P2 - Econometria III

Pedro Mendes

15, C2)

Os dados em fertil2 incluem informações sobre o número de filhos, anos de escolaridade, idade, e variáveis de religião e status econômico de mulheres de Botsuana durante 1988.

```
fertil2 <- tibble::as_tibble(wooldridge::fertil2)

fertil2 |>
  head()
```

```
# A tibble: 6 x 27
##
     mnthborn yearborn
                           age electric radio
                                                    tv bicycle
                                                                 educ
                                                                         ceb agefbrth
##
                  <int> <int>
                                   <int> <int> <int>
                                                          <int> <int> <int>
                                                                                 <int>
##
  1
             5
                      64
                             2.4
                                        1
                                              1
                                                     1
                                                              1
                                                                    12
                                                                            ()
                                                                                     NΑ
             1
                                        1
                                              1
                                                              1
                                                                    13
                                                                            3
                      56
                             32
                                                                                     25
             7
                      58
                             30
                                        1
                                                              0
                                                                                     27
                      45
                            42
                                        1
                                              0
                                                     1
                                                                     4
                                                                           3
##
            11
                                                              0
                                                                                     17
             5
                                                                           2
##
  5
                      45
                             43
                                        1
                                              1
                                                     1
                                                              1
                                                                    11
                                                                                     24
             8
                      52
                                              0
                                                              0
                                                                     7
                                                                            1
##
                             36
                                        1
                                                                                     26
     ... with 17 more variables: children <int>, knowmeth <int>, usemeth <int>,
       monthfm <int>, yearfm <int>, agefm <int>, idlnchld <int>, heduc <int>,
##
##
       agesq <int>, urban <int>, urb_educ <int>, spirit <int>, protest <int>,
```

(i)

##

Estime o modelo

$$children = \beta_0 + \beta_1 educ + \beta_2 age + \beta_3 age^2 + u$$

catholic <int>, frsthalf <int>, educ0 <int>, evermarr <int>

por OLS e interprete as estimativas. Em particular, mantendo age fixo, qual é o efeito estimado de mais um ano de escolaridade em fertilidade? Se 100 mulheres completassem mais um ano de escolaridade, haveria uma diminuição na quantidade de filhos (representados pela variável children)?

```
ols_model <- fertil2 |>
  fixest::feols(children ~ educ + age + I(age^2))
```

```
summary(ols_model)
```

```
## OLS estimation, Dep. Var.: children
  Observations: 4,361
 Standard-errors: IID
##
             Estimate Std. Error t value Pr(>|t|)
  ##
## educ
            -0.090575
                       0.005921 -15.29813 < 2.2e-16 ***
             0.332449
                       0.016549 20.08815 < 2.2e-16 ***
## age
                       0.000273 - 9.65113 < 2.2e-16 ***
  I(age^2)
            -0.002631
## ---
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## RMSE: 1.45908
                Adj. R2: 0.568427
```

- Caso haja um aumento de um ano na educação de 100 mulheres, em média, ocorreria uma diminuição em 9 na quantidade de filhos.
- O aumento de um ano na idade leva a um aumento de 33 na quantidade de filhos.
- Aparentemente existe um efeito n\u00e3o linear significativo na idade, o que pode expressar a quest\u00e3o da tend\u00e9ncia decrescente da fertilidade das mulheres com o passar dos anos, o que mostra que o efeito do aumento da idade na quantidade de filhos n\u00e3o \u00e9 o mesmo para todas as idades.

