

Gowin 存储器(BSRAM & SSRAM) 用户指南

UG285-1.3.7, 2024-05-22

版权所有 © 2024 广东高云半导体科技股份有限公司

GO₩IN高云、Gowin以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2016/05/17	1.05	初始版本。
2016/07/15	1.06	标准化插图。
2016/10/27	1.07	适用 GW2AR 系列 FPGA 产品。
2017/05/03	1.08	更新 BSRAM 操作时序图,添加 ROM、字节使能信号、字节校验、上电情况、输出寄存器复位、位置约束;增加附录 A 注意事项。
2018/05/31	1.09	添加第三章端口和参数介绍;添加存储扩展;
2016/05/31	1.09	● 更新 A.3 读写注意。
2019/04/03	1.1	更新表 A.1 写操作注意列表。
2020/08/17	1.2	章节调整及内容优化。
2021/06/21	1.3	更新 IP 调用部分截图,删除 Help 内容。
2021/10/12	1.3.1	更新 RESET 描述。
2022/07/22	1.3.2	更新 BSRAM 禁用模式和器件信息。
2022/08/10	1.3.3	更新 SSRAM 原语器件信息。
2022/11/01	1.3.4	删除 GW1NS-2。
2023/01/05	1.3.5	更新 IP 调用截图,"File"配置框改为"General",添加"Device Version"选项。
2023/05/25	1.3.6	双端口模式下不支持 read-before-write;双端口和伪双端口模式功能描述中增加注释。
2024/05/22	1.3.7	 新增"图 3-2 DPB/DPX9B Normal 写模式 B 写 A 读时序波形图 (Bypass 读模式)"和"图 3-4 DPB/DPX9B Normal 写模式 B 写 A 读时序波形图 (Pipeline 读模式)"。 修改双端口和伪双端口模式功能描述的注释。

i

目录

目录	i
图目录	iii
表目录	v
1 关于本手册	1
1.1 手册内容	1
1.2 相关文档	1
1.3 术语、缩略语	1
1.4 技术支持与反馈	2
2 概述	3
2.1 BSRAM 特性介绍	3
2.2 BSRAM 配置模式	3
3 BSRAM 原语	6
3.1 双端口模式	6
3.2 单端口模式	18
3.3 伪双端口模式	23
3.4 只读模式	29
4 BSRAM 输出复位	34
5 SSRAM 原语	37
5.1 RAM16S1	37
5.2 RAM16S2	40
5.3 RAM16S4	
5.4 RAM16SDP1	
5.5 RAM16SDP2	
5.6 RAM16SDP4	
5.7 ROM16	
6 IP 调用	
6.1 BSRAM 双端口模式	
6.2 SSRAM 单端口模式	56

7	初始化文件	58
	7.1 二进制格式(Bin File)	. 58
	7.2 十六进制格式(Hex File)	. 58
	7.3 带地址十六进制核式(Address-Hey File)	50

UG285-1.3.7 ii

图目录

图 3-1 DPB/DPX9B Normal 写模式时序波形图(Bypass 读模式)	7
图 3-2 DPB/DPX9B Normal 写模式 B 写 A 读时序波形图(Bypass 读模式)	8
图 3-3 DPB/DPX9B Normal 写模式时序波形图(Pipeline 读模式)	9
图 3-4 DPB/DPX9B Normal 写模式 B 写 A 读时序波形图(Pipeline 读模式)	10
图 3-5 DPB/DPX9B Write-through 写模式时序波形图(Bypass 读模式)	11
图 3-6 DPB/DPX9B Write-through 写模式时序波形图(Pipeline 读模式)	12
图 3-7 DPB/DPX9B 端口示意图	13
图 3-8 SP/SPX9 Read-before-write 写模式时序波形图(Bypass 读模式)	19
图 3-9 SP/SPX9 Read-before-write 写模式时序波形图(Pipeline 读模式)	19
图 3-10 SP/SPX9 端口示意图	20
图 3-11 伪双端口 BSRAM Normal 写模式时序波形图(Bypass 读模式)	24
图 3-12 伪双端口 BSRAM Normal 写模式时序波形图(Pipeline 读模式)	25
图 3-13 SDPB/SDPX9B 端口示意图	25
图 3-14 ROM 时序波形图(Bypass 模式)	30
图 3-15 ROM 时序波形图(Pipeline 模式)	30
图 3-16 pROM/pROMX9 端口示意图	31
图 4-1 复位输出结构框图	34
图 4-2 同步复位时序图(Pipeline 模式)	35
图 4-3 同步复位时序图(Bypass 输出模式)	35
图 4-4 异步复位时序图(Pipeline 模式)	35
图 4-5 异步复位时序图(Bypass 输出模式)	36
图 5-1 RAM16S1 模式时序波形图	38
图 5-2 RAM16S1 端口示意图	
图 5-3 RAM16S2 端口示意图	40
图 5-4 RAM16S4 端口示意图	42
图 5-5 RAM16SDP1 模式时序波形图	
图 5-6 RAM16SDP1 端口示意图	
图 5-7 RAM16SDP2 端口示意图	47
图 5-8 RAM16SDP4 端口示意图	49

UG285-1.3.7

图 5-9 ROM16 模式时序波形图	51
图 5-10 ROM16 端口示意图	51
图 6-1 DPB 的 IP Customization 窗口结构	54
图 6-2 RAM16S 的 IP Customization 窗口结构	56

UG285-1.3.7 iv

表目录

表 1-1 术语、缩略语	1
表 2-1 BSRAM 配置模式列表	3
表 2-2 BSRAM 数据和地址位宽对应关系	4
表 2-3 双端口模式数据宽度配置列表	5
表 2-4 伪双端口模式数据宽度配置列表	5
表 3-1 DPB/DPX9B 数据宽度和地址深度配置关系	12
表 3-2 DPB/DPX9B 端口介绍	13
表 3-3 DPB/DPX9B 参数介绍	14
表 3-4 SP/SPX9 数据宽度和地址深度配置关系	19
表 3-5 SP/SPX9 端口介绍	20
表 3-6 SP/SPX9 参数介绍	21
表 3-7 SDPB/SDPX9B 数据宽度和地址深度配置关系	25
表 3-8 SDPB/SDPX9B 端口介绍	26
表 3-9 SDPB/SDPX9B 参数介绍	26
表 3-10 pROM/pROMX9 数据宽度和地址深度配置关系	30
表 3-11 pROM/pROMX9 端口介绍	31
表 3-12 pROM/pROMX9 参数介绍	31
表 5-1 SSRAM 模式	37
表 5-2 RAM16S1 端口介绍	38
表 5-3 RAM16S1 参数介绍	38
表 5-4 RAM16S2 端口介绍	40
表 5-5 RAM16S2 参数介绍	40
表 5-6 RAM16S4 端口介绍	42
表 5-7 RAM16S4 参数介绍	43
表 5-8 RAM16SDP1 端口介绍	45
表 5-9 RAM16SDP1 参数介绍	45
表 5-10 RAM16SDP2 端口介绍	47
表 5-11 RAM16SDP2 参数介绍	47
表 5-12 RAM16SDP4 端口介绍	49

表 5-13 RAM16SDP4 参数介绍	49
表 5-14 ROM16 端口介绍	52
表 5-15 ROM16 参数介绍	52

UG285-1.3.7 vi

1 关于本手册 1.1 手册内容

1 关于本手册

1.1 手册内容

Gowin 存储器(BSRAM & SSRAM)用户手册主要描述高云®半导体 BSRAM 和 SSRAM 的特性、工作模式、原语介绍、IP 调用等旨在给用户 提供应用说明。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com</u> 可以下载、查看以下相关文档:

- DS100, GW1N 系列 FPGA 产品数据手册
- DS117, GW1NR 系列 FPGA 产品数据手册
- DS102, GW2A 系列 FPGA 产品数据手册
- DS226, GW2AR 系列 FPGA 产品数据手册
- SUG100, Gowin 云源软件用户手册

1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
BSRAM	Block SRAM	块状静态随机存储器
CFU	Configurable Function Unit	可配置功能单元
CST	Constraints	物理约束文件
DP	True Dual Port 16K Block SRAM	16K 双端口 BSRAM
ROM	Read-Only Memory	只读存储器
SDP	Semi Dual Port 16K Block SRAM	16K 伪双端口 BSRAM
SP	Single Port 16K Block SRAM	单端口 16K BSRAM
SSRAM	Shadow SRAM	分布式静态随机存储器

UG285-1.3.7 1(59)

1 关于本手册 1.4 技术支持与反馈

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: <u>www.gowinsemi.com.cn</u>

