If two vectors are linearly independent, can I say, they are uncorrelated?

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 7 & 17 \\ 2 & 11 & 19 \end{bmatrix}$$

$$Rank = 3$$

$$A_1 & A_2 \text{ are linearly In dependence}$$

$$A_1 & A_2 \neq 0$$

Ax= Sx ~> eigen value & eigen vector

$$|A| = \prod_{i=1}^{d} S_i$$

 $|A| = \iint S_1$  what if one of the eigen values is equal to  $Zero_2$ ? |A| = 0 ~> Singular matrix -> Not invertible -> non-full rank -> some of columns or row are linearly dependent A= \( \alpha\_1 \alpha\_2 \alpha\_37 \)





# **Probability and Statistics**

Mahdi Roozbahani Georgia Tech

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

## Probability

- A sample space S is the set of all possible outcomes of a conceptual or physical, repeatable experiment. (S can be finite or infinite.)
  - E.g., S may be the set of all possible outcomes of a dice roll: S
     (1 2 3 4 5 6)
  - E.g., S may be the set of all possible nucleotides of a DNA site: S
     (A C G T)
  - E.g., S may be the set of all possible time-space positions of an aircraft on a radar screen.
- An Event A is any subset of S
  - Seeing "1" or "6" in a dice roll; observing a "G" at a site; UA007 in space-time interval

## Three Key Ingredients in Probability Theory

A sample space is a collection of all possible outcomes



Random variables X represents **outcomes** in sample space

$$P(X=1) = \frac{1}{6}$$

Probability of a random variable to happen p(x) = p(X = x)

$$p(x) = p(X = x)$$

$$p(x) \ge 0$$

density = Likelihood = P(x) = f(x)

#### **Continuous variable**

Continuous probability distribution

Polf

Probability density function
 Density or likelihood value
 Temperature (real number)
 Gaussian Distribution



#### Discrete variable

Pmf

Discrete probability distribution
Probability mass function
Probability value
Coin flip (integer)
Bernoulli distribution

$$\sum_{x \in A} p(x) = 1$$

## Continuous Probability Functions

- Examples:
  - Uniform Density Function:

$$f_{x}(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$



Exponential Density Function:

$$f_x(x) = \frac{1}{\mu}e^{-\frac{x}{\mu}}$$
 for  $x \ge 0$   $M$  as a Parameter  $F_x(x) = 1 - e^{\frac{-x}{\mu}}$  for  $x \ge 0$ 

Gaussian(Normal) Density Function

$$f_{x}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

 $f_x(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad \qquad \text{we have two Parameters}$ 

## Discrete Probability Functions

- Examples:
  - Bernoulli Distribution:

$$\begin{cases} 1 - p & for \ x = 0 \\ p & for \ x = 1 \end{cases}$$

In Bernoulli, just a single trial is conducted

Binomial Distribution:

• 
$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$

k is number of successes

**n-k** is number of failures

 $\binom{n}{k}$  The total number of ways of selection **k** distinct combinations of **n** trials, **irrespective of order**.

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

## Example



X = Throw a dice



Y = Flip a coin

**X** and **Y** are random variables

**N** = total number of trials

 $n_{ii}$  = Number of occurrence

X

$$y_{j=2} = tail$$
  $x_{i=1} = 1$   $x_{i=2} = 2$   $x_{i=3} = 3$   $x_{i=4} = 4$   $x_{i=5} = 5$   $x_{i=6} = 6$   $x_{i=6} = 6$ 

X

$$x_{i=1} = 1$$
  $x_{i=2} = 2$   $x_{i=3} = 3$   $x_{i=4} = 4$   $x_{i=5} = 5$   $x_{i=6} = 6$ 

Y 
$$y_{j=2} = tail$$
  $n_{ij} = 3$   $n_{ij} = 4$   $n_{ij} = 2$   $n_{ij} = 5$   $n_{ij} = 1$   $n_{ij} = 5$  20  $n_{ij} = 1$   $n_{ij} = 2$   $n_{ij} = 2$   $n_{ij} = 4$   $n_{ij} = 2$   $n_{ij} = 4$   $n_{ij} = 2$   $n_{ij} = 4$   $n_{ij} = 1$  15  $n_{ij} = 1$  15

$$P(y=h, X=2) = \frac{2}{35} = \frac{nij}{N}$$

$$P(y=t) = \frac{20}{35} = \frac{Cj}{N}$$
  $P(x=5) = \frac{5}{35} + \frac{Ci}{N}$ 

$$P(y=t \mid x=1) = \frac{3}{5} \neq \frac{n_{ij}}{c_i}$$

$$P(x=1 \mid y=t) = \frac{3}{20} = \frac{n_{ij}}{c_j}$$

$$P(Y=y,X=x) = \frac{nij}{N} = \frac{nij}{Ci} \frac{Ci}{N} = P(Y=y|X=x) P(X=x)$$

$$= \frac{nij}{Cj} \frac{Cj}{N} = P(X=x|Y=y) P(Y=y)$$

### **Probability:**

$$p(X = x_i) = \frac{c_i}{N}$$

Joint probability:

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

**Conditional probability:** 

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

#### **Sum rule**

$$p(X = x_i) = \sum_{i=1}^{L} p(X = x_i, Y = y_j) \Rightarrow p(X) = \sum_{Y} P(X, Y)$$

#### **Product rule**

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \frac{c_i}{N} = p(Y = y_j | X = x_i) p(X = x_i)$$
$$p(X, Y) = p(Y | X) p(X)$$

# Conditional Independence

P(H,F,V,D)=P(H) F,V,D) P(F,V,D)

= P(H|F,D) P(F14,D) P(4,D)

= P(H|F,D) P(F(V) P(V|D) P(D)

### Examples:

P(Virus | Drink Beer) = P(Virus)

iff Virus is independent of Drink Beer

P(Flu | Virus) DrinkBeer) = P(Flu | Virus)

iff Flu is independent of Drink Beer, given Virus

P(Headache | Flu; Virus; DrinkBeer) =
P(Headache | Flu; DrinkBeer)

iff Headache is independent of Virus, given Flu and Drink Beer

Assume the above independence, we obtain:

P(Headache, Flu, Virus, Drink Beer)

=P(Headache | Flu; Virus; DrinkBeer) P(Flu | Virus; DrinkBeer)

P(Virus | Drink Beer) P(DrinkBeer)

=P(Headache|Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

Two important rules:

1) Sum rule 
$$P(x) = \sum_{y} P(x, y = y)$$

2) Product rule 
$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

$$P(x,y) = P(y(x)P(x))$$

# Bayes' Rule

P(X|Y)= Fraction of the worlds in which X is true given that Y is also true.

$$P(y|x) = \frac{P(x,y)}{P(x)} = \frac{P(x,y)P(y)}{P(x)}$$

- For example:

  - H="Having a headache" F="Coming down with flu"  $P(x) = \sum_{y} P(x, y = y) = \sum_{y} P(x | y = y) P(y = y)$
  - P(Headche|Flu) = fraction of flu-inflicted worlds in which you have a headache. How to calculate?
- **Definition:**

$$P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{P(Y|X)P(X)}{P(Y)}$$

Corollary:

$$P(X,Y) = P(Y|X)P(X)$$

This is called Bayes Rule

## Bayes' Rule

• 
$$P(Headache|Flu) = \frac{P(Headache,Flu)}{P(Flu)}$$
  
=  $\frac{P(Flu|Headache)P(Headache)}{P(Flu)}$ 

#### Other cases:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X|Y)P(Y) + P(X|Y)P(Y)}$$

• 
$$P(Y = y_i | X) = \frac{P(X|Y)P(Y)}{\sum_{i \in S} P(X|Y = y_i)P(Y = y_i)}$$

• 
$$P(Y|X,Z) = \frac{P(X|Y,Z)P(Y,Z)}{P(X,Z)} = \frac{P(X|Y,Z)P(Y,Z)}{P(X|Y,Z)P(Y,Z)} = \frac{P(X|Y,Z)P(Y,Z)}{P(X|Y,Z)P(Y,Z)+P(X|\neg Y,Z)P(\neg Y,Z)}$$

$$P(Y|X,z) = \frac{P(Y,x,z)}{P(x,z)}$$

$$= \frac{P(x|Y,z)P(Y,z)}{P(x,z)}$$

$$= \frac{P(x|Y,z)P(Y,z)}{P(x,z)}$$

- Course ML-7641-Spring23
- Session ID 222937

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

### Mean and Variance

Expectation: The mean value, center of mass, first moment:

$$E_X[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x)dx = \mu$$

- N-th moment:  $g(x) = x^n$
- N-th central moment:  $g(x) = (x \mu)^n$
- Mean:  $E_X[X] = \int_{-\infty}^{\infty} x p_X(x) dx$ 
  - $\bullet E[\alpha X] = \alpha E[X]$
  - $\bullet \ E[\alpha + X] = \alpha + E[X]$
- Variance(Second central moment): Var(x) =