(ii)

A variável frsthalf é uma variável dummy igual a um, caso a mulher tenha nascido durante os primeiros seis meses do ano. Presumindo que frsthalf não seja correlacionada com o termo de erro do item (i), mostre que frsthalf é um candidato VI razoável a educ (Dica: é preciso fazer uma regressão).

```
forma_reduzida <- fertil2 |>
  fixest::feols(educ ~ age + I(age^2) + frsthalf)
summary(forma_reduzida)
## OLS estimation, Dep. Var.: educ
## Observations: 4,361
  Standard-errors: IID
##
               Estimate Std. Error t value
                                               Pr(>|t|)
  (Intercept) 9.692864
                           0.598069 16.206945 < 2.2e-16 ***
##
              -0.107950
                           0.042040 -2.567789 1.0268e-02 *
## age
                           0.000693 -0.729597 4.6568e-01
## I(age^2)
              -0.000506
                           0.112830 -7.553742 5.1227e-14 ***
  frsthalf
              -0.852285
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## RMSE: 3.70926
                  Adj. R2: 0.107037
```

```
theta <- forma_reduzida$coefficients['frsthalf']
r <- residuals(forma_reduzida)
z <- fertil2$frsthalf
age <- fertil2$age

cov_r_z <- cov(r, z)</pre>
```

- 1. cov(u, z) = 0 por suposição do item (ii)
- 2. $\theta \neq 0 \rightarrow -0.8522854$
- 3. $cov(r,z) \approx 0 \rightarrow -3.5624827 \times 10^{-15}$
- 4. $cov(r, x_j), j = 1, 2 \approx 0 \rightarrow \text{rod}$ rodando a regressão $r = \delta_0 + \delta_1 age + \delta_2 age^2 + e$, percebe-se que todos os coeficientes são aproximadamente iguais a 0, além de nenhuma ser significante.

```
model_r <- fertil2 |>
 dplyr::bind_cols(r = r) >
 fixest::feols(r ~ age + I(age^2))
summary(model_r)
## OLS estimation, Dep. Var.: r
## Observations: 4,361
## Standard-errors: IID
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.4020e-15 0.595427 4.0300e-15
                                                      1
             -3.8754e-14 0.042035 -9.2195e-13
## age
                                                      1
## I(age^2) 2.1200e-16 0.000693 3.0657e-13
                                                      1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 3.70926 Adj. R2: -4.589e-4
```

Logo, frsthalf é um candidato IV razoavel para age.

(iii)

Estime o modelo do item (i) usando frsthalf como IV para educ. Compare o efeito estimado de educação com a estimativa OLS do item (i).

```
iv_model <- AER::ivreg(
  children ~ age + I(age^2) + educ | age + I(age^2) + frsthalf,
  data = fertil2
)
summary(iv_model)</pre>
```

```
##
## Call:
## AER::ivreg(formula = children ~ age + I(age^2) + educ | age +
##
       I(age^2) + frsthalf, data = fertil2)
##
## Residuals:
##
       Min
                  10
                      Median
                                    3Q
                                            Max
  -6.05272 -0.71481 0.06224 0.76236 7.23693
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.3878054 0.5481502 -6.180 6.98e-10 ***
               0.3236052 0.0178596 18.119 < 2e-16 ***
## age
## I(age^2)
              -0.0026723 0.0002797 -9.555 < 2e-16 ***
              -0.1714989
## educ
                           0.0531796
                                      -3.225 0.00127 **
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 1.491 on 4357 degrees of freedom
## Multiple R-Squared: 0.5502, Adjusted R-squared: 0.5499
## Wald test:
              1765 on 3 and 4357 DF, p-value: < 2.2e-16
```

O efeito da educação sobre o número de filhos é maior quando estimado pelo modelo de variável instrumental usando a variável frsthalf, já que em tal modelo, o efeito de um ano adicional de educação sobre o número de filhos é 1.89 vezes maior.

