# ENS1161 Computer Fundamentals Module 11 Embedded Systems, IoT and Cloud Computing



**ENS1161** Computer Fundamentals

# Moving forward..

- Last module:
  - Networking and the Internet
- Focus of this module:
  - Embedded systems, systems that use the Internet



Image: Harald Muhlbock, 2011 https://commons.wikimedia.org/wiki/Fil e:LAN\_WAN\_scheme.svg

School of Engineering

### Module Objectives

On completion of this module, students should be able to:

- Describe what embedded systems are, their key design considerations and principles of operation.
- List the common types and applications of embedded systems.
- Describe what IoT is, its impact and usage considerations, and explain how embedded systems form a crucial element of IoT.
- Describe the evolution of cloud computing, list the levels of cloud computing services and explain their principles of operation.

School of Engineering



**ENS1161** Computer Fundamentals

### Introduction

- Module Scope
  - Embedded systems
  - Internet of Things
  - Cloud Computing



# Categories of computers (recap Module 1)

- **Embedded computers** 
  - Integrated into a larger device or system to monitor and control
  - Used for a specific purpose rather than general processing
    - E.g. in appliances, phones, cars, etc.

### **Personal computers**

- General purpose computers for a single user
  - E.g. Desktop, laptop, notebook computers

### **Servers and Enterprise Systems**

- Larger computers meant to be shared by many users
  - E.g. application servers, database servers

### **Supercomputers and Grid Computers**

- Highest performance, used for highly demanding computation
  - E.g. weather forecasting, complex design simulations

(Hamacher et al, 2012)



School of Engineering



**ENS1161** Computer Fundamentals

### General purpose vs embedded systems (recap Module 1)

### General purpose computers

- Designed to be used for a variety of applications
  - · E.g. word processing, presentation, simulation, entertainment
- Based on general purpose processor chips
- 'Normal' computer

### **Embedded systems**

- Integrated into a larger device or system to perform a specific function
- Generally use single chip integrated microcontroller devices
- Used to provide the 'smarts' in a range of appliances and products
  - E.g. microwaves, air-conditioners, TVs, cars, phones, routers
- General purpose computers use these special purpose processors for subsystems
  - E.g. graphics coprocessor, DMA controller, keyboard controller
- Both have same general architecture and principles of operation









### **Embedded Systems**

- Embedded systems employ computer control for a specific purpose
  - E.g. microwaves, medical monitoring systems, video game controllers, industrial control
  - As opposed to general purpose computers
- Fundamental components / techniques the same
  - differences due to different design constraints
    - · E.g. reliability, robustness
- Embedded systems software interacts closely with hardware
  - Interfacing, polling, interrupts, communication
  - Software operation based on inputs
  - Often designed as State Machine





**ENS1161** Computer Fundamentals

7

### **Embedded Systems Requirements**

- Embedded systems have different requirements to general purpose computers
  - Reduced system footprint (chip count and size)
  - Low power
  - Resistance to electromagnetic noise
  - Robust heat, vibration, shock, etc
  - Generally do not need very high processing power
  - In some cases, real-time response
- Use microcontroller chips with integrated memory and I/O interface circuits or System on a Chip (SoC)



# Typical microcontroller structure



# System Behaviour

### Transformational systems:

- have all inputs ready when invoked
- the outputs are produced after a certain computation period
- A data input is taken and it returns an output.
- 2. The order of data inputs is preset.
- 3. Its execution must end.



