Homework Lecture 4

3.1

Show the results of adding the following pairs of five-bit twos complement numbers and indicate whether or not overflow occurs for each case.

```
1 0 1 1 0
+ 1 0 1 1 1
-----
```

3.3

Add the following twos complement and ones complement binary numbers as indicated. For each case, indicate if there is overflow.

Two's complement

One's complement

3.4

Show the process of serial unsigned multiplication for 1010 (multiplicand) and multiplied by 0101 (multiplier).

In the lecture hardware for a sequential unsigned multiplier is given. So for this example the intermediate steps (content of the registers after each step).

Exercise 1

The IEEE FP standard 754 also defines a "double precision" floating point number system. Properties:

- total number of bits 64
- sign: single bit (left most bit)
- exponent: 11 bits, excess 1023 code, all zero and all one is used for special numbers.
- fraction field 52 bits. A hidden bit is used (not included in the 52 bits). Point is right of hidden bit.

For the normalized numbers:

- a) Max decimal value of the mantissa (M_{max})
- b) Min decimal value of the mantissa (M_{min})
- c) Max decimal value of the exponent (E_{max})
- d) Min decimal value of the exponent (E_{min})
- e) Largest positive decimal value that can be represented (V_{max})
- f) Smallest positive decimal value that can be represented (V_{min})