TMS4256, TMS4257 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORIES

TEXAS INSTR (ASIC/MEMORY)

- 262,144 × 1 Organization
- Single 5-V Power Supply
 - 5% Tolerance Required for TMS4256-8
 - 10% Tolerance Required for TMS4256-10,
 -12, -15, and TMS4257-10, -12, -15
- JEDEC Standardized Pinouts
- Performance Ranges:

DEVICE	ACCESS TIME ROW ADDRESS (MAX)	ACCESS TIME COLUMN ADDRESS (MAX)	READ OR WRITE CYCLE (MIN)	V _{DD} TOLERANCE
'4256-8	80 ns	40 ns	160 ns	± 5%
'4256-10 '4257-10	100 ns	50 ns	200 ns	±10%
'4256-12 '4257-12	120 ns	60 ns	220 ns	±10%
'4256-15 '4257-16	150 ns	75 ns	260 ns	±10%

- Long Refresh Period . . . 4 ms (Max)
- Operations of the TMS4256/TMS4257 Can Be Controlled by Ti's SN74ALS2967, SN74ALS2968, and THCT4502 Dynamic RAM Controllers
- All Inputs, Outputs, and Clocks Fully TTL Compatible
- 3-State Unlatched Outputs
- Common I/O Capability with "Early Write" Feature
- Page Mode ('4256) or Nibble-Mode ('4257)
- Low Power Dissipation
- RAS-Only Refresh Mode
- Hidden Refresh Mode
- CAS-Before-RAS Refresh Mode
- Available with MiL-STD-883B Processing and L(0°C to 70°C), E(-40°C to 85°C), or S(-55°C to 100°C) Temperature Ranges (SMJ4256, with 10% Power Supply)

25E D	MAY 1983-REVISED JANUARY 1988
N PACKAGE (TOP VIEW)	SD PACKAGE (TOP VIEW)
A8 1 1 16 VSS D 2 15 CAS W 3 14 Q RAS 4 13 A6 A0 5 12 A3 A2 6 11 A4 A1 7 10 A5 VDD 8 9 A7	

FM PACKAGE

PI	PIN NOMENCLATURE						
A0-A8	Address Inputs						
CAS	Column-Address Strobe						
D	Data In						
NC	No Connection						
Q	Data Out						
RAS	Row-Address Strobe						
VDD	5-V Power Supply						
VSS	Ground						
₩ .	Write Enable						

PRODUCTION DATA documents contain information current as of publication data. Products conform to specifications per the terms of Texas instruments at andard warranty. Production processing does not necessarily include testing of all parameters.

Copyright @ 1983, Texas Instruments Incorporated

TEXAS INSTR (ASIC/MEMORY) 25E D

description

The TMS4256 and TMS4257 are high-speed, 262,144-bit dynamic random-access memories, organized as 262,144 words of one bit each. They employ state-of-the-art SMOS (scaled MOS) N-channel doublelevel polysilicon/polycide gate technology for very high performance combined with low cost and improved

The '4256-8 with a 5% voltage tolerance has a maximum RAS access time of 80 ns. The '4256/'4257-10, -12, and -15 with 10% voltage tolerances have maximum RAS access times of 100 ns, 120 ns, and 150 ns, respectively.

New SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. IDD peaks are 125 mA typical, and a -1 V input voltage undershoot can be tolerated, minimizing system noise considerations.

All inputs and outputs, including clocks, are compatible with Series 74 TTL. All address and data-in lines are latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The '4256 and '4257 are offered in 16-pin plastic dual-in-line, 16-pin plastic zig-zag in-line (ZIP), and 18-lead plastic chip carrier packages. They are guaranteed for operation from 0 °C to 70 °C. The dual-in-line package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

operation

address (A0 through A8)

Eighteen address bits are required to decode 1 of 262,144 storage cell locations. Nine row-address bits are set up on pins A0 through A8 and latched onto the chip by the row-address strobe (RAS). Then the nine column-address bits are set up on pins AO through A8 and latched onto the chip by the column-address strobe (CAS). All addresses must be stable on or before the falling edges of RAS and CAS. RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip select, activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When W goes low prior to CAS, data out will remain in the high-impedance state for the entire cycle, permitting common I/O operation.

data in (D)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of CAS or W strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, W is brought low prior to CAS and the data is strobed in by CAS with setup and hold times referenced to this signal, in a delayed-write or read-modifywrite cycle, CAS will already be low, thus the data will be strobed in by W with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fanout of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval ta(C) that begins with the negative transition of CAS as long as ta(R) is satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS is low; CAS going high returns it to a high-impedance state. In a read-modify-write cycle, the output will follow the sequence for the read cycle.

