Álgebra Universal e Categorias

Exercícios - Folha 7 -

- 46. Sejam \mathcal{A} uma álgebra e $\theta, \theta^* \in \mathrm{Con}\mathcal{A}$. Mostre que (θ, θ^*) é um par de congruências fator em \mathcal{A} se e só se $\theta \cap \theta^* = \triangle_A$ e $\theta \circ \theta^* = \nabla_A$.
 - \Rightarrow) Seja (θ, θ^*) um par de congruências fator em \mathcal{A} . Então:
 - (1) $\theta \cap \theta^* = \triangle_A$;
 - (2) $\theta \vee \theta^* = \nabla_A$;
 - (3) $\theta \circ \theta^* = \theta^* \circ \theta$.

Pretende-se provar que:

- (i) $\theta \cap \theta^* = \triangle_A$;
- (ii) $\theta \circ \theta^* = \nabla_A$.
- De (1) é imediato (i).
- De (3) segue que $\theta \circ \theta^* = \theta \vee \theta^*$ (Teorema 2.3.14). Então, por (2), tem-se (ii).
- ←) Admitamos (i) e (ii).
- De (i) é imediato (1).

Uma vez que $\theta \circ \theta^* = \nabla_A$, tem-se $\theta^* \circ \theta \subseteq \theta \circ \theta^*$, pelo que $\theta \circ \theta^* = \theta^* \circ \theta$ e $\theta \circ \theta^* = \theta \vee \theta^*$ (Teorema 2.3.14). Assim, tem-se (3). De $\theta \circ \theta^* = \theta \vee \theta^*$ e de (ii) segue (2).

47. Seja $\mathcal{A}=(\{a,b,c,d\};f^{\mathcal{A}})$ a álgebra de tipo (1) onde $f^{\mathcal{A}}:\{a,b,c,d\}\to\{a,b,c,d\}$ é a operação definida por

(a) Determine $\Theta(a,b)$ e $\Theta(a,d)$. Justifique que $(\Theta(a,b),\Theta(a,d))$ é um par de congruências fator.

Comecemos por determinar $\Theta(a,b)$ e $\Theta(a,d)$.

A relação $\Theta(a,b)$ é a menor congruência em \mathcal{A} que contém $\{(a,b)\}$.

Se θ é uma conguência em \mathcal{A} que contém $\{(a,b)\}$, então

- (i) $(a,b) \in \theta$;
- (ii) θ é reflexiva;
- (iii) θ é simétrica;
- (iv) θ é transitiva;
- (v) θ satisfaz a propriedade de substituição, i.e., para quaisquer $x,y\in A$,

$$(x,y) \in \theta \Rightarrow (f^{\mathcal{A}}(x), f^{\mathcal{A}}(y)) \in \theta.$$

Assim, se θ é uma congruência em $\mathcal A$ que contém $\{(a,b)\}$, tem-se

- (1) $(a,b) \in \theta$;
- (2) $(b, a) \in \theta$, por (1) e (ii);
- (3) $\triangle_A \subseteq \theta$;
- (4) $(f^{\mathcal{A}}(a), f^{\mathcal{A}}(b)) = (c, d) \in \theta$, $(f^{\mathcal{A}}(b), f^{\mathcal{A}}(a)) = (d, c) \in \theta$, por (1), (2) e (v);
- (5) $(f^{\mathcal{A}}(c), f^{\mathcal{A}}(d)) = (a, b) \in \theta, (f^{\mathcal{A}}(d), f^{\mathcal{A}}(c)) = (b, a) \in \theta, \text{ por (4) e (v)}.$

Então, $\triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\} \subseteq \theta$. A relação $\theta' = \triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\}$ é uma congruência em \mathcal{A} que contém $\{(a,b)\}$ e é a menor congruência nestas condições. Assim, $\Theta(a,b) = \triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\}$.

De modo análogo, obtem-se $\Theta(a,d) = \triangle_A \cup \{(a,d),(d,a),(c,b),(b,c)\}.$

Uma par (θ_1,θ_2) de congruências em $\mathcal A$ diz-se um par de congruências factor se

- $\theta_1 \cap \theta_2 = \triangle_A$;
- $\theta_1 \vee \theta_2 = \nabla_A$;
- $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

Então, atendendo a que;

- $\Theta(a,b) \cap \Theta(a,d) = \{(a,a), (b,b), (c,c), (d,d)\} = \triangle_A;$
- $\Theta(a,b) \vee \Theta(a,d) = \Theta(a,b) \cup \Theta(a,d) \cup \{(a,c),(c,a),(b,d),(d,b)\} = \nabla_A;$
- $-\Theta(a,b) \circ \Theta(a,d) = \Theta(a,b) \cup \Theta(a,d) \cup \{(a,c),(d,b),(c,a),(b,d)\} = \Theta(a,d) \circ \Theta(a,b),$

conclui-se que $(\Theta(a,b),\Theta(a,d))$ é um par de congruências fator.

