04	F	PURGED (g	allons): 3.5
TIME	VOLUME PURGED	VOLUME	PURGE RATE	TO	pH (standard	COND.		BIDITY	DISSOLVED OXYGEN	TEM		COLO	
	(gallons)	PURGED (gallons)	(gpm)	WATER (feet)	units)	(mS/cm)	(IV	TUs)	(% Saturation)	(°C	•)	(describ	oe) (describe)
09:52	2.0	2.0	0.125	4.15	6.92	0.902	4	.16	8.2	25.5	59	Clea	r None
09:56	0.5	2.5	0.125	4.15	6.94	0.889	3.	.62	6.5	25.5	51	Clea	r None
10:00	0.5	3.0	0.125	4.15	6.95	0.889	3.	.33	6.0	25.5	55	Clea	r None
10:04	0.5	3.5	0.125	4.15	6.96	0.897	3	.22	5.6	25.5	51	Clea	r None
				= 0.04; 1.25 " = 06; 3/16 " = 0.00					4 " = 0.65; 5 " :			,	
	EQUIPMENT CO			= Bladder Pump;		= 0.0026; ; ; Electric Subme	5/16" = 0 ersible P		3/8" = 0.006; 1	l <u>/2" = 0.01</u> ump:		5/8" = 0.01 ther (Specif	
			,	.,		LING DA				• *		` '	.,
	BY (PRINT) / AFI	FILIATION:		SAMPLER(S) S	IGNATURE(S):			OAMBUNG.			O A B A DU I I I	
Michael Va	in Ry / EE&G			10	e	e La	9		SAMPLING INITIATED AT:	10:04		SAMPLIN ENDED A	
PUMP OR		`		TUBING MATERIAL COI	DE UDDE/S				FILTERED: M	N	F	ILTER SIZE	≣: <u>1</u> μm
	WELL (feet): 8.0 CONTAMINATION		Y N		BING Y	N (replace	d)	Filtratio	DUPLICATE:	9: Y		N	
	MPLE CONTAINE					RESERVATIO			INTENDE			MPLING	SAMPLE PUMP
SAMPLE	#	MATERIAL		PRESERVATIV		TOTAL VOL		FINAL	ANALYSIS AN	ND/OR	EQU	JIPMENT	FLOW RATE (mL
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADD	ED IN FIELD (I	mL)	рН	METHO			CODE	per minute)
	3	CG	40 mL	HCL		-		< 2	VOC (82)	60)	,	APP	100
	1	AG	250 mL	-		-		-	PAHs (82	70)	,	APP	500
	2	AG	100 mL	H2SO4		-		< 2	TPH (FL-P	RO)	,	APP	500
	1	AG	1 L	-		-		-	Pest. (80	,	1	APP	500
	1	AG	1 L	-		-		-	Organo P (8141)		,	APP	500
	1	AG	1 L	-		-		-	Herb. (81	51)		APP	500
	1	AG	1 L	-		-		-	Dioxins (8	290)	,	APP	500
	1	PE	250 mL	HNO3		-		< 2	Metals (6010	7470)	,	APP	500
	1	PE	250 mL	HNO3		-		< 2	Diss. Meta (6010/747		,	APP	500
	1	PE	250 mL	H2SO4		-		< 2	Ammonia (3	350.1)	,	APP	500
	1	PE	250 mL	-		-		-	Nitrates/Nit (300.0)		,	APP	500
REMARKS	: T.O.C0.	2'	YSI 55	6 MPN	1#7	TBM# 2			·				
MATERIAL	CODES: A	G = Amber Gla	ass; CG = Cl	ear Glass; HD	PE = High D	ensity Polyeth	ylene;	LDPE =	Low Density Poly	ethylene;	PP	= Polyprop	ylene;
	s	= Silicone;	Γ = Teflon; C	o = Other (Specify	')								
SAMPLING	EQUIPMENT C			ugh) Peristaltic Pu Tow Peristaltic Pu				der Pump		ric Submer her (Specif		Pump;	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

NAME: M	SITE NAME: Melreese Golf Course (2018-3057) LOCATION: 1802 NW 37 th Ave, Miami, FL 33125													
WELL NO:	MW-42	,	,	SAMPLE	ID: PACE			,		DATE: 3/	4/20	019		
				P	URGING	DATA (2	/ 2B / 3	3)						
WELL (PV	'C)	TUBING	3	WEL	L SCREEN IN	NTERVAL	S	STATIC D	EPTH		Pl	URGE PUMI	P TYP	E
	R (inches): 2.0		TER (inches): 0		TH: 2.13 feet				R (feet BLS): 4.97	•	OI	R BAILER:	PP#2	
	LUME PURGE: 't if applicable)	1 WELL VOLU	ME = (IOIAL	WELL DEPTH -	- STATIC DE	EPIH IO WA	IER) X	WELL	CAPACITY					
EQUIPMEN	NT VOLUME PUR	RGE: 1 EQUIP		2.13 feet – PUMP VOLUME		et) X 0.16 APACITY			= 1.15 gallor ENGTH) + FLOW		UME			
(only fill out	t if applicable)		= (gallons + (gallons	/foot X	feet) +		gallons =	gallons				
INITIAL PU	IMP OR TUBING			MP OR TUBING	ganona	PURGIN			PURGING	ganono	Τ-	TOTAL VOL	UME	
DEPTH IN	WELL (feet): 8.5	CUMUL.	DEPTH IN	WELL (feet): 8.5		INITIATE	D AT: 1	0:36	ENDED AT:	11:04	F	PURGED (ga	allons)): 3.5
TIME	VOLUME	VOLUME	PURGE	TO	pH (standard	COND.		BIDITY	DISSOLVED OXYGEN	TEM		COLO		ODOR
	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	WATER (feet)	units)	(mS/cm)	(N1	ΓUs)	(% Saturation)	(°C)	(describ)e)	(describe)
10:52	2.0	2.0	0.125	5.54	7.24	0.530	2.	.23	10.9	25.0)1	Clea	r	None
10:56	0.5	2.5	0.125	5.54	7.21	0.528	1.	.97	7.2	25.0)8	Clea	r	None
11:00	0.5	3.0	0.125	5.54	7.21	0.529	1.	.63	5.8	25.0)2	Clea	r	None
11:04	0.5	3.5	0.125	5.54	7.21	0.533	1.	.49	5.3	25.0)2	Clea	r	None
WELL CAP	PACITY (Gallons	Per Foot): 0.7	'5" = 0.02: 1"	= 0.04: 1.25 " =	= 0.06; 1.5 "	= 0.09: 2 " =	0.16: 3	3 " = 0.37	4 " = 0.65: 5 " :	= 1.02; 6 3	" = 1.	47: 12 " = 5	5.88	
	ISIDE DÌA. CAPA	(,	.,	0014; 1/4" :		5/16" = 0	,		/2" = 0.01		5/8" = 0.016		
PURGING	EQUIPMENT CO	DES: B =	Bailer; BP	= Bladder Pump;		LING DA		ımp;	PP = Peristaltic P	ump;	0 = 0	Other (Specify	у)	
SAMPLED	BY (PRINT) / AFI	FILIATION:		SAMPLER(S) S			<u> </u>							
Michael Va	n Ry / EE&G				e	ch.	9		SAMPLING INITIATED AT:	11:04		SAMPLING ENDED A		:14
PUMP OR	TUDING			TUBING				LEIELD	-FILTERED: M	N		FILTER SIZE	,	
	WELL (feet): 8.5	5		MATERIAL CO	DE: HDPE/S				on Equipment Type					μπ
FIELD DEC	CONTAMINATION	N: PUMP	Y N	TU	IBING Y	N (replace	d)		DUPLICATE:	Υ		N	,	
	MPLE CONTAINE		TION			RESERVATION	١		INTENDE ANALYSIS AN			MPLING JIPMENT		MPLE PUMP DW RATE (mL
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL ED IN FIELD (r	mL)	FINAL pH	METHOI			CODE		per minute)
	3	CG	40 mL	HCL		-		< 2	VOC (826	60)		APP		100
	1	AG	250 mL	-		-		-	PAHs (82	70)		APP		500
	2	AG	100 mL	H2SO4		-		< 2	TPH (FL-PI	RO)		APP		500
	1	AG	1 L	-		-		-	Pest. (80			APP		500
	1	AG	1 L	-		-		-	Organo P (8141)			APP		500
	1	AG	1 L	-		-		-	Herb. (81			APP		500
	1	AG	1 L	-		-		-	Dioxins (82	290)		APP		500
	1	PE	250 mL	HNO3		-		< 2	Metals (6010/	7470)		APP		500
	1	PE	250 mL	HNO3		-		< 2	Diss. Meta (6010/747			APP		500
	1	PE	250 mL	H2SO4		-		< 2	Ammonia (3	350.1)		APP		500
	1	PE	250 mL	-		-		-	Nitrates/Nit (300.0)			APP		500
REMARKS	: T.O.C0.	15′	YSI 5.	56 MF	PM # 7	TBM# 2	I		(2.2.1.2)	ı				
MATERIAL	CODES: A	G = Amber Gla	ass; CG = Cl	ear Glass; HI	DPE = High De	ensity Polyeth	ylene;	LDPE =	Low Density Poly	ethylene;	PP	P = Polypropy	ylene;	
		= Silicone;		D = Other (Specif	**									
SAMPLING	EQUIPMENT C			ugh) Peristaltic P Tow Peristaltic Pu		Bailer; B Straw Methor		der Pump Gravity		ric Submer her (Specif		Pump;		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

CITE

5751 Miami Lakes Dr. Miami Lakes, FL 33014

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

CITE

NAME: M	NAME: Melreese Golf Course (2018-3057) LOCATION: 1802 NW 37 th Ave, Miami, FL 33125												
WELL NO:	SCS-MW-1			SAMPLE I	D: PACE					DATE: 3/	4/20)19	
				P	URGING	DATA (2	/ 2B / 3	3)	<u>. </u>				
WELL (PV	,	TUBING			L SCREEN II			STATIC D				JRGE PUM	
	R (inches): 1.5		TER (inches): (TH: 2.1 feet				R (feet BLS): 4.1	5	OF	R BAILER:	PP#2
	t if applicable)	WELL VOLO	,	2.1 feet –			,		0.72 gallo	ns			
	NT VOLUME PUF	RGE: 1 EQUIP	MENT VOL. =	PUMP VOLUME	+ (TUBING C	CAPACITY	X T	UBING L	ENGTH) + FLOW	CELL VOL	UME		
(only fill out	t if applicable)		= (gallons + (gallons	s/foot X	feet) +	=	gallons =	gallons			
	JMP OR TUBING WELL (feet): 8			MP OR TUBING WELL (feet): 8		PURGIN INITIATE		1:40	PURGING ENDED AT:	12:04		TOTAL VOL PURGED (g:	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		BIDITY TUs)	DISSOLVED OXYGEN (% Saturation)	TEM (°C)		COLO (describ	
11:52	1.5	1.5	0.125	4.35	7.09	0.590	5.	.84	8.7	23.5	58	Clea	r None
11:56	0.5	2.0	0.125	4.35	7.09	0.577	5.	.10	6.9	23.6	35	Clea	r None
12:00	0.5	2.5	0.125	4.35	7.10	0.575	4.	.72	6.3	23.6	j1 	Clea	r None
12:04	0.5	3.0	0.125	4.35	7.10	0.574	4.	.55	5.7	23.5	<u></u>	Clea	r None
	ELL CAPACITY (Gallons Per Foot): $0.75" = 0.02$; $1" = 0.04$; $1.25" = 0.06$; $1.5" = 0.09$; $2" = 0.16$; $3" = 0.37$; $4" = 0.65$; $5" = 1.02$; $6" = 1.47$; $12" = 5.88$ JBING INSIDE DIA. CAPACITY (Gal./Ft.): $1/8" = 0.0006$; $3/16" = 0.0014$; $1/4" = 0.0026$; $5/16" = 0.004$; $3/8" = 0.006$; $1/2" = 0.010$; $5/8" = 0.016$												
PURGING	EQUIPMENT CO	DES: B =	Bailer; BP	= Bladder Pump;		Electric Subme		ump;	PP = Peristaltic	Pump; (O = O	ther (Specify	y)
						LING DA	ATA		T				
	BY (PRINT) / AF an Ry / EE&G	FILIATION:		SAMPLER(S) S	· ·	S):	9		SAMPLING INITIATED A	Γ: 12:04		SAMPLING ENDED A	
PUMP OR	TUBING WELL (feet): 8			TUBING MATERIAL CO	DE, UDDE/G				FILTERED: M	N	FI	ILTER SIZE	: <u>1</u> μm
	CONTAMINATION	N: PUMP	Y N		BING Y		d)	Filtratio	DUPLICATE:			N	
SAI	MPLE CONTAINE	ER SPECIFICA			SAMPLE PI	RESERVATIO	N		INTEND	ED		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (ml)	FINAL pH	ANALYSIS A			JIPMENT CODE	FLOW RATE (mL per minute)
.5 0052	3	CG	40 mL	HCL	7,55.	-	,	< 2	VOC (82	260)	- /	APP	100
	1	AG	250 mL	-		-		-	PAHs (8	270)	/	APP	500
	2	AG	100 mL	H2SO4		-		< 2	TPH (FL-I	PRO)	/	APP	500
	1	AG	1 L	-		-		-	Pest. (80	,		APP	500
	1	AG	1 L	-		-		-	Organo (8141		/	APP	500
	1	AG	1 L	•		-		-	Herb. (8	151)	/	APP	500
	1	AG	1 L	•		-		-	Dioxins (8	3290)	/	APP	500
	1	PE	250 mL	HNO3		-		< 2	Metals (601	,		APP	500
	1	PE	250 mL	HNO3		-		< 2	Diss. Me (6010/74			APP	500
	1	PE	250 mL	H2SO4		-		< 2	Ammonia (350.1)	-	APP	500
	1	PE	250 mL	-		-		-	Nitrates/N (300.0		/	APP	500
REMARKS	s: <i>T.O.C0.</i>	4′	YSI 55	6 MPN	1#7	TBM# 2							
MATERIAL		AG = Amber Gl	,		•	ensity Polyeth	ylene;	LDPE =	Low Density Pol	yethylene;	PP	= Polypropy	rlene;
SAMPLING	S = Silicone; T = Teflon; O = Other (Specify) PLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)												

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	elreese Golf Cour	°5 (2018-3057)		SI		12 NIW 3	7 th Δνο Μ	liami, FL 33125					
WELL NO:		30 (2010 3001	<i></i>	SAMPLE	ID: PACE	OATION: TO	2 1400 5	n Ave, iv		DATE: 3/	4/20)19		
				P	URGING	DATA (2	/ 2B / :	3)						
WELL (PV	′C)	TUBING	3	1	L SCREEN IN			STATIC D	EPTH		Pl	JRGE PUMI	P TYPE	
	R (inches): 1.0		TER (inches): (TH: 1.6 feet t				R (feet BLS): 3.51		OF	R BAILER:	PP#2	
	LUME PURGE: 't if applicable)	1 WELL VOLU	ME = (TOTAL	WELL DEPTH	 STATIC DI 	EPTH TO WA	ΓER) Χ	K WELL	CAPACITY					
, ,	,,	00F: 4 FOUID		1.6 feet –		et) X 0.04					LINAE			
	NT VOLUME PUF t if applicable)	KGE: 1 EQUIP	WENT VOL. =	PUMP VOLUME	`		х т	I UBING L	ENGTH) + FLOW	CELL VOL	UNE			
INITIAL DI	IMP OD TUDINO			gallons + (gallons		feet) +	+	gallons =	gallons		TOTAL MOL		
	JMP OR TUBING WELL (feet): 7.5		II .	MP OR TUBING WELL (feet): 7.	5	PURGIN INITIATE		12:42	PURGING ENDED AT:	12:54		TOTAL VOL PURGED (ga		1.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		BIDITY TUs)	DISSOLVED OXYGEN (% Saturation)	TEM (°C		COLO (describ		ODOR (describe)
12:48	0.75	0.75	0.125	3.61	7.39	0.394	2	.22	15.1	26.4	41	Clea	r	None
									-				-	
12:50	0.25	1.0	0.125	3.61	7.31	0.391	2	.20	10.7	26.1	16	Clea	r	None
12:52	0.25	1.25	0.125	3.61	7.30	0.389	2	.12	9.0	25.9	92	Clea	r	None
12:54	0.25	1.50	0.125	3.61	7.31	0.389	2	.03	8.0	25.8	37	Clea	r	None
	PACITY (Gallons ISIDE DIA. CAPA						0.16; ; 5/16" = 0		4" = 0.65; 5" = 3/8" = 0.006; 1	 = 1.02;		47; 12" = 5 5/8" = 0.016		
	EQUIPMENT CO			= Bladder Pump		Electric Subme			PP = Peristaltic P			ther (Specify		
						PLING DA	TA							
	BY (PRINT) / AFI in Ry / EE&G	FILIATION:		SAMPLER(S)	,				SAMPLING			SAMPLIN	G	
Michael va	III Ky / EE&G			/-	/e	. Edn	9		INITIATED AT:	12:54		ENDED A)4
PUMP OR DEPTH IN	TUBING WELL (feet): 7.5	5		TUBING MATERIAL CO	DDE: HDPE/S	;			-FILTERED: Mon Equipment Type	N e:	F	ILTER SIZE	: _1	μm
FIELD DEC	CONTAMINATION	N: PUMP	Y N	TU	JBING Y	N (replace	d)		DUPLICATE:	Υ		N		
SAI	MPLE CONTAINE	R SPECIFICA	TION		SAMPLE PF	RESERVATIO	٧		INTENDE			MPLING		PLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL ED IN FIELD (1	mL)	FINAL pH	ANALYSIS AN METHOI			JIPMENT CODE		W RATE (mL er minute)
	3	CG	40 mL	HCL		-		< 2	VOC (826	60)		APP		100
	1	AG	250 mL	-		-		-	PAHs (82	70)		APP		500
	2	AG	100 mL	H2SO4		-		< 2	TPH (FL-PI	RO)		APP		500
	1	AG	1 L	-		-		-	Pest. (80	,		APP		500
	1	AG	1 L	-		-		-	Organo P (8141)			APP		500
	1	AG	1 L	-		-		-	Herb. (81	51)		APP		500
	1	AG	1 L	-		-		-	Dioxins (82	290)		APP		500
	1	PE	250 mL	HNO3		-		< 2	Metals (6010/	/7470)		APP		500
	1	PE	250 mL	HNO3		-		< 2	Diss. Meta (6010/747			APP		500
	1	PE	250 mL	H2SO4		-		< 2	Ammonia (3	,		APP		500
	1	PE	250 mL	-		-		-	Nitrates/Nit (300.0)			APP		500
REMARKS	: <i>T.O.C0.</i> .	3′	YSI 55	6 MPI	M#7	TBM# 2					_		· <u> </u>	
MATERIAL		G = Amber Gla		lear Glass; Hi	•	ensity Polyeth	ylene;	LDPE =	Low Density Poly	ethylene;	PP	= Polypropy	/lene;	
SAMPLING	G EQUIPMENT C	ODES: API	P = After (Thro	ugh) Peristaltic P	ump; B =	Bailer; B		dder Pump		ric Submer		Pump;		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of Variation of Last three consecutive readings (see FS 2212, section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2);

