

TFT-LCD (FPGA Programming)

문 병 인 bihmoon@knu.ac.kr

경북대학교 전자공학부

Outline

- □배경 지식
- □실습 과제 개요
- □실습 환경
- □실습 과정

Project Creation

HDL Coding

FPGA Programming

□HDL을 이용하여 Pushbutton 입력에 따라 TFT-LCD에 표시되고 있는 물체의 위치를 변경시켜주는 회로 설계

배경 지식 (1/5)

□ TFT-LCD 구동 원리

- ❖ Gate Line에 전압(신호)을 인가
- ❖ TFT가 Turn-on됨
- ❖ Pixel에 액정을 구동할 수 있는 신호 인가 Solicit

□ Example (2번째 Gate Line 기준)

- ❖ Gate 전극에 전압이 인가되고 있으며, 또한 모든 Source Line에 신호 전압이 인가됨
- ❖ 신호 전압 V2에 액정을 구동 시킬 수 있는 신호가 인가되고, 나머지 V1과 V2 에 구동 전압보다 낮은 신호가 인가되면 V2 Pixel 화소만 동작 가능함
- ❖ Gate 전압 신호가 인가되지 않은 라인의 TFT들은 모두 Turn-off 상태를 유지하며, Storage Cap에 인가된 신호를 유지시킴

배경 지식 (2/5)

☐ VSync(Vertical Synchronize)

- ❖ 1장의 영상을 프레임(frame)이라 함
- ❖ Vsync는 한 프레임이 시작될 때 시작 지점을 알 려주는 역할
- ❖ 영상을 읽기(read) 시작하는 좌표 지점부터 영상의 마지막 픽셀 지점까지 Vsync는 high값 을 유지함

☐ HSync(Horizontal Synchronize)

- ❖ 영상은 여러 개의 줄(line)으로 구성됨
- ❖ 영상에서 한 줄이 시작될 때 시작 지점을 알려주는 역할
- ❖ 영상을 읽은(read) 뒤 LCD에 쓰기(write) 위해 서는 왼쪽의 Lenna 영상과 같이 빨간색 라인을 따라 각 줄을 읽고 쓰는 과정을 거침

배경 지식 (3/5)

☐ TFT-LCD Display Signal

- **VBP:** Vertical Back Porch
- **VFP:** Vertical Front Porch
- ***** VSPW: Vertical Sync Pulse Width
- * HBP: Horizontal Back Porch
- ***** HFP: Horizontal Front Porch
- ***** HSPW: Horizontal Sync Pulse Width
- ❖ TFT-LCD에 화면을 띄우기 위해서는 porch 구간과 pulse width를 고려해야 함

배경 지식 (4/5)

☐ TFT-LCD I/O ports

❖ 사용해야하는 I/O ports는 다음과 같음

NET	PL(FPGA) Pin	CONNECTOR	Device	Signal Name	BANK
FPGA_CL54	L17	QTH2-61	J25-1	XvVCLK	34
FPGA CL55	M17	QTH2-63	J25-3	XvVSYNC	34
FPGA_CL56	N17	QTH2-65	J25-2	XvHSYNC	34
FPGA_CL57	N18	QTH2-67	J25-6	BLUE3	34
FPGA_CL58	M15	QTH2-69	J25-7	BLUE4	34
FPGA_CL59	M16	QTH2-71	J25-8	BLUE5	34
FPGA_CL60	J18	QTH2-73	J25-9	BLUE6	34
FPGA_CL61	K18	QTH2-75	J25-10	BLUE7	34
FPGA_CL62	J21	QTH2-77	J25-12	GREEN2	34
FPGA_CL63	J22	QTH2-79	J25-13	GREEN3	34
FPGA_CL64	J20	QTH2-81	J25-14	GREEN4	34
FPGA_CL65	K21	QTH2-83	J25-15	GREEN5	34
FPGA_CL66	L21	QTH2-85	J25-16	GREEN6	34
FPGA_CL67	L22	QTH2-87	J25-17	GREEN7	34
FPGA_CL68	K19	QTH2-89	J25-20	RED3	34
FPGA_CL69	K20	QTH2-91	J25-21	RED4	34
FPGA_CL96	T21	QTH2-97	J25-22	RED5	33
FPGA_CL97	U21	QTH2-99	J25-23	RED6	33
FPGA_CL98	T22	QTH2-101	J25-24	RED7	33
FPGA_CL99	U22	QTH2-103	J25-26	XvVDEN	33
FPGA_CL100	V22	QTH2-105	J25-31	LCD_SSPSFRM	33
FPGA_CL101	W22	QTH2-107	J25-32	LCD_BL_EN	33
FPGA_CL102	W20	QTH2-109	J25-37	LCD_SSPSCLK	33
FPGA_CL103	W21	QTH2-111	J25-39	LCD_SSPTXD	33
FPGA_CL104	U20	QTH2-113	J25-38	LCD_SSPRXD	33
FPGA_CL105	V20	QTH2-115	J25-40	LCD_SSPIRQn	33

