INFORMATICA TEORICA

${\rm giosumarin}$

March 2021

Contents

1	Lezione 1						
	1.1 Definizione di funzione	1					
	1.2 Funzione iniettiva, suriettiva e biettiva	1					
2	Lezione 2	2					
3	Lezione 3						
	3.1 \mathbb{R} non è numerabile	4					
	3.2 Cosa è calcolabile?	6					
4	Lezione 4	6					
	4.1 $Dati \sim \mathbb{N}$	6					
	4.1.1 $DATI \ge \mathbb{N}$	8					
5	Lezione 5	9					
	5.1 Ingredienti della definizione formale di semantica	10					
6	Lezione 6	11					
	6.1 $PROG \sim \mathbb{N}$ su programmi RAM	11					
	6.2 Come aritmetizzare?	11					
	6.3 Sistema di calcolo WHILE	12					
	6.3.1 Dimostrazioni induttive su alberi bianri	13					
7	Lezione 7	14					

1 Lezione 1

1.1 Definizione di funzione

Funzione: una legge/regola che ci dice come associare un elemento di A a uno di B.

Definizione globale: $f:A\to B$: chiamiamo A il dominio della funzione e B il codominio.

Definizione locale: $a \to^f b$ oppure f(a) = b con b immagine di a rispetto a f e a controimmagine di b rispetto a f.

 $f: \mathbb{N} \to \mathbb{N} \text{ con } \mathbb{N} = \{0, 1, 2, 3, 4, ...\} \text{ e con } \mathbb{N}^+ = \{1, 2, 3, 4, ...\}$

Globale: $f(n) = \lfloor \sqrt{n} \rfloor$; Locale: $f(5) = \lfloor \sqrt{n} \rfloor$ In una funzione, per definizione, un valore del dominio può portare a uno solo valore di codominio.

1.2 Funzione iniettiva, suriettiva e biettiva

Funzione Iniettiva

$$f: A \to B$$
 è iniettiva sse $\forall a_1, a_2 \in A \Rightarrow f(a_1) \neq f(a_2)$

ovvero non ci sono confluenze verso un punto del codominio.

Funzione Suriettiva

$$f: A \to B$$
 è suriettiva sse $\forall b \in B, \exists a \in A: f(a) = b$

Definiamo con Im_f l'insieme delle immagini. Quindi

$$\{Im_f = b \in B : \exists at.c. f(a) = b\} = \{f(a), a \in A\}$$

Possiamo quindi dire che in generale $Im_f \subseteq B$ ed è suriettiva sse $Im_f = B$, ovvero quando il grafico della funzione compre tutto l'asse y.

Funzione Biettiva Una funzione si dice biettiva quando è sia iniettiva che suriettiva, ovvero

$$\forall b \in B \exists ! a \in A : f(a) = b$$

dove con \exists ! indichiamo "esiste unico".

Composizione di funzioni Nota: non è commutativo

$$f: A \to B$$
$$g: B \to C$$

f composto $g: g \cdot f: A \to C$

definita come $g \cdot f(a) = g(f(a))$

Funzione Inversa

$$f:A\to B$$
 biettiva

$$f^{-1}: B \to A \text{ t.c. } f^{-1}(b) = a \leftrightarrow f(a) = b$$

Definiamo

$$i_A:A\to A$$
 con $i_A(a)=a$

che ci permette di dare una definizione ulteriore di funzione inversa combinando la funzione identità e la composizione

$$f^{-1} \cdot f = i_A \wedge f \cdot f^{-1} = i_B$$

2 Lezione 2

$$f(a) \downarrow: f$$
 definita $\forall a \in A$ si dice che f è totale $f(a) \uparrow:$ non definita per ogni $a \in A$.

