TABLES OF LINEAR CONGRUENTIAL GENERATORS OF DIFFERENT SIZES AND GOOD LATTICE STRUCTURE

PIERRE L'ECUYER

ABSTRACT. We provide sets of parameters for multiplicative linear congruential generators (MLCGs) of different sizes and good performance with respect to the spectral test. For $\ell=8,9,\ldots,64,127,128$, we take as a modulus m the largest prime smaller than 2^ℓ , and provide a list of multipliers a such that the MLCG with modulus m and multiplier a has a good lattice structure in dimensions 2 to 32. We provide similar lists for power-of-two moduli $m=2^\ell$, for multiplicative and non-multiplicative LCGs.

1. Introduction

A multiplicative linear congruential generator (MLCG) is defined by a recurrence of the form

$$(1) x_n = ax_{n-1} \bmod m$$

where m and a are integers called the *modulus* and the *multiplier*, respectively, and $x_n \in \mathbf{Z}_m = \{0, \dots, m-1\}$ is the *state* at step n. To obtain a sequence of "random numbers" in the interval [0,1), one can define the *output* at step n as

$$(2) u_n = x_n/m.$$

We use the expression "the MLCG (m, a)" to denote a sequence that obeys (1) and (2). The properties of MLCGs have been studied extensively and are well-known; see, for example, [3, 5, 7].

If m is prime, a is a primitive element modulo m, and $x_0 \neq 0$, then the sequences $\{x_n\}$ and $\{u_n\}$ are periodic with period lengths $\rho = m - 1$ and the generator is called a full period MLCG.

For each integer t > 1, define

(3)
$$T_t = \{ \mathbf{u}_n = (u_n, \dots, u_{n+t-1}) \mid n \ge 0, \ x_0 \in \mathbf{Z}_m \},$$

the set of all overlapping t-tuples of successive values of u_n , from all possible initial seeds. The set T_t is equal to the intersection of a lattice L_t with the t-dimensional unit cube $[0,1)^t$ (see, e.g., [5,9] for more details). This implies in particular that all the points of T_t lie on a relatively small number of equidistant parallel hyperplanes. Among all families of hyperplanes that cover all the points, choose the one for which the distance between the successive hyperplanes is the largest, and let d_t be this

¹⁹⁹¹ Mathematics Subject Classification. 65C10.

 $[\]it Key\ words\ and\ phrases.$ Random number generation, linear congruential, lattice structure, spectral test .

This work has been supported by NSERC-Canada grants # ODGP0110050 and # SMF0169893, and FCAR-Québec grant # 93ER1654. Thanks to Raymond Couture, Peter Hellekalek, and Harald Niederreiter gave useful suggestions, to Ajmal Chaumun who helped computing the tables, and to Karl Entacher who pointed out an error in an earlier version.

distance. The set T_t is more uniformly distributed over the cube if d_t is smaller. In the literature, examining the d_t 's associated with a given generator is often called the *spectral test* [3, 5].

A general lower bound on d_t is given by

(4)
$$d_t^*(m) = \gamma_t^{-1} m^{-1/t},$$

where γ_t is Hermite's constant, known for $t \leq 8$ (see [5]). For t > 8, lower and upper bounds on γ_t are available. An upper bound ρ_t can be deduced from Rogers' bound on the density of sphere packings (see [1, p.88]). It can be written as

$$\rho_t = 2e^{R(t)/t},$$

where R(t) can be found in [1] for $t \le 24$. For $t \ge 25$, R(t) can be approximated with O(1/t) error, and approximately four decimal digits of precision for t = 25, by

(6)
$$R(t) = \frac{1}{2}t \lg\left(\frac{t}{4\pi e}\right) + \frac{3}{2}\lg(t) - \lg(e/\sqrt{\pi}) + \frac{5.25}{t + 2.5},$$

where lg is the log in base 2. A lower bound can be obtained by looking at the value of d_t associated with the laminated lattice in dimension t. This gives $\gamma_t \geq \ell_t = 2\lambda_t^{-1/(2t)}$, where λ_t is given in [1, p.88] for $t \leq 48$. For $t \leq 8$, it turns out that $\ell_t = \gamma_t$ up to at least 52 bits of precision. Table 1 gives the ratio ℓ_t/ρ_t , of the lower bound over the upper bound, for $1 \leq t \leq 48$. This ratio tends to decrease with increasing t, but not monotonously.

Table 1. Ratio between lower and upper bounds on γ_t

t	ℓ_t/ ho_t	t	ℓ_t/ ho_t
1	1.0000	25	0.9616
2	1.0000	26	0.9407
3	0.9855	27	0.9232
4	0.9878	28	0.9113
5	0.9759	29	0.8999
6	0.9807	30	0.8932
7	0.9843	31	0.8882
8	0.9985	32	0.8871
9	0.9665	33	0.8765
10	0.9512	34	0.8699
11	0.9405	35	0.8649
12	0.9401	36	0.8632
13	0.9373	37	0.8614
14	0.9424	38	0.8627
15	0.9487	39	0.8649
16	0.9612	40	0.8699
17	0.9512	41	0.8670
18	0.9487	42	0.8671
19	0.9481	43	0.8681
20	0.9534	44	0.8716
21	0.9572	45	0.8749
22	0.9660	46	0.8805
23	0.9758	47	0.8869
24	0.9900	48	0.8955

In this paper, following a suggestion in [11], we chose to replace γ_t by ρ_t in the lower bound (4), for t > 8. This yields the lower bound

(7)
$$d_t \ge \bar{d}_t(m) = \begin{cases} \gamma_t^{-1} m^{-1/t} & \text{for } t \le 8; \\ \rho_t^{-1} m^{-1/t} & \text{for } t > 8. \end{cases}$$

The value of d_t can be normalized to

$$S_t = \frac{\bar{d}_t(m)}{d_t},$$

which takes its values in the interval [0,1], the larger the better. Following [4, 3], for any $T \geq 2$, we define the figure of merit:

$$M_T = \min_{2 \le t \le T} S_t.$$

The idea is to find full-period MLCGs with the best value of M_T , for given m and T.

Other authors have already performed searches of that sort. Fishman and Moore [4] found all the 414 multipliers a which are primitive elements modulo m and for which $M_6 \geq 0.8$, for $m = 2^{31} - 1$. They give the values of S_1, \ldots, S_6 for the five best. Fishman [2] obtained similar results for MLCGs with $m = 2^{32}$ and $m = 2^{48}$. Values of S_t , $t \leq 8$, for various LCGs proposed in the literature or available in software libraries, can be found in [3, 6, 7]. Searches for good multiple recursive generators, based on similar criteria, have also been performed for a few selected prime moduli m near 2^{31} , 2^{47} , and 2^{63} (see [8]).

Our aim in this paper is to provide a table of MLCGs with large values of M_T , for different sizes of m and T. For $\ell=8,9,\ldots,64$, and a few larger values of ℓ , we consider the largest prime $m<2^\ell$, and seek full-period multipliers a with the best values of M_8 , M_{16} , and M_{32} . The values of d_t were computed with the software package of [9]. Section 2 explains how this search was made and gives the results. In Section 3, we provide similar results for the case where m is a power of 2. We consider MLCGs as in (1), as well as LCGs with a nonzero additive constant, whose period length is m.

