Knowledge Tracing Machines: Families of models for predicting student performance

Jill-Jênn Vie RIKEN Center for Advanced Intelligence Project, Tokyo

Optimizing Human Learning, June 12, 2018 Polytechnique Montréal, June 18, 2018

Predicting student performance

Data

Introduction

A population of students answering questions

• Events: "Student i answered question i correctly/incorrectly"

Goal

- Learn the difficulty of questions automatically from data
- Measure the knowledge of students
- Potentially optimize their learning

Assumption

Good model for prediction \rightarrow Good adaptive policy for teaching

- Logistic regression is amazing
 - Unidimensional
 - Takes IRT, PFA as special cases

- Factorization machines are even more amazing
 - Multidimensional
 - Take MIRT as special case

- It makes sense to consider deep neural networks
 - What does deep knowledge tracing model exactly?

Families of models

Introduction

- Factorization Machines (Rendle 2012)
 - Multidimensional Item Response Theory
 - Logistic Regression
 - Item Response Theory
 - Performance Factor Analysis
- Recurrent Neural Networks
 - Deep Knowledge Tracing (Piech et al. 2015)

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1-57:22. DOI: 10.1145/2168752.2168771

Chris Piech et al. (2015). "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS), pp. 505–513

Problems

Weak generalization

Filling the blanks: some students did not attempt all questions

Strong generalization

Cold-start: some new students are not in the train set

Dummy dataset

Introduction

00000

- User 1 answered Item 1 correct
- User 1 answered Item 2 incorrect
- User 2 answered Item 1 incorrect
- User 2 answered Item 1 correct
- User 2 answered Item 2 ???

user	item	correct
1	1	1
1	2	0
2	1	0
2	1	1
2	2	0

Conclusion

dummy.csv

Learn abilities θ_i for each user i Learn easiness e; for each item j such that:

$$Pr(\mathsf{User}\ i\ \mathsf{Item}\ j\ \mathsf{OK}) = \sigma(\theta_i + e_j)$$
 logit $Pr(\mathsf{User}\ i\ \mathsf{Item}\ j\ \mathsf{OK}) = \theta_i + e_j$

Logistic regression

Learn **w** such that logit $Pr(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ Usually with L2 regularization: $||\boldsymbol{w}||_2^2$ penalty \leftrightarrow Gaussian prior

Graphically: IRT as logistic regression

Encoding of "User i answered Item j":

logit
$$Pr(\text{User } i \text{ Item } j \text{ OK}) = \langle \mathbf{w}, \mathbf{x} \rangle = \theta_i + e_i$$

Encoding

python encode.py --users --items

	Users	Items			
U_0	U_1	U_2	<i>I</i> ₀	I_1	I_2
0	1	0	0	1	0
0	0 1		0	0	1
0	0	1	0	1	0
0	0	1	0	1	0
0	0	1	0	0	1

data/dummy/X-ui.npz

Then logistic regression can be run on the sparse features:

python lr.py data/dummy/X-ui.npz

python encode.py --users --items
python lr.py data/dummy/X-ui.npz

	Users			I	tems	5		
	U_0	U_1	U_2	I 0	I_1	<i>I</i> ₂	y pred	y
User 1 Item 1 OK	0	1	0	0	1	0	0.575135	1
User 1 Item 2 NOK	0	1	0	0	0	1	0.395036	0
User 2 Item 1 NOK	0	0	1	0	1	0	0.545417	0
User 2 Item 1 OK	0	0	1	0	1	0	0.545417	1
User 2 Item 2 NOK	0 0 1			0	0	1	0.366595	0

We predict the same thing when there are several attempts.

