Grundbegriffe der Theoretischen Informatik

Sommersemester 2017 - Beate Bollig

Die Folien basieren auf den Materialien von Thomas Schwentick.

Teil A: Reguläre Sprachen

3: Äquivalenz der Modelle

Einleitung

- Wir kennen schon:
 - Reguläre Ausdrücke (REs)
 - NFAs (auch mit ϵ -Übergängen)
 - DFAs
- Wir können REs in ϵ -NFAs umwandeln
- In diesem Kapitel werden wir sehen:
 - $-\epsilon$ -NFAs (und NFAs) lassen sich in DFAs umwandeln
 - DFAs lassen sich auch in REs umwandeln
 - → Alle vier Modelle sind gleich mächtig
- Wir werden die Größen der dabei jeweils konstruierten Objekte vergleichen
- Und mit dem Nachweis der Korrektheit von Automaten werden wir uns auch beschäftigen

Inhalt

> 3.1 Vom NFA zum DFA

- 3.2 Vom DFA zum RE
- 3.3 Größenverhältnisse bei den Umwandlungen
- 3.4 Korrektheitsbeweise für DFAs

Vom NFA zum DFA

- Wir verhalten sich NFAs zu DFAs?
- Gibt es Sprachen, die von einem NFA entschieden werden, aber von keinem DFA?
- Erstaunlicherweise und praktischerweise ist die Antwort nein!

Satz 3.1

ullet Zu jedem NFA ${\cal A}$ gibt es einen DFA ${\cal A}_D$ mit $L({\cal A}_D) = L({\cal A})$

Beweisidee

- ullet Als Zustände von ${\cal A}_D$ werden die Teilmengen der Zustandsmenge von ${\cal A}$ gewählt
- ullet Nach Lesen eines Wortes w soll der Zustand von \mathcal{A}_D die Menge aller Zustände von \mathcal{A} sein, zu denen es einen Lauf vom Startzustand gibt, der w liest
 - → Potenzmengen-Automat

Potenzmengen-Automat: Beispiel (1/3)

Beispiel

PINGO-Frage: pingo.upb.de

Was ist die Menge aller Zustände von \mathcal{A} , zu denen es einen Lauf vom Startzustand gibt, der 1010 liest?

- (A) $\{a,b,c\}$
- (B) Ø
- (C) $\{a,c\}$
- (D) $\{a,b\}$

Potenzmengen-Automat: Beispiel (2/3)

Potenzmengen-Automat: Beispiel (3/3)

ullet Es genügt, die von $\{a\}$ aus erreichbaren Zustände in ${\cal A}_{D}$ aufzunehmen

Einschub: Strukturelle Induktion

- Wir beweisen die Korrektheit von \mathcal{A}_D mit struktureller Induktion
- Die Definition von regulären Ausdrücken ist ein Beispiel für eine induktive Definition einer Menge:
 - Zuerst werden gewisse Grundelemente der Menge definiert
 - $* \varnothing$, ϵ und σ , für alle $\sigma \in \Sigma$
 - Dann wird beschrieben, wie aus gegebenen Elementen der Menge neue Elemente gewonnen werden:
 - * Konkatenation, Auswahl, Wiederholung
 - Die Menge besteht dann genau aus allen so (in endlich vielen Schritten) konstruierbaren Elementen
- Ein (hoffentlich) bekanntes Beispiel einer induktiven Definition:
 - $-0 \in \mathbb{N}_0$
 - $-n \in \mathbb{N}_0 \Rightarrow n+1 \in \mathbb{N}_0$

