Raspberry Pi Cluster Setup

- 1. Install OS onto each microSD card for each Pi
 - a. Master node options
 - i. Raspbian
 - ii. Raspbian Lite
 - b. Slave nodes → Raspbian Lite
- 2. Setup geographic info
 - a.\$ sudo raspi-config
 - b. "5. Localization Options"
 - i. "L1. Locale"
 - 1. Deselect "en_GB.UTF-8 UTF-8"
 - 2. Select "en_US.UTF-8 UTF-8"
 - 3. Select "en_US.UTF-8" as default
 - ii. "L2. Timezone"
 - 1. "US"
 - 2. "Central"
 - iii. "L3. Keyboard"
 - 1. Select "HP Pavilion ZT1100" or "Generic 104-key PC"
 - 2. Select "Other"
 - 3. Select "English (US)"
 - 4. Select "English (US)"
 - 5. Select "No AltGr key"
 - 6. Select "No compose key"
- 3. Setup Wi-Fi connection
 - a. \$ sudo raspi-config
 - b. "1. System Options"
 - c. "S1 Wireless LAN"
 - d. Select "US United States"
 - e. Enter Wi-Fi information
 - f. Exit raspi-config
- 4. Change hostname
 - a. \$ sudo raspi-config
 - b. "1. System Options"
 - c. "S4. Hostname"
 - d. clusterphuq<node #>
- 5. Change default password for pi account
 - a. \$ sudo raspi-config
 - b. "1. System Options"
 - c. "S3. Password"
 - d. Enter new password
- 6. Increase amount of RAM available
 - a. \$ sudo raspi-config
 - b. "4. Performance Options"
 - c. "P2. GPU Memory"
 - d. Set to either 16 or 32 (probably 16)

- 7. Enable SSH
 - a.\$ sudo raspi-config
 - b. "3. Interface Options"
 - c. "P2. SSH"
 - d. Select "Enable" or "Yes"
- 8. Add "clusterphuq" repo
- 9. Setup Ethernet connection
 - a. \$ cd clusterphuq
 - b.\$ sudo su
 - c. # bash eth_static_ip_setup.sh <node #>
- 10. Setup VNC (master node only) → optional
 - a. \$ cd clusterphuq
 - b.\$ sudo su
 - c. # bash vnc_setup.sh
 - d. # exit
 - e. \$ source ~/.bash_aliases
 - f. \$ start-vnc
 - g. \$ bash vnc_config.sh
 - h. Note: Optional. Only useful if Raspbian (not Raspbian Lite) image is running on master node.
- 11. Reboot the Raspberry Pi
 - a. Test SSH connectivity
 - b. Test Wi-Fi connectivity
- 12. Repeat steps 1 through 9 for each node in the cluster
- 13. On main computer (the one you'll be managing the cluster from), install ClusterSSH
 - a. \$ bash clusterssh setup.sh

- 14. Update and install MPI across all nodes using ClusterSSH a.\$ cssh
 - i. Note: This will open all IP addresses automatically under default, no need to specify IP addresses.
 - ii. \$ sudo apt update
 - iii. \$ sudo apt upgrade
 - iv. \$ sudo apt install openmpi-bin openmpi-common libopenmpi3 libopenmpi-dev
- 15. Generate an SSH key on all nodes
 - a. \$ cssh
 - i.\$ ssh-keygen -t rsa
 - ii. Press "Enter" for the next 3 questions
- 16. On each slave node, copy the node's SSH key to master node a.\$ cssh
 - i.\$ ssh-copy-id <master node's IP address>
- 17. On the master node, copy it's SSH key to all slave nodes a.\$ cssh
 - i. \$ ssh-copy-id <slave node 1's IP address>
 - ii. \$ ssh-copy-id <slave node 2's IP address>
 - iii. ...
- 18. Create aliases for different numbers of nodes on master node
 - a. \$ echo "alias mpiexec-n2='mpiexec -n 2 -host
 - 10.10.10.0,10.10.10.1'" >> ~/.bash_aliases
 - b. \$ echo "alias mpiexec-n3='mpiexec -n 3 -host
 - 10.10.10.0,10.10.10.10.10.10.2'" >> ~/.bash_aliases
 - C....
- 19. Setup network file system
 - a. Format external drive to ext4 file system
 - i. Option 1 → partition manager program (GUI)
 - ii. Option 2 → \$ sudo mkfs.ext4 /dev/sd<letter><#>
 - b. On all nodes
 - i. Create mount directory for network file system
 - 1. \$ sudo mkdir <mount directory>
 - 2. \$ sudo chown pi.users -R <mount directory>
 - 3. \$ sudo chmod 777 -R <mount directory>
 - ii. Create environment variable for mount directory
 - 1. \$ sudo nano /etc/environment
 - 2. Add the following line:
 - 1. NFS=<mount directory>
 - 3.\$ source /etc/environment
 - 4. Mount directory can now be used using \$NFS as shorthand
 - c. On master node
 - i. Plug in external drive
 - ii. Find /dev location
 - 1.\$ lsblk
 - iii. Find external drive's UUID

