Introduction to Logic

Carson James

1

Contents

Notation		vii	
P	reface	1 3 . 3	
	Set Theory 1.1 Operations and Relations		
	Propositional Logic 2.1 Language	5	

vi CONTENTS

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Chapter 1

Set Theory

1.1 Operations and Relations

Definition 1.1.0.1.

- We define $[0] := \emptyset$ and for $k \in \mathbb{N}$, we define $[k] := \{1, \dots, k\}$.
- Let S be a set and $k \in \mathbb{N}_0$. We define the set of k-tupels with entries in S, denoted S^k , by

$$S^k := \{u : [k] \to S\}$$

• Let S be a set. We define the set of all tuples with entries in S, denoted S^* , by

$$S^* := \bigcup_{k \in \mathbb{N}_0} S^k$$

• Let S be a set and $k \in \mathbb{N}_0$. We define the **set of** k-ary operation on S, denoted $\mathcal{F}^k(S)$, by $\mathcal{F}^k(S) := S^{(S^k)}$. We define the **set of finitary operations on** S, denoted $\mathcal{F}^*(S)$, by

$$\mathcal{F}^*(S) := \bigcup_{k \in \mathbb{N}_0} \mathcal{F}^k(S)$$

• Let S be a set. We define the **operation arity map**, denoted arity: $\mathcal{F}^*(S) \to \mathbb{N}_0$, by

arity
$$f := k$$
, $f \in \mathcal{F}^k(S)$

• Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $k \in \mathbb{N}_0$. We define the k-ary members of \mathcal{F} , denoted \mathcal{F}_k , by

$$\mathcal{F}_k := \mathcal{F} \cap \mathcal{F}^k(S)$$

• Let S be a set and $k \in \mathbb{N}_0$. We define the **set of** k-ary relations on S, denoted $\mathcal{R}^k(S)$, by $\mathcal{R}^k(S) := \mathcal{P}(S^k)$. We define the **set of finitary relations on** S, denoted $\mathcal{R}^*(S)$, by

$$\mathcal{R}^*(S) := \bigcup_{k \in \mathbb{N}_0} \mathcal{R}^k(S)$$

• Let S be a set. We define the **arity map**, denoted arity: $\mathcal{R}^*(S) \to \mathbb{N}_0$, by

arity
$$R := k$$
, $f \in \mathcal{R}^k(S)$

• Let S be a set, $\mathcal{R} \subset \mathcal{R}^*(S)$ and $k \in \mathbb{N}_0$. We define the k-ary members of \mathcal{R} , denoted \mathcal{R}_k , by

$$\mathcal{R}_k := \mathcal{R} \cap \mathcal{R}^k(S)$$

Definition 1.1.0.2. Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $C \subset S$. Then C is said to be \mathcal{F} -closed if for each $k \in \mathbb{N}_0$, $f \in \mathcal{F}_k$ and $a_1, \ldots, a_k \in C$, $f(a_1, \ldots, a_k) \in C$.

Exercise 1.1.0.3. Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $\mathcal{C} \subset \mathcal{P}(S)$. If for each $C \in \mathcal{C}$, C is \mathcal{F} -closed, then $\bigcap_{C \in \mathcal{C}} C$ is \mathcal{F} -closed

Proof. Suppose that for each $C \in \mathcal{C}$, C is \mathcal{F} -closed. Let $k \in \mathbb{N}_0$, $f \in \mathcal{F}_k$, $a_1, \ldots, a_k \in \bigcap_{C \in \mathcal{C}} C$ and $C_0 \in \mathcal{C}$. Since $C_0 \in \mathcal{C}$, we have that

$$a_1, \dots, a_k \in \bigcap_{C \in \mathcal{C}} C$$

$$\subset C_0$$

Since C_0 is \mathcal{F} -closed, we have that $f(a_1, \ldots, a_k) \in C_0$. Since $C_0 \in \mathcal{C}$ is arbitrary, we have that for each $C \in \mathcal{C}$, $f(a_1, \ldots, a_k) \in C$. Hence $f(a_1, \ldots, a_k) \in \bigcap_{C \in \mathcal{C}} C$. Since $k \in \mathbb{N}_0$ and $a_1, \ldots, a_k \in \bigcap_{C \in \mathcal{C}} C$ are arbitrary, we have that $\bigcap_{C \in \mathcal{C}} C$ is \mathcal{F} -closed. \square

