

BC1105 Materiais e Suas Propriedades

3º Quadrimestre de 2016

Aula Prática 1 Análise por Difração de Raios X (DRX)

Erika Fernanda Prados erika.prados@ufabc.edu.br

Difração

➤ O fenômeno de difração ocorre quando uma onda encontra uma série de obstáculos espaçados regularmente, que: (1) são capazes de espalhar a onda e (2) o espaçamento entre eles é comparável em magnitude ao comprimento de onda.

- Exemplo : difração da luz ao passar por uma grade de difração
 - -Quando luz visível atravessa furos num anteparo, pode ocorrer difração se os furos forem pequenos e estiverem separados por distâncias da ordem de grandeza do comprimento de onda da luz, de forma que possa ocorrer interferência entre a luz que sai dos furos.
 - -Cada furo comporta-se como uma fonte pontual de luz.

Interferência construtiva e destrutiva

Interferências Construtivas

Difração de raios X

O mesmo pode ocorrer quando raios-X interferem com cristais.

Cada átomo de um cristal absorve e re-emite raios-X, de modo que cada um se comporta como uma fonte pontual.

Como as distâncias entre planos cristalinos é da ordem de grandeza do comprimento de onda dos raios-X, pode ocorrer difração.

Raios X

- ➤ Raios-X são uma forma de radiação eletromagnética com alta energia e pequeno comprimento de onda, da ordem dos espaçamentos atômicos dos sólidos
- Raios-X podem ser gerados quando feixes de elétrons são acelerados contra um alvo metálico

Espectro de radiação eletromagnética

Interação de raios X com a matéria

Em um arranjo aleatório de átomos, os espalhamentos causados pelos átomos causam interferência destrutiva e não há reflexões de raios X

Espalhamento de raios X por um átomo em todas as direções

Difração por um cristal: arranjos periódicos de átomos (estruturas cristalinas) causam interferência construtiva dos raios X em algumas direções

DIFRAÇÃO

Combinação de dois fenômenos:

espalhamento coerente e interferência construtiva

- Espalhamento coerente: após interação da radiação com a matéria não há alteração do comprimento de onda e amplitude da radiação espalhada
- ➤ Interferência construtiva: intensificação de um grande número de raios X espalhados coerentemente na mesma direção e em fase ⇒ feixe difratado
- Usualmente nas técnicas de análise de DRX empregase um feixe de raios X incidente monocromático (comprimento de onda, λ, fixo)

Lei de Bragg

Lei de Bragg

$$n\lambda = 2 d_{hkl} sen\theta$$

- **n** ordem de difração (número inteiro: 1, 2, 3 ...)
- λ comprimento de onda da radiação
- **d**_{hkl} espaçamento interplanar de um determinado plano (hkl); é uma função dos índices de Miller (h, k e l) e dos parâmetros de rede cristalina
- θ ângulo de Bragg

A Lei de Bragg é condição necessária, mas não suficiente, para ocorrência de feixe difratado

- Se ocorre feixe difratado, as condições satisfazem a Lei de Bragg
- > Se as condições satisfazem a Lei de Bragg, não necessariamente ocorre feixe difratado (intensidade pode ser zero)

A Lei de Bragg, apesar da simplicidade e das hipóteses de conteúdo físico pouco transparentes no contexto cristalino, tem a virtude de explicar bastante bem os dados experimentais. Ela é uma consequência da periodicidade da rede e não se refere à composição da base de átomos associada com cada ponto.

Somente para certos conjuntos de valores de λ e θ o fenômeno de interferência construtiva deve ocorrer:

Método

Von Laue Cristal giratório Pó λ

variável fixo fixo θ

fixo variável variável

Comprimento de onda da radiação - λ

Usualmente é um parâmetro experimental fixo (radiação incidente usada na análise)

Comprimento de onda dos raios X: 0,1-100 Å λ usual na análise de DRX = ~0,5-3 Å

Comprimentos de onda das principais radiações X usadas

Elemento	λ - Kα médio (Å)
Мо	0,710730
Cu	1,541838
Со	1,790260
Fe	1,937355
Cr	2,29100

Fonte: Cullity, Elements of X-ray diffraction, 2 ed.

Nota: $1 \text{ Å} = 10^{-10} \text{ m}$

Esquema de um Difratômetro de Raios-X

Método do pó

- Amostras usualmente na forma de:
- Pó
- Placa plana (policristal)

Exemplo de padrão de difração (difratograma)

Padrão de difração de raios X para o α -Fe policristalino (CCC)

Distância ou espaçamento interplanar - dhkl

Distância entre dois planos atômicos paralelos adjacentes, i.e., com os mesmos índices de Miller

Para estruturas cúbicas, d hkl é dado por:

$$d_{hkl} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}}$$

Onde a_o é o parâmetro de rede e h, k, l são os índices de Miller do plano

Exemplos de Aplicação da Análise de Difração de raios-X

- > Identificação de fases cristalinas presentes no material, incluindo polimorfos
- ➤ Determinação quantitativa ou semi-quantitativa das fases presentes
- Cálculo das dimensões da célula unitária
- Determinação de tensão residual no material
- Determinação de orientação cristalográfica preferencial (textura)
- ➤ Determinação do tamanho dos cristalitos (cristais nanométricos)

Exemplo de identificação de fases em misturas de pós

Exemplo de ficha de padrão de DRX

Pattern: 33-1160		Radiation = 1.540	Radiation = 1.540560							
Si ₃ N ₄		ď (Å)	1	ħ	ĸ	ı				
Silicon Nitride HPSN (h	not pressed silicon nitride) SN	6.58300 3.80000 3.29300 2.66000 2.48900 2.31000 2.19390	34 35 100 99 93 9	1 1 2 1 2 1 3	0 1 0 0 1 1	0 0 0 1 0				
Lattice: Hexagonal		<i>Mol. weight</i> = 140.28	2.17970 1.90130 1.89160	31 8 5	2 2 2	0 2	1 0			
S.G. : P63/m (176)		Volume [CD] = 145.61	1.82750 1.75250	12 37	3	1 0	0			
a = 7.60440		D x = 3.200	1.59110 1.54670 1.51080 1.45340	12 6 15	2 3 3 0	2 1 2 0	1 1 0 2			
c = 2.90750	Z = 2		1.43680 1.43250 1.41970 1.35790	8 5 1	4 4 1 1	1 0 0 1	0 1 2 2			

International Center for Diffraction Data (ICDD) - http://www.icdd.com/

Se o composto não for cristalino...

