باسمه تعالى

تکلیف سری اول درس شبکه های کامپیوتری۲ سارا برادران (شماره دانشجویی: ۹۶۲۴۱۹۳)

P1. Looking at Figure 5.3, enumerate the paths from y to u that do not contain any loops.

1) yxu

- 5) ywu
- 9) yzwu
- 13) ywvxu

2) yxvu

- 6) ywxu
- 10) yzwxu
- 14) yzwyxu

3) yxwu

- 7) ywvu
- 11) yzwvu

4) yxwvu

- 8) ywxvu
- 12) yzwxvu

P3. Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from *x* to all network nodes. Show how the algorithm works by computing a table similar to Table 5.1.

step	N'	D(z) P(z)	D(y) P(y)	D(v) P(v)	D(w) P(w)	D(t) P(t)	D(u) P(u)
0	X	8, x	6, x	3, x	6, x	8	∞
1	XV	8, x	<mark>6, x</mark>		6, x	7, v	6, v
2	xvy	8, x			<mark>6, x</mark>	7, v	6, v
3	xvyw	8, x				7, v	<mark>6, v</mark>
4	xvywu	8, x				<mark>7, v</mark>	
5	xvywut	8, x					
6	xvywutz						

destination	link
Z	(x, z)
У	(x, y)
u	(x, v)
t	(x, v)
V	(x, v)
W	(x, w)

Routing forwarding table in x

P5. Consider the network shown below, and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algorithm and show the distance table entries at node z.

Node U table	U	Y	X	Z	V
U	0	2	∞	∞	1
Y	∞	8	∞	8	8
X	8	8	8	8	8
Z	8	8	8	8	8
V	∞	∞	8	∞	8

Node V table	U	Y	X	Z	V
U	8	8	8	8	8
Y	8	8	8	8	8
X	∞	∞	∞	∞	∞
Z	∞	∞	∞	∞	∞
V	1	∞	3	6	0

Node X table	U	Y	X	Z	V
U	8	8	8	8	8
Y	8	8	8	8	8
X	8	3	0	2	3
Z	∞	8	8	8	8
V	8	8	8	8	8

Node Y table	U	Y	X	Z	V
U	8	8	8	8	8
Y	2	0	3	∞	∞
X	∞	∞	∞	∞	∞
Z	∞	∞	∞	∞	∞
V	∞	∞	∞	∞	8

Node Z table	U	Y	X	Z	V
U	8	8	8	8	8
Y	8	8	8	8	8
X	8	8	8	8	8
Z	∞	8	2	0	6
V	8	8	8	8	8

Node Z table	U	Y	X	Z	V
U	0	2	8	8	1
Y	2	0	3	∞	∞
X	∞	3	0	2	3
Z	7	5	2	0	5
V	1	8	3	6	0

Node Z table	U	Y	X	Z	V
U	0	2	4	6	1
Y	2	0	3	5	3
X	4	3	0	2	3
Z	6	5	2	0	5
V	1	3	3	5	0

P7. Consider the network fragment shown below. x has only two attached neighbors, w and y. w has a minimum-cost path to destination u (not shown) of 5, and y has a minimum-cost path to u of 6. The complete paths from w and y to u (and between w and y) are not shown. All link costs in the network have strictly positive integer values.

a. Give x's distance vector for destinations w, y, and u.

Node W table	W	Y	X	U
W	0	2	2	5
Y				
X				
U				

Node Y table	W	Y	X	U
W				
Y	2	0	5	6
X				
U				

Node X table	W	Y	X	U
W				
Y				
X	2	5	0	∞
U				

Node X table	W	Y	X	U
W	0	2	2	5
Y	2	0	4	6
X	2	4	0	7
U				

$$Dx(W) = 2 - Dx(Y) = 4 - Dx(U) = 7$$