(b) Justifique que existem álgebras \mathcal{A}_1 e \mathcal{A}_2 não triviais tais que $\mathcal{A} \cong \mathcal{A}_1 \times \mathcal{A}_2$. Dê exemplo de álgebras \mathcal{A}_1 e \mathcal{A}_2 nas condições indicadas e determine a álgebra $\mathcal{A}_1 \times \mathcal{A}_2$.

Sejam $\theta_1 = \Theta(a,b)$, $\theta_2 = \Theta(a,d)$, $\mathcal{A}_1 = \mathcal{A}/\theta_1$ e $\mathcal{A}_2 = \mathcal{A}/\theta_2$. Uma vez que \mathcal{A} é não trivial e $\theta_1, \theta_2 \in \operatorname{Con} \setminus \{\nabla_A\}$, então \mathcal{A}_1 e \mathcal{A}_2 são álgebras não trivias. Como (θ_1, θ_2) é um par de congruências fator, tem-se $\mathcal{A} \cong \mathcal{A}_1 \times \mathcal{A}_2$ (Teorema 2.5.6).

Tem-se $\mathcal{A}_1 = \mathcal{A}/\theta_1 = (A/\theta_1, f^{\mathcal{A}/\theta_1})$, onde $A/\theta_1 = \{[a]_{\theta_1}, [c]_{\theta_1}\}$ (pois $\theta_1 = \Theta(a,b) = \triangle_A \cup \{(a,b), (b,a), (c,d), (d,c)\}$ e, portanto, $[a]_{\theta_1} = [b]_{\theta_1}$ e $[c]_{\theta_1} = [d]_{\theta_1}$), e $f^{\mathcal{A}/\theta_1} : A/\theta_1 \to A/\theta_1$ é a operação definida por

$$f^{\mathcal{A}/\theta_1}([a]_{\theta_1}) = [f^{\mathcal{A}}(a)]_{\theta_1} = [c]_{\theta_1},$$

$$f^{\mathcal{A}/\theta_1}([c]_{\theta_1}) = [f^{\mathcal{A}}(c)]_{\theta_1} = [a]_{\theta_1}.$$

No caso da álgebra $\mathcal{A}_2=\mathcal{A}/\theta_2=(A/\theta_2,f^{\mathcal{A}/\theta_2})$, tem-se $A/\theta_2=\{[a]_{\theta_2},[c]_{\theta_2}\}$ (pois $\theta_2=\Theta(a,d)=\Delta_A\cup\{(a,d),(d,a),(c,b),(b,c)\}$ e, portanto, $[a]_{\theta_1}=[d]_{\theta_1}$ e $[c]_{\theta_1}=[b]_{\theta_1}$), e $f^{\mathcal{A}/\theta_2}:A/\theta_2\to A/\theta_2$ é a operação definida por

$$f^{\mathcal{A}/\theta_2}([a]_{\theta_2}) = [f^{\mathcal{A}}(a)]_{\theta_2} = [c]_{\theta_2},$$

$$f^{\mathcal{A}/\theta_2}([c]_{\theta_1}) = [f^{\mathcal{A}}(c)]_{\theta_2} = [a]_{\theta_2}.$$

Assim, $A_1 \times A_2 = (A/\theta_1 \times A/\theta_2, f^{A_1 \times A_2})$, onde

$$A/\theta_1 \times A/\theta_2 = \{([a]_{\theta_1}, [a]_{\theta_2}), ([a]_{\theta_1}, [c]_{\theta_2}), ([c]_{\theta_1}, [a]_{\theta_2}), ([c]_{\theta_1}, [c]_{\theta_2})\}$$

e $f^{\mathcal{A}_1 imes \mathcal{A}_2}: (A/ heta_1 imes A/ heta_2) o (A/ heta_1 imes A/ heta_2)$ é a operação definida por

$$f^{\mathcal{A}_{1} \times \mathcal{A}_{2}}([a]_{\theta_{1}}, [a]_{\theta_{2}}) = (f^{\mathcal{A}/\theta_{1}}([a]_{\theta_{1}}), f^{\mathcal{A}/\theta_{2}}([a]_{\theta_{2}})) = ([c]_{\theta_{1}}, [c]_{\theta_{2}}),$$

$$f^{\mathcal{A}_{1} \times \mathcal{A}_{2}}([a]_{\theta_{1}}, [c]_{\theta_{2}}) = (f^{\mathcal{A}/\theta_{1}}([a]_{\theta_{1}}), f^{\mathcal{A}/\theta_{2}}([c]_{\theta_{2}})) = ([c]_{\theta_{1}}, [a]_{\theta_{2}}),$$

