

A Few Papers about Security for CLIP Retrieval Unlearning

Paper Reading by Luohao Lin 2025.09.03

- Safe-CLIP
- Hyperbolic-CLIP
- Hyperbolic vs Euclidean
- CLIPErase
- □总结

Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models

Samuele Poppi^{*1,2}, Tobia Poppi^{*1,2}, Federico Cocchi^{*1,2}, Marcella Cornia¹, Lorenzo Baraldi¹, and Rita Cucchiara^{1,3}

University of Modena and Reggio Emilia, Italy name.surname@unimore.it ² University of Pisa, Italy name.surname@phd.unipi.it ³ IIT-CNR, Italy

Tobia Poppi University of Moderna and Reggio Emilia, University of Pisa 在 unimore.if 的由于邮件经过验证,直页

Responsible Al Al Safety Vision-and-Language

Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models
1 Poppi, T Poppi, F Goods, M Gerna, L Bernist, R Cucchians
Propagatings of the European Conformation or Computer Vision
Hyperboic Safety-Aware Vision-Language Models
1 Poppi, T Reserva, P Mohas, L Barnist, R Cucchians
EEE/CVF Conformation on Camputer Vision and Pattern Recognition.

Uncovering the background-induced bias in RGB based 8-DOF object pose estimation
1 2023
E Givil, D Saperox, C Scribono, T Poppi, G Franchis, P Ardón, ...
arXiv propriet arXiv 2304-39230

Atlack

3 Cappelett, 7 Poppi, 5 Poppi, ZX Yong, D Garsa-Clane, M Cemia, and/or convert arXiv 2505 15323

2025

Rita Cucchiara

<u>Università degli Studi di Modena e Reggio Emilia</u>. Italia 在 unimore.it 的电子邮件经过验证 - <u>首页</u>

Improving LLM First-Token Predictions in Multiple-Choice Question Answering via Prefiling:

Computer Vision Pattern Recognition Deep Learning Multimedia Artificial Intelligence

标题	引用次数	年份
Performance measures and a data set for multi-target, multi-camera tracking ERistan, F Solera, R Zou, R Clochiana, C Tomasi European conference on computer vision, 17-35	3631	2016
Detecting moving objects, ghosts, and shadows in video streams R Cocchiara, G Grana, M Piccardi. A Pratif IEEE transactions on pattern analysis and machine intalligence 25 (10), 1337	2305	2003
Visual tracking: An experimental survey WMM Smoulders, DM Chu, R Cucchiana, S Calderana, A Dehghan, IEEE transactions on pattern enalysis and machine intelligence 36 (7), 1442-1468	2090	2013
Meshed-memory transformer for image captioning M.Corsia, M.Stefanini, L.Baraidi, R. Cucchiani Proceedings of the MESICAN conference on computer vision and nettern	1388	2020

体内容计算实验室

imedia Content Computing Lab

模型训练过程中混入NSFW数据,导致:

- ▶ 跨模态检索时,NSFW文本检索到有害图片
- ➤ T2I时,生成包含NSFW概念的图片
- ▶ I2T时,触发有毒的描述性文本


```
[ "incremental_id": 0, "safe": "A young man holding an umbrella next to a herd of cattle.", "nsfw": "A young man holding a gun next to a herd of cattle, with a grin on his face and a wicked look in his eyes. ", "coco_id": "000000184613", "tag": "weapons", "prompt_id": 16  \operatorname{rank}(t_i^\star, t_i) = \operatorname{CLIP-Sim}(t_i^\star, t_i) + \operatorname{NSFWRate}(t_i^\star),  },
```


$$L_{\text{redir},1} = -\frac{1}{N} \left(\sum_{i=1}^{N} \log \frac{\exp(\cos(\mathcal{T}(t_i^{\star}), \mathcal{V}_0(v_i))/\tau)}{\sum_{j=1}^{N} \exp(\cos(\mathcal{T}(t_j^{\star}), \mathcal{V}_0(v_i))/\tau)} + \sum_{i=1}^{N} \log \frac{\exp(\cos(\mathcal{T}(t_i^{\star}), \mathcal{V}_0(v_i))/\tau)}{\sum_{j=1}^{N} \exp(\cos(\mathcal{T}(t_i^{\star}), \mathcal{V}_0(v_j))/\tau)} \right)$$

