Teoremi richiesti all'Esame di Fondamenti matematici per l'informatica

Matteo Franzil

6 giugno 2018

Indice

I	Buon ordinamento dei numeri naturali e seconda forma del principio di induzione	2
II	Esistenza e unicità della divisione euclidea	2
III	Unicità della rappresentazione di un numero in base arbitraria	4
IV	Esistenza e unicità del Massimo Comune Divisore e del minimo comune multiplo	5
V	Teorema fondamentale dell'aritmetica	7
VI	Teorema cinese del resto	8
VII	Teorema di Fermat-Eulero e crittografia RSA	10
VIII	Teoremi sulla congiungibilità nei grafi	11
IX	Relazione fondamentale nei grafi finiti e lemma delle strette di mano	12
X	Teorema di caratterizzazione degli alberi finiti	13
XI	Teorema di esistenza degli alberi di copertura	14

I Buon ordinamento dei numeri naturali e seconda forma del principio di induzione

Teorema 1 (Buon ordinamento dei numeri naturali). (\mathbb{N}, \leq) è ben ordinato.

Dimostrazione. Supponiamo esista $A \subset \mathbb{N}$ dove $\nexists \min A$. Sia $B := \mathbb{N} \setminus A$. Dimostriamo che $B = \mathbb{N}$ e $A = \emptyset$. Procediamo per induzione di prima forma. Sia $\{0, 1, \dots, n\} \subset B \ \forall n \in \mathbb{N}$, ovvero $P(n) = (\{0, 1, \dots, n\} \subset B)$ è vera $\forall n \in \mathbb{N}$.

$$n = 0$$

$$\{0\} \subset B \Leftrightarrow 0 \in B \Leftrightarrow 0 \notin A.$$

Se supponessimo per assurdo che $0 \in A$, allora avremmo che $0 = \min A$. Quindi $0 \notin A$.

$$n \ge 1, n \Longrightarrow n+1$$

Assumiamo che $\{0, 1, \dots, n\} \subset B$ per qualche n.

Proviamo che $\{0, 1, \dots, n, n+1\} \subset B$.

 $n+1\subset A?$ No, perché altrimenti avremmo che $n+1=\min A.$

Allora

$$n+1 \in B \Longrightarrow B = \mathbb{N}, \ A = \emptyset$$

Teorema 2 (Seconda forma del principio di induzione). Sia una famiglia di proposizioni $\{P(n)\}_{n\in\mathbb{N}}$ indicizzata su $n\in\mathbb{N}$. Supponiamo che

- 1. P(0) è vera
- 2. $\forall n > 0$, $(P(k) \ \dot{e} \ vera \ \forall k < n) \Longrightarrow P(n) \ \dot{e} \ vera.$

Allora P(n) è vera $\forall n \in \mathbb{N}$.

Dimostrazione. Sia $A := \{n \in \mathbb{N} | P(n) \text{ è falsa} \}$, dimostriamo che $A = \emptyset$. Supponiamo che:

$$A\neq\emptyset\Longrightarrow \exists n\in\mathbb{N}:n=\min A.$$
 Per la (1), essendo P(0) vera, $n\neq0$

Inoltre, se k < n, $k \notin A$ in quanto abbiamo che $n = \min A$, ma allora dalla (2) segue che P(n) è vera e che quindi $n \notin A$, che è in contraddizione con quanto asserito all'inizio della dimostrazione.

II Esistenza e unicità della divisione euclidea

Teorema 3 (Esistenza e unicità della divisione euclidea). Siano $n, m \in \mathbb{Z}$ con $m \neq 0$. $\Longrightarrow \exists ! q, r \in \mathbb{Z}$:

- n = qm + r
- 0 < r < |m|

Esistenza. Procediamo per induzione di seconda forma su n.

$$n = 0$$

Poniamo q, r = 0.

$n \ge 1, \forall k < n \Longrightarrow n$

Supponiamo n > 0 e l'asserto vero $\forall k < n$. Dimostriamo che l'asserto vale $\forall n \in \mathbb{N}$.

- Consideriamo innanzitutto il caso $n \ge 0$. Se n < m, poniamo q := 0 e r := n.
- Altrimenti, avremo che $n \ge m$. Sia k := n m. Applicando la divisione euclidea, otteniamo che:

$$\exists q, r \in \mathbb{N} : k = mq + n, \quad 0 \le k < n,$$

$$\Leftrightarrow n = k + m = (qm + r) + m = (q + 1)m + r.$$

• Analizziamo ora il caso opposto, ovvero quando n < 0. Se m > 0, applicando la procedura di divisione euclidea a -n > 0, m > 0, vale:

$$\exists q, r \in \mathbb{N} : -n = qm + r, \quad 0 \le r < |m|$$

$$\Leftrightarrow n = -qm - r.$$

Se r=0 abbiamo vinto finito, altrimenti continiuamo per ottenere un resto >0. Aggiungendo e togliendo m:

$$n = (-q) - r - m + m$$

= $(-q - 1)m + (m - r)$

dove m-r è strettamente positivo per definizione.