E-mail: support@gowinsemi.com

Tel: +86 755 8262 039

UG285-1.3.7 2(59)

2 概述 2.1BSRAM 特性介绍

2 概述

高云半导体 FPGA 产品提供了丰富的存储器资源,包括块状静态随机存储器(BSRAM)和分布式静态随机存储器(SSRAM)。

每个 BSRAM 可配置最高 18 Kbits,数据位宽和地址深度均可配置。每个 BSRAM 具有独立的 A、B 两个端口,具有独立的时钟、地址、数据和控制信号,可以独立的进行读写操作,且两个端口共享一块存储空间。

可配置功能单元(CFU) 是构成高云半导体 FPGA 产品内核的基本单元,可根据应用场景配置成 SSRAM,包括 16 x 4 位的静态随机存储器 (SRAM)或只读存储器 (ROM16)。

2.1 BSRAM 特性介绍

- 一块 BSRAM 最大容量为 18Kbits
- 时钟频率达到 380MHz(在 Read-before-write 模式下 230MHz)
- 支持单端口模式(SP)
- 支持双端口模式(DP)
- 支持伪双端口模式(SDP)
- 支持只读模式(ROM)
- 数据位宽最大支持 36 bits
- 双端口模式和伪双端口模式支持读写时钟独立、数据位宽独立
- 读模式支持寄存器输出或旁路输出
- 写模式支持 Normal 模式、read-before-write 模式和 write-through 模式

2.2 BSRAM 配置模式

每个 BSRAM 可配置成 16Kbits 或 18Kbits 大小,四种模式可配置的数据宽度和地址深度如表 2-1 所示。

表 2-1 BSRAM 配置模式列表

存储容量	单端口模式	双端口模式	伪双端口模式	只读模式	
16Kbits	16K x 1	16K x 1	16K x 1	16K x 1	
	8K x 2	8K x 2	8K x 2	8K x 2	

UG285-1.3.7 3(59)

2 概述 2.2 BSRAM 配置模式

存储容量	单端口模式	双端口模式	伪双端口模式	只读模式
	4K x 4	4K x 4	4K x 4	4K x 4
	2K x 8	2K x 8	2K x 8	2K x 8
	1K x 16	1K x 16	1K x 16	1K x 16
	512 x 32	_	512 x 32	512 x 32
	2K x 9	2K x 9	2K x 9	2K x 9
18Kbits	1K x 18	1K x 18	1K x 18	1K x 18
	512 x 36	_	512 x 36	512 x 36

每个 BSRAM 的地址线位宽是 14 位,即 AD[13:0],最大地址深度 16,384。不同数据位宽使用的地址线不一样,对应关系如表 2-2 所示。

表 2-2 BSRAM 数据和地址位宽对应关系

存储容量	配置模式	数据位宽	地址深度	地址位宽
	16K x 1	[0:0]	16,384	[13:0]
	8K x 2	[1:0]	8,192	[13:1]
16Kbits	4K x 4	[3:0]	4,096	[13:2]
TONDIES	2K x 8	[7:0]	2,048	[13:3]
	1K x 16	[15:0]	1,024	[13:4]
	512 x 32	[31:0]	512	[13:5]
18Kbits	2K x 9	[8:0]	2,048	[13:3]
	1K x 18	[17:0]	1,024	[13:4]
	512 x 36	[35:0]	512	[13:5]

双端口和伪双端口模式写时钟和读时钟独立,支持读/写操作数据位宽独立。在双端口模式下,A端口和B端口支持的数据位宽如表 2-3 所示。在伪双端口模式下,A端口和B端口支持的数据位宽如表 2-4 所示。

UG285-1.3.7 4(59)

2 概述 2.2 BSRAM 配置模式

表 2-3 双端口模式数据宽度配置列表

存储容量	B端口	A端口						
		16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	2K x 9	1K x 18
16Kbits	16K x 1	Yes	Yes	Yes	Yes	Yes	N/A	N/A
	8K x 2	Yes	Yes	Yes	Yes	Yes	N/A	N/A
	4K x 4	Yes	Yes	Yes	Yes	Yes	N/A	N/A
	2K x 8	Yes	Yes	Yes	Yes	Yes	N/A	N/A
	1K x 16	Yes	Yes	Yes	Yes	Yes	N/A	N/A
18Kbits	2K x 9	N/A	N/A	N/A	N/A	N/A	Yes	Yes
	1K x 18	N/A	N/A	N/A	N/A	N/A	Yes	Yes

表 2-4 伪双端口模式数据宽度配置列表

	A端口	A端口								
存储容量	B端口	16K × 1	8K x 2	4K×4	2K x 8	1K x 16	512x32	2K x 9	1K x18	512 x 36
	16K x 1	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
	8K x 2	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
16Khita	4K x 4	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
16Kbits	2K x 8	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
	1K x 16	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
	512 x 32	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A
401/b:t-	2K x 9	N/A	N/A	N/A	N/A	N/A	N/A	Yes	Yes	Yes
18Kbits	1K x 18	N/A	N/A	N/A	N/A	N/A	N/A	Yes	Yes	Yes

UG285-1.3.7 5(59)

3 BSRAM 原语

Block Memory 是块状静态随机存储器,具有静态存取功能。根据 BSRAM 的特性建立软件模型,可分为单端口模式(SP/SPX9)、双端口模式(DPB/DPX9B)、伪双端口模式(SDPB/SDPX9B)和只读模式(pROM/pROMX9)。

注!

- GW1N-9/GW1N-1S/GW1NR-9/GW1NS-4 系列不支持双端口模式;
- GW1N-9/GW1NR-9/GW1NS-4 系列, 32/36 位宽的 SP/SPX9 被拆成两个 SP/SPX9 实现, 因此会占用两个 BSRAM 的位置;
- GW1NZ-1/GW1NZ-1C 不支持位宽为 1/2/4/8/9 的双端口模式;
- GW1N-4D/GW1NR-4D/GW2AN-18X/GW2AN-9X 不支持位宽为 1/2/4/8/9 的双端口模式的 read-before-write 写模式;
- GW1N-4/GW1NR-4/GW1NRF-4B/GW1N-4B/GW1NR-4B 不支持只读模式,单端口模式、双端口模式、伪双端口模式不支持 BSRAM 初始值赋值。

3.1 双端口模式

原语介绍

DPB/DPX9B(True Dual Port 16K Block SRAM/True Dual Port 18K Block SRAM),16K/18K 双端口 BSRAM。

功能描述

DPB/DPX9B 的存储空间分别为 16K bit/18K bit,其工作模式为双端口模式,端口 A 和端口 B 均可分别独立实现读/写操作^[1],可支持 2 种读模式(bypass 模式和 pipeline 模式)和 2 种写模式(normal 模式和 write-through 模式)。

注!

[1] 禁止对同一地址同时进行读写操作。

读模式

通过参数 READ_MODE0、READ_MODE1 来启用或禁用 A 端、B 端输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

UG285-1.3.7 6(59)

● 写模式

包括 normal 模式和 write-through 模式,A 端、B 端写模式通过参数 WRITE_MODE0、WRITE_MODE1 来分别配置使用,不同模式对应的内部时序波形图如图 3-1 到图 3-6 所示。

图 3-1 DPB/DPX9B Normal 写模式时序波形图(Bypass 读模式)

UG285-1.3.7 7(59)

UG285-1.3.7 8(59)

UG285-1.3.7 9(59)

UG285-1.3.7 10(59)

UG285-1.3.7 11(59)

配置关系

表 3-1 DPB/DPX9B 数据宽度和地址深度配置关系

双端口模式	BSRAM 容量	数据宽度	地址深度
		1	14
	16Kbits	2	13
DPB		4	12
		8	11
		16	10
DPX9B	18Kbits	9	11
		18	10

UG285-1.3.7 12(59)

端口示意图

图 3-7 DPB/DPX9B 端口示意图

端口介绍

表 3-2 DPB/DPX9B 端口介绍

端口名	I/O	描述
DOA[15:0]/DOA[17:0]	Output	A 端数据输出信号
DOB[15:0]/DOB[17:0]	Output	B端数据输出信号
DIA[15:0]/DIA[17:0]	Input	A 端数据输入信号
DIB[15:0]/DIB[17:0]	Input	B端数据输入信号
ADA[13:0]	Input	A 端地址输入信号
ADB[13:0]	Input	B端地址输入信号
		A 端写使能输入信号
WREA	Input	1: 写入
		0: 读出
		B端写使能输入信号
WREB	Input	1: 写入
		0: 读出
CEA	Input	A 端时钟使能信号,高电平有效。
CEB	Input	B端时钟使能信号,高电平有效。
CLKA	Input	A 端时钟输入信号
CLKB	Input	B端时钟输入信号
		A 端复位输入信号,支持同步复位和异
RESETA	Input	步复位,高电平有效。RESETA 复位
		寄存器,而不是复位存储器内的值
DECETO		B端复位输入信号,支持同步复位和异
RESETB	Input	步复位,高电平有效。RESETB 复位 寄存器,而不是复位存储器内的值
		A端输出时钟使能信号,用于A端
OCEA	Input	pipline 模式,对 bypass 模式无效

