Market Simulator with Deep Propagator

Sho Nishikawa, with Koei Matsunaga and Jiro Akahori

Ritsumeikan University M1

November, 17th, 2023

Introduction

- We are proposing a new framework for non-parametric estimation of the asset price process using option prices written on it, and also the interest rates.
- Contrary to the traditional approaches where only the dynamics under the risk-neutral measure is retrieved, our method recovers the one under the physical measure— by imposing a "Ross's recovery theorem" type assumption.
- In the numerical part, we rely on existing machine-learning architectures to estimate the transition density of the diffusion, and then the diffusion- and drift- coefficients of the asset price process.

Introduction

Backgrounds

- In this presentation, I will survey the framework quickly,
- and give an example of its implementation where we model the price process of multiple assets,
- and finally using dummy data I will discuss the efficiency of our framework.

- 1 Backgrounds
- 2 Deep Propagator Method
- 3 An Numerical Experiment Using Dummy Data
- A References

- 2 Deep Propagator Method
- 3 An Numerical Experiment Using Dummy Data
- 4 References

Backgrounds 1. Interest Rate Modeling

In the classical "modeling approach" in quantitative finance, interest rates are modeled by way of

- spot rate Vasicek, Cox-Ingersoll-Ross, Hull-White, ...
- vield curve —Heath-Jarrow-Morton,...
- Libor rates Brace-Gatrek-Musiela....
- state price density (=pricing kernel) Flesaker-Hughston, Rogers, Hunt-Kennedy,... ⇒ often called "Markov functional model".

Backgrounds 2. Markov Functional - State Price Density Approach

- Recall that state price density is a strictly positive process $\{\gamma_t\}$ such that for the price $\{S_t\}$ of any traded asset, $\{\gamma S\}$ is a (local) martingale under the physical measure.
- Consequently, the fair price at time t of an option paying Z at the maturity T is given by $\gamma_t^{-1} \mathsf{E}[\gamma_T Z | \mathcal{F}_t]$, where $\{\mathcal{F}_t\}$ is the market filtration, and the expectation is taken by the physical measure.
- In particular, the price at time t of the zero-coupon-bond paying 1 at T is given by $\gamma_t^{-1} \mathsf{E}[\gamma_T | \mathcal{F}_t]$.
- In a Markov functional model, it is assumed that $\gamma_t = U(t, X_t)$ for a Markov process X and such a function U as allows an explicit calculation of the expectation so that the bond price is also given by a function of X_t .

Backgrounds 3. Ross's Recovery Theorem

- "Ross's Recovery (Type) Theorem" states that under the separation assumption U(t,x)=f(t)g(x), $f=e^{\lambda t}$ where λ is the first eigenvalue of the infinitesimal generator of X, and 1/g is its eigenfunction.
- This theorem enables a "non-parametric estimation" of the "market price of risk" = instantaneous volatility of the state price density.

- 2 Deep Propagator Method
- 3 An Numerical Experiment Using Dummy Data

- Ross's recovery is, however, not fully "market-driven"; we need to model X and the function r(x) that gives the spot rate r_t by $r(X_t)$.
- Motivated by Ross's recovery theorem Vu and Akahori [3]
 proposed a method to estimate not only the market price of
 risk but also the volatility and the drift of the state price, that
 is to say, the process.
- The key idea is to lift the separation assumption U(t,x) = f(t)g(x) to an infinite dimensional one; $U(t,x) = T_t(g)(x)$, where T_t is a semigroup.
- Our recovery theorem then claims that T_t must be the transition semigroup of X.

Deep Propagator Method

- The idea dates back to the paper by Akahori, Hishida, Teichmann, Tsuchiya [1], but it was still in the context of the classical modeling paradigm.
- We have found that the approach, what they call the "heat kernel approach", might work quite well in a market-driven way.

Deep Propagator Method

• The semigroup property can be rephrased as follows; let X is a Markov process on a Polish space S. The state price density is given by $\gamma_t = u(t, X_t)$, where u is a function with the so-called propagation property;

$$u(t+s,x) = \mathbb{E}[u(t,X_s)|X_0 = x] = \int u(t,y)\mathbb{P}(X_s \in dy|X_0 = x)$$
$$= \int u(t,y)p(s,x,y)dy$$

for any t, s > 0 and $x \in S$.

