计算方法

第4章 方程求根的迭代法

胡敏

合肥工业大学 计算机与信息学院

jsjxhumin@hfut.edu.cn

uhnim@163.com

第 4 章 方程求根的迭代法

- 4.1 迭代过程的收敛性
- 4.2 迭代过程的加速
- 4.3 牛顿法
- 4.4 弦截法

第 4 章 方程求根的迭代法

1. 教学内容:

二分法、迭代法的一般原理、NEWTON迭代法

2. 重点难点:

重点: 牛顿迭代法及局部收敛性

难点: 迭代法及收敛性定理

3. 教学目标:

掌握迭代法的一般原理、对给出的方程求根问题,能 利用一般迭代法或者牛顿迭代法进行数值求解

引言

非线性方程的根

求f(x) = 0的根

高次方程,**5**次以上的方程无求根公式

□ 代数方程: $f(x) = a_0 + a_1x + ... + a_nx^n$ 超越方程: f(x) 含超越函数, 如 $\sin(x)$, e^x , $\ln x$ 等

$$f(x) = x^2 - 1$$
, $f(x) = x^{30} + x^{25} + 7x^2 + 1$, $f(x) = \sin x + e^x$

- □实根与复根
- □ 根的重数 $f(x) = (x x^*)^m \cdot g(x)$ 且 $g(x^*) \neq 0$, 则 x^* 为 f(x) 的 m 重根
- □ 有根区间: [a,b] 上存在 f(x) = 0 的一个实根

研究》内容: 在有根的前提下求出方程的近似根。

引言

问题: 设f(x) 是实系数多项式或是任意实函数,求f(x)=0 的根 x^* ,其中 $x^* \in [a,b]$.

引论中曾介绍过求解函数方程 f(x)=0

的二分法。这是电子计算机上的一种常用算法,其基本思想是逐步收缩有根区间,最后得出所求的根。

本章的主要内容就是介绍方程求根的迭代法。

4.1 迭代过程的收敛性

迭代法是一种逐次逼近法,这种方法使用某个固定公式 一所谓迭代公式反复校正根的近似值,使之逐步精确 化,直至满足精度要求的结果。

迭代法的求根过程分成两步,第一步先提供根的某个猜测值,即所谓迭代初值,然后将迭代初值逐步加工成满足精度要求的根。

迭代法的设计思想是:

$$f(x) = 0 \xrightarrow{\text{等价变换}} x = \varphi^{\circ}(x)$$
$$f(x)$$
 的零点 x^* $\varphi(x)$ 的不动点 x^*

$$x_{k+1} = \varphi(x_k)$$

不动点迭代

1. 迭代过程的设计思想

其基本思想如下: ① 将方程f(x)=0 转化为等价方程

- ② 取初值 x_0 ,用显示公式 $x_{k+1} = \varphi(x_k)$ 计算得数列 $\{x_k\}$
- ③若 $|x_{k+1} x_k| \le \varepsilon$,则计算停止,否则继续迭代.

迭代法的设计思想的实质:逐次逼近

是将隐式方程 $x = \varphi(x)$ 归结为计算一组显式公式 $x_{k+1} = \varphi(x_k)$

,2016年6月16日6年末上式化的过程 安程求根的迭代法

1. 迭代过程的设计思想

1. 迭代过程的设计思想

迭代公式

$$x_{k+1} = \varphi(x_k), k = 0, 1, 2, \dots$$
 (4)

如果迭代值 x_k 有限,则称**迭代收敛**,这时极限值 $x^* = \lim_{k \to \infty} x_k$

显然就是方程(3)亦即原方程f(x)=0的根。

将方程f(x)=0等价转化为隐式方程 $x=\varphi(x)$,其实质就是求y=x 与 $y=\varphi(x)$ 的交点 p^* ,即 $=\varphi(p)$,如果 p^* 是f(x)=0的根,即 $f(p^*)=0$,

如果p*是 y=x与 $y=\varphi(x)$ 的交点p*那末,p*一定是方程 f(x)=0的根,反之亦然。由此可知,迭代公式(4)也称**定点迭代** 公式或不动点迭代法公式。

