MATH 210B

Name: Quin Darcy
Due Date: 4/8/20
Instructor: Dr. Shannon
Assignment: Homework 8

13. For each of the following extensions, E, of F, determine if E/F is a Galois extension, find the elements of G(E/F), and determine what group G(E/F) is isomorphic to.

(a)
$$E = \mathbb{Q}(\omega, \sqrt[3]{2}), F = \mathbb{Q}.$$

Solution. Note that by HW 5, E is the splitting field for $x^3 - 2 \in F[x]$, which factors as $(x - \sqrt[3]{2})(x - \omega \sqrt[3]{2})(\omega^2 i^2 \sqrt[3]{2})$. Since the roots of $x^3 - 2$, are all distinct, then $x^3 - 2$ is separable over F, so that E is the splitting field of an irreducible polynomial in F[x]. By Theorem (??), E/F is Galois.

Let $\varphi \in G(E/F)$. Then $\varphi \in \operatorname{Aut}(E)$ and for all $a \in F$, $\varphi(a) = a$. By HW/Thm (??), the minimal polynomials for $\sqrt[3]{2}$, ω over F, $p(x) = x^3 - 2$ and $x^2 + x + 1$, have roots α, β , respectively, such that $\varphi(\alpha) \in \{\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\}$ and $\varphi(\beta) \in \{\omega, \omega^2\}$. This gives us $6 = [E \colon F] = |G(E/F)|$ automorphisms. These are defined as follows:

$$\varphi_{1} := \begin{cases} a \in F \mapsto a \\ \sqrt[3]{2} \mapsto \sqrt[3]{2} \\ \omega \mapsto \omega \end{cases} \qquad \varphi_{2} := \begin{cases} a \in F \mapsto a \\ \sqrt[3]{2} \mapsto \omega \sqrt[3]{2} \\ \omega \mapsto \omega \end{cases} \qquad \varphi_{3} := \begin{cases} a \in F \mapsto a \\ \sqrt[3]{2} \mapsto \omega^{2} \sqrt[3]{2} \\ \omega \mapsto \omega \end{cases}$$

$$\varphi_{4} := \begin{cases} a \in F \mapsto a \\ \sqrt[3]{2} \mapsto \sqrt[3]{2} \\ \omega \mapsto \omega^{2} \end{cases} \qquad \varphi_{5} := \begin{cases} a \in F \mapsto a \\ \sqrt[3]{2} \mapsto \omega \sqrt[3]{2} \\ \omega \mapsto \omega^{2} \end{cases} \qquad \varphi_{6} := \begin{cases} a \in F \mapsto a \\ \sqrt[3]{2} \mapsto \omega^{2} \sqrt[3]{2} \\ \omega \mapsto \omega^{2} \end{cases}$$

By Thm/HW (??) G(E/F) is a group. The cayley table for this group is

	φ_1	φ_2	φ_3	φ_4	φ_5	φ_6		(1)	(123)	(132)	(23)	(132)	(123)
φ_1	φ_1	φ_2	φ_3	φ_4	φ_5	φ_6	(1)	(1)	(123)	(132)	(23)	(132)	(123)
φ_2	φ_2	φ_3	φ_1	φ	φ	arphi	(123)	(123)	(132)	(1)	φ	φ	φ
φ_3	φ_3	φ_1	φ_2	φ	φ	$\varphi \longrightarrow$	(132)	(13)	(1)	$arphi_2$	φ	φ	φ
φ_4	φ_4	φ_6	φ_5	φ	φ	φ	(23)	(23)	$arphi_6$	$arphi_5$	φ	φ	φ
φ_5	φ_5	φ_4	φ_6	φ	φ	arphi	(132)	(132)	$arphi_4$	$arphi_6$	φ	φ	φ
φ_6	φ_6	φ_5	φ_4	φ	φ	φ	(123)] (123)	φ_5	φ_4	φ	φ	φ

(b)
$$E = \mathbb{Q}(\sqrt[4]{5}, i), F = \mathbb{Q}.$$

Solution. The minimal polynomial of $\sqrt[4]{5}$ over F is $x^4 - 5$. The roots of this polynomial are $\sqrt[4]{5}$, $-\sqrt[4]{5}$, $i\sqrt[4]{5}$, $-i\sqrt[4]{5}$ and so $x^4 - 5$ splits over E. Additionally, E is the smallest field containing F and the roots of $x^4 - 5$ and as such, E is the