Count successes and failures

Keep track of what the student has done before:

user	item	skill	correct	wins	fails
1	1	1	1	0	0
1	2	2	0	0	0
2	1	1	0	0	0
2	1	1	1	0	1
2	2	2	0	0	0

data/dummy/data.csv

Task 2: Performance Factor Analysis

 W_{ik} : how many successes of user i over skill k (F_{ik} : #failures)

Learn β_k , γ_k , δ_k for each skill k such that:

$$logit Pr(User i Item j OK) = \sum_{Skill \ k \text{ of Item } j} \frac{\beta_k + W_{ik}\gamma_k + F_{ik}\delta_k}{\beta_k}$$

python encode.py --skills --wins --fails

	Skills	5		Wins	;	Fails			
<i>S</i> ₀	S_1	S_2	<i>S</i> ₀	S_1	S_2	<i>S</i> ₀	S_1	<i>S</i> ₂	
0	1	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	1	0	
0	0	1	0	0	0	0	0	0	

data/dummy/X-swf.npz

python encode.py --skills --wins --fails python lr.py data/dummy/X-swf.npz

	Ş	Skills			Wins			Fail	S		
	<i>S</i> ₀	S_1	S_2	<i>S</i> ₀	S_1	<i>S</i> ₂	<i>S</i> ₀	S_1	S_2	y pred	y
User 1 Item 1 OK	0	1	0	0	0	0	0	0	0	0.544	1
User 1 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0
User 2 Item 1 NOK	0	0 1 0			0	0	0	0	0	0.544	0
User 2 Item 1 <mark>OK</mark>	0	1	0	0	0	0	0	1	0	0.633	1
User 2 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0

Task 3: a new model (but still logistic regression)

python encode.py --items --skills --wins --fails python lr.py data/dummy/X-iswf.npz

Here comes a new challenger

How to model side information in, say, recommender systems?

Logistic Regression

Introduction

Learn a bias for each feature (each user, item, etc.)

Factorization Machines

Learn a bias and an embedding for each feature

What can be done with embeddings?

You are here

Interpreting the components

Items that discriminate only over one dimension

Interpreting the components

Items that highly discriminate over both dimensions

$$\begin{pmatrix}
\frac{3}{4} - \frac{3}{8} \\
b = 1.09 & b = -0.28 \\
-a_1 = 5.54 & -a_1 = 5.29 \\
a_2 = 6.22 & a_2 = 6.44
\end{pmatrix}$$

Graphically: logistic regression

Graphically: factorization machines

Formally: factorization machines

Learn bias \mathbf{w}_k and embedding \mathbf{v}_k for each feature k such that:

$$\operatorname{logit} p(\mathbf{x}) = \mu + \sum_{k=1}^{N} \mathbf{w}_{k} x_{k} + \sum_{1 \leq k < l \leq N} x_{k} x_{l} \langle \mathbf{v}_{k}, \mathbf{v}_{l} \rangle$$

$$\operatorname{logistic regression}$$
pairwise interactions

Particular cases

Introduction

- Multidimensional item response theory: logit $p = \langle u_i, v_i \rangle + e_i$
- SPARFA: $v_i > 0$ and v_i sparse
- GenMA: v_i is constrained by the zeroes of a q-matrix $(q_{ii})_{i,i}$

Andrew S Lan, Andrew E Waters, Christoph Studer, and Richard G Baraniuk (2014). "Sparse factor analysis for learning and content analytics". In: The Journal of Machine Learning Research 15.1, pp. 1959–2008

Jill-Jênn Vie, Fabrice Popineau, Yolaine Bourda, and Éric Bruillard (2016). "Adaptive Testing Using a General Diagnostic Model". In: European Conference on Technology Enhanced Learning. Springer, pp. 331-339

Tradeoff expressiveness/interpretability

NLL	logit p	4 q	7 q	10 q
Rasch	$\theta_i + e_i$	0.469 (79%)	0.457 (79%)	0.446 (79%)
DINA	$1-s_i$ or g_i	0.441 (80%)	0.410 (82%)	0.406 (82%)
MIRT	$\langle \pmb{u_i}, \pmb{v_j} \rangle + e_j$	0.368 (83%)	0.325 (86%)	0.316 (86%)
GenMA	$\langle \pmb{u_i}, \tilde{\pmb{q}_j} \rangle + e_j$	0.459 (79%)	0.355 (85%)	0.294 (88%)

Assistments 2009 dataset

Introduction

278608 attempts of 4163 students over 196457 items on 124 skills.

