Exercice 1: (7 points)

- 1. Démontrer que la suite (x_n) défine pour tout entier n > 0 par $x_n = \frac{1}{n}$ n'est ni arithmétique ni géométrique.
- 2. Calculer le 7ème terme de la suite géométrique de premier terme $v_0 = 2$ et de raison $\sqrt{5}$.
- 3. Démontrer que la suite (w_n) définie pour tout entier n par $w_n = 9(-11)^n$ est géométrique et donner sa raison et son premier terme.
- **4.** Soit (u_n) une suite arithmétique telle que $u_2 = 11$ et $u_7 = 18$. Calculer la forme explicite de la suite (u_n) ainsi que u_{17} .

Correction

- 1. $x_1 = 1$, $x_2 = \frac{1}{2} = x_1 \frac{1}{2} = x_1 \times \frac{1}{2}$. $x_3 = \frac{1}{3} \neq 0 = x_2 \frac{1}{2}$ et $x_3 \neq \frac{1}{4} = x_2 \times \frac{1}{2}$. Ainsi, (u_n) n'est ni arithmétique ni géométrique. (2 pts)
- **2.** $v_6 = v_0(\sqrt{5})^{(6-0)} = 2(5)^3 = 250.$ (1 pt)
- 3. $w_{n+1} = 9(-11)^{n+1} = 9(-11)^n \times (-11) = w_n \times (-11)$. (1 pt) La suite est bien géométrique de raison -11 et de premier terme $w_0 = 9$. (1 pt)
- **4.** $u_7 u_2 = 18 11 = 7 = (7 2)r = 5r$ d'où $r = \frac{7}{5}$, $u_n = u_2 + (n 2)r = 11 + (n 2)\frac{7}{5}$ (1 pt) $u_{17} = 11 + (17 - 2)\frac{7}{5} = 11 + \frac{15 \times 7}{5} = 11 + 21 = 32 \text{ (1 pt)}$

Exercice 2: (5 points)

- 1. Calculer la dérivée f'(x) de la fonction $f(x) = -\frac{4}{3}x^3 8x^2 16x + 42$
- 2. Décomposer f'(x) en un produit de facteurs de degré 1 et étudier son signe.
- 3. Montrer que la suite (u_n) définie pour tout entier naturel par $u_n = -\frac{4}{3}n^3 8n^2 16n + 42$ est strictement décroissante.

Correction

- 1. $f'(x) = -4x^2 16x 16$ (1 pt)
- 2. f'(x) = -4(x+2)(x+2), en effet, $\Delta = 0$, $x_0 = \frac{-(-16)}{-8} = -2$. (2 pts) $f'(x) < 0 \text{ sur }]-\infty; -2[\cup]-2; +\infty[, f'(x) = 0 \text{ en } -2.(1 \text{ pt})]$
- 3. La fonction f est strictement décroissante sur l'intervalle $[0; +\infty[$ donc la suite $(u_n = f(n))$ est strictement décroissante. (1 pt)

Exercice 3: (3 points)

Soit (u_n) la suite définie par récurrence par $u_0 = 1$ et pour tout entier n par $u_{n+1} = 2u_n + 3$. On admet que pour tout entier naturel n, $u_n > 0$.

- 1. Démontrer que le suite (u_n) est strictement croissante.
- 2. Trouver une forme explicite pour la suite (u_n) . On pourra introduire la suite auxiliaire $v_n = u_n + 3$.

Correction

- 1. $u_{n+1} u_n = u_n + 3 > 0$ pour tout entier naturel. (u_n) est donc strictement croissante. (1 pt)
- 2. $v_{n+1} = u_{n+1} + 3 = 2u_n + 3 + 3 = 2u_n + 6 = 2(u_n + 3) = 2v_n$. La suite (v_n) est géométrique de raison 2 et de premier terme $v_0 = u_0 + 3 = 4$. D'où $v_n = 4 \times 2^n$ et $u_n = 4 \times 2^n - 3$. (2 pts)

Exercice 4: (5 points)

Réaliser un algorithme permettant de calculer et afficher le plus petit entier naturel n pour lequel $3^n > 129140163$. Correction n prend la valeur 0 tant que $3^n \le 129140163$ faire n prend la valeur n+1 fin tant que Afficher n