Einfürung in die Algebra Hausaufgaben Blatt Nr. 11

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: March 27, 2024)

Aufgabe 1. Seien $M, N \subseteq \mathbb{R}^n$ k-dimensionale Untermannigfaltigkeiten der Klasse C^{α} sowie $P \subseteq \mathbb{R}^m$ eine l-dimensionale Untermannigfaltigkeit der Klasse C^{α} . Zeigen Sie:

- (a) $M \times P \subseteq \mathbb{R}^{n+m}$ ist eine (k+l)-dimensionale Untermannigfaltigkeit der Klasse C^{α} .
- (b) Gilt $M \cap \overline{N} = \emptyset = \overline{M} \cap N$, so ist $M \cup N$ eine k-dimensionale Untermannigfaltigkeit der Klasse C^{α} .
- (c) Die Mengen

$$A := \{(x,y) \in \mathbb{R}^2 | x \in (-1,1), y = x^2 \},$$

$$B := \{(x,y) \in \mathbb{R}^2 | x \in (-1,0) \cup (0,1), y = -|x| \},$$

sind jeweils 1-dimensionale Untermannigfaltigkeiten der Klasse $\mathbb{C}^1.$

- (d) Die Aussage aus (b) ist unter der schwächeren Voraussetzung $M \cap N = \emptyset$ im Allgemeinen nicht richtig.
- Beweis. (a) Sei $(m, p) \in M \times P$. Per Definition gibt es offene Mengen $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^m$, f und g α -mal differenzierbare Funktionen $f: U \to \mathbb{R}^{n-k}$, $g: V \to \mathbb{R}^{m-l}$, so dass

$$m \in U, p \in V$$

 $M \cap U = \{x \in U : f(x) = 0\}$
 $Rang(f'(m)) = n - k$
 $P \cap V = \{x \in V : g(x) = 0\}$
 $Rang(g'(p)) = m - l$

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Dann ist $U \times V \subseteq \mathbb{R}^{k+l}$ offen Sei außerdem $h: U \times V \to \mathbb{R}^{n+m-(n+k)}$ definiert durch h(x,y) = (f(x),g(y)), wobei $x \in \mathbb{R}^n$ und $y \in \mathbb{R}^m$.

Dann ist h(x,y) = 0 genau dann, wenn f(x) = 0 und g(y) = 0. Außerdem ist

$$h' = \begin{pmatrix} f' & 0 \\ 0 & g' \end{pmatrix}.$$

Da h' eine Blockmatrix ist, ist Rang(h'(m, p)) = Rang(f'(m)) + Rang(g'(p)). (Man kann das beweisen, indem man das Gauss-Algorithismus durchführt, bis f' und g' in Zeilenstufenform sind.)

Weil f und g α -mal stetig differenzierbar sind, ist h auch α -mal stetig differenzierbar

Es gilt dann

$$(U \times V) \cap (M \times P) = \{x \in U \times V : h(x) = 0\}$$

Rang $(h'(m, p)) = n + m - (k + l)$

(b) Sei $x \in M \cup N$, also $x \in M$ oder $x \in N$. OBdA betrachten wir den Fall, $x \in M$. Per Definition gibt es $U \in \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^{n-k}$ α -mal stetig differenzierbar, so dass

$$M \cap U = \{ y \in U : f(y) = 0 \}$$

Rang $(f'(x)) = n - k$

Da $M \cap \overline{N} = \emptyset$, ist $M \subseteq \overline{N}^c$. Per Definition ist \overline{N}^c offen. Seien $V := U \cap \overline{N}^c$ und $g := f|_V$. Weil f α -mal stetig differenzierbar ist, ist g auch α -mal stetig differenzierbar. Es gilt

$$(M \cup N) \cap V = M \cap V = \{y \in V : g(y) = 0\}$$

Rang $(g'(x)) = n - k$

Ähnlich gilt für $x \in N$. Dann ist $M \cup N$ eine k-dimensionale Untermannigfaltigkeit der Klasse C^{α} .

(c) Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 - y$. Sei $p \in A$ und U offen, so dass $p \in U$. Per Definition ist

$$A \cap U = \{x \in U : f(x) = 0\}.$$

Außerdem ist f mindestens einmal stetig differenzierbar, mit Ableitung f' = (2x, -1). Da f' eine 1×2 -Matrix ist, ist f vom höchstens Rang 1. Weil die zweite Komponente konstant $-1 \neq 0$ ist, ist f nie von Rang 0. Dann ist f immer vom Rang 1, also A ist eine 1-dimensionale Untermannigfaltigkeit der Klasse C^1 .

Sei jetzt $p \in B$. Wir betrachten den Fall, $\pi_1(p) > 0$, wobei $\pi_1((x,y)) = x$. Sei $f : \mathbb{R}^2 \to \mathbb{R}$, f((x,y)) = x + y und U offen mit $p \in U$. OBdA ist $\pi_1(U) \subseteq (0,\infty)$, sonst ist $(0,\infty) \times \mathbb{R} \cap U$ offen mit gleiche Eigenschaften.

