Response_Ratios_V3

Jackson Hoeke

6/3/2021

Create response ratio function

```
# response_ratio is the function, and it uses 4 imputs:
# df is a data frame being referenced
# column is the column in the data frame with the density of the taxon
# title is a character, the name of the taxon being graphed
# subtitle is a character, the region/substrate being graphed
response_ratio <- function(df, column, title, subtitle){</pre>
  MPAs <- subset(df, Designation == "MPA") # create data frame of only MPA
  References <- subset(df, Designation == "Reference") # vice versa for Ref
  logmean <- function(MPAs, References, column, year){</pre>
    x <- subset(MPAs, Year == as.character(year))
    y <- subset(References, Year == as.character(year))
    log(mean(x[,column])/mean(y[,column])) # Setup function to take the natural
    # log of: average density in the MPA over the average density in the Ref
    # This data will create the points on each graph
  std <- function(x){</pre>
    sd(x)/sqrt(length(x))
    # function for standard error
  }
  logerror <- function(MPAs, References, column, year){</pre>
    x <- subset(MPAs, Year == as.character(year))
    y <- subset(References, Year == as.character(year))
    log(std(x[,column])/std(y[,column])) # Setup function to take the natural
    # log of: average standard error in the MPA over the average standard error
    # in the Ref. This data will create the error bars on each graph
  }
  logmeans <- c(logmean(MPAs, References, column, 2005),</pre>
                logmean (MPAs, References, column, 2006),
                logmean (MPAs, References, column, 2007),
                logmean (MPAs, References, column, 2008),
                logmean (MPAs, References, column, 2009),
                logmean(MPAs, References, column, 2011),
                logmean(MPAs, References, column, 2012),
```

```
logmean(MPAs, References, column, 2014),
              logmean (MPAs, References, column, 2015),
              logmean (MPAs, References, column, 2016),
              logmean(MPAs, References, column, 2019))
# Creates a vector of response ratios log(mean MPA/mean Ref) for each year
logerrors <- c(logerror(MPAs, References, column, 2005),</pre>
               logerror (MPAs, References, column, 2006),
               logerror(MPAs, References, column, 2007),
               logerror(MPAs, References, column, 2008),
               logerror(MPAs, References, column, 2009),
               logerror(MPAs, References, column, 2011),
               logerror(MPAs, References, column, 2012),
               logerror (MPAs, References, column, 2014),
               logerror (MPAs, References, column, 2015),
               logerror(MPAs, References, column, 2016),
               logerror(MPAs, References, column, 2019))
# Creates a vector of error bars log(error MPA/error Ref) for each year
Year <- c(2005,2006,2007,2008,2009,2011,2012,2014,2015,2016,2019)
# Creates a vector of years
data <- data.frame(logmeans, logerrors, Year)</pre>
# Generates a data frame of response ratios and standard error for each year
ggplot(data, aes(x=Year, y=logmeans)) +
 geom_point(shape=21,size=6, alpha=0.5, position=position_dodge(0.9),
             fill="red")+
 ylab('Response Ratio (Density)')+
 xlab('Years')+ geom_hline(yintercept = 0, linetype="dashed")+
  geom_errorbar(aes(ymax=logmeans+logerrors, ymin=logmeans-logerrors),
                position=position_dodge(0.9), width=0)+
 scale_y_continuous(breaks= pretty_breaks())+coord_flip()+
 ggtitle(title, subtitle)+
 theme(text = element_text(size = 16))
# Plots the response ratios and standard error with the title and subtitle
# plugged into the function
```

Run response ratios and all permutations

```
### Start running data sets ###
base_data <- data.frame(read.csv("V3f.csv"))
# Imports version 3 final data into R
base_data <- na.omit(base_data)
# Removes unusable lines of the data frame that return NAs

## Run response ratios ##
## First using statewide data ##
## Species ##</pre>
```

Parastichopus californicus

response_ratio(base_data, 175, "Stylaster californicus", " ") ## hydrocoral ##

Stylaster californicus

response_ratio(base_data, 177, "Urticina piscivora", " ") ## Fish-eating anemone ##

Urticina piscivora

response_ratio(base_data, 178, "Tethya aurantia", " ") ## Puffball sponge ##

Tethya aurantia

response_ratio(base_data, 179, "Mediaster aequalis", " ") ## Red sea star ##

Mediaster aequalis

response_ratio(base_data, 180, "Mesocentrotus franciscana", " ") ## Red sea urchin ##

Mesocentrotus franciscana

response_ratio(base_data, 181, "Pycnopodia helianthoides", " ") ## Sunflower star ##

