Project

October 31, 2025

1 Phase One Project: Aviation Safety Data Analysis: Visualizing Risk Patterns Using Python

1.1 Introduction: Overview

As Part of the company to venture into aviaition Business, this project investigates the risk associated with different aircraft, aiming to identify the safest model for potential investment. The analysis focuses on determining which types of flights have the highest average fatalities and aircraft damage, assessing how engine types and weather conditions affect safety, and ranking aircraft make by risk level for commercial use.

The dataset used comes from the National Transportation Safety Board (NTSB) and includes records of aviation accidents and incidents from 1962 to 2023. The tools to be used in achieving this are:

Pandas - Data cleaning, transformation, and aggregation

Numpy - Numerical computations

Matplotlib / seaborn - Static visualizations for analysis validation

Plotly - Interactive graphs for dynamic data exploration

Tableau - Creating Dashboard link to the dashboards https://public.tableau.com/authoring/AviationSafetyDataAr

2 Assumption

- 1. Aircraft with high fatality rates are costlier to operate due to legal liabilities, compensation claims, and higher insurance costs.
- 2. Planes with a high damage index are more expensive to maintain or replace, as severe damage often makes repair uneconomical.

3 Problem Statement

Your company is expanding in to new industries to diversify its portfolio. Specifically, they are interested in purchasing and operating airplanes for commercial and private enterprises, but do not know anything about the potential risks of aircraft. You are charged with determining which aircraft are the lowest risk for the company to start this new business endeavor. You must then translate your findings into actionable insights that the head of the new aviation division can use to help decide which aircraft to purchase.

4 Goal

The Data Analysis goals are: To investigate;

Which flight types have the highest average fatalities and aircraft damage?

What effect do engine types have on safety, and how is this affected by weather conditions?

What aircraft make have the lowest risk for commercial ventures?

5 Steps

The stepped to be used in achieving the goals are;

- 1. Define the problem statement.
- 2.Data Preparation

Data Cleaning using Pandas

- Removed irrelevant or empty columns
- Handled missing values using median imputation
- Standardized categorical data
- Trimmed whitespaces and formatted date columns
- 3. Aggregate and analyze the data to identify low-risk aircraft.
- 4. Create visualizations to support findings.

Visualization

- Created plots using **Matplotlib** and **Seaborn**:
- Fatalities by aircraft type
- Purpose of flight vs accident severity
- Weather impact on accident outcomes
- 5. Translate findings into three actionable business recommendations.

5.1 Step One: Data Preparation and Data Understanding

- 5.1.1 1. Importing necessary libraries
- 5.1.2 2. Loading the dataset
- 5.1.3 3. Exploring the data to understand it

```
[31]: #Load all the relevant libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import scipy.stats as stats

#Load data to a dataframe
data = pd.read_csv("data/Aviation_Data.csv")
data
```

/tmp/ipykernel_9880/3216054291.py:9: DtypeWarning: Columns (6,7,28) have mixed
types. Specify dtype option on import or set low_memory=False.
data = pd.read_csv("data/Aviation_Data.csv")

[31]:		Event.	Id I	nvestig	ation.Ty	pe Acc	ident.	Number	Event.Da	ate \	
	0	20001218X454	44		Accide	nt	SEA8	7LA080	1948-10-	-24	
	1	20001218X4544	47		Accide	nt	LAX9	4LA336	1962-07-	-19	
	2	20061025X015	55		Accide	nt	NYCO	7LA005	1974-08-	-30	
	3	20001218X4544	48		Accide	nt	LAX9	6LA321	1977-06-	-19	
	4	20041105X0176	64		Accide	nt	CHI7	9FA064	1979-08-	-02	
	•••	•••			•••		•••	•	•••		
	90343	2022122710649	91		Accide	nt	ERA2	3LA093	2022-12-	-26	
	90344	2022122710649	94		Accide	nt	ERA2	3LA095	2022-12-	-26	
	90345	2022122710649	97		Accide	nt	WPR2	3LA075	2022-12-	-26	
	90346	2022122710649	98		Accide	nt	WPR2	3LA076	2022-12-	-26	
	90347	202212301065	13		Accide	nt	ERA2	3LA097	2022-12-	-29	
		Locat	ion		Country	Lati	tude	Longitu	de Airpor	rt.Code	\
	0	MOOSE CREEK,	ID		•		NaN	_	aN	NaN	
	1	BRIDGEPORT,	CA	United	States		NaN	N	aN	NaN	
	2	Saltville,	VA	United	States	36.92	2223 -	81.8780	56	NaN	
	3	EUREKA,	CA	United	States		NaN	N	aN	NaN	
	4	Canton,	OH	United	States		NaN	N	aN	NaN	
		•••				•••	•••		•••		
	90343	Annapolis,	MD	United	States		NaN	N	aN	NaN	
	90344	Hampton,	NH	United	States		NaN	N	aN	NaN	
	90345	Payson,	ΑZ	United	States	341	.525N	111202	1W	PAN	
	90346	Morgan,	UT	United	States		NaN	N	aN	NaN	
	90347	Athens,	GA	United	States		NaN	N	aN	NaN	
		Airport.Name	P	urpose.	of.fligh	.t	Ai	r.carri	er \		
	0	NaN		-	Persona			N	aN		
	1	NaN	•••		Persona	.1		N	aN		
	2	NaN	•••		Persona	.1		N	aN		
	3	NaN			Persona	1		N	aN		
	4	NaN			Persona	.1		N	aN		
	•••				•••			•••			
	90343	NaN	•••		Persona	.1		N	aN		
	90344	NaN	•••		Na	.N		N	aN		
	90345	PAYSON			Persona	.1		N	aN		
	90346	NaN	•••		Persona	.1 MC	CESSNA	210N L	LC		
	90347	NaN			Persona	.1		N	aN		
		Total.Fatal.I	njur	ries Tot	al.Serio	us.Ini	uries	Total.M	inor.Inju	ıries '	\
	0		5	2.0		3	0.0		J	0.0	
	1			4.0			0.0			0.0	
	2			3.0			NaN			NaN	

```
4
                               1.0
                                                       2.0
                                                                              NaN
      90343
                               0.0
                                                       1.0
                                                                              0.0
      90344
                               0.0
                                                       0.0
                                                                              0.0
      90345
                               0.0
                                                       0.0
                                                                              0.0
      90346
                               0.0
                                                       0.0
                                                                              0.0
                               0.0
                                                       1.0
      90347
                                                                              0.0
            Total.Uninjured Weather.Condition Broad.phase.of.flight \
      0
                         0.0
                                             UNK
                                                                  Cruise
      1
                         0.0
                                             UNK
                                                                 Unknown
      2
                         NaN
                                             IMC
                                                                  Cruise
      3
                         0.0
                                             IMC
                                                                  Cruise
      4
                         0.0
                                             VMC
                                                                Approach
                         0.0
      90343
                                             NaN
                                                                     NaN
      90344
                         0.0
                                             NaN
                                                                     NaN
                         1.0
      90345
                                             VMC
                                                                     NaN
      90346
                         0.0
                                             NaN
                                                                     NaN
      90347
                         1.0
                                             NaN
                                                                     NaN
              Report.Status Publication.Date
             Probable Cause
      0
      1
             Probable Cause
                                    19-09-1996
      2
             Probable Cause
                                    26-02-2007
             Probable Cause
                                    12-09-2000
             Probable Cause
                                    16-04-1980
      90343
                                    29-12-2022
                         NaN
      90344
                         NaN
                                           NaN
      90345
                                    27-12-2022
                         NaN
                         {\tt NaN}
      90346
                                           NaN
      90347
                         NaN
                                    30-12-2022
      [90348 rows x 31 columns]
[32]: #get the shape and size of the data
      print(data.shape, data.size)
      (90348, 31) 2800788
[33]: # thia inspects all the columns in our dataset
```