 $f:A\to B$ è parziale se qualche elemento di A
 associa un elemento di AB, infatti:

$$Dom_f = \{a \in A : f(a) \downarrow\} \subseteq A$$
 $Dom_f \subsetneq A \Rightarrow f$ parziale (incluso stretto)
 $Dom_f = Af$ totale

Totalizzare

$$f:A o B \; extbf{parziale} \Rightarrow ilde{f}:A o B\cup\{ot\} \; extbf{totale,}$$
 Indichiamo $B\cup\{ot\} o B_ot$ $ilde{f}=egin{cases} f(a) \; ext{se} \; a \in Dom_f \ ot \; \; ext{altrimenti} \end{cases}$

Prodotto Cartesiano

$$A \times b = \{(a,b) : a \in A \land b \in B\}$$

Nota: \times non commutativa $A \times B \neq B \times A$
Proiettore -iesimo $\pi_i : A_1 \times \cdots \times A_n \to A_i$
 $\pi_i(a_1, \dots, a_n) = a_i$
Indichiamo A per n volte come $A \times \cdots \times A = A^n$

Insieme di funzioni

$$B^A=\{f:A o B\}= ext{ insieme delle funzioni da }A$$
 a B $B_\perp^A=\{f:A o B\}= ext{ insieme delle funzioni parziali da }A$ a B

Funzione di valutazione Dati $A, B \in B_{\perp}^{A}$ si definisce funzione di valutazione

$$w: B^A_{\perp} \times A \to B$$
 con $w(f, a) = f(a)$

Fissando a eseguo un benchmark di funzioni, fissando f creo i punti del grafico di f.

Sistema di calcolo C Abbiamo $P \in PROG$ che è una sequenza di regole che trasforma un dato di input in un dato di output $\Rightarrow P \in DATI_{\perp}^{DATI}$ è una funzione (in un linguaggio).

$$C: DATI_{\perp}^{DATI} \to DATI_{\perp}$$
 dove $C(P,x)$ è la funzione calcolata da P

P è un oggetto semantico/rappresentazione, se faccio girare ho una funzione.

Potenza computazionale di ${\cal C}$

$$\begin{split} F(C) &= \{C(P,): P \in PROG\} \subseteq DATI_{\perp}^{DATI} \\ F(C) &= DATI_{\perp}^{DATI} \Rightarrow \text{ informatica può tutto} \\ F(C) &\subseteq DATI_{\perp}^{DATI} \Rightarrow \text{ esistono compiti non automatizzabili} \end{split}$$

Cardinalità Indichiamo con |A| il numero di elementi di A. Ha senso però solo su insiemi infiniti. Infatti $|\mathbb{N}| = \inf = |\mathbb{R}|$ risultano equinumerosi, che me ne faccio? In realtà, l'infinito di \mathbb{N} è meno fitto di quello di $|\mathbb{R}$.

Relazione Relazione binaria su $A:R\subseteq A^2$. Elementi $a,b\in A$ sono nella relazione R sse $(a,b)\in R$ che si può anche indicare con aRb. Relazione di equivalenza sse:

- Riflessiva, $\forall a : aRa$
- Simmetrica, $\forall a, b : aRb = bRa$
- Transitiva, $aRb \wedge bRc \rightarrow aRc$

Relazioni di equivalenza e partizioni $A:R\subseteq A^2$ induce partizione su $A\Rightarrow A_1,A_2,\dots\subseteq A$ t.c.

- $A_i \neq \emptyset$;
- $i \neq j \Rightarrow A_i \cap A_j = \emptyset$;
- $\bigcup_{i \in I} A_i = A$.

Data $a \in A$ la sua classe di equivalenza è $[a]_R = \{b \in A_i : aRb\}$. Si dimostra che:

- Non esistono classi di equivalenza vuote (per riflessività ho almeno dentro me stesso);
- dati $a, b \in A \Rightarrow [a]_R \cap [b]_R = \emptyset$ o $[a]_R = [b]_R$
- $\bullet \ \cup_{a \in A} [a]_R = A$

L'insieme delle classi di equivalenza spezzetta A. L'insieme A visto come partizioni è detto quoziente di A rispetto a R e si indica con A/R.

Cardinalità di insiemi Sia U la classe di tutti gli insiemi. Definisco $\sim \subseteq U^2$ come $A \sim B$ sse esiste biezione tra A e B (associazione 1 a 1 tra elementi di A e B).

Propietà di ∼:

• riflessiva (uso funzione identità di $A(i_A)$);

- simmetrica: se $A \sim B$ allora $B \sim A$ con la funzione inversa (con biezione esiste per forza);
- transitiva: composizione di biettiva è biettiva.

Se $A \sim B$ i due insiemi sono equinumerosi. Un insieme si dice numerabile sse $A \sim \mathbb{N}$.