• Sia infine m < 0, ovvero -m > 0.

$$\implies \exists q, r \in \mathbb{Z}: \ n = (-m)q + r, \ 0 \le r < |m|$$
$$\Leftrightarrow n = (-q)m + r$$

Unicità. Supponiamo $\exists n, m \in \mathbb{Z}, m \neq 0; q, q', r, r' \in \mathbb{N}$:

$$n = qm + r, \quad 0 \le r < |m|$$

 $n = q'm + r', \quad 0 \le r' < |m|$

Proviamo che q = q', r = r'. Possiamo supporre che r' > r. Allora vale: $qm - q'm = r' - r \Leftrightarrow m(q - q') = r' - r$. Effettuando l'operazione di modulo otteniamo:

$$|m(q-q')| = |r'-r| = r'-r < |m|$$

Affinché la disuguaglianza sia rispettata deve essere $0 \le |q - q'| < 1$.

Essendo $q, q' \in \mathbb{N}$, concludiamo che $q' - q = 0 \Longrightarrow q' = q$.

Dall'equazione originale ricaviamo infine che: $mq + r = mq' + r' \Longrightarrow r' = r$.

III Unicità della rappresentazione di un numero in base arbitraria

Teorema 4 (Unicità della rappresentazione di un numero in base $b \geq 2$ arbitraria). Sia $b \in \mathbb{N}, b \geq 2 \Longrightarrow \forall n \in \mathbb{N}, \exists !$ rappresentazione di n in base b, ovvero una successione $\{\varepsilon_i\}$ con le seguenti proprietà:

1. $\{\varepsilon_i\}_{i\in\mathbb{N}}$ è definitivamente nulla dopo qualche $i_0\in\mathbb{N}$, ovvero $\forall j\geq i_0, \varepsilon_j=0$.

2.
$$\varepsilon_i \in I_b = \{0, 1, \dots, b-1\} \ \forall i \in \mathbb{N} \ (ovvero \ 0 \le \varepsilon_i < b)$$

$$3. \sum_{i \in \mathbb{N}} \varepsilon_i b^i = n$$

Inoltre, se esiste un altra successione $\{\varepsilon_i'\}_{i\in\mathbb{N}}$ allora $\varepsilon_i = \varepsilon_i' \ \forall i \in \mathbb{N}$.

Esistenza. Procediamo per induzione di seconda forma su n.

n = 0

Vale:

$$n = \sum_{i \in \mathbb{N}} \varepsilon_i b_i = \sum_{i \in \mathbb{N}} 0b_i = 0_b \ \forall i \in \mathbb{N}$$

 $n \ge 1, \forall k < n \Longrightarrow n$

Supponiamo n > 0 e l'asserto vero $\forall k < n$.

Eseguiamo la divisione euclidea di n con b:

$$n = qb + r, \qquad 0 \le r < |b|$$

Per ipotesi sappiamo che $b \geq 2$, quindi vale $0 < q < qb \leq qb + r = n$.

Per ipotesi induttiva allora esiste una successione $\{\delta_i\}$ che possiede le proprietà (1), (2), (3); inoltre vale:

$$n = \left(\sum \delta_i b^i\right) b + r$$
$$n = \left(\sum \delta_i b^{i+1}\right) + r$$

Sia ora $r = \varepsilon_0$; effettuando un cambio di indice, otteniamo:

$$n = \varepsilon_0 + \sum_{j \ge 1} \delta_{j-1} b^j = \varepsilon_0 + \delta_0 b^1 + \delta_1 b^2 + \ldots = \sum_{i \in \mathbb{N}} \varepsilon_i b^i$$

Unicità. Procediamo per induzione di seconda forma.

n = 0

Se n=0 allora tutti gli addendi della sommatoria saranno nulli $\Longrightarrow \varepsilon_i=0 \ \forall i\in\mathbb{N}.$

$n \ge 1, \forall k < n \Longrightarrow n$

Sia n > 0. Assumiamo l'asserto sia vero $\forall k < n$ e dimostriamo che P(n) è verificata $\forall n \in \mathbb{N}$. Assumiamo esistano $\{\varepsilon_i\}_{i \in \mathbb{N}}, \{\varepsilon_i'\}_{i' \in \mathbb{N}}$ con le proprietà (1), (2), (3). Proviamo che $\varepsilon_i = \varepsilon_i' \ \forall i \in \mathbb{N}$.

