CIÊNCIA DE DADOS - 04

Prof. Júlio Cesar Nievola

PPGla – PUCPR

25/maio/2019

O que é Exploração de Dados?

Uma exploração preliminar dos dados para compreender melhor suas características.

- Motivações-chave da exploração de dados incluem
 - Ajudar na seleção da técnica correta para pré-processamento ou análise
 - Fazer uso das habilidades humanas de reconhecimento de padrões
 - Pessoas podem reconhecer padrões não capturados pelas técnicas de análise de dados
- Relacionado à área de Análise Exploratória de Dados (EDA)
 - Criada pelo estatístico John Tukey
 - Livro seminal: Exploratory Data Analysis escrito por Tukey
 - Uma boa introdução online pode ser encontrada no capítulo 1 do NIST Engineering Statistics Handbook

http://www.itl.nist.gov/div898/handbook/index.htm

Técnicas Usadas na Exploração de Dados

- Em EDA, como originalmente definido por Tukey
 - O foco está na visualização
 - Agrupamento e detecção de anomalias eram vistos como técnicas exploratórias
 - Em mineração de dados, agrupamento e detecção de anomalias são grandes áreas de interesse, e não são vistas apenas como exploração
- Nesta discussão de exploração de dados, o foco está em
 - Estatística Sumária
 - Visualização
 - Online Analytical Processing (OLAP)

Conjunto de Dados Iris

- Muitas das técnicas de exploração de dados são ilustradas com o conjunto de dados da planta Iris.
 - Pode ser obtido do UCI Machine Learning Repository <u>http://www.ics.uci.edu/~mlearn/MLRepository.html</u>
 - Criada pelo estatístico Douglas Fisher
 - Três tipos de flores (classes):
 - Setosa
 - Virginica
 - Versicolour
 - Quatro atributos (não-classes)
 - Sepal width e length
 - Petal width e length

Virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute.

Tipos de tabelas

- Tabelas de frequências:
 - Absolutas
 - Relativas
 - Acumuladas

Quantidade de carros por dia			
Data	Quantidade	%	Acumulada
o1/jan	517	8,51	8,51
o2/jan	615	10,12	18,63
oʒ/jan	334	5,50	24,13
o4/jan	815	13,42	37,55
o5/jan	730	12,02	49,56
o6/jan	482	7,93	57,50
o⁊/jan	651	10,72	68,21
o8/jan	981	16,15	84,36
og/jan	553	9 , 10	93,47
10/jan	397	6,53	100,00
TOTAL	6075	100	100

Estatística Sumária

- Estatística Sumária são números que resumem as propriedades dos dados
 - Propriedades sumarizadas incluem frequência, posição e dispersão
 - Exemplos:
 - Posição média
 - Dispersão desvio padrão
 - A maioria das estatísticas sumárias pode ser calculada em um único passo através dos dados

Frequência e Moda

- A frequência do valor de um atributo é a percentagem do tempo em que o valor ocorre no conjunto de dados
 - Por exemplo, dado o atributo 'gênero' e uma população representativa de pessoas, o gênero 'feminino' ocorre cerca de 50% do tempo
- A moda de um atributo é o valor mais frequente do atributo
- As noções de frequência e moda são usadas tipicamente com dados categóricos

Percentil

- Para dados contínuos, a noção de percentil é mais útil.
- Dados um atributo contínuo ou ordinal x e um número p entre 0 e 100, o p-ésimo percentil é um valor x_p de x tal que p% dos valores observados de x são menores que x_p.

 Por exemplo, o percentil 50 é o valor x_{50%} tal que 50% de todos os valores de x são menores que X_{50%}.

Medidas de posição: Média e Mediana

- A média é a medida mais comum de posição de um conjunto de pontos.
- Entretanto, a média é muito sensitiva a outliers.
- Então, a mediana ou uma mediana ajustada é usada comumente.

$$\operatorname{mean}(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

median
$$(x) = \begin{cases} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r + 1 \\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{cases}$$

Propriedades da média

• A soma dos desvios de uma amostra é sempre igual a zero

$$\sum_{i=1}^{n} (X_i - \bar{X}) = 0$$

 A soma dos quadrados dos desvios em relação à própria média de uma variável é sempre igual a um valor mínimo

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 \Rightarrow minimo$$

Características da moda

Vantagens	Desvantagens
Fácil de calcular	Pode estar afastada do centro dos dados
Não é afetada pelos dados dos extremos da amostra	Difícil de incluir em funções matemáticas
Pode ser aplicada em qualquer escala: nominal, ordinal, intervalar e proporcional	Não utiliza todos os dados da amostra
	A amostra pode ter mais de uma moda
	Algumas amostras podem não ter moda