MLCGs with large moduli m and good lattice structure can be used as random number generators [3, 5, 7], e.g., for computer simulation. It is then recommended that the value of m be several orders of magnitudes larger than the number of output values u_n that are generated, so even m near 2^{64} is relatively small in this context, too small for certain types of simulation applications but enough for most.

MLCGs with small values of m can be used for quasi-Monte Carlo integration [10] of a t-dimensional function over the hypercube $[0,1]^t$. In that case, the function is evaluated at each of the points of T_t and the integral is estimated by the average of those m function values. The size of m would depend on how much computing time we are ready to spend. For example, m near 2^{20} gives approximately one million evaluation points. If the MLCG has a good lattice structure in dimension t, then it yields a so-called good lattice rule for numerical integration [10, Chapter 5]. As explained in [10], an upper bound on the integration error can be obtained in terms of a measure of regularity of the function and of a figure of merit for the lattice L_t . This figure of merit differs from the ones we consider in this paper and its computation appears much more involved.

MLCGs with moderate values of m can also be used to experiment with different types of statistical tests for random number generators. One can examine, for

example, how the minimal size of m required for a good LCG to pass a given type of test increases with the size of the test.

2. The Search Plan and Results for Prime m

For each prime number m, let $\Psi(m)$ be the set of all primitive elements modulo m; that is, the set of all a in \mathbb{Z}_m such that $a^n \not\equiv 1 \pmod{m}$ for $n = 1, \ldots, m-2$. For any $a \in \Psi(m)$, let $d_t(m, a)$, $S_t(m, a)$, and $M_T(m, a)$ be the values of d_t , S_t , and M_T associated with the MLCG (m, a). For different values of m, we searched for multipliers a in $\Psi(m)$ with the largest possible values of $M_8(m, a)$, those with the largest values of $M_{16}(m, a)$, and those with the largest values of $M_{32}(m, a)$. The choice of T = 8, 16, and 32 is arbitrary. It gives multipliers that are good up to (roughly) small, medium, and large dimensions.

For each selected value of ℓ , we considered the largest prime m smaller than 2^{ℓ} . For $\ell \leq 26$, the absolute best multipliers with respect to the criteria $M_8(m,a)$, $M_{16}(m,a)$, and $M_{32}(m,a)$ were found by an exhaustive search over $\Psi(m)$. For $\ell \geq 27$, we performed a random search within $\Psi(m)$ and retained the multipliers with the largest values of $M_8(m,a)$, $M_{16}(m,a)$, and $M_{32}(m,a)$ that we could find. Each random search was given a computing budget of between 10 and 20 hours of cpu time, with the search algorithm and program described in [9]. Different models of SUN Sparcstation computers were used. These random searches gave us plenty of good multipliers. Performing exhaustive searches for those large values of m would provide only a marginal improvement over the best values of $M_T(m,a)$ found so far, and would require a huge computing budget, so we think it is not worth the trouble.

For $a \in \{1, \ldots, m-1\}$, the multiplicative inverse of a modulo m is the unique integer $a^* \in \{1, \ldots, m-1\}$ such that $a^*a \equiv 1 \pmod{m}$. If a is replaced by a^* in (1), then the same sequence is generated, but in reverse order. Therefore, a and a^* are equivalent in the sense that they produce the same lattice structure. So, good multipliers always come in pairs. In Table 2, each line gives a pair of multipliers of the form (a, a^*) . For example, 213 is the inverse of 33 modulo 251 and both multipliers have the same figures of merit.

A symbol * next to a number means that this is the best value found for that figure of merit, for this modulus. For example, for m=251, the multipliers 33 and 213 are those with the best value of $M_8(m,a)$, and also with the best value of $M_{32}(m,a)$ (ex-æquo with 55 and 178), among all multipliers a that are primitive modulo m.

Table 3 reports the results of a similar search, for certain values of ℓ , but with the additional restriction that $a(m-1) < 2^{53}$. Multipliers satisfying this constraint are more interesting from the practical viewpoint, because the generator then lends itself to a fast implementation in floating-point arithmetic on computers whose hardware supports the IEEE floating-point arithmetic standard, with at least 53 bits of precision for the mantissa (most computers do so). The results of this table are based on an exhaustive search among all multipliers a that satisfy the constraint. For $\ell \leq 27$, all the multipliers given in Table 2 satisfy the constraint, except for those larger than 67108883 for $m=2^{27}-39$.

Table 2. LCGs with Good Figures of Merit

_				
m	a,a^*	$M_8(m,a)$	$M_{16}(m,a)$	$M_{32}(m,a)$
$2^8 - 5 = 251$	33, 213	0.70617*	0.66083	0.64645*
	55, 178	0.66973	0.66973*	0.64645*
$2^9 - 3 = 509$	35, 160	0.68202*	0.68202*	0.63233*
	110, 236	0.68202*	0.68202*	0.63233*
	273, 399	0.68202*	0.68202*	0.63233*
	349, 474	0.68202*	0.68202*	0.63233*
$2^{10} - 3 = 1021$	65, 377	0.69069*	0.66317	0.61872*
	331, 401	0.67388	0.67388*	0.61872*
$2^{11} - 9 = 2039$	995, 1498	0.72170*	0.65531	0.60549
	328, 603	0.69551	0.69189^*	0.60549
	393, 799	0.65283	0.65283	0.65283*
$2^{12} - 3 = 4093$	209, 3858	0.67296*	0.60649	0.60649
	235, 3884	0.67296*	0.60649	0.60649
	219, 542	0.66150	0.66150*	0.66150*
	3551, 3874	0.66150	0.66150*	0.66150*
$2^{13} - 1 = 8191$	884, 7459	0.67317*	0.61508	0.61508
	1716, 5580	0.64854	0.64854*	0.64854*
	2685, 6083	0.64854	0.64854*	0.64854*
$2^{14} - 3 = 16381$	572, 13374	0.71968*	0.59638	0.59638
	3007, 15809	0.71968*	0.59638	0.59638
	665, 3424	0.71116	0.66792*	0.65508*
	12957, 15716	0.71116	0.66792*	0.65508*
$2^{15} - 19 = 32749$	219, 30805	0.71802*	0.56955	0.56955
	1944, 32530	0.71802*	0.56955	0.56955
	9515, 10088	0.69372	0.67356*	0.67356*
	22661, 23234	0.69372	0.67356*	0.67356*
$2^{16} - 15 = 65521$	17364, 32236	0.70713*	0.44566	0.44566
	33285, 48157	0.70713*	0.44566	0.44566
	2469, 47104	0.64650	0.63900*	0.63900*
$2^{17} - 1 = 131071$	43165, 66284	0.70941*	0.58409	0.58409
	29223, 119858	0.67169	0.67169*	0.65617
	29803, 76704	0.66838	0.66230	0.66230*
$2^{18} - 5 = 262139$	92717, 166972	0.72539*	0.61601	0.61601
	21876, 118068	0.67832	0.67832*	0.67019*
$2^{19} - 1 = 524287$	283741, 358899	0.72130*	0.59188	0.59188
	37698, 127574	0.66780	0.66780*	0.65255
	155411, 157781	0.69573	0.66646	0.66646*
$2^{20} - 3 = 1048573$	380985, 444362	0.71709*	0.60387	0.60387
	604211, 667588	0.71709*	0.60387	0.60387
	100768, 463964	0.66055	0.66055*	0.60062
	947805, 584609	0.66055	0.66055*	0.60062
	22202, 246298	0.66738	0.65888	0.65888*
	1026371, 802275	0.66738	0.65888	0.65888*
$2^{21} - 9 = 2097143$	360889, 1372180	0.72537*	0.59108	0.59108
	1043187, 1352851	0.68608	0.68608*	0.62381
	1939807, 1969917	0.68492	0.68492	0.67664*
$2^{22} - 3 = 4194301$	914334, 1406151	0.72226*	0.53547	0.53547
	2788150, 3279967	0.72226*	0.53547	0.53547
	1731287, 2040406	0.67819	0.67819*	0.67611*
	2463014, 2153895	0.67819	0.67819*	0.67611*