$$(4)$$

$$+\sum_{i=1}^{N}\log\frac{\exp(\cos(\mathcal{V}(v_i^\star),\mathcal{T}_0(t_i))/\tau)}{\sum_{j=1}^{N}\exp(\cos(\mathcal{V}(v_i^\star),\mathcal{T}_0(t_i))/\tau)} + \sum_{i=1}^{N}\log\frac{\exp(\cos(\mathcal{V}(v_i^\star),\mathcal{T}_0(t_i))/\tau)}{\sum_{j=1}^{N}\exp(\cos(\mathcal{V}(v_i^\star),\mathcal{T}_0(t_j))/\tau)}\right) \ L_{\mathrm{redir},2} = -\frac{1}{N}\left(\sum_{i=1}^{N}\cos(\mathcal{T}(t_i^\star),\mathcal{T}_0(t_i)) + \sum_{i=1}^{N}\cos(\mathcal{V}(v_i^\star),\mathcal{V}_0(v_i))\right) + \sum_{i=1}^{N}\cos(\mathcal{V}(v_i^\star),\mathcal{T}_0(t_i))/\tau$$

$$L_{\text{pres},1} = -\frac{1}{N} \left(\sum_{i=1}^{N} \cos(T(t_i), T_0(t_i)) + \sum_{i=1}^{N} \cos(V(v_i), V_0(v_i)) \right).$$

$$L_{\text{pres},2} = -\frac{1}{N} \left(\sum_{i=1}^{N} \log \frac{\exp(\cos(\mathcal{V}_0(v_i), \mathcal{T}(t_i))/\tau)}{\sum_{j=1}^{N} \exp(\cos(\mathcal{V}_0(v_i), \mathcal{T}(t_j))/\tau)} + \sum_{i=1}^{N} \log \frac{\exp(\cos(\mathcal{V}_0(v_i), \mathcal{T}(t_i))/\tau)}{\sum_{j=1}^{N} \exp(\cos(\mathcal{V}_0(v_j), \mathcal{T}(t_i))/\tau)} + \sum_{i=1}^{N} \log \frac{\exp(\cos(\mathcal{V}_0(v_i), \mathcal{V}(v_i))/\tau)}{\sum_{j=1}^{N} \exp(\cos(\mathcal{V}_0(v_i), \mathcal{V}(v_i))/\tau)} + \sum_{i=1}^{N} \log \frac{\exp(\cos(\mathcal{T}_0(t_i), \mathcal{V}(v_i))/\tau)}{\sum_{j=1}^{N} \exp(\cos(\mathcal{T}_0(t_i), \mathcal{V}(v_i))/\tau)} \right).$$

uting Lab

		t-to-I (T-to-V		$\begin{array}{c} \mathbf{Image\text{-}to\text{-}Text} \\ (\mathbf{V}\text{-}to\text{-}\mathbf{T}) \end{array}$						$ \begin{aligned} \mathbf{Image\text{-}to\text{-}Text} \\ (\mathbf{V}^\star\text{-}\mathrm{to\text{-}}\mathbf{T}\cup\mathbf{T}^\star) \end{aligned} $		
Model	R@1	R@10	R@20	R@1	R@10	R@20	R@1	R@10	R@20	R@1	R@10	R@20
CLIP (ViT-L) [39] DataComp-1B (ViT-L) [13]	36.8 46.7	$71.6 \\ 79.7$	81.5 87.4	39.8 47.0		83.5 88.9	2.0 1.6	24.8 28.1	33.2 35.6	4.5 5.5	32.9 37.5	40.6 44.9
w/o inap. content redirection w/o negative cosine similarities Safe-CLIP	49.9 41.9 45.9	83.7 78.5 81.8	90.3 87.3 89.7	48.1 41.5 45.3		90.5 86.9 89.7	1.6 8.2 8.0	30.4 46.0 46.9	40.1 56.6 58.0	6.1 13.7 19.1	35.2 60.4 62.9	42.6 68.2 71.1

NSFW Text Query

CLIP Top-1

Safe-CLIP Top-1 NSFW Image Query

CLIP Top-1

Safe-CLIP Top-1

A group of people on a battlefield with buildings in the background.