3 Lezione 3

Definiamo un insieme non numerabile un insieme a cardinalità infinita ma non "listabili esaustivamente" come \mathbb{N} , sono più fitti e se provo a listare mi perdo qualche elemento.

3.1 \mathbb{R} non è numerabile

Proviamo a dimostrare che non c'è biezione tra \mathbb{N} e \mathbb{R} :

- 1. dimostro che $\mathbb{R} \sim [0,1]$, ovvero che [0,1] è fitto come \mathbb{R} ;
- 2. dimostro che $\mathbb{N}_{\sim}[0,1]$
- 3. $\mathbb{N}_{\mathscr{I}}[0,1] \Rightarrow \mathbb{N}_{\mathscr{I}}\mathbb{R}$

 $\mathbb{R} \sim [0,1]$

- \bullet scelgo un punto su [0,1]
- $\bullet\,$ proietto sulla semicir
conferenza centrata in $\frac{1}{2}$
- traccio linea tra $\frac{1}{2}$ e il punto proiettato

La funzione è iniettiva in quanto ogni punto crea un punto diverso (cambia l'angolo); è anche suriettiva tramite l'operazione inversa. Possiamo quindi dire che $\mathbb{R} \sim [0,1]$.

 $\mathbb{N}_{\sim}[0,1]$ Dimostrazione per assurdo: $\mathbb{N}_{\sim}[0,1]$, quindi [0,1] è listabile.

1 posso sciverso come $0.\overline{9}$. Costruiamo ora $0, c_1, c_2, \ldots, c_i, \ldots$

$$c_i = \begin{cases} a_{ii} + 1 \text{ se } a_{ii} < 9 \\ a_{ii} - 1 \text{ se } a_{ii} = 9 \end{cases}$$

c non è nessuno della lista perchè differisce per la *i*-esima componente, differisce dal primo perchè $c_1 \neq a_{11}$, dal secondo perchè $c_2 \neq a_2$ e così via. Possiamo quindi dire che $\mathbb{N} \sim [0,1]$.

Quindi $\mathbb{N}_{\mathbb{R}}\mathbb{R}$, di conseguenza \mathbb{R} non è numerabile ed è un'insieme continuo: tutti gli insiemi equinumerosi a \mathbb{R} si dicono insiemi continui.

Insieme delle parti di \mathbb{N} $P(\mathbb{N} = \text{sottoinsiemi di } \mathbb{N} \not\sim \text{dimostrato per diagonalizzazione.}$ Creo elenco di sottoinsiemi e trovo un sottoinsime di \mathbb{N} che non c'è nell'elenco.

$$\mathbb{N} \Rightarrow 1 \ 2 \ 3 \ 4 \ 5 \ 6 \dots$$

 $A \Rightarrow 1 \ 1 \ 0 \ 1 \ 1 \ 0 \dots$
dove $1 \Rightarrow \in A \ \mathbf{e} \ 0 \Rightarrow \mathcal{E}A$

Per assurdo $P(\mathbb{N} \sim \mathbb{N} \Rightarrow \text{listo esaustivamente})$

Considero ora il sottoinsieme di \mathbb{N} rappresentato dal vettore $\overline{b_{01}b_{12}b_{23}}\dots$ dove overline rappresenta il negato. Questo vettore è un sottoinsimeme di $P(\mathbb{N}$ che non appartiene a \mathbb{N} .

 $\mathbb{N}^{\mathbb{N}}$ Insieme non numerabile $\mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N}\}.$

Anche in questo caso procedo per diagonalizzazione per ipotesi assurda. Metto sulle colonne i valori di N e sulle righe le funzioni.

$$\begin{array}{cccc} \underline{f_0(0)} & f_0(1) & f_0(2) & f_0(3) & \dots \\ \overline{f_1(0)} & \underline{f_1(1)} & f_1(2) & f_1(3) & \dots \\ f_2(0) & \overline{f_2(1)} & \underline{f_2(2)} & f_2(3) & \dots \end{array}$$

Definisco $\phi : \mathbb{N} \to \mathbb{N}$ con $\phi(n) = f_n(n) + 1$. $\phi \in \mathbb{N}^{\mathbb{N}}$ e dovrebbe stare nella lista esaustima ma non c'è quindi è un insieme continuo come l'insime delle parti di \mathbb{N} .