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: Me	SITE SITE NAME: Melreese Golf Course (2018-3057) LOCATION: 1802 NW 37 th Ave, Miami, FL 33125													
	SCS-MW-2	100 (2010 0001	<u> </u>	SAMPLE	ID: PACE	07111011. 100	2 1111 0	7100, 10		DATE: 3/	4/20)19		
				P	URGING	DATA (2	/ 2B / :	3)						
WELL (PV	C)	TUBING	3		L SCREEN IN	,		STATIC D	EPTH		Pl	JRGE PUMI	TYPE	
	(inches): 1.5		ΓER (inches): (TH: 1.86 feet				R (feet BLS): 3.92	2	OF	R BAILER:	PP#2	
	if applicable)	I WLLL VOLU	`				,							
	NT VOLUME PUR	RGE: 1 EQUIP		I.86 feet – PUMP VOLUME		eet) X 0.09 APACITY		ons/foot FUBING L	= 0.71 gallo ENGTH) + FLOW		.UME			
(only fill out	t if applicable)		=	gallons + (gallons	/foot X	feet) +	+	gallons =	gallons				
	MP OR TUBING		_	MP OR TUBING		PURGIN		10.01	PURGING	44.00		TOTAL VOL		
DEPTHIN	WELL (feet): 8	CUMUL.	DEPTHIN	WELL (feet): 8 DEPTH	-11	INITIATE	:DAI: 1	13:34	DISSOLVED	14:02	1	PURGED (ga	alions): 3	,.5
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	COND. (mS/cm)		BIDITY TUs)	OXYGEN (% Saturation)	TEM (°C		COLO (describ		ODOR describe)
13:50	2.0	2.0	0.125	3.95	7.26	0.508	3	.97	4.6	26.	12	Clea	r	None
13:54	0.5	2.5	0.125	3.95	7.26	0.495	3	.11	3.9	26.0	06	Clea	r L	None
40.50	0.5	0.0	0.405	0.05	7.00	0.407		70	0.0	05.4	20	01		
13:58	0.5	3.0	0.125	3.95	7.26	0.487	2	.73	3.6	25.9	93	Clea	r	None
14:02	0.5	3.5	0.125	3.95	7.25	0.487	2	.44	3.4	26.0	13	Clea	,	None
14.02	0.0	0.0	0.120	0.00	7.20	0.407			0.4	20.0		Olca		140110
	PACITY (Gallons ISIDE DIA. CAPA						0.16; 5/16" = 0		4" = 0.65; 5" 3/8" = 0.006;	= 1.02; 6 1/2" = 0.01		47; 12" = 5		
	EQUIPMENT CO			= Bladder Pump		Electric Subme			PP = Peristaltic P			ther (Specif	/)	
SAMDI ED	BY (PRINT) / AFI	EII IATIONI:		SAMPLER(S)		PLING DA	TA		1		1			
	n Ry / EE&G	FILIATION.		` '	SIGNATURE	•	B		SAMPLING	14.00		SAMPLIN		
									INITIATED AT	: 14:02		ENDED A	1: 14:12	
PUMP OR T	TUBING WELL (feet): 8			TUBING MATERIAL CC	DE: HDPE/S				-FILTERED: Mon Equipment Type	N e:	F	ILTER SIZE	:1_	_μm
FIELD DEC	CONTAMINATION	N: PUMP	Y N	TU	JBING Y	N (replace	d)		DUPLICATE:	Υ		Ν		
SAN	MPLE CONTAINE	ER SPECIFICA	TION		SAMPLE PR	RESERVATIO	N		INTENDE			MPLING		E PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL ED IN FIELD (1	ml)	FINAL pH	ANALYSIS AI METHO			JIPMENT CODE		RATE (mL minute)
ID GODE	3	CG	40 mL	HCL	7,000	-	/	< 2	VOC (82	60)		APP		100
	1	AG	250 mL	-		-		-	PAHs (82	270)		APP	ţ	500
	2	AG	100 mL	H2SO4		-		< 2	TPH (FL-P	RO)		APP	ţ	500
	1	AG	1 L	-		-		-	Pest. (80	81)		APP	ţ	500
	1	AG	1 L	-		-		-	Organo F (8141)			APP	ţ	500
	1	AG	1 L	-		-		-	Herb. (81			APP	ţ	500
	1	AG	1 L	-		-		-	Dioxins (8	290)		APP	į	500
	1	PE	250 mL	HNO3		-		< 2	Metals (6010	/7470)		APP	ţ	500
	1 PE 250 mL HNO3 - < 2 Diss. Metals (6010/7470) APP 500													
	1	PE	250 mL	H2SO4		-		< 2	Ammonia (3			APP	į	500
	1	PE	250 mL	-		-		-	Nitrates/Nit (300.0)			APP	į	500
REMARKS:	: <i>T.O.C0.</i> .	3′	YSI 55	6 MPI	<i>M#7</i>	TBM# 2			, (555.0)	I.				
MATERIAL	CODES: A	AG = Amber Gla	ass; CG = C	ear Glass; H	DPE = High De	ensity Polyeth	ylene;	LDPE =	Low Density Poly	ethylene;	PP	= Polypropy	rlene;	
		S = Silicone;		O = Other (Specif	•									
SAMPLING	EQUIPMENT C			ugh) Peristaltic P Flow Peristaltic P		Bailer; B Straw Metho		dder Pump g Gravity		tric Submei ther (Speci		Pump;		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface
2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	elreese Golf Cour	se (2018-3057)		SI		2 NW 37 th A	we Mi	iami, FL 33125				
WELL NO:		30 (2010 3037)	SAMPLE	ID: PACE	OATION: 100	21111 51 7	tvo, ivii		DATE: 3/4	/ 201	19	
				Р	URGING	DATA (2 /	2B/3)		<u> </u>				
WELL (PV	C)	TUBING	3		L SCREEN IN		/	TIC DE	EPTH		PU	JRGE PUMP T	/PE
	(inches): 2.0		TER (inches): 0		TH: 2.6 feet t				R (feet BLS): 4.08		OR	R BAILER: PP#	2
(only fill out	if applicable)		= (12	.6 feet –	4.08 fee	et) X 0.16	,			i			
	IT VOLUME PUR if applicable)	GE: 1 EQUIP	MENT VOL. =	PUMP VOLUME	+ (TUBING C	APACITY	X TUBI	ING LE	ENGTH) + FLOW	CELL VOLU	ME		
(orny ini out	п аррпоавіо)		= 0	gallons + (gallons		feet) +		gallons =	gallons			
	MP OR TUBING WELL (feet): 8			IP OR TUBING WELL (feet): 8		PURGING INITIATE	G D AT: 14:38	8	PURGING ENDED AT:	15:06		OTAL VOLUMI PURGED (gallor	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)	TURBIDI (NTUs)		DISSOLVED OXYGEN (% Saturation)	TEMP. (°C)		COLOR (describe)	ODOR (describe)
14:54	2.0	2.0	0.125	4.21	7.33	0.536	17.0		24.8	27.65		Clear	None
14:58	0.5	2.5	0.125	4.21	7.32	0.536	15.4		11.0	27.60)	Clear	None
15:02	0.5	3.0	0.125	4.21	7.32	0.536	13.9		7.4	27.57	,	Clear	None
15:06	0.5	3.5	0.125	4.21	7.32	0.536	12.4		6.9	27.60)	Clear	None
WELLCAR	ACITY (Callons I	Por Footh: 0.7	E" - 0.02: 4"	- 0.04: 1.25 " -	- 0 06: 1 E "	- 0 00: 3 " -	0.16: 2" -	. 0 27:	4 " = 0.65: 5 " =	1.02: 6".	_ 1 1	7: 12" - 5 00	
	SIDE DIA. CAPA						5/16" = 0.004	,	, -	/2" = 0.010;		5/8 " = 0.016	
PURGING	EQUIPMENT CO	DES: B =	Bailer; BP	= Bladder Pump;		Electric Subme);	PP = Peristaltic Pu	ımp; O	= Ot	ther (Specify)	
SAMPLED	BY (PRINT) / AFF	FILIATION:		SAMPLER(S) S		PLING DAT S):	IA				\neg		
	n Ry / EE&G			` '	,	e La	9		SAMPLING INITIATED AT:	15:06		SAMPLING ENDED AT: 1	5:16
PUMP OR DEPTH IN	TUBING WELL (feet): 8			TUBING MATERIAL CO	DE: HDPE/S				FILTERED: Mon Equipment Type	N :	FII	LTER SIZE: _	<u>1</u> μm
FIELD DEC	ONTAMINATION	l: PUMP	Y N	TU	IBING Y	N (replaced	d)		DUPLICATE:	Υ	N	Ī	
SAM	IPLE CONTAINE	R SPECIFICA	TION		SAMPLE PR	RESERVATION	I					SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL ED IN FIELD (n		NAL H	INTENDED AN AND/OR ME			QUIPMENT CODE	FLOW RATE (mL per minute)
	3	CG	40 mL	HCL		-	<	2	VOC (82	60)		APP	100
	1	AG	250 mL	-		-		-	PAHs (82	270)		APP	500
	2	AG	100 mL	H2SO4		-	<	2	TPH (FL-F	RO)		APP	500
	1	AG	1 L	-		-		-	Pest. (80	81)		APP	500
	1	AG	1 L	-		-	-	-	Organo Pest	(8141)		APP	500
	1	AG	1 L	-		-		-	Herb. (81	51)		APP	500
	1	AG	1 L	-		-		-	Dioxins (8	290)		APP	500
	1	PE	250 mL	HNO3		-	<	2	Metals (6010	7470)		APP	500
	1	PE	250 mL	HNO3		-	<	2	Diss. Metals (60	10/7470)		APP	500
	1	PE	250 mL	H2SO4		-	<	2	Ammonia (350.1)		APP	500
	1	PE	250 mL	-		-		-	Nitrates/Nitrite	s (300.0)		APP	500
REMARKS	T.O.C0.:	5′	YSI 55	6MPI	N#7	TBM# 2			1				
MATERIAL		. G = Amber Gla = Silicone;	,	ear Glass; HI O = Other (Specif	•	ensity Polyethy	/lene; L[DPE =	Low Density Polye	ethylene;	PP :	= Polypropylen	e;
SAMPLING	EQUIPMENT CO	ODES: API	P = After (Throu	ıgh) Peristaltic Pi Iow Peristaltic Pi	ump; B =	Bailer; BI	P = Bladder I (Tubing Gr			ic Submersi ner (Specify)		Pump;	
										//			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SAMPLE ID. PACE	NAME: M	elreese Golf Cour	se (2018-3057))			DCATION: 180	02 NW 37 th A	ve, Miami, FL 33125				
WELL (PVC) DUMÉTÉR (inches): 0.25 DEPTH 1 VEL Selecto 11 86 feet TO WATER (Put Pet Pet Pet Pet Pet Pet Pet Pet Pet Pe	WELL NO:	SCS-MW-2			SAMPLE	ID: PACE				DATE: 3/	11 / 2019		
DUMMETER (inches): 0.25 DEPTH : 188 feet to 11.86 feet TO WATER (gene BLS): 3.83 OR ARLER: PP#4					PU	RGING I	DATA (2	2 / 2B / 3	3)				
Control For	•	,								83			
COLUMN PURCE FOLIA PURCE PURP VOLUME PURP VOLU			I WELL VOLU	ME = (TOTAL V	WELL DEPTH	- STATIC DI	EPTH TO WA	TER) X V	VELL CAPACITY				
Construct Experiment Construction Construct	,												
## gallons			RGE: 1 EQUIP	MENT VOL. = P	PUMP VOLUME	+ (TUBING C	CAPACITY	X TUB	ING LENGTH) + FLO	W CELL VOL	JME		
DEPTH IN WELL (feet): 8	` ,	, ,		= ga	allons + (gallons	/foot X	feet) +	gallons =	gallons			
TIME VOLUME VOLUME VOLUME PURGE RATE WATER (glands Cond.) VOLUME VOLUME PURGED (gallors) VOLUME					VELL (feet): 8					: 10:24			
10:16 0.5 2.5 0.125 3.84 6.42 0.426 1.97 11.4 26.04 Clear None 10:20 0.5 3.0 0.125 3.84 6.50 0.420 1.68 10.7 25.13 Clear None 10:20 0.5 3.0 0.125 3.84 6.50 0.420 1.68 10.7 25.13 Clear None 10:24 0.5 3.5 0.125 3.84 6.54 0.420 1.47 11.0 26.07 Clear None WELL CAPACITY (Gallons Per Foot): 0.75* = 0.02: 1** = 0.04; 1.25* = 0.06; 1.5* = 0.09; 2** = 0.16; 3** = 0.37; 4** = 0.65: 5** = 1.02; 6** = 1.47; 12** = 5.88 TUBING SIDE PURPORING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: MATERIAL CODE: HDPE/S SAMPLE CONTAINER SPECIFICATION SAM	TIME	PURGED	VOLUME PURGED	RATE	TO WATER	(standard			OXYGEN	I EMI			
10:20	10:12	2.0	2.0	0.125	3.84	6.36	0.430	2.36	11.1	26.0	8	Clear	None
10:20													
10:24 0.5 3.5 0.125 3.84 6.54 0.420 1.47 11.0 26.07 Clear None WELL CAPACITY (Galidnes Per Foot): 0.76" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA, CAPACITY (Gal/Fi): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: Michael Van Ry / EE&G DEPTH IN WELL (feet): 8 TUBING SAMPLE ONTAINER SPECIFICATION SAMPLE CONTAINER SPECIFICATION SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP PRESERVATIVE SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP PRESERVATIVE SAMPLE COOE TOURING AGG 1 L TOTAL VOL ADDED IN FIELD (mL) PHESSERVATIVE SAMPLING ENDED AT: 10:26 ENDED	10:16	0.5	2.5	0.125	3.84	6.42	0.426	1.97	11.4	26.0	4	Clear	None
10:24 0.5 3.5 0.125 3.84 6.54 0.420 1.47 11.0 26.07 Clear None WELL CAPACITY (Galidnes Per Foot): 0.76" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA, CAPACITY (Gal/Fi): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.016; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: Michael Van Ry / EE&G DEPTH IN WELL (feet): 8 TUBING SAMPLE ONTAINER SPECIFICATION SAMPLE CONTAINER SPECIFICATION SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP PRESERVATIVE SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP PRESERVATIVE SAMPLE COOE TOURING AGG 1 L TOTAL VOL ADDED IN FIELD (mL) PHESSERVATIVE SAMPLING ENDED AT: 10:26 ENDED													
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02: 1" = 0.04: 1.25" = 0.06: 1.5" = 0.09: 2" = 0.16: 3" = 0.37; 4" = 0.65: 5" = 1.02: 6" = 1.47: 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006: 3/16" = 0.0014: 1/4" = 0.0026: 5/16" = 0.004: 3/8" = 0.006: 1/2" = 0.010: 5/6" = 0.010:	10:20	0.5	3.0	0.125	3.84	6.50	0.420	1.68	10.7	25.1	3	Clear	None
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02: 1" = 0.04: 1.25" = 0.06: 1.5" = 0.02: 2" = 0.16: 3" = 0.37: 4" = 0.65: 5" = 1.02: 5" = 1.47: 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006: 3/16" = 0.0014: 1/4" = 0.0026: 5/16" = 0.004: 3/8" = 0.006: 1/2" = 0.010: 5/8" = 0.010:													
TUBING MATERIAL CODE: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: Michael Van Ry / EE&G TUBING DEPTH IN WELL (feet): 8 SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP PRESERVATIVE USED 1 AG 1 L Pest. (8141) AGP 1 L Pest. (8141) MATERIAL CODE: SAMPLING SAMPLE PUMP FLOW RATE (mL per minute) SAMPLE CODE MATERIAL CODE: SAMPLE PUMP PESSERVATIVE USED MATERIAL CODE: SEP = Bladder Pump; ESP = Low Density Polyethylene; PP = Polypropylene; SEP = Bladder Pump; ESP = Electric Submersible Pump; SAMPLE DOOS SAMPLE PUMP PESSERVATIVE USED MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HPPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; SES Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;	10:24	0.5	3.5	0.125	3.84	6.54	0.420	1.47	11.0	26.0	7	Clear	None
TUBING MATERIAL CODE: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: Michael Van Ry / EE&G TUBING DEPTH IN WELL (feet): 8 SAMPLE CONTAINER SPECIFICATION SAMPLE PUMP PRESERVATIVE USED 1 AG 1 L Pest. (8141) AGP 1 L Pest. (8141) MATERIAL CODE: SAMPLING SAMPLE PUMP FLOW RATE (mL per minute) SAMPLE CODE MATERIAL CODE: SAMPLE PUMP PESSERVATIVE USED MATERIAL CODE: SEP = Bladder Pump; ESP = Low Density Polyethylene; PP = Polypropylene; SEP = Bladder Pump; ESP = Electric Submersible Pump; SAMPLE DOOS SAMPLE PUMP PESSERVATIVE USED MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HPPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; SES Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;													
SAMPLED BY (PRINT) / AFFILIATION: Michael Van Ry / EE&G SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING DETTH IN WELL (feet): 8 FIELD-FILTERED: Y INTITIATED AT: 10:24 FIELD-FILTERED: Y INTITIATED AT: 10:26 FIELD-FILTERED: Y INTITIATED AT: 10:24 FIELD-FILTERED: Y INTITIATED AT: 10:26 FIELD-FILTERED: Y INTITIATED AT: 10:24 FIELD-FILTERED: Y INTITIATED AT: 10:26 FIELD-FILTERED: Y INTITIATED AT: 10:26 FILTER SIZE:	WELL CAP TUBING IN	PACITY (Gallons I ISIDE DIA. CAPA	Per Foot): 0.7: CITY (Gal./Ft.)	5 " = 0.02; 1 " = 0.0006	= 0.04; 1.25" = 6; 3/16" = 0.0	= 0.06; 1.5" 0014; 1/4"	= 0.09; 2 " = 0.0026;	0.16; 3 " = 5/16 " = 0.00	: 0.37; 4" = 0.65; 5 4; 3/8" = 0.006;				8
SAMPLED BY (PRINT) / AFFILIATION: Michael Van Ry / EE&G SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 10:24 SAMPLING ENDED AT: 10:26	PURGING	EQUIPMENT CO	DES: B =	Bailer; BP =	= Bladder Pump	ESP = I	Electric Subme	ersible Pump	p; PP = Peristaltion	Pump; (O = Other (S	Specify)	
Michael Van Ry / EE&G SAMPLING SAMPLING SAMPLING ENDED AT: 10:24 SAMPLING ENDED AT: 10:26								ATA					
DEPTH IN WELL (feet): 8		, ,	FILIATION:		` '	,	•	9		AT: 10:24			10:26
FIELD DECONTAMINATION: PUMP Y N TUBING Y N (replaced) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION INTENDED ANALYSIS AND/OR EQUIPMENT CODE CONTAINERS CODE CONTAINERS CODE CONTAINERS CODE CONTAINERS CODE CODE CONTAINERS CODE CODE CODE CONTAINERS CODE CODE CODE CODE CODE CODE CODE CODE						DE: HDPE/S	1				FILTER	SIZE: _	μm
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION TOTAL VOL ADDED IN FIELD (mL) ADDED IN FIELD (mL) ADDED IN FIELD (mL) ANALYSIS AND/OR METHOD APP FLOW RATE (mL per minute) APP 500 REMARKS: T.O.C0.3' YSI 556 MPM # 7 TBM# 2 MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;		· · · · · ·	l: PUMP	Y N					1		N		
SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE USED ADDED IN FIELD (mL) FINAL PH ANALYSIS AND/OR METHOD FOODE FOR FINAL PH ADDED IN FIELD (mL) FINAL PH ANALYSIS AND/OR METHOD FOODE FOR FINAL PH ADDED IN FIELD (mL) FINAL PH ANALYSIS AND/OR METHOD FOODE FOOD	SAN	MPLE CONTAINE	R SPECIFICA			SAMPLE PR	RESERVATIO	N	INTEN	DED		G S	SAMPLE PUMP
REMARKS: T.O.C0.3' MATERIAL CODES: AG = Amber Glass; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: AG = Amber Silicone; AG = Amber Glass; APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; BF = Bladder Pump; BF = Bladder Pump; ESP = Electric Submersible Pump;				VOLUME					NAL METH		EQUIPME		
REMARKS: T.O.C0.3' YSI 556 MPM # 7 TBM# 2 MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;	ID CODE			1 L		ADDE	- -			3141)	APP		
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;									,	,			
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;													
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;													
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;	REMARKS	: <i>T.O.C0.</i> .	l	 YSI 556	6 MPI	 И# <i>Т</i>	TBM# 2						
S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;			G = Amber Gla				ensity Polveth	ylene; LI	DPE = Low Density Po	olyethylene:	PP = Poly	/propvlen	ne;
				,	,	•	,,	,, 		, , ,		.,	-,
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	SAMPLING	EQUIPMENT C											

