Q-læring INF100

Odin Hoff Gardå

Plan

Kort introduksjon til Q-læring.

Workshop: Implementer Q-læring for å løse en labyrint.

Forsterkende Læring¹

Vi har en agent som handler i et miljø.

 Agenten lærer gjennom belønning basert på tilstand og handling.

 Q-læring er en form for forsterkende læring.

¹Engelsk: Reinforcement Learning

Q-læring: Oppsett

- Vi starter med:
 - En mengde S av mulige **tilstander**
 - En mengde A av mulige handlinger
 - Et par $(s, a) \in S \times A$ kalles et tilstand-handlings-par
 - En belønningsfunksjon $R \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}$

Q-læring: Oppsett

- Vi starter med:
 - En mengde S av mulige **tilstander**
 - En mengde A av mulige handlinger
 - Et par $(s, a) \in S \times A$ kalles et tilstand-handlings-par
 - En belønningsfunksjon $R \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
- Ved å la agenten utforske miljøet ønsker vi å lære Q-funksjonen

$$Q: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$$

som gir oss en **Q-verdi** Q(s, a) til hvert par $(s, a) \in S \times A$.

Q-læring: Oppsett

- Vi starter med:
 - En mengde S av mulige **tilstander**
 - En mengde A av mulige handlinger
 - Et par $(s, a) \in S \times A$ kalles et tilstand-handlings-par
 - En belønningsfunksjon $R \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
- Ved å la agenten utforske miljøet ønsker vi å lære Q-funksjonen

$$Q: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$$

som gir oss en **Q-verdi** Q(s, a) til hvert par $(s, a) \in S \times A$.

■ Endelig mål: For en $s \in S$ så ønsker vi at arg $\max_{a \in A} Q(s, a)$ er den optimale handlingen for å maksimere forventet belønning.

Gjennomgående Eksempel: 3 × 3 **Labyrint**

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

Gjennomgående Eksempel: 3 × 3 **Labyrint**

Mulige tilstander (agentens posisjon):

$$S = \{(0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2)\}$$

Odin Hoff Gardå Q-læring 12th March 2024 4 / 15

Gjennomgående Eksempel: 3×3 Labyrint

Mulige tilstander (agentens posisjon):

$$S = \{(0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2)\}$$

Mulige handlinger (retninger å gå):

$$A = \{ venstre, høyre, opp, ned \}$$

Odin Hoff Gardå Q-læring 12th March 2024 4 / 15

La s' være ruten i retning a fra posisjon s.

Definer belønningsfunksjonen $R \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ ved

$$R(s,a) = \begin{cases} -1.0 & \text{hvis } s' \text{ er en veggrute,} \\ -0.1 & \text{hvis } s' \text{ er en åpen rute og} \\ 1.0 & \text{hvis } s' \text{ er målruten.} \end{cases}$$

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

■ **Q:** Hva er *R*((1,0), høyre)?

La s' være ruten i retning a fra posisjon s.

$$R(s,a) = \begin{cases} -1.0 & \text{hvis } s' \text{ er en veggrute,} \\ -0.1 & \text{hvis } s' \text{ er en åpen rute og} \\ 1.0 & \text{hvis } s' \text{ er målruten.} \end{cases}$$

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

- **Q:** Hva er R((1,0), høyre)?
- **A:** R((1,0), høyre) = 1.0

La s' være ruten i retning a fra posisjon s.

$$R(s,a) = \begin{cases} -1.0 & \text{hvis } s' \text{ er en veggrute,} \\ -0.1 & \text{hvis } s' \text{ er en åpen rute og} \\ 1.0 & \text{hvis } s' \text{ er målruten.} \end{cases}$$

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

- **Q**: Hva er *R*((1,0), høyre)?
- **A:** R((1,0), høyre) = 1.0
- **Q:** Hva er R((1,1), venstre)?

