Quelle est la formule de la masse volumique ?					
$A \rho = \frac{m}{V}$					
B $ ho = m imes V$					
C $ ho = rac{d}{t}$					
D $ ho = rac{V}{m}$					
Quelle est la masse de 2,36 L d'eau ?					
A 23,6 kg					
B 2,36 g					
C 2 360 kg					
D 236 g					
E 2 360 g					
Donner un ordre de grandeur de la masse d' $1m^3$ d'air ?					
A 1 kg					
B 1 g					
C 10 g					
D 100g					
De quoi est composé l'air ?					
$lack$ 78% de N_2 , 21% de O_2 et 1% d'autres gaz					
B 78% de diazote, 21% d'oxygène, et 1% d'autres gaz					
C 78% de dioxygène, 21% de dioxyde de carbone, 1% d'autre gaz					
D 78% d'azote, 21% de dioxygène, 1% d'autres gaz					

Quelle est la masse de 2,6 L d'éthanol. (Donnée : masse volumique de l'éthanol $ho_{ethanol}=789kg/m^{_3}$

A 2,05 kg

B 20,5 g

C 20,5kg

D 2050 kg

Les huiles essentielles d'orange (HEO) et de citron

(HEC) sont obtenues par expression à froid, le zeste est pressé pour recueillir l'huile. Elles sont riches en molécules odorantes. On réalise deux CCM afin d'identifier quelques espèces chimiques présentes dans ces huiles essentielles.

HEO Lim G Lin Ci

Légende : Lim : limonène, G: géraniol, Lin: linalol, Ci : citral.

- Indiquer quelles sont les espèces chimiques présentes dans les deux huiles essentielles en exploitant les résultats de la CCM.
- A L'HEC contient du limonène, du linalol et du géraniol. C'est un mélange
- E L'HEC contient du limonène, du linalol et du citral. C'est un mélange
- C L'HEO contient du Limonène et de Linalol. C'est un mélange
- D L'HEO contient du Limonène, du Linalol et du Citral. C'est un mélange
- E L'HEO contient du Limonène et du Linalol. C'est un corps pur

L'étain	est un	alliage	de	cuivre	et	d'étain.
∟ etaiii	est un	ailiaue	ue	CUIVIE	CL	u etaiii.

Espèce chimique Masse volumique Composition massique de l'étain

Cuivre 8,96 kg/L 5% Etain 7,29 kg/L 95%

Quelle est la masse volumique de l'étain?

		~ 1	/ 2
Α	37	$U \; \kappa_{\ell}$	g/m^3

- $f 7,37~kg/m^3$
- $\overline{\mathbf{C}}$ 73,7 kg/m^3
- D 737 kg/m^3

Quelle est la proposition exacte?

- A Le cuivre est grisâtre, l'aluminium est rouge-brun.
- B Le cuivre est verdâtre, l'aluminium est grisâtre
- C Le cuivre est rouge-brun, l'aluminium est grisâtre

Données

Température de fusion de quelques corps purs :

$$\bullet \; \theta_{\rm f,eau} = 0 \; ^{\rm o}{\rm C}$$
 ;

$$\bullet$$
 $heta_{ ext{f,pentan-3-ol}} = -8 \, ^{\circ} ext{C}$;

•
$$\theta_{\rm f,\acute{e}thanol}^{\rm ,cas} = -114~{\rm ^{\circ}C}$$
 ;

•
$$\theta_{f,\text{cyclohexane}} = 6.5 \,^{\circ}\text{C};$$

•
$$\theta_{\text{f,méthanamide}} = 2,5 \, ^{\circ}\text{C}.$$

•
$$\theta_{\text{f,\'ether}} = -116 \, ^{\circ}\text{C}$$
;

On refroidit un liquide (voir la courbe ci-dessus). On mesure la température du liquide à intervalle de temps régulier.

Pourquoi peut-on affirmer que ce corps est pur ?

A Ce corps est pur car la diminution de la température peut se modéliser par une droite

B Ce corps est pur car il y a un palier de changement d'état. C'est à dire que la température ne change pas pendant le changement d'état.

C Ce corps est pur car il change d'état entre 5 et 10 °C

On refroidit un liquide. On mesure la température du liquide à intervalle de temps régulier.

En utilisant les données, indiquer le nom du liquide.

Données

Température de fusion de quelques corps purs :

$$\bullet \; \theta_{\rm f,eau} = {\rm 0} \; ^{\rm o}{\rm C}$$
 ;

$$\bullet$$
 $\theta_{\rm f,pentan-3-ol} = -8$ °C ;

•
$$\theta_{\text{f,\'ethanol}} = -114 \,^{\circ}\text{C}$$
;
• $\theta_{\text{f,cyclohexane}} = 6.5 \,^{\circ}\text{C}$;

•
$$\theta_{\rm f,m\acute{e}thanamide}$$
 = 2,5 °C.

•
$$\theta_{\mathrm{f,\acute{e}ther}} = -116~\mathrm{^{\circ}C}$$
 ;

- C Le liquide est de l'éther.
- D Le liquide est du pentan-3-ol.
- E Le liquide est de l'eau.

- A Récipient A : fiole jaugée; Récipient B: ballon; Récipient C: erlenmeyer
- B Récipient A : bécher: Récipient B: ballon ; Récipient C: fiole jaugée
- C Récipient A : éprouvette; Récipient B: bécher; Récipient C : fiole jaugée
- D Récipient A: éprouvette; Récipient B: fiole jaugée; Récipient C : bécher

- A Le bécher est l'instrument le plus précis pour mesurer des volumes
- B La fiole jaugée est l'instrument le plus précis car elle a un col très fin au niveau du trait de jauge
- C La fiole jaugée est l'instrument le plus précis pour mesurer des volumes car elle ne possède qu'un seul trait.
- D L'éprouvette est l'instrument le plus précis pour mesurer des volumes car elle a plein de trait
- E On ne mesure jamais précisément des volumes avec un bécher.