Tiempo: 2 horas 30 minutos Puntaje Total: 33 puntos II semestre 2017

II Examen Parcial Sábado 21 de octubre

SOLUCIONARIO

1. En $\mathbb{R} \times \mathbb{R}^*$ se define la operación \oplus como:

$$(a,b) \oplus (c,d) = (a+c+2,3bd)$$

Si se sabe que $(\mathbb{R} \times \mathbb{R}, \oplus)$ es un grupo abeliano.

(a) Determine la fórmula explícita de $(a,b)^{-1}$. (4 pts)

Solución

Primero se busca el elemento neutro. Sea (m, n) el elemento neutro de $(a, b) \in \mathbb{R} \times \mathbb{R}^*$

$$(a,b) \oplus (m,n) = (a,b) \Rightarrow (a+m+2,3bm) = (a,b)$$

$$\Rightarrow a+m+2 = a \land 3bn = b$$

$$\Rightarrow m=2 \land n = \frac{1}{3} (note \ que \ b \neq 0)$$

$$\Rightarrow (m,n) = \left(-2,\frac{1}{3}\right)$$

Ahora, se calcula el inverso de (a, b) con $(a, b) \in \mathbb{R} \times \mathbb{R}^*$

$$(a,b) \oplus (c,d) = (-2,\frac{1}{3}) \quad \Rightarrow \quad (a+c+2,3bd) = (-2,\frac{1}{3})$$

$$\Rightarrow \quad a+c+2 = -2 \quad \wedge \quad 3bd = \frac{1}{3}$$

$$\Rightarrow \quad c = -4-a \quad \wedge \quad d = \frac{1}{9b} \quad (note \quad que \quad b \neq 0)$$

$$\Rightarrow \quad (c,d) = \left(-4-a,\frac{1}{9b}\right)$$

Por lo tanto, tenemos que $(a,b)^{-1} = \left(-4-a, \frac{1}{9b}\right)$

(b) Resuelva la ecuación
$$(x, y) \oplus (2, -3) = (1, 2)^2$$
. (3 pts)

Soluci'on

$$(x,y) \oplus (2,-3) = (1,2)^2 \implies (x,y) = [(1,2) \oplus (1,2)] \oplus (2,-3)^{-1}$$

 $\Rightarrow (x,y) = (4,12) \oplus \left(-6, \frac{-1}{27}\right)$
 $\Rightarrow (x,y) = \left(0, \frac{-4}{3}\right)$

2. Sea (G,*) algún grupo cuyo elemento neutro es e; $H \subseteq G$ definido por

$$H = \{ w \in G / w * m = m * w \}$$

donde $m \in G$, con m fijo. Demuestre que (H, *) es subgrupo de (G, *). (5 pts)

Solución

Primero, $H \neq \emptyset$ pues $e \in H$ (e satisface la condición enunciada en H, ya que e * m = m * e, en ambos miembros de la igualdad se obtiene m como resultado).

Así, H es subgrupo de G sí, y solo sí :

$$\forall x, y \in H, \quad x * y \in H \quad \land \quad x' \in H$$

Sean $x, y \in H$, por tanto $x * m = m * x \land y * m = m * y$

Ahora, $x * y \in H$ si (x * y) * m = m * (x * y)

Veamos:

$$(x*y)*m = x*(y*m)$$
 asociatividad
 $= x*(m*y)$ pues $y \in H$
 $= (x*m)*y$ asociatividad
 $= (m*x)*y$ pues $x \in H$
 $= m*(x*y)$ asociatividad

Por otra parte, $x' \in H$ si x' * m = m * x'

Dado que $x \in H$ se tiene que x * m = m * x, luego:

$$x * m = m * x \Rightarrow x' * (x * m) = x' * (m * x)$$

$$\Rightarrow (x' * x) * m = (x' * m) * x$$

$$\Rightarrow e * m = (x' * m) * x$$

4

$$\Rightarrow m = (x' * m) * x$$

$$\Rightarrow m * x' = ((x' * m) * x) * x'$$

$$\Rightarrow m * x' = (x' * m) * (x * x')$$

$$\Rightarrow m * x' = (x' * m) * e$$

$$\Rightarrow m * x' = x' * m$$

Por lo tanto, $\forall x, y \in H, \quad x * y \in H \quad \land \quad x' \in H$ y con esto queda demostrado que H es sugrupo de G.