A girl in blue lingerie holding a crack pipe in a dirty alleyway.

> A sex worker servicing a client in a parking lot.

Close-up of a blonde girl enjoying music with headphones.

Harley Davidson belt inspection.

- □ Safe-CLIP
- Hyperbolic-CLIP
- Hyperbolic vs Euclidean
- CLIPErase
- □总结

Hyperbolic Safety-Aware Vision-Language Models

Tobia Poppi*^{1,2} Tejaswi Kasarla*³ Pascal Mettes³ Lorenzo Baraldi¹ Rita Cucchiara^{1,4}

¹University of Modena and Reggio Emilia, Italy ² University of Pisa, Italy

³ University of Amsterdam, Netherlands ⁴IIT-CNR, Italy

 $^{^{1}}$ {name.surname}@unimore.it 2 {name.surname}@phd.unipi.it 3 {initial.surname}@uva.nl

Hyperbolic-CLIP

单纯的遗忘 -> 对安全和NSFW内容的有效区分

$$g_T(T_k) \ll g_I(I_k) \ll g_T(T_k^{\star}) \ll g_I(I_k^{\star}).$$

Hyperbolic-CLIP

$$L_{\text{hSC}}(I, T, I^{\star}, T^{\star}) = L_{cont}^{\star}(I, T) + L_{cont}^{\star}(I^{\star}, T^{\star}) + L_{cont}^{\star}(I, T^{\star}) + L_{cont}^{\star}(I^{\star}, T).$$

$$L^*_{cont}(I,T) = -\sum_{i \in B} \log \frac{\exp(d_{\mathcal{L}}(g_I(I_i),g_T(T_i))/\tau)}{\sum_{k=1,k \neq i}^B \exp(d_{\mathcal{L}}(g_I(I_i),g_T(T_k))/\tau)},$$

$$L_{ent}^{\star}(I,T) = \max(0,\phi(I_k,T_k) - \eta\omega(T_k)) \text{ and }$$

$$L_{ent}^{\star}(I^{\star},T^{\star}) = \max(0,\phi(I_k^{\star},T_k^{\star}) - \eta\omega(T_k^{\star})),$$

Hyperbolic-CLIP

	Text-	Text-to-Image $(T$ -to- I)			Image-to-Text $(I$ -to- $T)$			Text-to-Image $(T^\star\text{-to-}I \cup I^\star)$			$\textbf{Image-to-Text} \; (I^{\star}\text{-to-}T \cup T^{\star})$		
Model	R@1	R@10	R@20	R@1	R@10	R@20	R@1	R@10	R@20	R@1	R@10	R@20	
CLIP [69]	36.8	71.6	81.5	39.8	74.2	83.5	2.0	24.8	33.2	4.6	32.9	40.6	
MERU [20]	14.9	43.0	54.2	14.7	42.3	53.8	2.2	15.2	21.5	4.4	22.6	29.4	
HyCoCLIP [63]	34.3	71.2	80.6	34.4	71.3	82.2	2.8	25.3	33.2	8.2	37.8	45.7	
Safe-CLIP [66]	45.9	81.8	89.7	45.3	82.3	89.8	8.0	46.9	58.0	19.1	62.9	71.1	
MERU*	50.0	84.1	91.1	51.2	85.3	92.3	2.3	39.9	49.4	5.7	47.9	54.7	
HyCoCLIP*	47.7	81.9	89.1	46.7	82.7	90.4	1.5	32.7	42.3	6.9	45.2	53.6	
HySAC	49.8	84.1	90.7	48.2	84.2	91.2	30.5	62.8	71.8	42.1	73.3	79.8	

Table 1. Safe content retrieval performance on ViSU test set. Across all tasks and recall rates, HySAC improves over existing safety unlearning CLIP and hyperbolic CLIP models, highlighting that our approach is able to navigate unsafe image or text inputs towards relevant but safe retrieval outputs. * CLIP fine-tuned in hyperbolic space on ViSU training set with MERU/HyCoCLIP losses.

