Algorithms of F0 detection in vocal voice scale analysis

Angelika Konieczna

Work objectives and scope

- overview of F0 detection methods
- implementation of selected algorithms

Project requirements

- input recording of a few seconds of sound
- output information about its F0
- programming language Python
- necessary devices speaker and microphone, e.g. built in laptop

Value of basic frequency (F0)

Algorithms operating in the time domain - Zero crossing analysis

Zero crossing analysis

Autocorrelation function analysis

Algorithm based on spectral analysis

YIN

Power per bandwidth (PSD)

The results produced by the presented algorithms

Signal type	Expected value [Hz]	Zero crossing analysis (entire recording) [Hz]	Zero crossing analysis (part of recording) [Hz]	Autocorrelati on function [Hz]	YIN [Hz]	Spectral analysis [Hz]	PSD [Hz]
Sine	220	279	220	220	220	220	258
Piano	220	423	502	220,6	220	219,95	258
Vocal voice	220	830	468	220,54	220	221,49	258
Vocal voice	146	455,94	153	147,89	147	148,1	258
Vocal voice	200	1526,27	397	200,61	202	201,81	430
Vocal voice	349	848	352	351,48	354	354,36	340

Literature

- 1. Cheveigne A., Kawahara H., YIN, a fundamental frequency estimator for speech and music, Acoustical Society of America, 2002
- 2. Librosa, domentation, https://librosa.org/, access: 05.2021
- 3. SciPy, domentation, https://docs.scipy.org/doc/, access: 05.2021
- 4. Szwoch E., *Cyfrowe przetwarzanie sygnałów w języku Python*, Gdańsk, 2017 2018, URL: https://sound.eti.pg.gda.pl/~greg/dsp/, dostęp: 05.2021