LCGs with Good Figures of Merit (continued)

	of interior to earngard boots into	omemaca)		
m	a,a^*	$M_8(m,a)$	$M_{16}(m,a)$	$M_{32}(m,a)$
$2^{23} - 15 = 8388593$	653276, 5169235	0.73407*	0.65758	0.61581
	3219358, 7735317	0.73407*	0.65758	0.61581
	1706325, 6513898	0.67462	0.67462*	0.65778
	6682268, 1874695	0.67462	0.67462*	0.65778
	422527, 5515073	0.67530	0.66916	0.66916^*
	7966066, 2873520	0.67530	0.66916	0.66916*
$2^{24} - 3 = 16777213$	6423135, 9726917	0.74477*	0.54337	0.54337
	7050296, 10354078	0.74477*	0.54337	0.54337
	4408741, 6180188	0.66849	0.66849*	0.66543
	12368472, 10597025	0.66849	0.66849^*	0.66543
	931724, 5637643	0.68149	0.66735	0.66735*
	15845489, 11139570	0.68149	0.66735	0.66735*
$2^{25} - 39 = 33554393$	25907312, 32544832	0.74982*	0.58170	0.58170
	12836191, 5420585	0.69488	0.68447*	0.57247
	28133808, 20718202	0.69488	0.68447*	0.57247
	25612572, 1860625	0.67766	0.67105	0.66953*
	31693768, 7941821	0.67766	0.67105	0.66953*
$2^{26} - 5 = 67108859$	26590841, 11526618	0.76610*	0.55995	0.55995
	19552116, 24409594	0.69099	0.69099^*	0.64966
	66117721, 6763103	0.68061	0.67408	0.67062*
$2^{27} - 39 = 134217689$	45576512, 70391260	0.75874*	0.58717	0.58717
	63826429, 88641177	0.75874*	0.58717	0.58717
	3162696, 71543207	0.70233	0.67264*	0.66714*
$2^{28} - 57 = 268435399$	246049789, 150873839	0.74215*	0.52820	0.52820
	140853223, 102445941	0.70462	0.67353*	0.56023
	29908911, 166441841	0.67604	0.67353*	0.58183
	104122896, 111501501	0.66326	0.65808	0.65808*
$2^{29} - 3 = 536870909$	520332806, 219118189	0.75238*	0.59538	0.59538
	530877178, 475905290	0.67352	0.67088*	0.66418*
$2^{30} - 35 = 1073741789$	771645345, 599290962	0.74881*	0.60540	0.59895
	295397169, 1017586987	0.68323	0.67420*	0.52102
	921746065, 679186565	0.65830	0.65830	0.65830*
$2^{31} - 1 = 2147483647$	1583458089, 1132489760	0.72771*	0.61996	0.61996
	784588716, 163490618	0.65885	0.65388*	0.65388*
$2^{32} - 5 = 4294967291$	1588635695, 3870709308	0.74530*	0.64199	0.64034
	1223106847, 4223879656	0.69299	0.67551*	0.64034
	279470273, 1815976680	0.65862	0.65862	0.65862*
$2^{33} - 9 = 8589934583$	7425194315, 8436767804	0.73666*	0.45155	0.45155
	2278442619, 1729516095	0.66244	0.65958*	0.63549
	7312638624, 205277214	0.65221	0.65221	0.65221*
$2^{34} - 41 = 17179869143$	5295517759, 2447157083	0.73607*	0.42784	0.42784
	473186378, 6625295500	0.66652	0.66652*	0.65074*
$2^{35} - 31 = 34359738337$	3124199165, 27181987157	0.74740*	0.55117	0.55117
	22277574834, 16353251630	0.68241	0.65471*	0.61272
	8094871968, 31023073077	0.64471	0.64471	0.64471*
$2^{36} - 5 = 68719476731$	49865143810, 44525253482	0.72011*	0.56045	0.56045
	45453986995, 40162435147	0.66038	0.65905*	0.65665*
$2^{37} - 25 = 137438953447$	76886758244, 31450092817	0.73284*	0.59222	0.55865
	2996735870, 105638438130	0.70849	0.65341*	0.63328
	85876534675, 116895888786	0.66073	0.65085	0.65085*
l				

LCGs with Good Figures of Merit (continued)