UG285-1.3.7 13(59)

端口名	I/O	描述
OCEB	Input	B 端输出时钟使能信号,用于 B 端 pipline 模式,对 bypass 模式无效
BLKSELA[2:0]	Input	BSRAM A 端口块选择信号, 用于需要 多个 BSRAM 存储单元级联实现容量 扩展
BLKSELB[2:0]	Input	BSRAM B 端口块选择信号,,用于需要多个 BSRAM 存储单元级联实现容量扩展

参数介绍

表 3-3 DPB/DPX9B 参数介绍

参数名	参数类型	取值范围	默认值	描述
READ_MODE0	Integer	1'b0, 1'b1	1'b0	A 端读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
READ_MODE1	Integer	1'b0, 1'b1	1'b0	B 端读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
WRITE_MODE 0	Integer	2'b00, 2'b01,	2'b00	A 端写模式配置 2'b00: normal 模式 2'b01: write-through 模式
WRITE_MODE	Integer	2'b00, 2'b01,	2'b00	B 端写模式配置 2'b00: normal 模式 2'b01: write-through 模式
BIT_WIDTH_0	Integer	DPB: 1,2,4,8,16 DPX9B: 9,18	DPB:16 DPX9B :18	A 端数据宽度配置
BIT_WIDTH_1	Integer	DPB: 1, 2, 4, 8, 16 DPX9B: 9, 18	DPB:16 DPB:18	B端数据宽度配置
BLK_SEL_0	Integer	3'b000~3'b 111	3'b000	BSRAM A 端口块选择参数 设置,与端口 BLKSELA 相 等时该 BSRAM 被选中。使 用 IP Core Generator 进行 存储扩展时软件自动进行扩 展处理

UG285-1.3.7 14(59)

参数名	参数类型	取值范围	默认值	描述
BLK_SEL_1	Integer	3'b000~3'b 111	3'b000	BSRAM B 端口块选择参数 设置,与端口 BLKSELB 相 等时该 BSRAM 被选中。使 用 IP Core Generator 进行 存储扩展时软件自动进行扩 展处理
RESET_MODE	String	"SYNC", "ASYNC"	"SYNC"	复位模式配置 SYNC: 同步复位 ASYNC: 异步复位
INIT_RAM_00~ INIT_RAM_3F	Integer	DPB: 256'h00~ 256'h11 DPX9B: 288'h00~ 288'h11	DPB:25 6'h00 DPX9B :288'h0 0	用于设置 BSRAM 存储单元 的初始化数据

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考<u>第6章 IP 调用</u>。

原语例化以 DPB 为例介绍:

Verilog 例化:

DPB bram_dpb_0 (

- .DOA({doa[15:8],doa[7:0]}),
- .DOB({doa[15:8],dob[7:0]}),
- .CLKA(clka),
- .OCEA(ocea),
- .CEA(cea),
- .RESETA(reseta),
- .WREA(wrea),
- .CLKB(clkb),
- .OCEB(oceb),
- .CEB(ceb),
- .RESETB(resetb),
- .WREB(wreb),
- .BLKSELA({3'b000}),
- .BLKSELB({3'b000}),
- .ADA({ada[10:0],3'b000}),
- .DIA({{8{1'b0}},dia[7:0]})

UG285-1.3.7 15(59)

```
.ADB({adb[10:0],3'b000}),
     .DIB({{8{1'b0}},dib[7:0]})
  );
  defparam bram dpb 0.READ MODE0 = 1'b0;
  defparam bram dpb 0.READ MODE1 = 1'b0;
  defparam bram dpb 0.WRITE MODE0 = 2'b00;
  defparam bram dpb 0.WRITE MODE1 = 2'b00;
  defparam bram dpb 0.BIT WIDTH 0 = 8;
  defparam bram dpb 0.BIT WIDTH 1 = 8;
  defparam bram dpb 0.BLK SEL 0 = 3'b000;
  defparam bram dpb 0.BLK SEL 1 = 3'b000;
  defparam bram dpb 0.RESET MODE = "SYNC";
  defparam bram dpb 0.INIT RAM 00 =
000000000B;
  defparam bram dpb 0.INIT RAM 3E =
000000000B:
  defparam bram dpb 0.INIT RAM 3F =
000000000B:
 VhdI 例化:
  COMPONENT DPB
       GENERIC (
               BIT WIDTH 0:integer:=16;
               BIT WIDTH 1:integer:=16;
               READ MODE0:bit:='0';
               READ MODE1:bit:='0';
               WRITE MODE0:bit vector:="00";
               WRITE MODE1:bit vector:="00";
               BLK SEL 0:bit vector:="000";
               BLK SEL 1:bit vector:="000";
               RESET MODE:string:="SYNC";
```

UG285-1.3.7 16(59)

```
);
       PORT (
              DOA, DOB: OUT std logic vector (15 downto 0):
=conv std logic vector(0,16);
              CLKA, CLKB, CEA, CEB, OCEA, OCEB, RESETA,
RESETB, WREA, WREB: IN std_logic;
              ADA, ADB: IN std logic vector (13 downto 0);
              BLKSELA:IN std logic vector(2 downto 0);
              BLKSELB:IN std logic vector(2 downto 0);
              DIA, DIB: IN std logic vector (15 downto 0)
       );
  END COMPONENT;
  uut:DPB
    GENERIC MAP(
             BIT WIDTH 0=>16,
             BIT WIDTH 1=>16,
             READ MODE0=>'0',
             READ MODE1=>'0',
             WRITE MODE0=>"00",
             WRITE MODE1=>"00",
             BLK SEL 0=>"000",
             BLK_SEL_1=>"000",
             RESET MODE=>"SYNC",
  )
   PORT MAP(
      DOA=>doa.
      DOB=>dob,
      CLKA=>clka,
      CLKB=>clkb,
```

UG285-1.3.7 17(59)

```
CEA=>ceb,
CEB=>ceb,
OCEA=>ocea,
OCEB=>oceb,
RESETA=>reseta,
RESETB=>resetb,
WREA=>wrea,
WREB=>wreb,
ADA=>ada,
ADB=>adb,
BLKSELA=>blksela,
BLKSELB=>blkselb,
DIA=>dia,
DIB=>dib
```

3.2 单端口模式

原语介绍

);

SP/SPX9(Single Port 16K BSRAM/Single Port 18K BSRAM),16K/18K 单端口 BSRAM。

功能描述

SP/SPX9 存储空间为 16K bit/18K bit, 其工作模式为单端口模式,由一个时钟控制单端口的读/写操作,可支持 2 种读模式(bypass 模式和 pipeline 模式)和 3 种写模式(normal 模式、write-through 模式和 readbefore-write 模式)。

● 读模式

通过参数 READ_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

● 写模式

包括 normal 模式、write-through 模式和 read-before-write 模式,通过参数 WRITE_MODE 来配置使用。

单端口 BSRAM 不同读写模式对应的内部时序波形图可参考双端口 BSRAM A 端/B 端时序图 3-1 到图 3-6,以及图 3-8 和图 3-9。

UG285-1.3.7 18(59)

配置关系

表 3-4 SP/SPX9 数据宽度和地址深度配置关系

单端口模式	BSRAM 容量	数据宽度	地址深度
	16Kbits	1	14
		2	13
SP		4	12
		8	11
		16	10
		32	9
SPX9	18Kbits	9	11
		18	10

UG285-1.3.7 19(59)

单端口模式	BSRAM 容量	数据宽度	地址深度
		36	9

端口示意图

图 3-10 SP/SPX9 端口示意图

端口介绍

表 3-5 SP/SPX9 端口介绍

端口名	I/O	描述
DO[31:0]/DO[35:0]	Output	数据输出信号
DI[31:0]/DI[35:0]	Input	数据输入信号
AD[13:0]	Input	地址输入信号
		写使能输入信号
WRE	Input	1: 写入
		0: 读出
CE	Input	时钟使能输入信号,高电平有效
CLK	Input	时钟输入信号
RESET	Input	复位输入信号,支持同步复位和异步复位, 高电平有效。RESET 复位寄存器,而不是复 位存储器内的值
OCE	Input	输出时钟使能信号,用于 pipline 模式,对 bypass 模式无效
BLKSEL[2:0]	Input	BSRAM 块选择信号, 用于需要多个 BSRAM 存储单元级联实现容量扩展

