Names Removed

Redacted

January 30, 2014

Outline

Introduction

MIP Callbacks

TSP

TSPaaS

Deployment

Project: TSP as a Service

User Request

Introduction

```
User Request (lat_1, lng_1) (lat_2, lng_2) Julia Server
```

Introduction

Introduction

Project: TSP as a Service

Introduction

Last Time

Introduction

000

▶ The internet

Introduction

000

0000000000

Last Time

- ► The internet
- Databases

Introduction

000

Last Time

- ► The internet
- Databases
- Name Service

Deployment

Last Time

- ► The internet
- Databases
- Name Service
- ▶ Stations Service: (lat, lng) for all hubway stations in a box

Today

► MIP callbacks

Today

- ► MIP callbacks
- ► TSP

Today

Introduction

000

- ► MIP callbacks
- ► TSP
- Convert Stations Service to TSP Service

Deployment

Today

Introduction

000

- MIP callbacks
- ► TSP
- Convert Stations Service to TSP Service
- Deploying MIP solvers in the real world

What is a MIP Callback?

Callbacks interrupt the MIP solver to run custom code.

Callbacks interrupt the MIP solver to run custom code.

Things you can do with MIP callbacks:

Add constraints to the problem

Callbacks interrupt the MIP solver to run custom code.

Things you can do with MIP callbacks:

- Add constraints to the problem
- Suggest new integer solutions

What is a MIP Callback?

Callbacks interrupt the MIP solver to run custom code.

Things you can do with MIP callbacks:

- Add constraints to the problem
- Suggest new integer solutions
- Control branching & node selection

What is a MIP Callback?

Callbacks interrupt the MIP solver to run custom code.

Things you can do with MIP callbacks:

- Add constraints to the problem
- Suggest new integer solutions
- Control branching & node selection
- ▶ Log **anything** about solver progress for offline analysis

How does a MIP solver work anyway?

Add LP relaxation to node stack; Incumbent = null;

How does a MIP solver work anyway?

Add LP relaxation to node stack;
Incumbent = null;
while node stack not empty do
Pop LP from node stack & solve;

How does a MIP solver work anyway?

MIP Callbacks

Add the "lazy" constraints only once they have been violated by an integer solution.

When to make a family of constraints lazy

Good idea when:

- Family of constraints is large (e.g. n^3 , 2^n , $|\mathbb{R}|$)
- Integer solutions quickly separated
- Most constraints not violated

When to make a family of constraints lazy

Good idea when:

- Family of constraints is large (e.g. n^3 , 2^n , $|\mathbb{R}|$)
- Integer solutions quickly separated
- Most constraints not violated

Problems:

- Hard to find an integer solution
- Best bound improves slowly if many lazy constraints needed

Lazy Constraints in Julia

Simple Lazy IP:

Julia Solution:

$$\begin{array}{ll} \max & x_1+2x_2 \\ \mathsf{lazy:} & x_1+x_2 \leq 1 \\ & x_1,x_2 \in \{0,1\} \end{array}$$

Lazy Constraints in Julia

Simple Lazy IP:

```
max x_1+2x_2 lazy: x_1+x_2 \leq 1 x_1,x_2 \in \{0,1\}
```

```
Julia Solution:
```

```
m = Model(solver=GurobiSolver(LazyConstraints=1)
@defVar(m,x[1:2],Bin)
@setObjective(m,Max, x[1] + 2*x[2])
function lazy(cb)
    xVal = getValue(x)
    if xVal[1] + xVal[2] > 1 + 1e-4
        @addLazyConstraint(cb, x[1] + x[2] <= 1)
    end
end
setlazycallback(m,lazy)
solve(m)</pre>
```

Exercise: the feasible circle

Input: radius r, direction $\mathbf{c} = (c_1, c_2)$

Goal: maximize $\mathbf{c} \cdot \mathbf{x}$ on integer inside radius r circle.

Exercise: the feasible circle

Input: radius r, direction $\mathbf{c} = (c_1, c_2)$

Goal: maximize $\mathbf{c} \cdot \mathbf{x}$ on integer inside radius r circle.

$$r = 5$$
, $c = (2,1)$
 c
 $x^* = (3,4)$

max $\mathbf{c}\mathbf{x}$ subject to: $\|\mathbf{x}\|_2 \le r$ $\mathbf{x} \in \mathbb{Z}_2$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

$$\begin{array}{lll} \max & \mathbf{c} \cdot \mathbf{x} \\ \text{s.t.} & -r \leq x_i \leq r & i = 1, 2 \\ \text{lazy:} & \mathbf{d} \cdot \mathbf{x} \leq r & \forall \|\mathbf{d}\|_2 = 1 \\ & \mathbf{x} \in \mathbb{Z}_2 \end{array}$$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

$$\begin{array}{lll} \max & \mathbf{c} \cdot \mathbf{x} \\ \text{s.t.} & -r \leq x_i \leq r & i = 1, 2 \\ \text{lazy:} & \mathbf{d} \cdot \mathbf{x} \leq r & \forall \|\mathbf{d}\|_2 = 1 \\ & \mathbf{x} \in \mathbb{Z}_2 \end{array}$$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

Uncountably many!

