The Way of Machine Thinking

Volume 1: Rules of Universal Language and Fundamental Math

weili chen

January 2023

1	Pref	face		17					
2	Intro	oductio	on	19					
	2.1	Gener	al	19					
	2.2	Data s	structure	19					
		2.2.1	Node	20					
		2.2.2	Empty node	20					
	2.3	Opera	tions	20					
	2.4	Langu	age	22					
		2.4.1	Code	22					
		2.4.2	Function	22					
		2.4.3	Flag object	23					
	2.5	Logic	system	23					
		2.5.1	rule text	23					
		2.5.2	rule	23					
		2.5.3	inference	24					
		2.5.4	Type of rule or inference	24					
		2.5.5	inference axiom of rule equivalence	25					
		2.5.6	contradiction rule	25					
		2.5.7	proof	26					
	2.6	Propo	sitions system	27					
3	Rule	Rules of Operators 29							
	3.1		ns of Operators	29					
		3.1.1	swap axioms of operator	29					
		3.1.2	fundamental axioms of logic error operator	32					
		3.1.3	fundamental axioms of equivalent comparison operator	32					
		3.1.4	fundamental axioms of release operator	33					
		3.1.5	axioms of creativity						
	3.2	Theor	ems of Operators	34					
		3.2.1	theorems of previous node operator	34					
		3.2.2	theorems of logic error operator	36					
4	Rule	es of TI	hree Fundamental Relationships	39					
	4.1		tion of Relationships	39					
		4.1.1	Definition of node value comparison						
		4.1.2	Definition of node null comparison						

		4.1.3	Definition of identical node comparison	40
	4.2	Axiom	s of Relationships	41
		4.2.1	Substitution axioms of identical node comparison	41
		4.2.2	Axioms of node id operator and propositions	41
		4.2.3	Axioms of copy operator and propositions	41
		4.2.4	Axioms of subnode operator and propositions	41
		4.2.5	Axioms of global space operator and propositions	42
		4.2.6	Axioms of temporary space operator and propositions	
		4.2.7	Axioms of next node operator and propositions	
5	The	orems (of Relationship of Node Value Comparison	43
	5.1	Brancl	h function to propositions	43
	5.2	Unity		43
	5.3	Symm	etry	44
	5.4	Swap	· · · · · · · · · · · · · · · · · · ·	44
		5.4.1	Branch function and operator	44
		5.4.2	Branch function and Branch function	
		5.4.3	Branch function and Propositions	45
		5.4.4	Propositions and operator	46
		5.4.5	Propositions and Propositions	48
		5.4.6	Propositions to Propositions with branch function	49
	5.5	Transi	tivity	50
		5.5.1	Branch function with branch function	50
		5.5.2	Branch function with propositions	50
		5.5.3	Propositions with branch function	51
		5.5.4	Propositions with propositions	51
	5.6	Substi	tution	
		5.6.1	Branch function with branch function	52
		5.6.2	Propositions with branch function	52
		5.6.3	Propositions with propositions	53
	5.7	Oppos	ition	54
6	The	orems (of Relationship of Node Null Comparison	57
	6.1	Node i	null comparison propositions to Node value comparison propositions	57
	6.2	Branch	h function to propositions	57
	6.3	Unity		58
	6.4	Swap.		59
		6.4.1	Branch function and operator	59
		6.4.2	Branch function and Branch function	60
		6.4.3	Branch function and Propositions	62
		6.4.4	Propositions and operator	64
		6.4.5	Propositions and Propositions	65
		646	Propositions to Propositions with branch function	67

	6.5	Transi	tivity
		6.5.1	Branch function with branch function
		6.5.2	Branch function with propositions
		6.5.3	Propositions with branch function
		6.5.4	Propositions with propositions
	6.6	Substi	tution
		6.6.1	Propositions with branch function
		6.6.2	Propositions with propositions
	6.7	Oppos	ition
7	The	orems (of Relationship of Identical Node Comparison 77
	7.1		cal node comparison propositions to Node value comparison propo-
			77
	7.2		h function to propositions
	7.3		78
	7.4	_	etry
	7.5	v	
		7.5.1	Branch function and operator
		7.5.2	Branch function and Branch function
		7.5.3	Branch function and Propositions
		7.5.4	Propositions and operator
		7.5.5	Propositions and Propositions
		7.5.6	Propositions to Propositions with branch function
	7.6	Transi	tivity
		7.6.1	Branch function with branch function
		7.6.2	Branch function with propositions 91
		7.6.3	Propositions with branch function 91
		7.6.4	Propositions with propositions
	7.7	Substi	tution
		7.7.1	Propositions with branch function
		7.7.2	Propositions with propositions
		7.7.3	Identical node comparison propositions with node value compari-
			son propositions
		7.7.4	Propositions with node value comparison branch function 96
		7.7.5	Propositions with node value comparison propositions 96
		7.7.6	Propositions with node null comparison branch function 97
		7.7.7	Propositions with node null comparison propositions 97
	7.8	Oppos	ition
8	Rule	es of Er	npty Branch Function 99
	8.1	Definit	tion of Empty Branch Function
	8.2		of Empty Branch Function
	8.3		ems of Empty Branch Function

9	Swa	r	01
	9.1	Identical node comparison	101
		9.1.1 Branch function and branch function	101
		9.1.2 Branch function and propositions	103
		9.1.3 Propositions and propositions	103
		9.1.4 Relationship and id operator	103
		9.1.5 Id operator and copy operator, subnode operator	105
		9.1.6 Relationship and copy operator, subnode operator	106
		9.1.7 Copy operator and subnode operator	107
	9.2	Node value comparison	109
		9.2.1 Operators	109
		9.2.2 Identical node comparison	111
		9.2.3 Itself	119
	9.3	Node null comparison	122
		9.3.1 Operators	
		9.3.2 Identical node comparison	124
		9.3.3 Node value comparison	127
10	The	orems of Operators and Relationships 1	l 31
		Identity	131
		Global space operator	
	10.3	Temporary space operator	132
		Id operator	
		Copy operator	
	10.6	Next node operator	134
	10.7	Previous node operator	135
	10.8	Subnode operator	136
	10.9	Other	141
11	Next	t Order Induction	43
		Definition of flag object &SHi with identical node	43
		11.1.1 Swap definition:	
		11.1.2 Substitution definition:	
	11.2	Definition of flag object &SHi with next node	44
		Definition of flag object &SHi with prev node	
		Theorems of flag object &SHi with identical node	
		11.4.1 Swap with previous node operator:	
		11.4.2 Swap with branch function:	
		11.4.3 Swap with propositions:	
		11.4.4 Swap with the same operand's operator:	
		11.4.5 Swap with the same operand's branch function:	
		11.4.6 Swap with the same operand's propositions:	
	11.5	Theorems of flag object &SHi with next node	
		11.5.1 Swap with the same operand's next node operator:	148

		11.5.2	Swap with operator:	149
		11.5.3	Swap with branch function:	150
		11.5.4	Swap with propositions:	150
		11.5.5	Swap with the same operand's operator:	150
			Swap with the same operand's branch function:	
		11.5.7	Swap with the same operand's propositions:	151
	11.6	Axiom	of next order induction	151
		11.6.1	axiom of inference:	151
		11.6.2	premise 1:	152
		11.6.3	premise 2:	152
		11.6.4	conclusion:	152
12	Reci	ırsiya F	Function R(i)	15 3
12			sion of $R(i)$	
			thems of $R(i)$	
	12.2		Transformation:	
			Result:	
			Operator:	
			Swap with operator:	
			Swap with branch function:	
			Swap with propositions:	
			Swap with self:	
			Swap with flag object:	
			Identical node:	
12	Drov	ious O	rder Induction	165
13			ion of flag object &SHj with identical node	
	10.1		Swap definition:	
			Substitution definition:	
	13.2		ion of flag object &SHj with next node.	
			tion of flag object &SHj with previous node	
			ems of flag object &SHj with identical node	
			Swap with previous node operator:	
			Swap with branch function:	
			Swap with propositions:	
		13.4.4	Swap with the same operand's operator:	167
		13.4.5	Swap with the same operand's branch function:	167
		13.4.6	Swap with the same operand's propositions:	169
	13.5	Theore	ems of flag object &SHj with previous node	170
		13.5.1	Swap with the same operand's next node operator:	170
		13.5.2	Swap with operator:	171
		13.5.3	Swap with branch function:	172
		13.5.4	Swap with propositions:	172
		13.5.5	Swap with the same operand's operator:	172

			Swap with the same operand's branch function:	
			Swap with the same operand's propositions:	
	13.6		of previous order induction	
			axiom of inference:	
			premise 1:	
		13.6.3	premise 2:	. 174
		13.6.4	conclusion:	. 174
14	Recu	ırsive F	unction R_(i)	175
	14.1	Definit	ion of $R_{-}(i)$. 175
	14.2	Theore	ems of R_(i)	. 175
		14.2.1	Transformation:	. 175
		14.2.2	Result:	. 176
		14.2.3	Operator:	. 177
		14.2.4	Swap with operator:	. 178
		14.2.5	Swap with branch function:	. 180
		14.2.6	Swap with propositions:	. 182
			Swap with self:	
			Swap with $R(j)$:	
			Swap with flag object:	
			Identical node:	
15	Dulo	s of No	odo Dina	189
13			ode Ring of node ring	
			ems of node ring	
	10.2	Theore	ems of node ring	. 109
16	Rule	s of Re	lationship of Node Connectivity	199
	16.1	Definit	ion of Node Connectivity	. 199
	16.2	Axiom	of node id operator	. 199
	16.3	Theore	ems of Relationship of Node Connectivity	. 199
		16.3.1	Node Connectivity propositions to Identical node comparison propo) -
			sitions	. 199
		16.3.2	Branch function to propositions	. 200
		16.3.3	Empty branch function	. 200
		16.3.4	Unity	. 201
		16.3.5	Symmetry	. 202
		16.3.6	Swap	. 203
		16.3.7	Transitivity	. 214
		16.3.8	Substitution	. 224
		16.3.9	Opposition	. 230
		16.3.10	Swap of the same operand	. 230
		16.3.11	Node Connectivity propositions to identical node propositions	. 244
			Node null proposition	
		16.3.13	Temporary space operator	. 249

		16.3.14 Node id operator	250
		16.3.15 Transformation of definition	250
17	ъ.		
17		,	253
		Definition of Node Continuity	
	17.2	Theorems of Relationship of Node Continuity	
		17.2.1 Next node to previous node	
		17.2.2 Next node propositions to Identical node comparison propositions	
		17.2.3 Branch function to propositions	
		17.2.4 Empty branch function	
		17.2.5 Unity	
		17.2.6 Swap	
		17.2.7 Transitivity	
		17.2.8 Substitution	
		17.2.9 Opposition	
		17.2.10 Swap of the same operand	
		17.2.11 Node Continuity propositions to node Connectivity propositions . 2	
		17.2.12 Node Continuity propositions to identical node propositions 2	
		17.2.13 Empty node ring	
		17.2.14 Other	806
18	Rula	es of Relationship of Subnode	807
10		Definition of Node Subnode	
		Theorems of Relationship of Subnode	
	10.2	18.2.1 Subnode propositions to Node Connectivity propositions 3	
		18.2.2 Branch function to propositions	
		18.2.3 Empty branch function	
		18.2.4 Unity	
		18.2.5 Swap	
		18.2.6 Swap of the same operand	
		18.2.7 Transitivity	
		18.2.8 Substitution	
		18.2.9 Opposition	
		18.2.10 Other	
		10.2.10 Other	710
19	Tree	Order Induction	349
	19.1	Definition of flag object &SVi with identical node	3 49
		19.1.1 Swap definition:	349
		19.1.2 Substitution definition:	
	19.2	Definition of flag object &SVi with subnode	
		Theorems of flag object &SVi with identical node	
		19.3.1 Swap with previous node operator:	
		19.3.2 Swap with branch function:	
		19.3.3 Swap with propositions:	

		19.3.4	Propositions and recursive function:		 				352
			Swap with the same operand's operator:						
		19.3.6	Swap with the same operand's branch function:		 				353
		19.3.7	Swap with the same operand's propositions:						354
	19.4	Axiom	of tree order induction						355
		19.4.1	axiom of inference:						355
		19.4.2	premise 1:						355
		19.4.3	premise 2:						355
		19.4.4	conclusion:						355
	19.5	Theore	ems of tree order induction						355
	19.6	Definit	zion of $Rd(i)$:r		 				358
	19.7	Theore	ems of Rd(i):r						359
20	D		invalies De(i.i)						261
20			Function $Rc(i;j)$ Sion of $Rc(i;j)$						361
			ems of $\mathrm{Rc}(\mathbf{i};\mathbf{j})$						
	20.2		Transformation:						
			Result:						
			With R(i):						
			With operator:						
			Symmetry:						
			Swap with operator:						
			Swap with branch function:						
			Swap with propositions:						
			Swap with recursive function:						
			Swap with flag object:						
			Fundamental properties:						
		20.2.11	Trundamentai properties	 •	 •	•	 •	•	313
21	Rule	s of Nu	umber Equal Relationship						401
			sion of Number Equal						
	21.2		ems of Number Equal Relationship						
			Number Equal propositions to definition						
			Branch function to propositions						
			Empty branch function						
			Unity						
			Symmetry						
			Swap						
			Swap of the same operand						
			Transitivity						
			With node null propositions						
			With node continuity						
			With identical node propositions						
			2 Substitution						
		21.2.13	Opposition		 				448

		21.2.14 With identical node connectivity	449
		21.2.15 With recursive function	
		$21.2.16\mathrm{With}$ release operator	
22	Rule	es of Number More Than and Less Than Relationship	455
		Definition of Number more than	
		Definition of Number less than	
		Theorems of Relationship of more than and less than	
		Theorems of Number more than Relationship	
		22.4.1 Number more than branch function to definition	
		22.4.2 Number more than propositions to definition	
		22.4.3 Branch function to propositions	
		22.4.4 Empty branch function	
		22.4.5 Unity	
		22.4.6 Swap	
		22.4.7 Swap of the same operand	
		22.4.8 Transitivity	
		22.4.9 Substitution	
		22.4.10 Opposition	
		22.4.11 With identical node propositions	
		22.4.12 With node null propositions	
		22.4.13 With node continuity	475
		22.4.14 With self propositions	
		22.4.15 With next and previous node operator	481
		$22.4.16\mathrm{relationship}$ of number equal and more than and less than	495
23	Rule	es of assign operator in temporary space	505
	23.1	Definition of Flag object Tm	505
	23.2	Definition of Flag object Fam	505
		23.2.1 Transformation	505
		23.2.2 Swap with self	505
		23.2.3 Swap with operators	506
		23.2.4 Clear Fam	506
	23.3	Theorems of Flag object Fam	507
		23.3.1 Swap with branch function:	508
		23.3.2 Swap with propositions:	509
		23.3.3 Swap with recursive function:	510
		23.3.4 Swap with branch function:	513
		23.3.5 Swap with propositions:	
		23.3.6 Swap of the same operand	
	23.4	Axiom of Flag object Tm and Fam	
		23.4.1 axiom of inference 1:	
		23.4.2 axiom of inference 2:	
	23.5	Theorems of Tm	516

	23.6	Theorems of temporary space	516
24	Axio	oms of assign operator	517
	24.1	General axioms	517
		24.1.1 Substitution	517
		24.1.2 Unity	517
		24.1.3 Swap	517
	24.2	Definition of $Del(j)$	518
	24.3	Axioms of Del(j)	518
		24.3.1 Mutation	518
		24.3.2 Swap	518
	24.4	Definition of $Ins(t;j)$	518
	24.5	Axioms of $Ins(t;j)$	519
		24.5.1 Mutation	519
		24.5.2 Swap	519
	24.6	Swap definition of &SHi	520
		$24.6.1 \text{ Ins}(t;j) \dots \dots$	520
		24.6.2 Del(j)	520
	24.7	Swap definition of &SHj	
		$24.7.1 \operatorname{Ins}(t;j) \dots \dots$	
		24.7.2 $\operatorname{Del}(j)$	
	24.8	Axioms of swap with self	
		24.8.1 Ins;Ins	
		24.8.2 Del;Del	
		24.8.3 Ins;Del	
25	The	orems of Insert Node Function Ins(t;j)	523
	25.1	General theorems	523
		25.1.1 Property	523
		25.1.2 Substitution	523
		25.1.3 Swap with operator	523
	25.2	Propositions property	526
	25.3	Swap with identical node propositions	532
	25.4	Other	538
	25.5	Swap with node connectivity propositions	544
		25.5.1 Recursive Function R(i)	
		$25.5.2 j = \varnothing \dots \dots$	
		$25.5.3 j \models \varnothing \dots \dots \dots \dots \dots \dots$	
		25.5.4 Total	
26	The	orems of Delete Node Function Del(j)	559
		General theorems	559
		26.1.1 Property	
		26.1.2 Substitution	

		26.1.3 Swap with operator	
	00.0	26.1.4 Swap with propositions	
		Swap with identical node propositions	
		Other	
	26.4	Swap with node connectivity propositions	74
27		5 1	79
		Unity	
	27.2	Swap with identical node propositions	79
		Swap with $R(i)$	
	27.4	Swap with node connectivity propositions	80
	27.5	Swap with self	80
		27.5.1 Ins and Ins	80
		27.5.2 Del and Del	82
		27.5.3 Ins, Del	84
		27.5.4 Other	86
28	Func	ction Cpo(r) 5	87
	28.1	Definition of $Cpo(r)$	87
	28.2	Property	87
	28.3	Swap	88
		28.3.1 Operator	88
		28.3.2 Propositions node null	
		28.3.3 Propositions identical node	89
		28.3.4 Propositions node connectivity	
		28.3.5 &SHi	89
		28.3.6 Cpo	
		28.3.7 R(i)	
		28.3.8 Rc(i;j)	
		28.3.9 Propositions number comparison	
		28.3.10 Other	
29	Recu	ursive Function Rcpo(i;r) 6	13
		Definition of IsCpo(i;r)	13
		Property of IsCpo(i;r)	
		Definition of Rcpo(i;r)	
		Property of Rcpo(i;r)	
		Swap	
		29.5.1 Operator	
		29.5.2 Propositions node null	
		29.5.3 Propositions identical node	
		29.5.4 Propositions node connectivity	
		29.5.5 IsCpo	
		29.5.6 Cpo	

		29.5.7 Rcpo	622
		29.5.8 R(m)	627
		29.5.9 $Rc(m;n)$	628
		29.5.10 Propositions number comparison	628
		29.5.11 &SHi	628
	29.6	Propositions number equal	
		$\&\mathrm{Tm}(\mathrm{r})$	
30	Addi		719
	30.1	Definition	719
	30.2	Swap	719
		30.2.1 Operator	
		30.2.2 Recursive Function	
		30.2.3 Propositions	
		30.2.4 Itself	721
		30.2.5 Rcpo	721
		30.2.6 The same operand	721
	30.3	General property	721
	30.4	Additive commutativity	727
	30.5	Additive associativity	728
	30.6	Additive monotonicity	732
21	_		727
31			737
		Definition of IsCpm(i;j;r)	
		Property of IsCpm(i;j;r)	
		Swap of $IsCpm(i;j;r)$	
		Definition of Rcpm(i;j;r)	
		Property of Rcpm $(i;j;r)$	
	31.6	Swap of Rcpm(i;j;r)	
		31.6.1 Operator	
		31.6.2 Propositions node null	
		31.6.3 Propositions identical node	
		31.6.4 Propositions node connectivity	
		31.6.5 IsCpo	
		31.6.6 IsCpm	
		31.6.7 Cpo	
		31.6.8 Rcpo	
		31.6.9 Rcpm	
		31.6.10 R(m)	
		31.6.11 Rc(m;n)	
		31.6.12 Propositions number comparison	
		31.6.13 &SHi	
	04 =	31.6.14 Swap in Rcpm	
	31.7	$\&\mathrm{Tm}(\mathrm{r})$	772

	31.8	Substitution	774
	31.9	Expand	778
	31.10	ODistributivity	782
	31.11	1Result	793
	31.12	2Associativity	303
	31.13	3Monotonicity	313
32	Mult	tiplication {	335
	32.1	Definition	335
	32.2	Swap	335
		32.2.1 Operator	335
		32.2.2 Recursive Function	336
		32.2.3 Propositions	336
		32.2.4 Itself	337
		32.2.5 The same operand	337
	32.3	General property	337
	32.4	Commutativity	341
	32.5	Distributivity	343
	32.6	Associativity	346
	32.7	Monotonicity	348
33	Para	ndox 8	35 3
	33.1	Theorems of contradiction	353
	33.2	Definition of paradox	355
		Theorems of paradox propositions	
		Proof of paradox	

1 Preface

The purpose of this book is to create a universal language for machine thinking. The language is completely independent of human natural language, and it is a closed system that recognizes self-definitions and self-explanations. In fact, this book does not rely on natural language, but only introduces the basic structure of universal language through natural language in the first chapter. In the following chapters, the universal language will be used entirely. Therefore, readers need to think in terms of universal language.

Definitions, axioms, theorems, and proofs are the entire content of this first volume. To simplify, easier theorems will omit proofs. At the same time, theorems that can be proved using similar methods are no longer listed. Finally, in the more complex proof process, frequently occurring steps, especially the recovery process, will be omitted.

For the arrangement of the chapters, some basic propositional concepts are defined to explain the basic principles of data structure and operation, at the same time, to prove a series of important theorems. Later chapters will define the concepts of number, addition, and multiplication, and demonstrate the fundamental laws of arithmetic. Finally, the last chapter defines paradox and proves that a paradox cannot lead to a contradiction.

The concepts of infinity, abstraction, composition, and deeper mathematical concepts will be covered in the next volume.

2 Introduction

2.1 General

Universal language is a tool for machine thinking. It can not only execute code, but also infer rules. These processes are equivalent. Rules and inferences are the foundation of machine thinking. Firstly, they can define concepts, and secondly, they can explain principles of universal language and mathematics.

Universal language structure:

data structure \rightarrow operations \rightarrow language system \rightarrow logic system \rightarrow propositions system \rightarrow axioms system \rightarrow theorems system.

Theorems system structure:

basic theorems system \rightarrow mathematics system \rightarrow virtual world system \rightarrow physical world system \rightarrow society.

2.2 Data structure

Universal language is based on data structure. The basic element of data structure is node. This data structure is tree-like multidimensional structure, and it is doubly linked circular in one dimension.

 $Data\ structure$

2.2.1 Node

A node consists of:

- 1. Data value.
- 2. Link, pointing to the next node.
- 3. Link, pointing to the previous node.
- 4. Link, pointing to the child node.
- 5. Unique node id.

Node

2.2.2 Empty node

The empty node is ϕ . There is exactly one empty node in one dimension. An empty node is used to identify the start and end of a one-dimensional loop. An empty node has no child node, so it points to itself.

2.3 Operations

Operator is a Operation instruction. There are 11 operators:

Operand is a variable expressed in conjunction with operators. An operand can be interpreted as a pointer to a node within a data structure.

An operation consists of an operator and several operands. Example:

 $i \odot j$ is an operation, i and j is an operand, \odot is an operator.

Operations:

 $\odot i$: Create a new operand i, pointing to a unique global data structure.

 $\odot i$: Create a new operand i, pointing to a temporary newly allocated data structure.

 $i \odot j$: Create a new operand j. i and j point to the same node.

 $i \otimes j$: Create a new operand j pointing to a temporary newly allocated data structure. The data value of the node pointed to by j is the id of the node pointed to by i.

 $i \odot j$: Create a new operand j. j points to a child of the node pointed to by i.

 $i \oplus$: Release operand i. If i is the last operand that points to a temporary data structure, free the temporary data structure.

 $i\oplus$: Move i to the next node.

 $i \ominus$: Move i to the previous node.

 $i
ilde{=} j - \begin{bmatrix} , codeA, \\ , codeB, \end{bmatrix}$: Compare the value of the node pointed to by i with the value of the node pointed to by j. If equal, codeA executes, otherwise codeB executes.

 $i \ni j$: Insert a new non-empty node or delete a non-empty node.

 \otimes : Mean logic error and halt the program.

Node operation

2.4 Language

2.4.1 Code

Code consists of operations, functions, and ",". "," is not only a connector for multiple operations but also empty code. Code variables are represented as © and alphanumerics, it represents anyone of the set of all code.

The syntax of the code:

Operand names cannot conflict. An existing operand cannot be created until it is released. A released operand can't be used until it is created.

2.4.2 Function

Functions are how concepts are defined.

Syntax of the function:

";" is the delimiter for operand parameters.

 $fn(L) \Leftrightarrow codeA$. The input operands of codeA are the operands in the parameter list L, any operands created in codeA must be released in codeA.

 $fn(L): r \Leftrightarrow codeB$. The input operands of codeB are the operands in the parameter list L, any operands created in codeB must be released in codeB except operand r. This is to ensure the closure of the function and to ensure consistency in the inference replacement process.

The difference in functions:

The name of the function: R(i), T(i) are different.

The number of parameters: Fn(i), Fn(i;j) are different.

The differences in parameter names: Fn(i;j), Fn(j;i) are the same. Fn(i;j), Fn(i;i) are different. $i \rightarrow j, i \rightarrow i$ are different.

Type of functions:

General function:

$$,Cpo(r), \iff ,r \otimes m, m \otimes r, m \oplus ,$$

Branch function:

$$, if (i \! = \! j) \! - \! \left[\begin{matrix} , \\ , \\ \end{matrix} \right. \Leftrightarrow , i \! \ominus \! j \! - \! \left[\begin{matrix} , \\ , \\ \end{matrix} \right.$$

Proposition function:

Recursive function:

$$,R(i), \Leftrightarrow ,if(i=\varnothing)- \left[,\underset{i\oplus ,R(i), }{\overset{,}{\bigcap }}, \right.$$

Return function:

$$,i+j:r, \iff , @r,i \otimes i_0,j \otimes j_0,r \otimes r_0, Rcpo(i_0;r_0), Rcpo(j_0;r_0), i_0 \oplus, j_0 \oplus, r_0 \oplus, r_0 \oplus i_0, r_0 \oplus$$

r is return operand.

2.4.3 Flag object

Flag objects are named by "&" and alphanumerics, and are used to represent special properties of data structures, operations, and codes. Flag objects are defined by rules. Flag objects can combine the symbol and operand parameters. Example: $\&SHi \circlearrowleft i, \&SHi \rightarrow i, \&Fam(i)$.

2.5 Logic system

2.5.1 rule text

A rule text consists of code, code variables, and flag objects. Rule text variables are named by \oplus and alphanumerics. It represents anyone of the set of all rule text.

2.5.2 rule

Given that A, B are rule text. The rule format : $A \Leftrightarrow B$.

A rule is used to represent two equivalent rule text, which can replace each other. A, B must start and end with ",".

When a code variable exists in a rule, it represents the set of all rules that replace the code variable with a code constant. Example:

$$,], @code, \Leftrightarrow , @code,],$$

means:

... ...

A rule has nothing to do with the naming of the operands in the rule, as long as the names do not conflict. Example:

$$,i\oplus,i\ominus,\Leftrightarrow,i\ominus,i\ominus,$$

$$, j\oplus, j\ominus, \Leftrightarrow , j\ominus, j\oplus,$$

the same rule.

$$, \Leftrightarrow, \bigcirc i, i \bigcirc,$$

$$, \Leftrightarrow, \bigcirc j, j \bigcirc,$$

the same rule.

$$, i\oplus, i\ominus, \Leftrightarrow , i\ominus, i\oplus,$$

 $, i\oplus, j\ominus, \Leftrightarrow , j\ominus, i\oplus,$

different rules.

We simplify rule $(A \Leftrightarrow A, B)$ to rule $(A \Leftrightarrow \sim, B)$.

2.5.3 inference

Inference format: premise \Rightarrow conclusion.

Inference: if the premise exists, then the conclusion exists. Inference can be axiom or theorem.

Premise can be one of more rules or inferences. Conclusion is a rule.

When there is a rule text variable in an inference, it represents the set of all inferences that replace the rule text variable with the rule text constant.

How to infer?

If inference (premise => conclusion) exists and premise exists, then conclusion exists.

How to get an inference?

If the premise is assumed to exist, conclusion can be inferred. Then we can get an inference (premise => conclusion). If conclusion exists, then inference (any premise => conclusion) always exists.

2.5.4 Type of rule or inference

Axiom

Axioms describe the natural properties of data structure, operations, code, and rule. Axioms do not need to be proved.

Definition

Concepts are defined by means of rules. A function is a definition. Flag objects can be defined by commutative rules.

Theorem

A theorem is a conclusion of inference. A theorem requires proof.

2.5.5 inference axiom of rule equivalence

Given that A, B, M, N are rule text.

Equivalent commutativity:

$$A \Leftrightarrow B \Rightarrow B \Leftrightarrow A$$

Equivalent transitivity:

$$\begin{Bmatrix} A \Leftrightarrow B \\ B \Leftrightarrow C \end{Bmatrix} \implies A \Leftrightarrow C$$

Equivalent substitution:

$$A \iff B \Rightarrow MAN \iff MBN$$

Rule text(M A N) and rule text(M B N) must not have naming conflicts. rule text A and rule text B must be in the same "," start position and "," end position.

naming conflict:

$$, \iff , i \odot j, j \oplus, \implies , j \oplus, \iff , j \oplus, i \odot j, j \oplus,$$

should be:

$$, \iff , i \odot t, t \odot , \implies , j \odot , \iff , j \odot , i \odot t, t \odot ,$$

naming conflict:

$$, \odot i, \Leftrightarrow , \odot i, i! \circlearrowleft j, \Rightarrow , j \oplus, \odot i, \Leftrightarrow , j \oplus, \odot i, i! \circlearrowleft j,$$

2 Introduction

should be:

$$, \odot i, \Leftrightarrow , \odot i, i! \circlearrowleft t, \Rightarrow , j \oplus, \odot i, \Leftrightarrow , j \oplus, \odot i, i! \circlearrowleft t,$$

2.5.6 contradiction rule

Contradiction rule:

$$, \Leftrightarrow , \otimes,$$

If inference(premise \Rightarrow , \Leftrightarrow , \otimes ,) exists, then premise is not compatible with existing system. Premise can be axiom or definition. The contradiction rule is not compatible with existing system.

2.5.7 proof

Example:

 $, i\oplus, j\ominus, \iff , j\ominus, i\oplus,$

proof:

inference: Equivalent substitution. $premise:, \Leftrightarrow, j \oplus, j \ominus, (axiom)$

 $conclusion: , i\oplus, j\ominus, \iff , j\oplus, j\ominus, i\oplus, j\ominus,$

 $inference: Equivalent \, substitution.$

 $premise: , j \oplus, j \ominus, \iff , j \ominus, j \oplus, (axiom)$

 $conclusion: , j \oplus, j \ominus, i \oplus, j \ominus, \Leftrightarrow , j \ominus, j \oplus, i \oplus, j \ominus,$

 $inference: Equivalent \ transitivity.$

 $premise1:, i\oplus, j\ominus, \iff, j\oplus, j\ominus, i\oplus, j\ominus,$

 $premise2:, j\oplus, j\ominus, i\oplus, j\ominus, \iff, j\ominus, j\oplus, i\oplus, j\ominus,$

 $conclusion:, i\oplus, j\ominus, \iff, j\ominus, j\oplus, i\oplus, j\ominus,$

 $inference: Equivalent \, substitution.$

 $premise: , j \oplus, i \oplus, \Leftrightarrow, i \oplus, j \oplus, (axiom)$

 $conclusion: , j \ominus, j \oplus, i \oplus, j \ominus, \Leftrightarrow , j \ominus, i \oplus, j \oplus, j \ominus,$

 $inference: Equivalent\ transitivity.$

 $premise1:, i\oplus, j\ominus, \Leftrightarrow, j\ominus, j\oplus, i\oplus, j\ominus,$

 $premise2:, j\ominus, j\oplus, i\oplus, j\ominus, \iff, j\ominus, i\oplus, j\oplus, j\ominus,$

 $conclusion: , i \oplus, j \ominus, \iff , j \ominus, i \oplus, j \oplus, j \ominus,$

inference: Equivalent commutativity.

 $premise: , \Leftrightarrow , j \oplus, j \ominus, (axiom)$

 $conclusion:, j\oplus, j\ominus, \Leftrightarrow,$

 $inference: Equivalent \, substitution.$

```
premise:, j \oplus, j \ominus, \Leftrightarrow, (proved)
conclusion: , j \ominus, i \oplus, j \ominus, j \ominus, \Leftrightarrow , j \ominus, i \oplus,
inference: Equivalent transitivity.
premise1: , i\oplus, j\ominus, \iff , j\ominus, i\oplus, j\oplus, j\ominus,
premise2:, j \ominus, i \oplus, j \oplus, j \ominus, \iff, j \ominus, i \oplus,
conclusion: , i \oplus, j \ominus, \Leftrightarrow, j \ominus, i \oplus,
simplify:
, i\oplus, j\ominus,
\Leftrightarrow ,j\oplus,j\ominus,i\oplus,j\ominus,(,\Leftrightarrow,j\oplus,j\ominus,)
\Leftrightarrow ,j\ominus, j\oplus, i\oplus, j\ominus, (,j\oplus, j\ominus, \Leftrightarrow ,j\ominus, j\oplus, )
\Leftrightarrow , j \ominus, i \ominus, j \ominus, j \ominus, (, j \ominus, i \ominus, \Leftrightarrow , i \ominus, j \ominus, )
\Leftrightarrow ,j\ominus, i\oplus, (, \Leftrightarrow ,j\oplus, j\ominus, )
Minimize:
, i\oplus, j\ominus,
\Leftrightarrow , j\oplus, j\ominus, i\oplus, j\ominus,
\Leftrightarrow , j \ominus, j \ominus, i \ominus, j \ominus,
\Leftrightarrow , j \ominus, i \oplus, j \oplus, j \ominus,
\Leftrightarrow , j \ominus, i \ominus,
```

2.6 Propositions system

We describe laws and properties through propositions. Propositions come from operator of equal comparison $(i \oplus j \uparrow)$, but only one branch can be executed depending on the axioms.

Before defining propositions , we should define branch function (if(p)['). Definition of propositions:

$$,p,\Leftrightarrow,if(p)- \left[,\odot, \right] -,$$

2 Introduction

and

$$,!p, \iff ,if(p)- \boxed{ \begin{bmatrix} , \otimes, \\ \\ , \end{bmatrix} },$$

3 Rules of Operators

3.1 Axioms of Operators

3.1.1 swap axioms of operator

id operator:

$$, i \otimes m, i \otimes n, \iff , i \otimes n, i \otimes m,$$

$$, i \otimes m, j \otimes n, \iff , j \otimes n, i \otimes m,$$

$$, i \otimes m, j \otimes n, \iff , j \otimes n, i \otimes m,$$

$$, i \otimes m, j \otimes n, \iff , j \otimes n, i \otimes m,$$

$$, i \otimes m, \circ n, \iff , \circ n, i \otimes m,$$

$$, i \otimes m, \circ n, \iff , \circ n, i \otimes m,$$

$$, i \otimes m, j \oplus , \iff , j \oplus , i \otimes m,$$

$$, i \otimes m, j \oplus , \iff , j \oplus , i \otimes m,$$

$$, i \otimes m, j \oplus , \iff , j \oplus , i \otimes m,$$

$$, i \otimes m, j \oplus , \iff , j \oplus , i \otimes m,$$

$$, i \otimes m, j \oplus , \iff , j \oplus , i \otimes m,$$

copy operator:

$$, i \odot m, j \odot n, \iff , j \odot n, i \odot m,$$

$$, i \odot m, j \odot n, \iff , j \odot n, i \odot m,$$

$$, i \odot m, \odot n, \iff , \odot n, i \odot m,$$

$$, i \odot m, \odot n, \iff , \odot n, i \odot m,$$

$$, i \odot m, j \oplus, \iff , j \oplus, i \odot m,$$

3 Rules of Operators

$$, i @ m, j @, \Leftrightarrow , j @, i @ m,$$

$$, i @ m, j @ t - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, j @ t - \begin{bmatrix} , i @ m, \\ , i @ m, \\ \end{bmatrix}$$

subnode operator:

$$, i \circledcirc m, j \circledcirc n, \iff , j \circledcirc n, i \circledcirc m,$$

$$, i \circledcirc m, \circledcirc n, \iff , \circledcirc n, i \circledcirc m,$$

$$, i \circledcirc m, \circledcirc n, \iff , \circledcirc n, i \circledcirc m,$$

$$, i \circledcirc m, j \circledcirc , \iff , j \circledcirc , i \circledcirc m,$$

$$, i \circledcirc m, j \circledcirc , \iff , j \circledcirc , i \circledcirc m,$$

$$, i \circledcirc m, j \circledcirc t - \begin{bmatrix} , i \circledcirc m, \\ , i \circledcirc m, \\ , i \circledcirc m, \\ \end{bmatrix}$$

temporary space operator:

$$, \circledcirc m, \circledcirc m, \iff , \circledcirc m, \circledcirc m,$$

$$, \circledcirc m, \circledcirc m, \Leftrightarrow , \circledcirc m, \circledcirc m,$$

$$, \circledcirc m, j \oplus, \iff , j \oplus, \circledcirc m,$$

$$, \circledcirc m, j \oplus, \iff , j \oplus, \circledcirc m,$$

$$, \circledcirc m, j \oplus t - \begin{bmatrix} , & & \\ , & & \end{bmatrix}, \Leftrightarrow , j \oplus t - \begin{bmatrix} , & & \\ , & & \end{bmatrix},$$

global space operator:

$$, \odot m, \odot n, \Leftrightarrow , \odot n, \odot m,$$

$$, \bigcirc m, j \oplus, \iff , j \oplus, \bigcirc m,$$

$$, \bigcirc m, j \oplus, \iff , j \oplus, \bigcirc m,$$

$$, \odot m, j @ t - \begin{bmatrix}, & & \\ & & \\ & & \end{bmatrix}, \oplus b + \begin{bmatrix}, \odot m, & \\ & & \\ & & \end{bmatrix}$$

next node operator:

$$, i\oplus, j\oplus, \Leftrightarrow , j\oplus, i\oplus,$$

$$, i\oplus, i\ominus, \Leftrightarrow, i\ominus, i\oplus,$$

$$, i\oplus, j\oplus, \Leftrightarrow, j\oplus, i\oplus,$$

$$, i\oplus, j @ t- \begin{bmatrix} , \\ , \\ , \end{bmatrix} \Leftrightarrow , j @ t- \begin{bmatrix} , i\oplus, \\ , i\oplus, \\ \end{bmatrix}$$

release operator:

$$,i \oplus, j \oplus, \Leftrightarrow ,j \oplus, i \oplus,$$

$$\begin{split} ,i & \textcircled{@}, j \textcircled{@}t - \begin{bmatrix} , & \Leftrightarrow & , j \textcircled{@}t - \begin{bmatrix} , i \textcircled{@}, \\ , i \textcircled{@}, \\ \end{bmatrix} \\ , i \textcircled{@}, j \textcircled{@}j - \begin{bmatrix} , & \Leftrightarrow & , j \textcircled{@}j - \begin{bmatrix} , i \textcircled{@}, \\ , i \textcircled{@}, \\ \end{bmatrix} \end{split}$$

$$,i \oplus, j \ominus j - \begin{bmatrix} , & \Leftrightarrow & , j \ominus j - \begin{bmatrix} , & \psi , & \\ , & \downarrow , & \end{bmatrix}$$

3.1.2 fundamental axioms of logic error operator

$$, \otimes, \Leftrightarrow, \otimes, @code,$$

$$, i \oplus, \otimes, \Leftrightarrow, \otimes,$$

$$, i \oplus, \otimes, \Leftrightarrow, \otimes,$$

$$, i \oplus i, \otimes, \Leftrightarrow, \otimes,$$

$$. i \oplus i, \otimes, \Leftrightarrow, \otimes.$$

3.1.3 fundamental axioms of equivalent comparison operator

$$;], @c, \Leftrightarrow ; \overset{\circ}{, @c,}],$$

$$; i@i-\begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{aligned}, i@i-\begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{aligned}, i@i-\begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{aligned}, i@j-\begin{bmatrix} \cdot \\ \cdot \end{aligned}, i@j-\begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{aligned}, i@j-\begin{bmatrix} \cdot \\ \cdot \end{aligned}, i@j-$$

3.1.4 fundamental axioms of release operator

$$,i\oplus,i\oplus,\iff,i\oplus,$$

3.1.5 axioms of creativity

$$, \iff , i @ j { \begin{bmatrix} , \\ , \end{bmatrix} },$$

 $, \Leftrightarrow , i \odot m, m \odot,$

 $, \Leftrightarrow , i \otimes m, m \oplus,$

 $, \iff , i @ m, m @,$

 $, \Leftrightarrow , \odot m, m \oplus,$

 $, \;\; \Leftrightarrow \;\; , @m, m @,$

 $, \iff, i \oplus, i \ominus,$

 $, \iff ,,$

3.2 Theorems of Operators

3.2.1 theorems of previous node operator

 $,i \otimes m, j \ominus, \Leftrightarrow ,j \ominus, i \otimes m,$

proof:

 $,i@m,j\circleddash,$

 $\Leftrightarrow \ , j \oplus, j \ominus, i \otimes m, j \ominus,$

 $\Leftrightarrow \ ,j\ominus ,j\ominus ,i\odot m,j\ominus ,$

 $\Leftrightarrow \ , j \boxdot, i \circledcirc m, j \boxdot, j \boxdot,$

 \Leftrightarrow , $j \ominus$, $i \ominus m$,

 $,i \odot m,j \ominus, \Leftrightarrow ,j \ominus, i \odot m,$

 $,i \odot m,j \ominus, \iff ,j \ominus, i \odot m,$

 $, \bigcirc m, j \ominus, \iff , j \ominus, \bigcirc m,$

 $, \circledcirc m, j \boxdot, \iff , j \boxdot, \circledcirc m,$

 $, i\oplus, j\ominus, \Leftrightarrow , j\ominus, i\oplus,$

proof:

 $, i\oplus, j\ominus,$

 $\Leftrightarrow \ , j \oplus, j \ominus, i \oplus, j \ominus,$

 $\Leftrightarrow \ , j \boxdot, j \boxdot, i \boxdot, j \boxdot,$

 \Leftrightarrow , $j \ominus$, $i \oplus$, $j \ominus$, $j \ominus$,

 \Leftrightarrow $, j \ominus, i \ominus,$

 $,i\ominus,j\ominus,\iff,j\ominus,i\ominus,$

proof:

 $,i\ominus,j\ominus,$

3.2 Theorems of Operators

$$\Leftrightarrow , j \oplus, j \ominus, i \ominus, j \ominus,$$

$$\iff, j\ominus, j\ominus, i\ominus, j\ominus,$$

$$\Leftrightarrow$$
 , $j \ominus$, $i \ominus$, $j \ominus$, $j \ominus$,

$$\Leftrightarrow \ , j \ominus, i \ominus,$$

$$,i\ominus,j\oplus,\Leftrightarrow,j\oplus,i\ominus,$$

proof:

$$,i\ominus,j\oplus,$$

$$\Leftrightarrow \ ,i\ominus ,j \oplus ,i\ominus ,i\ominus ,$$

$$\Leftrightarrow$$
 $,i\ominus$, $i\ominus$, $j\oplus$, $i\ominus$,

$$\Leftrightarrow$$
 $, i\oplus, i\ominus, j\oplus, i\ominus,$

$$\iff, j @, i \circleddash,$$

$$, i \ominus, j \boxdot t - \begin{bmatrix}, \\ \\ \\ \end{bmatrix}, \Leftrightarrow , j \boxdot t - \begin{bmatrix}, i \ominus, \\ \\ \\ \end{bmatrix}, i \ominus, \\$$

proof:

$$,i\circleddash,j\circleddash t-$$

$$\Leftrightarrow , i \ominus, j \ominus t - \begin{bmatrix} , i \ominus, i \ominus, \\ , i \ominus, i \ominus \end{bmatrix}$$

$$\begin{array}{l} ,i\ominus,j\boxdot t- \begin{bmatrix} ,\\ \\ ,\\ \\ \\ \end{aligned},i\ominus,j\boxdot t- \begin{bmatrix} ,i\ominus,i\ominus,\\ \\ ,i\oplus,i\ominus,\\ \\ \end{aligned}$$

$$\Leftrightarrow,i\ominus,i\ominus,j\ominus t- \begin{bmatrix} ,i\ominus,\\ \\ ,i\ominus,\\ \\ \end{aligned}$$

$$\Leftrightarrow , i \oplus, i \ominus, j \ominus t - \begin{bmatrix} , i \ominus, \\ \\ , i \ominus, \end{bmatrix}$$

3 Rules of Operators

$$\Leftrightarrow , j @ t - \begin{bmatrix} , i \circleddash, \\ , i \circleddash, \\ \\ \end{matrix}$$

 $,i\bigcirc,i\bigcirc,\iff,i\bigcirc,$

proof:

$$,i\Theta,i\Phi,$$

$$\Leftrightarrow$$
 $,i\ominus,i\ominus,i\ominus,$

$$\iff, i \oplus, i \ominus, i \ominus,$$

$$\iff, i @,$$

$$,i\ominus,\otimes,\iff,\otimes,$$

proof:

$$,i\circleddash,\otimes,$$

$$\iff, i \circleddash, i \circleddash, i \circleddash, \bigotimes,$$

$$\iff, i \oplus, i \ominus, \otimes,$$

$$\iff, \otimes,$$

3.2.2 theorems of logic error operator

$$,\otimes, \Leftrightarrow, \otimes, \otimes,$$

$$\underset{,\bigotimes,}{\overset{,\circledcirc c,}{\otimes}}, \;\Leftrightarrow\; \underset{,\bigotimes,}{\overset{,}{\otimes}}, @c,$$

proof:

$$, \stackrel{, ©}{\otimes} c, \\ , \stackrel{,}{\otimes}, \],$$

$$\Leftrightarrow \ , \stackrel{, © c,}{\otimes}_{, \bigotimes, \circledcirc c,} \Big],$$

$$, \stackrel{\otimes}{\otimes}, \stackrel{\circ}{\otimes}, \stackrel{\circ}{\otimes},$$

3.2 Theorems of Operators

 $,i \otimes t, \otimes, \iff , \otimes,$

proof:

 $,i\!\otimes\!t,\otimes,$

 $\iff, i @ t, t @, \otimes,$

 $\iff, \otimes,$

 $,i\otimes t,\otimes ,\Leftrightarrow ,\otimes ,$

 $,i \odot t, \otimes, \Leftrightarrow, \otimes,$

 $,\odot i,\otimes,\Leftrightarrow,\otimes,$

 $, \circledcirc i, \otimes, \iff, \otimes,$

4 Rules of Three Fundamental Relationships

4.1 Definition of Relationships

4.1.1 Definition of node value comparison

Branch function:

$$, if (i\!=\!i)\!-\!\!\!\left[\begin{matrix} , \\ , \\ \end{matrix} \Leftrightarrow , i\!\ominus\!i\!-\!\!\left[\begin{matrix} , \\ , \end{matrix} \right.$$

Propositions:

$$,i=i, \iff ,if(i=i)- \left[\stackrel{,}{\underset{,\otimes,}{}} \right] -,$$

Branch function:

Propositions:

$$,i=j, \iff ,if(i=j)-\begin{bmatrix} , \\ , \otimes , \end{bmatrix} -,$$
 $,i!=j, \iff ,if(i=j)-\begin{bmatrix} , \otimes , \\ \end{bmatrix} -,$

4 Rules of Three Fundamental Relationships

4.1.2 Definition of node null comparison

Branch function:

Propositions:

$$,i=\varnothing, \iff ,if(i=\varnothing)-\begin{bmatrix},\\,\otimes,\end{bmatrix}$$
, $,i!=\varnothing, \iff ,if(i=\varnothing)-\begin{bmatrix},\otimes,\\\\,\end{bmatrix}$,

4.1.3 Definition of identical node comparison

Branch function:

$$, if (i \circlearrowleft j) - \begin{bmatrix} , \\ , \\ , i \circledcirc m, j \circledcirc n, if (m=n) - \begin{bmatrix} , m \textcircled{\tiny 0}, n \textcircled{\tiny 0}, \\ , m \textcircled{\tiny 0}, n \textcircled{\tiny 0}, \\ \end{bmatrix}$$

Propositions:

$$,i\circlearrowleft j,\iff,if(i\circlearrowleft j)-\begin{bmatrix},\\\\\\\\\\\end{pmatrix},$$

4.2 Axioms of Relationships

4.2.1 Substitution axioms of identical node comparison

$$,i\circlearrowleft j,i\boxtimes t,\iff,i\circlearrowleft j,j\boxtimes t,\\,i\circlearrowleft j,i\boxtimes t,\iff,i\circlearrowleft j,j\boxtimes t,\\,i\circlearrowleft j,i\boxtimes t,\iff,i\circlearrowleft j,j\boxtimes t,$$

$$,i\circlearrowleft j,if(i=j) \Leftrightarrow$$
 $,i\circlearrowleft j,if(i=i)-$

4.2.2 Axioms of node id operator and propositions

$$, i \otimes m, \iff, i \otimes m, m != \varnothing,$$

$$, i \otimes m, i \otimes n, \iff, i \otimes m, i \otimes n, m = n,$$

4.2.3 Axioms of copy operator and propositions

$$,i \otimes j, \iff ,i \otimes j,i \otimes j,$$

4.2.4 Axioms of subnode operator and propositions

$$,i=\varnothing,i@t,\Leftrightarrow,i=\varnothing,i@t,$$
 $,i@t,\Leftrightarrow,i@t,t=\varnothing,$

$$,i_{1}!=\varnothing,i_{2}!=\varnothing,i_{1}\otimes t_{1},i_{2}\otimes t_{2},if(i_{1}\otimes i_{2})\textstyle{\Big\{}^{,}_{,}\Leftrightarrow\ ,i_{1}!=\varnothing,i_{2}!=\varnothing,i_{1}\otimes t_{1},i_{2}\otimes t_{2},if(t_{1}\otimes t_{2})\textstyle{\Big\{}^{,}_{,}$$

4.2.5 Axioms of global space operator and propositions

$$, \bigcirc i, \bigcirc j, \iff , \bigcirc i, i \bigcirc j,$$

$$, \bigcirc i, \Leftrightarrow , \bigcirc i, i = \varnothing,$$

4.2.6 Axioms of temporary space operator and propositions

$$, \bigcirc i, \bigcirc j, \iff , \bigcirc i, \bigcirc j, i = j,$$

$$, \bigcirc i, i \oplus, \iff, \bigcirc i, i \oplus, i = \varnothing,$$

$$, \odot i, \Leftrightarrow , \odot i, i! \circlearrowleft j,$$

4.2.7 Axioms of next node operator and propositions

$$, i\oplus, j\oplus, if(i\circlearrowleft j)- \begin{bmatrix},\\\\\\\\\\\end{pmatrix}, \Leftrightarrow, if(i\circlearrowleft j)- \begin{bmatrix}, i\oplus, j\oplus,\\\\\\\\\\\\i\oplus, j\oplus,\\\\\end{pmatrix}$$

5.1 Branch function to propositions

$$, if (i\!=\!j)\!-\!\!\left[\!\!\left[\!\!\begin{array}{c} , @c, \\ \\ , \otimes, \end{array} \!\!\right]\!\!-\!\!, \ \Leftrightarrow \ , i\!=\!j, @c,$$

$$, if(i=j) = \begin{bmatrix} , \otimes, \\ , \odot c, \end{bmatrix}, \Leftrightarrow , i!=j, \odot c,$$

5.2 Unity

$$, \Leftrightarrow , if(i=j) \{ , \},$$

$$, i = j, \otimes, \Leftrightarrow, \otimes,$$

proof:

$$, i = j, \otimes,$$

$$\Leftrightarrow , if (i\!=\!j)\!-\!\!\!\left[\!\!\!\begin{bmatrix},\\,\otimes,\end{bmatrix}\!\!\!\right]\!\!\!\!-\!\!,\otimes,$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , \otimes, \\ \\ , \otimes, \end{bmatrix} -,$$

$$\Leftrightarrow , if (i \!=\! j) \!-\! \left[, \right] \!\!\!\! -, \otimes$$

$$\iff, \otimes,$$

$$,i!=j,\otimes, \Leftrightarrow,\otimes,$$

5.3 Symmetry

$$,if(i=j)\begin{bmatrix} \cdot \\ \cdot \end{bmatrix} \Leftrightarrow ,if(j=i)\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$$

 $,i=j, \Leftrightarrow ,j=i,$
 $,i!=j, \Leftrightarrow ,j!=i,$

5.4 Swap

5.4.1 Branch function and operator

$$, \odot m, if(i=j) - \begin{bmatrix} \cdot, & \\ \cdot, & \cdot, if(i=j) - \end{bmatrix}, \odot m,$$

$$, \odot m, if(i=j) - \begin{bmatrix} \cdot, & \\ \cdot, & \cdot, if(i=j) - \end{bmatrix}, \odot m,$$

$$, m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \\ \cdot, & \cdot, if(i=j) - \end{bmatrix}, m \odot n,$$

$$, m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \\ \cdot, & \cdot, if(i=j) - \end{bmatrix}, m \odot n,$$

$$, m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \\ \cdot, & \cdot, if(i=j) - \end{bmatrix}, m \odot n,$$

$$, m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \\ \cdot, & \cdot, if(i=j) - \end{bmatrix}, m \odot n,$$

$$, m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \\ \cdot, & \cdot, if(i=j) - \end{bmatrix}, m \odot n,$$

$$, m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \\ \cdot, & \cdot, if(i=j) - \end{bmatrix}, m \odot n,$$

$$\begin{array}{l} , m \oplus, i f(i = j) - \begin{bmatrix} , \\ , \\ , \end{bmatrix}, \iff, i f(i = j) - \begin{bmatrix} , \\ , \\ , \end{bmatrix}, m \oplus, \\ , m \oplus, i f(i = j) - \begin{bmatrix} , \\ , \\ , \end{bmatrix}, \iff, i f(i = j) - \begin{bmatrix} , \\ , \end{bmatrix}, m \oplus, \\ , m \ominus, i f(i = j) - \begin{bmatrix} , \\ , \end{bmatrix}, \iff, i f(i = j) - \begin{bmatrix} , \\ , \end{bmatrix}, m \ominus, \\ , m \ominus, \end{bmatrix}$$

5.4.2 Branch function and Branch function

$$, if(i=j) = \begin{bmatrix} , if(m=n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix} - , \\ , if(m=n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix} - , \\ , if(m=n) - \begin{bmatrix} , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix} - , \\ , if(i=j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_2, \end{bmatrix} - , \end{bmatrix},$$

5.4.3 Branch function and Propositions

$$, m = n, if(i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i = j) - \begin{bmatrix} , m = n, @c_1, \\ \\ , m = n, @c_2, \end{bmatrix},$$

proof:
$$, m = n, if(i = j) - \begin{bmatrix} , ©c_1, \\ , ©c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(m = n) - \begin{bmatrix} , \\ , ©c_2, \end{bmatrix}, if(i = j) - \begin{bmatrix} , ©c_1, \\ , ©c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i=j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \\ , & \end{bmatrix},$$

$$\Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i=j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \\ , if(i=j) - \begin{bmatrix} , & \\ , & \\ \end{bmatrix}, \otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i=j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \\ , if(i=j) - \begin{bmatrix} , & \\ , & \\ , & \\ \end{bmatrix} - , \end{bmatrix}$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , if(m=n) = \begin{bmatrix} , @c_1, \\ , \otimes, \end{bmatrix}, \\ , if(m=n) = \begin{bmatrix} , @c_2, \\ , \otimes, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , m=n, @c_1, \\ , m=n, @c_2, \end{bmatrix},$$

$$, m \! := \! n, i f (i \! = \! j) \! - \! \begin{bmatrix}, \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix} \! -, \; \Leftrightarrow \; , i f (i \! = \! j) \! - \! \begin{bmatrix}, m \! != \! n, \circledcirc c_1, \\ , m \! != \! n, \circledcirc c_2, \end{bmatrix} \! -,$$

5.4.4 Propositions and operator

$$, i = j, \odot m, \iff , \odot m, i = j,$$

$$, i = j, \odot m,$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , \odot m, \\ \\ , \otimes , \end{bmatrix} -,$$

$$\Leftrightarrow , if (i \! = \! j) \! - \! \left[\begin{matrix} , @m, \\ \\ , @m, \otimes, \end{matrix} \right] \! - \! ,$$

$$\Leftrightarrow , @m, if (i = j) - \begin{bmatrix} , \\ , \otimes , \end{bmatrix} - ,$$

$$\iff, @m, i = j,$$

$$, i = j, \odot m, \Leftrightarrow , \odot m, i = j,$$

$$, i = j, m \otimes n, \Leftrightarrow , m \otimes n, i = j,$$

$$, i = j, m \otimes n, \iff , m \otimes n, i = j,$$

$$, i = j, m \odot n, \iff , m \odot n, i = j,$$

$$, i = j, m \oplus, \Leftrightarrow, m \oplus, i = j,$$

$$,i\!=\!j,m\!\oplus, \iff, m\!\oplus, i\!=\!j,$$

$$, i = j, m\Theta, \iff , m\Theta, i = j,$$

$$,i!=j, @m, \Leftrightarrow , @m,i!=j,$$

$$,i!=j,\odot m, \iff ,\odot m,i!=j,$$

$$, i!=j, m \otimes n, \iff , m \otimes n, i!=j,$$

$$, i!=j, m \otimes n, \Leftrightarrow , m \otimes n, i!=j,$$

$$,i!\!\!=\!\!j,m\!\!\otimes\!\! n,\ \Leftrightarrow\ ,m\!\!\otimes\!\! n,i!\!\!=\!\!j,$$

$$,i != j, m \oplus, \Leftrightarrow, m \oplus, i != j,$$

 $,i != j, m \oplus, \Leftrightarrow, m \oplus, i != j,$
 $,i != j, m \ominus, \Leftrightarrow, m \ominus, i != j,$

5.4.5 Propositions and Propositions

$$, i = j, m = n, \iff , m = n, i = j,$$

proof:

$$, i=j, m=n,$$

 $\Leftrightarrow , if(i=j)$ — $\begin{bmatrix} , m=n, \\ , \otimes, \end{bmatrix}$ — $\begin{bmatrix} , m=n, \\ , \otimes, \end{bmatrix}$ — $\begin{bmatrix} , m=n, \\ , \otimes, \end{bmatrix}$ — $\begin{bmatrix} , m=n, \\ , m=n, \otimes, \end{bmatrix}$ — $\begin{bmatrix} , m=n, \\ , m=n, \otimes, \end{bmatrix}$ — $\begin{bmatrix} , m=n, \\ , m=n, i=j, \end{bmatrix}$ — $\begin{bmatrix} , & & \\ , & & \end{bmatrix}$ — $\begin{bmatrix} , & & \\$

5.4.6 Propositions to Propositions with branch function

$$, if (i=j) - \begin{bmatrix} , m != n, \\ \end{bmatrix}_{-}, \iff , if (m=n) - \begin{bmatrix} , i != j, \\ \end{bmatrix}_{-},$$

proof:
$$, if(i=j) = \begin{bmatrix} , m! = n, \\ , if(m=n) = \begin{bmatrix} , \otimes, \\ , \ddots \end{bmatrix}, \\ \Leftrightarrow , if(i=j) = \begin{bmatrix} , if(m=n) = \begin{bmatrix} , \otimes, \\ , \ddots \end{bmatrix}, \\ , if(m=n) = \begin{bmatrix} , & \\ , \ddots \end{bmatrix}, \\ \Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i=j) = \begin{bmatrix} , \otimes, \\ , \ddots \end{bmatrix}, \\ , if(i=j) = \begin{bmatrix} , & \\ , \ddots \end{bmatrix}, \\ \Leftrightarrow , if(m=n) = \begin{bmatrix} , i! = j, \\ , \ddots \end{bmatrix}, \\ \Leftrightarrow , if(m=n) = \begin{bmatrix} , i! = j, \\ , \ddots \end{bmatrix},$$

$$, if(i=j) = \begin{bmatrix} , \\ , m=n, \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix} , \\ , i=j, \end{bmatrix},$$

5.5 Transitivity

5.5.1 Branch function with branch function

$$,if(i=j)$$
 $\begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}$, $\Leftrightarrow ,if(i=j)$ $\begin{bmatrix}, if(i=j) \\ , @c_3, \end{bmatrix}$, $\end{bmatrix}$,

$$, if(i=j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix}, @c_1, \\ , if(i=j) = \begin{bmatrix}, @c_3, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

5.5.2 Branch function with propositions

$$,if(i=j)$$
- $\begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}$ - $, \Leftrightarrow ,if(i=j)$ - $\begin{bmatrix}, i=j, @c_1, \\ , @c_2, \end{bmatrix}$ - $,$

$$\begin{array}{c} \text{proof:} \\ , if (i\!=\!j) \!\!-\!\! \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \!\!-\! , \end{array}$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , & (i=j) &$$

$$\Leftrightarrow$$
, $if(i=j)$ $\begin{bmatrix} , i=j, @c_1, \\ , @c_2, \end{bmatrix}$,

$$,if(i=j)$$
 $\begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}$ $, \Leftrightarrow ,if(i=j)$ $\begin{bmatrix} , @c_1, \\ , i! = j, @c_2, \end{bmatrix}$

5.5.3 Propositions with branch function

$$, i=j, if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i=j, @c_1,$$

proof:

$$, i = j, if(i = j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, if(i = j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, if(i = j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ \Leftrightarrow , if(i = j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ \Leftrightarrow , if(i = j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ \Leftrightarrow , if(i = j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix},$$

$$,i!=j,if(i=j)$$
- $\begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}$ - $, \Leftrightarrow ,i!=j, @c_2,$

5.5.4 Propositions with propositions

$$, i = j, \Leftrightarrow , i = j, i = j,$$

proof: , i = j,

 \Leftrightarrow , i=j, $@c_1$,

$$\Leftrightarrow$$
 , $i = j$, , ,

$$\Leftrightarrow , i = j, if(i = j) - \begin{bmatrix} , , , \\ , \otimes , \end{bmatrix} -,$$

$$\Leftrightarrow$$
, $i = j$, $if(i = j) - \begin{bmatrix} , \\ , \otimes , \end{bmatrix}$

$$\Leftrightarrow$$
, $i = j$, $i = j$,

$$,i!=j, \Leftrightarrow ,i!=j,i!=j,$$

5.6 Substitution

5.6.1 Branch function with branch function

$$, if (i=j) - \begin{bmatrix} , if (j=m) - \begin{bmatrix} , \\ , \Leftrightarrow , if (i=j) - \begin{bmatrix} , if (i=m) - \begin{bmatrix} , \\ , \end{cases} \end{bmatrix},$$

5.6.2 Propositions with branch function

$$, i \!=\! j, i f(j \!=\! m) \!-\!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\! -, \; \Leftrightarrow \; , i \!=\! j, i f(i \!=\! m) \!-\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\! -,$$

proof:
$$, i = j, if(j = m) = \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $if(i=j)$ - $\begin{bmatrix} , \\ , \\ , \end{bmatrix}$ -, $if(j=m)$ - $\begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}$ -,

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , if(j=m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \\ , & \end{bmatrix},$$

$$\Leftrightarrow , if (i=j) = \begin{bmatrix} , if (i=m) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \\ , \end{bmatrix},$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , \\ \\ , \otimes , \end{bmatrix}, if(i=m) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i = j, if(i = m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

5.6.3 Propositions with propositions

$$, i=j, j=m, \iff , i=j, i=m,$$

proof: , i = j, j = m,

$$\iff$$
, $i = j$, $if(j = m) - \begin{bmatrix} , \\ . \otimes . \end{bmatrix}$

$$\Leftrightarrow$$
, $i = j$, $if(i = m) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$,

$$\Leftrightarrow$$
, $i = j$, $i = m$,

$$, i = j, j != m, \Leftrightarrow , i = j, i != m,$$

5.7 Opposition

$$, i = j, i! = j, \iff , \otimes,$$

$$\begin{array}{c} \text{proof:} \\ , i = j, i != j, \end{array}$$

$$\iff, i = j, if(i = j) - \begin{bmatrix}, \otimes, \\ \end{bmatrix},$$

$$\Leftrightarrow$$
, $i = j, \otimes$,

$$\Leftrightarrow$$
 $, \otimes$,

$$,i!=j,i=j,\iff,\otimes,$$

$$proof:, i!=j, i=j,$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , \otimes, \\ \\ , \end{bmatrix} -, i=j,$$

$$\Leftrightarrow , if (i \! = \! j) \! - \! \begin{bmatrix} , \otimes, \\ , i \! = \! j, \end{bmatrix} \! - \! ,$$

- \Leftrightarrow , if(i=j), $f(i=j-[, \otimes,],]$,
- $\Leftrightarrow , if(i=j) = \begin{bmatrix} , \otimes, \\ \\ , \otimes, \end{bmatrix} -,$
- $\Leftrightarrow , if (i \! = \! j) \! \! \left[, \right] \! , \otimes ,$
- \Leftrightarrow , \otimes ,

6.1 Node null comparison propositions to Node value comparison propositions

$$, i = \emptyset, \Leftrightarrow , \odot m, i = m, m \oplus,$$

$$,i=\varnothing,$$
 \Leftrightarrow $,if(i=\varnothing)-\begin{bmatrix},\\,\\.\\.\\.\end{bmatrix},$

proof:

$$\Leftrightarrow, @m, if (i = m) - \begin{bmatrix}, m \oplus, \\ , m \oplus, \otimes, \end{bmatrix},$$

$$\Leftrightarrow$$
, $\odot m$, $if(i=m)$ - $\begin{bmatrix} , m \odot , \\ , \odot , \end{bmatrix}$ -,

$$\Leftrightarrow , @m, if (i = m) - \left[\begin{matrix} , \\ , \otimes , \end{matrix} \right] -, m @,$$

$$\Leftrightarrow$$
, $\odot m$, $i = m$, $m \oplus$,

$$,i != \varnothing, \iff, \circledcirc m, i != m, m \circledast,$$

6.2 Branch function to propositions

$$, if(i=\varnothing) = \begin{bmatrix} , @c, \\ , & \end{bmatrix}_{-}, \iff , i=\varnothing, @c,$$

$$, if (i\!=\!\varnothing) \!\!=\!\!\! \begin{bmatrix} , \otimes, \\ \\ , @c, \end{bmatrix} \!\!\! -, \; \Leftrightarrow \; , i \! \vdash\!\! =\!\! \varnothing, @c,$$

6.3 Unity

$$, \iff , if(i\!=\!\varnothing) \Big[\dot{}, \Big],$$

proof:

 \Leftrightarrow , $\odot j$, $\oplus j$,

$$\Leftrightarrow , @j, if (i = j) - \boxed{,} -, @j,$$

$$\Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} , \\ , \end{bmatrix} -,$$

$$,i=\varnothing,\otimes,\Leftrightarrow,\otimes,$$

proof: $,i=\varnothing,\otimes,$

$$\Leftrightarrow if(i-\alpha)$$
,

$$\Leftrightarrow , if(i\!=\!\varnothing)\!-\!\!\left[\!\!\begin{bmatrix},\\,\otimes,\end{bmatrix}\!\!\right]\!\!-\!\!,\otimes,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , \otimes, \\ \\ , \otimes, \end{bmatrix} -,$$

$$\Leftrightarrow , if (i \!=\! \varnothing) \text{---}, \otimes,$$

$$\Leftrightarrow$$
 $, \otimes$,

$$,i!=\varnothing,\otimes,\Leftrightarrow,\otimes,$$

Swap 6.4

6.4.1 Branch function and operator

$$, @m, if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \end{bmatrix}, @m,$$

$$\begin{array}{c} \text{proof:} \\ , @m, if (i = \varnothing) - \boxed{,} \end{array}$$

$$\Leftrightarrow , @m, @j, if (i = j) - \begin{bmatrix} , j @, \\ \\ , j @, \end{bmatrix}$$

$$\Leftrightarrow , @j, @m, if (i \! = \! j) \! - \! \begin{bmatrix} , j @, \\ , j @, \\ \end{bmatrix}$$

$$\Leftrightarrow , @j, if (i\!=\!j) - \begin{bmatrix} , @m, j @, \\ \\ , @m, j @, \end{bmatrix}$$

$$\Leftrightarrow , @j, if (i = j) - \begin{bmatrix} , j @, @m, \\ , j @, @m, \end{bmatrix}$$

6.4.2 Branch function and Branch function

$$, if (i=\varnothing) - \begin{bmatrix} , if (m=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if (m=\varnothing) - \begin{bmatrix} , if (i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\ & & \\ & & \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , & & \\$$

proof:

$$, if (i = \varnothing) - \begin{bmatrix} , if (m = n) - \begin{bmatrix} , ©c_1, \\ , ©c_2, \end{bmatrix}, \\ , if (m = n) - \begin{bmatrix} , ©c_3, \\ , ©c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \odot j, if (i=j) - \begin{bmatrix}, \odot j, if (m=n) - \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \\, \odot j, if (m=n) - \begin{bmatrix}, \odot c_3, \\, \odot c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \odot j, if (i=j) - \begin{bmatrix}, if (m=n) - \begin{bmatrix}, \oplus j, \odot c_1, \\, \oplus j, \odot c_2, \end{bmatrix}, \\, if (m=n) - \begin{bmatrix}, \oplus j, \odot c_3, \\, \oplus j, \odot c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \odot j, if(m=n) - \begin{bmatrix}, if(i=j) - \begin{bmatrix}, \oplus j, \odot c_1, \\, \oplus j, \odot c_3, \end{bmatrix}, \\, if(i=j) - \begin{bmatrix}, \oplus j, \odot c_3, \\, \oplus j, \odot c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, if(m=n) = \begin{bmatrix}, @j, if(i=j) & \neg, @j, @c_1, \neg\\ \neg, @j, @j, @c_3, \neg\\ \neg, @j, @c_2, \neg\\ \neg, @j, @c_4, \neg\end{bmatrix}, \\, @j, if(i=j) & \neg, @j, @c_4, \neg\\ \neg, @j, @c_4, \neg\\ \neg, @j, @c_4, \neg\end{bmatrix},$$

$$\Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} \\ , if(i=\varnothing) - \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix} \end{bmatrix},$$

6.4.3 Branch function and Propositions

$$, m = n, if(i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i = \varnothing) - \begin{bmatrix} , m = n, @c_1, \\ \\ , m = n, @c_2, \end{bmatrix},$$

$$, m != n, if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , m != n, @c_1, \\ \\ , m != n, @c_2, \end{bmatrix},$$

$$, j = \varnothing, if(i = \varnothing) - \begin{bmatrix}, @c_1, \\, @c_2, \end{bmatrix}, \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix}, j = \varnothing, @c_1, \\, j = \varnothing, @c_2, \end{bmatrix},$$

proof:
$$, j = \varnothing, if(i = \varnothing) - \begin{bmatrix} , ©c_1, \\ , ©c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , \\ , \otimes , \end{bmatrix} - , if(i=\varnothing) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix} - ,$$

$$\Leftrightarrow , if(j=\varnothing) - \left[, \underbrace{ if(i=\varnothing) - \left[, \underbrace{ \odot c_1, }_{, \odot c_2, - \right] - , }_{, \odot c_2, - \right] - }_{, - \odot c_2, - - c_2, -$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \\ , if(i=\varnothing) - \begin{bmatrix} , & \\ \\ , & \end{bmatrix}, \otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \\ , if(i=\varnothing) - \begin{bmatrix} , & \\ , & \\ \\ , & \end{bmatrix} - , \end{bmatrix}$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , if(j=\varnothing) - \begin{bmatrix} , @c_1, \\ , \otimes, \end{bmatrix}, \\ , if(j=\varnothing) - \begin{bmatrix} , @c_2, \\ , \otimes, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,j=\varnothing, @c_1, \\ ,j=\varnothing, @c_2, \end{bmatrix} -,$$

$$, j!=\varnothing, if(i=\varnothing) - \begin{bmatrix} ,@c_1, \\ ,@c_2, \end{bmatrix} -, \Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,j!=\varnothing, @c_1, \\ ,j!=\varnothing, @c_2, \end{bmatrix} -,$$

$$, m = \varnothing, if(i = j) - \begin{bmatrix}, @c_1, \\ \\, @c_2, \end{bmatrix}, \iff, if(i = j) - \begin{bmatrix}, m = \varnothing, @c_1, \\ \\, m = \varnothing, @c_2, \end{bmatrix},$$

$$, m \! \models \! \varnothing, if(i \! = \! j) \! = \! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \! = \! j) \! = \! \begin{bmatrix}, m \! \models \! \varnothing, @c_1, \\ , m \! \models \! \varnothing, @c_2, \end{bmatrix},$$

6.4.4 Propositions and operator

$$, i = \emptyset, \odot m, \iff , \odot m, i = \emptyset,$$

6.4 Swap

$$\begin{split} ,i=\varnothing, m @ n, &\Leftrightarrow , m @ n, i=\varnothing, \\ ,i=\varnothing, m @, &\Leftrightarrow , m @, i=\varnothing, \\ ,i=\varnothing, m @, &\Leftrightarrow , m @, i=\varnothing, \\ ,i=\varnothing, m @, &\Leftrightarrow , m @, i=\varnothing, \\ ,i=\varnothing, m @, &\Leftrightarrow , m @, i=\varnothing, \end{split}$$

$$,i \models \varnothing, \circledcirc m, \; \Leftrightarrow \; , \circledcirc m, i \models \varnothing, \\ ,i \models \varnothing, \circledcirc m, \; \Leftrightarrow \; , \circledcirc m, i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc n, \; \Leftrightarrow \; , m \circledcirc n, i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc n, \; \Leftrightarrow \; , m \circledcirc n, i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc n, \; \Leftrightarrow \; , m \circledcirc n, i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc n, \; \Leftrightarrow \; , m \circledcirc n, i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \Leftrightarrow \; , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \bowtie , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \bowtie , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \bowtie , m \circledcirc , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \bowtie , m \thickspace , i \models \varnothing, \\ ,i \models \varnothing, m \circledcirc , \; \bowtie , m \thickspace , i \models \varnothing, \\ ,i \models \varnothing, m \thickspace , \; \bowtie , m \thickspace , i \models \varnothing, \\ ,i \models \varnothing, m \thickspace , \; \bowtie , ,$$

6.4.5 Propositions and Propositions

$$, i = \varnothing, m = n, \iff, m = n, i = \varnothing,$$

$$, i = \varnothing, m != n, \iff, m != n, i = \varnothing,$$

$$, i != \varnothing, m = n, \iff, m = n, i != \varnothing,$$

$$, i != \varnothing, m != n, \iff, m != n, i != \varnothing,$$

$$, i = \varnothing, m = \varnothing, \iff, m = \varnothing, i = \varnothing,$$

proof:

 $, i = \varnothing, m = \varnothing,$

$$\Leftrightarrow , if(i \!=\! \varnothing) \text{-} \begin{bmatrix} , \\ , \\ , \end{bmatrix} \text{-}, if(m \!=\! \varnothing) \text{-} \begin{bmatrix} , \\ , \\ , \end{bmatrix} \text{-},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , if(m=\varnothing) - \begin{bmatrix} , \\ , \otimes , \end{bmatrix} - , \\ , \otimes , \end{bmatrix} - ,$$

$$\Leftrightarrow , if (i = \varnothing) - \left[, if (m = \varnothing) - \left[, \otimes, \right] - , - \right], \\ if (m = \varnothing) - \left[, \right] - , \otimes, - \right],$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , if(m=\varnothing) - \begin{bmatrix} , \\ , \otimes , \end{bmatrix} - , \\ , if(m=\varnothing) - \begin{bmatrix} , \\ , \otimes , \end{bmatrix} - , \end{bmatrix},$$

$$\Leftrightarrow , if(m=\varnothing) = \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix} - , \\ , if(i=\varnothing) - \begin{bmatrix} , \otimes, \\ , \otimes, \end{bmatrix} - , \end{bmatrix},$$

$$\Leftrightarrow , if(m=\varnothing) - \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix} - , \\ , if(i=\varnothing) - \begin{bmatrix} , \\ , \end{bmatrix}, \otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(m=\varnothing) - \left[, (i=\varnothing) - (i=\varnothing)$$

$$\Leftrightarrow , if(m=\varnothing) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix}, if(i=\varnothing) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix},$$

$$\Leftrightarrow$$
, $m = \emptyset$, $i = \emptyset$,

$$,i\!=\!\varnothing,m\!:=\!\varnothing, \iff, m\!:=\!\varnothing,i\!=\!\varnothing,$$

$$, i! = \varnothing, m! = \varnothing, \Leftrightarrow, m! = \varnothing, i! = \varnothing,$$

6.4.6 Propositions to Propositions with branch function

$$, if(i=\varnothing) - \begin{bmatrix} , \\ , \\ , m=n. \end{bmatrix} -, \Leftrightarrow , if(m=n) - \begin{bmatrix} , \\ , \\ , i=\varnothing. \end{bmatrix} -,$$

$$, if (i \! = \! \varnothing) - \left[\begin{matrix} , m \! \mid = \! \varnothing, \\ \end{matrix} \right] - , \; \Leftrightarrow \; , if (m \! = \! \varnothing) - \left[\begin{matrix} , i \! \mid = \! \varnothing, \\ \end{matrix} \right] - ,$$

$$, if(i=\varnothing) - \begin{bmatrix} , \\ , \\ , m=\varnothing, \end{bmatrix} -, \Leftrightarrow , if(m=\varnothing) - \begin{bmatrix} , \\ , \\ , i=\varnothing, \end{bmatrix} -,$$

6.5 Transitivity

6.5.1 Branch function with branch function

$$, if(i=\varnothing) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_2, \end{bmatrix},$$

proof:
,
$$if(i=\varnothing)$$
- $\begin{bmatrix} , ©c_1, \\ , ©c_2, \end{bmatrix}$ -,

$$\Leftrightarrow$$
, $\odot j$, $if(i=j)$ - $\begin{bmatrix} ,j \oplus, \odot c_1, \\ ,j \oplus, \odot c_2, \end{bmatrix}$ -,

$$\Leftrightarrow, @j, @m, m @, if (i=j) - \begin{bmatrix}, j @, @c_1, \\, j @, @c_3, \end{bmatrix}, \\, j @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, @j, @m, if (i=j) - \begin{bmatrix}, m @, if (i=j) - \begin{bmatrix}, j @, @c_1, \\, j @, @c_3, \end{bmatrix}, \\, m @, j @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, @j, @m, j = m, if (i = j) - \begin{bmatrix}, m @, if (i = j) - \begin{bmatrix}, j @, @c_1, \\ , j @, @c_3, \end{bmatrix}, \\, m @, j @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, @j, @m, j = m, if (i = m) = \begin{bmatrix}, m @, if (i = j) & & \\, m @, j @, @c_2, & & \end{bmatrix}, j @, @c_3, \end{bmatrix},$$

$$\Leftrightarrow, @j, @m, if (i = m) - \begin{bmatrix}, m @, if (i = j) - \begin{bmatrix}, j @, @c_1, \\, j @, @c_3, \end{bmatrix}, \\, m @, j @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, @m, @j, if (i = m) = \begin{bmatrix}, m @, if (i = j) & & & \\, j @, @c_3, & & \\, m @, j @, @c_2, & & \end{bmatrix},$$

$$\Leftrightarrow , @m, if (i = m) - \begin{bmatrix} , @j, m @, if (i = j) - \begin{bmatrix} , j @, @c_1, \\ , j @, @c_3, \end{bmatrix} , \\ , @j, m @, j @, @c_2, \end{bmatrix} ,$$

$$\Leftrightarrow, @m, if (i = m) = \begin{bmatrix}, m @, @j, if (i = j) & \vdots, j @, @c_1, \\, j @, @c_3, \end{bmatrix}, \\, m @, @j, j @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, @m, if (i = m) = \begin{bmatrix}, m \oplus, @j, if (i = j) = \begin{bmatrix}, j \oplus, @c_1, \\, j \oplus, @c_3, \end{bmatrix}, \\, m \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_2, \end{bmatrix},$$

$$, if(i=\varnothing) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=\varnothing) - \begin{bmatrix}, @c_1, \\ \\ , if(i=\varnothing) - \begin{bmatrix}, @c_3, \\ \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

6.5.2 Branch function with propositions

$$, if (i \!=\! \varnothing) \!-\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!-\! , \; \Leftrightarrow \; , if (i \!=\! \varnothing) \!-\! \begin{bmatrix} , i \!=\! \varnothing, @c_1, \\ \\ , @c_2, \end{bmatrix} \!-\! ,$$

proof:
,
$$if(i=\varnothing)$$
- $\begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}$ -,

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , ©c_1, \\ , \otimes, \end{bmatrix} \\ , \otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i=\varnothing, @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$, if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ \\ , i!=\varnothing, @c_2, \end{bmatrix},$$

6.5.3 Propositions with branch function

$$,i=\varnothing,if(i=\varnothing)$$
- $\begin{bmatrix} ,@c_1,\\\\ ,@c_2,\end{bmatrix}$ - $,\Leftrightarrow,i=\varnothing,@c_1,$

proof:

,
$$i = \varnothing$$
, $if(i = \varnothing) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}$,

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , \\ , \\ , \end{bmatrix}, if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \left[, \overset{\circ}{\otimes} c_1, \right] - , \\ \circ c_2, - \left[, \overset{\circ}{\otimes} c_2, \right] - , \\ - \left[, \overset{\circ}{\otimes} c_2, \right] -$$

$$\Leftrightarrow$$
, $if(i=\varnothing) = \begin{bmatrix} , @c_1, \\ , \otimes, \end{bmatrix}$,

$$\Leftrightarrow$$
, $i = \emptyset$, $\odot c_1$,

$$,i!=\varnothing,if(i=\varnothing)$$
 $\begin{bmatrix} ,@c_1,\\ ,@c_2, \end{bmatrix}$ $,\Leftrightarrow,i!=\varnothing,@c_2,$

6.5.4 Propositions with propositions

$$, i = \emptyset, \iff , i = \emptyset, i = \emptyset,$$

proof:
$$, i = \varnothing,$$

$$\Leftrightarrow, i = \varnothing, ,,$$

$$\Leftrightarrow, i = \varnothing, i f(i = \varnothing) - \begin{bmatrix} , , , \\ , \otimes, \end{bmatrix} - ,$$

$$\Leftrightarrow, i = \varnothing, i f(i = \varnothing) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix} - ,$$

$$\Leftrightarrow, i = \varnothing, i = \varnothing, i = \varnothing,$$

6.6 Substitution

6.6.1 Propositions with branch function

$$, i\!=\!j, if (i\!=\!\varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \iff , i\!=\!j, if (j\!=\!\varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -,$$

 $,i!=\varnothing, \Leftrightarrow ,i!=\varnothing,i!=\varnothing,$

$$\begin{array}{l} \text{proof:} \\ ,i\!=\!j,if(i\!=\!\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} -, \\ \\ \Leftrightarrow ,i\!=\!j,@m,if(i\!=\!m) - \begin{bmatrix} , m @, @c_1, \\ , m @, @c_2, \end{bmatrix} -, \\ \\ \Leftrightarrow , @m,i\!=\!j,if(i\!=\!m) - \begin{bmatrix} , m @, @c_1, \\ , m @, @c_2, \end{bmatrix} -, \end{array}$$

$$\Leftrightarrow, @m, i = j, if(j = m) - \begin{bmatrix}, m @, @c_1, \\ , m @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i = j, @m, if(j = m) - \begin{bmatrix}, m @, @c_1, \\ , m @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i = j, @m, if(j = m) - \begin{bmatrix}, m & @c_1, \\ m & @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i = j, if(j = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} - ,$$

$$, i = \varnothing, if(i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , i = \varnothing, if(j = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -,$$

$$, i = \varnothing, if(i = j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , @m, i = m, m @, if (i = j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $\odot m, i = m, if(i = j) - \begin{bmatrix} , m \oplus, \odot c_1, \\ , m \oplus, \odot c_2, \end{bmatrix}$

$$\Leftrightarrow, @m, i = m, if(i = j) - \begin{bmatrix}, m \oplus, @c_1, \\, m \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, @m, i = m, if(m = j) - \begin{bmatrix}, m \oplus, @c_1, \\, m \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , @m, i = m, if(j = m) - \begin{bmatrix} , m \textcircled{@}, @c_1, \\ , m \textcircled{@}, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , @m, @n, n @, i = m, if (j = m) - \begin{bmatrix} , m @, @c_1, \\ , m @, @c_2, \end{bmatrix} - ,$$

$$\Leftrightarrow, @m, @n, i = m, n @, if(j = m) - \begin{bmatrix}, m @, @c_1, \\, m @, @c_2, \end{bmatrix},$$

6 Theorems of Relationship of Node Null Comparison

$$\Leftrightarrow , \circledcirc m, \circledcirc n, m = i, n \circledcirc, if(j = m) - \begin{bmatrix} , m \circledcirc, \circledcirc c_1, \\ , m \circledcirc, \circledcirc c_2, \end{bmatrix},$$

$$\Leftrightarrow , \circledcirc m, \circledcirc n, m = n, m = i, n \circledcirc, if(j = m) - \begin{bmatrix} , m \circledcirc, \circledcirc c_1, \\ , m \circledcirc, \circledcirc c_2, \end{bmatrix},$$

$$\Leftrightarrow , \circledcirc m, \circledcirc n, m = n, n = i, n \circledcirc, if(j = m) - \begin{bmatrix} , m \circledcirc, \circledcirc c_1, \\ , m \circledcirc, \circledcirc c_2, \end{bmatrix},$$

$$\Leftrightarrow , \circledcirc m, \circledcirc n, n = i, n \circledcirc, if(j = m) - \begin{bmatrix} , m \circledcirc, \circledcirc c_1, \\ , m \circledcirc, \circledcirc c_2, \end{bmatrix},$$

$$\Leftrightarrow , \circledcirc n, n = i, n \circledcirc, \circledcirc m, if(j = m) - \begin{bmatrix} , m \circledcirc, \circledcirc c_1, \\ , m \circledcirc, \circledcirc c_2, \end{bmatrix},$$

$$\Leftrightarrow , \circledcirc n, i = n, n \circledcirc, \circledcirc m, if(j = m) - \begin{bmatrix} , m \circledcirc, \circledcirc c_1, \\ , m \circledcirc, \circledcirc c_2, \end{bmatrix},$$

$$\Leftrightarrow , \circledcirc n, i = n, n \circledcirc, if(j = \varnothing) - \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix},$$

$$\Leftrightarrow , \circ n, i = n, n \circledcirc, if(j = \varnothing) - \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix},$$

$$\Leftrightarrow , \circ i = \varnothing, if(j = \varnothing) - \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix},$$

6.6.2 Propositions with propositions

$$, i = j, i = \emptyset, \iff , i = j, j = \emptyset,$$

$$, i = j, i! = \emptyset, \Leftrightarrow , i = j, j! = \emptyset,$$

proof:

$$, i = j, i! = \emptyset,$$

$$\Leftrightarrow , i = j, if(i = \varnothing) - \begin{bmatrix} , \otimes, \\ , \end{bmatrix},$$

$$\Leftrightarrow , i = j, if(j = \varnothing) - \begin{bmatrix} , \otimes, \\ \\ . \end{bmatrix} - ,$$

$$\Leftrightarrow$$
, $i = j, j! = \emptyset$,

$$, i = \varnothing, j = \varnothing, \iff , i = \varnothing, i = j,$$

$$, i = \varnothing, j != \varnothing, \Leftrightarrow , i = \varnothing, i != j,$$

6.7 Opposition

$$,i=\varnothing,i!=\varnothing,\iff,\otimes,$$

$$, i = \varnothing, i! = \varnothing,$$

$$\Leftrightarrow, i = \varnothing, if(i = \varnothing) - \begin{bmatrix}, \otimes, \\ \\ \end{bmatrix},$$

$$\Leftrightarrow , i \!=\! \varnothing, \otimes,$$

$$\Leftrightarrow$$
 $, \otimes$,

$$,i!=\varnothing,i=\varnothing,\Leftrightarrow,\varnothing,$$

7.1 Identical node comparison propositions to Node value comparison propositions

$$,i\circlearrowleft j,\iff,i\circledcirc m,j\circledcirc n,m=n,m\circledcirc,n\circledcirc,$$

proof:

$$,i\circlearrowleft j$$
,
 $\Leftrightarrow ,if(i\circlearrowleft j)$ - $\begin{bmatrix} ,\\ ,\\ ,\\ ,\\ ,\\ ,\\ \end{bmatrix}$,
 $\Leftrightarrow ,i\circledcirc m,j\circledcirc n,if(m=n)$ - $\begin{bmatrix} ,\\ ,\\ ,\\ ,\\ ,\\ ,\\ \end{bmatrix}$,
 $\Leftrightarrow ,i\circledcirc m,j\circledcirc n,if(m=n)$ - $\begin{bmatrix} ,\\ ,\\ ,\\ ,\\ ,\\ \end{bmatrix}$,
 $\Leftrightarrow ,i\circledcirc m,j\circledcirc n,if(m=n)$ - $\begin{bmatrix} ,\\ ,\\ ,\\ ,\\ \end{bmatrix}$,
 $\Leftrightarrow ,i\circledcirc m,j\circledcirc n,if(m=n)$ - $\begin{bmatrix} ,\\ ,\\ ,\\ ,\\ \end{bmatrix}$, $m\circledcirc ,n\circledcirc ,$
 $\Leftrightarrow ,i\circledcirc m,j\circledcirc n,m=n,m\circledcirc ,n\circledcirc ,$
 $\Leftrightarrow ,i\circledcirc m,j\circledcirc n,m=n,m\circledcirc ,n\circledcirc ,$

7.2 Branch function to propositions

$$, if(i \circ j) = \begin{bmatrix} , \circ c, \\ , \otimes, \end{bmatrix}, \Leftrightarrow , i \circ j, \circ c,$$

$$, if(i \circlearrowleft j) = \begin{bmatrix} , \otimes, \\ \\ , \odot c, \end{bmatrix} +, \iff , i! \circlearrowleft j, \odot c,$$

7.3 Unity

$$, \iff , if(i \circlearrowleft j) [\dot{}],$$

proof:

 \Leftrightarrow , $i \otimes m, m \oplus$,

 $\iff, i @ m, m @, j @ n, n @,$

 \Leftrightarrow , $i \oplus m$, $j \oplus n$, $m \oplus$, $n \oplus$,

 $\Leftrightarrow , i @ m, j @ n, i f(m = n) - \boxed{,}, m @, n @,$

 $\Leftrightarrow, i \otimes m, j \otimes n, i f(m = n) - \left[\begin{matrix} , m \oplus, n \oplus, \\ , m \oplus, n \oplus, \end{matrix} \right] - ,$

 \Leftrightarrow $, if(i \circ j) - [,]$

 $,i\circlearrowleft j,\otimes,\Leftrightarrow,\otimes,$

 $,i!\mathcal{O}j,\otimes,\Leftrightarrow,\otimes,$

7.4 Symmetry

$$, if(i \circ j) [' \Leftrightarrow , if(j \circ i) [']$$

7.5 Swap

7.5.1 Branch function and operator

$$\begin{array}{l} , m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix} , \quad (m \oplus, i f(i \circlearrowleft j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix})$$

7.5.2 Branch function and Branch function

proof:

$$, if(i\circlearrowleft j) = \begin{bmatrix}, if(m\circlearrowleft n) = \begin{bmatrix}, @c_1, \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, i f(m \otimes n) - \begin{bmatrix}, \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\, t_1 \otimes, t_2 \otimes, i f(m \otimes n) - \begin{bmatrix}, \otimes c_3, \\ & \otimes c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, m \otimes t_3, n \otimes t_4, i f(t_3 = t_4) & \\, t_1 \otimes, t_2 \otimes, m \otimes t_3, n \otimes t_4, i f(t_3 = t_4) & \\, t_1 \otimes, t_2 \otimes, m \otimes t_3, n \otimes t_4, i f(t_3 = t_4) & \\, t_3 \otimes, t_4 \otimes, \otimes c_3, \\, t_3 \otimes, t_4 \otimes, \otimes c_3, \\, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, m \otimes t_3, n \otimes t_4, i f(t_1 = t_2) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, i f(t_3 = t_4) & t_1 \otimes, t_2 \otimes, t_4 \otimes, \otimes c_2, \\, t_1 \otimes, t_2 \otimes, i f(t_3 = t_4) & t_3 \otimes, t_4 \otimes, \otimes c_3, \\, t_3 \otimes, t_4 \otimes, \otimes c_3, & t_4 \otimes, \otimes c_4, & t_4 \otimes, \otimes c_4, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, m \otimes t_3, n \otimes t_4, i f(t_1 = t_2) - \begin{bmatrix}, i f(t_3 = t_4) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_1, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_2, \end{bmatrix}, \\, i f(t_3 = t_4) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \\, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, m \otimes t_3, n \otimes t_4, i f(t_3 = t_4) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_1, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_3, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_2, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_2, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \otimes c_4, \\, t_2 \otimes, t_3 \otimes, t_4 \otimes, t_4 \otimes, \otimes c_4, \\, t_3 \otimes, t_4 \otimes, t$$

$$\Leftrightarrow, m \otimes t_3, n \otimes t_4, if(t_3 = t_4) = \begin{bmatrix}, i \otimes t_1, j \otimes t_2, if(t_1 = t_2) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_1, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_2, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_2, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes$$

$$\Leftrightarrow, m \otimes t_3, n \otimes t_4, if(t_3 = t_4) = \begin{bmatrix}, t_3 \otimes, t_4 \otimes, i \otimes t_1, j \otimes t_2, if(t_1 = t_2) & t_1 \otimes, t_2 \otimes, \otimes c_1, \\, t_1 \otimes, t_2 \otimes, \otimes c_3, & t_4 \otimes, t_4 \otimes$$

$$\Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix} , if(m=n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \\ , if(m=n) - \begin{bmatrix} , & \\ , & & \\ , & & \\ \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, &$$

$$, if(i \circlearrowleft j) = \begin{bmatrix} , if(m = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m = \varnothing) - \begin{bmatrix} , & \vdots \\ , & \vdots \\ , & \vdots \\ , & \vdots \end{bmatrix}, \Leftrightarrow , if(m = \varnothing) - \begin{bmatrix} , & \vdots \\ , & \vdots \\ , & \vdots \\ , & \vdots \end{bmatrix}, \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & \vdots \\ , & \vdots \\ , & \vdots \\ , & \vdots \\ , & \vdots \end{pmatrix}, \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & \vdots \\ , & \vdots \end{pmatrix},$$

7.5.3 Branch function and Propositions

$$, m \circlearrowleft n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if (i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \; \Leftrightarrow \; , if (i \circlearrowleft j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix} -,$$

$$, m = n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) - \begin{bmatrix} , m = n, @c_1, \\ \\ , m = n, @c_2, \end{bmatrix},$$

$$, m != n, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , m != n, @c_1, \\ , m != n, @c_2, \end{bmatrix},$$

$$, m = \varnothing, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m = \varnothing, @c_1, \\ \\ , m = \varnothing, @c_2, \end{bmatrix},$$

$$, m \! \models \! \varnothing, if(i \circlearrowleft j) \! = \! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix} \! , \; \Leftrightarrow \; , if(i \circlearrowleft j) \! = \! \begin{bmatrix}, m \! \models \! \varnothing, @c_1, \\ , m \! \models \! \varnothing, @c_2, \end{bmatrix} \! ,$$

$$, m \circlearrowleft n, if (i = j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if (i = j) = \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if (i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if (i = j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if (i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if (i = \varnothing) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if (i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , if (i = \varnothing) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix} -,$$

7.5.4 Propositions and operator

$$, i \circlearrowleft j, \circledcirc m, \Leftrightarrow , \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, \varpi m, \Leftrightarrow , \varpi m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, \odot m, \Leftrightarrow , \odot m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circledcirc m, \Leftrightarrow , m \circledcirc m, i \circlearrowleft j,$$

 $,i!\mathcal{O}j,m\oplus, \Leftrightarrow, m\oplus, i!\mathcal{O}j,$ $,i!\mathcal{O}j,m\oplus, \Leftrightarrow, m\oplus, i!\mathcal{O}j,$ $,i!\mathcal{O}j,m\ominus, \Leftrightarrow, m\ominus, i!\mathcal{O}j,$

7.5.5 Propositions and Propositions

$$, i \circlearrowleft j, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \trianglerighteq n, \Leftrightarrow , m \trianglerighteq n, i \circlearrowleft j,$$

$$, i \trianglerighteq j, m \trianglerighteq n, \Leftrightarrow , m \trianglerighteq n, i \trianglerighteq j,$$

$$, i \circlearrowleft j, m \leftrightharpoons n, \Leftrightarrow , m \leftrightharpoons n, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \leftrightharpoons n, \Leftrightarrow , m \leftrightharpoons n, i \circlearrowleft j,$$

$$, i \trianglerighteq j, m \leftrightharpoons n, \Leftrightarrow , m \leftrightharpoons n, i \trianglerighteq j,$$

$$, i \trianglerighteq j, m \leftrightharpoons n, \Leftrightarrow , m \leftrightharpoons n, i \trianglerighteq j,$$

$$, i \trianglerighteq j, m \leftrightharpoons n, \Leftrightarrow , m \leftrightharpoons n, i \trianglerighteq j,$$

$$, i \Rrightarrow j, m \leftrightharpoons n, \Leftrightarrow , m \leftrightharpoons n, i \trianglerighteq j,$$

$$, i \circlearrowleft j, m \leftrightharpoons \varnothing, \Leftrightarrow , m \leftrightharpoons \varnothing, i \circlearrowleft j,$$

$$, i \trianglerighteq j, m \leftrightharpoons \varnothing, \Leftrightarrow , m \leftrightharpoons \varnothing, i \trianglerighteq j,$$

$$, i \trianglerighteq j, m \leftrightharpoons \varnothing, \Leftrightarrow , m \leftrightharpoons \varnothing, i \trianglerighteq j,$$

$$, i \trianglerighteq j, m \leftrightharpoons \varnothing, \Leftrightarrow , m \leftrightharpoons \varnothing, i \trianglerighteq j,$$

$$, i \trianglerighteq j, m \leftrightharpoons \varnothing, \Leftrightarrow , m \leftrightharpoons \varnothing, i \trianglerighteq j,$$

7.5.6 Propositions to Propositions with branch function

$$, if(i \circlearrowleft j) - \begin{bmatrix} , m! \circlearrowleft n, \\ , \end{bmatrix}, \iff , if(m \circlearrowleft n) - \begin{bmatrix} , i! \circlearrowleft j, \\ , \end{bmatrix},$$

$$, if(i \circ j) = \begin{bmatrix} , \\ , m \circ n, \end{bmatrix}, \Leftrightarrow , if(m \circ n) = \begin{bmatrix} , \\ , i \circ j, \end{bmatrix},$$

$$, if(i \circ j) - \begin{bmatrix} , m! = n, \\ , & \Leftrightarrow , if(m = n) - \begin{bmatrix} , i! \circ j, \\ , & \end{bmatrix}$$

$$, if(i \circ j) = \begin{bmatrix} , \\ , m = n, \end{bmatrix}, \Leftrightarrow , if(m = n) = \begin{bmatrix} , \\ , i \circ j, \end{bmatrix},$$

$$, if (i \circlearrowleft j) - \left[\begin{matrix} , m ! = \varnothing, \\ \end{matrix} \right], \iff , if (m = \varnothing) - \left[\begin{matrix} , i ! \circlearrowleft j, \\ \end{matrix} \right],$$

$$, if(i \circ j) - \begin{bmatrix} , \\ , m = \varnothing, \end{bmatrix} -, \Leftrightarrow , if(m = \varnothing) - \begin{bmatrix} , \\ , i \circ j, \end{bmatrix} -,$$

7.6 Transitivity

7.6.1 Branch function with branch function

$$, if(i\circlearrowleft j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix}, if(i\circlearrowleft j) = \begin{bmatrix}, @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_2, \end{bmatrix},$$

proof:
$$, if(i \circ j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes m_1, j \otimes n_1, if(m_1 = n_1) = \begin{bmatrix} , m_1 \otimes, n_1 \otimes, @c_1, \\ , m_1 \otimes, n_1 \otimes, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_1, j \otimes n_1, i f(m_1 = n_1) = \begin{bmatrix}, m_1 \otimes, n_1 \otimes, @c_1, \\ m_1 \otimes, n_1 \otimes, @c_2, \end{bmatrix}, \\ m_1 \otimes, n_1 \otimes, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_1, j \otimes n_1, j \otimes n_2, n_2 \oplus, i f(m_1 = n_1) = \begin{bmatrix}, m_1 \oplus, n_1 \oplus, \odot c_1, \\, m_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix}, \\ m_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_1, j \otimes n_1, j \otimes n_2, i f(m_1 = n_1) = \begin{bmatrix}, n_2 \oplus, i f(m_1 = n_1) \\, m_1 \oplus, n_1 \oplus, 0 \oplus c_3, \end{bmatrix}, \\ \begin{bmatrix}, n_2 \oplus, m_1 \oplus, n_1 \oplus, 0 \oplus c_2, \\, n_2 \oplus, m_1 \oplus, n_1 \oplus, 0 \oplus c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_1, j \otimes n_1, j \otimes n_2, n_1 = n_2, i f(m_1 = n_1) = \begin{bmatrix}, n_2 \oplus, i f(m_1 = n_1) = \begin{bmatrix}, m_1 \oplus, n_1 \oplus, \odot c_1, \\ m_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix}, \\, n_2 \oplus, m_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_1, j \otimes n_1, j \otimes n_2, n_1 = n_2, i f(m_1 = n_2) \begin{bmatrix}, n_2 \oplus, i f(m_1 = n_1) \\, m_2 \oplus, m_1 \oplus, n_1 \oplus, \odot c_3, \end{bmatrix}, \begin{bmatrix}, m_1 \oplus, n_1 \oplus, \odot c_1, \\, m_1 \oplus, n_1 \oplus, \odot c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_1, j \otimes n_1, j \otimes n_2, i f(m_1 = n_2) - \begin{bmatrix}, n_2 @, i f(m_1 = n_1) - \begin{bmatrix}, m_1 @, n_1 @, @c_1, \\ m_1 @, n_1 @, @c_3, \end{bmatrix}, \\, n_2 @, m_1 @, n_1 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_1, j \otimes n_2, i f(m_1 = n_2) = \begin{bmatrix}, n_2 \oplus, j \otimes n_1, i f(m_1 = n_1) = \begin{bmatrix}, m_1 \oplus, n_1 \oplus, \odot c_1, \\ m_1 \oplus, n_1 \oplus, \odot c_3, \end{bmatrix}, \\, n_2 \oplus, m_1 \oplus, j \otimes n_1, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_1, j \otimes n_2, i f(m_1 = n_2) = \begin{bmatrix}, n_2 \otimes, j \otimes n_1, i f(m_1 = n_1) \\, n_2 \otimes, m_1 \otimes, \odot c_2, \end{bmatrix}, \begin{bmatrix}, m_1 \otimes, n_1 \otimes, \odot c_1, \\, m_1 \otimes, n_1 \otimes, \odot c_3, \end{bmatrix}, \begin{bmatrix}, m_1 \otimes, n_1 \otimes, \odot c_1, \\, m_2 \otimes, m_1 \otimes, \odot c_2, \end{bmatrix}, \begin{bmatrix}, m_1 \otimes, m_2 \otimes, \cdots \otimes m_1 \otimes,$$

$$\Leftrightarrow , j \otimes n_2, i \otimes m_1, i f(m_1 = n_2) - \begin{bmatrix} , n_2 \oplus , j \otimes n_1, i f(m_1 = n_1) - \begin{bmatrix} , m_1 \oplus , n_1 \oplus , \odot c_1, \\ , m_1 \oplus , n_1 \oplus , \odot c_3, \end{bmatrix} - , \\ , n_2 \oplus , m_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, j \otimes n_2, i \otimes m_1, i \otimes m_2, m_2 \oplus, i f(m_1 = n_2) = \begin{bmatrix}, n_2 \oplus, j \otimes n_1, i f(m_1 = n_1) = \begin{bmatrix}, m_1 \oplus, n_1 \oplus, \odot c_1, \\ m_1 \oplus, n_1 \oplus, \odot c_3, \end{bmatrix}, \\ , m_1 \oplus, m_1 \oplus, m_2 \oplus, m_2$$

$$\Leftrightarrow, j \otimes n_2, i \otimes m_1, i \otimes m_2, i f(m_1 = n_2) = \begin{bmatrix}, m_2 \oplus, n_2 \oplus, j \otimes n_1, i f(m_1 = n_1) & m_1 \oplus, n_1 \oplus, o c_1, \\, m_2 \oplus, n_2 \oplus, m_1 \oplus, o c_2, & \end{bmatrix}, \\ \begin{bmatrix}, m_1 \oplus, n_1 \oplus, o c_1, \\, m_1 \oplus, n_1 \oplus, o c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, j \otimes n_2, i \otimes m_1, i \otimes m_2, m_1 = m_2, i f(m_1 = n_2) = \begin{bmatrix}, m_2 \oplus, n_2 \oplus, j \otimes n_1, i f(m_1 = n_1) & m_1 \oplus, m_1 \oplus, m_2 \oplus, m_2$$

$$\Leftrightarrow, j \otimes n_2, i \otimes m_1, i \otimes m_2, m_1 = m_2, i f(m_2 = n_2) \begin{bmatrix}, m_2 \oplus, n_2 \oplus, j \otimes n_1, i f(m_1 = n_1) &, m_1 \oplus, n_1 \oplus, o c_1, \\, m_1 \oplus, n_1 \oplus, o c_2, &, m_2 \oplus, m_2 \oplus,$$

$$\Leftrightarrow, j \otimes n_2, i \otimes m_1, i \otimes m_2, i f(m_2 = n_2) = \begin{bmatrix}, m_2 \otimes, n_2 \otimes, j \otimes n_1, i f(m_1 = n_1) \\, m_2 \otimes, n_2 \otimes, m_1 \otimes, \odot c_2, \end{bmatrix}, m_1 \otimes, m_1 \otimes, m_1 \otimes, m_2 \otimes, m_2$$

$$\Leftrightarrow , j \otimes n_2, i \otimes m_2, i f(m_2 = n_2) = \begin{bmatrix} , m_2 \otimes, n_2 \otimes, i \otimes m_1, j \otimes n_1, i f(m_1 = n_1) \\ , m_2 \otimes, n_2 \otimes, i \otimes m_1, m_1 \otimes, \odot c_2, \end{bmatrix}, \begin{bmatrix} , m_1 \otimes, n_1 \otimes, \odot c_1, \\ , m_1 \otimes, n_1 \otimes, \odot c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, j \otimes n_2, i \otimes m_2, i f(m_2 = n_2) = \begin{bmatrix}, m_2 \oplus, n_2 \oplus, i \otimes m_1, j \otimes n_1, i f(m_1 = n_1) & , m_1 \oplus, n_1 \oplus, o c_1, \\, m_2 \oplus, n_2 \oplus, o c_2, & , \end{bmatrix},$$

$$\Leftrightarrow, i \otimes m_2, j \otimes n_2, i f(m_2 = n_2) - \begin{bmatrix}, m_2 \otimes, n_2 \otimes, i \otimes m_1, j \otimes n_1, i f(m_1 = n_1) \\, m_2 \otimes, n_2 \otimes, \odot c_2, \end{bmatrix}, m_1 \otimes m_1, i f(m_1 = n_1) - \begin{bmatrix}, m_1 \otimes, n_1 \otimes, \odot c_1, \\, m_1 \otimes, n_1 \otimes, \odot c_3, \end{bmatrix}, m_2 \otimes m_2, i f(m_2 = n_2) - \begin{bmatrix}, m_2 \otimes, n_2 \otimes, i \otimes m_1, j \otimes n_1, i f(m_1 = n_1) \\, m_2 \otimes, n_2 \otimes, \odot c_2, \end{bmatrix}, m_3 \otimes m_2, i f(m_2 = n_2) - \begin{bmatrix}, m_2 \otimes, n_2 \otimes, i \otimes m_1, j \otimes n_1, i f(m_1 = n_1) \\, m_2 \otimes, n_2 \otimes, \odot c_2, \end{bmatrix}, m_3 \otimes m_2, i f(m_2 = n_2) - \begin{bmatrix}, m_2 \otimes, n_2 \otimes, i \otimes m_1, j \otimes n_1, i f(m_1 = n_1) \\, m_2 \otimes, n_2 \otimes, \odot c_2, \end{bmatrix}, m_3 \otimes m_3 \otimes$$

$$\Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix} , if(i\circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} \\ , @c_3, \end{bmatrix},$$

$$, if(i\circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , if(i\circlearrowleft j) = \begin{bmatrix} , @c_3, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

7.6.2 Branch function with propositions

$$, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) = \begin{bmatrix}, @c_1, \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

7.6.3 Propositions with branch function

$$,i\circlearrowleft j,if(i\circlearrowleft j)=\begin{bmatrix},@c_1,\\,@c_2,\end{bmatrix}$$
, \Leftrightarrow $,i\circlearrowleft j,@c_1,$

$$,i!\mathcal{O}j,if(i\mathcal{O}j)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix}-,\Leftrightarrow,i!\mathcal{O}j,@c_2,$$

7.6.4 Propositions with propositions

$$,i \circ j, \Leftrightarrow ,i \circ j,i \circ j,$$

$$,i!Oj, \Leftrightarrow ,i!Oj,i!Oj,$$

7.7 Substitution

7.7.1 Propositions with branch function

$$, i \circlearrowleft j, i f(j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , i \circlearrowleft j, i f(i \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -,$$

proof:

$$,i\circlearrowleft j,if(j\circlearrowleft m)-\begin{bmatrix},&c_1,\\&&c_2,\end{bmatrix}$$
,

$$\Leftrightarrow , i \otimes p_1, j \otimes n_1, p_1 = n_1, p_1 \oplus, n_1 \oplus, i f(j \circlearrowleft m) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, p_1 = n_1, i f(j \otimes m) - \begin{bmatrix}, p_1 \otimes, n_1 \otimes, \otimes c_1, \\, p_1 \otimes, n_1 \otimes, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, p_1 = n_1, j \otimes n_2, m \otimes t, if(n_2 = t) = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, j \otimes n_2, p_1 = n_1, m \otimes t, if(n_2 = t) = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, j \otimes n_2, n_1 = n_2, p_1 = n_1, m \otimes t, if(n_2 = t) = \begin{bmatrix}, n_2 @, t @, p_1 @, n_1 @, @ c_1, \\ \\, n_2 @, t @, p_1 @, n_1 @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, j \otimes n_2, n_1 = n_2, p_1 = n_2, m \otimes t, if(n_2 = t) = \begin{bmatrix}, n_2 @, t @, p_1 @, n_1 @, @c_1, \\ , n_2 @, t @, p_1 @, n_1 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes p_1, j \otimes n_1, j \otimes n_2, p_1 = n_2, m \otimes t, i f(n_2 = t) = \begin{bmatrix} , n_2 \otimes, t \otimes, p_1 \otimes, n_1 \otimes, \odot c_1, \\ , n_2 \otimes, t \otimes, p_1 \otimes, n_1 \otimes, \odot c_2, \end{bmatrix} = \begin{bmatrix} , n_2 \otimes, t \otimes, p_1 \otimes, n_1 \otimes, \odot c_1, \\ , n_2 \otimes, t \otimes, p_1 \otimes, n_1 \otimes, \odot c_2, \end{bmatrix} = \begin{bmatrix} , n_2 \otimes, t \otimes, p_1 \otimes, p_$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, j \otimes n_2, m \otimes t, p_1 = n_2, if(n_2 = t) = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ \\ , n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix} = \begin{bmatrix}, n_2 \oplus, t \oplus, p_1 \oplus, n_1 \oplus, o_2 \oplus, o_2$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, j \otimes n_2, m \otimes t, p_1 = n_2, if(p_1 = t) \\ \begin{bmatrix}, n_2 @, t @, p_1 @, n_1 @, @c_1, \\ \\, n_2 @, t @, p_1 @, n_1 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, j \otimes n_2, p_1 = n_2, m \otimes t, i f(p_1 = t) = \begin{bmatrix}, n_2 @, t @, p_1 @, n_1 @, @ c_1, \\ \\, n_2 @, t @, p_1 @, n_1 @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, j \otimes n_2, n_1 = n_2, p_1 = n_2, m \otimes t, if(p_1 = t) = \begin{bmatrix}, n_2 @, t @, p_1 @, n_1 @, @ c_1, \\, n_2 @, t @, p_1 @, n_1 @, @ c_2, \end{bmatrix} = \underbrace{, i \otimes p_1, j \otimes n_1, j \otimes n_2, n_1 = n_2, p_1 = n_2, m \otimes t, if(p_1 = t) = \begin{bmatrix}, n_2 @, t @, p_1 @, n_1 @, @ c_1, \\, n_2 @, t @, p_1 @, n_1 @, @ c_2, \end{bmatrix}}_{\bullet, h_1 \otimes h_2, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, j \otimes n_1, j \otimes n_2, n_1 = n_2, p_1 = n_2, m \otimes t, if(p_1 = t) = \begin{bmatrix}, n_2 @, t @, p_1 @, n_1 @, @ c_1, \\, n_2 @, t @, p_1 @, n_1 @, @ c_2, \end{bmatrix}}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, j \otimes n_2, h_2 \otimes h_2, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, j \otimes n_2, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes p_1, h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2} = \underbrace{, i \otimes h_2 \otimes h_2}_{\bullet, h_2 \otimes h_2}$$

$$\Leftrightarrow , i \otimes p_1, j \otimes n_1, j \otimes n_2, n_1 = n_2, p_1 = n_1, m \otimes t, if(p_1 = t) = \begin{bmatrix} , n_2 @, t @, p_1 @, n_1 @, @ c_1, \\ , n_2 @, t @, p_1 @, n_1 @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes p_1, j \otimes n_1, j \otimes n_2, p_1 = n_1, m \otimes t, i f(p_1 = t) = \begin{bmatrix} , n_2 @, t @, p_1 @, n_1 @, @ c_1, \\ , n_2 @, t @, p_1 @, n_1 @, @ c_2, \end{bmatrix} -,$$

$$\Leftrightarrow, i \otimes p_1, j \otimes n_1, p_1 = n_1, m \otimes t, if(p_1 = t) = \begin{bmatrix}, j \otimes n_2, n_2 @, t @, p_1 @, n_1 @, @c_1, \\, j \otimes n_2, n_2 @, t @, p_1 @, n_1 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes p_1, j \otimes n_1, p_1 = n_1, m \otimes t, i f(p_1 = t) - \begin{bmatrix} , t \otimes, p_1 \otimes, n_1 \otimes, \odot c_1, \\ , t \otimes, p_1 \otimes, n_1 \otimes, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_2, p_2 \oplus, i \otimes p_1, j \otimes n_1, p_1 = n_1, m \otimes t, if(p_1 = t) = \begin{bmatrix}, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes p_2, i \otimes p_1, j \otimes n_1, p_1 = n_1, p_2 \oplus, m \otimes t, i f(p_1 = t) = \begin{bmatrix} , t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\ , t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_2, i \otimes p_1, p_2 = p_1, j \otimes n_1, p_1 = n_1, p_2 \oplus, m \otimes t, i f(p_1 = t) - \begin{bmatrix}, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_2, i \otimes p_1, j \otimes n_1, p_2 = p_1, p_1 = n_1, p_2 \oplus, m \otimes t, i f(p_1 = t) - \begin{bmatrix}, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_2, i \otimes p_1, j \otimes n_1, p_2 = p_1, p_2 = n_1, p_2 \oplus, m \otimes t, i f(p_1 = t) - \begin{bmatrix}, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_2, i \otimes p_1, p_2 = p_1, j \otimes n_1, p_2 = n_1, p_2 \oplus, m \otimes t, i f(p_1 = t) - \begin{bmatrix}, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_2, i \otimes p_1, j \otimes n_1, p_2 = n_1, p_2 \oplus, m \otimes t, i f(p_1 = t) = \begin{bmatrix}, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_2, j \otimes n_1, p_2 = n_1, p_2 \oplus, i \otimes p_1, m \otimes t, i f(p_1 = t) = \begin{bmatrix}, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_1, \\, t \oplus, p_1 \oplus, n_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes p_2, j \otimes n_1, p_2 = n_1, p_2 \oplus, n_1 \oplus, i \otimes p_1, m \otimes t, if(p_1 = t) = \begin{bmatrix}, t \oplus, p_1 \oplus, \odot c_1, \\, t \oplus, p_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i\circlearrowleft j,if(i\circlearrowleft m)=\begin{bmatrix},&c_1,\\&,&c_2,\end{bmatrix}$

7.7.2 Propositions with propositions

$$,i\circlearrowleft j,j\circlearrowleft m,\Leftrightarrow,i\circlearrowleft j,i\circlearrowleft m,$$

$$,i\circlearrowleft j,j!\circlearrowleft m, \Leftrightarrow ,i\circlearrowleft j,i!\circlearrowleft m,$$

7.7.3 Identical node comparison propositions with node value comparison propositions

$$,i \circlearrowleft j, \Leftrightarrow ,i \circlearrowleft j, i = j,$$

 $\underset{,i \circlearrowleft j,}{\operatorname{proof:}}$

$$\Leftrightarrow , i \circlearrowleft j, i f (i \! = \! j) \! - \! \left[, \right] \! \! - \! ,$$

$$\Leftrightarrow , i \circlearrowleft j, i f (i = i) - \boxed{,}$$

$$\Leftrightarrow ,i \circlearrowleft j,i \circledcirc i - \left[, \right] -,$$

$$\Leftrightarrow ,i\circlearrowleft j,i\circledcirc i- \left[,\underset{,\bigotimes,}{,}\right] -,$$

$$\Leftrightarrow , i \circlearrowleft j, i f(i = i) - \begin{bmatrix} , \\ , \bigotimes, \end{bmatrix} -,$$

$$\Leftrightarrow$$
 $, i \circlearrowleft j, i f(i = j) - \begin{bmatrix} , \\ . \otimes . \end{bmatrix} - ,$

$$\Leftrightarrow$$
, $i \circ j$, $i = j$,

7.7.4 Propositions with node value comparison branch function

$$, i \circlearrowleft j, i f(j = m) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff, i \circlearrowleft j, i f(i = m) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$,i\circlearrowleft j,if(j=m)$$
, $\bigcirc c_1, \bigcirc c_2$

$$\begin{array}{l} \text{proof.} \\ , i \circlearrowleft j, i f(j = m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ \Leftrightarrow , , i \circlearrowleft j, i = j, i f(j = m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \end{array}$$

$$\Leftrightarrow ,, i \circlearrowleft j, i = j, i f(i = m) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
,, $i \circlearrowleft j$, $i f(i = m) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}$,

7.7.5 Propositions with node value comparison propositions

$$,i \circlearrowleft j, j = m, \iff ,i \circlearrowleft j, i = m,$$

$$,i\circlearrowleft j,j!=m, \Leftrightarrow ,i\circlearrowleft j,i!=m,$$

7.7.6 Propositions with node null comparison branch function

$$, i \circlearrowleft j, i f(j = \varnothing) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix} -, \iff , i \circlearrowleft j, i f(i = \varnothing) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix} -,$$

$$\begin{array}{l} \text{proof:} \\ , i \circlearrowleft j, i f(j = \varnothing) - \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix}, \\ \Leftrightarrow , , i \circlearrowleft j, i = j, i f(j = \varnothing) - \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix}, \\ \Leftrightarrow , , i \circlearrowleft j, i = j, i f(i = \varnothing) - \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix}, \\ \Leftrightarrow , , i \circlearrowleft j, i f(i = \varnothing) - \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix}, \end{array}$$

7.7.7 Propositions with node null comparison propositions

$$,i\circlearrowleft j,j=\varnothing, \iff,i\circlearrowleft j,i=\varnothing,$$

$$,i\circlearrowleft j,j!=\varnothing, \Leftrightarrow ,i\circlearrowleft j,i!=\varnothing,$$

7.8 Opposition

$$,i\circlearrowleft j,i!\circlearrowleft j,\iff,\otimes,$$

$$\begin{array}{c} \text{proof:} \\ , i \circlearrowleft j, i ! \circlearrowleft j, \end{array}$$

$$\Leftrightarrow, i \circlearrowleft j, i f(i \circlearrowleft j) - \begin{bmatrix}, \otimes, \\ \\ \end{pmatrix},$$
$$\Leftrightarrow, i \circlearrowleft j, \otimes,$$

$$\Leftrightarrow \ , \otimes,$$

$$,i!\mathcal{O}j,i\mathcal{O}j,\iff,\otimes,$$

8 Rules of Empty Branch Function

8.1 Definition of Empty Branch Function

$$, = \begin{bmatrix} , i = j, \\ , i! = j, \end{bmatrix} \Leftrightarrow , if(i = j) = \begin{bmatrix} , \\ , \\ , i! = j, \end{bmatrix}$$

8.2 Axiom of Empty Branch Function

$$, ©c, = \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \Leftrightarrow , = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, ©c,$$

8.3 Theorems of Empty Branch Function

$$, if(i=\varnothing) - \begin{bmatrix} , & \Leftrightarrow , -\begin{bmatrix} , i=\varnothing, \\ , i!=\varnothing, \end{bmatrix}$$

8 Rules of Empty Branch Function

$$\Leftrightarrow, -\begin{bmatrix}, i = \emptyset, \\ , i! = \emptyset, \end{bmatrix}$$

$$, if(i\circlearrowleft j) - \begin{bmatrix} , \\ , \\ , \end{bmatrix} \Leftrightarrow , - \begin{bmatrix} , i\circlearrowleft j, \\ , i!\circlearrowleft j, \\ \end{bmatrix}$$

9 Swap Theorems of the Same Operand

9.1 Identical node comparison

9.1.1 Branch function and branch function

proof: $, if(i \circlearrowleft j) - \begin{bmatrix} , if(j \circlearrowleft k) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \\ , if(j \circlearrowleft k) - \begin{bmatrix} , @c_3, \\ & & \end{bmatrix} \\ , & & & \end{bmatrix},$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, i f(j \circ k) - \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \\, t_1 \otimes, t_2 \otimes, i f(j \circ k) - \begin{bmatrix}, \odot c_3, \\, \odot c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, j \otimes t_3, k \otimes t_4, i f(t_3 = t_4) & t_3 \otimes, t_4 \otimes, \odot c_1, \\, t_3 \otimes, t_4 \otimes, \odot c_2, \\, t_4 \otimes, t_4 \otimes, \odot c_3, \\, t_4 \otimes, t_4 \otimes,$$

9 Swap Theorems of the Same Operand

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, j \otimes t_3, k \otimes t_4, i f(t_1 = t_2) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_1, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_2, \end{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \end{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix}, t_3 \otimes, t_4 \otimes, t_3 \otimes, t_4 \otimes, t_5 \otimes, t$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, j \otimes t_3, k \otimes t_4, i f(t_3 = t_4) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_1, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_3, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_2, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_2, \\, t_1 \otimes, t_2 \otimes, t_3 \otimes, t_4 \otimes, \odot c_4, \end{bmatrix},$$

$$\Leftrightarrow, j \otimes t_3, k \otimes t_4, i f(t_3 = t_4) - \begin{bmatrix}, t_3 \otimes, t_4 \otimes, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, \odot c_1, \\ t_1 \otimes, t_2 \otimes, \odot c_3, \end{bmatrix}, \\, t_3 \otimes, t_4 \otimes, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, \odot c_1, \\ t_1 \otimes, t_2 \otimes, \odot c_2, \\ t_1 \otimes, t_2 \otimes, \odot c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(j\circlearrowleft k) - \begin{bmatrix} , if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} \\ , if(i\circlearrowleft j) - \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix} \\ , \end{bmatrix},$$

9.1.2 Branch function and propositions

$$, i \circlearrowleft j, i f(j \circlearrowleft k) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(j \circlearrowleft k) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if(j \circlearrowleft k) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(j \circlearrowleft k) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

9.1.3 Propositions and propositions

$$,i\circlearrowleft j,j\circlearrowleft k,\iff ,j\circlearrowleft k,i\circlearrowleft j,$$

$$,i\mathcal{O}j,j!\mathcal{O}k,\iff,j!\mathcal{O}k,i\mathcal{O}j,$$

$$,i!Oj,jOk, \Leftrightarrow ,jOk,i!Oj,$$

$$,i!\mathcal{O}j,j!\mathcal{O}k,\Leftrightarrow,j!\mathcal{O}k,i!\mathcal{O}j,$$

9.1.4 Relationship and id operator

$$, i \otimes n, i f(i \circlearrowleft j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(i \circlearrowleft j) = \begin{bmatrix} , i \otimes n, \odot c_1, \\ , i \otimes n, \odot c_2, \end{bmatrix},$$

proof:
,
$$i \otimes n$$
, $i f(i \circ j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}$,

9 Swap Theorems of the Same Operand

$$\Leftrightarrow, i \otimes n, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, \otimes c_1, \\ t_1 \otimes, t_2 \otimes, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, i \otimes n, j \otimes t_2, i f(t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, \otimes c_1, \\ t_1 \otimes, t_2 \otimes, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, i \otimes n, \otimes c_1, \\ t_1 \otimes, t_2 \otimes, i \otimes n, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, i f(i \otimes j) - \begin{bmatrix}, i \otimes n, \otimes c_1, \\ t_1 \otimes, t_2 \otimes, i \otimes n, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, i f(i \otimes j) - \begin{bmatrix}, i \otimes n, \otimes c_1, \\ t_1 \otimes, t_2 \otimes, i \otimes n, \otimes c_2, \end{bmatrix},$$

9.1 Identical node comparison

$$,i\circlearrowleft j,i\circledcirc n,\iff,i\circledcirc n,i\circlearrowleft j,$$

 $,i!\circlearrowleft j,i\circledcirc n,\iff,i\circledcirc n,i!\circlearrowleft j,$

9.1.5 Id operator and copy operator, subnode operator

$$,i \otimes m, i \otimes n, \iff ,i \otimes n, i \otimes m,$$

proof: $,i \otimes m, i \otimes n,$

- $\Leftrightarrow ,i \odot j, j \odot, i \odot m, i \odot n,$
- \iff , $i \odot j$, $i \odot m$, $i \odot n$, $j \odot n$,
- \Leftrightarrow $,i \odot j,i \odot j,i \odot m,i \odot n,j \odot ,$
- \Leftrightarrow $,i \odot j, i \odot m, i \circlearrowleft j, i \odot n, j \odot ,$
- $\Leftrightarrow ,i \otimes j, i \otimes m, i \circlearrowleft j, j \otimes n, j \oplus ,$
- \Leftrightarrow $,i \odot j,i \odot j,i \odot m,j \odot n,j \odot ,$
- \Leftrightarrow $,i \odot j,i \odot j,j \odot n,i \odot m,j \odot ,$
- \Leftrightarrow $,i \odot j,i \odot j,i \odot n,i \odot m,j \odot ,$
- \iff , $i \odot j$, $i \odot n$, $i \odot m$, $j \odot n$,
- $\iff, i \odot j, j \odot, i \odot n, i \odot m,$
- \Leftrightarrow , $i \otimes n$, $i \otimes m$,

9 Swap Theorems of the Same Operand

$$, i \otimes m, i \otimes n, \iff , i \otimes n, i \otimes m,$$

9.1.6 Relationship and copy operator, subnode operator

$$, i \otimes n, i f(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(i \circlearrowleft j) - \begin{bmatrix} , i \otimes n, @c_1, \\ \\ , i \otimes n, @c_2, \end{bmatrix},$$

proof:

$$, i \otimes n, i f(i \otimes j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes n, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix} , t_1 \otimes , t_2 \otimes , @c_1, \\ , t_1 \otimes , t_2 \otimes , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes t_1, i \otimes n, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix} , t_1 \otimes , t_2 \otimes , @c_1, \\ , t_1 \otimes , t_2 \otimes , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix} , t_1 \otimes , t_2 \otimes , i \otimes n, @c_1, \\ , t_1 \otimes , t_2 \otimes , i \otimes n, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i f(i \otimes j) = \begin{bmatrix} , i \otimes n, @c_1, \\ , i \otimes n, @c_2, \end{bmatrix},$$

9.1 Identical node comparison

$$, i \otimes n, i f(i \circlearrowleft j) = \begin{bmatrix} , & \otimes c_1, \\ , & \otimes c_2, \end{bmatrix}, \Leftrightarrow , i f(i \circlearrowleft j) = \begin{bmatrix} , i \otimes n, & \otimes c_1, \\ , i \otimes n, & \otimes c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, i \otimes n, \Leftrightarrow , i \otimes n, i \circlearrowleft j,$$

$$, i \otimes m, i \otimes n, \Leftrightarrow , i \otimes m, i \otimes n, m \circlearrowleft n,$$

$$, i ! \circlearrowleft j, i \otimes n, \Leftrightarrow , i \otimes n, i ! \circlearrowleft j,$$

$$, i \circlearrowleft j, i \otimes n, \Leftrightarrow , i \otimes n, i \circlearrowleft j,$$

$$, i \circlearrowleft j, i \otimes n, \Leftrightarrow , i \otimes n, i \circlearrowleft j,$$

$$, i \wr j, i \otimes n, \Leftrightarrow , i \otimes n, i \wr j,$$

$$, i \wr j, i \otimes n, \Leftrightarrow , i \otimes n, i \wr j,$$

9.1.7 Copy operator and subnode operator

$$,i \odot m, i \odot n, \Leftrightarrow ,i \odot n, i \odot m,$$

 $proof: , i \otimes m, i \otimes n,$

 \Leftrightarrow $,i \otimes j, j \otimes , i \otimes m, i \otimes n,$

 $\Leftrightarrow \ ,i @ j,i @ m,i @ n,j @,$

 $\Leftrightarrow \ ,i @ j,i @ j,i @ m,i @ n,j @,$

 $\Leftrightarrow ,i \otimes j,i \otimes j,j \otimes m,i \otimes n,j \otimes n,$

 $\Leftrightarrow , i \otimes j, i \otimes j, i \otimes n, j \otimes m, j \otimes$

 $\Leftrightarrow \ , i @ j, i @ n, i @ j, j @ m, j @,$

 $\iff, i @ j, i @ n, i @ j, i @ m, j @,$

9 Swap Theorems of the Same Operand

$$\Leftrightarrow \ ,i @ j,i @ j,i @ n,i @ m,j @,$$

$$\Leftrightarrow \ , i \odot j, i \odot n, i \odot m, j \odot ,$$

$$\Leftrightarrow \ ,i \odot j, j \odot , i \odot n, i \odot m,$$

$$\Leftrightarrow , i \odot n, i \odot m,$$

$$,i \odot m, i \odot n, \Leftrightarrow ,i \odot n, i \odot m,$$

 $,i \odot m, i \odot n, \Leftrightarrow ,i \odot n, i \odot m,$

9.2 Node value comparison

9.2.1 Operators

$$, i \otimes m, i f(i = j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \iff , i f(i = j) - \begin{bmatrix} , i \otimes m, \odot c_1, \\ , i \otimes m, \odot c_2, \end{bmatrix},$$

$$\begin{aligned} & \text{proof:} \\ &, i \otimes m, i f(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ & \Leftrightarrow , i \otimes i_0, i_0 \oplus , i \otimes m, i f(i=j) - \begin{bmatrix} , i_0 \oplus , \odot c_1, \\ , i_0 \oplus , \odot c_2, \end{bmatrix}, \\ & \Leftrightarrow , i \otimes i_0, i \otimes m, i f(i=j) - \begin{bmatrix} , i_0 \oplus , \odot c_1, \\ , i_0 \oplus , \odot c_2, \end{bmatrix}, \\ & \Leftrightarrow , i \otimes i_0, i \otimes m, i f(i=j) - \begin{bmatrix} , i_0 \oplus , \odot c_1, \\ , i_0 \oplus , \odot c_2, \end{bmatrix}, \\ & \Leftrightarrow , i \otimes i_0, i \otimes m, i \otimes i_0, i f(i=j) - \begin{bmatrix} , i_0 \oplus , \odot c_1, \\ , i_0 \oplus , \odot c_2, \end{bmatrix}, \\ & \Leftrightarrow , i \otimes i_0, i \otimes m, i \otimes i_0, i f(i_0=j) - \begin{bmatrix} , i_0 \oplus , \odot c_1, \\ , i_0 \oplus , \odot c_2, \end{bmatrix}, \\ & \Leftrightarrow , i \otimes i_0, i \otimes m, i \otimes i_0, i f(i_0=j) - \begin{bmatrix} , i_0 \oplus , \odot c_1, \\ , i_0 \oplus , \odot c_2, \end{bmatrix}, \end{aligned}$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_0, i f(i_0 = j) = \begin{bmatrix}, i_0 \oplus, i \otimes m, \oplus c_1, \\, i_0 \oplus, i \otimes m, \oplus c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_0, i f(i = j) = \begin{bmatrix}, i_0 \oplus, i \otimes m, \oplus c_1, \\\\, i_0 \oplus, i \otimes m, \oplus c_2, \end{bmatrix},$$

$$\Leftrightarrow, i @ i_0, i @ i_0, i f(i=j) - \begin{bmatrix}, i_0 @, i @ m, @ c_1, \\ , i_0 @, i @ m, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_0, i f (i = j) - \begin{bmatrix} , i_0 \oplus , i \otimes m, \odot c_1, \\ , i_0 \oplus , i \otimes m, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_0, i_0 \oplus, i f (i = j) - \begin{bmatrix} , i \otimes m, \otimes c_1, \\ \\ , i \otimes m, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} ,i \otimes m, @c_1, \\ \\ ,i \otimes m, @c_2, \end{bmatrix} -,$$

$$\begin{array}{l} ,i @ m,i f(i=j) - \begin{bmatrix} , @ c_1, \\ , @ c_2, \end{bmatrix}, \quad \Leftrightarrow \quad ,i f(i=j) - \begin{bmatrix} ,i @ m, @ c_1, \\ ,i @ m, @ c_2, \end{bmatrix}, \\ ,i @ m,i f(i=j) - \begin{bmatrix} , @ c_1, \\ , @ c_2, \end{bmatrix}, \quad \Leftrightarrow \quad ,i f(i=j) - \begin{bmatrix} ,i @ m, @ c_1, \\ ,i @ m, @ c_2, \end{bmatrix}, \\ ,i = j,i @ n, \quad \Leftrightarrow \quad ,i @ n,i = j, \\ ,i = j,i @ n, \quad \Leftrightarrow \quad ,i @ n,i = j, \\ ,i = j,i @ n, \quad \Leftrightarrow \quad ,i @ n,i = j, \\ ,i != j,i @ n, \quad \Leftrightarrow \quad ,i @ n,i != j, \\ ,i != j,i @ n, \quad \Leftrightarrow \quad ,i @ n,i != j, \\ ,i != j,i @ n, \quad \Leftrightarrow \quad ,i @ n,i != j, \\ ,i != j,i @ n, \quad \Leftrightarrow \quad ,i @ n,i != j, \\ \end{array}$$

9.2.2 Identical node comparison

One:

$$, if(i\circlearrowleft j) - \begin{bmatrix}, if(j=m) - \begin{bmatrix}, & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix}, & \Leftrightarrow , if(j=m) - \begin{bmatrix}, if(i\circlearrowleft j) - \begin{bmatrix}, & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix}, & \\ & & \\ , if(i\circlearrowleft j) - \begin{bmatrix}, & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix}, \\ \\ , & & \\ , if(i\circlearrowleft j) - \begin{bmatrix}, & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix}, \\$$

proof: $, if(i \circ j) = \begin{bmatrix} , if(j = m) & \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix} \\ , if(j = m) & \begin{bmatrix} , \odot c_3, \\ , \odot c_4, \end{bmatrix} \end{bmatrix},$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix}, t_1 \otimes, t_2 \otimes, i f(j = m) & \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\, t_1 \otimes, t_2 \otimes, i f(j = m) & \begin{bmatrix}, \odot c_3, \\ , \odot c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, i f(t_1 = t_2) = \begin{bmatrix}, i f(j = m) & t_1 \otimes t_2 \otimes \otimes c_1, \\ t_1 \otimes t_2 \otimes \otimes c_2, \\ t_1 \otimes t_2 \otimes \otimes c_2, \\ t_1 \otimes t_2 \otimes \otimes c_3, \\ t_1 \otimes t_2 \otimes \otimes c_3, \\ t_1 \otimes t_2 \otimes \otimes c_4, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, j \otimes t_2, i f(j = m) = \begin{bmatrix}, i f(t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, \odot c_1, \\ t_1 \otimes, t_2 \otimes, \odot c_3, \end{bmatrix}, \\, i f(t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, \odot c_3, \\ t_1 \otimes, t_2 \otimes, \odot c_2, \end{bmatrix}, \\, t_1 \otimes, t_2 \otimes, \odot c_4, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes t_1, i f (j = m) - \begin{bmatrix}, j \otimes t_2, i f (t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, \odot c_1, \\ t_1 \otimes, t_2 \otimes, \odot c_3, \end{bmatrix}, \\, j \otimes t_2, i f (t_1 = t_2) - \begin{bmatrix}, t_1 \otimes, t_2 \otimes, \odot c_3, \\ t_1 \otimes, t_2 \otimes, \odot c_2, \\ t_1 \otimes, t_2 \otimes, \odot c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(j=m) = \begin{bmatrix} ,i \otimes t_1, j \otimes t_2, if(t_1=t_2) & \vdots & \vdots & \vdots \\ ,t_1 \otimes ,t_2 \otimes , \otimes c_3, & \vdots & \vdots \\ ,t_1 \otimes ,t_2 \otimes , \otimes c_3, & \vdots & \vdots \\ ,t_1 \otimes ,t_2 \otimes , \otimes c_2, & \vdots & \vdots \\ ,t_1 \otimes ,t_2 \otimes , \otimes c_2, & \vdots & \vdots \\ ,t_1 \otimes ,t_2 \otimes , \otimes c_4, & \vdots & \vdots \\ ,t_1 \otimes ,t_2 \otimes ,t_2$$

$$\Leftrightarrow , if(j=m) = \begin{bmatrix} , if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} \\ , if(i\circlearrowleft j) - \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix} \end{bmatrix},$$

$$, i \circlearrowleft j, i f(j = m) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(j = m) = \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i ! \circlearrowleft j, i f(j = m) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(j = m) = \begin{bmatrix} , i ! \circlearrowleft j, @c_1, \\ , i ! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, j = m, i f(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(i \circlearrowleft j) = \begin{bmatrix} , j = m, @c_1, \\ , j = m, @c_2, \end{bmatrix},$$

$$, j ! = m, i f(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(i \circlearrowleft j) = \begin{bmatrix} , j ! = m, @c_1, \\ , j ! = m, @c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, j = m, \Leftrightarrow , j = m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, j ! = m, \Leftrightarrow , j ! = m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, j = m, \Leftrightarrow , j = m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, j = m, \Leftrightarrow , j = m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, j = m, \Leftrightarrow , j = m, i \circlearrowleft j,$$

Two:

$$, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \Leftrightarrow, if(i=j) = \begin{bmatrix}, \circ c_1, \\, \circ c_3, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_3, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_3, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\hookrightarrow j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\hookrightarrow j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\hookrightarrow j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\hookrightarrow j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\hookrightarrow j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\hookrightarrow j) = \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, if(i\hookrightarrow j) = [\underbrace, \circ c_1,], \\, \circ c_2,], \\, \circ c_1, \vdots, \circ c_2,], \\, \circ c_1, \vdots, \circ c_2,], \\, \circ c_1, \vdots, \circ c_2,], \\, \circ c_2, \vdots, \circ c_2, \vdots, \circ c_2,], \\, \circ c_1, \vdots, \circ c_2,]$$

 $,i!\mathcal{O}_{i},j!=m, \Leftrightarrow ,j!=m,i!\mathcal{O}_{i},$

$$, if(i\circlearrowleft j) - \begin{bmatrix}, if(i=j) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\, if(i=j) - \begin{bmatrix}, \odot c_3, \\ , \odot c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_0, i_0 \oplus, i f(i \circ j) - \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, i f(i = j) - \begin{bmatrix}, \circ c_1, \\, \circ c_2, \end{bmatrix}, \\, \circ c_4, \end{bmatrix},$$

$$\Leftrightarrow, i @ i_0, i f(i @ j) - \begin{bmatrix}, @ c_1, \\, @ c_2, \end{bmatrix}, \\, i_0 @, i f(i = j) - \begin{bmatrix}, @ c_1, \\, @ c_2, \end{bmatrix}, \\, @ c_4, \end{bmatrix},$$

$$\Leftrightarrow, i @ i_0, i f (i @ j) = \begin{bmatrix}, i_0 @, @ c_1, \\, i_0 @, @ c_2, \end{bmatrix}, \\, i f (i = j) = \begin{bmatrix}, i_0 @, @ c_2, \end{bmatrix}, \\, i_0 @, @ c_3, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_0, i f(i \otimes j) = \begin{bmatrix}, i_0 \oplus, \odot c_1, \\, i_0 \oplus, \odot c_2, \end{bmatrix}, \\, if(i = j) = \begin{bmatrix}, i_0 \oplus, \odot c_2, \\, i_0 \oplus, \odot c_3, \\, i_0 \oplus, \odot c_4, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_0, i \circ i_0, i f(i_0 \circ j) = \begin{bmatrix}, i_0 \otimes , \odot c_1, \\, i_0 \otimes , \odot c_2, \end{bmatrix}, \\, i f(i = j) = \begin{bmatrix}, i_0 \otimes , \odot c_2, \\, i_0 \otimes , \odot c_3, \\, i_0 \otimes , \odot c_4, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_0, i f(i=j) = \begin{bmatrix}, i f(i_0 \otimes j) = \begin{bmatrix}, i_0 \oplus, \odot c_1, \\, i_0 \oplus, \odot c_3, \end{bmatrix}, \\, i f(i_0 \otimes j) = \begin{bmatrix}, i_0 \oplus, \odot c_3, \\, i_0 \oplus, \odot c_2, \\, i_0 \oplus, \odot c_4, \end{bmatrix},$$

$$\Leftrightarrow, i @ i_0, i f (i = j) = \begin{bmatrix}, i @ i_0, i f (i_0 @ j) - \begin{bmatrix}, i_0 @ , @ c_1, \\ i_0 @ , @ c_3, \end{bmatrix}, \\, i @ i_0, i f (i_0 @ j) - \begin{bmatrix}, i_0 @ , @ c_2, \\ i_0 @ , @ c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_0, i f (i = j) = \begin{bmatrix}, i \otimes i_0, i f (i \otimes j) = \begin{bmatrix}, i_0 \oplus, \odot c_1, \\ i_0 \oplus, \odot c_3, \end{bmatrix}, \\, i \otimes i_0, i f (i \otimes j) = \begin{bmatrix}, i_0 \oplus, \odot c_2, \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_0, i f(i = j) = \begin{bmatrix}, i f(i \otimes j) & \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots & \vdots \\, i f(i \otimes j) & \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\, i_0 \otimes \vdots & \vdots & \vdots & \vdots \\$$

$$\Leftrightarrow, i @ i_0, i f (i = j) = \begin{bmatrix}, i f (i @ j) = \begin{bmatrix}, i_0 @, @ c_1, \\ \vdots & \vdots & \vdots \\, i_0 @, @ c_3, \end{bmatrix}, \\, i_0 @, @ c_2, \end{bmatrix}, \\, i_0 @, @ c_4, \end{bmatrix},$$

9.2 Node value comparison

$$\Leftrightarrow, i \otimes i_0, i_0 \otimes, i f(i = j) = \begin{bmatrix}, i f(i \otimes j) = \begin{bmatrix}, \otimes c_1, \\ & \otimes c_3, \end{bmatrix}, \\, i f(i \otimes j) = \begin{bmatrix}, \otimes c_2, \\ & \otimes c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , if(i\circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i\circlearrowleft j) = \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(i = j) - \begin{bmatrix} , \circledcirc c_1, \\ \\ , \circledcirc c_2, \end{bmatrix}, \iff , i f(i = j) - \begin{bmatrix} , i \circlearrowleft j, \circledcirc c_1, \\ \\ , i \circlearrowleft j, \circledcirc c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if (i=j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i=j) = \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i \! = \! j, i \! f(i \! \circlearrowleft \! j) \! - \! \left[\begin{matrix} , @c_1, \\ \\ , @c_2, \end{matrix} \right] \! - \! , \iff , i \! f(i \! \circlearrowleft \! j) \! - \! \left[\begin{matrix} , i \! = \! j, @c_1, \\ \\ , i \! = \! j, @c_2, \end{matrix} \right] \! - \! ,$$

$$,i!=j,if(i\circlearrowleft j)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix}, \Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix},i!=j,@c_1,\\\\,i!=j,@c_2,\end{bmatrix},$$

$$,i\circlearrowleft j,i=j,\iff,i=j,i\circlearrowleft j,$$

$$,i\circlearrowleft j,i!=j,\Leftrightarrow,i!=j,i\circlearrowleft j,$$

$$,i!Oj, i=j, \Leftrightarrow ,i=j,i!Oj,$$

$$,i!Oj,i!=j, \Leftrightarrow ,i!=j,i!Oj,$$

9.2.3 Itself

proof:

$$, if (i=j) = \begin{bmatrix} , if (j=m) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (j=m) - \begin{bmatrix} , \odot c_3, \\ , \odot c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_0, j_0 \otimes , if(i=j) = \begin{bmatrix} , if(j=m) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix} - , \\ , if(j=m) - \begin{bmatrix} , \odot c_3, \\ , \odot c_3, \end{bmatrix} - , \end{bmatrix},$$

$$\Leftrightarrow, j \otimes j_0, if (i=j) = \begin{bmatrix}, j_0 \oplus, if (j=m) & \begin{bmatrix}, @c_1, \\ & & \end{bmatrix}, \\, j_0 \oplus, if (j=m) & \begin{bmatrix}, @c_2, \\ & & \end{bmatrix}, \\, @c_4, \end{bmatrix},$$

$$\Leftrightarrow, j \otimes j_0, if (i=j) = \begin{bmatrix}, if (j=m) - \begin{bmatrix}, j_0 \oplus, \odot c_1, \\, j_0 \oplus, \odot c_2, \end{bmatrix}, \\, if (j=m) - \begin{bmatrix}, j_0 \oplus, \odot c_3, \\, j_0 \oplus, \odot c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_0, j \circlearrowleft j_0, if(i=j) = \begin{bmatrix} , if(j=m) & , j_0 \oplus, \odot c_1, \\ , j_0 \oplus, \odot c_2, \\ , j_0 \oplus, \odot c_3, \\ , j_0 \oplus, \odot c_4, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_0, j \circ j_0, if(i=j_0) = \begin{bmatrix} , if(j=m) & , j_0 \otimes , \otimes c_1, \\ , j_0 \otimes , \otimes c_2, \\ , if(j=m) & , j_0 \otimes , \otimes c_3, \\ , j_0 \otimes , \otimes c_4, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_0, j \otimes j_0, if(j=m) = \begin{bmatrix} , if(i=j_0) & \vdots & , j_0 \otimes , \otimes c_1, \\ , j_0 \otimes , \otimes c_3, & \vdots & , j_0 \otimes , \otimes c_2, \\ , if(i=j_0) & \vdots & , j_0 \otimes , \otimes c_4, \end{bmatrix},$$

$$\Leftrightarrow, j \otimes j_0, if(j=m) = \begin{bmatrix}, j \otimes j_0, if(i=j_0) & \vdots & \vdots & \vdots \\, j \otimes j_0, if(i=j_0) & \vdots & \vdots & \vdots \\, j \otimes j_0, if(i=j_0) & \vdots & \vdots & \vdots \\, j_0 \otimes \vdots & \vdots & \vdots \\, j_0 \otimes \vdots & \vdots & \vdots \\, j_0 \otimes \vdots & \vdots & \vdots & \vdots \\, j_0 \otimes \vdots & \vdots & \vdots \\, j_0 \otimes \vdots & \vdots & \vdots & \vdots \\, j_0 \otimes \vdots & \vdots &$$

$$\Leftrightarrow , j \otimes j_0, if(j=m) - \begin{bmatrix} , j \otimes j_0, if(i=j) - \begin{bmatrix} , j_0 \oplus, \odot c_1, \\ , j_0 \oplus, \odot c_3, \end{bmatrix}, \\ , j \otimes j_0, if(i=j) - \begin{bmatrix} , j_0 \oplus, \odot c_2, \\ , j_0 \oplus, \odot c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_0, j \otimes j_0, if(j=m) = \begin{bmatrix} , j_0 \otimes , \otimes c_1, \\ , j_0 \otimes , \otimes c_3, \end{bmatrix}, \\ , if(i=j) = \begin{bmatrix} , j_0 \otimes , \otimes c_3, \\ , j_0 \otimes , \otimes c_2, \\ , j_0 \otimes , \otimes c_4, \end{bmatrix},$$

9.2 Node value comparison

$$\Leftrightarrow, j \otimes j_0, if(j=m) = \begin{bmatrix}, j_0 \otimes, if(i=j) - \begin{bmatrix}, \odot c_1, \\, \odot c_3, \end{bmatrix}, \\, j_0 \otimes, if(i=j) - \begin{bmatrix}, \odot c_2, \\, \odot c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_0, j_0 \otimes , if(j=m) = \begin{bmatrix} , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \end{bmatrix} & , \\ , & (i=j) & \begin{bmatrix} , & (i=j) & \\ & & (i=j) & \end{bmatrix} & , \\ , &$$

$$\Leftrightarrow, if (i=j) = \begin{bmatrix}, if (j=m) & \begin{bmatrix}, & & \\ & & \\ & & \end{bmatrix}, & & \\ & & \\ , if (j=m) & \begin{bmatrix}, & & \\ & & \\ & & \end{bmatrix}, & & \\ & & \\ , & & \\ & & \end{bmatrix}, \\ \end{bmatrix},$$

$$, i = j, i f(j = m) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(j = m) - \begin{bmatrix} , i = j, \odot c_1, \\ , i = j, \odot c_2, \end{bmatrix},$$

$$, i != j, i f(j = m) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(j = m) - \begin{bmatrix} , i != j, \odot c_1, \\ , i != j, \odot c_2, \end{bmatrix},$$

$$, i != j, j = m, \Leftrightarrow , j = m, i != j,$$

$$, i != j, j != m, \Leftrightarrow , j != m, i != j,$$

$$, i != j, j != m, \Leftrightarrow , j != m, i != j,$$

9.3 Node null comparison

9.3.1 Operators

$$, i \otimes m, i f(i = \varnothing) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) = \begin{bmatrix} , i \otimes m, @c_1, \\ , i \otimes m, @c_2, \end{bmatrix},$$

proof:

$$,i \otimes m, if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i \otimes m, @j, if(i=j) - \begin{bmatrix} ,j \otimes , @c_1, \\ ,j \otimes , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , @j, i \otimes m, if(i=j) - \begin{bmatrix} ,j \otimes , @c_1, \\ ,j \otimes , @c_2, \end{bmatrix},$$

9.3 Node null comparison

$$\Leftrightarrow , @j, if(i=j) - \begin{bmatrix} , i \otimes m, j \otimes , @c_1, \\ , i \otimes m, j \otimes , @c_2, \end{bmatrix} - \underbrace{ \begin{bmatrix} , i \otimes m, j \otimes , @c_2, \\ , i \otimes m, j \otimes , @c_2, \end{bmatrix} }_{\bullet}$$

$$\Leftrightarrow, \odot j, if(i=j) - \begin{bmatrix}, i \odot m, j \odot, \odot c_1, \\, i \odot m, j \odot, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, \odot j, if(i=j) - \begin{bmatrix}, j \odot, i \odot m, \odot c_1, \\, j \odot, i \odot m, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, if(i=\varnothing) - \begin{bmatrix}, i \odot m, \odot c_1, \\, i \odot m, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if (i \! = \! \varnothing) - \begin{bmatrix} , i \otimes m, \otimes c_1, \\ \\ , i \otimes m, \otimes c_2, \end{bmatrix},$$

$$, i \otimes m, i f(i = \varnothing) = \begin{bmatrix} , \otimes c_1, \\ , \otimes c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) = \begin{bmatrix} , i \otimes m, \otimes c_1, \\ , i \otimes m, \otimes c_2, \end{bmatrix},$$

$$, i \otimes m, i f(i = \varnothing) = \begin{bmatrix} , \otimes c_1, \\ , \otimes c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) = \begin{bmatrix} , i \otimes m, \otimes c_1, \\ , i \otimes m, \otimes c_2, \end{bmatrix},$$

$$, i = \varnothing, i \otimes n, \Leftrightarrow , i \otimes n, i = \varnothing,$$

$$, i = \varnothing, i \otimes n, \Leftrightarrow , i \otimes n, i = \varnothing,$$

$$, i = \varnothing, i \otimes n, \Leftrightarrow , i \otimes n, i = \varnothing,$$

$$, i! = \varnothing, i \otimes n, \Leftrightarrow , i \otimes n, i! = \varnothing,$$

$$, i! = \varnothing, i \otimes n, \Leftrightarrow , i \otimes n, i! = \varnothing,$$

$$, i! = \varnothing, i \otimes n, \Leftrightarrow , i \otimes n, i! = \varnothing,$$

$$, i! = \varnothing, i \otimes n, \Leftrightarrow , i \otimes n, i! = \varnothing,$$

9.3.2 Identical node comparison

$$, if(i\circlearrowleft j) = \begin{bmatrix} , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \\ , if(i=\varnothing) - \begin{bmatrix} , & \\ , & & \\ , & & \end{bmatrix} - , \Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \end{bmatrix} - , \\ , if(i\circlearrowleft j) - \begin{bmatrix} , & & \\ , & \end{bmatrix} - , \\ , if(i) - (i) - (i)$$

proof:
$$, if(i = \varnothing) - \begin{bmatrix}, @c_1, \\, @c_2, \end{bmatrix}, \\, if(i = \varnothing) - \begin{bmatrix}, @c_3, \\, @c_3, \end{bmatrix}, \\, @c_4, \end{bmatrix},$$

$$\Leftrightarrow, \odot t, if(i) = t) = \begin{bmatrix}, t \oplus, \odot c_1, \\, t \oplus, \odot c_2, \end{bmatrix}, \\, if(i) = t = t, t \oplus, \odot c_3, \\, t \oplus, \odot c_4, \end{bmatrix},$$

$$\Leftrightarrow, @t, if(i = t) = \begin{bmatrix}, if(i \circlearrowleft j) - \begin{bmatrix}, t \textcircled{@}, @c_1, \\, t \textcircled{@}, @c_3, \end{bmatrix}, \\, if(i \circlearrowleft j) - \begin{bmatrix}, t \textcircled{@}, @c_2, \\, t \textcircled{@}, @c_2, \end{bmatrix}, \\, t \textcircled{@}, @c_4, \end{bmatrix},$$

$$\Leftrightarrow, @t, if(i = t) = \begin{bmatrix}, t @, if(i @j) - \begin{bmatrix}, @c_1, \\, @c_3, \end{bmatrix}, \\, t @, if(i @j) - \begin{bmatrix}, @c_2, \\, @c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i\circlearrowleft j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if (i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i = \varnothing) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i = \varnothing, i f(i \circlearrowleft j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff, i f(i \circlearrowleft j) - \begin{bmatrix}, i = \varnothing, @c_1, \\ \\ , i = \varnothing, @c_2, \end{bmatrix},$$

$$,i != \varnothing, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(i \circlearrowleft j) - \begin{bmatrix} ,i != \varnothing, @c_1, \\ \\ ,i != \varnothing, @c_2, \end{bmatrix},$$

$$,i \circlearrowleft j, i = \varnothing, \iff , i = \varnothing, i \circlearrowleft j,$$

$$,i\circlearrowleft j,i!=\varnothing, \Leftrightarrow ,i!=\varnothing,i\circlearrowleft j,$$

$$,i!O_i,i=\emptyset, \Leftrightarrow ,i=\emptyset,i!O_i,$$

$$,i!Oj,i!=\varnothing, \Leftrightarrow ,i!=\varnothing,i!Oj,$$

9.3.3 Node value comparison

proof:

$$, if (i = j) = \begin{bmatrix} , if (i = \varnothing) - \begin{bmatrix} , ©c_1, \\ , ©c_2, \end{bmatrix} \\ , if (i = \varnothing) - \begin{bmatrix} , ©c_3, \\ , ©c_4, \end{bmatrix} \end{bmatrix},$$

$$\Leftrightarrow , if (i = j) - \begin{bmatrix} , \odot t, if (i = t) - \begin{bmatrix} , t \textcircled{\o}, \odot c_1, \\ , t \textcircled{\o}, \odot c_2, \end{bmatrix}, \\ , \odot t, if (i = t) - \begin{bmatrix} , t \textcircled{\o}, \odot c_2, \\ , t \textcircled{\o}, \odot c_3, \\ , t \textcircled{\o}, \odot c_4, \end{bmatrix}, \end{cases},$$

$$\Leftrightarrow, @t, if (i\!=\!t) - \begin{bmatrix}, t @, @c_1, \\, t @, @c_2, \end{bmatrix}, \\, if (i\!=\!t) - \begin{bmatrix}, t @, @c_2, \\, t @, @c_3, \\, t @, @c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, @t, if (i\!=\!t) - \begin{bmatrix}, t @, @c_1, \\, t @, @c_3, \end{bmatrix}, \\, if (i\!=\!j) - \begin{bmatrix}, t @, @c_3, \\, t @, @c_2, \\, t @, @c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \odot t, if (i = t) - \begin{bmatrix}, @c_1, \\, @c_3, \end{bmatrix}, \\, t @, if (i = j) - \begin{bmatrix}, @c_1, \\, @c_3, \end{bmatrix}, \\, @c_4, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , if(i=j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$, i = j, if(i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} , i = j, @c_1, \\ \\ , i = j, @c_2, \end{bmatrix},$$

$$,i!=j,if(i=\varnothing)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},\iff,if(i=\varnothing)-\begin{bmatrix},i!=j,@c_1,\\\\,i!=j,@c_2,\end{bmatrix},$$

$$, i = \varnothing, if(i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \iff , if(i = j) - \begin{bmatrix} , i = \varnothing, @c_1, \\ \\ , i = \varnothing, @c_2, \end{bmatrix} -,$$

$$,i \! \models \! \varnothing, if(i \! = \! j) \! \leftarrow \!\!\! \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix} \!\!\! -, \; \Leftrightarrow \; ,if(i \! = \! j) \!\!\! \leftarrow \!\!\! \begin{bmatrix}, i \! \models \! \varnothing, @c_1, \\ \\ , i \! \models \! \varnothing, @c_2, \end{bmatrix} \!\!\! -,$$

$$, i = j, i = \emptyset, \iff , i = \emptyset, i = j,$$

$$, i = j, i! = \emptyset, \Leftrightarrow , i! = \emptyset, i = j,$$

$$,i!=j,i=\varnothing, \Leftrightarrow ,i=\varnothing,i!=j,$$

$$,i!=j,i!=\varnothing, \Leftrightarrow ,i!=\varnothing,i!=j,$$

10.1 Identity

 $, \Leftrightarrow , i = i,$

proof:

.

$$\iff, i \odot j, j \odot,$$

$$\Leftrightarrow$$
 $,i \otimes j,i \otimes j,j \otimes ,$

$$\Leftrightarrow , i @ j, i @ j, i f (i = j) - \boxed{,} -, j @,$$

$$\Leftrightarrow , i \otimes j, i \otimes j, i f(i = i) - \boxed{,} -, j \oplus,$$

$$\Leftrightarrow \ , i @ j, i f(i = i) - \boxed{, } -, j @,$$

$$\Leftrightarrow , i @ j, i @ i = \begin{bmatrix}, \\ \\ , \otimes, \end{bmatrix} -, j @,$$

$$\Leftrightarrow , i \otimes j, i @ i = \begin{bmatrix} , j \textcircled{0}, \\ , \otimes , \end{bmatrix},$$

$$\Leftrightarrow , i \otimes j, i @ i = \begin{bmatrix} , j \oplus , \\ , j \oplus , \otimes , \end{bmatrix},$$

$$\Leftrightarrow , if(i=i) - \begin{bmatrix} , \\ . \otimes . \end{bmatrix} -,$$

$$\Leftrightarrow , i = i,$$

10.2 Global space operator

$$, \bigcirc i, \bigcirc j, \Leftrightarrow , \bigcirc i, \bigcirc j, i \bigcirc j,$$

$$, \bigcirc i, i \bigcirc j, \iff , \bigcirc j, j \bigcirc i,$$

10.3 Temporary space operator

$$, \odot i, \Leftrightarrow , \odot i, i = \varnothing,$$

 $\begin{array}{c} \text{proof:} \\ , \circledcirc i, \end{array}$

$$\Leftrightarrow , @i, @j, j @,$$

$$\Leftrightarrow$$
 , $\odot i$, $\odot j$, $i = j$, $j \oplus$,

$$\Leftrightarrow \ , @i, @j, if (i \! = \! j) - \! \left[\begin{matrix} , \\ , \otimes, \end{matrix} \right] \! - \! , j @,$$

$$\Leftrightarrow , @i, @j, if (i=j) - \begin{bmatrix} ,j @, \\ \\ . & \\ . & \end{bmatrix} -,$$

$$\Leftrightarrow , @i, @j, if (i \! = \! j) \! - \! \begin{bmatrix} , j @, \\ , j @, \otimes, \end{bmatrix} \! - \! ,$$

$$\Leftrightarrow , @i, if (i = \varnothing) - \begin{bmatrix}, \\ \\ \\ , \otimes, \end{bmatrix},$$

$$\Leftrightarrow , @i, i = \varnothing,$$

10.4 Id operator

 $,i \otimes t, \Leftrightarrow ,i \otimes t,i! \circ t,$

 $proof: , i \otimes t,$

 $\Leftrightarrow ,i \otimes j, j \otimes, i \otimes t,$

 $\iff, i @ j, i @ t, j @,$

 \Leftrightarrow $,i \otimes j,i \otimes t,j! \circ t,j \otimes ,$

 $\Leftrightarrow , i \odot j, i \odot j, i \odot t, j ! \odot t, j \odot t,$

 \Leftrightarrow $,i \otimes j, i \otimes t, i \otimes j, j! \otimes t, j \otimes ,$

 \Leftrightarrow $,i \otimes j,i \otimes t,i \otimes j,i! \otimes t,j \otimes j,$

 $\Leftrightarrow \ ,i @ j,i @ j,i @ t,i! @ t,j @,$

 $\Leftrightarrow , i \otimes j, i \otimes t, i ! \circlearrowleft t, j \otimes,$

 $\Leftrightarrow , i \otimes j, j \otimes, i \otimes t, i! \circ t,$

 \Leftrightarrow , $i \otimes t$, $i! \circ t$,

10.5 Copy operator

$$, j = \varnothing, j \odot j_0, \iff , j \odot j_0, j_0 = \varnothing,$$

$$, j != \varnothing, j \odot j_0, \iff , j \odot j_0, j_0 != \varnothing,$$

$$, i \circlearrowleft j, j \circledcirc j_0, \iff , j \circledcirc j_0, i \circlearrowleft j_0,$$

$$, i ! \circlearrowleft j, j \circledcirc j_0, \iff , j \circledcirc j_0, i ! \circlearrowleft j_0,$$

$$, i \circlearrowleft j, i \circledcirc i_0, j \circledcirc j_0, \iff , i \circledcirc i_0, j \circledcirc j_0, i_0 \circlearrowleft j_0,$$

$$, i ! \circlearrowleft j, i \circledcirc i_0, j \circledcirc j_0, \iff , i \circledcirc i_0, j \circledcirc j_0, i_0 ! \circlearrowleft j_0,$$

$$, i \circlearrowleft j, i \circledcirc i_0, j \circledcirc j_0, \iff , \sim, i_0 \circlearrowleft j_0,$$

10.6 Next node operator

$$,i\circlearrowleft j,i\oplus,j\oplus,\Leftrightarrow,i\oplus,j\oplus,i\circlearrowleft j,$$

proof:

$$,i\circlearrowleft j,i\oplus,j\oplus,$$

 $\Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} ,i\oplus,j\oplus,\\ ,\otimes,\end{bmatrix} -,$
 $\Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} ,i\oplus,j\oplus,\\ ,\otimes,\end{bmatrix} -,$
 $\Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} ,i\oplus,j\oplus,\\ ,i\oplus,j\oplus,\otimes,\end{bmatrix} -,$
 $\Leftrightarrow ,i\oplus,j\oplus,if(i\circlearrowleft j)-\begin{bmatrix} ,\\ ,\otimes,\end{bmatrix} -,$
 $\Leftrightarrow ,i\oplus,j\oplus,i\circlearrowleft j$,

$$,i!\circlearrowleft j,i\oplus,j\oplus,\Leftrightarrow,i\oplus,j\oplus,i!\circlearrowleft j,$$

10.7 Previous node operator

$$, i\ominus, j\ominus, if(i \circlearrowleft j) - \begin{bmatrix}, \\ \\ \\ \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix}, i\ominus, j\ominus, \\ \\ \\ \end{bmatrix}, i\ominus, j\ominus, \\$$

$$\Leftrightarrow, i\ominus, j\ominus, if(i \circlearrowleft j) - \begin{bmatrix}, i\oplus, j\oplus, i\ominus, j\ominus, \\, i\oplus, j\oplus, i\ominus, j\ominus, \\, i\oplus, j\oplus, i\ominus, j\ominus, \\\end{pmatrix}$$

$$\Leftrightarrow , i \ominus, j \ominus, i \ominus, j \ominus, i f(i \circlearrowleft j) - \begin{bmatrix} , i \ominus, j \ominus, \\ , i \ominus, j \ominus, \\ \\ , i \ominus, j \ominus, \\ \end{bmatrix}$$

$$\Leftrightarrow, i\ominus, i\ominus, j\ominus, j\ominus, if(i \circlearrowleft j) - \begin{bmatrix}, i\ominus, j\ominus, \\, i\ominus, j\ominus, \\, i\ominus, j\ominus, \end{bmatrix}$$

$$\Leftrightarrow, i\ominus, i\ominus, j\ominus, j\ominus, if(i \circlearrowleft j) - \begin{bmatrix}, i\ominus, j\ominus, \\, i\ominus, j\ominus, \\, i\ominus, j\ominus, \end{bmatrix}$$

$$\Leftrightarrow , j\ominus, j\ominus, if(iOj) - \begin{bmatrix} , i\ominus, j\ominus, \\ , i\ominus, j\ominus, \end{bmatrix}$$

$$\Leftrightarrow , j \oplus, j \ominus, i f(i \circlearrowleft j) - \begin{bmatrix} , i \ominus, j \ominus, \\ , i \ominus, j \ominus, \end{bmatrix}$$

$$\Leftrightarrow , i f(i \circlearrowleft j) - \begin{bmatrix} , i \ominus, j \ominus, \\ , i \ominus, j \ominus, \end{bmatrix}$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft, j \circlearrowleft, \\ , i \circlearrowleft, j \circlearrowleft, \\ , i \circlearrowleft, j \circlearrowleft. \end{bmatrix}$$

$$,i\circlearrowleft j,i\ominus,j\ominus,\iff,i\ominus,j\ominus,i\circlearrowleft j,$$

$$,i!\mathcal{O}j,i\ominus,j\ominus,\Leftrightarrow,i\ominus,j\ominus,i!\mathcal{O}j,$$

10.8 Subnode operator

$$,i=\varnothing,i\varnothing t,\ \Leftrightarrow\ \sim,i \circlearrowleft t,$$

$$,i!=\varnothing,j!=\varnothing,i\varnothing t_1,j\varnothing t_2,i \circlearrowleft j,\ \Leftrightarrow\ ,i!=\varnothing,j!=\varnothing,i\varnothing t_1,j\varnothing t_2,t_1 \circlearrowleft t_2,$$

$$,i!=\varnothing,j!=\varnothing,i\varnothing t_1,j\varnothing t_2,i! \circlearrowleft j,\ \Leftrightarrow\ ,i!=\varnothing,j!=\varnothing,i\varpi t_1,j\varnothing t_2,t_1 \circlearrowleft t_2,$$

$$,i \circlearrowleft j,i\varnothing t_1,j\varnothing t_2,\ \Leftrightarrow\ ,i \circlearrowleft j,i\varpi t_1,j\varnothing t_2,$$
 proof:
$$,i \circlearrowleft j,i\varnothing t_1,j\varnothing t_2,$$

$$\Leftrightarrow\ ,if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft j,i\varnothing t_1,j\varnothing t_2,\\ ,i \circlearrowleft j,i\varnothing t_1,j\varnothing t_2,\\ ,i \circlearrowleft j,i\varpi t_1,j\varnothing t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow\ ,if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft j,i\varnothing t_1,j\varnothing t_2,\\ ,i \circlearrowleft j,i\varpi t_1,j\varnothing t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow\ ,if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft j,i=\varnothing,i\varnothing t_1,j\varnothing t_2,\\ ,i \circlearrowleft j,i\varpi t_1,j\varnothing t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow\ ,if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft j,i=\varnothing,i\varnothing t_1,j\varnothing t_2,\\ ,i \circlearrowleft j,i\varpi t_1,j\varnothing t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow\ ,if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft j,i=\varnothing,i\varnothing t_1,j\varnothing t_2,\\ ,i \circlearrowleft j,i\varpi t_1,j\varnothing t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow\ ,if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft j,i=\varnothing,i\varnothing t_1,j\varnothing t_2,\\ ,i \circlearrowleft j,i\varpi t_1,j\varnothing t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circlearrowleft_j,i=\varnothing,i\circledcirc_t_1,i\circlearrowleft_t_1,j\circledcirc_t_2,\\ ,i\circlearrowleft_j,i\circledcirc_t_1,j\circledcirc_t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circledcirc_t_1,i\circlearrowleft_j,i=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circledcirc_t_1,j\circledcirc_t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circledcirc_t_1,i\circlearrowleft_j,j=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circledcirc_t_1,i\circlearrowleft_j,j=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circlearrowleft_t_1,i\circlearrowleft_j,j=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_t_2,i\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{cases},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circlearrowleft_t_1,j=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_j,j\circlearrowleft_t_2,i\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{cases},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circlearrowleft_t_1,j=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_j,i\circlearrowleft_t_2,i\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{cases},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circlearrowleft_t_1,j=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_j,i\circlearrowleft_t_2,t_2\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{cases},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circlearrowleft_t_1,j=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_j,j\circlearrowleft_t_2,t_2\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{cases},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circlearrowleft_t_1,j=\varnothing,j\circlearrowleft_t_2,i\circlearrowleft_j,j\circlearrowleft_t_2,t_2\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{cases},$$

$$\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i\circlearrowleft_t_1,i\circlearrowleft_j,j=\varnothing,j\circlearrowleft_t_2,t_2\circlearrowleft_t_1,\\ ,i\circlearrowleft_j,i\circlearrowleft_t_1,j\circlearrowleft_t_2,\\ \end{cases},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i \otimes t_1,i \otimes j,j = \varnothing,j \otimes t_2,t_2 \otimes t_1,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i \otimes t_1,i \otimes j,i = \varnothing,j \otimes t_2,t_2 \otimes t_1,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i = \varnothing,i \otimes j,i \otimes t_1,j \otimes t_2,t_2 \otimes t_1,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i \otimes j,i \otimes t_1,j \otimes t_2,t_2 \otimes t_1,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i \otimes j,i \otimes t_1,j \otimes t_2,t_1 \otimes t_2,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i \otimes j,i \otimes t_1,j \otimes t_2,t_1 \otimes t_2,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2,t_1 \otimes t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i \otimes j,i \otimes t_1,j \otimes t_2,t_1 \otimes t_2,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2,t_1 \otimes t_2,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2,t_1 \otimes t_2,\\ ,i \otimes j,i \otimes t_1,j \otimes t_2,t_1 \otimes t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i \otimes j,i \otimes t_1,j \otimes t_2,t_1 \otimes t_2,\\ ,i \otimes j,i \otimes t_1,j \otimes$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i\circlearrowleft j,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i\circlearrowright j,i!=\varnothing,j!=\varnothing,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i\circlearrowleft j,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i\circlearrowleft j,j!=\varnothing,i!=\varnothing,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i\circlearrowleft j,i!=\varnothing,i!=\varnothing,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2, \end{bmatrix},$$

$$\Leftrightarrow ,if(i=\varnothing) = \begin{bmatrix} ,i\circlearrowleft j,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i\circlearrowleft j,i!=\varnothing,i\circlearrowleft t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i\circlearrowleft j,i!=\varnothing,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i\circlearrowleft j,i!=\varnothing,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i!=\varnothing,i\circlearrowleft j,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i!=\varnothing,i\circlearrowleft j,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i!=\varnothing,i\circlearrowleft j,i\circledcirc t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,\\ ,i\circlearrowleft j,i\circlearrowleft t_1,j\circledcirc t_2,t_1 \circlearrowleft t_2,$$

$$,i \otimes t_1, i \otimes t_2, \iff ,i \otimes t_1, i \otimes t_2, t_1 \otimes t_2,$$

proof: $,i \otimes t_1, i \otimes t_2,$

$$\Leftrightarrow$$
, $i \otimes j$, $j \otimes i \otimes t_1$, $i \otimes t_2$,

 \Leftrightarrow , $i \circlearrowleft j$, $i \otimes t_1$, $j \otimes t_2$, $t_1 \circlearrowleft t_2$,

$$\Leftrightarrow$$
, $i \otimes j$, $i \otimes t_1$, $i \otimes t_2$, $j \otimes j$

$$\Leftrightarrow$$
 $,i \otimes j,i \otimes j,i \otimes t_1,i \otimes t_2,j \otimes j$

$$\Leftrightarrow$$
 $,i \otimes j,i \otimes j,j \otimes t_1,i \otimes t_2,j \otimes ,$

$$\Leftrightarrow , i \otimes j, j \otimes i, j \otimes t_1, i \otimes t_2, j \otimes,$$

$$\Leftrightarrow , i \otimes j, j \otimes i, j \otimes t_1, i \otimes t_2, t_1 \otimes t_2, j \otimes,$$

$$\Leftrightarrow , i \otimes j, i \otimes j, j \otimes t_1, i \otimes t_2, t_1 \otimes t_2, j \otimes,$$

$$\Leftrightarrow , i \otimes j, i \otimes j, i \otimes t_1, i \otimes t_2, t_1 \otimes t_2, j \otimes,$$

$$\Leftrightarrow , i \otimes j, i \otimes t_1, i \otimes t_2, t_1 \otimes t_2, j \otimes,$$

$$\Leftrightarrow , i \otimes j, i \otimes t_1, i \otimes t_2, t_1 \otimes t_2, j \otimes,$$

$$\Leftrightarrow , i \otimes j, j \otimes, i \otimes t_1, i \otimes t_2, t_1 \otimes t_2,$$

$$\Leftrightarrow , i \otimes j, j \otimes, i \otimes t_1, i \otimes t_2, t_1 \otimes t_2,$$

$$\Leftrightarrow$$
, $i \otimes t_1$, $i \otimes t_2$, $t_1 \otimes t_2$,

$$,i \otimes t_1, j \otimes t_2, t_1! \circ t_2, \Leftrightarrow ,i \otimes t_1, j \otimes t_2, t_1! \circ t_2, i! \circ j,$$

$$\begin{aligned} &\operatorname{proof:}\\ , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \\ &\Leftrightarrow , i f(i \otimes j) - \begin{bmatrix} , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \\ , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \\ , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \end{bmatrix}, \\ &\Leftrightarrow , i f(i \otimes j) - \begin{bmatrix} , i \otimes j, i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \\ , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \end{bmatrix}, \\ &\Leftrightarrow , i f(i \otimes j) - \begin{bmatrix} , i \otimes j, i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \\ , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \end{bmatrix}, \\ &\Leftrightarrow , i f(i \otimes j) - \begin{bmatrix} , i \otimes j, i \otimes t_1, j \otimes t_2, k_1 ! \otimes t_2, \\ , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \end{bmatrix}, \\ &\Leftrightarrow , i f(i \otimes j) - \begin{bmatrix} , i \otimes j, i \otimes t_1, j \otimes t_2, \otimes, \\ , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \end{bmatrix}, \\ &\Leftrightarrow , i f(i \otimes j) - \begin{bmatrix} , i \otimes t_1, j \otimes t_2, \otimes, \\ , i \otimes t_1, j \otimes t_2, t_1 ! \otimes t_2, \end{bmatrix}, \end{aligned}$$

$$\Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} , \otimes, \\ , i\otimes t_1, j\otimes t_2, t_1! \circlearrowleft t_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} , \otimes, \\ \\ , \end{bmatrix}, i\otimes t_1, j\otimes t_2, t_1! \circlearrowleft t_2,$$

$$\Leftrightarrow , i! \circlearrowleft j, i\otimes t_1, j\otimes t_2, t_1! \circlearrowleft t_2,$$

$$\Leftrightarrow , i\otimes t_1, j\otimes t_2, t_1! \circlearrowleft t_2,$$

$$\Leftrightarrow , i\otimes t_1, j\otimes t_2, t_1! \circlearrowleft t_2, i! \circlearrowleft j,$$

 $, i!=j, \Leftrightarrow \sim, i! \circlearrowleft j,$

10.9 Other

proof:

$$,i!=j,$$

 $\Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} , i!=j,\\ ,i!=j,\\ ,i!=j,\end{bmatrix},$
 $\Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} ,i\circlearrowleft j,i!=j,\\ ,i!=j,\\ ,i!=j,\end{bmatrix},$
 $\Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} ,i\circlearrowleft j,i!=j,\\ ,i!=j,\end{bmatrix},$
 $\Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} ,i\circlearrowleft j,\otimes,\\ ,i!=j,\end{bmatrix},$
 $\Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} ,\otimes,\\ ,i!=j,\end{bmatrix},$

$$\Leftrightarrow$$
 $, i!=j, i!Oj,$

$$, i = \emptyset, j! = \emptyset, \Leftrightarrow \sim, i! \circlearrowleft j,$$

proof:

$$,i=\varnothing,j!=\varnothing,$$

$$\Leftrightarrow$$
, $i = \emptyset$, $i!=j$,

$$\Leftrightarrow, i = \varnothing, i != j, i ! \circlearrowleft j,$$

$$\Leftrightarrow$$
, $i = \emptyset$, $j != \emptyset$, $i ! \circlearrowleft j$,

11 Next Order Induction

11.1 Definition of flag object &SHi with identical node.

11.1.1 Swap definition:

$$, \&SHi \circlearrowleft i, \circledcirc m, \Leftrightarrow , \circledcirc m, \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, \circlearrowleft m, \Leftrightarrow , \circlearrowleft m, \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, j \circledcirc n, \Leftrightarrow , j \circledcirc n, \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, j \circledcirc n, \Leftrightarrow , j \circledcirc n, \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, j \circledcirc n, \Leftrightarrow , j \circledcirc n, \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, j \circledcirc , \Leftrightarrow , j \circledcirc , \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, j \circledcirc , \Leftrightarrow , j \circledcirc , \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, j \circledcirc , \Leftrightarrow , j \circledcirc , \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, \otimes , \Leftrightarrow , \otimes , \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, m \circledcirc n [; \Leftrightarrow , m \circledcirc n [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \Leftrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \hookrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \hookrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \hookrightarrow , [, \&SHi \circlearrowleft i, \\ , \&SHi \circlearrowleft i, [; \hookrightarrow , [, \&SHi \circlearrowleft i,]],$$

11.1.2 Substitution definition:

$$,i\circlearrowleft j, \&SHi\circlearrowleft i, \Leftrightarrow ,i\circlearrowleft j, \&SHi\circlearrowleft j,$$

11.2 Definition of flag object &SHi with next node.

$$, \&SHi \rightarrow i, \Leftrightarrow , i \odot i_0, i_0 \odot, \&SHi \circ i_0, i_0 \odot,$$

11.3 Definition of flag object &SHi with prev node.

, &SHi
$$\leftarrow i$$
, \Leftrightarrow , $i \odot i_0$, $i_0 \oplus$, &SHi $\circlearrowleft i_0$, $i_0 \oplus$,

11.4 Theorems of flag object &SHi with identical node.

11.4.1 Swap with previous node operator:

, &SHi
$$\circlearrowleft i, j \ominus$$
, \Leftrightarrow , $j \ominus$, &SHi $\circlearrowleft i$,

11.4.2 Swap with branch function:

$$, \&\mathit{SHi}\, \circlearrowleft i, if(m=n) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix}, \&\mathit{SHi}\, \circlearrowleft i, @c_1, \\ \\ , \&\mathit{SHi}\, \circlearrowleft i, @c_2, \end{bmatrix},$$

$$,\,\&\mathit{SHi}\,\circlearrowleft i,if(m=\varnothing)-\begin{bmatrix},\,@c_1,\\\\,\,@c_2,\end{bmatrix},\,\,\Leftrightarrow\,\,,if(m=\varnothing)-\begin{bmatrix},\,\&\mathit{SHi}\,\circlearrowleft i,\,@c_1,\\\\,\,\&\mathit{SHi}\,\circlearrowleft i,\,@c_2,\end{bmatrix},$$

$$, \&\mathit{SHi}\, \circlearrowleft i, if(m \circlearrowleft n) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) - \begin{bmatrix} , \&\mathit{SHi}\, \circlearrowleft i, @c_1, \\ \\ , \&\mathit{SHi}\, \circlearrowleft i, @c_2, \end{bmatrix},$$

11.4.3 Swap with propositions:

, &SHi
$$\circlearrowleft i, m = n, \Leftrightarrow , m = n, \&SHi $\circlearrowleft i,$
, &SHi $\circlearrowleft i, m = \varnothing, \Leftrightarrow , m = \varnothing, \&SHi $\circlearrowleft i,$
, &SHi $\circlearrowleft i, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, \&SHi $\circlearrowleft i,$
, &SHi $\circlearrowleft i, m != n, \Leftrightarrow , m != n, \&SHi $\circlearrowleft i,$
, &SHi $\circlearrowleft i, m != \varnothing, \Leftrightarrow , m != \varnothing, \&SHi $\circlearrowleft i,$
, &SHi $\circlearrowleft i, m != \varnothing, \Leftrightarrow , m != \varnothing, \&SHi $\circlearrowleft i,$$$$$$$$

11.4.4 Swap with the same operand's operator:

, &SHi
$$\circlearrowleft i, i \otimes n, \iff , i \otimes n, \&SHi \, \circlearrowleft i,$$

, &SHi $\circlearrowleft i, i \otimes n, \iff , i \otimes n, \&SHi \, \circlearrowleft i,$
, &SHi $\circlearrowleft i, i \otimes n, \iff , i \otimes n, \&SHi \, \circlearrowleft i,$

11.4.5 Swap with the same operand's branch function:

$$, \&\mathit{SHi}\, \circlearrowleft i, if (i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i=j) - \begin{bmatrix} , \&\mathit{SHi}\, \circlearrowleft i, @c_1, \\ \\ , \&\mathit{SHi}\, \circlearrowleft i, @c_2, \end{bmatrix},$$

proof:

, & SHi
$$\circlearrowleft i, if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}$$
,

$$\Leftrightarrow , i \otimes i_0, i_0 \oplus, \&SHi \, \circlearrowleft i, if (i=j) = \begin{bmatrix} , & c_1, \\ \\ , & c_2, \end{bmatrix},$$

11 Next Order Induction

$$\Leftrightarrow , i \otimes i_0, \&SHi \, \circlearrowleft i, if (i=j) = \begin{bmatrix} , i_0 \oplus, @c_1, \\ \\ , i_0 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i @ i_0, i @ i_0, \& SHi @ i, if (i=j) = \begin{bmatrix} , i_0 @, @ c_1, \\ , i_0 @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_0, \& SHi \otimes i_0, if (i=j) = \begin{bmatrix} , i_0 \oplus, @c_1, \\ , i_0 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \odot i_0, i \circlearrowleft i_0, i f(i=j) - \left[\begin{matrix} , \&SHi \circlearrowleft i_0, i_0 \oplus, \odot c_1, \\ , \&SHi \circlearrowleft i_0, i_0 \oplus, \odot c_2, \end{matrix} \right],$$

$$\Leftrightarrow , i \odot i_0, if (i = j) = \begin{bmatrix} , i \circlearrowleft i_0, \&SHi \circlearrowleft i_0, i_0 \oplus, @c_1, \\ , i \circlearrowleft i_0, \&SHi \circlearrowleft i_0, i_0 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \odot i_0, if (i = j) = \begin{bmatrix}, i \circlearrowleft i_0, \&SHi \circlearrowleft i, i_0 \oplus, \odot c_1, \\, i \circlearrowleft i_0, \&SHi \circlearrowleft i, i_0 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_0, i f(i=j) = \begin{bmatrix} , & SHi \otimes i, i_0 \oplus, \otimes c_1, \\ , & SHi \otimes i, i_0 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_0, if(i=j) - \left[, \&SHi \circlearrowleft i, i_0 \oplus, @c_1, \\ , \&SHi \circlearrowleft i, i_0 \oplus, @c_2, \right],$$

$$\Leftrightarrow \ , i \otimes i_0, i_0 \oplus, i f (i = j) - \left[\begin{matrix} , \&\mathit{SHi} \, \circlearrowleft i, \, @c_1, \\ \\ , \, \&\mathit{SHi} \, \circlearrowleft i, \, @c_2, \end{matrix} \right],$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , & SHi \circlearrowleft i, @c_1, \\ \\ , & SHi \circlearrowleft i, @c_2, \end{bmatrix},$$

$$,\,\&\mathit{SHi}\,\circlearrowleft i,if(i=\varnothing)-\begin{bmatrix},\,@c_1,\\\\,\,@c_2,\end{bmatrix},\,\,\Leftrightarrow\,,if(i=\varnothing)-\begin{bmatrix},\,\&\mathit{SHi}\,\circlearrowleft i,\,@c_1,\\\\,\,\&\mathit{SHi}\,\circlearrowleft i,\,@c_2,\end{bmatrix},$$

$$,\,\&\mathit{SHi}\,\circlearrowleft i,if(i\circlearrowleft j)-\begin{bmatrix},\,@c_1,\\\\\\,\,@c_2,\end{bmatrix},\,\,\Leftrightarrow\,\,,if(i\circlearrowleft j)-\begin{bmatrix},\,\&\mathit{SHi}\,\circlearrowleft i,\,@c_1,\\\\\\,\,\&\mathit{SHi}\,\circlearrowleft i,\,@c_2,\end{bmatrix},$$

11.4.6 Swap with the same operand's propositions:

, &SHi
$$\circlearrowleft i, i=j, \Leftrightarrow , i=j, \&SHi\circlearrowleft i,$$

, &SHi
$$\circlearrowleft i, i = \varnothing$$
, \Leftrightarrow , $i = \varnothing$, &SHi $\circlearrowleft i$,

, &SHi
$$\circlearrowleft i, i \circlearrowleft j, \Leftrightarrow , i \circlearrowleft j, \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, i!=j, \Leftrightarrow , i!=j, \&SHi \circlearrowleft i,$$

$$, \&SHi \circlearrowleft i, i!=\varnothing, \Leftrightarrow , i!=\varnothing, \&SHi \circlearrowleft i,$$

, &SHi
$$\circlearrowleft i, i! \circlearrowleft j, \Leftrightarrow , i! \circlearrowleft j, \&SHi \circlearrowleft i,$$

11.5 Theorems of flag object &SHi with next node.

11.5.1 Swap with the same operand's next node operator:

, &SHi $\circlearrowleft i$, $i \oplus$, \Leftrightarrow , $i \oplus$, &SHi $\rightarrow i$,

proof:

, & SHi $\circlearrowleft i, i \oplus$,

 \Leftrightarrow , $i\oplus$, $i\ominus$, &SHi $\circlearrowleft i$, $i\oplus$,

 \Leftrightarrow , $i \oplus$, $i \otimes i_0$, $i_0 \oplus$, $i \ominus$, &SHi $\circlearrowleft i$, $i \oplus$,

 \Leftrightarrow $, i\oplus, i\odot i_0, i_0\ominus, i_0\oplus, i\ominus, \&SHi \circlearrowleft i, i\oplus,$

 \Leftrightarrow , $i \oplus$, $i \ominus i_0$, $i \ominus$, $i_0 \ominus$, $i_0 \ominus$, &SHi $\circlearrowleft i$, $i \oplus$,

 \Leftrightarrow , $i \oplus$, $i \odot i_0$, $i \ominus$, $i_0 \ominus$, &SHi $\circlearrowleft i$, $i_0 \oplus$, $i \oplus$,

 \Leftrightarrow , $i \oplus$, $i \odot i_0$, $i \odot i_0$, $i \ominus$, $i_0 \ominus$, &SHi $\odot i$, $i_0 \oplus$, $i \oplus$,

 \Leftrightarrow $, i\oplus, i\odot i_0, i\ominus, i\ominus, i\odot i_0, \&SHi \circlearrowleft i, i_0\oplus, i\oplus,$

 \Leftrightarrow $, i \oplus , i \odot i_0, i \ominus , i_0 \ominus , i \circlearrowleft i_0, \&SHi \circlearrowleft i_0, i_0 \oplus , i \oplus ,$

 \Leftrightarrow , $i \oplus$, $i \otimes i_0$, $i \ominus$, $i_0 \ominus$, &SHi $\bigcirc i_0$, $i_0 \oplus$, $i \oplus$,

 \Leftrightarrow $, i \oplus , i \odot i_0, i_0 \ominus , \&SHi \circlearrowleft i_0, i_0 \oplus , i \ominus , i \oplus ,$

 \Leftrightarrow , $i \oplus$, &SHi \rightarrow i, $i \ominus$, $i \ominus$,

 \Leftrightarrow $, i \oplus$, &SHi \rightarrow i, $i \oplus$, $i \ominus$,

$$\Leftrightarrow$$
 $, i \oplus$, &SHi \rightarrow i,

11.5.2 Swap with operator:

$$, \&SHi \rightarrow i, @m, \Leftrightarrow , @m, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, @m, \Leftrightarrow , @m, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, j@n, \Leftrightarrow , j@n, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, j@n, \Leftrightarrow , j@n, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, j@n, \Leftrightarrow , j@n, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, j@, \Leftrightarrow , j@, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, j@, \Leftrightarrow , j@, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, j@, \Leftrightarrow , j@, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, j@, \Leftrightarrow , j@, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, @, \Leftrightarrow , &, &SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, m@n \{ , \Leftrightarrow , m@n \{ , \&SHi \rightarrow i, &SHi \rightarrow i$$

11.5.3 Swap with branch function:

$$, \&\mathit{SHi} \rightarrow \!\! i, if(m=n) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix} , \&\mathit{SHi} \rightarrow \!\! i, @c_1, \\ \\ , \&\mathit{SHi} \rightarrow \!\! i, @c_2, \end{bmatrix},$$

$$, \&\mathit{SHi} \rightarrow \!\! i, if(m = \varnothing) - \!\! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix} \!\! -, \Leftrightarrow , if(m = \varnothing) - \!\! \begin{bmatrix}, \&\mathit{SHi} \rightarrow \!\! i, @c_1, \\ , \&\mathit{SHi} \rightarrow \!\! i, @c_2, \end{bmatrix} \!\! -,$$

$$, \&\mathit{SHi} \rightarrow \!\! i, if(m \circlearrowleft n) - \!\! \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \!\! -, \Leftrightarrow , if(m \circlearrowleft n) - \!\! \begin{bmatrix} , \&\mathit{SHi} \rightarrow \!\! i, @c_1, \\ , \&\mathit{SHi} \rightarrow \!\! i, @c_2, \end{bmatrix} \!\! -,$$

11.5.4 Swap with propositions:

, &SHi
$$\rightarrow$$
i, $m = n$, \Leftrightarrow , $m = n$, &SHi \rightarrow i,
, &SHi \rightarrow i, $m = \emptyset$, \Leftrightarrow , $m = \emptyset$, &SHi \rightarrow i,
, &SHi \rightarrow i, $m \circlearrowleft n$, \Leftrightarrow , $m \circlearrowleft n$, &SHi \rightarrow i,
, &SHi \rightarrow i, $m \leftrightharpoons n$, \Leftrightarrow , $m \leftrightharpoons n$, &SHi \rightarrow i,
, &SHi \rightarrow i, $m \leftrightharpoons \emptyset$, \Leftrightarrow , $m \leftrightharpoons \emptyset$, &SHi \rightarrow i,

11.5.5 Swap with the same operand's operator:

, &SHi
$$\rightarrow$$
i, $i \otimes n$, \Leftrightarrow , $i \otimes n$, &SHi \rightarrow i,
, &SHi \rightarrow i, $i \otimes n$, \Leftrightarrow , $i \otimes n$, &SHi \rightarrow i,
, &SHi \rightarrow i, $i \otimes n$, \Leftrightarrow , $i \otimes n$, &SHi \rightarrow i,

11.5.6 Swap with the same operand's branch function:

$$, \&\mathit{SHi} \rightarrow \!\! i, if(i=j) - \!\! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}\!\! , \iff , if(i=j) - \!\! \begin{bmatrix}, \&\mathit{SHi} \rightarrow \!\! i, @c_1, \\ , \&\mathit{SHi} \rightarrow \!\! i, @c_2, \end{bmatrix}\!\! ,$$

$$, \, \&\mathit{SHi} \, \rightarrow \!\! i, if (i = \varnothing) - \!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\! - , \, \Leftrightarrow \, , if (i = \varnothing) - \!\! \begin{bmatrix} , \, \&\mathit{SHi} \, \rightarrow \!\! i, \, @c_1, \\ \\ , \, \&\mathit{SHi} \, \rightarrow \!\! i, \, @c_2, \end{bmatrix} \!\! - ,$$

$$, \&\mathit{SHi} \rightarrow \!\! i, if(i\circlearrowleft j) - \!\!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\!\! , \iff , if(i\circlearrowleft j) - \!\!\! \begin{bmatrix} , \&\mathit{SHi} \rightarrow \!\! i, @c_1, \\ \\ , \&\mathit{SHi} \rightarrow \!\! i, @c_2, \end{bmatrix} \!\!\!\! ,$$

11.5.7 Swap with the same operand's propositions:

$$, \&SHi \rightarrow i, i = j, \Leftrightarrow , i = j, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, i = \emptyset, \Leftrightarrow , i = \emptyset, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, i \circlearrowleft j, \Leftrightarrow , i \circlearrowleft j, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, i != j, \Leftrightarrow , i != j, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, i != \emptyset, \Leftrightarrow , i != \emptyset, \&SHi \rightarrow i,$$

$$, \&SHi \rightarrow i, i !\circlearrowleft j, \Leftrightarrow , i !\circlearrowleft j, \&SHi \rightarrow i,$$

11.6 Axiom of next order induction

11.6.1 axiom of inference:

$${ \langle premise \ 1 \rangle \atop \langle premise \ 2 \rangle } \implies \langle conclusion \rangle$$

11 Next Order Induction

11.6.2 premise 1:

$$, i = \varnothing, \oplus c_1, \iff , i = \varnothing, \oplus c_2,$$

11.6.3 premise 2:

, &SHi
$$\rightarrow$$
i, $\oplus c_1$, \Leftrightarrow , &SHi \rightarrow i, $\oplus c_2$, \Rightarrow
, $i != \varnothing$, &SHi \circlearrowleft i, $\oplus c_1$, \Leftrightarrow , $i != \varnothing$, &SHi \circlearrowleft i, $\oplus c_2$,

11.6.4 conclusion:

$$, \oplus c_1, \iff , \oplus c_2,$$

12 Recursive Function R(i)

12.1 Definition of R(i)

$$,R(i), \iff ,if(i=\varnothing)- \left[,i\oplus ,R(i), \right] ,$$

12.2 Theorems of R(i)

12.2.1 Transformation:

$$, i = \varnothing, R(i), \Leftrightarrow , i = \varnothing,$$

$$,i \mathbin{!}= \varnothing, R(i), \iff, i \mathbin{!}= \varnothing, i \oplus, R(i),$$

$$,R(i), \iff ,if(i=\varnothing)-\begin{bmatrix} , \\ ,i\oplus , \end{bmatrix},R(i),$$

proof:

, R(i),

$$\Leftrightarrow , if(i=\varnothing) - \left[, \underbrace{i\oplus, R(i), } \right],$$

$$\Leftrightarrow , if(i\!=\!\varnothing) \!\!=\!\!\! \begin{bmatrix} , i\!=\!\varnothing, \\ , i\!\oplus\!, R(i), \end{bmatrix} \!\!\!-\!\!\! ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i=\varnothing, R(i), \\ , i\oplus, R(i), \end{bmatrix},$$

$$\Leftrightarrow , if(i \!=\! \varnothing) \!\!=\!\!\! \begin{bmatrix} , R(i), \\ , i \!\!\oplus\!, R(i), \end{bmatrix} \!\!\!-\!\!\! ,$$

$$\Leftrightarrow , if(i\!=\!\varnothing) \!-\!\! \left[\!\!\! \begin{array}{c} , \\ , i\!\oplus\!, \end{array} \!\!\!\! \right] \!\!\!\! -\!\!\!\! , R(i),$$

12.2.2 Result:

$$, R(i), \Leftrightarrow , R(i), i = \emptyset,$$

```
induction proof:
premise 1:
, i = \varnothing, R(i),
\Leftrightarrow , i = \emptyset,
\Leftrightarrow, i = \emptyset, i = \emptyset,
\Leftrightarrow, i = \emptyset, R(i), i = \emptyset,
premise 2:
, \&SHi \rightarrow i, R(i), \Leftrightarrow , \&SHi \rightarrow i, R(i), i = \emptyset, \Rightarrow
, i != \varnothing, \&SHi \circlearrowleft i, R(i),
\Leftrightarrow, &SHi\circlearrowlefti, i!=\varnothing, R(i),
\Leftrightarrow, &SHi\circlearrowlefti, i!=\varnothing, i\oplus, R(i),
\Leftrightarrow ,i \! := \! \varnothing, \&S\!H\!i\, \circlearrowleft\! i, i \! \oplus, R(i),
\Leftrightarrow, i!=\emptyset, i\oplus, &SHi\rightarrow i, R(i),
\Leftrightarrow, i!=\emptyset, i\oplus, &SHi\rightarrow i, R(i), i=\emptyset,
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowlefti, i\oplus, R(i), i=\varnothing,
\Leftrightarrow, &SHi\circlearrowlefti, i!=\varnothing, i\oplus, R(i), i=\varnothing,
\Leftrightarrow, &SHi\circlearrowlefti, i!=\varnothing, R(i), i=\varnothing,
```

 \Leftrightarrow , $i!=\varnothing$, &SHi \circlearrowleft i, R(i), $i=\varnothing$,

$$\begin{array}{l} conclusion: \\ , R(i), \ \Leftrightarrow \ , R(i), i = \varnothing, \end{array}$$

12.2.3 Operator:

$$, R(i), i \oplus, \Leftrightarrow, i \oplus,$$

 $\begin{array}{ll} \text{induction} & \text{proof:} \\ premise \ 1: \\ , i = \varnothing, R(i), i \textcircled{\tiny 0}, \\ \Leftrightarrow & , i = \varnothing, i \textcircled{\tiny 0}, \end{array}$

 $\begin{array}{ll} premise \ 2: \\ \text{, } \&SHi \rightarrow i, R(i), i \textcircled{\tiny{0}}, \iff \text{, } \&SHi \rightarrow i, i \textcircled{\tiny{0}}, \implies \end{array}$

 $,i!=\varnothing, \&SHi \circlearrowleft i, R(i), i \oplus,$

 \Leftrightarrow , &SHi \circlearrowleft i, i!= \varnothing , R(i), i2,

 $\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, i \oplus, R(i), i \oplus,$

 \Leftrightarrow , $i != \varnothing$, &SHi $\circlearrowleft i$, $i \oplus$, R(i), $i \oplus$,

 $\iff, i != \varnothing, i \oplus, \&\mathit{SHi} \mathbin{\rightarrow}\! i, R(i), i \oplus,$

 \Leftrightarrow , $i!=\emptyset$, $i\oplus$, &SH $i\rightarrow i$, $i\oplus$,

 \Leftrightarrow , $i = \emptyset$, &SHi $\circlearrowleft i$, $i \oplus$, $i \oplus$,

 \Leftrightarrow , $i = \emptyset$, &SHi $\circlearrowleft i$, $i \oplus$,

conclusion:

 $,R(i),i @, \iff, i @,$

$$,R(i),\otimes, \Leftrightarrow,\otimes,$$

induction proof: premise 1:

12 Recursive Function R(i)

$$, i = \varnothing, R(i), \otimes, \Leftrightarrow, i = \varnothing, \otimes,$$

premise 2:

$$, \&SHi \rightarrow i, R(i), \otimes, \Leftrightarrow , \&SHi \rightarrow i, \otimes, \Rightarrow$$

$$, i != \varnothing, \&SHi \circlearrowleft i, R(i), \otimes,$$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $i \neq \varnothing$, $R(i), \otimes$,