UG285-1.3.7 20(59)

参数介绍

表 3-6 SP/SPX9 参数介绍

参数名	参数类型	取值范围	默认值	描述
READ_MODE	Integer	1'b0, 1'b1	1'b0	读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
WRITE_MODE	Integer	2'b00, 2'b01, 2'b10	2'b00	写模式配置 2'b00: normal 模式 2'b01:write-through 模式; 2'b10: read-before-write 模式
BIT_WIDTH	Integer	SP: 1, 2, 4, 8, 16, 32 SPX9: 9, 18, 36	SP:32 SPX9:36	数据宽度配置
BLK_SEL	Integer	3'b000~3'b111	3'b000	BSRAM 块选择参数设置,与端口 BLKSEL 相等时该 BSRAM 被选中。使用 IP Core Generator 进行存储扩展时软件自动进行扩展处理
RESET_MODE	String	"SYNC", "ASYNC"	"SYNC"	复位模式配置 SYNC:同步复位 ASYNC:异步复位
INIT_RAM_00~ INIT_RAM_3F	Integer	SP:256'h00~256'h1 1 SPX9: 288'h00~288'h11	SP:256'h 00 SPX9:28 8'h00	用于设置 BSRAM 存储 单元的初始化数据

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。原语例化以 SP 为例介绍,

Verilog 例化:

SP bram_sp_0 (

.DO({dout[31:8], dout[7:0]}),

.CLK(clk),

.OCE(oce),

.CE(ce),

.RESET(reset),

.WRE(wre),

.BLKSEL({3'b000}),

UG285-1.3.7 21(59)

```
.AD({ad[10:0], 3'b000}),
     .DI({{24{1'b0}}, din[7:0]})
  );
  defparam bram sp 0.READ MODE = 1'b0;
  defparam bram sp 0.WRITE MODE = 2'b00;
  defparam bram sp 0.BIT WIDTH = 8;
  defparam bram sp 0.BLK SEL = 3'b000;
  defparam bram sp 0.RESET MODE = "SYNC";
  defparam bram sp 0.INIT RAM 00 =
  A00000000000B:
  defparam bram sp 0.INIT RAM 01 =
  A00000000000B:
  defparam bram sp 0.INIT RAM 3F =
  A00000000000B:
 Vhdl 例化:
  COMPONENT SP
        GENERIC(
               BIT WIDTH:integer:=32;
               READ MODE:bit:='0';
               WRITE MODE:bit vector:="01";
               BLK SEL:bit vector:="000";
               RESET MODE:string:="SYNC";
               INIT RAM 00:bit vector:=X"00A00000000000B
INIT RAM 01:bit vector:=X"00A00000000000B
INIT RAM 3F:bit vector:=X"00A00000000000B
);
        PORT(
               DO:OUT std logic vector(31 downto 0):=conv
std logic vector(0,32);
               CLK,CE,OCE,RESET,WRE:IN std logic;
               AD:IN std logic vector(13 downto 0);
               BLKSEL: IN std logic vector(2 downto 0);
```

UG285-1.3.7 22(59)

```
DI:IN std logic vector(31 downto 0)
          );
    END COMPONENT;
    uut:SP
        GENERIC MAP(
                  BIT WIDTH=>32,
                  READ MODE=>'0',
                  WRITE MODE=>"01",
                  BLK SEL=>"000",
                  RESET MODE=>"SYNC",
                  INIT RAM 00=>X"00A000000000000B00A00
INIT RAM 01=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B".
                  INIT RAM 02=>X"00A000000000000B00A00
INIT RAM 3F=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B"
        )
       PORT MAP (
          DO=>dout,
          CLK=>clk,
          OCE=>oce.
          CE=>ce.
          RESET=>reset,
          WRE=>wre.
          BLKSEL=>blksel,
          AD=>ad.
          DI=>din
       );
```

3.3 伪双端口模式

原语介绍

SDPB/SDPX9B(Semi Dual Port 16K Block SRAM /Semi Dual Port 18K Block SRAM),16K/18K 伪双端口 BSRAM。

功能描述

SDPB/SDPX9B 存储空间分别为 16K bit/18K bit, 其工作模式为伪双端

UG285-1.3.7 23(59)

口模式,端口 A 进行写操作,端口 B 进行读操作[1],可支持 2 种读模式 (bypass 模式和 pipeline 模式)和 1 种写模式 (normal 模式)。

注!

[1] 禁止对同一地址同时进行读写操作。

● 读模式

通过参数 READ_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

● 写模式

SDPB/SDPX9B 端口 A 进行写操作,端口 B 进行读操作,支持 normal 模式。

伪双端口 BSRAM 不同读模式对应的内部时序波形图如图 3-11 和图 3-12 所示。

图 3-11 伪双端口 BSRAM Normal 写模式时序波形图 (Bypass 读模式)

UG285-1.3.7 24(59)

图 3-12 伪双端口 BSRAM Normal 写模式时序波形图(Pipeline 读模式)

配置关系

表 3-7 SDPB/SDPX9B 数据宽度和地址深度配置关系

, , , , , , , , , , , , , , , , , , ,	***************************************		
伪双端口模式	BSRAM 容量	数据宽度	地址深度
	16Kbits	1	14
		2	13
SDPB		4	12
		8	11
		16	10
		32	9
	18Kbits	9	11
SDPX9B		18	10
		36	9

端口示意图

图 3-13 SDPB/SDPX9B 端口示意图

UG285-1.3.7 25(59)

端口介绍

表 3-8 SDPB/SDPX9B 端口介绍

端口名	I/O	描述
DO[31:0]/DO[35:0]	Output	数据输出信号
DI[31:0]/DI[35:0]	Input	数据输入信号
ADA[13:0]	Input	A 端地址输入信号
ADB[13:0]	Input	B端地址输入信号
CEA	Input	A 端时钟使能信号,高电平有效
CEB	Input	B端时钟使能信号,高电平有效
CLKA	Input	A 端时钟输入信号
CLKB	Input	B端时钟输入信号
RESETA	Input	A 端复位输入信号,支持同步复位和异步复位,高 电平有效
RESETB	Input	B端复位输入信号,支持同步复位和异步复位,高电平有效。RESETB复位寄存器,而不是复位存储器内的值
OCE	Input	输出时钟使能信号,用于 pipline 模式,对 bypass 模式无效
BLKSELA[2:0]	Input	BSRAM A 端口块选择信号, 用于需要多个BSRAM 存储单元级联实现容量扩展
BLKSELB[2:0]	Input	BSRAM B 端口块选择信号,用于需要多个BSRAM 存储单元级联实现容量扩展

参数介绍

表 3-9 SDPB/SDPX9B 参数介绍

参数名	参数类型	取值范围	默认值	描述
READ_MODE	Integer	1'b0,1'b1	1'b0	读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
BIT_WIDTH_0	Integer	SDPB:1,2,4,8,16,32 SDPX9B:9,18,36	SDPB:32 SDPX9B:36	A 端数据宽度配置
BIT_WIDTH_1	Integer	SDPB:1,2,4,8,16,32 SDPX9B:9,18,36	SDPB:32 SDPX9B:36	B端数据宽度配置
BLK_SEL_0	Integer	3'b000~3'b111	3'b000	BSRAM A 端口块选择参数设置,与端口BLKSEL 相等时该BSRAM 被选中。使用IP Core Generator进行存储扩展时软件自动进行扩展处理。

UG285-1.3.7 26(59)

参数名	参数类型	取值范围	默认值	描述
BLK_SEL_1	Integer	3'b000~3'b111	3'b000	BSRAM B 端口块选择参数设置,与端口BLKSEL 相等时该BSRAM 被选中。使用IP Core Generator进行存储扩展时软件自动进行扩展处理
RESET_MOD E	String	"SYNC","ASYNC"	"SYNC"	复位模式配置 SYNC: 同步复位 ASYNC: 异步复位
INIT_RAM_00 ~ INIT_RAM_3F	Integer	SDPB:256'h00~2 56'h11 SDPX9B:288'h00 ~288'h11	SDPB:256'h 00 SDPX9B:28 8'h00	用于设置 BSRAM 存储单元的初始化数据

