Attribute Information:

- 1. name ASCII subject name and recording number
- 2. mdvp_fo_hz Average vocal fundamental frequency (Actualy column name MDVP:Fo(Hz))
- 3. mdvp_fhi_hz Maximum vocal fundamental frequency (Actualy column name MDVP:Fhi(Hz))
- 4. mdvp_flo_hz Minimum vocal fundamental frequency (Actualy column name MDVP:Flo(Hz))
- 5. mdvp_jitter_in_percent, mdvp_jitter_abs, mdvp_rap, mdvp_ppq, jitter_ddp Several measures of variation in fundamental frequency (Actualy column names MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP, MDVP:PPQ, Jitter:DDP respectively)
- mdvp_shimmer, mdvp_shimmer_db, shimmer_apq3, shimmer_apq5, mdvp_apq, shimmer_dda Several measures of variation in amplitude (Actualy column names MDVP:Shimmer, MDVP:Shimmer(dB), Shimmer:APQ3, Shimmer:APQ5, MDVP:APQ, Shimmer:DDA respectively)
- 7. nhr, hnr Two measures of ratio of noise to tonal components in the voice (Actualy column names NHR, HNR respectively)
- 8. rpde, d2 Two nonlinear dynamical complexity measures (Actualy column names RPDE, D2 respectively)
- 9. dfa Signal fractal scaling exponent (Actualy column name DFA)
- 10. **spread1, spread2, ppe** Three nonlinear measures of fundamental frequency variation (Actualy column names spread1, spread2, PPE respectively)
- 11. status Health status of the subject (one) Parkinson's, (zero) healthy (Target Varibale / attribute)

```
# Importing the necessary libraries
import numpy
                                        as np
import pandas
                                        as pd
import seaborn
                                        as sns
import matplotlib.pyplot
                                        as plt
import warnings
%matplotlib inline
warnings.filterwarnings('ignore')
import statsmodels.api
                                        as sm
from sklearn import model_selection
from sklearn.model_selection
                                        import train_test_split
# getting methods for confusion matrix, F1 score, Accuracy Score
from sklearn import metrics
from sklearn.metrics
                                        import confusion matrix,f1_score,accuracy_score,classification_report,roc_curve,auc,average_precision_score
from sklearn.linear_model
                                        import LogisticRegression
from sklearn.naive_bayes
                                        import GaussianNB
from sklearn.neighbors
                                        import KNeighborsClassifier
from sklearn.svm
                                        import SVC
from sklearn.preprocessing import StandardScaler
```

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import StackingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier

pdDataOrg = pd.read_csv("Parkinsson disease.csv")
pdDataOrg.head()
```

	name	MDVP:Fo(Hz)	MDVP:Fhi(Hz)	MDVP:Flo(Hz)	MDVP:Jitter(%)	MDVP:Jitter(Abs)	MDVP:RAP
0	phon_R01_S01_1	119.992	157.302	74.997	0.00784	0.00007	0.00370
1	phon_R01_S01_2	122.400	148.650	113.819	0.00968	0.00008	0.00465
2	phon_R01_S01_3	116.682	131.111	111.555	0.01050	0.00009	0.00544
3	phon_R01_S01_4	116.676	137.871	111.366	0.00997	0.00009	0.00502
4	phon_R01_S01_5	116.014	141.781	110.655	0.01284	0.00011	0.00655

5 rows × 24 columns

