0.1. Warning

NOTE: Все данные предоставлены лишь в ознакомительном порядке. В формулах могут быть ошибки.

1. Лабораторная работа №1

1.1. Задание

Численно решить ОДУ, построив таблицы с шагом $\mathbf{h} \in \{0.1, 0.01, 0.001\}$: y'=2ty y(0)=1 $t \in [0,1]$

1.2. Методы

Дано уравнение $\frac{\partial y}{\partial t} = f(t, y)$, где $y = y(t) : \mathbb{R} \to \mathbb{R}, f : \mathbb{R} \to \mathbb{R}, t$ — свободная переменная. Тогда его можно решить численно с помощью следующих методов.

Примечание: эти методы справедлимы и для систем однородных дифференциальных уравнений. Тогда вместо y будет вектор размерности n, а функция должна иметь следующий вид: $f: \mathbb{R}^n \to \mathbb{R}^n$.

Например, для данной системы, y и f будут равны:

$$\begin{cases} \frac{\partial x_1}{\partial t} = x_1^2 + x_2^2 - 4tx_1x_2 \\ \frac{\partial x_2}{\partial t} = 3(x_1 - t)(x_2 + t) \end{cases} \Rightarrow y = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, f(t, y) = \begin{pmatrix} x_1^2 + x_2^2 - 4tx_1x_2 \\ 3(x_1 - t)(x_2 + t) \end{pmatrix}$$

Обозначения:

 t_0 — точка начала.

h — шаг.

 $t_n = t_0 + hn$

 $y_n \approx y(t_n)$

1.2.1. Метод Эйлера (явный)

$$y_{n+1} = y_n + h \cdot f(t_n, y_n)$$

1.2.2. Модифицированнй метод Эйлера

$$y_{n+1} = y_n + \frac{h}{2} \cdot [f(t_n, y_n) + f(t_{n+1}, y_n + h \cdot f(t_n, y_n))]$$

1.2.3. Метод Рунге-Кутты 4-го порядка

$$y_{n+1} = y_n + \frac{h}{6} \cdot \left[k_n^1 + 2k_n^2 + 2k_n^3 + k_n^4 \right]$$

$$k_n^1 = f(t_n, y_n)$$

$$k_n^2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_n^1)$$

$$k_n^3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_n^2)$$

$$k_n^4 = f(t_n + \frac{h}{2}, y_n + hk_n^3)$$

2. Лабораторная работа №2

2.1. Задание

Проинтегрировать и построить графики координаты x, скорости и давления c шагом $h \in \{0.1, 0.01, 0.001\}$:

2.2. Формулы

$$\begin{split} v' &= \frac{1}{m} [p_i S_i - p_j S_j - \nu \cdot |v| \cdot \operatorname{sign} v] \\ x' &= v \\ p_i &= \frac{q_i - S_i v}{K^{\operatorname{Virp.}}}, \qquad p_j = \frac{S_j v - q_j}{K^{\operatorname{Virp.}}} \end{split}$$

2.3. Данные и начальные условия

Насос постоянного расхода: $q_i=1\frac{\mathrm{M}}{\mathrm{c}}=10^{-3}\frac{\mathrm{M}}{\mathrm{c}}$ $P_j=10^5\,\Pi\mathrm{a}.$ (атм. давление) x(0)=0 V(0)=0 $P(0)=10^5\,\Pi\mathrm{a}.$

3. Лабораторная работа №3

3.1. Задание

МС - местное сопротивление

ТП - трубопровод

 x_1, x_2 - координаты при которых происходит переключение канала.

Ударник сам переключает свои каналы.

3.2. Схема работы трубопровода

Справа и слева есть расход воды q_i и q_j соответственно, давление внутри трубы p зависит от этих расходов по формулам:

$$p' = \Phi(q_i - q_j, \ p, \ C, \ C_{cav})$$

$$\Phi(q_{ij}, \ p, \ C, \ C_{cav}) = \begin{cases} \frac{p^{\left(1 + \frac{1}{\gamma}\right)}q_{ij}}{C_{cav}}, & 0$$

3.3. Схема работы местного сопротивления

Справа и слева от местного сопротивления есть давление p_i и p_j соответственно, расход от местного сопротивления q вычисляется по следующим формулам:

местного сопротивления
$$q$$
 вы меняется но $q' = G(p_i - p_j - P_\alpha(q), q)$
$$P_\alpha(q) = \begin{cases} rq, & Re^{mult} \cdot |q| < Re^{crt} \\ r_{x}|q|^x \operatorname{sign}(q), & \text{иначе} \end{cases}$$
 $G(dp, q) = B\sqrt{|dp|} \left(F\sqrt{\left|\frac{dp}{\xi}\right|^3} \operatorname{sign}(dp) - q\right)$

3.4. Простейшая схема из трубопровода и местного сопротивления

 $q_1 = 0.001$ - расход насоса.