Typical of data processing environments / applications

School of Engineering

# System Behaviour

### Reactive Systems :

- inputs arrive in discontinuous and often unpredictable sequences
- The system exists to interact with some entity or entities in its environment
- 1. System continuously interacts with the environment, receiving stimuli and producing outputs in response.
- 2. Order of events in the system is not predictable, determined by external events.
- 3. The execution of reactive systems does not have to end



- Typical of embedded systems environments / applications
- Commonly designed as finite state machines

School of Engineering



**ENS1161** Computer Fundamentals

### State Machines

### System States

- A system can only exist in a defined state when:
  - It is waiting for something in the external environment to occur, or
  - It is waiting for a current activity in the environment to change
- A state must represent some behaviour in the system that is observable and that lasts for some finite period of time
- Fixed number of states
  - Finite state machines
  - Has an initial (or reset) state



### **State Machines**

- Transitions
  - · A valid state change is called a transition
  - A transition connects relevant pairs of states
- Fixed number of events
  - Each Event can have associated Actions
  - Each Event can cause a Transition
- State Diagrams
  - · Visual representation
  - A directed graph
    - States as nodes
    - · Transitions as edges

School of Engineering



ENS1161 COMPUTER FUNDAMENTALS

### Types of embedded systems





### Real-time response

- Embedded systems react to input from the environment
  - E.g. from sensors
- These inputs (events) may cause changes in the state and outputs of the system (system response)
- The outputs often may control parts of the environment
  - Via actuators
- In many applications these responses need to happen within a specified time
  - Otherwise system 'fails'
    - E.g. aircraft control system, power grid monitoring, pacemakers
- These systems are called real-time embedded systems



School of Engineering



**ENS1161** Computer Fundamentals

### Real-Time Embedded System



School of Engineering

# Real-Time Operating System (RTOS)

- An RTOS is specially designed to run applications with very precise timing and a high degree of reliability
  - Especially important in control and automation systems
    - Downtime is costly
    - A program delay could cause a safety hazard
- ➤ To be considered "real-time", OS must have a known maximum time for each of the operations that it performs
  - or at least be able to guarantee that maximum most of the time
- Some of these operations include OS calls and interrupt handling



**ENS1161** Computer Fundamentals

### Communication channels

- Many types of local communication channels
  - To connect sensors and actuators to controllers
  - To interconnect embedded subsystems within a larger system
    - E.g. in embedded subsystems in an automobile
- Wired channels
  - E.g. RS-232 serial, I<sup>2</sup>C, USB, Ethernet
- Wireless channels
  - Infrared, Bluetooth, WiFi
- Increasingly embedded systems communicate over Internet



Courtesy of Uwe Zimmer



School of Engineering

### Internet of Things (IoT) (recap Module 1)

- A system of computing devices connected together via the Internet
- Consists of sensors, actuators and various other systems
- Enables us to do various things such as:
  - Control appliances such as air-conditioners and ovens using our mobile phones
  - Monitor security systems remotely
  - 'Smart' buildings can adjust lighting, heating and cooling based on internal conditions
  - Find the best route based on current traffic conditions



School of Engineering

**ENS1161 COMPUTER FUNDAMENTALS** 

# Some Impacts of IoT

- Enabled easier machine-to-machine communication
- Increased efficiency through faster response to environment
  - E.g. smart buildings, industrial control
- Need for lot more IP addresses
  - Important factor in development of IPv6
- Privacy / Security concerns
  - Data from devices can be used to track movement and other behaviour
  - Most devices are lack proper security
    - E.g. cases of cameras on devices remotely hacked
- Huge amounts of data generated





Image: Andrzej Kasprzyk, 2015 https://commons.wikimedia.org/wiki/Fil e:Chain\_of\_home\_devices\_(including\_lo T)\_with\_passwords\_or\_pin\_pag

# Using data from IoT

- IoT and the data generated from it can be used in many useful ways
  - Regarding current situation of environment
    - · E.g. traffic monitoring and route prediction, disaster detection and warning
  - For prediction / forecasting
    - · E.g. weather forecasting, predictive maintenance
- To make full use of it requires analysis of data
  - Raw data generally needs to be aggregated
    - Summarised for analysis
  - Analysis then carried out by applications designed for that purpose
    - Generally done on servers with sufficient computing power (and storage)



School of Engineering



**ENS1161 COMPUTER FUNDAMENTALS** 

### Computer networks and devices (recap Module 10)

- Server
  - Device or application that provides a service
    - Some form of data or shared resource access
    - 'Serves' client requests
- Client
  - Device or application that uses a service