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。原语例化以 SDPB 为例介绍,

Verilog 例化:

```
SDPB bram_sdpb_0 (
    .DO({dout[31:16],dout[15:0]}),
    .CLKA(clka),
    .CEA(cea),
    .RESETA(reseta),
    .CLKB(clkb),
    .CEB(ceb),
    .RESETB(resetb),
    .OCE(oce),
    .BLKSELA({3'b000}),
    .BLKSELB({3'b000}),
    .ADA({ada[9:0], 2'b00, byte_en[1:0]}),
    .DI({{16{1'b0}},din[15:0]}),
    .ADB({adb[9:0],4'b0000})
);
defparam bram_sdpb_0.READ_MODE = 1'b1;
defparam bram_sdpb_0.BIT_WIDTH_0 = 16;
defparam bram_sdpb_0.BIT_WIDTH_1 = 16;
```

UG285-1.3.7 27(59)

3 BSRAM 原语 3.3 伪双端口模式

```
defparam bram sdpb 0.BLK SEL 0 = 3'b000;
  defparam bram sdpb 0.BLK SEL 1 = 3'b000;
  defparam bram sdpb 0.RESET MODE = "SYNC";
  defparam bram sdpb 0.INIT RAM 00 =
  A00000000000B:
  defparam bram sdpb 0.INIT RAM 3F =
  A00000000000B:
 Vhdl 例化:
   COMPONENT SDPB
         GENERIC(
                 BIT WIDTH 0:integer:=16;
                 BIT WIDTH 1:integer:=16;
                 READ MODE:bit:='0';
                 BLK_SEL_0:bit_vector:="000";
                 BLK SEL 1:bit vector:="000";
                 RESET MODE:string:="SYNC";
                 INIT RAM 00:bit vector:=X"00A000000000000
INIT RAM 01:bit vector:=X"00A000000000000
INIT RAM 3F:bit vector:=X"00A000000000000
);
         PORT(
                DO:OUT std logic vector(31 downto 0):=conv
std logic vector(0,32);
                CLKA, CLKB, CEA, CEB: IN std logic;
                OCE, RESETA, RESETB: IN std logic;
                ADA, ADB: IN std logic vector (13 downto 0);
                BLKSELA: IN std logic vector(2 downto 0);
                BLKSELB:IN std logic vector(2 downto 0);
                DI:IN std logic vector(31 downto 0)
          );
   END COMPONENT;
   uut:SDPB
```

UG285-1.3.7 28(59)

```
GENERIC MAP(
                     BIT WIDTH 0=>16,
                     BIT WIDTH 1=>16,
                     READ MODE=>'0',
                     BLK SEL 0=>"000",
                     BLK SEL 1=>"000",
                     RESET MODE=>"SYNC",
                     INIT RAM 00=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B",
                     INIT RAM 01=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B",
                     INIT RAM 3F=>X"00A00000000000B00A00
000000000B00A0000000000B00A0000000000B"
         PORT MAP(
             DO=>dout.
             CLKA=>clka,
             CEA=>cea,
             RESETA=>reseta,
             CLKB=>clkb,
             CEB=>ceb.
             RESETB=>resetb,
             OCE=>oce,
             BLKSELA=>blksela,
             BLKSELB=>blkselb.
             ADA=>ada.
             DI=>din.
             ADB=>adb
         );
```

3.4 只读模式

原语介绍

pROM/pROMX9(16K/18K Block ROM),16K/18K 块状只读储存器。

功能描述

pROM/pROMX9 存储空间分别为 16K bit/18K bit, 其工作模式为只读模式,可支持 2 种读模式(bypass 模式和 pipeline 模式)。

UG285-1.3.7 29(59)

通过参数 READ_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

ROM 不同读模式对应的内部时序波形图可参考伪双端口 BSRAM 的 B端口时序,如图 3-14 和图 3-15 所示。

图 3-14 ROM 时序波形图 (Bypass 模式)

图 3-15 ROM 时序波形图 (Pipeline 模式)

配置关系

表 3-10 pROM/pROMX9 数据宽度和地址深度配置关系

只读模式	BSRAM 容量	数据宽度	地址深度
		1	14
		2	13
nDOM	16Kbits	4	12
pROM	TONDIES	8	11
		16	10
		32	9
		9	11
pROMX9	18Kbits	18	10
		36	9

UG285-1.3.7 30(59)

端口示意图

图 3-16 pROM/pROMX9 端口示意图

端口介绍

表 3-11 pROM/pROMX9 端口介绍

端口名	I/O	描述
DO[31:0]/DO[35:0]	Output	数据输出信号
AD[13:0]	Input	地址输入信号
CE	Input	时钟使能输入信号, 高电平有 效
CLK	Input	时钟输入信号
RESET	Input	复位输入信号,支持同步复位和异步复位,高电平有效。 RESET 复位寄存器,而不是复位存储器内的值
OCE	Input	输出时钟使能信号,用于 pipeline 模式,对 bypass 模式 无效

参数介绍

表 3-12 pROM/pROMX9 参数介绍

参数名	参数类型	取值范围	默认值	描述
READ_MODE	Integer	1'b0,1'b1	1'b0	读模式配置 1'b0:bypass 模 式 1'b1:pipeline 模 式
BIT_WIDTH	Integer	pROM:1,2,4,8,16,3 2 pROMX9:9,18,36	pROM:32 pROMX9:3 6	数据宽度配置

UG285-1.3.7 31(59)

3.4 只读模式

参数名	参数类型	取值范围	默认值	描述
RESET_MOD E	String	"SYNC","ASYNC"	"SYNC"	复位模式配置 SYNC: 同步复 位 ASYNC: 异步复 位
INIT_RAM_00 ~ INIT_RAM_3F	Integer	pROM:256'h00~ 256'h11 pROMX9:288'h0 0~288'h11	pROM:256' h00 pROMX9:2 88'h00	用于设置 BSRAM 存储单 元的初始化数据

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。原语例化以 pROM 为例介绍,

Verilog 例化:

```
pROM bram prom 0 (
     .DO({dout[31:8],dout[7:0]}),
     .CLK(clk),
     .OCE(oce),
     .CE(ce),
     .RESET(reset),
     .AD({ad[10:0],3'b000})
  );
 defparam bram_prom_0.READ_MODE = 1'b0;
  defparam bram prom 0.BIT WIDTH = 8;
  defparam bram_prom_0.RESET_MODE = "SYNC";
  defparam bram prom 0.INIT RAM 00 =
  256'h9C23645D0F78986FFC3E36E141541B95C19F2F7164085E63
  1A819860D8FF0000:
  defparam bram prom 0.INIT RAM 01 =
  000FFFFFBDCF;
Vhdl 例化:
  COMPONENT pROM
       GENERIC(
               BIT WIDTH:integer:=1;
               READ_MODE:bit:='0';
               RESET MODE:string:="SYNC";
```

UG285-1.3.7 32(59)

```
INIT RAM 00:bit vector:=X"9C23645D0F78986FF
C3E36E141541B95C19F2F7164085E631A819860D8FF0000";
               INIT_RAM_01:bit_vector:=X"000000000000000000
);
       PORT(
               DO:OUT std logic vector(31 downto 0):=conv std
_logic_vector(0,32);
               CLK,CE,OCE,RESET:IN std logic;
              AD:IN std logic vector(13 downto 0)
       );
  END COMPONENT;
  uut:pROM
     GENERIC MAP(
                BIT WIDTH=>1,
                READ MODE=>'0',
                RESET MODE=>"SYNC",
                INIT RAM 00=>X"9C23645D0F78986FFC3E36
E141541B95C19F2F7164085E631A819860D8FF0000".
                PORT MAP(
          DO=>do.
          AD=>ad,
           CLK=>clk.
           CE=>ce.
           OCE=>oce,
          RESET=>reset
      );
```

UG285-1.3.7 33(59)

4 BSRAM 输出复位

RESET 信号作用于输出模块,输出复位数据 0,结构框图如图 4-1 所示。

图 4-1 复位输出结构框图

RESET 信号高电平有效时输出端口输出 0。

RESET 支持同步复位和异步复位,当用户直接调用库原语时,通过参数 RESET_MODE 设置。当用户使用 IP Core Generator 时,可通过窗口选择复位模式,详细资料请参考第 6 章 IP 调用。

RESET 信号复位锁存器和输出寄存器,因此,当设置 RESET 信号有效时,不管用户使用的是寄存器输出模式还是旁路输出模式,端口都输出 0。

注!