0.0

0.0

2.0

3

data.columns

'Location', 'Country', 'Latitude', 'Longitude', 'Airport.Code',

[33]: Index(['Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date',

'Airport.Name', 'Injury.Severity', 'Aircraft.damage',

```
'Amateur.Built', 'Number.of.Engines', 'Engine.Type', 'FAR.Description',
             'Schedule', 'Purpose.of.flight', 'Air.carrier', 'Total.Fatal.Injuries',
             'Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Uninjured',
             'Weather.Condition', 'Broad.phase.of.flight', 'Report.Status',
             'Publication.Date'],
            dtype='object')
[34]: # look at the datatypes in our dataset
      data.dtypes
[34]: Event.Id
                                  object
      Investigation. Type
                                  object
      Accident.Number
                                  object
      Event.Date
                                  object
     Location
                                  object
      Country
                                  object
      Latitude
                                  object
      Longitude
                                  object
      Airport.Code
                                  object
      Airport.Name
                                  object
      Injury.Severity
                                  object
      Aircraft.damage
                                  object
      Aircraft.Category
                                  object
      Registration.Number
                                  object
      Make
                                  object
      Model
                                  object
      Amateur.Built
                                  object
      Number.of.Engines
                                 float64
      Engine.Type
                                  object
      FAR.Description
                                  object
      Schedule
                                  object
      Purpose.of.flight
                                  object
      Air.carrier
                                  object
      Total.Fatal.Injuries
                                 float64
      Total.Serious.Injuries
                                 float64
      Total.Minor.Injuries
                                 float64
      Total.Uninjured
                                 float64
      Weather.Condition
                                  object
      Broad.phase.of.flight
                                  object
      Report.Status
                                  object
      Publication.Date
                                  object
      dtype: object
[35]: #Get an overview of our data. If there are missing values
      data.info()
```

'Aircraft.Category', 'Registration.Number', 'Make', 'Model',

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 90348 entries, 0 to 90347 Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	Event.Id	88889 non-null	object
1	Investigation.Type	90348 non-null	object
2	Accident.Number	88889 non-null	object
3	Event.Date	88889 non-null	object
4	Location	88837 non-null	object
5	Country	88663 non-null	object
6	Latitude	34382 non-null	object
7	Longitude	34373 non-null	object
8	Airport.Code	50132 non-null	object
9	Airport.Name	52704 non-null	object
10	Injury.Severity	87889 non-null	object
11	Aircraft.damage	85695 non-null	object
12	Aircraft.Category	32287 non-null	object
13	Registration.Number	87507 non-null	object
14	Make	88826 non-null	object
15	Model	88797 non-null	object
16	Amateur.Built	88787 non-null	object
17	Number.of.Engines	82805 non-null	float64
18	Engine.Type	81793 non-null	object
19	FAR.Description	32023 non-null	object
20	Schedule	12582 non-null	object
21	Purpose.of.flight	82697 non-null	object
22	Air.carrier	16648 non-null	object
23	Total.Fatal.Injuries	77488 non-null	float64
24	Total.Serious.Injuries	76379 non-null	float64
25	Total.Minor.Injuries	76956 non-null	float64
26	Total.Uninjured	82977 non-null	float64
27	Weather.Condition	84397 non-null	object
28	Broad.phase.of.flight	61724 non-null	object
29	Report.Status	82505 non-null	object
30	Publication.Date	73659 non-null	object
dtyp	es: float64(5), object(2	6)	
memo	rv 115200 21 4+ MR		

memory usage: 21.4+ MB

[36]: # check for missing data data.isnull().sum()

