Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

ОТЧЕТ ПО ДОМАШНЕЙ РАБОТЕ №6

Выполнил студент группы КС-36: Золотухин А.А.

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Приняла: Кольцова Элеонора Моисеевна

Дата сдачи: 31.03.2025

Москва 2025

Оглавление

Эписание задачи	1
ыполнение задачи	
Задание 1	2
Задание 2	2

Описание задачи

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{\partial u}{\partial t} - 8\frac{\partial u}{\partial x} = x^2 - 1$	$x \in [0, 1]$ $t \in [0, 1]$	u(t = 0, x) = x $u(t, x = 0) = t$ $u(t, x = 1) = t$

Для заданного уравнения:

- 1. записать явную разностную схему;
- 2. проверить условие устойчивости разностной схемы;
- 3. вывести рекуррентное соотношение;
- 4. составить алгоритм (блок-схему) расчёта;
- 5. записать неявную разностную схему;
- 6. проверить условие устойчивости разностной схемы;
- 7. вывести рекуррентное соотношение;
- 8. составить алгоритм (блок-схему) расчёта;

Выполнение задачи

Задание 1

Записать явную разностную схему:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} - 8\frac{u_{j+1}^n - u_j^n}{h} = ((j-1)h)^2 - 1.$$
 (1)

Задание 2

Проверить условие устойчивости разностной схемы: Исследую устойчивость разностной схемы (1) с помощью спектрального метода. Для этого отброшу член $((j-1)h)^2-1$, наличие которого не оказывает влияния на устойчивость разностной схемы, и представлю решение в виде гармоники:

$$u_j^n = \lambda^n e^{i\alpha j}. (2)$$

Подставляя (2) в (1):

$$\frac{\lambda^{n+1}e^{i\alpha j}-\lambda^n e^{i\alpha j}}{\Delta t}-8\frac{\lambda^n e^{i\alpha (j+1)}-\lambda^n e^{i\alpha j}}{h}=0.$$

Упрощаю данное выражение, деля левую и правую его части на