CS323: Theory of Computation

Lecture 1 Introductory Lecture

Dr. Samar Hesham

Department of Computer Science
Faculty of Computers and AI- Cairo University
Egypt

Google classroom

- Theory of Computations (General)
 - https://classroom.google.com/c/NjYzODA2MTYzNTk w?cjc=jt6zoej
 - Code: jt6zoej
- Theory of Computations (Special)
 - https://classroom.google.com/c/NjYzODA2NDcxODY 5?cjc=xq7ojfx
 - □ Code: xq7ojfx

Syllabus and Terminologies

- Regular Languages .. Regular Sets
 - □ REs (Regular Expressions)
 - □ FSMs (or FSA/FA) ... Finite State Machines/Automata
 - DFA vs. NFA ... Deterministic vs. Non-deterministic FSA
 - Comparison and conversion
 - Examples & Closure Operations
 - Pumping Lemma
- Context Free Languages
 - □ CFGs ... Context Free Grammars
 - □ PDA ... Push Down Automata
 - Parsing: CFG generating strings vs. PDA recognizing strings
- Turing Machine

Resources

Text Books:

- □ "Introduction to Computer Theory", 2nd Edition, by Daniel I.A. Cohen, John Wiley & Sons.
- □ "An Introduction to Formal Languages & Automata" by Peter Linz, Jones & Bartlett Publishers, 3rd edition, Inc. January 2001; ISBN: 0763714224.
- □ "*Theory of Computation an Introduction*" by James L. Hein, Jones & Bartlett Publishers 1996; ISBN: 0-86720-497-4.

Course Grading Policy

Midterm Exam	20
Lab Tasks & Practice	20
Final	60
Total	100

Lab Activities

- **Theoritical:** Problem Solving
- Practical: Programming practice on:

REsText Matching

FSAs ... Simulation of operations

PDAs ... Simulation of operations

Turing Machine ... Simulation of operations

- It is the most abstract course in the whole curriculum
- But a fundamental course for all CSians
- This course is not about how to develop a program or build a computer
- It helps you know a lot more about how people looked to CS as a science in the past 70 years

- It is about:
 - What kind of things can we really compute?
 - How fast we can do it? and
 - How much space/memory it needs to be computed?

- This course is about different models of computations you can use to compute stuff
- But abstracted from the hardware/machine specifications
- We will deal with kinds of problems that takes inputs, and process it, then decide whether these inputs are acceptable or not
- Inputs are set of symbols formed by an alphabet (binary, English alphabet, ...)

- There are a lot of applications that connect to this course:
 - Theory behind writing compilers/translators for programming languages
 - □ Computer Architecture → model particular processes/states using finite-state-machines (FSMs)
 - □ String search algorithms, word processing algorithms, any kind of editors → that is a RE/FSM
 - When you do a representation of a language like XML, it is just a *grammar-writing*

Turing Machine

- Turing Machine invented by Alan-Turing in 1940's
- It is an abstraction of how programming languages and computers work nowadays
- He invented a mathematical abstraction of a complete representation of how might we can do a computation
- Any problem that can be computed by a program on a computer, it can be computed by (simulated on) a Turing Machine

Hierarchy of Machines

Turing Machine

- Turing Machine is like a *human with organs*, cutting one organ (going down into lower machine) will make it handicap, or taking higher time and resources
- The lower level is the FSM, and then add up pieces to form more powerful machines (till getting a Turing Machine)
- Then you will get into the twilight zone that has problems can't be computed

Definition of a language "L"

 \sum is the set of alphabets:

Language = set of strings can be formed by \sum

- If $\sum = \text{Binary digits } (0/1)$
 - Language = all binary strings
- If Σ = English characters
 - □ Language = English sentences
- If $\Sigma = ASCII$ character-set
 - □ Language = C++ Programs

Definition of a language "L"

- Language: is a <u>set</u> of strings.
 - If A is an alphabet, then a language over A is a collection of all strings over A.
 - A^* is the biggest possible language over A, and every other language over A is a <u>subset</u> of A^* .