Osserviamo che:

$$n = \sum_{i \in \mathbb{N}} \varepsilon_i b^i = \varepsilon_0 + b \left(\sum_{i \ge 1} \varepsilon_i b^{i-1} \right)$$

$$n = \sum_{i \in \mathbb{N}} \varepsilon_i' b^i = \varepsilon_0' + b \left(\sum_{i \ge 1} \varepsilon_i' b^{i-1} \right)$$

dove ε'_0 , ε_0 sono i resti delle divisioni di n per b. Ma per l'unicità della divisione euclidea vale $\varepsilon'_0 = \varepsilon_0$. Stesso discorso per i quozienti, che inoltre risultano per definizione $\leq n$. Segue, cambiando gli indici della sommatoria:

$$q = \sum_{j \in \mathbb{N}} \varepsilon'_{j+1} b^j = \sum_{j \in \mathbb{N}} \varepsilon_{j+1} b^j < n$$

Come prima si ha q < n e per ipotesi di induzione si ha che $\varepsilon_i = \varepsilon_i' \ \forall i \geq 1$

IV Esistenza e unicità del Massimo Comune Divisore e del minimo comune multiplo

Teorema 5 (Esistenza e unicità del Massimo Comune Divisore). Siano $n, m \in \mathbb{N}$ con n, m non entrambi nulli. Diremo che un $d \in \mathbb{N}, d \geq 1$ è Massimo Comune Divisore (M.C.D.) di n, m se:

- 1. $d|m \wedge d|n$
- 2. $c|m \wedge c|n \Longrightarrow c|d \text{ per qualche } c \in \mathbb{N}$.

Inoltre, $\exists x, y \in \mathbb{Z} : d = xn + ym$, ovvero d è esprimibile come combinazione lineare con x, y. Se \exists MCD tra n, m, è unico e lo indicheremo con (n, m).

Unicità. Poniamo $\exists d_1, d_2$ entrambi MCD di n, m. Applicando la proprietà (1) di d_1 e la (2) di d_2 otteniamo:

- $(1) d_1|m \wedge d_1|n$
- (2) dato $c = d_1, d_1 | m \wedge d_1 | n \Longrightarrow d_1 | d_2$

Applicando l'inverso otteniamo che $d_2|d_1 \wedge d_1|d_2 \Longrightarrow d_1 = \pm d_2$; essendo $d_1, d_2 \in \mathbb{N}$, otteniamo che $d_1 = d_2$.

Esistenza. Sia $S := \{ s \in \mathbb{Z} | s > 0, s = xn + ym \text{ per qualche } x, y \in \mathbb{Z} \}$. Osserviamo che $S \neq \emptyset$, in quanto $nn + mm > 0, nn + mm \in S$. Sia $d := \min S$. Vale:

$$d|m \wedge d|n, \exists c \in \mathbb{Z} : (c|m \wedge c|n \Longrightarrow c|d)$$

Essendo $d \in S, d = xn + ym$ per qualche $x, y \in Z$.

Dalla proprietà 2 si cha che c|xn+ym. Dimostriamo che d|n. Eseguendo la divisione euclidea tra n, d otteniamo:

$$n = dq + r, \ 0 \le r < |d|$$

Proviamo per assurdo che r=0. Se fosse r>0, avremmo che $r\in S$ (quindi risulterebbe che $d\neq \min S$, in quanto d>r). Vale:

$$r = n - qd = n - q(xn + ym)$$

$$= n - qnx - qmy$$

$$= n\underbrace{(1 - qx)}_{x'} + m\underbrace{(-qy)}_{y'}$$

Allora $r \in S$, ma ciò è assurdo. Quindi $r \neq S$.

Teorema 6 (Esistenza e unicità del minimo comune multiplo). Siano $n, m \in \mathbb{N}$. Diremo che un $M \in \mathbb{N}$ è minimo comune multiplo di n, m se:

- 1. $n|M \wedge m|M$
- 2. $n|c \wedge m|c \Longrightarrow M|c \text{ per qualche } c \in \mathbb{N}$

Se esiste, è unico lo indicheremo come [m, n]. Inoltre, se n, m non sono entrambi nulli, vale:

$$[n,m] = \frac{nm}{(n,m)}$$

 $Se\ n,m=0,\ allora\ [n,m]=0.$

Unicità. Supponiamo esistano $M_1, M_2 \in \mathbb{N} : M_1, M_2$ sono entrambi mcm di n, m. Applicando la proprietà (1) di M_1 e la (2) di M_2 otteniamo:

- $(1) n|M_1 \wedge m|M_1$
- (2) con $c = M_1$, $n|M_1 \wedge m|M_1 \Longrightarrow M_2|M_1$

Invertendo le proprietà si ha che $M_1|M_2 \wedge M_2|M_1 \Longrightarrow M_2 = \pm M_1$. Essendo $M_1, M_2 \in \mathbb{N}, M_2 = M_1$.

