

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

n re Application of: Tormo et al.

Serial No.: Not Assigned

Filed: Concurrently

For: INHIBITION OF Bcl-2 PROTEIN

EXPRESSION BY LIPOSOMAL

ANTISENSE

OLIGODEOXYNUCLEOTIDES

Group Art Unit: Not Assigned

Examiner: Not Assigned

Atty. Dkt. No.: UTXC:504/WIM

EXPRESS MAIL MAILING LABEL

NUMBER TB 900063978 US

DATE OF DEPOSIT October 4, 1996

I hereby certify that this paper or fee is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to: Assistant Commissioner for Patents, Washington D.C. 20231.

Lustin Whitley

STATEMENT AS REQUIRED UNDER 37 C.F.R. § 1.821(f)

ATTN: PATENT APPLICATIONS
Assistant Commissioner for Patents

Washington, D.C. 20231

Sir:

Submitted herewith is a computer readable form of the sequence listing and a paper copy of the sequence listing of those sequences in the captioned patent application. The computer readable form of the sequence listing is the same as the paper copy of the sequence listing. The

sequence information provided in the Specification is also the same as the sequence listing of the enclosed computer readable and paper forms of the sequence.

Respectfully submitted,

Mark B. Wilson Reg. No. 37,259

Attorney for Applicants

ARNOLD, WHITE & DURKEE P.O. Box 4433 Houston, Texas 77210-4433 (512) 418-3000

Date: October 4, 1996

SEQUENCE LISTING

(1) CENERAL INFORMATION:

(i) APPLICANT: Tormo, Mar

Tari, Ana M.

Lopez-Berestein, Gabriel

(ii) TITLE OF INVENTION: INHIBITION OF Bcl-2 PROTEIN EXPRESSION BY

LIPOSOMAL ANTISENSE OLIGODEOXYNUCLEOTIDES

18

(iii) NUMBER OF SEQUENCES: 7

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Arnold, White & Durkee
- (B) STREET: P.O. Box 4433
- (C) CITY: Houston
- (D) STATE: Texas
- (E) COUNTRY: United States of America
- (F) ZIP: 77210

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: US Unknown
- (B) FILING DATE: Concurrently Herewith
- (C) CLASSIFICATION: Unknown

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Wilson, Mark B.
- (B) REGISTRATION NUMBER: 37,259
- (C) REFERENCE/DOCKET NUMBER: UTXC:504

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (512) 418-3000
- (B) TELEFAX: (512) 474-7577
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

(2) INFORMATION FOR SEQ ID NO:2:

CAGCGTGCGC CATCCTTC

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
ACGGTCCGCC ACTCCTTCCC	20
(2) INFORMATION FOR SEQ ID NO:3:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
CTGAAGGGCT TCTTCC	16
(2) INFORMATION FOR SEQ ID NO:4:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5086 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 14592175	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GCGCCCGCCC CTCCGCGCCG CCTGCCCGCCC CGCCCGCC	60
TGGCCCCGC CGCGCTGCCG CCGCCGCCGC TGCCAGCGAA GGTGCCGGGG CTCCGGGCCC	120
CCCTGCCGG CGGCCGTCAG CGCTCGGAGC GAACTGCGCG ACGGGAGGTC CGGGAGGCGA	180
CCGTAGTCGC GCCGCCGCG AGGACCAGGA GGAGGAGAAA GGGTGCGCAG CCCGGAGGCG	240
GGTGCGCCG GTGGGGTGCA GCGGAAGAGG GGGTCCAGGG GGGAGAACTT CGTAGCAGTC	300
ATCCTTTTTA GGAAAAGAGG GAAAAAATAA AACCCTCCCC CACCACCTCC TTCTCCCCAC	360
CCTCGCCGC ACCACACA GCGCGGGCTT CTAGCGCTCG GCACCGGCGG GCCAGGCGCG	420
CCTGCCTTC ATTTATCCAG CAGCTTTTCG GAAAATGCAT TTGCTGTTCG GAGTTTAATC	480
AGAAGACGAT TCCTGCCTCC GTCCCCGGCT CCTTCATCGT CCCATCTCCC CTGTCTCTCT	540
CCTGGGGAGG CGTGAAGCGG TCCCGTGGAT AGAGATTCAT GCCTGTGTCC GCGCGTGTGT	600
CGCGCGTAT AAATTGCCGA GAAGGGGAAA ACATCACAGG ACTTCTGCGA ATACCGGACT	660