Informações básicas que podem ser obtidas de um difratograma

- ► Intensidade relativa dos picos de difração
- ➤ Distância interplanar do plano (hkl) que gerou o pico de difração
- > Parâmetros de rede da fase cristalina
- > Estrutura cristalina da fase

Por que existem picos de intensidades diferentes?

A intensidade de um RX difratado é proporcional à densidade de átomos do plano da estrutura que o originou.

Intensidade do pico de difração (I)

Fator multiplicidade: relacionado à quantidade de planos que contribuem na reflexão

Fator de Lorentz e polarização: fator geométrico que causa variação da intensidade com ângulo de reflexão

Fator de estrutura (F)

- Independe da forma e tamanho da célula unitária
- Quando F = 0 ⇒ intensidade do pico é nula

Estrutura	Reflexões possivelmente presentes	Reflexões necessariamente ausentes (F = 0)
Cúbica simples - CS	Todos os planos (100), (110), (111), (200), (210), (211), (220), (300), (221), (310), (311), (222), (320), (321), (400), (410), (312), (411), (330), (331), (420)	Nenhum plano
Cúbica de corpo centrado - CCC	(h + k + l) pares (110), (200), (211), (220), (310), (222), (321), (400), (411), (330), (420)	(h + k + l) ímpares (100), (111), (210), (300), (221), (311), (320), (410), (312), (331)
Cúbica de face centrada - CFC	h, k e l não misturados (111), (200), (220), (311), (222), (400), (331), (420)	h, k e l misturados (100), (110), (210), (211), (300), (221), (310), (320), (321), (410), (312), (411), (330)

Nota: Misturado e não misturado referem-se aos números inteiros h, k e I pares ou ímpares (considerando zero como par)

$$S = h^2 + k^2 + l^2$$

Indexação de padrões de cristais cúbicos

$$\lambda = 2d_{hkl}sen\theta + d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Estrutura	$S = h^2 + k^2 + l^2$
CS	1, 2, 3, 4, 5, 6, 7, 8, 9
CCC	2, 4, 6, 8, 10, 12, 14
CFC	3, 4, 8, 11, 12, 16

$$\frac{\text{sen}^2\theta}{(\text{h}^2+\text{k}^2+\text{I}^2)} = \frac{\text{sen}^2\theta}{\text{S}} = \frac{\lambda^2}{4\text{a}^2}$$

Exemplo

$\frac{\lambda^2}{4a^2}$ = cte	$S = h^2 + k^2 + l^2$
--------------------------------	-----------------------

Line	sin ² θ	$s = (h^2 + k^2 + l^2)$	$\frac{\lambda^2}{4a^2}$	$a(\mathring{A})$	hkl
1	0.140	3	0.0467	3.57	111
2	0.185	4	0.0463	3.59	200
3	0.369	8	0.0461	3.59	220
4	0.503	11	0.0457	3.61	311
5	0.548	12	0.0457	3.61	222
6	0.726	16	0.0454	3.62	400
7	0.861	19	0.0453	3.62	331
8	0.905	20	0.0453	3.62	420

EXERCÍCIO

Análise do padrão de difração de um metal com estrutura cúbica

Raios X incidente de Cu (K α): λ = 0,1541838 nm

 λ (nm) = 0,154184

20	I (mm)	Ir (%)	θ	sen(θ)	d _{hid} (nm)	sen²(θ)	S _{cs}	sen²(0)/S _{cs}	S _{ccc}	sen²(0)/S _{ccc}	S _{CFC}	sen²(0)/S _{CFC}	(hkl)	(h²+k²+l²)1/2	a (nm)
39,0	45	58%	19,5	0,334	0,231	0,111	1	0,111	2	0,0557	3	0,0371	(111)	1,73	0,400
44,6	78	100%	22,3	0,379	0,203	0,144	2	0,072	4	0,0360	4	0,0360	(200)	2,00	0,406
65,3	33	42%	32,7	0,540	0,143	0,291	3	0,097	6	0,0485	8	0,0364	(220)	2,83	0,404
78,9	15	19%	39,5	0,635	0,121	0,404	4	0,101	8	0,0505	11	0,0367	(311)	3,32	0,402
82,6	42	54%	41,3	0,660	0,117	0,436	5	0,087	10	0,0436	12	0,0363	(222)	3,46	0,405
98,7	14	18%	49,4	0,759	0,102	0,576	6	0,096	12	0,0480	16	0,0360	(400)	4,00	0,406

Sequência incorreta Sequência incorreta Sequência correta média 0,404

Estrutura CFC desvio-padrão 0,002

Raios X incidente de Cu (K α): λ = 0,1541838 nm

Ouro (Au):

CFC

a = 0,40786 nm

Bibliografia

- Introduction to X-ray powder difratometry Jenkins&
 Snyder ed. John Wiley & sons, Canada (1996);
- Elements of X-ray diffraction B. D. Cullity and S. R.
 Stock, 3 ed. Prentice Hall, USA (2001).