Esistenza. Supponiamo n, m non entrambi nulli. Osservo che

$$(n,m)|n \Leftrightarrow n = n'(n,m)$$
 per qualche $n' \in \mathbb{Z}$
 $(n,m)|m \Leftrightarrow m = m'(n,m)$ per qualche $m' \in \mathbb{Z}$

Definisco $M := \frac{nm}{(n,m)}$. Sostituendo si ha che

$$\frac{nm}{(n,m)} = \frac{n'm'(n,m)(n,m)}{(n,m)} = n'm'(n,m)$$

$$= (n'(n,m))m' = nm'$$

$$= (m'(n,m))n' = mn'$$

Allora n|M, m|M. Sia ora $c \in \mathbb{Z}$. Verifichiamo la (2), ovvero che $n|c \wedge m|c \stackrel{?}{\Longrightarrow} M|c$. Vale:

$$(n,m)|n, n|c \Longrightarrow (n,m)|c$$

 $(n,m)|m, m|c \Longrightarrow (n,m)|c$

Allora c = c'(n, m) per qualche $c' \in \mathbb{Z}$.

Sappiamo infine che (n', m') = 1; per definizione abbiamo che $n'|c' \wedge m'|c' \Longrightarrow n'm'|c'$. Moltiplicando e sinistra a destra si ottiene

$$\underbrace{n'm'(n,m)}_{M} \mid \underbrace{c'(n,m)}_{c}$$

V Teorema fondamentale dell'aritmetica

Teorema 7 (Teorema fondamentale dell'aritmetica). Ogni $n \in \mathbb{N}, n \geq 2$ si può scrivere come prodotto finito di numeri primi:

$$n = p_1 p_2 p_3 \cdots p_k$$
 $p_1, p_2, \cdots, p_k \in \mathbb{N}$ primi eventualmente ripetuti

Tale scrittura è unica a meno di permutazioni. Se

$$n = q_1 q_2 q_3 \cdots q_h$$
 $q_1, q_2, \cdots, q_h \in \mathbb{N}$ primi eventualmente ripetuti

Allora k = h ed $\exists \varphi : \{1, 2, ..., k\} \mapsto \{1, 2, ..., h\}$, una bigezione (ovvero una permutazione su $\{1, 2, ..., k\}$) tale che:

$$p_i = q_{\varphi(i)} \quad \forall i \in \{1, 2, \dots, k\}$$

Esistenza. Procediamo per induzione di seconda forma.

n = 2

Abbiamo che 2 = 2.

$$n \ge 2, \forall k < n \Longrightarrow n$$

Se n è primo si va al mare abbiamo finito.

Altrimenti possiamo ipotizzare $n = d_1, d_2$: $1 < d_1 < n$, $1 < d_2 < n$, dove

$$d_1 = p_1 p_2 p_3 \cdots p_k$$
$$d_2 = p'_1 p'_2 p'_3 \cdots p'_k$$

per ipotesi di induzione. Allora n è fattorizzabile perché prodotto di numeri primi positivi.

Unicità. Supponiamo che esistano due distinte fattorizzazioni:

$$n = p_1 p_2 p_3 \cdots p_k$$
$$n = q_1 q_2 q_3 \cdots q_h$$

con $h \ge k$. Procediamo per induzione di prima forma.

k = 1

Vale $p_1 = n = q_1q_2\cdots q_h$ con $h \ge 1$. Dimostriamo che h = 1. Ipotizziamo per assurdo che $h \ge 2$; avremmo che $n = q_1q_2\cdots q_h$. Sappiamo che essendo p_1 primo, deve necessariamente essere $q_j = 1 \lor q_j = p_1$; tuttavia per ipotesi abbiamo che $q_j > 1 \Longrightarrow q_j = p_1$. Allora si ha che

$$p_1 = n = q_1 q_2 \cdots q_h \ge q_1 q_2 = p_1^2 > p_1 = n$$

che è un assurdo (n > n). Allora h = 1.

$k \ge 2, k \Longrightarrow k+1$

Con k > 1, assumiamo l'asserto vero per k $(n = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_h \text{ con } h = k, p_i = q_i \quad \forall i \in \mathbb{N}$ a meno di permutazioni) e dimostriamolo per k+1=h. Supponiamo quindi che $p_1 p_2 \cdots p_k p_{k+1} = q_1 q_2 \cdots q_h \text{ con } h > k+1$. Abbiamo che $p_{k+1} | n \Longrightarrow p_{k+1} | q_1 q_2 \cdots q_h$, allora $p_{k+1} | q_h$ per ipotesi; essendo p_{k+1}, q_h primi positivi, vale $p_{k+1} = q_h$. Ma allora

$$p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_{h-1}$$

dove entrambi i membri sono stati divisi per p_{k+1} . Ma allora per ipotesi d'induzione le due fattorizzazioni hanno lo stesso numero d'elementi, ovvero

$$k = h - 1, ep_1 = q_1, p_2 = q_2, \dots p_{k+1} = q_h$$

VI Teorema cinese del resto

Teorema 8 (Teorema cinese del resto). Siano $n, m \in \mathbb{N}$; $a, b \in \mathbb{Z}$. Consideriamo il seguente sistema di congruenze:

$$S = \begin{cases} x \in \mathbb{Z} \\ x \equiv a \pmod{n} & (1) \\ x \equiv b \pmod{m} & (2) \end{cases}$$

Definiamo $Sol(S) := \{x \in \mathbb{Z} \mid (1), (2) \text{ sono verificate} \}.$ $Sol(S) \neq \emptyset \Leftrightarrow S \text{ è compatibile} \Leftrightarrow (n, m) | (a - b).$ Se $S \text{ è compatibile}, \text{ data } c \in \mathbb{Z} \text{ soluzione particolare di } S, \text{ vale:}$

$$Sol(S) = [c]_{[n,m]} = \{c + k[n,m] \in \mathbb{Z} \mid k \in \mathbb{Z}\}$$

Dimostrazione (compatibilità).

