AULA 16: FUNÇÕES ABSOLUTAMENTE INTEGRÁVEIS

Começamos com o conceito de função mensurável à Lebesgue com sinal.

Definição 1. Uma função $f: \mathbb{R}^d \to [0, \infty]$ é chamada mensurável à Lebesgue se existir uma sequência de funções simples $\{s_n: \mathbb{R}^d \to \mathbb{R}\}_{n\geq 1}$ tal que $s_n \to f$ em q.t.p.

Observação 1. Lembre-se que dado $c \in \mathbb{R}$, denotamos por

$$c^+ := \max\{c, 0\}$$
 e $c^- := \max\{-c, 0\}$

Então,

$$c^+, c^- \ge 0, \quad c = c^+ - c^-, \quad |c| = c^+ + c^-$$

е

$$c = 0 \Leftrightarrow c^+ = c^- = 0$$

Além disso, dada uma sequência de números $\{x_n\}_{n\geq 1}\subset \mathbb{R}$ e $x\in \mathbb{R}$, temos

$$x_n \to x$$
 se e somente se $x_n^+ \to x^+$ e $x_n^- \to x^-$

Ademais, se $\{f_n\}_{n\geq 1}$ é uma sequência de funções, então

$$f_n \to f$$
 em q.t.p. se e somente se $f_n^+ \to f^+$ em q.t.p e $f_n^- \to f^-$ em q.t.p

O seguinte teorema fornece uma caracterização do conceito de mensurabilidade para funções com sinal, análogo ao Teorema 1 da aula 13.

Teorema 1. Considere uma função $f: \mathbb{R}^d \to \mathbb{R}$. As seguintes afirmações são equivalentes:

- (1) f é mensurável à Lebesgue, ou seja, existe uma sequência de funções simples com sinal $\{s_n\}_{n\geq 1}$ tal que $s_n \to f$ em q.t.p.
- (2) f⁺ e f⁻ são mensuráveis à Lebesgue.
- (3) Para todo intervalo $I \subset \mathbb{R}$, o conjunto $\{f \in I\}$ é mensurável à Lebesgue.
- (4) Para todo conjunto aberto $U \subset \mathbb{R}$, o conjunto $\{f \in U\}$ é mensurável à Lebesgue.
- (5) Para todo conjunto fechado $F \subset \mathbb{R}$, o conjunto $\{f \in F\}$ é mensurável à Lebesgue.
- (6) Para todo $\lambda \in \mathbb{R}$, o conjunto $\{f > \lambda\}$ é mensurável à Lebesgue.

As outras afirmações do tipo $\{f \geq \lambda\}, \{f < \lambda\}$ ou $\{f \leq \lambda\}$ mensuráveis também são equivalentes às afirmações acima.

Demonstração do Teorema 1. A prova da equivalência entre as afirmações de (3) até (6) é completamente análoga à do Teorema 1 da aula 13.

- $(1) \Rightarrow (2)$ Seja $\{s_n\}_{n\geq 1}$ uma sequência de funções simples (com sinais) tal que $s_n \to f$ em q.t.p. Pela observação anterior, $s_n^+ \to f^+$ e $s_n^- \to f^-$ em q.t.p. Como s_n^+, s_n^- são funções simples (sem sinais), segue que f^+ e f^- são mensuráveis
- $(2) \Rightarrow (1)$ Existem duas sequências de funções simples sem sinais, $s_n \to f_n^+$ e $\sigma_n \to f^-$. Podemos supor que para todo $n \geq 1$, s_n e σ_n moram em caixas, então são finitas em todo ponto. Portanto, a função $s_n \sigma_n \colon \mathbb{R}^d \to \mathbb{R}$ é simples e

$$s_n - \sigma_n \rightarrow f^+ - f^- = f$$

provando que f é mensurável.

