

Experiência 3

Medidas Elétricas e Resistência Variável

1 Objetivos

- Efetuar medidas de tensão e corrente, verificando as respectivas polaridades.
- Conhecer um resistor variável e utilizá-lo para a verificação experimental da *Primeira Lei de Ohm*.

2 Medidas Elétricas

Medições de resistência, por meio de ohmímetro, já foram tratadas em outro experimento – "Resistores".

Para realizar medições de tensão e corrente, deve-se observar os seguintes detalhes:

- Medição de Tensão: utiliza-se o voltímetro, conectando as *pontas de prova* do instrumento em **paralelo** com os pontos onde deseja-se saber a tensão.
- Medição de Corrente: utiliza-se o amperímetro, conectando as *pontas de prova* do instrumento em **série** com o ramo onde deseja-se saber a corrente.

Em especial, para a **medição de corrente**, salienta-se que deve-se **abrir** o circuito original para ser possível conectar o amperímetro em série.

Ainda, chama-se a atenção para:

Figura 1: Potenciômetro angular: desenho interno, símbolo, componente.

"Na Engenharia, a adequada escolha das referências é muito importante.

As medições só fazem sentido quando estão de acordo com as referências."

Por isso, é necessário observar onde conectar os polos positivos e negativos da ponta de prova dos instrumentos.

3 Resistência Variável – Potenciômetro

Há diversos dispositivos que apresentam resistência variável com base em algum evento físico.

O potenciômetro trata-se de um resistor variável. Utiliza como elemento resistivo uma trilha de filme de carvão sobre uma placa isolante, com dois terminais nos extremos desta trilha, e um cursor deslizante, que é o terceiro terminal e responsável pela variação da resistência em função de seu posicionamento¹. Este cursor pode ser angular ou linear. Na figura 1, apresenta-se um potenciômetro angular. Na figura 2, são apresentados vários tipos de potenciômetros e trimpots².

4 Parte Experimental

Este experimento visa treinar a prática de medições de tensão e corrente e mostrar a importância da análise dos sentidos das tensões e correntes em

 $^{^{1}\}mathrm{O}$ evento físico aqui é o movimento mecânico exercido sobre o cursor.

²Potenciômetros de montagem sobre placa, sem haste, normalmente utilizados para ajustes de pontos de trabalho (set point), mas sem acesso ao usuário final.

Figura 2: Vários tipos de potenciômetros e trimpots.

um circuito de corrente contínua.

4.1 Medições de corrente

1. Considere o circuito da figura 3.

Figura 3: Circuito para medições de corrente e tensão.

2. Inicialmente, ajuste a fonte de tensão E para 10 V. Para esta etapa, ela deverá estar desconectada de qualquer circuito.

- 3. Com a fonte de tensão E DESLIGADA, monte o circuito mostrado no esquema elétrico da figura 3.
- 4. Chame o professor para certificar que o miliamperímetro está devidamente conectado no circuito (ponta de prova VERMELHA → ENTRADA; ponta de prova PRETA → SAÍDA), de modo a obter o valor positivo da corrente.
- 5. Concluídos os itens anteriores, ligue a fonte de tensão E e meça, com o **multímetro analógico**, o valor da corrente I_f (corrente total do circuito ou corrente gerada pela fonte). O resultado deve ser apresentado com 3 algarismos significativos e a devida unidade de corrente elétrica.

6. A seguir desligue a fonte de tensão e repita os procedimentos anteriores para medir as correntes I_1 , I_2 e I_3 .

7. Faça as seguintes verificações de consistência, provando a igualdade:

(a)
$$I_f = I_1 + I_2 \longrightarrow \underline{\hspace{1cm}}$$

(b)
$$I_f = I_3 \longrightarrow \underline{\hspace{1cm}}$$

8. Teça comentários a respeito dos resultados obtidos. O que ocorreria caso as polaridades utilizadas para as medições das correntes estivessem invertidas?

4.2 Medições de Tensão

1. Mantenha o circuito da figura 3 e meça as tensões V_f (tensão da fonte), V_{R1} (tensão sobre o resistor R_1), V_{R2} , V_{R3} e V_{R4} com o voltímetro devidamente polarizado, de modo que os resultados sejam positivos. Apresente os resultados:

 $V_f =$ $V_{R1} =$ $V_{R2} =$ $V_{R3} =$ $V_{R4} =$ $V_{R4} =$

2. Faça as verificações, provando as igualdades:

(a) $V_f = V_{R1} + V_{R2} + V_{R4} \longrightarrow$

(b) $V_{R2} = V_{R3} \longrightarrow$

3. Teça comentários a respeito dos resultados obtidos. O que ocorreria caso as polaridades utilizadas para as medições das tensões estivessem invertidas?

4.3 Verificação Experimental da Primeira Lei de Ohm

- 1. Monte o circuito mostrado no esquema elétrico da figura 4, no qual R é um potenciômetro de $4k7\Omega$ (resistência máxima do potenciômetro).
- 2. Com R (potenciômetro) desconectado do circuito, ajuste seu valor inicialmente para entorno de 500Ω ($R_{desejado}$). Anote o valor ajustado ($R_{utilizado}$). Conecte o potenciômetro ao circuito e meça a corrente (I_{medido}) e a tensão (V_{medido}), anotando os valores na tabela que segue.

Figura 4: Circuito para estudo do potenciômetro e comprovação da 1^a Lei de Ohm.

3. Repita o item anterior para os demais valores de R apresentados na tabela, preenchendo-a.

$R_{desejado}$	$R_{utilizado}$	V_{medido}	I_{medido}	$R_{calculado}$	Erro
(Ω)	(Ω)	(V)	(A)	(Ω)	(%)
500					
1000					
1500					
2000					
3000					
4000					

4. Faça comentários a respeito do **erro observado** e da **variação da tensão e corrente** no potenciômetro, conforme a variação de sua resistência.

п	_
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	

Lista de Materiais

- $\bullet\,$ Fonte CC de 0 a 30V
- Multímetro digital
- Multímetro analógico
- Caixa de resistências (década resistiva)
- Resistores de ½ W: 3x (100 $\Omega,~330~\Omega,~1k0~\Omega,~2k2~\Omega,~3k3~\Omega,~6k8~\Omega,~10~k\Omega)$
- Potenciômetro: 1x 4k7 Ω
- Plaqueta de montagem "Universal"
- Cabos banana-banana