- Induktive Definitionen ermöglichen:
 - induktive Definitionen von Funktionen auf den Elementen der Menge
 - induktive Beweise von Eigenschaften aller Elemente der Menge
- Auch die Menge Σ^* aller Strings über Σ lässt sich induktiv definieren:
 - $\epsilon\in\Sigma^*$
 - Ist $w \in \Sigma^*$ und $\sigma \in \Sigma$, so ist $w \cdot \sigma \in \Sigma^*$
- Induktive Definition einer Funktion über Σ^* :
 - $-\delta^*(q,\epsilon)=q$,
 - $\delta^*(q,u\sigma)=\delta(\delta^*(q,u),\sigma)$ für $u\in\Sigma^*,\sigma\in\Sigma$
- Beweise mit struktureller Induktion beweisen die Aussage zuerst für die Grundelemente und dann für "zusammengesetzte Elemente"

Beweis von Satz 3.1

Satz 3.1

ullet Zu jedem NFA ${\cal A}$ gibt es einen DFA ${\cal A}_D$ mit $L({\cal A}_D)=L({\cal A})$

Beweis

- ullet Sei $\mathcal{A}=(oldsymbol{Q},oldsymbol{\Sigma},oldsymbol{\delta},s,oldsymbol{F})$
- ullet Wir definieren $oldsymbol{\mathcal{A}_D} \stackrel{ ext{def}}{=} (\mathcal{P}(Q), \Sigma, \delta_D, \{s\}, F_D)$

-
$$rac{oldsymbol{\delta_D}(S,\sigma)}{\{q\mid \exists p\in S: p\overset{\sigma}{
ightarrow}q\},}$$
 für alle $S\subseteq Q$ und $\sigma\in \Sigma$, und

- $oldsymbol{eta} oldsymbol{eta} = \{ oldsymbol{S} \subseteq oldsymbol{Q} \, | \, oldsymbol{S} \cap oldsymbol{F} \,
 otag eta \}$
- ullet Für jeden String $oldsymbol{w} \in oldsymbol{\Sigma}^*$ sei $oldsymbol{R}(oldsymbol{w}) \stackrel{ ext{def}}{=} \{oldsymbol{q} \mid oldsymbol{s} \stackrel{oldsymbol{w}}{
 ightarrow} oldsymbol{q} \}$

Beweis (Forts.)

ullet Durch Induktion nach $oldsymbol{w}$ zeigen wir:

$$\boldsymbol{\delta_D^*}(\{s\}, \boldsymbol{w}) = \boldsymbol{R}(\boldsymbol{w})$$
 (*)

$$ullet \ w = \epsilon : \qquad egin{aligned} oldsymbol{\delta_D^*}(\{s\}, \epsilon) = \{s\} = R(\epsilon) \end{aligned}$$

 $\bullet \ w = u\sigma$:

$$egin{aligned} \delta_D^*(\{s\},w) &= \delta_D(\delta_D^*(\{s\},u),\sigma) & ext{is Def } \delta_D^* \ &= \delta_D(R(u),\sigma) & ext{is Induktion} \ &= \{q \mid \exists p \in R(u) : p \overset{\sigma}{
ightarrow} q\} & ext{is Def } \delta_D \ &= \{q \mid \exists p : s \overset{u}{
ightarrow} p \overset{\sigma}{
ightarrow} q\} & ext{is Def } R \ &= R(u\sigma) = R(w) \end{aligned}$$

Also:

 \mathcal{A}_D akzeptiert w $\iff \delta_D^*(\{s\},w) \in F_D$ riangle Def "DFA akzeptiert" $\iff \delta_D^*(\{s\},w) \cap F \neq arnothing$ Def F_D $\iff R(w) \cap F \neq arnothing$ $\Leftrightarrow \mathcal{A}$ akzeptiert w riangle Def "NFA akzeptiert"

durch

Vom ϵ -NFA zum DFA (1/2)

- ullet Wir haben REs nicht in NFAs sondern in ϵ -NFAs umgewandelt
- ightharpoonup ϵ -NFAs müssen auch noch in DFAs umgewandelt werden

Proposition 3.2

ullet Zu jedem ϵ -NFA ${\cal A}$ gibt es einen DFA ${\cal A}_D$ mit $L({\cal A}_D)=L({\cal A})$