La s' være ruten i retning a fra posisjon s.

$$R(s,a) = \begin{cases} -1.0 & \text{hvis } s' \text{ er en veggrute,} \\ -0.1 & \text{hvis } s' \text{ er en åpen rute og} \\ 1.0 & \text{hvis } s' \text{ er målruten.} \end{cases}$$

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

- **Q:** Hva er R((1,0), høyre)?
- **A:** R((1,0), høyre) = 1.0
- **Q:** Hva er R((1,1), venstre)?
- **A:** R((1,1), venstre) = -1.0

La s' være ruten i retning a fra posisjon s.

$$R(s,a) = \begin{cases} -1.0 & \text{hvis } s' \text{ er en veggrute,} \\ -0.1 & \text{hvis } s' \text{ er en åpen rute og} \\ 1.0 & \text{hvis } s' \text{ er målruten.} \end{cases}$$

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

- **Q:** Hva er R((1,0), høyre)?
- **A:** R((1,0), høyre) = 1.0
- **Q:** Hva er R((1,1), venstre)?
- **A:** R((1,1), venstre) = -1.0
- **Q:** Hva er *R*((1,1),opp)?

La s' være ruten i retning a fra posisjon s.

$$R(s,a) = \begin{cases} -1.0 & \text{hvis } s' \text{ er en veggrute,} \\ -0.1 & \text{hvis } s' \text{ er en åpen rute og} \\ 1.0 & \text{hvis } s' \text{ er målruten.} \end{cases}$$

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

- **Q:** Hva er R((1,0), høyre)?
- **A:** R((1,0), høyre) = 1.0
- **Q:** Hva er R((1,1), venstre)?
- **A:** R((1,1), venstre) = -1.0
- **Q:** Hva er *R*((1,1), opp)?
- **A:** R((1,1), opp) = -0.1

Hvis vi har endelig mange tilstander og handlinger, kan vi representere Q-funksjonen som en tabell (**Q-tabell**):

a	venstre	høyre	opp	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0,1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2,2)	0.1	0.0	0.8	0.1

Spørsmål:

Q: Hva er Q((0,0), høyre)?

Hvis vi har endelig mange tilstander og handlinger, kan vi representere Q-funksjonen som en tabell (**Q-tabell**):

a	venstre	høyre	opp	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0,1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2, 1)	1.0	0.5	8.0	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	8.0	0.1

- **Q:** Hva er Q((0,0), høyre)?
- **A:** -0.5

Hvis vi har endelig mange tilstander og handlinger, kan vi representere Q-funksjonen som en tabell (**Q-tabell**):

a	venstre	høyre	opp	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0,1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	8.0
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	8.0	0.1

- **Q:** Hva er Q((0,0), høyre)?
- **A:** -0.5
- **Q:** Hva er Q((1,1), ned)?

Hvis vi har endelig mange tilstander og handlinger, kan vi representere Q-funksjonen som en tabell (**Q-tabell**):

a	venstre	høyre	opp	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0,1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	8.0	0.1

- **Q:** Hva er Q((0,0), høyre)?
- **A:** -0.5
- **Q:** Hva er Q((1,1), ned)?
- **A:** 0.8

Hvis vi har endelig mange tilstander og handlinger, kan vi representere Q-funksjonen som en tabell (**Q-tabell**):

a	venstre	høyre	opp	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0,1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2,1)	1.0	0.5	8.0	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	8.0	0.1

- **Q:** Hva er Q((0,0), høyre)?
- **A:** -0.5
- **Q:** Hva er Q((1,1), ned)?
- A: 0.8
- **Q:** Hva er $\max_{a \in \mathcal{A}} Q(s, a)$ når s = (1, 2)?

Hvis vi har endelig mange tilstander og handlinger, kan vi representere Q-funksjonen som en tabell (**Q-tabell**):

a	venstre	høyre	opp	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0,1)	0.4	-0.9	1.0	0.2
(1, 1)	0.6	-0.1	0.4	0.8
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	8.0	0.1

- **Q:** Hva er Q((0,0), høyre)?
- **A:** -0.5
- **Q:** Hva er Q((1,1), ned)?
- **A:** 0.8
- **Q:** Hva er $\max_{a \in \mathcal{A}} Q(s, a)$ når s = (1, 2)?
- **A:** 0.7

Hvis vi har endelig mange tilstander og handlinger, kan vi representere Q-funksjonen som en tabell (Q-tabell):

a	venstre	høyre	opp	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0,1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	8.0	0.1

Spørsmål:

- **Q:** Hva er Q((0,0), høyre)?
- A: -0.5
- **Q:** Hva er Q((1,1), ned)?
- **A:** 0.8
- **Q:** Hva er max_{$a \in A$} Q(s, a) når s = (1, 2)?
- **A**: 0.7
- **Q:** Hva er max_{$a \in A$} Q(s, a) når

s = (2,2)?