$$f^{\mathcal{A}_{1} \times \mathcal{A}_{2}}([c]_{\theta_{1}}, [a]_{\theta_{2}}) = (f^{\mathcal{A}/\theta_{1}}([c]_{\theta_{1}}), f^{\mathcal{A}/\theta_{2}}([a]_{\theta_{2}})) = ([a]_{\theta_{1}}, [c]_{\theta_{2}}),$$

$$f^{\mathcal{A}_{1} \times \mathcal{A}_{2}}([c]_{\theta_{1}}, [c]_{\theta_{2}}) = (f^{\mathcal{A}/\theta_{1}}([c]_{\theta_{1}}), f^{\mathcal{A}/\theta_{2}}([c]_{\theta_{2}})) = ([a]_{\theta_{1}}, [a]_{\theta_{2}}).$$

48. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A=\{a,b,c,d\}$ e cujas operações $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são definidas por

Sabendo que o reticulado de congruências de ${\mathcal A}$ pode ser representado por

onde $\theta_1=\theta(a,b)$, $\theta_2=\theta(a,c)$, $\theta_3=\theta(b,d)$ e $\theta_4=\triangle_A\cup\{(a,c),(c,a),(b,d),(d,b)\}$:

- (a) Determine θ_1 e justifique que (θ_1,θ_4) é um par de congruências fator.
- (b) Justifique que $A \cong A/\theta_1 \times A/\theta_4$. Defina as operações da álgebra $A/\theta_4 = (A/\theta_4; f^{A/\theta_4}, g^{A/\theta_4})$.
- (c) Diga, justificando, se a álgebra A é:
 - i. congruente-distributiva. ii. subdiretamente irredutível.
- 49. (a) Mostre que toda a álgebra finita com um número primo de elementos é diretamente indecomponível.

Seja $\mathcal{A}=(A;F)$ uma álgebra de tipo (O,τ) , onde |A|=n, com $n\in\mathbb{N}$ e n primo. Sejam $\mathcal{A}_1=(A_1;G)$ e $\mathcal{A}_2=(A_2;H)$ álgebras de tipo (O,τ) tais que $\mathcal{A}\cong\mathcal{A}_1\times\mathcal{A}_2$. Como \mathcal{A} é finita, então \mathcal{A}_1 e \mathcal{A}_2 são finitas e tem-se $|A|=|A_1\times A_2|=|A_1|\times |A_2|$. Como |A|=n e n é primo, segue que $|A_1|=1$ ou $|A_2|=1$; logo \mathcal{A}_1 é a álgebra trivial ou \mathcal{A}_2 é a álgebra trivial. Portanto, a álgebra \mathcal{A} é diretamente indecomponível.

(b) Seja $\mathcal{A}=(A;f^{\mathcal{A}})$ a álgebra tal que $A=\{x\in\mathbb{N}\,|\,x\leq 5\}$ e $f^{\mathcal{A}}$ é a operação unária em A definida por

$$f^{\mathcal{A}}(x) = \left\{ \begin{array}{ll} 1 & \text{se} & x \in \{2,4\} \\ 2 & \text{se} & x \in \{1,3,5\} \end{array} \right.$$

i. Sejam θ_1 e θ_2 as congruências de $\mathcal A$ definidas por $\theta_1=\Theta(1,2)$ e $\theta_2=\Theta(3,5)$. Determine θ_1 e θ_2 . Verifique que $\theta_1,\theta_2\in\mathrm{Con}\mathcal A\setminus\{\triangle_A\}$ e $\theta_1\cap\theta_2=\triangle_A$.

A relação $\theta_1 = \Theta(1,2)$ é a menor congruência em \mathcal{A} que contém $\{(1,2)\}$.

Se θ é uma conguência em \mathcal{A} que contém $\{(1,2)\}$, então

- (i) $(1,2) \in \theta$;
- (ii) θ é reflexiva;
- (iii) θ é simétrica;
- (iv) θ é transitiva;
- (v) θ satisfaz a propriedade de substituição, i.e., para quaisquer $x, y \in A$,

$$(x,y) \in \theta \Rightarrow (f^{\mathcal{A}}(x), f^{\mathcal{A}}(y)) \in \theta.$$

Assim, se θ é uma congruência em $\mathcal A$ que contém $\{(a,b)\}$, tem-se

- (1) $(1,2) \in \theta$;
- (2) $(2,1) \in \theta$, por (1) e (ii);
- (3) $\triangle_A \subseteq \theta$;
- (4) $(f^{\mathcal{A}}(1), f^{\mathcal{A}}(2)) = (2, 1) \in \theta$, $(f^{\mathcal{A}}(2), f^{\mathcal{A}}(1)) = (1, 2) \in \theta$, por (1), (2) e (v).