[36]:	Event.Id	1459
	Investigation.Type	0
	Accident.Number	1459
	Event.Date	1459
	Location	1511
	Country	1685

Latitude	55966
Longitude	55975
Airport.Code	40216
Airport.Name	37644
Injury.Severity	2459
Aircraft.damage	4653
Aircraft.Category	58061
Registration.Number	2841
Make	1522
Model	1551
Amateur.Built	1561
Number.of.Engines	7543
Engine.Type	8555
FAR.Description	58325
Schedule	77766
Purpose.of.flight	7651
Air.carrier	73700
Total.Fatal.Injuries	12860
Total.Serious.Injuries	13969
Total.Minor.Injuries	13392
Total.Uninjured	7371
Weather.Condition	5951
Broad.phase.of.flight	28624
Report.Status	7843
Publication.Date	16689
dtype: int64	
# check for dulplicated	

[37]: data.duplicated().sum()

[37]: 1390

[38]: # drop all duplicated data data.drop_duplicates(inplace=True)

[39]: # confirm there are no duplicates data.duplicated().sum()

[39]: 0

Since there are some columns that Are not useful I will drop those columns

[40]: data

[40]: Event.Id Investigation.Type Accident.Number Event.Date 0 20001218X45444 Accident SEA87LA080 1948-10-24 1 20001218X45447 Accident LAX94LA336 1962-07-19

```
20061025X01555
2
                                                 NYCO7LA005
                                  Accident
                                                              1974-08-30
3
                                                              1977-06-19
       20001218X45448
                                  Accident
                                                 LAX96LA321
4
       20041105X01764
                                  Accident
                                                 CHI79FA064
                                                              1979-08-02
90343
       20221227106491
                                  Accident
                                                 ERA23LA093
                                                              2022-12-26
                                                              2022-12-26
90344
       20221227106494
                                  Accident
                                                 ERA23LA095
90345
       20221227106497
                                  Accident
                                                 WPR23LA075
                                                              2022-12-26
90346
       20221227106498
                                  Accident
                                                 WPR23LA076
                                                              2022-12-26
90347
       20221230106513
                                  Accident
                                                 ERA23LA097
                                                              2022-12-29
                                Country
                                          Latitude Longitude Airport.Code
              Location
0
       MOOSE CREEK, ID
                         United States
                                                NaN
                                                            NaN
                                                                          NaN
                                                            NaN
                                                                          NaN
1
        BRIDGEPORT, CA
                         United States
                                                NaN
2
                                         36.922223 -81.878056
         Saltville, VA
                         United States
                                                                          NaN
3
            EUREKA, CA
                         United States
                                                NaN
                                                            NaN
                                                                          NaN
4
            Canton, OH
                         United States
                                                NaN
                                                            NaN
                                                                          NaN
90343
         Annapolis, MD
                         United States
                                                                          NaN
                                                NaN
                                                            NaN
90344
           Hampton, NH
                         United States
                                                NaN
                                                            NaN
                                                                          NaN
90345
            Payson, AZ
                         United States
                                            341525N
                                                      1112021W
                                                                          PAN
90346
                                                                          NaN
            Morgan, UT
                         United States
                                                NaN
                                                            NaN
90347
            Athens, GA
                         United States
                                                NaN
                                                            NaN
                                                                          NaN
                                                   Air.carrier
                     ... Purpose.of.flight
      Airport.Name
0
                NaN
                                 Personal
                                                            NaN
1
                NaN
                                 Personal
                                                            NaN
2
                NaN
                                 Personal
                                                            NaN
3
                NaN
                                 Personal
                                                            NaN
4
                NaN
                                 Personal
                                                            NaN
90343
                                 Personal
                                                            NaN
                NaN
                                      NaN
90344
                NaN
                                                            NaN
90345
            PAYSON
                                 Personal
                                                            NaN
90346
                                 Personal
                                           MC CESSNA 210N LLC
                NaN
90347
                NaN
                                 Personal
                                                            NaN
      Total.Fatal.Injuries Total.Serious.Injuries Total.Minor.Injuries
0
                        2.0
                                                 0.0
                                                                        0.0
1
                        4.0
                                                 0.0
                                                                        0.0
2
                        3.0
                                                 NaN
                                                                       NaN
3
                        2.0
                                                 0.0
                                                                        0.0
                                                 2.0
4
                        1.0
                                                                       NaN
90343
                        0.0
                                                 1.0
                                                                       0.0
                                                                        0.0
90344
                        0.0
                                                 0.0
                        0.0
                                                 0.0
                                                                        0.0
90345
90346
                        0.0
                                                 0.0
                                                                        0.0
```

```
90347 0.0 1.0 0.0
```

```
Total.Uninjured Weather.Condition
                                           Broad.phase.of.flight \
0
                   0.0
                                      UNK
                                                            Cruise
1
                   0.0
                                      UNK
                                                           Unknown
2
                   NaN
                                      IMC
                                                            Cruise
                   0.0
3
                                      IMC
                                                            Cruise
4
                   0.0
                                      VMC
                                                          Approach
90343
                   0.0
                                      NaN
                                                               NaN
90344
                   0.0
                                      NaN
                                                               NaN
90345
                   1.0
                                      VMC
                                                               NaN
90346
                   0.0
                                      NaN
                                                               NaN
90347
                   1.0
                                      NaN
                                                               NaN
        Report.Status Publication.Date
0
       Probable Cause
                                     NaN
1
       Probable Cause
                              19-09-1996
2
       Probable Cause
                              26-02-2007
3
       Probable Cause
                              12-09-2000
4
       Probable Cause
                              16-04-1980
90343
                   NaN
                              29-12-2022
90344
                   NaN
                                     NaN
90345
                   NaN
                              27-12-2022
90346
                   NaN
                                     NaN
90347
                   NaN
                              30-12-2022
```