GAAAATTGTA ATTCATCTGC CGCCGCCGCT GCCAAAAAAA AACTCGAGCT CTTGAGATCT 720

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

.CCGGTTGGGA TTCCTGCGG	GA TTGACATTT	TGTGAAGCAG	AAGTCTGGGA ATCGATCTGG	780
AAATCCTCCT AATTTTTAG	CT CCCTCTCCC	CCGACTCCTG	ATTCATTGGG AAGTTTCAAA	840
TCAGCTATAA CTGGAGAG	TG CTGAAGATT(ATGGGATCGT	TGCCTTATGC ATTTGTTTTG	900
GTTTTACAAA AAGGAAAC	TT GACAGAGGA	CATGCTGTAC	TTAAAAAATA CAAGTAAGTC	960
TCGCACAGGA AATTGGTT	TA ATGTAACTT	CAATGGAAAC	CTTTGAGATT TTTTACTTAA	1020
AGTGCATTCG AGTAAATT	TA ATTTCCAGG	CAGCTTAATAC	ATTGTTTTTA GCCGTGTTAC	1080
TTGTAGTGTG TATGCCCTC	GC TTTCACTCAC	G TGTGTACAGG	GAAACGCACC TGATTTTTA	1140
CTTATTAGTT TGTTTTTT	CT TTAACCTTT(C AGCATCACAG	AGGAAGTAGA CTGATATTAA	1200
CAATACTTAC TAATAATA	AC GTGCCTCATO	G AAATAAAGAT	CCGAAAGGAA TTGGAATAAA	1260
AATTTCCTGC GTCTCATG	CC AAGAGGGAAA	A CACCAGAATC	AAGTGTTCCG CGTGATTGAA	1320
GACACCCCCT CGTCCAAG	AA TGCAAAGCA	C ATCCAATAAA	ATAGCTGGAT TATAACTCCT	1380
CTTCTTTCTC TGGGGGCCC	GT GGGGTGGGA	G CTGGGGCGAG	AGGTGCCGTT GGCCCCCGTT	1440
GCTTTTCCTC TGGGAAGG			ACG GGG TAC GAC AAC Thr Gly Tyr Asp Asn 10	1491
			CTG TCG CAG AGG GGC Leu Ser Gln Arg Gly 25	1539
			CCC CCG GGG GCC GCC Pro Pro Gly Ala Ala 40	1587
			CAC ACG CCC CAT CCA His Thr Pro His Pro 55	1635
			CCG CTG CAG ACC CCG Pro Leu Gln Thr Pro 75	1683
			AGC CCG GTG CCA CCT Ser Pro Val Pro Pro 90	1731
			GAC TTC TCC CGC CGC Asp Phe Ser Arg Arg 105	1779
			CTG CAC CTG ACG CCC Leu His Leu Thr Pro 120	1827
			GAG GAG CTC TTC AGG Glu Glu Leu Phe Arg 135	1875

