Pb(³⁵**Al**,³⁴**Aln**γ) **2017Ch36**

Coulomb dissociation of ³⁵Al on Pb target.

2017Ch36,2014ChZZ: 35 Al was produced via the projectile fragmentation of a 531-MeV/nucleon 40 Ar primary beam from the Heavy Ion Synchrotron (SIS18) at GSI. The secondary cocktail beam was separated by the FRS separator and impinged on a 2 g/cm² Pb target and a 0.93 g/cm² C target. Projectiles and reaction fragments were detected using 8 DSSDs, separated by a large-area dipole magnet (ALADIN) and tracked using two large scintillator fiber detectors (GFIs). Neutrons from the excited projectiles were detected using the high-efficiency Large Area Neutron Detector (LAND). γ rays from the deexcited projectile and projectile-like fragments were detected using a spherical 4π Crystal Ball detector array of 162 NaI(Tl) crystals. Measured E(fragment), E(n), E γ , Coulomb dissociation cross sections. Deduced relative populations of 34 Al, 35 Al g.s. configuration. Comparisons with shell-model calculations with the SDPF-M interaction. The measured inclusive differential CD cross section integrated up to 5.0 MeV relative energy for 35 Al -> 34 Al + n using a Pb target at a relativistic energy 403A MeV is 78 mb *13*.

35Al Levels

E(level) J^{π} Comments

O $(5/2^+,3/2^+,1/2^+)$ J^{π} : From comparisons of measured differential Coulomb dissociation cross section of 35 Al breaking up into 34 Al in its g.s. and/or 46-keV isomer with theoretical calculations from the direct breakup model using the plane-wave approximation assuming the valence neutron at different orbitals. 2017Ch36 stated that the experimental data have been compared with the SDPF-M calculation and the comparison favors the ground-state spin and parity $5/2^+$. Major configurations and spectroscopic factor for neutron deduced by 2017Ch36: (g.s.,4 $^-$ in 34 Al) $\otimes v_{73/2}$, spectroscopic factor=0.36 9 + (46 keV,1 $^+$ in 34 Al) $\otimes v_{3/2}$, spectroscopic factor=1.47 22 for J^{π} =5/2 $^+$ of 35 Al g.s. For J^{π} =1/2 $^+$ or 3/2 $^+$ of 35 Al g.s., (g.s.,4 $^-$ in 34 Al) $\otimes v_{7/2}$, spectroscopic factor=1.03 43 + (46 keV,1 $^+$ in 34 Al) $\otimes v_{71/2}$, spectroscopic factor=0.62 7. Other configurations for J^{π} =1/2 $^+$,3/2 $^+$ of 35 Al g.s.: (46 keV,1 $^+$ in 34 Al) $\otimes v_{71/2}$, spectroscopic factor=0.72 8; and (46 keV,1 $^+$ in 34 Al) $\otimes v_{71/2}$, spectroscopic factor=0.45 7 + (46

keV,1+ in 34 Al) $\otimes vd_{5/2}$, spectroscopic factor=0.94 22.