Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

India cum. fit CFR —— World cum. fit CFR

Demonstration of SIR model where $R_{\,\varrho}$ is linearly reduced to 0.75 at the end of the sequence:

Reducing the R $_{\rm e}\,$ while keeping gamma constant is the same as reducing contact rate. Contact rate is reduced through isolation, lockdowns, and vaccinations. This case about 14:1000 benefit (19%).

False Positives Demonstration

Use 0.20% from US est. incidence above as estimated daily incidence Prevalence estimated as avg. infected period of 2 weeks X incidence 0.20% X 14 = 2.800%

99% accuracy of test

	Positive	Negative	
test pos	2.772%	0.972%	3.74%
test neg	0.028%	96.228%	96.26%
	2.800%	97.200%	100.00%

False pos. is a bit over 1/4 of total positives! 2.772%/3.74% 74.0% FALSE + 0.972%/3.74% 26.0%

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

USA Excess Deaths (from CDC data):

Annualized on 48 weeks

	All Cause	All Cause, excl. CV19	CV19
3 yr average before 2020	855:100,000	855:100,000	-
2020	978:100,000	890:100,000	-
Diff.	123:100,000	35:100,000	88:100,000
Diff.	+14.4%	+4.1%	+10.3%

yr average weighted 859:100,000

29% of All-Cause excess deaths are non-CV19

Here are some demonstrations of SIR model, using Re, gamma, and beta

