Samantha Pope Lab 1: Relational Model and Keys

PART ONE: first bullet point: Product[__SKU(string)__, price(real), name(string, quantity(integer)] second bullet point: Product[__SKU(string)__, price(real), name(string), quantity(integer)] GroceryStoreAisle[__AisleID(integer), name(string)] ProductAisle[(SKU(string) , AisleID(integer)] third bullet point CarList[__VIN(integer)__,make(string), model(string)] Salesperson[SSN(integer) , name(string)] CarsInChargeOf[__VIN(string)__,__SSN(integer)] PART TWO: **CREATE TABLE Patrons {** Name string, CardNum integer PRIMARY KEY **}**; CREATE TABLE Phones { CardNum integer, PhoneNum string PRIMARY KEY(CardNum, PhoneNum), FOREIGN KEY (CardNum) REFERENCES Patrons(CardNum) **}**; CREATE TABLE Titles { ISBN string PRIMARY KEY, Title string, Author string CREATE TABLE Inventory { Serial integer PRIMARY KEY, ISBN string, FOREIGN KEY (ISBN) REFERENCES Titles(ISBN) **}**; CREATE TABLE CheckedOut { CardNum integer, Serial integer PRIMARY KEY (CardNum, Serial), FOREIGN KEY(CardNum) REFERENCES Patrons(CardNum), FOREIGN KEY(Serial) REFERENCES Inventory(Serial), **}**;

PART THREE:

VIN	make	model	year	color
1FTFW1EF1	Toyota	Tacoma	2008	Red
1FTFW2EF2	Toyota	Tacoma	1999	Green
1FTFW3EF3	Tesla	Model 3	2018	White
1FTFW4EF4	Subaru	WRX	2016	Blue
1FTFW5EF5	Ford	F150	2004	Red
ssn	name			
111-11-1111	Arnold			
222-22-2222	Hannah			
333-33-3333	Steve			
VIN	ssn			
1FTFW1EF1	111-11-1111			
1FTFW2EF2	111-11-1111			
1FTFW1EF1	222-22-2222			
1FTFW5EF5	222-22-2222			
1FTFW3EF3	333-33-3333			

PART FOUR

Attribute Sets	Superkey?	Proper Subsets	Key?
{A1}	No	8	No
{A2}	No	8	No
{A3}	No	8	No
{A1, A2}	Yes	{A1}, {A2}	Yes
{A1, A3}	Yes	{A1}, {A3}	Yes
{A2, A3}	Yes	{A2}, {A3}	Yes
{A1, A2, A3}	Yes	{A1, A2}, {A1, A3	No

PART FIVE:

If $\{x\}$ is a superkey, then any set containing x is also a superkey.

True. If x is a superkey, then any set containing it will be a superkey and identify the right tuple.

If $\{x\}$ is a key, then any set containing x is also a key.

False. if X is a key, then x is a minimal superkey. {x,y} would be able to identify tuples, but not be a key but it would be a superkey.

If $\{x\}$ is a key, then $\{x\}$ is also a superkey.

True. because it is as minimal as it can be, so it is a superkey

If $\{x, y, z\}$ is a superkey, then one of $\{x\}$, $\{y\}$, or $\{z\}$ must also be a superkey.

False. None of them could be keys and hold duplicates in their rows but all three together don't have the same rows

If an entire schema consists of the set $\{x, y, z\}$, and if none of the proper subsets of $\{x, y, z\}$ are keys, then $\{x, y, z\}$ must be a key.

True. yes, because that would be the minimal key if none of the subsets of this makes it a superkey.