GAC GGG GTG AAC TGG GGG AGG ATT GTG GCC TTC TTT GAG TTC GGT GGG Asp Gly Val Asn Trp Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly 140 145 150 155	1923
GTC ATG TGT GTG GAG AGC GTC AAC CGG GAG ATG TCG CCC CTG GTG GAC Val Met Cys Val Glu Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp 160 165 170	1971
AAC ATC GCC CTG TGG ATG ACT GAG TAC CTG AAC CGG CAC CTG CAC ACC Asn Ile Ala Leu Trp Met Thr Glu Tyr Leu Asn Arg His Leu His Thr 175 180 185	2019
TGG ATC CAG GAT AAC GGA GGC TGG GAT GCC TTT GTG GAA CTG TAC GGC Trp Ile Gln Asp Asn Gly Gly Trp Asp Ala Phe Val Glu Leu Tyr Gly 190 195 200	2067
CCC AGC ATG CGG CCT CTG TTT GAT TTC TCC TGG CTG TCT CTG AAG ACT Pro Ser Met Arg Pro Leu Phe Asp Phe Ser Trp Leu Ser Leu Lys Thr 205 210 215	2115
CTG CTC AGT TTG GCC CTG GTG GGA GCT TGC ATC ACC CTG GGT GCC TAT Leu Leu Ser Leu Ala Leu Val Gly Ala Cys Ile Thr Leu Gly Ala Tyr 220 235	2163
CTG AGC CAC AAG TGAAGTCAAC ATGCCTGCCC CAAACAAATA TGCAAAAGGT Leu Ser His Lys	2215
TCACTAAAGC AGTAGAAATA ATATGCATTG TCAGTGATGT ACCATGAAAC AAAGCTGCAG	2275
GCTGTTTAAG AAAAAATAAC ACACATATAA ACATCACACA CACAGACAGA CACACACACA	2335
CACAACAATT AACAGTCTTC AGGCAAAACG TCGAATCAGC TATTTACTGC CAAAGGGAAA	2395
TATCATTTAT TTTTTACATT ATTAAGAAAA AAGATTTATT TATTTAAGAC AGTCCCATCA	2455
AAACTCCGTC TTTGGAAATC CGACCACTAA TTGCCAAACA CCGCTTCGTG TGGCTCCACC	2515
TGGATGTTCT GTGCCTGTAA ACATAGATTC GCTTTCCATG TTGTTGGCCG GATCACCATC	2575
TGAAGAGCAG ACGGATGGAA AAAGGACCTG ATCATTGGGG AAGCTGGCTT TCTGGCTGCT	2635
GGAGGCTGGG GAGAAGGTGT TCATTCACTT GCATTTCTTT GCCCTGGGGG CGTGATATTA	2695
ACAGAGGGAG GGTTCCCGTG GGGGGAAGTC CATGCCTCCC TGGCCTGAAG AAGAGACTCT	2755
TTGCATATGA CTCACATGAT GCATACCTGG TGGGAGGAAA AGAGTTGGGA ACTTCAGATG	2815
GACCTAGTAC CCACTGAGAT TTCCACGCCG AAGGACAGCG ATGGGAAAAA TGCCCTTAAA	2875
TCATAGGAAA GTATTTTTT AAGCTACCAA TTGTGCCGAG AAAAGCATTT TAGCAATTTA	2935
TACAATATCA TCCAGTACCT TAAACCCTGA TTGTGTATAT TCATATATTT TGGATACGCA	2995
CCCCCCAACT CCCAATACTG GCTCTGTCTG AGTAAGAAAC AGAATCCTCT GGAACTTGAG	3055
GAAGTGAACA TTTCGGTGAC TTCCGATCAG GAAGGCTAGA GTTACCCAGA GCATCAGGCC	3115
GCCACAAGTG CCTGCTTTTA GGAGACCGAA GTCCGCAGAA CCTACCTGTG TCCCAGCTTG	3175

.