Beweisskizze

- Sehr ähnlich zur Umwandlung von NFAs in DFAs
- Wir verwenden einen neuen Begriff:
 - $\epsilon\text{-closure}(p) \stackrel{\text{\tiny def}}{=} \{q \mid p \stackrel{\epsilon}{\rightarrow} q\}$
 - st (Menge aller von p aus ohne Lesen eines Symbols erreichbaren Zustände)
 - Für $S\subseteq Q$: $\underline{\epsilon\text{-closure}(S)} \overset{ ext{def}}{=} \ \bigcup_{S} \epsilon\text{-closure}(q)$
- Gegenüber dem Beweis von Satz 3.1 zu ändern:
 - Startzustand: ϵ -closure(s) statt $\{s\}$
 - $egin{aligned} -oldsymbol{\delta_D}(S,oldsymbol{\sigma}) &\stackrel{ ext{def}}{=} \ \epsilon ext{-closure}(\{oldsymbol{q}\mid \exists oldsymbol{p}\in S:oldsymbol{p}^{oldsymbol{\sigma}}oldsymbol{q}\}) \end{aligned}$

Vom ϵ -NFA zum DFA (2/2)

Beispiel: ϵ -NFA

- ullet ϵ -closure $(oldsymbol{a})=\{oldsymbol{a},oldsymbol{b},oldsymbol{d}\}$
- ϵ -closure $(b) = \{b, d\}$

Die Äquivalenz der Modelle (Forts.)

Vom RE zum DFA

• Im letzten Kapitel hatten wir aus dem erweiterten regulären Ausdruck für Mail-Adressen bereits einen NFA konstruiert:

riangleq Zur Erinnerung: A steht für $a\ldots,z,A\ldots,Z$ und 1 für $0,\ldots,9,-,_$

• Dieser lässt sich in den folgenden DFA umwandeln:

Alle übrigen Übergänge führen in den Zustand Ø

Inhalt

- 3.1 Vom NFA zum DFA
- > 3.2 Vom DFA zum RE
 - 3.3 Größenverhältnisse bei den Umwandlungen
 - 3.4 Korrektheitsbeweise für DFAs

Endliche Automaten vs. reguläre Ausdrücke

 Um den Nachweis der Äquivalenz der betrachteten Modelle abzuschließen, zeigen wir folgendes Resultat

Proposition 3.3 [McNaughton, Yamada 60]

- ullet Zu jedem DFA ${\cal A}$ gibt es einen RE lpha mit $L(lpha)=L({\cal A})$
- Für den Beweis von Proposition 3.3 betrachten wir zuerst einen konstruktiven und anschaulichen Weg, um von \mathcal{A} zu α zu kommen:

Zustandselimination

- Der Nachweis, dass diese Konstruktion korrekt ist, ist aber technisch mühsam
- Deshalb führen wir den formalen Beweis für Proposition 3.3 dann auf eine etwas weniger anschauliche, aber leicht hinzuschreibende Weise

Vom DFA zum RE: Anschauliche Vorgehensweise (1/4)

- Grundidee der anschaulichen Vorgehensweise
 - Wir verwenden ein hybrides Automatenmodell, dessen Transitionen mit regulären Ausdrücken (statt einzelnen Zeichen) beschriftet sind
 - Durch sukzessives Entfernen von Zuständen wird schließlich ein einzelner regulärer Ausdruck erreicht

Ein einfaches Beispiel

und erhalte den regulären Ausdruck 01

• Wandle um in 01 c

ergibt den regulären Ausdruck $(\mathbf{1}+\mathbf{00}^*\mathbf{11})^*\mathbf{00}^*\mathbf{10}(\mathbf{0}+\mathbf{1})^*$

Vom DFA zum RE: Anschauliche Vorgehensweise (2/4)

ullet Im Allgemeinen wird ein **nicht akzeptierender Zustand** z wie folgt entfernt:

Vom DFA zum RE: Anschauliche Vorgehensweise (3/4)

• Im Allgemeinen wird ein **akzeptierender Zustand** z wie folgt behandelt:

Vom DFA zum RE: Anschauliche Vorgehensweise (4/4)

- Am Ende erhalten wir einen hybriden Automaten in einer von zwei Formen:
- 1. Fall:

Startzustand ist **nicht akzeptierend**:

Der zugehörige reguläre Ausdruck ist dann $oldsymbol{eta}^*(lpha_1+lpha_2+lpha_3)$

igotimes Der Fall, dass es in z keine Schleife gibt, enspricht eta=igotimes und liefert $igotimes^*(lpha_1+lpha_2+lpha_3)\equiv (lpha_1+lpha_2+lpha_3)$

• 2. Fall: Startzustand ist **akzeptierend**:

Der zugehörige reguläre Ausdruck ist dann $oldsymbol{eta}^*(lpha_1+lpha_2+lpha_3+\epsilon)$

- Wie gesagt: der Beweis der Korrektheit dieser Vorgehensweise ist etwas mühsam
- Deshalb betrachten wir jetzt einen Beweis, der weniger anschaulich ist, sich aber leichter aufschreiben lässt

Vom DFA zum RE: Beweis (1/4)

Proposition 3.3 [McNaughton, Yamada 60]

ullet Zu jedem DFA ${\cal A}$ gibt es einen regulären Ausdruck lpha mit $L(lpha)=L({\cal A})$

Beweisskizze

- ullet Sei $\mathcal{A} = (oldsymbol{Q}, oldsymbol{\Sigma}, oldsymbol{\delta}, s, oldsymbol{F})$
- ullet Seien oBdA $Q=\{1,\ldots,n\}$ und s=1
- ullet Für jedes $i,j\in\{1,\ldots,n\}$ und $k\in\{0,\ldots,n\}$ soll $oldsymbol{L_{i,j}^k}$ die Menge aller Strings $w\in oldsymbol{\Sigma}^*$ sein, für die der Automat
 - vom Zustand i in den Zustand j übergeht,
 - und zwischendurch nur Zustände aus $\{1,\ldots,k\}$ annimmt
- $ullet \ L_{i,j}^k \stackrel{ ext{ iny def}}{=} ext{Menge aller Strings } w$ mit:
 - $oldsymbol{\delta}^*(oldsymbol{i},oldsymbol{w})=oldsymbol{j}$ und
 - für alle echten Präfixe $oldsymbol{v}
 eq \epsilon$ von $oldsymbol{w}$ ist $oldsymbol{\delta^*(i,v) \leqslant k}$

PINGO-Frage: pingo.upb.de

Ein regulärer Ausdruck für die Menge $L^3_{1,5}$ zum Automaten

ist:

- (A) aa
- (B) aab^*
- (C) $b^*a(bab^*a)^*a$
- (D) $b^*a(bab^*a)^*ab^*$

Vom DFA zum RE: Beweis (2/4)

Beispiel

• Für den Automaten

entspricht die Menge $L^3_{1,5}$ dem (partiellen) Teil-DFA

Vom DFA zum RE: Beweis (3/4)

Beweisskizze (Forts.)

- ullet Behauptung: für jede Menge $L^k_{i,j}$ gibt es einen regulären Ausdruck $lpha^k_{i,j}$ mit $L(lpha^k_{i,j})=L^k_{i,j}$
- ullet Beweis durch Induktion nach $oldsymbol{k}$
- $egin{aligned} ullet & k=0: \ &- ext{Für} ~ i \neq j ext{ ist} \ & L^0_{i,j} = \{ oldsymbol{\sigma} \in oldsymbol{\Sigma} \mid oldsymbol{\delta}(i, oldsymbol{\sigma}) = j \} \end{aligned}$
 - Hier sind nur direkte Übergänge erlaubt! Keine Zwischenschritte!
 - Analog: $L_{i,i}^0 = \{\epsilon\} \cup \{oldsymbol{\sigma} \in oldsymbol{\Sigma} \mid oldsymbol{\delta}(i,oldsymbol{\sigma}) = i\}$
- $ullet L_{i,j}^0$ und $L_{i,i}^0$ sind endlich und können deshalb durch reguläre Ausdrücke beschrieben werden

Vom DFA zum RE: Beweis (4/4)

Beispiel

$$\underbrace{ab}_{\in L^2_{1,3}}\underbrace{abbbab}_{\in L^2_{3,3}}\underbrace{abaa}_{\in L^2_{3,5}}\in L^3_{1,5} \ (!)$$

Beweisskizze (Forts.)

