

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 2 4 JUL 2003

Ratent Office PCT · Canberra

I, JULIE BILLINGSLEY, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. PS 3339 for a patent by THE AUSTRALIAN NATIONAL UNIVERSITY as filed on 02 July 2002.

WITNESS my hand this Fourteenth day of July 2003

JULIE BILLINGSLEY

TEAM LEADER EXAMINATION

SUPPORT AND SALES

AUSTRALIA

Patents Act 1990

The Australian National University

PROVISIONAL SPECIFICATION

Invention Title:

Method of producing plants having enhanced transpiration efficiency and plants produced therefrom ${\it I}$

The invention is described in the following statement:

FIELD OF THE INVENTION

The present invention relates to the field of plant breeding and the production of genetically engineered plants. More specifically, the invention described herein provides genes that are capable of enhancing the transpiration efficiency of a plant when expressed therein. These genes are particularly useful for the production of plants having enhanced transpiration efficiency, by both traditional plant breeding and genetic engineering approaches. The invention further extends to plants produced by the methods described herein.

10 BACKGROUND TO THE INVENTION

1. General

20

This specification contains nucleotide and amino acid sequence information prepared using PatentIn Version 3.1, presented herein after the claims. nucleotide sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210>2, etc). The length 15 and type of sequence (DNA, protein (PRT), etc), and source organism for each nucleotide sequence, are indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide sequences referred to in the specification are defined by the term "SEQ ID NO:", followed by the sequence identifier (eg. SEQ ID NO: 1 refers to the sequence in the sequence listing designated as <400>1).

The designation of nucleotide residues referred to herein are those recommended by the IUPAC-IUB Biochemical Nomenclature Commission, wherein A represents Adenine, C represents Cytosine, G represents Guanine, T represents thymine, Y 25 represents a pyrimidine residue, R represents a purine residue, M represents Adenine or Cytosine, K represents Guanine or Thymine, S represents Guanine or Cytosine, W represents Adenine or Thymine, H represents a nucleotide other than Guanine, B represents a nucleotide other than Adenine, V represents a nucleotide other than Thymine, D represents a nucleotide other than Cytosine and N represents 30 any nucleotide residue.

As used herein the term "derived from" shall be taken to indicate that a specified integer is obtained from a particular source albeit not necessarily directly from that source.

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated step or element or integer or group of steps or elements or integers but not the exclusion of any other step or element or integer or group of elements or integers.

10

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purposes of exemplification only.

Functionally equivalent products, compositions and methods are clearly within the scope of the invention, as described herein.

2. Description of the related art

It is well known that virtually all plants require a certain quantity of water for proper growth and development, because CO₂ fixation and photosynthate assimilation by plants cost water. A significant quantity of water absorbed by plants from the soil returns to the atmosphere *via* plant transpiration.

Transpiration efficiency is a measure of the amount of dry matter produced by a plant per unit of water transpired, or, in other words, carbon gain relative to water lost through transpiration.

30

For plants having low transpiration efficiency, or when water is in short supply, the loss of water through transpiration can limit key metabolic processes associated with

plant growth and development. For example, during drought, or when plants having low transpiration efficiency are grown in arid and semi-arid environments, plant productivity as determined by dry matter production or photosynthetic rate, is considerably reduced. Accordingly, the production of plants having enhanced water use efficiency or transpiration efficiency is highly desirable for their adaptation to arid or semi-arid conditions, or to enhance their drought resistance.

The enhancement of water use efficiency or transpiration efficiency by plants is also highly desirable in consideration of global climatic change and increasing pressure on world water resources. The inefficient utilization of agricultural water is known to impact adversely upon the supply of navigable water, potable water, and water for industrial or recreational use. Accordingly, the production of plants having enhanced transpiration efficiency is highly desirable for reducing the pressure on these water resources. It is also desirable for increasing plant productivity under well-watered conditions.

By enhancing transpiration efficiency, carbon gain rates are enhanced per unit of water transpired, thereby stimulating plant growth under well-watered conditions, or alternatively, under mild or severe drought conditions. This is achieved by enhancing carbon gain more than transpiration rate, or by reducing the amount of water lost at any particular rate of carbon fixation. Those skilled in the art also consider that for a given growth rate plants having enhanced transpiration efficiency dry out soils more slowly, and use less water, than less efficient near-isogenic plants.

Several chemical as well as environmental pre-treatments have been described for enhancing the ability of plant seedlings to survive drought, either by reducing transpiration or by reducing the amount of water that is actually lost to the atmosphere.

Known environmental treatments largely involve the use of physical barriers. Whilst placing a physical barrier over plant stomata is known to reduce water loss via transpiration, the procedure is not always desirable or practicable for field-grown crops. For example, physical barriers over plant stomata may inhibit certain gasexchange processes of the plant. It is more desirable to enhance actual transpiration

efficiency or water use efficiency of the plant through manipulation of intrinsic plant function.

Chemical agents are typically the so-called "anti-transpirant" or "anti-desiccant" agents, both of which are applied to the leaves. Anti-transpirants are typically films or metabolic anti-transpirants.

These products form a film on leaves, thereby either blocking stomatal pores, or coating leaf epidermal cells with a water-proof film. Typical film anti-transpirants include waxes, wax-oil emulsions, higher alcohols, silicones, plastics, latexes and resins. For example, Elmore, United States Patent No. 4,645,682 disclosed an anti-transpirant consisting of an aqueous paste wax; Cushman et al., United States Patent Nos. 3,791,839 and 3,847,641 also disclosed wax emulsions for controlling transpiration in plants; and Petrucco et al., United States Patent No. 3,826,671, disclosed a polymer composition said to be effective for controlling transpiration in plants.

Metabolic anti-transpirants generally close stomata, thereby reducing the rate of transpiration. Typical metabolic anti-transpirants include succinic acids, phenylmercuric acetate, hydroxysulfonates, the herbicide atrazine, sodium azide, and phenylhydrazones, as well as carbon cyanide.

Compounds having plant growth regulator activity have also been shown to be useful for reducing transpiration. For example, Bliesner et al., United States Patent 25 No. 4,671,816, disclosed an acetylene compound, said to possess utility for regulating plant growth, whilst Kuznetsov et al. (Russian Patent No. SU 1,282,492; ... Russian Patent Application No. SU 1,253,559-A1), and Smirnov et al (Russian Patent No. SU 1,098,934) disclosed the use of derivatives of 2-methyl-5hydroxybenzimidazole, and the chloride or bromide salts thereof, as anti-transpirant growth regulators. Vichnevetskaia (USSN 5,589,437 issued December 31, 1996) also describe hydroxybenzimidazole derivatives for enhancing the drought resistance of plants by reducing transpiration, however have the advantage of being applicable to plant seed or roots. Schulz et al., United States Patent No. 4,943,315, also disclosed formulations comprising an acetylene and a phenylbenzylurea compound, for

reducing transpiration in plants and/or for avoiding impairment to plants caused by heat and dry conditions. Abscisic acid has also been shown to reduce or suppress transpiration in plants (eg. Helv. Chim. Acta, 71, 931, 1988; J. Org. Chem., 54, 681, 1989; and Japanese Patent Publication No. 184,966/1991).

5

Metabolic anti-transpirants are costly to produce and often exhibit phytotoxic effects or inhibit plant growth Kozlowski (1979), In: Tree Growth and Environmental Stresses (Univ. of Washington Press, Seattle and London), and are not practically used.

10

Recent studies have examined alternative methods for enhancing transpiration efficiency, particularly breeding approaches to select lines that grow more efficiently under mild drought conditions. Carbon isotope discrimination has been used to identify Arabidopsis ecotypes with contrasted transpiration efficiencies (Masle et 15 al., In: Stable isotopes and plant carbon-water relations, Acad. Press, Physiol. Ser., pp371-386, 1993) and to assist conventional breeding of new plant varieties in a number of species (Hall et al., Plant Breeding Reviews 4, 81-113, 1994) including rice (Farquhar et al., In: Breaking the Yield Barrier, ed KG Cassman, IRRI, 95, 101) and most recently wheat (Rebetzke et al. Crop Science 42:739-745, 2002).

20 No single gene has been identified as being capable of enhancing transpiration efficiency when expressed in planta. Transpiration efficiency may well be multigenic. As a consequence, the genes and signalling pathways that regulate the photosynthetic and/or stomatal components of the transpiration efficiency mechanism in plants have not been identified or characterized.

25

Moreover, notwithstanding that the effect of down-regulating expression of the Rubisco gene, or mutation in genes involved in abscisic acid (eg. aba, abi), are known to modify transpiration efficiency to some extent through stomatal closure, the consequence of such modifications is not totally specific, resulting in pleiotropic effects.

Arabidopsis thaliana ecotype Landsberg erecta (L-er) is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. There are a number of er mutant alleles. Phenotypic characterization of the mutant alleles suggests a role for the wild type ER gene in regulating plant morphogenesis, particularly the shapes of organs that originate from the shoot apical meristem. Torii et al., The Plant Cell 8, 735, 1996, showed that the ER gene encodes a putative receptor protein kinase comprising a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1a is a graphical representation showing the CO₂ assimilation rates (μmol C m² s⁻¹) of several genotypes of A. thaliana. The genotypes of plants are indicated on the x-axis, and CO₂ assimilation rates indicated on the ordinate. Col indicates a genetic background of the ecotype Columbia. Ld indicates a genetic background of the ecotype Landsberg. Plants expressing wild type ERECTA alleles were either in a Col (Col4-ER) or Ld (Ld-ER) background. Plants that were homozygous for a mutant er allele were either in a Col background (Col-er105 or Col-er2) or a Ld background (Ld-er1). Plants designated as F1 (Col-ER x Ld-er) were heterozygous ER/er1. Data indicate that, in a Col background, the er105 mutation leads to reduced CO₂ assimilation rate, whilst the er1 mutation enhances CO₂ assimilation rate in a Ld background.

Figure 1b is a graphical representation showing the stomatal conductance (mol H_20 m² s⁻¹) of several genotypes of A. thaliana. The genotypes of plants are indicated on the x-axis and are the same as described in the legend to Figure 1a. Stomatal conductances are indicated on the ordinate. Data indicate that, in a Col background, the er2 mutation significantly enhances stomatal conductance, whilst the er1 mutation significantly enhances stomatal conductance in a Ld background.

Figure 1c is a graphical representation showing the transpiration efficiency of (mmol C mol H₂0⁻¹) of several genotypes of A. thaliana, as determined by the ratio of CO₂ assimilation rate to stomatal conductance. The genotypes of plants are indicated on the x-axis and are the same as described in the legend to Figure 1a. Transpiration efficiency is indicated on the ordinate. Data indicate that transpiration efficiency is enhanced in plants expressing a wild type ER allele relative to a mutant er allele, in

both Ld and Col backgrounds. The lowest transpiration efficiency was observed for plants that are homozygous for the er105 allele (ie. Col-er105), consistent with the fact that this allele disrupts ERECTA expression. From the data in Figures 1a-1c, it is apparent that the lower transpiration efficiency of plants expressing the er105 allele is largely due to a reduced CO₂ fixation rate, whereas for both the er2 and er1 alleles, reduced transpiration efficiency is largely due to enhanced stomatal conductance. The transpiration efficiency of the F1 heterozygote plant was intermediate between the transpiration efficiencies of its parents, suggesting codominance of these alleles. The F1, however, had a transpiration efficiency closer to that of the pollen donor parent, Ld-er1.

Figure 2a is a graphical representation showing the stomatal densities (Number of stomata mm⁻² leaf) for several genotypes of A. thaliana in three independent experiments. The genetic backgrounds of plants are indicated on the x-axis (Col, Columbia; Ld, Landsberg), and stomatal densities are indicated on the ordinate. Plant genotypes are indicated at the top of each bar, as follows: plants expressing wild type ERECTA alleles in a Col background were Col4ER or Col1ER (hatched bars); plants expressing wild type ERECTA alleles in a Ld background were ER (open bars); plants expressing mutant erecta alleles in a Col background were either er105 or er2 (stippled boxes); and plants expressing the mutant er1 allele in a Ld background were er1 (filled boxes). Columns designated a,b are data from two experiments where plants were grown in soil in the absence of fertiliser. The set of columns at the right of the figure are from a third experiment where the same plants were grown in soil comprising fertiliser. Data indicate that, in a Col background, the er105 mutation and er2 mutation enhances stomatal density, which in part accounts for the enhanced stomatal conductances and reduced transpiration efficiencies of plants expressing these alleles (Figures 1b and 1c). The general effects of these alleles is not dependent on the nutrient status of the soil. In contrast, the er1 allele enhanced stomatal density of Ld plants in only one case when fertiliser was absent, suggesting that enhanced stomatal aperture may account for the enhanced stomatal conductances and reduced transpiration efficiencies of Ld-er1 plants (Figures 1b, 1c).

Figure 2b is a graphical representation showing the epidermal cell size (surface area, μm²) for several genotypes of A. thaliana in three independent experiments. The genetic backgrounds and genotypes of plants are indicated on the x-axis and at the tops of each column, respectively, as in the legend to Figure 2a. The ordinate Columns designated a,b are data from two indicates epidermal cell size. experiments where plants were grown in soil in the absence of fertiliser. The set of columns at the right of the figure are from a third experiment where the same plants were grown in soil comprising fertiliser. Data indicate that, in a Col background, the er105 mutation and er2 mutation significantly reduce epidermal cell size ie increase 10 the number of epidermal cells per unit leaf area. This reveals that the ER gene has effects on leaf histogenesis which, beyond their consequences on stomatal densities, may also directly affect leaf capacity for photosynthesis and therefore transpiration efficiency, (Figures 1b and 1c). The general effects of these alleles is not dependent on the nutrient status of the soil. In contrast, the er1 allele reduced epidermal cell size of Ld plants in only one case when fertiliser was absent, suggesting that enhanced stomatal aperture accounts for the enhanced stomatal conductances and reduced transpiration efficiencies of Ld-er1 plants (Figures 1b, 1c).

Figure 2c is a graphical representation showing the stomatal index for several genotypes of A. thaliana in three independent experiments. The genetic backgrounds and genotypes of plants are indicated on the x-axis and at the tops of each column, respectively, as in the legend to Figure 2a. The ordinate indicates stomatal index, as determined from the ratio of stomatal density to epidermal cell density. Columns designated a,b are data from two experiments where plants were grown in soil in the absence of fertiliser. The set of columns at the right of the figure are from a third experiment where the same plants were grown in soil comprising fertiliser. Data indicate that the er mutations tested do not significantly modify stomatal index, because increases in stomatal density are correlated to increases in epidermal cell numbers in the mutant plants. Accordingly, the ER gene does not appear to directly modify stomatal development per se.

SUMMARY OF THE INVENTION

In work leading up to the present invention, the inventors sought to elucidate the specific genetic determinants of plant transpiration efficiency. In plants, the

development of molecular genetic markers, such as, for example, genetic markers that map to a region of the genome of a crop plant, such as, for example, a region of the rice genome, maize genome, barley genome, sorghum genome, or wheat genome, or a region of the tomato genome or of any Brassicaceae assists in the production of plants having enhanced transpiration efficiency (Edwards et al., Genetics 116, 113 - 125, 1987; Paterson et al., Nature 335, 721-726, 1988).

The present inventors identified a locus that is linked to the genetic variation in To elucidate a locus associated with the transpiration efficiency in plants. 10 transpiration efficiency of plants, the inventors established experimental conditions and sampling procedures to determine the contribution to total transpiration efficiency of the factors influencing this phenotype, and, more particularly, the genetic contribution to the total variation in transpiration efficiency. influencing transpiration efficiency include, for example, genotype of the plant, environment (eg. temperature, light, humidity, boundary layer around the leaves, root growth conditions), development (eg. age and/or stage and/or posture of plants that modifies gas exchange and/or carbon metabolism), and seed-specific factors (Masle et al. 1993, op. cit). The screens developed by the inventors were also used to survey mutant and wild type populations for variations in transpiration efficiency and to identify ecotypes having contrasting transpiration efficiencies including the parental lines that had been used by Lister and Dean (1993). The transpiration efficiencies of the members of Lister and Dean's (1993) Recombinant Inbred Line mapping population were then determined, and linkage analyses were performed against genetic markers to determine the chromosome regions that are linked to genetic variation in transpiration efficiency, thereby identifying a locus conditioning transpiration efficiency.

In the exemplified embodiment of the invention, there is provided a locus associated with transpiration efficiency of A. thaliana, said locus defined as the ERECTA locus on A. thaliana chromosome 2. The present invention clearly extends to homologs of the A. thaliana ERECTA locus from other plant species, identified using the methods described herein.

Accordingly, one aspect of the invention provides a locus associated with the genetic variation in transpiration efficiency of a plant, wherein said locus comprises a nucleotide sequence linked genetically to the A. thaliana ERECTA locus.

As used herein, the terms "genetically linked" and "map to" shall be taken to refer to a sufficient genetic proximity between a linked nucleic acid comprising a gene, allele, marker or other nucleotide sequence and nucleic acid comprising all or part of the A. thaliana ERECTA locus or all or part of a homolog of the A. thaliana ERECTA locus from another plant species, to permit said linked nucleic acid to be useful for determining the presence of a particular allele of said A. thaliana ERECTA locus or said homolog. Those skilled in the art will be aware that for such linked nucleic acid to be used in this manner, it must be sufficiently close to said locus not to be in linkage disequilibrium or to have a high recombination frequency between said linked nucleic acid and said locus. Preferably, the linked nucleic acid and the locus are less than about 25cM apart, more preferably less than about 10cM apart, even more preferably less than about 5cM apart, still even more preferably less than about 3cM apart and still even more preferably less than about 1cM apart.

Preferably, all or part of the locus of the invention is provided as recombinant or isolated nucleic acid, such as, for example, in the form of a gene construct (eg. a recombinant plasmid or cosmid), to facilitate germplasm screening.

The ERECTA locus or a gene that is linked to the ERECTA locus is particularly useful in a breeding program, to predict the transpiration efficiency of a plant, or alternatively, as a selective breeding marker to select plants having enhanced transpiration efficiency. Once mapped, marker-assisted selection (MAS) is used to introduce the ERECTA locus or markers linked thereto into a wide variety of populations. MAS has the advantage of reducing the breeding population size required, and the need for continuous recurrent testing of progeny, and the time required to develop a superior line.

Accordingly, a second aspect of the invention provides a method of selecting a plant having enhanced transpiration efficiency, comprising:

12

- (a) identifying a locus associated with genetic variation in transpiration efficiency in a plant; and
- (b) selecting a plant that comprises or expresses a gene that maps to the locus.
- 5 Preferably, this aspect of the invention provides a method of selecting a plant having enhanced transpiration efficiency, comprising:
 - (a) identifying a locus on the Arabidopsis chromosome 2 (46-50.7 cM) associated with genetic variation in transpiration efficiency in a plant; and
 - (b) selecting a plant that comprises or expresses a gene that maps to the locus.

10

An alternative embodiment provides a method of selecting a plant having enhanced transpiration efficiency, comprising selecting a plant that comprises or expresses a functionally equivalent homolog of a protein-encoding region of the *ERECTA* gene of *A. thaliana*.

15

30

As exemplified herein, the inventors also identified specific genes or alleles that are linked to the *ERECTA* locus and determine the transpiration efficiency of a plant. More particularly, the transpiration efficiencies of near-isogenic lines, wherein each line carries a mutation within the *ERECTA* locus were determined, thereby providing the genetic contribution of genes or alleles at the *ERECTA* locus to transpiration efficiency. This analysis allowed the inventors to assess the genetic contribution of particular alleles to transpiration efficiency, thereby determining allelic variants that are linked to a particular transpiration efficiency. Thus, the elucidation of the *ERECTA* locus for transpiration efficiency in plants facilitated the fine mapping and determination of allelic variants that modulate transpiration efficiency.

Accordingly, a third aspect of the invention provides a method of identifying a gene that determines the transpiration efficiency of a plant comprising:

- (a) identifying a locus associated with genetic variation in transpiration efficiency in a plant;
- (b) identifying a gene or allele that is linked to said locus, wherein said gene or allele is a candidate gene or allele for determining the transpiration efficiency of a plant; and

(c) determining the transpiration efficiencies of a panel of plants, wherein not all members of said panel comprise said gene or allele, and wherein variation in transpiration efficiency between the members of said panel indicates that said gene is involved in determining transpiration efficiency.

5

15

In another embodiment, the method comprises:

- (a) identifying a locus associated with genetic variation in transpiration efficiency in a plant;
- (b) identifying multiple alleles of a gene that is linked to said locus, wherein said
 gene is a candidate gene involved for determining the transpiration efficiency of a plant; and
 - (c) determining the transpiration efficiencies of a panel of plants, wherein each member of said panel comprises at least one of said multiple alleles, wherein variation in transpiration efficiency between the members of said panel indicates that said gene is involved in determining transpiration efficiency.

Preferably, the identified gene or allele identified by the method described in the preceding paragraph is an *ERECTA* allele, an *erecta* allele, a homolog of *ERECTA* allele, or a homolog of *erecta* allele, wherein said homolog is from a plant species other than A. thaliana.

The identified gene or allele, including any homologs from a plant other than A. thaliana, such as, for example, the wild-type ERECTA allele or a homolog thereof, is useful for the production of novel plants. Such plants are produced, for example, using recombinant techniques, or traditional plant breeding approaches such as introgression.

Accordingly, a still further aspect of the present invention provides a method of enhancing the transpiration efficiency of a plant comprising ectopically expressing in a plant an isolated gene comprising a nucleotide sequence that is homologous to a protein-encoding region of a gene of A. thaliana that maps to the ERECTA locus on chromosome 2. A related embodiment of the invention provides a method of enhancing the transpiration efficiency of a plant comprising introgressing into said plant a nucleic acid comprising a nucleotide sequence that is homologous to a

protein-encoding region of a gene of A. thaliana that maps to the ERECTA locus on chromosome 2.

A further aspect of the invention provides for the use of an isolated gene comprising a nucleotide sequence that is homologous to a protein-encoding region of a gene of A. thaliana that maps to the ERECTA locus on chromosome 2 in the preparation of a gene construct for enhancing the transpiration efficiency of a plant.

A fifth aspect of the present invention provides a plant having enhanced transpiration efficiency, wherein said plant is produced by a method described herein.

DETAILED DESCRIPTION OF THE INVENTION

Loci for transpiration efficiency and their identification

One aspect of the invention provides a locus associated with the genetic variation in transpiration efficiency of a plant, wherein said locus comprises a nucleotide sequence linked genetically to the *ERECTA* locus on chromosome 2 or a homolog thereof.

As used herein, the term "locus" shall be taken to mean the location of one or more genes in the genome of a plant that affects a quantitative characteristic of the plant, in particular the transpiration efficiency of a plant. In the present context, a "quantitative characteristic" is a phenotype of the plant for which the phenotypic variation among different genotypes is continuous and cannot be separated into discrete classes, irrespective of the number of genes that determine or control the phenotype, or the magnitude of genetic effects that single gene has in determining the phenotype, or the magnitude of genetic effects of interacting genes.

By "associated with the genetic variation in transpiration efficiency of a plant"
30 means that a locus comprises one or more genes that are expressed to determine or
regulate the transpiration efficiency of a plant, irrespective of the actual rate of
transpiration achieved by the plant under a specified environmental condition.

The present invention clearly contemplates the presence of multiple genes that are genetically linked or map to the specified *ERECTA* locus on chromosome 2. Without being bound by any theory or mode of action, such multiple linked genes may interact, such as, for example, by epistatic interaction, to determine the transpiration efficiency phenotype.

The present invention also contemplates the presence of different alleles of any gene that is linked to the *ERECTA* locus, wherein said allele is expressed to determine the transpiration efficiency phenotype. In one embodiment, such alleles are identified by detecting a particular transpiration efficiency phenotype that is linked to the expression of the particular allele. Alternatively, or in addition, the different alleles linked to a locus are identified by detecting a structural polymorphism in DNA (eg. a restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), single strand chain polymorphism (SSCP), and the like), that is linked to a particular transpiration efficiency phenotype.

The present invention clearly encompasses all interacting genes and/or alleles that are genetically linked to an *ERECTA* locus and are expressed to determine a transpiration efficiency phenotype. Such linked interacting genes and/or alleles will map to a region of the genome of a plant that is homologous to a region of the *Arabidopsis thaliana* genome that is associated with the transpiration efficiency of that plant and maps to the *ERECTA* locus. Preferably, such interacting genes and/or alleles comprise a protein-encoding portion of a gene of *A. thaliana* positioned within the *ERECTA* locus of the *Arabidopsis thaliana* genome that is associated with the transpiration efficiency of that plant, or a homologous protein-encoding region from another plant species.

The terms "region of the Arabidopsis thaliana genome that is associated with the transpiration efficiency", and "locus of A. thaliana that determines the transpiration of efficiency" shall be taken to mean that portion of chromosome 2 of A. thaliana associated with transpiration efficiency, preferably the region from about 46cM to about 50.7 cM.

Even more preferably, the locus of the invention is linked to or comprises the *ERECTA* allele or the *erecta* alleles, or a protein-encoding portion thereof or a homologous gene from another plant species.

5 As used herein, the term "ERECTA" shall be taken to refer to a wild type A. thaliana ERECTA allele or a homolog thereof from another plant species.

For the purposes of nomenclature, the nucleotide sequence of the *Arabidopsis* thaliana ERECTA protein-encoding region, including 5'-untranslated region (UTR) and 3'-UTR, is provided herein as SEQ ID NO: 1. The amino acid sequence of the polypeptide encoded by SEQ ID NO: 1 is set forth herein as SEQ ID NO: 2.

The term "erecta" shall be taken to mean any allelic variant of the wild-type ERECTA allele that modifies transpiration efficiency of A. thaliana or a homolog thereof from another plant species. Preferred erecta alleles contemplated herein include an A. thaliana erecta allele selected from the group consisting of: er, er1, er2 allele, er101 allele, er102 allele, er103 allele, er104 allele, er105 allele, er2 allele, er108 allele, er109 allele, er110 allele, er111 allele, er112 allele, er113 allele, er114 allele. er115 allele, er116 allele, er117 allele, er118 allele, er119 allele, er120 allele, er121 allele, er122 allele, er123 allele (Lease et al. New Phytologist 151, 133-143, 2001) and a homolog of any one of said alleles.