Example

If $A=\{a\}$ then the following are simple examples of languages over an alphabet A:

$$\{\Phi\}, \{\lambda\}, \{a\}, \text{ and } \mathbf{A}^* = \{\lambda, a, aa, aaa, \dots \}.$$

Note: λ , Λ , ε are used interchangeably in textbooks

Example

Let the alphabet be $\Sigma = \{a, b\}$ then,

```
- \{\Phi\} = Empty Language
 - \{\lambda\} = Empty\ Character
 -\{a\} = Letter 'a'
 -\{b\} = Letter 'b'
- a^* = {\lambda, a, aa, aaa, ....}
- \sum^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, bbb, aaaa, bbb, aaa, bbb, aaaa, bbb, aaaaa, bbb, a
 - \Sigma^{+} = \Sigma^{*} - {\lambda}
                                                                                                                                                                                                                                                     finite while (i<n)
infinite (out (a))
- L_1 = \{ a, aa, bbb \}
 - L_2 = \{a^nb^n : n > = 0\}
-\overline{\mathbf{L}}_1 = \sum_{i=1}^{n} L_1
```

Definition of a language "L"

A Language is a set of strings

alphabet → language

```
\Sigma = \{x\} \Sigma^* = \{\Lambda, x, xx, xxx, ...\} or directly \{x\}^* = \{\Lambda, x, xx, xxx, ...\}
```

language → language

```
S = \{xx, xxx\}
S^* = \{\Lambda, xx, xxx, xxxx, ...\}
or directly \{xx, xxx\}^* = \{\Lambda, xx, xxx, xxxx, ...\}
```

- "letter" → language
 - □ **x*** (written in bold)

```
language(\mathbf{x}^*) = {\Lambda, x, xx, xxx, ...}
or informally \mathbf{x}^* = {\Lambda, x, xx, xxx, ...}
```

Regular Languages/Sets ... RLs/RSs

- It is a language that:
 - Can be governed/expressed by rules called *Regular Expressions* (REs).
 - > or
 - > Has a *finite accepter/automaton/machine* that can describe/accept it.

Theorem

```
Languages
Generated by
Regular Expressions

Regular Expressions

Regular
```

Properties of Regular Languages

For regular languages $L_{\!1}$ and $L_{\!2}$ we have

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Are regular Languages

Properties of Regular Languages

For regular languages $L_{\!\scriptscriptstyle 1}$ and $L_{\!\scriptscriptstyle 2}$ we have Concatenation: {\(\lambda\), a, ab, aa, abab, \(\alpha\) Star:

Regular Expressions

- > RE is a **syntax** for describing simple/regular languages and patterns.
- > REs are also used in applications that involve file parsing and text matching.
- > Many implementations have been made for RE.

RE Rules

Let $\Sigma = \{x\}$, then $L = \sum^*$ In RE, we write x* 2. Let $\Sigma = \{x, y\}$, then $L = \Sigma^*$ In RE, we write $(x+y)^*$ In RE, we write $(x+y)^*$ Kleene's star "*" means any combination of letters of length zero or more. $(x+y)^*$ $(x-y)^*$ $(x+y)^*$ $(x+y)^*$ (x+y)X=3 {XXX, XXY, --- }

RE Rules

Given an alphabet \sum , the set of regular expressions is defined by the following rules.

- For every letter in \sum , the letter written in bold is a regular expression. **A-lamda or \varepsilon-epsilon** is a regular expression. A **or** ε means an empty letter.
- 2. If $\mathbf{r_1}$ and $\mathbf{r_2}$ are regular expressions, then so are:
 - 1. (r_1)
 - $\mathbf{r}_1 \mathbf{r}_2$ and
 - 3. $\mathbf{r}_1 + \mathbf{r}_2$ or
 - 4. r_1^* and also r_2^*

NOTE 1: r_1^+ is not a RE

NOTE 2: spaces are ignored as long as they are not included in \sum

Nothing else is a regular expression.