 $p_1(t)$ - давление внутри трубы.

 $q_2(t)$ - расход на местном сопротивлении.

$$p_2=10^5$$
 - атмосферное давление, слив.
$$\begin{cases} p_1'=\Phi(q_1-q_2,\;p_1,\;C,\;C_{cav}) \\ q_2'=G(p_1-p_2-P_{\alpha}(q_2),\;q_2) \end{cases}$$

Начальные условия:

$$p_1(0) = p_2$$

$$q_2(0) = 0$$

3.5. Метод работы перегородки

$$x(t)$$

 $x^{k}, x^{k+1}, x^{k+2}, \dots$
 $x^{k} < x_{\text{OKP.}} \land x^{k+1} > x_{\text{OKP.}}$

- 1. Уменьшаем ht/2.
- 2. Мы могли попасть справа или слева $x_{\text{окр.}}$
- 3. Уменшаем пока x не окажется слева.
- 4. Остановиться, когда подходим на расстояние $\Delta \delta = 10^{-6}$ м, тогда $x = x_{\text{окр.}}, v = 0$.

3.6. Основные формулы:

3.7. Константы:

1.
$$\text{Nu} = \begin{cases} 10^{-6}, & \text{вода} \\ 3.5 \cdot 10^{-5}, & \text{масло} \end{cases}$$
 - число Нуссельта

$$2. \ \gamma = 1.4$$

1. Nu =
$$\begin{cases} 10^{-6}, & \text{вода} \\ 3.5 \cdot 10^{-5}, & \text{масло} \end{cases}$$
 - число Нуссельта
2. $\gamma = 1.4$
3. $\rho = \begin{cases} 997 \frac{\text{K}\Gamma}{\text{M}^3}, & \text{вода} \\ 905 \frac{\text{K}\Gamma}{\text{M}^3}, & \text{масло} \end{cases}$ - плотность жидкости
4. $E_s = \rho(\rho_{swd})^2 \approx 1260000$ - модуль жесткости воды.
5. $C = \frac{V}{E_s}$

4.
$$E_s = \rho(\rho_{swd})^2 \approx 1260000$$
 - модуль жесткости воды.

5.
$$C = \frac{V}{E_s}$$

6.
$$C_{cav} = 10^{\frac{5}{\gamma}} \frac{V}{\gamma}$$

7.
$$d \approx 2$$
см

8.
$$\alpha = 1.75$$

9.
$$Re^{crt} = 321$$
 - число Рейнольдса

9.
$$Re^{St}=321$$
 - число Рейнольдса
10. $Re^{mult}=\frac{dH}{\text{Nu}\cdot S}$ - число Рейнольдса
11. $dH=\frac{4S}{\pi d}$
12. $B=\frac{1}{l\sqrt{2\rho}}$
13. $F=S\sqrt{2\rho}$

11.
$$dH = \frac{45}{\pi d}$$

12.
$$B = \frac{1}{l\sqrt{2\rho}}$$

13.
$$F = S\sqrt{2\rho}$$

13.
$$r = 3\sqrt{2\rho}$$

14. $\xi = 0.5 \cdot 0.035 \cdot 2 \cdot \left(\frac{1}{\text{eps}(1)} - 1\right)^2 = 0.0192$
15. $\text{eps}(x) = 0.57 + 0.043(1.1 - x)$
16. $r = \frac{12g\nu l}{(dH)^2 S}$
17. $r_{\text{æ}} = \frac{0.1582g\nu^{0.25}l}{(dH)^{1.35}S^{1.75}}$

15.
$$eps(x) = 0.57 + 0.043(1.1 - x)$$

16.
$$r = \frac{12g\nu l}{(dH)^2 S}$$

17.
$$r_{\text{æ}} = \frac{0.1582g\nu^{0.25}l}{(dH)^{1.35}S^{1.75}}$$

3.8. Обозначения:

- $1. \ V$ объем камеры.
- $2.\ S$ площадь сечения местного сопротивления.
- $3. \ C$ жесткость воды.
- 4. C_{cav} жесткость воды при кавитации.