```
pdData = pdDataOrg.copy()
targetCol = 'status'
targetColDf = pdData.pop(targetCol)
pdData.insert(len(pdData.columns),targetCol, targetColDf)
# deleting variables that were used for changing column position of target column
del targetCol
del targetColDf
# converting column names into lower case
pdData.columns = [c.lower() for c in pdData.columns]
# replacing spaces in column names with ' '
pdData.columns = [c.replace(' ', '_') for c in pdData.columns]
# replacing ':' in column names with ' '
pdData.columns = [c.replace(':', ' ') for c in pdData.columns]
# replacing '(' in column names with '_'
pdData.columns = [c.replace('(', '_') for c in pdData.columns]
# replacing ')' in column names with '' i.e blank
pdData.columns = [c.replace(')', '') for c in pdData.columns]
# replacing '%' in column names with 'in_percent'
pdData.columns = [c.replace('%', 'in_percent') for c in pdData.columns]
# to check the above printing top 5 rows
pdData.head()
```

name	mdvp_fo_hz	mdvp_fhi_hz	mdvp_flo_hz	mdvp_jitter_in_percent	mdvp_jitter_abs	mdvp
phon_R01_S01_1	119.992	157.302	74.997	0.00784	0.00007	0.0
phon_R01_S01_2	122.400	148.650	113.819	0.00968	0.00008	0.0
phon_R01_S01_3	116.682	131.111	111.555	0.01050	0.00009	0.0
phon_R01_S01_4	116.676	137.871	111.366	0.00997	0.00009	0.0
phon_R01_S01_5	116.014	141.781	110.655	0.01284	0.00011	0.0
	phon_R01_S01_1 phon_R01_S01_2 phon_R01_S01_3 phon_R01_S01_4	phon_R01_S01_1 119.992 phon_R01_S01_2 122.400 phon_R01_S01_3 116.682 phon_R01_S01_4 116.676	phon_R01_S01_1 119.992 157.302 phon_R01_S01_2 122.400 148.650 phon_R01_S01_3 116.682 131.111 phon_R01_S01_4 116.676 137.871	phon_R01_S01_1 119.992 157.302 74.997 phon_R01_S01_2 122.400 148.650 113.819 phon_R01_S01_3 116.682 131.111 111.555 phon_R01_S01_4 116.676 137.871 111.366	phon_R01_S01_1 119.992 157.302 74.997 0.00784 phon_R01_S01_2 122.400 148.650 113.819 0.00968 phon_R01_S01_3 116.682 131.111 111.555 0.01050 phon_R01_S01_4 116.676 137.871 111.366 0.00997	phon_R01_S01_1 119.992 157.302 74.997 0.00784 0.00007 phon_R01_S01_2 122.400 148.650 113.819 0.00968 0.00008 phon_R01_S01_3 116.682 131.111 111.555 0.01050 0.00009 phon_R01_S01_4 116.676 137.871 111.366 0.00997 0.00009

5 rows × 24 columns

print('\033[1mThe Parkinson\'s disease dataset having "{0}" rows and "{1}" columns\033[0m.'.format(pdData.shape[0],pdData.shape[1]))

The Parkinson's disease dataset having "195" rows and "24" columns.

pdData.info()

RangeIndex: 195 entries, 0 to 194 Data columns (total 24 columns): Non-Null Count Dtype Column -----0 name 195 non-null object 195 non-null float64 1 mdvp fo hz 2 mdvp_fhi_hz 195 non-null float64 3 mdvp_flo_hz 195 non-null float64 mdvp_jitter_in_percent 195 non-null float64 195 non-null mdvp_jitter_abs float64 mdvp_rap 195 non-null float64 7 mdvp ppq 195 non-null float64 jitter_ddp 195 non-null float64 mdvp_shimmer 195 non-null float64 10 mdvp_shimmer_db 195 non-null float64 11 shimmer apq3 195 non-null float64 12 shimmer_apq5 195 non-null float64 195 non-null float64 13 mdvp apq 14 shimmer_dda 195 non-null float64 15 nhr 195 non-null float64 16 hnr 195 non-null float64 17 rpde 195 non-null float64 18 dfa 195 non-null float64 195 non-null float64 19 spread1 20 spread2 195 non-null float64 21 d2 195 non-null float64 22 ppe 195 non-null float64 23 status 195 non-null int64

<class 'pandas.core.frame.DataFrame'>