Dann ist

$$U \cap B = \{x \in U : f(x) = 0\}$$
$$f'(p) = (1,1)$$
$$Rang(f'(p)) = 1$$

und analog für p mit $\pi_1(p) < 0$. Weil $x \neq 0$, ist $\pi_1(p)$ nie 0. Also wir sind fertig, und B ist eine Untermannigfaltigkeit der Klasse C^1 .

(d) Wir betrachten $A \cap B$. Es gilt $A \cap B = \emptyset$, weil $x^2 = |x|$ nur wenn |x| = 0 oder |x| = 1, aber die beide Fälle sind ausgeschlossen.

Es gilt $(0,0) \in A \cup B$, weil $(0,0) \in A$. Wir fahren per Widerspruch fort. Wir nehmen an, dass $M \cup N$ eine 1-dimensionale Untermannigfaltigkeit der Klasse C^1 ist.

Dann gibt es eine offene Menge U mit $(0,0) \in U$ sowie eine stetig differenzierbare Funkton $f: U \to \mathbb{R}$, so dass

$$(A \cup B) \cap U = \{x \in U : f(x) = 0\}$$

und Rang(f'((0,0)))=1. Wir zeigen, dass der Rang eigentlich 0 ist. Wir wissen, entlang die Kurve $y=x^2$ ist f=0. Sei $\gamma(t)=(t,t^2)^T$. Weil $f\circ\gamma=0$ in eine offene Umgebung um 0, gilt

$$0=\!D(f\circ\gamma)$$

$$=(Df)(\gamma')$$

$$D(f \circ \gamma)(0) = (Df)(\gamma'(0))$$

$$=Df((1,0)^{T})$$

$$=0$$

Ähnlich gilt, weil f entlang y=-|x| ist, definieren wir die Kurve $\gamma:[0,a]\to \mathbb{R}^2$, $\gamma(t)=(t,-t)$ für ein a>0. Daraus folgt, weil $\gamma'(t)=(1,-1)$.

$$D(f \circ \gamma)(0) = (Df)(\gamma'(0))$$

= $(Df)((1, -1)^T)$

also sowohl $(1,0)^T$ als auch (1,-1) liegen in $\ker Df(0)$. Da diese linear unabhängig sind, ist $\ker D=2$ und wegen des Rangsätzes ist $\operatorname{Rang}(f'((0,0)))=0$, ein Widerspruch.

Aufgabe 2. Sei $a < b, \alpha \in \mathbb{N}$ und $r : (a,b) \to \mathbb{R}$ sei α -mal stetig differenzierbar mit r(z) > 0 für alle $z \in (a,b)$. Definiere

$$R := \left\{ (x, y, z) \in \mathbb{R}^3 | z \in (a, b), \sqrt{x^2 + y^2} = r(z) \right\}.$$

Dann ist *R* durch die Abbildung

$$\varphi:(a,b)\times(0,2\pi)\to\mathbb{R}^3,\; \varphi(z,\alpha):=egin{pmatrix} r(z)\cos\alpha\ r(z)\sin\alpha\ z \end{pmatrix}$$

parametrisiert.

- (a) Zeigen Sie, dass R eine 2-dimensionale Untermannigfaltigkeit der Klasse C^{α} ist.
- (b) Zeigen Sie, dass R eine λ_3 -Nullmenge ist.
- (c) Bestimmen Sie das Integral

$$I := \int_{(a,b)\times(0,2\pi)} \sqrt{\det(\varphi'^T \varphi')} \, \mathrm{d}\lambda_2(z,\alpha)$$

in Abhängigkeit der Funktion *r*.

(d) Bestimmen Sie das Integral I in (c) für den Fall $r(z) := \cosh(z)$ und (a, b) := (0, 1).

Beweis. (a) Sei $p \in R$.

Lemma

Lemma 1. *Ist* $p \in \{(0,0,z)|z \in \mathbb{R}\}$, *so ist* $p \notin R$.

Beweis. Es gälte dann $\sqrt{x^2+y^2}=0$, also 0>r(z), was unmöglich ist, weil r(z)>0 per Definition.

Sei jetzt $f: \mathbb{R}^3 \to \mathbb{R}$, $f((x,y,z)) = \sqrt{x^2 + y^2} - r(z)$. Sei jetzt $p \in R$ und $U \subseteq \mathbb{R}^3$ offen mit $p \in U$. Per Definition ist

$$R \cap U = \{ q \in U : f(q) = 0 \}. \tag{1}$$

Außerdem ist f stetig differenzierbar mit

$$f' = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, r'(z)\right),$$

solange $(x,y,z) \notin \{(0,0,z)|z \in \mathbb{R}\}$. Dies ist aber kein Problem wegen des Lemmas. Als Verkettung von elementäre Funktionen sind die ersten zwei Komponenten unendlich mal stetig differenzierbar. r(z) ist bekanntermaßen α -mal stetig differenzierbar.