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

			125	ue Miami, FL 331	37 th Aven	802 NV				SITE NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Avenue Miami, FL 33125													
WELL (SP15)		6 / 2019	DATE: 3/2	1			_	PACE	MPLE ID:	SA		_	ı)	: GW-1 (SB-A)	WELL NO:								
DIAMETER (Inches): 0.75 DIAMETER (Inches): 0.25 DEPTH: 6-text to 10 feet TO WATER (Inches): 0.50 OR BAILER: PP#4 WELL VOLUME (INChes): 0.25 DEPTH: 6-text to 10 feet TO WATER (Inches): 0.50 OR BAILER: PP#4 WELL VOLUME (INChes): 0.25 DEPTH: 6-text to 10 feet TO WATER (Inches): 0.50 OR BAILER: PP#4 WELL VOLUME (INChes): 0.25 DEPTH: 0.25				•	3/3)	2 / 21	DATA (2	ING D	PURG														
Confusion of the policiable Sequence S				R (feet BLS): ~6	STATIC DI TO WATE		NTERVAL 10 feet	CREEN I	WELL S	0.25	ER (inches):	DIAMET		R (inches): 0.75	DIAMETER								
Note Part					•						,	WELL VOL											
INITIAL PUMP OR TUBING DEPTH NVELL (feet): 9 PURGING DEPTH NVELL (feet): 9 PURGING PURGED (gallons): 1 PURGING PURGED (gallons): 1 PURGE		LL VOLUME	+ FLOW CE	BING LENGTH)	X TU	ITY	ING CAPAC	E + (TUB	P VOLUM	= PUM	IPMENT VOL	GE: 1 EQUI											
TIME VOLUME PURGED (CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12 TUBING INSIDE DIA CAPACITY (Gallors): 178" = 0.0006; 376" = 0.0014; 14" = 0.0026; 5716" = 0.004; 378" = 0.006; 172" = 0.010; 58" = 0.0014; 14" = 0.0026; 5716" = 0.004; 178" = 0.0016; 15" = 0.004; 14" = 0.0026; 5716" = 0.004; 38" = 0.006; 172" = 0.010; 58" = 0.0016; 15" = 0.004; 14" = 0.0026; 5716" = 0.004; 38" = 0.006; 172" = 0.010; 58" = 0.0016; 15" = 0.004; 14" = 0.0026; 5716" = 0.004; 38" = 0.006; 172" = 0.010; 58" = 0.0016; 15" = 0.004; 14" = 0.0026; 5716" = 0.004; 38" = 0.006; 172" = 0.010; 58" = 0.0016; 15" = 0.004; 18" = 0.0016; 15" = 0.004; 18" = 0.0016; 15" = 0.004; 18" = 0.0016; 15" = 0.004; 18" = 0.0016; 15" = 0.004; 18" = 0.0016; 15" = 0.004; 18" = 0.0016; 15" = 0.004; 18" = 0.0016; 15" = 0.004; 18" = 0.0016; 18" = 0.0016; 5716" = 0.004; 38" = 0.006; 172" = 0.010; 58" = 0.0016; 18" = 0.				PURGING	<u>'</u>	NG	PURGIN	galloi	UBING	MP OR T	FINAL PUI		_										
9:36	ODOR (describe)	COLOR	TEMP.	DISSOLVED OXYGEN (%	BIDITY	TUF	COND.	tandard	PTH O TER (s	DEF T WA	PURGE RATE	VOLUME PURGED		VOLUME PURGED									
9:38	9:34 1.0 1.0 0.125 ~6.0 6.87 0.804 OR 6.9 27.09 Cloudy Hydrocarbon																						
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12	9:36 0.25 1.25 0.125 ~6.0 6.99 0.816 OR 8.1 27.14 Cloudy Hydrocarbon																						
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.000; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0016; 1/2" = 0.0016; 1/2" = 0.0016; 1/2" = 0.0016; 1/2" = 0.010; 5/8" = 0.0016; 1/2" = 0.0016;	Hydrocarbon	9:38 0.25 1.5 0.125 ~6.0 7.02 0.839 227 3.8 27.20 Cloudy Hydrocarbor																					
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.000; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.0016; 1/2" = 0.0016; 1/2" = 0.0016; 1/2" = 0.0016; 1/2" = 0.010; 5/8" = 0.0016; 1/2" = 0.0016;	5.50 0.25 1.5 0.125 ~0.0 1.02 0.039 221 3.0 21.20 Cloudy hydrocarbon																						
PUMP OR TUBING DEPTH IN WELL (feet): 9 FIELD DECONTAMINATION: PUMP Y NOT TUBING Y NOT TUBING Y NOT TOTAL VOL SAMPLE CONTAINERS PECIFICATION SAMPLE OBTAINS AND PLATE OF TOTAL VOL DE CONTAINERS CODE YOUNG NOT TOTAL VOL DE CONTAINERS OF TOTAL V	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016																						
SAMPLED BY (PRINT) / AFFILIATION: Jennifer Vega / EE&G PUMP OR TUBING DEPTH IN WELL (feet): 9 FIELD DECONTAMINATION: SAMPLE CONTAINER SPECIFICATION SAMPLE DCODE CONTAINERS CODE VOLUME DCODE						-						,											
PUMP OR TUBING DEPTH IN WELL (feet): 9 FIELD DECONTAMINATION: PUMP Y N TUBING Y N (replaced) SAMPLE CONTAINER SPECIFICATION SAMPLE DCODE MATERIAL CODE MATERIAL MATERIA						ATA	LING D	SAMP	Ş														
DEPTH IN WELL (feet): 9	:40		: 9:38			_						ILIATION:	' AFFI	` '									
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION TOTAL VOL ADDED IN FINAL PH ANALYSIS AND/OR METHOD CODE 1 AG 250 mL PAH APP 2 AG 125 mL H2SO4 - <2 TPH APP	μm	FILTER SIZE					/S	E: HDPE/		-			9										
SAMPLE ID CODE CONTAINERS CODE VOLUME PRESERVATIVE USED ADDED IN FIELD (mL) FINAL PH APP 1 AG 250 mL PAH APP 2 AG 125 mL H2SO4 - <2 TPH APP		N	Y	DUPLICATE:	d)	(replace	Υ Ν(TUBING	T	٧	P Y [PUMF	ΓΙΟΝ:	CONTAMINATION	FIELD DE								
1 AG 250 mL - - PAH APP	MPLE PUMP LOW RATE L per minute)	QUIPMENT F	ND/OR E	ANALYSIS AN			OTAL VOL	Т	RVATIVE			ATERIAL	М	#	SAMPLE								
2 AG 125 mL H2SO4 - <2 TPH APP	500	`	-			(mL)		ADDE	SED -	U	-	CODE			ID CODE								
9 99 49 4 1191	500				< 2		-		2SO4	H2													
	100			VOC	< 2		-		HCI	ŀ	40 mL	CG		3									
REMARKS: T.O.C. YSI 556 MPM # 7 TBM# 2							TBM# 2	<u> </u> 7 :	MPM #		YSI 556			<u> </u> s: <i>T.O.C.</i>	REMARKS								
	olypropylene;	ylene; PP = P	nsity Polyeth	LDPE = Low Der	ylene;	Polyet		HDPE = H	Glass; I	= Clear C	Glass; CG :												
SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 3. BLS = Below Land	,	r (Specify)	O = Othe	Gravity Drain);	d (Tubing (w Metho	SM = Straw	Pump;	Peristaltic I	se Flow I	FPP = Revers	RI											

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Avenue Miami, FL 33125													
WELL NO: MW-1	,	SAMPLE	ID: PACE				DATE: 3/	26 / 2019					
		PUR	GING D	DATA (2	/2B/3)	<u>.</u>							
WELL (PVC) TUBING DIAMETER (inches): 1.5 DIAME	G TER (inches): 0.	WEL	L SCREEN I TH: 3 feet to	NTERVAL	STATIC I	DEPTH ER (feet BLS): 4	.7	PURGE PUN OR BAILER:					
WELL VOLUME PURGE: 1 WELL VO (only fill out if applicable)	•												
EQUIPMENT VOLUME PURGE: 1 EQU (only fill out if applicable)	= (JIPMENT VOL. :	= PUMP VOLI	JME + (TUB	X 0.09 ING CAPACI	gallons/foot = TY X T	= 0.74 gall UBING LENGTH		ELL VOLUME					
(4) 551 544	=	gallons + (gallor	ns/foot X	feet) +	gallons =	gallons						
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 9	_	OR TUBING /ELL (feet): 9		PURGIN INITIATE	G ED AT: 10:17	PURGING ENDED AT:	10:37	TOTAL VOI PURGED (LUME gallons): 2.5				
TIME VOLUME VOLUME PURGED (gallons) (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)	TURBIDITY (NTUs)	DISSOLVED OXYGEN (% Saturation)	TEMF (°C)						
10:25 1.0 1.0 0.125 4.7 7.26 0.463 13.7 7.9 26.09 Clear Hydrocarbon													
10:29 0.5 1.5 0.125 4.7 7.25 0.461 11.8 7.9 26.13 Clear Hydrocarbon													
10:33 0.5 2.0 0.125 4.7 7.19 0.455 7.4 7.19 26.05 Clear Hydrocarbon													
10:37 0.5 2.5 0.125 4.7 7.18 0.453 4.9 4.6 26.05 Clear Hydrocarbon													
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016													
PURGING EQUIPMENT CODES: E	= Bailer; B	P = Bladder P			Submersible Pu	ımp; PP = P	eristaltic Pu	mp; O = 0	ther (Specify)				
				LING DA	ATA			1					
SAMPLED BY (PRINT) / AFFILIATION: Russell Fernandez / EE&G		SAMPLER(S)	SIGNATURE	:(8):		SAMPLING INITIATED A	T: 10:38	SAMPLIN ENDED A	IG AT: 10:45				
PUMP OR TUBING DEPTH IN WELL (feet): 9		TUBING MATERIAL CO	DDE: HDPE/	/S		D-FILTERED: Y		FILTER S	SIZE: <u>1</u> μm				
FIELD DECONTAMINATION: PUN	IP Y N		TUBING	Y N (r	eplaced)	DUPLICATE		N					
SAMPLE CONTAINER SPECIFICA	ATION		SAMPLE PR	ESERVATIO	N	INTEND	ED	SAMPLING	SAMPLE PUMP				
SAMPLE # MATERIAL ID CODE CONTAINERS CODE	VOLUME F	PRESERVATI USED		OTAL VOL D IN FIELD (1	mL) FINAL	ANALYSIS A	DD	EQUIPMENT CODE	FLOW RATE (mL per minute)				
1 PE	250 mL	HNO3		-	< 2	Total As, E		APP	500				
1 PE	250 mL	HNO3		-	< 2	Diss. As, E Fe	Ba, Pb,	APP	500				
1 AG	1 L	-		-	-	OC Pest.	8081	APP	500				
REMARKS: <i>T.O.C.</i> -0.3'	YSI 55	56 N	1PM # 7	TBM#	2								
MATERIAL CODES: AG = Amber S = Silicone;	Glass; CG = 0	Clear Glass; 0 = Other (S		ligh Density F	Polyethylene;	LDPE = Low D	ensity Polye	thylene; PP	= Polypropylene;				
SAMPLING EQUIPMENT CODES:	APP = After (Thr RFPP = Reverse	ough) Peristal	tic Pump;	B = Bailer; SM = Straw		der Pump; E g Gravity Drain);		c Submersible er (Specify)	Pump;				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: N	Melreese Golf Co	ourse (2018-3	NAME: Melreese Golf Course (2018-3057) LOCATION: 1802 NW 37 th Avenue Miami, FL 33125												
WELL NO	: MW-2	•	•	SAMPLE	ID: PACE				DATE: 3/2	26 / 2019					
				PUR	GING D	DATA (2	/2B/3)								
WELL (P\	/C) R (inches): 1.5	TUBIN	G TER (inches): 0	WEL	L SCREEN I	,	STATIC D	EPTH ER (feet BLS): 6.6	66	PURGE PUM OR BAILER:					
	LUME PURGE:		, ,		ΓH – STA	TIC DEPTH TO		WELL CAPACI							
FOLUBRAE	NE VOLUME D	IDOE 4 50		14.69 feet -	- 6.66 1	feet) X 0.0	09 gallons/foo		gallons	ELL VOLLINAE					
	NT VOLUME Pout if applicable)	URGE: 1 EQ	= =	gallons + (•	ns/foot X	feet) +	JBING LENGTH) gallons =	gallons	ELL VOLUME					
INITIAL PL	JMP OR TUBIN	G	FINAL PUM	P OR TUBING		PURGINO		PURGING		TOTAL VOL	LUME				
DEPTH IN	WELL (feet): 1	1 CUMUL.	DEPTH IN V	VELL (feet): 1	1	INITIATE	D AT: 11:07	ENDED AT:	11:27	PURGED (g	gallons): 2.5				
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)	TURBIDITY (NTUs)	DISSOLVED OXYGEN (% Saturation)	TEMP (°C)	. COLO (describ					
11:15 1.0 1.0 0.125 6.66 6.77 0.700 27.3 8.1 25.85 Clear None															
11:19	0.5	1.5	0.125	6.66	6.84	0.664	21.8	4.7	25.86	S Clea	r None				
11:23	0.5	2.0	0.125	6.66	6.87	0.652	17.8	3.5	25.96	Clea	r None				
11:27	0.5	2.5	0.125	6.66	6.87	0.654	14.6	3.0	25.88	3 Clea	r None				
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gall/Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016														
PURGING	EQUIPMENT C	ODES:	B = Bailer; E	BP = Bladder P			Submersible Pur	mp; PP = Pe	eristaltic Pur	mp; O = O	ther (Specify)				
						LING DA	TA								
	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURE	E(S):				0.11451.111					
Jennier v	ega / EE&G			Jen	if t	O Vega	-	SAMPLING INITIATED AT	: 11:27	SAMPLIN ENDED A					
PUMP OR DEPTH IN	TUBING WELL (feet):	11		TUBING MATERIAL CO	DDE: HDPE/	'S		FILTERED: Y	N oe:	FILTER S	SIZE: <u>1</u> μm				
	CONTAMINATION		MP Y N		TUBING	Y N (re	eplaced)	DUPLICATE:	Υ	N					
SAM	PLE CONTAINE	R SPECIFIC	ATION	;	SAMPLE PR	ESERVATION	N	INTENDE		SAMPLING	SAMPLE PUMP				
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (n	FINAL nL) pH	ANALYSIS AN METHO	D	EQUIPMENT CODE	FLOW RATE (mL per minute)				
	1	PE	250 mL	HNO3		-	< 2	Fe	a, Pb,	APP	500				
	1 PE 250 ml HNO3 - 2 Total As, Ba, Pb, APP 500														
	1	PE	250 mL	HNO3			< 2	As, Ba, Pb	, Fe						
	1	PE AG	250 mL 1 L	HINO3		-	-	As, Ba, Pb OC Pest. 8	-	APP	500				
						-	-	1	-	APP	500				
				-		-	-	1	-	APP	500				
	1	AG	1 L	-		-	-	1	-	APP	500				
REMARKS	1		1 L	-	MPM # 7	- - TBM#	-	1	-	APP	500				
REMARKS MATERIA	1 s: <i>T.O.C.</i> -C	AG	1 L <i>YSI</i> Glass; CG =	-	HDPE = H	- - <i>TBM#</i> ligh Density P	- 2	1	3081		500 = Polypropylene;				
MATERIA	1 s: <i>T.O.C.</i> -C	AG D.28' AG = Amber S = Silicone; CODES:	1 L <i>YSI</i> Glass; CG =	556 Clear Glass; O = Other (S	HDPE = H pecify) tic Pump;	ligh Density P	- 2	OC Pest. 8 LDPE = Low De	nsity Polyet		= Polypropylene;				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