- $egin{aligned} ullet & k > 0: \ L_{i,j}^k = L_{i,j}^{k-1} \cup L_{i,k}^{k-1} (L_{k,k}^{k-1})^* L_{k,j}^{k-1} \end{aligned}$
- ullet Nach Induktion gibt es für jede auf der rechten Seite vorkommende Sprache einen regulären Ausdruck, also auch für $L^k_{i,j}$
- ullet Der RE lpha ist dann $\sum_{m{i}\inm{F}}lpha_{1,m{i}}^{m{n}}$
- Die Konstruktion funktioniert natürlich genauso auch für NFAs

Vom DFA zum RE: Beispiel

Beispiel

•
$$k = 0$$
:

$$-lpha_{1,1}^0=b+\epsilon$$
, $lpha_{1,2}^0=a$, $lpha_{2,1}^0=arnothing$, $lpha_{2,2}^0=a+b+\epsilon$

•
$$k = 1$$
:

$$-lpha_{1,1}^1=b+\epsilon+(b+\epsilon)(b+\epsilon)^*(b+\epsilon)$$

$$-lpha_{1,2}^{1}=a+(b+\epsilon)(b+\epsilon)^*a$$

$$-\alpha_{2,1}^{1,2}=\varnothing+\varnothing(b+\epsilon)^*(b+\epsilon)$$

$$-\alpha_{\mathbf{2},\mathbf{2}}^{\mathbf{1}} = (a+b+\epsilon) + \varnothing (b+\epsilon)^*a$$

•
$$k = 2$$
:

$$oldsymbol{-} lpha_{1.1}^2 = b^* + b^* a (a + b + \epsilon)^* arnothing$$

$$oldsymbol{a} - lpha_{1.2}^2 = b^*a + b^*a(a+b+\epsilon)^*(a+b+\epsilon)$$

$$-\alpha_{2,1}^2=\varnothing+(a+b+\epsilon)(a+b+\epsilon)^*\varnothing$$

$$-\alpha_{2,2}^2 = (a+b+\epsilon) + (a+b+\epsilon)(a+b+\epsilon)^*(a+b+\epsilon) \equiv (a+b)^*$$

$$\bullet \ \alpha = b^*a(a+b)^*$$

(mit
$$k=2$$
 hier nur $lpha_{1,2}^2$ nötig)

 $\equiv b^*$

 $\equiv \emptyset$

 $\equiv b^*$

 $\equiv \emptyset$

 $\equiv b^*a$

 $\equiv a + b + \epsilon$

 $\equiv b^*a(a+b)^*$

Reguläre Sprachen: Äquivalenz

• Insgesamt haben wir den folgenden Satz bewiesen:

Satz 3.4

Für eine Sprache $L\subseteq \Sigma^*$ sind äquivalent:

- (a) $oldsymbol{L} = oldsymbol{L}(oldsymbol{lpha})$ für einen RE $oldsymbol{lpha}$
- (b) $oldsymbol{L} = oldsymbol{L}(oldsymbol{\mathcal{A}})$ für einen DFA $oldsymbol{\mathcal{A}}$
- (c) $L=L({\cal A})$ für einen NFA ${\cal A}$
- (d) $L=L(\mathcal{A})$ für einen ϵ -NFA \mathcal{A}
 - Die regulären Sprachen bilden also eine sehr robuste Klasse von Sprachen

Die Äquivalenz der Modelle (Forts.)