迭代过程的几何表示

迭代法的几何含义: 求曲线 $y = \varphi(x)$ 与直线 y = x 的交点

例 用迭代法求方程 $x^3 - x - 1 = 0$,取 $\varepsilon = 10^{-4}$ 在x=1.5附近的一个根

由 $x_{k+1} = \sqrt[3]{x_k + 1}$ 得表一:

k	0	1	2	3	4	5	6
$ x_k $	1.5	1.37521	1.33068	1.32585	1.32493	1.32475	1.32473

由表

1.根的存在性。方程有没有根?如果有根,有几个根?

而由

2.这些根大致在哪里?如何把根隔离开来?

k

3. 迭代函数如何构造? 怎样保证迭代收敛?

4. 误差估计(迭代结束的条件)

5、怎样加速迭代收敛

由表二州之下。"料","农村",是汉积时。

2. 线性迭代函数的启示

为了使迭代有效,必须保证它的收敛性。一个发散 (即不收敛)的迭代过程,即使进行千百次迭代,其结果 也毫无可用价值。

为了保证迭代过程的收敛性,迭代函数 $\varphi(x)$ 的构造十分关键。以最简单的线性迭代函数 $\varphi(x) = kx + d$ 为例可以容易验证 $|\varphi'(x)| = |k| < 1$ 时, $x = \varphi(x)$ 的迭代才是收敛的,即 -1 < k < 1 是保证迭代收敛的线性迭代函数的基本特性(由作图法很容易验证这一特性)。

3.压缩映像原理

对于迭代函数 $\varphi(x)$ 的一般情形,设x*为方程 $x = \varphi(x)$ 的根,则由微分中值定理有

$$x^* - x_{k+1} = \varphi(x^*) - \varphi(x_k) = \varphi'(\xi)(x^* - x_k)$$

式中 ξ 是x*与 x_k 之间的某一点,即 $\xi \in (x, x_k)$ 。由此可知,如果存在 $0 \le L < 1$,使得对于任意 $x \in [a,b]$ 成立:

$$\begin{aligned} |\varphi'(x)| &\leq L \\ |x^* - x_{k+1}| &\leq L |x^* - x_k| \\ e_k &= |x^* - x_k| \text{ff } e_k \leq L^k e_0 \\ 因而 \lim_{k \to \infty} e_k &= 0, 即 迭代收敛。需要指出的是,在上述 \end{aligned}$$

$$x \in [a,b]$$
, 总有 $\varphi(x) \in [a,b]$

综上所述有如下**压缩映像原理:**

3.压缩映像原理

定理4.1: (压缩映像原理,不动点原理)

证明 (略)

如果 $\varphi(x)$ 满足下列条件

(1) 当 $x \in [a, b]$ 时, $\varphi(x) \in [a, b]$

封闭性

(2) 当任意*x*∈[a, b],存在0< L<1,使

压缩性

$$\left| \varphi'(x) \right| \le L < 1 \tag{6}$$

则方程 $x = \varphi(x)$ 在[a, b]上有唯一的根 x^* ,且对任意初值 $x_0 \in [a, b]$ 时,迭代序列 $x_{k+1} = \varphi(x_k)$ (k = 0, 1, ...)收敛于 x^* 。且有下列误差估计

后验估计:

$$|x^* - x_k| \le \frac{1}{1 - L} |x_{k+1} - x_k|$$

L 越小收敛越快

先验估计:

 $|x^{x}-x_{k}|\leq ---- |x_{1}-x_{2}|$ 计算方法-1- 方程 **水**根的迭代法

2016年6月16日6时3分

例2 求方程 $x^3 - x - 1 = 0$ 的唯一正根。

解:因为f(1)=-1,f(2)=5,所以区间[1,2]含有所求的根。为使用

迭代,将所给方程改写为: $x=(x+1)^{\bar{3}}$ 这时迭代函数 $\varphi(x)=(x+1)^{\bar{3}}$

而 $\varphi'(x) = \frac{1}{3}(x+1)^{-\frac{2}{3}}$,在[1,2]上恒有 $|\varphi'(x)| < \frac{1}{3}$,由定理**4.1**可知, 迭代公式 $x = (x+1)^{\frac{1}{3}}$ 对任意初始值 $x \in [1,2]$ 均收敛。取初值 $x_0 = 1.5$,

