Pattern Recognition Project 3

Clustering, dimensionality reduction and non-monotonous neurons

Task 3.1: Fun with k-means clustering

Scatter Plot of Data:

Lloyd's algorithm:

Steps:

set t = 0 and initialize μt 1,μt 2,...,μt k repeat

until convergence

$$C_i^t = \left\{ x \in X \mid \left\| x - \mu_i^t \right\|^2 \leqslant \left\| x - \mu_l^t \right\|^2 \right\}$$

up

$$\mu_i^{t+1} = \frac{1}{|C_i^t|} \sum_{x \in C} x$$
 means

Average Run Time: 0.203 s

Hartigan's algorithm:

Steps:

for all $xj \in x1,...,xn$, randomly assign xj to a cluster Ci for all Ci ∈C1,...,Ck compute µi repeat until converged determine Ci = C(xj) remove xj from Ci and recompute μi determine Cw = argminCl EC1,...,Cl U{xj},...,Ck if Cw!= Ci, then converged ← False assign xj to Cw recompute µw

Average Time Taken:0.418s

McQueen's algorithm:

determine winner centroid

$$\mu_w = \operatorname*{argmin}_{i} \left\| \boldsymbol{x}_j - \mu_i \right\|^2$$

update cluster size and centroid

$$n_w \leftarrow n_w + 1$$

$$\mu_w \leftarrow \mu_w + \frac{1}{n_w} \left[x_j - \mu_w \right]$$

McQueen's algorithm:

Task 3.2: Spectral Clustering

Spectral Clustering

Clustering method with roots in Graph Theory. The steps are as follows:

- 1. Convert set of points X to a matrix *S*, **simulating an adjacency matrix** by using a similarity measure.
- 2. Calculate a (diagonal) degree matrix *D* by summing up similarities for each node.
- 3. Calculate Normalized Graph Laplacian Matrix L = D S and calculate the eigen values and vectors of L.
- 4. Calculate the Fiedler Vector which is the one with the second smallest eigen value and use it for clustering.

FV gives the approximation of the minimum graph cut needed to separate the "graph" into 2 CCs.

Failure of K-Means

McQueen's, Lloyd and Hartigan's K-Means Clustering Algorithms

Spectral Clustering

Spectral Clustering

Task 3.3: Dimension Reduction

Principal Components Analysis (PCA)

PCA: Projection using the top eigenvectors of *C*

Linear Discriminant Analysis (LDA)

LDA: Projection using the top eigenvectors of $S_W^{-1}S_B$

Task 3.4: Non-monotonous neurons

Problem Statement:

 Train a non-monotonous neuron on a XOR problem, with an activation function f and loss function E using Gradient Descend:

$$y = f(z)$$

 $f(z) = 2.exp(-\frac{1}{2}z^2) - 1$ $E = \frac{1}{2}\sum_{i=1}^{n}(y(x_i) - y_i)^2$
 $z = w^Tx - \theta$

Equations for Computing Gradients

$$\frac{\partial E}{\partial z} = (\widehat{Y} - Y) \odot (\widehat{Y} + 1) \odot (-Z)$$

$$\frac{\partial E}{\partial W} = \frac{1}{m} X \frac{\partial E}{\partial z}^{T}$$

$$\frac{\partial E}{\partial \theta} = -\frac{1}{m} \sum_{i=1}^{m} \frac{\partial E}{\partial z}$$

Numpy Implementation

```
for epoch in range(num_epochs):

# forward propagation
Z = np.dot(W.T,X) - theta
Y_hat = activation(Z)
loss = loss_function(Y_hat,Y)

#backward propagation
dE_dZ = (Y_hat-Y)*(Y_hat+1)*-Z
dE_dW = (1/m)*np.dot(X,dE_dZ.T)
dE_dtheta = -(1/m)*np.sum(dE_dZ)

# gradient descent
W = W - lr_W*dE_dW
theta = theta - lr_theta*dE_dtheta
```

Hyper parameter Tuning

- Learning rate for the parameters were searched in a random grid on a logarithmic scale.
- η_W was tuned in the range (0.005,0.5)
- For η_{θ} , exploration was done in the range (0.001,0.1)

Hyper parameter Tuning

On Logarithmic Scale

On Linear Scale

Results

Task 3.5: Exploring Numerical Instabilities

Problem Statement:

 To revisit the Least Squares regressions for prediction at higher dimensions.

Method: Polyfit

Warning:RankWarning: The fit may be poorly conditioned c = poly.polyfit(hgt, wgt, 10)

Fit using inbuilt Polyfit.

This implies that the best fit might not be well-defined due to numerical errors. The results may be improved by lowering the polynomial degree or by transforming the data.

Method: Vandermonde matrix and pinv

Standard fitting using inverse of the vandermonde matrix Improper fit.

Method: Vandermonde matrix and lstsq

Standard fitting on Vandermonde Matrix using least squares Improper fit.

Method: transformed Vandermonde - pinv

Fitting on Transformed Vandermonde Matrix using pinv

pinv(X/100) gives the correct pinv(..) values while avoiding numerical errors

Thank You.