计算机设计与实践 流水线CPU设计-4

实验目的

- ◆ 掌握外设I/O的工作原理
- ◆ 加深对CPU和外设I/O协调工作的原理
- ▶ 熟练掌握数字电路的仿真调试方法

实验内容

- ◆ 实现外设I/O的功能
- ◆ 分配外设地址
- ◆ 实现CPU与外设I/O的协同工作

◆ 拨码开关

Minisys实验板上有24个拨码 开关,可将拨码开关作为数据输入,当开关拨到下档时,表示输入为0,否则为1。

◆ 按键开关

Minisys实验板上有6个按键开关 ,按键开关与主芯片的连接方式如 图所示。当某一按键按下时,其对 应的 FPGA输入为1否则为0。

板上共有6个按键开关S1~S6, 其中的S6按键被选作FPGA的复位 按键。

◆ 七段数码管

Minisys实验板上有两个4位带小数点的七段数码管,其中A7~A0是数码管8个位的使能信号,而CA~CG/DP则对应各个位上七个段以及小数点的触发信号。

需要注意的是,使能信号和触发信号都是低电平触发的。

◆ 七段数码管

以数码管中最右侧的AO 数码管为例说明了Minisys 板卡上的7-段数码管的连接方式。

◆ 矩阵键盘

Minisys实验板上的4x4键盘通过4根行选线和4根列选线连接到主芯片。其采用行列扫描的原理与主芯片交换数据,显示了4x4键盘的原理图。

主芯片接受的是按键的"坐标", 而不是其所对应的键值。要想获得需要的键值,需要在程序中对行、列信 号的每一种组合方式进行翻译。

添加管脚约束

方法1:编写XDC文件

```
set property IOSTANDARD LVCMOS33 [get ports pin1]
    set property IOSTANDARD LVCMOS33 [get ports pin2]
    set property IOSTANDARD LVCMOS33 [get ports pin3]
    set property IOSTANDARD LVCMOS33 [get ports pin4]
    set property IOSTANDARD LVCMOS33 [get ports rst n]
6 | set property PACKAGE PIN C19 [get ports led0 en]
    set property IOSTANDARD LVCMOS33 [get ports led0 en]
    set property PACKAGE PIN E19 [get ports led1 en]
    set_property IOSTANDARD LVCMOS33 [get_ports led1_en] # H
    set property PACKAGE PIN D19 [get ports led2 en]
    set property PACKAGE PIN F18 [get ports led3 en]
    set property PACKAGE PIN E18 [get ports led4 en]
    set property IOSTANDARD LVCMOS33 [get ports led2 en]
    set property IOSTANDARD LVCMOS33 [get ports led3 en]
    set property IOSTANDARD LVCMOS33 [get ports led4 en]
    set property PACKAGE PIN B20 [get ports led5 en]
    set property PACKAGE PIN A20 [get ports led6 en]
18 'set property PACKAGE PIN A18 [get ports led7 en]
```

方法2: 图形界面分配

∨ Scalar ports (22)						
clk_in	□管脚	Y18	~	\checkmark	14	LVCMOS33*
✓ led0_en	OUT	C19	~	✓	16	LVCMOS33*
✓ led1_en	OUT	E19	~	\checkmark	16	LVCMOS33* ▼
✓ led2_en	OUT	D19	~	\checkmark	16	LVCMOS33* ▼
✓ led3_en	OUT	F18	~	\checkmark	16	LVCMOS33* ▼
✓ led4_en	OUT	E18	~	\checkmark	16	LVCMOS33* ▼
✓ led5_en	OUT	B20	~	✓	16	LVCMOS33* ▼
✓ led6_en	OUT	A20	~	✓	16	LVCMOS33* ▼
✓ led7_en	OUT	A18	~	✓	16	LVCMOS33* ▼
✓ led_ca	OUT	F15	~	✓	16	LVCMOS33* ▼
✓ led_cb	OUT	F13	~	✓	16	LVCMOS33* ▼
✓ led_cc	OUT	F14	~	✓	16	LVCMOS33* ▼
✓ led_cd	OUT	F16	~	\checkmark	16	LVCMOS33* ▼
✓ led_ce	OUT	E17	~	\checkmark	16	LVCMOS33* ▼
✓ led_cf	OUT	C14	~	✓	16	LVCMOS33* ▼
			~~			

分配外设地址

• 外设地址

> 统一编址

➤ 高4KB: I/O地址空间

▶ 低256KB: DRAM地址空间

分配外设地址

• 外设实现举例 (LED)

将LED显示存储信号作为寄存器看待

LED

0xFFFFF000

```
reg [23:0] led_en; 提示:外设内寄存器的偏移

wire led_wr = dram_we & (dram_addr == 32'hfffff000); 地址可以根据需求自行分配

Palways @ (posedge clk or negedge rst_n) begin
    if (~rst_n) led_en <= 24'h0;
    else if (led_wr) led_en <= dram_wdata[23:0];
end
```


擔起袖子 Let's roll!

