

Aufgabe: nichtlineares Reibmodell

Die skizzierte Masse m ist durch eine Feder gefesselt und kann sich im linken Bereich (x < a) reibungsfrei auf der Unterlage bewegen. Im rechten Bereich $(x \ge a)$ ist die Gleitreibung mit dem Gleitreibungskoeffizienten μ zu berücksichtigen. In der Skizzierten Lage ist die Feder entspannt.

Die Masse m wird um $x_0=4a$ ausgelenkt und ohne Anfangsgeschwindigkeit freigelassen. Die Bewegung wird durch die folgende Bewegungsdifferentialgleichung beschrieben:

$$m \cdot \ddot{x} + c \cdot x + r \cdot \mu \cdot m \cdot q = 0$$

Darin gilt $\mu = 0$ für x < a und $\mu = 0.4$ für $x \ge a$ und r = 1 bei Bewegung nach rechts (positive Geschwindigkeit) und r = -1 bei Bewegung nach links (negative Geschwindigkeit).

Geg.:
$$m = 20 \ kg$$
, $c = 300 \ N/m$, $\mu = 0.4$, $a = 0.5 \ m$, $g = 9.81 \ m/s^2$

Bearbeiten Sie folgende Aufgaben:

- a) Erstellen Sie ein Simulink-Modell für das oben genannte System.
- b) Stellen Sie die Weg-Zeit- und Geschwindigkeits-Zeit-Funktion der Masse m für die ersten 20 Sekunden der Bewegung graphisch dar. Verwenden Sie für die Simulation den Solver ode4 mit einer konstanten Zeitschrittweite $\Delta t = 5ms$.
- c) Interpretieren Sie den ermittelten Weg-Zeitverlauf. Nach wie vielen Schwingungen bleibt die Amplitude konstant?
- d) Welche max. Geschwindigkeit erreicht die Masse zu Beginn des Schwingungsvorganges und wie gross werden die Geschwindigkeitsamplituden maximal am Ende?