五、数据记录:

组号: __19___; 姓名____吴艇

表 3-20-2 数据记录表

$I_a(\mu A)$ $I_F(A)$	16	25	36	49	64	81	100	121
0.58	32	33	33	34	34	35	36	36
0.62	89	90	91	93	94	96	97	99
0.66	220	223	227	231	235	239	242	246
0.7	513	523	532	541	549	559	566	575
0.74	1099	1125	1145	1164	1184	1205	1220	1238

六、数据处理

$\frac{lgIa}{T(10^3K)}$	4	5	6	7	8	9	10	11
2.00	-4.49485	-4.48149	-4.48149	-4.46852	-4.46852	-4.45593	-4.4437	-4.44370
2.07	-4.05061	-4.04576	-4.04096	-4.03152	-4.02687	-4.01773	-4.01323	-4.00436
2.14	-3.65758	-3.65170	-3.64397	-3.63639	-3.62893	-3.62160	-3.61618	-3.60906
2.21	-3.28988	-3.28150	-3.27409	-3.26680	-3.26043	-3.25259	-3.24718	-3.24033
2.28	-2.95900	-2.94885	-2.94119	-2.93405	-2.92665	-2.91901	-2.91364	-2.90728

$T(10^3 K)$	2.00	2.07	2.14	2.21	2.28
lgI	-4.4933	-4.0522	-3.6579	-3.2887	-2.9567
$lg(I/T^2)$	-11.0954	-10.6841	-10.3187	-9.97748	-9.67257
$\frac{1}{T}(10^{-4})$	5	4.830918	4.672897	4.524887	4.385965

由公式:

$$lg\frac{I}{T^2} = lg(AS) - 5.04 \times 10^3 \frac{V}{T}$$

得:

斜率 $K = 5.04 \times 10^3 U$,

由图表得: K = 0.5012,

解得: 逸出电势U = 4.60V

逸出功 $\Delta \Phi = eU = 4.60eV$

<u>_</u>	44 田 欧北	
てい	结果陈述:	l

由实验测得钨的逸出电势U=4.60V,逸出功 $\Delta \Phi=eU=4.60eV$ 。

八、实验总结与思考题

总结:

本实验温度是一个非常重要的变量,在每次调整电流控制温度后都需要预热,让温度达到预定的值。而且在空气中降温比较慢,需要我们从低温到高温来做实验。

思考题:

1.什么是逸出功?改变阴极温度是否改变了阴极材料的逸出功? 逸出功又叫功函数或脱出功,是指电子从金属表面逸出时克服表面势垒必须做的功。 材料的逸出功一般不随外部的条件改变而改变。

2.灯丝温度为何要保持稳定?测量中,每次改变I_f值时为何要预热几分钟后才能测量?

本实验用外延法来测量逸出功,需要测量在温度一定的条件下阳极电流 I_a ,故每测量一组数据温度都要保持稳定。

灯丝电流变了以后,它的温度也要改变,但是要过一些时间温度才能稳定下来,这时其金属电子逸出也稳定了。

指导教师批阅意见:

成绩评定:

预习 (20 分)	操作及记录 (40 分)	数据处理 20 分	结果陈述实验 总结10分	思考题 10 分	报告整体 印象	总分