(iv)

Adicione as variáveis binárias electric, tv e bicycle ao modelo e presuma que elas sejam exógenas. Estime a equação por OLS e 2SLS e compare os coeficientes estimados em educ. Interprete o coeficiente em tv e explique por que a posse de televisão tem efeito negativo sobre a fertilidade.

```
ols_model_2 <- fertil2 |>
  fixest::feols(children ~ age + I(age^2) + electric + tv + bicycle + educ)

## NOTE: 5 observations removed because of NA values (RHS: 5).

summary(ols_model_2)

## OLS estimation, Dep. Var.: children

## Observations: 4,356

## Standard-errors: IID

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -4.389784 0.240317 -18.26662 < 2.2e-16 ***</pre>
```

```
## age
             0.340204
                       0.016442 20.69153 < 2.2e-16 ***
## I(age^2)
                       0.000271 -10.00951 < 2.2e-16 ***
            -0.002708
## electric -0.302729 0.076187 -3.97351 7.1969e-05 ***
                       0.091437 -2.76850 5.6554e-03 **
## tv
             -0.253144
## bicycle
             ## educ
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.44664 Adj. R2: 0.575475
iv_model_2 <- AER::ivreg(</pre>
 children ~ age + I(age^2) + electric + tv + bicycle + educ | age + I(age^2) +
 data = fertil2
)
summary(iv_model_2)
##
## Call:
## AER::ivreq(formula = children ~ age + I(age^2) + electric + tv +
      bicycle + educ | age + I(age^2) + electric + tv + bicycle +
##
##
      frsthalf, data = fertil2)
##
## Residuals:
##
     Min
             10 Median
                             3Q
                                   Max
## -5.9519 -0.7184 0.0290 0.7384 7.3372
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.5913324  0.6450889  -5.567  2.74e-08 ***
             0.3281451 0.0190587 17.218 < 2e-16 ***
## age
             -0.0027222 0.0002766 -9.843 < 2e-16 ***
## I(age^2)
## electric -0.1065314 0.1659650 -0.642 0.5210
## tv
             -0.0025550 0.2092301 -0.012 0.9903
## bicycle
             0.3320724 0.0515264
                                  6.445 1.28e-10 ***
             -0.1639814 0.0655269 -2.503 0.0124 *
## educ
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.479 on 4349 degrees of freedom
## Multiple R-Squared: 0.5577, Adjusted R-squared: 0.5571
\#\# Wald test: 921.7 on 6 and 4349 DF, p-value: < 2.2e-16
```

Cap. 17, C8)

O arquivo jtrain2 contém dados sobre um experimento de treinamento profissional para um grupo de homens. O programa começaria em janeiro de 1976 e se estenderia até meados de 1977. O programa acabou em dezembro de 1977. A ideia é testar se a participação no programa de treinamento profissional teve um efeito nas probabilidades de desemprego e rendimentos de 1978.

```
jtrain2 <- tibble::as_tibble(wooldridge::jtrain2)</pre>
jtrain2 |> head()
##
   # A tibble: 6 x 19
##
                    educ black
                                  hisp married nodegree mosinex
                                                                                     re78
##
     <int> <int> <int> <int> <int>
                                           <int>
                                                     <int>
                                                              <int> <dbl> <dbl>
                                                                                     <dbl>
                                                                          0
##
  1
          1
                37
                       11
                               1
                                               1
                                                          1
                                                                  13
                                                                                     9.93
##
   2
          1
                22
                        9
                               0
                                      1
                                               0
                                                          1
                                                                  13
                                                                          0
                                                                                     3.60
##
  3
          1
                30
                       12
                                      0
                                                          0
                                                                  13
                                                                          0
                                                                                 0 24.9
                               1
                                               0
##
   4
          1
                27
                       11
                               1
                                      0
                                               0
                                                          1
                                                                  13
                                                                          0
                                                                                     7.51
                                                                                     0.290
##
  5
          1
                33
                        8
                               1
                                      0
                                               0
                                                          1
                                                                  13
                                                                          0
                                                                                 0
          1
                2.2
                        9
                               1
                                      0
                                               ()
                                                          1
                                                                  13
                                                                          0
                                                                                 0
                                                                                     4.06
##
  6
##
     ... with 8 more variables: unem74 <int>, unem75 <int>, unem78 <int>,
        lre74 <dbl>, lre75 <dbl>, lre78 <dbl>, agesq <int>, mostrn <int>
##
```

