MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- 4. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 5. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 6. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül **a vizsgázó által** megjelölt változat értékelhető.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1. a) első megoldás

(A halmazokat a lányok nevének kezdőbetűjével jelöltük.)

(A namiazokat a lanyok nevenek kezdobetajevel jelottak.)						
Készítsünk halmazábrát! A halmazok elemei legyenek az egyes lányok által megtalált hibák.	1 pont	A pont a modell helyes alkalmazásáért jár.				
Minden jó érték 1-1- pont	7 pont	Ha a 7, 3 és 6 helyett rendre 12-őt, 8-at és 11- et ír, legfeljebb 1 pontot kaphat a 7 pontból. Számolási hiba esetén hibánként 1-1 pontot vonjunk le.				
A felfedezett hibák számát a részhalmazokba írt elemszámok összege adja: (9 + 7 + 12 + 3 + 5 + 6 + 16) Tehát a három lány összesen 58 hibát fedezett fel.	1 pont					
Összesen:	9 pont					

1. b) első megoldás		
Legalább ketten vették észre a hibát, ha pontosan ketten vagy pontosan hárman észlelték azt.	1 pont	Ennek a gondolatnak a megoldás során való fel- használása esetén is jár a pont.
Az első csoportba 7 + 6 + 3; a másodikba 5 hiba tartozott. Legalább ketten észlelték a hibát 21 alkalommal.	2 pont	
Ez az összes észlelt hiba $\frac{21}{58} \approx 0.36$ -ad része, azaz kb. 36%-a.	1 pont	
Összesen:	4 pont	

1. a) második megoldás		
(Jelöljük a lányok nevének kezdőbetűjével az egyes lányok által megtalált hibák halmazát!) A szöveg alapján: $ A = 24$; $ B = 30$; $ R = 30$; $ A \cap B = 12$; $ A \cap R = 8$; $ B \cap R = 11$,	1 pont	
valamint $ A \cap B \cap R = 5$.	1 pont	
A három lány által megtalált hibák száma az $A \cup B \cup R$ halmaz elemszáma.	2 pont	Ez a pont nem bontható. Ennek a gondolatnak a megoldás során való felhasználása esetén is jár a pont.
A logikai szita formulát alkalmazva: $ A \cup B \cup R =$ $ A + B + R - A \cap B - A \cap R - B \cap R + A \cap B \cap R =$	2 pont	A formula felírása álta- lános esetre 1 pontot ér.
= 24 + 30 + 30 - 12 - 8 - 11 + 5 = 58.	2 pont	Számolási hiba esetén I pontot kap.
A három lány összesen 58 hibát észlelt.	1 pont	
Összesen:	9 pont	

1. b) második megoldás						
Legalább ketten vették észre a hibát, ha pontosan ketten vagy pontosan hárman észlelték azt.	1 pont	Ennek a gondolatnak a megoldás során való felhasználása esetén is jár a pont.				
Ezért a hibák száma: $ A \cap B + A \cap R + B \cap R - 2 \cdot A \cap B \cap R = 12 + 8 + 11 - 2 \cdot 5 = 21.$	2 pont					
A keresett százalék tehát $\frac{21}{58} \cdot 100 \approx 36 \%$.	1 pont					
Összesen:	4 pont					

írásbeli vizsga 0812 4/23 2008. május 6.

2. első megoldás		
Megoldást csakis az $x^2 \ge 3$ feltételnél kereshetjük.	1 pont	
Emeljük négyzetre az egyenlet mindkét oldalát! $x^2 + 1 + 2\sqrt{(x^2 + 1)(x^2 - 3)} + x^2 - 3 = 4$.	2 pont	Helyesen alkalmazza a kéttagú összeg négyzetre emelését 1 pont, ezt jól alkalmazza a négyzetgyö- kös kifejezésekre 1 pont.
Rendezés után kaphatjuk, hogy $2 \cdot \sqrt{(x^2 + 1)(x^2 - 3)} = 6 - 2x^2$ (azaz $\sqrt{(x^2 + 1)(x^2 - 3)} = 3 - x^2$).	2 pont	Tudja, hogy a négyzet- gyökös kifejezésre cél- szerű rendezni 1 pont, ezt helyesen elvégzi 1 pont.
A baloldali kifejezés nemnegatív értékű, így a jobboldali kifejezés is nemnegatív,	1 pont	
ezért $x^2 \le 3$ feltételnek is fenn kell állnia.	1 pont	
A kezdeti feltétellel összevetve, az $x^2 = 3$ teljesülhet csak.	1 pont	
Ezt az értéket az eredeti egyenletbe behelyettesítve adódik, hogy az $x^2 = 3$ kielégíti az egyenletet.	1 pont	
Innen a két gyök: $x_1 = \sqrt{3}$ és $x_2 = -\sqrt{3}$. $\left(M = \left\{-\sqrt{3}, \sqrt{3}\right\}\right)$	1 pont	
Összesen:	10 pont*	