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, i!= \varnothing , i \oplus , $R(i)$, \otimes ,

$$\Leftrightarrow$$
, $i!=\emptyset$, &SHi $\bigcirc i$, $i\oplus$, $R(i)$, \otimes ,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \oplus$, &SH $i \rightarrow i$, $R(i)$, \otimes ,

$$\Leftrightarrow$$
 , $i!=\varnothing$, $i\oplus$, &SH $i\rightarrow i, \otimes$,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi \circlearrowleft i, $i\oplus$, \otimes ,

$$\Leftrightarrow$$
, $i!=\emptyset$, &SHi $\Diamond i$, \otimes ,

conclusion:

$$, R(i), \otimes, \Leftrightarrow, \otimes,$$

12.2.4 Swap with operator:

$$, R(i), \odot j, \iff , \odot j, R(i),$$

$$, R(i), \odot j, \iff , \odot j, R(i),$$

$$,R(i),j \otimes n, \iff ,j \otimes n,R(i),$$

$$,R(i),j \odot n, \Leftrightarrow ,j \odot n,R(i),$$

$$, R(i), j \oplus n, \iff , j \oplus n, R(i),$$

$$,R(i),j\oplus ,\iff ,j\oplus ,R(i),$$

```
induction proof:
premise 1:
, i = \varnothing, R(i), j \oplus,
\Leftrightarrow , i = \emptyset, j \oplus,
\Leftrightarrow , j \oplus , i = \emptyset ,
\Leftrightarrow, j \oplus, i = \emptyset, R(i),
\Leftrightarrow, i = \emptyset, j \oplus, R(i),
premise 2:
, \&SHi \rightarrow i, R(i), j \oplus, \Leftrightarrow , \&SHi \rightarrow i, j \oplus, R(i), \Rightarrow
, i != \varnothing, \&SHi \circlearrowleft i, R(i), j \oplus,
\Leftrightarrow, &SHi\circlearrowlefti, i = \varnothing, R(i), j \oplus,
\Leftrightarrow, &SHi \circlearrowlefti, i!=\varnothing, i\oplus, R(i), j\oplus,
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, i \oplus, R(i), j \oplus,
\Leftrightarrow, i!=\emptyset, i\oplus, &SHi\rightarrow i, R(i), j\oplus,
\Leftrightarrow ,i != \varnothing, i \oplus, \&SHi \rightarrow i, j \oplus, R(i),
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, i \oplus, j \oplus, R(i),
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, j \oplus, i \oplus, R(i),
\Leftrightarrow, &SHi \circlearrowlefti, j\oplus, i \neq \emptyset, i\oplus, R(i),
\Leftrightarrow, &SHi\circlearrowlefti, j\oplus, i \neq \emptyset, R(i),
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, j \oplus, R(i),
conclusion:
, R(i), j\oplus, \iff , j\oplus, R(i),
```

$$\begin{split} , R(i), j & \ominus, \iff, j \ominus, R(i), \\ , R(i), j & \oplus, \iff, j \oplus, R(i), \end{split}$$

12.2.5 Swap with branch function:

induction proof:

premise 1:

$$\begin{aligned} &\text{premise 1:} \\ &, i = \varnothing, R(i), if(m = n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ &\Leftrightarrow , i = \varnothing, if(m = n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ &\Leftrightarrow , if(m = n) - \begin{bmatrix} , i = \varnothing, @c_1, \\ , i = \varnothing, @c_2, \end{bmatrix}, \\ &\Leftrightarrow , if(m = n) - \begin{bmatrix} , i = \varnothing, R(i), @c_1, \\ , i = \varnothing, R(i), @c_2, \end{bmatrix}, \\ &\Leftrightarrow , i = \varnothing, if(m = n) - \begin{bmatrix} , R(i), @c_1, \\ , R(i), @c_2, \end{bmatrix}, \end{aligned}$$

premise 2:

$$, \&SHi \rightarrow i, R(i), if(m=n) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , \&SHi \rightarrow i, if(m=n) = \begin{bmatrix}, R(i), @c_1, \\ , R(i), @c_2, \end{bmatrix}, \Rightarrow \Rightarrow A(i) + A(i) +$$

$$,i != \varnothing, \, \&S\!H\!i\, \circlearrowleft\!i, \, R(i), if(m=n) - \left[\begin{smallmatrix}, @c_1, \\ \\ , @c_2, \end{smallmatrix}\right],$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i!=\varnothing, i\oplus, R(i), if(m=n)-\begin{bmatrix}, @c_1, \\ & & \end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing, \&SHi \circlearrowleft i,i\oplus,R(i),if(m=n)-\begin{bmatrix} ,@c_1,\\ ,@c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i != \varnothing, i \oplus, \&SHi \rightarrow i, R(i), if(m=n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing,i\oplus, \&SHi \rightarrow i, if(m=n) = \begin{bmatrix} ,R(i),@c_1,\\ ,R(i),@c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi $\circlearrowleft i, i\oplus$, $if(m=n)=\begin{bmatrix} R(i), @c_1, \\ R(i), @c_2, \end{bmatrix}$,

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i != \varnothing, i \oplus, if(m=n) = \begin{bmatrix} , R(i), @c_1, \\ , R(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i != \varnothing, if(m=n) = \begin{bmatrix} ,i\oplus,R(i),@c_1,\\ \\ ,i\oplus,R(i),@c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, if(m=n) = \begin{bmatrix} ,i! = \varnothing, i\oplus, R(i), @c_1, \\ ,i! = \varnothing, i\oplus, R(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if(m=n) = \begin{bmatrix}, i! = \varnothing, R(i), @c_1, \\ , i! = \varnothing, R(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i! = \varnothing, if(m=n) = \begin{bmatrix}, R(i), @c_1, \\ , R(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, if(m=n) - \begin{bmatrix} , R(i), @c_1, \\ , R(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i != \varnothing$, &SHi $\circlearrowleft i$, $if(m=n) = \begin{bmatrix} R(i), @c_1, \\ R(i), @c_2, \end{bmatrix}$,

conclusion:

$$, R(i), if(m=n) = \begin{bmatrix}, @c_1, \\, @c_2, \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix}, R(i), @c_1, \\, R(i), @c_2, \end{bmatrix},$$

$$,R(i),if(m\!=\!\varnothing)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix}, \Leftrightarrow ,if(m\!=\!\varnothing)-\begin{bmatrix},R(i),@c_1,\\\\,R(i),@c_2,\end{bmatrix},$$

$$,R(i),if(m\circlearrowleft n)-\begin{bmatrix},@c_{1},\\\\,@c_{2},\end{bmatrix},\iff,if(m\circlearrowleft n)-\begin{bmatrix},R(i),@c_{1},\\\\,R(i),@c_{2},\end{bmatrix},$$

12.2.6 Swap with propositions:

$$, m=n, R(i), \Leftrightarrow , R(i), m=n,$$

proof:

$$, m = n, R(i),$$
 $\Leftrightarrow , if(m = n) = \begin{bmatrix} , \\ , \otimes , \end{bmatrix}, R(i),$
 $\Leftrightarrow , if(m = n) = \begin{bmatrix} , R(i), \\ , \otimes , \end{bmatrix},$

$$\Leftrightarrow , if(m=n) = \begin{bmatrix} , R(i), \\ , R(i), \otimes, \end{bmatrix},$$

$$\Leftrightarrow$$
 $, R(i), if(m=n) = \begin{bmatrix} , \\ , \otimes , \end{bmatrix}$

$$\Leftrightarrow$$
 , $R(i)$, $m=n$,

$$, m != n, R(i), \Leftrightarrow , R(i), m != n,$$
 $, m = \varnothing, R(i), \Leftrightarrow , R(i), m = \varnothing,$
 $, m != \varnothing, R(i), \Leftrightarrow , R(i), m != \varnothing,$
 $, m \circlearrowleft n, R(i), \Leftrightarrow , R(i), m \circlearrowleft n,$
 $, m \wr n, R(i), \Leftrightarrow , R(i), m \wr n,$

12.2.7 Swap with self:

$$,R(i),R(j),\ \Leftrightarrow\ ,R(j),R(i),$$
 induction proof:
$$premise\ 1:\\,i=\varnothing,R(i),R(j),\\ \Leftrightarrow\ ,i=\varnothing,R(j),\\ i=\varnothing,\\ R(j),i=\varnothing,\\ \Leftrightarrow\ ,R(j),R(i),$$

$$\Rightarrow\ ,R(j),R(i),$$

$$premise\ 2:\\,\&SHi\to i,R(i),R(j),\\ \Leftrightarrow\ ,\&SHi\to i,R(i),R(j),\\ \Leftrightarrow\ ,\&SHi\circlearrowleft i,R(i),R(j),\\ \Leftrightarrow\ ,\&SHi\circlearrowleft i,R(i),R(j),\\ \Leftrightarrow\ ,\&SHi\circlearrowleft i,R(i),R(j),\\ \Leftrightarrow\ ,\&SHi\circlearrowleft i,R(i),R(j),\\ \Leftrightarrow\ ,i!=\varnothing,\&SHi\circlearrowleft i,R(i),R(j),\\ \Leftrightarrow\ ,i!=\varnothing,\&SHi\circlearrowleft i,R(i),R(j),\\ \Leftrightarrow\ ,i!=\varnothing,i\oplus,\&SHi\to i,R(i),R(j),\\ \Leftrightarrow\ ,i!=\varnothing,\&SHi\circlearrowleft i,R(j),R(i),\\ \Leftrightarrow\ ,i!=\varnothing,\&SHi\circlearrowleft i,R(j),R(i),\\ \Leftrightarrow\ ,i!=\varnothing,\&SHi\circlearrowleft i,R(j),R(i),\\ \Leftrightarrow\ ,i!=\varnothing,\&SHi\circlearrowleft i,R(j),R(i),\\ \Leftrightarrow\ ,kSHi\circlearrowleft i,R(j),i!=\varnothing,R(i),\\ \Leftrightarrow\ ,kSHi\circlearrowleft i,R(j),i!=\varnothing,R(i),\\ \Leftrightarrow\ ,kSHi\circlearrowleft i,R(j),i!=\varnothing,R(i),\\ \Leftrightarrow\ ,kSHi\circlearrowleft i,R(j),i!=\varnothing,R(i),\\ conclusion:\\,R(i),R(j),\Leftrightarrow\ ,R(j),R(i),\\ conclusion:\\,R(i),R(i),R(i),\\ concl$$

12.2.8 Swap with flag object :

$$,R(i),\&SHi\circlearrowleft j,\Leftrightarrow,\&SHi\circlearrowleft j,R(i),\\ \text{induction proof:}\\ premise 1:\\,i=\varnothing,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,i=\varnothing,\&SHi\circlearrowleft j,\\ \Leftrightarrow,\&SHi\circlearrowleft j,i=\varnothing,\\ \Leftrightarrow,\&SHi\circlearrowleft j,R(i),\\ \Leftrightarrow,i=\varnothing,\&SHi\circlearrowleft j,R(i),\\ \\ premise 2:\\,\&SHi\rightarrow i,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,\&SHi\circlearrowleft i,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,\&SHi\circlearrowleft i,i!=\varnothing,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,\&SHi\circlearrowleft i,i!=\varnothing,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,\&SHi\circlearrowleft i,i!=\varnothing,i\oplus,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,i!=\varnothing,\&SHi\circlearrowleft i,i\oplus,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,i!=\varnothing,\&SHi\circlearrowleft i,i\oplus,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,i!=\varnothing,\&SHi\circlearrowleft i,i\oplus,R(i),\&SHi\circlearrowleft j,\\ \Leftrightarrow,i!=\varnothing,i\oplus,\&SHi\rightarrow i,\&SHi\circlearrowleft j,R(i),\\ \Leftrightarrow,i!=\varnothing,\&SHi\circlearrowleft i,i\oplus,\&SHi\circlearrowleft j,R(i),\\ \Leftrightarrow,i!=\varnothing,\&SHi\circlearrowleft i,i\oplus,\&SHi\circlearrowleft j,R(i),\\ \Leftrightarrow,i!=\varnothing,\&SHi\circlearrowleft i,\&SHi\circlearrowleft j,R(i),\\ conclusion:\\,R(i),\&SHi\circlearrowleft j,\Leftrightarrow,\&SHi\circlearrowleft j,R(i),\\ \\ conclusion:\\,R(i),\&SHi\circlearrowleft j,\Leftrightarrow,\&SHi\hookrightarrow j,R(i),\\ \\ conclusion:\\,R(i),\&SHi\hookrightarrow j,R(i),\\ \\ conclusion:\\,R(i),\&SHi\hookrightarrow j,R(i),\\ \\ conclusion:\\,R(i),\&SHi\hookrightarrow j,R(i),\\ \\ conclusion:\\ conclusion:\\ conclusion:\\ conclusion:\\ conclusion:\\ conclusion:\\ conclusion:$$

$$R(i), \&SHi \rightarrow j, \Leftrightarrow \&SHi \rightarrow j, R(i),$$

12.2.9 Identical node:

$$, i \circlearrowleft_j, R(i), R(j), \iff, i \circlearrowleft_j, R(i), R(j), i \circlearrowleft_j,$$
 induction proof:
$$premise 1:$$

$$, i = \varnothing, i \circlearrowleft_j, R(i), R(j),$$

$$\Leftrightarrow, i \circlearrowleft_j, i = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, i \circlearrowleft_j, j = \varnothing, R(j),$$

$$\Leftrightarrow, i \circlearrowleft_j, j = \varnothing, R(j),$$

$$\Leftrightarrow, i \circlearrowleft_j, j = \varnothing,$$

$$\Leftrightarrow, i \circlearrowleft_j, j = \varnothing,$$

$$\Leftrightarrow, i \circlearrowleft_j, j = \varnothing, R(j), i \circlearrowleft_j,$$

$$\Leftrightarrow, i \circlearrowleft_j, j = \varnothing, R(j), i \circlearrowleft_j,$$

$$\Leftrightarrow, i \circlearrowleft_j, j = \varnothing, R(j), i \circlearrowleft_j,$$

$$\Leftrightarrow, i \circlearrowleft_j, i = \varnothing, R(j), i \circlearrowleft_j,$$

$$\Leftrightarrow, i \circlearrowleft_j, i = \varnothing, R(i), R(j), i \circlearrowleft_j,$$

$$\Leftrightarrow, i = \varnothing, i \circlearrowleft_j, R(i), R(j), i \circlearrowleft_j,$$

$$premise 2:$$

$$, \&SHi \rightarrow_i, i \circlearrowleft_j, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, i! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, i! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, i! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, i! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, j! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, j! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, j! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, j! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, j! = \varnothing, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \hookrightarrow_i, i \circlearrowleft_j, j! = \varnothing, R(i), R(j),$$

 \Leftrightarrow , &SHi $\circlearrowleft i, i \circlearrowleft j, i \oplus, R(i), j! = \varnothing, R(j),$

12 Recursive Function R(i)

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i \oplus, R(i), j != \varnothing, j \oplus, R(j),$$

$$\Leftrightarrow, j != \varnothing, \&SHi \circlearrowleft i, i \circlearrowleft j, i \oplus, j \oplus, R(i), j \oplus, R(j),$$

$$\Leftrightarrow, j != \varnothing, \&SHi \circlearrowleft i, i \circlearrowleft j, i \oplus, j \oplus, R(i), R(j),$$

$$\Leftrightarrow, j != \varnothing, \&SHi \circlearrowleft i, i \oplus, j \oplus, i \circlearrowleft j, R(i), R(j),$$

$$\Leftrightarrow, j != \varnothing, i \oplus, \&SHi \rightarrow i, j \oplus, i \circlearrowleft j, R(i), R(j),$$

$$\Leftrightarrow, j != \varnothing, i \oplus, j \oplus, \&SHi \rightarrow i, i \circlearrowleft j, R(i), R(j),$$

$$\Leftrightarrow, j != \varnothing, i \oplus, j \oplus, \&SHi \rightarrow i, i \circlearrowleft j, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, j != \varnothing, i \oplus, j \oplus, i \circlearrowleft j, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, j != \varnothing, i \oplus, j \oplus, R(i), j \oplus, R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, j != \varnothing, i \oplus, R(i), j \oplus, R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i \oplus, R(i), j != \varnothing, R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, j != \varnothing, i \oplus, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, j != \varnothing, i \oplus, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, j != \varnothing, i \oplus, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, i \oplus, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, R(i), R(j), i \circlearrowleft j,$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, i \circlearrowleft j, R(i), R(j), i \circlearrowleft j,$$

$$conclusion:$$

$$i \circlearrowleft_j, R(i), R(j), \Leftrightarrow, i \circlearrowleft_j, R(i), R(j), i \circlearrowleft_j,$$

13 Previous Order Induction

13.1 Definition of flag object &SHj with identical node.

13.1.1 Swap definition:

13.1.2 Substitution definition:

$$,i\circlearrowleft j, \&SHj\circlearrowleft i, \Leftrightarrow ,i\circlearrowleft j, \&SHj\circlearrowleft j,$$

13.2 Definition of flag object &SHj with next node.

, &SH
$$j \rightarrow i$$
, \Leftrightarrow , $i \odot i_0$, $i_0 \odot$, &SH $j \circ i_0$, $i_0 \odot$,

13.3 Definition of flag object &SHj with previous node.

, &SH
$$j \leftarrow i$$
, \Leftrightarrow , $i \odot i_0$, $i_0 \oplus$, &SH $j \circ i_0$, $i_0 \oplus$,

13.4 Theorems of flag object &SHj with identical node.

13.4.1 Swap with previous node operator:

, &SHj
$$\circlearrowleft i, j \ominus$$
, \Leftrightarrow , $j \ominus$, &SHj $\circlearrowleft i$,

13.4.2 Swap with branch function:

$$, \&\mathit{SHj} \, \circlearrowleft i, if (m=n) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (m=n) = \begin{bmatrix}, \&\mathit{SHj} \, \circlearrowleft i, @c_1, \\ \\ , \&\mathit{SHj} \, \circlearrowleft i, @c_2, \end{bmatrix},$$

$$, \&\mathit{SHj}\, \circlearrowleft i, if (m = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \iff , if (m = \varnothing) - \begin{bmatrix} , \&\mathit{SHj}\, \circlearrowleft i, @c_1, \\ , \&\mathit{SHj}\, \circlearrowleft i, @c_2, \end{bmatrix},$$

$$, \&\mathit{SHj}\, \circlearrowleft i, if(m \circlearrowleft n) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(m \circlearrowleft n) = \begin{bmatrix}, \&\mathit{SHj}\, \circlearrowleft i, @c_1, \\ \\ , \&\mathit{SHj}\, \circlearrowleft i, @c_2, \end{bmatrix},$$

13.4.3 Swap with propositions:

, &SHj
$$\circlearrowleft i, m = n, \Leftrightarrow , m = n, \&SHj $\circlearrowleft i,$
, &SHj $\circlearrowleft i, m = \varnothing, \Leftrightarrow , m = \varnothing, \&SHj $\circlearrowleft i,$
, &SHj $\circlearrowleft i, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, \&SHj $\circlearrowleft i,$
, &SHj $\circlearrowleft i, m != n, \Leftrightarrow , m != n, \&SHj $\circlearrowleft i,$
, &SHj $\circlearrowleft i, m != \varnothing, \Leftrightarrow , m != \varnothing, \&SHj $\circlearrowleft i,$
, &SHj $\circlearrowleft i, m != \varnothing, \Leftrightarrow , m != \varnothing, \&SHj $\circlearrowleft i,$$$$$$$$

13.4.4 Swap with the same operand's operator:

, &SHj
$$\circlearrowleft i, i \otimes n, \Leftrightarrow , i \otimes n, \&SHj \, \circlearrowleft i,$$

, &SHj $\circlearrowleft i, i \otimes n, \Leftrightarrow , i \otimes n, \&SHj \, \circlearrowleft i,$
, &SHj $\circlearrowleft i, i \otimes n, \Leftrightarrow , i \otimes n, \&SHj \, \circlearrowleft i,$

13.4.5 Swap with the same operand's branch function:

$$, \&\mathit{SHj}\, \circlearrowleft i, if (i=j) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i=j) = \begin{bmatrix}, \&\mathit{SHj}\, \circlearrowleft i, @c_1, \\ \\ , \&\mathit{SHj}\, \circlearrowleft i, @c_2, \end{bmatrix},$$

proof:

$$\begin{array}{l} , \&\mathit{SHj}\, \circlearrowleft i, if (i\!=\!j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \\ \\ \Leftrightarrow , i @i_0, i_0 @, \&\mathit{SHj}\, \circlearrowleft i, if (i\!=\!j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \end{array}$$

13 Previous Order Induction

$$\Leftrightarrow , i \otimes i_0, \&SHj \circ i, if (i=j) = \begin{bmatrix} , i_0 \oplus, @c_1, \\ , i_0 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i @ i_0, i @ i_0, \& SHj @ i, if (i=j) = \begin{bmatrix} , i_0 @, @ c_1, \\ , i_0 @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow , i @ i_0, i @ i_0, \& SHj @ i_0, if (i=j) = \begin{bmatrix} , i_0 @, @ c_1, \\ , i_0 @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow , i @ i_0, i @ i_0, i f(i=j) - \begin{bmatrix} , & S\!H\!j @ i_0, i_0 @, @ c_1, \\ , & S\!H\!j @ i_0, i_0 @, @ c_2, \end{bmatrix} ,$$

$$\Leftrightarrow , i @ i_0, if (i = j) = \begin{bmatrix} , i @ i_0, \& \mathit{SHj} @ i_0, i_0 @, @ c_1, \\ \\ , i @ i_0, \& \mathit{SHj} @ i_0, i_0 @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_0, if (i=j) = \begin{bmatrix}, i \otimes i_0, \&SHj \otimes i, i_0 \oplus, @c_1, \\\\, i \otimes i_0, \&SHj \otimes i, i_0 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_0, i f(i=j) = \begin{bmatrix} , & SHj \otimes i, i_0 \oplus, \otimes c_1, \\ , & SHj \otimes i, i_0 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_0, if (i = j) - \begin{bmatrix} , \&\mathit{SHj} \circlearrowleft i, i_0 \oplus, @c_1, \\ , \&\mathit{SHj} \circlearrowleft i, i_0 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i @ i_0, i_0 @, if (i = j) - \left[\begin{matrix} , \& \mathit{SHj} \circlearrowleft i, @ c_1, \\ , \& \mathit{SHj} \circlearrowleft i, @ c_2, \end{matrix} \right],$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , & SHj \circlearrowleft i, @c_1, \\ \\ , & SHj \circlearrowleft i, @c_2, \end{bmatrix},$$

$$, \&\mathit{SHj}\, \circlearrowleft i, if (i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i = \varnothing) - \begin{bmatrix} , \&\mathit{SHj}\, \circlearrowleft i, @c_1, \\ \\ , \&\mathit{SHj}\, \circlearrowleft i, @c_2, \end{bmatrix},$$

$$,\,\&\mathit{SHj}\,\circlearrowleft i,if(i\circlearrowleft j)-\begin{bmatrix},\,@c_1,\\\\,\,@c_2,\end{bmatrix},\,\,\Leftrightarrow\,\,,if(i\circlearrowleft j)-\begin{bmatrix},\,\&\mathit{SHj}\,\circlearrowleft i,\,@c_1,\\\\,\,\&\mathit{SHj}\,\circlearrowleft i,\,@c_2,\end{bmatrix},$$

13.4.6 Swap with the same operand's propositions:

, &SHj
$$\circlearrowleft i, i=j, \Leftrightarrow , i=j, \&SHj \circlearrowleft i,$$

$$, \&SHj \circlearrowleft i, i=\varnothing, \iff , i=\varnothing, \&SHj \circlearrowleft i,$$

, &SHj
$$\circlearrowleft i, i \circlearrowleft j, \iff , i \circlearrowleft j, \&SHj \circlearrowleft i,$$

$$,\,\&\mathit{SHj}\,\circlearrowleft i,i\mathop{!=} j,\,\,\Leftrightarrow\,\,,i\mathop{!=} j,\,\&\mathit{SHj}\,\circlearrowleft i,$$

, &SHj
$$\circlearrowleft i, i = \varnothing$$
, \Leftrightarrow , $i = \varnothing$, &SHj $\circlearrowleft i$,

, &SHj
$$\circlearrowleft i, i! \circlearrowleft j$$
, \Leftrightarrow , $i! \circlearrowleft j$, &SHj $\circlearrowleft i$,

13.5 Theorems of flag object &SHj with previous node.

13.5.1 Swap with the same operand's next node operator:

, &SHj
$$\circlearrowleft$$
i, $i \ominus$, \Leftrightarrow , $i \ominus$, &SHj \leftarrow i,

proof:

, &SH $j \circlearrowleft i, i \ominus$,

 \Leftrightarrow $, i \oplus, i \ominus, \&SHj \circlearrowleft i, i \ominus,$

 \Leftrightarrow , $i \ominus$, $i \ominus$, &SH $j \circ i$, $i \ominus$,

 \Leftrightarrow , $i \ominus$, $i \ominus i_0$, $i_0 \oplus$, $i \oplus$, &SH $j \ominus i$, $i \ominus$,

 \Leftrightarrow $,i\bigcirc,i\bigcirc i_0,i_0\oplus,i_0\oplus,i\oplus,\&SHj\circlearrowleft i,i\bigcirc,$

 \Leftrightarrow , $i \ominus$, $i \ominus i_0$, $i \ominus$, $i_0 \ominus$, $i_0 \ominus$, &SHj $\circlearrowleft i$, $i \ominus$,

 \Leftrightarrow $, i \ominus, i \ominus i_0, i \ominus, i_0 \ominus, \&SHj \circlearrowleft i, i_0 \ominus, i \ominus,$

 \Leftrightarrow $,i\bigcirc,i\bigcirc i_0,i\bigcirc i_0,i\bigcirc i_0,i\bigcirc ,\&SHj\bigcirc i,i_0\bigcirc ,i\bigcirc ,$

 \Leftrightarrow $,i \ominus, i \ominus i_0, i \ominus, i_0 \ominus, i \ominus i_0, \&SHj \ominus i, i_0 \ominus, i \ominus,$

 \Leftrightarrow , $i \ominus$, $i \ominus i_0$, $i \ominus i_0$, $i_0 \ominus i_0$, $i_0 \ominus i_0$, &SH $j \ominus i_0$, $i_0 \ominus i_0$,

 \Leftrightarrow $,i\ominus,i\ominus i_0,i\oplus,i_0\oplus,\&SHj\circlearrowleft i_0,i_0\oplus,i\ominus,$

 \Leftrightarrow $, i \ominus, i \ominus i_0, i_0 \ominus, \&SHj \circlearrowleft i_0, i_0 \ominus, i \ominus, i \ominus,$

 \Leftrightarrow $,i\bigcirc$, &SH $j\leftarrow i,i\bigcirc$,

$$\Leftrightarrow$$
 , $i \ominus$, &SH $j \leftarrow i$,

13.5.2 Swap with operator:

$$, \&SHj \leftarrow i, @m, \Leftrightarrow , @m, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, @m, \Leftrightarrow , @m, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, j@n, \Leftrightarrow , j@n, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, j@n, \Leftrightarrow , j@n, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, j@n, \Leftrightarrow , j@n, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, j@, \Leftrightarrow , j@, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, j@, \Leftrightarrow , j@, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, j@, \Leftrightarrow , j@, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, j@, \Leftrightarrow , j@, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, @, \Leftrightarrow , &, &SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, @, \Leftrightarrow , &, &SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, f', \Leftrightarrow , f', \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, \Leftrightarrow , &, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, \Leftrightarrow , &, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, \Leftrightarrow , &, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, \Leftrightarrow , &, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, \Leftrightarrow , &, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, \Leftrightarrow , &, \&SHj \leftarrow i,$$

13.5.3 Swap with branch function:

$$, \&\mathit{SHj} \leftarrow i, if(m=n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff , if(m=n) - \begin{bmatrix}, \&\mathit{SHj} \leftarrow i, @c_1, \\ , \&\mathit{SHj} \leftarrow i, @c_2, \end{bmatrix},$$

$$, \, \&\mathit{SHj} \leftarrow \!\! i, if(m = \varnothing) - \!\! \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \!\! + , \, \Leftrightarrow \, , if(m = \varnothing) - \!\! \begin{bmatrix} , \, \&\mathit{SHj} \leftarrow \!\! i, @c_1, \\ , \, \&\mathit{SHj} \leftarrow \!\! i, @c_2, \end{bmatrix} \!\! + ,$$

$$, \&S\!H\!j \leftarrow\!\! i, if(m \circlearrowleft n) - \!\!\! \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}\!\!\! , \Leftrightarrow , if(m \circlearrowleft n) - \!\!\! \begin{bmatrix} , \&S\!H\!j \leftarrow\!\! i, @c_1, \\ , \&S\!H\!j \leftarrow\!\! i, @c_2, \end{bmatrix}\!\!\! ,$$

13.5.4 Swap with propositions:

$$, \&SHj \leftarrow i, m = n, \Leftrightarrow , m = n, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, m = \varnothing, \Leftrightarrow , m = \varnothing, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, m \leftrightharpoons n, \Leftrightarrow , m \leftrightharpoons n, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, m \leftrightharpoons \varnothing, \Leftrightarrow , m \leftrightharpoons \varnothing, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, m \leftrightharpoons \varnothing, \Leftrightarrow , m \leftrightharpoons \varnothing, \&SHj \leftarrow i,$$

13.5.5 Swap with the same operand's operator:

$$, \&SHj \leftarrow i, i \otimes n, \Leftrightarrow , i \otimes n, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, i \otimes n, \Leftrightarrow , i \otimes n, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, i \otimes n, \Leftrightarrow , i \otimes n, \&SHj \leftarrow i,$$

13.5.6 Swap with the same operand's branch function:

$$, \&\mathit{SHj} \leftarrow i, if(i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i=j) - \begin{bmatrix} , \&\mathit{SHj} \leftarrow i, @c_1, \\ \\ , \&\mathit{SHj} \leftarrow i, @c_2, \end{bmatrix},$$

$$, \, \&\mathit{SHj} \leftarrow \!\! i, if(i = \varnothing) - \!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\! , \; \Leftrightarrow \; , if(i = \varnothing) - \!\! \begin{bmatrix} , \, \&\mathit{SHj} \leftarrow \!\! i, @c_1, \\ \\ , \, \&\mathit{SHj} \leftarrow \!\! i, @c_2, \end{bmatrix} \!\! ,$$

$$, \&\mathit{SHj} \leftarrow i, if(i\circlearrowleft j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i\circlearrowleft j) - \begin{bmatrix}, \&\mathit{SHj} \leftarrow i, @c_1, \\ \\ , \&\mathit{SHj} \leftarrow i, @c_2, \end{bmatrix},$$

13.5.7 Swap with the same operand's propositions:

$$, \&SHj \leftarrow i, i = j, \Leftrightarrow , i = j, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, i = \emptyset, \Leftrightarrow , i = \emptyset, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, i \circlearrowleft j, \Leftrightarrow , i \circlearrowleft j, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, i != j, \Leftrightarrow , i != j, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, i != \emptyset, \Leftrightarrow , i != \emptyset, \&SHj \leftarrow i,$$

$$, \&SHj \leftarrow i, i !\circlearrowleft j, \Leftrightarrow , i !\circlearrowleft j, \&SHj \leftarrow i,$$

13.6 Axiom of previous order induction

13.6.1 axiom of inference:

$${ \atop } \implies < conclusion >$$

13 Previous Order Induction

13.6.2 premise 1:

$$, i = \varnothing, \oplus c_1, \iff , i = \varnothing, \oplus c_2,$$

13.6.3 premise 2:

, &SHj
$$\leftarrow i$$
, $\oplus c_1$, \Leftrightarrow , &SHj $\leftarrow i$, $\oplus c_2$, \Rightarrow
, $i! = \varnothing$, &SHj $\circlearrowleft i$, $\oplus c_1$, \Leftrightarrow , $i! = \varnothing$, &SHj $\circlearrowleft i$, $\oplus c_2$,

13.6.4 conclusion:

$$, \oplus c_1, \iff , \oplus c_2,$$

14 Recursive Function R₋(i)

14.1 Definition of R_(i)

$$,R_{\text{-}}(i), \Leftrightarrow ,if(i=\varnothing)- \left[,i\ominus,R_{\text{-}}(i), \right] -,$$

14.2 Theorems of R₋(i)

14.2.1 Transformation:

$$,i=\varnothing,R_{-}(i),\iff,i=\varnothing,$$

$$,i != \varnothing, R_{\scriptscriptstyle{-}}\!(i), \iff ,i != \varnothing, i \ominus, R_{\scriptscriptstyle{-}}\!(i),$$

$$,R_{-}(i), \Leftrightarrow ,if(i=\varnothing)-\begin{bmatrix} ,\\ ,i\ominus ,\end{bmatrix},R_{-}(i),$$

proof:

$$, R_{-}(i),$$

$$\Leftrightarrow$$
, $if(i=\varnothing) = \begin{bmatrix} , \\ , i\ominus, R_{-}(i), \end{bmatrix}$,

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i=\varnothing, \\ \\ , i\ominus, R_{-}(i), \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i=\varnothing, R_{-}(i), \\ , i\ominus, R_{-}(i), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , R_{-}(i), \\ , i\ominus, R_{-}(i), \end{bmatrix} -,$$

$$\Leftrightarrow$$
, $if(i=\varnothing)-\begin{bmatrix},\\,i\ominus,\end{bmatrix}$ -, $R_{-}(i)$,

14.2.2 Result:

$$,R_{-}(i), \iff ,R_{-}(i),i=\varnothing,$$

induction proof: premise 1: $,i=\varnothing,R_{-}(i),$ $\Leftrightarrow,i=\varnothing,$ $\Leftrightarrow,i=\varnothing,i=\varnothing,$

 \Leftrightarrow , $i = \emptyset$, $R_{-}(i)$, $i = \emptyset$,

 $premise\ 2:$

, &SHj
$$\leftarrow$$
i, $R_{-}(i)$, \Leftrightarrow , &SHj \leftarrow i, $R_{-}(i)$, $i = \emptyset$, \Rightarrow

$$, i != \varnothing, \&SHj \circlearrowleft i, R_{-}(i),$$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i = \varnothing, R_{-}(i)$,

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i \neq \emptyset$, $i \subseteq \emptyset$, $i \subseteq \emptyset$, $R_{-}(i)$,

$$\Leftrightarrow$$
 , $i != \varnothing$, &SH $j \circlearrowleft i, i \hookrightarrow$, $R_{-}(i)$,

$$\Leftrightarrow$$
, $i!=\emptyset$, $i\Theta$, &SH $j \leftarrow i$, $R_{-}(i)$,

$$\Leftrightarrow$$
, $i!=\emptyset$, $i\Theta$, &SH $j \leftarrow i$, $R_{-}(i)$, $i=\emptyset$,

$$\Leftrightarrow$$
, $i = \emptyset$, &SH $j \circlearrowleft i$, $i \ominus$, $R_{-}(i)$, $i = \emptyset$,

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i = \varnothing, i \ominus, R_{-}(i), i = \varnothing,$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i = \varnothing, R_{-}(i), i = \varnothing,$

$$\Leftrightarrow$$
, $i!=\varnothing$, &SH $j\circlearrowleft i$, $R_{-}(i)$, $i=\varnothing$,

conclusion: , $R_{-}(i)$, \Leftrightarrow , $R_{-}(i)$, $i = \emptyset$,

14.2.3 Operator:

 $, R_{-}(i), i \oplus, \Leftrightarrow, i \oplus,$

 $\begin{array}{ll} \text{induction} & \text{proof:} \\ premise \ 1: \\ , i = \varnothing, R_{-}(i), i @, \\ \Leftrightarrow & , i = \varnothing, i @, \end{array}$

 $premise\ 2:$

, &SHj \leftarrow i, $R_{-}(i)$, $i \oplus$, \Leftrightarrow , &SHj \leftarrow i, $i \oplus$, \Rightarrow

 $,i!=\varnothing, \&SHj \circlearrowleft i, R_{-}(i), i \oplus,$

 \Leftrightarrow , &SHj $\circlearrowleft i, i != \varnothing, R_{-}(i), i \oplus$,

 \Leftrightarrow , &SHj $\circlearrowleft i, i = \varnothing, i \ominus, R_{-}(i), i \oplus,$

 \Leftrightarrow , $i!=\varnothing$, &SHj $\circlearrowleft i$, $i\ominus$, $R_{-}(i)$, $i\bigoplus$,

 \Leftrightarrow , $i = \emptyset$, $i \ominus$, &SH $j \leftarrow i$, $R_{-}(i)$, $i \oplus$,

 \Leftrightarrow , $i!=\emptyset$, $i\Theta$, &SH $j \leftarrow i$, $i\Phi$,

 \Leftrightarrow , $i = \emptyset$, &SH $j \circlearrowleft i, i \hookrightarrow i \oplus$,

 \Leftrightarrow , $i = \emptyset$, &SH $j \circlearrowleft i, i \oplus$,

conclusion:

 $,R_{-}(i),i \oplus, \Leftrightarrow ,i \oplus,$

 $,R_{-}(i),\otimes, \Leftrightarrow, \otimes,$

induction proof: premise 1:

14 Recursive Function R₋(i)

$$, i = \varnothing, R_{-}(i), \otimes, \\ \Leftrightarrow , i = \varnothing, \otimes,$$

premise 2:

$$, \&SHj \leftarrow i, R_{-}(i), \otimes, \Leftrightarrow , \&SHj \leftarrow i, \otimes, \Rightarrow$$

$$, i \models \varnothing, \&SHj \circlearrowleft i, R_{-}(i), \otimes,$$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i \neq \emptyset$, $R_{-}(i), \otimes$,

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i \neq \emptyset$, $i \subseteq \emptyset$, $R_{-}(i), \otimes$,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHj $\circlearrowleft i$, $i \ominus$, $R_{-}(i)$, \otimes ,

$$\Leftrightarrow$$
, $i!=\emptyset$, $i\Theta$, &SH $j \leftarrow i$, $R_{-}(i)$, \otimes ,

$$\Leftrightarrow$$
 , $i!=\varnothing$, $i\Theta$, &SH $j \leftarrow i, \otimes$,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SH j O i , $i\Theta$, \otimes ,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SH $j\circlearrowleft i, \otimes$,

conclusion:

$$, R_{-}(i), \otimes, \Leftrightarrow, \otimes,$$

14.2.4 Swap with operator:

$$,R_{-}(i),\odot j, \Leftrightarrow ,\odot j,R_{-}(i),$$

$$,R_{-}(i),\odot j, \Leftrightarrow ,\odot j,R_{-}(i),$$

$$,R_{-}(i),j \otimes n, \iff ,j \otimes n,R_{-}(i),$$

$$,R_{-}(i),j \otimes n, \Leftrightarrow ,j \otimes n,R_{-}(i),$$

$$,R_{-}(i),j \otimes n, \Leftrightarrow ,j \otimes n,R_{-}(i),$$

$$,R_{-}(i),j\oplus, \iff ,j\oplus,R_{-}(i),$$

```
induction proof: premise 1: , i=\varnothing, R_{-}(i), j\oplus, \\ \Leftrightarrow, i=\varnothing, j\oplus, \\ \Leftrightarrow, j\oplus, i=\varnothing, \\ \Leftrightarrow, j\oplus, i=\varnothing, \\ \Leftrightarrow, j\oplus, i=\varnothing, R_{-}(i), \\ \Leftrightarrow, i=\varnothing, j\oplus, R_{-}(i), \\ \\ premise 2: \\ , \&SHj \leftarrow i, R_{-}(i), j\oplus, \\ \Leftrightarrow, \&SHj \leftarrow i, R_{-}(i), j\oplus, \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, R_{-}(i), j\oplus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\oplus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\oplus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\oplus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\oplus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\oplus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\oplus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\oplus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \Leftrightarrow, \&SHj \circlearrowleft i, i!=\varnothing, i\ominus, R_{-}(i), j\ominus, \\ \\ \end{cases}
```

$$\Leftrightarrow ,i \models \varnothing, \&SHj \circlearrowleft i, i \ominus, R_{-}(i), j \ominus,$$

$$\Leftrightarrow ,i \models \varnothing, i \ominus, \&SHj \leftarrow i, R_{-}(i), j \ominus,$$

$$\iff, i != \varnothing, i \ominus, \&SHj \leftarrow\!\!\! i, j \oplus, R_{\scriptscriptstyle{-}}\!(i),$$

$$\Leftrightarrow$$
 , $i != \varnothing$, &SHj $\circlearrowleft i, i \ominus$, $j \ominus$, $R_{-}(i)$,

$$\iff, i != \varnothing, \&SHj \circlearrowleft i, j \oplus, i \ominus, R_{-}(i),$$

$$\Leftrightarrow , \&SHj \circlearrowleft i, j \oplus, i != \varnothing, i \ominus, R_{-}(i),$$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, j\oplus, i!=\varnothing, R_{-}(i),$

$$\Leftrightarrow$$
, $i = \emptyset$, &SH $j \circlearrowleft i, j \oplus, R_{-}(i)$,

conclusion:

$$, R_{-}(i), j\oplus, \Leftrightarrow, j\oplus, R_{-}(i),$$

$$,R_{-}(i),j\ominus, \Leftrightarrow ,j\ominus,R_{-}(i),$$

 $,R_{-}(i),j\oplus, \Leftrightarrow ,j\oplus,R_{-}(i),$

14.2.5 Swap with branch function:

$$R_{-}(i), if(m=n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow if(m=n) = \begin{bmatrix} , R_{-}(i), @c_1, \\ , R_{-}(i), @c_2, \end{bmatrix},$$

induction proof:

premise 1:

$$, i = \varnothing, R_{-}(i), if(m = n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i = \varnothing, if(m = n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(m = n) - \begin{bmatrix} , i = \varnothing, @c_1, \\ , i = \varnothing, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(m = n) - \begin{bmatrix} , i = \varnothing, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(m = n) - \begin{bmatrix} , i = \varnothing, R_{-}(i), @c_1, \\ , i = \varnothing, R_{-}(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i = \varnothing, if(m = n) - \begin{bmatrix} , R_{-}(i), @c_1, \\ , R_{-}(i), @c_2, \end{bmatrix},$$

premise 2:

$$, \&SHj \leftarrow i, R_{-}(i), if(m=n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , \&SHj \leftarrow i, if(m=n) - \begin{bmatrix} , R_{-}(i), @c_1, \\ , R_{-}(i), @c_2, \end{bmatrix}, \Rightarrow$$

$$, i! = \varnothing, \&SHj \circlearrowleft i, R_{-}(i), if(m=n) - \begin{bmatrix} , @c_1, \\ , @c_2 \end{bmatrix},$$

$$\Leftrightarrow , \&SHj \circlearrowleft i, i!=\varnothing, R_{-}(i), if(m=n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHj \circlearrowleft i, i != \varnothing, i \ominus, R_{-}(i), if(m=n) - \begin{bmatrix}, @c_1, \\ & & \end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing, \&SHj \circlearrowleft i,i\ominus,R_{-}(i),if(m=n)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},$$

$$\Leftrightarrow ,i \models \varnothing, i \ominus, \&SHj \leftarrow i, R_{-}(i), if(m=n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i \ominus, \&SHj \leftarrow i, if(m=n) - \begin{bmatrix}, R_{-}(i), \odot c_1, \\ R_{-}(i), \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i!=\varnothing, \&SHj \circlearrowleft i, i\ominus, if(m=n) = \begin{bmatrix}, R_{-}(i), \odot c_1, \\ R_{-}(i), \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHj \, \circlearrowleft i, i != \varnothing, i \ominus, if(m=n) - \begin{bmatrix} , R_{-}(i), @c_1, \\ , R_{-}(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHj \, \circlearrowleft i, i != \varnothing, if(m=n) - \begin{bmatrix} , i \ominus, R_{-}(i), @c_1, \\ , i \ominus, R_{-}(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHj \circlearrowleft i, i != \varnothing, if(m=n) - \begin{bmatrix} , i\ominus, R_{-}(i), @c_1, \\ , i\ominus, R_{-}(i), @c_2, \end{bmatrix} -$$

$$\Leftrightarrow , \&SHj \circlearrowleft i, if(m=n) = \begin{bmatrix} ,i! = \varnothing, i\ominus, R_{-}(i), @c_1, \\ ,i! = \varnothing, i\ominus, R_{-}(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow, \&SHj \circlearrowleft i, if(m=n) = \begin{bmatrix}, i !=\varnothing, R_{-}(i), @c_1, \\ , i !=\varnothing, R_{-}(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow, \&SHj \circlearrowleft i, i !=\varnothing, if(m=n) = \begin{bmatrix}, R_{-}(i), @c_1, \\ R_{-}(i), @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i!=\varnothing, if(m=n)$, $R_{-}(i), @c_1, \\ R_{-}(i), @c_2,$

$$\Leftrightarrow ,i!=\varnothing, \&SHj \circlearrowleft i, if (m=n)- \begin{bmatrix} ,R_{-}(i), @c_{1}, \\ ,R_{-}(i), @c_{2}, \end{bmatrix},$$

conclusion:

$$,R_{-}(i),if(m=n)=\begin{bmatrix},@c_{1},\\&&\end{bmatrix}, \Leftrightarrow ,if(m=n)=\begin{bmatrix},R_{-}(i),@c_{1},\\&&\\&,R_{-}(i),@c_{2},\end{bmatrix},$$

$$,R_{\text{-}}\!(i),if(m\!=\!\varnothing)\!-\!\!\left[\!\!\begin{array}{c},@c_1,\\\\,@c_2,\end{array}\!\!\right]\!\!-\!\!\left[\!\!\begin{array}{c},R_{\text{-}}\!(i),@c_1,\\\\R_{\text{-}}\!(i),@c_2,\end{array}\!\!\right]\!\!-\!\!\left[\!\!\begin{array}{c},R_{\text{-}}\!(i),@c_2,\\\\R_{\text{-}}\!(i),@c_2,\end{array}\!\!\right]\!\!-\!\!\left[\!\!\begin{array}{c},R_{\text{-}}\!(i),@c_2,\\\\R_{\text{-}}\!(i),@c_2,\end{array}\!\!\right]\!\!-\!\!\left[\!\!\begin{array}{c},R_{\text{-}}\!(i),@c_2,\\\\R_{\text{-}}\!(i),@c_2,\end{array}\!\!\right]\!\!-\!\!\left[\!\!\begin{array}{c},R_{\text{-}}\!(i),@c_2,\\\\R_{\text{-}}$$

14 Recursive Function R₋(i)

$$,R_{-}(i),if(m\circlearrowleft n)=\begin{bmatrix},@c_{1},\\\\,@c_{2},\end{bmatrix},\Leftrightarrow,if(m\circlearrowleft n)=\begin{bmatrix},R_{-}(i),@c_{1},\\\\,R_{-}(i),@c_{2},\end{bmatrix},$$

14.2.6 Swap with propositions:

$$, m = n, R_{-}(i), \iff R_{-}(i), m = n,$$

$$, m = n, R_{-}(i),$$

$$\Leftrightarrow , if(m = n) - \begin{bmatrix} , \\ , \otimes , \end{bmatrix}, R_{-}(i),$$

$$\Leftrightarrow , if(m = n) - \begin{bmatrix} , R_{-}(i), \\ , \otimes , \end{bmatrix},$$

$$\Leftrightarrow , if(m = n) - \begin{bmatrix} , R_{-}(i), \\ , R_{-}(i), \otimes , \end{bmatrix},$$

$$\Leftrightarrow , R_{-}(i), if(m = n) - \begin{bmatrix} , \\ , \otimes , \end{bmatrix},$$

$$\Leftrightarrow , R_{-}(i), m = n,$$

$$, m \models n, R_{-}(i), \Leftrightarrow , R_{-}(i), m \models n,$$
 $, m = \varnothing, R_{-}(i), \Leftrightarrow , R_{-}(i), m = \varnothing,$
 $, m \models \varnothing, R_{-}(i), \Leftrightarrow , R_{-}(i), m \models \varnothing,$
 $, m \circlearrowleft n, R_{-}(i), \Leftrightarrow , R_{-}(i), m \circlearrowleft n,$
 $, m \circlearrowleft n, R_{-}(i), \Leftrightarrow , R_{-}(i), m \circlearrowleft n,$

14.2.7 Swap with self:

$$,R_{-}(i),R_{-}(j), \iff ,R_{-}(j),R_{-}(i),$$
 induction proof:
$$premise 1: ,i=\varnothing,R_{-}(i),R_{-}(j),\\ \Leftrightarrow ,i=\varnothing,R_{-}(j),i=\varnothing,\\ \Leftrightarrow ,R_{-}(j),i=\varnothing,\\ \Leftrightarrow ,R_{-}(j),i=\varnothing,\\ \Leftrightarrow ,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i=\varnothing,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i=\varnothing,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i=\varnothing,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i=\varnothing,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i!=\varnothing,\&SHj\circlearrowleft i,R_{-}(i),R_{-}(j),\\ \Leftrightarrow ,\&SHj\circlearrowleft i,i!=\varnothing,R_{-}(i),R_{-}(j),\\ \Leftrightarrow ,i!=\varnothing,\&SHj\circlearrowleft i,i\ominus,R_{-}(i),R_{-}(j),\\ \Leftrightarrow ,i!=\varnothing,i\ominus,\&SHj\hookleftarrow i,R_{-}(i),R_{-}(i),\\ \Leftrightarrow ,i!=\varnothing,i\ominus,\&SHj\hookleftarrow i,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i!=\varnothing,\&SHj\circlearrowleft i,i\ominus,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i!=\varnothing,\&SHj\circlearrowleft i,i\ominus,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i!=\varnothing,\&SHj\circlearrowleft i,i\ominus,R_{-}(j),R_{-}(i),\\ \Leftrightarrow ,i!=\varnothing,\&SHj\circlearrowleft i,R_{-}(j),i!=\varnothing,i\ominus,R_{-}(i),\\ \Leftrightarrow ,\&SHj\circlearrowleft i,R_{-}(j),i!=\varnothing,i\ominus,R_{-}(i),\\ \Leftrightarrow ,\&SHj\circlearrowleft i,R_{-}(j),i!=\varnothing,R_{-}(i),\\ \Leftrightarrow ,i!=\varnothing,\&SHj\circlearrowleft i,R_{-}(j),i!=\varnothing,R_{-}(i),\\ \Leftrightarrow ,i!=\varnothing,\&SHj\circlearrowleft i,R_{-}(j),i!=\varnothing,R_{-}(i),\\ conclusion:$$

 $, R_{-}(i), R_{-}(j), \Leftrightarrow , R_{-}(j), R_{-}(i),$

14.2.8 Swap with R(j):

$$,R_{-}(i),R(j), \Leftrightarrow ,R(j),R_{-}(i),$$

14.2.9 Swap with flag object:

$$,R_{-}(i),\&SHj\circlearrowleft j,\Leftrightarrow,\&SHj\circlearrowleft j,R_{-}(i),$$
 induction proof: premise 1:
$$,i=\varnothing,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,i=\varnothing,\&SHj\circlearrowleft j,\\ \Leftrightarrow,\&SHj\circlearrowleft j,i=\varnothing,\\ \Leftrightarrow,\&SHj\circlearrowleft j,i=\varnothing,R_{-}(i),\\ \Leftrightarrow,i=\varnothing,\&SHj\circlearrowleft j,R_{-}(i),$$

$$premise\ 2:\\ ,\&SHj\hookrightarrow i,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,\&SHj\hookrightarrow i,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,\&SHj\circlearrowleft i,i!=\varnothing,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,\&SHj\circlearrowleft i,i!=\varnothing,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,\&SHj\circlearrowleft i,i!=\varnothing,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,i!=\varnothing,\&SHj\circlearrowleft i,i\ominus,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,i!=\varnothing,\&SHj\circlearrowleft i,i\ominus,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,i!=\varnothing,i\ominus,\&SHj\hookrightarrow i,i\odot,R_{-}(i),\&SHj\circlearrowleft j,\\ \Leftrightarrow,i!=\varnothing,i\odot,\&SHj\hookrightarrow i,i\odot,\&SHj\circlearrowleft j,R_{-}(i),\\ \Leftrightarrow,i!=\varnothing,\&SHj\circlearrowleft i,i\odot,\&SHj\circlearrowleft j,R_{-}(i),\\ \Leftrightarrow,i!=\varnothing,\&SHj\circlearrowleft i,\&SHj\circlearrowleft j,i\ominus,R_{-}(i),\\ \Leftrightarrow,i!=\varnothing,\&SHj\circlearrowleft i,\&SHj\circlearrowleft j,i\ominus,R_{-}(i),\\ \Leftrightarrow,\&SHj\circlearrowleft i,\&SHj\circlearrowleft j,i!=\varnothing,i\odot,R_{-}(i),\\ \Leftrightarrow,\&SHj\circlearrowleft i,\&SHj\circlearrowleft j,i!=\varnothing,R_{-}(i),\\ \Leftrightarrow,i!=\varnothing,\&SHj\circlearrowleft i,\&SHj\circlearrowleft i,\&SHj\hookrightarrow i,\&SHj$$

$$R_{-}(i), \&SHj \circlearrowleft j, \Leftrightarrow \&SHj \circlearrowleft j, R_{-}(i),$$

$$,R_{-}(i), \&SHi \circlearrowleft j, \Leftrightarrow ,\&SHi \circlearrowleft j, R_{-}(i),$$
 $,R_{-}(i), \&SHj \hookleftarrow j, \Leftrightarrow ,\&SHj \hookleftarrow j, R_{-}(i),$
 $,R_{-}(i), \&SHi \rightarrow j, \Leftrightarrow ,\&SHi \rightarrow j, R_{-}(i),$
 $,R(i), \&SHj \circlearrowleft j, \Leftrightarrow ,\&SHj \circlearrowleft j, R(i),$
 $,R(i), \&SHj \hookleftarrow j, \Leftrightarrow ,\&SHj \hookleftarrow j, R(i),$

14.2.10 Identical node:

$$,i \circlearrowleft j, R_{-}(i), R_{-}(j), \Leftrightarrow ,i \circlearrowleft j, R_{-}(i), R_{-}(j), i \circlearrowleft j,$$

induction proof:

 $premise \ 1:$

$$, i = \varnothing, i \circlearrowleft j, R_{-}(i), R_{-}(j),$$

$$\Leftrightarrow$$
, $i \circ j$, $i = \varnothing$, $R_{-}(i)$, $R_{-}(j)$,

$$\Leftrightarrow$$
, $i \circ j$, $i = \varnothing$, $R_{-}(j)$,

$$\Leftrightarrow$$
, $i \circ j$, $j = \varnothing$, $R_{-}(j)$,

$$\Leftrightarrow$$
, $i \circ j$, $j = \varnothing$,

$$\Leftrightarrow$$
, $i \circ j$, $i \circ j$, $j = \emptyset$,

$$\Leftrightarrow$$
 $,i \circlearrowleft j, j = \varnothing, i \circlearrowleft j,$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, j = \varnothing, R_{-}(j), i \circlearrowleft j,$

$$\Leftrightarrow$$
, $i \circlearrowleft j$, $i = \varnothing$, $R_{-}(j)$, $i \circlearrowleft j$,

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, R_{-}(i), R_{-}(j), i \circlearrowleft j,$

14 Recursive Function R₋(i)

$$\Leftrightarrow$$
, $i = \emptyset$, $i \circ j$, $R_{-}(i)$, $R_{-}(j)$, $i \circ j$,

premise 2:

, &SHj
$$\leftarrow$$
i, i \circlearrowleft j, $R_{-}(i)$, $R_{-}(j)$, \Leftrightarrow , &SHj \leftarrow i, i \circlearrowleft j, $R_{-}(i)$, $R_{-}(j)$, i \circlearrowleft j, \Rightarrow

$$,i!=\varnothing$$
, &SHj $\circlearrowleft i,i\circlearrowleft j,R_{-}(i),R_{-}(j),$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i \neq \emptyset$, $i \neq \emptyset$, $R_{-}(i)$, $R_{-}(j)$,

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i \circlearrowleft j, i != \varnothing, R_{-}(i), R_{-}(j),$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i \circlearrowleft j, i = \varnothing, i \ominus, R_{-}(i), R_{-}(j),$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i \circlearrowleft j, j \models \varnothing, i \ominus, R_{-}(i), R_{-}(j),$

$$\Leftrightarrow , \&S\!H\!j\, \circlearrowleft\!i, i \circlearrowleft\!j, i \ominus, j != \varnothing, R_{-}\!(i), R_{-}\!(j),$$

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i$, $i \circlearrowleft j$, $i \ominus$, $R_{-}(i)$, $j \models \varnothing$, $R_{-}(j)$,

$$\Leftrightarrow$$
, &SHj $\circlearrowleft i, i \circlearrowleft j, i \hookrightarrow, R_{-}(i), j != \varnothing, j \hookrightarrow, R_{-}(j),$

$$\Leftrightarrow$$
 , $j != \varnothing$, &SH $j \circlearrowleft i, i \circlearrowleft j, i \ominus, R_{-}(i), j \ominus, R_{-}(j)$,

$$\Leftrightarrow$$
 , $j!=\varnothing$, &SH $j\circlearrowleft i, i\circlearrowleft j, i\hookrightarrow, j\hookrightarrow, R_{-}(i), R_{-}(j)$,

$$\Leftrightarrow , j != \varnothing, \&S\!H\!j \circlearrowleft \!\!\! i, i \ominus, j \ominus, i \circlearrowleft \!\!\! j, R_{-}\!(i), R_{-}\!(j),$$

$$\Leftrightarrow , j != \varnothing, i \ominus, \&SHj \leftarrow i, j \ominus, i \circlearrowleft j, R_{-}(i), R_{-}(j),$$

$$\Leftrightarrow$$
 , $j != \varnothing$, $i \ominus$, $j \ominus$, &SH $j \leftarrow i$, $i \ominus j$, $R_{-}(i)$, $R_{-}(j)$,

$$\Leftrightarrow , j != \varnothing, i \ominus, j \ominus, \&SHj \leftarrow i, i \bigcirc j, R_{-}(i), R_{-}(j), i \bigcirc j,$$

$$\Leftrightarrow \;, \&S\!H\!j\, \circlearrowleft\!i, j \,!\!\!=\! \varnothing, i \!\ominus\!, j \!\ominus\!, i \!\circlearrowleft\!j, R_{-}\!(i), R_{-}\!(j), i \!\circlearrowleft\!j,$$

$$\Leftrightarrow \ , \&S\!H\!j \, \circlearrowleft\!i, i \circlearrowleft\!j, j \,!\!\!=\! \varnothing, i \ominus, j \ominus, R_{-}\!(i), R_{-}\!(j), i \circlearrowleft\!j,$$

$$\Leftrightarrow , \&S\!H\!j\, \circlearrowleft\!i, i \circlearrowleft\!j, j \vcentcolon\!= \varnothing, i \ominus, R_{-}\!(i), j \ominus, R_{-}\!(j), i \circlearrowleft\!j,$$

$$\Leftrightarrow , \&S\!H\!j\, \circlearrowleft\!i, i \circlearrowleft\!j, i \circlearrowleft\!j, R_{-}\!(i), j \! \models\! \varnothing, R_{-}\!(j), i \circlearrowleft\!j,$$

$$\Leftrightarrow \; , \, \&S\!H\!j \, \circlearrowleft\!i, i \circlearrowleft\!j, j \,!\!\!=\! \varnothing, i \ominus, R_{-}\!(i), R_{-}\!(j), i \circlearrowleft\!j,$$

$$\Leftrightarrow ,i \! := \! \varnothing, \&S\!H\!j \circlearrowleft \!\! i,i \circlearrowleft \!\! j,R_{\scriptscriptstyle{-}}\!(i),R_{\scriptscriptstyle{-}}\!(j),i \circlearrowleft \!\! j,$$

conclusion:

$$,i\circlearrowleft j,R_{\text{-}}(i),R_{\text{-}}(j), \iff ,i\circlearrowleft j,R_{\text{-}}(i),R_{\text{-}}(j),i\circlearrowleft j,$$

15 Rules of Node Ring

15.1 Axiom of node ring

$$,i\circlearrowleft j,i\oplus,R(i),R_{-}(j),\Leftrightarrow\sim,i\circlearrowleft j,$$

15.2 Theorems of node ring

$$,i\circlearrowleft j,R(i),j\hookrightarrow R_{-}(j),\Leftrightarrow\sim ,i\circlearrowleft j,$$

proof:

$$,i\circlearrowleft j,R(i),j\ominus,R_{-}(j),$$

$$\Leftrightarrow ,i \circlearrowleft j, i \oplus, i \ominus, R(i), j \ominus, R_{\text{-}}(j),$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i \oplus, i \ominus, j \ominus, R(i), R_{-}(j),$

$$\Leftrightarrow$$
 , $i \circlearrowleft j$, $i \ominus$, $j \ominus$, $i \ominus$, $R(i)$, $R_{-}(j)$,

$$\iff, i \circleddash, j \circleddash, i \circleddash, j \circleddash, i \circleddash, R(i), R_{\text{-}}(j),$$

$$\Leftrightarrow ,i\ominus,j\ominus,i \circlearrowleft j, i\oplus, R(i), R_{-}(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i \circlearrowleft j, i \ominus, j \ominus, i \ominus, R(i), R_{-}(j), i \circlearrowleft j,$$

$$\Leftrightarrow ,i\circlearrowleft j,i\oplus,i\ominus,j\ominus,R(i),R_{\text{-}}(j),i\circlearrowleft j,$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, j \ominus, R(i), R_{-}(j), i \circlearrowleft j,$

$$\Leftrightarrow ,i\circlearrowleft j,R(i),j\ominus,R_{\text{--}}(j),i\circlearrowleft j,$$

$$, i \circlearrowleft j, i != \varnothing, R(i), R_{-}(j), \iff \sim, i \circlearrowleft j,$$

15 Rules of Node Ring

$$,i \circlearrowleft j,i != \varnothing,R(i),R_{-}(j),$$

$$\Leftrightarrow,i \circlearrowleft j,i != \varnothing,i \oplus,R(i),R_{-}(j),$$

$$\Leftrightarrow,i != \varnothing,i \circlearrowleft j,i \oplus,R(i),R_{-}(j),$$

$$\Leftrightarrow,i != \varnothing,i \circlearrowleft j,i \oplus,R(i),R_{-}(j),i \circlearrowleft j,$$

$$\Leftrightarrow,i \circlearrowleft j,i != \varnothing,i \oplus,R(i),R_{-}(j),i \circlearrowleft j,$$

$$\Leftrightarrow,i \circlearrowleft j,i != \varnothing,R(i),R_{-}(j),i \circlearrowleft j,$$

$$,i\circlearrowleft j,i=\varnothing,i\oplus,i=\varnothing,\iff\sim,i\circlearrowleft j,$$

$$\begin{split} &, i \circlearrowleft j, i = \varnothing, i \oplus, i = \varnothing, \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i \oplus, i = \varnothing, \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i_0 \oplus, i \oplus, i = \varnothing, \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i \oplus, i_0 \oplus, i = \varnothing, \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i \oplus, i_0 \oplus, i = \varnothing, \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i \oplus, i_0 \oplus, i = \varnothing, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i \oplus, i = \varnothing, i_0 \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i \circlearrowleft i_0, i_0 \oplus, i \oplus, i = \varnothing, i_0 \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i \oplus, i \circlearrowleft i_0, i = \varnothing, i_0 \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i \oplus, i \circlearrowleft i_0, i_0 = \varnothing, i_0 \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i \circlearrowleft i_0, i_0 \oplus, i \oplus, i_0 = \varnothing, i_0 \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \boxtimes i_0, i_0 \oplus, i \oplus, i_0 = \varnothing, i_0 \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), \\ &\Leftrightarrow , i \circlearrowleft j, j = \varnothing, R_-(j), i \boxtimes i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i_0 \oplus$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, j = \varnothing, i \odot i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), R_-(j),$

$$\Leftrightarrow , j = \varnothing, i \odot i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \circlearrowleft j, i \oplus, R(i), R_{-}(j),$$

$$\Leftrightarrow , j = \varnothing, i \odot i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \circlearrowleft j, i \oplus, R(i), R_-(j), i \circlearrowleft j,$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, j = \varnothing, i \odot i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), R_-(j), i \circlearrowleft j,$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, j = \varnothing, R_{-}(j), i \circlearrowleft i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), i \circlearrowleft j,$

$$\Leftrightarrow ,i \circlearrowleft j,j = \varnothing, i \odot i_0, i_0 \oplus, i_0 = \varnothing, i_0 \oplus, i \oplus, R(i), i \circlearrowleft j,$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, i \otimes i_0, i_0 \oplus, i \oplus, i_0 = \varnothing, i_0 \oplus, R(i), i \circlearrowleft j,$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, i \circlearrowleft i_0, i \circlearrowleft i_0, i_0 \oplus, i \oplus, i_0 = \varnothing, i_0 \oplus, R(i), i \circlearrowleft j,$

$$\Leftrightarrow ,i \circlearrowleft j, i = \varnothing, i \circledcirc i_0, i_0 \oplus, i \oplus, i \circlearrowleft i_0, i_0 = \varnothing, i_0 \oplus, R(i), i \circlearrowleft j,$$

$$\Leftrightarrow ,i \circlearrowleft j,i = \varnothing,i \circledcirc i_0,i_0 \oplus,i \oplus,i \circlearrowleft i_0,i = \varnothing,i_0 \oplus,R(i),i \circlearrowleft j,$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, i \circlearrowleft i_0, i_0 \oplus, i \oplus, i \circlearrowleft i_0, i_0 \oplus, i = \varnothing, R(i), i \circlearrowleft j,$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, i \odot i_0, i_0 \oplus, i \oplus, i \circlearrowleft i_0, i_0 \oplus, i = \varnothing, i \circlearrowleft j,$

$$\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \circlearrowleft i_0, i \circlearrowleft i_0, i_0 \oplus, i \oplus, i_0 \oplus, i = \varnothing, i \circlearrowleft j,$$

$$\Leftrightarrow ,i\circlearrowleft j,i=\varnothing,i\circlearrowleft i_0,i_0\oplus,i\oplus,i_0\oplus,i=\varnothing,i\circlearrowleft j,$$

$$\Leftrightarrow , i \circlearrowleft j, i = \varnothing, i \odot i_0, i_0 \oplus, i_0 \oplus, i \oplus, i = \varnothing, i \circlearrowleft j,$$

$$\Leftrightarrow$$
 $, i \circlearrowleft j, i = \varnothing, i \odot i_0, i_0 \oplus, i \oplus, i = \varnothing, i \circlearrowleft j,$

$$\iff, i \circlearrowleft j, i = \varnothing, i \oplus, i = \varnothing, i \circlearrowleft j,$$

$$,i\circlearrowleft j,i=\varnothing,i\oplus,i!\!=\!\varnothing,R(i), \iff \sim,i\circlearrowleft j,$$

$$, i \circlearrowleft j, i = \varnothing, i \oplus, i != \varnothing, R(i),$$

$$\Leftrightarrow ,i\circlearrowleft j,j=\varnothing,i\oplus,i\mathop{!=}\varnothing,R(i),$$

15 Rules of Node Ring

$$\Leftrightarrow, i \circ j, j = \varnothing, R_-(j), i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \circ j, R_-(j), i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \circ j, i \otimes i_0, i_0 \oplus, R_-(j), i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \circ j, i \otimes i_0, i_0 \oplus, R_-(j), i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \circ j, i \otimes i_0, i_0 \oplus, R(i_0), i_0 \oplus, R_-(j), i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \circ j, i \otimes i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \circ j, i \otimes i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \circ j, i \otimes i_0, i \circ i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \otimes i_0, i \circ j, i \circ i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \otimes i_0, i \circ j, j \circ i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \otimes, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \otimes i_0, i \circ j, j \circ i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \circ j, i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \otimes i_0, i \circ j, j \circ i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \circ j, i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \otimes i_0, i \circ j, j \circ i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \circ j, i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \otimes i_0, i \circ j, i \circ i_0, i_0 \oplus, R(i_0), R_-(j), i_0 \circ j, i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, j = \varnothing, i \otimes i_0, i \circ i_0, i \circ i_0, R(i_0), R_-(j), i_0 \circ j, i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, i \circ j, j = \varnothing, i \otimes i_0, i \circ i_0, i_0 \oplus, R(i_0), j = \varnothing, R_-(j), i_0 \circ j, i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, i \circ j, j = \varnothing, i \otimes i_0, i \circ i_0, i_0 \oplus, R(i_0), i_0 \circ j, i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, i \circ j, j = \varnothing, i \otimes i_0, i \circ i_0, i_0 \oplus, R(i_0), i_0 \circ j, i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, i \circ j, i = \varnothing, i \otimes i_0, i \circ i_0, i_0 \oplus, i \oplus, i \models \varnothing, R(i_0), R(i_0), R(i_0), i_0 \oplus, i \oplus, i \models \varnothing, R(i),$$

$$\Leftrightarrow, i \circ j, i = \varnothing, i \otimes i_0, i \circ i_0, i_0 \oplus, i \oplus, i \models \varnothing, R(i_0), R(i_0), R(i_0, i_0 \oplus, i_0 \oplus, i \oplus, i \models \varnothing, R(i_0), R(i_0, i_0 \oplus, i_0 \oplus, i_0 \oplus, i \oplus, i \models \varnothing, R(i_0), R(i_0, i_0 \oplus, i_0$$

 \Leftrightarrow $,i \circ j, i = \varnothing, i \circ i_0, i_0 \oplus, i \oplus, i != \varnothing, i \circ i_0, R(i_0), R(i), i \circ i_0, i_0 \circ j, i_0 \oplus,$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, i \circledcirc i_0, i_0 \oplus, i \oplus, i \models \varnothing, i \circlearrowleft i_0, R(i_0), R(i), i \circlearrowleft i_0, i \circlearrowleft j, i_0 \oplus,$

$$\Leftrightarrow ,i \circlearrowleft j,i = \varnothing, i \circledcirc i_0, i_0 \oplus, i \oplus, i != \varnothing, i \circlearrowleft i_0, R(i_0), R(i), i \circlearrowleft i_0, i_0 \oplus, i \circlearrowleft j,$$

$$\Leftrightarrow ,i \circlearrowleft j, i = \varnothing, i \odot i_0, i_0 \oplus, i \oplus, i != \varnothing, i \circlearrowleft i_0, R(i_0), R(i), i_0 \oplus, i \circlearrowleft j,$$

$$\Leftrightarrow ,i \circlearrowleft j,i=\varnothing,i \circledcirc i_0,i_0 \oplus,i \oplus,i \circlearrowleft i_0,i \vcentcolon = \varnothing,R(i_0),R(i),i_0 \oplus,i \circlearrowleft j,$$

$$\Leftrightarrow ,i \circlearrowleft j,i=\varnothing,i \odot i_0,i \circlearrowleft i_0,i_0 \oplus,i \oplus,i !=\varnothing,R(i_0),R(i),i_0 \oplus,i \circlearrowleft j,$$

$$\Leftrightarrow ,i\circlearrowleft j,i=\varnothing,i\odot i_0,i_0\oplus,i\oplus,i \mathbin{!\!=}\,\varnothing,R(i_0),R(i),i_0\oplus,i\circlearrowleft j,$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j,i = \varnothing,i \circlearrowleft i_0,i_0 \oplus,i \oplus,i \models \varnothing,R(i_0),i_0 \oplus,R(i),i \circlearrowleft j,$

$$\Leftrightarrow$$
 $,i \circlearrowleft j,i = \varnothing,i \odot i_0,i_0 \oplus,i \oplus,R(i_0),i_0 \oplus,i \models \varnothing,R(i),i \circlearrowleft j,$

$$\Leftrightarrow ,i \circlearrowleft j, i = \varnothing, i \odot i_0, i_0 \oplus, R(i_0), i_0 \oplus, i \oplus, i != \varnothing, R(i), i \circlearrowleft j,$$

$$\Leftrightarrow ,i\circlearrowleft j,i=\varnothing,i\circledcirc i_0,i_0\oplus,i_0\oplus,i\oplus,i\models\varnothing,R(i),i\circlearrowleft j,$$

$$\Leftrightarrow$$
, $i \circlearrowleft j$, $i = \varnothing$, $i \circlearrowleft i_0$, $i_0 \circledast$, $i \oplus$, $i \not = \varnothing$, $R(i)$, $i \circlearrowleft j$,

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, i \oplus, i != \varnothing, R(i), i \circlearrowleft j,$

$$, i \circlearrowleft j, i = \varnothing, i \oplus, R(i), \iff \sim, i \circlearrowleft j,$$

$$, i \circlearrowleft j, i = \varnothing, i \oplus, R(i),$$

$$\Leftrightarrow$$
, $i \circlearrowleft j$, $j = \varnothing$, $i \oplus$, $R(i)$,

$$\Leftrightarrow$$
, $i \circlearrowleft j, i \oplus, R(i), j = \varnothing$,

$$\Leftrightarrow$$
, $i \circ j$, $i \oplus$, $R(i)$, $j = \varnothing$, $R_{-}(j)$,

$$\Leftrightarrow$$
, $j = \emptyset$, $i \circlearrowleft j$, $i \oplus$, $R(i)$, $R_{-}(j)$,

$$\Leftrightarrow$$
 , $j = \emptyset$, $i \circlearrowleft j$, $i \oplus$, $R(i)$, $R_{-}(j)$, $i \circlearrowleft j$,

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i \oplus, R(i), j = \varnothing, R_{-}(j), i \circlearrowleft j,$

$$\Leftrightarrow$$
, $i \circlearrowleft j$, $i \oplus$, $R(i)$, $j = \varnothing$, $i \circlearrowleft j$,

15 Rules of Node Ring

$$\Leftrightarrow$$
 $,i\circlearrowleft j,j=\varnothing,i\oplus,R(i),i\circlearrowleft j,$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, i \oplus, R(i), i \circlearrowleft j,$

$$,i \circlearrowleft j, R(i), R_{-}(j), \Leftrightarrow \sim, i \circlearrowleft j,$$

$$,i \circlearrowleft j,R(i),R_{-}(j),$$

$$\Leftrightarrow$$
, $if(i=\varnothing)$ - $\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$ -, $i\circlearrowleft j$, $R(i)$, $R_{-}(j)$,

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i=\varnothing, i \circlearrowleft j, R(i), R_{-}(j), \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, i=\varnothing, R(i), R_{-}(j), \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, i=\varnothing, R_{-}(j), \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft j, j=\varnothing, R_{-}(j), \\ ,i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, j=\varnothing, \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \circlearrowleft j, i \circlearrowleft j, j = \varnothing, \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \circlearrowleft j, j=\varnothing, i \circlearrowleft j, \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft j, j=\varnothing, R_{-}(j), i \circlearrowleft j, \\ ,i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, i=\varnothing, R_{-}(j), i \circlearrowleft j, \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \circlearrowleft j, i=\varnothing, R(i), R_{-}(j), i \circlearrowleft j, \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i=\varnothing,i\circlearrowleft j,R(i),R_{-}(j),i\circlearrowleft j,\\ ,i\circlearrowleft j,R(i),R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i! = \varnothing, i \circlearrowleft j, R(i), R_{-}(j), \end{bmatrix},$$

15 Rules of Node Ring

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i \circlearrowleft j, i !=\varnothing, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i \circlearrowleft j, i !=\varnothing, i \oplus, R(i), R_{-}(j), \end{bmatrix} -,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i != \varnothing, i \circlearrowleft j, i \oplus, R(i), R_{-}(j), \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ \\ , i !=\varnothing, i \circlearrowleft j, i \oplus, R(i), R_{-}(j), i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i \circlearrowleft j, i != \varnothing, i \oplus, R(i), R_{-}(j), i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i \circlearrowleft j, i != \varnothing, R(i), R_{-}(j), i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i! = \varnothing, i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i = \varnothing) = \begin{bmatrix} , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \\ , i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i\!=\!\varnothing) - \boxed, -, i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j,$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j, R(i), R_{-}(j), i \circlearrowleft j,$

16.1 Definition of Node Connectivity

$$, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , i \circlearrowleft i_1, j \circlearrowleft j_1, R(i_1), R(j_1), if(i_1 \circlearrowleft j_1) = \begin{bmatrix} , i_1 \circlearrowleft , j_1 \circlearrowleft , \\ , i_1 \circlearrowleft , j_1 \circlearrowleft , \end{bmatrix}$$

$$,i\circlearrowleft j,\iff,if(i\circlearrowleft j)-\begin{bmatrix},\\,\otimes,\end{bmatrix},$$

$$,i! \circlearrowleft j, \Leftrightarrow ,if(i \circlearrowleft j) - \left[\stackrel{, \otimes,}{\underset{\cdot}{\cdot}} \right] - ,$$

16.2 Axiom of node id operator

$$, i \otimes m, \Leftrightarrow \sim, m! \circ j,$$

16.3 Theorems of Relationship of Node Connectivity

16.3.1 Node Connectivity propositions to Identical node comparison propositions

$$,i \circlearrowleft j, \iff, i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1 \circlearrowleft j_1, i_1 \oplus, j_1 \oplus,$$

$$,i! \circlearrowleft j, \iff ,i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1! \circlearrowleft j_1, i_1 \oplus, j_1 \oplus,$$

16.3.2 Branch function to propositions

$$, if(i \circ j) = \begin{bmatrix} , \circ c, \\ , \otimes , \end{bmatrix} = , \Leftrightarrow , i \circ j, \circ c,$$

$$,if(i \circ j) = \begin{bmatrix} , \otimes, \\ , \otimes c, \end{bmatrix}, \Leftrightarrow ,i! \circ j, \otimes c,$$

16.3.3 Empty branch function

$$,if(i\circlearrowleft j)- \left[\begin{array}{c} , & \\ , & \\ \end{array} \right], \Leftrightarrow , \left[\begin{array}{c} ,i\circlearrowleft j, \\ ,i!\circlearrowleft j, \end{array} \right]$$

proof:
$$, if(i \circ j) - [,$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i f(i_1 \otimes j_1) - \begin{bmatrix} , i_1 \otimes , j_1 \otimes , \\ , i_1 \otimes , j_1 \otimes , \end{bmatrix}$$

$$\Leftrightarrow, i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), \begin{bmatrix} , i_1 \otimes j_1, i_1 \oplus, j_1 \oplus, \\ , i_1! \otimes j_1, i_1 \oplus, j_1 \oplus, \end{bmatrix}$$

$$\Leftrightarrow , \underbrace{-, i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1 \otimes j_1, i_1 \otimes, j_1 \otimes,}_{, i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1! \otimes j_1, i_1 \otimes, j_1 \otimes,}_{}$$

$$\Leftrightarrow , \begin{bmatrix} , i \circlearrowleft j, \\ , i! \circlearrowleft j, \end{bmatrix}$$

16.3.4 Unity

$$, \Leftrightarrow , if(i \circlearrowleft j) [\dot{}],$$

proof:
,
$$if(i \circ j - \uparrow, \uparrow]$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i f(i_1 \circlearrowleft j_1) = \begin{bmatrix} , i_1 \oplus , j_1 \oplus , \\ , i_1 \oplus , j_1 \oplus , \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), if(i_1 \circlearrowleft j_1) - \boxed{,}, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1 \otimes , j_1 \otimes ,$

$$\Leftrightarrow ,i @ i_1,j @ j_1,R(i_1),i_1 @,R(j_1),j_1 @,$$

$$\Leftrightarrow$$
 $,i \otimes i_1, j \otimes j_1, i_1 \otimes, R(j_1), j_1 \otimes,$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 \oplus, j \otimes j_1, j_1 \oplus,$$

$$\Leftrightarrow$$
 $, j \otimes j_1, j_1 \otimes ,$

 \Leftrightarrow

$$,i \circ j, \otimes, \Leftrightarrow, \otimes,$$

 $,i! \circ j, \otimes, \Leftrightarrow, \otimes$

16.3.5 Symmetry

$$, if(i \circ j)[\dot{}] \Leftrightarrow , if(j \circ i)[\dot{}]$$

 $\Leftrightarrow , j \otimes j_1, i \otimes i_1, R(j_1), R(i_1), if(j_1 \circlearrowleft i_1) - \begin{bmatrix} , j_1 \otimes , i_1 \otimes , \\ \\ , j_1 \otimes , i_1 \otimes , \end{bmatrix}$

$$\Leftrightarrow , if(j \circlearrowleft i) - \begin{bmatrix} , \\ , \\ , i \circlearrowleft j, \; \Leftrightarrow \; , j \circlearrowleft i, \\ , i! \circlearrowleft j, \; \Leftrightarrow \; , j! \circlearrowleft i, \\ \end{cases}$$

16.3.6 Swap

Branch function and operator:

$$, @m, if(i \circlearrowleft j) - \begin{bmatrix}, \\ \\ \\ \\ \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix}, @m, \\ \\ \\ \\ \end{bmatrix}, @m,$$

$$\Rightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , \circledcirc m, \\ , \circledcirc m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \\ (\bowtie m, if(i \circlearrowleft m, if$$

Branch function and Branch function:

$$, if(i \circlearrowleft j) = \begin{bmatrix} , if(m \circlearrowleft n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m \circlearrowleft n) = \begin{bmatrix} , & \\ , & & \\ , & & \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ ,$$

proof:
$$, if(i \circ j) = \begin{bmatrix} , if(m \circ n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix} \\ , if(m \circ n) - \begin{bmatrix} , \odot c_3, \\ , \odot c_3, \end{bmatrix} \\ , \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, j \otimes j_1, R(i_1), R(j_1),$

 \Leftrightarrow $,i \otimes i_1, j \otimes j_1, R(i_1), R(j_1),$

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} , m \circlearrowleft m_1, n \circlearrowleft m_1, R(m_1), R(n_1), if(m_1 \circlearrowleft m_1) \\ , m \circlearrowleft m_1, n \circlearrowleft m_1, R(m_1), R(n_1), if(m_1 \circlearrowleft m_1) \\ , m \circlearrowleft m_1, n \circlearrowleft m_1, R(m_1), R(n_1), if(m_1 \circlearrowleft m_1) \\ , m \circlearrowleft m_1 \hookrightarrow m_1$$

 \Leftrightarrow , $m \odot m_1$, $n \odot n_1$, $i \odot i_1$, $j \odot j_1$, $R(i_1)$, $R(j_1)$,

$$if(i_1\circlearrowleft j_1) = \begin{bmatrix} R(m_1), R(n_1), if(m_1\circlearrowleft n_1) - \begin{bmatrix} m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_1, \\ m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_2, \end{bmatrix}, \\ R(m_1), R(n_1), if(m_1\circlearrowleft n_1) - \begin{bmatrix} m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_2, \\ m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_3, \\ m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_4, \end{bmatrix},$$

 \Leftrightarrow , $m \otimes m_1$, $n \otimes n_1$, $R(m_1)$, $R(n_1)$, $i \otimes i_1$, $j \otimes j_1$, $R(i_1)$, $R(j_1)$,

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,if(m_1 \circlearrowleft n_1) - \begin{bmatrix} ,m_1 \circlearrowleft ,n_1 \circlearrowleft ,i_1 \circlearrowleft ,j_1 \circlearrowleft ,\odot c_1,\\ ,m_1 \circlearrowleft ,n_1 \circlearrowleft ,i_1 \circlearrowleft ,j_1 \circlearrowleft ,\odot c_2,\\ ,m_1 \circlearrowleft ,n_1 \circlearrowleft ,i_1 \circlearrowleft ,j_1 \circlearrowleft ,\odot c_3,\\ ,m_1 \circlearrowleft ,n_1 \circlearrowleft ,i_1 \circlearrowleft ,j_1 \circlearrowleft ,\odot c_4, \end{bmatrix},$$

 $\Leftrightarrow , m \odot m_1, n \odot n_1, R(m_1), R(n_1), i \odot i_1, j \odot j_1, R(i_1), R(j_1),$

$$if(m_1 \circlearrowleft n_1) = \begin{bmatrix} , if(i_1 \circlearrowleft j_1) \\ , m_1 \circledast, n_1 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_1, \\ , m_1 \circledast, n_1 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_3, \\ , m_1 \circledast, n_1 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_2, \\ , m_1 \circledast, n_1 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_2, \\ , m_1 \circledast, n_1 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_4, \end{bmatrix},$$

 \Leftrightarrow , $m \odot m_1$, $n \odot n_1$, $R(m_1)$, $R(n_1)$, $i \odot i_1$, $j \odot j_1$,

$$if(m_1 \circlearrowleft n_1) = \begin{bmatrix} R(i_1), R(j_1), if(i_1 \circlearrowleft j_1) \\ R(i_1), R(j_1), if(i_1 \circlearrowleft j_1) \\ R(i_1), R(j_1), if(i_1 \circlearrowleft j_1) \end{bmatrix} \begin{bmatrix} m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_1, \\ m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_2, \\ m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_2, \\ m_1 \textcircled{@}, n_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_4, \end{bmatrix},$$

 \Leftrightarrow , $m \odot m_1$, $n \odot n_1$, $R(m_1)$, $R(n_1)$,

$$if(m_1 \circlearrowleft n_1) = \underbrace{\begin{pmatrix} , i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), if(i_1 \circlearrowleft j_1) \\ , m_1 \otimes , n_1 \otimes , i_1 \otimes , j_1 \otimes , \otimes c_3, \\ , m_1 \otimes , n_1 \otimes , i_1 \otimes , j_1 \otimes , \otimes c_3, \\ , m_1 \otimes , n_1 \otimes , i_1 \otimes , j_1 \otimes , \otimes c_2, \\ , m_1 \otimes , n_1 \otimes , i_1 \otimes , j_1 \otimes , \otimes c_2, \\ , m_1 \otimes , n_1 \otimes , i_1 \otimes , j_1 \otimes , \otimes c_4, \end{bmatrix}},$$

 \Leftrightarrow , $m \otimes m_1$, $n \otimes n_1$, $R(m_1)$, $R(n_1)$,

$$if(m_{1}\circlearrowleft n_{1}) = \begin{bmatrix} ,i \circlearrowleft i_{1},j \circlearrowleft j_{1},R(i_{1}),R(j_{1}),if(i_{1}\circlearrowleft j_{1}) \\ ,i \circlearrowleft j_{1},R(i_{1}),R(i_{1}),R(i_{1}),if(i_{1}\circlearrowleft j_{1}) \\ ,i \circlearrowleft j_{1},R(i_{1}),R(i_$$

$$\Leftrightarrow$$
 , $m \odot m_1$, $n \odot n_1$, $R(m_1)$, $R(n_1)$,

$$if(m_1 \circlearrowleft n_1) = \begin{bmatrix} , m_1 \circledast, n_1 \circledast, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , m_1 \circledast, n_1 \circledast, if(i \circlearrowleft j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \\ \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$, if(i\circlearrowleft j) = \begin{bmatrix}, if(m\circlearrowleft n) - \begin{bmatrix}, & & \\ & & \\ &$$

$$, if(i \circlearrowleft j) = \begin{bmatrix} , if(m=n) & \begin{bmatrix} , & & \\ , & & \\ , & & \\ , & & \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i \circlearrowleft j) & \begin{bmatrix} , & & \\ , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(m=n) = \begin{bmatrix} , & & \\ , & & \\ , & & \\ , & & \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix} , & & \\ , & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \\ , & & \\ , & & \end{bmatrix},$$

$$, if(i \circlearrowleft j) - \begin{bmatrix} , if(m = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m = \varnothing) - \begin{bmatrix} , if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(m = \varnothing) - \begin{bmatrix} , if(i \circlearrowleft j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \\ , if(i \circlearrowleft j) - \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

Branch function and propositions:

$$, m \circlearrowleft n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \mathring{\bigcirc} n, if (i \mathring{\bigcirc} j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \iff , if (i \mathring{\bigcirc} j) = \begin{bmatrix} , m! \mathring{\bigcirc} n, @c_1, \\ \\ , m! \mathring{\bigcirc} n, @c_2, \end{bmatrix} -,$$

$$, m \circlearrowleft n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m = n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m = n, @c_1, \\ \\ , m = n, @c_2, \end{bmatrix},$$

16.3 Theorems of Relationship of Node Connectivity

$$, m \models n, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , m \models n, @c_1, \\ , m \models n, @c_2, \end{bmatrix},$$

$$, m = \varnothing, if(i \circlearrowleft j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix}, m = \varnothing, @c_1, \\ , m = \varnothing, @c_2, \end{bmatrix},$$

$$, m \models \varnothing, if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} , m \models \varnothing, @c_1, \\ , m \models \varnothing, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \iff , if(i \circlearrowleft j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix} -,$$

$$, m \circlearrowleft n, if (i = j) = \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix}, \iff , if (i = j) = \begin{bmatrix} , m \circlearrowleft n, \circledcirc c_1, \\ , m \circlearrowleft n, \circledcirc c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if (i=j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if (i=j) = \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if (i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i = \varnothing) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if (i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i = \varnothing) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

Branch function and recursive function:

$$,R(m),if(i\circlearrowleft j)=\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},\Leftrightarrow,if(i\circlearrowleft j)=\begin{bmatrix},R(m),@c_1,\\\\,R(m),@c_2,\end{bmatrix},$$

$$,R_{\text{-}}\!(m),if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff ,if(i\circlearrowleft j) - \begin{bmatrix} ,R_{\text{-}}\!(m), @c_1, \\ \\ ,R_{\text{-}}\!(m), @c_2, \end{bmatrix},$$

Branch function and flag object :

$$, \&SHi \circlearrowleft m, if (i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if (i \circlearrowleft j) = \begin{bmatrix} , \&SHi \circlearrowleft m, @c_1, \\ , \&SHi \circlearrowleft m, @c_2, \end{bmatrix},$$

$$, \&\mathit{SHi} \rightarrow \!\! m, if(i\circlearrowleft j) - \!\!\! \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \!\!\! , \Leftrightarrow , if(i\circlearrowleft j) - \!\!\! \begin{bmatrix} , \&\mathit{SHi} \rightarrow \!\! m, @c_1, \\ , \&\mathit{SHi} \rightarrow \!\! m, @c_2, \end{bmatrix} \!\!\!\! ,$$

$$, \&\mathit{SHj} \leftarrow m, if(i \circlearrowleft j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) - \begin{bmatrix}, \&\mathit{SHj} \leftarrow m, @c_1, \\ \\ , \&\mathit{SHj} \leftarrow m, @c_2, \end{bmatrix},$$

Propositions and operator:

$$,i \circ j, \circ m, \Leftrightarrow, \circ m, i \circ j,$$
$$,i \circ j, \circ m, \Leftrightarrow, \circ m, i \circ j,$$

$$, i \circlearrowleft j, m \circlearrowleft n, \iff , m \circlearrowleft n, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circlearrowleft n, \iff , m \circlearrowleft n, i \circlearrowleft j,$$

$$,i\circlearrowleft j,m\circledcirc n,\iff,m\circledcirc n,i\circlearrowleft j,$$

$$,i\circlearrowleft j,m@, \Leftrightarrow ,m@,i\circlearrowleft j,$$

$$,i\circlearrowleft j,m\oplus ,\Leftrightarrow ,m\oplus ,i\circlearrowleft j,$$

$$,i\circlearrowleft j,m\circleddash ,\ \Leftrightarrow\ ,m\circleddash ,i\circlearrowleft j,$$

$$,i!\mathcal{O}j,@m,\Leftrightarrow,@m,i!\mathcal{O}j,$$

$$,i! \circ j, \circ m, \Leftrightarrow , \circ m, i! \circ j,$$

$$,i! \circlearrowleft j,m \odot n, \iff ,m \odot n,i! \circlearrowleft j,$$

$$,i! \circlearrowleft j, m \odot n, \Leftrightarrow , m \odot n, i! \circlearrowleft j,$$

$$,i! \circlearrowleft j, m \circledcirc n, \iff , m \circledcirc n, i! \circlearrowleft j,$$

$$,i! \circlearrowleft j, m \circledcirc , \iff , m \circledcirc , i! \circlearrowleft j,$$

$$,i! \circlearrowleft j, m \circledcirc , \iff , m \circledcirc , i! \circlearrowleft j,$$

$$,i! \circlearrowleft j, m \circledcirc , \iff , m \circledcirc , i! \circlearrowleft j,$$

Propositions and Propositions:

$$, i \circlearrowleft j, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m ! \circlearrowleft n, \Leftrightarrow , m ! \circlearrowleft n, i \circlearrowleft j,$$

$$, i ! \circlearrowleft j, m ! \circlearrowleft n, \Leftrightarrow , m ! \circlearrowleft n, i ! \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, m ! \circlearrowleft n, \Leftrightarrow , m ! \circlearrowleft n, i ! \circlearrowleft j,$$

$$, i \circlearrowleft j, m ! = n, \Leftrightarrow , m ! = n, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m ! = n, \Leftrightarrow , m ! = n, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, m ! = n, \Leftrightarrow , m ! = n, i ! \circlearrowleft j,$$

$$, i \circlearrowleft j, m ! = n, \Leftrightarrow , m ! = n, i ! \circlearrowleft j,$$

$$, i \circlearrowleft j, m ! = \varnothing, \Leftrightarrow , m ! = \varnothing, i \circlearrowleft j,$$

$$, i \circlearrowleft j, m ! = \varnothing, \Leftrightarrow , m ! = \varnothing, i \circlearrowleft j,$$

$$, i ! \circlearrowleft j, m ! = \varnothing, \Leftrightarrow , m ! = \varnothing, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, m ! = \varnothing, \Leftrightarrow , m ! = \varnothing, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, m ! = \varnothing, \Leftrightarrow , m ! = \varnothing, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, m ! = \varnothing, \Leftrightarrow , m ! = \varnothing, i ! \circlearrowleft j,$$

Propositions and recursive function:

$$,i \circlearrowleft j, R(m), \Leftrightarrow ,R(m),i \circlearrowleft j,$$

 $,i \circlearrowleft j, R_{-}(m), \Leftrightarrow ,R_{-}(m),i \circlearrowleft j,$
 $,i! \circlearrowleft j, R(m), \Leftrightarrow ,R(m),i! \circlearrowleft j,$
 $,i! \circlearrowleft j, R_{-}(m), \Leftrightarrow ,R_{-}(m),i! \circlearrowleft j,$

Propositions and flag object:

$$, i \circlearrowleft j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, \&SHi \to m, \Leftrightarrow , \&SHi \to m, i \circlearrowleft j,$$

$$, i ! \circlearrowleft j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, \&SHi \to m, \Leftrightarrow , \&SHi \to m, i ! \circlearrowleft j,$$

$$, i \circlearrowleft j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, i \circlearrowleft j,$$

$$, i \circlearrowleft j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i \circlearrowleft j,$$

$$, i ! \circlearrowleft j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i ! \circlearrowleft j,$$

$$, i ! \circlearrowleft j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i ! \circlearrowleft j,$$

Propositions to Propositions with branch function

$$, if(i \circlearrowleft j) = \begin{bmatrix} , m! \circlearrowleft n, \\ , if(m \circlearrowleft n) = \begin{bmatrix} , i! \circlearrowleft j, \\ , if(m \circlearrowleft n) = \begin{bmatrix} , i! \circlearrowleft j, \\ , i \circlearrowleft j, \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix} , m! \circlearrowleft n, \\ , m \circlearrowleft n, \end{bmatrix}, \iff , if(m \circlearrowleft n) = \begin{bmatrix} , i! \circlearrowleft j, \\ , i \circlearrowleft j, \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix} , m! \circlearrowleft n, \\ , i \end{cases}, \iff , if(m \circlearrowleft n) = \begin{bmatrix} , i! \circlearrowleft j, \\ , i \circlearrowleft j, \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix} , \\ , m \circlearrowleft n, \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , \\ , i \circlearrowleft j, \end{bmatrix},$$

$$, if (i \circlearrowleft j) - \left[, \begin{array}{c}, m != n, \\ \\ \end{array}\right], \iff , if (m = n) - \left[, \begin{array}{c}, i ! \circlearrowleft j, \\ \\ \end{array}\right],$$

$$,if(i\circlearrowleft j)$$
- $\begin{bmatrix} ,\\ ,m=n, \end{bmatrix}$ - $,\Leftrightarrow,if(m=n)$ - $\begin{bmatrix} ,\\ ,i\circlearrowleft j, \end{bmatrix}$ - $,$

$$, if(i \circ j) = \begin{bmatrix} , m! = \varnothing, \\ , \end{bmatrix}, \Leftrightarrow , if(m = \varnothing) = \begin{bmatrix} , i! \circ j, \\ , \end{bmatrix},$$

$$, if (i \circlearrowleft j) - \begin{bmatrix} , \\ , m = \varnothing, \end{bmatrix} -, \; \Leftrightarrow \; , if (m = \varnothing) - \begin{bmatrix} , \\ , i \circlearrowleft j, \end{bmatrix} -,$$

16.3.7 Transitivity

Branch function with branch function:

$$, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_2, \end{bmatrix},$$

$$\begin{array}{c} \text{proof:} \\ , if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \end{array}$$

16.3 Theorems of Relationship of Node Connectivity

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i f(i_1 \circlearrowleft j_1) = \begin{bmatrix} , i_1 \oplus, j_1 \oplus, \odot c_1, \\ , i_1 \oplus, j_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), if(i_1 \circlearrowleft j_1) = \begin{bmatrix}, i_1 \circlearrowleft, j_1 \circlearrowleft, \circ c_1, \\, i_1 \circlearrowleft, j_1 \circlearrowleft, \circ c_3, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i_2 \otimes j \otimes j_1$, $R(i_1)$, $R(j_1)$,

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_1 \textcircled{@},j_1 \textcircled{@},@c_1,\\ ,i_1 \textcircled{@},j_1 \textcircled{@},&c_2, \end{bmatrix} -, \\ ,i_1 \textcircled{@},j_1 \textcircled{@},&c_2, \end{bmatrix} -,$$

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_2$, $R(i_2)$, $i_2 \oplus$, $j \odot j_1$, $R(i_1)$, $R(j_1)$,

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix}, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_1, \\, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_3, \end{bmatrix}, \\, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_2 a, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $R(i_2)$, $j \otimes j_1$, $R(i_1)$, $R(j_1)$,

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circlearrowleft ,if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_1 \circlearrowleft ,j_1 \circlearrowleft ,\odot c_1, \\ ,i_1 \circlearrowleft ,j_1 \circlearrowleft ,\odot c_3, \end{bmatrix}, \\ ,i_2 \circlearrowleft ,i_1 \circlearrowleft ,j_1 \circlearrowleft ,\odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $j \otimes j_1$, $R(i_2)$, $R(i_1)$, $R(j_1)$,

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, @c_1, \\ ,i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\ ,i_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i \otimes i_2, i \otimes i_2, j \otimes j_1, R(i_2), R(i_1), R(j_1),$$

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \circledast, j_1 \circledast, \odot c_1, \\ , i_1 \circledast, j_1 \circledast, \odot c_3, \end{bmatrix}, \\, i_2 \circledast, i_1 \circledast, j_1 \circledast, \odot c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1,i \otimes i_1,i \otimes i_2,i \otimes i_2,j \otimes j_1,R(i_2),R(i_1),R(j_1),$

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, @c_1, \\ ,i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\ ,i_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

 $\Leftrightarrow ,i \otimes i_1, i \otimes i_2, i \otimes i_1, i \otimes i_2, j \otimes j_1, R(i_2), R(i_1), R(j_1),$

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, @c_1, \\ ,i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix} - , \\ ,i_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_1$, $i \otimes i_2$, $i \otimes i_1$, $i_1 \otimes i_2$, $j \otimes j_1$, $R(i_2)$, $R(i_1)$, $R(j_1)$,

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 @, if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_1 @, j_1 @, @c_1, \\ ,i_1 @, j_1 @, @c_3, \end{bmatrix} \\ ,i_2 @, i_1 @, j_1 @, @c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \otimes i_1, i \otimes i_2, i \otimes i_1, j \otimes j_1, i_1 \otimes i_2, R(i_2), R(i_1), R(j_1),$

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, \otimes c_1, \\ ,i_1 \circledast, j_1 \circledast, \otimes c_3, \end{bmatrix}, \\ ,i_2 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_2, \end{bmatrix},$$

 $\Leftrightarrow, i \odot i_1, i \odot i_2, i \odot i_1, j \odot j_1, i_1 \odot i_2, R(i_2), R(i_1), i_1 \odot i_2, R(j_1),$

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, @c_1, \\ ,i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\ ,i_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, i \otimes i_2, i \otimes i_1, j \otimes j_1, i_1 \otimes i_2, R(i_2), R(i_1), R(j_1), i_1 \otimes i_2,$

$$if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \textcircled{@}, if(i_1 \circlearrowleft j_1) & \vdots & \vdots & \vdots & \vdots \\ ,i_1 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_3, \end{bmatrix}, \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ ,i_2 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@}, \textcircled{@} c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, i \otimes i_2, i \otimes i_1, j \otimes j_1, i_1 \otimes i_2, R(i_2), R(i_1), R(j_1), i_1 \otimes i_2,$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \oplus, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \oplus, j_1 \oplus, \odot c_1, \\ , i_1 \oplus, j_1 \oplus, \odot c_3, \end{bmatrix}, \\, i_2 \oplus, i_1 \oplus, j_1 \oplus, \odot c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, i \otimes i_2, i \otimes i_1, j \otimes j_1, i_1 \otimes i_2, R(i_2), R(i_1), i_1 \otimes i_2, R(j_1),$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \oplus, if(i_1 \circlearrowleft j_1) & \vdots & \vdots & \vdots & \vdots \\, i_2 \oplus, i_1 \oplus, j_1 \oplus, & \vdots & \vdots & \vdots \\, i_2 \oplus, i_1 \oplus, j_1 \oplus, & \vdots & \vdots & \vdots \\\end{bmatrix},$$

 $\Leftrightarrow, i \otimes i_1, i \otimes i_2, i \otimes i_1, j \otimes j_1, i_1 \otimes i_2, R(i_2), R(i_1), R(j_1),$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, \otimes c_1, \\ ,i_1 \circledast, j_1 \circledast, \otimes c_3, \end{bmatrix} - , \\ ,i_2 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_2, \end{bmatrix},$$

 $\Leftrightarrow ,i \otimes i_1, i \otimes i_2, i \otimes i_1, i_1 \otimes i_2, j \otimes j_1, R(i_2), R(i_1), R(j_1),$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \circledast, j_1 \circledast, \odot c_1, \\ , i_1 \circledast, j_1 \circledast, \odot c_3, \end{bmatrix}, \\, i_2 \circledast, i_1 \circledast, j_1 \circledast, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_1, i \otimes i_2, i \otimes i_1, i \otimes i_2, j \otimes j_1, R(i_2), R(i_1), R(j_1),$$

$$if(i_{2}\circlearrowleft j_{1}) = \begin{bmatrix} ,i_{2} \textcircled{@},if(i_{1}\circlearrowleft j_{1}) = \begin{bmatrix} ,i_{1} \textcircled{@},j_{1} \textcircled{@},@c_{1},\\ ,i_{1} \textcircled{@},j_{1} \textcircled{@},c_{3}, \end{bmatrix},\\ ,i_{2} \textcircled{@},i_{1} \textcircled{@},j_{1} \textcircled{@},@c_{2}, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \otimes i_1, i \otimes i_2, i \otimes i_2, j \otimes j_1, R(i_2), R(i_1), R(j_1),$

$$if(i_{2}\circlearrowleft j_{1}) = \begin{bmatrix} ,i_{2} @, if(i_{1}\circlearrowleft j_{1}) & \vdots & \vdots & \vdots \\ ,i_{1} @, j_{1} @, & \vdots & \vdots \\ ,i_{2} @, i_{1} @, j_{1} @, & \vdots & \vdots \\ ,i_{2} @, i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\ ,i_{2} @, \vdots & \vdots & \vdots & \vdots \\$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i \otimes i_2$, $j \otimes j_1$, $R(i_2)$, $R(i_1)$, $R(j_1)$,

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 @, if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 @, j_1 @, @c_1, \\ ,i_1 @, j_1 @, @c_3, \end{bmatrix} - , \\ ,i_2 @, i_1 @, j_1 @, @c_2, \end{bmatrix} - ,$$

$$\Leftrightarrow , i \otimes i_1, i \otimes i_2, j \otimes j_1, R(i_2), R(i_1), R(j_1),$$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \circledast, if(i_1 \circlearrowleft j_1) = \begin{bmatrix}, i_1 \circledast, j_1 \circledast, @c_1, \\ , i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\, i_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_2$, $R(i_2)$, $R(i_1)$, $j \odot j_1$, $R(j_1)$,

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \circledast, j_1 \circledast, @c_1, \\ , i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\, i_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $R(i_2)$, $R(i_1)$, $j \otimes j_1$, $j \otimes j_2$, $j_2 \otimes R(j_1)$,

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, @c_1, \\ ,i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\ ,i_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_2, R(j_2), j_2 \otimes, R(j_1),$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \oplus, if(i_1 \circlearrowleft j_1) = \begin{bmatrix}, i_1 \oplus, j_1 \oplus, \odot c_1, \\ , i_1 \oplus, j_1 \oplus, \odot c_3, \end{bmatrix}, \\, i_2 \oplus, i_1 \oplus, j_1 \oplus, \odot c_2, \end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_1$, $i \otimes i_2$, $R(i_2)$, $R(i_1)$, $j \otimes j_1$, $j \otimes j_2$, $R(j_2)$, $R(j_1)$,

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \textcircled{\tiny{0}},j_2 \textcircled{\tiny{0}},if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 \textcircled{\tiny{0}},j_1 \textcircled{\tiny{0}}, @c_1, \\ ,i_1 \textcircled{\tiny{0}},j_1 \textcircled{\tiny{0}}, @c_3, \end{bmatrix} - , \\ ,i_2 \textcircled{\tiny{0}},j_2 \textcircled{\tiny{0}},i_1 \textcircled{\tiny{0}},j_1 \textcircled{\tiny{0}}, @c_2, \end{bmatrix} - ,$$

 \Leftrightarrow $,i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_1, j \otimes j_2, R(j_2), R(j_1),$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \circledast, j_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \circledast, j_1 \circledast, \otimes c_1, \\ , i_1 \circledast, j_1 \circledast, \otimes c_3, \end{bmatrix}, \\, i_2 \circledast, j_2 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \odot i_1, i \odot i_2, R(i_2), R(i_1), j \odot j_1, j \circlearrowleft j_1, j \odot j_2, j \circlearrowleft j_2, R(j_2), R(j_1),$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix} ,i_2 \circledast, j_2 \circledast, if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, @c_1, \\ ,i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\ ,i_2 \circledast, j_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

 $\Leftrightarrow ,i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_2, j \otimes j_1, j \otimes j_2, R(j_2), R(j_1),$

$$if(i_2 \circlearrowleft j_1) = \begin{bmatrix}, i_2 \circledast, j_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \circledast, j_1 \circledast, @c_1, \\ , i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\, i_2 \circledast, j_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_1$, $i \otimes i_2$, $R(i_2)$, $R(i_1)$, $j \otimes j_1$, $j \otimes j_2$, $j \otimes j_1$, $j_1 \otimes j_2$, $R(j_2)$, $R(j_1)$,

$$if(i_{2}\circlearrowleft j_{1}) = \begin{bmatrix}, i_{2} \textcircled{@}, j_{2} \textcircled{@}, if(i_{1} \circlearrowleft j_{1}) = \begin{bmatrix}, i_{1} \textcircled{@}, j_{1} \textcircled{@}, \textcircled{@} c_{1}, \\ i_{1} \textcircled{@}, j_{1} \textcircled{@}, c_{3}, \end{bmatrix}, \\, i_{2} \textcircled{@}, j_{2} \textcircled{@}, i_{1} \textcircled{@}, j_{1} \textcircled{@}, \textcircled{@} c_{2}, \end{bmatrix},$$

 $\Leftrightarrow ,i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_2, j \otimes j_1, j_1 \otimes j_2, R(j_2), R(j_1), j_1 \otimes j_2,$

$$if(i_{2}\circlearrowleft j_{1}) = \begin{bmatrix}, i_{2} \textcircled{@}, j_{2} \textcircled{@}, if(i_{1} \circlearrowleft j_{1}) - \begin{bmatrix}, i_{1} \textcircled{@}, j_{1} \textcircled{@}, \textcircled{@} c_{1}, \\ , i_{1} \textcircled{@}, j_{1} \textcircled{@}, \textcircled{@} c_{3}, \end{bmatrix}, \\, i_{1} \textcircled{@}, j_{2} \textcircled{@}, i_{1} \textcircled{@}, j_{1} \textcircled{@}, \textcircled{@} c_{2}, \end{bmatrix},$$

 $\Leftrightarrow ,i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_2, j \otimes j_1, j_1 \otimes j_2, R(j_2), R(j_1), j_1 \otimes j_2,$

$$if(i_2 \circlearrowleft j_2) = \begin{bmatrix}, i_2 \circledast, j_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \circledast, j_1 \circledast, @c_1, \\ , i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\, i_2 \circledast, j_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

 $\Leftrightarrow, i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_2, j \circlearrowleft j_1, j_1 \circlearrowleft j_2, R(j_2), R(j_1),$

$$if(i_{2}\circlearrowleft j_{2}) = \begin{bmatrix} ,i_{2} \textcircled{@},j_{2} \textcircled{@},if(i_{1} \circlearrowleft j_{1}) & \vdots & \vdots & \vdots & \vdots \\ ,i_{1} \textcircled{@},j_{1} \textcircled{@}, & \vdots & \vdots & \vdots \\ ,i_{2} \textcircled{@},j_{2} \textcircled{@},i_{1} \textcircled{@},j_{1} \textcircled{@}, & \vdots & \vdots & \vdots \\ ,i_{2} \textcircled{@},j_{2} \textcircled{@},i_{1} \textcircled{@},j_{1} \textcircled{@}, & \vdots & \vdots & \vdots \\ ,i_{2} \textcircled{@},j_{2} \textcircled{@},i_{1} \textcircled{@},j_{1} \textcircled{@}, & \vdots & \vdots & \vdots \\ ,i_{2} \textcircled{@},j_{2} \textcircled{@},i_{1} \textcircled{@},j_{1} \textcircled{@}, & \vdots & \vdots & \vdots \\ ,i_{2} \textcircled{@},j_{2} \textcircled{@},i_{1} \textcircled{@},j_{2} \textcircled{@},i_{2} \textcircled{@},i_$$

 $\Leftrightarrow, i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_2, j \otimes j_1, j \otimes j_2, R(j_2), R(j_1),$

$$if(i_2 \circlearrowleft j_2) = \begin{bmatrix} ,i_2 \circledast, j_2 \circledast, if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, \otimes c_1, \\ ,i_1 \circledast, j_1 \circledast, \otimes c_3, \end{bmatrix}, \\ ,i_2 \circledast, j_2 \circledast, i_1 \circledast, j_1 \circledast, \otimes c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_1, j \otimes j_2, j \otimes j_2, R(j_2), R(j_1),$

$$if(i_2 \circlearrowleft j_2) = \begin{bmatrix}, i_2 \circledast, j_2 \circledast, if(i_1 \circlearrowleft j_1) - \begin{bmatrix}, i_1 \circledast, j_1 \circledast, @c_1, \\ , i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\, i_2 \circledast, j_2 \circledast, i_1 \circledast, j_1 \circledast, @c_2, \end{bmatrix},$$

 $\Leftrightarrow, i \otimes i_1, i \otimes i_2, R(i_2), R(i_1), j \otimes j_1, j \otimes j_2, j \otimes j_2, R(j_2), R(j_1),$

$$if(i_2 \circlearrowleft j_2) = \begin{bmatrix}, i_2 \oplus, j_2 \oplus, if(i_1 \circlearrowleft j_1) = \begin{bmatrix}, i_1 \oplus, j_1 \oplus, \odot c_1, \\ , i_1 \oplus, j_1 \oplus, \odot c_3, \end{bmatrix}, \\, i_2 \oplus, j_2 \oplus, i_1 \oplus, j_1 \oplus, \odot c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \odot i_1, i \odot i_2, R(i_2), R(i_1), j \odot j_1, j \odot j_2, R(j_2), R(j_1),$

$$if(i_{2}\circlearrowleft j_{2}) = \begin{bmatrix}, i_{2} \textcircled{@}, j_{2} \textcircled{@}, if(i_{1} \circlearrowleft j_{1}) - \begin{bmatrix}, i_{1} \textcircled{@}, j_{1} \textcircled{@}, \textcircled{@} c_{1}, \\ , i_{1} \textcircled{@}, j_{1} \textcircled{@}, \textcircled{@} c_{3}, \end{bmatrix}, \\ , i_{1} \textcircled{@}, j_{2} \textcircled{@}, i_{1} \textcircled{@}, j_{1} \textcircled{@}, \textcircled{@} c_{2}, \end{bmatrix},$$

 \Leftrightarrow , $i \odot i_1$, $i \odot i_2$, $R(i_2)$, $R(i_1)$, $j \odot j_1$, $j \odot j_2$, $R(j_2)$,

$$if(i_2\circlearrowleft j_2) - \begin{bmatrix},i_2 \textcircled{\tiny{@}},j_2 \textcircled{\tiny{@}},R(j_1),if(i_1 \circlearrowleft j_1) - \begin{bmatrix},i_1 \textcircled{\tiny{@}},j_1 \textcircled{\tiny{@}},@c_1,\\ ,i_1 \textcircled{\tiny{@}},j_1 \textcircled{\tiny{@}},&c_3,\end{bmatrix},\\,i_2 \textcircled{\tiny{@}},j_2 \textcircled{\tiny{@}},i_1 \textcircled{\tiny{@}},R(j_1),j_1 \textcircled{\tiny{@}},@c_2,\end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_1$, $i \otimes i_2$, $R(i_2)$, $R(i_1)$, $j \otimes j_2$, $R(j_2)$,

$$if(i_{2}\circlearrowleft j_{2}) = \begin{bmatrix}, i_{2} \circledast, j_{2} \circledast, j \otimes j_{1}, R(j_{1}), if(i_{1} \circlearrowleft j_{1}) & \vdots, i_{1} \circledast, j_{1} \circledast, \otimes c_{1}, \\ \vdots, i_{1} \circledast, j_{1} \circledast, \otimes c_{3}, & \vdots, \\ \vdots, i_{2} \circledast, j_{2} \circledast, i_{1} \circledast, j \otimes j_{1}, R(j_{1}), j_{1} \circledast, \otimes c_{2}, & \vdots, \end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_1$, $i \otimes i_2$, $R(i_2)$, $R(i_1)$, $j \otimes j_2$, $R(j_2)$,

$$if(i_{2}\circlearrowleft j_{2}) = \begin{bmatrix} ,i_{2} \textcircled{@},j_{2} \textcircled{@},j \textcircled{@} j_{1},R(j_{1}),if(i_{1} \circlearrowleft j_{1}) = \begin{bmatrix} ,i_{1} \textcircled{@},j_{1} \textcircled{@},@c_{1},\\ ,i_{1} \textcircled{@},j_{1} \textcircled{@},@c_{3}, \end{bmatrix},\\ ,i_{2} \textcircled{@},j_{2} \textcircled{@},i_{1} \textcircled{@},j \textcircled{@} j_{1},j_{1} \textcircled{@},@c_{2}, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_2$, $R(i_2)$, $R(i_1)$, $j \odot j_2$, $R(j_2)$,

$$if(i_2 \circlearrowleft j_2) = \begin{bmatrix} ,i_2 \circledast, j_2 \circledast, j \otimes j_1, R(j_1), if(i_1 \circlearrowleft j_1) = \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, @c_1, \\ ,i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\ ,i_1 \circledast, j_2 \circledast, i_1 \circledast, @c_2, \end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_1$, $i \otimes i_2$, $R(i_2)$, $j \otimes j_2$, $R(j_2)$,

$$if(i_{2}\circlearrowleft j_{2}) = \begin{bmatrix} ,i_{2} \textcircled{@},j_{2} \textcircled{@},R(i_{1}),j \textcircled{@} j_{1},R(j_{1}),if(i_{1}\circlearrowleft j_{1}) = \begin{bmatrix} ,i_{1} \textcircled{@},j_{1} \textcircled{@},@c_{1},\\ ,i_{1} \textcircled{@},j_{1} \textcircled{@},@c_{3}, \end{bmatrix},\\ ,i_{1} \textcircled{@},j_{2} \textcircled{@},R(i_{1}),i_{1} \textcircled{@},@c_{2}, \end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_2$, $R(i_2)$, $j \otimes j_2$, $R(j_2)$,

$$if(i_{2}\circlearrowleft j_{2}) = \begin{bmatrix} ,i_{2} \textcircled{@},j_{2} \textcircled{@},i \textcircled{@} i_{1},R(i_{1}),j \textcircled{@} j_{1},R(j_{1}),if(i_{1} \circlearrowleft j_{1}) \\ ,i_{2} \textcircled{@},j_{2} \textcircled{@},i \textcircled{@} i_{1},R(i_{1}),i_{1} \textcircled{@},\textcircled{@} c_{2}, \end{bmatrix}, i_{1} \textcircled{@},j_{1} \textcircled{@},\textcircled{@} c_{3}, \end{bmatrix},$$

 \Leftrightarrow , $i \odot i_2$, $R(i_2)$, $j \odot j_2$, $R(j_2)$,

$$if(i_2 \circlearrowleft j_2) = \begin{bmatrix} ,i_2 \circledast, j_2 \circledast, i \otimes i_1, R(i_1), j \otimes j_1, R(j_1), if(i_1 \circlearrowleft j_1) - \begin{bmatrix} ,i_1 \circledast, j_1 \circledast, \otimes c_1, \\ ,i_1 \circledast, j_1 \circledast, \otimes c_3, \end{bmatrix}, \\ , \vdots, i_2 \circledast, j_2 \circledast, i \otimes i_1, i_1 \circledast, \otimes c_2, \end{bmatrix},$$

 \Leftrightarrow , $i \odot i_2$, $R(i_2)$, $j \odot j_2$, $R(j_2)$,

$$if(i_2 \circlearrowleft j_2) = \begin{bmatrix}, i_2 \circledast, j_2 \circledast, i \otimes i_1, R(i_1), j \otimes j_1, R(j_1), if(i_1 \circlearrowleft j_1) = \begin{bmatrix}, i_1 \circledast, j_1 \circledast, @c_1, \\ i_1 \circledast, j_1 \circledast, @c_3, \end{bmatrix}, \\, j_1 \circledast, j_2 \circledast, gc_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , i \otimes i_1, R(i_1), j \otimes j_1, R(j_1), if(i_1 \circlearrowleft j_1) = \begin{bmatrix} , i_1 \otimes , j_1 \otimes , \otimes c_1, \\ , i_1 \otimes , j_1 \otimes , \otimes c_3, \end{bmatrix}, \\ , \vdots, i_1 \otimes , i_2 \otimes , \vdots, i_2 \otimes , i_3 \otimes , \vdots, i_n \otimes , i_n \otimes ,$$

$$\Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), if(i_1 \circlearrowleft j_1) = \begin{bmatrix} , i_1 \otimes , j_1 \otimes , \otimes c_1, \\ , i_1 \otimes , j_1 \otimes , \otimes c_3, \end{bmatrix}, \\ , \otimes c_2, \end{cases}$$

$$\Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_3, \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix}, @c_1, \\ \\ , if(i \circlearrowleft j) = \begin{bmatrix}, @c_3, \\ \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

Branch function with propositions:

$$, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \; \Leftrightarrow \; , if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix} -,$$

Propositions with branch function:

$$, i \circlearrowleft j, i f(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , i \circlearrowleft j, @c_1,$$

$$, i ! \circlearrowleft j, i f(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , i ! \circlearrowleft j, @c_2,$$

Propositions with propositions:

$$,i \circlearrowleft j, \Leftrightarrow ,i \circlearrowleft j,i \circlearrowleft j,$$

 $,i! \circlearrowleft j, \Leftrightarrow ,i! \circlearrowleft j,i! \circlearrowleft j,$

16.3.8 Substitution

Propositions with branch function:

$$,i\circlearrowleft j,if(j\circlearrowleft m)=\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix}, \Leftrightarrow ,i\circlearrowleft j,if(i\circlearrowleft m)=\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},$$

proof:

$$,i \circlearrowleft j, if(j \circlearrowleft m) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i \circledcirc i_1, j \circledcirc j_1, R(i_1), R(j_1), i_1 \circlearrowleft j_1, i_1 \circledcirc , j_1 \circledcirc , if(j \circlearrowleft m) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i \circledcirc i_1, j \circledcirc j_1, R(i_1), R(j_1), i_1 \circlearrowleft j_1, i_1 \circledcirc , j_1 \circledcirc ,$$

$$j \circledcirc j_2, m \circledcirc m_2, R(j_2), R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix} , j_2 \circlearrowleft , m_2 \circlearrowleft , @c_1, \\ , j_2 \circlearrowleft , m_2 \circlearrowleft , @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \otimes i_1, j \otimes j_1, j \otimes j_2, R(j_1), R(j_2), R(i_1), i_1 \circ j_1,$

$$i_1 \oplus, j_1 \oplus, m \oplus m_2, R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix}, j_2 \oplus, m_2 \oplus, \odot c_1, \\, j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i \otimes i_1, j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), R(i_1), i_1 \circ j_1,$

$$i_1 \oplus, j_1 \oplus, m \oplus m_2, R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix}, j_2 \oplus, m_2 \oplus, \otimes c_1, \\, j_2 \oplus, m_2 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i \otimes i_1, j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), j_1 \circ j_2, R(i_1), i_1 \circ j_1,$$

$$i_1 \oplus, j_1 \oplus, m \oplus m_2, R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix}, j_2 \oplus, m_2 \oplus, \odot c_1, \\, j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), R(i_1), j_1 \circ j_2, i_1 \circ j_1,$$

$$i_1 \oplus, j_1 \oplus, m \oplus m_2, R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix}, j_2 \oplus, m_2 \oplus, \odot c_1, \\, j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), R(i_1), j_1 \circ j_2, i_1 \circ j_2,$$

$$i_1 \circledast, j_1 \circledast, m \otimes m_2, R(m_2), if(j_2 \otimes m_2) = \begin{bmatrix}, j_2 \circledast, m_2 \circledast, \otimes c_1, \\, j_2 \circledast, m_2 \circledast, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), j_1 \circ j_2,$

$$i \odot i_1, R(i_1), i_1 \circlearrowleft j_2,$$

$$i_1 \oplus, j_1 \oplus, m \otimes m_2, R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix}, j_2 \oplus, m_2 \oplus, \odot c_1, \\ , j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), j_1 \circ j_2,$

$$i \otimes i_1, i \otimes i_2, i_2 \oplus, R(i_1), i_1 \circ j_2,$$

$$i_1 @, j_1 @, m \\ @m_2, R(m_2), if(j_2 \\ @m_2) \\ - \begin{bmatrix}, j_2 \\ @m_2 \\ @m_2 \\ @m_2 \\ @m_2 \\ @m_2 \\ @m_2 \end{bmatrix} \\ - \begin{bmatrix}, j_2 \\ @m_2 \\ @m_2$$

$$\Leftrightarrow$$
 $,j \otimes j_1, j \otimes j_2, j_1 \otimes j_2, R(j_1), R(j_2), j_1 \otimes j_2,$

$$i \oplus i_1, i \oplus i_2, R(i_2), i_2 \oplus, R(i_1), i_1 \circlearrowleft j_2,$$

$$i_1 \oplus, j_1 \oplus, m \otimes m_2, R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix}, j_2 \oplus, m_2 \oplus, \odot c_1, \\, j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), j_1 \circ j_2,$

$$i \otimes i_1, i \otimes i_2, R(i_1), R(i_2), i_1 \circlearrowleft j_2,$$

$$i_1 @, j_1 @, m \otimes m_2, R(m_2), if(j_2 \circlearrowleft m_2) - \begin{bmatrix}, i_2 @, j_2 @, m_2 @, @c_1, \\ \\, i_2 @, j_2 @, m_2 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_1, j \otimes j_2, j_1 \circlearrowleft j_2, R(j_1), R(j_2), j_1 \circlearrowleft j_2,$$

$$i \otimes i_1, i \otimes i_2, i_1 \otimes i_2, R(i_1), R(i_2), i_1 \otimes j_2,$$

$$i_1 \oplus, j_1 \oplus, m \oplus m_2, R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix}, i_2 \oplus, j_2 \oplus, m_2 \oplus, \odot c_1, \\, i_2 \oplus, j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), j_1 \circ j_2,$$

$$i \oplus i_1, i \oplus i_2, i_1 \circlearrowleft i_2, R(i_1), R(i_2), i_1 \circlearrowleft i_2, i_1 \circlearrowleft j_2,$$

$$i_1 \oplus, j_1 \oplus, m \oplus m_2, R(m_2), if(j_2 \circlearrowleft m_2) = \begin{bmatrix}, i_2 \oplus, j_2 \oplus, m_2 \oplus, \odot c_1, \\ , i_2 \oplus, j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), j_1 \circ j_2,$$

$$i \odot i_1, i \odot i_2, i_1 \circlearrowleft i_2, R(i_1), R(i_2), i_1 \circlearrowleft i_2, i_2 \circlearrowleft j_2,$$

$$i_1 \oplus, j_1 \oplus, m \oplus m_2, R(m_2), if(j_2 \circlearrowleft m_2) - \begin{bmatrix}, i_2 \oplus, j_2 \oplus, m_2 \oplus, \odot c_1, \\ , i_2 \oplus, j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2), j_1 \circ j_2,$

$$\begin{split} i \otimes_{i_1}, i \otimes_{i_2}, i_1 \circlearrowleft_{i_2}, R(i_1), R(i_2), i_1 \circlearrowleft_{i_2}, i_1 \circledast, j_1 \circledast, \\ m \otimes_{m_2}, R(m_2), i_2 \circlearrowleft_{j_2}, if(j_2 \circlearrowleft_{m_2}) - \begin{bmatrix} , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_1, \\ , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_2, \end{bmatrix}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ i \otimes_{i_1}, i \otimes_{i_2}, i_1 \circlearrowleft_{i_2}, R(i_1), R(i_2), i_1 \circlearrowleft_{i_2}, i_1 \circledast, j_1 \circledast, \\ m \otimes_{m_2}, R(m_2), i_2 \circlearrowleft_{j_2}, if(i_2 \circlearrowleft_{m_2}) - \begin{bmatrix} , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_1, \\ , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_2, \end{bmatrix}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ i \otimes_{i_1}, i \otimes_{i_2}, i_1 \circlearrowleft_{i_2}, R(i_1), R(i_2), i_1 \circlearrowleft_{i_2}, i_2 \circlearrowleft_{j_2}, i_1 \circledast, j_1 \circledast, \\ m \otimes_{m_2}, R(m_2), if(i_2 \circlearrowleft_{m_2}) - \begin{bmatrix} , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_1, \\ , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_2, \end{bmatrix}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ i \otimes_{i_1}, i \otimes_{i_2}, i_1 \circlearrowleft_{i_2}, R(i_1), R(i_2), i_1 \circlearrowleft_{i_2}, i_1 \circlearrowleft_{j_2}, i_1 \circledast, j_1 \circledast, \\ m \otimes_{m_2}, R(m_2), if(i_2 \circlearrowleft_{m_2}) - \begin{bmatrix} , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_1, \\ , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_2, \end{bmatrix}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ i \otimes_{i_1}, i \otimes_{i_2}, i_1 \circlearrowleft_{i_2}, R(i_1), R(i_2), i_1 \circlearrowleft_{j_2}, i_1 \circledast, j_1 \circledast, \\ m \otimes_{m_2}, R(m_2), if(i_2 \circlearrowleft_{m_2}) - \begin{bmatrix} , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_1, \\ , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_2, \end{bmatrix}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, m_2 \circledast, \otimes c_1, \\ , i_2 \circledast, j_2 \circledast, m_2 \circledast, \otimes c_2, \end{bmatrix}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ \Leftrightarrow, j \otimes_{j_1}, j \otimes_{j_2}, j_1 \circlearrowleft_{j_2}, R(j_1), R(j_2), j_1 \circlearrowleft_{j_2}, \\ \end{cases}$$

 $i \otimes i_1, i \otimes i_2, R(i_1), R(i_2), i_1 \otimes j_2, i_1 \otimes j_1 \otimes j_2$

$$m \otimes m_2, R(m_2), if(i_2 \otimes m_2) = \begin{bmatrix} ,i_2 \otimes ,j_2 \otimes ,m_2 \otimes ,\otimes c_1, \\ ,i_2 \otimes ,j_2 \otimes ,m_2 \otimes ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2),$

$$i \odot i_1, i \odot i_2, R(i_1), R(i_2), j_1 \circlearrowleft j_2, i_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus,$$

$$m \otimes m_2, R(m_2), if(i_2 \otimes m_2) = \begin{bmatrix} ,i_2 \otimes ,j_2 \otimes ,m_2 \otimes , \otimes c_1, \\ ,i_2 \otimes ,j_2 \otimes ,m_2 \otimes , \otimes c_2, \end{bmatrix}$$

$$\Leftrightarrow$$
 $,j \otimes j_1, j \otimes j_2, j_1 \circ j_2, R(j_1), R(j_2),$

$$i \otimes i_1, i \otimes i_2, R(i_1), R(i_2), j_1 \circ j_2, i_1 \circ j_1, i_1 \oplus, j_1 \oplus,$$

$$m \otimes m_2, R(m_2), if(i_2 \circlearrowleft m_2) - \begin{bmatrix}, i_2 \oplus, j_2 \oplus, m_2 \oplus, \odot c_1, \\\\, i_2 \oplus, j_2 \oplus, m_2 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , j \otimes j_1, j \otimes j_2, j_1 \circlearrowleft j_2, R(j_1), R(j_2), j_1 \circlearrowleft j_2,$$

$$i \otimes i_1, i \otimes i_2, R(i_1), R(i_2), i_1 \circ j_1, i_1 \oplus, j_1 \oplus,$$

$$m \otimes m_2, R(m_2), if(i_2 \otimes m_2) = \begin{bmatrix} ,i_2 \oplus, j_2 \oplus, m_2 \oplus, \otimes c_1, \\ ,i_2 \oplus, j_2 \oplus, m_2 \oplus, \otimes c_2, \end{bmatrix}$$

$$\Leftrightarrow$$
, $j \otimes j_1$, $j \otimes j_2$, $j_1 \circ j_2$, $R(j_1)$, $R(j_2)$,

$$i \odot i_1, i \odot i_2, R(i_1), R(i_2), i_1 \circlearrowleft j_1, i_1 \oplus, j_1 \oplus,$$

$$m \otimes m_2, R(m_2), if(i_2 \otimes m_2) = \begin{bmatrix}, i_2 \oplus, j_2 \oplus, m_2 \oplus, \otimes c_1, \\ , i_2 \oplus, j_2 \oplus, m_2 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $, j \otimes j_1, j \otimes j_2, R(j_1), R(j_2),$

$$i \otimes i_1, i \otimes i_2, R(i_1), R(i_2), i_1 \otimes j_1, i_1 \oplus, j_1 \oplus,$$

$$m \otimes m_2, R(m_2), if(i_2 \otimes m_2) = \begin{bmatrix} ,i_2 \oplus, j_2 \oplus, m_2 \oplus, \otimes c_1, \\ ,i_2 \oplus, j_2 \oplus, m_2 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i \otimes i_1 j \otimes j_1, R(i_1), R(j_1), i_1 \otimes j_1, i_1 \oplus, j_1 \oplus,$

$$, i \otimes i_{2}, R(i_{2}), j \otimes j_{2}, R(j_{2}),$$

$$m \otimes m_{2}, R(m_{2}), i f(i_{2} \otimes m_{2}) - \begin{bmatrix} , i_{2} \oplus , j_{2} \oplus , m_{2} \oplus , \otimes c_{1}, \\ , i_{2} \oplus , j_{2} \oplus , m_{2} \oplus , \otimes c_{2}, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes j, i \otimes i_{2}, R(i_{2}), j \otimes j_{2}, R(j_{2}), j_{2} \oplus ,$$

$$m \otimes m_{2}, R(m_{2}), i f(i_{2} \otimes m_{2}) - \begin{bmatrix} , i_{2} \oplus , m_{2} \oplus , \otimes c_{1}, \\ , i_{2} \oplus , m_{2} \oplus , \otimes c_{2}, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes j, i \otimes i_{2}, R(i_{2}), m \otimes m_{2}, R(m_{2}), i f(i_{2} \otimes m_{2}) - \begin{bmatrix} , i_{2} \oplus , m_{2} \oplus , \otimes c_{1}, \\ , i_{2} \oplus , m_{2} \oplus , \otimes c_{2}, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes j, i \otimes i_{2}, m \otimes m_{2}, R(i_{2}), R(m_{2}), i f(i_{2} \otimes m_{2}) - \begin{bmatrix} , i_{2} \oplus , m_{2} \oplus , \otimes c_{1}, \\ , i_{2} \oplus , m_{2} \oplus , \otimes c_{2}, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes j, i f(i \otimes m) - \begin{bmatrix} , \otimes c_{1}, \\ , \otimes c_{2} \end{bmatrix},$$

$$\Leftrightarrow , i \otimes j, i f(i \otimes m) - \begin{bmatrix} , \otimes c_{1}, \\ , \otimes c_{2} \end{bmatrix},$$

Propositions with propositions:

$$, i \circlearrowleft j, j \circlearrowleft m, \Leftrightarrow , i \circlearrowleft j, i \circlearrowleft m,$$
$$, i \circlearrowleft j, j ! \circlearrowleft m, \Leftrightarrow , i \circlearrowleft j, i ! \circlearrowleft m.$$

Identical node propositions with branch function:

$$, i \circlearrowleft j, i f(j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \;\; \Leftrightarrow \;\; , i \circlearrowleft j, i f(i \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -,$$

Identical node propositions with propositions:

$$,i \circ j,j \circ m, \Leftrightarrow ,i \circ j,i \circ m,$$

$$,i\circlearrowleft j,j!\circlearrowleft m, \Leftrightarrow ,i\circlearrowleft j,i!\circlearrowleft m,$$

16.3.9 Opposition

$$,i \circlearrowleft j,i! \circlearrowleft j, \Leftrightarrow ,\otimes,$$

$$,i!\mathcal{O}j,i\mathcal{O}j, \Leftrightarrow ,\otimes,$$

16.3.10 Swap of the same operand

Operators:

$$, i \otimes m, i f(i \circlearrowleft j) = \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(i \circlearrowleft j) = \begin{bmatrix}, i \otimes m, \odot c_1, \\ , i \otimes m, \odot c_2, \end{bmatrix},$$

$$, i \otimes m, i f(i \circ j) - \begin{bmatrix} , \circ c_1, \\ , \circ c_2, \end{bmatrix}, \Leftrightarrow , i f(i \circ j) - \begin{bmatrix} , i \otimes m, \circ c_1, \\ , i \otimes m, \circ c_2, \end{bmatrix},$$

$$, i @ m, i f(i \circlearrowleft j) - \begin{bmatrix} , @ c_1, \\ \\ , @ c_2, \end{bmatrix} -, \; \Leftrightarrow \; , i f(i \circlearrowleft j) - \begin{bmatrix} , i @ m, @ c_1, \\ \\ , i @ m, @ c_2, \end{bmatrix} -,$$

$$, i\oplus, if(i\circlearrowleft j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix} -, \iff , if(i\circlearrowleft j) - \begin{bmatrix}, i\oplus, @c_1, \\ \\ , i\oplus, @c_2, \end{bmatrix} -,$$

$$, i\ominus, if(i \circlearrowleft j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix}, i\ominus, @c_1, \\ , i\ominus, @c_2, \end{bmatrix},$$

$$,i \circlearrowleft j,i \circledcirc n, \Leftrightarrow ,i \circledcirc n,i \circlearrowleft j,$$

$$,i \circlearrowleft j,i \circledcirc n, \Leftrightarrow ,i \circledcirc n,i \circlearrowleft j,$$

$$,i \circlearrowleft j,i \circledcirc n, \Leftrightarrow ,i \circledcirc n,i \circlearrowleft j,$$

$$,i \circlearrowleft j,i \circledcirc n, \Leftrightarrow ,i \circledcirc n,i \circlearrowleft j,$$

proof:

$$,i \circlearrowleft j,i \oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1 \circ j_1, i_1 \oplus, j_1 \oplus, i \oplus,$

$$\Leftrightarrow$$
 $,i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1 \otimes j_1, i_1 \oplus, j_1 \oplus, i \oplus, i \otimes i_2, i_2 \oplus,$

$$\Leftrightarrow$$
 $,i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1 \circ j_1, i_1 \otimes, j_1 \otimes, i \oplus, i \otimes i_2, R(i_2), i_2 \otimes,$

$$\Leftrightarrow$$
 $,i \otimes i_1, j \otimes j_1, i \oplus, i \otimes i_2, R(i_1), R(j_1), i_1 \circ j_1, R(i_2), i_2 \oplus, i_1 \oplus, j_1 \oplus, j_2 \oplus, i_3 \oplus, i_4 \oplus, i_4 \oplus, i_4 \oplus, i_5 \oplus$

$$\Leftrightarrow ,i \otimes i_1, i \otimes i_1, j \otimes j_1, i \oplus, i \otimes i_2, R(i_1), R(j_1), i_1 \otimes j_1, R(i_2), i_2 \oplus, i_1 \oplus, j_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus$$

$$\Leftrightarrow$$
 $,i \otimes i_1, j \otimes j_1, i \otimes i_1, i \oplus, i \otimes i_2, R(i_1), R(j_1), i_1 \otimes j_1, R(i_2), i_2 \oplus, i_1 \oplus, j_1 \oplus, j_2 \oplus, j_3 \oplus, j_4 \oplus, j_4$

$$\Leftrightarrow ,i \otimes i_1, j \otimes j_1, if(i=\varnothing) - \begin{bmatrix} \\ \\ \end{bmatrix}, i \otimes i_1, i \oplus, i \otimes i_2, R(i_1), R(j_1), i_1 \otimes j_1, R(i_2), i_2 \oplus, i_1 \oplus, j_1 \oplus, i_2 \oplus, i_3 \oplus i_4 \oplus, i_3 \oplus i_4 \oplus, i_3 \oplus i_4 \oplus, i_4 \oplus i_5 \oplus, i_5 \oplus i$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $j \otimes j_1$,

$$if(i=\varnothing) = \begin{bmatrix} ,i \circlearrowleft i_1, i \oplus, i \otimes i_2, R(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2), \\ ,i \circlearrowleft i_1, i \oplus, i \otimes i_2, R(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2), \end{bmatrix}, i_2 \oplus, i_1 \oplus, j_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4 \oplus, i_4 \oplus, i_5 \oplus$$

$$\Leftrightarrow$$
, $i \otimes i_1, j \otimes j_1$,

$$\langle 2 \rangle \Leftrightarrow , i = \emptyset, i \circlearrowleft i_1, i \oplus, i \odot i_2, R(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$<3> \Leftrightarrow ,i!=\varnothing,i\circlearrowleft i_1,i\oplus,i\boxtimes i_2,R(i_1),R(j_1),i_1\circlearrowleft j_1,R(i_2),$$

< 2 >

$$\Leftrightarrow$$
, $i \circ i_1, i = \varnothing, i \oplus, i \otimes i_2, R(i_1), R(j_1), i_1 \circ j_1, R(i_2),$

$$\Leftrightarrow$$
, $i \circ i_1, i_1 = \varnothing$, $i \oplus i_2, R(i_1), R(j_1), i_1 \circ j_1, R(i_2),$

$$\Leftrightarrow$$
 $,i \circlearrowleft i_1, i \oplus, i \odot i_2, i_1 = \varnothing, R(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2),$

$$\Leftrightarrow$$
 $,i \circlearrowleft i_1, i \oplus, i \odot i_2, i_1 = \varnothing, R(j_1), i_1 \circlearrowleft j_1, R(i_2),$

$$\Leftrightarrow ,i \circlearrowleft i_1, i \oplus, i \odot i_2, i_1 = \varnothing, R_{\text{-}}(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$\Leftrightarrow$$
, $i \circ i_1, i \oplus, i \circ i_2, i_1 = \varnothing, i_1 \oplus, i_1 \ominus, R_-(i_1), R(j_1), i_1 \circ j_1, R(i_2),$

$$\Leftrightarrow, i_1 = \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \otimes i_2, i_1 \ominus, R_{-}(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$\Leftrightarrow, i_1 = \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \circlearrowleft i_1, i \otimes i_2, i_1 \ominus, R_-(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$\Leftrightarrow ,i_1 = \varnothing,i \circlearrowleft i_1,i \oplus,i_1 \oplus,i \circlearrowleft i_1,i \otimes i_2,i \circlearrowleft i_2,i_1 \ominus,R_-(i_1),R(j_1),i_1 \circlearrowleft j_1,R(i_2),$$

$$\Leftrightarrow ,i_1 = \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \odot i_2, i \circlearrowleft i_1, i \circlearrowleft i_2, i_1 \ominus, R_{-}(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$\Leftrightarrow$$
, $i_1 = \varnothing$, $i \circlearrowleft i_1$, $i \oplus$, $i_1 \oplus$, $i \otimes i_2$, $i \circlearrowleft i_1$, $i_1 \circlearrowleft i_2$, $i_1 \ominus$, $R_-(i_1)$, $R(j_1)$, $i_1 \circlearrowleft j_1$, $R(i_2)$,

$$\Leftrightarrow, i_1 = \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \oplus i_2, i \circlearrowleft i_1, i_1 \circlearrowleft i_2, R(i_2), i_1 \ominus, R_{-}(i_1), R(j_1), i_1 \circlearrowleft j_1,$$

$$\Leftrightarrow$$
, $i_1 = \varnothing$, $i \circlearrowleft i_1$, $i \oplus$, $i_1 \oplus$, $i \otimes i_2$, $i \circlearrowleft i_1$, $i_1 \circlearrowleft i_2$, $R(i_2)$, $i_1 \ominus$, $R_-(i_1)$, $i_1 \circlearrowleft i_2$, $R(j_1)$, $i_1 \circlearrowleft j_1$,

$$\Leftrightarrow, i_1 = \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \otimes i_2, i \circlearrowleft i_1, i_1 \circlearrowleft i_2, R(i_2), i_1 \ominus, R_{-}(i_1), R(j_1), i_1 \circlearrowleft i_2, i_1 \circlearrowleft j_1,$$

$$\Leftrightarrow, i_1 = \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \otimes i_2, i \circlearrowleft i_1, i_1 \circlearrowleft i_2, R(i_2), i_1 \ominus, R_{-}(i_1), R(j_1), i_1 \circlearrowleft i_2, i_2 \circlearrowleft j_1,$$

$$\Leftrightarrow ,i_1 \!=\! \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \otimes i_2, R(i_2), i_1 \ominus, R_{\text{-}}(i_1), R(j_1), i_2 \circlearrowleft j_1,$$

$$\Leftrightarrow ,i \circlearrowleft i_1, i \oplus, i_1 = \varnothing, i_1 \oplus, i_1 \ominus, R_-(i_1), i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1,$$

$$\Leftrightarrow$$
, $i \circlearrowleft i_1, i_1 = \varnothing, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1,$

$$\Leftrightarrow$$
 $,i \circlearrowleft i_1, i = \varnothing, i \oplus, i \odot i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1,$

$$\Leftrightarrow$$
, $i = \emptyset$, $i \circlearrowleft i_1$, $i \oplus i_2$, $R(i_2)$, $R(j_1)$, $i_2 \circlearrowleft j_1$,

< 3 >

$$\Leftrightarrow, i \circlearrowleft i_1, i != \varnothing, i \oplus, i \odot i_2, R(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$\Leftrightarrow ,i \circlearrowleft i_1,i_1 != \varnothing, i \oplus, i \odot i_2, R(i_1), R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$\Leftrightarrow$$
, $i \circ i_1, i \oplus, i_1 != \varnothing, R(i_1), i \circ i_2, R(j_1), i_1 \circ j_1, R(i_2),$

$$\Leftrightarrow, i \circlearrowleft i_1, i \oplus, i_1 != \varnothing, i_1 \oplus, R(i_1), i \odot i_2, R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$\Leftrightarrow , i_1 != \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, R(i_1), i \otimes i_2, R(j_1), i_1 \circlearrowleft j_1, R(i_2),$$

$$\Leftrightarrow$$
 $,i_1 \models \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \circlearrowleft i_1, R(i_1), i \odot i_2, R(j_1), i_1 \circlearrowleft j_1, R(i_2),$

$$\Leftrightarrow$$
, $i_1!=\varnothing$, $i\circlearrowleft i_1$, $i\oplus$, $i_1\oplus$, $i\circlearrowleft i_1$, $i\boxtimes i_2$, $R(i_1)$, $R(i_2)$, $R(j_1)$, $i_1\circlearrowleft j_1$,

$$\Leftrightarrow$$
, $i_1!=\varnothing$, $i\circlearrowleft i_1$, $i\oplus$, $i_1\oplus$, $i\circlearrowleft i_1$, $i\boxtimes i_2$, $i\circlearrowleft i_2$, $R(i_1)$, $R(i_2)$, $R(j_1)$, $i_1\circlearrowleft j_1$,

$$\Leftrightarrow$$
, $i_1!=\varnothing$, $i\circlearrowleft i_1$, $i\oplus$, $i_1\oplus$, $i\boxtimes i_2$, $i\circlearrowleft i_1$, $i\circlearrowleft i_2$, $R(i_1)$, $R(i_2)$, $R(j_1)$, $i_1\circlearrowleft j_1$,

$$\Leftrightarrow ,i_1!=\varnothing,i\circlearrowleft i_1,i\oplus,i_1\oplus,i\odot i_2,i\circlearrowleft i_1,i_1\circlearrowleft i_2,R(i_1),R(i_2),R(j_1),i_1\circlearrowleft j_1,$$

$$\Leftrightarrow ,i_1!=\varnothing,i\circlearrowleft i_1,i\oplus,i_1\oplus,i\otimes i_2,i\circlearrowleft i_1,i_1\circlearrowleft i_2,R(i_1),R(i_2),i_1\circlearrowleft i_2,R(j_1),i_1\circlearrowleft j_1,$$

$$\Leftrightarrow ,i_1!=\varnothing,i\circlearrowleft i_1,i\oplus,i_1\oplus,i\otimes i_2,i\circlearrowleft i_1,i_1\circlearrowleft i_2,R(i_1),R(i_2),R(j_1),i_1\circlearrowleft i_2,i_1\circlearrowleft j_1,$$

$$\Leftrightarrow ,i_1 \models \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \otimes i_2, i \circlearrowleft i_1, i_1 \circlearrowleft i_2, R(i_1), R(i_2), R(j_1), i_1 \circlearrowleft i_2, i_2 \circlearrowleft j_1,$$

$$\Leftrightarrow ,i_1 \! := \! \varnothing, i \circlearrowleft i_1, i \oplus, i_1 \oplus, i \otimes i_2, R(i_1), R(i_2), R(j_1), i_2 \circlearrowleft j_1,$$

$$\Leftrightarrow$$
 $,i \circlearrowleft i_1,i_1 != \varnothing,i_1 \oplus, R(i_1),i \oplus,i \odot i_2, R(i_2), R(j_1),i_2 \circlearrowleft j_1,$

$$\Leftrightarrow ,i \circlearrowleft i_1,i_1!=\varnothing,R(i_1),i\oplus,i \circlearrowleft i_2,R(i_2),R(j_1),i_2\circlearrowleft j_1,$$

$$\Leftrightarrow, i \circlearrowleft i_1, i = \varnothing, R(i_1), i \oplus, i \odot i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1,$$

$$\Leftrightarrow, i!=\varnothing, i \circlearrowleft i_1, R(i_1), i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1,$$

< 1 >

$$\Leftrightarrow$$
, $i \otimes i_1, j \otimes j_1,$

$$if(i=\varnothing) = \begin{bmatrix}, i=\varnothing, i \circlearrowleft i_1, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, \\, i != \varnothing, i \circlearrowleft i_1, R(i_1), i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, \end{bmatrix}, i_2 \oplus, i_1 \oplus, j_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_1, j \otimes j_1$,

$$if(i=\varnothing) = \begin{bmatrix} ,i\circlearrowleft i_1, i\oplus, i \boxtimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, \\ ,i\circlearrowleft i_1, R(i_1), i\oplus, i \boxtimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, \end{bmatrix}, i_2 \oplus, i_1 \oplus, j_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_3 \oplus, i_4 \oplus, i_3 \oplus, i_4 \oplus, i_4$$

$$\Leftrightarrow, i \otimes i_1, i \otimes i_1, j \otimes j_1, i f(i = \varnothing) = \begin{bmatrix}, i_1 \oplus, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \otimes j_1, \\, R(i_1), i_1 \oplus, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \otimes j_1, \end{bmatrix}, i_2 \oplus, j_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus$$

$$\Leftrightarrow, i \otimes i_1, j \otimes j_1, i f (i = \varnothing) - \begin{bmatrix}, i_1 \otimes, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \odot j_1, \\ \\, i_1 \otimes, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \odot j_1, \end{bmatrix}, i_2 \otimes, j_1 \otimes, j_2 \otimes i_3 \otimes i_4 \otimes i_4 \otimes i_5 \otimes i_5$$

$$\Leftrightarrow, i \otimes i_1, i_1 \oplus, j \otimes j_1, if(i = \varnothing) - \begin{bmatrix}, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, \\, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, \end{bmatrix}, i_2 \oplus, j_1 \oplus, i \oplus i_2, R(i_2), R($$

$$\Leftrightarrow , j \otimes j_1, if(i = \varnothing) = \begin{bmatrix} , i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, \\ , i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, \end{bmatrix}, i_2 \oplus, j_1 \oplus, i_2 \oplus, j_3 \oplus, i_3 \oplus, i_4 \oplus, i_3 \oplus, i_4 \oplus, i$$

$$\Leftrightarrow , j \otimes j_1, if(i = \varnothing) - \begin{bmatrix} , \\ , \end{bmatrix}, i \oplus, i \otimes i_2, R(i_2), R(j_1), i_2 \circlearrowleft j_1, i_2 \oplus, j_1 \oplus, j_2 \oplus j_2$$

$$\Leftrightarrow , i \oplus, i \odot i_2, j \odot j_1, R(i_2), R(j_1), i_2 \circlearrowleft j_1, i_2 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
 $, i \oplus, i \circ j,$

$$,i\circlearrowleft j,i\circlearrowleft, \Leftrightarrow, i\circlearrowleft,i\circlearrowleft j,$$

$$,i!\circlearrowleft j,i\circlearrowleft n, \Leftrightarrow, i\circlearrowleft n,i!\circlearrowleft j,$$

proof:

$$,i!$$
 $\bigcirc j,i\oplus ,$

$$\Leftrightarrow ,i! \circlearrowleft j, i\oplus, if(i\circlearrowleft j) - \boxed{,}$$

$$\Leftrightarrow ,i! \circlearrowleft j,i \oplus , \begin{bmatrix} ,i \circlearrowleft j, \\ ,i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , = \begin{bmatrix} , i! \circlearrowleft j, i \oplus, i \circlearrowleft j, \\ \\ , i! \circlearrowleft j, i \oplus, i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , - \!\!\! \begin{bmatrix} , i! \circlearrowleft j, i \circlearrowleft j, i \oplus, \\ , i! \circlearrowleft j, i \oplus, i! \circlearrowleft j, \end{bmatrix} \!\!\! ,$$

$$\Leftrightarrow , -\begin{bmatrix} , \otimes, i \oplus, \\ , i! \circlearrowleft j, i \oplus, i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, = \begin{bmatrix} , \otimes, \\ , i! \circlearrowleft j, i \oplus, i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, = \begin{bmatrix} , i \oplus, \otimes, \\ , i! \circlearrowleft j, i \oplus, i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, = \begin{bmatrix} , i \oplus, i \circlearrowleft j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, i \oplus, i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, = \begin{bmatrix} , i \circlearrowleft j, i \oplus, i! \circlearrowleft j, \\ , i! \circlearrowleft j, i \oplus, i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, i \oplus, i! \circlearrowleft j, \vdots \oplus, i! \circlearrowleft j,$$

$$\Leftrightarrow, i \oplus, i! \circlearrowleft j, \vdots \oplus, i! \circlearrowleft j,$$

$$\Leftrightarrow, i \oplus, i! \circlearrowleft j, \vdots \oplus, i! \circlearrowleft j,$$

$$\Leftrightarrow, i \oplus, i! \circlearrowleft j, \vdots \oplus, i! \circlearrowleft j,$$

$$,i!\mathcal{O}_{j},i\Theta_{\cdot}\Leftrightarrow,i\Theta_{\cdot}i!\mathcal{O}_{j},$$

Identical node comparison:

$$, if(i\circlearrowleft j) = \begin{bmatrix} , if(j\circlearrowleft m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(j\circlearrowleft m) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(j\circlearrowleft m) - \begin{bmatrix} , if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i\circlearrowleft j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

$$, if(i\circlearrowleft j) = \begin{bmatrix}, if(i\circlearrowleft j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \\, if(i\circlearrowleft j) - \begin{bmatrix}, @c_3, \end{bmatrix}, \\, @c_4, \end{bmatrix}, \Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix}, if(i\circlearrowleft j) - \begin{bmatrix}, @c_1, \\ \\ , @c_3, \end{bmatrix}, \\, if(i\circlearrowleft j) - \begin{bmatrix}, @c_2, \\ \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(j \circlearrowleft m) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if(j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \; \Leftrightarrow \; , if(j \circlearrowleft m) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix} -,$$

$$, i \circlearrowleft j, i f(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if (i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i \circlearrowleft j) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, j \circlearrowleft m, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , j \circlearrowleft m, @c_1, \\ , j \circlearrowleft m, @c_2, \end{bmatrix},$$

$$, j! \circlearrowleft m, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , j! \circlearrowleft m, @c_1, \\ , j! \circlearrowleft m, @c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(i \circlearrowleft j) = \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$,i!\circlearrowleft j,if(i\circlearrowleft j)=\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},\ \Leftrightarrow\ ,if(i\circlearrowleft j)=\begin{bmatrix},i!\circlearrowleft j,@c_1,\\\\,i!\circlearrowleft j,@c_2,\end{bmatrix},$$

$$,i\circlearrowleft j,i\circlearrowleft j,\ \Leftrightarrow\ ,i\circlearrowleft j,i\circlearrowleft j,$$

$$,i!\circlearrowleft j,i\circlearrowleft j,\ \Leftrightarrow\ ,i!\circlearrowleft j,i!\circlearrowleft j,$$

$$,i!\circlearrowleft j,j\circlearrowleft m,\ \Leftrightarrow\ ,j\circlearrowleft m,i\circlearrowleft j,$$

$$,i\circlearrowleft j,j\circlearrowleft m,\ \Leftrightarrow\ ,j!\circlearrowleft m,i\circlearrowleft j,$$

$$,i!\circlearrowleft j,j\circlearrowleft m,\ \Leftrightarrow\ ,j!\circlearrowleft m,i\circlearrowleft j,$$

$$,i!\circlearrowleft j,j\circlearrowleft m,\ \Leftrightarrow\ ,j!\circlearrowleft m,i\circlearrowleft j,$$

$$,i!\circlearrowleft j,j\circlearrowleft m,\ \Leftrightarrow\ ,j!\circlearrowleft m,i!\circlearrowleft j,$$

$$,i!\circlearrowleft j,j\circlearrowleft m,\ \Leftrightarrow\ ,j!\circlearrowleft m,i!\circlearrowleft j,$$

$$,i!\circlearrowleft j,j\circlearrowleft m,\ \Leftrightarrow\ ,j!\circlearrowleft m,i!\circlearrowleft j,$$

Node value comparison:

$$, if (i=j) - \begin{bmatrix} , if (j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if (j \circlearrowleft m) - \begin{bmatrix} , if (i=j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\ & & & \\ & & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & & & \\$$

$$, if(i=j) = \begin{bmatrix} , if(i\circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(i\circlearrowleft j) = \begin{bmatrix} , @c_3, \\ , @c_3, \end{bmatrix}, \\ , if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(i=j) = \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \\ , if(i=j) = \begin{bmatrix} , & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\$$

$$, i = j, i f(j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , i f(j \circlearrowleft m) - \begin{bmatrix} , i = j, @c_1, \\ , i = j, @c_2, \end{bmatrix} -,$$

$$,i != j, if(j \circlearrowleft m) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(j \circlearrowleft m) = \begin{bmatrix}, i != j, @c_1, \\ , i != j, @c_2, \end{bmatrix},$$

$$, i = j, i f(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(i \circlearrowleft j) - \begin{bmatrix} , i = j, @c_1, \\ \\ , i = j, @c_2, \end{bmatrix},$$

$$,i != j, if(i \circlearrowleft j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(i \circlearrowleft j) - \begin{bmatrix}, i != j, @c_1, \\ , i != j, @c_2, \end{bmatrix},$$

$$,j \circlearrowleft m, if (i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i=j) - \begin{bmatrix} ,j \circlearrowleft m, @c_1, \\ \\ ,j \circlearrowleft m, @c_2, \end{bmatrix},$$

$$,j! \^{\odot} m, if (i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff ,if (i=j) - \begin{bmatrix} ,j! \^{\odot} m, @c_1, \\ \\ ,j! \^{\odot} m, @c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(i = j) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if (i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , if (i = j) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix} -,$$

$$,i\!=\!j,i\raisebox{-1pt}{\diamondsuit} j, \iff,i\raisebox{-1pt}{\diamondsuit} j,i\!=\!j,$$

$$, i = j, i! \circlearrowleft j, \iff , i! \circlearrowleft j, i = j,$$

$$, i! = j, i! \circlearrowleft j, \iff , i! \circlearrowleft j, i! = j,$$

$$, i! = j, i! \circlearrowleft j, \iff , i! \circlearrowleft j, i! = j,$$

$$, i = j, j! \circlearrowleft m, \iff , j! \circlearrowleft m, i = j,$$

$$, i! = j, j! \circlearrowleft m, \iff , j! \circlearrowleft m, i! = j,$$

$$, i! = j, j! \circlearrowleft m, \iff , j! \circlearrowleft m, i! = j,$$

$$, i! = j, j! \circlearrowleft m, \iff , j! \circlearrowleft m, i! = j,$$

Node null comparison:

$$, if(i=\varnothing) = \begin{bmatrix} , if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(i\ominus j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$, i=\varnothing, if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow, if(i\circlearrowleft j) - \begin{bmatrix} , i=\varnothing, @c_1, \\ , i=\varnothing, @c_2, \end{bmatrix},$$

$$, i!=\varnothing, if(i\circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow, if(i\circlearrowleft j) - \begin{bmatrix} , i!=\varnothing, @c_1, \\ , i!=\varnothing, @c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(i = \varnothing) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) = \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i ! \circlearrowleft j, i f(i = \varnothing) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) = \begin{bmatrix} , i ! \circlearrowleft j, @c_1, \\ , i ! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i = \varnothing, i \circlearrowleft j, \Leftrightarrow , i \circlearrowleft j, i = \varnothing,$$

$$, i ! = \varnothing, i \circlearrowleft j, \Leftrightarrow , i \circlearrowleft j, i ! = \varnothing,$$

$$, i ! = \varnothing, i \circlearrowleft j, \Leftrightarrow , i \circlearrowleft j, i ! = \varnothing,$$

$$, i ! = \varnothing, i ! \circlearrowleft j, \Leftrightarrow , i ! \circlearrowleft j, i ! = \varnothing,$$

Itself:

$$, if(i \circlearrowleft j) = \begin{bmatrix} , if(j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(j \circlearrowleft m) - \begin{bmatrix} , & \\ , & & \\ \end{bmatrix}, & \Leftrightarrow \\ , if(j \circlearrowleft m) - \begin{bmatrix} , & & \\ , & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ , & & \\ \end{bmatrix}, & & \\ , if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , & & \\ , & & \\ \end{bmatrix},$$

$$, i \circlearrowleft j, i f(j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(j \circlearrowleft m) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if(j \circlearrowleft m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(j \circlearrowleft m) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$,i \circlearrowleft j, j \circlearrowleft m, \Leftrightarrow ,j \circlearrowleft m, i \circlearrowleft j,$$

$$,i \circlearrowleft j, j ! \circlearrowleft m, \Leftrightarrow ,j ! \circlearrowleft m, i \circlearrowleft j,$$

$$,i ! \circlearrowleft j, j \circlearrowleft m, \Leftrightarrow ,j \circlearrowleft m, i ! \circlearrowleft j,$$

$$,i ! \circlearrowleft j, j ! \circlearrowleft m, \Leftrightarrow ,j ! \circlearrowleft m, i ! \circlearrowleft j,$$

flag object:

$$, \&SHi \circlearrowleft i, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , \&SHi \circlearrowleft i, @c_1, \\ , \&SHi \multimap i, @c_2, \end{bmatrix},$$

$$, \&SHi \rightarrow i, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , \&SHi \rightarrow i, @c_1, \\ , \&SHi \rightarrow i, @c_2, \end{bmatrix},$$

$$, \&SHj \circlearrowleft i, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , \&SHj \circlearrowleft i, @c_1, \\ , \&SHj \circlearrowleft i, @c_2, \end{bmatrix},$$

$$, \&SHj \leftarrow i, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , \&SHj \leftarrow i, @c_1, \\ , \&SHj \leftarrow i, @c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, \&SHi \circlearrowleft i, \Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft j,$$

$$, i \circlearrowleft j, \&SHi \hookrightarrow i, \Leftrightarrow , \&SHi \hookrightarrow i, i \circlearrowleft j,$$

$$, i \circlearrowleft j, \&SHi \rightarrow i, \Leftrightarrow , \&SHi \rightarrow i, i \circlearrowleft j,$$

$$,i!\circlearrowleft j, \&SHi \rightarrow i, \Leftrightarrow , \&SHi \rightarrow i,i!\circlearrowleft j,$$

$$,i\circlearrowleft j, \&SHj \circlearrowleft i, \Leftrightarrow , \&SHj \circlearrowleft i,i\circlearrowleft j,$$

$$,i!\circlearrowleft j, \&SHj \circlearrowleft i, \Leftrightarrow , \&SHj \circlearrowleft i,i!\circlearrowleft j,$$

$$,i\circlearrowleft j, \&SHj \leftarrow i, \Leftrightarrow , \&SHj \leftarrow i,i\circlearrowleft j,$$

$$,i!\circlearrowleft j, \&SHj \leftarrow i, \Leftrightarrow , \&SHj \leftarrow i,i\circlearrowleft j,$$

16.3.11 Node Connectivity propositions to identical node propositions

$$,i\circlearrowleft j,\iff\sim,i\circlearrowleft j,$$

proof:

$$,i \circlearrowleft j,$$

$$\Leftrightarrow ,i \circlearrowleft j,i \circledcirc i_1,i_1 \circledcirc,$$

$$\Leftrightarrow ,i \circlearrowleft j,i \circledcirc i_1,R(i_1),i_1 \circledcirc,$$

$$\Leftrightarrow ,i \circlearrowleft j,i \circledcirc i_1,R(i_1),i_1 \circledcirc,j \circledcirc j_1,j_1 \smile,$$

$$\Leftrightarrow ,i \circlearrowleft j,i \circledcirc i_1,R(i_1),i_1 \circledcirc,j \circledcirc j_1,R(j_1),j_1 \smile,$$

$$\Leftrightarrow ,i \circlearrowleft j,i \circledcirc i_1,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow ,i \circlearrowleft j,i \circledcirc i_1,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow ,i \circlearrowleft j,i \smile i_1,i \circlearrowleft j,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow ,i \smile i_1,i \circlearrowleft j,j \smile i_1,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow ,i \smile i_1,i \smile j,j \smile i_1,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow ,i \smile i_1,i \smile j,j \smile i_1,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow ,i \smile i_1,i \smile j,j \smile i_1,j \smile j_1,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow ,i \smile i_1,i \smile j,j \smile i_1,j \smile j_1,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow ,i \smile i_1,i \smile j,j \smile i_1,j \smile j_1,j \smile j_1,R(i_1),R(j_1),i_1 \smile,j_1 \smile,$$

$$\Leftrightarrow , i \otimes i_1, i \circ j, j \otimes j_1, j \circ i_1, j \circ j_1, R(i_1), R(j_1), i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i \circ j, j \otimes j_1, j \circ i_1, i_1 \circ j_1, R(i_1), R(j_1), i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i \circ j, j \otimes j_1, j \circ i_1, i_1 \circ j_1, R(i_1), R(j_1), i_1 \circ j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \circ j, i \otimes i_1, j \otimes j_1, R(i_1), R(j_1), i_1 \circ j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \circ j, i \circ j,$$

$$\Leftrightarrow , i \circ j, i \circ j,$$

$$,i!\mathcal{O}j, \Leftrightarrow \sim,i!\mathcal{O}j,$$

proof:

$$i! \circlearrowleft j,$$

 $\Leftrightarrow ,i! \circlearrowleft j, if(i \circlearrowleft j) = \begin{bmatrix} , i \circlearrowleft j, \\ , \end{bmatrix},$
 $\Leftrightarrow ,i! \circlearrowleft j, if(i \circlearrowleft j) = \begin{bmatrix} , i \circlearrowleft j, i \circlearrowleft j, \\ , \end{bmatrix},$
 $\Leftrightarrow ,if(i \circlearrowleft j) = \begin{bmatrix} , i! \circlearrowleft j, i \circlearrowleft j, i \circlearrowleft j, \\ , i! \circlearrowleft j, \end{bmatrix},$
 $\Leftrightarrow ,if(i \circlearrowleft j) = \begin{bmatrix} , i! \circlearrowleft j, i \circlearrowleft j, i \circlearrowleft j, \\ , i! \circlearrowleft j, \end{bmatrix},$
 $\Leftrightarrow ,if(i \circlearrowleft j) = \begin{bmatrix} , i! \circlearrowleft j, i \circlearrowleft j, i \circlearrowleft j, \\ , i! \circlearrowleft j, \end{bmatrix},$

$$\Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix} , \otimes, \\ , i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix} , i! \circlearrowleft j, \otimes, \\ , i! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , i! \circlearrowleft j, if(i\circlearrowleft j) = \begin{bmatrix} , \otimes, \\ , \end{bmatrix},$$

$$\Leftrightarrow , i! \circlearrowleft j, i! \circlearrowleft j,$$

16.3.12 Node null proposition

$$, i = \varnothing, j = \varnothing, if(i\circlearrowleft j) - \left[\begin{matrix} \cdot \\ \cdot \\ \cdot \end{matrix} \right. \Leftrightarrow , i = \varnothing, j = \varnothing, if(i\circlearrowleft j) - \left[\begin{matrix} \cdot \\ \cdot \\ \cdot \end{matrix} \right]$$

$$\Leftrightarrow , j = \varnothing, i \otimes i_1, i \otimes i_1, i_1 = \varnothing, j \otimes j_1, R(i_1), R(j_1), if(i_1 \otimes j_1) = \begin{bmatrix} , i_1 @, j_1 @, \\ , i_1 @, j_1 @, \end{bmatrix}$$

$$\Leftrightarrow , j = \varnothing, i \odot i_1, i \odot i_1, i_1 = \varnothing, R(i_1), j \odot j_1, R(j_1), i f(i_1 \odot j_1) = \begin{bmatrix} , i_1 \odot, j_1 \odot, \\ . i_1 \odot, j_1 \odot, \end{bmatrix}$$

$$\Leftrightarrow , j = \varnothing, i \otimes i_1, i \circ i_1, i_1 = \varnothing, j \otimes j_1, R(j_1), i f(i_1 \circ j_1) - \begin{bmatrix}, i_1 \oplus, j_1 \oplus, \\ i_1 \oplus, j_1 \oplus, \\ i_1 \oplus, j_1 \oplus, \\ \end{pmatrix}$$

$$\Leftrightarrow , j = \varnothing, i \otimes i_1, i \circlearrowleft i_1, i = \varnothing, j \otimes j_1, R(j_1), i f(i_1 \circlearrowleft j_1) = \begin{bmatrix}, i_1 @, j_1 @, \\ , i_1 @, j_1 @, \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, j = \varnothing, i \odot i_1, j \odot j_1, R(j_1), i \odot i_1, i f(i_1 \odot j_1) - \begin{bmatrix}, i_1 \odot, j_1 \odot, \\ \\ , i_1 \odot, j_1 \odot, \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, j = \varnothing, i \otimes i_1, j \otimes j_1, R(j_1), i \otimes i_1, i f(i \otimes j_1) - \begin{bmatrix}, i_1 \otimes, j_1 \otimes, \\ i_1 \otimes, j_1 \otimes, \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, j = \varnothing, i \otimes i_1, i \otimes i_1, j \otimes j_1, R(j_1), i f(i \otimes j_1) = \begin{bmatrix}, i_1 \otimes, j_1 \otimes, \\ , i_1 \otimes, j_1 \otimes, \\ \end{pmatrix}$$

$$\Leftrightarrow, i = \varnothing, j = \varnothing, i \otimes i_1, j \otimes j_1, R(j_1), if(i \otimes j_1) = \begin{bmatrix}, i_1 \otimes, j_1 \otimes, \\ , i_1 \otimes, j_1 \otimes, \\ \end{pmatrix}$$

$$\Leftrightarrow, i = \varnothing, i \odot i_1, j \odot j_1, j = \varnothing, R(j_1), if(i \circlearrowleft j_1) = \begin{bmatrix}, i_1 \odot, j_1 \odot, \\ , i_1 \odot, j_1 \odot, \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, i \otimes i_1, j \otimes j_1, j \otimes j_1, j \otimes j_1, j = \varnothing, R(j_1), if(i \otimes j_1) = (i_1 \otimes i_1 \otimes i_1 \otimes i_2 \otimes i_1 \otimes i_1 \otimes i_2 \otimes i_2 \otimes i_1 \otimes i_1 \otimes i_2 \otimes i_2 \otimes i_1 \otimes i_1 \otimes i_2 \otimes i_2 \otimes i_2 \otimes i_1 \otimes i_2 \otimes$$

$$\Leftrightarrow, i = \varnothing, i \odot i_1, j \odot j_1, j \odot j_1, j_1 = \varnothing, R(j_1), if(i \odot j_1) - \begin{bmatrix}, i_1 \odot, j_1 \odot, \\ i_1 \odot, j_1 \odot, \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, i \odot i_1, j \odot j_1, j \odot j_1, j_1 = \varnothing, if(i \odot j_1) = \begin{bmatrix}, i_1 \oplus, j_1 \oplus, \\, i_1 \oplus, j_1 \oplus, \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, i \otimes i_1, j \otimes j_1, j \otimes j_1, j \otimes j_1, j = \varnothing, if(i \otimes j_1) = \begin{bmatrix}, i_1 \otimes, j_1 \otimes, \\ \\ , i_1 \otimes, j_1 \otimes, \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, j = \varnothing, i \odot i_1, j \odot j_1, j \odot j_1, i f(i \odot j_1) - \begin{bmatrix}, i_1 \odot, j_1 \odot, \\ , i_1 \odot, j_1 \odot, \end{bmatrix}$$

$$\Leftrightarrow , i = \varnothing, j = \varnothing, i \otimes i_1, j \otimes j_1, j \circlearrowleft j_1, i f(i \circlearrowleft j) - \begin{bmatrix} , i_1 @, j_1 @, \\ , i_1 @, j_1 @, \\ \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, j = \varnothing, i \otimes i_1, j \otimes j_1, i f(i \circ j) = \begin{bmatrix}, i_1 \otimes, j_1 \otimes, \\ \\ , i_1 \otimes, j_1 \otimes, \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, j = \varnothing, i \otimes i_1, i_1 \otimes, j \otimes j_1, j_1 \otimes, i f(i \circlearrowleft j) - \begin{bmatrix}, \\ \\ \end{bmatrix},$$

$$\Leftrightarrow, i = \varnothing, j = \varnothing, if(i\circlearrowleft j) - \boxed{}$$

$$,i=\varnothing,j=\varnothing,i\circlearrowleft j,\Leftrightarrow,i=\varnothing,j=\varnothing,i\circlearrowleft j,$$
 $,i=\varnothing,j=\varnothing,i!\circlearrowleft j,\Leftrightarrow,i=\varnothing,j=\varnothing,i!\circlearrowleft j,$

16.3.13 Temporary space operator

$$, \odot i, \Leftrightarrow \sim, i! \circ j,$$

proof:

$$, \circledcirc i,$$

$$\Leftrightarrow$$
 $, j \otimes j_1, j_1 \otimes , \otimes i,$

$$\Leftrightarrow$$
 $,j \otimes j_1, R(j_1), j_1 \oplus, \odot i,$

$$\Leftrightarrow$$
 $,j \otimes j_1, R(j_1), \odot i, j_1 \oplus ,$

$$\Leftrightarrow$$
 $, j \otimes j_1, R(j_1), \odot i, i! \circ j_1, j_1 \oplus ,$

$$\Leftrightarrow$$
 $, j \odot j_1, R(j_1), \odot i, i = \varnothing, i! \circlearrowleft j_1, j_1 \odot,$

$$\Leftrightarrow$$
 $, j \otimes j_1, R(j_1), \otimes i, i = \emptyset, i \otimes i_1, i_1 \otimes, i! \circ j_1, j_1 \otimes,$

$$\Leftrightarrow$$
 $, j \otimes j_1, R(j_1), \otimes i, i = \varnothing, i \otimes i_1, i! \circ j_1, i_1 \otimes, j_1 \otimes,$

$$\Leftrightarrow$$
 $, j \otimes j_1, R(j_1), \otimes i, i = \varnothing, i \otimes i_1, i \otimes i_1, i! \otimes j_1, i_1 \otimes, j_1 \otimes,$

$$\Leftrightarrow$$
 $, j \otimes j_1, R(j_1), \otimes i, i = \emptyset, i \otimes i_1, i \otimes i_1, i_1! \otimes j_1, i_1 \otimes j_1 \otimes$

$$\Leftrightarrow$$
 $, j \otimes j_1, R(j_1), \otimes i, i \otimes i_1, i \otimes i_1, i = \emptyset, i_1! \otimes j_1, i_1 \oplus, j_1 \oplus,$

$$\Leftrightarrow$$
, $j \otimes j_1$, $R(j_1)$, $0i$, $i \otimes i_1$, $i \otimes i_1$, $i_1 = \emptyset$, $i_1! \otimes j_1$, $i_1 \otimes j_1 \otimes j_1$

$$\Leftrightarrow$$
 $,j \otimes j_1, R(j_1), \otimes i, i \otimes i_1, i \otimes i_1, i_1 = \varnothing, R(i_1), i_1! \otimes j_1, i_1 \otimes j_1 \otimes j_$

$$\Leftrightarrow$$
 $,j \otimes j_1, R(j_1), \otimes i, i \otimes i_1, R(i_1), i_1! \otimes j_1, i_1 \otimes , j_1 \otimes ,$

$$\Leftrightarrow , @i, i @i_1, j @j_1, R(i_1), R(j_1), i_1! @j_1, i_1 @, j_1 @,$$

$$\Leftrightarrow$$
 , $\odot i$, $i! \circ j$,

16.3.14 Node id operator

$$, i \otimes m, \Leftrightarrow \sim, m! \circlearrowleft j,$$

16.3.15 Transformation of definition

$$, if(i \circlearrowleft j) - \begin{bmatrix} , \\ \Leftrightarrow , i \otimes i_1, j \otimes j_1, R(i_1), R_{-}(j_1), if(i_1 \circlearrowleft j_1) - \begin{bmatrix} , i_1 \otimes , j_1 \otimes , \\ , i_1 \otimes , j_1 \otimes , \end{bmatrix}$$

proof:
$$, if(i \circ j) -$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_2, R(i_1), R(j_2), if(i_1 \circ j_2) = \begin{bmatrix} , i_1 \oplus , j_2 \oplus , \\ , i_1 \oplus , j_2 \oplus , \end{bmatrix}$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_2, j \otimes j_1, j_1 \oplus, R(i_1), R(j_2), if(i_1 \circ j_2) = \begin{bmatrix} , i_1 \oplus, j_2 \oplus, \\ , i_1 \oplus, j_2 \oplus, \end{bmatrix}$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_2, j \otimes j_1, R_{-}(j_1), j_1 \oplus, R(i_1), R(j_2), if(i_1 \circlearrowleft j_2) - \begin{bmatrix} , i_1 \oplus, j_2 \oplus, \\ , i_1 \oplus, j_2 \oplus, \\ , i_1 \oplus, j_2 \oplus, \\ \end{pmatrix}$$

$$\Leftrightarrow, i \otimes i_1, R(i_1), j \otimes j_2, j \otimes j_1, R(j_2), R_{-}(j_1), if(i_1 \circlearrowleft j_2) = \begin{bmatrix}, i_1 \oplus, j_1 \oplus, j_2 \oplus, \\ , i_1 \oplus, j_1 \oplus, j_2 \oplus, \\ , i_1 \oplus, j_1 \oplus, j_2 \oplus, \end{bmatrix}$$

$$\Leftrightarrow , i \otimes i_1, R(i_1), j \otimes j_2, j \otimes j_1, j_2 \circlearrowleft j_1, R(j_2), R_{-}(j_1), if(i_1 \circlearrowleft j_2) - \begin{bmatrix} , i_1 @, j_1 @, j_2 @, \\ , i_1 @, j_1 @, j_2 @, \\ , i_1 @, j_1 @, j_2 @, \\ \end{bmatrix}$$

$$\Leftrightarrow , i \otimes i_1, R(i_1), j \otimes j_2, j \otimes j_1, j_2 \circlearrowleft j_1, R(j_2), R_{-}(j_1), j_2 \circlearrowleft j_1, if(i_1 \circlearrowleft j_2) = \begin{bmatrix} , i_1 \textcircled{@}, j_1 \textcircled{@}, j_2 \textcircled{@}, \\ , i_1 \textcircled{@}, j_1 \textcircled{@}, j_2 \textcircled{@}, \\ , i_1 \textcircled{@}, j_1 \textcircled{@}, j_2 \textcircled{@}, \\ \end{bmatrix}$$

$$\Leftrightarrow , i \otimes i_1, R(i_1), j \otimes j_2, j \otimes j_1, j_2 \circlearrowleft j_1, R(j_2), R_{-}(j_1), j_2 \circlearrowleft j_1, if(i_1 \circlearrowleft j_1) = \begin{bmatrix} , i_1 \circledast, j_1 \circledast, j_2 \circledast, \\ , i_1 \circledast, j_1 \circledast, j_2 \circledast, \end{bmatrix}$$

$$\Leftrightarrow , i \otimes i_1, R(i_1), j \otimes j_2, j \otimes j_1, j_2 \circlearrowleft j_1, R(j_2), R_{-}(j_1), if(i_1 \circlearrowleft j_1) - \begin{bmatrix} , i_1 \oplus, j_1 \oplus, j_2 \oplus, \\ , i_1 \oplus, j_1 \oplus, j_2 \oplus, \\ \end{pmatrix}$$

$$\Leftrightarrow , i \otimes i_1, R(i_1), j \otimes j_2, j \otimes j_1, R(j_2), R_{\text{-}}(j_1), if(i_1 \circlearrowleft j_1) = \begin{bmatrix} , i_1 \textcircled{@}, j_1 \textcircled{@}, j_2 \textcircled{@}, \\ , i_1 \textcircled{@}, j_1 \textcircled{@}, j_2 \textcircled{@}, \end{bmatrix}$$

$$\Leftrightarrow, i \otimes i_1, R(i_1), j \otimes j_2, R(j_2), j_2 \oplus, j \otimes j_1, R_{-}(j_1), if(i_1 \circlearrowleft j_1) = \begin{bmatrix}, i_1 \oplus, j_1 \oplus, \\ , i_1 \oplus, j_1 \oplus, \\ , i_1 \oplus, j_1 \oplus, \\ \end{bmatrix}$$

$$\Leftrightarrow , i \otimes i_1, R(i_1), j \otimes j_1, R_{-}(j_1), i f(i_1 \circlearrowleft j_1) - \begin{bmatrix} , i_1 \otimes , j_1 \otimes , \\ , i_1 \otimes , j_1 \otimes , \end{bmatrix}$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, R(i_1), R_{-}(j_1), if(i_1 \circlearrowleft j_1) - \begin{bmatrix} , i_1 \otimes , j_1 \otimes , \\ , i_1 \otimes , j_1 \otimes , \end{bmatrix}$$

$$\begin{split} , if (i \circlearrowleft j) - \begin{bmatrix} , \\ \\ , \end{aligned} , i \otimes i_1, j \otimes j_1, R_-(i_1), R_-(j_1), if (i_1 \circlearrowleft j_1) - \begin{bmatrix} , i_1 @, j_1 @, \\ \\ , i_1 @, j_1 @, \\ \\ , i \otimes j, i \otimes n, \iff , i \otimes n, n \circlearrowleft j, \end{split}$$

17.1 Definition of Node Continuity

$$, if(i\rightarrow j) - \begin{bmatrix} , \\ \\ , \\ \\ , \end{aligned} , i \otimes i_1, i_1 \oplus , if(i_1 \circlearrowleft j) - \begin{bmatrix} , i_1 \oplus , \\ \\ , i_1 \oplus , \\ \end{bmatrix}$$

$$,i\rightarrow j, \iff ,if(i\rightarrow j)-\begin{bmatrix} ,\\ ,\otimes ,\end{bmatrix} -,$$

$$,i!\rightarrow j, \iff ,if(i\rightarrow j)$$

$$, i \rightarrow i, \Leftrightarrow , i \otimes i_0, i_0 \rightarrow i, i_0 \oplus,$$

 $, i! \rightarrow i, \Leftrightarrow , i \otimes i_0, i_0! \rightarrow i, i_0 \oplus,$

$$, if(i \leftarrow j) - \begin{bmatrix} , \\ \\ , \\ \\ \end{bmatrix} \Leftrightarrow , i \otimes i_1, i_1 \ominus, if(i_1 \circlearrowleft j) - \begin{bmatrix} , i_1 \textcircled{0}, \\ \\ , i_1 \textcircled{0}, \\ \end{bmatrix}$$

$$,i\leftarrow j, \iff ,if(i\leftarrow j)-\begin{bmatrix} ,\\ ,\otimes ,\end{bmatrix},$$

$$,i! \leftarrow j, \Leftrightarrow ,if(i \leftarrow j) - \begin{bmatrix} , \otimes, \\ - \end{bmatrix},$$

17.2 Theorems of Relationship of Node Continuity

17.2.1 Next node to previous node

$$, if(i\rightarrow j)$$
- $\begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}$

proof:

$$\Leftrightarrow ,i \otimes i_{1}, i_{1} \oplus ,j \otimes j_{1}, if(i_{1} \Diamond j_{1}) = \begin{bmatrix} ,i_{1} \ominus ,i_{1} \oplus ,j_{1} \ominus ,j_{1} \oplus ,\\ ,i_{1} \ominus ,i_{1} \oplus ,j_{1} \ominus ,j_{1} \oplus ,\\ ,i_{1} \ominus ,i_{1} \oplus ,j_{1} \ominus ,j_{1} \oplus ,\\ ,i_{1} \ominus ,i_{1} \oplus ,j_{1} \ominus ,i_{1} \oplus ,\\ ,i_{1} \ominus ,j_{1} \ominus ,i_{1} \oplus ,j_{1} \ominus ,\\ ,i_{1} \ominus ,j_{1} \ominus ,i_{1} \oplus ,j_{1} \ominus ,\\ ,i_{1} \ominus ,j_{1} \ominus ,i_{1} \oplus ,j_{1} \ominus ,\\ ,i_{1} \ominus ,\\ ,i_{1} \ominus ,\\ ,i_{1} \ominus ,\\$$

$$\Leftrightarrow , j \otimes j_1, j_1 \ominus, if(j_1 \circlearrowleft i) = \begin{bmatrix} , j_1 \oplus , \\ , j_1 \oplus , \end{bmatrix}$$

$$\Leftrightarrow$$
 $, if(j \leftarrow i) - \begin{bmatrix} , \\ . \end{bmatrix}$

$$,i\rightarrow j,\iff,j\leftarrow i,$$

$$,i!\rightarrow j, \Leftrightarrow ,j!\leftarrow i,$$

17.2.2 Next node propositions to Identical node comparison propositions

$$, i \rightarrow j, \iff , i \odot i_1, i_1 \oplus, i_1 \circlearrowleft j, i_1 \oplus,$$

$$,i!\rightarrow j, \Leftrightarrow ,i \otimes i_1, i_1 \oplus ,i_1! \circlearrowleft j, i_1 \oplus ,$$

17.2.3 Branch function to propositions

$$, if(i\rightarrow j) - \begin{bmatrix} , @c, \\ \\ , \otimes, \end{bmatrix} -, \Leftrightarrow , i\rightarrow j, @c,$$

$$, if(i{\rightarrow}j) - \begin{bmatrix} , \otimes, \\ \\ , @c, \end{bmatrix} -, \;\; \Longleftrightarrow \;\; , i!{\rightarrow}j, @c,$$

17.2.4 Empty branch function

$$, if(i\rightarrow j)$$
 \leftarrow $, \leftarrow$ $, \leftarrow$ $, i\rightarrow j,$ $, i!\rightarrow j,$

17.2.5 Unity

$$, \iff , if(i \rightarrow j) \begin{bmatrix} \cdot \\ \cdot \end{bmatrix},$$

proof:

$$, if(i \rightarrow j) - \begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i_1 \oplus, if(i_1 \circlearrowleft j) - \begin{bmatrix} \cdot & i_1 \oplus & \cdot \\ \cdot & i_1 \oplus & \cdot \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i_1 \oplus, i f(i_1 \circlearrowleft j) - \boxed, -, i_1 \oplus,$$

$$\Leftrightarrow$$
 $, i \otimes i_1, i_1 \oplus, i_1 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$

$$\Leftrightarrow$$
, $i \otimes i_1, i_1 \oplus$,

 \Leftrightarrow ,

$$,i\rightarrow j,\otimes,\Leftrightarrow,\otimes,$$

$$,i!\rightarrow j,\otimes ,\Leftrightarrow ,\otimes ,$$

17.2.6 Swap

Branch function and operator:

$$, \odot m, if(i \rightarrow j) - \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, if(i \rightarrow j) - \begin{bmatrix} , \odot m, \\ , \odot m, \end{bmatrix}$$

proof:

$$, \odot m, if(i \rightarrow j) - \begin{bmatrix} , \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , \odot m, \\ , \odot m, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \rightarrow j) - \begin{bmatrix} , & \cdots & \cdots & \cdots & \cdots & \cdots \\ , m \odot n, \end{bmatrix} \\ , m \odot$$

17.2 Theorems of Relationship of Node Continuity

$$, m \ominus, if(i \rightarrow j) - \begin{bmatrix} , \\ \\ , \\ \end{bmatrix} \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \ominus, \\ \\ , m \ominus, \\ \end{bmatrix}$$

Branch function and Branch function:

proof:

$$, if(i \rightarrow j) = \begin{bmatrix} , if(m \rightarrow n) - \begin{bmatrix} , ©c_1, \\ , ©c_2, \end{bmatrix} \\ , if(m \rightarrow n) - \begin{bmatrix} , ©c_3, \\ , ©c_4, \end{bmatrix} \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_1, i_1 \oplus, i f(i_1 \circ j) = \begin{bmatrix}, i_1 \oplus, i f(m \to n) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\, i_1 \oplus, i f(m \to n) - \begin{bmatrix}, \odot c_3, \\ , \odot c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_1, i_1 \oplus, i f(i_1 \circlearrowleft j) = \begin{bmatrix}, i_1 \oplus, m \otimes m_1, m_1 \oplus, i f(m_1 \circlearrowleft n) - \begin{bmatrix}, m_1 \oplus, \odot c_1, \\ m_1 \oplus, \odot c_2, \end{bmatrix}, \\, i_1 \oplus, m \otimes m_1, m_1 \oplus, i f(m_1 \circlearrowleft n) - \begin{bmatrix}, m_1 \oplus, \odot c_2, \end{bmatrix}, \\, m_1 \oplus, \odot c_3, \end{bmatrix},$$

$$\iff$$
, $m \otimes m_1$, $m_1 \oplus$, $i \otimes i_1$, $i_1 \oplus$,

$$if(i_1\circlearrowleft j) = \begin{bmatrix}, if(m_1\circlearrowleft n) = \begin{bmatrix}, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@}c_1, \\, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@}c_2, \end{bmatrix}, \\, if(m_1\circlearrowleft n) = \begin{bmatrix}, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@}c_2, \end{bmatrix}, \\, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@}c_4, \end{bmatrix},$$

 \iff , $m \oplus m_1$, $m_1 \oplus$, $i \oplus i_1$, $i_1 \oplus$,

$$if(m_1 \circlearrowleft n) = \begin{bmatrix} ,if(i_1 \circlearrowleft j) = \begin{bmatrix} ,m_1 \circledast, i_1 \circledast, @c_1, \\ ,m_1 \circledast, i_1 \circledast, @c_3, \end{bmatrix}, \\ ,if(i_1 \circlearrowleft j) = \begin{bmatrix} ,m_1 \circledast, i_1 \circledast, @c_2, \\ ,m_1 \circledast, i_1 \circledast, @c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, m \otimes m_1, m_1 \oplus, if(m_1 \circlearrowleft n) = \begin{bmatrix}, m_1 \oplus, i \otimes i_1, i_1 \oplus, if(i_1 \circlearrowleft j) = \begin{bmatrix}, i_1 \oplus, \odot c_1, \\ i_1 \oplus, \odot c_3, \end{bmatrix}, \\, m_1 \oplus, i \otimes i_1, i_1 \oplus, if(i_1 \circlearrowleft j) = \begin{bmatrix}, i_1 \oplus, \odot c_2, \\ i_1 \oplus, \odot c_2, \end{bmatrix}, \\, i_1 \oplus, \odot c_4, \end{bmatrix},$$

$$\Leftrightarrow , if(m\rightarrow n) = \begin{bmatrix} , if(i\rightarrow j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i\rightarrow j) = \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$, if(i \rightarrow j) = \begin{bmatrix} , if(m \circlearrowleft n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m \circlearrowleft n) = \begin{bmatrix} , if(i \rightarrow j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(m \circlearrowleft n) = \begin{bmatrix} , if(i \rightarrow j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow j) = \begin{bmatrix} , & & & \\ , & & \\ , & & \end{bmatrix}, \\ , if(i \rightarrow$$

$$, if(i\rightarrow j) = \begin{bmatrix} , if(m\circlearrowleft n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} , \\ , if(m\circlearrowleft n) - \begin{bmatrix} , if(i\rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} , \\ , if(m\circlearrowleft n) - \begin{bmatrix} , if(i\rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} , \\ , if(i\rightarrow j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix} , \end{bmatrix},$$

$$, if (i \rightarrow j) = \begin{bmatrix} , if (m = n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (m = n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if (m = n) - \begin{bmatrix} , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2,$$

$$, if(i\rightarrow j) = \begin{bmatrix} , if(m=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \\ , if(m=\varnothing) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} \end{bmatrix}, \Leftrightarrow , if(m=\varnothing) = \begin{bmatrix} , if(i\rightarrow j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} \\ , if(i\rightarrow j) - \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix} \end{bmatrix},$$

Branch function and propositions:

$$, m \rightarrow n, if(i \rightarrow j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix} , m \rightarrow n, @c_1, \\ , m \rightarrow n, @c_2, \end{bmatrix},$$

$$, m! \rightarrow n, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m! \rightarrow n, @c_1, \\ \\ , m! \rightarrow n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \mathring{\bigcirc} n, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \rightarrow j) - \begin{bmatrix} , m! \mathring{\bigcirc} n, @c_1, \\ \\ , m! \mathring{\bigcirc} n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if(i \rightarrow j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix}, m \circlearrowleft n, @c_1, \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m = n, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , m = n, @c_1, \\ , m = n, @c_2, \end{bmatrix},$$

$$, m \! \models \! n, i f (i \rightarrow \! j) \! = \! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix} \! + \iff, i f (i \rightarrow \! j) \! = \! \begin{bmatrix}, m \! \models \! n, @c_1, \\ , m \! \models \! n, @c_2, \end{bmatrix} \! + ,$$

$$, m = \varnothing, if(i \rightarrow j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix}, m = \varnothing, @c_1, \\ , m = \varnothing, @c_2, \end{bmatrix},$$

$$, m \! \models \! \varnothing, if(i \! \rightarrow \! j) \! \leftarrow \! \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix} \! , \; \Leftrightarrow \; , if(i \! \rightarrow \! j) \! \leftarrow \! \begin{bmatrix}, m \! \models \! \varnothing, @c_1, \\ \\ , m \! \models \! \varnothing, @c_2, \end{bmatrix} \! ,$$

$$, m \!\!\to\!\! n, if(i \hat{\bigcirc} j) \!\!-\!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\!-\! , \iff , if(i \hat{\bigcirc} j) \!\!-\! \begin{bmatrix} , m \!\!\to\!\! n, @c_1, \\ \\ , m \!\!\to\!\! n, @c_2, \end{bmatrix} \!\!-\! ,$$

$$, m! \rightarrow n, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , m! \rightarrow n, @c_1, \\ , m! \rightarrow n, @c_2, \end{bmatrix},$$

$$, m \rightarrow n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m \rightarrow n, @c_1, \\ \\ , m \rightarrow n, @c_2, \end{bmatrix},$$

$$, m! \rightarrow n, if(i\circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix} , m! \rightarrow n, @c_1, \\ , m! \rightarrow n, @c_2, \end{bmatrix},$$

$$, m \rightarrow n, if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix} , m \rightarrow n, @c_1, \\ , m \rightarrow n, @c_2, \end{bmatrix},$$

$$, m! \rightarrow n, if(i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i=j) - \begin{bmatrix} , m! \rightarrow n, @c_1, \\ \\ , m! \rightarrow n, @c_2, \end{bmatrix},$$

$$, m \rightarrow n, if(i=\varnothing) = \begin{bmatrix} , @c_1, \\ \\ . @c_2, \end{bmatrix}, \Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , m \rightarrow n, @c_1, \\ \\ . m \rightarrow n, @c_2, \end{bmatrix},$$

$$, m! \rightarrow n, if(i = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} , m! \rightarrow n, @c_1, \\ , m! \rightarrow n, @c_2, \end{bmatrix},$$

Branch function and recursive function:

$$,R(m),if(i\rightarrow j)$$
 $\begin{bmatrix} ,@c_1,\\ ,@c_2, \end{bmatrix}$, \Leftrightarrow $,if(i\rightarrow j)$ $\begin{bmatrix} ,R(m),@c_1,\\ ,R(m),@c_2, \end{bmatrix}$,

$$R_{-}(m), if(i\rightarrow j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow if(i\rightarrow j) = \begin{bmatrix} , R_{-}(m), @c_1, \\ , R_{-}(m), @c_2, \end{bmatrix},$$

Branch function and flag object :

$$, \&SHi \circlearrowleft m, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , \&SHi \circlearrowleft m, @c_1, \\ \\ , \&SHi \circlearrowleft m, @c_2, \end{bmatrix},$$

$$, \&SHi \rightarrow m, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , \&SHi \rightarrow m, @c_1, \\ \\ , \&SHi \rightarrow m, @c_2, \end{bmatrix},$$

$$, \&SHj \circlearrowleft m, if(i \rightarrow j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix} , \&SHj \circlearrowleft m, @c_1, \\ \\ , \&SHj \circlearrowleft m, @c_2, \end{bmatrix},$$

$$, \&\mathit{SHj} \leftarrow m, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix} , \&\mathit{SHj} \leftarrow m, @c_1, \\ \\ , \&\mathit{SHj} \leftarrow m, @c_2, \end{bmatrix},$$

Propositions and operator:

$$, i \rightarrow j, \circledcirc m, \iff , \circledcirc m, i \rightarrow j,$$

$$, i \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i \rightarrow j,$$

$$, i \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i \rightarrow j,$$

$$, i \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i \rightarrow j,$$

$$, i \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i \rightarrow j,$$

$$, i \rightarrow j, m \circledcirc , \iff , m \circledcirc , i \rightarrow j,$$

$$, i \rightarrow j, m \circledcirc , \iff , m \circledcirc , i \rightarrow j,$$

$$, i \rightarrow j, m \circledcirc , \iff , m \circledcirc , i \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc n, \iff , m \circledcirc n, i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc , \iff , m \circledcirc , i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc , \iff , m \circledcirc , i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc , \iff , m \circledcirc , i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc , \iff , m \circledcirc , i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc , \iff , m \circledcirc , i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc , \iff , m \circledcirc , i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc , \iff , m \circledcirc , i! \rightarrow j,$$

$$, i! \rightarrow j, m \circledcirc , \iff , m \circledcirc , i! \rightarrow j,$$

Propositions and Propositions:

$$, i \rightarrow j, m \rightarrow n, \Leftrightarrow , m \rightarrow n, i \rightarrow j,$$

$$, i \rightarrow j, m! \rightarrow n, \Leftrightarrow , m! \rightarrow n, i \rightarrow j,$$

$$, i! \rightarrow j, m! \rightarrow n, \Leftrightarrow , m! \rightarrow n, i! \rightarrow j,$$

$$, i \rightarrow j, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, i \rightarrow j,$$

$$, i! \rightarrow j, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, i! \rightarrow j,$$

$$, i \rightarrow j, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = n, \Leftrightarrow , m! = n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = n, \Leftrightarrow , m! = n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = n, \Leftrightarrow , m! = n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = n, \Leftrightarrow , m! = n, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

$$, i! \rightarrow j, m! = \varnothing, \Leftrightarrow , m! = \varnothing, i! \rightarrow j,$$

Propositions and recursive function:

$$, i \rightarrow j, R(m), \Leftrightarrow , R(m), i \rightarrow j,$$

 $, i \rightarrow j, R_{-}(m), \Leftrightarrow , R_{-}(m), i \rightarrow j,$
 $, i! \rightarrow j, R(m), \Leftrightarrow , R(m), i! \rightarrow j,$
 $, i! \rightarrow j, R_{-}(m), \Leftrightarrow , R_{-}(m), i! \rightarrow j,$

Propositions and flag object:

$$, i \rightarrow j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i \rightarrow j,$$

$$, i \rightarrow j, \&SHi \rightarrow m, \Leftrightarrow , \&SHi \rightarrow m, i \rightarrow j,$$

$$, i! \rightarrow j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i! \rightarrow j,$$

$$, i! \rightarrow j, \&SHi \rightarrow m, \Leftrightarrow , \&SHi \rightarrow m, i! \rightarrow j,$$

$$, i \rightarrow j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, i \rightarrow j,$$

$$, i \rightarrow j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i \rightarrow j,$$

$$, i! \rightarrow j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \hookleftarrow m, i! \rightarrow j,$$

$$, i! \rightarrow j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i! \rightarrow j,$$

$$, i! \rightarrow j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i! \rightarrow j,$$

Propositions to Propositions with branch function

$$, if(i \rightarrow j) - \begin{bmatrix} , m! \rightarrow n, \\ , \end{bmatrix}, \iff , if(m \rightarrow n) - \begin{bmatrix} , i! \rightarrow j, \\ , \end{bmatrix},$$

$$, if(i \rightarrow j) - \begin{bmatrix} , \\ , m \rightarrow n, \end{bmatrix}, \iff , if(m \rightarrow n) - \begin{bmatrix} , \\ , i \rightarrow j, \end{bmatrix},$$

$$, if(i \rightarrow j) - \begin{bmatrix} , m! \bigcirc n, \\ \end{bmatrix}, \iff , if(m \bigcirc n) - \begin{bmatrix} , i! \rightarrow j, \\ \end{bmatrix},$$

$$, if(i\rightarrow j) - \begin{bmatrix} , \\ , m \circlearrowleft n, \end{bmatrix}, \iff , if(m \circlearrowleft n) - \begin{bmatrix} , \\ , i\rightarrow j, \end{bmatrix},$$

$$, if(i\rightarrow j) = \begin{bmatrix} , m! \circlearrowleft n, \\ , & \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , i! \rightarrow j, \\ , & \end{bmatrix},$$

$$, if(i\rightarrow j) - \begin{bmatrix} , \\ , m \circlearrowleft n, \end{bmatrix} -, \iff , if(m \circlearrowleft n) - \begin{bmatrix} , \\ , i\rightarrow j, \end{bmatrix} -,$$

$$, if(i\rightarrow j) = \begin{bmatrix} , m! = n, \\ , \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix} , i! \rightarrow j, \\ , \end{bmatrix},$$

$$, if(i\rightarrow j)$$
 $=$ $\begin{bmatrix} , \\ , m=n, \end{bmatrix}$ $, \iff , if(m=n)$ $=$ $\begin{bmatrix} , \\ , i\rightarrow j, \end{bmatrix}$ $, \iff$

$$, if(i\rightarrow j) - \begin{bmatrix} , \, m \, !=\varnothing \, , \\ \\ , \end{bmatrix} - , \; \Leftrightarrow \; , if(m=\varnothing) - \begin{bmatrix} , \, i! \rightarrow j \, , \\ \\ , \end{bmatrix} - ,$$

$$, if(i\rightarrow j)$$
- $\begin{bmatrix} , \\ , m=\varnothing, \end{bmatrix}$ - $, \Leftrightarrow , if(m=\varnothing)$ - $\begin{bmatrix} , \\ , i\rightarrow j, \end{bmatrix}$ - $, \Leftrightarrow , if(m=\varnothing)$

