

PES University, Bengaluru

UE21MA141B

(Established under Karnataka Act No. 16 of 2013)

JULY 2022: END SEMESTER ASSESSMENT (ESA) B TECH II SEMESTER (Chemistry Cycle)

UE21MA141B - ENGINEERING MATHEMATICS 2

Ti	ime:	3 Hrs Answer All Questions Max Marks: 10	0					
1	a)	Find the moments of inertia of the planar region bounded by the curves y x^2 and $y = x + 2$, given that the density $\rho(x, y) = k$, a constant.						
	b)							
	c)	Evaluate $\int_0^3 \int_0^{\sqrt{4-y}} (x+y) dx dy$ by changing the order of integration.						
2	a)	Show that the force field given by $\overrightarrow{F} = (y^2 \cos x + z^3)\hat{\imath} + (2y \sin x - 4)\hat{\jmath} + (3xz^2 + 2)\hat{k}$ is conservative and hence find its scalar potential ϕ .	7					
	b)	Calculate the flux of $\vec{F} = x \hat{\imath} + y \hat{\jmath} + (1 - 2z)\hat{k}$ across the surface S using the outward normal, given that S is the portion of the surface that lies between $z - x^2 - y^2 = 0$ and below the plane $z = 1$ and above the x-y plane.	7					
	c)	Evaluate $\int \int_{S} \vec{F} \cdot \hat{n} ds$ over the sphere $x^2 + y^2 + z^2 = k^2$, using the divergence theorem where $\vec{F} = k \left[a x \hat{\imath} + b y \hat{\jmath} + c z \hat{k} \right]$. Is \vec{F} irrotational?	6					
3	a)	i) If $L[t f(t)] = \frac{1}{s(s+1)}$, then find $L[f(3t)]$.	7					
		ii) Find $L\left[\int_0^t u \sin 4u \ du\right]$						
I	b)	Find the Laplace transform of $\frac{1-\cos t}{t^2}$	7					
+	c)	Determine the Laplace transform of the triangular wave function	6					
Ì		$f(t) = \begin{cases} t, & 0 < t < c \\ 2c - t, & c < t < 2c \end{cases}, f(t + 2c) = f(t)$. Express the solution in terms of a hyperbolic function.						
		terms of a hyperbone function.						
4	a)	Solve the differential equation $\frac{d^2i}{dt^2} + 4i(t) = \begin{cases} 4t, & 0 < t < 1 \\ 4, & t > 1 \end{cases}$, $i(0) = 1$, $i'(0) = 0$ using the Laplace transform technique.	7					
	b)	Obtain the inverse Laplace transform of $\frac{1}{s^5(s+3)}$ using convolution theorem.	7					
-	c)	Obtain the inverse Laplace transform of $\frac{s+2}{(s^2+4s+5)^2}$.	6					
		(\$2+4\$+5)2						

						SRI	N			1		
5	a)	Obtain the half range Fourier cosine series of $f(x) = x$ in $0 < x < 2$. Hence deduce the sum of the series $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$										
Ja-1,	b)	Find the complex form of the Fourier series of $f(x) = \cos ax$ in $-\pi < x < \pi$. Here the parameter 'a' is not an integer.										
irki Iradi	Find the Fourier series expansion and the amplitude of the first harmonic for the function $f(x)$ described by the following table:									6		
		x	0	1	2	3 -	4	5	6			
		f(x)	9	18	24	28	26	20	9			