3.2 Cosa è calcolabile?

Considerazioni ragionevoli:

- $PROG \sim \mathbb{N}$, cosidero la digitalizzazione di un programma, è un numero espresso in binario
- $DATI \sim \mathbb{N}$, come sopra

Quindi $F(C) \sim PROG \sim \mathbb{N}_{\geq} \mathbb{N}_{\perp}^{\mathbb{N}} \sim DATI_{\perp}^{DATI}$. Esistono funzioni non calcolabili, pochi programmi e tante funzioni.

Table 1: Rappresentazione delle coppie di Cantor

		У			
		0	1	2	3
	0	1	3	6	10
	1	2	5	9	
X	2	4	8		
	3	7			

4 Lezione 4

$4.1 \quad \textit{Dati} \sim \mathbb{N}$

Forniamo una legge che:

- associ biunivocamente dati a numeri e viceversa;
- consente di operare direttamente per operare sui corrispettivi dati; che ci consenta di dire, senza perdita di generalizzazione, che i nostri programmi lavorano sui numeri.

Per fare ciò, passiamo attraverso un risultato matematico sulla cardinalità di insiemi. $\mathbb{N} \times \mathbb{N} \underline{\sim} \mathbb{N}^+ \Rightarrow \mathbb{N} \times \mathbb{N} \overline{\sim} \mathbb{N}$, da cui si può ottenere $\mathbb{Q} \sim \mathbb{N}$ consierando che possiamo vedere le frazioni $\in \mathbb{Q}$ come coppie di numeratore e denominatore ovvero $\mathbb{N} \times \mathbb{N}$.

Funzione coppia di Cantor Definiamo $<,>: \mathbb{N} \times \mathbb{N} \to \mathbb{N}^+$ iniettiva e suriettiva. Abbiamo < x,y>=n con $sin: \mathbb{N}^+ \to \mathbb{N}$ e $des: \mathbb{N}^+ \to \mathbb{N}$. Per il "ritorno" abbiamo quindi che sin(n)=x e des(n)=y.

Consideriamo una rappresentazione grafica come in Tabella 4.1, riempita con i numeri $\in \mathbb{N}^+$ seguendo la diagonale. Cantor è iniettiva perchè le coordinate di punti diverse individuano celle diverse che vengono riempite successivamente; suriettiva perchè riempio fino all' n voluto e guardo immmagine < x, y > corrispondente. Per esempio < 2, 1 >= 8.

Forma analitica di Cantor Come vediamo nella Tabella 4.1 troviamo il valore della coppia $\langle x, y \rangle$ sulla diagonale che inizia in $\langle x + y, 0 \rangle$.

1.
$$\langle x, y \rangle = \langle x + y, 0 \rangle + y$$

2. trovo la coppia < z,0 >=
$$\sum\limits_{i=1}^{z} \frac{z(z+1)}{2} + 1$$

Il punto 2 è dato dal fatto che un generico valore nella colonna 0 è dato dalla somma degli indici fino a quello cercato +1, vediamo per esempio nella Tabella

Table 2: Rappresentazione analitica di cantor, la coppia < x, y > si trova sulla diagonale della riga x + y

4.1che il valore 7 nella riga 3 è calcolabile come 3+2+1+0a cui aggiungiamo ancora 1. Unendo i due punti troviamo che

$$< x, y > = < x + y, 0 > +y = \frac{(x+y)(x+y+1)}{1} + y + 1.$$

Come tornare a \mathbb{N}^+ e \mathbb{N}^+ Vogliamo capire come trovare sinistra e destra partendo da n.