17.2.7 Transitivity

Branch function with branch function:

$$, if(i\rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\rightarrow j) - \begin{bmatrix} , if(i\rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_2, \end{bmatrix},$$

proof:

$$,if(i\rightarrow j)$$
- $\begin{bmatrix}, ©c_1, \\ , ©c_2, \end{bmatrix}$,
 $\Leftrightarrow ,i \otimes i_1, i_1 \oplus ,if(i_1 \circlearrowleft j)$ - $\begin{bmatrix}, i_1 \oplus , ©c_1, \\ , i_1 \oplus , ©c_2, \end{bmatrix}$,

$$\Leftrightarrow, i \otimes i_1, i_1 \oplus, i f(i_1 \circlearrowleft j) = \begin{bmatrix}, i f(i_1 \circlearrowleft j) - \begin{bmatrix}, i_1 \oplus, \odot c_1, \\ , i_1 \oplus, \odot c_3, \end{bmatrix}, \\, i_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow .i \otimes i_1.i \otimes i_2.i_2 \oplus .i_1 \oplus .$$

$$if(i_1 \circlearrowleft j) = \begin{bmatrix}, if(i_1 \circlearrowleft j) = \begin{bmatrix}, i_1 \textcircled{@}, \textcircled{@} c_1, \\ , i_1 \textcircled{@}, \textcircled{@} c_2, \end{bmatrix}, \\ if(i_1 \textcircled{@}, \textcircled{@} c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_2$, $i_2 \oplus$, $i_2 \oplus$, $i_1 \oplus$,

$$if(i_1 \circlearrowleft j) = \begin{bmatrix}, if(i_1 \circlearrowleft j) - \begin{bmatrix}, i_1 \textcircled{@}, \textcircled{@} c_1, \\ , i_1 \textcircled{@}, \textcircled{@} c_3, \end{bmatrix}, \\, i_1 \textcircled{@}, \textcircled{@} c_2, \end{bmatrix},$$

$$\iff$$
, $i \odot i_1$, $i \odot i_2$, $i_1 \oplus$, $i_2 \oplus$,

$$if(i_1\circlearrowleft j) = \begin{bmatrix} ,i_2 @, if(i_1\circlearrowleft j) - \begin{bmatrix} ,i_1 @, @c_1, \\ ,i_1 @, @c_3, \end{bmatrix}, \\ ,i_2 @, i_1 @, @c_2, \end{bmatrix},$$

$$\iff, i \textcircled{0} i_1, i \textcircled{0} i_2, i_1 \textcircled{0} i_2, i_1 \textcircled{0}, i_2 \textcircled{+},$$

$$if(i_1 \circlearrowleft j) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j) = \begin{bmatrix} ,i_1 \circledast, @c_1, \\ ,i_1 \circledast, @c_3, \end{bmatrix}, \\ ,i_2 \circledast, i_1 \circledast, @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \otimes i_2, i_1 \oplus, i_2 \oplus, i_1 \circ i_2,$

$$if(i_1 \circlearrowleft j) = \begin{bmatrix}, i_2 \circledast, if(i_1 \circlearrowleft j) = \begin{bmatrix}, i_1 \circledast, @c_1, \\ \\ i_1 \circledast, @c_3, \end{bmatrix}, \\ \vdots, i_1 \circledast, @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \otimes i_2, i_1 \oplus, i_2 \oplus, i_1 \circ i_2,$

$$if(i_2 \circlearrowleft j) = \begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j) & ,i_1 \circledast, \otimes c_1, \\ ,i_2 \circledast, i_1 \circledast, \otimes c_2, & ,i_1 \circledast, \otimes c_3, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i_1 \oplus$, $i_2 \oplus$,

$$if(i_2 \circlearrowleft j)$$
 $=$ $\begin{bmatrix} ,i_2 \circledast, if(i_1 \circlearrowleft j) \end{bmatrix}$ $\begin{bmatrix} ,i_1 \circledast, @c_1, \\ ,i_1 \circledast, @c_3, \end{bmatrix}$ $\begin{bmatrix} ,i_1 \circledast, @c_3, \end{bmatrix}$ $\begin{bmatrix} ,i_1 \circledast, @c_3, \end{bmatrix}$

$$\Leftrightarrow$$
, $i \otimes i_2$, $i_2 \oplus$,

$$if(i_2 \circlearrowleft j) = \begin{bmatrix} ,i_2 \circledast, i \otimes i_1, i_1 \oplus, if(i_1 \circlearrowleft j) = \begin{bmatrix} ,i_1 \circledast, @c_1, \\ ,i_1 \circledast, @c_3, \end{bmatrix}, \\ ,i_2 \circledast, i \otimes i_1, i_1 \oplus, i_1 \circledast, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix} , i \otimes i_1, i_1 \oplus, if(i_1 \circlearrowleft j) - \begin{bmatrix} , i_1 \oplus, \odot c_1, \\ , i_1 \oplus, \odot c_3, \end{bmatrix}, \\ , i \otimes i_1, i_1 \oplus, i_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i\rightarrow j) - \left[, \overset{\circ}{\otimes} c_{1}, \overset{\circ}{\longrightarrow} , \overset{\circ}{\otimes} c_{3}, \overset{\circ}{\longrightarrow} , \right]_{+},$$

$$, if(i\rightarrow j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\rightarrow j) = \begin{bmatrix} , @c_1, \\ \\ , if(i\rightarrow j) = \begin{bmatrix} , @c_3, \\ \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

Branch function with propositions:

$$, if(i\rightarrow j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\rightarrow j) = \begin{bmatrix} , i\rightarrow j, @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$, if(i\rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , if(i\rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , i! \rightarrow j, @c_2, \end{bmatrix} -,$$

Propositions with branch function:

$$, i \rightarrow j, i f(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i \rightarrow j, @c_1,$$

$$, i! \rightarrow j, i f(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i! \rightarrow j, @c_2,$$

Propositions with propositions:

$$,i\rightarrow j, \iff ,i\rightarrow j,i\rightarrow j,$$

$$,i!\rightarrow j, \Leftrightarrow ,i!\rightarrow j,i!\rightarrow j,$$

17.2.8 Substitution

Propositions with branch function:

$$, i \rightarrow j, i f(m \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i \rightarrow j, i f(m \circlearrowleft i) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

proof:

$$(i \rightarrow j, if(m \rightarrow j) - \begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix}, if(m \rightarrow j) - \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}, i \oplus (i, i_1 \oplus i_1 \oplus i_2) + \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}, if(m \rightarrow j) - \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}, if(m_1 \oplus i_2 \oplus$$

17.2 Theorems of Relationship of Node Continuity

$$\Leftrightarrow, i \otimes i_1, i_1 \oplus, m \otimes m_1, m_1 \oplus, i_1 \circlearrowleft j, if(m_1 \circlearrowleft j) = \begin{bmatrix}, m_1 \oplus, i_1 \oplus, \odot c_1, \\ m_1 \oplus, i_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i_1 \oplus, m \otimes m_1, m_1 \oplus, i_1 \circlearrowleft j, if(m_1 \circlearrowleft i_1) - \begin{bmatrix}, m_1 \oplus, i_1 \oplus, \odot c_1, \\ \\ , m_1 \oplus, i_1 \oplus, \odot c_2, \end{bmatrix},$$

 \Leftrightarrow $, i \otimes i_1, i \oplus, i \ominus, i_1 \oplus, m \otimes m_1, m \oplus, m \ominus, m_1 \oplus, i_1 \circlearrowleft j,$

$$if(m_1 \circlearrowleft i_1) = \begin{bmatrix} , m_1 \circledast, i_1 \circledast, @c_1, \\ , m_1 \circledast, i_1 \circledast, @c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, i \oplus, i_1 \oplus, m \otimes m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j,$

$$if(m_1\circlearrowleft i_1) - \begin{bmatrix} , m\ominus, i\ominus, m_1 \oplus, i_1 \oplus, \odot c_1, \\ , m\ominus, i\ominus, m_1 \oplus, i_1 \oplus, \odot c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, i \otimes i_1, i \oplus, i_1 \oplus, m \otimes m_1, m \oplus, m_1 \oplus, i_1 \otimes j,$

$$if(m_1\circlearrowleft i_1) - \begin{bmatrix} , m\circleddash, i\circleddash, m_1 @, i_1 @, @c_1, \\ , m\circleddash, i\circleddash, m_1 @, i_1 @, @c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, i \oplus, i_1 \oplus, i \otimes i_1, m \otimes m_1, m \oplus, m_1 \oplus, i_1 \otimes j,$

$$if(m_1 \circlearrowleft i_1) - \begin{bmatrix} , m \circleddash, i \circleddash, m_1 \textcircled{\tiny{0}}, i_1 \textcircled{\tiny{0}}, \textcircled{\tiny{0}} c_1, \\ , m \circleddash, i \circleddash, m_1 \textcircled{\tiny{0}}, i_1 \textcircled{\tiny{0}}, \textcircled{\tiny{0}} c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \otimes i_1, i \oplus, i_1 \oplus, m \otimes m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j, i \circlearrowleft i_1,$

$$if(m_1 \circlearrowleft i_1) = \begin{bmatrix} , m \circlearrowleft, i \circlearrowleft, m_1 \circledast, i_1 \circledast, \circledast c_1, \\ , m \circlearrowleft, i \circlearrowleft, m_1 \circledast, i_1 \circledast, \circledast c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \odot i_1, i \oplus, i_1 \oplus, m \odot m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j, i \circlearrowleft i_1,$

$$if(m_1 \circlearrowleft i) - \begin{bmatrix}, m \circleddash, i \circleddash, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@} c_1, \\ \\, m \circleddash, i \circleddash, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@} c_2, \end{bmatrix},$$

 \Leftrightarrow $, i \odot i_1, i \oplus, i_1 \oplus, m \odot m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j,$

$$if(m_1 \circlearrowleft i) - \begin{bmatrix}, m \circleddash, i \circleddash, m_1 \textcircled{\tiny{0}}, i_1 \textcircled{\tiny{0}}, \textcircled{\tiny{0}} c_1, \\ \\, m \circleddash, i \circleddash, m_1 \textcircled{\tiny{0}}, i_1 \textcircled{\tiny{0}}, \textcircled{\tiny{0}} c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \odot i_1, i \oplus, i_1 \oplus, m \odot m_1, m \odot m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j,$

$$if(m_1 \circlearrowleft i) - \begin{bmatrix}, m \circleddash, i \circleddash, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@} c_1, \\, m \circleddash, i \circleddash, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@} c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, i \oplus, i_1 \oplus, m \otimes m_1, m \oplus, m_1 \oplus, m \otimes m_1, i_1 \otimes j,$

$$if(m_1 \circlearrowleft i) - \begin{bmatrix}, m \ominus, i \ominus, m_1 \oplus, i_1 \oplus, @c_1, \\, m \ominus, i \ominus, m_1 \oplus, i_1 \oplus, @c_2, \end{bmatrix},$$

 \Leftrightarrow $, i \odot i_1, i \oplus, i_1 \oplus, m \odot m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j, m \circlearrowleft m_1,$

$$if(m_1 \circlearrowleft i) - \begin{bmatrix}, m \circleddash, i \circleddash, m_1 \textcircled{\tiny{0}}, i_1 \textcircled{\tiny{0}}, \textcircled{\tiny{0}} c_1, \\ \\, m \circleddash, i \circleddash, m_1 \textcircled{\tiny{0}}, i_1 \textcircled{\tiny{0}}, \textcircled{\tiny{0}} c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \odot i_1, i \oplus, i_1 \oplus, m \odot m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j, m \circlearrowleft m_1,$

$$if(m \circlearrowleft i) - \begin{bmatrix} , m \circleddash, i \circleddash, m_1 \textcircled{\tiny{0}}, i_1 \textcircled{\tiny{0}}, @c_1, \\ \\ , m \circleddash, i \circleddash, m_1 \textcircled{\tiny{0}}, i_1 \textcircled{\tiny{0}}, @c_2, \end{bmatrix} -,$$

 $\Leftrightarrow , i \odot i_1, i \oplus, i_1 \oplus, m \odot m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j,$

$$if(m \circlearrowleft i) - \begin{bmatrix} , m \circleddash, i \circleddash, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@} c_1, \\ , m \circleddash, i \circleddash, m_1 \textcircled{@}, i_1 \textcircled{@}, \textcircled{@} c_2, \end{bmatrix} -,$$

 $\Leftrightarrow, i \circledcirc i_1, i \oplus, i_1 \oplus, m \circledcirc m_1, m \oplus, m_1 \oplus, i_1 \circlearrowleft j, m \ominus, i \ominus,$

$$if(m \circlearrowleft i) - \begin{bmatrix}, m_1 @, i_1 @, @c_1, \\ \\, m_1 @, i_1 @, @c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \otimes i_1, i \oplus, i \ominus, i_1 \oplus, m \otimes m_1, m \oplus, m \ominus, m_1 \oplus, i_1 \circlearrowleft j,$

$$if(m \circlearrowleft i) = \begin{bmatrix} , m_1 \circledast, i_1 \circledast, @c_1, \\ , m_1 \circledast, i_1 \circledast, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i_1 \oplus, m \otimes m_1, m_1 \oplus, i_1 \circlearrowleft j, i_f(m \circlearrowleft i) - \begin{bmatrix}, m_1 \oplus, i_1 \oplus, @c_1, \\ \\ , m_1 \oplus, i_1 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i_1 \oplus, i_1 \circlearrowleft j, i_1 \oplus, m \otimes m_1, m_1 \oplus, m_1 \oplus, i_f(m \circlearrowleft i) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \otimes i_1, i_1 \oplus, i_1 \circlearrowleft j, i_1 \oplus, if(m \circlearrowleft i) - \begin{bmatrix}, @c_1, \\ & & \end{bmatrix},$$

$$\Leftrightarrow , i \rightarrow j, if(m \circlearrowleft i) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$, i \rightarrow j, if(i \rightarrow m) - \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \Leftrightarrow , i \rightarrow j, if(m \circlearrowleft j) - \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix},$$

Propositions with propositions:

$$, i \rightarrow j, m \rightarrow j, \iff , i \rightarrow j, m \circlearrowleft i,$$

$$, i \rightarrow j, m! \rightarrow j, \iff , i \rightarrow j, m! \circlearrowleft i$$

$$, i \rightarrow j, i \rightarrow m, \Leftrightarrow , i \rightarrow j, m \circlearrowleft j,$$

$$, i \rightarrow j, i! \rightarrow m, \Leftrightarrow , i \rightarrow j, m! \circlearrowleft j,$$

Identical node propositions with branch function:

$$,i\circlearrowleft j,if(j\rightarrow m)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},\iff,i\circlearrowleft j,if(i\rightarrow m)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},$$

proof:

$$,i\circlearrowleft j,if(j\rightarrow m) = \begin{bmatrix} , \otimes c_1, \\ , \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circlearrowleft j,j\otimes j_1,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circlearrowleft j,i\otimes i_1,i_1\oplus ,j\otimes j_1,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circlearrowleft j,i\otimes i_1,i_1\oplus ,i_1\oplus ,j\otimes j_1,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circlearrowleft j,i\otimes i_1,i_1\oplus ,j\otimes j_1,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circlearrowleft j,i\otimes i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circlearrowleft j,i\otimes i_1,i\circlearrowleft i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circledcirc i_1,i\circlearrowleft j,i\circlearrowleft i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circledcirc i_1,i\circlearrowleft j,j\circlearrowleft i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circledcirc i_1,i\circlearrowleft j,j\circlearrowleft i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circledcirc i_1,i\circlearrowleft j,j\circlearrowleft i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circledcirc i_1,i\circlearrowleft j,j\circlearrowleft i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circledcirc i_1,i\circlearrowleft j,j\circlearrowleft i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i\circledcirc i_1,i\circlearrowleft j,j\circlearrowleft i_1,j\otimes j_1,i_1\oplus ,j_1\oplus ,if(j_1\circlearrowleft m) = \begin{bmatrix} ,j_1\oplus ,i_1\oplus ,\otimes c_1, \\ ,j_1\oplus ,i_1\oplus ,\otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i \circlearrowleft j, j \otimes j_1, j \circlearrowleft i_1, j \circlearrowleft j_1, i_1 \oplus , j_1 \oplus , if(j_1 \circlearrowleft m) = \begin{bmatrix} , j_1 \oplus , i_1 \oplus , \odot c_1, \\ , j_1 \oplus , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i \circlearrowleft j, j \otimes j_1, j \circlearrowleft i_1, i_1 \circlearrowleft j_1, i_1 \oplus , j_1 \oplus , if(j_1 \circlearrowleft m) = \begin{bmatrix} , j_1 \oplus , i_1 \oplus , \odot c_1, \\ , j_1 \oplus , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i \circlearrowleft j, j \otimes j_1, j \circlearrowleft i_1, i_1 \oplus , j_1 \oplus , i_1 \circlearrowleft j_1, if(j_1 \circlearrowleft m) = \begin{bmatrix} , j_1 \oplus , i_1 \oplus , \odot c_1, \\ , j_1 \oplus , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i \circlearrowleft j, j \otimes j_1, j \circlearrowleft i_1, i_1 \oplus , j_1 \oplus , i_1 \circlearrowleft j_1, if(i_1 \circlearrowleft m) = \begin{bmatrix} , j_1 \oplus , i_1 \oplus , \odot c_1, \\ , j_1 \oplus , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \circlearrowleft j, i \otimes i_1, j \otimes j_1, i_1 \oplus , j_1 \oplus , if(i_1 \circlearrowleft m) = \begin{bmatrix} , j_1 \oplus , i_1 \oplus , \odot c_1, \\ , j_1 \oplus , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \circlearrowleft j, j \otimes j_1, j_1 \oplus , j_1 \oplus , i \otimes i_1, i_1 \oplus , if(i_1 \circlearrowleft m) = \begin{bmatrix} , j_1 \oplus , i_1 \oplus , \odot c_1, \\ , j_1 \oplus , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \circlearrowleft j, i \otimes i_1, i_1 \oplus , if(i_1 \circlearrowleft m) = \begin{bmatrix} , i_1 \oplus , \odot c_1, \\ , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \circlearrowleft j, i \otimes i_1, i_1 \oplus , if(i_1 \circlearrowleft m) = \begin{bmatrix} , i_1 \oplus , \odot c_1, \\ , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \circlearrowleft j, if(i \to m) = \begin{bmatrix} , \odot c_1, \\ , i_1 \oplus , \odot c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(m \rightarrow j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff, i \circlearrowleft j, i f(m \rightarrow i) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix},$$

Identical node propositions with propositions:

$$, i \circlearrowleft j, j \rightarrow m, \iff , i \circlearrowleft j, i \rightarrow m,$$
$$, i \circlearrowleft j, m \rightarrow j, \iff , i \circlearrowleft j, m \rightarrow i,$$

$$,i\circlearrowleft j,j!\rightarrow m, \Leftrightarrow ,i\circlearrowleft j,i!\rightarrow m,$$

 $,i\circlearrowleft j,m!\rightarrow j, \Leftrightarrow ,i\circlearrowleft j,m!\rightarrow i,$

17.2.9 Opposition

$$, i \rightarrow j, i! \rightarrow j, \Leftrightarrow , \otimes,$$

$$,i!\rightarrow j,i\rightarrow j,\Leftrightarrow,\otimes,$$

17.2.10 Swap of the same operand

Operators:

$$, i \otimes m, i f(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(i \rightarrow j) - \begin{bmatrix} , i \otimes m, @c_1, \\ \\ , i \otimes m, @c_2, \end{bmatrix},$$

$$, i \odot m, i f(i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(i \rightarrow j) - \begin{bmatrix} , i \odot m, \odot c_1, \\ , i \odot m, \odot c_2, \end{bmatrix},$$

proof:

$$,i \otimes m, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i \otimes m, i \otimes i_1, i_1 \oplus, if(i_1 \circlearrowleft j) - \begin{bmatrix} , i_1 \oplus, @c_1, \\ , i_1 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i \otimes i_1, i \otimes m, i_1 \oplus, if(i_1 \circlearrowleft j) - \begin{bmatrix} , i_1 \oplus, @c_1, \\ , i_1 \oplus, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes i_1, i_1 \oplus, i f(i_1 \circlearrowleft j) = \begin{bmatrix} , i_1 \oplus, i \otimes m, \otimes c_1, \\ , i_1 \oplus, i \otimes m, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix} , i \odot m, \odot c_1, \\ , i \odot m, \odot c_2, \end{bmatrix},$$

$$, i \odot m, i f(i \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ \\ , \odot c_2, \end{bmatrix}, \iff , i f(i \rightarrow j) - \begin{bmatrix} , i \odot m, \odot c_1, \\ \\ , i \odot m, \odot c_2, \end{bmatrix},$$

$$, i \otimes m, i f(j \rightarrow i) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(j \rightarrow i) = \begin{bmatrix}, i \otimes m, \odot c_1, \\, i \otimes m, \odot c_2, \end{bmatrix},$$

$$, i \odot m, i f(j \rightarrow i) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(j \rightarrow i) - \begin{bmatrix} , i \odot m, \odot c_1, \\ , i \odot m, \odot c_2, \end{bmatrix},$$

$$, i @ m, i f(j \rightarrow i) - \begin{bmatrix} , @ c_1, \\ \\ , @ c_2, \end{bmatrix} -, \Leftrightarrow , i f(j \rightarrow i) - \begin{bmatrix} , i @ m, @ c_1, \\ \\ , i @ m, @ c_2, \end{bmatrix} -,$$

$$,i\rightarrow j,i\odot n,\iff,i\odot n,i\rightarrow j,$$

$$, i \rightarrow j, i \otimes n, \iff , i \otimes n, i \rightarrow j,$$

$$, i \rightarrow j, i \odot n, \iff , i \odot n, i \rightarrow j,$$

$$,i!\rightarrow j,i\odot n,\iff,i\odot n,i!\rightarrow j,$$

$$,i!\rightarrow j,i\otimes n,\iff,i\otimes n,i!\rightarrow j,$$

$$,i!\rightarrow j,i\odot n, \iff ,i\odot n,i!\rightarrow j,$$

$$, j \rightarrow i, i \otimes n, \iff , i \otimes n, j \rightarrow i,$$

$$, j \rightarrow i, i \otimes n, \iff , i \otimes n, j \rightarrow i,$$

$$, j \rightarrow i, i \otimes n, \iff , i \otimes n, j \rightarrow i,$$

$$, j! \rightarrow i, i \otimes n, \iff , i \otimes n, j! \rightarrow i,$$

$$, j! \rightarrow i, i \otimes n, \iff , i \otimes n, j! \rightarrow i,$$

$$, j! \rightarrow i, i \otimes n, \iff , i \otimes n, j! \rightarrow i,$$

Node connectivity:

$$, if(i \circlearrowleft j) - \begin{bmatrix} , if(j \rightarrow m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(j \rightarrow m) - \begin{bmatrix} , & \\ , & & \\ , & & \\ \end{bmatrix}, \Leftrightarrow , if(j \rightarrow m) - \begin{bmatrix} , & & \\ , & & \\ , & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, if(i \circlearrowleft j) - \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, if(i \circlearrowleft j) - \begin{bmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} &$$

$$, if(i \circlearrowleft j) = \begin{bmatrix} , if(m \to j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m \to j) = \begin{bmatrix} , if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(m \to j) = \begin{bmatrix} , if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(i \circlearrowleft j) = \begin{bmatrix} , & & \\ , & & \end{bmatrix}, \\ , & & & \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix}, if(i \to j) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\, if(i \to j) - \begin{bmatrix}, \odot c_3, \\ , \odot c_3, \end{bmatrix}, \Leftrightarrow , if(i \to j) = \begin{bmatrix}, if(i \circlearrowleft j) - \begin{bmatrix}, \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\, if(i \circlearrowleft j) - \begin{bmatrix}, \odot c_2, \\ , \odot c_2, \end{bmatrix}, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(j \rightarrow m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(j \rightarrow m) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if(j \rightarrow m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(j \rightarrow m) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(m \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(m \rightarrow j) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if(m \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(m \rightarrow j) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$,i\circlearrowleft j,if(i\rightarrow j)=\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},\Leftrightarrow,if(i\rightarrow j)=\begin{bmatrix},i\circlearrowleft j,@c_1,\\\\,i\circlearrowleft j,@c_2,\end{bmatrix},$$

$$, i! \circlearrowleft j, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ . @c_2, \end{bmatrix}, \iff , if(i \rightarrow j) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ \\ . i! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$,j\rightarrow\!\!m,if(i\circlearrowleft\!\!j)-\!\!\left[\!\!\begin{array}{c},@c_1,\\\\,@c_2,\end{array}\!\!\right]\!\!-\!\!\left(\Leftrightarrow,if(i\circlearrowleft\!\!j)-\!\!\left[\!\!\begin{array}{c},j\rightarrow\!\!m,@c_1,\\\\,j\rightarrow\!\!m,@c_2,\end{array}\!\!\right]\!\!-\!\!,$$

$$,j!\rightarrow m,if(i\circlearrowleft j)-\begin{bmatrix} ,@c_{1},\\ ,@c_{2},\end{bmatrix}, \Leftrightarrow ,if(i\circlearrowleft j)-\begin{bmatrix} ,j!\rightarrow m,@c_{1},\\ ,j!\rightarrow m,@c_{2},\end{bmatrix},$$

$$, m \rightarrow j, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) - \begin{bmatrix} , m \rightarrow j, @c_1, \\ \\ , m \rightarrow j, @c_2, \end{bmatrix},$$

$$\begin{array}{c} , m! \rightarrow j, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \; \Leftrightarrow \; , if(i \circlearrowleft j) = \begin{bmatrix} , m! \rightarrow j, @c_1, \\ , m! \rightarrow j, @c_2, \end{bmatrix}, \\ , i \rightarrow j, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \; \Leftrightarrow \; , if(i \circlearrowleft j) = \begin{bmatrix} , i \rightarrow j, @c_1, \\ , i \rightarrow j, @c_2, \end{bmatrix}, \\ , i! \rightarrow j, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \; \Leftrightarrow \; , if(i \circlearrowleft j) = \begin{bmatrix} , i! \rightarrow j, @c_1, \\ , i! \rightarrow j, @c_2, \end{bmatrix}, \\ , i! \circlearrowleft j, i \rightarrow j, \; \Leftrightarrow \; , i \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, i! \rightarrow j, \; \Leftrightarrow \; , i! \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, j \rightarrow m, \; \Leftrightarrow \; , j \rightarrow m, i \circlearrowleft j, \\ , i! \circlearrowleft j, j \rightarrow m, \; \Leftrightarrow \; , j \rightarrow m, i! \circlearrowleft j, \\ , i! \circlearrowleft j, j \rightarrow m, \; \Leftrightarrow \; , j \rightarrow m, i! \circlearrowleft j, \\ , i! \circlearrowleft j, m \rightarrow j, \; \Leftrightarrow \; , m \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, m \rightarrow j, \; \Leftrightarrow \; , m \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, m \rightarrow j, \; \Leftrightarrow \; , m \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, m \rightarrow j, \; \Leftrightarrow \; , m \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, m \rightarrow j, \; \Leftrightarrow \; , m \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, m! \rightarrow j, \; \Leftrightarrow \; , m! \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, m! \rightarrow j, \; \Leftrightarrow \; , m! \rightarrow j, i! \circlearrowleft j, \\ , i! \circlearrowleft j, m! \rightarrow j, \; \Leftrightarrow \; , m! \rightarrow j, i! \circlearrowleft j, \end{array}$$

Identical node comparison:

$$, if(i \circlearrowleft j) = \begin{bmatrix} , if(j \rightarrow m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \\ , if(j \rightarrow m) - \begin{bmatrix} , @c_3, \\ , @c_3, \end{bmatrix} \end{bmatrix}, \Leftrightarrow , if(j \rightarrow m) = \begin{bmatrix} , if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} \\ , if(i \circlearrowleft j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix} \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix}, if(m \to j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\, if(m \to j) - \begin{bmatrix}, @c_3, \\ , @c_4, \end{bmatrix}, \Leftrightarrow, if(m \to j) = \begin{bmatrix}, if(i \circlearrowleft j) - \begin{bmatrix}, @c_1, \\ , @c_3, \end{bmatrix}, \\, if(i \circlearrowleft j) - \begin{bmatrix}, @c_2, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$, if(i \circlearrowleft j) = \begin{bmatrix}, if(i \to j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\, if(i \to j) = \begin{bmatrix}, & (i \to j) = \begin{bmatrix}, & (i \circlearrowleft j) = [i, &$$

$$, i \circlearrowleft j, i f(j \rightarrow m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(j \rightarrow m) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i! \circlearrowleft j, if(j \rightarrow m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \iff , if(j \rightarrow m) - \begin{bmatrix} , i! \circlearrowleft j, @c_1, \\ , i! \circlearrowleft j, @c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(m \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(m \rightarrow j) - \begin{bmatrix} , i \circlearrowleft j, @c_1, \\ \\ , i \circlearrowleft j, @c_2, \end{bmatrix},$$

$$\begin{split} &,i! \circlearrowleft j,if(m \to j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(m \to j) = \begin{bmatrix} & i! \circlearrowleft j, \otimes c_1, \\ & i! \circlearrowleft j, \otimes c_2, \end{bmatrix}, \\ &,i \circlearrowleft j,if(i \to j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \to j) = \begin{bmatrix} & i! \circlearrowleft j, \otimes c_1, \\ & i! \circlearrowleft j, \otimes c_2, \end{bmatrix}, \\ &,i! \circlearrowleft j,if(i \to j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \to j) = \begin{bmatrix} & i! \circlearrowleft j, \otimes c_1, \\ & i! \circlearrowleft j, \otimes c_2, \end{bmatrix}, \\ &,j \to m,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \circlearrowleft j) = \begin{bmatrix} & j \to m, \otimes c_1, \\ & j \to m, \otimes c_2, \end{bmatrix}, \\ &,j! \to m,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \circlearrowleft j) = \begin{bmatrix} & j! \to m, \otimes c_1, \\ & j! \to m, \otimes c_2, \end{bmatrix}, \\ &,m \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \circlearrowleft j) = \begin{bmatrix} & m \to j, \otimes c_1, \\ & m \to j, \otimes c_2, \end{bmatrix}, \\ &,i \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \circlearrowleft j) = \begin{bmatrix} & i \to j, \otimes c_1, \\ & i \to j, \otimes c_2, \end{bmatrix}, \\ &,i \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \circlearrowleft j) = \begin{bmatrix} & i \to j, \otimes c_1, \\ & i \to j, \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \circlearrowleft j) = \begin{bmatrix} & i \to j, \otimes c_1, \\ & i \to j, \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \circlearrowleft j) = \begin{bmatrix} & i \to j, \otimes c_1, \\ & i \to j, \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \quad \Leftrightarrow \\ &,if(i \circlearrowleft j) = \begin{bmatrix} & i \to j, \otimes c_1, \\ & i \to j, \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix}, \\ &,i! \to j,if(i \circlearrowleft j) = \begin{bmatrix} & \otimes c_1, \\ & \otimes c_2, \end{bmatrix},$$

17.2 Theorems of Relationship of Node Continuity

$$,i\circlearrowleft j,i\rightarrow j,\Leftrightarrow,i\rightarrow j,i\circlearrowleft j,$$

$$,i\circlearrowleft j,i!\rightarrow j,\Leftrightarrow,i!\rightarrow j,i\circlearrowleft j,$$

$$,i!\mathcal{O}j,i\rightarrow j,\Leftrightarrow,i\rightarrow j,i!\mathcal{O}j,$$

$$,i!\mathcal{O}j,i!\rightarrow j, \Leftrightarrow ,i!\rightarrow j,i!\mathcal{O}j,$$

$$,i\circlearrowleft j,j\rightarrow m,\Leftrightarrow,j\rightarrow m,i\circlearrowleft j,$$

$$,i\circlearrowleft j,j!{\rightarrow}m,\iff,j!{\rightarrow}m,i\circlearrowleft j,$$

$$,i!\mathcal{O}j,j{
ightarrow}m,\iff,j{
ightarrow}m,i!\mathcal{O}j,$$

$$,i! \circlearrowleft j,j! \rightarrow m, \Leftrightarrow ,j! \rightarrow m,i! \circlearrowleft j,$$

$$,i\circlearrowleft j,m\rightarrow j,\Leftrightarrow,m\rightarrow j,i\circlearrowleft j,$$

$$,i\circlearrowleft j,m!\rightarrow j,\iff,m!\rightarrow j,i\circlearrowleft j,$$

$$,i!\mathcal{O}j,m\rightarrow j,\Leftrightarrow,m\rightarrow j,i!\mathcal{O}j,$$

$$,i! \circlearrowleft j,m! {\rightarrow} j, \iff ,m! {\rightarrow} j,i! \circlearrowleft j,$$

Node value comparison:

$$, if (i=j) = \begin{bmatrix} , if (j \rightarrow m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if (j \rightarrow m) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if (j \rightarrow m) - \begin{bmatrix} , & \\ , & \\ , & & \end{bmatrix}, \Leftrightarrow , if (j \rightarrow m) - \begin{bmatrix} , & \\ , & \\ , & & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & \\ & \\ , & \\ & \end{bmatrix}, \\ , \vdots$$

$$, if(i=j) = \begin{bmatrix} , if(m \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(m \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(m \rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}$$

$$, if (i=j) = \begin{bmatrix} , if (i \rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , @c_3, \\ , @c_3, \end{bmatrix}, \\ , if (i \rightarrow j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \\ , if (i=j) - \begin{bmatrix} , & c_1, \\ ,$$

$$, i = j, i f(j \rightarrow m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(j \rightarrow m) - \begin{bmatrix} , i = j, @c_1, \\ \\ , i = j, @c_2, \end{bmatrix},$$

$$,i!=j,if(j\rightarrow m)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},\Leftrightarrow,if(j\rightarrow m)-\begin{bmatrix},i!=j,@c_1,\\\\,i!=j,@c_2,\end{bmatrix},$$

$$, i = j, i f(m \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(m \rightarrow j) - \begin{bmatrix} , i = j, @c_1, \\ \\ , i = j, @c_2, \end{bmatrix},$$

$$,i != j, if(m \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(m \rightarrow j) - \begin{bmatrix} ,i != j, @c_1, \\ \\ ,i != j, @c_2, \end{bmatrix},$$

$$, i = j, i f(i \rightarrow j) = \begin{bmatrix}, ©c_1, \\, ©c_2, \end{bmatrix}, \Leftrightarrow , i f(i \rightarrow j) = \begin{bmatrix}, i = j, ©c_1, \\, i = j, ©c_2, \end{bmatrix},$$

$$,i != j, if(i \rightarrow j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(i \rightarrow j) - \begin{bmatrix}, i != j, @c_1, \\ \\ , i != j, @c_2, \end{bmatrix},$$

$$, j \! \to \! m, if(i \! = \! j) \! - \! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \! - , \iff , if(i \! = \! j) \! - \! \begin{bmatrix} , j \! \to \! m, @c_1, \\ \\ , j \! \to \! m, @c_2, \end{bmatrix} \! - ,$$

$$,j!\!\!\rightarrow\!\!m,if(i\!=\!j)\!\!-\!\!\left[\!\!\begin{array}{c},@c_1,\\\\,@c_2,\end{array}\!\!\right]\!\!-\!\!\left[\!\!\begin{array}{c},j!\!\!\rightarrow\!\!m,@c_1,\\\\,j!\!\!\rightarrow\!\!m,@c_2,\end{array}\!\!\right]\!\!-\!\!,$$

$$, m \rightarrow j, if(i=j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix} , m \rightarrow j, @c_1, \\ \\ , m \rightarrow j, @c_2, \end{bmatrix},$$

$$, m! \rightarrow j, if(i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) - \begin{bmatrix} , m! \rightarrow j, @c_1, \\ \\ , m! \rightarrow j, @c_2, \end{bmatrix},$$

$$, i \rightarrow j, i f(i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(i = j) - \begin{bmatrix} , i \rightarrow j, @c_1, \\ \\ , i \rightarrow j, @c_2, \end{bmatrix},$$

$$,i!\!\rightarrow\!\!j,if(i\!=\!j)\!-\!\!\left[\!\!\begin{array}{c},@c_1,\\\\\\,@c_2,\end{array}\!\!\right]\!\!,\;\;\Leftrightarrow\;,if(i\!=\!j)\!-\!\!\left[\!\!\begin{array}{c},i!\!\rightarrow\!\!j,@c_1,\\\\\\,i!\!\rightarrow\!\!j,@c_2,\end{array}\!\!\right]\!\!,$$

$$, i = j, i \rightarrow j, \iff , i \rightarrow j, i = j,$$

$$, i = j, i! \rightarrow j, \iff , i! \rightarrow j, i! = j,$$

$$, i! = j, i! \rightarrow j, \iff , i! \rightarrow j, i! = j,$$

$$, i = j, j \rightarrow m, \iff , j \rightarrow m, i = j,$$

$$, i = j, j! \rightarrow m, \iff , j \rightarrow m, i! = j,$$

$$, i! = j, j! \rightarrow m, \iff , j! \rightarrow m, i! = j,$$

$$, i! = j, j! \rightarrow m, \iff , j! \rightarrow m, i! = j,$$

$$, i! = j, j! \rightarrow m, \iff , j! \rightarrow m, i! = j,$$

$$, i! = j, m! \rightarrow j, \iff , m \rightarrow j, i! = j,$$

$$, i! = j, m! \rightarrow j, \iff , m \rightarrow j, i! = j,$$

$$, i! = j, m! \rightarrow j, \iff , m! \rightarrow j, i! = j,$$

$$, i! = j, m! \rightarrow j, \iff , m! \rightarrow j, i! = j,$$

$$, i! = j, m! \rightarrow j, \iff , m! \rightarrow j, i! = j,$$

Node null comparison:

$$, if (i=\varnothing) - \begin{bmatrix} , if (i\to j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if (i\to j) - \begin{bmatrix} , @c_3, \end{bmatrix}, \\ , @c_4, \end{bmatrix}, \Leftrightarrow , if (i\to j) - \begin{bmatrix} , if (i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if (i=\varnothing) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

$$, if (i=\varnothing) - \begin{bmatrix} , if (j\rightarrow i) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \\ , if (j\rightarrow i) - \begin{bmatrix} , @c_3, \\ , @c_3, \end{bmatrix} - , \\ , if (i=\varnothing) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} - , \\ , if (i=\varnothing) - \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix} - , \end{bmatrix} - ,$$

$$, i = \varnothing, if(i \rightarrow j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) - \begin{bmatrix}, i = \varnothing, @c_1, \\ , i = \varnothing, @c_2, \end{bmatrix},$$

$$,i != \varnothing, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(i \rightarrow j) - \begin{bmatrix} ,i != \varnothing, @c_1, \\ \\ ,i != \varnothing, @c_2, \end{bmatrix},$$

$$, i \rightarrow j, i f(i = \varnothing) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) - \begin{bmatrix} , i \rightarrow j, \odot c_1, \\ , i \rightarrow j, \odot c_2, \end{bmatrix},$$

$$,i!\rightarrow j,if(i=\varnothing)-\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix},\Leftrightarrow,if(i=\varnothing)-\begin{bmatrix},i!\rightarrow j,@c_1,\\\\,i!\rightarrow j,@c_2,\end{bmatrix},$$

$$, i = \varnothing, i f(j \to i) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(j \to i) - \begin{bmatrix} , i = \varnothing, \odot c_1, \\ , i = \varnothing, \odot c_2, \end{bmatrix},$$

$$, i != \varnothing, i f(j \to i) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(j \to i) - \begin{bmatrix} , i != \varnothing, \odot c_1, \\ , i != \varnothing, \odot c_2, \end{bmatrix},$$

$$, j \to i, i f(i = \varnothing) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) - \begin{bmatrix} , j \to i, \odot c_1, \\ , j \to i, \odot c_2, \end{bmatrix},$$

$$, j !\to i, i f(i = \varnothing) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(i = \varnothing) - \begin{bmatrix} , j !\to i, \odot c_1, \\ , j \to i, \odot c_2, \end{bmatrix},$$

$$, i != \varnothing, i \to j, \Leftrightarrow , i \to j, i != \varnothing,$$

$$, i != \varnothing, i !\to j, \Leftrightarrow , i !\to j, i != \varnothing,$$

$$, i != \varnothing, j \to i, \Leftrightarrow , j \to i, i != \varnothing,$$

$$, i != \varnothing, j \to i, \Leftrightarrow , j \to i, i != \varnothing,$$

$$, i != \varnothing, j \to i, \Leftrightarrow , j \to i, i != \varnothing,$$

$$, i != \varnothing, j \to i, \Leftrightarrow , j \to i, i != \varnothing,$$

$$, i != \varnothing, j \to i, \Leftrightarrow , j \to i, i != \varnothing,$$

$$, i != \varnothing, j \to i, \Leftrightarrow , j \to i, i != \varnothing,$$

$$, i != \varnothing, j \to i, \Leftrightarrow , j \to i, i != \varnothing,$$

Itself:

$$, if(i\rightarrow j) - \begin{bmatrix} , if(j\rightarrow m) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(j\rightarrow m) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(j\rightarrow m) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot$$

$$, if(i\rightarrow j) = \begin{bmatrix} , if(m\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , if(m\rightarrow j) = \begin{bmatrix} , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(m\rightarrow j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_3, \end{bmatrix}, \end{cases}, \Leftrightarrow , if(m\rightarrow j) = \begin{bmatrix} , if(i\rightarrow j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i\rightarrow j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_2, \end{bmatrix}, \end{cases}$$

$$, if(i\rightarrow j) = \begin{bmatrix} , if(i\rightarrow m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \\ , if(i\rightarrow m) - \begin{bmatrix} , @c_3, \\ , @c_3, \end{bmatrix} \end{bmatrix}, \Leftrightarrow , if(i\rightarrow m) = \begin{bmatrix} , if(i\rightarrow j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix} \\ , if(i\rightarrow j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix} \end{bmatrix},$$

$$, i \rightarrow j, if(j \rightarrow m) - \begin{bmatrix} , & c_1, \\ , & c_2, \end{bmatrix}, \Leftrightarrow , if(j \rightarrow m) - \begin{bmatrix} , & i \rightarrow j, & c_1, \\ , & i \rightarrow j, & c_2, \end{bmatrix},$$

$$,i! \rightarrow j, if(j \rightarrow m) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(j \rightarrow m) = \begin{bmatrix} ,i! \rightarrow j, @c_1, \\ ,i! \rightarrow j, @c_2, \end{bmatrix},$$

$$,ij, if(m \rightarrow j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(m \rightarrow j) = \begin{bmatrix} ,i \rightarrow j, @c_1, \\ ,i \rightarrow j, @c_2, \end{bmatrix},$$

$$,i! \rightarrow j, if(m \rightarrow j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(m \rightarrow j) = \begin{bmatrix} ,i! \rightarrow j, @c_1, \\ ,i! \rightarrow j, @c_2, \end{bmatrix},$$

$$,ij, if(i \rightarrow m) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(i \rightarrow m) = \begin{bmatrix} ,i \rightarrow j, @c_1, \\ ,i \rightarrow j, @c_2, \end{bmatrix},$$

$$,i! \rightarrow j, if(m \rightarrow i) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(m \rightarrow i) = \begin{bmatrix} ,i \rightarrow j, @c_1, \\ ,i \rightarrow j, @c_2, \end{bmatrix},$$

$$,i! \rightarrow j, if(m \rightarrow i) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,if(m \rightarrow i) = \begin{bmatrix} , i \rightarrow j, @c_1, \\ ,i \rightarrow j, @c_2, \end{bmatrix},$$

$$,i! \rightarrow j, j \rightarrow m, \Leftrightarrow ,j \rightarrow m, i \rightarrow j,$$

$$,i! \rightarrow j, j \rightarrow m, \Leftrightarrow ,j! \rightarrow m, i! \rightarrow j,$$

$$,i! \rightarrow j, j! \rightarrow m, \Leftrightarrow ,j! \rightarrow m, i! \rightarrow j,$$

$$,i! \rightarrow j, j! \rightarrow m, \Leftrightarrow ,j! \rightarrow m, i! \rightarrow j,$$

$$,i! \rightarrow j, j! \rightarrow m, \Leftrightarrow ,j! \rightarrow m, i! \rightarrow j,$$

17.2 Theorems of Relationship of Node Continuity

$$, i \rightarrow j, m \rightarrow j, \iff , m \rightarrow j, i \rightarrow j,$$

$$,i\rightarrow j,m!\rightarrow j,\iff,m!\rightarrow j,i\rightarrow j,$$

$$,i!\rightarrow j,m\rightarrow j,\Leftrightarrow,m\rightarrow j,i!\rightarrow j,$$

$$,i!\rightarrow j,m!\rightarrow j,\Leftrightarrow,m!\rightarrow j,i!\rightarrow j,$$

$$, i \rightarrow j, i \rightarrow m, \iff , i \rightarrow m, i \rightarrow j,$$

$$,i\rightarrow j,i!\rightarrow m,\Leftrightarrow,i!\rightarrow m,i\rightarrow j,$$

$$,i! \rightarrow j, i \rightarrow m, \iff ,i \rightarrow m,i! \rightarrow j,$$

$$,i!\rightarrow j,i!\rightarrow m, \Leftrightarrow ,i!\rightarrow m,i!\rightarrow j,$$

$$,i{
ightarrow}j,m{
ightarrow}i,\iff,m{
ightarrow}i,i{
ightarrow}j,$$

$$,i\rightarrow j,m!\rightarrow i,\iff ,m!\rightarrow i,i\rightarrow j,$$

$$,i!\rightarrow j,m\rightarrow i,\Leftrightarrow,m\rightarrow i,i!\rightarrow j,$$

$$,i!\!\!\rightarrow\!\!\!j,m!\!\!\rightarrow\!\!\!i, \iff,m!\!\!\rightarrow\!\!i,i!\!\!\rightarrow\!\!\!j,$$

flag object:

$$, \&SHi \, \circlearrowleft i, if(i \rightarrow j) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix} & \&SHi \, \circlearrowleft i, \otimes c_1 \\ & \&SHi \, \multimap i, \otimes c_2 \end{bmatrix},$$

$$, \&SHi \rightarrow i, if(i \rightarrow j) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix} & \&SHi \, \multimap i, \otimes c_1 \\ & \&SHi \, \multimap i, \otimes c_2 \end{bmatrix},$$

$$, \&SHj \, \circlearrowleft i, if(i \rightarrow j) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix} & \&SHj \, \circlearrowleft i, \otimes c_1 \\ & \&SHj \, \circlearrowleft i, \otimes c_2 \end{bmatrix},$$

$$, \&SHj \leftarrow i, if(i \rightarrow j) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(j \rightarrow j) = \begin{bmatrix} & \&SHi \, \circlearrowleft i, \otimes c_1 \\ & \&SHj \, \leftarrow i, \otimes c_2 \end{bmatrix},$$

$$, \&SHi \, \circlearrowleft i, if(j \rightarrow i) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(j \rightarrow i) = \begin{bmatrix} & \&SHi \, \circlearrowleft i, \otimes c_1 \\ & \&SHi \, \multimap i, \otimes c_2 \end{bmatrix},$$

$$, \&SHi \rightarrow i, if(j \rightarrow i) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(j \rightarrow i) = \begin{bmatrix} & \&SHi \, \circlearrowleft i, \otimes c_1 \\ & \&SHi \, \rightarrow i, \otimes c_2 \end{bmatrix},$$

$$, \&SHj \, \circlearrowleft i, if(j \rightarrow i) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(j \rightarrow i) = \begin{bmatrix} & \&SHj \, \circlearrowleft i, \otimes c_1 \\ & \&SHj \, \circlearrowleft i, \otimes c_2 \end{bmatrix},$$

$$, \&SHj \, \hookrightarrow i, if(j \rightarrow i) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(j \rightarrow i) = \begin{bmatrix} & \&SHj \, \circlearrowleft i, \otimes c_1 \\ & \&SHj \, \hookleftarrow i, \otimes c_2 \end{bmatrix},$$

$$, \&SHj \leftarrow i, if(j \rightarrow i) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(j \rightarrow i) = \begin{bmatrix} & \&SHj \, \circlearrowleft i, \otimes c_1 \\ & \&SHj \, \leftarrow i, \otimes c_2 \end{bmatrix},$$

$$, \&SHj \leftarrow i, if(j \rightarrow i) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(j \rightarrow i) = \begin{bmatrix} & \&SHj \, \circlearrowleft i, \otimes c_1 \\ & \&SHj \, \leftarrow i, \otimes c_2 \end{bmatrix},$$

$$, \&SHj \leftarrow i, if(j \rightarrow i) = \begin{bmatrix} & \otimes c_1 \\ & \otimes c_2 \end{bmatrix}, \Leftrightarrow , if(j \rightarrow i) = \begin{bmatrix} & \&SHj \, \circlearrowleft i, \otimes c_1 \\ & \&SHj \, \leftarrow i, \otimes c_2 \end{bmatrix},$$

17.2 Theorems of Relationship of Node Continuity

$$,i!{\rightarrow}j,\,\&\mathit{SHi}\,\circlearrowleft i,\,\,\Leftrightarrow\,\,,\,\&\mathit{SHi}\,\circlearrowleft i,i!{\rightarrow}j,$$

$$, i \rightarrow j, \&SHi \rightarrow i, \Leftrightarrow , \&SHi \rightarrow i, i \rightarrow j,$$

$$,i!\rightarrow j, \&SHi\rightarrow i, \Leftrightarrow , \&SHi\rightarrow i,i!\rightarrow j,$$

$$, i \rightarrow j, \&SHj \circlearrowleft i, \Leftrightarrow , \&SHj \circlearrowleft i, i \rightarrow j,$$

$$,i!\rightarrow j, \&SHj \circlearrowleft i, \Leftrightarrow , \&SHj \circlearrowleft i,i!\rightarrow j,$$

$$,i\rightarrow j, \&SHj \leftarrow i, \Leftrightarrow , \&SHj \leftarrow i, i\rightarrow j,$$

$$,i!\rightarrow j, \&SHj\leftarrow i, \Leftrightarrow , \&SHj\leftarrow i,i!\rightarrow j,$$

$$, j \rightarrow i, \&SHi \circlearrowleft i, \Leftrightarrow , \&SHi \circlearrowleft i, j \rightarrow i,$$

$$, j! \rightarrow i, \&SHi \circlearrowleft i, \Leftrightarrow , \&SHi \circlearrowleft i, j! \rightarrow i,$$

$$, j \rightarrow i, \&SHi \rightarrow i, \Leftrightarrow , \&SHi \rightarrow i, j \rightarrow i,$$

$$, j! \rightarrow i, \&SHi \rightarrow i, \Leftrightarrow , \&SHi \rightarrow i, j! \rightarrow i,$$

$$, j \rightarrow i, \&SHj \circlearrowleft i, \Leftrightarrow , \&SHj \circlearrowleft i, j \rightarrow i,$$

$$, j! \rightarrow i, \&SHj \circlearrowleft i, \Leftrightarrow , \&SHj \circlearrowleft i, j! \rightarrow i,$$

$$, j \rightarrow i, \&SHj \leftarrow i, \Leftrightarrow , \&SHj \leftarrow i, j \rightarrow i,$$

$$, j! \rightarrow i, \&SHj \leftarrow i, \Leftrightarrow , \&SHj \leftarrow i, j! \rightarrow i,$$

17.2.11 Node Continuity propositions to node Connectivity propositions

$$,i{\rightarrow}j, \iff \sim,i \circlearrowleft j,$$

proof:

$$, i \rightarrow j,$$

 $\Leftrightarrow , i \otimes i_1, i_1 \oplus, i_1 \circlearrowleft j, i_1 \oplus,$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_1$, $i_1 \oplus$, $i_1 \otimes j$, $i_1 \oplus$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_1$, $i \odot i_1$, $i_1 \oplus$, $i_1 \odot j$, $i_1 \oplus$,

$$\Leftrightarrow$$
 $, i \odot i_1, i \circ i_1, i_1 \oplus, i_1 \circ j, i_1 \oplus,$

$$\Leftrightarrow ,i @ i_1,i_1 \oplus, i @ i_1,i_1 @ j,i_1 \oplus,$$

$$\Leftrightarrow$$
 $, i \odot i_1, i_1 \oplus, i_1 \circlearrowleft j, i \circlearrowleft i_1, i_1 \oplus, i_1 \circlearrowleft j$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 \oplus, i_1 \circlearrowleft j, i \circlearrowleft j, i_1 \oplus,$

$$\Leftrightarrow , i \odot i_1, i_1 \oplus, i_1 \circlearrowleft j, i_1 \oplus, i \circlearrowleft j,$$

$$\Leftrightarrow$$
 $, i \rightarrow j, i \circ j,$

17.2.12 Node Continuity propositions to identical node propositions

$$, i \rightarrow j, i \oplus, \Leftrightarrow, i \oplus, i \circlearrowleft j,$$

$$, i \rightarrow j, i \oplus,$$

 $\Leftrightarrow , i \otimes i_1, i_1 \oplus, i_1 \circlearrowleft j, i_1 \oplus, i \oplus,$

$$\Leftrightarrow , i \otimes i_1, i \oplus, i_1 \oplus, i_1 \circlearrowleft j, i_1 \oplus,$$

$$\Leftrightarrow$$
 $, i \odot i_1, i \odot i_1, i \oplus, i_1 \oplus, i_1 \odot j, i_1 \oplus,$

$$\Leftrightarrow$$
 $, i \otimes i_1, i \oplus, i_1 \oplus, i \otimes i_1, i_1 \otimes j, i_1 \oplus,$

$$\Leftrightarrow , i @ i_1, i \oplus, i_1 \oplus, i @ i_1, i @ j, i_1 \oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \oplus, i_1 \oplus, i \circ j, i_1 \oplus,$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \oplus, i_1 \oplus, i_1 \oplus, i \otimes j,$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 \oplus, i_1 \oplus, i \oplus, i \otimes j,$

$$\Leftrightarrow , i \oplus, i \circlearrowleft j,$$

$$,i!\!\!\to\!\! j,i\!\!\oplus\!, \iff,i\!\!\oplus\!,i!\!\!\circlearrowleft\!\! j,$$

$$, i \rightarrow j, j \ominus, \Leftrightarrow , j \ominus, i \circlearrowleft j,$$

$$,i!\rightarrow j,j\ominus, \Leftrightarrow ,j\ominus,i!\circlearrowleft j,$$

17.2.13 Empty node ring

$$,i{\rightarrow}i, \iff, i{\otimes}i_0, i{\rightarrow}i_0, i_0{\oplus},$$

$$, i \rightarrow i, \iff , i \oplus i_0, i_0 \oplus, i_0 \circlearrowleft i, i_0 \oplus, i_0 \oplus$$

$$, i \rightarrow i, \Leftrightarrow , i \rightarrow i, i \rightarrow i,$$

$$,i\circlearrowleft j,i\oplus,i\circlearrowleft j,j\oplus,\Leftrightarrow,i\oplus,i\circlearrowleft j,j\oplus,i\circlearrowleft j,$$

$$,i\circlearrowleft j,i\oplus,i\circlearrowleft j,j\oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_0, i_0 \oplus, i \circ j, i \oplus, i \circ j, j \oplus,$

$$\Leftrightarrow$$
 $,i \odot i_0, i_0 \oplus, i_0 \oplus, i \circlearrowleft j, i \oplus, i \circlearrowleft j, j \oplus,$

$$\Leftrightarrow$$
 $,i \odot i_0, i \odot j, i_0 \oplus, i \oplus, i \odot j, j \oplus, i_0 \oplus,$

$$\Leftrightarrow$$
 $,i \otimes i_0, i \otimes i_0, i \otimes j, i_0 \oplus, i \oplus, i \otimes j, j \oplus, i_0 \oplus,$

$$\Leftrightarrow$$
 $,i \odot i_0, i \odot j, i \odot i_0, i_0 \oplus, i \oplus, i \odot j, j \oplus, i_0 \oplus,$

$$\Leftrightarrow$$
 $,i \otimes i_0, i \otimes j, i_0 \oplus, i \oplus, i \otimes i_0, i \otimes j, j \oplus, i_0 \oplus,$

$$\Leftrightarrow$$
 $, i \otimes i_0, i \otimes j, i_0 \oplus, i \oplus, i \otimes j, j \oplus, i \otimes i_0, i_0 \oplus,$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_0, i \otimes j, i_0 \oplus, i \oplus, i \otimes j, j \oplus, i \otimes i_0, i_0 \oplus,$$

$$\Leftrightarrow , i \odot i_0, i \circlearrowleft i_0, i_0 \circlearrowleft j, i_0 \oplus, i \oplus, i \circlearrowleft j, j \oplus, i \circlearrowleft i_0, i_0 \oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_0, i_0 \otimes j, i \oplus, i \otimes j, i_0 \oplus, j \oplus, i \otimes i_0, i_0 \oplus,$

$$\Leftrightarrow$$
 $, i \otimes i_0, i \oplus, i \otimes j, i_0 \otimes j, i_0 \oplus, j \oplus, i \otimes i_0, i_0 \oplus,$

$$\Leftrightarrow , i \otimes i_0, i \oplus, i \otimes j, i_0 \oplus, j \oplus, i_0 \otimes j, i \otimes i_0, i_0 \oplus,$$

$$\Leftrightarrow , i \otimes i_0, i \oplus, i \otimes j, i_0 \oplus, j \oplus, i \otimes i_0, i_0 \otimes j, i_0 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \oplus$, $i \otimes j$, $i_0 \oplus$, $j \oplus$, $i \otimes i_0$, $i \otimes j$, $i_0 \oplus$,

$$\Leftrightarrow$$
 $,i \otimes i_0, i \oplus, i_0 \oplus, i \otimes j, j \oplus, i \otimes i_0, i \otimes j, i_0 \oplus,$

$$\Leftrightarrow, i \odot i_0, i \oplus, i_0 \oplus, i \circlearrowleft i_0, i \circlearrowleft j, j \oplus, i \circlearrowleft j, i_0 \oplus,$$

$$\Leftrightarrow$$
 $,i \odot i_0, i \circ i_0, i \oplus, i_0 \oplus, i \circ j, j \oplus, i \circ j, i_0 \oplus,$

$$\Leftrightarrow , i \odot i_0, i \oplus, i_0 \oplus, i \circlearrowleft j, j \oplus, i \circlearrowleft j, i_0 \oplus,$$

$$\Leftrightarrow , i \odot i_0, i_0 \oplus, i_0 \oplus, i \ominus, i \ominus j, j \oplus, i \ominus j,$$

$$\Leftrightarrow$$
 $, i \oplus, i \circlearrowleft j, j \oplus, i \circlearrowleft j,$

$$, i \rightarrow i, i \circlearrowleft i_1, i \oplus, \Leftrightarrow , i \rightarrow i, i \oplus, i \circlearrowleft i_1,$$

$$, i \rightarrow i, i \circlearrowleft i_1, i \oplus,$$

$$\Leftrightarrow, i \odot i_2, i_2 \oplus, i_2 \circlearrowleft i, i_2 \oplus, i \circlearrowleft i_1, i \oplus,$$

$$\Leftrightarrow ,i \circlearrowleft i_1, i \circledcirc i_2, i_2 \oplus, i_2 \circlearrowleft i, i_2 \oplus, i \oplus,$$

$$\Leftrightarrow$$
, $i \circlearrowleft i_1, i \circlearrowleft i_2, i \circlearrowleft i_2, i_2 \oplus, i_2 \circlearrowleft i, i_2 \oplus, i \oplus,$

$$\Leftrightarrow ,i \circlearrowleft i_1, i \circlearrowleft i_2, i_2 \circlearrowleft i, i_2 \oplus, i_2 \circlearrowleft i, i_2 \oplus, i \oplus,$$

$$\Leftrightarrow , i \circlearrowleft i_1, i \circlearrowleft i_2, i_2 \circlearrowleft i, i_2 \oplus, i_2 \circlearrowleft i, i \oplus, i_2 \oplus,$$

17.2 Theorems of Relationship of Node Continuity

$$\Leftrightarrow$$
 $,i \circlearrowleft i_1, i \uplus i_2, i_2 \oplus, i_2 \circlearrowleft i, i \oplus, i_2 \circlearrowleft i, i_2 \oplus,$

$$\Leftrightarrow$$
, $i \oplus i_2$, $i_2 \oplus$, $i_2 \ominus i$, $i \ominus i_1$, $i \oplus$, $i_2 \ominus i$, $i_2 \oplus$,

$$\Leftrightarrow$$
, $i \otimes i_2$, $i_2 \oplus$, $i_2 \otimes i_1$, $i_2 \otimes i_1$, $i \oplus$, $i_2 \otimes i_1$, $i_2 \oplus$,

$$\Leftrightarrow ,i \otimes i_2, i_2 \oplus, i_2 \circlearrowleft i, i \oplus, i_2 \circlearrowleft i, i_2 \circlearrowleft i_1, i_2 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_2$, $i_2 \oplus$, $i_2 \circ i$, $i \oplus$, $i_2 \circ i$, $i \circ i_1$, $i_2 \oplus$,

$$\Leftrightarrow$$
 $,i \otimes i_2, i_2 \otimes i, i_2 \oplus, i_2 \otimes i, i \oplus, i \otimes i_1, i_2 \oplus,$

$$\Leftrightarrow$$
, $i \odot i_2$, $i_2 \oplus$, $i_2 \circlearrowleft i_1$, $i \oplus$, $i \circlearrowleft i_1$, $i_2 \oplus$,

$$\Leftrightarrow$$
 $,i \otimes i_2, i_2 \oplus, i_2 \otimes i, i_2 \oplus, i \oplus, i \otimes i_1,$

$$\Leftrightarrow$$
, $i \rightarrow i$, $i \oplus$, $i \circ i_1$,

$$,i\rightarrow i,i\oplus ,\iff ,i\oplus ,i\rightarrow i,$$

$$, i \rightarrow i, i \oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 \oplus, i_1 \circ i, i_1 \oplus, i \oplus,$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 \oplus, i_1 \circ i, i \oplus, i_1 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \otimes i_1, i_1 \oplus, i_1 \otimes i_1, i \oplus, i_1 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 \otimes i_1 \oplus , i_1 \otimes i_1 \oplus , i_2 \oplus , i_3 \oplus , i_4 \oplus , i_$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 \oplus, i_1 \circ i, i \oplus, i_1 \circ i, i_1 \oplus, i_2 \oplus, i_3 \circ i, i_4 \oplus, i_4 \circ i, i_4 \oplus, i_5 \circ i, i_4 \oplus, i_5 \circ i, i_4 \oplus, i_5 \circ i, i_5 \oplus, i_5$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \otimes i_2, i_2 \oplus, i_1 \oplus, i_1 \circ i, i \oplus, i_1 \circ i, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \otimes i_2, i_2 \oplus, i_2 \oplus, i_1 \oplus, i_1 \otimes i, i \oplus, i_1 \otimes i, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4 \otimes i, i_4 \otimes$

$$\Leftrightarrow$$
 $,i \otimes i_2, i \otimes i_1, i_2 \oplus, i_1 \oplus, i_1 \circ i, i \oplus, i_1 \circ i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4$

$$\Leftrightarrow$$
 $,i \otimes i_2, i \otimes i_1, i_2 \otimes i_1, i_2 \oplus, i_1 \oplus, i_1 \otimes i, i \oplus, i_1 \otimes i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$

$$\Leftrightarrow , i \odot i_2, i \odot i_1, i_2 \oplus, i_1 \oplus, i_2 \circlearrowleft i_1, i_1 \circlearrowleft i, i \oplus, i_1 \circlearrowleft i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_2, i \otimes i_1, i_2 \oplus, i_1 \oplus, i_2 \otimes i_1, i_2 \otimes i, i \oplus, i_1 \otimes i, i_2 \oplus, i_1 \oplus, i_2 \otimes i, i_2 \oplus, i_3 \otimes i, i_3 \otimes i, i_4 \otimes i,$

$$\Leftrightarrow , i \otimes i_2, i \otimes i_1, i_2 \oplus, i_1 \oplus, i_2 \circlearrowleft i, i \oplus, i_1 \circlearrowleft i, i_2 \oplus, i_1 \oplus,$$

$$\Leftrightarrow$$
, $i \odot i_2$, $i \odot i_1$, $i_2 \oplus$, $i_2 \odot i$, $i \oplus$, $i_1 \oplus$, $i_1 \odot i$, $i_2 \oplus$, $i_1 \oplus$,

$$\Leftrightarrow ,i \otimes i_2,i \otimes i_2,i \otimes i_1,i_2 \oplus,i_2 \otimes i,i \oplus,i_1 \oplus,i_1 \otimes i,i_2 \oplus,i_1 \oplus,i_1 \otimes i,i_2 \oplus,i_1 \oplus,i_2 \oplus,i_3 \oplus,i_4 \oplus,i_4$$

$$\Leftrightarrow$$
 $,i \otimes i_2, i_2 \otimes i_1, i \otimes i_1, i_2 \oplus, i_2 \otimes i_1, i \oplus, i_1 \oplus, i_1 \otimes i_1, i_2 \oplus, i_1 \oplus, i_1 \otimes i_2 \oplus, i_2 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4$

$$\Leftrightarrow$$
 $,i \otimes i_2, i \otimes i_1, i_2 \otimes i, i_2 \oplus, i_2 \otimes i, i \oplus, i_1 \oplus, i_1 \otimes i, i_2 \oplus, i_1 \oplus, i_1 \otimes i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$

$$\Leftrightarrow , i \odot i_2, i \odot i_1, i_2 \oplus, i_2 \circlearrowleft i, i \oplus, i_2 \circlearrowleft i, i_1 \oplus, i_1 \circlearrowleft i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_$$

$$\Leftrightarrow , i \odot i_2, i \odot i_1, i \circlearrowleft i_1, i_2 \oplus, i_2 \circlearrowleft i, i \oplus, i_2 \circlearrowleft i, i_1 \oplus, i_1 \circlearrowleft i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$$

$$\Leftrightarrow , i \otimes i_2, i \otimes i_1, i_2 \oplus, i \otimes i_1, i_2 \otimes i, i \oplus, i_2 \otimes i, i_1 \oplus, i_1 \otimes i, i_2 \oplus, i_1 \oplus, i_2 \otimes i, i_2 \oplus, i_3 \oplus, i_4 \otimes i, i_4$$

$$\Leftrightarrow , i \odot i_2, i \odot i_1, i_2 \oplus, i \circlearrowleft i_1, i_2 \circlearrowleft i_1, i \oplus, i_2 \circlearrowleft i, i_1 \oplus, i_1 \circlearrowleft i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus$$

$$\Leftrightarrow$$
, $i \otimes i_2$, $i \otimes i_1$, $i_2 \oplus$, $i_2 \otimes i_1$, $i \oplus$, $i_2 \otimes i$, $i_1 \oplus$, $i_1 \otimes i$, $i_2 \oplus$, $i_1 \oplus$,

$$\Leftrightarrow , i \otimes i_2, i \otimes i_1, i_2 \oplus, i \oplus, i_2 \otimes i, i_2 \otimes i_1, i_1 \oplus, i_1 \otimes i, i_2 \oplus, i_1 \oplus,$$

$$\Leftrightarrow$$
 $, i \otimes i_2, i \otimes i_1, i_2 \oplus, i \oplus, i_2 \circ i, i \circ i_1, i_1 \oplus, i_1 \circ i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$

$$\Leftrightarrow$$
, $i \otimes i_2$, $i \otimes i_1$, $i_2 \otimes i_1$, $i_2 \oplus i_2 \oplus i_3 \oplus i_4 \otimes i_1$, $i_1 \oplus i_1 \otimes i_1$, $i_2 \oplus i_2 \oplus i_3 \oplus i_4$,

$$\Leftrightarrow$$
 $, i \otimes i_2, i_2 \otimes i, i \otimes i_1, i_2 \oplus, i \oplus, i \otimes i_1, i_1 \oplus, i_1 \otimes i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus,$

$$\Leftrightarrow$$
 $, i \otimes i_2, i \otimes i_1, i_2 \oplus, i \oplus, i \otimes i_1, i_1 \oplus, i_1 \otimes i, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_$

$$\Leftrightarrow , i \otimes i_2, i_2 \oplus, i_2 \oplus, i \otimes i_1, i \oplus, i \otimes i_1, i_1 \oplus, i_1 \otimes i_1, i_1 \oplus, i_2 \otimes i_1 \otimes i_2 \oplus, i_3 \otimes i_1 \otimes i_2 \otimes i_2 \otimes i_3 \otimes$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \oplus$, $i \otimes i_1$, $i_1 \oplus$, $i_1 \otimes i_1$, $i_1 \oplus$,

$$\Leftrightarrow$$
 $,i \otimes i_1, i \oplus, i \otimes i_3, i_3 \oplus, i \otimes i_1, i_1 \oplus, i_1 \otimes i_1 \otimes i_1 \oplus, i_2 \oplus, i_3 \otimes i_4 \otimes i_1 \otimes i_2 \otimes i_3 \otimes i_3 \otimes i_4 \otimes$

$$\Leftrightarrow , i \otimes i_1, i \oplus, i \otimes i_3, i_3 \oplus, i_3 \oplus, i \otimes i_1, i_1 \oplus, i_1 \otimes i, i_1 \oplus, i_2 \otimes i_3 \oplus, i_3 \oplus$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \oplus, i \otimes i_3, i_3 \oplus, i \otimes i_1, i_1 \oplus, i_1 \otimes i, i_1 \oplus, i_3 \oplus,$

17.2 Theorems of Relationship of Node Continuity

$$\Leftrightarrow$$
 $, i \odot i_1, i \oplus, i \odot i_3, i \odot i_1, i_1 \oplus, i_3 \oplus, i_1 \odot i, i_1 \oplus, i_3 \oplus,$

$$\Leftrightarrow$$
 $, i \otimes i_1, i \oplus, i \otimes i_3, i \otimes i_3, i \otimes i_1, i_1 \oplus, i_3 \oplus, i_1 \otimes i, i_1 \oplus, i_3 \oplus, i_4 \otimes i, i_4 \otimes i$

$$\Leftrightarrow , i \odot i_1, i \oplus, i \odot i_3, i \circlearrowleft i_3, i_3 \circlearrowleft i_1, i_1 \oplus, i_3 \oplus, i_1 \circlearrowleft i, i_1 \oplus, i_3 \oplus,$$

$$\Leftrightarrow$$
 $, i \otimes i_1, i \oplus, i \otimes i_3, i_3 \otimes i_1, i_1 \oplus, i_3 \oplus, i_1 \otimes i, i_1 \oplus, i_3 \oplus,$

$$\Leftrightarrow$$
 $, i \otimes i_1, i \oplus, i \otimes i_3, i_1 \oplus, i_3 \oplus, i_3 \otimes i_1, i_1 \otimes i, i_1 \oplus, i_3 \oplus,$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \oplus$, $i \otimes i_3$, $i_1 \oplus$, $i_3 \oplus$, $i_1 \circ i_1$, $i_3 \circ i_1$, $i_1 \oplus$, $i_3 \oplus$,

$$\Leftrightarrow$$
 $, i \odot i_1, i \oplus, i \odot i_3, i_1 \oplus, i_3 \oplus, i_1 \circlearrowleft i, i_3 \circlearrowleft i, i_1 \oplus, i_3 \oplus,$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \oplus$, $i_1 \oplus$, $i_1 \circ i_1$, $i_1 \oplus$, $i \otimes i_3$, $i_3 \oplus$, $i_3 \circ i_1$, $i_3 \oplus$,

$$\Leftrightarrow$$
 $, i \otimes i_1, i \oplus, i_1 \oplus, i_1 \circ i, i_1 \oplus, i \rightarrow i,$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \oplus, i_1 \oplus, i \otimes i_1, i_1 \oplus, i \rightarrow i,$

$$\Leftrightarrow$$
 $, i \otimes i_1, i \otimes i_1, i \oplus, i_1 \oplus, i_1 \oplus, i \rightarrow i,$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \oplus, i_1 \oplus, i_1 \oplus, i \rightarrow i,$

$$\Leftrightarrow$$
 $, i \oplus, i \odot i_1, i_1 \oplus, i_1 \oplus, i \rightarrow i,$

$$\Leftrightarrow$$
 $, i \oplus, i \oplus i_1, i_1 \oplus, i \rightarrow i,$

$$\iff$$
 $, i \oplus, i \rightarrow i,$

 $, i \rightarrow i, i \ominus, \iff , i \ominus, i \rightarrow i,$

$$, i \rightarrow i, i \ominus,$$

$$\Leftrightarrow \ ,i\oplus ,i\ominus ,i\rightarrow i,i\ominus ,$$

$$\Leftrightarrow$$
 $,i\Theta,i\Theta,i\rightarrow i,i\Theta,$

$$\Leftrightarrow$$
 $,i\Theta,i\rightarrow i,i\Theta,i\Theta,$

$$\Leftrightarrow$$
 $, i \ominus, i \rightarrow i,$

$$, i \rightarrow i, i \circlearrowleft i_1, i \ominus, \Leftrightarrow , i \rightarrow i, i \ominus, i \circlearrowleft i_1,$$

proof:

$$, i \rightarrow i, i \circlearrowleft i_1, i \ominus, \\ \Leftrightarrow , i \ominus, i \ominus, i \rightarrow i, i \circlearrowleft i_1, i \ominus,$$

$$\Leftrightarrow$$
 $,i\ominus$, $i\ominus$, $i\rightarrow$ i, $i\bigcirc$ i₁, $i\ominus$,

$$\Leftrightarrow$$
, $i \ominus$, $i \rightarrow i$, $i \ominus$, $i \ominus i$, $i \ominus i$,

$$\Leftrightarrow$$
, $i \ominus$, $i \rightarrow i$, $i \circ i_1$, $i \ominus$, $i \ominus$,

$$\Leftrightarrow$$
, $i \ominus$, $i \rightarrow i$, $i \circ i_1$,

$$\Leftrightarrow$$
, $i \rightarrow i$, $i \ominus$, $i \ominus i$,

$$, i \rightarrow i, i = \varnothing, i \ominus, \Leftrightarrow , i \rightarrow i, i \ominus, i = \varnothing,$$

$$\begin{array}{l},i{\to}i,i{\,=\,}\varnothing,i{\ominus},\\\Leftrightarrow,i{\ominus}i_2,i{\to}i_2,i_2{\oplus},i{\,=\,}\varnothing,i{\ominus},\end{array}$$

$$\Leftrightarrow$$
, $i = \emptyset$, $i \odot i_2$, $i \rightarrow i_2$, $i_2 \odot$, $i \odot$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \oplus i_1$, $i_1 \oplus i_2$, $i \oplus i_2$, $i_2 \oplus i_3$, $i \ominus i_4$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \odot i_1$, $i \odot i_2$, $i \rightarrow i_2$, $i_2 \odot$, $i \odot$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \odot i_1$, $i \odot i_1$, $i \odot i_2$, $i \rightarrow i_2$, $i_2 \odot$, $i \odot$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \otimes i_1$, $i \otimes i_2$, $i \rightarrow i_2$, $i_2 \otimes$, $i \otimes i_1$, $i \ominus$, $i_1 \otimes$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \odot i_1$, $i \rightarrow i$, $i \odot i_1$, $i \odot$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \odot i_1$, $i \rightarrow i$, $i \odot$, $i \odot i_1$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i = \varnothing$, $i \rightarrow i$, $i \odot$, $i \odot i_1$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_1$, $i = \varnothing$, $i \rightarrow i$, $i \odot$, $i \odot i_1$, $i_1 \odot$,

17.2 Theorems of Relationship of Node Continuity

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_1$, $i_1 = \varnothing$, $i \rightarrow i$, $i \ominus$, $i \odot i_1$, $i_1 \oplus$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i_1 = \varnothing$, $i \rightarrow i$, $i \ominus$, $i \odot i_1$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i_1 = \varnothing$, $i \odot i_2$, $i \rightarrow i_2$, $i_2 \odot$, $i \odot$, $i \odot i_1$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i \rightarrow i_2$, $i_2 \oplus$, $i \ominus$, $i \ominus i_1$, $i_1 = \emptyset$, $i_1 \oplus$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \rightarrow i$, $i \ominus$, $i \odot i_1$, $i_1 = \varnothing$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \rightarrow i$, $i \odot$, $i \odot i_1$, $i = \varnothing$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \rightarrow i$, $i \odot i_1$, $i \odot$, $i = \varnothing$, $i_1 \odot$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_1$, $i \rightarrow i$, $i \ominus$, $i = \varnothing$, $i_1 \oplus$,

$$\Leftrightarrow$$
 $, i \otimes i_1, i \rightarrow i, i \ominus, i = \emptyset, i_1 \oplus,$

$$\Leftrightarrow$$
, $i \odot i_1$, $i_1 \odot i$, $i \ominus i$, $i \ominus i$, $i = \varnothing$,

$$\Leftrightarrow , i \!\!\to\!\! i, i \!\!\ominus\!\! , i \!=\! \varnothing,$$

$$, i \rightarrow i, i = \emptyset, i \oplus, \Leftrightarrow , i \rightarrow i, i \oplus, i = \emptyset,$$

$$, i \rightarrow i, i = \emptyset, i \oplus,$$

$$\Leftrightarrow$$
, $i \rightarrow i$, $i \oplus$, $i \ominus$, $i = \emptyset$, $i \oplus$,

$$\Leftrightarrow, i \oplus, i \! \to \! i, i \ominus, i \! = \! \varnothing, i \oplus,$$

$$\Leftrightarrow$$
 $, i \oplus, i \rightarrow i, i = \emptyset, i \ominus, i \oplus,$

$$\Leftrightarrow$$
 $, i \oplus, i \rightarrow i, i = \emptyset, i \oplus, i \ominus,$

$$\Leftrightarrow$$
, $i \oplus$, $i \rightarrow i$, $i = \emptyset$,

$$\Leftrightarrow$$
, $i \rightarrow i$, $i \oplus$, $i = \emptyset$,

$$,i=\varnothing,i\oplus,i=\varnothing,\iff\sim,i\rightarrow i,$$

proof:

$$\begin{array}{l} ,i=\varnothing, i\ominus, i=\varnothing, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i_1\oplus, i\ominus, i=\varnothing, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i_1\oplus, i_1\oplus, i\ominus, i=\varnothing, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i_1\oplus, i\ominus, i=\varnothing, i_1\oplus, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i^{\circ}Oi_1, i_1\oplus, i\oplus, i=\varnothing, i_1\oplus, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i^{\circ}Oi_1, i_1\oplus, i\ominus, i=\varnothing, i_1\oplus, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i_1\oplus, i\oplus, i^{\circ}Oi_1, i=\varnothing, i=\varnothing, i_1\oplus, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i_1\oplus, i\oplus, i^{\circ}Oi_1, i=\varnothing, i=\varnothing, i_1\oplus, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i_1\oplus, i\oplus, i^{\circ}Oi_1, i_1=\varnothing, i=\varnothing, i_1\oplus, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i_1\oplus, i\oplus, i^{\circ}Oi_1, i_1=\varnothing, i=\varnothing, i_1\oplus, \\ \Leftrightarrow, i=\varnothing, i\otimes i_1, i_1\oplus, i=\varnothing, i_1\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i\otimes i_1, i=\varnothing, i_1\oplus, i_1=\varnothing, i\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i\otimes i_1, i^{\circ}Oi_1, i=\varnothing, i_1\oplus, i_1=\varnothing, i\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i^{\circ}Oi_1, i=\varnothing, i_1\oplus, i_1=\varnothing, i^{\circ}Oi_1, i^{\circ}Oi_1, i\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i^{\circ}Oi_1, i=\varnothing, i_1\oplus, i_1=\varnothing, i^{\circ}Oi_1, i\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i^{\circ}Oi_1, i=\varnothing, i_1\oplus, i_1=\varnothing, i^{\circ}Oi_1, i\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i^{\circ}Oi_1, i=\varnothing, i^{\circ}Oi_1, i\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i=\varnothing, i_1\oplus, i_1=\varnothing, i^{\circ}Oi_1, i\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i_1\oplus, i_1\oplus, i_1=\varnothing, i^{\circ}Oi_1, i\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i_1\oplus, i^{\circ}Oi_1, i_1=\varnothing, i^{\circ}Oi_1, i_1\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i_1\oplus, i^{\circ}Oi_1, i_1=\varnothing, i^{\circ}Oi_1, i_1\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i_1\oplus, i^{\circ}Oi_1, i_1=\varnothing, i^{\circ}Oi_1, i^{\circ}Oi_1, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i_1\oplus, i^{\circ}Oi_1, i_1=\varnothing, i^{\circ}Oi_1, i^{\circ}Oi_1, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i_1\oplus, i^{\circ}Oi_1, i_1\oplus, i^{\circ}Oi_1, i_1\oplus, i_1\oplus, i=\varnothing, \\ \Leftrightarrow, i^{\circ}Oi_1, i$$

 \Leftrightarrow , $i = \emptyset$, $i \odot i_1$, $i_1 \oplus$, $i \odot i_1$, $i \oplus$, $i_1 \oplus$, $i = \emptyset$,

17.2 Theorems of Relationship of Node Continuity

$$\Leftrightarrow$$
, $i = \emptyset$, $i \oplus i_1$, $i_1 \oplus$, $i \ominus i_1$, $i_1 \oplus$, $i \oplus$, $i = \emptyset$,

$$\Leftrightarrow, i = \varnothing, i \rightarrow i, i \oplus, i = \varnothing,$$

$$\Leftrightarrow, i = \varnothing, i \oplus, i \rightarrow i, i = \varnothing,$$

$$\Leftrightarrow$$
, $i = \emptyset$, $i \oplus$, $i = \emptyset$, $i \rightarrow i$,

$$, @i, \Leftrightarrow \sim, i {\rightarrow} i,$$

proof:

$$, \circledcirc i, \\ \Leftrightarrow , \circledcirc i, i \oplus, i \circleddash,$$

$$\Leftrightarrow , @i, i \oplus, i = \varnothing, i \ominus,$$

$$\Leftrightarrow$$
 , $\bigcirc i$, $i = \emptyset$, $i \oplus$, $i = \emptyset$, $i \ominus$,

$$\iff, @i, i = \varnothing, i \oplus, i = \varnothing, i {\rightarrow} i, i \ominus,$$

$$\Leftrightarrow , \bigcirc i, i = \varnothing, i \oplus, i = \varnothing, i \ominus, i \rightarrow i,$$

$$\Leftrightarrow , \bigcirc i, i \oplus, i \ominus, i \rightarrow i,$$

$$\Leftrightarrow$$
 , $\odot i$, $i \rightarrow i$,

$$, i \rightarrow i, \iff \sim, i = \emptyset,$$

induction proof:

premise 1:

$$, i = \varnothing, i \rightarrow i,$$

$$\Leftrightarrow ,i\!=\!\varnothing, i\!\to\!\!i, i\!=\!\varnothing,$$

 $premise\ 2:$

$$, \&SHi \rightarrow i, i \rightarrow i, \iff , \&SHi \rightarrow i, i \rightarrow i, i = \varnothing, \implies$$

$$, i != \varnothing, \&SHi \circlearrowleft i, i \rightarrow i,$$

$$\Leftrightarrow$$
 , $i!=\varnothing$, &SHi \circlearrowleft i, $i\rightarrow$ i, $i\oplus$, $i\ominus$,

$$\Leftrightarrow$$
, $i!=\emptyset$, &SHi $\circlearrowleft i$, $i \oplus i$, $i \to i$, $i \ominus i$,

$$\iff, i != \varnothing, i \oplus, \&SHi \!\to\! i, i \!\to\! i, i \!\ominus\!,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $i\oplus$, &SH $i\rightarrow i$, $i\rightarrow i$, $i=\varnothing$, $i\ominus$,

$$\Leftrightarrow ,i!=\varnothing, \&SHi\circlearrowleft i, i\oplus, i\rightarrow i, i=\varnothing, i\ominus,$$

$$\Leftrightarrow ,i != \varnothing, \&S\!H\!i \, \circlearrowleft\! i, i \!\oplus\! , i \!\rightarrow\! i, i \!\ominus\! , i \!=\! \varnothing,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi $\bigcirc i$, $i\rightarrow i$, $i\oplus$, $i\ominus$, $i=\varnothing$,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi \bigcirc i, $i\rightarrow$ i, $i=\varnothing$,

conclusion:

$$, i \rightarrow i, \iff , i \rightarrow i, i = \emptyset,$$

17.2.14 Other

$$, j \otimes k, k \oplus, \Leftrightarrow \sim, j \rightarrow k,$$

18 Rules of Relationship of Subnode

18.1 Definition of Node Subnode

$$, if (i \oplus j) = \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, if (i = \varnothing) = \begin{bmatrix} , i \oplus n, \\ , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, (i \oplus i, -) = \begin{bmatrix} , & \\ ,$$

$$,i \oplus j, \iff ,if(i \oplus j) = \begin{bmatrix} , \\ , \otimes , \end{bmatrix},$$

$$,i!\oplus j, \Leftrightarrow ,if(i\oplus j)- \left[,\stackrel{\otimes ,}{\underset{\cdot }{\bigcirc }}, \right] ,$$

$$, i \oplus i, \Leftrightarrow , i \oplus i_0, i_0 \oplus i, i_0 \oplus,$$

 $, i! \oplus i, \Leftrightarrow , i \oplus i_0, i_0! \oplus i, i_0 \oplus,$

18.2 Theorems of Relationship of Subnode

18.2.1 Subnode propositions to Node Connectivity propositions

$$, i \oplus j, \Leftrightarrow , i != \varnothing, i \oplus t, t \circlearrowleft j, t \oplus,$$

proof: $,i \oplus j,$

18 Rules of Relationship of Subnode

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i\otimes n,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} ,n\oplus,\\ ,n\oplus,\otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i\otimes n,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} ,n\oplus,\\ ,\otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i\otimes n,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i\otimes n,n=\varnothing,n\oplus,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i\otimes n,n=\varnothing,n\oplus,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i\otimes n,n=\varnothing,n\oplus,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i\otimes n,\otimes,n\oplus,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,\otimes,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,\otimes,\\ ,i\otimes t,if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus, \end{bmatrix},$$

$$\Leftrightarrow , i!=\varnothing, i\otimes t, if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus, \\ \Leftrightarrow , i!=\varnothing, i\otimes t, if(t\circlearrowleft j) - \begin{bmatrix} ,\otimes n,\\ ,i\otimes n, \end{bmatrix}, t\oplus, n=\varnothing, n\oplus, \end{bmatrix},$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \otimes n, n = \varnothing, n \otimes, \\ , i \otimes n, n = \varnothing, n \otimes, \end{bmatrix}, t \otimes,$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \otimes n, n \otimes, \\ , i \otimes n, n = \varnothing, n \otimes, \end{bmatrix}, t \otimes,$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \\ , i \otimes n, n = \varnothing, n \otimes, \end{bmatrix}, t \otimes,$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \\ , i \otimes n, n := \varnothing, n \otimes, n \otimes, \end{bmatrix}, t \otimes,$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \\ , i \otimes n, \otimes, n \otimes, \end{bmatrix}, t \otimes,$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix}, t \otimes,$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix}, t \otimes,$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix}, t \otimes,$$

$$\Leftrightarrow ,i != \varnothing, i \otimes t, i f(t \otimes j) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix}, t \otimes,$$

$$, i \oplus j, \iff \sim, i != \varnothing,$$

$$, i! \oplus j, \iff , if(i = \varnothing) - \begin{bmatrix} , & & & \\ , i \oplus t, t! \circlearrowleft j, t \oplus , \end{bmatrix} - ,$$

18.2.2 Branch function to propositions

$$,if(i \oplus j) = \begin{bmatrix} , & & c, \\ & & & \\ & & & \end{bmatrix}_{-}, \iff ,i \oplus j, & c,$$

$$,if(i \oplus j) = \begin{bmatrix} , \otimes, \\ , \odot c, \end{bmatrix}, \Leftrightarrow ,i! \oplus j, \odot c,$$

18.2.3 Empty branch function

$$, if(i \oplus j) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, \Leftrightarrow , \begin{bmatrix} , i \oplus j, \\ , i! \oplus j, \end{bmatrix}$$

18.2.4 Unity

$$, \Leftrightarrow , if(i \oplus j)[\dot{}],$$

$$, if(i \oplus j) \begin{bmatrix} \cdot \\ \cdot \end{bmatrix},$$

$$\Leftrightarrow , if (i=\varnothing) - \begin{bmatrix} , i @ n, \\ , i @ t, if (t @ j) - \begin{bmatrix} , @ n, \\ , i @ n, \end{bmatrix} - , t @ , \end{bmatrix} - , if (n=\varnothing) - \begin{bmatrix} , n @ , \\ , n @ , \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i \otimes n, \\ \\ ,i \otimes t, if(t \otimes j) - \begin{bmatrix} , \odot n, \\ \\ ,i \otimes n, \end{bmatrix} - , t \oplus , \end{bmatrix} - , if(n=\varnothing) - \begin{bmatrix} , \\ \\ , \end{bmatrix} - , n \oplus ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i \otimes n, \\ \\ ,i \otimes t, if(t \otimes j) - \begin{bmatrix} , \odot n, \\ \\ ,i \otimes n, \end{bmatrix} - ,t \otimes , \end{bmatrix} - ,n \otimes ,$$

$$\Leftrightarrow , if (i = \varnothing) - \begin{bmatrix} , i \otimes n, n \otimes, \\ , i \otimes t, if (t \circlearrowleft j) - \begin{bmatrix} , \odot n, \\ , i \otimes n, \end{bmatrix} -, t \otimes, n \otimes, \end{bmatrix} -,$$

$$\Leftrightarrow , if (i=\varnothing) - \begin{bmatrix} , \\ , i \otimes t, if (t \otimes j) - \begin{bmatrix} , \otimes n, \\ , i \otimes n, \end{bmatrix} -, t \otimes , n \otimes , \end{bmatrix} -,$$

$$\Leftrightarrow , if (i=\varnothing) - \begin{bmatrix} , \\ , i \otimes t, if (t \otimes j) - \begin{bmatrix} , \otimes n, n \otimes , \\ , i \otimes n, n \otimes , \end{bmatrix} - , t \otimes , \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , \\ , i \otimes t, if(t \otimes j) - \begin{bmatrix} , \\ , \end{bmatrix}, t \otimes , \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , \\ , i \otimes t, t \otimes , \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , \\ , \end{bmatrix},$$

 \Leftrightarrow ,

$$,i \oplus j, \otimes, \Leftrightarrow, \otimes,$$

$$,i!\oplus j,\otimes, \Leftrightarrow ,\otimes,$$

18.2.5 Swap

Branch function and operator:

$$, @m, if(i@j) - \begin{bmatrix}, & \\ \\ \\ & \end{bmatrix}, & (if(i@j) - \begin{bmatrix}, @m, \\ \\ \\ & \end{bmatrix})$$

18 Rules of Relationship of Subnode

Branch function and Branch functions

$$, if(i \oplus j) = \begin{bmatrix} , if(m \oplus n) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(m \oplus n) = \begin{bmatrix} , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , i$$

$$<1> \iff if(i\!=\!\varnothing)- \begin{bmatrix},i \otimes s_1,\\ \\,i \otimes t_1,if(t_1 \otimes j)- \begin{bmatrix}, \otimes s_1,\\ \\,i \otimes s_1,\end{bmatrix},t_1 \oplus, \end{bmatrix},$$

18 Rules of Relationship of Subnode

$$<2> \Leftrightarrow if(m=\varnothing)-\begin{bmatrix} , m \otimes s_2, \\ , m \otimes t_2, if(t_2 \otimes n)-\begin{bmatrix} , \odot s_2, \\ , m \otimes s_2, \end{bmatrix}, t_2 \oplus , \end{bmatrix}$$

$$, if(i@j) = \begin{bmatrix} , if(m@n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m@n) = \begin{bmatrix} , @c_3, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, <1>, if(s_1=\varnothing) = \begin{bmatrix}, s_1 \oplus, <2>, if(s_2=\varnothing) = \begin{bmatrix}, s_2 \oplus, & \bigcirc c_1, \\ s_2 \oplus, & \bigcirc c_2, \end{bmatrix}, \\, s_1 \oplus, <2>, if(s_2=\varnothing) = \begin{bmatrix}, s_2 \oplus, & \bigcirc c_3, \\ s_2 \oplus, & \bigcirc c_3, \end{bmatrix}, \\, s_2 \oplus, & \bigcirc c_4, \end{bmatrix},$$

$$\Leftrightarrow, <1>, <2>, if(s_1=\varnothing) - \begin{bmatrix}, s_1 @, s_2 @, @c_1, \\ s_1 @, s_2 @, @c_2, \end{bmatrix}, \\, if(s_2=\varnothing) - \begin{bmatrix}, s_1 @, s_2 @, @c_2, \\ s_1 @, s_2 @, @c_3, \\ s_1 @, s_2 @, @c_4, \end{bmatrix},$$

$$\Leftrightarrow, <1>, <2>, if(s_1=\varnothing) - \begin{bmatrix}, s_1 @, s_2 @, @c_1, \\ s_1 @, s_2 @, @c_3, \end{bmatrix}, \\, if(s_1=\varnothing) - \begin{bmatrix}, s_1 @, s_2 @, @c_3, \\ s_1 @, s_2 @, @c_2, \\ s_1 @, s_2 @, @c_2, \end{bmatrix}, \\, s_1 @, s_2 @, @c_4, \end{bmatrix},$$

$$\Leftrightarrow, <2>, if(s_2=\varnothing) - \begin{bmatrix}, s_2 \oplus, <1>, if(s_1=\varnothing) - \begin{bmatrix}, s_1 \oplus, \odot c_1, \\ s_1 \oplus, \odot c_3, \end{bmatrix}, \\, s_2 \oplus, <1>, if(s_1=\varnothing) - \begin{bmatrix}, s_1 \oplus, \odot c_2, \\ s_1 \oplus, \odot c_2, \end{bmatrix}, \\, s_1 \oplus, \odot c_4, \end{bmatrix},$$

$$, if(i \oplus j) = \begin{bmatrix} , if(m \to n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(m \to n) - \begin{bmatrix} , \circ c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(m \to n) - \begin{bmatrix} , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_4, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , i$$

$$, if(i \oplus j) = \begin{bmatrix} , if(m \circlearrowleft n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} \\ , if(m \circlearrowleft n) - \begin{bmatrix} , & \\ , & & \\ \end{bmatrix}, & \Leftrightarrow , if(m \circlearrowleft n) - \begin{bmatrix} , if(i \oplus j) - \begin{bmatrix} , & & \\ , & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , if(i \oplus j) - \begin{bmatrix} , & & \\$$

$$, if (i \oplus j) = \begin{bmatrix} , if (m = n) & \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if (m = n) & \begin{bmatrix} , \circ c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if (m = n) & \begin{bmatrix} , if (i \oplus j) & \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if (i \oplus j) & \begin{bmatrix} , \odot c_2, \\ , \odot c_2, \end{bmatrix}, \end{bmatrix},$$

$$, if(i \oplus j) = \begin{bmatrix} , if(m = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m = \varnothing) - \begin{bmatrix} , if(i \oplus j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(m = \varnothing) - \begin{bmatrix} , if(i \oplus j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i \oplus j) - \begin{bmatrix} , @c_2, \\ , @c_4, \end{bmatrix}, \end{bmatrix},$$

Branch function and propositions:

$$, m \oplus n, if(i \oplus j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) = \begin{bmatrix}, m \oplus n, @c_1, \\ , m \oplus n, @c_2, \end{bmatrix},$$

$$, m! \oplus n, if(i \oplus j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \iff , if(i \oplus j) = \begin{bmatrix} , m! \oplus n, @c_1, \\ , m! \oplus n, @c_2, \end{bmatrix},$$

$$, m \!\!\to\!\! n, if(i \oplus j) \!\!=\!\!\! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}\!\! -, \; \Leftrightarrow \; , if(i \oplus j) \!\!=\!\! \begin{bmatrix}, m \!\!\to\!\! n, @c_1, \\ , m \!\!\to\!\! n, @c_2, \end{bmatrix}\!\! -,$$

$$, m! \rightarrow n, if(i \oplus j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \oplus j) - \begin{bmatrix} , m! \rightarrow n, @c_1, \\ \\ , m! \rightarrow n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if(i \oplus j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \mathring{\bigcirc} n, if(i \mathring{\oplus} j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \mathring{\oplus} j) - \begin{bmatrix} , m! \mathring{\bigcirc} n, @c_1, \\ \\ , m! \mathring{\bigcirc} n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if(i @ j) - \begin{bmatrix} , @ c_1, \\ \\ , @ c_2, \end{bmatrix}, \iff , if(i @ j) - \begin{bmatrix} , m \circlearrowleft n, @ c_1, \\ \\ , m \circlearrowleft n, @ c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if(i \oplus j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \oplus j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m = n, if(i \oplus j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) = \begin{bmatrix} , m = n, @c_1, \\ , m = n, @c_2, \end{bmatrix},$$

$$, m \mathbin{\mathop{:}=} n, if(i \mathbin{\mathbin{\boxtimes}} j) \mathbin{\mathop{-}\!\!\!\!-} , \stackrel{\scriptsize \bigcirc}{\mathbin{\boxtimes}} c_2, \stackrel{\scriptsize \bigcirc}{\mathbin{\longrightarrow}} , \iff , if(i \mathbin{\mathbin{\boxtimes}} j) \mathbin{\mathop{-}\!\!\!\!-} , \stackrel{m \mathbin{\mathop{:}=}} n, \mathbin{\mathbin{\boxtimes}} c_1, \stackrel{\scriptsize \bigcirc}{\mathbin{\longrightarrow}} , \\ , m \mathbin{\mathop{:}=} n, \mathbin{\mathbin{\boxtimes}} c_2, \stackrel{\scriptsize \bigcirc}{\mathbin{\longrightarrow}} ,$$

$$, m = \varnothing, if(i \oplus j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) = \begin{bmatrix} , m = \varnothing, @c_1, \\ , m = \varnothing, @c_2, \end{bmatrix},$$

$$, m \! := \! \varnothing, if(i \oplus j) \! = \! \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix} \! , \iff , if(i \oplus j) \! = \! \begin{bmatrix}, m \! := \! \varnothing, @c_1, \\ \\ , m \! := \! \varnothing, @c_2, \end{bmatrix} \! ,$$

$$, m \oplus n, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) = \begin{bmatrix} , m \oplus n, @c_1, \\ , m \oplus n, @c_2, \end{bmatrix},$$

$$, m! \oplus n, if(i \circlearrowleft j) - \begin{bmatrix} , \circledcirc c_1, \\ \\ , \circledcirc c_2, \end{bmatrix} -, \;\; \Leftrightarrow \;\; , if(i \circlearrowleft j) - \begin{bmatrix} , m! \oplus n, \circledcirc c_1, \\ \\ , m! \oplus n, \circledcirc c_2, \end{bmatrix} -,$$

$$, m \oplus n, if(i \rightarrow j) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix}, m \oplus n, \odot c_1, \\, m \oplus n, \odot c_2, \end{bmatrix},$$

$$, m! \oplus n, if(i \rightarrow j) - \begin{bmatrix} , \circledcirc c_1, \\ \\ , \circledcirc c_2, \end{bmatrix} -, \;\; \Leftrightarrow \;\; , if(i \rightarrow j) - \begin{bmatrix} , m! \oplus n, \circledcirc c_1, \\ \\ , m! \oplus n, \circledcirc c_2, \end{bmatrix} -,$$

$$, m \oplus n, if(i \circlearrowleft j) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix}, m \oplus n, \odot c_1, \\\\, m \oplus n, \odot c_2, \end{bmatrix},$$

$$, m! \oplus n, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , m! \oplus n, @c_1, \\ , m! \oplus n, @c_2, \end{bmatrix},$$

$$, m \oplus n, if (i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \iff , if (i = j) - \begin{bmatrix} , m \oplus n, @c_1, \\ \\ , m \oplus n, @c_2, \end{bmatrix} -,$$

$$, m! \oplus n, if (i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if (i=j) - \begin{bmatrix} , m! \oplus n, @c_1, \\ \\ , m! \oplus n, @c_2, \end{bmatrix},$$

$$, m \oplus n, if(i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} , m \oplus n, @c_1, \\ \\ , m \oplus n, @c_2, \end{bmatrix} -,$$

$$, m! \oplus n, if(i=\varnothing) - \begin{bmatrix} , \odot c_1, \\ \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , m! \oplus n, \odot c_1, \\ \\ , m! \oplus n, \odot c_2, \end{bmatrix},$$

Branch function and recursive function:

$$,R_{-}(m),if(i\oplus j)=\begin{bmatrix},@c_{1},\\\\,@c_{2},\end{bmatrix}, \Leftrightarrow ,if(i\oplus j)=\begin{bmatrix},R_{-}(m),@c_{1},\\\\,R_{-}(m),@c_{2},\end{bmatrix},$$

Branch function and flag object :

$$, \&\mathit{SHi}\, \circlearrowleft m, if (i \oplus j) - \left[\begin{smallmatrix}, & c_1, \\ & & \end{smallmatrix}\right], \iff , if (i \oplus j) - \left[\begin{smallmatrix}, & & \mathit{SHi}\, \circlearrowleft m, & c_1, \\ & & & \end{smallmatrix}\right], \\ & \&\mathit{SHi}\, \circlearrowleft m, & & c_2, \end{bmatrix},$$

$$, \&\mathit{SHi} \rightarrow \!\! m, if(i \oplus j) - \!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\! , \iff , if(i \oplus j) - \!\! \begin{bmatrix} , \&\mathit{SHi} \rightarrow \!\! m, @c_1, \\ \\ , \&\mathit{SHi} \rightarrow \!\! m, @c_2, \end{bmatrix} \!\! ,$$

$$, \&\mathit{SHj} \, \circlearrowleft m, if (i \oplus j) - \begin{bmatrix} , \, \circledcirc c_1, \\ \\ , \, \circledcirc c_2, \end{bmatrix} -, \iff , if (i \oplus j) - \begin{bmatrix} , \, \&\mathit{SHj} \, \circlearrowleft m, \, \circledcirc c_1, \\ \\ , \, \&\mathit{SHj} \, \circlearrowleft m, \, \circledcirc c_2, \end{bmatrix} -,$$

$$, \&\mathit{SHj} \leftarrow m, if(i \oplus j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \oplus j) - \begin{bmatrix}, \&\mathit{SHj} \leftarrow m, @c_1, \\ \\ , \&\mathit{SHj} \leftarrow m, @c_2, \end{bmatrix},$$

Propositions and operator:

$$,i \oplus j, \odot m, \Leftrightarrow , \odot m, i \oplus j,$$

$$, i \oplus j, \odot m, \Leftrightarrow , \odot m, i \oplus j,$$

$$,i\boxdot j,m\boxdot n,\iff,m\boxdot n,i\boxdot j,$$

$$, i \oplus j, m \otimes n, \iff , m \otimes n, i \oplus j,$$

$$, i \oplus j, m \oplus n, \iff , m \oplus n, i \oplus j,$$

$$, i \oplus j, m \oplus, \Leftrightarrow, m \oplus, i \oplus j,$$

$$, i \oplus j, m \oplus, \Leftrightarrow, m \oplus, i \oplus j,$$

$$, i \oplus j, m \ominus, \Leftrightarrow , m \ominus, i \oplus j,$$

$$,i!\oplus j,\odot m, \Leftrightarrow ,\odot m,i!\oplus j,$$

$$,i! \oplus j, \odot m, \Leftrightarrow , \odot m, i! \oplus j,$$

$$,i! \oplus j, m \oplus n, \Leftrightarrow , m \oplus n, i! \oplus j,$$

$$,i! \oplus j, m \oplus n, \iff , m \oplus n, i! \oplus j,$$

18.2 Theorems of Relationship of Subnode

$$,i! \oplus j, m \oplus n, \iff ,m \oplus n, i! \oplus j,$$

$$,i! \oplus j, m \oplus , \iff ,m \oplus , i! \oplus j,$$

$$,i! \oplus j, m \oplus , \iff ,m \oplus , i! \oplus j,$$

$$,i! \oplus j, m \ominus , \iff ,m \ominus , i! \oplus j,$$

Propositions and Propositions:

$$, i \oplus j, m \oplus n, \Leftrightarrow , m \oplus n, i \oplus j,$$

$$, i \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i \oplus j,$$

$$, i! \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i! \oplus j,$$

$$, i! \oplus j, m \to n, \Leftrightarrow , m \to n, i! \oplus j,$$

$$, i! \oplus j, m \to n, \Leftrightarrow , m \to n, i! \oplus j,$$

$$, i! \oplus j, m \to n, \Leftrightarrow , m! \to n, i! \oplus j,$$

$$, i! \oplus j, m! \to n, \Leftrightarrow , m! \to n, i! \oplus j,$$

$$, i! \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i! \oplus j,$$

$$, i! \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i! \oplus j,$$

$$, i! \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i! \oplus j,$$

$$, i! \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i! \oplus j,$$

$$, i! \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i! \oplus j,$$

$$, i! \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i! \oplus j,$$

$$, i! \oplus j, m! \oplus n, \Leftrightarrow , m! \oplus n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

$$, i! \oplus j, m! = n, \Leftrightarrow , m! = n, i! \oplus j,$$

18 Rules of Relationship of Subnode

$$, i \oplus j, m = \varnothing, \iff, m = \varnothing, i \oplus j,$$

$$, i \oplus j, m != \varnothing, \iff, m != \varnothing, i \oplus j,$$

$$, i ! \oplus j, m = \varnothing, \iff, m = \varnothing, i ! \oplus j,$$

$$, i ! \oplus j, m != \varnothing, \iff, m != \varnothing, i ! \oplus j,$$

Propositions and recursive function:

$$,i \oplus j, R(m), \iff ,R(m), i \oplus j,$$

 $,i \oplus j, R_{-}(m), \iff ,R_{-}(m), i \oplus j,$
 $,i! \oplus j, R(m), \iff ,R(m), i! \oplus j,$
 $,i! \oplus j, R_{-}(m), \iff ,R_{-}(m), i! \oplus j,$

Propositions and flag object:

$$, i \oplus j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i \oplus j,$$

$$, i \oplus j, \&SHi \to m, \Leftrightarrow , \&SHi \to m, i \oplus j,$$

$$, i! \oplus j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i! \oplus j,$$

$$, i! \oplus j, \&SHi \to m, \Leftrightarrow , \&SHi \to m, i! \oplus j,$$

$$, i \oplus j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, i \oplus j,$$

$$, i \oplus j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i \oplus j,$$

$$, i! \oplus j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \hookleftarrow m, i! \oplus j,$$

$$, i! \oplus j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i! \oplus j,$$

$$, i! \oplus j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i! \oplus j,$$

Propositions to Propositions with branch function

$$, if(i @ j) = \begin{bmatrix} , m! @ n, \\ , & \Leftrightarrow \\ , if(m @ n) = \begin{bmatrix} , i! @ j, \\ , & \end{bmatrix},$$

$$, if(i @ j) - \begin{bmatrix} , \\ , m @ n, \end{bmatrix}, \iff , if(m @ n) - \begin{bmatrix} , \\ , i @ j, \end{bmatrix},$$

$$, if(i \oplus j) = \begin{bmatrix} , m! \rightarrow n, \\ , \end{bmatrix}, \Leftrightarrow , if(m \rightarrow n) = \begin{bmatrix} , i! \oplus j, \\ , \end{bmatrix},$$

$$, if(i \oplus j) = \begin{bmatrix} , m! \circlearrowleft n, \\ , & \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , i! \oplus j, \\ , & \end{bmatrix},$$

$$, if (i \oplus j) = \begin{bmatrix} , \\ , m \circlearrowleft n, \end{bmatrix}, \iff , if (m \circlearrowleft n) = \begin{bmatrix} , \\ , i \oplus j, \end{bmatrix},$$

$$, if(i \oplus j) = \begin{bmatrix} , m! \circlearrowleft n, \\ , \end{bmatrix}, \iff , if(m \circlearrowleft n) = \begin{bmatrix} , i! \oplus j, \\ , \end{bmatrix},$$

$$, if(i \oplus j) = \begin{bmatrix} , \\ , m \circlearrowleft n, \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , \\ , i \oplus j, \end{bmatrix},$$

$$, if (i \oplus j) = \begin{bmatrix} , m != n, \\ , \end{bmatrix}, \iff , if (m = n) = \begin{bmatrix} , i ! \oplus j, \\ , \end{bmatrix},$$

18 Rules of Relationship of Subnode

$$, if (i \oplus j) - \begin{bmatrix} , \\ , m = n, \end{bmatrix}, \iff , if (m = n) - \begin{bmatrix} , \\ , i \oplus j, \end{bmatrix},$$

$$, if(i \oplus j) - \left[\begin{matrix} , m ! = \varnothing, \\ \end{matrix}\right], \iff , if(m = \varnothing) - \left[\begin{matrix} , i ! \oplus j, \\ \end{matrix}\right],$$

$$, if (i \boxdot j) - \fbox{\brack{}}, m = \varnothing, \ \ - , \ \ if (m = \varnothing) - \fbox{\brack{}}, i \boxdot j, \ \ - ,$$

18.2.6 Swap of the same operand

(skip.....)

18.2.7 Transitivity

Branch function with branch function:

$$, if(i \oplus j) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) = \begin{bmatrix}, if(i \oplus j) = \begin{bmatrix}, \odot c_1, \\, \odot c_3, \end{bmatrix}, \\, \odot c_2, \end{bmatrix},$$

$$, if(i \oplus j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) = \begin{bmatrix} , @c_1, \\ , if(i \oplus j) = \begin{bmatrix} , @c_3, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

$$<1> \Leftrightarrow ,i@t_1,if(t_1@j)-\begin{bmatrix},@s_1,\\,i@s_1,\end{bmatrix},t_1@,$$

$$<2> \Leftrightarrow ,i@t_2,if(t_2@j)-\begin{bmatrix} ,@s_2,\\ ,i@s_2,\end{bmatrix},t_2@,$$

$$\Leftrightarrow , i \otimes t_1, i f(t_1 \otimes j) - \begin{bmatrix}, \otimes s_1, \\ , i \otimes s_1, \end{bmatrix}, t_1 \oplus, i \otimes t_2, i f(t_2 \otimes j) - \begin{bmatrix}, \otimes s_2, \\ , i \otimes s_2, \end{bmatrix}, t_2 \oplus,$$

$$\Leftrightarrow , i \otimes t_1, i \otimes t_2, i f(t_1 \otimes j) = \begin{bmatrix} , \otimes s_1, \\ , i \otimes s_1, \end{bmatrix}, i f(t_2 \otimes j) = \begin{bmatrix} , \otimes s_2, \\ , i \otimes s_2, \end{bmatrix}, t_1 \otimes , t_2 \otimes ,$$

$$\Leftrightarrow , i \otimes t_1, i \otimes t_2, t_1 \otimes t_2, i f(t_1 \otimes j) - \begin{bmatrix} , \otimes s_1, \\ , i \otimes s_1, \end{bmatrix}, i f(t_2 \otimes j) - \begin{bmatrix} , \otimes s_2, \\ , i \otimes s_2, \end{bmatrix}, t_1 \otimes , t_2 \otimes , t_3 \otimes t_4 \otimes t_5 \otimes t_5 \otimes t_6 \otimes t_6$$

$$\Leftrightarrow , i \otimes t_1, i \otimes t_2, i f(t_1 \otimes j) - \begin{bmatrix} , \otimes s_1, \\ , i \otimes s_1, \end{bmatrix}, t_1 \otimes t_2, i f(t_2 \otimes j) - \begin{bmatrix} , \otimes s_2, \\ , i \otimes s_2, \end{bmatrix}, t_1 \otimes t_2 \otimes t_3$$

$$\Leftrightarrow , i \otimes t_1, i \otimes t_2, i f(t_1 \circ j) - \begin{bmatrix} , \circ s_1, \\ , i \otimes s_1, \end{bmatrix}, t_1 \circ t_2, i f(t_1 \circ j) - \begin{bmatrix} , \circ s_2, \\ , i \otimes s_2, \end{bmatrix}, t_1 \otimes t_2 \otimes t_3$$

$$\Leftrightarrow, i \otimes t_1, i \otimes t_2, i f(t_1 \circ j) - \begin{bmatrix}, \circ s_1, \\ , i \otimes s_1, \end{bmatrix}, i f(t_1 \circ j) - \begin{bmatrix}, \circ s_2, \\ , i \otimes s_2, \end{bmatrix}, t_1 \oplus, t_2 \oplus, t_3 \oplus t_4 \oplus t_5 \oplus t_5 \oplus t_6 \oplus t$$

$$\Leftrightarrow , i \otimes t_1, i \otimes t_2, i f(t_1 \circ j) - \begin{bmatrix} , \circ s_1, i f(t_1 \circ j) - \begin{bmatrix} , \circ s_2, \\ , i \otimes s_2, \end{bmatrix}, \\ , i \otimes s_1, i f(t_1 \circ j) - \begin{bmatrix} , \circ s_2, \\ , i \otimes s_2, \end{bmatrix}, \end{bmatrix}, t_1 \oplus, t_2 \oplus,$$

$$\Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , \odot s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ , i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ , t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, s_{1} = s_{2}, \end{bmatrix}, \\ t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{1} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{1} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{1} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{1} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{2} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{2} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{2} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{3} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{3} = s_{2}, t_{1} \oplus , t_{2} \oplus , \\ \Leftrightarrow , i \otimes t_{1}, i \otimes t_{2}, i f(t_{1} \otimes j) - \begin{bmatrix} , \odot s_{1}, \odot s_{2}, \\ , i \otimes s_{1}, i \otimes s_{2}, \end{bmatrix}, \\ s_{3} = s_{3} \oplus , \\ s_{4} \oplus , t_{4} \oplus ,$$

$$\Leftrightarrow$$
 , < 1 >, < 2 >, $s_1 = s_2$,

$$<2>,s_2 \oplus,$$

$$\Leftrightarrow , i \oplus t_2, i f(t_2 \oplus j) = \begin{bmatrix} , \oplus s_2, \\ , i \oplus s_2, \end{bmatrix}, t_2 \oplus, s_2 \oplus,$$

$$\Leftrightarrow , i \oplus t_2, i f(t_2 \oplus j) = \begin{bmatrix} , \oplus s_2, s_2 \oplus \\ , i \oplus s_2, s_2 \oplus \end{bmatrix}, t_2 \oplus,,$$

$$\Leftrightarrow , i \oplus t_2, i f(t_2 \oplus j) = \begin{bmatrix} , \\ , \end{bmatrix}, t_2 \oplus,,$$

$$\Leftrightarrow , i \oplus t_2, i f(t_2 \oplus j) = \begin{bmatrix} , \\ , \end{bmatrix}, t_2 \oplus,,$$

$$\Leftrightarrow , i \oplus t_2, t_2 \oplus,$$

$$, if(i \oplus j) = \begin{bmatrix} , \otimes c_1, \\ , \otimes c_2, \end{bmatrix}$$

$$\Leftrightarrow, if(i=\varnothing) = \begin{bmatrix} , i \otimes s_1, \\ , i \otimes t_1, i f(t_1 \bigcirc j) = \begin{bmatrix} , \otimes s_1, \\ , i \otimes s_1, \end{bmatrix}, if(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_1, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, if(i=\varnothing) = \begin{bmatrix} , i \otimes s_1, \\ , < 1 >, \end{bmatrix}, if(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_1, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, if(i=\varnothing) = \begin{bmatrix} , i \otimes s_1, i \otimes s_2, s_2 \oplus, \\ , < 1 >, < 2 >, s_2 \oplus, \end{bmatrix}, if(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_1, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, if(i=\varnothing) = \begin{bmatrix} , i \otimes s_1, i \otimes s_2, s_1 = s_2, s_2 \oplus, \\ , < 1 >, < 2 >, s_1 = s_2, s_2 \oplus, \end{bmatrix}, if(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_1, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow, if(i=\varnothing) = \begin{bmatrix} , i \otimes s_1, i \otimes s_2, s_1 = s_2, s_2 \oplus, \\ , < 1 >, < 2 >, s_1 = s_2, s_2 \oplus, \end{bmatrix},$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_1, \\ , i f(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2, s_2 \oplus,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_1, \\ , i f(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$\Leftrightarrow, if(i=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_1, \\ , i f(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_2 \oplus, s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_2 \oplus, s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_2 \oplus, s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_1 \oplus, \otimes c_1, \\ , s_2 \oplus, s_1 \oplus, \otimes c_2, \end{bmatrix}, s_1 = s_2,$$

$$if(s_1=\varnothing) = \begin{bmatrix} , s_2 \oplus, s_1 \oplus, \otimes c_3, \\ , s_2 \oplus, s_1 \oplus, \otimes c_2, \end{bmatrix}, s_2 \oplus, s_2 \oplus, s_2 \oplus, s_2 \oplus, s_2 \oplus, \otimes c_2, \end{bmatrix}, s_2 \oplus, s_2 \oplus, s_2 \oplus, s_2 \oplus, \otimes c_2, \end{bmatrix}, s_2 \oplus, s_2 \oplus, s_2 \oplus, \otimes c_2, \end{bmatrix}, s_2 \oplus, s_2 \oplus, s_2 \oplus, \otimes c_2, \end{bmatrix}, s_2 \oplus, s_2 \oplus, s_2 \oplus, \otimes c_2, \end{bmatrix}, s_2 \oplus, s_2$$

$$\begin{split} &if(s_1=\varnothing) - \begin{bmatrix} ,s_1=s_2,s_2 \oplus,s_1 \oplus, \odot c_1,\\ ,s_1=s_2,if(s_1=\varnothing) - \begin{bmatrix} ,s_2 \oplus,s_1 \oplus, \odot c_3,\\ ,s_2 \oplus,s_1 \oplus, \odot c_2, \end{bmatrix},\\ &\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i \otimes s_1,i \otimes s_2,\\ ,<1>,<2> , \end{bmatrix},\\ &if(s_1=\varnothing) - \begin{bmatrix} ,s_1=s_2,s_2 \oplus,s_1 \oplus, \odot c_1,\\ ,s_1=s_2,if(s_2=\varnothing) - \begin{bmatrix} ,s_2 \oplus,s_1 \oplus, \odot c_3,\\ ,s_2 \oplus,s_1 \oplus, \odot c_2, \end{bmatrix},\\ &\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i \otimes s_1,i \otimes s_2,\\ ,<1>,<2> , \end{bmatrix},\\ &if(s_1=\varnothing) - \begin{bmatrix} ,s_2 \oplus,s_1 \oplus, \odot c_1,\\ ,if(s_2=\varnothing) - \begin{bmatrix} ,s_2 \oplus,s_1 \oplus, \odot c_3,\\ ,s_2 \oplus,s_1 \oplus, \odot c_2, \end{bmatrix},\\ &\Leftrightarrow ,if(i=\varnothing) - \begin{bmatrix} ,i \otimes s_1,i \otimes s_2,\\ ,i \otimes s_1,<2> ,\\ ,i(s_1,<2> ,\\ ,i(s_1,<2) ,\\ ,i(s_1,<2> ,\\ ,i(s_1,<2> ,\\ ,i(s_1,<2> ,\\ ,i(s_1,<2> ,\\ ,i(s_1,<2> ,\\ ,i(s_1,<2> ,\\ ,i(s_1,<2) ,\\ ,i(s_1,<2 ,\\ ,i(s_1,<2) ,\\ ,i(s_1,<2) ,\\ ,i(s_1,<2) ,\\ ,i(s_1,<2 ,\\ ,i(s_1,<2) ,\\ ,i(s_1,<2 ,\\ ,i(s_1,<2) ,\\ ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \otimes s_1, \\ . < 1 > . \end{bmatrix} -, if(i=\varnothing) - \begin{bmatrix} , i \otimes s_2, \\ . < 2 > . \end{bmatrix} -,$$

$$if(s_1 = \varnothing) = \begin{bmatrix} ,s_2 @, s_1 @, @c_1, \\ ,if(s_2 = \varnothing) = \begin{bmatrix} ,s_2 @, s_1 @, @c_3, \\ ,s_2 @, s_1 @, @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \otimes s_1, \\ \\ , <1>, \end{bmatrix},$$

$$if(s_1 = \varnothing) = \begin{bmatrix} ,i \otimes s_2, \\ , < 2 > , \end{bmatrix}, s_2 \oplus, s_1 \oplus, \odot c_1, \\ , < 2 > , \end{bmatrix}, if(s_2 = \varnothing) = \begin{bmatrix} ,s_2 \oplus, s_1 \oplus, \odot c_3, \\ , s_2 \oplus, s_1 \oplus, \odot c_3, \end{bmatrix}, if(s_2 = \varnothing) = \begin{bmatrix} ,s_2 \oplus, s_1 \oplus, \odot c_3, \\ ,s_2 \oplus, s_1 \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \odot s_1, \\ \\ , <1>, \end{bmatrix} - ,$$

$$if(s_1=\varnothing) - \begin{bmatrix} ,i \otimes s_2, s_2 @, \\ , <2>, s_2 @, \end{bmatrix} -, s_1 @, \odot c_1, \\ , (<2>, s_2 @, \end{bmatrix} -, if(s_2=\varnothing) - \begin{bmatrix} ,s_2 @, s_1 @, \odot c_3, \\ ,s_2 @, s_1 @, \odot c_2, \end{bmatrix} -, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} , i \otimes s_1, \\ \\ , <1>, \end{bmatrix},$$

$$if(s_1 = \varnothing) - \begin{bmatrix}, s_1 @, @c_1, \\ , if(i = \varnothing) - \begin{bmatrix}, i @ s_2, \\ , < 2 >, \end{bmatrix}, if(s_2 = \varnothing) - \begin{bmatrix}, s_2 @, s_1 @, @c_3, \\ , s_2 @, s_1 @, @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \otimes s_1, \\ , <1>, \end{bmatrix},$$

$$if(s_1=\varnothing) - \begin{bmatrix} , s_1 \oplus , \odot c_1, \\ , s_1 \oplus , if(i \oplus j) - \begin{bmatrix} , \odot c_3, \\ , \odot c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , \odot c_1, \\ , if(i \oplus j) - \begin{bmatrix} , \odot c_3, \\ , \odot c_2, \end{bmatrix}, \end{bmatrix},$$

Branch function with propositions:

$$, if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) = \begin{bmatrix} , i \oplus j, \odot c_1, \\ , \odot c_2, \end{bmatrix},$$

$$, if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , i! \oplus j, \odot c_2, \end{bmatrix},$$

Propositions with branch function:

$$, i \oplus j, i f(i \oplus j) = \begin{bmatrix} & \odot c_1, \\ & \odot c_2, \end{bmatrix} = , \Leftrightarrow , i \oplus j, \odot c_1,$$
$$, i! \oplus j, i f(i \oplus j) = \begin{bmatrix} & \odot c_1, \\ & \odot c_2, \end{bmatrix} = , \Leftrightarrow , i! \oplus j, \odot c_2,$$

$$, i \oplus j, \Leftrightarrow , i \oplus j, i \oplus j,$$

$$,i! \oplus j, \iff ,i! \oplus j,i! \oplus j,$$

18.2.8 Substitution

Identical node Propositions with branch function:

$$, i\mathcal{O}j, if(i\oplus t) = \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, \iff , i\mathcal{O}j, if(j\oplus t) = \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix},$$

proof:

$$, i \circlearrowleft j, i f(i \oplus t) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \circlearrowleft j, i f (i = \varnothing) - \begin{bmatrix} , i \circledcirc n, \\ , i \circledcirc m, i f (m \circlearrowleft t) - \begin{bmatrix} , \odot n, \\ , i \circledcirc n, \end{bmatrix} - , m \textcircled{\tiny m}, i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n = \varnothing) - \underbrace{\begin{bmatrix} , n \textcircled{\tiny m}, \odot c_1, \\ , n \textcircled{\tiny m}, \odot c_2, \end{bmatrix} - , i f (n$$

$$\Leftrightarrow , i \circlearrowleft j, i f(j = \varnothing) - \begin{bmatrix} , i \otimes n, \\ \\ , i \otimes m, i f(m \circlearrowleft t) - \begin{bmatrix} , \odot n, \\ \\ , i \otimes n, \end{bmatrix}, m \oplus, \end{bmatrix}, i f(n = \varnothing) - \begin{bmatrix} , n \oplus, \odot c_1, \\ \\ , n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, i \circledcirc n, \\ , i \circlearrowleft j, i \circledcirc m, if(m \circlearrowleft t) - \begin{bmatrix} , \odot n, \\ , i \circledcirc n, \end{bmatrix}, m \textcircled{\tiny{0}}, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} , n \textcircled{\tiny{0}}, \odot c_1, \\ , n \textcircled{\tiny{0}}, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, j \circledcirc n, \\ , i \circlearrowleft j, j \circledcirc m, if(m \circlearrowleft t) - \begin{bmatrix} , \odot n, \\ , i \circledcirc n, \end{bmatrix}, m \circlearrowleft, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} , n \circlearrowleft, \odot c_1, \\ , n \circlearrowleft, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, j \circledcirc n, \\ , j \circledcirc m, if(m \circlearrowleft t) - \begin{bmatrix} , i \circlearrowleft j, i \circledcirc n, \\ , i \circlearrowleft j, i \circledcirc n, \end{bmatrix}, m \circledast, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} , n \circledast, @c_1, \\ , n \circledast, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, j \otimes n, \\ , j \otimes m, if(m \circlearrowleft t) - \begin{bmatrix} , i \circlearrowleft j, \odot n, \\ , i \circlearrowleft j, j \otimes n, \end{bmatrix}, m \oplus, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} , n \oplus, \odot c_1, \\ , n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \circlearrowleft j, i f(j = \varnothing) - \begin{bmatrix}, j \circledcirc n, \\ , j \circledcirc m, i f(m \circlearrowleft t) - \begin{bmatrix}, \odot n, \\ , j \circledcirc n, \end{bmatrix}, m \circlearrowleft, \end{bmatrix}, i f(n = \varnothing) - \begin{bmatrix}, n \circlearrowleft, \odot c_1, \\ , n \circlearrowleft, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i\circlearrowleft j,if(j\oplus t)=\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix}$

$$, i \circlearrowleft j, i \oplus t, \iff , i \circlearrowleft j, j \oplus t,$$
$$, i \circlearrowleft j, i! \oplus t, \iff , i \circlearrowleft j, j! \oplus t,$$

Node connectivity Propositions with branch function:

$$, i \circlearrowleft j, i f(t \boxdot i) - \begin{bmatrix} , \circledcirc c_1, \\ \\ , \circledcirc c_2, \end{bmatrix} -, \; \Leftrightarrow \; , i \circlearrowleft j, i f(t \boxdot j) - \begin{bmatrix} , \circledcirc c_1, \\ \\ , \circledcirc c_2, \end{bmatrix} -,$$

$$\begin{array}{c} \text{proof:} \\ , i \circlearrowleft j, i f(t \oplus i) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \end{array}$$

$$\Leftrightarrow, i \circlearrowleft j, i f(t = \varnothing) - \begin{bmatrix}, t \circledcirc n, \\ , t \circledcirc m, i f(m \circlearrowleft i) - \begin{bmatrix}, \odot n, \\ , t \circledcirc n, \end{bmatrix}, m \circlearrowleft, \end{bmatrix}, i f(n = \varnothing) - \begin{bmatrix}, n \circlearrowleft, \odot c_1, \\ , n \circlearrowleft, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, t \circledcirc n, \\ , i \circlearrowleft j, t \circledcirc m, if(m \circlearrowleft i) - \begin{bmatrix} , \odot n, \\ , t \circledcirc n, \end{bmatrix}, m \textcircled{\tiny{0}}, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} , n \textcircled{\tiny{0}}, \odot c_1, \\ , n \textcircled{\tiny{0}}, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} , i \mathring{\odot} j, t \circledS n, \\ , t \circledS m, i \mathring{\odot} j, if(m \mathring{\odot} i) - \begin{bmatrix} , @n, \\ , t \circledS n, \end{bmatrix}, m \textcircled{\#}, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} , n \textcircled{\#}, @c_1, \\ , n \textcircled{\#}, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} , i \circlearrowleft j, t \circledcirc n, \\ , t \circledcirc m, i \circlearrowleft j, if(m \circlearrowleft j) - \begin{bmatrix} , @n, \\ , t \circledcirc n, \end{bmatrix}, m \textcircled{\tiny{0}}, \end{bmatrix}, if(n=\varnothing) - \begin{bmatrix} , n \textcircled{\tiny{0}}, @c_1, \\ , n \textcircled{\tiny{0}}, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \circlearrowleft j, i f(t = \varnothing) - \begin{bmatrix}, t \circledcirc n, \\ , t \circledcirc m, i f(m \circlearrowleft j) - \begin{bmatrix}, \odot n, \\ , t \circledcirc n, \end{bmatrix}, m \circledcirc, \end{bmatrix}, i f(n = \varnothing) - \begin{bmatrix}, n \circledcirc, \odot c_1, \\ , n \circledcirc, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i \circlearrowleft j, if(t \oplus j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

$$\begin{array}{ll} ,i \circlearrowleft j,t @ i, \iff ,i \circlearrowleft j,t @ j, \\ ,i \circlearrowleft j,t ! @ i, \iff ,i \circlearrowleft j,t ! @ j, \\ \end{array}$$

Subnode Propositions with branch function:

$$, i \oplus j, i f(i \oplus t) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i \oplus j, i f(j \circlearrowleft t) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

proof:
$$, i \oplus j, i f(i \oplus t) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , i \circlearrowleft j, i f(i = \varnothing) - \begin{bmatrix} , i \odot n, \\ , i \odot m, i f(m \circlearrowleft t) - \begin{bmatrix} , \odot n, \\ , i \odot m, i f(m \circlearrowleft t) - \begin{bmatrix} , m \odot , \odot c_1, \\ , m \odot , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $i \oplus m_1$, $m_1 \circlearrowleft j$, $m_1 \oplus$,

$$if(i=\varnothing)-\begin{bmatrix},i@n,\\\\,i@m,if(m\textcircled{\circ}t)-\begin{bmatrix},@n,\\\\.i@n.\end{bmatrix}-,m\textcircled{o},\end{bmatrix}-,if(n=\varnothing)-\begin{bmatrix},n\textcircled{o},@c_1,\\\\,n\textcircled{o},@c_2,\end{bmatrix}-,$$

$$\Leftrightarrow$$
, $i \odot m_1, m_1 \circlearrowleft j, m_1 \oplus, i != \varnothing,$

$$if(i=\varnothing)-\begin{bmatrix},i\otimes n,\\\\,i\otimes m,if(m\odot t)-\begin{bmatrix},\odot n,\\\\.i\otimes n.\end{bmatrix}-,m\odot,\end{bmatrix}-,if(n=\varnothing)-\begin{bmatrix},n\oplus,\odot c_1,\\\\,n\oplus,\odot c_2,\end{bmatrix}-,$$

$$\Leftrightarrow , i @ m_1, m_1 @ j, m_1 @, i != \varnothing, i @ m, i f(m @ t) - \begin{bmatrix}, @ n, \\ , i @ n.\end{bmatrix},$$

$$m \oplus, if(n = \varnothing) = \begin{bmatrix} , n \oplus, \odot c_1, \\ , n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing,i \otimes m_1,i \otimes m,m_1 \otimes j,if(m \otimes t)-\begin{bmatrix},\odot n,\\\\,i \otimes n,\end{bmatrix},$$

$$m_1 \oplus, m \oplus, if(n = \varnothing) = \begin{bmatrix}, n \oplus, \odot c_1, \\, n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing,i \odot m_1,i \odot m,m_1 \odot m,m_1 \odot j,if(m \odot t)-\begin{bmatrix},\odot n,\\\\iiiiim,\end{bmatrix},$$

$$m_1 \oplus, m \oplus, if(n = \varnothing) = \begin{bmatrix}, n \oplus, \odot c_1, \\, n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing,i @ m_1,i @ m,m_1 @ m,m @ j,if(m @ t)- \begin{bmatrix},@n,\\\\,i @ n,\end{bmatrix},$$

$$m_1 \oplus, m \oplus, if(n = \varnothing) = \begin{bmatrix}, n \oplus, \otimes c_1, \\, n \oplus, \otimes c_2, \end{bmatrix},$$

$$m_1 \oplus, m \oplus, if(n = \varnothing) = \begin{bmatrix}, n \oplus, \odot c_1, \\, n \oplus, \odot c_2, \end{bmatrix},$$

$$m_1 \oplus, m \oplus, if(n = \varnothing) = \begin{bmatrix}, n \oplus, \odot c_1, \\, n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing,i@m_1,m_1@j,m_1@,i@m,m@,if(j@t)-\begin{bmatrix},@n,\\\\,i@n,\end{bmatrix},$$

$$if(n\!=\!\varnothing)\!-\!\!\left[\begin{smallmatrix},n\oplus,\,\odot c_1,\\\\,n\oplus,\,\odot c_2,\end{smallmatrix}\right]\!\!-\!\!,$$

$$\Leftrightarrow ,i \oplus j, i f(j \circlearrowleft t) - \begin{bmatrix} , \odot n, \\ \\ . i \oplus n. \end{bmatrix} -, i f(n = \varnothing) - \begin{bmatrix} , n \oplus, \odot c_1, \\ \\ . n \oplus, \odot c_2. \end{bmatrix} -,$$

$$\Leftrightarrow, i @ j, i f(j @ t) - \begin{bmatrix}, @ n, n = \varnothing, \\ , i @ n, n ! = \varnothing, \end{bmatrix}, i f(n = \varnothing) - \begin{bmatrix}, n @, @ c_1, \\ , n @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow, i \oplus j, i f(j \circlearrowleft t) = \begin{bmatrix}, @n, n = \varnothing, i f(n = \varnothing) - \begin{bmatrix}, n \oplus, @c_1, \\ , n \oplus, @c_2, \end{bmatrix}, \\, i \otimes n, n != \varnothing, i f(n = \varnothing) - \begin{bmatrix}, n \oplus, @c_1, \\ , n \oplus, @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i @ j, i f(j @ t) = \begin{bmatrix}, @ n, n = \varnothing, n @, @ c_1, \\, i @ n, n != \varnothing, n @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow, i @ j, i f(j \circlearrowleft t) - \begin{bmatrix}, @ n, n @, @ c_1, \\ \\ , i @ n, n @, @ c_2, \end{bmatrix},$$

$$\Leftrightarrow , i @ j, i f(j @ t) - \begin{bmatrix} , @ c_1, \\ , @ c_2, \end{bmatrix},$$

$$,i \oplus j, i \oplus t, \iff ,i \oplus j, j \circlearrowleft t,$$

 $,i \oplus j, i! \oplus t, \iff ,i \oplus j, j! \circlearrowleft t,$

Subnode Propositions with branch function:

$$, i \oplus j, i f(t \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i \oplus j, i f(i \circlearrowleft t) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix},$$

proof:
$$, i \oplus j, i f(t \oplus j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix} -,$$

$$\Leftrightarrow, i \oplus j, i f(t = \varnothing) - \begin{bmatrix}, t \otimes n, \\ , t \otimes m, i f(m \circlearrowleft j) - \begin{bmatrix}, \odot n, \\ , t \otimes n, \end{bmatrix}, m \oplus, \end{bmatrix}, i f(n = \varnothing) - \begin{bmatrix}, n \oplus, \odot c_1, \\ , n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i = \emptyset$, $i \otimes m_1$, $m_1 \otimes j$, $m_1 \otimes j$,

$$if(t=\varnothing) - \begin{bmatrix} ,t \otimes n, \\ ,t \otimes m, if(m \circlearrowleft j) - \begin{bmatrix} , \odot n, \\ ,t \otimes n, \end{bmatrix} - , if(n=\varnothing) - \begin{bmatrix} , n \oplus , \odot c_1, \\ , n \oplus , \odot c_2, \end{bmatrix} - ,$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, m_1 @, t @ n, \\ ,i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, m_1 @, t @ m, if(m \circlearrowleft j) - \begin{bmatrix} ,@n, \\ ,t @ n, \end{bmatrix}, m @, \end{bmatrix},$$

$$if(n=\varnothing)$$
 $\begin{bmatrix} , n \oplus, \odot c_1, \\ , n \oplus, \odot c_2, \end{bmatrix}$,

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} , i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, m_1 @, t @ n, \\ , i !=\varnothing, i @ m_1, t @ m, m_1 \circlearrowleft j, if(m \circlearrowleft j) - \begin{bmatrix} , @ n, \\ , t @ m, \end{bmatrix}, m @, m_1 @, \end{bmatrix},$$

$$if(n=\varnothing)$$
 $\begin{bmatrix} , n^{\textcircled{@}}, @c_1, \\ , n^{\textcircled{@}}, @c_2, \end{bmatrix}$,

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, t @ n, \\ ,i !=\varnothing, i @ m_1, t @ m, m_1 \circlearrowleft j, if(m \circlearrowleft m_1) - \begin{bmatrix} ,@ n, \\ ,t @ n, \end{bmatrix}, m @ \end{bmatrix},$$

$$m_1 \oplus , if(n = \varnothing) = \begin{bmatrix} , n \oplus , \odot c_1, \\ , n \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i !=\varnothing, i @ m_1, m_1 & j, t @ n, \\ ,i !=\varnothing, i @ m_1, m_1 = \varnothing, t @ m, m = \varnothing, m_1 & j, if(m & m_1) - \begin{bmatrix} ,@ n, \\ ,t @ n, \end{bmatrix}, m @ \end{bmatrix},$$

$$m_1 \oplus , if(n = \varnothing) = \begin{bmatrix} , n \oplus , \odot c_1, \\ , n \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i !=\varnothing, i @ m_1, m_1 & 0 j, t @ n, \\ ,i !=\varnothing, i @ m_1, t @ m, m_1 & j, m_1 = \varnothing, m = \varnothing, if(m & m_1) - \begin{bmatrix} ,@ n, \\ ,t @ n, \end{bmatrix}, m & \end{bmatrix},$$

$$m_1 \oplus , if(n = \varnothing) = \begin{bmatrix} , n \oplus , \odot c_1, \\ , n \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} , i !=\varnothing, i @ m_1, m_1 & 0 j, t @ n, \\ , i !=\varnothing, i @ m_1, t @ m, m_1 & j, m_1 = \varnothing, m = \varnothing, if(m & m_1) - \begin{bmatrix} , @ n, \\ , t @ n, \end{bmatrix}, m & \end{bmatrix},$$

$$m_1 \otimes , if(n = \varnothing) = \begin{bmatrix} , n \otimes , \otimes c_1, \\ , n \otimes , \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i!=\varnothing, i @ m_1, m_1 \circlearrowleft j, t @ n, \\ ,i!=\varnothing, i @ m_1, t @ m, m_1 \circlearrowleft j, if(m \circlearrowleft m_1) - \begin{bmatrix} ,@ n, \\ ,t @ n, \end{bmatrix}, m \oplus, \end{bmatrix},$$

$$m_1 \oplus , if(n = \varnothing) = \begin{bmatrix} , n \oplus , \odot c_1, \\ , n \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, t @ n, \\ ,i !=\varnothing, i @ m_1, t @ m, if(m \circlearrowleft m_1) - \begin{bmatrix} ,@n, \\ ,t @ n, \end{bmatrix}, m_1 \circlearrowleft j, m @ \end{bmatrix},$$

$$m_1 \otimes , if(n = \varnothing) = \begin{bmatrix} , n \otimes , \otimes c_1, \\ , n \otimes , \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, t @ n, \\ ,t !=\varnothing, i !=\varnothing, i @ m_1, t @ m, if(m \circlearrowleft m_1) - \begin{bmatrix} ,@ n, \\ ,t @ n, \end{bmatrix} -, m_1 \circlearrowleft j, m @ , \end{bmatrix},$$

$$m_1 \otimes , if(n = \varnothing) = \begin{bmatrix} , n \otimes , \otimes c_1, \\ , n \otimes , \otimes c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, t @ n, \\ ,t !=\varnothing, i !=\varnothing, i @ m_1, t @ m, if(i \circlearrowleft t) - \begin{bmatrix} ,@ n, \\ ,t @ n, \end{bmatrix}, m_1 \circlearrowleft j, m @, \end{bmatrix},$$

$$m_1 \oplus, if(n = \varnothing) - \begin{bmatrix}, n \oplus, \odot c_1, \\, n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, if(t=\varnothing) = \begin{bmatrix}, i! = \varnothing, i \otimes m_1, m_1 & \circlearrowleft, t \otimes n, \\ , i! = \varnothing, i \otimes m_1, t \otimes m, if(i & \circlearrowleft, t \otimes n, \end{bmatrix}, m_1 & \circlearrowleft, m_2 & \circlearrowleft, m_2 & \circlearrowleft, m_3 & \circlearrowleft, m_4 & \hookrightarrow, m_4$$

$$m_1 \oplus , if(n = \varnothing) = \begin{bmatrix} , n \oplus , \odot c_1, \\ , n \oplus , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(t=\varnothing) - \begin{bmatrix} ,i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, m_1 @, t @ n, \\ ,i !=\varnothing, i @ m_1, m_1 \circlearrowleft j, m_1 @, t @ m, m @, if(i \circlearrowleft t) - \begin{bmatrix} ,@ n, \\ ,t @ n, \end{bmatrix}, \end{bmatrix},$$

$$if(n=\varnothing) = \begin{bmatrix} , n \oplus, \odot c_1, \\ , n \oplus, \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i @ m_1, m_1 @ j, m_1 @, i f(t=\varnothing) - \begin{bmatrix}, t @ n, \\ , i f(i @ t) - \begin{bmatrix}, @ n, \\ , t @ n, \end{bmatrix}, \end{bmatrix},$$

$$if(n=\varnothing)$$
- $\begin{bmatrix} ,n \oplus, \odot c_1, \\ ,n \oplus, \odot c_2, \end{bmatrix}$ - $\begin{bmatrix} ,n$

$$\Leftrightarrow, i @ j, i f(t = \varnothing) - \begin{bmatrix}, t @ n, \\ , i f(i @ t) - \begin{bmatrix}, @ n, \\ , t @ n, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \oplus j, i f(t = \varnothing) - \begin{bmatrix}, t \otimes n, n! = \varnothing, \\ , i f(i \circlearrowleft t) - \begin{bmatrix}, \odot n, n = \varnothing, \\ , t \otimes n, n! = \varnothing, \end{bmatrix}, \end{bmatrix},$$

$$if(n=\varnothing)$$
 $\begin{bmatrix} ,n \oplus, \odot c_1, \\ ,n \oplus, \odot c_2, \end{bmatrix}$ $\end{bmatrix}$

$$\Leftrightarrow, i \oplus j, i f(t = \varnothing) - \begin{bmatrix}, t \otimes n, n! = \varnothing, i f(n = \varnothing) - \begin{bmatrix}, n \oplus, \odot c_1, \\ n \oplus, \odot c_2, \end{bmatrix}, \\, i f(i \circlearrowleft t) - \begin{bmatrix}, \odot n, n = \varnothing, i f(n = \varnothing) - \begin{bmatrix}, n \oplus, \odot c_1, \\ n \oplus, \odot c_2, \end{bmatrix}, \\, t \otimes n, n! = \varnothing, i f(n = \varnothing) - \begin{bmatrix}, n \oplus, \odot c_1, \\ n \oplus, \odot c_1, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \oplus j, i f(t = \varnothing) - \begin{bmatrix}, t \otimes n, n != \varnothing, n \oplus, \odot c_2, \\, i f(i \otimes t) - \begin{bmatrix}, \odot n, n = \varnothing, n \oplus, \odot c_1, \\, t \otimes n, n != \varnothing, n \oplus, \odot c_2,\end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow ,i \oplus j, i f(t = \varnothing) - \begin{bmatrix} ,t \otimes n, n \oplus, @c_2, \\ ,i f(i \circlearrowleft t) - \begin{bmatrix} , \otimes n, n \oplus, @c_1, \\ ,t \otimes n, n \oplus, @c_2, \end{bmatrix} - , \end{bmatrix} - ,$$

$$\Leftrightarrow ,i \oplus j, if(t = \varnothing) - \begin{bmatrix} , @c_2, \\ , if(i \circlearrowleft t) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \end{bmatrix},$$

$$\Leftrightarrow ,i \oplus j,i! = \varnothing,if(t=\varnothing) - \begin{bmatrix} , @c_2, \\ , if(i \circlearrowleft t) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \end{bmatrix},$$

$$\Leftrightarrow ,i \oplus j, i f(t = \varnothing) - \begin{bmatrix} ,i! = \varnothing, \otimes c_2, \\ ,i! = \varnothing, i f(i \circlearrowleft t) - \begin{bmatrix} , \otimes c_1, \\ , \otimes c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow ,i \oplus j, i f(t = \varnothing) - \begin{bmatrix} ,t = \varnothing, i != \varnothing, \otimes c_2, \\ ,i != \varnothing, i f(i \circlearrowleft t) - \begin{bmatrix} , \otimes c_1, \\ , \otimes c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \oplus j, i f(t = \varnothing) - \begin{bmatrix}, t = \varnothing, i != \varnothing, i ! \circlearrowleft t, @ c_2, \\, i != \varnothing, i f(i \circlearrowleft t) - \begin{bmatrix}, @ c_1, \\ & @ c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i \oplus j, i f(t = \varnothing) - \begin{bmatrix}, t = \varnothing, i != \varnothing, i ! \circlearrowleft t, i f(i \circlearrowleft t) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\, i != \varnothing, i f(i \circlearrowleft t) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\$$

$$\Leftrightarrow, i @ j, i f(t = \varnothing) = \begin{bmatrix}, i f(i \circlearrowleft t) - \begin{bmatrix}, @ c_1, \\ & & \ddots \end{bmatrix}, \\, i f(i \circlearrowleft t) - \begin{bmatrix}, @ c_2, \\ & & \ddots \end{bmatrix}, \\, & & \ddots \end{bmatrix},$$

$$\Leftrightarrow, i @ j, i f(t = \varnothing) - \left[, \right], i f(i \circlearrowleft t) - \left[, \stackrel{\bigcirc}{@} c_1, \right],$$

$$\Leftrightarrow , i @ j, i f(i @ t) - \begin{bmatrix} , @ c_1, \\ \\ , @ c_2, \end{bmatrix} -,$$

Propositions with propositions:

$$, i \oplus j, t \oplus j, \iff , i \oplus j, i \circlearrowleft t,$$
$$, i \oplus j, t! \oplus j, \iff , i \oplus j, i! \circlearrowleft t,$$

18.2.9 Opposition

$$,i \oplus j,i! \oplus j, \iff ,\otimes,$$

$$,i!\oplus j,i\oplus j,\iff,\otimes,$$

18.2.10 Other

$$,i!=\varnothing,i\odot t,\Leftrightarrow\sim,i\odot t,$$

$$\begin{array}{l} \text{proof:} \\ , i != \varnothing, i \otimes t, \\ \Leftrightarrow , i != \varnothing, i \otimes t, i f(i \oplus t) - \boxed{,} \\ , \\ \end{array}$$

$$\Leftrightarrow, i != \varnothing, i \otimes t, \begin{bmatrix}, i \otimes t, \\, i f(i = \varnothing) \end{bmatrix}, \begin{bmatrix}, \\, i \otimes t_0, t_0 ! \otimes t, t_0 \otimes ,\end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, i != \varnothing, i \otimes t, i \otimes t, \\ , i != \varnothing, i \otimes t, i f(i=\varnothing) - \begin{bmatrix}, \\ , i \otimes t_0, t_0 ! \otimes t, t_0 \otimes t, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, i != \varnothing, i @ t, i @ t, \\ , i @ t, i != \varnothing, i f (i=\varnothing) \end{bmatrix}, \begin{bmatrix}, \\ , i @ t_0, t_0 ! @ t, t_0 @, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , \begin{bmatrix} ,i !=\varnothing, i @t, i @t, \\ ,i @t, i !=\varnothing, i @t_0, t_0 ! @t, t_0 @, \end{bmatrix},$$

$$, i = \emptyset, \Leftrightarrow \sim, i! \oplus t,$$

proof: $,i=\varnothing,$ $\Leftrightarrow,i=\varnothing,i\otimes n,n\oplus,$ $\Leftrightarrow,i=\varnothing,i\otimes n,n!=\varnothing,n\oplus,$

$$\Leftrightarrow ,i=\varnothing, i\otimes n, if(n=\varnothing) - \begin{bmatrix} , \otimes, \\ , \otimes, \end{bmatrix}, n \oplus,$$

$$\Leftrightarrow ,i=\varnothing, i\otimes n, if(n=\varnothing) - \begin{bmatrix} , \otimes, \\ , n \oplus, \otimes, \end{bmatrix},$$

$$\Leftrightarrow ,i=\varnothing, i\otimes n, if(n=\varnothing) - \begin{bmatrix} , n \oplus, \otimes, \\ , n \oplus, \end{bmatrix},$$

$$\Leftrightarrow ,i=\varnothing, if(i=\varnothing) - \begin{bmatrix} , i\otimes n, if(n=\varnothing) - \begin{bmatrix} , n \oplus, \otimes, \\ , n \oplus, \end{bmatrix},$$

$$\Leftrightarrow ,i=\varnothing, if(i=\varnothing) - \begin{bmatrix} , i\otimes n, if(n=\varnothing) - \begin{bmatrix} , n \oplus, \otimes, \\ , n \oplus, \end{bmatrix},$$

$$\Leftrightarrow ,i=\varnothing, if(i=\varnothing) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, m \oplus, if(n=\varnothing) - \begin{bmatrix} , n \oplus, \otimes, \\ , n \oplus, \end{bmatrix},$$

$$\Leftrightarrow ,i=\varnothing, if(i=\varnothing) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n, \end{bmatrix}, i(s) - \begin{bmatrix} , i\otimes n, \\ , i\otimes n,$$

$$\Leftrightarrow, i = \varnothing, i f(i = \varnothing) - \begin{bmatrix}, i \otimes n, \\ , i \otimes m, i f(m \otimes t) - \begin{bmatrix}, 0 & n, \\ , i \otimes n, \end{bmatrix}, m \oplus, \end{bmatrix}, i f(n = \varnothing) - \begin{bmatrix}, n \oplus, \otimes, \\ , n \oplus, \end{bmatrix},$$

$$\Leftrightarrow, i = \varnothing, i! \oplus t,$$

$$, i \oplus m, j \oplus n, i f(i \circlearrowleft j) - \boxed{ }, \Leftrightarrow , i \oplus m, j \oplus n, i f(m \circlearrowleft n) - \boxed{ },$$

$$\Leftrightarrow ,i!=\varnothing,j!=\varnothing,i\varnothing t_1,t_1=\varnothing,j\varnothing t_2,t_2=\varnothing,if(t_1\circlearrowleft t_2)-\begin{bmatrix} ,t_1\circlearrowleft m,t_2\circlearrowleft n,t_1\circlearrowleft,t_2\uplus,\\ ,t_1\circlearrowleft m,t_2\circlearrowleft n,t_1\uplus,t_2\uplus,\\ ,t_2\circlearrowleft n,t_1\uplus,t_2\uplus,\\ ,t_2\circlearrowleft n,t_1\uplus,t_2\uplus,\\ ,t_2\circlearrowleft n,t_1\uplus,t_2\uplus,\\ ,t_1\circlearrowleft n,t_1\uplus,t_2\smile,\\ ,t_1\circlearrowleft n,t_1\uplus,t_2\smile,\\ ,t_1\circlearrowleft n,t_1\uplus,t_2\smile,\\ ,t_1\circlearrowleft n,t_1\smile,t_2\smile,\\ ,t_1\smile,t_2\smile,\\ ,$$

$$, i \oplus m, j \oplus n, i \circlearrowleft j, \iff i \oplus m, j \oplus n, m \circlearrowleft n,$$
$$, i \oplus m, j \oplus n, i ! \circlearrowleft j, \iff i \oplus m, j \oplus n, m ! \circlearrowleft n,$$

$$,i \oplus j, j \oplus, \iff, j \oplus, i \oplus j,$$

proof:

$$,i\oplus j,j\oplus ,$$

$$\Leftrightarrow$$
, $i = \emptyset$, $i \oplus m$, $m \circ j$, $m \oplus j$, $j \oplus j$,

$$\Leftrightarrow$$
, $i != \varnothing$, $i @ m$, $m @ j$, $j \oplus$, $m @$,

$$\Leftrightarrow$$
, $i != \varnothing$, $i \odot m$, $j \oplus$, $m \circ j$, $m \oplus$,

$$\Leftrightarrow$$
 $, j \oplus , i! = \varnothing, i \oplus m, m \circlearrowleft j, m \oplus ,$

$$\Leftrightarrow$$
 $, j \oplus, i \oplus j,$

$$,i \oplus j,j \ominus, \iff ,j \ominus,i \oplus j,$$

$$,i @ i_0, i @ i_0, i_0 @, \iff, i @ i_0, i_0 @ i, i_0 @,$$

proof:

$$,i \otimes i_0, i \otimes i_0, i_0 \otimes,$$

$$\Leftrightarrow$$
, $i \odot i_0$, $i \odot i_1$, $i_1 \odot i_0$, $i \odot i_0$, $i_0 \odot i_0$,

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_1$, $i \otimes i_0$, $i_1 \otimes i_0 \otimes i_0$,

$$\Leftrightarrow$$
, $i \odot i_0$, $i \odot i_1$, $i \odot i_1$, $i \odot i_0$, $i_1 \odot i_0$, $i_0 \odot i_0$,

$$\Leftrightarrow$$
, $i \oplus i_0$, $i \oplus i_1$, $i \oplus i_1$, $i_1 \oplus i_0$, $i_1 \oplus$, $i_0 \oplus$,

$$\Leftrightarrow$$
, $i \odot i_0$, $i \odot i_1$, $i_1 \odot i_0$, $i_1 \odot i_0$, $i_0 \odot i_0$,

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_0$, $i \otimes i_1$, $i_1 \otimes i_0$, $i_1 \otimes i_0 \otimes i_0$

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_0$, $i \otimes i_0$, $i \otimes i_1$, $i_1 \otimes i_0$, $i_1 \otimes i_0 \otimes i_0$,

$$\Leftrightarrow$$
 $,i \otimes i_0, i \otimes i_0, i \otimes i_1, i \otimes i_0, i_1 \otimes i_0, i_1 \otimes i_0, i_0 \otimes ,$

$$\Leftrightarrow$$
 $,i \otimes i_0, i \otimes i_0, i \otimes i_1, i \otimes i_0, i_1 \otimes i, i_1 \otimes i_0 \otimes i_0$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_1, i_1 \oplus i, i_1 \oplus, i_0 \oplus,$$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_1, i_0 \circlearrowleft i_1, i_1 \oplus i, i_1 \oplus, i_0 \oplus,$$

$$\Leftrightarrow , i @ i_0, i @ i_1, i_0 @ i_1, i_0 @ i, i_1 @, i_0 @,$$

$$\Leftrightarrow \ , i @ i_0, i @ i_1, i_0 @ i, i_1 @, i_0 @,$$

$$\iff, i @ i_0, i @ i_1, i_1 @, i_0 @ i, i_0 @,$$

$$\Leftrightarrow \ ,i @ i_0, i_0 @ i, i_0 @ i,$$

$$,i \oplus i, \iff ,i \oplus i_0, i \oplus i_0, i_0 \oplus ,$$

19 Tree Order Induction

19.1 Definition of flag object &SVi with identical node.

19.1.1 Swap definition:

19.1.2 Substitution definition:

$$,i \circlearrowleft j, \&SVi \circlearrowleft i, \Leftrightarrow ,i \circlearrowleft j, \&SVi \circlearrowleft j,$$

19.2 Definition of flag object &SVi with subnode.

$$, i \oplus j, \&SVi \oplus j, \Leftrightarrow , i \oplus j, \&SVi \circlearrowleft i,$$

19.3 Theorems of flag object &SVi with identical node.

19.3.1 Swap with previous node operator:

$$, \&SVi \circlearrowleft i, j \ominus, \Leftrightarrow , j \ominus, \&SVi \circlearrowleft i,$$

19.3.2 Swap with branch function:

$$,\,\&S\!Vi\,\circlearrowleft\!i,if(m\!=\!n)\!-\!\!\left[\!\begin{matrix},\,@c_1,\\\\,\,@c_2,\end{matrix}\right]\!\!-\!,\,\,\Leftrightarrow\,,if(m\!=\!n)\!-\!\!\left[\!\begin{matrix},\,\&S\!Vi\,\circlearrowleft\!i,\,@c_1,\\\\,\,\&S\!Vi\,\circlearrowleft\!i,\,@c_2,\end{matrix}\right]\!\!-\!,$$

$$, \&SVi \circlearrowleft i, if(m=\varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m=\varnothing) - \begin{bmatrix} , \&SVi \circlearrowleft i, @c_1, \\ \\ , \&SVi \circlearrowleft i, @c_2, \end{bmatrix},$$

$$, \&SVi \circlearrowleft i, if(m \circlearrowleft n) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) - \begin{bmatrix} , \&SVi \circlearrowleft i, @c_1, \\ \\ , \&SVi \circlearrowleft i, @c_2, \end{bmatrix},$$

$$, \&SVi \circlearrowleft i, if(m \rightarrow n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m \rightarrow n) - \begin{bmatrix} , \&SVi \circlearrowleft i, @c_1, \\ , \&SVi \circlearrowleft i, @c_2, \end{bmatrix},$$

19.3 Theorems of flag object &SVi with identical node.

$$, \&SVi \circlearrowleft i, if(m \circlearrowleft n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , \&SVi \circlearrowleft i, @c_1, \\ , \&SVi \circlearrowleft i, @c_2, \end{bmatrix},$$

$$,\,\&S\!Vi\,\circlearrowleft\!i,if(m\oplus n)-\begin{bmatrix},\,@c_1,\\\\,\,@c_2,\end{bmatrix}\!,\,\,\Leftrightarrow\,\,,if(m\oplus n)-\begin{bmatrix},\,\&S\!Vi\,\circlearrowleft\!i,\,@c_1,\\\\,\,\&S\!Vi\,\circlearrowleft\!i,\,@c_2,\end{bmatrix}\!,$$

19.3.3 Swap with propositions:

, &SVi
$$\circlearrowleft i, m = n, \Leftrightarrow, m = n, \&SVi \, \circlearrowleft i,$$

, &SVi
$$\circlearrowleft i, m = \varnothing$$
, \Leftrightarrow , $m = \varnothing$, &SVi $\circlearrowleft i$,

$$, \&SVi \circlearrowleft i, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, \&SVi \circlearrowleft i,$$

, &SVi
$$\circlearrowleft i, m \rightarrow n, \iff , m \rightarrow n, \&SVi \, \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, m \oplus n, \Leftrightarrow , m \oplus n, \&SVi \circlearrowleft i,$$

, &SVi
$$\circlearrowleft$$
i, $m = n$, \Leftrightarrow , $m = n$, &SVi \circlearrowleft i,

$$, \&SVi \circlearrowleft i, m! = \varnothing, \Leftrightarrow , m! = \varnothing, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, m! \rightarrow n, \Leftrightarrow , m! \rightarrow n, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, m! \circlearrowleft n, \Leftrightarrow , m! \circlearrowleft n, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, m! \oplus n, \Leftrightarrow , m! \oplus n, \&SVi \circlearrowleft i,$$

19.3.4 Propositions and recursive function:

, &SVi
$$\circlearrowleft i, R(m), \iff R(m), \&SVi \,\circlearrowleft i,$$

, &SVi $\circlearrowleft i, R_{-}(m), \iff R_{-}(m), \&SVi \,\circlearrowleft i,$

19.3.5 Swap with the same operand's operator:

, &SVi
$$\circlearrowleft i, i \otimes n, \iff , i \otimes n, \&SVi \, \circlearrowleft i,$$

proof: , & $SVi \circlearrowleft i, i \circledcirc n,$ $\Leftrightarrow , i \circledcirc i_0, i_0 \circledcirc , \& SVi \circlearrowleft i, i \circledcirc n,$ $\Leftrightarrow , i \circledcirc i_0, \& SVi \circlearrowleft i, i \circledcirc n, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circlearrowleft i_0, \& SVi \circlearrowleft i, i \circledcirc n, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circlearrowleft i_0, \& SVi \circlearrowleft i_0, i \circledcirc n, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circlearrowleft i_0, i \circledcirc n, \& SVi \circlearrowleft i_0, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circledcirc n, i \circlearrowleft i_0, \& SVi \circlearrowleft i_0, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circledcirc n, i \circlearrowleft i_0, \& SVi \circlearrowleft i, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circledcirc n, k SVi \circlearrowleft i, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circledcirc n, k SVi \circlearrowleft i, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circledcirc n, k SVi \circlearrowleft i, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circledcirc n, k SVi \circlearrowleft i, i_0 \circledcirc ,$ $\Leftrightarrow , i \circledcirc i_0, i \circledcirc n, k SVi \circlearrowleft i, i_0 \circledcirc ,$

 \Leftrightarrow , $i \otimes n$, &SV $i \otimes i$,

$$, \&SVi \circlearrowleft i, i \otimes n, \Leftrightarrow , i \otimes n, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i \odot n, \Leftrightarrow , i \odot n, \&SVi \circlearrowleft i,$$

19.3.6 Swap with the same operand's branch function:

$$,\,\&S\!V\!i\,\circlearrowleft\!i,if(i\!=\!j)\!\!=\!\!\!\begin{bmatrix},\,@c_1,\\\\,\,@c_2,\end{bmatrix}\!\!-\!,\,\,\Leftrightarrow\,,if(i\!=\!j)\!\!=\!\!\begin{bmatrix},\,\&S\!V\!i\,\circlearrowleft\!i,\,@c_1,\\\\,\,\&S\!V\!i\,\circlearrowleft\!i,\,@c_2,\end{bmatrix}\!\!-\!\!,$$

$$, \&S\!V\!i\,\circlearrowleft\!i, if(i\!=\!\varnothing) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow, if(i\!=\!\varnothing) - \begin{bmatrix}, \&S\!V\!i\,\circlearrowleft\!i, @c_1, \\ , \&S\!V\!i\,\circlearrowleft\!i, @c_2, \end{bmatrix},$$

$$, \&SVi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix}, \&SVi \circlearrowleft i, @c_1, \\ \\ \&SVi \circlearrowleft i, @c_2, \end{bmatrix},$$

$$, \&SVi \circlearrowleft i, if(i \circlearrowleft j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix}, \&SVi \circlearrowleft i, @c_1, \\ , \&SVi \circlearrowleft i, @c_2, \end{bmatrix},$$

$$, \&S\!V\!i\,\circlearrowleft\!i, if(i\rightarrow\!j) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\rightarrow\!j) = \begin{bmatrix}, \&S\!V\!i\,\circlearrowleft\!i, @c_1, \\ \\ , \&S\!V\!i\,\circlearrowleft\!i, @c_2, \end{bmatrix},$$

$$, \, \&\mathit{SVi}\, \circlearrowleft i, if(j \rightarrow i) - \begin{bmatrix} , \, @c_1, \\ \\ , \, @c_2, \end{bmatrix}, \, \Leftrightarrow \, , if(j \rightarrow i) - \begin{bmatrix} , \, \&\mathit{SVi}\, \circlearrowleft i, \, @c_1, \\ \\ , \, \&\mathit{SVi}\, \circlearrowleft i, \, @c_2, \end{bmatrix},$$

$$,\,\&S\!V\!i\,\circlearrowleft\!i,if(i\oplus j)-\!\!\left[\begin{smallmatrix},\,@c_1,\,\\\\,\,@c_2,\,\end{smallmatrix}\right]\!\!-\!\!,\,\,\Leftrightarrow\,,if(i\oplus j)-\!\!\left[\begin{smallmatrix},\,\&S\!V\!i\,\circlearrowleft\!i,\,@c_1,\,\\\\,\,\&S\!V\!i\,\circlearrowleft\!i,\,@c_2,\,\end{smallmatrix}\right]\!\!-\!\!,$$

$$, \&S\!V\!i\,\circlearrowleft\!i, if(j\oplus i) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(j\oplus i) - \begin{bmatrix}, \&S\!V\!i\,\circlearrowleft\!i, @c_1, \\ \\ , \&S\!V\!i\,\circlearrowleft\!i, @c_2, \end{bmatrix},$$

19.3.7 Swap with the same operand's propositions:

$$, \&SVi \circlearrowleft i, i = j, \iff , i = j, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i = \varnothing, \iff , i = \varnothing, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i \circlearrowleft j, \iff , i \circlearrowleft j, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i \circlearrowleft j, \iff , i \hookrightarrow j, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j \rightarrow i, \iff , j \rightarrow i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j \rightarrow i, \iff , j \rightarrow i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j \oplus i, \iff , j \oplus i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j \oplus i, \iff , j \oplus i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i! = j, \iff , i! = j, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i! \circlearrowleft j, \iff , i! \circlearrowleft j, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i! \circlearrowleft j, \iff , i! \circlearrowleft j, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i! \circlearrowleft j, \iff , i! \circlearrowleft j, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, i! \hookrightarrow j, \iff , i! \rightarrow j, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j! \rightarrow i, \iff , j! \rightarrow i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j! \rightarrow i, \iff , j! \rightarrow i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j! \hookrightarrow i, \iff , j! \hookrightarrow i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j! \hookrightarrow i, \iff , j! \hookrightarrow i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j! \hookrightarrow i, \iff , j! \hookrightarrow i, \&SVi \circlearrowleft i,$$

$$, \&SVi \circlearrowleft i, j! \circlearrowleft i, \iff , j! \circlearrowleft i, \&SVi \circlearrowleft i,$$

19.4 Axiom of tree order induction

19.4.1 axiom of inference:

$${ \atop } \implies < conclusion >$$

19.4.2 premise 1:

$$, i = \emptyset, \oplus c_1, \iff , i = \emptyset, \oplus c_2,$$

19.4.3 premise 2:

$$, \&SVi \oplus i, \oplus c_1, \Leftrightarrow , \&SVi \oplus i, \oplus c_2, \Rightarrow$$

$$, i!=\varnothing, \&SVi \circlearrowleft i, \oplus c_1, \Leftrightarrow , i!=\varnothing, \&SVi \circlearrowleft i, \oplus c_2,$$

19.4.4 conclusion:

$$, \oplus c_1, \Leftrightarrow , \oplus c_2,$$

19.5 Theorems of tree order induction

$$,i \oplus j,j \oplus i, \Leftrightarrow , \otimes,$$

```
\begin{array}{ll} \text{induction proof:} \\ premise \ 1: \\ , i = \varnothing, i \oplus j, j \oplus i, \\ \Leftrightarrow , i = \varnothing, i! \oplus j, i \oplus j, j \oplus i, \\ \Leftrightarrow , i = \varnothing, \otimes, j \oplus i, \\ \Leftrightarrow , i = \varnothing, \otimes, \end{array}
\Rightarrow , i = \varnothing, \otimes, \\ \\ premise \ 2: \\ , \&SVi \oplus i, i \oplus j, j \oplus i, \Leftrightarrow , \&SVi \oplus i, \otimes, \Rightarrow \\ , i! = \varnothing, \&SVi \circlearrowleft i, i \oplus j, j \oplus i, \\ \Leftrightarrow , i! = \varnothing, \&SVi \circlearrowleft i, i \oplus j, j \oplus i, \\ \Leftrightarrow , i! = \varnothing, \&SVi \circlearrowleft i, i \oplus j, j \oplus i, \\ \\ \Leftrightarrow , i! = \varnothing, \&SVi \circlearrowleft i, i \oplus j, j \oplus i, \\ \\ \end{array}
```

19 Tree Order Induction

$$\Leftrightarrow$$
, $i = \emptyset$, $i \oplus j$, &SV $i \circlearrowleft i$, $i \oplus j$, $j \oplus i$,

$$\Leftrightarrow$$
, $i!=\emptyset$, $i \oplus j$, &SV $i \oplus j$, $i \oplus j$, $j \oplus i$,

$$\Leftrightarrow$$
 $,i!=\varnothing,i\oplus j, \&SVi\oplus j,j\oplus i,i\oplus j,$

$$\Leftrightarrow$$
, $i!=\emptyset$, $i \oplus j$, &SV $i \oplus j$, \otimes ,

$$\Leftrightarrow$$
, $i!=\varnothing$, $i\oplus j$, &SVi \circlearrowleft i, \otimes ,

$$\Leftrightarrow$$
, $i = \emptyset$, &SVi $\circlearrowleft i, i \oplus j, \otimes$,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SVi \circlearrowleft i, \otimes ,

conclusion:

$$,i \oplus j,j \oplus i, \Leftrightarrow ,\otimes,$$

$$,i \oplus i, \Leftrightarrow , \otimes,$$

proof:

$$,i \oplus i,$$

$$\Leftrightarrow$$
, $i \otimes i_1, i_1 \otimes i, i_1 \otimes i$,

$$\Leftrightarrow$$
, $i \otimes i_1$, $i_1 \oplus i$, $i_1 \oplus i$, $i_1 \oplus i$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_2$, $i_2 \odot$, $i_1 \odot i$, $i_1 \odot i$, $i_1 \odot$,

$$\iff, i @ i_1, i @ i_2, i_1 @ i, i_1 @ i, i_1 @, i_2 @,$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i_1 \otimes i_2$, $i_1 \otimes i$, $i_1 \otimes i$, $i_1 \otimes i$, $i_2 \otimes i$,

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i_1 \otimes i_2$, $i_2 \otimes i$, $i_1 \otimes i$, $i_1 \otimes i$, $i_2 \otimes i$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_2$, $i_2 \odot i$, $i_1 \odot i$, $i_1 \odot i$, $i_2 \odot i$,

$$\Leftrightarrow ,i \otimes i_1,i \otimes i_1,i \otimes i_2,i_2 \oplus i,i_1 \oplus i,i_1 \oplus i,i_2 \oplus ,$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i \otimes i_1$, $i_2 \oplus i$, $i_1 \oplus i$, $i_1 \oplus i$, $i_2 \oplus i$,

19.5 Theorems of tree order induction

$$\Leftrightarrow , i \otimes i_1, i \otimes i_2, i \otimes i_1, i \otimes i_1, i_2 \oplus i, i_1 \oplus i, i_1 \oplus i, i_2 \oplus,$$

$$\Leftrightarrow$$
 $, i \otimes i_1, i \otimes i_2, i \otimes i_1, i \otimes i_1, i_2 \otimes i_1, i_1 \otimes i, i_1 \otimes i, i_2 \otimes ,$

$$\Leftrightarrow , i \otimes i_1, i \otimes i_2, i_2 \oplus i_1, i_1 \oplus i, i_1 \oplus, i_2 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i \otimes i_2$, $i_2 \otimes i_1$, $i_1 \otimes i$, $i_1 \otimes i_2 \otimes i$,

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_2$, $i \otimes i_2$, $i \otimes i_1$, $i_1 \otimes i$, $i_1 \otimes i_2 \otimes i$,

$$\Leftrightarrow$$
, $i \odot i_1$, $i \odot i_2$, $i \odot i_2$, \otimes , $i_1 \oplus$, $i_2 \oplus$,

$$\Leftrightarrow$$
 $, \otimes$,

$$,i\circlearrowleft j,i\oplus j,\Leftrightarrow,\otimes,$$

$$,i \circ j, \Leftrightarrow , \sim, i! \oplus j,$$

19 Tree Order Induction

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , i \otimes i_0, i \otimes j, i \oplus j, i_0 \oplus , \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , i \otimes i_0, i \otimes i_0, i \otimes j, i \oplus j, i_0 \oplus , \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , i \otimes i_0, i \otimes i_0, i_0 \otimes j, i \oplus j, i_0 \oplus , \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , i \otimes i_0, i \otimes i_0, i_0 \otimes j, i \oplus i_0, i_0 \oplus , \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , i \otimes j, i \otimes i_0, i \oplus i_0, i_0 \oplus , \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , i \otimes j, i \otimes i_0, \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , i \otimes j, \otimes , \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \oplus j) - \begin{bmatrix} , i \otimes j, \otimes , \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes j, if(i \oplus j) - \begin{bmatrix} , \otimes , \\ , i \otimes j, \end{bmatrix},$$

$$\Leftrightarrow , i \otimes j, if(i \oplus j) - \begin{bmatrix} , \otimes , \\ , i \otimes j, \end{bmatrix},$$

$$,i \circlearrowleft j, \Leftrightarrow , \sim, i! \oplus j,$$

19.6 Definition of Rd(i):r

$$, Rd(i): r, \iff , if(i = \varnothing) - \begin{bmatrix} , i @ r, \\ \\ , i @ j, j \oplus, Rd(j): r, j @, \end{bmatrix} -,$$

19.7 Theorems of Rd(i):r

$$,i!=\varnothing,Rd(i):r,\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\circledcirc,Rd(j):r,j\circledcirc,\\ ,Rd(i):r,\ \Leftrightarrow\ \sim,r=\varnothing,\\ \text{induction proof:}\\ premise\ 1:\\ ,i=\varnothing,Rd(i):r,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowleft r,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowleft r,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowleft r,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowleft r,=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowleft r,=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowright r,r=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowright r,r=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowright r,r=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,i\circledcirc r,i\circlearrowright r,r=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,i\circlearrowleft r,i\end{dcases} r,r=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,k\o r,r=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,k\o r,r=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,k\o r,r=\varnothing,\\ \Leftrightarrow\ ,i=\varnothing,k\o r,r=\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,k\o r,r=\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,k\o r,i\circlearrowleft r,r=\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\oplus,k\o r,r,j\oplus,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\ominus,k\o r,kd(j):r,j\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\ominus,i\circledcirc j,k\o r,kd(j):r,j\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\ominus,i\circledcirc j,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\ominus,i\circledcirc j,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\ominus,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\ominus,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\ominus,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,i!=\varnothing,i\circledcirc j,j\ominus,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,k\o r,i!=\varnothing,i\circledcirc r,j\ominus,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,k\o r,i!=\varnothing,i\circledcirc r,j\ominus,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,k\o r,i!=\varnothing,i\circledcirc r,j\ominus,r,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,k\o r,i!=\varnothing,i\o r,j\ominus,r,k\o r,kd(j):r,r=\varnothing,j\varnothing,\\ \Leftrightarrow\ ,k\o r,i!=\varnothing,i\o r,j\ominus,r,k\o r,kd(j):r,r=\varnothing,j\varnothing,$$

 $, i = \emptyset, Rd(i) : r, \iff , i = \emptyset, i \oplus r,$

19 Tree Order Induction

$$\Leftrightarrow , \&SVi \, \circlearrowleft i, i \, != \varnothing, Rd(i) : r, r \, = \, \varnothing,$$

$$\Leftrightarrow, i \! := \! \varnothing, \&S\!V\!i\, \circlearrowleft\!i, Rd(i) : r, r \! = \! \varnothing,$$

conclusion:

$$,Rd(i):r,\iff,Rd(i):r,r=\varnothing,$$

$$,Rd(i):r,\otimes ,\iff ,\otimes ,$$

20.1 Definition of Rc(i;j)

$$, Rc(i;j), \iff , if(i=\varnothing) - \begin{bmatrix} , \\ \\ , if(j=\varnothing) - \begin{bmatrix} , \\ \\ , i\oplus, j\oplus, Rc(i;j), \end{bmatrix} - , \end{bmatrix},$$

20.2 Theorems of Rc(i;j)

20.2.1 Transformation:

$$\begin{split} ,i = \varnothing, Rc(i;j), &\Leftrightarrow, i = \varnothing, \\ ,j = \varnothing, Rc(i;j), &\Leftrightarrow, j = \varnothing, \\ ,i != \varnothing, Rc(i;j), &\Leftrightarrow, i != \varnothing, if(j = \varnothing) - \begin{bmatrix} , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix}, \\ ,j != \varnothing, Rc(i;j), &\Leftrightarrow, j != \varnothing, if(i = \varnothing) - \begin{bmatrix} , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix}, \\ ,i != \varnothing, j != \varnothing, Rc(i;j), &\Leftrightarrow, i != \varnothing, j != \varnothing, i \oplus, j \oplus, Rc(i;j), \end{split}$$

$$, Rc(i;j), \iff , if(i=\varnothing) - \begin{bmatrix} , \\ \\ , if(j=\varnothing) - \begin{bmatrix} , \\ \\ , i\oplus, j\oplus, \end{bmatrix} - , Rc(i;j),$$

20.2.2 Result:

$$, Rc(i;j), \iff , Rc(i;j), if(i\!=\!\varnothing) - \begin{bmatrix} , \\ , j\!=\!\varnothing, \end{bmatrix} -,$$

induction proof:

premise 1:

$$, i = \varnothing, Rc(i; j),$$

$$\Leftrightarrow$$
, $i = \emptyset$,

$$\Leftrightarrow, i = \varnothing, if(i = \varnothing) - \begin{bmatrix},\\\\\\\\, j = \varnothing, \end{bmatrix},$$
$$\Leftrightarrow, i = \varnothing, Rc(i; j), if(i = \varnothing) - \begin{bmatrix},\\\\\\\\, j = \varnothing, \end{bmatrix},$$

$$, \&SHi \rightarrow i, Rc(i;j), \iff , \&SHi \rightarrow i, Rc(i;j), if(i=\varnothing) - \begin{bmatrix} , \\ , j=\varnothing, \end{bmatrix}, \implies i! - \varnothing , \&SHi \circlearrowleft , Rc(i;i)$$

$$,i!=\varnothing, \&SHi \circlearrowleft i, Rc(i;j),$$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, i!= \varnothing , $Rc(i;j)$,

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, i \! \models \! \varnothing, if(j \! = \! \varnothing) \! - \! \left[\begin{matrix} , \\ , i \! \oplus , j \! \oplus , Rc(i;j), \end{matrix} \right] \! - \! ,$$

$$\begin{split} \Leftrightarrow &, \&\mathit{SHi}\, \circlearrowleft i, i \vcentcolon= \varnothing, if(j = \varnothing) - \begin{bmatrix},\\ i\oplus, j\oplus, Rc(i;j), \end{bmatrix}, \\ \Leftrightarrow &, \&\mathit{SHi}\, \circlearrowleft i, i \vcentcolon= \varnothing, if(j = \varnothing) - \begin{bmatrix},\\ j = \varnothing,\\ i\oplus, j\oplus, Rc(i;j), \end{bmatrix}, \end{split}$$

$$\Leftrightarrow \text{ , \&SHi \circlearrowleft} i, i \! \models \! \varnothing, if(j \! = \! \varnothing) - \begin{bmatrix} , j \! = \! \varnothing, if(j \! = \! \varnothing) - \begin{bmatrix} , \\ , i \! = \! \varnothing, \end{bmatrix} - , \\ , i \! \oplus, j \! \oplus, Rc(i;j), \end{bmatrix} - ,$$

$$\Leftrightarrow \text{, \&SHi \circlearrowleft} i, i != \varnothing, i f (j = \varnothing) - \begin{bmatrix} , j = \varnothing, i f (i = \varnothing) - \begin{bmatrix} , \\ , j = \varnothing, \end{bmatrix} - , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix} - ,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i != \varnothing, if (j=\varnothing) - \begin{bmatrix} , if (i=\varnothing) - \begin{bmatrix} , \\ , j=\varnothing, \end{bmatrix} - , \\ , i\oplus, j\oplus, Rc(i;j), \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i f (j = \varnothing) - \begin{bmatrix}, \& SHi \circlearrowleft i, i f (i = \varnothing) - \begin{bmatrix}, \\ , j = \varnothing, \end{bmatrix}, \\, \& SHi \circlearrowleft i, i \oplus, j \oplus, Rc(i; j),\end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, i f(i = \varnothing) - \begin{bmatrix}, \\ , j = \varnothing, \end{bmatrix}, \\, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j),\end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, \\ , i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \end{bmatrix}, i f(i = \varnothing) - \begin{bmatrix}, \\ , j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow ,i != \varnothing, \, \& \mathit{SHi} \, \circlearrowleft i, if (j=\varnothing) - \left[, \\ i\oplus, j\oplus, Rc(i;j), \right] -, if (i=\varnothing) - \left[, \\ j=\varnothing, \right] -,$$

$$\Leftrightarrow ,i \! := \! \varnothing, \&S\!H\!i\, \circlearrowleft\!i, R\!c(i;j), if(i \! = \! \varnothing) \! - \! \begin{bmatrix} , \\ ,j \! = \! \varnothing, \end{bmatrix} \! \! - \! ,$$

$$, Rc(i; j), \Leftrightarrow , Rc(i; j), if(i = \varnothing) - \begin{bmatrix} , \\ , j = \varnothing, \end{bmatrix},$$

20.2.3 With R(i):

$$,Rc(i;j),R(i),R(j),\Leftrightarrow,R(i),R(j),$$

induction proof:

premise 1:

$$, i = \varnothing, Rc(i; j), R(i), R(j),$$

$$\Leftrightarrow$$
, $i = \emptyset, R(i), R(j),$

, &SHi
$$\rightarrow$$
i, $Rc(i;j)$, $R(i)$, $R(j)$, \iff , &SHi \rightarrow i, $R(i)$, $R(j)$, \Longrightarrow

$$, i != \varnothing, \&SHi \circlearrowleft i, Rc(i; j), R(i), R(j),$$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, i!= \varnothing , $Rc(i;j)$, $R(i)$, $R(j)$,

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix},\\\\, i \oplus, j \oplus, Rc(i; j),\end{bmatrix}, R(i), R(j),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix},R(i),R(j),\\\\, i \oplus, j \oplus, Rc(i; j),R(i),R(j),\end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, R(i), R(j), \\, \&SHi \circlearrowleft i, i \oplus, j \oplus, Rc(i; j), R(i), R(j),\end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, if(j=\varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, R(i), R(j), \\ i\oplus, j\oplus, \&SHi \rightarrow i, Rc(i;j), R(i), R(j),\end{bmatrix},$$

$$\Leftrightarrow ,i \mathbin{!}=\varnothing, if(j=\varnothing) - \left[\begin{matrix} , \&\mathit{SHi}\, \circlearrowleft i, R(i), R(j), \\ \\ ,i\oplus, j\oplus, \&\mathit{SHi} \rightarrow i, R(i), R(j), \end{matrix} \right],$$

$$\Leftrightarrow ,i != \varnothing, \&SHi \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix} ,R(i),R(j),\\ ,i\oplus,j\oplus,R(i),R(j), \end{bmatrix} -,$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, R(i), R(j), \\ , i \oplus, j \oplus, R(i), R(j), \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, R(i), R(j), \\ , j != \varnothing, i \oplus, j \oplus, R(i), R(j), \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, R(i), R(j), \\ , i\oplus, R(i), j != \varnothing, j\oplus, R(j), \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, R(i), R(j), \\ , i\oplus, R(i), j != \varnothing, R(j), \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, R(i), R(j), \\ , i\oplus, R(i), R(j), \end{bmatrix},$$

$$\Leftrightarrow ,i \models \varnothing, \&SHi \circlearrowleft i, if(j = \varnothing) = \begin{bmatrix} ,R(i),R(j),\\ ,i\oplus,R(i),j \models \varnothing,R(j), \end{bmatrix},$$

$$\Leftrightarrow ,i \! \models \! \varnothing, \&S\!H\!i\, \circlearrowleft\! i, if(j \! = \! \varnothing) \! = \! \begin{bmatrix} ,R(i),R(j),\\ ,i\oplus,R(i),R(j), \end{bmatrix} \! - \! \begin{bmatrix} ,R(i),R(j),\\ ,i\oplus,R(i),R(j), \end{bmatrix} \! - \! \begin{bmatrix} ,R(i),R(j),\\ ,i\oplus,R(i),R(j),\\ ,i\oplus,R(i),R(j), \end{bmatrix} \! - \! \begin{bmatrix} ,R(i),R(i),\\ ,R(i),\\ ,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, i != \varnothing, R(i), R(j), \\ , i != \varnothing, i \oplus, R(i), R(j), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, i != \varnothing, R(i), R(j), \\ , i != \varnothing, R(i), R(j), \end{bmatrix},$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, if (j \!=\! \varnothing) \!\!=\!\!\! \begin{bmatrix}, i !\!=\! \varnothing, R(i), R(j), \\, i !\!=\! \varnothing, R(i), R(j), \end{bmatrix}\!\!,$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, R(i), R(j), \\, R(i), R(j), \end{bmatrix},$$

$$\Leftrightarrow ,i \! := \! \varnothing, \& S\!H\!i \, \circlearrowleft\! i, if (j \! = \! \varnothing) \! - \! \left[, \right] \! - \! , R(i), R(j),$$

$$\Leftrightarrow$$
 , $i!=\varnothing$, &SHi \circlearrowleft i, $R(i)$, $R(j)$,

$$Rc(i;j), R(i), R(j), \Leftrightarrow R(i), R(j),$$

20.2.4 With operator:

$$, Rc(i; j), i \oplus, j \oplus, \Leftrightarrow , i \oplus, j \oplus,$$

proof: $, Rc(i; j), i \oplus, j \oplus,$

$$\Leftrightarrow, Rc(i;j), R(i), i \oplus, j \oplus,$$

$$\Leftrightarrow, Rc(i;j), R(i), i \oplus, R(j), j \oplus,$$

$$\Leftrightarrow, Rc(i;j), R(i), R(j), i \oplus, j \oplus,$$

$$\Leftrightarrow, R(i), R(j), i \oplus, j \oplus,$$

$$\Leftrightarrow, R(i), i \oplus, R(j), j \oplus,$$

$$\Leftrightarrow, i \oplus, R(j), j \oplus,$$

$$\Leftrightarrow, i \oplus, R(j), j \oplus,$$

$$, \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), i_0 \otimes, j_0 \otimes,$$

$$, Rc(i; j), \otimes, \Leftrightarrow, \otimes,$$

induction proof:

premise 1:

$$, i = \varnothing, Rc(i; j), \otimes,$$

$$\Leftrightarrow$$
, $i = \emptyset, \otimes$,

$$, \&SHi \rightarrow i, Rc(i;j), \otimes, \Leftrightarrow , \&SHi \rightarrow i, \otimes, \Rightarrow$$

$$, i != \varnothing, \&SHi \circlearrowleft i, Rc(i; j), \otimes,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i!=\varnothing, Rc(i;j), \otimes$,

$$\Leftrightarrow \text{ , } \&S\!H\!i\, \circlearrowleft\!i,i \! \models \! \varnothing, if(j \! = \! \varnothing) \! - \! \left[\!\!\! \begin{array}{c} , \\ , i \! \oplus, j \! \oplus, Rc(i;j), \end{array} \!\!\!\right] \!\!\! - \! , \otimes,$$

$$\Leftrightarrow \text{ , \&SHi \circlearrowleft} i, i \! := \! \varnothing, if(j \! = \! \varnothing) \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, Rc(i;j), \otimes, \end{bmatrix} \! - \! ,$$

$$\Leftrightarrow, i != \varnothing, if(j = \varnothing) - \left[, \&SHi \circlearrowleft i, \otimes, \\ \&SHi \circlearrowleft i, i\oplus, j\oplus, Rc(i;j), \otimes, \right]$$

$$\Leftrightarrow, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, \otimes, \\ , i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, \end{bmatrix} - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, \end{bmatrix} - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), \otimes, } - \underbrace{, i != \varnothing, if(j = \varnothing)}_{, i \oplus, if(j = \varnothing)}_{, i$$

$$\Leftrightarrow, i!=\varnothing, if(j=\varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, \otimes, \\ , i\oplus, j\oplus, \&SHi \to i, \otimes, \end{bmatrix},$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, if(j=\varnothing) - \begin{bmatrix}, \otimes, \\ , i\oplus, j\oplus, \otimes, \end{bmatrix},$$

$$\Leftrightarrow ,i \! := \! \varnothing, \& S\!H\!i \, \circlearrowleft\! i, if(j \! = \! \varnothing) \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \otimes, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, j \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes, \\ , i \! \oplus, \end{bmatrix} \! - \! \begin{bmatrix} , \otimes$$

$$\Leftrightarrow ,i!=\varnothing, \&SHi \circlearrowleft i, if (j=\varnothing)-\begin{bmatrix} , \otimes, \\ , i\oplus, \otimes, \end{bmatrix} -$$

$$\Leftrightarrow ,i != \varnothing, \&SHi \circlearrowleft i, if (j = \varnothing) - \boxed, -, \otimes,$$

$$\Leftrightarrow$$
, $i = \emptyset$, &SHi $\circlearrowleft i$, \otimes ,

$$, Rc(i; j), \otimes, \Leftrightarrow, \otimes,$$

20.2.5 Symmetry:

$$,Rc(i;j), \Leftrightarrow ,Rc(j;i),$$

induction proof: premise 1: $, i = \varnothing, Rc(i; j),$

$$\Leftrightarrow$$
, $i = \emptyset$,

$$\Leftrightarrow ,i=\varnothing,if(j=\varnothing)-\begin{bmatrix} ,\\ ,\\ \end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing)-\begin{bmatrix} ,i=\varnothing,\\ i=\varnothing\end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , i=\varnothing, \\ \\ , i=\varnothing, if(i=\varnothing) - \begin{bmatrix} , \\ \\ , j\oplus, i\oplus, Rc(j;i), \end{bmatrix} - \end{bmatrix}$$

$$\Leftrightarrow, i = \varnothing, if(j = \varnothing) - \left[, if(i = \varnothing) - \left[, j\oplus, i\oplus, Rc(j;i), \right], \right]$$

$$\Leftrightarrow$$
, $i = \emptyset$, $Rc(j; i)$,

, &SHi
$$\rightarrow$$
i, $Rc(i;j)$, \Leftrightarrow , &SHi \rightarrow i, $Rc(j;i)$, \Rightarrow

$$,i!=\varnothing$$
, &SHi \circlearrowleft i, $Rc(i;j)$,

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, i!= \varnothing , $Rc(i;j)$,

$$\Leftrightarrow, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, &SHi & \circlearrowleft i, \\ & i\oplus, j\oplus, &SHi \to i, Rc(i;j),\end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, \\ , i \oplus, j \oplus, \&SHi \rightarrow i, Rc(j;i), \end{bmatrix},$$

$$\Leftrightarrow ,i \! := \! \varnothing, \& S\!H\!i \, \circlearrowleft\! i, if (j \! = \! \varnothing) \! - \! \begin{bmatrix} , \\ ,i \! \oplus \! ,j \! \oplus \! ,Rc(j;i), \end{bmatrix} \! - \! ,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix} , i! = \varnothing, \\ , i! = \varnothing, i \oplus, j \oplus, Rc(j; i), \end{bmatrix} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, j \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, j \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, j \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, j \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, j \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, j \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, i \oplus, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!} - \underbrace{ \begin{cases} , i! = \varnothing, Rc(j; i), \end{cases} }_{i!}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j=\varnothing) - \begin{bmatrix}, i !=\varnothing, \\ , i !=\varnothing, i\oplus, j\oplus, Rc(j;i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j=\varnothing) - \begin{bmatrix}, i !=\varnothing, \\ , i !=\varnothing, if (i=\varnothing) - \begin{bmatrix}, \\ , i\oplus, j\oplus, Rc(j;i), \end{bmatrix} - \end{bmatrix}$$

$$\Leftrightarrow ,i != \varnothing, \&SHi \circlearrowleft i, if (j=\varnothing) - \left[, \\ if (i=\varnothing) - \left[, \\ i\oplus, j\oplus, Rc(j;i), \right] - \right]$$

$$\Leftrightarrow, i != \varnothing, \& SHi \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, \\ if (i = \varnothing) - \begin{bmatrix}, \\ j \oplus, i \oplus, Rc(j; i), \end{bmatrix} - \end{bmatrix},$$

$$\Leftrightarrow$$
, $i = \emptyset$, &SHi \circlearrowleft i, $Rc(j; i)$,

$$, Rc(i;j), \Leftrightarrow , Rc(j;i),$$

20.2.6 Swap with operator:

$$,Rc(i;j),\circledcirc m, \Leftrightarrow ,\circledcirc m,Rc(i;j),$$

$$,Rc(i;j),\circledcirc m, \Leftrightarrow ,\circledcirc m,Rc(i;j),$$

$$,Rc(i;j),m\circledcirc n, \Leftrightarrow ,m\circledcirc n,Rc(i;j),$$

 $, Rc(i;j), m\oplus, \Leftrightarrow, m\oplus, Rc(i;j),$

induction proof: premise 1: $, i = \varnothing, Rc(i; j), m\oplus,$

$$\Leftrightarrow, i = \varnothing, m \oplus,$$

$$\Leftrightarrow, m \oplus, i = \varnothing,$$

$$\Leftrightarrow, m \oplus, i = \varnothing, Rc(i; j),$$

$$\Leftrightarrow, i = \varnothing, m \oplus, Rc(i; j),$$

, &SHi
$$\rightarrow$$
i, $Rc(i;j)$, $m\oplus$, \Leftrightarrow , &SHi \rightarrow i, $m\oplus$, $Rc(i;j)$, \Rightarrow , $i!=\varnothing$, &SHi \circlearrowleft i, $Rc(i;j)$, $m\oplus$,

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, i!= \varnothing , $Rc(i;j)$, $m\oplus$,

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j=\varnothing) - \begin{bmatrix},\\\\, i\oplus, j\oplus, Rc(i;j),\end{bmatrix}, m\oplus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j=\varnothing) - \begin{bmatrix},\\m\oplus,\\\\, i\oplus, j\oplus, Rc(i;j),m\oplus,\end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, if(j = \varnothing) - \left[, \&SHi \circlearrowleft i, m \oplus, \atop i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, SHi \rightarrow i, Rc(i; j), m \oplus, \right] - \left[, i \oplus, S$$

$$\Leftrightarrow ,i \mathbin{!}=\varnothing, if(j=\varnothing) - \left[\begin{matrix} \&\mathit{SHi} \, \circlearrowleft i, \, m \oplus, \\ \\ ,i \oplus, \, j \oplus, \, \&\mathit{SHi} \, \rightarrow i, \, m \oplus, \, Rc(i;j), \end{matrix} \right],$$

$$\Leftrightarrow ,i != \varnothing, \&SHi \circlearrowleft i, if (j=\varnothing) - \begin{bmatrix} ,m\oplus, \\ ,i\oplus,j\oplus,m\oplus,Rc(i;j), \end{bmatrix} - \underbrace{ }$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, if (j = \varnothing) - \begin{bmatrix}, m \oplus, \\, m \oplus, i \oplus, j \oplus, Rc(i; j),\end{bmatrix} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, j \oplus, Rc(i; j),} - \underbrace{, m \oplus, i \oplus, Rc(i; j),} - \underbrace{, m \oplus, R$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, m \oplus, if(j = \varnothing) - \begin{bmatrix},\\\\, i \oplus, j \oplus, Rc(i; j),\end{bmatrix} - \underbrace{}$$

$$\Leftrightarrow \text{, \&SHi Oi, } m\oplus\text{, } i \text{!=}\varnothing\text{, } if(j=\varnothing) \text{-} \begin{bmatrix} \text{,} \\ \text{, } i\oplus\text{, } j\oplus\text{, } Rc(i;j), \end{bmatrix} \text{-},$$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $m\oplus$, $i \neq \emptyset$, $Rc(i; j)$,

$$\Leftrightarrow$$
, $i = \emptyset$, &SHi $\circlearrowleft i$, $m \oplus$, $Rc(i; j)$,

$$, Rc(i; j), m\oplus, \Leftrightarrow, m\oplus, Rc(i; j),$$

$$,Rc(i;j),m\ominus, \Leftrightarrow ,m\ominus,Rc(i;j),$$

 $,Rc(i;j),m\oplus, \Leftrightarrow ,m\oplus,Rc(i;j),$

20.2.7 Swap with branch function:

$$, Rc(i;j), if(m\!=\!n) \!\!=\!\!\! \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}\!\! , \iff , if(m\!=\!n) \!\!=\!\! \begin{bmatrix}, Rc(i;j), @c_1, \\ \\ , Rc(i;j), @c_2, \end{bmatrix}\!\! ,$$

$$, Rc(i;j), if(m=\varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(m=\varnothing) - \begin{bmatrix} , Rc(i;j), @c_1, \\ \\ , Rc(i;j), @c_2, \end{bmatrix},$$

$$, Rc(i;j), if(m \circlearrowleft n) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix}, Rc(i;j), @c_1, \\ \\ , Rc(i;j), @c_2, \end{bmatrix},$$

$$, Rc(i;j), if(m \circlearrowleft n) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(m \circlearrowleft n) = \begin{bmatrix}, Rc(i;j), @c_1, \\ \\ , Rc(i;j), @c_2, \end{bmatrix},$$

induction proof:

premise 1:

$$\begin{array}{l}
\text{premise 1:} \\
, i = \varnothing, Rc(i; j), if(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\
\Leftrightarrow, i = \varnothing, if(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\
\Leftrightarrow, if(m \circlearrowleft n) - \begin{bmatrix}, i = \varnothing, @c_1, \\ , i = \varnothing, @c_2, \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft n) = [, i = \varnothing, Rc(i; j), @c_1,], \\ i = \varnothing, Rc(i; j), @c_2,],$$

$$\Leftrightarrow , i = \varnothing, if(m \circlearrowleft n) = \begin{bmatrix} , Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix},$$

$$, \&SHi \rightarrow i, Rc(i;j), if(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , \&SHi \rightarrow i, if(m \circlearrowleft n) - \begin{bmatrix}, Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix}, \Rightarrow \Rightarrow (ACi) + ACi + ACi$$

$$,i \! \models \! \varnothing, \&S\!H\!i\, \circlearrowleft\!i, Rc(i;j), if(m \circlearrowleft\! n) \! = \! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}\!\!,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i != \varnothing, Rc(i;j), if(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, if(j=\varnothing) - \begin{bmatrix} , \\ , i\oplus, j\oplus, Rc(i;j), \end{bmatrix} - , if(m \circlearrowleft n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - ,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix}, if (m \circlearrowleft n) - \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \\, i \oplus, j \oplus, Rc(i; j), if (m \circlearrowleft n) - \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, i f(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ & & \end{bmatrix}, \\, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), i f(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ & & \end{bmatrix}, \\, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, i f(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\, i \oplus, j \oplus, \&SHi \rightarrow i, i f(m \circlearrowleft n) - \begin{bmatrix}, Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, if(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ & & \end{bmatrix}, \\, i \oplus, j \oplus, if(m \circlearrowleft n) - \begin{bmatrix}, & & \\ & & \end{bmatrix}, Rc(i; j), @c_1, \\, Rc(i; j), @c_2, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, if (j=\varnothing) - \begin{bmatrix}, i !=\varnothing, if (m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\, i !=\varnothing, j !=\varnothing, i\oplus, j\oplus, if (m \circlearrowleft n) - \begin{bmatrix}, Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \&\mathit{SHi}\, \circlearrowleft i, if (j=\varnothing) - \begin{bmatrix}, i!=\varnothing, if (m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\, if (m \circlearrowleft n) - \begin{bmatrix}, i!=\varnothing, j!=\varnothing, i\oplus, j\oplus, Rc(i;j), @c_1, \\ , i!=\varnothing, j!=\varnothing, i\oplus, j\oplus, Rc(i;j), @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \underbrace{ ,if (m \circlearrowleft n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} }_{,if (m \circlearrowleft n) = \begin{bmatrix} ,i!=\varnothing, j!=\varnothing, Rc(i;j), @c_1, \\ ,i!=\varnothing, j!=\varnothing, Rc(i;j), @c_2, \end{bmatrix} }_{,i!=\varnothing, j!=\varnothing, Rc(i;j), @c_2, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, if (j=\varnothing) - \begin{bmatrix}, i!=\varnothing, if (m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\, i!=\varnothing, j!=\varnothing, if (m \circlearrowleft n) - \begin{bmatrix}, Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, if(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\, if(m \circlearrowleft n) - \begin{bmatrix}, Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i != \varnothing, if(j=\varnothing) - \begin{bmatrix}, j=\varnothing, if(m \circlearrowleft n) - \begin{bmatrix}, @c_1, \\ & & \end{bmatrix}, \\, if(m \circlearrowleft n) - \begin{bmatrix}, & & \\ & & & \end{bmatrix}, & & \\, Rc(i;j), & & & \\, Rc(i;j), & & & \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, if(m \circlearrowleft n) - \begin{bmatrix}, j = \varnothing, @c_1, \\ j = \varnothing, @c_2, \end{bmatrix}, \\, if(m \circlearrowleft n) - \begin{bmatrix}, Rc(i;j), @c_1, \\ Rc(i;j), @c_2, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, if(j=\varnothing) \begin{bmatrix}, if(m\circlearrowleft n) & , j=\varnothing, Rc(i;j), @c_1, \\, j=\varnothing, Rc(i;j), @c_2, \end{bmatrix}, \\, if(m\circlearrowleft n) & \begin{bmatrix}, f(m\circlearrowleft n) & , j=\varnothing, Rc(i;j), @c_2, \end{bmatrix}, \\, Rc(i;j), @c_2, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, if(m \circlearrowleft n) - \begin{bmatrix}, Rc(i;j), @c_1, \\, Rc(i;j), @c_2, \end{bmatrix}, \\, if(m \circlearrowleft n) - \begin{bmatrix}, Rc(i;j), @c_1, \\, Rc(i;j), @c_1, \end{bmatrix}, \\, Rc(i;j), @c_2, \end{bmatrix},$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, if(j = \varnothing) - \begin{bmatrix} , \\ , \end{bmatrix}, if(m \circlearrowleft n) - \begin{bmatrix} , Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing, \&SHi \circlearrowleft i, if(m \circlearrowleft n) = \begin{bmatrix} ,Rc(i;j), @c_1, \\ ,Rc(i;j), @c_2, \end{bmatrix},$$

$$, Rc(i;j), if(m \circlearrowleft n) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff, if(m \circlearrowleft n) = \begin{bmatrix}, Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix},$$

$$, Rc(i;j), if(m \to n) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff, if(m \to n) = \begin{bmatrix}, Rc(i;j), @c_1, \\ , Rc(i;j), @c_2, \end{bmatrix},$$

$$, Rc(i;j), if(m \oplus n) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(m \oplus n) = \begin{bmatrix}, Rc(i;j), @c_1, \\ \\ , Rc(i;j), @c_2, \end{bmatrix},$$

20.2.8 Swap with propositions:

$$, m = n, Rc(i; j), \Leftrightarrow , Rc(i; j), m = n,$$

$$, m! = n, Rc(i; j), \Leftrightarrow , Rc(i; j), m! = n,$$

$$, m = \varnothing, Rc(i; j), \Leftrightarrow , Rc(i; j), m = \varnothing,$$

$$, m! = \varnothing, Rc(i; j), \Leftrightarrow , Rc(i; j), m! = \varnothing,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m! \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \hookrightarrow n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \hookrightarrow n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

$$, m \circlearrowleft n, Rc(i; j), \Leftrightarrow , Rc(i; j), m \circlearrowleft n,$$

20.2.9 Swap with recursive function:

$$,Rc(i;j),R(m), \Leftrightarrow ,R(m),Rc(i;j),$$

 $,Rc(i;j),R_{-}(m), \Leftrightarrow ,R_{-}(m),Rc(i;j),$

$$,Rc(i;j),Rc(m;n), \Leftrightarrow ,Rc(m;n),Rc(i;j),$$

induction proof:

premise 1:

$$, i = \varnothing, Rc(i; j), Rc(m; n),$$

$$\Leftrightarrow$$
, $i = \emptyset$, $Rc(m; n)$,

$$\Leftrightarrow$$
, $Rc(m; n), i = \emptyset$,

$$\Leftrightarrow$$
, $Rc(m; n), i = \emptyset, Rc(i; j),$

$$\Leftrightarrow$$
, $i = \emptyset$, $Rc(m; n)$, $Rc(i; j)$,

, &SH
$$i \rightarrow i$$
, $Rc(i; j)$, $Rc(m; n)$, \Leftrightarrow , &SH $i \rightarrow i$, $Rc(m; n)$, $Rc(i; j)$, \Rightarrow

$$, i != \varnothing, \&SHi \circlearrowleft i, Rc(i; j), Rc(m; n),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \neq \emptyset$, $Rc(i; j), Rc(m; n)$,

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix} , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix} - , Rc(m;n),$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix} , Rc(m;n), \\ , i \oplus, j \oplus, Rc(i;j), Rc(m;n), \end{bmatrix} - ,$$

$$\Leftrightarrow, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, Rc(m; n), \\ , i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), Rc(m; n), \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, Rc(m; n), \\ , i \oplus, j \oplus, \&SHi \rightarrow i, Rc(m; n), Rc(i; j), \end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, Rc(m; n), \\ , i \oplus, j \oplus, \&SHi \rightarrow i, Rc(m; n), Rc(i; j),\end{bmatrix}$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, if(j=\varnothing) - \begin{bmatrix}, Rc(m;n), \\ , i\oplus, j\oplus, Rc(m;n), Rc(i;j), \end{bmatrix},$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, if(j=\varnothing) - \begin{bmatrix}, Rc(m;n), \\ , Rc(m;n), i\oplus, j\oplus, Rc(i;j), \end{bmatrix},$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, Rc(m;n), if(j=\varnothing) - \begin{bmatrix}, \\ , i\oplus, j\oplus, Rc(i;j), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, Rc(m;n), i!=\varnothing, if(j=\varnothing) - \begin{bmatrix}, \\ , i\oplus, j\oplus, Rc(i;j), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, Rc(m;n), i!=\varnothing, Rc(i;j),$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, Rc(m;n), Rc(i;j),$$

$$conclusion:$$

$$, Rc(i; j), Rc(m; n), \Leftrightarrow , Rc(m; n), Rc(i; j),$$

20.2.10 Swap with flag object :

$$, Rc(i;j), \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, Rc(i;j),$$
 $, Rc(i;j), \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, Rc(i;j),$
 $, Rc(i;j), \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, Rc(i;j),$
 $, Rc(i;j), \&SHi \rightarrow m, \Leftrightarrow , \&SHi \rightarrow m, Rc(i;j),$

20.2.11 Fundamental properties:

$$, Rc(i; j), i \models \varnothing, \Leftrightarrow , i \models \varnothing, Rc(i; j), i \models \varnothing,$$

$$\begin{array}{l} \operatorname{proof:} \\ , Rc(i;j), i != \varnothing, \\ \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \end{bmatrix}, Rc(i;j), i != \varnothing, \\ \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, Rc(i;j), i != \varnothing, \\ \\ , Rc(i;j), i != \varnothing, \\ \\ \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, Rc(i;j), i != \varnothing, \\ \\ \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, Rc(i;j), i != \varnothing, \\ \\ \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, Rc(i;j), i != \varnothing, \\ \\ \end{cases},$$

$$\Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}, Rc(i;j), i != \varnothing, \\ \\ \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, Rc(i;j), i != \varnothing, \\ \\ \end{cases}$$

$$,i!=\varnothing,Rc(i;j),i=\varnothing, \Leftrightarrow ,i!=\varnothing,j!=\varnothing,Rc(i;j),i=\varnothing,$$

proof:
,
$$i = \varnothing$$
, $Rc(i; j)$, $i = \varnothing$,

 \Leftrightarrow , $i!=\varnothing$, Rc(i;j), $i!=\varnothing$,

$$\Leftrightarrow ,i!=\varnothing,if(j=\varnothing)-\begin{bmatrix} ,\\ ,i\oplus,j\oplus,Rc(i;j),\end{bmatrix},i=\varnothing,$$

$$\Leftrightarrow ,i!=\varnothing,if(j=\varnothing)-\begin{bmatrix} ,i=\varnothing,\\ ,i\oplus,j\oplus,Rc(i;j),i=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing,if(j=\varnothing)-\begin{bmatrix} ,i=\varnothing,\\ ,j!=\varnothing,i\oplus,j\oplus,Rc(i;j),i=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing)-\begin{bmatrix} ,i!=\varnothing,i=\varnothing,\\ ,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,Rc(i;j),i=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing)-\begin{bmatrix} ,\otimes,\\ ,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,Rc(i;j),i=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing)-\begin{bmatrix} ,\otimes,\\ ,i!=\varnothing,j!=\varnothing,Rc(i;j),i=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing)-\begin{bmatrix} ,\otimes,\\ ,i!=\varnothing,j!=\varnothing,Rc(i;j),i=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing)-\begin{bmatrix} ,\otimes,\\ ,i!=\varnothing,j!=\varnothing,Rc(i;j),i=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing)-\begin{bmatrix} ,\otimes,\\ ,i!=\varnothing,j!=\varnothing,Rc(i;j),i=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow ,i!=\varnothing,j!=\varnothing,j!=\varnothing,Rc(i;j),i=\varnothing,$$

$$\Leftrightarrow ,i!=\varnothing,j!=\varnothing,j!=\varnothing,Rc(i;j),i=\varnothing,$$

$$,i \! := \! \varnothing, Rc(i;j), i \! \circlearrowleft \! j, \iff ,i \! := \! \varnothing, j \! := \! \varnothing, Rc(i;j), i \! \circlearrowleft \! j,$$

proof:
,
$$i = \varnothing$$
, $Rc(i; j)$, $i \circlearrowleft j$,

 \Leftrightarrow , $i!=\varnothing$, $j!=\varnothing$, Rc(i;j), $i=\varnothing$,

$$\Leftrightarrow, i != \varnothing, Rc(i; j), if(i = \varnothing) - \begin{bmatrix}, \\ , j = \varnothing, \end{bmatrix}, i \circlearrowleft j,$$

$$\Leftrightarrow ,i != \varnothing, Rc(i;j), if(i=\varnothing) - \begin{bmatrix} ,i=\varnothing,\\ ,j=\varnothing, \end{bmatrix}, i \circlearrowleft j,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $Rc(i;j)$, $if(i=\varnothing)$, $i=\varnothing$, $i\circlearrowleft j$, $j=\varnothing$, $i\circlearrowleft j$,

$$\Leftrightarrow, i!=\varnothing, Rc(i;j), if(i=\varnothing) - \begin{bmatrix}, i=\varnothing, i\circlearrowleft j, \\, j=\varnothing, i\circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, i!=\varnothing, Rc(i;j), if(i=\varnothing) - \begin{bmatrix}, i=\varnothing, i\circlearrowleft j, \\, i\circlearrowleft j, j=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow ,i \! := \! \varnothing, Rc(i;j), if(i \! = \! \varnothing) \! - \! \begin{bmatrix} ,i \! = \! \varnothing, \\ ,i \! = \! \varnothing, \end{bmatrix} \! - \! ,i \! \circlearrowleft \! j,$$

$$\Leftrightarrow ,i!=\varnothing,Rc(i;j),if(i=\varnothing)- \boxed{,},i=\varnothing,i\circlearrowleft j,$$

$$\Leftrightarrow ,i \! := \! \varnothing, Rc(i;j), i \! = \! \varnothing, i \! \circlearrowleft \! j,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, $Rc(i;j)$, $i=\varnothing$, $i\circlearrowleft j$,

$$\Leftrightarrow ,i \mathbin{!}= \varnothing, j \mathbin{!}= \varnothing, Rc(i;j), i \circlearrowleft j,$$

$$\begin{split} , &Rc(i;j), i = \varnothing, j = \varnothing, \iff , if(i = \varnothing) \\ & \underbrace{-, j != \varnothing, }_{,j} \\ , &Rc(i;j), i = \varnothing, j = \varnothing, \end{split}$$

$$, i \circlearrowleft j, Rc(i;j), \iff , Rc(i;j), i \circlearrowleft j, \end{split}$$

```
induction proof:
premise 1:
, i = \varnothing, i \circlearrowleft j, Rc(i; j),
\Leftrightarrow, i \circlearrowleft j, i = \varnothing, Rc(i; j),
\Leftrightarrow, i \circ j, i = \emptyset,
\Leftrightarrow, i = \emptyset, i \circlearrowleft j,
\Leftrightarrow, i = \emptyset, Rc(i; j), i \circlearrowleft j,
premise 2:
, &SHi \rightarrowi, i\circlearrowleftj, Rc(i; j), \Leftrightarrow , &SHi \rightarrowi, Rc(i; j), i\circlearrowleftj, \Rightarrow
, i != \varnothing, \&SHi \circlearrowleft i, i \circlearrowleft j, Rc(i; j),
\Leftrightarrow, &SHi\circlearrowlefti, i\circlearrowleftj, i!=\varnothing, Rc(i;j),
\Leftrightarrow, &SHi\circlearrowlefti, i \circlearrowleft j, i != \varnothing, i != \varnothing, Rc(i; j),
\Leftrightarrow, &SHi\circlearrowleft i, i \circlearrowleft j, j != \varnothing, i != \varnothing, Rc(i; j),
\Leftrightarrow, &SHi\circlearrowlefti, i\circlearrowleft j, i!=\varnothing, j!=\varnothing, Rc(i;j),
\Leftrightarrow, &SHi \circlearrowleft i, i \circlearrowleft j, i != \varnothing, j != \varnothing, i \oplus, j \oplus, Rc(i; j),
\Leftrightarrow, &SHi\circlearrowleft i, i = \varnothing, j = \varnothing, i \circlearrowleft j, i \oplus, j \oplus, Rc(i; j),
\Leftrightarrow, &SHi\circlearrowleft i, i = \varnothing, j = \varnothing, i\oplus, j\oplus, i\circlearrowleft j, Rc(i, j),
\Leftrightarrow, i!=\varnothing, j!=\varnothing, i\oplus, j\oplus, &SHi \to i, i \circlearrowleft j, Rc(i;j),
\Leftrightarrow, i!=\varnothing, j!=\varnothing, i\oplus, j\oplus, &SHi\to i, Rc(i;j), i\circlearrowleft j,
\Leftrightarrow, &SHi \circlearrowleft i, i = \varnothing, j = \varnothing, i \oplus, j \oplus, Rc(i; j), i \circlearrowleft j,
\Leftrightarrow, &SHi\circlearrowlefti, i!=\varnothing, j!=\varnothing, Rc(i;j), i\circlearrowleft j,
\Leftrightarrow, &SHi\circlearrowlefti, i!=\varnothing, Rc(i;j), i\circlearrowleftj,
\Leftrightarrow, i!=\emptyset, &SHi\bigcirc i, Rc(i;j), i\bigcirc j,
```

conclusion:

$$,i \circlearrowleft j, Rc(i;j), \iff , Rc(i;j), i \circlearrowleft j,$$

$$,i_1 \circ i_2, j_1 \circ j_2, Rc(i_1;j_1), Rc(i_2;j_2), \Leftrightarrow \sim, i_1 \circ i_2, j_1 \circ j_2,$$

induction proof:

premise 1:

$$, i_1 = \varnothing, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1; j_1), Rc(i_2; j_2),$$

$$\Leftrightarrow$$
 $,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 = \varnothing, Rc(i_1; j_1), Rc(i_2; j_2),$

$$\Leftrightarrow$$
, $i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 = \varnothing, Rc(i_2; j_2),$

$$\Leftrightarrow$$
, $j_1 \circlearrowleft j_2$, $i_1 \circlearrowleft i_2$, $i_1 = \varnothing$, $Rc(i_2; j_2)$,

$$\Leftrightarrow$$
, $j_1 \circlearrowleft j_2$, $i_1 \circlearrowleft i_2$, $i_2 = \varnothing$, $Rc(i_2; j_2)$,

$$\Leftrightarrow$$
, $j_1 \circlearrowleft j_2$, $i_1 \circlearrowleft i_2$, $i_2 = \varnothing$,

$$\Leftrightarrow , j_1 \circlearrowleft j_2, j_1 \circlearrowleft j_2, i_1 \circlearrowleft i_2, i_1 \circlearrowleft i_2, i_2 = \varnothing,$$

$$\Leftrightarrow$$
 $,j_1 \circlearrowleft j_2, i_1 \circlearrowleft i_2, i_2 = \varnothing, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2,$

$$\Leftrightarrow$$
, $j_1 \circlearrowleft j_2$, $i_1 \circlearrowleft i_2$, $i_2 = \varnothing$, $Rc(i_2; j_2)$, $i_1 \circlearrowleft i_2$, $j_1 \circlearrowleft j_2$,

$$\Leftrightarrow$$
, $j_1 \circlearrowleft j_2$, $i_1 \circlearrowleft i_2$, $i_1 = \varnothing$, $Rc(i_2; j_2)$, $i_1 \circlearrowleft i_2$, $j_1 \circlearrowleft j_2$,

$$\Leftrightarrow$$
 , $j_1 \circlearrowleft j_2, i_1 \circlearrowleft i_2, i_1 = \varnothing, Rc(i_1; j_1), Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2,$

$$\Leftrightarrow, i_1 = \varnothing, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1; j_1), Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2,$$

, &SHi
$$\rightarrow i_1, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1; j_1), Rc(i_2; j_2), \Leftrightarrow$$

, &SHi
$$\rightarrow i_1, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1; j_1), Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \Rightarrow$$

$$,i_1!=\varnothing, \&SHi \bigcirc i_1,i_1 \bigcirc i_2,j_1 \bigcirc j_2, Rc(i_1;j_1), Rc(i_2;j_2),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 != \varnothing, Rc(i_1; j_1), Rc(i_2; j_2),$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i_1, i_1 \circlearrowleft\!i_2, j_1 \circlearrowleft\!j_2, i_1 != \varnothing, if(j_1 = \varnothing) - \begin{bmatrix},\\\\, i_1 \oplus, j_1 \oplus, Rc(i_1; j_1),\end{bmatrix}, Rc(i_2; j_2),$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, j_1 Cj_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} Re(i_2; j_2), \\ i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, j_1 Cj_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} j_1 = \varnothing, Re(i_2; j_2), \\ j_1 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} j_1 Cj_2, j_1 = \varnothing, Re(i_2; j_2), \\ j_1 Cj_2, j_1 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} j_1 Cj_2, j_2 = \varnothing, Re(i_2; j_2), \\ j_1 Cj_2, j_1 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} j_1 Cj_2, j_2 = \varnothing, \\ j_1 Cj_2, j_1 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} j_1 Cj_2, j_1 \models \varnothing, j_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} j_1 Cj_2, j_1 \models \varnothing, j_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} j_1 Cj_2, j_1 \models \varnothing, j_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, if(j_1 = \varnothing) \begin{bmatrix} j_1 Cj_2, j_1 \models \varnothing, j_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, i_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi Ci_1, i_1 Ci_2, i_1 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, j_1 Cj_2, \\ j_1 Cj_2, j_2 \models \varnothing, j$$

$$\Leftrightarrow, \&SHi \circlearrowleft Ci_1, if(j_1 = \varnothing) = \begin{bmatrix} i_1 \circlearrowleft Ci_2, i_1 \models \varnothing, j_1 \circlearrowleft j_2, \\ i_1 \thickspace Ci_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), i_2 \models \varnothing, j_2 \models \varnothing, Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft Ci_1, if(j_1 = \varnothing) = \begin{bmatrix} i_1 \circlearrowleft Ci_2, i_1 \models \varnothing, j_1 \circlearrowleft j_2, \\ i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Re(i_1; j_1), i_2 \models \varnothing, j_2 \models \varnothing, i_2 \oplus, j_2 \oplus, Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft Ci_1, if(j_1 = \varnothing) = \begin{bmatrix} i_1 \circlearrowleft Ci_2, i_1 \models \varnothing, j_1 \circlearrowleft j_2, \\ i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, i_2 \models \varnothing, j_2 \models \varnothing, i_2 \oplus, j_2 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft Ci_1, if(j_1 = \varnothing) = \begin{bmatrix} i_1 \circlearrowleft Ci_2, i_1 \models \varnothing, j_1 \circlearrowleft j_2, \\ i_2 \models \varnothing, j_2 \models \varnothing, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, i_2 \oplus, j_2 \oplus, Re(i_1; j_1), Re(i_2; j_2), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft Ci_1, if(j_1 = \varnothing) = \begin{bmatrix} i_1 \circlearrowleft Ci_2, i_1 \models \varnothing, j_1 \circlearrowleft j_2, \\ i_1 \models \varnothing, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ i_1 \models \varnothing, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ i_1 \vdash \varnothing, kSHi \circlearrowleft Ci_1, if(j_1 = \varnothing) = \begin{bmatrix} i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ j_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ i_1 \vdash \varnothing, \&SHi \circlearrowleft Ci_1, if(j_1 = \varnothing) = \begin{bmatrix} i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft j_2, \\ kSHi \circlearrowleft Ci_1, i_1 \circlearrowleft Ci_2, j_1 \circlearrowleft Ci_2, j_1$$

 \Leftrightarrow , $i_1 != \emptyset$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \oplus, i_2 \oplus, j_1 \oplus, j_2 \oplus, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix} - \underbrace{ \begin{cases} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \oplus, i_2 \oplus, j_1 \oplus, j_2 \oplus, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \oplus, i_2 \oplus, j_1 \oplus, j_2 \oplus, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1;j_1), Rc(i_2;j_2), I_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \oplus, i_2 \oplus, j_1 \oplus, j_2 \oplus, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1;j_1), Rc(i_2;j_2), I_1 \circlearrowleft i_2, J_1 \circlearrowleft j_2, Rc(i_1;j_1), Rc(i_2;j_2), Rc(i_1;j_2), Rc(i_1;j_$$

$$\Leftrightarrow$$
 , $i_1 = \emptyset$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, i_2 \oplus, j_1 \oplus, j_2 \oplus, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix} - \underbrace{ \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, i_2 \oplus, j_1 \oplus, j_2 \oplus, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix} }_{\mathsf{P}}_{\mathsf{P}}_{\mathsf{P}}_{\mathsf{P}}_{\mathsf{P}}_{\mathsf{P}}}$$

 \Leftrightarrow , &SHi $\circ i_1$,

$$if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 \circlearrowleft i_2,i_1 != \varnothing,j_1 \circlearrowleft j_2,\\ ,i_2 != \varnothing,j_2 != \varnothing,i_1 \circlearrowleft i_2,j_1 \circlearrowleft j_2,i_1 \oplus,i_2 \oplus,j_1 \oplus,j_2 \oplus,Rc(i_1;j_1),Rc(i_2;j_2),i_1 \circlearrowleft i_2,j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2, i_1 != \varnothing, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, i_2 != \varnothing, j_2 != \varnothing, i_2 \oplus, j_2 \oplus, Rc(i_1; j_1), Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , &SHi $\bigcirc i_1$,

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2, i_1 != \varnothing, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1; j_1), i_2 != \varnothing, j_2 != \varnothing, i_2 \oplus, j_2 \oplus, Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , &SHi \bigcirc i₁.