TMS4256, TMS4257 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORIES

TEXAS INSTR (ASIC/MEMORY) 25E D _ T-46-23-15

refresh

A refresh operation must be performed at least once every four milliseconds to retain data. This can be achieved by strobing each of the 256 rows (AO-A7). A normal read or write cycle will refresh all bits in each row that is selected. A RAS-only operation can be used by holding CAS at the high (inactive) level, thus conserving power as the output buffer remains in the high-impedance state.

CAS-before-RAS refresh

The CAS-before-RAS refresh is utilized by bringing CAS low earlier than RAS (see parameter t_{CLRL}) and holding it low after RAS falls (see parameter t_{RLCHR}). For successive CAS-before-RAS refresh cycles, CAS can remain low while cycling RAS. The external address is ignored and the refresh address is generated internally.

hidden refresh

Hidden refresh may be performed while maintaining valid data at the output pin. This is accomplished by holding \overline{CAS} at $V_{|||}$ after a read operation and cycling \overline{RAS} after a specified precharge period, similar to a \overline{CAS} -before- \overline{RAS} refresh cycle. The external address is also ignored during the hidden refresh cycles. The data at the output pin remains valid up to the maximum \overline{CAS} low pulse duration, tw(CL).

page mode (TMS4256)

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing random column addresses onto the chip. Thus, the time required to set up and strobe sequential row addresses for the same page is eliminated. The maximum number of columns that can be addressed is determined by $t_W(RL)$, the maximum \overline{RAS} low pulse duration.

nibble mode (TM\$4257)

Nibble-mode operation allows high-speed serial read, write, or read-modify-write access of 1 to 4 bits of data. The first bit is accessed in the normal manner with read data coming out at $t_{\rm a}(C)$ time. The next sequential nibble bits can be read or written by cycling $\overline{\rm CAS}$ while $\overline{\rm RAS}$ remains low. The first bit is determined by the row and column addresses, which need to be supplied only for the first access. Column A8 and row A8 (CA8, RA8) provide the two binary bits for initial selection of the nibble addresses. Thereafter, the falling edge of $\overline{\rm CAS}$ will access the next bit of the circular 4-bit nibble in the following sequence:

→ (0,0)—			(1,1)————

In nibble-mode, all normal memory operations (read, write, or read-modify-write) may be performed in any desired combination.

power-up

To achieve proper device operation, an initial pause of 200 μs is required after power up, followed by a minimum of eight initialization cycles.

Dynamic RAMs

Δ

TEXAS INSTR (ASIC/MEMORY)

MIC NAMBOM-ACCEC MEMORIES

25E D

logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1084 and IEC Publication 617-12. The pin numbers shown are for the 16-pin dual-in-line package.

functional block diagram

Dynamic RAMs

TEXAS INSTR (ASIC/MEMORY) 25E D

T-46-23-15

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) †

Short circuit output current50 mA Storage temperature range-65°C to 150°C

†Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values in this data sheet are with respect to VSS.

recommended operating conditions

		MIN	NOM	MAX	UNIT
V _{DD} Supply voltage ('4256)	'4257-10, -12, -15)	4.5	5	5.5	V
V _{DD} Supply voltage ('4256-	8)	4.75	5	5.25	V
VSS Supply voltage			0		v
VIH High-level input voltage		2.4		6.5	V
VIL Low-level input voltage	(see Note 2)	-1		0.8	v
TA Operating free-air temp	erature	0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as maximum, is used in this data sheet for logic voltage levels only.