### Factors that affect server performance

- The main factors that limit server performance are:
  - Processing power
    - Particularly for computing intensive applications like analysis or video processing
    - Or when servers running many processes simultaneously (heavily loaded)
  - Memory
    - Amount of primary memory can be a bottleneck
    - Reading from / swapping out to disk slows down processing
  - Internet bandwidth
    - · Congestion can severely limit efficiency of server
    - Particularly if high volumes of data being served out
      - E.g. streaming services

School of Engineering



**ENS1161** Computer Fundamentals

# Overcoming limitations

- Work to be done distributed to a number of servers / nodes to overcome computing and memory constraints
  - These may be physical or virtual servers
- Having distributed servers
  - Helps distribute network traffic
  - Sometimes in geographically separate locations
    - · Useful for content distribution
      - · E.g. streaming services, download sites
- Use data centres that have high capacity
   Internet connections
  - Also provide other services / capabilities

Web server
Linux
Linux
VNIC

Distributed virtual switch (Open vSwitch)

Hypervisor

Hypervisor

Server
Server
Linux
VNIC

Hypervisor

Server
Server
Server
Server
Server

Image: Goran tek-en, 2014 https://commons.wikimedia.org/wiki/File Distributed Open vSwitch instance.sve

### Virtual Machines (VM) (recap Module 9)

- VM software creates multiple virtual machines on the one physical machine
  - Examples of VM software are VirtualBox and VMware
- Each VM can have its own OS as well as virtual hardware
- A hypervisor (also known as virtual machine monitor- VMM) ensures that each VM has access to the resources that it requires
- VMs are often used for:
  - Trying new OS
  - Testing apps in different environments
  - Running old apps that need specific settings or environments



School of Engineering

https://oer.gitlab.io/oer-on-oernfrastructure/Docker.html#/sec-title-slide

**ENS1161** Computer Fundamentals

### **Data Centre**

- A data centre is a physical facility (space / building) that is used to house critical computing equipment and data.
- Data centres usually have the following facilities:
  - Space for the servers, storage units, routers, etc.
  - High-speed network and Internet connections
  - Stable (regulated) power supply with backup power supplies
  - Temperature controlled environment
    - · Air-conditioning, computer cooling systems if required
  - Physical security for the equipment
  - Virtual security for data
  - Other safety / backup measures
    - · Fire retardation systems, backup equipment, etc



School of Engineering

### Servers in data centres

- Servers in data centres are usually mounted in racks
  - Do not have individual keyboards and screen
  - Virtual or shared keyboard, screen, mouse

Image: Amber Case, 2010 https://www.flickr.com/photos /caseorganic/4529327351

### Blade servers

- modular single-board server that that contains just processor(s), main memory, network controllers and I/O interfaces
- Some also have HDD/SDD secondary storage
- Connected using normal Ethernet connections or other high-speed interconnect
- Many are designed to be hot-swappable
  - · Can be removed / put in while whole system is running

Image: Michael248, 2007 https://www.flickr.com/photos



School of Engineering

**ENS1161 COMPUTER FUNDAMENTALS** 

### Traditional IT Infrastructure

- Traditionally, large organisations provided all the infrastructure to deploy an application to users
  - The data centre
    - Includes cost of setting up centre + ongoing costs (staff, utilities, etc)
  - Network connections and storage
  - Physical servers
  - Virtualisation & OS
  - Databases and other resources required by application
  - The application itself
  - The actual data
- Very expensive to setup and to maintain

Traditional
On-Premises IT

Data

Application

Databases

Operating System

Virtualization

Physical Servers

Network & Storage

Data Center

ImageISPSystem, 2018 https://www.ispsystem.com/news/xaas (adapted)



# Colocation and hosting

Two methods for reducing this cost

### Colocation

- Organisation sets up server and the other components
- Server is located at data centre run by a 3<sup>rd</sup> party
  - Organisation is charged a fee for providing the data centre services

### Hosting

- 3<sup>rd</sup> party provider supplies the physical servers and all infrastructure below it
- Normally also provides the other technologies to run the hosted app (e.g. web hosting)
- Hosting 'package' is static fixed for a time period
  - Need to plan ahead and have required resources in place



Colocation

Hosting

School of Engineering



**ENS1161** Computer Fundamentals

Traditional

# **Cloud Computing**

On-demand delivery of computing resources

- Over the Internet
- Pay-as-you-use model
- Similar to traditional utility providers
  - electricity, water, etc.

