# Implementation of Custom Routing Algorithm in Cloud

By Disha Bhattacharya Biswajeet Chakraborty Palash Dey Ananya Laha

#### **Basic Idea**

Algorithm for distributing data to all nodes in a network based on the concept of percolation centrality (PC) or betweenness centrality (BC)

- Enhancement of the controlled flooding algorithm
  - Adding concept of percolation centrality

#### Purpose

- The purpose of the routing algorithm is to make decisions for the router concerning the optimal paths for data distribution
- The router uses the routing algorithm to get the path that would best serve to transport the data throughout the network
- The routing algorithm that our protocol uses is a major factor in the performance of our routing environment

### **Broadcasting**

- Message is destined to all network devices
- Most straightforward way: N-way-unicast
- Broadcast Algorithms:
  - ➤ 1. Uncontrolled Flooding
  - > 2. Controlled Flooding
  - > 3. Spanning Tree Broadcast

## **Broadcasting**



Source duplication vs in-network duplication

## **Brief Description**

- Similar to the controlled flooding algorithm
- Enhance the flooding algorithm using the concept of percolation centrality
- Send a message that percolates via the nodes of the network
- Time taken will be the least by using the concept of percolation centrality

## **Implementation**

Tech Stack:





## **Algorithm Implementation**

#### Algorithm 1

To start routing from node with highest Betweenness Centrality

- 1. procedure
- 2. graphPC = descending\_PercCentrality(G)
- 3. for i < -0, n-1 do
- 4. graphPC[i].MARK = False
- 5. for i < -0, n-1 do
- 6. Call enhanced\_flooding(graphPC[i])

## **Algorithm Implementation**

#### Algorithm 2

Algorithm for controlled flooding mechanism

- procedure enhanced\_flooding(v)
- 2. if v.MARK = False then
- 3. v.MARK = True
- 4. Accept message in v
- 5. parfor each node k E v.adjacent() do
- 6. Call enhanced\_flooding(k)
- 7. end parfor

#### **Network Formation**































#### **Observation**

#### Time taken for distribution:

| Starting Node ↓ | 1       | Time in msec → |         |         |         |         |         |            |
|-----------------|---------|----------------|---------|---------|---------|---------|---------|------------|
|                 |         | 2              | 3       | 4       | 5       | 6       | 7       | Total Time |
| 1               | 0       | 0.03729        | 0.03861 | 0.01765 | 0.05247 | 0.06495 | 0.02108 | 0.06495    |
| 2               | 0.03818 | 0              | 0.03931 | 0.0181  | 0.05266 | 0.06549 | 0.022   | 0.06549    |
| 3               | 0.03671 | 0.04063        | 0       | 0.01897 | 0.07665 | 0.07916 | 0.05724 | 0.07916    |
| 4               | 0.01862 | 0.02246        | 0.02237 | 0       | 0.05953 | 0.0583  | 0.03896 | 0.05953    |
| 5               | 0.03961 | 0.04219        | 0.08035 | 0.05755 | 0       | 0.04908 | 0.02033 | 0.08035    |
| 6               | 0.03621 | 0.04363        | 0.08885 | 0.05644 | 0.04346 | 0       | 0.01882 | 0.08885    |
| 7               | 0.01711 | 0.02292        | 0.05717 | 0.0367  | 0.02508 | 0.02561 | 0       | 0.05717    |

#### Betweenness Centrality vs. Total Delay



#### Conclusion

It can be concluded from the scatter plot that the node having higher value of betweenness centrality will distribute the data/file in lesser time than the one having lower value of betweenness centrality.

## **Future Scope**

- Introduction of automation to minimize the number of manual steps to run the scripts for each routing.
- Distributing resources with complex format

## Thank You