INSTRUMENTS

TEXAS INSTR (ASIC/MEMORY) 25E D

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

PARAMETER		PARAMETER TEST		4258-8	8 TM84258-10 TM84257-10		UNIT
		CONDITIONS		CONDITIONS MIN MAX M		MAX	
VoH	High-level output voltage	IOH = -5 mA	2.4		2.4		V
VOL	Low-level output voltage	loL = 4.2 mA		0.4		0.4	>
11	Input current (leakage)	V ₁ = 0 V to 6.5 V, V _{DD} = 5 V, All other pins = 0 V to 6.5 V		±10		±10	μA
lo	Output current (leakage)	V _O = 0 V to 5.5 V, V _{DD} = 5 V, CAS high		±10		±10	μA
I _{DD1}	Average operating current during read or write cycle	t _C = minimum cycle, Output open		70		70	mΆ
I _{DD2}	Standby current	After 1 memory cycle, RAS and CAS high, Output open	4.5			4.5	mA
צממי	Average refresh current	t _C = minimum cycle; RAS cycling, CAS high, Output open		70		58	mA
IDD4	Average page-mode current	t _{C(P)} = minimum cycle, RAS low, CAS cycling, Output open		60		50	mA
IDD5	Average nibble-mode current	t _{C(N)} = minimum cycle, RAS low, CAS cycling, Output open				45	mA

PARAMETER		TEST	TMS4256-12 TMS4257-12		.		UNIT
		CONDITIONS		MIN MAX		MIN MAX 2.4 0.4	
Vон	High-level output voltage	1 _{OH} = -5 mA	2.4		2.4		V
VOL	Low-level output voltage	IOL = 4.2 mA		0.4		0,4	٧
ħ	Input current (leakage)	V _I = 0 V to 6.5 V, V _{DD} = 5 V, All other pins = 0 V to 6.5 V		±10		±10	μA
ю	Output current (leakage)	V _O = 0 V to 5.5 V, V _{DD} = 5 V, CAS high		±10		±10	μА
lDD1	Average operating current during read or write cycle	t _C = minimum cycle, Output open		` 65		60	mA
IDD2	Standby current	After 1 memory cycle, RAS and CAS high, Output open		4.5		4.5	mA
l _{DD3}	Average refresh current	t _C = minimum cycle, RAS cycling, CAS high, Output open		53		48	mA
I _{DD4}	Average page-mode current	t _{C(P)} = minimum cycle, RAS low, CAS cycling, Output open	45		40	mA	
IDD5	Average nibble-mode current	t _{C(N)} = minimum cycle, RAS low, CAS cycling, Output open		40		35	mA

T-46-23-15

262,144-BIT DYNAMIC RANDOM-ACCESS MEMORIES

TEXAS INSTR (ASIC/MEMORY)

25E D

capacitance over recommended supply voltage range and operating free-air temperature range, f = 1 MHz

	PARAMETER	MAX	UNIT
Ci(A) Input capacitance, ad	ireas inputa	. 5	ρF
Ci(D) Input capacitance, da	a input	5	pF
Ci(RC) Input capacitance stre	be inputs	5	pF
Ci(W) Input capacitance, wr	te enable input	7	ρF
Co Output capacitance		7 ,	pF

switching characteristics over recommended supply voltage range and operating free-air temperature range

	PARAMETER .	TEST CONDITIONS	ALT. SYMBOL	TM\$4256-8	TMS4258-10 TMS4257-10	
		STABOL	MIN MA	MIN MAX	7	
ta(C)	Access time from CAS	tRLCL ≥ MAX, CL = 100 pF, Load = 2 Series 74 TTL gates	tCAC	40	50	ns
^t a(R)	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	†RAC	- 80	100	ns
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load ≈ 2 Series 74 TTL gates	tOFF	0 20	0 30	ns

PARAMETER		TEST CONDITIONS	ALT. SYMBOL	TMS4256-12 TMS4257-12		1		UNIT
		J STREET.		MIN	MAX	MIN MAX		
ta(C)	Access time from CAS	tRLCL ≥ MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	†CAC		60	7	75	ns
ta(R)	Access time from RAS	tRLCL = MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	†RAC		120		150	ns
tdis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	^t OFF	0	30	0	30	ns

