Lecture: K-Means Clustering

Rodrigo Canaan rodrigocanaan.com rocanaan@gmail.com @rocanaan

Slides and Code

https://github.com/rocanaan/k-means

Types of Machine Learning

Supervised Learning

Learning to predict values or classify objects based on labeled data

Unsupervised Learning

Learning patterns based on unlabeled data

Reinforcement Learning

Learning to act intelligently based on interaction with an environment

Types of Machine Learning

Supervised Learning

Learning to predict values or classify objects based on labeled data

Unsupervised Learning

Learning patterns based on unlabeled data

Reinforcement Learning

Learning to act intelligently based on interaction with an environment

Why learn from unlabeled data?

- It's everywhere!
- Human labeling is expensive!

What can we do with unlabeled data?

- Gain insight about the data
- Compress and/or visualize the data
- Generate examples that look like the data
- Label data for downstream tasks

Examples in various domains

Visual Processing

Group similar images even without labels

Recommender Systems

Group similar products and/or users together

Games

Build models of different player styles

Science

Create a taxonomy of phenomena (e.g. stars) based on their observed properties (magnitude, spectrum, distance...)

Unsupervised Learning Tasks

Clustering

Partitioning the data into "clusters" based on a measure of similarity

Dimensionality reduction

Transforming the data from a high dimension to a low dimension

Generative models

Learning a "model" that can be used to produce new examples that are similar to the data

Unsupervised Learning Tasks

Clustering

Partitioning the data into "clusters" based on a measure of similarity

Dimensionality reduction

Transforming the data from a high dimension to a low dimension

Generative models

Learning a "model" that can be used to produce new examples that are similar to the data

Clustering - Visual Example

Before clustering

Clustering - Visual Example

Before clustering

After k-means Clustering (k=3)

Clustering - Distances

What does it mean for two data points to be "similar"?

Usually, it means to have a small "distance" according to some metric

Clustering - Distances

What does it mean for two data points to be "similar"?

Usually, it means to have a small "distance" according to some metric

Examples (in 2-dimensions)

Manhattan Distance

$$D_M = |x2 - x1| + |y2 - y1|$$

Clustering - Distances

What does it mean for two data points to be "similar"?

Usually, it means to have a small "distance" according to some metric

Examples (in 2-dimensions)

Manhattan Distance

$$D_M = |x2 - x1| + |y2 - y1|$$

Euclidean Distance

Clustering Objectives

What does it mean for a clustering to be "good"?

Intuitively:

- Elements in the same cluster are similar ("close")
- Elements in different clusters are dissimilar ("far")

Examples:

- Within-Cluster Sum of Squares (WCSS)
- Average Distance from Centroid
- Maximum Distance from Centroid

- 1. Enumerate all possible clusterings
- 2. Evaluate clustering objective for each clustering
- 3. Return the best clustering

- 1. Enumerate all k^n possible clusterings
- 2. Evaluate clustering objective for each clustering
- 3. Return the best clustering

- 1. Enumerate all k^n possible clusterings
- 2. Evaluate clustering objective for each clustering
- 3. Return the best clustering

Very expensive!

Need heuristic for approximate (but faster) solution!

- 1. Enumerate all k^n possible clusterings
- 2. Evaluate clustering objective for each clustering
- 3. Return the best clustering

Very expensive!

Need heuristic for approximate (but faster) solution!

Example: assign each point to cluster with nearest centroid

Centroid Calculation

Centroid Calculation

$$x_mean = (3+4+5)/3 = 4$$

 $y_mean = (5+7+3)/3 = 5$

Centroid Calculation

$$x_mean = (3+4+5)/3 = 4$$

 $y_mean = (5+7+3)/3 = 5$

Centroid =
$$(4,5)$$

Outline of K-Means Clustering Algorithm

- 1. Generate k initial centroids
- 2. Assign points based on heuristic
 - Each point is assigned to cluster with nearest centroid by Euclidean distance
- 3. Recalculate centroids
- 4. Repeat (2, 3) until no re-assignments

Alternatively, up to some maximum number of epochs

(Naive) K-Means Pseudo-Code

```
1 # Pseudo-code of K-Means clustering algorithm
 2 # Assumes a Partition class with methods to maintain centroids and labels
 3 # P and P new are instances of this Partition class
 4 Function k-means (data,k)
       P <- initialize_partition(data,k)</pre>
       stop <- False
       while not stop # runs until no new assignments
 8
           P_new <- empty_partition(k)
           for d in data # Check distance from d to k centroids, assign to closest
10 -
               new_label <- P.get_closest_centroid_label(d)</pre>
11
12
               P_new.add_element(d,new_label)
13
           Endfor
14 -
           if P_new = P # If nothing changed, stop
15
               stop = True
16
           Endif
17
           P <- P new
18
           P.compute_centroids() # Re-compute centroids based on new labels
19
       Endwhile
20
       return P
22 Endfunction
```

