

Multicomputing y Comunicaciones

Multiprocessors, Multicomputing, TCP/UDP

Docentes

- Pablo D. Roca
- Ezequiel Torres Feyuk
- Guido Albarello

- Ana Czarnitzki
- Cristian Raña

Agenda

- Multi-Processors & Multi-Computing
- Comunicaciones

Multi-threading

Multi-processing

Multi-computing

Computers

Modelo Físico | Varias CPUs

Muchos Procesadores | Taxonomía de Flynn

Clasificación de sistemas de acuerdo a cardinalidad de flujos de instrucciones (procesadores) y flujos de datos (memoria).

- **SISD** (*Single Instruction Single Data*): modelo estándar de un procesador sin paralelismo
- **SIMD:** array processors. Ej: GPU
- MISD: no son usuales (procesar múltiples veces los mismos datos de forma determinística retorna el mismo resultado)
- **MIMD:** se divide en dos modelos:
 - Multiprocessors (?): con memoria y/o clock compartidos
 - Multicomputers: sin memoria ni clock compartidos

Asymmetric Multiprocessing Other Memory I/O **Processor** 3 Bridge Memory Processor Processor

MIMD | Multiprocessors | UMA vs NUMA

- Uniform Memory Access (UMA / non-NUMA)
 - Tiempo de acceso a la memoria es idéntico para todos los procesadores.
- Non Uniform Memory Access (NUMA):
 - Ideado en SGI, ahora presente en Linux kernel y MS Servers
 - Cada CPU controla un bloque de memoria y se transforma en su 'home agent'

MIMD | *Multicomputers* (sin memoria compartida)

- Cada computadora tiene su propia memoria local
- Cada computadora puede fallar de forma independiente
- No poseen un reloj central de ejecución de instrucciones
- Requieren comunicación entre computadoras:
 - Networking: LAN, MAN, WAN

Multicomputing

Recursos Compartidos

Ninguno

Sincronización

Mensajes Ad-Hoc entre Computadoras
=> necesidad de implementar mecanismos de sincronización.

Características clave

- Comunicación de red => problemas por limitaciones de ancho de banda, latencia y pérdida de mensajes.
- Comunicación entre procesos: compleja y central al diseño del sistema.
- Alta escalabilidad y tolerantes a fallos.

Agenda

- Multi-Processors & Multi-Computing
- Comunicaciones

Comunicaciones | Modelo TCP/IP

Application

Aplicaciones de usuario, representación de datos

Transport

Comunicación punto a punto

Internet

Lógica de transmisión de datos sobre la red

Network Access

Transferencia física confiable, libre de errores.

Comunicaciones | Modelo OSI

Application Aplicaciones de usuario

Presentation Representación de datos

Session Manejo de conexiones y sesión

Transferencia confiable, libre de errores

Network Establecer, mantener y terminar conexiones. Transmisión

Sincronización, control de errores y envío de frames

Manejo del medio físico para transmitir bits

Physical

Data Link

TCP/IP

OSI

Application

Transport

Internet

Network Access

Application

Presentation

Session

Transport

Network

Data Link

Physical

Ver.	IHL	Type of Service	Total Length			
Identification			Flags	Frag. Offset		
Т	ΓL	Protocol	Header Checksum			
Source Address						
Dest. Address						
Options						
Data (variable)						

32 bits

TCP

- Orientado a conexión
- Asegura entrega y orden

So	ource Po	ort	Dest. Port			
Sequence Number						
Ack. Number						
Data Offset	Reserv ed	Flags	Window (sliding win.)			
C	Checksur	n	Urgent Pointer			
	O _l		Padding			
Data (variable)						

32 bits

UDP

- Orientado a datos
- Sin garantías: best effort

Source Port	Dest. Port			
Length	Checksum			
Data (variable)				

32 bits

Sockets | Primitivas

- socket(domain: int, type: int, protocol: int): int
- bind(fd: int, addr: struct sockaddr*, addrlen: int): int
- listen(fd: int, backlog: int): int
- accept(fd: int, addr: struct sockaddr*, addrlen: int): int
- connect(fd: int, addr: struct sockaddr*, addrlen: int): int
- send(fd: int, buf: void*, buflen: int, flags: int): int
- receive (fd: int, buf: void*, buflen: int, flags: int): int
- close(fd: int): int

Sockets | Flujo de uso TCP

Sockets | Flujo de uso UDP

Mensajes Sincrónicos vs Asincrónicos

Source: W. Stallings. Data and Computer Communications. 8th edition.

Congestión de Red | *Throughput*

Source: W. Stallings. Data and Computer Communications. 8th edition.

Congestión de Red | *Delay*