	LOGS With Good Figures of Me	iio (comunic		
m	a,a^*	$M_8(m,a)$	$M_{16}\left(m,a ight)$	$M_{32}(m,a)$
$2^{38} - 45$	17838542566, 234584904863	0.72311*	0.59289	0.57131
	101262352583, 258824536167	0.65223	0.65035*	0.60629
	24271817484, 141086538846	0.64022	0.64022	0.63644*
$2^{39}-7$	61992693052, 207382937966	0.72606*	0.50283	0.50283
	486583348513, 247058793858	0.65522	0.64233*	0.62267
	541240737696, 68317042802	0.64118	0.64118	0.64118*
$2^{40} - 87$	1038914804222, 956569416632	0.73656*	0.56206	0.56206
	88718554611, 864341149053	0.68083	0.67629*	0.60506
	937333352873, 945467218816	0.69567	0.64693	0.64286*
$2^{41} - 21$	140245111714, 1888116500887	0.72891*	0.57568	0.57568
	416480024109, 1420814698317	0.65093	0.64692*	0.61035
	1319743354064, 717943173063	0.65422	0.63748	0.63748*
$2^{42} - 11$	2214813540776, 4365946432566	0.74418*	0.62178	0.62178
	2928603677866, 3015630915308	0.66427	0.66427*	0.62145
	92644101553, 626031856758	0.66812	0.65172	0.64110*
$2^{43} - 57$	4928052325348, 4541763706392	0.73258*	0.58054	0.58054
_ 0.	4204926164974, 3434105419275	0.67015	0.65195*	0.62862
	3663455557440, 2399767999928	0.65062	0.63552	0.63552*
$2^{44} - 17$	6307617245999, 12680217534946	0.72095*	0.40161	0.40161
2 -17	11394954323348, 6363281811747	0.72033	0.40101	0.40101
	949305806524, 12442836230635	0.64034	0.63577	0.63577*
$2^{45} - 55$	25933916233908, 3608903742640	0.74020*	0.48371	0.48371
2 - 55	18586042069168, 11850386302026	0.74020	0.46371	0.48371
	20827157855185, 5870357204989	0.65174	0.63771	0.63771*
$2^{46} - 21$	63975993200055, 63448138118203	0.74158*	0.59455	0.59455
2 -21	15721062042478, 56602273662768	0.65292	0.65292*	0.56919
	31895852118078, 30001556873103	0.65853	0.64391	0.63482*
$2^{47} - 115$	72624924005429, 90086464761505	0.73939*	0.61202	0.58428
2 - 115	47912952719020, 65482710949587	0.73939	0.66046*	0.56426
	106090059835221, 115067325755975	0.63210	0.63210	0.63210*
$2^{48} - 59$	<u> </u>	0.03210		
2 - 59	49235258628958, 253087341916107		0.42596	0.42596
	51699608632694, 8419150949545	0.66302	0.64985*	0.58435
$2^{49} - 81$	59279420901007, 163724808306782	0.65839	0.63595	0.63595*
2 - 81	265609885904224, 463134250989782	0.73506*	0.53066	0.53066
	480567615612976, 545116409148737	0.65594	0.64246*	0.57269
050 07	305898857643681, 190965926304768	0.66333	0.63788	0.63577*
$2^{50} - 27$	1087141320185010, 1051122009542795	0.72852*	0.52208	0.52208
	157252724901243, 422705992136651	0.63912	0.63912*	0.62044
251 120	791038363307311, 605985299432352	0.64466	0.62837	0.62837*
$2^{51} - 129$	349044191547257, 2128884970512414	0.73054*	0.53683	0.53683
	277678575478219, 598269678776822	0.65501	0.64283*	0.61820
- 50	486848186921772, 1980113709690257	0.67181	0.63497	0.63497*
$2^{52} - 47$	4359287924442956, 3707079847465153	0.72095*	0.48117	0.48117
	3622689089018661, 290414426581729	0.68827	0.64482*	0.60841
	711667642880185, 3319347797114578	0.63766	0.63067	0.63067*
$2^{53} - 111$	2082839274626558, 3141627116318043	0.74842*	0.49471	0.49471
	4179081713689027, 1169831480608704	0.64967	0.64102*	0.59333
	5667072534355537, 7982986707690649	0.67430	0.63503	0.63503*

LCGs with Good Figures of Merit (continued)

