

Europäisches Patentamt **European Patent Office**

Office européen des brevets

REC'D 2 2 DEC 2004

WIPO

PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

03029576.0

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.: 03029576.0

Demande no:

Anmeldetag:

Date of filing: 22.12.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Scheuten Glasgroep Groethoefstraat 21 5916 PA Venlo PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Verfahren zur Herstellung von einkristallinem Pulver, das aus einer Cu(In,Ga)Se2-Verbindung besteht und eine Verwendung des mit dem Verfahren hergestellten Pulvers

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C30B/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

Verfahren zur Herstellung von einkristallinem Pulver, das aus einer Cu(In, Ga) Se2-Verbindung besteht und eine Verwendung des mit dem Verfahren hergestellten Pulvers

5

Beschreibung:

Die Erfindung betrifft ein Verfahren zur Herstellung von einkristallinem Pulver, das aus einer Cu(In,Ga)Se2-Verbindung besteht. Die Erfindung betrifft zudem eine Verwendung des mit dem Verfahren 10 hergestellten Pulvers.

Derartige Pulver eignen sich dabei besonders zur Herstellung von Monokornmembranen, die in Solarzellen eingesetzt werden.

15

20

Aus der internationalen Patentanmeldung WO 99/67449 ist ein gattungsgemäßes Verfahren zur Herstellung von einkristallinem, aus einem Halbleitermaterial bestehenden Pulver bekannt, mit dem Pulverkörner aus CuInSez hergestellt werden können. Bei diesem Verfahren werden die Komponenten des Halbleitermaterials in stöchicmetrischer Zusammensetzung aufgeschmolzen, ein Flussmittel wird zugegeben, und die Schmelze mit dem Flussmittel wird auf eine Temperatur gebracht, bei der das Pulver auskristallisiert und die Pulverkörner heranwachsen. Als Flussmittel können NaCl, Se, As,

Arsenide oder Selenide eingesetzt werden. 25

Der Erfindung liegt die Aufgabe zugrunde, ein gattungsgemäßes Verfahren so weiterzuentwickeln, dass die Eigenschaften der Pulverkörner im Hinblick auf einen Einsatz in einer Solarzelle ---- 30 --- verbessert werden.

Es ist ferner Aufgabe der Erfindung, eine Monokornmembran-Solarzelle zu schaffen, die einen möglichst hohen Wirkungsgrad aufweist.

Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß durch ein 35 Verfahren zur Herstellung eines aus einer Cu(In,Ga)Se₂-Verbindung bestehenden Pulvers gelöst, das folgende Schritte beinhaltet:

2

- Legieren von Cu und In und/oder von Cu und Ga zu einer CuInund/oder CuGa-Legierung mit einem unterstöchiometrischen Anteil an Cu,
- 5 herstellen eines aus der CuIn- und/oder CuGa-Legierung bestehenden Pulvers,
 - zugeben von Se sowie entweder KI oder NaI zu dem Pulver,
- aufheizen des Gemischs, bis eine Schmelze entsteht, in der die Cu(In,Ga)Se2-Verbindung rekristallisiert und es gleichzeitig zum Wachstum der herzustellenden Pulverkörner kommt,
- abkühlen der Schmelze, um das Wachstum der Körner zu unterbrechen.

Bei dem erfindungsgemäßen Verfahren ergibt sich die überraschende Wirkung, dass die mit diesem Verfahren hergestellten Körner erheblich verbesserte photovoltaische Eigenschaften aufweisen als die mit dem bekannten Verfahren gemäß dem Stand der Technik produzierten.

Solarzellen, in denen das anhand des erfindungsgemäßen Verfahrens erzeugte Pulver eingesetzt wurde, erreichten einen erheblich gesteigerten Wirkungsgrad.

25

Dies könnte die folgenden Ursachen haben:

Kurzschluss im pn-Kontakt der Zelle kommen.

5

25

AC SCG 5305 PT-EP

3

Ferner kommt es bei dem bekannten Verfahren wohl zu einer Ablagerung von während der Herstellung entstehenden Cuse-Phasen an den Körnern. Es ist bekannt, dass diese Phasen mit Hilfe einer KCN-Lösung ausgewaschen werden können; diese greift jedoch auch die Körner selbst an.