```
dtypes: float64(22), int64(1), object(1)
memory usage: 36.7+ KB
```

```
# setting name column as index column
pdData.set_index('name',inplace=True)
```

after setting column 'name' as index now we have less columns to confirm that printing number of rows and column once again print('\033[1mAfter setting \'name\' column as index of the Dataset,\033[0m now there are \033[1m"{0}"\033[0m Rows and \033[1m"{1}"\033[0m Columns in the given Dataset.'.format(pdDa

After setting 'name' column as index of the Dataset, now there are "195" Rows and "23" Columns in the given Dataset.

pdData.head()

	mdvp_fo_hz	mdvp_fhi_hz	mdvp_flo_hz	mdvp_jitter_in_percent	mdvp_jitter_abs	mdvp_ra
name						
phon_R01_S01_1	119.992	157.302	74.997	0.00784	0.00007	0.0037
phon_R01_S01_2	122.400	148.650	113.819	0.00968	0.00008	0.004€
phon_R01_S01_3	116.682	131.111	111.555	0.01050	0.00009	0.0054
phon_R01_S01_4	116.676	137.871	111.366	0.00997	0.00009	0.0050
phon_R01_S01_5	116.014	141.781	110.655	0.01284	0.00011	0.0065

5 rows × 23 columns

```
# printing datatypes of each columns of the dataset
print("\033[1m*"*100)
print("a.\nColumn_Names
                               Data_Types")
print("*"*30)
print("\033[0m{0}\033[1m".format(pdData.dtypes))
print("*"*30)
print()
# printing No of Columns having different Types of Datatype
print("*"*100)
print("b.\nNumber of Columns with each DataTypes as follows :")
print("*"*50)
print("Column Names
                       No of Columns\033[0m")
print("*"*30)
print(pdData.dtypes.value counts())
print("\033[1m*"*30)
```

```
print("\033[0m")
# printing Different Column Names of the dataset
print("\033[1m*"*100)
print("c.\nEach Column Names of the dataset")
print("*"*80)
print("\033[0m{0}\033[1m".format(pdData.columns))
print("*"*80)
print("\033[0m")
```

Column Names Data Types ********** mdvp_fo_hz float64 mdvp_fhi_hz float64 mdvp_flo_hz float64 mdvp_jitter_in_percent float64 float64 mdvp_jitter_abs float64 mdvp_rap float64 mdvp ppq float64 jitter_ddp mdvp shimmer float64 mdvp_shimmer_db float64 shimmer apq3 float64 shimmer_apq5 float64 float64 mdvp apq shimmer_dda float64 float64 nhr hnr float64 rpde float64 dfa float64 float64 spread1 spread2 float64 d2 float64 float64 ppe status int64 dtype: object ********** ************************************* b. Number of Columns with each DataTypes as follows : ************** Column Names No of Columns *********** float64 22

int64 1 dtype: int64 **********

c.

After observing the dataset and column description given we can conclude the followings:

- Columns having only two datatypes, int64, float64. (column 'name' was object datatype which was set as index of the dataframe)
- Column 'status' is only having int64 datatype, remaining all columns datatype is float64.
- All columns except 'status' are Numeric column.
- Columns 'status' is Nominal Categorical column with binary response.

```
# checking missing values in dataset for each attributes / columns

print("\033[1m*"*100)
print("\031[m*"*50)
print("\033[0m{\0}]".format(pdData.isnull().sum()))
print("\033[1m*"*50)
print()

# checking if any duplicate rows available in the dataset

print("\031[m*"*100)
print("\031[0m{\0}]".format(pdData[pdData.duplicated()]))
print("\033[0m{\0}]".format(pdData[pdData.duplicated()]))
print("\033[0m{\0}]".format(pdData[pdData.duplicated()]))
print("\033[0m")
```

Column Name No of Missing Values **************** mdvp fo hz 0 0 mdvp_fhi_hz mdvp_flo_hz 0 mdvp_jitter_in_percent mdvp jitter abs mdvp_rap 0 mdvp ppq jitter_ddp 0 0 mdvp_shimmer mdvp_shimmer_db 0

shimmer_apq3