Those skilled in the art are aware that the terms "homolog" and "ortholog" refer to functional equivalent units. In the present context, a homolog or ortholog of a gene that maps to the ERECTA locus shall be taken to mean any gene from a plant species other than A. thaliana that is functionally equivalent to a gene that maps to the exemplified A. thaliana ERECTA locus, and comprises a protein-encoding region in its native plant genome that shares a degree of structural identity or similarity with a protein-encoding region that is linked to the A. thaliana ERECTA locus.

30

Preferably, a homologous or orthologous gene from a plant other than A. thaliana will be associated with the transpiration efficiency of said plant and be linked to a protein-encoding region in its native plant genome that comprises a nucleotide sequence having at least about 55% overall sequence identity to a protein-encoding

region linked to the ERECTA locus. Even more preferably, the percentage identity will be at least about 59-61% or 70% or 80%, still more preferably at least about 90%, and even still more preferably at least about 95%.

In determining whether or not two nucleotide sequences fall within a particular percentage identity limitation recited herein, those skilled in the art will be aware that it is necessary to conduct a side-by-side comparison or multiple alignment of In such comparisons or alignments, differences may arise in the positioning of non-identical residues, depending upon the algorithm used to perform the alignment. In the present context, reference to a percentage identity between two or more nucleotide sequences shall be taken to refer to the number of identical residues between said sequences as determined using any standard algorithm known to those skilled in the art. For example, nucleotide sequences may be aligned and their identity calculated using the BESTFIT program or other appropriate program of the Computer Genetics Group, Inc., University Research Park, Madison, Wisconsin, United States of America (Devereaux et al, Nucl. Acids Res. 12, 387-395, 1984).

Alternatively, or in addition, a homologous or orthologous gene from a plant other than A. thaliana will be associated with the transpiration efficiency of said plant and 20 be linked to a protein-encoding region in its native plant genome that comprises a nucleotide sequence that encodes a polypeptide having at least about 55% overall sequence identity to a polypeptide encoded by a protein-encoding region linked to the ERECTA locus. Preferably, the percentage identity at the amino acid level will be at least about 59-61% or 70% or 80%, more preferably at least about 90%, and still more preferably at least about 95%.

25

In determining whether or not two amino acid sequences fall within these percentage limits, those skilled in the art will be aware that it is necessary to conduct a side-by-side comparison or multiple alignment of sequences. In such comparisons or alignments, differences will arise in the positioning of non-identical residues, depending upon the algorithm used to perform the alignment. In the present context, reference to a percentage identity or similarity between two or more amino acid sequences shall be taken to refer to the number of identical and similar residues respectively, between said sequences as determined using any standard algorithm

18

known to those skilled in the art. For example, amino acid sequence identities or similarities may be calculated using the GAP program and/or aligned using the PILEUP program of the Computer Genetics Group, Inc., University Research Park, Madison, Wisconsin, United States of America (Devereaux et al, 1984, supra). The GAP program utilizes the algorithm of Needleman and Wunsch, J. Mol. Biol. 48, 443-453, 1970, to maximize the number of identical/similar residues and to minimize the number and length of sequence gaps in the alignment. Alternatively or in addition, wherein more than two amino acid sequences are being compared, the ClustalW program of Thompson et al., Nucl. Acids Res. 22, 4673-4680, 1994, is used.

10

Alternatively, or in addition, a homologous or orthologous gene from a plant other than A. thaliana will be associated with the transpiration efficiency of said plant and be linked to a protein-encoding region in its native plant genome that hybridizes to nucleic acid that comprises a sequence complementary to a protein-encoding region linked to the A. thaliana ERECTA locus. Preferably, such homologs or orthologs will be identified by hybridization under at least low stringency conditions, and more preferably under at least moderate stringency or high stringency hybridization conditions.

20 For the purposes of defining the level of stringency, a low stringency is defined herein as being a hybridization or a wash carried out in 6xSSC buffer, 0.1% (w/v) SDS at 28°C or alternatively, as exemplified herein. Generally, the stringency is increased by reducing the concentration of salt in the hybridization or wash buffer, such as, for example, by reducing the concentration of SSC. Alternatively, or in addition, the stringency is increased, by increasing the concentration of detergent (eg. SDS). Alternatively, or in addition, the stringency is increased, by increasing the temperature of the hybridization or wash. For example, a moderate stringency can be performed using 0.2xSSC to 2xSSC buffer, 0.1% (w/v) SDS, at a temperature of about 42°C to about 65°C. Similarly, a high stringency can be performed using 0.1xSSC to 0.2xSSC buffer, 0.1% (w/v) SDS, at a temperature of at least 55°C. Conditions for performing nucleic acid hybridization reactions, and subsequent membrane washing, are well understood by one normally skilled in the art. For the purposes of further clarification only, reference to the parameters affecting hybridization between nucleic acid molecules is found in Ausubel et al., In: Current

Protocols in Molecular Biology, Greene/Wiley, New York USA, 1992, which is herein incorporated by reference.

Preferably, the homologous gene is derived from, or present in, the genome of a plant that is desiccation or drought intolerant, or poorly adapted for growth in dry or arid environments, or that suffers from reduced vigor or growth during periods of reduced rainfall or drought, or from the genome of a plant with increased growth rate or growth duration or partitioning of C to shoot and harvested parts under well-watered conditions.

10

More preferably, the homologous gene is derived from, or present in, the genome of a brassica plant, broad acre crop plant, perennial grass (eg. of the subfamily Pooidaea, or the Tribe Poeae), or tree. Even more preferably, the homologous locus is in the genome of a plant selected from the group consisting of barley, wheat, rye, sorghum, rice, maize, *Phalaris aquatica*, *Dactylus glomerata*, *Lolium perenne*, *Festuca arundinacea*, cotton, tomato, soybean, oilseed rape, poplar, and pine.

A particularly preferred homolog of a gene that maps to the exemplified Arabidopsis thaliana ERECTA locus is derived from chromosome 6 of rice (Oryza sativa), and, 20 more preferably is linked to an ERECTA gene derived from rice. For the purposes of nomenclature, the protein-encoding region of the rice ERECTA gene is provided herein as SEQ ID NO: 3. The amino acid sequence of the polypeptide encoded by SEQ ID NO: 3 is set forth herein as SEQ ID NO: 4.

Another particularly preferred homolog of a gene that maps to the exemplified Arabidopsis thaliana ERECTA locus is derived from the genome of Sorghum bicolor, and, more preferably is linked to an ERECTA gene derived from sorghum. For the purposes of nomenclature, the protein-encoding region of the sorghum ERECTA gene is provided herein as SEQ ID NO: 5. The amino acid sequence of the polypeptide encoded by SEQ ID NO: 5 is set forth herein as SEQ ID NO: 6.

Another particularly preferred homolog of a gene that maps to the exemplified Arabidopsis thaliana ERECTA locus is derived from the genome of A. thaliana, and, more preferably is linked to an ERECTA gene derived from A. thaliana. For the

purposes of nomenclature, the protein-encoding region of the *A. thaliana ERECTA* homologue is provided herein as SEQ ID NO: 7. The amino acid sequence of the polypeptide encoded by SEQ ID NO: 7 is set forth herein as SEQ ID NO: 8.

5 Another particularly preferred homolog of an *ERECTA* gene is provided herein as SEQ ID NO: 9. The amino acid sequence of the polypeptide encoded by SEQ ID NO: 9 is set forth herein as SEQ ID NO: 10.

A number of mapping methods for determining useful loci and estimating their effects have been described (eg. Edwards et al., Genetics 116, 113-125, 1987; Haley and Knott, Heredity 69, 315-324, 1992; Jiang and Zeng, Genetics 140, 1111-1127, 1995; Lander and Botstein, Genetics 121, 185-199, 1989; Jansen and Stam, Genetics 136, 1447-1455, 1994; Utz and Melchinger, In: Biometrics in Plant Breeding: Applications of Molecular Markers. Proc. Ninth Meeting of the EUCARPIA Section 15 Biometrics in Plant Breeding, 6 - 8 July 1994, Wageningen, The Netherlands, (J.W. van Ooijen and J. Jansen, eds), pp195-204, 1994; Zeng, Genetics 136, 1457-1468, 1994). In the present context, these methods are applied to identify the major component(s)of the total genetic variance that contribute(s) to the variation in transpiration efficiency of a plant, such as, for example, determined by the 20 measurement of carbon isotope discrimination (Δ). More particularly, the segregation of known markers is used to map and/or characterize an underlying locus associated with transpiration efficiency. The locus method involves searching for associations between the segregating molecular markers and transpiration efficiency in a segregating population of plants, to identify the linkage of the marker 25 to the locus.

To discover a marker/locus linkage, a segregating population is required. Experimental populations, such as, for example, an F2 generation, a backcross (BC) population, recombinant inbred line (RIL), or double haploid line (DHL), can be used as a mapping population. Bulk segregant analysis, for the rapid detection of markers at specific genomic regions using segregating populations, is described by Michelmoore et al., Proc. Natl Acad. Sci. (USA) 88, 9828-9832, 1991. In the case of F2 mapping populations, F2 plants are used to determine genotype, and F2 families to determine phenotype. Recombinant inbred lines are produced by single-seed

21

descent. Recombinant inbred lines, such as, for example, the F9 RILs of A. thaliana (eg. Lister and Dean, Plant J., 4, 745-750, 1993) will be known to those skilled in the art. Near isogenic lines (NILs) are used for fine mapping, and to determine the effect of a particular locus on transpiration efficiency. An advantage of recombinant inbred lines and double haploid lines is that they are permanent populations, and as a consequence, provide for replication of the contribution of a particular locus to the transpiration efficiency phenotype.

As for statistical methods, Single Marker Analysis (Point Analysis) is used to detect a locus in the vicinity of a single genetic marker. The mean transpiration efficiencies of a population of plants segregating for a particular marker, are compared according to the marker class. The difference between two mean transpiration efficiencies provides an estimate of the phenotypic effect of substituting one allele for another allele at the locus. To determine whether or not the inferred phenotypic effect is significantly different from zero, a simple statistical test, such as t-test or F-test, is used. A significant value indicates that a locus is located in the vicinity of the marker. Single point analysis does not require a complete molecular linkage map. The further locus is from the marker, the less likely it is to be detected statistically, as a consequence of recombination between the marker and the gene.

20

25

In the Anova, t-test or GLM approach, the association between marker genotype and transpiration efficiency phenotype comprises:

- classifying progeny of a segregating population of plants by marker genotype, such as for example, using RFLP, AFLP, SSCP, or microsatellite analyses, thereby establishing classes of plants;
- (ii) comparing the mean transpiration efficiencies of classes of plants in the segregating population, using a t-test, GLM or ANOVA; and
- (iii) determining the significance of the differences in the mean at (ii), wherein a significant difference indicates that the marker is linked to the locus for transpiration efficiency.

As will be known to those skilled in the art, the difference between the means of the classes provides an estimate of the effect of the locus in determining the transpiration efficiency of a class.

22

In the regression approach, the association between marker genotype and phenotype is determined by a process comprising:

- (i) assigning numeric codes to marker genotypes; and
- determining the regression value r for transpiration efficiency against the codes, wherein a significant value for r indicates that the marker is linked to the locus for transpiration efficiency, and wherein the regression slope estimate of the effect of a particular locus on transpiration efficiency.
- 10 For QTL interval mapping, the Mapmaker algorithm developed by Lincoln et al., Constructing genetic linkage maps with MAPMAKER/EXP version 3.0: A tutorial and reference manual. Whitehead Institute for Biomedical Research, Cambridge, MA, USA, 1993, can be used. The principle behind interval mapping is to test a model for the presence of a QTLat many positions between two mapped marker loci. This model is a fit of a presumptive QTL to transpiration efficiency, wherein the . 15 suitability of the fit is tested by determining the maximum likelihood that a QTL for transpiration efficiency lies between two segregating markers. For example, in the case of a QTL located between two segregating markers, the 2-loci marker genotypes of segregating progeny will each contain mixtures of QTL genotypes. Accordingly, it 20 is possible to search for loci parameters that best approximate the distribution in transpiration efficiency for each marker class. Models are evaluated by computing the likelihood of the observed distributions with and without fitting a QTL effect. The map position of a QTL is determined as the maximum likelihood from the distribution of likelihood values (LOD scores: ratio of likelihood that the effect occurs by linkage: likelihood that the effect occurs by chance), calculated for each locus.

Interval mapping by regression (Haley and Knott., Heredity 69, 315-324, 1992) is a simplification of the maximum likelihood method supra wherein basic QTL analysis or regression on coded marker genotypes is performed, except that phenotypes are regressed on the probability of a QTL genotype as determined from the linkage between transpiration efficiency and the nearest flanking markers. In most cases, regression mapping gives estimates of QTL position and effect that are almost

identical to those given by the maximum likelihood method. The approximation deviates only at places where there are large gaps, or many missing genotypes.

In the composite interval mapping (CIM) method (Jansen and Stam, Genetics 136, 1447-1455, 1994; Utz and Melchinger, 1994, supra; Zeng, Genetics 136, 1457-1468, 1994), the analysis is performed in the usual way, except that the variance from other QTLs are accounted for by including partial regression more power and precision than simple interval mapping, because the effects of other QTls are not present as residual variance. CIM can remove the bias that can be caused by the QTLs that are linked to the position being tested.

Publicly available software are used to map a locus for transpiration efficiency. Such software include, for example, the following:

- (i) MapMaker/QTL (<u>ftp://genome.wi.mit.edu/pub/mapmaker3/</u>), for analyzing F2
 or backcross data using standard interval mapping;
 - (ii) MQTL, for composite interval mapping in multiple environments or for performing simple interval mapping using homozygous progeny (eg. double haploids, or recombinant inbred lines);
- (iii) PLABQTL (Utz and Melchinger, PLABlocus Version 1.0. A computer program to map QTL, Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik, Universität Hohenheim, 70593 Stuttgart, Germany, 1995; http://www.uni-hohenheim.de/~ipspwww/soft.html) for composite interval mapping and simple interval mapping of a locus in mapping populations derived from a bi-parental cross by selfing, or in double haploids;
- 25 (iv) QTL Cartographer (http://statgen.mcsu.edu/qtlcart/cartographer.html) for single-marker regression, interval mapping, or composite interval mapping, using F2 or backcross populations;
 - (v) MapQTL (http://www.cpro.dlo.nl/cbw/); Qgene for performing either singlemarker regression or interval regression to map loci; and
- 30 (vi) SAS for detecting a locus by identifying associations between marker genotype and transpiration efficiency by a single marker analysis approach such as ANOVA, t-test, GLM or REG.

In a particularly preferred embodiment, QTL cartographer or MQTL is used to identify a locus associated with the transpiration efficiency of plants.

Those skilled in the art will also be aware that it is possible to detect multiple interacting alleles or genes for a particular trait, such as, for example, using composite interval mapping approaches. To achieve this end, the composite interval mapping may be repeated to look for additional loci. Alternatively, or in addition, two or more distinct regions of the genome can be nominated as candidate loci, and a gamete relationship matrix constructed for each candidate locus, and a 2-locus regression performed for each pair of loci, determining a best fit for the interacting effects between the two loci or aleles at those loci, including any dominance or additive effects. The algorithm described by Carlborg et al., Genetics (2000) can be used for simultaneous mapping. In the present context, such an analysis is performed with reference to the segregation of transpiration efficiency phenotypes in the segregating population.

Use of the ERECTA locus to enhance transpiration efficiency of plants

As will be known to those skilled in the art, a single locus, if present in the genome of a plant, can have a significant influence on the phenotype of the plant. For example, Grandillo et al., Theor. Appl. Genet. 99, 978-987, 1999, showed that for tomato a selection made from a total 28 loci determining fruit size and weight explained 20% of the total phenotypic variance in this trait.

Accordingly, a second aspect of the invention provides a method of selecting a plant having enhanced transpiration efficiency, comprising:

- (a) identifying a locus associated with genetic variation in transpiration efficiency in a plant; and
- (b) selecting a plant that comprises or expresses a gene that maps to the locus.
- 30 By "enhanced transpiration efficiency" is meant that the plant loses less water per unit of dry matter produced, or alternatively, produces an enhanced amount of dry matter per unit of water transpired, relative to a counterpart plant. By "counterpart plant" is meant a plant having a similar or near-identical genetic background, such as, for example, a near-isogenic plant, a sibling, or parent.

25

In accordance with this aspect of the invention, a locus is identified by conventional locus mapping means, and/or by homology searching for genes that map to the *ERECTA* locus on chromosome 2 of the *A. thaliana* genome, such as, for example, by searching for homologs of the *A. thaliana ERECTA* allele or *erecta* allele as described herein above.

Preferably, to select a plant that comprises or expresses the appropriate gene, marker-assisted selection (MAS) is used. As will be known to those skilled in the art, once a particular locus has been identified, genetic or physical markers that are linked to the locus can be readily identified and used to confirm the presence of the locus in breeding populations. For a locus that is flanked by two tightly-linked markers that recombine only at a low frequency, the presence of the flanking markers is indicative of the presence of the locus.

15

For marker-assisted selection, it is preferred that the marker is a genetic marker (eg. a gene or allele), or a physical marker (eg. leaf hairiness or pod shape), or a molecular marker such as, for example, a restriction fragment length polymorphism (RFLP), a restriction (RAPD), amplified fragment length polymorphism (AFLP), or a short sequence repeat (SSR) such as a microsatellite, or SNP. It is also within the scope of the invention to utilize any hybridization probe or amplification primer comprising at least about 10 nucleotides in length derived from a chromosome region that is linked in the genome of a plant to the ERECTA locus, as a marker to select plants. Those skilled in the art will readily be able to determine such probes or primers based upon the disclosure herein, particularly for those plant genomes which may have sufficient chromosome sequence in the region of interest in the genome (eg. A. thaliana, rice, cotton, barley, wheat, sorghum, maize, tomato, etc).

For flanking markers that are not tightly linked, such that there is a large recombination distance there between, the presence of the appropriate gene is assessed by identifying those plants having both flanking markers and then selecting from those plants a plant having an enhanced transpiration efficiency. Naturally, the greater the distance between two markers, the larger the population of plants required to identify a plant having both markers, the intervening locus and a gene

within said locus. Those skilled in the art will readily be able to determine the population size required to identify a plant having a particular transpiration efficiency, based upon the recombination units (cM) between two markers.

- 5 Transpiration efficiency is determined by any means known to the skilled artisan. Preferably, transpiration efficiency is determined by measuring dry matter accumulation in the plant by gravimetric means, or by measuring water loss, or the ratio of CO₂ assimilation rate to stomatal conductance.
- In a particularly preferred embodiment, the transpiration efficiency is determined directly, by measuring the ratio of carbon fixed carbon assimilation rate) to water loss (transpiration rate).

In an alternative embodiment, transpiration efficiency is determined indirectly from the carbon isotope discrimination value (Δ). Farquhar et al., Aust. J. Plant Physiol. 9,121-137, 1982, showed that carbon isotope discrimination (Δ ; a measure of the extent to which the ¹³C/¹²C ratio of organic matter is less than that of CO₂ in the source air), is an effective indirect measure of transpiration efficiency. determination of transpiration efficiency in this manner is based upon the constancy of the atmospheric ¹³C: ¹²C ratio (about 98.19: 1.11) and the finding that, in C₃ plants at least, ribulose bisphosphate carboxylase (Rubisco) enzymes discriminate against the use of ¹³C. Thus, ¹³CO₂ is less efficiently assimilated than ¹²CO₂, and diffuses lessthrough stomata in and out of the leaf. However, when the stomata become nearly closed, the diffusion of ¹³CO₂ is more difficult to achieve and, at higher intracellular concentrations of ¹³CO₂, this isotope is incorporated into 3phosphoglycerate, and subsequently into dry matter. As a consequence, carbon isotope discrimination (Δ) is greatest when the overall CO₂ assimilation rate during photosynthesis (A) is small, and stomatal conductance (gw) to water vapor is large. This relationship is represented by the following algorithm:

30 $\Delta (^{\circ}/_{\circ \circ}) = 27-36 A/(G_w \times C_a)$

wherein C_a is the ambient CO_2 concentration (ie. $[^{12}CO_2 + ^{13}CO_2]$).

For a C_3 plant that exhibits a value in the range of about 4.5 % to about 6.7 % to for the term 36A/(G_w x C_a), a 1 % co change in carbon isotope discrimination (Δ)

corresponds to a change in transpiration efficiency in the range of about 22% to about 15%, respectively.

The negative relationship between carbon isotope discrimination (Δ) and transpiration efficiency has been established for many plant species, including wheat (Farquhar and Richards, Aust. J. Plant Physiol. 11, 539-552, 1984; Farquhar et al., Ann. Rev. Plant Physiol. 40,388-397, 1989), Stylosanthes (Thumma et al., Proc. 9th Aust. Agronomy Conf., Wagga Wagga New South Wales, Australia, 1998), cotton, barley, and rice. Accordingly, a lower carbon isotope discrimination (Δ) value for a test plant relative to a counterpart plant is indicative of enhanced transpiration efficiency.

Alternatively, or in addition, transpiration efficiency is determined by another indicator, such as, for example, leaf temperature, ash content, mineral content, or specific leaf weight (dry matter per unit leaf area). For example, specific leaf weight is positively correlated with transpiration efficiency in peanuts and other species (Virgona et al., Aust. J. Plant Physiol., 17, 207-214, 1990; Wright et al., Crop Sci 34, 92-97, 1994). Accordingly, a higher specific leaf weight or higher carbon gain rate for a test plant relative to a counterpart plant is indicative of enhanced transpiration efficiency of the test plant.

The presence of the locus can be established by hybridizing a probe or primer that is linked to an *ERECTA* locus, such as, for example, a probe or primer that hybridizes to the identified chromosome 2 region of *A. thaliana* or the identified chromosome 6 region of rice.

25

Preferably, the presence of the locus is established by hybridizing a probe or primer derived from any one or more of SEQ ID Nos: 1, 3, or 5, or from a homologous gene in another plant, or a complementary sequence to such a sequence, to genomic DNA from the plant, and detecting the hybridization using a detection means.

In one embodiment, detection of the hybridization is performed preferably by labelling a probe with a reporter molecule capable of producing an identifiable signal, prior to hybridization, and then detecting the signal after hybridization.

28

Preferred reporter molecules include radioactively-labelled nucleotide triphosphates and biotinylated molecules. Preferably, variants of the genes exemplified herein, including genomic equivalents, are isolated by hybridisation under moderate stringency or more preferably, under high stringency conditions, to the probe.

5

Alternatively, or in addition, hybridization may be detected using any format of the polymerase chain reaction (PCR), including AFLP. For PCR, two non-complementary nucleic acid primer molecules comprising at least about 20 nucleotides in length, and more preferably at least 30 nucleotides in length are hybridized to different strands of a nucleic acid template molecule, and specific nucleic acid molecule copies of the template are amplified enzymatically. Several formats of PCR are described in McPherson et al., In: PCR A Practical Approach., IRL Press, Oxford University Press, Oxford, United Kingdom, 1991, which is incorporated herein by reference.

15

For enhancing the transpiration efficiency of a plant wherein the locus is polymorphic, such as, for example, an allele, the method *supra* is modified to include the detection of the specific allele(s) linked to the desired enhancement. According to this embodiment, there is provided a method of selecting a plant having enhanced transpiration efficiency, comprising:

- (a) identifying a locus associated with genetic variation in transpiration efficiency in a plant;
- (b) identifying a polymorphic marker within said locus that is linked to enhanced transpiration efficiency; and
- 25 (c) selecting a plant that comprises or expresses the marker.

Standard means known to the skilled artisan are used to identify a marker within the locus that is linked to enhanced transpiration efficiency. A population of plants that is segregating for the polymorphic marker is generally used, wherein the transpiration efficiency phenotype of plants is then correlated or associated with the presence of a particular allelic form of the marker. As exemplified herein, near-isogenic or recombinant inbred lines of plants were screened to segregate alleles at the *ERECTA* locus and to correlate enhanced transpiration efficiency with the presence of the *ERECTA* allele as opposed to an *erecta* allele.

Suitable markers include any one or more of the markers described herein to be suitable for MAS.

Preferably, the selection of plants in accordance with these embodiment includes the additional step of introducing the locus or polymorphic marker to a plant, such as, for example, by standard breeding approaches or by recombinant means. This may be carried out at the same time, or before, selecting the locus or polymorphic marker.

10 Recombinant means generally include introducing a gene construct comprising the locus or marker into a plant cell, selecting transformed tissue and regenerating a whole plant from the transformed tissue explant. Means for introducing recombinant DNA into plant tissue or cells include, but are not limited to, transformation using CaCl₂ and variations thereof, in particular the method described by Hanahan (1983). 15 direct DNA uptake into protoplasts (Krens et al, Nature 296, 72-74, 1982; Paszkowski et al., EMBO J. 3, 2717-2722, 1984), PEG-mediated uptake to protoplasts (Armstrong et al., Plant Cell Rep. 9, 335-339, 1990) microparticle bombardment, electroporation (Fromm et al., Proc. Natl. Acad. Sci. (USA), 82, 5824-5828, 1985), microinjection of DNA (Crossway et al., Mol. Gen. Genet. 202, 179-185, 1986), microparticle 20 bombardment of tissue explants or cells (Christou et al, Plant Physiol. 87, 671-674, 1988; Sanford, Part. Sci. Technol. 5, 27-37, 1988), vacuum-infiltration of tissue with nucleic acid, or in the case of plants, T-DNA-mediated transfer from Agrobacterium to the plant tissue as described essentially by An et al., EMBO J. 4, 277-284, 1985; Herrera-Estrella et al., Herrera-Estella et al., Nature 303, 209-213, 1983; Herrera-25 Estella et al., EMBO J. 2, 987-995, 1983; or Herrera-Estella et al., In: Plant Genetic Engineering, Cambridge University Press, N.Y., pp 63-93, 1985...

For microparticle bombardment of cells, a microparticle is propelled into a cell to produce a transformed cell. Any suitable ballistic cell transformation methodology and apparatus can be used in performing the present invention. Exemplary apparatus and procedures are disclosed by Stomp et al. (U.S. Patent No. 5,122,466) and Sanford and Wolf (U.S. Patent No. 4,945,050). When using ballistic transformation procedures, the gene construct may incorporate a plasmid capable of replicating in the cell to be transformed.

Examples of microparticles suitable for use in such systems include 1 to 5 micron gold spheres. The DNA construct may be deposited on the microparticle by any suitable technique, such as by precipitation.