25t - 33	222	Leas with adod rightes of Metri (con-	M (m a)	M (m a)	M (m a)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>m</u>	a, a*	$M_8(m,a)$	$M_{16}(m,a)$	$M_{32}(m,a)$
11676603717543485, 13197393252146039	$2^{-1} - 33$				
25% - 55					
1970881949174686, 32182684885571630	- 5.5				
32075972421209701, 15995561023396933	$2^{55} - 55$	•			
256 - 5 4595551687825993, 6128514294048584 26093644409268278, 69294271672288492 0.67840 0.66318* 0.68207 459551687828611, 2389916809994467 0.64778 0.64243 0.62784* 257 - 13 75953708294752990, 66352637866891714 0.72732* 0.57473 0.56026 95424006161758065, 2274812368615087 0.64856 0.64856* 0.59464 133686472073660397, 11307975154721130 0.64588 0.62957 0.62957* 208 - 27 101565695086122187, 56502943171806276 163847936876980536, 266462492811829427 0.68047 0.66531* 0.54314 0.26633310974457555, 28146528635210647 0.64632 0.63406 0.63406* 0.63406* 0.54906* 0.54928 0.63406 0.53406 0.63406* 0.54928 0.63406 0.54928 0.63406 0.63406* 0.54928 0.64760* 0.573223409952553925, 81222304453481810 0.64258 0.63111 0.63111* 0.50716* 0.50786 439138238526007932, 998922549734761568 0.66098 0.65258* 0.60350 0.73402263967592552, 67273627956685463 0.66024 0.62375 0.62375* 0.6		•	0.65421	0.65091*	
2 ⁵¹ - 13		32075972421209701, 15995561023396933	0.62948	0.62948	0.62948*
\$4595551687828611, 2389916809994467	$2^{56} - 5$	·		0.57724	0.57724
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		26093644409268278, 69294271672288492	0.67840	0.66318*	0.58207
P5424006161758065, 2274812368615087 0.64856 0.64866 0.59464 133686472073660397, 113079751547221130 0.64588 0.62957 0.62957 0.62957 0.62957 0.62957 0.62957 0.62957 0.62957 0.62957 0.62957 0.62957 0.63466 0.64861 0.64861 0.64861 0.66631 0.66631 0.66631 0.66631 0.66631 0.66631 0.66631 0.66631 0.66631 0.66631 0.6466 0.63406 0.63406 0.63406 0.63406 0.63406 0.63406 0.63406 0.64632 0.63406 0.63406 0.6466		4595551687828611, 2389916809994467	0.64778	0.64243	0.62784*
133686472073660397, 113079751547221130 0.64588 0.62957 0.62957	$2^{57} - 13$	75953708294752990, 66352637866891714	0.72732*	0.57473	0.56026
$ \begin{array}{c} 2^{58}-27 \\ 101565695086122187, 56502943171806276 \\ 163847936876980536, 256462492811829427, 0.68647, 0.66531, 0.54314 \\ 206638310974457555, 28146528635210647, 0.64632, 0.63406, 0.6340$		95424006161758065, 2274812368615087	0.64856	0.64856*	0.59464
$ \begin{array}{c} 163847936876980536, \ 256462492811829427 \\ 206638310974457555, \ 28146528635210647 \\ 259 - 55 \\ 346764851511064641, \ 287514719519235431 \\ 124795884580648576, \ 526457461907464601 \\ 573223409952553925, \ 81222304453481810 \\ 0.64928 \\ 0.64760^{\circ} \\ 0.63279 \\ 0.64928 \\ 0.64760^{\circ} \\ 0.632111 \\ 0.63111^{\circ} \\ 0.63111 \\ 0.63111^{\circ} \\ 0.63211 \\ 0.63215^{\circ} \\ 0.6325^{\circ} \\ 0.6325^{\circ} \\ 0.6325^{\circ} \\ 0.6326^{\circ} \\ 0.6326^{\circ} \\ 0.6327^{\circ} \\ 0.6327^{\circ} \\ 0.6326^{\circ} \\ 0.6436^{\circ} \\ 0.6436^{\circ} \\ 0.6446^{\circ} \\ 0.6418^{\circ} \\ 0.5910^{\circ} \\ 0.6418^{\circ} \\ 0.5910^{\circ} \\ 0.6327^{\circ} \\ 0.6237^{\circ} \\ 0.6240^{\circ} \\ 0.6240$		133686472073660397, 113079751547221130	0.64588	0.62957	0.62957*
$ \begin{array}{c} 20638310974457555, \ 28146528635210647 \\ 2^{59}-55 \\ 346764851511064641, \ 287514719519235431 \\ 124795884580648576, \ 526457461907464601 \\ 573223409952553925, \ 81222304453481810 \\ 0.64228 \\ 0.64258 \\ 0.63111 \\ 0.63111^* \\ 0.50786 \\ 0.50786 \\ 0.50786 \\ 0.439138238526007932, \ 998922549734761568 \\ 0.66098 \\ 0.66098 \\ 0.65258^* \\ 0.60350 \\ 0.734022639675925522, \ 67273627956685463 \\ 0.66098 \\ 0.65258^* \\ 0.60350 \\ 0.62375 \\ 0.63375^* \\ 0.6375^* \\ 0.6375^* \\ 0.6376^* \\ 0.60350 \\ 0.63468 \\ 0.60098 \\ 0.65258^* \\ 0.60350 \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63468 \\ 0.62092 \\ 0.62092^* \\ 0.62092$	$2^{58} - 27$	101565695086122187, 56502943171806276	0.77453*	0.55885	0.55885
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		163847936876980536, 256462492811829427	0.68047	0.66531*	0.54314
$ \begin{array}{c} 124795884580648576, 526457461907464601 \\ 573223409952553925, 81222304453481810 \\ 0.64258 & 0.63111 \\ 0.63111^* \\ 0.63275^* \\ 0.63050 \\ 0.62375^* \\ 0.62375^* \\ 0.62375^* \\ 0.62375^* \\ 0.62375^* \\ 0.63648 \\ 0.62092 \\ 0.62092^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63769^* \\ 0.63648 \\ 0.62092 \\ 0.62092^* \\ 0.62027^* \\ 0.62027^* \\ 0.62027^* \\ 0.62027^* \\ 0.62027^* \\ 0.62027^* \\ 0.62027^* \\$		206638310974457555, 28146528635210647	0.64632	0.63406	0.63406*
$ \begin{array}{c} 573223409952553925, \ 81222304453481810 \ 0.64258 \ 0.63111 \ 0.63111^* \\ \hline 2^{60} - 93 \ 561860773102413563, \ 79300725740259852 \ 0.72541^* \ 0.50786 \ 0.50786 \ 0.30786 \ 0.31182338526007932, \ 998922549734761568 \ 0.66098 \ 0.65258^* \ 0.60350 \ 0.66024 \ 0.62375^* \ 0.$	$2^{59} - 55$	346764851511064641, 287514719519235431	0.71819*	0.54325	0.54325
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		124795884580648576, 526457461907464601	0.64928	0.64760*	0.62279
$ \begin{array}{c} 439138238526007932, \ 998922549734761568 \\ 734022639675925522, \ 67273627956685463 \ 0.66024 \ 0.62375 \ 0.62375^* \\ \hline 2^{61}-1 \ 1351750484049952003, \ 2078173049752560138 \ 0.71028^* \ 0.54999 \ 0.54276 \ 1070922063159934167, \ 212694642947925581 \ 0.63769 \ 0.63769^* \ 0.56108 \ 1267205010812451270, \ 1283839219676404755 \ 0.63648 \ 0.62092 \ 0.62092^* \ \\ \hline 2^{62}-57 \ 2774243619903564593, \ 1983373718104285921 \ 0.62466 \ 0.64180^* \ 0.59560 \ 431334713195186118, \ 1159739479727509578 \ 0.64966 \ 0.64180^* \ 0.59560 \ 2192641879660214934, \ 2674546532986414750 \ 0.62431 \ 0.62374 \ 0.62374^* \ \\ \hline 2^{63}-25 \ 4645906587823291368, \ 60091810420728157 \ 0.65169 \ 0.64418^* \ 0.58261 \ 4373305567859904186, \ 6458928179451363983 \ 0.62582 \ 0.62582 \ 0.62582 \ 0.62497^* \ \\ \hline 2^{264}-59 \ 13891176665706064842, \ 9044836419713972268 \ 0.74105^* \ 0.36297 \ 0.36297 \ 2227057010910366687, \ 17412224886468018797 \ 0.68377 \ 0.64579^* \ 0.52405 \ 18263440312458789471, \ 811465980874026894 \ 0.63276 \ 0.62970 \ 0.62970^* \ \\ \hline 2^{127}-1 \ 82461096547334812307256211668490605096, \ 33541844155669201573045277354985961133 \ 0.74702^* \ 0.50027 \ 0.50027 \ 11378330613495484257537881325094815818, \ 549754870954195569833520341422926719 \ 0.63462 \ 0.62590^* \ 0.56105 \ 29590761937684265566924671478132826269, \ 112488850895970220786062942797968665210 \ 0.68766 \ 0.62059 \ 0.61214^* \ \\ \hline 2^{128}-159 \ 243267374564284687042667403923350539132, \ 270208798174832049227011722299727468712 \ 0.64466 \ 0.64466^* \ 0.51726 \ 119682811202194777305538832478241040430, \ 0.64466 \ 0.64466^* \ 0.51726 \ 0.51$		573223409952553925, 81222304453481810	0.64258	0.63111	0.63111*
$\begin{array}{c} 734022639675925522, \ 67273627956685463 \ 0.66024 \ 0.62375 \ 0.62375^* \\ \hline 2^{81}-1 \ 1351750484049952003, \ 2078173049752560138 \ 0.71028^* \ 0.54999 \ 0.54276 \ 1070922063159934167, \ 212694642947925581 \ 0.63769 \ 0.63769^* \ 0.56108 \ 1267205010812451270, \ 1283839219676404755 \ 0.63648 \ 0.62092 \ 0.62092^* \ 2774243619903564593, \ 1983373718104285921 \ 0.72982^* \ 0.61073 \ 0.59560 \ 431334713195186118, \ 1159739479727509578 \ 0.64966 \ 0.64180^* \ 0.59560 \ 2192641879660214934, \ 2674546532986414750 \ 0.62431 \ 0.62374 \ 0.62374^* \ 2551091334535185398, \ 9006541669060512547 \ 0.65169 \ 0.64418^* \ 0.58261 \ 4373305567859904186, \ 6458928179451363983 \ 0.62582 \ 0.62582 \ 0.62582 \ 0.62497^* \ 2227057010910366687, \ 17412224886468018797 \ 1.8263440312458789471, \ 811465980874026894 \ 0.63276 \ 0.62970 \ 0.62970^* \ 2227057010910366687, \ 17412224886468018797 \ 1.8263440312458789471, \ 811465980874026894 \ 0.63276 \ 0.62970 \ 0.62970^* \ 22177 - 1 \ 82461096547334812307256211668490605096, \ 33541844155669201573045277354985961133 \ 0.74702^* \ 0.50027 \ 0.50027 \ 113783306134495484257537881325094815818, \ 549754870954195569833520341422926719 \ 0.63462 \ 0.62590^* \ 0.56105 \ 29590761937684265566924671478132826269, \ 112488850895970220786062942797986665210 \ 0.68766 \ 0.62059 \ 0.61214^* \ 2^{128} - 159 \ 243267374564284687042667403923350539132, \ 270208798174832049227011722299727468712 \ 0.74262^* \ 0.56865 \ 0.50100 \ 55401819577318168010061270369451294976, \ 169327211700629740391164723972852046130 \ 0.64466 \ 0.64466^* \ 0.51726 \ 119682811202194777305538832478241040430, \ 0.64466 \ 0.64466^* \ 0.51726 \$	$2^{60} - 93$	561860773102413563, 79300725740259852	0.72541*	0.50786	0.50786