写操作过程中 RESET 信号须置为 0 (无效状态)。

图 4-2、图 4-3、图 4-4 和图 4-5 为不同模式下复位时序图,其中, DO RAM 表示存储阵列中的数据, DO 表示输出端口的数据。

寄存器输出模式如下所示:

- 同步复位有效时, DO 在 CLK 上升沿复位为 0;
- 异步复位有效时, DO 随之复位为 0, 不需要等到 CLK 上升沿;
- 复位无效,且 OCE 信号有效时,DO 输出 DO RAM;
- 复位无效,且 OCE 信号无效时,DO 保持上一次输出的数据 旁路输出模式如下所示:

UG285-1.3.7 34(59)

- 同步复位有效时, DO 在 CLK 上升沿复位为 0;
- 异步复位有效时, DO 随之复位为 0, 不需要等到 CLK 上升沿;
- 复位无效时,不管 OCE 信号是否有效, DO 输出 DO_RAM。

图 4-2 同步复位时序图(Pipeline 模式)

图 4-3 同步复位时序图 (Bypass 输出模式)

图 4-4 异步复位时序图(Pipeline 模式)

UG285-1.3.7 35(59)

图 4-5 异步复位时序图(Bypass 输出模式)

UG285-1.3.7 36(59)

5 SSRAM 原语 5.1 RAM16S1

5 SSRAM 原语

Shadow SRAM 是分布式静态随机存储器,可配置成单端口模式,伪双端口模式和只读模式,如表 5-1 所示。

表 5-1 SSRAM 模式

原语	描述
RAM16S1	地址深度 16,数据宽度为 1 的单端口 SSRAM。
RAM16S2	地址深度 16,数据宽度为 2 的单端口 SSRAM。
RAM16S4	地址深度 16,数据宽度为 4 的单端口 SSRAM。
RAM16SDP1	地址深度 16,数据宽度为 1 的伪双端口 SSRAM。
RAM16SDP2	地址深度 16,数据宽度为 2 的伪双端口 SSRAM。
RAM16SDP4	地址深度 16,数据宽度为 4 的伪双端口 SSRAM。
ROM16	地址深度 16,数据宽度为 1 的 ROM。

注!

GW1N-1、GW1N-1S、GW1N-4、GW1N-4B、GW1NR-1、GW1NR-4、GW1NR-4B、GW1NRF-4B、GW1NS-4、GW1NS-4C、GW1NSER-4C、GW1NSR-4、GW1NSR-4C、GW1N-4D、GW1NR-4D 器件,不支持 SSRAM。

5.1 RAM16S1

原语介绍

RAM16S1(16-Deep by 1-Wide Single-port SSRAM)是地址深度为16,数据位宽为1的单端口SSRAM。

功能描述

RAM16S1 是数据位宽为 1 的单端口 SSRAM,读写地址相同,WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 SSRAM 由 CFU 的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个 LUT 关联的寄存器来实现同步读取功能。其时序波形图如图 5-1 所示。

UG285-1.3.7 37(59)

5 SSRAM 原语 5.1 RAM16S1

图 5-1 RAM16S1 模式时序波形图

端口示意图

图 5-2 RAM16S1 端口示意图

端口介绍

表 5-2 RAM16S1 端口介绍

端口	I/O	描述
DI	Input	数据输入信号
CLK	Input	时钟输入信号
WRE	Input	写使能输入信号
AD[3:0]	Input	地址输入信号
DO	Output	数据输出信号

参数介绍

表 5-3 RAM16S1 参数介绍

参数	范围	默认	描述
INIT_0	16'h0000~16'hffff	16'h0000	RAM16S1 初始值

UG285-1.3.7 38(59)

5 SSRAM 原语 5.1 RAM16S1

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

```
Verilog 例化:
  RAM16S1 instName(
      .DI(DI),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT_0=16'h1100;
Vhdl 例化:
  COMPONENT RAM16S1
         GENERIC (INIT:bit_vector:=X"0000");
         PORT(
               DO:OUT std logic;
               DI:IN std_logic;
               CLK: IN std logic;
               WRE:IN std_logic;
               AD:IN std logic vector(3 downto 0)
         );
  END COMPONENT;
  uut:RAM16S1
        GENERIC MAP(INIT=>X"0000")
        PORT MAP (
            DO=>DOUT,
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE,
            AD=>AD
        );
```

UG285-1.3.7 39(59)

5 SSRAM 原语 5.2 RAM16S2

5.2 RAM16S2

原语介绍

RAM16S2(16-Deep by 2-Wide Single-port SSRAM)是地址深度为16,数据位宽为2的单端口SSRAM。

功能描述

RAM16S2 是数据位宽为 2 的单端口 SSRAM,读写地址相同,WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 SSRAM 由 CFU 的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个 LUT 关联的寄存器来实现同步读取功能。其时序波形图如图 5-1 所示。

端口示意图

图 5-3 RAM16S2 端口示意图

端口介绍

表 5-4 RAM16S2 端口介绍

端口	I/O	描述
DI[1:0]	Input	数据输入信号
CLK	Input	时钟输入信号
WRE	Input	写使能输入信号
AD[3:0]	Input	地址输入信号
DO[1:0]	Output	数据输出信号

参数介绍

表 5-5 RAM16S2 参数介绍

参数	范围	默认	描述
INIT_0~ INIT_1	16'h0000~16'hffff	16'h0000	RAM16S2 初始值

UG285-1.3.7 40(59)

5 SSRAM 原语 5.2 RAM16S2

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

```
Verilog 例化:
  RAM16S2 instName(
      .DI(DI[1:0]),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT[1:0])
  );
  defparam instName.INIT_0=16'h0790;
  defparam instName.INIT 1=16'h0f00;
Vhdl 例化:
  COMPONENT RAM16S2
         GENERIC (INIT 0:bit vector:=X"0000";
                    INIT 1:bit vector:=X"0000"
         );
         PORT(
               DO:OUT std logic vector(1 downto 0);
               DI:IN std logic vector(1 downto 0);
               CLK: IN std logic;
               WRE:IN std_logic;
               AD:IN std logic vector(3 downto 0)
         );
  END COMPONENT;
  uut:RAM16S2
        GENERIC MAP(INIT_0=>X"0000",
                        INIT 1=>X"0000"
        )
        PORT MAP (
            DO=>DOUT,
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE,
```

UG285-1.3.7 41(59)

5 SSRAM 原语 5.3 RAM16S4

AD=>AD

);

5.3 RAM16S4

原语介绍

RAM16S4(16-Deep by 4-Wide Single-port SSRAM)是地址深度为16,数据位宽为4的单端口SSRAM。

功能描述

RAM16S4 是数据位宽为 4 的单端口 SSRAM,读写地址相同,WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 SSRAM 由 CFU 的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个 LUT 关联的寄存器来实现同步读取功能。其时序波形图如图 5-1 所示。

端口示意图

图 5-4 RAM16S4 端口示意图

端口介绍

表 5-6 RAM16S4 端口介绍

端口	I/O	描述	
DI[3:0]	Input	数据输入信号	
CLK	Input	时钟输入信号	
WRE	Input	写使能输入信号	
AD[3:0]	Input	地址输入信号	
DO[3:0]	Output	数据输出信号	

UG285-1.3.7 42(59)

5 SSRAM 原语 5.3 RAM16S4

参数介绍

表 5-7 RAM16S4 参数介绍

参数	范围	默认	描述
INIT_0~ INIT_3	16'h0000~16'hfff f	16'h0000	RAM16S4 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考 $6 \in IP$ 调用。

```
Verilog 例化:
  RAM16S4 instName(
      .DI(DI[3:0]),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT[3:0])
  );
  defparam instName.INIT_0=16'h0450;
  defparam instName.INIT 1=16'h1ac3;
  defparam instName.INIT_2=16'h1240;
  defparam instName.INIT 3=16'h045c;
Vhdl 例化:
  COMPONENT RAM16S4
          GENERIC (INIT_0:bit_vector:=X"0000";
                     INIT_1:bit_vector:=X"0000";
                     INIT_2:bit_vector:=X"0000";
                     INIT 3:bit vector:=X"0000"
         );
          PORT(
                DO:OUT std_logic_vector(3 downto 0);
                DI:IN std_logic_vector(3 downto 0);
                CLK: IN std logic;
                WRE: IN std logic;
                AD:IN std logic vector(3 downto 0)
         );
```

UG285-1.3.7 43(59)

5 SSRAM 原语 5.4 RAM16SDP1

5.4 RAM16SDP1

原语介绍

RAM16SDP1(16-Deep by 1-Wide Semi Dual-port SSRAM)是地址深度为 16,数据位宽为 1的伪双端口 SSRAM。

功能描述

RAM16SDP1 是数据位宽为 1 的伪双端口 SSRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读操作则由读地址确定输出 RAM 对应位置的数据。其时序波形图如图 5-5 所示。

图 5-5 RAM16SDP1 模式时序波形图

UG285-1.3.7 44(59)