- $(2) \Rightarrow (3)$ Seja $I \subset \mathbb{R}$ um intervalo. Vamos considerar separadamente os casos $0 \notin I$ e $0 \in I$.
 - Se $0 \notin I$, como I é conexo, ou $I \subset (0,\infty)$ ou $I \subset (-\infty,0)$. Não é difícil ver que se $I \subset (0,\infty)$ então

$$\{f\in I\}=\{f^+\in I\}$$

que é mensurável, pois f^+ é mensurável. Similarmente, se $I \subset (-\infty, 0)$, que equivale a $-I \subset (0, \infty)$, temos

$$\{f \in I\} = \{f^- \in -I\}$$

que também é mensurável, pois f^- é mensurável e -I é um intervalo.

• Se $0 \in I$, então

$$I = I^+ \cup I^- \cup \{0\}$$

onde

$$I^+ := I \cap (0, \infty)$$
 e $I^- := I \cap (-\infty, 0)$.

Portanto,

$$\{f \in I\} = \{f \in I^+\} \cup \{f \in I^-\} \cup \{f = 0\}.$$

Pelo caso anterior, $\{f \in I^+\}$ e $\{f \in I^-\}$ são mensuráveis, enquanto

$${f=0} = {f^+=0} \cap {f^-=0}$$

que também é mensurável. Portanto, em todos os caso, $\{f \in I\}$ é, de fato, mensurável.

 $(6) \Rightarrow (2)$ Seja $\lambda \geq 0$. Temos que

$$\{f^+ > \lambda\} = \{f > \lambda\},\$$

pois $f^+(x) = f(x)$ sempre que f(x) > 0 e $f^+(x) = 0$ no caso contrário. Como $\{f > \lambda\}$ é mensurável e $\lambda \ge 0$ é arbitrário, segue que f^+ é mensurável. Similarmente, dado $\lambda \ge 0$,

$$\{f^- > \lambda\} = \{f < -\lambda\},\$$

que é um conjunto mensurável, logo f^- é uma função mensurável.

A seguir, apresentamos exemplos básicos de funções mensuráveis.

Teorema 2. As sequintes valem:

- (1) Toda função contínua $f: \mathbb{R}^d \to \mathbb{R}$ é mensurável.
- (2) Se $f: \mathbb{R}^d \to \mathbb{R}$ é mensurável e $\phi: \mathbb{R} \to \mathbb{R}$ é contínua, então $\phi \circ f$ é mensurável.
- (3) Toda função simples é mensurável.
- (4) Se f = g em q.t.p e f é mensurável, então g é mensurável.
- (5) Se $\{f_n\}_{n\geq 1}$ é uma sequência de funções mensuráveis e limitadas, então $\sup_{n\geq 1} f_n$ e $\inf_{n\geq 1} f_n$ são mensuráveis. Além disso, se $f_n \to f$ em q.t.p, então f é mensurável.
- (6) Se f, g são mensuráveis e $c \in \mathbb{R}$, então f + g, cf, fg são mensuráveis.

Demonstração do Teorema 2.

(1) Dado qualquer conjunto aberto $U \subset \mathbb{R}$, como f é contínua,

$$\{f\in U\}=f^{-1}(U)$$

é aberto, logo mensurável, mostrando que a função f é mensurável.

(2) Dado $U \subset \mathbb{R}$ aberto, $\phi^{-1}(U)$ é aberto, pois ϕ é contínua. Mas

$$\{\phi \circ f \in U\} = \{f \in \phi^{-1}(U)\},\$$

que é mensurável, pois f é mensurável. Logo, $\phi \circ f$ é mensurável.

(3) Seja $s: \mathbb{R}^d \to \mathbb{R}$ uma função simples. A sequência constante $s_n = s$ para todo $n \ge 1$ converge para s, logo s é mensurável.

(4) Dado um intervalo $I \subset \mathbb{R}$,

$$\{g \in I\} = \{g = f \in I\} \cup \{g \neq f \in g \in I\}$$

= $\{g = f\} \cap \{f \in I\} \cup \{g \neq f \in g \in I\}$

O conjunto $\{g \neq f\}$ é negligenciável pois g = f em q.t.p. Então, $\{g \neq f \text{ e } g \in I\} \subset \{g \neq f\}$ é negligenciável, logo também é mensurável. Ademais, $\{g = f\} = \{g \neq f\}^{\complement}$, então $\{g = f\}$ é mensurável.