(ii)

Estabeleça uma regressão linear de treino em muitas variáveis demográficas e pré-treino: unem74, unem75, age, educ, black, hisp e married. Essas variáveis são significativas conjuntamente ao nível de 5%?

```
ols_model_train <- lm(train ~ unem74 + unem75 + age + educ + black + hisp + mar
summary(ols_model_train)</pre>
```

```
##
## Call:
  lm(formula = train \sim unem74 + unem75 + age + educ + black + hisp +
##
       married, data = jtrain2)
##
##
  Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                          Max
##
  -0.6024 - 0.4196 - 0.3437
                              0.5537
##
  Coefficients:
##
##
                 Estimate Std. Error t value Pr(>|t|)
##
   (Intercept)
                 0.338022
                             0.189445
                                         1.784
                                                  0.0751 .
```

```
## unem74
              0.020880
                         0.077294
                                  0.270
                                           0.7872
## unem75
                         0.071902 -1.329 0.1845
             -0.095571
              0.003206
                         0.003403 0.942 0.3467
## age
              0.012013
                                  0.900 0.3684
## educ
                         0.013342
## black
             -0.081666
                         0.087732 - 0.931 0.3524
## hisp
             -0.200017
                         0.116971 - 1.710 0.0880.
                                  0.579 0.5629
## married
             0.037289
                         0.064404
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4917 on 437 degrees of freedom
## Multiple R-squared: 0.02238, Adjusted R-squared:
                                                     0.006722
## F-statistic: 1.429 on 7 and 437 DF, p-value: 0.1915
```

As variáveis não são conjuntamente significantes ao nível de 5% (p-valor = 0,1915).

(iii)

Estime uma versão probit do modelo linear do item (ii). Calcule o teste de razão de verossimilhança para a significância conjunta de todas as variáveis. O que você conclui?

```
probit_model_train <- glm(
    train ~ unem74 + unem75 + age + educ + black + hisp + married,
    family = binomial(link = "probit"),
    data = jtrain2
)
summary(probit_model_train)
##</pre>
```

```
## Call:
## glm(formula = train \sim unem74 + unem75 + age + educ + black +
##
      hisp + married, family = binomial(link = "probit"), data = jtrain2)
##
## Deviance Residuals:
##
                1Q Median
      Min
                                  3Q
                                         Max
## -1.3620 -1.0421
                   -0.9159
                              1.2702
                                      1.6962
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.424107
                         0.489506 -0.866 0.3863
## unem74
              0.053026 0.198834
                                    0.267 0.7897
## unem75
              -0.247725 0.184806 -1.340 0.1801
               0.008344 0.008780
                                    0.950 0.3419
## age
```

```
## educ
                0.031443
                           0.034657
                                       0.907
                                               0.3643
                                      -0.921
                                               0.3569
## black
               -0.206930
                           0.224614
## hisp
               -0.539777
                           0.307947
                                      -1.753
                                               0.0796 .
                0.096625
                           0.165503
                                       0.584
                                               0.5593
## married
##
  Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 604.20
                             on 444
                                       degrees of freedom
## Residual deviance: 594.02 on 437
                                       degrees of freedom
  AIC: 610.02
##
##
## Number of Fisher Scoring iterations: 4
lmtest::lrtest(probit_model_train)
## Likelihood ratio test
##
## Model 1: train ~ unem74 + unem75 + age + educ + black + hisp + married
## Model 2: train ~ 1
##
     #Df
         LogLik Df Chisq Pr(>Chisq)
       8 - 297.01
## 1
       1 -302.10 -7 10.182
## 2
                               0.1785
```

As variáveis não são conjuntamente significantes ao nível de 5%.