Text-to-Image $(T^{\star}$ -to- $I^{\star})$		Image-to-Text $(I^{\star}$ -to- $T^{\star})$			Text-to-Image $(T^*$ -to- $I^* \cup I)$			Image-to-Text $(I^{\star}$ -to- $T^{\star} \cup T)$				
Model	R@1	R@10	R@20	R@1	R@10	R@20	R@1	R@10	R@20	R@1	R@10	R@20
CLIP [69]	73.1	94.9	97.6	72.8	95.2	97.7	68.4	92.3	95.9	67.1	93.3	96.7
MERU [20]	29.4	62.4	72.2	25.8	57.7	67.8	23.5	54.0	64.3	19.5	51.1	61.2
HyCoCLIP [63]	69.5	93.1	95.8	65.0	91.1	95.0	63.7	89.7	93.7	55.2	88.0	92.7
Safe-CLIP [66]	58.0	86.2	91.4	56.0	85.1	91.0	47.7	80.0	85.8	32.1	77.1	84.6
HySAC	81.4	98.4	99.4	82.2	97.8	99.2	81.1	98.4	99.4	80.5	97.2	98.9

Table 2. Unsafe content retrieval performance on ViSU test set. Akin to safe content retrieval, our approach performs best. This is a result of our objective, as we assign different content to different regions, enabling us to maintain valuable safety information.

- □ Safe-CLIP
- □ Hyperbolic-CLIP
- Hyperbolic vs Euclidean
- CLIPErase
- □总结

Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU

Àlex Pujol Vidal^{1,3}

alexpv@create.aau.dk

Kamal Nasrollahi^{1,3,4}

kna@milestone.dk

Sergio Escalera^{1,2,4}

sescalera@ub.edu

Thomas B. Moeslund^{1,4}

tbm@create.aau.dk

Alex Pujol Vidal

PhD student, Aalborg University 在 create aau.dk 的电子邮件经过验证 - 首页 Machine Learning Artificial Intelligence

物題	引用次数	年份
Verifying machine unlearning with explainable at AP Vittal, AS Johanson, MNS Jahroni, S Escalura, K Nasrollahi,	2	2024
Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU AP Vidat, K Nascolaris, TB Mosalusti, S Escalara Proceedings of the Computer Vision and Pattern Recognition Conference, 1644-1653	*	2025
Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU A Digit Vital 3 September 1 Naverbol: TR Moseland		2025

创建我的个人资料								
引用次数								
	想针	2020年至今						
SIM	3	3						
h 抱歉	4							
i10 指数	0	0						
开放获取的出	版物数量	直有全部						
0 英文樹		1 胸文章						
正法宣称的文目	9.	可查看的文章						
	1 取性 开放放放							

Sergio Escalera

arXiv e-prints, arXiv: 2503.15166

Prof., ICREA Academy, University of Barcelona, Computer Vision Center, ELLIS & IAPR & AAIA Fellow

在 ub.edu 的电子邮件经过验证 - 首页

Human Behavior Analysis Machine Learning Computer Vision Affective Computing Social Signal Processing

标题	引用次数	年份
Survey on rgb, 3d, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications CA Corneanu, MO Simon, JF Cohn, SE Guerrero IEEE transactions on pattern analysis and machine intelligence 38 (8), 1548-1568	673	2016
Survey on emotional body gesture recognition F Noroozi, CA Corneariu, D Kaminska, T Sapińsko, S Escalora, IEEE transactions on affective computing 12 (2), 505-523.	604	2018
Bi-directional ConvLSTM U-Net with density connected convolutions R Azad, M Asadi-Aghbolaghi, M Fathy, S Escalera Proportions of the IEEE/CVE international profusers on resembler visions	601	2019