```
shimmer apq5
                                                                                       0
mdvp_apq
                                                                                       0
shimmer_dda
nhr
                                                                                       0
hnr
                                                                                       0
rpde
                                                                                       0
dfa
spread1
                                                                                       0
spread2
                                                                                       0
d2
                                                                                       0
ppe
status
                                                                                       0
dtype: int64
 ****************
 Showing Duplicate rows if any in the dataset:
 ***************
Empty DataFrame
Columns: [mdvp_fo_hz, mdvp_fhi_hz, mdvp_flo_hz, mdvp_jitter_in_percent, mdvp_jitter_abs, mdvp_rap, mdvp_ppq, jitter_ddp, mdvp_shimmer, mdvp_shimmer_dp, shimmer_apq3, shim
Index: []
[0 rows x 23 columns]
```

As shown above,

- (a.) There are no missing values
- and (b.) No duplicate rows in the given dataset

```
# Five point summary of each attribute
pdData.describe().T
```

	count	mean	std	min	25%	50%	75%	
mdvp_fo_hz	195.0	154.228641	41.390065	88.333000	117.572000	148.790000	182.769000	260.10
mdvp_fhi_hz	195.0	197.104918	91.491548	102.145000	134.862500	175.829000	224.205500	592.03
mdvp_flo_hz	195.0	116.324631	43.521413	65.476000	84.291000	104.315000	140.018500	239.17
mdvp_jitter_in_percent	195.0	0.006220	0.004848	0.001680	0.003460	0.004940	0.007365	0.03
mdvp_jitter_abs	195.0	0.000044	0.000035	0.000007	0.000020	0.000030	0.000060	0.00
mdvp_rap	195.0	0.003306	0.002968	0.000680	0.001660	0.002500	0.003835	0.02
mdvp_ppq	195.0	0.003446	0.002759	0.000920	0.001860	0.002690	0.003955	0.01
jitter_ddp	195.0	0.009920	0.008903	0.002040	0.004985	0.007490	0.011505	0.06
mdvp_shimmer	195.0	0.029709	0.018857	0.009540	0.016505	0.022970	0.037885	0.11
mdvp_shimmer_db	195.0	0.282251	0.194877	0.085000	0.148500	0.221000	0.350000	1.30
shimmer_apq3	195.0	0.015664	0.010153	0.004550	0.008245	0.012790	0.020265	0.05
shimmer_apq5	195.0	0.017878	0.012024	0.005700	0.009580	0.013470	0.022380	0.07
mdvp_apq	195.0	0.024081	0.016947	0.007190	0.013080	0.018260	0.029400	0.13

checking skewness of the data
pdData.skew().sort_values(ascending=False)

nhr	4.220709
jitter_ddp	3.362058
mdvp_rap	3.360708
mdvp_jitter_in_percent	3.084946
mdvp_ppq	3.073892
mdvp_jitter_abs	2.649071
mdvp_apq	2.618047
mdvp_fhi_hz	2.542146
mdvp_shimmer_db	1.999389
shimmer_apq5	1.798697
mdvp_shimmer	1.666480
shimmer_dda	1.580618
shimmer_apq3	1.580576
mdvp_flo_hz	1.217350
ppe	0.797491
mdvp_fo_hz	0.591737
spread1	0.432139
d2	0.430384
spread2	0.144430
dfa	-0.033214
rpde	-0.143402
hnr	-0.514317
status	-1.187727
dtype: float64	

https://colab.research.google.com/drive/14Rpt6T-ceznHoBdGC5gsrlKz-oNCzmch#printMode=true

As from above we understand the following:

- Independent variables are measured in different units e.g. Hz, dB, % and absoulute etc i.e variation in units of data exists and gap between feature values extreamly high. Requires data scalling techniques to scale different quantities of measurements.
- Symmetrical distribution: Values close to 0 MDVP:Fo(Hz) spread1 spread2 PPE
- · Negative skewness and Tail is larger towards the left hand side of the distribution HNR status RPDE DFA
- Positive skewness and Tail is larger towards the Right hand side of the distribution All other attributes have a very high distribution towards right of the median