Dynamic RAMs

TEXAS INSTR (ASIC/MEMORY) 25E D

timing requirements over recommended supply voltage range and operating free-air temperature range

PARAMETER		ALT.	TMS	4256-8	TMS TMS	UNIT	
	1.1.2	SYMBOL	MIN	MAX	MIN	MAX	
t _C (P)	Page-mode cycle time (read or write cycle)	^t PC	70		100		ัทธ
t _c (PM)	Page-mode cycle time (read-modify-write cycle)	^t PCM	95		135		ns
t _{c(rd)}	Read cycle time†	tRC	160		200		ns,
t _c (W)	Write cycle time	twc	160		200		ns
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	185		235		ns
tw(CH)P	Pulse duration, CAS high (page mode)	tCP	20		40		· ns'
tw(CH)	Pulse duration, CAS high (non-page mode)	†CPN	26		25		ns
tw(CL)	Pulse duration, CAS low [‡]	tCAS	40	10,000	50	10,000	ns
tw(RH)	Pulse duration, RAS high	t _{RP}	. 70		90		កទ
tw(RL)	Pulse duration, RAS low [§]	tRAS	80	10,000	100	10,000	ns
tw(W)	Write pulse duration	tWP	20		30		ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	50	3	50	ns
tsu(CA)	Column-address setup time	tASC	0		0		กร
t _{su(RA)}	Row-address setup time	tASR	0	•	0		ns
t _{su(D)}	Data setup time	t _{DS}	0		0		ns
tsu(rd)	Read-command setup time	tRCS	0		0		ns
t _{su(WCL)}	Early write-command setup time before CAS low	twcs	0		0		ns
t _{su(WCH)}	Write-command setup time before CAS high	tCWL	20		30		ns
t _{su(WRH)}	Write-command setup time before RAS high	tRWL	20		30		nŝ
th(CLCA)	Column-address hold time after CAS low	tCAH	15		15		ns
th(RA)	Row-address hold time	tRAH	16		15		ns
th(RLCA)	Column-address hold time after RAS low	^t AR	65		65	· · · · · · · · · · · · · · · · · · ·	ns
th(CLD)	Data hold time after CAS low	^t DH	20		30		ns
th(RLD)	Data hold time after RAS low	t _{DHR}	60		80	·	ns
th(WLD)	Data hold time after ₩ low	[₹] DH	20		30		ns
th(CHrd)	Read-command hold time after CAS high	^t ŘCH	0		0		ns
th(RHrd)	Read-command hold time after RAS high	trrh	. 10		10		ns
th(CLW)	Write-command hold time after CAS low	tWCH	20		30		ns
th(RLW)	Write-command hold time after RAS low	tWCR	65		80		ns

Continued next page.

NOTE 3: Timing measurements are referenced to VIL max and VIH min. \uparrow All cycle times assume $t_t=5$ ns.

†In a read-modify-write cycle, tCLWL and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{w(CL)}). This applies to page-mode read-modify-write also.

Sin a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (t_{w(CL)}).

RAS low time (tw(RL)).

T-46-23-15

TEXAS INSTR (ASIC/MEMORY)

25E D

timing requirements over recommended supply voltage range and operating free-air temperature range (continued)

	PARAMETER	ALT. SYMBOL	TMS	4256-8		256-10 257-10	UNIT
		STRIBUL	MIN	MAX	MIN	MAX	1
^t RLCH	Delay time, RAS low to CAS high	†CSH	80		100		กร
tCHRL	Delay time, CAS high to RAS low	tCRP	0		0		ns
tCLRH	Delay time, CAS low to RAS high	trsh	40		50	·-··	กร
^t RLCHR	Delay time, RAS low to CAS high	†CHR	20	-	20		กร
[†] CLRL	Delay time, CAS low to RAS low¶	tCSR	10		10		ns
^t RHCL	Delay time, RAS high to CAS low 1	tRPC	0		0		ns
tCLWL	Delay time, CAS low to W low (read-modify-write cycle only)	tCWD	40		50		ns
[†] RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	^t RCD	25	40	25	50	ns
^t RLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	80		100		ns
t _{rf}	Refresh time interval	tREF	•	4		4	ms

Continued next page. NOTE 3: Timing measurements are referenced to V_{IL} max and V_{IH} minitas-before-RAS refresh only.