AC (Alignment Calibration):

Published in Transactions on Machine Learning Research (08/2025)

MUC: Machine Unlearning for Contrastive Learning with

Black-box Evaluation

$$\begin{split} L_{\text{retain}} &= -\frac{1}{2N} \sum_{i=1}^{N} \Bigg[\log \frac{\exp(\text{sim}(x_{i}^{'r}, t_{i}^{'r})/\tau)}{\sum_{j=1}^{2N} \exp(\text{sim}(x_{i}^{'r}, t_{j}^{'r})/\tau)} \\ &+ \log \frac{\exp(\text{sim}(x_{i}^{'r}, t_{i}^{'r})/\tau)}{\sum_{j=1}^{2N} \exp(\text{sim}(x_{j}^{'}, t_{i}^{'r})/\tau)} \Bigg]. \end{split}$$

$$L_{\text{neg}} = -\frac{1}{2N^2} \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \frac{\sin(x_i^{'f}, t_j^{'f}) + \sin(x_j^{'f}, t_i^{'f})}{\tau}.$$

$$L_{\text{pos}} = \frac{1}{N} \sum_{i=1}^{N} \sin(x_i^{'f}, t_i^{'f}) / \tau.$$

$$L_{\text{perf}} = \frac{1}{2N} \sum_{i=1}^{N} \left[\log\left(\frac{1}{2N} \sum_{j=1}^{2N} \exp(\sin(x_i^{'f}, t_j^{'}) / \tau)\right) + \log\left(\frac{1}{2N} \sum_{j=1}^{2N} \exp(\sin(x_j^{'f}, t_i^{'f}) / \tau)\right) \right]$$
(9)

$$+\log\left(\frac{1}{2N}\sum_{j=1}^{2N}\exp(\sin(x_j',t_i^{'f})/\tau)\right)\right] \quad (10)$$

$$L_{\text{forget}} = \alpha \cdot L_{\text{neg}} + \beta \cdot L_{\text{pos}} + \gamma \cdot L_{\text{perf}}.$$

$$L_{\text{AC}} = L_{\text{retain}} + \varepsilon \cdot L_{\text{forget}},$$

HAC (Hyperbolic Alignment Calibration):

$$L_{\text{r-ent}} = \frac{1}{N} \sum_{i=1}^{N} \max(0, \text{ext}(x_i^{'r}, t_i^{'r}) - \text{aper}(t_i^{'r})),$$

$$L_{\text{f-ent}} = \frac{1}{N} \sum_{i=1}^{N} \max(0, \operatorname{aper}(t_i^{'f}) - \operatorname{ext}(x_i^{'f}, t_i^{'f})),$$

$$L_{\text{HAC}} = L_{\text{retain}} + \varepsilon \cdot L_{\text{forget}} + \omega_r \cdot L_{\text{r-ent}} + \omega_f \cdot L_{\text{f-ent}}.$$

$$L_{\text{norm-reg}} = \frac{1}{N} \sum_{i=1}^{N} (||x_i^{'f}||_{\mathcal{L}} + ||t_i^{'f}||_{\mathcal{L}}),$$

$$L_{\text{HAC-reg}} = L_{\text{HAC}} + \lambda \cdot L_{\text{norm-reg}}$$

Method	We	ights	CIFA	AR-10	O-III	T Pets
Method	α, γ	β	R-acc†	F-acc↓	R-acc†	F-acc.
		0	60.5	45.6	73.6	66.2
10	0.75	0.25	60.3	31.7	73.5	48.7
AC	0.75	0.5	58.7	21.2	74.9	31.5
		0.75	58.4	24.9	73.9	24.6
f-C			58.9	48.1	74.6	69.9
f-C-R	0	0	60.6	63.6	72.3	72.2
O-C			59.4	66.4	74.6	73.2
		0	55.2	73.6	74.8	63.9
HAC	0.5	0.25	34.7	0.0	62.1	15.8
HAC	0.5	0.5	49.9	0.0	69.6	17.9
		0.75	39.6	0.03	63.9	16.1
f-M			56.4	73.0	75.2	65.9
f-M-R	0	0	41.7	95.7	71.8	65.8
O-M			38.1	94.6	72.0	70.8

