AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claim 1. (original) An elongated intracorporeal member that is MRI compatible, comprising:

an elongated core having an electrically non-conductive proximal core section and an essentially non-magnetic metallic distal core section;

a non-conductive connecting element securing together a distal end of the proximal core section and a proximal end of the distal core section; and a metallic coil that is at least in part disposed about the distal core section.

Claim 2. (original) The intracorporeal member of claim 1, wherein a distal end of the proximal core section and a proximal end of the distal core section have an undulated shape to effect a mechanical interlock with the non-conductive connecting element.

Claim 3. (original) The intracorporeal member of claim 1, wherein the metallic coil includes a material having a volumetric magnetic susceptibility enabling observation of the intracorporeal member when subjected to MRI.

Claim 4. (original) The intracorporeal member of claim 1, wherein at least one of the distal core section and the metallic coil is formed of a material having a volumetric magnetic susceptibility of less than about 280×10⁻⁶ (SI).

Claim 5. (original) The intracorporeal member of claim 1, wherein at least one of the distal core section and the metallic coil is formed of a material having a volumetric magnetic susceptibility of less than about 245×10^{-6} (SI).

Claim 6. (original) The intracorporeal member of claim 1, wherein the distal core section includes one or more materials selected from the group consisting of platinum, nitinol, niobium, titanium, zirconium, iridium, aluminum, silver, gold, indium, and alloys thereof.

Claim 7. (original) The intracorporeal member of claim 1, wherein the distal core section is dimensioned to exhibit negligible heating when exposed to MRI.

Claim 8. (original) The intracorporeal member of claim 1, wherein the distal core section includes a continuous metallic portion having a length $L \le 43.5/B_0$.

Claim 9. (original) The intracorporeal member of claim 1, wherein the distal core section includes a continuous metallic portion having a length $L \le 34.5/B_0$.

Claim 10. (original) The intracorporeal member of claim 1, wherein the distal core section and the metallic coil define a length $L \le 34.5/B_O$.

Claim 11. (original) The intracorporeal member of claim 1, wherein the distal core section includes superelastic nitinol.

Claim 12. (original) The intracorporeal member of claim 1, wherein the connecting element is formed at least in part of one or more thermoplastic polymeric materials selected from the group consisting of polyester, polyetheretherketone, ABS, epoxy, copolymers, and blends thereof.

Claim 13. (original) The intracorporeal member of claim 1, wherein the connecting element is selected to enable the connecting member to hold the proximal core section and distal core section together to effect torque transmission and to provide a smooth transition between the respective sections.

Claim 14. (original) The intracorporeal member of claim 1, wherein the distal core section is formed at least in part of one or more materials selected from the group consisting of platinum, nitinol, niobium, titanium, tantalum, zirconium, iridium, aluminum, silver, gold, indium, and alloys thereof.

Claim 15. (original) The intracorporeal member of claim 1, wherein the proximal core section is formed of a non-conductive material selected from the group consisting of optical fibers, carbon fiber-epoxy composites, oriented polyethylene fiber composites, polyaramide fiber composites, resins, and combinations thereof.

Claim 16. (original) The intracorporeal member of claim 15, wherein the resins are materials selected from the group consisting of polyaryetherketone, polyphenylenesulfide, polyimide, and polyetheretherketone.

Claim 17. (original) An elongated guide wire for intraluminal delivery of therapeutic or diagnostic devices, comprising:

an elongated core having an electrically non-conductive, non-metallic proximal core section having proximal and distal ends;

an essentially non-magnetic metallic distal core section having proximal and distal ends;

a torque transmitting junction between the distal end of the proximal core section and the proximal end of the distal core section; and

an essentially non-magnetic MRI visible coil that is at least in part secured to the distal core section.

Claim 18. (original) The guide wire of claim 17, wherein the non-magnetic coil is formed of a material having a volumetric magnetic susceptibility that facilitates observation of the element when subjected to MRI.

Claim 19. (original) The guide wire of claim 18, wherein the coil includes a material having a volumetric magnetic susceptibility of less than about 280×10^{-6} (SI).

Claim 20. (original) The guide wire of claim 18, wherein the coil includes a material having a volumetric magnetic susceptibility of less than about 245×10⁻⁶ (SI).

