AL 3 - RÉDUCTION DES ENDOMORPHISMES

Dans tout le chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} ; E désigne un \mathbb{K} -espace vectoriel; $u \in \mathcal{L}(E)$; $n \in \mathbb{N}^*$.

1 Eléments propres

1.1 Eléments propres d'un endomorphisme

Définition 1

On dit qu'un scalaire $\lambda \in \mathbb{K}$ est une valeur propre de u s'il existe un vecteur $x \in E$ non nul tel que $u(x) = \lambda x$.

Un tel vecteur s'appelle vecteur propre de u associé à la valeur propre λ .

Proposition 1

- Un scalaire $\lambda \in \mathbb{K}$ est une valeur propre de u si, et seulement si $\operatorname{Ker}(u \lambda \operatorname{Id}_E) \neq \{0_E\}$.
- Un vecteur non nul $x \in E$ est un vecteur propre associé à une valeur propre λ si, et seulement si la droite Vect(x) est stable par u.

Définition 2

Soit λ une valeur propre de u. On appelle sous-espace propre de u, le sous-espace vectoriel $E_{\lambda}(u)$ de E défini par :

$$E_{\lambda}(u) = \operatorname{Ker}(u - \lambda \operatorname{Id}_{E}) = \{x \in E \mid u(x) = \lambda x\}$$

Remarque 1

- $E_{\lambda}(u)$ est l'ensemble des vecteurs propres associés à λ auquel on adjoint de vecteur nul.
- 0 est une valeur propre de u si, et seulement si u n'est pas injectif. On a alors $E_0 = \text{Ker}(u)$.
- $E_{\lambda}(u)$ est stable par u.

Proposition 2

La somme d'une famille finie de sous-espaces propres d'un endomorphisme u associés à des valeurs propres distinctes est directe.

Corollaire

Toute famille finie de vecteurs propres associés à des valeurs propres deux à deux distinctes est libre.

Remarque 2

• Tout endomorphisme d'un espace vectoriel de dimension n admet au plus n valeurs propres.

1.2 Eléments propres en dimension finie

Dans toute la suite du chapitre, on suppose que E est de dimension finie n. On considère $A \in M_n(\mathbb{K})$.

1.2.1 Eléments propres d'un endomorphisme en dimension finie

Définition 3

Le spectre de l'endomorphisme u est l'ensemble de ses valeurs propres. On le note Sp(u).

Proposition 3

Soit $\lambda \in \mathbb{K}$.

$$\lambda \in \operatorname{Sp}(u) \Leftrightarrow (u - \lambda \operatorname{Id}_E) \notin \operatorname{Aut}(E) \Leftrightarrow \det(u - \lambda \operatorname{Id}_E) = 0$$

Remarque 3

- $u \in Aut(E) \Leftrightarrow 0 \notin Sp(u)$.
- Pour toute valeur propre λ de u, déterminer le sous-espace propre $E_{\lambda}(u)$ revient à résoudre l'équation linéaire homogène $(u \lambda \operatorname{Id}_E)(x) = 0$.

1.2.2 Eléments propres d'une matrice

Définition 4

Soient $A \in M_n(\mathbb{K})$ et $u \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associé à A.

- Les éléments propres de A sont ceux de u;
- Le spectre de la matrice A, noté Sp(A) est Sp(u);
- Pour tout valeur propre λ , l'espace propre associé, noté $E_{\lambda}(A)$ est $E_{\lambda}(u)$.

Remarque 4

 Tous les résultats sur les éléments propres établis pour un endomorphisme se traduisent pour les matrices.

Proposition 4

Deux matrices semblables ont le même spectre.

2 Polynôme caractéristique

2.1 Définition

Définition 5

Le polynôme caractéristique de A (resp u), noté χ_A (resp. χ_u) est le polynôme :

$$\chi_A = \det(X.\mathbf{I}_n - A)$$

(resp.
$$\chi_u = \det(X.\mathrm{Id}_E - u)$$
)

Proposition 5

Le polynôme caractéristique de A (resp. u) est un polynôme unitaire de degré n; il vérifie :

$$\chi_A = X^n - \text{tr}(A)X^{n-1} + \dots + (-1)^n \text{det}(A)$$

$$(\text{resp.}\chi_u = X^n - \text{tr}(u)X^{n-1} + ... + (-1)^n \text{det}(u))$$

Remarque 5

- Le polynôme caractéristique d'une matrice carrée est égal à celui de l'endomorphisme qui lui est canoniquement associé. Toutes les matrices représentant un même endomorphisme dans diverses bases ont le même polynôme caractéristique : le polynôme caractéristique est un invariant de similitude.
- Une matrice et sa transposée ont le même polynôme caractéristique.

