Lecture 8

Brownian Motion and Black & Scholes model

Presented by: Yan 07-08/12/2024

where x_1, x_2, x_3 are identically, and independently distributed (iid) random variables taking values +1 n-1 with equal probability, eg $\mathbb{P}(x_i = +1) = \mathbb{P}(x_i = -1) = \frac{1}{2}$

First, recall the Random Walk

$$Y_{k} = \sum_{i=1}^{k} x_{i} , k = 0,1,...$$

Where $\{x_{i}\}_{i=1}^{\infty}$ are random variables

$$x_{i} \in \{-1,+1\} \text{ and probabilities are equal}.$$

$$IF(x_{i}=-1) = IF(x_{i}=+1) = \frac{1}{2}$$

$$\Rightarrow E[x_{i}] = (-1)\frac{1}{2} + (+1)\frac{1}{2} = 0$$

$$E[(x_{i})^{2}] = 1 \text{ because } x_{i}^{2} = 1$$

$$\Rightarrow \text{ variance } (x_{i}) = E[x_{i}^{2}] - (E[x_{i}])^{2} = 1$$

$$E[(\gamma_k)^2] = k$$

for all k

The proof is as follows:

$$(X1+X2) * (X1+X2) = ?$$

 $(X_1+X_2)\cdot(X_1+X_2)$ 表示一个二次项的展开,可以使用完全平方公式展开:

$$(X_1 + X_2)^2 = X_1^2 + 2X_1X_2 + X_2^2$$

因此,结果是:

$$X_1^2 + 2X_1X_2 + X_2^2$$

(X1+X2+X3) * (X1+X2) = ?

我们通过分配律展开 $(X_1 + X_2 + X_3) \cdot (X_1 + X_2)$, 逐项相乘:

$$(X_1+X_2+X_3)\cdot(X_1+X_2)=X_1(X_1+X_2)+X_2(X_1+X_2)+X_3(X_1+X_2)$$

继续展开:

$$= X_1^2 + X_1 X_2 + X_2 X_1 + X_2^2 + X_3 X_1 + X_3 X_2$$

合并同类项(如果存在):

$$= X_1^2 + 2X_1X_2 + X_2^2 + X_3X_1 + X_3X_2$$

最终结果为:

$$X_1^2 + 2X_1X_2 + X_2^2 + X_3X_1 + X_3X_2$$

$$(X1+X2+...+X4) * (X1+X2+...+X7) = ?$$

我们将 $(X_1+X_2+X_3+X_4)\cdot (X_1+X_2+X_3+X_4+X_5+X_6+X_7)$ 展开。

根据分配律,每个项相乘并展开:

$$(X_1 + X_2 + X_3 + X_4) \cdot (X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7) = \sum_{i=1}^4 \sum_{j=1}^7 X_i X_j$$

展开计算

每一项 X_i 都与 X_1, X_2, \ldots, X_7 相乘,总共有 $4 \times 7 = 28$ 个项,逐一写出:

$$=X_{1}^{2}+X_{1}X_{2}+X_{1}X_{3}+X_{1}X_{4}+X_{1}X_{5}+X_{1}X_{6}+X_{1}X_{7}+X_{2}X_{1}+X_{2}^{2}+X_{2}X_{3}+X_{2}X_{4}+X_{2}X_{5}+X_{2}X_{6}+X_{2}X_{7}+X_{3}X_{1}+X_{3}X_{2}+X_{3}^{2}+X_{3}X_{4}+X_{3}X_{5}+X_{3}X_{6}+X_{3}X_{7}+X_{4}X_{1}+X_{4}X_{2}+X_{4}X_{3}+X_{4}^{2}+X_{4}X_{5}+X_{4}X_{6}+X_{4}X_{7}+X_{5}X_{6}+X_{5}X_{7}+X$$

简化

通常这类展开结果会按照需要来分组或因式分解,但完整表达如下:

结果 =
$$\sum_{i=1}^{4} \sum_{j=1}^{7} X_i X_j$$

Conclusion

As in the Binomial model, we want to let n tend to infinity. However, without scaling the process Y explodes. So we rescale and define a new processes by,

$$X_k^{(n)} := \frac{1}{\sqrt{n}} Y_k, \quad k = 0, 1, 2, \dots,$$

and

$$W_t^{(n)} := X_{\lfloor nt \rfloor}^{(n)}, \quad t \ge 0,$$

where $\lfloor a \rfloor$ is the largest integer less than or equal to a.

