Background Subtraction applied to Object Recognition

By using Convolutional Neural Networks

Goals

Running Average

Background Subtraction

Object Segmentation

Object Recognition Conv. Neural Net.

Running Average

Variable background

 α = Learning Rate

BG' = BG *
$$(1 - \alpha)$$
 + minFrame * α

Object Segmentation

- 1. Subtract background to current frame
- 2. Threshold and noise reduction

- Apply distance function to avoid mixing/merging two close objects
- 4. Threshold image by a small amount (avoid close objects again)
- 5. Find external contours by using Canny

Convolutional Neural Network

- CNN:
 - Jia, Yangqing
 - Caffe: Convolutional Architecture for Fast Feature Embedding
- C++/CUDA Library with wrappers for Python and Matlab
- Deep Learning
- Training time of 2 hours, with:
 - GPU: NVIDIA GTX 650 TI 2GB
 - CPU: Intel i7 3.6oGHz
 - Images:
 - 13.233 Faces
 - 870 Suitcases
 - 381 Black

- 515 Blue
- 432 Gray
- 44 Yellow

- 154 Skin texture
- 159 Purple

Conclusions

- Background Subtraction is an efficient and fast method for mobile objects detection
- Segmentation through external contours works but might mix objects
- Convolutional neural networks are perfect solutions for multiple object classifying, although:
 - Small datasets might prove insufficient and cause the net to misclassify
 - High computational training cost
- Applicable to Video Surveillance and Lost/Forgot object detection