第5章 可编程接口芯片及其应用

- 随着集成电路技术的发展,接口电路早已集成化,并出现了 许多可编程接口芯片。
- 为了具有通用性,这些芯片通常被设计成具有多项功能或多 种工作方式,用户在使用时通过编程选择自己所需的功能或 工作方式。
- 尽管早期的可编程接口芯片在现代微机中已不再独立出现, 但是本章在介绍时,还是以它们为讲解对象,因为这些是理 解现代微机所用芯片的基础。
- 此外,在单片机等微机应用系统或输入/输出设备中还常常用 到它们。

5.1 可编程并行输入/输出接口芯片8255A

• Intel 8255A是一种通用的可编程序并行I/0接口芯片,是为 Intel 8080/8085系列微处理器设计的,也可用于其他系列的 微机系统。

5.1.1 8255A的内部结构及引脚功能

8255A为40引脚、双列直插 封装。内部结构由数据端 口、组控制电路、数据总 线缓冲器、读/写控制逻辑 四部分组成。

数据总线缓冲器:

三态8位双向缓冲器,D7-D0同系统数据总线相总线执连。CPU通过执行输出指令来实现对缓时,传送或接收数据,传送控制字和状态字。

CPU 接口 外设接口 内部逻辑 A 组 A组 PA7-PA0 控制 端口A 数据总线 D7-D0 A组 缓冲器 内部数 据总线 端口C (高4位) RD $\overline{\mathrm{WR}}$ 读/写 B组 A1 控制 端口C PC3-PC0 A0(低4位) 逻辑 $\overline{\text{CS}}$ **RESET** B组 B组 PB7-PB0 控制 端口 B

A组和B组的控 制电路: 3个 端口分成两组 来管理。A口 及C口高4位为 A组,B口及C 口低4位为B组。 两组分别设有 控制电路,每 个控制组都接 收来自读/写 控制逻辑的 "命令",接 收来自内部数 据总线的"控 制字",并向 与其相连的端 口发出适当的 控制信号。

读/写控制逻辑: 管理数据 信息、控制字和状态字的传 送,接收来自CPU地址总线 和控制总线的有关信号,向 8255A的A、B两组控制部件 发送命令。

图 5.1.1 8255A 的引脚及内部结构示意图

数据端口: 3个8位数据端口: 端口A、端口B和端口C。

8255A端口功能选择

表5.1.1 8255A端口功能选择

操作类型	CS	A1	A0	RD	WR	功能
	0	0	0	0	1	数据总线←端口A
读操作	0	0	1	0	1	数据总线←端口B
	0	1	0	0	1	数据总线←端口C
	0	0	0	1	0	端口A←数据总线
写操作	0	0	1	1	0	端口B←数据总线
	0	1	0	1	0	端口C←数据总线
	0	1	1	1	0	控制寄存器←数据总线
无操作	0	1	1	0	1	无意义
与总线	1	×	X	X	×	数据总线三态
"脱开"	0	×	×	$\sqrt{1}$	1	数据总线三态

A1	A0	选择端口
0	0	A口(数据口)
0	1	B口(数据口)
1	0	C口(数据口)
1	1	控制口

5.1.2 8255A的控制字-方式选择控制字

图 5.1.2 8255A 的方式选择控制字

5.1.2 8255A的控制字-对C口进行置位或复位的控制字

图 5.1.3 8255A 的对 C 口置位/复位控制字

5.1.3 8255A的工作方式

• 3种基本工作方式:

- 方式0: 基本的输入/输出方式。 适用A、B、C口。
- 方式1: 选通的输入/输出方式。 适用A、B口。
- · 方式2: 双向选通输入/输出方式。适用A口。

图 5.1.1 8255A 的引脚及内部结构示意图

- 在方式0下,C口的高4位和低4位以及A口、B口都可以独立地设置为基本的输入口或输出口。4个口的输入/输出可以有16种组合方式。
- 在方式1下将三个端口分成A、B两组,A、B两个口仍作为数据输入/ 输出口,而C口分成两部分,分别作为A口和B口的联络信号。
- 方式2只限于A口使用,用C口的5位进行联络。