Então $\triangle_A \cup \{(1,2),(2,1)\} \subseteq \theta$. A relação $\theta' = \triangle_A \cup \{(1,2),(2,1)\}$ é uma congruência em $\mathcal A$ que contém $\{(1,2)\}$ e é a menor congruência nestas condições. Assim, $\theta_1 = \Theta(a,b) = \triangle_A \cup \{(1,2),(2,1)\}$.

De modo análogo, determina-se $\theta_2 = \Theta(3,5)$ e obtem-se $\theta_2 = \Theta(3,5) = \Delta_A \cup \{(3,5),(5,3)\}.$

Claramente, tem-se $\theta_1, \theta_2 \in \operatorname{Con} A \setminus \{\triangle_A\}$, pois $\theta_1, \theta_2 \in \operatorname{Con} A$, $\theta_1 \neq \triangle_A$ ($(1,2) \in \theta_1$ e $(1,2) \notin \triangle_A$) e $\theta_2 \neq \triangle_A$ ($(3,5) \in \theta_2$ e $(3,5) \notin \triangle_A$). Além disso,

$$\theta_1 \cap \theta_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\} = \triangle_A.$$

ii. Justifique que se θ e ϕ são congruências de $\mathcal A$ tais que $\mathcal A\cong \mathcal A/\theta\times\mathcal A/\phi$, então $\theta=\nabla_A$ ou $\phi=\nabla_A$.

A álgebra $\mathcal A$ tem um número primo de elementos (|A|=5). Logo, por (a), conclui-se que $\mathcal A$ é diretamente indecomponível. Então, se θ e ϕ são congruências de $\mathcal A$ tais que $\mathcal A\cong \mathcal A/\theta\times\mathcal A/\phi$, $\mathcal A/\theta$ é a álgebra trivial ou $\mathcal A/\phi$ é a álgebra trivial. No primeiro caso, tem-se $\theta=\nabla_A$; no segundo caso tem-se $\phi=\nabla_A$.

iii. Diga, justificando, se a álgebra \mathcal{A} é subdiretamente irredutível.

A álgebra \mathcal{A} é subdiretamente irredutível se e só se \mathcal{A} é a álgebra trivial ou $\operatorname{Con} \mathcal{A} \setminus \{\triangle_A\}$ tem elemento mínimo.

A álgebra \mathcal{A} não é trivial (|A|=5). Da alínea (b) i., sabe-se que existem $\theta_1,\theta_2\in\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$ tais que $\theta_1\cap\theta_2=\triangle_A$ e, portanto, $\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$ não tem elemento mínimo. Logo, \mathcal{A} não é subdiretamente irredutível.

50. Seja $\mathcal{A}=(A;F)$ uma álgebra cujo reticulado das congruências é representado pelo diagrama de Hasse seguinte

Justifique que:

(a) A álgebra \mathcal{A} não é congruente-distributiva;

A álgebra \mathcal{A} é congruente-distributiva se e só se $\mathrm{Con}\mathcal{A}$ é um reticulado distributivo. Um reticulado é distributivo se e só se não tem qualquer subrrecutilado isomorfo a M_5 ou a N_5 .

O reticulado

é um subrreticulado de Con A e é isomorfo a N_5 . Logo a álgebra A não é congruente-distributiva.

(b) A álgebra A não é subdiretamente irredutível;

A álgebra \mathcal{A} é subdiretamente irredutível se e só se \mathcal{A} é a álgebra trivial ou $\operatorname{Con} \mathcal{A} \setminus \{\triangle_A\}$ tem elemento mínimo.

A álgebra $\mathcal A$ não é trivial, pois $\mathrm{Con}\mathcal A\setminus\{\triangle_A\}\neq\emptyset$. Além disso, o c.p.o. $\mathrm{Con}\mathcal A\setminus\{\triangle_A\}$

não tem elemento mínimo. Logo, a álgebra $\mathcal A$ não é subdiretamente irredutível.

(c) Os reticulados $ConA/\theta_1$ e $ConA/\theta_3$ são isomorfos.

Pelo Teorema da Correspondência, tem-se $\mathcal{C}on\mathcal{A}/\theta_1\cong [\theta_1,\nabla_A]$ e $\mathcal{C}on\mathcal{A}/\theta_3\cong [\theta_3,\nabla_A]$. Como $[\theta_1,\nabla_A]\cong [\theta_3,\nabla_A]$ (a aplicação $\varphi:[\theta_1,\nabla_A]\to [\theta_3,\nabla_A]$, definida por $\varphi(\theta_1)=\theta_3$, $\varphi(\theta_4)=\theta_5$ e $\varphi(\nabla_A)=\nabla_A$, é um isomorfismo de c.p.o.'s), então $\mathcal{C}on\mathcal{A}/\theta_1\cong \mathcal{C}on\mathcal{A}/\theta_3$.