Es wird vermutet, dass demgegenüber der Einsatz einer bezüglich der herzustellenden Verbindung unterstöchiometrischen Menge an Cu bei dem erfindungsgemäßen Verfahren dazu führt, dass die Bildung von Cu-reichen Körnern weitgehend unterdrückt wird und sich hauptsächlich Cu-arme Pulverkörner bilden, die zur Fertigung von hocheffizienten solarzellen geeignet sind.

Ferner wird angenommen, dass die bei der Herstellung der Körner entstehenden binären Cuse-Phasen in den erfindungsgemäß eingesetzten Flussmitteln KI und NaI verbleiben und sich nicht an den Körnern ablagern.

Dies scheint insbesondere dann der Fall zu sein, wenn die Schmelze sehr schnell, also in Form eines Abschreckens ("Quenchens") abgekühlt wird.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht darin, das Flussmittel mit Wasser auslösen zu können, welches die Körner selbst nicht angreift.

In einer bevorzugten Durchführungsform des erfindungsgemäßen Verfahrens wird das KI oder NaI daher nach dem Abkühlen durch ein Auslösen mit Wasser aus der abgekühlten Schmelze entfernt.

eingesetzten Molmenge an Cu zu der Summe der eingesetzten Molmenge an

In und der eingesetzten Molmenge an Ga zwischen 0,8 und 1 liegt.

Es hat sich gezeigt, dass mit Pulverkörnern, die dieses Verhältnis der Molmenge an Cu zu der Molmenge an In und Ga aufweisen, Solarzellen hergestellt werden können, die einen besonders hohen Wirkungsgrad erreichen.

A.

Es ist zudem vorgesehen, dass ein Verhältnis der eingesetzten Molmenge an Ga zu der eingesetzten Molmenge an In zwischen D und 0,43 liegt. Ein Verhältnis von 0,43 entspricht dabei etwa einem Ga-Anteil von 30% bezogen auf die Molmenge an In und Ga.

5

10

Die Bandlückenenergie der Cu(In,Ga)Se2-Halbleiterverbindung variiert mit dem Verhältnis der eingesetzten Menge an In zu der eingesetzten Menge an Ga, und anhand der möglichen Werte dieses In/Ga-Verhältnisses kann die Bandlückenenergie des Halbleitermaterials dem gewünschten Anwendungszweck gut angepasst werden.

Ferner wird im Rahmen der Erfindung eine vorteilhafte Solarzelle geschaffen.

Insbesondere handelt es sich dabei um eine MonokornmembranSolarzelle, bestehend aus einem Rückkontakt, einer Monokornmembran,
mindestens einer Halbleiterschicht und einem Frontkontakt, die sich
dadurch auszeichnet, dass die Monokornmembran das erfindungsgemäß
hergestellte Pulver enthält.

- Einige bevorzugte Durchführungsformen des Verfahrens und bevorzugte Ausführungsformen der Solarzelle Pulvers werden nun im Folgenden detailliert dargestellt:
- Zunächst werden Cu und In und/oder Cu und Ga legiert, wobei die eingesetzten Molmengen an Cu einerseits und In und Ga andererseits so bemessen werden, dass Cu-arme CuIn und CuGa-Legierungen entstehen. Es hat sich dabei als besonders vorteilhaft für die Herstellung von in Solarzellen eingesetzten Pulverkörnern ergeben, dass das Cu/(In+Ga)-
- Verhältnis, also das verhältnis der eingesetzten Molmenge an Cu zu der Summe der eingesetzten Molmenge an In und der eingesetzten Molmenge an Ga, zwischen 1 und 1:1,2 liegt.
- Das Verhältnis der eingesetzten Molmenge an Ga zu der eingesetzten

 35 Molmenge an In liegt vorzugsweise zwischen 0 und 0,43. Ein Verhältnis
 von 0,43 entspricht dabei etwa einem Ga-Anteil von 30% bezogen auf
 die Molmenge an In und Ga. Es werden mit dem erfindungsgemäßen
 Verfahren also vorzugsweise solche Cu(In,Ga)Se2-Verbindungen

15

20

25

30

AC SCG 5305 PT-EP

5

hergestellt, die in ihrem Molverhältnis zwischen Ga und In zwischen diesem Molverhältnis der Verbindungen CuInSe $_2$ und CuGa $_{0,3}$ In $_{0,7}$ Se $_2$ liegen.