5

A whole plant may be regenerated from the transformed or transfected cell, in accordance with procedures well known in the art. Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a gene construct of the present invention and a whole plant regenerated therefrom. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (eg., apical meristem, axillary buds, and root meristems), and induced meristem tissue (eg., cotyledon meristem and hypocotyl meristem).

The term "organogenesis", as used herein, means a process by which shoots and roots are developed sequentially from meristematic centres.

The term "embryogenesis", as used herein, means a process by which shoots and roots develop together in a concerted fashion (not sequentially), whether from somatic cells or gametes.

The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed to give homozygous second generation (or T2) transformant, and the T2 plants further propagated through classical breeding techniques.

30 The generated transformed organisms contemplated herein may take a variety of forms. For example, they may be chimeras of transformed cells and non-transformed cells; clonal transformants (eg., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (eg., in plants, a transformed root stock grafted to an untransformed scion).

Alternatively, the transformed plants are produced by an in planta transformation method using Agrobacterium tumefaciens, such as, for example, the method described by Bechtold et al., CR Acad. Sci. (Paris, Sciences de la viel Life Sciences) 316, 1194-1199, 1993 or Clough et al., Plant J 16: 735-74, 1998, wherein A. tumefaciens is applied to the outside of the developing flower bud and the binary vector DNA is then introduced to the developing microspore and/or macrospore and/or the developing seed, so as to produce a transformed seed. Those skilled in the art will be aware that the selection of tissue for use in such a procedure may vary, however it is preferable generally to use plant material at the zygote formation stage for in planta transformation procedures.

15

Identification of genes for determing the transpiration efficiency of a plant

As exemplified herein, the inventors also identified specific genes or alleles that are linked to the ERECTA locus and determine the transpiration efficiency of a plant. More particularly, the transpiration efficiencies of near-isogenic lines, wherein each line carries a mutation within a target locus in the region of a locus associated with transpiration efficiency, were determined, thereby providing the genetic contribution of that locus to transpiration efficiency. This analysis allowed the inventors to assess the genetic contribution of particular alleles to transpiration efficiency, thereby determining allelic variants that are linked to a particular transpiration efficiency.

Thus, the elucidation of the ERECTA locus for transpiration efficiency in plants facilitated the fine mapping and determination of allelic variants that determine transpiration efficiency.

Accordingly, a third aspect of the invention provides a method of identifying a gene that determines the transpiration efficiency of a plant.

In one embodiment, the method comprises:

- (a) identifying a locus associated with genetic variation in transpiration efficiency in a plant;
- (b) identifying a gene or allele that is linked to said locus, wherein said gene or allele is a candidate gene or allele for determining the transpiration efficiency of a plant; and
- (c) determining the transpiration efficiencies of a panel of near isogenic plants, wherein not all members of said panel comprise said gene or allele, and wherein variation in transpiration efficiency between the members of said panel indicates that said gene is involved in determining transpiration efficiency.

In another embodiment, the method comprises:

5

10

20

- (a) identifying a locus associated with genetic variation in transpiration efficiency in a plant;
- 15 (b) identifying multiple alleles of a gene that is linked to said locus, wherein said gene is a candidate gene involved for determining the transpiration efficiency of a plant; and
 - (c) determining the transpiration efficiencies of a panel of near isogenic plants, wherein each member of said panel comprises at least one of said multiple alleles, wherein variation in transpiration efficiency between the members of said panel indicates that said gene is involved in determining transpiration efficiency.

In the present context, the term "near isogenic plants" shall be taken to mean a population of plants having identity over a substantial proportion of their genomes, notwithstanding the presence of sufficiently few differences to permit the contribution of a distinct allele or gene to the transpiration efficiency of a plant to be determined by a comparison of the transpiration efficiency phenotypes of the population. As will be known to the skilled artisan, recombinant inbred lines, lines produced by introgression of a gene followed by several generations of backcrossing, or siblings, are suitable near-isogenic lines for the present purpose.

Preferably, the identified gene or allele identified by the method described in the preceding paragraph is selected from the group consisting of ERECTA gene, Erecta

alleles, homologs of *ERECTA*, , wherein said homologs are from plants species other than *A. thaliana*.

In a particularly preferred embodiment, the identified gene or allele will comprise a nucleotide sequence selected from the group consisting of:

- (a) a sequence having at least about 55% identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9;
- (b) a sequence encoding an amino acid sequence having at least about 55% identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 and SEQ ID NO: 10; and
 - (c) a sequence complementary to (a) or (b).
- Preferably, the percentage identity is at least about 59-61% or 70% or 80%, more preferably at least about 90%, and even more preferably at least about 95% or 99%. In a particularly preferred embodiment, the identified gene or allele comprises a nucleotide sequence selected from the group consisting of:
 - (a) a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO:3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9;
 - (b) a sequence encoding an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 and SEQ ID NO: 10; and
 - (c) a sequence complementary to (a) or (b).

25

20

Enhancement of transpiration efficiency using isolated genes

The identified gene or alleles, including any homologs from a plant other than A. thaliana, such as, for example, the wild-type ERECTA allele, or a homolog thereof, is useful for the production of novel plants. Such plants are produced, for example, using recombinant techniques, or traditional plant breeding approaches such as by introgression.

Accordingly, a fourth aspect of the present invention provides a method of enhancing the transpiration efficiency of a plant comprising ectopically expressing

34

in a plant an isolated gene comprising a nucleotide sequence that is homologous to a protein-encoding region of a gene that is linked to the *A. thaliana ERECTA* locus on chromosome 2.

- 5 In a particularly preferred embodiment, the isolated gene comprises a nucleotide sequence selected from the group consisting of:
 - (a) a sequence having at least about 55% identity to a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9;
- 10 (b) a sequence encoding an amino acid sequence having at least about 55% identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 and SEQ ID NO: 10; and
 - (c) a sequence complementary to (a) or (b).

Preferably, the percentage identity is at least about 59-61% or 70% or 80%, more preferably at least about 90%, and even more preferably at least about 95% or 99%.

In a particularly preferred embodiment, the isolated gene or allele comprises a nucleotide sequence selected from the group consisting of:

- (a) a sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO:3, SEQ ID NO: 5, SEQ ID NO: 7, and SEQ ID NO: 9;
- (b) a sequence encoding an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8 and SEQ ID NO: 10; and
- (c) a sequence complementary to (a) or (b).

To ectopically express the isolated gene in a plant, the protein-encoding portion of the gene is generally placed in operable connection with a promoter sequence that is operable in the plant, which may be the endogenous promoter or alternatively, a heterologous promoter, and a transcription termination sequence, which also may be the endogenous or an heterologous sequence relative to the gene of interest. The promoter and protein-encoding portion and transcription termination sequence are generally provided in the form of a gene construct, to facilitate introduction and

15

25

maintenance of the gene in a plant where it is to be ectopically expressed. Numerous vectors suitable for introducing genes into plants have been described and are readily available. These may be adapted for expressing an isolated gene in a plant to enhance transpiration efficiency therein.

5

Reference herein to a "promoter" is to be taken in its broadest context and includes the transcriptional regulatory sequences of a classical eukaryotic genomic gene, including the TATA box which is required for accurate transcription initiation, with or without a CCAAT box sequence and additional regulatory elements (ie. upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner. In the present context, the term "promoter" is also used to describe a synthetic or fusion molecule, or derivative which confers, activates or enhances expression of said sense molecule in a cell. Preferred promoters may contain additional copies of one or more specific regulatory elements, to further enhance expression and/or to alter the spatial expression and/or temporal expression of a nucleic acid molecule to which it is operably connected. For example, copper-responsive regulatory elements may be placed adjacent to a heterologous promoter sequence driving expression of a nucleic acid molecule to confer copper inducible expression thereon.

20

Placing a nucleic acid molecule under the regulatory control of a promoter sequence means positioning said molecule such that expression is controlled by the promoter sequence. A promoter is usually, but not necessarily, positioned upstream or 5' of the protein-encoding portion of the gene that it regulates. Furthermore, the regulatory elements comprising a promoter are usually positioned within 2 kb of the start site of transcription of the structural protein-encoding nucleotide sequences, or a chimeric gene comprising same. In the construction of heterologous promoter/structural gene combinations it is generally preferred to position the promoter at a distance from the gene transcription start site that is approximately the same as the distance between that promoter and the gene it controls in its natural setting, ie., the gene from which the promoter is derived. As is known in the art, some variation in this distance can be accommodated without loss of promoter function. Similarly, the preferred positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control is defined by the

positioning of the element in its natural setting, ie., the genes from which it is derived. Again, as is known in the art, some variation in this distance can also occur.

Promoters suitable for use in gene constructs of the present invention include those promoters derived from the genes of viruses, yeasts, moulds, bacteria, insects, birds, mammals and plants which are capable of functioning in plant cells, including monocotyledonous or dicotyledonous plants, or tissues or organs derived from such cells. The promoter may regulate gene expression constitutively, or differentially with respect to the tissue in which expression occurs or, with respect to the developmental stage at which expression occurs, or in response to external stimuli such as physiological stresses, pathogens, or metal ions, amongst others.

Examples of promoters useful in performing this embodiment include the CaMV 35S promoter, NOS promoter, octopine synthase (OCS) promoter, Arabidopsis thaliana SSU gene promoter, napin seed-specific promoter, SCSV promoter, SCBV promoter and the like. In addition to the specific promoters identified herein, cellular promoters for so-called housekeeping genes, including the actin promoters, or promoters of histone-encoding genes, are useful.

20

The term "terminator" refers to a DNA sequence at the end of a transcriptional unit which signals termination of transcription. Terminators are 3'-non-translated DNA sequences containing a polyadenylation signal, that facilitate the addition of a polyadenylate sequence to the 3'-end of a primary transcript. Terminators active in cells derived from viruses, yeasts, moulds, bacteria, insects, birds, mammals and plants are known and described in the literature. They are isolatable from bacteria, fungi, viruses, animals and/or plants.

Examples of terminators particularly suitable for use in the gene constructs of the present invention include the nopaline synthase (NOS) gene terminator of Agrobacterium tumefaciens, the terminator of the Cauliflower mosaic virus (CaMV) 35S gene, the zein gene terminator from Zea mays, the Rubisco small subunit (SSU) gene terminator sequences and subclover stunt virus (SCSV) gene sequence terminators, amongst others.

Those skilled in the art will be aware of additional promoter sequences and terminator sequences that may be suitable for use in performing the invention. Such sequences may readily be used without any undue experimentation.

5

Preferably, the gene construct further comprises an origin of replication sequence for its replication in a specific cell type, for example a bacterial cell, when said gene construct is required to be maintained as an episomal genetic element (eg. plasmid or cosmid molecule) in said cell. Preferred origins of replication include, but are not limited to, the f1-ori and colE1 origins of replication.

Preferably, the gene construct further comprises a selectable marker gene or genes that are functional in a cell into which said gene construct is introduced.

As used herein, the term "selectable marker gene" includes any gene which confers a phenotype on a cell in which it is expressed to facilitate the identification and/or selection of cells which are transfected or transformed with a gene construct of the invention or a derivative thereof.

Suitable selectable marker genes contemplated herein include the ampicillin resistance (Amp^r), tetracyclin-resistance gene (Tc^r), bacterial kanamycin resistance gene (Kan^r), phosphinothricin resistance gene, neomycin phosphotransferase gene (nptII), hygromycin resistance gene, β-glucuronidase (GUS) gene, chloramphenicol acetyltransferase (CAT) gene, and luciferase gene, amongst others.

25

30

In a related embodiment, the invention extends to the use of an isolated gene comprising a nucleotide sequence that is homologous to a protein-encoding region of a gene of A. thaliana that is positioned between about 46cM to about 50.74cM on chromosome 2 in the preparation of a gene construct for enhancing the transpiration efficiency of a plant.

In an alternative embodiment of the invention, the transpiration efficiency of a plant is enhanced by classical breeding approaches, comprising introgressing the isolated gene into a plant. For introgression of a gene, the gene is transferred from its native

genetic background into another genetic background using standard breeding, for example, a gene that enhances transpiration efficiency in a progenitor such as a diploid cotton or diploid wheat may be transferred into a commercial tetraploid cotton or hexaploid wheat, respectively, by standard crossing, followed by several generations of back-crossing to remove the genetic background of the progenitor. Naturally, continued selection of the gene of interest is required, such as, for example, facilitated by the use of markers.

A fifth aspect of the present invention provides a plant having enhanced transpiration efficiency, wherein said plant is produced by a method described herein.

The present invention is further described with reference to the following nonlimiting examples.

15

EXAMPLE 1

¹²C/¹³C discrimination as a marker for screening genetic variation in transpiration efficiency.

20 Experimental conditions and sampling procedures were established to allow the control of many factors, other than genetic, that influence transpiration efficiency at the level of individual leaves and plants. These factors fall into several categories: (a) characteristics of the seedling's micro-environment: temperature, light, humidity, boundary layer around the leaves, root growth conditions; (b) developmental and morphological effects that modify gas exchange and C metabolism and therefore carbon isotopic signature (eg age, stage, posture); and (c) seed effects.

We developed high resolution mass-spectrometer techniques for measuring C isotope ratios in whole tissues or carbon compounds such as soluble sugars -ie a measure of integrated transpiration efficiency over the plant's life or over a day, respectively, and also for measuring instantaneous transpiration efficiency during gas exchange.

This means:

- 0.1 per mil analytical precision in the measurement of the isotopic composition of leaf carbon. Discrimination, (-), is approximately the isotope ratio of carbon in source CO₂ minus that of plant organic carbon. In a particular experiment, the source CO₂ is common to all genotypes.
- 0.1 per mil biological precision, that is variation between replicated seedlings, grown in soil, either in growth chambers or in glasshouses with CO₂, humidity and temperature control (corresponding to approximately 1.5% variation in transpiration efficiency).
- The ability to grow and screen large batches of seedlings in glasshouses or growth chambers (up to 1500), under standardised leaf and root growth conditions, to a rosette size of several cm within 2-3 weeks allowing individual measurements, on the same plant, of isotope ratios and also of the underlying properties (eg in situ measurement of leaf temperature by infra-red thermometry as a measure of stomatal conductance; chlorophyll fluorescence; leaf expansion).

EXAMPLE 2

Natural genetic variation in transpiration efficiency in Arabidopsis thaliana

A. thaliana ecotypes were screened for leaf Δ under glasshouse conditions. There

was a large spread of values (corresponding to approximately 30 % genetic variation in transpiration efficiency). However, large environmental effects were noted. A few contrasted ecotypes were selected at the two extremes of the range of Δ values and compared under various conditions of irradiance (150 to 500 μE m⁻²s⁻¹), light spectrum (Red/Far-Red ratios) and air humidity (60 to 90%) while roots were always well watered. The magnitude of genetic differences in transpiration efficiency was very much influenced by environmental conditions. This was in part due to variations among ecotypes in the dependence of photosynthesis on light and vapour pressure deficit. Genetic differences were maximal under a combination of high light and low humidity, in growth chambers.

30

The ecotypes Columbia (Col) and Landsberg erecta (Ld-er) have extreme carbon isotope discrimination values, with Col always having smaller values than Ld-er, and thus a greater transpiration efficiency.

EXAMPLE 3

Identification of a locus associated with transpiration efficiency in A. thaliana
Quantitative Trait Loci (QTL) analysis of the Lister and Dean's (1993) Recombinant
Inbred Lines (later referred to as RILs) was performed to identify and map a locus
associated with carbon isotope discrimination (Δ). The RILs were from a cross
between Col-4 and Ler-0. Our analysis confirmed the importance of genes around
the ER locus, and a role for genes other than ERECTA in conferring transpiration
efficiency on A. thaliana.

10 More particularly, 300 RI mapping lines between Col and Ler ecotypes, available at the Arabidopsis Stock Centre, were generated from a cross between the Arabidopsis ecotypes Columbia (Col4) and Landsberg erecta (Ler-0 carrying er1) (Lister and Dean, 1993), using Columbia as the male parent. A subset of 100 of these lines, chosen as the most densely and reliably mapped were used in the present analysis.

15

The seeds were multiplied in a glasshouse in an attempt to minimize confounding seed effects in our comparisons. Large numbers of seeds were obtained for most lines except for a few, including Col4 parent, which had to be re-ordered following low seed viability of the original sample sent by the Stock Centre. The seeds harvested in these propagation runs were used throughout all our experiments to date.

Loci were analysed using two programs, QTL cartographer and MQTL. These programs compute statistics of a trait at each marker position, using a range of methods [linear regression (LR), stepwise regression (SR), and likelihood approaches (Single interval mapping (SIM) which treats values at individual markers as independent values, and composite interval mapping (CIM) which allows for interactions between markers and associated locus)]. By nature each of these methods has some biases and embedded assumptions, hence the importance of analysing data with more than one program. Only results that were consistent between the two programs, and robust to additions or deletions to the set of background markers used for composite interval mapping are reported below.

Initial QTL analysis was done in parallel to seed multiplication on a subset of 40 lines for which enough seeds were sent. Once all seeds had been multiplied this was

repeated on the full set of 100 lines. These two analyses indicated the existence of a locus for carbon isotope discrimination (Δ), that maps to the region including the *ERECTA* locus on chromosome 2, at approximately 46-51 cM (Table 1, run 1&2).

5 Given the complexity and integrative nature of Δ as a physiological trait, such a small number of loci associated with the trait was not expected. Subsequent experiments were therefore designed to test these results and assess their stability across the range of environmental conditions known for their effects on gene expression related to Δ (see above). QTL analysis was repeated on several completely independent data sets obtained under highly controlled conditions in glasshouses or growth chambers, where either air humidity, photoperiod or irradiance (amount, diurnal pattern, day to day variation) was varied. Depending on the experiment, all 100 recombinants inbred lines were included or only the subset of lines with crossovers on chromosome 2. These experiments confirmed that genetic variation in Δ could be mostly ascribed to a portion of chromosome 2 (Table 1) between about 46-50.7 cM.

When RILs were sorted graphically according to carbon isotope discrimination and their genotype at the ER marker (50.64 cM) and its vicinity (Ld-er1 genotype or Col-ER genotype), lines which were Ld-er at the ERECTA marker ranked mostly at the high end of carbon isotope discrimination values. In contrast, lines having a Col-ERECTA marker genotype ranked mostly at the low end of carbon isotope discrimination values (data available on request). In the middle of the range of carbon isotope discrimination values, there was some overlap between the two sets of lines. Some lines were always at an extreme (in all 18 experiments performed), while the ranking of other lines was more unstable. These data indicate a locus for transpiration efficiency, as determined by the carbon isotope discrimination value, in the vicinity of the ERECTA locus on chromosome 2 (Table 1). This locus most likely involves the ER gene. Depending on the positions of cross-overs between Ld-er and Col, recombination between ERECTA and one or more of the other genes influences the transpiration efficiency phenotype of the progeny.

EXAMPLE 5

Determination of a role for the ERECTA gene in regulating transpiration efficiency

We compared Col and Ler ecotypes with near-isogenic mutant lines for the *erecta* gene, to examine a possible role of the *ERECTA* gene in determining carbon isotope discrimination (Δ).

5 Plants expressing the wild type *ERECTA* gene (SEQ ID NO: 1), or an *erecta* mutant allele in the Columbia background (eg. Col-*er101* to -*er105*; or Col-*er108* to -*er123*), have been publicly described. Two of these mutants were available for comparison to the isogenic or near-isogenic lines (Table 2).

10 Col4, the other parental line (ER) for Lister and Dean's RILs was systematically included in the comparison. Where possible, other Col "ecotypes" were also included, (eg. Col0, Col3-7), to assess their similarity with respect to carbon isotope discrimination, especially compared to the RIL parental ecotype Col4.

15 The results of these comparisons are described in Table 3. Data indicate that the differences in carbon isotope discrimination values between er and ER lines for 15 different experimental runs corresponding to growth under low to high light (100 to 800 μ E m⁻² s⁻¹), low to high humidity (40 to 85%), short to long days (8, 10, 24hrs), normal to high temperatures (22/20°C to 28/20 °C).

20

As expected, the spread of carbon isotope discrimination values among lines varied with environmental conditions. Lines carrying er mutations have a greater carbon isotope discrimination value overall than those having the ER wild type gene (see Table 3, column 1), indicative of a lower water use-efficiency. There is usually little difference in C isotopic discrimination between the various Col lines, (see the similar averages obtained for columns 2, 3, and 4 in Table 3, wherein er105 is compared to 3 different Col ecotypes, Col0, Col4 and 3176 or Col1). When present, the er105 mutant always has the greatest carbon isotope discrimination value of all lines, including er1 and er2 (columns 2-4 compared to columns 5-6 in Table 3, or column 8 compared to column 9 in Table 3). The value measured in the er105 mutant is always significantly greater than in the ER isogenic line (column 4 in Table 3). The value measured in er1 (Landsberg parental line NW20) is usually also greater than that in the ER lines 3177 (near isogenic, column 6 of Table 3), and to a lesser extent Col4 (Columbia parental line, column 7 of Table 3). These observations give

direct evidence that the *ERECTA* gene plays a significant role in determining genetic differences in carbon isotopic discrimination in *Arabidopsis*.

This conclusion is independently confirmed by leaf gas exchange measurements that allow the direct measure of transpiration efficiency (ratio of net CO₂ fixation to water loss; column 4 in Table 4; Figures 1a-1c, 2a-2c). Measurements on mature leaves reveal that ER lines are characterised by a greater ratio of CO₂ assimilation to water loss than lines carrying er mutations. This is most obvious when comparing the pair Col1/er105 with a 21% greater transpiration efficiency (ratio A/E) in Col1 than er105, or the pair Col1/er2 with a 16% greater transpiration efficiency in Col1. Consistent with the measurements of carbon isotope discrimination, the effect er/ER is relatively smaller in the Ld background (9% greater ratio A/E in Ld-ER (3177) than the Ld-er1(NSW20) background.

Also consistent with the carbon discrimination measurements, is the 20% difference in transpiration efficiency between the two RILs parental lines (4.06 and 3.38 mmolC/molH2O in *Col4-ER* and *Ld-er1*, respectively).

The fact that of all 3 erecta mutants examined, er105 has the most extreme carbon 20 discrimination and transpiration efficiency phenotypes suggests that the er105 mutation affects a more crucial part of the ERECTA gene than er2 or er1. This is consistent with the published data on the er105 mutant. This mutation corresponds to the insertion of a large "foreign insert" in the ERECTA gene (1200bp). The insertion totally inhibits transcription of the gene and causes the strongest erecta phenotype of all erecta mutants isolated in Col (with respect to inflorescence clustering and silique width and shape. Alternatively, or in addition, data indicate that erecta mutations have a stronger effect on carbon isotope discrimination values in a Columbia genetic background than in a Landsberg background (comparison of phenotypic effects of er105 and er1), implying that other genes, polymorphic 30 between Landsberg and Columbia ecotypes, interact with ERECTA in determining transpiration efficiency. This could also account for the greater difference in transpiration efficiency between er/ER lines in Col background than in a Ld background (see above, Table 4). Alternatively, or in addition, data indicate that the erecta mutation is not the only mutation present in the er105 mutant. For example,

the mutagenized Col seeds may have carried the gl1 mutation, induced by the fast neutron irradiation, that also contributes to the phenotype observed.

A comparison of transcript profiles in er/ER isogenic lines (in both Col and Ld background) allows determination of the involvement of additional genes to ERECTA and the effect of environment on their expression.

45

TABLE 1

QTL Analysis of Carbon Isotope Discrimination in Lister and Dean's Recombinant Inbred Lines

RUN No.	chr2 locus	QTL	chr4 locus	99	CONCLUSION		
Experimental conditions		analysis method		QTLs number predicted map position	predicted	map position	
Run 1 (40 lines) Glasshouse-							
12h day length	58.5	SIM&CIM		2	chr2:	58.5-61.02	
irradiance 150-350 $ m \mu E~m^{-2}~s^{-1}$	46.77	SIM&CIM			chr2:	46.77-50.75	
Seedlings transferred from	61.02	SIM	108.5				
agar plates	•						
Run1 data							
but with using different							
markers							
	56.94 to 58.00	CIM&SIM		7			
	46.77 to 50.75	SIM					
	63.02						

RUN No.	chr2 locus	QTL	chr4 locus	20	CONCLUSION	Z
Experimental conditions		analysis method		QTLs number predicted map position	predicte	l map position
Run 1						
with different number of						
lines						
	58.5 to 61.02			2		
	56-61					
Run2						
Glasshouse						
September						
from seeds sown on soil						
batch 1	50.75	CIM (QTL cart)		7	chr2:	56.94-61.02
	61.02	MQTL			cbr2:	50.75
batch 2	?50.75	MQTL		NS		
batch3-5						
all batches	58.5	MQTLcart		NS		
	56.94-58.5	MQTL				

RUN No.	chr2 locus	QTL	chr4 locus	ຽ	CONCLUSION	7.
Experimental conditions		analysis method		QTLs number	predicted	predicted map position
Run 3						
37 lines: parents and lines						
with crossing-overs on						
chromosome 2						
5 growth conditions						
differing in humidity,						
irradiance, mode of						
establishment (seeds sown						
on soil or seedlings						
transplanted from agar)						
batch B	61.02-61.06		108 NS			
batch C	56.94-58.00					
batch D	63.02	QTLcar				
	63.02	MQTL				
all batches (conditions)	58.5			1or 2?	chr2:	56.94-58.5
	61.02			3	chr2:	61.02-63.02

RUN No.	chr2 locus	QTL	chr4 locus	ŏ	CONCLUSION	NO
Experimental conditions		analysis method		QTLs number	predict	QTLs number predicted map position
Run 4						
same lines as Run 3						
growth chambers						
10h daylight						
	50.74				chr2:	50.74
Run 5						
repeat of run 1 BUT ALL						
lines						
	50.74			1	chr2:	50.74
Run 7						
same lines as in run 1 but						
in growth chamber						
and higher light						
10h daylength	46.77-50.75	CIM&SIM		7	chr 2:	46.77-5065
$470-510~\mu\mathrm{E}~\mathrm{m}^2~\mathrm{s}^{-1}$ irradiance						

TABLE 2

Background	Mutation	Stock Centre name	Isogenic ER line and
			Stock Centre Name
Landsberg	er1	CS20 or NW20 a	3177 or CS163
Columbia	er2 ^b	3401	Col1 or 3176
Columbia	er105 °		Col3 with gl1 marker or Col0

- a, NW20 is an *Ler* parent for Lister and Dean's recombinant lines, carrying the *er1*mutation. Lines 3177 or CS163 are the closest isogenic ER lines.
 - b, er2 is an er allele identified by Rédéi in Col background. Col1 or 3176 are the closest Col near-isogenic lines.
 - c, er105 was isolated from a fast-neutron-irradiated Col seed population (Torii et al., 1996).
- d, Col4, the *Col* parent for the Lister and Dean's parent was systamically included in all comparisons.