pH: \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Avenue Miami, FL 33125														
WELL NO	MW-3	•	,	SAMPLE	ID: PACE				DATE: 3/2	6 / 2019				
				PUF	RGING D	DATA (2	/ 2B / 3)							
WELL (P\	/C) R (inches): 1.5	TUBIN	G TER (inches): 0	WEL	L SCREEN I	,	STATIC D	EPTH R (feet BLS): 4.	58	PURGE PUM OR BAILER:				
	LUME PURGE: t if applicable)	1 WELL VO	`				,	WELL CAPACI						
EQUIPME	NT VOLUME PL	JRGE: 1 EQI		= PUMP VOL	<u>– 4.58 1</u> UME + (TUB	reet) X 0.0 ING CAPACIT	09 gallons/foo Y X TU	t = 0.75 JBING LENGTH)	gallons + FLOW CE	LL VOLUME				
(only fill ou	t if applicable)		=.	gallons + (gallo	ns/foot X	feet) +	gallons =	gallons					
	JMP OR TUBING WELL (feet): 9	-	_	P OR TUBING VELL (feet): 9		PURGING	G D AT: 11:51	PURGING ENDED AT:	12:11	TOTAL VOI	LUME gallons): 2.5			
DEFITTIN	True (leet). 9	CUMUL.	DEFITTING	DEPTH		INITIATE	DAI. 11.51	DISSOLVED	12.11	FORGED (§	jailoris). 2.5			
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	COND. (mS/cm)	TURBIDITY (NTUs)	OXYGEN (% Saturation)	TEMP. (°C)	COLO (describ				
11:59 1.0 1.0 0.125 4.58 6.87 0.744 85.7 11.2 25.70 Clear None														
12:03	12:03 0.5 1.5 0.125 4.58 6.84 0.723 71.8 5.7 25.40 Clear None													
12:07	0.5	2.0	0.125	4.58	6.83	0.714	43.1	4.0	25.26	Clea	r None			
12:11	0.5	2.5	0.125	4.58	6.80	0.711	26.4	3.1	25.28	Clea	r None			
12.11	0.5	2.5	0.123	4.36	0.00	0.711	20.4	3.1	25.20	Clea	None			
	PACITY (Gallon NSIDE DIA. CAF					1.5" = 0.09; 1/4" = 0.0026		' = 0.37; 4" = 0 004; 3/8" = 0			17 ; 12 " = 5.88 5/8 " = 0.016			
PURGING	EQUIPMENT C	ODES: E	s = Bailer; E	P = Bladder P			Submersible Pur	mp; PP = Pe	eristaltic Pum	np; O = O	ther (Specify)			
						LING DA	TA							
	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURE	:(S):		CAMPLING		CAMPLIN				
Jennier V	ega / LL&O			Jer	-f +	Vege	-		Γ: 12:11					
Jennifer Vega / EE&G SAMPLING INITIATED AT: 12:11 SAMPLING ENDED AT: 12:14														
PUMP OR TUBING TUBING DEPTH IN WELL (feet): 9 MATERIAL CODE: HDPE/S Filtration Equipment Type:														
DEPTH IN					DDE: HDPE/					FILTER S	IZE: <u>1</u> μm			
DEPTH IN	WELL (feet): 9	ON: PUN	1P Y N	MATERIAL CO	TUBING		Filtration	on Equipment Ty	pe: Y		SAMPLE PUMP			
DEPTH IN	WELL (feet): 9	ON: PUN	MP Y N	MATERIAL CO	TUBING SAMPLE PR	Y N (re	Filtration	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO	Y ED S ND/OR E	N				
DEPTH IN FIELD DE	WELL (feet): 9 CONTAMINATIO PLE CONTAINE #	ON: PUN ER SPECIFICA MATERIAL	MP Y N	MATERIAL CO	TUBING SAMPLE PR	Y N (re	Filtration	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, Be	Y ED S ND/OR E	N SAMPLING QUIPMENT	SAMPLE PUMP FLOW RATE			
DEPTH IN FIELD DE	WELL (feet): 9 CONTAMINATIO PLE CONTAINE # CONTAINERS	ON: PUM ER SPECIFICA MATERIAL CODE	MP Y NATION VOLUME	PRESERVATI	TUBING SAMPLE PR	Y N (re	Filtration pH	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, Ba	PDE: Y ED S ND/OR E D a, Pb,	N SAMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)			
DEPTH IN FIELD DE	WELL (feet): SCONTAMINATION PLE CONTAINE # CONTAINERS 1	DN: PUN ER SPECIFIC, MATERIAL CODE PE	ATION VOLUME 250 mL	PRESERVATI USED HNO3	TUBING SAMPLE PR	Y N (re	Filtration pilote placed) N FINAL pH < 2	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, Be Fe Diss.	PED S ED S	SAMPLING QUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)			
DEPTH IN FIELD DE	WELL (feet): SCONTAMINATION PLE CONTAINE # CONTAINERS 1	DN: PUNER SPECIFICA MATERIAL CODE PE PE	ATION VOLUME 250 mL	PRESERVATI USED HNO3	TUBING SAMPLE PR	Y N (re	Filtration pilote placed) N FINAL pH < 2	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, B: Fe Diss. As, Ba, Pt	PED S	SAMPLING QUIPMENT CODE APP	SAMPLE PUMP FLOW RATE (mL per minute) 500			
DEPTH IN FIELD DE	WELL (feet): SCONTAMINATION PLE CONTAINERS 1 1 1	DN: PUNER SPECIFICA MATERIAL CODE PE PE AG	ATION VOLUME 250 mL 250 mL	PRESERVATI USED HNO3 HNO3	TUBING SAMPLE PR	Y (re ESERVATION OTAL VOL D IN FIELD (m	Filtration placed) N FINAL pH < 2 < 2	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, Ba Fe Diss. As, Ba, Pt OC Pest. {	Pee: Y ED S ND/OR E D a, Pb, b, Fe 3081 350.1)	SAMPLING QUIPMENT CODE APP APP APP	SAMPLE PUMP FLOW RATE (mL per minute) 500 500			
DEPTH IN FIELD DE SAM SAMPLE ID CODE	WELL (feet): SCONTAMINATION PLE CONTAINERS 1 1 1 1 1	PE AG	ATION VOLUME 250 mL 1 L 250 mL 1 L	PRESERVATI USED HNO3 HNO3 - H2SO4	TUBING SAMPLE PR VE T ADDE	Y (re ESERVATION OTAL VOL D IN FIELD (m	Filtration placed) N FINAL pH < 2 < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 3 - - - - - - - - - - - - -	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, B: Fe Diss. As, Ba, Pt OC Pest. { Ammonia (3)	Pee: Y ED S ND/OR E D a, Pb, b, Fe 3081 350.1)	SAMPLING QUIPMENT CODE APP APP APP APP	SAMPLE PUMP FLOW RATE (mL per minute) 500 500 500			
SAMPLE ID CODE	WELL (feet): SECONTAMINATION PLE CONTAINERS 1 1 1 1 1 1 1 5: T.O.CC	PE AG PE AG	ATION VOLUME 250 mL 250 mL 1 L 250 mL 1 L 757	PRESERVATI USED HNO3 HNO3 - H2SO4 -	TUBING SAMPLE PR VE T ADDE	Y (re ESERVATION OTAL VOL D IN FIELD (m TBM#	Filtration placed) N FINAL pH < 2 < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - - < 2 - - - - - - - - - - - - -	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, Bi Fe Diss. As, Ba, Pt OC Pest. 8 Ammonia (3	Pee: Y ED ND/OR D a, Pb, p, Fe 8081 850.1) urans	SAMPLING QUIPMENT CODE APP APP APP APP APP APP	SAMPLE PUMP FLOW RATE (mL per minute) 500 500 500 500			
DEPTH IN FIELD DE SAM SAMPLE ID CODE	WELL (feet): SECONTAMINATION PLE CONTAINERS 1 1 1 1 1 1 1 5: T.O.CC	PE AG	ATION VOLUME 250 mL 250 mL 1 L 250 mL 1 L 757	PRESERVATI USED HNO3 HNO3 - H2SO4	TUBING SAMPLE PR VE T ADDE	Y (re ESERVATION OTAL VOL D IN FIELD (m	Filtration placed) N FINAL pH < 2 < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - - < 2 - - - - - - - - - - - - -	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, B: Fe Diss. As, Ba, Pt OC Pest. { Ammonia (3)	Pee: Y ED ND/OR D a, Pb, p, Fe 8081 850.1) urans	SAMPLING QUIPMENT CODE APP APP APP APP APP APP	SAMPLE PUMP FLOW RATE (mL per minute) 500 500 500			
DEPTH IN FIELD DE SAM SAMPLE ID CODE REMARKS MATERIA	WELL (feet): SECONTAMINATION PLE CONTAINERS 1 1 1 1 1 1 1 5: T.O.CC	PE AG PE AG PE AG S = Amber S = Silicone; CODES:	ATION VOLUME 250 mL 1 L 250 mL 1 L 75/ MC Glass; CG =	PRESERVATI USED HNO3 HNO3 - H2SO4 - 556 Clear Glass; O = Other (S rough) Perista	TUBING SAMPLE PR VE T ADDE MPM # 7 HDPE = H specify)	Y (re ESERVATION OTAL VOL D IN FIELD (m Ingh Density Policy B = Bailer;	Filtration placed) N FINAL pH < 2 < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - < 2 - - < 2 - - - - - - - - - - - - -	DI Equipment Ty DUPLICATE: INTENDE ANALYSIS AI METHO Total As, Bi Fe Diss. As, Ba, Pt OC Pest. { Ammonia (3) Dioxins & F LDPE = Low De	Pee: Y ED ND/OR D a, Pb, Fe 8081 850.1) urans nsity Polyeth	SAMPLING QUIPMENT CODE APP APP APP APP APP APP	SAMPLE PUMP FLOW RATE (mL per minute) 500 500 500 500 500 500 = Polypropylene;			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

5751 Miami Lakes Dr. Miami Lakes, FL 33014 Phono: (205) 374 8200

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: N	lelreese Golf Co	urse (2018-3	057)		LO		02 NW 37 th Aver	nue Miami, FL 33	125					
WELL NO	: MW-4			SAMPLE	ID: PACE				DATE: 3/	26 / 2019				
				PUR	GING D	DATA (2	/2B/3)	-						
WELL (P\	/C) R (inches): 1.5	TUBIN	G TER (inches):	WEL	L SCREEN I	,	STATIC D	DEPTH ER (feet BLS): 4.	46	PURGE PUN OR BAILER:				
	LUME PURGE: it if applicable)	1 WELL VO	LUME = (TOT				,	WELL CAPAC	ITY					
FOLIPME	NT VOLUME PI	IRGE: 1 FO	= (12.89 feet -	- 4.46 1	ING CAPACI	09 gallons/foo	ot = 0.76 JBING LENGTH	gallons + FLOW C	ELL VOLLIME				
	it if applicable)	SKOL. I La	=	gallons + (•	ns/foot X	feet) +	gallons =	gallons	PELE VOLONIE				
	JMP OR TUBIN WELL (feet): 9	-	_	MP OR TUBING WELL (feet): 9		PURGIN	G D AT: 13:06	PURGING ENDED AT:	13:26	TOTAL VOI	LUME gallons): 2.5			
DEI IIIIN	VELL (leet). 9	CUMUL.	DEI IIIIN	DEPTH		INITIALE	DAI. 13.00	DISSOLVED	13.20	T OKOLD (Janons). 2.5			
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	COND. (mS/cm)	TURBIDITY (NTUs)	OXYGEN (% Saturation)	TEMF (°C)					
13:14 1.0 1.0 0.125 4.46 7.04 0.510 3.16 8.2 26.01 Clear None														
13:18	13:18 0.5 1.5 0.125 4.46 7.04 0.509 1.31 5.0 25.91 Clear None													
13:22	13:22 0.5 2.0 0.125 4.46 7.07 0.509 0.76 4.5 25.93 Clear None													
13:26	0.5	2.5	0.125	4.46	7.08	0.509	1.12	3.9	25.90	O Clea	r None			
	PACITY (Gallon NSIDE DIA. CAI					1.5" = 0.09; 1/4" = 0.002		" = 0.37; 4 " = 0 .004; 3/8 " = 0		1.02; 6" = 1.4 2" = 0.010;	47; 12" = 5.88 5/8" = 0.016			
PURGING	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladder P			Submersible Pu	mp; PP = P	eristaltic Pu	mp; $\mathbf{O} = \mathbf{C}$	ther (Specify)			
			1			LING DA	<u>TA</u>			1				
	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURE	E(S):		0.1.451.11.0		0.1.10.11				
Jennier v	ega / EE&G			Jen	if +	O Vega	-	SAMPLING INITIATED A	T: 13:26	SAMPLIN ENDED A	AT: 13:30			
PUMP OR	TUBING WELL (feet): 9			TUBING MATERIAL CO	DE: HDPE	/S		-FILTERED: Yon Equipment Ty		FILTER S	SIZE: _1 μm			
	CONTAMINATION		MP Y N		TUBING		eplaced)	DUPLICATE:		N				
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE PR	ESERVATIO	N	INTENDI		SAMPLING	SAMPLE PUMP			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (r	FINAL nL) pH	ANALYSIS A METHO		EQUIPMENT CODE	FLOW RATE (mL per minute)			
	1	PE	250 mL	HNO3		-	< 2	Total As, B Fe	a, Pb,	APP	500			
	1	PE	250 mL	HNO3		-	< 2	Diss. As, Ba, Pl		APP	500			
	1	AG	1 L	-		-	-	OC Pest.	8081	APP	500			
	1	PE	250 mL	H2SO4		-	< 2	Ammonia (350.1)	APP	500			
	1	AG	1 L	-		-	-	Dioxins & F	urans	APP	500			
DEMASS	TOC 1	201	VCI	FF/	1.401.4.11.7	TOLA	<u> </u>							
REMARKS	5: 1.U.CC	0.29′			MPM # 7	TBM 1	<i>f Z</i>							
MATERIA	L CODES:	AG = Amber	Glass; CG =	: Clear Glass;	HDPE = H	ligh Density P	olyethylene;	LDPE = Low De	ensity Polye	thylene; PP	= Polypropylene;			
	L CODES.		T = Teflon:	O = Other (S	pecify)									
	G EQUIPMENT	S = Silicone; CODES:	APP = After (Th	O = Other (S nrough) Peristal se Flow Peristal	tic Pump;	B = Bailer;	BP = Blado Method (Tubing	1 /		c Submersible er (Specify)	Pump;			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

pH: \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	SITE NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Avenue Miami, FL 33125													
WELL NO:		`	,	SAMPLE	•					DATE: 3/	26 / 2019			
				PUR	GING D	DATA (2	/ 2B	3/3)						
	R (inches): 2.0		TER (inches): 0	0.25 WEL	L SCREEN I TH: 2.38 fee	INTERVAL et to 12.38 fee	t 3	STATIC D	R (feet BLS): 4.		PURGE PUN OR BAILER:			
(only fill ou	t if applicable)		= (1:	2.38 feet –	4.40 fe	et) X 0.16	aall	,	WELL CAPACI = 1.28 ga	TY allons				
	NT VOLUME PUt if applicable)	JRGE: 1 EQU	IPMENT VOL.	= PUMP VOLU gallons + (JME + (TUB	ING CAPACI	TY feet	X TL	JBING LENGTH) gallons =	+ FLOW C	ELL VOLUME			
	JMP OR TUBING	3		P OR TUBING VELL (feet): 8		PURGIN	G	<u>*</u>	PURGING ENDED AT:		TOTAL VOI	UME allons): 9.5		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		BIDITY TUs)	DISSOLVED OXYGEN (% Saturation)	TEMF (°C)				
12:40	8.0	8.0	0.125	4.48	6.54	0.498	3	1.8	11.6	26.4	B Clea	None		
12:44	0.5	8.5	0.125	4.48	6.53	0.496	28	8.2	11.5	26.4	4 Clea	None		
12:48	0.5	9.0	0.125	4.48	6.53	0.495	2	3.6	11.4	26.4	8 Clea	None		
12:52	12:52 0.5 9.5 0.125 4.48 6.54 0.495 17.1 11.4 26.49 Clear None													
	12:52													
PURGING	EQUIPMENT C	ODES: B	= Bailer; E	BP = Bladder P		SP = Electric		rsible Pur	mp; PP = Pe	eristaltic Pu	mp; $\mathbf{O} = O$	ther (Specify)		
SAMPLED	BY (PRINT) / A	FEILIATION:		SAMPLER(S)		LING DA	ATA_		T					
	rtina / EE&G	TTILIATION.				Corti	na		SAMPLING INITIATED A	Γ: 12:52	SAMPLIN ENDED A			
PUMP OR DEPTH IN	TUBING WELL (feet): 8	<u> </u>		TUBING MATERIAL CC	DE: HDPE	/S			I -FILTERED: Y on Equipment Ty		FILTER S	IZE: <u>1</u> μm		
FIELD DE	CONTAMINATIO	N: PUM	P Y N		TUBING	Y N (r	eplaced	d)	DUPLICATE:	Υ	N			
SAMPLE	PLE CONTAINE #	MATERIAL		PRESERVATI	VE T	ESERVATIO		FINAL	INTENDE ANALYSIS A METHO	ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE		
ID CODE	CONTAINERS 1	CODE PE	250 mL	USED HNO3	ADDE	D IN FIELD (I	nL)	pH < 2	Total As, B		APP	(mL per minute) 500		
	1	PE	250 mL	HNO3		-	\perp	< 2	Diss. As, B	a, Pb,	APP	500		
	1	AG	1 L	-		-		-	OC Pest. 8	3081	APP	500		
REMARKS	s: <i>T.O.CC</i>	0.37'	YSI .	556 i	MPM # 7	TBM	# 1		'	<u>'</u>				
Sedimer	nt buildup er	ncountered	d, well had	thick browr	n water –	purge to	clear	of appr	roximately 8	gallons.				
MATERIA			Glass; CG =			ligh Density F			LDPE = Low De		thylene; PP	= Polypropylene;		
SAMPLING	G EQUIPMENT	S = Silicone;	T = Teflon; PP = After (Th	O = Other (Sprough) Peristal	• • • • • • • • • • • • • • • • • • • •	B = Bailer:	ВІ	P = Bladd	ler Pump; ES	SP = Electri	c Submersible I	Pump:		
	. The above d	R	FPP = Reverse	e Flow Peristalt	ic Pump;	SM = Straw	Method	d (Tubing	Gravity Drain);	O = Oth	er (Specify)	w Land Surface		

