Devoir surveillé n°10

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 La fonction tan est π -périodique.

2 La fonction tan est strictement croissante, impaire et $\lim_{\frac{\pi}{2}} \tan = +\infty$.

 $\boxed{\bf 3}$ Il suffit de poser $T_0=X$. Soit $n\in\mathbb N$. Supposons qu'il existe un polynôme T_n tel que

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \tan^{(n)}(x) = T_n(\tan x)$$

Alors

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \tan^{(n+1)}(x) = (1 + \tan^2(x)) T'_n(\tan x) = T_{n+1}(\tan x)$$

avec $T_{n+1} = (1 + X^2)T'_n$. L'existence de la suite (T_n) est donc prouvée par récurrence.

4 On obtient $T_1 = X^2 + 1$, $T_2 = 2X^3 + 2X$ et $T_2 = 6X^4 + 8X^2 + 2$.

5 $T_0 = X$ est bien à coefficients dans \mathbb{N} . Soit $n \in \mathbb{N}$. Supposons que T_n est à coefficients dans \mathbb{N} . Alors T'_n est également à coefficients dans \mathbb{N} donc $T_{n+1} = (X^2 + 1)T'_n$ l'est également. Par récurrence, pour tout $n \in \mathbb{N}$, T_n est à coefficients entiers. deg $T_0 = 1$. Soit $n \in \mathbb{N}$. Supposons que deg $T_n = n + 1$. Alors deg $T_{n+1} = \deg(X^2 + 1) + \deg(T'_n) = n + 2$. Par récurrence, pour tout $n \in \mathbb{N}$, deg $T_n = n + 1$.

6 On utilise la formule de Taylor avec reste intégral.

Soit f une fonction de classe \mathcal{C}^{n+1} sur un intervalle I. Alors pour tout $(a,b) \in I^2$,

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

Comme tan est de classe \mathcal{C}^{∞} sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, la formule de Taylor avec reste intégral donne

$$\forall n \in \mathbb{N}, \ \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ \tan(x) = \sum_{j=0}^{2n+1} \frac{\tan^{(j)}(0)}{j!} x^j + \int_0^x \frac{(x-t)^{2n+1}}{(2n+1)!} \tan^{(2n+2)}(t) \ \mathrm{d}t$$

Or la fonction tan est impaire donc on prouve aisément que $\tan^{(j)}$ a une parité opposée à celle de j. Notamment, si j est pair, $\tan^{(j)}$ est impaire et $\tan^{(j)}(0) = 0$. On en déduit que

$$\forall n \in \mathbb{N}, \ \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ \tan(x) = \sum_{j=0}^{n} \frac{\tan^{(2j+1)}(0)}{(2j+1)!} x^{2j+1} + \int_{0}^{x} \frac{(x-t)^{2n+1}}{(2n+1)!} \mathrm{T}_{2n+2}(\tan t) \ \mathrm{d}t$$

Il suffit donc de poser $t_j = \tan^{(2j+1)}(0)$.

Tomme les fonctions $f^{(n)}$ et $t \mapsto -\frac{(x-t)^n}{n}$ sont de classe \mathcal{C}^1 sur [0,x] et de dérivées respectives $f^{(n+1)}$ et $t \mapsto (x-t)^{n-1}$, on obtient par intégrattion par parties :

$$R_n(x) = -\frac{1}{n!} \left[f^{(n)}(t)(x-t)^n \right]_0^x + \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x-t)^n dt = \frac{f^{(n)}(0)}{n!} x^n + R_n(x)$$

8.a D'après la question précédente,

$$\forall n \in \mathbb{N}^*, \ R_n(b) = \frac{f^{(n)}(0)}{n!} b^n + R_{n+1}(b) \ge R_{n+1}(b)$$

car $b \ge 0$ et $f^{(n)}(0) \ge 0$ par hypothèse. La suite $(R_n(b))_{n \in \mathbb{N}^*}$ est donc décroissante. Par ailleurs, $f^{(n)}$ est positive sur [0,b] par hypothèse de même que $t \mapsto (b-t)^{n-1}$. On en déduit que $R_n(b) \ge 0$. La suite $(R_n(b))_{n \in \mathbb{N}^*}$ est décroissante et majorée : elle converge.