20

TABLE 3

Comparison of er/ER lines in both Col and Ld background for carbon isotope discrimination values

		(6)	er1-Coli								0.73	0.73	0.15	0.17	0.28	0.36
٠	.	(8)	er105-Coli				0.16	1.18	0.11	1.60	1.75 (0.95	1.22	1.16	0.88	0.95
onditions	Differences in mean carbon isotope discrimination values (per mil)	(2)	er1-Col4	(parental	lines for	RILs)					0.82	0.73	0.05	90.0	0.56	0.33
(per ml) in leaf material under a range of environmental conditions	crimination v	(9)	er1-3177								0.64	0.74	0.35	0.28	0.00	0.39
a range of en	n isotope dis	(2)	er2-3176								0.92	0.27	0.75	0.54	0.02	0.38
terial under	mean carbo	(4)	er105-3176								1.67	0.71	1.23	1.19	0.77	0.87
nl) in leaf me	ifferences in	(3)	Colo er105-Col4								1.83	1.01	1.12	1.11	0.77	0.94
(per r	Q	(2)	er105-Col0				0.16	1.18	0.11	1.60		1.13	1.32	1.16	1.09	1.05
		(1)	er-ER	(all lines)			0.13	0.89	0.26	1.12	1.03	0.70	0.70	0.59	0:30	0.56
	Run	No.					1	7	က	4,	ស	· .	7	80	თ	10

11	0.48		0.40				0.52	0.40	0.52
12	0.36	0.82	1.31	1.08	0.33	0.05	0.07	1.07	0.01
13	0.38		06.0	0.82	0.07	09.0	0.52	0.86	0.56
14	0.65	1.42	09.0			0.58	90.0	1.01	0.32
15	0.82						0.82		0.82
For all	runs:								
Mean 0.60	0.60	1.01	1.00	1.04	0.41	0.40	0.41	0.95	0.42
S.E.	0.07	0.14	0.11	0.11	0.10	0.08	60.0	0.12	0.08
						-			
For Con	For Common runs:								
Mean: 0.58	0.58	1.10	1.12	1.04	0.41	0.38	0.39	1.11	0.37
S.E. 0.08	0,08	0.05	0.11	0.11	0.10	0.09	0.10	0.10	0.09

TABLE 4

Run 9- December 2001: Leaf gas exchange measurements in er/ER Arabidopsis lines

			E	(2)	(3)	(4)	(5)	9	(2)	(8)
	Genotype		떠	A	Gw	A/E	ра	.iď	pi/pa	1-pi/pa
			$mmol H_2O$	H20	mol/m^2	mol/m²/s mmolC/	µbar	μbar		
			m^2/s							
				$\mu molC/m^2/s$	s/ _z u	molH ₂ O	02	•		
Row (1) Ld-ER	3177-G	Mean	3.38	12.33	0.273	3.67	360	282	0.782	0.218
		S.E.	0.48	1.64	0.039	0.14	10	11	0.010	0.010
Row (2) Ld-er	NSW20 E	Mean	2.59	8.73	0.218	3.38	348	280	0.804	0.196
		S.E.	0.07	0.31	0.005	0.04	വ	41	0,002	0.002
		ż								
Row (3) Col-ER	933	Mean	3.41	13.55	0.291	4.06	350	270	0.772	0.228
		S.E.	0.40	1.16	0.040	0.22	41	7	0.020	0.020
Row (4) Col-ER	3176 J	Meen	2.23	10.13	0.180	4.55	346	254	0.734	0.266
	(Col1)	S.E.	0.50	1.47	0.048	0.24	വ	6	0.021	0.021

D (E) (2)	A 50140	Mean	2.27	8.55	0.198	3.76	356	283	0.795	0.205
19-100 (c) woy		S.E.	0.03	0.17	0.005	0.02	11	10	9000	9000
سی این (ق) سی ط). J.	Mean	3.06	11.90	0.256	3.92	357	279	0.780	0.220
Kow (o) Cor-e r		S.E.		0.56	0.027	0.12	7	9	0.014	0.014
CONCLUSION	NOIS									
Comparie	Comparison Ld-ER/Ld-er	· l-er	er line	er line has lower A/E with lower g and lower A	A/E with l	ower g an	d lower .	Ą		
•			The di	The difference in A/E is driven by A	A/E is dri	ven by A				
Comparis	Comparison 933/NSW20	/20	NSW2(NSW20 (er) has lower A/E with lower g and lower A	ower A/E	with lowe	g and le	ower A		
Comparit	Comparison Col1/Ld-er1	er1	The di	The difference in A/E is driven by A	A/E is dri	ven by A				
Comparis	Comparison Col1/Col-er105	-er105	er105 l	er105 has MUCH lower A/E with Higher g and lower A	lower A/F	with Hig	her g an	d.lower	⋖	
•			i.e. the	i.e. the difference in A/E is driven by A and g	in A/E is	driven by	A and g			
Comparis	Comparison Col1/Col-er2	-er2	er2 has	er2 has lower A/E with MUCH higher g and HIGHER A	3 with MU	ICH bigbe	r g and F	HIGHER	A	
1			i.e. the	difference	e in A/E is	driven by	g and is	esoddo s	d or not d	i.e. the difference in A/E is driven by g and is opposed or not driven by $\dot{ m A}$

NOTE: p_a and p_f are the ambient and intercellular partial pressures of CO_2 , respectively.

SEQUENCE LISTING

```
5
     <110> The Australian National University
          Masle, Josette
 10
          Farquhar, Graham
          Gilmore, Scott
 15
     <120> Method of producing plants having enhanced transpiration
     efficiency and plants produced therefrom I
 20
     <130> 500592/MRO
 25 <160> 10
     <170> PatentIn version 3.1
     <210> 1
 35 <211> 3176
     <212> DNA
     <213> Arabidopsis thaliana ERECTA allele
 40
     <220>
 45 <221> CDS
     <222>
           (77)..(3004)
     <223>
. 50
     <400> 1
     gtttcttctt catggagact tgaaagcttt taaagtatat ctaaaaacgc agtcgtttta
```

agactgtgtg tgagaa atg gct ctg ttt aga gat att gtt ctt ctt ggg ttt 112 Met Ala Leu Phe Arg Asp Ile Val Leu Leu Gly Phe 5 ctc ttc tgc ttg agc tta gta gct act gtg act tca gag gag gga gca Leu Phe Cys Leu Ser Leu Val Ala Thr Val Thr Ser Glu Glu Gly Ala 15 10 acg ttg ctg gag att aag aag tca ttc aaa gat gtg aac aat gtt ctt Thr Leu Leu Glu Ile Lys Lys Ser Phe Lys Asp Val Asn Asn Val Leu 15 tat gac tgg aca act tca cct tct tcg gat tat tgt gtc tgg aga ggt Tyr Asp Trp Thr Thr Ser Pro Ser Ser Asp Tyr Cys Val Trp Arg Gly 50 55 20 gtg tct tgt gaa aat gtc acc ttc aat gtt gtt gct ctt aat ttg tca Val Ser Cys Glu Asn Val Thr Phe Asn Val Val Ala Leu Asn Leu Ser 25 gat ttg aat ctt gat gga gaa atc tca cct gct att gga gat ctc aag Asp Leu Asn Leu Asp Gly Glu Ile Ser Pro Ala Ile Gly Asp Leu Lys ឧ೧ 85 30 agt ctc ttg tca att gat ctg cga ggt aat cgc ttg tct gga caa atc Ser Leu Leu Ser Ile Asp Leu Arg Gly Asn Arg Leu Ser Gly Gln Ile 100 35 cct gat gag att ggt gac tgt tct tct ttg caa aac tta gac tta tcc Pro Asp Glu Ile Gly Asp Cys Ser Ser Leu Gln Asn Leu Asp Leu Ser 110 115 40 ttc aat gaa tta agt ggt gac ata ccg ttt tcg att tcg aag ttg aag Phe Asn Glu Leu Ser Gly Asp Ile Pro Phe Ser Ile Ser Lys Leu Lys 130 45 caa ctt gag cag ctg att ctg aag aat aac caa ttg ata gga ccg atc Gln Leu Glu Gln Leu Ile Leu Lys Asn Asn Gln Leu Ile Gly Pro Ile 145 50 cct tca aca ctt tca cag att cca aac ctg aaa att ctg gac ttg gca Pro Ser Thr Leu Ser Gln Ile Pro Asn Leu Lys Ile Leu Asp Leu Ala 165 55 cag aat aaa ctc agt ggt gag ata cca aga ctt att tac tgg aat gaa 640

Gln Asn Lys Leu Ser Gly Glu Ile Pro Arg Leu Ile Tyr Trp Asn Glu gtt ctt cag tat ctt ggg ttg cga gga aac aac tta gtc ggt aac att Val Leu Gln Tyr Leu Gly Leu Arg Gly Asn Asn Leu Val Gly Asn Ile tct cca gat ttg tgt caa ctg act ggt ctt tgg tat ttt gac gta aga Ser Pro Asp Leu Cys Gln Leu Thr Gly Leu Trp Tyr Phe Asp Val Arg aac aac agt ttg act ggt agt ata cct gag acg ata gga aat tgc act Asn Asn Ser Leu Thr Gly Ser Ile Pro Glu Thr Ile Gly Asn Cys Thr gee tte cag gtt ttg gae ttg tee tae aat cag eta act ggt gag ate Ala Phe Gln Val Leu Asp Leu Ser Tyr Asn Gln Leu Thr Gly Glu Ile cct ttt gac atc ggc ttc ctg caa gtt gca aca tta tca ttg caa ggc Pro Phe Asp Ile Gly Phe Leu Gln Val Ala Thr Leu Ser Leu Gln Gly aat caa ctc tct ggg aag att cca tca gtg att ggt ctc atg caa gcc Asn Gln Leu Ser Gly Lys Ile Pro Ser Val Ile Gly Leu Met Gln Ala ctt gca gtc tta gat cta agt ggc aac ttg ttg agt gga tct att cct Leu Ala Val Leu Asp Leu Ser Gly Asn Leu Leu Ser Gly Ser Ile Pro ccg att ctc gga aat ctt act ttc acc gag aaa ttg tat ttg cac agt Pro Ile Leu Gly Asn Leu Thr Phe Thr Glu Lys Leu Tyr Leu His Ser aac aag ctg act ggt tca att cca cct gag ctt gga aac atg tca aaa Asn Lys Leu Thr Gly Ser Ile Pro Pro Glu Leu Gly Asn Met Ser Lys ctc cat tac ctg gaa ctc aat gat aat cat ctc acg ggt cat ata cca Leu His Tyr Leu Glu Leu Asn Asp Asn His Leu Thr Gly His Ile Pro cca gag ctt ggg aag ctt act gac ttg ttt gat ctg aat gtg gcc aac Pro Glu Leu Gly Lys Leu Thr Asp Leu Phe Asp Leu Asn Val Ala Asn

	aat gat 1216	ctg	gaa	gga	cct	ata	cct	gat	cat	ctg	agc	tct	tgc	aca	aat
5	Asn Asp 365	Leu	Glu	Gly	Pro 370	Ile	Pro	Asp	His	Leu 375	Ser	Ser	Cys	Thr	Asn 380
	cta aac 1264	agc	tta	aat	gtt	cat	ggg	aac	aag	ttt	agt	ggc	act	ata	ccc
10	Leu Asn	Ser	Leu	Asn 385	Val	His	Gly	Asn	Lys 390	Phe	Ser	Gly	Thr	Ile 395	Pro
	cga gca 1312	ttt	caa	aag	cta	gaa	agt	atg	act	tac	ctt	aat	ctg	tcc	agc
15	Arg Ala	Phe	Gln 400	Lys	Leu	Glu	Ser	Met 405	Thr	Tyr	Leu	Asn	Leu 410	Ser	Ser
	aac aat 1360	atc	aaa	ggt	cca	atc	ccg	gtt	gag	cta	tct	cgt	atc	ggt	aac
20	Asn Asn	Ile 415	Lys	Gly	Pro	Ile	Pro 420	Val	Glu	Leu	Ser	Arg 425	Ile	Gly	Asn
	tta gat 1408	aca	ttg	gat	ctt	tcc	aac	aac	aag	ata	aat	gga	atc	att	cct
25	Leu Asp 430	Thr	Leu	Asp	Leu	Ser 435	Asn	Asn	Lys	Ile	Asn 440	Gly	Ile	Ile	Pro
	tct tcc 1456	ctt	ggt	gat	ttg	gag	cat	ctt	ctc	aag	atg	aac	ttg	agt	aga
30	Ser Ser 445	Leu	Gly	Asp	Leu 450	Glu	His	Leu	Leu	Lys 455	Met	Asn	Leu	Ser	Arg 460
	aat cat 1504	ata	act	ggt	gta	gtt	cca	ggc	gac	ttt	gga	aat	cta	aga	agc
35	Asn His	Ile	Thr	Gly 465	Val	Val	Pro	Gly	Asp 470	Phe	Gly	Asn	Leu	Arg 475	Ser
	atc atg 1552	gaa	ata	gat	ctt	tca	aat	aat	gat	atc	tct	ggc	cca	att	cca
40	Ile Met	Glu	Ile 480	Asp	Leu	Ser	Asn	Asn 485	Asp	Ile	Ser	Gly	Pro 490	Ile	Pro
	gaa gag 1600	ctt	aac	caa	tta	cag	aac	ata	att	ttg	ctg	aga	ctg	gaa	aat
45	Glu Glu	Leu 495	Asn	Gln	Leu	Gln	Asn 500	Ile	Ile	Leu	Leu	Arg 505	Leu	Glu	Asn
	aat aac 1648	ctg	act	ggt	aat	gtt	ggt	tca	tta	gcc	aac	tgt	ctc	agt	ctc
50	Asn Asn 510	Leu	Thr	Gly	Asn	Val 515	Gly	Ser	Leu	Ala	Asn 520	Суѕ	Leu	Ser	Leu
	act gta 1696	ttg	aat	gta	tct	cat	aac	aac	ctc	gta	ggt	gat	atc	cct	aag
55	Thr Val 525	Leu	Asn	Val	Ser 530	His	Asn	Asn	Leu	Val 535	Gly	Asp	Ile	Pro	Lys 540

	aac aat 1744	aac	ttc	tca	aga	ttt	tca	cca	gac	agc	ttc	att	ggc	aat	cct
5	Asn Asn	Asn	Phe	Ser 545	Arg	Phe	Ser	Pro	Asp 550	Ser	Phe	Ile	Gly	Asn 555	Pro
3	ggt ctt 1792	tgc	ggt	agt	tgg	cta	aac	tca	ccg	tgt	cat	gat	tct	cgt	cga
40	Gly Leu	Cys	Gly 560	Ser	Trp	Leu	Asn	Ser 565	Pro	Cys	His	Asp	Ser 570	Arg	Arg
10	act gta 1840	cga	gtg	tca	atc	tct	aga	gca	gct	att	ctt	gga	ata	gct	att
	Thr Val	Arg 575	Val	Ser	Ile	Ser	Arg 580	Ala	Ala	Ile	Leu	Gly 585	Ile	Ala	Ile
15	ggg gga 1888	ctt	gtg	atc	ctt	ctc	atg	gtc	tta	ata	gca	gct	tgc	cga	ccg
	Gly Gly 590	Leu	Val	Ile	Leu	Leu 595	Met	Val	Leu	Ile	Ala 600	Ala	Cys	Arg	Pro
20	cat aat 1936	çct	cct	cct	ttt	ctt	gat	gga	tca	ctt	gac	aaa	cca	gta	act .
	His Asn 605	Pro	Pro	Pro	Phe 610	Leu	Asp	Gly	Ser	Leu 615	Asp	Lys	Pro	Val	Thr 620
25	tat tcg 1984	aca	ccg	aag	ctc	gtc	atc	ctt	cat	atg	aac	atg	gca	ctc	cac
	Tyr Ser	Thr	Pro	Lys 625	Leu	Val	Ile	Leu	His 630	Met	Asn	Met	Ala	Leu 635	His
30	gtt tac	gag	gat	atc	atg	aga	atg	aca	gag	aat	cta	agt	gag	aag	tat
	2032 Val Tyr	Glu	Asp 640	Ile	Met	Arg	Met	Thr 645	Glu	Asn	Leu	Ser	Glu 650	Lys	Tyr
35	atc att	aaa		gga	gca	tca	agc		gta	tac	aaa	tgt		ttg	aag
	2080 Ile Ile	Gly 655	His	Gly	Ala	Ser	Ser 660	Thr	Val	Tyr	Lys		Val	Leu	Lys
40	aat tgt		ccg	gtt	gcg	att		caa	ctt	tac	tct	665 cac	aac	cca	caσ
	2128 Asn Cys					Ile					Ser				
45	670 tca atg	aaa	cag	ttt	gaa	675 aca	gaa	ctc	gag	ato	680 cta	agt		atc	220
	2176 Ser Met				•										_
50	685	aat	ctt	ata	690	at >	~ ~~	~~+		695	_4_	1			700
	cac aga 2224 His Arg														
55				705					710					715	
	agt ctt 2272	ctg	ttc	tat	gac	tat	ttg	gaa	aat	ggt	agc	ctc	tgg	gat	ctt

Ser Leu Leu Phe Tyr Asp Tyr Leu Glu Asn Gly Ser Leu Trp Asp Leu ctt cat ggc cct acg aag aaa aag act ctt gat tgg gac aca cgg ctt Leu His Gly Pro Thr Lys Lys Lys Thr Leu Asp Trp Asp Thr Arg Leu aag ata gca tat ggt gca gca caa ggt tta gct tat cta cac cat gac Lys Ile Ala Tyr Gly Ala Ala Gln Gly Leu Ala Tyr Leu His His Asp tgt agt cca agg atc att cac aga gac gtg aag tcg tcc aac att ctc Cys Ser Pro Arg Ile Ile His Arg Asp Val Lys Ser Ser Asn Ile Leu ttg gac aaa gac tta gag gct cgt ttg aca gat ttt gga ata gcg aaa Leu Asp Lys Asp Leu Glu Ala Arg Leu Thr Asp Phe Gly Ile Ala Lys age ttg tgt gtg tca aag tca cat act tca act tac gtg atg ggc acg Ser Leu Cys Val Ser Lys Ser His Thr Ser Thr Tyr Val Met Gly Thr ata ggt tac ata gac ccc gag tat gct cgc act tca cgg ctc act gag Ile Gly Tyr Ile Asp Pro Glu Tyr Ala Arg Thr Ser Arg Leu Thr Glu aaa too gat gto tao agt tat gga ata gto ott ott gag ttg tta aco Lys Ser Asp Val Tyr Ser Tyr Gly Ile Val Leu Leu Glu Leu Leu Thr cga agg aaa gcc gtt gat gac gaa tcc aat ctc cac cat ctg ata atg Arg Arg Lys Ala Val Asp Asp Glu Ser Asn Leu His His Leu Ile Met tca aag acg ggg aac aat gaa gtg atg gaa atg gca gat cca gac atc Ser Lys Thr Gly Asn Asn Glu Val Met Glu Met Ala Asp Pro Asp Ile aca tcg acg tgt aaa gat ctc ggt gtg gtg aag aaa gtt ttc caa ctg Thr Ser Thr Cys Lys Asp Leu Gly Val Val Lys Lys Val Phe Gln Leu gca ctc cta tgc acc aaa aga cag ccg aat gat cga ccc aca atg cac Ala Leu Leu Cys Thr Lys Arg Gln Pro Asn Asp Arg Pro Thr Met His

cag gtg act cgt gtt ctc ggc agt ttt atg cta tcg gaa caa cca cct 2848 Gln Val Thr Arg Val Leu Gly Ser Phe Met Leu Ser Glu Gln Pro Pro 5 920 910 915 gct gcg act gac acg tca gcg acg ctg gct ggt tcg tgc tac gtc gat 2896 Ala Ala Thr Asp Thr Ser Ala Thr Leu Ala Gly Ser Cys Tyr Val Asp 10 925 930 gag tat gca aat ctc aag act cct cat tct gtc aat tgc tct tcc atg 2944 Glu Tyr Ala Asn Leu Lys Thr Pro His Ser Val Asn Cys Ser Ser Met 15 945 950 agt gct tct gat gct caa ctg ttt ctt cgg ttt gga caa gtt att tct 2992 Ser Ala Ser Asp Ala Gln Leu Phe Leu Arg Phe Gly Gln Val Ile Ser 20 965 cag aac agt gag tagtttttcg ttaggaggag aatctttaaa acggtatctt 3044 Gln Asn Ser Glu 25 975 ttegttgegt taagetgtta gaaaaattaa tgteteatgt aaagtattat geactgeett 3104 · 30 attattatta gacaagtgtg tggtgtgaat atgtcttcag actggcactt agacttccta 3164 taagttcttg cc 3176 35 <210> 2 <211> 976 40 <212> PRT <213> Arabidopsis thaliana ERECTA allele 45

<400> 2

55

Met Ala Leu Phe Arg Asp Ile Val Leu Leu Gly Phe Leu Phe Cys Leu 50 1 5 10 15

Ser Leu Val Ala Thr Val Thr Ser Glu Glu Gly Ala Thr Leu Leu Glu 20 . 25 30

Ile Lys Lys Ser Phe Lys Asp Val Asn Asn Val Leu Tyr Asp Trp Thr

.

	35					40					45					
5	Thr	Ser 50	Pro	Ser	Ser	Asp	Tyr 55	Cys	Val	Trp	Arg	Gly 60	Val	Ser	Cys	Glu
10	Asn 65	Val	Thr	Phe	Asn	Val 70	Val	Ala	Leu	Asn	Leu 7 5	Ser	Asp	Leu	Asn	Leu 80
	Asp	Gly	Glu	Ile	Ser 85	Pro	Ala	Ile	Gly	Asp 90	Leu	Lys	Ser	Leu	Leu 95	Ser
15	Ile	Asp	Leu	Arg 100	Gly	Asn	Arg	Leu	Ser 105	Gly	Gln	Ile	Pro	Asp 110	Glu	Ile
20	Gly	Asp	Cys 115	Ser	Ser	Leu	Gln	Asn 120	Leu	Asp	Leu	Ser	Phe 125	Asn	Glu	Leu
25	Ser	Gly 130	Asp	Ile	Pro	Phe	Ser 135	Ile	Ser	Lys	Leu	Lys 140	Gln	Leu	Glu	Gln
30	Leu 145	Ile	Leu	Lys	Asn	Asn 150	Gln	Leu	Ile	Gly	Pro 155	Ile	Pro	Ser	Thr	Leu 160
	Ser	Gln	Ile	Pro	Asn 165	Leu	Lys	Ile	Leu	Asp 170	Leu	Ala	Gln	Asn	Lys 175	Leu
35	Ser ·	Gly	Glu	Ile 180	Pro	Arg	Leu	Ile	Tyr 185	Trp	Asn	Glu	Val	Leu 190	Gln	Туг
40	Leu	Gly	Leu 195	Arg	Gly	Asn	Asn	Leu 200	Val	Gly	Asn	Ile	Ser 205	Pro	Asp	Leu
4 5	Cys	Gln 210	Leu	Thr	Gly	Leu	Trp 215	Tyr	Phe	Asp	Val	Arg 220	Asn	Asn	Ser	Leu .
50	Thr 225	Gly	Ser	Ile	Pro	Glu 230	Thr	Ile	Gly	Asn	Cys 235	Thr	Ala	Phe	Gln	Val 240
	Leu	Asp	Leu	Ser	Tyr 245	Asn	Gln	Leu	Thr	Gly 250	Glu	Ile	Pro	Phe	Asp 255	Ile
55	Gly	Phe	Leu	Gln 260	Val	Ala	Thr	Leu	Ser 265	Leu	Gln	Gly	Asn	Gln 270	Leu	Ser

5	Gly	Lys	Ile 275		Ser	Val	Ile	Gly 280	Leu	Met	Gln	Ala	Leu 285	Ala	Val	Leu
0	Asp	Leu 290	Ser	Gly	Asn	Leu	Leu 295	Ser	Gly	Ser	Ile	Pro 300	Pro	Ile	Leu	Gl
10	Asn 305	Leu	Thr	Phe	Thr	Glu 310	Lys	Leu	Tyr	Leu	His 315	Ser	Asn	Lys	Leu	Th:
15	Gly	Ser	Ile	Pro	Pro 325	Glu	Leu	Gly	Asn	Met 330		Lys	Leu	His	Tyr 335	Let
20	Glu	Leu	Asn	Asp 340	Asn	His	Leu	Thr	Gly 345	His	Ile	Pro	Pro	Glu 350	Leu	Gl
25	Lys	Leu	Thr 355	Asp	Leu	Phe	Asp	Leu 360	Asn	Val	Ala	Asn	Asn 365	Asp	Leu	Glu
30	Gly	Pro 370	Ile	Pro	Asp	His	Leu 375	Ser	Ser	Cys	Thr	Asn 380	Leu	Asn	Ser	Leu
30	Asn 385	Val	His	Gly	Asn	Lys 390	Phe	Ser	Gly	Thr	Ile 395	Pro	Arg	Ala	Phe	Gln 400
35	Lys	Leu	Glu	Ser	Met 405	Thr	Tyr	Leu	Asn	Leu 410	Ser	Ser	Asn	Asn	Ile 415	Lys
1 0	Gly	Pro	Ile	Pro 420	Val	Glu	Leu	Ser	Arg 425	Ile	Gly	Asn	Leu	Asp 430	Thr	Leu
1 5	Asp	Leu	Ser 435	Asn	Asn	Lys	Ile	Asn 440	Gly	Ile	Ile	Pro	Ser 445	Ser	Leu	Gly
, 50	Asp	Leu 450	Glu	His	Leu	Leu	Lys 455	Met	Asn	Leu	Ser	Arg 460	Asn	His	Ile	Thr
•	Gly 465	Val	Val	Pro	Gly	Asp 470	Phe	Gly	Asn	Leu	Arg 475	Ser	Ile	Met	Glu	Ile 480
55	Asp	Leu	Ser	Asn	Asn 485	Asp	Ile	Ser	Gly	Pro 490	Ile	Pro	Glu	Glu	Leu 495	Asn