INSTRUMENTS POST OFFICE BOX 1443 . HOUSTON, TEXAS 77001

timing requirements over recommended supply voltage range and operating free-air temperature range (continued)

	PARAMETER	ALT.	TMS4256-12 TMS4257-12		TM84256-15 TM84257-15		UNIT	
		SYMBOL	MIN	MAX.	MM MAX		1	
t _{c(P)}	Page-mode cycle time (read or write cycle)	^t PC	120		145		ns	
t _c (PM)	Page-mode cycle time (read-modify-write cycle)	[†] PCM	160		190		ns	
t _{c(rd)}	Read cycle time†	†RC	220		260		ns	
tc(W)	Write cycle time	twc	220		260		ns	
tc(rdW)	Read-write/read-modify-write cycle time	^t RWC	260		305		ns	
tw(CH)P	Pulse duration, CAS high (page mode)	tCP	50		60		ns	
tw(CH)	Pulse duration, CAS high (non-page mode)	tCPN	25		25		, ns	
tw(CL)	Pulse duration, CAS low [‡]	tCAS	60	10,000	75	10,000	R\$	
tw(RH)	Pulse duration, RAS high	tRP	90		100		ns	
tw(RL)	Pulse duration, RAS low [§]	†RAS	120	10,000	150	10,000	ns	
tw(W)	Write pulse duration	twp	30		45		ПБ	
tt	Transition times (rise and fall) for RAS and CAS	ŧτ	3	50	3	50	ns	
tsu(CA)	Column-address setup time	tASC	0		0		NS.	
tsu(RA)	Row-address setup time	tASR	0		0		ns	
t _{su(D)}	Data setup time	†DS	0		0		ns	
tsu(rd)	Read-command setup time	tRCS	0		0		กร	
t _{su(WCL)}	Early write-command setup time before CAS low	twcs	0		0		ns	
t _{su} (WCH)	Write-command setup time before CAS high	†CWL	35		45		ns	
t _{su(WRH)}	Write-command setup time before RAS high	tRWL	35		45		ns	
th(CLCA)	Column-address hold time after CAS low	†CAH	20		25		ns	
th(RA)	Row-address hold time	tRAH	15		15		ns	
th(RLCA)	Column-address hold time after RAS low	^t AR	80		100		ns	
th(CLD)	Data hold time after CAS low	t _{DH}	30		45		ns	
th(RLD)	Data hold time after RAS low	[†] DHR	90		120		ns	
th(WLD)	Data hold time after W low	[†] DH	30		45		na	
th(CHrd)	Read-command hold time after CAS high	^t RCH	0		0		ns	
th(RHrd)	Read-command hold time after RAS high	trah	10		10		па	
th(CLW)	Write-command hold time after CAS low	twcH	30		45		na	
th(RLW)	Write-command hold time after RAS low	twcr	90		120		ns	

Continued next page.

NOTE 3: Timing measurements are referenced to V_{IL} max and V_{IH} min.

TAll cycle times assume t_t = 5 ns.

In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{W(CL)}). This applies to page-mode read-modify-write also.

In a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (t_{W(RL)}).

timing requirements over recommended supply voltage range and operating free-air temperature range (concluded)

PARAMETER		ALT. ,	TM84256-12 TM84257-12		TMS4258-15 TMS4257-15		UNIT	
<u> </u>			MIN	MAX	MIN	MAX		
†RLCH	Delay time, RAS low to CAS high	tCSH	120		150		пŝ	
tCHRL	Delay time, CAS high to RAS low	tCRP	0		0		Пŝ	
tCLRH	Delay time, CAS low to RAS high	tRSH	60		75		ns	
†RLCHR	Delay time, RAS low to CAS high	tCHR	25		30		ns	
tCLRL	Delay time, CAS low to RAS low¶	tCSR	10		20		ns	
†RHCL	Delay time, RAS high to CAS low¶	†RPC	0		0		ns	
†CLWL	Delay time, CAS low to W low (read-modify-write cycle only)	tCWD.	60		70		ns	
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	^t RCD	25	60	25	75	กร	
†RLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	120		145		ns	
trf	Refresh time interval	†REF		4	•	4	ms	

NOTE 3: Timing measurements are referenced to V_{IL} max and V_{IH} min. \PCAS -before-RAS refresh only.