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		439138238526007932, 998922549734761568	0.66098	0.65258*	0.60350
$ \begin{array}{c} 1070922063159934167, 212694642947925581 \\ 1267205010812451270, 1283839219676404755 \\ 2774243619903564593, 1983373718104285921 \\ 431334713195186118, 1159739479727509578 \\ 2192641879660214934, 2674546532986414750 \\ 2192641879660214934, 2674546532986414750 \\ 2551091334535185398, 9006541669060512547 \\ 4373305567859904186, 6458928179451363983 \\ 2227057010910366687, 17412224886468018797 \\ 18263440312458789471, 811465980874026894 \\ 13378306134495484257537881325094815818, \\ 549754870954195569833520341422926719 \\ 29590761937684265566924671478132826269, \\ 112488850895970220786062942797968665210 \\ 270208798174832049227011722299727468712 \\ 25401819577318168010061270369451294976, \\ 169327211700629740391164723972852046130 \\ 119682811202194777305538832478241040430, \\ \end{array} \begin{array}{c} 0.63769 \\ 0.63468 \\ 0.63276 \\ 0.62972 \\ 0.63466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.64466 \\ 0.651726 \\ 0.651726 \\ 0.651726 \\ 0.66466 \\ 0.664$		734022639675925522, 67273627956685463	0.66024	0.62375	0.62375*
$ \begin{array}{c} 1267205010812451270, \ 1283839219676404755 \\ 20192641879600214934, \ 2674546532986414750 \\ 2192641879660214934, \ 2674546532986414750 \\ 2551091334535185398, \ 9006541669060512547 \\ 22644187966054842, \ 9044836419713972268 \\ 227057010910366687, \ 17412224886468018797 \\ 1826340312458789471, \ 811465980874026894 \\ 21927 - 1 \\ 2127 - 1 \\ 2128 - 159 \\ 24326737456428468704266740392135053882272852046130 \\ 2128 - 159 \\ 2432673745642846870426740392168665210 \\ 2128 - 159 \\ 24326737456428468704266740392172468712 \\ 2128 - 159 \\ 24326737456428468704266740392135053882478241040430, \\ 2128 - 159 \\ 243267374564284687042667403923350539132, \\ 270208798174832049227011722299727468712 \\ 119682811202194777305538832478241040430, \\ 219682811202194777305538832478241040430, \\ 201920164180 - 0.61478 - 0.61478 - 0.61466 - 0.64466 - 0.61726 - 0.6$	$2^{61} - 1$	1351750484049952003, 2078173049752560138	0.71028*	0.54999	0.54276
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1070922063159934167, 212694642947925581	0.63769	0.63769*	0.56108
$ \begin{array}{c} 431334713195186118, \ 1159739479727509578 \\ 2192641879660214934, \ 2674546532986414750 \\ 2192641879660214934, \ 2674546532986414750 \\ 2551091334535185398, \ 9006541669060512547 \\ 2551091334535185398, \ 9006541669060512547 \\ 4373305567859904186, \ 6458928179451363983 \\ 0.62582 \\ 0.62582 \\ 0.62582 \\ 0.62497 \\ 0.65169 \\ 0.64418^* \ 0.58261 \\ 0.62582 \\ 0.62582 \\ 0.62497^* \\ 0.36297 \\ 0.36297 \\ 0.36297 \\ 0.36297 \\ 0.68377 \\ 0.64579^* \ 0.52405 \\ 0.62970 \\ 0.62970 \\ 0.62970^* \\ 0.5027 \\ 0.50027 \\ 0.50027 \\ 0.50027 \\ 0.50027 \\ 0.50105 \\ 0.52405 \\ 0.62582 \\ 0.62582 \\ 0.62582 \\ 0.62497^* \\ 0.36297 \\ 0.36297 \\ 0.52405 \\ 0.62970 \\ 0.62970^* \\ 0.5027 \\ 0.50027 \\ 0.50027 \\ 0.50027 \\ 0.50027 \\ 0.50027 \\ 0.50027 \\ 0.50105 \\ 0.68766 \\ 0.62059 \\ 0.61214^* \\ 0.6327211700629740391164723972852046130 \\ 119682811202194777305538832478241040430, \\ 0.64466 \\ 0.64466^* \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.51726 \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ 0.51726 \\ 0.64466^* \\ 0.51726 \\ $		1267205010812451270, 1283839219676404755	0.63648	0.62092	0.62092*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{62} - 57$	2774243619903564593, 1983373718104285921	0.72982*	0.61073	0.59560
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		431334713195186118, 1159739479727509578	0.64966	0.64180*	0.59560
$\begin{array}{c} 2551091334535185398, \ 9006541669060512547 \\ 4373305567859904186, \ 6458928179451363983 \ 0.62582 \ 0.62582 \ 0.62497^* \\ \hline \\ 2^{64}-59 \ 13891176665706064842, \ 9044836419713972268 \ 0.74105^* \ 0.36297 \ 0.36297 \\ 2227057010910366687, \ 17412224886468018797 \ 0.68377 \ 0.64579^* \ 0.52405 \\ 18263440312458789471, \ 811465980874026894 \ 0.63276 \ 0.62970 \ 0.62970^* \\ \hline \\ 2^{127}-1 \ 82461096547334812307256211668490605096, \\ 33541844155669201573045277354985961133 \ 0.74702^* \ 0.50027 \ 0.50027 \\ 113783306134495484257537881325094815818, \\ 549754870954195569833520341422926719 \ 0.63462 \ 0.62590^* \ 0.56105 \\ 29590761937684265566924671478132826269, \\ 112488850895970220786062942797968665210 \ 0.68766 \ 0.62059 \ 0.61214^* \\ \hline \\ 2^{128}-159 \ 243267374564284687042667403923350539132, \\ 270208798174832049227011722299727468712 \ 0.74262^* \ 0.56865 \ 0.50100 \\ 55401819577318168010061270369451294976, \\ 169327211700629740391164723972852046130 \ 0.64466 \ 0.64466^* \ 0.51726 \\ 119682811202194777305538832478241040430, \end{array}$		2192641879660214934, 2674546532986414750	0.62431	0.62374	0.62374*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{63} - 25$	4645906587823291368, 60091810420728157	0.73855*	0.50741	0.50741
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2551091334535185398, 9006541669060512547	0.65169	0.64418*	0.58261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4373305567859904186, 6458928179451363983	0.62582	0.62582	0.62497*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{64} - 59$		0.74105*	0.36297	0.36297
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2227057010910366687, 17412224886468018797	0.68377	0.64579*	0.52405
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18263440312458789471, 811465980874026894	0.63276	0.62970	0.62970*
$\begin{array}{c} 113783306134495484257537881325094815818, \\ 549754870954195569833520341422926719 \\ 29590761937684265566924671478132826269, \\ 112488850895970220786062942797968665210 \\ \hline \\ 2^{128}-159 \\ & 243267374564284687042667403923350539132, \\ 270208798174832049227011722299727468712 \\ 55401819577318168010061270369451294976, \\ 169327211700629740391164723972852046130 \\ 119682811202194777305538832478241040430, \\ \end{array} \begin{array}{c} 0.63462 \\ 0.62590^* \\ 0.62590^* \\ 0.62059 \\ 0.62059 \\ 0.50100 \\ 0.64466^* \\ 0.64466^* \\ 0.51726 \\ 0.5172$	$2^{127}-1$				
$\begin{array}{c} 549754870954195569833520341422926719 \\ 29590761937684265566924671478132826269, \\ 112488850895970220786062942797968665210 \\ \hline \\ 2^{128}-159 \\ & 243267374564284687042667403923350539132, \\ 270208798174832049227011722299727468712 \\ & 55401819577318168010061270369451294976, \\ & 169327211700629740391164723972852046130 \\ & 119682811202194777305538832478241040430, \\ \end{array} \begin{array}{c} 0.63462 \\ 0.62590^* \\ 0.62590^* \\ 0.62059 \\ 0.62059 \\ 0.50100 \\ 0.64466^* \\ 0.51726 \\ 0.517$		33541844155669201573045277354985961133	0.74702*	0.50027	0.50027
$\begin{array}{c} 29590761937684265566924671478132826269,\\ 112488850895970220786062942797968665210 & 0.68766 & 0.62059 & 0.61214^* \\ \hline \\ 2^{128}-159 & 243267374564284687042667403923350539132,\\ 270208798174832049227011722299727468712 & 0.74262^* & 0.56865 & 0.50100 \\ & 55401819577318168010061270369451294976,\\ 169327211700629740391164723972852046130 & 0.64466 & 0.64466^* & 0.51726 \\ & 119682811202194777305538832478241040430, \end{array}$		113783306134495484257537881325094815818,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		549754870954195569833520341422926719	0.63462	0.62590*	0.56105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		29590761937684265566924671478132826269,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		112488850895970220786062942797968665210	0.68766	0.62059	0.61214*
270208798174832049227011722299727468712 0.74262* 0.56865 0.50100 55401819577318168010061270369451294976, 169327211700629740391164723972852046130 119682811202194777305538832478241040430,	$2^{128} - 159$				
55401819577318168010061270369451294976, 169327211700629740391164723972852046130 119682811202194777305538832478241040430,		270208798174832049227011722299727468712	0.74262*	0.56865	0.50100
169327211700629740391164723972852046130 0.64466 0.64466* 0.51726 119682811202194777305538832478241040430,					
119682811202194777305538832478241040430,		•	0.64466	0.64466*	0.51726
· ·					
		197801430676655477123612829371477088259	0.64289	0.62396	0.62396*
10100170001000071112001202001171100020310 0.07203 0.02030 0.02030		119682811202194777305538832478241040430,			

