

Sérgio Agostinho Aljoša Ošep

Alessio Del Bue

Laura Leal-Taixé

A traditional correspondence-based pipeline

- Parameter-free iterative layer
- New pose per iteration, augmenting pose supervision
- Only added during training
- Implicitly helps the matching network to produce better matches

What does it do? It takes an estimate produced by Kabsch and performs a number of iterative updates.

What happens?

- The estimates produced by our layer diverge will occasionally diverge from Kabsch's estimate.
- 2. This divergence is paired with a higher penalty in the loss, conditioning the network to avoid the set of matches it provided.
- 3. This is beneficial for the host network, encouraging it to learn better correspondences.

Stage I - Constrained Optimization

$$\underset{\mathbf{R}}{\operatorname{arg\,min}} \quad \sum_{i=1}^{N} w_i \|\tilde{\mathbf{p}}_{t_i} - \mathbf{R}\tilde{\mathbf{p}}_{s_i}\||^2$$
s.t.
$$\mathbf{R}^{\top}\mathbf{R} = \mathbf{I} \qquad \text{linearize}$$

$$\frac{\det(\mathbf{R}) - 1}{\det(\mathbf{R})}$$

Stage II - Rotation Assembler

Stage III - Estimate translation

$$\mathbf{t} = \frac{\sum_{i=1}^{N} w_i(\mathbf{p}_{t_i} - \mathbf{R}\mathbf{p}_{s_i})}{\sum_{i=1}^{N} w_i} = \bar{\mathbf{p}_t} - \mathbf{R}\bar{\mathbf{p}}$$

Changes to the Loss

$$\mathcal{L} = \|\mathbf{R}^{\top}\mathbf{R}_{gt} - \mathbf{I}\|^{2} + \|\mathbf{t} - \mathbf{t}_{gt}\|^{2} + \lambda \|\theta\|^{2}$$

$$\mathcal{L} = \frac{1}{N_{r}+1} \sum_{i=1}^{N_{r}+1} \|\mathbf{R}_{i}^{\top}\mathbf{R}_{gt} - \mathbf{I}\|^{2} + \frac{1}{N_{r}+1} \sum_{i=1}^{N_{r}+1} \|\mathbf{t}_{i} - \mathbf{t}_{gt}\|^{2} + \lambda \|\theta\|^{2}$$

Results

- Objects rotated [0°, 45°] and translated [-0.5, 0.5] in each axis
- 5 iterations of our method

DCP on ModelNet40 - Unseen Categories

Model	RMSE(R)°	MAE(R)°	RMSE(t)	MAE(t)
ICP	29.876431	23.626110	0.293266	0.251916
Go-ICP [41]	13.865736	2.914169	0.022154	0.006219
FGR [47]	9.848997	1.445460	0.013503	0.002231
PointNetLK [13]	17.502113	5.280545	0.028007	0.007203
DCP-v2	3.150191	2.007210	0.005039	0.003703
DCP-v2 + ours	2.051713	1.431898	0.004543	0.003333

One half of the total object categories is used training and the other half is only used for evaluation.

RPM-Net on ModelNet40 - 70% surface overlap

Method	Anisotropic err.		Isotropic err.		$ ilde{CD}$
	(Rot.)	(Trans.)	(Rot.)	(Trans.)	
ICP	13.719	0.132	27.250	0.280	0.0153
RPM	9.771	0.092	19.551	0.212	0.0081
FGR	19.266	0.090	30.839	0.192	0.0119
PointNetLK	15.931	0.142	29.725	0.297	0.0235
DCP-v2	6.380	0.083	12.607	0.169	0.0113
RPM-Net	0.893	0.0087	1.712	0.018	0.00085
RPM-Net +	0.826	0.0081	1.575	0.017	0.00085
Ours					
RPM-Net†	0.993	0.0087	1.861	0.018	0.00099
RPM-Net +	0.872	0.0074	1.554	0.015	0.00088
Ours†					

Best improvements once RPM-Net is trained without a loss term encouraging inliers †

Official Implementation

Conclusions

- Parameter-free layer for correspondence-based registration networks.
- It implicitly improves matching quality, only through pose supervision.
- It is a guilt free addition because it does not hinder registration performance.

Soon!