Características da mediana

Vantagens	Desvantagens
Fácil de calcular	Difícil de incluir em funções matemáticas
Não é afeta pelos dados extremos da amostra	Não utiliza todos os dados da amostra
É um valor único	
Pode ser aplicada nas escalas: ordinal, intervalar e proporcional	

Características da média

Vantagens	Desvantagens
Fácil de compreender e aplicar	É afetada pelos dados extremos da amostra
Utiliza todos os dados da amostra	É necessário conhecer todos os dados da amostra
É um valor único	
Fácil de incluir em funções matemáticas	
Pode ser aplicada nas escalas: intervalar e proporcional	

Relação entre moda, mediana e média

- Para uma distribuição simétrica, os três valores são iguais
- Se os dados tem distribuição para a direita (ou positiva), a moda representa o pico e a mediana (dividindo a distribuição em duas áreas iguais) está a sua direita e tem-se a relação:
 - Média > Mediana > Moda (embora nem sempre haja moda)

- Se os dados tem distribuição para a esquerda (ou negativa), a moda representa o pico e a mediana (dividindo a distribuição em duas áreas iguais) está a sua esquerda e tem-se a relação:
 - Média < Mediana < Moda (embora nem sempre haja moda)

Medidas de Dispersão: Faixa e Variância

- Faixa é a diferença entre o máximo e mínimo
- A variância ou desvio padrão é a medida mais comum de desvio de um conjunto de pontos.

variance
$$(x) = s_x^2 = \frac{1}{m-1} \sum_{i=1}^{m} (x_i - \overline{x})^2$$

 Entretanto, elas são sensitivas a outliers, e outras medidas são frequentemente utilizadas.

$$AAD(x) = \frac{1}{m} \sum_{i=1}^{m} |x_i - \overline{x}|$$

$$MAD(x) = median \left(\{ |x_1 - \overline{x}|, \dots, |x_m - \overline{x}| \} \right)$$
interquartile range(x) = $x_{75\%} - x_{25\%}$

Teorema de Chebyshev

• Para qualquer conjunto de dados de uma amostra ou população, a proporção mínima de valores que se encontram dentro de k desvios padrão ao redor da média é pelo menos igual a $1-\frac{1}{k^2}$, sendo k uma constante maior que 1.

Regra prática - Chebyshev

- Em uma distribuição simétrica em forma de sino, a porcentagem de dados contidos no intervalo de um desvio padrão ao redor da média é de 68%. Para uma distribuição assimétrica com acentuada inclinação para um lado, essa porcentagem se aproxima de 90%.
- Em uma distribuição simétrica em forma de sino, a porcentagem de dados contidos no intervalo de dois desvios padrão ao redor da média é de 95%. Para uma distribuição assimétrica com acentuada inclinação para um lado, essa porcentagem se aproxima de 100%.
- Para todas as distribuições, a porcentagem de dados contidos no intervalo de três desvios padrão ao redor da média é próximo de 100%.

CONCEITOS LIGADOS A TESTES DE HIPÓTESE

Prof. Júlio Cesar Nievola

PPGla – PUCPR

Teorema Central do Limite

• Parâmetro: é uma medida numérica que descreve uma população.

Estatística: é uma medida numérica que descreve uma amostra.

- Teorema Central do Limite:
 - Se de uma população com parâmetros (μ, σ) for retirada uma amostra de tamanho n suficientemente grande, a distribuição de \overline{X} será aproximadamente normal $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$, qualquer que seja a forma da distribuição da população.

Hipóteses

- A hipótese nula, chamada de H_0 , é a hipótese sobre a qual devem ser obtidas evidências para poder rejeitá-la.
- A hipótese alternativa, chamada de H_1 , é a hipótese sobre a qual devem ser obtidas evidências para poder aceitá-la.
- A hipótese nula e a hipótese alternativa descrevem dois possíveis estados mutuamente excludentes, pois as duas hipóteses não podem ser aceitas ou rejeitadas ao mesmo tempo:
 - A hipótese nula H_0 é o valor correntemente aceito até que se tenham evidências de que esse valor não é mais correto. A hipótese nula é uma afirmação ou ponto de partida do teste de hipóteses;
 - A hipótese alternativa H_1 será somente aceita se surgirem evidências de que o valor da hipótese nula não é mais correto.

Teste de Hipótese com uma ou duas caudas

• Um teste de hipótese em uma cauda da distribuição é um teste no qual a hipótese alternativa H_1 define a mudança em alguma direção da hipótese nula H_0 , incluindo na especificação um dos símbolos " \leq " ou " \geq ".