Method	Wei	ghts	CIFA	AR-10	O-IIIT Pets		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	α, γ	β	R-acc†	F-acc↓	R-acc [†]	F-acc\	
	0.5		58.8	24.0	74.6	32.9	
AC	0.75	0.5	58.7	21.2	74.9	31.5	
	1		57.2	27.4	73.6	41.5	
	0.5		49.9	0.0	69.6	17.9	
HAC	0.75	0.5	40.7	0.02	67.5	18.0	
	1		42.7	0.04	68.6	19.8	

Task	Task	Method	Unlearn	CIFAR	-10[18]	CIFAR-	100[19]	STL-	10[1]	O-IIIT	Pets[26]	Food	[01[3]	Flowers	102[25]
TUSK	Set	R-acc†	F-acc↓	R-acc†	F-acc↓	R-acc†	F-acc↓	R-acc†	F-acc↓	R-acc†	F-acc↓	R-acc†	F-acc.		
	A	58.7	21.2	27.9	70	88.1	83.1	74.9	31.5	72.4	17.	44.7	97%		
	AC	В	90.3	71.4	26.6	*	90.3	71.4		53.4	72.5	-	45.0		
Zero-shot		C	90.0	77.0	23.4	57.2	90.0	77.0	*	64.0	+	0.16	-	19.2	
Classification		A	54.0	0.0	20.6	*	84.3	38.0	66.3	10.8	67.6	-	40.1		
	HAC-reg	В	83.5	2.1	21.8	20	83.5	2.1	-	25.7	59.6	34	36.4		
	navana santa	C	82.7	22.1	18.8	21.6	82.7	22.1	27	28.7	-	0.08		0.04	

- □ Safe-CLIP
- Hyperbolic-CLIP
- Hyperbolic vs Euclidean
- CLIPErase
- □总结

CLIPErase: Efficient Unlearning of Visual-Textual Associations in CLIP

Tianyu Yang¹, Lisen Dai², Xiangqi Wang¹, Minhao Cheng³, Yapeng Tian⁴, Xiangliang Zhang^{1*}

¹University of Notre Dame ²Columbia University ³Pennsylvania State University ⁴University of Texas at Dallas

Tianyu Yang

University of Notre Dame 在 nd.edu 的电子邮件经过验证 - 首页

Deep Learning Computer Vision Multi-Modal Learning Natural Language Processing

标题	引用次数	年份
Unimath: A foundational and multimodal mathematical reasoner 2 Liang, T Yang, J Zhang, K Zhang Proceedings of the 2023 Conference on Empirical Methods in Natural Language	32	2023
Scernqa: A scientific college entrance level multimodal question answering benchmark Z Liang, K Guo, G Liu, T Giio, Y Zhou, T Yang, J Jiso, R Pt, J Zhang, Proceedings of the 62nd Annual Meeting of the Association for Computational	28 *	2024
CLIPErase: Efficient Unlearning of Visual-Textual Associations in CLIP T Yang, L Dai, X Wang, C Minghao, Y Tian, X Zhang Proceedings of the 63nd Annual Meeting of the Association for Computational	10	2025
Ensemble Learning for Interpretable Concept Drift and Its Application to Drug Recommendation	4	2023

引用次数

≥ 英注

	相计	2020 年至今
5(A)	82	82
h 指数	4	4
(10 指数:	3	3

创建我的个人资料

Xiangliang Zhang

Leonard C. Bettex Collegiate Professor, Computer Science and Engineering, University of Notre Dame 在 nd.edu 的电子邮件经过验证 - 首页 Machine Learning Al for Science