2. Stabilization Criteria for range of variation of last three consecutive readings (see FS 2212, section 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	lelreese Golf Co	urse (2018-30	057)		SIT LO		02 NW 37 th Ave	nue Miami, FL 33	3125					
WELL NO:		,	,	SAMPLE	ID: PACE			,	DATE: 3/	26 / 2019				
				PUR	RGING D	DATA (2	/2B/3)	L						
	R (inches): 1.5		TER (inches):	0.25 WEL	L SCREEN I	INTERVAL t to 13.05 feet	STATIC I	ER (feet BLS): 4		PURGE PUN OR BAILER:				
(only fill ou	t if applicable)		= (13.05 feet	– 4.5 fe	eet) X 0.0	9 gallons/foot	WELL CAPAC = 0.77 g	ITY jallons					
	NT VOLUME PUt if applicable)	JRGE: 1 EQI	JIPMENT VOL =	= PUMP VOL		ING CAPACI	TY X T	JBING LENGTH gallons =) + FLOW (gallons	CELL VOLUME				
	JMP OR TUBINO WELL (feet): 8	G		MP OR TUBING WELL (feet): 8		PURGIN INITIATE	G ED AT: 13:34	PURGING ENDED AT:	13:54	TOTAL VO PURGED (LUME gallons): 2.5			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)	TURBIDITY (NTUs)	DISSOLVED OXYGEN (% Saturation)	TEMF (°C)					
13:42	1.0	1.0	0.125	4.5	6.85	0.879	22.1	8.6	25.6	7 Clea	r Organic			
13:46	0.5	1.5	0.125	4.5	6.85	0.881	21.5	8.2	25.7	1 Clea	r Organic			
13:50	0.5	2.0	0.125	4.5	6.84	0.881	19.8	7.9	25.7	3 Clea	r Organic			
. 0.00	0.0		020		0.0 .	0.00				0.00	. 0.94			
13:54	13:54 0.5 2.5 0.125 4.5 6.84 0.882 18.5 7.8 25.76 Clear Organic													
	PACITY (Gallons SIDE DIA. CAF							" = 0.37; 4 " = 0.004; 3/8 " = 0		: 1.02; 6" = 1. /2" = 0.010;	47; 12" = 5.88 5/8" = 0.016			
PURGING	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladder P			Submersible Pu	mp; PP = P	eristaltic Pu	imp; O = C	ther (Specify)			
CAMPLED	DV (DDINT) / A	EEU IATION.	ı	SAMPLER(S)		LING DA	ATA							
	BY (PRINT) / A rtina / EE&G	FFILIATION.			Cond			SAMPLING INITIATED A	T: 13:54	SAMPLIN ENDED A	IG AT: 13:57			
PUMP OR DEPTH IN	TUBING WELL (feet): 8	}		TUBING MATERIAL CO	ODE: HDPE	/S		-FILTERED: Y on Equipment Ty		FILTER S	SIZE: <u>1</u> μm			
FIELD DE	CONTAMINATIO	N: PUN	IP Y	7	TUBING	Y N (r	eplaced)	DUPLICATE:	Υ	N				
	PLE CONTAINE	R SPECIFICA	ATION			RESERVATIO		INTEND		SAMPLING	SAMPLE PUMP			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (r	mL) FINAL	ANALYSIS A METHC	D	EQUIPMENT CODE	FLOW RATE (mL per minute)			
	1	PE	250 mL	HNO3		-	< 2	Total As, B Fe		APP	500			
	1	PE	250 mL	HNO3		-	< 2	Diss. As, B Fe	a, Pb,	APP	500			
	1	AG	1 L	-		-	-	OC Pest.	8081	APP	500			
	1	PE	250 mL	H2SO4		-	< 2	Ammonia (350.1)	APP	500			
REMARKS	s: <i>T.O.CC</i>	D.35'		1 556	 MPM # 7	TBM 1	 	1			<u> </u>			
MATERIA	L CODES:	AG = Amber S = Silicone;	Glass; CG	= Clear Glass; 0 = Other (S	HDPE = H	ligh Density F		LDPE = Low De	ensity Polye	ethylene; PP	= Polypropylene;			
SAMPLING	G EQUIPMENT			hrough) Perista se Flow Peristal		B = Bailer; SM = Straw	BP = Blade Method (Tubing			ic Submersible ner (Specify)	Pump;			
NOTES: 1.	The above d	o not cons	titute all of t	he information	on required	by Chapte	r 62-160, F.A	.C.		3. BLS = Belo	w Land Surface			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NH: + 0.2 units. Temperature: + 0.2 °C. Specific Conductance: + 5%. Dissolved Overen: all readings < 20% saturation (see Table ES 220)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	lelreese Golf Co	urse (2018-30	057)			TE DCATION: 18	02 NW	/ 37 th Aver	nue Miami, FL 33	125		
WELL NO:		(=====		SAMPLE I			-				26 / 2019	
				PU	RGING	DATA (2	/ 2B /	/ 3)				
	R (inches): 2		TER (inches):	0.25 DEPT	H: 2.97 fee	INTERVAL et to 12.97 fee	et		ER (feet BLS): 4.0		PURGE PUN OR BAILER:	
	LUME PURGE: it if applicable)	1 WELL VO	LUME = (TOT	AL WELL DEPT	H – STA	TIC DEPTH 1	O WA	TER) X	WELL CAPACI	TY		
` .		IDGE: 1 EOI	= (12.97 feet – . = PUMP VOLU	4.07 f	feet) X 0.	16 g ⊤∨		t = 1.42 g JBING LENGTH)		CELL VOLLIME	
	it if applicable)	JRGE. TEQ			•				,			
INITIAL DI	JMP OR TUBIN	G	=	gallons + (MP OR TUBING	gallo	ons/foot X PURGIN		et) +	gallons =	gallons	TOTAL VO	LIME
	WELL (feet): 8	.5		WELL (feet): 8.	.5	INITIATI		14:34	ENDED AT:	15:02		gallons): 3.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		RBIDITY ITUs)	DISSOLVED OXYGEN (% Saturation)	TEMP (°C)	. COLOR (describe)	ODOR (describe)
14:50	2.0	2.0	0.125	4.07	6.92	1.032	1	12.4	12.5	27.20	Orange Murky	Hydrocarbon
14.54	0.5	2.5	0.405	4.07	6.74	1.047		10.2	0.7	27.00	Claar	I li column a surb a m
14:54	0.5	2.5	0.125	4.07	6.74	1.047		10.3	8.7	27.03	3 Clear	Hydrocarbon
14:58	0.5	3.0	0.125	4.07	6.40	1.054	1	11.5	5.4	26.96	6 Clear	Hydrocarbon
15:02	0.5	3.5	0.125	4.07	6.37	1.051		9.8	4.8	26.83	3 Clear	Hydrocarbon
WELLOAD	DACITY (Caller	- D F4\:	0.75" 0.00:	4" 0.04: 4.0	F !! 0.00:	4.5" 0.00	0"	0.40: 0	" = 0.37; 4 " = 0	OF: F "	4.00: 6" 4	47: 40!! 5.00
	NSIDE DIA. CAF				,	1/4" = 0.002		5/16" = 0.	,	,	= 1.02; 6 " = 1.4 /2" = 0.010;	47; 12 " = 5.88 5/8 " = 0.016
PURGING	EQUIPMENT C	ODES: E	3 = Bailer;	BP = Bladder Pu		SP = Electric		ersible Pu	mp; $\mathbf{PP} = Pe$	ristaltic Pu	ump; $\mathbf{O} = \mathbf{C}$	ther (Specify)
SAMPLED	BY (PRINT) / A	FEILIATION:		SAMPLER(S) S		PLING DA	TA					
	ernandez / EE&G			. ,	6	L(O).			SAMPLING INITIATED AT	: 15:02	SAMPLIN ENDED A	IG AT: 15:15
PUMP OR	TUBING WELL (feet): 8	3.5		TUBING MATERIAL CO	DE: HDPE	//S			-FILTERED: y on Equipment Typ	N N	FILTER S	SIZE: <u>1</u> μm
	CONTAMINATIO		MP Y N		TUBING		eplace		DUPLICATE:	Υ	N	
SAM	PLE CONTAINE	R SPECIFICA	ATION	S	SAMPLE PF	RESERVATIO	N		INTENDE	D	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (mL)	FINAL pH	ANALYSIS AN METHO		EQUIPMENT CODE	FLOW RATE (mL per minute)
	3	CG	40 mL	HCL		-		< 2	VOC		APP	100
	1	AG	250 mL	-		-		-	PAH		APP	500
	2	AG	100 mL	H2SO4		-		< 2	TPH		APP	500
	1	AG	1 L	=		-		-	Pest. 81		APP	500
	1	AG	1 L	-		-		-	Herb. 81		APP	500
	1	PE	250 mL	H2SO4		-	_	< 2	Ammon		APP	500
	1	AG	1 L	-		-	-	< 2	OC Pest. 8		APP	500
	1	PE	250 mL	HNO3		-		< 2	As, Ba, Pb		APP	500
REMARKS	1 S: <i>T.O.C0.27</i>	PE /	250 mL <i>YSI 55</i> 6	HNO3 6 MPM :	<u> </u>	- TBM# 2		< 2	Diss. As, Ba,	ге, ге	APP	500
MATERIAL			Glass; CG = C			Density Polye	thylene	LDPF	E = Low Density Po	lvethvlene:	PP = Polypro	povlene:
		= Silicone;	T = Teflon; O	= Other (Specify))	_ 0ony 1 ony 6	, 10110	,, _	Donoity 1 0	.,,,	– i diypit	,,
SAMPLING	E EQUIPMENT C			gh) Peristaltic Pur ow Peristaltic Pur		Bailer; B Straw Method		dder Pump		ric Submer her (Specif		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of variation of last three consecutive readings (see FS 2212, section 3)

^{3.} BLS = Below Land Surface

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	elreese Golf Cou	rse (2018-305	7)		SI ⁻	TE DCATION: 180:	2 NW 3	37 th Ave, Mia	ami, FL 33125			
WELL NO:	MW-44	·		SAMPLE	EID: PACE					DATE: 3/2	7 / 2019	
				Pl	JRGING [DATA (2	/ 2B	3/3)				
WELL (P	VC) ER (inches): 2.0	TUBII DIAM	NG ETER (inches	WE	ELL SCREEN PTH: 1.88 fee	INTERVAL		STATIC D	DEPTH ER (feet BLS): 4	4.0	PURGE PU OR BAILER	
	out if applicable		VOLUME = (L DEPTH - feet -				R) X WELL gallons/foot =		Y gallons	
		URGE: 1 EQ				BING CAPACI	TY	X TU	BING LENGTH)	+ FLOW C		
(only fill o	ut if applicable)		= (gallons + (gallons/foo	t X 20	feet) +	+	gallons =	gallons		
	PUMP OR TUB N WELL (feet):			MP OR TUB WELL (feet)		PURGIN INITIATE		Γ: 07:27	PURGING ENDED AT:	07:51	TOTAL VO	DLUME (gallons): 3.5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		RBIDITY ITUs)	DISSOLVED OXYGEN (% Saturation)	TEMF (°C)		
07:43	2.0	2.0	0.125	4	6.82	0.967	1	10.5	8.4	24.20	Clea	r None
07:47	0.5	2.5	0.125	4	6.84	0.961		7.9	5.8	24.63	3 Clea	r None
07:51	0.5	3.0	0.125	4	6.82	0.958		8.3	4.7	24.54	1 Clea	r None
07:55	0.5	3.5	0.125	4	6.82	0.957		7.4	4.1	24.58	3 Clea	r None
WELL CA	PACITY (Gallons	Per Foot): 0.	75" = 0.02: 1"	= 0.04: 1.25 "	' = 0.06: 1.5 "	= 0.09: 2 " = 0	0.16:	3 " = 0.37:	4 " = 0.65; 5 " :	= 1.02; 6 "	= 1.47; 12" =	5.88
TUBING IN	ISIDE DÌA. CAPA	ACITY (Gal./Ft	.): 1/8" = 0.000	6; 3/16" = 0	.0014; 1/4"	= 0.0026; 5	/16" =	0.004;	3/8" = 0.006; 1	1/2" = 0.010;	5/8" = 0.01	6
PURGING	EQUIPMENT CO	DDES: B =	Bailer; BP	= Bladder Pum	•	Electric Submer		Pump;	PP = Peristaltic P	ump; O	= Other (Specif	y)
CAMDLE	D BY (PRINT)	/ AEEII IATIC	NI.	CAMDI ED/	SAMP S) SIGNATUI	LING DA	IIA		T			
	ernandez / EE		JIN.	SAMPLEN(S) SIGNATU	NE(S).			044451410		OAMBU	NO.
Russell I	emandez/ LLC			~	196	_			SAMPLING INITIATED A	T: 07:55	SAMPLI ENDED	NG AT: 08:00
	R TUBING N WELL (feet):	8.0		TUBING MATERIAL	CODE: HDP	PE/S			FILTERED: Mon Equipment Ty	N pe:	FILTER SI	ZE: <u>1</u> μm
FIELD DEC	CONTAMINATION	N: PUMP	Y N	Т	UBING Y	N (replaced	i)	•	DUPLICATE:	Υ	N	
SA	MPLE CONTAINE	ER SPECIFIC	ATION		SAMPLE PF	RESERVATION	1		INTENDE	D	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATUSED		TOTAL VOL ED IN FIELD (m	nL)	FINAL pH	ANALYSIS AN METHOI		EQUIPMENT CODE	FLOW RATE (mL per minute)
	1	PE	250 mL	HNO3		-		< 2	Total F	e	APP	500
	1	PE	250 mL	HNO3		-		< 2	Diss. Fo		APP	500
	1	AG	1 L	-		-		-	Dieldrin 8	081	APP	500
REMARKS	i: <i>T.O.C0.</i>	2′	YSI 550	6 MF	PM # 7	TBM# 2	I					
MATERIAI			laaa: CC Cl	ear Glass; I	HDPF = High D	ensity Polyethy	lene:	LDPF =	Low Density Poly	ethylene;	PP = Polyprop	vlene:
	CODES:	AG = Amber G	iass; CG = Ci	cai Giass, I	IDI L - mgm D	0.1011, 1 0.1, 01.1,	,			•	- 71 -1	, ,
		S = Silicone;		O = Other (Spec	cify)			idder Pump;		de Culture		, ,