```
plt.figure(figsize=(10,5))
                                                           # setting figure size with width = 10 and height = 5
# seaborn count catplot to examine distribution of the status
ax = sns.catplot(x='status', kind="count", data=pdData)
plt.title("Distribution of column : 'Status'")
                                                    # setting title of the figure
y = []
                                                           # creating a null or empty array
for val in range(pdData.status.nunique()):
                                                  # looping for number of unique values in the status
    # appending count of each unique values from status to array y
    v.append(pdData.groupby(pdData.status,sort=False)['status'].count()[val])
for i, v in enumerate(y):
                                                           # looping count of each unique value in the status
    # including count of each unique values in the plot
    plt.annotate(str(v), xy=(i,float(v)), xytext=(i-0.1, v+3), color='black', fontweight='bold')
```

<Figure size 1000x500 with 0 Axes>

 ${\sf Text}({\tt 0.5}, \, {\tt 1.0}, \, {\tt "Distribution of column : 'status'"})$

Distribution of column: 'status'

From above we can see out of 195 patients, 48 patients (24.6 %) are healthy and 147 patients (75.4%) patients are having Parkinson's disease.

```
#Split the data into training and test set in the ratio of 70:30 respectively
X = pdData.drop(['status'],axis=1)
y = pdData['status']

# split data into train subset and test subset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=47)

# checking the dimensions of the train & test subset
# printing dimension of train set
print(X_train.shape)
# printing dimension of test set
print(X_test.shape)
```

```
(136, 22)
(59, 22)
```

```
X_train.drop(['mdvp_jitter_in_percent'],axis=1,inplace=True)
X_test.drop(['mdvp_jitter_in_percent'],axis=1,inplace=True)
X_train.drop(['mdvp_shimmer'],axis=1,inplace=True)
X_test.drop(['mdvp_shimmer'],axis=1,inplace=True)
X_train.drop(['hnr'],axis=1,inplace=True)
X_test.drop(['hnr'],axis=1,inplace=True)
# printing dimension of train set
print(X_train.shape)
# printing dimension of test set
print(X_test.shape)
     (136, 19)
     (59, 19)
# Let us scale train as well as test data using StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.fit_transform(X_test)
# Train and Fit model
lr = LogisticRegression(random_state=0)
lr.fit(X_train_scaled, y_train)
#predict status for X_test_scaled dataset
lr_y_pred = lr.predict(X_test_scaled)
# Confusion Matrix for the Logistic Regression Model
print("Confusion Matrix : Logistic Regression")
print(confusion_matrix(y_test,lr_y_pred))
# Classification Report for the Logistic Regression Model
classRep = classification_report(y_test, lr_y_pred, digits=2)
print(classRep)
     Confusion Matrix : Logistic Regression
     [[ 9 4]
      [ 4 42]]
                   precision
                                recall f1-score support
```

0.69

0.69

13

0.69

1	0.91	0.91	0.91	46
accuracy			0.86	59
macro avg	0.80	0.80	0.80	59
weighted avg	0.86	0.86	0.86	59

From the above Logistic Regression Model, we can find out the following details:

- Accuracy of the model:- 86%
- Re-call of the model:- 91%
- Precision of the model:- 91%
- F1-Score of the model:- 91%

```
# creating odd list of K for KNN
myList = list(range(3,40,2))
# creating empty list for F1 scores od different value of K
f1ScoreList = []
# perform accuracy metrics for values from 3,5....29
for k in myList:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X train scaled, y train)
    # predict the response
    y pred = knn.predict(X test scaled)
    # evaluate F1 Score
    f1Score = f1_score(y_test, y_pred)
    f1ScoreList.append(f1Score)
# changing to misclassification error
MSE = [1 - x \text{ for } x \text{ in f1ScoreList}]
# determining best k
bestk = myList[MSE.index(min(MSE))]
print("The optimal number of neighbors is %d" % bestk)
```

The optimal number of neighbors is 29

```
# instantiate learning model (k = 29)
knn = KNeighborsClassifier(n_neighbors = 29, weights = 'uniform', metric='euclidean')

# fitting the model
knn.fit(X_train_scaled, y_train)

# predict the response
knn_y_pred = knn.predict(X_test_scaled)
```

```
# Confusion Matrix for the K-nearest neighbors Model
print("Confusion Matrix : K-nearest neighbors")
print(confusion_matrix(y_test,knn_y_pred))

