INTRODUCTION TO AUTOMATED DRIVING

Stefan Mathe, Catalin Golban

Introduction to automated driving Intro and logistics

- ▶ Who we are?
 - ► Short intro
- ▶ Expectations
 - ► From students
 - ▶ From the Bosch team
 - Attendance
 - Minimum 8 attendances mandatory, recommended maximum of course ©
 - Seminars
 - Laptops discussion
 - 4 attendances mandatory
- ► Contact persons at UBB?
- **▶** Exam hints
- ► Bosch contacts: Catalin.Golban@ro.bosch.com, Stefan.Mathe@ro.bosch.com

CONTENTS

CONTENTS

- 1. Introduction
- 2. Vision of a highly autonomous vehicle
- 3. Levels of automation
- 4. Architecture for autonomous vehicles
- 5. Structure of the course
- 6. About Bosch

INTRODUCTION

Future Mobility

Electrified, automated and connected

electrified

fun-to-drive battery charging infrastructure

legislation driver assistance emergency braking autopilot

automated

highway-pilot
redundancy
valet parking
sensors
electric steering

electronic horizon

smartphone integration

connected

eCall cloud

services fleet management car2car augmented reality

Introduction to automated driving Technology saves lives

Road traffic victims in the European Union, 1996-2016

Road traffic victims per million inhabitants in the EU Member States, 2016

Introduction to automated driving Technology saves lives

In the United States, most fatalities are generated by road vehicles.

https://en.wikipedia.org/wiki/Transportation_safety_in_the_United_States

Introduction to automated driving Milestones in road safety

World's first antilock braking system

World's first traction control system

Predictive emergency braking system

Lane change assist with mid-range radar

Fully automated driving

1978

1980

1986

1995

2010

2013

2015

202X

World's first airbag control unit

World's first ESP®

Regenerative braking with ESP® hev

Active pedestrian protection with stereo video camera

Road safety

Influence of driver assistance

Number of road fatalities reduced by 60% within last 14 years

- ▶ 90% of all car accidents involving injury are caused by human error
- ► Introduction of further driver assistance systems will amplify positive trend

Source: Bosch, DAT, BASt. Based on total vehide fleet.

² ACC and lane keeping support only

¹ Figures estimated

VISION OF A HIGHLY AUTONOMOUS VEHICLE

Introduction to automated driving Technology progress & society

► "I believe in the horse. The automobile is a temporary appearance" - Wilhelm II, Emperor of Germany, 1916

Example of a highly autonomous vehicle

https://www.youtube.com/watch?v=2i-t0C7RQWM

LEVELS OF AUTOMATION

Levels of automation

Introduction to automated driving Roadmap Highly Automated Driving Functions

Sense -> think -> act

Algorithms

Introduction to automated driving Sensing / perception

- ► Sensors for environment understanding
 - ► Objects
 - ► Infrastructure elements
- ► Mapping & localisation

Introduction to automated driving Bosch sensors portfolio

- Long-range radar
- Night vision camera
- Mid-range radar front
- Multi purpose camera / stereo video camera
- Ultrasonic sensor
- Near range camera
- Multi-camera system
- Mid-range radar rear

Bosch Engineering Center Cluj

Automated driving activities

SOFTWARE ENGINEERING

Radar Systems

Connectivity

Ultrasonic Systems

Video Systems

Central processing unit

Electric Power Steering

State of the art

Hudge investments

The Building Blocks of Autonomy

ARCHITECTURE FOR AUTONOMOUS VEHICLES

Chassis Systems Control Product portfolio

- 1 Near-range camera
- 2 Ultrasonic sensors
- 3 Pressure tube sensor
- 4 Pedestrian contact sensor
- 5 Upfront sensor
- 6 Long-range radar sensor
- 7 Mid- range radar sensor
- 8 Brake disc
- 9 ESP® hydraulic unit with attached control unit
- 10 iBooster
- 11 Brake master cylinder with reservoir

Roadmap E/E architecture Next steps in shorter timeframe

STRUCTURE OF THE COURSE

Ultrasonic sensors

Date	Course Topic	Seminar Topic
3/1/2019	Intro	
3/8/2019	Ultrasonic	
3/15/2019	Radar	Radar
3/22/2019	Video 1: intro	
3/29/2019	Video 2: disparity and flow	Video
4/5/2019	Video 3: 3D geometry	
4/12/2019	Deep Learning 1	Video
4/19/2019	Deep Learning 2	
4/26/2019	Easter holiday	
5/3/2019	Deep Learning 3	Deep Learning 1
5/10/2019	Deep Learning 4	
	Tracking and Sensors	
5/17/2019	Data Fusion	Deep Learning 2
= /0 / / 0 0 / 0	Connectivity overview,	
5/24/2019	technology & frameworks	
F/24/2040	Connectivity statistics &	Daan I aannin = 2
5/31/2019	data analytics	Deep Learning 3
6/7/2019	Exam and office hours	

Radar sensors

Date	Course Topic	Seminar Topic
3/1/2019	Intro	
- 1- 1		
3/8/2019	Ultrasonic	
3/15/2019	Radar	Radar
3/22/2019	Video 1: intro	
3/29/2019	Video 2: disparity and flow	Video
4/5/2019	Video 3: 3D geometry	
4/12/2019	Deep Learning 1	Video
4/19/2019	Deep Learning 2	
4/26/2019	Easter holiday	
5/3/2019	Deep Learning 3	Deep Learning 1
5/10/2019	Deep Learning 4	
	Tracking and Sensors	
5/17/2019	Data Fusion	Deep Learning 2
	Connectivity overview,	
5/24/2019	technology & frameworks	
	Connectivity statistics &	
5/31/2019	data analytics	Deep Learning 3
6/7/2019	Exam and office hours	

