BIO-TD3: / IMV – 20 février 2017

Calcul d'arbre. Phylogénie. – travail noté sur 20 à rendre pour dans 1 semaine (28/02/2017).

Merci de rédiger vos réponses – il est important d'arriver à se faire comprendre.

1/Calcul de la distance phylogénétique. (10pts)

a) Choix d'une métrique.

JP Delahaye dans une communication personnelle affirme que la fonction GZIP (ou ZIP) permet de calculer une distance phylogénétique (l'idée qu'il existe un ancêtre commun).

Soit A la chaîne de texte ADN issue du fichier *.fna.

Appelons I A la taille du fichier contenant cette chaîne.

Après application de la méthode GZIP(Z) (<u>le niveau de compression maximal</u>), nous obtenons un fichier de taille l_z_A .

On peut écrire, Z(A)=I_z_A

l'opérateur concaténation est noté '&'

On définit la mesure de la distance de entre A1 et A2 comme :

$$d(A,B) = \frac{Z(A\&B)}{Z(A) + Z(B)} - \frac{Z(A\&A)}{4*Z(A)} - \frac{Z(B\&B)}{4*Z(B)}$$

(on vérifiera x pour que : d(A1,A1)=0),

On implémentera une fonction d pour estimer une distance de 2 chaînes d'ADN à partir de 2 fichier *.fna

On pourra, si le temps le permet, implémenter une autre métrique : d(A1,A2)=racine carrée(Z(A1&A1)+Z(A2&A2)-2*Z(A1&A2))

- → Avec le package compress, vous pouvez coder en Golang cet outil d'estimation de la distance. Dans le package compress, il y a plusieurs possibilités de compresseur. Utilisez le compresseur le plus efficace en terme de taille.
- b) Si nous devons parcourir 2 à 2 l'ensemble des fichier *.fna, on obtient une matrice symétrique positive.

Calculer la matrice symétrique positive pour le tableau joint.

Bacillus_subtilis	NC_000964
Bacillus_amyloliquefaciens_FZB42	NC_009725
Bacillus_pumilus_SAFR_032	NC_009848
Bacillus_thuringiensis_BMB171	NC_014171
Bacillus_cereus_03BB102	NC_012472
Bacillus_anthracis_Ames	NC_003997
Bacillus_coagulans_2_6	NC_015634
Bacillus_atrophaeus_1942	NC_014639

Bacillus_licheniformis_ATCC_14580	NC_006322
Escherichia_coli_K_12_substrMG1655	NC_000913
Pseudomonas_aeruginosa_LESB58	NC_011770
Rhodobacter_sphaeroides_ATCC_17025	NC_009428
Streptomyces_flavogriseus_ATCC_33331	NC_016114
Micrococcus_luteus_NCTC_2665_uid59033	NC_012803
Lactococcus_lactis_ll1403	NC_002662

Cette matrice sera validée avec **R**. Vous savez utiliser R pour construire une clusterisation hiérarchique – et de ce fait pour la suite de ce TD, dans votre rapport vous afficherez les résultats obtenus avec R – en donnant les commandes que vous avez utilisées.

3/Implémentation en Golang de la méthode dite single linkeage (saut minimal)

Construction par l'exemple

	Α	В	С	D	E
Α	0	7.40	7.56	5.01	12.43
В	7.40	0	8.62	6.03	6.55
С	7.56	8.62	0	12.46	<mark>4.66</mark>
D	5.01	6.03	12.46	0	9.28
Ε	12.43	6.55	<mark>4.66</mark>	9.28	O

La plus petite distance incite à regrouper C et E en un ensemble X, dont la distance à un autre objet sera le minimum des distances de C et de E à cet objet.

	Α	В	X	D
Α	0	7.40	7.56	5.01
В	7.40	0	6.55	<mark>6.03</mark>
X	7.56	6.55	0	9.28
D	<mark>5.01</mark>	<mark>6.03</mark>	9.28	0

Cette fois la plus petite distance concerne A et D, on les regroupe en un ensemble Y.

	Υ	В	X
Υ	0	6.03	7.56
В	6.03	0	6.55
X	7.56	6.55	0

Cette fois la plus petite distance concerne Y à B, on appelle Z le regroupement de Y et B.

	Z	X
Z	0	6.55
Х	6.55	0

(Exemple d'après http://www.obs-vlfr.fr/Enseignement/enseignants/labat/anado/classif/Dmini.html)

Le standard Newick pour représenter les arbres est basé sur les travaux **d'Arthur Cayley** (1857). Cette représentation utilise les parenthèses pour décrire un arbre. Le terminateur est un point virgule.

Ainzi l'arbre construit dans l'exemple peut être vu comme : ((C,E),((A,D),B));

Ce format permet de donner une longueur de branche. ((C:4.66,E:4.66):1.89,((A:5.01,D:5.01):1.02,B:6.03):0.52);

Déterminer l'algorithme de construction de cette chaîne et proposer une implémentation en langage Go – vous inclurez les tests unitaires. Vous utiliserez l'approche par les tests pour réaliser votre implémentation. Le fichier de sortie de votre programme doit être compatible avec le format d'entrée de njplot.

Vous utiliserez le programme **njplot** pour afficher l'arbre obtenu. Vous pouvez utiliser 'R'. L'image de l'arbre, avec les noms des fichiers (et si possible le nom des souches) sera inséré dans votre rapport.

4/ Construction de l'arbre

A partir de la matrice calculée en 1/ et de l'implémentation 3/ vous construirez et afficherez un arbre

Vous déposerez votre code sur la forge «eldarsoft » . Vous y inclurez votre rapport au format PDF.

Il est inutile de dupliquer les fichiers *.fna – merci de ne pas déposer dans votre espace de livraison les fichiers *.fna