

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Beryllium

Equilibrium reactions	lgK at infinite dilution and $T = 298 K$	
	Baes and Mesmer, 1976	Brown and Ekberg, 2016
$Be^{2+} + H_2O \rightleftharpoons BeOH^+ + H^+$	-5.40	-5.39 ± 0.14
$Be^{2+} + 2 H_2O \rightleftharpoons Be(OH)_2 + 2 H^+$	-13.65	-11.20 ± 0.07
$Be^{2+} + 3 H_2O \rightleftharpoons Be(OH)_3^- + 3 H^+$	-23.25	-23.39 ± 0.27
$Be^{2+} + 4 H_2O \rightleftharpoons Be(OH)_4^{2-} + 4 H^+$	-37.41	
$2 \text{ Be}^{2+} + \text{H}_2\text{O} \rightleftharpoons \text{Be}_2\text{OH}^{3+} + \text{H}^+$	-3.97	-3.54 ± 0.04
$3 \text{ Be}^{2+} + 3 \text{ H}_2\text{O} \rightleftharpoons \text{Be}_3(\text{OH})_3^{3+} + 3 \text{ H}^+$	-8.92	-8.83 ± 0.09
$5 \text{ Be}^{2+} + 6 \text{ H}_2\text{O} \rightleftharpoons \text{Be}_5(\text{OH})_6^{4+} + 6 \text{ H}^+$		-19.1 ± 0.1
6 Be ²⁺ + 8 H ₂ O \rightleftharpoons Be ₆ (OH) ₈ ⁴⁺ + 8 H ⁺	-27.2	-26.3 ± 0.1
α -Be(OH) ₂ (cr) + 2 H ⁺ \rightleftharpoons Be ²⁺ + 2 H ₂ O	6.69	6.87±0.10
β -Be(OH) ₂ (cr) + 2 H ⁺ \rightleftharpoons Be ²⁺ + 2 H ₂ O		6.49±0.10

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 95.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 155–178.

Distribution diagrams

These diagrams have been computed at two Be concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

