Math 115B: Linear Algebra

Homework 1

Due: Tuesday, January 14 at 11:59 PT

- All answers should be accompanied with a full proof as justification unless otherwise stated.
- Homeworks should be submitted through Gradescope, which can be found on the course Canvas (Bruin Learn) page.
- As always, you are welcome and encouraged to collaborate on this assignment with other students in this course! However, answers must be submitted in your own words.
- 1. $(\frac{-}{20})$ Assume V and W are vector spaces over a field k, and let $T:V\to W$ denote a linear transformation between them. Prove that if T has an inverse, then that inverse is a linear function.
- 2. $(\frac{-}{20})$ Assume that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are vectors in a vector space V over some field k. Is it possible that the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linearly independent but the vectors $\vec{w}_1 = \vec{v}_1 + \vec{v}_2, \vec{w}_2 = \vec{v}_1 + \vec{v}_3, \vec{w}_3 = \vec{v}_2 + \vec{v}_3$ are linearly dependent?
- 3. $(\frac{-}{5+5})$ Assume V is a vector space consisting of 49 vectors over a field k.
 - (a) Prove that the set of elements in k is finite.
 - (b) Prove that V is finite dimensional and that $\dim(V) = 1$ or $\dim(V) = 2$.
- 4. $(\frac{-}{5+5+5})$ Assume V is a vector space over some field k, and let W_1, W_2 denote subspaces of V. Define

$$W_1 + W_2 := \{ w_1 + w_2 : w_1 \in W_1, w_2 \in W_2 \}.$$

- (a) Prove that $W_1 \subseteq W_1 + W_2$ and $W_2 \subseteq W_2 + W_1$.
- (b) Prove that $W_1 + W_2$ is a subspace of V.
- (c) Assume that $W \subseteq V$ is a subspace such that $W_1 \subseteq W$ and $W_2 \subseteq W$. Prove $W_1 + W_2 \subseteq W$. (Notice that these results imply that $W_1 + W_2$ is the smallest possible subspace of V which contains both W_1 and W_2 !)
- 5. $(\frac{-}{5*4})$ Let k denote some field. For each function f below, determine if f is a linear functional and prove your answer is correct. You may assume standard results from calculus.
 - (a) $V = \mathbb{R}[x]$, f(p(x)) := 4p'(0) + p''(1), where q'(x) denotes the derivative of $q(x) \in \mathbb{R}[x]$.
 - (b) $V = k^2, f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x \\ 4y \end{pmatrix}$.
 - (c) $V = k^{2 \times 2}$, f(A) = tr(A)

(d)
$$V = \mathbb{R}[x], f(p(x)) = \int_0^1 p(x) dx$$

(e)
$$V = \mathbb{Q}^3, f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x^2 + y^2 + z^2$$

6. $(\frac{-}{10+5})$ Assume that m,n are positive integers, and fix $x_1,...,x_m \in \mathbb{R}$ such that $x_i \neq x_j$ if $i,j \in \{1,...,m\}$ such that $i \neq j$. Let

$$W := \{ f \in \mathbb{R}[x]_{\leq n} : f(x_1) = f(x_2) = \dots = f(x_m) = 0 \}$$

where $\mathbb{R}[x]_{\leq n}$ denotes the degree less than or equal to n. (The set $\mathbb{R}[x]_{\leq n}$ is denoted $P_n(\mathbb{R})$ in our textbook.)

- (a) Prove that W is a vector space over \mathbb{R} . (*Hint:* The set W is, by definition, a subset of $\mathbb{R}[x]_{\leq n}$, which was shown in 115A to be a vector space.)
- (b) Compute the dimension of W. (*Hint*: It may help to use the rank-nullity theorem.)