1.5 ELEMENTARY MATH BUILT-IN FUNCTIONS

In addition to basic arithmetic operations, expressions in MATLAB can include functions. MATLAB has a very large library of built-in functions. A function has a name and an argument in parentheses. For example, the function that calculates the square root of a number is $\mathtt{sqrt}(\mathtt{x})$. Its name is \mathtt{sqrt} , and the argument is \mathtt{x} . When the function is used, the argument can be a number, a variable that has been assigned a numerical value (explained in Section 1.6), or a computable expression that can be made up of numbers and/or variables. Functions can also be included in arguments, as well as in expressions. Tutorial 1-2 shows examples of using the function $\mathtt{sqrt}(\mathtt{x})$ when MATLAB is used as a calculator with scalars.

Tutorial 1-2: Using the sqrt built-in function.

```
>> sqrt(64)
                                          Argument is a number.
ans =
>> sqrt(50+14*3)
                                     Argument is an expression.
ans =
    9.5917
>> sqrt(54+9*sqrt(100))
                                  Argument includes a function.
ans =
    12
>> (15+600/4)/sqrt(121)
                                 Function is included in an expression.
ans =
    15
>>
```

Some commonly used elementary MATLAB mathematical built-in functions are given in Tables 1-3 through 1-5. A complete list of functions organized by category can be found in the Help Window.

Table 1-3: Elementary math functions

Function	Description	Example
sqrt(x)	Square root.	>> sqrt(81) ans = 9
nthroot(x,n)	Real <i>n</i> th root of a real number <i>x</i> . (If <i>x</i> is negative <i>n</i> must be an odd integer.)	>> nthroot(80,5) ans = 2.4022
exp(x)	Exponential (e^x) .	>> exp(5) ans = 148.4132

Function	Description	Example
abs(x)	Absolute value.	>> abs(-24) ans = 24
log(x)	Natural logarithm. Base <i>e</i> logarithm (ln).	>> log(1000) ans = 6.9078
log10(x)	Base 10 logarithm.	>> log10(1000) ans = 3.0000
factorial(x)	The factorial function x ! (x must be a positive integer.)	>> factorial(5) ans = 120

Table 1-3: Elementary math functions (Continued)

Table 1-4: Trigonometric math functions

Function	Description	Example
sin(x)	Sine of angle x (x in radians).	>> sin(pi/6)
sind(x)	Sine of angle x (x in degrees).	ans =
		0.5000
cos(x)	Cosine of angle x (x in radians).	>> cosd(30)
cosd(x)	Cosine of angle x (x in degrees).	ans =
		0.8660
tan(x)	Tangent of angle x (x in radians).	>> tan(pi/6)
tand(x)	Tangent of angle x (x in degrees).	ans =
		0.5774
cot(x)	Cotangent of angle x (x in radians).	>> cotd(30)
cotd(x)	Cotangent of angle x (x in degrees).	ans =
		1.7321

The inverse trigonometric functions are asin(x), acos(x), atan(x), acot(x) for the angle in radians; and asind(x), acosd(x), atand(x), acotd(x) for the angle in degrees. The hyperbolic trigonometric functions are sinh(x), cosh(x), tanh(x), and coth(x). Table 1-4 uses pi, which is equal to π (see Section 1.6.3).

Table 1-5: Rounding functions

Function	Description	Example
round(x)	Round to the nearest integer.	>> round(17/5)
		ans =
		3