Pandas: Motivation

Data Science Cohort Live NYC Feb 2022

Phase 1: Topic 4

Pandas is a tabular data manipulation library.

- Intuitive: data columns and rows can be labeled.
- · Smart: interprets data types for you.
- · Makes complex transformations over tabular data simple.

- In-built data cleaning and statistical functions over and within groups, etc.
- · Some useful plotting tools.

```
In [1]: # library imports
```

```
import numpy as np
import csv
import pandas as pd # importing pandas
import matplotlib.pyplot as plt # for the plotting
```

Loading the data through our csv Dict reader:

Downsides:

- Ugly: tabular form not apparent.
- · What if we want to access statistics on the age of our athletes?
- More unwieldy when doing more complex things

```
In [2]: with open('Data/heart.csv') as f:
            heart dict = csv.DictReader(f, delimiter=',')
            heart dict data = [entry for entry in heart dict]
        heart_dict_data[0:2]
Out[2]: [{'i»¿age': '63',
           'sex': '1',
           'cp': '3',
           'trestbps': '145',
           'chol': '233',
           'fbs': '1',
           'restecg': '0',
           'thalach': '150',
           'exang': '0',
           'oldpeak': '2.3',
           'slope': '0',
           'ca': '0',
           'thal': '1'
           'target': '1'},
         {'i»¿age': '37',
           'sex': '1',
           'cp': '2',
           'trestbps': '130',
           'chol': '250',
           161 1 161
```

Loading the data directly into numpy array:

Downsides:

- · Columns don't have labels.
- Need to keep track by integer index.
- · Tabular form but many complex data tasks tricky.

```
In [3]: heart_numpy = np.genfromtxt(
        'Data/heart.csv', delimiter = ",",
        skip_header = 1, dtype = 'float32')
       heart numpy
Out[3]: array([[63.,
                     1.,
                          3., ...,
                                    0.,
                                         1.,
                                              1.],
               [37.,
                     1.,
                          2., ...,
                                    0., 2.,
                                              1.],
               [41.,
                     0.,
                          1., ...,
                                    0., 2.,
                                              1.],
               . . . ,
               [68., 1.,
                          0., ...,
                                    2., 3.,
                                              0.],
               [57.,
                     1.,
                          0., ...,
                                    1., 3.,
                                              0.],
               [57., 0.,
                          1., ..., 1., 2., 0.]], dtype=float32)
```

Mean of cholesterol by sex for people above the age of 50?

While not impossible, this starts to get pretty annoying.

"Act without doing; work without effort. Think of the small as large and the few as many. Confront the difficult while it is still easy; accomplish the great task by a series of small acts." — Lao Tzu

"A small unecessary loop often finds a way of becoming the Gordian knot." — Your instructor

The Gordian knot.

Alexander the Great cutting the Gordian knot. Painting by Fedele Fischetti.

In [4]: # loads in heart disease csv into an data structure called a pandas Datafra
heart_df = pd.read_csv('Data/heart.csv')

#looking at this immediately:
heart_df

$\overline{}$			- 4 -	
()	111	Τ.	14	٠:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

303 rows × 14 columns

Out[5]:

Mean Cholesterol Mean of Max Achieved Heart Rate

sex		
Male	273.695652	147.043478
Female	242.496403	143.316547

I want to make a quick barplot of this with each average grouped by sex. Pandas makes this easy:

```
In [6]: result.plot(kind = 'bar', figsize = (7,6))
```

Out[6]: <AxesSubplot:xlabel='sex'>

Take-aways

Pandas:

- Intuitive for tabular data
- Complex grouping operations and data manipulation with ease.
- · Access to quick plotting functions.
- It's also fast (we'll get into this later).

So let's actually learn Pandas!