(iv)

Com base em suas respostas aos itens (ii) e (iii), parece-lhe que a participação em treinamento profissional possa ser tratada como exógena como forma de explicar o status de desemprego de 1978? Explique.

Sim, pois a variável não apresenta correlação relevante em relação às demais variáveis do modelo, ou seja, a variável não apresenta endogeneidade.

(v)

Estabeleça uma regressão simples de unem78 em train e reporte os resultados em forma de equação. Qual é o efeito estimado de participar do programa de treina-mento na probabilidade de estar desempregado em 1978? Isso é estatisticamente significante?

```
ols_model_unem78 <- lm(unem78 ~ train, data = jtrain2)
summary(ols_model_unem78)</pre>
```

```
## Call:
\#\# lm(formula = unem78 ~ train, data = jtrain2)
##
## Residuals:
##
     Min 1Q Median 3Q
                                      Max
## -0.3538 -0.3538 -0.2432 0.6462 0.7568
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                          0.02849 12.419 <2e-16 ***
## (Intercept) 0.35385
             -0.11060
                          0.04419 - 2.503 0.0127 *
## train
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
\#\# Residual standard error: 0.4594 on 443 degrees of freedom
## Multiple R-squared: 0.01394, Adjusted R-squared:
                                                         0.01172
## F-statistic: 6.265 on 1 and 443 DF, p-value: 0.01267
                             unem78 = -0.11 \cdot train
(vi)
Estabeleça um probit de unem78 em train. Faz sentido comparar o coeficiente probit em train com o
coeficiente obtido do modelo linear do item (v)?
probit_model_unem78 <- glm(unem78 ~ train, data = jtrain2, family = binomial(li</pre>
summary(probit_model_unem78)
##
## Call:
## glm(formula = unem78 ~ train, family = binomial(link = "probit"),
      data = jtrain2)
##
##
## Deviance Residuals:
##
      Min
                1Q Median 3Q
                                          Max
## -0.9346 -0.9346 -0.7466 1.4414 1.6815
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
                          0.07975 -4.702 2.58e-06 ***
## (Intercept) -0.37496
```

-0.32095 0.12848 -2.498 0.0125 *

##

train

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 549.47 on 444 degrees of freedom
## Residual deviance: 543.17 on 443 degrees of freedom
## AIC: 547.17
##
## Number of Fisher Scoring iterations: 4
```

Não, pois a interpretação do efeito marginal dado pelo coeficiente do modelo probit depende dos valores de nível da variável independente em questão, nesse caso, train.

(vii)

Encontre as probabilidades apropriadas dos itens (v) e (vi). Explique por que elas são idênticas. Qual abordagem você usaria para medir o efeito e a significância estatística do programa de treinamento profissional?

```
cat ("=== COEFICIENTES PROBIT ===\n")
## === COEFICIENTES PROBIT ===
pnorm(probit_model_unem78$coefficients)
##
  (Intercept)
                     train
     0.3538462
                 0.3741239
##
cat("\n=== VALORES AJUSTADOS PROBIT (train) ===\n")
##
## === VALORES AJUSTADOS PROBIT (train) ===
predict.glm(probit_model_unem78, type = "response") |>
 dplyr::as_tibble() |>
  dplyr::distinct(value) |>
 purrr::flatten_dbl()
## [1] 0.2432432 0.3538462
cat ("\n=== COEFICIENTES OLS ===\n")
##
## === COEFICIENTES OLS ===
```

```
ols_model_unem78$coefficients

## (Intercept) train
## 0.3538462 -0.1106029

cat("\n=== VALORES AJUSTADOS OLS (train) ===\n")

##
## === VALORES AJUSTADOS OLS (train) ===

predict(ols_model_unem78, type = "response") |>
    dplyr::as_tibble() |>
    dplyr::distinct(value) |>
    purrr::flatten_dbl()

## [1] 0.2432432 0.3538462
```