Implementing Lazy Constraints:

 $\max \quad \quad \quad \textbf{c} \cdot \textbf{x}$

s.t.
$$-r \le x_i \le r$$
 $i = 1, 2$

lazy: $\mathbf{d} \cdot \mathbf{x} \leq r \quad \forall \|\mathbf{d}\|_2 = 1$

 $\textbf{x} \in \mathbb{Z}_2$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

max
$$\mathbf{c} \cdot \mathbf{x}$$

s.t. $-r \le x_i \le r$ $i = 1, 2$

lazy:
$$\mathbf{d} \cdot \mathbf{x} \le r \quad \forall \|\mathbf{d}\|_2 = 1$$

$$\textbf{x} \in \mathbb{Z}_2$$

Implementing Lazy Constraints:

- Uncountably many!
- ▶ If $\|\mathbf{x}\|_2 > r$, take $\mathbf{d} = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x}$, as

$$\mathbf{d} \cdot \mathbf{x} = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|_2 > r$$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

$$\begin{array}{ll} \max & \mathbf{c} \cdot \mathbf{x} \\ \text{s.t.} & -r \leq x_i \leq r \qquad i=1,2 \\ \text{lazy:} & \mathbf{d} \cdot \mathbf{x} \leq r \quad \forall \|\mathbf{d}\|_2 = 1 \\ & \mathbf{x} \in \mathbb{Z}_2 \end{array}$$

Implementing Lazy Constraints:

- Uncountably many!
- If $\|\mathbf{x}\|_2 > r$, take $\mathbf{d} = \frac{1}{\|\mathbf{x}\|_2}\mathbf{x}$, as

$$\mathbf{d} \cdot \mathbf{x} = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|_2 > r$$

Psuedo code: if $\|\mathbf{x}\|_2 > r$ then $\mathbf{d} = \frac{1}{\|\mathbf{x}\|_2}\mathbf{x};$ add lazy constraint $\mathbf{d} \cdot \mathbf{x} \le r$; end Some solvers support lazy constraints without callbacks. However, they have the following limitations:

- All constraints must be generated at start
- ► Each constraint is checked manually against integer solutions.

Wouldn't work for the "feasible circle."

Other callbacks

- ► Incumbent Callback: optionally reject solutions, improvement heuristics
- ▶ Branching Callback: select variable/constraint to branch on
- ▶ Node Selection Callback: select node from node stack

The Traveling Salesman Problem

The TSP:

- n cities
- c_{ij} cost between cities
 - ► (Euclidean distance)
- Visit each city once
- Minimize total cost

Optimal tour, geometric c_{ij} .

- Graph G = (V, E)
- $\delta(v) = \text{edges incident to } v$
- ▶ For $S \subset V$, $\delta(S) =$ edges with **one** endpoint in S

TSP 000000

- ightharpoonup Graph G = (V, E)
- $\delta(v) = \text{edges incident to } v$
- ▶ For $S \subset V$, $\delta(S) =$ edges with **one** endpoint in S

 $\sum c_e x_e$ min

 $\sum x_e = 2 \quad \forall v \in V$ s.t. $e \in \delta(v)$

> $\sum x_{\mathsf{e}} \geq 2 \quad \forall S \subset V,$ $e \in \delta(S)$

> > $S \neq \emptyset, V$

 $x_e \in \{0, 1\}$

IP for TSP

- Graph G = (V, E)
- $\delta(v) = \text{edges incident to } v$
- ▶ For $S \subset V$, $\delta(S) =$ edges with **one** endpoint in S

min
$$\sum_{e \in E} c_e x_e$$

s.t.
$$\sum_{e \in E} x_e = 2 \quad \forall v \in V$$

$$\sum_{e \in \delta(S)} x_e \ge 2 \quad \forall S \subset V,$$

$$S \neq \emptyset, V$$

$$x_e \in \{0, 1\}$$

A violated cutset constraint

Exercise: Solving TSP in Julia w/o cutset constraints

Input: a symmetric 2d matrix c_{ii} with $c_{ii} = 0$

Output: the optimal cost, and an array with the city indices in order

Step 1: Ignore the cutset constraints, make sure it works.