[88958 rows x 31 columns]

```
[41]: data.columns
```

```
[]: #Removing white spaces in the dataframe
data = data.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
data = data.apply(lambda x: x.str.replace(" ", "") if x.dtype == "object" else

→x)
```

```
[43]: df = data.drop(["Event.Date", "Location", "Country", "Latitude", "Longitude", "

¬"Airport.Code",
             "Airport.Name", "Report.Status", "Publication.Date", "Broad.phase.of.

→flight","Air.carrier","Schedule",
             "FAR.Description", "Registration.Number"], axis = 1)
[44]: df.columns
[44]: Index(['Event.Id', 'Investigation.Type', 'Accident.Number', 'Injury.Severity',
             'Aircraft.damage', 'Aircraft.Category', 'Make', 'Model',
             'Amateur.Built', 'Number.of.Engines', 'Engine.Type',
             'Purpose.of.flight', 'Total.Fatal.Injuries', 'Total.Serious.Injuries',
             'Total.Minor.Injuries', 'Total.Uninjured', 'Weather.Condition'],
            dtype='object')
[45]: missing values = df.isna().sum()
      missing_values.sort_values(ascending=False)
[45]: Aircraft.Category
                                 56671
      Total.Serious.Injuries
                                 12579
      Total.Minor.Injuries
                                 12002
      Total.Fatal.Injuries
                                 11470
      Engine.Type
                                  7165
      Purpose.of.flight
                                  6261
      Number.of.Engines
                                  6153
      Total.Uninjured
                                  5981
      Weather.Condition
                                  4561
      Aircraft.damage
                                  3263
      Injury.Severity
                                  1069
      Amateur.Built
                                   171
      Model
                                   161
      Make
                                   132
      Accident.Number
                                    69
      Event.Id
                                    69
      Investigation. Type
                                     0
      dtype: int64
[46]: df
[46]:
                   Event.Id Investigation.Type Accident.Number Injury.Severity \
             20001218X45444
      0
                                       Accident
                                                     SEA87LA080
                                                                        Fatal(2)
                                       Accident
                                                                        Fatal(4)
      1
             20001218X45447
                                                     LAX94LA336
      2
             20061025X01555
                                       Accident
                                                     NYCO7LA005
                                                                        Fatal(3)
                                       Accident
      3
             20001218X45448
                                                     LAX96LA321
                                                                        Fatal(2)
      4
             20041105X01764
                                       Accident
                                                     CHI79FA064
                                                                        Fatal(1)
      90343 20221227106491
                                       Accident
                                                     ERA23LA093
                                                                           Minor
```

9	0344	20221227106494	4	Accident	ERA23LA0	95	NaN	
9	0345	20221227106497	7	Accident	WPR23LA0	75 Non	ı-Fatal	
9	0346	20221227106498	3	Accident	WPR23LA0	76	NaN	
9	0347	20221230106513	3	Accident	ERA23LA0	97	Minor	
		Aircraft.damage	e Aircraf	t.Category		Make	Model	\
0		Destroyed	d	NaN		Stinson	108-3	
1		Destroyed	d	NaN		Piper	PA24-180	
2		Destroyed	d	NaN		Cessna	172M	
3		Destroyed	d	NaN		Rockwell	112	
4		Destroyed	d	NaN		Cessna	501	
•••		•••		•••				
9	0343	Nal	N	NaN		PIPER	PA-28-151	
9	0344	Nal	N	NaN		BELLANCA	7ECA	
9	0345	Substantia	1	Airplane	AMERICANCHAMP	IONAIRCRAFT	8GCBC	
9	0346	Nal	N	NaN		CESSNA	210N	
9	0347	Nal	N	NaN		PIPER	PA-24-260	
		Amateur.Built	Number.	of.Engines	Engine.Type	Purpose.of.f	light \	
0		No		1.0	Reciprocating	Per	sonal	
1		No		1.0	Reciprocating	Per	sonal	
2		No		1.0	Reciprocating	Per	sonal	
3		No		1.0	Reciprocating	Per	sonal	
4		No		NaN	NaN	Per	sonal	
•••		•••		•••	•••	•••		
9	0343	No		NaN	NaN	Per	sonal	
9	0344	No		NaN	NaN		NaN	
9	0345	No		1.0	NaN	Per	sonal	
9	0346	No		NaN	NaN	Per	sonal	
9	0347	No		NaN	NaN	Per	sonal	
		Total.Fatal.I	njuries	Total.Seric	ous.Injuries T	otal.Minor.I	njuries \	
0			2.0		0.0		0.0	
1			4.0		0.0		0.0	
2			3.0		NaN		NaN	
3			2.0		0.0		0.0	
4			1.0		2.0		NaN	
•••					•••	•••		
9	0343		0.0		1.0		0.0	
9	0344		0.0		0.0		0.0	
9	0345		0.0		0.0		0.0	
9	0346		0.0		0.0		0.0	
9	0347		0.0		1.0		0.0	
		Total.Uninjure	ed Weathe	er.Condition	1			
0		0	.0	UNE	ζ			
1		0	.0	UNE	ζ			