2. második megoldás		
Mind a két oldalból kivonva a $\sqrt{x^2 + 1}$ kifejezést, emeljük négyzetre a kapott egyenlet mindkét oldalát!	1 pont	
Ekkor az $x^2 - 3 = 4 - 4\sqrt{x^2 + 1} + x^2 + 1$ egyenlethez juthatunk.	2 pont	Az egyenlet két oldalának helyes felírása 1-1 pont.
Rendezve kapjuk, hogy $4 \cdot \sqrt{x^2 + 1} = 8$ (azaz $\sqrt{x^2 + 1} = 2$).	2 pont	Tudja, hogy a négyzet- gyökös kifejezésre cél- szerű rendezni 1 pont, ezt helyesen elvégzi 1 pont.
Négyzetre emelve és rendezve az $x^2 = 3$ egyenlethez jutunk;	2 pont	
és innen $x_1 = \sqrt{3}$ és $x_2 = -\sqrt{3}$. $\left(M = \left\{-\sqrt{3} ; \sqrt{3}\right\}\right).$	1 pont	
Behelyettesítéssel adódik, hogy mind a két érték kielégíti az eredeti egyenletet.	2 pont	Ez a pont nem bontható.
Összesen:	10 pont*	

2. harmadik megoldás		
A megoldás csak olyan x szám lehet, amelyre $x^2 \ge 3$ teljesül.	1 pont	
Vonjuk ki mindkét oldalból a $\sqrt{x^2 + 1}$ kifejezést! $\sqrt{x^2 - 3} = 2 - \sqrt{x^2 + 1}$	1 pont	
A kapott egyenlet bal oldalán álló kifejezés értéke nemnegatív, így csak olyan x szám lehet a megoldás, amelyre a jobb oldal értéke is nemnegatív.	1 pont	
Tehát $2 - \sqrt{x^2 + 1} \ge 0$, azaz $2 \ge \sqrt{x^2 + 1}$.	1 pont	
Az utóbbi egyenlőtlenség mindkét oldalát négyzetre emelve a $4 \ge x^2 + 1$, azaz $3 \ge x^2$ egyenlőtlenséghez jutunk.	2 pont*	Négyzetre emelés 1 pont, rendezés 1 pont.
A négyzetre emeléssel a reláció jel nem változott, mert az $2 \ge \sqrt{x^2 + 1}$ egyenlőtlenség mindkét oldala nemnegatív értékű, és a négyzetfüggvény a nemnegatív számok halmazán szigorúan növekvő.	2 pont*	Helyes megállapításon- ként 1-1 pont.
A kezdeti $x^2 \ge 3$ és a kapott $3 \ge x^2$ egyenlőtlenségek csak akkor teljesülhetnek, ha $x^2 = 3$.	1 pont*	
Innen a két gyök: $x_1 = \sqrt{3}$ és $x_2 = -\sqrt{3}$. $M = \left\{-\sqrt{3}; \sqrt{3}\right\}$	1 pont	
Összesen:	10 pont*	

A *-gal jelölt pontok az alábbi megoldása esetén a következőképpen adhatók:

Mivel $x^2 \ge 3$, ezért $x^2 + 1 \ge 4$. (1 pont) A négyzetgyökfüggvény a nemnegatív számok halmazán szigorúan növő, (1 pont)

igy $\sqrt{x^2 + 1} \ge 2$ lehet csak. (1 pont)

Az $2 \ge \sqrt{x^2 + 1}$ és a kapott $\sqrt{x^2 + 1} \ge 2$ egyenlőtlenségek egyszerre csak akkor teljesülhetnek, ha $\sqrt{x^2 + 1} = 2$, azaz $x^2 = 3$. (2 pont)

2. negyedik megoldás		
Megoldást csakis az $x^2 \ge 3$ feltételnél kereshetjük.	1 pont	
Ha $x^2 = 3$, akkor a $\sqrt{4} + \sqrt{0} = 2$ igaz kijelentést kapjuk.	2 pont	
Tehát a $\sqrt{3}$ és a $-\sqrt{3}$ is megoldás.	1 pont	
Ha $x^2 > 3$, akkor $\sqrt{x^2 + 1} > 2$ és $\sqrt{x^2 - 3} > 0$,	2 pont	A következtetéssel adódó helyes egyenlőtlenségek felírása: 1-1 pont
$igy \sqrt{x^2 + 1} + \sqrt{x^2 - 3} > 2,$	2 pont	
vagyis ekkor nem kapunk megoldást.	1 pont	
Az egyenlet megoldáshalmaza tehát: $M = \{-\sqrt{3}; \sqrt{3}\}.$	1 pont	
Összesen:	10 pont*	

^{*:} A 10 pontból legfeljebb 8-at kaphat, aki csak az egyik gyököt találja meg.

