

a1 transforming growth factor $\beta 1$ (Munger et al., Cell (Cambridge, Mass) 96:319-328, 1999), and in viral infections (Virology 239:71-77, 1997).

In the Claims:

Please DELETE Claim 3.

Please AMEND Claims 1, 4 and 5 as follows:

Q2 1. (Amended) A compound of the formula

or a pharmaceutically acceptable salt thereof, wherein g, h and j are each independently 0 or 1; provided when h is 0, then g is 0;

each Alk is independently a alkyl radical;

Sub B1 U represents amidino, guanidino, $-(G\text{-alkyl})_k\text{-NH-}R_1$, $-(G\text{-alkyl})_k\text{-NH-C(Q)-}R_1$, $-(G\text{-alkyl})_k\text{-C(Q)-}N(R)\text{-}R_1$, $-(G\text{-alkyl})_k\text{-NH-C(Q)-}N(R)\text{-}R_1$, $-(G\text{-alkyl})_k\text{-NH-C(Q)-O-}R_1$ or $-(G\text{-alkyl})_k\text{-O-C(Q)-}N(R)\text{-}R_1$ radical; or U represents a hydroxyalkyl-G- radical which is optionally substituted by a cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

wherein k is 0 or 1;

G represents a bond, O, S or NH;

Q represents O, S, NH, N-CN or N-alkyl;

R is a radical of hydrogen or alkyl;

R1 R_1 is a radical of alkyl, haloalkyl, $R_{21}R_{22}\text{N-}alkyl$, $R_{21}O\text{-}alkyl$, $R_{21}S\text{-}alkyl$, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the

cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

Suh
B1

wherein R₂₁ and R₂₂ are each independently a radical of hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

each R₂ is independently a halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, alkylamino or dialkylamino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

V represents a radical of formula

wherein each W₂, W₃, W₄ and W₅ is C-R₄; provided the total number of cycloalkyl, aryl, heteroaryl, heterocyclyl, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂ and -R₁₉ radicals in W₂, W₃, W₄ and W₅ is 0-2;

Sub B
each W_6 is C-H; and

each R_4 is independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, cyano, carboxy, $-C(O)-O-R_{19}$, $-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-C(O)-N(R_{19})_2$, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; or two adjacent R_4 radicals taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

R_5 , R_6 and R_7 are each independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy or cyano radical; or R_5 and R_6 or R_6 and R_7 taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ; or R_3 and R_6 taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R_2 ;

A represents a radical of formula

R_8 , R_9 , R_{10} , R_{11} and R_{12} are each independently a hydrogen or alkyl radical; or $-CR_8R_9-$ represents a $-C(O)-$;

B represents a radical of formula

(a) wherein (a) R_{15} is a hydrogen or alkyl radical; and R_{17} is (1) an aryl, heteroaryl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ; or

(b) R_{17} is a hydrogen or alkyl radical; and R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$ radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or $-C(O)-NH-R_{19}$ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$;

wherein R_{19} is a alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

R_{16} and R_{18} are each independently a hydrogen or alkyl radical; and

Sub 2
Sub B1

E is a radical of carboxy, amido, tetrazolyl, -C(O)-O-R₂₀, -C(O)-NH-R₂₀, -C(O)-NH-S(O)-R₂₀, -C(O)-NH-S(O)₂-R₂₀ or -C(O)-NH-C(O)-R₂₀;

wherein R₂₀ is an alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl radical or an alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; and

provided that when U represents amidino, guanidino, -C(Q)-NH-R₁ or -NH-C(Q)-NH-R₁ radical, wherein Q represents NH, N-CN or N-alkyl, then at least one of g, h or j is 1.

A3

4. (Amended) The compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₆ alkyl radical;

V represents a radical of formula

R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or methyl radical; or -CR₈R₉- represents a -C(O)-.

Sub B3

5. (Amended) The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₄ alkyl radical;

a 3
U represents amidino, guanidino, -(G-(C₁-C₈ alkyl))_k-NH-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-R₁, -(G-(C₁-C₈ alkyl))_k-C(Q)-N(R)-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-N(R)-R₁ or -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-O-R₁ radical;

G represents a bond, O or NH;

Sub B 3
Q represents O, S, NH, N-CN or N-(C₁-C₄ alkyl);

R is a radical of hydrogen or C₁-C₄ alkyl;

R₁ is a radical of C₁-C₆ alkyl, halo(C₁-C₆ alkyl) of 1-5 halo radicals, R₂₁R₂₂N-(C₁-C₆ alkyl), R₂₁O-(C₁-C₆ alkyl), C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₆ alkyl), aryl, aryl(C₁-C₆ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₆ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₆ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

R₂₁ and R₂₂ are each independently a radical of hydrogen, C₁-C₈ alkyl, aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members or heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

each R₂ is independently a halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C₁-C₄ alkylamino or di(C₁-C₄ alkyl)amino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

each R₄ is independently a hydrogen, halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl(C₁-C₄ alkyl), aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₄ alkyl) of 5-8 ring

(23)
members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; and

Suj B3
R₂₀ is a C₁-C₄ alkyl, aryl or heteroaryl of 5-10 ring members or a C₁-C₄ alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂.