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2, i_1 != \varnothing, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1; j_1), i_2 != \varnothing, j_2 != \varnothing, Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , &SHi $\circlearrowleft i_1$,

$$if(j_1=\varnothing) - \begin{bmatrix} ,i_1 \circlearrowleft i_2,i_1 !=\varnothing,j_1 \circlearrowleft j_2,\\ ,i_1 \circlearrowleft i_2,i_2 !=\varnothing,j_1 \circlearrowleft j_2,j_2 !=\varnothing,i_1 \oplus,j_1 \oplus,Rc(i_1;j_1),Rc(i_2;j_2),i_1 \circlearrowleft i_2,j_1 \circlearrowleft j_2, \end{bmatrix} - \underbrace{ }$$

 \Leftrightarrow , &SHi $\bigcirc i_1$,

$$if(j_1=\varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2,i_1 !=\varnothing,j_1 \circlearrowleft j_2,\\ ,i_1 \circlearrowleft i_2,i_1 !=\varnothing,j_1 \circlearrowleft j_2,j_1 !=\varnothing,i_1 \oplus,j_1 \oplus,Rc(i_1;j_1),Rc(i_2;j_2),i_1 \circlearrowleft i_2,j_1 \circlearrowleft j_2, \end{bmatrix}$$

 \Leftrightarrow , $i_1 != \varnothing$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , $i_1 != \varnothing$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , $i_1 != \varnothing$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) - \begin{bmatrix} ,j_1 = \varnothing, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , $i_1 != \varnothing$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, j_1 = \varnothing, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , $i_1 != \varnothing$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, j_2 = \varnothing, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , $i_1 != \varnothing$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, j_2 = \varnothing, Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1; j_1), Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow $,i_1!=\varnothing, \&SHi \circlearrowleft i_1,$

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \end{bmatrix},$$

 \Leftrightarrow , $i_1 != \varnothing$, &SHi $\circlearrowleft i_1$,

$$if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, \\ ,i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \oplus, j_1 \oplus, Rc(i_1; j_1), \end{bmatrix} - ,Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 != \varnothing$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, i_1 \stackrel{!}{=} \varnothing, Rc(i_1; j_1), Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2,$

$$\Leftrightarrow$$
 , $i_1 != \varnothing$, &SHi $\circlearrowleft i_1, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, Rc(i_1; j_1), Rc(i_2; j_2), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2$,

conclusion:

$$,i_1 \circlearrowleft i_2,j_1 \circlearrowleft j_2, Rc(i_1;j_1), Rc(i_2;j_2), \Leftrightarrow ,i_1 \circlearrowleft i_2,j_1 \circlearrowleft j_2, Rc(i_1;j_1), Rc(i_2;j_2), i_1 \circlearrowleft i_2,j_1 \circlearrowleft j_2,$$

$$, Rc(i; j), i! = \emptyset, i\oplus, \Leftrightarrow, i! = \emptyset, i\oplus, Rc(i; j), j = \emptyset,$$

induction proof 1:

premise 1:

$$, i = \varnothing, Rc(i; j), i != \varnothing, i \oplus,$$

$$\Leftrightarrow$$
, $i = \emptyset$, $i != \emptyset$, $i \oplus$,

$$\Leftrightarrow$$
 , \otimes , $i\oplus$,

$$\iff, \otimes,$$

$$\Leftrightarrow$$
, \otimes , $i\oplus$, $Rc(i;j)$, $j=\varnothing$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i != \emptyset$, $i := \emptyset$, $Rc(i; j)$, $j = \emptyset$,

, &SHi
$$\rightarrow$$
i, $Rc(i;j)$, $i!=\varnothing$, $i\oplus$, \Leftrightarrow , &SHi \rightarrow i, $i!=\varnothing$, $i\oplus$, $Rc(i;j)$, $j=\varnothing$, \Rightarrow , $i!=\varnothing$, &SHi \circlearrowleft i, $Rc(i;j)$, $i!=\varnothing$, $i\oplus$,

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $i \neq \emptyset$, $Rc(i; j)$, $i \neq \emptyset$, $i \oplus$,

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix},\\\\, i \oplus, j \oplus, Rc(i; j),\end{bmatrix}, i != \varnothing, i \oplus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix}, i != \varnothing, i \oplus,\\\\, i \oplus, j \oplus, Rc(i; j), i != \varnothing, i \oplus,\end{bmatrix},$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i, i \vcentcolon= \varnothing, if(j = \varnothing) - \begin{bmatrix}, j = \varnothing, i \vcentcolon= \varnothing, i\oplus, \\, i\oplus, j\oplus, Rc(i;j), i \vcentcolon= \varnothing, i\oplus,\end{bmatrix}$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i, i \! \models \! \varnothing, if(j \! = \! \varnothing) - \begin{bmatrix} , i \! \models \! \varnothing, i \oplus, j \! = \! \varnothing, \\ , i \oplus, j \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, \end{bmatrix} - \begin{bmatrix} , i \! \models \! \varnothing, i \oplus, j \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, i \oplus, J \oplus, Rc(i;j), i \! \models \! \varnothing, Rc(i;j), i \! \models \! \varnothing, Rc(i;j), i \! \models \! \varnothing, Rc(i;j), Rc(i$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix}, i != \varnothing, i \oplus, j = \varnothing, \\ , i \oplus, j \oplus, Rc(i;j), i != \varnothing, i \oplus, \end{bmatrix}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix}, i != \varnothing, i \oplus, j = \varnothing, j = \varnothing, \\ , i \oplus, j \oplus, Rc(i;j), i != \varnothing, i \oplus, \end{bmatrix}$$

$$\Leftrightarrow \text{, \&SHi Oi, } i != \varnothing, if(j = \varnothing) \\ \begin{bmatrix} \text{, } i != \varnothing, i \oplus, j = \varnothing, Rc(i;j), j = \varnothing, \\ \text{, } i \oplus, j \oplus, Rc(i;j), i != \varnothing, i \oplus, \end{bmatrix} \\ \begin{bmatrix} \text{, } i := \varnothing, i \oplus, j \oplus, Rc(i;j), i := \varnothing, i \oplus, \\ \text{, } i := \varnothing, i \oplus, \end{bmatrix} \\ \begin{bmatrix} \text{, } i := \varnothing, i \oplus, j \oplus, Rc(i;j), i := \varnothing, i \oplus, \\ \text{, } i := \varnothing, i \oplus, \end{bmatrix} \\ \begin{bmatrix} \text{, } i := \varnothing, i \oplus, j \oplus, Rc(i;j), i := \varnothing, i \oplus, \\ \text{, } i := \varnothing, i \oplus, Rc(i;j), i := \varnothing, i \oplus, \\ \text{, } i := \varnothing, i := \varnothing, Rc(i;j), i := \varnothing, Rc(i;j), i := \varnothing, Rc(i;j), Rc(i$$

$$\Leftrightarrow \text{, \&SHi \circlearrowleft} i. i != \varnothing, if (j = \varnothing) - \begin{bmatrix} \text{, } i != \varnothing, i \oplus, Rc(i; j), j = \varnothing, \\ \text{, } i \oplus, j \oplus, Rc(i; j), i != \varnothing, i \oplus, \end{bmatrix} ,$$

$$\Leftrightarrow, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, i != \varnothing, i \oplus, Rc(i; j), j = \varnothing, \\ \\, i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i; j), i != \varnothing, i \oplus, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, i! = \varnothing, i\oplus, Rc(i;j), j = \varnothing, \\, i\ominus, j\ominus, \&SHi \to i, i! = \varnothing, i\oplus, Rc(i;j), j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix}, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \\, i\ominus, j\ominus, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix}, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \\, j! = \varnothing, i\ominus, j\ominus, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix}, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \\, i\ominus, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix}, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \\, i\ominus, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix}, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \\, i\ominus, Rc(i;j), j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix}, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \\, i\ominus, Rc(i;j), j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix}, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \\, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing,$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing,$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing,$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing,$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing,$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing,$$

$$\Leftrightarrow, \&SHi \to i, i! = \varnothing, i! = \varnothing, i\ominus, Rc(i;j), j = \varnothing,$$

 \Leftrightarrow , $i!=\varnothing$, &SHi \bigcirc i, $i!=\varnothing$, $i\oplus$, Rc(i;j), $j=\varnothing$,

$$, Rc(i; j), i! = \emptyset, i\oplus, \Leftrightarrow, i! = \emptyset, i\oplus, Rc(i; j), j = \emptyset,$$

induction proof 2:

premise 1:

$$, j = \varnothing, Rc(i; j), i != \varnothing, i \oplus,$$

$$\Leftrightarrow$$
, $j = \emptyset$, $i! = \emptyset$, $i \oplus$,

$$\Leftrightarrow$$
, $i!=\emptyset$, $i\oplus$, $j=\emptyset$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $i\oplus$, $j=\varnothing$, $j=\varnothing$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $i\oplus$, $j=\varnothing$, $Rc(i;j)$, $j=\varnothing$,

$$\Leftrightarrow$$
, $j = \emptyset$, $i! = \emptyset$, $i \oplus$, $Rc(i; j)$, $j = \emptyset$,

$$, \, \&\mathit{SHi} \, \rightarrow\!\! j, Rc(i;j), i \,!= \varnothing, i \oplus, \; \Leftrightarrow \; , \, \&\mathit{SHi} \, \rightarrow\!\! j, i \,!= \varnothing, i \oplus, Rc(i;j), j = \varnothing, \; \Rightarrow \;$$

$$, j \models \varnothing, \&SHi \circlearrowleft_j, Rc(i; j), i \models \varnothing, i \oplus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft j, j! = \varnothing, Rc(i; j), i! = \varnothing, i \oplus$,

$$\Leftrightarrow, \&SHi \circlearrowleft j, j != \varnothing, if(i=\varnothing) - \begin{bmatrix}, i! = \varnothing, i \oplus, \\, i \oplus, j \oplus, Rc(i; j), \end{bmatrix}, i != \varnothing, i \oplus, \\ \Leftrightarrow, \&SHi \circlearrowleft j, j != \varnothing, if(i=\varnothing) - \begin{bmatrix}, i! = \varnothing, i \oplus, \\, i \oplus, j \oplus, Rc(i; j), i != \varnothing, i \oplus, \end{bmatrix}, \\ \Leftrightarrow, \&SHi \circlearrowleft j, j != \varnothing, if(i=\varnothing) - \begin{bmatrix}, i = \varnothing, i! = \varnothing, i \oplus, \\, i \oplus, j \oplus, Rc(i; j), i != \varnothing, i \oplus, \end{bmatrix}, \\ \Leftrightarrow, \&SHi \circlearrowleft j, j != \varnothing, if(i=\varnothing) - \begin{bmatrix}, \otimes, i \oplus, \\, i \oplus, j \oplus, Rc(i; j), i != \varnothing, i \oplus, \end{bmatrix},$$

$$\Leftrightarrow , \&SHi \circlearrowleft j, j \models \varnothing, if(i=\varnothing) = \underbrace{\begin{bmatrix}, i=\varnothing, i \models \varnothing, i\oplus, \\, i\oplus, j\oplus, Rc(i;j), i \models \varnothing, i\oplus,\end{bmatrix}}_{, i\oplus, j\oplus, Rc(i;j), i \models \varnothing, i\oplus,}_{, i\oplus, Rc(i;j), i \models,}_{, i\oplus, Rc($$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!j, j \! \models\! \varnothing, if(i \! = \! \varnothing) - \begin{bmatrix} , \otimes, i \oplus, \\ , i \oplus, j \oplus, Rc(i;j), i \! \models\! \varnothing, i \oplus, \end{bmatrix} - \underbrace{ }$$

$$\Leftrightarrow \text{, \&SHi}\, \circlearrowleft j, j \vcentcolon= \varnothing, if(i = \varnothing) - \begin{bmatrix} , \otimes, \\ \\ , i\oplus, j\oplus, Rc(i;j), i \vcentcolon= \varnothing, i\oplus, \end{bmatrix} -,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!j, j\,!\!=\!\varnothing, if(i\!=\!\varnothing) - \left[\begin{matrix}, \otimes, \\ \end{matrix}\right] -, i\oplus, j\oplus, Rc(i;j), i\,!\!=\!\varnothing, i\oplus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft j, j \models \varnothing, i \models \varnothing, i \oplus, j \oplus, Rc(i; j), i \models \varnothing, i \oplus,$$

$$\Leftrightarrow , j != \varnothing, i != \varnothing, i \oplus, j \oplus, \&SHi \rightarrow j, Rc(i; j), i != \varnothing, i \oplus,$$

$$\Leftrightarrow$$
 , $j!=\varnothing$, $i!=\varnothing$, $i\oplus$, $j\oplus$, &SH $i\to j$, $i!=\varnothing$, $i\oplus$, $Rc(i;j)$, $j=\varnothing$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft j, j \models \varnothing, i \models \varnothing, i \oplus, j \oplus, i \models \varnothing, i \oplus, Rc(i; j), j = \varnothing,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft j, j \models \varnothing, i \models \varnothing, i \oplus, i \models \varnothing, i \oplus, j \oplus, Rc(i; j), j = \varnothing,$

$$\Leftrightarrow$$
, &SHi $\bigcirc j$, $i!=\varnothing$, $i\oplus$, $i!=\varnothing$, $j!=\varnothing$, $i\oplus$, $j\oplus$, $Rc(i;j)$, $j=\varnothing$,

$$\Leftrightarrow , \&SHi \, \circlearrowleft j, i != \varnothing, i \oplus, i != \varnothing, j != \varnothing, Rc(i; j), j = \varnothing,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft j$, $i!=\varnothing$, $i\oplus$, $j!=\varnothing$, $Rc(i;j)$, $j=\varnothing$,

$$\Leftrightarrow$$
, $j!=\varnothing$, &SHi $\circlearrowleft j$, $i!=\varnothing$, $i\oplus$, $Rc(i;j)$, $j=\varnothing$,

conclusion:

$$, Rc(i;j), i!=\varnothing, i\oplus, \Leftrightarrow, i!=\varnothing, i\oplus, Rc(i;j), j=\varnothing,$$

$$Rc(i;j), Rc(i;k), j = \emptyset, k = \emptyset, \Leftrightarrow Rc(i;k), Rc(i;j), j = \emptyset, k = \emptyset,$$

induction proof 1:

premise 1:

$$, j = \varnothing, Rc(i; j), Rc(i; k), j = \varnothing, k = \varnothing,$$

$$\Leftrightarrow$$
, $j = \emptyset$, $Rc(i; k)$, $j = \emptyset$, $k = \emptyset$,

$$\Leftrightarrow$$
, $Rc(i;k), j=\emptyset, j=\emptyset, k=\emptyset,$

$$\Leftrightarrow$$
, $Rc(i;k), j=\varnothing, Rc(i;j), j=\varnothing, k=\varnothing,$

$$\Leftrightarrow$$
, $j = \emptyset$, $Rc(i; k)$, $Rc(i; j)$, $j = \emptyset$, $k = \emptyset$,

, &SH
$$i \rightarrow j$$
, $Rc(i; j)$, $Rc(i; k)$, $j = \emptyset$, $k = \emptyset$,
 \Leftrightarrow , &SH $i \rightarrow j$, $Rc(i; k)$, $Rc(i; j)$, $j = \emptyset$, $k = \emptyset$, \Rightarrow

$$, j \models \varnothing, \&SHi \circlearrowleft j, Rc(i; j), Rc(i; k), j = \varnothing, k = \varnothing,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft j, j = \varnothing$, $Rc(i; j)$, $Rc(i; k)$, $j = \varnothing$, $k = \varnothing$,

$$\Leftrightarrow, \&SHi \, \circlearrowleft j, j != \varnothing, if (i=\varnothing) - \begin{bmatrix},\\\\, i\oplus, j\oplus, Rc(i;j),\end{bmatrix} -, Rc(i;k), j=\varnothing, k=\varnothing,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft j, j != \varnothing, if (i=\varnothing) - \begin{bmatrix}, Rc(i;k), j=\varnothing, k=\varnothing,\\\\, i\oplus, j\oplus, Rc(i;j), Rc(i;k), j=\varnothing, k=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft j, j != \varnothing, if (i=\varnothing) - \begin{bmatrix}, i=\varnothing, Rc(i;k), j=\varnothing, k=\varnothing, \\, i\oplus, j\oplus, Rc(i;j), Rc(i;k), j=\varnothing, k=\varnothing, \end{bmatrix}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft j, j != \varnothing, if (i=\varnothing) - \begin{bmatrix}, i=\varnothing, j=\varnothing, k=\varnothing, \\, i\oplus, j\oplus, Rc(i;j), Rc(i;k), j=\varnothing, k=\varnothing, \end{bmatrix}$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft j, j \vcentcolon= \varnothing, if (i = \varnothing) \\ \begin{bmatrix} , i = \varnothing, j = \varnothing, k = \varnothing, \\ , i \oplus, j \oplus, Rc(i;j), Rc(i;k), j = \varnothing, k = \varnothing, \end{bmatrix} \\ \end{bmatrix} ,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!j, j \! \models \! \varnothing, if(i \! = \! \varnothing) \! = \! \underbrace{ , j \! \ni \! \varnothing, k \! = \! \varnothing, }_{,i \oplus, j \oplus, Rc(i;j), Rc(i;k), j \! = \! \varnothing, k \! = \! \varnothing, } \! \Big] \! ,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft j, if (i=\varnothing) \\ \begin{bmatrix} ,j !=\varnothing, j=\varnothing, k=\varnothing, \\ \\ ,j !=\varnothing, i\oplus, j\oplus, Rc(i;j), Rc(i;k), j=\varnothing, k=\varnothing, \end{bmatrix}$$

$$\Leftrightarrow, \&SHi \circlearrowleft j, if (i=\varnothing) - \begin{bmatrix}, \otimes, k=\varnothing, & - \\, j \models \varnothing, i\ominus, j\ominus, Re(i;j), Re(i;k), j=\varnothing, k=\varnothing, - \\, kSHi \circlearrowleft j, if (i=\varnothing) - \begin{bmatrix}, \otimes, & - \\, j \models \varnothing, i\ominus, j\ominus, Re(i;j), Re(i;k), j=\varnothing, k=\varnothing, - \\\\, j \models \varnothing, i\ominus, j\ominus, Re(i;j), Re(i;k), j=\varnothing, k=\varnothing, - \\\\, kSHi \circlearrowleft j, i \models \varnothing, j \models \varnothing, i\ominus, j\ominus, Re(i;j), Re(i;k), j=\varnothing, k=\varnothing, \\\\, i \models \varnothing, j \models \varnothing, i\ominus, j\ominus, \&SHi \rightarrow j, Re(i;j), Re(i;k), j=\varnothing, k=\varnothing, \\\\, i \models \varnothing, j \models \varnothing, i\ominus, j\ominus, \&SHi \rightarrow j, Re(i;k), Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, i \models \varnothing, j \models \varnothing, i\ominus, j\ominus, Re(i;k), Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, i \models \varnothing, j \models \varnothing, i\ominus, Re(i;k), j\ominus, Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, i \models \varnothing, i\ominus, Re(i;k), j \models \varnothing, j\ominus, Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, i \models \varnothing, i\ominus, Re(i;k), j \models \varnothing, j\ominus, Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, i \models \varnothing, i\ominus, Re(i;k), k=\varnothing, j \models \varnothing, j\ominus, Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, Re(i;k), i \models \varnothing, i\ominus, j \models \varnothing, j\ominus, Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, Re(i;k), i \models \varnothing, i\ominus, j \models \varnothing, j\ominus, Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, Re(i;k), i \models \varnothing, j \models \varnothing, j\ominus, Re(i;j), j=\varnothing, k=\varnothing, \\\\, kSHi \circlearrowleft j, Re(i;k), i \models \varnothing, j \models \varnothing, j\ominus, Re(i;j), j=\varnothing, k=\varnothing, \\$$

 \Leftrightarrow , &SHi $\circlearrowleft j$, Rc(i;k), $j!=\varnothing$, Rc(i;j), $j=\varnothing$, $k=\varnothing$,

$$\Leftrightarrow$$
, $j!=\varnothing$, &SHi $\circlearrowleft j$, $Rc(i;k)$, $Rc(i;j)$, $j=\varnothing$, $k=\varnothing$,

$$, Rc(i; j), Rc(i; k), j = \emptyset, k = \emptyset, \Leftrightarrow , Rc(i; k), Rc(i; j), j = \emptyset, k = \emptyset,$$

induction proof 2:

premise 1:

$$, i = \varnothing, Rc(i; j), Rc(i; k), j = \varnothing, k = \varnothing,$$

$$\Leftrightarrow$$
, $i = \emptyset$, $Rc(i; k)$, $j = \emptyset$, $k = \emptyset$,

$$\Leftrightarrow$$
, $i = \emptyset$, $j = \emptyset$, $k = \emptyset$,

$$\Leftrightarrow$$
, $i = \emptyset$, $Rc(i; j)$, $j = \emptyset$, $k = \emptyset$,

$$\Leftrightarrow$$
, $i = \emptyset$, $Rc(i; k)$, $Rc(i; j)$, $j = \emptyset$, $k = \emptyset$,

, &SH
$$i \rightarrow i$$
, $Rc(i; j)$, $Rc(i; k)$, $j = \emptyset$, $k = \emptyset$, \Leftrightarrow , &SH $i \rightarrow i$, $Rc(i; k)$, $Rc(i; j)$, $j = \emptyset$, $k = \emptyset$, \Rightarrow

$$, i != \varnothing, \&SHi \circlearrowleft i, Rc(i; j), Rc(i; k), j = \varnothing, k = \varnothing,$$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $i \neq \emptyset$, $Rc(i; j)$, $Rc(i; k)$, $j = \emptyset$, $k = \emptyset$,

$$\Leftrightarrow \text{, \&SHi \circlearrowleft} i, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix} , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix} -, Rc(i;k), j = \varnothing, k = \varnothing$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix},\\\\, i \oplus, j \oplus, Rc(i; j),\end{bmatrix}, Rc(i; k), j = \varnothing, k = \varnothing,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j = \varnothing) - \begin{bmatrix}, Rc(i; k), j = \varnothing, k = \varnothing,\\\\, i \oplus, j \oplus, Rc(i; j), Rc(i; k), j = \varnothing, k = \varnothing,\end{bmatrix},$$

$$\Leftrightarrow \text{, \&SHi Oi, } i != \varnothing, if(j = \varnothing) \\ \begin{bmatrix} \text{, } Rc(i;k), j = \varnothing, j = \varnothing, k = \varnothing, \\ \text{, } i \oplus, j \oplus, Rc(i;j), Rc(i;k), j = \varnothing, k = \varnothing, \end{bmatrix} \\ \text{, } \text$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i != \varnothing, if (j=\varnothing) \\ \begin{bmatrix}, Rc(i;k), j=\varnothing, Rc(i;j), j=\varnothing, k=\varnothing, \\ , i\oplus, j\oplus, Rc(i;j), Rc(i;k), j=\varnothing, k=\varnothing, \end{bmatrix}.$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i! = \varnothing, if (j = \varnothing) = \begin{bmatrix}, j = \varnothing, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i \ominus, j \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i! = \varnothing, if (j = \varnothing) = \begin{bmatrix}, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i \ominus, j \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, if (j = \varnothing) = \begin{bmatrix}, \&SHi \, \circlearrowleft i, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i \ominus, j \ominus, \&SHi \to i, Re(i;j), Re(i;k), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, if (j = \varnothing) = \begin{bmatrix}, \&SHi \, \circlearrowleft i, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i \ominus, j \ominus, \&SHi \to i, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i \ominus, j \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, i! = \varnothing, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i! = \varnothing, j! = \varnothing, i \ominus, j \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, i! = \varnothing, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i! = \varnothing, j! = \varnothing, i \ominus, j \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i! = \varnothing, j! = \varnothing, i \ominus, j \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i! = \varnothing, i \ominus, Re(i;k), j! = \varnothing, j \ominus, Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i! = \varnothing, i \ominus, Re(i;k), j! = \varnothing, j \ominus, Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i! = \varnothing, i \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i! = \varnothing, i \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, if (j = \varnothing) = \begin{bmatrix}, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \\, i! = \varnothing, i \ominus, Re(i;k), Re(i;j), j = \varnothing, k = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,Rc(i;k),i!=\varnothing,i\oplus,j\oplus,Rc(i;j),j=\varnothing,k=\varnothing, \end{bmatrix}$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,Rc(i;k),i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,Rc(i;j),j=\varnothing,k=\varnothing, \end{bmatrix}$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,Rc(i;k),i!=\varnothing,j!=\varnothing,Rc(i;j),j=\varnothing,k=\varnothing, \end{bmatrix}$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,Rc(i;k),j!=\varnothing,Rc(i;j),j=\varnothing,k=\varnothing, \end{bmatrix}$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,j!=\varnothing,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing, \end{bmatrix}$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,l!=\varnothing,\&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,l!=\varnothing,\&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,l!=\varnothing,\&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing,\\ ,Rc(i;k),Rc(i;j),j=\varnothing,k=\varnothing, \end{bmatrix}$$

conclusion:

$$Rc(i;j), Rc(i;k), j=\emptyset, k=\emptyset, \Leftrightarrow Rc(i;k), Rc(i;j), j=\emptyset, k=\emptyset,$$

 \Leftrightarrow , $i!=\varnothing$, &SHi \circlearrowleft i, Rc(i;k), Rc(i;j), $j=\varnothing$, $k=\varnothing$,

$$\begin{split} , Rc(i;j), Rc(i;k), i = \varnothing, j = \varnothing, k = \varnothing, &\iff , Rc(i;k), Rc(i;j), i = \varnothing, j = \varnothing, k = \varnothing, \\ , Rc(i;j), Rc(i;k), i != \varnothing, j = \varnothing, k = \varnothing, &\iff , Rc(i;k), Rc(i;j), i != \varnothing, j = \varnothing, k = \varnothing, \\ , i \circlearrowleft_j, Rc(i;j), &\iff , Rc(i;j), i \circlearrowleft_j, \end{split}$$

induction proof: premise 1: $i = \emptyset, i \circlearrowleft_j, Rc(i; j),$

20 Recursive Function Rc(i;j)

$$\Leftrightarrow ,i \circlearrowleft j, i = \varnothing, Rc(i;j),$$

$$\Leftrightarrow ,i \circlearrowleft j, i = \varnothing,$$

$$\Leftrightarrow ,i = \varnothing, i \circlearrowleft j,$$

$$\Leftrightarrow ,i = \varnothing, Rc(i;j), i \circlearrowleft j,$$

premise 2:

, &SHi
$$\rightarrow$$
i, i \circlearrowleft j, $Rc(i;j)$, \Leftrightarrow , &SHi \rightarrow i, $Rc(i;j)$, i \circlearrowleft j, \Longrightarrow , $i!=\varnothing$, &SHi \circlearrowleft i, i \circlearrowleft j, $Rc(i;j)$,

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, i \circlearrowleft j, i!= \varnothing , $Rc(i;j)$,

$$\Leftrightarrow \text{, \&SHi \circlearrowleft} i, i \circlearrowleft j, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix} , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix} -,$$

$$\Leftrightarrow \text{, \&SHi \circlearrowleft} i, i != \varnothing, i f(j = \varnothing) - \begin{bmatrix} , i \circlearrowleft j, \\ , i \circlearrowleft j, i \oplus, j \oplus, Rc(i;j), \end{bmatrix} + \begin{bmatrix} , i \circlearrowleft j, i \oplus, j \oplus, Rc(i;j), \end{bmatrix} + \begin{bmatrix} , i \circlearrowleft j, i \oplus, j \oplus, Rc(i;j), \end{bmatrix} + \begin{bmatrix} , i \circlearrowleft j, i \oplus, j \oplus, Rc(i;j), \end{bmatrix} + \begin{bmatrix} , i \circlearrowleft j, i \oplus, j \oplus, Rc(i;j), \end{bmatrix} + \begin{bmatrix} , i \circlearrowleft j, i \oplus, j \oplus, Rc(i;j), \end{bmatrix} + \begin{bmatrix} , i \circlearrowleft j, i \oplus, Rc(i;j), \end{bmatrix} + \begin{bmatrix} , i \circlearrowleft j, i \oplus, Rc(i;j), \vdots \oplus, Rc(i;j), \vdots \oplus, Rc(i;j), Rc(i;j), \end{bmatrix} + \begin{bmatrix} , i \circlearrowleft j, i \oplus, Rc(i;j), \vdots \oplus, Rc(i;j), Rc(i;j),$$

$$\Leftrightarrow , \&S\!H\!i\,\circlearrowleft\!i,i\! := \varnothing, if(j\! =\! \varnothing) - \begin{bmatrix}, i\circlearrowleft\!j,\\ , i\oplus, j\oplus, i\circlearrowleft\!j, Rc(i;j),\end{bmatrix}\!\!-\!\!,$$

$$\Leftrightarrow, i != \varnothing, if(j = \varnothing) - \begin{bmatrix}, \&SHi \circlearrowleft i, i \circlearrowleft j, \\ i \oplus, j \oplus, \&SHi \rightarrow i, i \circlearrowleft j, Rc(i; j), \end{bmatrix},$$

$$\Leftrightarrow ,i != \varnothing, if(j = \varnothing) - \begin{bmatrix} , \&SHi \circlearrowleft i, i \circlearrowleft j, \\ \\ ,i \oplus, j \oplus, \&SHi \rightarrow i, Rc(i;j), i \circlearrowleft j, \end{bmatrix} -,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, if(j = \varnothing) - \begin{bmatrix} , i \circlearrowleft j, \\ , i \oplus, j \oplus, Rc(i;j), i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, if(j = \varnothing) - \begin{bmatrix} , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix}, i \circlearrowleft j,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, if(j = \varnothing) - \begin{bmatrix} , \\ , i\oplus, j\oplus, Rc(i;j), \end{bmatrix}, i\circlearrowleft j$$

$$\Leftrightarrow ,i \! := \! \varnothing, \&S\!H\!i\, \circlearrowleft\! i, Rc(i;j), i \circlearrowleft\! j,$$

conclusion:

$$,i \circlearrowleft j, Rc(i;j), \iff , Rc(i;j), i \circlearrowleft j,$$

$$,i! \circlearrowleft j, Rc(i;j), \Leftrightarrow , Rc(i;j), i! \circlearrowleft j,$$

$$, i \mathring{\circlearrowleft} m, Rc(i;j), \iff , Rc(i;j), i \mathring{\circlearrowleft} m,$$

$$,i! \circlearrowleft m, Rc(i;j), \Leftrightarrow ,Rc(i;j),i! \circlearrowleft m,$$

21.1 Definition of Number Equal

$$, if(i=j) - \begin{bmatrix} , \\ , \\ , i \otimes i_0, j \otimes j_0, Rc(i_0,j_0), if(i_0=j_0) - \begin{bmatrix} , i_0 \oplus, j_0 \oplus, \\ , i_0 \oplus, j_0 \oplus, \\ , i_0 \oplus, j_0 \oplus, \end{bmatrix}$$

$$, i=j, \iff , if(i=j)-\begin{bmatrix} , \\ , \otimes , \end{bmatrix}$$

$$,i!=j, \Leftrightarrow ,if(i=j)-\begin{bmatrix} ,\otimes ,\\ .\end{bmatrix} -,$$

21.2 Theorems of Number Equal Relationship

21.2.1 Number Equal propositions to definition

$$, i = j, \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \otimes j_0 \otimes j_$$

$$, i \pm j, \iff, i \odot i_0, j \odot j_0, Rc(i_0, j_0), i_0 = \varnothing, j_0 = \varnothing, i_0 \odot, j_0 \odot,$$

proof:

$$,i=j,$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0, j_0)$, $i_0 = j_0$, $i_0 \otimes$, $j_0 \otimes$,

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0,j_0), if(i_0 = \varnothing) - \begin{bmatrix} , \\ , j_0 = \varnothing, \end{bmatrix} -, i_0 = j_0, i_0 \oplus, j_0 \oplus, j_$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = \varnothing) - \begin{bmatrix}, i_0 = j_0, \\, j_0 = \varnothing, i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, j_$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = \varnothing) - \begin{bmatrix}, i_0 != j_0, \\ , j_0 = \varnothing, i_0 != \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus, j$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = \varnothing) - \begin{bmatrix}, i_0 != j_0, \\ , i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus, j$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = \varnothing) - \begin{bmatrix}, i_0 != j_0, \\, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = \varnothing) - \begin{bmatrix}, i_0 = \varnothing, i_0 != j_0, \\, j_0 = \varnothing,\end{bmatrix}, i_0 \oplus, j_0 \oplus, j_0$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = \varnothing) - \begin{bmatrix}, i_0 = \varnothing, j_0 != \varnothing, \\, j_0 = \varnothing,\end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = \varnothing) - \begin{bmatrix}, j_0 ! = \varnothing, \\, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

21.2.2 Branch function to propositions

$$, if(i=j) = \begin{bmatrix} , @c, \\ , \otimes, \end{bmatrix} -, \Leftrightarrow , i=j, @c,$$

$$, if(i=j) = \begin{bmatrix} , \otimes, \\ . & \bigcirc c. \end{bmatrix}, \Leftrightarrow , i!=j, @c,$$

21.2.3 Empty branch function

$$, if(i=j)$$
 \leftarrow $, \leftarrow$ $, = j, i=j, i=j, i!=j, i$

21.2.4 Unity

$$, \iff, if(i=j) \downarrow , \downarrow,$$
proof:
$$, \Leftrightarrow, i \otimes i_0, i_0 \oplus, j \otimes j_0, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) - \boxed{, } -, i_0 \otimes, j_0 \otimes$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \\ \cdot \end{bmatrix}, i_0 \oplus, j_0 \oplus, \end{bmatrix},$$

$$\Leftrightarrow, if(i = j) = \begin{bmatrix} \cdot \\ \cdot \\ \cdot \end{bmatrix},$$

$$, i = j, \otimes, \Leftrightarrow, \otimes,$$
 $, i! = i, \otimes, \Leftrightarrow, \otimes$

21.2.5 Symmetry

$$, if(i{\pm}j){\tiny\left[\begin{array}{c} \cdot \\ \cdot \end{array} \right.} \iff , if(j{\pm}i){\tiny\left[\begin{array}{c} \cdot \\ \cdot \end{array} \right]}$$

21.2.6 Swap

Branch function and operator:

$$, \odot m, if(i=j) - \begin{bmatrix} , & \Leftrightarrow & , if(i=j) - \end{bmatrix}, \\ \Leftrightarrow & , if(i=j) - \begin{bmatrix} , & \circlearrowleft \\ , & \circlearrowleft \end{bmatrix}, \\ \Leftrightarrow & , \odot m, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) - \begin{bmatrix} , i_0 \otimes , j_0 \otimes , \\ , i_0 \otimes , j_0 \otimes , \end{bmatrix}, \\ \Leftrightarrow & , i \otimes i_0, j \otimes j_0, \otimes m, Rc(i_0, j_0), if(i_0 = j_0) - \begin{bmatrix} , i_0 \otimes , j_0 \otimes , \\ , i_0 \otimes , j_0 \otimes , \end{bmatrix}, \\ \Leftrightarrow & , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), \otimes m, if(i_0 = j_0) - \begin{bmatrix} , i_0 \otimes , j_0 \otimes , \\ , i_0 \otimes , j_0 \otimes , \end{bmatrix}, \\ \Leftrightarrow & , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) - \begin{bmatrix} , i_0 \otimes , j_0 \otimes , \otimes m, \\ , i_0 \otimes , j_0 \otimes , \otimes m, \end{bmatrix}, \\ \Leftrightarrow & , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) - \begin{bmatrix} , i_0 \otimes , j_0 \otimes , \otimes m, \\ , i_0 \otimes , j_0 \otimes , \otimes m, \end{bmatrix}, \\ \Leftrightarrow & , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) - \begin{bmatrix} , i_0 \otimes , j_0 \otimes , \otimes m, \\ , i_0 \otimes , j_0 \otimes , \otimes m, \end{bmatrix}, \\ \Leftrightarrow & , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) - \begin{bmatrix} , i_0 \otimes , j_0 \otimes , \otimes m, \\ , i_0 \otimes , j_0 \otimes , \otimes m, \end{bmatrix}, \\ \Leftrightarrow & , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), if(i_0 = j_0) - \begin{bmatrix} , i_0 \otimes , j_0 \otimes , \otimes m, \\ , i_0 \otimes , j_0 \otimes , \otimes m, \\ , i_0 \otimes , j_0 \otimes , \otimes m, \end{bmatrix}$$

$$\Leftrightarrow , if(i=j)- \begin{bmatrix} , @m, \\ \\ , @m, \end{bmatrix}$$

$$, \odot m, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, \odot m, \\ \cdot, \odot m, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, m \odot n, \\ \cdot, m \odot n, \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ , m \odot n, if(i=j) - \begin{bmatrix} \cdot, & \cdot, if(i=j) - \end{bmatrix} \\ ,$$

Branch function and Branch function:

$$, if(i=j) = \begin{bmatrix} , if(m=n) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(m=n) = \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i=j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i=j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \end{bmatrix},$$

proof:

21.2 Theorems of Number Equal Relationship

 \Leftrightarrow , $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0, j_0)$,

$$if(i_0=j_0) - \begin{bmatrix} ,i_0 \oplus, j_0 \oplus, if(m \pm n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \\ ,i_0 \oplus, j_0 \oplus, if(m \pm n) - \begin{bmatrix} , @c_3, \\ , @c_4, \end{bmatrix} - , \end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0, j_0)$,

$$if(i_0=j_0) = \begin{bmatrix} ,i_0 \textcircled{@},j_0 \textcircled{@},m \textcircled{@}m_0,n \textcircled{@}n_0,Rc(m_0;n_0),if(m_0=n_0) \\ ,i_0 \textcircled{@},j_0 \textcircled{@},m \textcircled{@}m_0,n \textcircled{@}n_0,Rc(m_0;n_0),if(m_0=n_0) \\ ,i_0 \textcircled{@},j_0 \textcircled{@},m \textcircled{@}m_0,n \textcircled{@}n_0,Rc(m_0;n_0),if(m_0=n_0) \\ ,m_0 \textcircled{@},n_0 \textcircled{@},n_0 \textcircled{@}, \textcircled{@}c_3, \\ ,m_0 \textcircled{@},n_0 \textcircled{@}, \textcircled{@}c_4, \end{bmatrix},$$

 \Leftrightarrow , $m \odot m_0$, $n \odot n_0$, $i \odot i_0$, $j \odot j_0$, $Rc(i_0, j_0)$,

$$if(i_0 = j_0) = \begin{bmatrix} , Rc(m_0; n_0), if(m_0 = n_0) - \begin{bmatrix} , m_0 \textcircled{@}, n_0 \textcircled{@}, i_0 \textcircled{@}, j_0 \textcircled{@}, \textcircled{@}c_1, \\ , m_0 \textcircled{@}, n_0 \textcircled{@}, i_0 \textcircled{@}, j_0 \textcircled{@}, \textcircled{@}c_2, \end{bmatrix}, \\ , Rc(m_0; n_0), if(m_0 = n_0) = \begin{bmatrix} , m_0 \textcircled{@}, n_0 \textcircled{@}, i_0 \textcircled{@}, j_0 \textcircled{@}, \textcircled{@}c_2, \end{bmatrix}, \\ , m_0 \textcircled{@}, n_0 \textcircled{@}, i_0 \textcircled{@}, j_0 \textcircled{@}, \textcircled{@}c_3, \end{bmatrix}, \\ , m_0 \textcircled{@}, n_0 \textcircled{@}, i_0 \textcircled{@}, j_0 \textcircled{@}, \textcircled{@}c_4, \end{bmatrix},$$

 \Leftrightarrow , $m \otimes m_0$, $n \otimes n_0$, $Rc(m_0; n_0)$, $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0, j_0)$,

$$if(i_0 = j_0) = \begin{bmatrix} ,if(m_0 = n_0) - \begin{bmatrix} ,m_0 \oplus ,n_0 \oplus ,i_0 \oplus ,j_0 \oplus ,\odot c_1, \\ ,m_0 \oplus ,n_0 \oplus ,i_0 \oplus ,j_0 \oplus ,\odot c_2, \end{bmatrix}, \\ ,if(m_0 = n_0) - \begin{bmatrix} ,m_0 \oplus ,n_0 \oplus ,i_0 \oplus ,j_0 \oplus ,\odot c_2, \\ ,m_0 \oplus ,n_0 \oplus ,i_0 \oplus ,j_0 \oplus ,\odot c_3, \\ ,m_0 \oplus ,n_0 \oplus ,i_0 \oplus ,j_0 \oplus ,\odot c_4, \end{bmatrix}, \\ \end{bmatrix},$$

 \Leftrightarrow , $m \otimes m_0$, $n \otimes n_0$, $Rc(m_0; n_0)$, $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0, j_0)$,

$$if(m_0 = n_0) = \begin{bmatrix} , if(i_0 = j_0) - \begin{bmatrix} , m_0 \oplus, n_0 \oplus, i_0 \oplus, j_0 \oplus, \odot c_1, \\ , m_0 \oplus, n_0 \oplus, i_0 \oplus, j_0 \oplus, \odot c_3, \end{bmatrix}, \\ , if(i_0 = j_0) - \begin{bmatrix} , m_0 \oplus, n_0 \oplus, i_0 \oplus, j_0 \oplus, \odot c_3, \\ , m_0 \oplus, n_0 \oplus, i_0 \oplus, j_0 \oplus, \odot c_2, \\ , m_0 \oplus, n_0 \oplus, i_0 \oplus, j_0 \oplus, \odot c_4, \end{bmatrix},$$

 \Leftrightarrow , $m \otimes m_0$, $n \otimes n_0$, $Rc(m_0; n_0)$,

$$if(m_0=n_0) = \begin{bmatrix} ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_1, \\ ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, j_0 \oplus, \odot c_2, & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, j_0 \oplus, \odot c_2, & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, n_0 \oplus, i \oplus i_0, j \oplus j_0, Rc(i_0,j_0), if(i_0=j_0) & \vdots, i_0 \oplus, j_0 \oplus, \odot c_2, \\ ,n_0 \oplus, n_0 \oplus, i \oplus, i_0 \oplus,$$

$$\Leftrightarrow , if(m=n) = \begin{bmatrix} , if(i=j) - \begin{bmatrix} , ©c_1, \\ , ©c_3, \end{bmatrix} - , \\ , if(i=j) - \begin{bmatrix} , ©c_2, \\ , ©c_4, \end{bmatrix} - , \end{bmatrix},$$

$$, if(i = j) = \begin{bmatrix} , if(m \oplus n) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(m \oplus n) = \begin{bmatrix} , if(i = j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(m \oplus n) = \begin{bmatrix} , if(i = j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i = j) = \begin{bmatrix} , \odot c_2, \\ , \odot c_4, \end{bmatrix}, \end{bmatrix},$$

$$, if(i\pm j) = \begin{bmatrix} , if(m\rightarrow n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} - , \\ , if(m\rightarrow n) - \begin{bmatrix} , @c_3, \\ , @c_3, \end{bmatrix} - , \\ , if(m\rightarrow n) - \begin{bmatrix} , & \\ , & & \\ , & & \\ , & & \end{bmatrix} - , \Leftrightarrow , if(m\rightarrow n) - \begin{bmatrix} , & & \\ , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ , & & \\ , & & \\ , & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & & \\ & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & & \\ & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & \\ & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\ & \end{bmatrix} - , \\ , if(i\pm j) - \begin{bmatrix} , & & \\$$

$$, if(i=j) = \begin{bmatrix} , if(m \circlearrowleft n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m \circlearrowleft n) = \begin{bmatrix} , & \\ , & & \\ , & & \\ \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , & & \\ , & & \\ , & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, if(i=j) = \begin{bmatrix} , & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & \\ & & \\ & & \\ \end{pmatrix}, \begin{pmatrix} & & & \\ & & \\ & & \\ &$$

$$, if(i=j) = \begin{bmatrix} , if(m \circlearrowleft n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m \circlearrowleft n) = \begin{bmatrix} , & \\ , & \\ , & \\ \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix} , & \\ , & \\ , & \\ \end{bmatrix}, \begin{bmatrix} , & \\ & \\ , & \\ \end{bmatrix}, \begin{bmatrix} , & \\ & \\ \end{bmatrix}$$

$$, if(i=j) = \begin{bmatrix} , if(m=n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(m=n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(m=n) - \begin{bmatrix} , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(i=j) - \begin{bmatrix} , \odot c_1, \\ ,$$

$$, if(i=j) = \begin{bmatrix} , if(m=\varnothing) & \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m=\varnothing) & \begin{bmatrix} , if(i=j) & \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(m=\varnothing) & \begin{bmatrix} , if(i=j) & \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i=j) & \begin{bmatrix} , & & & \\ , & & & \end{bmatrix}, \\ , if(i=j) & \begin{bmatrix} , & & & \\ , & & & \end{bmatrix}, \\ , & & & \end{bmatrix},$$

Branch function and propositions:

$$, m = n, if(i = j) = \begin{bmatrix}, ©c_1, \\ , ©c_2, \end{bmatrix}, \Leftrightarrow , if(i = j) = \begin{bmatrix}, m = n, ©c_1, \\ , m = n, ©c_2, \end{bmatrix},$$

$$, m! \pm n, if(i \pm j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \pm j) = \begin{bmatrix} , m! \pm n, @c_1, \\ , m! \pm n, @c_2, \end{bmatrix},$$

$$, m \oplus n, if(i \pm j) - \begin{bmatrix}, \odot c_1, \\ \\ , \odot c_2, \end{bmatrix}, \iff , if(i \pm j) - \begin{bmatrix}, m \oplus n, \odot c_1, \\ \\ , m \oplus n, \odot c_2, \end{bmatrix},$$

$$, m! @ n, if (i = j) = \begin{bmatrix} , @ c_1, \\ , @ c_2, \end{bmatrix}, \iff , if (i = j) = \begin{bmatrix} , m! @ n, @ c_1, \\ , m! @ n, @ c_2, \end{bmatrix},$$

$$, m \rightarrow n, if(i \pm j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \pm j) - \begin{bmatrix}, m \rightarrow n, @c_1, \\ \\ , m \rightarrow n, @c_2, \end{bmatrix},$$

21.2 Theorems of Number Equal Relationship

$$, m! \rightarrow n, if(i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) - \begin{bmatrix} , m! \rightarrow n, @c_1, \\ \\ , m! \rightarrow n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if(i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i = j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if(i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if(i=j) - \begin{bmatrix} , \circledcirc c_1, \\ \\ , \circledcirc c_2, \end{bmatrix}, \iff , if(i=j) - \begin{bmatrix} , m \circlearrowleft n, \circledcirc c_1, \\ \\ , m \circlearrowleft n, \circledcirc c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if(i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m = n, if(i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i = j) - \begin{bmatrix} , m = n, @c_1, \\ \\ , m = n, @c_2, \end{bmatrix},$$

$$, m!=n, if(i=j)$$
 $\begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}$ $\Leftrightarrow , if(i=j)$ $\begin{bmatrix} , m!=n, @c_1, \\ , m!=n, @c_2, \end{bmatrix}$

$$, m = \varnothing, if(i = j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i = j) = \begin{bmatrix} , m = \varnothing, @c_1, \\ \\ , m = \varnothing, @c_2, \end{bmatrix},$$

$$, m \models \varnothing, if(i=j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix}, m \models \varnothing, @c_1, \\ , m \models \varnothing, @c_2, \end{bmatrix},$$

$$, m = n, i f(i \oplus j) = \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \Leftrightarrow , i f(i \oplus j) = \begin{bmatrix} , m = n, \odot c_1, \\ , m = n, \odot c_2, \end{bmatrix},$$

$$, m! \pm n, if(i \oplus j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \oplus j) - \begin{bmatrix} , m! \pm n, @c_1, \\ \\ , m! \pm n, @c_2, \end{bmatrix},$$

$$, m = n, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , m = n, @c_1, \\ , m = n, @c_2, \end{bmatrix},$$

$$, m! = n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m! = n, @c_1, \\ , m! = n, @c_2, \end{bmatrix},$$

$$, m \pm n, i f(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i f(i \rightarrow j) - \begin{bmatrix} , m \pm n, @c_1, \\ \\ , m \pm n, @c_2, \end{bmatrix},$$

$$, m! \pm n, if(i \rightarrow j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \rightarrow j) - \begin{bmatrix} , m! \pm n, @c_1, \\ \\ , m! \pm n, @c_2, \end{bmatrix},$$

21.2 Theorems of Number Equal Relationship

$$, m = n, if(i \circlearrowleft j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) - \begin{bmatrix}, m = n, @c_1, \\ \\ , m = n, @c_2, \end{bmatrix},$$

$$, m! \pm n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i \circlearrowleft j) - \begin{bmatrix} , m! \pm n, @c_1, \\ \\ , m! \pm n, @c_2, \end{bmatrix},$$

$$, m\!=\!n, if (i\!=\!j) \!-\!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\!\! -, \iff , if (i\!=\!j) \!-\! \begin{bmatrix} , m\!=\!n, @c_1, \\ \\ , m\!=\!n, @c_2, \end{bmatrix} \!\!\! -,$$

$$, m! \pm n, if (i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if (i = j) - \begin{bmatrix} , m! \pm n, @c_1, \\ \\ , m! \pm n, @c_2, \end{bmatrix},$$

$$, m\!=\!n, if (i\!=\!\varnothing) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}\!\!-, \;\; \Leftrightarrow \; , if (i\!=\!\varnothing) - \begin{bmatrix}, m\!=\!n, @c_1, \\ \\ , m\!=\!n, @c_2, \end{bmatrix}\!\!-,$$

$$, m! \pm n, if (i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if (i = \varnothing) - \begin{bmatrix} , m! \pm n, @c_1, \\ \\ , m! \pm n, @c_2, \end{bmatrix},$$

Branch function and recursive function:

$$,R_{-}(m),if(i\pm j)-\begin{bmatrix},@c_{1},\\\\,@c_{2},\end{bmatrix},\Leftrightarrow,if(i\pm j)-\begin{bmatrix},R_{-}(m),@c_{1},\\\\,R_{-}(m),@c_{2},\end{bmatrix},$$

$$, Rc(m; n), if(i=j) = \begin{bmatrix}, ©c_1, \\, ©c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix}, Rc(m; n), ©c_1, \\, Rc(m; n), ©c_2, \end{bmatrix},$$

Branch function and flag object:

$$, \&SHi \circlearrowleft m, if(i=j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix}, \&SHi \circlearrowleft m, @c_1, \\ , \&SHi \circlearrowleft m, @c_2, \end{bmatrix},$$

$$, \&S\!H\!j \circlearrowleft\! m, if(i\!=\!j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i\!=\!j) - \begin{bmatrix} , \&S\!H\!j \circlearrowleft\! m, @c_1, \\ \\ , \&S\!H\!j \circlearrowleft\! m, @c_2, \end{bmatrix},$$

$$, \&\mathit{SHj} \leftarrow m, if(i = j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i = j) - \begin{bmatrix} , \&\mathit{SHj} \leftarrow m, @c_1, \\ \\ , \&\mathit{SHj} \leftarrow m, @c_2, \end{bmatrix},$$

$$, \&S\!Vi\, \circlearrowleft\!m, if(i=j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff, if(i=j) = \begin{bmatrix}, \&S\!Vi\, \circlearrowleft\!m, @c_1, \\ , \&S\!Vi\, \circlearrowleft\!m, @c_2, \end{bmatrix},$$

$$, \&S\!V\!i\, @m, if(i=j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff , if(i=j) = \begin{bmatrix}, \&S\!V\!i\, @m, @c_1, \\ , \&S\!V\!i\, @m, @c_2, \end{bmatrix},$$

Propositions and operator:

$$,i{\pm}j,{\tiny \bigcirc}m, \iff ,{\tiny \bigcirc}m,i{\pm}j,$$

$$, i=j, \odot m, \iff , \odot m, i=j,$$

$$,i=j,m\odot n,\iff,m\odot n,i=j,$$

$$, i = j, m \otimes n, \iff , m \otimes n, i = j,$$

$$,i \pm j, m \oplus n, \iff , m \oplus n, i \pm j,$$

$$, i = j, m \oplus, \iff, m \oplus, i = j,$$

$$, i=j, m\oplus, \Leftrightarrow, m\oplus, i=j,$$

$$, i = j, m \ominus, \Leftrightarrow , m \ominus, i = j,$$

$$,i!=j,@m, \Leftrightarrow ,@m,i!=j,$$

$$,i!=j,\odot m, \Leftrightarrow ,\odot m,i!=j,$$

$$,i!=j,m\odot n, \Leftrightarrow ,m\odot n,i!=j,$$

$$,i!=j,m\otimes n, \Leftrightarrow ,m\otimes n,i!=j,$$

$$,i!=j,m \oplus n, \iff ,m \oplus n,i!=j,$$

$$,i!=j,m \oplus ,\iff ,m \oplus ,i!=j,$$

$$,i!=j,m \oplus ,\iff ,m \oplus ,i!=j,$$

$$,i!=j,m \ominus ,\iff ,m \ominus ,i!=j,$$

Propositions and Propositions:

$$, i = j, m = n, \Leftrightarrow , m = n, i = j,$$

$$, i = j, m! = n, \Leftrightarrow , m! = n, i = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i = j, m! = n, \Leftrightarrow , m! = n, i = j,$$

$$, i = j, m! = n, \Leftrightarrow , m! = n, i = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i = j, m! = n, \Leftrightarrow , m! = n, i = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, \Leftrightarrow , m! = n, i! = j,$$

$$, i! = j, m! = n, i! = j,$$

$$, i! = j, m! = n, i! = j,$$

$$, i! = j, m! = n, i! = j,$$

$$, i! = j, m! = n, i! = j,$$

$$, i! = j, m! = n, i! = j,$$

$$, i! = j, m! = n, i! = j,$$

$$, i! = j$$

21.2 Theorems of Number Equal Relationship

$$, i = j, m = n, \iff , m = n, i = j,$$

$$, i = j, m! = n, \iff , m! = n, i = j,$$

$$, i! = j, m = n, \iff , m = n, i! = j,$$

$$, i! = j, m! = n, \iff , m! = n, i! = j,$$

$$, i = j, m! = \varnothing, \iff , m! = \varnothing, i = j,$$

$$, i! = j, m! = \varnothing, \iff , m! = \varnothing, i! = j,$$

$$, i! = j, m! = \varnothing, \iff , m! = \varnothing, i! = j,$$

$$, i! = j, m! = \varnothing, \iff , m! = \varnothing, i! = j,$$

$$, i! = j, m! = \varnothing, \iff , m! = \varnothing, i! = j,$$

Propositions and recursive function:

$$, i = j, R(m), \iff , R(m), i = j,$$

$$, i! = j, R(m), \iff , R(m), i! = j,$$

$$, i = j, R_{-}(m), \iff , R_{-}(m), i = j,$$

$$, i! = j, R_{-}(m), \iff , R_{-}(m), i! = j,$$

$$, i = j, Rc(m; n), \iff , Rc(m; n), i = j,$$

$$, i! = j, Rc(m; n), \iff , Rc(m; n), i! = j,$$

Propositions and flag object:

$$, i=j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i=j,$$

$$, i=j, \&SHi \to m, \Leftrightarrow , \&SHi \to m, i=j,$$

$$, i!=j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SHi \to m, \Leftrightarrow , \&SHi \to m, i!=j,$$

$$, i=j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, i=j,$$

$$, i=j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i=j,$$

$$, i!=j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, i!=j,$$

$$, i!=j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

$$, i!=j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i!=j,$$

Propositions to Propositions with branch function

(Skip.....)

21.2.7 Swap of the same operand

(skip.....)

21.2.8 Transitivity

Branch function with branch function:

$$, if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix} , if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_2, \end{bmatrix},$$

$$\begin{array}{c} \text{proof:} \\ , if(i=j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \end{array}$$

$$\Leftrightarrow , i @ i_0, j @ j_0, Rc(i_0, j_0), if(i_0 = j_0) = \begin{bmatrix} , i_0 @, j_0 @, @c_1, \\ , i_0 @, j_0 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i \odot i_0, j \odot j_0, Rc(i_0, j_0), i \odot i_1, i_1 \odot, j \odot j_1, j_1 \odot,$

$$if(i_0\!=\!j_0)\!\!=\!\!\!\begin{bmatrix},i_0\!\!\oplus\!,j_0\!\!\oplus\!,@c_1,\\,i_0\!\!\oplus\!,j_0\!\!\oplus\!,@c_2,\end{bmatrix}\!\!-\!\!,$$

$$\Leftrightarrow$$
 $,i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, Rc(i_0,j_0), i_1 \otimes , j_1 \otimes ,$

$$if(i_0 = j_0) = \begin{bmatrix} ,i_0 @,j_0 @, @c_1, \\ ,i_0 @,j_0 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, Rc(i_0,j_0), Rc(i_1,j_1), i_1 \otimes, j_1 \otimes,$

$$if(i_0=j_0)=\begin{bmatrix} ,i_0 @,j_0 @, @c_1, \\ ,i_0 @,j_0 @, @c_2, \end{bmatrix}$$
,

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_1$, $j \otimes j_0$, $j \otimes j_1$, $Rc(i_0, j_0)$, $Rc(i_1, j_1)$,

$$if(i_0\!=\!j_0)\!\!=\!\!\!\begin{bmatrix},i_0\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_1,\\,i_0\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_2,\end{bmatrix}\!\!-\!\!,$$

 \Leftrightarrow , $i \otimes i_0$, $i \otimes i_1$, $i_0 \otimes i_1$, $j \otimes j_0$, $j \otimes j_1$, $j_0 \otimes j_1$, $Rc(i_0, j_0)$, $Rc(i_1, j_1)$,

$$if(i_0 = j_0) = \begin{bmatrix} ,i_0 @,j_0 @,i_1 @,j_1 @, @c_1, \\ ,i_0 @,j_0 @,i_1 @,j_1 @, @c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, i_0 \otimes i_1, j_0 \otimes j_1, Rc(i_0, j_0), Rc(i_1, j_1),$

$$if(i_0\!=\!j_0)\!\!=\!\!\!\begin{bmatrix},i_0\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_1,\\,i_0\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_2,\end{bmatrix}\!\!-\!\!,$$

 $\Leftrightarrow, i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, i_0 \otimes i_1, j_0 \otimes j_1, Rc(i_0, j_0), Rc(i_1, j_1), i_0 \otimes i_1, j_0 \otimes j_1,$

$$if(i_0 = j_0) = \begin{bmatrix} ,i_0 @, j_0 @, i_1 @, j_1 @, @c_1, \\ ,i_0 @, j_0 @, i_1 @, j_1 @, @c_2, \end{bmatrix},$$

 $\Leftrightarrow, i \odot i_0, i \odot i_1, j \odot j_0, j \odot j_1, i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1, Rc(i_0, j_0), Rc(i_1, j_1), i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1,$

 $\Leftrightarrow , i \odot i_0, i \odot i_1, j \odot j_0, j \odot j_1, i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1, Rc(i_0, j_0), Rc(i_1, j_1),$

$$if(i_0=j_0) = \begin{bmatrix} ,i_0 \circlearrowleft i_1,j_0 \circlearrowleft j_1,if(i_0=j_0) \vdash \begin{bmatrix} ,i_0 \textcircled{@},j_0 \textcircled{@},i_1 \textcircled{@},j_1 \textcircled{@}, \textcircled{@}c_1,\\ ,i_0 \textcircled{@},j_0 \textcircled{@},i_1 \textcircled{@},j_1 \textcircled{@}, \textcircled{@}c_3, \end{bmatrix} \cdot , \\ ,i_0 \circlearrowleft i_1,j_0 \circlearrowleft j_1,i_0 \textcircled{@},j_0 \textcircled{@},i_1 \textcircled{@},j_1 \textcircled{@}, \textcircled{@}c_2, \end{bmatrix} \cdot ,$$

 \Leftrightarrow , $i \otimes i_0$, $i \otimes i_1$, $j \otimes j_0$, $j \otimes j_1$, $i_0 \otimes i_1$, $j_0 \otimes j_1$, $Rc(i_0, j_0)$, $Rc(i_1, j_1)$,

$$if(i_0\!=\!j_0)\!\!=\!\!\!\begin{bmatrix},i_0\!\circlearrowleft\!i_1,j_0\!\circlearrowleft\!j_1,if(i_0\!=\!j_1)\!\!=\!\!\begin{bmatrix},i_0\!\oplus\!,j_0\!\oplus\!,i_1\!\oplus\!,j_1\!\oplus\!,\otimes\!c_1,\\\\,i_0\!\oplus\!,j_0\!\oplus\!,i_1\!\oplus\!,j_1\!\oplus\!,\otimes\!c_3,\end{bmatrix}\!\!-\!\!,\\\\,i_0\!\oplus\!,i_0\!\oplus\!,j_0\!\oplus\!,i_1\!\oplus\!,j_1\!\oplus\!,\otimes\!c_2,\end{bmatrix}\!\!-\!\!,$$

 \Leftrightarrow , $i \otimes i_0$, $i \otimes i_1$, $j \otimes j_0$, $j \otimes j_1$, $i_0 \otimes i_1$, $j_0 \otimes j_1$, $Rc(i_0, j_0)$, $Rc(i_1, j_1)$,

$$if(i_0=j_0) = \begin{bmatrix},j_0 \circlearrowleft j_1,i_0 \circlearrowleft i_1,if(i_0=j_1) \vdash \begin{bmatrix},i_0 \textcircled{@},j_0 \textcircled{@},i_1 \textcircled{@},j_1 \textcircled{@}, \textcircled{@}c_1,\\ ,i_0 \textcircled{@},j_0 \textcircled{@},i_1 \textcircled{@},j_0 \textcircled{@},i_1 \textcircled{@},j_1 \textcircled{@}, \textcircled{@}c_2,\end{bmatrix}, \\ \downarrow,i_0 \textcircled{@},i_0 \textcircled{@},i_1 \textcircled{@},j_1 \textcircled{@}, \textcircled{@}c_2,\end{bmatrix},$$

 $\Leftrightarrow, i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1, Rc(i_0, j_0), Rc(i_1, j_1),$

$$if(i_0=j_0) = \begin{bmatrix},j_0 \circlearrowleft j_1,i_0 \circlearrowleft i_1,if(i_1=j_1) \vdash \begin{bmatrix},i_0 \circledast,j_0 \circledast,i_1 \circledast,j_1 \circledast, @c_1,\\ ,i_0 \circledast,j_0 \circledast,i_1 \circledast,j_1 \circledast, @c_3,\end{bmatrix},\\ ,i_0 \circlearrowleft i_1,j_0 \circlearrowleft j_1,i_0 \circledast,j_0 \circledast,i_1 \circledast,j_1 \circledast, @c_2,\end{bmatrix},$$

 $\Leftrightarrow, i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, Rc(i_0, j_0), Rc(i_1, j_1),$

$$if(i_0\!=\!j_0)\!\!=\!\!\!\begin{bmatrix},if(i_1\!=\!j_1)\!\!=\!\!\begin{bmatrix},i_0\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_1,\\,i_0\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_3,\end{bmatrix}\!\!-\!\!,\\\\,i_0\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_2,\end{bmatrix}\!\!-\!\!,$$

 \Leftrightarrow $,i \otimes i_0, j \otimes j_0, Rc(i_0,j_0), i \otimes i_1, j \otimes j_1, Rc(i_1,j_1),$

$$if(i_0\!=\!j_0)\!\!=\!\!\!\begin{bmatrix},i_0\!\!\oplus\!,j_0\!\!\oplus\!,if(i_1\!=\!j_1)\!\!=\!\!\begin{bmatrix},i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_1,\\,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_3,\end{bmatrix}\!\!-\!\!,\\,i_0\!\!\oplus\!,j_0\!\!\oplus\!,i_1\!\!\oplus\!,j_1\!\!\oplus\!,\odot\!c_2,\end{bmatrix}\!\!-\!\!,$$

 \Leftrightarrow , $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0, j_0)$,

$$if(i_0=j_0) = \begin{bmatrix} ,i_0 \oplus, j_0 \oplus, i \otimes i_1, j \otimes j_1, Rc(i_1,j_1), if(i_1=j_1) - \begin{bmatrix} ,i_1 \oplus, j_1 \oplus, \odot c_1, \\ ,i_1 \oplus, j_1 \oplus, \odot c_3, \end{bmatrix}, \\ ,i_0 \oplus, j_0 \oplus, i \otimes i_1, j \otimes j_1, Rc(i_1,j_1), i_1 \oplus, j_1 \oplus, \odot c_2, \end{bmatrix},$$

 \Leftrightarrow , $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0, j_0)$,

$$if(i_0 = j_0) = \begin{bmatrix}, i_0 \oplus, j_0 \oplus, if(i = j) & \begin{bmatrix}, & c_1, \\ & & c_3, \end{bmatrix}, \\, & c_3, \end{bmatrix},$$

$$\Leftrightarrow , if(i=j) = \begin{bmatrix} , if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_2, \end{bmatrix},$$

$$, if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix} , @c_1, \\ , if(i=j) = \begin{bmatrix} , @c_3, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

Branch function with propositions:

$$, if(i=j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(i=j) = \begin{bmatrix} , i=j, @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$, if(i=j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix} , @c_1, \\ \\ , i!=j, @c_2, \end{bmatrix},$$

Propositions with branch function:

$$,i=j,if(i=j)$$
- $\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix}$ - $,\Leftrightarrow,i=j,@c_1,$

$$,i!=j,if(i=j)$$
 $\begin{bmatrix} ,@c_1,\\ ,@c_2, \end{bmatrix}$ $,\Leftrightarrow,i!=j,@c_2,$

Propositions with propositions:

$$, i \pm j, \Leftrightarrow , i \pm j, i \pm j,$$

$$,i!=j, \Leftrightarrow ,i!=j,i!=j,$$

21.2.9 With node null propositions

$$,i=\varnothing,j=\varnothing,\Leftrightarrow\sim,i=j,$$
 $,i=\varnothing,j!=\varnothing,\Leftrightarrow\sim,i!=j,$
 $,i=j,i=\varnothing,\Leftrightarrow,i=j,j=\varnothing,$

$$\begin{array}{l} \operatorname{proof:} \\ , i = j, i = \varnothing, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i = \varnothing, \\ \Leftrightarrow , i \otimes i_0, i = \varnothing, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, i \otimes i_0, i \otimes i_0, i = \varnothing, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, i \otimes i_0, i_0 = \varnothing, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, i_0 = \varnothing, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, i_0 = \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, i_0 = \varnothing, i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, i_0 = \varnothing, i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j_0 = \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 = \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 = \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 = \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 = \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 = \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 = \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 \otimes j_0, j_0 \otimes j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, j_0 \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 \otimes j_0, i_0 \oplus, \\ \end{cases}$$

$$, i=j, i \models \varnothing, \Leftrightarrow , i=j, j \models \varnothing,$$

proof 1:

$$, i = j, i! = \emptyset,$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0, j_0)$, $i_0 = j_0$, $i_0 \otimes j_0 \otimes i = \emptyset$,

$$\Leftrightarrow$$
 $,i \otimes i_0, i! = \varnothing, j \otimes j_0, Rc(i_0,j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, j$

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_0$, $i = \emptyset$, $j \otimes j_0$, $Rc(i_0, j_0)$, $i_0 = j_0$, $i_0 \otimes j_0 \otimes$

$$\Leftrightarrow$$
 $,i \otimes i_0, i \otimes i_0, i_0! = \varnothing, j \otimes j_0, Rc(i_0,j_0), i_0 = j_0, i_0 \otimes, j_0 \otimes, j_0 \otimes , j_0$

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, i_0 \,!\!=\! \varnothing, Rc(i_0,j_0), i_0 \,=\! j_0, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, i_0 != \varnothing, if(j_0 = \varnothing) - \begin{bmatrix} , \\ , i_0 \oplus , j_0 \oplus , Rc(i_0, j_0), \end{bmatrix} -, i_0 = j_0, i_0 \oplus , j_0 \oplus ,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i_0 != \varnothing, i f(j_0 = \varnothing) - \begin{bmatrix}, i_0 = j_0, \\ , i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, i_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i f(j_0 = \varnothing) - \begin{bmatrix}, i_0 != \varnothing, i_0 = j_0, \\, i_0 != \varnothing, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i f(j_0 = \varnothing) - \begin{bmatrix}, j_0 != \varnothing, i_0 = j_0, \\, i_0 != \varnothing, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i f(j_0 = \varnothing) - \begin{bmatrix}, j_0 = \varnothing, j_0 ! = \varnothing, i_0 = j_0, \\, i_0 ! = \varnothing, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, j_0 \oplus, i_0 \oplus, j_0 \oplus, i_0 \oplus, j_0 \oplus, i_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i f(j_0 = \varnothing) - \begin{bmatrix}, \otimes, \\ , i_0 != \varnothing, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, i_0 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $j \otimes j_0$, $j_0 != \varnothing$, $i_0 != \varnothing$, $i_0 \oplus$, $j_0 \oplus$, $Rc(i_0, j_0)$, $i_0 = j_0$, $i_0 \oplus$, $j_0 \oplus$,

$$\Leftrightarrow$$
 $,i \otimes i_0, j \otimes j_0, i_0 != \varnothing, j_0 != \varnothing, i_0 \oplus, j_0 \oplus, Rc(i_0,j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus,$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i f(i_0 = \varnothing) - \begin{bmatrix}, \otimes, \\ , j_0 != \varnothing, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, i_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i f(i_0 = \varnothing) - \begin{bmatrix}, i_0 = \varnothing, i_0 != \varnothing, i_0 = j_0, \\, j_0 != \varnothing, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, i_0 \oplus, i_$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, i f(i_0 = \varnothing) - \begin{bmatrix}, i_0 = \varnothing, j_0 != \varnothing, i_0 = j_0, \\, j_0 != \varnothing, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), i_0 = j_0, \end{bmatrix}, i_0 \oplus, j_0 \oplus, i_0 \oplus, i_$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, j_0 != \varnothing, i f(i_0 = \varnothing) - \begin{bmatrix}, i_0 = \varnothing, \\ , i_0 \oplus, j_0 \oplus, Rc(i_0, j_0), \end{bmatrix}, i_0 = j_0, i_0 \oplus, j_0 \oplus, j_0 \oplus, i_0 \oplus, j_0 \oplus, i_0 \oplus, i$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, j_0 != \varnothing, i f(i_0 = \varnothing) - \begin{bmatrix},\\\\, i_0 \oplus, j_0 \oplus, Rc(i_0, j_0),\end{bmatrix} -, i_0 = j_0, i_0 \oplus, j_0 \oplus, i_0 \oplus, i_0$$

$$\Leftrightarrow$$
, $i \odot i_0$, $j \odot j_0$, $j_0 != \varnothing$, $Rc(i_0, j_0)$, $i_0 = j_0$, $i_0 \odot$, $j_0 \odot$,

$$\Leftrightarrow$$
 $,i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 != \varnothing, Rc(i_0,j_0), i_0 = j_0, i_0 \otimes, j_0 \otimes,$

$$\Leftrightarrow$$
 $, i \otimes i_0, j \otimes j_0, j \otimes j_0, j \models \varnothing, Rc(i_0, j_0), i_0 = j_0, i_0 \otimes, j_0 \otimes,$

$$\Leftrightarrow$$
, $i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \otimes, j_0 \otimes, j != \varnothing$,

$$\Leftrightarrow$$
, $i = j$, $j! = \emptyset$,

$$\begin{array}{l} \text{proof 2:} \\ , i = j, i != \varnothing, \\ \Leftrightarrow , i = j, i f(i = \varnothing) \text{----}, \end{array}$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i=j, \otimes, \\ \\ , i=j, \end{bmatrix} -,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i=j,\otimes,\\ \\ ,i=j,if(j=\varnothing) - \begin{bmatrix} ,\\ \\ \end{bmatrix} - , \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i=j, \otimes, \\ , i!=\varnothing, i=j, if(j=\varnothing) - \begin{bmatrix} , \\ , \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i = j, \otimes, \\ ,i f(j=\varnothing) - \begin{bmatrix} ,i = j, i !=\varnothing, \\ ,i = i, i !=\varnothing, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i=j,\otimes,\\ ,if(j=\varnothing) - \begin{bmatrix} ,j=\varnothing,i=j,i!=\varnothing,\\ ,i=j,i!=\varnothing, \end{bmatrix} - , \end{bmatrix} - , \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i = j, \otimes, \\ , if(j=\varnothing) - \begin{bmatrix} , i = j, j = \varnothing, i ! = \varnothing, \\ , i = j, i ! = \varnothing, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} , i = j, \otimes, \\ , if(j = \varnothing) - \begin{bmatrix} , i = j, i = \varnothing, i! = \varnothing, \\ , i = j, i! = \varnothing, \end{bmatrix} - , \end{bmatrix} - , \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} , i = j, \otimes, \\ , if(j = \varnothing) - \begin{bmatrix} , i = j, \otimes, \\ , i = j, i ! = \varnothing, \end{bmatrix} - , \end{bmatrix} - , \end{bmatrix} - ,$$

$$\Leftrightarrow , if (i = \varnothing) - \begin{bmatrix} , i = j, \otimes, \\ , if (j = \varnothing) - \begin{bmatrix} , i = j, i := \varnothing, \otimes, \\ , i = j, i := \varnothing, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i=j,\otimes,\\ ,i!=\varnothing,i=j,if(j=\varnothing) - \begin{bmatrix} ,\otimes,\\ \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i=j, \otimes, \\ \\ , i=j, j !=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} ,i=j,j=\varnothing,j!=\varnothing,\\ ,i=j,j!=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i=j,if(i=\varnothing)-\begin{bmatrix} ,i=\varnothing,\\ \\ \end{bmatrix}$ $,j!=\varnothing,$

$$\Leftrightarrow$$
, $i=j$, $if(i=\varnothing)$ - $\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$ -, $j!=\varnothing$,

$$\Leftrightarrow$$
 $, i = j, j != \emptyset,$

$$, i_1 \pm i_2, j_1 \pm j_2, if(i_1 = \varnothing) - \begin{bmatrix} , \\ , j_1 = \varnothing, \end{bmatrix} -, if(i_1 = j_1) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix} -,$$

$$\Leftrightarrow , i_1 \pm i_2, j_1 \pm j_2, if(i_1 = \varnothing) - \begin{bmatrix} , \\ , j_1 = \varnothing, \end{bmatrix} -, if(i_2 = j_2) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix} -,$$

proof:

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 = \varnothing, \\ \\ , i_1 != \varnothing, j_1 = \varnothing, \end{bmatrix}, if(i_1 = j_1) - \begin{bmatrix}, \odot c_1, \\ \\ , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 = \varnothing, if(j_1 = \varnothing) - \begin{bmatrix}, \\ , \end{bmatrix}, \\, i_1 = \varnothing, j_1 = \varnothing, \end{bmatrix}, if(i_1 = j_1) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix},$$

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) - \begin{bmatrix}, j_1 = \varnothing, \\ , j_1 != \varnothing, \end{bmatrix}, j_1 != \varnothing, \end{bmatrix}, if(i_1 = j_1) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \cdots \\ , \cdots \\ ,$$

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) \\ \begin{bmatrix}, i_1 = \varnothing, j_1 = \varnothing, \\ , i_1 = \varnothing, j_1 ! = \varnothing, \end{bmatrix}, if(i_1 = j_1) \\ \begin{bmatrix}, \odot c_1, \\ , \circ c_2, \end{bmatrix}, (\odot c_2,) \\ \vdots, (\odot c_2,) \\ \end{bmatrix}$$

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 = \varnothing, j_1 = \varnothing, i_1 = j_1, \\ , i_1 = \varnothing, j_1 != \varnothing, i_1 != j_1, \end{bmatrix}, - \end{bmatrix},$$

$$if(i_1=j_1)$$
- $\begin{bmatrix}, ©c_1, \\ , ©c_2, \end{bmatrix}$ -

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) = \begin{bmatrix}, i_1 = \varnothing, j_1 = \varnothing, i_1 = j_1, @c_1, \\, i_1 = \varnothing, j_1 != \varnothing, i_1 != j_1, @c_2, \end{bmatrix}, \\ \vdots, i_1 != \varnothing, j_1 = \varnothing, i_1 = j_1, @c_1, \end{bmatrix},$$

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 = \varnothing, j_1 = \varnothing, @c_1, \\, i_1 = \varnothing, j_1 != \varnothing, @c_2, \end{bmatrix}, \\, i_1 != \varnothing, j_1 = \varnothing, @c_1, \end{bmatrix},$$

$$\Leftrightarrow, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_1 = \varnothing, j_1 = \varnothing, @c_1, \\ \\, i_1 \pm i_2, j_1 \pm j_2, i_1 = \varnothing, j_1 ! = \varnothing, @c_2, \end{bmatrix}, \\ - \\, i_1 \pm i_2, j_1 \pm j_2, i_1 ! = \varnothing, j_1 = \varnothing, @c_1, \end{bmatrix},$$

$$\Leftrightarrow, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, j_2 = \varnothing, @c_1, \\ , i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, j_2 != \varnothing, @c_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, j_2 != \varnothing, @c_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, j_2 != \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm j_2, i_2 = \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, j_1 \pm \varnothing, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 \pm i_2, gc_2, \end{bmatrix}, \\ - \begin{bmatrix}, i$$

$$\Leftrightarrow, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 = \varnothing, j_2 = \varnothing, i_2 = j_2, @c_1, \\ , i_1 = i_2, j_1 = j_2, i_2 = \varnothing, j_2 != \varnothing, j_2 != \varnothing, i_2 != j_2, @c_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 = \varnothing, j_2 != \varnothing, j_2$$

$$\Leftrightarrow, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 = \varnothing, j_2 = \varnothing, i_2 = j_2, \\, i_1 = i_2, j_1 = j_2, i_2 = \varnothing, j_2 != \varnothing, i_2 != j_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 != \varnothing, j_2 = \varnothing, j_2 != \varnothing, i_2 != j_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 != \varnothing, j_2 = \varnothing, i_2 = j_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 != \varnothing, j_2 = \varnothing, i_2 = j_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 != \varnothing, j_2 = \varnothing, j_2 != \varnothing, i_2 != j_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 != \varnothing, j_2 = \varnothing, j_2 != \varnothing, i_2 != j_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 != \varnothing, j_2 != \varnothing, j_2 != \varnothing, i_2 != j_2, \end{bmatrix}, \\ - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_2 != \varnothing, j_2 != \varnothing$$

$$if(i_2=j_2)$$
 $\begin{bmatrix} , ©c_1, \\ , ©c_2, \end{bmatrix}$,

$$\Leftrightarrow, if(i_1 = \varnothing) - \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_1 = \varnothing, j_1 = \varnothing, \\, i_1 = i_2, j_1 = j_2, i_1 = \varnothing, j_1 ! = \varnothing, \end{bmatrix}, \\ \begin{bmatrix}, i_1 = i_2, j_1 = j_2, i_1 = \varnothing, j_1 ! = \varnothing, \\, i_1 = i_2, j_1 = j_2, i_1 ! = \varnothing, j_1 = \varnothing, \end{bmatrix}, \\ \end{bmatrix},$$

$$if(i_2=j_2)$$
- $\begin{bmatrix}, ©c_1, \\, ©c_2, \end{bmatrix}$ -,

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) = \begin{bmatrix}, i_1 = \varnothing, j_1 = \varnothing, \\, i_1 = \varnothing, j_1 != \varnothing, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, i_1 != \varnothing, j_1 = \varnothing, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, if(i_2 = j_2) = \begin{bmatrix}, \odot c_1, \\, \odot c_2,$$

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) - \begin{bmatrix}, j_1 = \varnothing, \\ , j_1 != \varnothing, \end{bmatrix}, j_1 != \varnothing, \end{bmatrix}, if(i_2 = j_2) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_1,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - \begin{bmatrix}, \odot c_1, \\ , \odot c_2, \end{bmatrix}, (\odot c_2,) - [(\odot c_1,)], (\odot c_2$$

$$\Leftrightarrow, i_1 = i_2, j_1 = j_2, if(i_1 = \varnothing) - \begin{bmatrix}, \\ \\ \\ \\ \\ \end{bmatrix}, i_1 = \varnothing, \end{bmatrix}, if(i_2 = j_2) - \begin{bmatrix}, @c_1, \\ \\ \\ \\ \\ \end{bmatrix}, @c_2, \end{bmatrix},$$

21.2.10 With node continuity

$$,i != \varnothing, j != \varnothing, i \oplus, j \oplus, i \mp j, \iff, i \mp j, i != \varnothing, j != \varnothing, i \oplus, j \oplus,$$

proof: $,i != \varnothing, j != \varnothing, i \oplus, j \oplus, i = j,$ $\Leftrightarrow, i != \varnothing, j != \varnothing, i \oplus, j \oplus, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus,$ $\Leftrightarrow, i != \varnothing, j != \varnothing, i \otimes i_1, i_1 \oplus, j \otimes j_1, j_1 \oplus, i \oplus, j \oplus,$ $i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus,$ $\Leftrightarrow, i != \varnothing, j != \varnothing, i \otimes i_1, j \otimes j_1, Rc(i_1, j_1), i_1 \oplus, j_1 \oplus, i \oplus, j \oplus,$ $i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus,$ $\Leftrightarrow, i != \varnothing, j != \varnothing, i \otimes i_1, j \otimes j_1, i \oplus, j \oplus, i \otimes i_0, j \otimes j_0, Rc(i_1, j_1),$ $Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j \oplus, i \otimes i_0, j \otimes j_0, Rc(i_1, j_1),$ $\Leftrightarrow, i \otimes i_1, i != \varnothing, j \otimes j_1, j != \varnothing, i \oplus, j \oplus, i \otimes i_0, j \otimes j_0, Rc(i_1, j_1),$

$$\Leftrightarrow ,i \otimes i_1, i \otimes i_1, i != \varnothing, j \otimes j_1, j \otimes j_1, j != \varnothing, i \oplus, j \oplus, i \otimes i_0, j \otimes j_0,$$

$$Rc(i_1,j_1), Rc(i_0,j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

 $Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$

$$\Leftrightarrow ,i \otimes i_1, i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j \otimes j_1, j_1 != \varnothing, i \oplus, j \oplus, i \otimes i_0, j \otimes j_0,$$

$$Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow ,i \otimes i_1, i \otimes i_1, j \otimes j_1, j \otimes j_1, i \oplus, j \oplus, i \otimes i_0, j \otimes j_0,$$

$$i_1 \mathop{!}{=} \varnothing, j_1 \mathop{!}{=} \varnothing, Rc(i_1, j_1), Rc(i_0, j_0), i_0 \mathop{=} j_0, i_0 @, j_0 @, i_1 @, j_1 @,$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i \otimes i_1, j \otimes j_1, j \otimes j_1, i \oplus, j \oplus, i \otimes i_0, j \otimes j_0,$

$$i_1 != \varnothing, j_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4$$

$$\Leftrightarrow , i \odot i_1, i_1 != \varnothing, i \odot i_1, j \odot j_1, j_1 != \varnothing, j \odot j_1, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \odot i_0, j \odot j_0,$$

$$Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \otimes i_1, i \oplus, i_1 \oplus, j \otimes j_1, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$

$$Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \odot i_1, i_1 != \varnothing, j \odot j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, i \circlearrowleft i_1, j \oplus, j_1 \oplus, j \circlearrowleft j_1, i \odot i_0, j \odot j_0,$$

$$Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, i \otimes i_1, j \oplus, j_1 \oplus, j \otimes j_1, i \otimes i_0, i \otimes i_0, j \otimes j_0,$$

$$j \circlearrowleft j_0, Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$

$$i \circlearrowleft i_1, i \circlearrowleft i_0, j \circlearrowleft j_1, j \circlearrowleft j_0, Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus, j_2 \oplus, j_3 \oplus, j_4 \oplus, j_$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$

$$i \mathring{\circlearrowleft} i_1, i_1 \mathring{\circlearrowleft} i_0, j \mathring{\circlearrowleft} j_1, j_1 \mathring{\circlearrowleft} j_0, Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \textcircled{@}, j_0 \textcircled{@}, i_1 \textcircled{@}, j_1 \textcircled{@},$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$

$$i \otimes i_1, j \otimes j_1, i_1 \otimes i_0, j_1 \otimes j_0, Rc(i_1, j_1), Rc(i_0, j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$

$$i \otimes i_1, j \otimes j_1, i_1 \otimes i_0, j_1 \otimes j_0, Rc(i_1, j_1), Rc(i_0, j_0), i_1 \otimes i_0, j_1 \otimes j_0, i_0 = j_0, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$
$$i \otimes i_1, j \otimes j_1, i_1 \otimes i_0, j_1 \otimes j_0, Rc(i_1, j_1), Rc(i_0, j_0), i_1 \otimes i_0, j_1 \otimes j_0, i_1 = j_1, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus, j_2 \oplus, i_3 \oplus, i_4 \oplus, i_4$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \circlearrowleft i_1, j \circlearrowleft j_1, i \otimes i_0, j \otimes j_0,$$

$$Rc(i_1, j_1), Rc(i_0, j_0), i_1 = j_1, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_1, j \otimes j_1,$$

$$Rc(i_1, j_1), i_1 = j_1, i \otimes i_0, j \otimes j_0, Rc(i_0, j_0), i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow, i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_1, j \otimes j_1,$$

$$Rc(i_1, j_1), i_1 = j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus,$$

$$Rc(i_1, j_1), i_1 = j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow ,i \otimes i_1, i \otimes i_1, j \otimes j_1, j \otimes j_1, i \oplus, j \oplus, i_1 != \varnothing, i_1 \oplus, j_1 != \varnothing, j_1 \oplus,$$

$$Rc(i_1,j_1), i_1 = j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow, i \odot i_1, i \odot i_1, j \odot j_1, j \odot j_1, i \oplus, j \oplus, i_1 != \varnothing, j_1 != \varnothing,$$

$$Rc(i_1, j_1), i_1 = j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_1$, $i_1 != \varnothing$, $j \otimes j_1$, $j \otimes j_1$, $j_1 != \varnothing$, $i \oplus$, $j \oplus$,

$$Rc(i_1, j_1), i_1 = j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_1$, $i = \varnothing$, $j \otimes j_1$, $j \otimes j_1$, $j = \varnothing$, $i \oplus$, $j \oplus$,

$$Rc(i_1, j_1), i_1 = j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i = \emptyset$, $j \otimes j_1$, $j = \emptyset$, $i \oplus$, $j \oplus$,

$$Rc(i_1, j_1), i_1 = j_1, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow ,i \otimes i_1, j \otimes j_1, Rc(i_1,j_1), i_1 = j_1, i_1 \oplus, j_1 \oplus, i \vcentcolon= \varnothing, j \vcentcolon= \varnothing, i \oplus, j \oplus,$$

$$\Leftrightarrow$$
, $i=j$, $i!=\emptyset$, $j!=\emptyset$, $i\oplus$, $j\oplus$,

$$,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,i\pm j,\Leftrightarrow,i\pm j,i!=\varnothing,i\oplus,j\oplus,$$

$$,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,i!=j,\Leftrightarrow,i!=j,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,$$

$$,i != \varnothing, j != \varnothing, i \oplus, j \oplus, i f(i = j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,i f(i = j) - \begin{bmatrix}, i != \varnothing, j != \varnothing, i \oplus, j \oplus, @c_1, \\ , i != \varnothing, j != \varnothing, i \oplus, j \oplus, @c_2, \end{bmatrix},$$

$$, i \ominus, j \ominus, i != \varnothing, j != \varnothing, i = j, \Leftrightarrow , i = j, i \ominus, j \ominus, i != \varnothing, j != \varnothing,$$

proof:

$$, i \ominus, j \ominus, i != \varnothing, j != \varnothing, i = j,$$

$$\Leftrightarrow$$
 $,i\bigcirc,j\bigcirc,i!=\varnothing,j!=\varnothing,i\mp j,i\oplus,i\bigcirc,j\oplus,j\bigcirc,$

$$\Leftrightarrow$$
 $,i\bigcirc,j\bigcirc,i!=\varnothing,j!=\varnothing,i\mp j,i\oplus,j\oplus,i\bigcirc,j\bigcirc,$

$$\Leftrightarrow, i \ominus, j \ominus, i = j, i != \varnothing, j != \varnothing, i \oplus, j \oplus, i \ominus, j \ominus,$$

$$\Leftrightarrow$$
 $,i\bigcirc,j\bigcirc,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,i\mp j,i\bigcirc,j\bigcirc,$

$$\Leftrightarrow, i \otimes i_1, i_1 \oplus, j \otimes j_1, j_1 \oplus, i \ominus, j \ominus, i \stackrel{!}{=} \varnothing, j \stackrel{!}{=} \varnothing, i \oplus, j \oplus, i = j, i \ominus, j \ominus,$$

$$\Leftrightarrow, i \odot i_1, i_1 \odot, i_1 \odot, j \odot j_1, j_1 \odot, j_1 \odot, i \odot, j \odot, i != \varnothing, j != \varnothing, i \odot, j \odot, i = j, i \odot, j \odot,$$

$$\Leftrightarrow, i \otimes i_1, i \otimes i_1, j \otimes j_1, j \otimes j_1, i_1 \ominus, i \ominus, j_1 \ominus, j \ominus, i != \varnothing, j != \varnothing, i \oplus, j \oplus, i = j, i \ominus, j \ominus, i_1 \oplus, j_1 \oplus, j \oplus, i = j, i \ominus, j \ominus, i_1 \oplus, j_1 \oplus, j \ominus, i \ominus, j \ominus, i_1 \oplus, j_2 \oplus, i \oplus, j \ominus, i \ominus, j_2 \oplus, i \oplus, j_2 \oplus, i \oplus, j_2 \oplus, i \oplus, j_2 \oplus, j_$$

$$\Leftrightarrow, i \odot i_1, j \odot j_1, i_1 \odot, i \odot, j_1 \odot, j \odot, i \odot i_1, j \odot j_1, i != \varnothing, j != \varnothing, i \oplus, j \oplus, i = j, i \odot, j \odot, i_1 \oplus, j_1 \oplus, j$$

$$\Leftrightarrow, i \odot i_1, j \odot j_1, i_1 \odot, i \odot, j_1 \odot, j \odot, i \odot i_1, j \odot j_1, i_1 != \varnothing, j_1 != \varnothing, i \oplus, j \oplus, i = j, i \odot, j \odot, i_1 \oplus, j_1 \oplus, j \oplus, i = j, i \odot, j \odot, i_1 \oplus, j_1 \oplus, j_2 \oplus, i \oplus, j_3 \oplus, i \oplus, j_4 \oplus, j_5 \oplus, i \oplus, j_5 \oplus, i_5 \oplus, i_5$$

$$\Leftrightarrow, i \otimes i_1, j \otimes j_1, i \otimes i_1, j \otimes j_1, i_1 \ominus, j_1 \ominus, i_1 \models \varnothing, j_1 \models \varnothing, i \ominus, j \ominus, i \oplus, j \oplus, i = j, i \ominus, j \ominus, i_1 \oplus, j_1 \oplus, j \ominus, i \ominus, j \ominus, i_1 \oplus, j_2 \oplus, i \ominus, j_2 \ominus, i_1 \oplus, j_2 \oplus, i \ominus, j_2 \ominus, i_2 \oplus, j_2 \oplus, i \ominus, j_2 \oplus, j_2 \oplus$$

$$\Leftrightarrow, i \odot i_1, j \odot j_1, i \odot i_1, j \odot j_1, i_1 \odot, j_1 \odot, i_1 \models \varnothing, j_1 \models \varnothing, i \oplus, i \odot, j \oplus, j \odot, i = j, i \odot, j \odot, i_1 \oplus, j_1 \oplus, j$$

$$\Leftrightarrow, i \otimes i_1, j \otimes j_1, i \otimes i_1, j \otimes j_1, i_1 \ominus, j_1 \ominus, i_1 != \varnothing, j_1 != \varnothing, i = j, i \ominus, j \ominus, i_1 \oplus, j_1 \oplus, j$$

$$\Leftrightarrow, i \otimes i_1, j \otimes j_1, i = j, i \otimes i_1, j \otimes j_1, i_1 \ominus, j_1 \ominus, i \ominus, j \ominus, i_1 != \varnothing, j_1 != \varnothing, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \odot i_1, j \odot j_1, i = j, i_1 \odot, j_1 \odot, i \odot, j \odot, i \odot i_1, j \odot j_1, i_1 \vcentcolon= \varnothing, j_1 \vcentcolon= \varnothing, i_1 \odot, j_1 \odot,$$

$$\Leftrightarrow , i \odot i_1, j \odot j_1, i = j, i_1 \odot, j_1 \odot, i \odot, j \odot, i \odot i_1, j \odot j_1, i := \emptyset, j := \emptyset, i_1 \odot, j_1 \odot, j_2 \odot, i_3 \odot, j_4 \odot, j_5 \odot, j_6 \odot, j_7 \odot, j_8 \odot, j_8$$

$$\Leftrightarrow , i \otimes i_1, j \otimes j_1, i = j, i_1 \ominus, j_1 \ominus, i \ominus, j \ominus, i != \varnothing, j != \varnothing, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
 $,i \otimes i_1, i_1 \ominus, i_1 \oplus, j \otimes j_1, j_1 \ominus, j_1 \oplus, i = j, i \ominus, j \ominus, i != \varnothing, j != \varnothing,$

$$\Leftrightarrow$$
, $i=j$, $i\ominus$, $j\ominus$, $i!=\varnothing$, $j!=\varnothing$,

$$, i \ominus, j \ominus, i \models \emptyset, j \models \emptyset, i! \pm j, \Leftrightarrow , i! \pm j, i \ominus, j \ominus, i \models \emptyset, j \models \emptyset,$$

$$, i\ominus, j\ominus, i != \varnothing, j != \varnothing, if(i=j) - \begin{bmatrix}, \circledcirc c_1, \\ \\ , \circledcirc c_2, \end{bmatrix}, \iff, if(i=j) - \begin{bmatrix}, i\ominus, j\ominus, i != \varnothing, j != \varnothing, \circledcirc c_1, \\ \\ , i\ominus, j\ominus, i != \varnothing, j != \varnothing, \circledcirc c_2, \end{bmatrix},$$

$$, i_1 \pm i_2, j_1 \pm j_2, Rc(i_1, j_1), Rc(i_2, j_2), \Leftrightarrow \sim, i_1 \pm i_2, j_1 \pm j_2,$$

induction proof:

premise 1:

$$, i_1 = \varnothing, i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2),$$

$$\Leftrightarrow$$
, $j_1 = j_2$, $i_1 = i_2$, $i_1 = \emptyset$, $Rc(i_1, j_1)$, $Rc(i_2, j_2)$,

$$\Leftrightarrow$$
, $j_1 \pm j_2$, $i_1 \pm i_2$, $i_1 = \emptyset$, $Rc(i_2, j_2)$,

$$\Leftrightarrow$$
, $j_1 \pm j_2$, $i_1 \pm i_2$, $i_2 = \varnothing$, $Rc(i_2, j_2)$,

$$\Leftrightarrow$$
, $j_1 = j_2$, $i_1 = i_2$, $i_2 = \emptyset$,

$$\Leftrightarrow$$
, $j_1 \pm j_2$, $i_1 \pm i_2$, $i_2 = \emptyset$, $i_1 \pm i_2$, $j_1 \pm j_2$,

$$\Leftrightarrow$$
, $j_1 \pm j_2$, $i_1 \pm i_2$, $i_2 = \emptyset$, $Rc(i_2, j_2)$, $i_1 \pm i_2$, $j_1 \pm j_2$,

$$\Leftrightarrow$$
, $j_1 = j_2$, $i_1 = i_2$, $i_1 = \emptyset$, $Rc(i_2, j_2)$, $i_1 = i_2$, $j_1 = j_2$,

$$\Leftrightarrow$$
, $j_1 = j_2$, $i_1 = i_2$, $i_1 = \emptyset$, $Rc(i_1, j_1)$, $Rc(i_2, j_2)$, $i_1 = i_2$, $j_1 = j_2$,

$$\Leftrightarrow , i_1 \!=\! \varnothing, i_1 \!\pm\! i_2, j_1 \!\pm\! j_2, Rc(i_1, j_1), Rc(i_2, j_2), i_1 \!\pm\! i_2, j_1 \!\pm\! j_2,$$

$$, \&SHi \rightarrow i_1, i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2), \iff$$

, &SH
$$i \to i_1, i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2), \implies$$

$$, i_1 = \varnothing, \&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 = \varnothing, Rc(i_1, j_1), Rc(i_2, j_2),$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing$,

$$if(j_1 = \varnothing) - \begin{bmatrix} , \\ , i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), \end{bmatrix} -, Rc(i_2, j_2),$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, if(j_1 = \varnothing) - \begin{bmatrix}, j_1 = \varnothing, \\, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), \end{bmatrix}, Rc(i_2, j_2), + C(i_2, j_2)$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, if(j_1 = \varnothing) - \begin{bmatrix}, j_1 = \varnothing, Rc(i_2, j_2), \\ , i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 = \varnothing) - \begin{bmatrix} , \&S\!H\!i \, \circlearrowleft\!i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, j_1 = \varnothing, Rc(i_2, j_2), \\ , \&S\!H\!i \, \circlearrowleft\!i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 != \varnothing, \&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, j_1 = \varnothing, Rc(i_2, j_2), \\ , \&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 != \varnothing, \&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, j_2 = \varnothing, Rc(i_2, j_2), \\ ,\&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 != \varnothing, \&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, j_2 = \varnothing, \\ ,\&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 != \varnothing, \&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_2 = \varnothing, i_1 = i_2, j_1 = j_2, \\ ,\&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 != \varnothing, \&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, j_2 = \varnothing, Rc(i_2, j_2), i_1 = i_2, j_1 = j_2, \\ ,\&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix} ,$$

$$\Leftrightarrow , if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 != \varnothing, \&SHi \, \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, j_1 = \varnothing, Rc(i_2, j_2), i_1 = i_2, j_1 = j_2, \\ ,\&SHi \, \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

 \Leftrightarrow , &SHi $\circlearrowleft i_1, i_1 \pm i_2, j_1 \pm j_2,$

$$if(j_1 = \varnothing)$$
 $\begin{bmatrix} ,i_1 != \varnothing, j_1 = \varnothing, Rc(i_2, j_2), i_1 = i_2, j_1 = j_2, \\ ,i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix}$,

 \Leftrightarrow , &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2,$

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 != \varnothing, j_1 = \varnothing, Rc(i_1, j_1), Rc(i_2, j_2), i_1 = i_2, j_1 = j_2, \\ ,i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

 \Leftrightarrow , &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2,$

$$if(j_1 = \varnothing) - \begin{bmatrix} ,j_1 = \varnothing, i_1 != \varnothing, Rc(i_1,j_1), Rc(i_2,j_2), i_1 = i_2, j_1 = j_2, \\ ,i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1,j_1), Rc(i_2,j_2), \end{bmatrix},$$

 \Leftrightarrow , &SHi $\bigcirc i_1, i_1 = i_2, j_1 = j_2,$

$$if(j_1 = \varnothing) - \left[\begin{matrix} ,i_1 \vcentcolon= \varnothing, Rc(i_1,j_1), Rc(i_2,j_2), i_1 = i_2, j_1 = j_2, \\ ,i_1 \vcentcolon= \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1,j_1), Rc(i_2,j_2), \end{matrix} \right],$$

 \Leftrightarrow

$$if(j_1 = \varnothing) = \begin{bmatrix} ,i_1 != \varnothing, \&SHi \, \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2), i_1 = i_2, j_1 = j_2, \\ ,j_1 != \varnothing, \&SHi \, \circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 != \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \end{bmatrix},$$

⇔ <1>

$$\begin{split} &j_1!=\varnothing, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, i_1!=\varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, i_1!=\varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &i_1!=\varnothing, j_1!=\varnothing, i_1!=\varnothing, j_1!=\varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &i_2!=\varnothing, j_2!=\varnothing, i_1!=\varnothing, j_1!=\varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &i_1!=\varnothing, j_1!=\varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), i_2!=\varnothing, j_2!=\varnothing, Rc(i_2, j_2), \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &i_1!=\varnothing, j_1!=\varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), i_2!=\varnothing, j_2!=\varnothing, i_2 \oplus, j_2 \oplus, Rc(i_2, j_2), \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &i_1!=\varnothing, i_2!=\varnothing, i_1 \oplus, i_2 \oplus, j_1!=\varnothing, j_2!=\varnothing, j_1 \oplus, j_2 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1!=\varnothing, i_2!=\varnothing, i_1 \oplus, i_2 \oplus, j_1!=\varnothing, j_2!=\varnothing, j_1 \oplus, j_2 \oplus, \\ &i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2), \\ &\Leftrightarrow, i_1!=\varnothing, i_2!=\varnothing, i_1 \oplus, i_2 \oplus, j_1!=\varnothing, j_2!=\varnothing, j_1 \oplus, j_2 \oplus, \\ &\&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2), \\ &\Leftrightarrow, i_1!=\varnothing, i_2!=\varnothing, i_1 \oplus, i_2 \oplus, j_1!=\varnothing, j_2!=\varnothing, j_1 \oplus, j_2 \oplus, \\ &\&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2), i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, Rc(i_1, j_1), Rc(i_2, j_2), i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1, i_1 = i_2, j_1 = j_2, \\ &\Leftrightarrow, \&SHi\, \mathring{\circlearrowleft}i_1,$$

 $i_1 \stackrel{!}{=} \varnothing, j_1 \stackrel{!}{=} \varnothing, i_1 \oplus, j_1 \oplus, i_2 \stackrel{!}{=} \varnothing, j_2 \stackrel{!}{=} \varnothing, i_2 \oplus, j_2 \oplus, Rc(i_1, j_1), Rc(i_2, j_2), i_1 \pm i_2, j_1 \pm j_2, i_1 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_4$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2,$

$$i_1 \mathrel{!=} \varnothing, j_1 \mathrel{!=} \varnothing, i_1 \oplus, j_1 \oplus, Rc(i_1, j_1), i_2 \mathrel{!=} \varnothing, j_2 \mathrel{!=} \varnothing, i_2 \oplus, j_2 \oplus, Rc(i_2, j_2), i_1 \pm i_2, j_1 \pm j_2, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2,$

$$i_1 != \varnothing, j_1 != \varnothing, Rc(i_1, j_1), i_2 != \varnothing, j_2 != \varnothing, Rc(i_2, j_2), i_1 = i_2, j_1 = j_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2,$

$$i_2 != \varnothing, j_2 != \varnothing, i_1 != \varnothing, j_1 != \varnothing, Rc(i_1, j_1), Rc(i_2, j_2), i_1 = i_2, j_1 = j_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2,$

$$i_1 != \varnothing, j_1 != \varnothing, i_1 != \varnothing, j_1 != \varnothing, Rc(i_1, j_1), Rc(i_2, j_2), i_1 = i_2, j_1 = j_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2, i_1 = \varnothing, j_1 = \varnothing, Rc(i_1, j_1), Rc(i_2, j_2), i_1 = i_2, j_1 = j_2,$

$$\langle 1 \rangle \Leftrightarrow , \&SHi \circlearrowleft i_1, i_1 = i_2, j_1 = j_2,$$

$$if(j_1 = \varnothing) - \begin{bmatrix} ,i_1 != \varnothing, Rc(i_1,j_1), Rc(i_2,j_2), i_1 = i_2, j_1 = j_2, \\ ,i_1 != \varnothing, j_1 != \varnothing, Rc(i_1,j_1), Rc(i_2,j_2), i_1 = i_2, j_1 = j_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i_1 != \varnothing$, &SHi $\circlearrowleft i_1, i_1 = i_2, j_1 = j_2$,

$$if(j_1 = \varnothing) - \begin{bmatrix} , \\ , j_1 != \varnothing, \end{bmatrix} -, Rc(i_1, j_1), Rc(i_2, j_2), i_1 = i_2, j_1 = j_2,$$

$$\Leftrightarrow ,i_{1}\! :=\! \varnothing, \&S\!H\!i\, \circlearrowleft\! i_{1},i_{1}\! =\! i_{2},j_{1}\! =\! j_{2}, Rc(i_{1},j_{1}), Rc(i_{2},j_{2}),i_{1}\! =\! i_{2},j_{1}\! =\! j_{2},$$

conclusion:

$$, i_1 \pm i_2, j_1 \pm j_2, Rc(i_1, j_1), Rc(i_2, j_2), \Leftrightarrow \sim, i_1 \pm i_2, j_1 \pm j_2,$$

21.2.11 With identical node propositions

$$,i\circlearrowleft j,\Leftrightarrow \sim,i\pm j,$$

proof: $,i\circlearrowleft j,$ $\Leftrightarrow ,i\circlearrowleft j,i\circledcirc i_0,j\circledcirc j_0,Rc(i_0;j_0),i_0\circledcirc ,j_0\circledcirc ,$ $\Leftrightarrow ,i\circlearrowleft j,i\circledcirc i_0,j\circledcirc j_0,i_0\circlearrowleft j_0,Rc(i_0;j_0),i_0\circledcirc ,j_0\circledcirc ,$ $\Leftrightarrow ,i\circlearrowleft j,i\circledcirc i_0,j\circledcirc j_0,i_0\circlearrowleft j_0,Rc(i_0;j_0),i_0\circlearrowleft j_0,i_0\circledcirc ,j_0\circledcirc ,$ $\Leftrightarrow ,i\circlearrowleft j,i\circledcirc i_0,j\circledcirc j_0,i_0\circlearrowleft j_0,Rc(i_0;j_0),i_0\circlearrowleft j_0,i_0=j_0,i_0\circledcirc ,j_0\circledcirc ,$ $\Leftrightarrow ,i\circlearrowleft j,i\circledcirc i_0,j\circledcirc j_0,Rc(i_0;j_0),i_0=j_0,i_0\circledcirc ,j_0\circledcirc ,$ $\Leftrightarrow ,i\circlearrowleft j,i\circledcirc i_0,j\circledcirc j_0,Rc(i_0;j_0),i_0=j_0,i_0\circledcirc ,j_0\circledcirc ,$ $\Leftrightarrow ,i\circlearrowleft j,i\leadsto j,j\circledcirc j_0,Rc(i_0;j_0),i_0=j_0,i_0\circledcirc ,j_0\circledcirc ,$

21.2.12 Substitution

Propositions with null node branch function:

$$, i = j, i f(j = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i = j, i f(i = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix},$$

Identical node propositions with branch function:

$$, i \circlearrowleft j, i f(j \pm m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} -, \;\; \Leftrightarrow \;\; , i \circlearrowleft j, i f(i \pm m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} -,$$
 proof 1:
$$, i \circlearrowleft j, i f(j \pm m) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix} -,$$

21.2 Theorems of Number Equal Relationship

$$\Leftrightarrow , i \circlearrowleft j, j \circledcirc j_0, m \circledcirc m_0, Rc(j_0, m_0), if(j_0 = m_0) - \begin{bmatrix} , j_0 \textcircled{@}, m_0 \textcircled{@}, \textcircled{@}c_1, \\ , j_0 \textcircled{@}, m_0 \textcircled{@}, \textcircled{@}c_2, \end{bmatrix}$$

$$\Leftrightarrow, i \circlearrowleft j, i \circledcirc j_0, m \circledcirc m_0, Rc(j_0, m_0), if(j_0 = m_0) = \begin{bmatrix}, j_0 \circledcirc, m_0 \circledcirc, \circledcirc c_1, \\ \\, j_0 \circledcirc, m_0 \circledcirc, \circledcirc c_2, \end{bmatrix} = \begin{bmatrix}, j_0 \circledcirc, m_0 \circledcirc, \circledcirc c_1, \\ \\, j_0 \circledcirc, m_0 \circledcirc, \circledcirc c_2, \end{bmatrix} = \begin{bmatrix}, j_0 \circledcirc, m_0 \circledcirc, \smile c_1, \\ \\, j_0 \circledcirc, m_0 \circledcirc, \smile c_2, \end{bmatrix} = \begin{bmatrix}, j_0 \circledcirc, m_0 \smile, \smile c_1, \\ \\, j_0 \smile, m_0 \smile, \smile c_2, \\ \end{bmatrix}$$

$$\Leftrightarrow , i \circlearrowleft j, i f(i \pm m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

proof 2:

$$,i\circlearrowleft j,if(j=m)$$
 $\begin{bmatrix} ,@c_1,\\ ,@c_2, \end{bmatrix}$

$$\Leftrightarrow ,i \circlearrowleft j,j \circledcirc j_0,m \circledcirc m_0,Rc(j_0,m_0),if(j_0=m_0)-\begin{bmatrix} ,j_0 \circledcirc ,m_0 \circledcirc ,\circledcirc c_1,\\ ,j_0 \circledcirc ,m_0 \circledcirc ,\circledcirc c_2,\end{bmatrix}-$$

 $\Leftrightarrow , i \circlearrowleft j, i \circledcirc i_1, m \circledcirc m_1, i_1 \circledcirc, m_1 \circledcirc, j \circledcirc j_0, m \circledcirc m_0, Rc(j_0, m_0),$

$$if(j_0\!=\!m_0)\!-\!\!\left[\!\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,\circledcirc c_1,\\ ,j_0\!\!\oplus\!,m_0\!\!\oplus\!,\circledcirc c_2,\end{matrix}\right]\!-$$

 $\Leftrightarrow ,i \circlearrowleft j, i \otimes i_1, m \otimes m_1, Rc(i_1;m_1), i_1 \circledast, m_1 \circledast, j \otimes j_0, m \otimes m_0, Rc(j_0,m_0),$

$$if(j_0 = m_0) = \begin{bmatrix} ,j_0 @, m_0 @, @c_1, \\ ,j_0 @, m_0 @, @c_2, \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, @c_2, \\ ,j_0 @, m_0 @, @c_2, \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, @c_2, \\ ,j_0 @, m_0 @, @c_2, \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, @c_2, \\ ,j_0 @, m_0 @, @c_2, \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, @c_2, \\ ,j_0 @, m_0 @, @c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, @c_2, \\ ,j_0 @, m_0 @, @c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, @c_2, \\ ,j_0 @, m_0 @, @c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, @c_2, \\ ,j_0 @, m_0 @, @c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, @c_2, \\ ,j_0 @, m_0 @, @c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & \\ ,j_0 @, & & & & \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, & & & & & \\ ,j_0 @,$$

 \Leftrightarrow $,i \circlearrowleft j, i \circlearrowleft i_1, m \circlearrowleft m_1, Rc(i_1; m_1), j \circlearrowleft j_0, m \circlearrowleft m_0, Rc(j_0, m_0),$

$$if(j_0\!=\!m_0)\!\!=\!\!\!\begin{bmatrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_1,\\,j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_2,\end{bmatrix}\!\!-\!\!$$

 $\Leftrightarrow ,i \circlearrowleft j, i \otimes i_1, j \otimes j_0, m \otimes m_1, m \otimes m_0, Rc(i_1; m_1), Rc(j_0, m_0),$

$$if(j_0\!=\!m_0)\!-\!\!\left[\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_1,\\ ,j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_2,\end{matrix}\right]\!\!-\!$$

$$\Leftrightarrow ,i \circlearrowleft j, i \circlearrowleft i_1, i \circlearrowleft i_1, j \circlearrowleft j_0, j \circlearrowleft j_0, m \circlearrowleft m_1, m \circlearrowleft m_0, m_1 \circlearrowleft m_0, Rc(i_1; m_1), Rc(j_0, m_0),$$

$$if(j_0\!=\!m_0)\!-\!\!\left[\!\!\!\begin{bmatrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_1,\\ j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_2,\end{bmatrix}\!\!\!\!-\!\!\!\!$$

$$\Leftrightarrow$$
, $i \oplus i_1, j \oplus j_0, m \oplus m_1, m \oplus m_0, i \ominus j, i \ominus i_1, j \ominus j_0, m_1 \ominus m_0, Rc(i_1; m_1), Rc(j_0, m_0),$

$$if(j_0\!=\!m_0)\!=\!\!\begin{bmatrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_1,\\,j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_2,\end{bmatrix}\!\!-\!$$

$$\Leftrightarrow$$
, $i \otimes i_1, j \otimes j_0, m \otimes m_1, m \otimes m_0, i \otimes j, j \otimes i_1, i_1 \otimes j_0, m_1 \otimes m_0, Rc(i_1; m_1), Rc(j_0, m_0),$

$$if(j_0 = m_0) = \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, @c_1, \\ ,j_0 @, m_0 @, i_1 @, m_1 @, @c_2, \end{bmatrix}$$

$$\Leftrightarrow, i \otimes i_1, j \otimes j_0, m \otimes m_1, m \otimes m_0, i \otimes j, j \otimes i_1, i_1 \otimes j_0, m_1 \otimes m_0, Rc(i_1; m_1), Rc(j_0, m_0),$$

$$i_1 \circlearrowleft j_0, m_1 \circlearrowleft m_0, if (j_0 = m_0) - \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, @c_1, \\ ,j_0 @, m_0 @, i_1 @, m_1 @, @c_2, \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, @c_2, \\ ,j_0 @, m_0 @, i_1 @, m_1 @, @c_2, \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, &c_2, \\ ,j_0 @, m_0 @, i_1 @, m_1 @, &c_2, \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, &c_2, \\ ,j_0 @, m_0 @, i_1 @, m_1 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, &c_2, \\ ,j_0 @, m_0 @, i_1 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, &c_2, \\ ,j_0 @, m_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, m_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2, \\ ,j_0 @, &c_2, \\ \end{bmatrix} - \begin{bmatrix} ,j_0 @, &c_2$$

$$\Leftrightarrow$$
, $i \otimes i_1, j \otimes j_0, m \otimes m_1, m \otimes m_0, i \otimes j, j \otimes i_1, i_1 \otimes j_0, m_1 \otimes m_0, Rc(i_1; m_1), Rc(j_0, m_0),$

$$i_1 \circlearrowleft j_0, m_1 \circlearrowleft m_0, if (i_1 = m_1) = \begin{bmatrix} ,j_0 \textcircled{@}, m_0 \textcircled{@}, i_1 \textcircled{@}, m_1 \textcircled{@}, \textcircled{@}c_1, \\ ,j_0 \textcircled{@}, m_0 \textcircled{@}, i_1 \textcircled{@}, m_1 \textcircled{@}, \textcircled{@}c_2, \end{bmatrix}$$

 $\Leftrightarrow , i \circlearrowleft j, i \circledcirc i_1, m \circledcirc m_1, Rc(i_1; m_1), j \circledcirc j_0, m \circledcirc m_0, Rc(j_0, m_0), j_0 \circledcirc, m_0 \circledcirc,$

$$if(i_1 = m_1) = \begin{bmatrix} ,i_1 \oplus, m_1 \oplus, \odot c_1, \\ ,i_1 \oplus, m_1 \oplus, \odot c_2, \end{bmatrix}$$

$$\Leftrightarrow$$
, $i \circlearrowleft j$, $i \odot i_1$, $m \odot m_1$, $Rc(i_1; m_1)$,

$$if(i_1=m_1)$$
- $\begin{bmatrix} ,i_1 \oplus, m_1 \oplus, \odot c_1, \\ ,i_1 \oplus, m_1 \oplus, \odot c_2, \end{bmatrix}$ -

$$\Leftrightarrow , i \circlearrowleft j, i f(i \pm m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

Identical node propositions with propositions:

$$,i\circlearrowleft j,j=m,\Leftrightarrow,i\circlearrowleft j,i=m,$$

$$,i\circlearrowleft j,j!=m, \Leftrightarrow ,i\circlearrowleft j,i!=m,$$

Propositions with branch function:

$$, i = j, i f(j = m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i = j, i f(i = m) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$\begin{array}{c} \text{proof:} \\ , i = j, i f(j = m) - \begin{bmatrix} , ©c_1, \\ \\ , ©c_2, \end{bmatrix} -, \end{array}$$

$$\Leftrightarrow ,i=j,j\otimes j_0,m\otimes m_0,Rc(j_0;m_0),if(j_0=m_0)-\begin{bmatrix} ,j_0@,m_0@,@c_1,\\ j_0@,m_0@,@c_2,\end{bmatrix},$$

 $\Leftrightarrow, i=j, i \otimes i_1, m \otimes m_1, Rc(i_1; m_1), i_1 \oplus, m_1 \oplus, j \otimes j_0, m \otimes m_0, Rc(j_0; m_0),$

$$if(j_0=m_0)=\begin{bmatrix} ,j_0 \oplus, m_0 \oplus, \odot c_1, \\ j_0 \oplus, m_0 \oplus, \odot c_2, \end{bmatrix}$$
,

 \Leftrightarrow , i = j, $i \otimes i_1$, $m \otimes m_1$, $Rc(i_1; m_1)$, $j \otimes j_0$, $m \otimes m_0$, $Rc(j_0; m_0)$,

$$if(j_0\!=\!m_0)\!-\!\!\!\left[\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\scriptsize \circ}\,c_1,\\ j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\scriptsize \circ}\,c_2,\end{matrix}\right]\!\!-\!\!,$$

 $\Leftrightarrow , i = j, i \odot i_1, m \odot m_1, j \odot j_0, m \odot m_0, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0 = m_0) = \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, @c_1, \\ j_0 @, m_0 @, i_1 @, m_1 @, @c_2, \end{bmatrix},$$

 \Leftrightarrow $i=j, i \otimes i_1, j \otimes j_0, m \otimes m_0, m \otimes m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0=m_0) = \begin{bmatrix} ,j_0 @,m_0 @,i_1 @,m_1 @, @c_1, \\ \\ j_0 @,m_0 @,i_1 @,m_1 @, @c_2, \end{bmatrix},$$

 $\Leftrightarrow, i=j, i \otimes i_1, j \otimes j_0, m \otimes m_0, m \otimes m_1, m_0 \circlearrowleft m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0\!=\!m_0)\!-\!\!\!\left[\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\odot}c_1,\\ j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\odot}c_2,\end{matrix}\right]\!\!-\!\!,$$

 $\Leftrightarrow, i=j, i \otimes i_1, j \otimes j_0, m \otimes m_0, m \otimes m_1, m_0 \otimes m_1, m_0 = m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0=m_0) = \begin{bmatrix} ,j_0 @,m_0 @,i_1 @,m_1 @, @c_1, \\ \\ j_0 @,m_0 @,i_1 @,m_1 @, @c_2, \end{bmatrix},$$

 $\Leftrightarrow, i=j, i \odot i_1, i \odot i_1, j \odot j_0, m \odot m_0, m \odot m_1, m_0 = m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0\!=\!m_0)\!-\!\!\!\left[\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\scriptsize \circ}\,c_1,\\\\ j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\scriptsize \circ}\,c_2,\end{matrix}\right]\!\!-\!\!,$$

 $\Leftrightarrow, i \odot i_1, i \circlearrowleft i_1, i = j, j \odot j_0, m \odot m_0, m \odot m_1, m_0 = m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0=m_0) = \begin{bmatrix} ,j_0 @,m_0 @,i_1 @,m_1 @, @c_1, \\ \\ j_0 @,m_0 @,i_1 @,m_1 @, @c_2, \end{bmatrix},$$

 $\Leftrightarrow, i \odot i_1, i \odot i_1, i_1 = j, j \odot j_0, m \odot m_0, m \odot m_1, m_0 = m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0 = m_0) = \begin{bmatrix} ,j_0 @, m_0 @, i_1 @, m_1 @, @c_1, \\ j_0 @, m_0 @, i_1 @, m_1 @, @c_2, \end{bmatrix},$$

 \Leftrightarrow $,i \otimes i_1, j \otimes j_0, j \otimes j_0, i_1 = j, m \otimes m_0, m \otimes m_1, m_0 = m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0\!=\!m_0)\!=\!\!\!\begin{bmatrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\otimes\!c_1,\\\\ j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\otimes\!c_2,\end{bmatrix}\!\!-\!\!,$$

 \Leftrightarrow , $i \otimes i_1, j \otimes j_0, j \otimes j_0, i_1 = j_0, m \otimes m_0, m \otimes m_1, m_0 = m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(j_0\!=\!m_0)\!-\!\!\left[\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_1,\\ j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_2,\end{matrix}\right]\!\!-\!\!,$$

 \Leftrightarrow , $i \odot i_1$, $j \odot j_0$, $m \odot m_0$, $m \odot m_1$, $i_1 = j_0$, $m_0 = m_1$, $Rc(j_0; m_0)$, $Rc(i_1; m_1)$,

$$if(j_0\!=\!m_0)\!-\!\!\!\left[\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\scriptsize \circ}\,c_1,\\ j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\scriptsize \circ}\,c_2,\end{matrix}\right]\!\!-\!\!,$$

 $\Leftrightarrow , i \odot i_1, j \odot j_0, m \odot m_0, m \odot m_1, i_1 \pm j_0, m_0 \pm m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(i_1 = \varnothing) - \begin{bmatrix} , \\ , \\ m_1 = \varnothing, \end{bmatrix}, if(j_0 = m_0) - \begin{bmatrix} , j_0 \textcircled{@}, m_0 \textcircled{@}, i_1 \textcircled{@}, m_1 \textcircled{@}, \textcircled{@}c_1, \\ j_0 \textcircled{@}, m_0 \textcircled{@}, i_1 \textcircled{@}, m_1 \textcircled{@}, \textcircled{@}c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \odot i_1, j \odot j_0, m \odot m_0, m \odot m_1, i_1 = j_0, m_0 = m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$i_1 = j_0, m_0 = m_1, if(i_1 = \varnothing) - \begin{bmatrix} , \\ , \\ , m_1 = \varnothing, \end{bmatrix}, if(j_0 = m_0) - \begin{bmatrix} , j_0 @, m_0 @, i_1 @, m_1 @, @c_1, \\ j_0 @, m_0 @, i_1 @, m_1 @, @c_2, \end{bmatrix},$$

 $\Leftrightarrow , i \odot i_1, j \odot j_0, m \odot m_0, m \odot m_1, i_1 = j_0, m_0 = m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

 \Leftrightarrow $,i \otimes i_1, j \otimes j_0, m \otimes m_0, m \otimes m_1, i_1 \pm j_0, m_0 \pm m_1, Rc(j_0; m_0), Rc(i_1; m_1),$

$$if(i_1\!=\!m_1)\!-\!\!\!\left[\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_1,\\\\ j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\circledcirc c_2,\end{matrix}\right]\!\!-\!\!,$$

 \Leftrightarrow , i=j, $i \odot i_1$, $j \odot j_0$, $m \odot m_0$, $Rc(j_0; m_0)$, $Rc(i_1; m_1)$,

$$if(i_1\!=\!m_1)\!-\!\!\!\left[\begin{matrix},j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\scriptsize \circ}\,c_1,\\\\j_0\!\!\oplus\!,m_0\!\!\oplus\!,i_1\!\!\oplus\!,m_1\!\!\oplus\!,\underline{\scriptsize \circ}\,c_2,\end{matrix}\right]\!\!-\!\!,$$

 $\Leftrightarrow, i=j, j \otimes j_0, m \otimes m_0, Rc(j_0; m_0), j_0 \oplus, m_0 \oplus, i \otimes i_1, m \otimes m_1, Rc(i_1; m_1),$

$$if(i_1 = m_1) = \begin{bmatrix} ,i_1 @, m_1 @, @c_1, \\ ,i_1 @, m_1 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow, i=j, i \otimes i_1, m \otimes m_1, Rc(i_1; m_1), if(i_1=m_1) = \begin{bmatrix}, i_1 @, m_1 @, @c_1, \\ \\, i_1 @, m_1 @, @c_2, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i = j$, $if(i = m) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}$,

Propositions with propositions:

$$, i{=}j, j{=}m, \iff, i{=}j, i{=}m,$$

$$,i=j,j!=m,\Leftrightarrow,i=j,i!=m,$$

21.2.13 Opposition

$$, i = j, i! = j, \Leftrightarrow , \otimes,$$

$$,i!\pm j,i\pm j,\iff,\otimes,$$

21.2.14 With identical node connectivity

$$, i = j, i \circlearrowleft j, \Leftrightarrow , i \circlearrowleft j,$$

proof:
$$,i=j,i \circlearrowleft j,$$
 $\Leftrightarrow j,i \circlearrowleft j,$ $\Leftrightarrow j,i \circlearrowleft j,$ $i \Leftrightarrow j,i \circlearrowleft j,$ $i \otimes i_0,$ $j \otimes j_0,$ $Rc(i_0;j_0),$ $i_0=\varnothing,$ $j_0=\varnothing,$ $i_0 \circledast,$ $j_0 \circledast,$ $i \otimes j,$ $i \otimes i_0,$ $i \otimes i_0,$ $j \otimes j_0,$ $j \otimes j_0,$ $j \otimes j_0,$ $Rc(i_0;j_0),$ $i_0=\varnothing,$ $j_0=\varnothing,$ $i_0 \circledast,$ $j_0 \circledast,$ $i \otimes i_0,$ $i \otimes i_0,$ $i \otimes i_0,$ $j \otimes j_0,$ $j \otimes j_0,$ $j \otimes j_0,$ $Rc(i_0;j_0),$ $i_0=\varnothing,$ $j_0=\varnothing,$ $i_0 \circledast,$ $j_0 \circledast,$ $i \otimes i_0,$ $i \otimes i_0,$ $i \otimes i_0,$ $j \otimes j_0,$ $j \otimes j_0,$ $j \otimes j_0,$ $Rc(i_0;j_0),$ $i_0=\varnothing,$ $j_0=\varnothing,$ $i_0 \otimes j_0 \otimes j,$ $j \otimes j_0,$ $j \otimes j_0,$ $j \otimes j_0,$ $Rc(i_0;j_0),$ $i_0=\varnothing,$ $j_0=\varnothing,$ $i_0 \otimes j_0 \otimes j,$ $j \otimes j_0,$ $j \otimes$

$$, i = j, i \circlearrowleft j, \Leftrightarrow , i = j, i \circlearrowleft j,$$

21.2.15 With recursive function

$$, i = j, R(i), R(j), \Leftrightarrow, i = j, Rc(i; j),$$
 induction proof:
$$premise 1:$$

$$, i = \emptyset, i = j, R(i), R(j),$$

$$\Leftrightarrow, i = j, i = \emptyset, R(j),$$

$$\Leftrightarrow, i = j, j = \emptyset, R(j),$$

$$\Leftrightarrow, i = j, j = \emptyset,$$

$$\Leftrightarrow, i = j, j = \emptyset,$$

$$\Leftrightarrow, i = j, i = \emptyset,$$

$$\Leftrightarrow, i = j, i = \emptyset,$$

$$\Leftrightarrow, i = j, i = \emptyset,$$

$$\Leftrightarrow, i = j, k = \emptyset,$$

$$\Rightarrow, k = j,$$

$$\Leftrightarrow$$
, $i!=\emptyset$, $j!=\emptyset$, $i\oplus$, $j\oplus$, &SH $i\to i$, $i=j$, $Rc(i;j)$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i = \varnothing$, $j = \varnothing$, $i \oplus$, $j \oplus$, $i = j$, $Rc(i; j)$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, i!=\varnothing, j!=\varnothing, i\oplus, j\oplus, Rc(i;j),$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, i = \varnothing, j = \varnothing, Rc(i, j),$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, j!=\varnothing, i!=\varnothing, Rc(i;j),$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $i=j$, $i!=\varnothing$, $i!=\varnothing$, $Rc(i;j)$,

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $i=j$, $i!=\varnothing$, $Rc(i;j)$,

$$\Leftrightarrow$$
, $i = \emptyset$, &SHi $\circlearrowleft i, i = j, Rc(i; j)$,

conclusion:

$$, i=j, R(i), R(j), \Leftrightarrow , i=j, Rc(i;j),$$

21.2.16 With release operator

$$, i = j, Rc(j; m), i \oplus, j \oplus, \Leftrightarrow, i = j, Rc(i; m), i \oplus, j \oplus,$$

induction proof:

premise 1:

$$, i = \varnothing, i = j, Rc(j; m), i \oplus, j \oplus,$$

$$\Leftrightarrow$$
, $i = j$, $i = \emptyset$, $Rc(j; m)$, $i \oplus$, $j \oplus$,

$$\Leftrightarrow$$
, $i = j, j = \emptyset, Rc(j; m), i \oplus, j \oplus,$

$$\Leftrightarrow$$
, $i = j$, $j = \emptyset$, $i \oplus$, $j \oplus$,

$$\Leftrightarrow$$
, $i = j$, $i = \emptyset$, $i \oplus$, $j \oplus$,

$$\Leftrightarrow$$
, $i = \emptyset$, $Rc(i; m)$, $i \oplus$, $j \oplus$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i = j$, $Rc(i; m)$, $i \oplus j \oplus j$

premise 2:

, &SHi
$$\rightarrow$$
i, $i=j$, $Rc(j;m)$, $i \oplus$, $j \oplus$, \Leftrightarrow , &SHi \rightarrow i, $i=j$, $Rc(i;m)$, $i \oplus$, $j \oplus$, \Rightarrow , $i!=\varnothing$, &SHi \bigcirc i, $i=j$, $Rc(j;m)$, $i \oplus$, $j \oplus$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i = j, i = \varnothing, Rc(j; m), i \oplus, j \oplus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, j!=\varnothing, Rc(j;m), i\oplus, j\oplus,$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i = j, j != \varnothing, i f (m = \varnothing) - \begin{bmatrix},\\\\,j \oplus, m \oplus, Rc(j;m),\end{bmatrix}, i \oplus, i \oplus, j \oplus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i = j, j != \varnothing, i f (m = \varnothing) - \begin{bmatrix},i \oplus, i \oplus, j \oplus,\\\\,j \oplus, m \oplus, Rc(j;m), i \oplus, i \oplus, j \oplus,\end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i = j, j != \varnothing, i f (m = \varnothing) - \begin{bmatrix},i \oplus, j \oplus,\\\\,j \oplus, m \oplus, Rc(j;m), i \oplus, j \oplus,\end{bmatrix},$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i = j, j != \varnothing, if(m = \varnothing) - \begin{bmatrix} , i @, j @, \\ , i ⊕, i ⊕, m ⊕, Rc(i; m), i @, i @, i ⊕. \end{bmatrix} - ,$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i, i = j, j != \varnothing, j != \varnothing, i f(m = \varnothing) - \begin{bmatrix} , i @, j @, \\ , j ⊕, i ⊕, m ⊕, Rc(j; m), i @, j @, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \bigcirc i, i=j, i !=\varnothing, j !=\varnothing, if(m=\varnothing) - \begin{bmatrix}, i \oplus, j \oplus, \\, j \oplus, i \oplus, m \oplus, Rc(j;m), i \oplus, j \oplus, \end{bmatrix},$$

$$\Leftrightarrow , if(m=\varnothing) - \begin{bmatrix} , \&SHi \circlearrowleft i, i=j, i !=\varnothing, j !=\varnothing, i @, j @, \\ , \&SHi \circlearrowleft i, i !=\varnothing, j !=\varnothing, j ⊕, i ⊕, m ⊕, i=j, Rc(j;m), i @, j @, \end{bmatrix},$$

$$\Leftrightarrow , if(m=\varnothing) - \begin{bmatrix} , \&SHi \, \circlearrowleft i, i=j, i !=\varnothing, j !=\varnothing, i @, j @, \\ , i !=\varnothing, j !=\varnothing, j ⊕, i ⊕, m ⊕, \&SHi \to i, i=j, Rc(j;m), i @, j @, \end{bmatrix},$$

$$\Leftrightarrow , if(m=\varnothing) - \begin{bmatrix} , \&SHi \, \circlearrowleft i, i=j, i !=\varnothing, j !=\varnothing, i @, j @, \\ , i !=\varnothing, j !=\varnothing, j ⊕, i ⊕, m ⊕, \&SHi \to i, i=j, Rc(i;m), i @, j @, \end{bmatrix},$$

$$\Leftrightarrow , if(m=\varnothing) - \begin{bmatrix} , \&SHi & \circlearrowleft i, i=j, i = \varnothing, j = \varnothing, i \oplus, j \oplus, \\ , i! = \varnothing, j! = \varnothing, j \oplus, i \oplus, m \oplus, \&SHi \rightarrow i, i=j, Rc(i; m), i \oplus, j \oplus, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i = \varnothing, j != \varnothing, i f(m = \varnothing) - \begin{bmatrix}, i @, j @, \\ j \oplus, i \oplus, m \oplus, Rc(i; m), i @, j @, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i = j, i != \varnothing, j != \varnothing, i f(m = \varnothing) - \begin{bmatrix}, i @, j @, \\ i \oplus, m \oplus, Rc(i; m), i @, j \oplus, j @, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i=j, i \models \varnothing, j \models \varnothing, if(m=\varnothing) - \begin{bmatrix} , i \oplus, j \oplus, \\ i \oplus, m \oplus, Rc(i;m), i \oplus, j \oplus, \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i=j, i \models \varnothing, j \models \varnothing, if(m=\varnothing) - \begin{bmatrix} , \\ i \oplus, m \oplus, Rc(i;m), \end{bmatrix}, i \oplus, j \oplus,$$

$$\Leftrightarrow \;, \&S\!H\!i\, \circlearrowleft\! i, i\!=\!j, i !\!=\!\varnothing, i !\!=\!\varnothing, Rc(i;m), i \!\!\oplus\!, j \!\!\oplus\!,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, i!=\varnothing, Rc(i; m), i\oplus, j\oplus,$

$$\Leftrightarrow$$
, $i = \emptyset$, &SHi $\circlearrowleft i, i = j, Rc(i; m), i \oplus, j \oplus,$

conclusion:

$$, i=j, Rc(j;m), i\oplus, j\oplus, \Leftrightarrow , i=j, Rc(i;m), i\oplus, j\oplus,$$

22 Rules of Number More Than and Less Than Relationship

22.1 Definition of Number more than

$$, if(i > j) = \begin{bmatrix} , \\ , \\ \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), if(i_0 = \varnothing) = \begin{bmatrix} , i_0 \otimes n, \\ , \otimes n, \end{bmatrix}, if(n = \varnothing) = \begin{bmatrix} , n \oplus, i_0 \oplus, j_0 \oplus, \\ , n \oplus, i_0 \oplus, j_0 \oplus, \end{bmatrix}$$

$$,i>j, \Leftrightarrow ,if(i>j)-\begin{bmatrix} ,\\ .\\ \otimes .\end{bmatrix}$$

$$,i!>j, \Leftrightarrow ,if(i>j)-\left[\stackrel{,\otimes,}{,} \right] -,$$

22.2 Definition of Number less than

$$, if(i \lessdot j) - \begin{bmatrix}, \\ \\ \\ \\ \end{bmatrix}, \Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), if(j_0 = \varnothing) - \begin{bmatrix}, j_0 \otimes n, \\ \\ \\ \\ \end{bmatrix}, if(n = \varnothing) - \begin{bmatrix}, n \oplus, i_0 \oplus, j_0 \oplus, \\ \\ \\ \\ \\ \end{bmatrix}, n \oplus, i_0 \oplus, j_0 \oplus, j_0 \oplus, i_0 \oplus, j_0 \oplus, i_0 \oplus, j_0 \oplus, i_0 \oplus, i$$

$$, i < j, \iff , i f(i < j) - \begin{bmatrix} , \\ , \otimes, \end{bmatrix},$$

$$,i! \lessdot j, \iff ,if(i \lessdot j) = \begin{bmatrix} , \otimes, \\ \end{bmatrix}_{-},$$

22.3 Theorems of Relationship of more than and less than

$$, if(i > j) = \begin{bmatrix} , & \Leftrightarrow , if(i < j) = \begin{bmatrix} , \\ , \end{bmatrix}$$

$$,i>j, \Leftrightarrow ,j\lessdot i,$$

$$,i!>j, \Leftrightarrow ,j!\lessdot i,$$

22.4 Theorems of Number more than Relationship

22.4.1 Number more than branch function to definition

$$, if (i > j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), if (i_0 = \varnothing) - \begin{bmatrix}, i_0 @, j_0 @, @c_2, \\ \\ , i_0 @, j_0 @, @c_1, \end{bmatrix},$$

22.4.2 Number more than propositions to definition

$$, i \! > \! j, \iff, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus,$$

$$,i!>j, \Leftrightarrow ,i\otimes i_0,j\otimes j_0,Rc(i_0;j_0),i_0=\varnothing,i_0\varnothing,j_0\varnothing,$$

22.4.3 Branch function to propositions

$$,if(i>j)=\begin{bmatrix},@c,\\\\,\otimes,\end{bmatrix}$$
, \Leftrightarrow $,i>j,@c,$

$$, if(i \!\!>\!\! j) \!\!-\!\! \begin{bmatrix} , \otimes, \\ , @c, \end{bmatrix} \!\!\!\! -, \; \Leftrightarrow \; , i! \!\!\!>\!\! j, @c,$$

22.4.4 Empty branch function

$$,if(i \triangleright j) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}$$

22.4.5 Unity

$$, \Leftrightarrow , if(i > j) [\dot{}],$$

$$, i > j, \otimes, \Leftrightarrow , \otimes,$$

 $,i!>j,\otimes,\Leftrightarrow,\otimes,$

22.4.6 Swap

Branch function and operator:

$$, \odot m, if(i \gt j) - \begin{bmatrix} , \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , \odot m, \\ , \odot m, \end{bmatrix} \\ , \odot m, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , \cdots m, \\ , \cdots m, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , m \odot n, \\ , m \odot n, \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \end{bmatrix} \\ , m \odot n, if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt j) - \begin{bmatrix} , & \Leftrightarrow , if(i \gt$$

22 Rules of Number More Than and Less Than Relationship

$$, m \ominus, if(i \gt j) - \begin{bmatrix}, & \\ \\ \\ \end{pmatrix}, \iff , if(i \gt j) - \begin{bmatrix}, & m \ominus, \\ \\ \\ \end{pmatrix}, m \ominus, \iff , m \ominus, \iff m \bigcap, \iff m \bigcap, \iff m \bigcap, \iff m \bigcap, \iff$$

Branch function and Branch function:

$$, if(i > j) = \begin{bmatrix} , if(m = n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m = n) - \begin{bmatrix} , @c_3, \\ , @c_4, \end{bmatrix}, \Leftrightarrow , if(m = n) = \begin{bmatrix} , if(i > j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i > j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

$$, if(i > j) = \begin{bmatrix} , if(m \oplus n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(m \oplus n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(m \oplus n) - \begin{bmatrix} , if(i > j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i > j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_2, \end{bmatrix}, \end{bmatrix},$$

$$, if(i > j) = \begin{bmatrix} , if(m \rightarrow n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_2, \end{bmatrix}, \\ , if(m \rightarrow n) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , \vdots \end{cases}, \Leftrightarrow , if(m \rightarrow n) = \begin{bmatrix} , if(i > j) - \begin{bmatrix} , \odot c_1, \\ , \odot c_3, \end{bmatrix}, \\ , if(i > j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_2, \end{bmatrix}, \\ , if(i > j) - \begin{bmatrix} , \odot c_2, \\ , \odot c_2, \end{bmatrix}, \end{cases}$$

22.4 Theorems of Number more than Relationship

$$, if(i > j) = \begin{bmatrix}, if(m \circlearrowleft n) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \\, if(m \circlearrowleft n) = \begin{bmatrix}, & \\ , & & \\ & & \end{bmatrix}, \Leftrightarrow, if(m \circlearrowleft n) = \begin{bmatrix}, & if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, if(i > j) = \begin{bmatrix}, & & \\ & & & \\ & & & \\ & & & \end{bmatrix}, \\, & & & \\, & & & \\, & & & \\, & & & \\, & & & \\, & & & \\, & & & \\, & & & \\, & & & \\, & & & \\,$$

$$, if(i > j) = \begin{bmatrix} , if(m \circlearrowleft n) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m \circlearrowleft n) = \begin{bmatrix} , if(i > j) = \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i > j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , if(i > j) = \begin{bmatrix} , & & & \\ , & & & \\ , & & & \end{bmatrix}, \\ , & & & & \end{bmatrix},$$

$$, if (i > j) = \begin{bmatrix} , if (m = n) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if (m = n) - \begin{bmatrix} , & \\ , & & \\ \end{bmatrix}, & \Leftrightarrow , if (m = n) - \begin{bmatrix} , & if (i > j) - \begin{bmatrix} , & & \\ , & & \\ \end{bmatrix}, & & \\ , & if (i > j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , & if (i > j) - \begin{bmatrix} , & & \\ & & \\ \end{bmatrix}, & & \\ , & & \\ , & & \end{bmatrix},$$

$$, if(i > j) = \begin{bmatrix} , if(m = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \\ , if(m = \varnothing) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(m = \varnothing) - \begin{bmatrix} , if(i > j) - \begin{bmatrix} , @c_1, \\ , @c_3, \end{bmatrix}, \\ , if(i > j) - \begin{bmatrix} , @c_2, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

Branch function and propositions:

$$, m > n, if(i > j) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix}, m > n, @c_1, \\ \\ , m > n, @c_2, \end{bmatrix},$$

$$, m! > n, if(i > j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix} , m! > n, @c_1, \\ , m! > n, @c_2, \end{bmatrix},$$

$$, m \pm n, i f(i > j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(i > j) = \begin{bmatrix}, m \pm n, @c_1, \\ , m \pm n, @c_2, \end{bmatrix},$$

$$, m! = n, if(i > j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix} , m! = n, @c_1, \\ , m! = n, @c_2, \end{bmatrix},$$

$$, m \oplus n, if(i > j) = \begin{bmatrix}, \odot c_1, \\, \odot c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix}, m \oplus n, \odot c_1, \\, m \oplus n, \odot c_2, \end{bmatrix},$$

$$, m! \oplus n, if(i > j) - \begin{bmatrix} , \circledcirc c_1, \\ \\ , \circledcirc c_2, \end{bmatrix}, \;\; \Leftrightarrow \;\; , if(i > j) - \begin{bmatrix} , m! \oplus n, \circledcirc c_1, \\ \\ , m! \oplus n, \circledcirc c_2, \end{bmatrix},$$

$$, m \!\!\to\!\! n, if(i \!\!>\!\! j) \!\!-\!\! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}\!\!-\!, \;\; \Leftrightarrow \;\; , if(i \!\!>\!\! j) \!\!-\! \begin{bmatrix}, m \!\!\to\!\! n, @c_1, \\ , m \!\!\to\!\! n, @c_2, \end{bmatrix}\!\!-\!\! ,$$

$$, m! \rightarrow n, if(i > j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) - \begin{bmatrix} , m! \rightarrow n, @c_1, \\ \\ , m! \rightarrow n, @c_2, \end{bmatrix},$$

$$, m \circlearrowleft n, if(i \gt j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \; \Leftrightarrow \; , if(i \gt j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if(i \gt j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} -, \;\; \Leftrightarrow \; , if(i \gt j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix} -,$$

$$, m \circlearrowleft n, if(i > j) - \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) - \begin{bmatrix} , m \circlearrowleft n, @c_1, \\ , m \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m! \circlearrowleft n, if(i > j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) - \begin{bmatrix} , m! \circlearrowleft n, @c_1, \\ \\ , m! \circlearrowleft n, @c_2, \end{bmatrix},$$

$$, m = n, if(i > j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) - \begin{bmatrix} , m = n, @c_1, \\ \\ , m = n, @c_2, \end{bmatrix},$$

$$, m != n, i f(i > j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i f(i > j) - \begin{bmatrix} , m != n, @c_1, \\ \\ , m != n, @c_2, \end{bmatrix},$$

$$, m = \varnothing, if(i > j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix} , m = \varnothing, @c_1, \\ , m = \varnothing, @c_2, \end{bmatrix},$$

22 Rules of Number More Than and Less Than Relationship

$$, m != \varnothing, if(i > j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) - \begin{bmatrix}, m != \varnothing, @c_1, \\ , m != \varnothing, @c_2, \end{bmatrix},$$

$$, m > n, if(i = j) = \begin{bmatrix}, ©c_1, \\ , ©c_2, \end{bmatrix}, \Leftrightarrow , if(i = j) = \begin{bmatrix}, m > n, ©c_1, \\ , m > n, ©c_2, \end{bmatrix},$$

$$, m! > n, if(i=j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) = \begin{bmatrix} , m! > n, @c_1, \\ , m! > n, @c_2, \end{bmatrix},$$

$$, m \!\!>\!\! n, if(i \oplus j) \!\!=\!\!\! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}\!\! + \iff, if(i \oplus j) \!\!=\!\! \begin{bmatrix}, m \!\!>\!\! n, @c_1, \\ , m \!\!>\!\! n, @c_2, \end{bmatrix}\!\! + ,$$

$$, m! > n, if(i \oplus j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \oplus j) = \begin{bmatrix} , m! > n, @c_1, \\ , m! > n, @c_2, \end{bmatrix},$$

$$, m \!\!>\!\! n, i f(i \circlearrowleft j) - \!\! \left[\begin{matrix} , @c_1, \\ , @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_1, \\ , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! - \!\! \left[\begin{matrix} , m \!\!>\!\! n, @c_2, \end{matrix} \right] \!\! -$$

$$, m! > n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m! > n, @c_1, \\ \\ , m! > n, @c_2, \end{bmatrix},$$

$$, m \!\!>\!\! n, if(i \!\!\rightarrow\!\! j) \!\!=\!\!\! \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}\!\! , \iff , if(i \!\!\rightarrow\!\! j) \!\!=\!\! \begin{bmatrix}, m \!\!>\!\! n, @c_1, \\ , m \!\!>\!\! n, @c_2, \end{bmatrix}\!\! ,$$

$$, m! > n, if(i \rightarrow j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \rightarrow j) = \begin{bmatrix} , m! > n, @c_1, \\ , m! > n, @c_2, \end{bmatrix},$$

$$, m > n, if(i \circlearrowleft j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , m > n, @c_1, \\ \\ , m > n, @c_2, \end{bmatrix},$$

$$, m! > n, if(i \circlearrowleft j) = \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , m! > n, @c_1, \\ \\ , m! > n, @c_2, \end{bmatrix},$$

$$, m \!\!>\! n, if(i \!=\! j) \!\!=\!\!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\! + , \Leftrightarrow , if(i \!=\! j) \!\!=\!\! \begin{bmatrix} , m \!\!>\! n, @c_1, \\ \\ , m \!\!>\! n, @c_2, \end{bmatrix} \!\! + ,$$

$$, m! > n, if(i=j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i=j) - \begin{bmatrix} , m! > n, @c_1, \\ \\ , m! > n, @c_2, \end{bmatrix},$$

$$, m \!\!>\!\! n, if(i \!=\! \varnothing) - \!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\! -, \; \Leftrightarrow \; , if(i \!=\! \varnothing) - \!\! \begin{bmatrix} , m \!\!>\!\! n, @c_1, \\ \\ , m \!\!>\!\! n, @c_2, \end{bmatrix} \!\! -,$$

$$, m! > n, if(i = \varnothing) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i = \varnothing) - \begin{bmatrix} , m! > n, @c_1, \\ \\ , m! > n, @c_2, \end{bmatrix},$$

Branch function and recursive function:

$$R(m), if(i>j) = \begin{bmatrix} & & & & \\ & & & \\ & & & \end{bmatrix}, \Leftrightarrow if(i>j) = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}, R(m), @c_1, \\ R(m), @c_2, \end{bmatrix},$$

$$,R_{-}(m),if(i>j)=\begin{bmatrix},@c_1,\\,@c_2,\end{bmatrix},\Leftrightarrow,if(i>j)=\begin{bmatrix},R_{-}(m),@c_1,\\,R_{-}(m),@c_2,\end{bmatrix},$$

$$, Rc(m; n), if(i > j) = \begin{bmatrix}, ©c_1, \\, ©c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix}, Rc(m; n), ©c_1, \\, Rc(m; n), ©c_2, \end{bmatrix},$$

Branch function and flag object:

$$, \&SHi \circlearrowleft m, if(i > j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix}, \&SHi \circlearrowleft m, @c_1, \\ , \&SHi \circlearrowleft m, @c_2, \end{bmatrix},$$

$$,\,\&\mathit{SHi}\,\rightarrow\!\!m,if(i\!\!>\!\!j)\!\!=\!\!\begin{bmatrix},\,@c_1,\\\\,\,@c_2,\end{bmatrix}\!\!-,\,\,\Leftrightarrow\,\,,if(i\!\!>\!\!j)\!\!=\!\!\begin{bmatrix},\,\&\mathit{SHi}\,\rightarrow\!\!m,\,@c_1,\\\\,\,\&\mathit{SHi}\,\rightarrow\!\!m,\,@c_2,\end{bmatrix}\!\!-,$$

$$, \&SHj \circlearrowleft m, if (i > j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if (i > j) - \begin{bmatrix} , \&SHj \circlearrowleft m, @c_1, \\ \\ , \&SHj \circlearrowleft m, @c_2, \end{bmatrix},$$

$$, \&SHj \leftarrow m, if(i > j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) - \begin{bmatrix} , \&SHj \leftarrow m, @c_1, \\ \\ , \&SHj \leftarrow m, @c_2, \end{bmatrix},$$

$$,\,\&S\!Vi\,{\circlearrowleft}m,if(i>j) = \begin{bmatrix},\,@c_1,\\\\,\,@c_2,\end{bmatrix}, \iff ,if(i>j) = \begin{bmatrix},\,\&S\!Vi\,{\circlearrowleft}m,\,@c_1,\\\\,\,\&S\!Vi\,{\circlearrowleft}m,\,@c_2,\end{bmatrix},$$

$$, \&S\!V\!i \, @m, if(i > j) - \left[\begin{smallmatrix} , \, @c_1, \\ \\ , \, @c_2, \end{smallmatrix} \right] - , \Leftrightarrow , if(i > j) - \left[\begin{smallmatrix} , \, \&S\!V\!i \, @m, \, @c_1, \\ \\ , \, \&S\!V\!i \, @m, \, @c_2, \end{smallmatrix} \right] - ,$$

Propositions and operator:

$$,i{>}j,{\circledcirc}m, \ \Leftrightarrow \ ,{\circledcirc}m,i{>}j,$$

$$,i>j,\odot m, \Leftrightarrow ,\odot m,i>j,$$

$$, i > j, m \otimes n, \Leftrightarrow , m \otimes n, i > j,$$

$$,i>j,m\otimes n, \Leftrightarrow ,m\otimes n,i>j,$$

$$,i>j,m\oplus n,\iff,m\oplus n,i>j,$$

$$,i>j,m\oplus,\Leftrightarrow,m\oplus,i>j,$$

$$, i > j, m \oplus, \Leftrightarrow, m \oplus, i > j,$$

$$, i > j, m \ominus, \Leftrightarrow , m \ominus, i > j,$$

$$,i!>j, @m, \Leftrightarrow , @m,i!>j,$$

$$,i!>j,\odot m, \Leftrightarrow ,\odot m,i!>j,$$

$$,i!>j,m\otimes n, \Leftrightarrow ,m\otimes n,i!>j,$$

$$,i!>j,m\otimes n, \Leftrightarrow ,m\otimes n,i!>j,$$

22 Rules of Number More Than and Less Than Relationship

$$,i!>j,m\oplus n,\iff,m\oplus n,i!>j,$$
 $,i!>j,m\oplus,\iff,m\oplus,i!>j,$ $,i!>j,m\oplus,\iff,m\oplus,i!>j,$ $,i!>j,m\ominus,\iff,m\ominus,i!>j,$

Propositions and Propositions:

$$, i > j, m > n, \Leftrightarrow , m > n, i > j,$$

$$, i > j, m! > n, \Leftrightarrow , m! > n, i > j,$$

$$, i! > j, m! > n, \Leftrightarrow , m! > n, i! > j,$$

$$, i > j, m = n, \Leftrightarrow , m = n, i > j,$$

$$, i > j, m! = n, \Leftrightarrow , m! = n, i > j,$$

$$, i! > j, m = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i > j, m! = n, \Leftrightarrow , m! = n, i > j,$$

$$, i > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, \Leftrightarrow , m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j, m! = n, i! > j,$$

$$, i! > j,$$

22.4 Theorems of Number more than Relationship

$$, i > j, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, i > j,$$

$$, i > j, m ! \circlearrowleft n, \Leftrightarrow , m ! \circlearrowleft n, i > j,$$

$$, i ! > j, m \circlearrowleft n, \Leftrightarrow , m \circlearrowleft n, i ! > j,$$

$$, i ! > j, m ! \circlearrowleft n, \Leftrightarrow , m ! \circlearrowleft n, i ! > j,$$

$$, i ! > j, m ! \circlearrowleft n, \Leftrightarrow , m ! \vdash n, i ! > j,$$

$$, i > j, m ! \vdash n, \Leftrightarrow , m ! \vdash n, i > j,$$

$$, i ! > j, m ! \vdash n, \Leftrightarrow , m ! \vdash n, i ! > j,$$

$$, i ! > j, m ! \vdash n, \Leftrightarrow , m ! \vdash n, i ! > j,$$

$$, i ! > j, m ! \vdash n, \Leftrightarrow , m ! \vdash n, i ! > j,$$

$$, i > j, m ! \vdash \varnothing, \Leftrightarrow , m ! \vdash \varnothing, i > j,$$

$$, i ! > j, m ! \vdash \varnothing, \Leftrightarrow , m ! \vdash \varnothing, i ! > j,$$

$$, i ! > j, m ! \vdash \varnothing, \Leftrightarrow , m ! \vdash \varnothing, i ! > j,$$

$$, i ! > j, m ! \vdash \varnothing, \Leftrightarrow , m ! \vdash \varnothing, i ! > j,$$

$$, i ! > j, m ! \vdash \varnothing, \Leftrightarrow , m ! \vdash \varnothing, i ! > j,$$

$$, i ! > j, m ! \vdash \varnothing, \Leftrightarrow , m ! \vdash \varnothing, i ! > j,$$

Propositions and recursive function:

$$, i \triangleright j, R(m), \iff , R(m), i \triangleright j,$$

$$, i ! \triangleright j, R(m), \iff , R(m), i ! \triangleright j,$$

$$, i \triangleright j, R_{-}(m), \iff , R_{-}(m), i \triangleright j,$$

$$, i ! \triangleright j, R_{-}(m), \iff , R_{-}(m), i ! \triangleright j,$$

$$, i \triangleright j, Rc(m; n), \iff , Rc(m; n), i \triangleright j,$$

$$, i ! \triangleright j, Rc(m; n), \iff , Rc(m; n), i ! \triangleright j,$$

22 Rules of Number More Than and Less Than Relationship

Propositions and flag object:

$$, i > j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i > j,$$

$$, i > j, \&SHi \to m, \Leftrightarrow , \&SHi \to m, i > j,$$

$$, i! > j, \&SHi \circlearrowleft m, \Leftrightarrow , \&SHi \circlearrowleft m, i! > j,$$

$$, i! > j, \&SHi \to m, \Leftrightarrow , \&SHi \to m, i! > j,$$

$$, i > j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, i > j,$$

$$, i > j, \&SHj \hookleftarrow m, \Leftrightarrow , \&SHj \hookleftarrow m, i > j,$$

$$, i! > j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, i! > j,$$

$$, i! > j, \&SHj \circlearrowleft m, \Leftrightarrow , \&SHj \circlearrowleft m, i! > j,$$

$$, i! > j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i > j,$$

$$, i! > j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i > j,$$

$$, i! > j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i! > j,$$

$$, i! > j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i! > j,$$

$$, i! > j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i! > j,$$

$$, i! > j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i! > j,$$

$$, i! > j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i! > j,$$

$$, i! > j, \&SVi \circlearrowleft m, \Leftrightarrow , \&SVi \circlearrowleft m, i! > j,$$

Propositions to Propositions with branch function

(Skip.....)

22.4.7 Swap of the same operand

(skip.....)

