

F16. 1

F18.3

Eccentric flat channel venturi

1/2/17

FIG. 7A

Heat Exchanger (5265-65-3): Shell ID = 2.25 in, Length = 18 in Shell (HOT) Flow = 1460 ml/min; 70+/-0.1 C

Tube Flow = 1150 ml/min; Cycle 5 seconds on, 10 seconds off Dispense Volume = 100ml Heat Exchanger: Shell ID = 2.25 in, Length = 8 in Shell Flow = 500 ml/min @ 27.1 C Tube Inlet Temperature = 23.4 C

FIGURE 1.

Figure (5)

Flute #1 0711flute1flow.xls

FIGURE 14

FLUTE 6UVT2 (1/4") VOLUMETRIC FLOW RATE vs PRESSURE DROP

Figure 15

FLUTE 6UVT2 (1/4") VOLUMETRIC FLOWRATE vs $2_D P\!\!\!/_r$

Figure 16

CALIBRATION CURVE COEFFICIENT C' vs KINEMATIC VISCOSITY FOR FLUTE 6UVT2 (1/4")

Figure 17

FLUTE 6UVT2 (1/4") FLOWMETER CONSTANT 'K'

Figure 18

VOLUMETRIC FLOW RATE vs PRESSURE DROP FOR FLUTE 6UVT2 (1/4")

Figure 19

As long as the fluid speed is sufficiently subsonic (V < mach 0.3), the incompressible Bernoulli's equation describes the flow. Applying this equation to a streamline traveling down the axis of the horizontal tube gives,

$$p_a - p_b = \Delta p = \frac{1}{2} \rho V_b^{\ 2} - \frac{1}{2} \rho V_a^{\ 2}$$

From $\overline{ ext{continuity}}$, the throat velocity $V_{m b}$ can be substituted out of the above equation

$$\Delta p = \frac{1}{2} \rho V_a^2 \left[\left(\frac{A_a}{A_b} \right)^2 - 1 \right]$$

Solving for the upstream velocity $V_{\bf a}$ and multiplying by the cross-sectional area $A_{\bf a}$ gives the volumetric flowrate Q,

$$Q = \sqrt{\frac{2\Delta \varphi}{\rho}} \frac{A_{\alpha}}{\sqrt{\frac{A_{\alpha}}{A_{\alpha}}}} - 1$$

of real fluids somewhat. A discharge coefficient C is typically introduced to account converted into heat within viscous boundary layers tend to lower the actual velocity Ideal, <u>inviscid</u> fluids would obey the above equation. The small amounts of energy for the viscosity of fluids,

$$Q = C \sqrt{\frac{2\Delta p}{\rho}} \frac{A_d}{\sqrt{\left(\frac{A_d}{4}\right)^2 - 1}}$$

F19456.32

F16 23A