배경 지식 (5/5)

☐ Pushbutton I/O ports

- ❖ 본 예제에서 사용하는 Pushbutton은 눌러졌을 때 Low가 되고, 초기상태에서 는 High를 유지함
- ❖ 사용하는 I/O ports는 다음과 같음

NET	PL(FPGA) Pin	CONNECTOR	Device	Signal Name	BANK
FPGA_CL108	Y18	QTH2-98	S1_1/2	PUSH_G0	33
FPGA_CL109	AA18	QTH2-100	S2_1/2	PUSH_G1	33
FPGA_CL110	Y19	QTH2-102	S3_1/2	PUSH_G2	33
FPGA_CL111	AA19	QTH2-104	S4_1/2	PUSH_G3	33

Project Creation

HDL Coding

FPGA Programming

실습 환경 (1/3)

- **□** Vivado 19.1
 - ❖ Xilinx의 7 series FPGA 및 ZYNQ를 활용하기 위한 IDE(Integrated Development Environment) tool
- □Vivado 19.1 설치 확인
 - ❖ 시작 → 모든 프로그램 → Xilinx Design Tools → Vivado 2019.1 → Vivado 2019.1 또는 바탕화면에 있는 Vivado 2019.1 아이콘을 click

실습 환경 (2/3)

□실습 환경을 위한 directory 생성

- ❖ Directory 생성 시 주의점
 - ▶ 폴더 경로에 한글이 있는 경우Vivado에서 error 발생
- ❖ C 폴더 루트(c:\) 에 work 폴더를 생성
 - ▶ work 폴더 내부에 *학번을 이용한 폴더(ex. 0123456789*) 를 생성
 - ▶ 금일 실습을 수행할 폴더

실습 환경 (3/3)

□실습에서 사용할 file download

- ❖ 수업 게시판에서 verilog source file(g2m.v, horizontal.v, rgb.v, TFTLCDCtrl.v, vertical.v) constraint file(top.xdc)을 download 받은 후, 다음 경로에 위치
 - "C:/work/"학世"/"에 위치

Project Creation (1/8)

□새 project 생성

- ❖ Vivado 는 project 단위의 개발 환경을 제공
 - ➤ Quick Start → Create Project 또는
 - ➤ File → Project → New

Project Creation (2/8)

□New Project wizard

- ❖ Project 생성에 관한 안내 문구와 함께 New Project wizard 실행
 - ▶ <u>▶</u> 버튼을 클릭하여 New Project wizard 시작

Project Creation (3/8)

□Project 경로 설정

- ❖ 해당 project의 이름과 경로를 설정
 - Project name : tftlcd
 - ➤ Project location : □ 버튼 click
 - 컴퓨터 → 로컬 디스크 (C:) → work → "*학번 폴더*" 클릭 후, Select 클릭
 - ➤ Create project subdirectory : project name으로 하위 폴더를 생성(check)

Project Creation (4/8)

☐Project Type 설정

- ❖ Project Type 을 설정 (Project Type 에 따라 개발flow가 달라짐)
 - ▶ RTL Project는 HDL 코딩, synthesis, place and route, 등 FPGA와 ZYNQ 개발의 A to Z를 제공
 - ➤ RTL Project 외의 Project Type은 다른 project의 결과를 불러와 활용
 - ▶ Do not specify sources at this time : project 생성 시 소스 파일을 추가하지 않음(추후에 필요 시 추가 가능)

Project Creation (5/8)

■Source file 추가

- ❖ HDL source file 생성 또는 추가
 - ➤ 1. Add Files 클릭
 - ▶ 2. 앞서 download한 verilog source file(g2m.v, horizontal.v, rgb.v,
 - TFTLCDCtrl.v, vertical.v) 선택 후 🔼 클릭 🔃
 - > 3. Copy sources into project check 후 Next 클릭

Project Creation (6/8)

□Constraint file 추가

- ❖ Constraint file 생성 또는 추가
 - (constraint file 은 pin assign, timing 에 관한 정보를 가짐)
 - ➤ 1. Add Files 클릭
 - ▶ 2. 앞서 download한 constraint file(top.xdc) 선택 후 💌 클릭
 - ➤ 3. Copy constraints files into project check 후 🔤 클릭