5 SSRAM 原语 5.4 RAM16SDP1

端口示意图

图 5-6 RAM16SDP1 端口示意图

端口介绍

表 5-8 RAM16SDP1 端口介绍

端口	I/O	描述
DI	Input	数据输入信号
CLK	Input	时钟输入信号
WRE	Input	写使能输入信号
WAD[3:0]	Input	写地址信号
RAD[3:0]	Input	读地址信号
DO	Output	数据输出信号

参数介绍

表 5-9 RAM16SDP1 参数介绍

参数	范围	默认	描述
INIT_0	16'h0000~16'hffff	16'h0000	RAM16SDP1 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考<u>第6章 IP 调用</u>。

Verilog 例化:

RAM16SDP1 instName(

.DI(DI),

.WRE(WRE),

.CLK(CLK),

UG285-1.3.7 45(59)

5 SSRAM 原语 5.5 RAM16SDP2

```
.WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT 0=16'h0100;
Vhdl 例化:
  COMPONENT RAM16SDP1
         GENERIC (INIT 0:bit vector:=X"0000");
         PORT(
               DO:OUT std logic;
               DI:IN std logic;
               CLK: IN std logic;
               WRE: IN std logic;
               WAD: IN std logic vector(3 downto 0);
               RAD:IN std logic vector(3 downto 0)
        );
  END COMPONENT;
  uut:RAM16SDP1
        GENERIC MAP(INIT 0=>X"0000")
        PORT MAP (
            DO=>DOUT,
            DI=>DI.
            CLK=>CLK.
            WRE=>WRE,
            WAD=>WAD.
            RAD=>RAD
        );
```

5.5 RAM16SDP2

原语介绍

RAM16SDP2(16-Deep by 2-Wide Semi Dual-port SSRAM)是地址深度为 16,数据位宽为 2 的伪双端口 SSRAM。

功能描述

RAM16SDP2 是数据位宽为 2 的伪双端口 SSRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读

UG285-1.3.7 46(59)

5 SSRAM 原语 5.5 RAM16SDP2

操作则由读地址确定输出 RAM 对应位置的数据。其时序波形图如图 5-5 所示。

端口示意图

图 5-7 RAM16SDP2 端口示意图

端口介绍

表 5-10 RAM16SDP2 端口介绍

端口	I/O 描述		
DI[1:0]	Input 数据输入信号		
CLK	Input 时钟输入信号		
WRE	Input 写使能输入信号		
WAD[3:0]	Input 写地址信号		
RAD[3:0]	Input	读地址信号	
DO[1:0]	Output	数据输出信号	

参数介绍

表 5-11 RAM16SDP2 参数介绍

参数	范围	默认	描述
INIT_0~ INIT_1	16'h0000~16'hfff f	16'h0000	RAM16SDP2 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。

Verilog 例化:

RAM16SDP2 instName(

.DI(DI[1:0]),

.WRE(WRE),

UG285-1.3.7 47(59)

5 SSRAM 原语 5.5 RAM16SDP2

```
.CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT[1:0])
  );
  defparam instName.INIT_0=16'h5600;
  defparam instName.INIT_1=16'h0af0;
Vhdl 例化:
  COMPONENT RAM16SDP2
         GENERIC (INIT 0:bit vector:=X"0000";
                   INIT 1:bit vector:=X"0000"
         );
         PORT(
               DO:OUT std_logic_vector(1 downto 0);
               DI:IN std logic vector(1 downto 0);
               CLK: IN std logic;
               WRE: IN std logic;
               WAD:IN std logic vector(3 downto 0);
               RAD:IN std_logic_vector(3 downto 0)
        );
  END COMPONENT;
  uut:RAM16SDP2
        GENERIC MAP(INIT_0=>X"0000",
                       INIT 1=>X"0000"
        )
        PORT MAP (
            DO=>DOUT,
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE,
            WAD=>WAD.
            RAD=>RAD
        );
```

UG285-1.3.7 48(59)

5 SSRAM 原语 5.6 RAM16SDP4

5.6 RAM16SDP4

原语介绍

RAM16SDP4(16-Deep by 4-Wide Semi Dual-port SSRAM)是地址深度为 16,数据位宽为 4 的伪双端口 SSRAM。

功能描述

RAM16SDP4 是数据位宽为 4 的伪双端口 SSRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读操作则由读地址确定输出 RAM 对应位置的数据。其时序波形图如图 5-5 所示。

端口示意图

图 5-8 RAM16SDP4 端口示意图

端口介绍

表 5-12 RAM16SDP4 端口介绍

端口	I/O	描述	
DI[3:0]	Input	数据输入信号	
CLK	Input	时钟输入信号	
WRE	Input	写使能输入信号	
WAD[3:0]	Input	写地址信号	
RAD[3:0]	Input	读地址信号	
DO[3:0]	Output	数据输出信号	

参数介绍

表 5-13 RAM16SDP4 参数介绍

参数	范围	默认	描述
INIT_0~ INIT_3	16'h0000~16'hffff	16'h0000	RAM16SDP4 初始值

UG285-1.3.7 49(59)

5 SSRAM 原语 5.6 RAM16SDP4

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考 6 = 1P 调用。

```
Verilog 例化:
  RAM16SDP4 instName(
      .DI(DI[3:0]),
      .WRE(WRE),
      .CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT[3:0])
  );
  defparam instName.INIT 0=16'h0340;
  defparam instName.INIT 1=16'h9065;
  defparam instName.INIT 2=16'hac12;
  defparam instName.INIT 3=16'h034c;
Vhdl 例化:
  COMPONENT RAM16SDP2
          GENERIC (INIT 0:bit vector:=X"0000";
                    INIT 1:bit vector:=X"0000";
                    INIT 2:bit vector:=X"0000";
                    INIT 3:bit vector:=X"0000";
         );
         PORT(
                DO:OUT std logic vector(3 downto 0);
                DI:IN std logic vector(3 downto 0);
                CLK: IN std logic;
                WRE:IN std_logic;
                WAD:IN std logic vector(3 downto 0);
                RAD:IN std logic vector(3 downto 0)
         );
  END COMPONENT;
  uut:RAM16SDP2
         GENERIC MAP(INIT_0=>X"0000",
                        INIT 1=>X"0000",
```

UG285-1.3.7 50(59)

5 SSRAM 原语 5.7 ROM16

5.7 ROM16

原语介绍

ROM16 是地址深度为 16,数据位宽为 1 的只读存储器,存储器的内容通过 INIT 进行初始化。

功能描述

ROM16 是数据位宽为 1 的只读存储器,由地址确定输出存储在 ROM 对应位置的数据。其时序波形图如图 5-9 所示。

图 5-9 ROM16 模式时序波形图

端口示意图

图 5-10 ROM16 端口示意图

UG285-1.3.7 51(59)

5 SSRAM 原语 5.7 ROM16

端口介绍

表 5-14 ROM16 端口介绍

端口	I/O	描述	
AD[3:0]	Input	地址输入信号	
DO	Output	数据输出信号	

参数介绍

表 5-15 ROM16 参数介绍

参数	范围	默认	描述
INIT_0	16'h0000~16'hffff	16'h0000	ROM16 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。

```
Verilog 例化:
  ROM16 instName (
      .AD(AD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT 0=16'hfc00;
Vhdl 例化:
  COMPONENT ROM16
         GENERIC (INIT:bit_vector:=X"0000");
         PORT(
               DO:OUT std logic;
               AD:IN std_logic_vector(3 downto 0)
        );
  END COMPONENT;
  uut:ROM16
        GENERIC MAP(INIT=>X"0000")
        PORT MAP (
           DO=>DOUT,
           AD=>AD
       );
```

UG285-1.3.7 52(59)

6 IP 调用 6.1 BSRAM 双端口模式

6 IP 调用

高云半导体云源®软件的 IP Core Generator 支持 IP 核的界面调用,用户在界面中设置数据宽度、地址深度、写模式和读模式,云源®软件生成对应的 IP 模块,用户在使用中调用模块即可。此外,还有两种方式实现BSRAM、SSRAM 的功能。一是用户可以通过调用云源®软件库文件,设置端口和参数生成需要的 IP 模块。二是代码综合时选择综合工具自动综合成BSRAM、SSRAM 模式。

IP Core Generator 中,BSRAM 模块可实现单端口模式、伪双端口模式、双端口模式以及只读模式,SSRAM 模块可实现单端口模式、伪双端口模式和只读模式。下面 BSRAM 以双端口模式,SSRAM 以单端口模式为例来介绍 IP 调用,其他模式参考 BSRAM 双端口模式和 SSRAM 单端口模式。