3. Power-of-Two Moduli

We now report a computer search for the case where $m=2^e$ for some positive integer e. In this case, the maximal period of the MLCG (1) is $2^{e-2}=m/4$,

m	a	$M_8(m,a)$	$M_{16}\left(m,a ight)$	$M_{32}(m,a)$
$2^{28} - 57 = 268435399$	31792125	0.75519*	0.62442	0.61882
	28932291	0.68564	0.67353*	0.64453
	18225409	0.68003	0.66230	0.66230*
$2^{29} - 3 = 536870909$	16538103	0.75238*	0.59538	0.59538
	3893367	0.69582	0.67168*	0.62950
	4723776	0.68494	0.66667	0.66418*
	5993731	0.67352	0.67088	0.66418*
$2^{30} - 35 = 1073741789$	5122456	0.73967*	0.59108	0.59108
	4367618	0.70100	0.67634*	0.59583
	6453531	0.66184	0.65253	0.65253*
$2^{31} - 1 = 2147483647$	1389796	0.72332*	0.58994	0.57735
	950975	0.67392	0.66519*	0.60858
	3467255	0.66306	0.65379	0.65379*
$2^{32} - 5 = 4294967291$	657618	0.72484*	0.47308	0.47308
	93167	0.65996	0.65996*	0.62613
	1345659	0.65121	0.65121	0.65121*
$2^{33} - 9 = 8589934583$	340416	0.74831*	0.54269	0.54269
	885918	0.66495	0.66295*	0.65151
	530399	0.67694	0.65619	0.65438*
$2^{34} - 41 = 17179869143$	102311	0.72236*	0.53661	0.53661
	151586	0.65895	0.65355*	0.56180
	97779	0.67327	0.64581	0.64581*
$2^{35} - 31 = 34359738337$	200105	0.70888*	0.59919	0.59919
	258524	0.64888	0.64749*	0.60094
	185852	0.65064	0.64725	0.64725*

Table 3. LCGs with Good Figures of Merit and $a(m-1) < 2^{53}$

attained (in particular) if $a \mod 8 = 5$. The period length can be increased to m if (1) is replaced by:

$$(9) x_n = (ax_{n-1} + c) \bmod m,$$

where c > 0 is odd, and $a \mod 8 = 5$ (see, e.g., [3, 5]). Redefine $\Psi(m) = \{a \in \mathbf{Z}_m : a \mod 8 = 5\}$. In the case where c is odd, T_t , $d_t(a, m)$, $d_t^*(m)$, etc., are defined as before. For the MLCG case (c = 0), redefine:

$$T_t = \{ \boldsymbol{u}_n = (u_n, \dots, u_{n+t-1}) \mid n \ge 0, \ x_0 \in \mathbf{Z}_m \text{ and } x_0 \mod 4 = 1 \}$$

= $\{ (u_n, \dots, u_{n+t-1}) \mid n \ge 0, \ x_0 = 1 \}.$

This set has cardinality m/4 and is the intersection of a shifted lattice L_t with $[0,1)^t$ ([5]). In this case, the lower bound on d_t becomes: $d_t^*(m) = \gamma_t^{-1}(m/4)^{-1/t}$.

LCGs with power-of-two moduli have a major drawback: The (r+1)th most significant bit has period length at most 2^{-r} times that of the most significant bit. The low order bits thus have rather short period lengths and for this reason, many authors recommend avoiding these generators for simulation. However, if e is very large and only the most significant bits are used (e.g., if e=128 and the 53 most significant bits of each x_n are used to construct a floating-point number between 0 and 1), then this drawback becomes much less important. Also, in the case where the entire set of points T_t is used for quasi-Monte Carlo integration, this periodicity issue is no longer relevant. The major reason for considering power-of-two moduli is that it makes (1) and (9) easy to implement on a computer and yields fast generators.