Hvis vi har endelig mange tilstander og handlinger, kan vi representere Q-funksjonen som en tabell (**Q-tabell**):

a	venstre	høyre	opp	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0,1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	8.0	0.1

- **Q:** Hva er Q((0,0), høyre)?
- **A:** -0.5
- **Q:** Hva er Q((1,1), ned)?
- **A:** 0.8
- **Q:** Hva er $\max_{a \in \mathcal{A}} Q(s, a)$ når s = (1, 2)?
- A: 0.7
- **Q:** Hva er $\max_{a \in \mathcal{A}} Q(s, a)$ når
 - s = (2,2)?
- **A:** 0.8

La π^* : $S \to A$ være funksjonen gitt ved $\pi^*(s) = \arg \max_{a \in A} Q(s, a)$.

a	venstre	høyre	орр	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0, 1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	8.0
(2,1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2,2)	0.1	0.0	8.0	0.1

Spørsmål:

Q: Hva er $\pi^*((0,1))$?

La π^* : $S \to A$ være funksjonen gitt ved $\pi^*(s) = \arg \max_{a \in A} Q(s, a)$.

a	venstre	høyre	орр	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0, 1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	8.0
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	0.8	0.1

- **Q:** Hva er $\pi^*((0,1))$?
- **A**: opp

La π^* : $S \to A$ være funksjonen gitt ved $\pi^*(s) = \arg \max_{a \in A} Q(s, a)$.

a	venstre	høyre	орр	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0, 1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	8.0
(2,1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	0.8	0.1

- **Q:** Hva er $\pi^*((0,1))$?
- A: opp
- **Q:** Hva er $\pi^*((2,1))$?

La π^* : $S \to A$ være funksjonen gitt ved $\pi^*(s) = \arg \max_{a \in A} Q(s, a)$.

a	venstre	høyre	орр	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0, 1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2,1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2,2)	0.1	0.0	8.0	0.1

- **Q:** Hva er $\pi^*((0,1))$?
- **A**: opp
- **Q:** Hva er $\pi^*((2,1))$?
- A: venstre

La π^* : $S \to A$ være funksjonen gitt ved $\pi^*(s) = \arg \max_{a \in A} Q(s, a)$.

a	venstre	høyre	орр	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0, 1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2, 2)	0.1	0.0	8.0	0.1

- **Q:** Hva er $\pi^*((0,1))$?
- **A**: opp
- **Q:** Hva er $\pi^*((2,1))$?
- A: venstre
- **Q:** Hva er $\pi^*((0,2))$?

La π^* : $S \to A$ være funksjonen gitt ved $\pi^*(s) = \arg \max_{a \in A} Q(s, a)$.

a	venstre	høyre	орр	ned
(0,0)	1.0	-0.5	0.1	-0.3
(1,0)	0.2	-0.3	-1.0	0.6
(2,0)	-0.4	-0.1	0.3	0.7
(0, 1)	0.4	-0.9	1.0	0.2
(1,1)	0.6	-0.1	0.4	0.8
(2, 1)	1.0	0.5	0.8	-0.5
(0, 2)	-0.2	0.5	-0.3	-0.7
(1,2)	0.7	-1.0	0.1	-0.5
(2,2)	0.1	0.0	8.0	0.1

- **Q:** Hva er $\pi^*((0,1))$?
- A: opp
- **Q:** Hva er $\pi^*((2,1))$?
- A: venstre
- **Q:** Hva er $\pi^*((0,2))$?
- A: høyre

Vi starter med Q(s, a) = 0 for alle par $(s, a) \in S \times A$. (En Q-tabell hvor alle verdiene er 0.)