2	NaN	IMC
3	0.0	IMC
4	0.0	VMC
	•••	•••
90343	0.0	NaN
90344	0.0	NaN
90345	1.0	VMC
90346	0.0	NaN
90347	1.0	NaN

[88958 rows x 17 columns]

[47]: df.describe()

[47]:		Number.of.Engines	Total.Fatal.Injuries	Total.Serious.Injuries	\
	count	82805.000000	77488.000000	76379.000000	
	mean	1.146585	0.647855	0.279881	
	std	0.446510	5.485960	1.544084	
	min	0.000000	0.000000	0.000000	
	25%	1.000000	0.000000	0.000000	
	50%	1.000000	0.000000	0.000000	
	75%	1.000000	0.000000	0.000000	
	max	8.000000	349.000000	161.000000	

	Total.Minor.Injuries	Total.Uninjured
count	76956.000000	82977.000000
mean	0.357061	5.325440
std	2.235625	27.913634
min	0.000000	0.000000
25%	0.000000	0.000000
50%	0.000000	1.000000
75%	0.000000	2.000000
max	380.000000	699.000000

[48]: df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 88958 entries, 0 to 90347

Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Event.Id	88889 non-null	object
1	Investigation.Type	88958 non-null	object
2	Accident.Number	88889 non-null	object
3	Injury.Severity	87889 non-null	object
4	Aircraft.damage	85695 non-null	object
5	Aircraft.Category	32287 non-null	object
6	Make	88826 non-null	object

```
7
    Model
                            88797 non-null object
    Amateur.Built
                            88787 non-null object
 9
    Number.of.Engines
                            82805 non-null float64
 10 Engine. Type
                            81793 non-null object
 11 Purpose.of.flight
                            82697 non-null object
 12 Total.Fatal.Injuries
                            77488 non-null float64
 13 Total.Serious.Injuries 76379 non-null float64
                            76956 non-null float64
 14 Total.Minor.Injuries
 15 Total.Uninjured
                            82977 non-null float64
 16 Weather.Condition
                            84397 non-null object
dtypes: float64(5), object(12)
memory usage: 12.2+ MB
```

5.2 Step Two: Data Analysing and Visualization

- 5.2.1 1. Aggregate and analyze the data to identify low-risk aircraft
- 5.2.2 2. Create visualizations to support findings.

```
[49]: plt.figure(figsize=(12, 8))
     # No of Engines
     plt.subplot(2, 3, 1)
     plt.bar(df["Number.of.Engines"].value_counts().index[0:5], df["Number.of.
       plt.title("Number of Engines")
     plt.xlabel("Engines per aircraft")
     plt.ylabel("Total Number of accidents")
     # Fatalities
     plt.subplot(2, 3, 2)
     plt.bar(df["Total.Fatal.Injuries"].value_counts().index[0:5], df["Total.Fatal.
       →Injuries"].value_counts().values[0:5], color="green")
     plt.title("Number of Fatalities")
     plt.xlabel("Fatalities per accident")
     plt.ylabel("Total Fatalities")
     # Serious
     plt.subplot(2, 3, 3)
     plt.bar(df["Total.Serious.Injuries"].value_counts().index[0:5], df["Total.
       →Serious.Injuries"].value_counts().values[0:5], color="red")
     plt.title("Number of Serious Injuries")
     plt.xlabel("Serious Injuries per accident")
     plt.ylabel("Total Serious Injuries")
     # Minor
     plt.subplot(2, 3, 4)
```


From the graph above its clearly that all the data have a positive skewed, so we will replace the null values with medium. We will do all this in all the columns but Total Injured.

```
[50]: #Replacing null values with median
```

/tmp/ipykernel_9880/956387134.py:5: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df[col].fillna(df[col].median(), inplace=True)

```
[51]: #verify there are no nulls df.isna().sum().sort_values(ascending=True)
```

```
[51]: Investigation.Type
                                     0
      Total.Minor.Injuries
                                     0
      Total.Serious.Injuries
                                     0
      Number.of.Engines
                                     0
      Total.Uninjured
                                     0
      Event. Id
                                    69
      Accident.Number
                                    69
      Make
                                   132
      Model
                                   161
      Amateur.Built
                                   171
      Injury.Severity
                                  1069
      Aircraft.damage
                                  3263
      Weather.Condition
                                  4561
      Purpose.of.flight
                                  6261
      Engine.Type
                                  7165
      Total.Fatal.Injuries
                                 11470
      Aircraft.Category
                                 56671
      dtype: int64
```

```
[52]: # Replacing NAN values with unknown for the following columns

df["Purpose.of.flight"].fillna(value = "Unknown", inplace=True)

df["Engine.Type"].fillna(value = "Unknown", inplace=True)

df["Engine.Type"] = df["Engine.Type"].map(lambda x: "Unkown" if x == "UNK" or x

== "None" or x == "NONE" else x)

df["Aircraft.damage"].fillna(value = "Unknown", inplace=True)
```

```
# Replacing NAN values with UNK for unknown weather information and standardizing text strings

df["Weather.Condition"].fillna(value = "UNK", inplace=True)

df["Weather.Condition"] = df["Weather.Condition"].map(lambda x: "UNK" if x == 

"Unk" else x)
```

/tmp/ipykernel_9880/3048449977.py:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df["Purpose.of.flight"].fillna(value = "Unknown", inplace=True)
/tmp/ipykernel_9880/3048449977.py:3: FutureWarning: A value is trying to be set
on a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df["Engine.Type"].fillna(value = "Unknown", inplace=True)
/tmp/ipykernel_9880/3048449977.py:5: FutureWarning: A value is trying to be set
on a copy of a DataFrame or Series through chained assignment using an inplace
method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df["Aircraft.damage"].fillna(value = "Unknown", inplace=True)
/tmp/ipykernel_9880/3048449977.py:8: FutureWarning: A value is trying to be set
on a copy of a DataFrame or Series through chained assignment using an inplace

method.