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface
2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	lelreese Golf Co	urse (2018-30	57)		SI ⁻ LC		2 NW	37 th Aveni	ue Miami, FL 33	125			
WELL NO:	SCS-MW-1			SAMPLE	ID: PACE					DATE: 3/	27 / 2019		
				PUF	RGING E	DATA (2 /	/ 2B	3/3)					
WELL (PV DIAMETER	/C) R (inches): 1.5	TUBING DIAME	G TER (inches): (L SCREEN TH: 2.1 feet			STATIC DI TO WATEI	EPTH R (feet BLS): 4.	0	PURGE PUN OR BAILER:		
	LUME PURGE: t if applicable)	1 WELL VO	LUME = (TOT					,					
	NT VOLUME PU	JRGE: 1 EQU	= (JIPMENT VOL	12.1 feet – . = PUMP VOL	- 4.0 fee .UME + (TUB	et) X 0.09 SING CAPACIT	gallo Y		= 0.73 ga BING LENGTH)	Hons + FLOW C	ELL VOLUME		
(only fill ou	t if applicable)		= g	allons + (gallons/foo	t X feet)) +	gallon	s = gall	lons			
	JMP OR TUBING WELL (feet): 8	3	_	MP OR TUBING		PURGING INITIATED		08:45	PURGING ENDED AT:	09:01	TOTAL VO PURGED (LUME gallons): 2.0	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		BIDITY TUs)	DISSOLVED OXYGEN (% Saturation)	TEMF (°C)			
08:53 1.0 1.0 0.125 4.0 6.89 0.711 48.9 0.5 22.85 Murky / Orange None													
	Murky /												
08:57	08:57 0.5 1.5 0.125 4.0 6.90 0.650 27.6 2.7 22.87 Murky / Orange None												
09:01	0.5	2.0	0.125	4.0	6.92	0.702	2	5.2	3.3	22.92	2 Clea	r None	
09.01	0.5	2.0	0.123	4.0	0.92	0.702		5.2	3.3	22.32	Z Olea	1 None	
	PACITY (Gallon: NSIDE DIA. CAF				.25" = 0.06; = 0.0014;			0.16; 3 " 5/16" = 0.0			1.02; 6" = 1. /2" = 0.010;	47; 12" = 5.88 5/8" = 0.016	
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder F		SP = Electric S		ersible Pum	np; PP = Pe	eristaltic Pu	mp; O = C	ther (Specify)	
SAMPLED	BY (PRINT) / A	FEILIATION:		SAMPLER(S)		LING DA	ΙA		1				
	rnandez / EE&G				96	-(0).			SAMPLING INITIATED A	Γ: 09:01	SAMPLIN ENDED A	IG AT: 09:10	
PUMP OR DEPTH IN	TUBING WELL (feet): 8	<u> </u>		TUBING MATERIAL C	ODE: HDPE	/S			FILTERED: Y n Equipment Ty		FILTER S	SIZE: <u>1</u> μm	
FIELD DE	CONTAMINATIO	N: PUM	IP Y N		TUBING	Y N (re	placed		DUPLICATE:	Υ	N		
	PLE CONTAINE		ATION			RESERVATION			INTENDE ANALYSIS A		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD (m	L)	FINAL pH	METHO		CODE	(mL per minute)	
	1	PE	250 mL	HNO3		-		< 2	Total F	е	APP	500	
	1	PE	250 mL	HNO3		-		< 2	Diss. F	е	APP	500	
	1	AG	1 L	-		-		-	Dieldrin 8	081	APP	500	
REMARKS	s: <i>T.O.CC</i>	<u> </u>	 YSI 5	556 M	 ИРМ # 7	TBM# 2	<u> </u> ?					<u> </u>	
MATERIA	L CODES:	AG = Amber S = Silicone;	Glass; CG = T = Teflon;	: Clear Glass; O = Other (S	HDPE = F Specify)	High Density Po	olyethy		LDPE = Low De			= Polypropylene;	
	The above d	F	APP = After (Th RFPP = Revers	e Flow Perista	Itic Pump;		/lethod	, ,	Gravity Drain);	O = Oth	c Submersible er (Specify)	Pump;	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	SITE NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Avenue Miami, FL 33125													
WELL NO: MW-8 SAMPLE ID: PA						ACE DATE: 3/27/2019								
				PUR	GING D	DATA (2	/2B/3)							
DIAMETER (inches): 1.5 DIAMETER (inches): 0.25 DEPTH:						WELL SCREEN INTERVAL STATIC DEP DEPTH: 2.89 feet to 12.89 feet TO WATER (PURGE PUN OR BAILER:				
	LUME PURGE: t if applicable)	1 WELL VO	,				,	WELL CAPAC						
	NT VOLUME PU	JRGE: 1 EQU	JIPMENT VOL.	= PUMP VOLU	ME + (TUB	ING CAPACI	<u>gallons/foot</u> TY X T	UBING LENGTH	allons l) + FLOW C	ELL VOLUME				
(only fill ou	t if applicable)		=	gallons + (gallons	/foot X	feet) +	gallons =	gallons					
	JMP OR TUBING WELL (feet): 8			P OR TUBING VELL (feet): 8		PURGIN INITIATE	G ED AT: 09:28	PURGING ENDED AT:	09:48	TOTAL VOI PURGED (9	_UME gallons): 2.5			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)	TURBIDITY (NTUs)	DISSOLVED OXYGEN (% Saturation)	TEMF (°C)					
09:36	1.0	1.0	0.125	4.3	7.09	0.614	102	5.7	24.9	8 Cloud	ly None			
09:40	0.5	1.5	0.125	4.3	7.08	0.611	67.3	4.8	24.9	5 Cloud	ly None			
09:44	0.5	2.0	0.125	4.3	4.3 7.07		29.5	4.4	24.9	2 Cloud	ly None			
09:48	0.5	2.5	0.125	4.3	7.09 0.607 17.6			3.0	25.1	7 Clea	r None			
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016														
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)														
CAMPLED	SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S):													
	rtina / EE&G	FFILIATION:			helsey Cortina				T: 09:48		SAMPLING ENDED AT: 09:55			
PUMP OR DEPTH IN	TUBING WELL (feet): 8	3		TUBING MATERIAL CO	DE: HDPE	/S		O-FILTERED: \(\) ion Equipment T		FILTER S	IZE: <u>1</u> μm			
	CONTAMINATIO				TUBING		eplaced)	DUPLICATE		N				
SAMI	PLE CONTAINE	R SPECIFICA	ATION	S	SAMPLE PR	ESERVATIO	N	INTEND		SAMPLING	SAMPLE PUMP			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		OTAL VOL D IN FIELD (r	mL) FINAL	ANALYSIS A	DD	EQUIPMENT CODE	FLOW RATE (mL per minute)			
	1	PE	250 mL	HNO3		-	< 2	Total As, E Fe	-, -,	APP	500			
	1	PE	250 mL	HNO3		-	< 2	Diss. As, E Fe		APP	500			
	1	AG	1 L	-		-	-	OC Pest.	8081	APP	500			
REMARKS	s: <i>T.O.CC</i>	D.17'	YSI.	556 /	 WPM # 7	TBM i	# 1							
MATERIAL	L CODES:	AG = Amber	Glass; CG =	Clear Glass;	HDPE = H	High Density F	Polyethylene;	LDPE = Low D	ensity Polye	thylene; PP	= Polypropylene;			
		S = Silicone;	T = Teflon;	O = Other (Sp	• • • • • • • • • • • • • • • • • • • •									
SAMPLING	3 EQUIPMENT	F	RFPP = Reverse	rough) Peristalt e Flow Peristalti	c Pump;		Method (Tubing	g Gravity Drain);	O = Oth	c Submersible er (Specify)	Oump;			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Avenue Miami, FL 33125															
WELL NO:		<u> </u>		SAMPI	E ID: P		<u> </u>	02	7.1.0	,	DATE: 3	27 / 2	2019		
				PL	JRGIN	IG D	ATA (2	/ 2E	3/3)						
DIAMETER (inches): 1.5 DIAMETER (inches): 0.25 DEPTH: 1.9							REEN INTERVAL STATIC DEPT							PURGE PUMP TYPE OR BAILER: PP#4	
	LUME PURGE: it if applicable)	1 WELL V	,	TAL WELL DE					,		ITY gallons				
	NT VOLUME PUt if applicable)	JRGE: 1 EG	UIPMENT VOI	= PUMP V0	DLUME +	+ (TUBI	NG CAPACI	TY feet)	X TU	JBING LENGTH		CELL	VOLUME		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 7 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 7 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 7 INITIATED AT: 10:28 ENDED AT: 10:56 PURGED (gallons)															
TIME	VOLUME PURGED	CUMUL. VOLUME PURGED	PURGE RATE	DEPTH TO WATER	p (stan	H ndard its)	COND. (mS/cm)	TUR	BIDITY ITUs)	DISSOLVED OXYGEN (%	TEM (°C	P.	COLOF (describe	ODOR	
10:36	(gallons)	(gallons) 1.0	(gpm) 0.125	(feet) 7.64		32	0.991	2	213	Saturation) 14.3	25.2	23	Cloudy	/ None	
									_				,		
10:40	0.5	1.5	0.125	7.64	7.2	20	0.890	,	124	5.7	25.4	2	Cloudy	/ None	
10:44	0.5	2.0	0.125	7.64	7.2	20	0.890	7	72.4	5.5	25.4	1 5	Cloudy	/ None	
			0.40=		+_								01 1	<u> </u>	
10:48	0.5	2.5	0.125	7.64	7.64 7.17 0.880				56.9	3.8 25.3		5 Cloudy		/ None	
10:52	0.5	3.0	0.125	7.64	7.	15	0.794	4	12.1	3.5	25.3	33	Clear	None	
10:56	0.5	3.5	0.125	7.64	7.	14	0.786	2	23.6	3.4	25.3	35	Clear	None	
	PACITY (Gallon: NSIDE DIA. CAF								: 0.16; 3 " 5/16" = 0.0					7; 12 " = 5.88 5/8 " = 0.016	
	EQUIPMENT C	,	B = Bailer;	BP = Bladde			SP = Electric			-	eristaltic P			her (Specify)	
							LING DA	ATA							
	BY (PRINT) / A rtina / EE&G	FFILIATION		SAMPLER(SAMPLING INITIATED A	T: 10:56		SAMPLING ENDED A		
PUMP OR	TUBING WELL (feet): 7	,		TUBING MATERIAL	CODE.	HDPF/	 S			FILTERED: You Equipment Ty			FILTER SI	ZE: <u>1</u> μm	
	CONTAMINATION		MP Y	<u> </u>		BING		eplace	•	DUPLICATE			N		
SAM	PLE CONTAINE	R SPECIFIC			SAMP	LE PRI	ESERVATIO	N		INTEND			1PLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED			OTAL VOL D IN FIELD (r	mL)	FINAL pH	ANALYSIS A METHO	DD		IPMENT ODE	FLOW RATE (mL per minute)	
	1	PE	250 mL	HNO	3		-		< 2	Total As, E	Ba, Pb,	Α	\PP	500	
	1	PE	250 mL	HNO	3		-		< 2	Diss. As, E Fe	Ba, Pb,	Α	\PP	500	
	1	AG	1 L	-			-		-	OC Pest.	8081	Α	\PP	500	
REMARKS	s: <i>T.O.C0</i>	D.2'	YS/ .	556	MPM	# 7	TBM#	1							
MATERIA		AG = Ambe	,	= Clear Glass	•		igh Density F	Polyeth	ıylene;	LDPE = Low D	ensity Poly	ethylei	ne; PP :	= Polypropylene;	
CAMPLIN			T = Teflon;	O = Other		·	D = Della		D _ Dlad-	or Dume: -	CD _ Flore	rio Cul	amaraikia D	umn:	
	The above d		APP = After (T RFPP = Rever	se Flow Peris	taltic Pur	mp;		Metho	, ,	Gravity Drain);	O = Ot	her (S _l		ump;	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

5751 Miami Lakes Dr. Miami Lakes, FL 33014 Phone: (205) 374 8300

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE SITE LOCATION: 1802 NW 37 th Avenue Miami, FL 33125													
WELL NO:			,	SAMPLE	ID: PAC				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DATE: 3/	27 / 2019		
				PUI	RGING	G DATA	(2/2	2B/3)					
DIAMETER (inches): 1.5 DIAMETER (inches): 0.25 DEPTH: 3.0							REEN INTERVAL STATIC DEPTH 3.0 feet to 13.0 feet TO WATER (feet BLS				PURGE PUN OR BAILER:		
	WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = (13.0 feet - 5.1 feet) X 0.09 gallons/foot = 0.69 gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME												
	NT VOLUME PUt if applicable)	JRGE: 1 EQ	UIPMENT VOL	. = PUMP VOI	_UME + (TUBING CA	PACITY	X TL	JBING LENGTH) + FLOW C	ELL VOLUME		
INITIAL PL	JMP OR TUBING		= FINAL PUM	gallons + (IP OR TUBING		lons/foot X	RGING	t) + g	allons = PURGING	gallons	TOTAL VO	LUME	
DEPTH IN WELL (feet): 9 INITIATED AT: 11:33 ENDED AT: 11:57 PURGED (gallons): 3.0													
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standa units)	(ms/c		JRBIDITY (NTUs)	OXYGEN (% Saturation)	TEMP (°C)			
11:41	1.0	1.0	0.125	5.1	7.13	0.41	6	68.8	6.6	25.74	4 Cloud	dy None	
11:45	0.5	1.5	0.125	5.1	7.13	0.41	1	66.7	5.8	25.77	7 Cloud	dy None	
11:49	0.5	2.0	0.125	5.1	7.14	0.40	06	76.2	5.0	25.78	3 Cloud	dy None	
							_						
11:53	0.5	2.5	0.125	5.1	7.14	0.40	00	80.0	4.7	25.76	6 Cloud	dy None	
11:57	0.5	3.0	0.125	5.1	7.15			105	4.3	25.75		dy None	
	WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gall/Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016												
	TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												
			1			/IPLING	DAT	4			.		
	BY (PRINT) / A rtina / EE&G	FFILIATION:		SAMPLER(S)		ortina			SAMPLING INITIATED A	T: 11:57	SAMPLIN ENDED A	NG AT: 12:00	
PUMP OR DEPTH IN	TUBING WELL (feet): 9)		TUBING MATERIAL C	ODE: HD	DPE/S			I -FILTERED: \(\) on Equipment T		FILTER S	SIZE: <u>1</u> μm	
	CONTAMINATIO		MP Y N		TUBIN		N (repla	•	DUPLICATE		N		
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPLE	PRESERV	ATION		INTEND		SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL \ DDED IN FIE		FINAL pH	ANALYSIS A METHO		EQUIPMENT CODE	FLOW RATE (mL per minute)	
	1	PE	250 mL	HNO3		-		< 2	Total As, E Fe	Ba, Pb,	APP	500	
	1	PE	250 mL	HNO3		-		< 2	Diss. As, E Fe	Ba, Pb,	APP	500	
	1	AG	1 L	-		-		-	OC Pest.	8081	APP	500	
REMARKS	s: <i>T.O.CC</i>	D.2'	YSI 5	56 /	MPM #	7 TE	BM# 1	I	1	<u> </u>		1	
MATERIA		AG = Amber	,	Clear Glass;		E = High Der	nsity Polye	ethylene;	LDPE = Low D	ensity Polye	thylene; PP	P = Polypropylene;	
SAMPLIN	G EQUIPMENT		APP = After (Th		altic Pump		Bailer;	BP = Blado			c Submersible	Pump;	
NOTES: 1	The above d		RFPP = Revers			•		, ,	Gravity Drain);		er (Specify)	w Land Surface	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface
2. Stabilization Criteria for range of variation of last three consecutive readings (see FS 2212, section 3)

pH: \pm 0.2 units **Temperature:** \pm 0.2 °C **Specific Conductance:** \pm 5% **Dissolved Oxygen:** all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) **Turbidity:** all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

NAME: Melreese Golf Course (2018-3057) LOCATION: 1802 NW 37 th Ave, Miami, FL 33125												
WELL NO	: MW-31			SAMPLE	ID: PACE					DATE: 3/2	27 / 2019	
PURGING DATA (2/2B/3)												
WELL (PVC) TUBING WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYP DIAMETER (inches): 2.0 DIAMETER (inches): 0.25 DEPTH: 2.6 feet to 12.6 feet TO WATER (feet BLS): 3.85 OR BAILER: PP#4												
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = (12.6 feet - 3.85 feet) X 0.16 gallons/foot = 1.4 gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME												
EQUIPME	NT VOLUME PL	JRGE: 1 EQU	= (IPMENT VOL.	= PUMP VOLU	<u>et – 3.8</u> JME + (TUB	ING CAPACI	TY .	16 ga X Tl	jions/foot = JBING LENGTH)	+ FLOW CE	ELL VOLUME	
	t if applicable)			gallons + (gallons/		feet) +		gallons =	gallons		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 8.5 DEPTH IN WELL (feet):												
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		BIDITY (Us)	DISSOLVED OXYGEN (% Saturation)	TEMP.	COLOR (describe)	ODOR (describe)
12:36	2.0	2.0	0.125	3.85	7.07	0.540	33	3.1	4.9	28.14	Clear	None
12:40	0.5	2.5	0.125	3.85	7.07	0.548	14	4.3	2.7	28.11	Clear	None
12:44	0.5	3.0	0.125	3.85	7.07	0.547	14	4.5	2.6	27.09	Clear	None
12:48	0.5	3.5	0.125	3.85	7.07	0.545	12	2.7	2.1	28.02	Clear	None
12.40	0.5	3.3	0.123	3.03	7.07	0.545	12	2.1	2.1	20.02	Oleai	None
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016												
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												
						LING DA	TA				•	
	D BY (PRINT) / ortina / EE&G	AFFILIATION	1 :	SAMPLER(S)					SAMPLING INITIATED A	T: 12:48	SAMPLING ENDED AT	12:51
PUMP OF DEPTH IN	R TUBING N WELL (feet):	8.5		TUBING MATERIAL CO	ODE: HDP	E/S			-FILTERED: Mon Equipment Ty	N pe:	FILTER SIZE:	<u>1</u> μm
FIELD DE	CONTAMINATIO	ON: PUM	P Y N		TUBING	Y N (r	eplaced	1)	DUPLICATE:	Υ	N	
SAMF	LE CONTAINE	ER SPECIFIC	ATION	S	AMPLE PR	ESERVATIO	N				SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (n		FINAL pH	AND/OR ME		EQUIPMENT CODE	FLOW RATE (mL per minute)
	1	PE	250 mL	HNO3		-		< 2	Total As	, Fe	APP	500
	1	PE	250 mL	HNO3		-		< 2	Diss. As	, Fe	APP	500
	1	AG	1 L	-		-		-	Dieldrin 8	3081	APP	500
					<u> </u>							
REMARKS:	: T.O.C. 0.5)´	YSI 556	MPM	#7	TBM# 1						
MATERIAL		G = Amber Gla = Silicone; T		ar Glass; HD = Other (Specify	•	ensity Polyethy	rlene;	LDPE =	Low Density Poly	ethylene;	PP = Polypropylen	e;
SAMPLING	EQUIPMENT C			h) Peristaltic Pur w Peristaltic Pur	mp; SM =	Straw Method	d (Tubing			ric Submersib her (Specify)	le Pump;	
NOTEO 4			. 11 (41 :			01	400 E			0 010 1		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. Stabilization Criteria for range of variation of Last three consecutive readings (see FS 2212, section 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater) Revision Date: February 13, 2017