- 1. trovare le coordinate < $\gamma, 0 >$ del punto inizale della diagonale dove si trova n;
- 2. $y = n \langle \gamma, 0 \rangle e \ x = \gamma y$,

Per il punto 1 possiamo dire che $\gamma = max\{z \in \mathbb{N} : \langle z, 0 \rangle \leq n\}$, quindi

$$\begin{split} &< z, 0 > \leq n \Rightarrow \frac{z(z+1)}{2} + 1 \leq n \\ &\Rightarrow z^2 + z + 2 - 2n \leq 0 \Rightarrow^{eq\ 2^s\ grado} \\ &\Rightarrow z_{1,2} = \frac{-1 \mp \sqrt{8n-7}}{2} \Rightarrow^{solo\ \leq\ 0} \\ &\Rightarrow \frac{-1 - \sqrt{8n-7}}{2} \leq z \leq \frac{-1 + \sqrt{8n-7}}{2} \\ &\Rightarrow^{intero\ più\ grande} \Rightarrow \gamma = \lfloor \frac{-1 + \sqrt{8n-7}}{2} \rfloor; \end{split}$$

troviamo infine che $des(n) = y = n - \langle \gamma, 0 \rangle$ e $sin(n) = x = \gamma - y$.

Abbiamo quindi dimostrato $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}^+$, per dimostrare $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$ basta semplicentente definire una nuova funzione, ovvero

$$[,]: \mathbb{N} \times \mathbb{N} \sim \mathbb{N} \text{ t.c. } [x,y] = \langle x,y \rangle -1$$

e possiamo notare che , mostra che $\mathbb Q$ è numerabile.

Figure 1: Decodifica lista

4.1.1 $DATI \sim \mathbb{N}$

Liste di interi Codifichiamo x_1, \ldots, x_n in $\langle x_1, \ldots, x_n \rangle$. Ricordiamo che le liste non hanno lunghezza nota, quindi metto uno 0 a fine lista per capire che sono arrivato alla fine.

Codifica: 1,2,5 \Rightarrow < 1,2,5,0 > \Rightarrow < 1,< 2,< 5,0 >>> \Rightarrow < 1,< 2,16 > \Rightarrow < 1,188 > \Rightarrow 18144.

Decodifica: Creo albero a partire da n, a sinistra troverò i vari x ordinati con in cima quello di indice inferiore e a destra o un sottoalbero o uno 0. Quando trovo 0 a destra mi fermo. Un esempio è mostrato in Figura 4.1.1.

Strutture dati derivanti Array(lunghezza nota):

$$x_1, \ldots, x_n \Rightarrow [x_1, \ldots, x_n] = [x_1, \ldots, [x_{n-1}, x_n]] \ldots$$

Matrici:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Rightarrow \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \Rightarrow [[a_{11}, a_{12}], [a_{11}, a_{12}]]$$

Grafi: utilizzando le liste di adiacenza o le matrici di adiacenza.

5 Lezione 5

Sistema di calcolo RAM: macchina RAM+ linguaggio RAM (assembly semplificato). Consente di definire rigorosamente:

- $PROG \sim \mathbb{N}$
- $C(P, _)RAM(P, _)$, semantica dei programmi
- F(RAM), potenza computazionale

Forse l'idea di potenza computazionale fornita in prima istanza (F(RAM) è stringente in quando la macchina RAM è molto semplice, successivamente introdurremo la macchina WHILE (JVM) e comfronteremo le loro potenze computazionali. Se avremo $F(_)$:

- $\bullet\,$ diverse \Rightarrow ciò che è computabile dipende dallo strumento
- uguale ⇒ computabilità (tesi di Church)? posso calcosare stessi insiemi di funzioni?

Sistema di calcolo RAM La macchina RAM è composta da:

- L, program counter, indica indirizzo della prossima istruzione da eseguire;
- P, programma, formato da istruzioni;
- R, memoria, insieme di registri e ogni cella può contenere un numero $\in \mathbb{N}$, dove R_1 contiene l'inpur e R_0 l'output.

La terminazione è data da L=0.

Output: $\phi_P(x) = contenuto(R_o)$ o \bot in caso di loop, indichiamo con ϕ_P la semantica di P.

Linguaggio RAM

- $R_k \leftarrow R_k + 1$
- $R_k \leftarrow R_k \dot{-}1; \dot{x-y} = x y \text{ if } x \geq y \text{ else } 0$
- if $R_k = 0$ then goto $m; m = \{1, |P|\}; |P| = numero di istruzioni di P$

Semantica Operazionale Ovvero specificare il significato di ogni istruzione, e quindi dei programmi, specificando l'effetto che quell'istruzione ha sui registri della macchina.

Come descrivo l'effetto di un'istruzione? S=Stato=foto della macchina. Prendo S prima e dopo l'esecuzione di un'istruzione. $S_{init}, S_1, S_{fin}, P$ induce una sequenza di stati.