	Gln	Leu	Gln	Asn 500	Ile	Ile	Leu	Leu	Arg 505	Leu	Glu	Asn	Asn	Asn 510	Leu	Thr
5	Gly	Asn	Val 515	Gly	Ser	Leu	Ala	Asn 520	Cys	Leu	Ser	Leu	Thr 525	Val	Leu	Asn
10	Val	Ser 530	His	Asn	Asn	Leu	Val 535	Gly	Asp	Ile	Pro	Lys 540	Asn	Asn	Asn	Phe
15	Ser 545	Arg	Phe	Ser	Pro	Asp 550	Ser	Phe	Ile	Gly	Asn 555	Pro	Gly	Leu	Cys	Gly 560
20	Ser	Trp	Leu	Asn	Ser 565	Pro	Cys	His	Asp	Ser 570	Arg	Arg	Thr	Val	Arg 575	Val
	Ser	Ile	Ser	Arg 580	Ala	Ala	Ile	Leu	Gly 585	Ile	Ala	Ile	Gly	Gly 590	Leu	Val
25	Ile	Leu	Leu 595	Met	Val	Leu	Ile	Ala 600	Ala	Cys	Arg	Pro	His 605	Asn	Pro	Pro ·
30	Pro	Phe 610	Leu	Asp	Gly	Ser	Leu 615	Asp	Lys	Pro	Val	Thr 620	Tyr	Ser	Thr	Pro
35	Lys 625	Leu	Val	Ile	Leu	His 630	Met	Asn	Met	Ala	Leu 635	His	Val	Tyr	Glu	Asp 640
4 0	Ile	Mėt	Arg	Met	Thr 645	Glu	Asn	Leu	Ser	Glu 650	Lys	Tyr	Ile	Ile	Gly 655	His
	Gly	Ala	Ser	Ser 660	Thr	Val	Tyr	Lys	Cys 665	Val	Leu	Lys	Asn	Cys 670	Lys	Pro
45	Val	Ala	Ile 675	Lys	Arg	Leu	Tyr	Ser 680	His	Asn	Pro	Gln	Ser 685	Met	Lys	Gln
50	Phe	Glu 690	Thr	Glu	Leu	Glu	Met 695	Leu	Ser	Ser	Ile	Lys 700	His	Arg	Asn	Leu
55	Val 705	Ser	Leu	Gln	Ala	Tyr 710	Ser	Leu	Ser	His	Leu 715	Gly	Ser	Leu	Leu	Phe

Tyr Asp Tyr Leu Glu Asn Gly Ser Leu Trp Asp Leu Leu His Gly Pro Thr Lys Lys Lys Thr Leu Asp Trp Asp Thr Arg Leu Lys Ile Ala Tyr Gly Ala Ala Gln Gly Leu Ala Tyr Leu His His Asp Cys Ser Pro Arg Ile Ile His Arg Asp Val Lys Ser Ser Asn Ile Leu Leu Asp Lys Asp Leu Glu Ala Arg Leu Thr Asp Phe Gly Ile Ala Lys Ser Leu Cys Val Ser Lys Ser His Thr Ser Thr Tyr Val Met Gly Thr Ile Gly Tyr Ile Asp Pro Glu Tyr Ala Arg Thr Ser Arg Leu Thr Glu Lys Ser Asp Val Tyr Ser Tyr Gly Ile Val Leu Leu Glu Leu Leu Thr Arg Arg Lys Ala Val Asp Asp Glu Ser Asn Leu His His Leu Ile Met Ser Lys Thr Gly Asn Asn Glu Val Met Glu Met Ala Asp Pro Asp Ile Thr Ser Thr Cys Lys Asp Leu Gly Val Val Lys Lys Val Phe Gln Leu Ala Leu Leu Cys 890 . Thr Lys Arg Gln Pro Asn Asp Arg Pro Thr Met His Gln Val Thr Arg Val Leu Gly Ser Phe Met Leu Ser Glu Gln Pro Pro Ala Ala Thr Asp Thr Ser Ala Thr Leu Ala Gly Ser Cys Tyr Val Asp Glu Tyr Ala Asn Leu Lys Thr Pro His Ser Val Asn Cys Ser Ser Met Ser Ala Ser Asp

945 950 955 960

Ala Gln Leu Phe Leu Arg Phe Gly Gln Val Ile Ser Gln Asn Ser Glu 965 970 975

<210> 3

10 <211> 3000

<212> DNA

<213> rice ERECTA homolog

15

<220>

20 <221> CDS

<222> (1)..(2997)

<223>

25

<400> 3

- gtt ggt gtg gcg gtg gcg gcg gcc tcc gga gga gga gga ggg gga 35 96 .

 Val Gly Val Ala Val Ala Glu Ala Ala Ser Gly Gly Gly Gly Gly Gly 20 25 30
- gat ggg gag ggg aag gcg ctg atg ggc gtg aag gcc ggt ttc ggg aac 40 144

 Asp Gly Glu Gly Lys Ala Leu Met Gly Val Lys Ala Gly Phe Gly Asn 35 40
- gcg gcc aac gcg ctc gtc gac tgg gac ggc ggc gcc gac cac tgc gcg 45 192 Ala Ala Asn Ala Leu Val Asp Trp Asp Gly Gly Ala Asp His Cys Ala 50 55
 - tgg cgc ggc gtc acc tgc gac aac gcc tcc ttc gcc gtc ctc gcc ctg

 240

 Trp Arg Gly Val Thr Cys Asp Asn Ala Ser Phe Ala Val Leu Ala Leu
 65

 70

 75

 80
 - aac ttg tca aat cta aac cta gga ggt gag atc tcg ccg gcc atc gga 55 288 Asn Leu Ser Asn Leu Asn Leu Gly Gly Glu Ile Ser Pro Ala Ile Gly

	gag 336	ctc	aag	aat	cta	cag	ttc	gtt	gat	ctc	aag	ggg	aac	aag	ctc	act
5	Glu	Leu	Lys	Asn 100	Leu	Gln	Phe	Val	Asp 105	Leu	Lys	Gly	Asn	Lys 110	Leu	Thr
	ggc 384	caa	atc	cca	gat	gag	att	ggg	gac	tgc	atc	tcc	tta	aaa	tat	ttg
10	_	Gln	Ile 115	Pro	Asp	Glu	Ile	Gly 120	Asp	Cys	Ile	Ser	Leu 125	Lys	Tyr	Leu
	gat 432	ttg	tct	ggc	aac	ttg	ctg	tat	gga	gac	atc	ccc	ttc	tcc	atc	tcc
15		Leu 130	Ser	Gly	Asn	Leu	Leu 135	Tyr	Gly	Asp	Ile	Pro 140	Phe	Ser	Ile	Ser
	aag 480	ctc	aag	cag	ctt	gag	gag	ctg	att	ttg	aag	aac	aac	cag	ctc	acg
20		Leu	Lys	Gln	Leu	Glu 150	Glu	Leu	Ile	Leu	Lys 155	Asn	Asn	Gln	Leu	Thr 160
	gga 528	ccc	atc	cct	tcc	aca	ttg	tcc	caa	att	cca	aat	ctc	aag	aca	ttg
25		Pro	Ile	Pro	Ser 165	Thr	Leu	Ser	Gln	Ile 170	Pro	Asn	Leu	Lys	Thr 175	Leu
	gac 576	ctg	gca	cag	aac	cag	ctt	aca	ggc	gat	atc	cca	agg	ctc	ata	tac
30	Asp	Leu	Ala	Gln 180	Asn	Gln	Leu	Thr	Gly 185	Asp	Ile	Pro	Arg	Leu 190	Ile	Tyr
	tgg 624	aat	gaa	gtt	ctg	caa	tac	cta	ggt	ttg	agg	ggt	aac	tca	ctg	act
35	Trp	Asn	Glu 195	Val	Leu	Gln	Tyr	Leu 200	Gly	Leu	Arg	Gly	Asn 205	Ser	Leu	Thr
	gga 672	act	ttg	tca	cct	gac	atg	tgc	caa	ctg	act	ggc	ctg	tigg	tac	ttt
4 0		Thr 210	Leu	Ser	Pro	Asp	Met 215	Cys	Gln	Leu	Thr	Gly 220	Leu	Trp	Tyr	Phe
	gat 720	gta	agg	gga	aac	aat	ctc	aca	ggg	acc	att	cca	gag	agc	ata	ggg
45	Asp 225	Val	Arg	Gly	Asn	Asn 230	Leu	Thr	Gly	Thr	Ile 235	Pro	Glu	Ser	Ile	Gly 240
	aac 768	tgc	acc	agc	ttt	gag	att	ctg	gac	att	tcg	tat	aac	caa	atc	tct
50		Cys	Thr	Ser	Phe 245	Glu	Ile	Leu	Asp	Ile 250	Ser	Tyr	Asn	Gln	Ile 255	Ser
	gga 816	gata	ata	cct	tac	aac	ata	ggc	ttt	ctt	caa	gta	gcc	aca	ctg	tca
55		Glu	Ile	Pro 260	Tyr	Asn	Ile	Gly	Phe 265	Leu	Gln	Val	Ala	Thr 270	Leu	Ser

	ctt 864	caa	gga	aat	aga	ctg	act	ggg	aaa	att	cca	gat	gtg	att	ggc	ctg
5	Leu	Gln	Gly 275	Asn	Arg	Leu	Thr	Gly 280	Lys	Ile	Pro	Asp	Val 285	Ile	Gly	Leu
3	atg 912	caa	gct	ctt	gct	gtt	cta	gac	ctg	agt	gag	aac	gag	ctg	gta	ggg
10	Met	Gln 290	Ala	Leu	Ala	Val	Leu 295	Asp	Leu	Ser	Glu	Asn 300	Glu	Leu	Val	Gly
10	ccc 960	att	cct	tct	ata	ctg	ggc	aat	cta	tcc	tat	act	gga	aaa	cta	tat
15		Ile	Pro	Ser	Ile	Leu 310	Gly	Asn	Leu	Ser	Tyr 315	Thr	Gly	Lys	Leu	Tyr 320
15	tta 1008		ggg	aac	aaa	ctt	act	gga	gtc	ata	ccg	ccg	gag	ctt	ggg	aac
00	Leu	His	Gly	Asn	Lys 325	Leu	Thr	Gly	.Val	Ile 330	Pro	Pro	Glu	Leu	Gly 335	Asn
20	atg 105	_	aaa	ctt	agc	tac	cta	caa	ctg	aat	gat	aat	gaa	ttg	gtg	ggc
0		_	Lys	Leu 340	Ser	Tyr	Leu	Gln	Leu 345	Asn	Asp	Asn	Glu	Leu 350	Val	Gly
25	aca 1104		cca	gca	gag	ctt	ggc	aaa	ctt	gaa	gag	ctt	ttt	gaa	cta	aat
			Pro 355	Ala	Glu	Leu	Gly	Lys 360	Leu	Glu	Glu	Leu	Phe 365	Glu	Leu	Asn
30	ctt	gcc	aac	aac	aat	ctt	caa	ggt	cct	att	cct	qca	aac	atc	agt	tct
	1152	2					Gln								-	
35		370					375					380				
	tgc 120		gct	cta	aac	aaa	ttc	aat	gtt	tat	ggc	aat	aag	cta	aat	ggt
40	Cys 385	Thr	Ala	Leu	Asn	Lys 390	Phe	Asn	Val	Tyr	Gly 395	Asn	Lys	Leu	Asn	Gly 400
40	tct	att	cct	gct	ggt	ttc	cag	aag	ttg	gag	agt	ctg	act	tac	ttg	aac
	1240 Ser		Pro	Ala		Phe	Gln	Lys	Leu		Ser	Leu	Thr	Tyr		Asn
45					405					410					415	
	129	6													_	cac
50	Leu	Ser	Ser	Asn 420	Asn	Phe	Lys	Gly	Asn 425	Ile	Pro	Ser	Glu	Leu 430	Gly	His
	atc 134	atc	aac	ttg	gac	aca	ttg	gat	ctt	tcc	tac	aat	gaa	ttc	tct	gga
			Asn 435	Leu	Asp	Thr	Leu		Leu	Ser	Tyr	Asn		Phe	Ser	Gly
55								440					445			
	cca 139	gtt 2	cct	gct	acc	att	ggt	gat	cta	gag	cac	ctt	ctt	gaa	ctg	aat

Pro Val Pro Ala Thr Ile Gly Asp Leu Glu His Leu Leu Glu Leu Asn ttg agt aag aac cat ctt gat ggg cca gtt cct gct gag ttt gga aac Leu Ser Lys Asn His Leu Asp Gly Pro Val Pro Ala Glu Phe Gly Asn ttg aga agc gtc caa gta att gat atg tcc aac aac tta tct ggt Leu Arg Ser Val Gln Val Ile Asp Met Ser Asn Asn Leu Ser Gly agt ctg ccc gag gaa ctt gga caa ctt caa aac ctt gat agc ctg att Ser Leu Pro Glu Glu Leu Gly Gln Leu Gln Asn Leu Asp Ser Leu Ile ctt aac aac aat ttg gtt ggg gag atc cct gct caa ttg gcc aac Leu Asn Asn Asn Leu Val Gly Glu Ile Pro Ala Gln Leu Ala Asn tgc ttc agc tta aat aac ctt qca ttt cag gaa ttt gtc ata caa caa Cys Phe Ser Leu Asn Asn Leu Ala Phe Gln Glu Phe Val Ile Gln Gln ttt atc tgg aca tgt ccc gat ggc aaa gaa ctt ctc gaa att ccc aat Phe Ile Trp Thr Cys Pro Asp Gly Lys Glu Leu Leu Glu Ile Pro Asn gga aag cat ctt cta att tct gat tgc aac cag tac ata aat cat aaa Gly Lys His Leu Leu Ile Ser Asp Cys Asn Gln Tyr Ile Asn His Lys tgc agc ttc ttg ggt aat cca tta ctg cat gtt tac tgc caa gat tcc Cys Ser Phe Leu Gly Asn Pro Leu Leu His Val Tyr Cys Gln Asp Ser age tgt gga cae tet eat gga caa aga gtt aat att tea aag aca gea Ser Cys Gly His Ser His Gly Gln Arg Val Asn Ile Ser Lys Thr Ala att gct tgc att atc tta ggc ttt atc ata ttg ctc tgc gtt ctg ctg Ile Ala Cys Ile Ile Leu Gly Phe Ile Ile Leu Leu Cys Val Leu Leu ttg gct ata tat aaa aca aat caa cca cag cca ctt gtc aaa gga tcc Leu Ala Ile Tyr Lys Thr Asn Gln Pro Gln Pro Leu Val Lys Gly Ser

	gat aag 1968	cca	gtg	caa	gga	cct	cca	aag	cta	gtt	gtť	ctc	cag	atg	gac
5	Asp Lys	Pro	Val	Gln 645	Gly	Pro	Pro	Lys	Leu 650	Val	Val	Leu	Gln	Met 655	Asp
	atg gct 2016	atc	cat	act	tac	gag	gac	atc	atg	agg	ctg	aca	gag	aat	ttg
10	Met Ala	Ile	His 660	Thr	Tyr	Glu	Asp	11e 665	Met	Arg	Leu	Thr	Glu 670	Asn	Leu
	agc gag 2064	aaa	tac	atc	att	ggc	tat	ggc	gcc	tca	agc	act	gtc	tac	aaa
15	Ser Glu	Lys 675	Tyr	Ile	Ile	Gly	Tyr 680	Gly	Ala	Ser	Ser	Thr 685	Val	Tyr	Lys
	tgt gaa 2112	ctc	aag	agc	ggc	aag	gcc	att	gct	gtc	aag	cgg	ctt	tac	agt
20	Cys Glu 690	Leu	Lys	Ser	Gly	Lys 695	Ala	Ile	Ala	Val	Lys 700	Arg	Leu	Tyr	Ser
	cag tat 2160	aac	cat	agc	ctc	cga	gag	ttt	gaa	aca	gaa	cta	gag	aca	att
25	Gln Tyr 705	Asn	His	Ser	Leu 710	Arg	Glu	Phe	Glu	Thr 715	Glu	Leu	Glu	Thr	Ile 720
	ggc agc 2208	ata	cgg	cac	agg	aat	ctt	gtt	agc	ctc	cat	ggc	ttc	tcg	cta
30	Gly Ser	Íle	Arg	His 725	Arg	Asn	Leu	Val	Ser 730	Leu	His	Gly	Phe	Ser 735	Leu
	tct cca 2256	cat	gga	aac	ttg	ctc	ttc	tat	gat	tac	atg	gaa	aat	ggt	tcc
35	Ser Pro	His	Gly 740	Asn	Leu 	Leu	Phe	Tyr 745	Asp	Tyr	Met	Glu	Asn 750	Gly	Ser
	ttg tgg 2304	gat	ctt	ctc	cac	ggt	cca	tca	aag	aaa	gtg	aag	ċţc	aac	tgg
40	Leu Trp	Asp 755	Leu	Leu	His	Gly	Pro 760	Ser	Lys	Lys	Val	Lys 765	Leu	Asn	Trp
	gac aca 2352	aga	ctg	agg	atc	gcg	gtc	gga	gct	gca	caa	ggg	ctg	gcc	tat
45	Asp Thr 770	Arg	Leu	Arg	Ile	Ala 775	Val	Gly	Ala	Ala	Gln 780	Gly	Leu	Ala	Tyr
	ctc cac 2400	cat	gac	tgc	aac	cct	cgc	ata	atc	cac	aga	gat	gtc	aag	tcc
50	Leu His 785	His	Asp	Cys	Asn 790	Pro	Arg	Ile	Ile	Ніs 795	Arg	Asp	Val	Lys	Ser 800
	tcc aac 2448	atc	ctg	ctc	gac	gag	aac	ttc	gaa	gcg	cac	ctc	tca	gat	ttc
55	Ser Asn	Ile	Leu	Leu 805	Asp	Glu	Asn	Phe	Glu 810	Ala	His	Leu	Ser	Asp 815	Phe

	ggc ata 2496	A													
	Gly Ile	Ala	_		Val	Pro	Ser		Lys	Ser	His	Ala		Thr	Tyr
_			820	•				825					830		
5	gtg cta	gga	acc	atc	ggc	tac	att	gat	ccg	gag	tat	gcc	agg	act	tcc
	2544 Val Leu	G) v	Thr	Tle	Glv	ጥህኮ	Tle	Asp	Pro	Glu	Tvr	Ala	Ara	Thr	Ser
10	VAI Deu	835	1111	116	GIY	171	840	rop		Olu	- 7 -	845			
10	agg ctc	aat	asa	aaa	tet	gat	ata	tac	agc	ttc	aac	atc	atc	ctt	cta
	2592		9-9			9	9-3		5 -		99-		٠.		
	Arg Leu	Asn	Glu	Lys	Ser	Asp	Val	Tyr	Ser	Phe	Gly	Ile	Val	Leu	Leu
	850)				855					860		•		
15												,			
	gaa tto	ctc	aca	ggg	aag	aag	gcc	gtc	gac	aac	gaa	tcg	aac	ttg	cat
	2640 Glu Lev	Ton	mb ~	Gl v	Tare	T.ve	λla	V=1	Δen	Δsn	Glu	Ser	Asn	Len	His
	865	пец	1111	GIY	870	пуз	Λια	Val	rup	875	01 u	501	1.011	Lou	880
20	000														
	caa tto	, ata	ctc	tcc	aaa	gct	gat	gac	aac	aca	gtc	atg	gag	gca	gtg
	2688									-					
	Gln Leu	ı Ile	Leu		Lys	Ala	Asp	Asp		Thr	Val	Met	Glu		Val
				885					890					895	
25			4				.								
	gac tcc 2736	g gag	gtg	tca	gtg	acg	tgc	acg	gac	acg	gga	etg	gcc	ayy	aay
	Asp Sei	- Glu	Val	Ser	Va l	Thr	Cvs	Thr	Asp	Met	Glv	Leu	Val	Ara	Lvs
	nop bei	. 014	900		*****		970	905	_		1		910	9	-1 -
30															
	gcc tto	cag	ctc	gcc	ctt	ctg	tgc	acc	aag	agg	cac	cct	tca	gac	cgg
	2784														
	Ala Phe			Ala	Leu	Leu	_	Thr	Lys	Arg	His		Ser	Asp	Arg
35		915					920					925			
33	ccg ac	ata	cac	aaa	att	aca	agg	ata	cta	ctc	tcc	cta	cta	cca	acc
	2832	. acy	cac	gag	gcc	gca	agg	gcg	ccg		CCC	ccg	ccg	ccg	gcc
	Pro Th	. Met	His	Glu	Val	Ala	Arq	Val	Leu	Leu	Ser	Leu	Leu	Pro	Ala
	930					935	_				940				
40															
	tcc gc	c atg	aca	acg	CCC	aag	acg	gtg	gac	tac	tcc	cgg	ttg	ctg	gcg
	2880		_,	1	_	_			_	_	_	_	_	_	
	Ser Ala	a Met	Thr	Thr	950	Lys	Thr	Val	Asp	Tyr 955	Ser	Arg	Leu	Leu	A1a 960
45	343				930					933					960
	tcg ac	aca	acq	aca	acc	σac	ato	caa	aaa	cac	σac	ata	acc	σac	atc
	2928	,,	3	J - J	3	9		- 5	222		5	5-5		9	
	Ser Th	r Thr	Thr	Ala	Ala	Asp	Met	Arg	Gly	His	Asp	Val	Thr	'Asp	Ile
				965					970					975	
50					_										
	ggc ga 2976	aac	ago	tcc	tcc	gac	gag	cag	tgg	ttc	gtc	agg	ttc	ggc	gag
	Gly As	o Aen	Ser	Ser	Ser	Acn	در ای	Gla	ጥሎኮ	Pho	V=1	A ~~	Pho	G1 **	Gl 11
		101	980		261	p	Jiu	985		1116	Val	ALG	990	_	GJ. U
55															
	gtc at	a tcc	: aag	cac	aca	atg	tga								
	3000					_	-								

Val Ile Ser Lys His Thr Met 995

5 <210> 4

<211> 999

<212> PRT

<213> rice ERECTA homolog

15 <400> 4

40

Met Ala Ala Ala Arg Ala Pro Trp Leu Trp Trp Trp Val Val Val 1 1 5 10 15

- 20 Val Gly Val Ala Val Ala Glu Ala Ala Ser Gly Gly Gly Gly Gly 20 25 30
- 25 Asp Gly Glu Gly Lys Ala Leu Met Gly Val Lys Ala Gly Phe Gly Asn 35 40 45
- Ala Ala Asn Ala Leu Val Asp Trp Asp Gly Gly Ala Asp His Cys Ala $30 \hspace{1.5cm} 50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$
- Trp Arg Gly Val Thr Cys Asp Asn Ala Ser Phe Ala Val Leu Ala Leu 65 70 75 80
 - Asn Leu Ser Asn Leu Asn Leu Gly Gly Glu Ile Ser Pro Ala Ile Gly 85 90 \cdot 95
- Glu Leu Lys Asn Leu Gln Phe Val Asp Leu Lys Gly Asn Lys Leu Thr 100 105 110
- 45 Gly Gln Ile Pro Asp Glu Ile Gly Asp Cys Ile Ser Leu Lys Tyr Leu 115 . 120 125
- Asp Leu Ser Gly Asn Leu Leu Tyr Gly Asp Ile Pro Phe Ser Ile Ser 50 130 135 140
- Lys Leu Lys Gln Leu Glu Glu Leu Ile Leu Lys Asn Asn Gln Leu Thr 145 150 155 160

Gly Pro Ile Pro Ser Thr Leu Ser Gln Ile Pro Asn Leu Lys Thr Leu

	163					170					1/5					
5	Asp	Leu	Ala	Gln 180	Asn	Gln	Leu	Thr	Gly 185	Asp	Ile	Pro	Arg	Leu 190	Ile	Туг
10	Trp	Asn	Glu 195	Val	Leu	Gln	Tyr	Leu 200	Gly	Leu	Arg	Gly	Asn 205	Ser	Leu	Thr
	Gly	Thr 210	Leu	Ser	Pro	Asp	Met 215	Cys	Gln	Leu	Thr	Gly 220	Leu	Trp	Tyr	Phe
15	Asp 225	Val	Arg	Gly	Asn	Asn 230	Leu	Thr	Gly	Thr	Ile 235	Pro	Glu	Ser	Ile	Gl <u>y</u> 240
20	Asn	Cys	Thr	.Ser	Phe 245	Glu	Ile	Leu	Asp	Ile 250	Ser	Tyr	Asn	Gln	Ile 255	Ser
25	Gly	Glu	Ile	Pro 260	Tyr	Asn	Ile	Gly	Phe 265	Leu	Gln	Val	Ala	Thr 270	Leu	Ser
30	Leu	Gln	Gly 275	Asn	Arg	Leu	Thr	Gly 280	Lys	Ile	Pro	Asp	Val 285	Ile	Gly	Leu
	Met	Gln 290	Ala	Leu	Ala	Val	Leu 295	Asp	Leu	Ser	Glu	Asn 300	Glu	Leu	Val	G17
35	Pro 305	Ile	Pro	Ser	Ile	Leu 310	Gly	Asn	Leu	Ser	Tyr 315	Thr	Gly	Lys ·	Leu	Ту: 320
40	Leu	His	Gly	Asn	Lys 325	Leu	Thr	Gly	Val	Ile 330	Pro	Pro	Glu	Leu	Gly 335	Asr
45 -	Met	Ser	Lys	Leu 340	Ser	Tyr	Leu	Gln	Leu 345	Asn	Asp	Asn	Glu	Leu 350	Val	Gl
50	Thr	Ile	Pro 355	Ala	Glu	Leu	Gly	Lys 360	Leu	Glu	Glu	Leu	Phe 365	Glu	Leu	Asr
55	Leu	Ala 370	Asn	Asn	Asn	Leu	Gln 375	Gly	Pro	Ile	Pro	Ala 380	Asn	Ile	Ser	Sei
	Cys 385	Thr	Ala	Leu	Asn	Lys 390	Phe	Asn	Val	Tyr	Gly 395	Asn	Lys	Leu	Asn	Gl ₃