• Um teste de hipótese em duas caudas da distribuição é um teste no qual a hipótese alternativa H_1 define uma mudança da hipótese nula H_0 sem especificar nenhuma direção, incluindo na especificação o símbolo " \neq ".

Intervalo de confiança e p-valor

- Intervalo de confiança é o intervalo de valores que contém a média da população com uma determinada probabilidade de acerto. O intervalo de valores é construído de uma amostra aleatória retirada da população.
- O p-valor é definido como a probabili<u>d</u>ade de qualquer média da amostra ser mais extrema do que a média da amostra \overline{X} extraída para o teste, sem rejeitar a hipótese nula, ou seja, tem-se que:
 - O *p*-valor é o nível de significância observado;
 - Se o p-valor for maior ou igual a α , então a hipótese nula não será rejeitada;
 - Se o p-valor menor ou igual a α , então a hipótese nula será rejeitada;
 - Quanto menor for o p-valor, mais forte deverá ser a evidência para poder rejeitar a hipótese nula.

Erros nos Testes de Hipótese

• Se H_0 for rejeitada, o teste de hipóteses não afirma que H_0 seja falsa e sim sugere que há evidências de que H_0 seja falsa.

• Nesta situação, o que se pode afirmar é que para o nível de significância α esperase que, se o teste fosse repetido um grande número de vezes, a proporção de acertos seja (1- α) das vezes.

	$oldsymbol{H_0}$ verdadeira	$oldsymbol{H_0}$ falsa
Não rejeita $oldsymbol{H_0}$	Decisão correta	Erro tipo II
Rejeita $oldsymbol{H_0}$	Erro tipo I	Decisão correta

Tipos de Erros

- Erro do tipo I: Acontece quando a hipótese nula é rejeitada, embora seja realmente verdadeira. Este tipo de erro pode ser reduzido diminuindo o nível de significância α .
- Erro do tipo II: Acontece quando a hipótese nula não é rejeitada, embora ela seja falsa. Aumentando-se o nível de significância α aumenta-se a chance de cometer um erro do tipo II.

	Quando H_0 for verdadeira	Quando H_0 for falsa
Probabilidade de não	1-α	β
rejeitar $oldsymbol{H_0}$		
Probabilidade de rejeitar	α	1-β
H_0		

Exigências dos Testes Paramétricos

- Para que os testes estatísticos paramétricos (tais como correlação, índices z, testes t) possam ser aplicados, é necessário que um conjunto de condições sejam obedecidas pelas amostras, isto é, as amostras devem:
 - Ser obtidas aleatoriamente de uma população com distribuição normal;
 - Consistir de observações independentes, exceto para valores pareados;
 - Consistir de valores em uma escala de medidas de tipo intervalar ou de razão;
 - Ter populações com distribuição aproximadamente iguais;
 - Ser relativamente grandes (em geral 30 amostras);
 - Ter um comportamento aproximadamente normal.

Passos para Teste de Hipóteses

- Estabelecer a hipótese nula e a hipótese de pesquisa;
- 2. Definir o nível de risco (ou nível de significância) associado à hipótese nula;
- Escolher a estatística de teste apropriada;
- Calcular a estatística de teste;
- 5. Determinar o valor necessário para rejeição da hipótese nula usando a tabela de valores críticos apropriada para a estatística escolhida;
- 6. Comparar o valor obtido com o valor crítico;
- 7. Interpretar os resultados;
- Relatar os resultados.

Tipo de teste em função das características das amostras

Tipo de Análise	Teste Não-Paramétrico	Teste Paramétrico
Comparar duas amostras relacionadas	Teste de Postos Sinalizados de Wilcoxon	Teste t para amostras dependentes
Comparar duas amostras não relacionadas	Teste U de Mann-Whitney	Teste t para amostras independentes
Comparar três ou mais amostras relacionadas	Teste de Friedman	Repeated Measures Analysis of Variance (ANOVA)
Comparar três ou mais amostras não relacionadas	Teste H de Kruskal-Wallis	One-way Analysis of Variance (ANOVA)
Comparar dados categóricos	Teste Chi-Quadrado / Teste Exato de Fisher	NÃO HÁ
Comparar duas variáveis ordenadas por postos	Correlação posição-ordem de Spearman	Correlação produto-momento de Pearson
Comparar duas variáveis em que uma delas é discreta dicotômica	Correlação ponto-bi-serial	Correlação produto-momento de Pearson
Comparar duas variáveis em que uma delas é contínua dicotômica	Correlação bi-serial	Correlação produto-momento de Pearson
Avaliar a aleatoriedade de uma amostra	Testes de execução	NÃO HÁ