MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

6^a Lista de Exercícios

Para entregar: exercícios 2, 7, 8, 9, 11.

- 1-) Exercícios dos capítulos 10 e 11 do Elonzinho.
- **2-)** Seja $f:[a,b]\to\mathbb{R}$ uma função integrável. As seguintes afirmações são equivalentes:
 - (i) $\int_{a}^{b} |f| = 0;$
 - (ii) Se f é contínua em $c \in [a, b]$, então f(c) = 0;
 - (iii) $X \doteq \{x \in [a, b] \mid f(x) \neq 0\}$ tem interior vazio.
- 3-) Seja $f:[a,b] \to \mathbb{R}$ contínua. Se f não é identicamente nula, então $\int_a^b |f| > 0$.
- **4-)** Seja $f:[a,b]\to\mathbb{R}$ limitada. Então:
 - (i) $\int_a^b f = \sup\{\int_a^b \phi \mid \phi: [a,b] \to \mathbb{R}$ função escada , $\phi \leqslant f\};$
 - (ii) $\overline{\int_a^b} f = \inf \{ \int_a^b \phi \mid \phi : [a, b] \to \mathbb{R} \text{ função escada }, \phi \geqslant f \}.$

OBSERVAÇÃO: Disto decorre que f é Riemann-integrável se, e somente se, $\sup\{\int_a^b\phi\mid\phi:[a,b]\to\mathbb{R}\}$ função escada $\phi\in\{f\}$ i.e. poderíamos ter tomado esta última igualdade como definição de função fun

- 5-) Todo conjunto de medida nula tem interior vazio.
- **6-)** São equivalentes as seguintes afirmações, dado $X \subset \mathbb{R}$:
 - (i) X tem medida nula:
 - (ii) para todo $\epsilon > 0$, existe uma família $(I_j)_{j \in \mathbb{N}}$ de intervalos (não necessariamente abertos) tal que $X \subset \bigcup_{j \in \mathbb{N}} I_j$ e $\sum_{j=1}^{\infty} |I_j| < \epsilon$.

Noutras palavras, na definição de *conjunto de medida nula* poderíamos ter usado intervalos quaisquer, não necessariamente abertos.

7-) Dadas $f,g:[a,b]\to\mathbb{R}$ Riemann-integráveis, seja $X\doteq\{x\in[a,b]\mid f(x)\neq g(x)\}$. Se X tem medida nula, então $\int_a^b f=\int_a^b g$.

- 8-) Se $f:[a,b]\to\mathbb{R}$ é lipschitziana (em particular, se f é de classe C^1) e $X\subset[a,b]$ tem medida nula, então f(X) tem medida nula.
- 9-) Seja $g:[a,b]\to\mathbb{R}$ integrável e não-negativa. Se $\int_a^b g=0$, então, para toda $f:[a,b]\to\mathbb{R}$ integrável, tem-se $\int_a^b (f\cdot g)=0$.
- $\textbf{10-)} \quad \text{Se } g:[c,d] \rightarrow \mathbb{R} \text{ \'e cont\'inua e } f:[a,b] \rightarrow [c,d] \text{ \'e integr\'avel, ent\~ao } g \circ f:[a,b] \rightarrow \mathbb{R} \text{ \'e integr\'avel.}$
- 11-) Se $f:[a,b] \to [c,d]$ é de classe C^1 com $\left(\forall\, x \in [a,b]\right) f'(x) \neq 0$, e $g:[c,d] \to \mathbb{R}$ é integrável, então $g \circ f$ é integrável.