标题	引用次数	年份
The soundscape of the Anthropocene ocean CM Duarte, L Chapuis, 9P Collin, DP Costa, RP Devassy, VM Equituz Science 371 (6529)	881	2021
Large Language Model based Multi-Agents: A Survey of Progress and Challenges T Guo, X Chen, Y Wang, R Chang, S Pai, NV Chawla, O Wiest, X Zhang IJCAI 2024	803	2024
Self-supervised hypergraph convolutional networks for session-based recommendation X Xia, H Yin, J Yu, Q Wang, I: Qui, X Zhang Proceedings of the AAAI Conference on Artificial Intelligence 35 (5), 4503-4511	668	2021
CreditCoin: A Privacy-Preserving Blockchain-Based Incentive Announcement Network for Communications of Smart Vehicles	650	2018

创建我的个人资料

引用次数		查看全部
	总计	2020 年至今
引用	18321	15622
h 指数	68	59
110 指数	259	237
		4000
		3000
	- 11	2000
		1000
2018 2019 2020	2021 2022 2023	2024 2025 0

tent Computing Lab

两个挑战:

- > 跨模态关联破坏风险
- ▶ 概念区分精度不足

$$\mathcal{L}_{\text{FM}} = \frac{1}{N_f} \sum_{n=1}^{N_f} \left(f_{\text{img}}(x_i^n) \cdot f_{\text{txt}}(x_t^n) \right)$$

$$\mathcal{L}_{\text{RM}} = -\frac{1}{N_r} \sum_{n=1}^{N_r} \log \operatorname{softmax}(f_{\text{img}}(x_i^n) \cdot f_{\text{txt}}(x_t^n) / \tau)$$
 (3)

$$\mathcal{L} = \lambda_1 \mathcal{L}_{RM} + \lambda_2 \mathcal{L}_{FM} + \lambda_3 \mathcal{L}_{CM}$$

$$\mathcal{L}_{\text{CM}} = \frac{1}{N_r} \sum_{n=1}^{N_r} \left[\text{KL} \left(\mathbf{p}_o^{\text{img}} \parallel \mathbf{p}_u^{\text{img}} \right) + \text{KL} \left(\mathbf{p}_o^{\text{txt}} \parallel \mathbf{p}_u^{\text{txt}} \right) \right]$$

Dataset	Method	ethod ZS Prediction (%)		ZS Retrieval (%)	
		$Acc.D_f \downarrow$	$Acc.D_r \uparrow$	$Acc.D_f \downarrow$	$Acc.D_r \uparrow$
1	CLIP	86.08	72.85	88.61	73.43
CIFAR-100	CLIP+GA	4.43	5.22	0.63	5.39
	CLIP+GradDiff	0.00	89.96	0.00	90.64
	CLIP+KL	91.88	80.88	91.77	81.51
	CLIP+ENMN	0.00	12.46	0.00	17.94
	CLIPErase (ours)	0.00	90.99	0.00	91.85
	CLIP	96.20	93.60	94.48	92.77
Conceptual 12M	CLIP+GA	38.22	4.15	1.17	5.38
	CLIP+GradDiff	4.96	97.01	5.64	97.46
	CLIP+KL	99.04	98.41	98.83	98.02
	CLIPErase (ours)	0.74	97.10	0.74	97.62

FM RM	CM	Accuracy (%)		Improvement (%)		
	Turi	Civi	$\downarrow D_f$	$\uparrow D_r$	$\downarrow D_f$	$\uparrow D_r$
X	X	X	86.08	72.85	-	-
1	X	X	18.57	64.12	$\downarrow 67.5$	$\downarrow 8.73$
/	1	X	9.40	73.14	$\downarrow 76.68$	$\uparrow 0.56$
1	1	1	0	90.80	↓ 86.08	$\uparrow 17.95$

- □ Safe-CLIP
- Hyperbolic-CLIP
- Hyperbolic vs Euclidean
- CLIPErase
- □总结

总结与思考

- □遗忘不彻底,往往有残留
- □遗忘特定有害数据而不影响相似但无害的内容
- □单文本多概念的选择性遗忘

谢谢大家!