ISÉN - $Ci \mathbf{R}^2$

Une belle courbe ¹

N'est-ce pas?

Consignes

- Cette épreuve de **2h** comporte **4** parties équipondérées (+ **1** question bonus).
- Celles-ci peuvent être traitées dans n'importe lequel des 24 ordres possibles.
- Raison de plus pour lire calmement l'énoncé en entier avant de commencer.
- L'usage de la calculatrice est **interdit** (et inutile).
- Rédigez clairement vos solutions en explicitant vos raisonnements et citant les résultats utilisés.
- Et surtout, amusez-vous bien!

The $Bell\ Curve$ est également le titre d'un ouvrage sur les déterminismes sociaux liés au QI qui a suscité une vive controverse dans les années 90 – vous gouglerez ça.

^{1.} Mauvaise translation de : bell curve - courbe en forme de cloche.

Pour $\lambda>0$ fixé (le cas $\lambda=1$ est représenté au verso), on considère la fonction $f_{\lambda}:\mathbf{R}\to\mathbf{R}$ définie par

$$f_{\lambda}(x) = e^{-\lambda x^2}$$
.

♣ – Une équation différentielle

- a) Donner le développement en série entière de f_{λ} au voisinage de 0 en spécifiant son rayon de convergence.
- b) Déterminer par la méthode des séries quelles sont les fonctions f analytiques au voisinage de 0 telles que $f'(x) + 2\lambda x f(x) = 0.$

♦ – Changement d'échelle

- a) Calculez la limite simple (ponctuelle) de f_{λ} quand $\lambda \to \infty$. Pour $\alpha > 0$ fixé, la convergence est-elle uniforme sur $[-\alpha, \alpha]$? Sur $[\alpha, \infty[$? Sur \mathbb{R} ?
- b) Mêmes questions avec $g_{\lambda} = (f_{\lambda})'$.

♠ - Aire sous la courbe

Définissons, pour λ et R > 0:

$$I_{\lambda}(R) = \int_{-R}^{R} f_{\lambda}(t) \, \mathrm{d}t \qquad \text{et} \qquad J_{\lambda}(R) = \iint_{x^2 + y^2 \leqslant R^2} f_{\lambda}(\sqrt{x^2 + y^2}) \, \mathrm{d}A.$$

- a) Évaluer $J_{\lambda}(R)$ par un calcul direct en coordonnées polaires.
- b) En interprétant $I_{\lambda}(R)^2$ comme une intégrale double sur un carré, établir les inégalités

$$J_{\lambda}(R) \leqslant I_{\lambda}(R)^2 \leqslant J_{\lambda}(\sqrt{2}R)$$

et en déduire la valeur de

$$\int_{-\infty}^{\infty} f_{\lambda}(t) dt = \lim_{R \to \infty} I_{\lambda}(R).$$

\heartsuit – Une autre expression

- a) Montrer que la formule $F(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1) n!}$ définit une fonction continue $F: \mathbf{R} \to \mathbf{R}$.
- b) Justifier l'égalité suivante, valable pour tout λ et R > 0:

$$I_{\lambda}(R) = \frac{2}{\sqrt{\lambda}} F(\sqrt{\lambda}R),$$

et en déduire la relation :

$$R I_{R^2}(\sqrt{\lambda}) = \sqrt{\lambda} I_{\lambda}(R).$$

★ - Bonus

Que vaut $\lim_{\lambda \to \infty} \left(\sqrt{\lambda} \int_0^x f_{\lambda}(t) dt \right)$? La convergence est-elle uniforme?