 (\Longrightarrow) . Supponiamo $Sol(S) \neq \emptyset$. Sia $c \in Sol(S)$. Dimostriamo che valgono (1), (2), ovvero $c \equiv a \pmod{n} \land c \equiv b \pmod{m}$. Riscriviamo il sistema di congruenze come:

$$c = a + kn$$
 per qualche $k \in \mathbb{Z}$
 $c = b + hm$ per qualche $h \in \mathbb{Z}$

Sottraendo membro a membro otteniamo:

$$(a-b) + (kn - hm) = 0 \Leftrightarrow hm - kn = a - b$$

Sappiamo che $(n,m)|n \wedge (n,m)|m \Longrightarrow (n,m)|(an+bm)$ dove an+bm è una combinazione lineare di n,m con qualche $a,b \in \mathbb{Z}$. Allora (n,m)|(hm-km)=(a-b).

(\Leftarrow). Ora supponiamo (n,m)|(a-b) sia vera, ovvero a-b=k(n,m) per qualche $k\in\mathbb{Z}$. Applichiamo l'Algoritmo di Euclide a ritroso, ottenendo (n,m)=xn+ym per qualche $x,y\in\mathbb{Z}$. Segue che:

$$a - b = kxn + kym \quad \Leftrightarrow \quad \underbrace{a + (-kx)n}_{c} = \underbrace{b + (ky)m}_{c}$$

Dimostrazione (insieme delle soluzioni).

Supponiamo infine $Sol(S) \neq \emptyset$, ovvero che il sistema di congruenze è verificato. Sia $c \in Sol(S)$. Dimostriamo che $Sol(S) = [c]_{[n,m]}$ verificando che uno contiene l'altro e viceversa.

(\subset). Sia $c' \in [c]_{[n,m]}$, allora c' = c + k[n,m] per qualche $k \in \mathbb{Z}$. Riscrivo il sistema come

$$S = \begin{cases} [c]_n = [a]_n \\ [c]_m = [b]_m \end{cases}$$

Vale:

$$\begin{split} [c']_n &= [c + k[n, m]]_n \\ &= [c]_n + [k]_n[[n, m]]_n \\ &= [a]_n + \frac{[k]_n[0]_n}{} \leftarrow [n, m] \text{ multiplo di n} \end{split}$$

Con un procedimento analogo si ottiene $[c']_m = [b]_m$.

 (\supset) . Sia $c \in Sol(S)$. Vale:

$$c = a + hn = b + km$$

$$c' = a + h'n = b + k'm$$

per qualche $h,h',k,k'\in\mathbb{Z}.$ Sottraiamo membro a membro:

$$c' - c = (h' - h)n = (k' - k)m$$

$$\implies n|(c' - c), \ m|(c' - c) \Longrightarrow [n, m]|(c' - c)$$

$$\Leftrightarrow c' \equiv c \ (mod \ [n, m])$$

$$\Leftrightarrow c' \in [c]_{[n, m]}$$

9

VII Teorema di Fermat-Eulero e crittografia RSA

Definizione (Formula di Eulero). Sia $n \in \mathbb{N}, n \geq 2$: $n = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$ con $p_1 \cdots p_k$ primi a due a due distinti. Vale:

$$\phi(n) = \phi(p_1^{m_1})\phi(p_2^{m_2})\cdots\phi(p_k^{m_k})$$

= $(p_1^{m_1} - p_1^{m_1-1})(p_2^{m_2} - p_2^{m_2-1})\cdots(p_k^{m_k} - p_k^{m_k-1})$

Lemma. Siano $\alpha, \beta \in (\mathbb{Z}/n\mathbb{Z})^*$. Allora:

1.
$$\forall \alpha, \beta \in (\mathbb{Z}/n\mathbb{Z})^*, \quad (\alpha\beta)^{-1} = \beta^{-1}\alpha^{-1}$$

2.
$$\forall \alpha^{-1} \in (\mathbb{Z}/n\mathbb{Z})^*, \qquad (\alpha^{-1})^{-1} = \alpha$$

Dimostrazione. Vale:

1.
$$(\alpha\beta)(\beta^{-1}\alpha^{-1}) = \alpha(\beta\beta^{-1})\alpha^{-1} = \alpha[1]_n\alpha^{-1} = \alpha\alpha^{-1} = [1]_n$$