Odin Hoff Gardå Q-læring 12th March 2024 8 / 15

Vi starter med Q(s, a) = 0 for alle par $(s, a) \in S \times A$. (En Q-tabell hvor alle verdiene er 0.)

Vi har to læringsparametere (begge tall mellom 0 og 1):

- \blacksquare α : **læringsrate** (learning rate) og
- \mathbf{v} : **rabattfaktor** (discount factor).

Vi starter med Q(s, a) = 0 for alle par $(s, a) \in S \times A$. (En Q-tabell hvor alle verdiene er 0.)

Vi har to læringsparametere (begge tall mellom 0 og 1):

- \blacksquare α : **læringsrate** (learning rate) og
- \blacksquare γ : **rabattfaktor** (discount factor).

Q-læringsalgoritmen (én episode):

Agenten er i posisjon s_t ved tid t. Velg en handling a_t . Ved å utføre a_t i s_t treffer vi s_{t+1} .

Vi starter med Q(s, a) = 0 for alle par $(s, a) \in S \times A$. (En Q-tabell hvor alle verdiene er 0.)

Vi har to læringsparametere (begge tall mellom 0 og 1):

- **α**: **læringsrate** (learning rate) og
- \blacksquare γ : **rabattfaktor** (discount factor).

Q-læringsalgoritmen (én episode):

- Agenten er i posisjon s_t ved tid t. Velg en handling a_t . Ved å utføre a_t i s_t treffer vi s_{t+1} .
- 2 Vi oppdaterer $Q(s_t, a_t)$ med følgende regel:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha \left(R(s_t, a_t) + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a)\right).$$

Odin Hoff Gardå Q-læring 12th March 2024 8 / 15

Vi starter med Q(s, a) = 0 for alle par $(s, a) \in S \times A$. (En Q-tabell hvor alle verdiene er 0.)

Vi har to læringsparametere (begge tall mellom 0 og 1):

- **α**: **læringsrate** (learning rate) og
- \blacksquare γ : **rabattfaktor** (discount factor).

Q-læringsalgoritmen (én episode):

- Agenten er i posisjon s_t ved tid t. Velg en handling a_t . Ved å utføre a_t i s_t treffer vi s_{t+1} .
- 2 Vi oppdaterer $Q(s_t, a_t)$ med følgende regel:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha \left(R(s_t, a_t) + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1}, a)\right).$$

3 Gjenta fra steg 1 med s_{t+1} (stopp hvis s_{t+1} er en terminaltilstand).

Oppdatering av Q-funksjonen

$$(1-\alpha) \underbrace{Q(s_t,a_t)}_{\text{nåværende Q-verdi}} + \alpha \left(\begin{matrix} \text{Umiddelbar} \\ \text{belønning} \\ \\ R(s_t,a_t) + \gamma \max_{a \in \mathcal{A}} Q(s_{t+1},a) \\ \\ \text{estimert høyeste} \\ \text{fremtidig belønning} \end{matrix} \right).$$

- Gammel og ny kunnskap kombineres (α bestemmer balansen mellom de).
- Belønningen for å utføre a_t i tilstand s_t påvirker den nye Q-verdien.
- Hvor mye vi bryr oss om fremtiden bestemmes av γ .

ϵ -grådig Q-læring: Hvordan velge a_t ?

La ϵ være et tall mellom 0 og 1. I tilstand s_t , velg a_t på følgende måte:

11 Med sannsynlighet ϵ , velg a_t tilfeldig.

2 Med sannsynlighet $1 - \epsilon$, velg $a_t = \pi^*(s_t) = \arg\max_{a \in \mathcal{A}} Q(s_t, a)$.

Vi reduserer vanligvis verdien av ϵ gjennom læringen slik at agenten utforsker mest i starten men gradvis baserer valgene på lært kunnskap.