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: M	SITE NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Avenue Miami, FL 33125											
WELL NO: MW-2 SAMPLE ID: PACE DATE: 4/8/2019												
				PI	JRGIN	G DATA	(2/2	2B/3)				
WELL (PV	,	TUBIN	-	V	/ELL SCRI	EEN INTERVA	AL.	STATIC D			PURGE PUN	
	R (inches): 1.5		ETER (inches): (STATIC DEP			R (feet BLS): 6.4		OR BAILER:	PP#2
	(only fill out if applicable) = (14.69 feet - 6.4 feet) X 0.06 gallons/foot = 0.48 gallons											
	NT VOLUME PU	JRGE: 1 EQ	UIPMENT VOL	= PUMP V	OLUME +	(TUBING CAF	PACITY	X TU	IBING LENGTH)		CELL VOLUME	
(only fill ou	t if applicable)		=	gallons +	(gallons/foot X	. fe	eet) +	gallons =	gallons		
INITIAL PUMP OR TUBING FINAL PUMP OR TUBING PURGING PURGING TOTAL VOLUME												
DEPTH IN WELL (feet): 10.5 DEPTH IN WELL (feet): 10.5 INITIATED AT: 10:15 ENDED AT: 10:35 PURGED (gallons): 2.5 CUMUL. DEPTH DISSOLVED										gallons): 2.5		
TIME	VOLUME PURGED	VOLUME PURGED		TO WATER	pH (stand	ard CONL		JRBIDITY (NTUs)	OXYGEN (%	TEMF (°C)		
	(gallons)	(gallons)	(gpm)	(feet)	units	5)	·	` ′	Saturation)			, , ,
10:23	1.0	1.0	0.125	6.44	6.9	0 0.72	4	OR	5.8	25.3	1 Cloud	dy None
40.07	0.5			1		4 0=:		0.0		25.5	0 01	h. h.
10:27	0.5	1.5	0.125	6.44	6.9	1 0.71	9	OR	5.2	25.3	9 Cloud	dy None
10:31	0.5	2.0	0.125	6.44	6.9	2 0.70	0	OR	4.4	25.4	7 Cloud	dy None
10.51	0.5	2.0	0.123	0.44	0.9	2 0.70	9	OK	4.4	25.4	7 Cloud	iy None
10:35	0.5	2.5	0.125	6.44	6.9	2 0.71	1	OR	3.9	25.4	2 Cloud	dy None
10.00	0.0	2.0	0.120	7.125 0.44 0.02 0.711 ON 0.0 20.42 Gloddy								110110
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88												
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												
					- '	MPLING						(Ср ссу)
	BY (PRINT) / A			SAMPLER	(S) SIGNA	TURE(S):						
Russell Fe	rnandez / EE&G	:			296	_			SAMPLING	. 10.25	SAMPLIN	
				-					INITIATED AT	: 10:35	ENDED	AT: 10:40
PUMP OR				TUBING					FILTERED: Y	N		SIZE: <u>1</u> μm
	WELL (feet): 1		MP Y N	MATERIAL	CODE: H		N (replac		on Equipment Type DUPLICATE:	oe: Dispos Y	able N	
						E PRESERVA		ceu)	INTENDE		SAMPLING	SAMPLE PUMP
SAMPLE	#	MATERIAL		PRESERV		TOTAL V		FINAL	ANALYSIS AN	ND/OR	EQUIPMENT	FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USE) A	DDED IN FIE		рН	METHO!		CODE	(mL per minute)
	1	PE PE	250 mL 250 mL	HNO HNO		-		< 2	Total As, Dissolved A		APP	500
	1	1 -	200 IIIL	TINO				~ 2	DISSUIVEU A	, 1 5	APP	500
REMARKS: T.O.C0.28' YSI 556 MPM # 7 TBM# 2												
MATERIA	L CODES:	AG = Ambe	r Glass; CG =	Clear Glas	s; HDP	E = High Den	sity Polye	ethylene;	LDPE = Low De	nsity Polye	ethylene; PF	= Polypropylene;
		S = Silicone			r (Specify)							
SAMPLING	G EQUIPMENT	CODES:	APP = After (Th RFPP = Revers					BP = Bladde hod (Tubing			ic Submersible er (Specify)	Pump;
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)												w Land Curtage

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Ave, Miami, FL 33125												
WELL NO: MW-38 SAMPLE ID: PACE DATE: 4/8/2019												
	PURGING DATA (2/2B/3)											
WELL (PVC) TUBING WELL SCREEN IN DIAMETER (inches): 2.0 DIAMETER (inches): 0.25 DEPTH: 4.3 feet to							et to 14.3 feet TO WATER (feet BLS					
	WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)											
` ,	,		= (14.3 fe	et – 3.7	1 feet)	X 0		llons/foot =		allons	
	NT VOLUME PU	JRGE: 1 EQI	JIPMENT VOL	. = PUMP VOLI	JME + (TUBI	NG CAPACI	ГΥ	X TL	JBING LENGTH	+ FLOW C	ELL VOLUME	
(Offig fill Ou	т п аррпоавіс)		=	gallons + (gallons/f	foot X	feet) -	+ g	jallons =	gallons		
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 9 PURGING PURGING ENDED AT: 11:53 PURGED (ga												
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		RBIDITY DISSOLVED OXYGEN (% Saturation)		TEMP. (°C)	COLOR (describe)	ODOR (describe)
11:45	2.0	2.0	0.125	3.74	7.08	0.577	7	7.22	4.6	25.77	Clear	None
11:49	0.5	2.5	0.125	3.74	7.09	0.554	6	6.43	3.0	25.76	Clear	None
11:53	0.5	3.0	0.125	3.74	0.549	3	3.18	2.8	25.75	Clear	None	
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 1.5" = 0.09; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016												
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)												
SAMPLING DATA												
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S):												
Russell Fernandez / EE&G						ASO IN				T: 11:54	SAMPLING ENDED AT:	
PUMP OF DEPTH IN	R TUBING N WELL (feet):	9		TUBING MATERIAL C	ODE: HDPE	E/S	FIELD-FILTERED: M N FILTER SIZE: 1 Filtration Equipment Type:					E: <u>1</u> μm
FIELD DE	CONTAMINATIO	ON: PUN	MP Y N		TUBING	Y N (re	eplace	ed)	DUPLICATE:	Υ	N	
SAMF	LE CONTAINE	R SPECIFIC			AMPLE PRE	ESERVATIO						SAMPLE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		OTAL VOL D IN FIELD (m	nL)	FINAL pH	INTENDED A AND/OR MI		SAMPLING EQUIPMENT CODE	PUMP FLOW RATE (mL per minute)
	1	PE	250 mL	HNO3		-		< 2	Total	Fe	APP	500
	1	PE	250 mL	HNO3		-		< 2	Dissolve	d Fe	APP	500
REMARKS	: T.O.C0	37′	YSI 55	56 MP	PM # 7	TBM# 2						
MATERIAL												
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)												
		= Silicone;	T = Teflon; O		<u> </u>			dder Pump		tric Submersil		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE SITE SITE SITE LOCATION: 1802 NW 37 th Ave, Miami, FL 33125													
WELL NO: MW-9 SAMPLE ID: PACE DATE: 4/8/2019													
PURGING DATA (2/2B/3)													
WELL (P'	VC) R (inches): 2.0	TUBIN	IG ETER (inches)		L SCREEN I TH: 2.97 fee	NTERVAL et to 12.97 fee		STATIC I	DEPTH ER (feet BLS):	3.73	PURGE PUMP OR BAILER: F		
	LUME PURGE ut if applicable)		VOLUME = (TOTAL WELL [DEPTH -				R) X WELL				
EOLIIDME	= (12.97 feet - 3.73 feet) X 0.16 gallons/foot = 1.48 gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME												
(only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons													
INITIAL PUMP OR TUBING FINAL PUMP OR TUBING PURGING PURGING TOTAL VOLUME										IME			
	WELL (feet):	8.5		WELL (feet):		INITIAT		12:40	ENDED AT:	13:04	PURGED (gallons): 3.0		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	COND. (mS/cm)		BIDITY (Us)	DISSOLVED OXYGEN (% Saturation)	TEMP. (°C)	COLOR (describe)	ODOR (describe)	
12:56	2.0	2.0	0.125	4.23	6.89	1.250	6	.3	3.9	26.93	Clear w/ organic debris	None	
											Clear w/		
13:00	0.5	2.5	0.125	4.23	6.92	1.187	7.	13	3.4	26.90	organic debris	None	
											Clear w/		
13:04	0.5	3.0	0.125	4.23	6.94	1.168	7.	80	3.8	26.89	organic debris	None	
WELL CAR	ACITY (Callons I	Por Footh: 0.3	75" - 0.02: 1".	- 0.04: 1.25 " -	0.06: 1.5"	- 0 00: 2 " -	0.16: 5	2" – 0 27:	4" - 0 65: 5 "	- 1 02: 6" -	1.47; 12 " = 5.88		
TUBING IN	SIDE DIA. CAPA	CITY (Gal./Ft.): 1/8 " = 0.000	6; 3/16" = 0.00	0.00, 1.3 014; 1/4 " =		5/16" = 0			1/2" = 0.010;	5/8" = 0.016	,	
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)													
. ortonto	LQUIT WILLIAT CO	DE3. B=	baller, br	= bladdel Pullip,				ımp;	PP = Peristaltic P	ump; O =	= Other (Specify)		
			· · · · · · · · · · · · · · · · · · ·	, .	SAMP	LING DA		лтр;	PP = Peristaltic P	ump; O =	Other (Specify)		
SAMPLE	D BY (PRINT) / ernandez / EE&	AFFILIATIO	· · · · · · · · · · · · · · · · · · ·	SAMPLER(S)	SAMP	LING DA		итр;	SAMPLING INITIATED A		SAMPLING ENDED AT		
SAMPLEI Russell Fe	D BY (PRINT) / ernandez / EE&	AFFILIATIO kG	· · · · · · · · · · · · · · · · · · ·	SAMPLER(S) TUBING	SAMP SIGNATUR	LING DA		FIELD	SAMPLING INITIATED A'	T: 13:05	SAMPLING ENDED AT		
SAMPLEI Russell Fe PUMP OF DEPTH IN	D BY (PRINT) / ernandez / EE& R TUBING I WELL (feet):	AFFILIATIO	N:	SAMPLER(S) TUBING MATERIAL CO	SAMP SIGNATUR	E/S	ATA	FIELD- Filtratio	SAMPLING INITIATED A FILTERED: Mon Equipment Ty	T: 13:05 N	SAMPLING ENDED AT FILTER SIZE	: 13:10	
SAMPLEI Russell Fe PUMP OF DEPTH IN	D BY (PRINT) / ernandez / EE& R TUBING I WELL (feet):	AFFILIATIO AG 8.5 DN: PUI	N:	SAMPLER(S) TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING	E/S Y	\TA	FIELD- Filtratio	SAMPLING INITIATED A'	T: 13:05	SAMPLING ENDED AT	: 13:10	
SAMPLEI Russell Fe PUMP OF DEPTH IN	D BY (PRINT) / ernandez / EE& R TUBING I WELL (feet):	AFFILIATIO AG 8.5 DN: PUI	N:	SAMPLER(S) TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR	E/S	replaced	FIELD- Filtratio	SAMPLING INITIATED A FILTERED: Mon Equipment Ty	T: 13:05 N pe: Y	SAMPLING ENDED AT FILTER SIZE	SAMPLE PUMP FLOW RATE (mL per	
SAMPLEE Russell Fe PUMP OF DEPTH IN FIELD DEC SAMP	D BY (PRINT) / ernandez / EE& R TUBING N WELL (feet): CONTAMINATIO	AFFILIATIO G 8.5 DN: PUI ER SPECIFIC MATERIAL	MP Y E	TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR	E/S Y (SESERVATION OF TOTAL VOL	replaced	FIELD-Filtratio	SAMPLING INITIATED A FILTERED: Mon Equipment Ty DUPLICATE: INTENDED A	T: 13:05 N pe: Y NALYSIS ETHOD	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT	E: 13:10 SAMPLE PUMP FLOW RATE	
SAMPLEE Russell Fe PUMP OF DEPTH IN FIELD DEC SAMP	D BY (PRINT) / Pernandez / EE& R TUBING N WELL (feet): CONTAMINATION PLE CONTAINERS	AFFILIATIO AG 8.5 DN: PUI ER SPECIFIC MATERIAL CODE	MP Y ECATION VOLUME	TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR	E/S Y (SESERVATION OF TOTAL VOL	replaced	FIELD- Filtration	SAMPLING INITIATED A' -FILTERED: Mon Equipment Ty DUPLICATE: - INTENDED AI AND/OR ME	T: 13:05 N pe: Y NALYSIS ETHOD	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)	
SAMPLEE Russell Fe PUMP OF DEPTH IN FIELD DEC SAMP	D BY (PRINT) / ernandez / EE& R TUBING N WELL (feet): CONTAMINATIO # CONTAINERS 1	8.5 DN: PUI ER SPECIFIC MATERIAL CODE PE	MP Y CATION VOLUME 250 mL	TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR	E/S Y (SESERVATION OF TOTAL VOL	replaced	FIELD-Filtration	SAMPLING INITIATED A FILTERED: Mon Equipment Ty DUPLICATE: INTENDED AI AND/OR ME	T: 13:05 N pe: Y NALYSIS ETHOD	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT CODE APP	SAMPLE PUMP FLOW RATE (mL per minute) 500	
SAMPLEE Russell Fe PUMP OF DEPTH IN FIELD DEC SAMP	D BY (PRINT) / ernandez / EE& R TUBING N WELL (feet): CONTAMINATIO # CONTAINERS 1	8.5 DN: PUI ER SPECIFIC MATERIAL CODE PE	MP Y CATION VOLUME 250 mL	TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR	E/S Y (SESERVATION OF TOTAL VOL	replaced	FIELD-Filtration	SAMPLING INITIATED A FILTERED: Mon Equipment Ty DUPLICATE: INTENDED AI AND/OR ME	T: 13:05 N pe: Y NALYSIS ETHOD	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT CODE APP	SAMPLE PUMP FLOW RATE (mL per minute) 500	
SAMPLEE Russell Fe PUMP OF DEPTH IN FIELD DEC SAMP	D BY (PRINT) / ernandez / EE& R TUBING N WELL (feet): CONTAMINATIO # CONTAINERS 1	8.5 DN: PUI ER SPECIFIC MATERIAL CODE PE	MP Y CATION VOLUME 250 mL	TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR	E/S Y (SESERVATION OF TOTAL VOL	replaced	FIELD-Filtration	SAMPLING INITIATED A FILTERED: Mon Equipment Ty DUPLICATE: INTENDED AI AND/OR ME	T: 13:05 N pe: Y NALYSIS ETHOD	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT CODE APP	SAMPLE PUMP FLOW RATE (mL per minute) 500	
PUMP OF DEPTH IN FIELD DEC SAMPLE ID CODE	PLE CONTAINERS 1	AFFILIATIO AG 8.5 DN: PUI ER SPECIFIC MATERIAL CODE PE PE	MP Y NCATION VOLUME 250 mL	TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR ADDE	E/S Y () (I) ESERVATION FOTAL VOL D IN FIELD (r	replaced	FIELD-Filtration	SAMPLING INITIATED A FILTERED: Mon Equipment Ty DUPLICATE: INTENDED AI AND/OR ME	T: 13:05 N pe: Y NALYSIS ETHOD	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT CODE APP	SAMPLE PUMP FLOW RATE (mL per minute) 500	
PUMP OF DEPTH IN FIELD DEC SAMP ID CODE	PLE CONTAINERS 1 1 1 1 1 1 1 1 1 1 1 1 1	8.5 N: PUI R SPECIFIC MATERIAL CODE PE PE 27'	MP Y CATION VOLUME 250 mL 250 mL	TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR /E ADDE	E/S Y N(ESERVATION TOTAL VOL D IN FIELD (IT -	replaced DN mL)	FIELD-Filtration	SAMPLING INITIATED A FILTERED: Mon Equipment Ty DUPLICATE: INTENDED A AND/OR ME Total I Dissolve	T: 13:05 N pe: Y NALYSIS ETHOD Fe d Fe	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT CODE APP APP	SAMPLE PUMP FLOW RATE (mL per minute) 500	
PUMP OF DEPTH IN FIELD DEC SAMPLE ID CODE	PLE CONTAINERS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AFFILIATIO AG 8.5 DN: PUI ER SPECIFIC MATERIAL CODE PE PE 27' G = Amber GI	MP Y CATION VOLUME 250 mL 250 mL 75/ 52 ass; CG = Cle	TUBING MATERIAL CO	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR /E ADDE	E/S Y () (I) ESERVATION FOTAL VOL D IN FIELD (r	replaced DN mL)	FIELD-Filtration	SAMPLING INITIATED A FILTERED: Mon Equipment Ty DUPLICATE: INTENDED AI AND/OR ME	T: 13:05 N pe: Y NALYSIS ETHOD Fe d Fe	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT CODE APP	SAMPLE PUMP FLOW RATE (mL per minute) 500	
PUMP OF DEPTH IN FIELD DEC SAMPLE ID CODE	PLE CONTAINERS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AFFILIATIO G 8.5 DN: PUI ER SPECIFIC MATERIAL CODE PE PE PE G = Amber GI = Silicone; DDES: AP	MP Y CATION VOLUME 250 mL 250 mL 250 mL 75/52 ass; CG = Cle T = Teflon; O P = After (Throu	TUBING MATERIAL CO SAMPLER(S) TUBING MATERIAL CO PRESERVATIVUSED HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	SAMP SIGNATUR ODE: HDP TUBING AMPLE PR ADDE M# 7 PE = High De () Imp; B =	E/S Y ()(ESERVATION TOTAL VOLID IN FIELD (ro	replaced DN mL) ylene; P = Blad	FIELD-Filtration FINAL pH < 2 < 2 < 2	SAMPLING INITIATED A FILTERED: Mon Equipment Ty, DUPLICATE: INTENDED AI AND/OR ME Total I Dissolve Low Density Poly ; ESP = Elect	T: 13:05 N pe: Y NALYSIS ETHOD Fe d Fe	SAMPLING ENDED AT FILTER SIZE SAMPLING EQUIPMENT CODE APP APP APP	SAMPLE PUMP FLOW RATE (mL per minute) 500	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: Mel	SITE NAME: Melreese Golf Course (2018-3057) LOCATION: 1802 NW 37 th Avenue Miami, FL 33125												
WELL NO: MW-5 SAMPLE ID: PACE											DATE: 4/8	/ 2019	
PURGING DATA (2 / 2B / 3)													
WELL (PVC	•	TUBING DIAMET	ER (inches): 0.2		ELL SCRE		RVAL DEPTH		STATIC DEI	PTH (feet BLS): 4.24		PURGE PUMF OR BAILER: F	
WELL VOLU (only fill out i	JME PURGE: 1 V if applicable)	VELL VOLUME					,					1	
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME													
(only fill out i	(only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons												
-	MP OR TUBING VELL (feet): 8			P OR TUBING VELL (feet): 8			PURGING INITIATED AT: 13:48			PURGING ENDED AT: 1	4:12	TOTAL VOLU PURGED (ga	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	TO (standard		COND. (mS/cm)		RBIDITY NTUs)	DISSOLVED OXYGEN (% Saturation)	TEMP. (°C)	COLOR (describe)	ODOR (describe)
13:56	1.0	1.0	0.125	4.26	7.	29	0.843		OR	5.0	25.40	Cloudy	None
14:00	0.5	1.5	0.125	4.26	7.	22	0.792		OR	2.9	25.38	Cloudy	None
14:04	0.5	2.0	0.125	4.26	7.	22	0.785		OR	2.7	25.38	Cloudy	None
14:00	0.5	2.5	0.405	4.26	4.00		0.770		OB	2.2		Claudy	None
14:08	0.5	2.5	0.125	4.26	7.21		0.772		OR	2.3	25.33	Cloudy	None
14:12	0.5	3.0	0.125	4.26	7.	22	0.769		OR	2.5	25.32	Cloudy	None
	ACITY (Gallons Pe			04; 1.25 " = 0.		= 0.09; = 0.0026;			7; 4" = 0.69	5; 5 " = 1.02; 6 " 06; 1/2 " = 0.010			
	QUIPMENT CODE			adder Pump;	·		ubmersible Pu				C) = Other (Sp		
					S	AMPL	ING DA	TA					
	BY (PRINT) / AFFIL	.IATION:		SAMPLER(S) SIGNATI	JRE(S):	3 43						
Russell Fern	nandez / EE&G			436								SAMPLING ENDED AT: 14:20	
PUMP OR T DEPTH IN V	UBING VELL (feet): 8			TUBING MATERIAL C	ODE: HD	PE/S				FILTERED: Y	N	FILTER SIZE:	<u>1</u> μm
FIELD DEC	ONTAMINATION:	PUMP	Y N	TUBI	NG Y	N (rep	olaced)		<u> </u>	DUPLICATE:	Υ	N	
SA	AMPLE CONTAINE	R SPECIFICAT	ION		SAM	IPLE PRE	SERVATION			INTENDED AN	ALYSIS	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE (mL
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA USED			OTAL VOL D IN FIELD (m	ıL)	FINAL pH	AND/OR ME	THOD	CODE	per minute)
	1	PE	250 mL	HNO:	3		-		< 2	Total Fe		APP	500
	1	PE	250 mL	HNO:	3		-		< 2	Diss. F	Diss. Fe		500
REMARKS:	T.O.C0.35	<u> </u>	YSI 5.	56 N	1PM # 7	7 7.	BM# 2						
MATERIAL		= Amber Glass; Silicone; T =		Glass; HDPI	= High D	ensity Pol	lyethylene;	LDPE	= Low Dens	ity Polyethylene;	PP = Polyp	oropylene;	
SAMPLING	EQUIPMENT COD		After (Through)		p; B =	= Bailer;	BP = Blade	der Pun	np; ESP	= Electric Submers	sible Pump;		
		RFPP	= Reverse Flow I	Peristaltic Pump	; SM =	Straw M	ethod (Tubing	Gravit	y Drain);	O = Other (Specify	y)		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} Stabilization Criteria for range of variation of last three consecutive readings (see FS 2212, section 3)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

