ENGR-UH 4560 Selected Topics in Information and Computational Systems

Mini Project – Data Clustering Algorithm

Due Date: Refer to NYU Class

Introduction

K-means is one of the widely used unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set through a certain number of clusters (assume k clusters). The main idea is to define k centers, one for each cluster. These centers should be placed in a cunning way because of different location causes different result.

Dataset

In this assignment, you will get familiar with generating dataset by yourself using the third-party library.

Requirements

- 1. Use sklearn library to generate the synthetic data for k-means clustering.
 - a. We set the total number of instances to be 300
 - b. The number of centers is 4 with the standard deviation 0.6
- 2. Plot the generated data with labels by using matplotlib.
- 3. Implement the K-means function return the labels and centers.
- 4. Fit the model on the dataset and plot the figure with default seed
- 5. Fit the model on the dataset and plot the figure with seed=2
- 6. Compare the results from 4 and 5. Is there any differences? If yes, why?
- 7. Implement the K-means++ function return the labels and centers.
- 8. Fit the model on the dataset and plot the figure with default seed
- 9. Fit the model on the dataset and plot the figure with seed=2
- 10. Compare the results from 8 and 9. Is there any differences? If yes, why?
- 11. Compare the results from 4,5,8 and 9. State your observations.

Deliverables

A .ipynb file containing the following:

- 1. Source code
- 2. Detailed description of the project if needed

3. Answers to the project questions.

Before submitting your project, please make sure to test your program on the given dataset.

BONUS (30 points)

Hierarchical clustering involves creating clusters that have a predetermined ordering from top to bottom. For example, all files and folders on the hard disk are organized in a hierarchy. More details, please refer to lecture slides.

Dataset

In this bonus project you will work on a given Mall Customer dataset (Mall_Customers.csv)

Requirements

 Implement a hierarchical clustering model using 'Ward' distance matrix for this dendrogram.

Ward distance matrix

We will use 'Ward' distance matrix for this dendogram. $d(u,\,v) = \sqrt{\tfrac{|v|+|s|}{T}}d(v,\,s)^2 + \tfrac{|v|+|t|}{T}d(v,\,t)^2 - \tfrac{|v|}{T}d(s,\,t)^2$

where u is the newly joined cluster consisting of clusters s and t, v is an unused cluster in the forest, T = |v| + |s| + |t|, and |*| is the cardinality of its argument. This is also known as the incremental algorithm.

2. Plot the clusters and label customer types

Deliverables

A .ipynb file containing the following:

- 1. Source code
- 2. Detailed description of the project if needed

Before submitting your project, please make sure to test your program on the given dataset.

Notes

You may discuss the general concepts in this project with other students, but you must implement the program on your own. **No sharing of code or report is allowed.** Violation of this policy can result in a grade penalty.

Late submission is acceptable with the following penalty policy:

10 points deduction for every day after the deadline