Project Creation (7/8)

□ Target device 설정

- ❖ 사용하는 FPGA / ZYNQ chip(part) 또는 board 를 선택(board의 경우 주변장치에 관한 preset 제공)
 - ➤ Filter → Search에서 "xc7z020clg484-1"를 입력하여 해당 chip 선택

Project Creation (8/8)

□Project 생성 마무리

- ❖ 앞서 설정한 옵션에 관한 Summary 를 확인
 - ➤ Emish 버튼을 click하여 project 생성 마침

실습 과정

Project Creation

HDL Coding

FPGA Programming

□TFT-LCD timing characteristics

□TFT-LCD timing characteristics

	Symbol	Spec.			
Parameter		Min.	Тур.	Max.	Unit
Horizontal cycle	T_H	525	525	605	DCLK
Horizontal display period	T_{HD}		480		DCLK
Horizontal pulse width	T_{HP}	2	41	41	DCLK
Horizontal back porch	T_{HB}	2	2	41	DCLK
Horizontal front porch	T_{HF}	2	2	82	DCLK
Vertical cycle	T_V	285	286	399	HSYNC
Vertical display period	T_{VD}		272		HSYNC
Vertical pulse width	T_{VP}	1	10	11	HSYNC
Vertical back porch	T_{VB}	1	2	11	HSYNC
Vertical front porch	T_{VF}	1	2	227	HSYNC

☐TFT-LCD controller Block diagram

- ☐ TFT-LCD Controller Block diagram
 - Clock divider
 - ▶ TFT-LCD 구동에 사용되는 12.5MHz의 클럭을 생성하는 클럭 분주 모듈
 - * HSYNC Generator
 - ▶ Horizontal Synchronize 에 필요한 신호들을 생성하는 모듈
 - VSYNC Generator
 - Vertical Synchronize 에 필요한 신호들을 생성하는 모듈
 - RGB Generator
 - ▶ HSYNC, VSYNC Generator 에서 만들어진 신호를 바탕으로 TFT-LCD에 표시할 Pixel data 를 생성하는 모듈
 - * TFTLCDCtrl
 - 위의 모듈들을 연결시켜주고, TFT-LCD 구동에 필요한 값들을 미리 셋팅 해주고
 각 모듈에서 생성된 신호들을 최종적으로 TFT-LCD 에 출력해주는 모듈
 - 기존에 제공한 RGB Generator 코드는 정적인 화면을 출력하므로, <u>동적인 화면을</u> 출력하기 위해서는 수정이 필요함.
 - 나머지 모듈의 경우 기존에 제공된 자료와 동작이 동일하므로 수정이 필요하지 않음

HDL Coding (1/5)

□Pixel Data Generator

- ❖ HSYNC, VSYNC Generator 에서 만들어진 신호를 바탕으로 TFT-LCD 에 표시할 Pixel data 를 생성하는 모듈
 - 크게 3가지 부분으로 나눌 수 있음
 - ➤ 버튼을 한 번 누를 때, 버튼을 누르고 있는 시간에 상관없이 한번의 펄스 만 발생시켜주는 Level to Pulse Converter 회로
 - ▶ 만들어진 펄스를 바탕으로 카운트를 하는 Counter 회로
 - 카운트 된 위치 값들을 바탕으로 해당되는 위치에 표시될 RGB data를 만들어내는 회로

HDL Coding (2/5)

□Level-to-Pulse Converter

- ❖ 버튼을 누르는 동작은 사람의 입장에서는 잠깐이지만 12.5MHz로 동 작하는 회로 관점에서는 매우 오랫동안 값이 유지되는 것이기 때문에 이를 펄스 신호로 바꾸어 처리하면 Pushbutton을 사용할 때 편리함
 - 아래와 같이 단순한 회로를 설계하여 위와 같은 동작을 하는 회로를 구 현할 수 있음

HDL Coding (3/5)

□ Counter

❖ Pushbutton에 의해 pulse가 만들어질 때 마다 8 pixels 씩 움직이도록 값을 카운트하는 회로 설계(Left, Up, Down, Right 4 방향의 움직임을 카운트해야 하므로 아래와 같은 카운터가 각 방향별로 필요)

```
78 🖨
         always@(negedge clk or negedge rstn)
79 🗇
         begin
80 🗇
             if(!rstn)
81 🚦
                 Left cnt <= 10'd0:
82 🗇
           etse begin
83 (E)
                 if(Left_oneshot)
84 -
                     Left_cnt <= Left_cnt +
                                                  10'd8:
85 🗄
                 else
86 (-)
                     Left_cnt <= Left_cnt;
87 A
             end
88 🚖
         end
89 1
```

