Continuación Tarea 8, Física Computacional, 2018.04.05

Félix Ernesto Charry Pastrana

March 2018

El sistema

$$f_1(x,y) = y^2 - y \cos(x) + 2.0 (x - 0.5)^3,$$

 $f_2(x,y) = 2 x \cos(y - 5) - (x + 3)^2,$

se puede solucionar mediante otro procedimiento, también numérico. Dado que f_1 es una función cuadrática en y y f_2 es una función cuadratica en x, se puede encontrar la relación funcional entre x y y para que f_1 y f_2 sean nulas, a saber,

$$x_{\pm} = \cos(y-5) - 3 \pm \sqrt{(\cos(y-5)-3)^2 - 9},$$

 $y_{\pm} = \frac{1}{2}\cos(x) \pm \sqrt{\left(\frac{\cos(x)}{2}\right)^2 - 0.5(x-0.5)^3}.$

Definiendo las anteriores funciones como x_+ , x_- , y_+ y y_- de acuerdo al signo de la raíz cuadrada, es posible reemplazar x_+ en la función y_+ y definir una función $f(x_+, y_+)$ tal que, los ceros de esta función permitan encontrar el valor de y nulo para ambos casos,

$$f(x_+, y_+) = y_+(x_+) - y = 0,$$

los ceros de la función, y_0 , se encontraría numéricamente (método de bisección, por ejemplo) y se reemplazaría su valor y_0 en x_+ . De manera análoga, se define

$$y_{-}(x_{+}) - y = 0,$$

 $y_{+}(x_{-}) - y = 0,$
 $y_{-}(x_{-}) - y = 0.$

Las graficas de las anteriores funciones se muestran en las Figuras 1 - 4, en las cuales se observa que efectivamente existen únicamente 5 ceros en el intervalo de -8 < y < 8.

El anterior procedimiento no es aplicable en el sistema de ecuaciones no lineales,

$$h_1(x,y) = y^2 - y \cos(xy) + 2.0 (x - 0.5)^3,$$

 $h_2(x,y) = 2 x \cos(xy - 5) - (x + 3)^2,$

debido a que no existe una ecuación cuadrática en ninguna de las funciones respecto a ninguna de las variables y no es posible encontrar una relación analítica entre las variables.

Figure 1: Gráfica de la función: $y_+(x_+) - y$.

Figure 2: Gráfica de la función: $y_{-}(x_{+}) - y$.

Figure 3: Gráfica de la función: $y_+(x_-) - y$.

Figure 4: Gráfica de la función: $y_-(x_-) - y$.