

Exercice 1 5 points

Partie A

Un jeu proposé dans une fête foraine consiste à effectuer trois tirs successivement sur une cible mouvante.

On a constaté que :

- Si le joueur atteint la cible lors d'un tir alors il ne l'atteint pas lors du tir suivant dans 65 % des cas;
- Si le joueur n'atteint pas la cible lors d'un tir alors il l'atteint lors du tir suivant dans $50\,\%$ des cas.

La probabilité qu'un joueur atteigne la cible lors de son premier tir est de 0,6. Pour tout évènement A, on note p(A) sa probabilité et \overline{A} l'évènement contraire de A. On choisit au hasard un joueur à ce jeu de tirs.

On considère les évènements suivants :

- A_1 : « Le joueur atteint la cible lors du 1^{er} tir »
- A_2 : « Le joueur atteint la cible lors du 2^e tir »
- A_3 : « Le joueur atteint la cible lors du 3^e tir ».
- 1. Recopier et compléter, avec les probabilités correspondantes sur chaque branche, l'arbre pondéré ci-dessous modélisant la situation.

Soit *X* la variable aléatoire qui donne le nombre de fois où le joueur atteint sa cible au cours des trois tirs.

- **2.** Montrer que la probabilité que le joueur atteigne exactement deux fois la cible au cours des trois tirs est égale à 0,4015.
- **3.** L'objectif de cette question est de calculer l'espérance de la variable aléatoire X, notée E(X).
 - **a.** Recopier et compléter le tableau ci-dessous donnant la loi de probabilité de la variable aléatoire *X*.

$X = x_i$	0	1	2	3
$p(X = x_i)$	0,1			0,0735

- **b.** Calculer E(X).
- **c.** Interpréter le résultat précédent dans le contexte de l'exercice.

Partie B

On considère N, un entier naturel supérieur ou égal à 1.

Un groupe de N personnes se présente à ce stand pour jouer à ce jeu dans des conditions identiques et indépendantes.

Un joueur est déclaré gagnant lorsqu'il atteint trois fois la cible.

On note Y la variable aléatoire qui compte parmi les N personnes le nombre de joueurs déclarés gagnants.

- 1. Dans cette question, N = 15.
 - **a.** Justifier que *Y* suit une loi binomiale dont on déterminera les paramètres.
 - **b.** Donner la probabilité, arrondie à 10^{-3} , qu'exactement 5 joueurs soient gagnants à ce jeu.
- **2.** Par la méthode de votre choix, que vous expliciterez, déterminer le nombre minimum de personnes qui doivent se présenter à ce stand pour que la probabilité qu'il y ait au moins un joueur gagnant soit supérieure ou égale à 0,98.

Exercice 2 5 points

Dans un repère orthonormé $\left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ on considère les points :

$$A(1; 1; -4)$$
, $B(2; -1; -3)$, $C(0; -1; -1)$ et $\Omega(1; 1; 2)$.

- 1. Démontrer que les points A, B et C définissent un plan.
- 2. a. Démontrer que le vecteur \overrightarrow{n} de coordonnées $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ est normal au plan (ABC).
 - **b.** Justifier qu'une équation cartésienne du plan (ABC) est x + y + z + 2 = 0.
- **3. a.** Justifier que le point Ω n'appartient pas au plan (ABC).
 - **b.** Déterminer les coordonnées du point H, projeté orthogonal du point Ω sur le plan (ABC).

On admet que $\Omega H = 2\sqrt{3}$.

On définit la sphère S de centre Ω et de rayon $2\sqrt{3}$ comme l'ensemble de tous les points M de l'espace tels que $\Omega M = 2\sqrt{3}$.

4. Justifier, sans calcul, que tout point N du plan (ABC), distinct de H, n'appartient pas à la sphère *S*.

On dit qu'un plan \mathcal{P} est tangent à la sphère S en un point K lorsque les deux conditions suivantes sont vérifiées :

- K∈𝒯 ∩ S
 (ΩK) ⊥ 𝒯
- **5.** Soit le plan \mathscr{P} d'équation cartésienne x + y z 6 = 0 et le point K de coordonnées K(3;3;0).

Démontrer que le plan \mathcal{P} est tangent à la sphère S au point K.

6. On admet que les plans (ABC) et \mathscr{P} sont sécants selon une droite (Δ). Déterminer une équation paramétrique de la droite (Δ).

Exercice 3 5 points

Soit la suite (u_n) définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 5u_n - 8n + 6.$$

- **1.** Calculer u_1 et u_2 .
- **2.** Soit *n* un entier naturel.

Recopier et compléter la fonction $suite_u$ d'argument n ci-dessous, écrite en langage Python, afin qu'elle retourne la valeur de u_n .

- **3. a.** Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \ge 2n$.
 - **b.** En déduire la limite de la suite (u_n) .
 - **c.** Soit $p \in \mathbb{N}^*$. Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout entier naturel n vérifiant, $n \ge n_0$, $u_n \ge 10^p$?
- **4.** Démontrer que la suite (u_n) est croissante.
- **5.** On considère la suite (v_n) , définie pour tout $n \in \mathbb{N}$, par $v_n = u_n 2n + 1$.
 - **a.** En dessous de la fonction suite_u précédente, on a écrit la fonction suite_v ci-dessous :

La commande «L.append »permet de rajouter, en dernière position, un élément dans la liste L.

Lorsqu'on saisit suite_v(5) dans la console, on obtient l'affichage suivant :

Conjecturer, pour tout entier naturel n, l'expression de v_{n+1} en fonction de v_n . Démontrer cette conjecture.

b. En déduire, pour tout entier naturel n, la forme explicite de u_n en fonction de n.

Exercice 4 5 points

Soit la fonction f définie sur \mathbb{R} par

$$f(x) = \ln(1 + e^{-x}) + \frac{1}{4}x.$$

On note \mathscr{C}_f la courbe représentative de la fonction f dans un repère orthonormé $\left(O; \overrightarrow{i}, \overrightarrow{j}\right)$ du plan.

Partie A

- **1.** Déterminer la limite de f en $+\infty$.
- **2.** On admet que la fonction f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée.
 - **a.** Montrer que, pour tout réel x, $f'(x) = \frac{e^x 3}{4(e^x + 1)}$.
 - **b.** En déduire les variations de la fonction f sur \mathbb{R} .
 - **c.** Montrer que l'équation f(x) = 1 admet une unique solution α dans l'intervalle [2; 5].

Partie B

On admettra que la fonction f' est dérivable sur \mathbb{R} et pour tout réel x,

$$f''(x) = \frac{e^x}{(e^x + 1)^2}.$$

On note Δ la tangente à la courbe \mathscr{C}_f au point d'abscisse 0.

Dans le graphique ci-dessous, on a représenté la courbe \mathscr{C}_f la tangente Δ et le quadrilatère MNPQ tel que M et N sont les deux points de la courbe \mathscr{C}_f d'abscisses respectives α et $-\alpha$, et Q et P sont les deux points de la droite Δ d'abscisses respectives α et $-\alpha$.

- **1. a.** Justifier le signe de f''(x) pour $x \in \mathbb{R}$.
 - **b.** En déduire que la portion de la courbe \mathscr{C}_f sur l'intervalle $[-\alpha \ ; \ \alpha]$, est inscrite dans le quadrilatère MNPQ.
- **2. a.** Montrer que $f(-\alpha) = \ln(e^{-\alpha} + 1) + \frac{3}{4}\alpha$.
 - **b.** Démontrer que le quadrilatère MNPQ est un parallélogramme.