迭代结果如表4.1所示。

表4.1 迭代结果

k	0	1	2	3	4	5	6	7	8
x_k	1.5	1.35721	1.33086	1.32588	1.32494	1.32476	1.32473	1.32472	1.32472

4. 迭代过程的局部收敛性

在实际应用迭代法时,通常首先在根 x^* 的邻近考察。称一种迭代过程在根 x^* 邻近收敛,如果存在邻域 $\Delta:|x-x^*| \le \delta$,使迭代过程对于任意初值 $x_0 \in \Delta$ 均收敛,这种在根的邻近所具有的收敛性被称为**局部收敛性**。

定理4.2 设 $\varphi(x)$ 在 $x = \varphi(x)$ 的根 x^* 邻近有连续导数,且成立

$$\left| \varphi'(x^*) \right| < 1$$

则迭代过程 $x_{k+1} = \varphi(x_k)$ 在 x^* 邻近具有局部收敛性。

具有局部收敛性的迭代计算上不一定收敛,它是否收敛还要看初值是否取的恰当;

而不具有局部收敛性的迭代对任何初值都不可能收敛。

例3: 求方程 $x^3 - 3x + 1 = 0$ 在[0, 0.5]内的根,精确到10⁻⁵。

解: 将方程变形 $x = \frac{1}{3}(x^3 + 1) = \varphi(x)$

因为,在[0,0.5]内 $\varphi'(x)=x^2>0$ 为增函数,所以

$$L = \max |\varphi'(x)| = 0.5^2 = 0.25 < 1$$

满足收敛条件,取 $x_0 = 0.25$,算得

$$x_1 = \varphi(0.25) = 0.3385416$$

$$x_2 = \varphi(x_1) = 0.3462668$$

$$x_3 = \varphi(x_2) = 0.3471725$$

$$x_4 = \varphi(x_3) = 0.3472814$$

$$x_5 = \varphi(x_4) = 0.3472945$$

$$x_6 = \varphi(x_5) = 0.3472961$$

4.18

$$x_7 = \varphi(x_6) = 0.3472963$$

 $|x_7 - x_6| = |0.3472963 - 0.3472961| \le 10^{-6}$

取近似根为 $x^* = 0.347296$

5、迭代过程的收敛速度

一种迭代法要具有实用价值,不仅需要肯定它是收敛的,而且还要求它收敛快。所谓<u>收敛速度</u>是指在接近收敛时迭代 误差的下降速度。

定义: 设迭代 $x_{k+1} = \varphi(x_k)$ 收敛到 $\varphi(x)$ 的不动点 x^* 。记 绝对误差 $e_k = x_k - x^*$,若

$$\lim_{k\to\infty}\frac{e_{k+1}}{e_k^p}=C\neq 0\ (C为常数)$$

则称该迭代为p 阶收敛。

- (1) 当 p=1 时称为线性收敛,此时 |C| < 1;
- (2) 当 p=2 时称为二次收敛,或平方收敛;
- (3) 当 p > 1 时称为超线性收敛。

p阶收敛

定理 4.3

设迭代 $x_{k+1} = \varphi(x_k)$, 若 $\varphi^{(p)}(x)$ 在 x^* 的某邻域内连续, 则该迭代法具有 p 阶收敛的充要条件是

$$\varphi(\mathbf{x}^*) = \mathbf{x}^*,$$

$$\varphi'(\mathbf{x}^*) = \varphi''(\mathbf{x}^*) = \dots = \varphi^{(p-1)}(\mathbf{x}^*) = 0,$$