Wenn f' Null ist, muss x = y = 0 gelten, da $(x^2 + y^2)^{-1/2} > 0$. Dies ist noch einmal wegen des Lemmas ausgeschlossen, also f' ist immer vom Rang 1.

Zusammen mit Eq. (1) ist R eine 2-dimensionale Untermannigfaltigkeit der Klasse C^{α} .

(b) *R* ist messbar, weil *R* abgeschlossen (und daher eine Borelmenge) ist.

Da (\mathbb{R}^3 , λ_3 , $\mathcal{L}(3)$) σ -endlich ist (oder weil es in der Vorlesung bewiesen wurde), schreiben wir das Maß als Integral.

$$\lambda_3(R) = \int_a^b \lambda_2(R_z) \, \mathrm{d}z.$$

Jetzt betrachten wir R_z und schreiben das Maß aus dem gleichen Grund noch einmal als Integral.

$$R_z = \{(x,y) | \sqrt{x^2 + y^2} = r(z)\} \subseteq \mathbb{R}^2.$$

Weil $\sqrt{\cdot}$ monoton wachsend ist, muss |x| < r(z) gelten, sonst kann die Bedingung nicht erfüllt werden. Sei jetzt x fest. Es gilt $y^2 = r(z)^2 - x^2$, oder

$$y = \pm \sqrt{r(z)^2 - x^2}.$$

also $(R_z)_x = \{(x, \sqrt{r(z)^2 - x^2}, z), (x, -\sqrt{r(z)^2 - x^2}, z)\}$. Als endliche Menge ist $\lambda_1((R_z)_x) = 0$. Daraus folgt:

$$\lambda_3(R) = \int_a^b \lambda_2(R_z) dz$$

$$= \int_a^b \int_{-r(z)}^{r(z)} \lambda_1((R_z)_x) dx dz$$

$$= \int_a^b \int_{-r(z)}^{r(z)} 0 dx dz$$

$$= 0$$

(c) Als offene Menge ist $(a,b) \times (0,2\pi) \subseteq \mathbb{R}^2$ eine messbare Menge. Es gilt

$$\varphi' = \begin{pmatrix} r'(z)\cos\alpha & -r(z)\sin\alpha \\ r'(z)\sin\alpha & r(z)\cos\alpha \\ 1 & 0 \end{pmatrix}$$

$$\varphi'^{T} = \begin{pmatrix} r'(z)\cos\alpha & r'(z)\sin\alpha & 1 \\ -r(z)\sin\alpha & r(z)\cos\alpha & 0 \end{pmatrix}$$

$$\varphi'^{T}\varphi = \begin{pmatrix} r'(z)^{2}\cos^{2}\alpha + r'(z)^{2}\sin^{2}\alpha + 1 & 0 \\ 0 & r(z)^{2}\sin^{2}\alpha + r(z)^{2}\cos^{2}\alpha \end{pmatrix}$$

$$= \begin{pmatrix} r'(z)^{2} + 1 & 0 \\ 0 & r(z)^{2} \end{pmatrix}$$

Offensichtlich ist $\det(\varphi'^T\varphi)=(r'(z)^2+1)(r(z)^2)$. Weil \mathbb{R}^2 σ -endlich ist, dürfen wir den Satz von Fubini verwenden. Wir erhalten

$$\int_{(a,b)\times(0,2\pi)} \sqrt{\det(\varphi'^T \varphi)} \, d\lambda_2(z,\alpha)$$

$$= \int_a^b \int_0^{2\pi} \sqrt{\det(\varphi'^T \varphi)} \, d\alpha \, dz$$

$$= \int_a^b \int_0^{2\pi} r(z) \sqrt{1 + r'(z)^2} \, d\alpha \, dz$$

$$= 2\pi \int_a^b r(z) \sqrt{1 + r'(z)^2} \, dz$$

(d) In diesem Fall ist $r(z) := \cosh z$ und (a, b) = (0, 1). Das Integral ist

$$2\pi \int_{a}^{b} r(z) \sqrt{1 + r'(z)^{2}} dz$$

$$= 2\pi \int_{0}^{1} \cosh z \sqrt{1 + \sinh^{2} z} dz$$

$$= 2\pi \int_{0}^{1} \cosh^{2} z dz$$

$$= 2\pi \int_{0}^{1} \left(\frac{e^{z} + e^{-z}}{2}\right)^{2} dz$$

$$= \frac{\pi}{2} \int_{0}^{1} (e^{2z} + 2 + e^{-2z}) dz$$

$$= \frac{\pi}{2} \left[\frac{1}{2}e^{2z} - \frac{1}{2}e^{-2z} + 2z\right]_{0}^{1}$$

$$= \frac{\pi}{2} \left[\frac{1}{2}e^{2} - \frac{1}{2}e^{-2} + 2\right]$$

$$= \frac{\pi}{4} \left[e^{2} - e^{-2} + 4\right].$$