írásbeli vizsga 0812 $7\,/\,23$ 2008. május 6.

3. a)		
Ha az 5×5 -ös táblázatban összeadjuk a k . oszlopban lévő számokat, akkor megkapjuk, hogy hány irodában adtak el k darab autóbuszos utat.	1 pont	Ha a gondolatokat jól használja, ezeket a
Ha a táblázat <i>n</i> . sorában lévő számokat adjuk össze, akkor megkapjuk, hogy hány irodában adtak el <i>n</i> darab repülős utat.	1 pont	pontokat kapja meg.

		A típusú eladott utak száma						
		0 1 2 3 4 összeg					utak száma	
	0	1	1	0	1	2	5	0
ma	1	1	2	2	3	1	9	9
tak szá	2	1	5	2	4	3	15	$15 \cdot 2 = 30$
ladott u	3	0	3	1	9	2	15	$15 \cdot 3 = 45$
R típusú eladott utak száma	4	1	3	3	2	2	11	$11 \cdot 4 = 44$
R t	összeg	4	14	8	19	10	(55)	128
	utak száma	0	14	16	57	40	127	

A táblázat számított adatainak helyes megállapítása	3 pont	Ha a táblázat kiszámolt értékei közt hibák vannak, akkor 1-2 hiba esetén 2 pont, 3-4 hiba esetén 1 pont jár.
Az autóbuszos utak száma: (14+16+57+40=)127;	1 pont	
a repülős utak száma: (9+30+45+44=)128.	1 pont	
Összesen:	7 pont	

írásbeli vizsga 0812 8/23 2008. május 6.

3. b)		
5-nél több utat az az iroda adott el, amelyikben hat, hét vagy nyolc az eladott utak száma.	1 pont	Ennek a gondolatnak a megoldás során való felhasználása esetén is jár a pont.
Hat utat adott el az iroda, ha a táblázatban lévő koordinátáinak $(k; n)$ összege 6. Ez három esetben lehetséges: $k + n = 2 + 4 = 3 + 3 = 4 + 2$.	1 pont	
Ezekhez az adatokhoz tartozó irodák száma pedig 3+9+3=15.	1 pont	
Hét utat adott el az iroda, ha a táblázatban lévő koordinátáinak $(k; n)$ összege 7. Ez két esetben lehetséges: $k + n = 3 + 4 = 4 + 3$.	1 pont	
Ezekhez az adatokhoz tartozó irodák száma pedig $2 + 2 = 4$.	1 pont	
Nyolc utat adott el az iroda, ha a táblázatban lévő koordinátáinak $(k; n)$ összege 8. Ez egyetlen esetben lehetséges: $k + n = 4 + 4$. Ezekhez az adatokhoz tartozó irodák száma pedig 2.	1 pont	
Mivel 55 fiókiroda volt, és közülük ötnél több utat $(15+4+2=)21$ -ben adtak el, a keresett valószínűség: $\frac{21}{55} (\approx 0.3818)$.	1 pont	
Összesen:	7 pont	Számolási hiba esetén összesen l pontot vonjunk le.

3. b) megoldásának másik leírása

		A típusú eladott utak száma				
		0	1	2	3	4
R típusú eladott utak száma	0	1	1	0	1	2
	1	1	2	2	3	1
	2	1	5	2	4	3*
R típusú	3	0	3	1	9*	2**
	4	1	3	3*	2**	2***

Mivel egyik fiókiroda sem adott el 4-nél többet egyik típusú útból sem, ezért 5-nél több utat az az iroda adott el, amelyikben hat, hét vagy nyolc az eladott utak száma.	1 pont	Ennek a gondolatnak a megoldás során való felhasználása esetén is jár a pont.
A táblázat adatai szerint összesen <u>hat</u> utat a táblázatban *-gal megjelölt számú fiókirodákban adtak el,	1 pont	
tehát összesen $3 + 9 + 3 = 15$ irodában.	1 pont	
Hét utat a **-gal megjelölt számú fiókirodákban adtak el,	1 pont	
összesen $2 + 2 = 4$ irodában.	1 pont	
Nyolc utat pedig a ***-gal megjelölt számú fiókirodákban, azaz összesen 2 irodában.	1 pont	
Ötnél több utat tehát $15 + 4 + 2 = 21$ fiókirodában adtak el, és mivel 55 fiókiroda volt, a keresett valószínűség: $\frac{21}{55} (\approx 0.3818)$.	1 pont	
Összesen:	7 pont	Számolási hiba esetén összesen 1 pontot vonjunk le.

Kevésbé részletes indoklás esetén is adjuk meg a vonatkozó pontszámot mind az a) mind a b) kérdésre adott megoldásnál, ha a vizsgázó gondolatmenete követhető. Pl. a b) kérdésben a táblázatban bekarikázta a hat darab megfelelő számot, és azok összegével adta meg a kedvező esetek számát.

