

| NOW-HOWOGENEOUS COMPLEX LINEAR SYST                                                                                   | EMS     |
|-----------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                                       |         |
| Example: Find the solution of the Inear su                                                                            | stem    |
| 2i x +2x = 2i                                                                                                         | 7,      |
| $2i \times +2 \times = 2i$ $3 \times + (-2i) \times = i$                                                              | n       |
|                                                                                                                       |         |
| 2ù 2   2i   -i                                                                                                        |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                | i       |
|                                                                                                                       | 1 A     |
|                                                                                                                       | - (-32) |
| $\sim \left(\begin{array}{c c} -i & 1 \\ \hline 0 & 1+i & -3+i \end{array}\right) R_1 = R_2 - 3R_1 \qquad (1-ni) + i$ | . 26    |
|                                                                                                                       |         |
| From row 2, (1ti) $\chi_2 = -3 + 2$                                                                                   |         |
| $\chi_{2} = \frac{-3+i}{(1+i)} = \frac{-2+4i}{2} = \frac{1}{8} - 1 + 2i$                                              | ,       |
| From 100 1 1 - 1 1 = 1                                                                                                |         |
| $24 = 1 + i \times_2 = 1 + i \left( -\frac{244i}{2} \right)$                                                          |         |
| =  +i(-1+2i)  =  -i-2                                                                                                 |         |
| 1-i.                                                                                                                  |         |
|                                                                                                                       |         |
| $\begin{pmatrix} \mathcal{W}_{1} \\ \mathcal{W}_{2} \end{pmatrix}^{2} \begin{pmatrix} -1-i \\ -1+i \end{pmatrix}$     |         |

| Inverse of a complex matrix                  |
|----------------------------------------------|
|                                              |
| Gwen an nxn complex watrix A, we can         |
| fuil the inverse using ple same ilea we used |
|                                              |
| for real matrices, that is construct the     |
| Super-augmented matrix                       |
| T 1177                                       |
| - CAIJ                                       |
| relace vering & elementary now operations    |
|                                              |
| to IIB                                       |
|                                              |
| aul pre A = B,                               |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
| ,                                            |



Some properties of complex exponents (i) eixtip = eix-eop

(a) Let Z = x + iy  $e^{Z} = e^{x + iy} = e^{x} - e^{iy}$   $= e^{x} \left( G_{S}(y) + i G_{m}(y) \right)$ 

et = excos(y) + i ex sin(y)



## Mor representation of a complex number Let Z= xtiy => y= | 2 | su (0) → x= (7 cos (0) Z = x + iy = 1 H cos (0) + i | Z | sw (0 = 12 ( conco) + & hur(0) This is the plan representation of z. 0 = argument of Z (radians

Let 
$$\overline{z}_1 = r_1 \ell$$
 and  $\overline{z}_2 = r_2 \ell$ 

$$\begin{array}{c} (1) \quad \overline{z}_1 \overline{z}_2 = \left( \Gamma_1 \ell^{i \theta_1} \right) \left( \Gamma_2 \ell^{i \theta_2} \right) \\ = \Gamma_1 \Gamma_2 \ell^{i \theta_1} \ell^{i \theta_2} \\ = \Gamma_1 \Gamma_2 \ell^{i \theta_1} \ell^{i \theta_2} \\ = \Gamma_1 \Gamma_2 \ell^{i \theta_1} \ell^{i \theta_2} \\ \end{array}$$





Example! Find 3 nosts of the equation  $Z^3 + i29 = 0$ 227 モニーシュマ Let 7= reid -i27 = 27e 2 1-i27 => Z3 = -27i X+ZTK => r3ei30 = 27e => r3 = 27 => r=3 => 30 = 3T/2, AT/2, 11/2 => 10 = 1/2 / 7/4 / 11/4 71 到=30%, 五=30许% Zz = 3 P 6