Exploring methane mitigation strategies in photosynthetic microorganisms through genome-scale metabolic models

Gonçalo Apolinário¹, Joana Gonçalves¹, Emanuel Cunha¹, Leandro Madureira¹, Filipe Maciel^{1,2}, Pedro Geada^{1,2} and Oscar Dias^{1,2}

CENTREOF BIOLOGICAL ENGINEERING

¹Centre of Biological Engineering, University of Minho, Portugal ²LABBELS - Associate Laboratory, Braga/Guimarães, Portugal

The problematic of greenhouse gas (GHG) emissions is a global environmental challenge that has raised concerns in the past few decades. Particularly, the increase in atmospheric concentrations of carbon dioxide, methane, and other damaging gases can lead to catastrophic repercussions to life as we know it. Therefore, reducing GHG emissions and fomenting strategies for their mitigation are crucial steps that need to be taken in order to meet the Paris Agreement and ultimately ensure a sustainable future for our planet and those that inhabit it [1]. Taking this into account, our work aims at identifying the metabolic capabilities of photosynthetic microorganisms to reduce methane emissions.

Genome-scale metabolic (GSM) models allow the in silico simulation and prediction of metabolic fluxes on a large scale, providing a powerful tool for optimizing and designing metabolic engineering methods. By integrating high-throughput data with GSM models, a comprehensive understanding of cellular metabolism and identification of strategies to improve a certain objective function can be obtained. The importance of this emerging technology in industry stems from its ability to offer a faster and more cost-effective approach, surpassing the efficiency of traditional methods [2].

Herein, we describe the reconstruction of GSM models for the microalga Chlorella vulgaris sp. - iGA1305 -, and for the cyanobacterium Synechocystis sp. - iJG708. Both GSM models provide a powerful tool for metabolic improvement, allowing predictions and simulations of CH₄ metabolism in response to different culture conditions and genetic modifications.

Both C. vulgaris and Synechocystis already have GSM models. So, why should we reconstruct a model for an organism that already has one?

- Genomic information is continuously updated on databases.
- Previous models don't incorporate methane in their reconstruction.

the C. reinhardtii model (iRC1080) shown for comparison

Reversibility and Directionality

- Transport Reactions
- Mass Balance
- Pathway-by-pathway analysis
- Compartmentalization

Growth medium and exchange reactions

- Definition of constraints
- Biomass and Energy Requirements

Conversion into a

- In silico Simulations Topology Analysis
- Comparison with experimental data/other models

Model Validation

Gene essentiality

Manual Curation

BRENDA **METACYC** Merlin

stoichiometric model

Chlorella vulgaris – iGA1305

Model Overview

Table 1: Experimental and predicted growth rates reported for *C. vulgaris* (iGA1305/iCZ843) and *C. reinhardtii* (iRC1080) shown for comparison

Conditions	<i>i</i> GA1305 (This work)	<i>i</i> CZ843		<i>i</i> RC1080	
	Growth rate	Growth rate	Experimental	Growth rate	Experimental
Photoautotrophy	0.103	0.025	0.014–0.025 ^a	0.154	0.035-0.09b
Heterotrophy	0.023 ^c	0.017 ^c	0.018–0.025 ^a	0.029 ^d	0.059–0.084 ^b
Mixotrophy	0.127 ^c	0.041 ^c	0.02–0.03 ^a	0.182 ^d	0.066 ^b

^a Data from [3]. ^b Data from [4]. ^c glucose used as organic carbon source. ^d Acetate used as organic carbon source.

Table 2: Properties of the GSM model for C. vulgaris (iGA1305), for the previous Chlorella model (iCZ843) and for

Organism	Model	Genes	Reactions	Metabolites
C. vulgaris (This work)	<i>i</i> GA1305	1305	2659	2027
C. vulgaris (UTEX-395)	<i>i</i> CZ843	843	2286	1770
C. reinhardtii	<i>i</i> RC1080	1080	2191	1706

Synechocystis – iJG706

Model Overview

Table 3: Experimental and predicted growth rates reported for *Synechocystis* shown for comparison

Conditions	iJG706 (This work)	iJN678 [7]	
	Growth Rate	Growth Rate	Experimental
Photoautotrophy	0.085	0.088	0.085 [5]
Heterotrophy	0.063	0.064	0.076 [6]
Mixotrophy	0.043	0.056	0.059 [6]

Table 4: Properties of the GSM model for Synechocystis (iJG706), for the previous Synechocystis models (iJN678, iSyn811 and iSyn669) shown for comparison

Organism	Model	Genes	Reactions	Metabolites
Synechocystis (This work)	iJG706	706	2172	1619
Synechocystis	iJN678	678	863	795
Synechocystis	iSyn811 [8]	811	956	911
Synechocystis	iSyn669 [9]	669	882	790

- The reconstruction process did not reveal any genomic evidence of enzymes associated with methane metabolism
- Both models were validated regarding spontaneous growth, growth rates in different conditions, auxotrophies and uptake/secretion values
- The models are subject to change as new approaches are employed towards fine-tuning
- Next steps will involve the incorporation of possible methane-utilizing pathways in the models
- 1. E. Nisbet, R. Fisher, D. Lowry, J. France, G. Allen, S. Bakkaloglu, T. Broderick, M. Cain, M. Coleman, J. Fernandez, et al., "Methane mitigation: methods to reduce emissions, on the path to the paris agreement," Reviews of Geophysics, vol. 58, no. 1, p. e2019RG000675, 2020.
- 2. P. Maia, M. Rocha, and I. Rocha, "In silico constraint-based strain optimization methods: the quest for optimal cell factories," Microbiology and Molecular Biology Reviews, vol. 80, no. 1, pp. 45–67, 2016.
- 3. Van Baalan C, Pulich WM, Brandeis MG (1973) "Heterotrophic growth of the microalgae". Crit Rev Microbiol 2: 229–254. 4. Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3: 4.
- 5. Shastri AA & Morgan JA (2005) Flux Balance Analysis of Photoautotrophic Metabolism. Biotechnology Progress 21(6):1617-1626.
- 6. Yang C, Hua Q, & Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng 4:202 216. 7. Nogales, J.; Gudmundsson, S.; Knight, E. M.; Palsson, B. O.; Thiele, I. Detailing the Optimality of Photosynthesis in Cyanobacteria through Systems Biology Analysis. Proc Natl Acad Sci U S A 2012, 109 (7), 2678–2683. 8. Montagud, A., Navarro, E., Fernández de Córdoba, P. et al. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst Biol 4, 156 (2010).
- 9. Joshi, C. J.; Peebles, C. A. M.; Prasad, A. Modeling and Analysis of Flux Distribution and Bioproduct Formation in Synechocystis Sp. PCC 6803 Using a New Genome-Scale Metabolic Reconstruction. Algal Research 2017, 27, 295–310.

usion