2.2 Lien avec les valeurs propres

Théorème 1

Un scalaire λ est valeur propre de A (resp. de u) si, et seulement si λ est racine du polynôme χ_A (resp(χ_u). Autrement dit, les valeurs propres de A (resp. u) sont les racines de son polynôme caractéristique.

Remarque 6

• Toutes les matrices de $M_n(\mathbb{C})$ et tous les endomorphismes de $\mathcal{L}(E)$ admettent au moins une valeur propre.

Définition 6

On dit que le scalaire λ est valeur propre de A (resp. de u) de multiplicité k si λ est une racine de χ_A (resp(χ_u)) de multiplicité k. On note cette multiplicité $m(\lambda)$.

Proposition 6

Toute matrice A de $M_n(\mathbb{C})$ admet n valeurs propres $\lambda_1,...,\lambda_n$ comptées avec leur ordre de multiplicité,

et on a :
$$\det(A) = \prod_{i=1}^{n} \lambda_i$$
 et $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$.

Théorème 2

Soit λ une valeur propre de u de multiplicité $m(\lambda)$. Alors

$$1 \le \dim(E_{\lambda}) \le m(\lambda) \le n$$

2.3 Polynômes annulateurs

Définition 7

Soient
$$f \in \mathcal{L}(E)$$
 (resp. $M \in \mathcal{M}_n(\mathbb{K})$), et $P = \sum_{k=0}^p a_k X^k \in \mathbb{K}[X]$.

On note
$$P(f) = \sum_{k=0}^{p} a_k f^k$$
 où $f^k = \underbrace{f \circ f \circ \dots \circ f}_{k \text{ fois}}$ (resp. $P(M) = \sum_{k=0}^{p} a_k M^k$).

- On dit que P(f) (resp. P(M)) est un polynôme de l'endomorphisme f (resp. de la matrice M).
- Si $P(f) = 0_{\mathcal{L}(E)}$ (resp. P(M) = 0), on dit que P est un polynôme annulateur de f (resp. M).

Proposition 7

Si P est un polynôme annulateur d'un endomorphisme f, alors les valeurs propres de f sont racines de P.

Attention!

La réciproque est fausse.

Théorème 3 Théorème de Cayley-Hamilton

Le polynôme caractéristique d'un endomorphisme f est un polynôme annulateur de f.

3 Diagonalisation

3.1 endomorphismes et matrices diagonalisables

Définition 8

- On dit que u est diagonalisable s'il existe une base de E dans laquelle la matrice de u est diagonale.
- \bullet On dit que A est diagonalisable si l'endomorphisme canoniquement associé à A est diagonalisable.

Remarque 7

• Une matrice de $M_n(\mathbb{K})$ est diagonalisable si, et seulement si elle est semblable à une matrice diagonale.

Théorème 4

Les propositions suivantes sont équivalentes :

- 1. u est diagonalisable
- ${f 2.}$ il existe une base de E formée de vecteurs propres de u
- 3. $E = \bigoplus_{\lambda \in \operatorname{Sp}(u)} E_{\lambda}$
- **4.** χ_u est scindé dans $\mathbb{K}[X]$ et $\forall \lambda \in \mathrm{Sp}(u), m(\lambda) = \dim(E_\lambda)$
- 5. $\sum_{\lambda \in \mathrm{Sp}(u)} \dim(E_{\lambda}) = \dim(E)$

Proposition 8 Condition suffisante de diagonalisation

Si u admet n valeurs propres distinctes, alors u est diagonalisable.

Attention! Cette condition n'est pas nécessaire.

Proposition 9 Condition nécessaire de diagonalisation

Si u est diagonalisable alors son polynôme caractéristique est scindé sur \mathbb{K} .

Attention! Cette condition n'est pas suffisante.

Proposition 10 Condition nécessaire et suffisante de diagonalisation

u est diagonalisable si, et seulement si il admet un polynôme annulateur scindé, à racines simples.

3.2 Méthode de diagonalisation

Pour diagonaliser une matrice $A \in M_n(\mathbb{K})$:

- 1. On détermine son polynôme caractéristique χ_A , en cherchant au maximum à simplifier le calcul du déterminant, de façon à trouver plus simplement les racines de χ_A (qui sont les valeurs propres de A);
 - \hookrightarrow Si χ_A n'est pas scindé, la matrice n'est pas diagonalisable.
 - \hookrightarrow Sinon :
- 2. On détermine les sous-espaces propres associés à chaque valeur propre;
 - \hookrightarrow S'il existe une valeur propre $\lambda \in \operatorname{Sp}(A)$ telle que $m(\lambda) > \dim(E_{\lambda})$, alors A n'est pas diagonalisable.
 - \hookrightarrow Sinon, A est diagonalisable, et la concaténation des bases des sous-espaces propres forme la base de E dans laquelle la matrice de l'endomorphisme canoniquement associé à A est diagonale. Dans cette base, la matrice a pour éléments diagonaux les valeurs propres de A, au nombre de leur ordre de multiplicité, dans l'ordre choisi pour les vecteurs propres qui constituent la nouvelle base.