Video sensors

Date	Course Topic	Seminar Topic
3/1/2019	Intro	
3/8/2019	Ultrasonic	
3/15/2019	Radar	Radar
	Video 1:	
3/22/2019	introduction	
	Video 2: disparity	
3/29/2019	and optical flow	Video
	Video 3: 3D	
4/5/2019	geometry	
4/12/2019	Deep Learning 1	Video
4/19/2019	Deep Learning 2	
4/26/2019	Easter holiday	
5/3/2019	Deep Learning 3	Deep Learning 1
5/10/2019	Deep Learning 4	
	Tracking and Sensors	
5/17/2019	Data Fusion	Deep Learning 2
E /0.4/0.40	Connectivity overview,	
5/24/2019	technology & frameworks	
E/21/2010	Connectivity statistics &	Doon Loarning 2
5/31/2019	data analytics	Deep Learning 3
6/7/2019	Exam and office hours	

Deep learning and convolutional neural networks

Date	Course Topic	Seminar Topic
3/1/2019	Intro	
3/8/2019	Ultrasonic	
3/15/2019	Radar	Radar
3/22/2019	Video 1: introduction	
3/29/2019	Video 2: disparity and optical flow	Video
		VIUCO
4/5/2019	Video 3: 3D geometry	
4/12/2019	Deep Learning 1	Video
4/19/2019	Deep Learning 2	
4/26/2019	Easter holiday	
5/3/2019	Deep Learning 3	Deep Learning 1
5/10/2019	Deep Learning 4	
5/17/2019	Tracking and Sensors Data Fusion	Deep Learning 2
5/11/2019	Connectivity overview,	Deep Learning 2
5/24/2019	technology & frameworks	
5/31/2019	Connectivity statistics & data analytics	Deep Learning 3
6/7/2019	Exam and office hours	

Tracking and data fusion

Date	Course Topic	Seminar Topic
3/1/2019	Intro	
3/8/2019	Ultrasonic	
3/15/2019	Radar	Radar
3/22/2019	Video 1: intro	
3/29/2019	Video 2: disparity and flow	Video
4/5/2019	Video 3: 3D geometry	
4/12/2019	Deep Learning 1	Video
4/19/2019	Deep Learning 2	
4/26/2019	Easter holiday	
5/3/2019	Deep Learning 3	Deep Learning 1
5/10/2019	Deep Learning 4	
	Tracking and Sensors Data	
5/17/2019	Fusion	Deep Learning 2
	Connectivity overview, technology &	
5/24/2019	frameworks	
5/31/2019	Connectivity statistics & data analytics	Deep Learning 3
6/7/2019	Exam and office hours	

Prediction

$$\hat{x}_{t}^{-} = A\hat{x}_{t-1} + Bu_{t-1}$$

$$P_{t}^{-} = AP_{t-1}A^{T} + Q_{t}$$

$$P_t^- = A P_{t-1} A^T + Q_t$$

Update

$$\hat{x}_t = \hat{x}_t^- + K_t(y_t - H\hat{x}_t^-)$$

$$K_t = \frac{P_t^- H^T}{H P_t^- H^T + R_t}$$

$$P_t = (I - K_t H) P_t^-$$

Introduction to automated driving Connectivity, cloud and data analytics

Date	Course Topic	Seminar Topic
3/1/2019	Intro	
3/8/2019	Ultrasonic	
3/15/2019	Radar	Radar
3/22/2019	Video 1: intro	
3/29/2019	Video 2: disparity and flow	Video
4/5/2019	Video 3: 3D geometry	
4/12/2019	Deep Learning 1	Video
4/19/2019	Deep Learning 2	
4/26/2019	Easter holiday	
5/3/2019	Deep Learning 3	Deep Learning 1
5/10/2019	Deep Learning 4	
5/17/2019	Tracking and Sensors Data Fusion	Deep Learning 2
	Connectivity overview,	
5/24/2019	technology & frameworks	
	Connectivity statistics &	
5/31/2019	data analytics	Deep Learning 3
6/7/2019	Exam and office hours	_
0,1,2010	Lam and onice nouis	

ABOUT BOSCH

Bosch – a global network

- ► The **390,000**¹ Bosch associates make these solutions possible.
- ▶ Bosch has four business sectors, with more than 440¹ subsidiary companies and regional subsidiaries in some 60¹ countries. Including sales and service partners, Bosch's global manufacturing and sales network covers nearly every country in the world.

Bosch – a global network Business sectors

Mobility Solutions

Industrial Technology

Energy and Building Technology

Consumer Goods

BOSCH in Romania

The Technology behind technology: our work eBike Cluj Plant Pushing the limits **Electrical Control Units Electronic Control Units** for Park Assistance Systems **Smart Data Link** 2013 Connection 12 V DC DC Converter 2014 for Start/Stop **Engine** 2015 **Control Unit** 2016 2017 **Window Lifter** DASY **Control Module** +10more **Body Computer Modul BCM** Electronic Battery Sensor **▲**Blower Control Units **D-SAM** for Clima Control Electronic control module Signal sensing for Cooling Fan and control Electronic Control Units module **Airbag** for Wiper Systems Electrical **Coolant Pump** Control Units iCam 2 Multicamera system for surround view Clj P/OFE-C Internal Communication | 09.10.2018

Why Bosch? Leader in Autonomous Driving Patents

TECH I CHART OF THE DAY

WHO LEADS THE AUTONOMOUS DRIVING PATENT RACE?

Number of worldwide patent filings related to autonomous driving (January 2010-July 2017)

THANK YOU FOR YOUR ATTENTION!