# Classification Report for the K-nearest neighbors Model
classRep = classification_report(y_test, knn_y_pred, digits=2)
print(classRep)

Confusion Matrix : K-nearest neighbors
```

[[8 5] [0 46]]				
	precision	recall	f1-score	support
0	1.00	0.62	0.76	13
1	0.90	1.00	0.95	46
accuracy			0.92	59
macro avg	0.95	0.81	0.86	59
weighted avg	0.92	0.92	0.91	59

From the above K-nearest neighbors Model, we can find out the following details:

- Accuracy of the model:- 92%
- Re-call of the model:- 100%
- Precision of the model:- 90%
- F1-Score of the model:- 95%

[[10 3] [0 46]]

```
svm = SVC(gamma=0.05, C=70,random_state=47)
svm.fit(X_train_scaled , y_train)

# predict the response
svm_y_pred = svm.predict(X_test_scaled)

# Confusion Matrix for the Support Vector Machine Model
print("Confusion Matrix : Support Vector Machine")
print(confusion_matrix(y_test,svm_y_pred))

# Classification Report for the Support Vector Machine Model
classRep = classification_report(y_test, svm_y_pred, digits=2)
print(classRep)
Confusion Matrix : Support Vector Machine
```

0.77

1.00

recall f1-score support

0.87

0.97

13

46

precision

1.00

0.94

accur	racy			0.95	59
macro	avg	0.97	0.88	0.92	59
weighted	avg	0.95	0.95	0.95	59

From the above Support Vector Machine Model, we can find out the following details:

- Accuracy of the model:- 95%
- Re-call of the model:- 100%
- Precision of the model:- 94%
- F1-Score of the model:- 97%

```
#Using K fold to check how the above algorighms varies throughout the dataset with 10 different subset of equal bins
models = []
models.append(('Logistic Regression', LogisticRegression(random_state=47)))
models.append(('K-NN', KNeighborsClassifier(n_neighbors = 29, weights = 'uniform', metric='euclidean')))
models.append(('SVM', SVC(gamma=0.05, C=70,random_state=47)))

# evaluate each model
results = []
names = []
scoring = 'f1'
for name, model in models:
    kfold = model_selection.KFold(n_splits=10, random_state=47,shuffle=True)
    cv_results = model_selection.cross_val_score(model, X_train_scaled, y_train, cv=kfold, scoring=scoring)
    results.append(cv_results)
    names.append(come)
    print("\033[1m{0}\033[0m model have \033[1mmean F1-Score\033[0m of {1} and \033[1mSD F1-Score\033[0m of {2}".format(name, cv_results.mean(), cv_results.std()))
```

Logistic Regression model have mean F1-Score of 0.8930882775410977 and SD F1-Score of 0.05346316304648212 K-NN model have mean F1-Score of 0.8805069690035365 and SD F1-Score of 0.04633386023424363 SVM model have mean F1-Score of 0.9453975265995727 and SD F1-Score of 0.033233692576697435

```
plt.title('Algorithm Comparison')
plt.plot(results[0],label='Logistic')
plt.plot(results[1],label='KNN')
plt.plot(results[2],label='SVM')
plt.legend()
```

<matplotlib.legend.Legend at 0x7f2578d65430>

From the above comparision of different algorithms (Logistic Regression, K-nearest neighbors and Support Vector Machine) we can conclude that SVM (Support Vector Machine) performed slightly better than other algorithms.

