

The Project – Subject Matter Expertise

Basic Music Theory

Understanding songs attributes

Investment Funds

Recent emergence of songs as asset class – Hipgnosis Songs Fund and Roundhill Music Fund

Music Copyright

Music Royalties – maximizing value of Songs for investors

Songs as Assets – Investing in Songs

Portfolio Management

Emergene of Song Funds
Songs as Investments
Balanced Song Portfolio

Genre

Investors understand 'Genre'

Genre Mix

Genre Subjectivity

Vintage

Investors understand 'Vintage'
Vintage Mix
Vintage Earnings Profile

Business Question & Value Add

- 1. Can we weight a song's value by it's features i.e. by song genres, individual attributes or combinations of attributes?
- 2. Can we derive a song's TRUE genre i.e. inspect song audio attributes > find clusters of similar song types?

We will implement 2 learning algorithms as follows:

- a supervised learning model feed model the 'human' genres
- an unsupervised learning model hide genres > find natural clusters

If we find natural songs clusters:

- how do they relate to song value? Do certain features hold more value, i.e are more investable?
- can we define them in a way that is understandable to the average human music listener?
- cross-reference them against the 'human' genre classes to determine how natural the 'human' genres are

Modeling

SUPERVISED LEARNING

The models we will look at are:

- KNN
- SVM (multiclass)
- Random Forests

For the supervised learning algorithm we will perform hyperparamter optimisation and model selection to choose a best fit model for multiclass classification.

UNSUPERVISED LEARNING

3 clustering methods:

- K-Means
- DBSCAN
- Hierarchical Clustering

For the unsupervised learning algorithm we will fit and compare 3 clustering methods.

Data Collection and Description

Data Collection and Description

...and cleaned to match up

SUPERVISED LEARNING DATASET

Column Name danceability energy key loudness mode speechiness acousticness instrumentalness liveness valence tempo time_signature

UNSUPERVISED LEARNING DATASET

Data Visualization – map genres in space using PCA(n_7) and t_SNE

Feature weight within PCA Components:

t-SNE 3 Components:

Clustering – First Pass Findings

K-Means:

Genre Feature Distributions - Scaled

TOO SIMILAR- DIVERSIFY GENRES! WHAT FEATURES CAN WE ADD?

(....also, figure out FacetGrid)

Project Limitations and Future Developments

Project Limitations

- ➤ Limited genre / class examples
- Limited access to non-musical features of songs
 - income from 'Synchronisation' i.e. placement of songs in ads, tv, film
 - earnings profiles
 - consumption statistics by territory
 - etc

Future Developments

- ➤ More diverse genres such as EDM, Country, Latin, Disco, Soul
- Song vintage
- Song lyrics
- There is huge opportunity to develop this model further given access to basic data held privately by copyright owners
- > Predict future consumption/earnings, access to half yearly or quarterly earnings is not publicly available

Finally... Next Two Weeks

- > More data from more diverse genres such as EDM, Country, Latin, Disco, Soul
- Combine HipHop and Rap, Rock and Metal
- Separate RnB, find some Soul to combine it with
- Remove 'Alternative' genre
- > Run supervised learning models to teach algorithm how to predict genre from song input
- Define and compare clusters (if any) from unsupervised model
- > Obtain song total consumption figures from Spotify and see if can attribute value to song features