NIBBLE-MODE CYCLE

switching characteristics over recommended supply voltage range and operating free-air temperature range

PARAMETER	ALT.	TMS4257-10	TMS4267-12	TMS4257-15	UNIT
	SYMBOL	MIN MAX	MIN MAX	MIN MAX	UNII
ta(CN) Nibble-mode access from CAS	tNCAC	25	30	40	ns

timing requirements over recommended supply voltage range and operating free-air temperature range

PARAMETER		ALT.	TMS4	TMS4257-10		TMS4257-12		TMS4257-15	
		SYMBOL	MIN MAX		MIN MAX		MIN	MAX	UNIT
t _{c(N)}	Nibble-mode cycle time	tNC	50		60		75		
tc(rdWN)	Nibble-mode read-modify- write cycle time	tNRMW	70		85		105		
[†] CLRHN	Nibble-mode delay time, CAS low to RAS high	^t NRSH	25	•	30		40	• • •	
tCLWLN	Nibble-mode delay time, CAS to W delay	^t NCWD	20		25		30		ns
^t w(CLN)	Nibble-mode pulse duration, CAS low	†NCAS	25		30		40		
tw(CHN)	Nibble-mode pulse duration, CAS high	^t NCP	15		20		25		
tsu(WCHN)	Nibble-mode write command setup before CAS high	†NGWL	20		25	····	35		

NOTE 3: Timing measurements are referenced to V_{IL} max and V_{IH} min.

TEXAS
INSTRUMENTS
POST OFFICE BOX 1443 • HOUSTON TEXAS 77001

Dynamic RAMs

7

8961725 0076892 8

TMS4256, TMS4257
262,144-BIT DYNAMIC RANDOM-ACCESS MEMORIES

T-46-23-15

TEXAS INSTR (ASIC/MEMORY) 25E D _____

read cycle timing

262,144-BIT DYNAMIC RANDOM-ACCESS MEMORIES

Dynamic RAMs

TMS4256, TMS4257 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORIES

T-46-23-15

†The enable time $\{t_{e_i}\}$ for a write cycle is equal in duration to the access time from \overline{CAS} $\{t_{e_i}\}$ in a read cycle; but the active levels at the output are invalid.

25E D _____ T-46-23-15

262,144-BIT DYNAMIC RANDOM-ACCESS MEMORIES

TEXAS INSTR (ASIC/MEMORY) read-write/read-modify-write cycle timing

TEXAS INSTR (ASIC/MEMORY)

25E D -

page-mode read cycle timing

262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

TEXAS INSTR (ASIC/MEMORY)

25E D ___

page-mode write cycle timing

T-46-23-15

Dynamic RAMs

Dynamic RAMs

page-mode read-modify-write cycle timing

NOTE 6: A read or a write cycle can be intermixed with read-modify-write cycles as long as the read and write timing specifications are not violated.

TEXAS INSTRUMENTS
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

. TEXAS INSTR (ASIC/MEMORY) 25E D _

nibble-mode read cycle timing

T-46-23-15

25E D

TEXAS INSTR (ASIC/MEMORY)

nibble-mode write cycle timing

262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

TEXAS INSTR (ASIC/MEMORY)

25E D _ T-46-23-15

nibble-mode read-modify-write-cycle timing

Dynamic RAMs

Texas VI Instruments

Dynamic RAMs

TEXAS INSTR (ASIC/MEMORY) 25E D _

RAS-only refresh cycle timing

hidden refresh cycle timing

262,144-BIT DYNAMIC RANDOM-ACCESS MEMORIES

TEXAS INSTR (ASIC/MEMORY) 25E D T-46-23-15

automatic (CAS-before-RAS) refresh cycle timing

Dynamic RAMs