22.4.8 Transitivity

Branch function with branch function:

$$, if(i > j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix}, if(i > j) = \begin{bmatrix}, @c_1, \\ , @c_3, \end{bmatrix}, \\ , @c_2, \end{bmatrix},$$

$$, if(i > j) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i > j) = \begin{bmatrix}, @c_1, \\ , if(i > j) = \begin{bmatrix}, @c_3, \\ , @c_2, \end{bmatrix}, \end{bmatrix},$$

Branch function with propositions:

$$, if(i>j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i>j) = \begin{bmatrix} , i>j, @c_1, \\ , @c_2, \end{bmatrix},$$

$$, if(i>j) = \begin{bmatrix} , @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(i>j) = \begin{bmatrix} , @c_1, \\ , i!>j, @c_2, \end{bmatrix},$$

Propositions with branch function:

$$,i>j,if(i>j)$$
- $\begin{bmatrix},@c_1,\\\\,@c_2,\end{bmatrix}$ - $,\Leftrightarrow,i>j,@c_1,$

$$,i!>j,if(i>j)$$
- $\begin{bmatrix} ,@c_1,\\ ,&c_2, \end{bmatrix}$ - $,\Leftrightarrow,i!>j,@c_2,$

Propositions with propositions:

$$,i>j, \Leftrightarrow ,i>j,i>j,$$

$$,i!>j, \Leftrightarrow ,i!>j,i!>j,$$

22.4.9 Substitution

Identical node propositions with branch function:

$$, i \circlearrowleft j, i f(j > m) - \begin{bmatrix} , @c_1, \\ \\ . @c_2, \end{bmatrix}, \Leftrightarrow , i \circlearrowleft j, i f(i > m) - \begin{bmatrix} , @c_1, \\ \\ . @c_2, \end{bmatrix},$$

$$, i \circlearrowleft j, i f(m > j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i \circlearrowleft j, i f(m > i) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

Identical node propositions with propositions:

$$,i\circlearrowleft j,j\gt m,\Leftrightarrow,i\circlearrowleft j,i\gt m,$$

 $,i\circlearrowleft j,m\gt j,\Leftrightarrow,i\circlearrowleft j,m\gt i,$
 $,i\circlearrowleft j,j!\gt m,\Leftrightarrow,i\circlearrowleft j,i!\gt m,$
 $,i\circlearrowleft j,m!\gt j,\Leftrightarrow,i\circlearrowleft j,m!\gt j,$

Propositions with branch function:

$$, i = j, i f(j > m) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , i = j, i f(i > m) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix},$$

$$, i = j, i f(m > j) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , i = j, i f(m > i) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix},$$

Propositions with propositions:

$$,i=j,j>m, \Leftrightarrow ,i=j,i>m,$$
 $,i=j,m>j, \Leftrightarrow ,i=j,m>i,$ $,i=j,j!>m, \Leftrightarrow ,i=j,i!>m,$ $,i=j,m!>j, \Leftrightarrow ,i=j,m!>i,$

22.4.10 Opposition

$$, i > j, i! > j, \Leftrightarrow , \otimes,$$

$$,i!>j,i>j,\Leftrightarrow,\otimes,$$

22.4.11 With identical node propositions

$$,i>j, \Leftrightarrow \sim,i!Oj,$$

proof:

$$, i > j, \\ \Leftrightarrow , i f(i \circlearrowleft j) - \left[, \right] -, i > j,$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , i > j, \\ , i > j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft i_0, j \circlearrowleft j_0, Rc(i_0; j_0), i_0 != \varnothing, i_0 \circlearrowleft, j_0 \circlearrowleft, \\ , i > j, \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft i_0, j \circlearrowleft j_0, Rc(i_0; j_0), if(i_0 = \varnothing) - \begin{bmatrix} , \\ , j_0 = \varnothing, \end{bmatrix} -, i_0 != \varnothing, i_0 \circledast, j_0 \circledast, j$$

$$\Leftrightarrow, if(i\circlearrowleft j) = \begin{bmatrix}, i \odot i_0, j \odot j_0, Rc(i_0; j_0), if(i_0 = \varnothing) - \begin{bmatrix}, i_0 = \varnothing, \\, j_0 = \varnothing, \end{bmatrix}, i_0 != \varnothing, i_0 \odot, j_0 \odot$$

$$\Leftrightarrow, if(i\circlearrowleft j) = \begin{bmatrix}, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), if(i_0 = \varnothing) \\, i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus$$

$$\Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} , i \odot i_0, j \odot j_0, Rc(i_0;j_0), if(i_0 = \varnothing) - \begin{bmatrix} , \otimes, \\ \\ j_0 = \varnothing, \end{bmatrix}, i_0 \odot, j_0 \odot, \\ \end{bmatrix},$$

$$\Leftrightarrow , if(i\circlearrowleft j) = \underbrace{\begin{bmatrix} , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), i_0 != \varnothing, j_0 = \varnothing, i_0 \oplus, j_0 \oplus, \\ , i > j, \end{bmatrix}}_{, i > j,}$$

$$\Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix} , i\circlearrowleft j, i \circledcirc i_0, j \circledcirc j_0, Rc(i_0; j_0), i_0 != \varnothing, j_0 = \varnothing, i_0 \circledcirc, j_0 \circledcirc, \\ , i > j, \end{bmatrix},$$

$$\Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} , i\circlearrowleft j, i\circlearrowleft i_0, j\circlearrowleft j_0, i_0 \circlearrowleft j_0, Rc(i_0; j_0), i_0 !=\varnothing, j_0 =\varnothing, i_0 \circlearrowleft, j_0 \smile, j$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft j, i \circledcirc i_0, j \circledcirc j_0, Rc(i_0; j_0), i_0 \circlearrowleft j_0, i_0 != \varnothing, j_0 = \varnothing, i_0 \circledcirc, j_0 \circledcirc, \\ , i \gt j, \end{bmatrix}$$

$$\Leftrightarrow , if(i\circlearrowleft j) = \begin{bmatrix} , i\circlearrowleft j, i\circlearrowleft i_0, j\circlearrowleft j_0, Rc(i_0;j_0), i_0\circlearrowleft j_0, j_0 !=\varnothing, j_0=\varnothing, i_0 \circlearrowleft, j_0 \smile, j_0$$

$$\Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , i \circlearrowleft j, i \circledcirc i_0, j \circledcirc j_0, Rc(i_0; j_0), i_0 \circlearrowleft j_0, \otimes, i_0 \circledast, j_0 \circledast, \\ , i \gt j, \end{bmatrix} = ,$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , \otimes, \\ \\ , i \gt j, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i!Oj,i>j.$

$$\Leftrightarrow$$
 , $i > j$, $i! \circlearrowleft j$,

22.4.12 With node null propositions

$$,i>j, \Leftrightarrow ,\sim,i!=\varnothing$$

$$\Leftrightarrow$$
, $if(i=\varnothing)-\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$, $i>j$,

$$\Leftrightarrow , if(i \!=\! \varnothing) \!-\! \left[\!\!\begin{bmatrix}, i \!\!>\! j, \\ , i \!\!>\! j, \end{bmatrix}\!\!\right]\!\!-\! ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i \otimes i_0, j \otimes j_0, Rc(i_0;j_0), i_0 !=\varnothing, i_0 @, j_0 @, \\ ,i > j, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i=\varnothing, i \otimes i_0, j \otimes j_0, Rc(i_0;j_0), i_0 !=\varnothing, i_0 \oplus, j_0 \oplus, \\ ,i > j, \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i \otimes i_0, i \otimes i_0, i = \varnothing, j \otimes j_0, Rc(i_0;j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus, \\ ,i > j, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} , i \otimes i_0, j \otimes j_0, i_0 = \varnothing, Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus, j$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} ,i \otimes i_0, j \otimes j_0, i_0 = \varnothing, i_0 != \varnothing, i_0 \oplus, j_0 \oplus, \\ , i > j, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,i \otimes i_0, j \otimes j_0, \otimes, i_0 \oplus, j_0 \oplus, \\ ,i > j, \end{bmatrix},$$

$$\Leftrightarrow , if (i \!=\! \varnothing) \text{----}, \bigotimes, \\ , i \!>\! j, \text{----},$$

$$\Leftrightarrow$$
, $i!=\emptyset$, $i>j$,

$$\Leftrightarrow$$
, $i > j$, $i! = \emptyset$,

$$,i!=\varnothing,j=\varnothing,\iff\sim,i>j,$$

proof:

$$, i! = \varnothing, j = \varnothing,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j=\varnothing$, $i\odot i_0$, $i_0 \odot$, $j\odot j_0$, $j_0 \odot$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $j=\varnothing$, $i\odot i_0$, $j\odot j_0$, $i_0\odot$, $j_0\odot$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $j=\varnothing$, $i \otimes i_0$, $i \otimes i_0$, $j \otimes j_0$, $j \otimes j_0$, $j_0 \otimes j_0$, $j_0 \otimes j_0$,

$$\Leftrightarrow ,i \otimes i_0,i \otimes i_0,i != \varnothing, j \otimes j_0, j \otimes j_0, j = \varnothing, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_0$, $i_0 != \varnothing$, $j \otimes j_0$, $j \otimes j_0$, $j_0 = \varnothing$, $i_0 \otimes j_0 \otimes j_0$,

$$\Leftrightarrow$$
, $i \otimes i_0$, $j \otimes j_0$, $j \otimes j_0$, $j_0 = \varnothing$, $i_0 != \varnothing$, $i_0 \oplus j_0 \oplus j_0$

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, j \otimes j_0, j_0 = \varnothing, Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
, $j = \emptyset$, $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0; j_0)$, $i_0 != \emptyset$, $i_0 \oplus$, $j_0 \oplus$,

$$\Leftrightarrow$$
 $, j = \emptyset, i > j,$

$$\Leftrightarrow$$
, $j = \emptyset$, $i > j$, $i! = \emptyset$,

$$\Leftrightarrow$$
, $i!=\emptyset$, $j=\emptyset$, $i>j$,

22.4.13 With node continuity

$$,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,i>j,\Leftrightarrow,i>j,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,$$

proof:

$$, i \models \varnothing, j \models \varnothing, i \oplus, j \oplus, i \triangleright j,$$

$$\Leftrightarrow$$
 , $i \models \varnothing$, $j \models \varnothing$, $i \oplus$, $j \oplus$, $i \oplus i_0$, $j \oplus j_0$, $Rc(i_0; j_0)$, $i_0 \models \varnothing$, $i_0 \oplus$, $j_0 \oplus$,

$$\Rightarrow ,i!=\varnothing,j!=\varnothing,i\otimes i_1,i_1\oplus,j\otimes j_1,j_1\oplus,i\oplus,j\oplus,\\ i\otimes i_0,j\otimes j_0,Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,\\ \Leftrightarrow ,i!=\varnothing,j!=\varnothing,i\otimes i_1,j\otimes j_1,Rc(i_1;j_1),i_1\oplus,j_1\oplus,i\oplus,j\oplus,\\ i\otimes i_0,j\otimes j_0,Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,\\ \Leftrightarrow ,i!=\varnothing,j!=\varnothing,i\otimes i_1,j\otimes j_1,i\oplus,j\oplus,i\otimes i_0,j\otimes j_0,Rc(i_1;j_1),\\ Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i!=\varnothing,j\otimes j_1,j!=\varnothing,i\oplus,j\oplus,i\otimes i_0,j\otimes j_0,Rc(i_1;j_1),\\ Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,i!=\varnothing,j\otimes j_1,j\otimes j_1,j\otimes j_1,j!=\varnothing,i\oplus,j\oplus,i\otimes i_0,j\otimes j_0,\\ Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,i_1!=\varnothing,j\otimes j_1,j\otimes j_1,j\otimes j_1,j_1!=\varnothing,i\oplus,j\oplus,i\otimes i_0,j\otimes j_0,\\ Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,j\otimes j_1,j\otimes j_1,j\otimes j_1,j\otimes j_1,j\otimes j_0,\\ i_1!=\varnothing,j_1!=\varnothing,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,j\otimes j_1,j\otimes j_1,i\otimes j_1,i\otimes j_0,i_0,j\otimes j_0,\\ i_1!=\varnothing,j_1!=\varnothing,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,j\otimes j_1,j\otimes j_1,i\otimes j_1,i\otimes i_0,j\otimes j_0,\\ i_1!=\varnothing,j_1!=\varnothing,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,j\otimes j_1,j\otimes j_1,i\otimes j_1\oplus,i\otimes i_0,j\otimes j_0,\\ i_1!=\varnothing,j_1!=\varnothing,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,j\otimes j_1,j\otimes j_1,i\otimes j_1\oplus,i\otimes i_0,j\otimes j_0,\\ i_1!=\varnothing,j_1!=\varnothing,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,j\otimes j_1,j\otimes j_1,i\otimes j_1\oplus,i\otimes i_0,j\otimes j_0,\\ i_1!=\varnothing,j_1!=\varnothing,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,j\otimes j_1,j\otimes j_1,i\otimes j_1\oplus,i\otimes i_0,j\otimes j_0,\\ i_1!=\varnothing,j_1!=\varnothing,i_1\oplus,j_1\oplus,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ \Leftrightarrow ,i\otimes i_1,i\otimes i_1,j\otimes j_1,j\otimes j_1,i\otimes j_1\oplus,i\otimes i_0,j\otimes j_0,\\ i_1!=\varnothing,j_1!=\varnothing,i_1\oplus,j_1\oplus,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ i_1!=\varnothing,j_1!=\varnothing,i_1\oplus,j_1\oplus,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ i_1!=\varnothing,j_1!=\varnothing,i_1\oplus,j_1\oplus,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ i_1!=\varnothing,j_1!=\varnothing,i_1\oplus,j_1\oplus,Rc(i_1;j_1),Rc(i_0;j_0),i_0!=\varnothing,i_0\oplus,j_0\oplus,i_1\oplus,j_1\oplus,\\ i_1!=\varnothing,j_1!=\varnothing,i_1\oplus,j_1\oplus,Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc(i_1;j_1),Rc$$

 \Leftrightarrow $, i \otimes i_1, i_1 != \varnothing, i \otimes i_1, j \otimes j_1, j_1 != \varnothing, j \otimes j_1, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$

 $Rc(i_1; j_1), Rc(i_0; j_0), i_0 != \varnothing, i_0 @, j_0 @, i_1 @, j_1 @,$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \otimes i_1, i \oplus, i_1 \oplus, j \otimes j_1, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$

$$Rc(i_1; j_1), Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, i \otimes i_1, j \oplus, j_1 \oplus, j \otimes j_1, i \otimes i_0, j \otimes j_0,$$

$$Rc(i_1; j_1), Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, i \otimes i_1, j \oplus, j_1 \oplus, j \otimes j_1, i \otimes i_0, i \otimes i_0, j \otimes j_0,$$
$$j \otimes j_0, Rc(i_1; j_1), Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$
$$i \otimes i_1, i \otimes i_0, j \otimes j_1, j \otimes j_0, Rc(i_1; j_1), Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \odot i_1, i_1 != \varnothing, j \odot j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \odot i_0, j \odot j_0,$$
$$i \odot i_1, i_1 \odot i_0, j \odot j_1, j_1 \odot j_0, Rc(i_1; j_1), Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus, j_2 \oplus, i_3 \oplus, i_4 \oplus, i_4 \oplus, i_5 \oplus$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$
$$i \otimes i_1, j \otimes j_1, i_1 \otimes i_0, j_1 \otimes j_0, Rc(i_1; j_1), Rc(i_0; j_0), i_0 != \varnothing, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus, j_2 \oplus, i_3 \oplus, i_4 \oplus, i_4 \oplus, i_5 \oplus$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$
$$i \otimes i_1, j \otimes j_1, i_1 \otimes i_0, j_1 \otimes j_0, Rc(i_1; j_1), Rc(i_0; j_0), i_1 \otimes i_0, j_1 \otimes j_0, i_0 != \varnothing, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus, j_2 \oplus, j_3 \oplus, j_4 \oplus, j_4$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \otimes i_0, j \otimes j_0,$$
$$i \otimes i_1, j \otimes j_1, i_1 \otimes i_0, j_1 \otimes j_0, Rc(i_1; j_1), Rc(i_0; j_0), i_1 \otimes i_0, j_1 \otimes j_0, i_1 != \varnothing, i_0 \oplus, j_0 \oplus, i_1 \oplus, j_1 \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4 \oplus, i_4 \oplus, i_5 \oplus, i_5$$

$$\Leftrightarrow ,i \odot i_1,i_1 != \varnothing, j \odot j_1,j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \circlearrowleft i_1, j \circlearrowleft j_1, i \odot i_0, j \odot j_0,$$

$$Rc(i_1; j_1), Rc(i_0; j_0), i_1 != \varnothing, i_0 @, j_0 @, i_1 @, j_1 @,$$

$$\Leftrightarrow, i \odot i_1, i_1 != \varnothing, j \odot j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \circlearrowleft i_1, j \circlearrowleft j_1,$$

$$Rc(i_1; j_1), i_1 \stackrel{!}{=} \varnothing, i \odot i_0, j \odot j_0, Rc(i_0; j_0), i_0 \odot, j_0 \odot, i_1 \odot, j_1 \odot,$$

$$\Leftrightarrow , i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus, i \circlearrowleft i_1, j \circlearrowleft j_1,$$

$$Rc(i_1; j_1), i_1 != \varnothing, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow , i \otimes i_1, i \otimes i_1, i_1 != \varnothing, j \otimes j_1, j \otimes j_1, j_1 != \varnothing, i \oplus, i_1 \oplus, j \oplus, j_1 \oplus,$$

$$Rc(i_1; j_1), i_1 = \varnothing, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow ,i \otimes i_1,i \otimes i_1,j \otimes j_1,j \otimes j_1,i \oplus,j \oplus,i_1 \vcentcolon= \varnothing,i_1 \oplus,j_1 \vcentcolon= \varnothing,j_1 \oplus,$$

$$Rc(i_1; j_1), i_1 \stackrel{!}{=} \varnothing, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow ,i \otimes i_1, i \otimes i_1, j \otimes j_1, j \otimes j_1, i \oplus, j \oplus, i_1 \models \varnothing, j_1 \models \varnothing,$$

$$Rc(i_1; j_1), i_1 \stackrel{!}{=} \varnothing, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_1$, $i_1 != \varnothing$, $j \otimes j_1$, $j \otimes j_1$, $j_1 != \varnothing$, $i \oplus j \oplus \emptyset$,

$$Rc(i_1; j_1), i_1 \stackrel{!}{=} \varnothing, i_1 \stackrel{\odot}{\cup}, j_1 \stackrel{\odot}{\cup},$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i \otimes i_1$, $i != \varnothing$, $j \otimes j_1$, $j \otimes j_1$, $j != \varnothing$, $i \oplus$, $j \oplus$,

$$Rc(i_1; j_1), i_1 = \varnothing, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_1$, $i! = \emptyset$, $j \otimes j_1$, $j! = \emptyset$, $i \oplus$, $j \oplus$,

$$Rc(i_1; j_1), i_1 = \varnothing, i_1 \oplus, j_1 \oplus,$$

$$\Leftrightarrow, i \otimes i_1, j \otimes j_1, Rc(i_1; j_1), i_1 \vcentcolon= \varnothing, i_1 \otimes, j_1 \otimes, i \vcentcolon= \varnothing, j \vcentcolon= \varnothing, i \oplus, j \oplus,$$

$$\Leftrightarrow$$
 $, i > j, i! = \varnothing, j! = \varnothing, i \oplus, j \oplus,$

$$,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,i!>j,\Leftrightarrow,i!>j,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,$$

$$,i != \varnothing, j != \varnothing, i \oplus, j \oplus, i f(i > j) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow ,i f(i > j) - \begin{bmatrix}, i != \varnothing, j != \varnothing, i \oplus, j \oplus, @c_1, \\ \\ ,i != \varnothing, j != \varnothing, i \oplus, j \oplus, @c_2, \end{bmatrix},$$

$$,i\ominus,j\ominus,i!=\varnothing,j!=\varnothing,i>j,\Leftrightarrow,i>j,i\ominus,j\ominus,i!=\varnothing,j!=\varnothing,$$

$$,i\ominus,j\ominus,i!=\varnothing,j!=\varnothing,i!>j, \Leftrightarrow ,i!>j,i\ominus,j\ominus,i!=\varnothing,j!=\varnothing,$$

$$, i\ominus, j\ominus, i != \varnothing, j != \varnothing, if(i > j) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff, if(i > j) - \begin{bmatrix}, i\ominus, j\ominus, i != \varnothing, j != \varnothing, @c_1, \\ , i\ominus, j\ominus, i != \varnothing, j != \varnothing, @c_2, \end{bmatrix},$$

22.4.14 With self propositions

$$,i \triangleright j,j \triangleright k, \iff \sim,i \triangleright k,$$

induction proof:

premise 1:

$$, k = \emptyset, i > j, j > k,$$

$$\Leftrightarrow$$
, $k = \emptyset$, $i > j$, $j > k$,

$$\Leftrightarrow$$
, $k = \emptyset$, $i > j$, $i! = \emptyset$, $j > k$,

$$\Leftrightarrow$$
, $i > j$, $j > k$, $i! = \emptyset$, $k = \emptyset$,

$$\Leftrightarrow$$
 $, i>j, j>k, i!=\varnothing, k=\varnothing, i>k,$

$$\Leftrightarrow$$
, $k = \emptyset$, $i > j$, $j > k$, $i > k$,

premise 2:

$$, \&SHi \rightarrow k, i > j, j > k, \Leftrightarrow , \&SHi \rightarrow k, i > j, j > k, i > k, \Rightarrow$$

$$, k = \varnothing, \&SHi \circlearrowleft k, i > j, j > k,$$

$$\Leftrightarrow$$
, $k = \emptyset$, &SHi $\circlearrowleft k$, $i > j$, $i = \emptyset$, $j > k$, $j = \emptyset$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k, i>j, j>k, i!=\varnothing, k!=\varnothing, j!=\varnothing,$

$$\Leftrightarrow$$
, &SHi $\bigcirc k$, $i > j$, $j > k$, $i != \varnothing$, $k != \varnothing$, $j != \varnothing$, $i \oplus$, $i \ominus$, $k \oplus$, $k \ominus$, $j \oplus$, $j \ominus$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k$, $i > j$, $j > k$, $i! = \emptyset$, $k! = \emptyset$, $j! = \emptyset$, $i \oplus$, $k \oplus$, $j \oplus$, $i \ominus$, $k \ominus$, $j \ominus$,

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!k, i \! := \! \varnothing, k \! := \! \varnothing, j \! := \! \varnothing, i \! \oplus \! , k \! \oplus \! , j \! \oplus \! , i \! > \! j, j \! > \! k, i \! \ominus \! , k \! \ominus \! , j \! \ominus \! ,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $k!=\varnothing$, $j!=\varnothing$, $i\oplus$, $k\oplus$, $j\oplus$, &SHi \rightarrow k, $i>j$, $j>k$, $i\ominus$, $k\ominus$, $j\ominus$,

$$\Leftrightarrow$$
 , $i \models \varnothing$, $k \models \varnothing$, $j \models \varnothing$, $i \oplus$, $k \oplus$, $j \oplus$, &SH $i \rightarrow k$, $i > j$, $j > k$, $i > k$, $i \ominus$, $k \ominus$, $j \ominus$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k$, $i!=\varnothing$, $k!=\varnothing$, $j!=\varnothing$, $i\oplus$, $k\oplus$, $j\oplus$, $i>j$, $j>k$, $i>k$, $i\ominus$, $k\ominus$, $j\ominus$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k$, $i > j$, $j > k$, $i > k$, $i! = \varnothing$, $k! = \varnothing$, $j! = \varnothing$, $i \oplus$, $k \oplus$, $j \oplus$, $i \ominus$, $k \ominus$, $j \ominus$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k$, $i > j$, $j > k$, $i > k$, $i! = \emptyset$, $k! = \emptyset$, $j! = \emptyset$,

$$\Leftrightarrow$$
, $k = \emptyset$, &SHi Ok , $i > j$, $j > k$, $i > k$,

conclusion:

$$, i > j, j > k, \Leftrightarrow , i > j, j > k, i > k,$$

22.4.15 With next and previous node operator

$$,i=j,j!=\varnothing,j\oplus,\iff\sim,i>j,$$

induction proof:

premise 1:

$$, i = \varnothing, i = j, j != \varnothing, j \oplus,$$

$$\Leftrightarrow$$
, $i = j$, $i = \emptyset$, $j != \emptyset$, $j \oplus$,

$$\Leftrightarrow$$
, $i=j$, $j=\varnothing$, $j!=\varnothing$, $j\oplus$,

$$\Leftrightarrow$$
 $, i = j, \otimes, j \oplus,$

$$\Leftrightarrow$$
 $,i=j,\otimes,j\oplus,i>j,$

$$\Leftrightarrow$$
 $, i = j, j = \emptyset, j != \emptyset, j \oplus, i > j,$

$$\Leftrightarrow$$
 $, i = j, i = \emptyset, j != \emptyset, j \oplus, i > j,$

$$\Leftrightarrow$$
, $i = \emptyset$, $i = j$, $j != \emptyset$, $j \oplus$, $i > j$,

premise 2:

$$, \&SHi \rightarrow i, i \pm j, j != \varnothing, j \oplus, \Leftrightarrow , \&SHi \rightarrow i, i \pm j, j != \varnothing, j \oplus, i > j, \Rightarrow$$

$$,i!=\varnothing$$
, &SHi \circlearrowleft i, $i=j$, $j!=\varnothing$, $j\oplus$,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi $\circlearrowleft i, i=j, j!=\varnothing, j\oplus, if(j=\varnothing)$ - $\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$ -,

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, -\begin{bmatrix}, j = \varnothing, \\, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, -\begin{bmatrix}, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j = \varnothing, \\\\, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, -\begin{bmatrix}, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, i != \varnothing, j = \varnothing, \\\\, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j != \varnothing, j \oplus, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, -\begin{bmatrix}, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j != \varnothing, j \oplus, j != \varnothing, \\\\, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j != \varnothing, j \oplus, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, -\begin{bmatrix}, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j = \varnothing, i > j, \\\\, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j != \varnothing, j \oplus, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, -\{1 >$$

$$,i \mathrel{!=} \varnothing, \&\mathit{SHi}\, \circlearrowleft i, i = j, j \mathrel{!=} \varnothing, j \oplus, j \mathrel{!=} \varnothing,$$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $i=j$, $j!=\varnothing$, $j\oplus$, $i!=\varnothing$, $j!=\varnothing$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i = j, j != \varnothing, j \oplus, i != \varnothing, j != \varnothing, i \oplus, i \ominus, j \oplus, j \ominus,$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, i \pm j, j \vcentcolon\!\!\! = \varnothing, j \oplus, i \not\!\!\! = \varnothing, j \not\!\!\! = \varnothing, j \oplus, j \oplus, i \ominus, j \ominus,$$

$$\Leftrightarrow \ , \&\mathit{SHi}\, \circlearrowleft i, i \mathbin{!=}\, \varnothing, j \mathbin{!=}\, \varnothing, i \oplus, j \oplus, i = j, j \mathbin{!=}\, \varnothing, j \oplus, i \ominus, j \ominus,$$

$$\Leftrightarrow ,i \mathbin{!}=\varnothing,j \mathbin{!}=\varnothing,i\oplus,j\oplus, \&\mathit{SHi} \to \!\! i,i=j,j \mathbin{!}=\varnothing,j\oplus,i\ominus,j\ominus,$$

$$\Leftrightarrow ,i!=\varnothing,j!=\varnothing,i\oplus,j\oplus,\&SHi\rightarrow i,i=j,j!=\varnothing,j\oplus,i>j,i\ominus,j\ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i!=\varnothing, j!=\varnothing, i\oplus, j\oplus, i=j, j!=\varnothing, j\oplus, i>j, i\ominus, j\ominus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i = j, j != \varnothing, j \oplus, i != \varnothing, j != \varnothing, i \oplus, j \oplus, i > j, i \ominus, j \ominus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, j !=\varnothing, j\oplus, i>j, i !=\varnothing, j !=\varnothing,$

$$\Leftrightarrow$$
, $i!=\emptyset$, &SHi $\bigcirc i$, $i=j$, $j!=\emptyset$, $j\oplus$, $j!=\emptyset$, $i>j$,

< 1 >

$$\Leftrightarrow, \begin{bmatrix}, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j = \varnothing, i > j, \\\\, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, j != \varnothing, i > j,\end{bmatrix},$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, i = j, j != \varnothing, j \oplus, -\begin{bmatrix}, j = \varnothing, \\ , j != \varnothing, \end{bmatrix}, i > j,$$

$$\Leftrightarrow$$
, $i = \emptyset$, &SHi $\circlearrowleft i, i = j, j = \emptyset, j \oplus, i > j$,

conclusion:

$$, i\!=\!j, j !\!=\!\varnothing, j \oplus, \iff, i\!=\!j, j !\!=\!\varnothing, j \oplus, i\!>\!j,$$

$$,i=j,j\ominus,j!=\varnothing,\iff\sim,j>i,$$

induction proof:

premise 1:

$$, i = \emptyset, i = j, j \ominus, j != \emptyset,$$

$$\Leftrightarrow$$
 $,i=j,j\ominus,j!=\varnothing,i=\varnothing,j>i,$

$$\Leftrightarrow$$
, $i = \emptyset$, $i = j$, $j \ominus j$, $j != \emptyset$, $j > i$,

premise 2:

$$, \&SHi \rightarrow i, i = j, j \ominus, j != \varnothing, \Leftrightarrow , \&SHi \rightarrow i, i = j, j \ominus, j != \varnothing, j > i, \Rightarrow$$

$$, i != \varnothing, \&SHi \circlearrowleft i, i=j, j \odot, j != \varnothing,$$

$$\Leftrightarrow$$
, &SHi \bigcirc i, $i=j$, $i!=\varnothing$, $j\ominus$, $j!=\varnothing$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i = \emptyset, i = \emptyset, j = \emptyset, j = \emptyset,$

$$\Leftrightarrow$$
, &SHi \bigcirc i, $i=j$, $j!=\varnothing$, $i!=\varnothing$, $j\ominus$, $j!=\varnothing$,

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i=j, j \models \varnothing, i \models \varnothing, j \models \varnothing, i \models \varnothing, j \ominus, j \models \varnothing,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, j !=\varnothing, i !=\varnothing, j\oplus, j\ominus, i\oplus, i\ominus, j !=\varnothing, i !=\varnothing, j\ominus, j !=\varnothing,$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i = j, j \models \varnothing, i \models \varnothing, j \oplus, i \oplus, j \ominus, i \ominus, j \models \varnothing, i \models \varnothing, j \ominus, j \models \varnothing,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, j \models \varnothing, i \models \varnothing, j \oplus, i \oplus, i \mp j, j \ominus, i \ominus, j \models \varnothing, i \models \varnothing, j \ominus, j \models \varnothing,$$

$$\Leftrightarrow , \&S\!H\!i\: \circlearrowleft\!i,j\: !=\varnothing,i\: !=\varnothing,j\oplus,i\oplus,i=j,j\ominus,j\: !=\varnothing,i\ominus,i\: !=\varnothing,j\ominus,j\: !=\varnothing,$$

$$\Leftrightarrow$$
 $, j!=\varnothing, i!=\varnothing, j\oplus, i\oplus, \&SHi \rightarrow i, i = j, j\ominus, j!=\varnothing, i\ominus, i!=\varnothing, j\ominus, j!=\varnothing,$

$$\Leftrightarrow , j \models \varnothing, i \models \varnothing, j \oplus, i \oplus, \&SHi \rightarrow i, i = j, j \ominus, j \models \varnothing, j > i, i \ominus, i \models \varnothing, j \ominus, j \models \varnothing,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, j \models \varnothing, i \models \varnothing, j \oplus, i \oplus, i = j, j \ominus, j \models \varnothing, j > i, i \ominus, i \models \varnothing, j \ominus, j \models \varnothing,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, j \models \varnothing, i \models \varnothing, j \oplus, i \oplus, i = j, j \ominus, j \models \varnothing, j > i, i \ominus, j \ominus, i \models \varnothing, j \models \varnothing,$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i,j \vcentcolon= \varnothing, i \vcentcolon= \varnothing, j \oplus, i \oplus, i = j, j \ominus, j \vcentcolon= \varnothing, i \ominus, j \ominus, i \vcentcolon= \varnothing, j \vcentcolon= \varnothing, j > i,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, j \models \varnothing, i \models \varnothing, j \oplus, i \oplus, i \pm j, i \ominus, j \ominus, i \models \varnothing, j \models \varnothing, j \ominus, j \models \varnothing, j > i$,

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i = j, j \models \varnothing, i \models \varnothing, j \oplus, i \oplus, i \ominus, j \ominus, i \models \varnothing, j \models \varnothing, j \ominus, j \models \varnothing, j > i,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, j \models \varnothing, i \models \varnothing, i \models \varnothing, j \models \varnothing, j \ni \emptyset, j \models \varnothing, j \triangleright i,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, j \models \varnothing, i \models \varnothing, j \ominus, j \models \varnothing, j > i$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i=j, i!=\varnothing, i!=\varnothing, j\ominus, j!=\varnothing, j>i,$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $i=j$, $i!=\varnothing$, $j\ominus$, $j!=\varnothing$, $j>i$,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi $\circlearrowleft i, i=j, j!=\varnothing, j\oplus, j>i$,

conclusion:

$$, i=j, j\ominus, j \models \varnothing, \Leftrightarrow , i=j, j\ominus, j \models \varnothing, j>i,$$

$$, i! = \varnothing, i \rightarrow j, \Leftrightarrow \sim, i > j,$$

proof:

 $, i != \varnothing, i \rightarrow j,$

 \Leftrightarrow , $i != \varnothing$, $i \odot i_0$, $i_0 \odot$, $i_0 \odot j$, $i_0 \odot$,

 \Leftrightarrow , $i = \varnothing$, $i \odot i_0$, $i \odot i_0$, $i_0 \odot$, $i_0 \odot$, $i_0 \odot$, $i_0 \odot$,

 \Leftrightarrow , $i!=\varnothing$, $i \otimes i_0$, $i \otimes i_0$, $i = i_0$, $i_0 \oplus$, $i_0 \otimes j$, $i_0 \oplus$,

 \Leftrightarrow , $i \otimes i_0$, $i \otimes i_0$, $i = i_0$, $i = \emptyset$, $i_0 \oplus$, $i_0 \otimes j$, $i_0 \oplus$,

 \Leftrightarrow $, i \otimes i_0, i \otimes i_0, i = i_0, i = \emptyset, i_0 \oplus, i > i_0, i_0 \otimes j, i_0 \oplus, i > i_0, i_0 \otimes j, i_0 \oplus, i > i_0, i_0 \otimes j, i_0$

 \Leftrightarrow $, i \otimes i_0, i \otimes i_0, i = i_0, i != \varnothing, i_0 \oplus, i_0 \otimes j, i > i_0, i_0 \oplus,$

 \Leftrightarrow , $i \odot i_0$, $i \odot i_0$, $i = i_0$, $i = \varnothing$, $i_0 \oplus$, $i_0 \odot j$, i > j, $i_0 \oplus$,

 \Leftrightarrow $,i \otimes i_0, i! = \varnothing, i_0 \oplus, i_0 \circ j, i > j, i_0 \oplus,$

 $\Leftrightarrow ,i!=\varnothing,i \otimes i_0,i_0 \oplus,i_0 \circlearrowleft j,i_0 \oplus,i > j,$

 \Leftrightarrow , $i = \emptyset$, $i \rightarrow j$, i > j,

$$,i!=\varnothing,i\oplus,i>k,\Leftrightarrow,i>k,\sim$$

induction proof:

premise 1:

 $, k = \emptyset, i! = \emptyset, i \oplus, i > k,$

 $\Leftrightarrow, i != \varnothing, k = \varnothing, i \oplus, i > k,$

 \Leftrightarrow , $i!=\emptyset$, $k=\emptyset$, i>k, $i\oplus$, i>k,

 \Leftrightarrow , $k = \emptyset$, i > k, $i! = \emptyset$, $i \oplus$, i > k,

premise 2:

, &SH
$$i \rightarrow k, i! = \emptyset, i \oplus, i > k, \Leftrightarrow$$
 , &SH $i \rightarrow k, i > k, i! = \emptyset, i \oplus, i > k, \Rightarrow$

 $, k \models \varnothing, \&SHi \circlearrowleft k, i \models \varnothing, i \oplus, i \triangleright k,$

$$\Leftrightarrow$$
, $k!=\varnothing$, &SHi Ok , $i!=\varnothing$, $i\oplus$, $i>k$, $i!=\varnothing$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k$, $i!=\varnothing$, $i\oplus$, $i>k$, $i!=\varnothing$, $k!=\varnothing$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k$, $i \models \varnothing$, $i \oplus$, $i \triangleright k$, $i \models \varnothing$, $k \models \varnothing$, $i \oplus$, $i \ominus$, $k \oplus$, $k \ominus$,

$$\Leftrightarrow , \&SHi \, \mathring{\bigcirc}k, i \vcentcolon= \varnothing, i \oplus, i >\!\!\! k, i \vcentcolon= \varnothing, k \vcentcolon= \varnothing, i \oplus, k \oplus, i \ominus, k \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k$, $i!=\varnothing$, $i\oplus$, $i!=\varnothing$, $k!=\varnothing$, $i\oplus$, $k\oplus$, $i>k$, $i\ominus$, $k\ominus$,

$$\Leftrightarrow$$
, &SHi Ok , $i!=\varnothing$, $k!=\varnothing$, $i\oplus$, $k\oplus$, $i!=\varnothing$, $i\oplus$, $i>k$, $i\bigcirc$, $k\bigcirc$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $k!=\varnothing$, $i\oplus$, $k\oplus$, &SH $i\rightarrow k$, $i!=\varnothing$, $i\oplus$, $i>k$, $i\ominus$, $k\ominus$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $k!=\varnothing$, $i\oplus$, $k\oplus$, &SHi \rightarrow k, $i>k$, $i!=\varnothing$, $i\oplus$, $i>k$, $i\ominus$, $k\ominus$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k$, $i!=\varnothing$, $k!=\varnothing$, $i\oplus$, $k\oplus$, $i>k$, $i!=\varnothing$, $i\oplus$, $i>k$, $i\ominus$, $k\ominus$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k$, $i > k$, $i != \varnothing$, $k != \varnothing$, $i \oplus$, $k \oplus$, $i != \varnothing$, $i \oplus$, $i > k$, $i \ominus$, $k \ominus$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k$, $i > k$, $i != \varnothing$, $i \oplus$, $i > k$, $i != \varnothing$, $k != \varnothing$, $i \oplus$, $k \oplus$, $i \ominus$, $k \ominus$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k$, $i > k$, $i! = \varnothing$, $i \oplus$, $i > k$, $i! = \varnothing$, $k! = \varnothing$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k$, $i \ge \emptyset$, $i = \emptyset$, $i \oplus$, $i > k$, $k \ne \emptyset$,

$$\Leftrightarrow$$
, $k!=\emptyset$, &SHi $\bigcirc k$, $i>k$, $i!=\emptyset$, $i\oplus$, $i>k$,

conclusion:

$$, i \models \varnothing, i \oplus, i \triangleright k, \iff , i \triangleright k, i \models \varnothing, i \oplus, i \triangleright k,$$

$$,i>j,j!=\varnothing,j\oplus,\iff\sim,i>j,$$

induction proof:

premise 1:

$$, j = \emptyset, i > j, j != \emptyset, j \oplus,$$

$$\Leftrightarrow$$
, $i > j$, $j = \emptyset$, $j! = \emptyset$, $j \oplus$,

$$\Leftrightarrow$$
, $i>j, \otimes, j\oplus$,

$$\Leftrightarrow$$
 $,i>j,\otimes,j\oplus,i>j,$

$$\Leftrightarrow$$
 $i>j, j=\emptyset, j!=\emptyset, j\oplus, i>j$

$$\Leftrightarrow$$
, $j = \emptyset$, $i > j$, $j! = \emptyset$, $j \oplus$, $i > j$

premise 2:

$$, \&SHi \rightarrow j, i > j, j! = \varnothing, j\oplus, \Leftrightarrow , \&SHi \rightarrow j, i > j, j! = \varnothing, j\oplus, i > j, \Rightarrow$$

$$, j \models \varnothing, \&SHi \circlearrowleft j, i \triangleright j, j \models \varnothing, j \oplus,$$

$$\Leftrightarrow$$
, $j!=\varnothing$, &SHi $\bigcirc j$, $i>j$, $j!=\varnothing$, $j\oplus$, $if(j=\varnothing)$,

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi \bigcirc i, $i>j$, $j!=\varnothing$, $j\oplus$, $j=\varnothing$, $j:=\varnothing$, $j:=\varnothing$, $j:=\varnothing$,

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, i > j, j != \varnothing, j \oplus, \begin{bmatrix}, j = \varnothing, \\, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, j != \varnothing, \&SHi \circlearrowleft j, i > j, j != \varnothing, j \oplus, j = \varnothing, \\\\, j != \varnothing, \&SHi \circlearrowleft j, i > j, j != \varnothing, j \oplus, j != \varnothing,\end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, j != \varnothing, \&SHi \circlearrowleft j, i > j, i != \varnothing, j != \varnothing, j \oplus, j = \varnothing, \\, j != \varnothing, \&SHi \circlearrowleft j, i > j, j != \varnothing, j \oplus, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, j !=\varnothing, \&SHi \circlearrowleft j, i>j, j !=\varnothing, j\oplus, i !=\varnothing, j=\varnothing, \\\\, j !=\varnothing, \&SHi \circlearrowleft j, i>j, j !=\varnothing, j\oplus, j !=\varnothing,\end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, j != \varnothing, \&SHi \circlearrowleft j, i > j, j != \varnothing, j \oplus, i != \varnothing, j = \varnothing, i > j, \\, j != \varnothing, \&SHi \circlearrowleft j, i > j, j != \varnothing, j \oplus, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow , \begin{bmatrix} , j != \varnothing, \&SHi \circlearrowleft j, i > j, j != \varnothing, j \oplus, j = \varnothing, i > j, \\ , j != \varnothing, \&SHi \circlearrowleft j, i > j, j != \varnothing, j \oplus, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow$$
 <1>

$$, j \models \varnothing, \&SHi \circlearrowleft j, i > j, j \models \varnothing, j \oplus, j \models \varnothing,$$

$$\Leftrightarrow$$
 $, j != \varnothing, \&SHi \circlearrowleft j, i > j, i != \varnothing, j != \varnothing, j \oplus, j != \varnothing,$

$$\Leftrightarrow$$
, $j!=\varnothing$, &SHi $\circlearrowleft j$, $i>j$, $j!=\varnothing$, $j\oplus$, $i!=\varnothing$, $j!=\varnothing$,

$$\Leftrightarrow$$
 , $j \models \varnothing$, &SHi $\circlearrowleft j$, $i \triangleright j$, $j \models \varnothing$, $j \oplus$, $i \models \varnothing$, $j \models \varnothing$, $i \oplus$, $i \ominus$, $j \ominus$, $j \ominus$,

$$\Leftrightarrow$$
 , $j \models \varnothing$, &SHi $\circlearrowleft j$, $i \triangleright j$, $j \models \varnothing$, $j \oplus$, $i \models \varnothing$, $j \models \varnothing$, $i \oplus$, $j \oplus$, $i \ominus$, $j \ominus$,

$$\Leftrightarrow$$
 $, j != \varnothing, \&SHi \circlearrowleft j, i != \varnothing, j != \varnothing, i \oplus, j \oplus, i > j, j != \varnothing, j \oplus, i \ominus, j \ominus,$

$$\Leftrightarrow , j \models \varnothing, i \models \varnothing, j \models \varnothing, i \oplus, j \oplus, \&SHi \rightarrow j, i \triangleright j, j \models \varnothing, j \oplus, i \triangleright j, i \ominus, j \ominus,$$

$$\Leftrightarrow , j \models \varnothing, \&SHi \, \circlearrowleft j, i \models \varnothing, j \models \varnothing, i \oplus, j \oplus, i \triangleright j, j \models \varnothing, j \oplus, i \triangleright j, i \ominus, j \ominus,$$

$$\Leftrightarrow$$
 $, j != \varnothing, \&SHi \circlearrowleft j, i>j, i != \varnothing, j != \varnothing, i\oplus, j\oplus, j != \varnothing, j\oplus, i>j, i\ominus, j\ominus,$

$$\Leftrightarrow$$
 , $j \models \varnothing$, &SHi $\circlearrowleft j$, $i \triangleright j$, $j \models \varnothing$, $j \oplus$, $i \models \varnothing$, $j \models \varnothing$, $i \oplus$, $j \oplus$, $i \triangleright j$, $i \ominus$, $j \ominus$,

$$\Leftrightarrow$$
 , $j!=\varnothing$, &SHi $\circlearrowleft j$, $i>j$, $j!=\varnothing$, $j\oplus$, $i>j$, $i!=\varnothing$, $j!=\varnothing$,

$$\Leftrightarrow$$
, $j!=\varnothing$, &SHi $\circlearrowleft j$, $i>j$, $j!=\varnothing$, $j\oplus$, $i>j$, $j!=\varnothing$,

$$\Leftrightarrow$$
 $, j! = \varnothing, \&SHi \circlearrowleft j, i > j, j! = \varnothing, j \oplus, j! = \varnothing, i > j,$

< 1 >

$$\Leftrightarrow , -\begin{bmatrix}, i != \varnothing, \&SHi \circlearrowleft i, i>j, j != \varnothing, j \oplus, j = \varnothing, i>j, \\ , i != \varnothing, \&SHi \circlearrowleft i, i>j, j != \varnothing, j \oplus, j != \varnothing, i>j, \end{bmatrix},$$

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi $\bigcirc i$, $i>j$, $j!=\varnothing$, $j\oplus$, $i>j$,

conclusion:

$$,i>j,j!=\varnothing,j\oplus, \Leftrightarrow ,i>j,j!=\varnothing,j\oplus,i>j,$$

$$, i > j, i \ominus, i! = \emptyset, \Leftrightarrow \sim, i > j,$$

proof:

$$,i > j, i \ominus, i! = \varnothing,$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , j=\varnothing, \\ , j!=\varnothing, \end{bmatrix}, i>j, i\ominus, i!=\varnothing,$$

$$\Leftrightarrow , if(j = \varnothing) - \begin{bmatrix} , j = \varnothing, i > j, i \ominus, i != \varnothing, \\ , j != \varnothing, i > j, i \ominus, i != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) = \begin{bmatrix} , i > j, i \ominus, i! = \varnothing, j = \varnothing, \\ , i > j, i \ominus, i! = \varnothing, j! = \varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(j = \varnothing) - \begin{bmatrix} , i > j, i \ominus, i != \varnothing, j = \varnothing, i > j, \\ \\ , i > j, i \ominus, i != \varnothing, j != \varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) = \begin{bmatrix} ,j=\varnothing,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,i\ominus,i!=\varnothing,j!=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(j = \varnothing) - \begin{bmatrix} , i > j, i \ominus, i != \varnothing, i > j, \\ , i > j, i \ominus, i != \varnothing, j != \varnothing, j != \varnothing, \end{bmatrix} -,$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , i > j, i \ominus, i !=\varnothing, i > j, \\ \\ . i > j, i \ominus, i !=\varnothing, j !=\varnothing, j \ominus, j \ominus, j \ominus, j !=\varnothing, \end{bmatrix} - ,$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , i>j, i\ominus, i !=\varnothing, i>j, \\ , i>j, i\ominus, i !=\varnothing, j !=\varnothing, j\oplus, j\ominus, j !=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} , i>j, i\ominus, i !=\varnothing, i>j, \\ , i>j, j !=\varnothing, j\oplus, i\ominus, i !=\varnothing, j\ominus, j !=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,j!=\varnothing,j\ominus,i\triangleright j,i\ominus,i!=\varnothing,j\ominus,j!=\varnothing,j \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,j!=\varnothing,j\ominus,i\ominus,i!=\varnothing,j\ominus,j!=\varnothing,i>j, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,i\ominus,i!=\varnothing,j!=\varnothing,j\ominus,j\ominus,j!=\varnothing,i>j, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,i\ominus,i!=\varnothing,j!=\varnothing,i>j, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,j!=\varnothing,i>j,i\ominus,i!=\varnothing,i>j, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,j!=\varnothing,i>j,i\ominus,i!=\varnothing,i>j, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,i\ominus,i!=\varnothing,i>j, \end{bmatrix},$$

$$\Leftrightarrow , if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,i\ominus,i!=\varnothing,i>j, \end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,i\ominus,i!=\varnothing,i>j, \end{bmatrix},$$

$$\Leftrightarrow ,if(j=\varnothing) - \begin{bmatrix} ,i>j,i\ominus,i!=\varnothing,i>j,\\ ,i>j,i\ominus,i!=\varnothing,i>j, \end{bmatrix},$$

$$, j \ominus, j \models \emptyset, i \triangleright j, \Leftrightarrow , i \triangleright j, \sim$$

proof: $,j\ominus,j!=\varnothing,i>j,$ $\Leftrightarrow ,j\ominus,j!=\varnothing,i>j,i!=\varnothing,$ $\Leftrightarrow ,j\ominus,j!=\varnothing,i!=\varnothing,i>j,$ $\Leftrightarrow ,j\ominus,j!=\varnothing,i!=\varnothing,i!=\varnothing,i>j,$

22.4 Theorems of Number more than Relationship

$$\Leftrightarrow$$
 $, j \ominus$, $j \models \emptyset$, $i \models \emptyset$, $i \ni \emptyset$, $i \ominus$, $i \models \emptyset$, $i > j$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \oplus$, $i \ominus$, $j \ominus$, $i = \emptyset$, $j = \emptyset$, $i > j$,

$$\Leftrightarrow ,i != \varnothing, i \oplus, i > j, i \ominus, j \ominus, i != \varnothing, j != \varnothing,$$

$$\Leftrightarrow$$
, $i > j$, $i! = \emptyset$, $i \oplus$, $i > j$, $i \ominus$, $j \ominus$, $i! = \emptyset$, $j! = \emptyset$,

$$\Leftrightarrow$$
 $,i>j,i!=\varnothing,i\oplus,i\ominus,j\ominus,i!=\varnothing,j!=\varnothing,i>j,$

$$\Leftrightarrow$$
 $i>j, j\ominus, j!=\emptyset, i!=\emptyset, i\oplus, i\ominus, i!=\emptyset, i>j,$

$$\Leftrightarrow$$
 $i>j, j\ominus, j!=\emptyset, i!=\emptyset, i>j,$

$$\Leftrightarrow$$
, $i>j$, $j\ominus$, $j!=\emptyset$, $i>j$, $i!=\emptyset$,

$$\Leftrightarrow$$
, $i>j$, $j\ominus$, $j!=\emptyset$, $i>j$,

$$, i > k, i! = \varnothing, i \oplus, i = \varnothing, \iff \sim, k = \varnothing,$$

proof:

$$,i > k, i! = \varnothing, i\oplus, i = \varnothing,$$

$$\Leftrightarrow, i >\!\! k, i != \varnothing, i \oplus, i = \varnothing, i f(k = \varnothing) - \boxed{,}$$

$$\Leftrightarrow, i >\!\! k, i != \varnothing, i \oplus, i = \varnothing, i f(k = \varnothing) - \begin{bmatrix}, \\, k != \varnothing, \end{bmatrix} -,$$

$$\Leftrightarrow , if(k\!=\!\varnothing) - \begin{bmatrix} , i\!\!>\!\!k, i !\!\!=\!\varnothing, i\!\!\oplus\!, i \!\!=\!\varnothing, \\ , i\!\!>\!\!k, i !\!\!=\!\varnothing, i\!\!\oplus\!, i \!\!=\!\varnothing, k !\!\!=\!\varnothing, \end{bmatrix} \!\!-\!\!,$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i > k, i! = \varnothing, i \oplus, i = \varnothing, \\ , i > k, i! = \varnothing, i \oplus, i = \varnothing, k! = \varnothing, k \oplus, k \ominus, \end{bmatrix},$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , i>k, i !=\varnothing, i\oplus, i=\varnothing, k !=\varnothing, k\oplus, k\ominus, \end{bmatrix},$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , i>k, i !=\varnothing, k!=\varnothing, i\oplus, k\oplus, i=\varnothing, k\ominus, \end{bmatrix},$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , i !=\varnothing, k !=\varnothing, i\oplus, k\oplus, i>k, i=\varnothing, k\ominus, \end{bmatrix},$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , i !=\varnothing, k !=\varnothing, i\oplus, k\oplus, i>k, i !=\varnothing, i=\varnothing, k\ominus, \end{bmatrix},$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , i !=\varnothing, k !=\varnothing, i\oplus, i=\varnothing, \\ , i !=\varnothing, k !=\varnothing, i\oplus, i=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , \varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , \varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , \varnothing, \end{bmatrix},$$

$$\Leftrightarrow , ip(k=\varnothing) - \begin{bmatrix} , i>k, i !=\varnothing, i\oplus, i=\varnothing, \\ , \varnothing, \end{bmatrix}$$

$$, k \models \varnothing, i \triangleright k, i \models \varnothing, i \oplus, \Leftrightarrow \sim, i \models \varnothing,$$

$$,k\!=\!\varnothing, \iff \sim, if(i\!>\!k)\!-\!\!\left[\!\!\begin{bmatrix},\\\\,i\!=\!k,\end{bmatrix}\!\!\right]\!\!,$$

$$, k = \emptyset,$$

$$\Leftrightarrow , k = \varnothing, if(i = \varnothing) - \boxed{, } -,$$

$$\Leftrightarrow , k \! = \! \varnothing, if(i \! = \! \varnothing) \! - \! \begin{bmatrix} , i \! = \! \varnothing, \\ , i \! ! \! = \! \varnothing, \end{bmatrix} \! - \! ,$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,k=\varnothing,i=\varnothing,\\ ,k=\varnothing,i!=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) = \begin{bmatrix} ,k=\varnothing,i=\varnothing,i=k,\\ ,k=\varnothing,i!=\varnothing,i>k, \end{bmatrix},$$

$$\Leftrightarrow , if (i=\varnothing) - \begin{bmatrix} , k=\varnothing, i=\varnothing, i=k, if (i=k) - \begin{bmatrix} , \\ , i>k, \end{bmatrix}, \\ , k=\varnothing, i!=\varnothing, i>k, if (i>k) - \begin{bmatrix} , \\ , i=k, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if (i = \varnothing) - \begin{bmatrix} , k = \varnothing, i = \varnothing, i = k, if (i > k) - \begin{bmatrix} , \\ , i = k, \end{bmatrix}, \\ , k = \varnothing, i! = \varnothing, i > k, if (i > k) - \begin{bmatrix} , \\ , i = k, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,k=\varnothing,i=\varnothing,i=k,\\ ,k=\varnothing,i!=\varnothing,i>k, \end{bmatrix}, if(i>k) - \begin{bmatrix} ,\\ ,i=k, \end{bmatrix},$$

$$\Leftrightarrow , if(i=\varnothing) - \begin{bmatrix} ,k=\varnothing,i=\varnothing,\\ ,k=\varnothing,i!=\varnothing, \end{bmatrix}, if(i>k) - \begin{bmatrix} ,\\ ,i=k, \end{bmatrix},$$

$$\iff, k = \varnothing, if(i \!\!>\!\! k) \!\!-\!\! \begin{bmatrix},\\\\,i \!\!=\!\! k,\end{bmatrix}\!\!\!-\!\! \begin{bmatrix},\\\\$$

$$,i>k,i!=\varnothing,i\oplus,\Leftrightarrow\sim,if(i>k)-\begin{bmatrix},\\,i=k,\end{bmatrix}$$

induction proof: premise 1:

$$, k = \varnothing, i > k, i! = \varnothing, i \oplus,$$

$$\Leftrightarrow$$
, $i > k$, $i! = \emptyset$, $i \oplus$, $k = \emptyset$,

$$\Leftrightarrow, i \!\!>\!\! k, i \!\!!=\!\!\varnothing, i \!\!\oplus\!, k \!=\!\!\varnothing, i f(i \!\!>\!\! k) \!\!-\!\!\! \begin{bmatrix},\\\\,i \!\!=\!\! k,\end{bmatrix}\!\!\!-\!\!\! \begin{bmatrix},\\\\,i \!\!=\!\!$$

$$\Leftrightarrow , k = \varnothing, i >\!\! k, i !\!\! = \!\varnothing, i \oplus, i f(i >\!\! k) -\!\!\! \begin{bmatrix}, \\ i =\!\! k, \end{bmatrix}\!\! -\!\!\!\!\begin{bmatrix}, \\ i =\!\!$$

premise 2:

, &SHi
$$\rightarrow k, i > k, i! = \varnothing, i \oplus, \Leftrightarrow$$
, &SHi $\rightarrow k, i > k, i! = \varnothing, i \oplus, i f(i > k) - \begin{bmatrix} , \\ i = k \end{bmatrix}$ -, \Rightarrow

 $, k != \varnothing, \&SHi \circlearrowleft k, i > k, i != \varnothing, i \oplus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k$, $i \ge \emptyset$, $i = \emptyset$, $i \oplus$, $k \ne \emptyset$,

$$\Leftrightarrow$$
, &SHi Ok , $i>k$, $i!=\emptyset$, $i\oplus$, $k!=\emptyset$, $i!=\emptyset$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k$, $i > k$, $i! = \emptyset$, $i \oplus$, $k! = \emptyset$, $i! = \emptyset$, $k \oplus$, $k \ominus$, $i \oplus$, $i \ominus$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k$, $i > k$, $i! = \varnothing$, $i \oplus$, $k! = \varnothing$, $i! = \varnothing$, $k \oplus$, $i \oplus$, $k \ominus$, $i \ominus$,

$$\Leftrightarrow$$
, &SHi $\bigcirc k, k \models \varnothing, i \models \varnothing, k \oplus, i \oplus, i \triangleright k, i \models \varnothing, i \oplus, k \ominus, i \ominus,$

$$\Leftrightarrow$$
, $k \models \varnothing$, $i \models \varnothing$, $k \oplus$, $i \oplus$, &SHi \rightarrow k, $i \triangleright$ k, $i \models \varnothing$, $i \oplus$, $k \ominus$, $i \ominus$,

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!k, k \! := \! \varnothing, i \! := \! \varnothing, k \oplus, i \oplus, i \! > \! k, i \! := \! \varnothing, i \oplus, i f(i \! > \! k) \! - \! \begin{bmatrix},\\\\,i = \! k,\end{bmatrix} \! - \! , k \ominus, i \ominus,$$

$$\Leftrightarrow , \&SHi \, \bigcirc k, i > k, i! = \varnothing, i \oplus, k! = \varnothing, i! = \varnothing, if(i > k) - \begin{bmatrix} , \\ , i = k \end{bmatrix} - ,$$

$$\Leftrightarrow$$
, &SHi $\bigcirc k, i>k, i!=\varnothing, i\oplus, k!=\varnothing, if(i>k)$,

$$\Leftrightarrow , k != \varnothing, \& SHi \, \circlearrowleft k, i >\!\! k, i != \varnothing, i \oplus, i f(i >\!\! k) -\!\! \begin{bmatrix}, \\ , i \pm k, \end{bmatrix}\!\! -\!\! \begin{bmatrix}, \\ , k + k, \end{bmatrix}\!\! -\!\! \begin{bmatrix}, \\ , i \pm k, \end{bmatrix}\!\! -\!\!$$

conclusion:

$$, i >\!\! k, k \ominus, k != \varnothing, \iff \sim, i f(i >\!\! k) - \begin{bmatrix},\\\\, i =\!\! k,\end{bmatrix},$$

22.4.16 relationship of number equal and more than and less than

$$,i!=j, \Leftrightarrow ,if(i>j)$$

proof: , i! = j,

$$\Leftrightarrow$$
, $i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), i_0 != j_0, i_0 \oplus, j_0 \oplus,$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), if(i_0 = \varnothing) - \begin{bmatrix}, \\ , j_0 = \varnothing, \end{bmatrix}, i_0 != j_0, i_0 \oplus, j_0 \oplus, j_0$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \begin{bmatrix}, i_0 = \varnothing, \\, i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 != j_0, i_0 \otimes, j_0 \otimes,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), -\begin{bmatrix}, i_0 = \varnothing, i_0 \,!\!=\! j_0,\\, i_0 \,!\!=\! \varnothing, j_0 = \varnothing, i_0 \,!\!=\! j_0,\end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \begin{bmatrix}, i_0 = \varnothing, j_0 != \varnothing, \\, i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \begin{bmatrix} , j_0 !=\varnothing, i_0 = \varnothing, \\ , i_0 !=\varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \otimes, j_0 \otimes,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \\ \begin{bmatrix}, j_0 != \varnothing, if(j_0 = \varnothing) - \begin{bmatrix}, \\ \\ , i_0 = \varnothing, \end{bmatrix}, \\ , i_0 != \varnothing, j_0 = \varnothing, if(j_0 = \varnothing) - \begin{bmatrix}, \\ \\ , i_0 = \varnothing, \end{bmatrix}, \\ \end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), if(j_0 = \varnothing) - \begin{bmatrix}, & & \\ & & \\ & & \\ & & \end{bmatrix}, - \begin{bmatrix}, j_0 != \varnothing, \\ & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix}, i_0 \otimes , j_0 \otimes ,$$

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), if(i_0 = \varnothing) - \begin{bmatrix} , & & \\ , j_0 = \varnothing, \end{bmatrix}, - \begin{bmatrix} , j_0 ! = \varnothing, \\ , i_0 ! = \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus , j_0 \oplus$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \begin{bmatrix} , j_0 != \varnothing, \\ , i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), i \otimes i_1, i_1 \oplus, j \otimes j_1, j_1 \oplus, \begin{bmatrix} , j_0 ! = \varnothing, \\ , i_0 ! = \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus, j_$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, Rc(i_0; j_0), i_1 \otimes, j_1 \otimes, -\begin{bmatrix}, j_0 != \varnothing, \\ , i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \otimes, j_0 \otimes, j_0 \otimes, -\begin{bmatrix}, j_0 != \varnothing, \\ , i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, Rc(i_0; j_0), Rc(i_1; j_1), i_1 \oplus, j_1 \oplus, \begin{bmatrix}, j_0 ! = \varnothing, \\ , i_0 ! = \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus, j_0$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_1$, $j \otimes j_0$, $j \otimes j_1$, $Rc(i_0; j_0)$, $Rc(i_1; j_1)$,

$$\begin{bmatrix} ,j_0 !=\varnothing, \\ ,i_0 !=\varnothing, j_0 =\varnothing, \end{bmatrix} -, i_1 \oplus, j_1 \oplus, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , i \odot i_0, i \odot i_1, i_0 \circlearrowleft i_1, j \odot j_0, j \odot j_1, j_0 \circlearrowleft j_1, Rc(i_0; j_0), Rc(i_1; j_1),$$

$$\begin{bmatrix} ,j_0 !=\varnothing, \\ ,i_0 !=\varnothing, j_0 =\varnothing, \end{bmatrix} -, i_1 \oplus, j_1 \oplus, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, i_0 \otimes i_1, j_0 \otimes j_1, Rc(i_0; j_0), Rc(i_1; j_1),$$

$$i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1, \begin{bmatrix} , j_0 !=\varnothing, \\ , i_0 !=\varnothing, j_0=\varnothing, \end{bmatrix}, i_1 \oplus, j_1 \oplus, i_0 \oplus, j_0 \oplus$$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1, Rc(i_0; j_0), Rc(i_1; j_1),$$

$$i_0 \circlearrowleft i_1, -\begin{bmatrix}, j_0 \circlearrowleft j_1, j_0 !=\varnothing, \\ , i_0 !=\varnothing, j_0 \circlearrowleft j_1, j_0 =\varnothing, \end{bmatrix} -, i_1 \circledast, j_1 \circledast, i_0 \circledast, j_0 \circledast,$$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, i_0 \otimes i_1, j_0 \otimes j_1, Rc(i_0; j_0), Rc(i_1; j_1),$$

$$i_0 \circlearrowleft i_1, -\begin{bmatrix}, j_0 \circlearrowleft j_1, j_1 !=\varnothing, \\ , i_0 !=\varnothing, j_0 \circlearrowleft j_1, j_1=\varnothing, \end{bmatrix} -, i_1 \circledast, j_1 \circledast, i_0 \circledast, j_0 \circledast,$$

$$\Leftrightarrow , i \odot i_0, i \odot i_1, j \odot j_0, j \odot j_1, Rc(i_0; j_0), Rc(i_1; j_1),$$

$$\begin{bmatrix} ,j_1 !=\varnothing, \\ ,i_0 !=\varnothing, j_1 =\varnothing, \end{bmatrix} -, i_1 \oplus, j_1 \oplus, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
 $,j \otimes j_1, i \otimes i_1, Rc(i_1;j_1),$

$$,i!>j, \Leftrightarrow ,if(i=j)$$
- $\begin{bmatrix} , \\ ,i< j, \end{bmatrix}$

proof: , i! > j,

 \Leftrightarrow , $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0; j_0)$, $i_0 = \varnothing$, $i_0 \otimes$, $j_0 \otimes$,

22.4 Theorems of Number more than Relationship

$$\Leftrightarrow , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), if(j_0 = \varnothing) - \begin{bmatrix} , \\ , i_0 = \varnothing, \end{bmatrix} -, i_0 = \varnothing, i_0 \otimes, j_0 \otimes, j_0 \otimes, j_0 \otimes)$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \begin{bmatrix}, j_0 = \varnothing, \\, j_0 != \varnothing, i_0 = \varnothing, \end{bmatrix}, i_0 = \varnothing, i_0 \oplus, j_0 \oplus, j_0$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \begin{bmatrix}, j_0 = \varnothing, i_0 = \varnothing, \\, j_0 != \varnothing, i_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus, i_0 \oplus, i_0$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \begin{bmatrix}, i_0 = \varnothing, i_0 = j_0, \\, j_0 != \varnothing, i_0 = \varnothing, i_0 != j_0,\end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), -\begin{bmatrix}, i_0 = j_0, i_0 = \varnothing, \\\\, i_0 != j_0, j_0 != \varnothing, i_0 = \varnothing,\end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), -\begin{bmatrix}, i_0 = j_0, if(i_0 = \varnothing) - \begin{bmatrix}, \\ , \otimes, \end{bmatrix}, \\, i_0 != j_0, j_0 != \varnothing, if(j_0 = \varnothing) - \begin{bmatrix}, \\ , \otimes, \end{bmatrix}, \\, i_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus, j_0$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = j_0, j_0 ! = \varnothing, j_0 = \varnothing, \end{bmatrix}}_{, i_0 = j_0, j_0 ! = \varnothing, if(j_0 = \varnothing)}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = j_0, j_0 ! = \varnothing, if(j_0 = \varnothing)\end{bmatrix}}_{, i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = j_0, j_0 ! = \varnothing, if(j_0 = \varnothing)\end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0, \\ , i_0 = \varnothing, \end{bmatrix}}_{, i_0 \oplus j_0}, \underbrace{\begin{bmatrix}, i_0 = j_0$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), -\begin{bmatrix}, i_0 = j_0, \\ , i_0 = j_0, i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}, i_0 \oplus, j_0 \oplus, i_0 != \varnothing, i_f(j_0 = \varnothing) -\begin{bmatrix}, \\ , i_0 = j_0, i_0 != \varnothing, j_0 = \varnothing, \end{bmatrix}, -\begin{bmatrix}, \\ , i_0 \oplus, j_0 \oplus, \\ , i_0 = \varnothing, \end{bmatrix}, -\begin{bmatrix}, \\ \\ , i_0 \oplus, j_0 \oplus, \\ \end{bmatrix}, -\begin{bmatrix}, \\ \\ \\ , i_0 \oplus, \\ \end{bmatrix}, -\begin{bmatrix}, \\ \\ \\ \end{bmatrix}, -\begin{bmatrix}, \\ \\ \\ \\ \end{bmatrix}, -\begin{bmatrix}, \\ \\ \end{bmatrix}, -\begin{bmatrix}, \\ \\ \\ \end{bmatrix}, -\begin{bmatrix}, \\ \\ \end{bmatrix}, -\begin{bmatrix}, \\ \\ \\ \end{bmatrix}, -\begin{bmatrix}, \\ \\ \end{bmatrix}, -\begin{bmatrix}$$

$$\Rightarrow \ , i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \\ -i_0 = j_0, if(i_0 = \varnothing) \\ -i_0! = j_0, j_0! = \varnothing, if(j_0 = \varnothing) \\ -i_0! = j_0, j_0! = \varnothing, if(j_0 = \varnothing) \\ -i_0! = \varnothing, \\ -i_0! = -j_0, if(i_0 = \varnothing) \\ -i_0! = -j_0, if(j_0 = -\varnothing) \\ -i_0! = -j_0, if(j_0! = -\varnothing) \\ -i_0! = -j_0! \\ -i_0! = -j_0!$$

$$\begin{bmatrix} , i_0 = j_0, \\ , i_0 != j_0, j_0 != \varnothing, \end{bmatrix}, i_1 \textcircled{0}, j_1 \textcircled{0}, i_0 \textcircled{0}, j_0 \textcircled{0},$$

$$\Leftrightarrow , i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1, Rc(i_0; j_0), Rc(i_1; j_1),$$

$$i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1, \begin{bmatrix} ,i_0 = j_0, \\ ,i_0 != j_0, j_0 != \varnothing, \end{bmatrix}, i_1 \oplus, j_1 \oplus, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_1$, $j \otimes j_0$, $j \otimes j_1$, $i_0 \otimes i_1$, $j_0 \otimes j_1$, $Rc(i_0; j_0)$, $Rc(i_1; j_1)$,

$$i_0 \circlearrowleft i_1, \begin{bmatrix} ,j_0 \circlearrowleft j_1, i_0 = j_0, \\ ,i_0 != j_0, j_0 \circlearrowleft j_1, j_0 != \varnothing, \end{bmatrix}, i_1 \textcircled{0}, j_1 \textcircled{0}, i_0 \textcircled{0}, j_0 \textcircled{0},$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_1, j \otimes j_0, j \otimes j_1, i_0 \circlearrowleft i_1, j_0 \circlearrowleft j_1, Rc(i_0; j_0), Rc(i_1; j_1),$$

$$i_0 \circlearrowleft i_1, \begin{bmatrix} ,j_0 \circlearrowleft j_1, i_0 = j_0, \\ ,i_0 != j_0, j_0 \circlearrowleft j_1, j_1 != \varnothing, \end{bmatrix}, i_1 \oplus, j_1 \oplus, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $i \otimes i_1$, $j \otimes j_0$, $j \otimes j_1$, $Rc(i_0; j_0)$, $Rc(i_1; j_1)$,

$$\begin{bmatrix} ,i_0=j_0,\\ ,i_0!=j_0,j_1!=\varnothing, \end{bmatrix}, i_1\textcircled{\tiny{0}},j_1\textcircled{\tiny{0}},i_0\textcircled{\tiny{0}},j_0\textcircled{\tiny{0}},$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $j \otimes j_0$, $Rc(i_0; j_0)$,

$$\begin{bmatrix}, i_0 = j_0, i \otimes i_1, j \otimes j_1, Rc(i_1; j_1), i_1 \oplus, j_1 \oplus, \\, i_0 != j_0, i \otimes i_1, j \otimes j_1, Rc(i_1; j_1), j_1 != \varnothing, i_1 \oplus, j_1 \oplus, \end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), \begin{bmatrix}, i_0 = j_0, \\ , i_0 != j_0, j > i,\end{bmatrix}, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , -\begin{bmatrix}, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), i_0 = j_0, i_0 \oplus, j_0 \oplus, \\, i \otimes i_0, j \otimes j_0, Rc(i_0; j_0), i_0 != j_0, i_0 \oplus, j_0 \oplus, j > i,\end{bmatrix},$$

$$\Leftrightarrow , \begin{bmatrix} , i = j \\ , i! = j, , j > i, \end{bmatrix},$$

$$\Leftrightarrow , if(i=j)-\begin{bmatrix},\\\\\\,j>i,\end{bmatrix},$$

$$\Leftrightarrow , if(i=j)-\begin{bmatrix},\\\\\\,i< j,\end{bmatrix},$$

$$, \Leftrightarrow , if(i=j) = \begin{bmatrix} , \\ , if(i>j), = \begin{bmatrix} , \\ , i < j, \end{bmatrix}, \end{bmatrix},$$

proof:

,

$$\Leftrightarrow , if(i=j) - \boxed{, } -,$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , \\ , i!=j, \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , \\ , if(i>j), - \begin{bmatrix} , \\ , i < j, \end{bmatrix}, \end{bmatrix},$$

$$,i! \!\!<\!\! j, \iff ,if(i\!\!=\!\! j)\!\!\!=\!\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!\!-\!\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!\!-\!\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!\!-\!\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\! j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}\!\!\!-\!\!\begin{bmatrix},\\,i\!\!>\!\!j,\end{bmatrix}$$

 \Leftrightarrow , j!>i,

$$\Leftrightarrow , if(j = i) - \begin{bmatrix} , \\ , j < i, \end{bmatrix},$$

22.4 Theorems of Number more than Relationship

$$\Leftrightarrow , if(i{=}j) - \begin{bmatrix} , \\ , j{<}i, \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=j)- \begin{bmatrix} , \\ , i>j, \end{bmatrix},$$

$$,i=j,i>j,\Leftrightarrow,\otimes,$$

proof:

,i=j,i>j,

$$\Leftrightarrow , i = j, i > j, i f(i > j) - \begin{bmatrix} , \\ , i < j, \end{bmatrix},$$

$$\Leftrightarrow ,i{\pm}j,i{>}j,i!{\pm}j,$$

$$\Leftrightarrow$$
 $, i = j, i! = j, i > j,$

$$\Leftrightarrow$$
 , \otimes , $i > j$,

$$\iff, \otimes,$$

$$,i=j,i< j,\Leftrightarrow,\otimes,$$

$$,i>j,i< j,\Leftrightarrow, \otimes,$$

$$, i \pm j, \Leftrightarrow \sim, i! > j,$$

proof: , i = j,

$$\Leftrightarrow$$
 $,i=j,if(i>j)-\begin{bmatrix} ,\\ ,\\ .\end{bmatrix}$ -,

$$\Leftrightarrow , if(i \gt j) - \left[\begin{matrix} , i = j, i \gt j, \\ \\ , i = j, \end{matrix} \right] - ,$$

$$\Leftrightarrow , if(i > j) - \begin{bmatrix} , \otimes, \\ \\ , i = j, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,i!>j,i=j,$

$$\Leftrightarrow$$
 $,i=j,i!>j,$

$$,i \pm j, \iff \sim, i! \lessdot j,$$

$$,i \triangleright j, \iff \sim, i! \pm j,$$

$$,i \triangleright j, \iff \sim, i! \lessdot j,$$

$$, i \lessdot j, \iff \sim, i! \pm j,$$

$$, i < j, \Leftrightarrow \sim, i! > j,$$

23 Rules of assign operator in temporary space

23.1 Definition of Flag object Tm

$$, m \oplus, \&Tm(m), \Leftrightarrow ,\&Tm(m),$$
 $, t \oplus m, \&Tm(m), \Leftrightarrow ,\&Tm(m),$
 $, t \oplus m, t \oplus, \&Tm(m), \Leftrightarrow ,t \oplus, \&Tm(m),$

23.2 Definition of Flag object Fam

23.2.1 Transformation

$$,\&Fam(i),i\otimes j, \iff ,i\otimes j,\&Fam(i),\&Fam(j),$$

$$,\&Fam(i),i\otimes j, \iff ,i\otimes j,\&Fam(i),\&Fam(j),$$

$$,\&Fam(i),\&Fam(i), \iff ,\&Fam(i),$$

23.2.2 Swap with self

$$, \&Fam(i), \&Fam(j), \iff , \&Fam(j), \&Fam(i),$$

23.2.3 Swap with operators

$$,\&Fam(i),j\otimes n, \Leftrightarrow ,j\otimes n,\&Fam(i),\\ ,\&Fam(i),i\otimes n, \Leftrightarrow ,i\otimes n,\&Fam(i),\\ ,\&Fam(i),\odot j, \Leftrightarrow ,\odot j,\&Fam(i),\\ ,\&Fam(i),\odot j, \Leftrightarrow ,\odot j,\&Fam(i),\\ ,i!\circlearrowleft j,\&Fam(i),j\otimes n, \Leftrightarrow ,i!\circlearrowleft j,j\otimes n,\&Fam(i),\\ ,i!\circlearrowleft j,\&Fam(i),j\otimes n, \Leftrightarrow ,i!\circlearrowleft j,j\otimes n,\&Fam(i),\\ ,\&Fam(i),j\otimes ,\Leftrightarrow ,j\oplus ,\&Fam(i),\\ ,\&Fam(i),j\oplus ,\Leftrightarrow ,j\oplus ,\&Fam(i),\\ ,\&Fam(i),i\oplus ,\Leftrightarrow ,i\oplus ,\&Fam(i),\\ ,\&Fam(i),j\otimes n, \Leftrightarrow ,j\otimes n,\&Fam(i),\\ ,\&Fam(i),,\oplus n,\Leftrightarrow ,j\otimes n,\&Fam(i),\\ ,\&Fam(i),,\oplus n,\Leftrightarrow ,j\otimes n,\&Fam(i),\\ ,\&Fam(i),,\oplus n,\&Fam(i),\\ ,\&Fam(i),,\otimes n,\&Fam(i),\\ ,\&Fam(i),,\otimes$$

23.2.4 Clear Fam

$$,\&Fam(i),i@m,@c,m@,\Leftrightarrow,i@m,@ct,\&Fam(m),m@,\Rightarrow\\ ,\&Fam(i),i@m,@c,m@,\Leftrightarrow,i@m,@ct,m@,\\ ,\&Fam(i),i@m,@c,m@,\Leftrightarrow,i@m,@ct,\&Fam(m),m@,\Rightarrow\\ ,\&Fam(i),i@m,@c,m@,\Leftrightarrow,i@m,@ct,&Fam(m),m@,\Rightarrow$$

23.3 Theorems of Flag object Fam

$$,\&Fam(i),i\oslash m, @c, m@, \Leftrightarrow ,i\oslash m, @ct, \&Fam(m), m@, \Rightarrow ,i\oslash m, @ct, \&Fam(m), m@, \Leftrightarrow ,i\oslash m, @ct, m@, \\ ,\&Fam(i),i\oslash m, @c, m@, \Leftrightarrow ,i\oslash m, @ct, \&Fam(m), m@, \Rightarrow ,i\oslash m, @ct, \&Fam(m), m@, \Rightarrow ,i\oslash m, @ct, \&Fam(m), m@, \Leftrightarrow ,i\oslash m, @ct, m@, \\ ,\&Fam(i),i\ominus, \Leftrightarrow ,i\ominus,\&Fam(i), i\ominus, \\ \Leftrightarrow ,i\ominus,i\ominus,\&Fam(i),i\ominus, \\ \Leftrightarrow ,i\ominus,\&Fam(i),i\ominus, ;\ominus, \\ \Leftrightarrow ,i\ominus,\&Fam(i),i\ominus, ;\ominus, \\ \Leftrightarrow ,i\ominus,\&Fam(i), & \Leftrightarrow ,\&Fam(i),i\ominus, \\ ;i\circlearrowleft j,\&Fam(i), & \Leftrightarrow ,\&Fam(i),i\circlearrowleft j, \\ proof: ,i\circlearrowleft j,\&Fam(i), \\ \Leftrightarrow ,i\oslash m,j\oslash n,m@n = ,m@,n@,\&Fam(i), \\ \Leftrightarrow ,i\circledcirc m,j\oslash n,m@n = ,\&Fam(i), \\ \&Fam(i), \\ \Leftrightarrow ,i\circledcirc m,j\oslash n,m@n = ,\&Fam(i), \\ \&Fam(i), \\ \&F$$

23 Rules of assign operator in temporary space

$$,i\circlearrowleft j,\&Fam(i),j\circledcirc n,\iff,i\circlearrowleft j,j\circledcirc n,\&Fam(i),\&Fam(n),$$

proof:

$$,i\circlearrowleft j,\&Fam(i),j\circledcirc n,$$

$$\Leftrightarrow$$
, &Fam(i), i \circlearrowleft j, j \circlearrowleft n,

$$\Leftrightarrow$$
, &Fam(i), i \circlearrowleft j, i \circlearrowleft n,

$$\Leftrightarrow$$
 $,i \circlearrowleft j, \&Fam(i), i \circlearrowleft n,$

$$\Leftrightarrow$$
, $i \circ j$, $i \circ n$, &Fam(i), &Fam(n),

$$\Leftrightarrow$$
, $i \circlearrowleft j, j \circlearrowleft n, \& Fam(i), \& Fam(n),$

$$,i\circlearrowleft j,\&Fam(i),j\circledcirc n,\iff,i\circlearrowleft j,j\circledcirc n,\&Fam(i),\&Fam(j),$$

23.3.1 Swap with branch function:

$$, \&Fam(i), if(m=n) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m=n) = \begin{bmatrix}, \&Fam(i), @c_1, \\ , \&Fam(i), @c_2, \end{bmatrix},$$

$$, \& Fam(i), if(m = \varnothing) - \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \iff , if(m = \varnothing) - \begin{bmatrix}, \& Fam(i), @c_1, \\ , \& Fam(i), @c_2, \end{bmatrix},$$

$$, \& Fam(i), if(m \circlearrowleft n) = \begin{bmatrix}, @c_1, \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m \circlearrowleft n) = \begin{bmatrix}, \& Fam(i), @c_1, \\ , \& Fam(i), @c_2, \end{bmatrix},$$

$$, \&Fam(i), if(m \rightarrow n) - \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix}, \Leftrightarrow , if(m \rightarrow n) - \begin{bmatrix} , \&Fam(i), @c_1, \\ \\ , \&Fam(i), @c_2, \end{bmatrix},$$

23.3.2 Swap with propositions:

$$,\&Fam(i),m=n, \Leftrightarrow ,m=n,\&Fam(i),$$

$$,\&Fam(i),m=\varnothing, \Leftrightarrow ,m=\varnothing,\&Fam(i),$$

$$,\&Fam(i),m\circlearrowleft n, \Leftrightarrow ,m\circlearrowleft n,\&Fam(i),$$

$$,\&Fam(i),m\rightarrow n, \Leftrightarrow ,m\rightarrow n,\&Fam(i),$$

$$,\&Fam(i),m!=n, \Leftrightarrow ,m!=n,\&Fam(i),$$

$$,\&Fam(i),m!=\varnothing, \Leftrightarrow ,m!=\varnothing,\&Fam(i),$$

$$,\&Fam(i),m!\circlearrowleft n, \Leftrightarrow ,m!\circlearrowleft n,\&Fam(i),$$

$$,\&Fam(i),m!\hookrightarrow n, \Leftrightarrow ,m!\rightarrow n,\&Fam(i),$$

23.3.3 Swap with recursive function:

```
,\&Fam(i),R(m), \Leftrightarrow ,R(m),\&Fam(i),
induction proof:
premise 1:
, m = \varnothing, \&Fam(i), R(m),
\Leftrightarrow, &Fam(i), m = \emptyset, R(m),
\Leftrightarrow, &Fam(i), m = \emptyset,
\Leftrightarrow, m = \emptyset, &Fam(i),
\Leftrightarrow, m = \emptyset, R(m), & Fam(i),
premise 2:
, \&SHi \rightarrow m, \&Fam(i), R(m), \Leftrightarrow , \&SHi \rightarrow m, R(m), \&Fam(i), \Rightarrow
, m != \varnothing, \&SHi \circlearrowleft m, \&Fam(i), R(m), ,
\Leftrightarrow, &SHi \mathcal{O}m, &Fam(i), m!=\varnothing, R(m),
\Leftrightarrow, &SHi \mathcal{O}m, &Fam(i), m!=\varnothing, m\oplus, R(m),
\Leftrightarrow, &SHi \circlearrowleft m, m = \varnothing, m \oplus, \&Fam(i), R(m),
\Leftrightarrow, m! = \emptyset, m \oplus, &SHi \rightarrow m, &Fam(i), R(m),
\Leftrightarrow, m = \emptyset, m \oplus, &SHi \rightarrow m, R(m), &Fam(i),
\Leftrightarrow, &SHi \circlearrowleft m, m = \varnothing, m \oplus, R(m), \&Fam(i),
\Leftrightarrow, &SHi \mathcal{O}m, m != \varnothing, R(m), \&Fam(i),
\Leftrightarrow, m!=\varnothing, &SHi \circlearrowleft m, R(m), &Fam(i),
conclusion:
,\&Fam(i),R(m),\Leftrightarrow,R(m),\&Fam(i),
                                   , \&Fam(i), R_{-}(m), \Leftrightarrow , R_{-}(m), \&Fam(i),
                               ,\&Fam(i),Rc(m;n),\Leftrightarrow,Rc(m;n),\&Fam(i),
                                      ,\&Fam(i),R(i),\Leftrightarrow,R(i),\&Fam(i),
```

```
induction proof:
premise 1:
, i = \varnothing, \&Fam(i), R(i),
\Leftrightarrow, &Fam(i), i = \emptyset, R(i),
\Leftrightarrow, &Fam(i), i = \emptyset,
\Leftrightarrow, i = \emptyset, \&Fam(i),
\Leftrightarrow, i = \emptyset, R(i), \&Fam(i),
premise 2:
, \&SHi \rightarrow i, \&Fam(i), R(i), \Leftrightarrow , \&SHi \rightarrow i, R(i), \&Fam(i), \Rightarrow
, i != \varnothing, \&SHi \circlearrowleft i, \&Fam(i), R(i), ,
\Leftrightarrow, &SHi\circlearrowlefti, &Fam(i), i!=\varnothing, R(i),
\Leftrightarrow, &SHi \circlearrowlefti, &Fam(i), i!=\varnothing, i\oplus, R(i),
\Leftrightarrow, &SHi\circlearrowlefti, i \neq \emptyset, i \oplus \emptyset, &Fam(i), R(i),
\Leftrightarrow, i = \emptyset, i \oplus, &SHi \rightarrow i, &Fam(i), R(i),
\Leftrightarrow, i!=\emptyset, i\oplus, &SHi\rightarrow i, R(i), &Fam(i),
\Leftrightarrow, &SHi \circlearrowlefti, i = \varnothing, i \oplus, R(i), &Fam(i),
\Leftrightarrow, &SHi\circlearrowlefti, i \neq \emptyset, R(i), &Fam(i),
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, R(i), &Fam(i),
conclusion:
,\&Fam(i),R(i), \Leftrightarrow ,R(i),\&Fam(i),
                                      ,\&Fam(i),R_{-}(i),\Leftrightarrow,R_{-}(i),\&Fam(i),
                                  ,\&Fam(i),Rc(i;n),\Leftrightarrow,Rc(i;n),\&Fam(i),
   ,\&Fam(i),i@m,R(m),R(n),m@n,m@, \iff ,i@m,R(m),R(n),m@n,m@,\&Fam(i),
proof:
,\&Fam(i),i\odot m,R(m),R(n),m\odot n,m\odot ,
```

$$\Leftrightarrow , i \otimes m, \& Fam(i), \& Fam(m), R(m), R(n), m \circlearrowleft n, m \oplus,$$

$$\Leftrightarrow , i \otimes m, R(m), R(n), m \circlearrowleft n, \& Fam(i), \& Fam(m), m \oplus,$$

$$\Leftrightarrow , i \otimes m, R(m), R(n), m \circlearrowleft n, \& Fam(i), m \oplus,$$

$$\Leftrightarrow , i \otimes m, R(m), R(n), m \circlearrowleft n, m \oplus, \& Fam(i),$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \left[\begin{matrix} , j \circlearrowleft m, R(m), R(n), m \circlearrowleft n, m \circlearrowleft, \& Fam(i), \\ , j \circlearrowleft m, R(m), R(n), m \circlearrowleft n, m \circlearrowleft, \& Fam(i), \end{matrix} \right],$$

$$\Leftrightarrow , if(i\circlearrowleft j) - \left[, \right] - , j \circledcirc m, R(m), R(n), m \circlearrowleft n, m \circledcirc , \& Fam(i),$$

$$\Leftrightarrow$$
 $,j \otimes m, R(m), R(n), m \otimes n, m \otimes , \& Fam(i),$

23.3.4 Swap with branch function:

$$, \& Fam(i), if(m \circlearrowleft n) - \begin{bmatrix} , \circledcirc c_1, \\ , \circledcirc c_2, \end{bmatrix}, \iff , if(m \circlearrowleft n) - \begin{bmatrix} , \& Fam(i), \circledcirc c_1, \\ , \& Fam(i), \circledcirc c_2, \end{bmatrix},$$

$$, \& Fam(i), if(m \oplus n) = \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(m \oplus n) = \begin{bmatrix}, \& Fam(i), @c_1, \\ \\ , \& Fam(i), @c_2, \end{bmatrix},$$

$$, \& Fam(i), if(m = n) - \begin{bmatrix}, @c_1, \\ \\ , @c_2, \end{bmatrix}, \iff , if(m = n) - \begin{bmatrix}, \& Fam(i), @c_1, \\ \\ , \& Fam(i), @c_2, \end{bmatrix},$$

$$, \&Fam(i), if(m \!\!>\!\! n) - \!\! \begin{bmatrix} , @c_1, \\ \\ , @c_2, \end{bmatrix} \!\! , \iff , if(m \!\!>\!\! n) - \!\! \begin{bmatrix} , \&Fam(i), @c_1, \\ \\ , \&Fam(i), @c_2, \end{bmatrix} \!\! ,$$

23.3.5 Swap with propositions:

$$,\&Fam(i),i\circlearrowleft j, \Leftrightarrow ,i\circlearrowleft j,\&Fam(i),$$

proof:

 $,\&Fam(i),i\circlearrowleft j,$

$$\Leftrightarrow$$
, &Fam(i), i \odot m, j \odot n, R(m), R(n), m \odot n, n \oplus , m \oplus ,

$$\Leftrightarrow$$
, $i \otimes m$, &Fam(i), &Fam(m), $j \otimes n$, $R(m)$, $R(n)$, $m \otimes n$, $n \otimes n$, $m \otimes n$,

$$\Leftrightarrow$$
, $i \otimes m$, $j \otimes n$, $R(m)$, $R(n)$, $m \otimes n$, $n \otimes n$, &Fam(i), &Fam(m), $m \otimes n$,

$$\Leftrightarrow$$
 $,i \otimes m, j \otimes n, R(m), R(n), m \otimes n, n \otimes , \& Fam(i), m \otimes ,$

$$\Leftrightarrow$$
 $,i \otimes m, j \otimes n, R(m), R(n), m \otimes n, m \otimes n, n \otimes N, \& Fam(i),$

$$,\&Fam(i),m$$
\$\text{O}n, \Leftrightarrow ,m \$\text{O}n, &Fam(i),

proof:

 $,\&Fam(i),m\circlearrowleft n,$

$$\Leftrightarrow , \&Fam(i), m \otimes m_0, n \otimes n_0, R(m_0), R(n_0), m_0 \otimes n_0, m_0 \otimes n_0 \otimes n_0$$

$$\Leftrightarrow , if(i \mathring{\bigcirc} m) = \boxed{,} \\ + \& Fam(i), m \textcircled{\otimes} m_0, n \textcircled{\otimes} n_0, R(m_0), R(n_0), m_0 \mathring{\bigcirc} n_0, n_0 \textcircled{\oplus}, m_0 \textcircled{\oplus}, \\ + \& Fam(i), m \textcircled{\otimes} m_0, n \textcircled{\otimes} n_0, R(m_0), R(m_0), R(m_0), R(m_0), R(m_0), \\ + \& Fam(i), m \textcircled{\otimes} m_0, n \textcircled{\otimes} n_0, R(m_0), R(m_0), R(m_0), R(m_0), R(m_0), \\ + \& Fam(i), m \textcircled{\otimes} m_0, R(m_0), R(m_0), R(m_0), R(m_0), R(m_0), \\ + \& Fam(i), m \textcircled{\otimes} m_0, R(m_0), R(m_0), R(m_0), R(m_0), \\ + \& Fam(i), m \textcircled{\otimes} m_0, R(m_0), R(m_0), R(m_0), R(m_0), R(m_0), \\ + \& Fam(i), R(m_0), R(m_0)$$

$$\Leftrightarrow , if (i \circlearrowleft m) - \begin{bmatrix} , i \circlearrowleft m, \& Fam(i), m \otimes m_0, n \otimes n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \oplus, m_0 \oplus, \\ , i! \circlearrowleft m, \& Fam(i), m \otimes m_0, n \otimes n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \oplus, m_0 \oplus, \end{bmatrix}$$

$$\Leftrightarrow, if(i \circlearrowleft m) = \begin{bmatrix}, i \circlearrowleft m, \& Fam(i), i \circledcirc m_0, n \circledcirc n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \circledcirc, m_0 \circledcirc, \\, i! \circlearrowleft m, \& Fam(i), m \circledcirc m_0, n \circledcirc n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \circledcirc, m_0 \circledcirc, \end{bmatrix},$$

$$\Leftrightarrow , if (i \circlearrowleft m) = \begin{bmatrix} , i \circlearrowleft m, i \circlearrowleft m_0, \& Fam(i), \& Fam(m_0), n \circlearrowleft n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \circlearrowleft, m_0 \circlearrowleft, \\ , i! \circlearrowleft m, \& Fam(i), m \circlearrowleft m_0, n \circlearrowleft n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \circlearrowleft, m_0 \hookrightarrow, m_0 \circlearrowleft, m_0 \hookrightarrow, m_0 \hookrightarrow,$$

$$\Leftrightarrow , if (i \circlearrowleft m) - \begin{bmatrix} , i \circlearrowleft m, i \circlearrowleft m_0, n \circlearrowleft n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \circlearrowleft, \&Fam(i), \&Fam(m_0), m_0 \circlearrowleft, \\ , i! \circlearrowleft m, \&Fam(i), m \circlearrowleft m_0, n \circlearrowleft n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \circlearrowleft, m_0 \hookrightarrow, m_0 \hookrightarrow, m_0 \circlearrowleft, m_0 \hookrightarrow, m$$

$$\Leftrightarrow , if(i\circlearrowleft m) - \begin{bmatrix} , i\circlearrowleft m, i\trianglerighteq m_0, n\trianglerighteq n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \clubsuit, \&Fam(i), m_0 \clubsuit, \\ , i!\circlearrowleft m, \&Fam(i), m\trianglerighteq m_0, n\trianglerighteq n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \clubsuit, m_0 \clubsuit, \\ , i!\circlearrowleft m, i\trianglerighteq m_0, n\trianglerighteq n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \clubsuit, \&Fam(i), m_0 \clubsuit, \\ , i!\circlearrowleft m, m\trianglerighteq m_0, \&Fam(i), n\trianglerighteq n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \clubsuit, \&Fam(i), m_0 \clubsuit, \\ , i!\circlearrowleft m, m\trianglerighteq m_0, n\trianglerighteq n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \clubsuit, \&Fam(i), m_0 \clubsuit, \\ , i!\circlearrowleft m, m\trianglerighteq m_0, n\trianglerighteq n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \clubsuit, \&Fam(i), m_0 \clubsuit, \\ , i!\circlearrowleft m, - , m\trianglerighteq m_0, n\trianglerighteq n_0, R(m_0), R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \clubsuit, \&Fam(i), m_0 \clubsuit, \\ , i!\circlearrowleft m, - , m\trianglerighteq m_0, n\trianglerighteq n_0, R(m_0), R(m_0), R(n_0), m_0 \circlearrowleft n_0, n_0 \clubsuit, \&Fam(i), m_0 \clubsuit, \\ , m\trianglerighteq m_0, n\trianglerighteq n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, m_0 \clubsuit, n_0 \clubsuit, \&Fam(i), \\ \Leftrightarrow , m\trianglerighteq n_0, k\trianglerighteq m(i), \\ \Leftrightarrow , m\trianglerighteq n_0, k\trianglerighteq m(i), \\ \end{cases}$$

$$,\&Fam(i), m \oplus n, \Leftrightarrow ,m \oplus n,\&Fam(i),$$

$$,\&Fam(i), m \mp n, \Leftrightarrow ,m \mp n,\&Fam(i),$$

$$,\&Fam(i), m > n, \Leftrightarrow ,m > n,\&Fam(i),$$

$$,\&Fam(i), m! \oplus n, \Leftrightarrow ,m! \oplus n,\&Fam(i),$$

$$,\&Fam(i), m! \pm n, \Leftrightarrow ,m! \pm n,\&Fam(i),$$

$$,\&Fam(i), m! \pm n, \Leftrightarrow ,m! \pm n,\&Fam(i),$$

$$,\&Fam(i), m! > n, \Leftrightarrow ,m! > n,\&Fam(i),$$

23.3.6 Swap of the same operand

(skip.....)

23.4 Axiom of Flag object Tm and Fam

23.4.1 axiom of inference 1:

$$,\&Fam(i), @c, \Leftrightarrow , @c, \&Fam(i), \Rightarrow$$

$$,@i, @c, i @, \Leftrightarrow , @i, @c, \&Tm(i),$$

23.4.2 axiom of inference 2:

$$,\&Fam(i), @c, \Leftrightarrow , @c, \&Fam(i), \&Fam(m), \Rightarrow$$

$$, @i, @c, i @, m @, \Leftrightarrow , @i, @c, i @, \&Tm(m),$$

23.5 Theorems of Tm

$$,\&Tm(m), \Leftrightarrow ,m\ominus ,\&Tm(m),$$

 $,\&Tm(m), \Leftrightarrow ,R(m),\&Tm(m),$

23.6 Theorems of temporary space

$$, \circledcirc m, m \circledast, \iff, \circledcirc m, \&Tm(m),$$

$$, \circledcirc m, t \circledcirc m, m \circledast, \iff, \circledcirc m, t \circledcirc m, \&Tm(m),$$

$$, \circledcirc m, \&Tm(m), \iff, \circledcirc m, t \circledcirc m, \&Tm(m),$$

$$, \circledcirc m, m \circledast, \iff, \circledcirc m, t \circledcirc m, m \circledast,$$

24 Axioms of assign operator

24.1 General axioms

24.1.1 Substitution

$$,t=j,t@j, \Leftrightarrow ,t=j,j@j,$$

$$,t_1=t_2,t_1@j, \Leftrightarrow ,t_1=t_2,t_2@j,$$

$$,j_1\circlearrowleft j_2,t@j_1, \Leftrightarrow ,j_1\circlearrowleft j_2,t@j_2,$$

24.1.2 Unity

$$, i = \varnothing, \iff, i = \varnothing, i \ni i,$$

24.1.3 Swap

24.2 Definition of Del(j)

$$, Del(j), \iff , j! = \varnothing, \odot t, t \ni j, t \odot,$$

24.3 Axioms of Del(j)

24.3.1 Mutation

$$, m \circlearrowleft j, m \oplus, Del(j), \iff , m \circlearrowleft j, Del(j),$$

24.3.2 Swap

Id operator

$$, m! \circlearrowleft j, m \circledcirc n, Del(j), \iff , m! \circlearrowleft j, Del(j), m \circledcirc n,$$

Next Node operator

$$, m! \circlearrowleft j, m \oplus, Del(j), \Leftrightarrow , m! \circlearrowleft j, Del(j), m \oplus,$$

Global space operator

$$, \bigcirc g, Del(j), \Leftrightarrow , Del(j), \bigcirc g,$$

Subnode operator

$$, m! \circlearrowleft j, m \circledcirc n, Del(j), \iff , m! \circlearrowleft j, Del(j), m \circledcirc n,$$

24.4 Definition of Ins(t;j)

$$, Ins(t;j), \iff, t \! \models \! \varnothing, t \! \ni \! j,$$

24.5 Axioms of Ins(t;j)

24.5.1 Mutation

$$,Ins(t;j),\iff\sim,t=j,$$
 $,Ins(t;j),j@n,\iff\sim,n!Oi,n{\rightarrow}n,$

24.5.2 Swap

Id operator

$$, j \otimes n, Ins(t; j), \iff , Ins(t; j), j \otimes j_0, j_0 \oplus , j_0 \otimes n, j_0 \oplus ,$$

 $, m! \circlearrowleft j, m \otimes n, Ins(t; j), \iff , m! \circlearrowleft j, Ins(t; j), m \otimes n,$

Next Node operator

$$, m! \circlearrowleft j, m \oplus, Ins(t; j), \iff , m! \circlearrowleft j, Ins(t; j), m \oplus,$$

 $, m \circlearrowleft j, m \oplus, Ins(t; j), \iff , m \circlearrowleft j, Ins(t; j), m \oplus, m \oplus,$

Global space operator

$$, \odot g, g! \circlearrowleft j, Ins(t;j), \Leftrightarrow , Ins(t;j), \odot g, j! \rightarrow g,$$

 $, \odot g, g \circlearrowleft j, Ins(t;j), \Leftrightarrow , Ins(t;j), \odot g, g \circlearrowleft , g \circlearrowleft j,$

Subnode operator

$$,j!=\varnothing,j@n,Ins(t;j), \Leftrightarrow ,j!=\varnothing,Ins(t;j),j@j_0,j_0\oplus,j_0@n,j_0\oplus,\\ ,m!\circlearrowleft j,m@n,n!\circlearrowleft j,Ins(t;j), \Leftrightarrow ,m!\circlearrowleft j,Ins(t;j),m@n,j!\rightarrow n,\\ ,m!\circlearrowleft j,m@n,n\circlearrowleft j,Ins(t;j), \Leftrightarrow ,m!\circlearrowleft j,Ins(t;j),m@n,n\ominus,n\circlearrowleft j,$$

Node value

$$, m! \circlearrowleft j, j = m, Ins(t; j), \iff, m! \circlearrowleft j, Ins(t; j), j \odot j_0, j_0 \oplus, j_0 = m, j_0 \oplus, j_0 \oplus, j_0 = m, j_0 \oplus, j_$$

24.6 Swap definition of &SHi

24.6.1 Ins(t;j)

$$,i!\circlearrowleft j, \&SHi\circlearrowleft i, Ins(t;j), \Leftrightarrow ,i!\circlearrowleft j, Ins(t;j), \&SHi\circlearrowleft i,$$

$$,i\circlearrowleft j,j\gt i, \&SHi\circlearrowleft i, Ins(t;j), \Leftrightarrow ,i\circlearrowleft j,j\gt i, Ins(t;j), \&SHi\circlearrowleft i,$$

$$,i\circlearrowleft j, \&SHi\circlearrowleft i, Ins(t;j), \Leftrightarrow ,i\circlearrowleft j, Ins(t;j), \&SHi\hookleftarrow i,$$

$$,i\circlearrowleft j,j\lt i, \&SHi\circlearrowleft i, Ins(t;j), \Leftrightarrow ,i\circlearrowleft j,j\lt i, Ins(t;j), \&SHi\hookleftarrow i,$$

24.6.2 Del(j)

$$,i!\circlearrowleft j, \&SHi\circlearrowleft i, Del(j), \Leftrightarrow ,i!\circlearrowleft j, Del(j), \&SHi\circlearrowleft i,$$

$$,i\circlearrowleft j,j\gt i, \&SHi\circlearrowleft i, Del(j), \Leftrightarrow ,i\circlearrowleft j,j\gt i, Del(j), \&SHi\circlearrowleft i,$$

$$,i\circlearrowleft j, \&SHi\circlearrowleft i, Del(j), \Leftrightarrow ,i\circlearrowleft j, Del(j), \&SHi \to i,$$

$$,i\circlearrowright j,j\lt i, \&SHi\circlearrowleft i, Del(j), \Leftrightarrow ,i\circlearrowleft j,j\lt i, Del(j), \&SHi\to i,$$

24.7 Swap definition of &SHj

24.7.1 Ins(t;j)

$$,i!\circlearrowleft j, \&SHj\circlearrowleft i, Ins(t;j), \iff ,i!\circlearrowleft j, Ins(t;j), \&SHj\circlearrowleft i,$$

$$,i\circlearrowright j,j\lessdot i, \&SHj\circlearrowleft i, Ins(t;j), \iff ,i\circlearrowleft j,j\lessdot i, Ins(t;j), \&SHj\circlearrowleft i,$$

$$,i\circlearrowleft j, \&SHj\circlearrowleft i, Ins(t;j), \iff ,i\circlearrowleft j, Ins(t;j), \&SHj\circlearrowleft i,$$

$$,i\circlearrowleft j,j\gt i, \&SHj\circlearrowleft i, Ins(t;j), \iff ,i\circlearrowleft j,j\gt i, Ins(t;j), \&SHj\to i,$$

24.7.2 Del(j)

$$,i!\circlearrowleft j, \&SHj \circlearrowleft i, Del(j), \Leftrightarrow ,i!\circlearrowleft j, Del(j), \&SHj \circlearrowleft i,$$

$$,i\circlearrowleft j,j \lessdot i, \&SHj \circlearrowleft i, Del(j), \Leftrightarrow ,i\circlearrowleft j,j \lessdot i, Del(j), \&SHj \circlearrowleft i,$$

$$,i\circlearrowleft j, \&SHj \circlearrowleft i, Del(j), \Leftrightarrow ,i\circlearrowleft j, Del(j), \&SHj \circlearrowleft i,$$

$$,i\circlearrowleft j,j \gt i, \&SHj \circlearrowleft i, Del(j), \Leftrightarrow ,i\circlearrowleft j,j \gt i, Del(j), \&SHj \hookleftarrow i,$$

24.8 Axioms of swap with self

24.8.1 Ins:Ins

$$\begin{split} &i_{1} := \varnothing, i_{2} := \varnothing: \\ &i_{1} = i_{2} : \\ &, i_{1} := \varnothing, i_{2} := \varnothing, i_{1} = i_{2}, i_{1} \oplus j_{1}, i_{2} \oplus j_{2}, \iff \\ &, i_{1} := \varnothing, i_{2} := \varnothing, i_{1} = i_{2}, i_{2} \oplus j_{2}, i_{1} \oplus j_{1}, \\ &i_{1} := i_{2} : \\ &, i_{1} := \varnothing, i_{2} := \varnothing, i_{1} := i_{2}, j_{1} ! \circlearrowleft j_{2}, i_{1} ! \circlearrowleft j_{2}, i_{2} ! \circlearrowleft j_{1}, i_{1} \oplus j_{1}, i_{2} \oplus j_{2}, \iff \\ &, i_{1} := \varnothing, i_{2} := \varnothing, i_{1} := i_{2}, j_{1} ! \circlearrowleft j_{2}, i_{1} ! \circlearrowleft j_{2}, i_{2} ! \circlearrowleft j_{1}, i_{2} \oplus j_{2}, i_{1} \oplus j_{1}, \end{split}$$

24.8.2 Del;Del

$$\begin{split} &i_1 = \varnothing, i_2 = \varnothing: \\ &, i_1 = \varnothing, i_2 = \varnothing, j_1 != \varnothing, j_2 != \varnothing, j_1 ! \circlearrowleft j_2, i_1 \circledcirc j_1, i_2 \circledcirc j_2, \iff \\ &, i_1 = \varnothing, i_2 = \varnothing, j_1 != \varnothing, j_2 != \varnothing, j_1 ! \circlearrowleft j_2, i_2 \circledcirc j_2, i_1 \circledcirc j_1, \end{split}$$

24.8.3 Ins;Del

$$\begin{split} i_1 & != \varnothing, i_2 = \varnothing : \\ j_1 & \circlearrowleft j_2 : \\ , i_1 & != \varnothing, i_2 = \varnothing, j_1 \circlearrowleft j_2, i_2 ! \circlearrowleft j_1, \iff \\ , i_1 & != \varnothing, i_2 = \varnothing, j_1 \circlearrowleft j_2, i_2 ! \circlearrowleft j_1, i_1 \circledcirc j_1, i_2 \circledcirc j_2, \\ \\ j_1 & ! \circlearrowleft j_2 : \\ , i_1 & != \varnothing, i_2 = \varnothing, j_2 != \varnothing, j_1 ! \circlearrowleft j_2, i_1 ! \circlearrowleft j_2, i_2 ! \circlearrowleft j_1, i_1 \circledcirc j_1, i_2 \circledcirc j_2, \iff \\ , i_1 & != \varnothing, i_2 = \varnothing, j_2 != \varnothing, j_1 ! \circlearrowleft j_2, i_1 ! \circlearrowleft j_2, i_2 ! \circlearrowleft j_1, i_2 \circledcirc j_2, i_1 \circledcirc j_1, \end{split}$$

25 Theorems of Insert Node Function Ins(t;j)

25.1 General theorems

25.1.1 Property

$$\begin{split} , Insert(t;j), &\iff , t \,!\!\!=\!\!\varnothing, Insert(t;j), \\ , Ins(t;j), j \! \otimes \! n, &\iff \sim, n \!\!:\!\! \circlearrowleft \! i, \\ , Ins(t;j), j \! \otimes \! n, &\iff \sim, n \!\!\to\!\! n, \end{split}$$

25.1.2 Substitution

$$,t_1 = t_2, Ins(t_1;j), \Leftrightarrow ,t_1 = t_2, Ins(t_2;j),$$

$$,t_1 \circlearrowleft t_2, Ins(t_1;j), \Leftrightarrow ,t_1 \circlearrowleft t_2, Ins(t_2;j),$$

$$,j_1 \circlearrowleft j_2, Ins(t;j_1), \Leftrightarrow ,j_1 \circlearrowleft j_2, Ins(t;j_2),$$

25.1.3 Swap with operator

$$,g \circledast, Ins(t;j), \;\Leftrightarrow\; ,Ins(t;j), g \circledast,$$

$$, @g, Ins(t;j), \;\Leftrightarrow\; ,Ins(t;j), @g,$$

$$, m \circledast n, Ins(t;j), \;\Leftrightarrow\; ,Ins(t;j), m \circledast n,$$

$$,j \circledast n, Ins(t;j), \;\Leftrightarrow\; ,Ins(t;j), j \circledast n,$$
 proof:
$$,j \circledast n, Ins(t;j),$$

$$\Leftrightarrow\; ,j \circledast n, j \circledast j_0, j_0 \circledast, Ins(t;j),$$

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow$$
, $j \otimes n$, $j \otimes j_0$, $Ins(t; j)$, $j_0 \otimes j_0$

$$\Leftrightarrow$$
 $, j \otimes n, j \otimes j_0, j \otimes j_0, Ins(t; j), j_0 \otimes ,$

$$\Leftrightarrow$$
, $j \otimes n$, $j \otimes j_0$, $j \otimes j_0$, $Ins(t; j_0)$, $j_0 \otimes$,

$$\Leftrightarrow$$
 $,j \otimes j_0, j \otimes j_0, j \otimes n, Ins(t;j_0), j_0 \otimes ,$

$$\Leftrightarrow$$
 $,j \otimes j_0, j \otimes j_0, Ins(t;j_0), j_0 \oplus, j \otimes n,$

$$\Leftrightarrow$$
, $j \otimes j_0$, $j \circ j_0$, $Ins(t; j)$, $j_0 \otimes j \otimes n$,

$$\Leftrightarrow$$
 $,j \otimes j_0, Ins(t;j), j_0 \otimes , j \otimes n,$

$$\Leftrightarrow$$
 $,j \odot j_0, j_0 \odot, Ins(t;j), j \odot n,$

$$\Leftrightarrow$$
, $Ins(t;j), j \otimes n$,

$$, m \circlearrowleft j, m \circledcirc dm, Ins(t;j), \iff , m \circlearrowleft j, Ins(t;j), m \circledcirc m_0, m_0 \oplus, m_0 \circledcirc dm, m_0 \oplus, m_0 \oplus m$$

$$, j \otimes n, Ins(t;j), j \otimes j_0, j_0 \oplus, \Leftrightarrow , Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 \otimes n,$$

$$, j \otimes n, Ins(t;j), j \otimes j_0, j_0 \oplus,$$

$$\Leftrightarrow$$
, $Ins(t;j), j \otimes j_1, j_1 \oplus, j_1 \otimes n, j_1 \oplus, j \otimes j_0, j_0 \oplus,$

$$\Leftrightarrow$$
, $Ins(t;j), j \otimes j_1, j \otimes j_0, j_1 \oplus, j_0 \oplus, j_1 \otimes n, j_1 \oplus,$

$$\Leftrightarrow$$
 , $Ins(t;j), j \otimes j_1, j \otimes j_0, j_1 \otimes j_0, j_1 \oplus, j_0 \oplus, j_1 \otimes n, j_1 \oplus,$

$$\Leftrightarrow , Ins(t;j), j \otimes j_1, j \otimes j_0, j_1 \oplus, j_0 \oplus, j_1 \circlearrowleft j_0, j_1 \otimes n, j_1 \oplus,$$

$$\Leftrightarrow$$
 , $Ins(t;j)$, $j \otimes j_1$, $j \otimes j_0$, $j_1 \oplus$, $j_0 \oplus$, $j_1 \circ j_0$, $j_0 \otimes n$, $j_1 \oplus$,

$$\Leftrightarrow , Ins(t;j), j \otimes j_1, j \otimes j_0, j_1 \oplus, j_0 \oplus, j_0 \otimes n, j_1 \oplus,$$

$$\Leftrightarrow$$
 , $Ins(t;j), j \otimes j_1, j_1 \oplus, j_1 \oplus, j \otimes j_0, j_0 \oplus, j_0 \otimes n$,

$$\Leftrightarrow$$
 , $Ins(t;j), j \otimes j_1, j_1 \oplus, j \otimes j_0, j_0 \oplus, j_0 \otimes n$,

$$\Leftrightarrow$$
, $Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 \otimes n$,

$$,j!\rightarrow m,m\ominus,Ins(t;j),\ \Leftrightarrow\ ,j!\rightarrow m,Ins(t;j),m\ominus,$$
 proof:
$$,j!\rightarrow m,m\ominus,Ins(t;j),$$

$$\Leftrightarrow\ ,m\ominus,m!Cj,Ins(t;j),m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,m\ominus,m!Cj,Ins(t;j),m\ominus,$$

$$\Leftrightarrow\ ,j!\rightarrow m,m\ominus,m\ominus,Ins(t;j),m\ominus,$$

$$\Leftrightarrow\ ,j!\rightarrow m,m\ominus,m\ominus,Ins(t;j),m\ominus,$$

$$\Leftrightarrow\ ,j!\rightarrow m,Ins(t;j),m\ominus,$$

$$proof: \ ,j\rightarrow m,m\ominus,Ins(t;j),$$

$$\Leftrightarrow\ ,m\ominus,mCj,Ins(t;j),$$

$$\Leftrightarrow\ ,m\ominus,mCj,Ins(t;j),$$

$$\Leftrightarrow\ ,m\ominus,mCj,Ins(t;j),$$

$$\Leftrightarrow\ ,m\ominus,mCj,Ins(t;j),m\ominus,m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,m\ominus,mCj,Ins(t;j),m\ominus,m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,j\rightarrow m,m\ominus,Ins(t;j),m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,j\rightarrow m,m\ominus,m\ominus,Ins(t;j),m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,j\rightarrow m,m\ominus,m\ominus,Ins(t;j),m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,j\rightarrow m,m\ominus,m\ominus,Ins(t;j),m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,j\rightarrow m,m\ominus,m\ominus,Ins(t;j),m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,j\rightarrow m,Ins(t;j),m\ominus,m\ominus,$$

$$\Leftrightarrow\ ,j\rightarrow m,Ins(t;j),m\ominus,m\ominus,$$

 $, j \models \varnothing, j \otimes n, Ins(t; j), j \otimes j_0, j_0 \oplus, \Leftrightarrow , j \models \varnothing, Ins(t; j), j \otimes j_0, j_0 \oplus, j_0 \otimes n,$

25.2 Propositions property

$$, t! = \varnothing, \Leftrightarrow, @m, Ins(t; m), m @,$$

$$, m! \circlearrowleft_j, n! \circlearrowleft_j, m = n, Ins(t; j), \Leftrightarrow, m! \circlearrowleft_j, n! \circlearrowleft_j, Ins(t; j), m = n,$$

$$, m! \circlearrowleft_j, n! \circlearrowleft_j, m! = n, Ins(t; j), \Leftrightarrow, m! \circlearrowleft_j, Ins(t; j), m! = n,$$

$$, m! \circlearrowleft_j, m! = \varnothing, Ins(t; j), \Leftrightarrow, m! \circlearrowleft_j, Ins(t; j), m! = \varnothing,$$

$$proof:$$

$$, m! \circlearrowleft_j, m! = \varnothing, Ins(t; j),$$

$$\Leftrightarrow, m! \circlearrowleft_j, @n, m! = n, n \circledast, Ins(t; j),$$

$$\Leftrightarrow, m! \circlearrowleft_j, @n, n! \circlearrowleft_j, m! = n, Ins(t; j), n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft_j, n! \circlearrowleft_j, m! = n, Ins(t; j), n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft_j, n! \circlearrowleft_j, Ins(t; j), m! = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft_j, @n, n! \circlearrowleft_j, Ins(t; j), m! = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft_j, @n, Ins(t; j), m! = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft_j, Ins(t; j), @n, m! = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft_j, Ins(t; j), m! = \varnothing,$$

$$, t! \circlearrowleft_j, Ins(t; j),$$

$$\Leftrightarrow, t! \circlearrowleft_j, Ins(t; j),$$

$$\Leftrightarrow, t! \circlearrowleft_j, t! = \varnothing, Ins(t; j),$$

$$\Leftrightarrow$$
, $t!Oj$, $t!=\emptyset$, tOt_0 , $Ins(t;j)$, t_0Ot_0 ,

$$\Leftrightarrow$$
, $t!Oj$, $t!=\varnothing$, tOt_0 , tOt_0 , $Ins(t;j)$, t_0Ot_0 ,

$$\Leftrightarrow$$
, $t! \circlearrowleft j$, $t! = \varnothing$, $t \otimes t_0$, $t \circ t_0$, $Ins(t_0; j)$, $t_0 \otimes$,

$$\Leftrightarrow$$
, $t \otimes t_0$, $t \otimes t_0$, $t! \otimes j$, $t! = \varnothing$, $Ins(t_0; j)$, $t_0 \otimes j$,

$$\Leftrightarrow$$
, $t \odot t_0$, $t \odot t_0$, $t! \odot j$, $Ins(t_0; j)$, $t! = \varnothing$, $t_0 \odot$,

$$\Leftrightarrow$$
, $t! \circlearrowleft j$, $t \otimes t_0$, $t \circ t_0$, $Ins(t_0; j)$, $t! = \varnothing$, $t_0 \otimes$,

$$\Leftrightarrow$$
, $t! \circlearrowleft j$, $t \otimes t_0$, $t \circ t_0$, $Ins(t; j)$, $t! = \varnothing$, $t_0 \otimes$,

$$\Leftrightarrow$$
, $t!Oj$, tOt_0 , tOt_0 , t_0

$$\Leftrightarrow$$
, $t!Oj$, $Ins(t; j)$, $t!=\varnothing$,

$$\Leftrightarrow , t! \circlearrowleft j, Ins(t;j), t = j, t != \varnothing,$$

$$\Leftrightarrow$$
, $t!Oj$, $Ins(t;j)$, $t=j$, $j!=\varnothing$,

$$\Leftrightarrow$$
, $t!Oj$, $Ins(t; j)$, $j!=\varnothing$,

$$, t! \circlearrowleft j, m! \circlearrowleft j, Ins(t; j), m \circlearrowleft j, \iff , \otimes,$$

$$t! \circlearrowleft j, m! \circlearrowleft j, Ins(t; j), m \circlearrowleft j,$$

$$\Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, m \oplus n_0, n_0 \oplus, Ins(t;j), m \circlearrowleft j,$$

$$\Leftrightarrow \ , t! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc n_0, Ins(t;j), m \circlearrowleft j, n_0 \circledcirc,$$

$$\Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc n_0, if(n_0 \circlearrowleft j) - \left[, \right] -, Ins(t;j), m \circlearrowleft j, n_0 \circledast,$$

$$\Leftrightarrow, t! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc n_0, -\begin{bmatrix}, n_0 \circlearrowleft j, \\ , n_0 ! \circlearrowleft j, \end{bmatrix}, Ins(t; j), m \circlearrowleft j, n_0 \circledast,$$

$$\Leftrightarrow , = \begin{bmatrix} , t! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc n_0, n_0 \circlearrowleft j, Ins(t;j), m \circlearrowleft j, n_0 \circlearrowleft, \\ , t! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc n_0, n_0! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, n_0 \circlearrowleft, \end{bmatrix},$$

$$\Leftrightarrow$$
 <1>

$$\begin{array}{l} , t! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc n_0, n_0 \circlearrowleft j, Ins(t;j), m \circlearrowleft j, n_0 \circledcirc, \\ \Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circledcirc n_0, n_0 \circlearrowleft, n_0 \circlearrowleft j, m \circlearrowleft j, n_0 \circledcirc, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m \circledcirc n_0, n_0 \circlearrowleft, n_0 \circlearrowleft j, m \circlearrowleft j, n_0 \circledcirc, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), j! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, n_0 \circlearrowleft j, m \circlearrowleft j, n_0 \circledcirc, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, j! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, n_0 \circlearrowleft j, n_0 \circlearrowleft, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, m! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, n_0 \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, m! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, n_0 \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, m! = \varnothing, m \circledcirc n_0, m \circledcirc n_0, n_0 \circlearrowleft, n_0 \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, m! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, m \circlearrowleft j, m \circlearrowleft n_0, n_0 \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, m \circlearrowleft j, j \circledcirc n_0, n_0 \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, m \circlearrowleft j, j \circlearrowleft n_0, n_0 \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, m \circlearrowleft j, j \circlearrowleft n_0, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, m \circlearrowleft j, j \circlearrowleft n_0, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, t! \circlearrowleft j, Ins(t;j), m! = \varnothing, m \circledcirc n_0, n_0 \circlearrowleft, m \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , m! \circlearrowleft j, m \circlearrowleft j, m \circledcirc n_0, n_0! \circlearrowleft j, Ins(t;j), j \circlearrowleft n_1, n_1 \smile n_0, n_1 \smile, n_0 \smile, \\ \Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc n_0, n_0! \circlearrowleft j, Ins(t;j), j \circlearrowleft n_1, n_1! \circlearrowleft n_0, n_1 \smile, m \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc n_0, n_0! \circlearrowleft j, Ins(t;j), j \circlearrowleft n_1, n_1! \circlearrowleft n_0, n_1 \smile, m \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft n_0, j! \hookrightarrow n_0, j \circlearrowleft n_1, n_1! \circlearrowleft n_0, n_1 \smile, m \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft n_0, j! \hookrightarrow n_0, j \circlearrowleft n_1, n_1! \circlearrowleft n_0, n_1 \smile, m \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft n_0, j! \hookrightarrow n_0, j \circlearrowleft n_1, n_1! \circlearrowleft n_0, n_1 \smile, m \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft n_0, j! \hookrightarrow n_0, j \circlearrowleft n_1, n_1! \circlearrowleft n_0, n_1 \smile, m \circlearrowleft j, n_0 \smile, \\ \Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft n_0, j! \hookrightarrow n_0, j \circlearrowleft n_0, j! \hookrightarrow n_0, j \circlearrowleft n_0, m \circlearrowleft j, n_0 \smile, m \smile j, n_0 \smile, m \smile j, n_0 \smile, m$$

 \Leftrightarrow $t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, m \circlearrowleft n_0, j \circlearrowleft n_1, n_1! \circlearrowleft n_0, j! \rightarrow n_0, n_1 \circlearrowleft, n_0 \circlearrowleft$

 $\Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, m \circledcirc n_0, j \circledcirc n_1, \otimes, j! \rightarrow n_0, n_1 \circledcirc, n_0 \circledcirc,$

 $\Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, m \circledcirc n_0, j \circledcirc n_1, n_0 \circlearrowleft n_1, n_1! \circlearrowleft n_0, j! \rightarrow n_0, n_1 \circledcirc, n_0 \circledcirc,$

$$\Leftrightarrow, \otimes,$$

$$<1>$$

$$\Leftrightarrow, -\begin{bmatrix}, \otimes, -\\ & & \end{bmatrix}$$

$$\Leftrightarrow, -\begin{bmatrix}, m = \\ & & \end{bmatrix}$$

$$\Leftrightarrow$$
 , \otimes ,

$$,t!\mathcal{O}j,m!\mathcal{O}j,Ins(t;j), \Leftrightarrow \sim,m!\mathcal{O}j,$$

$$\Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t; j), if(m \circlearrowleft j) - \left[, \right],$$

$$\Leftrightarrow , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), \begin{bmatrix} , m \circlearrowleft j, \\ , m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , = \begin{bmatrix} , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, \\ , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , \begin{bmatrix} , \otimes, \\ \\ , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , \begin{bmatrix} , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, \otimes, \\ , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \end{bmatrix},$$

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow, t! \circlearrowleft j, m! \circlearrowleft j, Ins(t; j), \begin{bmatrix} , m \circlearrowleft j, \otimes, \\ , m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow \ , t! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), if(m \circlearrowleft j) - \left[\begin{matrix} , \otimes, \\ , \end{matrix} \right]_+,$$

$$\Leftrightarrow$$
, $t!Oj$, $m!Oj$, $Ins(t;j)$, $m!Oj$,

$$, m! \circlearrowleft j, m = t, Ins(t; j), \Leftrightarrow \sim, j! = \varnothing,$$

proof:

$$, m! \circlearrowleft j, m = t, Ins(t; j),$$

$$\Leftrightarrow$$
, $m!Oj, m=t, Ins(t; j),$

$$\Leftrightarrow$$
 $, m! \circlearrowleft j, m = t, Ins(m; j),$

$$\Leftrightarrow , m = t, m! \circlearrowleft j, Ins(m; j),$$

$$\Leftrightarrow$$
, $m = t$, $m!Oj$, $Ins(m; j)$, $j! = \varnothing$,

$$\Leftrightarrow$$
, $m!Oj$, $m = t$, $Ins(m; j)$, $j! = \varnothing$,

$$\Leftrightarrow$$
, $m!Oj$, $m = t$, $Ins(t; j)$, $j! = \varnothing$,

$$, Ins(t; j), \Leftrightarrow \sim, j! = \varnothing,$$

proof:

, Ins(t; j),

$$\Leftrightarrow$$
, $t = \emptyset$, $Ins(t; j)$,

$$\Leftrightarrow$$
, $\bigcirc m$, $Ins(t; m)$, $m \oplus$, $Ins(t; j)$,

$$\Leftrightarrow , @m, Ins(t; m), Ins(t; j), m \oplus,$$

$$\Leftrightarrow$$
, $@m, t! @m, j! @m, Ins(t; m), Ins(t; j), m @,$

$$\Leftrightarrow, @m, t! @m, j! @m, Ins(t; m), j! @m, Ins(t; j), m @,$$

$$\Leftrightarrow$$
, $@m, t! @m, j! @m, Ins(t; m), m = t, j! @m, Ins(t; j), m @,$

$$\Leftrightarrow$$
, $\bigcirc m, t! \bigcirc m, j! \bigcirc m, Ins(t; m), m! \bigcirc j, m = t, Ins(t; j), m \bigcirc$,

$$\Leftrightarrow$$
, $@m, t! @m, j! @m, Ins(t; m), m! @j, m = t, Ins(t; j), j! = \varnothing, m @,$

$$\Leftrightarrow$$
, $@m, t! @m, j! @m, Ins(t; m), Ins(t; j), j! = \varnothing , $m @$,$

$$\Leftrightarrow$$
, $@m, Ins(t; m), Ins(t; j), j! = \varnothing, m@,$

$$\Leftrightarrow$$
, $@m, Ins(t; m), m @, Ins(t; j), j! = \varnothing$,

$$\Leftrightarrow$$
, $t = \emptyset$, $Ins(t; j)$, $j = \emptyset$,

$$\Leftrightarrow$$
, $Ins(t;j), j!=\varnothing$,

$$, Ins(t; j), \Leftrightarrow \sim, t \stackrel{!}{=} \varnothing,$$

$$, m! \circlearrowleft j, Ins(t;j), \Leftrightarrow \sim, m! \circlearrowleft j,$$

$$, m! \circlearrowleft j, Ins(t;j),$$

$$\Leftrightarrow$$
, $m!Oj$, $t!=\emptyset$, $Ins(t;j)$,

$$\Leftrightarrow$$
, $t = \emptyset$, $m! \circlearrowleft j$, $Ins(t; j)$,

$$\Leftrightarrow$$
, $\bigcirc n$, $Ins(t;n)$, $n \bigcirc m! \bigcirc j$, $Ins(t;j)$,

$$\Leftrightarrow$$
, $\bigcirc n$, $Ins(t;n)$, $m! \bigcirc j$, $Ins(t;j)$, $n \bigcirc j$,

$$\Leftrightarrow$$
, $\bigcirc n$, $t! \bigcirc n$, $j! \bigcirc n$, $Ins(t; n)$, $m! \bigcirc j$, $Ins(t; j)$, $n \bigcirc$,

$$\Leftrightarrow$$
, $\bigcirc n$, $t! \bigcirc n$, $j! \bigcirc n$, $Ins(t; n)$, $j! \bigcirc n$, $m! \bigcirc j$, $Ins(t; j)$, $n \bigcirc$,

$$\Leftrightarrow$$
, $\bigcirc n$, $t! \bigcirc n$, $j! \bigcirc n$, $Ins(t; n)$, $t = n$, $j! \bigcirc n$, $m! \bigcirc j$, $Ins(t; j)$, $n \bigcirc j$,

$$\Leftrightarrow$$
, $\bigcirc n$, $t! \bigcirc n$, $j! \bigcirc n$, $Ins(t;n)$, $n! \bigcirc j$, $m! \bigcirc j$, $t = n$, $Ins(t;j)$, $n \bigcirc j$,

$$\Leftrightarrow$$
, $\bigcirc n, t! \bigcirc n, j! \bigcirc n, Ins(t; n), n! \bigcirc j, m! \bigcirc j, t = n, Ins(n; j), n \bigcirc$,

$$\Leftrightarrow$$
, $\bigcirc n$, $t! \bigcirc n$, $j! \bigcirc n$, $Ins(t;n)$, $t=n$, $n! \bigcirc j$, $m! \bigcirc j$, $Ins(n;j)$, $n \bigcirc$,

 \Leftrightarrow , $m! \circlearrowleft j, t! = \varnothing, Ins(t; j), m! \circlearrowleft j,$

 \Leftrightarrow , $m! \circlearrowleft j$, Ins(t; j), $m! \circlearrowleft j$,

$$\Leftrightarrow, @n, t! \circlearrowleft n, j! \circlearrowleft n, Ins(t; n), t = n, n! \circlearrowleft j, m! \circlearrowleft j, Ins(n; j), m! \circlearrowleft j, n \circledast,$$

$$\Leftrightarrow, @n, t! \circlearrowleft n, j! \circlearrowleft n, Ins(t; n), n! \circlearrowleft j, m! \circlearrowleft j, t = n, Ins(n; j), m! \circlearrowleft j, n \circledast,$$

$$\Leftrightarrow, @n, t! \circlearrowleft n, j! \circlearrowleft n, Ins(t; n), n! \circlearrowleft j, m! \circlearrowleft j, t = n, Ins(t; j), m! \circlearrowleft j, n \circledast,$$

$$\Leftrightarrow, @n, t! \circlearrowleft n, j! \circlearrowleft n, Ins(t; n), m! \circlearrowleft j, t = n, Ins(t; j), m! \circlearrowleft j, n \circledast,$$

$$\Leftrightarrow, @n, Ins(t; n), m! \circlearrowleft j, t = n, Ins(t; j), m! \circlearrowleft j, n \circledast,$$

$$\Leftrightarrow, @n, Ins(t; n), t = n, m! \circlearrowleft j, Ins(t; j), m! \circlearrowleft j, n \circledast,$$

$$\Leftrightarrow, @n, Ins(t; n), m! \circlearrowleft j, Ins(t; j), m! \circlearrowleft j, n \circledast,$$

$$\Leftrightarrow, @n, Ins(t; n), n \circledast m! \circlearrowleft j, Ins(t; j), m! \circlearrowleft j,$$

$$\Leftrightarrow, @n, Ins(t; n), n \circledast m! \circlearrowleft j, Ins(t; j), m! \circlearrowleft j,$$

$$\Leftrightarrow, t! = \varnothing, m! \circlearrowleft j, Ins(t; j), m! \circlearrowleft j,$$

25.3 Swap with identical node propositions

```
, m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft n, Ins(t;j), \iff, m! \circlearrowleft j, n! \circlearrowleft j, Ins(t;j), m \circlearrowleft n, proof: , m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft dn, Ins(t;j), \Leftrightarrow, m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc, Ins(t;j), \Leftrightarrow, m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm = dn, Ins(t;j), dm \circledcirc, dn \circledcirc, \Leftrightarrow, m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, dm! \circlearrowleft j, n \circledcirc dn, dn! \circlearrowleft j, dm = dn, Ins(t;j), dm \circledcirc, dn \circledcirc, \Leftrightarrow, m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm! \circlearrowleft j, dn! \circlearrowleft j, dm = dn, Ins(t;j), dm \circledcirc, dn \circledcirc, \Leftrightarrow, m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm! \circlearrowleft j, dn! \circlearrowleft j, Ins(t;j), dm = dn, dm \circledcirc, dn \circledcirc, \Leftrightarrow, m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm! \circlearrowleft j, dn! \circlearrowleft j, Ins(t;j), dm = dn, dm \circledcirc, dn \circledcirc, dn \circledcirc, dn \circledcirc, dn \circlearrowleft j, dn! \circlearrowleft j, Ins(t;j), dm = dn, dm \circledcirc, dn \circledcirc, dn \circledcirc, dn \circlearrowleft j, dn! \circlearrowleft j, dn! \circlearrowleft j, dn! \circlearrowleft j, dn \circlearrowleft j, dn
```

$$\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, Ins(t;j), dm = dn, dm \circledcirc, dn \circledcirc,$$

$$\Leftrightarrow , m! \circlearrowleft j, m \circledcirc dm, n! \circlearrowleft j, n \circledcirc dn, Ins(t;j), dm = dn, dm \circledcirc, dn \circledcirc,$$

$$\Leftrightarrow , m! \circlearrowleft j, m \circledcirc dm, n! \circlearrowleft j, Ins(t;j), n \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc,$$

$$\Leftrightarrow , n! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc dm, Ins(t;j), n \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc,$$

$$\Leftrightarrow , n! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circledcirc dm, n \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc,$$

$$, m! \circlearrowleft j, n! \circlearrowleft j, m! \circlearrowleft n, Ins(t; j), \Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, Ins(t; j), m! \circlearrowleft n,$$
 $, m \circlearrowleft j, Ins(t; j), \Leftrightarrow \sim, m \circlearrowleft j,$

$$, m \circlearrowleft j, Ins(t; j),$$

$$\Leftrightarrow , m \circlearrowleft j, m \circlearrowleft j, Ins(t;j),$$

 \Leftrightarrow , m!Oj, n!Oj, Ins(t;j), mOn,

$$\Leftrightarrow$$
 , $m \circlearrowleft j$, $m \otimes dm$, $j \otimes dj$, $dm = dj$, $dm \otimes dj \otimes dj$, $Ins(t; j)$,

$$\Leftrightarrow , m \circlearrowleft j, m \oplus dm, j \oplus dj, dm = dj, Ins(t; j), dm \oplus, dj \oplus,$$

$$\Leftrightarrow , m \circlearrowleft j, m \circledcirc dm, dm! \circlearrowleft j, j \circledcirc dj, dj! \circlearrowleft j, dm = dj, Ins(t;j), dm \circledcirc, dj \circledcirc,$$

$$\Leftrightarrow , m \circlearrowleft j, m \circledast dm, j \circledast dj, dm ! \circlearrowleft j, dj ! \circlearrowleft j, dm = dj, Ins(t; j), dm \circledast, dj \circledast,$$

$$\Leftrightarrow$$
 $, m \circlearrowleft j, m \otimes dm, j \otimes dj, dm ! \circlearrowleft j, dj ! \circlearrowleft j, Ins(t; j), dm = dj, dm \otimes , dj \otimes ,$

$$\Leftrightarrow , m \circlearrowleft j, m \otimes dm, j \otimes dj, Ins(t;j), dm = dj, dm \oplus, dj \oplus,$$

$$\Leftrightarrow , m \circlearrowleft j, m \otimes dm, Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 \otimes dj, j_0 \oplus, dm = dj, dm \oplus, dj \oplus,$$

$$\Leftrightarrow , m \circlearrowleft j, Ins(t;j), m \circledcirc m_0, m_0 \oplus, m_0 \circledcirc dm, m_0 \oplus, j \circledcirc j_0, j_0 \oplus, j_0 \circledcirc dj, j_0 \oplus, dm = dj, dm \oplus, dj \oplus$$

$$\Leftrightarrow , m \circlearrowleft j, Ins(t;j), m \circledcirc m_0, m_0 \oplus, j \circledcirc j_0, j_0 \oplus, m_0 \circledcirc dm, j_0 \circledcirc dj, dm = dj, dm \oplus, dj \oplus, m_0 \oplus, j_0 \oplus, m_0 \oplus, m_0$$

$$\Leftrightarrow , m \circlearrowleft j, Ins(t;j), m \circledcirc m_0, m_0 \oplus, j \circledcirc j_0, j_0 \oplus, m_0 \circlearrowleft j_0, m_0 \oplus, j_0 \oplus,$$

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow , m \circlearrowleft j, Ins(t;j), m \circledcirc m_0, j \circledcirc j_0, m_0 \oplus, j_0 \oplus, m_0 \circlearrowleft j_0, m_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , m \circlearrowleft j, Ins(t;j), m \circledcirc m_0, j \circledcirc j_0, m_0 \circlearrowleft j_0, m_0 \oplus, j_0 \oplus, m_0 \oplus, j_0 \oplus, m_0 \oplus, j_0 \oplus, m_0 \oplus,$$

$$\Leftrightarrow , m \circlearrowleft j, Ins(t;j), m \circledcirc m_0, j \circledcirc j_0, m_0 \circlearrowleft j_0, m_0 \circledcirc, m_0 \circledcirc, j_0 \smile, j_0 \smile,$$

$$\Leftrightarrow$$
 , $m \circlearrowleft j$, $Ins(t;j)$, $m \otimes m_0$, $j \otimes j_0$, $m_0 \circlearrowleft j_0$, $m_0 \oplus$, $j_0 \oplus$,

$$\Leftrightarrow$$
 $, m \circlearrowleft j, Ins(t; j), m \circlearrowleft j, m \circlearrowleft m_0, j \circlearrowleft j_0, m_0 \circlearrowleft j_0 \circlearrowleft$

$$\Leftrightarrow , m \circlearrowleft j, Ins(t;j), m \circlearrowleft m_0, m_0 \circlearrowleft, j \circlearrowleft j_0, j_0 \circlearrowleft, m \circlearrowleft j,$$

$$\Leftrightarrow$$
 , $m \circlearrowleft j$, $Ins(t;j)$, $m \circlearrowleft j$,

$$, Ins(t;j), m \circlearrowleft j, \iff , m \circlearrowleft j, \sim,$$

$$, Ins(t;j), m \circlearrowleft j,$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \boxed, -, Ins(t; j), m \circlearrowleft j,$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, \\ , m ! \circlearrowleft j, \end{bmatrix}, Ins(t; j), m \circlearrowleft j,$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \left[\begin{matrix} , m \circlearrowleft j, Ins(t;j), m \circlearrowleft j, \\ , m! \circlearrowleft j, Ins(t;j), m \circlearrowleft j, \end{matrix} \right],$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \left[\begin{matrix} , m \circlearrowleft j, Ins(t;j), m \circlearrowleft j, \\ \\ , m ! \circlearrowleft j, Ins(t;j), m ! \circlearrowleft j, m \circlearrowleft j, \end{matrix} \right] \cdot,$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, Ins(t;j), m \circlearrowleft j, \\ , m! \circlearrowleft j, Ins(t;j), \otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \left[\begin{matrix} , m \circlearrowleft j, Ins(t;j), m \circlearrowleft j, \\ , \otimes, \end{matrix} \right] - ,$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , Ins(t;j), m \circlearrowleft j, \\ , \otimes, \end{bmatrix},$$

$$\Leftrightarrow$$
 , $m \circlearrowleft j$, $Ins(t;j)$, $m \circlearrowleft j$,

$$, m \circlearrowleft j, Ins(t;j), \Leftrightarrow , Ins(t;j), m \circlearrowleft j,$$

$$, m \circlearrowleft j, Ins(t; j),$$

$$\Leftrightarrow$$
 , $m \circlearrowleft j$, $Ins(t;j)$, $m \circlearrowleft j$,

$$\Leftrightarrow$$
 , $Ins(t;j)$, $m \circlearrowleft j$,

$$, m! \circlearrowleft j, Ins(t; j), \Leftrightarrow , Ins(t; j), m! \circlearrowleft j,$$

$$, m! \mathcal{O}j, Ins(t; j),$$

$$\Leftrightarrow$$
 $,m!\bigcirc j,Ins(t;j),if(m\bigcirc j)-$

$$\Leftrightarrow , m! \circlearrowleft j, Ins(t;j), -\begin{bmatrix} , m \circlearrowleft j, \\ , m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, m! \circlearrowleft_{j, Ins(t; j), m} \circlearrowleft_{j, \\ m! \circlearrowleft_{j, Ins(t; j), m} ! \circlearrowleft_{j, \end{bmatrix}},$$

$$\Leftrightarrow , \begin{bmatrix} , m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, m \circlearrowleft j, \\ , m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, m! \circlearrowleft_{j, Ins(t; j), \otimes,} \\ , m! \circlearrowleft_{j, Ins(t; j), m! \circlearrowleft_{j}} \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix}, \otimes, \\ , m! \circlearrowleft j, Ins(t; j), m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix} , Ins(t;j), \otimes, \\ , m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix} , Ins(t;j), m \circlearrowleft j, m! \circlearrowleft j, \\ , m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix} , m \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \\ , m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix} , m \circlearrowleft j, \\ , m! \circlearrowleft j, Ins(t;j), m! \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow, if(m \circlearrowleft j) \begin{bmatrix} , \\ , \end{bmatrix}, Ins(t;j), m! \circlearrowleft j,$$

$$\Leftrightarrow, Ins(t;j), m! \circlearrowleft j,$$

$$, m \circlearrowleft j, m \circlearrowleft n, Ins(t; j), \Leftrightarrow , m \circlearrowleft j, Ins(t; j), m \circlearrowleft n,$$

$$, m \circlearrowleft j, m \circlearrowleft n, Ins(t; j),$$

$$\Leftrightarrow$$
 , $m \circ j$, $j \circ n$, $Ins(t; j)$,

$$\Leftrightarrow , m \circlearrowleft j, n \circlearrowleft j, Ins(t; j),$$

$$\Leftrightarrow , Ins(t;j), m \circlearrowleft j, n \circlearrowleft j,$$

$$\Leftrightarrow$$
, $Ins(t;j), m \circlearrowleft j, j \circlearrowleft n$,

$$\Leftrightarrow , Ins(t;j), m \circlearrowleft j, m \circlearrowleft n,$$

$$\Leftrightarrow \ , m \circlearrowleft j, Ins(t;j), m \circlearrowleft n,$$

$$, m! \circlearrowleft j, m \circlearrowleft n, Ins(t;j), \iff , m! \circlearrowleft j, Ins(t;j), m \circlearrowleft n,$$

$$, m! \circlearrowleft j, m \circlearrowleft n, Ins(t; j),$$

$$\Leftrightarrow$$
 , $m! \circlearrowleft j, m! \circlearrowleft j, m \circlearrowleft n, Ins(t; j),$

$$\Leftrightarrow$$
, $m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft n, Ins(t; j),$

$$\Leftrightarrow$$
, $m! \circlearrowleft j, n! \circlearrowleft j, Ins(t; j), m \circlearrowleft n$,

$$\Leftrightarrow$$
, $m!Oj$, $Ins(t;j)$, $n!Oj$, mOn ,

$$\Leftrightarrow$$
, $m!Oj$, $Ins(t;j)$, $m!Oj$, mOn ,

$$\Leftrightarrow$$
 $, m! \circlearrowleft j, m! \circlearrowleft j, Ins(t;j), m \circlearrowleft n,$

$$\Leftrightarrow$$
 , $m! \circlearrowleft j, Ins(t; j), m \circlearrowleft n$,

$$, m \mathcal{O}n, Ins(t; j), \iff , Ins(t; j), m \mathcal{O}n,$$

$$, m \circlearrowleft n, Ins(t; j),$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \boxed{, } -, m \circlearrowleft n, Ins(t;j),$$

$$\Leftrightarrow$$
 $,if(m\circlearrowleft j)$ - $\begin{bmatrix} ,m\circlearrowleft j,\\ m \circlearrowleft j \end{bmatrix}$ - $,m\circlearrowleft n,Ins(t;j),$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, m \circlearrowleft n, Ins(t;j), \\ , m ! \circlearrowleft j, m \circlearrowleft n, Ins(t;j), \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, Ins(t;j), m \circlearrowleft n, \\ , m! \circlearrowleft j, Ins(t;j), m \circlearrowleft n, \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \begin{bmatrix} , m \circlearrowleft j, \\ , m! \circlearrowleft j, \end{bmatrix}, Ins(t; j), m \circlearrowleft n,$$

$$\Leftrightarrow \ , if (m \circlearrowleft j) - \boxed{\ , \ } \\ -, Ins(t;j), m \circlearrowleft n,$$

$$\Leftrightarrow$$
, $Ins(t;j)$, mOn ,

$$, m! \mathcal{O}n, Ins(t; j), \Leftrightarrow , Ins(t; j), m! \mathcal{O}n,$$

25.4 Other

$$, j \rightarrow k, Ins(t;j), \iff, Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 \rightarrow k, j_0 \oplus, proof:$$

$$, j \rightarrow k, Ins(t;j),$$

$$\Leftrightarrow, j \otimes m, m \oplus, m \circ k, m \oplus, Ins(t;j), m \oplus,$$

$$\Leftrightarrow, j \otimes m, m \oplus, Ins(t;j), m \circ k, m \oplus,$$

$$\Leftrightarrow, j \otimes m, m \circ j, m \oplus, Ins(t;j), m \circ k, m \oplus,$$

$$\Leftrightarrow, j \otimes m, m \circ j, Ins(t;j), m \circ k, m \oplus,$$

$$\Leftrightarrow, j \otimes m, m \circ j, Ins(t;j), m \oplus, m \oplus, m \circ k, m \oplus,$$

$$\Leftrightarrow, j \otimes m, Ins(t;j), m \oplus, m \oplus, m \circ k, m \oplus,$$

$$\Leftrightarrow, j \otimes m, Ins(t;j), j \otimes m, m \oplus, m \oplus, m \circ k, m \oplus,$$

$$\Leftrightarrow, Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 \otimes m, m \oplus, m \oplus, m \circ k, m \oplus,$$

$$\Leftrightarrow, Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 \otimes j_1, j_1 \oplus, j_0 \oplus, j_0 \otimes m, m \oplus, m \oplus, m \circ k, m \oplus,$$

$$\Leftrightarrow, Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 \otimes j_1, j_1 \oplus, j_0 \oplus, j_0 \otimes m, m \oplus, m \oplus, m \circ k, m \oplus,$$

$$\Leftrightarrow, Ins(t;j), j \otimes j_0, j \otimes m, j_0 \oplus, j_0 \otimes j_1, j_1 \oplus, j_0 \oplus, j_0 \otimes m, m \oplus, m \circ k, m \oplus, j_1 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, Ins(t;j), j \otimes j_0, j \otimes m, j_0 \oplus, j_0 \otimes j_1, j_1 \oplus, m \oplus, m \circ k, m \oplus, j_1 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, Ins(t;j), j \otimes j_0, j \otimes m, j_0 \oplus, m \oplus, j_0 \otimes j_1, j_1 \oplus, m \oplus, m \circ k, m \oplus, j_1 \oplus, j_0 \oplus,$$

$$\Leftrightarrow, Ins(t;j), j \otimes j_0, j \otimes m, j_0 \oplus, m \oplus, j_0 \otimes j_1, j_1 \oplus, m \oplus, m \circ k, m \oplus, j_1 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
 $,Ins(t;j),j\otimes j_0,j\otimes m,m \circlearrowleft j_0,j_0\oplus,m\oplus,j_0\otimes j_1,j_1\oplus,m\oplus,m \circlearrowleft k,m\oplus,j_1\oplus,j_0\oplus,$

$$\Leftrightarrow , Ins(t;j), j \odot j_0, j \odot m, j_0 \oplus, m \oplus, m \circlearrowleft j_0, j_0 \odot j_1, j_1 \oplus, m \oplus, m \circlearrowleft k, m \oplus, j_1 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , Ins(t;j), j \otimes j_0, j \otimes m, j_0 \oplus, m \oplus, j_0 \otimes j_1, j_0 \otimes j_1, m \otimes j_0, j_1 \oplus, m \oplus, m \otimes k, m \oplus, j_1 \oplus, j_0 \oplus, j_2 \oplus, j_3 \oplus, j_4 \oplus, j$$

$$\Leftrightarrow , Ins(t;j), j \otimes j_0, j \otimes m, j_0 \oplus, m \oplus, j_0 \otimes j_1, j_0 \circlearrowleft j_1, m \circlearrowleft j_1, j_1 \oplus, m \oplus, m \circlearrowleft k, m \oplus, j_1 \oplus, j_0 \oplus, j_1 \oplus, j_2 \oplus, j_2 \oplus, j_3 \oplus, j_4 \oplus, j$$

$$\Leftrightarrow , Ins(t;j), j \otimes j_0, j \otimes m, j_0 \oplus, m \oplus, j_0 \otimes j_1, j_0 \circlearrowleft j_1, j_1 \oplus, m \oplus, m \circlearrowleft j_1, m \circlearrowleft k, m \oplus, j_1 \oplus, j_0 \oplus, m \oplus, m \circlearrowleft j_1 \oplus, m \ominus, m \hookrightarrow j_1 \oplus, m \hookrightarrow j_$$

$$\Leftrightarrow , Ins(t;j), j \odot j_0, j \odot m, j_0 \oplus, m \oplus, j_0 \odot j_1, j_0 \circlearrowleft j_1, j_1 \oplus, m \oplus, m \circlearrowleft j_1, j_1 \circlearrowleft k, m \oplus, j_1 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , Ins(t;j), j \odot j_0, j \odot m, j_0 \oplus, m \oplus, j_0 \odot j_1, j_1 \oplus, m \oplus, j_1 \circlearrowleft k, m \oplus, j_1 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , Ins(t;j), j \otimes j_0, j \otimes m, m \oplus, m \oplus, m \oplus, j_0 \oplus, j_0 \otimes j_1, j_1 \oplus, j_1 \mathring{\bigcirc} k, j_1 \oplus, j_0 \oplus, j_$$

$$\Leftrightarrow$$
 , $Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 \otimes j_1, j_1 \oplus, j_1 \circ k, j_1 \oplus, j_0 \oplus,$

$$\Leftrightarrow$$
 , $Ins(t;j)$, $j \oplus j_0$, $j_0 \oplus$, $j_0 \rightarrow k$, $j_0 \oplus$,

$$, j \rightarrow k, Ins(t; j), j \otimes j_0, j_0 \oplus, \Leftrightarrow , Ins(t; j), j \otimes j_0, j_0 \oplus, j_0 \rightarrow k,$$

$$, m != \varnothing, Ins(t; j), \Leftrightarrow , \sim, m != \varnothing,$$

$$, m \models \varnothing, Ins(t; j),$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \boxed, \\ m! = \varnothing, Ins(t; j),$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \begin{bmatrix} , m \circlearrowleft j, \\ , m ! \circlearrowleft j, \end{bmatrix} -, m ! = \varnothing, Ins(t; j),$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, m != \varnothing, Ins(t;j), \\ , m ! \circlearrowleft j, m != \varnothing, Ins(t;j), \end{bmatrix},$$

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow ,if(m\circlearrowleft j) = \begin{bmatrix} ,m\circlearrowleft j,m!=\varnothing,Ins(t;j),\\ ,m!\circlearrowleft j,m!=\varnothing,Ins(t;j),m!=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow ,if(m\circlearrowleft j) = \begin{bmatrix} ,m\circlearrowleft j,m!=\varnothing,Ins(t;j),j!=\varnothing,\\ ,m!\circlearrowleft j,m!=\varnothing,Ins(t;j),m\circlearrowleft j,j!=\varnothing,\\ ,m!\circlearrowleft j,m!=\varnothing,Ins(t;j),m\circlearrowleft j,m!=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow ,if(m\circlearrowleft j) = \begin{bmatrix} ,m!=\varnothing,Ins(t;j),m\circlearrowleft j,m!=\varnothing,\\ ,m!\circlearrowleft j,m!=\varnothing,Ins(t;j),m\circlearrowleft j,m!=\varnothing,\\ ,m!\circlearrowleft j,m!=\varnothing,Ins(t;j),m!=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow ,if(m\circlearrowleft j) = \begin{bmatrix} ,m\circlearrowleft j,m!=\varnothing,Ins(t;j),m!=\varnothing,\\ ,m!\circlearrowleft j,m!=\varnothing,Ins(t;j),m!=\varnothing, \end{bmatrix},$$

$$\Leftrightarrow ,if(m\circlearrowleft j) = \begin{bmatrix} ,m\circlearrowleft j,\\ ,m!\circlearrowleft j,m!=\varnothing,Ins(t;j),m!=\varnothing,\\ ,m!\circlearrowleft j,m!=\varnothing,Ins(t;j),m!=\varnothing,\\ \end{cases}$$

$$\Leftrightarrow ,if(m\circlearrowleft j) = \begin{bmatrix} ,m\circlearrowleft j,\\ ,m!\circlearrowleft j,\\ ,m!=\varnothing,Ins(t;j),m!=\varnothing,\\ \end{cases}$$

$$\Leftrightarrow ,if(m\circlearrowleft j) = \begin{bmatrix} ,m\circlearrowleft j,\\ ,m!\circlearrowleft j,\\ ,m!=\varnothing,Ins(t;j),m!=\varnothing,\\ \end{cases}$$

$$\Leftrightarrow ,if(m\circlearrowleft j) = \begin{bmatrix} ,m\circlearrowleft j,\\ ,m!\circlearrowleft j,\\ ,m!=\varnothing,Ins(t;j),m!=\varnothing,\\ \end{cases}$$

$$, m = t, Ins(t; j), \Leftrightarrow , \sim, m = t,$$

proof:

$$, m = t, Ins(t; j),$$

 $\Leftrightarrow , m = t, Ins(t; j), t = j,$
 $\Leftrightarrow , m = t, Ins(m; j), t = j,$
 $\Leftrightarrow , m = t, Ins(m; j), m = j, t = j,$
 $\Leftrightarrow , m = t, Ins(m; j), m = j, t = m,$

$$\Leftrightarrow$$
, $m = t$, $Ins(m; j)$, $t = m$,

$$\Leftrightarrow$$
, $m = t$, $Ins(t; j)$, $m = t$,

$$,Ins(t;j),j\rightarrow i, \Leftrightarrow ,\otimes,$$

$$, Ins(t;j), j \rightarrow i,$$

$$\Leftrightarrow$$
, $Ins(t;j), j \models \varnothing, j \rightarrow i$,

$$\Leftrightarrow$$
, $Ins(t; j), j! = \emptyset, j \rightarrow i, j > i,$

$$\Leftrightarrow$$
, $Ins(t;j), j \models \varnothing, j \rightarrow i, j > i, j ! \circlearrowleft i,$

$$\Leftrightarrow$$
, $Ins(t;j), j \rightarrow i, j! \circlearrowleft i$,

$$\Leftrightarrow$$
, $Ins(t;j), j!Oi, j \rightarrow i$,

$$\Leftrightarrow$$
, $j!Oi, Ins(t; j), j \rightarrow i$,

$$\Leftrightarrow$$
, $i!Oj$, $Ins(t;j)$, $j \rightarrow i$,

$$\Leftrightarrow$$
, $i!Oj$, $Ins(t;j)$, $j \otimes j_0$, $j_0 \oplus$, $j_0 Oi$, $j_0 \oplus$,

$$\Leftrightarrow ,i! \circlearrowleft j, Ins(t;j), j \odot j_0, j_0 \oplus, j_0 \odot dj, i \odot di, dj = di, dj \oplus, di \oplus, j_0 \oplus,$$

$$\Leftrightarrow ,i! \circlearrowleft j, Ins(t;j), j \odot j_0, j_0 \oplus, j_0 \oplus dj, j_0 \oplus, i \odot di, dj = di, dj \oplus, di \oplus,$$

$$\Leftrightarrow$$
, $i! \circlearrowleft j$, $j \otimes dj$, $Ins(t; j)$, $i \otimes di$, $dj = di$, $dj \otimes di \otimes di$,

$$\Leftrightarrow$$
, $j \otimes dj$, $i! \circ j$, $Ins(t; j)$, $i \otimes di$, $dj = di$, $dj \otimes j$, $di \otimes j$,

$$\Leftrightarrow$$
, $j \otimes dj$, $i! \circ j$, $i \otimes di$, $Ins(t; j)$, $dj = di$, $dj \otimes j$, $di \otimes j$,

$$\Leftrightarrow$$
 , $j \otimes dj$, $dj! \circ j$, $i! \circ j$, $i \otimes di$, $di! \circ j$, $Ins(t; j)$, $dj = di$, $dj \otimes j$, $di \otimes j$,

$$\Leftrightarrow$$
 , $i!Oj$, $j \otimes dj$, $i \otimes di$, $dj!Oj$, $di!Oj$, $Ins(t;j)$, $dj = di$, $dj \otimes di \otimes di$,

$$\Leftrightarrow$$
 $,i!Oj,jOdj,iOdi,dj!Oj,di!Oj,dj=di,Ins(t;j),djO,diO,$

$$\Leftrightarrow$$
, $i!Oj$, $j \otimes dj$, $i \otimes di$, $dj = di$, $Ins(t; j)$, $dj \otimes di \otimes di$,

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow ,i! \circlearrowleft j,j \otimes dj,i \otimes di,dj = di,dj \otimes ,di \otimes ,Ins(t;j),$$

$$\Leftrightarrow$$
, $i!Oj$, jOi , $Ins(t; j)$,

$$\Leftrightarrow$$
, $i!Oj$, iOj , $Ins(t; j)$,

$$\Leftrightarrow$$
, \otimes , $Ins(t; j)$,

$$\iff$$
 $, \otimes,$

$$, Ins(t;j), \Leftrightarrow, \sim, j! \rightarrow i,$$

 $, Ins(t;j), j \oplus, \Leftrightarrow \sim, j! \circlearrowleft i,$

$$, m! \circlearrowleft j, j != m, Ins(t; j), \iff, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 \oplus, j_0 != m, j_0 \oplus,$$

$$, m!\mathcal{O}j, j!=m, Ins(t;j),$$

$$\Leftrightarrow$$
, $m! \circlearrowleft j, j! = m, Ins(t; j), j \circlearrowleft j_0, j_0 \circlearrowleft$,

$$\Leftrightarrow , m! \circlearrowleft j, j! = m, Ins(t; j), j \odot j_0, j_0 \oplus, j_$$

$$\Leftrightarrow , m! \circlearrowleft j, j != m, Ins(t; j), j \circlearrowleft j_0, j_0 \oplus, if(j_0 = m) - \lnot, j_0 \oplus, if(j_$$

$$\Leftrightarrow, m! \circlearrowleft j, j != m, Ins(t; j), j \circlearrowleft j_0, j_0 \oplus, -\begin{bmatrix}, j_0 = m, \\\\, j_0 != m,\end{bmatrix}, j_0 \oplus,$$

$$\Leftrightarrow \;,j != m,m ! \circlearrowleft j, Ins(t;j), j \odot j_0, j_0 \oplus, -\begin{bmatrix},j_0 = m,\\ ,j_0 != m,\end{bmatrix}, j_0 \oplus, -\begin{bmatrix},j_0 = m,\\ ,j_0 != m,\end{bmatrix}$$

$$\Leftrightarrow , - \begin{bmatrix} ,j! = m,m! \circlearrowleft j, Ins(t;j), j \circledcirc j_0, j_0 \oplus, j_0 = m, j_0 \oplus, \\ ,j! = m,m! \circlearrowleft j, Ins(t;j), j \circledcirc j_0, j_0 \oplus, j_0 ! = m, j_0 \oplus, \end{bmatrix},$$

$$\Leftrightarrow , -\begin{bmatrix} , j != m, m ! \circlearrowleft j, j = m, Ins(t;j), \\ , j != m, m ! \circlearrowleft j, Ins(t;j), j \odot j_0, j_0 \oplus, j_0 != m, j_0 \oplus, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix} , m! \circlearrowleft j, j! = m, j = m, Ins(t; j), \\ , j! = m, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, j_0 ! = m, j_0 ⊕, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix} , m! \circlearrowleft j, \otimes, Ins(t; j), \\ , j! = m, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, j_0 ! = m, j_0 ⊕, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix} , \otimes, \\ , j! = m, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, j_0 ! = m, j_0 ⊕, \end{bmatrix},$$

$$\Leftrightarrow, \begin{bmatrix} , j! = m, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, j_0 ! = m, j_0 ⊕, \end{bmatrix},$$

$$\Leftrightarrow, j! = m, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, \begin{bmatrix} , j_0 = m, \otimes, \\ , j_0 ! = m, j_0 ⊕, \end{bmatrix},$$

$$\Leftrightarrow, j! = m, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, if(j_0 = m), \end{bmatrix},$$

$$\Leftrightarrow, j! = m, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, if(j_0 = m), \end{bmatrix},$$

$$\Leftrightarrow, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, j_0 ! = m, j_0 ⊕,$$

$$\Leftrightarrow, m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 ⊕, j_0 ! = m, j_0 ⊕,$$

$$, m! \circlearrowleft j, j! = m, Ins(t; j), j \circledcirc j_0, j_0 \oplus, \iff , m! \circlearrowleft j, Ins(t; j), j \circledcirc j_0, j_0 \oplus, j_0 ! = m,$$

$$, m! \circlearrowleft j, j! = m, Ins(t; j), j \oplus, \iff , m! \circlearrowleft j, Ins(t; j), j \oplus, j! = m,$$

$$, j! = \varnothing, Ins(t; j), \iff , Ins(t; j), j \circledcirc j_0, j_0 \oplus, j_0 ! = \varnothing, j_0 \oplus,$$

$$, j = \varnothing, Ins(t; j), \implies , Ins(t; j), j \circledcirc j_0, j_0 \oplus, j_0 = \varnothing, j_0 \oplus,$$

$$, j! = \varnothing, Ins(t; j), j \circledcirc j_0, j_0 \oplus, \iff , Ins(t; j), j \circledcirc j_0, j_0 \oplus, j_0 ! = \varnothing,$$

$$, j = \varnothing, Ins(t; j), j \circledcirc j_0, j_0 \oplus, \iff , Ins(t; j), j \circledcirc j_0, j_0 \oplus, j_0 = \varnothing,$$

$$, j! = \varnothing, Ins(t; j), j \oplus, \iff , Ins(t; j), j \oplus, j = \varnothing,$$

$$, j! = \varnothing, Ins(t; j), j \oplus, \iff , Ins(t; j), j \oplus, j! = \varnothing,$$

$$, i \circlearrowleft j, j = \varnothing, Ins(t; j), i \oplus, \iff, i \circlearrowleft j, Ins(t; j), i \oplus, i = \varnothing,$$
$$, i \circlearrowleft j, j != \varnothing, Ins(t; j), i \oplus, \iff, i \circlearrowleft j, Ins(t; j), i \oplus, i != \varnothing,$$

25.5 Swap with node connectivity propositions

25.5.1 Recursive Function R(i)

$$i! \circlearrowleft j, R(i), Ins(t;j), \Leftrightarrow , i! \circlearrowleft j, Ins(t;j), R(i),$$
 induction proof:
$$premise \ 1:$$

$$, i = \varnothing, i! \circlearrowleft j, R(i), Ins(t;j),$$

$$\Leftrightarrow , i! \circlearrowleft j, i = \varnothing, R(i), Ins(t;j),$$

$$\Leftrightarrow , i! \circlearrowleft j, i! \circlearrowleft j, i = \varnothing, Ins(t;j),$$

$$\Leftrightarrow , i! \circlearrowleft j, i! \circlearrowleft j, Ins(t;j), i = \varnothing,$$

$$\Leftrightarrow , i! \circlearrowleft j, i! \circlearrowleft j, Ins(t;j), i = \varnothing,$$

$$\Leftrightarrow , i! \circlearrowleft j, i! \circlearrowleft j, Ins(t;j), i = \varnothing, R(i),$$

$$\Leftrightarrow , i! \circlearrowleft j, i! \circlearrowleft j, Ins(t;j), R(i),$$

$$\Leftrightarrow , i! \circlearrowleft j, i! \circlearrowleft j, Ins(t;j), R(i),$$

$$\Leftrightarrow , i! \circlearrowleft j, i! \circlearrowleft j, Ins(t;j), R(i),$$

$$\Leftrightarrow , i! \circlearrowleft j, Ins(t;j), R(i),$$

$$\Leftrightarrow , i! \circlearrowleft j, Ins(t;j), R(i),$$

$$premise \ 2:$$

$$, \&SHi \to i, i! \circlearrowleft j, R(i), Ins(t;j),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i! \circlearrowleft j, R(i), Ins(t;j),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i! \circlearrowleft j, i! = \varnothing, R(i), Ins(t;j),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i! \circlearrowleft j, i! = \varnothing, R(i), Ins(t;j),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i! \circlearrowleft j, i! = \varnothing, i \oplus, R(i), Ins(t;j),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i! \circlearrowleft j, i! = \varnothing, i \oplus, R(i), Ins(t;j),$$

$$\Leftrightarrow ,i \mathbin{!}= \varnothing, i \oplus, \&SHi \mathbin{\rightarrow} i, i! \circlearrowleft j, R(i), Ins(t;j),$$

$$\Leftrightarrow$$
, $i \models \varnothing$, $i \oplus$, &SH $i \rightarrow i$, $i! \circlearrowleft j$, $Ins(t; j)$, $R(i)$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i = \varnothing, i \oplus, i! \circlearrowleft j, Ins(t; j), R(i),$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i! \circlearrowleft j, i! = \varnothing, i \oplus, Ins(t; j), R(i),$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i! \circlearrowleft j$, $i! \circlearrowleft j$, $i! = \varnothing$, $i \oplus$, $Ins(t; j)$, $R(i)$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i! \circlearrowleft j, i! = \varnothing, i! \circlearrowleft j, i \oplus, Ins(t; j), R(i),$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, i! \circlearrowleft\!j, i! = \varnothing, i! \circlearrowleft\!j, Ins(t; j), i\oplus, R(i),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i! \circlearrowleft j, i! \circlearrowleft j, i! = \varnothing, Ins(t; j), i \oplus, R(i),$

$$\Leftrightarrow$$
, &SHi $\bigcirc i$, $i!\bigcirc j$, $i!\bigcirc j$, $Ins(t;j)$, $i!=\varnothing$, $i\oplus$, $R(i)$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i! \circlearrowleft j, i! \circlearrowleft j, Ins(t; j), i! = \varnothing, R(i),$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i! \circlearrowleft j, i! \circlearrowleft j, i! = \varnothing, Ins(t; j), R(i),$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, i! \circlearrowleft j, i!= \varnothing , $Ins(t;j)$, $R(i)$,

$$\Leftrightarrow$$
 , $i != \varnothing$, &SHi $\circlearrowleft i, i ! \circlearrowleft j, Ins(t; j), R(i)$,

conclusion:

$$,i! \circlearrowleft j, R(i), Ins(t;j), \Leftrightarrow ,i! \circlearrowleft j, Ins(t;j), R(i),$$

$$,i \circ j, j = \varnothing, R(i), Ins(t;j), \Leftrightarrow ,i \circ j, j = \varnothing, Ins(t;j), R(i), i \circ j, j = \varnothing, Ins(t;j), R(i), i \circ j, j = \varnothing, R(i), R(i)$$

induction proof:

premise 1:

$$, i = \varnothing, i \circlearrowleft j, j = \varnothing, R(i), Ins(t; j),$$

$$\Leftrightarrow$$
, $i \circlearrowleft j, j = \varnothing, i = \varnothing, R(i), Ins(t; j),$

$$\Leftrightarrow$$
, $i \circ j$, $j = \varnothing$, $i = \varnothing$, $Ins(t; j)$,

$$\Leftrightarrow$$
, $i \circ j$, $i \circ j$, $i = \varnothing$, $j = \varnothing$, $Ins(t; j)$,

$$\Leftrightarrow$$
, $i \circlearrowleft j$, $i \circlearrowleft j$, $i = \varnothing$, $j = \varnothing$, $Ins(t; j)$,

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow, i \circ j, i = \emptyset, i \circ j, j = \emptyset, Ins(t; j),$$

$$\Leftrightarrow, i \circ j, i = \emptyset, i \circ j, j = \emptyset, Ins(t; j), i \circ \emptyset, i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i = \emptyset, i \circ j, Ins(t; j), i \circ \emptyset, i = \emptyset, i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i = \emptyset, i \circ j, Ins(t; j), i \circ \emptyset, i = \emptyset, R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i = \emptyset, i \circ j, j = \emptyset, Ins(t; j), i \circ \emptyset, R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i = \emptyset, i \circ j, j = \emptyset, Ins(t; j), j \circ \emptyset, R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i = \emptyset, j = \emptyset, Ins(t; j), i \circ j, j \circ \emptyset, R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i = \emptyset, j = \emptyset, Ins(t; j), i \circ j, i \circ \emptyset, R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i = \emptyset, j = \emptyset, Ins(t; j), i \circ j, i \circ \emptyset, R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ \emptyset, j = \emptyset, Jns(t; j), i \circ j, j \circ \emptyset, R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), i \circ j, j \circ \emptyset, R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), R(i), i \circ \emptyset,$$

$$\Leftrightarrow, i \circ j, i \circ \emptyset, j \circ \emptyset, Ins(t; j), R(i), i \circ \emptyset,$$

$$\Leftrightarrow, kSHi \circ i, i \circ j, j \circ \emptyset, R(i), Ins(t; j),$$

$$\Leftrightarrow, kSHi \circ i, i \circ j, j \circ \emptyset, i \circ \emptyset, R(i), Ins(t; j),$$

$$\Leftrightarrow, kSHi \circ i, i \circ j, j \circ \emptyset, i \circ \emptyset, R(i), Ins(t; j),$$

$$\Leftrightarrow, kSHi \circ i, i \circ j, j \circ \emptyset, i \circ \emptyset, R(i), Ins(t; j),$$

$$\Leftrightarrow, kSHi \circ i, i \circ j, j \circ \emptyset, i \circ \emptyset, R(i), Ins(t; j),$$

$$\Leftrightarrow, kSHi \circ i, i \circ j, j \circ \emptyset, i \circ \emptyset, R(i), Ins(t; j),$$

$$\Leftrightarrow, kSHi \circ i, i \circ j, j \circ \emptyset, i \circ \emptyset, R(i), Ins(t; j),$$

$$\Leftrightarrow, kSHi \circ i, i \circ j, j \circ \emptyset, i \circ \emptyset, R(i), Ins(t; j),$$

 $\Leftrightarrow ,i\mathop{!=}\varnothing ,i\oplus ,\&\mathit{SHi}\mathop{\rightarrow}\!\! i,i\mathop{\circlearrowleft}\!\! j,j\mathop{=}\varnothing ,R(i),Ins(t;j),$

$$\Leftrightarrow ,i != \varnothing, i \oplus, \&SHi \rightarrow i, i \\ \circlearrowleft j, j = \varnothing, Ins(t;j), R(i), i \\ \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i = \varnothing, i \oplus, i \circlearrowleft j, j = \varnothing, Ins(t; j), R(i), i \ominus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i = \varnothing, j = \varnothing, i \oplus, i \circlearrowleft j, Ins(t; j), R(i), i \ominus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i \circlearrowleft j$, $i \models \varnothing$, $j = \varnothing$, $i \oplus$, $Ins(t; j)$, $R(i)$, $i \ominus$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, i != \varnothing, j = \varnothing, i ! \circlearrowleft j, i \oplus, Ins(t; j), R(i), i \ominus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, i != \varnothing, j = \varnothing, i ! \circlearrowleft j, Ins(t; j), i \oplus, R(i), i \ominus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, j = \varnothing, i! \circlearrowleft j, i! = \varnothing, Ins(t; j), i \oplus, R(i), i \ominus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, j = \varnothing, i! \circlearrowleft j, Ins(t; j), i! = \varnothing, i \oplus, R(i), i \ominus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, j = \varnothing, i! \circlearrowleft j, Ins(t; j), i! = \varnothing, R(i), i \hookrightarrow$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, i! = \varnothing, j = \varnothing, i! \circlearrowleft j, Ins(t; j), R(i), i \hookrightarrow$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, i! = \varnothing, j = \varnothing, Ins(t; j), R(i), i \circlearrowleft$,

$$\Leftrightarrow$$
, $i \models \varnothing$, &SHi $\circlearrowleft i, i \circlearrowleft j, j = \varnothing$, $Ins(t; j), R(i), i \circlearrowleft$,

conclusion:

$$,i \circlearrowleft j,j = \varnothing, R(i), Ins(t;j), \Leftrightarrow ,i \circlearrowleft j,j = \varnothing, Ins(t;j), R(i),i \ominus,$$

$$,i \circ j,j \models \varnothing, R(i), Ins(t;j), \Leftrightarrow ,i \circ j,j \models \varnothing, Ins(t;j), R(i),$$

induction proof:

premise 1:

$$, i = \varnothing, i \circlearrowleft j, j != \varnothing, R(i), Ins(t; j),$$

$$\Leftrightarrow$$
, $i \circ j$, $j! = \varnothing$, $i = \varnothing$, $R(i)$, $Ins(t; j)$,

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, j != \varnothing, Ins(t;j),$

$$\Leftrightarrow$$
, $i \circ j$, $i = \emptyset$, $j != \emptyset$, $i ! \circ j$, $Ins(t; j)$,

$$\Leftrightarrow$$
, $i \circ j$, $j! = \varnothing$, $i! \circ j$, $i = \varnothing$, $Ins(t; j)$,

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow$$
, $i \circ j$, $j = \varnothing$, $i! \circ j$, $Ins(t; j)$, $i = \varnothing$,

$$\Leftrightarrow$$
, $i \circ j$, $j! = \varnothing$, $i! \circ j$, $Ins(t; j)$, $i = \varnothing$, $R(i)$,

$$\Leftrightarrow$$
, $i \circ j$, $j! = \varnothing$, $i! \circ j$, $i = \varnothing$, $Ins(t; j)$, $R(i)$,

$$\Leftrightarrow$$
 $,i \circlearrowleft j, i = \varnothing, j != \varnothing, i! \circlearrowleft j, Ins(t; j), R(i),$

$$\Leftrightarrow$$
, $i \circ j$, $i = \varnothing$, $j != \varnothing$, $Ins(t; j)$, $R(i)$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \circ j$, $j != \emptyset$, $Ins(t; j)$, $R(i)$,

premise 2:

$$, \&\mathit{SHi} \rightarrow \!\! i, i \circlearrowleft \!\!\! j, j \vcentcolon = \!\!\! \varnothing, R(i), Ins(t;j), \iff, \&\mathit{SHi} \rightarrow \!\!\! i, i \circlearrowleft \!\!\! j, j \vcentcolon = \!\!\! \varnothing, Ins(t;j), R(i), \implies$$

$$,i!=\varnothing$$
, &SHi \circlearrowleft i, $i\circlearrowleft$ j, $j!=\varnothing$, $R(i)$, $Ins(t;j)$,

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i \! \circlearrowleft j, j \, != \varnothing, i \, != \varnothing, R(i), Ins(t;j),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, j != \varnothing, i != \varnothing, i \oplus, R(i), Ins(t; j),$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, i \oplus, i \circlearrowleft j, j != \varnothing, R(i), Ins(t; j),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $i\oplus$, &SH $i\rightarrow i$, $i\circlearrowleft j$, $j!=\varnothing$, $R(i)$, $Ins(t;j)$,

$$\Leftrightarrow, i != \varnothing, i \oplus, \&SHi \rightarrow i, i \circlearrowleft j, j != \varnothing, Ins(t; j), R(i),$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i, i \circlearrowleft j, if(i \circlearrowleft j) - \left[, \right] + j != \varnothing, i != \varnothing, i \oplus, Ins(t;j), R(i),$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i, i \circlearrowleft j, i f(i \circlearrowleft j) = \underbrace{ , i \circlearrowleft j, j != \varnothing, i != \varnothing, i \oplus, Ins(t;j), R(i), }_{,i! \circlearrowleft j, j != \varnothing, i != \varnothing, i \oplus, Ins(t;j), R(i), }_{,i! \circlearrowleft j, j != \varnothing, i != \varnothing, i \oplus, Ins(t;j), R(i), },$$

$$\Leftrightarrow$$
 < 1 >

$$,i\circlearrowleft j,j!=\varnothing,i!=\varnothing,i\oplus,Ins(t;j),R(i),$$

$$\Leftrightarrow$$
, $j!=\varnothing$, $i!=\varnothing$, $i\circlearrowleft j$, $i\oplus$, $Ins(t;j)$, $R(i)$,

$$\Leftrightarrow$$
, $j!=\emptyset$, $i!=\emptyset$, $i\circlearrowleft j$, $Ins(t;j)$, $i\oplus$, $i\oplus$, $R(i)$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $i\circlearrowleft j$, $j!=\varnothing$, $Ins(t;j)$, $i\oplus$, $i\oplus$, $R(i)$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $i\circlearrowleft j$, $Ins(t;j)$, $i\oplus$, $i!=\varnothing$, $i\oplus$, $R(i)$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $i\circlearrowleft j$, $Ins(t;j)$, $i\oplus$, $i!=\varnothing$, $R(i)$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \circlearrowleft j$, $j = \emptyset$, $Ins(t; j)$, $i \oplus$, $R(i)$,

$$\Leftrightarrow ,i \mathbin{!}=\varnothing, i \circlearrowleft j, j \mathbin{!}=\varnothing, Ins(t;j), j \mathbin{!}=\varnothing, i \oplus, R(i),$$

$$\Leftrightarrow$$
, $i \models \varnothing$, $j \models \varnothing$, $Ins(t; j)$, $i \circlearrowleft j$, $j \models \varnothing$, $i \oplus$, $R(i)$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, $Ins(t;j)$, $i\circlearrowleft j$, $i!=\varnothing$, $i\oplus$, $R(i)$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, $Ins(t;j)$, $i\circlearrowleft j$, $i!=\varnothing$, $R(i)$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, $Ins(t;j)$, $i\circlearrowleft j$, $j!=\varnothing$, $R(i)$,

$$\Leftrightarrow$$
, $i \circ j$, $i \models \varnothing$, $j \models \varnothing$, $Ins(t; j)$, $j \models \varnothing$, $R(i)$,

$$\Leftrightarrow$$
, $i \circ j$, $i \models \varnothing$, $j \models \varnothing$, $Ins(t; j)$, $R(i)$,

$$\Leftrightarrow$$
, $i \circ j$, $j! = \varnothing$, $i! = \varnothing$, $Ins(t; j)$, $R(i)$,

$$,i!Oj,j!=\varnothing,i!=\varnothing,i\oplus,Ins(t;j),R(i),$$

$$\Leftrightarrow$$
, $j!=\varnothing$, $i!=\varnothing$, $i!\circlearrowleft j$, $i\oplus$, $Ins(t;j)$, $R(i)$,

$$\Leftrightarrow$$
, $j \models \varnothing$, $i \models \varnothing$, $i! = \varnothing$, $i! \circlearrowleft j$, $Ins(t; j)$, $i \oplus$, $R(i)$,

$$\Leftrightarrow$$
, $j!=\varnothing$, $i!\circlearrowleft j$, $i!=\varnothing$, $Ins(t;j)$, $i\oplus$, $R(i)$,

$$\Leftrightarrow$$
, $j \models \varnothing$, $i! \circlearrowleft j$, $Ins(t; j)$, $i! \models \varnothing$, $i \oplus$, $R(i)$,

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow$$
, $j!=\emptyset$, $i!Oj$, $Ins(t;j)$, $i!=\emptyset$, $R(i)$,

$$\Leftrightarrow$$
, $j!=\varnothing$, $i!\circlearrowleft j$, $i!=\varnothing$, $Ins(t;j)$, $R(i)$,

$$\Leftrightarrow$$
, $i!Oj$, $j!=\varnothing$, $i!=\varnothing$, $Ins(t;j)$, $R(i)$,

< 1 >

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, i\!\circlearrowleft\!j, if(i\!\circlearrowleft\!j) - \begin{bmatrix} , i\!\circlearrowleft\!j, j != \varnothing, i != \varnothing, Ins(t;j), R(i), \\ , i !\!\circlearrowleft\!j, j != \varnothing, i != \varnothing, Ins(t;j), R(i), \end{bmatrix},$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i, i \circlearrowleft j, if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft j, \\ , i! \circlearrowleft j, \end{bmatrix}, j! = \varnothing, i! = \varnothing, Ins(t;j), R(i),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft j, j != \varnothing, i != \varnothing, Ins(t; j), R(i),$

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi $\bigcirc i$, $i\bigcirc j$, $j!=\varnothing$, $Ins(t;j)$, $R(i)$,

conclusion:

$$,i \circlearrowleft j, j != \varnothing, R(i), Ins(t;j), \iff ,i \circlearrowleft j, j != \varnothing, Ins(t;j), R(i),$$

25.5.2
$$j = \emptyset$$

$$, j = \varnothing, i \circlearrowleft j, Ins(t; j), \Leftrightarrow \sim, i \circlearrowleft j,$$

$$, j = \varnothing, i \circlearrowleft j, Ins(t; j),$$

$$\Leftrightarrow$$
 , $j = \emptyset$, $i \circlearrowleft j$, $i \circlearrowleft j$, $Ins(t; j)$,

$$\Leftrightarrow$$
 , $j = \emptyset$, $i \circlearrowleft j$, $i \circlearrowleft i_0$, $j \circlearrowleft j_0$, $R(i_0)$, $R(j_0)$, $i_0 \circlearrowleft j_0$, $i_0 \circlearrowleft$, $j_0 \circlearrowleft$, $Ins(t;j)$,

$$\Leftrightarrow$$
 , $j = \varnothing$, $i \circlearrowleft j$, $i \otimes i_0$, $j \otimes j_0$, $R(i_0)$, $R(j_0)$, $i_0 \circlearrowleft j_0$, $Ins(t;j)$, $i_0 \otimes$, $j_0 \otimes$,

$$\Rightarrow , j = \varnothing, i \circlearrowleft_j, i \boxtimes_{i_0}, j \boxtimes_{j_0}, R(i_0), R(j_0), Ins(t;j), i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , j = \varnothing, i \circlearrowleft_j, i \boxtimes_{i_0}, j \boxtimes_{j_0}, j \circlearrowleft_{j_0}, R(i_0), R(j_0), Ins(t;j), i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , j = \varnothing, i \circlearrowleft_j, i \boxtimes_{i_0}, j \boxtimes_{j_0}, j \circlearrowleft_{j_0}, j \circlearrowleft_{j_0}, R(i_0), R(j_0), Ins(t;j), i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , i \circlearrowleft_j, i \boxtimes_{i_0}, j \boxtimes_{j_0}, j \circlearrowleft_{j_0}, R(i_0), j \circlearrowleft_{j_0}, j = \varnothing, R(j_0), Ins(t;j), i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , i \circlearrowleft_j, i \boxtimes_{i_0}, j \boxtimes_{j_0}, j \circlearrowleft_{j_0}, R(i_0), j \circlearrowleft_{j_0}, j = \varnothing, Ins(t;j), R(j_0), j_0 \circlearrowleft_{i_0}, i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , i \circlearrowleft_j, i \boxtimes_{i_0}, j \boxtimes_{j_0}, R(i_0), j = \varnothing, Ins(t;j), R(j_0), j_0 \circlearrowleft_{i_0}, i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , i \circlearrowleft_j, i \boxtimes_{i_0}, j \boxtimes_{j_0}, R(i_0), j = \varnothing, Ins(t;j), R(j_0), j_0 \circlearrowleft_{i_0}, i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , i \circlearrowleft_j, i \boxtimes_{i_0}, j \boxtimes_{j_0}, j = \varnothing, R(i_0), Ins(t;j), R(j_0), j_0 \circlearrowleft_{i_0}, i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , i \circlearrowleft_j, i \boxtimes_{i_0}, i \circlearrowleft_{i_0}, j \boxtimes_{j_0}, j = \varnothing, R(i_0), Ins(t;j), R(j_0), j_0 \circlearrowleft_{i_0}, i_0 \circlearrowleft_{j_0}, i_0 \uplus, j_0 \uplus,$$

$$\Rightarrow , i \boxtimes_i, i \circlearrowleft_i, i \circlearrowleft_i, j \supset_j, j \supset_j, j = \varnothing, R(i_0), Ins(t;j), R(j_0), j_0 \circlearrowleft_{i_0}, i_0 \circlearrowleft_j, i_0 \smile, j_0 \uplus,$$

$$\Rightarrow , i \boxtimes_i, i \circlearrowleft_i, j \supset_j, i_0 \circlearrowleft_j, j \supset_j, j = \varnothing, R(i_0), Ins(t;j), R(j_0), j_0 \circlearrowleft_{i_0}, i_0 \circlearrowleft_j, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \boxtimes_i, i \circlearrowleft_i, j \boxtimes_j, i_0 \circlearrowleft_j, j \supset_j, j \supset_j, R(i_0), Ins(t;j), R(j_0), j_0 \circlearrowleft_i, i_0 \circlearrowleft_j, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \boxtimes_i, i \circlearrowleft_i, j \boxtimes_j, i_0 \circlearrowleft_j, j \supset_j, Ins(t;j), R(i_0), i_0 \circlearrowleft_j, R(j_0), j_0 \circlearrowleft_i, i_0 \circlearrowleft_j, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \circlearrowleft_i, j \supset_j, i \boxtimes_i, j \supset_j, Ins(t;j), R(i_0), i_0 \supset_j, R(j_0), j_0 \supset_i, i_0 \circlearrowleft_j, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \circlearrowleft_j, j \supset_j, Ins(t;j), i \boxtimes_i, j \supset_j, R(i_0), R(j_0), i_0 \supset_j, i_0 \circlearrowleft_j, i_0 \circlearrowleft_j, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \circlearrowleft_j, j \supset_j, Ins(t;j), i \boxtimes_i, j \supset_j, R(i_0), R(j_0), i_0 \supset_j, i_0 \supset_j, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \circlearrowleft_j, j \supset_j, Ins(t;j), i \boxtimes_i, j \supset_j, R(i_0), R(j_0), i_0 \supset_j, i_0 \supset_j, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \circlearrowleft_j, j \supset_j, Ins(t;j), i \boxtimes_i, j \supset_j, R(i_0), R(j_0), i_0 \supset_j, i_0 \supset_j, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \circlearrowleft_j, j \supset_j, Ins(t;j), i \boxtimes_i, j \supset_j, R(i_0), R(i_0), R(j_0), i_0 \supset_j, i_0 \smile, i_0 \smile, j_0 \smile,$$

$$\Rightarrow , i \circlearrowleft_j, j \supset_j, In$$

$$, j = \varnothing, i! \circlearrowleft j, Ins(t; j), \Leftrightarrow \sim, i! \circlearrowleft j,$$

 \Leftrightarrow , $i \circ j$, $j = \varnothing$, Ins(t; j), $i \circ i_0$, $j \circ j_0$, $R(i_0)$, $R(j_0)$, $i_0 \circ j_0$, $i_0 \circ \emptyset$, $j_0 \circ \emptyset$,

proof: , $j = \emptyset$, $i! \circlearrowleft j$, Ins(t; j),

 \Leftrightarrow , $j = \emptyset$, $i \circlearrowleft j$, Ins(t; j), $i \circlearrowleft j$,

25 Theorems of Insert Node Function Ins(t;j)

$$\Leftrightarrow$$
, $j = \emptyset$, $i! \bigcirc j$, $i \bigcirc i_0$, $i_0 \bigcirc \emptyset$, $Ins(t; j)$,

$$\Leftrightarrow$$
, $j = \emptyset$, $i! \circlearrowleft j$, $i \otimes i_0$, $R(i_0)$, $i_0 \oplus$, $Ins(t; j)$,

$$\Leftrightarrow$$
, $j = \emptyset$, $i! \circlearrowleft j$, $i \odot i_0$, $R(i_0)$, $Ins(t; j)$, $i_0 \oplus$,

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, i \odot i_0, R(i_0), Ins(t; j), j! \rightarrow i_0, i_0 \oplus,$$

$$\Leftrightarrow, j = \varnothing, i! \circlearrowleft j, i \odot i_0, i \circlearrowleft i_0, R(i_0), Ins(t; j), j! \rightarrow i_0, i_0 \oplus,$$

$$\Leftrightarrow, j = \varnothing, i \odot i_0, i \odot i_0, i! \odot j, R(i_0), Ins(t; j), j! \rightarrow i_0, i_0 \odot,$$

$$\Leftrightarrow, j = \varnothing, i \odot i_0, i \odot i_0, i_0! \odot j, R(i_0), Ins(t; j), j! \rightarrow i_0, i_0 \odot,$$

$$\Leftrightarrow$$
 , $j = \emptyset$, $i \odot i_0$, $i \odot i_0$, $i_0! \odot j$, $Ins(t; j)$, $R(i_0)$, $j! \rightarrow i_0$, $i_0 \odot$,

$$\Leftrightarrow$$
 $, j = \varnothing, i! \circ j, i \circ i_0, Ins(t; j), R(i_0), j! \rightarrow i_0, i_0 \circ j, i_0 \circ j$

$$\Leftrightarrow \ , j \!=\! \varnothing, i! \circlearrowleft j, Ins(t;j), i \otimes i_0, R(i_0), j! \!\!\to\!\! i_0, i_0 \oplus,$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \otimes j_0, j_0 \oplus, i \otimes i_0, R(i_0), j! \rightarrow i_0, i_0 \oplus,$$

$$\Leftrightarrow, j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \odot j_0, j_0 \oplus, j_0 \oplus, i \odot i_0, R(i_0), j! \rightarrow i_0, i_0 \oplus,$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \otimes j_0, j_0 \oplus, j \rightarrow j_0, j_0 \oplus, i \otimes i_0, R(i_0), j! \rightarrow i_0, i_0 \oplus, j \otimes j_0 \oplus j_0 \oplus$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \otimes j_0, j_0 \oplus, i \otimes i_0, R(i_0), j \rightarrow j_0, j! \rightarrow i_0, j_0 \oplus, i_0 \oplus, j_0 \oplus, j_$$

$$\Leftrightarrow \ , j = \varnothing, i! \circlearrowleft j, Ins(t;j), j \otimes j_0, j_0 \oplus, i \otimes i_0, R(i_0), j \rightarrow j_0, j_0! \circlearrowleft i_0, j_0 \oplus, i_0 \oplus,$$

$$\Leftrightarrow, j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \otimes j_0, j_0 \oplus, j \rightarrow j_0, i \otimes i_0, R(i_0), j_0! \circlearrowleft i_0, j_0 \oplus, i_0 \oplus, i$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \odot j_0, j_0 \oplus, i \odot i_0, R(i_0), j_0! \circlearrowleft i_0, j_0 \oplus, i_0 \oplus, i_$$

$$\Leftrightarrow ,i! \circlearrowleft j, Ins(t;j), j \odot j_0, j_0 \oplus, j_0 = \varnothing, i \odot i_0, R(i_0), j_0! \circlearrowleft i_0, j_0 \oplus, i_0 \oplus,$$

$$\Leftrightarrow ,i! \circlearrowleft j, Ins(t;j), j \otimes j_0, j_0 \oplus, j_0 = \varnothing, R(j_0), i \otimes i_0, R(i_0), j_0! \circlearrowleft i_0, j_0 \oplus, i_0 \oplus,$$

$$\Leftrightarrow, j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \otimes j_0, j_0 \oplus, R(j_0), i \otimes i_0, R(i_0), j_0! \circlearrowleft i_0, j_0 \oplus, i_0 \oplus, i_0 \oplus j_0 \oplus j_0$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), j! = \varnothing, j \otimes j_0, j_0 \oplus, R(j_0), i \otimes i_0, R(i_0), j_0! \circlearrowleft i_0, j_0 \oplus, i_0 \oplus, i_0 \oplus j_0 \oplus j$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \odot j_0, j_0 != \varnothing, j_0 \oplus, R(j_0), i \odot i_0, R(i_0), j_0 ! \circlearrowleft i_0, j_0 \oplus, i_0 \oplus, i_0 \oplus i_0$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \circlearrowleft j_0, j_0 != \varnothing, R(j_0), i \circlearrowleft i_0, R(i_0), j_0 ! \circlearrowleft i_0, j_0 \circlearrowleft, i_0 \circlearrowleft,$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), j \circlearrowleft j_0, R(j_0), i \circlearrowleft i_0, R(i_0), j_0 ! \circlearrowleft i_0, j_0 \circlearrowleft, i_0 \circlearrowleft,$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), i \circlearrowleft i_0, j \circlearrowleft j_0, R(i_0), R(j_0), i_0 ! \circlearrowleft j_0, i_0 \circlearrowleft, j_0 \circlearrowleft,$$

$$\Leftrightarrow , j = \varnothing, i! \circlearrowleft j, Ins(t; j), i! \circlearrowleft j,$$

$$, j = \varnothing, Ins(t; j), i \circlearrowleft j, \Leftrightarrow , i \circlearrowleft j, \sim,$$

$$, j = \varnothing, Ins(t; j), i \circlearrowleft j,$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \boxed{, } -, j = \varnothing, Ins(t; j), i \circlearrowleft j,$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} , \\ , i! \circlearrowleft j, \end{bmatrix}, j = \varnothing, Ins(t; j), i \circlearrowleft j,$$

$$\Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , j = \varnothing, Ins(t;j), i \circlearrowleft j, \\ , i! \circlearrowleft j, j = \varnothing, Ins(t;j), i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , j = \varnothing, Ins(t;j), i \circlearrowleft j, \\ \\ , j = \varnothing, i! \circlearrowleft j, Ins(t;j), i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \begin{bmatrix} ,j = \varnothing, Ins(t;j), i \circlearrowleft j, \\ ,j = \varnothing, i! \circlearrowleft j, Ins(t;j), i! \circlearrowleft j, i \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i \circlearrowleft j) = \begin{bmatrix} , j = \varnothing, Ins(t;j), i \circlearrowleft j, \\ , j = \varnothing, i! \circlearrowleft j, Ins(t;j), \otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(i \circlearrowleft j) - \left[, j = \varnothing, Ins(t;j), i \circlearrowleft j, \right],$$

$$\Leftrightarrow$$
, $i \circlearrowleft j$, $j = \varnothing$, $Ins(t; j)$, $i \circlearrowleft j$,

$$, j = \varnothing, i \circlearrowleft j, Ins(t; j), \Leftrightarrow , j = \varnothing, Ins(t; j), i \circlearrowleft j,$$

25.5.3
$$j = \emptyset$$

$$, j != \varnothing, i \circlearrowleft j, Ins(t; j), \Leftrightarrow \sim, i \circlearrowleft j,$$

 $, j = \varnothing, i \circlearrowleft j, Ins(t; j),$

$$\Leftrightarrow$$
 , $j != \varnothing$, $i \circlearrowleft j$, $i \circlearrowleft j$, $Ins(t; j)$,

$$\Leftrightarrow$$
 , $j \models \varnothing$, $i \circlearrowleft j$, $i \otimes i_0$, $j \otimes j_0$, $R(i_0)$, $R(j_0)$, $i_0 \circlearrowleft j_0$, $i_0 \oplus$, $j_0 \oplus$, $Ins(t;j)$,

$$\Leftrightarrow$$
 $,j!=\varnothing,i\circlearrowleft j,i\odot i_0,j\odot j_0,R(i_0),R(j_0),i_0\circlearrowleft j_0,Ins(t;j),i_0\circledcirc,j_0\circledcirc,$

$$\Leftrightarrow , j \models \varnothing, i \circlearrowleft j, i \odot i_0, j \odot j_0, R(i_0), R(j_0), Ins(t; j), i_0 \circlearrowleft j_0, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , j != \varnothing, i \circlearrowleft j, i \circlearrowleft i_0, j \circlearrowleft j_0, j \circlearrowleft j_0, R(i_0), R(j_0), Ins(t;j), i_0 \circlearrowleft j_0, i_0 \circlearrowleft, j_0 \circlearrowleft, i_0 \smile, i$$

$$\Leftrightarrow , j \models \varnothing, i \circlearrowleft j, i \circlearrowleft i_0, j \circlearrowleft j_0, j \circlearrowleft j_0, j \circlearrowleft j_0, R(i_0), R(j_0), Ins(t;j), i_0 \circlearrowleft j_0, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
 $,i \circlearrowleft j,i \otimes i_0,j \otimes j_0,j \circlearrowleft j_0,R(i_0),j !=\varnothing,j \circlearrowleft j_0,R(j_0),Ins(t;j),i_0 \circlearrowleft j_0,i_0 \oplus,j_0 \oplus,$

$$\Leftrightarrow, i \circlearrowleft j, i \circlearrowleft i_0, j \circlearrowleft j_0, j \circlearrowleft j_0, R(i_0), j != \varnothing, j \circlearrowleft j_0, Ins(t;j), R(j_0), i_0 \circlearrowleft j_0, i_0 \circlearrowleft, j_0 \circlearrowleft, j_0 \circlearrowleft$$

$$\Leftrightarrow , j != \varnothing, i \circlearrowleft j, i \odot i_0, j \odot j_0, R(i_0), Ins(t;j), R(j_0), i_0 \circlearrowleft j_0, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , j \models \varnothing, i \circlearrowleft j, i \circlearrowleft i_0, i \circlearrowleft i_0, j \circlearrowleft j_0, R(i_0), Ins(t;j), R(j_0), i_0 \circlearrowleft j_0, i_0 \oplus, j_0 \oplus, i_0 \oplus j_0 \oplus j_0$$

$$\Leftrightarrow , j \models \varnothing, i \otimes i_0, i \otimes i_0, i \otimes j, j \otimes j_0, R(i_0), Ins(t; j), R(j_0), i_0 \otimes j_0, i_0 \otimes j_0 \otimes$$

$$\Leftrightarrow , j \models \varnothing, i \circledcirc i_0, i \circlearrowleft i_0, i_0 \circlearrowleft j, j \circledcirc j_0, R(i_0), Ins(t;j), R(j_0), i_0 \circlearrowleft j_0, i_0 \circledcirc, j_0 \circledcirc,$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_0, j \otimes j_0, j != \varnothing, i_0 \otimes j, R(i_0), Ins(t;j), R(j_0), i_0 \otimes j_0, i_0 \oplus, j_0 \oplus, i_0 \otimes j_0, i_0 \otimes j_0 \otimes j_0, i_0 \otimes j_0 \otimes j_0, i_0 \otimes j_0$$

$$\Leftrightarrow, i \otimes i_0, i \otimes i_0, j \otimes j_0, j \models \varnothing, i_0 \otimes j, Ins(t;j), R(i_0), R(j_0), i_0 \otimes j_0, i_0 \oplus, j_0 \oplus, j_0 \oplus j_0$$

$$\Leftrightarrow , j! = \varnothing, i \circlearrowleft j, i \odot i_0, j \odot j_0, Ins(t; j), R(i_0), R(j_0), i_0 \circlearrowleft j_0, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
 $, j \models \varnothing, i \circlearrowleft j, Ins(t; j), i \circlearrowleft i_0, j \circlearrowleft j_0, R(i_0), R(j_0), i_0 \circlearrowleft j_0, i_0 \circlearrowleft, j_0 \circlearrowleft, j_0 \circlearrowleft$

$$\Leftrightarrow$$
, $j!=\varnothing$, $i \circlearrowleft j$, $Ins(t;j)$, $i \circlearrowleft j$,

$$, i!=\varnothing, i! \mathring{\circlearrowleft}_j, Ins(t; j), \Leftrightarrow \sim, i! \mathring{\circlearrowleft}_j,$$

$$, j \models \varnothing, i! \circlearrowleft j, Ins(t; j),$$

$$\Leftrightarrow$$
, $j = \emptyset$, $i! \bigcirc j$, $i! \bigcirc j$, $Ins(t; j)$,

$$\Leftrightarrow$$
 , $j \models \varnothing$, $i! \circlearrowleft j$, $i \odot i_0$, $j \odot j_0$, $R(i_0)$, $R(j_0)$, $i_0! \circlearrowleft j_0$, $i_0 \odot$, $j_0 \odot$, $Ins(t;j)$,

$$\Leftrightarrow , j != \varnothing, i ! \circlearrowleft j, i \otimes i_0, j \otimes j_0, R(i_0), R(j_0), i_0 ! \circlearrowleft j_0, Ins(t;j), i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow , j \mathbin{!}= \varnothing, i \mathbin{!} \circlearrowleft j, i \mathbin{\odot} i_0, j \mathbin{\odot} j_0, R(i_0), R(j_0), Ins(t;j), i_0 \mathbin{!} \circlearrowleft j_0, i_0 \mathbin{\oplus}, j_0 \mathbin{\oplus},$$

$$\Leftrightarrow , j \models \varnothing, i! \circlearrowleft j, i \odot i_0, j \odot j_0, j \circlearrowleft j_0, R(i_0), R(j_0), Ins(t; j), i_0! \circlearrowleft j_0, i_0 \odot, j_0 \odot, i_0 \odot j_0, i_0 \odot j_0 \odot j_$$

$$\Leftrightarrow , j \models \varnothing, i! \circlearrowleft j, i \odot i_0, j \odot j_0, j \circlearrowleft j_0, j \circlearrowleft j_0, R(i_0), R(j_0), Ins(t;j), i_0! \circlearrowleft j_0, i_0 \oplus, j_0 \oplus, i_0 \oplus j_0 \oplus$$

$$\Leftrightarrow ,i! \circlearrowleft j, i \circlearrowleft i_0, j \circlearrowleft j_0, j \circlearrowleft j_0, R(i_0), j != \varnothing, j \circlearrowleft j_0, R(j_0), Ins(t;j), i_0! \circlearrowleft j_0, i_0 \circlearrowleft, j_0 \circlearrowleft, i_0 \smile, i_0 \smile$$

$$\Leftrightarrow ,i! \circlearrowleft j, i \otimes i_0, j \otimes j_0, j \circlearrowleft j_0, R(i_0), j! = \varnothing, j \circlearrowleft j_0, Ins(t;j), R(j_0), i_0! \circlearrowleft j_0, i_0 \oplus, j_0 \oplus$$

$$\Leftrightarrow , j \models \varnothing, i! \circlearrowleft j, i \odot i_0, j \odot j_0, R(i_0), Ins(t; j), R(j_0), i_0! \circlearrowleft j_0, i_0 \odot j_0, j_0 \odot j_0, Ins(t; j), R(j_0), R(j_0),$$

$$\Leftrightarrow , j != \varnothing, i ! \mathring{\circlearrowleft} j, i \mathring{\odot} i_0, i \mathring{\circlearrowleft} i_0, j \mathring{\odot} j_0, R(i_0), Ins(t;j), R(j_0), i_0 ! \mathring{\circlearrowleft} j_0, i_0 \mathring{\oplus}, j_0 \mathring{\oplus}, i_0 \mathring{\oplus}, i_$$

$$\Leftrightarrow , j != \varnothing, i \odot i_0, i \odot i_0, i! \odot j, j \odot j_0, R(i_0), Ins(t;j), R(j_0), i_0! \odot j_0, i_0 \odot, j_0 \odot,$$

$$\Leftrightarrow , j \models \varnothing, i \otimes i_0, i \otimes i_0, i_0! \otimes j, j \otimes j_0, R(i_0), Ins(t;j), R(j_0), i_0! \otimes j_0, i_0 \oplus, j_0 \oplus, i_0 \oplus j_0 \oplus$$

$$\Leftrightarrow , j \models \varnothing, i \odot i_0, i \odot i_0, j \odot j_0, i_0! \odot j, R(i_0), Ins(t; j), R(j_0), i_0! \odot j_0, i_0 \odot, j_0 \odot, i_0 \odot j_0, i_0 \odot j$$

$$\Leftrightarrow , j != \varnothing, i \odot i_0, i \odot i_0, j \odot j_0, i_0 ! \odot j, Ins(t;j), R(i_0), R(j_0), i_0 ! \odot j_0, i_0 \odot, j_0 \odot,$$

$$\Leftrightarrow , j \models \varnothing, i! \circlearrowleft j, i \otimes i_0, j \otimes j_0, Ins(t;j), R(i_0), R(j_0), i_0! \circlearrowleft j_0, i_0 \oplus, j_0 \oplus, j_$$

$$\Leftrightarrow , j \models \varnothing, i! \circlearrowleft j, Ins(t; j), i \odot i_0, j \odot j_0, R(i_0), R(j_0), i_0! \circlearrowleft j_0, i_0 \odot, j_0 \odot, j$$

$$\Leftrightarrow , j != \varnothing, i ! \circlearrowleft j, Ins(t; j), i ! \circlearrowleft j,$$

$$, j \models \varnothing, Ins(t; j), i \circlearrowleft j, \Leftrightarrow i \circlearrowleft j, \sim,$$

$$,j \mathbin{!}= \varnothing, i \circlearrowleft j, Ins(t;j), \iff, j \mathbin{!}= \varnothing, Ins(t;j), i \circlearrowleft j,$$

25.5.4 Total

$$, i \circlearrowleft_j, Ins(t;j), \Leftrightarrow, Ins(t;j), i \circlearrowleft_j, \\, i \trianglerighteq_j, Ins(t;j), \Leftrightarrow, Ins(t;j), i \trianglerighteq_j, \\, m \circlearrowleft_j, m \circlearrowleft_n, Ins(t;j), \Leftrightarrow, m \circlearrowleft_j, Ins(t;j), m \circlearrowleft_n, \\$$

$$proof: \\, m \circlearrowleft_j, m \circlearrowleft_n, Ins(t;j), \\ \Leftrightarrow, m \circlearrowleft_j, m \circlearrowleft_j, Ins(t;j), \\ \Leftrightarrow, Ins(t;j), m \circlearrowleft_j, m \circlearrowleft_n, \\\\ \Leftrightarrow, Ins(t;j), m \circlearrowleft_j, m \circlearrowleft_n, \\\\ \Leftrightarrow, M \circlearrowleft_j, Ins(t;j), m \circlearrowleft_j, m \circlearrowleft_n, \\\\ \Leftrightarrow, m \circlearrowleft_j, Ins(t;j), m \circlearrowleft_n, \\\\ \Leftrightarrow, m \circlearrowleft_j, Ins(t;j), m \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_n, Ins(t;j), \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_n, Ins(t;j), \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_j, m \circlearrowleft_n, Ins(t;j), \\\\ \Leftrightarrow, m \trianglerighteq_j, m \trianglerighteq_j, m \circlearrowleft_n, Ins(t;j), \\\\ \Leftrightarrow, m \trianglerighteq_j, n \trianglerighteq_j, m \circlearrowleft_n, Ins(t;j), \\\\ \Leftrightarrow, m \trianglerighteq_j, n \trianglerighteq_j, m \circlearrowleft_m, n \circlearrowleft_n, R(m_0), R(n_0), m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, n \trianglerighteq_j, m \circlearrowleft_m, n \circlearrowleft_n, n \circlearrowleft_n, R(m_0), R(n_0), Ins(t;j), m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, n \trianglerighteq_j, m \circlearrowleft_m, n \circlearrowleft_n, n \circlearrowleft_n, R(m_0), R(m_0), Ins(t;j), m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_m, m \circlearrowleft_n, n \circlearrowleft_n, n \circlearrowleft_n, R(m_0), R(m_0), R(n_0), Ins(t;j), m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, n_0 \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_m, n \circlearrowleft_n, n \circlearrowleft_n, n \circlearrowright_n, R(m_0), n \trianglerighteq_j, R(n_0), Ins(t;j), m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, n_0 \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_m, n \circlearrowleft_n, n \circlearrowleft_n, n \circlearrowleft_n, R(m_0), n \trianglerighteq_j, R(n_0), Ins(t;j), m_0 \circlearrowleft_n, m_0 \circlearrowleft_n, n_0 \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_m, n \circlearrowleft_n, n \circlearrowleft_n, n \circlearrowleft_n, R(m_0), n \trianglerighteq_j, R(n_0), Ins(t;j), R(n_0), m_0 \circlearrowleft_n, n_0 \circlearrowleft_n, n_0 \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_m, n \circlearrowleft_n, n \circlearrowleft_n, R(m_0), n \trianglerighteq_j, R(n_0), Ins(t;j), R(n_0), m_0 \circlearrowleft_n, n_0 \circlearrowleft_n, n_0 \circlearrowleft_n, \\\\ \Leftrightarrow, m \trianglerighteq_j, m \circlearrowleft_m, n \circlearrowleft_n, n \circlearrowleft_n, n \circlearrowleft_n, R(m_0), n \trianglerighteq_j, R(n_0), Ins(t;j), R(n_0), m_0 \circlearrowleft_n, n_0 \circlearrowleft_n, \\\\$$

$$\Leftrightarrow$$
 $, m! \circlearrowleft j, n! \circlearrowleft j, m \odot m_0, n \odot n_0, R(m_0), Ins(t; j), R(n_0), m_0 \circlearrowleft n_0, m_0 \odot, n_0 \odot, n_0 \odot$

$$\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft m_0, m \circlearrowleft m_0, n \circlearrowleft n_0, R(m_0), Ins(t;j), R(n_0), m_0 \circlearrowleft n_0, m_0 \oplus, n_0 \oplus,$$

$$\Leftrightarrow, n! \circlearrowleft j, m \odot m_0, m \circlearrowleft m_0, m! \circlearrowleft j, n \odot n_0, R(m_0), Ins(t;j), R(n_0), m_0 \circlearrowleft n_0, m_0 \oplus, n_0 \oplus, n$$

$$\Leftrightarrow, n! \circlearrowleft j, m \odot m_0, m \circlearrowleft m_0, m_0! \circlearrowleft j, n \odot n_0, R(m_0), Ins(t;j), R(n_0), m_0 \circlearrowleft n_0, m_0 \oplus, n_0 \oplus,$$

$$\Leftrightarrow, n! \circlearrowleft j, m \circledcirc m_0, m \circlearrowleft m_0, n \circledcirc n_0, m_0! \circlearrowleft j, R(m_0), Ins(t;j), R(n_0), m_0 \circlearrowleft n_0, m_0 \circledcirc, n_0 \circledcirc, n_0 \circlearrowleft$$

$$\Leftrightarrow, n! \circlearrowleft j, m \odot m_0, m \circlearrowleft m_0, n \odot n_0, m_0! \circlearrowleft j, Ins(t;j), R(m_0), R(n_0), m_0 \circlearrowleft n_0, m_0 \oplus, n_0 \oplus, n_0 \oplus n_0, m_0 \oplus n_0 \oplus n_0, m_0 \oplus n_0 \oplus n_0 \oplus n_0, m_0 \oplus n_0 \oplus n_0, m_0 \oplus n_0 \oplus n_0 \oplus n_0 \oplus n_0 \oplus n_0 \oplus n_0$$

$$\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \odot m_0, n \odot n_0, Ins(t;j), R(m_0), R(n_0), m_0 \circlearrowleft n_0, m_0 \oplus, n_0 \oplus,$$

$$\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, Ins(t;j), m \odot m_0, n \odot n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, m_0 \oplus, n_0 \oplus, n_$$

$$\Leftrightarrow$$
, $m! \circlearrowleft j, n! \circlearrowleft j, Ins(t; j), m \circlearrowleft n,$

$$\Leftrightarrow , Ins(t;j), m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft n,$$

$$\Leftrightarrow$$
 , $Ins(t;j)$, $m! \circlearrowleft j$, $m! \circlearrowleft j$, $m \circlearrowleft n$,

$$\Leftrightarrow$$
, $Ins(t;j), m! \circlearrowleft j, m \circlearrowleft n$,

$$\Leftrightarrow$$
, $m! \circ j$, $Ins(t; j)$, $m \circ n$,

$$, m \circlearrowleft n, Ins(t;j), \Leftrightarrow , Ins(t;j), m \circlearrowleft n,$$

 $, m! \circlearrowleft n, Ins(t;j), \Leftrightarrow , Ins(t;j), m! \circlearrowleft n,$

26 Theorems of Delete Node Function Del(j)

26.1 General theorems

26.1.1 Property

$$, Del(j) \Leftrightarrow , j = \emptyset, Del(j)$$

26.1.2 Substitution

$$,j_1 \circlearrowleft j_2, Del(j_1), \Leftrightarrow ,j_1 \circlearrowleft j_2, Del(j_2),$$

26.1.3 Swap with operator

$$, g \oplus, Del(j), \Leftrightarrow , Del(j), g \oplus,$$

$$, \odot g, Del(j), \Leftrightarrow , Del(j), \odot g,$$

$$, m \odot n, Del(j), \iff , Del(j), m \odot n,$$

$$, j \otimes n, Del(j), \Leftrightarrow , Del(j), j \otimes n,$$

proof:

 $, j \otimes n, Del(j),$

$$\Leftrightarrow$$
 $,j \otimes j_0, j_0 \oplus, j \otimes n, Del(j),$

$$\Leftrightarrow$$
 $, j \otimes j_0, j \otimes n, Del(j), j_0 \otimes ,$

$$\Leftrightarrow$$
 $,j \otimes j_0, j \otimes j_0, j \otimes n, Del(j), j_0 \otimes j_0, j \otimes n$

$$\Leftrightarrow$$
 $,j \otimes j_0, j \otimes n, j \otimes j_0, Del(j), j_0 \otimes ,$

$$\Leftrightarrow$$
 $,j \otimes j_0, j \otimes n, j \otimes j_0, Del(j_0), j_0 \otimes ,$

26 Theorems of Delete Node Function Del(j)

$$\Leftrightarrow$$
, $j \otimes j_0$, $j \circ j_0$, $Del(j_0)$, $j \otimes n$, $j_0 \otimes n$,

$$\Leftrightarrow$$
 $,j \otimes j_0, j \otimes j_0, Del(j), j \otimes n, j_0 \otimes ,$

$$\iff$$
, $j \otimes j_0$, $Del(j)$, $j \otimes n$, $j_0 \otimes n$,

$$\Leftrightarrow$$
 , $j \otimes j_0, j_0 \oplus, Del(j), j \otimes n$,

$$\Leftrightarrow$$
 , $Del(j)$, $j \otimes n$,

$$, j \rightarrow m, m \ominus, Del(j), \iff , j \rightarrow m, Del(j),$$

proof:

$$,j{\Rightarrow}m,m{\ominus},Del(j),$$

$$\Leftrightarrow$$
 , $m\Theta$, jOm , $Del(j)$,

$$\Leftrightarrow$$
 , $m \ominus$, $j \circ m$, $m \ominus$, $Del(j)$,

$$\Leftrightarrow$$
 , $j \rightarrow m, m \ominus, m \ominus, Del(j)$,

$$\Leftrightarrow$$
 $, j \rightarrow m, m \oplus, m \ominus, Del(j),$

$$\Leftrightarrow$$
 , $j \rightarrow m$, $Del(j)$,

$$, j! \rightarrow m, m \ominus, Del(j), \Leftrightarrow , j! \rightarrow m, Del(j), m \ominus,$$

26.1.4 Swap with propositions

$$, m! \circlearrowleft j, n! \circlearrowleft j, m = n, Del(j), \ \Leftrightarrow \ , m! \circlearrowleft j, n! \circlearrowleft j, Del(j), m = n,$$

$$, m! \circlearrowleft j, n! \circlearrowleft j, m! = n, Del(j), \Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, Del(j), m! = n,$$

$$, m! \circlearrowleft j, m = \varnothing, Del(j), \Leftrightarrow , m! \circlearrowleft j, Del(j), m = \varnothing,$$

$$, m! \circlearrowleft j, m = \varnothing, Del(j),$$

$$\Leftrightarrow , m! \circlearrowleft j, @n, m = n, n \oplus, Del(j),$$

$$\Leftrightarrow, m! \circlearrowleft j, @n, n! \circlearrowleft j, m = n, n \circledast, Del(j),$$

$$\Leftrightarrow, m! \circlearrowleft j, @n, n! \circlearrowleft j, m = n, Del(j), n \circledast,$$

$$\Leftrightarrow, @n, m! \circlearrowleft j, n! \circlearrowleft j, m = n, Del(j), n \circledast,$$

$$\Leftrightarrow, @n, m! \circlearrowleft j, n! \circlearrowleft j, Del(j), m = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft j, @n, n! \circlearrowleft j, Del(j), m = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft j, @n, Del(j), m = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft j, Del(j), @n, m = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft j, Del(j), @n, m = n, n \circledast,$$

$$\Leftrightarrow, m! \circlearrowleft j, Del(j), m = \varnothing,$$

$$, m \!=\! \varnothing, Del(j), \iff, m! \circlearrowleft j, Del(j), m \!=\! \varnothing,$$

$$, m = \varnothing, Del(j),$$

$$\Leftrightarrow$$
 , $m = \emptyset$, $j != \emptyset$, $Del(j)$,

$$\Leftrightarrow$$
, $m = \emptyset$, $j != \emptyset$, $m! \circlearrowleft j$, $Del(j)$,

$$\Leftrightarrow$$
, $j!=\varnothing$, $m!Oj$, $m=\varnothing$, $Del(j)$,

$$\Leftrightarrow$$
, $j = \emptyset$, $m! \circlearrowleft j$, $Del(j)$, $m = \emptyset$,

$$\Leftrightarrow$$
, $m!Oj, j!=\varnothing, Del(j), m=\varnothing,$

$$\Leftrightarrow , m! \circlearrowleft j, Del(j), m = \varnothing,$$

$$, m = \emptyset, Del(j), \Leftrightarrow \sim, m = \emptyset,$$

$$, m = \varnothing, Del(j),$$

$$\Leftrightarrow$$
, $m = \emptyset$, $j != \emptyset$, $Del(j)$,

26 Theorems of Delete Node Function Del(j)

$$\Leftrightarrow, m = \varnothing, j != \varnothing, m ! \circlearrowleft j, Del(j),$$

$$\Leftrightarrow, m = \varnothing, m = \varnothing, j != \varnothing, m ! \circlearrowleft j, Del(j),$$

$$\Leftrightarrow, m = \varnothing, j != \varnothing, m ! \circlearrowleft j, m = \varnothing, Del(j),$$

$$\Leftrightarrow, m = \varnothing, j != \varnothing, m ! \circlearrowleft j, Del(j), m = \varnothing,$$

$$\Leftrightarrow, m = \varnothing, j != \varnothing, Del(j), m = \varnothing,$$

$$\Leftrightarrow, m = \varnothing, Del(j), m = \varnothing,$$

$$, m! \circlearrowleft j, m! = \varnothing, Del(j), \Leftrightarrow , m! \circlearrowleft j, Del(j), m! = \varnothing,$$

26.2 Swap with identical node propositions

```
, m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft n, Del(j), \iff , m! \circlearrowleft j, n! \circlearrowleft j, Del(j), m \circlearrowleft n, proof:
, m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft dm, Del(j),
\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc, dn \circledcirc,
\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm = dn, Del(j), dm \circledcirc, dn \circledcirc,
\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, dm! \circlearrowleft j, n \circledcirc dn, dn! \circlearrowleft j, dm = dn, Del(j), dm \circledcirc, dn \circledcirc,
\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm! \circlearrowleft j, dn! \circlearrowleft j, dm = dn, Del(j), dm \circledcirc, dn \circledcirc,
\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, dm! \circlearrowleft j, dn! \circlearrowleft j, Del(j), dm = dn, dm \circledcirc, dn \circledcirc,
\Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, m \circledcirc dm, n \circledcirc dn, Del(j), dm = dn, dm \circledcirc, dn \circledcirc,
\Leftrightarrow , m! \circlearrowleft j, m \circledcirc dm, n! \circlearrowleft j, n \circledcirc dn, Del(j), dm = dn, dm \circledcirc, dn \circledcirc,
\Leftrightarrow , m! \circlearrowleft j, m \circledcirc dm, n! \circlearrowleft j, Del(j), n \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc,
\Leftrightarrow , n! \circlearrowleft j, m! \circlearrowleft j, m \circledcirc dm, Del(j), n \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc,
\Leftrightarrow , n! \circlearrowleft j, m! \circlearrowleft j, Del(j), m \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc,
\Leftrightarrow , n! \circlearrowleft j, m! \circlearrowleft j, Del(j), m \circledcirc dm, n \circledcirc dn, dm = dn, dm \circledcirc, dn \circledcirc,
```

$$\Leftrightarrow$$
 $, m! \circlearrowleft j, n! \circlearrowleft j, Del(j), m \circlearrowleft n,$

$$, m! \circlearrowleft j, n! \circlearrowleft j, m! \circlearrowleft n, Del(j), \iff , m! \circlearrowleft j, n! \circlearrowleft j, Del(j), m! \circlearrowleft n,$$

$$, j \rightarrow k, Del(j), \Leftrightarrow , k! \circlearrowleft j, Del(j), k \circlearrowleft j,$$

$$, j \rightarrow k, Del(j),$$

$$\Leftrightarrow$$
 $,j \otimes j_0, j_0 \oplus, k \circ j_0, j_0 \oplus, Del(j),$

$$\Leftrightarrow$$
 $, j \otimes j_0, j_0 \oplus, k \circ j_0, j_0 \oplus, j \models \varnothing, Del(j),$

$$\Leftrightarrow , j \otimes j_0, j_0 \oplus, j \rightarrow j_0, k \circlearrowleft j_0, j_0 \oplus, j != \varnothing, Del(j),$$

$$\Leftrightarrow$$
 $, j \otimes j_0, j_0 \oplus , j != \varnothing, j \rightarrow j_0, k \circ j_0, j_0 \oplus , Del(j),$

$$\Leftrightarrow$$
 $, j \otimes j_0, j_0 \oplus , j \models \emptyset, j \rightarrow j_0, j > j_0, k \circlearrowleft j_0, j_0 \oplus , Del(j),$

$$\Leftrightarrow$$
 $, j \otimes j_0, j_0 \oplus, j != \varnothing, j \rightarrow j_0, j > j_0, j_0 ! \circlearrowleft j, k \circlearrowleft j_0, j_0 \oplus, Del(j),$

$$\Leftrightarrow , j \otimes j_0, j_0 \oplus, j \models \varnothing, j \rightarrow j_0, j > j_0, j_0 ! \circlearrowleft j, j_0 ! \circlearrowleft j, k \circlearrowleft j_0, j_0 \oplus, Del(j),$$

$$\Leftrightarrow , j \circledcirc j_0, j_0 \oplus, j \vcentcolon = \varnothing, j \rightarrow j_0, j \gt j_0, j_0 ! \circlearrowleft j, k! \circlearrowleft j, k \circlearrowleft j_0, j_0 \oplus, Del(j),$$

$$\Leftrightarrow , j \otimes j_0, j_0 \oplus, j \vcentcolon= \varnothing, j \rightarrow j_0, j > j_0, j_0 ! \circlearrowleft j, k! \circlearrowleft j, k \circlearrowleft j_0, Del(j), j_0 \oplus,$$

$$\Leftrightarrow , j \otimes j_0, j_0 \oplus, j \models \varnothing, j \rightarrow j_0, j > j_0, j_0 ! \circlearrowleft j, k! \circlearrowleft j, Del(j), k \circlearrowleft j_0, j_0 \oplus,$$

$$\Leftrightarrow , j \otimes j_0, j_0 \oplus, k! \circlearrowleft j, Del(j), k \circlearrowleft j_0, j_0 \oplus,$$

$$\Leftrightarrow , k! \circlearrowleft j, j \odot j_0, j_0 \oplus, Del(j), k \circlearrowleft j_0, j_0 \oplus,$$

$$\Leftrightarrow \ , k! \circlearrowleft j, j \otimes j_0, j \circlearrowleft j_0, j_0 \oplus, Del(j), k \circlearrowleft j_0, j_0 \oplus,$$

$$\Leftrightarrow , k! \circlearrowleft j, j \otimes j_0, j \circlearrowleft j_0, Del(j), k \circlearrowleft j_0, j_0 \oplus,$$

$$\Leftrightarrow$$
, $k! \circlearrowleft j, j \otimes j_0, Del(j), k \circlearrowleft j_0, j_0 \oplus$,

$$\Leftrightarrow ,k! \circlearrowleft j, Del(j), j \odot j_0, k \circlearrowleft j_0, j_0 \oplus,$$

26 Theorems of Delete Node Function Del(j)

$$\Leftrightarrow$$
 $,k!Oj, Del(j), jOj_0, jOj_0, kOj_0, j_0O,$

$$\Leftrightarrow$$
, $k! \circlearrowleft j$, $Del(j)$, $j \circlearrowleft j_0$, $j \circlearrowleft j_0$, $k \circlearrowleft j$, $j_0 \circlearrowleft$,

$$\Leftrightarrow$$
, $k! \circlearrowleft j$, $Del(j)$, $j \odot j_0$, $j \circlearrowleft j_0$, $j_0 \oplus$, $k \circlearrowleft j$,

$$\Leftrightarrow$$
, $k! \circlearrowleft j$, $Del(j)$, $j \otimes j_0$, $j_0 \otimes k \circlearrowleft j$,

$$\Leftrightarrow$$
, $k!Oj$, $Del(j)$, kOj ,

$$, j \rightarrow k, Del(j), \Leftrightarrow \sim, k \circlearrowleft j,$$

proof:

$$, j \rightarrow k, Del(j),$$

$$\Leftrightarrow$$
 , $j \rightarrow k$, $j \rightarrow k$, $Del(j)$,

$$\Leftrightarrow , j \rightarrow k, k! \circlearrowleft j, Del(j), k \circlearrowleft j,$$

$$\Leftrightarrow$$
 $, j \rightarrow k, k! \circlearrowleft j, j! = \varnothing, Del(j), k \circlearrowleft j,$

$$\Leftrightarrow$$
 , $j!=\varnothing$, $j\rightarrow k$, $k!\circlearrowleft j$, $Del(j)$, $k\circlearrowleft j$,

$$\Leftrightarrow , j \! := \! \varnothing, j \! \rightarrow \! k, j \! > \! k, k ! \! \circlearrowleft \! j, Del(j), k \! \circlearrowleft \! j,$$

$$\Leftrightarrow, j \! := \! \varnothing, j \! \rightarrow \! k, j \! > \! k, Del(j), k \! \circlearrowleft \! j,$$

$$\Leftrightarrow , j != \varnothing, j \!\rightarrow\!\! k, Del(j), k \circlearrowleft j,$$

$$\Leftrightarrow$$
, $j \rightarrow k$, $Del(j)$, $k \circlearrowleft j$,

$$, m \circlearrowleft j, Del(j), \Leftrightarrow \sim, m \circlearrowleft j,$$

$$, m \circlearrowleft j, Del(j),$$

$$\Leftrightarrow$$
 , $m \circlearrowleft j$, $m \oplus$, $Del(j)$,

$$\Leftrightarrow \ , m \oplus, j {\rightarrow} m, Del(j),$$

$$\Leftrightarrow \ , m \oplus, j {\rightarrow} m, Del(j), m \circlearrowleft j,$$

$$\Leftrightarrow , m \circlearrowleft j, m \oplus, Del(j), m \circlearrowleft j,$$

$$\Leftrightarrow$$
 , $m \circlearrowleft j$, $Del(j)$, $m \circlearrowleft j$,

$$, m \circlearrowleft j, m \circlearrowleft n, Del(j), \Leftrightarrow \sim, m \circlearrowleft n,$$

$$, m \circlearrowleft j, m \circlearrowleft n, Del(j),$$

$$\Leftrightarrow , m \circlearrowleft j, n \circlearrowleft j, Del(j),$$

$$\Leftrightarrow$$
 , $m \circlearrowleft j$, $n \circlearrowleft j$, $Del(j)$, $n \circlearrowleft j$,

$$\Leftrightarrow$$
 $,n \circlearrowleft j,m \circlearrowleft j,Del(j),n \circlearrowleft j,$

$$\Leftrightarrow , n \circlearrowleft j, m \circlearrowleft j, Del(j), m \circlearrowleft j, n \circlearrowleft j,$$

$$\Leftrightarrow , n \circlearrowleft j, m \circlearrowleft j, Del(j), m \circlearrowleft j, m \circlearrowleft n,$$

$$\Leftrightarrow$$
 $, n \circlearrowleft j, m \circlearrowleft j, Del(j), m \circlearrowleft n,$

$$\Leftrightarrow , m \circlearrowleft j, n \circlearrowleft j, Del(j), m \circlearrowleft n,$$

$$\Leftrightarrow$$
 , $m \circ j$, $m \circ n$, $Del(j)$, $m \circ n$,

$$, m! \circlearrowleft j, m \circlearrowleft n, Del(j), \iff \sim, m \circlearrowleft n,$$

$$, m! \mathcal{O}j, m\mathcal{O}n, Del(j),$$

$$\Leftrightarrow , m! \circlearrowleft j, m! \circlearrowleft j, m \circlearrowleft n, m \circlearrowleft n, Del(j),$$

$$\Leftrightarrow \ , m! \circlearrowleft j, m \circlearrowleft n, m! \circlearrowleft j, m \circlearrowleft n, Del(j),$$

$$\Leftrightarrow , m! \circlearrowleft j, m \circlearrowleft n, n! \circlearrowleft j, m \circlearrowleft n, Del(j),$$

$$\Leftrightarrow$$
 , $m \circ n$, $m! \circ j$, $n! \circ j$, $m \circ n$, $Del(j)$,

$$\Leftrightarrow \ , m \circlearrowleft n, m! \circlearrowleft j, n! \circlearrowleft j, Del(j), m \circlearrowleft n,$$