Then, for any $t \ge 0$,

$$W_t^{(n)} = \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} x_i.$$

As $\mathbf{E}[x_i] = 0$ and $\mathbf{E}[(x_i)^2] = 1$ for each i,

$$\mathbf{E}[W_t^{(n)}] = \mathbf{E}[X_{\lfloor nt \rfloor}^{(n)}] = 0,$$

$$\mathbf{E}\left[\left(W_{t}^{(n)}\right)^{2}\right] = \frac{1}{n} \mathbf{E}\left[\left(\sum_{i=1}^{\lfloor nt \rfloor} x_{i}\right)^{2}\right]$$

$$= \frac{1}{n} \mathbf{E}\left[\left(\sum_{i=1}^{\lfloor nt \rfloor} x_{i} \sum_{j=1}^{\lfloor nt \rfloor} x_{j}\right)\right]$$

$$= \frac{1}{n} \mathbf{E}\left[\sum_{i=1}^{\lfloor nt \rfloor} \sum_{j=1}^{\lfloor nt \rfloor} x_{i} x_{j}\right]$$

$$= \frac{1}{n} \sum_{i=1}^{\lfloor nt \rfloor} \sum_{j=1}^{\lfloor nt \rfloor} \mathbf{E}\left[x_{i} x_{j}\right].$$

When $i \neq j$, x_i is independent of x_j . Hence, $\mathbf{E}[x_i x_j] = \mathbf{E}[x_i] \mathbf{E}[x_j] = 0$. On the other hand, when i = j, $x_i x_j = x_i^2 = 1$. Hence,

$$\mathbf{E}\left[\left(W_t^{(n)}\right)^2\right] = \frac{1}{n} \sum_{i=1}^{\lfloor nt \rfloor} \sum_{j=1}^{\lfloor nt \rfloor} \mathbf{E}\left[x_i x_j\right]$$

$$= \frac{1}{n} \sum_{i=1}^{\lfloor nt \rfloor} 1$$

$$= \frac{\lfloor nt \rfloor}{n} \approx t, \quad \text{for large } n.$$

Again
$$u_m = \cancel{\times} + 1$$
's in $m = kps$
 $\Rightarrow \text{ there are } m - u_m \text{ many } -1$'s in $m = kps$
 $\Rightarrow Y_m = (+1) u_m + (-1) (m - u_m)$
 $= 2u_m - m$
 $P(Y_m = 2k - m) = P(u_m = k)$
 $por m = 1, \dots$
 $por m = 1,$

Theorem. For any
$$0 \le B \le m$$
,

 $P(M_m \ge B) = 2P(T_m > B) + P(T_m = B)$

where

 $M_m = max \le T_0 = 0$, T_1 , ..., $T_m \le T_0$

Solution by dynamic programning. Original set {x1, ... xn} R= 2001 bags a heady collected i= Not left-most loogs collected R=0,..,n: , l=0,.., R Op(i) = maximum amount of items the top player can collect from this point on assuming that the other player plays . planitgo we wi) = maximom amount of items the other player can collect

Then the choices for the top player are choose left: gets
$$x_{i+1} + w_{k+1}$$
 (it)

Choose right: gets $x_{n-k+i} + w_{k+1}$ (i)

Then we choose the maximum.

 $V_{k}(i) = \max_{k} x_{i+1} + w_{k+1}$ (ii);

 $x_{n-k+i} + w_{k+1}$ (iii);

 $x_{n-k+i} + w_{k+1}$ (ii);

 $w_{k}(i) = \begin{cases} v_{k+1}(i) & \text{if right optimal} \\ v_{k+1}(i+1) & \text{if left optimal} \end{cases}$
 $k = 0,1,...,n-1$
 $i = 0,1,...,k$.

Thank you!

Presented by: Yan 07-08/12/2024