TypeSQL: From Natural Text to SQL Queries

<u>DataBase Systems 2020</u> <u>Apostolos Papatheodorou</u>

Slides Structure

- > TypeSQL introduction
- > Implementation
- > Evaluation & Plan

Presentation: Instead of Introduction 1/2

Type Sql

- a) Slot filling approach
- b) Knowledge based & Type aware

i.e. Assign each query word a type(Column, Number, KB entity)

c) Search DB rows for better accuracy (+9% improvement)

Presenatation: Basic idea (2/2)

What are Slots ???

```
SELECT $AGGR $SEL_COL
WHERE $COND_COL $OP $COND_VAL
(AND $COND_COL $OP $COND_VAL)*
```

Query:

Was J. Biden v. president of US in 2019?

(none) (person) (column) (country) (year)

Three steps Formula

- 1) Preprocessing: type recognition
- 2) Bi-directional LSTM fora) Type-word encodingb) Column's name encoding
- 3) Slot Prediction (more LSTMs)

Implementation: Encoding (1/3)

Implementation: Preprocessing (2/3)

Query:

Was J. Biden v. president of US in 2019?

(none) (person) (column) (country) (year)

1) Tokenization k-grams, k=[2-6] for type assignment.

MyQuest: Random choice of k value?

Based on k-grams Search

- a) Columns from schema
- b) Entities in Freebase KB
- c) numbers, dates, years
- D) IF RELATION AVAILABLE USE IT (+9% improvement)

Paper's paradigm

Implementation: Final Models (3/3)

MODEL COL- \$SELECT COL

 $s = \mathbf{V}^{sel} \mathbf{tanh} (\mathbf{W}_c^{sel} \mathbf{H}_{COL}^{\top} + \mathbf{W}_{qt}^{sel} \mathbf{H}_{OT/COL}^{\top})$ $P_{sel_col} = \mathbf{softmax}(s)$

$$P_{cond_col} = \mathbf{softmax}(c)$$

Evaluation & Plan

	Dev			Test		
	Accagg	Accsel	Accwhere	Accagg	Accsel	Accwhere
Seq2SQL (Zhong et al., 2017)	90.0%	89.6%	62.1%	90.1%	88.9%	60.2%
SQLNet (Xu et al., 2017)	90.1%	91.5%	74.1%	90.3%	90.9%	71.9%
TypeSQL (ours)	90.3%	93.1%	78.5%	90.5%	92.2%	77.8%
TypeSQL+TC (ours)	90.3%	93.5%	92.8%	90.5%	92.1%	87.9%

Recap & Action Plan

For accomplishing the ultimate goal: **NLP text** to **SQL query**

Three LSTMs for prediction

Evaluation & Plan

	Dev			Test		
	Accagg	Accsel	Acc_{where}	Accagg	Accsel	Accwhere
Seq2SQL (Zhong et al., 2017)	90.0%	89.6%	62.1%	90.1%	88.9%	60.2%
SQLNet (Xu et al., 2017)	90.1%	91.5%	74.1%	90.3%	90.9%	71.9%
TypeSQL (ours)	90.3%	93.1%	78.5%	90.5%	92.2%	77.8%
TypeSQL+TC (ours)	90.3%	93.5%	92.8%	90.5%	92.1%	87.9%

Recap & Action Plan

For accomplishing the ultimate goal: **NLP text** to **SQL query**

Two Basic Competitors:

Seq2SQL & SQLNet

+2 LSMTs During preprocessing

Evaluation & Plan

	Dev			Test		
	Accagg	Accsel	Acc_{where}	Accagg	Accsel	Accwhere
Seq2SQL (Zhong et al., 2017)	90.0%	89.6%	62.1%	90.1%	88.9%	60.2%
SQLNet (Xu et al., 2017)	90.1%	91.5%	74.1%	90.3%	90.9%	71.9%
TypeSQL (ours)	90.3%	93.1%	78.5%	90.5%	92.2%	77.8%
TypeSQL+TC (ours)	90.3%	93.5%	92.8%	90.5%	92.1%	87.9%

Recap & Action Plan

For accomplishing the ultimate goal: **NLP text** to **SQL query**

Two Basic Competitors:

Seq2SQL & SQLNet

Implementation details

- WikiSQL Dataset
- Pennington et al & Wieting GImbel
- Tuning: dimens, dropout rate, etc.
- Adam optimizer
- My experiments on optimizers & tuning

Thanks for watching