$$\varphi^{(p)}(\mathbf{x}^*) \neq 0$$

并且有
$$\lim_{k\to\infty}\frac{e_{k+1}}{e_k^p}=\frac{1}{p!}\varphi^{(p)}(x^*)$$

证明: 充分性. 根据泰勒展开有

$$\mathbf{x}_{k+1} = \varphi(\mathbf{x}_k) = \varphi(\mathbf{x}^*) + \varphi'(\mathbf{x}^*)(\mathbf{x}_k - \mathbf{x}^*) + \dots + \frac{\varphi^{(p)}(\xi_k)}{p!}(\mathbf{x}_k - \mathbf{x}^*)^p$$

$$\Rightarrow x_{k+1} - x^* = \frac{\varphi^{(p)}(\xi_k)}{p!} (x_k - x^*)^p \implies \lim_{k \to \infty} \frac{e_{k+1}}{e_k^p} = \frac{1}{p!} \varphi^{(p)}(x^*)$$

4.2 迭代过程的加速

设 x_k 是根 x^* 的某个近似值,用迭代公式校正 一次得 $\overline{x}_{k+1} = \varphi(x_k)$

假设 $\varphi'(x)$ 在所考察的范围内改变不大,其估计值为L,则有

$$x^* - \overline{x}_{k+1} \approx L(x^* - x_k)$$
 $x^* = \frac{1}{1 - L} x_{k+1} - \frac{(g)}{1 - L} x_k$

据此可导出如下加速公式:

$$x_{k+1} = \frac{1}{1 - L} \overline{x}_{k+1} - \frac{L}{1 - L} x_k$$

其一步分为两个环节:

迭代:
$$\overline{x}_{k+1} = \varphi(x_k)$$

改进:
$$x_{k+1} = \frac{1}{1-L} \bar{x}_{k+1} - \frac{L}{1-L} x_k$$

$$x_{k+1} = \frac{1}{1 - L} [\varphi(x_k) - Lx_k]$$

例4用迭代法和加速迭代法求方程 $x = e^{-x}$ 在x = 0.5附近的一个根p,要求精度为**10**⁻⁵。

解: 设迭代函数为 $\varphi(x) = e^{-x}$, $\varphi'(x) = -e^{-x}$ 由于 $\varphi'(p) \approx \varphi'(0.5) \approx -0.6$,即 $|\varphi'(x)| < 1$ 所以迭代方程 $x_{k+1} = e^{-x_k}$ 是收敛的。
(1)书中例2使用非加速迭代时,经过18次迭代即得到满足精度

要求的根0.567141(准确值为0.56713)

k	0	1	2	3	4	5	6	7
x_k	0.500000	0.606531	0.545239	0.579703	0.560065	0.571172	0.564863	0.568438
k	8	9	10	11	12	13	14	15
x_k	0.566409	0.567560	0.566907	0.567277	0.567067	0.567186	0.567119	0.567157
k	16	17	18					
x_k	0.567135	0.567148	0.567141					

(2)使用加速迭代公式(10)时,

$$\varphi'(x) = -e^{-x} \overrightarrow{\text{mi}} \ \varphi'(0.5) = -e^{-0.5} = -0.6$$

故取L=-0.6,此时加速迭代公式为:

$$x_{k+1} = \frac{1}{1-L} [\varphi(x_k) - Lx_k] = \frac{1}{1.6} (e^{-x_k} + 0.6x_k)$$

计算结果如下:

$$x_0 = 0.5$$
, $x_1 = 0.56658$, $x_2 = 0.56712$, $x_3 = 0.56714$

即只要迭代3次即可得到满足精度要求的结果,显然加速的效果显著的。

前面加速方案有个缺点是其中含有导数 $\varphi'(x)$ 的有关信息而不便于实际应用。

设将迭代值 \bar{x}_{k+1} 再迭代一次,可得

$$\tilde{x}_{k+1} = \varphi(\overline{x}_{k+1})$$

由微分中值定理得

$$x^* - \tilde{x}_{k+1} = \varphi(x^*) - \varphi(\bar{x}_{k+1}) \approx L(x^* - \bar{x}_{k+1})$$