Inhalt

- 3.1 Vom NFA zum DFA
- 3.2 Vom DFA zum RE
- - 3.4 Korrektheitsbeweise für DFAs

Vom NFA zum DFA: Größe des Potenzmengenautomaten

- Wir groß kann der Potenzmengenautomat \mathcal{A}_D im Verhältnis zu \mathcal{A} im Beweis von Satz 3.1 werden?
- ullet Klar: maximal $2^{|Q|}$ Zustände (= Anzahl der Teilmengen von Q)
- ullet Aber: kann es wirklich passieren, dass alle möglichen Teilmengen von Q erreichbar sind?

Beispiel

- ullet Dieser Automat akzeptiert, falls das n-te Zeichen von rechts eine 1 ist
- ullet Wir werden in Kapitel 4 zeigen: es gibt keinen DFA mit $<\mathbf{2}^{|Q|-1}$ Zuständen für diese Sprache

Vom DFA zum RE: Größe des REs

- Wie groß wird der RE α , der bei der Umwandlung vom DFA $\mathcal A$ nach dem Beweis von Proposition 3.3 entsteht?
- ullet Sei $oldsymbol{g}(oldsymbol{k})$ die maximale Länge eines Ausdrucks für $oldsymbol{L_{i,j}^k}$
- Dann gilt:

$$egin{aligned} &-m{g}(\mathbf{0}) = m{\mathcal{O}}(|m{\Sigma}|) \ &-m{g}(m{k}) \leqslant m{4}m{g}(m{k}-m{1}) + m{\mathcal{O}}(m{1}) \end{aligned}$$

ullet Also: $oldsymbol{g}(oldsymbol{n}) = oldsymbol{4^{\mathcal{O}(n)}} |oldsymbol{\Sigma}|$

Die Äquivalenz der Modelle: Größenverhältnisse

Inhalt

- 3.1 Vom NFA zum DFA
- 3.2 Vom DFA zum RE
- 3.3 Größenverhältnisse bei den Umwandlungen
- > 3.4 Korrektheitsbeweise für DFAs

Korrektheitsbeweis für Automaten (1/2)

ullet Zur Erinnerung: L_g ist die Menge aller Strings über $\{0,1\}$ mit gerade vielen Einsen und Nullen

- ullet Es erscheint offensichtlich, dass ${\cal A}_g$ die Sprache L_g entscheidet
- Können wir das auch beweisen?

- Wir benötigen für den Beweis ein wenig Notation:
 - $-rac{\#_{m{ au}}(m{w})}{\mathsf{chens}\;m{ au}}\stackrel{\mathsf{def}}{=}\mathsf{H\ddot{a}}\mathsf{ufigkeit}\;\mathsf{des}\;\mathsf{Vorkommens}\;\mathsf{des}\;\mathsf{Zei-}$ $\mathsf{chens}\;m{ au}\;\mathsf{im}\;\mathsf{String}\;m{w}$ $*\;\mathsf{z.B.:}\;\#_{m{a}}(m{baaba})=\mathbf{3}$
 - $\underline{n} \equiv_{\pmb{k}} \underline{m} \stackrel{ ext{\tiny def}}{\Leftrightarrow} n$ und m haben bei Division durch k denselben Rest (für $k \in \mathbb{N}$) * z.B.: $\mathbf{5} \equiv_{\mathbf{3}} \mathbf{2}$
- Mit dieser Notation definieren wir formal:

$$egin{aligned} - \, \underline{L_{m{g}}} &\stackrel{ ext{def}}{=} \, \{ m{w} \in \{ m{0}, m{1} \}^* \mid \ & \#_{m{0}}(m{w}) \equiv_{m{2}} m{0}, \#_{m{1}}(m{w}) \equiv_{m{2}} m{0} \} \end{aligned}$$

Proposition 3.5

- ullet $L(\mathcal{A}_g) = L_g$
- ullet Korrektheitsbeweise für Automaten zeigen meisten durch Induktion nach $oldsymbol{w}$, dass die intuitive Bedeutung der Zustände mit der tatsächlichen Bedeutung übereinstimmt