- 1. \$ blkid
- iv. Prep master node for automounting external drive
 - 1. \$ sudo nano /etc/fstab
 - 2. Add the following line:
 - 1. UUID=<UUID> <mount directory> ext4 defaults 0 2
- v. Mount external drive
 - 1. \$ sudo mount -a
- vi. Install NFS server
 - 1. \$ sudo apt install nfs-kernel-server
- vii. Export NFS share
 - 1. \$ sudo nano /etc/exports
 - 2. Add the following line:
 - 1. <mount directory> <master node's IP
 address> (rw, sync, no_root_squash, no_subtree_check)
- viii. Update NFS kernel server
 - 1. \$ sudo exportfs -a
- d. On all slave nodes
 - i. Install NFS client
 - 1. \$ sudo apt install nfs-common
 - ii. Enable automatic mounting
 - 1. \$ sudo nano /etc/fstab
 - 2. Add the following line
 - 1. <master node's IP address>:<mount directory> <mount
 directory> nfs defaults 0 0
 - 3. \$ sudo mount -a
- 20. Setup SLURM
 - a. On master node
 - i. Switch to superuser
 - 1.\$ sudo su
 - ii. Add hostnames and their IP addresses to /etc/hosts
 - 1. # nano /etc/hosts
 - 1. Add lines according to the following pattern:
 - 1. <IP address of slave node 1> <hostname of slave
 node 1>
 - 2. <IP address of slave node 2> <hostname of slave
 node 2>
 - 3....
 - iii. Install SLURM controller packages
 - 1. # apt install slurm-wlm
 - iv. SLURM configuration
 - 1. # cd /etc/slurm-llnl
 - 2. # cp

/usr/share/doc/slurm-client/examples/slurm.conf.simple.g

- 3. # gzip -d slurm.conf.simple.gz
- 4. # mv slurm.conf.simple slurm.conf
- 5. # nano /etc/slurm-llnl/slurm.conf
 - 1. Edit the following lines:

- 2. SelectType=select/cons_res
- 3. SelectTypeParameters=CR_Core
- 4. ClusterName=<cluster name (missing node number)>
- 5. For adding compute nodes
 - 1. Nodename=<master node hostname> NodeAddr=<master
 node IP address> CPUs=4 State=UNKNOWN
 - 2. NodeName=<slave node 1 hostname> NodeAddr=<slave node 1 IP address> CPUs=4 State=UNKNOWN
 - 3. NodeName=<slave node 2 hostname> NodeAddr=<slave node 2 IP address> CPUs=4 State=UNKNOWN
 - 4
- 6. PartitionName=<arbitrary name> Nodes=<cluster
 name>[1-<last slave node number>] Default=YES
 MaxTime=INFINITE State=UP
- 6. cgroups support
 - 1. # touch cgroup.conf
 - 2. # nano cgroup.conf
 - 1. Add the following lines:
 - 1. CgroupMountpoint="/sys/fs/cgroup"
 - 2. CgroupAutomount=yes
 - 3. CgroupReleaseAgentDir="/etc/slurm-llnl/cgroup"
 - 4. AllowedDevicesFile="/etc/slurm-llnl/
 cgroup_allowed_devices_file.conf"
 - 5. ConstrainCores=no
 - 6. TaskAffinity=no
 - 7. ConstrainRAMSpace=yes
 - 8. ConstrainSwapSpace=no
 - 9. ConstrainDevices=no
 - 10. AllowedRamSpace=100
 - 11. AllowedSwapSpace=0
 - 12. MaxRAMPercent=100
 - 13. MaxSwapPercent=100
 - 14. MinRAMSpace=30
- 7. Whitelist system devices
 - 1. # touch cgroup allowed devices file.conf
 - 2. # nano cgroup_allowed_devices_file.conf
 - 1. Add the following lines:
 - 1. /dev/null
 - 2./dev/urandom
 - 3./dev/zero
 - 4./dev/sda*
 - 5. /dev/cpu/*/*
 - 6. /dev/pts/*
 - 7. <NFS mount dir>*
- 8. # cp slurm.conf cgroup.conf
 cgroup_allowed_devices_file.conf <NFS mount dir>
- 9. # cp /etc/munge/munge.key <NFS mount dir>
- 10. Start Munge
 - 1. # systemctl enable munge
 - 2. # systemctl start munge
- 11. Start SLURM

- 1. # systemctl enable slurmd
- 2. # systemctl start slurmd
- 3. # systemctl enable slurmctld
- 4. # systemctl start slurmctld
- v. Reboot
 - 1. # reboot
- b. On each slave node
 - i.\$ sudo su
 - ii. # apt install slurmd slurm-client
 - iii. Add hostnames and their IP addresses for all other nodes to /etc/hosts
 - 1. Note: Don't add an entry for the node itself
 - 2. # nano /etc/hosts
 - 1. Add lines according to the following pattern:
 - 1. <IP address of master node> <hostname of master
 node>
 - 2. <IP address of slave node> <hostname of slave node>
 - 3. <IP address of slave node> <hostname of slave node> 4....
 - iv. Copy master node's configuration to each slave node
 - 1. # cp <NFS mount dir>/munge.key /etc/munge/munge.key
 - 2. # cp <NFS mount dir>/slurm.conf
 /etc/slurm-llnl/slurm.conf
 - 3. # cp <NFS mount dir>/cgroup* /etc/slurm-llnl
 - v. Enable, start, and test Munge
 - 1. # systemctl enable munge
 - 2. # systemctl start munge
 - 3. # exit
 - 4. \$ ssh pi@node01 munge -n | unmunge
 - 5. If you see an error message...
 - Double-check that munge.key is identical across all nodes
 - 2. Reboot all nodes
 - 3. Try step 4 again
 - 4. If there's still an error, try replicating munge.key across all nodes and retry again
 - vi. Enable, start, and test SLURM
 - 1.\$ sudo su
 - 2. # systemctl enable slurmd
 - 3. # systemctl start slurmd
 - 4. # exit
 - 5. \$ sinfo
 - 6. \$ srun --nodes=<#> hostname
 - 7. If you see another error message, rebooting should fix this