Pycnopodia helianthoides

response_ratio(base_data, 182, "Stylatula elongata", " ") ## White sea pen ##

Stylatula elongata


```
## Functional Groups ##
response_ratio(base_data, 183, "Actiniaria", " ") ## Anemones ##
```

Actiniaria

response_ratio(base_data, 184, "Asteroidea", " ") ## Sea stars ##

Asteroidea

response_ratio(base_data, 185, "Corals", " ") ## Reef-forming cnidarians ##

Corals

response_ratio(base_data, 186, "Echinoidea", " ") ## Sea urchins ##

Echinoidea

response_ratio(base_data, 187, "Holothuroidea", " ") ## Sea cucumbers ##

Holothuroidea

response_ratio(base_data, 188, "Malacostraca", " ") ## Crabs and allies ##

Malacostraca

response_ratio(base_data, 189, "Pennatulacea", " ") ## Sea pens ##

Pennatulacea

response_ratio(base_data, 190, "Porifera", " ") ## Sponges ##

Porifera


```
## Next, run response ratios on regional data

North <- subset(base_data, Region == "North" | Region == "North Central" | Region == "North Coast")
Central <- subset(base_data, Region == "Central")
South <- subset(base_data, Region == "South" | Region == "Channel Islands")
Channel.Islands <- subset(base_data, Region == "Channel Islands")

### North ###
## Species ##
response_ratio(North, 176, "Parastichopus californicus", "North") ## sea cucumber ##</pre>
```

Parastichopus californicus North

response_ratio(North, 175, "Stylaster californicus", "North") ## hydrocoral ##

Stylaster californicus North

response_ratio(North, 177, "Urticina piscivora", "North") ## Fish-eating anemone ##

Urticina piscivora North

response_ratio(North, 178, "Tethya aurantia", "North") ## Puffball sponge ##

Tethya aurantia North

response_ratio(North, 179, "Mediaster aeaqulis", "North") ## Red sea star ##

Mediaster aeaqulis North

response_ratio(North, 180, "Mesocentrotus franciscanus", "North") ## Red sea urchin ##

Mesocentrotus franciscanus North

response_ratio(North, 181, "Pycnopodia helianthoides", "North") ## Sunflower star ##

Pycnopodia helianthoides North

response_ratio(North, 182, "Stylatula elongata", "North") ## White sea pen ##

Stylatula elongata North


```
## Functional Groups ##
response_ratio(North, 183, "Actiniaria", "North") ## Anemones ##
```


Asteroidea North

response_ratio(North, 185, "Corals", "North") ## Reef-forming cnidarians ##

Echinoidea North

response_ratio(North, 187, "Holothuroidea", "North") ## Sea cucumbers ##

Holothuroidea North

response_ratio(North, 188, "Malacostraca", "North") ## Crabs and allies ##

Malacostraca North

response_ratio(North, 189, "Pennatulacea", "North") ## Sea pens ##

Pennatulacea North

response_ratio(North, 190, "Porifera", "North") ## Sponges ##

Porifera North 2020201520102005-2 -1 0 1 2 Response Ratio (Density)

```
### Central ###

## Species ##

response_ratio(Central, 176, "Parastichopus californicus", "Central") ## sea cucumber ##
```

Parastichopus californicus Central

response_ratio(Central, 175, "Stylaster californicus", "Central") ## hydrocoral ##

Stylaster californicus Central

response_ratio(Central, 177, "Urticina piscivora", "Central") ## Fish-eating anemone ##

Urticina piscivora Central

response_ratio(Central, 178, "Tethya aurantia", "Central") ## Puffball sponge ##

Tethya aurantia Central

response_ratio(Central, 179, "Mediaster aequalis", "Central") ## Red sea star ##

Mediaster aequalis Central

response_ratio(Central, 180, "Mesocentrotus franciscanus", "Central") ## Red sea urchin ##

Mesocentrotus franciscanus Central

response_ratio(Central, 181, "Pycnopodia helianthoides", "Central") ## Sunflower star ##

Pycnopodia helianthoides Central

response_ratio(Central, 182, "Stylatula elongata", "Central") ## White sea pen ##

Stylatula elongata Central


```
## Functional Groups ##
response_ratio(Central, 183, "Actiniaria", "Central") ## Anemones ##
```

Actiniaria Central

response_ratio(Central, 184, "Asteroidea", "Central") ## Sea stars ##

response_ratio(Central, 185, "Corals", "Central") ## Reef-forming cnidarians ##

Echinoidea Central

response_ratio(Central, 187, "Holothuroidea", "Central") ## Sea cucumbers ##

Holothuroidea Central

response_ratio(Central, 188, "Malacostraca", "Central") ## Crabs and allies ##

Malacostraca Central

response_ratio(Central, 189, "Pennatulacea", "Central") ## Sea pens ##

Pennatulacea Central

response_ratio(Central, 190, "Porifera", "Central") ## Sponges ##

Porifera Central 2020 2015 2010 2005 Response Ratio (Density)

```
### South ###

## Species ##

response_ratio(South, 176, "Parastichopus californicus", "South") ## sea cucumber ##
```

