Wave-Particle Duality and Wave Mechanics

Birech Zephania (PhD)
Department of Physics
University of Nairobi
30/04/2020

The Wave Particle Duality of Matter

- Wave-particle duality refers to the <u>fundamental property</u> of matter where, at one moment it appears like a wave, and yet at another moment it acts like a particle.
- The unique properties of (light) waves
 - Are oscillatory in nature i.e have <u>frequency and wavelength</u>
 - Transport <u>energy</u> from one point to the next
 - They exhibit interference
 - They exhibit diffraction

Wave interference

Constructive Wave interference

Destructive Wave interference

Wave Diffraction

The bending or spreading of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture.

It occurs significantly when the size of the aperture or obstacle is of similar linear dimensions to the wavelength of the incident wave.

Light Wave interference pattern caused by diffraction

Electron Diffraction experiment

• Electrons undergo diffraction just like light waves do.

• Particles also have wave properties!!!

Does Big Objects exhibit wave particle duality?

Tennis ball through two slits

Tennis ball does not undergo diffraction.

No wave properties for big objects!!

Pattern made by electrons similar to those of Blue Light after passing through two slits

The De Broglie Wavelength

Louis de Broglie (1924) proposed that if EM radiation exhibits wave-particle duality, then perhaps material objects such as electrons may at times act like waves. For a photon $E = h\nu$ and E=Pc; P=E/c. Recall that $\nu=c/\lambda$ and $P=m\nu$ are the frequency and momentum of a photon

$$v = \frac{E}{h}$$
 and $\lambda = \frac{h}{P}$

thus the corresponding de Broglie wavelength (a moving body is associated with de Broglie waves) is given by

$$P = m\upsilon = \frac{h}{\lambda} \Longrightarrow \lambda = \frac{h}{p} = \frac{h}{m\upsilon}$$

The de Broglie's relation, predicts the wavelength λ of matter associated with the motion of a material particle possessing momentum P.

$$\Lambda = h/P = h/mv$$

Examples:

What is the de Broglie wavelength of a ball of mass m = 1 kg, moving at a speed $v = 10 \text{ ms}^{-1}$?

$$\lambda = \frac{h}{P} = \frac{h}{m\nu} = \frac{6.6 \times 10^{-34} J - s}{1.0 kg \times 10 ms^{-1}} = 6.6 \times 10^{-25} A.$$

➤ What is the de Broglie wavelength of <u>an electron</u> whose K.E. is 100eV?

$$\lambda = \frac{h}{P} = \frac{h}{\sqrt{2mK}} = \frac{6.6 \times 10^{-34} J - s}{\sqrt{\left(2x9.11x10^{-31} kgx100evx1.6x10^{-19} J\right)}} = \frac{6.6 \times 10^{-34} J - s}{5.4 \times 10^{-24} kg.ms^{-1}} = 1.2 \times 10^{-10} m.$$

Thus for macroscopic (big) objects the wavelength associated with them is so small that the wave-like aspects of matter are negligible, hence the unobserved matter waves in daily life

In terms of the de Broglie wavelength (λ), the Bohr's equation becomes

$$\frac{hr}{\lambda} = \frac{nh}{2\pi} \qquad 2\pi r = n\lambda$$

- Thus the <u>allowed orbits</u> are those in which the <u>circumference</u> $(2\pi r)$ of the orbit can <u>contain exactly an integral number of de Broglie</u> wavelengths.
- > Orbits where the circumference is not an exact multiple of the wavelength is not allowed.

Particle-wave nature of matter: De Broglie wavelength

The electron in Bohr's circular orbits could be described as a **standing wave**, one that does not move through space.

 $\lambda = h/p = h/mv$

Allowed orbit which corresponds to a complete de Broglie wave joined on itself

Prohibited orbit since the fractional number of wavelengths result in destructive interference

Example: DeBroglie Wavelength of an Electron

If an electron has a mass of $9.11 \times 10^{-31} \, kg$ and a velocity of $8000 \, m/s$ what is the DeBroglie wavelength of that electron?

$$\lambda = \frac{h}{p}$$

$$\lambda = \frac{h}{mv}$$

$$\lambda = \frac{6.626 \times 10^{-34} \, m^2 kg/s}{(9.11 \times 10^{-31} \, kg)(8000 \, m/s)}$$

The Wave-Particle duality and the Complementarity's Principle

The particle and wave models are complementary; if a measurement confirms the wave nature of radiation of matter, then it is impossible to prove the particle nature in the same experiment, and vice-versa.

The probability Interpretation of de Broglie Waves

According to the <u>wave model</u>, the intensity I (energy per unit area per unit time) at a point on the screen is given by

$$I = c \varepsilon_o E^2$$

According to the photon picture, on the other hand, the intensity at a point is given by

$$I = hvN$$

N = the photon flux (number of photons per unit area per unit time) arriving at a particular point of the screen.

We cannot predict in advance where any individual photon will strike the screen, producing a flash. However, since the final pattern comprises alternating bright and dark bands, any photon has a high probability of striking a bright band and a zero probability of arriving at a dark band. N is thus a measure of the probability of finding a photon near a point.

Ri Channel