Die Legierungen werden dann zu einem Pulver zermahlen, wobei sich herausgestellt hat, dass die Korngrößen der herzustellenden Cu(In,Ga)Se2-Pulverkörner von den Korngrößen des aus der CuIn-und/oder CuGa-Legierung hergestellten Pulvers abhängen. Es werden also gezielt Pulver mit einer bestimmten Größe der enthaltenen Körner gemahlen.

Das aus den Legierungen CuIn und CuGa bestehende Pulver wird nun in eine Ampulle gefüllt, die aus einem Material besteht, das mit keinem der hineinzugebenden Stoffe reagiert. Es besteht somit beispielsweise aus Quarzglas.

Zu dem Pulver wird Se in einer Menge hinzugegeben, die dem stöchiometrischen Anteil dieses Elementes an der herzustellenden $Cu(In,Ga)Se_2$ -Verbindung entspricht:

Ferner wird entweder KI oder NaI als Flussmittel hinzugegeben, wobei der Anteil des Flussmittels an der später entstehenden Schmelze typischerweise etwa 40 Vol.-% beträgt. Im Allgemeinen kann der Anteil des Flussmittels an der Schmelze jedoch zwischen 10 und 90 Vol.-% liegen.

Die Ampulle wird nun evakuiert und mit dem angegebenen Inhalt auf eine Temperatur zwischen $650\,^{\circ}$ C und $810\,^{\circ}$ C erwärmt. Während des Erwärmens bildet sich Cu(In,Ga)Se₂.

Ist eine Temperatur innerhalb des genannten Temperaturbereichs erreicht, kommt es zur Rekristallisation von Cu(In,Ga)Se2 und gleichzeitig zu Kornwachstum.

Das Flussmittel ist bei dieser Temperatur geschmolzen, so dass der Raum zwischen den Körnern mit einer flüssigen Phase gefüllt ist, die als Transportmedium dient.

5

Die Schmelze wird während einer gewissen Haltezeit konstant auf der vorher eingestellten Temperatur gehalten. Je nach gewünschter Korngröße kann eine Haltezeit zwischen 5 Minuten und 100 Stunden erforderlich sein. Typischerweise beträgt sie etwa 30 Stunden.

5

Das Kornwachstum wird durch ein Abkühlen der Schmelze unterbrochen. Es ist dabei sehr vorteilhaft, die Schmelze sehr schnell, beispielsweise innerhalb weniger Sekunden, abzuschrecken.

10 Dieses so genannte "Quenchen" scheint notwendig zu sein, damit evtl. entstandene binäre CuSe-Phasen im Flussmittel verbleiben.

Bei einem langsamen Abkühlen besteht vermutlich die Gefahr, dass sich die Cuse-Phasen auf den Cu(In,Ga)Se₂-Kristallen ablagern und die Eigenschaften des hergestellten Pulvers im Hinblick auf einen Einsatz in Solarzellen erheblich beeinträchtigen.

In einem letzten Schritt des Verfahrens wird das Flussmittel durch ein Auslösen mit Wasser entfernt. Die einkristallinen Pulverkörner können der Ampulle dann entnommen werden.

Der geeignete zeitliche Temperaturverlauf beim Erwärmen und Abkühlen sowie die Haltezeit und die während der Haltezeit einzuhaltende Temperatur werden in Vorversuchen ermittelt.

