מדינת ישראל סוג הבחינה: בגרות

מועד הבחינה: קיץ תשע"ח, 2018

מספר השאלון: 036002, 655

נספח: נוסחאות ונתונים בפיזיקה ל־5 יח"ל

פיזיקה חשמל

לתלמידי 5 יחידות לימוד

הוראות לנבחן

א. משך הבחינה: שעה וארבעים וחמש דקות.

ב. מבנה השאלון ומפתח ההערכה:

בשאלון זה חמש שאלות, ומהן עליך לענות על שלוש שאלות בלבד.

לכל שאלה $-\frac{1}{3}$ 3 נקודות; 3 $\times \frac{1}{3}$ 3 נקודות

ג. חומר עזר מותר בשימוש: (1) מחשבון.

(2) נספח נוסחאות ונתונים בפיזיקה המצורף לשאלון.

ד. הוראות מיוחדות:

משרד החינור

- (1) ענה על מספר שאלות כפי שהתבקשת. תשובות לשאלות נוספות לא ייבדקו. (התשובות ייבדקו לפי סדר הופעתן במחברת הבחינה.)
- (2) בפתרון שאלות שנדרש בהן חישוב, רשוֹם את הנוסחאות שאתה משתמש בהן. כאשר אתה משתמש בסימן שאינו בדפי הנוסחאות, כתוב במילים את פירוש הסימן. לפני שאתה מבצע פעולות חישוב, הצב את הערכים המתאימים בנוסחאות. רשוֹם את התוצאה שקיבלת ביחידות המתאימות. אי־רישום הנוסחה או אי־ביצוע ההצבה או אי־רישום היחידות עלולים להפחית נקודות מן הציון.
- (3) כאשר אתה נדרש להביע גודל באמצעות נתוני השאלה, רשום ביטוי מתמטי הכולל את נתוני השאלה או חלקם; פ או המטען היסודי g אמידת הצורך אפשר להשתמש גם בקבועים בסיסיים, כגון תאוצת הנפילה החופשית.
 - . בחישוביך השתמש בערך $10~\mathrm{m/s}^2$ לתאוצת הנפילה החופשית.
 - (5) כתוב את תשובותיך בעט. כתיבה בעיפרון או מחיקה בטיפקס לא יאפשרו ערעור. מותר להשתמש בעיפרון לסרטוטים בלבד.

כתוב <u>במחברת הבחינה בלבד,</u> בעמודים נפרדים, כל מה שברצונך לכתוב <u>כטיוטה</u> (ראשי פרקים, חישובים וכדומה). רשוֹם ״טיוטה״ בראש כל עמוד טיוטה. רישום טיוטות כלשהן על דפים שמחוץ למחברת הבחינה עלול לגרום לפסילת הבחינה!

ההנחיות בשאלון זה מנוסחות בלשון זכר ומכוונות לנבחנות ולנבחנים כאחד. בהצלחה!

השאלות

ענה על <u>שלוש</u> מן השאלות 5-1.

(לכל שאלה – $\frac{1}{3}$ 33 נקודות; מספר הנקודות לכל סעיף רשוּם בסופו.)

. \mathbf{q}_1 ומטענו \mathbf{m}_1 ומטענו \mathbf{m}_1 מוחזק מסת הכדור אופקי חלק. משטח אופקי חלק. מחזק בנקודה בנקודה אופקי

. $V_{\rm S} = -1000{
m V}$ על המשטח האופקי נמדד פוטנציאל על המשטח על S נתון: בנקודה

המרחק בין הנקודות S ו־ S הוא S (ראה תרשים).