6.1 BSRAM 双端口模式

BSRAM 双端口工作模式 (DP),可通过 DPB、DPX9B 原语实现。在 IP Core Generator 界面中,单击"DPB",界面右侧会显示 DPB 的相关信息概要。

IP 配置

在 IP Core Generator 界面中,双击"DPB",弹出 DPB 的 IP Customization 窗口。该窗口包括"General"配置框、"Options"配置框和端口显示框图,如图 6-1 所示。

UG285-1.3.7 53(59)

6.1 BSRAM 双端口模式

图 6-1 DPB 的 IP Customization 窗口结构

- 1. General 配置框。General 配置框用于配置产生的 IP 设计文件的相关信息。
 - Device: 显示已配置的 Device 信息;
 - Device Version: 显示已配置的 Device Version 信息;
 - Part Number:显示已配置的 Part Number 信息;
 - Language: 配置产生的 IP 设计文件的硬件描述语言。选择右侧下 拉列表框,选择目标语言,支持 Verilog 和 VHDL;
 - Module Name: 配置产生的 IP 设计文件的 module name。在右侧文本框可重新编辑模块名称。Module Name 不能与原语名称相同,若相同,则报出 Error 提示;
 - File Name: 配置产生的 IP 设计文件的文件名。在右侧文本框可重新编辑文件名称:
 - Create In: 配置产生的 IP 设计文件的目标路径。可在右侧文本框中重新编辑目标路径,也可通过文本框右侧选择按钮选择目标路径。
- 2. Options 配置框。Options 配置框用于用户自定义配置 IP, 双端口模式 分为 A、B 两个端口,Options 配置框如图 6-1 所示。
 - Data Width & Address Depth: 配置地址深度(Address Depth)和数据宽度(Data Width)。当配置的地址深度和数据宽度无法通过单

UG285-1.3.7 54(59)

6.1 BSRAM 双端口模式

个模块实现时, IP Core 会实例化多个模块组合实现;

- Resource Usage: 计算并显示当前容量配置上占用的 Block Ram、DFF、LUT、MUX 的资源情况:
- Read/Write Mode: 配置读写模式。DPB 支持以下模式:
 - 两种读模式: Bypass 和 Pipeline;
 - 两种写模式: Normal 和 Write-Through;
- Reset Mode: 配置复位模式,支持同步模式 "Synchronous" 和异步模式 "Asynchronous";
- Initialization: 配置初始值。初始值以二进制、十六进制或带地址十六进制的格式写在初始化文件中。"Memory Initialization File"选取的初始化文件可通过手写或者 IDE 菜单栏 "File > New > Memory Initialization File"产生,具体产生方式请参考文档 <u>SUG100,Gowin 云源软件用户指南</u>,初始化文件的格式请参考 <u>7</u>初始化文件。

注!

- Options 配置框中可独立配置 DPB 的 Port A 和 Port B 的地址深度、数据宽度和 读写模式。
- DPB 的 Port A 和 Port B 是对同一块 memory 进行读写,因此 Port A 和 Port B 的 Address Depth*Data Width 的结果必须相同。
- Options 配置中的初始化文件(Memory initialization File)中的数据宽度应与 Dimension Match 选择的 Port 数据宽度一致。
- 如 Port A 和 Port B 的 Address Depth*Data Width 的结果不同,则会弹出 Error 提示信息。
- 如数据宽度不一致,则产生的 DPB 实例 Init 值默认初始化为 0,并且在 Output 窗口中,会弹出如下提示信息: Error (MG2105): Initial values' width is unequal to user's width。

3. 端口显示框图

- 端口显示框图显示当前 IP Core 的配置结果示例框图,输入输出端口的位宽根据 Options 配置实时更新,如图 6-1 所示;
- Options 配置中的 Port A 和 Port B 的地址深度 Address Depth 配置 影响地址的位宽,数据位宽 Data Width 配置影响输入数据和输出数据的位宽。

IP 生成文件

IP 窗口配置完成后,产生以配置文件"File Name"命名的三个文件,以默认配置为例进行介绍:

- IP 设计文件 "gowin_dpb.v" 为完整的 verilog 模块,根据用户的 IP 配置,产生实例化的 DPB;
- IP 设计使用模板文件 gowin_dpb_tmp.v,为用户提供 IP 设计使用模板文件:
- IP 配置文件: "gowin dpb.ipc",用户可加载该文件对 IP 进行配置。

UG285-1.3.7 55(59)

6 IP 调用 6.2 SSRAM 单端口模式

注!

如配置中选择的语言是 VHDL,则产生的前两个文件名后缀为.vhd。

6.2 SSRAM 单端口模式

RAM16S 为 SSRAM 单端口工作模式,可以通过 RAM16S1、 RAM16S2、RAM16S4 原语实现。在 IP Core Generator 界面中,单击 "RAM16S",界面右侧会显示 RAM16S 的相关信息概要。

IP 配置

在 IP Core Generator 界面中,双击 "RAM16S",弹出 RAM16S的 "IP Customization" 窗口。该窗口包括 "General" 配置框、"Options" 配 置框和端口显示框图,如图 6-2 所示。

IP Customization RAM16S General GW1N-2 Device Version: C mber: GW1N-LV2MG132XC7/I6 Language: Module Name: Gowin_RAM16S ... E:\fpga_project\src\gowin_ram16s Width & Depth Address Depth: 2 **‡** Data Width: **÷** RAM16S Usage: 1 MUX Usage: 0 LUT Usage: 0 Initialization Memory Initialization File: થ થ OK Cancel

图 6-2 RAM16S 的 IP Customization 窗口结构

- 1. General 配置框。General 配置框用于配置产生的 IP 设计文件的相关信 息。RAM16S 的 File 配置框的使用和 BSRAM 双端口模式类似, 具体请 参考 6.1 BSRAM 双端口模式的 General 配置框。
- 2. Options 配置框。Options 配置框用于用户自定义配置 IP。Options 配置 框如图 6-2 所示。RAM16S 的 Options 配置框的使用和 BSRAM 双端口 模式类似,具体请参考 6.1 BSRAM 双端口模式的 Options 配置框。
- 3. 端口显示框图
 - 端口显示框图显示当前 IP Core 的配置结果示例框图,输入输出端 口的位宽根据 Options 配置实时更新,如图 6-2 所示;
 - Options 配置中的地址深度 "Address Depth"配置影响地址数据的

UG285-1.3.7 56(59) 6.2 SSRAM 单端口模式

位宽,数据位宽"Data Width"配置影响输入数据和输出数据的位宽。

IP 生成文件

IP 窗口配置完成后,产生以配置文件"File Name"命名的三个文件,以默认配置为例进行介绍:

- IP 设计文件 "gowin_ram16s.v" 为完整的 verilog 模块,根据用户的 IP 配置,产生实例化的 RAM16S;
- IP 设计使用模板文件 gowin_ram16s_tmp.v,为用户提供 IP 设计使用模板文件:
- IP 配置文件: "gowin_ram16s.ipc",用户可加载该文件对 IP 进行配置。

注!

如配置中选择的语言是 VHDL,则产生的前两个文件名后缀为.vhd。

UG285-1.3.7 57(59)

7 初始化文件 7.1 二进制格式 (Bin File)

7 初始化文件

在 BSRAM、SSRAM 模式中,可以将存储器的每一位初始化为 0 或 1。初始值以二进制、十六进制或带地址十六进制的格式写在初始化文件中。

7.1 二进制格式 (Bin File)

Bin 文件是由二进制数 0 和 1 组成的文本文件, 行数代表存储器的地址深度, 列数代表存储器的数据宽度。

#File_format=Bin

#Address_depth=16

#Data_width=32

0000110000010000000100100010000

100000001001000010000001000000

01000001000000100000010000000

00100000100001001100000011000000

7.2 十六进制格式(Hex File)

Hex 文件与 Bin 文件格式类似,由十六进制数 0~F 组成,行数代表存储器的地址深度,每一行数据的二进制位数,代表存储器的数据宽度。

#File_format=Hex

#Address depth=8

#Data width=16

3A40

A28E

0B52

1C49

D602

0801

UG285-1.3.7 58(59)

03E6

4C18

7.3 带地址十六进制格式(Address-Hex File)

Address-Hex 文件是在文件中对有数据记录的地址和数据都进行记录,地址和数据都是由十六进制数 $0 \sim F$ 组成,每行中冒号前面是地址,冒号后面是数据,文件中只对写入数据的地址和数据进行记录,没有记录的地址默认数据为 0。

#File format=AddrHex

#Address depth=256

#Data_width=16

9:FFFF

23:00E0

2a:001F

30:1E00

UG285-1.3.7 59(59)