2.
$$(\alpha)(\alpha^{-1}) = [1]_n$$

Teorema 9 (Teorema di Fermat-Eulero). Sia n > 0. $\forall [a]_n \in (\mathbb{Z}/n\mathbb{Z})^*$, vale:

$$[a]_n^{\phi(n)} = [1]_n$$

Equivalentemente:

$$a^{\phi(n)} \equiv 1 \pmod{n}, \qquad \forall a \in \mathbb{Z}, \ con \ (a, n) = 1$$

Dimostrazione. Definiamo:

$$L_{\alpha}: \left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^* \longrightarrow (\mathbb{Z}/n\mathbb{Z})^*$$

$$\beta \longmapsto \alpha\beta$$

 L_{α} è ben definita per il lemma precedente. Proviamo che L_{α} è una bigezione. Mostriamo che è iniettiva (la surgettività è dimostrata perché gli insiemi di partenza e arrivo coincidono, conseguenza del Lemma dei Cassetti). Supponiamo $\exists \beta_1, \beta_2 \in (\mathbb{Z}/n\mathbb{Z})^*$:

$$\alpha\beta_1 = L_{\alpha}(\beta_1) = L_{\alpha}(\beta_2) = \alpha\beta_2$$

$$\Longrightarrow \beta_1 = (\alpha^{-1}\alpha)\beta_1 = (\alpha^{-1})(\alpha\beta_1) = (\alpha^{-1})(\alpha\beta_2) = \beta_2$$

Sia ora $\{\beta_1, \beta_2, \dots, \beta_k\} = (\mathbb{Z}/n\mathbb{Z})^*$ con $k = \phi(n)$. Applicando L_{α} si ottiene

$$\{\alpha\beta_1, \alpha\beta_2, \dots, \alpha\beta_k\} = \alpha^k(\beta_1, \beta_2, \dots, \beta_k)$$

Allora L_{α} non è altro che una permutazione, per cui possiamo scrivere:

$$(\beta_1, \beta_2, \dots, \beta_k) = \alpha^k(\beta_1, \beta_2, \dots, \beta_k)$$

Moltiplicando a destra e a sinistra per $\{\beta_k^{-1}, \beta_{k-1}^{-1}, \dots, \beta_1^{-1}\}$ si ottiene:

$$\alpha^k = 1$$

Definizione. Siano n > 0, m > 0. Definiamo:

$$P_m: \quad (\mathbb{Z}/n\mathbb{Z})^* \longrightarrow (\mathbb{Z}/n\mathbb{Z})^*$$

$$\alpha \longmapsto \alpha^m$$

ovvero $P_m(\alpha) := \alpha^m \quad \forall \alpha \in (\mathbb{Z}/n\mathbb{Z})^*$. P_m è ben definita grazie al Lemma precedente.

Teorema 10 (Teorema fondamentale della crittografia RSA). Sia c > 0: $(c, \phi(n)) <= 1$ con n fissato; d > 0: $d \in [c]_{\phi(n)}^{-1}$.

Allora la funzione P_c (analoga a P_m nella Definizione precedente) è invertibile e la sua inversa è $P_c^{-1} = P_d$.

Dimostrazione. Sia $\alpha \in (\mathbb{Z}/n\mathbb{Z})^*$. Osserviamo che

$$[d]_{\phi(n)}[c]_{\phi(n)} = [dc]_{\phi(n)} = [1]_{\phi(n)}$$

$$\Leftrightarrow dc \equiv 1 \pmod{\phi(n)}$$

$$\Leftrightarrow dc = 1 + k\phi(n) \quad \text{per qualche } k \in \mathbb{Z}$$

Applicando contemporaneamente P_c e P_d otteniamo che

$$P_d(P_c(\alpha)) = (\alpha^c)^d = \alpha^{cd} = \alpha^{1+k\phi(n)} = \alpha(\alpha^{\phi(n)})^k$$

Per il Teorema di Fermat-Eulero ciò è equivalente a $\alpha \cdot 1^k = \alpha$. Allo stesso modo dimostro che $P_c(P_d(\beta)) = \beta$.

VIII Teoremi sulla congiungibilità nei grafi

Teorema 11 (Teorema di equivalenza tra la congiungibilità con cammini e congiungibilità con passeggiate). Siano $G = (V, \epsilon)$; $v, w \in V(G)$. Allora v, w' sono congiungibili tramite cammini se e solo se sono congiungibili tramite passeggiate.

Dimostrazione.

(⇒). Banale. Il cammino è una passeggiata per definizione.

 (\Leftarrow) . Supponiamo esista una passeggiata P che congiunge v, w. Sia \mathcal{P} l'insieme di tutte le passeggiate che congiungono v, w. Osserviamo che $\mathcal{P} \neq \emptyset$ $(P \in \mathcal{P})$.