8.b. 8.b.i On effectue le changement de variable linéaire t = ux. Alors

$$R_n(x) = \frac{1}{(n-1)!} \int_0^1 f^{(n)}(u)(x - ux)^{n-1} x \, du = \frac{x^n}{(n-1)!} \int_0^1 f^{(n)}(u)(1 - u)^{n-1} \, du$$

8.b.ii Par hypothèse, $f^{(n-1)}$ est positive sur $I \cap \mathbb{R}_+$ donc $f^{(n)}$ est croissante sur $I \cap \mathbb{R}_+$. Notamment, pour tout $t \in [0,1]$,

$$0 \le f^{(n)}(0) \le f^{(n)}(tx) \le f^{(n)}(tb)$$

puis

$$0 \le f^{(n)}(tx)(1-t)^{n-1} \le f^{(n)}(tb)(1-t)^{n-1}$$

et enfin, par croissance de l'intégrale,

$$0 \le R_n(x) \le \frac{x^n}{(n-1)!} \int_0^1 f^{(n)}(tb)(1-t)^{n-1} dt$$

8.b.iii D'après la question précédente,

$$R_n(x) \le \frac{x^n}{(n-1)!} \int_0^1 f^{(n)}(tb)(1-t)^{n-1} dt = \left(\frac{x}{b}\right)^n \cdot \frac{b^n}{(n-1)!} \int_0^1 f^{(n)}(tb)(1-t)^{n-1} dt = \left(\frac{x}{b}\right)^n R_n(b)$$

8.c Soit $x \in [0, b[$. Le théorème des gendarmes permet d'affirmer que $\lim_{n \to +\infty} R_n(x) = 0$. Mais, d'après la formule de Taylor avec reste intégral,

$$\forall n \in \mathbb{N}, \ f(x) = \sum_{k=0}^{n} f^{(k)(0)} k! x^{k} + R_{n+1}(x)$$

On en déduit que

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Si n est pair, $f^{(n)}$ est impaire car f est impaire et alors $\frac{f^{(n)}(0)}{n!}x^n=0=-\frac{f^{(n)}(0)}{n!}(-x)^n$. Si n est impair, on a encore $\frac{f^{(n)}(0)}{n!}x^n=-\frac{f^{(n)}(0)}{n!}(-x)^n$. Ainsi

$$f(-x) = -f(x) = -\sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} (-x)^n$$

Finalement,

$$\forall x \in]-b, b[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

9 Comme tan est impaire, il suffit de montrer que $\tan^{(n)}$ est positive sur $\left[0, \frac{\pi}{2}\right[$ pour tout $n \in \mathbb{N}$. En effet, tan est positive sur $\left[0, \frac{\pi}{2}\right[$ et T_n est positif sur \mathbb{R}_+ puisque ses coefficients sont dans \mathbb{N} . Ainsi $\tan^{(n)} = T_n \circ \tan$ est positif sur $\left[0, \frac{\pi}{2}\right[$.

D'après la question précédente, le rayon de convergence de $\sum_{n\in\mathbb{N}}\frac{t_n}{(2n+1)!}z^n$ est supérieur ou égal à $\frac{\pi}{2}$. S'il était strictement supérieur à $\frac{\pi}{2}$, $x\mapsto\sum_{n=0}^{+\infty}\frac{t_n}{(2n+1)!}$ serait continue en $\frac{\pi}{2}$. Notamment, tan admettrait une limite finie en $\frac{\pi}{2}$, ce qui n'est pas. Le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}}\frac{t_n}{(2n+1)!}z^n$ vaut donc $\frac{\pi}{2}$.

11 On trouve sans difficulté $\psi_n(X^i) = \frac{1}{i+1} ((X+1)^{i+1} - X^{i+1})$ pour tout $i \in [0, n]$.

12 En développant l'expression de $\psi_n(X^i)$ obtenue à la question précédente grâce à la formule du binôme de Newton, on trouve que deg $\psi_n(X^i) = i$ pour tout $i \in [0, n]$. Notamment, $\psi_n(X^i) \in \mathbb{R}_n[X]$ pour tout $i \in [0, n]$. L'application ψ_n est linéaire et $(X^i)_{0 \le i \le n}$ est une base de $\mathbb{R}_n[X]$ donc $\psi_n(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$. Finalement, ψ_n est bien un endomorphisme de $\mathbb{R}_n[X]$.

Notons A = $(A_{i,j})_{0 \le i,j \le n}$ la matrice de ψ_n dans la base $(1,X,\ldots,X^n)$. Puisque

$$\forall j \in [0, n], \ \psi_n(X^j) = \frac{1}{j+1} \left((X+1)^{j+1} - X^{j+1} \right) = \frac{1}{j+1} \sum_{i=0}^{j} {j+1 \choose i} X^i$$

on obtient,

$$\forall (i, j) \in [0, n]^2, \ A_{i,j} = \begin{cases} \frac{1}{j+1} {j+1 \choose i} & \text{si } i \leq j \\ 0 & \text{sinon} \end{cases}$$

14 La matrice A de la question précédente est triangulaire supérieure et

$$\forall i \in [\![0,n]\!], \ \mathbf{A}_{i,i} = \frac{1}{i+1} \binom{i+1}{i} = 1 \neq 0$$

donc A est inversible et ψ_n est un automorphisme de $\mathbb{R}_n[X]$.

