Neural Networks & Deep Learning: ICP5 Name: Lalitha Sowjanya Kamuju ID: 700747213

1. Implement Naïve Bayes method using scikit-learn library Use dataset available with name glass Use train_test_split to create training and testing part Evaluate the model on test part using score and classification report(y true, y pred)

```
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import classification_report
# Load dataset
{\tt glass\_data = pd.read\_csv[]"Desktop:\\\Neural networks\\\NNDL\_Code and Data (2)\\\NNDL\_Code and Data\\\glass\_csv"[]}
X = glass_data.drop('Type', axis=1)
y = glass_data['Type']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
nb_classifier = GaussianNB()
nb_classifier.fit(X_train, y_train)
# Predict on the testing set
y_pred = nb_classifier.predict(X_test)
# Evaluate the model
accuracy = nb_classifier.score(X_test, y_test)
print("Accuracy: {:.2f}%".format(accuracy*100))
print(classification_report(y_test, y_pred))
```

Accuracy: 30.	77%					
	precision	recall	f1-score	support		
1	0.00	0.00	0.00	19		
2	0.40	0.17	0.24	23		
3	0.08	0.75	0.15	4		
5	0.33	0.17	0.22	6		
6	0.75	1.00	0.86	3		
7	0.90	0.90	0.90	10		
26611264			0.31	65		
accuracy	0 41	0 50				
macro avg	0.41	0.50	0.40	65		
weighted avg	0.35	0.31	0.29	65		

2. Implement linear SVM method using scikit library
Use the same dataset above
Use train_test_split to create training and testing part
Evaluate the model on test part using score and
classification_report(y_true, y_pred)
Which algorithm you got better accuracy? Can you justify why?

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
glass_data = pd.read_csv("Desktop:\\Neural networks\\NNDL_Code and Data (2)\\NNDL_Code and Data\\glass.csv")
X = glass_data.iloc[:, :-1].values
y = glass_data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
svm = SVC(kernel='linear')
svm.fit(X_train, y_train)
svm_y_pred = svm.predict(X_test)
svm_acc = accuracy_score(y_test, svm_y_pred,)
print("SVM Accuracy: {:.2f}%".format(svm_acc * 100))
print("\nSVM Classification Report:")
print(classification_report(y_test, svm_y_pred, zero_division=1))
```

		74.42%				
SVM	Classific	ation Report:				
		precision	recall	f1-score	support	
	1	0.69	0.82	0.75	11	
	2	0.67	0.71	0.69	14	
	3	1.00	0.00	0.00	3	
	5	0.80	1.00	0.89	4	
	6	1.00	0.67	0.80	3	
	7	0.88	0.88	0.88	8	
	accuracy			0.74	43	
	acro avg	0.84	0.68		43	
	hted avg	0.77	0.74		43	

GitHub Link: https://github.com/sowjanya-kamuju/NeuralNetworksAssignment5

Video Link: https://vimeo.com/912459337/a5ef73e6eb?share=copy