26 Theorems of Delete Node Function Del(j)

$$\Leftrightarrow$$
, $m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft n, Del(j), m \circlearrowleft n,$

$$\Leftrightarrow$$
 , $m!Oj$, $m!Oj$, mOn , $Del(j)$, mOn ,

$$\Leftrightarrow$$
, $m! \circlearrowleft j, m \circlearrowleft n, Del(j), m \circlearrowleft n,$

$$, m \circlearrowleft n, Del(j), \Leftrightarrow \sim, m \circlearrowleft n,$$

proof:

$$, m \mathcal{O}n, Del(j),$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \boxed, -, m \circlearrowleft n, Del(j),$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft n, Del(j), \\ , m \circlearrowleft n, Del(j), \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, m \circlearrowleft n, Del(j), \\ , m ! \circlearrowleft j, m \circlearrowleft n, Del(j), \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, m \circlearrowleft n, Del(j), m \circlearrowleft n, \\ , m! \circlearrowleft j, m \circlearrowleft n, Del(j), m \circlearrowleft n, \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \begin{bmatrix} , m \circlearrowleft n, Del(j), m \circlearrowleft n, \\ , m \circlearrowleft n, Del(j), m \circlearrowleft n, \end{bmatrix},$$

$$\Leftrightarrow$$
 , $if(m\circlearrowleft j)$ - $\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$ -, $m\circlearrowleft n$, $Del(j)$, $m\circlearrowleft n$,

$$\Leftrightarrow$$
 , $m \circ n$, $Del(j)$, $m \circ n$,

$$, m! \circlearrowleft j, j! \rightarrow m, Del(j), \Leftrightarrow \sim, m! \circlearrowleft j,$$

$$, m! \circlearrowleft j, j! \rightarrow m, Del(j),$$

$$\Leftrightarrow \ , m! \circlearrowleft j, j! \!\! \to \!\! m, j \otimes k, k \oplus, Del(j),$$

$$\Leftrightarrow$$
, $m! \circlearrowleft j, j! \rightarrow m, j \otimes k, k \oplus, k \oplus, Del(j),$

$$\Leftrightarrow$$
 $, m! \circlearrowleft j, j! \rightarrow m, j \otimes k, k \oplus, Del(j), k \oplus,$

$$\Leftrightarrow$$
 $, m! \circlearrowleft j, j! \rightarrow m, j \otimes k, k \oplus, j \rightarrow k, Del(j), k \oplus,$

$$\Leftrightarrow$$
 , $m! \circlearrowleft j, j \otimes k, k \oplus, j \rightarrow k, j! \rightarrow m, Del(j), k \oplus,$

$$\Leftrightarrow$$
 $, m! \circlearrowleft j, j \otimes k, k \oplus, j \rightarrow k, j! \rightarrow m, m! \circlearrowleft k, Del(j), k \oplus,$

$$\Leftrightarrow \ , m! \circlearrowleft j, j \otimes k, k \oplus, j \rightarrow k, j! \rightarrow m, m! \circlearrowleft k, j! = \varnothing, Del(j), k \oplus,$$

$$\Leftrightarrow , m! \circlearrowleft j, j \circledcirc k, k \oplus, j != \varnothing, j \rightarrow k, j! \rightarrow m, m! \circlearrowleft k, Del(j), k \oplus,$$

$$\Leftrightarrow \ , m! \circlearrowleft j, j \circledcirc k, k \oplus, j != \varnothing, j \rightarrow k, j > k, j ! \rightarrow m, m! \circlearrowleft k, Del(j), k \oplus,$$

$$\Leftrightarrow , j \circledcirc k, k \oplus, j \vcentcolon = \varnothing, j \rightarrow k, j \gtrdot k, j \trianglerighteq m, m ! \circlearrowleft j, k ! \circlearrowleft j, m ! \circlearrowleft k, Del(j), k \oplus,$$

$$\Leftrightarrow$$
 $,j \otimes k, k \oplus , j != \varnothing, j \rightarrow k, j > k, j ! \rightarrow m, m! \circ j, k! \circ j, Del(j), m! \circ k, k \oplus ,$

$$\Leftrightarrow \ , m! \circlearrowleft j, j! \rightarrow m, j \circledcirc k, k \oplus, j! = \varnothing, j \rightarrow k, j > k, k! \circlearrowleft j, Del(j), m! \circlearrowleft k, k \oplus,$$

$$\Leftrightarrow \ , m! \circlearrowleft j, j! \rightarrow m, j \odot k, k \oplus, j \rightarrow k, Del(j), m! \circlearrowleft k, k \oplus,$$

$$\Leftrightarrow \ , m! \circlearrowleft j, j! \rightarrow m, j \odot k, k \oplus, j \rightarrow k, Del(j), k \circlearrowleft j, m! \circlearrowleft k, k \oplus,$$

$$\Leftrightarrow \ , m! \circlearrowleft j, j! \rightarrow m, j \odot k, k \oplus, j \rightarrow k, Del(j), k \circlearrowleft j, m! \circlearrowleft j, k \oplus,$$

$$\Leftrightarrow \ , m! \circlearrowleft j, j! \!\! \rightarrow \!\! m, j \otimes k, k \oplus, j \!\! \rightarrow \!\! k, Del(j), m! \circlearrowleft j, k \oplus,$$

$$\Leftrightarrow , m! \circlearrowleft j, j! \!\! \to \!\! m, j \otimes k, k \oplus, Del(j), m! \circlearrowleft j, k \oplus,$$

$$\Leftrightarrow \ , m! \circlearrowleft j, j! \!\! \to \!\! m, j \odot k, k \oplus, k \oplus, Del(j), m! \circlearrowleft j,$$

$$\Leftrightarrow \ , m! \circlearrowleft j, j! \!\! \rightarrow \!\! m, j \otimes k, k \circledast, Del(j), m! \circlearrowleft j,$$

$$\Leftrightarrow$$
 $, m! \circlearrowleft j, j! \rightarrow m, Del(j), m! \circlearrowleft j,$

$$, if(m \circlearrowleft j) = \begin{bmatrix} , \\ , j \rightarrow m, \end{bmatrix}, Del(j), \Leftrightarrow \sim, m \circlearrowleft j,$$

$$, if(m \circlearrowleft j) - \begin{bmatrix} , \\ , j \rightarrow m, \end{bmatrix} -, Del(j),$$

$$\Leftrightarrow$$
, $if(m \circlearrowleft j) = \begin{bmatrix}, Del(j), \\, j \to m, Del(j), \end{bmatrix}$,

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, Del(j), \\ , j \rightarrow m, Del(j), \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, Del(j), m \circlearrowleft j, \\ , j \to m, Del(j), m \circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \begin{bmatrix} , m \circlearrowleft j, \\ , j \rightarrow m, \end{bmatrix}, Del(j), m \circlearrowleft j,$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \begin{bmatrix} , \\ , j \rightarrow m, \end{bmatrix} -, Del(j), m \circlearrowleft j,$$

$$, Del(j), m \circlearrowleft j, \iff , if(m \circlearrowleft j) - \begin{bmatrix} , \\ , j \rightarrow m, \end{bmatrix}, \sim$$

$$, Del(j), m \circlearrowleft j,$$

$$\Leftrightarrow \ , if(m \circlearrowleft j) - \boxed{\ , \ } -, Del(j), m \circlearrowleft j,$$

$$\Leftrightarrow , if(m \circlearrowleft j) - \begin{bmatrix} , \\ , if(j \rightarrow m) - \end{bmatrix} - , \end{bmatrix} - , Del(j), m \circlearrowleft j,$$

$$\Leftrightarrow$$
 , $Del(j)$, $m \circlearrowleft j$,

$$, m! \circlearrowleft j, j! \rightarrow m, Del(j), \Leftrightarrow , Del(j), m! \circlearrowleft j,$$

$$, Del(j), m! \circlearrowleft j,$$

$$\Leftrightarrow$$
, $if(m \circlearrowleft j) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $Del(j), m! \circlearrowleft j$,

$$\Leftrightarrow , if(m \circlearrowleft j) - \left[, \\ , if(j \rightarrow m) - \right] - , - \right] - , Del(j), m! \circlearrowleft j,$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , Del(j), m! \circlearrowleft j, \\ , if(j \rightarrow m) = \begin{bmatrix} , Del(j), m! \circlearrowleft j, \\ , Del(j), m! \circlearrowleft j, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, Del(j), m! \circlearrowleft j, \\ , if(j \to m) = \begin{bmatrix} , j \to m, Del(j), m! \circlearrowleft j, \\ , Del(j), m! \circlearrowleft j, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow , if(m \circlearrowleft j) = \begin{bmatrix} , m \circlearrowleft j, Del(j), m \circlearrowleft j, m! \circlearrowleft j, \\ , if(j \rightarrow m) = \begin{bmatrix} , j \rightarrow m, Del(j), m \circlearrowleft j, m! \circlearrowleft j, \\ , Del(j), m! \circlearrowleft j, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow ,if(m \circlearrowleft j) = \begin{bmatrix} ,m \circlearrowleft j,Del(j),\otimes,\\ ,j\to m,Del(j),\otimes,\\ ,if(j\to m) = \begin{bmatrix} ,j\to m,Del(j),\otimes,\\ ,Del(j),m! \circlearrowleft j, \end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow ,if(m \circlearrowleft j) = \begin{bmatrix} ,\otimes,\\ ,if(j\to m) = \begin{bmatrix} ,\otimes,\\ ,Del(j),m! \circlearrowleft j,\end{bmatrix}, \end{bmatrix},$$

$$\Leftrightarrow ,m! \circlearrowleft j,if(j\to m) = \begin{bmatrix} ,\otimes,\\ ,Del(j),m! \circlearrowleft j,\end{bmatrix},$$

$$\Leftrightarrow ,m! \circlearrowleft j,j!\to m,Del(j),m! \circlearrowleft j,$$

$$\Leftrightarrow ,m! \circlearrowleft j,j!\to m,Del(j),$$

26.3 Other

$$, i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j, \iff , \otimes,$$

$$\text{proof:}$$

$$, i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

$$\Leftrightarrow , i = j, i! \circlearrowleft j, Del(j), i \circlearrowleft j,$$

 \Leftrightarrow , $if(i\circlearrowleft j)$ - $\begin{bmatrix} , \\ , i = j, Del(j), i\circlearrowleft j, \end{bmatrix}$

$$\Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} ,i=j,Del(j),i\circlearrowleft j,\\ ,i!\circlearrowleft j,i=j,Del(j),i\circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} ,i=j,Del(j),i\circlearrowleft j,\\ ,i=j,i!\circlearrowleft j,Del(j),i\circlearrowleft j, \end{bmatrix},$$

$$\Leftrightarrow , if(i\circlearrowleft j) - \begin{bmatrix} ,i=j,Del(j),i\circlearrowleft j,\\ ,\otimes, \end{bmatrix},$$

$$\Leftrightarrow , i\circlearrowleft j,i=j,Del(j),i\circlearrowleft j,$$

$$\Leftrightarrow ,i=j,i\circlearrowleft j,Del(j),i\circlearrowleft j,$$

$$\Leftrightarrow ,i=j,i\circlearrowleft j,Del(j),i\circlearrowleft j,$$

$$,i\circlearrowleft j,Del(j),\iff,i\mp j,Del(j),i\circlearrowleft j,$$
 $,j\rightarrow k,j\circledcirc n,Del(j),\iff,j\rightarrow k,k\circledcirc n,Del(j),$

$$, j \rightarrow k, j \otimes n, Del(j),$$

$$\Leftrightarrow \ , j {\to} k, Del(j), j {\odot} n,$$

$$\Leftrightarrow$$
, $j \rightarrow k$, $Del(j)$, $j \circ k$, $j \circ n$,

$$\Leftrightarrow$$
 , $j \rightarrow k$, $Del(j)$, $j \circ k$, $k \circ n$,

$$\Leftrightarrow$$
, $j \rightarrow k$, $Del(j)$, $k \odot n$,

$$\Leftrightarrow$$
 , $j \rightarrow k$, $k \otimes n$, $Del(j)$,

26.4 Swap with node connectivity propositions

$$, R(i), Del(j), \Leftrightarrow, Del(j), R(i), \\ \text{induction proof:} \\ premise 1: \\ , i = \varnothing, R(i), Del(j), \\ \Leftrightarrow, i = \varnothing, Del(j), i = \varnothing, \\ \Leftrightarrow, i = \varnothing, Del(j), i = \varnothing, R(i), \\ \Leftrightarrow, i = \varnothing, Del(j), R(i), \\ premise 2: \\ , \&SHi \rightarrow i, R(i), Del(j), \Leftrightarrow, \&SHi \rightarrow i, Del(j), R(i), \Rightarrow \\ , i! = \varnothing, \&SHi \circlearrowleft i, i! = \varnothing, R(i), Del(j), \\ \Leftrightarrow, \&SHi \circlearrowleft i, i! = \varnothing, R(i), Del(j), \\ \Leftrightarrow, & SHi \circlearrowleft i, i! = \varnothing, R(i), Del(j), \\ \Leftrightarrow, & i! = \varnothing, i \oplus, \&SHi \rightarrow i, R(i), Del(j), \\ \Leftrightarrow, i! = \varnothing, i \oplus, \&SHi \rightarrow i, Del(j), R(i), \\ \Leftrightarrow, & SHi \circlearrowleft i, i! = \varnothing, i \oplus, Del(j), R(i), \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \oplus, Del(j), R(i), \\ , i! = \varnothing, i \oplus, \&SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \oplus, Del(j), R(i), \\ , i! = \varnothing, i \oplus, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft j, i \uplus, Del(j), R(i), \\ , i! = \varnothing, i \oplus, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft j, i \uplus, Del(j), R(i), \\ , i! = \varnothing, i \oplus, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft j, i \uplus, Del(j), R(i), \\ , i! = \varnothing, i \oplus, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i \circlearrowleft j, i \uplus, Del(j), R(i), \\ , i! = \varnothing, i \uplus, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \uplus, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \uplus, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \end{bmatrix}, \\ \Leftrightarrow, & SHi \circlearrowleft i, if(i \circlearrowleft j) - \begin{bmatrix} , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \\ , i! = \varnothing, i \circlearrowleft, Del(j), R(i), \end{bmatrix}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, i \, \circlearrowleft j, Del(j), R(i), \\, i! = \varnothing, i \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i \, \circlearrowleft j, i! = \varnothing, Del(j), R(i), \\, i! = \varnothing, i \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! = \varnothing, i \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, i! \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! = \varnothing, i! \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, Del(j), i! = \varnothing, i \, \circlearrowleft, R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, Del(j), i! = \varnothing, R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, Del(j), i! = \varnothing, R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (i \, \circlearrowleft j) = \begin{bmatrix}, i! = \varnothing, Del(j), R(i), \\, i! \, \circlearrowleft, Del(j), R(i), \end{bmatrix},$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, if (i \circlearrowleft j) - \left[, \right], i != \varnothing, Del(j), R(i),$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, Del(j), R(i),$$

conclusion:

$$, R(i), Del(j), \Leftrightarrow , Del(j), R(i),$$

$$, m = \varnothing, n = \varnothing, m \circlearrowleft n, Del(j), \iff , m = \varnothing, n = \varnothing, Del(j), m \circlearrowleft n,$$

$$, m = \varnothing, n = \varnothing, m \circlearrowleft n, Del(j),$$

$$\Leftrightarrow$$
, $m = \emptyset$, $n = \emptyset$, $m \circlearrowleft n$, $j != \emptyset$, $Del(j)$,

$$\Leftrightarrow$$
, $m = \emptyset$, $j! = \emptyset$, $n = \emptyset$, $m \circlearrowleft n$, $Del(j)$,

$$\Leftrightarrow$$
, $m = \emptyset$, $j != \emptyset$, $m! \circlearrowleft j$, $n = \emptyset$, $m \circlearrowleft n$, $Del(j)$,

$$\Leftrightarrow$$
, $m = \emptyset$, $m!Oj$, $n = \emptyset$, $j! = \emptyset$, mOn , $Del(j)$,

$$\Leftrightarrow$$
, $m = \emptyset$, $m! \circlearrowleft j$, $n = \emptyset$, $j! = \emptyset$, $n! \circlearrowleft j$, $m \circlearrowleft n$, $Del(j)$,

$$\Leftrightarrow$$
, $m = \emptyset$, $n = \emptyset$, $j \models \emptyset$, $m!Oj$, $m!Oj$, mOn , $Del(j)$,

$$\Leftrightarrow$$
 , $m = \emptyset$, $n = \emptyset$, $j \models \emptyset$, $m!Oj$, $n!Oj$, $Del(j)$, mOn ,

$$\Leftrightarrow$$
, $m = \emptyset$, $n = \emptyset$, $j != \emptyset$, $n ! \circlearrowleft j$, $m! \circlearrowleft j$, $Del(j)$, $m \circlearrowleft n$,

$$\Leftrightarrow , m \! = \! \varnothing, n \! = \! \varnothing, j \! \models \! \varnothing, m \! ! \! \circlearrowleft \! j, Del(j), m \! \circlearrowleft \! n,$$

$$\Leftrightarrow$$
, $n = \emptyset$, $m = \emptyset$, $j != \emptyset$, $m ! \circlearrowleft j$, $Del(j)$, $m \circlearrowleft n$,

$$\Leftrightarrow$$
, $n = \emptyset$, $m = \emptyset$, $j != \emptyset$, $Del(j)$, $m \circlearrowleft n$,

$$\Leftrightarrow, n \!=\! \varnothing, m \!=\! \varnothing, Del(j), m \mathring{\bigcirc} n,$$

$$\Leftrightarrow$$
, $m = \emptyset$, $n = \emptyset$, $Del(j)$, $m \circlearrowleft n$,

$$, m = \varnothing, n = \varnothing, m! \circlearrowleft n, Del(j), \iff, m = \varnothing, n = \varnothing, Del(j), m! \circlearrowleft n,$$

$$, m \circ n, Del(j), \Leftrightarrow , Del(j), m \circ n,$$

proof:

 $, m \circlearrowleft n, Del(j),$

$$\Leftrightarrow$$
 , $m \otimes m_0$, $n \otimes n_0$, $R(m_0)$, $R(n_0)$, $m_0 \otimes n_0$, $m_0 \otimes n_0 \otimes n_0$, $Del(j)$,

$$\Leftrightarrow$$
 , $m \otimes m_0$, $n \otimes n_0$, $R(m_0)$, $R(n_0)$, $m_0 \otimes n_0$, $Del(j)$, $m_0 \otimes n_0 \otimes n_0$

$$\Leftrightarrow, m \otimes m_0, n \otimes n_0, R(m_0), m_0 = \varnothing, R(n_0), m_0 \otimes n_0, Del(j), m_0 \otimes, n_0 \otimes, n_0 \otimes n_0, R(m_0), R($$

$$\Leftrightarrow , m \otimes m_0, n \otimes n_0, R(m_0), m_0 = \varnothing, R(n_0), n_0 = \varnothing, m_0 \circlearrowleft n_0, Del(j), m_0 \oplus, n_0 \oplus,$$

$$\Leftrightarrow$$
 , $m \otimes m_0$, $n \otimes n_0$, $R(m_0)$, $R(n_0)$, $m_0 = \varnothing$, $n_0 = \varnothing$, $m_0 \circ n_0$, $Del(j)$, $m_0 \circ n_0 \circ n_0$

$$\Leftrightarrow, m \otimes m_0, n \otimes n_0, R(m_0), R(n_0), m_0 = \varnothing, n_0 = \varnothing, Del(j), m_0 \circlearrowleft n_0, m_0 \oplus, n_0 \oplus, n_0$$

$$\Leftrightarrow, m \otimes m_0, n \otimes n_0, R(m_0), m_0 = \varnothing, R(n_0), n_0 = \varnothing, Del(j), m_0 \circ n_0, m_0 \otimes, n_0 \otimes, n_0 \otimes n_0 \otimes$$

$$\Leftrightarrow$$
 $, m \odot m_0, n \odot n_0, R(m_0), R(n_0), Del(j), m_0 \circlearrowleft n_0, m_0 \oplus, n_0 \oplus, n_0$

$$\Leftrightarrow , m \otimes m_0, n \otimes n_0, Del(j), R(m_0), R(n_0), m_0 \otimes n_0, m_0 \otimes n_0 \otimes n_$$

$$\Leftrightarrow , Del(j), m \odot m_0, n \odot n_0, R(m_0), R(n_0), m_0 \circlearrowleft n_0, m_0 \odot, n_0 \odot,$$

$$\Leftrightarrow$$
, $Del(j)$, $m \circ n$,

$$, m! \mathfrak{O}n, Del(j), \Leftrightarrow , Del(j), m! \mathfrak{O}n,$$

$$,i \circlearrowleft j, Del(j), \Leftrightarrow , Del(j), i \circlearrowleft j,$$

proof:

 $,i \circ j, Del(j),$

$$\Leftrightarrow$$
 $,j \otimes j_0, j_0 \oplus, i \circ j, Del(j),$

$$\Leftrightarrow , j \otimes j_0, j \circlearrowleft j_0, j_0 \oplus, i \circlearrowleft j, Del(j),$$

$$\Leftrightarrow$$
 $,j \otimes j_0, i \circ j, j \circ j_0, Del(j), j_0 \oplus,$

$$\Leftrightarrow$$
 $,j \otimes j_0, i \otimes j, j \otimes j_0, Del(j_0), j_0 \oplus,$

26 Theorems of Delete Node Function Del(j)

$$\Leftrightarrow , j \otimes j_0, j \circlearrowleft j_0, i \circlearrowleft j, Del(j_0), j_0 \oplus,$$

$$\Leftrightarrow , j \odot j_0, j \circlearrowleft j_0, Del(j_0), i \circlearrowleft j, j_0 \oplus,$$

$$\Leftrightarrow \ , j @ j_0, j @ j_0, Del(j), i @ j, j_0 @,$$

$$\Leftrightarrow$$
, $j \otimes j_0$, $Del(j)$, $i \circ j$, $j_0 \otimes j$,

$$\Leftrightarrow$$
 , $j \otimes j_0, j_0 \oplus$, $Del(j), i \circ j$,

$$\Leftrightarrow$$
 , $Del(j)$, $i \circ j$,

$$,i! \circlearrowleft j, Del(j), \Leftrightarrow , Del(j), i! \circlearrowleft j,$$

27 Theorems of Assign Operator

27.1 Unity

$$, t @ j, \Leftrightarrow , if(t = \varnothing) - \begin{bmatrix} , if(j = \varnothing) - \begin{bmatrix} , \\ , Del(j), \end{bmatrix} - , \\ , Ins(t; j), \end{bmatrix},$$

27.2 Swap with identical node propositions

$$, m! \circlearrowleft j, n! \circlearrowleft j, m \circlearrowleft n, t \circledcirc j, \Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, t \circledcirc j, m \circlearrowleft n,$$

$$, m! \circlearrowleft j, n! \circlearrowleft j, m! \circlearrowleft n, t \circledcirc j, \Leftrightarrow , m! \circlearrowleft j, n! \circlearrowleft j, t \circledcirc j, m! \circlearrowleft n,$$

$$, m \circlearrowleft j, t \circledcirc j, \Leftrightarrow \sim, m \circlearrowleft j,$$

$$, m \circlearrowleft n, t \circledcirc j, \Leftrightarrow \sim, m \circlearrowleft n,$$

27.3 Swap with R(i)

$$, i! \circlearrowleft j, R(i), t \circledcirc j, \; \Leftrightarrow \; , i! \circlearrowleft j, t \circledcirc j, R(i),$$

$$, i \circlearrowleft j, j != \varnothing, R(i), t \circledcirc j, \; \Leftrightarrow \; , i \circlearrowleft j, j != \varnothing, t \circledcirc j, R(i),$$

27.4 Swap with node connectivity propositions

$$, m \circlearrowleft j, t \circledcirc j, \iff , t \circledcirc j, m \circlearrowleft j,$$

$$, m ! \circlearrowleft j, t \circledcirc j, \iff , t \circledcirc j, m ! \circlearrowleft j,$$

$$, m \circlearrowleft n, t \circledcirc j, \iff , t \circledcirc j, m \circlearrowleft n,$$

$$, m ! \circlearrowleft n, t \circledcirc j, \iff , t \circledcirc j, m ! \circlearrowleft n,$$

27.5 Swap with self

27.5.1 Ins and Ins

```
, Ins(t;j_1), In(t;j_2), \Leftrightarrow, Ins(t;j_2), In(t;j_1), proof:
, Ins(t;j_1), In(t;j_2),
\Leftrightarrow, Ins(t;j_1), t! = \varnothing, t @ j_2,
\Leftrightarrow, Ins(t;j_1), t @ j_2,
\Leftrightarrow, t @ t_0, t_0 @, Ins(t;j_1), t @ j_2, t_0 @,
\Leftrightarrow, t @ t_0, t & t_0, Ins(t;j_1), t @ j_2, t_0 @,
\Leftrightarrow, t & t_0, t &
```

$$\Leftrightarrow$$
 $t \otimes t_0, t \otimes t_0, t = \emptyset, t = \emptyset, t = t_0, t \otimes j_1, t_0 \otimes j_2, t_0 \otimes j_2$

$$\Leftrightarrow , t \odot t_0, t \circlearrowleft t_0, t != \varnothing, t_0 != \varnothing, t = t_0, t \circledcirc j_1, t_0 \circledcirc j_2, t_0 \circledcirc,$$

$$\Leftrightarrow$$
 $t \otimes t_0, t \otimes t_0, t != \varnothing, t_0 != \varnothing, t = t_0, t_0 @ j_2, t @ j_1, t_0 @$

$$\Leftrightarrow$$
 $t \otimes t_0, t \otimes t_0, t \otimes t_0, t = \emptyset, t_0 \otimes t_0, t \otimes t_$

$$\Leftrightarrow$$
 $t \otimes t_0, t \otimes t_0, t = \emptyset, t = \emptyset, t = t_0, t \otimes j_2, t \otimes j_1, t_0 \otimes j_2$

$$\Leftrightarrow$$
, $t \otimes t_0$, $t \otimes t_0$, $t = \emptyset$, $t = t_0$, $t \otimes j_2$, $t \otimes j_1$, $t_0 \otimes j_2$

$$\Leftrightarrow$$
, $t \odot t_0$, $t \odot t_0$, $t = t_0$, $t = \varnothing$, $t \odot j_2$, $t \odot j_1$, $t_0 \odot$,

$$\Leftrightarrow$$
 $t \otimes t_0, t = \emptyset, t \otimes j_2, t \otimes j_1, t_0 \otimes$,

$$\Leftrightarrow$$
 $,t \otimes t_0, t_0 \otimes , t != \varnothing, t \otimes j_2, t \otimes j_1,$

$$\Leftrightarrow$$
, $t = \emptyset$, $t \ni j_2$, $t \ni j_1$,

$$\Leftrightarrow$$
 , $In(t;j_2), t \ni j_1$,

$$\Leftrightarrow$$
, $In(t; j_2), t = \emptyset, t \oplus j_1,$

$$\Leftrightarrow$$
, $Ins(t; j_2), In(t; j_1),$

$$, i_1 != i_2, i_1 ! \circlearrowleft j_2, i_2 ! \circlearrowleft j_1, j_1 ! \circlearrowleft j_2, Ins(i_1; j_1), Ins(i_2; j_2), \Leftrightarrow , i_1 != i_2, i_1 ! \circlearrowleft j_2, i_2 ! \circlearrowleft j_1, j_1 ! \circlearrowleft j_2, Ins(i_2; j_2), Ins(i_1; j_1),$$

proof

$$,i_1!\!=\!i_2,i_1!\mathcal{O}j_2,i_2!\mathcal{O}j_1,j_1!\mathcal{O}j_2,Ins(i_1;j_1),Ins(i_2;j_2),$$

$$\Leftrightarrow ,i_1 \! \models \! i_2,i_1 \! ! \! \circlearrowleft \! j_2,i_2 ! \! \circlearrowleft \! j_1,j_1 ! \! \circlearrowleft \! j_2,Ins(i_1;j_1),i_2 \! \models \! \varnothing,i_2 \! \circledcirc \! j_2,$$

$$\Leftrightarrow ,i_1 \! \models \! i_2,i_1 \! ! \! \circlearrowleft \! j_2,j_1 \! ! \! \circlearrowleft \! j_2,i_2 \! ! \! \circlearrowleft \! j_1,Ins(i_1;j_1),i_2 \! ! \! = \! \varnothing,i_2 \! \circledcirc \! j_2,$$

$$\Leftrightarrow ,i_{1}!\!\!=\!i_{2},i_{1}!\!\!\circlearrowleft\!\! j_{2},j_{1}!\!\!\circlearrowleft\!\! j_{2},i_{2}!\!\!\circlearrowleft\!\! j_{1},i_{2}!\!\!=\!\varnothing,Ins(i_{1};j_{1}),i_{2}\!\!\oplus\!\! j_{2},$$

$$\Leftrightarrow$$
, $i_1!=i_2$, $i_1!\circlearrowleft j_2$, $j_1!\circlearrowleft j_2$, $i_2!\circlearrowleft j_1$, $i_2!=\varnothing$, $i_1!=\varnothing$, $i_1\circledcirc j_1$, $i_2\circledcirc j_2$,

$$\Leftrightarrow ,i_1 \! := \! i_2,i_1 \! ! \! \circlearrowleft \! j_2,j_1 ! \! \circlearrowleft \! j_2,i_2 ! \! \circlearrowleft \! j_1,i_2 \! ! \! = \! \varnothing,i_1 \! ! \! = \! \varnothing,i_2 \! \circledcirc \! j_2,i_1 \! \circledcirc \! j_1,$$

27 Theorems of Assign Operator

$$\Leftrightarrow ,i_{1}!=i_{2},i_{1}!\circlearrowleft j_{2},j_{1}!\circlearrowleft j_{2},i_{2}!\circlearrowleft j_{1},i_{1}!=\varnothing,i_{2}!=\varnothing,i_{2}\circledcirc j_{2},i_{1}\circledcirc j_{1},$$

$$\Leftrightarrow ,i_{1}!=i_{2},i_{1}!\circlearrowleft j_{2},j_{1}!\circlearrowleft j_{2},i_{2}!\circlearrowleft j_{1},i_{1}!=\varnothing,Ins(i_{2};j_{2}),i_{1}\circledcirc j_{1},$$

$$\Leftrightarrow ,i_{1}!=i_{2},j_{1}!\circlearrowleft j_{2},i_{2}!\circlearrowleft j_{1},i_{1}!\circlearrowleft j_{2},i_{1}!=\varnothing,Ins(i_{2};j_{2}),i_{1}\circledcirc j_{1},$$

$$\Leftrightarrow ,i_{1}!=i_{2},j_{1}!\circlearrowleft j_{2},i_{2}!\circlearrowleft j_{1},i_{1}!\circlearrowleft j_{2},Ins(i_{2};j_{2}),i_{1}!=\varnothing,i_{1}\circledcirc j_{1},$$

$$\Leftrightarrow ,i_{1}!=i_{2},j_{1}!\circlearrowleft j_{2},i_{2}!\circlearrowleft j_{1},j_{1}!\circlearrowleft j_{2},Ins(i_{2};j_{2}),Ins(i_{1};j_{1}),$$

27.5.2 Del and Del

$$, Del(j_1), Del(j_2), \Leftrightarrow , Del(j_2), Del(j_1),$$

$$proof:$$

$$, Del(j_1), Del(j_2),$$

$$\Leftrightarrow , if(j_1 \circ j_2) = \begin{bmatrix} Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 \circ j_2) = \begin{bmatrix} Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 \circ j_2) = \begin{bmatrix} Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 \circ j_2) = \begin{bmatrix} Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 \circ j_2) = \begin{bmatrix} Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 \circ j_2) = \begin{bmatrix} Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \end{bmatrix},$$

$$\Leftrightarrow , if(j_1 \circ j_2) = \begin{bmatrix} Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \\ Del(j_1), Del(j_2), \end{bmatrix},$$

27 Theorems of Assign Operator

$$\Leftrightarrow ,if(j_{1}\circlearrowleft j_{2}) = \begin{bmatrix} ,Del(j_{2}),Del(j_{1}),\\ ,\otimes t_{1},\otimes t_{2},j_{1}\circlearrowleft j_{2},j_{2} \models \varnothing,j_{1} \models \varnothing,t_{2}\circledcirc j_{2},t_{1}\circledcirc j_{1},t_{1}\circledcirc,t_{2}\circlearrowleft,\\ ,if(j_{1}\circlearrowleft j_{2}) = \begin{bmatrix} ,Del(j_{2}),Del(j_{1}),\\ ,\otimes t_{1},j_{1}\circlearrowleft j_{2},j_{1} \models \varnothing,j_{2} \models \varnothing, \odot t_{2},t_{2}\circledcirc j_{2},t_{2}\circledcirc,t_{1}\circledcirc j_{1},t_{1}\circledcirc,\\ ,if(j_{1}\circlearrowleft j_{2}) = \begin{bmatrix} ,Del(j_{2}),Del(j_{1}),\\ ,\otimes t_{1},j_{1}\circlearrowleft j_{2},j_{1} \models \varnothing,Del(j_{2}),t_{1}\circledcirc j_{1},t_{1}\circledcirc,\\ ,\otimes t_{1},j_{1}\circlearrowleft j_{2},Del(j_{1}),\\ ,\otimes t_{1},j_{1}\circlearrowleft j_{2},Del(j_{2}),j_{1} \models \varnothing,t_{1}\circledcirc j_{1},t_{1}\circledcirc,\\ ,j_{1}\circlearrowleft j_{2},Del(j_{2}),j_{1} \models \varnothing,\odot t_{1},t_{1}\circledcirc j_{1},t_{1}\circledcirc,\\ ,j_{1}\circlearrowleft j_{2},Del(j_{2}),Del(j_{1}),\\ ,j_{1}\circlearrowleft j_{2},Del(j_{2}),Del(j_{1}),\\ ,j_{1}\circlearrowleft j_{2},Del(j_{2}),Del(j_{1}),\\ ,Del(j_{2}),Del(j_{1}),\\ ,Del(j_{2}),Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2}),Del(j_{2}),\\ ,Del(j_{2})$$

27.5.3 Ins, Del

$$,i \models \varnothing, \Leftrightarrow ,Ins(i;j),Del(j),$$

proof: $, i != \varnothing,$

$$\Leftrightarrow ,i!=\varnothing,j\otimes j_2,j_2 \oplus, \odot i_2,i_2 \oplus,$$

$$\Leftrightarrow ,i!=\varnothing,j \odot j_2, \odot i_2, i_2=\varnothing, j_2 \oplus, i_2 \oplus,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j \otimes j_2$, $0 = i_2 : 0 = \emptyset$, $i_2 = \emptyset$, $i_2 \otimes i_3 = \emptyset$, $i_2 \otimes i_4 = \emptyset$, $i_2 \otimes i_4 = \emptyset$, $i_3 \otimes i_4 = \emptyset$, $i_4 \otimes i_5 = \emptyset$, $i_5 \otimes i_5 = \emptyset$, i

$$\Leftrightarrow$$
, $i = \emptyset$, $j \otimes j_2$, $j \otimes j_2$, $j \otimes j_2$, $0 = i_2 \otimes i$

$$\Leftrightarrow$$
 $, j \otimes j_2, \otimes i_2, i! = \varnothing, i_2 = \varnothing, j \otimes j_2, i_2! \otimes j, j_2 \otimes j, i_2 \otimes j, j_2 \otimes j_2$

$$\Leftrightarrow , j \otimes j_2, @i_2, i! = \varnothing, i_2 = \varnothing, j \otimes j_2, i_2! \otimes j, i @j, i_2 @j_2, j_2 @, i_2 @,$$

$$\Leftrightarrow ,i \models \varnothing, j \odot j_2, j \odot j_2, \odot i_2, i_2 = \varnothing, i_2! \odot j, i \odot j, i_2 \odot j_2, j_2 \odot, i_2 \odot,$$

$$\Leftrightarrow ,i!=\varnothing,j\otimes j_2, @i_2,i@j,i_2@j_2,j_2@,i_2@,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $\bigcirc i_2$, $i \ominus j$, $j \bigcirc j_2$, $i_2 \ominus j_2$, $j_2 \bigcirc j$, $i_2 \bigcirc j$,

$$\Leftrightarrow$$
, $i = \emptyset$, $\bigcirc i_2$, $i \supseteq j$, $j \bigcirc j_2$, $j \bigcirc j_2$, $i_2 \supseteq j_2$, $i_2 \supseteq j$, $i_2 \supseteq j$,

$$\Leftrightarrow$$
, $i \models \varnothing$, $\odot i_2$, $i \ominus j$, $j \odot j_2$, $j \circlearrowleft j_2$, $i_2 \ominus j$, $j_2 \ominus j$, $i_2 \ominus j$,

$$\Leftrightarrow$$
, $i!=\varnothing$, $\bigcirc i_2$, $i \supseteq j$, $j \bigcirc j_2$, $i_2 \supseteq j$, $j_2 \supseteq j$, $i_2 \supseteq j$,

$$\Leftrightarrow$$
, $i = \emptyset$, $0i_2$, $i \oplus j$, $j \otimes j_2$, $j_2 \oplus$, $i_2 \oplus j$, $i_2 \oplus$,

$$\Leftrightarrow$$
, $i = \emptyset$, $0i_2$, $i \ni j$, $i_2 \ni j$, $i_2 \ni j$, $i_2 \ni j$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \ni j$, $0 i_2$, $i_2 \ni j$, $i_2 \oplus j$,

$$\Leftrightarrow$$
 , $Ins(i;j), \bigcirc i_2, i_2 \supseteq j, i_2 \supseteq$,

$$\Leftrightarrow , Ins(i;j), j \! \models \! \varnothing, \bigcirc i_2, i_2 \! \ominus \! j, i_2 \! \oplus,$$

$$\Leftrightarrow$$
 , $Ins(i; j), Del(j)$,

$$, j_1! \circlearrowleft j_2, i_1! \circlearrowleft j_2, Del(j_2), Ins(i_1; j_1), \Leftrightarrow , j_1! \circlearrowleft j_2, i_1! \circlearrowleft j_2, Ins(i_1; j_1), Del(j_2),$$

proof:

$$, j_1! \circlearrowleft j_2, i_1! \circlearrowleft j_2, Del(j_2), Ins(i_1; j_1),$$

$$\Leftrightarrow$$
, $j_1! \circlearrowleft j_2, i_1! \circlearrowleft j_2, Del(j_2), i_1! = \varnothing, i_1 \circledcirc j_1,$

$$\Leftrightarrow$$
 $,j_1!Oj_2,i_1!Oj_2,i_1!=\varnothing,Del(j_2),i_1@j_1,$

27 Theorems of Assign Operator

$$\Leftrightarrow$$
 $,j_1! \circlearrowleft j_2,i_1! \circlearrowleft j_2,i_1! = \varnothing,j_2! = \varnothing, \odot i_2,i_2 \odot j_2,i_2 \odot,i_1 \odot j_1,$

$$\Leftrightarrow , \bigcirc i_2, j_1! \bigcirc j_2, i_1! \bigcirc j_2, i_1! = \varnothing, j_2! = \varnothing, i_2 \ominus j_2, i_1 \ominus j_1, i_2 \ominus,$$

$$\Leftrightarrow, \bigcirc i_2, i_2 = \varnothing, j_1 ! \bigcirc j_2, i_1 ! \bigcirc j_2, i_1 ! = \varnothing, j_2 ! = \varnothing, i_2 \circledcirc j_2, i_1 \circledcirc j_1, i_2 \circledcirc,$$

$$\Leftrightarrow, @i_2, i_2! \circlearrowleft j_1, i_2 = \varnothing, j_1! \circlearrowleft j_2, i_1! \circlearrowleft j_2, i_1! = \varnothing, j_2! = \varnothing, i_2 \circledcirc j_2, i_1 \circledcirc j_1, i_2 \circledcirc,$$

$$\Leftrightarrow, @i_2, i_1 != \varnothing, i_2 = \varnothing, j_2 != \varnothing, j_1 ! \circlearrowleft j_2, i_1 ! \circlearrowleft j_2, i_2 ! \circlearrowleft j_1, i_2 \circledast j_2, i_1 \circledast j_1, i_2 \circledast,$$

$$\Leftrightarrow, @i_2, i_1 != \varnothing, i_2 = \varnothing, j_2 != \varnothing, j_1 ! \circlearrowleft j_2, i_1 ! \circlearrowleft j_2, i_2 ! \circlearrowleft j_1, i_1 \circledcirc j_1, i_2 \circledcirc j_2, i_2 \circledS,$$

$$\Leftrightarrow, i_1! \circlearrowleft j_2, i_1! = \varnothing, j_1! \circlearrowleft j_2, j_2! = \varnothing, \circledcirc i_2, i_2 = \varnothing, i_2! \circlearrowleft j_1, i_1 \circledcirc j_1, i_2 \circledcirc j_2, i_2 \circledcirc,$$

$$\Leftrightarrow ,i_{1}! \circlearrowleft j_{2},i_{1}! = \varnothing, j_{1}! \circlearrowleft j_{2}, j_{2}! = \varnothing, \circledcirc i_{2}, i_{2}! \circlearrowleft j_{1}, i_{1} \circledcirc j_{1}, i_{2} \circledcirc j_{2}, i_{2} \circledcirc,$$

$$\Leftrightarrow ,i_1! \circlearrowleft j_2,i_1! = \varnothing, j_1! \circlearrowleft j_2,j_2! = \varnothing, \circledcirc i_2,i_1 \circledcirc j_1,i_2 \circledcirc j_2,i_2 \circledcirc,$$

$$\Leftrightarrow ,i_1! \circlearrowleft j_2,i_1! = \varnothing, j_1! \circlearrowleft j_2,j_2! = \varnothing, i_1 \circledcirc j_1, \circledcirc i_2, i_2 \circledcirc j_2, i_2 \circledcirc,$$

$$\Leftrightarrow ,i_1! \circlearrowleft j_2,i_1! = \varnothing, j_1! \circlearrowleft j_2, i_1 \circledcirc j_1, j_2! = \varnothing, \circledcirc i_2, i_2 \circledcirc j_2, i_2 \circledcirc,$$

$$\Leftrightarrow$$
, $i_1! \circlearrowleft j_2, i_1! = \varnothing, j_1! \circlearrowleft j_2, i_1 \circledcirc j_1, Del(j_2),$

$$\Leftrightarrow$$
 $,j_1!Oj_2,i_1!Oj_2,i_1!=\varnothing,i_1@j_1,Del(j_2),$

$$\Leftrightarrow$$
, $j_1! \circlearrowleft j_2, i_1! \circlearrowleft j_2, Ins(i_1; j_1), Del(j_2),$

27.5.4 Other

$$, i_1 = \varnothing, i_2 = \varnothing, , j_1 != \varnothing, j_2 != \varnothing, j_1 \circlearrowleft j_2, i_1 \circledcirc j_1, i_2 \circledcirc j_2, \Leftrightarrow , i_1 = \varnothing, i_2 = \varnothing, , j_1 != \varnothing, j_2 != \varnothing, j_1 \circlearrowleft j_2, i_2 \circledcirc j_2, i_1 \circledcirc j_1,$$

28 Function Cpo(r)

28.1 Definition of Cpo(r)

$$,Cpo(r), \iff ,r \oplus m, m \oplus r, m \oplus ,$$

28.2 Property

$$,Cpo(r), \Leftrightarrow, r \otimes m, Ins(m;r), m \otimes,$$

$$,Cpo(r), \Leftrightarrow \sim, r! = \varnothing,$$

$$,Cpo(r), r \oplus, \Leftrightarrow \sim, m! \circlearrowleft r,$$

$$,r = \varnothing, Cpo(r), r \oplus, \Leftrightarrow, Cpo(r), r \oplus, r = \varnothing,$$

$$,r_1 \circlearrowleft r_2, Cpo(r_1), \Leftrightarrow, r_1 \circlearrowleft r_2, Cpo(r_2),$$
proof:
$$,r_1 \circlearrowleft r_2, Cpo(r_1),$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_1 \otimes m, m \otimes r_1, m \otimes,$$

$$\Leftrightarrow, r_1 \otimes m, r_1 \circlearrowleft r_2, m \otimes r_1, m \otimes,$$

$$\Leftrightarrow, r_1 \otimes m, r_1 \circlearrowleft r_2, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_1 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

$$\Leftrightarrow, r_1 \circlearrowleft r_2, r_2 \otimes m, m \otimes r_2, m \otimes,$$

28.3 Swap

28.3.1 Operator

$$, i \otimes m, Cpo(r), \iff , Cpo(r), i \otimes m,$$

$$, i \otimes , Cpo(r), \iff , Cpo(r), i \otimes ,$$

$$, \otimes m, Cpo(r), \iff , Cpo(r), \otimes m,$$

$$, i! \otimes r, i \otimes m, Cpo(r), \iff , i! \otimes r, Cpo(r), i \otimes m,$$

$$, m! \otimes r, m \oplus , Cpo(r), \iff , m! \otimes r, Cpo(r), m \oplus ,$$

$$, m! \otimes r, m \oplus , Cpo(r), \iff , m! \otimes r, Cpo(r), m \oplus ,$$

$$, m! \otimes r, m \oplus , Cpo(r), \iff , m! \otimes r, Cpo(r), m \oplus ,$$

$$, r! \rightarrow m, m \ominus , Cpo(r), \iff , r! \rightarrow mCpo(r), m \ominus ,$$

28.3.2 Propositions node null

$$, m! \circlearrowleft r, m! = \varnothing, Cpo(r), m! \circlearrowleft r, Cpo(r), m! = \varnothing,$$

$$, m! \circlearrowleft r, m = \varnothing, Cpo(r), m! \circlearrowleft r, Cpo(r), m = \varnothing,$$

$$, m! = \varnothing, Cpo(r), \Leftrightarrow \sim, m! = \varnothing,$$

$$, m! \circlearrowleft r, m! = \varnothing, Cpo(r), m! \circlearrowleft r, Cpo(r), m! = \varnothing,$$

$$, m! \circlearrowleft r, m = \varnothing, Cpo(r), m! \circlearrowleft r, Cpo(r), m = \varnothing,$$

28.3.3 Propositions identical node

$$, m \circlearrowleft r, Cpo(r), \Leftrightarrow , Cpo(r), m \circlearrowleft r,$$
 $, m! \circlearrowleft r, Cpo(r), \Leftrightarrow , Cpo(r), m! \circlearrowleft r,$
 $, m \circlearrowleft n, Cpo(r), \Leftrightarrow , Cpo(r), m \circlearrowleft n,$
 $, m! \circlearrowleft n, Cpo(r), \Leftrightarrow , Cpo(r), m! \circlearrowleft n,$

28.3.4 Propositions node connectivity

$$, m \circlearrowleft r, Cpo(r), \Leftrightarrow , Cpo(r), m \circlearrowleft r,$$
 $, m! \circlearrowleft r, Cpo(r), \Leftrightarrow , Cpo(r), m! \circlearrowleft r,$
 $, m \circlearrowleft n, Cpo(r), \Leftrightarrow , Cpo(r), m \circlearrowleft n,$
 $, m! \circlearrowleft n, Cpo(r), \Leftrightarrow , Cpo(r), m! \circlearrowleft n,$

28.3.5 &SHi

$$,i! \circlearrowleft r, \&SHi \circlearrowleft i, Cpo(r), \Leftrightarrow ,i! \circlearrowleft r, Cpo(r), \&SHi \circlearrowleft i,$$
 $,i! \circlearrowleft r, \&SHi \rightarrow i, Cpo(r), \Leftrightarrow ,i! \circlearrowleft r, Cpo(r), \&SHi \rightarrow i,$

28.3.6 Cpo

$$r_1 \circ r_2, Cpo(r_1), Cpo(r_2), \iff r_1 \circ r_2, Cpo(r_2), Cpo(r_1), proof: \\ r_1 \circ r_2, Cpo(r_1), r_1 \circ r_2, Cpo(r_2), \\ \Leftrightarrow r_1 \circ r_2, Cpo(r_1), r_1 \circ r_2, Cpo(r_2), \\ \Leftrightarrow r_1 \circ r_2, Cpo(r_1), r_1 \circ r_2, Cpo(r_1), \\ \Leftrightarrow r_1 \circ r_2, Cpo(r_1), Cpo(r_1), \\ \Leftrightarrow r_1 \circ r_2, Cpo(r_2), Cpo(r_1), \\ \Leftrightarrow r_1 \circ r_2, Cpo(r_2), Cpo(r_1), \\ \end{cases}$$

$$r_1 \circ r_2, r_1 \circ m_1, r_2 \circ m_2, \\ \Leftrightarrow r_1 \circ m_1, r_1 \circ m_1, r_2 \circ m_2, \\ r_2 \circ m_2, r_2 \circ m_2, r_1 \circ m_1, r_2 \circ m_2, \\ r_1 \circ m_1, r_1 \circ m_1, r_1 \circ m_1, r_2 \circ m_2, \\ r_2 \circ m_2, r_2 \circ m_2, r_2 \circ m_2, \\ r_2 \circ m_2, r_1 \circ m_1, r_1 \circ m_1, \\ r_1 \circ m_1, r_1 \circ m_1, r_1 \circ m_1, \\ r_1 \circ m_1, r_1 \circ m_1, r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_2 \circ m_2, \\ r_2 \circ m_2, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_2 \circ m_2, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r_2 \circ m_2, \\ r_1 \circ m_1, \\ r_1 \circ m_1, \\ r$$

 $, r_1! \mathcal{O}r_2, Cpo(r_1), Cpo(r_2), \Leftrightarrow , r_1! \mathcal{O}r_2, Cpo(r_2), Cpo(r_1),$

```
proof:
 , r_1! \mathcal{O}r_2, Cpo(r_1), Cpo(r_2),
 \Leftrightarrow , r_1! \mathring{\bigcirc} r_2, r_1 \textcircled{\otimes} m_1, Ins(m_1; r_1), m_1 \textcircled{\oplus}, r_2 \textcircled{\otimes} m_2, Ins(m_2; r_2), m_2 \textcircled{\oplus},
 \Leftrightarrow, r_1! \mathring{\bigcirc} r_2, r_1 \textcircled{\otimes} m_1, Ins(m_1; r_1), r_2 \textcircled{\otimes} m_2, Ins(m_2; r_2), m_1 \textcircled{\otimes}, m_2 \textcircled{\otimes},
\Leftrightarrow, r_1 \otimes m_1, r_1! \circ r_2, Ins(m_1; r_1), r_2 \otimes m_2, Ins(m_2; r_2), m_1 \otimes m_2 \otimes m_2,
\Leftrightarrow ,r_1 \otimes m_1, r_1! \circ r_2, r_2 \otimes m_2, Ins(m_1; r_1), Ins(m_2; r_2), m_1 \otimes , m_2 \otimes ,
 \Leftrightarrow ,r_1! \mathring{\bigcirc} r_2, r_1 \textcircled{\otimes} m_1, r_2 \textcircled{\otimes} m_2, Ins(m_1; r_1), Ins(m_2; r_2), m_1 \textcircled{\otimes}, m_2 \textcircled{\otimes},
 \Leftrightarrow , r_1! \circ r_2, r_1 \otimes m_1, r_2 \otimes m_2, m_1! = m_2, Ins(m_1; r_1), Ins(m_2; r_2), m_1 \otimes m_2 \otimes m_2,
 \Leftrightarrow , r_1! \circ r_2, r_1 \circ m_1, m_1! \circ r_2, r_2 \circ m_2, m_2! \circ r_2, m_1! = m_2, Ins(m_1; r_1), Ins(m_2; r_2), m_1 \circ m_2 \circ m_2, m_2 \circ m
 \Leftrightarrow, r_1 \otimes m_1, r_2 \otimes m_2, m_1 != m_2, r_1 ! \circ r_2, m_1 ! \circ r_2, m_2 ! \circ r_2, Ins(m_1; r_1), Ins(m_2; r_2), m_1 \oplus, m_2 \oplus,
 \Leftrightarrow ,r_1 \otimes m_1, r_2 \otimes m_2, m_1 != m_2, r_1 ! \circ r_2, m_1 ! \circ r_2, m_2 ! \circ r_2, Ins(m_2; r_2), Ins(m_1; r_1), m_1 \otimes , m_2 \otimes ,
\Leftrightarrow , r_1! \circlearrowleft r_2, r_1 \otimes m_1, m_1! \circlearrowleft r_2, r_2 \otimes m_2, m_2! \circlearrowleft r_2, m_1! = m_2, Ins(m_2; r_2), Ins(m_1; r_1), m_1 \oplus, m_2 \oplus, m
\Leftrightarrow , r_1! \circ r_2, r_1 \otimes m_1, r_2 \otimes m_2, m_1! = m_2, Ins(m_2; r_2), Ins(m_1; r_1), m_1 \otimes m_2 \otimes m_2,
 \Leftrightarrow, r_1! \mathring{\bigcirc} r_2, r_1 \textcircled{\otimes} m_1, r_2 \textcircled{\otimes} m_2, Ins(m_2; r_2), Ins(m_1; r_1), m_1 \textcircled{\oplus}, m_2 \textcircled{\oplus},
\Leftrightarrow, r_2 \otimes m_2, r_1! \circ r_2, r_1 \otimes m_1, Ins(m_2; r_2), Ins(m_1; r_1), m_1 \otimes m_2 \otimes m_2,
 \Leftrightarrow, r_2 \otimes m_2, r_1! \circ r_2, Ins(m_2; r_2), r_1 \otimes m_1, Ins(m_1; r_1), m_1 \otimes m_2 \otimes m_2,
\Leftrightarrow , r_1! \mathring{\bigcirc} r_2, r_2 \textcircled{\circledcirc} m_2, Ins(m_2; r_2), m_2 \textcircled{\circledcirc}, r_1 \textcircled{\circledcirc} m_1, Ins(m_1; r_1), m_1 \textcircled{\circledcirc},
\Leftrightarrow, r_1! \mathring{\bigcirc} r_2, Cpo(r_2), Cpo(r_1),
                                                                                                                                                                     , Cpo(r_1), Cpo(r_2), \Leftrightarrow , Cpo(r_2), Cpo(r_1),
```

$$,r_1! \mathcal{O}r_2, Cpo(r_1), r_1 \oplus, Cpo(r_2), r_2 \oplus, \Leftrightarrow, r_1! \mathcal{O}r_2, Cpo(r_2), r_2 \oplus, Cpo(r_1), r_1 \oplus, Cpo(r_2), r_2 \oplus, Cpo(r_3), r_4 \oplus, Cpo(r_4), r_5 \oplus, Cpo(r_5), Cpo(r_5$$

proof: $, r_1! \circlearrowleft r_2, Cpo(r_1), r_1 \oplus, Cpo(r_2), r_2 \oplus,$

$$\Leftrightarrow, Cpo(r_1), r_1! \circlearrowleft r_2, r_1 \oplus, Cpo(r_2), r_2 \oplus,$$

$$\Leftrightarrow, Cpo(r_1), r_1! \circlearrowleft r_2, r_1! \circlearrowleft r_2, r_1 \oplus, Cpo(r_2), r_2 \oplus,$$

$$\Leftrightarrow, Cpo(r_1), r_1! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Cpo(r_2), r_1 \oplus, r_2 \oplus,$$

$$\Leftrightarrow, Cpo(r_1), r_1! \circlearrowleft r_2, Cpo(r_2), r_1 \oplus, r_2 \oplus,$$

$$\Leftrightarrow, r_1! \circlearrowleft r_2, Cpo(r_1), Cpo(r_2), r_1 \oplus, r_2 \oplus,$$

$$\Leftrightarrow, r_1! \circlearrowleft r_2, Cpo(r_2), Cpo(r_1), r_1 \oplus, r_2 \oplus,$$

$$\Leftrightarrow, r_1! \circlearrowleft r_2, Cpo(r_2), Cpo(r_1), r_1 \oplus, r_2 \oplus,$$

$$\Leftrightarrow, Cpo(r_2), r_1! \circlearrowleft r_2, Cpo(r_1), r_1 \oplus, r_2 \oplus,$$

$$\Leftrightarrow, Cpo(r_2), r_1! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Cpo(r_1), r_1 \oplus, r_2 \oplus,$$

$$\Leftrightarrow, Cpo(r_2), r_1! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Cpo(r_1), r_2 \oplus, r_1 \oplus,$$

$$\Leftrightarrow, Cpo(r_2), r_1! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Cpo(r_1), r_2 \oplus, r_1 \oplus,$$

$$\Leftrightarrow, Cpo(r_2), r_1! \circlearrowleft r_2, r_2 \oplus, Cpo(r_1), r_1 \oplus,$$

$$\Leftrightarrow, Cpo(r_2), r_1! \circlearrowleft r_2, r_2 \oplus, Cpo(r_1), r_1 \oplus,$$

 \Leftrightarrow , $r_1! \mathring{\bigcirc} r_2$, $Cpo(r_2)$, $r_2 \oplus$, $Cpo(r_1)$, $r_1 \oplus$,

28.3.7 R(i)

$$,i!\mathcal{O}r,R(i),Cpo(r),\Leftrightarrow,i!\mathcal{O}r,Cpo(r),R(i),$$

28.3.8 Rc(i;j)

$$, i! \circlearrowleft r, j! \circlearrowleft r, Rc(i;j), Cpo(r), \; \Leftrightarrow \; , i! \circlearrowleft r, j! \circlearrowleft r, Cpo(r), Rc(i;j),$$
 induction proof:
$$premise \; 1: \\, i=\varnothing, i! \circlearrowleft r, j! \circlearrowleft r, Rc(i;j), Cpo(r), \\ \Leftrightarrow \; , i! \circlearrowleft r, j! \circlearrowleft r, i=\varnothing, Rc(i;j), Cpo(r), \\ \Leftrightarrow \; , i! \circlearrowleft r, j! \circlearrowleft r, i=\varnothing, Cpo(r), \\ \Leftrightarrow \; , j! \circlearrowleft r, i! \circlearrowleft r, i=\varnothing, Cpo(r),$$

$$\Leftrightarrow ,j! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,i=\varnothing,Cpo(r),\\ \Leftrightarrow ,j! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,Cpo(r),i=\varnothing,\\ \Leftrightarrow ,j! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,Cpo(r),i=\varnothing,Rc(i;j),\\ \Leftrightarrow ,j! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,i=\varnothing,Cpo(r),Rc(i;j),\\ \Leftrightarrow ,j! \mathring{\bigcirc}r,i! \mathring{\bigcirc}r,i=\varnothing,Cpo(r),Rc(i;j),\\ \Leftrightarrow ,i=\varnothing,i! \mathring{\bigcirc}r,j! \mathring{\bigcirc}r,Cpo(r),Rc(i;j),\\ \end{cases}$$

premise 2:

, &SHi
$$\rightarrow$$
i, i! \bigcirc r, j! \bigcirc r, $Rc(i;j)$, $Cpo(r)$, \Leftrightarrow , &SHi \rightarrow i, i! \bigcirc r, j! \bigcirc r, $Cpo(r)$, $Rc(i;j)$, \Rightarrow , i! $=$ Ø, &SHi \bigcirc i, i! \bigcirc r, j! \bigcirc r, $Rc(i;j)$, $Cpo(r)$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, Rc(i; j), Cpo(r),$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, if (j = \varnothing) - \begin{bmatrix} , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix} -, Cpo(r) - Cpo(r)$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, i!\!\!\circlearrowleft\!r, j!\!\!\circlearrowleft\!r, i!\!\!=\!\varnothing, if(j\!=\!\varnothing) - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , Cpo(r), \\ , Cpo(r), Cpo(r), \end{bmatrix} - \begin{bmatrix} , Cpo(r), \\ , Cpo(r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i! \, \circlearrowleft r, j! \, \circlearrowleft r, i! = \varnothing, if (j = \varnothing) - \begin{bmatrix} , \\ , i \oplus, j \oplus, Rc(i;j), \end{bmatrix} -, Cpo(r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i! \, \circlearrowleft r, j! \, \circlearrowleft r, i! = \varnothing, if (j = \varnothing) - \begin{bmatrix} , Cpo(r), \\ , i \oplus, j \oplus, Rc(i;j), Cpo(r), \end{bmatrix} -,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i! \, \circlearrowleft r, j! \, \circlearrowleft r, i! = \varnothing, if (j = \varnothing) - \begin{bmatrix} , j = \varnothing, Cpo(r), \\ , i \oplus, j \oplus, Rc(i;j), Cpo(r), \end{bmatrix} -,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, i!\!\,\circlearrowleft\!r, i!\!=\!\varnothing, if(j\!=\!\varnothing) - \begin{bmatrix} , j!\!\,\circlearrowleft\!r, j\!=\!\varnothing, Cpo(r), \\ , j!\!\,\circlearrowleft\!r, i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i! \, \circlearrowleft r, i != \varnothing, if (j=\varnothing) - \begin{bmatrix}, j! \, \circlearrowleft r, j=\varnothing, Cpo(r), \\, j! \, \circlearrowleft r, i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \\ \Leftrightarrow, \&SHi \, \circlearrowleft i, i! \, \circlearrowleft r, i != \varnothing, if (j=\varnothing) - \begin{bmatrix}, j! \, \circlearrowleft r, j! \, \circlearrowleft r, j=\varnothing, Cpo(r), \\, j! \, \circlearrowleft r, i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \\ \Leftrightarrow, \&SHi \, \circlearrowleft i, i! \, \circlearrowleft r, i! = \varnothing, if (j=\varnothing) - \begin{bmatrix}, j! \, \circlearrowleft r, j! \, \circlearrowleft r, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - \\ \downarrow i, i : \circlearrowleft r, i : \hookrightarrow r, i : \hookrightarrow$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i! \circlearrowleft r, i! = \varnothing, if (j = \varnothing) - \begin{bmatrix} , j! \circlearrowleft r, j! \circlearrowleft r, Cpo(r), j = \varnothing, \\ , j! \circlearrowleft r, i \oplus, j \oplus, Rc(i; j), Cpo(r), \end{bmatrix},$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i! \circlearrowleft r, i! = \varnothing, if(j = \varnothing) - \begin{bmatrix} , j! \circlearrowleft r, j! \circlearrowleft r, Cpo(r), j = \varnothing, Rc(i;j), \\ , j! \circlearrowleft r, i\oplus, j\oplus, Rc(i;j), Cpo(r), \end{bmatrix} - Cpo(r) + Cpo(r) +$$

$$\Leftrightarrow, \&SHi\ Ci, il\ Cir, i! = \varnothing, if (j = \varnothing) = \begin{cases} -j!\ Cir, j!\ Cir, j = \varnothing, Cpo(r), Re(i;j), \\ -j!\ Cir, i = \varnothing, Cpo(r), Re(i;j), Cpo(r), \end{cases},$$

$$\Leftrightarrow, \&SHi\ Ci, il\ Cir, i! = \varnothing, if (j = \varnothing) = \begin{cases} -j!\ Cir, j = \varnothing, Cpo(r), Re(i;j), \\ -j!\ Cir, i = \varnothing, Cpo(r), Re(i;j), Cpo(r), \end{cases},$$

$$\Leftrightarrow, \&SHi\ Ci, il\ Cir, i! = \varnothing, if (j = \varnothing) = \begin{cases} -j!\ Cir, i = \varnothing, Cpo(r), Re(i;j), \\ -j!\ Cir, i = \varnothing, j!\ Cir, Cpo(r), Re(i;j), Cpo(r), \end{cases},$$

$$\Leftrightarrow, \&SHi\ Ci, il\ Cir, i! = \varnothing, if (j = \varnothing) = \begin{cases} -j!\ Cir, Cpo(r), Re(i;j), Cpo(r), \\ -j!\ Cir, i = \varnothing, i =$$

$$\Leftrightarrow, \&\mathit{SHi}\, \circlearrowleft i, if(j=\varnothing) = \begin{bmatrix} i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, i! \circlearrowleft r, j! \circlearrowleft r, j! = \varnothing, i! = \varnothing, i \circlearrowleft, j! \circlearrowleft r, j \varTheta, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \boxminus r, j! = \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \vdash \varnothing, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft , \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, j! \backsim r, i! \circlearrowleft r, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft r, i! \backsim r, \mathit{Cpo}(r), \mathit{Re}(i;j), \\ i! \circlearrowleft r, j! \backsim r, i$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, Cpo(r), Rc(i;j), \\ ,i! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft r, i! = \varnothing, j! \circlearrowleft r, Cpo(r), j! = \varnothing, Rc(i;j), \end{bmatrix}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, Cpo(r), Rc(i;j), \\ ,i! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft r, i! = \varnothing, j! \circlearrowleft r, j! = \varnothing, Cpo(r), Rc(i;j), \end{bmatrix}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, Cpo(r), Rc(i;j), \\ ,j! = \varnothing, i! \circlearrowleft r, j! \circlearrowleft r, i! \circlearrowleft r, j! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, Cpo(r), Rc(i;j), \end{bmatrix}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, if (j=\varnothing) = \begin{bmatrix} ,i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, Cpo(r), Rc(i;j), \\ ,i! \circlearrowleft r, j! \circlearrowleft r, i! = \varnothing, Cpo(r), Rc(i;j), \end{bmatrix}$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, i! \circlearrowleft r, j! \circlearrowleft r, if (j=\varnothing) = \begin{bmatrix} ,Cpo(r), Rc(i;j), \\ ,Cpo(r), Rc(i;j), \end{bmatrix}$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, i! \circlearrowleft r, j! \circlearrowleft r, if (j=\varnothing) = \begin{bmatrix} ,Cpo(r), Rc(i;j), \\ ,Cpo(r), Rc(i;j), \end{bmatrix}$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \, \circlearrowleft i, i! \circlearrowleft r, j! \circlearrowleft r, Cpo(r), Rc(i;j), \end{bmatrix}$$

conclusion:

$$, i! \circlearrowleft r, j! \circlearrowleft r, Rc(i;j), Cpo(r), \iff , i! \circlearrowleft r, j! \circlearrowleft r, Cpo(r), Rc(i;j),$$

28.3.9 Propositions number comparison

$$,i! \mathring{\bigcirc} r, j! \mathring{\bigcirc} r, i = j, Cpo(r), \iff ,i! \mathring{\bigcirc} r, j! \mathring{\bigcirc} r, Cpo(r), i = j,$$
 $,i! \mathring{\bigcirc} r, j! \mathring{\bigcirc} r, i > j, Cpo(r), \iff ,i! \mathring{\bigcirc} r, j! \mathring{\bigcirc} r, Cpo(r), i > j,$

28.3.10 Other

$$r_1 = r_2, r_1 \bullet r_{10}, r_2 \bullet r_{20}, r_1 ! \bullet r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), \Leftrightarrow \sim, r_1 = r_2, \\ \text{induction proof:} \\ premise 1: \\ r_1 = \varnothing, r_1 = r_2, r_1 \bullet r_{10}, r_2 \bullet r_{20}, r_1 ! \bullet r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 = \varnothing, r_1 \bullet r_{10}, r_2 \bullet r_{20}, r_1 ! \bullet r_2, r_{10} = \varnothing, r_{20} = \varnothing, \\ Cpo(r_{10}), Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 = \varnothing, r_1 = \varnothing, r_1 \bullet r_{10}, r_2 \bullet r_{20}, r_1 ! \bullet r_2, r_{10} = \varnothing, r_{20} = \varnothing, \\ Cpo(r_{10}), Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 = \varnothing, r_1 = \varnothing, r_1 \bullet r_{10}, r_2 \bullet r_{20}, r_1 ! \bullet r_2, r_{10} = \varnothing, r_{20} = \varnothing, \\ Cpo(r_{10}), Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_1 = \varnothing, r_1 \bullet \varnothing, r_1 \bullet r_{10}, r_2 \bullet r_{20}, r_1 ! \bullet r_2, r_{20} = \varnothing, r_2 \bullet r_{20}, \\ Cpo(r_{10}), Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_1 = \varnothing, r_{10} = \varnothing, r_1 \bullet r_{10}, r_2 = \varnothing, r_{20} = \varnothing, r_2 \bullet r_{20}, \\ Cpo(r_{10}), Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_1 = \varnothing, r_{10} = \varnothing, r_2 = \varnothing, r_{20} = \varnothing, \\ r_1 \bullet r_{10}, Cpo(r_{10}), r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_1 = \varnothing, r_{10} = \varnothing, r_2 = \varnothing, r_{20} = \varnothing, \\ r_1 \bullet r_{10}, Cpo(r_{10}), r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_1 = \varnothing, r_{10} = \varnothing, r_2 = \varnothing, r_{20} = \varnothing, \\ r_1 \bullet r_{10}, Cpo(r_{11}), r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_1 = \varnothing, r_{10} = \varnothing, r_2 = \varnothing, r_{20} = \varnothing, \\ r_1 \bullet r_{10}, Cpo(r_{11}), r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_1 = \varnothing, r_{10} = \varnothing, r_2 = \varnothing, r_{20} = \varnothing, \\ r_1 \bullet r_{10}, Cpo(r_{11}), r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_1 = \varnothing, r_{10} = \varnothing, r_2 = \varnothing, r_{20} = \varnothing, \\ r_1 \bullet r_{10}, Cpo(r_{11}), r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_2, r_1 ! \bullet r_2, r_{10} = \varnothing, r_{20} = \varnothing, \\ r_1 \bullet r_{10}, Cpo(r_{11}), r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_1, r_1 \bullet r_{10}, r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_1, r_1 \bullet r_{20}, r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_1, r_1 \bullet r_{20}, r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_1, r_1, r_2 \bullet r_{20}, Cpo(r_{20}), \\ \Leftrightarrow , r_1 = r_1, r_1, r_2 \bullet r_{20}, Cpo(r_$$

 \Leftrightarrow , $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

28 Function Cpo(r)

$$r_1 = \varnothing, r_1! \circlearrowleft r_2, r_2 = \varnothing, Cpo(r_1), Cpo(r_2),$$

$$\Leftrightarrow$$
, $r_1 = r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$r_1 = \varnothing, r_1! \circ r_2, r_1! \circ r_2, r_2 = \varnothing, Cpo(r_1), Cpo(r_2),$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circlearrowleft r_{10}$, $r_2 \circlearrowleft r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$r_1 = \varnothing, r_1 ! \circlearrowleft r_2, r_1 ! \circlearrowleft r_2, Cpo(r_1), r_2 = \varnothing, Cpo(r_2),$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circlearrowleft r_{10}$, $r_2 \circlearrowleft r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$r_1! \mathcal{O}r_2, r_1 = \varnothing, Cpo(r_1),$$

$$r_2 = \varnothing, Cpo(r_2),$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$r_1! \circlearrowleft r_2, Cpo(r_1), r_1 \circlearrowleft n_1, n_1 \oplus, n_1 = \varnothing, n_1 \oplus,$$

$$Cpo(r_2), r_2 \odot n_2, n_2 \oplus, n_2 = \varnothing, n_2 \oplus,$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$Cpo(r_1), r_1! \circlearrowleft r_2, r_1 \otimes n_1, n_1 \oplus, n_1 = \varnothing,$$

$$Cpo(r_2), r_2 \oplus n_2, n_2 \oplus, n_2 = \varnothing, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow$$
 , $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$Cpo(r_1), r_1 \otimes n_1, n_1! \circ r_2, n_1 \oplus, n_1 = \varnothing,$$

$$Cpo(r_2), r_2 \otimes n_2, n_2 \oplus, n_2 = \varnothing, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$Cpo(r_1), r_1 \odot n_1, n_1 \oplus, n_1 ! \circlearrowleft r_2, n_1 = \varnothing,$$

$$Cpo(r_2), r_2 \oplus n_2, n_2 \oplus, n_2 = \emptyset, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow , r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$Cpo(r_1), r_1 \otimes n_1, n_1 \oplus, n_1! \circ r_2, n_1! \circ r_2, n_1 = \emptyset,$$

$$Cpo(r_2), r_2 \otimes n_2, n_2 \oplus, n_2 = \varnothing, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow$$
, $r_1 = r_2$, $r_1 \circlearrowleft r_{10}$, $r_2 \circlearrowleft r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$Cpo(r_1), r_1 \oplus n_1, n_1 \oplus, n_1 ! \circlearrowleft r_2, n_1 ! \circlearrowleft r_2,$$

$$Cpo(r_2), n_1 = \varnothing, r_2 \otimes n_2, n_2 \oplus, n_2 = \varnothing, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow$$
, $r_1 = r_2$, $r_1 \circlearrowleft r_{10}$, $r_2 \circlearrowleft r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$,

$$Cpo(r_1), r_1 \otimes n_1, n_1 \oplus, n_1! \circ r_2, n_1! \circ r_2,$$

$$Cpo(r_2), r_2 \oplus n_2, n_2 \oplus, n_1 = \emptyset, n_2 = \emptyset, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow$$
 $, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$

$$Cpo(r_1), r_1 \otimes n_1, n_1 \oplus, n_1 ! \circlearrowleft r_2, n_1 ! \circlearrowleft r_2,$$

$$Cpo(r_2), r_2 \oplus n_2, n_2 \oplus, n_1 = \emptyset, n_2 = \emptyset, n_1 = n_2, n_1 \oplus, n_2 \oplus, n_3 \oplus, n_4 \oplus,$$

$$\Leftrightarrow , r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$Cpo(r_1), r_1 \otimes n_1, n_1 \oplus, n_1! \otimes r_2, n_1! \otimes r_2,$$

$$Cpo(r_2), r_2 \oplus n_2, n_2 \oplus, n_1 = \emptyset, n_2 = \emptyset, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus, n_3 \oplus, n_4 \oplus,$$

$$\Leftrightarrow , r_1 = r_2, r_1 \circ r_{10}, r_2 \circ r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$Cpo(r_1), r_1 \oplus n_1, n_1 \oplus, n_1 ! \circlearrowleft r_2, n_1 ! \circlearrowleft r_2,$$

$$Cpo(r_2), n_1 = \varnothing, r_2 \odot n_2, n_2 \oplus, n_2 = \varnothing, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus, n_2 \oplus, n_3 \oplus, n_4 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$Cpo(r_1), r_1 \circlearrowleft n_1, n_1 \oplus, n_1 ! \circlearrowleft r_2, n_1 ! \circlearrowleft r_2, n_1 = \varnothing,$$

$$Cpo(r_2), r_2 \circlearrowleft n_2, n_2 \oplus, n_2 = \varnothing, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$r_1 ! \circlearrowleft r_2, Cpo(r_1), r_1 \circlearrowleft n_1, n_1 \oplus, n_1 = \varnothing,$$

$$Cpo(r_2), r_2 \circlearrowleft n_2, n_2 \oplus, n_2 = \varnothing, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$r_1 ! \circlearrowleft r_2, r_1 = \varnothing, Cpo(r_1), r_1 \circlearrowleft n_1, n_1 \oplus,$$

$$r_2 = \varnothing, Cpo(r_2), r_2 \circlearrowleft n_2, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{20} \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$r_1 = \varnothing, r_1 ! \circlearrowleft r_2, r_1 ! \circlearrowleft r_2, Cpo(r_1), r_2 = \varnothing, r_1 \circlearrowleft n_1, n_1 \oplus,$$

$$Cpo(r_2), r_2 \circlearrowleft n_2, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$r_1 = \varnothing, r_1 ! \circlearrowleft r_2, r_1 ! \circlearrowleft r_2, r_2 = \varnothing, Cpo(r_1), r_1 \circlearrowleft n_1, n_1 \oplus,$$

$$Cpo(r_2), r_2 \circlearrowleft n_2, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing,$$

$$r_1 = \varnothing, r_1 ! \circlearrowleft r_2, r_1 ! \circlearrowleft r_2, r_2 = \varnothing, Cpo(r_1), r_1 \circlearrowleft n_1, n_1 \oplus,$$

$$Cpo(r_2), r_2 \circlearrowleft n_2, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$

$$r_1 \vdash r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$

$$r_1 \vdash r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_{11} = \varnothing, r_{21} = \varnothing,$$

$$r_1 \vdash r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_{11} = \varnothing, r_{21} = \varnothing,$$

$$r_1 \vdash r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_{11} = \varnothing, r_{21} = \varnothing,$$

$$r_1 \vdash r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_{11} = \varnothing, r_{21} = \varnothing,$$

$$r_1 \vdash r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_{11} = \varnothing, r_{21} = \varnothing,$$

$$r_1 \vdash r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_{20} = \varnothing,$$

$$r_1 \vdash r_2, r_1 \circlearrowleft r_{$$

 $Cpo(r_2), r_2 \oplus n_2, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$

$$r_1! \bigcirc r_2, Cpo(r_1), r_1! = \varnothing, r_1 \bigcirc n_1, n_1 \oplus,$$

$$Cpo(r_2), r_2 \! \mathrel{!=}\! \varnothing, r_2 \! \otimes \! n_2, n_2 \! \oplus, Rc(n_1; n_2), n_1 \! = \! n_2, n_1 \! \oplus, n_2 \! \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$

$$r_1! \mathcal{O}r_2, Cpo(r_1), r_1 \mathcal{O}n_1, n_1! = \emptyset, n_1 \mathcal{G},$$

$$Cpo(r_2), r_2 \oplus n_2, n_2 \models \emptyset, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$, $r_1 = \varnothing$, $r_2 = \varnothing$,

$$Cpo(r_1), r_1 \otimes n_1, n_1! \otimes r_2, n_1! = \varnothing, n_1 \oplus,$$

$$Cpo(r_2), r_2 \oplus n_2, n_2 \models \varnothing, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$, $r_1 = \varnothing$, $r_2 = \varnothing$,

$$Cpo(r_1), r_1 \otimes n_1, n_1! \otimes r_2, n_1! \otimes r_2, n_1! = \emptyset, n_1 \oplus,$$

$$Cpo(r_2), r_2 \oplus n_2, n_2 \models \emptyset, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow , r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$

$$Cpo(r_1), r_1 \otimes n_1, n_1! \otimes r_2, n_1! \otimes r_2,$$

$$Cpo(r_2), n_1 \! \models \! \varnothing, n_1 \oplus, r_2 \otimes n_2, n_2 \! \models \! \varnothing, n_2 \oplus, Rc(n_1; n_2), n_1 \! \models \! n_2, n_1 \oplus, n_2 \oplus,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$

$$Cpo(r_1), r_1 \otimes n_1, n_1 ! \circ r_2, n_1 ! \circ r_2,$$

$$Cpo(r_2), r_2 \otimes n_2, n_1 != \varnothing, n_1 \oplus, n_2 != \varnothing, n_2 \oplus, Rc(n_1; n_2), n_1 = n_2, n_1 \oplus, n_2 \oplus, n_2 \oplus, n_3 \oplus, n_4 \oplus, n_4$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$

28 Function Cpo(r)

$$Cpo(r_1), r_1 \otimes n_1, n_1! \circ r_2, n_1! \circ r_2,$$

$$Cpo(r_2), r_2 \otimes n_2, n_1 != \varnothing, n_2 != \varnothing, Rc(n_1; n_2), n_1 = n_2, n_1 \otimes, n_2 \otimes,$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$, $r_1 = \varnothing$, $r_2 = \varnothing$,

$$Cpo(r_1), r_1 \otimes n_1, n_1! \circ r_2, n_1! \circ r_2,$$

$$Cpo(r_2), n_1 = \emptyset, r_2 \odot n_2, n_2 = \emptyset, Rc(n_1; n_2), n_1 = n_2, n_1 \odot, n_2 \odot,$$

$$\Leftrightarrow$$
 , $r_1 \pm r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$, $r_1 = \varnothing$, $r_2 = \varnothing$,

$$Cpo(r_1), r_1 \otimes n_1, n_1! \circ r_2, n_1! \circ r_2, n_1! = \varnothing,$$

$$Cpo(r_2), r_2 \otimes n_2, n_2 != \varnothing, Rc(n_1; n_2), n_1 = n_2, n_1 \otimes, n_2 \otimes,$$

$$\Leftrightarrow$$
, $r_1 = r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$, $r_1 = \varnothing$, $r_2 = \varnothing$,

$$r_1! \mathcal{O}r_2, Cpo(r_1), r_1 \mathcal{O}n_1, n_1! = \emptyset,$$

$$Cpo(r_2), r_2 \otimes n_2, n_2 != \varnothing, Rc(n_1; n_2), n_1 = n_2, n_1 \otimes, n_2 \otimes,$$

$$\Leftrightarrow$$
 , $r_1 = r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$, $r_1 = \varnothing$, $r_2 = \varnothing$,

$$r_1! \circlearrowleft r_2, Cpo(r_1), r_1! = \varnothing, r_1 \odot n_1,$$

$$Cpo(r_2), r_2 = \emptyset, r_2 \otimes n_2, Rc(n_1; n_2), n_1 = n_2, n_1 \otimes n_2 \otimes n_2$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$

$$r_1! \circ r_2, Cpo(r_1), r_1 \otimes n_1,$$

$$Cpo(r_2), r_2 \otimes n_2, Rc(n_1; n_2), n_1 = n_2, n_1 \otimes, n_2 \otimes,$$

$$\Leftrightarrow , r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, r_1 = \varnothing, r_2 = \varnothing,$$
$$r_1 ! \circlearrowleft r_2, Cpo(r_1),$$

$$Cpo(r_2), r_1 \otimes n_1, r_2 \otimes n_2, Rc(n_1; n_2), n_1 = n_2, n_1 \otimes n_2 \otimes n_2$$

$$\Leftrightarrow$$
 , $r_1 = r_2$, $r_1 \circ r_{10}$, $r_2 \circ r_{20}$, $r_{10} = \varnothing$, $r_{20} = \varnothing$, $r_1 = \varnothing$, $r_2 = \varnothing$, $r_1! \circ r_2$, $Cpo(r_1)$, $Cpo(r_2)$, $r_1 = r_2$,

$$\Leftrightarrow, r_1 \pm r_2, r_1 = \varnothing, r_{10} = \varnothing, r_1 \circlearrowleft r_{10}, r_2 = \varnothing, r_{20} = \varnothing, r_2 \circlearrowleft r_{20},$$
$$r_1 ! \circlearrowleft r_2, Cpo(r_1), Cpo(r_2), r_1 \pm r_2,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\bigcirc} r_{10}, r_2 = \varnothing, r_{20} = \varnothing, r_2 \mathring{\bigcirc} r_{20},$$
$$r_1 ! \mathring{\bigcirc} r_2, Cpo(r_1), Cpo(r_2), r_1 \pm r_2,$$

$$\Leftrightarrow, r_1 \pm r_2, r_2 = \varnothing, r_1 = \varnothing, r_{10} = \varnothing, r_1 \circlearrowleft r_{10}, r_{20} = \varnothing, r_2 \circlearrowleft r_{20},$$
$$r_1 ! \circlearrowleft r_2, Cpo(r_1), Cpo(r_2), r_1 \pm r_2,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 = \varnothing, r_1 = \varnothing, r_{10} = \varnothing, r_1 \circlearrowleft r_{10}, r_{20} = \varnothing, r_2 \circlearrowleft r_{20},$$
$$r_1 ! \circlearrowleft r_2, Cpo(r_1), Cpo(r_2), r_1 \pm r_2,$$

$$\Leftrightarrow, r_1 \pm r_2, r_1 = \varnothing, r_{10} = \varnothing, r_1 \circlearrowleft r_{10}, r_{20} = \varnothing, r_2 \circlearrowleft r_{20},$$
$$r_1 ! \circlearrowleft r_2, Cpo(r_1), Cpo(r_2), r_1 \pm r_2,$$

$$\Leftrightarrow, r_1 = \varnothing, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 \pm r_2,$$

premise 2:

$$, \&SHi \rightarrow r_1, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), \Leftrightarrow ,$$

$$\&SHi \rightarrow r_1, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 \pm r_2, \Rightarrow ,$$

$$, r_1 != \varnothing, \&SHi \circlearrowleft r_1, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}),$$

$$\Leftrightarrow , \&SHi \circlearrowleft r_1, r_1 \pm r_2, r_1 != \varnothing, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}),$$

$$\Leftrightarrow , \&SHi \circlearrowleft r_1, r_1 \pm r_2, r_1 != \varnothing, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}),$$

 $Cpo(r_{10}), Cpo(r_{20}),$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 \, ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2! \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r_{20}, r_1 \, ! = \varnothing, r_1! \, \circlearrowleft r_{10}, r_2 \, ! = \varnothing, r_2! \, \circlearrowleft r_{20},$$

$$Cpo(r_{10}), Cpo(r_{20}), r_1 \oplus, r_1 \ominus, r_2 \oplus, r_2 \ominus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! = \varnothing, r_1 ! \, \circlearrowleft r_{10}, r_2 ! = \varnothing, r_2 ! \, \circlearrowleft r_{20},$$

$$Cpo(r_{10}), Cpo(r_{20}), r_1 \oplus, r_1 \ominus, r_2 \oplus, r_2 \ominus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 \, ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! = \varnothing, r_2 ! = \varnothing, r_2 ! \, \circlearrowleft r_{20},$$

$$r_1 ! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_1 ! \, \circlearrowleft r_{20}, Cpo(r_{20}), r_1 \oplus, r_1 \ominus, r_2 \oplus, r_2 \ominus,$$

$$\Leftrightarrow, \&SHi \circlearrowleft r_1, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \circlearrowleft r_{10}, r_2 ! \circlearrowleft r_{10}, r_1 ! \circlearrowleft r_{20}, r_1 ! = \varnothing, r_2 ! = \varnothing, r_2 ! \circlearrowleft r_{20},$$

$$r_1 ! \circlearrowleft r_{10}, Cpo(r_{10}), r_1 ! \circlearrowleft r_{20}, r_1 \oplus, Cpo(r_{20}), r_1 \ominus, r_2 \oplus, r_2 \ominus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! = \varnothing, r_2 ! = \varnothing, r_2 ! \, \circlearrowleft r_{20},$$

$$r_1 ! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_1 \oplus, Cpo(r_{20}), r_1 \ominus, r_2 \oplus, r_2 \ominus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! = \varnothing, r_2 ! = \varnothing, r_2 ! \, \circlearrowleft r_{20},$$

$$r_1 ! \, \circlearrowleft r_{10}, r_1 \oplus, Cpo(r_{10}), Cpo(r_{20}), r_1 \ominus, r_2 \oplus, r_2 \ominus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 \pm r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

28 Function Cpo(r)

$$r_{2}! \mathring{\bigcirc} r_{10}, r_{1}! \mathring{\bigcirc} r_{20}, r_{1}! \mathring{\bigcirc} r_{20}, r_{1}! = \varnothing, r_{2}! = \varnothing, r_{1}! \mathring{\bigcirc} r_{10},$$

 $r_{1} \oplus, r_{2}! \mathring{\bigcirc} r_{10}, Cpo(r_{10}), r_{2}! \mathring{\bigcirc} r_{20}, Cpo(r_{20}), r_{2} \oplus, r_{1} \ominus, r_{2} \ominus,$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! = \varnothing, r_2 ! = \varnothing, r_1 ! \, \circlearrowleft r_{10},$$

$$r_1 \oplus, r_2 ! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_2 ! \, \circlearrowleft r_{20}, r_2 \oplus, Cpo(r_{20}), r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! = \varnothing, r_2 ! = \varnothing, r_1 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{20},$$

$$r_1 \oplus , r_2 ! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_2 \oplus , Cpo(r_{20}), r_1 \ominus , r_2 \ominus ,$$

$$\Leftrightarrow , \&SHi \, \bigcirc r_1, r_1 = r_2, r_1 \, \bigcirc r_{10}, r_2 \, \bigcirc r_{20}, r_1 ! \, \bigcirc r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \bigcirc r_{10}, r_1 ! \, \bigcirc r_{20}, r_1 ! \, \bigcirc r_{20}, r_1 ! = \varnothing, r_2 ! = \varnothing, r_1 ! \, \bigcirc r_{10}, r_2 ! \, \bigcirc r_{20},$$

$$r_1 \oplus , r_2 ! \, \bigcirc r_{10}, r_2 \oplus , Cpo(r_{10}), Cpo(r_{20}), r_1 \ominus , r_2 \ominus ,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{20},$$

$$r_1 ! = \varnothing, r_2 ! = \varnothing, r_1 \oplus, r_2 \oplus, Cpo(r_{10}), Cpo(r_{20}), r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow , r_{2}! \circlearrowleft r_{10}, r_{2}! \circlearrowleft r_{10}, r_{1}! \circlearrowleft r_{20}, r_{1}! \circlearrowleft r_{20}, r_{1}! \circlearrowleft r_{10}, r_{2}! \circlearrowleft r_{20},$$

$$\&SHi \circlearrowleft r_{1}, r_{1} = r_{2}, r_{1}! = \varnothing, r_{2}! = \varnothing, r_{1} \oplus, r_{2} \oplus,$$

$$r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, r_{1}! \circlearrowleft r_{2}, r_{20} = \varnothing, r_{10} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_{1} \ominus, r_{2} \ominus,$$

$$\Leftrightarrow, r_{2}! \circlearrowleft r_{10}, r_{2}! \circlearrowleft r_{10}, r_{1}! \circlearrowleft r_{20}, r_{1}! \circlearrowleft r_{20}, r_{1}! \circlearrowleft r_{10}, r_{2}! \circlearrowleft r_{20},$$

$$\&SHi \circlearrowleft r_{1}, r_{1}! = \varnothing, r_{2}! = \varnothing, r_{1} \oplus, r_{2} \oplus, r_{1} \pm r_{2}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20},$$

$$r_1! \circ r_2, r_{20} = \varnothing, r_{10} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 \ominus, r_2 \ominus,$$

$$r_1 \mathrel{!=} \varnothing, r_2 \mathrel{!=} \varnothing, r_1 \oplus, r_2 \oplus, \&SHi \rightarrow r_1, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$$

 \Leftrightarrow $, r_2! \circ r_{10}, r_2! \circ r_{10}, r_1! \circ r_{20}, r_1! \circ r_{20}, r_1! \circ r_{10}, r_2! \circ r_{20},$

$$r_1! \circ r_2, r_{20} = \varnothing, r_{10} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow , r_{2}! \mathring{\bigcirc} r_{10}, r_{2}! \mathring{\bigcirc} r_{10}, r_{1}! \mathring{\bigcirc} r_{20}, r_{1}! \mathring{\bigcirc} r_{20}, r_{1}! \mathring{\bigcirc} r_{10}, r_{2}! \mathring{\bigcirc} r_{20},$$

$$r_1 \models \varnothing, r_2 \models \varnothing, r_1 \oplus, r_2 \oplus, \&SHi \rightarrow r_1, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$$

$$r_1! \circ r_2, r_{20} = \varnothing, r_{10} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 = r_2, r_1 \ominus, r_2 \ominus, r_3 \ominus, r_4 \ominus, r_5 \ominus, r_5$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\! r_1, r_1\!\!=\!\!r_2, r_1\!\!\circlearrowleft\!\! r_{10}, r_2\!\!\circlearrowleft\!\! r_{20}, r_1\!\!:\!\!\!\circlearrowleft\!\! r_2, r_{20}\!=\!\varnothing, r_{10}\!=\!\varnothing,$$

$$r_2! \circlearrowleft r_{10}, r_1! \circlearrowleft r_{20}, r_1! \circlearrowleft r_{20}, r_1! \circlearrowleft r_{10}, r_2! \circlearrowleft r_{20},$$

$$r_1 != \varnothing, r_1 \oplus, r_2 ! \circlearrowleft r_{10}, r_2 != \varnothing, r_2 \oplus, Cpo(r_{10}), Cpo(r_{20}), r_1 \pm r_2, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft r_1, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$

$$r_2! \circ r_{10}, r_1! \circ r_{20}, r_1! \circ r_{20}, r_1! \circ r_{10}, r_2! \circ r_{20},$$

$$r_1 \mathbin{!}= \varnothing, r_1 \oplus, r_2 \mathbin{!} \circlearrowleft r_{10}, Cpo(r_{10}), r_2 \mathbin{!}= \varnothing, r_2 \oplus, Cpo(r_{20}), r_1 \pm r_2, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft r_1, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$

$$r_2! \circ r_{10}, r_2! \circ r_{10}, r_1! \circ r_{20}, r_1! \circ r_{20}, r_1! \circ r_{10},$$

$$r_1 \mathbin{!}= \varnothing, r_1 \oplus, Cpo(r_{10}), r_2 \mathbin{!} \circlearrowleft r_{20}, r_2 \mathbin{!}= \varnothing, r_2 \oplus, Cpo(r_{20}), r_1 \pm r_2, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\! r_1, r_1\!\!=\!\!r_2, r_1\!\!\circlearrowleft\!\! r_{10}, r_2\!\!\circlearrowleft\!\! r_{20}, r_1\!\!:\!\!\!\circlearrowleft\!\! r_2, r_{20}\!=\!\varnothing, r_{10}\!=\!\varnothing,$$

$$r_2! \circlearrowleft r_{10}, r_2! \circlearrowleft r_{10}, r_1! \circlearrowleft r_{20}, r_1! \circlearrowleft r_{20}, r_1! \circlearrowleft r_{10},$$

$$r_1 \mathrel{!=}\!\varnothing, r_1 \oplus, Cpo(r_{10}), r_2 \mathrel{!}\!\circlearrowleft r_{20}, Cpo(r_{20}), r_2 \mathrel{!=}\!\varnothing, r_2 \oplus, r_1 \pm r_2, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_2, r_2 = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_2 \, \circlearrowleft r_{20},$$

$$r_1 \, \circlearrowleft r_{10}, r_1 \, \vdash = \varnothing, r_1 \oplus, Cpo(r_{10}), Cpo(r_{20}), r_2 \, \vdash = \varnothing, r_2 \oplus, r_1 = r_2, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_2 \, \circlearrowleft r_{20},$$

$$r_1 \, \circlearrowleft r_{10}, Cpo(r_{10}), r_1 \, \vdash = \varnothing, r_1 \oplus, Cpo(r_{20}), r_2 \, \vdash = \varnothing, r_2 \oplus, r_1 = r_2, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_2 \, \circlearrowleft r_{20},$$

$$Cpo(r_{10}), r_1 \, \circlearrowleft r_{20}, r_1 \, \vdash = \varnothing, r_1 \oplus, Cpo(r_{20}), r_2 \, \vdash = \varnothing, r_2 \oplus, r_1 = r_2, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, r_1 = \varphi, r_1 \oplus, Cpo(r_{20}), r_2 \, \vdash = \varnothing, r_2 \oplus, r_1 = r_2, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, r_1 = \varphi, r_1 \oplus, r_2 \oplus, r_2 \oplus, r_1 \, \circlearrowleft r_2, r_2 \oplus, r_1 = \varphi,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_2 \oplus, r_1 = \varphi,$$

$$Cpo(r_{10}), r_1 \, \circlearrowleft r_{20}, Cpo(r_{20}), r_1 \, \vdash = \varnothing, r_1 \oplus, r_2 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, Cpo(r_{20}), r_1 \, \vdash = \varnothing, r_2 \, \circlearrowleft r_1 \, \circlearrowleft r_2, r_2 \oplus, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{20}, r_{2$$

 $\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\! r_1, r_1\!\!=\!\!r_2, r_1\!\!\circlearrowleft\! r_{10}, r_2\!\!\circlearrowleft\! r_{20}, r_1\!\!!\!\!\circlearrowleft\! r_2, r_{20}\!=\!\varnothing, r_{10}\!=\!\varnothing,$

 $Cpo(r_{10}), r_1! \mathcal{O}r_{20}, Cpo(r_{20}), r_1! = \emptyset, r_2! = \emptyset, r_1 \pm r_2,$

$$r_2! \circ r_{10}, r_2! \circ r_{10}, r_1! \circ r_{20}, r_1! \circ r_{10}, r_2! \circ r_{20},$$

$$Cpo(r_{10}), r_1! \circ r_{20}, r_1! = \varnothing, Cpo(r_{20}), r_2! = \varnothing, r_1 = r_2,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_2 ! \, \circlearrowleft r_{20},$$

$$r_1 ! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_1 ! = \varnothing, Cpo(r_{20}), r_2 ! = \varnothing, r_1 = r_2,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_2 ! \, \circlearrowleft r_{20},$$

$$r_1 ! \, \circlearrowleft r_{10}, r_1 ! = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_2 ! = \varnothing, r_1 = r_2,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{10},$$

$$r_1 ! = \varnothing, r_2 ! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_2 ! \, \circlearrowleft r_{20}, Cpo(r_{20}), r_2 ! = \varnothing, r_1 = r_2,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2! \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r_{20}, r_1! \, \circlearrowleft r_{20}, r_1! \, \circlearrowleft r_{10},$$

$$r_1! = \varnothing, r_2! \, \circlearrowleft r_{10}, \, Cpo(r_{10}), r_2! \, \circlearrowleft r_{20}, r_2! = \varnothing, \, Cpo(r_{20}), r_1 = r_2,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2 ! \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_{10}, r_2 ! \, \circlearrowleft r_{20},$$

$$r_1 != \varnothing, r_2 ! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_2 != \varnothing, Cpo(r_{20}), r_1 = r_2,$$

$$\Leftrightarrow , \&SHi \, \bigcirc r_1, r_1 = r_2, r_1 \, \bigcirc r_{10}, r_2 \, \bigcirc r_{20}, r_1 ! \, \bigcirc r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$
$$r_2! \, \bigcirc r_{10}, r_1! \, \bigcirc r_{20}, r_1! \, \bigcirc r_{20}, r_1! \, \bigcirc r_{10}, r_2! \, \bigcirc r_{20},$$

$$r_1 = \varnothing, r_2 ! \circlearrowleft r_{10}, r_2 ! = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft r_1, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$

$$r_2! \circlearrowleft r_{10}, r_2! \circlearrowleft r_{10}, r_1! \circlearrowleft r_{20}, r_1! \circlearrowleft r_{20}, r_1! \circlearrowleft r_{10}, r_2! \circlearrowleft r_{20},$$

$$r_1 \! \mid = \! \varnothing, r_2 \! \mid = \! \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 \! \pm \! r_2,$$

$$\Leftrightarrow \; , \, \&\mathit{SHi} \, \circlearrowleft r_1, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_{20} = \varnothing, r_{10} = \varnothing,$$

$$r_2! \circ r_{10}, r_1! \circ r_{20}, r_1! \circ r_{10}, r_2! \circ r_{20},$$

$$r_1 = \varnothing, r_2 = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\bigcirc r_1, r_1 = r_2, r_1 \bigcirc r_{10}, r_2 ! \bigcirc r_{10}, r_2 \bigcirc r_{20}, r_1 ! \bigcirc r_{20}, r_1 ! \bigcirc r_2,$

$$r_1 != \varnothing, r_{10} = \varnothing, r_1 ! \circlearrowleft r_{10}, r_2 != \varnothing, r_{20} = \varnothing, r_2 ! \circlearrowleft r_{20},$$

$$Cpo(r_{10}), Cpo(r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft r_1, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 ! \circlearrowleft r_1, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2, r_1 ! \circlearrowleft r_2,$

$$r_1 \! \models \! \varnothing, r_{10} \! = \! \varnothing, r_1 \! ! \! \circlearrowleft \! r_{10}, r_2 \! ! \! = \! \varnothing, r_{20} \! = \! \varnothing, r_2 \! ! \! \circlearrowleft \! r_{20},$$

$$Cpo(r_{10}), Cpo(r_{20}), r_1 = r_2,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\! r_1, r_1\!\!=\!\!r_2, r_1\!\!\circlearrowleft\! r_{10}, r_2\!\!!\!\!\circlearrowleft\! r_1, r_2\!\!\circlearrowleft\! r_{20}, r_1\!\!!\!\!\circlearrowleft\! r_2, r_1\!\!!\!\!\circlearrowleft\! r_2,$$

$$r_1 \stackrel{!}{=} \varnothing, r_{10} \stackrel{!}{=} \varnothing, r_2 \stackrel{!}{=} \varnothing, r_{20} \stackrel{!}{=} \varnothing,$$

$$Cpo(r_{10}), Cpo(r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\bigcirc r_1, r_1 = r_2, r_1 \bigcirc r_{10}, r_2 \bigcirc r_{20}, r_1! \bigcirc r_2,$

$$r_1 \stackrel{!}{=} \varnothing, r_{10} \stackrel{!}{=} \varnothing, r_2 \stackrel{!}{=} \varnothing, r_{20} \stackrel{!}{=} \varnothing,$$

$$Cpo(r_{10}), Cpo(r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft r_1, r_1 \pm r_2, r_2 \models \varnothing, r_1 \models \varnothing, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2$,

$$r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft r_1, r_1 \pm r_2, r_1 = \varnothing, r_1 = \varnothing, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 ! \circlearrowleft r_2,$

$$r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow$$
, &SHi $\circ r_1, r_1 = r_2, r_1 = \varnothing, r_1 \circ r_{10}, r_2 \circ r_{20}, r_1 = \varnothing, r_1 \circ r_{20}, r_1 \circ r_{20}, r_2 \circ r_{20}, r_1 = \varnothing, r_1 \circ r_{20}, r_1 \circ r_{20}, r_2 \circ r_{20}, r_1 \circ r_{20}, r_2 \circ r_{20}, r_2$

$$r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow, r_1 != \varnothing, \&SHi \, \circlearrowleft r_1, r_1 = r_2, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, r_1 ! \, \circlearrowleft r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), r_1 = r_2, r_1 \, \circlearrowleft r_{20}, r_2 + r_2 + r_3 + r_4 + r_4$$

conclusion:

$$, r_1 = r_2, r_1 \circ r_{10}, r_2 \circ r_{20}, r_1! \circ r_2, r_{10} = \varnothing, r_{20} = \varnothing, Cpo(r_{10}), Cpo(r_{20}), \Leftrightarrow$$

29.1 Definition of IsCpo(i;r)

$$, IsCpo(i;r), \Leftrightarrow , i! \mathring{\bigcirc}r, r = \varnothing,$$

29.2 Property of IsCpo(i;r)

$$, IsCpo(i;r), \Leftrightarrow \sim, i! \circlearrowleft r,$$

$$, IsCpo(i;r), \Leftrightarrow \sim, i! \circlearrowleft r,$$

$$, IsCpo(i;r), \Leftrightarrow \sim, r = \varnothing,$$

$$, IsCpo(i;r), \Leftrightarrow \sim, IsCpo(i;r),$$

$$, IsCpo(i;r), j! \circlearrowleft r, \Leftrightarrow , IsCpo(i;r), IsCpo(j;r),$$

$$, IsCpo(i;r), i \circlearrowleft i_0, \Leftrightarrow , i \circlearrowleft i_0, IsCpo(i_0;r),$$

$$, i_1 \circlearrowleft i_2, IsCpo(i_1;r), \Leftrightarrow , i_1 \circlearrowleft i_2, IsCpo(i_2;r),$$

$$, IsCpo(i;r), Cpo(r), r \oplus, \Leftrightarrow , Cpo(r), r \oplus, IsCpo(i;r),$$

$$, IsCpo(i;r), i = \varnothing, Cpo(r), \Leftrightarrow , IsCpo(i;r), Cpo(r), i = \varnothing,$$

$$, IsCpo(i;r), i! = \varnothing, Cpo(r), \Leftrightarrow , IsCpo(i;r), Cpo(r), i! = \varnothing,$$

$$, IsCpo(i;r), i \oplus, Cpo(r), \Leftrightarrow , IsCpo(i;r), Cpo(r), i \oplus,$$

$$, IsCpo(i;r), i \oplus, Cpo(r), \Leftrightarrow , IsCpo(i;r), Cpo(r), i \oplus,$$

$$, IsCpo(i;r), i \oplus, Cpo(r), \Leftrightarrow , IsCpo(i;r), Cpo(r), i \oplus,$$

$$, IsCpo(i;r), i \oplus, Cpo(r), \Leftrightarrow , IsCpo(i;r), Cpo(r), i \oplus,$$

$$, IsCpo(i;r), i \oplus, Cpo(r), \Leftrightarrow , IsCpo(i;r), Cpo(r), i \oplus,$$

$$, IsCpo(i;r), \&SHi \circlearrowleft i, \Leftrightarrow , \&SHi \circlearrowleft i, IsCpo(i;r),$$

$$, IsCpo(j;r), \&SHi \circlearrowleft i, \Leftrightarrow , \&SHi \circlearrowleft i, IsCpo(j;r),$$

$$, IsCpo(i;r), \&SHi \circlearrowleft i, Cpo(r), \Leftrightarrow , IsCpo(i;r), Cpo(r), \&SHi \circlearrowleft i,$$

$$, \circledcirc r, \Leftrightarrow \sim, IsCpo(i;r),$$

$$, r_1! \circlearrowleft r_2, IsCpo(i;r_1), Cpo(r_2), \Leftrightarrow r_1! \circlearrowleft r_2, Cpo(r_2), IsCpo(i;r_1),$$

$$, r_1! \circlearrowleft r_2, IsCpo(i;r_1), Cpo(r_2), \Leftrightarrow r_1! \circlearrowleft r_2, Cpo(r_2), IsCpo(i;r_1),$$

$$, r_1! \circlearrowleft r_2, IsCpo(i;r_1), Cpo(r_2), \Leftrightarrow r_1! \circlearrowleft r_2, Cpo(r_2), IsCpo(i;r_1),$$

$$, i! \circlearrowleft r, j! \circlearrowleft r, i=j, Cpo(r), \Leftrightarrow , i! \circlearrowleft r, j! \circlearrowleft r, Cpo(r), i=j,$$

$$, IsCpo(i;r), IsCpo(j;r), i=j, Cpo(r), \Leftrightarrow , IsCpo(i;r), IsCpo(j;r), Cpo(r), i=j,$$

$$, IsCpo(i;r), IsCpo(j;r), i>j, Cpo(r), \Leftrightarrow , IsCpo(i;r), IsCpo(j;r), Cpo(r), i>j,$$

$$, IsCpo(i;r), IsCpo(j;r), i>j, Cpo(r), \Leftrightarrow , IsCpo(i;r), IsCpo(j;r), Cpo(r), i>j,$$

29.3 Definition of Rcpo(i;r)

$$, Rcpo(i;r), \iff , if(i = \varnothing) - \boxed{, \\ Cpo(r), r \oplus, i \oplus, Rcpo(i;r),} -,$$

29.4 Property of Rcpo(i;r)

$$, i = \varnothing, Rcpo(i; r), \iff, i = \varnothing,$$

$$, i != \varnothing, Rcpo(i; r), \iff, i != \varnothing, Cpo(r), r \circledast, i \circledast, Rcpo(i; r),$$

$$, IsCpo(i; r), Rcpo(i; r), \iff \sim, i = \varnothing, r = \varnothing,$$
induction proof:
$$premise 1:$$

$$, i = \varnothing, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, IsCpo(i; r), i = \varnothing, Rcpo(i; r),$$

$$\Leftrightarrow, IsCpo(i; r), i = \varnothing, Rcpo(i; r),$$

$$\Leftrightarrow, IsCpo(i; r), i = \varnothing, i = \varnothing, r = \varnothing,$$

$$\Leftrightarrow, IsCpo(i; r), i = \varnothing, Rcpo(i; r), i = \varnothing, r = \varnothing,$$

$$\Leftrightarrow, IsCpo(i; r), i = \varnothing, Rcpo(i; r), i = \varnothing, r = \varnothing,$$

$$\Leftrightarrow, i = \varnothing, IsCpo(i; r), Rcpo(i; r), i = \varnothing, r = \varnothing,$$

$$premise 2:$$

$$, \&SHi \to i, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i; r), i != \varnothing, Rcpo(i; r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i; r), i != \varnothing, Rcpo(i; r),$$

$$\Leftrightarrow, i != \varnothing, IsCpo(i; r), \&SHi \circlearrowleft i, Cpo(r), r \circledast, i \circledast, Rcpo(i; r),$$

$$\Leftrightarrow, i != \varnothing, IsCpo(i; r), Cpo(r), \&SHi \circlearrowleft i, r \circledast, i \circledast, Rcpo(i; r),$$

$$\Leftrightarrow, i != \varnothing, IsCpo(i; r), Cpo(r), r \circledast, i \circledast, \&SHi \to i, Rcpo(i; r),$$

$$\Leftrightarrow, i != \varnothing, Cpo(r), r \circledast, i \circledast, \&SHi \to i, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, i != \varnothing, Cpo(r), r \circledast, i \circledast, \&SHi \to i, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, i != \varnothing, Cpo(r), r \circledast, i \circledast, \&SHi \to i, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, i != \varnothing, Cpo(r), r \circledast, i \circledast, \&SHi \to i, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, i != \varnothing, Cpo(r), r \circledast, i \circledast, \&SHi \to i, IsCpo(i; r), Rcpo(i; r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, IsCpo(i;r), i != \varnothing, Cpo(r), r \oplus, i \oplus, Rcpo(i;r), i = \varnothing, r = \varnothing,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, IsCpo(i;r), i != \varnothing, Rcpo(i;r), i = \varnothing, r = \varnothing,$$

$$\Leftrightarrow, i != \varnothing, \&SHi \, \circlearrowleft i, IsCpo(i;r), Rcpo(i;r), i = \varnothing, r = \varnothing,$$

$$conclusion:$$

$$, IsCpo(i;r), Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), Rcpo(i;r), i = \varnothing, r = \varnothing,$$

$$, IsCpo(i;r), i != \varnothing, Rcpo(i;r), \Leftrightarrow, \sim, m! \, \circlearrowleft r,$$

$$, IsCpo(i;r), m! \, \circlearrowleft r, Rcpo(i;r), \Leftrightarrow, \sim, m! \, \circlearrowleft r,$$

$$, IsCpo(i;r), Rcpo(i;r), \otimes, \Leftrightarrow, \otimes,$$

29.5 Swap

29.5.1 Operator

```
, IsCpo(i;r), \circledcirc j, Rcpo(i;r), \; \Leftrightarrow \; , IsCpo(i;r), Rcpo(i;r), \circledcirc j, , IsCpo(i;r), j \circledcirc j_0, Rcpo(i;r), \; \Leftrightarrow \; , IsCpo(i;r), Rcpo(i;r), j \circledcirc j_0, , IsCpo(i;r), j \circledcirc , Rcpo(i;r), \; \Leftrightarrow \; , IsCpo(i;r), Rcpo(i;r), j \circledcirc , , IsCpo(i;r), j ! \circlearrowleft r, j \varTheta , Rcpo(i;r), \; \Leftrightarrow \; , IsCpo(i;r), j ! \circlearrowleft r, Rcpo(i;r), j \varTheta , induction proof: premise \; 1: \\ , i = \varnothing, IsCpo(i;r), j ! \circlearrowleft r, j \varTheta, Rcpo(i;r), \\ \Leftrightarrow , IsCpo(i;r), j ! \circlearrowleft r, j \varTheta, i = \varnothing, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), j ! \circlearrowleft r, j \varTheta , i = \varnothing, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), j ! \circlearrowleft r, i = \varnothing, j \varTheta , \Leftrightarrow , IsCpo(i;r), j ! \circlearrowleft r, i = \varnothing, Rcpo(i;r), j \varTheta , \Leftrightarrow , IsCpo(i;r), j ! \circlearrowleft r, i = \varnothing, Rcpo(i;r), j \varTheta ,
```

$$\Rightarrow , i = \varnothing, IsCpo(i;r), j!Cr, Repo(i;r), j\oplus, \\ premise 2: \\ , \&SHi \to i, IsCpo(i;r), j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , \&SHi \to i, IsCpo(i;r), j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, j\ominus, i!=\varnothing, Repo(i;r), \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, j\ominus, i!=\varnothing, Cpo(r), r\oplus, i\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, \&SHi Ci, IsCpo(i;r), j!Cr, j\ominus, Cpo(r), r\oplus, i\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, \&SHi Ci, IsCpo(i;r), j!Cr, Cpo(r), j\ominus, r\oplus, i\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, \&SHi Ci, IsCpo(i;r), j!Cr, Cpo(r), r\oplus, i\ominus, j\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, \&SHi Ci, IsCpo(i;r), j!Cr, Cpo(r), r\oplus, i\ominus, j\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, \&SHi Ci, IsCpo(i;r), j!Cr, Cpo(r), r\oplus, i\ominus, j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, j!Cr, IsCpo(i;r), \&SHi Ci, Cpo(r), r\oplus, i\ominus, j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, j!Cr, IsCpo(i;r), Cpo(r), kSHi Ci, r\oplus, i\ominus, j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, j!Cr, Cpo(r), r\ominus, IsCpo(i;r), i\ominus, \&SHi \to i, j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, j!Cr, Cpo(r), r\ominus, i\ominus, \&SHi \to i, IsCpo(i;r), j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, j!Cr, Cpo(r), r\ominus, i\ominus, \&SHi \to i, IsCpo(i;r), j!Cr, j\ominus, Repo(i;r), \\ \Leftrightarrow , i!=\varnothing, j!Cr, Cpo(r), r\ominus, i\ominus, \&SHi \to i, IsCpo(i;r), j!Cr, Repo(i;r), j\ominus, \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, i!=\varnothing, Cpo(r), r\ominus, i\ominus, Repo(i;r), j\ominus, \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, i!=\varnothing, Cpo(r), r\ominus, i\ominus, Repo(i;r), j\ominus, \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, i!=\varnothing, Repo(i;r), j\ominus, \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, i!=\varnothing, Repo(i;r), j\ominus, \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, i!=\varnothing, Repo(i;r), j\ominus, \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, i!=\varnothing, Repo(i;r), j\ominus, \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, i!=\varnothing, Repo(i;r), j\ominus, \\ \Leftrightarrow , \&SHi Ci, IsCpo(i;r), j!Cr, i!=\varnothing, Repo(i;r), j\ominus, \\ conclusion:$$

 $, IsCpo(i;r), j! Or, j \oplus, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), j! Or, Rcpo(i;r), j \oplus,$

$$, IsCpo(i;r), j! \circlearrowleft r, j \oplus, Rcpo(i;r), \iff, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j \oplus,$$

$$, IsCpo(i;r), r! \rightarrow j, j \ominus, Rcpo(i;r), \iff, IsCpo(i;r), r! \rightarrow j, Rcpo(i;r), j \ominus,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j \ominus, Rcpo(i;r), \iff, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j \ominus,$$

29.5.2 Propositions node null

$$, IsCpo(i;r), j! \circlearrowleft r, j = \varnothing, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j = \varnothing,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j = \varnothing, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j! = \varnothing,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j = \varnothing, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j = \varnothing,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j! = \varnothing, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j! = \varnothing,$$

$$, IsCpo(i;r), j! = \varnothing, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! = \varnothing, Rcpo(i;r), j! = \varnothing, j\oplus,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j! = \varnothing, j\oplus, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j! = \varnothing, j\oplus,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j! = \varnothing, j\oplus, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j! = \varnothing, j\oplus,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j! = \varnothing, j\oplus, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j! = \varnothing, j\oplus,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j! = \varnothing, j\oplus, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j! = \varnothing, j\oplus,$$

$$, IsCpo(i;r), j! \circlearrowleft r, j! = \varnothing, j\oplus, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), j! \circlearrowleft r, Rcpo(i;r), j! = \varnothing, j\oplus,$$

29.5.3 Propositions identical node

$$, IsCpo(i;r), m \circlearrowleft n, Repo(i;r), \Leftrightarrow , IsCpo(i;r), Repo(i;r), m \circlearrowleft n,$$

 $, IsCpo(i;r), m! \circlearrowleft n, Repo(i;r), \Leftrightarrow , IsCpo(i;r), Repo(i;r), m! \circlearrowleft n,$

29.5.4 Propositions node connectivity

$$, IsCpo(i;r), m \circlearrowleft n, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), m \circlearrowleft n,$$

$$, IsCpo(i;r), m! \circlearrowleft n, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), m! \circlearrowleft n,$$

$$, IsCpo(i;r), i! \circlearrowleft r, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), i! \circlearrowleft r,$$

$$, IsCpo(i;r), m \circlearrowleft r, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), m \circlearrowleft r,$$

$$, IsCpo(i;r), m! \circlearrowleft r, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), m! \circlearrowleft r,$$

29.5.5 IsCpo

$$, IsCpo(i;r), Rcpo(i;r), \Leftrightarrow \sim, IsCpo(i;r),$$

$$, IsCpo(i;r), IsCpo(j;r), Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), IsCpo(j;r),$$

$$, IsCpo(i;r_1), r_1! \circlearrowleft r_2, IsCpo(j;r_2), Rcpo(i;r_1), \Leftrightarrow , IsCpo(i;r_1), r_1! \circlearrowleft r_2, Rcpo(i;r_1), IsCpo(j;r_2),$$

29.5.6 Cpo

```
, IsCpo(i;r), Cpo(r), r \oplus, Rcpo(i;r), \iff, IsCpo(i;r), Rcpo(i;r), Cpo(r), r \oplus, \\ \text{induction proof:} \\ premise 1: \\ , i = \varnothing, IsCpo(i;r), Cpo(r), r \oplus, Rcpo(i;r), \\ \Leftrightarrow, IsCpo(i;r), i = \varnothing, Cpo(r), r \oplus, Rcpo(i;r), \\ \Leftrightarrow, IsCpo(i;r), Cpo(r), i = \varnothing, r \oplus, Rcpo(i;r), \\ \Leftrightarrow, IsCpo(i;r), Cpo(r), r \oplus, i = \varnothing, Rcpo(i;r), \\ \Leftrightarrow, IsCpo(i;r), Cpo(r), r \oplus, i = \varnothing, \\ \Leftrightarrow, IsCpo(i;r), i = \varnothing, Cpo(r), r \oplus, \\ \Leftrightarrow, IsCpo(i;r), i = \varnothing, Cpo(r), r \oplus, \\ \end{cases}
```

```
\Leftrightarrow, IsCpo(i;r), i=\varnothing, Rcpo(i;r), Cpo(r), r\oplus,
\Leftrightarrow, i = \emptyset, IsCpo(i; r), Rcpo(i; r), Cpo(r), r \oplus,
premise 2:
, &SHi \rightarrow i, IsCpo(i; r), Cpo(r), r \oplus, Rcpo(i; r),
\Leftrightarrow, &SHi\rightarrowi, IsCpo(i;r), Rcpo(i;r), Cpo(r), r\oplus, \Rightarrow
, i != \varnothing, \&SHi \circlearrowleft i, IsCpo(i; r), Cpo(r), r \oplus, Rcpo(i; r),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpo(i;r), i!=\varnothing, Cpo(r), r\oplus, Rcpo(i;r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpo(i;r), Cpo(r), i \models \varnothing, r \oplus, Rcpo(i;r),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpo(i;r), Cpo(r), r\oplus, i!=\varnothing, Rcpo(i;r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), Cpo(r), r \oplus, i! = \varnothing, Cpo(r), r \oplus, i \oplus, Rcpo(i;r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), Cpo(r), r \oplus, IsCpo(i;r), i!=\varnothing, Cpo(r), r \oplus, i \oplus, Repo(i;r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), Cpo(r), i \models \varnothing, r \oplus, IsCpo(i;r), Cpo(r), i \oplus, r \oplus, Rcpo(i;r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), Cpo(r), i = \varnothing, r \oplus, IsCpo(i;r), i \oplus, Cpo(r), r \oplus, Repo(i;r),
\Leftrightarrow, IsCpo(i;r), &SHi \circlearrowleft i, Cpo(r), i!=\varnothing, r\oplus, i\oplus, IsCpo(i;r), Cpo(r), r\oplus, Rcpo(i;r),
\Leftrightarrow, IsCpo(i;r), Cpo(r), &SHi \circlearrowleft i != \varnothing, r \oplus , i \oplus , IsCpo(i;r), Cpo(r), r \oplus , Repo(i;r),
\Leftrightarrow, IsCpo(i;r), Cpo(r), i!=\varnothing, r\oplus, i\oplus, \&SHi \rightarrow i, IsCpo(i;r), Cpo(r), r\oplus, Rcpo(i;r),
\Leftrightarrow, IsCpo(i;r), Cpo(r), i!=\varnothing, r\oplus, i\oplus, &SHi \rightarrow i, IsCpo(i;r), Rcpo(i;r), Cpo(r), r\oplus,
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), i = \varnothing, Cpo(r), r \oplus, i \oplus, IsCpo(i;r), Rcpo(i;r), Cpo(r), r \oplus,
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), i \models \varnothing, Cpo(r), r \oplus, IsCpo(i;r), i \oplus, Rcpo(i;r), Cpo(r), r \oplus,
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), i = \varnothing, IsCpo(i;r), Cpo(r), r \oplus, i \oplus, Rcpo(i;r), Cpo(r), r \oplus,
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), i \models \varnothing, Cpo(r), r \oplus, i \oplus, Rcpo(i;r), Cpo(r), r \oplus,
\Leftrightarrow, &SHi\circlearrowlefti, IsCpo(i;r), i!=\varnothing, Rcpo(i;r), Cpo(r), r\oplus,
```

$$\Leftrightarrow, i \models \varnothing, \&SHi \circlearrowleft i, IsCpo(i;r), Rcpo(i;r), Cpo(r), r \oplus, \\ conclusion: \\ , IsCpo(i;r), Cpo(r), r \oplus, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), Rcpo(i;r), Cpo(r), r \oplus, \\ \\ , IsCpo(i;r_1), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Cpo(r_2), Rcpo(i;r_1), \Leftrightarrow \\ , IsCpo(i;r_1), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Rcpo(i;r_1), Cpo(r_2), \\ \\ induction proof: \\ premise 1: \\ , i = \varnothing, IsCpo(i;r_1), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Cpo(r_2), Rcpo(i;r_1), \\ \Leftrightarrow, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, Cpo(r_2), Rcpo(i;r_1), \\ \Leftrightarrow, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, Cpo(r_2), i = \varnothing, Rcpo(i;r_1), \\ \Leftrightarrow, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, Cpo(r_2), i = \varnothing, Rcpo(i;r_1), \\ \Leftrightarrow, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, i = \varnothing, Cpo(r_2), \\ \Leftrightarrow, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, i = \varnothing, Rcpo(i;r_1), Cpo(r_2), \\ \Leftrightarrow, IsCpo(i;r_1), i! \circlearrowleft r_2, i! \circlearrowleft r_2, i = \varnothing, Rcpo(i;r_1), Cpo(r_2), \\ \Leftrightarrow, i = \varnothing, IsCpo(i;r_1), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Rcpo(i;r_1), Cpo(r_2), \\ premise 2: \\ , \&SHi \to i, IsCpo(i;r_1), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Rcpo(i;r_1), Cpo(r_2), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Rcpo(i;r_1), Cpo(r_2), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), i! \circlearrowleft r_2, i! \circlearrowleft r_2, Cpo(r_2), Rcpo(i;r_1), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, Cpo(r_2), i! = \varnothing, Rcpo(i;r_1), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, Cpo(r_2), i! = \varnothing, Rcpo(i;r_1), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, i! = \varnothing, Cpo(r_1), Cpo(r_1), r_1 \odot, i \oplus, Rcpo(i;r_1), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, i! = \varnothing, Cpo(r_1), Cpo(r_2), r_1 \odot, i \oplus, Rcpo(i;r_1), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, i! = \varnothing, Cpo(r_1), Cpo(r_2), r_1 \odot, i \oplus, Rcpo(i;r_1), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, i! = \varnothing, Cpo(r_1), Cpo(r_2), r_1 \odot, i \oplus, Rcpo(i;r_1), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), r_1! \circlearrowleft r_2, i! \hookrightarrow r_2, i! = \varnothing, Cpo(r_1), r_1 \odot r_2, i! \odot r_2, Cpo(r_2), r_1 \odot, i \oplus, Rcpo(i;r_1), \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r_1), i! \circlearrowleft r_2, i! \hookrightarrow r_2, i! = \varnothing, Cpo(r_1), r_1 \odot r_2, i! \odot r_2, Cpo(r_2), r_1 \odot, i! \otimes r_2,$$

$$\Leftrightarrow, \&SHi\ \circlearrowleft, IsCpo(i;r_1), i!\circlearrowleft r_2, i!=\varnothing, Cpo(r_1), r_1!\circlearrowleft r_2, r_1\oplus, Cpo(r_2), i\oplus, Rcpo(i;r_1),\\ \Leftrightarrow, \&SHi\ \circlearrowleft, IsCpo(i;r_1), i!=\varnothing, Cpo(r_1), r_1\oplus, r_1!\circlearrowleft r_2, i!\circlearrowleft r_2, Cpo(r_2), i\oplus, Rcpo(i;r_1),\\ \Leftrightarrow, \&SHi\ \circlearrowleft, IsCpo(i;r_1), i!=\varnothing, Cpo(r_1), r_1\oplus, r_1!\circlearrowleft r_2, i!\circlearrowleft r_2, i\oplus, Cpo(r_2), Rcpo(i;r_1),\\ \Leftrightarrow, \&SHi\ \circlearrowleft, IsCpo(i;r_1), i!=\varnothing, Cpo(r_1), r_1\oplus, r_1!\circlearrowleft r_2, i!\circlearrowleft r_2, i\oplus, Cpo(r_2), Rcpo(i;r_1),\\ \Leftrightarrow, \&SHi\ \circlearrowleft, r_1!\circlearrowleft r_2, i!\circlearrowleft r_2, i!=\varnothing, IsCpo(i;r_1), Cpo(r_1), r_1\oplus, i\oplus, Cpo(r_2), Rcpo(i;r_1),\\ \Leftrightarrow, r_1!\circlearrowleft r_2, i!\circlearrowleft r_2, i!=\varnothing, IsCpo(i;r_1), \&SHi\ \circlearrowleft, Cpo(r_1), r_1\oplus, i\oplus, \&SHi\ \rightarrow i, Cpo(r_2), Rcpo(i;r_1),\\ \Leftrightarrow, r_1!\circlearrowleft r_2, i!\circlearrowleft r_2, i!=\varnothing, IsCpo(i;r_1), Cpo(r_1), r_1\oplus, i\oplus, \&SHi\ \rightarrow i, Cpo(r_2), Rcpo(i;r_1),\\ \Leftrightarrow, r_1!\circlearrowleft r_2, i!\circlearrowleft r_2, i!=\varnothing, Cpo(r_1), r_1\oplus, IsCpo(i;r_1), i\oplus, \&SHi\ \rightarrow i, Cpo(r_2), Rcpo(i;r_1),\\ \Leftrightarrow, i!=\varnothing, Cpo(r_1), r_1\oplus, i\oplus, \&SHi\ \rightarrow i, IsCpo(i;r_1), i!\circlearrowleft r_2, r_1!\circlearrowleft r_2, Cpo(r_2), Rcpo(i;r_1),\\ \Leftrightarrow, i!=\varnothing, Cpo(r_1), r_1\oplus, i\oplus, \&SHi\ \rightarrow i, IsCpo(i;r_1), i!\circlearrowleft r_2, r_1!\circlearrowleft r_2, Rcpo(i;r_1), Cpo(r_2),\\ \Leftrightarrow, \&SHi\ \circlearrowleft, IsCpo(i;r_1), i!\circlearrowleft r_2, r_1!\circlearrowleft r_2, i!=\varnothing, Cpo(r_1), r_1\oplus, i\oplus, Rcpo(i;r_1), Cpo(r_2),\\ \Leftrightarrow, \&SHi\ \circlearrowleft_i IsCpo(i;r_1), i!\circlearrowleft r_2, r_1!\circlearrowleft r_2, r_1!\circlearrowleft r_2, Rcpo(i;r_1), Cpo(r_2),\\ conclusion:\\ ,IsCpo(i;r_1), i!\circlearrowleft r_2, r_1!\circlearrowleft r_2, Rcpo(i;r_1), Cpo(r_2),\\ ,IsCpo(i;r_1), i!\hookrightarrow r_2, r_1!\hookrightarrow r_2, Rcpo(i;r_1), Cpo(r_2),\\ ,IsCpo(i;r_1), i!\hookrightarrow r_2, r_1!\hookrightarrow r_2, Rcpo(i;r_1), Cpo(r_2),\\ ,IsCpo(i;r_1), i!\hookrightarrow r_2, r_1!\hookrightarrow r_2, Rcpo(i;r_1), Cpo(r_2),\\ ,IsCpo(i;r_1), i!\hookrightarrow r_2, Rcpo(i;r_1), Cpo(r_2),\\ ,IsCpo(i;r_1), Rcpo(i;r_1), Cpo(r_2),\\ ,IsCpo(i;r_1), Rcpo($$

$$, IsCpo(i; r_1), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Cpo(r_2), r_2 \oplus, Rcpo(i; r_1), \Leftrightarrow , IsCpo(i; r_1), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Rcpo(i; r_1), Cpo(r_2), r_2 \oplus,$$

29.5.7 Rcpo

$$, IsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(j;r), \Leftrightarrow \\ , IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), Rcpo(i;r), \\ \\$$

```
induction proof:
premise 1:
, i = \varnothing, IsCpo(i; r), IsCpo(j; r), Rcpo(i; r), Rcpo(j; r),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i = \emptyset, Rcpo(i;r), Rcpo(j;r),
\Leftrightarrow, IsCpo(i;r), i!Or, IsCpo(j;r), i=\varnothing, Rcpo(j;r),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i!Or, i=\varnothing, Rcpo(j;r),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i!Or, Rcpo(j;r), i=\varnothing,
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i!Or, Rcpo(j;r), i=\varnothing, Rcpo(i;r),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i!Or, i=\varnothing, Rcpo(j;r), Rcpo(i;r),
\Leftrightarrow, i = \emptyset, IsCpo(i; r), i!Or, IsCpo(j; r), Rcpo(j; r), Rcpo(i; r),
\Leftrightarrow, i = \emptyset, IsCpo(i; r), IsCpo(j; r), Rcpo(j; r), Rcpo(i; r),
premise 2:
, &SHi \rightarrow i, IsCpo(i; r), IsCpo(j; r), Rcpo(i; r), Rcpo(j; r),
\Leftrightarrow, &SHi\rightarrowi, IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), Rcpo(i;r), \Rightarrow
, i!=\varnothing, \&SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(j;r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpo(i;r), IsCpo(j;r), i!=\varnothing, Rcpo(i;r), Rcpo(j;r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpo(i;r), IsCpo(j;r), i!=\varnothing, Cpo(r), r\oplus, i\oplus, Rcpo(i;r), Rcpo(j;r),
\Leftrightarrow, i \models \varnothing, IsCpo(i;r), &SHi \circlearrowleft i, Cpo(r), r \oplus i \oplus i, IsCpo(j;r), Rcpo(i;r), Rcpo(j;r),
\Leftrightarrow, i \models \varnothing, IsCpo(i; r), Cpo(r), r \oplus, i \oplus, &SHi \rightarrowi, IsCpo(j; r), Rcpo(i; r), Rcpo(j; r),
\Leftrightarrow, i \models \emptyset, Cpo(r), r \oplus, i \oplus, &SHi\rightarrowi, IsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(i;r), Rcpo(j;r),
\Leftrightarrow, i \models \varnothing, Cpo(r), r \oplus, i \oplus, &SHi\rightarrowi, IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), Rcpo(i;r),
\Leftrightarrow, &SHi \circlearrowleft i, i = \varnothing, IsCpo(i; r), Cpo(r), r \oplus, IsCpo(j; r), i \oplus, Rcpo(j; r), Rcpo(i; r),
\Leftrightarrow, &SHi \circlearrowleft i, i = \varnothing, IsCpo(i; r), i! \circlearrowleft r, Cpo(r), r \oplus, IsCpo(j; r), i \oplus, Repo(j; r), Repo(i; r),
\Leftrightarrow, &SHi \circlearrowleft i, i = \varnothing, IsCpo(i; r), Cpo(r), r \oplus, IsCpo(j; r), i! \circlearrowleft r, i \oplus, Rcpo(j; r), Rcpo(i; r),
```

```
\Leftrightarrow, &SHi \circlearrowleft i, i = \varnothing, IsCpo(i; r), Cpo(r), r \oplus, IsCpo(j; r), i! \circlearrowleft r, Rcpo(j; r), i \oplus, Rcpo(i; r),
\Leftrightarrow , \&SHi \, \circlearrowleft i, i = \varnothing, IsCpo(i;r), i! \circlearrowleft r, IsCpo(j;r), Cpo(r), r \oplus, Rcpo(j;r), i \oplus, Rcpo(i;r), Rcpo(
\Leftrightarrow, &SHi \circlearrowleft i, i = \varnothing, IsCpo(i; r), i! \circlearrowleft r, IsCpo(j; r), Rcpo(j; r), Cpo(r), r \oplus, i \oplus, Rcpo(i; r), i \oplus, Rcpo(i; r)
 \Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i! \circlearrowleft r, i! = \varnothing, Rcpo(j;r), Cpo(r), r \oplus, i \oplus, Rcpo(i;r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i! \circlearrowleft r, Rcpo(j;r), i! = \varnothing, Cpo(r), r \oplus, i \oplus, Rcpo(i;r),
 \Leftrightarrow, &SHi\circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i! \circlearrowleft r, Rcpo(j;r), i! = \varnothing, Rcpo(i;r),
 \Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i! \circlearrowleft r, i! = \varnothing, Rcpo(j;r), Rcpo(i;r),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpo(i;r), i! \circlearrowleft r, IsCpo(j;r), Rcpo(j;r), Rcpo(i;r),
 \Leftrightarrow, i!=\varnothing, &SHi\circlearrowleft i, IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), Rcpo(i;r),
conclusion:
 , IsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(j;r),
\Leftrightarrow, IsCpo(i; r), IsCpo(j; r), Rcpo(j; r), Rcpo(i; r),
                              , IsCpo(i; r_1), IsCpo(j; r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, Rcpo(i; r_1), Rcpo(j; r_2), \Leftrightarrow
                                             IsCpo(i;r_1), IsCpo(j;r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, Repo(j;r_2), Repo(i;r_1), Repo(i;r_2), Repo(i;r
induction proof:
premise 1:
 i = \varnothing, IsCpo(i; r_1), IsCpo(j; r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, Rcpo(i; r_1), Rcpo(j; r_2), i! \circlearrowleft r_2, Rcpo(i; r_1), Rcpo(j; r_2), i! \circlearrowleft r_2, r_1! \circlearrowleft r_2, Rcpo(i; r_1), Rcpo(j; r_2), i! \circlearrowleft r_1, r_2! \circlearrowleft r_2, Rcpo(i; r_2), Rcp
\Leftrightarrow, IsCpo(i; r_1), IsCpo(j; r_2), i! \circ r_2, j! \circ r_1, r_1! \circ r_2, i = \varnothing, Rcpo(i; r_1), Rcpo(j; r_2),
\Leftrightarrow, IsCpo(i; r_1), IsCpo(j; r_2), i! \circ r_2, j! \circ r_1, r_1! \circ r_2, i = \varnothing, Rcpo(j; r_2),
\Leftrightarrow, IsCpo(i; r_1), j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, IsCpo(j; r_2), i! \circlearrowleft r_2, i = \varnothing, Rcpo(j; r_2),
\Leftrightarrow, IsCpo(i; r_1), j! \circ r_1, r_1! \circ r_2, IsCpo(j; r_2), i! \circ r_2, Rcpo(j; r_2), i = \emptyset,
\Leftrightarrow, IsCpo(i; r_1), j! \circ r_1, r_1! \circ r_2, IsCpo(j; r_2), i! \circ r_2, Rcpo(j; r_2), i = \varnothing, Rcpo(i; r_1),
\Leftrightarrow, IsCpo(i; r_1), j! \circ r_1, r_1! \circ r_2, IsCpo(j; r_2), i! \circ r_2, i = \emptyset, Rcpo(j; r_2), Rcpo(i; r_1),
```

```
\Leftrightarrow, i = \emptyset, IsCpo(i; r_1), IsCpo(j; r_2), i! \circ r_2, j! \circ r_1, r_1! \circ r_2, Rcpo(j; r_2), Rcpo(i; r_1),
premise 2:
, &SHi \rightarrow i, IsCpo(i; r_1), IsCpo(j; r_2), i!Or_2, j!Or_1, r_1!Or_2, Rcpo(i; r_1), Rcpo(j; r_2), \Leftrightarrow
, &SHi\rightarrowi, IsCpo(i; r_1), IsCpo(j; r_2), i!Or_2, j!Or_1, r_1!Or_2, Rcpo(j; r_2), Rcpo(i; r_1), \Rightarrow
i!=\varnothing, &SHi \circlearrowleft i, IsCpo(i;r_1), IsCpo(j;r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, Rcpo(i;r_1), Rcpo(j;r_2),
\Leftrightarrow, &SHi\circlearrowleft i, IsCpo(i; r_1), IsCpo(j; r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2,
i = \varnothing, Rcpo(i; r_1), Rcpo(j; r_2),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpo(i; r_1), IsCpo(j; r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2,
i = \varnothing, Cpo(r_1), r_1 \oplus, i \oplus, Rcpo(i; r_1), Rcpo(j; r_2),
\Leftrightarrow, i \models \varnothing, &SHi \circlearrowleft i, IsCpo(i; r_1), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, IsCpo(j; r_2),
Cpo(r_1), r_1 \oplus, i \oplus, Rcpo(i; r_1), Rcpo(j; r_2),
\Leftrightarrow, i!=\varnothing, &SHi\circ i, IsCpo(i;r_1), i!\circ r_2, j!\circ r_1, r_1!\circ r_2,
Cpo(r_1), IsCpo(j; r_2), r_1 \oplus, i \oplus, Rcpo(i; r_1), Rcpo(j; r_2),
\Leftrightarrow, i \models \varnothing, IsCpo(i; r_1), &SHi \circlearrowleft i, Cpo(r_1), r_1 \oplus i \oplus i,
IsCpo(j; r_2), i! \circ r_2, j! \circ r_1, r_1! \circ r_2, Rcpo(i; r_1), Rcpo(j; r_2),
\Leftrightarrow, i = \emptyset, IsCpo(i; r_1), Cpo(r_1), r_1 \oplus, i \oplus,
\&\mathit{SHi} \rightarrow \!\! i, IsCpo(j;r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, Rcpo(i;r_1), Rcpo(j;r_2),
\Leftrightarrow, i = \emptyset, Cpo(r_1), r_1 \oplus, i \oplus,
&SHi \rightarrow i, IsCpo(i; r_1), IsCpo(j; r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, Rcpo(i; r_1), Rcpo(j; r_2),
```

$$\Rightarrow, i!=\varnothing, Cpo(r_1), r_1 \oplus, i \oplus,$$

$$\&SHi \rightarrow i, IsCpo(i;r_1), IsCpo(j;r_2), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, Repo(j;r_2), Repo(i;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r_1), j! \circlearrowleft r_1, r_1! \circlearrowleft r_2,$$

$$Cpo(r_1), r_1 \oplus, i \oplus, IsCpo(j;r_2), i! \circlearrowleft r_2, Repo(j;r_2), Repo(i;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r_1), j! \circlearrowleft r_1, r_1! \circlearrowleft r_2,$$

$$Cpo(r_1), r_1 \oplus, IsCpo(j;r_2), i! \circlearrowleft r_2, i \oplus, Repo(j;r_2), Repo(i;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r_1), j! \circlearrowleft r_1, r_1! \circlearrowleft r_2,$$

$$Cpo(r_1), r_1 \oplus, IsCpo(j;r_2), i! \circlearrowleft r_2, Repo(j;r_2), i \oplus, Repo(i;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r_1), i! \circlearrowleft r_2, j! \circlearrowleft r_1,$$

$$Cpo(r_1), IsCpo(j;r_2), r_1! \circlearrowleft r_2, r_1 \oplus, Repo(j;r_2), i \oplus, Repo(i;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r_1), i! \circlearrowleft r_2, j! \circlearrowleft r_1,$$

$$Cpo(r_1), IsCpo(j;r_2), r_1! \circlearrowleft r_2, Repo(j;r_2), r_1 \oplus, i \oplus, Repo(i;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r_1), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2,$$

$$Cpo(r_1), IsCpo(j;r_2), Repo(j;r_2), r_1 \oplus, i \oplus, Repo(i;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r_1), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2,$$

$$IsCpo(j;r_2), Cpo(r_1), Repo(j;r_2), r_1 \oplus, i \oplus, Repo(i;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r_1), i! \circlearrowleft r_2, j! \circlearrowleft r_1, r_1! \circlearrowleft r_2,$$

$$IsCpo(j;r_2), j! \circlearrowleft r_1, r_1! \circlearrowleft r_2, Cpo(r_1), Repo(j;r_2), r_1 \oplus, i \oplus, Repo(i;r_1),$$

29.5.8 R(m)

$$, IsCpo(i;r), m! \circlearrowleft r, R(m), Rcpo(i;r), \ \Leftrightarrow \ , IsCpo(i;r), m! \circlearrowleft r, Rcpo(i;r), R(m),$$

29.5.9 Rc(m;n)

$$, IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, Rc(m;n), Rcpo(i;r), \iff , IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpo(i;r), Rc(m;n), \\$$

29.5.10 Propositions number comparison

$$, IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, m = n, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpo(i;r), m = n,$$

$$, IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, m! = n, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpo(i;r), m! = n,$$

$$, IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, m > n, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpo(i;r), m > n,$$

 $, IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, m! > n, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpo(i;r), m! > n,$

29.5.11 &SHi

$$, IsCpo(i;r), m! \circlearrowleft r, \&SHi \circlearrowleft m, Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), m! \circlearrowleft r, Rcpo(i;r), \&SHi \circlearrowleft m,$$

29.6 Propositions number equal

```
, i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), \iff \sim, r \pm i, induction proof: premise \ 1: , i = \varnothing, i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), \Leftrightarrow , i \circlearrowleft i_0, i = \varnothing, r \circlearrowleft r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), \Leftrightarrow , i \circlearrowleft i_0, i_0 = \varnothing, r \circlearrowleft r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), \Leftrightarrow , i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), i_0 = \varnothing, Rcpo(i_0; r_0), \Leftrightarrow , i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), i_0 = \varnothing, Rcpo(i_0; r_0), \Leftrightarrow , i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), r_0 = \varnothing, i_0 = \varnothing, \Leftrightarrow , IsCpo(i_0; r_0), i \circlearrowleft i_0, r \circlearrowleft r_0, r_0 = \varnothing, i_0 = \varnothing,
```

$$\Leftrightarrow$$
, $IsCpo(i_0; r_0)$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $r = \varnothing$, $i = \varnothing$,

$$\Leftrightarrow$$
, $IsCpo(i_0; r_0)$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $r = \varnothing$, $i = \varnothing$, $r = i$,

$$\Leftrightarrow$$
, $IsCpo(i_0; r_0), i \circlearrowleft i_0, r \circlearrowleft r_0, r_0 = \varnothing, i_0 = \varnothing, r = i,$

$$\Leftrightarrow$$
, $IsCpo(i_0; r_0)$, $i \circ i_0$, $r \circ r_0$, $r_0 = \varnothing$, $i_0 = \varnothing$, $Rcpo(i_0; r_0)$, $r = i$,

$$\Leftrightarrow$$
, $i \circlearrowleft i_0, i_0 = \varnothing$, $r \circlearrowleft r_0, IsCpo(i_0; r_0), r_0 = \varnothing$, $Rcpo(i_0; r_0), r = i$,

$$\Leftrightarrow$$
, $i \circ i_0$, $i = \varnothing$, $r \circ r_0$, $IsCpo(i_0; r_0)$, $Rcpo(i_0; r_0)$, $r = i$,

$$\Leftrightarrow$$
, $i = \emptyset$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $IsCpo(i_0; r_0)$, $Rcpo(i_0; r_0)$, $r = i$,

premise 2:

, &SHi
$$\rightarrow i, i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), \Leftrightarrow$$

, &SHi
$$\rightarrow$$
i, i \circlearrowleft i₀, r \circlearrowleft r₀, IsCpo(i₀; r₀), Rcpo(i₀; r₀), r \equiv i, \Longrightarrow

$$,i!=\varnothing, \&SHi \circlearrowleft i,i \circlearrowleft i_0,r \circlearrowleft r_0, IsCpo(i_0;r_0), Rcpo(i_0;r_0),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, i! = \varnothing, r \circlearrowleft r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0),$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, i_0 != \varnothing, r \circlearrowleft r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $IsCpo(i_0; r_0)$, $i_0 \models \varnothing$, $Rcpo(i_0; r_0)$,

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), i_0 != \varnothing, Cpo(r_0), r_0 \oplus, i_0 \oplus, Repo(i_0; r_0),$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i \, \circlearrowleft i_0, r \, \circlearrowleft r_0, IsCpo(i_0; r_0), i_0 \, != \varnothing, Cpo(r_0), r_0 \oplus, i_0 \oplus, \\ Repo(i_0; r_0), i \oplus, i \ominus, r \oplus, r \ominus, \\$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), i_0 != \varnothing, Cpo(r_0), r_0 \oplus, i ! \circlearrowleft r_0, i_0 \oplus, \\ Rcpo(i_0; r_0), i \oplus, r \oplus, i \ominus, r \ominus, \\$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), i_0 \vcentcolon = \varnothing, Cpo(r_0), r_0 \oplus, i_0 \oplus, \\ i! \circlearrowleft r_0, Rcpo(i_0; r_0), i \oplus, r \oplus, i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, i_0 \oplus,$

$$IsCpo(i_0; r_0), i! \circlearrowleft r_0, Rcpo(i_0; r_0), i \oplus, r \oplus, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, i_0 \oplus,$$

$$IsCpo(i_0; r_0), i! \circ r_0, i \oplus, Rcpo(i_0; r_0), r \oplus, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, i! \circlearrowleft r_0, i \oplus, i_0 \oplus,$$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r \oplus, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 \,!\!\!=\! \varnothing, Cpo(r_0), r_0 \oplus, i \oplus, i_0 \oplus,$$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r \oplus, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, r! \circlearrowleft r_0, i \oplus, i_0 \oplus,$$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r \oplus, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, i \oplus, i_0 \oplus,$$

$$IsCpo(i_0; r_0), r! \circlearrowleft r_0, Repo(i_0; r_0), r \oplus, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, i \circlearrowleft\!i_0, r \circlearrowleft\!r_0, i_0 \,!\!\!=\! \varnothing, Cpo(r_0), r_0 \oplus, i \oplus, i_0 \oplus,$$

 $IsCpo(i_0; r_0), r! \circlearrowleft r_0, r \oplus, Rcpo(i_0; r_0), i \ominus, r \ominus,$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, r ! \circlearrowleft r_0, i \oplus, i_0 \oplus, \\ IsCpo(i_0; r_0), r \oplus, Rcpo(i_0; r_0), i \ominus, r \ominus, \\$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 \vcentcolon= \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ IsCpo(i_0; r_0), Rcpo(i_0; r_0), i \ominus, r \ominus, \\$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, IsCpo(i_0; r_0), i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ Repo(i_0; r_0), i \ominus, r \ominus,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i_0; r_0), i_0! \circlearrowleft r_0, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0! = \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ Rcpo(i_0; r_0), i \ominus, r \ominus, \\$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i_0; r_0), i! \circlearrowleft r_0, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ Rcpo(i_0; r_0), i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i_0 \,!= \varnothing, IsCpo(i_0; r_0), i! \, \circlearrowleft r_0, Cpo(r_0), i \, \circlearrowleft i_0, r \, \circlearrowleft r_0, r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, Rcpo(i_0; r_0), i \ominus, r \ominus,$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, i_0 \,!= \varnothing, IsCpo(i_0; r_0), i! \, \circlearrowleft r_0, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ i \, \circlearrowleft i_0, r \, \circlearrowleft r_0, Rcpo(i_0; r_0), i \ominus, r \ominus, \\$$

$$\Leftrightarrow ,i_0!=\varnothing, IsCpo(i_0;r_0), i! \circlearrowleft r_0, \&SHi \circlearrowleft i, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ i \circlearrowleft i_0, r \circlearrowleft r_0, Rcpo(i_0;r_0), i \ominus, r \ominus,$$

$$\Leftrightarrow ,i_0 \! \models \! \varnothing, i ! \! \circlearrowleft \! r_0, IsCpo(i_0;r_0), Cpo(r_0), r_0 \! \oplus \! , r \! \oplus \! , i \! \oplus \! , i_0 \! \oplus \! ,$$

&SH
$$i \rightarrow i, i \circlearrowleft i_0, r \circlearrowleft r_0, Rcpo(i_0; r_0), i \hookrightarrow, r \hookrightarrow,$$

$$\Leftrightarrow, i_0 != \varnothing, i! \mathring{\bigcirc} r_0, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus,$$

$$\&\mathit{SHi} \rightarrow \!\! i, i \circlearrowleft \!\! i_0, r \circlearrowleft \!\! r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, $i_0!=\emptyset$, $i!Or_0$, $Cpo(r_0)$, $r_0\oplus$, $r\oplus$, $i\oplus$, $i_0\oplus$,

$$\&\mathit{SHi} \rightarrow \!\! i, i \circlearrowleft \!\! i_0, r \circlearrowleft \!\! r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), i = \!\! r, i \ominus, r \ominus,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i_0; r_0), i! \circlearrowleft r_0, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ Rcpo(i_0; r_0), i=r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, IsCpo(i_0; r_0), i_0! \circlearrowleft r_0, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0! = \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ Repo(i_0; r_0), i = r, i \ominus, r \ominus, \\$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i_0; r_0), i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i \oplus, i_0 \oplus, \\ Rcpo(i_0; r_0), i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i_0; r_0), i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, i ! \circlearrowleft r_0, r \oplus, i \oplus, i_0 \oplus, \\ Rcpo(i_0; r_0), i = r, i \ominus, r \ominus, \\$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i_0 \oplus,$$

$$IsCpo(i_0; r_0), i! \circlearrowleft r_0, i \oplus, Rcpo(i_0; r_0), i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $i_0 != \varnothing$, $Cpo(r_0)$, $r_0 \oplus$, $r \oplus$, $i_0 \oplus$,

$$IsCpo(i_0; r_0), i! \\ \\ \bigcirc r_0, Repo(i_0; r_0), i \\ \oplus, i \\ \exists r, i \\ \ominus, r \\ \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, i! \circlearrowleft r_0, r \oplus, i_0 \oplus,$$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), i \oplus, i \pm r, i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i_0 != \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i_0 \oplus,$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $i != \varnothing$, $Cpo(r_0)$, $r_0 \oplus$, $r \oplus$, $i_0 \oplus$,

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i \models \varnothing, Cpo(r_0), i \models \varnothing, r_0 \oplus, r \oplus, i_0 \oplus,$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $i \models \varnothing$, $Cpo(r_0)$, $r_0 \oplus$, $r \oplus$, $i_0 \oplus$,

$$IsCpo(i_0; r_0), i = \varnothing, Rcpo(i_0; r_0), i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i \models \varnothing, Cpo(r_0), r_0 \oplus, r \oplus, i_0 \oplus,$

$$IsCpo(i_0; r_0), i \models \varnothing, Rcpo(i_0; r_0), i \models \varnothing, i \oplus, i \pm r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i != \varnothing, Cpo(r_0), r_0 \oplus, r ! \circlearrowleft r_0, r \oplus, i_0 \oplus, i != \varnothing,$$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), i != \varnothing, i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!\!i, i \circlearrowleft\!\!\!i_0, r \circlearrowleft\!\!\!r_0, i \! \models \! \varnothing, Cpo(r_0), r_0 \oplus, i_0 \oplus, i \! \models \! \varnothing,$$

$$IsCpo(i_0;r_0), r! \circlearrowleft r_0, r \oplus, Rcpo(i_0;r_0), i != \varnothing, i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $i \models \varnothing$, $Cpo(r_0)$, $r_0 \oplus$, $i_0 \oplus$, $i \models \varnothing$,

$$IsCpo(i_0;r_0), r! \circlearrowleft r_0, Rcpo(i_0;r_0), r \oplus, i != \varnothing, i \oplus, i \pm r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i != \varnothing, Cpo(r_0), r_0 \oplus, r ! \circlearrowleft r_0, i_0 \oplus, i != \varnothing,$$
$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r \oplus, i != \varnothing, i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i != \varnothing, Cpo(r_0), r_0 \oplus, i_0 \oplus, i != \varnothing,$$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r \oplus, i != \varnothing, i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i != \varnothing, Cpo(r_0), r_0 != \varnothing, r_0 \oplus, i_0 \oplus, i != \varnothing,$$
$$IsCpo(i_0; r_0), Repo(i_0; r_0), r \oplus, i != \varnothing, i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i \circlearrowleft i_0, i != \varnothing, Cpo(r_0), r \circlearrowleft r_0, r_0 != \varnothing, r_0 \oplus, i_0 \oplus, i != \varnothing,$$
$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r \oplus, i != \varnothing, i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, i \, \circlearrowleft i_0, i \, != \varnothing, Cpo(r_0), r \, \circlearrowleft r_0, r \, != \varnothing, r_0 \oplus, i_0 \oplus, i \, != \varnothing,$$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r \oplus, i \, != \varnothing, i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, i != \varnothing, Cpo(r_0), r \circlearrowleft r_0, r_0 \oplus, i_0 \oplus, i != \varnothing,$$

$$IsCpo(i_0; r_0), r != \varnothing, Rcpo(i_0; r_0), r \oplus, i != \varnothing, i \oplus, i \mp r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, i != \varnothing, Cpo(r_0), r \circlearrowleft r_0, r_0 \oplus, i_0 \oplus, i != \varnothing,$$

$$IsCpo(i_0; r_0), r != \varnothing, Rcpo(i_0; r_0), r != \varnothing, r \oplus, i != \varnothing, i \oplus, i = r, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, i != \varnothing, Cpo(r_0), r \circlearrowleft r_0, r_0 \oplus, i_0 \oplus, i != \varnothing,$$

$$IsCpo(i_0; r_0), r != \varnothing, Rcpo(i_0; r_0), i = r, r != \varnothing, i != \varnothing, r \oplus, i \oplus, i \ominus, r \ominus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i \circlearrowleft i_0, i != \varnothing, Cpo(r_0), r \circlearrowleft r_0, r_0 \oplus, i_0 \oplus, i != \varnothing,$$

$$IsCpo(i_0; r_0), r != \varnothing, Rcpo(i_0; r_0), i = r, r != \varnothing, i != \varnothing,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, i \circlearrowleft\!i_0, i != \varnothing, Cpo(r_0), r \circlearrowleft\!r_0, r_0 \oplus, i_0 \oplus, i != \varnothing,$$

$$IsCpo(i_0; r_0), r \models \varnothing, Rcpo(i_0; r_0), r \models \varnothing, i \models \varnothing, i = \varnothing, i = r,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, i != \varnothing, Cpo(r_0), r \circlearrowleft r_0, r_0 \oplus, i_0 \oplus, i != \varnothing,$

$$IsCpo(i_0; r_0), r \models \varnothing, Rcpo(i_0; r_0), i \models \varnothing, i = r,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i \circlearrowleft i_0$, $i! = \varnothing$, $Cpo(r_0)$, $r \circlearrowleft r_0$, $r! = \varnothing$, $r_0 \oplus$, $i_0 \oplus$, $i! = \varnothing$,

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), i = \emptyset, i = r,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, i != \varnothing, Cpo(r_0), r \circlearrowleft r_0, r_0 != \varnothing, r_0 \oplus, i_0 \oplus, i != \varnothing,$

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), i = \emptyset, i = r,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $i \circlearrowleft i_0$, $r \circlearrowleft r_0$, $i \models \varnothing$, $Cpo(r_0)$, $r_0 \oplus$, $i_0 \oplus$,

$$IsCpo(i_0; r_0), i!=\varnothing, Rcpo(i_0; r_0), i!=\varnothing, i \pm r,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, i \models \varnothing, Cpo(r_0), r_0 \oplus, i_0 \oplus,$

$$IsCpo(i_0; r_0), i \models \varnothing, Rcpo(i_0; r_0), i = r,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $IsCpo(i_0; r_0)$, $r \circlearrowleft r_0$, $i \circlearrowleft i_0$, $i \vcentcolon = \varnothing$, $Cpo(r_0)$, $r_0 \oplus$, $i_0 \oplus$,

 $Rcpo(i_0; r_0), i = r,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $IsCpo(i_0; r_0)$, $r \circlearrowleft r_0$, $i \circlearrowleft i_0$, $i_0 \models \varnothing$, $Cpo(r_0)$, $r_0 \oplus$, $i_0 \oplus$,

 $Rcpo(i_0; r_0), i = r,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i$, $IsCpo(i_0; r_0)$, $r \circlearrowleft r_0$, $i \circlearrowleft i_0$, $i_0 != \varnothing$, $Rcpo(i_0; r_0)$, $i = r$,

```
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i_0; r_0), r \circlearrowleft r_0, i \circlearrowleft i_0, i \models \varnothing, Rcpo(i_0; r_0), i = r,
\Leftrightarrow, i \models \varnothing, &SHi \circlearrowleft i, i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), r = i,
conclusion:
,i \circlearrowleft i_0, r \circlearrowleft r_0, IsCpo(i_0;r_0), Rcpo(i_0;r_0),
\Leftrightarrow, i \circ i_0, r \circ r_0, IsCpo(i_0; r_0), Rcpo(i_0; r_0), r = i,
, IsCpo(i;r), IsCpo(j;r), i = j, Rcpo(i;r), R(j), \Leftrightarrow , IsCpo(i;r), IsCpo(j;r), i = j, Rcpo(j;r), R(i), 
induction proof:
premise 1:
, i = \varnothing, IsCpo(i; r), IsCpo(j; r), i = j, Rcpo(i; r), R(j),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i = \emptyset, Rcpo(i;r), R(j),
\Leftrightarrow, IsCpo(i; r), IsCpo(j; r), i = \emptyset, R(j),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i \pm j, j = \emptyset, R(j),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i = j, j = \emptyset,
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i = \emptyset,
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i = \emptyset, R(i),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i = j, j = \emptyset, R(i),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i=j, j=\varnothing, Rcpo(j;r), R(i),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i = \emptyset, Rcpo(j;r), R(i),
\Leftrightarrow, i = \emptyset, IsCpo(i; r), IsCpo(j; r), i = j, Rcpo(j; r), R(i),
premise 2:
, &SHi \rightarrowi, IsCpo(i; r), IsCpo(j; r), i = j, Rcpo(i; r), R(j),
\Leftrightarrow, &SHi\rightarrowi, IsCpo(i;r), IsCpo(j;r), i=j, Rcpo(j;r), R(i), Rcpo(i;r), \Rightarrow
```

$$\begin{array}{l} ,i!=\varnothing,\,\&SHi\, \circlearrowleft i,\,IsCpo(i;r),IsCpo(j;r),\,i=j,\,Rcpo(i;r),\,R(j),\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(i;r),\,IsCpo(j;r),\,i=j,\,i!=\varnothing,\,Rcpo(i;r),\,R(j),\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(i;r),\,IsCpo(j;r),\,i=j,\,i!=\varnothing,\,Cpo(r),\,r\oplus,\,i\oplus,\,Rcpo(i;r),\,R(j),\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(i;r),\,IsCpo(j;r),\,i=j,\,j!=\varnothing,\\ \\ Cpo(r),\,r\oplus,\,i\oplus,\,Rcpo(i;r),\,R(j),\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(i;r),\,IsCpo(j;r),\,j! \circlearrowleft r,\,i=j,\,j!=\varnothing,\\ \\ Cpo(r),\,r\oplus,\,i\oplus,\,Rcpo(i;r),\,R(j),\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(i;r),\,IsCpo(j;r),\,j! \circlearrowleft r,\,i=j,\,j!=\varnothing,\\ \\ Cpo(r),\,j!=\varnothing,\,r\oplus,\,i\oplus,\,Rcpo(i;r),\,R(j),\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(j;r),\,i=j,\,j!=\varnothing,\\ \\ Cpo(r),\,r\oplus,\,i\oplus,\,IsCpo(i;r),\,j! \circlearrowleft r,\,j!=\varnothing,\,Rcpo(i;r),\,R(j),\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(j;r),\,i=j,\,j!=\varnothing,\\ \\ Cpo(r),\,r\oplus,\,i\oplus,\,IsCpo(i;r),\,j! \circlearrowleft r,\,Rcpo(i;r),\,j!=\varnothing,\,R(j),\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(j;r),\,i=j,\,j!=\varnothing,\\ \\ Cpo(r),\,r\oplus,\,i\oplus,\,IsCpo(j;r),\,i=j,\,j!=\varnothing,\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(j;r),\,i=j,\,j!=\varnothing,\\ \\ Cpo(r),\,r\oplus,\,i\oplus,\,IsCpo(j;r),\,i=j,\,j!=\varnothing,\\ \\ \Leftrightarrow,\,\&SHi\, \circlearrowleft i,\,IsCpo(j;r),\,i=j,\,j!=\varnothing,\\ \\ \end{gathered}$$

 $Cpo(r), r \oplus, i \oplus, IsCpo(i; r), j! \bigcirc r, j! = \emptyset, j \oplus, Rcpo(i; r), R(j),$

 \Leftrightarrow , &SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), $j! \circlearrowleft r$, i=j, $j! = \varnothing$,

$$Cpo(r), j = \varnothing, r \oplus, i \oplus, j \oplus, Rcpo(i; r), R(j),$$

$$\Leftrightarrow , \&\mathit{SHi}\, \circlearrowleft i, \mathit{IsCpo}(i;r), \mathit{IsCpo}(j;r), i = \emptyset, j != \varnothing, j != \varnothing,$$

$$Cpo(r), r \oplus, i \oplus, j \oplus, Rcpo(i; r), R(j),$$

$$\Leftrightarrow$$
, &SHi \circlearrowleft i, $IsCpo(i;r)$, $IsCpo(j;r)$, $i=j$, $i \models \varnothing$, $j \models \varnothing$,

$$Cpo(r), i!=\varnothing, j!=\varnothing, r\oplus, i\oplus, j\oplus, Rcpo(i;r), R(j),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, &SHi $\circlearrowleft i$, $IsCpo(i;r)$, $IsCpo(j;r)$, $i=j$,

$$Cpo(r), r\oplus, i \models \varnothing, j \models \varnothing, i\oplus, j\oplus, Rcpo(i; r), R(j),$$

$$\Leftrightarrow$$
, $i = \emptyset$, $j = \emptyset$, &SHi $\circlearrowleft i$, $IsCpo(i; r)$, $IsCpo(j; r)$,

$$Cpo(r), i = j, r \oplus, i != \varnothing, j != \varnothing, i \oplus, j \oplus, Rcpo(i; r), R(j),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, $IsCpo(i;r)$, &SHi $\bigcirc i$,

$$Cpo(r), r \oplus, IsCpo(j; r), i = j, i != \varnothing, j != \varnothing, i \oplus, j \oplus, Rcpo(i; r), R(j),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, $IsCpo(i;r)$, &SHi \bigcirc i, $Cpo(r)$, $r\oplus$,

$$IsCpo(j;r), i!=\varnothing, j!=\varnothing, i\oplus, j\oplus, i=j, Rcpo(i;r), R(j),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, $Cpo(r)$, $r\oplus$,

$$i \models \varnothing, j \models \varnothing, i \oplus, j \oplus, \&SHi \rightarrow i, IsCpo(i; r), IsCpo(j; r), i = j, Rcpo(i; r), R(j),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j!=\varnothing$, $Cpo(r)$, $r\oplus$,

$$i \models \varnothing, j \models \varnothing, i \oplus, j \oplus, \&SHi \rightarrow i, IsCpo(i; r), IsCpo(j; r), i = j, Rcpo(j; r), R(i),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i = \varnothing, j = \varnothing, IsCpo(i; r), IsCpo(j; r), Cpo(r), r \oplus,$

$$\begin{split} i! &= \varnothing, j! = \varnothing, i \circledast, j \circledast, i = j, Rcpo(j;r), R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, i! = \varnothing, j! = \varnothing, IsCpo(i;r), IsCpo(j;r), Cpo(r), i = j, r \circledast, \\ i! &= \varnothing, j! = \varnothing, i \circledast, j \circledast, Rcpo(j;r), R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), r \circledast, \\ i! &= \varnothing, j! = \varnothing, i \circledast, j \circledast, Rcpo(j;r), R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), r \circledast, \\ i! &= \varnothing, j! = \varnothing, i \circledast, j \circledast, Rcpo(j;r), R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), r \circledast, \\ j! &= \varnothing, j \circledast, IsCpo(j;r), i! \, \circlearrowleft r, i! = \varnothing, i \circledast, Rcpo(j;r), R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), r \circledast, \\ j! &= \varnothing, j \circledast, IsCpo(j;r), i! \, \circlearrowleft r, Rcpo(j;r), i! = \varnothing, i \circledast, R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), r \circledast, \\ j! &= \varnothing, j \circledast, IsCpo(j;r), i! \, \circlearrowleft r, Rcpo(j;r), i! = \varnothing, R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), r \circledast, \\ j! &= \varnothing, j \circledast, IsCpo(j;r), i! \, \circlearrowleft r, IsCpo(j;r), i! = \varnothing, Rcpo(j;r), R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, i! = \varnothing, Rcpo(j;r), R(i), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i = j, i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(j;r), i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(i;r), i! = \varnothing, j! = \varnothing, Cpo(r), \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(i;r), i! \, \circlearrowleft r, IsCpo(i;r), i! \,$$

 $i!=\varnothing, j!=\varnothing, r\oplus, j\oplus, Rcpo(j;r), R(i),$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), i! \circlearrowleft r, IsCpo(j;r), i=j, i!=\varnothing, j!=\varnothing, Cpo(r), r \oplus, j \oplus, Rcpo(j;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), i! \circlearrowleft r, IsCpo(j;r), i=j, i!=\varnothing, j!=\varnothing, Rcpo(j;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i=j, i!=\varnothing, j!=\varnothing, Rcpo(j;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i=j, j!=\varnothing, i!=\varnothing, Rcpo(j;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i=j, i!=\varnothing, Rcpo(j;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i=j, i!=\varnothing, Rcpo(j;r), R(i),$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, IsCpo(i;r), IsCpo(j;r), i=j, Rcpo(j;r), R(i),$$

$$conclusion:$$

$$, IsCpo(i;r), IsCpo(j;r), i=j, Rcpo(i;r), R(i),$$

$$\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), i=j, Rcpo(j;r), i=j, Rcpo(i;r), R(i),$$

$$, IsCpo(i;r), IsCpo(j;r), i=j, Rcpo(j;r), i=j, Rcpo(i;r), i \oplus, j \oplus,$$

 $\Leftrightarrow IsCpo(i;r), IsCpo(j;r), i = j, Rcpo(j;r), i \oplus, j \oplus,$

29.7 &Tm(r)

```
, IsCpo(i;r), \&Fam(r), Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), Rcpo(i;r), \&Fam(r), induction proof: premise \ 1: , i=\varnothing, IsCpo(i;r), \&Fam(r), Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), \&Fam(r), i=\varnothing, Rcpo(i;r), \Leftrightarrow, IsCpo(i;r), \&Fam(r), i=\varnothing, \Leftrightarrow, IsCpo(i;r), i=\varnothing, \&Fam(r), \Leftrightarrow, IsCpo(i;r), i=\varnothing, \&Fam(r), \Leftrightarrow, IsCpo(i;r), i=\varnothing, Rcpo(i;r), \&Fam(r), \Leftrightarrow, i=\varnothing, IsCpo(i;r), Rcpo(i;r), \&Fam(r),
```

```
premise 2:
, \&SHi \rightarrow i, IsCpo(i;r), \&Fam(r), Rcpo(i;r), \Leftrightarrow , \&SHi \rightarrow i, IsCpo(i;r), Rcpo(i;r), \&Fam(r), \Rightarrow 
, i != \varnothing, \&SHi \circlearrowleft i, IsCpo(i; r), \&Fam(r), Rcpo(i; r),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpo(i;r), &Fam(r), i!=\varnothing, Rcpo(i;r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpo(i;r), &Fam(r), i = \varnothing, Cpo(r), r \oplus, i \oplus, Rcpo(i;r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpo(i;r), i!=\varnothing, Cpo(r), r\oplus, i\oplus, &Fam(r), Rcpo(i;r),
\Leftrightarrow, i \models \varnothing, IsCpo(i; r), &SHi \circlearrowleft i, Cpo(r), r \oplus, i \oplus, &Fam(r), Rcpo(i; r),
\Leftrightarrow, i \models \varnothing, Cpo(r), r \oplus, i \oplus, &SHi \rightarrowi, IsCpo(i; r), &Fam(r), Rcpo(i; r),
\Leftrightarrow, i \models \varnothing, Cpo(r), r \oplus, i \oplus, &SHi\rightarrowi, IsCpo(i; r), Rcpo(i; r), &Fam(r),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpo(i;r), i!=\varnothing, Cpo(r), r\oplus, i\oplus, Rcpo(i;r), &Fam(r),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpo(i;r), i!=\varnothing, Rcpo(i;r), &Fam(r),
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, IsCpo(i; r), Rcpo(i; r), &Fam(r),
conclusion:
, IsCpo(i;r), \&Fam(r), Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), \&Fam(r), 
          , IsCpo(i;r), \&Fam(m), Rcpo(i;r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), \&Fam(m), 
                                          ,\&Tm(r), \Leftrightarrow ,Cpo(r),\&Tm(r),
proof:
,\&Tm(r),
\Leftrightarrow, r \otimes m, m \oplus, &Tm(r),
\Leftrightarrow, r \otimes m, m \otimes r, m \otimes r, \& Tm(r),
```

```
\Leftrightarrow, Cpo(r), &Tm(r),
                                                                                     ,\&Tm(r), \Leftrightarrow ,Cpo(r),r\oplus,\&Tm(r),
                                   , IsCpo(i;r), i \oplus, \&Tm(r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), i \oplus, \&Tm(r), 
induction proof:
premise 1:
 , i = \varnothing, IsCpo(i; r), i \oplus, \&Tm(r),
\Leftrightarrow, IsCpo(i;r), i=\emptyset, i \oplus, \&Tm(r),
\Leftrightarrow, IsCpo(i;r), i=\varnothing, Rcpo(i;r), i \oplus, \&Tm(r),
\Leftrightarrow, i = \emptyset, IsCpo(i; r), Rcpo(i; r), i \oplus, &Tm(r),
premise 2:
 , \&SHi \rightarrow i, IsCpo(i;r), i \oplus, \&Tm(r), \iff , \&SHi \rightarrow i, IsCpo(i;r), Rcpo(i;r), i \oplus, \&Tm(r), \implies , \&SHi \rightarrow i, IsCpo(i;r), Acpo(i;r), Acpo(i
 , i \models \varnothing, \&SHi \circlearrowleft i, IsCpo(i; r), i \oplus, \&Tm(r),
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowlefti, IsCpo(i;r), i\oplus, Cpo(r), r\oplus, &Tm(r),
\Leftrightarrow, i!=\varnothing, &SHi\bigcirci, IsCpo(i;r), i\oplus, i\oplus, Cpo(r), r\oplus, &Tm(r),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpo(i;r), i\oplus, Cpo(r), r\oplus, i\oplus, &Tm(r),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowlefti, IsCpo(i;r), Cpo(r), i\oplus, r\oplus, i\oplus, &Tm(r),
\Leftrightarrow, i!=\varnothing, IsCpo(i;r), &SHi \circlearrowlefti, Cpo(r), r\oplus, i\oplus, i\oplus, &Tm(r),
\Leftrightarrow, i = \emptyset, Cpo(r), r \oplus, i \oplus, &SHi \rightarrowi, IsCpo(i; r), i \oplus, &Tm(r),
\Leftrightarrow, i \models \varnothing, Cpo(r), r \oplus, i \oplus, &SHi \rightarrowi, IsCpo(i; r), Rcpo(i; r), i \oplus, &Tm(r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), i!=\varnothing, Cpo(r), r\oplus, i\oplus, Rcpo(i;r), i\oplus, &Tm(r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpo(i;r), i = \varnothing, Rcpo(i;r), i \oplus, &Tm(r),
\Leftrightarrow, i!=\varnothing, &SHi\bigcirci, IsCpo(i;r), Rcpo(i;r), i \oplus, &Tm(r),
conclusion:
 , IsCpo(i;r), i \oplus, \&Tm(r), \Leftrightarrow , IsCpo(i;r), Rcpo(i;r), i \oplus, \&Tm(r),
```

$$, IsCpo(i;r), IsCpo(j;r), i \oplus, j \oplus, \&Tm(r), \Leftrightarrow \\, IsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(j;r), i \oplus, j \oplus, \&Tm(r), \\ \text{proof:} \\, IsCpo(i;r), IsCpo(j;r), i \oplus, j \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(i;r), i \oplus, IsCpo(j;r), j \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(i;r), i \oplus, IsCpo(j;r), Rcpo(j;r), j \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), j \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), i \oplus, j \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(j;r), IsCpo(i;r), Rcpo(j;r), i \oplus, j \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(j;r), Rcpo(j;r), IsCpo(i;r), i \oplus, j \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(j;r), Rcpo(j;r), j \oplus, IsCpo(i;r), i \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(j;r), Rcpo(j;r), j \oplus, IsCpo(i;r), Rcpo(i;r), i \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(j;r), Rcpo(j;r), IsCpo(i;r), p \oplus, Rcpo(i;r), i \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(j;r), Rcpo(j;r), IsCpo(i;r), Rcpo(i;r), j \oplus, i \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), Rcpo(i;r), j \oplus, i \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), Rcpo(i;r), j \oplus, i \oplus, \&Tm(r), \\ \Leftrightarrow, IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), Rcpo(i;r), p \oplus, i \oplus, \&Tm(r), \\ flsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(i;r), Rcpo(i;r), \&Tm(r), \\ flsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(i;r), Rcpo(i;r), \&Tm(r), \\ flsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(i;r), Rcpo(i;r), \&Tm(r), \\ flsCpo(i;r), IsCpo(i;r), Rcpo(i;r), Rcpo(i;r), Rcpo(i;r), Rcpo(i;r), \&Tm(r), \\ flsCpo(i;r), Rcpo(i;r), Rcpo($$

 $, IsCpo(i; r), R(i), \&Tm(r), \Leftrightarrow , IsCpo(i; r), Rcpo(i; r), \&Tm(r),$

$$, @r, Rcpo(i;r), Rcpo(j;r), i @, j @, r @, \\ \Leftrightarrow , @r, Rcpo(i;r), Rcpo(j;r), i @, j @, \&Tm(r), \\$$

$$, \circledcirc r, r \circledast, \iff, \circledcirc r, \&Tm(r),$$

$$, \circledcirc r, Rcpo(i;r), r \circledast, \iff, \circledcirc r, Rcpo(i;r), \&Tm(r),$$

$$, \circledcirc r, Rcpo(i;r), Rcpo(j;r), r \circledast, \iff, \circledcirc r, Rcpo(i;r), Rcpo(j;r), \&Tm(r),$$

$$, i \textcircled{@}, \Leftrightarrow , \textcircled{@}r, Rcpo(i;r), i \textcircled{@}, r \textcircled{@},$$

$$, R(i), \Leftrightarrow , \textcircled{@}r, Rcpo(i;r), r \textcircled{@},$$

$$, i \textcircled{@}, j \textcircled{@}, \Leftrightarrow , \textcircled{@}r, Rcpo(i;r), Rcpo(j;r), i \textcircled{@}, j \textcircled{@}, r \textcircled{@},$$

$$, R(i), R(j), \Leftrightarrow , \textcircled{@}r, Rcpo(i;r), Rcpo(j;r), r \textcircled{@},$$

$$, @r, r @r_0, i @, j @, r @, r_0 @,$$

$$\Leftrightarrow , @r, r @r_0, i @, j @, r @, &Tm(r_0),$$

$$, \circledcirc r, r \circledcirc r_0, Rcpo(i; r_0), Rcpo(j; r_0), i \circledcirc, j \circledcirc, r \circledcirc, r_0 \circledcirc,$$

$$\Leftrightarrow , \circledcirc r, r \circledcirc r_0, Rcpo(i; r_0), Rcpo(j; r_0), i \circledcirc, j \circledcirc, r \circledcirc, \&Tm(r_0),$$

$$\begin{split} , \circledcirc r, r \circledcirc r_0, i \textcircled{\tiny 0}, j \textcircled{\tiny 0}, r \textcircled{\tiny 0}, r_0 \textcircled{\tiny 0}, \\ \Leftrightarrow , \circledcirc r, r \circledcirc r_0, Rcpo(i; r_0), Rcpo(j; r_0), i \textcircled{\tiny 0}, j \textcircled{\tiny 0}, r \textcircled{\tiny 0}, r_0 \textcircled{\tiny 0}, \end{split}$$

29.8

$$, IsCpo(j;r), j\ominus, j \models \varnothing, j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, \Leftrightarrow$$

 $, IsCpo(j;r), Cpo(r), r\oplus, j\otimes j_1, Rcpo(j_1;r), j_1 \oplus, j\ominus, j \models \varnothing,$

proof:

$$, IsCpo(j;r), j \ominus, j \models \emptyset, j \oplus j_0, Rcpo(j_0;r), j_0 \oplus,$$

$$\Leftrightarrow$$
, $IsCpo(j;r), j \ominus, j \ominus j_0, j_0 != \varnothing, Rcpo(j_0;r), j_0 \oplus,$

$$\Leftrightarrow , IsCpo(j;r), j \ominus, j \odot j_0, j_0 != \varnothing, Cpo(r), r \oplus, j_0 \oplus, Rcpo(j_0;r), j_0 \oplus, Rcpo(j_0;r), p_0 \oplus, Rcpo(j_0;r), R$$

$$\Leftrightarrow$$
 $, IsCpo(j;r), j \ominus, j != \varnothing, j \odot j_0, Cpo(r), r \ominus, j_0 \ominus, Rcpo(j_0;r), j_0 \ominus,$

$$\Leftrightarrow , IsCpo(j;r), j \ominus, j \vcentcolon= \varnothing, Cpo(r), j \ominus j_0, r \ominus, j_0 \ominus, Rcpo(j_0;r), j_0 \ominus,$$

$$\Leftrightarrow$$
 , $IsCpo(j;r)$, $Cpo(r)$, $j \ominus$, $j!=\varnothing$, $j \odot j_0$, $r \ominus$, $j_0 \ominus$, $Rcpo(j_0;r)$, $j_0 \ominus$,

$$\Leftrightarrow , IsCpo(j;r), Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j != \varnothing, Rcpo(j_0;r), j_0 \oplus,$$

$$\Leftrightarrow$$
, $IsCpo(j;r)$, $Cpo(r)$, $r\oplus$, $j\ominus$, $j\ominus$, $j\ominus$, $j\oplus$, $j\ominus$, $j\ominus$, $j!=\varnothing$, $Rcpo(j_0;r)$, $j_0\oplus$,

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, IsCpo(j;r), j! \circlearrowleft r, j \ominus j_0, j_0 \oplus, j \oplus, j \ominus, j! = \varnothing, Rcpo(j_0;r), j_0 \oplus, j \ominus, j! = \varnothing, Rcpo(j_0;r), j_0 \oplus, j! \ominus, j$$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus j_0, IsCpo(j_0; r), j_0 \oplus, j \oplus, j! \bigcirc r, j \ominus, j! = \varnothing, Rcpo(j_0; r), j_0 \oplus, j \oplus j! \bigcirc r, j \ominus, j! = \varnothing, Rcpo(j_0; r), j_0 \oplus, j! \ominus r, j!$$

$$\Leftrightarrow$$
 $Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j \oplus, IsCpo(j_0; r), j! \bigcirc r, j \ominus, j! = \varnothing, Rcpo(j_0; r), j_0 \oplus, j \oplus, Rcpo(j_0; r), j_0 \oplus, Rcpo(j_0; r), Rcpo(j_0; r),$

$$\Leftrightarrow ,Cpo(r),r\oplus,j\ominus,j\otimes j_0,j_0\oplus,j\oplus,IsCpo(j_0;r),j!\bigcirc^{\circ}r,Rcpo(j_0;r),j\ominus,j!=\varnothing,j_0\oplus,$$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \oplus j_0, j_0 \oplus, j \oplus, j! \bigcirc r, j \oplus j_1, IsCpo(j_0; r), Rcpo(j_0; r), j_1 \oplus, j \ominus, j! = \varnothing, j_0 \oplus, j_0$$

$$\Leftrightarrow$$
 $Cpo(r), r \oplus, j \ominus, j \oplus j_0, j \ominus j_0, j_0 \oplus, j \oplus, j \oplus, j \oplus r, j \oplus j_1, IsCpo(j_0; r), Rcpo(j_0; r), Cpo(j_0; r)$

$$j_1 \oplus, j \ominus, j \models \emptyset, j_0 \oplus,$$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j \oplus, j \ominus j_0, j \ominus j_1, j_1 ! \bigcirc r, IsCpo(j_0; r), Rcpo(j_0; r),$$

$$j_1 \oplus, j \ominus, j \models \emptyset, j_0 \oplus,$$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j \oplus, j \ominus j_0, j \ominus j_1, j_1 ! \bigcirc r, IsCpo(j_0; r), r = \emptyset,$$

 $Rcpo(j_0; r), j_1 \oplus, j \ominus, j != \varnothing, j_0 \oplus,$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j \oplus, j \ominus j_0, j \ominus j_1, IsCpo(j_0; r), j_1! \bigcirc r, r = \varnothing,$$

 $Rcpo(j_0; r), j_1 \oplus, j \ominus, j != \varnothing, j_0 \oplus,$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j \oplus, j \ominus j_1, j_1 \bigcirc j_0, IsCpo(j_0; r), IsCpo(j_1; r),$$

 $Rcpo(j_0;r), j_1 \oplus, j \ominus, j \stackrel{!}{=} \varnothing, j_0 \oplus,$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus, j_0 \oplus, j \oplus, j \ominus, j \ominus, j_1, j_1 \bigcirc j_0, j_1 = j_0, IsCpo(j_0; r), IsCpo(j_1; r),$$

 $Rcpo(j_0;r), j_1 \oplus, j \ominus, j != \varnothing, j_0 \oplus,$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \otimes j_0, j_0 \oplus, j \oplus, j \otimes j_1, j_1 \circlearrowleft j_0, IsCpo(j_0; r), IsCpo(j_1; r), j_1 = j_0,$$

 $Rcpo(j_0; r), j_1 \oplus, j \ominus, j != \varnothing, j_0 \oplus,$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \odot j_0, j_0 \oplus, j \oplus, j \odot j_1, j_1 \circlearrowleft j_0, IsCpo(j_0; r), IsCpo(j_1; r), j_1 \pm j_0,$$

 $Rcpo(j_0; r), R(j_1), j_1 \oplus, j \ominus, j \stackrel{!}{=} \varnothing, j_0 \oplus,$

 $Rcpo(j_1;r), R(j_0), j_1 \oplus, j \ominus, j \models \emptyset, j_0 \oplus,$

$$\Leftrightarrow$$
 , $Cpo(r)$, $r \oplus$, $j \ominus$, $j \ominus j_0$, $j_0 \oplus$, $j \ominus$, $j \ominus j_1$, $j_1 \ominus j_0$, $j_1 = j_0$, $IsCpo(j_0; r)$, $IsCpo(j_1; r)$,

 $Rcpo(j_1; r), R(j_0), j_0 \oplus, j_1 \oplus, j \ominus, j \models \varnothing,$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j \oplus, j \ominus j_1, j_1 \bigcirc j_0, IsCpo(j_0; r), IsCpo(j_1; r),$$

 $Rcpo(j_1; r), j_0 \oplus, j_1 \oplus, j \ominus, j \models \emptyset,$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \otimes j_0, j_0 \oplus, j \oplus, j \otimes j_1, j_1 \circlearrowleft j_0, IsCpo(j_0; r), IsCpo(j_1; r), j_0 \oplus,$$

 $Rcpo(j_1; r), j_1 \oplus, j \ominus, j != \varnothing,$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j \oplus, j \ominus j_1, j_1 \bigcirc j_0, IsCpo(j_1; r), IsCpo(j_1; r), j_0 \oplus,$$

$$Rcpo(j_1; r), j_1 \oplus, j \ominus, j != \varnothing,$$

$$\Leftrightarrow ,Cpo(r),r\oplus,j\ominus,j\odot j_0,j_0\oplus,j\oplus,j\odot j_1,j_1\circlearrowleft j_0,IsCpo(j_1;r),j_0\oplus,$$

$$Rcpo(j_1; r), j_1 \oplus, j \ominus, j != \varnothing,$$

$$\Leftrightarrow$$
 , $Cpo(r)$, $r \oplus$, $j \ominus$, $j \ominus j_0$, $j_0 \oplus$, $j \ominus$, $j \ominus j_0$, $j \ominus j_1$, $IsCpo(j_1; r)$, $j_0 \oplus$,

$$Rcpo(j_1;r), j_1 \oplus, j \ominus, j \models \emptyset,$$

$$\Leftrightarrow$$
 , $Cpo(r)$, $r \oplus$, $j \ominus$, $j \ominus j_0$, $j_0 \oplus$, $j \oplus$, $j \ominus j_1$, $IsCpo(j_1; r)$, $j_0 \oplus$,

$$Rcpo(j_1; r), j_1 \oplus, j \ominus, j != \varnothing,$$

$$\Leftrightarrow , Cpo(r), r \oplus, j \ominus, j \ominus j_0, j_0 \oplus, j \oplus, IsCpo(j;r), j \ominus j_1, j_0 \oplus,$$

$$Rcpo(j_1;r), j_1 \oplus, j \ominus, j \models \emptyset,$$

$$\Leftrightarrow$$
, $IsCpo(j;r)$, $Cpo(r)$, $r\oplus$, $j\ominus$,

$$Rcpo(j_1; r), j_1 \oplus, j \ominus, j != \varnothing,$$

$$\Leftrightarrow$$
, $IsCpo(j;r)$, $Cpo(r)$, $r\oplus$, $j\ominus$, $j\oplus$, $j\oplus j_1$, $Rcpo(j_1;r)$, $j_1\oplus$, $j\ominus$, $j!=\varnothing$,

$$\Leftrightarrow , IsCpo(j;r), Cpo(r), r \oplus, j \otimes j_1, Rcpo(j_1;r), j_1 \oplus, j \ominus, j \vcentcolon= \varnothing,$$

29.9

$$, IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1;r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, \Leftrightarrow \\, IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1;r),$$

induction proof:

premise 1:

$$, r_1 = \varnothing, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, \Leftrightarrow, r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, IsCpo(r_1; r), Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_{10} \oplus,$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, IsCpo(r_1; r), Cpo(r),$$

$$r \oplus$$
, $Rcpo(r_1; r)$, $Cpo(r_{10})$, $r_{10} \oplus$, $r_{1} \oplus$,

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, IsCpo(r_1;r), r_1 = \varnothing, Cpo(r),$$

$$r \oplus$$
, $Rcpo(r_1; r)$, $Cpo(r_{10})$, $r_{10} \oplus$, $r_{1} \oplus$,

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $r_1 \circ r_{10}$, $IsCpo(r_1; r)$, $Cpo(r)$, $r_1 = \varnothing$,

$$r\oplus$$
, $Rcpo(r_1; r)$, $Cpo(r_{10})$, $r_{10}\oplus$, $r_{1}\oplus$,

$$\Leftrightarrow$$
 $r_1 \circ r_{10}, r_{10} = \varnothing, r_1 \circ r_{10}, IsCpo(r_1; r), Cpo(r),$

$$r\oplus, r_1 = \varnothing, Rcpo(r_1; r), Cpo(r_{10}), r_{10}\oplus, r_1\oplus,$$

$$\Leftrightarrow$$
 $r_1 \circ r_{10}, r_{10} = \varnothing, r_1 \circ r_{10}, IsCpo(r_1; r), Cpo(r),$

$$r\oplus, r_1 = \varnothing, Cpo(r_{10}), r_{10}\oplus, r_1\oplus,$$

$$\Leftrightarrow$$
, $r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, IsCpo(r_1; r), Cpo(r),$

$$r\oplus, r_1\circlearrowleft r_{10}, r_1=\varnothing, Cpo(r_{10}), r_{10}\oplus, r_1\oplus,$$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r\oplus, r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r_{10}), r_{10} \oplus, r_1 \oplus,$$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r\oplus, r_1 \circlearrowleft r_{10}, Cpo(r_{10}), r_{10}\oplus, r_{10} = \varnothing, r_1\oplus,$$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r\oplus, r_1 \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_{10} = \varnothing,$$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r \oplus, Cpo(r_{10}), r_1 \circlearrowleft r_{10}, r_{10} \oplus, r_1 \oplus, r_{10} = \varnothing,$$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r\oplus$$
, $Cpo(r_{10})$, $r_{10}\oplus$, $r_{1}\oplus$, $r_{1}\circlearrowleft r_{10}$, $r_{10}=\varnothing$,

$$\Leftrightarrow$$
, $r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, IsCpo(r_1; r), Cpo(r),$

$$r\oplus$$
, $Cpo(r_{10})$, $r_{10}\oplus$, $r_{1}\oplus$, $r_{1}\circlearrowleft r_{10}$, $r_{1}=\varnothing$,

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r\oplus$$
, $Cpo(r_{10})$, $r_{10}\oplus$, $r_{1}\oplus$, $r_{1}\circlearrowleft r_{10}$, $r_{1}=\varnothing$, $Rcpo(r_{1};r)$,

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r\oplus$$
, $Cpo(r_{10})$, $r_{10}\oplus$, $r_{1}\oplus$, $r_{1}\circlearrowleft r_{10}$, $r_{10}=\varnothing$, $Rcpo(r_{1};r)$,

$$\Leftrightarrow$$
, $r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, IsCpo(r_1; r), Cpo(r),$

$$r \oplus$$
, $Cpo(r_{10})$, $r_{10} \models \varnothing$, $r_{10} \oplus$, $r_{1} \oplus$, $r_{1} \circlearrowleft r_{10}$, $r_{10} = \varnothing$, $Rcpo(r_{1}; r)$,

$$\Leftrightarrow$$
, $r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, IsCpo(r_1; r), Cpo(r),$

$$r \oplus, Cpo(r_{10}), r_1 \circlearrowleft r_{10}, r_{10} != \varnothing, r_{10} \oplus, r_1 \oplus, r_{10} = \varnothing, Rcpo(r_1; r),$$

$$\Leftrightarrow$$
 $, r_1 \circ r_{10}, r_{10} = \varnothing, IsCpo(r_1; r), Cpo(r),$

$$r\oplus, Cpo(r_{10}), r_1\ominus r_{10}, r_1 \models \varnothing, r_{10}\oplus, r_1\oplus, r_{10} = \varnothing, Rcpo(r_1; r),$$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r\oplus, r_1\circlearrowleft r_{10}, Cpo(r_{10}), r_{10}\oplus, r_{10}=\varnothing, r_1 \mathrel{!=}\!\varnothing, r_1\oplus, Rcpo(r_1;r),$$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r)$,

$$r\oplus, r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r_{10}), r_{10} \oplus, r_1 \mathrel{!=} \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_{10} = \varnothing, IsCpo(r_1; r), Cpo(r),$$

$$r \oplus, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, Cpo(r_{10}), r_{10} \oplus, r_1 != \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft}r_{10}, IsCpo(r_1; r), Cpo(r), r_1 = \varnothing,$$

$$r \oplus, Cpo(r_{10}), r_{10} \oplus, r_1 != \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft}r_{10}, IsCpo(r_1; r), r_1 = \varnothing, Cpo(r),$$

$$r \oplus, Cpo(r_{10}), r_{10} \oplus, r_1 != \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \ominus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft}r_{10}, r_1 = \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

 $Cpo(r), r \oplus, r_1 != \varnothing, r_1 \oplus, Rcpo(r_1; r),$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, r = \varnothing, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r, Cpo(r), r \oplus, r_1 \mathring{\vdash} = \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r = \varnothing, r_{10} \oplus, r_1 \mathring{\circlearrowleft} r, Cpo(r), r \oplus, r_1 \mathring{\vdash} = \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r, r = \varnothing, Cpo(r), r \oplus, r_1 \mathring{\vdash} = \varnothing, r_1 \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \oplus, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} = \varnothing, r_1 \mathring{\circlearrowleft} r_{10}, r_{10} \mathring{\circlearrowleft} r, Cpo(r_{10}), r_{10} \mathring{\circlearrowleft$$

 $Cpo(r_{10}), r_{10} \oplus, r_1 \stackrel{!}{=} \varnothing, Rcpo(r_1; r),$

 \Leftrightarrow , $r_1 \circ r_{10}$, $r_1 = \varnothing$, $r_{10} = \varnothing$, $r_{10}! \circ r$, $IsCpo(r_1; r)$,

$$Cpo(r_{10}), r_1 \circlearrowleft r_{10}, r_1 \stackrel{!}{=} \varnothing, r_{10} \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow$$
 $r_1 \circ r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_{10}! \circ r, IsCpo(r_1; r),$

$$Cpo(r_{10}), r_1 \circ r_{10}, r_{10} != \varnothing, r_{10} \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow$$
 $, r_1 \circ r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \circ r_{10}, r_{10}! \circ r, IsCpo(r_1; r),$

$$Cpo(r_{10}), r_{10} = \varnothing, r_{10} \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow$$
 $, r_1 \circ r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \circ r_{10}, r_{10}! \circ r, IsCpo(r_1; r),$

 $Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1; r),$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_1 = \varnothing$, $r_{10} = \varnothing$, $r_1 \circ r_{10}$, $r_1! \circ r$, $IsCpo(r_1; r)$,

$$Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow, r_1 \circlearrowleft r_{10}, r_1 = \varnothing, r_{10} = \varnothing, r_1 \circlearrowleft r_{10}, IsCpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow$$
, $r_1 \circ r_{10}$, $r_1 = \varnothing$, $r_{10} = \varnothing$, $IsCpo(r_1; r)$, $Cpo(r_{10})$, $r_{10} \oplus$, $Rcpo(r_1; r)$,

$$\Leftrightarrow, r_1 = \varnothing, IsCpo(r_1; r), r_1 \diamondsuit r_{10}, r_{10} = \varnothing, Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1; r),$$

premise 2:

$$, \&SHi \rightarrow r_1, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, \Leftrightarrow SHi \rightarrow r_1, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_1 \oplus, r_2 \oplus, r_3 \oplus, r_4 \oplus,$$

, &SHi
$$\rightarrow r_1$$
, $IsCpo(r_1; r)$, $r_1 \circ r_{10}$, $r_{10} = \varnothing$, $Cpo(r_{10})$, $r_{10} \oplus$, $Rcpo(r_1; r)$, \Rightarrow

$$, r_1 != \varnothing, \&SHi \bigcirc r_1, IsCpo(r_1; r), r_1 \bigcirc r_{10}, r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, r_{10} \oplus,$$

$$\Leftrightarrow, r_1 != \varnothing, \&SHi \circlearrowleft r_1, IsCpo(r_1; r), r_1 !\circlearrowleft r, r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft r_1$, IsCpo $(r_1; r)$, $r_1 \circlearrowleft r_{10} = \varnothing$, $r_1 ! \circlearrowleft r$, $r_1 ! = \varnothing$, Cpo (r) , $r \oplus$,

```
Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus,
```

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_{10} = \varnothing, r_1! \, \circlearrowleft r, Cpo(r), r_1! = \varnothing, r \oplus, Rcpo(r_1;r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft r_1$, $IsCpo(r_1; r)$, $r_1 \circlearrowleft r_{10}$, $r_{10} = \varnothing$, $r_1! \circlearrowleft r$, $Cpo(r)$, $r \oplus$, $r_1! = \varnothing$, $Repo(r_1; r)$, $Cpo(r_{10})$, $r_{10} \oplus$, $r_1 \oplus$,