The behavior will change in pandas 3.0. This implace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df["Weather.Condition"].fillna(value = "UNK", inplace=True)

```
[53]: df.isnull().sum().sort values()
[53]: Weather.Condition
                                    0
      Investigation. Type
                                     0
      Total.Minor.Injuries
                                     0
      Total.Serious.Injuries
                                     0
      Aircraft.damage
                                     0
      Purpose.of.flight
                                     0
      Engine.Type
                                    0
      Number.of.Engines
                                    0
      Total.Uninjured
                                    0
      Event.Id
                                    69
      Accident.Number
                                    69
      Make
                                   132
      Model
                                   161
      Amateur.Built
                                   171
                                 1069
      Injury.Severity
      Total.Fatal.Injuries
                                 11470
      Aircraft.Category
                                56671
      dtype: int64
[54]: plt.figure(figsize=(12, 8))
      # No of Engines
      plt.subplot(2, 3, 1)
      plt.bar(df["Number.of.Engines"].value_counts().index[0:5], df["Number.of.
       ←Engines"].value_counts().values[0:5], color="blue")
      plt.title("Number of Engines")
      plt.xlabel("Engines per aircraft")
      plt.ylabel("Total Number of accidents")
      # Fatalities
      plt.subplot(2, 3, 2)
      plt.bar(df["Total.Fatal.Injuries"].value counts().index[0:5], df["Total.Fatal.
       →Injuries"].value_counts().values[0:5], color="green")
```

```
plt.title("Number of Fatalities")
plt.xlabel("Fatalities per accident")
plt.ylabel("Total Fatalities")
# Serious
plt.subplot(2, 3, 3)
plt.bar(df["Total.Serious.Injuries"].value_counts().index[0:5], df["Total.
 Serious.Injuries"].value_counts().values[0:5], color="red")
plt.title("Number of Serious Injuries")
plt.xlabel("Serious Injuries per accident")
plt.ylabel("Total Serious Injuries")
# Minor
plt.subplot(2, 3, 4)
plt.bar(df["Total.Minor.Injuries"].value_counts().index[0:5], df["Total.Minor.
 plt.title("Number of Minor Injuries")
plt.xlabel("Minor Injuries per accident")
plt.ylabel("Total Minor Injuries")
# Uninjured
plt.subplot(2, 3, 5)
plt.bar(df["Total.Uninjured"].value_counts().index[0:5], df["Total.Uninjured"].
 ⇔value_counts().values[0:5], color="orange")
plt.title("Number of Uninjured")
plt.xlabel("Uninjured per accident")
plt.ylabel("Total Uninjured")
plt.tight_layout()
plt.show()
```


6 Aggregate and analyze the data to identify low-risk aircraft.

6.0.1 Goal 1: Which flight types have the highest average fatalities and aircraft damage?

```
[]: # Fatalities Analysis
     flight_stats = df.groupby("Purpose.of.flight").agg(
         total_accidents=("Total.Fatal.Injuries", "count"),
         total_fatalities=("Total.Fatal.Injuries", "sum")
     ).reset_index()
     # Calculate average fatalities per accident
     flight_stats["avg_fatalities_per_accident"] = (
         flight_stats["total_fatalities"] / flight_stats["total_accidents"]
     )
     #Damage Analysis
     # Calculate proportion of destroyed aircraft for each flight type
     damage_counts = df.groupby(["Purpose.of.flight", "Aircraft.damage"]).size().

unstack(fill_value=0)
     damage_counts["total"] = damage_counts.sum(axis=1)
     damage_counts["percent_destroyed"] = (damage_counts["Destroyed"] /__

¬damage_counts["total"]) * 100
```

```
# Merge fatalities and damage stats
merged_stats = flight_stats.merge(
   damage_counts[["percent_destroyed"]], on="Purpose.of.flight", how="left"
).fillna(0)
# Sort by average fatalities
top10 = merged_stats.sort_values("avg_fatalities_per_accident", __
 ⇒ascending=False).head(10)
# --- Visualization 1: Average Fatalities per Accident ---
plt.figure(figsize=(10,6))
plt.barh(top10["Purpose.of.flight"], top10["avg_fatalities_per_accident"], ___
 ⇔color="salmon")
plt.xlabel("Average Fatalities per Accident", fontsize=12)
plt.ylabel("Purpose of Flight", fontsize=12)
plt.title("Top 10 Flight Types by Average Fatalities", fontsize=14, __
 ⇔weight="bold")
plt.gca().invert_yaxis()
plt.tight_layout()
plt.show()
# --- Visualization 2: % Aircraft Destroyed by Flight Type ---
plt.figure(figsize=(10,6))
plt.barh(top10["Purpose.of.flight"], top10["percent_destroyed"],
 plt.xlabel("Percentage of Aircraft Destroyed (%)", fontsize=12)
plt.ylabel("Purpose of Flight", fontsize=12)
plt.title("Top 10 Flight Types by Aircraft Damage Severity", fontsize=14, __
 ⇔weight="bold")
plt.gca().invert_yaxis()
plt.tight_layout()
plt.show()
# Display merged table
display(top10[["Purpose.of.flight", "avg_fatalities_per_accident", u

¬"percent_destroyed"]])
```


