Artificial Intelligence, Spring 2017

Homework 4 – PGM

Xinglu Wang 3140102282 ISEE 1403, ZJU

1 Problem 1

- a. Statements in (ii), (iii) are asserted by BN structure.
 - (i) Not asserted by BN, P(B, I, M) = P(B)P(M)P(I|B, M) instead.
 - (ii) True assertion. According to Causal Reasoning Pattern, $J \perp I | G$, so $\mathbf{P}(J|G) = \mathbf{P}(J|G,I)$.
 - (iii) True assertion. M's Markov blanket is G, B, I, so $\mathbf{P}(M|G, B, I) = \mathbf{P}(M|G, B, I, J)$.
- **b.** $P(b, i, \neg m, g, j) = P(b)P(\neg m)P(i|b, \neg m)P(g|b, i, \neg m)P(j|g) = 0.2916$
- **c. Select Entries** consistent with (b, i, m) = (t, t, t).

$$\begin{array}{c|cccc} B & I & M & P(G) \\ \hline t & t & t & .9 \end{array}$$

Sum Out _

 $\mathbf{P}(J|b, i, m) \propto \phi_0(J) \\ = \sum_{G} \phi_1(G)\phi_2(J, G) \\ = \frac{G = t \quad G = f}{0.81 \quad 0.09}$

= < 0.81, 0.19 >

Normalization $P(J = j | b, i, m) = \frac{\phi_0(J = j)}{\sum_{J} \phi_0(J)} = 0.81$

2 Problem 2

a. Use variable elimination algorithm:

$$\begin{split} \mathbf{P}(B|j,m) &\propto \sum_{A,E} \mathbf{P}(B,A,E|j,m) \\ &= \sum_{A,E} \mathbf{P}(B)\mathbf{P}(E)\mathbf{P}(A|B,E)\mathbf{P}(j|A)\mathbf{P}(m|A) \\ &= \sum_{E} \mathbf{P}(B)\mathbf{P}(E)\sum_{A} \mathbf{P}(A|B,E)\mathbf{P}(j|A)\mathbf{P}(m|A) \\ &= \mathbf{P}(B)\sum_{E} \mathbf{P}(E) \begin{bmatrix} B=t & B=f \\ .63 \times \overline{E=t} & 0.95 & 0.29 \\ E=f & 0.94 & 0.01 \end{bmatrix} + .005 \times \frac{B=t & B=f}{E=t} \\ &= \mathbf{P}(B)\sum_{E} \mathbf{P}(E) \overline{E=t} & .598525 & .183055 \\ E=f & .598525 & .183055 \\ E=f & .59223 & .0011295 \\ &= \mathbf{P}(B)\sum_{E} \mathbf{P}(E)\phi_{1}(B,E) \\ &= \mathbf{P}(B)\phi_{2}(B) \\ &= B=t & .00059224259 \\ B=f & .0014918576 \end{split}$$

After normalizing, $P(B|j,m) \approx <.284,.716 >$

b. Variable elimination has 7 additions, 16 multiplications, and 2 divisions.

If we use enumeration,

$$\mathbf{P}(B|j,m) \propto \sum_{A,E} \mathbf{P}(B,A,E|j,m)$$

$$= \sum_{A,E} \mathbf{P}(B)\mathbf{P}(E)\mathbf{P}(A|B,E)\mathbf{P}(j|A)\mathbf{P}(m|A)$$

$$= \sum_{A,E} \phi_1(A,B,E)$$

$$= \sum_{A} \phi_2(B,E)$$

$$= \phi_3(B)$$

There are 7 additions, 22 multiplications, and 2 divisions. c. Using enumeration,

$$\mathbf{P}(\mathbf{X}_1|x_n^t) = \sum_{\mathbf{X}_2 \cdots \mathbf{X}_{n-1}} \mathbf{P}(\mathbf{X}_1) \mathbf{P}(\mathbf{X}_2|\mathbf{X}_1) \cdots \mathbf{P}(x_n^t|\mathbf{X}_{n-1})$$
$$= \sum_{\mathbf{X}_2 \cdots \mathbf{X}_{n-1}} \phi_1(\mathbf{X}_1, \cdots \mathbf{X}_{n-1})$$

The largest condition probability table is of size 2^{n-1} , thus the complexity is $O(x^n)$

Using variable elimination, the largest conditional probability table can concern 2 variables at most, since $Parent(\mathbf{X}_i) = \mathbf{X}_{i-1}$. Thus, for each step, complexity is O(4) and there are n-1 steps. Thus, the overall complexity is O(4(n-1)) = O(n).

d. We prove it by induction. Base case: when n = 1, complexity is O(n).