HDL Coding (4/5)

□RGB Generator

❖ Counter에서 카운팅 된 값에 따라 데이터를 표시할 위치를 계산하여 해당되는 영역에만 R,G,B 데이터를 전송 시켜 영상을 출력시키는 회 로이며, 오직 조합회로로만 설계했기 때문에 의도하지 않은 래치가 생성되는 것을 방지하기 위해 모든 if 문에 대응되는 else 문을 추가하 여 설계해야 함

```
always@(DE,HsyncCount,VsyncCount,rstn,Right_cnt,Left_cnt,Up_cnt,Down_cnt)
                                                                                                                           154 🗓
                                                                                                                                                          else
128 🖨
129 🖨
             if(!rstn)
                                                                                                                           155 🖯
                                                                                                                                                          begin
130 🖨
             begin
                                                                                                                                                                R = 0:
                                                                                                                           156
131
132
                B = B:
                                                                                                                           157
133
134 🖨
                                                                                                                           158
135
             else if (DE == 1)
                                                                                                                           159
                                                                                                                                                          end
                if((HsyncCount >= (10'd43 + (Right_cnt) - (Left_cnt)))8&(HsyncCount <= (10'd103 + (Right_cnt) - (Left_cnt))))
                                                                                                                           160 🖨
                                                                                                                                                   end
140 🖨
                    if ((VsyncCount > 10'd11 - (Up_cnt) + (Down_cnt)) && (VsyncCount <= 10'd51 - (Up_cnt) + (Down_cnt)))
                                                                                                                           161
                                                                                                                                                   else
                                                                                                                           162 ₪
                                                                                                                                                   begin
                       R = 5'b1111;
142
143
                       G = 6'b0000000;
                                                                                                                           163
                                                                                                                                                          R = 0:
144
                       B = 5'b111111;
145 🖨
                                                                                                                                                          G = 0:
                                                                                                                           164
146
147
                    else
                                                                                                                                                          R = \Omega:
                                                                                                                           165
148 ⊡
                       R = 0:
149
                                                                                                                           166 A
                                                                                                                                                   end
150
151
                       B = 0;
                                                                                                                           167 A
                                                                                                                                             end
152 A
                    end
                                                                                                                           168
```

HDL Coding (5/5)

□TFTLCDCtrl

- ❖ TFT-LCD 제어에 필요한 신호를 생성하는 모듈들을 서로 연결 시켜 주고, 그 외 필요한 신호들을 미리 셋팅 해주고 각 모듈에서 만들어진 신호를 최종적으로 TFT-LCD 에 출력해주는 모듈
 - ➤ TFT-LCD의 Backlight 전원 신호인 TFTLCD_Tpower 신호를 High로 셋팅
 - ➤ TFT-LCD의 Data enable 신호인 TFTLCD_DE_out 신호를 High로 셋팅
 - Block diagram 을 참고하여 관련된 모듈들 끼리 연결

실습 과정

Project Creation

HDL Coding

FPGA Programming

Pin Assign (1/2)

□앞서 추가한 constraint file open

 ❖ Project Manager → Sources → Hierarchy → Constraints →

 constrs_1 → top.xdc (target) double click ਨੈ ਂ ਂ constraint file open

Pin Assign (2/2)