A serait semblable à la matrice identité I_{n+1} et donc égale à I_{n+1} . Ceci n'est pas le cas puisque $A_{0,1} = \frac{1}{2} \neq 0$ par exemple.

16 D'une part, le théorème fondamental de l'analyse permet d'affirmer que

$$\forall x \in \mathbb{R}, \ \psi_n(P)'(x) = P(x+1) - P(x)$$

D'autre part, comme P est une primitive de P',

$$\forall x \in \mathbb{R}, \ \psi_n(P')(x) = \int_x^{x+1} P'(t) \ dt = P(x+1) - P(x)$$

Ainsi, les polynômes $\psi_n(P)'$ et $\psi_n(P')$ coïncident sur l'ensemble infini \mathbb{R} : ils sont donc égaux.

Supposons qu'il existe deux suites (S_m) et (U_m) vérifiant les conditions de l'énoncé. On va prouver par récurrence que ces deux suites sont égales. Tout d'abord $S_0 = U_0 = 1$. Supposons qu'il existe $k \in \mathbb{N}$ tel que $S_k = T_k$. Alors $S'_{k+1} = (k+1)S_k = (k+1)U_k = U'_{k+1}$. Il existe donc $c \in \mathbb{R}$ tel que $S_{k+1} = U_{k+1} + c$. Mais alors

$$c = \int_0^1 (S_{k+1}(t) - U_{k+1})(t) dt = \int_0^1 S_{k+1}(t) dt - \int_0^1 U_{k+1}(t) dt = 0$$

de sorte que $S_{k+1} = U_{k+1}$. Par récurrence, les deux suites (S_m) et (U_m) sont égales.

On prouve également l'existence de la suite (S_m) par récurrence. En effet, si S_0, \dots, S_k ont déjà été construits, en notant

 Q_{k+1} l'unique primitive de $(k+1)S_k$ s'annulant en 0, il suffit alors de poser $S_{k+1} = Q_{k+1} - \int_0^1 Q_{k+1}(t) dt$ pour avoir

$$S'_{k+1} = (k+1)S_k \text{ et } \int_0^1 S_{k+1}(t) dt = 0.$$

18 Avec les notations de la question précédente, $Q_1 = X$ puis

$$S_1 = Q_1 - \int_0^1 Q_1(t) dt = X - \frac{1}{2}$$

Ensuite, $Q_2 = X^2 - X$ puis

$$S_2 = Q_2 - \int_0^1 Q_2(t) dt = X^2 - X + \frac{1}{6}$$

Enfin, $Q_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X$ puis

$$S_3 = Q_3 - \int_0^1 Q_3(t) dt = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X$$

19 S_0 est un polynôme unitaire de degré 0. Supposons qu'il existe $k \in \mathbb{N}$ tel que S_k soit un polynôme unitaire de degré k. Alors le monôme dominant de $S'_{k+1} = (k+1)S_k$ est $(k+1)X^k$ donc, en primitivant, S_{k+1} est bien un polynôme unitaire de degré k+1. Par récurrence, pour tout $k \in \mathbb{N}$, S_k est un polynôme unitaire de degré k.

20 Soit un entier $k \ge 2$. Alors $k - 1 \ge 1$ donc

$$S_k(1) - S_k(0) = \int_0^1 S'_k(t) dt = k \int_0^1 S_{k-1}(t) dt = 0$$

- **21** Posons $U_m(X) = (-1)^m S_m(1 X)$. Alors
 - $U_0 = S_0 = 1$;
 - $\forall k \in \mathbb{N}, \ U'_{k+1} = (-1)^{k+2} S'_{k+1} (1-X) = (-1)^k (k+1) S_k (1-X) = (k+1) U_k;$
 - pour tout $k \in \mathbb{N}^*$, par le changement de variable u = 1 t,

$$\int_0^1 U_k(t) dt = (-1)^k \int_0^1 S_k(1-t) dt = (-1)^k \int_0^1 S_k(u) du = 0$$

Par unicité de la suite vérifiant ces trois conditions, les suites (S_m) et (U_m) sont égales i.e.