4.		
Jelöljük z-vel az urnában lévő zöld golyók, k-val a	golyók, k-val a 1 pont	
kék golyók számát.	1 pont	Ezek a pontok akkor is
Ekkor az urnában lévő golyók száma: $18 + z + k$.	1 pont	járnak, ha a gondolat
Használjuk a valószínűség kombinatorikus		csak az egyenletek
kiszámítását megadó $\frac{kedvező}{\ddot{o}sszes}$ képletet!	1 pont	felírásában jelenik meg.
A feltételek szerint		
(1) $\frac{z+k}{18+z+k} + \frac{1}{15} = \frac{18+z}{18+z+k}$	1 pont	
	1 .	
(2) $\frac{k+18}{18+z+k} = \frac{1,1(z+18)}{18+z+k}.$	1 pont	
Az (1)-es egyenlet törtmentes alakja:	1 nont	
$15 \cdot (z+k) + 18 + z + k = 15 \cdot (18+z),$	1 pont	
innen rendezés után kapjuk:	1 pont	
(3) $16k + z = 252$.	1 point	
Az (2)-es egyenlet törtmentes alakja:	1 pont	
$k+18=1,1\cdot(z+18),$	1 pont	
innen rendezés után kapjuk:	1 nont	
(4) k = 1,1z + 1,8.	1 pont	
A (4)-es egyenlőségből k értékét a (3)-as egyenletbe		
írva	1 pont	
$16 \cdot (1,1z+1,8) + z = 252,$	1	
innen $z = 12$.	1 pont	
A (4) egyenlőségből kapjuk, hogy $k = 15$.	1 pont	
A kapott értékek megfelelnek a feladat feltételeinek.	1 pont	
Az urnában 12 darab zöld és 15 darab kék golyó volt.	1 pont	
Összesen:	14 pont	

II.

5. a)

1		
A keresett háromszög egyik csúcsa a koordinátarendszer origója. A háromszög beírt körének középpontja $K(4; 2)$. (A belső szögfelezők metszéspontja).	1 pont	
Az egyenlő szárú háromszög szimmetriatengelye áthalad ezen a középponton.	1 pont	
Ha az ABC háromszög alapjának egyenese az x tengely, akkor a szimmetriatengelyének az egyenlete $x = 4$.	1 pont	
Mivel $A(0;0)$, és az AB oldalél F felezőpontja $(4;0)$, ezért a B koordinátái $(8;0)$.	1 pont	
A C csúcs az AC oldalegyenes $\left(y = \frac{4}{3}x\right)$ és a szimmetriatengely $(x = 4)$ metszéspontja. $C\left(4; \frac{16}{3}\right)$.	1 pont	
A <i>BC</i> oldalegyenes egy irányvektora: $\overrightarrow{BC}\left(-4; \frac{16}{3}\right)$,	1 pont	
így a <i>BC</i> egyenes egyenlete: $4x + 3y = 32$.	1 pont	
Összesen:	7 pont	

Az utolsó három pont elosztása az iránytényezős egyenlet felírása esetén:

A B ponton átmenő érintő iránytangense $-\frac{4}{3}$ (1 pont),

mivel irányszöge a megadott egyenes irányszögének ellentettje, vagy kiegészítő szöge, (1 pont)

tehát a BC oldal egyenesének egyenlete: $y = -\frac{4}{3}(x-8)$. (1 pont)

5 b) 44"		
5. b) első megoldás		
Ha $P(0;0)$, és a PQR háromszög alapjának egyenese a QR egyenes , akkor a \overrightarrow{PK} vektor a QR egyenes egy normálvektora. $\overrightarrow{PK} = (4; 2)$. QR egyenes egyenlete: $2x + y = c$; ahol c valamilyen valós szám.	1 pont	
A megadott kör akkor lesz a <i>PQR</i> háromszög beírt köre, ha a <i>QR</i> egyenes érinti a kört. Vagyis a körnek és az egyenesnek egyetlen közös pontja van. Tehát az a c érték felelhet meg, amelyre az alábbi egyenletrendszernek egyetlen gyöke lesz: $2x + y = c$ $(x-4)^2 + (y-2)^2 = 4$	1 pont	
Az első egyenletből y-t kifejezve $(y = c - 2x)$, és a másodikba behelyettesítve rendezés után kapjuk, hogy $5x^2 - 4cx + c^2 - 4c + 16 = 0$.	3 pont	A háromtagú kifejezés négyzetre emelésének helyes elvégzése 2 pont (ez nem bontható), helyes összevonás 1 pont.
Egyetlen gyököt pontosan akkor kapunk, ha ennek az egyenletnek a diszkriminánsa (D) nulla, $D = -4c^2 + 80c - 320$.	1 pont	A pont a diszkrimináns helyes felírásáért jár.
Megoldandó tehát a $c^2 - 20c + 80 = 0$ egyenlet. Ebből: $c_1 = 10 + \sqrt{20}$ és $c_2 = 10 - \sqrt{20}$.	1 pont	
A c_2 értéke nem felel meg, mert ekkor a kör a háromszög kívülről érintő köre lenne.	1 pont	
A keresett <i>QR</i> egyenes egyenlete: $2x + y = 10 + \sqrt{20}$.	1 pont	
Összesen:	9 pont	

