Probabilités

Nathan Maillet

Définition -

Soit Ω un ensemble. Une tribu sur Ω est une partie \mathcal{T} de $\mathcal{P}(\mathcal{T})$ telle que :

$$-\varnothing\in\mathcal{T}$$

$$-\forall A \in \mathcal{P}(\mathcal{T}), A \in \mathcal{T} \implies A^c \in \mathcal{T}$$

$$-- \ \forall (A_i)_{i \in \mathbb{N}} \in \mathcal{T}^{\mathbb{N}}, \cup_{i \in \mathbb{N}} A_i \in \mathcal{T}$$

Quand Ω est finit ou dénombrable, on choisira $\mathcal{P}(\Omega)$ comme tribu.

Les tribus sont stables par intersection.

Définition -

Une loi de probabilité sur (Ω, \mathcal{T}) est une appication $P: \mathcal{T} \to \mathbb{R}^+$ tel que :

$$--$$
 P(Ω) = 1

$$-- \ \forall (A_i)_{i \in \mathbb{N}} \in \mathcal{T}^{\mathbb{N}}, A_i \cap A_j = \varnothing,$$

$$\sum_{i\geq 0} P(A_i) \ \mathrm{converge} \ \mathrm{et} \ \sum_{i=0}^{+\infty} P(A_i) = P(\sqcup_{i\in \mathbb{N}} A_i)$$

Continuité croissante et décroissante

Si $(A_n)_{n\in\mathbb{N}}\in\mathcal{T}^\mathbb{N}$ est croissante,

$$P(A_n)\underset{+\infty}{\rightarrow}P(\cup_{k\in\mathbb{N}A_k})$$

Si $(A_n)_{n\in\mathbb{N}}\in\mathcal{T}^\mathbb{N}$ est décroissante,

$$P(A_n)\underset{+\infty}{\rightarrow}P(\cap_{k\in\mathbb{N}A_k})$$

Définition

Soit $(A_i)_{1 \leq i \leq n} \in \mathcal{T}^{\mathbb{N}}$, c'est un système complet d'évènements si :

- Les A_i sont deux à deux disjoints
- $P(\cup_{i=1}^n A_i) = 1$
- $-- \forall i, P(A_i) \neq 0$

Formule des probabilités totales

Soit (A_i) un système complet d'évènements, on a :

$$\forall B, P(B) = \sum_{i} P(A_i) P_{A_i}(B)$$

Définition

Soit $\mathcal X$ un ensemble fini ou dénombrable. Une variable aléatoire discrète de Ω dans $\mathcal X$ est une application

$$X: \Omega \to \mathcal{X}/\forall A \subset \mathcal{X}, X^{-1}(A) \in \mathcal{T}$$

- Un couple de variables aléatoires est une variable aléatoire
- Les composantes d'une variable aléatoire sont des variables aléatoires
- X est une variable aléatoire, $f\circ X$ en est une
- On retrouve la même définition d'indépendance mutuelle avec les variables aléatoires

Définition

On dit que $(A_i)_{i\in I}\in \mathcal{T}^I$ sont mutuellements indépendants si $\forall n\in \mathbb{N}^*, \forall i_1,\ldots,i_n$ éléments distincts de I, $P(A_{i_1}\cap\cdots\cap A_{i_n})=P(A_{i_1})\times\cdots\times P(A_{i_n})$

Lemne des coalitions

Soit $X_1 \dots X_n$ des variables aléatoires indépendantes, $\forall k \leq n-1, (X_1, \dots, X_k), (X_{k+1}, \dots, X_n)$ sont indépendantes

Théorème de transfert

Soit X une variable aléatoire de Ω dans \mathcal{X} et $f: \mathcal{X} \to \mathbb{R}$. f(x) a une espérance si et seulement si la famille $(f(x_i)P(X=x_i))_{i\in I}$ est sommable. Si f(x) a une espérance, alors :

$$E(f(x)) = \sum_{i \in I} f(x_i) P(X = x_i)$$

Espérance

L'espérance est linéraire et si X,Y possèdent un moment d'ordre 1 et sont indépendants,

$$E(XY) = E(X)E(Y)$$

Inégalité de Markov

Soit X une variable aléatoire réelle positive qui possède un moment d'ordre 1 :

$$\forall \alpha > 0, P(X \geqslant \alpha) \leqslant \frac{E(|X|)}{\alpha}$$

Définition

Soient (X, Y) deux variables aléatoires discrètes qui possèdent un moment d'ordre 2, on a :

- \bullet X E(X) possède un moment d'ordre 2 appelé variance de X
- $V(X) = E((X E(X))^2)$
- On appel écart-type de $X : \sigma(X) = \sqrt{(V(X))}$
- On appel covariance de (X, Y):

$$Cov(X,Y) = E[(X - E(x))(Y - E(Y))]$$

- $-V(X) = E(X^2) (E(X))^2$
- $\forall \alpha \in \mathbb{R}, V(X + \alpha) = V(X) \text{ et } V(\alpha X) = \alpha^2 V(x)$
- La variable aléatoire $\frac{X-\mathsf{E}(X)}{\sigma(X)}$ est dite centrée réduite
- V(X+Y) = V(X) + V(Y) + 2 * Cov(X, Y) et si X, Y sont indépendants, Cov(X, Y) = 0
- $-\sqrt{V(X+Y)} \le \sqrt{V(X)} + \sqrt{V(Y)}$
- Définition : $\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$

Inégalité de Cauchy-Swarz

Soient (X, Y) deux variables aléatoires discrètes qui possèdent un moment d'ordre 2, on a :

$$|Cov(X,Y)| \le \sigma(X)\sigma(Y)$$

Inégalité de Bienaymé-Tchebychev

Soit X une variable aléatoire réelle possédant un moment d'ordre 2, on a :

$$\forall \alpha > 0, P(|X - E(X)| \geqslant \alpha) \leqslant \frac{V(X)}{\alpha^2}$$

Séries génératrices

Soit $X : \Omega \to \mathbb{N}$ une variable aléatoire.

Définition

La série génératrice de X est la série entière $G_X(z) = \sum_{n\geq 0} P(X=n)z^n$. Son rayon est au moins 1 et il y a convergence normale pour $z\in \mathbb{C}, |z|\leq 1$.

Application des série génératrice

X possède une espérance finie si et seulement si G_X est dérivable en $1^-,\,{\rm avec}$:

$$E(X) = G_X^{\prime}(1)$$

- En dérivant G_X on retrouve facilement que X possède un moment d'ordre 2 si et seulement si G_X est 2 fois dérivable en 1 et $V(X) = G''_X(1) + G'_X(1) (G'_X(1))^2$
- Soit $Y:\Omega\to\mathbb{N}$ une variable aléatoire indépendate de X. On a : $G_{X+Y}=G_XG_Y$