线性系统的根轨迹法 线性系统动态性能分析

Outline

- ② 极点配置 (输出反馈)
- 3 串联校正

Topic

- ② 极点配置 (输出反馈)
- 3 串联校正

- 闭环零点: 加快响应速度 $t_D \downarrow$, $σ\% \uparrow$, $ξ \downarrow$, t_s 不定
- 闭环非主导极点: 减缓响应速度 $t_{D} \uparrow, \sigma\% \downarrow, \xi \uparrow, t_{s}$ 不定

- 闭环零点: 加快响应速度 $t_p \downarrow$, $σ\% \uparrow$, $ξ \downarrow$, t_s 不定
- 闭环非主导极点: 减缓响应速度 t_0 ↑, σ% ↓, ξ↑, t_s 不定

- 闭环零点: 加快响应速度 $t_p \downarrow$, $σ\% \uparrow$, $ξ \downarrow$, t_s 不定
- 闭环非主导极点: 减缓响应速度 $t_p \uparrow, σ\% \downarrow, ξ \uparrow, t_s$ 不定

- 偶极子:一个闭环极点与闭环零点距离很近,(实数偶极子,复数偶极子),
- 偶极子不影响主导极点的地位
- 判定: 零极点间距离小于其模的 10%

Topic

- ② 极点配置 (输出反馈)
- 3 串联校正

极点配置示例 1

- 绘制 K_g 的根轨迹
- ●确定使系统稳定的开环增益 K 范围
- 确定闭环传递函数具有欠阻尼的开环增益 K

解:

- 开环零点: $1 \pm 2j$, 开环极点: -2,0.5
- 分离点:

$$M'(s)N(s) - N'(s)M(s) = 0$$

$$(2s-2)(s^2+1.5s-1) - (s^2-2s+5)(2s+1.5) = 0$$

$$s_1 = 3.8(含素)$$

极点配置示例 1

- 绘制 K_g 的根轨迹
- ●确定使系统稳定的开环增益 K 范围
- 确定闭环传递函数具有欠阻尼的开环增益 K

解:

- 开环零点: $1 \pm 2j$, 开环极点: -2,0.5
- 分离点:

$$M'(s)N(s) - N'(s)M(s) = 0$$

$$(2s-2)(s^2+1.5s-1) - (s^2-2s+5)(2s+1.5) = 0$$

$$s_1 = 3.8(含去)$$

$$s_2 = -0.4$$

极点配置示例 1

- · 绘制 Kg 的根轨迹
- 确定使系统稳定的开环增益 K 范围
- 确定闭环传递函数具有欠阻尼的开环增益 K

解:

- 开环零点: $1 \pm 2j$, 开环极点: -2,0.5
- 分离点:

$$M'(s)N(s) - N'(s)M(s) = 0$$

 $(2s-2)(s^2+1.5s-1) - (s^2-2s+5)(2s+1.5) = 0$
 $s_1 = 3.8$ (含去)
 $s_2 = -0.4$

• 与虚轴交点

•
$$D(s) = (1 + K_g)s^2 + (1.5 - 2K_g)s + (5K_g - 1) = 0$$

•
$$\Rightarrow 1.5 - 2K_g = 0 \ \text{# } K_g = 0.75 \ \text{,}$$

• 由
$$1.75s^2 + 2.75 = 0$$
 得 $s_{1,2} = \pm j1.25$

入射角 (终止角)

$$\phi_{z_1} = 180^{\circ} - (90^{\circ} - \arctan \frac{2}{3} - \arctan 4) = 200^{\circ}$$
 得:

与虚轴交点

•
$$D(s) = (1 + K_g)s^2 + (1.5 - 2K_g)s + (5K_g - 1) = 0$$
,

• 由
$$1.75s^2 + 2.75 = 0$$
 得 $s_{1,2} = \pm j1.25$

• 入射角 (终止角)

与虚轴交点

•
$$D(s) = (1 + K_g)s^2 + (1.5 - 2K_g)s + (5K_g - 1) = 0$$
,

• 由
$$1.75s^2 + 2.75 = 0$$
 得 $s_{1,2} = \pm j1.25$

入射角 (终止角)

$$\phi_{z_1} = 180^{\circ} - (90^{\circ} - \arctan \frac{2}{3} - \arctan 4) = 200^{\circ}$$
 得:
 $\phi_{z_2} = -200^{\circ}$

极点配置示例 1 续

确定 K

- 由 D(0) = 0 解得 $K_g = 0.2$ 所以系统稳定时 $0.2 < K_g < 0.75$, $K = \frac{5K_g}{2 \times 0.5} = 5K_g$, 所以 1 < K < 3.75
 - 由图可知 K_{g1} , K_{g2} 分别为分离点以及与实轴交点对应的 K_g , $K_{g1} < K_g < K_{g2}$ 时,系统为欠阻尼. 由分离点处 D(-0.4) = 0 得: $K_{g1} = 0.24$,所以 $0.24 < K_g < 0.75$,