```
# defining level hetrogenious model
level0 = list()
level0.append(('lr', LogisticRegression(random state=47)))
level0.append(('knn', KNeighborsClassifier(n neighbors = 29, weights = 'uniform', metric='euclidean')))
level0.append(('cart', DecisionTreeClassifier()))
level0.append(('svm', SVC(gamma=0.05, C=70,random state=47)))
level0.append(('bayes', GaussianNB()))
# define meta learner model
level1 = SVC(gamma=0.05, C=3,random_state=47)
# define the stacking ensemble with cross validation of 5
Stack_model = StackingClassifier(estimators=level0, final_estimator=level1, cv=5)
# predict the response
Stack_model.fit(X_train_scaled, y_train)
prediction_Stack = Stack_model.predict(X_test_scaled)
# Confusion Matrix for the Stacking Model
print("Confusion Matrix : Stacking")
print(confusion_matrix(y_test,prediction_Stack))
# Classification Report for the Stacking Model
print(classification report(y test, prediction Stack, digits=2))
     Confusion Matrix : Stacking
    [[10 3]
      [ 0 46]]
```

0.77

precision

1.00

recall f1-score support

0.87

13

1	0.94	1.00	0.97	46
accuracy			0.95	59
macro avg	0.97	0.88	0.92	59
weighted avg	0.95	0.95	0.95	59

```
#determining false positive rate and True positive rate, threshold
fpr, tpr, threshold = metrics.roc_curve(y_test, prediction_Stack)
roc_auc_stack = metrics.auc(fpr, tpr)

#plotting ROC curve
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc_stack)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


From the above Stacked meta classifier Model, we can find out the following details:

• Accuracy of the model:- 95%

- Re-call of the model:- 100%
- Precision of the model:- 94%
- F1-Score of the model:- 97%
- ROC-AUC: 88%

```
#creating model of Random Forest
RandomForest = RandomForestClassifier(n_estimators = 100,criterion='entropy',max_features=10,random_state=47)
RandomForest = RandomForest.fit(X_train_scaled, y_train)

# predict the response
RandomForest_pred = RandomForest.predict(X_test_scaled)

# Confusion Matrix for the Random Forest Model
print("Confusion Matrix : Random Forest")
print(confusion_matrix(y_test,RandomForest_pred))

# Classification Report for the Randome Forest Model
print(classification_report(y_test, RandomForest_pred, digits=2))

Confusion Matrix : Random Forest
```

```
[[ 9 4]
[ 1 45]]
            precision
                         recall f1-score support
                 0.90
                           0.69
                                    0.78
                                               13
                 0.92
          1
                           0.98
                                    0.95
                                               46
   accuracy
                                    0.92
                                               59
                 0.91
                           0.84
                                    0.86
                                               59
   macro avg
weighted avg
                 0.91
                           0.92
                                    0.91
                                               59
```

```
#determining false positive rate and True positive rate, threshold
fpr, tpr, threshold = metrics.roc_curve(y_test, RandomForest_pred)
roc_auc_rf = metrics.auc(fpr, tpr)

#plotting ROC curve
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc_rf)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


From the above Random Forest Model, we can find out the following details:

• Accuracy of the model:- 92%

• Re-call of the model:- 98%

• Precision of the model:- 92%

• F1-Score of the model:- 95%

• ROC-AUC: 84%

```
# Lets check features importance
feature_imp = pd.Series(RandomForest.feature_importances_,index=X_train.columns).sort_values(ascending=False)
feature_imp
```

```
0.212646
ppe
spread1
                  0.181815
mdvp_fo_hz
                  0.078539
mdvp_apq
                  0.066849
mdvp_fhi_hz
                  0.053630
                  0.048251
jitter_ddp
                  0.044719
spread2
                  0.044320
mdvp_rap
                  0.041004
mdvp_flo_hz
                  0.036010
rpde
                  0.029126
dfa
                  0.028516
mdvp_jitter_abs
                  0.028306
                  0.025957
shimmer_dda
                  0.022860
```

```
      mdvp_ppq
      0.020985

      shimmer_apq3
      0.012780

      mdvp_shimmer_db
      0.012384

      shimmer_apq5
      0.011302

      dtype: float64
```

```
# Creating a bar plot
sns.barplot(x=feature_imp, y=feature_imp.index)
# Add labels to your graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
```

Text(0, 0.5, 'Features')


```
#creating model of Adaptive Boosting
AdBs = AdaBoostClassifier( n_estimators= 50)
AdBs = AdBs.fit(X_train_scaled, y_train)

