Al Seminar Report

Date: 03/21/2025

Name	Vo Hoang Chuong (우황장)	Student No.	2024121193
School	Dongguk University	Course Classification	Ph.D.
Speaker Name	최종현 부교수	Speaker Affiliation	서울대학교
Title	Action sequence prediction by vision and language		

Seminar Contents

I. Foundations:

- Sequential Visual Data: Modeling sequences of visual data (video, images, sketches) + language.
- Beyond Human Vision: Neuromorphic sensors, thermal-to-photo face recognition.
- Embodied Action Heuristics: Vision + Language impact on agent actions.

II. Embodied AI: Perception to Action:

- Developmental Origins: Embodied AI principles, analogy to adolescent learning; necessity debate.
- Perception-Action Loops: Vision + language -> action sequences for tasks.
- Enabling Technologies:
 - o Subtasks: Interactive QA, vision-language/visual navigation.
 - o House3D: Simulator for domestic environment interactions.
 - ALFRED Benchmark: Evaluating agents on household tasks (language, vision, directives).

III. Learning and Architecture:

- Learning Paradigms:
 - o Imitation Learning: Learning from expert trajectories; sample/compute efficient.
 - o Reinforcement Learning: Learning via reward; high sample/compute requirements.
- Hierarchical Instructions: Inferring low-level actions from high-level instructions (2020-2022).
- Vision-Language Grounding: Architectures (LSTMs, pixel-wise interaction masks).
- Failure Cases: e.g., Optical flow in multi-task learning; information disconnects.
- Transfer Learning: Taskonomy; task suitability for knowledge transfer.
- Qualitative Analysis: Language attention; surrounding views; modularization.
- Efficient Architectures: Binary Networks.

- Continual Model Updates: Continual learning.

IV. Challenges and Future:

- Memory Limitations: Forgetting steps/object locations; solutions.
- Domain Gap:
 - o LLM Actions: Reducing the gap between LLM-inferred actions and embodiment.
 - o Virtual-Real Transfer: ReALFRED dataset.
- Continual Learning: CL-ALFRED; adaptation without forgetting.

■ What have you learned from this seminar?

- All agents need sequential visual data combined with language for better learning.
- Embodied AI is an emerging trend for training action sequences. This approach is inspired by human nature's way of learning during adolescence through explorative physical interactions.
- Exploration learning is still debated whether it is necessary for future AI systems.
- There are benchmarks and simulations for the Embodied AI field, like House3D and ALFRED.
- There is a tradeoff between imitation learning (efficient but expert-dependent) and reinforcement learning (flexible but needs more data and computation).
- There are multiple failure cases and limitations in existing models.
- Critical Challenges:
- Addressing memory limitations in agents (forgetting, object relocation).
 - o Bridging the "domain gap" between:
 - o LLM-generated action plans and embodied execution.
 - o Virtual training environments and real-world deployment.

- Future Directions:

- Continual learning (e.g., CL-ALFRED) is a key to creating adaptable, lifelong learning agents.
- o There is a critical need for datasets (like ReALFRED) to facilitate real-world transfer.
- o Improving qualitative analysis methods.
- o Looking at components like attention and modularity.

