1. (习题7.1, 6) 设 $\{a_n\}$ 和 $\{b_n\}$ 是两个非负数列满足 $a_{n+1} < a_n + b_n$, 而且 $\sum_{n=1}^{\infty} b_n$ 收敛. 求证 $\lim a_n$ 存在.

证明: $\ddot{\mathbb{I}} B_0 = 0, B_n = b_1 + \dots + b_n, \lim_{n \to \infty} B_n = B.$ 由条件, 有

$$a_{n+1} - B_n < a_n - B_{n-1}.$$

这说明数列 $\{a_n - B_{n-1}\}$ 单调递减有下界 -B, 因此, 这个数列收敛. 又 $\{B_{n-1}\}$ 收敛, 所以 $\{a_n\}$ 收敛.

2. (习题7.2,10) 递归定义 [0,1) 上的连续可微函数列 $\{f_n\}$ 如下: $f_1=1$, 在 (0,1) 上有

$$f'_{n+1}(x) = f_n(x)f_{n+1}(x), \ f_{n+1}(0) = 1.$$

求证: 对每个 $x \in [0,1)$, $\lim_{n \to \infty} f_n(x)$ 存在, 并求出其极限函数. 证明 由条件知,

$$f_{n+1}(x) = e^{\int_0^x f_n(t) dt}, \ x \in [0, 1).$$
 (2)

因为 $f_1 = 1$, 所以 $f_2(x) = e^x \ge 1 = f_1(x)$. 假设 $f_{n+1}(x) \ge f_n(x)$, 则有

$$f_{n+2}(x) = e^{\int_0^x f_{n+1}(t) dt} \geqslant e^{\int_0^x f_n(t) dt} = f_{n+1}(x).$$

于是 $\{f_n(x)\}$ 是单调递增的函数列. 又在 $x \in [0,1)$ 有 $f_1 \leqslant \frac{1}{1-x}$. 假设 $f_n(x) \leqslant \frac{1}{1-x}$, 则

$$f_{n+1}(x) = e^{\int_0^x f_n(t) dt} \leqslant e^{\int_0^x \frac{1}{1-t} dt} = \frac{1}{1-x}.$$

这说明 $\{f_n(x)\}$ 有上界 $\frac{1}{1-x}$. 于是对每个 $x \in [0,1)$ $\{f_n(x)\}$ 收敛. 设其极限函数为 f(x). 由于 $\frac{1}{1-t}$ 在 [0,x] 上可积, 根据控制收敛定理知 f(t) 在 [0,x] 上可积, 且

$$\lim_{n \to \infty} \int_0^x f_n(t) dt = \int_0^x f(t) dt.$$
 (3)

在(2)两边取极限,得

$$f(x) = e^{\int_0^x f(t) dt}, \ x \in [0, 1).$$

此式说明 f(t) 是 [0,1) 上可微函数, 且

$$f'(x) = f^2(x).$$

注意到 f(0) = 1. 因而从上面微分方程可得 $f(x) = \frac{1}{1-x}$.

3. (P303,1) 计算级数
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$$
 的和.

解: 记 $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$, 则 $H_n/n \to 0$.

$$\sum_{n=1}^{m} \frac{1}{n(n+1)} H_n = \sum_{n=1}^{m} \left(\frac{1}{n} - \frac{1}{n+1}\right) H_n = \sum_{n=1}^{m} \frac{H_n}{n} - \sum_{n=1}^{m} \frac{H_n}{n+1}$$

$$= \sum_{n=1}^{m} \frac{H_n}{n} - \sum_{n=2}^{m+1} \frac{H_{n-1}}{n}$$

$$= 1 + \sum_{n=2}^{m} \frac{H_n - H_{n-1}}{n} - \frac{H_m}{m+1}$$

$$= \sum_{n=1}^{m} \frac{1}{n^2} - \frac{H_m}{m+1} \to \frac{\pi^2}{6}, \ (m \to \infty)$$

4. (P303,3) 设 $\{a_n\}$ 是正的递增数列. 求证: 级数 $\sum_{n=1}^{\infty} \left(\frac{a_{n+1}}{a_n} - 1\right)$ 收敛的充分必要条件是 $\{a_n\}$ 有界.

证明 (充分性) 若 $\{a_n\}$ 有界, 则收敛于 a > 0. 令 $A_n = a_{n+1} - a_n$, $B_n = \frac{1}{a_n}$. 则 $\{B_n\}$ 单调递减趋于 $\frac{1}{a}$, 又 $\sum_{n=1}^{\infty} A_n$ 收敛, 所以根据 Abel 判别法知 $\sum_{n=1}^{\infty} A_n B_n$ 收敛, 即 $\sum_{n=1}^{\infty} \left(\frac{a_{n+1}}{a_n} - 1\right)$ 收敛.