תרשים 1

- א. חשב את גודל המטען $\,{\bf q}_1\,$ וקבע את סימנו. (6 נקודות)
- ב. חשב את גודל השדה החשמלי שהמטען יוצר בנקודה S . (5 נקודות)

בה. S מובא מן האין־סוף אל מובא מן מטענו וומטענו \mathbf{m}_2 ומטענו הנקודה אל כדור קטן נוסף, אובא מובא וומטענו וומטענו וומטענו

. $\mathbf{q}_2 = 2\mathbf{q}_1$, $\mathbf{m}_2 = 2\mathbf{m}_1$:נתון

(הזנח את כוח הכבידה). מן האין־סוף לנקודה את הכבודה הכבידה). מן האין־סוף לנקודה את הכבודה הכבידה). ג. חשב את העבודה שהושקעה בהבאת הכדור B_2

בתרשים 2 שלפניך מוצגים שישה איורים המתארים קווי שדה חשמלי שקול שנוצר על ידי שני כדורים טעונים.

תרשים 2

- כאשר B_2 רי B_1 כאשר B_2 איזה מן האיורים 6-1 מתאר כונה את השדה השקול שנוצר על ידי שני הכדורים הטעונים B_1 רי B_2 כאשר הכדור השמאלי הוא B_1 והכדור הימני הוא B_2 והכדור הימני הוא B_2 הכדור השמאלי הוא השתחבים העונים בישור הימני הוא בישור הימני הימני הוא בישור הימני הוא ב
- D חולף משטרים חולף מסוים הכדור B_1 חולף חולף בנקודה אינן מטחרים את שני הכדורים ומאפשרים לנוע על המשטח האופקי החלק. ברגע מסוים הכדור הנקודות B_1 חולף בנקודה B_2 חולף בנקודה B_2 חולף בנקודה שינן מסומנות בתרשים ווהכדור בתרשים הכדור בנקודה B_2 חולף בנקודה שינן מסומנות בתרשים ווהכדור בתרשים הכדור בנקודה שינן מסומנות בתרשים ווהכדור בתרשים ווהכדור בעדים הכדור בנקודה שינן מסומנות בתרשים ווהכדור בעדים ווהכדים ווהכדור בעדים ווהכדור בעדים וובכל בעדים ווהכדור בעדים וובכל בע
 - B_2 בנקודה D קבע אם גודל הכוח החשמלי הפועל על כדור בנקודה D בנקודה B בנקודה החשמלי הפועל על כדור לבנקודה B_1 גדול ממנו או שווה לו. B_1 בנקודה B_2 בנקודה B_3 בנקודה B_4 בנקודה B_5 בנקודה שווה לו.
 - , H בנקודה B_2 קטן מגודל המהירות של כדור B_1 בנקודה B_2 בנקודה קבע אם גודל המהירות של כדור B_1 בנקודה B_2 גדול ממנו או שווה לו. אין צורך לנמק. B_1 נקודות)

2. בתמונה שלפניך מוצגת סוללה של מכשיר טלפון נייד מן הדור הישן (דור 2).

תרשים 1

3.7V מאפייני הסוללה הם: כמות האנרגייה האגורה בסוללה, 3.2Wh (ואט \times שעה); הכא"מ, 3.7V (מילי־אמפר \times שעה).

(כ נקודות) (C) את כמות האנרגייה האגורה בסוללה בג'ולים (J) ואת כמות האנרגייה האגורה בסוללה בג'ולים ((I)) או בטא את כמות האנרגייה האגורה בסוללה בג'ולים

כדי לבדוק את הסוללה, מרכיבים מעגל ובו הסוללה ומכשיר המדמה את הטלפון הנייד.

בבדיקות מודדים את עוצמת הזרם ואת מתח ההדקים במצבי העבודה השונים של המכשיר, לדוגמה: המתנה, שיחה וגלישה באתר אינטרנט.

בטבלה שלפניך מוצגות כמה מתוצאות הבדיקה.

800	600	400	200	100	50	עוצמת הזרם (mA)
1.7	2.2	2.7	3.0	3.3	3.5	מתח ההדקים (V)

- ב. על פי התוצאות המוצגות בטבלה, סרטט גרף של מתח ההדקים כפונקציה של עוצמת הזרם הזורם בסוללה. (7 נקודות)
 - (1) מצא על פי הגרף את הכא"מ של הסוללה. פרט את שיקוליך.
 - (2) היעזר בגרף וחשב את ההתנגדות הפנימית של הסוללה.