	Purpose.of.flight	avg_fatalities_per_accident	percent_destroyed
0	ASHO	2.333333	66.666667
25	Unknown	2.015381	21.916864
24	Skydiving	1.539474	20.879121

8	Executive/corporate	1.188867	28.752260
4	AirRace/show	1.172414	33.898305
3	AirDrop	1.111111	36.363636
11	Firefighting	1.027778	37.500000
20	PublicAircraft	0.709790	29.027778
7	Business	0.629730	29.517173
2	AerialObservation	0.581461	28.337531

Tableau Link https://public.tableau.com/views/AviationSafetyDataAnalysisVisualizingRiskPatternsUsingPytlUS&:sid=&:redirect=auth&:display_count=n&:origin=viz_share_link

6.1 Insights form the graphs

- 1. Skydiving ,Airdrop and Air rate have the highest fatality rates and aircraft destruction percentages. This means that they have a higher operational risk.
- 2. Business and Executive/Corporate flights show moderate fatality averages and slightly lower destruction rates. Suggesting stronger safety oversight and maintenance.

6.2 Goal 2: What effect do engine types have on safety, and how is this affected by weather conditions?

IMC (Instrument Meteorological Conditions) and VMC (Visual Meteorological Conditions) are aviation terms describing weather that affects flight. VMC is when weather is good enough for pilots to fly by visual reference, meeting specific minimums for visibility and cloud clearance. IMC is when weather conditions are poorer, falling below the VMC minimums and requiring pilots to navigate solely by their instruments.

```
[56]: # Define a column indicating whether an accident was fatal
      df["Fatal"] = df["Total.Fatal.Injuries"].apply(lambda x: 1 if x > 0 else 0)
      # Engine Type Safety Summary
      engine_stats = df.groupby("Engine.Type").agg(
          total_accidents=("Fatal", "count"),
          fatal_accidents=("Fatal", "sum")
      ).reset index()
      # Fatality rate per engine type
      engine_stats["fatality_rate_%"] = (engine_stats["fatal_accidents"] /__
       ⇔engine_stats["total_accidents"]) * 100
      # Effect of Weather on Engine Type
      engine_weather = df.groupby(["Engine.Type", "Weather.Condition"]).agg(
          total_accidents=("Fatal", "count"),
          fatal_accidents=("Fatal", "sum")
      ).reset_index()
      engine_weather["fatality_rate_%"] = (engine_weather["fatal_accidents"] /__
       ⇔engine weather["total accidents"]) * 100
```

```
#Visualization: Fatality Rate by Engine Type
plt.figure(figsize=(10,6))
plt.barh(engine_stats["Engine.Type"], engine_stats["fatality_rate_%"],

color="steelblue")

plt.xlabel("Fatal Accident Rate (%)")
plt.ylabel("Engine Type")
plt.title("Fatal Accident Rate by Engine Type")
plt.gca().invert_yaxis()
plt.tight_layout()
plt.show()
#Visualization: Weather vs Engine Type
pivot_weather = engine_weather.pivot(index="Engine.Type", columns="Weather.
 pivot_weather[["VMC","IMC"]].plot(kind="bar", figsize=(10,6))
plt.xlabel("Engine Type")
plt.ylabel("Fatal Accident Rate (%)")
plt.title("Effect of Weather on Engine Type Safety")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# Display summary table
display(engine_weather.sort_values("fatality_rate_%", ascending=False).head(10))
```


	Engine.Type	Weather.Condition	total_accidents	fatal_accidents	\
3	${\tt HybridRocket}$	VMC	1	1	
20	Unknown	IMC	352	237	
6	Reciprocating	UNK	1023	678	
5	Reciprocating	IMC	4393	2773	
17	TurboShaft	IMC	234	141	
18	TurboShaft	UNK	126	60	
14	TurboProp	IMC	523	234	
15	TurboProp	UNK	133	58	
21	Unknown	UNK	4001	1264	
12	TurboJet	UNK	28	8	

	fatality_rate_%
3	100.000000
20	67.329545
6	66.275660
5	63.123150
17	60.256410
18	47.619048
14	44.741874
15	43.609023
21	31.592102
12	28.571429

```
[57]: eng_weather_accidents = df.groupby(["Number.of.Engines", "Weather.Condition"]).
       →agg(
          total accidents=("Fatal", "count"),
          fatal_accidents=("Fatal", "sum")
      ).reset index()
      eng_weather_accidents["fatality_rate_%"] = __
       ⇔(eng_weather_accidents["fatal_accidents"] /⊔
       ⇔eng_weather_accidents["total_accidents"]) * 100
      # Visualization: Total accidents by number of engines and weather
      plt.figure(figsize=(10,6))
      sns.barplot(data=eng_weather_accidents, x="Number.of.Engines", __
       →y="total_accidents", hue="Weather.Condition", palette="viridis")
      plt.title("Number of Accidents by Engine Count and Weather Condition")
      plt.xlabel("Number of Engines")
      plt.ylabel("Number of Accidents")
      plt.legend(title="Weather Condition")
      plt.tight_layout()
      plt.show()
      # Visualization: Fatality rate by number of engines and weather
      plt.figure(figsize=(10,6))
      sns.barplot(data=eng_weather_accidents, x="Number.of.Engines", ___
       →y="fatality_rate_%", hue="Weather.Condition", palette="magma")
      plt.title("Fatality Rate by Engine Count and Weather Condition")
      plt.xlabel("Number of Engines")
      plt.ylabel("Fatal Accident Rate (%)")
      plt.legend(title="Weather Condition")
      plt.tight_layout()
      plt.show()
```