Recursive Definition

Primitive regular expressions: \varnothing , λ , a Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

Examples

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

• L(r): language of regular expression r

Example:
$$(a+bc) \cdot (a+bc)$$

If $\mathbf{r} = (a+b\cdot c)^* = \{\lambda, a, bc, aa, abc, L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bcd, aa\}$

Regular Expressions

- Regular expressions
 - describe regular languages

Example:

Describe the language $(a+b\cdot c)^*$

$${a,bc}^* = {\lambda,a,bc,aa,abc,bca,...}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

$$L((r_1)) = L(r_1)$$

Example

Regular expression: $(a+b)\cdot a*$

$$L((\underline{a+b}) \cdot \underline{a^*}) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Example

Regular expression r = (aa)*(bb)*b

■ What is the regular languages that *r* describes?

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

$$(aab) = \{abb = aabb =$$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are **equivalent** if

$$L(r_1) = L(r_2)$$

Example

 $L = \{all strings with no two consecutive 0's \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$
 and r_2 are equivalent regular expr.

Example

Regular expression r = (0+1)*00(0+1)*

$$L(r)$$
 = { all strings with at least two consecutive 0's }

RE Examples

Example 1

$$\sum = \{a, b\}$$

- Formally describe all words with <u>a</u> followed by any number of <u>b</u>'s

$$L = a b^* = ab^*$$

```
{a ab abb abbb .....}
```

Example 1

$$\sum = \{a, b\}$$

- Formally describe all words with <u>a</u> followed by any number of <u>b</u>'s

$$L = a b^* = ab^*$$

```
{a ab abb abbb .....}
```

Example

$$\sum = \{a, b\}$$

- Formally describe all words with <u>a</u> followed by one or more <u>b</u>'s

$$L = a b^+ = abb^*$$

```
{ab abb abbb .....}
```

Example

$$\sum = \{a, b, c\}$$

- Formally describe all words that start with an <u>a</u> followed by any number of <u>b</u>'s and then end with <u>c</u>.

$$L = a b^*c$$

```
{ac abc abbc abbbc .....}
```

Example

$$\sum = \{a, b\}$$

- Formally describe the language that contains nothing and contains words where any <u>a</u> must be followed by one or more <u>b</u>'s

```
L = b*(abb*)^* OR (b+ab)*
```

- Give examples for words in L

 $\{\Lambda \text{ ab abb ababb } \dots \text{ b bb} \dots \}$

 \triangleright Example $\sum = \{a, b\}$

$$\sum = \{a, b\}$$

Formally describe all words where a's if any come before b's if any.

$$L = a^* b^*$$

- Give examples for words in L

 $\{\Lambda \text{ a b aa ab bb aaa abb abbb bbb.....}\}$

NOTE:
$$a^*b^* \neq (ab)^*$$

because first language does not contain abab but second language has. Once single b is detected then no a's can be added

Example

$$\sum = \{a\}$$

- Formally describe all words where count of <u>a</u> is odd.

```
L = a(aa)^* OR (aa)^* a
```

```
{a aaa aaaaa .....}
```

RE-7.1

Example

$$\sum = \{a, b, c\}$$

- Formally describe all words where single <u>a</u> or <u>c</u> comes in the start then odd number of <u>b</u>'s.

```
L = (a+c)b(bb)^*
```

```
{ab cb abbb cbbb .....}
```

RE-7.2

a (16) 15 + C(66)

Example

$$\sum = \{a, b, c\}$$

Formally describe all words where single <u>a</u> or <u>c</u> comes in the start then odd number of <u>b</u>'s in case of <u>a</u> and zero or even number of <u>b</u>'s in case of <u>c</u>.

```
L = \overline{ab(bb)}^* + c(bb)^*
```

- Give examples for words in L

{ab c abbb cbb abbbbb}