- ·		
5. b) második megoldás		
Ha $P(0;0)$, és a PQR háromszög alapjának egyenese a QR egyenes, akkor a háromszög szimmetriatengelye a PK egyenes, amelynek egyik irányvektora a \overrightarrow{PK} (4; 2), egyenlete $x - 2y = 0$.	1 pont	
A háromszög beírt körének és a szimmetria tengelyének metszéspontja a QR oldal G felezőpontja. $\begin{cases} (x-4)^2 + (y-2)^2 = 4 \\ x-2y = 0 \end{cases}$	1 pont	
Behelyettesítő módszert alkalmazva az $5x^2 - 40x + 64 = 0$ (vagy az $5y^2 - 20y + 16 = 0$) egyenlethez jutunk.	2 pont	A kéttagú kifejezés négyzetre emelésének helyes elvégzése 1 pont, helyes összevonás 1 pont.
Ennek megoldásai: $x_1 = 4 + \frac{2\sqrt{20}}{5}$ és $x_2 = 4 - \frac{2\sqrt{20}}{5}$. (Vagy $y_1 = 2 + \frac{\sqrt{20}}{5}$ és $y_2 = 2 - \frac{\sqrt{20}}{5}$)	1 pont	
Mivel a <i>G</i> pont első koordinátája 4-nél nagyobb,	1 pont	
igy $G\left(4 + \frac{2\sqrt{20}}{5}; 2 + \frac{\sqrt{20}}{5}\right)$.	1 pont	
A QR egyenes merőleges a PK egyenesre, és áthalad a G ponton, így egyik normálvektora \underline{n} (2;1).	1 pont	
A QR egyenes egyenlete: $2x + y = 8 + \frac{4\sqrt{20}}{5} + 2 + \frac{\sqrt{20}}{5}, \text{ azaz}$ $2x + y = 10 + \sqrt{20}.$	1 pont	
Összesen:	9 pont	
Az egyenes egyenletének bármely alakja elfogadható: p	pl.: y = -2	$(x-4-\frac{4\sqrt{5}}{5})+2+\frac{2\sqrt{5}}{5}.$

írásbeli vizsga 0812 14/23 2008. május 6.

6. a)		
A differenciálható f függvénynek az $x = 1$ akkor lehet szélsőérték-helye, ha itt az első deriváltja nulla.	1 pont	Ennek a gondolatnak a megoldás során való felhasználása esetén is jár a pont.
Mivel $f'(x) = 3x^2 + 2kx + 9$;	1 pont	
ezért $f'(1) = 3 + 2k + 9 = 0$.	1 pont	
innen $k = -6$.	1 pont	
A lehetséges k értékre $f'(x) = 3x^2 - 12x + 9$.	1 pont	
A másodfokú polinom szorzatalakja: $f'(x) = 3 \cdot (x-1) \cdot (x-3)$.	2 pont	Ez a 2 pont akkor jár, ha a vizsgázó a másodfokú függvény előjelviszonyait megindokolva vizsgálja.
Az $x = 1$ helyen a derivált pozitívból negatívba vált,	1 pont	
ezért itt az f függvénynek lokális maximuma van.	1 pont	A szöveges indoklást egy
A derivált az $x = 3$ helyen negatívból pozitívba vált,	1 pont	helyesen kitöltött táblázat
ezért itt az f függvénynek lokális szélsőértéke (minimuma) van.	1 pont	helyettesítheti.
Összesen:	11 pont	

6. b)		
Mivel $g'(x) = 3x^2 - 18x$,	1 pont	
ebből $g''(x) = 6x - 18$.	1 pont	
A második derivált zérushelye az $x = 3$.	1 pont	
Itt a második derivált előjelet vált.	1 pont	
A g függvény (egyetlen) inflexiós pontja az $x = 3$.	1 pont	Válaszként a (3; –54) pont megadása is elfogadható.
Összesen:	5 pont	

