### **CSCI 544 HW 1.**

# 1. Data Preparation

#### a. Include 3 sample reviews in your report.

- ⇒ We use the following code to get this output. After selecting only the star\_ratings and review\_body columns, we use pandas head(3) method to get first 3 records.
- □ rev\_rat = amazon\_reviews[['star\_rating','review\_body']]
- ⇒ rev\_rat.head(3)

|   | star_rating | review_body                                    |
|---|-------------|------------------------------------------------|
| 0 | 5.0         | Beautiful. Looks great on counter.             |
| 1 | 5.0         | I personally have 5 days sets and have also bo |
| 2 | 5.0         | Fabulous and worth every penny. Used for clean |

#### b. Statistics of star ratings.

- ⇒ We can get the counts of each star by selecting the star\_rating column and then apply pandas value\_counts() method which returns count of unique values in sorted order.
- ⇒ # Statistics of ratings
- ⇒ rev\_rat['star\_rating'].value\_counts()

```
5.0 3124759

4.0 731733

1.0 426900

3.0 349547

2.0 241948

Name: star_rating, dtype: int64
```

### c. Statistics of the 3 classes.

- □ I first dropped all the NaN type ratings so that it can help me in getting the correct classes. Then, I converted star\_rating column to int to apply numpy where clause. After that I created a new column 'class' in which all ratings above 2 where class 1 and others as 0. Since we counted ratings 3 as class 1 then I changed its rating to class 3 meaning a neutral rating. After all this steps I dropped the class 3 as mentioned in the assignment.
- ⇒ rev\_rat['star\_rating']=rev\_rat['star\_rating'].astype(int) # convert values of star\_rating to int so that we can use numpy where clause
- ⇒ rev\_rat['class']=np.where(rev\_rat['star\_rating']<3,0,1) # set class based on the given requirements
- ⇒ rev\_rat['class']=np.where(rev\_rat['star\_rating']==3,3,rev\_rat['class']) # we will now change class of ratings 3 as on previous step we added it to class 1

- ⇒ # Statistics of ratings after classes
- ⇒ rev\_rat['class'].value\_counts()

1 38562960 6688093 349539Name: class, dtype: int64

2. Data Cleaning

### a. Average length of characters in review before cleaning

- ⇒ I looped over all the reviews and measured the length of characters and saved it under char\_len variable. After that I printed the mean of it.
- ⇒ #Average char length in review\_body before data cleaning
- ⇒ from statistics import mean
- ⇒ char\_len=[len(char) for char in rev\_rat['review\_body']]
- ⇒ print(mean(char\_len))

323.796825

### b. Average length of characters in review after cleaning

- □ Used the same function as above.
- ⇒ #Average char length in review\_body after data cleaning.
- ⇒ from statistics import mean
- ⇒ char\_len\_after=[len(char) for char in rev\_rat['review\_body']]
- ⇒ print(mean(char\_len\_after))

309.058895

## 3. Preprocessing

a. 3 sample reviews before data Cleaning and Preprocessing.

⇒ I used rev rat.head(3) to print the 3 sample reviews.

| class | review_body                                   | star_rating |    |
|-------|-----------------------------------------------|-------------|----|
| 1     | sharp and look great                          | 5           | 8  |
| 1     | I've been waiting my whole life for these!    | 5           | 27 |
| 1     | Good water bottle. Water tastes so much bette | 5           | 64 |

## b. Average length of reviews before data preprocessing.

⇒ It will be the same as avg length after data cleaning which is this.



### c. 3 sample reviews after data Cleaning and Preprocessing.

⇒ I used rev\_rat.head(3) to print the 3 sample reviews.

| • • • |    | star_rating | review_body                                   | class |
|-------|----|-------------|-----------------------------------------------|-------|
|       | 8  | 5           | sharp look great                              | 1     |
|       | 27 | 5           | I waiting whole life                          | 1     |
|       | 64 | 5           | good water bottle water taste much better old | 1     |

### d. Average length of reviews after data preprocessing.

⇒ The avg length has been reduced drastically after the preprocessing.

```
#Average char length in review_body after data preprocessing from statistics import mean char_len_af_pre=[len(char) for char in rev_rat['review_body']] print[mean(char_len_af_pre)] 

v 0.5s

191.49201

+ Code + Markdown
```

## 4. Perceptron

- a. Report Accuracy, Precision, Recall and F1 Score.
- ⇒ After training the model with 80% training data and trying different hyperparamteres I got an Accuracy of 85%.

... Perceptron Model

Accuracy of Test: 85.4275 %

Precision of Test: 85.46517552113897 %

Recall of Test: 87.06732216313836 %

F1 Score of Test: 85.62196295108654 %

Accuracy of Train: 93.16187500000001 %

Precision of Train: 93.19302715779874 %

Recall of Train: 94.4920440636475 %

F1 Score of Train: 93.2568273005738 %

#### 5. SVM

- a. Report Accuracy, Precision, Recall and F1 Score
- After training the model with 80% training data and trying different hyperparamteres I got an Accuracy of 89%.

### .. SVM Model

Accuracy of Test: 89.3475 %

Precision of Test: 89.34906891308866 %

Recall of Test: 89.03882813283836 %

F1 Score of Test: 89.28292965114817 %

Accuracy of Train: 94.03375 %

Precision of Train: 94.0338741763167 %

Recall of Train: 93.93375465241176 %

F1 Score of Train: 94.03240729164062 %

- 6. Logistic Regression
- a. Report Accuracy, Precision, Recall and F1 Score
- After training the model with 80% training data and trying different hyperparamteres I got an Accuracy of 89.5%.

Logistic Regression Model

Accuracy of Test: 89.585000000000001 %

Precision of Test: 89.5887996961635 %

Recall of Test: 89.10905989766229 %

F1 Score of Test: 89.50418220296281 %

Accuracy of Train: 91.31937500000001 %
Precision of Train: 91.32108997598142 %

Recall of Train: 90.9874353658232 %

F1 Score of Train: 91.29701921811655 %

- 7. Multinomial Naïve Bayes
- a. Report Accuracy, Precision, Recall and F1 Score
- ⇒ After training the model with 80% training data and trying different hyperparamteres I got an Accuracy of 86.4%.

Multinomial Naive Bayes Model

Accuracy of Test: 86.815 %

Precision of Test: 86.83457319324135 %

Recall of Test: 85.66268686665998 %

F1 Score of Test: 86.62304063308477 %

Accuracy of Train: 89.08625 %

Precision of Train: 89.1171864079181 %

Recall of Train: 87.67516798641121 %

F1 Score of Train: 88.93815961180302 %