GAGGCCTGGT CCTGGAACTG AGCCGGGCCC TCACTGGCCT CCTCCAGGGA TGATCAACAG 3235 GGTAGTGTGG TCTCCGAATG TCTGGAAGCT GATGGATGGA GCTCAGAATT CCACTGTCAA 3295 GAAAGAGCAG TAGAGGGGTG TGGCTGGGCC TGTCACCCTG GGGCCCTCCA GGTAGGCCCG 3355 TTTTCACGTG GAGCATAGGA GCCACGACCC TTCTTAAGAC ATGTATCACT GTAGAGGGAA 3415 GGAACAGAGG CCCTGGGCCT TCCTATCAGA AGGACATGGT GAAGGCTGGG AACGTGAGGA 3475 GAGGCAATGG CCACGGCCCA TTTTGGCTGT AGCACATGGC ACGTTGGCTG TGTGGCCTTG 3535 GCCACCTGTG AGTTTAAAGC AAGGCTTTAA ATGACTTTGG AGAGGGTCAC AAATCCTAAA 3595 AGAAGCATTG AAGTGAGGTG TCATGGATTA ATTGACCCCT GTCTATGGAA TTACATGTAA 3655 AACATTATCT TGTCACTGTA GTTTGGTTTT ATTTGAAAAC CTGACAAAAA AAAAGTTCCA 3715 GGTGTGGAAT ATGGGGGTTA TCTGTACATC CTGGGGCATT AAAAAAAAAT CAATGGTGGG 3775 GAACTATAAA GAAGTAACAA AAGAAGTGAC ATCTTCAGCA AATAAACTAG GAAATTTTTT 3835 TTTCTTCCAG TTTAGAATCA GCCTTGAAAC ATTGATGGAA TAACTCTGTG GCATTATTGC 3895 ATTATATACC ATTTATCTGT ATTAACTTTG GAATGTACTC TGTTCAATGT TTAATGCTGT 3955 GGTTGATATT TCGAAAGCTG CTTTAAAAAA ATACATGCAT CTCAGCGTTT TTTTGTTTTT 4015 AATTGTATTT AGTTATGGCC TATACACTAT TTGTGAGCAA AGGTGATCGT TTTCTGTTTG 4075 AGATTTTTAT CTCTTGATTC TTCAAAAGCA TTCTGAGAAG GTGAGATAAG CCCTGAGTCT 4135 CAGCTACCTA AGAAAAACCT GGATGTCACT GGCCACTGAG GAGCTTTGTT TCAACCAAGT 4195 CATGTGCATT TCCACGTCAA CAGAATTGTT TATTGTGACA GTTATATCTG TTGTCCCTTT 4255 GACCTTGTTT CTTGAAGGTT TCCTCGTCCC TGGGCAATTC CGCATTTAAT TCATGGTATT 4315 CAGGATTACA TGCATGTTTG GTTAAACCCA TGAGATTCAT TCAGTTAAAA ATCCAGATGG 4375 CGAATGACCA GCAGATTCAA ATCTATGGTG GTTTGACCTT TAGAGAGTTG CTTTACGTGG 4435 4495 CCTGTTTCAA CACAGACCCA CCCAGAGCCC TCCTGCCCTC CTTCCGCGGG GGCTTTCTCA 4555 TGGCTGTCCT TCAGGGTCTT CCTGAAATGC AGTGGTCGTT ACGCTCCACC AAGAAAGCAG GAAACCTGTG GTATGAAGCC AGACCTCCCC GGCGGGCCTC AGGGAACAGA ATGATCAGAC 4615 CTTTGAATGA TTCTAATTTT TAAGCAAAAT ATTATTTTAT GAAAGGTTTA CATTGTCAAA 4675 GTGATGAATA TGGAATATCC AATCCTGTGC TGCTATCCTG CCAAAATCAT TTTAATGGAG 4735 TCAGTTTGCA GTATGCTCCA CGTGGTAAGA TCCTCCAAGC TGCTTTAGAA GTAACAATGA 4795 AGAACGTGGA CGTTTTTAAT ATAAAGCCTG TTTTGTCTTT TGTTGTTGTT CAAACGGGAT 4855 4915 TCACAGAGTA TTTGAAAAAT GTATATATAT TAAGAGGTCA CGGGGGCTAA TTGCTAGCTG GCTGCCTTTT GCTGTGGGGT TTTGTTACCT GGTTTTAATA ACAGTAAATG TGCCCAGCCT 4975

CTTGGCCCCA GAACTGTACA GTATTGTGGC TGCACTTGCT CTAAGAGTAG TTGATGTTGC

5086

ATTTTCCTTA TTGTTAAAAA CATGTTAGAA GCAATGAATG TATATAAAAG C

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 239 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Ala His Ala Gly Arg Thr Gly Tyr Asp Asn Arg Glu Ile Val Met
1 5 10 15