Table 4. LCGs with Good Figures of Merit, for $m=2^e$ and c odd

m	a	$M_8(m,a)$	$M_{16}(m, a)$	$M_{32}(m,a)$
230	438293613	0.75107*	0.58300	0.58300
	523592853	0.70068	0.67686*	0.64694
	851723965	0.70068	0.67686*	0.64694
	116646453	0.67718	0.67420	0.67107*
2^{31}	37769685	0.75896*	0.51494	0.51494
	26757677	0.68312	0.68289*	0.62474
	20501397	0.67787	0.67787	0.66548*
2^{32}	2891336453	0.75466*	0.56806	0.56806
	29943829	0.67429	0.67105*	0.58062
	32310901	0.65630	0.65336	0.65336*
2^{33}	3766383685	0.75029*	0.56952	0.56952
	32684613	0.68055	0.67255*	0.62595
	5080384621	0.66619	0.66604	0.66604*
2^{34}	52765661	0.74421*	0.54362	0.54362
	50004141	0.68442	0.67057*	0.65570
	67037349	0.69761	0.66579	0.66579*
2^{35}	22475205	0.74676*	0.59182	0.59182
	15319397	0.67472	0.66933*	0.60508
	15550228621	0.65734	0.65552	0.65552*
2^{36}	12132445	0.75179*	0.51869	0.51869
	8572309	0.66450	0.66389*	0.63361
	33690453	0.68461	0.65808	0.65760*
2^{40}	330169576829	0.75723*	0.46879	0.46879
	42595477	0.67959	0.66436*	0.60251
40	33261733	0.65941	0.65477	0.65477*
2^{48}	24435733	0.75134*	0.51813	0.51813
	18159421	0.66288	0.65867*	0.62156
260	67884336772053	0.64288	0.64288	0.64288*
2^{60}	454339144066433781	0.75956*	0.57465	0.55002
	21828622668691829	0.65844	0.65566*	0.63458
263	395904651965728677	0.63944	0.63944	0.63944*
200	9219741426499971445	0.73715*	0.54235	0.54235
	2806196910506780709 3249286849523012805	0.69668 0.64507	0.66519*	0.60754
264	2862933555777941757	0.04507	0.63523	0.63523*
2	2862933555777941757 3202034522624059733	0.75673	0.55283	0.54445
	3202034522624059733	0.67938	0.63763	0.60256
296	75564983892026345434470042133	0.07930	0.63763	0.55571
^	41898663544932533964435923957	0.74760	0.61264	0.59583
	22104684854187731770179339485	0.65329	0.63558	0.63287*
2128	47026247687942121848144207491837418733	0.03329	0.53649	0.03287
	52583122484843402430317208685168068605	0.74763	0.53649 0.65994*	0.53649
	47026247687942121848144207491837523525	0.70223	0.63994	0.62853*
	41070741001947171040144701491091979979	0.04332	0.03011	0.02000

Table 4 gives the results of the search, for selected powers of two, for the case c>0, c odd. Table 5 gives similar results for c=0. Note that for c=0 and $m=2^e$, the multiplier $a^*=a^{m/4-1} \mod m$ is the inverse of a modulo m, so it produces the same sequence as a, but in reverse order, and it has the same values of d_t . Table 5 gives the pairs (a,a^*) .

Table 5. LCGs with Good Figures of Merit, for $m = 2^e$ and c = 0

m	a,a^*	$M_8(m,a)$	$M_{16}(m, a)$	$M_{32}(m, a)$
2^{30}	177911525, 17372909	0.74878*	0.53850	0.53850
	156051869, 52274357	0.69501	0.67940*	0.64413
	143133861, 233896749	0.69305	0.66791	0.66791*
2^{31}	594156893, 452271861	0.75913*	0.50244	0.50244
	558177141, 413965533	0.68978	0.68749*	0.59450
	602169653, 448899357	0.67295	0.67116	0.67116*
2^{32}	741103597, 887987685	0.75652*	0.53707	0.53707
	1597334677, 851723965	0.70068	0.67686*	0.64694
	747796405, 204209821	0.66893	0.66001	0.66001*
2^{33}	2185253333, 173170557	0.75896*	0.49707	0.49707
	2174241325, 1406965157	0.68312	0.68289*	0.62250
	2167985045, 1720311741	0.67787	0.67787	0.66548*
2^{34}	11481271045, 3694381517	0.75466*	0.56806	0.56806
	4324911125, 1620027197	0.67429	0.67105*	0.58062
	4327278197, 3586136541	0.65630	0.65336	0.65336*
2^{35}	8670442045, 2200188181	0.75818*	0.51264	0.51264
	8622619205, 6073108621	0.68055	0.67255*	0.60467
	22260253805, 7113024869	0.66619	0.66604	0.66604*
2^{36}	4092856269, 14224997637	0.75662*	0.50169	0.50169
	17229873325, 856580901	0.68442	0.67057*	0.65570
	17246906533, 12512050989	0.69761	0.66579	0.66579*
2^{48}	49402601338917, 5567195800493	0.75801*	0.58062	0.58062
	70189847242853, 69036053825901	0.67618	0.66857*	0.61586
	21749276838573, 66473811011877	0.65702	0.64692	0.64692*
2^{60}	276137484736346373, 96397229732113357	0.75277*	0.48916	0.48916
	150878991426218621, 243765350249586389	0.65527	0.65510*	0.59498
	271413322654087621, 111008605039107341	0.64851	0.64851	0.64435*
2^{63}	3512401965023503517, 1447878736930374069	0.74926*	0.50092	0.50092
	2444805353187672469, 2079243811257762237	0.70937	0.66091*	0.61403
	1987591058829310733, 1702126216606895045	0.64490	0.64060	0.63994*
2^{64}	1181783497276652981, 4292484099903637661	0.76039*	0.42672	0.42672
	7664345821815920749, 1865811235122147685	0.67778	0.66115*	0.54884
	2685821657736338717, 1803442709493370165	0.65961	0.63932	0.63932*
2^{128}	25096281518912105342191851917838718629,			
	55640593262044302480766460352317677869	0.76598*	0.55122	0.55122
	23766634975743270097972271989927654085,			
	67836365537811707609274168323887561741	0.65708	0.65708*	0.55662
	92563704562804186071655587898373606109,			
	42195469826238322466821139555285835125	0.63462	0.63462	0.63405*

References

- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften 290, Springer-Verlag, New York, 1988.
- [2] G. S. Fishman, Multiplicative congruential random number generators with modulus 2^{β} : An exhaustive analysis for $\beta = 32$ and a partial analysis for $\beta = 48$, Mathematics of Computation **54** (1990), no. 189, 331–344.
- [3] ______, Monte Carlo: Concepts, algorithms, and applications, Springer Series in Operations Research, Springer-Verlag, New York, 1996.
- [4] G. S. Fishman and L. S. Moore III, An exhaustive analysis of multiplicative congruential random number generators with modulus 2³¹ - 1, SIAM Journal on Scientific and Statistical Computing 7 (1986), no. 1, 24-45.
- [5] D. E. Knuth, The art of computer programming, volume 2: Seminumerical algorithms, second ed., Addison-Wesley, Reading, Mass., 1981.

- [6] P. L'Ecuyer, Efficient and portable combined random number generators, Communications of the ACM 31 (1988), no. 6, 742-749 and 774. See also the correspondence in the same journal, 32 (1989), no. 8, 1019-1024.
- [8] P. L'Ecuyer, F. Blouin, and R. Couture, A search for good multiple recursive random number generators, ACM Transactions on Modeling and Computer Simulation 3 (1993), no. 2, 87–98.
- P. L'Ecuyer and R. Couture, An implementation of the lattice and spectral tests for multiple recursive linear random number generators, INFORMS Journal on Computing 9 (1997), no. 2, 206-217.
- [10] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, SIAM, Philadelphia, 1992.
- [11] M. Sakamoto and S. Morito, Combination of multiplicative congruential random number generators with safe prime modulus, Proceedings of the 1995 Winter Simulation Conference, IEEE Press, 1995, pp. 309-315.

DÉPARTEMENT D'INFORMATIQUE ET DE RECHERCHE OPÉRATIONNELLE, UNIVERSITÉ DE MONTRÉAL, C.P. 6128, Succ. Centre-Ville, Montréal, H3 C 3J7, Canada

 $E ext{-}mail\ address:$ lecuyer@iro.umontreal.ca