利用式(9):

$$x^* - \overline{x}_{k+1} \approx L(x^* - x_k)$$

联立消去L得

$$\frac{x^* - \overline{x}_{k+1}}{x^* - \widetilde{x}_{k+1}} \approx \frac{x^* - x_k}{x^* - \overline{x}_{k+1}}$$

$$x^* \approx \widetilde{x}_{k+1} - \frac{(\widetilde{x}_{k+1} - \overline{x}_{k+1})^2}{\widetilde{x}_{k+1} - 2\overline{x}_{k+1} + x_k}$$

据此构造出不含导数信息的加速公式:

迭代: $\overline{x}_{k+1} = \varphi(x_k)$

迭代: $\tilde{x}_{k+1} = \varphi(\bar{x}_{k+1})$

改进: $x_{k+1} = \tilde{x}_{k+1} - \left(\tilde{x}_{k+1} - \overline{x}_{k+1}\right)^2 / \left(\tilde{x}_{k+1} - 2\overline{x}_{k+1} + x_k\right)$

这一加速方法称为埃特金(Aitken)加速算法。

例5 求方程 $x = e^{-x}$ 在 x=0.5 附近的根.

解 取 $x_0=0.5$, 迭代格式

$$x_{k+1} = e^{-x_k}$$

得

$$x_{25} = x_{26} = 0.5671433$$

若对此格式用埃特金法,则

$$\overline{x}_{k+1} = e^{-x_k} \qquad \qquad \widetilde{x}_{k+1} = e^{-x_{k+1}}$$

$$x_{k+1} = e^{-\tilde{x}_{k+1}} - \frac{(e^{-\tilde{x}_{k+1}} - e^{-\bar{x}_{k+1}})^2}{e^{-\tilde{x}_{k+1}} - 2e^{-\bar{x}_{k+1}} + x_k}$$

取 $x_0=0.5$,得

$$\bar{x}_1 = 0.6065307$$
 $\tilde{x}_1 = 0.5452392$ $x_1 = 0.5676279$ $\bar{x}_2 = 0.5668708$ $\tilde{x}_2 = 0.5672979$ $x_2 = 0.5671433$ $\bar{x}_3 = 0.5671433$ $\tilde{x}_3 = 0.5671433$ $x_3 = 0.5671433$

由此可见, 埃特金法加速收敛效果是相当显著的.

4.3 牛顿法

1.牛顿迭代公式的导出

对于方程 f(x)=0 , 设已知它的近似根 x_k , 则函数 f(x)在点 x_k 附近可用一阶泰勒多项式 $p(x) = f(x_k) + f'(x_k)(x - x_k)$ 来近似, 若取 p(x)=0 的根作为 f(x)=0 新的近似根, $\downarrow \subset x_{k+1}$,则有如下著名的**牛顿公式**:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 牛顿(Newton)迭代公式

基本思想是将非线性函数f(x)=0逐步线性化,从而将非线 性方程f(x)=0近似地转化为线性方程的求解。

相应的迭代函数是:

迭代函数

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

- 1. 是否收敛于方程的根或什么条 件下收敛?
- 2. 迭代函数有什么特性? //2

牛顿迭代法的几何解释

切线方程 $p_{k}(x) = f(x_{k}) + f'(x_{k})(x - x_{k})$

Newton法又称为Newton切线法或切线法 //

例6 用牛顿迭代法求方程 $x=e^{-x}$ 在x=0.5附近的根.

解 将原方程化为 $x-e^{-x}=0$,则

$$f(x)=x-e^{-x}, f'(x)=1+e^{-x},$$

牛顿迭代公式为

$$x_{k+1} = x_k - \frac{x_k - e^{-x_k}}{1 + e^{-x_k}}$$

取 $x_0=0.5$, 迭代得

 $x_1 = 0.566311$, $x_2 = 0.5671431$, $x_3 = 0.5671433$.