Chapter 2

Propositional Logic

Definition 2.0.0.1. Let \mathcal{A} be a set, $\mathcal{V} \subset \mathcal{A}$, $\mathcal{F} \subset \mathcal{A}^*$, $\mathcal{C} \subset \bigcup_{k \in \mathbb{N}_0} \mathcal{F}^{(\mathcal{F}^k)}$. Then $(\mathcal{A}, \mathcal{V}, \mathcal{A})$ is said to be a **propositional calculus** if

- 1. $\mathcal{V} \subset \mathcal{F}$
 - for each $k \in \mathbb{N}_0$, $p_1, \ldots, p_k \in \mathcal{F}$, and $f \in \mathcal{C}_k$, $f(p_1, \ldots, p_k) \in \mathcal{F}$
 - for each $p \in \mathcal{F}$, there exists some tree $f \in \mathcal{T}^k(\mathcal{F})$ such that $\in \mathcal{F}^k$

define the alphabet \mathcal{A} define the variables \mathcal{V} define the formulas \mathcal{F} define the connectives \mathcal{C} the formulas of \mathcal{L} ,

Exercise 2.0.0.2.

2.1 Language

Definition 2.1.0.1. Let \mathcal{F} , \mathcal{R} , \mathcal{C} be sets and $(n_f)_{f \in \mathcal{F}}$, $(n_R)_{R \in \mathcal{R}} \subset \mathbb{N}$. Set $\mathcal{L} := (\mathcal{F}, \mathcal{R}, \mathcal{C}, (n_f)_{f \in \mathcal{F}}, (n_R)_{R \in \mathcal{R}})$. Then \mathcal{L} is said to be a **language**. We define the

- function symbols of \mathcal{L} , denoted $\operatorname{Fun}(\mathcal{L})$, by $\operatorname{Fun}(\mathcal{L}) := \mathcal{F}$,
- relation symbols of \mathcal{L} , denoted $Rel(\mathcal{L})$, by $Rel(\mathcal{L}) := \mathcal{R}$,
- constant symbols of \mathcal{L} , denoted $Cons(\mathcal{L})$, by $Cons(\mathcal{L}) := \mathcal{C}$.

For each $f \in \mathcal{F}$ and $R \in \mathcal{R}$, we define the **arity** of f and R, denoted arity(f) and arity(R) respectively, by arity $(f) := n_f$ and arity $(R) := n_R$ respectively.

do we really need constants or can we just use nullary function symbols?

Definition 2.1.0.2. Let \mathcal{L} be a language, M a set, $\phi_{\mathcal{F}} : \operatorname{Fun}(\mathcal{L}) \to \mathcal{F}^*(M)$, $\phi_{\mathcal{R}} : \operatorname{Rel}(\mathcal{L}) \to \mathcal{R}^*(M)$ and $\phi_{\mathcal{C}} : \operatorname{Cons}(\mathcal{L}) \to M$. Set $\mathcal{M} := (M, \phi_{\mathcal{F}}, \phi_{\mathcal{R}}, \phi_{\mathcal{C}})$. Then \mathcal{M} is said to be an \mathcal{L} -structure on M if

- 1. for each $f \in \operatorname{Fun}(\mathcal{L})$, $\phi_{\mathcal{F}}(f) \in \mathcal{F}^{n_f}(M)$,
- 2. for each $R \in \text{Rel}(\mathcal{L})$, $\phi_{\mathcal{R}}(R) \in \mathcal{R}^{n_R}(M)$.

Let $f \in \text{Fun}(\mathcal{L})$, $R \in \text{Rel}(\mathcal{L})$ and $c \in \text{Cons}(\mathcal{L})$. Then $\phi_{\mathcal{F}}(f)$, $\phi_{\mathcal{R}}(R)$ and $\phi_{\mathcal{C}}(c)$ are said to be **interpretations** of f, R and c in M respectively.