(必要性) 设 $\sum_{n=1}^{\infty} \left(\frac{a_{n+1}}{a_n} - 1\right)$ 收敛于 S. 则有

$$S > \sum_{n=1}^{m} \frac{a_{n+1} - a_n}{a_n} = \sum_{n=1}^{m} \int_{a_n}^{a_{n+1}} \frac{1}{a_n} dx$$
$$\geqslant \sum_{n=1}^{m} \int_{a_n}^{a_{n+1}} \frac{1}{x} dx = \int_{a_1}^{a_{m+1}} \frac{1}{x} dx$$
$$= \ln a_{m+1} - \ln a_1.$$

由此知 $\{a_n\}$ 有界.

5. (P303,4) 设 $\alpha > 0$, $\{a_n\}$ 是递增正数列. 求证级数 $\sum_{n=1}^{\infty} \frac{a_{n+1} - a_n}{a_{n+1} a_n^{\alpha}}$ 收敛. 证明 因为

$$\sum_{k=1}^{n} \frac{a_{k+1} - a_k}{a_{k+1}^{\alpha+1}} = \sum_{k=1}^{n} \int_{a_k}^{a_{k+1}} \frac{dx}{a_{k+1}^{\alpha+1}} \le \sum_{k=1}^{n} \int_{a_k}^{a_{k+1}} \frac{dx}{x^{\alpha+1}} = \int_{a_1}^{a_{n+1}} \frac{dx}{x^{\alpha+1}}$$
$$= \frac{1}{\alpha} (a_1^{-\alpha} - a_{n+1}^{-\alpha}) < \frac{1}{\alpha} a_1^{-\alpha}.$$

所以 $\sum_{k=1}^\infty rac{a_{k+1}-a_k}{a_{k+1}^{\alpha+1}}$ 收敛. 显然级数 $\sum_{k=1}^\infty \left(rac{1}{a_k^\alpha}-rac{1}{a_{k+1}^\alpha}
ight)$ 收敛, 因而级数

$$\sum_{k=1}^{\infty} \frac{a_{k+1} - a_k}{a_{k+1}} \left(\frac{1}{a_k^{\alpha}} - \frac{1}{a_{k+1}^{\alpha}} \right)$$

收敛. 由

$$\frac{a_{k+1} - a_k}{a_{k+1} a_k^{\alpha}} = \frac{a_{k+1} - a_k}{a_{k+1}^{\alpha+1}} + \frac{a_{k+1} - a_k}{a_{k+1}} \left(\frac{1}{a_k^{\alpha}} - \frac{1}{a_{k+1}^{\alpha}} \right)$$

知所给的级数收敛.

6. (P303,5) 设 $\Phi(x)$ 是 $(0,\infty)$ 上正的严格增函数, $\{a_n\}$, $\{b_n\}$ 和 $\{c_n\}$ 是三个非负数列使得 $\sum_{n=1}^{\infty} b_n$ 发散, $\sum_{n=1}^{\infty} c_n$ 收敛, 且

$$a_{n+1} \leqslant a_n - b_n \Phi(a_n) + c_n a_n, \tag{1}$$

求证 $\lim a_n = 0$.

证明: 若有某项 $a_n = 0$, 则由 (1) 知其后的 a_n 均为零. 此时结论自然成立. 不妨设 $a_n > 0$ $(n = 1, 2, \cdots)$. 若 $a_{n+1} \le a_n$, 则 $\ln a_{n+1} - \ln a_n \le c_n$. 若 $a_{n+1} > a_n$, 则 $\ln a_{n+1} - \ln a_n = \ln(1 + \frac{a_{n+1} - a_n}{a_n}) < \frac{a_{n+1} - a_n}{a_n} < c_n$. 因此, 总有

$$\ln a_{n+1} - \ln a_n \leqslant c_n.$$
(2)

对此式求和可知 $\{\ln a_n\}$ 有界,因而 $\{a_n\}$ 有界.从 $\sum_{n=1}^{\infty} c_n$ 收敛,知 $\sum_{k=1}^{\infty} c_k a_k$ 收敛.根据第 1 题结论知 $\{a_n\}$ 收敛.若 $a=\lim_{n\to\infty} a_n>0$,则存在正数 δ 使得 $a_n>\delta$ 对一切 n 成立,此时 $\Phi(a_n)>\Phi(\delta)$.由(1)得

$$a_{n+1} + \Phi(\delta)b_n \leqslant a_n + c_n a_n$$
.

此式蕴含 $\sum_{n=1}^{\infty} b_n$ 收敛, 这与条件不符. 于是 $\lim_{n\to\infty} a_n = 0$.

7. (P303,6) 设 $\{a_n\}$ 是正数列使得 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛. 求证:

$$\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n} \leqslant 2 \sum_{n=1}^{\infty} \frac{1}{a_n},\tag{1}$$

而且上式右端的系数 2 是最佳的.