$$E_X[(X - E_X[X])^2] = E_X[X^2] - E_X[X]^2$$

- $Var(\alpha X) = \alpha^2 Var(X)$
- $Var(\alpha + X) = Var(X)$

$$Var(x) = E[x^2] - (E[x])^2$$

$$g(x) = X$$
  $g(x) \begin{bmatrix} 1, 2, 3 \end{bmatrix}$   
 $g(x) = \frac{1}{6} \frac{3}{6} \frac{2}{6}$ 

$$E[g(x)] = \sum_{i=1}^{N} g(X=x) P(X=x)$$

$$E[g(x)] = 1x \frac{1}{6} + 2x \frac{3}{6} + 3x \frac{2}{6} =$$

$$E[g(x)] = \frac{13}{6}$$

$$M = \frac{1+2+3}{3} = 2$$

$$M = \frac{1+2+2+2+3+3}{6} = \frac{13}{6}$$

height = h
$$\begin{bmatrix}
1 \\
2 \\
nvol
\end{bmatrix}$$

$$\overline{D_h^2} = Var_h = \frac{(1-2)^2 + (2-2)^2 + (3-2)^2}{3}$$

$$X = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - M_h \\ 2 - M_h \end{bmatrix}$$

$$= \begin{bmatrix} 2 - M_h \\ 3 - M_h \end{bmatrix}$$

$$= \begin{bmatrix} 1 - M_h \\ 2 - M_h \end{bmatrix}$$
Centered matrix
$$\begin{bmatrix} 3 - M_h \\ 3 - M_h \end{bmatrix}$$

$$= \begin{bmatrix} 1 - M_h \\ 3 - M_h \end{bmatrix}$$

$$Var_{h} = \frac{\overline{X} \overline{X}}{N} = [1 - M_{h} 2M_{h} 3 - M_{h}] \begin{bmatrix} 1 - M_{h} \\ 2 - M_{h} \\ 3 M_{h} \end{bmatrix} = (1 - M_{h})^{2} + \cdots + (3 - M_{h})^{2}$$

$$X = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}_{3x2}$$

$$A_{h} = 2$$

$$X = \begin{bmatrix} 1 & 4 \\ 2 & h & 5 \\ 3 & 6 \end{bmatrix}_{3x2}$$

$$A_{h} = 3$$

$$X = \begin{bmatrix} 1 - M_{h} & 4 - M_{w} \\ 2 - M_{h} & 5 - M_{w} \\ 3 - M_{h} & 6 - M_{w} \end{bmatrix}$$

Covoriance 
$$= \frac{\sum_{23}^{T} \sum_{3n}}{n} = \frac{1}{n} \begin{bmatrix} 1-hh & \cdots & 3-hh \\ 4-hw & \cdots & 6-hw \end{bmatrix} \begin{bmatrix} 1-hh & 4-hw \\ 3-hh & 6-hw \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1-hh & 4-hw \\ 3-hh & 6-hw \end{bmatrix}$$

$$= \begin{bmatrix} h & bh & bhw \\ bwh & bw = bww \\ 4-hw & bw = bww$$

$$\overline{X} = \begin{bmatrix} 1 - M_h & 4 - M_w \\ 2 - M_h & 5 - M_w \\ \vdots & \vdots & \ddots \end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\overline{\lambda}^* & \overline{\omega}^* \\
\overline{b}_h & \overline{b}_{\omega}
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \overline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\overline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\underline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\underline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\underline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\underline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\underline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\underline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* & \underline{\lambda}^* \\
\underline{\lambda}^* & \underline{\lambda}^*
\end{bmatrix}$$

$$\underline{\lambda}^* = \begin{bmatrix}
\underline{\lambda}^* & \underline{\lambda}^* & \underline{\lambda}^* &$$

## For Joint Distributions

Expectation and Covariance:

• 
$$E[X + Y] = E[X] + E[Y]$$
  
•  $cov(X,Y) = E[(X - E_X[X])(Y - E_Y(Y)] = E[XY] - E[X]E[Y]$   
•  $Var(X + Y) = Var(X) + 2cov(X,Y) + Var(Y)$ 

$$X=2$$
  $Y=2^2$   $E[2^2] = Vor(2) + (E[2])^2 = 1$ 
 $M=0$   $E[1] = 1$ 
 $E[2^2] = Vor(2) + (E[2])^2 = 1$ 
 $E[2^2] = Vor(3) + (E[2])^2 = 1$ 
 $E[2^2] = Vor(4) + (E[2])^2 = 1$ 