Claim 21. (original) The guide wire of claim 17, wherein the distal core section has a continuous metallic portion of not more than $L \le 43.5/B_0$.

Claim 22. (original) The guide wire of claim 17, wherein the distal core section has a continuous metallic portion of not more than $L \le 34.5/B_0$.

Claim 23. (original) The guide wire of claim 17, wherein the distal core section has at least two longitudinally disposed segments separated by a non-conductive junction.

Claim 24. (original) The guide wire of claim 17, wherein the coil is formed at least in part of one or more materials selected from the group consisting of platinum, nitinol,

nobium, titanium, tantalum, zirconium, iridium, aluminum, silver, gold, indium, and alloys thereof.

Claim 25. (previously presented) A method of performing an intracorporeal procedure within a patient, comprising:

providing a guide wire having an elongated core with a non-conductive proximal core section, an essentially non-magnetic distal core section, and an MRI visible marker on the distal core section;

introducing the guide wire into a body lumen of the patient;

advancing the guide wire therein under MRI until the MRI visible member on the distal core section is disposed within a desirable location within the patient; and

advancing a therapeutic or diagnostic device over the guide wire until an operative portion of the device is disposed at a location in which a therapeutic or diagnostic procedure is to be performed.

Claim 26. (previously presented) A method of performing an intracorporeal procedure within a patient, comprising:

providing an elongated intracorporeal device having an elongated non-conductive proximal section, a non-magnetic distal section and an MRI visible marker on the distal section;

introducing the intracorporeal device into a patient's body;

advancing the intracorporeal device therein under MRI until the MRI visible marker on the distal core section is disposed within a desirable location within the patient; and

performing a therapeutic or diagnostic procedure.

Claim 27. (previously presented) An elongated intracorporeal member that is MRI compatible, comprising:

an elongated core having an electrically non-conductive proximal core section, an essentially non-magnetic metallic distal core section dimensioned to exhibit negligible heating when exposed to MRI, and a polymer material joining the distal end of the proximal core section to the proximal end of the distal core section;

a metallic coil disposed at least in part about the distal core section, the metallic coil having a low volumetric magnetic susceptibility enabling visualization when subjected to MRI.

Claim 28. (previously presented) The intracorporeal member of claim 27, wherein the metallic coil has a volumetric magnetic susceptibility of less than about 280×10^{-6} (SI).

Claim 29. (previously presented) The intracorporeal member of claim 27, wherein the metallic coil has a volumetric magnetic susceptibility of less than about 245×10⁻⁶ (SI).

Claim 30. (previously presented) The intracorporeal member of claim 27, wherein the elongated core does not include a continuous metallic portion having a length greater than about $43.5/B_0$.

Claim 31. (previously presented) The intracorporeal member of claim 27, wherein the elongated core does not include a continuous metallic portion having a length greater than about $34.5/B_{\rm O}$.

Claim 32. (previously presented) The intracorporeal member of claim 27, wherein the distal core section includes at least two metallic segments separated by a non-conductive joint.

Claim 33. (currently amended) An elongated intracorporeal member comprising:

an elongated core having an includes at least two different metallic core sections connected only by a non-conductive joint separating the two core sections, wherein the non-conductive joint connects the distal end of one metallic core section to the proximal end of the other metallic core section, and

a metallic coil disposed at least in part about one of the core sections, the metallic coil having a low volumetric magnetic susceptibility enabling visualization when subjected to MR1.

Claim 34. (previously presented) The intracorporeal member of claim 33, wherein the non-conductive joint is composed of a polymer material.

Claim 35. (cancelled).

Claim 36. (previously presented) The intracorporeal member of claim 35, wherein the metallic coil has a volumetric magnetic susceptibility of less than about 280×10^{-6} (SI).

Claim 37. (previously presented) The intracorporeal member of claim 35, wherein the metallic coil has a volumetric magnetic susceptibility of less than about 245×10^{-6} (SI).

Claim 38. (previously presented) The intracorporeal member of claim 33, wherein one of the metallic core sections has a length less than about $43.5/B_0$.

Claim 39. (previously presented) The intracorporeal member of claim 33, wherein one of the metallic core sections has a length less than about $34.5/B_0$.