5	Ser	Ile	Pro	Ala	Gly. 405	Phe	Gln	Lys	Leu	410	Ser	Leu	Thr	Tyr	115	Asn
	Leu	Ser	Ser	Asn 420	Asn	Phe	Lys	Gly	Asn 425	Ile	Pro	Ser	Glu	Leu 430	Gly	His
10	Ile	Ile	Asn 435	Leu	Asp	Thr	Leu	Asp 440	Leu	Ser	Tyr	Asn	Glu 445	Phe	Ser	Gly
15	Pro	Val 450	Pro	Ala	Thr	Ile	Gly 455	Asp	Leu	Glu	His	Leu 460	Leu	Glu	Leu	Asn
20	Leu 465	Ser	Lys	Asn	His	Leu 470	Asp	Gly	Pro	Val	Pro 475	Ala	Glu	Phe	Gly	Asn 480
25	Leu	Arg	Ser	Val	Gln 485	Val	Ile	Asp	Met	Ser 490	Asn	Asn	Asn	Leu	Ser 495	Gly
	Ser	Leu	Pro	Glu 500	Glu	Leu	Gly	Gln	Leu 505	Gln	Asn	Leu	Asp	Ser 510	Leu	Il∈
30	Leu	Asn	Asn 515	Asn	Asn	Leu	Val	Gly 520	Glu	Ile	Pro	Ala	Gln 525	Leu	Ala	Asn
35	Cys	Phe 530	Ser	Leu	Asn	Asn	Leu 535	Ala	Phe	Gln	Glu	Phe 540	Val	Ile	Gln	Glr
40	Phe 545	Ile	Trp	Thr	Cys	Pro 550	Asp	Gly	Lys	Glu	Leu 555	Leu	Glu	İle	Pro	Asr 560
4 5	Gly	Lys	His	Leu	Leu 565	Ile	Ser	Asp	Cys	Asn 570	Gln	Tyr	Ile	Asn	His 575	Ьys
50	Cys	Ser	Phe	Leu 580	Gly	Asn	Pro	Leu	Leu 585	His	Val	Tyr	Cys	Gln 590	Asp	Sea
50	Ser	Cys	Gly 595	His	Ser	His	Gly	Gln 600	Arg	Val	Asn	Ile	Ser 605	Lys	Thr	Ala
55	Ile	Ala 610	Cys	Ile	Ile	Leu	Gly 615	Phe	Ile	Ile	Leu	Leu 620	Cys	Val	Leu	Let

	Leu 625	Ala	TTE	Tyr	гÀ2	630	ASN	GIN	PIO	GIN	635	ьeu	Val	гу	GTĀ	640
5	Asp	Lys	Pro	Val	Gln 645	Gly	Pro	Pro	Lys	Leu 650	Val	Val	Leu	Gln	Met 655	Asp
10	Met	Ala	Ile	His 660	Thr	Tyr	Glu	Asp	Ile 665	Met	Arg	Leu	Thr	Glu 670	Asn	Leu
15	Ser	Glu	Lys 675	Tyr	Ile	Ile	Gly	Tyr 680	Gly	Ala	Ser	Ser	Thr 685	Val	Tyr	Lys
20	Cys	Glu 690	Leu	Lys	Ser	Gly	Lys 695	Ala	Ile	Ala	Val	Lys 700	Arg	Leu	Tyr	Ser
	Gln 705	Tyr	Asn	His	Ser	Leu 710	Arg	Glu	Phe	Glu	Ťhr 715	Glu	Leu	Glu	Thr	Ile 720
25	Gly	Ser	Ile	Arg	His 725	Arg	Asn	Leu	Val	Ser 730	Leu	His	Gly	Phe	Ser 735	Leu
30	Ser	Pro	His	Gly 740	Asn	Leu	Leu	Phe	Tyr 745	Asp	Tyr	Met	Glu	Asn 750	Gly	Ser
35	Leu	Trp	Asp 755	Leu	Leu	His	Gly	Pro 760	Ser	Lys	Lys	Val	Lys 765	Leu	Asn	Trp
4 0.	Asp	Thr 770	Arg	Leu	Arg	Ile	Ala 775	Val	Gly	Ala	Ala	Gln 780	Gly	Leu	Ala	Tyr
	Leu 785	His	His	Asp	Cys	Asn 790	Pro	Arg	Ile	Ile	His 795		Asp	Val	Lys	Ser 800
4 5	Ser	Asn	Ile	Leu	Leu 805	Asp	Glu	Asn	Phe	Glu 810	Ala	His	Leu	Ser	Asp 815	Phe
50	Gly	Ile	Ala	Lys 820	Cys	Val	Pro	Ser	Ala 825	Lys	Ser	His	Ala	Ser 830	Thr	Tyr
55	Val	Leu	Gly 835	Thr	Ile	Gly	Tyr	Ile 840	Asp	Pro	Glu	Tyr	Ala 845	Arg	Thr	Ser

Arg Leu Asn Glu Lys Ser Asp Val Tyr Ser Phe Gly Ile Val Leu Leu 850 Glu Leu Leu Thr Gly Lys Lys Ala Val Asp Asn Glu Ser Asn Leu His Gln Leu Ile Leu Ser Lys Ala Asp Asp Asn Thr Val Met Glu Ala Val 10 Asp Ser Glu Val Ser Val Thr Cys Thr Asp Met Gly Leu Val Arg Lys 15 Ala Phe Gln Leu Ala Leu Leu Cys Thr Lys Arg His Pro Ser Asp Arg 20 Pro Thr Met His Glu Val Ala Arg Val Leu Leu Ser Leu Leu Pro Ala 935 Ser Ala Met Thr Thr Pro Lys Thr Val Asp Tyr Ser Arg Leu Leu Ala Ser Thr Thr Thr Ala Ala Asp Met Arg Gly His Asp Val Thr Asp Ile 30 Gly Asp Asn Ser Ser Ser Asp Glu Gln Trp Phe Val Arg Phe Gly Glu 985 35 Val Ile Ser Lys His Thr Met 995 40 <210> <211> 2766 <212> DNA <213> sorghum ERECTA homolog **50** <220> <221> CDS <222> (1)..(2763) <223>

<400> Met Thr Thr Ala Ala Arg Ala Leu Val Ala Leu Leu Leu Val Ala 10 gtc gcc gtc gcc gac gat ggg gcg acg ctg gtg gag atc aag aag tcc Val Ala Val Ala Asp Asp Gly Ala Thr Leu Val Glu Ile Lys Lys Ser 20 15 tte ege aac gte gge aac gta etg tae gat tgg gee gge gae gae tae Phe Arg Asn Val Gly Asn Val Leu Tyr Asp Trp Ala Gly Asp Asp Tyr 20 tgc tcc tgg cgc ggc gtc ctg tgc gac aac gtc aca ttc gcc gtc gct Cys Ser Trp Arg Gly Val Leu Cys Asp Asn Val Thr Phe Ala Val Ala 25 gcg ctc aac ctc tct ggc ctc aac ctt gag ggc gag atc tct cca gcc 240 Ala Leu Asn Leu Ser Gly Leu Asn Leu Glu Gly Glu Ile Ser Pro Ala 30 gtc ggc agc ctc aag agc ctc gtc tcc atc gat ctg aag tca aat ggg Val Gly Ser Leu Lys Ser Leu Val Ser Ile Asp Leu Lys Ser Asn Gly 85 95 35 cta tcc ggg cag atc cct gat gag att ggt gat tgt tca tca ctt agg Leu Ser Gly Gln Ile Pro Asp Glu Ile Gly Asp Cys Ser Ser Leu Arg acg ctg gac ttt tct ttc aac aac ttg gat ggc gac ata cca ttt tct 384 Thr Leu Asp Phe Ser Phe Asn Asn Leu Asp Gly Asp Ile Pro Phe Ser 115 ata tca aag ctg aag cac ctg gag aac ttg ata ttg aag aac aac cag Ile Ser Lys Leu Lys His Leu Glu Asn Leu Ile Leu Lys Asn Asn Gln 50 ctg att ggt gcg atc cca tca aca ttg tca cag ctc cca aat ttg aag Leu Ile Gly Ala Ile Pro Ser Thr Leu Ser Gln Leu Pro Asn Leu Lys 145 155 160 55 att ttg gat ttg gca caa aac aaa ctg act ggg gag ata cca agg ctt Ile Leu Asp Leu Ala Gln Asn Lys Leu Thr Gly Glu Ile Pro Arg Leu

170 175 165 atc tac tgg aat gag gtt ctt caa tat ctt gat gtg aag aac aat agc 5 Ile Tyr Trp Asn Glu Val Leu Gln Tyr Leu Asp Val Lys Asn Asn Ser ttg acc ggg gtg ata cca gac acc att ggg aac tgt aca agt ttt caa 624 Leu Thr Gly Val Ile Pro Asp Thr Ile Gly Asn Cys Thr Ser Phe Gln 10 195 gtc ttg gat ttg tct tac aac cgc ttt act gga cca atc cca ttc aac 672 15 Val Leu Asp Leu Ser Tyr Asn Arg Phe Thr Gly Pro Ile Pro Phe Asn att ggt ttc cta caa gtg gct aca cta tcc ttg caa ggg aac aag ttc Ile Gly Phe Leu Gln Val Ala Thr Leu Ser Leu Gln Gly Asn Lys Phe 20 230 225 acc ggt cca att cct tca gta att ggt ctt atg cag gct ctc gct gtt Thr Gly Pro Ile Pro Ser Val Ile Gly Leu Met Gln Ala Leu Ala Val cta gat ctg agt tac aac caa tta tct ggt cct ata cca tca ata cta 816 Leu Asp Leu Ser Tyr Asn Gln Leu Ser Gly Pro Ile Pro Ser Ile Leu 260 ggc aac ttg aca tac act gag aag ctg tac atc caa ggc aat aag tta Gly Asn Leu Thr Tyr Thr Glu Lys Leu Tyr Ile Gln Gly Asn Lys Leu act ggg tcg ata cca cca gag tta gga aat atg tca aca ctt cat tac 912 Thr Gly Ser Ile Pro Pro Glu Leu Gly Asn Met Ser Thr Leu His Tyr 40 290 295 cta gaa ctg aac gat aat caa ctt act ggg tca att cca cca gag ctt Leu Glu Leu Asn Asp Asn Gln Leu Thr Gly Ser Ile Pro Pro Glu Leu gga agg cta aca ggc ttg ttt gac ctg aac ctt gcg aat aac cac ctg 50 Gly Arg Leu Thr Gly Leu Phe Asp Leu Asn Leu Ala Asn Asn His Leu 325 335 gaa gga cca att cct gac aac cta agt tca tgt gtg aat ctc aat agc 55 Glu Gly Pro Ile Pro Asp Asn Leu Ser Ser Cys Val Asn Leu Asn Ser 340 345 350

	ttc aat	gct	tat	ggc	aac	aag	tta	aat	ggg	acc	att	cct	cgt	tcg	ttg
_	Phe Asi	1 Ala 355	Tyr	Gly	Asn	Lys	Leu 360	Asn	Gly	Thr	Ile	Pro 365	Arg	Ser	Leu
5	cgg aaa	a ctt	gaa	agc	atg	acc	tat	tta	aat	ctg	tca	tca	aac	ttc	ata
	Arg Lys		Glu	Ser	Met		Tyr	Leu	Asn	Leu		Ser	Asn	Phe	Ile
10	370	_				375					380				
	agt gg0 1200					, ,			,,,					_	_
15	Ser Gly 385	y Ser	Ile	Pro	Ile 390	Glu	Leu	Ser	Arg	Ile 395	Asn	Asn	Leu	Asp	Thr 400
	ctg gat 1248	tta	tcc	tgt	aac	atg	atg	act	ggt	cca	att	cca	tca	tca	att
20	Leu Asp	Leu	Ser	Cys 405	Asn	Met	Met	Thr	Gly 410	Pro	Ile	Pro	Ser	Ser 415	Ile
20	ggc ago	c cta	gag	cat	cta	ttg	aga	ctt	aac	ttg	agc	aag	aat	ggt	cta
	Gly Se	. Leu	Glu 420	His	Leu	Leu	Arg	Leu 425	Asn	Leu	Ser	Lys	Asn 430	Gly	Leu
25	gtt gga	a ttc	atc	ccc	gcg	gag	ttt	ggt	aat	ttg	agg	agt	gtc	atg	gag
	Val Gly	Phe 435	Ile	Pro	Ala	Glu	Phe 440	Gly	Asn	Leu	Arg	Ser 445	Val	Met	Glu
30															
	att gat 1392							_		_				_	
35	Ile Asp 450		ser	Tyr	Asn	H1S 455	Leu	сту	стА	Leu	11e 460	Pro	Gln	Glu	Leu
30	gaa atq 1440	g ctg	caa	aac	ctg	atg	ttg	cta	aat	gtg	tcg	tac	aat	aat	ttg
40	Glu Met 465	: Leu	Gln	Asn	Leu 470	Met	Leu	Leu	Asn	Val 475	Ser	Tyr	Asn	Asn	Leu 480
70	gct ggt 1488	gtt	gtc	cct	gct	gac	aac	aac	ttc	aca	cgģ	ttt	tca	cct	gac
	Ala Gl	y Val	Val	Pro 485	Ala	Asp	Asn	Asn	Phe 490	Thr	Arg	Phe	Ser	Pro 495	Asp
45															
	agc tt: 1536													_	
50	Ser Phe	≥ Leu	Gly 500	Asn	Pro	Gly	Leu	Cys 505	Gly	Tyr	Trp	Leu	Gly 510	Ser	Ser
JU	tgt cgt	tcc	act	ggc	cac	cac	gag	aaa	ccg	cct	atc	tca	aag	gct	gcc
	Cys Ar	Ser 515	Thr	Gly	His	His	Glu 520	Lys	Pro	Pro	Ile	Ser 525	Lys	Ala	Ala
55															
	ata att 1632	ggt	gtt	gct	gtg	ggt	gga	ctt	gtt	atc	ctc	ttg	atg	atc	tta

	Ile Ile 530		Val	Ala	Val	Gly 535	Gly	Leu	Val	Ile	Leu 540	Leu	Met	Ile	Leu
5	gta gct 1680	gtt	tgc	agg	cca	cat	cgt	cca	cct	gct	ttt	aaa	gat	gtc	act
	Val Ala 545	Val	Cys	Arg	Pro 550	His	Arg	Pro	Pro	Ala 555	Phe	Lys	Asp	Val	Thr 560
10	gta agc 1728	aag	cca	gtg	aga	aat	gct	ccc	ccc	aag	ctg	gtg	atc	ctt	cat
	Val Ser	Lys	Pro	Val 565	Arg	Asn	Ala	Pro	Pro 570	Lys	Leu	Val	Ile	Leu 575	His
15	atg aac 1776	atg	gcc	ctt	cat	gta	tac	gat	gac	ata	atg	agg	atg	act	gag
	Met Asn	Met	Ala 580	Leu	His	Val	Tyr	Asp 585	Asp	Ile	Met	Arg	Met 590	Thr	Glu
20	aac ttg 1824	agt	gag	aaa	tac	atc	att	gga	tac	ggg	gcg	tca	agt	aca	gtt
	Asn Leu	Ser 595	Glu	Lys	Tyr	Ile	.Ile 600	Gly	Tyr	Gly	Ala	Ser 605	Ser	Thr	Val
25	tat aaa 1872	tgt	gtc	cta	aag	aat	tgc	aaa	ccg	gtg	gca	ata	aaa	aag	ctg
	Tyr Lys 610		Val	Leu	Lys	Asn 615	Cys	Lys	Pro	Val	Ala 620	Ile	Lys	Lys	Leu
30	tat gcc 1920	cac	tac	cca	cag	agc	ctt	aag	gaa	ttt	gaa	act	gag	ctt	gag
	Tyr Ala 625	His	Tyr	Pro	Gln 630	Ser	Leu	Lys	Glu	Phe 635	Glu	Thr	Glu	Leu	Glu 640
35	act gtt 1968	ggt	agc	atc	aag	cac	cgg	aat	cta	gtc	agc	ctt	caa	ggg	tac
	Thr Val	Gly	Ser	Ile 645	Lys	His	Arg	Asn	Leu 650	Val	Ser	Leu	Gln	Gly 655	Tyr
40	tca tta 2016	tca	cct	gtt	ggg	aac	ctc	ctc	ttt	tat	gat	tat	atg	gaa	tgt
	Ser Leu	Ser	Pro 660	Val	Gly	Asn	Leu	Leu 665	Phe	Tyr	Asp	Tyr	Met 670	Glu	Cys
45	ggc agc 2064	tta	tgg	gat	gtt	tta	cat	gaa	ggt	tca	tcc	aag	aag	aaa	aaa
	Gly Ser	Leu 675	Trp	Asp	Val	Leu	His 680	Glu	Gly	Ser	Ser	Lys 685	Lys	Lys	Lys
. 50	ctt gad 2112	tgg	gag	act	cgc	cta	cgg	atț	gct	ctt	ggt	gca	gct	caa	ggc
	Leu Asp 690		Glu	Thr	Arg	Leu 695	Arg	Ile	Ala	Leu	Gly 700	Ala	Ala	Gln	Gly
55	ctt gct 2160	tac	ctt	cac	cat	gac	tgc	agt	cca	cgg	ata	att	cat	cgg	gat
	Leu Ala 705	Tyr	Leu	His	His 710	Asp	Cys	Ser	Pro	Arg 715	Ile	Ile	His	Arg	Asp 720

	gta aaa 2208	tca	aag	aat	ata	ctc	ctt	gac	aaa	gat	tat	gag	gcc	cat	ctt
5	Val Lys	Ser	Lys	Asn 725	Ile	Leu	Leu	Asp	Lys 730	Asp	Tyr	Glu	Ala	His 735	Leu
	aca gac 2256	ttt	gga	att	gct	aag	agc	tta	tgt	gtc	tca	aaa	act	cac	aca
10	Thr Asp	Phe	Gly 740	Ile	Ala	Lys	Ser	Leu 745	Cys	Val	Ser	Lys	Thr 750	His	Thr
	tca acc 2304	tat	gtc	atg	gga	act	att	ggc	tac	att	gat	cct	gag	tac	gcc
15	Ser Thr	Tyr 755	Val	Met	Gly	Thr	Ile 760	Gly	Tyr	Ile	Asp	Pro 765	Glu	Tyr	Ala
	cgc act 2352	tcc	cgt	ctc	aac	gaa	aag	tct	gat	gtc	tac	agg	cta	tgg	cat
20	Arg Thr 770	Ser	Arg	Leu	Asn	Glu 775	Ьys	Ser	Asp	Val	Туr 780	Arg	Leu	Trp	His
	tgt tct 2400	gct	gga	gct	gct	gac	tgg	caa	gaa	gcc	agt	gga	caa	cga	atc
25	Cys Ser 785	Ala	Gly	Ala	Ala 790	Asp	Trp	Gln	Glu	Ala 795	Ser	Gly	Gln	Arg	Ile 800
	cta tcg 2448	aag	acg	gca	agc	aac	gag	gtc	atg	gat	acc	gtg	gac	cct	gac
30	Leu Ser	Lys	Thr	Ala 805	Ser	Asn	Glu	Val	Met 810	Asp	Thr	Val	Asp	Pro 815	Asp
	atc ggg 2496	gac	acc	tgc	aag	gac	ctc	ggc	gag	gtg	aag	aag	ctg	ttc	cag
35	Ile Gly	Asp	Thr 820	Cys	Lys	Asp	Leu	Gly 825	Glu	Val	Lys	Lys	Leu 830	Phe	Gln
	ctg gcg 2544	ctc	ctt	tgc	acc	aag	cgg	caa	ccc	tcg	gac	cga	ccg	acg	atg
40	Leu Ala	Leu 835	Leu	Cys	Thr	ГÀЗ	Arg 840	Gln	Pro	Ser	Asp	Arg 845	Pro	Thr	Met
	cac gag 2592														_
45	His Glu 850	Val	Val	Arg	Val	Leu 855	Asp	Суѕ	Leu	Val	Asn 860	Pro	Asp	Pro	Pro
	cca aag 2640	ccg	tcg	gcg	cac	cag	ctg	ccg	cag	ccg	tcg	cca	gcc	gtg	cca
50	Pro Lys 865	Pro	Ser	Ala	His 870	Gln	Leu	Pro	Gln	Pro 875	Ser	Pro	Ala	Val	Pro 880
	agc tac 2688	atc	aac	gag	tac	gtc	agc	ctg	cgg	ggc	acc	ggc	gct	ctc	tcc
55	Ser Tyr	Ile	Asn	Glu 885	Tyr	Val	Ser	Leu	Arg 890	Gly	Thr	Gly	Ala	Leu 895	Ser

tgc gcc aac tcg acc agc acc tcg gac gcc gag ctg ttc ctc aag ttc Cys Ala Asn Ser Thr Ser Thr Ser Asp Ala Glu Leu Phe Leu Lys Phe 900 905 ggc gag gcc atc tcg cag aac atg gag tag 2766 Gly Glu Ala Ile Ser Gln Asn Met Glu 915 10 <210> <211> 921 15 <212> PRT <213> sorghum ERECTA homolog 20 <400> 6 Met Thr Thr Ala Ala Arg Ala Leu Val Ala Leu Leu Leu Val Ala 25 5 Val Ala Val Ala Asp Asp Gly Ala Thr Leu Val Glu Ile Lys Lys Ser 20 30 30 Phe Arg Asn Val Gly Asn Val Leu Tyr Asp Trp Ala Gly Asp Asp Tyr 35 35 Cys Ser Trp Arg Gly Val Leu Cys Asp Asn Val Thr Phe Ala Val Ala 50 Ala Leu Asn Leu Ser Gly Leu Asn Leu Glu Gly Glu Ile Ser Pro Ala 65 70 75 Val Gly Ser Leu Lys Ser Leu Val Ser Ile Asp Leu Lys Ser Asn Gly 45 85 Leu Ser Gly Gln Ile Pro Asp Glu Ile Gly Asp Cys Ser Ser Leu Arg 100 105 . 50 Thr Leu Asp Phe Ser Phe Asn Asn Leu Asp Gly Asp Ile Pro Phe Ser 115 120 125 55 Ile Ser Lys Leu Lys His Leu Glu Asn Leu Ile Leu Lys Asn Asn Gln

135

130

5	Leu 145	Ile	Gly	Ala	Ile	Pro 150	Ser	Thr	Leu	Ser	Gln 155	Leu	Pro	Asn	Leu	Lys 160
	Ile	Leu	Asp	Leu	Ala 165	Gln	Asn	Lys	Leu	Thr 170	Gly	Glu	Ile	Pro	Arg 175	Leu
10	Ile	Tyr	Trp	Asn 180	Glu	Val	Leu	Gln	Туг 185	Leu	Asp	Val	Lys	Asn 190	Asn	Ser
15	Leu	Thr	Gly 195	Val	Ile	Pro	Asp	Thr 200	Ile	Gly	Asn	Cys	Thr 205	Ser	Phe	Gln
20	Val	Leu 210	Asp	Leu	Ser	Туг	Asn 215	Arg	Phe	Thr	Gly	Pro 220	Ile	Pro	Phe	Asn
25	Ile 225	Gly	Phe	Leu	Gln	Val 230	Ala	Thr	Leu	Ser	Leu 235	Gln	Gly	Asn	Lys	Phe 240
	Thr	Gly	Pro	Ile	Pro 245	Ser	Val	Ile	Gly	Leu 250	Met	Gln	Ala	Leu	Ala 255	Val
30	Leu	Asp	Leu	Ser 260	Tyr	Asn	Gln	Leu	Ser 265	Gly	Pro	Ile	Pro	Ser 270	Ile	Leu
35	Gly	Asn	Leu 275	Thr	Tyr	Thr	Gl u	Lys 280	Leu	Tyr	Ile	Gln	Gly 285	Asn	Lys	Leu
40	Thr	Gly 290	Ser	Ile	Pro	Pro	Glu 295	Leu	Gly	Asn	Met	Ser 300	Thr	Leu	His.	Tyr
45	Leu 305	Glu	Leu	Asn	Asp	Asn 310	Gln	Leu	Thr	Gly	Ser 315	Ile	Pro	Pro	Glu	Leu 320
	Gly	Arg	Leu	Thr	Gly 325	Leu	Phe	Asp	Leu	Asn 330	Leu	Ala	Asn	Asn	His 335	Leu
50	Glu	Gly	Pro	Ile 340	Pro	Asp	Asn	Leu	Ser 345	Ser	Cys	Val		Leu 350	Asn	Ser
55	Phe	Asn	Ala 355	Tyr	Gly	Asn	Lys	Leu 360	Asn	Gly	Thr	Ile	Pro 365	Arg	Ser	Leu

	Arg	Lys 370	Leu	Glu	Ser	Met	Thr 375	Tyr	Leu	Asn	Leu	380	Ser	Asn	Phe	Ile
5	Ser 385	Gly	Ser	Ile	Pro	Ile 390	Glu	Leu	Ser	Arg	Ile 395	Asn	Asn	Leu	Asp	Thr 400
10	Leu	Asp	Leu	Ser	Cys 405	Asn	Met	Met	Thr	Gly 410	Pro	Ile	Pro	Ser	Ser 415	Ile
15	Gly	Ser	Leu	Glu 420	His	Leu	Leu	Arg	Leu 425	Asn	Leu	Ser	Lys	Asn 430	Gly	Leu
20	Val	Gly	Phe 435	Ile	Pro	Ala	Glu	Phe 440	Gly	Asn	Leu	Arg	Ser 445	Val	Met	Glu
	Ile	Asp 450	Leu	Ser	Tyr	Asn	His 455	Leu	Gly	Gly	Leu	Ile 460	Pro	Gln	Glu	Leu
25	Glu 465	Met	Leu	Gln	Asn	Leu 470	Met	Leu	Leu	Asn	Val 475	Ser	туг	Asn	Asn	Leu 480
30	Ala	Gly	Val	Val	Pro 485	Ala	Asp	Asn	Asn	Phe 490	Thr	Arg	Phe	Ser	Pro 495	Asp
35	Ser	Phe	Leu	Gly 500	Asn	Pro	Gly	Leu	Cys 505	Gly	Tyr	Trp	Leu	Gly 510	Ser	Ser
40	Cys	Arg	Ser 515	Thr	Gly	His	His	Glu 520	Lys	Pro	Pro	Ile	Ser 525	Lys	Ala	Ala
	Ile	Ile 530	Gly	Val	Ala	Val	Gly 535	Gly	Leu	Val	Ile	Leu 540	Leu	Met	Ile	Leu
45	Val 545	Ala	Val	Cys	Arg	Pro 550	His	Arg	Pro	Pro	Ala 555	Phe	Lys	Asp	Val ·	Thr 560
50	Val	Ser	Lys	Pro	Val 565	Arg	Asn	Ala	Pro	Pro 570	Lys	Leu	Val	Ile	Leu 575	His
55	Met	Asn	Met	Ala 580	Leu	His	Val	Tyr	Asp 585	Asp	Ile	Met	Arg	Met 590	Thr	Glu