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

## **Gaussian Distribution**

• Gaussian Distribution: 
$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

#### Probability density function



Probability versus likelihood

$$P\left(\text{coin} = T\right) = \frac{1}{2}$$

$$P(\text{coin}=T)=\frac{3}{5}$$

$$\int (x|a,b) = \frac{1}{\sqrt{2\pi a^2}} e^{-\frac{(x-b)^2}{2a^2}}$$

$$\int \int \int (x(a,b)) dx = 1$$

$$\alpha = \frac{\sum (x_i A_i)^2}{n}$$

$$b = \frac{\sum \kappa_i}{N}$$



$$L = \int_{\Omega} x f_1 x - f_n$$

$$f(x_1, x_2, -x_n) = f(x_1) f(x_2) - f(x_n)$$

$$L = \int_{0}^{\infty} x f_{1} - - - \int_{N}^{\infty}$$

## Multivariate Gaussian Distribution

$$p(x|\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(x-\mu)^{\top} (x-\mu)\}$$

• Moment Parameterization  $\mu = E(X)$ 

$$\Sigma = Cov(X) = E[(X - \mu)(X - \mu)^{\mathsf{T}}]$$

- Mahalanobis Distance  $\Delta^2 = (x \mu)^T \Sigma^{-1} (x \mu)$
- Tons of applications (MoG, FA, PPCA, Kalman filter,...)

## Properties of Gaussian Distribution

 The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x is distributed

$$E(AX + b) = AE(X) + b$$
$$Cov(AX + b) = ACov(X)A^{T}$$

this means that for Gaussian distributed quantities:

$$X \sim N(\mu, \Sigma) \rightarrow AX + b \sim N(A\mu + b, A\Sigma A^{\mathsf{T}})$$

The sum of two independent Gaussian r.v. is a Gaussian

$$Y = X_1 + X_2$$
,  $X_1 \perp X_2 \rightarrow \mu_y = \mu_1 + \mu_2$ ,  $\Sigma_y = \Sigma_1 + \Sigma_2$ 

 The multiplication of two Gaussian functions is another Gaussian function (although no longer normalized)

$$N(a,A)N(b,B) \propto N(c,C),$$
  
where  $C = (A^{-1} + B^{-1})^{-1}, c = CA^{-1}a + CB^{-1}b$ 

## Central Limit Theorem

Probability mass function of a biased dice



Let's say, I am going to get a sample from this pmf having a size of n = 4

$$S_1 = \{1,1,1,6\} \Rightarrow E(S_1) = 2.25$$

$$S_2 = \{1,1,3,6\} \Rightarrow E(S_2) = 2.75$$

•

$$S_m = \{1,4,6,6\} \Rightarrow E(S_m) = 4.25$$



According to CLT, it will follow a bell curve distribution (normal distribution)

- Probability Distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- Properties of Gaussian Distribution
- Maximum Likelihood Estimation

### Maximum Likelihood Estimation

- Probability: inferring probabilistic quantities for data given fixed models (e.g. prob. of events, marginals, conditionals, etc).
- Statistics: inferring a model given fixed data observations (e.g. clustering, classification, regression).

### Main assumption:

Independent and identically distributed random variables i.i.d

## Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):

Objective function: 
$$P(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$$
  $x_i \in \{0,1\}$  or  $\{head, tail\}$ 

$$L(\theta|X) = L(\theta|X = x_1, X = x_2, X = x_3, ..., X = x_n)$$

i.i.d assumption

$$L(\theta|X) = \prod_{i=1}^{n} P(x_i|\theta)$$

$$L(\theta|X) = \prod_{i=1}^{n} P(x_i|\theta) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

$$L(\theta|X) = \theta^{x_1} (1 - \theta)^{1 - x_1} \times \theta^{x_2} (1 - \theta)^{1 - x_2} \dots \times \theta^{x_n} (1 - \theta)^{1 - x_n} = \theta^{\sum x_i} (1 - \theta)^{\sum (1 - x_i)}$$

### We don't like multiplication, let's convert it into summation

What's the trick?

Take the log

$$\int_{0}^{\infty} f(x) = X^{2}$$

$$L(\theta|X) = \theta^{\sum x_i} (1 - \theta)^{\sum (1 - x_i)}$$

$$logL(\theta|X) = l(\theta|X) = log(\theta) \sum_{i=1}^{n} x_i + log(1-\theta) \sum_{i=1}^{n} (1-x_i)$$

How to optimize  $\theta$ ?

$$\frac{\partial l(\theta|X)}{\partial \theta} = 0 \qquad \frac{\sum_{i=1}^{n} x_i}{\theta} - \frac{\sum_{i=1}^{n} (1 - x_i)}{1 - \theta} = 0$$

$$\theta = \frac{1}{n} \sum_{i=1}^{n} x_i \frac{60}{100}$$