### 3 parts

- Software as a Service (SaaS)
- Platform as a Service (Paas)
- Infrastructure as a Service (laas)



Cloud computing

mage: Sam Johnston, 2009 https://en.wikipedia.org/wiki/File:Cloud\_computing.svg



# Infrastructure as a Service (laaS)

- Virtualised computing resources over the net
  - Servers, storage, networking, other data centre services
    - E.g. Amazon Web Services (AWS) EC2, Rackspace.com
  - Service providers have sufficient resources to share between their clients on demand
    - Cost of setting up and maintaining infrastructure borne by the service provider
    - User of service can request resources as per their needs
    - Users pay based on what they use
  - Enables infrastructure to be scaled according to demand

Data Application Databases Operating System Virtualization Physical Servers Network & Storage Data Center

laaS

Provider-Supplied

Self-Managed

School of Engineering



**ENS1161** Computer Fundamentals

# Platform as a Service (PaaS)

- Tools and software for to develop apps
  - Middleware, database management, OS
    - E.g. Microsoft Azure, Google App Engine
  - Users get to use an integrated development environment
    - Can store app on application hosting that provides all the necessary services
    - Provider takes care of upgrades of tools, patching and other routine tasks to keep system working optimally
    - User of service can request resources as per their needs
    - Also based on pay-per use model
  - Sits on top of laaS layer

PaaS Data Application Databases Operating System Virtualization Physical Servers Network & Storage Data Center

Provider-Supplied



# Software as a Service (SaaS)

- Delivery of applications-as-a-service
  - Accessed via a browser or app
    - E.g. Office365, Google Suite, Salesforce
  - Users get to use an application easily
    - Users do not need to install application on a local systems
      - Significantly reduces deployment and upgrade issues
    - Users not tied to a particular device
    - Upgrades and patches are done by service provider automatically
    - Scalable no of users of an application can be changed easily
    - Various pay-per-use / subscription models
    - Cons:
      - May not be able to use software without Internet connection
      - Data privacy concerns

Provider-Supplied

Self-Managed

SaaS

Data

Application

Databases

Operating System

Virtualization

Physical Servers

Network & Storage

Data Center

School of Engineering



**ENS1161** Computer Fundamentals

# XaaS (Anything as a Service)

- 3 main components
  - SaaS (Software as a Service)
  - PaaS (Platform as a Service)
  - laaS (Infrastructure as a Service)
- Other components of XaaS
  - Database as a Service (DBaaS)
  - Storage as a Service
  - Desktop as a Service (DaaS)
  - Communications as a Service (CaaS)
  - Disaster Recovery as a Service (DRaaS)
  - Malware as a Service (MaaS)
    - Helps protect against attacks such as ransomware and distributed denial of service (DDoS)



School of Engineering





**ENS1161** Computer Fundamentals

# Pros and Cons of Cloud Computing

# **Pros and Cons** Cost Cloud

School of Engineering

School of Engineering



Image: Li, Shi, Shin and Qu, 2018

### Summary

- Topics covered:
  - Embedded systems
    - Processor characteristics, system behaviour, state machines
    - Transactional vs Reactive systems
    - Types of systems
      - Real-time embedded systems and RTOS
  - Internet of Things
  - Trends in systems that use the Internet
    - · Data centres, colocation, hosting
    - Cloud computing
      - · laaS, PaaS, Saas, XaaS

School of Engineering

