Примеры основных дискретных распределений и их числовые характеристики

- распределение Бернулли: $\xi \in \mathcal{B}(p)$; $M[\xi] = p, \ D[\xi] = pq$; ξ число успехов в одном испытании.
- биномиальное распределение:

$$\xi \in \mathcal{B}i(n;p); M[\xi] = np, D[\xi] = npq;$$

 ξ – число успехов в серии n независимых испытаний.

• распределение Пуассона: $\xi \in \Pi(\lambda)$; $M[\xi] = D[\xi] = \lambda$; ξ — число успехов в серии n независимых испытаний при

$$n \to \infty$$
.

геометрическое распределение:

$$\xi \in \mathcal{G}(p); \quad M[\xi] = 1/p, \ D[\xi] = q/p^2;$$

 ξ — число независимых испытаний до первого успеха.

• гипергеометрическое распределение:

$$\xi \in \mathcal{HG}(M; N; n); \quad M[\xi] = \frac{nM}{N},$$

модели задачи.

дачи).

Замечание. В приведенных примерах используются обозначения, ранее введенные при описании схемы независимых испытаний Бернулли и урновой

 ξ – число черных шаров среди m наудачу вынутых (урновая модель за-

 $D[\xi] = \frac{nM}{N-1} \cdot \frac{(N-M)(N-n)}{N^2};$

Распределение Бернулли ${\bf B}_p$. Случайная величина ξ имеет распределение Бернулли с параметром $p \in (0, 1)$, если ξ принимает значение 1 с вероятностью p и значение 0 с вероятностью q = 1 - p. Случайная величина ξ с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью успеха p: либо ни одного успеха, либо один успех.

Таблица распределения случайной величины $\xi \sim B_p$ имеет вид:

P q p

ξ 0	ξ
P a	D

Биномиальное распределение $B_{n,p}$. Случайная величина ξ имеет биномиальное распределение с параметрами $n \in \mathbb{N}$ и $p \in (0, 1)$, если ξ принимает значения $k = 0, 1, \ldots, n$ с вероятностями $P(\xi = k) = C_n^k p^k q^{n-k}$. Случайная величина с таким распределением равна *числу успехов* в n *испытаниях* схемы Бернулли с вероятностью успеха p. Таблица распределения случайной величины $\xi \sim B_{n,p}$ имеет вид:

ξ	0	1	 k	 n
Р	q^n	npq^{n-1}	 $C_n^k p^k q^{n-k}$	 p^n

Распределение Бернулли B_p совпадает с распределением $B_{1,p}$.

Геометрическое распределение G_p . Случайная величина ξ имеет геометрическое распределение с параметром $p \in (0, 1)$, если ξ принимает значения $k = 1, 2, 3, \ldots$ с вероятностями $P(\xi = k) = pq^{k-1}$. Случайная величина с таким распределением равна *номеру первого успешного испытания* в схеме Бернулли. Таблица распределения случайной величины $\xi \sim G_p$ имеет вид:

ξ	1	2	 k	
Р	p	pq	 pq^{k-1}	

Распределение Пуассона Π_{λ} . Случайная величина ξ имеет распределение Пуассона с параметром $\lambda > 0$, если ξ принимает целые неотрицательные значения $k = 0, 1, 2, \ldots$ с вероятностями $P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$. Таблица распределения случайной величины $\xi \sim \Pi_{\lambda}$ имеет вид:

paenpoderenim erij rannen berin innbi 5 11% inneer biid.								
						k		
	Р	$e^{-\lambda}$	$\lambda e^{-\lambda}$	$\frac{\lambda^2}{2}e^{-\lambda}$		$\frac{\lambda^k}{k!} e^{-\lambda}$		

Распределение Пуассона возникло в теореме Пуассона (стр. 46) как предельное распределение для числа успехов в n испытаниях схемы Бернулли, когда число испытаний n увеличивается, а вероятность успеха $p \sim \frac{\lambda}{n}$ уменьшается обратно пропорционально n. Поэтому распределение Пуассона называют иногда pacnpedenenuem числа pedkux событий.

Гипергеометрическое распределение. Пусть случайная величина ξ равна числу белых шаров среди n шаров, выбранных наудачу и без возвращения

из урны с K белыми и N-K чёрными шарами. Распределение этой случай-

из урны с
$$K$$
 белыми и $N-K$ чёрными шарами. Распределение этой случайной величины называется $\mathit{гипергеометрическим}$ распределением. Случайная величина ξ принимает целые значения $k=0,\,1,\,\ldots,\,n$ с вероятностями

 $P(\xi = k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n}.$