Problem 1

Part (a)

The consumer solves

$$\max_{c_0, c_1} [\log c_0 + \beta \log c_1]$$
 s.t. $c_t \le a_t$, $a_1 = a_0 - c_0$.

Since $c_1 = a_1$ (it is optimal to consume all the remaining cake in the last period), we can reformulate this as

$$\max_{a_1} \left[\log(a_0 - a_1) + \beta \log a_1 \right].$$

To get the first-order condition, just set the derivative of the objective with respect to a_1 equal to 0:

$$-\frac{1}{a_0 - a_1} + \beta \frac{1}{a_1} = 0.$$

Solving for a_1 gives an optimal savings (call it a_1^*) of

$$a_1^* = \frac{\beta a_0}{1+\beta}.\tag{1}$$

Then optimal consumption in each period is

$$c_0^* = a_0 - a_1^* = \frac{a_0}{1+\beta}, \quad c_1^* = a_1^* = \frac{\beta a_0}{1+\beta}$$

and the value function is

$$v_2(a_0) = \log(c_0^*(a_0)) + \beta \log(c_1^*(a_0)) = \log\left(\frac{a_0}{1+\beta}\right) + \beta \log\left(\frac{\beta a_0}{1+\beta}\right) = k_2 + (1+\beta)\log a_0, \quad (2)$$

where k_2 is a constant which isn't all that important to us.

Part (b)

Now the consumer solves

$$\max_{c_0, c_1, c_2} \left[\log c_0 + \beta \log c_1 + \beta^2 \log c_2 \right] \quad \text{s.t.} \quad c_t \le a_t, \quad a_{t+1} = a_t - c_t.$$

Notice that this is equivalent to

$$\max_{c_0, c_1, c_2} \left[\log c_0 + \beta \left(\log c_1 + \beta \log c_2 \right) \right] = \max_{a_1} \left[\log(a_0 - a_1) + \beta v_2(a_1) \right],$$

since the consumer's problem at t = 1 is equivalent to his problem at t = 0 in part (a). Given that we know $v_2(a) = k_2 + (1 + \beta) \log a$ from (2), the FOC (wrt a_1) is

$$-\frac{1}{a_0 - a_1} + \beta(1 + \beta)\frac{1}{a_1} = 0,$$

which has solution

$$a_1^* = \frac{\beta(1+\beta)a_0}{1+\beta(1+\beta)}.$$

Observe that t = 2 in this problem is analogous to t = 1 in part (a), with a_1^* taking the place of a_0 and a_2^* taking the place of a_1^* . Then, from (1), we know that

$$a_2^* = \frac{\beta a_1^*}{1+\beta} = \frac{\beta^2 a_0}{1+\beta(1+\beta)}$$

and

$$c_0^* = a_0 - a_1^* = \frac{a_0}{1 + \beta(1 + \beta)}, \quad c_1^* = a_1^* - a_2^* = \frac{\beta a_0}{1 + \beta(1 + \beta)}, \quad c_2^* = a_2^* = \frac{\beta^2 a_0}{1 + \beta(1 + \beta)}.$$

The value function is

$$v_3(a_0) = \log\left(\frac{a_0}{1 + \beta(1 + \beta)}\right) + \beta\log\left(\frac{\beta a_0}{1 + \beta(1 + \beta)}\right) + \beta^2\log\left(\frac{\beta^2 a_0}{1 + \beta(1 + \beta)}\right)$$

= $k_3 + (1 + \beta + \beta^2)\log a_0$. (3)

Part (c)

Our first goal is to find the a' that solves

$$\max_{a' \in [0,a]} \left[\log(a - a') + \beta v(a') \right] = \max_{a' \in [0,a]} \left[\log(a - a') + \beta(\gamma_0 + \gamma_1 \log a') \right],$$

where the second expression comes from plugging in the conjectured function for v(a'). The FOC (wrt a') is

$$-\frac{1}{a-a'} + \beta \gamma_1 \frac{1}{a'} = 0,$$

which has solution

$$a' = \frac{\beta \gamma_1 a}{1 + \beta \gamma_1};\tag{4}$$

this is in the interval [0, a] as long as $\gamma_1 > 0$, which, intuitively, it is. Plugging this solution into the Bellman equation, $v(a) = \max_{a'} [\log(a - a') + \beta v(a')]$, we get

$$v(a) = \log\left(a - \frac{\beta\gamma_1 a}{1 + \beta\gamma_1}\right) + \beta v\left(\frac{\beta\gamma_1 a}{1 + \beta\gamma_1}\right)$$

$$= \log\left(\frac{a}{1 + \beta\gamma_1}\right) + \beta\left(\gamma_0 + \gamma_1 \log\left(\frac{\beta\gamma_1 a}{1 + \beta\gamma_1}\right)\right)$$

$$= \log a - \log(1 + \beta\gamma_1) + \beta\left(\gamma_0 + \gamma_1 \log\left(\frac{\beta\gamma_1}{1 + \beta\gamma_1}\right) + \gamma_1 \log a\right)$$

$$= \underbrace{-\log(1 + \beta\gamma_1) + \beta\left(\gamma_0 + \gamma_1 \log\left(\frac{\beta\gamma_1}{1 + \beta\gamma_1}\right)\right)}_{\gamma_0'} + \underbrace{(1 + \beta\gamma_1)\log a}_{\gamma_1'} \log a, \tag{5}$$

which means that v(a) does in fact have the conjectured log form. Finally, we solve for γ_0 and γ_1 by equating them to γ'_0 and γ'_1 . Starting with γ_1 :

$$\gamma_1 = \gamma_1' = 1 + \beta \gamma_1 \Rightarrow \gamma_1 = \frac{1}{1 - \beta}.$$

This makes sense: the coefficient on the log a term is $1 + \beta$ in $v_2(a)$ and $1 + \beta + \beta^2$ in $v_3(a)$, so for $v(a) = v_{\infty}(a)$ we would expect it to be

$$1 + \beta + \beta^2 + \beta^3 + \dots = \frac{1}{1 - \beta},$$

which bears out. As for γ_0 , we get

$$\gamma_0 = \gamma_0' = -\log \gamma_1 + \beta \gamma_0 + \beta \gamma_1 \log \beta,$$

where I used the fact that $1 + \beta \gamma_1 = \gamma_1$ to simplify the expression. It follows that

$$(1 - \beta)\gamma_0 = \log(1 - \beta) + \frac{\beta}{1 - \beta}\log\beta$$
$$\Rightarrow \gamma_0 = \frac{1}{1 - \beta}\log(1 - \beta) + \frac{\beta}{(1 - \beta)^2}\log\beta.$$

Part (d)

Using the expression for the optimal a' from the last part, (4), and the fact that $1 + \beta \gamma_1 = \gamma_1$, we get

$$a' = g(a) = \frac{\beta \gamma_1 a}{1 + \beta \gamma_1} = \beta a.$$

This means that in every period the consumer saves a fraction β of the remaining stock of cake, which he brings into the next period; of course, this also means he consumes a fraction $1 - \beta$ of the remaining stock in every period. Hence the stock of cake remaining at the beginning of period t is just $a_t = \beta^t a_0$, while period-t consumption is $c_t = (1-\beta)a_t = (1-\beta)\beta^t a_0$. The consumer technically never runs out of cake, since $\beta^t a_0 > 0$ as long as $\beta, a_0 > 0$, but $\lim_{t\to\infty} a_t = 0$ so eventually the poor soul is reduced to scraping crumbs off the floor.