STAT 530 Homework 6

2022-03-18

- (1) Problem 7.55 (a) and (b) Casella & Berger: For each of the following pdfs, let X_1, \ldots, X_n be a sample from that distribution. In each case, find the best unbiased estimator of θ^r .
 - (a) $f(x \mid \theta) = \frac{1}{\theta}$, $0 < x < \theta, r < n$ (b) $f(x \mid \theta) = e^{-(x-\theta)}$, $x > \theta$
- (2) Suppose $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\lambda)$, where

$$P(X = x \mid \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}; \quad x = 0, 1, \dots; \quad 0 \le \lambda < \infty.$$

Find the UMVUE of $\tau(\lambda) = \lambda^r$ for some positive integer r.

- (3) Prove the following claims:
 - (a) Suppose $\hat{\theta}$ is the unique Bayes estimator, then $\hat{\theta}$ is admissible.
 - (b) Suppose θ^* is the unique minimax estimator, then θ^* is admissible.
- (4) For this question, we will study the breakdown value in greater depth. The textbook definition of a breakdown value is given below:

Definition 10.2.2 Let $X_{(1)} < \cdots < X_{(n)}$ be an ordered sample of size n, and let T_n be a statistic based on this sample. T_n has breakdown value $b, 0 \le b \le 1$, if, for every $\epsilon > 0$,

$$\lim_{X_{(\{(1-b)n\})}\to\infty} T_n < \infty \quad \text{ and } \quad \lim_{X_{(\{(1-(b+\epsilon))n\})}\to\infty} T_n = \infty$$

(Recall Definition 5.4.2 on percentile notation)

Where $\{b\}$ is the number b rounded to the nearest integer. That is, if i is an integer and $i-0.5 \le b < i+0.5$, then $\{b\}=i$. The textbook also claims that the sample median M_n has a breakdown value of 50%. These do not make sense. For example, consider n = 10, b = 50%, and $\epsilon = 0.01$, then $\{(1-b)n\} = \{(1-(b+\epsilon))n\} = 5$. Obviously we cannot have

$$\lim_{X_{(\{(1-b)n\})}\to\infty}M_n=\lim_{X_{(5)}\to\infty}M_n<\infty\quad\text{ and }\quad \lim_{X_{(\{(1-(b+\epsilon))n\})}\to\infty}T_n=\lim_{X_{(5)}\to\infty}M_n=\infty$$

at the same time.

Now consider replacing the equations in Definition 10.2.2 by

$$\lim_{X_{(\lfloor (1-b)n\rfloor)}\to\infty}T_n<\infty\quad\text{ and }\quad \lim_{X_{(\lfloor (1-(b+\epsilon))n\rfloor)\to\infty}}T_n=\infty,$$

where $\lfloor b \rfloor$ is the greatest integer less than or equal to b, that is, the floor function of b. Show that, under the new definition, the sample median M_n has a breakdown value of $\frac{\lfloor \frac{n-3}{2} \rfloor}{n}$ (assume $n \geq 3$). Obviously, this converges to 50% as $nto\infty$.

1