□Constraint file을 통한 pin assign

- ❖ 설계한TFT-LCD Controller(TFTLCDctrl.v)의 I/O ports 를 외부로 연 결해야 함
- * ZYNQ PL part의 pins 에 top module의 I/O ports 활당
 - > Constraint file(top.xdc)에 pin assign 정보 확인

```
set_property | OSTANDARD "LYCMOS33" [get_ports "Right"]
set_property IOSTANDARD "LYCMOS33" [get_ports "clk"]
                                                              set_property IOSTANDARD "LYCMOS33" [get_ports "R[*]"
                                                                                                                         set_property PACKAGE_PIN "Y18" [get_ports "Right"]
set_property PACKAGE_PIN "M19" [get_ports "clk"]
                                                              set_property PACKAGE_PIN "T22" [get_ports "R[4]"]
                                                              set_property PACKAGE_PIN "U21" [get_ports "R[3]"]
                                                                                                                         set_property | OSTANDARD "LYCMOS33" [get_ports "Down"]
set property IOSTANDARD "LVCMOS33" [get ports "rstn"]
                                                              set_property PACKAGE_PIN "T21" [get_ports "R[2]"]
                                                                                                                         set_property PACKAGE_PIN "AA18" [get_ports "Down"]
set_property PACKAGE_PIN "AB21" [get_ports "rstn"]
                                                              set_property PACKAGE_PIN "K20" [get_ports "R[1]"]
                                                              set_property PACKAGE_PIN "K19" [get_ports "R[0]"]
set_property IOSTANDARD "LYCMOS33" [get_ports "opcIk"]
                                                                                                                          set_property IOSTANDARD "LVCMOS33" [get_ports "Up"]
                                                          29
set_property PACKAGE_PIN "L17" [get_ports "opcik"]
                                                                                                                         set_property PACKAGE_PIN "Y19" [get_ports "Up"]
                                                              set_property IOSTANDARD "LYCMOS33" [get_ports "G[+]
set_property IOSTANDARD "LVCMOS33" [get_ports "Hsync"]
                                                              set_property PACKAGE_PIN "L22" [get_ports "G[5]"]
set_property PACKAGE_PIN "N17" [get_ports "Hsync"]
                                                                                                                         set_property IOSTANDARD "LYCMOS33" [get_ports "Left"]
                                                              set_property PACKAGE_PIN "L21" [get_ports "G[4]"]
                                                                                                                         set_property PACKAGE_PIN "AA19" [get_ports "Left"]
                                                              set_property PACKAGE_PIN "K21" [get_ports "G[3]"]
set_property IOSTANDARD "LVCMOS33" [get_ports "Vsync"]
                                                              set_property PACKAGE_PIN "J20" [get_ports "G[2]"]
set_property PACKAGE_PIN "M17" [get_ports "Vsync"]
                                                              set_property PACKAGE_PIN "J22" [get_ports "G[1]"]
                                                              set_property PACKAGE_PIN "J21" [get_ports "G[0]"]
set_property | OSTANDARD "LYCMOS33" [get_ports "TFTLCD_DE_out"]
set_property PACKAGE_PIN "U22" [get_ports "TFTLCD_DE_out"]
                                                              set_property IOSTANDARD "LYCMOS33" [get_ports "B[+]"]
                                                                                                                               Pushbutton 사용을
set_property IOSTANDARD "LVCMOS33" [get_ports "TFTLCD_Tpower"]
                                                              set_property PACKAGE_PIN "K18" [get_ports "B[4]"]
set_property PACKAGE_PIN "W22" [get_ports "TFTLCD_Tpower"]
                                                              set_property PACKAGE_PIN "J18" [get_ports "B[3]"]
                                                                                                                               위한 I/O ports 할당
                                                              set_property PACKAGE_PIN "M16" [get_ports "B[2]"]
                                                          42 ; set_property PACKAGE_PIN "M15" [get_ports "B[1]"]
                                                          43 set_property PACKAGE_PIN "N18" [get_ports "B[0]"]
```

Generate Bitstream (1/2)

□ZYNQ PL programming을 위한 bitstream file 생성

- ❖ Flow Navigator → Program and Debug → Generate Bitstream 클릭
- ❖ No Implementation Results Available window → 클릭

Generate Bitstream (2/2)

□Generate Bitstream 과정

- ❖ Vivado 우측 상단에 status bar로 진행 과정 표시
 - ▶ 완료 후 pop-up window에서 Open Hardware Manager 체크 후 클릭
- ❖ Synthesis, implementation(place and route), generate bitstream 순으로 진행
 - > Synthesis : HDL을 gate level의 netlist로 translate
 - ➤ Implementation(PnR) : Netlist를 FPGA fabric에 place하고 route
 - Generate bitstream : 최종 결과를 FPGA fabric에 programming 할 수
 있는 bitstream 형태로 저장

□Open target

- ❖ Open target 전 RPS-Z7020-TK board 전원 ON 필요
- **❖** Hardware Manager window → Open target 클릭 → Auto Connect 클릭

Bitstream Programming (2/3)

□ Program device

- ❖ Bitstream file ≦ ZYNQ PL 0 programming
- ❖ Hardware Manager window → Program device 클릭
- ❖ Program Device window에서 Program 클릭
 - Bitstream file을 자동으로 불러옴

□Programming 완료 확인

❖ Bitstream file programming 완료 후 ZYNQ PL part(xc7z020_1)의
Status 가 Programmed로 변경

실행 결과 확인

□RPS-Z7020-TK board 확인

- ❖ Pushbutton들을 눌러보면서 TFT-LCD에 표시되는 결과 확인
- ❖ 각 스위치에 해당하는 동작은 다음과 같음
- S4 = Left,
 - S3 = Up,
 - S2 = Down,
 - S1 = Right