Sett $\alpha = 0.8$ og $\gamma = 0.5$. La $s_t = (1,2)$ og $a_t = \text{opp.}$

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

a	venstre	høyre	opp	ned
		:		
(1,0)	0.1	1.0	-0.8	0.2
(1,1)	-0.6	-0.8	0.9	0.2
(1,2)	-0.4	-1.0	0.3	-0.9
:				

$$Q(s_t, a_t) \leftarrow \underbrace{(1-\alpha)}_{0.2} \underbrace{Q(s_t, a_t)}_{0.3} + \underbrace{\alpha}_{0.8} \left(\underbrace{R(s_t, a_t)}_{-0.1} + \underbrace{\gamma}_{0.5} \underbrace{\max_{a \in \mathcal{A}}}_{0.9} \underbrace{Q(s_{t+1}, a)}_{0.9} \right).$$

Ny Q-verdi: $Q((1,2), opp) = 0.2 \cdot 0.3 + 0.8(-0.1 + 0.5 \cdot 0.9) = 0.34$

Odin Hoff Gardå Q-læring 12th March 2024 11 / 15

Nå er $s_t = (1, 1)$. La $a_t =$ venstre.

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

a	venstre	høyre	opp	ned
<u>:</u>				
(1,0)	0.1	1.0	-0.8	0.2
(1,1)	-0.6	-0.8	0.9	0.2
(1,2)	-0.4	-1.0	0.34	-0.9
:				

$$Q(s_t, a_t) \leftarrow \underbrace{(1-\alpha)}_{0.2} \underbrace{Q(s_t, a_t)}_{-0.6} + \underbrace{\alpha}_{0.8} \left(\underbrace{R(s_t, a_t)}_{-1.0} + \underbrace{\gamma}_{0.5} \underbrace{\max_{a \in \mathcal{A}}}_{0.9} \underbrace{Q(s_{t+1}, a)}_{0.9} \right).$$

Ny Q-verdi: Q((1,1), venstre) = -0.56

Odin Hoff Gardå Q-læring 12th March 2024 12 / 15

Nå er $s_t = (1, 1)$. La $a_t := \pi^*(s_t) = \mathsf{opp}$.

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

a	venstre	høyre	opp	ned
<u>:</u>				
(1,0)	0.1	1.0	-0.8	0.2
(1,1)	-0.56	-0.8	0.9	0.2
(1,2)	-0.4	-1.0	0.34	-0.9
i i				

$$Q(s_t, a_t) \leftarrow \underbrace{(1-\alpha)}_{0.2} \underbrace{Q(s_t, a_t)}_{0.9} + \underbrace{\alpha}_{0.8} \left(\underbrace{R(s_t, a_t)}_{-0.1} + \underbrace{\gamma}_{0.5} \underbrace{\max_{a \in \mathcal{A}}}_{1.0} \underbrace{Q(s_{t+1}, a)}_{1.0} \right).$$

Ny Q-verdi: Q((1,1), opp) = 0.5

Odin Hoff Gardå Q-læring 12th March 2024 13 / 15

Nå er $s_t = (1,0)$. La $a_t := \pi^*(s_t) = \text{høyre}$.

(0,0)	(1,0)	(2,0)
(0,1)	(1,1)	(2,1)
(0,2)	(1,2)	(2,2)

a	venstre	høyre	opp	ned
<u>:</u>				
(1,0)	0.1	1.0	-0.8	0.2
(1,1)	-0.56	-0.8	0.5	0.2
(1,2)	-0.4	-1.0	0.34	-0.9
i i				

$$Q(s_t, a_t) \leftarrow \underbrace{(1-\alpha)}_{0.2} \underbrace{Q(s_t, a_t)}_{1.0} + \underbrace{\alpha}_{0.8} \left(\underbrace{R(s_t, a_t)}_{1.0} + \underbrace{\gamma}_{0.5} \underbrace{\max_{a \in \mathcal{A}}}_{0.0} \underbrace{Q(s_{t+1}, a)}_{0.0} \right).$$

Ny Q-verdi: Q((1,0), høyre) = 1.0

Workshop

Nå er det din tur til å implementere Q-læring!

 Gå til https://github.com/odinhg/Q-Learning-Tutorial (eller skann QR-koden).

Spør en gruppeleder eller meg dersom du har spørsmål.