- \triangleright Create variables x_{ii} for $i = 1, \ldots, n, j = 1, \ldots, n$
- Add constraints

$$x_{ii}=0$$

$$x_{ij}=x_{ji}$$

- ► Add degree = 2 constraints & objective
- Use extractCycle to get the optimal tour when you are done

- 3 cities (in testTspSolver.jl)
- ▶ 6 cities with subtours (in testTspSolver.jl)

TSP 0000000

Try plotTour

Don't check each of $2^V - 2$ cutsets! Use separation!

▶ Degree constraints ⇒ integer solution degree two graph

- ▶ Degree constraints ⇒ integer solution degree two graph
- Degree two graphs are a collection of cycles

- ▶ Degree constraints ⇒ integer solution degree two graph
- ▶ Degree two graphs are a collection of cycles
- ightharpoonup Each cycle is a violated cutset, S = nodes in cycle

- ▶ Degree constraints ⇒ integer solution degree two graph
- Degree two graphs are a collection of cycles
- ightharpoonup Each cycle is a violated cutset, S = nodes in cycle
- Use connectedComponents to get a list of cycles

- ▶ Degree constraints ⇒ integer solution degree two graph
- Degree two graphs are a collection of cycles
- Each cycle is a violated cutset, S = nodes in cycle
- Use connectedComponents to get a list of cycles
- ▶ If k > 1 cycles, add cutset constraint for first k 1 cycles

TSP

- ▶ Degree constraints ⇒ integer solution degree two graph
- Degree two graphs are a collection of cycles
- \triangleright Each cycle is a violated cutset, S = nodes in cycle
- Use connectedComponents to get a list of cycles
- ▶ If k > 1 cycles, add cutset constraint for first k 1 cycles
- Check your work on 6 cities
- Try a larger instance from TSPLIB (in tsplib.jl)

The *separation problem* for a polyhedron *P*:

▶ Given **x** show $\mathbf{x} \in P$, or find a violated constraint

TSP 0000000 The separation problem for a polyhedron P:

▶ Given **x** show $\mathbf{x} \in P$, or find a violated constraint

For lazy constraints, we assumed in addition that x was integer, a much easier problem!

Use the separation problem for user cut callbacks.

For TSP, the separation by n Max-Flow Min-Cut computations.

Challenge: use Julia (make n LPs in each callback)!

Easy heuristic callback:

- Sort edges by LP relaxation value
- ► For each edge, add if it does not make a cycle

TSP 000000

Aside: more callbacks for TSP

Easy **heuristic callback**:

- Sort edges by LP relaxation value
- ► For each edge, add if it does not make a cycle

Two-Opt: given an integer TSP solution:

- ► Find a better solution by changing at most two edges
- Repeat until no improvement

Aside: more callbacks for TSP

Easy **heuristic callback**:

- Sort edges by LP relaxation value
- For each edge, add if it does not make a cycle

Two-Opt: given an integer TSP solution:

- Find a better solution by changing at most two edges
- Repeat until no improvement

Incumbent callback + heuristic callback + two-opt:

- Use incumbent callback to grab integer solutions
- Run two-opt
- If solution improves, add with heuristic callback

Software-as-a-Service (SaaS)

Sending a solver is hard

- Licenses
- Compiling
- Data/Databases
- One time revenue

Software-as-a-Service (SaaS)

Sending a solver is hard

- Licenses
- Compiling
- Data/Databases
- One time revenue

Bring problem to the solver!

TSP-as-a-Service

Code is ready. Lets try it!

- Navigate to folder
- Run julia tsp_service.jl
- ▶ Wait for terminal output Listening on 8000...
- ► Go to http://localhost:8000/stationservice/42.3/42.4/-71.2/-71.0

TSP-as-a-Service

Code is ready. Lets try it!

- Navigate to folder
- Run julia tsp_service.jl
- ▶ Wait for terminal output Listening on 8000...
- ► Go to

http://localhost:8000/stationservice/42.3/42.4/-71.2/-71.0

It worked! Now lets look at tsp_service.jl

Considerations for deploying MIPs

- ► Real time or offline MIP solving
- Number of simultaneous users
- Solver licenses
- Reliability/maximum solve time

Deployment Options

Option	Pros	Cons
Personal computer	Easy	Spilled coffee Two concurrent users Blackouts International lag Data Safety
Rent a box	Pretty Easy	Two concurrent users International lag Data safety
Cloud (Amazon/Google)	Scale up for many users Data safety Low latency Monitoring/uptime	Set up time Learn a system Can be \$\$
Gurobi a la cart (Amazon) (<i>Solver only</i>)	Pay for what you use Scale up for many users	Can be \$\$ No callbacks