- Download http://jiji.cat/weasel2018/data.csv
- Put it in data/assistments09

python fm.py data/assistments09/X-ui.npz
etc. or make big

AUC	users + items	skills + w + f	items + skills + w + f
	` ,	0.651 (PFA) 9s 0.652 43s	

Results obtained with FM d = 20

Deep Factorization Machines

Introduction

Learn layers $W^{(\ell)}$ and $b^{(\ell)}$ such that:

$$\begin{split} & \boldsymbol{a}^0(\boldsymbol{x}) = (\boldsymbol{v}_{\texttt{user}}, \boldsymbol{v}_{\texttt{item}}, \boldsymbol{v}_{\texttt{skill}}, \ldots) \\ & \boldsymbol{a}^{(\ell+1)}(\boldsymbol{x}) = \text{ReLU}(\boldsymbol{W}^{(\ell)}\boldsymbol{a}^{(\ell)}(\boldsymbol{x}) + \boldsymbol{b}^{(\ell)}) \quad \ell = 0, \ldots, L-1 \\ & y_{DNN}(\boldsymbol{x}) = \text{ReLU}(\boldsymbol{W}^{(L)}\boldsymbol{a}^{(L)}(\boldsymbol{x}) + \boldsymbol{b}^{(L)}) \end{split}$$

$$\operatorname{logit} p(\mathbf{x}) = y_{FM}(\mathbf{x}) + y_{DNN}(\mathbf{x})$$

Jill-Jênn Vie (2018). "Deep Factorization Machines for Knowledge Tracing". In: The 13th Workshop on Innovative Use of NLP for Building Educational Applications. URL: https://arxiv.org/abs/1805.00356

Comparison

Introduction

- FM: y_{FM} factorization machine with $\lambda = 0.01$
- Deep: V_{DNN} : multilayer perceptron
- DeepFM: $y_{DNN} + y_{FM}$ with shared embedding
- Bayesian FM: $\mathbf{w_k}, \mathbf{v_{kf}} \sim \mathcal{N}(\mu_f, 1/\lambda_f)$ $\mu_f \sim \mathcal{N}(0,1), \, \lambda_f \sim \Gamma(1,1)$ (trained using Gibbs sampling)

Various types of side information

- first: <discrete> (user, token, countries, etc.)
- last: <discrete> + <continuous> (time + days)
- pfa: <discrete> + wins + fails

Duolingo dataset

# user.bzinsi	J+ Countries.	na uays	.1.795 Ctlent.web Session.tesson format.reverse_transtate time.10			
8rgJEAPw1001	She	PRON	Case=Nom Gender=Fem Number=Sing Person=3 PronType=Prs fPOS=PRON++PRP	nsubj	4	0
8rgJEAPw1002	is	VERB	Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin fPOS=VERB++VBZ	сор	4	0
8rgJEAPw1003	my	PRON	Number=Sing Person=1 Poss=Yes PronType=Prs fPOS=PRON++PRP\$	nmod:poss	4	1
8rgJEAPw1004	mother	NOUN	Degree=Pos fPOS=ADJ++JJ	ROOT	0	1
8rgJEAPw1005	and	CONJ	fPOS=CONJ++CC	cc	4	0
8rgJEAPw1006	he	PRON	Case=Nom Gender=Masc Number=Sing Person=3 PronType=Prs fPOS=PRON++PRP	nsubj	9	0
8rgJEAPw1007	is	VERB	Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin fPOS=VERB++VBZ	сор	9	0
8rgJEAPw1008	my	PRON	Number=Sing Person=1 Poss=Yes PronType=Prs fPOS=PRON++PRP\$	nmod:poss	9	1
8rgJEAPw1009	father	NOUN	Number=Sing fPOS=NOUN++NN	conj	4	1
# user:D2inSf	5+ countries:	MX days	:2.689 client:web session:practice format:reverse_translate time:6			
oMGsnnH/0101	When	ADV	PronType=Int fPOS=ADV++WRB	advmod	4	1
oMGsnnH/0102	can	AUX	VerbForm=Fin fPOS=AUX++MD	aux	4	0
oMGsnnH/0103	I	PRON	Case=Nom Number=Sing Person=1 PronType=Prs fPOS=PRON++PRP	nsubj	4	1
oMGsnnH/0104	help	VERB	VerbForm=Inf fPOS=VERB++VB	ROOT	0	0