7. a) első megoldás		
A 41 főből álló társaság ismeretségi számát megkaphatjuk, ha összeadjuk Anna ismerőseinek és Anna 40 ismerőse egymás közti ismeretségeinek számát.	1 pont	Ha a gondolatot jól használja, ezt a pontot kapja meg.
Anna ismeri a 40 ismerősét.	1 pont	
Anna 40 ismerősének mindegyike 38 embert ismer Annán kívül.	1 pont	
Így Anna 40 ismerősének $\frac{40 \cdot 38}{2} = 760 \text{ ismeretsége van egymás közt.}$	1 pont	
A 41 fő között 40 + 760= 800 ismeretség van.	1 pont	
Összesen:	5 pont	

7. a) második megoldás		
Jelöljük egy gráffal az ismeretségeket. Ekkor egy 41 pontú gráfunk lesz, ahol minden pont fokszámát ismerjük, hiszen Anna mind a 40-et ismeri, az ő fokszáma 40, a többiek pontosan 39-et, mert Annát mind ismerik és pontosan egyet nem a többi 39-ből.	2 pont	A jó modell 2 pont.
Azaz a fokszám tétel alapján	1 pont	
2e = 40 + 39.40 = 1600,	1 pont	
tehát 800 ismeretség van köztük.	1 pont	
Összesen:	5 pont	

7. a) harmadik megoldás		
Ha mindenki mindenkit ismerne, akkor az		
ismeretségek száma $\frac{41\cdot40}{2}$ lenne.	2 pont	
40 személy kettesével (egyértelműen) párba állítható		
úgy, hogy a párok két-két tagja nem ismeri egymást,	2 pont	
ezért 20 egymást nem ismerő pár van,		
tehát $\frac{41\cdot40}{2}$ – 20 = 800 ismeretség van.	1 pont	
Összesen:	5 pont	

7. b) első megoldás		
Vannak 40-en akikből választunk (és bármelyik pár	1 pont	
kiválasztásának valószínűsége ugyanakkora).	ı pont	
Az elsőnek választott személy bárki lehet, hiszen		
mindenki pontosan egyet nem ismer (szimmetrikus a	1 pont	
szerepük).		
Utána 39-ből kell választani egyet (összes esetek	1 pont	
száma).	ı pont	
Mivel az elsőnek választott személy közülük egyet	1 pont	
nem ismer, így 38-at ismer (kedvező esetek száma).	ı pont	
38	1 ,	
Annak a valószínűsége, hogy ismerik egymást: $\frac{38}{39}$.	1 pont	
Összesen:	5 pont	

7. b) második megoldás		
Képzeljük el Anna 40 ismerősének ismeretségi		
gráfját. A 40 pontú gráf két pontját akkor kötjük	2 pont	A jó modell 2 pont.
össze, ha a két ember ismeri egymást. Kiszámoljuk,	r	J
hogy hány éle van a gráfnak.		
Ha a 40 ember mindegyike ismerné az összes többi		
embert, a 40 pontú gráfnak $\frac{40 \cdot 39}{2} = 780$ éle lenne.	1 pont	
A feltétel szerinti gráf éleinek száma $\frac{40.38}{2} = 760$.	1 pont	
A keresett valószínűség: $\frac{760}{780} = \frac{38}{39} (\approx 0,9744)$.	1 pont	
Összesen:	5 pont	

7. c) első megoldás			
A kiválasztott két személy közül vagy Anna az egyik, vagy mindkettő Anna ismerősei közül való.	1 pont	· Ha a gondolatot jól használja, ezt a pontot kapja meg.	
1. eset: Ha Anna az egyik kiválasztott. Ekkor a másik kiválasztásától függetlenül a két ember ismeri egymást. A kedvező esetek száma ekkor nulla.	1 pont		
2. eset: Ha Anna ismerősei közül való a két kiválasztott. Akkor a 40 személy kettesével (egyértelműen) párba állítható úgy, hogy a párok két-két tagja nem ismeri egymást, ezért 20 "kedvező" pár van.	1 pont		
Az összes lehetséges kiválasztások száma $\binom{41}{2}$,	1 pont		
azaz 820.	1 pont	Ez a pont jár akkor is, ha a valószínűség meghatá- rozása során számítja ki helyesen.	
Így a kérdéses valószínűség: $\left(\frac{0+20}{820}\right) = \frac{20}{820}$, azaz $\frac{1}{41}$ ($\approx 0,0244$).	1 pont	Itt a hányados képzéséért jár a pont.	
Összesen:	6 pont		