牛顿迭代法的收敛性

牛顿迭代法的迭代函数为

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

设 x^* 是f(x)的一个单根,即 $f(x^*)=0$, $f'(x^*)\neq 0$,有

$$\varphi'(x^*) = \frac{f(x^*)f''(x^*)}{[f'(x^*)]^2} = 0,$$

$$\varphi''(x^*) = \frac{f''(x^*)}{f'(x^*)} \neq 0.$$

又

$$\lim_{k\to\infty} \frac{x_{k+1} - x^*}{(x_k - x^*)^2} = \lim_{k\to\infty} \frac{\frac{1}{2!} \varphi''(\xi)(x_k - x^*)^2}{(x_k - x^*)^2} = \frac{1}{2!} \varphi''(x^*) = \frac{f''(x^*)}{2f'(x^*)} \neq 0.$$

牛顿法的收敛性

定理4: 设f(x)在[a, b]上存在二阶连续导数且满足下列条件:

- (1) $f(a) \cdot f(b) < 0$;
- (2) $f'(x) \neq 0$;
- (3) f"(x) 在区间[a, b]上不变号;
- (4) 取 $x_0 \in [a, b]$,使得 $f''(x) \cdot f(x_0) > 0$

则牛顿迭代序列 $\{x_k\}$ 二阶收敛于f(x)在[a,b]上的唯一单根 x^* 。

即有下面的局部收敛性定理.

定理(局部收敛性) 设 $f \in C^2[a,b]$, 若 x^* 为f(x)在[a,b] 上的根,且 $f(x^*) \neq 0$,则存在 x^* 的邻域U,使得任取初值 $x_0 \in U$,牛顿法产生的序列 $\{x_k\}$ 收敛到 x^* ,且满足

$$\lim_{k \to \infty} \frac{x_{k+1} - x^*}{(x_k - x^*)^2} = \frac{f''(x^*)}{2f'(x^*)}.$$

由此得到,当 x^* 为单根时,牛顿迭代法在根 x^* 的邻近是二阶(平方)收敛的.

例 Leonardo于1225年研究了方程

$$x^3 + 2x^2 + 10x - 20 = 0$$

并得出了x=1.368808107是该方程的一个根,无人知道他用什么方法得出的,在当时这是一个非常有名的结果,试用牛顿法求出此结果。

解:记

$$f(x) = x^3 + 2x^2 + 10x - 20$$

则

$$f'(x) = 3x^2 + 4x + 10 = 3(x + \frac{2}{3})^2 + \frac{26}{3}$$

当 $x \in R$ 时, f'(x) > 0, 又 f(1) = -7 < 0, f(2) = 16 > 0

所以f(x) = 0有唯一实根 $x^* \in (1,2)$,并改写

$$f(x) = ((x+2)x+10)x-20,$$
 $f'(x) = (3x+4)x+10$

用牛顿迭代格式

$$\begin{cases} x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, & k = 0, 1, 2, \dots \\ x_0 = 1.5 \end{cases}$$

k	X_k	$f(x_k)$	$x_{k+1}^{(2)}$
0	1.5	2.875	22.75
1	1.373626373	0.101788669	21.15505372
2	1.368814819	0.000141580	21.09622130
3	1.368808107	-0.000000016	21.09613922
4	1.368808107		

所以, $x^* \approx 1.368808107$ 。

2. 开方公式

对于给定的正数,应用牛顿法解二次方程

$$x^2 - C = 0,$$

可导出求开方值√c的计算公式

$$x_{k+1} = \frac{1}{2} (x_k + \frac{C}{x_k}). \tag{14}$$

定理5 这种迭代公式对于任意初值 $x_0 > 0$ 均为平方收敛.

事实上,对(14)式施行配方手续,易知

$$x_{k+1} - \sqrt{C} = \frac{1}{2x_k} (x_k - \sqrt{C})^2;$$

$$x_{k+1} + \sqrt{C} = \frac{1}{2x_k} (x_k + \sqrt{C})^2.$$
(15)

例8 求 $\sqrt{115}$.

解 取初值 $x_0 = 10$,对 C = 115 按 (14) 式迭代3次 便得到精度为 10^{-6} 的结果 (见表4-4).

由于公式(14)对任意 初值 $x_0 > 0$ 均收敛,并且收敛的速度很快,因此可取确定 的初值如 $x_0 = 1$ 编成通用程序.

