(D(a) x∈Rd, y∈{1,-, c} hestert ((x,y),(x',y') = k(x,x'). I(y=y') Set Mi= {: = ?: = ?1 -, v}1 y = e}, for le [1 -, c}. I'is= a cic; lestruct ((xi, yi), (xi, yi)). I(y= yi)= [[] [[] [] [] cic; le(xi, xi)] 20 (b) Writing I(y=y)= = If(y=e). I(y=e), we see that Zo, since k is p.s.d. (Street (Kry) (Xry) = dimpnt ((Xry), (Xry)) = dimpnt (= \(\int \(\) \(-> Is it is the RKHS for \$\phi: Rd -> It, set Alstrad = Ho = HX.-XH

Ostruct (x,y) = (\$\phi: kl I(y=A), -, \$\phi: kl I(y=C)\), scalar product forf (fni-,fe) & g(gni-,ge) & He defined as (f,g) Ac = 2 (fe,ge). min & Kull + CE &n subject to Yne Ell-N3, y + yn: W IIng > 15. where Iny = p(x1yn) - p(x1y) - 38 = C + Zi 2 2 2 2 2 4 M = 0 = M = - C- Zi 2 2 (D) = TT-1,+ 5,0-1 · 28 = 8.

Mugging (I) and (II) into the Dequation for I reget: [06) continued 11- 2 I any Iny 12 + C I's the formation of 2 = 1 \(\frac{1}{2} \) \(\frac + I I Z zny = デーンン コーラング アルシー イング アルシー アルシー アルシー Since we minimize in the primal, we have to maximize now over (2) (2m,y) negr. My tyn. The constraints in the deal 062nyn, n 681..., N3, ynty and Offin= -C-I any, hence Z 2 2 2 - C , for 2 l n cf. 1. N. b) (王ny, 王ny) = くゆ(x,yn)-ゆ(x,y)をなり、)-ゆ(x,y1)> = < \$ (x,y,n), \$ (x,y,1)> - < \$ (x,y), \$ (x,y) - < \$ (x,y,n), \$ (x,y) > + (\$ (x,y), \$ (x,y)) + (\$ (x,y), \$ (x,y) > + (\$ (x,y), \$ (x,y)) > + (\$ (x,y), \$ (x,y) > + (\$ (x,y), \$ (x,y)) > + (\$ (x,y), \$ (x,y) > + (\$ (x,y), \$ (=k((x,y,),(x,y,))-k((x,y),(x,y,))-k((x,y),(x,y))+k((x,y),(x,y))

Download the programming files on ISIS and follow the instructions. (3) (2) $\sqrt{\frac{1}{2}} = (1,1,1,1,1)^{T} = (2,1,1,1,1)^{T} = (2,1,1,1)^{T} = (2,1,1)^{T} = (2,1,1)^{T} = (2,1,1)^{T} = (2,1,1)^{T} = (2,1,1)^{T}$ => max $y_2 \in \{\pm 1\}$ $2y_1y_2 - y_2 + \ln 2x$ $\{-..\} = \max_{y_2 \in \{\pm 1\}} 2y_1y_2 + 2$ = $\{4, if y_n = \pm 1 = y_2 = 4$ $\{4, if y_n = -1 = y_2\}$ (yn, y2/3) = (1,1,-1) is the maximizer, 150 N >= 20(x,v)-d(x,v), 6(x,v,)-d(x,v)