Korrektheitsbeweis für Automaten (2/2)

Proposition 3.5

ullet $L(\mathcal{A}_g) = L_g$

Beweisskizze

ullet Wir zeigen durch Induktion nach $|oldsymbol{w}|,$ dass für alle $oldsymbol{w} \in oldsymbol{\Sigma}^*$ gilt:

$$egin{aligned} -\delta^*(q_{gg},w) &= q_{gg} \Longleftrightarrow \ \#_0(w) &\equiv_2 0, \#_1(w) \equiv_2 0 \ -\delta^*(q_{gg},w) &= q_{ug} \Longleftrightarrow \ \#_0(w) &\equiv_2 1, \#_1(w) \equiv_2 0 \ -\delta^*(q_{gg},w) &= q_{gu} \Longleftrightarrow \ \#_0(w) &\equiv_2 0, \#_1(w) \equiv_2 1 \ -\delta^*(q_{gg},w) &= q_{uu} \Longleftrightarrow \ \#_0(w) &\equiv_2 1, \#_1(w) \equiv_2 1 \end{aligned}$$

ullet Daraus folgt dann die Proposition wegen $oldsymbol{F} = \{oldsymbol{q_{qq}}\}$

Beweisskizze (Forts.)

- $w = \epsilon$: \checkmark
- ullet $w=v\sigma$ für ein $v\in \Sigma^*$ und ein $\sigma\in \Sigma$:
 - Nach Induktion gilt für $oldsymbol{v}$ die Induktionsbehauptung
 - Wir unterscheiden 8 Fälle, je nach σ und $\delta^*(q_{gg},v)$:
 - * Beispielfall:

$$oldsymbol{\sigma}=1, oldsymbol{\delta}^*(q_{oldsymbol{gg}},oldsymbol{v})=q_{oldsymbol{ug}} \ lackbol{+}\#_{oldsymbol{0}}(oldsymbol{v})\equiv_{oldsymbol{2}}1,\#_{oldsymbol{1}}(oldsymbol{v})\equiv_{oldsymbol{2}}0$$

Induktion

$$\implies \#_0(w) \equiv_2 1, \#_1(w) \equiv_2 1$$

 lack da $\sigma=1$

- lacktrianger Behauptung lacktrianger da $\delta(q_{oldsymbol{ug}},1)=q_{oldsymbol{uu}}$
- Die anderen sieben Fälle sind analog

Zusammenfassung

Themen dieser Vorlesung

- Umwandlung von NFAs und ϵ -NFAs in DFAs (Potenzmengenkonstruktion)
- Umwandlung von DFAs in REs
- Korrektheitsbeweise für endliche Automaten

Kapitelfazit

- Alle betrachteten Modelle beschreiben reguläre Sprachen
- Einige Umwandlungen zwischen den Modellen können exponentiell große Objekte erzeugen

Erläuterungen: Präfixe, Suffixe und Teilstrings

Bemerkung <3.1

- ullet Sind x,y,z Wörter und ist w=xyz, so heißt
 - -x ein <u>Präfix</u> von w,
 - $-\ y$ ein **Teilstring** von w und
 - z ein <u>Suffix</u> von w
- ullet Dabei können x, y oder z auch leer sein.
- ullet Ein **echtes Präfix** $oldsymbol{x}$ von $oldsymbol{w}$ ist ein Präfix mit $oldsymbol{x} + oldsymbol{w}$

Beispiel

- Der String abab hat die
 - Präfixe ϵ , a, ab, aba, abab
 - Suffixe ϵ , b, ab, bab, abab
 - Teilstrings, ϵ , a, b, ab, ba, aba, bab, abab

Literaturhinweise

Umwandlung DFA → RE: R. McNaughton and H. Yamada. Regular Expressions and State Graphs for Automata. IEEE Transactions on Electronic Computers, EC-9:39–47, 1960