Zur Bedeutung des Pumping Lemmas

Das Pumping Lemma ist sehr nützlich und wird vielfach benutzt, um von bestimmten Sprachen zu zeigen, dass sie nicht regulär sind.

Aber das geht nicht immer!

Es gibt Sprachen, die nicht Typ-3 sind, bei denen es aber trotzdem nicht gelingt, diese Tatsache mit dem Pumping Lemma zu beweisen.

Also: Das Pumping Lemma stellt keine Charakterisierung der Typ-3 Sprachen dar. Zwar erfüllt jede Typ-3 Sprache die Aussage, aber es gibt auch Sprachen, die nicht Typ-3 sind und trotzdem die Aussage des Pumping Lemmas erfüllen!!

In anderen Worten: Es hat keinen Sinn, eine Art *Typ-3-Entscheidungsalgorithmus* auf dem Pumping Lemma aufbauen zu wollen...

Abschließende Bemerkungen

Die Anwendung des Pumping Lemmas ist, wie eben erläutert, praktisch immer der Nachweis, dass eine gegebene Sprache *nicht* vom Typ-3 ist.

Also muss man im Normalfall zeigen, dass die im Satz beschriebene Eigenschaft nicht gegeben ist. Hierzu muss man also die Aussage des Pumping Lemmas *negieren*, um dann die negierte Form zu beweisen. Wie sieht die negierte Form für gegebene Sprache *L* aus?

Für alle $n \in \mathbb{N}$ existiert ein Wort $x \in L$ mit $|x| \ge n$, so dass jede Zerlegung x = uvw von x in drei Teile, die die Bedingungen $|v| \ge 1$ und $|uv| \le n$ erfüllen, die Eigenschaft hat, dass es mindestens ein Wort der Form uv^iw gibt, das nicht zu L gehört.

Pumping Lemma: 1. Anwendung (1)

Unsere erste Anwendung ist die Menge $L = \{a^n b^n \mid n \ge 1\}$, von der wir schon wissen, dass sie eine Typ-2 Grammatik besitzt – sogar eine sehr naheliegende und einfache!

Wir zeigen jetzt, dass diese Sprache nicht die Aussage des Pumping Lemmas erfüllt und somit keine Typ-3 Sprache ist.

Damit haben wir dann bewiesen, dass Typ-3 als Sprachklasse echte Teilmenge von Typ-2 ist.

Sei also n gegeben. Wir wählen das Wort $x = a^n b^n$ für diesen Wert von n. Dann ist $x \in L$ und es gilt $|x| \ge n$. Für eine beliebige Zerlegung von $x = a^n b^n = uvw$ in drei Teile, für die $|v| \ge 1$ und $|uv| \le n$ gilt, prüfen wir die 3. Bedingung aus dem Lemma.

Theoretische Informatik I (Winter 2019/20)

Prof. Dr. Ulrich Hertrampf

1. Anwendung (2)

Wir können uns das bildlich so vorstellen:

Wird hier der Teil v gepumpt (d.h. wir bilden uv^iw mit $i \neq 1$), dann ist bei i = 0 die Anzahl der a's kleiner als die der b's, und im Fall $i \geq 2$ erhalten wir mehr a's als b's. In jedem Fall gehört das gepumpte Wort nicht mehr zur Sprache L.

Zur Erinnerung: Es würde für den Beweis genügen, wenn auch nur ein i die Bedingung $uv^iw\in L$ verletzen würde.

Also ist *L* keine Typ-3 Sprache.

Einheit 14 – Folie 14.4 – 27.11.2019

Pumping Lemma: 2. Anwendung (1)

Jetzt interessieren wir uns für die Sprache

$$L = \{a^m \mid m \text{ ist eine Quadratzahl}\}$$

Zuerst eine Bemerkung über Quadratzahlen:

Da die Quadrierungsfunktion (also $f(n) = n^2$) eine monoton wachsende Funktion ist, kann es für jede natürlich Zahl r zwischen r^2 und $(r+1)^2$ keine natürliche Zahl geben, die ein Quadrat ist. Das heißt, während a^{r^2} und $a^{(r+1)^2}$ beide zu L gehören, gibt es kein s mit $r^2 < s < (r+1)^2$ und $a^s \in L$.

Nun wollen wir mit Hilfe des Pumping Lemmas nachweisen, dass die oben angegebene Sprache L keine Typ-3 Sprache ist.

Übrigens ist L auch keine Typ-2 Sprache. Wir werden später sehen, warum nicht...

2. Anwendung (2)

Wieder sei die natürliche Zahl n gegeben. Wir wählen das Wort $x=a^{n^2}\in L$, dessen Länge mindestens n ist. Für eine beliebige Zerlegung x=uvw mit $|v|\geq 1$ und $|uv|\leq n$ betrachten wir das Wort uv^2w und fragen, ob dieses Wort in L liegen kann.

Wir wissen: $1 \le |v| \le |uv| \le n$, also folgt:

$$n^2 = |uvw| < |uv^2w| \le n^2 + n < n^2 + 2n + 1 = (n+1)^2$$

insbesondere also:

$$n^2 < |uv^2w| < (n+1)^2$$

Also ist $uv^2w = a^m$ für eine Zahl m zwischen n^2 und $(n+1)^2$. Damit kann uv^2w nicht in L liegen.

Einheit 14 – Folie 14.6 – 27.11.2019