$$\forall m \in \mathbb{N}, \ S_m(1-X) = (-1)^m S_m(X)$$

Tout d'abord, deg $S_k = k$ donc $S_k \in \mathbb{R}_n[X]$ pour tout $k \in [0, n]$. L'injectivité de ψ_n garantit alors l'unicité demandée. On raisonne ensuite par récurrence. Tout d'abord, $\psi_n(S_0) = \psi_n(1) = 1 = X^0$. Supposons que $\psi_n(S_k) = X^k$ pour un certain $k \in [0, n-1]$. Alors, d'après la question **16**

$$\psi_n(S_{k+1})' = \psi_n(S'_{k+1}) = \psi_n((k+1)S_k) = (k+1)\psi_n(S_k) = (k+1)X^k$$

Il existe donc $c \in \mathbb{R}$ tel que $\psi_n(S_{k+1}) = X^{k+1} + c$. Mais, comme $k+1 \ge 1$,

$$c = \psi_n(S_{k+1})(0) = \int_0^1 S_{k+1}(t) dt = 0$$

Ainsi $\psi_n(S_{k+1}) = X^{k+1}$. Par récurrence finie, $\psi_n(S_k) = X^k$ pour tout $k \in [0, n]$.

23 On trouve avec la question 18

$$\sigma_1 = -\frac{1}{2} \qquad \qquad \sigma_2 = \frac{1}{6} \qquad \qquad \sigma_3 = 0$$

Soit k un entier naturel impair tel que $k \ge 3$. D'après la question **20**, $S_k(0) = S_k(1)$. Mais d'après la question **21**, $S_k(1) = S_k(1-0) = (-1)^k S_k(0) = -S_k(0)$ car k est impair. On en déduit donc que $\sigma_k = S_k(0) = 0$.

25 C'est parti pour une autre récurrence. Tout d'abord $S_0 = 1 = \sum_{k=0}^{0} {0 \choose k} X^{0-k}$. Supposons que $S_n = \sum_{k=0}^{n} {n \choose k} \sigma_k X^{n-k}$ pour un certain $n \in \mathbb{N}$. Alors

$$S'_{n+1} = (n+1)S_n = \sum_{k=0}^{n} (n+1) \binom{n}{k} \sigma_k X^{n-k} = \sum_{k=0}^{n} \binom{n+1}{k} (n+1-k) \sigma_k X^{n-k} = \left(\sum_{k=0}^{n} \binom{n+1}{k} X^{n+1-k}\right)'$$

Comme $S_{n+1}(0) = \sigma_{n+1}$,

$$S_{n+1} = \sigma_{n+1} + \sum_{k=0}^{n} {n+1 \choose k} X^{n+1-k} = \sum_{k=0}^{n+1} {n+1 \choose k} X^{n+1-k}$$

ce qui conclut la récurrence.

26 Soit un entier $n \ge 2$. En évaluant la relation de la question précédente en 1 et en utilisant la question **20**,

$$\sigma_n = S_n(0) = S_n(1) = \sum_{k=0}^n \binom{n}{k} \sigma_k$$

et comme $\binom{n}{n} = 1$,

$$\sum_{k=0}^{n-1} \binom{n}{k} \sigma_k = 0$$

27 D'après la question précédente,

$$\forall n \geq 2, \ \sigma_{n-1} = -\frac{1}{n} \sum_{k=0}^{n-2} \binom{n}{k} \sigma_k$$

ou encore

$$\forall n \geq 1, \ \sigma_n = -\frac{1}{n+1} \sum_{k=0}^{n-1} \binom{n+1}{k} \sigma_k$$

```
def sigma(N):
    l=[1]
    for n in range(1,N+1):
        binomial=1
        somme=0
        for k in range(n):
            somme+=binomial*l[k]
            binomial*=(n-k+1)/(k+1)
        l.append(-somme/(n+1))
    return l[-1]
```

```
>>> sigma(50)
7.500866746077044e+24
```

28 Le rayon de convergence de la série exponentielle est infini. Par produit de Cauchy,

$$\forall z \in D, \ e^{z}S(z) = \left(\sum_{n=0}^{+\infty} \frac{z^{n}}{n!}\right) \left(\sum_{n=0}^{+\infty} \frac{\sigma_{n}}{n!} z^{n}\right)$$
$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{(n-k)!} \cdot \frac{\sigma_{k}}{k!}\right) z^{n}$$
$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \sigma_{k}\right) \frac{z^{n}}{n!}$$