7. c) második megoldás		
Ha Anna az egyik kiválasztott, akkor a másik kiválasztásától függetlenül a két ember ismeri egymást. Így ekkor annak a valószínűsége, hogy nem ismerik egymást nulla.	1 pont	Ha a gondolatot jól használja, ezt a pontot kapja meg.
Ha Annát nem választjuk ki elsőre, annak $\frac{40}{41}$,	1 pont	
annak, hogy másodszorra sem $\frac{39}{40}$ a valószínűsége.	1 pont	
Anna tehát nincs kiválasztva $\frac{40}{41} \cdot \frac{39}{40} = \frac{39}{41}$ valószínűséggel (a függetlenség miatt).	1 pont	
Annak a valószínűsége, hogy Anna 40 ismerőse közül kettőt kiválasztva azok nem ismerik egymást $1 - \frac{38}{39} = \frac{1}{39}$ (lásd b) kérdés megoldását).	1 pont	
Ekkor (a függetlenség miatt) a keresett valószínűség $\frac{39}{41} \cdot \frac{1}{39} = \frac{1}{41}$. A kérdezett valószínűség tehát $\left(0 + \frac{1}{41} = \right) \frac{1}{41} \left(\approx 0,0244\right)$.	1 pont	
Összesen:	6 pont	

Ha a megoldás indoklása követhetően megjelenik, kevésbé részletes leírás esetén is 6 pont adható.

8.		
$\{a_n\}$, ahol $a_n = (-2)^n + 2^n$. Ha n páros, akkor $a_n = 2^n + 2^n = 2 \cdot 2^n (= 2^{n+1})$.	1 pont	
Ha n páratlan akkor $a_n = -2^n + 2^n = 0$.	1 pont	
Az $\{a_n\}$ sorozat tehát nem korlátos nem monoton.	1 pont	
A $\{b_n\}$ sorozatot3 intervallumon kell vizsgálni: $n < 10$; $10 \le n < 23$; $23 \le n$.	1 pont	Ha ezt csak a későbbi leírás tükrözi, az 1 pont akkor is jár.
$\{b_n\}$, ahol $b_n = n-23 - n-10 $; Az abszolútérték értelmezése alapján: Ha $n < 10$, akkor $b_n = (23-n)-(10-n)=13$.	1 pont	Nem jár a pont, ha csak a helyes lineáris egyenletet írja fel.
Ha $10 \le n < 23$, akkor $b_n = (23 - n) - (n - 10) = -2n + 33$.	1 pont	Nem jár a pont, ha csak a helyes lineáris egyenletet írja fel.
Ezen a tartományon $-13 < b_n \le 13$.	1 pont	
Ha $23 \le n$, akkor $b_n = (n-23)-(n-10) = -13$.	1 pont	Nem jár a pont, ha csak a helyes lineáris egyenletet írja fel.
A $\{b_n\}$ sorozat tehát korlátos és monoton csökkenő.	1 pont	
Alsó korlátja: megadhatja a -13-at, vagy bármelyik ennél kisebb számot. Felső korlátja: megadhatja a 13-at, vagy bármelyik ennél nagyobb számot.	1 pont	
$\begin{aligned} &\{c_n\}, \text{ ahol } c_n = \left(\sin\left(\frac{\pi}{2} \cdot n\right) + \cos\left(\frac{\pi}{2} \cdot n\right)\right)^2. \\ &\text{Használjuk az } \alpha = \frac{\pi}{2} \cdot n \text{ jelölést! Ekkor a négyzetre} \\ &\text{emelés , a pitagoraszi összefüggés és a kétszeres} \\ &\text{szögfüggvény képletének alkalmazásával} \\ &c_n = \left(\sin\alpha + \cos\alpha\right)^2 = \\ &= \sin^2\alpha + 2 \cdot \sin\alpha \cdot \cos\alpha + \cos^2\alpha = 1 + \sin2\alpha . \end{aligned}$	2 pont*	A helyes négyzetre emelés l pont, a pitagoraszi összefüggés helyes alkalmazása és sin 2α felismerése l pont.
Visszaírva α eredeti jelentését kapjuk, hogy: $c_n = 1 + \sin(\pi \cdot n) = 1$, mivel $\sin(\pi \cdot n)$ értéke minden n egész esetén 0.	1 pont*	
A $\{c_n\}$ sorozat monoton,	1 pont	
és korlátos.	1 pont	_
Alsó korlátja: az 1 vagy bármelyik ennél kisebb, felső korlátja: az 1 vagy bármelyik ennél nagyobb szám.	1 pont	
Összesen:	16 pont	

A *-gal jelölt pontok elosztása más megoldás esetén:

1. $A \sin\left(\frac{\pi}{2} \cdot n\right) + \cos\left(\frac{\pi}{2} \cdot n\right)$ összeg valamelyik tagja mindig 0, ekkor a másik tag pedig 1

vagy - 1, (2 pont) igy $c_n = 1$ minden pozitív egész n esetén. (1 pont)

2. Az első négy tag kiszámítása (1 pont), majd annak közlése, hogy az összeg tagjainak periodicitása miatt a további tagok mindegyike is 1-gyel egyenlő (1 pont).