Finalmente, $\{f \in I\}$ é mensurável, pois f é uma função mensurável. Concluímos que $\{g \in I\}$ é mensurável, logo g é uma função mensurável.

(5) Seja $\lambda \in \mathbb{R}$. Então,

$$\{\sup_{n\geq 1} f_n \leq \lambda\} = \bigcap_{n\geq 1} \{f_n \leq \lambda\} \quad \text{e} \quad \{\inf_{n\geq 1} f_n \geq \lambda\} = \bigcap_{n\geq 1} \{f_n \geq \lambda\}$$

Como os conjuntos $\{f_n \leq \lambda\}, \{f_n \geq \lambda\}$ são mensuráveis para todo $n \geq 1$, pois f_n são funções mensuráveis, segue que $\sup_{n \geq 1} f_n$ e $\inf_{n \geq 1} f_n$ são funções mensuráveis.

Se $f_n \to f$ em q.t.p, então

$$f_n^+ \to f^+$$
 e $f_n^- \to f^-$ em q.t.p

Pelo Teorema 1, paro todo $n \geq 1$, as funções sem sinais f_n^+ e f_n^- são mensuráveis, portanto f^+ e f^- também são mensuráveis, provando a mensurabilidade de $f = f^+ - f^-$.

(6) Existem sequências de funções simples $s_n \to f$ e $\sigma_n \to g$. Então, para todo $n \ge 1$,

$$s_n + \sigma_n$$
, cs_n e $s_n \cdot \sigma_n$

são simples e

$$s_n + \sigma_n \to f + g$$
, $cs_n \to cf$, $s_n \cdot \sigma_n \to f \cdot g$

provando a mensurabilidade de f + g, $cf \in f \cdot g$.

Integrabilidade absoluta.

Definição 2. Uma função $f: \mathbb{R}^d \to \mathbb{R}$ é chamada absolutamente integrável à Lebesgue se f é mensurável à Lebesgue e $\int_{\mathbb{R}^d} |f| d \, \mathrm{m} < \infty$. Neste caso, definimos

$$\int_{\mathbb{R}^d} f d \mathbf{m} := \int_{\mathbb{R}^d} f^+ d \mathbf{m} - \int_{\mathbb{R}^d} f^- d \mathbf{m}$$

Observação 2. Como $0 \le f^+, f^- \le |f|$, pela monotonicidade da integral sem sinal, tem-se

$$0 \le \int f^+, \int f^- \le \int |f| < \infty$$

logo
$$\int f^+, \int f^- \in \mathbb{R}$$
, então

$$\int f = \int f^+ - \int f^- \in \mathbb{R}$$

Assim, a integral de Lebesgue de uma função absolutamente integrável é bem definida.

Observação 3. Suponha que $f = f_1 - f_2$ seja uma representação de f como uma diferença de funções mensuráveis sem sinais f_1 e f_2 , onde $\int f_1$, $\int f_2 < \infty$. Então, $\int f = \int f_1 - \int f_2$.

De fato, como $f_1 - f_2 = f = f^+ - f^-$, temos

$$f_1 + f^- = f^+ + f_2,$$

onde f_1, f^-, f^+, f_2 são funções mensuráveis sem sinais. Pela aditividade da integral sem sinal, tem-se

$$\int f_1 + \int f^- = \int f^+ + \int f_2 \,,$$

logo,

$$\int f_1 - \int f_2 = \int f^+ - \int f^- = \int f.$$

A maioria das propriedades da integral sem sinal também vale para funções absolutamente integráveis.