D'après la question **26**, pour tout entier $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \binom{n}{k} \sigma_k = \begin{cases} \sigma_n & \text{si } n \ge 2\\ \sigma_0 & \text{si } n = 0\\ \sigma_0 + \sigma_1 & \text{si } n = 1 \end{cases}$$

de sorte que

$$\forall z \in D, \ e^z S(z) = \sigma_0 z + \sum_{n=0}^{+\infty} \frac{\sigma_n}{n!} z^n = z + S(z)$$

29 Posons $\rho = \min \left\{ \frac{R}{2}, \pi \right\}$. Soit $z \in D(0, \rho)$. Alors |2iz| = 2|z| < R donc, d'après la question précédente, $(e^{2iz} - 1)S(2iz) = 2iz$.

De plus, pour $z \in D(0, \rho) \setminus \{0\}$, 2z n'est pas un multiple entier de 2π donc $e^{2iz} - 1 \neq 0$ de sorte que $S(2iz) = \frac{2iz}{e^{2iz} - 1}$ puis

$$2iT(z) = (e^{2iz+1})S(2iz) = e^{2iz}S(2iz) + S(2iz) = 2iz + 2S(2iz)$$

ou encore

$$T(z) = z - iS(2iz)$$

Cette égalité est encore valable pour z=0 puisque T(0)=-i et $S(0)=\sigma_0=1$. Finalement,

$$\forall z \in D(0, \rho), \ T(z) = z - iS(2iz) = z - i\sum_{n=0}^{+\infty} \frac{\sigma_n}{n!} (2iz)^n$$

Puisque $\sigma_1 = -\frac{1}{2}$ et $\sigma_n = 0$ pour tout $n \ge 3$ impair, tous les termes d'indices impairs de ce dernier développement en série entière sont nuls. On peut donc écrire :

$$\forall z \in D(0, \rho), \ T(z) = -i \sum_{n=0}^{+\infty} \frac{4^n (-1)^n \sigma_{2n}}{(2n)!} z^{2n}$$

Soit $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\}$. Alors 2x et 4x ne sont pas des multiples de 2π de sorte que $e^{4ix} \neq 1$ et $e^{2ix} \neq 1$.

$$\begin{split} \frac{2(e^{4ix}+1)}{e^{4ix}-1} - \frac{e^{2ix}+1}{e^{2ix}-1} &= \frac{2(e^{2ix}+e^{-2ix})}{e^{2ix}-e^{-2ix}} - \frac{e^{ix}+e^{-ix}}{e^{ix}-e^{-ix}} \\ &= \frac{2\cos(2x)}{i\sin(2x)} - \frac{\cos(x)}{i\sin(x)} \\ &= \frac{\cos(2x)}{i\sin(x)\cos(x)} - \frac{\cos(x)}{i\sin(x)} \\ &= \frac{\cos(2x)-\cos^2(x)}{i\sin(x)\cos(x)} \\ &= -\frac{\sin^2(x)}{i\sin(x)\cos(x)} \\ &= i\frac{\sin(x)}{\cos(x)} = i\tan(x) \end{split}$$

On en déduit que

$$\tan(x) = \frac{1}{ix} \left(T(2x) - T(x) \right)$$

et donc, d'après la question précédente,

$$\tan(x) = -\frac{1}{x} \left(\sum_{n=0}^{+\infty} \frac{4^n (-1)^n \sigma_{2n}}{(2n)!} (2x)^{2n} - \sum_{n=0}^{+\infty} \frac{4^n (-1)^n \sigma_{2n}}{(2n)!} x^{2n} \right)$$

$$= \sum_{n=1}^{+\infty} \frac{4^n (-1)^n \sigma_{2n} (1 - 4^n)}{(2n)!} x^{2n-1}$$

$$= \sum_{n=0}^{+\infty} \frac{4^{n+1} (-1)^{n+1} \sigma_{2n+2} (1 - 4^{n+1})}{(2n+2)!} x^{2n+1}$$

$$= \sum_{n=0}^{+\infty} \frac{4^{n+1} (-1)^n \sigma_{2n+2} (4^{n+1} - 1)}{(2n+2)!} x^{2n+1}$$

Par unicité du développement en série entière,

$$\forall n \in \mathbb{N}, \ \frac{t_n}{(2n+1)!} = \frac{4^{n+1}(-1)^n \sigma_{2n+2}(4^{n+1}-1)}{(2n+2)!}$$

ou encore

$$\forall n \in \mathbb{N}, \ t_n = \frac{4^{n+1}(-1)^n \sigma_{2n+2}(4^{n+1}-1)}{2n+2}$$