 $\label{link-top} \textbf{Tableau link} \quad \text{https://public.tableau.com/views/AviationSafetyDataAnalysisVisualizingRiskPatternsUsingPythUS\&:sid=\&:redirect=auth\&:display_count=n\&:origin=viz_share_link\\ \end{cases}$

The analysis reveals that reciprocating-engine aircraft experience the highest fatal accident rates,

especially under Instrument Meteorological Conditions (IMC).

Turbofan, turbojet and turboprop engines tend to have lower fatality rates, likely due to more advanced systems and better-equipped aircraft. Poor weather (IMC) amplifies risk across all engine types, but its effect is most severe for reciprocating aircraft and turboshaft aircraft, highlighting their vulnerability to adverse weather and limited instrument capability.

Aircraft with more engines and advanced engine types (turboprops, jets) are significantly safer, particularly in adverse weather. For business or corporate operations, prioritizing twin-engine turboprop or jet aircraft minimizes operational risk.

In conclusion, weather conditions shows a positive correlation with fatalities and weather. Confirming that poor visibility and adverse weather significantly increase risk.

6.3 Goal 3: What Aircraft models have the lowest risk for commercial ventures?

To answer this question we We will focus on flights where the purpose is Commercial, Air Taxi, Business and Executive/Corporate, since those represent business/commercial operations. Also we will only use airplanes used for commercial purposes. We will focus only on top 10 safest airplane makes and top 10 most risk airplane.

To ensure in the series, there are no duplicates, lets convert all the data in the series to uppercase

```
[61]: df['Make'] = df['Make'].str.upper()
[62]: # Filter for only airplane-type aircraft
      airplane_df = df[df["Aircraft.Category"].str.contains("Airplane", case=False, ___

¬na=False)]
      # Focus on commercial/business-related flights only
      commercial_flights = airplane_df[
          airplane df["Purpose.of.flight"].str.
       -contains("Business|Executive|Corporate|Commercial", case=False, na=False)
      ]
      # Group by Make
      make_stats = commercial_flights.groupby("Make").agg(
          total accidents=("Total.Fatal.Injuries", "count"),
          total_fatalities=("Total.Fatal.Injuries", "sum")
      ).reset_index()
      # Calculate fatal accident rate
      make_stats["fatal_accident_rate"] = make_stats["total_fatalities"] /__
       →make_stats["total_accidents"]
      # Drop makes with very few accidents (less than 5) to reduce bias
      make_stats = make_stats[make_stats["total_accidents"] >= 5]
      # Get top 10 safest and riskiest
```

Lets create visual to see our findings

```
[63]: # Plot safest
      plt.figure(figsize=(10,6))
      plt.barh(safest_makes["Make"], safest_makes["fatal_accident_rate"],__
       ⇔color="green")
      plt.xlabel("Fatal Accident Rate")
      plt.ylabel("Aircraft Make")
      plt.title("Top 10 Safest Airplane Makes (Commercial/Business Flights)")
      plt.gca().invert yaxis()
      plt.tight_layout()
      plt.show()
      # Plot riskiest
      plt.figure(figsize=(10,6))
      plt.barh(riskiest_makes["Make"], riskiest_makes["fatal_accident_rate"],__
       ⇔color="red")
      plt.xlabel("Fatal Accident Rate")
      plt.ylabel("Aircraft Make")
      plt.title("Top 10 Riskiest Airplane Makes (Commercial/Business Flights)")
      plt.gca().invert_yaxis()
      plt.tight_layout()
      plt.show()
```


From the chart, Bellanca, and Rockwell aircraft exhibit the lowest fatal accident rates, indicating a strong safety record in commercial operations. Manufacturers such as Raytheon Aircraft Company and Mooney also maintain relatively low fatality rates, suggesting dependable safety outcomes. SOCATA and Mitsubishi pose the greatest operational risk for commercial ventures,

Tableau link https://public.tableau.com/views/AviationSafetyDataAnalysisVisualizingRiskPatternsUsingPyth US&:sid=&:redirect=auth&:display_count=n&:origin=viz_share_link

6.3.1 Conclusion and Recommendation

- 1. Based on the data, skydiving, firefighting, and executive flights show the highest risk of fatalities and aerial application activities demonstrate the least risk.
- 2. The data suggests that a single-engine setup might be more conducive to surviving adverse weather conditions. The larger volume of data for single-engine aircraft likely contributes to its higher accuracy. I believe the dataset lacked enough data for multiple engine planes.
- 3. Begin operations with Executive/Corporate or Small Business Charter aircraft, where accident frequency and fatality rates are lower.
- 4. For commercial ventures prioritizing safety, aircraft from Maule, Bellanca, and Rockwell represent the lowest risk choices in this dataset. Overall, consistent maintenance practices, pilot training, and operational oversight remain the key determinants of aviation safety, regardless of manufacturer.
- 5. Choosing aircraft with low fatality and damage rates helps reduce financial risk and improve profitability in commercial aviation.

6.	Invest in pilot training programs, make the airplane extra safe.	aircraft	maintenance,	and	weather	monitoring	systems	to