Teorema 3. Sejam $f, g: \mathbb{R}^d \to \mathbb{R}$ funções absolutamente integráveis e $c \in \mathbb{R}$

- (1) (linearidade) f + g e cf são absolutamente integráveis e $\int (f + g) = \int f + \int g$, $\int cf = c \int f$.
- (2) (monotonicidade) Se $f \leq g$ em q.t.p, então $\int f \leq \int g$.
- (3) (divisibilidade) Se E é um conjunto mensurável, então $f \cdot \mathbf{1}_E$ e $f \cdot \mathbf{1}_{E^{\complement}}$ são mensuráveis e $\int f = \int f \cdot \mathbf{1}_E + \int f \cdot \mathbf{1}_{E^{\complement}}$.
- (4) (a designaldade triangular) $\left| \int f \right| \le \int |f|$.

Demonstração do Teorema 3.

(1) Pelo Teorema 2 (6), f+g e cf são mensuráveis. Além disso, como $|f+g| \le |f| + |g|$ e |f+g|, |f|, |g| são funções mensuráveis sem sinal, pela monotonicidade e linearidade da integral sem sinal temos

$$\int |f + g| \le \int (|f| + |g|)$$
$$= \int |f| + \int |g| < \infty$$

mostrando a integrabilidade absoluta de f + g.

Como $f = f^+ - f^-$ e $g = g^+ - g^-$, temos que

$$f + g = (f^+ + g^+) - (f^- + g^-), (f^+ + g^+) e (f^- + g^-)$$

são funções mensuráveis sem sinais e, pela observação anterior,

$$\begin{split} \int (f+g) &= \int (f^+ + g^+) - \int (f^- + g^-) \\ &= \left(\int f^+ + \int g^+ \right) - \left(\int f^- + \int g^- \right) \quad \text{(pela linearidade da integral sem sinal)} \\ &= \left(\int f^+ - \int f^- \right) + \left(\int g^+ - \int g^- \right) \\ &= \int f + \int g \,. \end{split}$$

A prova da identidade $\int cf = c \int f$ é exercício.

(2) $f \leq g$ em q.t.p implica $g - f \geq 0$ q.t.p. Portanto, $\int (g - f) \geq 0$. Mas, g = f + (g - f) e, pela aditividade da integral,

$$\int g = \int f + \int (g - f) \ge \int f.$$

(3) Como $\mathbf{1}_E$ e $\mathbf{1}_{E^{\complement}}$ são funções simples, logo mensuráveis, pelo Teorema 2, $f \cdot \mathbf{1}_E$ e $f \cdot \mathbf{1}_{E^{\complement}}$ são mensuráveis. Claramente,

$$f = f \cdot \mathbf{1}_E + f \cdot \mathbf{1}_{E^{\complement}}$$

e usando a linearidade da integral, segue que

$$\int f = \int f \cdot \mathbf{1}_E + \int f \cdot \mathbf{1}_{E^{\complement}}$$
 .

(4) Temos que $f \leq |f|$ e $-f \leq |f|$. Pela monotonicidade da integral,

$$\int f \le \int |f|$$
 e $\int (-f) \le \int |f|$

Portanto,

$$\left| \int f \right| = \max \left\{ \int f, - \int f \right\} = \max \left\{ \int f, \int (-f) \right\} \le \int |f| \ .$$

Observação 4. Dados uma função absolutamente integrável $f: \mathbb{R}^d \to \mathbb{R}$ e um conjunto mensurável E, denotamos por

$$\int_E f \, d\, \mathbf{m} \coloneqq \int f \cdot \mathbf{1}_E \, d\, \mathbf{m} \, .$$

A propriedade da divisibilidade se torna

$$\int_{\mathbb{R}^d} f = \int_E f + \int_{E^{\complement}} f \ .$$

Ademais, uma função $f \colon E \to \mathbb{R}$ é dita mensurável se a extensão dela por 0, $\tilde{f} \colon \mathbb{R}^d \to \mathbb{R}$

$$\tilde{f}(x) = \begin{cases} f(x) & \text{se } x \in E \\ 0 & \text{se } x \notin E. \end{cases}$$

for mensurável. Neste caso, $\int_E f\,d\,\mathbf{m} \coloneqq \int_{\mathbb{R}^d} \tilde{f}\,d\,\mathbf{m}\,.$