25

30

20

Mit Hilfe des dargestellten Verfahrens lassen sich Pulver mit einem mittleren Durchmesser der einzelnen Körner von 0,1 μ m bis 0,1 mm herstellen. Die Korngrößenverteilung innerhalb des Pulvers entspricht dabei einer Gauß-Verteilung der Form D=A·t¹/n·exp(-E/kT), wobei D der Korndurchmesser, t die Haltezeit und T die Temperatur der Schmelze ist; k bezeichnet wie üblich die Boltzmann-Konstante. Die Parameter A, n und E hängen von den eingesetzten Ausgangsstoffen, dem Flussmittel und den speziellen und hier nicht näher beschriebenen Wachstumsprozessen ab. Wird KI als Flussmittel eingesetzt, so ist etwa E = 0,25 eV. Der Wert für n liegt in diesem Falle zwischen 3 und 4.

7

Die mittlere Korngröße und die genaue Gestalt der Korngrößenverteilung hängen von der Haltezeit, der Temperatur der Schmelze und
der Korngröße des eingesetzten aus den CuIn- und CuGa-Legierungen
bestehenden Pulvers ab. Darüber hinaus werden mittlere Korngröße und
Korngrößenverteilung von der Wahl des Flussmittels beeinflusst.

Die mit dem erfindungsgemäßen Verfahren herstellbaren Körner sind pleitend und weisen eine sehr gute elektrische Leitfähigkeit auf. Die elektrischen Widerstände der hergestellten $\operatorname{Cu}(\operatorname{In},\operatorname{Ga})\operatorname{Se}_2$ -Pulverkörner lagen je nach wahl des $\operatorname{Cu}/\operatorname{Ga-Verhältnisses}$, des $\operatorname{Cu}/(\operatorname{In+Ga})$ - Verhältnisses und der Temperatur der Schmelze in einem Bereich von 100 Ω bis 10 k Ω . Dies entspricht einem spezifischen Widerstand von 10 k Ω cm bis 2 M Ω cm.

- Mit Hilfe des erfindungsgemäßen Verfahrens konnten einkristalline pulver produziert werden, deren Körner eine sehr gleichmäßige Zusammensetzung aufwiesen.
- Die Pulver eignen sich besonders zur Herstellung von

 Monokornmembranen, die in Solarzellen Verwendung finden, wobei mit
 den anhand des erfindungsgemäßen Verfahrens hergestellten Pulvern

 Solarzellen mit einem sehr hohen Wirkungsgrad produziert werden

 konnten.
- vor allem im Hinblick auf mögliche Einsatzzwecke des mit dem erfindungsgemäßen Verfahren hergestellten Pulvers wird zudem darauf hingewiesen, dass es prinzipiell auch möglich ist, S zusätzlich zum se zu dem aus den CuIn und/oder CuGa bestehenden Pulver hinzuzugeben und mit dem Flussmittel aufzuschmelzen. Ebenso kann Se vollständig durch S ersetzt werden.

Das Verfahren ermöglicht damit die Herstellung einer großen Bandbreite von $CuIn_{1-x}Ga_xS_ySe_x$ -Verbindungen. Diese Halbleiterverbindungen decken einen Bereich von Bandlückenenergien zwischen 1,04 eV und 2,5 eV ab.

Es hat sich gezeigt, dass die mit dem dargestellten Verfahren hergestellten Pulver sehr vorteilhaft in Solarzellen eingesetzt

→→→ EPA München

15

20

25

AC SCG 5305 PT-EP

8

werden können. Die Solarzellen in denen diese Pulver verwendet wurden zeigten einen überdurchschnittlich hohen Wirkungsgrad.

Bei den Solarzellen in denen erfindungsgemäß hergestellte Pulver eingesetzt werden handelt es sich dabei vorzugsweise um Solarzellen in die eine mit dem Pulver hergestellte Monokornmembran eingebracht wird.

Zur Herstellung der Monokornmembran werden die Pulverkörner dabei 10 vorzugsweise in eine Polymermembran, beispielsweise eine Polyurethan-Matrix, eingebettet.

Eine Monokornmembran- Solarzelle besteht üblicherweise aus 4 Schichten.

Als Rückkontakt dient eine metallische Schicht, die typischerweise auf ein Glassubstrat aufgebracht wird. In einer bevorzugten Ausführungsform kann es sich dabei auch um einen elektrisch leitfähigen Klebstoff handeln.