Asn Leu Ser Glu Lys Tyr Ile Ile Gly Tyr Gly Ala Ser Ser Thr Val 600 5 Tyr Lys Cys Val Leu Lys Asn Cys Lys Pro Val Ala Ile Lys Lys Leu Tyr Ala His Tyr Pro Gln Ser Leu Lys Glu Phe Glu Thr Glu Leu Glu 630 Thr Val Gly Ser Ile Lys His Arg Asn Leu Val Ser Leu Gln Gly Tyr 645 650 15 Ser Leu Ser Pro Val Gly Asn Leu Leu Phe Tyr Asp Tyr Met Glu Cys 665 20 Gly Ser Leu Trp Asp Val Leu His Glu Gly Ser Ser Lys Lys Lys 680 Leu Asp Trp Glu Thr Arg Leu Arg Ile Ala Leu Gly Ala Ala Gln Gly Leu Ala Tyr Leu His His Asp Cys Ser Pro Arg Ile Ile His Arg Asp 30 705 710 Val Lys Ser Lys Asn Ile Leu Leu Asp Lys Asp Tyr Glu Ala His Leu 730 35 Thr Asp Phe Gly Ile Ala Lys Ser Leu Cys Val Ser Lys Thr His Thr 740 40 Ser Thr Tyr Val Met Gly Thr Ile Gly Tyr Ile Asp Pro Glu Tyr Ala Arg Thr Ser Arg Leu Asn Glu Lys Ser Asp Val Tyr Arg Leu Trp His 770 Cys Ser Ala Gly Ala Ala Asp Trp Gln Glu Ala Ser Gly Gln Arg Ile 50 785 Leu Ser Lys Thr Ala Ser Asn Glu Val Met Asp Thr Val Asp Pro Asp 805 810 55

Ile Gly Asp Thr Cys Lys Asp Leu Gly Glu Val Lys Lys Leu Phe Gln

820 825 830

Leu Ala Leu Leu Cys Thr Lys Arg Gln Pro Ser Asp Arg Pro Thr Met 845

His Glu Val Val Arg Val Leu Asp Cys Leu Val Asn Pro Asp Pro Pro 850 855 860

10

Pro Lys Pro Ser Ala His Gln Leu Pro Gln Pro Ser Pro Ala Val Pro 865 870 875 880

15
Ser Tyr Ile Asn Glu Tyr Val Ser Leu Arg Gly Thr Gly Ala Leu Ser
885
890
895

20 Cys Ala Asn Ser Thr Ser Thr Ser Asp Ala Glu Leu Phe Leu Lys Phe 900 905 910

Gly Glu Ala Ile Ser Gln Asn Met Glu 25 915 920

<210> 7

30 <211> 2799

<212> DNA

<213> Arabdopsis thaliana ERECTA homolog

35

<220>

40 <221> CDS

<222> (1)..(2796)

<223>

45

<400> 7

atg gcg ata aag gct tca ttc agc aac gtg gcg aat atg ctt ctt gat 50 48 Met Ala Ile Lys Ala Ser Phe Ser Asn Val Ala Asn Met Leu Leu Asp

Met Ala IIe Lys Ala Ser Phe Ser Asn Val Ala Asn Met Leu Leu Asp 1 10 15

tgg gac gat gtt cat aac cac gac ttt tgt tct tgg aga ggt gtc ttc $55\ 96$

Trp Asp Asp Val His Asn His Asp Phe Cys Ser Trp Arg Gly Val Phe

tgt gat aac gtt agc ctc aat gtt gtc tct ctt aat ctg tca aac ctg Cys Asp Asn Val Ser Leu Asn Val Val Ser Leu Asn Leu Ser Asn Leu 5 40 aat ctt ggt gga gag ata tca tct gcc ctt gga gat ttg atg aat ctg Asn Leu Gly Gly Glu Ile Ser Ser Ala Leu Gly Asp Leu Met Asn Leu 10 caa tca ata gac ttg caa gga aat aaa ttg ggt ggt caa att cca gat Gln Ser Ile Asp Leu Gln Gly Asn Lys Leu Gly Gln Ile Pro Asp 15 gag att gga aac tgt gtt tct ctt gct tat gtg gat ttc tcc acc aat Glu Ile Gly Asn Cys Val Ser Leu Ala Tyr Val Asp Phe Ser Thr Asn 20 ttg ttg ttt gga gac ata ccg ttt tca atc tct aaa ctc aaa cag ctg Leu Leu Phe Gly Asp Ile Pro Phe Ser Ile Ser Lys Leu Lys Gln Leu 25 gag ttt ctg aac cta aag aat aat cag ctc act ggt cca ata cca gca Glu Phe Leu Asn Leu Lys Asn Asn Gln Leu Thr Gly Pro Ile Pro Ala 30 acc tta act cag att cca aac ctt aag acc ctt gac ctc gca aga aac 432 Thr Leu Thr Gln Ile Pro Asn Leu Lys Thr Leu Asp Leu Ala Arg Asn 35 130 135 140 cag ctt act ggt gag ata cca agg tta ctc tac tgg aat gaa gtt tta Gln Leu Thr Gly Glu Ile Pro Arg Leu Leu Tyr Trp Asn Glu Val Leu 40 cag tat ctc ggt tta cgt ggg aat atg tta act ggg aca ttg tct cct Gln Tyr Leu Gly Leu Arg Gly Asn Met Leu Thr Gly Thr Leu Ser Pro 45 170 175 gat atg tgt cag ctg acg ggt ctg tgg tac ttt gat gtg aga ggc aac Asp Met Cys Gln Leu Thr Gly Leu Trp Tyr Phe Asp Val Arg Gly Asn 50 aac ctt act gga act atc cca gag agc att ggc aat tgc aca agc ttt Asn Leu Thr Gly Thr Ile Pro Glu Ser Ile Gly Asn Cys Thr Ser Phe 55 195 200

	gag 672	atc	ttg	gat	gta	tct	tat	aat	cag	att	acc	gga	gtt	ata	ccc	tac
5	Glu	Ile 210	Leu	Asp	Val	Ser	Tyr 215	Asn	Gln	Ile	Thr	Gly 220	Val	Ile	Pro	Tyr
J	aat 720	att	ggt	ttc	ctc	caa	gta	gct	act	ctg	tca	ctt	caa	gga	aac	aag
10	Asn 225	Ile	Gly	Phe	Leu	Gln 230	Val	Ala	Thr	Leu	Ser 235	Leu	Gln	Gly	Asn	Lys 240
10	ttg 768	act	ggc	aga	att	ccg	gaa	gtg	att	ggt	ctg	atg	cag	gct	ctt	gct
	Leu	Thr	Gly	Arg	Ile 245	Pro	Glu	Val	Ile	Gly 250	Leu	Met	Gln	Ala	Leu 255	Ala
15	gta 816	ttg	gat	ttg	agt	gac	aat	gaa	tta	act	ggg	cct	att	cca	cca	ata
		Leu	Asp	Leu 260	Ser	Asp	Asn	Glu	Leu 265	Thr	Gly	Pro	Ile	Pro 270	Pro	Ile
20	ctt 864	ggg	aat	ctg	tca	ttc	act	gga	aaa	ctg	tat	ctc	cat	ggc	aac	aag
		Gly	Asn 275	Leu	Ser	Phe	Thr	Gly 280	Lys	Leu	Tyr	Leu	His 285	Gly	Asn	Lys
25	ctc 912	act	gga	caa	atc	cca	ccc	gag	cta	ggc	aat	atg	tca	cga	ctc	agc
		Thr 290	Gly	Gln	Ile	Pro	Pro 295	Glu	Leu	Gly	Asn	Met 300	Ser	Arg	Leu	Ser
30		ttg	caa	cta	aat	gat	aat	gaa	cta	gtg	gga	aag	atc	cca	cct	gag
·	960 Tyr 305	Leu	Gln	Leu	Asn	Asp 310	Asn	Glu	Leu	Val	Gly 315	Lys	Ile	Pro	Pro	Glu 320
35		ggg	aag	ctg	gaa		ttg	ttc	gaa	ctg		ctt	aca	aac	aac	
	100	В			Glu				_	_						
40					325					330					335	
	105	6										_	_	_		aat
4 5	ьeu	val	GTĀ	ьец 340	11e	Pro	Ser	Asn	345	Ser	Ser	Cys	Ala	Ala 350	Leu	Asn
	caa 110	ttc 4	aat	gtt	cat	ggg	aac	ttc	ttg	agt	gga	gct	gta	ċса	ctt	gaa
50	Gln	Phe	Asn 355	Val	His	Gly	Asn	Phe 360	Leu	Ser	Gly	Ala	Val 365	Pro	Leu	Glu
<i>5</i> 0	ttc 115	cgg 2	aat	ctt	gga	agc	ttg	act	tat	cta	aat	ctt	tcc	tca	aac	agt
55	Phe	Arg 370	Asn	Leu	Gly	Ser	Leu 375	Thr	Tyr	Leu	Asn	Leu 380	Ser	Ser	Asn	Ser
00	ttc 120	aag 0	ggc	aaa	ata	cct	gct	gag	ctt	ggc	cat	atc	atc	aat	ctt	gat.

,

	Phe Lys 385	Gly	Lys	Ile	Pro 390	Ala	Glu	Leu	Gly	His 395	Ile	Ile	Asn	Leu	Asp 400
5	aca ttg 1248	gat	ctg	tct	ggc	aac	aat	ttc	tca	ggc	tca	att	cca	tta	aca
	Thr Leu	Asp	Leu	Ser 405	Gly	Asn	Asn	Phe	Ser 410	Gly	Ser	Ile	Pro	Leu 415	Thr
10	ctt ggt 1296	gat	ctt	gag	cat	ctt	ctc	atc	tta	aac	ttg	agc	aga	aat	cat
	Leu Gly	Asp	Leu 420	Glu	His	Leu	Leu	Ile 425	Leu	Asn	Leu	Ser	Arg 430	Asn	His
15	ctg aat 1344	ggc	aca	ttg	cct	gca	gaa	ttc	ggg	aac	ctc	cga	agc	att	cag
	Leu Asn	Gly 435	Thr	Leu	Pro	Ala	Glu 440	Phe	Gly	Asn	Leu	Arg 445	Ser	Ile	Gln
20	atc atc 1392	gat	gtg	tca	ttt	aat	ttt	ctt	gcc	ggt	gtt	att	cca	act	gaa
	Ile Ile 450	Asp	Val	Ser	Phe	Asn 455	Phe	Leu	Ala	Gly	Val 460	Ile	Pro	Thr	Glu
25	ctt ggc 1440	cag	ttg	cag	aac	ata	aac	tct	ctg	ata	ctg	aac	aac	aac	aag
	Leu Gly 465	Gln	Leu	Gln	Asn 470	Ile	Asn	Ser	Leu	11e 475	Leu	Asn	Asn	Asn	Lys 480
30	att cat 1488	ggg	aaa	atc	cct	gat	cag	cta	act	aac	tgc	ttc	agt	ctt	gcc
	Ile His	Gly	Lys	Ile 485	Pro	Asp	Gln	Leu	Thr 490	Asn	Cys	Phe	Ser	Leu 495	Ala
35	aat ctg 1536	aac	atc	tcc	ttc	aat	aat	ctt	tct	gga	ata	atc	cca	cct	atg
	Asn Leu	Asn	Ile 500	Ser	Phe	Asn	Asn	Leu 505	Ser	Gly	Ile	Ile	Pro 510	Pro	Met
40	aag aac 1584	ttt	aca	cgt	ttt	tcc	ccg	gcc	agc	ttc	ttt	gga	aat	cca	ttt
	Lys Asn	Phe 515	Thr	Arg	Phe	Ser	Pro 520	Ala	Ser	Phe	Phe	Gly 525	Asn	Pro	Phe
45	ctc tgc 1632	ggg	aac	tgg	gtt	gga	tca	atc	tgt	ggc	cca	tct	tta	cct	aag
	Leu Cys 530	Gly	Asn	Trp	Val	Gly 535	Ser	Ile	Cys	Gly	Pro 540	Ser	Leu	Pro	Lys
50	tca caa 1680	gta	ttc	acc	aga	gtt	gcc	gtg	att	tgt	atg	gtt	ctc	ggt	ttc
	Ser Gln 545	Val	Phe	Thr	Arg 550	Val	Ala	Val	Ile	Cys 555	Met	Val	Leu	Gly	Phe 560
55	atc act 1728	ctc	ata	tgc	atg	ata	ttc	att	gcg	gtt	tac	aag	tca	aag	cag
	Ile Thr	Leu	Ile	Cys 565	Met	Ile	Phe	Ile	Ala 570	Val	Tyr	Lys	Ser	Lys 575	Gln

	cag aaa 1776	сса	gtc	ttg	aaa	ggc	tct	tca	aaa	caa	cct	gaa	ggg	tca	acg
5	Gln Lys	Pro	Val 580	Leu	Lys	Gly	Ser	Ser 585	Lys	Gln	Pro	Glu	Gly 590	Ser	Thr
	aag ctg 1824	gtg	att	ctt	cac	atg	gac	atg	gct	att	cac	acg	ttt	gat	gat
10	Lys Leu	Val 595	Ile	Leu	His	Met	Asp 600	Met	Ala	Ile	His	Thr 605	Phe	Asp	Asp
	atc atg 1872	aga	gtt	aca	gaa	aac	ctc	gat	gag	aaa	tac	atc	att	gga	tac
15	Ile Met 610	Arg	Val	Thr	Glu	Asn 615	Leu	Asp	Glu	Lys	Tyr 620	Ile	Ile	Gly	Tyr
	ggt gct 1920	tct	agc	aca	gtt	tac	aag	tgc	acc	tcc	aaa	act	tcc	cga	cct
20	Gly Ala 625	Ser	Ser	Thr	Val 630	Tyr	Lys	Cys	Thr	Ser 635	Lys	Thr	Ser	Arg	Pro 640
	att gcc 1968	att	aag	cga	atc	tac	aat	cag	tat	ccc	agc	aac	ttc	cgc	gag
25	Ile Ala	Ile	Lys	Arg 645	Ile	Tyr	Asn	Gln	Tyr 650	Pro	Ser	Asn	Phe	Arg 655	Glu
	ttt gaa 2016	aca	gag	ctc	gag	acc	att	ggg	agc	atc	aga	cac	aga	aac	ata
30	Phe Glu	Thr	Glu 660	Leu	Glu	Thr	Ile	Gly 665	Ser	Ile	Arg	His.	Arg 670	Asn	Ile
	gta agc 2064	ttg	cac	gga	tac	gcc	tta	tct	CCC	ttt	ggc	aac	ctc	ctc	ttc
35	Val Ser	Leu 675	His	Gly	Tyr	Ala	Leu 680	Ser	Pro	Phe	Gly	Asn 685	Leu	Leu	Phe
	tac gac 2112	tac	atg	gaa	aat	ggc	tct	ctt	tgg	gat	ctt	ctc	cat	ggg	cct
40	Tyr Asp 690	Tyr	Met	Glu	Asn	Gly 695	Ser	Leu	Trp	Asp	Leu 700	Leu	His	Gly	Pro
	ggg aag 2160	aag	gtg	aag	ctt	gac	tgg	gaa	aca	agg	ctg	aag	ata	gct	gtt
45	Gly Lys 705	Lys	Val	Lys	Leu 710	Asp	Trp	Glu	Thr	Arg 715	Leu	Lys	Ile	Ala	Val 720
	gga gct 2208	gcg	caa	gga	ctt	gca	tat	ctt	cac	cat	gac	tgc	aca	cct	agg
50	Gly Ala	Ala	Gln	Gly 725	Leu	Ala	Tyr	Leu	His 730	His	Asp	Cys	Thr	Pro 735	Arg
	ata atc 2256	cat	cga	gac	atc	aag	tca	tca	aac	ata	ctc	ctt	gat	ggg	aat
. 55	Ile Ile	His	Arg 740	Asp	Ile	Lys	Ser	Ser 745	Asn	Ile	Leu'	Leu	Asp 750	Gly	Asn

	ttc gaa 2304		-	_							_	_			
5	Phe Glu	Ala 755	Arg	Leu	Ser	Asp	Phe 760	Gly	Ile	Ala	Lys	Ser 765	Ile	Pro	Ala
3	acc aaa 2352	act	tat	gct	tca	acc	tat	gtt	ctt	gga	acc	att	gga	tat	att
	Thr Lys 770	Thr	Tyr	Ala	Ser	Thr 775	Tyr	Val	Leu	Gly	Thr 780	Ile	Gly	Tyr	Ile
10	gac cca	gag	tat	gct	cga	act	tcg	cgt	ctg	aac	gag	aag	tct	gat	atc
	2400 Asp Pro	G1 11	ጥተተ	- הומ	λνα	mb r	Ser	Ara	T.611	Aen	Glu	Luc	Ser	Acn	Tle
15	785	G ₂ u	-y-	AIG	790	1111	Ser	ALG	Deu	795		цуз	ber	тыр	800
	tac agt 2448	ttc	ggt	att	gtc	ctt	ctt	gag	ctt	cta	acc	ggc	aag	aag	gct
	Tyr Ser	Phe	Gly	Ile 805	Val	Leu	Leu	Glu	Leu 810	Leu	Thr	Gly	Lys	Lys 815	Ala
20	gtg gat	aac	gag	acc	aac	tta	cat	caa	atσ	att	cta	tca	aaσ	aca	σat
	2496					٠.							• -		
	Val Asp	Asn	820	Ala	Asn	Leu	HIS	825	Met	TTE	ьeu	ser	830 ті̀Лв	Ala	Asp
25	gat aac 2544	aca	gta	atg	gaa	gct	gtt	gat	gca.	gag	gtc	tca	gtg	act	tgc
	Asp Asn	Thr 835	Val	Met	Glu	Ala	Val 840	Asp	Ala	Glu	Val	Ser 845	Val	Thr	Cys
30	-t														•
	atg gac 2592	cca	gga	Cac	acc	aag	aaa	aca		cag	cta	get	CEC	ccg	tgc
35	Met Asp 850	Ser	Gly	His	Ile	Lys 855	Lys	Thr	Phe	Gln	Leu 860	Ala	Leu	Leu	Cys
00	acc aag 2640														
40	Thr Lys 865	Arg	Asn	Pro	Leu 870	Glu	Arg	Pro	Thr	Met 875	Gln	Glu	Val	Ser	Arg 880
40	gtt ctg 2688	ctc	tca	ctt	gtc	ccg	tct	cca	cct	cca	aag	aag	tta	ccg	tcg
4=	Val Leu	Leu	Ser	Leu 885	Val	Pro	Ser	Pro	Pro 890	Pro	Lys	Lys	Leu	Pro 895	Ser
45	cct gca	aaa	gta	cag	gaa	qqq	gaa	gaa	caa	cat	gag	agc	cac	tct	tca
	2736												•		
50	Pro Ala		900					905					910		
	gat aca 2784	aca	acc	cca	cag	tgg	ttt	gtt	cag	ttc	cgt	gaa	gat	atc	tcc
55	Asp Thr	Thr 915	Thr	Pro	Gln	Trp	Phe 920	Val	Gln	Phe	Arg	Glu 925	Asp	Ile	Ser
JJ	aaa agt 2799	agc	tta	taa											

Lys Ser Ser Leu 930

5 <210> 8

<211> 932

<212> PRT

10

<213> Arabdopsis thaliana ERECTA homolog

15 <400> 8

Met Ala Ile Lys Ala Ser Phe Ser Asn Val Ala Asn Met Leu Leu Asp 1 5 10 15

20

Trp Asp Asp Val His Asn His Asp Phe Cys Ser Trp Arg Gly Val Phe 20 25 30

- 25 Cys Asp Asn Val Ser Leu Asn Val Val Ser Leu Asn Leu 35 40 45
- Asn Leu Gly Gly Glu Ile Ser Ser Ala Leu Gly Asp Leu Met Asn Leu 30 50 55 60
- Gln Ser Ile Asp Leu Gln Gly Asn Lys Leu Gly Gly Gln Ile Pro Asp 65 70 75 80

Glu Ile Gly Asn Cys Val Ser Leu Ala Tyr Val Asp Phe Ser Thr Asn 85 90 95

40
Leu Leu Phe Gly Asp Ile Pro Phe Ser Ile Ser Lys Leu Lys Gln Leu
100
105
110

- 45 Glu Phe Leu Asn Leu Lys Asn Asn Gln Leu Thr Gly Pro Ile Pro Ala 115 120 125
- Thr Leu Thr Gln Ile Pro Asn Leu Lys Thr Leu Asp Leu Ala Arg Asn 50 130 135 140
- Gln Leu Thr Gly Glu Ile Pro Arg Leu Leu Tyr Trp Asn Glu Val Leu 145 150 155 160

Gln Tyr Leu Gly Leu Arg Gly Asn Met Leu Thr Gly Thr Leu Ser Pro

	165					170					175					
5	Asp	Met	Cys	Gln 180	Leu	Thr	Gly	Leu	Trp 185	Туг	Phe	Asp	Val	Arg 190	Gly	Asn
10	Asn	Leu	Thr 195	Gly	Thr	Ile	Pro	Glu 200	Ser	Ile	Gly	Asn	Cys 205	Thr	Ser	Ph∈
	Glu	Ile 210	Leu	Asp	Val	Ser	Tyr 215	Asn	Gln	Ile	Thr	Gly 220	Val	Ile	Pro	Туг
15	Asn 225	Ile	Gly	Phe	Leu	Gln 230	Val	Ala	Thr	Leu	Ser 235	Leu	Gln	Gly	Asn	Lys 240
20	Leu	Thr	Gly	Arg	Ile 245	Pro	Glu	Val	Ile	Gly 250	Leu	Met	Gln	Ala	Leu 255	Ala
25	Val	Leu	Asp	Leu 260	Ser	Asp	Asn	Glu	Leu 265	Thr	Gly	Pro	Ile	Pro 270	Pro	Ile
30	Leu	Gly	Asn 275	Leu	Ser	Phe	Thr	Gly 280	Lys	Leu	Tyr	Leu	His 285	Gly	Asn	Lуs
	Leu	Thr 290	Gly	Gln	Ile	Pro	Pro 295	Glu	Leu	Gly	Asn	Met 300	Ser	Arg	Leu	Sei
_. 35	Tyr 305	Leu	Gln	Leu	Asn	Asp 310	Asn	Glu	Leu	Val	Gly 315	Lys	Ile	Pro	Pro	Gl: 320
40	Leu	Gly	Lys	Leu	Glu 325	Gln	Leu	Phe	Glu	Leu 330	Asn	Leu	Ala	Asn	Asn 335	Ası
45	Leu	Val	Gly	Leu 340	Ile	Pro	Ser	Asn	Ile 345	Ser	Ser	Cys	Ala	Ala 350	Leu	Ası
50	Gln	Phe	Asn 355	Val	His	Gly	Asn	Phe 360	Leu	Ser	Gly	Ala	Val 365	Pro	Leu	Glı
	Phe	Arg 370	Asn	Leu	Gly	Ser	Leu 375	Thr	Tyr	Leu	Asn	Leu 380	Ser	Ser	Asn	Se
55	Phe 385	Lys	Gly	Lys	Ile	Pro 390	Ala	Glu	Leu	Gly	His 395	Ile	Ile	Asn	Leu	Asp 400

5	Thr	ьeu	Asp	ьeu	405	GTÀ	Asn	Asn	Pne	410	СТĀ	ser	iie	Pro	115	Thr
	Leu	Gly	Asp	Leu 420	Glu	His	Leu	Leu	Ile 425	Leu	Asn	Leu	Ser	Arg 430	Asn	His
10	Leu	Asn	Gly 435	Thr	Leu	Pro	Ala	Glu 440	Phe	Gly	Asn	Leu	Arg 445	Ser	Ile	Gln
L5	Ile	Ile 450	Asp	Val	Ser	Phe	Asn 455	Phe	Leu	Ala	Gly	Val 460	Ile	Pro	Thr	Glu
20	Leu 465	Gly	Gln	Leu	Gln	Asn 470	Ile	Asn	Ser	Leu	Ile 475	Leu	Asn	Asn	Asn	Lys 480
25	Ile	His	Gly	Lys	Ile 485	Pro	Asp ·	Gln	Leu	Thr 490	Asn	Cys	Phe	Ser	Leu 495	Ala
30	Asn	Leu	Asn	Ile 500	Ser	Phe	Asn	Asn	Leu 505	Ser	Gly	Ile	Ile	Pro 510	Pro	Met
,0	Lys	Asn	Phe 515	Thr	Arg	Phe	Ser	Pro 520	Ala	Ser	Phe	Phe	Gly 525	Asn	Pro	Phe
35	Leu	Cys 530	Gly	Asn	Trp	Val	Gly 535	Ser	Ile	Cys	Gly	Pro 540	Ser	Leu	Pro	Lys
10	Ser 545	Gln	Val	Phe	Thr	Arg 550	Val	Ala	Val	Ile	Cys 555	Met	Val	Leu	Gly	Phe 560
1 5	Ile	Thr	Leu	Ile	Cys 565	Met	Ile	Phe	Ile	Ala 570	Val	Tyr	Lys	Ser	Lys 575	Gln
50	Gln	Lys	Pro	Val 580	Leu	Lys	Gly	Ser	Ser 585	Lys	Gln	Pro	Glu	Gly 590	Ser	Thr
, 0	Lys	Leu	Val 595	Ile	Leu	His	Met	Asp 600	Met	Ala	Ile	His	Thr 605	Phe	Asp	Asp
55	Ile	Met 610	Arg	Val	Thr	Glu	Asn 615	Leu	Asp	Glu	Lys	Tyr 620	Ile	Ile	Gly	Туг