Then, the zero-coupon-bond price process is given by

$$P(t,T) = \frac{u(2T-t,X_t)}{u(t,X_t)}.$$
 (1)

12 / 22

- In general, with the Markov function assumption $P(t,T) = U_T(t,X_t)$, the function U_T is observed only once at the time t, so we can not recover the values of the function from the market.
- But the formula (1) enables us to recover the function form from the market values of the zero coupon bond prices, once we get u(t, x) for some t.

Deep Propagator Method: Market Generator

Under the Deep Propagator assumption, the propagator (=transition density of X) p(t,x,y) and the function $u(t_0,\cdot)$ can determine $u(t_0,\cdot)$ for $t>t_0$ by

$$u(t,x) \equiv u^{u(t_0,\cdot),p}(t,x) = \int p(t-t_0,x,y)u(t_0,y)dy,$$

and then all the zero coupon bond prices by the equation (1), and also the price at $t \geq t_0$ of an European option paying $F(X_T)$ at the maturity $T > t_0$ by

$$\pi^{T,F}(t,x) = \frac{1}{u(t,x)} \int u(T,y) p(T-t,x,y) F(y) dy. \tag{2}$$

Deep Propagator Method: Estimator

Suppose that we are given the data of $P_o(t, T)$ and X_t and also $\pi_0^{T,F}(t)$ for $t,T\in\mathbb{T}\subset[0,\infty)$ and $F\in\mathbb{F}$, a class of functions. Our target is to find the optimal market generator $(u^*(t_0,\cdot),p^*(t,x,y))$ that minimize the total error Err, which is (roughly) defined as follows. For a given market generator (u, p)and the market observations $\{P_o, \pi_o^{T,F}\}$ define

$$\operatorname{Err}(u(t_0, \cdot), \rho) = \sum_{t, T} \left(P_o(t, T) - \frac{u(2T - t, X_t)}{u(t, X_t)} \right)^2 + \sum_{F, T, t} \left(\pi_o^{T, F}(t) - \pi^{T, F}(t, X_t) \right)^2$$

Deep Propagator Method: An Algorithm

We choose a "prior generator" $u_0(t_0, x)$ and a "prior propagator" $p_0(t, x, y)$. Then, we calculate

$$u_0(t,x) = \int p_0(t,x,y)u_0(t_0,y)dy,$$

for $t, T \in \mathbb{T}$ and then calculate

$$P_0(t,T) = \frac{u_0(2I - t, X_t)}{u_0(t, X_t)}$$

and

$$\pi_0^{T,F}(t,x) = \frac{1}{u_0(t,x)} \int u_0(T,y) p_0(T-t,x,y) F(y) dy$$

for randomly chosen t, T and F. According to the stochastic gradient descent algorithm solving the above optimization problem, update the prior *market generator* to a posterior. We repeat this procedure.

16 / 22

- 3 An Numerical Experiment Using Dummy Data

An Numerical Experiment Using Dummy Data

The first step in testing this theory is to verify whether $u_0(t_0, x)$ can be guessed when $p_0(t, x, y)$ is known. Firstly, we generate dummy data as follows.

- Observation dates: $\mathbb{T} := \{ \frac{k}{n} : k = 0, 1, \dots, T_x \cdot n \}.$
- Assuming that X_t is a geometric Brownian motion, dummy data is generated by substituting the parameters $(n, T_x, sigma, mu, X_0)$.
- Let $u(t,x) = 1 + \sin^2(x)$ be the correct state price density function and compute P(t,T) for all t in \mathbb{T} and T>t to create the price matrix.

Next, the "prior generator" $u_0(t_0,x)$ is updated by machine learning.

- $u_0(t_0, x)$ is configured as follows. Optimizer is Adam.
 - Activation function is Soft plus.
 - Layers are \bigcirc .
 - Nodes are \bigcirc .
- Extract 200 arbitrary (t, T) and define the loss function as

$$\frac{1}{200} \sum \left(P(t,T) - \frac{u_0(2T-t,X_t)}{u_0(t,X_t)} \right)^2$$

The parameters are updated once by back propagation for this loss. The number of epochs is assumed to be \bigcirc .

2 Deep Propagator Method

3 An Numerical Experiment Using Dummy Data

4 References

Backgrounds

- [1] J. Akahori, Y. Hishida, J. Teichmann, T. Tsuchiya, "A heat kernel approach to interest rate models" JJIAM, 31, 419 439 (2014)
- [2] S. Ross, "The recovery theorem", The Journal of Finance 70(2), (2015) 615–648.
- [3] H. Vu, and J. Akahori, "Back to the future: A deep propagator approach to estimate the market expectation", preprint (2022)

Backgrounds

22 / 22