(8 נקודות)

- . I = $300\,\mathrm{mA}$ כאשר עוצמת הזרם (P $_{\mathrm{in}}$) כאשר על ידי הסוללה (מושקע על ידי הסוללה (ידי הסוללה (ג. ידי הסוללה) כאשר עוצמת הזרם
- . I = 300 mA כאשר עוצמת (P $_{out})$ על ידי המכשיר על ידי החספק המנוצל (2)

(8 נקודות)

(שים לב: המשך השאלה בעמוד הבא.)

לפניך גרף המתאר את ההספק המנוצל על ידי המכשיר כפונקציה של התנגדות המכשיר.

, R הרשים 2). קספק מנוצל של R_1 ור R_2 או R_2 התנגדויות שונות של המכשיר, R_1 ור R_2 ור R_1 , ראה תרשים 2). $R_1 = R_1 + R_1 + R_2 + R_2 + R_1 + R_2 + R_2$

.1 נתון מעגל חשמלי הכולל מקור מתח לא אידאלי, נגד משתנה, נורה ושני מדי מתח אידאליים כמתואר בתרשים 1. הנגד המשתנה עשוי מתיל מוליך המלופף על גליל עשוי חומר מבודד (ראה תרשים 2) שהמרחק בין קצותיו הוא BC = 1m שים לב: זהו המרחק בין הקצוות של הנגד, ולא אורך התיל שהוא עשוי ממנו). $A = 1mm^2 \quad \text{שטח החתך שלו} \quad A = 1mm^2 \quad \text{שטח החתך שלו} \quad \rho = 9 \cdot 10^{-7} \Omega m$ וההתנגדות הסגולית שלו

א. חשב את ההתנגדות הכוללת של הנגד המשתנה. <u>שים לב ליחידות</u>. (6 נקודות)

תלמידים הציבו את הגררה בקצה $\, B \,$ של הנגד המשתנה ורשמו את ההוריות של מדי המתח. אחר כך הם הזיזו את הגררה עד לקצה $\, C \,$, ורשמו את ההוריות של מדי המתח עבור נקודות שונות שהגררה הייתה בהן. התלמידים סרטטו גרף של התוצאות שקיבלו.

. B של הגררה מן הקצה א מתוארות חלק מן ההוריות של שני מדי המתח כפונקציה של המרחק ${\bf x}$

המתחים כפונקציה של מרחק הגררה מן הנקודה

ב. חשב את הזרם שזורם במקור המתח כאשר הגררה נמצאת בנקודה B . B . ב.

ענה כי אילו שותפתו אילו שותפתו כפי ערכו כפי ערכו מקסימלי של מקור המתח הוא 22.5V כפי ערכו מקסימלי של הכא"מ של מקור המתח הוא טענה כי הוא טועה.

- **ג.** קבע ונמק מי מהם צודק. (7 נקודות)
- x = 0.4m חשב את עוצמת הזרם העובר <u>דרך הנורה</u> כאשר (1) .
 - (2) חשב את התנגדות הנורה.

(10 נקודות)

. נשרפה הנורה, $\mathbf{x} = 0.4 \mathbf{m}$ מייד לאחר שהגררה עברה את המיקום של

ה. קבע איזה גרף מן הגרפים 4-1 שבתרשים 4 מייצג <u>נכון</u> את המתחים שנמדדו לאחר שהנורה נשרפה.

(נמק את קביעתך. $\frac{1}{3}$ נקודות נמק את קביעתר.

תרשים 4

. בתרשים 1 שלפניך מתואר מעגל חשמלי שמורכב ממקור מתח, סילונית (ארוכה), מד־זרם, מפסק ותילים.

