Technische Universität Berlin

Fakultät II – Institut für Mathematik

Doz.: Bärwolff, Mehl, Penn-Karras Ass.: Altmann, Meiner, Wassmuss WS 12/13 02. Apr 2013

April – Klausur Analysis I für Ingenieure

Name:	Vorname:				
Neben einem handbeschriebenen A4-Blatt mi lassen. Die Lösungen sind in Reinschrift aus bitte ein neues Blatt verwenden. Auf jedes ben. Mit Bleistift oder Rotstift geschriebene Kegeben Sie im Zweifelsfalle auch Ihre Schmierze	f A4 Blättern abz s Blatt bitte Name Ilausuren können :	ugeben. und M nicht g	Für j atrikeln ewertet	ede Anummer werder	ufgabe schrei- n. Bitte
Geben Sie im Rechenteil immer den vollstä wenn nichts anderes gesagt ist, immer eine I Insbesondere soll immer klar werden, wurden! Ohne Begründung bzw. Rechenweg	kurze, aber voll welche Sätze oc	ständi der Th	ge Beg	gründu	ing an.
Die Bearbeitungszeit beträgt 90 Minuten.					
Die Gesamtklausur ist mit 30 Punkten bestand mindestens 10 Punkte erreicht werden müsser	· -	der be	iden Te	ile der I	Klausur
Korrektur					
		1	2	3	Σ
		4	5	6	Σ

Rechenteil

1. Aufgabe 10 Punkte

Die Funktion $f:]3,7] \to \mathbb{R}$ sei gegeben durch $f(x) = \frac{e^x}{x-3}$.

- a) Bestimmen Sie das Monotonieverhalten von f.
- b) Untersuchen Sie die Funktion f auf globale Extrema. Bestimmen Sie ggf. die Extremstellen.
- c) Stellen Sie zu f das Taylorpolynom 2. Ordnung mit Entwicklungsstelle $x_0 = 4$ auf.

2. Aufgabe 11 Punkte

- a) Bestimmen Sie alle **komplexen** Lösungen der Gleichung $z^3 = 1 + i\sqrt{3}$. Die Lösungen dürfen in Polarkoordinaten angegeben werden.
- b) Berechnen Sie alle **reellen** Lösungen x der Gleichung: |x-2|=3x.
- c) Berechnen Sie alle **reellen** Lösungen $x \in [0, 2\pi]$ der Gleichung: $\sin(2x) = \cos(x)$.

3. Aufgabe 9 Punkte

Sei $f: \mathbb{R} \to \mathbb{R}$ eine 4-periodische, gerade Funktion. Auf [0,2] ist f gegeben durch f(t) = 2 - t. Skizzieren Sie die Funktion f auf [-2,2] und bestimmen Sie die Fourierkoeffizienten von f.

Verständnisteil

4. Aufgabe 8 Punkte

a) Zeigen Sie mit vollständiger Induktion, dass für alle $n \in \mathbb{N}, n \geq 1$ gilt

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

- b) Geben Sie Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ an mit $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\infty$, für die gilt:
 - i) $\lim_{n \to \infty} (n a_n) = \infty$,
 - ii) $\lim_{n \to \infty} (n b_n) = 3.$

5. Aufgabe

- a) Bestimmen Sie $\int \frac{e^x}{1+(e^x)^2} dx$ und berechnen Sie, wenn möglich, $\int_0^\infty \frac{e^x}{1+e^{2x}} dx$.
- b) Gegeben sind die Funktionen $f,g:\mathbb{R}\to\mathbb{R}$ mit

$$f(0) = 1$$
, $f'(x) = -g(x)$, $g(2x) = 2f(x)g(x)$.

Zeigen Sie mit dem Konstanzkriterium, dass gilt: $2f^2(x) - f(2x) = 1$.

6. Aufgabe 10 Punkte

Gegeben ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit den Parametern $a, b \in \mathbb{R}$ als

$$f(x) = \begin{cases} \sin(ax) &, x > 0\\ (x-1)^2 + b &, x \le 0. \end{cases}$$

- a) Für welche Parameter $a, b \in \mathbb{R}$ ist f stetig in x = 0?
- b) Für welche Parameter $a, b \in \mathbb{R}$ ist f differenzierbar in x = 0? Benutzen Sie die Definition der Differenzierbarkeit.
- c) Für welche Parameter $a \in \mathbb{R}$ existiert $\lim_{x\to\infty} f(x)$?