GLOSSARY

1CE one-stage common-emitter amplifier

2CE two-stage common-emitter amplifier

2EET Two Extra Element Theorem

 A, A_v voltage gain

BJT bipolar junction transistor

CT Chain Theorem

dnti double null triple injection condition or calculation

dpi driving-point impedance

dpr driving-point resistance

D-OA design-oriented analysis

D discrepancy factor

 D_n null discrepancy factor

DT Dissection Theorem

EET Extra Element Theorem

F feedback factor

FET field-effect transistor

G closed-loop voltage gain

 G_{∞} ideal closed-loop voltage gain

GFT General Feedback Theorem

2GFT Two General Feedback Theorem

H any TF

 H_{∞} H when $T = \infty$

 H_0 H when T=0

 H^{uy} H when the superscript signal is nulled

K feedback ratio

 K_d , K_n si, ndi interaction parameter

LEE low entropy expression

m miller multiplier

ndi null double injection condition or calculation

NEET N Extra Element Theorem

 R_{dp} driving-point resistance

 R_d , R_n si, ndi dpr's

rhp right half plane (negative zero)

si single injection condition or calculation

T return ratio or loop gain

 T_i current return ratio or loop gain

T_v	voltage return ratio or loop gain
$T_i^{v_y}$	short-circuit current return ratio or loop gain
$T_v^{i_y}$	open-circuit voltage return ratio or loop gain
$T_{i\ rev}^{v_x}$	short-circuit reverse current return ratio or loop gain
$T_{v\ rev}^{i_x}$	open-circuit reverse voltage return ratio or loop gain
T_n	null return ratio or null loop gain
T_{ni}	current null return ratio or null loop gain
T_{nv}	voltage null return ratio or null loop gain
$T_{ni}^{v_y}$	short-circuit null current return ratio or null loop gain
$T_{nv}^{i_y}$	open-circuit null voltage return ratio or null loop gain
$T_{ni}^{v_x}$ rev	short-circuit reverse current null return ratio or null loop gain
$T_{nv}^{i_x}$ rev	open-circuit reverse voltage null return ratio or null loop gain

TF transfer function

 Y_t forward transadmittance

 Z_{dp} driving-point impedance

 Z_d , Z_n si, ndi dpi's

 Z_d , Z_n si, ndi dpi's

 Z_i, Z_o outside input, output impedance

 Z_i^*, Z_o^* inside input, output impedance

Z_t forward transimpedance