# GOES-16 On-Station Custom Maneuver Generation with *FocusSuite*

Henry Heim, Natalie Ramos-Pedroza, Jeffrey Gillette

#### Introduction

- GOES-R Series
  - Series of four geostationary weather satellites
  - Launches in 2016, 2018, 2022, and 2024
  - Have strict station-keeping requirements to keep science instruments active



GOES-R Series Spacecraft in Operational Configuration.<sup>1</sup>

## **Station-Keeping**

- Three types of station-keeping maneuvers:
  - Twice-weekly EWSKs and NSSKs
  - Daily MAs



Nominal GOES-R Series Station-Keeping Cadence.<sup>2</sup>

## **Thrusters & Fuel Usage**

Breakdown of AJT and LTR Thruster Count and Intended Use in GOES-R Series Spacecraft.

| Thruster Type                             | Count Intended Use |                                 |
|-------------------------------------------|--------------------|---------------------------------|
| Low-Thrust Reaction engine assembly (LTR) | 16                 | MA maneuvers and EWSK maneuvers |
| ArcJet Thruster (AJT)                     | 4                  | NSSK maneuvers                  |

Station-Keeping Fuel Usage for GOES-16 and GOES-17 During Their First Full Years On-Orbit.

| Spacecraft | MA Fuel Usage<br>(kg) | EWSK Fuel Usage<br>(kg) | NSSK Fuel Usage<br>(kg) | Total Station-Keeping Fuel<br>Usage (kg) |
|------------|-----------------------|-------------------------|-------------------------|------------------------------------------|
| G0ES-16    | 7.49                  | 6.20                    | 31.55                   | 45.24                                    |
| G0ES-17    | 5.92                  | 5.99                    | 33.23                   | 45.14                                    |

## **Spacecraft Navigation**

- Maneuver Planning
  - We use FocusSuite by GMV
  - We utilize the *Autofocus* automation toolbox
- MOST develops Autofocus scripts for NOAA planners to use for:
  - Maneuver planning
  - Maneuver reconstruction
  - Orbit determination
- The system works well in nominal operations



#### Thruster Issues

- AJT14 started acting strangely in 2020
  - Experiencing unexpected torques
  - Sending erratic voltage telemetry
- Various mitigations were tried:
  - Use the other AJT pair
  - Run in lower-power modes
  - Run in "unaugmented" mode
  - Use a different thruster type



Locations of AJT and LTR Thrusters for GOES-R Series Spacecraft.<sup>1</sup>

### Fooling FocusSuite

- LTRs 18-22 could also be used for NSSKs
- However, FocusSuite restricts thruster selection when implementing NSSKs
- We developed a way to circumvent those checks



Locations of AJT and LTR Thrusters for GOES-R Series Spacecraft.<sup>1</sup>

#### **Custom Maneuver Generation**

- Heavily dependent on FocusSuite's design
  - Make a standard impulsive NSSK
  - Edit maneuver file to convert to EWSK
  - Use FocusSuite to implement that EWSK
  - Convert back to NSSK
  - Compute momentum effects
  - Edit the maneuver file to include the new custom-made maneuver
- This creates the NSSK maneuver

## **Anatomy of an NSSK**

- NSSK maneuvers are usually long and impart a lot of momentum
- Reaction wheels have limits
- To stay within those limits, we use a "Pre-MA" to load momentum
  - We pass through zero momentum halfway through the NSSK burn



Maneuver Order During NSSKs.

# **Anatomy of an NSSK**

 After the NSSK is over, we use a "Post-MA" to set a safe momentum state for the next day



#### **Pre-MA and Post-MA Effects**

- Pre-MA and Post-MA maneuvers are closed-loop
- Sometimes the spacecraft fires North-face LTRs
- This gives North/South ΔV
  - Sometimes >10% of the total from the entire NSSK
- Normally FocusSuite takes this into account, but can't with custom maneuvers

#### Solvers in Autofocus

- Finding the correct LTR NSSK  $\Delta V$  is an iterative process
  - The Pre-MA, NSSK, and Post-MA North/South ΔV need to add up correctly
  - We use a proportional variable-gain numerical solver to do this
- There is a similar issue with the NSSK if it is too long
  - LTRs are lower-thrust than AJTs, so LTR NSSKs need to be much longer
  - We quickly start to run into momentum limit issues
  - If the LTR NSSK produces too much momentum, we know its duration needs to be capped
  - We use another proportional variable-gain numerical solver to target the momentum effect just below the limit

#### LTR NSSK Effects

- Lower LTR thrust means more NSSKs more often
  - Old maneuver cadence: NSSK, MA, EWSK, MA
  - New maneuver cadence: NSSK, NSSK, NSSK, NSSK, NSSK, EWSK, MA
- LTR NSSKs also take a long time to plan
  - Nominal planning takes about 90 minutes to plan 14 days' worth of maneuvers
  - Each individual LTR NSSK can take up to 40 minutes to plan

#### Results

- GOES-16 has performed 52 LTR NSSKs so far
- There were some growing pains
- NOAA quickly switched to scaling past maneuvers
  - These can be generated in as little as two minutes
  - Predictions just as accurate as full LTR NSSKs

## **Prediction Accuracy**



Difference Between FocusSuite ΔV Prediction and Observed Orbit Change for LTR NSSK Maneuvers.

## **Prediction Accuracy**



Difference Between FocusSuite Momentum Predictions and Observed Momentum State Changes For LTR NSSK Maneuvers.

## LTR NSSK Thruster Usage

| Thruster<br>Type | Total<br>Duration (h) | Total ΔV<br>(m/s) | Acceleration (m/s²)    | Total Fuel<br>Usage | Fuel Efficiency<br>(m/s/kg) |
|------------------|-----------------------|-------------------|------------------------|---------------------|-----------------------------|
| LTR              | 35.91                 | 5.904             | $4.567 \times 10^{-5}$ | 12.95               | 0.4559                      |
| AJT              | 49.21                 | 24.42             | $1.378 \times 10^{-4}$ | 15.51               | 1.574                       |

Comparison of 50 LTR NSSK Maneuvers to 50 Nominal AJT NSSK Maneuvers.

#### Conclusion

- In October 2021, GOES-16 switched to imbalanced AJT NSSKs
  - These rely on the increased efficiency of AJTs to offset momentum imbalance
  - They use many programming tools developed for LTR NSSKs
- LTR NSSK maneuvers remain a contingency option



Locations of AJT and LTR Thrusters for GOES-R Series Spacecraft.<sup>1</sup>

#### **Presentation References**

<sup>1</sup> Chapel, J., Stancliffe, D., Bevacqua, T., Winkler, S., Clapp, B., Rood, T., Freesland, D., Reth, A., Early, D., Walsh, T., Krimchansky, A., "In-Flight Guidance, Navigation, and Control Performance Results for the GOES-16 Spacecraft", 10<sup>th</sup> International ESA Conference on Guidance, Navigation & Control Systems, Salzburg, Austria, 2017

<sup>2</sup> Gillette, J., Concha, M., "GPS Based Navigation Implementation for GOES-R", 39<sup>th</sup> Annual AAS Guidance and Control Conference, paper 16-075, Breckenridge, CO, 2016

# Questions?