Auf diesen Rückkontakt wird die, die Cu(In,Ga)Se₂-Kristalle enthaltende, Membran als Absorberschicht aufgebracht, die üblicherweise mit einer dünnen, n-leitenden CdS- Halbleiterschicht bedeckt wird.

Auf diese CdS-Schicht ist dann der Frontkontakt aufgebracht, der üblicherweise aus einem transparenten, elektrisch leitenden Oxid, beispielsweise einer ZnO:Al-Legierung, besteht.

30 Es kann ebenfalls sehr bevorzugt sein, zwischen die CdS-Schicht und den Frontkontakt eine weitere aus intrinsischem ZnO bestehende Halbleiterschicht einzubringen.

9

Patentansprüche:

- Verfahren zur Herstellung eines aus einer Cu(In,Ga)Se₂Verbindung bestehenden Pulvers,
 dadurch gakannzaichnst,
 dass es folgende Schritte beinhaltet:
- Legieren von Cu und In und/oder von Cu und Ga zu einer CuIn- und/oder CuGa-Legierung mit einem unterstöchiometrischen Anteil an Cu,
 - herstellen eines aus der CuIn- und/oder CuGa-Legierung bestehenden Pulvers,
 - zugeben von Se sowie entweder KI oder NaI zu dem Pulver,
- aufheizen des Gemischs, bis eine Schmelze entsteht,

 in der Cu(In,Ga)Se2-Verbindung rekristallisiert und es

 gleichzeitig zum Wachstum der herzustellenden Pulverkörner

 kommt,
- abkühlen der Schmelze, um das Wachstum der Körner zu unterbrechen.
- 2. Verfahren nach Anspruch 1,
 dadurch gekennzeichnet,
 dass das KI oder NaI nach dem Abkühlen durch ein Auslösen mit
 30 Wasser entfernt wird.
- 3. Verfahren nach einem oder beiden der Ansprüche 1 und 2,
 da durch gakennzeichnet,
 dass ein Verhältnis der eingesetzten Molmenge an Cu zu der Summe
 der eingesetzten Molmenge an In und der eingesetzten Molmenge an
 Ga zwischen 0,8 und 1 liegt.

Ø 0

AC SCG 5305 PT-EP

- Verfahren nach einem oder mehreren der vorangegangenen 4. Ansprüche,
- dadurch gekennzeichnet, dass ein Verhältnis der eingesetzten Molmenge an Ga zu der 5 eingesetzten Molmenge an In zwischen 0 und 0.43 liegt.
 - Monokornmembran-Solarzelle, beinhaltend einen Rückkontakt, eine 5. Monokornmembran, mindestens eine Halbleiterschicht und einen
- Frontkontakt, 10 gekennzeichnet, dadurch dass die Monokornmembran ein mit einem Verfahren nach einem oder mehreren der Ansprüche 1 bis 4 hergestelltes Pulver enthält.

11

Zusammenfassung:

Die Erfindung betrifft ein Verfahren zur Herstellung eines aus einer Cu(In,Ga)Sez-Verbindung bestehenden Pulvers mit den folgenden

- 5 Schritten:
 - Legieren von Cu und In und/oder von Cu und Ga zu einer CuIn- und/oder CuGa-Legierung mit einem unterstöchiometrischen Anteil an Cu,

10

15

- herstellen eines aus der CuIn- und/oder CuGa-Legierung bestehenden Pulvers,
- zugeben von Se sowie entweder KI oder NaI zu dem Pulver,
 - aufheizen des Gemischs, bis eine Schmelze entsteht, in der Cu(In,Ga)Se2-Verbindung rekristallisiert und es gleichzeitig zum Wachstum der herzustellenden Pulverkörner kommt,

20

- abkühlen der Schmelze, um das Wachstum der Körner zu unterbrechen.

Die Erfindung betrifft ferner eine Monokornmembran Solarzelle,

beinhaltend einen Rückkontakt, eine Monokornmembran, mindestens eine

Halbleiterschicht und einen Frontkontakt, die sich dadurch

auszeichnet, dass die Monokornmembran ein mit dem erfindungsgemäßen

Verfahren hergestelltes Pulver enthält.

