

AZ-700

Load balancing non-HTTP(S) traffic

Course Agenda

Module 01: Introduction to Azure Virtual Networks

Module 02: Designing and Implementing Hybrid Networking

Module 03: Designing and Implementing Azure ExpressRoute

Module 04: Load balance non-HTTP(S) traffic in Azure

Module 05: Load balance HTTP(S) traffic in Azure

Module 06: Design and Implement Network Security

Module 07: Design and Implement private access to Azure Services

Module 08: Design and Implement Network Monitoring

Module Overview

Explore load balancing options in the Azure portal

GET ARMAI

Design and implement Azure Load Balancer using the Azure portal

Exercise - Create and configure an internal load balancer using the Azure portal

Explore Azure Traffic Manager

Exercise: create a traffic manager profile using the Azure portal

Explore load balancing options in the Azure portal

Explore load balancing options in the Azure portal overview

What is a Load balancer

Load balancing options for Azure

Choosing a load balancing option

Demonstration

Review

What is a Load balancer

Load balancing options for Azure

Choosing a load balancing option

Type of traffic

Scope

Availability

Cost

Features and limitations

Demonstration

Create the virtual network

Create load balancer

Create backend servers and test virtual machine with IIS installed

Test the load balancer

Summary and Resources – Explore load balancing options in the Azure portal

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Improve application scalability and resiliency by using Azure Load Balancer

Design and implement Azure Load balancer

Design and implement Azure Load Balancer overview

Choosing a Load Balancer Type

A **public load balancer** can provide outbound connections for virtual machines (VMs) inside your virtual network

An **internal load balancer** is used where private IPs are needed at the frontend only

Gateway Load Balancer

Gateway Load Balancer is a SKU of the Azure Load Balancer portfolio catered for high performance and high availability scenarios with third-party Network Virtual Appliances (NVAs)

Components to configure:

- Frontend IP
- Load-balancing rules
- Backend pool(s)
- Tunnel interfaces
- Chain

Azure Load balancer and availability zones

Determine Load Balancer SKUs

Free

Feature	Basic SKU	Standard SKU
Backend pool size	Up to 300 IP Configurations	Up to 5000 instances
Health probes	TCP, HTTP	TCP, HTTP, HTTPS
Availability zones	Not available	Zone-redundant and zonal frontends for inbound and outbound traffic
Multiple frontends	Inbound only	Inbound and outbound
Secure by default	Open by default. NSG optional.	Closed to inbound flows unless allowed by an NSG. Internal traffic from the virtual network to the internal load balancer is allowed.
SLA	Not available	99.99%

Instance details	
Region *	West Europe 🗸
SKU * ① Type * ①	StandardGatewayBasicPublicInternal
Tier *	Regional Global

Create Load balancer in the Azure portal

© Copyright Microsoft Corporation. All rights reserved.

Create Backend Pools

SKU	Backend pool endpoints	
Basic SKU	VMs in a single availability set or VM scale set	
Standard SKU	Any VM in a single virtual network, including a blend of VMs, availability sets, and VM scale sets	

To distribute traffic, a back-end address pool contains the IP addresses of the virtual NICs that are connected to the load balancer

Create Load Balancer Rules

Maps a frontend IP and port combination to a set of backend pool and port combination

Rules can be used in combination with NAT rules

A NAT rule is explicitly attached to a VM (or network interface) to complete the path to the target

Configure Session Persistence

Session persistence specifies how client traffic is handled

None (default) requests can be handled by any virtual machine

Client IP requests will be handled by the same virtual machine

Client IP and protocol specifies that successive requests from the same address and protocol will be handled by the same virtual machine

Create Health Probes

Allows the load balancer to monitor the status of an app

Dynamically adds or removes VMs from the load balancer rotation based on their response to health checks

HTTP custom probe

TCP custom probe tries to establish a successful TCP session

Configure outbound traffic with Standard load balancer

source network address translation (SNAT)

Outbound rules allow you to explicitly define SNAT

- •IP masquerading
- Simplifying your allow lists
- •Reduces the number of public IP resources for deployment.

Demonstration

Create the virtual network

Create public load balancer

Create backend pool

Create a health probe

Review – Design and implement Azure Load Balancer

Check your knowledge

Microsoft Learn Modules (docs.microsoft.com/Learn)

What is Azure Load Balancer? - Azure Load Balancer | Microsoft Docs

Exercise - Create and configure an internal load balancer using the Azure portal

Exercise - Create and configure an Azure load balancer

Task 1: Create the virtual network

Task 2: Create the load

balancer

Task 3: Create load

balancer resources

Task 4: Create backend

servers

Task 5: Test the load

balancer

Review – Exercise create and configure an internal load balancer using the Azure portal

Check your knowledge

Quickstart: Create a public load balancer - Azure portal - Azure Load Balancer | Microsoft Docs

Explore Azure Traffic Manager overview

Use cases for Azure Traffic Manager

Configuring traffic manager profiles

How Traffic manager works

Configure Endpoint monitoring

Traffic routing methods

Demonstration

Traffic manager endpoints

Review

Use cases for Azure Traffic Manager

Increase application availability

Improve application performance

Service maintenance without downtime

Combine hybrid applications

Distribute traffic for complex deployments

How Traffic manager works

The Traffic Manager name servers receive the request. They choose an endpoint based on:

- The configured state of each endpoint
- The current health of each endpoint, as determined by the Traffic Manager health checks
- The chosen traffic-routing method
- Final connection is not going through Traffic Manager

Traffic routing methods – Priority

Traffic routing methods – Weighted

Traffic routing methods – Performance

Traffic routing methods - Geographic

Traffic manager endpoints

Azure endpoints – load balance traffic to a cloud service, web app, or public IP address in the same subscription within Azure.

External endpoints - load balance traffic for IPv4/IPv6 addresses, FQDNs, or for services hosted outside Azure. These services can either be on-premises or with a hosting provider.

Nested endpoints - combine Traffic Manager profiles to create more flexible traffic-routing schemes to support the needs of larger, more complex deployments.

Configuring traffic manager profiles

Configure Endpoint monitoring

Open the **Configuration page** for the Traffic Manager profile

Select **Endpoint monitor settings** section, and specify the following settings:

Protocol

Port

Path

Custom header settings

Expected status code ranges

Probing interval

tolerated number of failures probe timeout

Demonstration – Azure Traffic Manager

Create a Traffic Manager profile

Add Traffic Manager endpoints

Test Traffic Manager profile

Summary – Azure Traffic Manager

Check your knowledge

<u>Azure Traffic Manager | Microsoft Docs</u>

<u>Tutorial - Improve website response with Azure Traffic Manager | Microsoft Docs</u>

Exercise- create a traffic manager profile using the Azure portal

Exercise- create a traffic manager profile using the Azure portal

Task 1: Create the web apps

Task 2: Create a Traffic

Manager profile

Task 3: Add Traffic

Manager endpoints

Task 4: Test the Traffic

Manager profile

End of presentation