(Naive) K-Means Pseudo-Code

```
1 # Pseudo-code of K-Means clustering algorithm
   inction k-means (data,k)
       P <- initialize_partition(data,k)</pre>
       stop <- False
       while not stop # runs until no new assignments
 8
           P_new <- empty_partition(k)
           for d in data # Check distance from d to k centroids, assign to closest
10 -
                new_label <- P.get_closest_centroid_label(d)</pre>
11
12
               P_new.add_element(d,new_label)
13
           Endfor
14 -
           if P_new = P # If nothing changed, stop
15
               stop = True
16
           Endif
17
           P <- P new
18
           P.compute_centroids() # Re-compute centroids based on new labels
       Endwhile
19
20
       return P
22 Endfunction
```

K-Means Initialization

How to initialize clusters?

- Forgy method: Choose *k* initial centroids randomly (from the data), assign other points according to distance to centroids
- Random Partition: Assign each datapoint to a random cluster label, then compute centroids
- Other options: see comparative study by (Celebi et al., 2013)

K-Means Initialization Pseudo-Code

```
4 Function initialize_partitions(data,k)
       P <- empty_partition(k)</pre>
       P.centroids <- sample_without_replacement(data,k) # get k points from data
   Endfunction
 8
   #0R
10
11 # Random Partition initialization
   Function initialize_partitions(data,k)
       P <- empty_partition(k)</pre>
14
       for d in data
            label <- random_uniform(k)</pre>
16
            P.add_element(d,label)
       Endfor
       P.compute_centroids()
       return P
   Endfunction
```

Demo

Forgy Method, k=3

Random Partition, k=3

Advantages and Disadvantages

- Struggles with some data shapes, sizes and outliers
- Struggles with categorical data
- Guaranteed convergence only to local (not global optimum)
- Need to specify k in advance
- "Curse of dimensionality"
- Worst-case time complexity?

Time Complexity

```
O(e)
Outer-loop
epochs
O(n)
Inner-loop
iterations
```

```
1 # Pseudo-code of K-Means clustering algorithm
 4 Function k-means (data,k)
       P <- initialize_partition(data,k)</pre>
       stop <- False
     while not stop # runs until no new assignments
           P_new <- empty_partition(k)
           for d in data # Check distance from d to k centroids, assign to closest
               new_label <- P.get_closest_centroid_label(d)</pre>
               P_new.add_element(d,new_label)
12
13
           Endfor
14 -
           if P_new = P # If nothing changed, stop
15
                stop = True
16
           Endif
17
           P <- P new
18
           P.compute_centroids() # Re-compute centroids based on new labels
       Endwhile
19
20
       return P
22 Endfunction
```

Time Complexity = O(nke)

```
1 # Pseudo-code of K-Means clustering algorithm
              4 Function k-means (data,k)
   O(e)
                    P <- initialize_partition(data,k)</pre>
                    stop <- False
Outer-loop
                  while not stop # runs until no new assignments
 epochs
   O(n)
                        P_new <- empty_partition(k)
Inner-loop
                        ▶for d in data # Check distance from d to k centroids, assign to closest
                             new_label <- P.get_closest_centroid_label(d)</pre>
iterations
                             P_new.add_element(d,new_label)
             12
             13
                        Endfor
             14 -
                        if P_new = P # If nothing changed, stop
             15
                             stop = True
             16
                        Endif
             17
                        P <- P new
             18
                        P.compute_centroids() # Re-compute centroids based on new labels
                    Endwhile
             19
             20
                    return P
                Endfunction
```

Note: number of epochs e is hard to estimate, can be big in worst case

- Struggles with some cluster shapes, sizes and outliers
- Struggles with categorical data
- Guaranteed convergence only to local (not global optimum)
- Need to specify k in advance
- "Curse of dimensionality"
- High worst-case time complexity

K-Means Advantages

- Simple to implement
- Good performance in many practical scenarios
- Adaptations and combinations can handle outliers, different shapes and sizes, higher dimensions, categorical data...
 - Examples: k-medians, k-modes, k-medoids, hierarchical clusterings, kernel methods, dimensionality reduction...
- Performance can be improved by non-naive implementations Example: using k-d trees to select initial centroids

Thank you!

www.rodrigocanaan.com rocanaan@gmail.com @rocanaan

Scholar Page