证明 由 Cauchy-Schwartz 不等式,有

$$\frac{n^2(n+1)^2}{4} = \left(\sum_{k=1}^n k\right)^2 = \left(\sum_{k=1}^n \sqrt{a_k} \cdot \frac{k}{\sqrt{a_k}}\right)^2 \leqslant \left(\sum_{k=1}^n a_k\right) \left(\sum_{k=1}^n \frac{k^2}{a_k}\right).$$

因此,有

$$\frac{n}{a_1 + a_2 + \dots + a_n} \le \frac{4}{n(n+1)^2} \sum_{k=1}^{n} \frac{k^2}{a_k}.$$

两边求和,得

$$\sum_{n=1}^{m} \frac{n}{a_1 + a_2 + \dots + a_n} \le 4 \sum_{n=1}^{m} \frac{1}{n(n+1)^2} \sum_{k=1}^{n} \frac{k^2}{a_k}$$

$$= 4 \sum_{k=1}^{m} \left(\sum_{n=k}^{m} \frac{1}{n(n+1)^2} \right) \frac{k^2}{a_k}$$

$$= 2 \sum_{k=1}^{m} \left(\sum_{n=k}^{m} \frac{2n}{n^2(n+1)^2} \right) \frac{k^2}{a_k}$$

$$< 2 \sum_{k=1}^{m} \left(\sum_{n=k}^{m} \frac{2n+1}{n^2(n+1)^2} \right) \frac{k^2}{a_k}$$

$$= 2 \sum_{k=1}^{m} \sum_{n=k}^{m} \left(\frac{1}{n^2} - \frac{1}{(n+1)^2} \right) \frac{k^2}{a_k}$$

$$= 2 \sum_{k=1}^{m} \left(\frac{1}{k^2} - \frac{1}{(m+1)^2} \right) \frac{k^2}{a_k}$$

$$< 2 \sum_{k=1}^{m} \frac{1}{a_k}.$$

于是 (1) 成立. 下面说明系数 2 不能换成更小的数. 设 $a_n=n^p,\, p>1$. 记 $H_p=1$

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$. 则有 $H_p \to +\infty$, $(p \to 1+)$.

$$\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 + \dots + a_n} = \sum_{n=1}^{\infty} \frac{1}{n^p} \frac{1}{\sum_{k=1}^n (\frac{k}{n})^p \frac{1}{n}} \geqslant \sum_{n=1}^{\infty} \frac{1}{n^p} \frac{1}{\int_0^{\frac{n+1}{n}} x^p dx}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^p} \frac{1}{\frac{1}{n+1} (1 + \frac{1}{n})^{p+1}} = (p+1) \sum_{n=1}^{\infty} \frac{n}{(n+1)^{p+1}}$$

$$\geqslant 2 \sum_{n=1}^{\infty} \left(\frac{1}{(n+1)^p} - \frac{1}{(n+1)^{p+1}} \right)$$

$$\geqslant 2 \left(H_p - \frac{\pi^2}{6} \right).$$

由此即知系数 2 是最佳的.

8. (P303,7) 设 $\{a_n\}$ 是一个严格单调递增实数列,且对任意正整数 n 有 $a_n \leq n^2 \ln n$. 求证: 级数 $\sum_{n=1}^{\infty} \frac{1}{a_{n+1}-a_n}$ 发散. (美国数学月刊 Problem 12004)

证明 若 $\{a_n\}$ 有界,则 $\{a_n\}$ 收敛,因而 $a_{n+1}-a_n$ 趋于零,故,结论显然成立. 假设 $\{a_n\}$ 无界,则从某项开始 a_n 为正. 不妨设 $\{a_n\}$ 是正数列. 记 $b_n=a_{n+1}-a_n$, $B_n=b_1+b_2+\cdots+b_n=a_{n+1}-a_1$. 根据上题的结论,有

$$\sum_{n=1}^{m} \frac{n}{b_1 + b_2 + \dots + b_n} \leqslant 2 \sum_{n=1}^{m} \frac{1}{b_n},$$

即,

$$\sum_{n=1}^{m} \frac{n}{a_{n+1} - a_1} \le 2 \sum_{n=1}^{m} \frac{1}{a_{n+1} - a_n}$$

根据条件有 $a_{n+1} - a_1 \leq (n+1)^2 \ln(n+1)$, 因而

$$\frac{n}{a_{n+1} - a_1} \geqslant \frac{n}{(n+1)^2 \ln(n+1)} \geqslant \frac{1}{2} \cdot \frac{1}{(n+1) \ln(n+1)}.$$

因为级数 $\sum_{n=1}^{\infty} \frac{1}{(n+1)\ln(n+1)}$ 发散, 所以级数 $\sum_{n=1}^{\infty} \frac{1}{a_{n+1}-a_n}$ 发散.