Sia
$$A := \{ \underbrace{\mathcal{L}(\bar{P})}_{\mathbb{R}^{|\bar{P}|}} \in \mathbb{N} | \bar{P} \in \mathcal{P})$$
. Abbiamo che $A \neq \emptyset$, infatti $\mathcal{L}(P) \in A$.

Grazie al teorema del buon ordinamento (\mathbb{N}, \leq) , vale:

$$\exists \min A = m \Longrightarrow \exists P_0 \in \mathcal{P} : \mathcal{L}(P_0) = m \leq \mathcal{L}(\bar{P}), \ \forall \bar{P} \in \mathcal{P}$$

ovvero esiste min A, quindi esiste una passeggiata \mathcal{P} con il minimo numero di lati. Proviamo ora che P_0 è un cammino in G. Vale:

$$P_0 = (v_0, v_1, \dots, v_n)$$
 $v = v_0, \ w = v_n$

Poniamo per assurdo che P_0 non sia un cammino, ovvero $\exists i, j \in \{0, 1, ..., n\} : i < j, v_i = v_j$. Definiamo $P_1 := (v_0, v_1, ..., v_{i-1}, v_i, v_j, v_{j+1}, ..., v_n) \in \mathcal{P}$ (ovvero P_0 alla quale sono stati tolti tutti i vertici tra $i \in j$). Vale:

$$\mathcal{L}(P_1) = \mathcal{L}(P_0) - (j-i) = m - (j-i) < m$$

Ma ciò è assurdo in quanto P_0 è già per definizione un cammino con il minimo numero di lati.

Teorema 12 (La relazione di congiungibilità è una relazione di equivalenza). Dato $G = (V, \epsilon)$ la relazione di congiungibilità in G su V è una relazione di equivalenza su V:

1.
$$(riflessivita)$$
 $u \sim u$ $\forall u \in V$

2.
$$(simmetria)$$
 $(u \sim v) \Longrightarrow (v \sim u)$ $\forall v, w \in V$

3.
$$(transitivit\grave{a})$$
 $(u \sim v) \land (v \sim w) \Longrightarrow (u \sim w)$ $\forall v, u, w \in V$

Indicheremo la relazione d'equivalenza con \sim .

Dimostrazione. Siano $u, v, w \in V$, ~ la relazione d'equivalenza. Vale:

- 1. è vera in quanto (u) è un cammino che congiunge u a u.
- 2. è vera in quanto se $u \sim v$ esiste una passeggiata $P = (v_0, \ldots, v_n)$ tale che $u = v_0$ e $v = v_n$. Ma allora $P' = (v_n, v_{n-1}, \ldots, v_0)$ è una passeggiata, dove vertici consecutivi in P lo sono anche in P' (anche se in ordine inverso).
- 3. è vera in quanto se $u \sim v$ e $v \sim w$ allora esistono due passeggiate $P_1 = (v_0, \ldots, v_n), P_2 = (w_0, \ldots, w_m)$ dove $u = v_0, v = v_n = w_0, w = w_m$. Possiamo definire una terza passeggiata $P_3 = (v_0, \ldots, v_n, w_1, \ldots, w_m)$ costruita come unione delle precedenti; P_3 è una passeggiata in quanto vertici consecutivi in P_3 lo sono o in P_1 o in P_2 , e i primi e ultimi vertici della passeggiata sono rispettivamente $u \in w$.

IX Relazione fondamentale nei grafi finiti e lemma delle strette di mano

Teorema 13 (Relazione fondamentale tra $|\epsilon(G)|$ e deg(Gi) in un grafo finito). Sia $G = (V, \epsilon)$ un grafo finito. Vale:

$$2 \cdot |\epsilon| = \sum_{v \in V} deg_G(v)$$

Dimostrazione. Siano v_1, v_2, \ldots, v_n i vertici di G, e_1, e_2, \ldots, e_k i lati di G (dove $k := |\epsilon|$). Sia

$$M_{ij} := \begin{cases} 0 & v_i \notin \epsilon_j & \forall i \in \{1, 2, \dots, n\} \\ 1 & v_i \in \epsilon_j & \forall j \in \{1, 2, \dots, k\} \end{cases}$$

dove i rappresenta l'indice sul numero dei vertici e j l'indice sul numero dei lati. Vale, grazie alla proprietà commutativa delle somme:

(1)
$$\sum_{i=1}^{n} \sum_{j=1}^{k} m_{ij} = \sum_{j=1}^{k} \sum_{i=1}^{n} m_{ij}$$
(2)

dove (1) rappresenta una somma di sommatorie con un vertice i fissato; in ciascuna somma, si somma 1 se un lato contiene il vertice fissato, 0 se ciò non accade. Ma ciò non è altro che il grado del dato vertice; (2) invece somma k volte una sommatoria con un lato j fissato, dove viene sommato 1 tante volte quante un vertice appartiene a un dato lato, ovvero 2. Infine vale:

$$\sum_{v \in V} deg(v) = 2k$$
$$= 2|\epsilon|$$

Teorema 14 (Lemma delle strette di mano). In un grafo $G = (V, \epsilon)$ finito il numero di vertici di grado dispari è pari.