Parastichopus californicus South

response_ratio(South, 175, "Stylaster californicus", "South") ## hydrocoral ##

Stylaster californicus South

response_ratio(South, 177, "Urticina piscivora", "South") ## Fish-eating anemone ##

Urticina piscivora South

response_ratio(South, 178, "Tethya aurantia", "South") ## Puffball sponge ##

Tethya aurantia South

response_ratio(South, 179, "Mediaster aequalis", "South") ## Red sea star ##

Mediaster aequalis South

response_ratio(South, 180, "Mesocentrotus franciscanus", "South") ## Red sea urchin ##

Mesocentrotus franciscanus South

response_ratio(South, 181, "Pycnopodia helianthoides", "South") ## Sunflower star ##

Pycnopodia helianthoides South

response_ratio(South, 182, "Stylatula elongata", "South") ## White sea pen ##

Stylatula elongata South


```
## Functional Groups ##
response_ratio(South, 183, "Actiniaria", "South") ## Anemones ##
```

Actiniaria South

response_ratio(South, 184, "Asteroidea", "South") ## Soft corals ##

Asteroidea South

response_ratio(South, 185, "Corals", "South") ## Reef-forming cnidarians ##

Echinoidea South

response_ratio(South, 187, "Holothuroidea", "South") ## Sea cucumbers ##

Holothuroidea South

response_ratio(South, 188, "Malacostraca", "South") ## Crabs and allies ##

Malacostraca South

response_ratio(South, 189, "Pennatulacea", "South") ## Sea pens ##

Pennatulacea South

response_ratio(South, 190, "Porifera", "South") ## Sponges ##


```
### Channel Islands ###

## Species ##

response_ratio(Channel.Islands, 176, "Parastichopus californicus", "Channel.Islands") ## sea cucumber #
```

Parastichopus californicus Channel.Islands

response_ratio(Channel.Islands, 175, "Stylaster californicus", "Channel.Islands") ## hydrocoral ##
Warning: Removed 4 rows containing missing values (geom_point).

Stylaster californicus Channel.Islands

response_ratio(Channel.Islands, 177, "Urticina piscivora", "Channel.Islands") ## Fish-eating anemone ##

Urticina piscivora Channel.Islands

response_ratio(Channel.Islands, 178, "Tethya aurantia", "Channel.Islands") ## Puffball sponge ##
Warning: Removed 4 rows containing missing values (geom_point).

Tethya aurantia Channel.Islands

response_ratio(Channel.Islands, 179, "Mediaster aeqaulis", "Channel.Islands") ## Red sea star ##

Mediaster aeqaulis Channel.Islands

response_ratio(Channel.Islands, 180, "Mesocentrotus franciscanus", "Channel.Islands") ## Red sea urchin

Mesocentrotus franciscanus Channel.Islands

response_ratio(Channel.Islands, 181, "Pycnopodia helianthoides", "Channel.Islands") ## Sunflower star #

Pycnopodia helianthoides Channel.Islands

response_ratio(Channel.Islands, 182, "Stylatula elongata", "Channel.Islands") ## White sea pen ##

Stylatula elongata Channel.Islands


```
## Functional Groups ##
response_ratio(Channel.Islands, 183, "Actiniaria", "Channel.Islands") ## Anemones ##
```

Actiniaria Channel.Islands

response_ratio(Channel.Islands, 184, "Asteroidea", "Channel.Islands") ## Sea stars ##

Asteroidea Channel.Islands

response_ratio(Channel.Islands, 185, "Corals", "Channel.Islands") ## Reef-forming cnidarians ##

Corals Channel.Islands

response_ratio(Channel.Islands, 186, "Echinoidea", "Channel.Islands") ## Sea urchins ##

Echinoidea Channel.Islands

response_ratio(Channel.Islands, 187, "Holothuroidea", "Channel.Islands") ## Sea cucumbers ##

Holothuroidea Channel.Islands

response_ratio(Channel.Islands, 188, "Malacostraca", "Channel.Islands") ## Crabs and allies ##
Warning: Removed 4 rows containing missing values (geom_point).

Malacostraca Channel.Islands

response_ratio(Channel.Islands, 189, "Pennatulacea", "Channel.Islands") ## Sea pens ##

Pennatulacea Channel.Islands

response_ratio(Channel.Islands, 190, "Porifera", "Channel.Islands") ## Sponges ##