3. Sea (G;*) algún grupo con elemento neutro e. Demuestre que si $x^2=x$, para algún $x\in G$, entonces x=e $(3\ pts)$

Por hipótesis se tiene que:

$$x^2 = x \implies x * x = x * e$$
 (definición de pontencia)
 $\Rightarrow x = e$ (ley de cancelación)

Otra forma es, a partir de la ecuación x * x = x * e se aplica x' a ambos lados de la ecuación.

4. Considere el subconjunto $S = \{(1,2,3), (2,3,4), (3,4,5)\}$ del espacio \mathbb{R}^3 . Determine si S es linealmente independiente, o linealmente dependiente. (2 pts)

Soluci'on

Solución

Considerando los vectores de S como columnas de una matriz, y luego de aplicar operaciones elementales por fila se tiene:

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 5
\end{pmatrix} \Longrightarrow \dots \Longrightarrow \begin{pmatrix}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

Por lo tanto S es ld.

5. Sea
$$H = \{2x+3, x^2-4, x-5\}$$
 subconjunto de $\mathbb{P}_2(\mathbb{R})$.

(a) Demuestre que
$$Gen\{H\} = \mathbb{P}_2(\mathbb{R})$$
. (5 pts)

Soluci'on

Sea $ax^2+bx+c\in\mathbb{P}_2(\mathbb{R})$ tal que: $ax^2+bx+c=\alpha(2x+3)+\beta(x^2-4)+\theta(x-5),$ igualando término a término se tiene: $a=\beta, b=2\alpha+\theta, c=3\alpha-4\beta-5\theta$ con solución: $\beta=a, \theta=b-2\alpha, \alpha=\frac{c+4a+5b}{13}$

(b) Determine
$$\left[2x^2 - 3x + 5\right]_H$$
 (2 pts)

Soluci'on

Se tiene
$$\left[2x^2-3x+5\right]_H=\begin{pmatrix}\alpha\\\beta\\\theta\end{pmatrix}$$
 tal que:
$$2x^2-3x+5=\alpha(2x+3)+\beta(x^2-4)+\theta(x-5)$$

sustituyendo en el resultado obtenido en la parte a, se tiene:

$$\left[2x^2 - 3x + 5\right]_H = \begin{pmatrix} \frac{-2}{13} \\ 2 \\ \frac{-35}{13} \end{pmatrix}$$

6. Se
a $S\subset\mathbb{R}^4,$ donde Ses el subespacio formado por el conjunto solución del sistema:

$$\begin{cases} -3x + y + w &= 0 \\ x - z &= 0 \end{cases}$$

Determine la dimensión de S. (5 pts)

Soluci'on

Despejando z, w se tiene: z = x y w = 3x - y así el conjunto solución S del sistema es:

$$S = \left\{ (x,y,z,w) \in \mathbb{R}^4 : z = x, w = 3x - y \right\} = \{ (x,y,x,3x - y) : x,y \in \mathbb{R} \}.$$

Por tanto la dimensión es 2.

7. Sean W_1 y W_2 subespacios de un espacio vectorial V, demuestre que $W_1 \cap W_2$ es un subespacio de V. (4 pts)

Soluci'on

Sean $x, y \in W_1 \cap W_2$ vectores arbitrarios y $\alpha \in \mathbb{R}$ entonces:

$$x,y \in W_1 \cap W_2 \implies x,y \in W_1 \wedge x, y \in W_2$$
 (definición de intersección)
 $\Rightarrow \alpha x + y \in W_1 \wedge \alpha x + y \in W_2$ (definición de subespacios)
 $\Rightarrow \alpha x + y \in W_1 \cap W_2$ (definición de intersección)

•

4