MATH 210B Darcy

splitting field for x^4-5 . Since $\sqrt[4]{5} \notin F(i)$, then $x^2-\sqrt[4]{25}$ is irreducible over F(i) and so $[E\colon F(i)]=2$. Similarly, since x^2+1 is irreducible over F, then $[F(i)\colon F]=2$. Thus, $[E\colon F]=[E\colon F(i)][F(i)\colon F]=4$. Now note that any automorphism of E fixes F by HW 1 and so $G(E/F)=\operatorname{Aut}(E)$. Moreover, for any $\varphi\in\operatorname{Aut}(E)$, we have that

$$\varphi(\sqrt[4]{5}) = \pm \sqrt[4]{5}$$
 and $\varphi(i) = \pm i$.

Thus, $|\operatorname{Aut}(E)| = |G(E/F)| = 4$ and so |G(E/F)| = [E:F]. Thus, by Theorem 5, E/F is Galois. Finally, let $\varphi, \tau \in G(E/F)$ such that

$$\varphi(\sqrt[4]{5}) = -\sqrt[4]{5}, \ \varphi(i) = i \text{ and } \tau(\sqrt[4]{5}) = \sqrt[4]{5}, \ \tau(i) = -i.$$

MATH 210B Darcy

Letting $\alpha_1 = \sqrt[4]{5}$, $\alpha_2 = -\sqrt[4]{5}$, $\alpha_3 = i\sqrt[4]{5}$, and $\alpha_4 = -i\sqrt[4]{5}$, then

	α_1	α_2	α_3	α_4	
1_E	α_1	α_2	α_3	α_4	(1)
φ	α_2	α_1	α_3	α_4	(12)
τ	α_1	α_2	α_4	α_3	(34)
$\varphi\tau$	α_2	α_1	α_4	α_3	(12)(34)

From this table we can see that $G(E/F) \cong \{(1), (12), (34), (12)(34)\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

(c)
$$E = \mathbb{Q}(\sqrt[4]{5}, i), F = \mathbb{Q}(i).$$

Solution. By part (b), we know that $|\operatorname{Aut}(E)| = 4$ and two of these automorphisms map i to -i. Thus, $G(E/F) = \{1_E, \varphi\}$, where 1_E is the identity on E and $\varphi(\sqrt[4]{5}) = -\sqrt[4]{5}$ and $\varphi(i) = -i$. Thus, |G(E/F)| = 2. Additionally, the minimal polynomial of $\sqrt[4]{5}$ over F is $x^2 - \sqrt[4]{25}$ and so [E:F] = 2. Thus, |G(E/F)| = [E:F] and by Theorem 5, E/F is Galois. Finally, by part (b), it follows that $G(E/F) = \{1_E, \varphi\} \cong \{(1), (12)\} \cong \mathbb{Z}_2$.

(d)
$$E = \mathbb{Q}(\sqrt[4]{5}, i), F = \mathbb{Q}(\sqrt[4]{5}).$$

Solution. By parts (b) and (c) it follows that $G(E/F) = \{1_E, \tau\}$. Additionally, since the minimal polynomial of i over F is $x^2 + 1$, then [E: F] = 2. Thus, |G(E/F)| = [E: F] and by Theorem 5, E/F is Galois. Finally, $G(E/F) \cong \{(1), (34)\} \cong \mathbb{Z}_2$.

(e)
$$E = \mathbb{Q}(\sqrt{2}, \sqrt{3}), F = \mathbb{Q}.$$

Solution. Since E is the splitting field of the separable polynomial $(x^2-2)(x^2-3)$, then |G(E/F)| = [E:F] = 4 and so E/F is Galois. Thus, for any $\varphi \in G(E/F)$ we'll have that $\varphi(\sqrt{2}) = \pm \sqrt{2}$ and $\varphi(\sqrt{3}) = \pm \sqrt{3}$. In particular, we can find $\varphi_1, \varphi_2 \in G(E/F)$ such that

$$\varphi_1(\sqrt{2}) = \sqrt{2}, \qquad \qquad \varphi_1(\sqrt{3}) = -\sqrt{3}$$

$$\varphi_2(\sqrt{2}) = -\sqrt{2} \qquad \qquad \varphi_2(\sqrt{3}) = \sqrt{3}.$$

This results in $G(E/F) = \{\varphi_0, \varphi_1, \varphi_2, \varphi_1\varphi_2\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.