【一化基础大合集】【物质的量】【一化辞典】2阿伏加德罗定律

原子学说与实验矛盾所引发的争辩

小老弟, 你实验不精 准吧! 专不专业啊?

法国选手: 盖-吕萨克

拜托! 大哥! 你理论有问题吧?

先知是多么寂寞! 居然死后才出名...

阿伏加德罗(先知是多么寂寞!)

1811年发表了阿伏加德罗假说

"分子"的概念可以解决当时化学遇到的诸 多问题。但直到他1856年逝世,分子假说 仍然没有被大多数化学家所承认。

1860年在德国召开了国际化学会议。 意大利化学家坎尼扎罗力挺阿伏加德罗定律。 经过化学界多年的混乱,大家终于静下心研究,并承认阿伏加德罗的分子假说的确是扭

转这一混乱局面的唯一钥匙。阿伏加德罗的

伟大贡献终于被发现。

阿伏加德罗常数不是我搞的 考不好别赖我呀!!

阿伏加德罗定律

内容: 同温同压下, 相同体积的任何气体(包括混合气体)都含有相同数目的粒子(分子)。

(马上练)一定温度和压强下,2 体积 AB_2 气体和 1 体积 B_2 气体化合生成 2 体积气态化合物,则该化合物的

化学式为_____

再来一题,完成任务解锁新技能!

在同温同压下, 1L 甲烷(CH₄)和 2L 二氧化碳:

分子数之比为_____,

分子物质的量之比为_____,

原子总数之比为_____,

质量之比为_____,

密度之比为____。

阿伏加德罗定律重要推论

相同条件	结论	
相門兼件	公式	语言叙述
同温同压	$\frac{V_1}{V_2} = \frac{n_1}{n_2} = \frac{N_1}{N_2}$	同温同压下,体积之比等于物质 的量之比,等于分子数之比
同温同体积	$\frac{p_1}{p_2} = \frac{n_1}{n_2} = \frac{N_1}{N_2}$	同温同体积下,压强之比等于物 质的量之比,等于分子数之比
同温同压	$\frac{ ho_1}{ ho_2} = \frac{M_1}{M_2}$	同温同压下,密度之比等于摩尔 质量之比
同温同压同体积	$\frac{m_1}{m_2} = \frac{M_1}{M_2}$	同温同压下,体积相同的气体, 其质量与摩尔质量成正比

理想气体状态方程(高中化学没教,但很好用!)

我们马上来解题, 你可以的!

同温同压下,用等质量的 CH₄、CO₂、O₂、SO₂ 四种气体分别吹出四个气球,其中气体为 CH₄ 的是()

来练练和密度有关的考题

在两个密闭容器中,分别充有质量相等的甲乙两种气体。若两容器的温度和压强均相等,且甲的密度大于 乙的密度,则下列说法正确的是()

- A. 甲的分子数比乙的分子数少
- B. 乙的原子物质的量一定比甲的原子物质的量多
- c. 甲的摩尔体积比乙的摩尔体积小
- D. 甲的相对分子质量比乙的相对分子质量小

和压强相关题目也能轻松解决!

在三个密闭容器中分别充入 A、B、C 三种气体,当它们的温度和密度都相同时,这三种气体的压强(p)从大 到小的顺序为 p(B)>p(A)>p(C),则符合上述关系的 $A \times B \times C$ 分别是 ()

- A. Ne H_2 O_2 B. O_2 N_2 H_2
- $C. \ \ NO \ \ CO_2 \ \ H_2 \qquad \qquad D. \ \ NH_3 \ \ O_2 \ \ NO_2$