Assume a polytree network with n nodes has O(n) complexity. We need to prove a polytree network with n + 1 nodes has O(n + 1) complexity.

We will choose a leaf node, since the variable ordering should be consistent with the network structure. Eliminate this node is constant complexity dependent on the size of CPT concerning \mathbf{X}_{n+1} and $Parent(\mathbf{X}_{n+1})$ and we can write as O(1) in the meaning of complexity. Thus, the overall complexity is O(x) + O(1) = O(x+1). Thus, our assumption – a polytree network with n nodes has O(n) complexity is true.

3 Problem 3

Model as Dynamic Bayesian Network, ref. to fig 1 on the following page. The transition probability is given by:

$$P(s_0) = 0.7$$

$$P(s_{t+1}|s_t) = 0.8$$

$$P(s_{t+1}|\neg s_t) = 0.3$$

$$P(r_t|s_t) = 0.2$$

$$P(r_t|\neg s_t) = 0.7$$

$$P(c_t|s_t) = 0.1$$

$$P(c_t|\neg s_t) = 0.3$$

Model as Hidden Markov Model, ref to fig 2 on the next page. The variable R_t and C_t is combined as RC_t . The conditional probability table becomes

Figure 1: Dynamic Bayesian Network. Right: Express by plate model

Figure 2: Hidden Markov Model, expressed by plate model

4 Problem 4

a. Using frequency to estimate probability:

	, ,		$\mathbf{P}(X_1 Y=-1)$	$\mathbf{P}(X_1 Y=1)$	X_2	$\mathbf{P}(X_2 Y=-1)$	$\mathbf{P}(X_2 Y=1)$
-1	1/2	0	1/3	2/3	0	2/3	2/3
1	1/2	1	2/3	1/3	1	1/3	1/3

b. Add k (Laplace) smoothing, with k = 1,

$$\mathbf{P}(X_i|Y) = \frac{N_i + k}{N + k \times 2} \qquad (i = 1, 2)$$

c.

$$\begin{split} \mathbf{P}(Y|X_1 = 0, X_2 = 0) &= \mathbf{P}^{(Y, X_1 = 0, X_2 = 0)} / \mathbf{P}(X_1 = 0, X_2 = 0) \\ &\propto \mathbf{P}(Y) \mathbf{P}(X_1 = 0 | Y) \mathbf{P}(X_2 = 0 | Y) \\ &\quad \text{(Since the evidence } \mathbf{P}(X_1 = 0, X_2 = 0) \text{ is just a normalization factor)} \\ &= < \frac{1}{2} \times \frac{2}{5} \times \frac{3}{5}, \frac{1}{2} \times \frac{3}{5} \times \frac{3}{5} > \end{split}$$

After normalization, $P(Y|X_1 = 0, X_2 = 0) = <0.4, 0.6>$.

d. When $k \to \infty$, the prior is dominant.

$$\mathbf{P}(X_i|Y) = \lim_{k \to \infty} \frac{N_i + k}{N + k \times 2}$$
 $(i = 1, 2) = 1/2$

All value of table in (b). will be 1/2. Thus, $P(Y|X_1 = 0, X_2 = 0) = <0.5, 0.5 >$

e. The following feature set can consist a linear binary classifier.

v. with decision boundary $abs(X_1 - X_2) = 1/2$

vii. with decision boundary(not optimal) $2 \max(X_1, X_2) - X_1 - X_2 = \epsilon$, where $\epsilon \to 0^+$

viii. with decision boundary $I(X_1 - X_2) = 1/2$

5 Problem 5

In space of X_1, X_1X_2 , the margin is $X_1X_2 = 0$, draw the separating line back to origin Euclidean input space, there are two lines $X_1 = 0$ and $X_2 = 0$.