Az alábbi táblázatban összefoglaljuk az áttekinthetőség kedvéért a három sorozat kérdezett tulajdonságait:

a sorozat	korlátos	monoton
$ \left\{a_n\right\}; \ a_n = \begin{cases} 2^{n+1}, \ han \ p\'{a}ros \\ 0, \ han \ p\'{a}ratlan \end{cases} $	nem	nem
$\left\{b_{n}\right\}; b_{n} = \begin{cases} 13, & ha \ n < 10 \\ -2n + 33, & ha \ 10 \le n < 23 \\ -13, & ha \ 23 \le n \end{cases}$	igen	igen
$\{c_n\}$; $c_n = 1$ n összes értékére	igen	igen

írásbeli vizsga 0812 21 / 23 2008. május 6.

9. a)

elfogadhatók.

C Használjuk az ábra jelölé	seit!	
A 3 cm sugarú <i>k</i> körlapba belevágni ugyanazzal a köralakú formával azt jelenti, hogy az <i>O</i> középpontú 3 cm sugarú kört eltoljuk 2 cm-rel az \overrightarrow{OK} vektorral. A <i>k</i> körlapból kivágunk egy <i>T</i> tartományt. (A rajzon ez szürkén szerepel.) <i>T</i> -nek szimmetriatengelye a <i>DC</i> és az <i>OK</i> egyenes. A <i>T</i> -t határoló két körív sugara	2 pont	Ez a 2 pont a gondolatok követhető megjeleníté- séért jár.
egyaránt 3 cm, középpontjuk az <i>O</i> illetve a <i>K</i> pont. A <i>T</i> tartomány két egybevágó körszeletből áll. Egy ilyen körszelet (pl. a <i>DCB</i>) területét számítjuk		
$t_{ki.} t_{k\"{o}rszelet} = t_{k\"{o}rcikk} - t_{h\acute{a}romsz\"{o}g}$.	1 pont	
Az $ODBC$ körcikk középponti szöge és az ODC háromszög szárszöge is a DOC szög. Legyen $DOC \angle = 2\alpha$. Az α nagyságát az FOC derékszögű háromszögből számítjuk ki. $OC = 3$ és $OF = 1$, innen $\cos \alpha = \frac{1}{3}$.	1 pont	A továbbiakban a szükséges mennyiségeket két tizedesjegyre kiszámítva adjuk meg,
$\alpha = 1,23 \ (\alpha = 70,53^{\circ}).$	1 pont	
$iv_{DBC} = r \cdot 2\alpha (rad) = 7,39,$	1 pont	
ahonnan $t_{k\ddot{o}rcikk} = \frac{\dot{t}v \cdot r}{2} = 11,07 \text{ (cm}^2).$	1 pont	Fokban mért szöggel számolva: $t_{k\"{o}rcikk} = \frac{9\pi \cdot 141,06}{360} = 11,07.$
$t_{h\acute{a}romsz\ddot{o}g} = \frac{r^2 \cdot \sin(2\alpha)}{2} = 2,83 \text{ (cm}^2);$ (vagy $t_{h\acute{a}romsz\ddot{o}g} = 2\sqrt{2} \approx 2,83 \text{ (cm}^2)$).	1 pont	
$t_{k\ddot{o}rszelet} = 8,25 (\text{cm}^2);$	1 pont	
$t_{holdacska} = t_{k\ddot{o}r} - 2 \cdot t_{k\ddot{o}rszelet} = 11,78 \text{ (cm}^2).$	1 pont	
Egy holdacska felülről látható felületének területe 11,8 cm ² .	1 pont	A pont a közbülső adatok- ból kapott eredmény egy tizedesjegyre kerekített értékéért jár.
Összesen:	11 pont	
A részeredmények tetszőleges (legalább egy tizedesjegy) pontosságú helyes kerekítéssel		

9. b)		
Minden körlapból lett egy holdacska és egy 2 cm sugarú körlap formájú sütemény. ($AB = 4 cm$)	1 pont	
Klári az eredeti 30×60-as téglalapból kivágott 50 darab holdacskát és 50 db 2 cm sugarú kört. A kivágott sütemények alapterülete (közelítő értékekkel számolva): $50\cdot11,78+50\cdot2^2\cdot\pi=50\cdot(11,78+12,56)=1217 \text{ cm}^2$.	1 pont	
A maradék alapterület ekkor $30 \cdot 60 - 1217 = 1800 - 1217 = 583 \text{ cm}^2$.	1 pont	
Ebből négyzet alapú formát kellett készíteni azonos vastagsággal. A négyzet alakúra kinyújtott tészta alapterülete a maradék alapterület, vagyis 583 cm².	1 pont	
Ennek a négyzetnek az oldala: $\sqrt{583}$, azaz (kerekítve) 24 cm.	1 pont	A pont a közbülső adatokból kapott eredmény egészre kerekített értékéért jár.
Összesen:	5 pont	A részeredmények tetszőleges (legalább egész) pontosságú helyes kerekítéssel elfogadhatók.

írásbeli vizsga 0812 23 / 23 2008. május 6.