方式1输入的逻辑功能结构

STB: 输入的选通信号,低电平 有效。由外设提供,为低电平时, 把输入的数据送入A端口或B端口 的数据锁存器。

IBF: 输入缓冲器满信号, 高电 平有效。由8255A输出,有效时, 用以通知外部设备输入的数据已 写入缓冲器。

INTR: 中断请求信号,高电平有效。当STB、IBF和 INTE都为高电平时,表明数据锁存器内已写入了数据, 使INTR成为高电平输出。

CPU响应中断执行IN指令后,在控制下从8255A中读取 数据时,RD的下降沿使INTR复位,RD的上升沿又使 IBF复位,使外设知道可以进行下一字节输入了。

INTE:中断允许信号。

辑式

A端口用PC4位的置位/复位控制, B端口用PC2位的置位/复位控制。 只有当PC4或PC2置"1"时,才允 许对应的端口送出中断请求。

方式1输入时序

图 5.1.5 方式 1 输入时序

方式1输出的逻辑功能结构

OBF: 输出缓冲器满信号; 低电平有效。由8255A输出,当其有效时,表示CPU已经将数据输出到指定的端口,通知外设可以将数据取走。

ACK: 响应信号,低电平有效。由外设送来,有效时表示8255A的数据已经被外设所接收。

INTR:中断请求信号,高电平有效。当外设接收了由CPU送给8255A的数据后,8255A就用INTR端向CPU发出中断请求,请求CPU再输出后面的数据。INTR是当OBF、ACK和INTE都为高电平时,才能被置成高电平。由的WR下降沿清除。

INTE:中断允许信号。 A口的INTE由PC6置/复位, B口的INTE由PC2置/复位。

方式1输出时序

图 5.1.7 方式 1 输出时序

方式2的逻辑功能结构

例5.1.1 利用8255A方式0产生波形

• 利用8255A在方式0下工作,使其在PC0、PC3引脚产生如图 5.1.9所示波形,试编写相应程序段。设8255A各端口地址分别设为60H、61H、62H和63H,波形延时时间可调用延时1毫秒 (Dlms)子程序实现。

程序段

START:	MOV	AL, 80H	;送各口方式0输出控制字
	OUT	63H, AL	
X1:	MOV	AL, 01H	
	OUT	62H, AL	
	CALL	D1ms	
	MOV	AL, 09H	
	OUT	62H, AL	
	CALL	Dlms	
	MOV	AL, 00H	
	OUT	62H, AL	
	CALL	D1ms	
	MOV	AL, 08H	
	OUT	62H, AL	
	CALL	D1ms	
	JMP	X1	

5.2 可编程计数器/定时器8253

- 5.2.1 8253的基本功能
- 1. 3个独立的16位计数器,能够进行3个16位的独立计数。
- 2. 每一个计数器具有六种工作方式。
- 3. 能进行二进制/十进制计数(减法计数)。所谓十进制计数, 是指BCD码计数,每个计数器可表示4位十进制数的BCD码,每 来一个计数脉冲,按照十进制数减1规律进行计数。
- 4. 计数频率为0~2MHz。
- 5. 可作计数器或定时器。

5.2.2 8253的引脚信号与内部结构

5.2.3 8253的控制字

图 5.2.2 8253 控制字的格式

17

5.2.4 8253的工作方式

方式	名称	OUT输出波形	启动方式	计数值使用
0	计数结束中断方式	CPU写入计数值 N+1 0	软	一次有效
1	可编程单稳方式	N 0	硬	多次有效
2	脉冲频率发生器方式	I个CLK N 1 0	软、硬	重复有效
3	方波发生器方式	N 0 N/2	软、硬	重复有效
4		PU写入 一数值	软	一次有效
5	硬件触发选通方式	N 1个CLK 周期	硬	多次有效

启动方式:

软件启动: CPU写入计数值

硬件启动: GATE上跳沿

计数值极限	
-------	--

方式	最大值	最小值
0,1,4,5	0	1
2,3	0	2

十进制: 10000

二进制: 65536

方式0的波形示意图

方式1的波形示意图

方式2的波形示意图

图 5.2.5 方式 2 的波形示意图

21

方式3的波形示意图

方式4的波形示意图

图 5.2.7 方式 4 的波形示意图

方式5的波形示意图

图 5.2.8 方式 5 的波形示意图

例5.2.1 8253的初始化设计

- 设某8253通道1工作于方式0,按BCD方式计数,计数初值为400。计数器0、 计数器1、计数器2和控制寄存器的端口地址依次为80H-83H, 试编写8253 的初始化程序。
- 1. 控制字: 控制字为01110001B, 写入控制寄存器, 端口地址为83H。
- 2. 计数值: 计数初值为400,由于采用BCD计数,故应按BCD码方式组成,即0400H,送入计数器1的数据端口,地址是81H。16位数送两次,先送低8位00H,后送高8位04H。
- 3. 初始化程序:

MOV	AL, 71H	; 控制字
OUT	83H, AL	
MOV	AL, 00H	; 低8位计数值
OUT	81H, AL	
MOV	AL, 04H	; 高8位计数值
OUT	81H, AL	

例5.2.2 8253在PC机中的应用

- 在PC/XT微机中使用了一片8253。
- 在PC/AT及以后的系列微机中使用了一片8254(8254兼容 8253)。
- 在PC/XT微机中,8253的端口地址设置为40H-43H。
- 在PC/XT微机中,8253的3个计数器的CLK端接入1.193MHz的时钟信号,周期为838ns。