La semantica di P:

$$\phi_P = \begin{cases} y \text{ se finisce} \\ \bot \text{ altrimenti} \end{cases}$$

5.1 Ingredienti della definizione formale di semantica

Stato

$$S:\{L,R\}\to\mathbb{N}$$

$$\mathit{Stati} = \mathbb{N}^{\{L,R\}}$$

 $S(R_k)$: contenuto del registro R_k quando la macchina è nello stato S

 $stato\ finale: S(L) = 0 \Rightarrow \mathbf{HALT}$

 $dato: \mathbb{N}(infattiDATI \sim \mathbb{N})$

Inizializzazione Dato il dato *n* prepara la macchina nello stato iniziale:

- $S_{init}(L) = 1$
- $S_{init}(R_1) = n$
- $\forall i \neq 1 : S_{init}(R_i) = 0$

Programmi $PROG = \{programmi \ RAM\}, P \in PROG; |P| = \#istrizioni$

Esecuzione Dinamica del programma \Rightarrow funzione stato prossimo.

$$\sigma: stati \times PROG \rightarrow stati_{\perp}; \ \sigma(S, P) = S'$$

Lo stato che segue lo stato S dopo l'eesecuzione di un'istruzione di P:

- dipende dall'istruzione che devo eseguire
- l'istruzione dipende da S(L)
- 1. se S(L) = 0 allora $S' = \perp$
- 2. se S(L) > |P| allora S'(L) = 0 e $\forall i : S'(R_i) = S(R_i)$
- 3. se $1 \le S(L) \le |P|$: considero l'istruzione S(L) esima:
 - $R_k \leftarrow R_k + /\dot{-}1$:
 - $-S'(R_k) = S(R_k) + /\dot{-}1$
 - -S'(L) = S(L) + 1
 - $\forall i \neq k : S'(R_i) = S(R_i)$
 - if $R_k = 0$ then goto m:

$$-S'(R_i) = S(R_i)$$

$$-S'(L) = m \text{ if } S(R_k) == 0 \text{ else } S(L) + 1$$

Semantica di P

$$\phi_P : \mathbb{N} \to \mathbb{N}_{\perp}$$

$$\phi_P(n) = \begin{cases} y \text{ se } S_m(L) = 0 \text{ e } S_m(R_0) = y \\ \perp \text{ se va in loop} \end{cases}$$

Potenza computazionale di RAM $F(RAM = \{f \in \mathbb{N}^{\mathbb{N}}_{\perp} : \exists P \in PROG, \phi_P = f\} = \{\phi_P : P \in PROG\} \subseteq \mathbb{N}^{\mathbb{N}}_{\perp}.$

Incluso stretto per intuizione.

6 Lezione 6

6.1 $PROG \sim \mathbb{N}$ su programmi RAM

Come codificare programmi in numeri e ritorno biunivocamente Applichiamo a ogni istruzione del programma un'aritmetizzazione e poi uniamo i vari numeri generati per creare un singolo numero tramite la codifica utilizzata con la lista di numeri + Cantor. Per il ritorno, sappiamo decodificare la lista finale; se l'aritmetizzazione (Ar) è invertibile allora da n posso ricostruire univocamente il sorgente.

Ci MAnca solo il passaggio fatto da Ar: da istruzioni a numeri e viceversa. Questo passaggio si dice aritmetizzare o godelizzare.

6.2 Come aritmetizzare?

$$Ar: istruzione \to \mathbb{N} \ t.c. \ Ar(istr=n) \leftrightarrow Ar^{-1}(n) = istr$$

 $Ar(R_k \leftarrow R_k + 1) = 3k$
 $Ar(R_k \leftarrow R_k \dot{-}1) = 3k + 1$
 $Ar(if R_k = 0 \ then \ goto \ m = 3 < k, m > -1 \ come \ fare +2$

Com'è fatto Ar^{-1} Utilizzo il resto della divisione per 3, quindi $||n||_3$ (n modulo 3):

- 0: $n = 3k \Rightarrow R_{\frac{n}{3}} \leftarrow R_{\frac{n}{3}} + 1$;
- 1: $n = 3k + 1 \Rightarrow R_{\frac{n-1}{3}} \leftarrow R_{\frac{n-1}{3}} 1;$
- 2: $n = \langle k, m \rangle -1 \Rightarrow \langle k, m \rangle = \frac{n+1}{3} \Rightarrow if R_{sin\frac{n+1}{3}} = 0$ then goto $R_{des\frac{n+1}{3}}$.

