Fall 2021 MITCHELL VALDES-BOBES 12/12/21

FOLLOWING TABLES AND FIGURES ARE THE RESULT OF COMPUTATIONS USING THE CODE INCLUDED IN THIS REPOSITORY.

Exercise 1. Using the stationary distribution of the model  $\mu(k, z)$ , compute the aggregate and cross-sectional moments listed in the Table 2 and 3 in Gomes (2001).

**Answer.** The following tables contain the aggregate and cross-sectional moments of the model:

Table 1. Aggregate Results

| Moments                           | Value   |
|-----------------------------------|---------|
| String                            | Float64 |
| Investment Share                  | 0.2052  |
| Financial Cost Share              | 0.0005  |
| Financial Cost to Total Cost      | 0.0167  |
| Floatation Cost to Financial Cost | 0.677   |

Table 2. Cross-Sectional Results

| Moments                   | Value   |
|---------------------------|---------|
| String                    | Float64 |
| Average Size              | 0.441   |
| Investment Rate (mean)    | 0.147   |
| Investment Rate (st. dev) | 0.079   |
| Tobin's Q                 | 1.447   |
| Cash Flow (mean)          | 0.233   |
| Cash Flow (st. dev)       | 0.043   |
| Frac. Negative Investment | 0.23    |

**Exercise 2.** Divide the distribution of firms into those which have d < 0 (those receiving seasoned equity), d = 0 (call them constrained), and those issuing dividends d > 0 (unconstrained) where  $d(k, z) = \pi(k, z; w) - i(k', k) - \lambda(k, k', z; w)$ . What are the fractions of each type?

**Answer.** The distribution of firms is the following:

Table 3. Firms by Type

| Type                | Fraction |
|---------------------|----------|
| String              | Float64  |
| Externally Financed | 0.001    |
| Constrained         | 0.846    |
| Unconstrained       | 0.153    |

**Exercise 3.** Plot decision rules for k'(k, z), i(k', k, z), x(k, z) = 0, d(k, z) for the lowest z, median z, and the highest z on the vertical axis against k on the horizontal axis. Also plot cumulative distribution functions for those cases (truncate your plots at k = 5).

**Answer.** Figures are bellow:



FIGURE 2. Cumulative Distribution Functions



Exercise 4. Simulate the model creating a panel of 1200 firms for 10 years (save the shock processes). Then estimate the following equation

$$\frac{i_{i,t}}{k_{i,t-1}} = b_0 + b_1 Q_{i,t-1} + b_2 \frac{\pi_{i,t-1}}{k_{i,t-1}} + f_t + d_i + \epsilon_{i,t}$$

where  $Q_{i,t}$  is the Tobin's average Q, defined as

$$Q_{i,t} = \frac{p_{i,t}}{k_{i,t}}$$

and report the results. Does the model make the same predictions as the regressions you ran on problem set 1 ?

**Answer.** Regression results are bellow.

Exercise 5. Run a counterfactual where  $\lambda_0 = \lambda_1 = 0$  so that there are no financing frictions and create the same panel as above (using the same shock process). Is there cash-flow sensitivity?

**Answer.** Regression results are bellow.

| TABLE 4 | Coun | torfoctual | Rogulta |
|---------|------|------------|---------|
| LABLE 4 | Com  | rerractuai | Results |

|                      |                         | $i_t$                      |
|----------------------|-------------------------|----------------------------|
|                      | Finantial Frictions (1) | No Finantial Frictions (2) |
| $\overline{Q_{t-1}}$ | 2.933***                | 16.957***                  |
|                      | (0.470)                 | (0.777)                    |
| $\pi_{t-1}/k_{t-1}$  | -9.127***               | -8.632***                  |
|                      | (1.709)                 | (1.445)                    |
| FE Year              | Yes                     | Yes                        |
| FE Firm              | Yes                     | Yes                        |
| Estimator            | OLS                     | OLS                        |
| $\overline{N}$       | 9,270                   | 519                        |
| $R^2$                | 0.426                   | 0.937                      |