1. 计数器0

- 作用: 提供系统电子时钟的时间基准。
- 计数器0用作系统日历时钟的基本计时电路,它的输出端0UT0 连接到8259A的IR0,作为系统的中断源。
- 工作方式:方式3,产生方波。
- 初值: 0000H, 二进制计数方式, 0UT0输出方波频率为 1.193MHz÷65536=18.206Hz。这意味着, 计数器0通过8259A 的IR0向系统每秒产生18.206次中断请求(即中断周期为 54.925ms), 这个中断请求用于维护系统的日历时钟。

• 初始化程序:

MOV	AL, 36H	; 控制字
OUT	43H, AL	
MOV	AL, 00H	; 最大计数值
OUT	40H, AL	;低8位计数值
OUT	40H, AL	; 高8位计数值

2. 计数器1

- 作用: DRAM的刷新定时。
- DRAM要求在2ms内对全部128行存储单元完成一次刷新操作。
- PC机采用分散刷新策略,即每隔一个固定的时间刷新一行,并保证在2ms 内刷新所有的128行,这个固定的时间应该不大于2ms÷128=15.6μs。
- 工作方式:方式2,产生连续的脉冲信号。
- 初值: 18,0UT1输出脉冲信号周期为18×0.838µs=15.084µs。
- OUT1输出的脉冲信号连接到一个触发器,由触发器向8237A提出DRAM刷新的DMA请求,DRAM的刷新是在DMA周期中完成的,8253的计数器1只是提供一个产生DRAM刷新DMA请求的定时触发信号。

• 初始化程序:

MOV	AL, 54H	; 控制字
OUT	43H, AL	
MOV	AL, 18	; 计数值
OUT	41H, AL	

3. 计数器2

- 作用: 提供驱动机内扬声器的音频信号。
- 计数器2的输出信号可使扬声器发声,产生伴音或警告音。
- 工作方式:方式3。
- 初值: 1331,控制扬声器发出频率为1KHz的声音。
- 初始化程序:

MOV	AL, 0B6H	; 控制字
OUT	43H, AL	
MOV	AX, 1331	; 计数值
OUT	42H, AL	
MOV	AL, AH	
OUT	42H, AL	
IN	AL, 61H	;读8255A的B口(8255A的初始化此前已经完成)
MOV	AH, AL	;保存
OR	AL, 03H	;使PB0=1,PB1=1
OUT	61H, AL	; 允许扬声器发声
•••••		
MOV	AL, AH	; 恢复8255A的B口状态
OUT	61H, AL	

例5.2.3 8253应用系统设计

- 某80×86系统采用8253精确控制一个发光二极管闪亮,系统要求启动8253后使发光二极管点亮2秒,熄灭2秒,亮灭50次后停止闪动,系统工作结束。现有一个时钟脉冲源,频率为2MHz,其他器件任选。试完成下列工作:
- (1) 分析该系统接口电路。
- (2)编写完成上述功能的程序。

系统分析

- 8253与CPU的接线及端口地址译码电路的设计按常规方法进行,按接口电路确定地址。
- 系统主要是控制发光二极管的亮灭,亮2秒灭2秒,恰好是一个方波周期, 周期为4秒,因此可用8253的方式3。
- 2MHz的周期为0.5 µs, 一个通道的最大输出周期为
- $65536 \times 0.5 \mu_{\rm S} = 32.768 \,\rm ms$
- 达不到4秒要求。而如果用该通道级联下一个通道,则下一个通道的最大输出周期为
- $65536 \times 32.768 \text{ms} = 2147 \text{s}$
- 因此,由两个通道级连来产生最后的方波。
- 前一个通道的CLK接2MHz,工作于脉冲频率发生器方式,产生一个脉冲波, 假设脉冲波周期为4ms(250HZ),于是它的计数值为4ms÷0.5μs=8000, 它的OUT输出接后一个计数器通道的CLK输入。
- 后一个计数器通道工作于方波发生器方式,产生周期为4秒的方波,于是它的计数值为4秒÷4ms=1000。

8253应用系统设计接口电路

工作程序设计

MOV	AL, 90H	;#2控制字
OUT	83H, AL	
MOV	AL, 50	; #2计数值
OUT	82H, AL	
MOV	AL, 34H	;#0控制字
OUT	83H, AL	
MOV	AX, 8000	;#0计数值
OUT	80H, AL	
MOV	AL, AH	
OUT	80H, AL	
MOV	AL, 76H	;#1控制字
OUT	83H, AL	
MOV	AX, 1000	;#1计数值
OUT	81H, AL	
MOV	AL, AH	
OUT	81H, AL	
•••••		

第5章 结 束