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1; r), r_1 \, \circlearrowleft r_{10}, r_{10} = \varnothing, r_1! \, \circlearrowleft r, Cpo(r), r \oplus, r_1! = \varnothing, Cpo(r), r \oplus, r_1 \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_1 \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_{10}; r), Rcpo(r_{10}; r)$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1; r), r_1 \, \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r), r \oplus, \\ r_1 \stackrel{!}{=} \varnothing, r_1 \stackrel{!}{\circlearrowleft} r, Cpo(r), r_1 \oplus, r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, \\ r_1 \stackrel{!}{\longleftrightarrow} r, r_1 \stackrel{!}{\longleftrightarrow} r$$

$$\Leftrightarrow , \&SHi \circlearrowleft r_1, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r), r \oplus, r_1 != \varnothing, r_1 !\circlearrowleft r, r_1 \oplus, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_{10} = \varnothing, r_1! \, \circlearrowleft r, Cpo(r), r_1! = \varnothing, r \oplus, r_1 \oplus, Cpo(r), r \oplus, Rcpo(r_1;r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_1 \oplus, r_2 \oplus, r_3 \oplus, r_4 \oplus, r_4 \oplus, r_5 \oplus, r_5$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_{10} = \varnothing, r_1! \, \circlearrowleft r, r_1! = \varnothing, Cpo(r), r \oplus, r_1 \oplus, Cpo(r), r \oplus, Rcpo(r_1;r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_1 \oplus, Rcpo(r_1;r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_2 \oplus, Rcpo(r_1;r), Rcpo(r_1;r$$

$$\Leftrightarrow, r_1 != \varnothing, \&SHi \circlearrowleft r_1, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_1 ! \circlearrowleft r, r_{10} = \varnothing, Cpo(r), r \oplus, r_1 \oplus, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus,$$

$$\Leftrightarrow, r_1 != \varnothing, \&SHi \bigcirc r_1, IsCpo(r_1; r), r_1 \bigcirc r_{10}, r_{10} ! \bigcirc r, r_{10} = \varnothing, Cpo(r), r \oplus, r_1 \oplus, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus,$$

$$\Leftrightarrow, r_1 \models \varnothing, \&SHi \circlearrowleft r_1, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_{10} ! \circlearrowleft r, Cpo(r), r_{10} = \varnothing, r \oplus, r_1 \oplus, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_1 \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_1; r), Rcpo(r_{10}), Rcp$$

$$\Leftrightarrow, r_1 != \varnothing, \&SHi \circlearrowleft r_1, r_1 \circlearrowleft r_{10}, r_{10} !\circlearrowleft r, IsCpo(r_1; r), Cpo(r), r \oplus, r_1 \oplus, r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_1 \oplus, r_2 \oplus, r_3 \oplus, r_4 \oplus, r_4 \oplus, r_5 \oplus$$

$$\Leftrightarrow, r_1 != \varnothing, \&SHi \circlearrowleft r_1, r_1 \circlearrowleft r_{10}, r_{10} ! \circlearrowleft r, Cpo(r), r \oplus, r_1 \oplus, IsCpo(r_1; r), r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_2 \oplus, r_3 \oplus, r_4 \oplus, r_4$$

$$\Leftrightarrow, r_1 != \varnothing, \&SHi \, \circlearrowleft r_1, r_1 \, \circlearrowleft r_{10}, r_1 ! \, \circlearrowleft r, Cpo(r), r \oplus, r_1 \oplus, IsCpo(r_1; r), r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_1 \oplus, r_2 \oplus, r_3 \oplus, r_4 \oplus, r$$

$$\Leftrightarrow, r_1 != \varnothing, r_1 \circlearrowleft r_{10}, r_1 ! \circlearrowleft r, \&SHi \circlearrowleft r_1, Cpo(r), r \oplus, r_1 \oplus, IsCpo(r_1; r), r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_1; r), Rcpo(r_{10}), Rcpo(r_1; r), Rcpo(r_1; r)$$

$$\Leftrightarrow, r_1 != \varnothing, r_1 \circlearrowleft r_{10}, r_1 ! \circlearrowleft r, Cpo(r), \&SHi \circlearrowleft r_1, r \oplus, r_1 \oplus, IsCpo(r_1; r), r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_1 \oplus, r_2 \oplus, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow, r_1 != \varnothing, r_1 \circlearrowleft r_{10}, r_1 ! \circlearrowleft r, Cpo(r), r \oplus, r_1 \oplus, \&SHi \rightarrow r_1, IsCpo(r_1; r), r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_1; r), Rcpo(r_1; r)$$

$$\Leftrightarrow, r_1 != \varnothing, r_1 ! \circlearrowleft r, Cpo(r), r \oplus, r_1 \oplus, \&SHi \rightarrow r_1, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_{10} = \varnothing, Cpo(r), r \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, r_2 \oplus, Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_2 \oplus, Rcpo(r_1; r), Rcpo(r_{10}), r_{10} \oplus, r_2 \oplus, Rcpo(r_{10}; r), Rcpo(r_{1$$

$$\Leftrightarrow, r_1 != \varnothing, r_1 ! \mathring{\circlearrowleft} r, Cpo(r), r \oplus, r_1 \oplus, \&SHi \rightarrow r_1, IsCpo(r_1; r), \\ r_1 \mathring{\circlearrowleft} r_{10}, r_{10} = \varnothing, Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1; r), \end{cases}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r, r_1! = \varnothing, Cpo(r), r_{10} = \varnothing, r \oplus, r_1 \oplus, Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1;r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r, Cpo(r), r_1 \, != \varnothing, r_{10} = \varnothing, r \oplus, r_1 \oplus, Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1;r), \\ \Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r, Cpo(r), r \oplus, r_1 \, != \varnothing, r_{10} = \varnothing, \\ r_1 \oplus, Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1;r), \end{cases}$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1; r), r_1 \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r, Cpo(r), r \oplus, r_1! = \varnothing, r_{10} = \varnothing, r_1! \, \circlearrowleft r_{10}, r_1 \oplus, Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r, Cpo(r), r \oplus, r_1! = \varnothing, r_{10} = \varnothing, r_1! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_1 \oplus, r_{10} \oplus, Rcpo(r_1;r),$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r, Cpo(r), r \oplus, r_1! = \varnothing, r_{10} = \varnothing, r_1! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, Rcpo(r_1;r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, r_1 ! \circlearrowleft r, Cpo(r), r \oplus, r_1 != \varnothing, r_{10} = \varnothing, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, Repo(r_1;r),$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft r_1, IsCpo(r_1; r), r_1 \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r, Cpo(r), r_1! = \varnothing, r_{10} = \varnothing, r \oplus, Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_1! \, \circlearrowleft r, r_1! = \varnothing, Cpo(r), r_{10} = \varnothing, r \oplus, Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_1;r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft r_1, IsCpo(r_1;r), r_1 \, \circlearrowleft r_{10}, r_{10}! \, \circlearrowleft r, r_1 != \varnothing, Cpo(r), r_{10} = \varnothing, r \oplus, Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Repo(r_1;r),$$

$$\Leftrightarrow, r_1 \models \varnothing, \&SHi \circlearrowleft r_1, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_{10} ! \circlearrowleft r, Cpo(r), r_{10} = \varnothing, r \oplus, Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, Rcpo(r_1; r),$$

$$\Rightarrow, r_1!=\varnothing, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_1\mathring{\bigcirc}r_{10}, r_{10}!\mathring{\bigcirc}r, r_{10}=\varnothing, Cpo(r), r\oplus, Cpo(r_{10}), r_{10}\oplus, r_{1}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, r_1!=\varnothing, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{10}=\varnothing, r_1\mathring{\bigcirc}r_{10}, r_{10}!\mathring{\bigcirc}r, Cpo(r), r\oplus, Cpo(r_{10}), r_{10}\oplus, r_{1}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, r_1!=\varnothing, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{10}=\varnothing, r_1\mathring{\bigcirc}r_{10}, r_{10}!\mathring{\bigcirc}r, Cpo(r), r\oplus, Cpo(r_{10}), r_{10}\oplus, Cpo(r), r\oplus, r_{1}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, r_1!=\varnothing, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{10}=\varnothing, r_1\mathring{\bigcirc}r_{10}, r_{1}!\mathring{\bigcirc}r, Cpo(r_{10}), r_{10}\oplus, Cpo(r), r\oplus, r_{1}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, kSHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r, r_{1}\mathring{\bigcirc}r_{10}, \\ cpo(r_{10}), r_{10}\oplus, Cpo(r_{10}), r_{10}\oplus, Cpo(r), r\oplus, r_{1}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, \\ r_1!=\varnothing, Cpo(r_{10}), r_{10}\oplus, Cpo(r), r\oplus, r_{1}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, \\ r_1!=\varnothing, Cpo(r_{10}), r_{1}!=\varnothing, r_{10}\oplus, Cpo(r), r\oplus, r_{1}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, \\ r_1!=\varnothing, Cpo(r_{10}), r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, r_{1}!=\varnothing, Cpo(r_{11};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, \\ r_1!=\varnothing, Cpo(r_{10}), r_{10}\oplus, r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, r_{1}!=\varnothing, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, r_{1}!=\varnothing, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r_1, IsCpo(r_1;r), r_{1}\mathring{\bigcirc}r_{10}, r_{10}=\varnothing, r_{1}!=\varnothing, Cpo(r_{10}), r_{10}\oplus, Rcpo(r_{1};r), \\ \Rightarrow, \&SHi\ \mathring{\bigcirc}r$$

$$, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circ r_{10},$$

 $Rcpo(i;r), r_1 \oplus, \&Tm(r_{10}), \Leftrightarrow$

 \Leftrightarrow , $IsCpo(r_1; r), r_1 \circ r_{10}, r_{10} = \varnothing, Cpo(r_{10}), r_{10} \oplus, Rcpo(r_1; r),$

$$, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circlearrowleft r_{10},$$

 $Rcpo(i; r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),$

proof:

$$, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circlearrowleft r_{10},$$

 $Rcpo(i; r), r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow , IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \\ \circlearrowleft r_{10},$$

$$i \oplus i_0, i_0 \oplus, Rcpo(i; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(i; r_{10})$, $IsCpo(r_1; r)$, $r_1 \circ r_{10}$,

$$i \otimes i_0, IsCpo(i;r), i_0 \oplus, Rcpo(i;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(i; r_{10})$, $IsCpo(r_1; r)$, $r_1! \circlearrowleft r$, $r_1 \circlearrowleft r_{10}$,

$$i \otimes i_0$$
, $IsCpo(i; r)$, $Rcpo(i; r)$, $i_0 \oplus$, $r_1 \oplus$, & $Tm(r_{10})$,

$$\Leftrightarrow , IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_1 ! \circlearrowleft r,$$

$$i \otimes i_0, IsCpo(i; r), Rcpo(i; r), i_0 \oplus, r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(i; r_{10})$, $IsCpo(r_1; r)$, $r_1 \circ r_{10}$, $r_{10}! \circ r$,

$$i @ i_0, IsCpo(i;r), Rcpo(i;r), i_0 @, r_1 @, \&Tm(r_{10}), \\$$

$$\Leftrightarrow , IsCpo(i; r_{10}), r_{10} = \varnothing, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_{10}! \circlearrowleft r,$$

$$i \otimes i_0, IsCpo(i;r), Rcpo(i;r), i_0 @, r_1 @, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(i; r_{10})$, $IsCpo(r_1; r)$, $r_1 \circ r_{10}$,

$$i \otimes i_0, IsCpo(i;r), r_{10}! \\ \circlearrowleft r, r_{10} = \varnothing, Rcpo(i;r), i_0 \\ \circlearrowleft, r_1 \\ \circlearrowleft, \&Tm(r_{10}),$$

$$i \otimes_{i_0} IsCpo(i;r), Repo(i;r), IsCpo(i_0;r_{10}), r_1 \otimes_{l} Repo(i_0;r_{10}), i_0 \otimes_{l} \&Tm(r_{10}),$$

$$\Rightarrow IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circ_{l_0} r_{10}, r_{10} \circ_{l_0} r_{10},$$

 $r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow, IsCpo(i;r_{10}), IsCpo(r_{1};r), r_{10}!\circlearrowleft r_{10}, i\boxtimes i_{0},$$

$$IsCpo(i;r), r_{1}\circlearrowleft r_{10}, i\boxtimes i_{0}, IsCpo(i_{0};r_{10}), Repo(i_{0};r_{10}), Repo(i_{1};r),$$

$$r_{1}\oplus, i_{0}\oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(i;r_{10}), IsCpo(r_{1};r), r_{10}!\circlearrowleft r, i\boxtimes i_{0},$$

$$IsCpo(i;r), r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0}, IsCpo(i_{0};r_{10}), Repo(i_{0};r_{10}), i=r_{1}, Repo(i;r),$$

$$r_{1}\oplus, i_{0}\oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(i;r_{10}), IsCpo(r_{1};r), r_{10}!\circlearrowleft r, i\boxtimes i_{0},$$

$$i!\circlearrowleft r, r=\varnothing, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0}, IsCpo(i_{0};r_{10}), Repo(i_{0};r_{10}), i=r_{1}, Repo(i;r),$$

$$r_{1}\oplus, i_{0}\oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(i;r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, i!\circlearrowleft r, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0},$$

$$IsCpo(i_{0};r_{10}), r_{10}!\circlearrowleft r, r=\varnothing, Repo(i_{0};r_{10}), i=r_{1}, Repo(i;r),$$

$$r_{1}\oplus, i_{0}\oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, i!\circlearrowleft r, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0},$$

$$IsCpo(i_{0};r_{10}), r_{10}!\circlearrowleft r, Repo(i_{0};r_{10}), r=\varnothing, i=r_{1}, Repo(i;r),$$

$$r_{1}\oplus, i_{0}\oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0}, r_{10}!\circlearrowleft r,$$

$$IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0}, r_{10}!\circlearrowleft r,$$

$$IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0}, r_{10}!\circlearrowleft r,$$

$$IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0}, r_{10}!\circlearrowleft r,$$

$$IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0}, r_{10}!\circlearrowleft r,$$

$$IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, r_{1}\circlearrowleft r_{10}, i\circlearrowleft i_{0}, r_{10}!\circlearrowleft r,$$

$$IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), i\boxtimes i_{0}, r_{1}\circlearrowleft r_{10}, i\hookrightarrow i_{0}, r_{10}!\circlearrowleft r,$$

$$IsCpo(i_{0};r_{10}), IsCpo(r_{1};r), r_{1}\circlearrowleft r_{10}, r_{1}\circlearrowleft r_{10}, r_{1}\circlearrowleft r_{10}, r_{1}\cdotp r_{10}, r_{1}\cdotp r_{10}, r_{1}\cdotp r_{10}, r_{1}\cdotp r_{10}, r_{1}\cdotp r_{1}, r_$$

$$\Leftrightarrow , IsCpo(i; r_{10}), IsCpo(r_1; r), i \otimes i_0, r_1 \otimes r_{10}, i \otimes i_0, r_{10}! \otimes r,$$

$$IsCpo(i_0; r_{10}), Repo(i_0; r_{10}), i! \otimes r, r = \varnothing, i = r_1, Repo(i; r),$$

$$r_1 \otimes , i_0 \otimes , \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(i; r_{10}), IsCpo(r_1; r), i \otimes i_0, r_1 \otimes r_{10}, i \otimes i_0, r_{10}! \otimes r,$$

$$IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), IsCpo(i; r), i = r_1, Rcpo(i; r),$$

$$r_1 \otimes , i_0 \otimes , \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(i; r_{10}), IsCpo(r_1; r), r! \circlearrowleft r_1, i \circledcirc i_0, r_1 \circlearrowleft r_{10}, i \circlearrowleft i_0, r_{10}! \circlearrowleft r,$$
$$IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), IsCpo(i; r), i = r_1, Rcpo(i; r),$$
$$r_1 \circledcirc , i_0 \circledcirc , \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(i;r_{10}), IsCpo(r_1;r), i \otimes i_0, r_1 \otimes r_{10}, i \otimes i_0, r_{10}! \otimes r,$$

$$IsCpo(i_0;r_{10}), r! \otimes r_1, Rcpo(i_0;r_{10}), IsCpo(i;r), i = r_1, Rcpo(i;r),$$

$$r_1 \otimes , i_0 \otimes , \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(i;r_{10}), IsCpo(r_1;r), i \otimes i_0, r_1 \otimes r_{10}, i \otimes i_0, r_{10}! \otimes r,$$

$$IsCpo(i_0;r_{10}), Rcpo(i_0;r_{10}), r! \otimes r_1, IsCpo(i;r), i = r_1, Rcpo(i;r),$$

$$r_1 \otimes , i_0 \otimes , \& Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(i;r_{10}), IsCpo(r_1;r), i \otimes i_0, r_1 \otimes r_{10}, i \otimes i_0, r_{10}! \otimes r,$$

$$IsCpo(i_0;r_{10}), Rcpo(i_0;r_{10}), IsCpo(r_1;r), IsCpo(i;r), i = r_1, Rcpo(i;r),$$

$$r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(i;r_{10}), IsCpo(r_1;r), i \otimes i_0, r_1 \circlearrowleft r_{10}, i \circlearrowleft i_0, r_{10}! \circlearrowleft r,$$

```
IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), IsCpo(r_1; r), IsCpo(i; r), i = r_1, Rcpo(i; r), R(r_1),
r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(i; r_{10}), IsCpo(r_1; r), i \otimes i_0, r_1 \circ r_{10}, i \circ i_0, r_{10}! \circ r,
IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), IsCpo(r_1; r), IsCpo(i; r), i = r_1, Rcpo(r_1; r), R(i),
r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(i; r_{10}), IsCpo(r_1; r), i \otimes i_0, r_1 \otimes r_{10}, i \otimes i_0, r_{10}! \otimes r,
IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), r! \circ r_1, IsCpo(i; r), i = r_1, Rcpo(r_1; r), R(i),
r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(i; r_{10}), IsCpo(r_1; r), i \otimes i_0, r_1 \circ r_{10}, i \circ i_0, r_{10}! \circ r,
IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), r! \circ r_1, IsCpo(i; r), i = r_1, R(i), Rcpo(r_1; r),
r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(i; r_{10}), IsCpo(r_1; r), r! \circ r_1, i \circ i_0, r_{10}! \circ r,
IsCpo(i;r), r_1 \circ r_{10}, i \circ i_0, IsCpo(i_0;r_{10}), Rcpo(i_0;r_{10}), i = r_1, R(i),
Rcpo(r_1; r), r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(r_1; r), r! \circ r_1, i \circ i_0, r_{10}! \circ r, IsCpo(i; r), r_1 \circ r_{10},
iO_{i_0}, IsCpo(i; r_{10}), IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), R(i),
Rcpo(r_1; r), r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(r_1; r), r! \circ r_1, i \circ i_0, r_{10}! \circ r, IsCpo(i; r), r_1 \circ r_{10},
iO(i_0, i=i_0, IsCpo(i; r_{10}), IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), R(i),
```

$$Rcpo(r_1; r), r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, i \circledcirc i_0, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$i \circlearrowleft i_0, IsCpo(i; r_{10}), IsCpo(i_0; r_{10}), i = i_0, Rcpo(i_0; r_{10}), R(i),$$

$$Rcpo(r_1; r), r_1 \circlearrowleft , i_0 \circlearrowleft , \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, i \circledcirc i_0, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$
$$i \circlearrowleft i_0, IsCpo(i; r_{10}), IsCpo(i_0; r_{10}), i = i_0, Rcpo(i; r_{10}), R(i_0),$$
$$Rcpo(r_1; r), r_1 \circlearrowleft , i_0 \circlearrowleft , \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, i \otimes i_0, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$i \circlearrowleft i_0, i = i_0, IsCpo(i; r_{10}), IsCpo(i_0; r_{10}), Rcpo(i; r_{10}), R(i_0),$$

$$Rcpo(r_1; r), r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, i \circledcirc i_0, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$i \circlearrowleft i_0, IsCpo(i; r_{10}), IsCpo(i_0; r_{10}), Rcpo(i; r_{10}), R(i_0),$$

$$Rcpo(r_1; r), r_1 \circlearrowleft , i_0 \circlearrowleft , \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r = \varnothing, r! \circlearrowleft r_1, i \boxtimes i_0, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$i \circlearrowleft i_0, IsCpo(i; r_{10}), IsCpo(i_0; r_{10}), Rcpo(i; r_{10}), R(i_0),$$

$$Rcpo(r_1; r), r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, i \otimes i_0, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$i \circlearrowleft i_0, IsCpo(i; r_{10}), IsCpo(i_0; r_{10}), r = \varnothing, Rcpo(i; r_{10}), R(i_0),$$

$$Rcpo(r_1; r), r_1 \oplus, i_0 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1;r), r! \circlearrowleft r_1, i \boxtimes i_0, IsCpo(i;r), r_1 \circlearrowleft r_1, r_2 \bowtie r_1, r_2 \bowtie r_2, Rcpo(i;r_{10}), R(i_0),$$

$$Rcpo(r_1;r), r_1 \textcircled{\oplus}, i_0 \textcircled{\oplus}, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1;r), r_1 \textcircled{\oplus}, r_1 \bowtie r_2, r_2 \bowtie r_2, Rcpo(i;r_{10}), R(i_0),$$

$$Rcpo(r_1;r), r_1 \textcircled{\oplus}, r_2 \bowtie r_2, Rcpo(i;r_1), r_2 \textcircled{\oplus}, Rcpo(i;r_1), r_2 \bowtie r_2, R(i_0),$$

$$Rcpo(r_1;r), r_1 \textcircled{\oplus}, r_2 \bowtie r_2, Rcpo(i;r_1), r_2 \textcircled{\oplus}, Rcpo(i;r_1), r_2 \bowtie r_2, R(i_0),$$

$$Rcpo(r_1;r), r_1 \textcircled{\oplus}, r_2 \bowtie r_2, Rcpo(i;r_1), r_2 \textcircled{\oplus}, Rcpo(i;r_1), r_2 \textcircled{\oplus}, R(i_0),$$

$$Rcpo(r_1;r), r_1 \textcircled{\oplus}, r_2 \bowtie r_2, Rcpo(i;r_1), r_2 \textcircled{\oplus}, Rcpo(i;r_1), R(i_0), r_2 \textcircled{\oplus}, Rcpo(i;r_1), Rcpo(i;r_1), Rcpo(i;r_1), Rcpo(i;r_1), Rcpo(i;r_1), Rcpo(i;r_1), Rcpo(i;r_1), Rcpo(i;r_2), Rcpo(i;r_2)$$

 $i_0 \oplus$, $Rcpo(r_1; r)$, $r_1 \oplus$, & $Tm(r_{10})$,

 \Leftrightarrow , $IsCpo(r_1; r)$, $r! \circ r_1$, $i \circ i_0$, $r_{10}! \circ r$, IsCpo(i; r), $r_1 \circ r_{10}$,

$$IsCpo(i; r_{10}), i \circlearrowleft i_0, IsCpo(i_0; r_{10}), Rcpo(i; r_{10}), R(i_0), i_0 \oplus,$$

 $Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, i \otimes i_0, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$IsCpo(i; r_{10}), IsCpo(i; r_{10}), i \circlearrowleft i_0, Rcpo(i; r_{10}), R(i_0), i_0 \oplus,$$

$$Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, i \circledcirc i_0, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$IsCpo(i; r_{10}), i \circlearrowleft i_0, Rcpo(i; r_{10}), R(i_0), i_0 \uplus,$$

$$Rcpo(r_1; r), r_1 \uplus, \&Tm(r_{10}),$$

$$\Rightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$IsCpo(i; r_{10}), i \circlearrowleft i_0, i \circlearrowleft i_0, Rcpo(i; r_{10}), R(i_0), i_0 \circlearrowleft,$$

$$Rcpo(r_1; r), r_1 \circlearrowleft, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$IsCpo(i; r_{10}), i \circlearrowleft i_0, Rcpo(i; r_{10}), i_0 \circlearrowleft,$$

$$Rcpo(r_1; r), r_1 \circlearrowleft, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$

$$i \circlearrowleft i_0, IsCpo(i; r_{10}), Rcpo(i; r_{10}), i_0 \circlearrowleft,$$

$$Rcpo(r_1; r), r_1 \circlearrowleft, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1; r), r! \circlearrowleft r_1, r_{10}! \circlearrowleft r, IsCpo(i; r), r_1 \circlearrowleft r_{10},$$
$$i \odot i_0, IsCpo(i; r_{10}), i_0 \oplus, Rcpo(i; r_{10}),$$

$$Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1;r), r_! \circlearrowleft r_1, r_{10}! \circlearrowleft r, IsCpo(i;r), r_1 \circlearrowleft r_{10},$$

$$IsCpo(i;r_{10}), i \otimes i_0, i_0 \oplus, Rcpo(i;r_{10}),$$

$$Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1;r), r_! \circlearrowleft r_1, r_{10}! \circlearrowleft r, IsCpo(i;r), r_1 \circlearrowleft r_{10},$$

$$IsCpo(i;r_{10}), Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1;r), r_! \circlearrowleft r_1, r_{10}! \circlearrowleft r, r_1 \circlearrowleft r_{10}, IsCpo(i;r),$$

$$IsCpo(i;r_{10}), Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1;r), r_! \circlearrowleft r_1, r_1! \circlearrowleft r, r_1 \circlearrowleft r_{10}, IsCpo(i;r),$$

$$IsCpo(i;r_{10}), Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, IsCpo(i;r),$$

$$IsCpo(i;r_{10}), Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circlearrowleft r_{10},$$

$$Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circ r_{10},$$

$$Rcpo(i; r), i \oplus, r_1 \oplus, \&Tm(r_{10}), \Leftrightarrow$$

$$, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circ r_{10},$$

$$Rcpo(i; r_{10}), Rcpo(r_1; r), i \oplus, r_1 \oplus, \&Tm(r_{10}),$$

```
, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circlearrowleft r_{10},
                                                                         Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}), \Leftrightarrow
                                                                 , IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circlearrowleft r_{10},
                                                                              Rcpo(i; r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
induction proof:
premise 1:
 , i = \varnothing, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circ r_{10}, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}), Rcpo(r_1; r), Rcpo(
\Leftrightarrow, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circ r_{10}, i = \varnothing, Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, &Tm(r_{10}),
\Leftrightarrow, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circ r_{10}, i = \varnothing,
 Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circ r_{10}, i = \emptyset,
 Rcpo(i; r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i = \emptyset, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circ r_{10},
 Rcpo(i; r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
premise 2:
 , &SHi\rightarrowi, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1\circlearrowleft r_{10}, Rcpo(i;r), Rcpo(r_1;r), r_1\oplus, &Tm(r_{10}),
\Leftrightarrow, &SHi\rightarrowi, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circ r_{10},
 Rcpo(i; r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}), \Rightarrow
 i!=\varnothing, &SHi\circlearrowleft i, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circlearrowleft r_{10},
Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, &SHi\circlearrowleft i, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circlearrowleft r_{10},
i = \varnothing, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
```

```
\Leftrightarrow, &SHi \circlearrowleft i, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circlearrowleft r_{10},
i = \varnothing, Cpo(r), r \oplus, i \oplus, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowleft i, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1! \circlearrowleft r, r_1! \circlearrowleft r_{10},
Cpo(r), r \oplus, i \oplus, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, r_1! \circlearrowleft r,
Cpo(r), r \oplus, i \oplus, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i = \varnothing, &SHi \circlearrowleft i, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_{10} \circlearrowleft r,
Cpo(r), r \oplus, i \oplus, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i \models \varnothing, &SHi \circlearrowleft i, IsCpo(i;r), IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, r_{10}! \circlearrowleft r, IsCpo(i;r_{10}), Cpo(r),
r \oplus, i \oplus, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i \models \varnothing, &SHi \circlearrowleft i, IsCpo(i;r), IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, r_{10}! \circlearrowleft r, Cpo(r),
IsCpo(i; r_{10}), r \oplus, i \oplus, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i = \varnothing, IsCpo(r_1; r), r_1 \circ r_{10}, r_{10}! \circ r, IsCpo(i; r), &SHi \circ i, Cpo(r),
IsCpo(i; r_{10}), r \oplus, i \oplus, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i = \varnothing, IsCpo(r_1; r), r_1 \circ r_{10}, r_{10}! \circ r, IsCpo(i; r), Cpo(r),
&SHi \circlearrowleft i, IsCpo(i; r_{10}), r \oplus, i \oplus, Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i!=\varnothing, IsCpo(r_1;r), r_1 \circ r_{10}, r_{10}! \circ r, IsCpo(i;r), Cpo(r),
r \oplus, i \oplus, &SHi\rightarrowi, IsCpo(i; r_{10}), Rcpo(i; r), Rcpo(r_1; r), r_1 \oplus, &Tm(r_{10}),
```

$$\Leftrightarrow, i! = \varnothing, r_{10}! \circlearrowleft r, Cpo(r), r \circleddash, i \circleddash,$$

$$\&SHi \rightarrow i, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_{1}; r), r_{1} \circlearrowleft r_{10}, Repo(i; r), Repo(r_{1}; r), r_{1} \clubsuit, \&Tm(r_{10}),$$

$$\Leftrightarrow, i! = \varnothing, r_{10}! \circlearrowleft r, Cpo(r), r \circleddash, i \circleddash,$$

$$\&SHi \rightarrow i, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_{1}; r), r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), Repo(r_{1}; r), r_{1} \clubsuit, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, I! = \varnothing, IsCpo(i; r), IsCpo(i; r_{10}), IsCpo(r_{1}; r), r_{1} \circlearrowleft r_{10}, r_{10}! \circlearrowleft r,$$

$$Cpo(r), r \circleddash, i \circleddash, Repo(i; r_{10}), Repo(r_{1}; r), r_{1} \circlearrowleft r_{10}, r_{10}! \circlearrowleft r, IsCpo(i; r),$$

$$Cpo(r), i \circleddash, r \circleddash, Repo(i; r_{10}), Repo(r_{1}; r), r_{1} \circlearrowleft r_{10}, r_{10}! \circlearrowleft r, IsCpo(i; r),$$

$$Cpo(r), i \circleddash, r \circleddash, Repo(i; r_{10}), Repo(r_{1}; r), r_{1} \circlearrowleft r_{10}, r_{10}! \circlearrowleft r, IsCpo(i; r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i! = \varnothing, IsCpo(i; r_{10}), IsCpo(r_{1}; r), r_{1} \circlearrowleft r_{10}, r_{10}! \circlearrowleft r, IsCpo(i; r),$$

$$i \circleddash, Cpo(r), r \circleddash, Repo(i; r_{10}), Repo(r_{1}; r), r_{1} \circledcirc r_{10}, r_{10}! \circlearrowleft r, IsCpo(i; r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i! = \varnothing, IsCpo(r_{1}; r), r_{1} \circlearrowleft r_{10}, IsCpo(i; r), i \circleddash,$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Cpo(r), r \circleddash, Repo(i; r_{10}), Repo(r_{1}; r), r_{1} \circledcirc r, i \circleddash,$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Cpo(r), r \circleddash, Repo(i; r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i! = \varnothing, IsCpo(r_{1}; r), r_{1} \circlearrowleft r_{10}, IsCpo(i; r), i \circleddash,$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Cpo(r), r \circleddash, Repo(i; r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i! = \varnothing, IsCpo(r_{1}; r), r_{1} \circlearrowleft r_{10}, IsCpo(i; r), i \circleddash,$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, r_{10}! \hookrightarrow r, Cpo(r), r \circleddash, Repo(i; r_{10}),$$

$$Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, IsCpo(i; r), i \oplus,$$
$$IsCpo(i; r_{10}), i ! \circlearrowleft r, r_{10} ! \circlearrowleft r, Rcpo(i; r_{10}), Cpo(r), r \oplus,$$
$$Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, IsCpo(i; r), i \oplus,$$

$$IsCpo(i; r_{10}), i ! \circlearrowleft r, r_{10} ! \circlearrowleft r, Rcpo(i; r_{10}), Cpo(r), r \oplus,$$

$$Rcpo(r_1; r), r_1 \oplus, Cpo(r_{10}), \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i != \varnothing, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, IsCpo(i; r), i \oplus,$$

$$IsCpo(i; r_{10}), i ! \circlearrowleft r, r_{10} ! \circlearrowleft r, Rcpo(i; r_{10}), Cpo(r), r \oplus,$$

$$Rcpo(r_1; r), r_1 \oplus, Cpo(r_{10}), r_{10} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i = \varnothing, IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, IsCpo(i; r), i \oplus,$$

$$IsCpo(i; r_{10}), i! \circlearrowleft r, r_{10}! \circlearrowleft r, Rcpo(i; r_{10}), Cpo(r), r \oplus,$$

$$Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i != \varnothing, r_1 \circlearrowleft r_{10}, IsCpo(i;r), i ! \circlearrowleft r, i \oplus,$$

$$IsCpo(i;r_{10}), r_{10} ! \circlearrowleft r, IsCpo(r_1;r), Rcpo(i;r_{10}), Cpo(r), r \oplus,$$

$$Rcpo(r_1;r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i = \varnothing, r_1 \circlearrowleft r_{10}, IsCpo(i; r), i! \circlearrowleft r, i \oplus,$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Rcpo(i; r_{10}), IsCpo(r_1; r), Cpo(r), r \oplus,$$

$$Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i! = \varnothing, r_1 \circlearrowleft r_{10}, IsCpo(i; r), i \oplus,$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Rcpo(i; r_{10}), IsCpo(r_1; r), Cpo(r), r \oplus,$$

$$Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i! = \varnothing, IsCpo(i; r), i \oplus, r_{10}! \circlearrowleft r,$$

$$IsCpo(i; r_{10}), r_1 \circlearrowleft r_{10}, Rcpo(i; r_{10}), IsCpo(r_1; r), Cpo(r), r \oplus,$$

$$Rcpo(r_1; r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i != \varnothing, IsCpo(i; r), i \oplus, r_{10} ! \circlearrowleft r,$$

$$IsCpo(i; r_{10}), Rcpo(i; r_{10}), r_{1} \circlearrowleft r_{10}, IsCpo(r_{1}; r), Cpo(r), r \oplus,$$

$$Rcpo(r_{1}; r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i = \varnothing, IsCpo(i; r), i \oplus, r_{10}! \circlearrowleft r,$$

$$IsCpo(i; r_{10}), Rcpo(i; r_{10}), r_{10} = \varnothing, r_{1} \circlearrowleft r_{10}, IsCpo(r_{1}; r), Cpo(r), r \oplus,$$

$$Rcpo(r_{1}; r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, IsCpo(i; r), i \oplus, r_{10} ! \circlearrowleft r,$$

$$IsCpo(i; r_{10}), Rcpo(i; r_{10}), r_{10} = \varnothing, r_{1} \circlearrowleft r_{10}, IsCpo(r_{1}; r),$$

$$Cpo(r_{10}), r_{10} \oplus, Rcpo(r_{1}; r), r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, i != \varnothing, IsCpo(i; r), i \oplus, r_{10} ! \circlearrowleft r, r_{1} \circlearrowleft r_{10}, IsCpo(r_{1}; r),$$

$$IsCpo(i; r_{10}), Rcpo(i; r_{10}),$$

$$Cpo(r_{10}), r_{10} \oplus, Rcpo(r_{1}; r), r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i, i! = \varnothing$, $IsCpo(i; r)$, $i \oplus , r_{10}! \circlearrowleft r, r_1 \circlearrowleft r_{10}, IsCpo(r_1; r)$,

$$IsCpo(i;r_{10}), Cpo(r_{10}), r_{10} \oplus, Rcpo(i;r_{10}),$$

$$Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r), r_{10}! \circlearrowleft r, r_1 \circlearrowleft r_{10}, IsCpo(r_1;r),$$

$$IsCpo(i;r_{10}), i\oplus, Cpo(r_{10}), r_{10} \oplus, Rcpo(i;r_{10}),$$

$$Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, i!=\varnothing, IsCpo(i;r), r_{10}! \circlearrowleft r, r_1 \circlearrowleft r_{10}, IsCpo(r_1;r),$$

$$IsCpo(i;r_{10}), Cpo(r_{10}), r_{10} \oplus, i\oplus, Rcpo(i;r_{10}),$$

$$Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), r_{10}! \circlearrowleft r, r_1 \circlearrowleft r_{10}, IsCpo(r_1;r),$$

$$IsCpo(i;r_{10}), i!=\varnothing, Cpo(r_{10}), r_{10} \oplus, i\oplus, Rcpo(i;r_{10}),$$

$$Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), r_{10}! \circlearrowleft r, r_1 \circlearrowleft r_{10}, IsCpo(r_1;r),$$

$$IsCpo(i;r_{10}), i!=\varnothing, Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), r_1 \circlearrowleft r_{10}, r_{10}! \circlearrowleft r, IsCpo(r_1;r),$$

$$IsCpo(i;r_{10}), i!=\varnothing, Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), r_1 \circlearrowleft r_{10}, r_{10}! \hookrightarrow r, IsCpo(r_1;r),$$

$$IsCpo(i;r_{10}), i!=\varnothing, Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpo(i;r), r_1 \circlearrowleft r_{10}, r_1! \circlearrowleft r, IsCpo(r_1;r),$$

$$IsCpo(i;r_{10}), i!=\varnothing, Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$IsCpo(i;r_{10}), i!=\varnothing, Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$IsCpo(i;r_{10}), i!=\varnothing, Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

 \Leftrightarrow , &SHi $\circlearrowleft i$, IsCpo(i;r), $r_1 \circlearrowleft r_{10}$, $IsCpo(r_1;r)$,

```
29 Recursive Function Rcpo(i;r)
```

$$IsCpo(i;r_{10}), i \models \varnothing, Repo(i;r_{10}), Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, i! \models \varnothing, \&SHi \, \dot{\circlearrowleft} i, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_{1};r), r_{1} \dot{\circlearrowleft} r_{10},$$

$$Repo(i;r_{10}), Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$conclusion:$$

$$, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_{1};r), r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r), Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_{1};r), r_{1} \dot{\circlearrowleft} r_{10},$$

$$Repo(i;r_{10}), Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$, IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$Repo(i;r), IsCpo(i;r_{10}), IsCpo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$Repo(i;r_{10}), Repo(r_{1};r), i \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$Repo(i;r_{10}), Repo(r_{1};r), i \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$Repo(i;r_{10}), Repo(r_{1};r_{10}), IsCpo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$IsCpo(i;r), IsCpo(i;r_{10}), Repo(i;r_{10}), Repo(r_{1};r), Repo(k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$Repo(i;r_{10}), Repo(i;r_{10}), Repo(i;r_{10}), IsCpo(i;r_{10}), IsCpo(k;r_{10}), IsCpo(k;r_{10}), IsCpo(r_{1};r),$$

$$, r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r_{10}), Repo(i;r_{10}), Repo(k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r_{10}), Repo(i;r_{10}), Repo(i;r_{10}), IsCpo(k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r_{10}), Repo(i;r_{10}), Repo(i;r_{10}), IsCpo(k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r_{10}), Repo(i;r_{10}), Repo(i;r_{10}), Repo(k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r_{10}), Repo(i;r_{10}), Repo(i;r_{10}), Repo(k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r_{10}), Repo(i;r_{10}), Repo(i;r_{10}), Repo(k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r_{10}), Repo(i;r_{10}), Repo(i;r_{10}), Repo(k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$r_{1} \dot{\circlearrowleft} r_{10}, Repo(i;r_{10}), Repo(i;r_{10}), Repo(i;r_{10}), Repo(k;r_{10}), Repo(k;r$$

 $IsCpo(i; r_{10}), IsCpo(j; r_{10}), Rcpo(i; r_{10}), Rcpo(j; r_{10}),$

$$Rcpo(r_1;r), Rcpo(k;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(k;r_{10}), IsCpo(i;r), IsCpo(j;r), IsCpo(k;r),$$

$$IsCpo(r_1;r), r_1 \circlearrowleft r_{10},$$

$$IsCpo(i;r_{10}), Rcpo(i;r_{10}),$$

$$IsCpo(j;r_{10}), Rcpo(j;r_{10}),$$

$$Rcpo(r_1;r), Rcpo(k;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(k;r_{10}), IsCpo(i;r), IsCpo(j;r), IsCpo(k;r),$$

$$IsCpo(r_1;r), r_1 \circlearrowleft r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},$$

$$IsCpo(i;r_{10}), Rcpo(i;r_{10}),$$

$$IsCpo(j;r_{10}), Rcpo(j;r_{10}),$$

$$Rcpo(r_1;r), Rcpo(k;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(k;r_{10}), IsCpo(i;r), IsCpo(j;r), IsCpo(k;r),$$

$$IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_1,$$

$$IsCpo(i;r_{10}), Rcpo(i;r_{10}),$$

$$IsCpo(j;r_{10}), Rcpo(i;r_{10}),$$

$$IsCpo(j;r_{10}), Rcpo(j;r_{10}),$$

$$Rcpo(r_1;r), Rcpo(k;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(k;r_{10}), IsCpo(i;r), IsCpo(j;r), IsCpo(k;r),$$

$$\Leftrightarrow, IsCpo(k;r_{10}), IsCpo(i;r), IsCpo(j;r), IsCpo(k;r),$$

 $IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, r_{10}! \circlearrowleft r,$

 $IsCpo(i; r_{10}), Rcpo(i; r_{10}),$

$$IsCpo(j; r_{10}), Rcpo(j; r_{10}),$$

$$Rcpo(r_1; r), Rcpo(k; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(k; r_{10})$, $IsCpo(i; r)$, $IsCpo(j; r)$, $IsCpo(k; r)$,

$$IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Rcpo(i; r_{10}),$$

$$IsCpo(j; r_{10}), r_{10}! \circlearrowleft r, Rcpo(j; r_{10}),$$

$$Rcpo(r_1; r), Rcpo(k; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(k; r_{10})$, $IsCpo(i; r)$, $IsCpo(j; r)$,

$$r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Rcpo(i; r_{10}),$$

$$IsCpo(j; r_{10}), r_{10}! \circlearrowleft r, Rcpo(j; r_{10}),$$

$$IsCpo(r_1;r), IsCpo(k;r), Rcpo(r_1;r), Rcpo(k;r), r_1 @, \&Tm(r_{10}), \\$$

$$\Leftrightarrow$$
, $IsCpo(k; r_{10})$, $IsCpo(i; r)$, $IsCpo(j; r)$,

$$r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},$$

$$IsCpo(i; r_{10}), r_{10}!$$
 $r, Repo(i; r_{10}),$

$$IsCpo(j; r_{10}), r_{10}! \circlearrowleft r, Rcpo(j; r_{10}),$$

$$IsCpo(r_1;r), IsCpo(k;r), Rcpo(k;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(k; r_{10})$, $IsCpo(i; r)$, $IsCpo(j; r)$,

$$IsCpo(r_1; r), r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},$$

$$IsCpo(i;r_{10}), r_{10}! \\ \circlearrowleft r, Rcpo(i;r_{10}),$$

$$IsCpo(j; r_{10}), r_{10}! \circlearrowleft r. IsCpo(k; r), Repo(j; r_{10}), Repo(k; r), \\ Repo(r_{1}; r), r_{1} \textcircled{\otimes}, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpo(i; r), \\ IsCpo(i; r), r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ IsCpo(i; r_{10}), r_{10}! \circlearrowleft r. Repo(i; r_{10}), \\ IsCpo(j; r_{10}), IsCpo(k; r_{10}), r_{10}! \circlearrowleft r. IsCpo(k; r), IsCpo(j; r), \\ Repo(j; r_{10}), Repo(k; r), Repo(r_{1}; r), r_{1} \textcircled{\otimes}, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpo(i; r), \\ IsCpo(i; r_{10}), r_{10}! \circlearrowleft r. Repo(i; r_{10}), \\ IsCpo(j; r_{10}), IsCpo(k; r_{10}), r_{10}! \circlearrowleft r. IsCpo(k; r), IsCpo(j; r), \\ Repo(k; r), Repo(j; r_{10}), Repo(r_{1}; r), r_{1} \textcircled{\otimes}, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpo(i; r), \\ r_{1} \circlearrowleft r_{10}, \\ IsCpo(i; r_{10}), r_{10}! \circlearrowleft r. Repo(i; r_{10}), \\ IsCpo(j; r_{10}), IsCpo(j; r), IsCpo(k; r), Repo(k; r), \\ IsCpo(j; r_{10}), Repo(r_{1}; r), r_{1} \textcircled{\otimes}, \&Tm(r_{10}), \\ Repo(j; r_{10}), Repo(r_{1}; r), r_{1} \textcircled{\otimes}, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpo(i; r), \\ r_{1} \circlearrowleft r_{10}, Repo(r_{1}; r), r_{1} \textcircled{\otimes}, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpo(i; r), \\ r_{1} \circlearrowleft r_{10}, \\ Repo(i; r), \\ Repo(i; r)$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Rcpo(i; r_{10}),$$

$$IsCpo(k; r_{10}), r_{10}! \circlearrowleft r, IsCpo(k; r), Rcpo(k; r),$$

$$IsCpo(j; r_{10}), IsCpo(j; r), IsCpo(r_1; r), r_1 \circlearrowleft r_{10},$$

$$Rcpo(j;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(i; r)$, $IsCpo(j; r_{10})$,

$$IsCpo(j;r), IsCpo(r_1;r), r_1 \circ r_{10}, r_1 \circ r_{10},$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r, Rcpo(i; r_{10}),$$

$$IsCpo(k; r_{10}), r_{10}! \circlearrowleft r, IsCpo(k; r), Rcpo(k; r),$$

$$Rcpo(j;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
 , $IsCpo(j; r_{10})$,

$$IsCpo(j;r), IsCpo(r_1;r), r_1 \circ r_{10}, r_1 \circ r_{10},$$

$$IsCpo(i; r_{10}), IsCpo(i; r), r_{10}! \circlearrowleft r, IsCpo(k; r_{10}), IsCpo(k; r),$$

$$Rcpo(i; r_{10}), Rcpo(k; r),$$

$$Rcpo(j;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
 , $IsCpo(j; r_{10})$,

$$IsCpo(j;r), IsCpo(r_1;r), r_1 \\ \circlearrowleft r_{10}, r_1 \\ \circlearrowleft r_{10},$$

$$IsCpo(i; r_{10}), IsCpo(i; r), r_{10}! \circlearrowleft r, IsCpo(k; r_{10}), IsCpo(k; r),$$

$$Rcpo(k; r), Rcpo(i; r_{10}),$$

$$Rcpo(j;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow$$
, $IsCpo(k; r_{10}), IsCpo(j; r_{10}),$

$$IsCpo(j;r), IsCpo(r_1;r), r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, \\ IsCpo(i;r_{10}), IsCpo(i;r), \\ IsCpo(k;r), r_{10} \circlearrowleft r, Rcpo(k;r), \\ Rcpo(i;r_{10}), \\ Rcpo(j;r), Rcpo(r_1;r), r_1 \circlearrowleft, \&Tm(r_{10}), \\ \Leftrightarrow, IsCpo(k;r_{10}), \\ IsCpo(k;r_{10}), \\ IsCpo(k;r), r_{10} \circlearrowleft r, Rcpo(k;r), \\ IsCpo(i;r_{10}), IsCpo(i;r), r_{10} \circlearrowleft r, IsCpo(j;r), IsCpo(j;r_{10}), \\ Rcpo(i;r_{10}), Rcpo(j;r), Rcpo(r_1;r), r_1 \circlearrowleft, \&Tm(r_{10}), \\ \Leftrightarrow, IsCpo(k;r_{10}), \\ Rcpo(i;r_{10}), Rcpo(j;r), Rcpo(r_1;r), r_1 \circlearrowleft, \&Tm(r_{10}), \\ \Leftrightarrow, IsCpo(k;r_{10}), \\ IsCpo(k;r_{10}), IsCpo(i;r), r_{10} \circlearrowleft r, IsCpo(j;r), IsCpo(j;r_{10}), \\ Rcpo(j;r), Rcpo(i;r_{10}), Rcpo(r_1;r), r_1 \circlearrowleft, \&Tm(r_{10}), \\ \Leftrightarrow, IsCpo(k;r_{10}), \\ IsCpo(k;r_{10}), \\ IsCpo(k;r_{10}), \\ IsCpo(k;r_{10}), \\ IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(j;r), \\ Rcpo(j;r), IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(j;r), \\ Rcpo(j;r), Rcpo(i;r_{10}), Rcpo(r_{1};r), r_{10} \circlearrowleft r, Rcpo(j;r), \\ Rcpo(i;r_{10}), Rcpo(r_{1};r), r_{10} \circlearrowleft Rcpo(r_{1};r), \\ Rcpo(i;r_{10}), Rcpo(r_{1};r), r_{10} \circlearrowleft Rcpo(r_{1};r), \\ Rcpo(i;r_{10}), Rcpo(r_{1};r), r_{10} \circlearrowleft Rcpo(r_{1};r), \\ Rcpo(i;r_{10}), Rcpo(r_{10};r_{10}), \\ Rcpo(i;r_{10};r_{10};r_{10};r_{10};r_{10};r_{10};r_{$$

```
29 Recursive Function Rcpo(i;r)
\Leftrightarrow , IsCpo(k; r_{10}),
r_1 \circ r_{10}, r_1 \circ r_{10},
IsCpo(k; r), r_{10}! \circlearrowleft r, Rcpo(k; r),
IsCpo(j; r_{10}), IsCpo(j; r), r_{10}! \circlearrowleft r, Rcpo(j; r),
IsCpo(i; r), IsCpo(i; r_{10}), r_1 \circ r_{10}, IsCpo(r_1; r), Rcpo(i; r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}), Rcpo(r_1; r), Rcpo(r_1;
\Leftrightarrow, IsCpo(k; r_{10}),
r_1 \mathcal{O} r_{10},
IsCpo(k;r), r_{10}! \circlearrowleft r, Rcpo(k;r),
IsCpo(j; r_{10}), IsCpo(j; r), r_{10}! \circlearrowleft r, Rcpo(j; r),
IsCpo(i;r), IsCpo(i;r_{10}), r_1 \circ r_{10}, IsCpo(r_1;r), Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}),
r_1 \circ r_{10}, r_1 \circ r_{10},
IsCpo(k;r), r_{10}! \mathring{\bigcirc} r, Rcpo(k;r),
IsCpo(j; r_{10}), IsCpo(j; r), r_{10}! \circlearrowleft r, Rcpo(j; r),
IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), r_1 \circ r_{10},
IsCpo(k;r), r_{10}! \mathcal{O}r, Rcpo(k;r),
IsCpo(j; r_{10}), IsCpo(j; r), r_{10}! \circlearrowleft r, Rcpo(j; r),
IsCpo(i;r), IsCpo(i;r_{10}), IsCpo(r_1;r), Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),
```

 \Leftrightarrow , $IsCpo(k; r_{10})$, $IsCpo(i; r_{10})$, $IsCpo(j; r_{10})$, $r_1 \circ r_{10}$,

```
IsCpo(k;r), r_{10}! \mathring{\bigcirc} r, Rcpo(k;r),
IsCpo(j;r), r_{10}! \circlearrowleft r, Rcpo(j;r),
IsCpo(i;r), IsCpo(r_1;r), Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_1 \circlearrowleft r_{10}! \circlearrowleft r,
IsCpo(k;r), Rcpo(k;r),
IsCpo(j;r), Rcpo(j;r),
IsCpo(i;r), IsCpo(r_1;r), Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_1 \circ r_{10}, r_1! \circ r_{10},
IsCpo(k; r), Rcpo(k; r),
IsCpo(j;r), Rcpo(j;r),
IsCpo(i;r), IsCpo(r_1;r), Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_1 \circ r_{10}, r_1! \circ r_{10},
IsCpo(r_1; r), IsCpo(k; r), Rcpo(k; r),
IsCpo(j;r), Rcpo(j;r),
IsCpo(i;r), Rcpo(i;r), Rcpo(r_1;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_1 \circ r_{10}, IsCpo(r_1; r),
IsCpo(k;r), r_1! \circlearrowleft r, Rcpo(k;r),
IsCpo(j;r), r_1! \circlearrowleft r, Rcpo(j;r),
IsCpo(i;r), r_1! \mathcal{O}r, Rcpo(i;r), Rcpo(r_1;r), r_1 \mathcal{D}, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_{10} = \varnothing, r_1 \circ r_{10}, IsCpo(r_1; r),
```

$$IsCpo(k;r), r_{1}! \circlearrowleft r, Rcpo(k;r),$$

$$IsCpo(j;r), r_{1}! \circlearrowleft r, Rcpo(j;r),$$

$$IsCpo(i;r), r_{1}! \circlearrowleft r, Rcpo(i;r), Rcpo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} = \varnothing, r_{1} \circlearrowleft r_{10}, IsCpo(r_{1};r),$$

$$IsCpo(k;r), r_{1}! \circlearrowleft r, Rcpo(k;r),$$

$$IsCpo(j;r), r_{1}! \circlearrowleft r, Rcpo(j;r),$$

$$IsCpo(i;r), r_{1}! \circlearrowleft r, Rcpo(i;r), Rcpo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow, IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \circlearrowleft r_{10}, IsCpo(r_{1};r),$$

$$IsCpo(k;r), r_{1}! \circlearrowleft r, Rcpo(i;r),$$

$$IsCpo(j;r), r_{1}! \circlearrowleft r, Rcpo(j;r),$$

$$IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \circlearrowleft r_{10}, IsCpo(r_{1};r),$$

$$IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \circlearrowleft r_{10}, IsCpo(r_{1};r),$$

$$IsCpo(j;r), r_{1}! \circlearrowleft r, Rcpo(i;r),$$

$$IsCpo(j;r), r_{1}! \circlearrowleft r, Rcpo(i;r),$$

$$IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \circlearrowleft r_{10}, IsCpo(r_{1};r),$$

$$IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \circlearrowleft r_{10}, IsCpo(r_{1};r),$$

$$IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \circlearrowleft r_{10}, IsCpo(r_{1};r),$$

$$IsCpo(k;r_{11}), r_{1}! \circlearrowleft r, Rcpo(k;r),$$

$$\Rightarrow , IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} = \varnothing, r_{1} \Box r_{10}, IsCpo(r_{1};r), \\ IsCpo(k;r), r_{1}! \Box r, Rcpo(k;r), \\ IsCpo(j;r), r_{1}! \Box r, Rcpo(j;r), \\ IsCpo(i;r), r_{1}! \Box r, Rcpo(i;r), r_{1} \oplus, \&Tm(r_{10}), \\ \Rightarrow , IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \Box r_{10}, IsCpo(r_{1};r), \\ IsCpo(k;r), r_{1}! \Box r, Rcpo(k;r), \\ IsCpo(k;r), r_{1}! \Box r, Rcpo(i;r), \\ IsCpo(i;r), r_{1}! \Box r, Rcpo(i;r), \\ IsCpo(k;r), Rcpo(k;r), \\ IsCpo(k;r), Rcpo(k;r), \\ IsCpo(k;r), Rcpo(k;r), \\ IsCpo(k;r), Rcpo(k;r), \\ IsCpo(i;r), Rcpo(i;r), r_{1} \oplus, \&Tm(r_{10}), \\ \Rightarrow , IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \Box r_{10}, IsCpo(r_{1};r), \\ IsCpo(k;r), Rcpo(k;r), \\ IsCpo(k;r), Rcpo(i;r), r_{1} \oplus, \&Tm(r_{10}), \\ \Rightarrow , IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \Box r_{10}, IsCpo(r_{1};r), \\ IsCpo(k;r), Rcpo(i;r), Rcpo(i;r), Rcpo(k;r), Rcpo(j;r), \\ IsCpo(k;r), Rcpo(i;r), Rcpo(k;r), Rcpo(j;r), \\ IsCpo(k;r), Rcpo(i;r), Rcpo(k;r), Rcpo(j;r_{10}), r_{1} \Box r_{10}, IsCpo(r_{1};r), \\ IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \Box r_{10}, IsCpo(r_{1};r), \\ \Rightarrow , IsCpo(k;r_{10}), IsCpo(i;r_{10}), IsCpo(j;r_{10}), r_{1} \Box r_{10}, IsCpo(r_{1};r), \\ \end{cases}$$

```
IsCpo(k;r), IsCpo(j;r), Rcpo(j;r), Rcpo(k;r),
IsCpo(i;r), Rcpo(i;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_1 \circ r_{10}, IsCpo(r_1; r),
IsCpo(j;r), Rcpo(j;r), IsCpo(k;r), Rcpo(k;r),
IsCpo(i;r), Rcpo(i;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_1 \circ r_{10}, IsCpo(r_1; r),
IsCpo(j;r), Rcpo(j;r), IsCpo(k;r), IsCpo(i;r), Rcpo(k;r), Rcpo(i;r),
r_1 \oplus \& Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_1 \circ r_{10}, IsCpo(r_1; r),
IsCpo(k;r), IsCpo(i;r), IsCpo(j;r), Rcpo(j;r), Rcpo(i;r), Rcpo(k;r),
r_1 \oplus \& Tm(r_{10}),
\Leftrightarrow, IsCpo(k; r_{10}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), r_1 \circ r_{10}, IsCpo(r_1; r),
IsCpo(k;r), IsCpo(i;r), IsCpo(j;r), Rcpo(i;r), Rcpo(j;r), Rcpo(k;r),
r_1 \oplus, \& Tm(r_{10}),
\Leftrightarrow, IsCpo(i;r), IsCpo(j;r), IsCpo(k;r), IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k;r_{10}), IsCpo(r_1;r),
r_1 \circ r_{10}, Rcpo(i; r), Rcpo(j; r), Rcpo(k; r), r_1 \oplus, &Tm(r_{10}),
```

29.10

$$, i_1 \pm i_2, r_1 \pm r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), \iff \sim, r_1 \pm r_2,$$

induction proof:

premise 1:

$$, i_1 = \varnothing, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, r_1 = r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$, $i_1! \circ r_{20}$, $i_2! \circ r_{10}$, $r_{10}! \circ r_{20}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, r_1 = \emptyset, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
 , $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$, $i_1! \circ r_{20}$, $i_2! \circ r_{10}$, $r_{10}! \circ r_{20}$,

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, r_1 \pm r_2, i_1 = \varnothing, Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$, $i_1! \circ r_{20}$, $i_2! \circ r_{10}$, $r_{10}! \circ r_{20}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_1 = \emptyset, r_1 = r_2, Repo(i_2; r_{20}),$$

$$\Leftrightarrow$$
 , $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$, $i_1! \circ r_{20}$, $i_2! \circ r_{10}$, $r_{10}! \circ r_{20}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_2 = \varnothing, r_1 = r_2, Repo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$, $i_1! \circlearrowleft r_{20}$, $i_2! \circlearrowleft r_{10}$, $r_{10}! \circlearrowleft r_{20}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, r_1 = r_2, i_2 = \emptyset, Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$, $i_1! \circ r_{20}$, $i_2! \circ r_{10}$, $r_{10}! \circ r_{20}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, r_1 = r_2, i_2 = \emptyset,$$

$$\Leftrightarrow$$
 , $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$, $i_1! \circ r_{20}$, $i_2! \circ r_{10}$, $r_{10}! \circ r_{20}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 \pm i_2, r_1 \pm r_2, r_1 \pm r_2, i_2 = \emptyset,$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circ r_{20}, i_2! \circ r_{10}, r_{10}! \circ r_{20},$$
$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, r_1 = r_2, i_2 = \emptyset, r_1 = r_2,$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, r_1 \pm r_2, i_2 = \varnothing, Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, i_2 = \varnothing, r_1 \pm r_2, Repo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, i_1 = \varnothing, r_1 \pm r_2, Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, r_1 \pm r_2, i_1 = \varnothing, Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, r_1 \pm r_2, i_1 = \varnothing, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow, i_1 = \varnothing, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1 ! \circlearrowleft r_{20}, i_2 ! \circlearrowleft r_{10}, r_{10} ! \circlearrowleft r_{20},$$
$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 = i_2, r_1 = r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), r_1 = r_2,$$

premise 2: , &SHi $\rightarrow i_1$, $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$, $i_1! \circlearrowleft r_{20}$, $i_2! \circlearrowleft r_{10}$, $r_{10}! \circlearrowleft r_{20}$, $r_{1} \circlearrowleft r_{10}$, $r_{2} \circlearrowleft r_{20}$, $i_{1} = i_{2}$, $r_{1} = r_{2}$, $Rcpo(i_{1}; r_{10})$, $Rcpo(i_{2}; r_{20})$,

$$\Leftrightarrow , \&SHi \to i_1, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 = i_2, r_1 = r_2, Repo(i_1; r_{10}), Repo(i_2; r_{20}), \implies$$

$$\begin{split} &, i_1! = \varnothing, \&SHi & \circlearrowleft_i, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft_{r_{20}}, i_2! \circlearrowleft_{r_{10}}, r_{10}! \circlearrowleft_{r_{20}}, \\ &r_1 & \circlearrowleft_{r_{10}}, r_2 & \circlearrowleft_{r_{20}}, i_1 \pm i_2, r_1 \pm r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), \\ &\Leftrightarrow, \&SHi & \circlearrowleft_i, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), \\ &i_1! & \circlearrowleft_{r_{20}}, i_2! & \circlearrowleft_{r_{10}}, r_{10}! & \circlearrowleft_{r_{20}}, \\ &r_1 & \circlearrowleft_{r_{10}}, r_2 & \circlearrowleft_{r_{20}}, i_1 \pm i_2, r_1 \pm r_2, \\ &i_1! = \varnothing, Rcpo(i_1; r_{10}), \\ &Rcpo(i_2; r_{20}), \\ &\Leftrightarrow, \&SHi & \circlearrowleft_i, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), \\ &i_1! & \circlearrowleft_{r_{20}}, i_2! & \circlearrowleft_{r_{10}}, r_{10}! & \circlearrowleft_{r_{20}}, \\ &r_1 & \circlearrowleft_{r_{10}}, r_2 & \circlearrowleft_{r_{20}}, i_1 \pm i_2, r_1 \pm r_2, \\ &i_1! & \circlearrowleft_{r_{20}}, c_1 & \circlearrowleft_{r_{20}}, i_1 \pm i_2, r_1 \pm r_2, \\ &i_1! & \circlearrowleft_{r_{20}}, c_1 & \circlearrowleft_{r_{20}}, i_1 \oplus , Rcpo(i_1; r_{10}), \\ &Rcpo(i_2; r_{20}), \\ &\Leftrightarrow, \&SHi & \circlearrowleft_i, IsCpo(i_2; r_{20}), \\ &i_1! & \circlearrowleft_{r_{20}}, r_{10}! & \circlearrowleft_{r_{20}}, \\ &r_1 & \circlearrowleft_{r_{10}}, r_2 & \circlearrowleft_{r_{20}}, i_1 \pm i_2, i_1! = \varnothing, r_1 \pm r_2, \\ &i_2! & \circlearrowleft_{r_{10}}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus, \\ &IsCpo(i_1; r_{10}), Rcpo(i_1; r_{10}), \\ &Rcpo(i_2; r_{20}), \\ &\Leftrightarrow, \&SHi & \circlearrowleft_i, IsCpo(i_2; r_{20}), \\ &i_1! & \circlearrowleft_{r_{20}}, r_{10}! & \circlearrowleft_{r_{20}}, \\ &\vdots_1! & \circlearrowleft_{r_{20}}, r_{20}! & \circlearrowleft_{r_{20}}, \\ &\vdots_1! & \circlearrowleft_{r_{20}}, r_{20}! & \circlearrowleft_{r_{20}}, \\ &\vdots_1! & \circlearrowleft_{r_{20}}, r_$$

$$\begin{split} &r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, i_{1} \pm i_{2}, i_{2} != \varnothing, r_{1} \pm r_{2}, \\ &i_{2} ! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, i_{1} \oplus, \\ &IsCpo(i_{1}; r_{10}), Rcpo(i_{1}; r_{10}), \\ &Rcpo(i_{2}; r_{20}), \\ &\Leftrightarrow , \&SHi \circlearrowleft i_{1}, IsCpo(i_{2}; r_{20}), \\ &i_{1} ! \circlearrowleft r_{20}, r_{10} ! \circlearrowleft r_{20}, \\ &r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, i_{1} \pm i_{2}, r_{1} \pm r_{2}, \\ &i_{2} ! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, i_{1} \oplus, \\ &IsCpo(i_{1}; r_{10}), i_{2} != \varnothing, Rcpo(i_{1}; r_{10}), \\ &Rcpo(i_{2}; r_{20}), \\ &\Leftrightarrow , \&SHi \circlearrowleft i_{1}, IsCpo(i_{2}; r_{20}), \\ &i_{1} ! \circlearrowleft r_{20}, r_{10} ! \circlearrowleft r_{20}, \\ &r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, i_{1} \pm i_{2}, r_{1} \pm r_{2}, \end{split}$$

$$i_2! \mathcal{O}r_{10}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$IsCpo(i_1;r_{10}), i_2 \! \mathrel{!=}\! \varnothing, Rcpo(i_1;r_{10}),$$

$$i_2 \mathop{!=} \varnothing, Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$, $IsCpo(i_2; r_{20})$,

$$i_1! \circ r_{20}, r_{10}! \circ r_{20},$$

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, r_1 = r_2,$$

$$i_2! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$IsCpo(i_1; r_{10}), i_2 != \varnothing, Repo(i_1; r_{10}),$$

$$i_2 != \varnothing, Cpo(r_{20}), r_{20} \oplus, i_2 \oplus, Repo(i_2; r_{20}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i_1, IsCpo(i_2; r_{20}),$$

$$i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, i_2 != \varnothing, r_1 \pm r_2,$$

$$i_2! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$IsCpo(i_1; r_{10}), Repo(i_1; r_{10}),$$

$$, Cpo(r_{20}), r_{20} \oplus, i_2 \oplus, Repo(i_2; r_{20}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i_1, IsCpo(i_2; r_{20}),$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, i_2 != \varnothing, r_1 \pm r_2,$$

$$i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$IsCpo(i_1; r_{10}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Repo(i_1; r_{10}),$$

$$, Cpo(r_{20}), r_{20} \oplus, i_2 \oplus, Repo(i_2; r_{20}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i_1, IsCpo(i_2; r_{20}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i_1, IsCpo(i_2; r_{20}),$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, i_2 != \varnothing, r_1 \pm r_2,$$

$$i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$IsCpo(i_1; r_{10}), i_1! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$IsCpo(i_1; r_{10}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus,$$

$$IsCpo(i_1; r_{10}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus,$$

 $Rcpo(i_1; r_{10}), i_2 \oplus, Rcpo(i_2; r_{20}),$

 \Leftrightarrow , &SHi $\circlearrowleft i_1$, $IsCpo(i_2; r_{20})$,

 $r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_2 = \emptyset, r_1 = r_2,$

$$r_{10}! \mathcal{O}r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$i_1! \circ r_{20}, r_{10}! \circ r_{20}, IsCpo(i_1; r_{10}), Cpo(r_{20}), r_{20} \oplus,$$

$$i_2! \circlearrowleft r_{10}, Rcpo(i_1; r_{10}), i_2 \oplus, Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$, $IsCpo(i_2; r_{20})$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_2 != \varnothing, r_1 = r_2,$$

$$r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus,$$

$$IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, Rcpo(i_1; r_{10}), i_2 \oplus, Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$, $IsCpo(i_2; r_{20})$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_2 != \varnothing, r_1 = r_2,$$

$$r_{10}! \mathcal{O}r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus,$$

$$IsCpo(i_1; r_{10}), i_2! \\ \circlearrowleft r_{10}, i_2 \\ \oplus, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpo(i_2; r_{20})$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_2 != \varnothing, r_1 = r_2,$$

$$r_{10}! \mathcal{O}r_{20}, Cpo(r_{10}), r_{10} \oplus,$$

$$i_1! {\circlearrowleft} r_{20}, r_{10}! {\circlearrowleft} r_{20}, i_1 {\oplus}, Cpo(r_{20}), r_{20} {\oplus}, i_2 {\oplus},$$

$$IsCpo(i_1; r_{10}), i_2! \circ r_{10}, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpo(i_2; r_{20})$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 \pm i_2, i_2 != \varnothing, r_1 \pm r_2,$$

$$r_{10}! \circ r_{20}, Cpo(r_{10}), r_{10} \oplus,$$

$$i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus, i_1 \oplus, i_2 \oplus,$$

$$IsCpo(i_1; r_{10}), i_2! \circ r_{10}, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$, $IsCpo(i_2; r_{20})$, $i_2!\bigcirc r_{10}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_2 = \emptyset, r_1 = r_2,$$

$$IsCpo(i_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}),$$

$$i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, r_{10} \oplus, Cpo(r_{20}), r_{20} \oplus,$$

$$i_1 \oplus, i_2 \oplus, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$, $IsCpo(i_2; r_{20})$, $i_2!\bigcirc r_{10}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_2 != \varnothing, r_1 = r_2,$$

$$IsCpo(i_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}),$$

$$i_1! \circ r_{20}, r_{10}! \circ r_{20}, Cpo(r_{20}),$$

$$r_{10} \oplus$$
, $r_{20} \oplus$, $i_1 \oplus$, $i_2 \oplus$, $Rcpo(i_1; r_{10})$, $Rcpo(i_2; r_{20})$,

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$, $IsCpo(i_2; r_{20})$, $i_2!\bigcirc r_{10}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, i_2 != \varnothing, r_1 = r_2,$$

$$IsCpo(i_1; r_{10}), r_{10}! \circlearrowleft r_{20}, i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20},$$

$$Cpo(r_{10}), Cpo(r_{20}),$$

$$r_{10} \oplus, r_{20} \oplus, i_1 \oplus, i_2 \oplus, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpo(i_2; r_{20})$, $i_2! \circlearrowleft r_{10}$,

$$i_1 \pm i_2, i_2 \models \varnothing, IsCpo(i_1; r_{10}), r_{10}! \circlearrowleft r_{20}, i_1! \circlearrowleft r_{20},$$

$$\begin{split} &r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} ! \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, \\ &Cpo(r_{10}), Cpo(r_{20}), \\ &r_{10} \oplus, r_{20} \oplus, i_1 \oplus, i_2 \oplus, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), \\ &\Leftrightarrow, \& SHi \circlearrowleft i_1, IsCpo(i_2; r_{20}), i_2 ! \circlearrowleft r_{10}, \\ &i_1 \pm i_2, i_2 ! = \varnothing, IsCpo(i_1; r_{10}), r_{10} ! \circlearrowleft r_{20}, i_1 ! \circlearrowleft r_{20}, \\ &r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} ! \circlearrowleft r_{20}, r_{10} = \varnothing, r_{20} = \varnothing, \\ &Cpo(r_{10}), Cpo(r_{20}), r_1 \pm r_2, \\ &r_{10} \oplus, r_{20} \oplus, i_1 \oplus, i_2 \oplus, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), \\ &1 \\ \Leftrightarrow, \& SHi \circlearrowleft i_1, IsCpo(i_2; r_{20}), i_2 ! \circlearrowleft r_{10}, \\ &i_1 \pm i_2, i_2 ! = \varnothing, IsCpo(i_1; r_{10}), r_{10} ! \circlearrowleft r_{20}, i_1 ! \circlearrowleft r_{20}, \\ &r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} ! \circlearrowleft r_{20}, \\ &Cpo(r_{10}), Cpo(r_{20}), \\ &r_{10} \oplus, r_{20} \oplus, i_1 \oplus, i_2 \oplus, \\ &r_1 \pm r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), \\ &\Leftrightarrow, \& SHi \circlearrowleft i_1, IsCpo(i_2; r_{20}), \\ &i_1 \pm i_2, i_2 ! = \varnothing, i_1 ! \circlearrowleft r_{20}, \\ &r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ &IsCpo(i_1; r_{10}), i_2 ! \circlearrowleft r_{10}, r_{10} ! \circlearrowleft r_{20}, Cpo(r_{10}), \\ &r_{10} ! \circlearrowleft r_{20}, Cpo(r_{20}), \end{split}$$

 $r_{10}\oplus, r_{20}\oplus, i_1\oplus, i_2\oplus,$

$$r_1 = r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$,

$$i_1 = i_2, i_2 != \varnothing,$$

$$r_1 = r_2, r_1 \circ r_{10}, r_2 \circ r_{20},$$

$$IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}),$$

$$IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}),$$

$$r_{10}\oplus, r_{20}\oplus, i_1\oplus, i_2\oplus,$$

$$r_1 = r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$,

$$r_1 = r_2, r_1 \circ r_{10}, r_2 \circ r_{20},$$

$$IsCpo(i_1; r_{10}), i_2! \circ r_{10}, r_{10}! \circ r_{20}, Cpo(r_{10}),$$

$$IsCpo(i_2; r_{20}), i_1! \circ r_{20}, r_{10}! \circ r_{20}, Cpo(r_{20}),$$

$$i_1 = i_2, i_2 != \varnothing, r_{10} \oplus, r_{20} \oplus, i_1 \oplus, i_2 \oplus,$$

$$r_1 \pm r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1$,

$$r_1 = r_2, r_1 \circ r_{10}, r_2 \circ r_{20},$$

$$IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}),$$

$$IsCpo(i_2; r_{20}), i_1! \circ r_{20}, r_{10}! \circ r_{20}, Cpo(r_{20}),$$

$$r_{10} \oplus, r_{20} \oplus, i_1 \models \varnothing, i_2 \models \varnothing, i_1 \oplus, i_2 \oplus, i_1 \pm i_2,$$

$$r_1 \pm r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
 $, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$

$$IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}),$$

$$IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), \&SHi \circlearrowleft i_1,$$

$$r_{10} \oplus, r_{20} \oplus, i_1 \models \varnothing, i_2 \models \varnothing, i_1 \oplus, i_2 \oplus,$$

$$i_1 \pm i_2, r_1 \pm r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
, $r_1 \pm r_2$, $r_1 \circlearrowleft r_{10}$, $r_2 \circlearrowleft r_{20}$,

$$IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}),$$

$$IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}),$$

$$r_{10} \oplus, r_{20} \oplus, i_1 \not\models \varnothing, i_2 \not\models \varnothing, i_1 \oplus, i_2 \oplus,$$

&SH
$$i \rightarrow i_1$$
,

$$i_1 = i_2, r_1 = r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
 $, r_1 \pm r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$

$$IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus,$$

$$IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}),$$

$$r_{20} \oplus, i_1 \models \varnothing, i_2 \models \varnothing, i_1 \oplus, i_2 \oplus,$$

&SH
$$i \rightarrow i_1$$
,

$$i_1 = i_2, r_1 = r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow$$
 $, r_1 \pm r_2,$

$$IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus,$$

$$IsCpo(i_2; r_{20}), i_1! \circ r_{20}, r_{10}! \circ r_{20}, Cpo(r_{20}),$$

$$r_{20} \oplus, i_1 \stackrel{!}{=} \varnothing, i_2 \stackrel{!}{=} \varnothing, i_1 \oplus, i_2 \oplus,$$

$$\&SHi \rightarrow i_1, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), \\ i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, \\ r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 = i_2, r_1 = r_2, Repo(i_1; r_{10}), Repo(i_2; r_{20}), \\ \Leftrightarrow , r_1 = r_2, \\ IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus, \\ IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), \\ r_{20} \oplus, i_1! = \varnothing, i_2! = \varnothing, i_1 \oplus, i_2 \oplus, \\ \&SHi \rightarrow i_1, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), \\ i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, \\ r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 = i_2, r_1 = r_2, \\ Repo(i_1; r_{10}), Repo(i_2; r_{20}), r_1 = r_2, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus, \\ IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), \\ r_{20} \oplus, i_1! = \varnothing, i_2! = \varnothing, i_1 \oplus, i_2 \oplus, \\ \&SHi \rightarrow i_1, i_1 = i_2, r_1 = r_2, \\ Repo(i_1; r_{10}), Repo(i_2; r_{20}), r_1 = r_2, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \Leftrightarrow, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ \end{cases}$$

 $IsCpo(i_1; r_{10}), i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}),$

 $IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}),$

$$r_{10}\oplus, r_{20}\oplus, i_1 \models \varnothing, i_2 \models \varnothing, i_1\oplus, i_2\oplus,$$

&SH
$$i \rightarrow i_1, i_1 \pm i_2, r_1 \pm r_2,$$

$$Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$

$$r_1 = r_2, i_1 = i_2, i_1 != \emptyset, i_2 != \emptyset,$$

$$r_{10}! \circ r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$IsCpo(i_2; r_{20}), i_1! \circ r_{20}, r_{10}! \circ r_{20}, Cpo(r_{20}), r_{20} \oplus,$$

$$IsCpo(i_1; r_{10}), i_2! \circ r_{10}, i_2 \oplus,$$

$$Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1, r_1\bigcirc r_{10}, r_2\bigcirc r_{20},$

$$r_1 = r_2, i_1 = i_2, i_1 = \emptyset, i_2 = \emptyset,$$

$$r_{10}! \mathcal{O}r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus,$$

$$IsCpo(i_1; r_{10}), i_2! \mathcal{O}r_{10},$$

$$Rcpo(i_1; r_{10}), i_2 \oplus, Rcpo(i_2; r_{20}), r_1 = r_2,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i_1, r_1 \circlearrowleft\! r_{10}, r_2 \circlearrowleft\! r_{20}, i_2 ! \circlearrowleft\! r_{10},$$

$$IsCpo(i_2; r_{20}), r_1 \pm r_2, i_1 \pm i_2, i_1 != \varnothing, i_2 != \varnothing,$$

$$r_{10}! \circ r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$Rcpo(i_1; r_{10}), i_2 \oplus, Rcpo(i_2; r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 ! \circlearrowleft r_{10},$

$$IsCpo(i_2; r_{20}), r_1 \pm r_2, i_1 \pm i_2, i_1 != \varnothing, i_2 != \varnothing,$$

$$r_{10}! \mathcal{O}r_{20}, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus, i_2 \oplus, i_3 \oplus, i_4 \oplus, i_4 \oplus, i_5 \oplus, i_{10} \oplus,$$

$$IsCpo(i_1; r_{10}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20},$$

$$Rcpo(i_1; r_{10}), Cpo(r_{20}), r_{20} \oplus, i_2 \oplus, Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i_1, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10},$$

$$IsCpo(i_2; r_{20}), r_1 \pm r_2, i_1 \pm i_2, i_2 != \emptyset,$$

$$IsCpo(i_1; r_{10}), i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20},$$

$$i_1 \stackrel{!}{=} \varnothing, Cpo(r_{10}), r_{10} \oplus, i_1 \oplus,$$

$$Rcpo(i_1; r_{10}), Cpo(r_{20}), r_{20} \oplus, i_2 \oplus, Rcpo(i_2; r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i_1, r_1 \bigcirc r_{10}, r_2 \bigcirc r_{20}, i_2! \bigcirc r_{10},$

$$IsCpo(i_2; r_{20}), r_1 = r_2, i_1 = i_2, i_2 != \varnothing,$$

$$IsCpo(i_1; r_{10}), i_1! \circ r_{20}, r_{10}! \circ r_{20}, i_1! = \varnothing,$$

$$Rcpo(i_1; r_{10}), Cpo(r_{20}), r_{20} \oplus, i_2 \oplus, Rcpo(i_2; r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10},$

$$IsCpo(i_2; r_{20}), r_1 = r_2, i_1 = i_2, i_1 != \varnothing,$$

$$i_1! \circ r_{20}, r_{10}! \circ r_{20}, IsCpo(i_1; r_{10}), i_2! = \varnothing,$$

$$Rcpo(i_1; r_{10}), Cpo(r_{20}), r_{20} \oplus, i_2 \oplus, Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10},$

$$IsCpo(i_2; r_{20}), r_1 \pm r_2, i_1 \pm i_2, i_1 != \emptyset,$$

$$i_1! \circ r_{20}, r_{10}! \circ r_{20}, IsCpo(i_1; r_{10}), i_2! = \varnothing,$$

$$Rcpo(i_1; r_{10}), i_2 != \varnothing, Cpo(r_{20}), r_{20} \oplus, i_2 \oplus, Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10},$

$$IsCpo(i_2; r_{20}), r_1 = r_2, i_1 = i_2, i_1 != \varnothing,$$

$$i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, IsCpo(i_1; r_{10}), i_2! = \varnothing,$$

$$Rcpo(i_1; r_{10}), i_2 != \varnothing, Rcpo(i_2; r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10},$

$$IsCpo(i_2; r_{20}), r_1 \pm r_2, i_1 \pm i_2, i_2 != \emptyset, i_1 != \emptyset,$$

$$i_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, IsCpo(i_1; r_{10}),$$

$$Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), r_1 = r_2,$$

$$\Leftrightarrow$$
, $i_1 != \varnothing$, &SHi $\circlearrowleft i_1$, $IsCpo(i_1; r_{10})$, $IsCpo(i_2; r_{20})$,

$$i_1! \circ r_{20}, i_2! \circ r_{10}, r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20},$$

$$r_1 \pm r_2, i_1 \pm i_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

conclusion:

$$, IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \circlearrowleft r_{20}, i_2! \circlearrowleft r_{10}, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 = i_2, r_1 = r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), i_1! \\ \circlearrowleft r_{20}, i_2! \\ \circlearrowleft r_{10}, r_{10}! \\ \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \pm i_2, r_1 \pm r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), r_1 \pm r_2,$$

$$, IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}),$$

 $r_{10}! \circlearrowleft r_{20}, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$

 $Rcpo(i_1; r_{10}), Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(j_2; r_{20}), \Leftrightarrow \sim, r_1 \pm r_2,$ proof:

$$, IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ Rcpo(i_1; r_{10}), Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(j_2; r_{20}), \\ \Leftrightarrow, IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), \\ i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, Rcpo(i_1; r_{10}), \\ Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(j_2; r_{20}), \\ \Leftrightarrow, IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), \\ IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, \\ Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(i_1; r_{10}), \\ Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(j_2; r_{20}), \\ \Leftrightarrow, IsCpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ IsCpo(i_2; r_{10}), Rcpo(j_2; r_{10}), Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ IsCpo(i_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i_1; r_{10}), \\ IsCpo(i_1; r_{10}), r_{10}! \circlearrowleft r_{10}!$$

$$Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(j_2; r_{20}), \\ \Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), \\ IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ i_1 \Box i_2, j_1 \Box j_2, r_1 \Box r_{10}, r_2 \Box r_{20}, \\ IsCpo(i_1; r_{10}), r_{10} \Box r_{20}, Rcpo(i_1; r_{10}), \\ IsCpo(i_1; r_{10}), IsCpo(i_2; r_{20}), r_{10} \Box r_{20}, IsCpo(j_1; r_{20}), IsCpo(i_2; r_{10}), \\ Rcpo(j_1; r_{10}), IsCpo(i_2; r_{20}), r_{10} \Box r_{20}, IsCpo(j_1; r_{20}), IsCpo(i_2; r_{10}), \\ Rcpo(i_2; r_{20}), Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}), \\ \Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), \\ IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ i_1 \Box i_2, j_1 \Box j_2, r_1 \Box r_{10}, r_2 \Box r_{20}, r_{10} \Box r_{20}, \\ i_1 = i_2, j_1 = j_2, r_1 = \emptyset, r_2 = \emptyset, r_1 = r_2, r_1 \Box r_{10}, r_2 \Box r_{20}, \\ IsCpo(i_1; r_{10}), Rcpo(i_2; r_{20}), \\ Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), \\ Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}), \\ Rcpo(j_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), \\ IsCpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ i_1 \Box i_2, j_1 \Box j_2, r_1 \Box r_{10}, r_2 \Box r_{20}, r_{10} \Box r_{20}, \\ i_1 = i_2, j_1 = j_2, r_1 = r_2, r_1 \Box r_{10}, r_2 \Box r_{20}, \\ IsCpo(i_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(i_2; r_{20}), IsCpo(i_2; r_{20}), r_{10} \Box r_{20}, r_{10} \Box r_{20}, \\ i_1 = i_2, j_1 = j_2, r_1 = r_2, r_1 \Box r_{10}, r_2 \Box r_{20}, \\ IsCpo(i_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(i_2; r_{10}), IsCpo(i_2; r_{20}), r_{10} \Box r_{20}, r_{10} \Box r_{20}, \\ r_{10} = i_2, j_1 = j_2, r_1 = r_2, r_1 \Box r_{10}, r_2 \Box r_{20}, \\ IsCpo(i_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(i_2; r_{10}), IsCpo(i_2; r_{20}), r_{10} \Box r_{20}, \\ r_{10} = i_2, j_1 = j_2, r_1 = r_2, r_1 \Box r_{10}, r_2 \Box r_{20}, \\ IsCpo(i_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(i_2; r_{20}), IsCpo(i_2; r_{20}), r_{10} \Box r_{20}, \\ r_{10} = i_1, i_2, i_1, i_2, i_2, r_{10}, r_{10}, r_{20}, \\ r_{10} = i_1, i_2, i_1, i_2, i_2$$

 $i_1 = i_2, r_1 = r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}),$

$$Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}),$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}),$$

$$IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}),$$

$$i_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$i_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$IsCpo(i_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(i_2; r_{10}), IsCpo(i_2; r_{20}), r_{10} \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, r_1 \odot r_2, Rcpo(i_1; r_{10}), Rcpo(i_2; r_{20}), r_1 \odot r_2,$$

$$Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}),$$

$$\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}),$$

$$IsCpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}),$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$IsCpo(i_1; r_{10}), r_{10} \odot r_{20}, Rcpo(i_1; r_{10}),$$

$$Rcpo(i_2; r_{20}), r_1 \odot r_2,$$

$$Rcpo(i_2; r_{20}), r_1 \odot r_2,$$

$$Rcpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_2; r_{20}),$$

$$IsCpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}),$$

$$IsCpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}),$$

$$IsCpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}),$$

$$IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(j_2; r_{20}), IsCpo(j_2; r_{20}),$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2, j_1 \odot j_2, r_1 \odot r_{10}, r_2 \odot r_{20}, r_{10} \odot r_{20},$$

$$I_1 \odot i_2,$$

 $IsCpo(i_2; r_{20}), IsCpo(j_1; r_{20}), IsCpo(j_2; r_{20}), r_{10}! \circlearrowleft r_{20}, Rcpo(i_2; r_{20}),$

$$\begin{split} r_1 &= r_2, Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}), \\ &\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), \\ IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ i_1 \circlearrowleft_{i_2}, j_1 \circlearrowleft_{j_2}, r_1 \circlearrowleft_{r_{10}}, r_2 \circlearrowleft_{r_{20}}, r_{10} \circlearrowleft_{r_{20}}, \\ i_1 &= i_2, j_1 = j_2, r_1 = r_2, r_1 \circlearrowleft_{r_{10}}, r_2 \circlearrowleft_{r_{20}}, \\ IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(j_2; r_{10}), r_{10} \circlearrowleft_{r_{20}}, \\ Rcpo(i_1; r_{20}), IsCpo(j_1; r_{20}), IsCpo(j_2; r_{20}), r_{10} \circlearrowleft_{r_{20}}, \\ Rcpo(i_2; r_{20}), IsCpo(j_1; r_{20}), IsCpo(j_2; r_{20}), \\ r_1 &= j_2, r_1 = r_2, Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}), \\ &\Leftrightarrow , IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), \\ IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ i_1 \circlearrowleft_{i_2}, j_1 \circlearrowleft_{j_2}, r_1 \circlearrowleft_{r_{10}}, r_2 \circlearrowleft_{r_{20}}, r_{10} \circlearrowleft_{r_{20}}, \\ IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(j_2; r_{10}), r_{10} \circlearrowleft_{r_{20}}, \\ Rcpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(j_2; r_{10}), r_{10} \circlearrowleft_{r_{20}}, \\ Rcpo(i_1; r_{10}), IsCpo(j_1; r_{20}), IsCpo(j_2; r_{20}), r_{10} \circlearrowleft_{r_{20}}, \\ Rcpo(j_1; r_{10}), IsCpo(j_1; r_{20}), IsCpo(j_2; r_{20}), r_{10} \circlearrowleft_{r_{20}}, \\ r_1 \circlearrowleft_{r_{10}}, r_2 \circlearrowleft_{r_{20}}, j_1 = j_2, r_1 = r_2, Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}), \\ Rcpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(j_1; r_{10}), Rcpo(j_2; r_{20}), \\ Rcpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_2; r_{20}), \\ Rcpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_2; r_{20}), \\ Rcpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ Rcpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ Rcpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ Rcpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ Rcpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}), \\ Rcpo(i_1; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_2; r_{20}),$$

```
IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(j_2; r_{10}), r_{10}! \\ \bigcirc r_{20}, Rcpo(i_1; r_{1
  IsCpo(i_2; r_{20}), IsCpo(j_1; r_{20}), IsCpo(j_2; r_{20}), r_{10}! \circ r_{20}, Rcpo(i_2; r_{20}),
  IsCpo(j_1; r_{10}), IsCpo(j_1; r_{20}), IsCpo(j_2; r_{10}), IsCpo(j_2; r_{20}), r_{10}! \circ r_{20},
  r_1 \circ r_{10}, r_2 \circ r_{20}, j_1 = j_2, r_1 = r_2,
  Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}), r_1 = r_2,
  \Leftrightarrow, IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}),
  IsCpo(i_2; r_{10}), IsCpo(j_2; r_{10}), IsCpo(i_2; r_{20}), IsCpo(j_2; r_{20}),
 i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} ! \circlearrowleft r_{20},
  i_1 = i_2, j_1 = j_2, r_1 = r_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},
  IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(j_2; r_{10}), r_{10}! \\ \bigcirc r_{20}, Rcpo(i_1; r_{1
  IsCpo(i_2; r_{20}), IsCpo(j_1; r_{20}), IsCpo(j_2; r_{20}), r_{10}! \\ \bigcirc r_{20}, Rcpo(i_2; r_{20}),
  Rcpo(j_1; r_{10}), Rcpo(j_2; r_{20}), r_1 = r_2,
 \Leftrightarrow, IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}),
 r_{10}! \circlearrowleft r_{20}, i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},
  Rcpo(i_1; r_{10}), Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(j_2; r_{20}), r_1 \pm r_2,
     , IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_1; r_{10}), IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}), IsCpo(k_1;
                                                                                                                                                                                                                                              , r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, k_1 \mathcal{O} k_2, i > j,
                                                                                         , Rcpo(k_1; r_{10}), Rcpo(i; r_{10}), Rcpo(k_2; r_{20}), Rcpo(j; r_{20}), \Leftrightarrow \sim, r_1 > r_2,
induction proof:
 premise 1:
  k_1 = \emptyset, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_1; r_{10}), IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}), IsC
```

$$\begin{split} &r_{10}|\circlearrowleft_{C}r_{20},r_{1}|\circlearrowleft_{C}r_{20},k_{1}|\circlearrowleft_{C}k_{2},i>j,\\ &Repo(k_{1};r_{10}),Repo(i;r_{10}),Repo(k_{2};r_{20}),Repo(j;r_{20}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &IsCpo(i;r_{20}),IsCpo(j;r_{20}),IsCpo(k_{1};r_{20}),\\ &r_{10}|\circlearrowleft_{C}r_{20},r_{1}|\circlearrowleft_{C}r_{10},r_{2}|\circlearrowleft_{C}r_{20},k_{1}|\circlearrowleft_{K_{2}},i>j,\\ &k_{1}=\varnothing,Repo(k_{1};r_{10}),Repo(i;r_{10}),Repo(k_{2};r_{20}),Repo(j;r_{20}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &IsCpo(i;r_{20}),IsCpo(j;r_{20}),IsCpo(k_{1};r_{20}),\\ &r_{10}|\circlearrowleft_{C}r_{20},r_{1}|\circlearrowleft_{C}r_{10},r_{2}|\circlearrowleft_{C}r_{20},k_{1}|\circlearrowleft_{K_{2}},i>j,\\ &k_{1}=\varnothing,Repo(i;r_{10}),Repo(k_{2};r_{20}),Repo(j;r_{20}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),Repo(k_{2};r_{20}),Repo(j;r_{20}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &IsCpo(i;r_{20}),IsCpo(j;r_{20}),IsCpo(k_{1};r_{20}),\\ &r_{10}|\circlearrowleft_{C}r_{20},r_{1}|\circlearrowleft_{C}r_{20},k_{1}|\circlearrowleft_{K_{2}},k_{1}|=\varnothing,i>j,\\ &IsCpo(i;r_{10}),k_{2}|\circlearrowleft_{C}r_{10},k_{2}|=\varnothing,Repo(i;r_{10}),Repo(k_{2};r_{20}),Repo(j;r_{20}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{20}),\\ &r_{10}|\circlearrowleft_{C}r_{20},r_{1}|\circlearrowleft_{C}r_{20},Repo(j;r_{20}),IsCpo(k_{1};r_{20}),\\ &r_{10}|\circlearrowleft_{C}r_{20},r_{1}|\circlearrowleft_{C}r_{20},Repo(j;r_{20}),IsCpo(k_{1};r_{20}),\\ &r_{10}|\circlearrowleft_{C}r_{20},r_{1}|\circlearrowleft_{C}r_{20},Repo(j;r_{20}),IsCpo(k_{1};r_{20}),\\ &r_{10}|\circlearrowleft_{C}r_{20},r_{1}|\circlearrowleft_{C}r_{20},Repo(j;r_{20}),IsCpo(k_{1};r_{20}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),k_{2}|\circlearrowleft_{C}r_{10},Repo(i;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_{10}),IsCpo(k_{1};r_{10}),\\ &\Leftrightarrow,IsCpo(i;r_{10}),IsCpo(j;r_{10}),IsCpo(j;r_$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j, \\ IsCpo(i; r_{10}), k_{2}! \circlearrowleft r_{10}, Repo(i; r_{10}), k_{2} = \varnothing, Repo(j; r_{20}), \\ \Leftrightarrow , IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0}, i_{0} \varPsi, j_{0} \varPsi, \\ IsCpo(i; r_{10}), Repo(i; r_{10}), \\ Repo(j; r_{20}), \\ \Leftrightarrow , IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0}, \\ IsCpo(i; r_{10}), i \circlearrowleft i_{0}, r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), \\ i_{0} \varPsi, j_{0} \varPsi, Repo(j; r_{20}), \\ \Leftrightarrow , IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0}, \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0}, \\ IsCpo(i; r_{10}), i \circlearrowleft i_{0}, r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), i_{0} = r_{1}, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, Repo(j; r_{20}), \\ IsCpo(i; r_{10}), i \circlearrowleft i_{0}, r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), i_{0} = r_{1}, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, Repo(j; r_{20}), \\ IsCpo(i; r_{10}), i \circlearrowleft i_{0}, r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), i_{0} = r_{1}, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, Repo(j; r_{20}), \\ IsCpo(i; r_{10}), i \circlearrowleft i_{0}, r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), i_{0} = r_{1}, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, Repo(j; r_{20}), \\ IsCpo(i; r_{10}), i \circlearrowleft i_{0}, r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), i_{0} = r_{1}, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, Repo(j; r_{20}), \\ IsCpo(i; r_{10}), i \circlearrowleft i_{0}, r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), i_{0} = r_{1}, \\ i \circlearrowleft i_{0}, j \circledcirc i_{0}, Repo(j; r_{20}), \\ IsCpo(i; r_{10}), i \circlearrowleft i_{0}, r_{1} \circlearrowleft r_{10}, Repo(i; r_{10}), i_{0} = r_{1}, \\ i \circlearrowleft i_{0}, i_{0} \bowtie i_{0}, r_{1} \circlearrowleft i_{$$

$$\Leftrightarrow, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_1; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \emptyset, i > j,$$

$$i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0},$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i; r_{10}),$$

$$i_{0} = r_{1}, IsCpo(j; r_{20}), i_{0} \circlearrowleft , j_{0} \circlearrowleft , Rcpo(j; r_{20}),$$

$$\Leftrightarrow, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \emptyset, i > j,$$

$$i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0},$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i; r_{10}),$$

$$IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, r_{1}! \circlearrowleft r_{20}, i_{0} = r_{1}, Rcpo(j; r_{20}), i_{0} \circlearrowleft , j_{0} \circlearrowleft ,$$

$$\Leftrightarrow, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \emptyset, i > j,$$

$$i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0},$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i; r_{10}),$$

$$IsCpo(i; r_{10}), r_{10}! \circlearrowleft r_{10}$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0}, \\ IsCpo(i; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i; r_{10}), \\ IsCpo(j; r_{20}), j \circlearrowleft j_{0}, r_{2} \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ i_{0} = r_{1}, i_{0} \circledcirc, j_{0} \circlearrowleft, \\ \Leftrightarrow, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0}, \\ IsCpo(i; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i; r_{10}), \\ IsCpo(j; r_{20}), j \circlearrowleft j_{0}, r_{2} \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ j_{0} = r_{2}, i_{0} = r_{1}, i_{0} \circledcirc, j_{0} \circlearrowleft, \\ \Leftrightarrow, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{20}), \\ IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j, \\ i \circledcirc i_{0}, j \circledcirc j_{0}, i_{0} > j_{0}, \\ IsCpo(i; r_{10}), i_{0}! \circlearrowleft r_{10}, j_{0}! \circlearrowleft r_{10}, i_{0} > j_{0}, Rcpo(i; r_{10}), \\ IsCpo(i; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(i; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20}, j_{0}! \circlearrowleft r_{20}, Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), i_{0}! \circlearrowleft r_{20},$$

 $j_0 \pm r_2, i_0 \pm r_1, i_0 \oplus, j_0 \oplus,$

$$\Leftrightarrow , IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_1; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, k_{1} = \varnothing, i > j,$$

$$i \otimes i_0, j \otimes j_0, i_0 > j_0,$$

$$IsCpo(i; r_{10}), i_0! \circ r_{10}, j_0! \circ r_{10}, Rcpo(i; r_{10}),$$

$$IsCpo(j; r_{20}), i_0! \circlearrowleft r_{20}, j_0! \circlearrowleft r_{20}, Repo(j; r_{20}),$$

$$j_0 = r_2, i_0 = r_1, i_0 > j_0, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
, $IsCpo(i; r_{10})$, $IsCpo(j; r_{10})$, $IsCpo(k_1; r_{10})$,

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, k_1 \circ k_2, k_1 = \emptyset, i > j,$$

$$i \otimes i_0, j \otimes j_0, i_0 > j_0,$$

$$IsCpo(i; r_{10}), i_0! \circlearrowleft r_{10}, j_0! \circlearrowleft r_{10}, Rcpo(i; r_{10}),$$

$$IsCpo(j; r_{20}), i_0! \circ r_{20}, j_0! \circ r_{20}, Rcpo(j; r_{20}),$$

$$j_0 = r_2, i_0 = r_1, r_1 > r_2, i_0 \oplus, j_0 \oplus,$$

$$\Leftrightarrow$$
, $IsCpo(i; r_{10})$, $IsCpo(j; r_{10})$, $IsCpo(k_1; r_{10})$,

$$IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_1;r_{20}), \\$$

$$r_{10}! \! ^{\circlearrowleft}\! r_{20}, r_{1} \! ^{\circlearrowleft}\! r_{10}, r_{2} \! ^{\circlearrowleft}\! r_{20}, k_{1} \! ^{\circlearrowleft}\! k_{2}, k_{1} \! = \! \varnothing, i \!\! > \!\! j,$$

$$IsCpo(i; r_{10}), Rcpo(i; r_{10}), Rcpo(j; r_{20}),$$

 $r_1 \gg r_2$

$$\Leftrightarrow$$
, $k_1 = \varnothing$, $IsCpo(i; r_{10})$, $IsCpo(j; r_{10})$, $IsCpo(k_1; r_{10})$,

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$\begin{split} &r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j, \\ &Rcpo(k_{1}; r_{10}), Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ &r_{1} \triangleright r_{2}, \\ &premise \ 2: \\ , \&SHi \rightarrow k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ &IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j, \\ &Rcpo(k_{1}; r_{10}), Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ \Leftrightarrow , \&SHi \rightarrow k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ &IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j, \\ &Rcpo(k_{1}; r_{10}), Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), i \triangleright j, \ \Rightarrow \\ &k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ &IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i \triangleright j, \\ &Rcpo(k_{1}; r_{10}), Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ &\Leftrightarrow , k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ &scpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &\Leftrightarrow , k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ &Rcpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &\Leftrightarrow , k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(k_{1}; r_{20}), \\ &\Leftrightarrow , k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &\Leftrightarrow , k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &\Leftrightarrow , k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &\Leftrightarrow , k_{1}! = \varnothing, Cpo(r_{10}), r_{10} \circlearrowleft k_{1} \circlearrowleft, Rcpo(k_{1}; r_{10}), \\ &Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ &Rcpo(k_{1}; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(k_{1}; r_{10$$

$$\Leftrightarrow, k_{1} \models \varnothing, \&SHi \mathring{O}k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10} \mathring{\circlearrowleft} r_{20}, r_{1} \mathring{\circlearrowleft} r_{10}, r_{2} \mathring{\circlearrowleft} r_{20}, k_{1} \mathring{\circlearrowleft} k_{2}, i \triangleright j, \\ r_{10} \mathring{\circlearrowleft} r_{20}, Cpo(r_{10}), r_{10} \oplus, k_{1} \oplus, \\ Rcpo(k_{1}; r_{10}), \\ Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ \Leftrightarrow, k_{1} \models \varnothing, \&SHi \mathring{\circlearrowleft} k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10} \mathring{\circlearrowleft} r_{20}, r_{1} \mathring{\circlearrowleft} r_{10}, r_{2} \mathring{\circlearrowleft} r_{20}, k_{1} \mathring{\circlearrowleft} k_{2}, i \triangleright j, \\ r_{10} \mathring{\circlearrowleft} r_{20}, Cpo(r_{10}), r_{10} \oplus, k_{1} \oplus, \\ IsCpo(k_{1}; r_{10}), k_{2} \models \varnothing, Rcpo(k_{1}; r_{10}), \\ IsCpo(i; r_{10}), Rcpo(i; r_{10}), \\ Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ \Leftrightarrow, k_{1} \models \varnothing, \&SHi \mathring{\circlearrowleft} k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10} \mathring{\circlearrowleft} r_{20}, r_{1} \mathring{\circlearrowleft} r_{10}, r_{2} \mathring{\circlearrowleft} r_{20}, k_{1} \mathring{\circlearrowleft} k_{2}, i \triangleright j, \\ r_{10} \mathring{\circlearrowleft} r_{20}, Cpo(r_{10}), r_{10} \oplus, k_{1} \oplus, \\ IsCpo(k_{1}; r_{10}), k_{2} \models \varnothing, Rcpo(k_{1}; r_{10}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ k_{2} \models \varnothing, Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ Rcpo(k_{2}; r_{20}), Rcpo(k_{2}; r_{20}), Rcpo(k_{2}; r_{20}), Rcpo(k_{2}; r_{20}), Rcpo(k_{2}; r_{20}), \\ Rcpo(k_{2}; r_{20}), Rcpo(k_{2}; r_{20}), Rcpo(k_{2}$$

$$\Leftrightarrow, k_{1}!=\varnothing, \&SHi \mathring{C}k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ r_{10}! \mathring{C}r_{20}, r_{1} \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i > j, \\ r_{10}! \mathring{C}r_{20}, Cpo(r_{10}), r_{10} \oplus, k_{1} \oplus, \\ IsCpo(k_{1};r_{10}), k_{1}! \mathring{C}r_{20}, r_{10}! \mathring{C}r_{20}, Rcpo(k_{1};r_{10}), \\ IsCpo(i;r_{10}), i! \mathring{C}r_{20}, r_{10}! \mathring{C}r_{20}, Rcpo(i;r_{10}), \\ Cpo(r_{20}), r_{20} \oplus, k_{2} \oplus, Rcpo(k_{2};r_{20}), Rcpo(j;r_{20}), \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi \mathring{C}k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ r_{10}! \mathring{C}r_{20}, r_{1} \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i > j, \\ IsCpo(k_{1};r_{10}), r_{10}! \mathring{C}r_{20}, Cpo(r_{10}), r_{10} \oplus, k_{1} \oplus, \\ IsCpo(k_{1};r_{10}), k_{1}! \mathring{C}r_{20}, r_{10}! \mathring{C}r_{20}, Cpo(r_{20}), r_{20} \oplus, Rcpo(k_{1};r_{10}), \\ IsCpo(i;r_{10}), i! \mathring{C}r_{20}, r_{10}! \mathring{C}r_{20}, Rcpo(i;r_{10}), \\ k_{2} \oplus, Rcpo(k_{2};r_{20}), Rcpo(j;r_{20}), \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi \mathring{C}k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ r_{10}! \mathring{C}r_{20}, r_{1} \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i > j, \\ r_{10}! \mathring{C}r_{20}, Cpo(r_{10}), r_{10} \oplus, k_{1} \oplus, \\ r_{10}! \mathring{C}r_{20}, Cpo(r_{20}), r_{20} \oplus, \\ IsCpo(k_{1};r_{10}), k_{2}! \mathring{C}r_{10}, Rcpo(k_{1};r_{10}), \\ \\ IsCpo(k_{1};r_{10}), k_{2}! \mathring{C}r_{10}, Rcpo(k_{1};r_{10}), \\ \\ \\ IsCpo(k_{1};r_{10}), k_{2}! \mathring{C}r_{10},$$

 $IsCpo(i; r_{10}), k_2! \circlearrowleft r_{10}, Rcpo(i; r_{10}),$

$$k_2 \oplus$$
, $Rcpo(k_2; r_{20})$, $Rcpo(j; r_{20})$,

$$\Leftrightarrow \ , k_1 \mathop{!=} \varnothing, \, \&S\!\mathit{Hi} \, \circlearrowleft \! k_1, \\ IsCpo(i;r_{10}), \\ IsCpo(j;r_{10}), \\ IsCpo(k_1;r_{10}), \\$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, k_1 \circlearrowleft k_2, i > j,$$

$$r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus, k_1 \oplus,$$

$$r_{10}! \circ r_{20}, Cpo(r_{20}), r_{20} \oplus, k_2 \oplus,$$

$$IsCpo(k_1; r_{10}), k_2! \circlearrowleft r_{10}, Rcpo(k_1; r_{10}),$$

$$IsCpo(i; r_{10}), k_2! \circlearrowleft r_{10}, Rcpo(i; r_{10}),$$

$$Rcpo(k_2; r_{20}), Rcpo(j; r_{20}),$$

$$\Leftrightarrow$$
, $k_1 != \varnothing$, &SHi $\bigcirc k_1$, $IsCpo(i; r_{10})$, $IsCpo(j; r_{10})$, $IsCpo(k_1; r_{10})$,

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, k_1 \circ k_2, i > j,$$

$$r_{10}! \circ r_{20}, k_1! \circ r_{10}, Cpo(r_{10}), r_{10} \oplus,$$

$$r_{10}! \circ r_{20}, k_1! \circ r_{20}, k_1 \oplus, Cpo(r_{20}), r_{20} \oplus, k_2 \oplus,$$

$$Rcpo(k_1; r_{10}), Rcpo(i; r_{10}), Rcpo(k_2; r_{20}), Rcpo(j; r_{20}),$$

$$\Leftrightarrow , k_1 \mathrel{!=} \varnothing, \&SHi \, \circlearrowleft k_1, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_1; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, k_1 \circlearrowleft k_2, i > j,$$

$$r_{10}! \circ r_{20}, k_1! \circ r_{10}, Cpo(r_{10}), r_{10} \oplus, r_1! \circ r_{10},$$

$$r_{10}! \mathcal{O} r_{20}, k_1! \mathcal{O} r_{20}, Cpo(r_{20}), r_{20} \oplus, r_2! \mathcal{O} r_{20},$$

$$k_1 \oplus, k_2 \oplus,$$

$$IsCpo(k_1; r_{10}), r_1! \circlearrowleft r_{10}, Repo(k_1; r_{10}),$$

$$IsCpo(i; r_{10}), r_1! \circlearrowleft r_{10}, Repo(i; r_{10}),$$

$$IsCpo(k_2; r_{20}), r_1! \circlearrowleft r_{20}, Repo(k_2; r_{20}),$$

$$IsCpo(j; r_{20}), r_1! \circlearrowleft r_{20}, Repo(j; r_{20}), r_1 \oplus, r_2 \oplus, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow , k_1! = \varnothing, \& SHi \circlearrowleft k_1, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_1; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, k_1 \circlearrowleft k_2, i > j,$$

$$r_{10}! \circlearrowleft r_{20}, k_1! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus, r_2! \circlearrowleft r_{20},$$

$$k_1 \oplus, k_2 \oplus, r_1 \oplus,$$

$$IsCpo(k_1; r_{10}), r_1! \circlearrowleft r_{10}, Repo(k_1; r_{10}),$$

$$IsCpo(k_1; r_{10}), r_1! \circlearrowleft r_{10}, Repo(k_1; r_{10}),$$

$$IsCpo(k_2; r_{20}), r_1! \circlearrowleft r_{20}, Repo(k_2; r_{20}),$$

$$IsCpo(k_2; r_{20}), r_1! \circlearrowleft r_{20}, Repo(j; r_{20}), r_2 \oplus, r_1 \ominus, r_2 \ominus,$$

$$\Leftrightarrow, k_1! = \varnothing, \& SHi \circlearrowleft k_1, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_1; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, k_1 \circlearrowleft k_2, i > j,$$

$$r_{10}! \circlearrowleft r_{20}, k_1! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_1! \circlearrowleft r_{10},$$

$$r_{10}! \circlearrowleft r_{20}, k_1! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_1! \circlearrowleft r_{10},$$

$$r_{10}! \circlearrowleft r_{20}, k_1! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus, r_2! \circlearrowleft r_{20},$$

$$k_1 \oplus, k_2 \oplus, r_1 \oplus,$$

 $IsCpo(k_1; r_{10}), r_2! \circlearrowleft r_{10}, Rcpo(k_1; r_{10}),$

$$IsCpo(i; r_{10}), r_{2}! \circlearrowleft r_{20}, Repo(i; r_{10}),$$

$$IsCpo(k_{2}; r_{20}), r_{2}! \circlearrowleft r_{20}, Repo(k_{2}; r_{20}),$$

$$IsCpo(j; r_{20}), r_{2}! \circlearrowleft r_{20}, Repo(j; r_{20}), r_{2} \oplus, r_{1} \ominus, r_{2} \ominus,$$

$$\Leftrightarrow , k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j,$$

$$r_{10}! \circlearrowleft r_{20}, k_{1}! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1}! \circlearrowleft r_{10},$$

$$r_{10}! \circlearrowleft r_{20}, k_{1}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus, r_{2}! \circlearrowleft r_{20},$$

$$k_{1} \oplus, k_{2} \oplus, r_{1} \oplus, r_{2} \oplus,$$

$$IsCpo(k_{1}; r_{10}), r_{2}! \circlearrowleft r_{10}, Repo(k_{1}; r_{10}),$$

$$IsCpo(i; r_{10}), r_{2}! \circlearrowleft r_{10}, Repo(i; r_{10}),$$

$$IsCpo(i; r_{20}), r_{2}! \circlearrowleft r_{20}, Repo(i; r_{20}), r_{1} \ominus, r_{2} \ominus,$$

$$\Leftrightarrow, k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}),$$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j,$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{20}, Cpo(r_{20}), r_{1} \oplus, r_{20} \oplus, r_{2} \oplus,$$

$$k_{1} \oplus, k_{2} \oplus,$$

$$Repo(k_{1}; r_{10}), Repo(i; r_{10}), Repo(k_{2}; r_{20}), Repo(j; r_{20}), r_{1} \ominus, r_{2} \ominus,$$

 $IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$ $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, k_1 \circlearrowleft k_2, i > j,$

 $r_{10}! \circlearrowleft r_{20}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus,$

 $r_{10}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus, r_{2} \oplus, k_{1} \oplus, k_{2} \oplus,$

 $r_1 \circ r_{10}, r_2 \circ r_{20}, k_1 \circ k_2,$

 $Rcpo(k_1; r_{10}), Rcpo(i; r_{10}), Rcpo(k_2; r_{20}), Rcpo(j; r_{20}), r_1 \ominus, r_2 \ominus,$

 $\Leftrightarrow , k_1 != \varnothing, \&SHi \circlearrowleft k_1, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_1; r_{10}),$

 $IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$

 $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, k_1 \circlearrowleft k_2, i > j,$

 $i! \circlearrowleft r_{10}, j! \circlearrowleft r_{10}, i > j, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus,$

 $i! \mathring{\circlearrowleft} r_{20}, j! \mathring{\circlearrowleft} r_{20}, Cpo(r_{20}), r_{20} \oplus, r_{2} \oplus, k_{1} \oplus, k_{2} \oplus,$

 $r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, k_1 \mathcal{O} k_2,$

 $Rcpo(k_1; r_{10}), Rcpo(i; r_{10}), Rcpo(k_2; r_{20}), Rcpo(j; r_{20}), r_1 \ominus, r_2 \ominus,$

$$\Leftrightarrow, k_{1}!=\varnothing, \&SHi \mathring{C}k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ r_{10}! \mathring{C}r_{20}, r_{1} \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i>j, \\ i! \mathring{C}r_{10}, j! \mathring{C}r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, \\ i! \mathring{C}r_{20}, j! \mathring{C}r_{20}, Cpo(r_{20}), r_{20} \oplus, r_{2} \oplus, k_{1} \oplus, k_{2} \oplus, \\ r_{1} \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i>j, \\ Rcpo(k_{1};r_{10}), Rcpo(i;r_{10}), Rcpo(k_{2};r_{20}), Rcpo(j;r_{20}), r_{1} \oplus, r_{2} \oplus, \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi \mathring{C}k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ r_{10}! \mathring{C}r_{20}, r_{1} \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i>j, \\ r_{10}! \mathring{C}r_{20}, k_{1}! \mathring{C}r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, \\ r_{10}! \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i>j, \\ Rcpo(k_{1};r_{10}), Rcpo(i;r_{10}), Rcpo(k_{2};r_{20}), Rcpo(j;r_{20}), r_{1} \ominus, r_{2} \ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ r_{10}! \mathring{C}r_{20}, k_{1}! \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i>j, \\ r_{10}! \mathring{C}r_{20}, k_{1}! \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i>j, \\ r_{10}! \mathring{C}r_{20}, k_{1}! \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i>j, \\ r_{10}! \mathring{C}r_{20}, k_{1}! \mathring{C}r_{10}, r_{2} \mathring{C}r_{20}, k_{1} \mathring{C}k_{2}, i>j, \\ r_{10}! \mathring{C}r_{20}, k_{1}! \mathring{C}r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, \\ r_{10}! \mathring{C}r_{20}, k_{1}! \mathring{C}r_{20}, Cpo(r_{20}), r_{20} \oplus, r_{2} \oplus, k_{1} \oplus, k_{2} \oplus, \\ \&SHi \rightarrow k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{20}), \\ IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ IsCpo(i;r_{20}), IsCpo(j;r_{20}), I$$

$$\begin{split} &r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j, \\ &Rcpo(k_{1}; r_{10}), Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), r_{1} \circlearrowleft, r_{2} \circlearrowleft, \\ &\Leftrightarrow , k_{1}! = \varnothing, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ &IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j, \\ &r_{10}! \circlearrowleft r_{20}, k_{1}! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, \\ &r_{10}! \circlearrowleft r_{20}, k_{1}! \circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus, r_{2} \oplus, k_{1} \oplus, k_{2} \oplus, \\ \&SHi \to k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ &IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j, \\ &Rcpo(k_{1}; r_{10}), Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), i > j, r_{1} \ominus, r_{2} \ominus, \\ &\Leftrightarrow , k_{1}! = \varnothing, \&SHi \circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ &IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ &r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j, \\ &r_{1} \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j, \\ &r_{1} \circlearrowleft r_{20}, r_{2} \circlearrowleft r_{20}, Cpo(r_{20}), r_{2} ! = \varnothing, r_{20} \oplus, k_{1} \oplus, k_{2} \oplus, \\ &r_{1}! \circlearrowleft r_{20}, r_{2} \circlearrowleft r_{20}, Cpo(r_{20}), r_{2} ! = \varnothing, r_{20} \oplus, k_{1} \oplus, k_{2} \oplus, \\ &r_{1}! \circlearrowleft r_{20}, Rcpo(i; r_{10}), Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ &r_{1}! \circlearrowleft r_{20}, r_{2} \circlearrowleft r_{20}, Cpo(r_{20}), r_{2}! = \varnothing, r_{20} \oplus, k_{1} \oplus, k_{2} \oplus, \\ &r_{1}! \circlearrowleft r_{20}, Rcpo(i; r_{10}), Rcpo(i; r_{10}), Rcpo(k_{2}; r_{20}), Rcpo(j; r_{20}), \\ &r_{1}! \circlearrowleft r_{20}, Rcpo(i; r_{10}), Rcpo(i; r_{10}), Rcpo(i; r_{20}), Rcpo(j; r_{20}), \\ &r_{1}! \circlearrowleft r_{20}, Rcpo(i; r_{10}), Rcpo(i; r_{10}), Rcpo(i; r_{20}), Rcpo(j; r_{20}), \\ &r_{1}! \circlearrowleft r_{20}, Rcpo(i; r_{20}), Rcpo(i; r_{20}), Rcpo(j; r_{20}), \\ &r_{1}! \circlearrowleft r_{20}, Rcpo(i; r_{20}), Rcpo(i; r_{20}), Rcpo(j; r_{20}), \\ &r_{1}! \circlearrowleft r_{20}, Rcpo(i; r_{20}), Rcpo(i; r_{20}), Rcpo(i; r_{20}), \\ &r_{20}! \sim Rcpo(i; r_{20}), Rcpo(i; r_{20}),$$

 \Leftrightarrow , $k_1 \models \varnothing$, &SHi $\circlearrowleft k_1$, $IsCpo(i; r_{10})$, $IsCpo(j; r_{10})$, $IsCpo(k_1; r_{10})$,

 $r_1 \oplus, r_2 \oplus, i > j, r_1 \ominus, r_2 \ominus,$

$$IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}), \\ r_{10}!\circlearrowleft r_{20}, r_{1}\circlearrowleft r_{10}, r_{2}\circlearrowleft r_{20}, k_{1}\circlearrowleft k_{2}, i > j, \\ r_{1}\circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, \\ r_{1}!\circlearrowleft r_{20}, r_{2}\circlearrowleft r_{20}, Cpo(r_{20}), r_{20} \oplus, k_{1} \oplus, k_{2} \oplus, \\ IsCpo(k_{1}; r_{10}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(k_{1}; r_{10}), \\ IsCpo(i; r_{10}), Rcpo(i; r_{10}), \\ IsCpo(k_{2}; r_{20}), Rcpo(k_{2}; r_{20}), \\ IsCpo(j; r_{20}), Rcpo(j; r_{20}), \\ IsCpo(j; r_{20}), Rcpo(j; r_{20}), \\ r_{1} \oplus, r_{2} \oplus, i > j, r_{1} \ominus, r_{2} \ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_{1}; r_{20}), \\ r_{10}!\circlearrowleft r_{20}, r_{1}\circlearrowleft r_{10}, r_{2}\circlearrowleft r_{20}, k_{1}\circlearrowleft k_{2}, i > j, \\ r_{1}\circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, \\ r_{1}!\circlearrowleft r_{20}, r_{2}\circlearrowleft r_{20}, Cpo(r_{20}), r_{20}\oplus, k_{1}\oplus, k_{2}\oplus, \\ IsCpo(k_{1}; r_{10}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(k_{1}; r_{10}), \\ IsCpo(k_{2}; r_{20}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(i; r_{10}), \\ IsCpo(j; r_{20}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(j; r_{20}), \\ r_{1}!=\varnothing, r_{2}!=\varnothing, r_{1}\oplus, r_{2}\oplus, i > j, r_{1}\ominus, r_{2}\ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(k_{1}; r_{10}), r_{1}!=\varnothing, r_{2}\oplus, i > j, r_{1}\ominus, r_{2}\ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(k_{1}; r_{10}), r_{1}!=\varnothing, r_{2}\oplus, i > j, r_{1}\ominus, r_{2}\ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(k_{1}; r_{10}), r_{1}!=\varnothing, r_{2}\oplus, i > j, r_{1}\ominus, r_{2}\ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(k_{1}; r_{10}), r_{1}!=\varnothing, r_{2}\oplus, i > j, r_{1}\ominus, r_{2}\ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(k_{1}; r_{10}), r_{1}!=\varnothing, r_{2}\oplus, i > j, r_{1}\ominus, r_{2}\ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(j; r_{10}), IsCpo(k_{1}; r_{10}), \\ IsCpo(k_{1}; r_{10}), r_{1}!=\varnothing, r_{2}\oplus, i > j, r_{1}\ominus, r_{2}\ominus, \\ \Leftrightarrow, k_{1}!=\varnothing, k_{2}, \&SHi\circlearrowleft k_{1}, IsCpo(i; r_{10}), IsCpo(i;$$

 $IsCpo(i; r_{20}), IsCpo(j; r_{20}), IsCpo(k_1; r_{20}),$

$$\begin{split} &r_{10}!\circlearrowleft r_{20}, r_{1}\circlearrowleft r_{10}, r_{2}\circlearrowleft r_{20}, k_{1}\circlearrowleft k_{2}, i > j, \\ &r_{1}\circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, \\ &r_{1}!\circlearrowleft r_{20}, r_{2}\circlearrowleft r_{20}, Cpo(r_{20}), r_{20}\oplus, k_{1}\oplus, k_{2}\oplus, \\ &IsCpo(k_{1};r_{10}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(k_{1};r_{10}), \\ &IsCpo(i;r_{10}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(i;r_{10}), \\ &IsCpo(k_{2};r_{20}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(k_{2};r_{20}), \\ &IsCpo(j;r_{20}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(j;r_{20}), \\ &IsCpo(j;r_{20}), r_{1}!=\varnothing, r_{2}!=\varnothing, Rcpo(j;r_{20}), \\ &i>j, r_{1}!=\varnothing, r_{2}!=\varnothing, r_{1}\oplus, r_{2}\oplus, r_{1}\ominus, r_{2}\ominus, \\ &\Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ &IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ &r_{1}\circlearrowleft r_{10}, Cpo(r_{10}), r_{1}\odot\oplus, \\ &r_{1}\circlearrowleft r_{10}, Cpo(r_{10}), r_{1}\odot\oplus, \\ &IsCpo(k_{1};r_{10}), Rcpo(k_{1};r_{10}), \\ &IsCpo(i;r_{10}), Rcpo(i;r_{10}), \\ &IsCpo(i;r_{20}), Rcpo(i;r_{20}), \\ &i>j, \\ &\Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ &IsCpo(i;r_{20}), Rcpo(j;r_{20}), \\ &i>j, \\ &\Leftrightarrow, k_{1}!=\varnothing, \&SHi\circlearrowleft k_{1}, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}), \\ &IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}), \\ &IsCpo(i;r_{20}), IsCpo(i;r_{20}), IsCpo(k_{1};r_{20}), \\ &IsCpo(i;r_{20}), IsCpo(i;r_{20}), IsCpo(k_{1};r_{20}), \\ &IsCpo(i;r_{20}), IsCpo(i;r_{20}), IsCpo(i;r_{20}), IsCpo(i;r_{20}), \\ &IsCpo(i;r_{20}), IsCpo(i;r_{20}), IsCpo(i;r_{20}), IsCpo(i;r$$

 $r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, k_1 \circ k_2, i > j,$

$$Rcpo(k_{1};r_{10}), Rcpo(i;r_{10}), Rcpo(k_{2};r_{20}), Rcpo(j;r_{20}), i > j,$$

$$conclusion:$$

$$, IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}),$$

$$IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j,$$

$$Rcpo(k_{1};r_{10}), Rcpo(i;r_{10}), Rcpo(k_{2};r_{20}), Rcpo(j;r_{20}), \Leftrightarrow ,$$

$$IsCpo(i;r_{10}), IsCpo(j;r_{10}), IsCpo(k_{1};r_{10}),$$

$$IsCpo(i;r_{20}), IsCpo(j;r_{20}), IsCpo(k_{1};r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, k_{1} \circlearrowleft k_{2}, i > j,$$

 $Rcpo(k_1; r_{10}), Rcpo(i; r_{10}), Rcpo(k_2; r_{20}), Rcpo(j; r_{20}), i > j,$

30 Addition

30.1 Definition

$$,i+j:r, \iff, @r,i \otimes i_0,j \otimes j_0, r \otimes r_0, Rcpo(i_0;r_0), Rcpo(j_0;r_0), i_0 \oplus, j_0 \oplus, r_0 \oplus, \\$$

30.2 Swap

30.2.1 Operator

30.2.2 Recursive Function

$$,i+j:r,R(m),\iff,R(m),i+j:r,$$
 $,i+j:r,Rc(m;n),\iff,Rc(m;n),i+j:r,$

30.2.3 Propositions

$$, i+j:r, m=n, \Leftrightarrow, m=n, i+j:r,$$

$$, i+j:r, m=\varnothing, \Leftrightarrow, m=\varnothing, i+j:r,$$

$$, i+j:r, m\circlearrowleft n, \Leftrightarrow, m\circlearrowleft n, i+j:r,$$

$$, i+j:r, m\leadsto n, \Leftrightarrow, m\leadsto n, i+j:r,$$

$$, i+j:r, m!=n, \Leftrightarrow, m!=n, i+j:r,$$

$$, i+j:r, m!=\varnothing, \Leftrightarrow, m!=\varnothing, i+j:r,$$

$$, i+j:r, m!\circlearrowleft n, \Leftrightarrow, m!\circlearrowleft n, i+j:r,$$

$$, i+j:r, m!\circlearrowleft n, \Leftrightarrow, m!\circlearrowleft n, i+j:r,$$

$$, i+j:r, m!\leadsto n, \Leftrightarrow, m!\leadsto n, i+j:r,$$

$$,i+j:r,m!=n,\iff,m!=n,i+j:r,$$
 $,i+j:r,m!>n,\iff,m!>n,i+j:r,$

30.2.4 Itself

$$\begin{split} ,i_1+j:r_1,i_2+j:r_2, &\iff ,i_2+j:r_2,i_1+j:r_1,\\ ,i_1+j_1:r_1,i_2+j_2:r_2, &\iff ,i_2+j_2:r_2,i_1+j_1:r_1,\\ ,i+j:r_1,i+j:r_2, &\iff ,i+j:r_2,i+j:r_1, \end{split}$$

30.2.5 Rcpo

$$\begin{split} , IsCpo(m;n), i! \circlearrowleft n, j! \circlearrowleft n, i+j:r, Rcpo(m;n), \\ \Leftrightarrow , IsCpo(m;n), i! \circlearrowleft n, j! \circlearrowleft n, Rcpo(m;n), i+j:r, \end{split}$$

30.2.6 The same operand

Skip

30.3 General property

$$, \Leftrightarrow , i+j:r,r \mathbb{Q},$$

proof:

,

$$\Leftrightarrow \ , @r, i \otimes i_0, j \otimes j_0, r \otimes r_0, i_0 \oplus, j_0 \oplus, r \oplus, r_0 \oplus,$$

$$\Leftrightarrow$$
, $\bigcirc r$, $i \bigcirc i_0$, $j \bigcirc j_0$, $r \bigcirc r_0$, $i_0 \bigcirc$, $j_0 \bigcirc$, $r \bigcirc$, & $Tm(r_0)$,

$$\Leftrightarrow$$
, $\bigcirc r$, $IsCpo(i; r)$, $IsCpo(j; r)$, $i \bigcirc i_0$, $j \bigcirc j_0$, $r \bigcirc r_0$, $r \bigcirc q$,

```
30 Addition
```

$$i_0 \oplus, j_0 \oplus, \&Tm(r_0),$$

$$\Leftrightarrow$$
, $\bigcirc r$, $i \bigcirc i_0$, $j \bigcirc j_0$, $r \bigcirc r_0$, $r \bigcirc$,

 $IsCpo(i_0; r_0), IsCpo(j_0; r_0), i_0 \oplus, j_0 \oplus, \&Tm(r_0),$

$$\Leftrightarrow$$
, $\bigcirc r$, $i \bigcirc i_0$, $j \bigcirc j_0$, $r \bigcirc r_0$, $r \bigcirc$,

 $IsCpo(i_0; r_0), IsCpo(j_0; r_0), Rcpo(i_0; r_0), Rcpo(j_0; r_0), i_0 \oplus, j_0 \oplus, \&Tm(r_0),$

$$\Leftrightarrow , @r, i @i_0, j @j_0, r @r_0, r @,$$

 $IsCpo(i_0; r_0), IsCpo(j_0; r_0), Rcpo(i_0; r_0), Rcpo(j_0; r_0), i_0 \oplus, j_0 \oplus, r_0 \oplus, r_0$

$$\Leftrightarrow$$
, $\bigcirc r$, $i \bigcirc i_0$, $j \bigcirc j_0$, $r \bigcirc r_0$, $r \bigcirc$,

 $Rcpo(i_0; r_0), Rcpo(j_0; r_0), i_0 \oplus, j_0 \oplus, r_0 \oplus,$

$$\Leftrightarrow$$
 $, i + j : r, r \oplus,$

$$,i+j:r,\otimes,\Leftrightarrow,\otimes,$$

$$, i + j : r_1, i + j : r_2, \iff \sim, r_1 \pm r_2,$$

$$, i + j : r_1, i + j : r_2,$$

$$\Leftrightarrow$$
, $\bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, Rcpo(i_1; r_{10}), Rcpo(j_1; r_{10}), i_1 \bigcirc j_1 \bigcirc r_{10} \bigcirc$,

$$\bigcirc r_2, i \bigcirc i_2, j \bigcirc j_2, r_2 \bigcirc r_{20}, Repo(i_2; r_{20}), Repo(j_2; r_{20}), i_2 \bigcirc j_2 \bigcirc r_{20} \bigcirc r_{20}$$

$$\Leftrightarrow$$
, $\bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10},$

$$IsCpo(i_1; r_{10}), Rcpo(i_1; r_{10}),$$

$$IsCpo(j_1; r_{10}), Rcpo(j_1; r_{10}),$$

$$i_1 \oplus, j_1 \oplus, r_{10} \oplus, \bigcirc r_2, i \ominus i_2, j \ominus j_2, r_2 \ominus r_{20},$$

$$IsCpo(i_2; r_{20}), Rcpo(i_2; r_{20}),$$

 $IsCpo(j_2; r_{20}), Rcpo(j_2; r_{20}), i_2 \oplus, j_2 \oplus, r_{20} \oplus,$ $\Leftrightarrow , @r_1, i \otimes i_1, j \otimes j_1, r_1 \otimes r_{10}, @r_2, i \otimes i_2, j \otimes j_2, r_2 \otimes r_{20},$ $IsCpo(i_1; r_{10}), Rcpo(i_1; r_{10}),$ $IsCpo(j_1; r_{10}), Rcpo(j_1; r_{10}),$ $IsCpo(i_2; r_{20}), Rcpo(i_2; r_{20}),$ $IsCpo(j_2; r_{20}), Rcpo(j_2; r_{20}), i_1 \oplus, j_1 \oplus, r_{10} \oplus, i_2 \oplus, j_2 \oplus, r_{20} \oplus,$ \Leftrightarrow , $\bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, \bigcirc r_2, i \bigcirc i_2, j \bigcirc j_2, r_2 \bigcirc r_{20},$ $IsCpo(i_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i_1; r_{10}),$ $IsCpo(j_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(j_1; r_{10}),$ $IsCpo(i_2; r_{20}), Rcpo(i_2; r_{20}),$ $IsCpo(j_2; r_{20}), Rcpo(j_2; r_{20}), i_1 \oplus, j_1 \oplus, r_{10} \oplus, i_2 \oplus, j_2 \oplus, r_{20} \oplus,$ \Leftrightarrow , $\bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, \bigcirc r_2, i \bigcirc i_2, j \bigcirc j_2, r_2 \bigcirc r_{20},$ $IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), r_{10}! \circ r_{20},$ $i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$ $Rcpo(i_1; r_{10}), Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(j_2; r_{20}),$ $i_1 \oplus, j_1 \oplus, r_{10} \oplus, i_2 \oplus, j_2 \oplus, r_{20} \oplus,$ $\Leftrightarrow , @r_1, i \otimes i_1, j \otimes j_1, r_1 \otimes r_{10}, @r_2, i \otimes i_2, j \otimes j_2, r_2 \otimes r_{20},$ $IsCpo(i_1; r_{10}), IsCpo(j_1; r_{10}), IsCpo(i_1; r_{20}), IsCpo(j_1; r_{20}), r_{10}! \circ r_{20},$ $i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$

 $Rcpo(i_1; r_{10}), Rcpo(j_1; r_{10}), Rcpo(i_2; r_{20}), Rcpo(j_2; r_{20}), r_1 \pm r_2,$

 $\Leftrightarrow, i_1 \pm i_2, @r, i_1 \otimes i_{10}, j \otimes j_0, r \otimes r_0, i_2 \otimes i_{20}, IsCpo(i_{20}; r_0), i_{10} \pm i_{20}, i_{20} \otimes,$

 $IsCpo(i_{10}; r_0), Rcpo(i_{10}; r_0), i_{10} \oplus,$

 $IsCpo(j_0; r_0), Rcpo(j_0; r_0), j_0 \oplus, r_0 \oplus,$

$$\Leftrightarrow ,i_1{=}i_2, @r, i_1{\otimes}i_{10}, j{\otimes}j_0, r{\otimes}r_0, i_2{\otimes}i_{20},$$

$$IsCpo(i_{10}; r_0), IsCpo(i_{20}; r_0), i_{10} = i_{20}, Rcpo(i_{10}; r_0), i_{10} \oplus, i_{20} \oplus,$$

$$IsCpo(j_0; r_0), Rcpo(j_0; r_0), j_0 \oplus, r_0 \oplus,$$

$$\Leftrightarrow ,i_1 \pm i_2, @r, i_1 @i_{10}, j @j_0, r @r_0, i_2 @i_{20},$$

$$IsCpo(i_{10}; r_0), IsCpo(i_{20}; r_0), i_{10} = i_{20}, Rcpo(i_{20}; r_0), i_{10} \oplus, i_{20} \oplus,$$

$$IsCpo(j_0; r_0), Rcpo(j_0; r_0), j_0 \oplus, r_0 \oplus,$$

$$\iff$$
, $i_1 \pm i_2$, $\bigcirc r$, $j \bigcirc j_0$, $r \bigcirc r_0$, $i_2 \bigcirc i_{20}$, $i_1 \bigcirc i_{10}$, $IsCpo(i_{10}; r_0)$, $i_{10} \pm i_{20}$, $i_{10} \bigcirc y$,

$$IsCpo(i_{20}; r_0), Rcpo(i_{20}; r_0), i_{20} \oplus,$$

$$IsCpo(j_0; r_0), Rcpo(j_0; r_0), j_0 \oplus, r_0 \oplus,$$

$$\Leftrightarrow ,i_1 \pm i_2, @r, j \otimes j_0, r \otimes r_0, i_2 \otimes i_{20},$$

$$IsCpo(i_{20}; r_0), Rcpo(i_{20}; r_0),$$

$$IsCpo(j_0; r_0), Rcpo(j_0; r_0), i_{20} \oplus, j_0 \oplus, r_0 \oplus,$$

$$\Leftrightarrow ,i_1 \pm i_2, @r, i_2 @i_{20}, j @j_0, r @r_0,$$

$$Rcpo(i_{20}; r_0), Rcpo(j_0; r_0), i_{20} \oplus, j_0 \oplus, r_0 \oplus,$$

$$\Leftrightarrow$$
, $i_1 = i_2$, $i_2 + j : r$,

$$, k = \emptyset, i + k : r, \Leftrightarrow \sim, i = r,$$

$$, k = \emptyset, i + k : r,$$

$$\Leftrightarrow , k = \varnothing, @r, r @r_0, i @i_0, k @k_0, Rcpo(i_0; r_0), Rcpo(k_0; r_0), r_0 @, i_0 @, k_0 @,$$

$$\Leftrightarrow$$
, $k = \emptyset$, $\bigcirc r$, $r \bigcirc r_0$, $i \bigcirc i_0$, $k \bigcirc k_0$,

$$IsCpo(i_0; r_0), k_0! \circlearrowleft r_0, k_0 = \varnothing, Rcpo(i_0; r_0), Rcpo(k_0; r_0), r_0 \oplus, i_0 \oplus, k_0 \oplus,$$

$$\Leftrightarrow$$
, $k = \emptyset$, $\bigcirc r$, $r \bigcirc r_0$, $i \bigcirc i_0$, $k \bigcirc k_0$,

$$IsCpo(i_0; r_0), k_0! \circ r_0, Rcpo(i_0; r_0), k_0 = \varnothing, Rcpo(k_0; r_0), r_0 \oplus, i_0 \oplus, k_0 \oplus,$$

$$\Leftrightarrow$$
, $k = \emptyset$, $\bigcirc r$, $r \bigcirc r_0$, $i \bigcirc i_0$, $k \bigcirc k_0$,

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r_0 \oplus, i_0 \oplus, k_0 \oplus,$$

$$\Leftrightarrow$$
, $k = \emptyset$, $\bigcirc r$, $r \bigcirc r_0$, $i \bigcirc i_0$, $k \bigcirc k_0$,

$$IsCpo(i_0; r_0), i \circlearrowleft i_0, r \circlearrowleft r_0, Rcpo(i_0; r_0), r_0 \circledast, i_0 \circledast, k_0 \circledast,$$

$$\Leftrightarrow$$
, $k = \emptyset$, $\bigcirc r$, $r \bigcirc r_0$, $i \bigcirc i_0$, $k \bigcirc k_0$,

$$IsCpo(i_0;r_0), i \circlearrowleft i_0, r \circlearrowleft r_0, Rcpo(i_0;r_0), i = r, r_0 \circledast, i_0 \circledast, k_0 \circledast,$$

$$\Leftrightarrow$$
, $k = \emptyset$, $\bigcirc r$, $r \bigcirc r_0$, $i \bigcirc i_0$, $k \bigcirc k_0$,

$$IsCpo(i_0; r_0), Rcpo(i_0; r_0), r_0 \oplus, i_0 \oplus, k_0 \oplus, i \pm r,$$

$$\Leftrightarrow$$
, $k = \emptyset$, $i + k : r$, $i = r$,

$$, i+j:r, i \textcircled{@}, j \textcircled{@}, \iff, \textcircled{o}r, r \textcircled{o}r_0, Rcpo(i;r_0), Rcpo(j;r_0), i \textcircled{@}, j \textcircled{@}, r_0 \textcircled{@},$$

$$, i+j:r, i \textcircled{@}, \iff, \textcircled{o}r, r \textcircled{o}r_0, j \textcircled{o}j_0, Rcpo(i;r_0), Rcpo(j_0;r_0), i \textcircled{@}, j_0 \textcircled{@}, r_0 \textcircled{@},$$

$$, i+j:r, j \textcircled{@}, \iff, \textcircled{o}r, r \textcircled{o}r_0, i \textcircled{o}i_0, Rcpo(i_0;r_0), Rcpo(j;r_0), i_0 \textcircled{@}, j \textcircled{@}, r_0 \textcircled{@},$$

30.4 Additive commutativity

$$, i+j:r, \iff , j+i:r,$$

proof:

$$, i+j:r,$$

$$\Leftrightarrow , \circledcirc r, i \circledcirc i_0, j \circledcirc j_0, r \circledcirc r_0, Rcpo(i_0; r_0), Rcpo(j_0; r_0), i_0 \circledcirc, j_0 \circledcirc, r_0 \circledcirc,$$

$$\Leftrightarrow$$
, $\bigcirc r, i \bigcirc i_0, j \bigcirc j_0, r \bigcirc r_0,$

$$IsCpo(i_0; r_0), IsCpo(j_0; r_0), Rcpo(i_0; r_0), Rcpo(j_0; r_0), i_0 \oplus, j_0 \oplus, r_0 \oplus,$$

$$\Leftrightarrow$$
, $\bigcirc r$, $i \bigcirc i_0$, $j \bigcirc j_0$, $r \bigcirc r_0$,

$$IsCpo(i_0; r_0), IsCpo(j_0; r_0), Rcpo(j_0; r_0), Rcpo(i_0; r_0), i_0 \oplus, j_0 \oplus, r_0 \oplus, r_0$$

$$\Leftrightarrow , @r, i @i_0, j @j_0, r @r_0, Rcpo(j_0; r_0), Rcpo(i_0; r_0), i_0 @, j_0 @, r_0 @,$$

$$\Leftrightarrow$$
, $\bigcirc r, j \bigcirc j_0, i \bigcirc i_0, r \bigcirc r_0, Rcpo(j_0; r_0), Rcpo(i_0; r_0), j_0 \bigcirc i_0 \bigcirc r_0 \bigcirc r_0$

$$\Leftrightarrow \ , j+i:r,$$

$$, i + j : r_1, j + i : r_2, \iff \sim, r_1 \pm r_2,$$

$$, i + j : r_1, j + i : r_2,$$

$$\Leftrightarrow$$
 , $i + j : r_1, i + j : r_2,$

$$\Leftrightarrow$$
 , $i + j : r_1, i + j : r_2, r_1 \pm r_2,$

$$\Leftrightarrow$$
 , $i + j : r_1, j + i : r_2, r_1 = r_2,$

30.5 Additive associativity

$$, i+j:r_1,r_1+k:r,r_1 @, \Leftrightarrow, j+k:r_1,r_1+i:r,r_1 @, \\ \text{proof:} \\ , i+j:r_1,r_1+k:r,r_1 @, \\ \Leftrightarrow, \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, Rcpo(i_0;r_{10}), Rcpo(j_0;r_{10}), i_0 \oplus, j_0 \oplus, r_{10} \oplus, \\ \otimes r, k \otimes k_0, r \otimes r_0, Rcpo(r_1;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_0 \oplus, k_0 \oplus, \\ \Leftrightarrow, \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, \\ IsCpo(i_0;r_{10}), Rcpo(i_0;r_{10}), \\ IsCpo(j_0;r_{10}), Rcpo(j_0;r_{10}), i_0 \oplus, j_0 \oplus, r_{10} \oplus, \odot r, k \otimes k_0, r \otimes r_0, \\ IsCpo(r_1;r_0), Rcpo(r_1;r_0), \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_0 \oplus, k_0 \oplus, \\ \Leftrightarrow, \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, \odot r, k \otimes k_0, r \otimes r_0, \\ IsCpo(i_0;r_{10}), Rcpo(i_0;r_{10}), \\ IsCpo(j_0;r_{10}), Rcpo(i_0;r_{10}), \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), i_0 \oplus, j_0 \oplus, r_{10} \oplus, r_1 \oplus, r_0 \oplus, k_0 \oplus, \\ \Leftrightarrow, \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, \otimes r, k \otimes k_0, r \otimes r_0, \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), i_0 \oplus, j_0 \oplus, r_{10} \oplus, r_1 \oplus, r_0 \oplus, k_0 \oplus, \\ \Leftrightarrow, \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, \otimes r, k \otimes k_0, r \otimes r_0, \\ IsCpo(i_0;r_{10}), r_0! \otimes r_{10}, Rcpo(i_0;r_{10}), \\ IsCpo(i_0;r_{10}), r_0! \otimes r_{10}, Rcpo(j_0;r_{10}), \\ IsCpo(r_1;r_0), Rcpo(r_1;r_0), \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus, \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus, \\ \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus, \\ \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus, \\ \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus, \\ \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus, \\ \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus, \\ \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus, \\ \\ IsCpo(k_0;r_0), Rcpo(k_0;r_0), r_1 \oplus, r_1 \oplus$$

\Leftrightarrow <1>

 $Rcpo(i_0; r_0), Rcpo(j_0; r_0), Rcpo(k_0; r_0),$

```
r_1 \oplus \& Tm(r_{10}),
\Leftrightarrow , @r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, @r, k \otimes k_0, r \otimes r_0,
IsCpo(i_0; r_{10}), IsCpo(j_0; r_{10}), IsCpo(k_0; r_{10}),
IsCpo(i_0; r_0), IsCpo(j_0; r_0), IsCpo(k_0; r_0), IsCpo(r_1; r_0), r_1 \circ r_{10},
Rcpo(j_0; r_0), Rcpo(k_0; r_0), Rcpo(i_0; r_0),
r_1 \oplus \& Tm(r_{10}),
\Leftrightarrow, \bigcirc r_1, i \bigcirc i_0, j \bigcirc j_0, r_1 \bigcirc r_{10}, \bigcirc r, k \bigcirc k_0, r \bigcirc r_0,
IsCpo(i_0; r_{10}), IsCpo(j_0; r_{10}), IsCpo(k_0; r_{10}),
IsCpo(i_0; r_0), IsCpo(j_0; r_0), IsCpo(k_0; r_0), IsCpo(r_1; r_0), r_1 \circ r_{10},
Rcpo(j_0; r_{10}), Rcpo(k_0; r_{10}), Rcpo(r_1; r_0), Rcpo(i_0; r_0),
r_1 \oplus \& Tm(r_{10}),
\Leftrightarrow, \bigcirc r_1, i \bigcirc i_0, j \bigcirc j_0, r_1 \bigcirc r_{10}, \bigcirc r, k \bigcirc k_0, r \bigcirc r_0,
IsCpo(j_0; r_{10}), r_0! \circ r_{10}, Rcpo(j_0; r_{10}),
IsCpo(k_0; r_{10}), r_0! \circ r_{10}, Rcpo(k_0; r_{10}),
IsCpo(r_1; r_0), Rcpo(r_1; r_0),
IsCpo(i_0; r_0), Rcpo(i_0; r_0),
r_1 \oplus \& Tm(r_{10}),
\Leftrightarrow, \bigcirc r_1, i \bigcirc i_0, j \bigcirc j_0, r_1 \bigcirc r_{10}, \bigcirc r, k \bigcirc k_0, r \bigcirc r_0,
IsCpo(j_0; r_{10}), r_0! \circ r_{10}, Rcpo(j_0; r_{10}),
IsCpo(k_0; r_{10}), r_0! \circ r_{10}, Rcpo(k_0; r_{10}),
```

```
IsCpo(r_1; r_0), Rcpo(r_1; r_0),
IsCpo(i_0; r_0), Rcpo(i_0; r_0),
r_1 \oplus, r_{10} \oplus,
< 1 >
\Leftrightarrow , @r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, @r, k \otimes k_0, r \otimes r_0,
IsCpo(j_0; r_{10}), r_0! \circ r_{10}, Rcpo(j_0; r_{10}),
IsCpo(k_0; r_{10}), r_0! \circ r_{10}, Rcpo(k_0; r_{10}),
IsCpo(r_1; r_0), Rcpo(r_1; r_0),
IsCpo(i_0; r_0), Rcpo(i_0; r_0),
r_1 \oplus, r_{10} \oplus, i_0 \oplus, j_0 \oplus, r_0 \oplus, k_0 \oplus,
\Leftrightarrow, \bigcirc r_1, j \bigcirc j_0, r_1 \bigcirc r_{10}, k \bigcirc k_0,
IsCpo(j_0; r_{10}), Rcpo(j_0; r_{10}),
IsCpo(k_0; r_{10}), Rcpo(k_0; r_{10}), j_0 \oplus, k_0 \oplus, r_{10} \oplus, \odot r, r \oplus r_0, i \oplus i_0,
IsCpo(r_1; r_0), Rcpo(r_1; r_0),
IsCpo(i_0; r_0), Rcpo(i_0; r_0),
r_1 \oplus, i_0 \oplus, r_0 \oplus,
\Leftrightarrow, \bigcirc r_1, j \bigcirc j_0, r_1 \bigcirc r_{10}, k \bigcirc k_0, Rcpo(j_0; r_{10}), Rcpo(k_0; r_{10}), j_0 \bigcirc, k_0 \bigcirc, r_{10} \bigcirc,
\bigcirc r, r \bigcirc r_0, i \bigcirc i_0, Rcpo(r_1; r_0), Rcpo(i_0; r_0), r_1 \bigcirc i_0 \bigcirc r_0 \bigcirc r_0
\Leftrightarrow , j + k : r_1, r_1 + i : r, r_1 \oplus,
```

$$, i + j : r, r + k : r_1, r \oplus, j + k : r, r + i : r_2, r \oplus, \iff \sim, r_1 \pm r_2,$$
 proof:
$$, i + j : r, r + k : r_1, r \oplus, j + k : r, r + i : r_2, r \oplus,$$

$$\Leftrightarrow , i + j : r, r + k : r_1, r \oplus, i + j : r, r + k : r_2, r \oplus,$$

$$\Leftrightarrow , i + j : r_3, r_3 + k : r_1, r_3 \oplus, i + j : r_4, r_4 + k : r_2, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_3 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_1 \pm r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_3, i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_4, r_3 \pm r_4, r_4 + k : r_1, r_4 + k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow , i + j : r_4, r_3 \pm r_4, r_4 + k : r_4,$$

30.6 Additive monotonicity

$$, i > j, i + k : r_1, j + k : r_2, \iff \sim, r_1 > r_2,$$

$$, i > j, i + k : r_1, j + k : r_2,$$

$$\Leftrightarrow$$
, $i>j$, $@r_1$, $r_1@r_{10}$, $i@i_0$, $k@k_1$, $Rcpo(i_0; r_{10})$, $Rcpo(k_1; r_{10})$, $i_0@$, $r_{10}@$, $k_1@$,

$$\bigcirc r_2, r_2 \bigcirc r_{20}, j \bigcirc j_0, k \bigcirc k_2, Rcpo(j_0; r_{20}), Rcpo(k_2; r_{20}), j_0 \bigcirc r_{20} \bigcirc k_2 \bigcirc ,$$

$$\Leftrightarrow$$
 $, i>j, @r_1, r_1@r_{10}, i@i_0, k@k_1,$

$$IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), IsCpo(k_1; r_{10}), Rcpo(k_1; r_{10}), i_0 \oplus, r_{10} \oplus, k_1 \oplus,$$

```
\bigcirc r_2, r_2 \bigcirc r_{20}, j \bigcirc j_0, k \bigcirc k_2,
```

$$IsCpo(j_0; r_{20}), Rcpo(j_0; r_{20}), IsCpo(k_2; r_{20}), Rcpo(k_2; r_{20}), j_0 \oplus, r_{20} \oplus, k_2 \oplus,$$

$$\Leftrightarrow , i > j, @r_1, r_1 @r_{10}, i @i_0, k @k_1, @r_2, r_2 @r_{20}, j @j_0, k @k_2,$$

$$IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), IsCpo(k_1; r_{10}), Rcpo(k_1; r_{10}),$$

$$IsCpo(j_0; r_{20}), Rcpo(j_0; r_{20}), IsCpo(k_2; r_{20}), Rcpo(k_2; r_{20}),$$

$$i_0 \oplus, r_{10} \oplus, k_1 \oplus, j_0 \oplus, r_{20} \oplus, k_2 \oplus,$$

$$\Leftrightarrow ,i > j, @r_1, r_1 @r_{10}, i @i_0, k @k_1, @r_2, r_2 @r_{20}, j @j_0, k @k_2,$$

$$IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i_0; r_{10}), IsCpo(k_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(k_1; r_{10}),$$

$$IsCpo(j_0; r_{20}), Rcpo(j_0; r_{20}), IsCpo(k_2; r_{20}), Rcpo(k_2; r_{20}),$$

$$i_0 \oplus, r_{10} \oplus, k_1 \oplus, j_0 \oplus, r_{20} \oplus, k_2 \oplus,$$

$$\Leftrightarrow ,i > j, @r_1, r_1 @r_{10}, i @i_0, k @k_1, @r_2, r_2 @r_{20}, j @j_0, k @k_2,$$

$$IsCpo(i_0; r_{10}), IsCpo(k_1; r_{10}), r_{10}! \circlearrowleft r_{20},$$

$$IsCpo(j_0; r_{20}), IsCpo(k_2; r_{20}),$$

$$Rcpo(i_0; r_{10}), Rcpo(k_1; r_{10}), Rcpo(j_0; r_{20}), Rcpo(k_2; r_{20}),$$

$$i_0 \oplus, r_{10} \oplus, k_1 \oplus, j_0 \oplus, r_{20} \oplus, k_2 \oplus,$$

$$\Leftrightarrow$$
, $i>j$, $@r_1$, $r_1@r_{10}$, $i@i_0$, $k@k_1$, $@r_2$, $r_2@r_{20}$, $j@j_0$, $k@k_2$,

$$IsCpo(i_0; r_{10}), IsCpo(j_0; r_{10}), IsCpo(k_1; r_{10}),$$

$$IsCpo(i_0; r_{20}), IsCpo(j_0; r_{20}), IsCpo(k_2; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, k_1 \circlearrowleft k_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_0 > j_0,$$

$$Rcpo(i_0; r_{10}), Rcpo(k_1; r_{10}), Rcpo(j_0; r_{20}), Rcpo(k_2; r_{20}),$$

$$i_0 \textcircled{@}, r_{10} \textcircled{@}, k_1 \textcircled{@}, j_0 \textcircled{@}, r_{20} \textcircled{@}, k_2 \textcircled{@},$$

$$\Leftrightarrow, i > j, @r_1, r_1 @r_{10}, i @i_0, k @k_1, @r_2, r_2 @r_{20}, j @j_0, k @k_2,$$

$$IsCpo(i_0; r_{10}), IsCpo(j_0; r_{10}), IsCpo(k_1; r_{10}),$$

$$IsCpo(i_0; r_{20}), IsCpo(j_0; r_{20}), IsCpo(k_2; r_{20}),$$

$$r_{10}! \circlearrowleft r_{20}, k_1 \circlearrowleft k_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_0 > j_0,$$

$$Rcpo(i_0; r_{10}), Rcpo(k_1; r_{10}), Rcpo(j_0; r_{20}), Rcpo(k_2; r_{20}), r_1 > r_2,$$

$$i_0 \oplus, r_{10} \oplus, k_1 \oplus, j_0 \oplus, r_{20} \oplus, k_2 \oplus,$$

$$\Leftrightarrow, i > j, @r_1, r_1 @r_{10}, i @i_0, k @k_1, @r_2, r_2 @r_{20}, j @j_0, k @k_2,$$

$$IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i_0; r_{10}), IsCpo(k_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(k_1; r_{10}),$$

$$IsCpo(j_0; r_{20}), Rcpo(j_0; r_{20}), IsCpo(k_2; r_{20}), Rcpo(k_2; r_{20}),$$

$$i_0 \oplus$$
, $r_{10} \oplus$, $k_1 \oplus$, $j_0 \oplus$, $r_{20} \oplus$, $k_2 \oplus$, $r_1 > r_2$,

$$\Leftrightarrow$$
, $i>j$, $@r_1$, $r_1@r_{10}$, $i@i_0$, $k@k_1$,

$$IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}), IsCpo(k_1; r_{10}), Rcpo(k_1; r_{10}), i_0 \oplus, r_{10} \oplus, k_1 \oplus,$$

$$@r_2, r_2 \otimes r_{20}, j \otimes j_0, k \otimes k_2, IsCpo(j_0; r_{20}), Rcpo(j_0; r_{20}), IsCpo(k_2; r_{20}), Rcpo(k_2; r_{20}), Rcpo(k_2$$

$$j_0 \oplus, r_{20} \oplus, k_2 \oplus, r_1 \gg r_2,$$

$$\Leftrightarrow$$
, $i>j$, $@r_1$, $r_1@r_{10}$, $i@i_0$, $k@k_1$, $Rcpo(i_0; r_{10})$, $Rcpo(k_1; r_{10})$, $i_0@$, $r_{10}@$, $k_1@$,

$$\bigcirc r_2, r_2 \bigcirc r_{20}, j \bigcirc j_0, k \bigcirc k_2, Rcpo(j_0; r_{20}), Rcpo(k_2; r_{20}), j_0 \bigcirc, r_{20} \bigcirc, k_2 \bigcirc, r_1 > r_2,$$

$$\Leftrightarrow$$
, $i>j$, $i+k: r_1, j+k: r_2, r_1>r_2$,

$$, k! = \emptyset, i + k : r, \Leftrightarrow \sim, r > i,$$

proof:

$$, k = \emptyset, i + k : r,$$

$$\Leftrightarrow$$
, $@m, m = \varnothing, k! = \varnothing, i + k : r, m @,$

$$\Leftrightarrow$$
, $@m, m = \varnothing, k! = \varnothing, k > m, i + k : r, m@,$

$$\Leftrightarrow$$
, $@m, m = \varnothing, k! = \varnothing, k > m, i + k : r, i + m : r_1, r_1 @, m @,$

$$\Leftrightarrow$$
, $\bigcirc m, m = \emptyset, k! = \emptyset, k > m, i + k : r, i + m : r_1, r > r_1, r_1 \oplus, m \oplus,$

$$\Leftrightarrow$$
 , $\bigcirc m, k != \varnothing, k > m, i + k : r, m = \varnothing, i + m : r_1, r > r_1, r_1 \oplus, m \oplus,$

$$\Leftrightarrow , @m, k != \varnothing, k > m, i+k : r, m = \varnothing, i+m : r_1, i = r_1, r > r_1, r_1 @, m @,$$

$$\Leftrightarrow$$
 , $\bigcirc m, k \models \varnothing, k \triangleright m, i + k : r, m = \varnothing, i + m : r_1, i = r_1, r \triangleright i, r_1 \oplus, m \oplus,$

$$\Leftrightarrow$$
, $@m, m = \varnothing, k! = \varnothing, i + k : r, i + m : r_1, r_1 @, m @, r > i,$

$$\Leftrightarrow$$
, $k!=\emptyset$, $i+k:r,r>i$,

$$,i_1>j_1,i_2>j_2,i_1+i_2:r_1,j_1+j_2:r_2, \iff \sim,r_1>r_2,$$

$$,i_1>j_1,i_2>j_2,i_1+i_2:r_1,j_1+j_2:r_2,$$

$$\Leftrightarrow$$
 $,i_1>j_1,i_2>j_2,i_1+i_2:r_1,i_1+j_2:r_3,r_3@,j_1+j_2:r_2,$

$$\Leftrightarrow$$
 $,i_1>j_1,i_2>j_2,i_2+i_1:r_1,j_2+i_1:r_3,j_1+j_2:r_2,r_3\oplus,$

$$\Leftrightarrow$$
 $,i_1>j_1,i_2>j_2,i_2+i_1:r_1,j_2+i_1:r_3,r_1>r_3,j_1+j_2:r_2,r_3\oplus,$

$$\Leftrightarrow$$
 $,i_2>j_2,i_1+i_2:r_1,i_1>j_1,i_1+j_2:r_3,j_1+j_2:r_2,r_1>r_3,r_3\oplus,$

$$\Leftrightarrow$$
 $,i_2>j_2,i_1+i_2:r_1,i_1>j_1,i_1+j_2:r_3,j_1+j_2:r_2,r_3>r_2,r_1>r_3,r_3\oplus,$

$$\Leftrightarrow$$
 $,i_2>j_2,i_1+i_2:r_1,i_1>j_1,i_1+j_2:r_3,j_1+j_2:r_2,r_1>r_3,r_3>r_2,r_1>r_2,r_3\oplus,$

 \Leftrightarrow $,i_1>j_1,i_2>j_2,i_1+i_2:r_1,j_1+j_2:r_2,r_1>r_2,$

31 Recursive Function Rcpm(i;j;r)

31.1 Definition of IsCpm(i;j;r)

$$, IsCpm(i; j; r), \Leftrightarrow , i! \circlearrowleft r, j! \circlearrowleft r, r = \varnothing,$$

31.2 Property of IsCpm(i;j;r)

$$, IsCpm(i;j;r), \Leftrightarrow , IsCpo(i;r), IsCpo(j;r),$$
 $, IsCpm(i;j;r), \Leftrightarrow , IsCpm(j;i;r),$
 $, ©r, \Leftrightarrow \sim, IsCpm(i;j;r),$

31.3 Swap of IsCpm(i;j;r)

```
, IsCpm(i;j;r), Cpo(r), r \oplus, \Leftrightarrow, Cpo(r), r \oplus, IsCpm(i;j;r),
, IsCpm(i;j;r), \&SHi \circlearrowleft i, \Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r),
, IsCpm(i;j;r), \&SHi \circlearrowleft j, \Leftrightarrow, \&SHi \circlearrowleft j, IsCpm(i;j;r),
, IsCpm(i;j;r), \&SHi \circlearrowleft m, \Leftrightarrow, \&SHi \circlearrowleft m, IsCpm(i;j;r),
, IsCpm(i;j;r), Rcpo(j;r), \Leftrightarrow \sim, IsCpm(i;j;r),
, IsCpo(m;r), IsCpm(i;j;r), Rcpo(m;r), \Leftrightarrow, IsCpo(m;r), Rcpo(m;r), IsCpm(i;j;r),
, IsCpo(m;r_1), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), Rcpo(m;r_1), \Leftrightarrow
, IsCpo(m;r_1), r_1! \circlearrowleft r_2, Rcpo(m;r_1), IsCpm(i;j;r_2),
```

31.4 Definition of Rcpm(i;j;r)

$$, Rcpm(i;j;r), \iff , if(i=\varnothing) - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ , j \otimes j_0, Rcpo(j_0;r), \end{matrix} \right] - \left[\begin{matrix} , \\ ,$$

31.5 Property of Rcpm(i;j;r)

$$,i=\varnothing,Rcpm(i;j;r), \;\Leftrightarrow\; ,i=\varnothing,\\ ,i!=\varnothing,Rcpm(i;j;r), \;\Leftrightarrow\; ,i!=\varnothing, j\circledcirc j_0,Rcpo(j_0;r), j_0\circledcirc, i\boxdot,Rcpm(i;j;r),\\ ,j=\varnothing,Rcpm(i;j;r), \;\Leftrightarrow\; ,j=\varnothing,R(i),\\ induction \;\; proof:\\ premise 1:\\ ,i=\varnothing,j=\varnothing,Rcpm(i;j;r),\\ \Leftrightarrow\; ,j=\varnothing,i=\varnothing,\\ \Leftrightarrow\; ,j=\varnothing,i=\varnothing,\\ \Leftrightarrow\; ,j=\varnothing,i=\varnothing,R(i),\\ \Leftrightarrow\; ,i=\varnothing,j=\varnothing,R(i),\\ premise 2:\\ ,\&SHi\rightarrow i,j=\varnothing,R(i),\\ premise 3:\\ ,\&SHi\rightarrow i,j=\varnothing,R(i),\\ premise 4:\\ ,\&SHi\rightarrow i,j=\varnothing,R(i),\\ premise 5:\\ ,\&SHi\rightarrow i,j=\varnothing,R(i),\\ premise 5:\\ ,\&SHi\rightarrow i,j=\varnothing,R(i),\\ premise 7:\\ ,\&SHi\rightarrow i,j=\varnothing,R(i),\\ premise 8:\\ i!=\varnothing,\&SHi,j=\varnothing,Rcpm(i;j;r),\\ premise 9:\\ ,\&SHi,j=\varnothing,i!=\varnothing,j\otimes j_0,Rcpo(j_0;r),j_0,k_0,Rcpm(i;j;r),\\ premise 9:\\ pr$$

```
\Leftrightarrow, i!=\varnothing, &SHi\bigcirc i, j=\varnothing, R(i),
conclusion:
, j = \varnothing, Rcpm(i; j; r), \Leftrightarrow , j = \varnothing, R(i),
                                  IsCpm(i; j; r), Rcpm(i; j; r), \Leftrightarrow \sim, i = \varnothing, r = \varnothing,
induction proof:
premise 1:
, i = \varnothing, IsCpm(i; j; r), Rcpm(i; j; r),
\Leftrightarrow, IsCpm(i; j; r), i = \varnothing, Rcpm(i; j; r),
\Leftrightarrow, IsCpm(i; j; r), i = \emptyset,
\Leftrightarrow, IsCpm(i; j; r), i = \emptyset, i = \emptyset, r = \emptyset,
\Leftrightarrow, i = \emptyset, IsCpm(i; j; r), Rcpm(i; j; r), i = \emptyset, r = \emptyset,
premise 2:
, \&SHi \rightarrow i, IsCpm(i; j; r), Rcpm(i; j; r), \Leftrightarrow
, \&SHi \rightarrow i, IsCpm(i; j; r), Rcpm(i; j; r), i = \varnothing, r = \varnothing, \Rightarrow
, i != \varnothing, \&SHi \circlearrowleft i, IsCpm(i; j; r), Rcpm(i; j; r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r), i!=\varnothing, j \otimes j_0, Rcpo(j_0;r), j_0 \otimes i \oplus Rcpm(i;j;r),
\Leftrightarrow, i!=\varnothing, j\otimes j_0,
IsCpo(j_0;r), i! \circlearrowleft r, \&SHi \circlearrowleft i, IsCpm(i;j;r), Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r),
\Leftrightarrow, i = \emptyset, j \otimes j_0, IsCpo(j_0; r), i! \circ r, Rcpo(j_0; r), j_0 \otimes i \oplus r,
&SHi \rightarrow i, IsCpm(i; j; r), Rcpm(i; j; r),
\Leftrightarrow , i!=\varnothing, j\otimes j_0, IsCpo(j_0;r), i! \circ r, Rcpo(j_0;r), j_0 \oplus i \oplus r,
```

&SH $i \rightarrow i, IsCpm(i; j; r), Rcpm(i; j; r), i = \emptyset, r = \emptyset,$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), i != \varnothing, j \otimes j_0, Rcpo(j_0;r), j_0 \otimes, i \oplus, \\ Rcpm(i;j;r), i = \varnothing, r = \varnothing, \\ \Leftrightarrow, i != \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), Rcpm(i;j;r), i = \varnothing, r = \varnothing, \\ conclusion: \\ , IsCpm(i;j;r), Rcpm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Rcpm(i;j;r), i = \varnothing, r = \varnothing, \\ IsCpm(i;j;r), Rcpm(i;j;r), \otimes, \Leftrightarrow, \otimes, \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \Leftrightarrow \sim, m! \, \circlearrowleft r, \\ \\ IsCpm(i;j;r), m! \, \circlearrowleft r, Rcpm(i;j;r), \\ \\ IsCpm(i;j;r), Rcpm(i;j;r$$

31.6 Swap of Rcpm(i;j;r)

31.6.1 Operator

```
, IsCpm(i;j;r), \circledcirc m, Rcpm(i;j;r), \iff, IsCpm(i;j;r), Rcpm(i;j;r), \circledcirc m, , IsCpm(i;j;r), m \circledast, Rcpm(i;j;r), \iff, IsCpm(i;j;r), Rcpm(i;j;r), m \circledast m_0, , IsCpm(i;j;r), m \circledast m_0, Rcpm(i;j;r), \iff, IsCpm(i;j;r), Rcpm(i;j;r), m \circledast m_0, , IsCpm(i;j;r), j \circledast j_0, Rcpm(i;j;r), \iff, IsCpm(i;j;r), Rcpm(i;j;r), j \circledast j_0, , IsCpm(i;j;r), m ! \circlearrowleft r, m \oplus, Rcpm(i;j;r), \iff, IsCpm(i;j;r), m ! \circlearrowleft r, Rcpm(i;j;r), m \oplus, induction proof: premise \ 1: , i = \varnothing, IsCpm(i;j;r), m ! \circlearrowleft r, m \oplus, Rcpm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), m ! \circlearrowleft r, m \oplus, Rcpm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), m ! \circlearrowleft r, m \oplus, Rcpm(i;j;r),
```

$$\Leftrightarrow, IsCpm(i;j;r), m! \circlearrowleft r, m \oplus, i = \varnothing,$$

$$\Leftrightarrow, IsCpm(i;j;r), m! \circlearrowleft r, i = \varnothing, m \oplus,$$

$$\Leftrightarrow, i = \varnothing, IsCpm(i;j;r), m! \circlearrowleft r, i = \varnothing, Repm(i;j;r), m \oplus,$$

$$\Leftrightarrow, i = \varnothing, IsCpm(i;j;r), m! \circlearrowleft r, Repm(i;j;r), m \oplus,$$

$$premise\ 2:$$

$$, \&SHi \to i, IsCpm(i;j;r), m! \circlearrowleft r, Repm(i;j;r), m \oplus,$$

$$, \&SHi \to i, IsCpm(i;j;r), m! \circlearrowleft r, Repm(i;j;r), m \oplus,$$

$$\Rightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), m! \circlearrowleft r, m \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), m! \circlearrowleft r, m \oplus,$$

$$i! = \varnothing, j \oplus j_0, Repo(j_0;r), j_0 \oplus, i \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), i! = \varnothing, j \oplus j_0,$$

$$IsCpo(j_0;r), m! \circlearrowleft r, m \oplus, Repo(j_0;r), j_0 \oplus, i \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), i! = \varnothing, j \oplus j_0,$$

$$IsCpo(j_0;r), m! \circlearrowleft r, Repo(j_0;r), j_0 \oplus, i \oplus, m! \circlearrowleft r, m \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, j \otimes j_0, m! \circlearrowleft r, IsCpo(j_0;r), i! \circlearrowleft r, \&SHi \circlearrowleft i, IsCpm(i;j;r), Repo(j_0;r),$$

$$j_0 \oplus, i \oplus, m! \circlearrowleft r, m \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, j \otimes j_0, m! \circlearrowleft r, IsCpo(j_0;r), i! \circlearrowleft r, Repo(j_0;r), j_0 \oplus, i \oplus,$$

$$\&SHi \to i, IsCpm(i;j;r), m! \hookrightarrow r, m \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, j \otimes j_0, m! \circlearrowleft r, IsCpo(j_0;r), i! \circlearrowleft r, Repo(j_0;r), j_0 \oplus, i \oplus,$$

$$\&SHi \to i, IsCpm(i;j;r), m! \hookrightarrow r, m \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, j \otimes j_0, m! \circlearrowleft r, IsCpo(j_0;r), i! \circlearrowleft r, Repo(j_0;r), j_0 \oplus, i \oplus,$$

$$\&SHi \to i, IsCpm(i;j;r), m! \hookrightarrow r, m \oplus, Repm(i;j;r),$$

&SH $i \rightarrow i, IsCpm(i; j; r), m!Or, Rcpm(i; j; r), m\oplus,$

$$\Leftrightarrow , \&SHi \circlearrowleft i, IsCpm(i;j;r), m! \circlearrowleft r, i != \varnothing, j \otimes j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus, i \oplus, \\ Rcpm(i;j;r), m \oplus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpm(i;j;r), m! \, \circlearrowleft r, i != \varnothing, j \otimes j_0, Rcpo(j_0;r), j_0 \oplus, i \oplus, \\ Rcpm(i;j;r), m \oplus,$$

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi $\circlearrowleft i$, $IsCpm(i;j;r)$, $m! \circlearrowleft r$, $Rcpm(i;j;r)$, $m \oplus$,

conclusion:

$$, IsCpm(i;j;r), m! \circlearrowleft r, m \oplus, Rcpm(i;j;r), \ \Leftrightarrow \ , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m \oplus, \\$$

$$, IsCpm(i;j;r), m! \circlearrowleft r, m \oplus, Rcpm(i;j;r), \iff, IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m \oplus,$$

$$, IsCpm(i;j;r), r! \!\!\rightarrow\!\! m, m \ominus, Rcpm(i;j;r), \ \Leftrightarrow \ , IsCpm(i;j;r), r! \!\!\rightarrow\!\! m, Rcpm(i;j;r), m \ominus,$$

$$, IsCpm(i;j;r), m! \circlearrowleft r, m \circleddash, Rcpm(i;j;r), \iff, IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m \circleddash,$$

31.6.2 Propositions node null

$$, IsCpm(i;j;r), m! \circlearrowleft r, m! = \varnothing, Rcpm(i;j;r), \iff, IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! = \varnothing,$$

$$, IsCpm(i;j;r), m! \circlearrowleft r, m = \varnothing, Rcpm(i;j;r), \iff, IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m = \varnothing,$$

 $, IsCpm(i;j;r), m! Or, m = \varnothing, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! Or, Rcpm(i;j;r), m = \varnothing,$

$$, IsCpm(i;j;r), m! \circlearrowleft r, m \! := \! \varnothing, Rcpm(i;j;r), \ \Leftrightarrow \ , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m \! := \! \varnothing,$$

$$\begin{split} , IsCpm(i;j;r), m != \varnothing, Rcpm(i;j;r), &\Leftrightarrow \sim, m != \varnothing, \\ , IsCpm(i;j;r), m != \varnothing, m \oplus, Rcpm(i;j;r), &\Leftrightarrow \\ , IsCpm(i;j;r), m != \varnothing, Rcpm(i;j;r), m != \varnothing, m \oplus, \\ , IsCpm(i;j;r), m ! \circlearrowleft r, m != \varnothing, m \oplus, Rcpm(i;j;r), &\Leftrightarrow \\ , IsCpm(i;j;r), m ! \circlearrowleft r, Rcpm(i;j;r), m != \varnothing, m \oplus, \\ , IsCpm(i;j;r), m ! \circlearrowleft r, m != \varnothing, m \oplus, Rcpm(i;j;r), &\Leftrightarrow \\ , IsCpm(i;j;r), m ! \circlearrowleft r, Rcpm(i;j;r), m != \varnothing, m \oplus, \\ , IsCpm(i;j;r), m ! \circlearrowleft r, Rcpm(i;j;r), m != \varnothing, m \oplus, \\ \end{split}$$

 $, IsCpm(i; j; r), j! = \varnothing, Rcpm(i; j; r), \Leftrightarrow , IsCpm(i; j; r), Rcpm(i; j; r), j! = \varnothing,$

31.6.3 Propositions identical node

$$, IsCpm(i;j;r), m \circlearrowleft j, Rcpm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Rcpm(i;j;r), m \circlearrowleft j,$$

$$, IsCpm(i;j;r), m! \circlearrowleft j, Rcpm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Rcpm(i;j;r), m! \circlearrowleft j,$$

$$, IsCpm(i;j;r), m \circlearrowleft n, Rcpm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Rcpm(i;j;r), m \circlearrowleft n,$$

$$, IsCpm(i;j;r), m! \circlearrowleft n, Rcpm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Rcpm(i;j;r), m! \circlearrowleft n,$$

31.6.4 Propositions node connectivity

$$, IsCpm(i;j;r), m \circlearrowleft n, Repm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Repm(i;j;r), m \circlearrowleft n,$$

$$, IsCpm(i;j;r), m \circlearrowleft n, Repm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Repm(i;j;r), m \circlearrowleft n,$$

$$, IsCpm(i;j;r), m \circlearrowleft r, Repm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Repm(i;j;r), m \circlearrowleft r,$$
induction proof:
$$premise\ 1:$$

$$, i=\varnothing, IsCpm(i;j;r), m \circlearrowleft r, Repm(i;j;r),$$

$$\Leftrightarrow, IsCpm(i;j;r), m \circlearrowleft r, i=\varnothing, Repm(i;j;r),$$

$$\Leftrightarrow, IsCpm(i;j;r), m \circlearrowleft r, i=\varnothing,$$

$$\Leftrightarrow, IsCpm(i;j;r), i=\varnothing, Repm(i;j;r), m \circlearrowleft r,$$

$$\Leftrightarrow, i=\varnothing, IsCpm(i;j;r), Repm(i;j;r), m \circlearrowleft r,$$

$$premise\ 2:$$

$$, \&SHi \to i, IsCpm(i;j;r), Repm(i;j;r), m \circlearrowleft r,$$

$$p. \&SHi \to i, IsCpm(i;j;r), Repm(i;j;r), m \circlearrowleft r,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), m \circlearrowleft r, Repm(i;j;r),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), m \circlearrowleft r,$$

$$i!=\varnothing, j \circlearrowleft j_0,$$

$$IsCpo(j_0;r), i! \circlearrowleft r, Repo(j_0;r), j_0 \circledast i \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i!=\varnothing, j \circlearrowleft j_0,$$

$$IsCpo(j_0;r), i! \circlearrowleft r, \&SHi \circlearrowleft i, IsCpm(i;j;r), m \circlearrowleft r, Repo(j_0;r), j_0 \circledast, i \oplus, Repm(i;j;r),$$

$$\Leftrightarrow ,i!=\varnothing,j\otimes j_0,IsCpo(j_0;r),i!\mathring{\circlearrowleft}r,Rcpo(j_0;r),j_0\oplus,i\oplus,\\ \&SHi\to i,IsCpm(i;j;r),m\mathring{\circlearrowleft}r,Rcpm(i;j;r),\\ \Leftrightarrow ,i!=\varnothing,j\otimes j_0,IsCpo(j_0;r),i!\mathring{\circlearrowleft}r,Rcpo(j_0;r),j_0\oplus,i\oplus,\\ \&SHi\to i,IsCpm(i;j;r),Rcpm(i;j;r),m\mathring{\circlearrowleft}r,\\ \Leftrightarrow ,\&SHi\mathring{\circlearrowleft}i,IsCpm(i;j;r),i!=\varnothing,j\otimes j_0,IsCpo(j_0;r),i!\mathring{\circlearrowleft}r,Rcpo(j_0;r),j_0\oplus,i\oplus,\\ Rcpm(i;j;r),m\mathring{\circlearrowleft}r,\\ \Leftrightarrow ,\&SHi\mathring{\circlearrowleft}i,IsCpm(i;j;r),i!=\varnothing,j\otimes j_0,Rcpo(j_0;r),j_0\oplus,i\oplus,\\ Rcpm(i;j;r),m\mathring{\circlearrowleft}r,\\ \Leftrightarrow ,i!=\varnothing,\&SHi\mathring{\circlearrowleft}i,IsCpm(i;j;r),Rcpm(i;j;r),m\mathring{\circlearrowleft}r,\\ conclusion:\\ ,IsCpm(i;j;r),m\mathring{\circlearrowleft}r,Rcpm(i;j;r),\Leftrightarrow ,IsCpm(i;j;r),Rcpm(i;j;r),m\mathring{\circlearrowleft}r,$$

$$, IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), \iff , IsCpm(i;j;r), Rcpm(i;j;r), m! \circlearrowleft r,$$

$$, IsCpm(i;j;r), i! \circlearrowleft r, Rcpm(i;j;r), \iff , IsCpm(i;j;r), Rcpm(i;j;r), i! \circlearrowleft r,$$

$$, IsCpm(i;j;r), j! \circlearrowleft r, Rcpm(i;j;r), \iff , IsCpm(i;j;r), Rcpm(i;j;r), j! \circlearrowleft r,$$

31.6.5 IsCpo

$$, IsCpm(i;j;r), IsCpo(m;r), Rcpm(i;j;r), \Leftrightarrow, IsCpm(i;j;r), Rcpm(i;j;r), IsCpo(m;r),$$

$$, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, IsCpo(m;r_2), Rcpm(i;j;r_1), \Leftrightarrow$$

$$, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, Rcpm(i;j;r_1), IsCpo(m;r_2),$$

31.6.6 IsCpm

$$, IsCpm(i;j;r), Rcpm(i;j;r), \Leftrightarrow \sim, IsCpm(i;j;r),$$

$$, IsCpm(i;j;r), IsCpm(m;n;r), Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), Rcpm(i;j;r), IsCpm(m;n;r),$$

$$, IsCpm(i;j;r_1), r_1! \mathring{\bigcirc} r_2, IsCpm(m;n;r_2), Rcpm(i;j;r_1), \Leftrightarrow$$

$$, IsCpm(i;j;r_1), r_1! \mathring{\bigcirc} r_2, Rcpm(i;j;r_1), IsCpm(m;n;r_2),$$

31.6.7 Cpo

```
 \begin{array}{l} , IsCpm(i;j;r), Cpo(r), r \oplus, Rcpm(i;j;r), \ \Leftrightarrow \ , IsCpm(i;j;r), Rcpm(i;j;r), Cpo(r), r \oplus, \\ & \text{induction proof:} \\ premise 1: \\ , i = \varnothing, IsCpm(i;j;r), Cpo(r), r \oplus, Rcpm(i;j;r), \\ \Leftrightarrow , IsCpm(i;j;r), i! \circlearrowleft r, i = \varnothing, Cpo(r), r \oplus, Rcpm(i;j;r), \\ \Leftrightarrow , IsCpm(i;j;r), i! \circlearrowleft r, Cpo(r), r \oplus, i = \varnothing, Rcpm(i;j;r), \\ \Leftrightarrow , IsCpm(i;j;r), i! \circlearrowleft r, Cpo(r), r \oplus, i = \varnothing, \\ \Leftrightarrow , IsCpm(i;j;r), i! \circlearrowleft r, i = \varnothing, Cpo(r), r \oplus, \\ \Leftrightarrow , IsCpm(i;j;r), i! \circlearrowleft r, i = \varnothing, Rcpm(i;j;r), Cpo(r), r \oplus, \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r), Rcpm(i;j;r), Cpo(r), r \oplus, \\ premise 2: \\ , \&SHi \rightarrow i, IsCpm(i;j;r), Cpo(r), r \oplus, Rcpm(i;j;r), \Leftrightarrow \\ \end{array}
```

$$, \&SHi \rightarrow i, IsCpm(i;j;r), Repm(i;j;r), Cpo(r), r \oplus, \Rightarrow$$

$$, i! = \varnothing, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), i! \stackrel{\circ}{\circlearrowleft} r, i! = \varnothing, Cpo(r), r \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), i! \stackrel{\circ}{\circlearrowleft} r, Cpo(r), r \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), i! \stackrel{\circ}{\circlearrowleft} r, Cpo(r), r \oplus,$$

$$i! = \varnothing, j \stackrel{\circ}{\circlearrowleft} j_0, Repo(j_0;r), j_0 \oplus, i \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), j \stackrel{\circ}{\circlearrowleft} j_0,$$

$$IsCpo(j_0;r), Cpo(r), r \oplus, Repo(j_0;r), j_0 \oplus, i \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), j \stackrel{\circ}{\circlearrowleft} j_0,$$

$$IsCpo(j_0;r), Repo(j_0;r), j_0 \oplus, Cpo(r), r \oplus, i \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), j \stackrel{\circ}{\circlearrowleft} j_0,$$

$$IsCpo(j_0;r), i! \stackrel{\circ}{\circlearrowleft} r, Repo(j_0;r), j_0 \oplus, Cpo(r), r \oplus, i \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), j \stackrel{\circ}{\circlearrowleft} j_0,$$

$$IsCpo(j_0;r), Repo(j_0;r), j_0 \oplus, i! \stackrel{\circ}{\circlearrowleft} r, Cpo(r), i \oplus, r \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), j \stackrel{\circ}{\circlearrowleft} j_0,$$

$$IsCpo(j_0;r), Repo(j_0;r), j_0 \oplus, i! \stackrel{\circ}{\circlearrowleft} r, Cpo(r), r \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), j \stackrel{\circ}{\circlearrowleft} j_0,$$

$$IsCpo(j_0;r), Repo(j_0;r), j_0 \oplus, i! \stackrel{\circ}{\circlearrowleft} r, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), Repo(j_0;r), j_0 \oplus, i \oplus, Cpo(r), r \oplus, Repm(i;j;r),$$

$$\Leftrightarrow, i! = \varnothing, j \otimes j_0, IsCpo(j_0;r), i! \stackrel{\circ}{\circlearrowleft} r, \&SHi \stackrel{\circ}{\circlearrowleft} i, IsCpm(i;j;r), Repo(j_0;r), j_0 \oplus, i \oplus, Cpo(r), r \oplus, Repm(i;j;r),$$

& $SHi \rightarrow i, IsCpm(i; j; r), Cpo(r), r \oplus, Rcpm(i; j; r),$

```
\Leftrightarrow, i!=\varnothing, j\otimes j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus i \oplus r,
&SHi \rightarrow i, IsCpm(i; j; r), Rcpm(i; j; r), Cpo(r), r \oplus
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r), i!=\varnothing, j\otimes j_0, IsCpo(j_0;r), i!\circlearrowleft r, Rcpo(j_0;r), j_0\otimes, i\oplus,
 Rcpm(i; j; r), Cpo(r), r \oplus
\Leftrightarrow, &SHi \circlearrowlefti, IsCpm(i;j;r), i!=\varnothing, j\odot j_0, Rcpo(j_0;r), j_0 \odot, i\ominus,
 Rcpm(i; j; r), Cpo(r), r \oplus
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, IsCpm(i; j; r), Rcpm(i; j; r), Cpo(r), r \oplus,
conclusion:
 , IsCpm(i;j;r), Cpo(r), r \oplus, Rcpm(i;j;r), \iff, IsCpm(i;j;r), Rcpm(i;j;r), Cpo(r), r \oplus, Rcpm(i;j;r), Rcpm(i;j;
                                      , IsCpm(i;j;r_1), r_1! \mathring{\bigcirc} r_2, i! \mathring{\bigcirc} r_2, j! \mathring{\bigcirc} r_2, Cpo(r_2), Rcpm(i;j;r_1), \Leftrightarrow
                                               , IsCpm(i; j; r_1), r_1! \circ r_2, i! \circ r_2, j! \circ r_2, Rcpm(i; j; r_1), Cpo(r_2),
induction proof:
premise 1:
 , i = \varnothing, IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Cpo(r_2), Rcpm(i; j; r_1),
\Leftrightarrow, IsCpm(i; j; r_1), r_1! \circ r_2, j! \circ r_2, i! \circ r_2, i = \varnothing, Cpo(r_2), Rcpm(i; j; r_1),
\Leftrightarrow, IsCpm(i; j; r_1), r_1! \mathring{\bigcirc} r_2, j! \mathring{\bigcirc} r_2, i! \mathring{\bigcirc} r_2, Cpo(r_2), i = \emptyset, Rcpm(i; j; r_1),
\Leftrightarrow, IsCpm(i; j; r_1), r_1! \circ r_2, j! \circ r_2, i! \circ r_2, Cpo(r_2), i = \emptyset,
\Leftrightarrow, IsCpm(i; j; r_1), r_1! \circ r_2, j! \circ r_2, i! \circ r_2, i = \varnothing, Cpo(r_2),
\Leftrightarrow, IsCpm(i; j; r_1), r_1! \circ r_2, j! \circ r_2, i! \circ r_2, i = \varnothing, Rcpm(i; j; r_1), Cpo(r_2),
\Leftrightarrow, i = \emptyset, IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Rcpm(i; j; r_1), Cpo(r_2),
```

```
premise 2:
 , &SHi\rightarrowi, IsCpm(i;j;r_1), r_1! \mathring{\bigcirc} r_2, i! \mathring{\bigcirc} r_2, j! \mathring{\bigcirc} r_2, Cpo(r_2), Rcpm(i;j;r_1), \Leftrightarrow
 , \&S\!H\!i \rightarrow\!\! i, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Rcpm(i;j;r_1), Cpo(r_2), \implies
 i!=\varnothing, &SHi\circlearrowleft i, IsCpm(i;j;r_1), r_1!\circlearrowleft r_2, i!\circlearrowleft r_2, j!\circlearrowleft r_2, Cpo(r_2), Rcpm(i;j;r_1),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, i! = \varnothing, Cpo(r_2), Rcpm(i;j;r_1),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, i! = \varnothing, Cpo(r_2),
i = \varnothing, j \otimes j_0, Rcpo(j_0; r_1), j_0 \otimes, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, j \circlearrowleft j_0,
 IsCpo(j_0; r_1), r_1! \circlearrowleft r_2, j_0! \circlearrowleft r_2, Cpo(r_2), Rcpo(j_0; r_1), j_0 \oplus, i \oplus, Rcpm(i; j; r_1), r_1! \circlearrowleft r_2, r_2! \circlearrowleft r_2, Cpo(r_2), Rcpo(j_0; r_1), r_2! \oplus, Rcpm(i; j; r_1), r_2! \oplus r_2, r_2! \oplus r_2 \oplus, Rcpo(j_0; r_2), Rcpo(j_
\Leftrightarrow, i != \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r_1), r_1 ! \circlearrowleft r_2, i ! \circlearrowleft r_2, j ! \circlearrowleft r_2, j \otimes j_0,
 IsCpo(j_0; r_1), r_1! \circlearrowleft r_2, j_0! \circlearrowleft r_2, Rcpo(j_0; r_1), j_0 \oplus, Cpo(r_2), i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i = \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, j \circlearrowleft j_0,
 IsCpo(j_0; r_1), i! {}^{\circlearrowleft}r_2, Rcpo(j_0; r_1), j_0 {}^{\circledcirc}, Cpo(r_2), i {}^{\circlearrowleft}, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, j \circlearrowleft j_0,
 IsCpo(j_0; r_1), Rcpo(j_0; r_1), j_0 \oplus, i! \circlearrowleft r_2, Cpo(r_2), i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, j \circlearrowleft j_0,
 IsCpo(j_0; r_1), Rcpo(j_0; r_1), j_0 \oplus, i! \bigcirc r_2, i \oplus, Cpo(r_2), Rcpm(i; j; r_1),
\Leftrightarrow, i = \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, j \circlearrowleft j_0,
 IsCpo(j_0; r_1), i! {}^{\circlearrowleft}r_1, Rcpo(j_0; r_1), j_0 {}^{\circledcirc}, i {}^{\circlearrowleft}, Cpo(r_2), Rcpm(i; j; r_1),
```

```
31 Recursive Function Rcpm(i;j;r)
```

$$\Leftrightarrow$$
, $i = \emptyset$, &SHi $\bigcirc i$, $j \oplus j_0$,

$$IsCpo(j_0; r_1), i! \circlearrowleft r_1, Rcpo(j_0; r_1), j_0 \oplus, i \oplus,$$

$$IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Cpo(r_2), Rcpm(i; j; r_1),$$

$$\Leftrightarrow$$
, $i!=\emptyset$, $j \otimes j_0$,

$$IsCpo(j_0; r_1), i! \mathring{\bigcirc} r_1, \&SHi \mathring{\bigcirc} i, Rcpo(j_0; r_1), j_0 \textcircled{\oplus}, i \textcircled{\oplus},$$

$$IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Cpo(r_2), Rcpm(i; j; r_1),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j \otimes j_0$, $IsCpo(j_0; r_1)$, $i! \circ r_1$, $Rcpo(j_0; r_1)$, $j_0 \otimes j_0$, $i \oplus j_0$

&SH
$$i \rightarrow i, IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Cpo(r_2), Rcpm(i; j; r_1),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j\odot j_0$, $IsCpo(j_0;r_1)$, $i!\circlearrowleft r_1$, $Rcpo(j_0;r_1)$, $j_0 \odot$, $i\odot$,

&
$$SHi \rightarrow i, IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Rcpm(i; j; r_1), Cpo(r_2),$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, IsCpm(i; j; r_1), r_1 ! \circlearrowleft r_2, i ! \circlearrowleft r_2, j ! \circlearrowleft r_2, j ! \circlearrowleft r_2, j ! \circlearrowleft r_1, Repo(j_0; r_1), j_0 \oplus, i \oplus,$$

$$Rcpm(i; j; r_1), Cpo(r_2),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, i! = \varnothing, \\ j \circlearrowleft j_0, Rcpo(j_0;r_1), j_0 \circlearrowleft, i \oplus, Rcpm(i;j;r_1), Cpo(r_2),$$

$$\Leftrightarrow, i != \varnothing, \&SHi \circlearrowleft i, IsCpm(i; j; r_1), r_1 ! \circlearrowleft r_2, i ! \circlearrowleft r_2, j ! \circlearrowleft r_2, Rcpm(i; j; r_1), Cpo(r_2),$$

conclusion:

$$, IsCpm(i; j; r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Cpo(r_2), Rcpm(i; j; r_1), \Leftrightarrow$$

$$, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Rcpm(i;j;r_1), Cpo(r_2),$$

$$, IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Cpo(r_2), r_2 \oplus, Rcpm(i;j;r_1), \Leftrightarrow , IsCpm(i;j;r_1), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, Rcpm(i;j;r_1), Cpo(r_2), r_2 \oplus,$$

31.6.8 Rcpo

```
, IsCpm(i; j; r), IsCpo(m; r), Rcpo(m; r), Rcpm(i; j; r), \Leftrightarrow
                      , IsCpm(i; j; r), IsCpo(m; r), Rcpm(i; j; r), Rcpo(m; r),
induction proof:
premise 1:
, i = \varnothing, IsCpm(i; j; r), IsCpo(m; r), Rcpo(m; r), Rcpm(i; j; r),
\Leftrightarrow, IsCpm(i; j; r), IsCpo(m; r), i! \circ r, i = \varnothing, Rcpo(m; r), Rcpm(i; j; r),
\Leftrightarrow, IsCpm(i;j;r), IsCpo(m;r), i!Or, Rcpo(m;r), i=\varnothing, Rcpm(i;j;r),
\Leftrightarrow, IsCpm(i; j; r), IsCpo(m; r), i!Or, Rcpo(m; r), i = \emptyset,
\Leftrightarrow, IsCpm(i; j; r), IsCpo(m; r), i!Or, i = \emptyset, Rcpo(m; r),
\Leftrightarrow, IsCpm(i; j; r), IsCpo(m; r), i!Or, i = \emptyset, Rcpm(i; j; r), Rcpo(m; r),
\Leftrightarrow, i = \emptyset, IsCpm(i; j; r), IsCpo(m; r), Rcpm(i; j; r), Rcpo(m; r),
premise 2:
, &SHi\rightarrowi, IsCpm(i;j;r), IsCpo(m;r), Rcpo(m;r), Rcpm(i;j;r), \Leftrightarrow
, &SHi\rightarrowi, IsCpm(i;j;r), IsCpo(m;r), Rcpm(i;j;r), Rcpo(m;r), \Rightarrow
i!=\varnothing, &SHi\bigcirc i, IsCpm(i;j;r), IsCpo(m;r), Rcpo(m;r), Rcpm(i;j;r),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpm(i;j;r), IsCpo(m;r), i!=\varnothing, Rcpo(m;r), Rcpm(i;j;r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpm(i;j;r), IsCpo(m;r), i!=\varnothing, Rcpo(m;r), i!=\varnothing, Rcpm(i;j;r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpm(i;j;r), IsCpo(m;r), i!=\varnothing, Rcpo(m;r),
i = \varnothing, j \otimes j_0, Rcpo(j_0; r), j_0 \otimes, i \oplus, Rcpm(i; j; r),
\Leftrightarrow, i = \emptyset, j \oplus j_0, &SHi \circlearrowleft i, IsCpm(i; j; r),
```

31 Recursive Function Rcpm(i;j;r)

$$IsCpo(m;r), IsCpo(j_0;r), Rcpo(m;r), Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j\odot j_0$, &SHi $\circlearrowleft i$, $IsCpm(i;j;r)$,

$$IsCpo(m;r), IsCpo(j_0;r), Rcpo(j_0;r), Rcpo(m;r), j_0 \oplus, i \oplus, Rcpm(i;j;r),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j \otimes j_0$, &SHi $\circlearrowleft i$, $IsCpm(i;j;r)$,

$$IsCpo(j_0; r), Rcpo(j_0; r),$$

$$IsCpo(m;r), Rcpo(m;r), j_0 \oplus, i \oplus, Rcpm(i;j;r),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, $j\odot j_0$, &SHi $\bigcirc i$, $IsCpm(i;j;r)$,

$$IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus$$

$$IsCpo(m;r), i! \circlearrowleft r, Rcpo(m;r), i \oplus, Rcpm(i;j;r),$$

$$\Leftrightarrow$$
, $i = \emptyset$, $j \otimes j_0$, &SHi $\circlearrowleft i$, $IsCpm(i; j; r)$,

$$IsCpo(j_0; r), i! \mathring{\bigcirc} r, Rcpo(j_0; r), j_0 \textcircled{\oplus}, i \textcircled{\oplus},$$

$$IsCpo(m;r), i! \mathring{\bigcirc} r, Rcpo(m;r), Rcpm(i;j;r),$$

$$\Leftrightarrow$$
, $i!=\emptyset$, $j \otimes j_0$,

$$IsCpo(j_0; r), i! \circ r, Rcpo(j_0; r), j_0 \oplus, i \oplus,$$

&
$$SHi \rightarrow i, IsCpm(i; j; r), IsCpo(m; r), Rcpo(m; r), Rcpm(i; j; r),$$

$$\Leftrightarrow$$
, $i!=\emptyset$, $j \otimes j_0$,

$$IsCpo(j_0; r), i! \mathring{\bigcirc} r, Rcpo(j_0; r), j_0 \textcircled{2}, i \textcircled{+},$$

&
$$SHi \rightarrow i, IsCpm(i; j; r), IsCpo(m; r), Rcpm(i; j; r), Rcpo(m; r),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc i$, $IsCpm(i;j;r)$, $IsCpo(m;r)$, $i!=\varnothing$, $j\odot j_0$,

```
IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i \oplus,
Rcpm(i; j; r), Rcpo(m; r),
\Leftrightarrow, &SHi\circlearrowleft i, IsCpm(i;j;r), IsCpo(m;r), i!=\varnothing, j\otimes j_0,
Rcpo(j_0; r), j_0 \oplus, i \oplus, Rcpm(i; j; r), Rcpo(m; r),
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, IsCpm(i; j; r), IsCpo(m; r), Rcpm(i; j; r), Rcpo(m; r),
conclusion:
, IsCpm(i;j;r), IsCpo(m;r), Rcpo(m;r), Rcpm(i;j;r), \iff
, IsCpm(i; j; r), IsCpo(m; r), Rcpm(i; j; r), Rcpo(m; r),
                        IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
                                               Rcpo(m; r_2), Rcpm(i; j; r_1), \Leftrightarrow
                        , IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
                                                   Rcpm(i; j; r_1), Rcpo(m; r_2),
induction proof:
premise 1:
, i = \varnothing, IsCpm(i; j; r_1), IsCpo(m; r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
Rcpo(m; r_2), Rcpm(i; j; r_1),
\Leftrightarrow, IsCpm(i; j; r_1), r_1! \mathring{\bigcirc} r_2, j! \mathring{\bigcirc} r_2, m! \mathring{\bigcirc} r_1,
IsCpo(m; r_2), i! \circlearrowleft r_2, i = \varnothing, Rcpo(m; r_2), Rcpm(i; j; r_1),
\Leftrightarrow, IsCpm(i; j; r_1), r_1! \mathring{\bigcirc} r_2, j! \mathring{\bigcirc} r_2, m! \mathring{\bigcirc} r_1,
IsCpo(m; r_2), i! \mathcal{O}r_2, Rcpo(m; r_2), i = \varnothing, Rcpm(i; j; r_1),
```

$$\Rightarrow , IsCpm(i;j;r_1), r_1 | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$IsCpo(m;r_2), i | \circlearrowleft r_2, Rcpo(m;r_2), i = \varnothing,$$

$$\Rightarrow , IsCpm(i;j;r_1), r_1 | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$IsCpo(m;r_2), i | \circlearrowleft r_2, i = \varnothing, Rcpo(m;r_2),$$

$$\Rightarrow , IsCpm(i;j;r_1), r_1 | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$IsCpo(m;r_2), i | \circlearrowleft r_2, i = \varnothing, Rcpm(i;j;r_1), Rcpo(m;r_2),$$

$$\Rightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1 | \circlearrowleft r_2, i | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$Rcpm(i;j;r_1), Rcpo(m;r_2),$$

$$premise 2:$$

$$, \&SHi \rightarrow i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1 | \circlearrowleft r_2, i | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$Rcpo(m;r_2), Rcpm(i;j;r_1), \Leftrightarrow$$

$$, \&SHi \rightarrow i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1 | \circlearrowleft r_2, i | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$Rcpm(i;j;r_1)Rcpo(m;r_2), = \Rightarrow$$

$$, i \models \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1 | \circlearrowleft r_2, i | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$Rcpo(m;r_2), Rcpm(i;j;r_1), IsCpo(m;r_2), r_1 | \circlearrowleft r_2, i | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$Rcpo(m;r_2), Rcpm(i;j;r_1), IsCpo(m;r_2), r_1 | \circlearrowleft r_2, i | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$IsCpo(m;r_2), i \models \varnothing, Rcpo(m;r_2), Rcpm(i;j;r_1),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1 | \circlearrowleft r_2, i | \circlearrowleft r_2, j | \circlearrowleft r_2, m | \circlearrowleft r_1,$$

$$IsCpo(m;r_2), i \models \varnothing, Rcpo(m;r_2), Rcpm(i;j;r_1),$$

```
IsCpo(m; r_2), i = \varnothing, Rcpo(m; r_2),
i != \varnothing, j \otimes j_0, Rcpo(j_0; r_1), j_0 \otimes, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
j \otimes j_0, IsCpo(m; r_2), Rcpo(m; r_2),
Rcpo(j_0; r_1), j_0 \oplus, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
j \otimes j_0, IsCpo(m; r_2), IsCpo(j_0; r_1), r_1! \mathring{\circlearrowleft} r_2, j_0! \mathring{\circlearrowleft} r_2, m! \mathring{\circlearrowleft} r_1, Rcpo(m; r_2),
Rcpo(j_0; r_1), j_0 \oplus, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i = \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r_1), IsCpo(m; r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
j \otimes j_0, IsCpo(m; r_2), IsCpo(j_0; r_1), r_1! \circ r_2, j_0! \circ r_2, m! \circ r_1, Rcpo(j_0; r_1),
Rcpo(m; r_2), j_0 \oplus, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
j \otimes j_0, IsCpo(j_0; r_1), r_1! \circ r_2, Rcpo(j_0; r_1),
IsCpo(m; r_2), Rcpo(m; r_2), j_0 \oplus, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i \models \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r_1), IsCpo(m; r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
j \otimes j_0, IsCpo(j_0; r_1), r_1! \circ r_2, Rcpo(j_0; r_1), j_0 \oplus
IsCpo(m; r_2), i! \circ r_2, Rcpo(m; r_2), i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft r_2, i! \circlearrowleft r_2, j! \circlearrowleft r_2, m! \circlearrowleft r_1,
j \otimes j_0, IsCpo(j_0; r_1), r_1! \circlearrowleft r_2, Rcpo(j_0; r_1), j_0 \oplus, i \oplus,
```

```
31 Recursive Function Rcpm(i;j;r)
```

$$\begin{split} IsCpo(m;r_2), i! \circlearrowleft_{r_2} Repo(m;r_2), Repm(i;j;r_1), \\ \Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ j \bowtie_{j_0}, IsCpo(j_0;r_1), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_1}, Repo(j_0;r_1), j_0 \circledast, i \oplus, \\ IsCpo(m;r_2), Repo(m;r_2), Repm(i;j;r_1), \\ \Leftrightarrow , i! = \varnothing, j \otimes_{j_0}, IsCpo(j_0;r_1), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_1}, Repo(j_0;r_1), j_0 \circledast, i \oplus, \\ \&SHi \to i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ Repo(m;r_2), Repm(i;j;r_1), \\ \Leftrightarrow , i! = \varnothing, j \otimes_{j_0}, IsCpo(j_0;r_1), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ \&SHi \to i, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ Repm(i;j;r_1), Repo(m;r_2), \\ \Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ j \otimes_{j_0}, IsCpo(j_0;r_1), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_1}, Repo(j_0;r_1), j_0 \circledast, i \oplus, \\ Repm(i;j;r_1), Repo(m;r_2), \\ \Leftrightarrow , \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ i! = \varnothing, j \otimes_{j_0}, Repo(j_0;r_1), j_0 \circledast, i \oplus, \\ Repm(i;j;r_1), Repo(m;r_2), \\ \Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ Repm(i;j;r_1), Repo(m;r_2), \\ \Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ Repm(i;j;r_1), Repo(m;r_2), \\ \Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ Repm(i;j;r_1), Repo(m;r_2), \\ \Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ Repm(i;j;r_1), Repo(m;r_2), \\ \Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{r_2}, i! \circlearrowleft_{r_2}, j! \circlearrowleft_{r_2}, m! \circlearrowleft_{r_1}, \\ Repm(i;j;r_1), Repo(m;r_2), \\ \Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft_{i}, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \circlearrowleft_{i}, r_2, i! \circlearrowleft_{i}, r_2, j! \hookrightarrow$$

conclusion:

```
, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \mathring{\odot} r_2, i! \mathring{\odot} r_2, j! \mathring{\odot} r_2, m! \mathring{\odot} r_1,
Rcpo(m;r_2), Rcpm(i;j;r_1), \Leftrightarrow
, IsCpm(i;j;r_1), IsCpo(m;r_2), r_1! \mathring{\odot} r_2, i! \mathring{\odot} r_2, j! \mathring{\odot} r_2, m! \mathring{\odot} r_1,
Rcpm(i;j;r_1), Rcpo(m;r_2),
```

$$, IsCpm(i;j;r_1), IsCpm(i;j;r_2), IsCpo(m;r_1), IsCpo(m;r_2), r_1! \circlearrowleft r_2, \\ Rcpo(m;r_2), Rcpm(i;j;r_1), \Leftrightarrow \\ , IsCpm(i;j;r_1), IsCpm(i;j;r_2), IsCpo(m;r_1), IsCpo(m;r_2), r_1! \circlearrowleft r_2, \\ Rcpm(i;j;r_1), Rcpo(m;r_2), \\ \end{cases}$$