	Gly 625	Ala	Ser	Ser	Thr	Val 630	Tyr	Lys	Cys	Thr	Ser 635	Lys	Thr	Ser	Arg	Pro 640
5	Ile	Ala	Ile	Lys	Arg 645	Ile	Tyr	Asn	Gln	Туг 650	Pro	Ser	Asn	Phe	Arg 655	Glu
10	Phe	Glu	Thr	Glu 660	Leu	Glu	Thr	Ile	Gly 665	Ser	Ile	Arg	His	Arg 670	Asn	Ile
15	Val	Ser	Leu 675	His	Gly	туг	Ala	Leu 680	Ser	Pro	Phe	Gly	Asn 685	Leu	Leu	Phe
20	Tyr	Asp 690	Tyr	Met	Glu	Asn	Gly 695	Ser	Leu	Trp	Asp	Leu 700	Leu	His	Gly	Pro
	Gly 705	Lys	Lys	Val	Lys	Leu 710	Asp	Trp	Glu	Thr	Arg 715	Lieu	Lys	Iļe	Ala	Val 720
25	Gly	Ala	Ala	Gln	Gly 725	Leu	Ala	Tyr	Leu	His 730	His	Asp	Cys	Thr	Pro 735	Arg
30	Ile	Ile	His	Arg 740	Asp	Ile	Lys	Ser	Ser 745	Asn	Ile	Leu	Leu	Asp 750	Gly	Asn
35	Phe	Glu	Ala 755	Arg	Leu	Ser.	Asp	Phe 760	Gly	Ile	Ala	Lys	Ser 765	Ile	Pro	Ala
40	Thr	Lys 770	Thr	Tyr	Ala	Ser	Thr 775	Tyr	Val	Leu	Gly	Thr 780	Ile	Gly	Tyr	Ile
	Asp 785	Pro	Glu	Tyr	Ala	Arg 790	Thr	Ser	Arg	Leu	Asn 795	Glu	Lys	Ser	Asp	Ile 800
45	Tyr	Ser	Phe	Gly	Ile 805	Val	Leu	Leu	Glu	Leu 810	Leu	Thr	Gly	Lys	Lys 815	Ala
50	Val	Asp	Asn	Glu 820	Ala	Asn	Leu	His	Gln 825	Met	Ile	Leu	Ser	Lys 830	Ala	Asp
55	Asp	Asn	Thr 835	Val	Met	Glu	Ala	Val 840	Asp	Ala	Glu	Val	Ser 845	Val	Thr	Cys

Met Asp Ser Gly His Ile Lys Lys Thr Phe Gln Leu Ala Leu Leu Cys 850 855 860

5 Thr Lys Arg Asn Pro Leu Glu Arg Pro Thr Met Gln Glu Val Ser Arg 865 870 875 880

Val Leu Leu Ser Leu Val Pro Ser Pro Pro Pro Lys Lys Leu Pro Ser 10 885 890 895

Pro Ala Lys Val Gln Glu Glu Glu Arg Arg Glu Ser His Ser Ser 900 905 910

15

Asp Thr Thr Thr Pro Gln Trp Phe Val Gln Phe Arg Glu Asp Ile Ser 915 920 925

20 Lys Ser Ser Leu 930

25 <210> 9

<211> 2901

<212> DNA

<213> Aradopsis thaliana ERECTA homolog

35 <220>

30

<221> CDS

<222> (1)..(2898)

40 <223>

45 <400> 9
atg aag gag aag atg cag cga atg gtt tta tct tta gca atg gtg ggt
48
Met Lys Glu Lys Met Gln Arg Met Val Leu Ser Leu Ala Met Val Gly
1 5 10 15

ttt atg gtt ttt ggt gtt gct tcg gct atg aac aac gaa ggg aaa gct 96 Phe Met Val Phe Gly Val Ala Ser Ala Met Asn Asn Glu Gly Lys Ala

ctg atg gcg ata aaa ggc tct ttc agc aac tta gtg aat atg ctt ttg
144

Leu Met Ala Ile Lys Gly Ser Phe Ser Asn Leu Val Asn Met Leu Leu gat tgg gac gat gtt cac aac agt gac ttg tgt tct tgg cga ggt gtt 192 Asp Trp Asp Asp Val His Asn Ser Asp Leu Cys Ser Trp Arg Gly Val ttc tgc gac aac gtt agc tac tcc gtt gtc tct ctg aat ttg tcc agt 10 Phe Cys Asp Asn Val Ser Tyr Ser Val Val Ser Leu Asn Leu Ser Ser ctg aat ctt gga ggg gag ata tct cca gct att gga gac cta cgg aat 15 Leu Asn Leu Gly Gly Glu Ile Ser Pro Ala Ile Gly Asp Leu Arg Asn ttg caa tca ata gac ttg caa ggt aat aaa cta gca ggt caa att cca 20 Leu Gln Ser Ile Asp Leu Gln Gly Asn Lys Leu Ala Gly Gln Ile Pro gat gag att gga aac tgt gct tct ctt gtt tat ctg gat ttg tcc gag 25 Asp Glu Ile Gly Asn Cys Ala Ser Leu Val Tyr Leu Asp Leu Ser Glu 115 120 125 aat ctg tta tat gga gac ata cct ttc tca atc tct aaa ctc aag cag 30 432 Asn Leu Leu Tyr Gly Asp Ile Pro Phe Ser Ile Ser Lys Leu Lys Gln ctt gaa act ctg aat ctg aag aac aat cag ctc aca ggt cct gta cca 35 Leu Glu Thr Leu Asn Leu Lys Asn Asn Gln Leu Thr Gly Pro Val Pro 145 150 155 160 gca acc tta acc cag att cca aac ctt aag aga ctt gat ctt gct qgc 40 Ala Thr Leu Thr Gln Ile Pro Asn Leu Lys Arg Leu Asp Leu Ala Gly 170 aat cat cta acg ggt gag ata tcg aga ttg ctt tac tgg aat gaa gtt 45 576 Asn His Leu Thr Gly Glu Ile Ser Arg Leu Leu Tyr Trp Asn Glu Val 180 185 190 ttg cag tat ctt gga tta cga ggg aat atg ttg act gga acg tta tct 50 Leu Gln Tyr Leu Gly Leu Arg Gly Asn Met Leu Thr Gly Thr Leu Ser 200 205 tct gat atg tgt cag cta acc ggt ttg tgg tac ttt gat gtg aga gga 55 672 Ser Asp Met Cys Gln Leu Thr Gly Leu Trp Tyr Phe Asp Val Arg Gly

		aat	cta	act	gga	acc	atc	ccg	gag	agc	atc	gga	aat	tgc	aca	agc
5	720 Asn 225	Asn	Leu	Thr	Gly	Thr 230	Ile	Pro	Glu	Ser	Ile 235	Gly	Asn	Cys	Thr	Ser 240
	ttt 768	caa	atc	ctg	gac	ata	tct	tat	aat	cag	ata	aca	gga	gag	att	cct
10		Gln	Ile	Leu	Asp 245	Ile	Ser	Tyr	Asn	Gln 250	Ile	Thr	Gly	Glu	Ile 255	Pro
	tac 816	aat	atc	ggc	ttc	ctc	caa	gtt	gct	act	ctg	tca	ctt	caa	gga	aac
15		Asn	Ile	Gly 260	Phe	Leu	Gln	Val	Ala 265	Thr	Leu	Ser	Leu	Gln 270	Gly	Asn
	aga 864	ttg	acg	ggt	aga	att	cca	gaa	gtt	att	ggt	cta	atg	cag	gct	ctt
20	Arg	Leu	Thr 275	Gly	Arg	Ile	Pro	Glu 280	Val	Ile	Gly	Leu	Met 285	Gln	Ala	Leu
	gct 912	gtt	ttg	gat	ttg	agt	gac	aat	gag	ctt	gtt	ggt	cct	atc	cca	ccg
25		Val 290	Leu	Asp	Leu	Ser	Asp 295	Asn	Glu	Leu	Val	Gly 300	Pro	Ile	Pro	Pro
	ata 960	ctt	ggc	aat	ctc	tca	ttt	acc	gga	aag	ttg	tat	ctc	cat	ggc	aat
30		Leu	Gly	Asn	Leu	Ser 310	Phe	Thr	Gly	Lys	Leu 315	Tyr	Leu	His	Gly	Asn 320
	atg 1008		act	ggt	cca	atc	ccc	tct	gag	ctt	ggg	aat	atg	tca	cgt	ctc
35	Met	Leu	Thr	Gly	Pro 325	Ile	Pro	Ser	Glu	Leu 330	Gly	Asn	Met	Ser	Arg 335	Leu
	agc 105		ttg	cag	cta	aac	gac	aat.	aaa	cta	gtg	gga	act	att	cca	cct
40	Ser	Tyr	Leu	Gln 340	Leu	Asn	Asp	Asn	Lys 345	Leu	Val	Gly	Thr	Ile 350	Pro	Pro
	gag 110		gga	aag	ctg	gag	caa	ttg	ttt	gaa	ctg	aat	ctt	gcc	aac	aac
45			Gly 355	Lys	Leu	Glu	Gln	Leu 360	Phe	Glu	Leu	Asn	Leu 365	Ala	Asn	Asn
	cgt 1152	tta 2	gta	ggg	ccc	ata	cca	tcc	aac	att	agt	tca	tgt	gċa	gcc	ttg
50			Val	Gly	Pro	Ile	Pro 375	Ser	Asn	Ile	Ser	Ser 380	Суз	Àla	Ala	Leu
	aat 1200	caa)	ttc	aat	gtt	cat	ggg	aac	ctc	ttg	agt	gga	tct	att	cca	ctg
55	Asn 385	Gln	Phe	Asn	Val	His 390	Gly	Asn	Leu	Leu	Ser 395	Gly	Ser	Ile	Pro	Leu 400

gcg ttt cgc aat ctc ggg agc ttg act tat ctg aat ctt tcg tcg aac 1248 Ala Phe Arg Asn Leu Gly Ser Leu Thr Tyr Leu Asn Leu Ser Ser Asn 405 410 aat ttc aag gga aaa ata cca gtt gag ctt gga cat ata atc aat ctt 1296 Asn Phe Lys Gly Lys Ile Pro Val Glu Leu Gly His Ile Ile Asn Leu 430 420 425 10 gac aaa cta gat ctg tct ggc aat aac ttc tca ggg tct ata cca tta Asp Lys Leu Asp Leu Ser Gly Asn Asn Phe Ser Gly Ser Ile Pro Leu 440 15 acg ctt ggc gat ctt gaa cac ctt ctc ata tta aat ctt agc aga aac Thr Leu Gly Asp Leu Glu His Leu Leu Ile Leu Asn Leu Ser Arg Asn 450 455 460 20 cat ctt agt gga caa tta cct gca gag ttt ggg aac ctt cga agc att His Leu Ser Gly Gln Leu Pro Ala Glu Phe Gly Asn Leu Arg Ser Ile 25 cag atg att gat gta tca ttc aat ctg ctc tcc gga gtt att cca act 1488 Gln Met Ile Asp Val Ser Phe Asn Leu Leu Ser Gly Val Ile Pro Thr 485 490 495 30 gaa ctt ggc caa ttg cag aat tta aac tct tta ata ttg aac aac aac Glu Leu Gly Gln Leu Gln Asn Leu Asn Ser Leu Ile Leu Asn Asn Asn 500 505 35 aag ctt cat ggg aaa att cca gat cag ctt acg aac tgc ttc act ctt 1584 Lys Leu His Gly Lys Ile Pro Asp Gln Leu Thr Asn Cys Phe Thr Leu 515 520 525 40 gtc aat ctg aat gtc tcc ttc aac aat ctc tcc ggg ata gtc cca cca 1632 Val Asn Leu Asn Val Ser Phe Asn Asn Leu Ser Gly Ile Val Pro Pro 530 45 atg aaa aac ttc tca cgt ttt gct cca gcc agc ttt gtt gga aat cca Met Lys Asn Phe Ser Arg Phe Ala Pro Ala Ser Phe Val Gly Asn Pro 550 ·50 tat ctt tgt gga aac tgg gtt gga tct att tgt ggt cct tta ccg aaa Tyr Leu Cys Gly Asn Trp Val Gly Ser Ile Cys Gly Pro Leu Pro Lys 565 55 tet ega gta tte tee aga ggt get ttg ate tge att gtt ett gge gte 1776

Ser Arg Val Phe Ser Arg Gly Ala Leu Ile Cys Ile Val Leu Gly Val atc act ctc cta tgt atg att ttc ctt gca gtt tac aaa tca atg cag Ile Thr Leu Leu Cys Met Ile Phe Leu Ala Val Tyr Lys Ser Met Gln cag aag aag att cta caa ggc tcc tca aaa caa gct gaa ggg tta acc Gln Lys Lys Ile Leu Gln Gly Ser Ser Lys Gln Ala Glu Gly Leu Thr aag cta gtg att ctc cac atg gac atg gca att cat aca ttt gat gat Lys Leu Val Ile Leu His Met Asp Met Ala Ile His Thr Phe Asp Asp atc atg aga gtg act gag aat ctt aac gaa aag ttt ata att gga tat Ile Met Arg Val Thr Glu Asn Leu Asn Glu Lys Phe Ile Ile Gly Tyr ggt gct tct agc acg gta tac aaa tgt gca tta aaa agt tcc cga cct Gly Ala Ser Ser Thr Val Tyr Lys Cys Ala Leu Lys Ser Ser Arg Pro att gec att aag ega ete tae aat eag tat eeg eat aac ttg egg gaa Ile Ala Ile Lys Arg Leu Tyr Asn Gln Tyr Pro His Asn Leu Arg Glu ttt gag aca gaa ctt gag acc att ggg agc att agg cac aga aac ata Phe Glu Thr Glu Leu Glu Thr Ile Gly Ser Ile Arg His Arg Asn Ile gtc agc ttg cat gga tat gcc ttg tct cct act ggc aac ctt ctt ttc Val Ser Leu His Gly Tyr Ala Leu Ser Pro Thr Gly Asn Leu Leu Phe tat gac tac atg gaa aat gga tca ctt tgg gac ctt ctt cat ggg tca Tyr Asp Tyr Met Glu Asn Gly Ser Leu Trp Asp Leu Leu His Gly Ser ttg aag aaa gtg aag ctt gat tgg gag aca agg ttg aag ata gcg gtt 225.6 Leu Lys Lys Val Lys Leu Asp Trp Glu Thr Arg Leu Lys Ile Ala Val gga gct gca caa gga cta gcc tat ctt cac cac gat tgt act cct cga Gly Ala Ala Gln Gly Leu Ala Tyr Leu His His Asp Cys Thr Pro Arg

	atc att	cac	cgt	gac	atc	aag	tca	tcg	aac	ata	ctt	ctt	gat	gag	aat
5	Ile Ile 770		Arg	Asp	Ile	Lys 775	Ser	Ser	Asn	Ile	Leu 780	Leu	Asp	Glu	Asn
	ttc gaa 2400	gca	cat	tta	tct	gat	ttc	ggg	att	gct	aag	agc	ata	cca	gct
10	Phe Glu 785	Ala	His	Leu	Ser 790	Asp	Phe	Gly	Ile	Ala 795	Lys	Ser	Ile	Pro	Ala 800
	agc aaa 2448	acc	cat	gcc	tcg	act	tat	gtt	ttg	gga	aca	att	ggt	tat	ata
15	Ser Lys	Thr	His	Ala 805	Ser	Thr	Tyr	Val	Leu 810	Gly	Thr	Ile	Gly	Tyr 815	Ile
	gac cca 2496	gag	tat	gct	cgt	act	tca	cga	atc	aat	gag	aaa	tcc	gat	ata
20	Asp Pro	Glu	Tyr 820	Ala	Arg	Thr	Ser	Arg 825	Ile	Asn	Glu	Lys	Ser 830	Asp	Ile
	tac ago 2544	ttc	ggt	att	gtt	ctt	ctt	gag	ctt	ctc	act	ggg	aag	aaa	gca
25	Tyr Ser	Phe 835	Gly	Ile	Val	Leu	Leu 840	Glu	Leu	Leu	Thr	Gly 845	Lys	Lys	Ala
	gtg gat 2592	aac	gaa	gct	aac	ttg	cat	caa	ctg	ata	ttg	tca	aag	gct	gat
30	Val Asp 850		Glu	Ala	Asn	Leu 855	His	Gln	Leu	Ile	Leu 860	Ser	Lys	Ala	Asp
	gat aat 2640	act	gtg	atg	gaa	gca	gtt	gat	cca	gag	gtt	act	gtg	act	tgt
35	Asp Asn 865	Thr	Val	Met	Glu 870	Ala	Val	Asp	Pro	Glu 875	Val	Thr	Val	Thr	Cys 880
	atg gac 2688	ttg	gga	cat	atc	agg	aag	aca	ttt	cag	ctg	gct	ctc	tta	tgc
40	Met Asp	Leu	Gly	His 885	Ile	Arg	Lys	Thr	Phe 890	Gln	Leu	Ala	Leu	Leu 895	Cys
	aca aag 2736	cga	aac	cct	tta	gag	aga	ccc	aca	atg	ctt	gaa	gtc	tct	agg
45	Thr Lys	Arg	Asn 900	Pro	Leu	Glu	Arg	Pro 905	Thr	Met	Leu	Glu	Val 910	Ser	Arg
	gtt ctg 2784	ctc	tct	ctt	gtc	cca	tct	ctg	caa	gta	gca	aag	aag	cta	cct
50	Val Leu	Leu 915	Ser	Leu	Val	Pro	Ser 920	Leu	Gln	Val	Ala	Lys 925	Lys	Leu	Pro
	tct ctt 2832	gat	cac	tca	acc	aaa	aag	ctg	cag	caa	gag	aat	gaa	gtt	agg
55	Ser Leu 930		His	Ser	Thr	Lys 935	Lys	Leu	Gln	G].n	Glu 940	Asn	Glu	Val	Arg

aat cct gat gca gaa gca tct caa tgg ttt gtt cag ttc cgt gaa gtc Asn Pro Asp Ala Glu Ala Ser Gln Trp Phe Val Gln Phe Arg Glu Val 955 atc tcc aaa agt agc ata taa 2901 Ile Ser Lys Ser Ser Ile 965 10 <210> 10 <211> 966 15 <212> PRT <213> Aradopsis thaliana ERECTA homolog 20 <400> 10 Met Lys Glu Lys Met Gln Arg Met Val Leu Ser Leu Ala Met Val Gly 25 10 15 Phe Met Val Phe Gly Val Ala Ser Ala Met Asn Asn Glu Gly Lys Ala 20 25 30 Leu Met Ala Ile Lys Gly Ser Phe Ser Asn Leu Val Asn Met Leu Leu 35 . 35 Asp Trp Asp Asp Val His Asn Ser Asp Leu Cys Ser Trp Arg Gly Val 50 40 Phe Cys Asp Asn Val Ser Tyr Ser Val Val Ser Leu Asn Leu Ser Ser 65 70 80 Leu Asn Leu Gly Gly Glu Ile Ser Pro Ala Ile Gly Asp Leu Arg Asn 45 85 95 Leu Gln Ser Ile Asp Leu Gln Gly Asn Lys Leu Ala Gly Gln Ile Pro 100 110 50 Asp Glu Ile Gly Asn Cys Ala Ser Leu Val Tyr Leu Asp Leu Ser Glu 115 125 55 Asn Leu Leu Tyr Gly Asp Ile Pro Phe Ser Ile Ser Lys Leu Lys Gln 130

5	Leu 145	Glu	Thr	Leu	Asn	Leu 150	Lys	Asn	Asn	Gln	Leu 155	Thr	Gly	Pro	Val	Pro 160
	Ala	Thr	Leu	Thr	Gln 165	Ile	Pro	Asn	Leu	Lys 170	Arg	Leu	Asp	Leu	Ala 175	Gly
10	Asn	His	Leu	Thr 180	Gly	Glu	Ile	Ser	Arg 185	Leu	Leu	Tyr	Trp	Asn 190	Glu	Val
15	Leu	Gln	Tyr 195	Leu	Gly	Leu	Arg	Gly 200	Asn	Met	Leu	Thr	Gly 205	Thr	Leu	Ser
20	Ser	Asp 210	Met	Cys	Gln	Leu	Thr 215	Gly	Leu	Trp	Tyr	Phe 220	Asp	Val	Arg	Gly
25	Asn 225	Asn	Leu	Thr	Gly	Thr 230	Ile	Pro	Glu	Ser	Ile 235	Gly	Asn	Cys	Thr	Ser 240
	Phe	Gln	Ile	Leu	Asp 245	Ile	Ser	Tyr	Asn	Gln 250	Ile	Thr	Gly	Glu	Ile 255	Pro
30	Tyr	Asn	Ile	Gly 260	Phe	Leu	Gln	Val	Ala 265	Thr	Leu	Ser	Leu	Gln 270	Gly	Asn
35	Arg	Leu	Thr 275	Gly	Arg	Ile	Pro	Glu 280	Val	Ile	Gly	Leu	Met 285	Gln	Ala	Leu
40	Ala	Val 290	Leu	Asp	Leu	Ser	Asp 295	Asn	Glu	Leu	Val	Gly 300	Pro	Ile	Pro	Pro
45	11e 305	Leu	ĠŢĀ	Asn	Leu	Ser 310	Phe	Thr	Gly	Lys	Leu 315	Туг	Leu	His	Gly	Asn 320
	Met	Leu	Thr	Gly	Pro 325	Ile	Pro	Ser	Glu	Leu 330	Gly	Asn	Met	Ser	Arg 335	Leu
50	Ser	Tyr	Leu	Gln 340	Leu	Asn	Asp	Asn	Lys 345	Leu	Val	Gly	Thr	Ile 350	Pro	Pro
55	Glu	Leu	Gly 355	Lys	Leu	Glu	Gln	Leu 360	Phe	Glu	Leu	Asn	Leu 365	Ala	Asn	Asn

Arg Leu Val Gly Pro Ile Pro Ser Asn Ile Ser Ser Cys Ala Ala Leu Asn Gln Phe Asn Val His Gly Asn Leu Leu Ser Gly Ser Ile Pro Leu 10 Ala Phe Arg Asn Leu Gly Ser Leu Thr Tyr Leu Asn Leu Ser Ser Asn Asn Phe Lys Gly Lys Ile Pro Val Glu Leu Gly His Ile Ile Asn Leu Asp Lys Leu Asp Leu Ser Gly Asn Asn Phe Ser Gly Ser Ile Pro Leu Thr Leu Gly Asp Leu Glu His Leu Leu Ile Leu Asn Leu Ser Arg Asn His Leu Ser Gly Gln Leu Pro Ala Glu Phe Gly Asn Leu Arg Ser Ile 30 Gln Met Ile Asp Val Ser Phe Asn Leu Leu Ser Gly Val Ile Pro Thr Glu Leu Gly Gln Leu Gln Asn Leu Asn Ser Leu Ile Leu Asn Asn Asn . 35 Lys Leu His Gly Lys Ile Pro Asp Gln Leu Thr Asn Cys Phe Thr Leu Val Asn Leu Asn Val Ser Phe Asn Asn Leu Ser Gly Ile Val Pro Pro Met Lys Asn Phe Ser Arg Phe Ala Pro Ala Ser Phe Val Gly Asn Pro 50 Tyr Leu Cys Gly Asn Trp Val Gly Ser Ile Cys Gly Pro Leu Pro Lys Ser Arg Val Phe Ser Arg Gly Ala Leu Ile Cys Ile Val Leu Gly Val

Ile Thr Leu Leu Cys Met Ile Phe Leu Ala Val Tyr Lys Ser Met Gln 600 5 Gln Lys Lys Ile Leu Gln Gly Ser Ser Lys Gln Ala Glu Gly Leu Thr Lys Leu Val Ile Leu His Met Asp Met Ala Ile His Thr Phe Asp Asp 630 Ile Met Arg Val Thr Glu Asn Leu Asn Glu Lys Phe Ile Gly Tyr 650 15 Gly Ala Ser Ser Thr Val Tyr Lys Cys Ala Leu Lys Ser Ser Arg Pro 665 20 Ile Ala Ile Lys Arg Leu Tyr Asn Gln Tyr Pro His Asn Leu Arg Glu 680 Phe Glu Thr Glu Leu Glu Thr Ile Gly Ser Ile Arg His Arg Asn Ile Val Ser Leu His Gly Tyr Ala Leu Ser Pro Thr Gly Asn Leu Leu Phe 30 Tyr Asp Tyr Met Glu Asn Gly Ser Leu Trp Asp Leu Leu His Gly Ser 35 Leu Lys Lys Val Lys Leu Asp Trp Glu Thr Arg Leu Lys Ile Ala Val 745 40 Gly Ala Ala Gln Gly Leu Ala Tyr Leu His His Asp Cys Thr Pro Arg Ile Ile His Arg Asp Ile Lys Ser Ser Asn Ile Leu Leu Asp Glu Asn Phe Glu Ala His Leu Ser Asp Phe Gly Ile Ala Lys Ser Ile Pro Ala Ser Lys Thr His Ala Ser Thr Tyr Val Leu Gly Thr Ile Gly Tyr Ile 55

Asp Pro Glu Tyr Ala Arg Thr Ser Arg Ile Asn Glu Lys Ser Asp Ile

Tyr Ser Phe Gly Ile Val Leu Leu Glu Leu Leu Thr Gly Lys Lys Ala Val Asp Asn Glu Ala Asn Leu His Gln Leu Ile Leu Ser Lys Ala Asp Asp Asn Thr Val Met Glu Ala Val Asp Pro Glu Val Thr Val Thr Cys Met Asp Leu Gly His Ile Arg Lys Thr Phe Gln Leu Ala Leu Leu Cys Thr Lys Arg Asn Pro Leu Glu Arg Pro Thr Met Leu Glu Val Ser Arg Val Leu Leu Ser Leu Val Pro Ser Leu Gln Val Ala Lys Lys Leu Pro Ser Leu Asp His Ser Thr Lys Lys Leu Gln Gln Glu Asn Glu Val Arg Asn Pro Asp Ala Glu Ala Ser Gln Trp Phe Val Gln Phe Arg Glu Val Ile Ser Lys Ser Ser Ile

Dated this SECOND day of JULY, 2002

The Australian National University Patent Attorneys for the Applicant:

F B RICE & CO

Figure 1a

Figure 1b

Figure 2a

Figure 2b

Figure 1c

Figure 2c