Predict Census Income

Kaggle Project

Content

- Introduction
- Data Preparation
- Visualization of Box Plot and Distribution Plot
- Feature Engineering
- Model Training and Evaluation
- Confusion Matrix
- Classification Report
- ROC Curve
- Conclusion

Introduction

Objective:

- 1. To predict a model to determine income level of people.
- 2. Income levels were determined at below 50,000 and above 50,000.

Data/Methodology:

Data consists of 199523 values taken from a census survey. Data consists of 40+1 variables out of which 7 are continuous variables and 33 are nominal variables. The target variable is income which is binned at below 50,000 and above 50,000.

Methodology used was Machine Learning Pipeline: Data cleaning, data preprocessing, feature

engineering and model training.

	age	classworker	industrycode	occupationcode	education	wagehour	enrollineduclstweek	maritalstat	majorindcode	majorocccode	race	origin	sex	memberoflabourunion	reasonofunemploy	fullorparttimeemploy
0	58	Self- employed- not incorporated	4	34	Some college but no degree	0	Not in universe	Divorced	Construction	Precision production craft & repair	White	All other	Male	Not in universe	Not in universe	Children or Armed Forces
1	18	Not in universe	0	0	10th grade	0	High school	Never married	Not in universe or children	Not in universe	Asian or Pacific Islander	All	Female	Not in universe	Not in universe	Not in labor force
2	9	Not in universe	0	0	Children	0	Not in universe	Never married	Not in universe or children	Not in universe	White	All	Female	Not in universe	Not in universe	Children or Armed Forces
3	10	Not in universe	0	0	Children	0	Not in universe	Never married	Not in universe or children	Not in universe	White	All	Female	Not in universe	Not in universe	Children or Armed Forces
4	48	Private	40	10	Some college but no degree	1200	Not in universe	Married- civilian spouse present	Entertainment	Professional specialty	Amer Indian Aleut or Eskimo	All	Female	No	Not in universe	Full-time schedules

Fig 1: A snapshot of the data

Data Preparation

 Outliers were identified using IQR because there were some extreme values in the data.
Around 10% of outliers were removed from data.

Dealing with Outliers

 Data was transformed to normal distribution using Box - Cox transformation method. The Box - Cox transformation method was used because there were some 0 values in the data set and Box - Cox transformation method can deal with the 0 values.

Data Transformation

Label Encoding

 Label Encoding technique was used to deal with categorical variables and assign them numerical values.

- · Column names were added to the dataset.
- Null values were present in the form of '?'
- Some values in dataset were also in the form of 'Not in universe'. These values were also treated as Null.
- The null values was replaced by the mode.
- Duplicate values were also removed from data set.

Data Cleaning

Visualization of Box Plot and Distribution Plot

Fig 3: Box Plot of age variable with respect to target variable (income)

Feature Engineering

- Multivariate Analysis was conducted to analyse the relationship between different variables.
- Correlation heatmap was prepared to have better understanding the relevant features.
- Chi Squared Method was used to understand correlation between categorical variables and categorical variables.
- Multicollinearity between the variables was identified using VIF. Variables that were having high VIF were removed from model.

https://github.com/VibhutiChitkara/Census_Income/blob/main/CensusIncome.ipynb

Model Training and Evaluation

Confusion Matrix

Predicted label

Classification Report

Classification Report of Random Forest

	precision	recall	f1-score	support
0	0.49	0.23	0.31	1906
1	0.96	0.99	0.97	33689
accuracy			0.95	35595
macro avg	0.72	0.61	0.64	35595
weighted avg	0.93	0.95	0.94	35595

Classification Report of KNN Classifier

	precision	recall	f1-score	support
0	0.47	0.16	0.24	1906
1	0.95	0.99	0.97	33689
accuracy			0.95	35595
macro avg	0.71	0.57	0.60	35595
weighted avg	0.93	0.95	0.93	35595

Classification Report of Logistic Regression

	precision	recall	f1-score	support
0	0.23	0.00	0.00	1906
1	0.95	1.00	0.97	33689
accuracy			0.95	35595
macro avg	0.59	0.50	0.49	35595
weighted avg	0.91	0.95	0.92	35595

Classification Report of XGBoost Classifier

	precision	recall	f1-score	support
0	0.67	0.09	0.16	1906
1	0.95	1.00	0.97	33689
accuracy			0.95	35595
macro avg	0.81	0.54	0.57	35595
weighted avg	0.94	0.95	0.93	35595

ROC Curve

Classification Report After Balanced Data

Classification Report of Random Forest

Classification	Report of	Logistic	Regression
----------------	-----------	----------	------------

	precision	recall	f1-score	support	
0	0.92	0.98	0.95	134794	
1	0.98	0.92	0.95	134794	
accuracy macro avg	0.95	0.95	0.95 0.95	269588 269588	
weighted avg	0.95	0.95	0.95	269588	

	precision	recall	f1-score	support
Ø	0.71	0.79	0.75	134794
1	0.77	0.68	0.72	134794
accuracy			0.74	269588
macro avg	0.74	0.74	0.74	269588
weighted avg	0.74	0.74	0.74	269588

Classification Report of KNN Classifier

Classification Report of XGBoost Classifier

	precision	recall	f1-score	support
0	0.88	0.96	0.92	134794
1	0.96	0.87	0.91	134794
accuracy			0.92	269588
macro avg	0.92	0.92	0.92	269588
weighted avg	0.92	0.92	0.92	269588

	precision	recall	f1-score	support
0	0.82	0.90	0.86	134794
1	0.89	0.80	0.84	134794
accuracy			0.85	269588
macro avg	0.86	0.85	0.85	269588
weighted avg	0.86	0.85	0.85	269588

ROC Curve after Balanced Data Set

Conclusion

- Random Forest and KNN Classifier gave the best f1-score after balancing classes.
- We observed that accuracy is not a good measure of evaluating model performance.
- Jaccard Score of random forest models is around 0.84 which is close to 1 means that the two data sets are similar.
- After balanced data set, true positive and true negative values of the model were improved and false positive and false negatives values of the model were reduced.
- From confusion matrix, True Positive values of Random Forest and KNN Classifier gave the best results. .
- 94.6% of people have less than 50,000 income. The data set was balanced using SMOTE technique.
- > 18 features were selected for model training out of 40 features as they were having high correlation values with the target variables.

Thank You