NAME: Melreese Golf Course (2018-3057) LOCATION: 1802 NW 37 th Ave, Miami, FL 33125													
WELL NO): MW-10			SAMPLE	ID: PACE					DATE: 4/	9 / 2019		
PURGING DATA (2/2B/3)													
,	WELL (PVC) TUBING WELL SCREEN INTERVAL DIAMETER (inches): 1.5 DIAMETER (inches): 0.25 DEPTH: 3.6 feet to 13.6 feet to 13.												
	` ,		,	,					R) X WELL				
(only fill out if applicable) = (13.6 feet - 5.75 feet) X 0.09 gallons/foot = 0.71 gallons													
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable)													
= gallons + (gallons/foot X feet) + gallons = gallons													
INITIAL PUMP OR TUBING FINAL PUMP OR TUBING PURGING DEPTH IN WELL (feet): 9 INITIATED AT								00:36	PURGING ENDED AT:	10:00	TOTAL VO	OLUME (gallons): 3.0	
DEFITTI		CUMUL.		DEPTH	pН	1			DISSOLVED				
TIME	VOLUME PURGED (gallons)	VOLUME PURGED	PURGE RATE	TO WATER	(standard units)	COND. (mS/cm)		BIDITY FUs)	OXYGEN (% Saturation)	TEMP.	COLO (descr		
09:44	1.0	(gallons) 1.0	(gpm) 0.125	(feet) 5.77	6.98	0.728	С)R	17.8	24.73	Clou	dy Non-	<u> </u>
												-	
09:48	0.5	1.5	0.125	5.77	7.00	0.722	С)R	17.0	24.72	Clou	dy Non	е
09:52	0.5	2.0	0.125	5.77	7.03	0.715	С)R	16.4	24.72	Clou	dy Non	е
09:56	0.5	2.5	0.125	5.77	7.04	0.707	C)R	16.0	24.71	Clou	dy Non	<u>e</u>
10:00	0.5	3.0	0.125	5.77	7.02	0.710	0)R	15.7	24.70	Clou	dy Non-	
WELL CAP	PACITY (Gallons	Per Foot): 0.	75 " = 0.02; 1 "	= 0.04; 1.25 " =	= 0.06; 1.5 "	= 0.09; 2" =	0.16;	3" = 0.37;	4" = 0.65; 5" :	= 1.02; 6" =	= 1.47; 12 " =	5.88	
	ISIDE DIA. CAP <i>A</i> EQUIPMENT CO	•		= Bladder Pump:	0014; 1/4" : ; ESP = E	= 0.0026, ;	5/16" = 0 ersible Pu		3/8" = 0.006; 1	1/2" = 0.010; ump; O	5/8" = 0.0° = Other (Speci		
			·		SAMP	LING DA	ATA					• •	
	D BY (PRINT) /		N:	SAMPLER(S) SIGNATUI	RE(S):			SAMPLING		SAMPL	NG	
Russell F	ernandez / EE&	&G		136					INITIATED A	T: 10:00	ENDED AT: 10:05		
	R TUBING			TUBING	2005 1105	NE (0			-FILTERED: M		FILTER	SIZE: <u>1</u> μ	ım
-	N WELL (feet):		MP Y						on Equipment Ty DUPLICATE:		N		
-	CONTAMINATIO			VI .	TUBING		-	1)	DUPLICATE:	Y	<u>IN</u>	SAMPL	E
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED			FINAL pH	INTENDED ANALYSIS AND/OR METHOD		SAMPLING EQUIPMEN CODE	PUMP	ATE er	
	1	PE	250 mL	HNO3		-		< 2	Total As, F	Pb, Fe	APP	500	
	1	PE	250 mL	HNO3		-		< 2	Diss. As, F	Pb, Fe	APP	500	
REMARKS	. TOC =0	 <i>32′</i>	YSI 5	56 M	<u> </u> PM # 7	TBM# 2							
							ulone:	IDDE	Low Donaite Date	othylona	DD - Dobross	wlone:	
MATERIAL		G = Amber G = Silicone;		ear Glass; HI D = Other (Specif	•	ensity Polyeth	yierie;	LDPE =	Low Density Poly	euryrene;	PP = Polyprop	yielle,	
SAMPLING	EQUIPMENT C			ugh) Peristaltic P		Bailer; B Straw Metho		der Pump Gravity I		ric Submersi her (Specify)			
NOTEO 4	The charge de		!! -6 (-	!mfaumat!am u	• •				•		Dalau Land		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

WELL (PVC) DIAMETER (inches): 1.5 WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACI (only fill out if applicable) = (11.5 feet - 3.49 feet) X 0.09 gallons/foot = 0.72	gallons											
WELL (PVC) DIAMETER (inches): 1.5 DIAMETER (inches): 0.25 DEPTH: 1.5 feet to 11.5 feet TO WATER (feet BLS): 3.49 WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACI (only fill out if applicable) = (11.5 feet - 3.49 feet) X 0.09 gallons/foot = 0.72 EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW	OR BAILER: TY gallons											
DIAMETER (inches): 1.5 DIAMETER (inches): 0.25 DEPTH: 1.5 feet to 11.5 feet WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACI (only fill out if applicable) = (11.5 feet - 3.49 feet) X 0.09 gallons/foot = 0.72 EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW	OR BAILER: TY gallons											
(only fill out if applicable) = (11.5 feet - 3.49 feet) X 0.09 gallons/foot = 0.72 EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW	gallons											
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW		(only fill out if applicable)										
(ONLY TILL OUT IT APPLICABLE)	EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME											
(only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons												
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 7.5 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 7.5 PURGING ENDED AT: 10:57 PURGED (ga												
TIME VOLUME VOLUME PURGED (gallons) CIMOL (gpm) DEPTH TO (standard units) PURGED (gallons) (gpm) (feet) PURGED (mS/cm) TURBIDITY (NTUs) DISSOLVED OXYGEN (Saturation) TEMP (°C)	. COLOR (describe)	ODOR (describe)										
10:41 1.0 1.0 0.125 3.5 7.62 0.483 OR 19.8 25.59	Dark Grey / Cloudy	None										
	Dork Croy /											
10:45 0.5 1.5 0.125 3.5 7.61 0.482 OR 16.1 25.59	Dark Grey / Cloudy	None										
10:49 0.5 2.0 0.125 3.5 7.56 0.482 OR 13.9 25.6	Dark Grey /	None										
	Cloudy											
10:53 0.5 2.5 0.125 3.5 7.55 0.481 OR 11.8 25.59	Dark Grey / Cloudy	None										
10:57 0.5 3.0 0.125 3.5 7.54 0.481 OR 11.2 25.56	Cloudy	None										
WELL CAPACITY (Gallons Per Foot): $0.75" = 0.02$; $1" = 0.04$; $1.25" = 0.06$; $1.5" = 0.09$; $2" = 0.16$; $3" = 0.37$; $4" = 0.65$; $5" = 1.02$; 1.02 0 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): $1/8" = 0.0006$; $3/16" = 0.0014$; $1/4" = 0.0026$; $3/16" = 0.004$; $3/16" = 0.006$;		38										
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump;	O = Other (Specify)											
SAMPLING DATA												
SAMPLED BY (PRINT) / AFFILIATION: Russell Fernandez / EE&G SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 10:58	SAMPLING ENDED A											
PUMP OR TUBING DEPTH IN WELL (feet): 7.5 TUBING MATERIAL CODE: HDPE/S FIELD-FILTERED: N Filtration Equipment Type:	FILTER SIZ	ΖΕ: <u>1</u> μm										
FIELD DECONTAMINATION: PUMP Y N TUBING Y N (replaced) DUPLICATE: Y	N											
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION	SAMPLING	SAMPLE PUMP										
SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL) PH INTENDED ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (mL per minute)										
1 PE 250 mL HNO3 - < 2 Total As, Pb, Fe	APP	500										
1 PE 250 mL HNO3 - < 2 Diss. As, Pb, Fe	APP	500										
TO 6 - 0.10(
REMARKS: T.O.C0.19' YSI 556 MPM # 7 TBM# 2												
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; S = Silicone; T = Teflon; O = Other (Specify)	PP = Polypropyle	ne;										
SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submer RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Spection Processing SM) NOTES: 1. The above do not constitute all of the information required by Chapter 62-160. F.A.C. 3. BLS												

IOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Phone: (305) 374-8300 Fax: (305) 374-9004

GROUNDWATER SAMPLING LOG

SITE NAME: Melreese Golf Course (2018-3057) SITE LOCATION: 1802 NW 37 th Ave, Miami, FL 33125												
WELL NO: MW-12 SAMPLE ID: PACE DATE: 4/9/2019												
PURGING DATA (2/2B/3)												
	WELL (PVC) TUBING WELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE DIAMETER (inches): 1.5 DIAMETER (inches): 0.25 DEPTH: 2.35 feet to 12.35 feet TO WATER (feet BLS): 3.3 OR BAILER: PP#2											
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable)												
= (12.35 feet - 3.3 feet) X 0.09 gallons/foot = 0.81 gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME												
(only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons												
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 8.0 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 8.0 PURGING PURGING PURGING ENDED AT: 11:50 PURGED (gallons): 3												
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH	pН	COND.	TURBIDITY	DISSOLVED	TEMP.		ODOR	
TIME	PURGED (gallons)	PURGED (gallons)	RATE (gpm)	TO WATER (feet)	(standard units)	(mS/cm)	(NTUs)	OXYGEN (% Saturation)	(°C)	(describe)	(describe)	
11:34	1.0	1.0	0.125	3.87	7.47	0.807	OR	28.3	25.20	Dark Grey / Cloudy	None	
11:38	0.5	1.5	0.125	3.87	7.41	0.781	OR	23.5	25.19	Dark Grey / Cloudy	None	
										Dark Cray		
11:42	0.5	2.0	0.125	3.87	7.37	0.754	OR	19.3	25.18	Dark Grey / Cloudy	None	
11:46	0.5	2.5	0.125	3.87	7.35	0.748	OR	17.4	25.17	Dark Grey	None	
11.10	0.0	2.0	0.120	0.07	7.00	0.7 10			20.11	/ Cloudy	110110	
11:50	0.5	3.0	0.125	3.87	7.32	0.736	OR	16.0	25.16	Dark Grey / Cloudy	None	
	PACITY (Gallons I ISIDE DIA. CAPA						0.16; 3" = 0.3 16" = 0.004;	7; 4" = 0.65; 5" 3/8" = 0.006;	= 1.02; 6" = 1/2" = 0.010;		3	
PURGING	EQUIPMENT CO	DES: B =	Bailer; BP :	= Bladder Pump;		Electric Submer		PP = Peristaltic I	Pump; O	= Other (Specify)		
CAMDLE	D BY (PRINT) /	AEEII IATIO	NI:	SAMPLER(S)		LING DA	TA					
	ernandez / EE8		IV.		7316NATO	KL(0).		SAMPLING INITIATED A	AT: 11:50	SAMPLING ENDED AT		
-	R TUBING N WELL (feet):	8.0		TUBING MATERIAL C	ODE: HDF	PE/S		D-FILTERED: Y		FILTER SIZE	≣: <u>1</u> μm	
FIELD DE	CONTAMINATIO	ON: PUN	MP Y	Į	TUBING	Y N (re	eplaced)	DUPLICATE:	Y	N		
SAMI	PLE CONTAINE	R SPECIFIC	CATION	S	SAMPLE PF	RESERVATIO	N			SAMPLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED		TOTAL VOL ED IN FIELD (m	FINAL L) pH	INTENDED A AND/OR M		EQUIPMENT CODE	FLOW RATE (mL per minute)	
	1	PE	250 mL	HNO3		-	< 2	Total As,	Pb, Fe	APP	500	
	1	PE	250 mL	HNO3		-	< 2	Diss. As,	Pb, Fe	APP	500	
	TOC 2	201	VCI F	T/ 141	74447	TD1.4// 2						
REMARKS		28'	YSI 55		PM # 7	TBM# 2						
MATERIAI		. G = Amber Gla = Silicone;	,	ear Glass; HC = Other (Specify	ŭ	ensity Polyethyl	lene; LDPE	= Low Density Pol	yethylene;	PP = Polypropylen	e;	
	EQUIPMENT C	RFI	PP = Reverse FI	gh) Peristaltic Pu ow Peristaltic Pu	ımp; SM :	Straw Method			etric Submersik Other (Specify)	ole Pump;		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

3. BLS = Below Land Surface

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

APPENDIX E PRELIMINARY DESIGN DOCUMENTS

MIAMI FREEDOM PARK

LEGEND

LAKES FILLED WITH CLEAN FILL FROM PHASE 1

EXCAVATE UNSUITABLE MATERIAL FROM UNDER STRUCTURES AND SLABS ON GRADE

CUT EXISTING GRADE TO SUBGRADE ELEVATION, FILL WITH EXCAVATED MATERIAL, STABILIZE AND REINFORCE WITH GEO-TEXTILE

FILL WITH EXCAVATED MATERIAL ONE FOOT BELOW FINISHED GRADE

PARK AND LANDSCAPE

MIAMI FREEDOM PARK