. ${\rm I}_1$ סגרו את המפסק ובסילונית זורם זרם

- E^{-1} או מ־ F או מ־ E או במעגל: מ־ E או הזרם במעגל: מ־ או מ־ קבע מהו כיוון הזרם במעגל:
- (ראה את סימון החיצים בתרשים 1). G או H, P, Q בתוך הסילונית: B_1 , בתוך החיצים בתרשים 1). נמק את קביעתר.

(8 נקודות)

הכניסו לתוך הסילונית מסגרת <u>ריבועית</u> מוליכה abcd ממתואר בתרשים 2, שדרכה זורם זרם $\rm I_2$. הצלע המסגרת מקבילה לציר הסילונית.

תרשים 2

ב. מם , bc מן הצלעות (גודל וכיוון) הפועל על בל אחת מן הצלעות מו המגנטי (גודל וכיוון) הפועל על בל אחת מו הצלעות $\frac{11\frac{1}{3}}{3}$

(שים לב: המשך השאלה בעמוד הבא.)

. ${
m I}_3=20{
m A}$ הוציאו את המסגרת מן הסילונית והניחו לאורך ציר הסילונית תיל מוליך ארוך מאוד שזורם בו זרם לפניך תרשים של הסילונית והתיל במבט מן הצד (חתך רוחב), כיוון הזרם בסילונית, ${
m I}_1$, בכיוון השעון, וכיוון הזרם בתיל, ${
m I}_3$, "החוצה מן הדף".

- ג. העתק את תרשים 3 למחברתך. סמן בנקודה $\, {
 m r} \,$ בתרשים שבמחברתך את כיוון השדה המגנטי שנוצר על ידי התיל, $\, {
 m B}_{1} \,$, ואת כיוון השדה המגנטי שנוצר על ידי התיל, $\, {
 m B}_{3} \,$
 - (6) נקודות השדה B_1 שווה לגודל השדה מציר הסילונית גודל השדה השדה B_1

ור את , KL ור PQ , שהתנגדותן זניחה. בתרשים שלפניך מוצגת מערכת המורכבת משתי מסילות חלקות, ℓ . ℓ המסילות מונחות על שולחן אופקי במקביל זו לזו. המרחק בין המסילות הוא

נגד R_1 מחבר בין הנקודות R_1 ו־ R_2 שעל המסילות, ונגד R_2 מחבר בין הנקודות R_1 שעל המסילות R_1 מוט מוליך R_2 שהתנגדותו ניתנת להזנחה, נע על המסילות R_2 ו־ R_2 ללא חיכוך, במהירות קבועה שגודלה R_2 מוט מוליך R_3 שהתנגדותו ניתנת להזנחה, נע על המסילות.

. בניצב אדף", בניצב אליו. אחיד שגודלו B המערכת מצאת בתוך שדה מגנטי אחיד שגודלו

התנגדות האוויר זניחה.

. $R_2=10\Omega$, $R_1=5\Omega$, $B=10^{-2}\,\mathrm{T}$, $v=5\frac{\mathrm{m}}{\mathrm{s}}$, $\ell=0.1\mathrm{m}$: במוט MN נוצר כא"מ מושרה.

- (3 נקודות) או M או M או M או M או או M או מן הנקודות, M או או או קבע לאיזו מן הנקודות,
 - (נקודות 5) אור M ו־ M (5 נקודות 5) . N ו־ M
- . MN חשב את עוצמת הזרם וקבע את כיוונו בכל אחד מן הרכיבים האלה: הנגד R_1 , הנגד הנגד והמוט 10, המוט (10 נקודות)
 - 7. קבע אם על המוט MN (הנע במהירות קבועה) מופעל כוח חיצוני. אם כן חשב את גודלן וקבע את כיוונו. אם לא נמק את קביעתר. (8 נקודות)
 - (נקודות) מהו מקור האנרגייה במערכת זו? מהו מקור האנרגייה במערכת $\frac{1}{3}$