# predict the response
AdBs_y_pred = AdBs.predict(X_test_scaled)

# Confusion Matrix for the Adaptive Boosting Model
print("Confusion Matrix : Adaptive Boosting")
print(confusion_matrix(y_test,AdBs_y_pred))

# Classification Report for the Adaptive Boosting Model
print(classification_report(y_test, AdBs_y_pred, digits=2))
```

```
Confusion Matrix : Adaptive Boosting
[[ 9 4]
[ 2 44]]
             precision
                         recall f1-score support
                 0.82
                           0.69
                                    0.75
                                                13
          1
                 0.92
                           0.96
                                    0.94
                                                46
                                                59
                                    0.90
   accuracy
  macro avg
                 0.87
                           0.82
                                    0.84
                                                59
weighted avg
                 0.89
                           0.90
                                    0.90
                                                59
```

```
#determining false positive rate and True positive rate, threshold
fpr, tpr, threshold = metrics.roc_curve(y_test, AdBs_y_pred)
roc_auc_ada = metrics.auc(fpr, tpr)

#plotting ROC curve
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc_ada)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

Receiver Operating Characteristic

From the above Adaptive Boosting Model, we can find out the following details:

```
• Accuracy of the model:- 90%
```

- Re-call of the model:- 96%
- Precision of the model:- 92%
- F1-Score of the model:- 94%
- ROC-AUC: 82%

97.43589743589743

```
Confusion Matrix : XGBoosting
[[7 1]
[ 0 31]]
             precision
                         recall f1-score support
                           0.88
                                                 8
                 1.00
                                     0.93
                 0.97
                           1.00
                                     0.98
                                                31
                                                39
   accuracy
                                     0.97
                           0.94
                 0.98
                                     0.96
                                                39
   macro avg
weighted avg
                 0.98
                           0.97
                                     0.97
                                                39
```

```
from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,predict)
plt.figure(figsize=(8,6))
fg=sns.heatmap(cm,annot=True,cmap="Reds")
figure=fg.get_figure()
```

```
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title("Output Confusion Matrix")
```

Text(0.5, 1.0, 'Output Confusion Matrix')


```
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
# The baseline

# Test options and evaluation metric
num_folds = 10
seed = 7
scoring = 'accuracy'

# Spot-Check Algorithms
models = []
models.append(('togistic Regression', LogisticRegression(random_state=47)))
models.append(('K-NN', KNeighborsClassifier(n_neighbors = 29, weights = 'uniform', metric='euclidean')))
models.append(('SVM', SVC(gamma=0.05, C=70,random_state=47)))
models.append(('Stacking', StackingClassifier(estimators=level0, final_estimator=level1, cv=5)))
```

```
models.append(('Random Forest', RandomForestClassifier(n estimators = 100,criterion='entropy',max features=10,random state=47)))
models.append(('Adaptive Boosting', AdaBoostClassifier( n estimators= 50)))
models.append(('XGBoost',XGBClassifier()))
def eval_algorithms(models, show_boxplots=True):
   # Evaluate each model in turn
   # Setup the test harness to use 10-fold cross validation
   results = []
   names = []
   for name, model in models:
       kfold = KFold(n splits=10, random state=seed, shuffle=True)
       cv results = cross val score(model, X train, y train, cv=kfold, scoring=scoring)
        results.append(cv_results)
       names.append(name)
        #print("Estimated accuracy of {} with the mean of {} and std. dev. {}".format(name, cv_results.mean()*100.0, cv_results.std()*100.0))
        #print("{}: {} ({})".format(name, cv_results.mean()*100.0, cv_results.std()*100.0))
   if show boxplots:
        # Create a plot of the model evaluation results to compae the spread
        # and the estimated mean accuracy of each model
       fig = plt.figure(figsize=(14,12))
        fig.suptitle('Algorithm Comparison')
        ax = fig.add_subplot(111)
       plt.boxplot(results)
        ax.set_xticklabels(names)
       plt.show()
eval_algorithms(models)
```

Algorithm Comparison

Colab paid products - Cancel contracts here