31.6.9 Rcpm

```
, IsCpm(i;j;r), IsCpm(m;n;r), Repm(m;n;r), Repm(i;j;r), \Leftrightarrow \\, IsCpm(i;j;r), IsCpm(m;n;r), Repm(i;j;r), Repm(m;n;r), \\ induction proof: \\premise 1: \\, i = \varnothing, IsCpm(i;j;r), IsCpm(m;n;r), Repm(m;n;r), Repm(i;j;r), \\ \Leftrightarrow, IsCpm(i;j;r), IsCpm(m;n;r), i!\circlearrowleft r, i = \varnothing, Repm(m;n;r), Repm(i;j;r), \\ \Leftrightarrow, IsCpm(i;j;r), IsCpm(m;n;r), i!\circlearrowleft r, Repm(m;n;r), i = \varnothing, Repm(i;j;r), \\ \Leftrightarrow, IsCpm(i;j;r), IsCpm(m;n;r), i!\circlearrowleft r, Repm(m;n;r), i = \varnothing, Repm(i;j;r), \\ \Leftrightarrow, IsCpm(i;j;r), IsCpm(m;n;r), i!\circlearrowleft r, Repm(m;n;r), i = \varnothing, \\ \Leftrightarrow, IsCpm(i;j;r), IsCpm(m;n;r), i!\circlearrowleft r, i = \varnothing, Repm(i;j;r), Repm(m;n;r), \\ \Leftrightarrow, i = \varnothing, IsCpm(i;j;r), IsCpm(m;n;r), Repm(i;j;r), Repm(m;n;r), \\ \Leftrightarrow, i = \varnothing, IsCpm(i;j;r), IsCpm(m;n;r), Repm(i;j;r), Repm(m;n;r), \\ \Leftrightarrow, i = \varnothing, IsCpm(i;j;r), IsCpm(m;n;r), Repm(i;j;r), Repm(m;n;r), \\ \Leftrightarrow, i = \varnothing, IsCpm(i;j;r), IsCpm(m;n;r), Repm(i;j;r), Repm(m;n;r), \\ \Leftrightarrow, i = \varnothing, i
```

```
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(m;n;r), i!=\varnothing, Rcpm(m;n;r), Rcpm(i;j;r),
\Leftrightarrow, &SHi \circlearrowlefti, IsCpm(i;j;r), IsCpm(m;n;r), i!=\varnothing, Rcpm(m;n;r),
i = \varnothing, j \otimes j_0, Rcpo(j_0; r), j_0 \otimes, i \oplus, Rcpm(i; j; r),
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowlefti, IsCpm(i;j;r), j \otimes j_0,
IsCpm(m; n; r), IsCpo(j_0; r), Rcpm(m; n; r),
Rcpo(j_0; r), j_0 \oplus, i \oplus, Rcpm(i; j; r),
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowlefti, IsCpm(i;j;r), j\odot j_0,
IsCpm(m; n; r), IsCpo(j_0; r), Rcpo(j_0; r),
Rcpm(m; n; r), j_0 \oplus, i \oplus, Rcpm(i; j; r),
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowlefti, IsCpm(i;j;r), j \otimes j_0,
IsCpo(j_0; r), Rcpo(j_0; r),
IsCpm(m; n; r), i! \mathring{\bigcirc} r, Rcpm(m; n; r), j_0 \textcircled{\oplus}, i \textcircled{\oplus}, Rcpm(i; j; r),
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowlefti, IsCpm(i;j;r), j \otimes j_0,
IsCpo(j_0; r), Rcpo(j_0; r), j_0 \oplus, i \oplus,
IsCpm(m; n; r), i! \circ r, Rcpm(m; n; r), Rcpm(i; j; r),
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, IsCpm(i; j; r), j \otimes j_0,
IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i \oplus,
```

IsCpm(m; n; r), Rcpm(m; n; r), Rcpm(i; j; r),

```
\Leftrightarrow, i = \emptyset, j \otimes j_0,
IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i \oplus,
&SHi \rightarrow i, IsCpm(i; j; r), IsCpm(m; n; r), Rcpm(m; n; r), Rcpm(i; j; r),
\Leftrightarrow, i = \emptyset, j \otimes j_0,
IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i \oplus,
&SHi \rightarrow i, IsCpm(i; j; r), IsCpm(m; n; r), Rcpm(i; j; r), Rcpm(m; n; r),
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, IsCpm(i; j; r), IsCpm(m; n; r), j \otimes j_0,
IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i \oplus,
Rcpm(i; j; r), Rcpm(m; n; r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(m;n;r), i!=\varnothing, j\odot j_0,
Rcpo(j_0; r), j_0 \oplus, i \oplus, Rcpm(i; j; r), Rcpm(m; n; r),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft iIsCpm(i;j;r), IsCpm(m;n;r), Rcpm(i;j;r), Rcpm(m;n;r),
conclusion:
, IsCpm(i; j; r), IsCpm(m; n; r), Rcpm(m; n; r), Rcpm(i; j; r), \Leftrightarrow
, IsCpm(i; j; r), IsCpm(m; n; r), Rcpm(i; j; r), Rcpm(m; n; r),
               , IsCpm(i; k; r), IsCpm(m; k; r), Rcpm(m; k; r), Rcpm(i; k; r), \Leftrightarrow
                   , IsCpm(i; k; r), IsCpm(m; k; r), Rcpm(i; k; r), Rcpm(m; k; r),
        , IsCpm(i; j; r_1), IsCpm(m; n; r_2), r_1! \circlearrowleft r_2, IsCpm(i; j; r_2), IsCpm(m; n; r_1),
                                     Rcpm(m; n; r_2), Rcpm(i; j; r_1), \Leftrightarrow
```

$$, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ Repm(i;j;r_1), Repm(m;n;r_2), \\ induction proof: \\ premise 1: \\ , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ Repm(m;n;r_2), Repm(i;j;r_1), \\ \Leftrightarrow , IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ IsCpo(m;r_2), i! \circlearrowleft r_2, i = \varnothing, Repm(m;n;r_2), Repm(i;j;r_1), \\ \Leftrightarrow , IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ IsCpo(m;r_2), i! \circlearrowleft r_2, Repm(m;n;r_2), i = \varnothing, Repm(i;j;r_1), \\ \Leftrightarrow , IsCpm(i;j;r_1), IsCpm(m;n;r_2), i = \varnothing, Repm(i;j;r_2), IsCpm(m;n;r_1), \\ IsCpo(m;r_2), i! \circlearrowleft r_2, Repm(m;n;r_2), i = \varnothing, \\ \Leftrightarrow , IsCpm(i;j;r_1), IsCpm(m;n;r_2), i = \varnothing, \\ \Leftrightarrow , IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ IsCpo(m;r_2), i! \circlearrowleft r_2, i = \varnothing, Repm(m;n;r_2), \\ \Leftrightarrow , IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ IsCpo(m;r_2), i! \circlearrowleft r_2, i = \varnothing, Repm(i;j;r_1), Repm(m;n;r_2), \\ \Leftrightarrow , IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ IsCpo(m;r_2), i! \circlearrowleft r_2, i = \varnothing, Repm(i;j;r_1), Repm(m;n;r_2), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \hookrightarrow r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ \Leftrightarrow , i = \varnothing, IsCpm(i;j;r_2), IsCpm(i;j;r_2), IsCpm(i;j;r_2), IsCpm(i;j;r_2), IsCpm(i;j;r_2), IsCpm(i;j;$$

 $Rcpm(i; j; r_1), Rcpm(m; n; r_2),$

```
premise 2:
, &SHi \rightarrow i, IsCpm(i; j; r_1), IsCpm(m; n; r_2), r_1! \circ r_2, IsCpm(i; j; r_2), IsCpm(m; n; r_1),
Rcpm(m; n; r_2), Rcpm(i; j; r_1), \iff
 , &SHi \rightarrow i, IsCpm(i; j; r_1), IsCpm(m; n; r_2), r_1! \circ r_2, IsCpm(i; j; r_2), IsCpm(m; n; r_1),
Rcpm(i; j; r_1), Rcpm(m; n; r_2), \Rightarrow
i!=\varnothing, &SHi\circlearrowleft i, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1!\circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1),
Rcpm(m; n; r_2), Rcpm(i; j; r_1),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1),
IsCpm(m; n; r_2), i \models \varnothing, Rcpm(m; n; r_2), Rcpm(i; j; r_1),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1),
IsCpm(m; n; r_2), i = \varnothing, Rcpm(m; n; r_2),
i = \varnothing, j \otimes j_0, Rcpo(j_0; r_1), j_0 \otimes, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i = \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r_1), IsCpm(m; n; r_2), r_1 ! \circlearrowleft r_2, IsCpm(i; j; r_2), IsCpm(m; n; r_1),
j \otimes j_0, IsCpm(m; n; r_2), Rcpm(m; n; r_2),
Rcpo(j_0; r_1), j_0 \oplus, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1),
j \otimes j_0, IsCpm(m; n; r_2), IsCpm(m; n; r_1), IsCpo(j_0; r_1), IsCpo(j_0; r_2), r_1! \circ r_2, Rcpm(m; n; r_2),
Rcpo(j_0; r_1), j_0 \oplus, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1),
j \otimes j_0, IsCpm(m; n; r_2), IsCpm(m; n; r_1), IsCpo(j_0; r_1), IsCpo(j_0; r_2), r_1! \circ r_2, Rcpo(j_0; r_1), IsCpo(j_0; r_2), r_3! \circ r_2, Rcpo(j_0; r_3), Rcpo
Rcpm(m; n; r_2), j_0 \oplus, i \oplus, Rcpm(i; j; r_1),
```

```
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowlefti, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1!\circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1),
j \otimes j_0, IsCpo(j_0; r_1), r_1! \circlearrowleft r_2, Rcpo(j_0; r_1),
 IsCpm(m; n; r_2), i! \circ r_2, Rcpm(m; n; r_2), j_0 \oplus, i \oplus, Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowleft i, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1!\circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1),
j \otimes j_0, IsCpo(j_0; r_1), r_1! \circ r_2, Rcpo(j_0; r_1), j_0 \otimes , i \oplus ,
IsCpm(m; n; r_2), i! \mathring{\mathcal{O}}r_2, Rcpm(m; n; r_2), Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1),
j \otimes j_0, IsCpo(j_0; r_1), i! \otimes r_1, r_1! \otimes r_2, Rcpo(j_0; r_1), j_0 \otimes , i \oplus ,
 IsCpm(m; n; r_2), Rcpm(m; n; r_2), Rcpm(i; j; r_1),
 \Leftrightarrow, i!=\varnothing, j\otimes j_0, IsCpo(j_0;r_1), i!Or_1, r_1!Or_2, Rcpo(j_0;r_1), j_0 \oplus j_0, i\oplus j_0
 &SHi \rightarrow i, IsCpm(i; j; r_1), IsCpm(m; n; r_2), r_1! \circlearrowleft r_2, IsCpm(i; j; r_2), IsCpm(m; n; r_1),
 Rcpm(m; n; r_2), Rcpm(i; j; r_1),
\Leftrightarrow, i!=\varnothing, j\otimes j_0, IsCpo(j_0;r_1), i!Or_1, r_1!Or_2, Rcpo(j_0;r_1), j_0\otimes, i\oplus,
 &SHi \rightarrow i, IsCpm(i; j; r_1), IsCpm(m; n; r_2), r_1! \circlearrowleft r_2, IsCpm(i; j; r_2), IsCpm(m; n; r_1),
 Rcpm(i; j; r_1), Rcpm(m; n; r_2),
\Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i; j; r_1), IsCpm(m; n; r_2), r_1! \circlearrowleft r_2, IsCpm(i; j; r_2), IsCpm(m; n; r_1), IsCpm(m; n; r_2), IsCpm(m; r_2), IsCpm(m; r_2), IsCpm(m; r_2), IsCpm(m; r_2), IsCpm(m
j \otimes j_0, IsCpo(j_0; r_1), i! \circ r_1, r_1! \circ r_2, Rcpo(j_0; r_1), j_0 \otimes , i \oplus ,
 Rcpm(i; j; r_1), Rcpm(m; n; r_2),
```

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ i!=\varnothing, j \circledcirc j_0, Rcpo(j_0;r_1), j_0 \circledcirc, i \circledcirc, \\ Rcpm(i;j;r_1), Rcpm(m;n;r_2), \\ \Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ Rcpm(i;j;r_1), Rcpm(m;n;r_2), \\ conclusion: \\ , IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ Rcpm(m;n;r_2), Rcpm(i;j;r_1), \\ \Leftrightarrow, IsCpm(i;j;r_1), IsCpm(m;n;r_2), r_1! \circlearrowleft r_2, IsCpm(i;j;r_2), IsCpm(m;n;r_1), \\ Rcpm(i;j;r_1), Rcpm(m;n;r_2), \\ , IsCpm(i;j;r_1), Rcpm(m;n;r_2), \\ , IsCpm(i;k;r_1), IsCpm(m;k;r_2), r_1! \circlearrowleft r_2, IsCpm(i;k;r_2), IsCpm(m;k;r_1), \\ Rcpm(m;k;r_2), Rcpm(i;k;r_1), \\ \Leftrightarrow, IsCpm(i;k;r_1), IsCpm(m;k;r_2), r_1! \circlearrowleft r_2, IsCpm(i;k;r_2), IsCpm(m;k;r_1), \\ Rcpm(i;k;r_1), Rcpm(m;k;r_2), Rcpm(i;k;r_2), IsCpm(m;k;r_1), \\ Rcpm(i;k;r_1), Rcpm(m;k;r_2), \\ Rcpm(i;k;r_1), Rcpm(i;k;r_2), \\ Rcpm(i;k;r_2), Rcpm(i;k;r_2), \\ Rc$$

31.6.10 R(m)

$$, IsCpm(i;j;r), m! \circlearrowleft r, R(m), Rcpm(i;j;r), \ \Leftrightarrow \ , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), R(m),$$

31.6.11 Rc(m;n)

$$, IsCpm(i;j;r), m! \circ r, n! \circ r, Rc(m;n), Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circ r, n! \circ r, Rcpm(i;j;r), Rc(m;n),$$

31.6.12 Propositions number comparison

$$, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, m = n, Rcpm(i;j;r), \Leftrightarrow \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpm(i;j;r), m = n, \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, m! = n, Rcpm(i;j;r), \Leftrightarrow \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpm(i;j;r), m! = n, \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, m > n, Rcpm(i;j;r), \Leftrightarrow \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpm(i;j;r), m > n, \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, m! > n, Rcpm(i;j;r), \Rightarrow \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpm(i;j;r), m! > n, \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpm(i;j;r), m! > n, \\, IsCpm(i;j;r), m! \circlearrowleft r, n! \circlearrowleft r, Rcpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m = j, \\, IsCpm(i;j;r), m! \circlearrowleft r, m! = j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! = j, \\, IsCpm(i;j;r), m! \circlearrowleft r, m! = j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! = j, \\, IsCpm(i;j;r), m! \circlearrowleft r, m! = j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! = j, \\, IsCpm(i;j;r), m! \circlearrowleft r, m! = j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! = j, \\, IsCpm(i;j;r), m! \circlearrowleft r, m! = j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! = j, \\, IsCpm(i;j;r), m! \circlearrowleft r, m! = j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! = j, \\, IsCpm(i;j;r), m! \circlearrowleft r, m! = j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! \Rightarrow , Rcpm(i;j;r), m! \hookrightarrow r, Rcpm(i;j;r), Rcpm(i$$

 $, IsCpm(i;j;r), m! \circlearrowleft r, m! = j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! = j,$

 $, IsCpm(i;j;r), m! \circlearrowleft r, m > j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m > j,$

 $, IsCpm(i;j;r), m! \circlearrowleft r, m! > j, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), m! > j,$

 $, IsCpm(i;j;r), m! \circlearrowleft r, j > m, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), j > m,$

 $, IsCpm(i;j;r), m! \circlearrowleft r, j! > m, Rcpm(i;j;r), \Leftrightarrow , IsCpm(i;j;r), m! \circlearrowleft r, Rcpm(i;j;r), j! > m,$

31.6.13 &SHi

 $, IsCpm(i; j; r), m! \circ r, \&SHi \circ m, Rcpm(i; j; r), \Leftrightarrow$ $, IsCpm(i; j; r), m! \circlearrowleft r, Rcpm(i; j; r), \&SHi \circlearrowleft m,$

31.6.14 Swap in Rcpm

$$, IsCpm(i;j;r), j\ominus, j!=\varnothing, Repm(i;j;r), \Leftrightarrow \\, IsCpm(i;j;r), i\oslash i_0, Repo(i_0;r), i_0 \oplus, Repm(i;j;r), j\ominus, j!=\varnothing, \\\\ \text{induction proof:}\\ premise 1: \\, i=\varnothing, IsCpm(i;j;r), j\ominus, j!=\varnothing, Repm(i;j;r), \\\\ \Leftrightarrow, IsCpm(i;j;r), j\ominus, j!=\varnothing, Repm(i;j;r), \\\\ \Leftrightarrow, IsCpm(i;j;r), j\ominus, j!=\varnothing, i=\varnothing, Repm(i;j;r), \\\\ \Leftrightarrow, IsCpm(i;j;r), i=\varnothing, j\ominus, j!=\varnothing, \\\\ \Leftrightarrow, IsCpm(i;j;r), i=\varnothing, Repm(i;j;r), j\ominus, j!=\varnothing, \\\\ \Leftrightarrow, IsCpm(i;j;r), i=\varnothing, i\oslash i_0, Repo(i_0;r), i_0 \oplus, Repm(i;j;r), j\ominus, j!=\varnothing, \\\\ \Leftrightarrow, i=\varnothing, IsCpm(i;j;r), i\oslash i_0, Repo(i_0;r), i_0 \oplus, Repm(i;j;r), j\ominus, j!=\varnothing, \\\\ premise 2: \\, \&SHi \rightarrow i, IsCpm(i;j;r), j\ominus, j!=\varnothing, Repm(i;j;r), \\\\ \Leftrightarrow, \&SHi \rightarrow i, IsCpm(i;j;r), i\oslash i_0, Repo(i_0;r), i_0 \oplus, Repm(i;j;r), j\ominus, j!=\varnothing, \\\\ i!=\varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), j\ominus, j!=\varnothing, Repm(i;j;r), \\\\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), j\ominus, j!=\varnothing, Repm(i;j;r), \\\\ \Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), \\\\ \Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), \\\\ SCpo(j;r), j\ominus, j!=\varnothing, j\oslash j_0, Repo(j_0;r), j_0 \oplus, \\\\ i\oplus, Repm(i;j;r), \\\\ SCpo(j;r), Cpo(r), r\oplus, j\oslash j_1, Repo(j_1;r), j_1 \oplus, j\ominus, j!=\varnothing, \\\\ i\oplus, Repm(i;j;r), \\\\ \vdots\oplus, Repm(i;j;r), \\$$

```
\Leftrightarrow , i != \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r),
i! \mathcal{O}r, Cpo(r), r \oplus, j \otimes j_1,
IsCpo(j_1; r), i! \circ r, Rcpo(j_1; r), j_1 \oplus, i \oplus,
j \ominus, j != \varnothing, Rcpm(i; j; r),
\Leftrightarrow, i = \emptyset,
i! \mathcal{O}r, Cpo(r), r \oplus, j \otimes j_1,
IsCpo(j_1; r), i! \mathfrak{O}r, Rcpo(j_1; r), j_1 \mathfrak{D}, i\mathfrak{D},
&SHi \rightarrow i, IsCpm(i; j; r), j \ominus, j! = \emptyset, Rcpm(i; j; r),
\Leftrightarrow, i!=\emptyset,
i! \mathcal{O}r, Cpo(r), r \oplus, j \otimes j_1,
IsCpo(j_1; r), i! \bigcirc r, Rcpo(j_1; r), j_1 \oplus, i \oplus,
&SHi \rightarrowi, IsCpm(i; j; r), i \otimes i_0, Rcpo(i_0; r), i_0 \otimes, Rcpm(i; j; r), j \ominus, j! = \varnothing,
\Leftrightarrow, i!=\varnothing, &SHi\circlearrowlefti, IsCpm(i;j;r),
i! \mathcal{O}r, Cpo(r), r \oplus, j \otimes j_1,
IsCpo(j_1; r), i! \bigcirc r, Rcpo(j_1; r), j_1 \oplus, i \oplus,
i \odot i_0, IsCpo(i_0; r), Rcpo(i_0; r), i_0 \odot, Rcpm(i; j; r), j \odot, j := \varnothing,
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, IsCpm(i; j; r), j \otimes j_1,
IsCpo(j_1;r), Cpo(r), r \oplus, Rcpo(j_1;r), j_1 \oplus, i \oplus,
i \odot i_0, IsCpo(i_0; r), Rcpo(i_0; r), i_0 \odot, Rcpm(i; j; r), j \odot, j := \varnothing,
```

$$\Leftrightarrow, i \models \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), j \oplus j_1,$$

$$IsCpo(j_1;r), Rcpo(j_1;r), j_1 \oplus, Cpo(r), r \oplus, i \oplus,$$

$$i \oplus i_0, IsCpo(i_0;r), Rcpo(i_0;r), i_0 \oplus, Rcpm(i;j;r), j \oplus, j \models \varnothing,$$

$$\Leftrightarrow, i \models \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), j \oplus j_1,$$

$$Rcpo(j_1;r), j_1 \oplus, Cpo(r), r \oplus, i \oplus i_1, i_1 \oplus, i_1 \oplus, i \oplus,$$

$$i \oplus i_0, IsCpo(i_0;r), Rcpo(i_0;r), i_0 \oplus, Rcpm(i;j;r), j \oplus, j \models \varnothing,$$

$$\Leftrightarrow, i \models \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), j \oplus j_1,$$

$$Rcpo(j_1;r), j_1 \oplus, Cpo(r), r \oplus, i \oplus i_1, i_1 \oplus, i \oplus,$$

$$i \oplus i_0, i_0 = i_1, IsCpo(i_0;r), IsCpo(i_1;r), Rcpo(i_0;r), i_1 \oplus, i_0 \oplus, Rcpm(i;j;r), j \oplus, j \models \varnothing,$$

$$\Leftrightarrow, i \models \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), j \oplus j_1,$$

$$Rcpo(j_1;r), j_1 \oplus, Cpo(r), r \oplus, i \oplus i_1, i_1 \oplus, i \oplus,$$

$$i \oplus i_0, i_0 = i_1, IsCpo(i_0;r), IsCpo(i_1;r), Rcpo(i_1;r), i_1 \oplus, i_0 \oplus, Rcpm(i;j;r), j \oplus, j \models \varnothing,$$

$$\Leftrightarrow, i \models \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), j \oplus j_1,$$

$$Rcpo(j_1;r), j_1 \oplus, Cpo(r), r \oplus, i \oplus i_1, i_1 \oplus, i \oplus,$$

$$IsCpo(i_1;r), Rcpo(i_1;r), i_1 \oplus, Rcpm(i;j;r), j \oplus, j \models \varnothing,$$

$$\Leftrightarrow, i \models \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), j \oplus, j \mapsto \varnothing,$$

$$\Leftrightarrow, i \models \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), j \oplus, j \mapsto \varnothing,$$

$$\Leftrightarrow, i \models \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), j \oplus, j \mapsto \varnothing,$$

 $Rcpo(j_1; r), j_1 \oplus, Cpo(r), r \oplus, i \oplus i_1, i_1 \oplus, i \oplus,$

 \Leftrightarrow , $i = \emptyset$, &SHi $\bigcirc i$, IsCpm(i; j; r), $j \bigcirc j_1$,

 $IsCpo(i_1; r), i! \bigcirc r, Rcpo(i_1; r), i_1 \oplus, Rcpm(i; j; r), j \ominus, j! = \varnothing,$

$$Rcpo(j_1;r), j_1 \oplus, Cpo(r), r \oplus, i \otimes i_1, i_1 \oplus, \\ IsCpo(i_1;r), i! \circlearrowleft r, Rcpo(i_1;r), i_1 \oplus, i \oplus, Rcpm(i;j;r), j \ominus, j! = \varnothing, \\ \Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), j \oplus j_1, IsCpo(j_1;r), i! = \varnothing, Rcpo(j_1;r), i! = \varnothing, j_1 \oplus, i \otimes i_1, \\ IsCpo(i_1;r), i_1! = \varnothing, Cpo(r), r \oplus, i_1 \oplus, Rcpo(i_1;r), \\ i_1 \oplus, i \oplus, Rcpm(i;j;r), j \ominus, j! = \varnothing, \\ \Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), j \oplus j_1, IsCpo(j_1;r), Rcpo(j_1;r), j_1 \oplus, i \otimes i_1, \\ IsCpo(i_1;r), Rcpo(i_1;r), \\ i_1 \oplus, i \oplus, Rcpm(i;j;r), j \ominus, j! = \varnothing, \\ \Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), j \otimes j_1, IsCpo(j_1;r), i \otimes i_1, Rcpo(j_1;r), \\ IsCpo(i_1;r), Rcpo(i_1;r), j_1 \oplus, \\ i_1 \oplus, i \oplus, Rcpm(i;j;r), j \ominus, j! = \varnothing, \\ \Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), j \otimes j_1, i \otimes i_1, IsCpo(j_1;r), IsCpo(i_1;r), \\ Rcpo(j_1;r), Rcpo(i_1;r), j_1 \oplus, \\ i_1 \oplus, i \oplus, Rcpm(i;j;r), j \ominus, j! = \varnothing, \\ \Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), j \otimes j_1, i \otimes i_1, IsCpo(j_1;r), IsCpo(i_1;r), \\ Rcpo(i_1;r), Rcpo(j_1;r), j_1 \oplus, \\ i_1 \oplus, i \oplus, Rcpm(i;j;r), j \ominus, j! = \varnothing, \\ \Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), j \otimes j_1, i \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), Rcpo(j_1;r), j_1 \oplus, \\ i_1 \oplus, i \oplus, Rcpm(i;j;r), j \ominus, j! = \varnothing, \\ \Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), j \otimes j_1, i \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), Rcpo(j_1;r), Rcpo(j_1;r), j \otimes j_1, i \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), IsCpo(j_1;r), Rcpo(j_1;r), j \otimes j_1, i \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), IsCpo(j_1;r), Rcpo(j_1;r), j \otimes j_1, i \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), IsCpo(j_1;r), Rcpo(j_1;r), j \otimes j_1, i \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), IsCpo(j_1;r), Rcpo(j_1;r), j \otimes j_1, i \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), IsCpo(j_1;r), Rcpo(j_1;r), j \otimes j_1, i \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), IsCpo(j_1;r), Rcpo(j_1;r), I \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), IsCpo(j_1;r), Rcpo(j_1;r), I \otimes i_1, IsCpo(i_1;r), \\ Rcpo(i_1;r), IsCpo(j_1;r), Rcpo(j_1;r), Rcpo(j_1;r), Rcpo(i_1;r), Rcpo$$

```
i_1 \oplus, i \oplus, Rcpm(i; j; r), j \ominus, j \models \emptyset,
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, IsCpm(i; j; r), i \odot i_1, IsCpo(i_1; r),
Rcpo(i_1; r), i_1 \oplus, j \oplus j_1, IsCpo(j_1; r), Rcpo(j_1; r), j_1 \oplus,
i \oplus, Rcpm(i; j; r), j \ominus, j != \varnothing,
\Leftrightarrow, &SHi\circlearrowlefti, IsCpm(i;j;r), i \odot i_1, IsCpo(i_1;r), i!=\varnothing,
Rcpo(i_1; r), i_1 \oplus, i! = \emptyset, j \oplus j_1, Rcpo(j_1; r), j_1 \oplus,
i\oplus, Rcpm(i; j; r), j\ominus, j!=\varnothing,
\Leftrightarrow, &SHi\circlearrowlefti, IsCpm(i;j;r), i \otimes i_1, IsCpo(i_1;r), i!=\varnothing,
Rcpo(i_1; r), i_1 \oplus, i! = \varnothing, Rcpm(i; j; r), j \ominus, j! = \varnothing,
\Leftrightarrow, i = \emptyset, &SHi \circlearrowleft i, IsCpm(i; j; r), i \odot i_1,
Rcpo(i_1; r), i_1 \oplus, Rcpm(i; j; r), j \ominus, j != \varnothing,
\Leftrightarrow, i \models \varnothing, \&SHi \circlearrowleft i, IsCpm(i; j; r), i \circlearrowleft i_0, Rcpo(i_0; r), i_0 \circlearrowleft, Rcpm(i; j; r), j \circlearrowleft, j \models \varnothing,
conclusion:
, IsCpm(i; j; r), j \ominus, j != \varnothing, Rcpm(i; j; r), \Leftrightarrow
, IsCpm(i; j; r), i \odot i_0, Rcpo(i_0; r), i_0 \oplus, Rcpm(i; j; r), j \ominus, j \models \emptyset,
           , IsCpm(i; j; r), Rcpm(i; j; r), R(j), \Leftrightarrow , IsCpm(i; j; r), Rcpm(j; i; r), R(i),
induction proof:
premise 1:
, i = \varnothing, IsCpm(i; j; r), Rcpm(i; j; r), R(j),
\Leftrightarrow, IsCpm(i; j; r), i = \varnothing, Rcpm(i; j; r), R(j),
```

$$\Leftrightarrow, IsCpm(i;j;r), i=\varnothing, R(j),$$

$$\Leftrightarrow, IsCpm(i;j;r), R(j), i=\varnothing, R(i),$$

$$\Leftrightarrow, IsCpm(i;j;r), i=\varnothing, R(j), R(i),$$

$$\Leftrightarrow, IsCpm(i;j;r), i=\varnothing, Rcpm(j;i;r), R(i),$$

$$\Leftrightarrow, i=\varnothing, IsCpm(i;j;r), Rcpm(j;i;r), R(j),$$

$$premise 2:$$

$$, \&SHi \rightarrow i, IsCpm(i;j;r), Rcpm(j;i;r), R(j), \Leftrightarrow$$

$$, \&SHi \rightarrow i, IsCpm(i;j;r), Rcpm(j;i;r), R(j), \Leftrightarrow$$

$$, \&SHi \rightarrow i, IsCpm(i;j;r), Rcpm(i;j;r), R(j),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), Rcpm(i;j;r), R(j),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r),$$

$$i!=\varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r),$$

$$i!=\varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), j \oplus j_0,$$

$$IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j;r), R(j),$$

$$\Leftrightarrow, i!=\varnothing, j \oplus j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus, i \oplus,$$

$$\&SHi \rightarrow i, IsCpm(i;j;r), Rcpm(i;j;r), R(j),$$

$$\Leftrightarrow, i!=\varnothing, j \oplus j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus, i \oplus,$$

$$\&SHi \rightarrow i, IsCpm(i;j;r), Rcpm(j;i;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, j \oplus j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus,$$

$$i!=\varnothing, i \oplus, IsCpm(i;j;r), Rcpm(j;i;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus,$$

$$i!=\varnothing, i \oplus, IsCpm(i;j;r), Rcpm(j;i;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus,$$

$$i!=\varnothing, i \oplus, IsCpm(i;j;r), Rcpm(j;i;r), R(i),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus,$$

$$i!=\varnothing, i \oplus, IsCpm(i;j;r), Rcpm(j;i;r), R(i),$$

$$i = \varnothing, i \otimes i_1, i_1 \oplus, i_1 \ominus, i_1 = \varnothing, i_1 \oplus, i \oplus, IsCpm(i; j; r), Rcpm(j; i; r), R(i),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i! = \varnothing, i \otimes i_1,$$

$$i_1 \oplus, i \oplus, IsCpm(i; j; r), i_1! \circlearrowleft r, i_1 \ominus, i_1! = \varnothing, i_1 \oplus, Rcpm(j; i; r), R(i),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i! = \varnothing, i \otimes i_1,$$

$$i_1 \oplus, i \oplus, IsCpm(i; j; r), i_1! \circlearrowleft r, Rcpm(j; i; r), i_1 \ominus, i_1! = \varnothing, R(i), i_1 \oplus,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \otimes, i! = \varnothing, i \otimes i_1,$$
$$i_1 \oplus, i \oplus, IsCpm(i; j; r), i_1 \circlearrowleft i, Rcpm(j; i; r), i_1 \ominus, i_1! = \varnothing, R(i), i_1 \oplus,$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \otimes, i! = \varnothing, i \otimes i_1,$$
$$i_1 \oplus, i \oplus, IsCpm(i; j; r), Rcpm(j; i; r), i_1 \circlearrowleft i, i_1 \ominus, i_1! = \varnothing, R(i), i_1 \oplus,$$

$$\Leftrightarrow , \&SHi \, \circlearrowleft i, j \otimes j_0, IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i! = \varnothing, i \otimes i_1,$$

$$i_1 \oplus, i \oplus, IsCpm(i; j; r), Rcpm(j; i; r), i_1 \circlearrowleft i, i_1 \ominus, i \ominus, i_1! = \varnothing, i \oplus, R(i), i_1 \oplus, R(i), i_2 \ominus, R(i), R(i$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i! = \varnothing, i \otimes i_1,$$
$$i_1 \oplus, i \oplus, IsCpm(i; j; r), Rcpm(j; i; r), i_1 \circlearrowleft i, i_1 \ominus, i \ominus, i! = \varnothing, i \oplus, R(i), i_1 \oplus,$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i! = \varnothing,$$

$$i \oplus, IsCpm(i; j; r), Rcpm(j; i; r), i \ominus, i! = \varnothing, i \oplus, R(i),$$

$$\Leftrightarrow , \&SHi \circlearrowleft i, j \otimes j_0, IsCpo(j_0; r), i! \circlearrowleft r, Rcpo(j_0; r), j_0 \oplus, i! = \varnothing,$$
$$i \oplus, IsCpm(i; j; r), Rcpm(j; i; r), i \ominus, i! = \varnothing, R(i),$$

```
31 Recursive Function Rcpm(i;j;r)
```

$$\Leftrightarrow ,i!=\varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), i\oplus, j \otimes j_0, IsCpo(j_0;r), i! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus, \\ Rcpm(j;i;r), i\ominus, i!=\varnothing, R(i),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi \bigcirc i, $IsCpm(i;j;r)$, $i\oplus$,

$$j \oplus j_0, Rcpo(j_0; r), j_0 \oplus, Rcpm(j; i; r), i \ominus, i! = \varnothing, R(i),$$

$$\Leftrightarrow$$
, $i!=\varnothing$, &SHi $\circlearrowleft i$, $IsCpm(i;j;r)$, $i \oplus , i \ominus , i!=\varnothing$, $Rcpm(j;i;r)$, $R(i)$,

$$\Leftrightarrow$$
, $i = \emptyset$, &SHi $\circlearrowleft i$, $IsCpm(i; j; r)$, $Rcpm(j; i; r)$, $R(i)$,

conclusion:

$$, IsCpm(i; j; r), Rcpm(i; j; r), R(j), \Leftrightarrow , IsCpm(i; j; r), Rcpm(j; i; r), R(i),$$

$$, IsCpm(i;j;r), Rcpm(i;j;r), i \oplus, j \oplus, \Leftrightarrow, IsCpm(i;j;r), Rcpm(j;i;r), i \oplus, j \oplus,$$

31.7 &Tm(r)

$$, IsCpm(i; j; r), i \oplus, \&Tm(r), \Leftrightarrow , IsCpm(i; j; r), Rcpm(i; j; r), i \oplus, \&Tm(r),$$

$$, IsCpm(i;j;r), R(i), \&Tm(r), \Leftrightarrow , IsCpm(i;j;r), Rcpm(i;j;r), \&Tm(r),$$

induction proof:

premise 1:

$$, i = \varnothing, IsCpm(i; j; r), R(i), \&Tm(r), \\ \Leftrightarrow , IsCpm(i; j; r), i = \varnothing, R(i), \&Tm(r),$$

$$\Leftrightarrow$$
, $IsCpm(i; j; r), i = \emptyset, \&Tm(r),$

$$\Leftrightarrow$$
, $IsCpm(i; j; r), i = \varnothing, Rcpm(i; j; r), \&Tm(r),$

$$\Leftrightarrow$$
, $i = \emptyset$, $IsCpm(i; j; r)$, $Rcpm(i; j; r)$, & $Tm(r)$,

 \Leftrightarrow , &SHi \circlearrowleft i, IsCpm(i;j;r), $i!=\varnothing$,

$$\begin{split} j \otimes j_0, IsCpo(j_0; r), i! & \circlearrowleft r, Rcpo(j_0; r), j_0 \otimes, i \oplus, Rcpm(i; j; r), \&Tm(r), \\ \Leftrightarrow & , \&SHi \, \circlearrowleft i, IsCpm(i; j; r), i! = \varnothing, \\ j \otimes j_0, Rcpo(j_0; r), j_0 \otimes, i \oplus, Rcpm(i; j; r), \&Tm(r), \\ \Leftrightarrow & , i! = \varnothing, \&SHi \, \circlearrowleft i, IsCpm(i; j; r), Rcpm(i; j; r), \&Tm(r), \\ conclusion: \\ & , IsCpm(i; j; r), R(i), \&Tm(r), \Leftrightarrow & , IsCpm(i; j; r), Rcpm(i; j; r), \&Tm(r), \\ & , i \otimes, \Leftrightarrow & , \odot r, Rcpm(i; j; r), r \otimes, \\ & , R(i), \Leftrightarrow & , \odot r, Rcpm(i; j; r), r \otimes, \end{split}$$

31.8 Substitution

```
, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, Rcpm(i;j_1;r), \Leftrightarrow \\, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, Rcpm(i;j_2;r), \\\\ induction proof: \\premise 1: \\, i = \varnothing, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, Rcpm(i;j_1;r), \\\\ \Leftrightarrow, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, i = \varnothing, Rcpm(i;j_1;r), \\\\ \Leftrightarrow, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, i = \varnothing, Rcpm(i;j_2;r), \\\\ \Leftrightarrow, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, i = \varnothing, Rcpm(i;j_2;r), \\\\ \Leftrightarrow, i = \varnothing, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, Rcpm(i;j_2;r), \\\\ premise 2: \\, \&SHi \rightarrow i, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, Rcpm(i;j_1;r), \Leftrightarrow \\\\ , \&SHi \rightarrow i, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 = j_2, Rcpm(i;j_2;r), \Rightarrow \\\\ \end{cases}
```

```
i!=\varnothing, &SHi\circlearrowleft i, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1=j_2, Rcpm(i;j_1;r),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 = j_2,
i = \varnothing, j_1 \otimes j_0, Rcpo(j_0; r), j_0 \otimes, i \oplus, Rcpm(i; j_1; r),
\Leftrightarrow, i \models \varnothing, j_1 \otimes j_0, &SHi \circlearrowlefti, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 = j_2,
IsCpo(j_0;r), i! \circlearrowleft r, j_1! \circlearrowleft r, j_2! \circlearrowleft r, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j_1;r),
\Leftrightarrow, i!=\varnothing, j_1\otimes j_0, IsCpo(j_0;r), i!Or, j_1!Or, j_2!Or, Rcpo(j_0;r), j_0\otimes, i\oplus,
&SHi \rightarrow i, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 = j_2, Rcpm(i; j_1; r),
\Leftrightarrow, i!=\varnothing, j_1\otimes j_0, IsCpo(j_0;r), i! \circ r, j_1! \circ r, j_2! \circ r, Rcpo(j_0;r), j_0 \otimes i \oplus r,
&SHi \rightarrow i, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 = j_2, Rcpm(i; j_2; r),
\Leftrightarrow, &SHi\circlearrowlefti, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 \pm j_2, i \models \varnothing, j_1 \odot j_0,
IsCpo(j_0;r), i! \circ r, j_1! \circ r, j_2! \circ r, Rcpo(j_0;r), j_0 \oplus, i \oplus, Rcpm(i;j_2;r),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 \pm j_2, i! = \varnothing, j_1 \odot j_0, j_2 \odot j_3, j_3 \odot,
IsCpo(j_0; r), Rcpo(j_0; r), j_0 \oplus, i \oplus, Rcpm(i; j_2; r),
\Leftrightarrow, &SHi\circlearrowleft i, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 = j_2, i \models \varnothing, j_1 \otimes j_0, j_2 \otimes j_3,
IsCpo(j_0;r), IsCpo(j_3;r), j_0 = j_3, Rcpo(j_0;r), j_0 \oplus, j_3 \oplus, i \oplus, Rcpm(i;j_2;r),
\Leftrightarrow , \&SHi \, \circlearrowleft i, IsCpm(i;j_1;r), IsCpm(i;j_2;r), j_1 \pm j_2, i \stackrel{!}{=} \varnothing, j_1 \odot j_0, j_2 \odot j_3,
IsCpo(j_0;r), IsCpo(j_3;r), j_0 = j_3, Rcpo(j_3;r), j_0 \oplus, j_3 \oplus, i \oplus, Rcpm(i;j_2;r),
```

 \Leftrightarrow , &SHi \circlearrowleft i, $IsCpm(i; j_1; r)$, $IsCpm(i; j_2; r)$, $j_1 \pm j_2$, $i! = \varnothing$,

```
j_2 \otimes j_3, Rcpo(j_3; r), j_3 \otimes , i \oplus , Rcpm(i; j_2; r),
\Leftrightarrow, i = \varnothing, &SHi \circlearrowleft i, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 = j_2, Rcpm(i; j_2; r),
conclusion:
, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 = j_2, Rcpm(i; j_1; r), \Leftrightarrow
, IsCpm(i; j_1; r), IsCpm(i; j_2; r), j_1 = j_2, Rcpm(i; j_2; r),
                , IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, Rcpm(i_1; j; r), R(i_2), \Leftrightarrow
                    , IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, Rcpm(i_2; j; r), R(i_1),
proof:
, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, Rcpm(i_1; j; r), R(i_2),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 \pm i_2,
j \otimes j_0, j = j_0, j_0 \otimes, Rcpm(i_1; j; r), R(i_2),
\Leftrightarrow, IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
IsCpm(i_1; j; r), j=j_0, j_0 \oplus, Rcpm(i_1; j; r), R(i_2),
\Leftrightarrow, IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
IsCpm(i_1; j; r), IsCpm(i_1; j_0; r), j = j_0, Rcpm(i_1; j; r), j_0 \oplus, R(i_2),
\Leftrightarrow, IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
IsCpm(i_1; j; r), IsCpm(i_1; j_0; r), j = j_0, Rcpm(i_1; j_0; r), j_0 \oplus, R(i_2),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
```

```
IsCpm(i_1; j_0; r), Rcpm(i_1; j_0; r), R(j_0), j_0 \oplus, R(i_2),
\Leftrightarrow , IsCpm(i_1;j;r), IsCpm(i_2;j;r), i_1 \pm i_2, j \otimes j_0,
IsCpm(i_1; j_0; r), Rcpm(j_0; i_1; r), R(i_1), j_0 \oplus, R(i_2),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), j \otimes j_0,
IsCpm(i_1; j_0; r), IsCpm(i_2; j_0; r), i_1 = i_2, Rcpm(j_0; i_1; r), j_0 @, R(i_2), R(i_1), \\
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), j \otimes j_0,
IsCpm(i_1; j_0; r), IsCpm(i_2; j_0; r), i_1 = i_2, Rcpm(j_0; i_2; r), j_0 \oplus, R(i_2), R(i_1),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
IsCpm(i_2; j_0; r), Rcpm(j_0; i_2; r), R(i_2), j_0 \oplus, R(i_1),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
IsCpm(i_2; j_0; r), Rcpm(i_2; j_0; r), R(j_0), j_0 \oplus, R(i_1),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
IsCpm(i_2; j_0; r), IsCpm(i_2; j; r), j = j_0, Rcpm(i_2; j_0; r), j_0 \oplus, R(i_1),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
IsCpm(i_2; j_0; r), IsCpm(i_2; j; r), j = j_0, Rcpm(i_2; j; r), j_0 \oplus, R(i_1),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, j \otimes j_0,
IsCpm(i_2; j; r), Rcpm(i_2; j; r), j_0 \oplus, R(i_1),
\Leftrightarrow, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 \pm i_2, Rcpm(i_2; j; r), R(i_1),
```

$$, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, Rcpm(i_1; j; r), i_1 \oplus, i_2 \oplus, \Leftrightarrow \\, IsCpm(i_1; j; r), IsCpm(i_2; j; r), i_1 = i_2, Rcpm(i_2; j; r), i_1 \oplus, i_2 \oplus, \\$$

31.9 Expand

$$, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ Repm(i;j;r), r_{1} \oplus, \&Tm(r_{10}), \Leftrightarrow \\ , IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ Repm(i;j;r_{10}), Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}), \\ induction \quad proof: \\ premise 1: \\ , i = \varnothing, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ Repm(i;j;r), r_{1} \oplus, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i = \varnothing, Repm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i = \varnothing, r_{1} \oplus, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i = \varnothing, r_{1} \oplus, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i = \varnothing, r_{1} \oplus, \&Tm(r_{10}), \\ \Leftrightarrow , IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i = \varnothing, r_{1} = \varnothing, Repo(r_{1};r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i = \varnothing, r_{1} = \varnothing, Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}), \\ \end{cases}$$

 \Leftrightarrow , IsCpm(i;j;r), $IsCpm(i;j;r_{10})$, $r! \circlearrowleft r_{10}$, $r_1 \circlearrowleft r_{10}$,

$$\begin{split} &i=\varnothing, Repm(i;j;r_{10}), Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}), \\ &\Leftrightarrow \ , i=\varnothing, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r_{!} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &Repm(i;j;r_{10}), Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}), \\ &premise\ 2: \\ , \&SHi \to i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r_{!} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &Repm(i;j;r), r_{1} \oplus, \&Tm(r_{10}), \\ &\Leftrightarrow , \&SHi \to i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r_{!} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &Repm(i;j;r_{10}), Repo(r_{1};r), r_{1} \oplus, \&Tm(r_{10}), \\ &\Leftrightarrow , \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r_{!} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &Repm(i;j;r), r_{1} \oplus, \&Tm(r_{10}), \\ &\Leftrightarrow , \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r_{!} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r_{!} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\vdots = \varnothing, j \circledcirc j_{0}, Repo(j_{0};r), j_{0} \circledcirc, i \oplus, Repm(i;j;r), r_{1} \oplus, \&Tm(r_{10}), \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r_{!} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, i \trianglerighteq r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{!} \circlearrowleft r_{10}, r_{!} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j \circledcirc j_{0}, IsCpo(j_{0};r), r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ &\Leftrightarrow , i \models \varnothing, j$$

$$\Rightarrow, i!=\varnothing, \&SHi \circlearrowleft_i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft_{r_{10}}, r_{1} \circlearrowleft_{r_{10}$$

```
IsCpo(j_0; r), IsCpo(j_0; r_{10}), IsCpm(i; j; r), IsCpm(i; j; r_{10}), r! \circ r_{10},
Rcpm(i; j; r_{10}), Rcpo(j_0; r),
Rcpo(r_1; r), j_0 \oplus, r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i = \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r), IsCpm(i; j; r_{10}), r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, i \oplus j \odot j_0,
IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, Rcpm(i;j;r_{10}),
IsCpo(j_0; r), IsCpo(j_0; r_{10}), IsCpo(r_1; r), r_1 \circ r_{10}, Rcpo(j_0; r),
Rcpo(r_1; r), j_0 \oplus, r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i = \varnothing, &SHi \circlearrowleft i, IsCpm(i; j; r), IsCpm(i; j; r_{10}), r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, i \oplus j \circlearrowleft j_0,
IsCpm(i; j; r), IsCpm(i; j; r_{10}), r! \circlearrowleft r_{10}, Rcpm(i; j; r_{10}),
IsCpo(j_0; r), IsCpo(j_0; r_{10}), IsCpo(r_1; r), r_1 \circ r_{10}, Rcpo(j_0; r_{10}),
Rcpo(r_1; r), j_0 \oplus, r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, i \oplus j \otimes j_0,
IsCpm(i; j; r_{10}), IsCpo(j_0; r_{10}),
Rcpm(i; j; r_{10}), Rcpo(j_0; r_{10}),
Rcpo(r_1; r), j_0 \oplus, r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, i \oplus j \otimes j_0,
IsCpm(i; j; r_{10}), IsCpo(j_0; r_{10}),
Rcpo(j_0; r_{10}), Rcpm(i; j; r_{10}),
Rcpo(r_1; r), j_0 \oplus, r_1 \oplus, \&Tm(r_{10}),
```

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, i! = \varnothing,$$

$$j \circlearrowleft j_{0}, Rcpo(j_{0};r_{10}), j_{0} \circlearrowleft, i \circlearrowleft,$$

$$Rcpm(i;j;r_{10}), Rcpo(r_{1};r), r_{1} \circlearrowleft, \&Tm(r_{10}),$$

$$\Leftrightarrow, i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;j;r_{10}), Rcpo(r_{1};r), r_{1} \circlearrowleft, \&Tm(r_{10}),$$

$$conclusion:$$

$$, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;j;r), r_{1} \circlearrowleft, \&Tm(r_{10}), \Leftrightarrow$$

$$, IsCpm(i;j;r), IsCpm(i;j;r_{10}), r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$, IsCpm(i;j;r), Rcpm(i;j;r), \Leftrightarrow$$

$$, IsCpm(i;j;r), @r_1, r_1 @r_{10}, Rcpm(i;j;r_{10}), , Rcpo(r_1;r), r_1 @, r_{10} @,$$

31.10 Distributivity

 $Rcpm(i; j; r_{10}), Rcpo(r_1; r), r_1 \oplus, \&Tm(r_{10}),$

$$, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpo(i;r_{10}), Rcpo(j;r_{10}), Rcpm(r_{1};k;r), r_{1} \textcircled{@}, \&Tm(r_{10}), \Leftrightarrow$$

$$, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \textcircled{@}, \&Tm(r_{10}),$$
 induction proof:
$$premise\ 1:$$

$$, i = \varnothing, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpo(i;r_{10}), Rcpo(j;r_{10}), Rcpm(r_{1};k;r), r_{1} \textcircled{@}, \&Tm(r_{10}),$$

$$\Rightarrow , IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1}$$

 \Leftrightarrow , $i = \varnothing$, IsCpm(i; j; r), $IsCpm(i; j; r_{10})$, $k! \circ r$, $k! \circ r_{10}$, $r! \circ r_{10}$, $r_1 \circ r_{10}$,

$$j \otimes j_1, IsCpo(j; r_{10}), Rcpo(j; r_{10}), IsCpm(r_1; k; r), IsCpm(j_1; k; r),$$

 $r_1 = j_1, Rcpm(j_1; k; r), R(r_1), j_1 \oplus, r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow, i = \varnothing, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},$$
$$j \circlearrowleft j_1, IsCpo(j; r_{10}), Rcpo(j; r_{10}),$$

 $IsCpm(j_1; k; r), Rcpm(j_1; k; r), j_1 \oplus, r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow, i = \varnothing, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$
$$j \circlearrowleft j_{1}, IsCpo(j; r_{10}), r! \circlearrowleft r_{10}, Repo(j; r_{10}),$$

 $IsCpm(j_1; k; r), Rcpm(j_1; k; r), j_1 \oplus, r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow, i = \varnothing, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$j \circlearrowleft j_{1}, IsCpo(j; r_{10}), IsCpo(j; r), IsCpm(j_{1}; k; r), IsCpm(j_{1}; k; r_{10}), r! \circlearrowleft r_{10},$$

$$Rcpo(j; r_{10}), Rcpm(j_{1}; k; r), j_{1} \circlearrowleft, r_{1} \circlearrowleft, \&Tm(r_{10}),$$

$$\Leftrightarrow, i = \varnothing, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$j \circledcirc j_{1}, IsCpo(j; r_{10}), IsCpo(j; r), IsCpm(j_{1}; k; r), IsCpm(j_{1}; k; r_{10}), r! \circlearrowleft r_{10},$$

$$Rcpm(j_{1}; k; r), Rcpo(j; r_{10}), j_{1} \circledcirc, r_{1} \circledcirc, \&Tm(r_{10}),$$

$$\Leftrightarrow, i = \varnothing, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \mathring{\bigcirc} r, k! \mathring{\bigcirc} r_{10}, r! \mathring{\bigcirc} r_{10}, r_1 \mathring{\bigcirc} r_{10},$$

$$j \mathring{\otimes} j_1, IsCpm(j_1; k; r), r! \mathring{\bigcirc} r_{10}, Rcpm(j_1; k; r),$$

$$IsCpo(j; r_{10}), Rcpo(j; r_{10}), j_1 \mathring{\oplus}, r_1 \mathring{\oplus}, \&Tm(r_{10}),$$

$$\Leftrightarrow, i = \varnothing, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \mathring{\bigcirc} r, k! \mathring{\bigcirc} r_{10}, r! \mathring{\bigcirc} r_{10}, r_1 \mathring{\bigcirc} r_{10},$$
$$j \mathring{\bigcirc} j_1, IsCpm(j_1; k; r), r! \mathring{\bigcirc} r_{10}, Rcpm(j_1; k; r),$$

$$IsCpo(j;r_{10}), R(j), j_{1} \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$\Rightarrow , i = \varnothing, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$j \otimes j_{1}, IsCpm(j_{1};k;r), IsCpm(j;k;r), j_{1} = j,$$

$$Rcpm(j_{1};k;r), R(j), j_{1} \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$\Rightarrow , i = \varnothing, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$j \otimes j_{1}, IsCpm(j_{1};k;r), IsCpm(j;k;r), j_{1} = j,$$

$$Rcpm(j;k;r), R(j_{1}), j_{1} \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$\Rightarrow , IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$i = \varnothing, Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$\Rightarrow , IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$i = \varnothing, Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$\Rightarrow , i = \varnothing, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$premise 2:$$

$$, \&SHi \rightarrow i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpo(i;r_{10}), Rcpo(j;r_{10}), Rcpm(r_{1};k;r), r_{1} \oplus, \&Tm(r_{10}), \Leftrightarrow$$

$$, \&SHi \rightarrow i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(j;k;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(j;k;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(j;k;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(j;k;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10$$

 $Rcpo(i; r_{10}), Rcpo(j; r_{10}), Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),$

```
31 Recursive Function Rcpm(i;j;r)
```

 $Rcpo(j; r_{10}), Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, i! = \varnothing, Repo(i;r_{10}), Repo(j;r_{10}), Repm(r_{1};k;r), r_{1} \circlearrowleft, \&Tm(r_{10}), \\$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, i! = \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus, Repo(i;r_{10}),$$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, i! = \varnothing, r_1 \circlearrowleft r_{10}, Cpo(r_{10}), r_1 \circlearrowleft r_{10}, r_{10}! = \varnothing, r_1 ! = \varnothing, r_{10} \oplus, i \oplus,$$

 $Rcpo(i; r_{10}), Rcpo(j; r_{10}),$

 $Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow, \&S\!H\!i\:\circlearrowleft\!i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k!\circlearrowleft\!r, k!\circlearrowleft\!r_{10}, r!\circlearrowleft\!r_{10}, r_{1}\circlearrowleft\!r_{10}, \\ i != \varnothing, Cpo(r_{10}), r_{1} != \varnothing, r_{10}\oplus, i\oplus,$$

 $IsCpo(i; r_{10}), Rcpo(i; r_{10}), IsCpo(j; r_{10}), Rcpo(j; r_{10}),$

 $Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow, \&S\!H\!i\,\mathring{\bigcirc}\!i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k!\mathring{\bigcirc}\!r, k!\mathring{\bigcirc}\!r_{10}, r!\mathring{\bigcirc}\!r_{10}, r_1\mathring{\bigcirc}\!r_{10}, \\ i != \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus,$$

 $IsCpo(i; r_{10}), r_1 != \varnothing, Rcpo(i; r_{10}), IsCpo(j; r_{10}), r_1 != \varnothing, Rcpo(j; r_{10}),$ $r_1 != \varnothing, k \otimes k_0, Rcpo(k_0; r), k_0 \oplus, r_1 \oplus, Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10}, i! = \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus, r_1 ! = \varnothing, k \odot k_0,$$

 $IsCpo(i; r_{10}), Rcpo(i; r_{10}), IsCpo(j; r_{10}), Rcpo(j; r_{10}),$

```
Rcpo(k_0; r), k_0 \oplus, r_1 \oplus, Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft\!r, k! \circlearrowleft\!r_{10}, r! \circlearrowleft\!r_{10}, r_1 \circlearrowleft\!r_{10},
i = \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus, k \otimes k_0,
IsCpo(i; r_{10}), IsCpo(i; r), IsCpo(k_0; r_{10}), IsCpo(k_0; r), r! \circ r_{10}, Repo(i; r_{10}),
IsCpo(j; r_{10}), IsCpo(j; r), IsCpo(k_0; r_{10}), IsCpo(k_0; r), r! \circ r_{10}, Rcpo(j; r_{10}),
Rcpo(k_0; r), k_0 \oplus, r_1 \oplus, Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},
i = \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus, k \otimes k_0,
IsCpo(i; r_{10}), IsCpo(i; r), IsCpo(k_0; r_{10}), IsCpo(k_0; r), r! \circ r_{10}, Repo(i; r_{10}),
IsCpo(j; r_{10}), IsCpo(j; r), IsCpo(k_0; r_{10}), IsCpo(k_0; r), r! \circ r_{10}, Rcpo(k_0; r), Rcpo(j; r_{10}),
k_0 \oplus, r_1 \oplus, Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},
i = \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus, k \otimes k_0,
IsCpo(i; r_{10}), IsCpo(i; r), IsCpo(k_0; r_{10}), IsCpo(k_0; r), r! \circ r_{10}, Repo(i; r_{10}),
Rcpo(k_0; r), Rcpo(j; r_{10}),
k_0 \oplus, r_1 \oplus, Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},
i = \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus, k \otimes k_0,
IsCpo(i; r_{10}), IsCpo(i; r), IsCpo(k_0; r_{10}), IsCpo(k_0; r), r! \circ r_{10}, Repo(k_0; r),
```

 $Rcpo(i; r_{10}), Rcpo(j; r_{10}),$

$$k_0 \oplus, r_1 \oplus, Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft\!r, k! \circlearrowleft\!r_{10}, r! \circlearrowleft\!r_{10}, r_1 \circlearrowleft\!r_{10},$$

$$i = \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus, k \otimes k_0,$$

$$IsCpo(k_0; r), r! \circlearrowleft r_{10}, Rcpo(k_0; r),$$

$$IsCpo(i; r_{10}), Rcpo(i; r_{10}),$$

$$IsCpo(j; r_{10}), Rcpo(j; r_{10}),$$

$$k_0 \oplus, r_1 \oplus, Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft\!r, k! \circlearrowleft\!r_{10}, r! \circlearrowleft\!r_{10}, r_1 \circlearrowleft\!r_{10},$$

$$i = \varnothing, Cpo(r_{10}), r_{10} \oplus, i \oplus, k \otimes k_0,$$

$$IsCpo(k_0; r), r! \circlearrowleft r_{10}, Rcpo(k_0; r), k_0 \oplus,$$

$$IsCpo(i; r_{10}), Rcpo(i; r_{10}),$$

$$IsCpo(j; r_{10}), Rcpo(j; r_{10}),$$

$$r_1 \oplus$$
, $Rcpm(r_1; k; r)$, $r_1 \oplus$, & $Tm(r_{10})$,

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft\!r, k! \circlearrowleft\!r_{10}, r! \circlearrowleft\!r_{10}, r_1 \circlearrowleft\!r_{10},$$

$$i = \varnothing, Cpo(r_{10}), r_{10} \oplus, r_1 ! \circlearrowleft r_{10}, i \oplus, k \otimes k_0,$$

$$IsCpo(k_0;r), r! \circlearrowleft r_{10}, r_1! \circlearrowleft r_{10}, Rcpo(k_0;r), k_0 \oplus,$$

$$IsCpo(i; r_{10}), r_1! \circlearrowleft r_{10}, Rcpo(i; r_{10}),$$

$$IsCpo(j; r_{10}), r_1! \circlearrowleft r_{10}, Rcpo(j; r_{10}),$$

$$r_1 \oplus, Rcpm(r_1; k; r), r_1 \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft\!r, k! \circlearrowleft\!r_{10}, r! \circlearrowleft\!r_{10}, r_1 \circlearrowleft\!r_{10},$$

$$\begin{split} i! &= \varnothing, Cpo(r_{10}), r_{10} \odot, r_{1} \odot r_{10}, i \odot, k \otimes k_{0}, \\ IsCpo(k_{0}; r), r! \odot r_{10}, r_{1}! \odot r_{10}, Repo(k_{0}; r), k_{0} \odot, \\ IsCpo(i; r_{10}), r_{1}! \odot r_{10}, Repo(i; r_{10}), \\ IsCpo(j; r_{10}), r_{1}! \odot r_{10}, Repo(j; r_{10}), \\ Repm(r_{1}; k; r), r_{1} \odot, \&Tm(r_{10}), \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, r_{1} \odot r_{10}, \\ i! &= \varnothing, Cpo(r_{10}), r_{10} \odot, r_{1}! \odot r_{10}, k \otimes k_{0}, \\ IsCpo(k_{0}; r), r_{1}! \odot r_{10}, r_{1} \odot r_{10}, Repo(k_{0}; r), k_{0} \odot, \\ IsCpo(i; r_{10}), r_{1}! \odot r_{10}, r_{1} \odot r_{10}, Repo(i; r_{10}), \\ IsCpo(j; r_{10}), Repo(j; r_{10}), \\ Repm(r_{1}; k; r), r_{1} \odot, \&Tm(r_{10}), \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, r_{1} \odot r_{10}, \\ i! &= \varnothing, Cpo(r_{10}), r_{10} \odot, r_{1}! \odot r_{10}, i \odot, k \otimes k_{0}, \\ IsCpo(k_{0}; r), r! \odot r_{1}, Repo(k_{0}; r), r_{1} \odot, k \otimes k_{0}, \\ IsCpo(i; r_{10}), Repo(j; r_{10}), \\ Repm(r_{1}; k; r), r_{1} \odot, \&Tm(r_{10}), \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, r_{1} \odot r_{10}, \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, r_{1} \odot r_{10}, \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, r_{1} \odot r_{10}, \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, r_{1} \odot r_{10}, \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; j; r), IsCpm(i; j; r_{10}), k! \odot r, k! \odot r_{10}, r_{1} \odot r_{10}, \\ &\Leftrightarrow, \&SHi \odot, IsCpm(i; r_{10}), r_{10} \odot, r_{10} \odot,$$

&SHi \rightarrow i, IsCpm(i;j;r), $IsCpm(i;j;r_{10})$, k! $\circlearrowleft r$, k! $\circlearrowleft r_{10}$, r! $\circlearrowleft r_{10}$, r_{10} $\circlearrowleft r_{10}$,

 $IsCpo(k_0; r), r! \circlearrowleft r_{10}, i! \circlearrowleft r, Rcpo(k_0; r), k_0 \oplus$

 $Rcpm(i; k; r), Rcpm(j; k; r), r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow , \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i! = \varnothing, i! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, i \oplus, k \otimes k_{0}, \\ IsCpo(k_{0};r), r! \circlearrowleft r_{10}, i! \circlearrowleft r, Rcpo(k_{0};r), k_{0} \oplus, \\ Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}), \\ \Leftrightarrow , \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i! = \varnothing, i! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, k \otimes k_{0}, \\ IsCpo(k_{0};r), r! \circlearrowleft r_{10}, i! \circlearrowleft r, Rcpo(k_{0};r), k_{0} \oplus, i \oplus, \\ Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}), \\ \Leftrightarrow , \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, \\ i! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, i! = \varnothing, \\ k \otimes k_{0}, Rcpo(k_{0};r), k_{0} \oplus, i \oplus, \\ Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}), \\ Rcpm(i;k;r), Rcpm(i;k;r),$$

$$\Leftrightarrow, \&SHi \, \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \, \circlearrowleft r, k! \, \circlearrowleft r_{10}, r! \, \circlearrowleft r_{10}, r_1 \, \circlearrowleft r_{10}, \\ i! \, \circlearrowleft r_{10}, r! \, \circlearrowleft r_{10}, Cpo(r_{10}), r_{10} \oplus, r_1 \oplus, i! = \varnothing, \\ Rcpm(i;k;r), Rcpm(j;k;r), r_1 \oplus, \&Tm(r_{10}), \\ \end{cases}$$

$$\Leftrightarrow, i!=\varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_{1} \hookrightarrow r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \hookrightarrow r_{10}, r_{1}$$

 $Rcpm(i; k; r), Rcpm(j; k; r), r_1 \oplus, \&Tm(r_{10}),$

$$\Leftrightarrow ,i != \varnothing, \, \&\mathit{SHi}\, \circlearrowleft i, \mathit{IsCpm}(i;j;r), \mathit{IsCpm}(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \hookrightarrow r_{10}$$

```
r! \mathcal{O}r_{10}, Cpo(r_{10}), r_{10} \oplus
 IsCpm(i;k;r), r! \circlearrowleft r_1, r_1 \oplus, Rcpm(i;k;r), IsCpm(j;k;r), r! \circlearrowleft r_1, Rcpm(j;k;r), r_1 \oplus, \&Tm(r_{10}), r_1 \oplus, Rcpm(i;k;r), r_2 \oplus, Rcpm(i;k;r), Rcpm(
 \Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},
r! \circ r_{10}, Cpo(r_{10}), r_{10} \oplus
 IsCpm(i;k;r), r! \circlearrowleft r_1, Rcpm(i;k;r), IsCpm(j;k;r), r! \circlearrowleft r_1, Rcpm(j;k;r), r_1 \oplus, r_1 \oplus, \&Tm(r_{10}), r_1 \oplus, r_2 \oplus, \&Tm(r_{10}), r_3 \oplus, \&Tm(r_{10}), r_4 \oplus, \&Tm(r_{10
 \Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},
r! \mathcal{O}r_{10}, Cpo(r_{10}), r_{10} \oplus
 Rcpm(i; k; r), Rcpm(j; k; r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},
 IsCpm(i; k; r), r! \circ r_{10}, i! \circ r_{10}, k! \circ r_{10}, Cpo(r_{10}), r_{10} \oplus, Rcpm(i; k; r),
 Rcpm(j;k;r), r_1 \oplus, \&Tm(r_{10}),
\Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},
 IsCpm(i; k; r), r! \circ r_{10}, i! \circ r_{10}, k! \circ r_{10}, Rcpm(i; k; r), Cpo(r_{10}), r_{10} \oplus
 Rcpm(j;k;r), r_1 \oplus, \&Tm(r_{10}),
 \Leftrightarrow, i!=\varnothing, &SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},
IsCpm(i; k; r), Rcpm(i; k; r),
 IsCpm(j;k;r), r! \circlearrowleft r_{10}, j! \circlearrowleft r_{10}, k! \circlearrowleft r_{10},
Cpo(r_{10}), r_{10} \oplus, Rcpm(j; k; r), r_{1} \oplus, \&Tm(r_{10}),
```

 \Leftrightarrow , $i!=\varnothing$, &SHi $\circlearrowleft i$, IsCpm(i;j;r), $IsCpm(i;j;r_{10})$, $k! \circlearrowleft r$, $k! \circlearrowleft r_{10}$, $r! \circlearrowleft r_{10}$, $r_1 \circlearrowleft r_{10}$,

$$IsCpm(i;k;r), Rcpm(i;k;r),$$

$$IsCpm(j;k;r), r! \circlearrowleft r_{10}, j! \circlearrowleft r_{10}, k! \circlearrowleft r_{10},$$

$$Rcpm(j;k;r), Cpo(r_{10}), r_{10} \oplus, r_{1} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$IsCpm(i;k;r), Rcpm(i;k;r),$$

$$Rcpm(j;k;r), r_{1} \oplus, Cpo(r_{10}), r_{10} \oplus, \&Tm(r_{10}),$$

$$\Leftrightarrow , i! = \varnothing, \&SHi \circlearrowleft i, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$conclusion:$$

$$, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpo(i;r_{10}), Rcpo(j;r_{10}), Rcpm(r_{1};k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$, IsCpm(i;j;r), IsCpm(i;j;r_{10}), k! \circlearrowleft r, k! \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10}, r_{1} \circlearrowleft r_{10},$$

$$Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$Rcpm(i;k;r), Rcpm(j;k;r), r_{1} \oplus, \&Tm(r_{10}),$$

$$, IsCpm(i;j;r), k! \circlearrowleft r, Rcpm(i;k;r), Rcpm(j;k;r), \Leftrightarrow \\ , IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_1, r_1 \circledcirc r_{10}, \\ Rcpo(i;r_{10}), Rcpo(j;r_{10}), Rcpm(r_1;k;r), r_1 \circledcirc, r_{10} \circledcirc, \\$$

31.11 Result

$$, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}), \iff \sim, r_1 \pm r_2,$$

induction proof:

premise 1:

$$, i_1 = \varnothing, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circ r_{10}, r_2 \circ r_{20}, Repm(i_1; j_1; r_{10}), Repm(i_2; j_2; r_{20}),$$

$$\Leftrightarrow$$
, $IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), j_1 \circlearrowleft j_2, r_{10}! \circlearrowleft r_{20},$

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 \circ i_2, i_1 = \varnothing, Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}),$$

$$\Leftrightarrow$$
, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $j_1 \circ j_2$, $r_{10}! \circ r_{20}$,

$$r_1 \circ r_{10}, r_2 \circ r_{20}, i_1 \circ i_2, i_2 = \varnothing, Rcpm(i_2; j_2; r_{20}),$$

$$\Leftrightarrow$$
, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $j_1 \circ j_2$, $r_{10}! \circ r_{20}$,

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \circlearrowleft i_2, i_2 = \varnothing,$$

$$\Leftrightarrow , IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} = \varnothing, r_{20} = \varnothing, r_{10} = r_{20}, j_1 \circlearrowleft j_2,$$

$$r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \circlearrowleft i_2, i_2 = \varnothing,$$

$$\Leftrightarrow , IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} = \varnothing, r_{20} = \varnothing, j_1 \circlearrowleft j_2, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_{10} = r_{20}, i_1 \circlearrowleft i_2, i_2 = \varnothing,$$

$$\Leftrightarrow , IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} = \varnothing, r_{20} = \varnothing, j_1 \circlearrowleft j_2, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, r_1 = r_2, i_1 \circlearrowleft i_2, i_2 = \varnothing,$$

$$\Leftrightarrow , IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} = \varnothing, r_{20} = \varnothing, j_1 \circlearrowleft j_2, r_{10}! \circlearrowleft r_{20},$$

$$r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \circlearrowleft i_2, i_2 = \varnothing, r_1 = r_2,$$

$$\Leftrightarrow , IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} = \varnothing, r_{20} = \varnothing, j_1 \circlearrowleft j_2, r_{10} ! \circlearrowleft r_{20},$$

$$\begin{split} &r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i_1 \mathring{\bigcirc} i_2, i_2 = \varnothing, Repm(i_2; j_2; r_{20}), r_1 = r_2, \\ &\Leftrightarrow , IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} = \varnothing, r_{20} = \varnothing, j_1 \mathring{\bigcirc} j_2, r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i_1 \mathring{\bigcirc} i_2, i_1 = \varnothing, Repm(i_1; j_1; r_{10}), Repm(i_2; j_2; r_{20}), r_1 = r_2, \\ &\Leftrightarrow , i_1 = \varnothing, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), i_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, Repm(i_1; j_1; r_{10}), Repm(i_2; j_2; r_{20}), r_1 = r_2, \\ &premise 2: \\ &, \&SHi \rightarrow i_1, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), i_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, Repm(i_1; j_1; r_{10}), Repm(i_2; j_2; r_{20}), i_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, Repm(i_1; j_1; r_{10}), Repm(i_2; j_2; r_{20}), i_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, Repm(i_1; j_1; r_{10}), Repm(i_2; j_2; r_{20}), i_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, Repm(i_1; j_1; r_{10}), Repm(i_2; j_2; r_{20}), r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, Repm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{20}, Repm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} r_{20}, Repo(j_{10}; r_{10}), j_{10} \mathring{\oplus}, i_1 \mathring{\oplus}, \\ &Repm(i_1; j_1; r_{10}), Repm(i_2; j_2; r_{20}), \\ &\Leftrightarrow , \&SHi \mathring{\bigcirc} i_1, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} \mathring{\bigcirc} r_{20}, \\ &r_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i_1 \mathring{\oplus} , \\ &r_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i_1 \mathring{\oplus} , \\ &r_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i_1 \mathring{\oplus} , \\ &r_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i_1 \mathring{\oplus} , \\ &r_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i_1 \mathring{\oplus} , \\ &r_1 \mathring{\bigcirc} i_2, j_1 \mathring{\bigcirc} j_2, r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i_1 \mathring{\oplus} , \\ &r_1 \mathring{\bigcirc} i$$

 $Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}),$

 \Leftrightarrow , &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10}! \circlearrowleft r_{20}$,

 $j_1 \otimes j_{10}$, $IsCpm(i_1; j_1; r_{10})$, $IsCpo(j_{10}; r_{10})$,

$$\begin{split} &Rcpm(i_1;j_1;r_{10}), Rcpo(j_{10};r_{10}), Rcpm(i_2;j_2;r_{20}), j_{10} \oplus, \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_2, j_1 \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_2;j_2;r_{20}), j_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_1;j_1;r_{10}), IsCpo(j_{10};r_{10}), IsCpo(j_{10};r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_2;j_2;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10} \end{0.5em} \\ &\Leftrightarrow , \&SHi \, \circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{2$$

 $IsCpm(i_1; j_1; r_{10}), i_2 = \varnothing, Rcpm(i_1; j_1; r_{10}), i_2 = \varnothing,$

 $j_2 \oplus j_{20}, Rcpo(j_{20}; r_{20}), j_{20} \oplus, i_2 \oplus, Rcpm(i_2; j_2; r_{20}),$

$$j_1 \otimes j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \otimes ,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10}! \circlearrowleft r_{20}$,

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 != \varnothing, i_1 \oplus,$$

$$IsCpm(i_1; j_1; r_{10}), r_2 \circ r_{20}, i_2! \circ r_{10}, Rcpm(i_1; j_1; r_{10}),$$

$$j_{2} \otimes j_{20}, IsCpo(j_{20}; r_{20}), i_{2} ! \circlearrowleft r_{20}, Rcpo(j_{20}; r_{20}), i_{2} \oplus, j_{20} \oplus,$$

 $Rcpm(i_2; j_2; r_{20}), j_1 \otimes j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \otimes,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10}! \circlearrowleft r_{20}$,

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 \models \varnothing, i_1 \oplus, i_2 \oplus,$$

$$IsCpm(i_1; j_1; r_{10}), r_2 \circ r_{20}, i_2! \circ r_{10}, Rcpm(i_1; j_1; r_{10}),$$

$$j_2 \otimes j_{20}, IsCpo(j_{20}; r_{20}), i_2! \circ r_{20}, Rcpo(j_{20}; r_{20}), j_{20} \oplus,$$

$$Rcpm(i_2; j_2; r_{20}), j_1 \otimes j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \otimes,$$

$$\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10}! \circlearrowleft\!r_{20},$$

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 \mathrel{!}= \varnothing, i_1 \oplus, i_2 \oplus,$$

$$IsCpm(i_1; j_1; r_{10}), r_2 \circ r_{20}, Rcpm(i_1; j_1; r_{10}),$$

$$j_2 \otimes j_{20}, IsCpo(j_{20}; r_{20}), Rcpo(j_{20}; r_{20}), IsCpm(i_2; j_2; r_{20}), j_{20} \oplus,$$

$$Rcpm(i_2;j_2;r_{20}), j_1 \otimes j_{10}, Rcpo(j_{10};r_{10}), j_{10} \oplus,$$

$$\Leftrightarrow \ , \&S\!H\!i\, \circlearrowleft\!i_1, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10}! \circlearrowleft\!r_{20},$$

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 != \varnothing, i_1 \oplus, i_2 \oplus,$$

$$IsCpm(i_1; j_1; r_{10}), r_2 \circ r_{20}, Rcpm(i_1; j_1; r_{10}),$$

$$j_2 \otimes j_{20}, IsCpo(j_{20}; r_{20}), Rcpo(j_{20}; r_{20}), IsCpm(i_2; j_2; r_{20}), \\$$

 $Rcpm(i_2; j_2; r_{20}), j_{20} \oplus, j_1 \oplus j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \oplus,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10}! \circlearrowleft r_{20}$,

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 \models \varnothing, i_1 \oplus, i_2 \oplus,$$

$$IsCpm(i_1; j_1; r_{10}), r_2 \circ r_{20}, Rcpm(i_1; j_1; r_{10}),$$

$$j_2 \otimes j_{20}$$
, $IsCpm(i_2; j_2; r_{20})$, $IsCpo(j_{20}; r_{20})$, $Rcpo(j_{20}; r_{20})$,

$$Rcpm(i_2; j_2; r_{20}), j_{20} \oplus, j_1 \oplus j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \oplus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10}! \circlearrowleft r_{20}$,

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 \models \varnothing, i_1 \oplus, i_2 \oplus,$$

$$IsCpm(i_1; j_1; r_{10}), r_2 \circ r_{20}, Rcpm(i_1; j_1; r_{10}),$$

$$j_2 \otimes j_{20}$$
, $IsCpm(i_2; j_2; r_{20})$, $IsCpo(j_{20}; r_{20})$,

$$Rcpm(i_2; j_2; r_{20}), Rcpo(j_{20}; r_{20}), j_{20} \oplus, j_1 \oplus j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \oplus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10}! \circlearrowleft r_{20}$,

$$i_1\circlearrowleft i_2,j_1\circlearrowleft j_2,r_1\circlearrowleft r_{10},r_2\circlearrowleft r_{20},i_2 \mathrel{!=} \varnothing,i_1\oplus,i_2\oplus,$$

$$IsCpm(i_1; j_1; r_{10}), r_2 \circ r_{20}, Rcpm(i_1; j_1; r_{10}),$$

$$IsCpm(i_2; j_2; r_{20}), j_2 \otimes j_{20},$$

$$Rcpm(i_2; j_2; r_{20}), Rcpo(j_{20}; r_{20}), j_{20} \oplus, j_1 \oplus j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \oplus,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10}! \circlearrowleft r_{20}$,

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 != \varnothing, i_1 \oplus, i_2 \oplus,$$

$$IsCpm(i_1; j_1; r_{10}), r_2 \circ r_{20}, Rcpm(i_1; j_1; r_{10}),$$

$$IsCpm(i_2; j_2; r_{20}), Rcpm(i_2; j_2; r_{20}),$$

```
j_2 \otimes j_{20}, Rcpo(j_{20}; r_{20}), j_{20} \otimes j_{10}, j_{10} \otimes j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \otimes j_{10},
\Leftrightarrow, &SHi\circlearrowleft i_1, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10}! \circlearrowleft r_{20},
i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_2 != \varnothing, i_1 \oplus, i_2 \oplus,
Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}),
j_2 \otimes j_{20}, Rcpo(j_{20}; r_{20}), j_{20} \otimes j_{10}, J_{10} \otimes j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \otimes j_{10}
\Leftrightarrow, i_2 != \varnothing, i_1 \oplus, i_2 \oplus, &SHi\rightarrow i_1, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} ! \circlearrowleft r_{20},
i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},
Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}),
j_2 \otimes j_{20}, Rcpo(j_{20}; r_{20}), j_{20} \otimes j_{10}, j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \otimes j_{10},
\Leftrightarrow, i_2 != \varnothing, i_1 \oplus, i_2 \oplus, &SHi\rightarrowi<sub>1</sub>, IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10} ! \bigcirc r_{20},
i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},
Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}), r_1 = r_2,
j_{2} \otimes j_{20}, Rcpo(j_{20}; r_{20}), j_{20} \oplus, j_{1} \otimes j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \oplus,
\Leftrightarrow, i_2!=\varnothing, &SHi\circlearrowleft i_1, IsCpm(i_1;j_1;r_{10}), IsCpm(i_2;j_2;r_{20}), r_{10}!\circlearrowleft r_{20},
i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \oplus, i_2 \oplus,
IsCpm(i_1; j_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpm(i_1; j_1; r_{10}),
IsCpm(i_2; j_2; r_{20}), r_{10}! \circlearrowleft r_{20}, Rcpm(i_2; j_2; r_{20}), r_1 \pm r_2,
j_2 \otimes j_{20}, Rcpo(j_{20}; r_{20}), j_{20} \otimes j_{10}, J_{10} \otimes j_{10}, Rcpo(j_{10}; r_{10}), j_{10} \otimes j_{10},
```

 \Leftrightarrow , $i_2 != \varnothing$, &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10} ! \circlearrowleft r_{20}$,

$$\begin{split} &i_{1}\circlearrowleft i_{2},j_{1}\circlearrowleft j_{2},r_{1}\circlearrowleft r_{10},r_{2}\circlearrowleft r_{20},i_{1}\oplus,i_{2}\oplus,\\ &IsCpm(i_{1};j_{1};r_{10}),r_{10}\circlearrowleft r_{20},Rcpm(i_{1};j_{1};r_{10}),\\ &IsCpm(i_{2};j_{2};r_{20}),r_{10}\circlearrowleft r_{20},Rcpm(i_{2};j_{2};r_{20}),r_{1}\bot r_{2},\\ &j_{2}\circledcirc j_{20},IsCpo(j_{20};r_{20}),r_{10}\circlearrowleft r_{20},Rcpo(j_{20};r_{20}),j_{20}\oplus,\\ &j_{1}\circledcirc j_{10},IsCpo(j_{10};r_{10}),Rcpo(j_{10};r_{10}),j_{10}\oplus,\\ &\Leftrightarrow,i_{2}\mathrel{!=}\varnothing,\&SHi\circlearrowleft i_{1},IsCpm(i_{1};j_{1};r_{10}),IsCpm(i_{2};j_{2};r_{20}),r_{10}\circlearrowleft r_{20},\\ &i_{1}\circlearrowleft i_{2},j_{1}\circlearrowleft j_{2},r_{1}\circlearrowleft r_{10},r_{2}\circlearrowleft r_{20},i_{1}\oplus,i_{2}\oplus,\\ &IsCpm(i_{1};j_{1};r_{10}),r_{10}\circlearrowleft r_{20},Rcpm(i_{1};j_{1};r_{10}),\\ &IsCpm(i_{2};j_{2};r_{20}),r_{10}\circlearrowleft r_{20},Rcpm(i_{2};j_{2};r_{20}),r_{1}\bot r_{2},\\ &j_{1}\circledcirc j_{10},j_{2}\circledcirc j_{20},IsCpo(j_{20};r_{20}),r_{10}\circlearrowleft r_{20},Rcpo(j_{20};r_{20}),\\ &IsCpo(j_{10};r_{10}),Rcpo(j_{10};r_{10}),j_{20}\circledcirc,j_{10}\oplus,\\ &\Leftrightarrow,i_{2}\mathrel{!=}\varnothing,\&SHi\circlearrowleft i_{1},IsCpm(i_{1};j_{1};r_{10}),IsCpm(i_{2};j_{2};r_{20}),r_{10}\circlearrowleft r_{20},\\ &i_{1}\circlearrowleft i_{2},j_{1}\circlearrowleft j_{2},r_{1}\circlearrowleft r_{10},r_{2}\circlearrowleft r_{20},i_{1}\oplus,i_{2}\oplus,\\ &IsCpm(i_{1};j_{1};r_{10}),r_{10}\circlearrowleft r_{20},Rcpm(i_{2};j_{2};r_{20}),r_{11}\leftrightarrows r_{20},\\ &IsCpm(i_{2};j_{2};r_{20}),r_{10}\circlearrowleft r_{20},Rcpm(i_{2};j_{2};r_{20}),r_{11}\leftrightarrows r_{20},\\ &IsCpm(i_{2};j_{2};r_{20}),r_{10}\circlearrowleft r_{20},Rcpm(i_{2};j_{2};r_{20}),r_{11}\leftrightarrows r_{20},\\ &IsCpm(i_{2};j_{2};r_{20}),Rcpo(j_{20};r_{20}),IsCpo(j_{10};r_{10}),r_{10}\circlearrowleft r_{20},\\ &Rcpo(j_{20};r_{20}),Rcpo(j_{10};r_{10}),j_{20}\oplus,j_{10}\oplus,\\ &Rcpo(j_{20};r_{20}),Rcpo(j_{10};r_{10}),j_{20}\oplus,j_{10}\oplus,\\ \end{pmatrix}$$

$$\Leftrightarrow ,i_{2}!=\varnothing, \&SHi \circlearrowleft i_{1}, IsCpm(i_{1};j_{1};r_{10}), IsCpm(i_{2};j_{2};r_{20}), r_{10}! \circlearrowleft r_{20},$$

$$i_{1}\circlearrowleft i_{2}, j_{1}\circlearrowleft j_{2}, r_{1}\circlearrowleft r_{10}, r_{2}\circlearrowleft r_{20}, i_{1}\oplus, i_{2}\oplus,$$

$$IsCpm(i_{1};j_{1};r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpm(i_{1};j_{1};r_{10}),$$

 $IsCpm(i_2; j_2; r_{20}), r_{10}! \circlearrowleft r_{20}, Rcpm(i_2; j_2; r_{20}), r_1 = r_2,$

 $j_1 \otimes j_{10}, j_2 \otimes j_{20}, j_1 \otimes j_2, j_{10} = j_{20},$ $IsCpo(j_{20}; r_{20}), IsCpo(j_{10}; r_{10}), IsCpo(j_{20}; r_{10}), IsCpo(j_{10}; r_{20}), r_{10}! \circ r_{20},$ $r_1 \circ r_{10}, r_2 \circ r_{20},$ $Rcpo(j_{20}; r_{20}), Rcpo(j_{10}; r_{10}), j_{20} \oplus, j_{10} \oplus,$ \Leftrightarrow , $i_2 != \varnothing$, &SHi $\circlearrowleft i_1$, $IsCpm(i_1; j_1; r_{10})$, $IsCpm(i_2; j_2; r_{20})$, $r_{10} ! \circlearrowleft r_{20}$, $i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \oplus, i_2 \oplus,$ $IsCpm(i_1; j_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpm(i_1; j_1; r_{10}),$ $IsCpm(i_2; j_2; r_{20}), r_{10}! \circlearrowleft r_{20}, Rcpm(i_2; j_2; r_{20}),$ $j_1 \otimes j_{10}, j_2 \otimes j_{20}, j_1 \otimes j_2,$ $IsCpo(j_{20}; r_{20}), IsCpo(j_{10}; r_{10}), IsCpo(j_{20}; r_{10}), IsCpo(j_{10}; r_{20}), r_{10}! \circ r_{20},$ $r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, j_{10} = j_{20}, r_1 = r_2,$ $Rcpo(j_{20}; r_{20}), Rcpo(j_{10}; r_{10}), j_{20} \oplus, j_{10} \oplus,$ \Leftrightarrow , $i_2!=\varnothing$, &SHi $\circ i_1$, $IsCpm(i_1;j_1;r_{10})$, $IsCpm(i_2;j_2;r_{20})$, $r_{10}!\circ r_{20}$, $i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i_1 \oplus, i_2 \oplus,$ $IsCpm(i_2; j_2; r_{20}), r_{10}! \circlearrowleft r_{20}, Rcpm(i_2; j_2; r_{20}),$ $j_1 \otimes j_{10}, j_2 \otimes j_{20}, j_1 \circ j_2,$

 $IsCpo(j_{20}; r_{20}), IsCpo(j_{10}; r_{10}), IsCpo(j_{20}; r_{10}), IsCpo(j_{10}; r_{20}), r_{10}! \circ r_{20},$

 $r_1 \circ r_{10}, r_2 \circ r_{20}, j_{10} = j_{20}, r_1 = r_2,$

 $Rcpo(j_{20}; r_{20}), Rcpo(j_{10}; r_{10}), r_1 = r_2, j_{20} \oplus, j_{10} \oplus,$

$$\Leftrightarrow, i_{1} != \varnothing, \&SHi \circlearrowleft i_{1}, IsCpm(i_{1}; j_{1}; r_{10}), IsCpm(i_{2}; j_{2}; r_{20}), i_{1} \circlearrowleft i_{2}, j_{1} \circlearrowleft j_{2}, r_{10} ! \circlearrowleft r_{20},$$

$$r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, Rcpm(i_{1}; j_{1}; r_{10}), Rcpm(i_{2}; j_{2}; r_{20}), r_{1} = r_{2},$$

$$conclusion:$$

$$, IsCpm(i_{1}; j_{1}; r_{10}), IsCpm(i_{2}; j_{2}; r_{20}), i_{1} \circlearrowleft i_{2}, j_{1} \circlearrowleft j_{2}, r_{10} ! \circlearrowleft r_{20},$$

$$r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, Rcpm(i_{1}; j_{1}; r_{10}), Rcpm(i_{2}; j_{2}; r_{20}), \Leftrightarrow$$

$$, IsCpm(i_{1}; j_{1}; r_{10}), IsCpm(i_{2}; j_{2}; r_{20}), i_{1} \circlearrowleft i_{2}, j_{1} \circlearrowleft j_{2}, r_{10} ! \circlearrowleft r_{20},$$

$$r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, Rcpm(i_{1}; j_{1}; r_{10}), Rcpm(i_{2}; j_{2}; r_{20}), r_{1} = r_{2},$$

31.12 Associativity

$$, IsCpm(i; j; r), k! \circlearrowleft r, @r_1, r_1 \otimes r_{10},$$

$$Rcpm(j; i; r_{10}), Rcpm(r_1; k; r), r_1 \oplus, r_{10} \oplus, \Leftrightarrow$$

$$, IsCpm(i; j; r), k! \circlearrowleft r, @r_1, r_1 \otimes r_{10},$$

$$Rcpm(j; k; r_{10}), Rcpm(r_1; i; r), r_1 \oplus, r_{10} \oplus,$$

induction proof: $premise\ 1:$ $, j = \varnothing, IsCpm(i; j; r), k! \circ r, \circ r_1, r_1 \circ r_{10},$ $Rcpm(j; i; r_{10}), Rcpm(r_1; k; r), r_1 \circ , r_{10} \circ ,$

$$\Leftrightarrow$$
, $IsCpm(i; j; r), k! \circ r, \circ r_1, r_1 \circ r_{10},$

$$j = \varnothing, Rcpm(j;i;r_{10}), Rcpm(r_1;k;r), r_1 \circledast, r_{10} \circledast,$$

$$j = \varnothing, r_1 = \varnothing, Rcpm(r_1; k; r), r_1 \oplus, r_{10} \oplus,$$

$$\Leftrightarrow , IsCpm(i;j;r), k! \mathring{\bigcirc} r, @r_1, r_1 @r_{10},$$

$$\begin{split} j &= \varnothing, r_1 = \varnothing, r_1 @, r_{10} @, \\ \Leftrightarrow &, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_1, r_1 \image r_{10}, \\ j &= \varnothing, r_1 = \varnothing, Rcpm(r_1;i;r), r_1 @, r_{10} @, \\ \Leftrightarrow &, IsCpm(i;j;r), k! \circlearrowleft r, \image r_1, r_1 \image r_{10}, \\ j &= \varnothing, Rcpm(j;k;r_{10}), Rcpm(r_1;i;r), r_1 @, r_{10} @, \\ \Leftrightarrow &, j &= \varnothing, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_1, r_1 \image r_{10}, \\ Rcpm(j;k;r_{10}), Rcpm(r_1;i;r), r_1 @, r_{10} @, \\ premise 2: &, \&SHi \rightarrow j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_1, r_1 \circledcirc r_{10}, \\ Rcpm(j;i;r_{10}), Rcpm(r_1;k;r), r_1 @, r_{10} @, \Leftrightarrow \\ &, \&SHi \rightarrow j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_1, r_1 \circledcirc r_{10}, \\ Rcpm(j;k;r_{10}), Rcpm(r_1;i;r), r_1 @, r_{10} @, \Leftrightarrow \\ &, j! = \varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_1, r_1 \circledcirc r_{10}, \\ Rcpm(j;i;r_{10}), Rcpm(r_1;k;r), r_1 @, r_{10} @, \Leftrightarrow \\ &, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_1, r_1 \circledcirc r_{10}, \\ j! = \varnothing, i \circledcirc i_0, Rcpo(i_0;r_{10}), i_0 @, j ⊕, \\ Rcpm(j;i;r_{10}), Rcpm(r_1;k;r), r_1 @, r_{10} @, \\ \Leftrightarrow &, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_1, r_1 \circledcirc r_{10}, \\ j! = \varnothing, i \circledcirc i_0, Rcpo(i_0;r_{10}), j! \circlearrowleft r_{10}, Rcpo(i_0;r_{10}), i_0 @, j ⊕, \\ Rcpm(j;i;r_{10}), Rcpm(r_1;k;r), r_1 @, r_{10}, r_{10},$$

 $Rcpm(j; i; r_{10}), Rcpm(r_1; k; r), r_1 \oplus, r_{10} \oplus,$

$$\Leftrightarrow ,j!=\varnothing,\&SHi\circlearrowleft_j,IsCpm(i;j;r),k!\circlearrowleft_r,\circledcirc_{r_1},r_1\circledcirc_{r_{10}},i\circledcirc_{i_0},j\circledcirc,\\ IsCpo(i_0;r_{10}),j!\circlearrowleft_{r_{10}},Rcpo(i_0;r_{10}),i_0\circledcirc,\\ Rcpm(j;i;r_{10}),Rcpm(r_1;k;r),r_1\circledcirc,r_1\o,\\ r_1\o\cdotp,\\ k:j!=\varnothing,\&SHi\circlearrowleft_j,IsCpm(i;j;r),k!\circlearrowleft_r,\circledcirc_{r_1},r_1\circlearrowleft_{r_{10}},i\circledcirc_{i_0},j\circledcirc,\\ IsCpo(i_0;r_{10}),r!\circlearrowleft_{r_{10}},Rcpo(i_0;r_{10}),i_0\circledcirc,\\ IsCpm(j;i;r_{10}),r!\circlearrowleft_{r_{10}},Rcpm(j;i;r_{10}),IsCpm(r_1;k;r),Rcpm(r_1;k;r),\\ r_1\o\cdotp,\\ r_1),IsCpm(j;i;r_{10}),Rcpo(i_0;r_{10}),\\ IsCpm(j;i;r_{10}),r!\circlearrowleft_{r_{10}},Rcpm(j;j;r_{10}),IsCpm(r_1;k;r),Rcpm(r_1;k;r),\\ i_0\o\cdotp,\\ r_1\o\cdotp,\\ r_1),$$

$$\Leftrightarrow , j != \varnothing, \&SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, \circledcirc r_1, r_1 \circledcirc r_{10}, i \circledcirc i_0, j \circledcirc,$$

 $\bigcirc r_2, r_2 \bigcirc r_{20}, IsCpm(j; i; r_{20}), Rcpm(j; i; r_{20}), Rcpo(r_2; r_{10}), r_2 \bigcirc r_{20} \bigcirc r_{20}$

 $Rcpo(i_0; r_{10}), Rcpm(r_1; k; r),$

 $i_0 \oplus, r_1 \oplus, r_{10} \oplus,$

$$\Leftrightarrow$$
 , $j \models \varnothing$, &SHi $\circlearrowleft j$, $IsCpm(i; j; r)$, $k! \circlearrowleft r$, $\odot r_1$, $r_1 \odot r_{10}$, $i \odot i_0$, $j \oplus$,

$$@r_2, r_2 \otimes r_{20}, IsCpm(j;i;r_{20}), r! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Rcpm(j;i;r_{20}), \\$$

$$IsCpo(r_2; r_{10}), r_{10}! \circlearrowleft r, Rcpo(r_2; r_{10}), r_2 \oplus, r_{20} \oplus,$$

$$IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft r, Repo(i_0; r_{10}), IsCpm(r_1; k; r), Repm(r_1; k; r),$$

$$i_0 \oplus, r_1 \oplus, r_{10} \oplus,$$

$$\Leftrightarrow$$
 , $j \models \varnothing$, &SHi $\circlearrowleft j$, $IsCpm(i; j; r)$, $k! \circlearrowleft r$, $\odot r_1$, $r_1 \odot r_{10}$, $i \odot i_0$, $j \oplus$,

$$\bigcirc r_2, r_2 \bigcirc r_{20}, IsCpm(j; i; r_{20}), r! \bigcirc r_{20}, r_{10}! \bigcirc r_{20}, Rcpm(j; i; r_{20}),$$

$$IsCpo(r_2; r_{10}), r_{10}! \circlearrowleft r, Rcpo(r_2; r_{10}),$$

$$IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft r, Repo(i_0; r_{10}), IsCpm(r_1; k; r), Repm(r_1; k; r),$$
$$r_2 \oplus, r_{20} \oplus, i_0 \oplus, r_1 \oplus, r_{10} \oplus,$$

$$\Leftrightarrow$$
 $, j != \varnothing, \&SHi \circlearrowleft_j, IsCpm(i; j; r), k! \circlearrowleft_r, i \odot i_0, j \oplus,$

$$\bigcirc r_2, r_2 \bigcirc r_{20}, IsCpm(j; i; r_{20}), r! \bigcirc r_{20}, Rcpm(j; i; r_{20}),$$

$$IsCpm(i_0; k; r), r_2! \circ r, \circ r_1, r_1 \circ r_{10}, Rcpo(r_2; r_{10}),$$

$$Rcpo(i_0; r_{10}), Rcpm(r_1; k; r),$$

$$r_2 @, r_{20} @, i_0 @, r_1 @, r_{10} @,$$

$$\Leftrightarrow \ , j \mathbin{!}= \varnothing, \, \&\mathit{SHi} \, \circlearrowleft j, IsCpm(i;j;r), k \mathbin{!} \circlearrowleft r, i \otimes i_0, j \oplus,$$

$$\begin{split} & \otimes r_2, r_2 \otimes r_{20}, IsCpm(j; i; r_{20}), r! \circlearrowleft r_{20}, Rcpm(j; i; r_{20}), \\ & IsCpm(i_0; k; r), r_2! \circlearrowleft r, Rcpm(r_2; k; r), Rcpm(i_0; k; r), \\ & r_2 \circledast, r_{20} \circledast, i_0 \circledast, \\ & \Leftrightarrow , j! = \varnothing, \& SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, i \boxtimes i_0, j \circledast, \\ & \otimes r_2, r_2 \circledast r_{20}, IsCpm(j; i; r_{20}), r! \circlearrowleft r_{20}, Rcpm(j; i; r_{20}), \\ & IsCpm(i_0; k; r), r_2! \circlearrowleft r, Rcpm(i_0; k; r), Rcpm(r_2; k; r), \\ & r_2 \circledast, r_{20} \circledast, i_0 \circledast, \\ & \Leftrightarrow , j! = \varnothing, \& SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, i \boxtimes i_0, j \circledast, \circledcirc r_2, r_2 \circledcirc r_{20}, \\ & IsCpm(j; i; r_{20}), IsCpm(i_0; k; r), IsCpm(j; i; r), IsCpm(i_0; k; r_{20}), r! \circlearrowleft r_{20}, \\ & Rcpm(j; i; r_{20}), Rcpm(i_0; k; r), Rcpm(r_2; k; r), \\ & r_2 \circledast, r_{20} \circledast, i_0 \circledast, \\ & \Leftrightarrow , j! = \varnothing, \& SHi \circlearrowleft j, IsCpm(i_0; k; r), IsCpm(j; i; r), IsCpm(i_0; k; r_{20}), r! \circlearrowleft r_{20}, \\ & Rcpm(j; i; r_{20}), IsCpm(i_0; k; r), IsCpm(j; i; r), IsCpm(i_0; k; r_{20}), r! \circlearrowleft r_{20}, \\ & Rcpm(i_0; k; r), Rcpm(j; i; r_{20}), Rcpm(r_2; k; r), \\ & r_2 \circledast, r_{20} \circledast, i_0 \circledast, \\ & \Leftrightarrow , j! = \varnothing, \& SHi \circlearrowleft j, IsCpm(i_0; k; r), \\ & Rcpm(j; i; r_{20}), Rcpm(r_2; k; r), \\ & Rcpm(j; i; r_{20}), Rcpm(r_2; k; r), \\ & r_2 \circledast, r_{20} \circledast, i_0 \circledast, \\ & \Leftrightarrow , j! = \varnothing, i \boxtimes i_0, j \circledast, \end{split}$$

$$IsCpm(i_0;k;r), j| \circlearrowleft r, Repm(i_0;k;r),$$

$$\&SHi \rightarrow j, IsCpm(i;j;r), k| \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20},$$

$$Repm(j;i;r_{20}), Repm(r_2;k;r),$$

$$r_2 \circledcirc , r_{20} \varPsi, i_0 \varPsi,$$

$$\Leftrightarrow , j! = \varnothing, i \circlearrowleft i_0, j \varTheta,$$

$$IsCpm(i_0;k;r), j! \circlearrowleft r, Repm(i_0;k;r),$$

$$\&SHi \rightarrow j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20},$$

$$Repm(j;k;r_{20}), Repm(r_2;i;r),$$

$$r_2 \varPsi, r_{20} \varPsi, i_0 \varPsi,$$

$$\Leftrightarrow , j! = \varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, i \circledcirc i_0, j \varTheta,$$

$$IsCpm(i_0;k;r), j! \circlearrowleft r, Repm(i_0;k;r),$$

$$Repm(j;k;r_{20}), Repm(r_2;i;r),$$

$$r_2 \varPsi, r_{20} \varPsi, i_0 \varPsi,$$

$$\Leftrightarrow , j! = \varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, i \circledcirc i_0, j \varTheta,$$

$$IsCpm(i_0;k;r), r! \circlearrowleft r_{20}, Repm(i_0;k;r),$$

$$IsCpm(i_0;k;r), r! \circlearrowleft r_{20}, Repm(i_0;k;r),$$

$$IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Repm(j;k;r_{20}), IsCpm(r_2;i;r), Repm(r_2;i;r),$$

$$r_2 \varPsi, r_{20} \varPsi, i_0 \varPsi,$$

$$\Leftrightarrow , j! = \varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \trianglerighteq r_{20}, i \circledcirc i_0, j \varTheta,$$

$$IsCpm(i_0;k;r), k \circledcirc k_0, k_0 \varPsi, Repm(i_0;k;r), i_0 \varPsi,$$

$$IsCpm(i_0;k;r), k \circledcirc k_0, k_0 \varPsi, Repm(i_0;k;r), i_0 \varPsi,$$

$$IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Repm(j;k;r_{20}), IsCpm(r_2;i;r), Repm(r_2;i;r),$$

$$IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Repm(j;k;r_{20}), IsCpm(r_2;i;r), Repm(r_2;i;r),$$

```
r_2 \oplus, r_{20} \oplus,
```

$$\Leftrightarrow ,j!=\varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, i \circledcirc i_0, j \oplus, k \circledcirc k_0,$$

$$IsCpm(i_0;k;r), IsCpm(i_0;k_0;r), k = k_0, Rcpm(i_0;k;r), i_0 \oplus, k_0 \oplus,$$

$$IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Rcpm(j;k;r_{20}), IsCpm(r_2;i;r), Rcpm(r_2;i;r),$$

$$r_2 \oplus, r_{20} \oplus,$$

$$\Leftrightarrow ,j!=\varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, i \circledcirc i_0, j \circledcirc , k \circledcirc k_0,$$

$$IsCpm(i_0;k;r), IsCpm(i_0;k_0;r), k = k_0, Rcpm(i_0;k_0;r), i_0 \circledcirc , k_0 \circledcirc ,$$

$$IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Rcpm(j;k;r_{20}), IsCpm(r_2;i;r), Rcpm(r_2;i;r),$$

$$r_2 \circledcirc , r_{20} \circledcirc ,$$

$$\Leftrightarrow ,j!=\varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, i \circledcirc i_0, j \oplus, k \circledcirc k_0,$$

$$IsCpm(i_0;k_0;r), Rcpm(i_0;k_0;r), i_0 \oplus, k_0 \oplus,$$

$$IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Rcpm(j;k;r_{20}), IsCpm(r_2;i;r), Rcpm(r_2;i;r),$$

$$r_2 \oplus, r_{20} \oplus,$$

$$\Leftrightarrow ,j!=\varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, i \circledcirc i_0, j \oplus, k \circledcirc k_0,$$

$$IsCpm(i_0;k_0;r), Rcpm(k_0;i_0;r), i_0 \oplus, k_0 \oplus,$$

$$IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Rcpm(j;k;r_{20}), IsCpm(r_2;i;r), Rcpm(r_2;i;r),$$

$$r_2 \oplus, r_{20} \oplus,$$

$$\Leftrightarrow , j != \varnothing, \&SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, @r_2, r_2 \oplus r_{20}, i \otimes i_0, j \oplus, k \otimes k_0,$$
$$IsCpm(i_0; k_0; r), IsCpm(i; k_0; r), i = i_0, Rcpm(k_0; i_0; r), i_0 \oplus, k_0 \oplus,$$

 $IsCpm(j; k; r_{20}), r! \circlearrowleft r_{20}, Rcpm(j; k; r_{20}), IsCpm(r_2; i; r), Rcpm(r_2; i; r), r_2 \oplus, r_{20} \oplus,$

 $\Leftrightarrow ,j!=\varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, i \circledcirc i_0, j \circledcirc , k \circledcirc k_0,$ $IsCpm(i_0;k_0;r), IsCpm(i;k_0;r), i=i_0, Rcpm(k_0;i;r), i_0 \circledcirc , k_0 \circledcirc ,$ $IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Rcpm(j;k;r_{20}), IsCpm(r_2;i;r), Rcpm(r_2;i;r),$ $r_2 \circledcirc , r_{20} \circledcirc ,$

 $\Leftrightarrow , j != \varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, i \circledcirc i_0, j \circledcirc, k \circledcirc k_0,$ $IsCpm(k_0;i;r), i_0 \circledcirc, Rcpm(k_0;i;r), k_0 \circledcirc,$ $IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Rcpm(j;k;r_{20}), IsCpm(r_2;i;r), Rcpm(r_2;i;r),$ $r_2 \circledcirc, r_{20} \circledcirc,$

 $\Leftrightarrow ,j!=\varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, j \oplus, k \circledcirc k_0, \\ IsCpm(k_0;i;r), IsCpm(j;k;r_{20}), IsCpm(k_0;i;r_{20}), IsCpm(j;k;r), r! \circlearrowleft r_{20}, \\ Rcpm(k_0;i;r), Rcpm(j;k;r_{20}), Rcpm(r_2;i;r), \\ k_0 \oplus, r_2 \oplus, r_{20} \oplus, \\ \end{cases}$

 $\Leftrightarrow ,j!=\varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, j \oplus, k \circledcirc k_0,$ $IsCpm(k_0;i;r), IsCpm(j;k;r_{20}), IsCpm(k_0;i;r_{20}), IsCpm(j;k;r), r! \circlearrowleft r_{20},$ $Repm(j;k;r_{20}), Repm(k_0;i;r), Repm(r_2;i;r),$ $k_0 \oplus, r_2 \oplus, r_{20} \oplus,$

 $\Leftrightarrow , j != \varnothing, \&SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \circledcirc r_2, r_2 \circledcirc r_{20}, j \oplus, k \circledcirc k_0,$ $IsCpm(k_0;i;r), IsCpm(k_0;i;r_{20}), IsCpm(j;k;r_{20}), r! \circlearrowleft r_{20}, Rcpm(j;k;r_{20}),$

```
IsCpm(k_0; i; r), IsCpm(r_2; i; r), Rcpm(k_0; i; r), Rcpm(r_2; i; r),
k_0 \oplus, r_2 \oplus, r_{20} \oplus,
\Leftrightarrow , j!=\varnothing, &SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \odot r_2, r_2 \odot r_{20}, j \oplus, k \odot k_0,
IsCpm(k_0; i; r), IsCpm(k_0; i; r_{20}), IsCpm(j; k; r_{20}), r! \circ r_{20}, Rcpm(j; k; r_{20}),
IsCpm(k_0; i; r), IsCpm(r_2; i; r), Rcpm(r_2; i; r), Rcpm(k_0; i; r),
k_0 \oplus, r_2 \oplus, r_{20} \oplus,
\Leftrightarrow , j \models \varnothing, &SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, \odot r_2, r_2 \odot r_{20}, j \oplus, k \odot k_0,
IsCpm(k_0; i; r), IsCpm(k_0; i; r_{20}), IsCpm(j; k; r_{20}), r! \circ r_{20}, Rcpm(j; k; r_{20}),
IsCpm(k_0; i; r), IsCpm(r_2; i; r), @r_1, r_1 @r_{10}, Rcpo(r_2; r_{10}), Rcpo(k_0; r_{10}), Rcpm(r_1; i; r),
r_1 \oplus, r_{10}, k_0 \oplus, r_2 \oplus, r_{20} \oplus,
\Leftrightarrow , j \models \varnothing, &SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, \odot r_1, r_1 \odot r_{10}, j \oplus, k \odot k_0,
\bigcirc r_2, r_2 \bigcirc r_{20}, IsCpm(j; k; r_{20}), r! \bigcirc r_{20}, Rcpm(j; k; r_{20}),
IsCpo(r_2; r_{10}), IsCpo(k_0; r_{10}), Rcpo(r_2; r_{10}), Rcpo(k_0; r_{10}),
Rcpm(r_1; i; r),
r_1 \oplus, r_{10}, k_0 \oplus, r_2 \oplus, r_{20} \oplus,
\Leftrightarrow , j!=\varnothing, &SHi \circlearrowleft j, IsCpm(i;j;r), k! \circlearrowleft r, \odot r_1, r_1 \odot r_{10}, j \oplus, k \odot k_0,
\bigcirc r_2, r_2 \bigcirc r_{20}, IsCpm(j; k; r_{20}), r! \bigcirc r_{20}, Rcpm(j; k; r_{20}),
IsCpo(r_2; r_{10}), r! \circlearrowleft r_{10}, Rcpo(r_2; r_{10}), IsCpo(k_0; r_{10}), r! \circlearrowleft r_{10}, Rcpo(k_0; r_{10}),
IsCpm(r_1; i; r), Rcpm(r_1; i; r),
r_1 \oplus, r_{10}, k_0 \oplus, r_2 \oplus, r_{20} \oplus,
```

 \Leftrightarrow $, j != \varnothing, \&SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, \odot r_1, r_1 \odot r_{10}, k \odot k_0,$

$$IsCpo(k_0; r_{10}), j! \circlearrowleft r_{10}, j \oplus, Rcpo(k_0; r_{10}), k_0 \oplus, Rcpm(j; k; r_{10}),$$

$$Rcpm(r_1; i; r), r_1 \oplus, r_{10} \oplus,$$

$$\Leftrightarrow , j! = \varnothing, \& SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, @r_1, r_1 \otimes r_{10}, k \otimes k_0,$$

$$IsCpo(k_0; r_{10}), j! \circlearrowleft r_{10}, Rcpo(k_0; r_{10}), k_0 \oplus, j \oplus, Rcpm(j; k; r_{10}),$$

$$Rcpm(r_1; i; r), r_1 \oplus, r_{10} \oplus,$$

$$\Leftrightarrow , \& SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, @r_1, r_1 \otimes r_{10}, j! = \varnothing,$$

$$k \otimes k_0, Rcpo(k_0; r_{10}), k_0 \oplus, j \oplus, Rcpm(j; k; r_{10}),$$

$$Rcpm(r_1; i; r), r_1 \oplus, r_{10} \oplus,$$

$$\Leftrightarrow , j! = \varnothing, \& SHi \circlearrowleft j, IsCpm(i; j; r), k! \circlearrowleft r, @r_1, r_1 \otimes r_{10},$$

$$Rcpm(j; k; r_{10}), Rcpm(r_1; i; r), r_1 \oplus, r_{10} \oplus,$$

$$conclusion:$$

$$, IsCpm(i; j; r), k! \circlearrowleft r, @r_1, r_1 \otimes r_{10} \oplus,$$

$$Rcpm(j; i; r_{10}), Rcpm(r_1; k; r), r_1 \oplus, r_{10} \oplus,$$

$$Rcpm(j; k; r_{10}), Rcpm(r_1; r, r_1 \cap r_{10} \cap r_{10}, r_{10} \cap r_{10},$$

$$Rcpm(j; k; r_{10}), Rcpm(r_1; i; r), r_1 \oplus, r_{10} \oplus,$$

$$Rcpm(j; k; r_{10}), Rcpm(r_1; i; r), r_1 \oplus, r_{10} \oplus,$$

31.13 Monotonicity

$$, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ , r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, i \!\!\!> \!\!\!\!> \!\!\!\!> \!\!\!\!> \!\!\!\!> \!\!\!\!> , k_1 \!\!\!\!= \!\!\!\!\varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), \iff \sim, r_1 \!\!\!> \!\!\!r_2,$$

```
induction proof:
premise 1:
, k_1 = \varnothing, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_1 = k_2,
k_1 = \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),
\Leftrightarrow, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j, k_1 = k_2,
k_1 = \emptyset, k_1 != \emptyset, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),
\Leftrightarrow ,\otimes,
\Leftrightarrow, \otimes, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_1 = k_2,
Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 > r_2,
\Leftrightarrow, k_1 = \emptyset, k_1 != \emptyset, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j, k_1 = k_2,
Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 > r_2,
\Leftrightarrow \ , k_1 = \varnothing, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \mathring{\bigcirc} r_{20}, r_1 \mathring{\bigcirc} r_{10}, r_2 \mathring{\bigcirc} r_{20}, i > j, k_1 = k_2,
k_1 != \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 > r_2,
premise 2:
, &SHi \rightarrow k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_1 = k_2,
```

```
k_1 = \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), \Leftrightarrow
, &SHi \rightarrow k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j, k_1 = k_2,
k_1 != \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 > r_2, \Rightarrow
, k_1 \models \varnothing, \&SHi \circlearrowleft k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(j; k_2; r_{20}
r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j, k_1 = k_2,
k_1 = \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),
\Leftrightarrow, &SHi Ok_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j, k_1 = k_2, k_1 != \varnothing,
i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes r_{20}, Rcpo(i_0; r_{10}), i_0 \otimes, k_1 \oplus,
IsCpm(i; k_1; r_{10}), Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),
\Leftrightarrow, &SHi Ok_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_1 = k_2, k_2 != \varnothing,
i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes r_{20}, Rcpo(i_0; r_{10}), i_0 \otimes, k_1 \oplus,
IsCpm(i; k_1; r_{10}), k_2 = \emptyset, Rcpm(k_1; i; r_{10}),
k_2 \stackrel{!}{=} \varnothing, j \odot j_0, Rcpo(j_0; r_{20}), j_0 \odot, k_2 \odot, Rcpm(k_2; j; r_{20}),
\Leftrightarrow, &SHi \bigcirc k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_1 = k_2, k_2 != \varnothing,
i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes r_{20}, Rcpo(i_0; r_{10}), i_0 \otimes, k_1 \oplus,
j \otimes j_0, IsCpm(i; k_1; r_{10}), IsCpm(i; k_1; r_{20}),
```

 $Rcpo(j_0; r_{20}), j_0 \oplus, k_2 \oplus, Rcpm(k_2; j; r_{20}),$

 \Leftrightarrow , &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$,

 $r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_1 = k_2, k_2 != \varnothing,$

 $i \odot i_0, IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(i_0; r_{10}), i_0 \oplus, k_1 \oplus,$

 $j \oplus j_0, IsCpm(i; k_1; r_{10}), IsCpm(i; k_1; r_{20}),$

 $IsCpo(j_0; r_{20}), IsCpo(j_0; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpo(j_0; r_{20}),$

 $Rcpm(k_1; i; r_{10}), j_0 \oplus, k_2 \oplus, Rcpm(k_2; j; r_{20}),$

 \Leftrightarrow , &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$,

 $r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_1 = k_2, k_2 != \varnothing,$

 $i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes r_{20}, Rcpo(i_0; r_{10}), i_0 \oplus, k_1 \oplus,$

 $j \otimes j_0, IsCpo(j_0; r_{20}), r_{10}! \otimes r_{20}, Rcpo(j_0; r_{20}),$

 $IsCpm(i; k_1; r_{10}), k_2! \circlearrowleft r_{10}, Rcpm(k_1; i; r_{10}), j_0 \oplus, k_2 \oplus, Rcpm(k_2; j; r_{20}),$

 $\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\!k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),$

 $r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j, k_1 = k_2, k_2 != \emptyset,$

 $i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes r_{20}, Rcpo(i_0; r_{10}), i_0 \oplus, k_1 \oplus,$

 $j \otimes j_0, IsCpo(j_0; r_{20}), r_{10}! \\ \circlearrowleft r_{20}, Repo(j_0; r_{20}), j_0 \\ \\ \textcircled{@}, k_2 \\ \\ \oplus,$

 $IsCpm(i; k_1; r_{10}), k_2! \circlearrowleft r_{10}, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),$

 \Leftrightarrow , &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$,

 $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j, k_1 = k_2, k_2 != \varnothing,$

 $i \circledcirc i_0, IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft k_1, Rcpo(i_0; r_{10}), i_0 \textcircled{\tiny{0}}, k_1 \oplus,$

```
j \otimes j_0, IsCpo(j_0; r_{20}), r_{10}! \otimes r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus, k_2 \oplus,
 IsCpm(i; k_1; r_{10}), k_2! \circlearrowleft r_{10}, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),
 \Leftrightarrow, &SHi \mathring{O}k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j,
 k_1 \mathrel{!=} \varnothing, k_1 \pm k_2, k_1 \oplus,
 i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes k_1, Rcpo(i_0; r_{10}), i_0 \otimes
j \otimes j_0, IsCpo(j_0; r_{20}), r_{10}! \otimes r_{20}, Rcpo(j_0; r_{20}), j_0 \otimes k_2 \oplus
 IsCpm(i; k_1; r_{10}), k_2! \circlearrowleft r_{10}, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),
 \Leftrightarrow, &SHi Ok_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j,
 k_1 = \varnothing, k_1 = k_2, k_1 \oplus,
 i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes k_2, Rcpo(i_0; r_{10}), i_0 \otimes k_2
j \oplus j_0, IsCpo(j_0; r_{20}), k_2! \circlearrowleft r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus, k_2 \oplus,
 IsCpm(i; k_1; r_{10}), k_2! \circlearrowleft r_{10}, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),
\Leftrightarrow , \&S\!H\!i\, \circlearrowleft\! k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), IsCpm(j; k_2; r_{20}), 
r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j,
 k_1 \mathrel{!=} \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus,
 i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes k_2, r_{10}! \otimes k_1, Rcpo(i_0; r_{10}), i_0 \otimes k_2, r_{10}! \otimes k_1, Rcpo(i_0; r_{10}), i_0 \otimes k_2, r_{10}! \otimes k_1, Rcpo(i_0; r_{10}), r_{10}! \otimes k_2, r_{10}! \otimes k
 j \otimes j_0, IsCpo(j_0; r_{20}), k_2! \circ r_{20}, k_1! \circ r_{20}, Repo(j_0; r_{20}), j_0 \otimes r_{20}
 Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),
```

$$\Leftrightarrow, \&SHi \, \circlearrowleft k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),$$

$$r_{10}! \, \circlearrowleft r_{20}, r_1 \, \circlearrowleft r_{10}, r_2 \, \circlearrowleft r_{20}, i \triangleright j,$$

$$k_1 \stackrel{!}{=} \varnothing, k_1 \stackrel{\bot}{=} k_2, k_1 \oplus, k_2 \oplus,$$

$$i @ i_0, IsCpo(i_0; r_{10}), r_{10}! @ k_2, r_{10}! @ k_1, Rcpo(i_0; r_{10}), i_0 @, \\$$

$$j \otimes j_0, IsCpo(j_0; r_{20}), k_2! \circlearrowleft r_{20}, k_1! \circlearrowleft r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus,$$

$$k_1 = k_2, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$, $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j$,

$$k_1 \stackrel{!}{=} \varnothing, k_1 \stackrel{\bot}{=} k_2, k_1 \oplus, k_2 \oplus,$$

$$i \odot i_0, IsCpo(i_0; r_{10}), r_{10}! \circ k_2, r_{10}! \circ k_1, Rcpo(i_0; r_{10}), i_0 \odot,$$

$$j \otimes j_0, IsCpo(j_0; r_{20}), k_2! \circ r_{20}, k_1! \circ r_{20}, Repo(j_0; r_{20}), j_0 \oplus,$$

$$k_1 = k_2, if(k_1 = \varnothing) - \begin{bmatrix} , Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), \\ , Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), \end{bmatrix},$$

$$\Leftrightarrow$$
 , $<1>$,

, &SHi
$$\circlearrowleft k_1$$
, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$, $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j$,

$$k_1 != \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus,$$

$$i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes k_2, r_{10}! \otimes k_1, Rcpo(i_0; r_{10}), i_0 \otimes k_2$$

$$j \otimes j_0, IsCpo(j_0; r_{20}), k_2! \circlearrowleft r_{20}, k_1! \circlearrowleft r_{20}, Repo(j_0; r_{20}), j_0 \oplus,$$

$$k_1 = k_2, k_1 = \emptyset, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}),$$

$$\Leftrightarrow$$
, &SHi $\bigcirc k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$,

$$\begin{split} &r_{10} | \circlearrowleft_{r_{20}} r_{1} | \circlearrowleft_{r_{20}} r_{1} | r_{10}, r_{2} | \circlearrowleft_{r_{20}} r_{20}, i \triangleright j, \\ &k_{1} | = \varnothing, k_{1} = k_{2}, k_{1} \oplus k_{2} \otimes k_{1} \\ &i \otimes i_{0}, IsCpo(i_{0}; r_{10}), r_{10} | \circlearrowleft_{k_{2}} k_{2} \cap k_{1} | \circlearrowleft_{r_{20}} Repo(i_{0}; r_{20}), j_{0} \oplus k_{1} \\ &j \otimes j_{0}, IsCpo(j_{0}; r_{20}), k_{2} | \circlearrowleft_{r_{20}} k_{1} | \circlearrowleft_{r_{20}} Repo(j_{0}; r_{20}), j_{0} \oplus k_{1} \\ &k_{1} = k_{2}, k_{1} = \varnothing, Repm(k_{2}; j; r_{20}), \\ &\Leftrightarrow, \&SHi \circlearrowleft_{k_{1}} l_{1} IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ &r_{10} | \circlearrowleft_{r_{20}} r_{1} \circlearrowleft_{r_{10}} r_{2} \circlearrowleft_{r_{20}} i \triangleright j, \\ &k_{1} | = \varnothing, k_{1} = k_{2}, k_{1} \oplus k_{2} \oplus k_{2} \oplus k_{1} \\ &i \otimes i_{0}, IsCpo(i_{0}; r_{10}), r_{10} | \circlearrowleft_{k_{2}} k_{2}, r_{10} | \circlearrowleft_{k_{1}} Repo(i_{0}; r_{10}), i_{0} \oplus k_{2}, \\ &j \otimes j_{0}, IsCpo(j_{0}; r_{20}), k_{2} | \circlearrowleft_{r_{20}} r_{20}, k_{1} | \circlearrowleft_{r_{20}} Repo(j_{0}; r_{20}), j_{0} \oplus k_{2}, \\ &k_{1} = k_{2}, k_{2} = \varnothing, Repm(k_{2}; j; r_{20}), \\ &\Leftrightarrow, \&SHi \circlearrowleft_{k_{1}} IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ &r_{10} | \circlearrowleft_{r_{20}} r_{1} \circlearrowleft_{r_{10}} r_{2} \circlearrowleft_{r_{20}} i \triangleright j, \\ &k_{1} = \varnothing, k_{1} = k_{2}, k_{1} \oplus k_{2} \oplus k_{2}, \\ &i \otimes i_{0}, IsCpo(i_{0}; r_{10}), r_{10} | \circlearrowleft_{k_{2}} k_{2}, r_{10} | \circlearrowleft_{k_{1}} Repo(i_{0}; r_{10}), i_{0} \oplus k_{2}, \\ &i \otimes i_{0}, IsCpo(i_{0}; r_{10}), r_{10} | \circlearrowleft_{k_{2}} k_{2}, r_{10} | \circlearrowleft_{r_{20}} Repo(j_{0}; r_{20}), j_{0} \oplus k_{2}, \\ &k_{1} = \varnothing, \&SHi \circlearrowleft_{k_{1}} IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ &r_{10} | \circlearrowleft_{r_{20}} r_{1} \circlearrowleft_{r_{10}} r_{2} \circlearrowleft_{r_{20}} r_{20}, i \triangleright j, \end{split}$$

 $k_1 = \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus,$

$$i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes i, r_{10}! \otimes j, Rcpo(i_0; r_{10}), i_0 \otimes,$$

 $j \otimes j_0, IsCpo(j_0; r_{20}), i! \otimes r_{20}, j! \otimes r_{20}, Rcpo(j_0; r_{20}), j_0 \otimes,$
 $k_1 = k_2, k_2 = \varnothing,$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$, $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j$,

$$k_1 != \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus,$$

$$i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \circ i, r_{10}! \circ j, Rcpo(i_0; r_{10}), i_0 \oplus i, r_{10}! \circ j, Rcpo(i_0; r_{10}), Rcpo(i_0; r_{10}$$

$$j \otimes j_0, IsCpo(j_0; r_{20}), i! \circlearrowleft r_{20}, j! \circlearrowleft r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus,$$

$$i > j, k_1 = k_2, k_2 = \emptyset,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$, $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j$,

$$k_1 \stackrel{!}{=} \varnothing, k_1 \stackrel{}{=} k_2, k_1 \oplus, k_2 \oplus,$$

$$i \otimes i_0, IsCpo(i_0; r_{10}), r_1 \circ r_{10}, Rcpo(i_0; r_{10}), i_0 \oplus,$$

$$j \otimes j_0, IsCpo(j_0; r_{20}), r_2 \circ r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus,$$

$$i > j, k_1 = k_2, k_2 = \emptyset,$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$, $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j$,

$$k_1 \mathrel{!=} \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus,$$

$$i \otimes i_0, IsCpo(i_0; r_{10}), r_1 \circ r_{10}, Rcpo(i_0; r_{10}), i = r_1, i_0 \oplus,$$

$$j \otimes j_0, IsCpo(j_0; r_{20}), r_2 \circ r_{20}, Rcpo(j_0; r_{20}), j = r_2, j_0 \oplus,$$

$$i > j, k_1 = k_2, k_2 = \emptyset,$$

$$\Rightarrow \ , \&SHi \ddot{C}k_{1}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10} \ddot{C}r_{20}, r_{1} \ddot{C}r_{10}, r_{2} \ddot{C}r_{20}, i > j, \\ k_{1} != \varnothing, k_{1} = k_{2}, k_{1} \oplus, k_{2} \oplus, \\ i \otimes i_{0}, IsCpo(i_{0}; r_{10}), r_{1} \ddot{C}r_{10}, Rcpo(i_{0}; r_{10}), i = r_{1}, i_{0} \oplus, \\ j \otimes j_{0}, IsCpo(j_{0}; r_{20}), i \ddot{C}r_{20}, r_{1} \ddot{C}r_{20}, Rcpo(j_{0}; r_{20}), j = r_{2}, j_{0} \oplus, \\ i > j, k_{1} = k_{2}, k_{2} = \varnothing, \\ \Leftrightarrow \ , \&SHi \ddot{C}k_{1}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10} \ddot{C}r_{20}, r_{1} \ddot{C}r_{10}, r_{2} \ddot{C}r_{20}, i > j, \\ k_{1} = \varnothing, k_{1} = k_{2}, k_{1} \oplus, k_{2} \oplus, \\ i \otimes i_{0}, IsCpo(i_{0}; r_{10}), r_{1} \ddot{C}r_{10}, Rcpo(i_{0}; r_{10}), i_{0} \oplus, \\ j \otimes j_{0}, IsCpo(j_{0}; r_{20}), i \ddot{C}r_{20}, r_{1} \ddot{C}r_{20}, Rcpo(j_{0}; r_{20}), j_{0} \oplus, \\ i = r_{1}, j = r_{2}, i > j, k_{1} = k_{2}, k_{2} = \varnothing, \\ \Leftrightarrow \ , \&SHi \ddot{C}k_{1}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10} \ddot{C}r_{20}, r_{1} \ddot{C}r_{10}, r_{2} \ddot{C}r_{20}, i > j, \\ k_{1} != \varnothing, k_{1} = k_{2}, k_{1} \oplus, k_{2} \oplus, \\ i \otimes i_{0}, IsCpo(i_{0}; r_{10}), r_{1} \ddot{C}r_{10}, Rcpo(i_{0}; r_{10}), i_{0} \oplus, \\ j \otimes j_{0}, IsCpo(j_{0}; r_{20}), i \ddot{C}r_{20}, r_{1} \ddot{C}r_{20}, Rcpo(j_{0}; r_{20}), j_{0} \oplus, \\ i = r_{1}, j = r_{2}, r_{1} > r_{2}, k_{1} = k_{2}, k_{2} = \varnothing, \\ \Leftrightarrow \ , \&SHi \ddot{C}k_{1}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10} \ddot{C}r_{20}, r_{1} \ddot{C}r_{10}, r_{2} \ddot{C}r_{20}, i > j, \\ \Leftrightarrow \ , \&SHi \ddot{C}k_{1}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10} \ddot{C}r_{20}, r_{1} \ddot{C}r_{10}, r_{2} \ddot{C}r_{20}, i > j, \\ \Leftrightarrow \ , \&SHi \ddot{C}k_{1}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10} \ddot{C}r_{20}, r_{1} \ddot{C}r_{20}, r_{2} \ddot{C}r_{20}, i > j, \\ \Leftrightarrow \ , \&SHi \ddot{C}k_{1}, IsCpm(i; k_{1}; r_{10}), IsCpm(i; k$$

$$, \&SHi \circlearrowleft_{k_{1}}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10}! \circlearrowleft_{r_{20}}, r_{1} \circlearrowleft_{r_{10}}, r_{2} \circlearrowleft_{r_{20}}, i > j, \\ k_{1}! = \varnothing, k_{1} = k_{2}, k_{1} \oplus, k_{2} \oplus, \\ i \circledcirc_{i_{0}}, IsCpo(i_{0}; r_{10}), r_{10}! \circlearrowleft_{i_{0}}, r_{10}! \circlearrowleft_{i_{0}}, Rcpo(i_{0}; r_{10}), i_{0} \oplus, \\ j \circlearrowleft_{j_{0}}, IsCpo(j_{0}; r_{20}), i! \circlearrowleft_{r_{20}}, j! \circlearrowleft_{r_{20}}, Rcpo(j_{0}; r_{20}), j_{0} \oplus, \\ k_{1} = k_{2}, k_{1}! = \varnothing, Rcpm(k_{1}; i; r_{10}), Rcpm(k_{2}; j; r_{20}), \\ \Leftrightarrow, \&SHi \circlearrowleft_{k_{1}}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10}! \circlearrowleft_{r_{20}}, r_{1} \circlearrowleft_{r_{10}}, r_{2} \circlearrowleft_{r_{20}}, i > j, \\ k_{1}! = \varnothing, k_{1} = k_{2}, k_{1} \oplus, k_{2} \oplus, \\ i \circledcirc_{i_{0}}, IsCpo(i_{0}; r_{10}), r_{10}! \circlearrowleft_{i_{0}}, r_{10}! \circlearrowleft_{i_{0}}, Rcpo(i_{0}; r_{10}), i_{0} \oplus, \\ j \circlearrowleft_{j_{0}}, IsCpo(j_{0}; r_{20}), i! \circlearrowleft_{r_{20}}, j! \circlearrowleft_{r_{20}}, Rcpo(j_{0}; r_{20}), j_{0} \oplus, \\ i \gt_{j}, k_{1} = k_{2}, k_{1}! = \varnothing, Rcpm(k_{1}; i; r_{10}), Rcpm(k_{2}; j; r_{20}), \\ \Leftrightarrow, \&SHi \circlearrowleft_{k_{1}}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10}! \circlearrowleft_{r_{20}}, r_{1} \circlearrowleft_{r_{10}}, r_{2} \circlearrowleft_{r_{20}}, i \gt_{j}, \\ \Leftrightarrow, \&SHi \circlearrowleft_{k_{1}}, IsCpm(i; k_{1}; r_{10}), IsCpm(j; k_{2}; r_{20}), IsCpm(i; k_{1}; r_{20}), IsCpm(j; k_{2}; r_{10}), \\ r_{10}! \circlearrowleft_{r_{20}}, r_{1} \circlearrowleft_{r_{10}}, r_{2} \circlearrowleft_{r_{20}}, i \gt_{j}, \\ \end{cases}$$

 $k_1 \mathrel{!=} \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus,$

$$\begin{split} & i \otimes i_0, IsCpo(i_0; r_{10}), r_{10} | \mathring{\odot} k_1, r_{10} | \mathring{\odot} r_{20}, Repo(i_0; r_{10}), i_0 \oplus, \\ & j \otimes j_0, IsCpo(j_0; r_{20}), k_1 | \mathring{\odot} r_{20}, r_{10} | \mathring{\odot} r_{20}, Repo(j_0; r_{20}), j_0 \oplus, \\ & i > j, k_1 = k_2, k_1 != \varnothing, Repm(k_1; i; r_{10}), Repm(k_2; j; r_{20}), \\ & \Leftrightarrow, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ & r_{10} | \mathring{\odot} r_{20}, r_{1} \mathring{\odot} r_{10}, r_{2} \mathring{\odot} r_{20}, i > j, \\ & k_1 != \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, \\ & i \otimes i_0, IsCpo(i_0; r_{10}), r_{10} | \mathring{\odot} k_1, r_{10} | \mathring{\odot} r_{20}, Repo(i_0; r_{10}), i_0 \oplus, \\ & j \otimes j_0, IsCpo(j_0; r_{20}), k_1 | \mathring{\odot} r_{20}, r_{10} | \mathring{\odot} r_{20}, Repo(j_0; r_{20}), j_0 \oplus, \\ & \&SHi \rightarrow k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ & r_{10} | \mathring{\odot} r_{20}, i > j, k_1 = k_2, k_1 != \varnothing, Repm(k_1; i; r_{10}), \\ & IsCpm(j; k_2; r_{20}), Repm(k_2; j; r_{20}), \\ & \Leftrightarrow, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ & r_{10} | \mathring{\odot} r_{20}, r_{1} \mathring{\odot} r_{10}, r_{2} \mathring{\odot} r_{20}, i > j, \\ & k_1 != \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, \\ & i \otimes i_0, IsCpo(i_0; r_{10}), r_{10} | \mathring{\odot} r_{20}, r_{10} | \mathring{\odot} r_{20}, Repo(i_0; r_{10}), i_0 \oplus, \\ & j \otimes j_0, IsCpo(i_0; r_{10}), k_1 | \mathring{\odot} r_{20}, r_{10} | \mathring{\odot} r_{20}, Repo(i_0; r_{20}), j_0 \oplus, \\ & \&SHi \rightarrow k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ & r_{10} | \mathring{\odot} r_{20}, i > j, k_1 = k_2, k_1 \oplus, k_2 \oplus, \\ & r_{10} | \mathring{\odot} r_{10}, r_{10} | r_{10}, r_{20} | r_{21}, r_{21} \oplus, Repm(k_1; i; r_{10}), \\ & IsCpm(j; k_2; r_{20}), Repm(k_2; j; r_{20}), \end{split}$$

```
31 Recursive Function Rcpm(i;j;r)
```

$$\Rightarrow , IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, i \succ j, \\ k_1! = \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, \\ i \bowtie_{i0}, IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft k_1, r_{10}! \circlearrowleft r_{20}, Rcpo(i_0; r_{10}), i_0 \oplus, \\ j \bowtie_{j0}, IsCpo(j_0; r_{20}), k_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus, \\ \& SHi \rightarrow k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10}! \circlearrowleft r_{20}, i \succ_{j}, k_1 = k_2, k_1! = \varnothing, \\ r_{10} \bowtie r_{11}, r_{20} \bowtie r_{21}, Rcpm(k_1; i; r_{10}), \\ IsCpm(j; k_2; r_{20}), Rcpm(k_2; j; r_{20}), r_{11} \oplus, r_{21} \oplus, \\ \Leftrightarrow , IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10}! \circlearrowleft r_{20}, r_{1} \circlearrowleft r_{10}, r_{2} \circlearrowleft r_{20}, i \succ_{j}, \\ k_1! = \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, \\ i \bowtie_{i0}, IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft k_1, r_{10}! \circlearrowleft r_{20}, Rcpo(i_0; r_{10}), i_0 \oplus, \\ j \circlearrowleft_{j0}, IsCpo(i_0; r_{20}), k_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Rcpo(i_0; r_{20}), j_0 \oplus, \\ r_{10} \circledcirc r_{11}, r_{20} \circledcirc r_{21}, \\ \& SHi \rightarrow k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10}! \circlearrowleft r_{20}, i \succ_{j}, k_1 = k_2, k_1! = \varnothing, \\ r_{10} \circlearrowleft r_{11}, r_{20} \circlearrowleft r_{21}, Rcpm(k_1; i; r_{10}), \\ Rcpm(k_2; j; r_{20}), r_{11} \oplus, r_{21} \oplus, \\ \Leftrightarrow , IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ \Leftrightarrow , IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ \Leftrightarrow , IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ \Leftrightarrow , IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ \end{cases}$$

 $r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j,$

$$\begin{split} k_1! &= \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, \\ i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \circlearrowleft k_1, r_{10}! \circlearrowleft r_{20}, Rcpo(i_0; r_{10}), i_0 \oplus, \\ j \otimes j_0, IsCpo(j_0; r_{20}), k_1! \circlearrowleft r_{20}, r_{10}! \circlearrowleft r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus, \\ r_{10} \otimes r_{11}, r_{20} \otimes r_{21}, \\ \&SHi \rightarrow k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10} \otimes r_{20}, i > j, k_1 = k_2, k_1! = \varnothing, \\ r_{10} \otimes r_{20}, r_{21}, Rcpm(k_1; i; r_{10}), \\ Rcpm(k_2; j; r_{20}), r_{11} > r_{21}, r_{11} \oplus, r_{21} \oplus, \\ \Leftrightarrow, \&SHi \circlearrowleft k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10} \otimes r_{20}, r_{1} \otimes r_{20}, i > j, \\ k_1! = \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, \\ i \otimes i_0, IsCpo(i_0; r_{10}), r_{10} \otimes k_1, r_{10} \otimes r_{20}, Rcpo(i_0; r_{10}), i_0 \oplus, \\ j \otimes j_0, IsCpo(j_0; r_{20}), k_1! \otimes r_{20}, r_{10} \otimes r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus, \\ r_{10} \otimes r_{11}, r_{20} \otimes r_{21}, k_1! = \varnothing, \\ IsCpm(j; k_1; r_{10}), \otimes n_1, n_1 \otimes n_{10}, Rcpm(k_1; i; n_{10}), Rcpo(n_1; r_{10}), n_1 \oplus, n_{10} \oplus, \\ IsCpm(j; k_2; r_{20}), \otimes n_2, n_2 \otimes n_{20}, Rcpm(k_2; j; n_{20}), Rcpo(n_2; r_{20}), n_2 \oplus, n_{20} \oplus, \\ r_{11} > r_{21}, r_{11} \oplus, r_{21} \oplus, \\ \Leftrightarrow, \&SHi \circlearrowleft k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10} \otimes r_{20}, r_{1} \otimes r_{10}, r_{2} \otimes r_{20}, i > j, \\ k_1! = \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, \end{aligned}$$

 $i \otimes i_0, IsCpo(i_0; r_{10}), r_{10}! \otimes k_1, r_{10}! \otimes r_{20}, Rcpo(i_0; r_{10}), i_0 \otimes k_1, r_{10}! \otimes r_{20}$

$$j \otimes j_0, IsCpo(j_0; r_{20}), k_1 \otimes r_{20}, r_{10} \otimes r_{20}, Repo(j_0; r_{20}), j_0 \otimes, \\ r_{10} \otimes r_{11}, r_{20} \otimes r_{21}, k_1! = \varnothing, \\ \otimes n_1, n_1 \otimes n_{10}, \otimes n_2, n_2 \otimes n_{20}, \\ IsCpm(i; k_1; n_{10}), Repm(k_1; i; n_{10}), \\ IsCpo(n_1; r_{10}), n_1 \otimes n_{11}, r_{10} \otimes r_{11}, Repo(n_1; r_{10}), n_{11} = r_{11}, n_{11} \otimes, \\ IsCpm(j; k_2; n_{20}), Repm(k_2; j; n_{20}), \\ IsCpo(n_2; r_{20}), n_2 \otimes n_{21}, r_{20} \otimes r_{21}, Repo(n_2; r_{20}), n_{21} = r_{21}, n_{21} \otimes, \\ r_{11} \Rightarrow r_{21}, n_{10} \otimes, n_{20} \otimes, n_{20} \otimes, r_{11} \otimes, r_{21} \otimes, \\ \Leftrightarrow, \& SHi \otimes k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10} \otimes r_{20}, r_{1} \otimes r_{20}, r_{2} \otimes r_{20}, i > j, \\ k_1! = \varnothing, k_1 = k_2, k_1 \oplus k_2 \otimes, \\ i \otimes i_0, IsCpo(i_0; r_{10}), r_{10} \otimes k_1, r_{10} \otimes r_{20}, Repo(i_0; r_{10}), i_0 \otimes, \\ j \otimes j_0, IsCpo(j_0; r_{20}), k_1 \otimes r_{20}, r_{10} \otimes r_{20}, Repo(j_0; r_{20}), j_0 \otimes, \\ r_{10} \otimes r_{11}, r_{20} \otimes r_{21}, k_1! = \varnothing, \\ \otimes n_1, n_1 \otimes n_{10}, n_1 \otimes n_{11}, \otimes n_{2}, n_{2} \otimes n_{20}, n_{2} \otimes n_{21}, \\ IsCpm(i; k_1; n_{10}), Repm(k_1; i; n_{10}), \\ IsCpm(j; k_2; n_{20}), Repm(k_2; j; n_{20}), \\ IsCpo(n_2; r_{20}), r_{20} \otimes r_{21}, Repo(n_2; r_{20}), \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{11} > r_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{21} > n_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{21} > n_{21}, \\ n_{11} = r_{11}, n_{21} = r_{21}, r_{21}, \\ n_{11} = r$$

 $n_{11} \oplus, n_{21} \oplus, n_{1} \oplus, n_{10} \oplus, n_{2} \oplus, n_{20} \oplus, r_{11} \oplus, r_{21} \oplus,$

$$\Rightarrow , \&SHi \dot{\Box}k_1, IsCpm(i;k_1;r_{10}), IsCpm(j;k_2;r_{20}), IsCpm(i;k_1;r_{20}), IsCpm(j;k_2;r_{10}), \\ r_{10} \dot{\Box}r_{20}, r_1 \dot{\Box}r_{10}, r_2 \dot{\Box}r_{20}, i > j, \\ k_1 \models \varnothing, k_1 = k_2, k_1 \oplus k_2 \oplus, \\ i \dot{\varnothing}i_0, IsCpo(i_0;r_{10}), r_{10} \dot{\Box}k_1, r_{10} \dot{\Box}r_{20}, Repo(i_0;r_{10}), i_0 \otimes, \\ j \dot{\varnothing}j_0, IsCpo(j_0;r_{20}), k_1 \dot{\Box}r_{20}, r_{10} \dot{\Box}r_{20}, Repo(j_0;r_{20}), j_0 \oplus, \\ r_{10} \dot{\otimes}r_{11}, r_{20} \dot{\otimes}r_{21}, k_1 \models \varnothing, \\ & & \otimes n_1, n_1 \dot{\otimes}n_{10}, n_1 \dot{\otimes}n_{11}, \dot{\otimes}n_2, n_2 \dot{\otimes}n_{20}, n_2 \dot{\otimes}n_{21}, \\ IsCpm(i;k_1;n_{10}), Repm(k_1;i;n_{10}), \\ IsCpm(j;k_2;n_{20}), Repm(k_1;j;n_{20}), \\ IsCpm(j;k_2;n_{20}), Repm(k_2;j;n_{20}), \\ IsCpo(n_1;r_{10}), r_{10} \dot{\Box}r_{11}, Repo(n_1;r_{10}), \\ IsCpo(n_2;r_{20}), r_{20} \dot{\Box}r_{21}, Repo(n_2;r_{20}), \\ n_{11} = r_{11}, n_{21} = r_{21}, n_{11} \Rightarrow n_{21}, \\ n_{11} \oplus, n_{21} \oplus, n_{10} \oplus, n_{2} \oplus, n_{20} \oplus, r_{11} \oplus, r_{21} \oplus, \\ & \Rightarrow, \&SHi \dot{\Box}k_1, IsCpm(i;k_1;r_{10}), IsCpm(j;k_2;r_{20}), IsCpm(i;k_1;r_{20}), IsCpm(j;k_2;r_{10}), \\ r_{10} \dot{\Box}r_{20}, r_1 \dot{\Box}r_{10}, r_2 \dot{\Box}r_{20}, i > j, \\ k_1 \models \varnothing, k_1 = \&k_2, k_1 \oplus, k_2 \oplus, k_1 \models \varnothing, \\ & \otimes n_1, n_1 \dot{\odot}n_{10}, n_1 \dot{\odot}n_{11}, \otimes n_2, n_2 \dot{\oplus}n_{20}, n_2 \dot{\odot}n_{21}, \\ i\dot{\odot}i_0, j\dot{\odot}j_0, \\ IsCpo(i_0;r_{10}), Repo(i_0;r_{20}), \\ IsCpo(i_0;r_{20}), Repo(j_0;r_{20}), \\ IsCpo(n_1;r_{10}), Repo(n_1;r_{10}), \\ IsCpo(n_1;r_{10}), Repo$$

```
IsCpm(j; k_2; n_{20}), Rcpm(k_2; j; n_{20}),
IsCpo(n_2; r_{20}), Rcpo(n_2; r_{20}),
n_{11} > n_{21},
i_0 \oplus, j_0 \oplus, n_{11} \oplus, n_{21} \oplus, n_1 \oplus, n_{10} \oplus, n_2 \oplus, n_{20} \oplus,
\Leftrightarrow, &SHi Ok_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j,
k_1 != \varnothing, k_1 \pm k_2, k_1 \oplus, k_2 \oplus, k_1 != \varnothing,
 \bigcirc n_1, n_1 \bigcirc n_{10}, n_1 \bigcirc n_{11}, \bigcirc n_2, n_2 \bigcirc n_{20}, n_2 \bigcirc n_{21}, 
i \otimes i_0, j \otimes j_0,
IsCpm(i; k_1; n_{10}), Rcpm(k_1; i; n_{10}),
IsCpm(j; k_2; n_{20}), Rcpm(k_2; j; n_{20}),
IsCpo(i_0; r_{10}), Rcpo(i_0; r_{10}),
IsCpo(n_1; r_{10}), Rcpo(n_1; r_{10}),
IsCpo(j_0; r_{20}), Rcpo(j_0; r_{20}),
IsCpo(n_2; r_{20}), Rcpo(n_2; r_{20}),
n_{11} > n_{21},
i_0 \oplus, j_0 \oplus, n_{11} \oplus, n_{21} \oplus, n_1 \oplus, n_{10} \oplus, n_2 \oplus, n_{20} \oplus,
r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j,
k_1 != \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, k_1 != \varnothing,
\bigcirc n_1, n_1 \bigcirc n_{10}, n_1 \bigcirc n_{11}, \bigcirc n_2, n_2 \bigcirc n_{20}, n_2 \bigcirc n_{21},
```

```
i \otimes i_0, j \otimes j_0,
 IsCpm(i; k_1; n_{10}), Rcpm(k_1; i; n_{10}),
 IsCpm(j; k_2; n_{20}), Rcpm(k_2; j; n_{20}),
 IsCpo(i_0; r_{10}), IsCpo(n_1; r_{10}), i \circlearrowleft i_0, n_1 \circlearrowleft n_{11}, r_1 \circlearrowleft r_{10},
 Rcpo(i_0; r_{10}), Rcpo(n_1; r_{10}), i + n_{11} : t_1, t_1 \oplus,
 IsCpo(j_0; r_{20}), IsCpo(n_2; r_{20}), j \circlearrowleft j_0, n_2 \circlearrowleft n_{21}, r_2 \circlearrowleft r_{20},
 Rcpo(j_0; r_{20}), Rcpo(n_2; r_{20}), j + n_{21} : t_2, t_2 \oplus,
n_{11} \gg n_{21},
 i_0 \oplus, j_0 \oplus, n_{11} \oplus, n_{21} \oplus, n_1 \oplus, n_{10} \oplus, n_2 \oplus, n_{20} \oplus, n_{20}
\Leftrightarrow, &SHi \circ k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),
r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j
 k_1 != \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, k_1 != \varnothing,
\bigcirc n_1, n_1 \bigcirc n_{10}, n_1 \bigcirc n_{11}, \bigcirc n_2, n_2 \bigcirc n_{20}, n_2 \bigcirc n_{21},
 i \otimes i_0, j \otimes j_0,
 IsCpm(i; k_1; n_{10}), Rcpm(k_1; i; n_{10}),
 IsCpm(j; k_2; n_{20}), Rcpm(k_2; j; n_{20}),
 IsCpo(i_0; r_{10}), IsCpo(n_1; r_{10}), i \circlearrowleft i_0, n_1 \circlearrowleft n_{11}, r_1 \circlearrowleft r_{10},
 Rcpo(i_0; r_{10}), Rcpo(n_1; r_{10}), i + n_{11} : t_1, r_1 = t_1, t_1 \oplus,
 IsCpo(j_0; r_{20}), IsCpo(n_2; r_{20}), j \circlearrowleft j_0, n_2 \circlearrowleft n_{21}, r_2 \circlearrowleft r_{20},
 Rcpo(j_0; r_{20}), Rcpo(n_2; r_{20}), j + n_{21} : t_2, r_2 = t_2, t_2 \oplus,
```

 $n_{11} > n_{21}$,

```
31 Recursive Function Rcpm(i;j;r)
```

$$i_0 @, j_0 @, n_{11} @, n_{21} @, n_1 @, n_{10} @, n_2 @, n_{20} @,$$

$$\Leftrightarrow \; , \&S\!H\!i\, \circlearrowleft\!k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),$$

$$r_{10}! \mathcal{O} r_{20}, r_1 \mathcal{O} r_{10}, r_2 \mathcal{O} r_{20}, i > j,$$

$$k_1 \mathrel{!=} \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, k_1 \mathrel{!=} \varnothing,$$

$$\bigcirc n_1, n_1 \bigcirc n_{10}, n_1 \bigcirc n_{11}, \bigcirc n_2, n_2 \bigcirc n_{20}, n_2 \bigcirc n_{21},$$

$$i \otimes i_0, j \otimes j_0,$$

$$IsCpm(i; k_1; n_{10}), Rcpm(k_1; i; n_{10}),$$

$$IsCpm(j; k_2; n_{20}), Rcpm(k_2; j; n_{20}),$$

$$IsCpo(i_0; r_{10}), IsCpo(n_1; r_{10}), i \circlearrowleft i_0, n_1 \circlearrowleft n_{11}, r_1 \circlearrowleft r_{10},$$

$$Rcpo(i_0; r_{10}), Rcpo(n_1; r_{10}),$$

$$IsCpo(j_0; r_{20}), IsCpo(n_2; r_{20}), j \circlearrowleft j_0, n_2 \circlearrowleft n_{21}, r_2 \circlearrowleft r_{20},$$

$$Rcpo(j_0; r_{20}), Rcpo(n_2; r_{20}),$$

$$i + n_{11} : t_1, r_1 = t_1, j + n_{21} : t_2, r_2 = t_2, n_{11} > n_{21},$$

$$t_1 \oplus, t_2 \oplus, i_0 \oplus, j_0 \oplus, n_{11} \oplus, n_{21} \oplus, n_1 \oplus, n_{10} \oplus, n_2 \oplus, n_{20} \oplus, n_$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$,

$$r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j,$$

$$k_1 \mathrel{!=} \varnothing, k_1 \equiv k_2, k_1 \oplus, k_2 \oplus, k_1 \mathrel{!=} \varnothing,$$

$$\bigcirc n_1, n_1 \bigcirc n_{10}, n_1 \bigcirc n_{11}, \bigcirc n_2, n_2 \bigcirc n_{20}, n_2 \bigcirc n_{21},$$

$$i \otimes i_0, j \otimes j_0,$$

$$IsCpm(i; k_1; n_{10}), Rcpm(k_1; i; n_{10}),$$

$$IsCpm(j; k_2; n_{20}), Rcpm(k_2; j; n_{20}),$$

$$IsCpo(i_0;r_{10}), IsCpo(n_1;r_{10}), i \circlearrowleft i_0, n_1 \circlearrowleft n_{11}, r_1 \circlearrowleft r_{10}, \\ Repo(i_0;r_{10}), Repo(n_1;r_{10}), \\ IsCpo(j_0;r_{20}), IsCpo(n_2;r_{20}), j \circlearrowleft j_0, n_2 \circlearrowleft n_{21}, r_2 \circlearrowleft r_{20}, \\ Repo(j_0;r_{20}), Repo(n_2;r_{20}), \\ i \triangleright j, n_{11} \triangleright n_{21}, i+n_{11}:t_1, j+n_{21}:t_2, r_1 = t_1, r_2 = t_2, \\ t_1 \oplus, t_2 \oplus, i_0 \oplus, j_0 \oplus, n_{11} \oplus, n_{21} \oplus, n_1 \oplus, n_{10} \oplus, n_2 \oplus, n_{20} \oplus, \\ \Leftrightarrow, \& SHi \circlearrowleft k_1, IsCpm(i;k_1;r_{10}), IsCpm(j;k_2;r_{20}), IsCpm(i;k_1;r_{20}), IsCpm(j;k_2;r_{10}), \\ r_{10} \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i \triangleright j, \\ k_1! = \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus, k_1! = \varnothing, \\ \oplus n_1, n_1 \oplus n_{10}, n_1 \oplus n_{11}, \oplus n_2, n_2 \oplus n_{20}, n_2 \oplus n_{21}, \\ i \circledcirc i_0, j \circledcirc j_0, \\ IsCpm(i;k_1;n_{10}), Repm(k_1;i;n_{10}), \\ IsCpm(j;k_2;n_{20}), Repm(k_2;j;n_{20}), \\ IsCpo(i_0;r_{10}), IsCpo(n_1;r_{10}), i \circlearrowleft i_0, n_1 \circlearrowleft n_{11}, r_1 \circlearrowleft r_{10}, \\ Repo(i_0;r_{20}), IsCpo(n_2;r_{20}), j \circlearrowleft j_0, n_2 \circlearrowleft n_{21}, r_2 \circlearrowleft r_{20}, \\ Repo(j_0;r_{20}), Repo(n_2;r_{20}), \\ i \triangleright j, n_{11} \triangleright n_{21}, i+n_{11}:t_1, j+n_{21}:t_2, t_1 \triangleright t_2, r_1 = t_1, r_2 = t_2, \\ t_1 \oplus, t_2 \oplus, i_0 \oplus, j_0 \oplus, n_{11} \oplus, n_{21} \oplus, n_1 \oplus, n_{10} \oplus, n_2 \oplus, n_{20} \oplus, \\ \end{cases}$$

$$\Leftrightarrow$$
, &SHi $\circlearrowleft k_1$, $IsCpm(i; k_1; r_{10})$, $IsCpm(j; k_2; r_{20})$, $IsCpm(i; k_1; r_{20})$, $IsCpm(j; k_2; r_{10})$, $r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j$,

31 Recursive Function Rcpm(i;j;r)

$$Rcpo(i_0; r_{10}), Rcpo(n_1; r_{10}),$$

$$IsCpo(j_0; r_{20}), IsCpo(n_2; r_{20}), j \circlearrowleft j_0, n_2 \circlearrowleft n_{21}, r_2 \circlearrowleft r_{20},$$

 $IsCpo(i_0; r_{10}), IsCpo(n_1; r_{10}), i \circlearrowleft i_0, n_1 \circlearrowleft n_{11}, r_1 \circlearrowleft r_{10},$

$$Rcpo(j_0; r_{20}), Rcpo(n_2; r_{20}),$$

$$i > j, n_{11} > n_{21}, i + n_{11} : t_1, j + n_{21} : t_2, r_1 > r_2, r_1 = t_1, r_2 = t_2,$$

$$t_1 \oplus, t_2 \oplus, i_0 \oplus, j_0 \oplus, n_{11} \oplus, n_{21} \oplus, n_1 \oplus, n_{10} \oplus, n_2 \oplus, n_{20} \oplus,$$

$$\Leftrightarrow, \&S\!H\!i\, \circlearrowleft\!k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}), \\ r_{10}! \circlearrowleft\!r_{20}, r_1 \circlearrowleft\!r_{10}, r_2 \circlearrowleft\!r_{20}, i \!\!>\! j,$$

$$k_1 != \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus,$$

$$i \oplus i_0, IsCpo(i_0; r_{10}), r_{10}! \oplus i, r_{10}! \oplus j, Rcpo(i_0; r_{10}), i_0 \oplus,$$

$$j \otimes j_0, IsCpo(j_0; r_{20}), i! \otimes r_{20}, j! \otimes r_{20}, Rcpo(j_0; r_{20}), j_0 \otimes r_{20}$$

$$k_1 = k_2, k_1 != \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 > r_2,$$

$$, < 1 >,$$

 $\Leftrightarrow , \&SHi \bigcirc k_1, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),$
 $r_{10}! \bigcirc r_{20}, r_1 \bigcirc r_{10}, r_2 \bigcirc r_{20}, i > j,$

$$k_1 = \varnothing, k_1 = k_2, k_1 \oplus, k_2 \oplus,$$

$$i \odot i_0, IsCpo(i_0; r_{10}), r_{10}! \odot k_2, r_{10}! \odot k_1, Rcpo(i_0; r_{10}), i_0 \odot$$

$$j \oplus j_0, IsCpo(j_0; r_{20}), k_2! \oplus r_{20}, k_1! \oplus r_{20}, Rcpo(j_0; r_{20}), j_0 \oplus,$$

$$k_1 \pm k_2, if(k_1 = \varnothing) \\ -\begin{bmatrix}, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 \!\!>\!\! r_2, \\, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 \!\!>\!\! r_2, \end{bmatrix},$$

$$\Leftrightarrow$$
 $,k_1 != \varnothing, \&SHi \circlearrowleft k_1, IsCpm(i;k_1;r_{10}), IsCpm(j;k_2;r_{20}), IsCpm(i;k_1;r_{20}), IsCpm(j;k_2;r_{10}),$
 $r_{10} !\circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j, k_1 = k_2,$

$$k_1 != \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 > r_2,$$

conclusion:

$$, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),$$

$$r_{10}! \circ r_{20}, r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_1 = k_2,$$

$$k_1 \stackrel{!}{=} \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), \Leftrightarrow$$

$$, IsCpm(i; k_1; r_{10}), IsCpm(j; k_2; r_{20}), IsCpm(i; k_1; r_{20}), IsCpm(j; k_2; r_{10}),$$

$$r_{10}! \circlearrowleft r_{20}, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20}, i > j, k_1 = k_2,$$

$$k_1 != \varnothing, Rcpm(k_1; i; r_{10}), Rcpm(k_2; j; r_{20}), r_1 > r_2,$$

32 Multiplication

32.1 Definition

$$,i\times j:r,\ \Leftrightarrow\ ,\circledcirc r,r\circledcirc r_{0},i\circledcirc i_{0},Rcpm(i_{0};j;r_{0}),i_{0}\circledcirc,r_{0}\circledcirc,$$

32.2 Swap

32.2.1 Operator

32.2.2 Recursive Function

$$,i\times j:r,R(m), \iff ,R(m),i\times j:r,$$

$$,i\times j:r,Rc(m;n), \iff ,Rc(m;n),i\times j:r,$$

32.2.3 Propositions

$$\begin{array}{l} ,i\times j:r,m=n,\;\Leftrightarrow\;,m=n,i\times j:r,\\ ,i\times j:r,m=\varnothing,\;\Leftrightarrow\;,m=\varnothing,i\times j:r,\\ ,i\times j:r,m\circlearrowleft n,\;\Leftrightarrow\;,m\circlearrowleft n,i\times j:r,\\ ,i\times j:r,m\rightharpoonup n,\;\Leftrightarrow\;,m\circlearrowleft n,i\times j:r,\\ ,i\times j:r,m\rightharpoonup n,\;\Leftrightarrow\;,m\rightharpoonup n,i\times j:r,\\ ,i\times j:r,m\vdash n,\;\Leftrightarrow\;,m\vdash n,i\times j:r,\\ ,i\times j:r,m\vdash \varnothing,\;\Leftrightarrow\;,m\vdash n,i\times j:r,\\ ,i\times j:r,m\vdash \varnothing,\;\Leftrightarrow\;,m\vdash \varnothing,i\times j:r,\\ ,i\times j:r,m\vdash \circlearrowleft n,\;\Leftrightarrow\;,m\vdash \circlearrowleft n,i\times j:r,\\ ,i\times j:r,m\vdash \hookrightarrow n,\;\Leftrightarrow\;,m\vdash \circlearrowleft n,i\times j:r,\\ ,i\times j:r,m\vdash \hookrightarrow n,\;\Leftrightarrow\;,m\vdash \hookrightarrow n,i\times j:r,\\ ,i\times j:r,m\vdash \hookrightarrow n,i\times j:r,\\ ,i\times j:r,m\vdash \hookrightarrow n,i\times j:r,\\ ,i\times j:r,m\vdash \hookrightarrow n,i\times j:r,$$

$$,i \times j:r,m! = n, \iff ,m! = n,i \times j:r,$$
 $,i \times j:r,m! > n, \iff ,m! > n,i \times j:r,$

32.2.4 Itself

$$\begin{array}{l} ,i_{1}\times j:r_{1},i_{2}\times j:r_{2},\iff,i_{2}\times j:r_{2},i_{1}\times j:r_{1},\\ ,i_{1}\times j_{1}:r_{1},i_{2}\times j_{2}:r_{2},\iff,i_{2}\times j_{2}:r_{2},i_{1}\times j_{1}:r_{1},\\ ,i_{1}\times j:r_{1},i_{2}+j:r_{2},\iff,i_{2}+j:r_{2},i_{1}\times j:r_{1},\\ ,i_{1}\times j:r_{1},i_{2}+j:r_{2},\iff,i_{2}+j:r_{2},i_{1}\times j:r_{1},\\ ,i_{1}\times j_{1}:r_{1},i_{2}+j_{2}:r_{2},\iff,i_{2}+j_{2}:r_{2},i_{1}\times j_{1}:r_{1},\\ ,i_{1}\times j:r_{1},i_{1}+j:r_{1},\iff,i_{1}+j:r_{2},i_{1}\times j:r_{1},\\ ,i_{1}\times j:r_{1},i_{1}\times j:r_{2},\iff,i_{1}+j:r_{2},i_{1}\times j:r_{1},\\ ,i_{1}\times j:r_{1},i_{1}\times j:r_{2},\iff,i_{1}\times j:r_{2},i_{1}\times j:r_{1},\\ ,i_{1}\times j:r_{1},i_{2}\times j:r_{2},i_{1}\times j:r_{2},i_{1}\times j:r_{1},\\ ,i_{1}\times j:r_{1},i_{2}\times j:r_{2},i_{1}\times j:r_{2},i_{2}\times j:r_{2},i_{2}\times j:r_{2},\\ ,i_{2}\times j:r_{2},i_{2}\times j:r_{2},i_{2}\times j:r_{2},i_{2}\times j:r_{2},i_{2}\times j:r_{2},i_{2}\times j:r_{2},\\ ,i_{2}\times j:r_{2}\times j:r_{2}\times$$

32.2.5 The same operand

Skip

32.3 General property

$$\begin{array}{l} , \iff ,i\times j:r,r @, \\ \\ \mathrm{proof:} \\ ,i\times j:r,r @, \\ \\ \Leftrightarrow , @r,i @i_0,r @r_0,Rcpm(i_0;j;r_0),i_0 @,r_0 @,r @, \\ \\ \Leftrightarrow , @r,i @i_0,r @r_0,IsCpm(i_0;j;r_0),Rcpm(i_0;j;r_0),i_0 @,r_0 @,r @, \\ \\ \Leftrightarrow , @r,i @i_0,r @r_0,IsCpm(i_0;j;r_0),Rcpm(i_0;j;r_0),i_0 @,r @,r_0 @, \\ \\ \Leftrightarrow , @r,i @i_0,r @r_0,IsCpm(i_0;j;r_0),Rcpm(i_0;j;r_0),i_0 @,r @,r_0 @, \\ \\ \end{array}$$

32 Multiplication

$$\Leftrightarrow , @r, i @i_0, r @r_0, IsCpm(i_0; j; r_0), Rcpm(i_0; j; r_0), i_0 @, r @, \&Tm(r_0),$$

$$\Leftrightarrow , @r, i @i_0, r @r_0, r @, IsCpm(i_0; j; r_0), Rcpm(i_0; j; r_0), i_0 @, \&Tm(r_0),$$

$$\Leftrightarrow , @r, i @i_0, r @r_0, r @, IsCpm(i_0; j; r_0), i_0 @, \&Tm(r_0),$$

$$\Leftrightarrow$$
 , $\bigcirc r$, $i \bigcirc i_0$, $r \bigcirc r_0$, $r \bigcirc .$ Is $Cpm(i_0; j; r_0)$, $i_0 \bigcirc .$ $r_0 \bigcirc .$

$$\Leftrightarrow , @r, i @i_0, i_0 @, r @r_0, r_0 @, r @,$$

 \Leftrightarrow ,

$$\begin{array}{ll} ,i\times j:r,\;\;\Leftrightarrow\;\;,@r,i@i_0,j@j_0,r@r_0,Rcpm(i_0;j_0;r_0),i_0@,j_0@,r_0@,\\ \\ ,i\times j:r,\otimes,\;\;\Leftrightarrow\;\;,\otimes, \end{array}$$

 $, i \times j : r_1, i \times j : r_2, \iff \sim, r_1 \pm r_2,$

$$, i \times j : r_1, i \times j : r_2,$$

$$\Leftrightarrow , \circledcirc r_1, i \circledcirc i_1, j \circledcirc j_1, r_1 \circledcirc r_{10}, Rcpm(i_1; j_1; r_{10}), i_1 \circledcirc, j_1 \circledcirc, r_{10} \circledcirc,$$

$$@r_2, i \otimes i_2, j \otimes j_2, r_2 \otimes r_{20}, Rcpm(i_2; j_2; r_{20}), i_2 \oplus, j_2 \oplus, r_{20} \oplus, \\$$

$$\Leftrightarrow, \bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, IsCpm(i_1; j_1; r_{10}), Rcpm(i_1; j_1; r_{10}), i_1 \bigcirc, j_1 \bigcirc, r_{10} \bigcirc,$$

$$@r_2, i \otimes i_2, j \otimes j_2, r_2 \otimes r_{20}, IsCpm(i_2; j_2; r_{20}), Rcpm(i_2; j_2; r_{20}), i_2 \oplus, j_2 \oplus, r_{20} \oplus, \\$$

$$\Leftrightarrow , \bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, \bigcirc r_2, i \bigcirc i_2, j \bigcirc j_2, r_2 \bigcirc r_{20},$$

$$IsCpm(i_1; j_1; r_{10}), Rcpm(i_1; j_1; r_{10}),$$

$$IsCpm(i_2; j_2; r_{20}), Rcpm(i_2; j_2; r_{20}),$$

$$i_1 \oplus, j_1 \oplus, r_{10} \oplus, i_2 \oplus, j_2 \oplus, r_{20} \oplus,$$

$$\Leftrightarrow$$
, $\bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, \bigcirc r_2, i \bigcirc i_2, j \bigcirc j_2, r_2 \bigcirc r_{20},$

$$IsCpm(i_1; j_1; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpm(i_1; j_1; r_{10}),$$

$$IsCpm(i_2; j_2; r_{20}), Rcpm(i_2; j_2; r_{20}),$$

$$i_1 \oplus, j_1 \oplus, r_{10} \oplus, i_2 \oplus, j_2 \oplus, r_{20} \oplus,$$

$$\Leftrightarrow , \bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, \bigcirc r_2, i \bigcirc i_2, j \bigcirc j_2, r_2 \bigcirc r_{20},$$

$$IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10}! \circlearrowleft r_{20},$$

$$Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}),$$

$$i_1 \oplus, j_1 \oplus, r_{10} \oplus, i_2 \oplus, j_2 \oplus, r_{20} \oplus,$$

$$\Leftrightarrow , \bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, \bigcirc r_2, i \bigcirc i_2, j \bigcirc j_2, r_2 \bigcirc r_{20},$$

$$IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10}! \circlearrowleft r_{20},$$

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$$

$$Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}),$$

$$i_1 \oplus, j_1 \oplus, r_{10} \oplus, i_2 \oplus, j_2 \oplus, r_{20} \oplus,$$

$$\Leftrightarrow$$
, $\bigcirc r_1, i \bigcirc i_1, j \bigcirc j_1, r_1 \bigcirc r_{10}, \bigcirc r_2, i \bigcirc i_2, j \bigcirc j_2, r_2 \bigcirc r_{20},$

$$IsCpm(i_1; j_1; r_{10}), IsCpm(i_2; j_2; r_{20}), r_{10}! \circ r_{20},$$

$$i_1 \circlearrowleft i_2, j_1 \circlearrowleft j_2, r_1 \circlearrowleft r_{10}, r_2 \circlearrowleft r_{20},$$

$$Rcpm(i_1; j_1; r_{10}), Rcpm(i_2; j_2; r_{20}), r_1 \pm r_2,$$

$$i_1 \oplus, j_1 \oplus, r_{10} \oplus, i_2 \oplus, j_2 \oplus, r_{20} \oplus,$$

$$\Leftrightarrow$$
 $, i \times j : r_1, i \times j : r_2, r_1 = r_2,$

$$,i_1\pm i_2,i_1\times j:r,\iff,i_1\pm i_2,i_2\times j:r,$$

proof:

$$,i_1=i_2,i_1\times j:r,$$

$$\Leftrightarrow ,i_1 \pm i_2, \bigcirc r, i_1 \bigcirc i_{10}, r \bigcirc r_0,$$

$$Rcpm(i_{10}; j; r_0), i_{10} \oplus, r_0 \oplus,$$

$$\Leftrightarrow ,i_1 \pm i_2, \bigcirc r, i_1 \bigcirc i_{10}, r \bigcirc r_0, i_2 \bigcirc i_{20}, i_{20} \bigcirc ,$$

 $IsCpm(i_{10}; j; r_0),$

$$Rcpm(i_{10}; j; r_0), i_{10} \oplus, r_0 \oplus,$$

$$\Leftrightarrow ,i_1 \pm i_2, @r, i_1 @i_{10}, r @r_0, i_2 @i_{20},$$

$$IsCpm(i_{10}; j; r_0), IsCpm(i_{20}; j; r_0), i_{10} \pm i_{20},$$

$$Rcpm(i_{10}; j; r_0), i_{10} \oplus, i_{20} \oplus, r_0 \oplus,$$

$$\Leftrightarrow ,i_1{=}i_2, @r, i_1{\otimes}i_{10}, r{\otimes}r_0, i_2{\otimes}i_{20},$$

$$IsCpm(i_{10}; j; r_0), IsCpm(i_{20}; j; r_0), i_{10} = i_{20},$$

$$Rcpm(i_{20}; j; r_0), i_{10} \oplus, i_{20} \oplus, r_0 \oplus,$$

$$\Leftrightarrow$$
, $i_1 = i_2$, $\bigcirc r$, $r \bigcirc r_0$, $i_2 \bigcirc i_{20}$,

$$IsCpm(i_{20}; j; r_0),$$

$$Rcpm(i_{20}; j; r_0), i_{20} \oplus, r_0 \oplus,$$

$$\Leftrightarrow$$
, $i_1 \pm i_2$, $i_2 \times j : r$,

$$,i \times j:r,i \oplus, \iff, \odot r,r \odot r_0,Rcpm(i;j;r_0),i \oplus,r_0 \oplus,$$
 $,i=\varnothing,i \times j:r, \iff \sim,r=\varnothing,$ $,j=\varnothing,i \times j:r, \iff \sim,r=\varnothing,$

32.4 Commutativity

$$,i\times j:r,\iff,j\times i:r,$$

proof:

 $,i\times j:r,$

 $\Leftrightarrow \ , @r, i @i_0, r @r_0, Rcpo(i_0; j; r_0), i_0 @, r_0 @, \\$

 $\Leftrightarrow , @r, i @i_0, r @r_0, j @j_0, j_0 @,$

 $IsCpm(i_0; j; r_0), Rcpm(i_0; j; r_0), i_0 \oplus, r_0 \oplus,$

 \Leftrightarrow , $\bigcirc r$, $i \bigcirc i_0$, $r \bigcirc r_0$, $j \bigcirc j_0$,

 $IsCpm(i_0; j; r_0), IsCpm(i_0; j_0; r_0), j = j_0,$

 $Rcpm(i_0; j; r_0), j_0 \oplus, i_0 \oplus, r_0 \oplus,$

 \Leftrightarrow , $\bigcirc r$, $i \bigcirc i_0$, $r \bigcirc r_0$, $j \bigcirc j_0$,

 $IsCpm(i_0; j; r_0), IsCpm(i_0; j_0; r_0), j = j_0,$

 $Rcpm(i_0; j_0; r_0), j_0 \oplus, i_0 \oplus, r_0 \oplus,$

 \Leftrightarrow , $\bigcirc r$, $i \bigcirc i_0$, $r \bigcirc r_0$, $j \bigcirc j_0$,

 $IsCpm(i_0; j_0; r_0),$

 $Rcpm(i_0; j_0; r_0), R(j_0), j_0 \oplus, i_0 \oplus, r_0 \oplus,$

32 Multiplication

$$\Leftrightarrow$$
, $\bigcirc r, i \bigcirc i_0, r \bigcirc r_0, j \bigcirc j_0,$

 $IsCpm(i_0; j_0; r_0),$

 $Rcpm(j_0; i_0; r_0), R(i_0), j_0 \oplus, i_0 \oplus, r_0 \oplus,$

$$\Leftrightarrow , @r, i @i_0, r @r_0, j @j_0,$$

 $IsCpm(i_0; j_0; r_0), IsCpm(i; j_0; r_0), i = i_0,$

 $Rcpm(j_0; i_0; r_0), j_0 \oplus, i_0 \oplus, r_0 \oplus,$

$$\Leftrightarrow , @r, i @i_0, r @r_0, j @j_0,$$

 $IsCpm(i_0; j_0; r_0), IsCpm(i; j_0; r_0), i=i_0,$

 $Rcpm(j_0; i; r_0), j_0 \oplus, i_0 \oplus, r_0 \oplus,$

$$\Leftrightarrow$$
 , $\bigcirc r$, $r \bigcirc r_0$, $j \bigcirc j_0$,

 $IsCpm(j_0; i; r_0), Rcpm(j_0; i; r_0), j_0 \oplus, r_0 \oplus,$

$$\Leftrightarrow$$
 $, j \times i : r$,

$$, i \times j : r_1, j \times i : r_2, \iff \sim, r_1 \pm r_2,$$

$$, i \times j : r_1, j \times i : r_2,$$

$$\Leftrightarrow$$
 $, i \times j : r_1, i \times j : r_2,$

$$\Leftrightarrow$$
 $, i \times j : r_1, i \times j : r_2, r_1 \pm r_2,$

$$\Leftrightarrow$$
 $, i \times j : r_1, j \times i : r_2, r_1 \pm r_2,$

32.5 Distributivity

$$, i+j:r_1,r_1\times k:r,r_1 \circledast, \Leftrightarrow, i\times k:r_1,j\times k:r_2,r_1+r_2:r,r_1 \circledast,r_2 \circledast, \\ \text{proof:} \\ , i+j:r_1,r_1\times k:r,r_1 \circledast, \\ \Leftrightarrow, \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, \\ Rcpo(i_0;r_{10}), Rcpo(j_0;r_{10}), i_0 \circledast, j_0 \circledast, r_{10} \circledast, \\ \otimes r,r^{\otimes}r_0, Rcpm(r_1;k;r_0), r_1 \circledast, r_0 \circledast, \\ \Leftrightarrow, \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, \\ IsCpo(i_0;r_{10}), Rcpo(i_0;r_{10}), IsCpo(j_0;r_{10}), Rcpo(j_0;r_{10}), \\ \otimes r,r^{\otimes}r_0, IsCpm(r_1;k;r_0), Rcpm(r_1;k;r_0), \\ i_0 \circledast, j_0 \circledast, r_{10} \circledast, r_1 \circledast, r_0 \circledast, \\ \Leftrightarrow, \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, \otimes r, r \otimes r_0, \\ IsCpo(i_0;r_{10}), Rcpo(i_0;r_{10}), IsCpo(j_0;r_{10}), Rcpo(j_0;r_{10}), \\ IsCpm(r_1;k;r_0), Rcpm(r_1;k;r_0), \\ \vdots \otimes_{s} , \otimes r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, \otimes r, r \otimes r_0, \\ IsCpo(i_0;r_{10}), r_{10} \circledast, r_{10}, r_{10} \otimes r, r \otimes r_0, \\ IsCpo(i_0;r_{10}), r_{10} \otimes r_0, Rcpo(i_0;r_{10}), IsCpo(j_0;r_{10}), r_{10} \otimes r_0, Rcpo(j_0;r_{10}), \\ IsCpm(r_1;k;r_0), Rcpm(r_1;k;r_0), Rcpo(i_0;r_{10}), IsCpo(j_0;r_{10}), r_{10} \otimes r_0, Rcpo(j_0;r_{10}), \\ IsCpm(r_1;k;r_0), Rcpm(r_1;k;r_0), Rcpo(i_0;r_{10}), IsCpo(j_0;r_{10}), r_{10} \otimes r_0, Rcpo(j_0;r_{10}), \\ IsCpm(r_1;k;r_0), Rcpm(r_1;k;r_0), Rcpm(r_1;k;r_0), \\ Rcpm(r_1;k;r_0), Rcpm(r_1;k;r_0), Rcpm(r_1;k;r_0), \\ Rcpm(r_1;k;r_0), Rcpm$$

32 Multiplication

$$i_0 \oplus, j_0 \oplus, r_{10} \oplus, r_1 \oplus, r_0 \oplus,$$

$$\Leftrightarrow , @r_1, i \otimes i_0, j \otimes j_0, r_1 \otimes r_{10}, @r, r \otimes r_0,$$

$$IsCpm(i_0; j_0; r_{10}), IsCpm(i_0; j_0; r_0), k! \circlearrowleft r_0, k! \circlearrowleft r_{10}, r_0! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},$$

$$Rcpo(i_0; r_{10}), Rcpo(j_0; r_{10}), Rcpm(r_1; k; r_0),$$

$$i_0 \oplus, j_0 \oplus, r_{10} \oplus, r_1 \oplus, r_0 \oplus,$$

$$\Leftrightarrow$$
, $\bigcirc r_1, i \bigcirc i_0, j \bigcirc j_0, r_1 \bigcirc r_{10}, \bigcirc r, r \bigcirc r_0,$

$$IsCpm(i_0; j_0; r_{10}), IsCpm(i_0; j_0; r_0), k! \circlearrowleft r_0, k! \circlearrowleft r_{10}, r_0! \circlearrowleft r_{10}, r_1 \circlearrowleft r_{10},$$

$$Rcpm(i_0; k; r_0), Rcpm(j_0; k; r_0),$$

$$i_0 \oplus, j_0 \oplus, r_{10} \oplus, r_1 \oplus, r_0 \oplus,$$

$$\Leftrightarrow ,i \otimes i_0, j \otimes j_0, \otimes r, r \otimes r_0,$$

$$IsCpm(i_0; k; r_0), Rcpm(i_0; k; r_0),$$

$$IsCpm(j_0; k; r_0), Rcpm(j_0; k; r_0),$$

$$i_0 \oplus, j_0 \oplus, r_0 \oplus,$$

$$\Leftrightarrow ,i \otimes i_0, j \otimes j_0, \odot r, r \otimes r_0,$$

$$IsCpm(i_0; k; r_0), @r_1, r_1 @r_{10}, Rcpm(i_0; k; r_{10}), Rcpo(r_1; r_0), r_1 @, r_{10} @,$$

$$IsCpm(j_0; k; r_0), @r_2, r_2 @r_{20}, Rcpm(j_0; k; r_{20}), Rcpo(r_2; r_0), r_2 @, r_{20} @,$$

$$i_0 \oplus, j_0 \oplus, r_0 \oplus,$$

$$\Leftrightarrow$$
, $i \otimes i_0$, $\otimes r_1$, $r_1 \otimes r_{10}$, $Rcpm(i_0; k; r_{10})$, $r_{10} \oplus$, $i_0 \oplus$,

$$j \otimes j_0, \otimes r_2, r_2 \otimes r_{20}, Rcpm(j_0; k; r_{20}), r_{20} \otimes j_0 \otimes j_0 \otimes j_0$$

$$\bigcirc r, r \bigcirc r_0, Rcpo(r_1; r_0), Rcpo(r_2; r_0), r_2 \bigcirc, r_1 \bigcirc, r_0 \bigcirc,$$

$$\Leftrightarrow$$
 , $i \times k : r_1, j \times k : r_2,$

$$\bigcirc r, r \bigcirc r_0, Rcpo(r_1; r_0), Rcpo(r_2; r_0), r_2 \bigcirc, r_1 \bigcirc, r_0 \bigcirc,$$

$$\Leftrightarrow$$
 $, i \times k : r_1, j \times k : r_2, r_1 + r_2 : r, r_1 \oplus, r_2 \oplus,$

$$,i+j:r_3,r_3\times k:r_1,r_3\oplus,$$

$$i \times k : r_4, j \times k : r_5, r_4 + r_5 : r_2, r_4 \oplus, r_5 \oplus, \iff \sim, r_1 \pm r_2,$$

$$, i + j : r_3, r_3 \times k : r_1, r_3 \oplus,$$

$$i \times k : r_4, j \times k : r_5, r_4 + r_5 : r_2, r_4 \oplus, r_5 \oplus,$$

$$\Leftrightarrow$$
, $i \times k : r_6, j \times k : r_7, r_6 + r_7 : r_1, r_6 \oplus, r_7 \oplus,$

$$i \times k : r_4, j \times k : r_5, r_4 + r_5 : r_2, r_4 \oplus, r_5 \oplus,$$

$$\Leftrightarrow$$
, $i \times k : r_6, i \times k : r_4, j \times k : r_7, j \times k : r_5,$

$$r_6 + r_7 : r_1, r_4 + r_5 : r_2, r_6 \oplus, r_7 \oplus, r_4 \oplus, r_5 \oplus,$$

$$\Leftrightarrow$$
 $, i \times k : r_6, i \times k : r_4, r_6 \pm r_4, j \times k : r_7, j \times k : r_5, r_7 \pm r_5,$

$$r_6 + r_7 : r_1, r_4 + r_5 : r_2, r_6 \oplus, r_7 \oplus, r_4 \oplus, r_5 \oplus,$$

$$\Leftrightarrow , i \times k : r_6, i \times k : r_4, j \times k : r_7, j \times k : r_5, r_6 \pm r_4, r_7 \pm r_5,$$

$$r_6 + r_7 : r_1, r_4 + r_5 : r_2, r_6 @, r_7 @, r_4 @, r_5 @,$$

$$\Leftrightarrow$$
 $, i \times k : r_6, i \times k : r_4, j \times k : r_7, j \times k : r_5, r_6 = r_4, r_7 = r_5,$

$$r_4 + r_5 : r_1, r_4 + r_5 : r_2, r_6 \oplus, r_7 \oplus, r_4 \oplus, r_5 \oplus,$$

$$\Leftrightarrow , i \times k : r_{6}, i \times k : r_{4}, j \times k : r_{7}, j \times k : r_{5}, r_{6} = r_{4}, r_{7} = r_{5},$$

$$r_{4} + r_{5} : r_{1}, r_{4} + r_{5} : r_{2}, r_{1} = r_{2}, r_{6} \oplus, r_{7} \oplus, r_{4} \oplus, r_{5} \oplus,$$

$$\Leftrightarrow , i + j : r_{3}, r_{3} \times k : r_{1}, r_{3} \oplus,$$

$$i \times k : r_{4}, j \times k : r_{5}, r_{4} + r_{5} : r_{2}, r_{4} \oplus, r_{5} \oplus, r_{1} = r_{2},$$

32.6 Associativity

$$,j\times i:r_{1},r_{1}\times k:r,r_{1}\oplus,\ \Leftrightarrow\ ,j\times k:r_{1},r_{1}\times i:r,r_{1}\oplus,$$
 proof:
$$,j\times i:r_{1},r_{1}\times k:r,r_{1}\oplus,$$

$$\Leftrightarrow\ ,\odot r_{1},r_{1}\odot r_{10},j\odot j_{0},Rcpm(j_{0};i;r_{10}),j_{0}\oplus,r_{10}\oplus,$$

$$\odot r,r\odot r_{0},Rcpm(r_{1};k;r_{0}),r_{1}\oplus,r_{0}\oplus,$$

$$\Leftrightarrow\ ,\odot r_{1},r_{1}\odot r_{10},j\odot j_{0},$$

$$IsCpm(j_{0};i;r_{10}),Rcpm(j_{0};i;r_{10}),j_{0}\oplus,r_{10}\oplus,$$

$$\odot r,r\odot r_{0},IsCpm(r_{1};k;r_{0}),Rcpm(r_{1};k;r_{0}),r_{1}\oplus,r_{0}\oplus,$$

$$\Leftrightarrow\ ,\odot r_{1},r_{1}\odot r_{10},j\odot j_{0},\odot r,r\odot r_{0},$$

$$IsCpm(j_{0};i;r_{10}),Rcpm(j_{0};i;r_{10}),$$

$$IsCpm(r_{1};k;r_{0}),Rcpm(r_{1};k;r_{0}),j_{0}\oplus,r_{10}\oplus,r_{1}\oplus,r_{0}\oplus,$$

$$\Leftrightarrow\ ,\odot r_{1},r_{1}\odot r_{10},j\odot j_{0},\odot r,r\odot r_{0},$$

$$IsCpm(r_{1};k;r_{0}),Rcpm(r_{1};k;r_{0}),j_{0}\oplus,r_{10}\oplus,r_{1}\oplus,r_{0}\oplus,$$

$$\Leftrightarrow\ ,\odot r_{1},r_{1}\odot r_{10},j\odot j_{0},\odot r,r\odot r_{0},$$

 $IsCpm(j_0; i; r_{10}), r_0! \circ r_{10}, Rcpm(j_0; i; r_{10}),$

 $IsCpm(r_1; k; r_0), Rcpm(r_1; k; r_0), j_0 \oplus, r_{10} \oplus, r_1 \oplus, r_0 \oplus,$

$$\Leftrightarrow , @r_1, r_1 \otimes r_{10}, j \otimes j_0, @r, r \otimes r_0,$$

 $IsCpm(j_0; i; r_{10}), IsCpm(j_0; i; r_0), k! \circ r_0, k! \circ r_{10}, r_0! \circ r_{10},$

 $Rcpm(j_0; i; r_{10}), Rcpm(r_1; k; r_0), j_0 \oplus, r_{10} \oplus, r_1 \oplus, r_0 \oplus,$

$$\Leftrightarrow , @r_1, r_1 @r_{10}, j @j_0, @r, r @r_0,$$

 $IsCpm(j_0; i; r_{10}), IsCpm(j_0; i; r_0), k! \circlearrowleft r_0, k! \circlearrowleft r_{10}, r_0! \circlearrowleft r_{10},$

 $Rcpm(j_0; k; r_{10}), Rcpm(r_1; i; r_0), j_0 \oplus, r_{10} \oplus, r_1 \oplus, r_0 \oplus,$

$$\Leftrightarrow$$
 $, j \times k : r_1, r_1 \times i : r, r_1 \oplus,$

$$, j \times i : r_3, r_3 \times k : r_1, r_3 \oplus,$$

$$, j \times k : r_4, r_4 \times i : r_2, r_4 \oplus, \iff \sim, r_1 \pm r_2,$$

$$, j \times i : r_3, r_3 \times k : r_1, r_3 \oplus,$$

$$j \times k : r_4, r_4 \times i : r_2, r_4 \oplus$$
,

$$\Leftrightarrow$$
 $, j \times i : r_3, r_3 \times k : r_1, r_3 \oplus,$

$$j \times i : r_4, r_4 \times k : r_2, r_4 \oplus,$$

$$\Leftrightarrow$$
 $, j \times i : r_3, j \times i : r_4,$

$$r_3 \times k : r_1, r_4 \times k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow$$
 $, j \times i : r_3, j \times i : r_4, r_3 = r_4,$

$$r_3 \times k : r_1, r_4 \times k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow$$
 $, j \times i : r_3, j \times i : r_4, r_3 \pm r_4,$

$$r_4 \times k : r_1, r_4 \times k : r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow$$
 $, j \times i : r_3, j \times i : r_4, r_3 \pm r_4,$

$$r_4 \times k : r_1, r_4 \times k : r_2, r_1 = r_2, r_3 \oplus, r_4 \oplus,$$

$$\Leftrightarrow$$
 $, j \times i : r_3, r_3 \times k : r_1, r_3 \oplus,$

$$j \times k : r_4, r_4 \times i : r_2, r_4 \oplus, r_1 \pm r_2,$$

32.7 Monotonicity

$$, i > j, k_1 = k_2, k_1 != \emptyset, i \times k_1 : r_1, j \times k_2 : r_2, \Leftrightarrow \sim, r_1 > r_2,$$

$$, i > j, k_1 = k_2, k_1 != \varnothing, i \times k_1 : r_1, j \times k_2 : r_2,$$

$$\iff$$
, $i > j$, $k_1 = k_2$, $k_1 != \emptyset$, $k_1 \times i : r_1, k_2 \times j : r_2$,

$$\Leftrightarrow$$
, $i > j$, $k_1 = k_2$, $k_1 != \emptyset$,

$$\bigcirc r_1, r_1 \bigcirc r_{10}, k \bigcirc k_{10}, Rcpm(k_{10}; i; r_{10}), k_{10} \bigcirc r_{10} \bigcirc r_{10}$$

$$@r_2, r_2 \otimes r_{20}, k \otimes k_{20}, Rcpm(k_{20}; j; r_{20}), k_{20} \oplus, r_{20} \oplus, \\$$

$$\Leftrightarrow$$
, $i > j$, $k_1 = k_2$, $k_1 != \varnothing$, $\bigcirc r_1$, $r_1 \bigcirc r_{10}$, $k \bigcirc k_{10}$,

$$IsCpm(k_{10}; i; r_{10}), Rcpm(k_{10}; i; r_{10}), k_{10} \oplus, r_{10} \oplus,$$

$$\bigcirc r_2, r_2 \bigcirc r_{20}, k \bigcirc k_{20}, IsCpm(k_{20}; j; r_{20}), Rcpm(k_{20}; j; r_{20}), k_{20} \bigcirc r_{20} \bigcirc r_{20}$$

 $\Leftrightarrow , i > j, k_1 = k_2, k_1 != \varnothing, \bigcirc r_1, r_1 \bigcirc r_{10}, k \bigcirc k_{10}, \bigcirc r_2, r_2 \bigcirc r_{20}, k \bigcirc k_{20},$

 $IsCpm(k_{10}; i; r_{10}), Rcpm(k_{10}; i; r_{10}),$

 $IsCpm(k_{20}; j; r_{20}), Rcpm(k_{20}; j; r_{20}), k_{10} \oplus, r_{10} \oplus, k_{20} \oplus, r_{20} \oplus,$

 $\Leftrightarrow, i > j, k_1 \pm k_2, k_1 != \varnothing, \bigcirc r_1, r_1 \bigcirc r_{10}, k \bigcirc k_{10}, \bigcirc r_2, r_2 \bigcirc r_{20}, k \bigcirc k_{20},$

 $IsCpm(k_{10}; i; r_{10}), r_{10}! \circlearrowleft r_{20}, Rcpm(k_{10}; i; r_{10}),$

 $IsCpm(k_{20}; j; r_{20}), Rcpm(k_{20}; j; r_{20}), k_{10} \oplus, r_{10} \oplus, k_{20} \oplus, r_{20} \oplus,$

 \Leftrightarrow , $\bigcirc r_1, r_1 \bigcirc r_{10}, k \bigcirc k_{10}, \bigcirc r_2, r_2 \bigcirc r_{20}, k \bigcirc k_{20},$

 $IsCpm(k_{10}; i; r_{10}), IsCpm(k_{10}; i; r_{20}), IsCpm(k_{20}; j; r_{20}), IsCpm(k_{20}; j; r_{10}), r_{10}! \circ r_{20},$

 $r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_{10} = k_{20}, k_{10} != \varnothing,$

 $Rcpm(k_{10}; i; r_{10}), Rcpm(k_{20}; j; r_{20}), k_{10} \oplus, r_{10} \oplus, k_{20} \oplus, r_{20} \oplus,$

 \Leftrightarrow , $\bigcirc r_1, r_1 \bigcirc r_{10}, k \bigcirc k_{10}, \bigcirc r_2, r_2 \bigcirc r_{20}, k \bigcirc k_{20},$

 $IsCpm(k_{10}; i; r_{10}), IsCpm(k_{10}; i; r_{20}), IsCpm(k_{20}; j; r_{20}), IsCpm(k_{20}; j; r_{10}), r_{10}! \circ r_{20},$

 $r_1 \circ r_{10}, r_2 \circ r_{20}, i > j, k_{10} = k_{20}, k_{10} != \varnothing,$

 $Rcpm(k_{10}; i; r_{10}), Rcpm(k_{20}; j; r_{20}), r_1 > r_2, k_{10} \oplus, r_{10} \oplus, k_{20} \oplus, r_{20} \oplus, r_{$

 \Leftrightarrow , i>j, $k_1=k_2$, $k_1!=\emptyset$, $i\times k_1:r_1$, $j\times k_2:r_2$, $r_1>r_2$,

$$, i > j, k! = \emptyset, i \times k : r_1, j \times k : r_2, \Leftrightarrow \sim, r_1 > r_2,$$

proof:

$$, i > j, k! = \varnothing, i \times k : r_1, j \times k : r_2,$$

$$\Leftrightarrow$$
, $i > j$, $k! = \emptyset$, $k \otimes k_1$, $k_1 \otimes i \times k : r_1$, $j \times k : r_2$,

$$\Leftrightarrow$$
, $k \otimes k_1$, $i > j$, $k! = \emptyset$, $k = k_1$, $i \times k : r_1$, $j \times k : r_2$, $k_1 \otimes k_1$

$$\Leftrightarrow$$
, $k \odot k_1$, $i > j$, $k! = \varnothing$, $k = k_1$, $i \times k_1 : r_1$, $j \times k : r_2$, $k_1 \oplus$,

$$\Leftrightarrow$$
, $k \odot k_1$, $i > j$, $k! = \varnothing$, $k = k_1$, $i \times k_1 : r_1$, $j \times k : r_2$, $r_1 > r_2$, $k_1 \odot$,

$$\Leftrightarrow$$
, $i > j, k! = \emptyset, i \times k : r_1, j \times k : r_2, r_1 > r_2,$

$$, i > j, k_1 > k_2, i \times k_1 : r_1, j \times k_2 : r_2, \iff \sim, r_1 > r_2,$$

$$, i > j, k_1 > k_2, i \times k_1 : r_1, j \times k_2 : r_2,$$

$$\Leftrightarrow$$
 $i > j, k_1 > k_2, i \times k_1 : r_1, j \times k_1 : r_3, r_3 \oplus, j \times k_2 : r_2,$

$$\Leftrightarrow$$
 , $i>j$, $k_1>k_2$, $k_1!=\emptyset$, $i\times k_1:r_1$, $j\times k_1:r_3$, $j\times k_2:r_2$, $r_3\oplus$,

$$\Leftrightarrow$$
 $, i>j, k_1>k_2, k_1!=\emptyset, i\times k_1: r_1, j\times k_1: r_3, r_1>r_3, j\times k_2: r_2, r_3\oplus,$

$$\iff$$
 $, i \times k_1 : r_1, i > j, if(j = \emptyset) - \begin{bmatrix} , \\ , \end{bmatrix} - , k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, r_3 \oplus ,$

$$\Leftrightarrow$$
 $, i \times k_1 : r_1, i \triangleright j,$

$$if(j=\varnothing)$$
 $\begin{bmatrix} ,j=\varnothing,k_1>k_2,j\times k_1:r_3,j\times k_2:r_2,r_1>r_3,\\ ,k_1>k_2,j\times k_1:r_3,j\times k_2:r_2,r_1>r_3, \end{bmatrix}$, r_3 ,

$$\Leftrightarrow$$
 $, i \times k_1 : r_1, i \triangleright j,$

$$if(j=\varnothing) = \begin{bmatrix} ,k_1 > k_2, j \times k_1 : r_3, j=\varnothing, j \times k_2 : r_2, r_2 = \varnothing, r_1 > r_3, r_1 !=\varnothing, r_1 > r_2, \\ ,k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, \end{bmatrix}, r_3 \oplus, r_3 = \emptyset, r_3 = \emptyset,$$

$$\Leftrightarrow$$
 $, i \times k_1 : r_1, i \triangleright j,$

$$if(j=\varnothing) = \begin{bmatrix} , k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, r_1 > r_2, \\ , k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, \end{bmatrix}, r_3 \oplus,$$

$$\Leftrightarrow$$
 $, i \times k_1 : r_1, i > j,$

$$if(j = \varnothing) - \begin{bmatrix} , k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, r_1 > r_2, \\ , j != \varnothing, k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, \end{bmatrix} -, r_3 \oplus,$$

$$\Leftrightarrow$$
 $, i \times k_1 : r_1, i \triangleright j,$

$$if(j=\varnothing) - \begin{bmatrix} ,k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, r_1 > r_2, \\ , j != \varnothing, k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_3 > r_2, r_1 > r_3, r_1 > r_2, \end{bmatrix}, r_3 \oplus , r_3 \oplus ,$$

$$\Leftrightarrow$$
 $, i \times k_1 : r_1, i \triangleright j,$

$$if(j = \varnothing) - \begin{bmatrix} , k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, r_1 > r_2, \\ , k_1 > k_2, j \times k_1 : r_3, j \times k_2 : r_2, r_1 > r_3, r_1 > r_2, \end{bmatrix}, r_3 \oplus,$$

$$\Leftrightarrow$$
, $i > j, k_1 > k_2, i \times k_1 : r_1, j \times k_2 : r_2, r_1 > r_2,$

33 Paradox

33.1 Theorems of contradiction

 $, \Leftrightarrow , \otimes, \Rightarrow , @c_1, \Leftrightarrow , @c_2,$

proof:

$$, \Leftrightarrow , \otimes, \Rightarrow$$

 $, @c_1,$

$$\Leftrightarrow$$
 , \otimes , $\odot c_1$,

$$\iff, \otimes,$$

$$\Leftrightarrow$$
 , \otimes , $\odot c_2$,

$$\Leftrightarrow$$
, © c_2 ,

$$,i=j, \iff ,i!=j, \implies , \iff ,\otimes,$$

proof:

$$,i=j, \iff ,i!=j, \implies$$

,

$$\Leftrightarrow , if (i = j) - \begin{bmatrix} , \\ , \end{bmatrix} - ,$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , i=j, \\ \\ , i!=j, \end{bmatrix} -,$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , i=j, i=j, \\ , i!=j, i!=j, \end{bmatrix} -,$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , i=j, i !=j, \\ , i=j, i !=j, \end{bmatrix},$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , \otimes, \\ , \otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(i=j) - \begin{bmatrix} , -1, & \\ , \otimes, \end{bmatrix},$$

 \Leftrightarrow $, \otimes,$

$$,i=\varnothing, \Leftrightarrow ,i!=\varnothing, \Rightarrow , \Leftrightarrow ,\otimes,$$

$$,i\circlearrowleft j, \Leftrightarrow ,i!\circlearrowleft j, \Rightarrow , \Leftrightarrow ,\otimes,$$

$$,i\circlearrowleft j, \Leftrightarrow ,i!\circlearrowleft j, \Rightarrow , \Leftrightarrow ,\otimes,$$

$$,i\to j, \Leftrightarrow ,i!\to j, \Rightarrow , \Leftrightarrow ,\otimes,$$

$$,i\oplus j, \Leftrightarrow ,i!\oplus j, \Rightarrow , \Leftrightarrow ,\otimes,$$

$$,i=j, \Leftrightarrow ,i!=j, \Rightarrow , \Leftrightarrow ,\otimes,$$

$$,i>j, \Leftrightarrow ,i!\to j, \Rightarrow , \Leftrightarrow ,\otimes,$$

33.2 Definition of paradox

paradox: "This statement is false."

$$, if(Pdx) = \begin{bmatrix} , & & \\ , & & \\ , & & \end{bmatrix}, & & \\ , if(Pdx) = \begin{bmatrix} , & \\ , & \\ , & \end{bmatrix}, & \\ , if(n = \varnothing) = \begin{bmatrix} , & n \textcircled{D}, \\ , & n \textcircled{D}, \\ , & \\ , & \\ , & \end{bmatrix}, \\ , Pdx, & \Leftrightarrow & \\ , if(Pdx) = \begin{bmatrix} , & \\ , & \\ , & \\ \end{bmatrix}, \\ , & \\ , !Pdx, & \Leftrightarrow & \\ , if(Pdx) = \begin{bmatrix} , & \\ , & \\ , & \\ \end{bmatrix}, \\ , & \\ , & \end{bmatrix},$$

33.3 Theorems of paradox propositions

$$Pdx, \Leftrightarrow Pdx,$$

proof: Pdx,

$$\Leftrightarrow$$
 , $if(Pdx) = \begin{bmatrix} , \\ , \otimes , \end{bmatrix}$,

$$\Leftrightarrow , if(Pdx) = \begin{bmatrix} , @m, m @n, m @, \\ , @n, \end{bmatrix}, if(n = \varnothing) = \begin{bmatrix} , n @, \\ , n @, \otimes, \end{bmatrix},$$

$$\Leftrightarrow , if(Pdx) = \begin{bmatrix} , \circledcirc m, m \circledcirc n, m \circlearrowleft, \\ , & \end{bmatrix}, n = \varnothing, n \circlearrowleft,$$

$$\Leftrightarrow , if(Pdx) = \begin{bmatrix} , \circledcirc m, m \circledcirc n, n = \varnothing, n \circledS, m \circledS, \\ , \circledcirc n, n = \varnothing, n \circledS, \end{bmatrix},$$

$$\Leftrightarrow , if(Pdx) = \begin{bmatrix}, @m, m@n, n! = \varnothing, n = \varnothing, n@, m@, \\, @n, n@, \end{bmatrix},$$

$$\Leftrightarrow , if(Pdx) - \begin{bmatrix} , \circledcirc m, m \circledcirc n, \otimes, n \circledcirc, m \circledcirc, \\ , \circledcirc n, n \circledcirc, \end{bmatrix} -,$$

$$\Leftrightarrow , if(Pdx) = \begin{bmatrix} , @m, m @n, ⊗, \\ , \end{bmatrix},$$

$$\Leftrightarrow , if(Pdx) = \begin{bmatrix} , ⊗, \\ , \end{bmatrix},$$

$$\Leftrightarrow , !Pdx,$$

33.4 Proof of paradox

Because the recursive function if(pdx) is infinite, rule

$$, \iff , if(Pdx)\text{-} \boxed{,} \ \ ,$$

does not exist. So we can't get rule of contradiction:

$$, \;\; \Leftrightarrow \;\; , \otimes ,$$

The Way of Machine Thinking First Edition ISBN:979-8-3507-1351-0