BLATT 5

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

(14.11.2016)

Aufgabe 1

Sei $F = F(A_0, ..., A_N)$ eine Formel, in der nur die Aussagenvariablen $A_0, ..., A_N$ vorkommen. Dann sei $F(\neg A_0, ..., \neg A_N)$ die Formel, die aus F hervorgeht, indem simultan alle Vorkommen von A_i in F durch $\neg A_i$ ersetzt werden.

(i) Zeigen Sie per Induktion über den Aufbau von Formeln die verallgemeinerten~Regeln~von~de~Morgan, d.h. wenn F eine Formel ist, in der die Junktoren \rightarrow und \leftrightarrow nicht vorkommen, so gilt

$$\neg F(A_0,\ldots,A_N) \sim F^*(\neg A_0,\ldots,\neg A_N)$$

(ii) Zeigen Sie: Wenn G und H Formeln sind, in denen die Junktoren \to und \leftrightarrow nicht vorkommen und

$$F = ((\neg G \lor H) \land (\neg H \lor G)) \sim (G \leftrightarrow H)$$

dann gilt $F^* \sim \neg (G^* \leftrightarrow H^*)$.

Aufgabe 2

- (i) Zeigen Sie, dass Komplemente in Boole'schen Algebren eindeutig bestimmt sind, d.h. aus $a \sqcup b = 1$ und $a \sqcap b = 0$ folgt bereits $b = a^c$.
- (ii) Folgern Sie daraus, dass in allgemeinen Boole'schen Algebren die de Morgan'schen Regeln gelten, d.h.

$$(a \sqcup b)^c = a^c \sqcap b^c$$
$$(a \sqcap b)^c = a^c \sqcup b^c$$

Hinweis zu (i): Rechnen Sie $b \sqcup 0$ und $b \sqcap 1$ aus, indem Sie $a \sqcap a^c = 0$ und $a \sqcup a^c = 1$ ausnutzen.

Aufgabe 3

Eine *Unteralgebra* einer Boole'schen Algebra \mathcal{B} ist eine unter \sqcup , \sqcap und c abgeschlossene Teilmenge, die 0 und 1 enthält. Eine Teilmenge G von \mathcal{B} erzeugt \mathcal{B} , wenn \mathcal{B} die kleinste Unteralgebra von \mathcal{B} ist, die G enthält (Die Elemente von G heißen dann Erzeuger oder Generatoren von \mathcal{B}).

Geben Sie alle Unteralgebren der Tarski-Lindenbaum-Algebra \mathcal{F}_2 an und bestimmen Sie, wieviele Paare von Erzeugern \mathcal{F}_2 hat.

Aufgabe 4

Eine Klausel heißt *Hornklausel*, wenn sie höchstens ein positives Literal enthält. Zeigen Sie

Dozent: PD Dr. Markus Junker Assistent: Andreas Claessens

- (i) Eine Resolvente von Hornklauseln ist wieder eine Hornklausel.
- (ii) Eine Menge von Hornklauseln, die nicht die leere Klausel enthält, ist stets erfüllbar, wenn eine der folgenden Bedingungen erfüllt ist: Es kommen keine positiven Literale vor, oder es kommen keine negativen Literale vor, oder es kommen keine einelementigen Klauseln vor.
- (iii) Zeigen Sie: Eine Menge von Hornformeln ist genau dann erfüllbar, wenn man durch sukzessive *Unit-Resolution* nicht die leere Klausel erhält. Unit-Resolution heißt, dass nur Resolventen von einer einelementigen Klausel mit einer anderen Klausel betrachten werden.