表4-4计算结果

-	x_k
O	10
1	10.750000
2	10.723837
3	10.723805
4	10.723805

3 牛顿下山法

牛顿法的优点是收敛快,缺点:一是每步迭代要计算 $f(x_k)$ 及 $f'(x_k)$,计算量较大且有时 $f'(x_k)$ 计算较困难,二是初始近似 x_0 只在根 x^* 附近才能保证收敛,如 x_0 给的不合适可能不收敛.

从几何的角度探讨牛顿迭代法的收敛性

注:Newton法的收敛性依赖于 x_0 的选取。

从几何角度探讨牛顿迭代法的收敛性

不满足迭代条件时,可能导致迭代值远离 根的情况而找不到根或死循环的情况

为了防止迭代发散,对迭代过程再附加一项要求,即 具有单调性:

$$|f(x_{k+1})| < |f(x_k)|.$$
 (17)

满足这项要求的算法称下山法.

将牛顿法与下山法结合起来使用,即在下山法保证函数值稳定下降的前提下,用牛顿法加快收敛速度.

将牛顿法的计算结果

$$\overline{x}_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

与前一步的近似值 ** 适当加权平均作为新的改进值

$$x_{k+1} = \lambda \overline{x}_{k+1} + (1 - \lambda) x_k,$$

其中 $\lambda(0 < \lambda \le 1)$

称为下山因子

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0,1,\dots),$ (18)

(18) 称为牛顿下山法.

下山因子 λ 的选择是个逐步探索的过程,从 λ =1开始反复将因子 λ 的值减半进行计算,一旦单调性条件(17)成立,则称"下山成功";否则,如果在上述过程中找不到使条件(17)成立的下山因子 λ ,则称"下山失败",这时需要另选初值 x_0 重新计算。

4.4 弦截法

用牛顿法求方程根,每步除计算 $f(x_k)$ 外还要算 $f'(x_k)$,当函数 f(x) 比较复杂时,计算 f'(x) 往往较困难,为此可以利用已求函数值 $f(x_k)$, $f(x_{k-1})$, 来回避导数值 $f'(x_k)$ 的计算.

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

弦截法

设 x_k, x_{k-1} 是 f(x) = 0 的近似根,利用 $f(x_k), f(x_{k-1})$ 构造一次插值多项式 $p_1(x)$,并用 $p_1(x) = 0$ 的根作为新的近似根 x_{k+1} . 由于

$$p_1(x) = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k).$$

因此有

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}).$$
 (19)

(19) 可以看做牛顿公式

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

中的导数 $f'(x_k)$ 用差商 $\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$ 取代的结果.

几何意义.

曲线y = f(x)上横坐标为 x_k, x_{k-1} 点分别记为 P_k, P_{k-1}

则弦线 $\overline{P_k P_{k-1}}$ 的斜率等于差商值 $\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$ 其方

程是

$$y = f(x_k) + \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k).$$

图4-5

因之,按(19)式求得的 x_{k+1} 实际上是弦线 $\overline{P_k P_{k-1}}$ 与x 轴交点的横坐标. 这种算法因此而称为快速弦截法,也称两步法.

弦截法与切线法(牛顿法)都是线性化方法,但两者 有本质的区别.

切线法在计算 x_{k+1} 时只用到前一步的值 x_k ,而弦截法(20),在求 x_{k+1} 时要用到前面两步的结果 x_k , x_{k-1} ,因此使用这种方法必须先给出两个开始值 x_1 , x_0

例9 用弦截法解方程

$$f(x) = xe^x - 1 = 0.$$

解 设取 $x_0 = 0.5$, $x_1 = 0.6$ 作为 开始值,用弦截法求得的结果见表4-8 比较例6牛顿法的计算结果可以看出,弦截法的收敛速度也是相当快的.

实际上, 弦截法具有超线性的收敛性.

美4-8		
k	x_k	$x_k - x_{k-1}$
0	0.5	
1	0.6	0.1
2	0.56532	-0.03468
3	0.56709	0.00177

计算方法----方程求根的迭代去4

0.567414

0.00005

2016年6月16日6时3分

计算方法----方程求根的迭代法

4.48

例题选讲

略