极点配置示例 1 续

确定 K

- 由 D(0) = 0 解得 $K_g = 0.2$ 所以系统稳定时 $0.2 < K_g < 0.75$, $K = \frac{5K_g}{2 \times 0.5} = 5K_g$, 所以 1 < K < 3.75
- 由图可知 K_{g1} , K_{g2} 分别为分离点以及与实轴交点对应的 K_g , $K_{g1} < K_g < K_{g2}$ 时,系统为欠阻尼. 由分离点处 D(-0.4) = 0 得: $K_{g1} = 0.24$, 所以 $0.24 < K_g < 0.75$ 1.2 < K < 3.75

极点配置示例 1 续

确定 K

- 由 D(0)=0 解得 $K_g=0.2$ 所以系统稳定时 $0.2 < K_g < 0.75$, $K=\frac{5K_g}{2\times0.5}=5K_g$, 所以 1 < K < 3.75
- 由图可知 K_{g1} , K_{g2} 分别为分离点以及与实轴交点对应的 K_g , $K_{g1} < K_g < K_{g2}$ 时,系统为欠阻尼. 由分离点处 D(-0.4) = 0 得: $K_{g1} = 0.24$,所以 $0.24 < K_g < 0.75$, 1.2 < K < 3.75

极点配置示例 2:

$$\Phi(s) = \frac{1}{(s+0.5)(s+1)(s+2)}, H(s) = K_1 + K_2 s + K_3 s^2$$

设计指标: $\sigma\% = 4.3\%$, $t_s = 4s$ 设计输出反馈控制器.

结构图
$$r(t) \longrightarrow \Phi(s) \longrightarrow c(t)$$

$$H(s) \longleftarrow$$

极点配置示例 2:

$$\Phi(s) = \frac{1}{(s+0.5)(s+1)(s+2)}, H(s) = K_1 + K_2 s + K_3 s^2$$

设计指标: $\sigma\% = 4.3\%$, $t_s = 4s$ 设计输出反馈控制器.

解:

$$\sigma\% = 0.043
\xi = 0.707
t_s = \frac{3.5}{\xi \omega_n}
\omega_n = 1.2376
p_{1,2} = -\xi \omega_n + j\omega_n \sqrt{1 - \xi^2}
= -0.875 \pm j0.875$$

期望特征多项式

取 $p_{1,2} = -1 \pm j$ 作为主导极点 $p_3 = -10$, 得期望特征多项式:

$$D_1(s) = (s+1+j)(s+1-j)(s+10)$$

= $s^3 + 12s^2 + 12 + 10$

解:

$$\sigma\% = 0.043
\xi = 0.707
t_s = \frac{3.5}{\xi \omega_n}
\omega_n = 1.2376
p_{1,2} = -\xi \omega_n + j\omega_n \sqrt{1 - \xi^2}
= -0.875 \pm j0.875$$

期望特征多项式

取 $p_{1,2} = -1 \pm j$ 作为主导极点 $p_3 = -10$, 得期望特征多项式:

$$D_1(s) = (s+1+j)(s+1-j)(s+10)$$

= $s^3 + 12s^2 + 12 + 10$

解:

$$\sigma\% = 0.043
\xi = 0.707
t_s = \frac{3.5}{\xi \omega_n}
\omega_n = 1.2376
p_{1,2} = -\xi \omega_n + j\omega_n \sqrt{1 - \xi^2}
= -0.875 \pm j0.875$$

期望特征多项式

取
$$p_{1,2} = -1 \pm j$$
 作为主导极点, $p_3 = -10$, 得期望特征多项式:

$$D_1(s) = (s+1+j)(s+1-j)(s+10)$$

= $s^3 + 12s^2 + 12 + 10$

$$\Phi(s) = \frac{\Phi(s)}{1 + H(s)\Phi(s)}
= \frac{1}{(s+0.5)(s+1)(s+2) + K_1 + K_2s + K_3s^2}
D(s) = s^3 + (3.5 + K_3)s^2 + (3.5 + K_2)s + K_1 + 1$$

$$K_3 = 8.5$$

 $3.5 + K_2 = 12$
 $K_2 = 8.5$
 $K_1 + 1 = 20$
 $K_1 = 19$

 $3.5 + K_3 = 12$

Topic

- ② 极点配置 (输出反馈)
- ③ 串联校正

超前校正

$$G(s) = \frac{1}{(s+10)(s+3)^2}$$
$$G_c(s) = \frac{s+3}{s+5}$$

$$G(s) = \frac{1}{(s+10)(s+3)^2}$$
$$G_c(s) = \frac{10s+1}{100s+1}$$