Results

Model	d	epoch	train	first	last	pfa
Bayesian FM	20	500/500	_	0.822	_	_
Bayesian FM	20	500/500	_	_	0.817	_
DeepFM	20	15/1000	0.872	0.814	_	_
Bayesian FM	20	100/100	_	_	0.813	_
FM	20	20/1000	0.874	0.811	_	_
Bayesian FM	20	500/500	_	_	_	0.806
FM	20	21/1000	0.884	_	_	0.805
FM	20	37/1000	0.885	_	8.0	_
DeepFM	20	77/1000	0.89	_	0.792	_
Deep	20	7/1000	0.826	0.791	_	_
Deep	20	321/1000	0.826	_	0.79	_
LR	0	50/50	_	_	_	0.789
LR	0	50/50	_	0.783	_	_
LR	0	50/50	=	-	0.783	

Duolingo ranking

Introduction

Rank	Team	Algo	AUC
1	SanaLabs	RNN + GBDT	.857
2	singsound	RNN	.854
2	NYU	GBDT	.854
4	CECL	LR + L1 (13M feat.)	.843
5	TMU	RNN	.839
7 (off)	JJV	Bayesian FM	.822
8 (off)	JJV	DeepFM	.814
10	JJV	DeepFM	.809
15	Duolingo	LR	.771

Burr Settles, Chris Brust, Erin Gustafson, Masato Hagiwara, and Nitin Madnani (2018). "Second language acquisition modeling". In: Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 56–65. URL: http://sharedtask.duolingo.com

What 'bout recurrent neural networks?

Deep Knowledge Tracing: model the problem as sequence prediction

Conclusion

- Each student on skill q_t has performance a_t
- How to predict outcomes y on every skill k?
- ullet Spoiler: by measuring the evolution of a latent state h_t

Graphically: deep knowledge tracing

Graphically: there is a MIRT in my DKT

Drawback of Deep Knowledge Tracing

DKT does not model individual differences.

Actually, Wilson even managed to beat DKT with (1-dim!) IRT.

By estimating on-the-fly the student's learning ability, we managed to get a better model.

AUC	BKT	IRT	PFA	DKT	DKT-DSC
Cognitive Tutor	0.61	0.81	0.76	0.79	0.81
Assistments 2009	0.67	0.75	0.70	0.73	0.92
Assistments 2012	0.61	0.74	0.67	0.72	0.80
Assistments 2014	0.64	0.67	0.69	0.72	0.86

Sein Minn, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie (2018). "Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing". Submitted at IEEE International Conference on Data Mining.

Factorization machines are a strong baseline that take many models as special cases

Recurrent neural networks are powerful because they track the evolution of the latent state (try simpler dynamic models?)

Deep factorization machines may require more data/tuning, but neural collaborative filtering offer promising directions

Any suggestions are welcome!

Feel free to chat:

vie@jill-jenn.net

All code:

Introduction

github.com/jilljenn/ktm

Do you have any questions?

Lan, Andrew S, Andrew E Waters, Christoph Studer, and Richard G Baraniuk (2014). "Sparse factor analysis for learning and content analytics". In: *The Journal of Machine Learning Research* 15.1, pp. 1959–2008.

Rendle, Steffen (2012). "Factorization Machines with libFM". In:

ACM Transactions on Intelligent Systems and Technology (TIST)
3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771.

Settles, Burr, Chris Brust, Erin Gustafson, Masato Hagiwara, and Nitin Madnani (2018). "Second language acquisition modeling". In: Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 56–65. URL: http://sharedtask.duolingo.com.

Vie, Jill-Jênn (2018). "Deep Factorization Machines for Knowledge Tracing". In: The 13th Workshop on Innovative Use of NLP for Building Educational Applications. URL: https://arxiv.org/abs/1805.00356.

Vie, Jill-Jênn, Fabrice Popineau, Yolaine Bourda, and Éric Bruillard (2016). "Adaptive Testing Using a General Diagnostic Model". In: European Conference on Technology Enhanced Learning. Springer, pp. 331–339.