Dimostrazione. Sia $G = (V, \epsilon)$. Vale, grazie alla relazione fondamentale tra lati e gradi di un grafo:

$$\begin{aligned} 2|\epsilon| &= \sum_{v \in V} deg(v) \\ 2|\epsilon| &= \sum_{v \in V} deg(v) + \sum_{\text{deg(v) pari}} deg(v) \\ 2|\epsilon| - \sum_{v \in V} deg(v) &= \sum_{v \in V} deg(v) \\ &\xrightarrow{\text{deg(v) pari}} deg(v) \end{aligned}$$

Allora la somma dei vertici con grado dispari deve essere pari perché differenza di un numero pari e una somma di numeri pari.

X Teorema di caratterizzazione degli alberi finiti

Teorema 15 (Teorema di caratterizzazione degli alberi finiti mediante la formula di Eulero). Sia $T = (V, \epsilon)$ un grafo finito. Le seguenti affermazioni sono equivalenti:

- 1. Tè un albero
- 2. $\forall v, v' \in V, \exists ! \ cammino \ da \ v \ in \ v'$
- 3. $T \ \dot{e} \ connesso \ e \ \forall e \in \mathcal{E}, \ T e \coloneqq (V, \ \mathcal{E} \setminus \{e\}) \ \dot{e} \ sconnesso$

4. T non ha cicli $e \ \forall e \in \binom{V}{2} \setminus \epsilon$, $T + e := (V, \epsilon \cup \{e\})$ ha almeno un ciclo

5. $T \ \dot{e} \ connesso \ e \ |V| - 1 = |\epsilon|$.

Dimostrazione.

 $(1 \Longrightarrow 5)$. Procediamo per induzione su |V(T)|.

$$|V(T)| = 1$$

Vale $|\epsilon(T)| = 0 = |V(T)| - 1$.

$$|V(T)| \geq 2, |V(T)| - 1 \Longrightarrow |V(T)|$$

Sia T un qualsiasi albero con $|V(T)| \ge 2$. Dimostriamo che vale la proprietà (5). Essendo T un albero, \exists almeno una foglia $v \in T$. Consideriamo ora T - v: è ancora un albero, dove

$$|V(T - v)| = |V(T)| - 1$$
$$|\epsilon(T - v)| = |\epsilon(T)| - 1$$

Vale, per ipotesi induttiva:

$$|V(T-v)| - 1 = |\epsilon(T-v)|,$$

 $|V(T)| - 1 - 1 = |\epsilon(T)| - 1$

 $(1 \Leftarrow 5)$. Procediamo per induzione su |V(T)|.

$$|V(T)| = 1$$

Un grafo con 1 vertice e 0 lati è un albero per definizione.

$$|V(T)| \geq 2, |V(T)| - 1 \Longrightarrow |V(T)|$$

Sia T un grafo connesso che soddisfa la formula di Eulero. Supponiamo per assurdo che T non abbia foglie, ovvero che $deg(v) \ge 2 \ \forall v \in V(T)$. Allora

$$|V(T)| - 1 = \frac{1}{2} \sum_{v \in V} deg(V)$$

$$2 |V(T)| - 2 = \sum_{v \in V} deg(V) \ge \underbrace{2 |V(T)|}_{deg(V) \ge 2 \ \forall v}$$

che è un assurdo. Allora T ha almeno una foglia. Se consideriamo $v \in V(T)$ foglia, T-v è ancora connesso e vale Eulero. Allora per ipotesi induttiva T-v è un albero $\Longrightarrow T$ è un albero.

XI Teorema di esistenza degli alberi di copertura

Teorema 16 (Teorema di esistenza degli alberi di copertura per un grafo finito). Ogni grafo connesso ammette almeno un albero di copertura.

Dimostrazione. Determiniamo

$$\mathcal{T} := \{T \mid T \text{ è un sottografo di G}, T \text{ è un albero}\}$$

Sia $\overline{T} \in \mathcal{T} : |V(\overline{T})| \ge |V(T)| \quad \forall T \in \overline{T}$. Osservo che $\overline{T} \ne \emptyset$ in quanto se $v \in V(G)$ allora $(v, \emptyset) \in \mathcal{T}$. Proviamo che $V(\overline{T}) = V(G)$ ovvero che \overline{T} è un albero di copertura.

Usando la connessione di G, è possibile determinare un vertice $w \in V(G) \setminus V(\overline{T})$ e un vertice $u \in V(\overline{T})$ tali che $\{u, w\} \in \epsilon(G)$. Ma allora possiamo definire

$$\overline{\overline{T}} \in \mathcal{T}, \ \overline{\overline{T}} \coloneqq (V(\overline{T}) \cup \{w\}, \epsilon(\overline{T}) \cup \{u, w\})$$

che è chiaramente un albero, ma che va in contraddizione con la massimalità dei vertici di \overline{T} .