Lys Tyr Ile His Tyr Lys Leu Ser Gln Arg Gly Tyr Glu Trp Asp Ala 20 25 30

Gly Asp Val Gly Ala Ala Pro Pro Gly Ala Ala Pro Ala Pro Gly Ile 35 40 45

Phe Ser Ser Gln Pro Gly His Thr Pro His Pro Ala Ala Ser Arg Asp 50 55 60

Pro Val Ala Arg Thr Ser Pro Leu Gln Thr Pro Ala Ala Pro Gly Ala 65 70 75 80

Ala Ala Gly Pro Ala Leu Ser Pro Val Pro Pro Val Val His Leu Ala 85 90 95

Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg Tyr Arg Gly Asp Phe 100 105 110

Ala Glu Met Ser Ser Gln Leu His Leu Thr Pro Phe Thr Ala Arg Gly
115 120 125

Arg Phe Ala Thr Val Val Glu Glu Leu Phe Arg Asp Gly Val Asn Trp
130 135 140

Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu 145 150 155 160

Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu Trp 165 170 175

Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp Asn 180 185 190

Gly Gly Trp Asp Ala Phe Val Glu Leu Tyr Gly Pro Ser Met Arg Pro 195 200 205

Leu Phe Asp Phe Ser Trp Leu Ser Leu Lys Thr Leu Leu Ser Leu Ala 210 215 220

Leu Val Gly Ala Cys Ile Thr Leu Gly Ala Tyr Leu Ser His Lys

235 225 230

(2) IN	FORMATION	FOR	SEO	ID	NO:6:
--------	-----------	-----	-----	----	-------

TIL SECUENCE CHARACIERISTICS	(i)	SEQUENCE	CHARACTERISTICS
------------------------------	-----	----------	-----------------

- (A) LENGTH: 911 base pairs (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 147..761

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

(AI) DIGOLOGI DIDONI I I I I I I I I I I I I I I I I I I	
TGATTGAAGA CACCCCCTCG TCCAAGAATG CAAAGCACAT CCAATAAAAT AGCTGGATTA	60
TAACTCCTCT TCTTTCTCTG GGGGCCGTGG GGTGGGAGCT GGGGCGAGAG GTGCCGTTGG	120
CCCCCGTTGC TTTTCCTCTG GGAAGG ATG GCG CAC GCT GGG AGA ACG GGG TAC Met Ala His Ala Gly Arg Thr Gly Tyr 1 5	173
GAC AAC CGG GAG ATA GTG ATG AAG TAC ATC CAT TAT AAG CTG TCG CAG Asp Asn Arg Glu Ile Val Met Lys Tyr Ile His Tyr Lys Leu Ser Gln 10 15 20 25	221
AGG GGC TAC GAG TGG GAT GCG GGA GAT GTG GGC GCC GCG CCC CCG GGG Arg Gly Tyr Glu Trp Asp Ala Gly Asp Val Gly Ala Ala Pro Pro Gly 30 35 40	269
GCC GCC CCC GCA CCG GGC ATC TTC TCC TCC CAG CCC GGG CAC ACG CCC Ala Ala Pro Ala Pro Gly Ile Phe Ser Ser Gln Pro Gly His Thr Pro 45 50 55	317
CAT CCA GCC GCA TCC CGC GAC CCG GTC GCC AGG ACC TCG CCG CTG CAG His Pro Ala Ala Ser Arg Asp Pro Val Ala Arg Thr Ser Pro Leu Gln 60 65 70	365
ACC CCG GCT GCC CCC GGC GCC GCG GGG CCT GCG CTC AGC CCG GTG Thr Pro Ala Ala Pro Gly Ala Ala Ala Gly Pro Ala Leu Ser Pro Val 75 80 85	413
CCA CCT GTG GTC CAC CTG GCC CTC CGC CAA GCC GGC GAC GAC TTC TCC Pro Pro Val Val His Leu Ala Leu Arg Gln Ala Gly Asp Asp Phe Ser 90 95 100 105	461
CGC CGC TAC CGC GGC GAC TTC GCC GAG ATG TCC AGC CAG CTG CAC CTG Arg Arg Tyr Arg Gly Asp Phe Ala Glu Met Ser Ser Gln Leu His Leu 110 115 120	509
ACG CCC TTC ACC GCG CGG GGA CGC TTT GCC ACG GTG GTG GAG GAG CTC Thr Pro Phe Thr Ala Arg Gly Arg Phe Ala Thr Val Val Glu Glu Leu 125 130 135	557
TTC AGG GAC GGG GTG AAC TGG GGG AGG ATT GTG GCC TTC TTT GAG TTC Phe Arg Asp Gly Val Asn Trp Gly Arg Ile Val Ala Phe Phe Glu Phe 140 145 150	605

