Practical 7

Q7. To write a program for LDR to vary the light intensity of LED using

Arduino.(in proteus)

Below is a simple Arduino program to control the brightness of an LED based on the light intensity detected by a Light Dependent Resistor (LDR). The LDR changes its resistance based on the light falling on it, allowing us to read light intensity values.

Components Needed:

- Arduino (e.g., Arduino Uno)
- LDR (Light Dependent Resistor)
- LED
- Resistor
- -Virtual Terminal

Circuit Connections:

- 1. LDR Setup:
- Connect one terminal of the LDR to the 5V pin on the Arduino.
- Connect the other terminal of the LDR to one terminal of a 10k-ohm resistor. Connect the other terminal of the resistor to the ground (GND).
- Connect the point between the LDR and the resistor to an analog pin (e.g., A0) on the Arduino. This

point gives a voltage that varies with light intensity.

- 2. LED Setup:
- Connect the anode (long leg) of the LED to a digital pin (e.g., D9) on the Arduino through a 220-ohm

resistor.

- Connect the cathode (short leg) of the LED to the ground (GND).
- 3. Virtual terminal setup: Add a virtual terminal to the schematic capture and connect the RX of virtual terminal to the TXD of Arduino component and TX of virtual terminal to RXD of Arduino component.

Arduino code:

Step 1: Write this code in main.py

```
// Pin definitions
const int ldrPin = A0; // LDR connected to analog pin A0
const int ledPin = 9; // LED connected to digital pin 9
void setup() {
  pinMode(ledPin, OUTPUT); // Set LED pin as output
  Serial.begin(9600); // Initialize serial communication for debugging
}
void loop() {
  int ldrValue = analogRead(ldrPin); // Read the LDR value (0-1023)
  // Map LDR value to PWM range (0-255)
  int ledBrightness = map(ldrValue, 0, 1023, 255, 0); // Invert for brightness control
  // Set the LED brightness
  analogWrite(ledPin, ledBrightness);
  // Print the LDR value for debugging
  Serial.print("LDR Value: ");
  Serial.print(ldrValue);
  Serial.print(" | LED Brightness: ");
  Serial.println(ledBrightness);
  delay(100); // Small delay for stability
}
```

- Step 2: Copy the same code in Arduino ide
- **Step 3:** Choose the correct board (Arduino Uno)
- **Step 4:** Save the sketch and compile it.
- **Step 5:** Go to Sketch > Export Compiled Binary. This will save the .hex file in your Arduino project folder.
- **STEP 6:** Go to proteus and double click on the Arduino component.
- **STEP 7:** Find the field for the program file or hex file, and browse to select the .hex file you exported from the Arduino IDE.
- **STEP 9:** Run the simulation.

Connections:

