leroy

Chiara Cimino

Christian Krause

January 1, 2025

Chapter 1

Leroy Chapter I

1.1 F star

Definition 1 (f^* and f_*). For every continuous Function $f: X \to Y$ between topological Spaces, there exists a pair of functors (f^* , f_*).

$$f*=f^{-1}:O(Y)\to O(X)$$

$$f_*:O(X)\to O(Y):=A\mapsto \bigcup_{f^*(v)\leq A}v$$

Lemma 2 $(f^* \dashv f_*)$. f^* is the right adjoint to f_*

Proof.

Lemma 3 (triangle). (Mclane p. 485)

The triangular identities reduce to the following equalities:

$$f^*f_*f^* = f^*$$
 and $f_*f^*f_* = f_*$

Proof. This follows from the triangular identities of the adjunction.

1.2 Embedding

Lemma 4 (Embedding). (Leroy Lemme 1) The following arguments are equivalent:

- 1. f^* is surjective
- 2. f_* is injective
- 3. $f^*f_* = 1_{O(X)}$

Proof. This follows from the triangular identities.

Definition 5 (Embedding). An embedding is a morphism that satisfies the conditions of lemma 4

1.3 Sublocals

Definition 6 (Nucleus). A nucleus is a map $e: O(E) \to O(E)$ with the following three properties:

- 1. e is idempotent
- 2. $U \leq eU$
- 3. $e(U \cap V) = e(U) \cap e(V)$

Lemma 7 (Nucleus). (Leroy Lemme 3) Let $e: O(E) \to O(E)$ be monotonic. The following are equivalent:

- 1. e is a nucleus
- 2. There is a locale X and a morphism $f: X \to E$ such that $e = f_*f^*$.
- 3. Then there is a locale X and a embedding $f: X \to E$ such that $e = f_* f^*$.

Proof.

Definition 8 (Nucleus Partial Order). For two nuclei e and f on O(E), we say that $e \leq f$ if $e(U) \leq f(U)$ for all $U \in O(E)$. This relation is a partial order.

Lemma 9 (Nucleus Intersection). TODO Quelle StoneSpaces S.51 For a set S of nuclei, the intersection $\bigcap S$ can be computed by $\bigcap S(a) = \bigcap \{j(a)|j \in S\}$. This function satisfies the properties of a nucleus and of an infimum.

Proof.

Definition 10 (Sublocal). (Leroy CH 3) A sublocal $Y \subset X$ is defined by a nucleus $e_Y : O(X) \to O(X)$, such that $O(Y) = Im(e_Y) = \{U \in O(X) | e_Y(U) = U\}$. The corresponding embedding is $i_X : O(Y) \to O(X)$. $i_X^*(V) = e_X(V)$, $(i_X)_*(U) = U$ And every nucleus e on O(X) defines a sublocal Y of X by O(Y) = Im(e)

Definition 11 (Sublocal Inclusion). (Stimmt das?)(Leroy Ch 3) $X \subset Y$ if $e_Y(u) \leq e_X(u)$ for all u. This means that the Sublocals are a dual order to the nuclei.

Lemma 12 (factorisation). (Leroy Lemme 2) Let $i: X \to E$ be an embedding and $f: Y \to E$ be a morphism of spaces. To have f factor through i, it is necessary and sufficient that $i_*i^*(V) \le f_*f^*(V)$ for all $V \in O(E)$.

Proof.

1.3.1 (1.4) Sublocal Union and Intersection

Definition 13 (Union of Sublocals). (Leroy CH 1.4) Let $(X_i)_i$ be a family of sublocals of E and $(e_i)_i$ the corresponding nuclei. For all $V \in O(E)$, let e(V) be the union of all $W \in O(E)$ which are contained in all $e_i(V)$.

Lemma 14 (Union of Sublocals). (Leroy CH 4) Let X_i be a family of subframes of E and e_i be the corresponding nuclei. For every $V \in O(E)$, let e(V) be the union of all $W \in O(E)$ which are contained in every (TODO wieso every) $e_i(V)$. Then