												,				
.GGT Gly	GGG Gly 155	GTC Val	ATG Met	TGT Cys	GTG Val	GAG Glu 160	AGC Ser	GTC Val	AAC Asn	CGG Arg	GAG Glu 165	ATG Met	TCG Ser	CCC Pro	CTG Leu	653
GTG Val 170	GAC Asp	AAC Asn	ATC Ile	GCC Ala	CTG Leu 175	TGG Trp	ATG Met	ACT Thr	GAG Glu	TAC Tyr 180	CTG Leu	AAC Asn	CGG Arg	CAC His	CTG Leu 185	701
														GGT Gly 200		749
		CTG Leu		TGAC	GCC#	ACA C	GTC	CGAGA	AT CO	GGGG	STTGO	G AGT	rgcg(GGTG		801
GGC1	CCT	GG C	CAATO	GGA	G CI	rgtgo	GAGC	G GGC	GAAA	AATA	AATO	CAGA	GTT (GTTG	CTTCCC	861
GGC	GTGT	CCC I	ACCI	CCT	CC TO	CTGG	ACAA	A GCC	GTTC#	ACTC	CCA	ACCTO	GAC			911
(0)				505	200	TD 1	70.7									
(2)		RMAT														
	1	(i) S	(A) (B)	LEI TYI	NGTH:	205 amino		ino a id	: acids	3						
	į)	Li) N	OLEC	CULE	TYPE	E: pi	rote	in								
	(3	ci) S	SEQUE	ENCE	DESC	CRIPT	rion:	: SEÇ	Q ID	NO:	7:					
Met 1	Ala	His	Ala	Gly 5	Arg	Thr	Gly	Tyr	Asp 10	Asn	Arg	Glu	Ile	Val 15	Met	
Lys	Tyr	Ile	His 20	Tyr	Lys	Leu	Ser	Gln 25	Arg	Gly	Tyr	Glu	Trp 30	Asp	Ala .	
Gly	Asp	Val 35	Gly	Ala	Ala	Pro	Pro 40	Gly	Ala	Ala	Pro	Ala 45	Pro	Gly	Ile	
Phe	Ser 50	Ser	Gln	Pro	Gly	His 55	Thr	Pro	His	Pro	Ala 60	Ala	Ser	Arg	Asp	
Pro 65	Val	Ala	Arg	Thr	Ser 70	Pro	Leu	Gln	Thr	Pro 75	Ala	Ala	Pro	Gly	Ala 80	
Ala	Ala	Gly	Pro	Ala 85	Leu	Ser	Pro	Val	Pro 90	Pro	Val	Val	His	Leu 95	Ala	
Leu	Arg	Gln	Ala 100	Gly	Asp	Asp	Phe	Ser 105	Arg	Arg	Tyr	Arg	Gly 110	Asp	Phe	
Ala	Glu	Met 115	Ser	Ser	Gln	Leu	His 120	Leu	Thr	Pro	Phe	Thr 125	Ala	Arg	Gly	
Arg	Phe 130	Ala	Thr	Val	Val	Glu 135	Glu	Leu	Phe	Arg	Asp 140	Gly	Val	Asn	Trp	

Gly Arg Ile Val Ala Phe Phe Glu Phe Gly Gly Val Met Cys Val Glu 145 150 155 160

Ser Val Asn Arg Glu Met Ser Pro Leu Val Asp Asn Ile Ala Leu Trp 165 170 175

Met Thr Glu Tyr Leu Asn Arg His Leu His Thr Trp Ile Gln Asp Asn 180 185 190

Gly Gly Trp Val Gly Ala Ser Gly Asp Val Ser Leu Gly
195 200 205