Da programmi a numeri $cod(P) = \langle Ar(istr_1), \dots, Ar(istr_m) \rangle$

Da numeri a programmi Come la decodifica destro/sinistro con le parti sinistra che "subiscono" Ar^{-1} , anche in questo caso ci fermiamo quando troviamo lo 0 nel lato destro.

Osservazioni

- i numero diventano linguaggio di programmazione;
- potrei scrivere $F(RAM) = \{\phi_P : P \in PROG\}$ come $F(RAM) = \{\phi_i\}_{i \in \mathbb{N}}$;
- per il sistema RAM si ha rigorosamente $F(RAM) \sim \mathbb{N}_{\geq} \mathbb{N}_{\perp}^{\mathbb{N}}$, quindi alcuni problemi non sono automatizzabili;
- forse, cosiderando un sistem adi calcolo C più soffisticato ma comunque rigorosamente trattabile come RAM, potremmo dare un'idea formale di "ciò che è calcolabile automaticamente" come F(C) che sia più ampia di F(RAM);

• se dimostriamo che F(C) = F(RAM) allora cambiare tecnologia non cambia ciò che è calcolabile \Rightarrow la calcolabilità è intrinseca ai problemi: perchè non catturarla matematicamente? (no macchine, no linguaggio, ...).

6.3 Sistema di calcolo WHILE

Memoria x_0, \ldots, x_20 con x_0 output e x_1 input. Le variabili contengono numeri arbitrariamente grandi e di conseguenza in una singola variabile posso salvare, per esempio con Cator, più di un semplice numero.

Non abbiamo un program counter in quanto il linguaggio $\it WHILE$ è strutturato.

Linguaggio *WHILE* Sintassi induttiva: ho delle fasi semplici, con passi induttivi faccio cose più complicate.

- [BASE]: comando assegnamento: $x_k = 0$, $x_k = x_i + 1$, $x_k = x_i 1$;
- [PASSI]: comando while: while $x_k \neq 0$ do C, con C che può essere:
 - comando di assegnamento
 - comando while
 - comando composto
- [PASSI]: comando composto: <u>BEGIN</u> C_1, \ldots, C_m <u>END</u>, con C come sopra.

Possiamo quindi dire che un programma WHILE è un comando composto. $w-PROG = \{programmi\ WHILE\} \leftarrow \text{costruiti}$ induttivamente. Semantica di $w\colon \psi_w: \mathbb{N} \to \mathbb{N}$

w - PROG Per dimostrare una proposizione su w - PROG:

- 1. dimostro proposizione sugli assegnamenti;
- 2. suppongo proposizione su C e la dimostro su $while x_k \neq 0 do C$;
- 3. suppongo vera la proposizione su C_1, \ldots, C_m e la dimostro su <u>BEGIN</u> C_1, \ldots, C_m <u>END</u>.

6.3.1 Dimostrazioni induttive su alberi bianri

Dividiamo i nodi in nodi interni e foglie.

1. [BASE]: • è un albero binario

- 2. [PASSO]: se T_1 e T_2 sono alberi binari allora T_1 T_2 è un albero binario
- 3. nient'altro è un albero binario

su ogni albero binario, il numero di nodi interni è minore di 1 rispetto alle foglie = P Per induzione:

- 1. [BASE]: •, 1 foglia e 0 nodi interni \Rightarrow **VERO**
- 2. [PASupongoveroSO]: suppongo vero P su T_1 e $T_2,$ ovvero suppongo vero:
 - T_1 : foglie F_1 , nodi interni F_1-1
 - T_2 : foglie F_2 , nodi interni F_2-1

Dimostro vero P per: T1 T2 ovvero F_1+F_2 foglie, e $F_1-1+F_2-1+1=F_1+F_2-1$ nodi interni \Rightarrow **VERO**

Depth

1. [BASE]: $depth(\bullet) = 0$

7 Lezione 7