3.3 Applications

3.3.1 Calcul des puissances d'une matrice

Proposition 11

Soient A une matrice diagonalisable, et $(P, D) \in GL_n(\mathbb{K}) \times M_n(\mathbb{K})$, telles que : $D = \operatorname{diag}(\lambda_1, ..., \lambda_n) = P^{-1}AP$. Alors : $\forall k \in \mathbb{N}$:

$$A^k = PD^kP^{-1} = P\operatorname{diag}(\lambda_1^k, ..., \lambda_n^k)P^{-1}$$

3.3.2 Suites récurrentes linéaires

Définition 9

On dit qu'une suite numérique $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$ vérifie une récurrence linéaire d'ordre $p\in\mathbb{N}^*$ à coefficients constants s'il existe $(a_0,...,a_{p-1})\in\mathbb{K}^p$, avec $a_0\neq 0$ tel que :

$$\forall n \in \mathbb{N}, u_{n+p} = a_{p-1}u_{n+(p-1)} + \dots + a_1u_{n+1} + a_0u_n = \sum_{k=0}^{p-1} a_k u_{n+k}$$
 (R)

L'équation $x^p - (a_{p-1}x^{p-1} + ... + a_1x + a_0) = 0$ s'appelle équation caractéristique de la relation (\mathcal{R}) .

Proposition 12

L'ensemble des suites vérifiant une relation de récurrence linéaire d'ordre $p \in \mathbb{N}^*$ à coefficients constants forme un \mathbb{K} -espace vectoriel de dimension p.

Proposition 13

A toute relation de récurrence linéaire d'ordre $p \in \mathbb{N}^*$ à coefficients constants (\mathcal{R}) (définie comme précédemment) on associe une récurrence vectorielle d'ordre 1 du type $X_{n+1} = AX_n$ en notant :

$$\forall n \in \mathbb{N}, X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ \vdots \\ u_{n+p-1} \end{pmatrix} \quad \text{et} \quad A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ a_0 & a_1 & a_2 & \cdots & a_{p-1} \end{pmatrix}$$

Le polynôme caractéristique de A est : $\chi_A = X^p - (a_{p-1}X^{p-1} + ... + a_1X + a_0)$. La suite (X_n) est entièrement déterminée par la valeur de X_0 , et on a : $\forall n \in \mathbb{N}, X_n = A^nX_0$.

Remarque 8

• Résoudre l'équation caractéristique de la relation (\mathcal{R}) revient à résoudre $\chi_A(x) = 0$, c'est-à-dire rechercher les valeurs propres de A.

3.3.3 Suites de vecteurs définies par une récurrence linéaire

Soit $p \in \mathbb{N}^*$. On considère p suites numériques $((u_n^1)_{n \in \mathbb{N}}, ..., (u_n^p)_{n \in \mathbb{N}})$, et $f \in \mathcal{L}(\mathbb{R}^p)$ telles que :

$$\forall n \in \mathbb{N}, (u^1_{n+1},...,u^p_{n+1}) = f(u^1_n,...,u^p_n).$$

On note M la matrice canoniquement associée à f.

En posant :
$$\forall n \in \mathbb{N}, U_n = \begin{pmatrix} u_n^1 \\ \vdots \\ u_n^p \end{pmatrix}$$
, on a : $\forall n \in \mathbb{N}, U_{n+1} = MU_n$.

La suite (U_n) est entièrement déterminée par la valeur de U_0 , et on a : $\forall n \in \mathbb{N}, U_n = M^n U_0$.

Diagonaliser M permet de déterminer explicitement les suites $(u_n^i)_{n\in\mathbb{N}}$ avec $i\in[1,p]$.

4 Trigonalisation

Définition 10

- ullet On dit que u est trigonalisable s'il existe une base de E dans laquelle la matrice de u est triangulaire supérieure.
- ullet On dit que A est trigonalisable si l'endomorphisme canoniquement associé à A est trigonalisable.

Théorème 5

u est trigonalisable si, et seulement si χ_u est scindé dans $\mathbb{K}.$

Remarque 9

 \bullet Tout endomorphisme d'un $\mathbb{C}\text{-espace}$ vectoriel de dimension finie est trigonalisable.