Machine Learning Project using Online Retail dataset

Prepared by: Kisha Taylor

Date: Oct. 2, 2019

Marketing Analytics -Unsupervised Learning clustering algorithmn.

Objective: We are performing customer segmentation based on key attributes Recency, Frequency & Monetary (RFM) using K-means.

What is customer segmentation and why bother?

What is customer segmentation? Customer segmentation is the division of customers into various groups based on specific attributes. Segmenation Types may vary based on these four main characteristics/variable-types:

- 1. Demographics (eg. age, incme, gender etc.)
- 2. Geographic regions (eg. country, region, city, town etc.)
- 3. Psychographic (eg. interests, personality traits, attitudes, views)
- 4. Behaviour (eg. actual spending pattern/actual purchases)

Benefits of Sementation

Marketers segment customers because it allows them to better understand the various types of customers and hence better serve their needs to ultimately yield increase in revenue. Better served customers are happier customers and happier customers spend more leading to a more favourle company bottom-line.

So, in short, if we adopt a more tailored approach to they way we market products/services to our customer the customers feel more valued and the company benefits financially. This bets the one-size fits all approach (when no differentiation is made among customers).

This segmentation of customers also helps companies to identify customers that are their most valuable customers and hence direct more efforts at those customers and less on the customers that have been the least profitable. Segmentation based on behaviour (type #4 above) offers this approach where, based on attributes such as: (i) Recency (R) - the last time a purchase was made (ii) Frequency (F) - the cumulative number of transactions conducted. (iii) Monetary Value (M) - the total cumulative amount spent.

This is known as **RFM segmentation and scoring.**

Our work will be focused on RFM using K-Means Machine Learning Clustering technique.

 Methodology for Model Building

Steps:

- 1. Problem Definition
- 2. Data Collection
 - Dataset: Online retail dataset (source: http://archive.ics.uci.edu/ml/datasets/online+retail)
- 3. Data Preparation
 - (i) Data Exloration
 - (ii) Data Cleaning
 - (iii) Data Analysis
 - (iv) Feature Selection
 - Identify Recency, Frequency & Monetary Value features (RFM)
 - (v) Data Preprocessing
 - Scale features
- 1. Perform K-Means clustering based on RFM features
- 2. Choose optimal K clusters
 - uses Elbow method (visualization of average distance across clusters for r k number of clusters, choosing the cluster kn where kn+1 reflects a marginal decrease in the avg. distance)
- 1. Identify best customers, valuable customers at highest risk of churn

Main Python Libraries used:

- 1. pandas mainly for EDA
- 2. numpy mainly for EDA
- 3. sklearn machine learning
- 4. Matplotlib visualizations

About the dataset

According to the website for the UCI repository (ref. https://archive.ics.uci.edu/ml/datasets/Online+Retail (https://archive.ics.uci.edu/ml/datasets/Online+Retail), this transactional dataset reflects transactions (approx. 1 year's worth) effected between 01/12/2010 and 09/12/2011 for a registered non-store online retail based in the UK.

Attributes:

- InvoiceNo : Invoice number -uniquely identifies the transaction.
 Nominal, a 6-digit integral number; Code starting with letter
 'c' indicates a cancellation.
- 2. StockCode : Product (item) code uniquely identifies each product.- Nominal, a 5-digit integral number
- 3. Description: Name of the product. Nominal.
- 4. Quantity : # of units of the product per transaction. Numeric.
- 5. InvoiceDate : Date and time of the invoice (transaction date & time). Numeric.
- 6. UnitPrice : Selling price per unit in sterling. Numeric
- 7. CustomerID : Unique indentifier for each customer. Nominal, a 5-digit integral number.
- 8. Country : Country name. Nominal, Customer's country of residence.

Data Collection

Let's load the data

4

```
In [2]: os.getcwd()
Out[2]: 'C:\\Users\\Kisha\\Documents\\Python Scripts\\Class Imbalance Prob'
In [3]: path = "C:/Users/Kisha/Documents/Datasets/Online Retail.xlsx"
    df = pd.read_excel(path)
```

Data Preparation

Data Exploration

In [4]: df.head(5)

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Co
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	Unit Kinç
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	Unit Kinç
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	Unii Kinţ
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	Unii Kinį
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	Unii Kinį
4								•

What is our dataset size? How big is it (# rows)?

In [5]: df.shape

Out[5]: (541909, 8)

In [6]: df.describe()

Out[6]:

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

Checking to see how many transaction have a neg unit price

```
In [7]: len(df[df["UnitPrice"]<0])
Out[7]: 2</pre>
```

Let's delete those or rather subset for only those that have a non-negative UnitPrice

```
In [8]: df = df[df["UnitPrice"]>=0]
In [9]: ### Let's look to see if we hae any missing values per feature
        df.isnull().sum()
Out[9]: InvoiceNo
                             0
        StockCode
                             0
        Description
                          1454
        Quantity
                             0
        InvoiceDate
                             0
        UnitPrice
                             0
        CustomerID
                        135078
        Country
        dtype: int64
```

We note that we have missing values for the description and for customer ID.

In [10]: #### Let's examine rows where CustomerID is missing more closely. Looking at t
he first 5 such rows.

df.loc[np.where(df["CustomerID"].isnull())].head(5)

Out[10]:

InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerI
536414	22139	NaN	56	2010-12-01 11:52:00	0.00	NaN
536544	21773	DECORATIVE ROSE BATHROOM BOTTLE	1	2010-12-01 14:32:00	2.51	NaN
536544	21774	DECORATIVE CATS BATHROOM BOTTLE	2	2010-12-01 14:32:00	2.51	NaN
536544	21786	POLKADOT RAIN HAT	4	2010-12-01 14:32:00	0.85	NaN
536544	21787	RAIN PONCHO RETROSPOT	2	2010-12-01 14:32:00	1.66	NaN
	536414 536544 536544	536414 22139 536544 21773 536544 21774 536544 21786	536414 22139 NaN 536544 21773 DECORATIVE ROSE BATHROOM BOTTLE 536544 21774 DECORATIVE CATS BATHROOM BOTTLE 536544 21786 POLKADOT RAIN HAT 536544 21787 PONCHO	536414 22139 NaN 56 536544 21773 DECORATIVE ROSE BATHROOM BOTTLE 1 536544 21774 DECORATIVE CATS BATHROOM BOTTLE 2 536544 21786 POLKADOT RAIN HAT 4 536544 21787 RAIN PONCHO 2	536414 22139 NaN 56 2010-12-01 11:52:00 536544 21773 DECORATIVE ROSE BATHROOM BOTTLE 1 2010-12-01 14:32:00 536544 21774 DECORATIVE CATS BATHROOM BOTTLE 2 2010-12-01 14:32:00 536544 21786 POLKADOT RAIN HAT 4 2010-12-01 14:32:00 536544 21787 RAIN PONCHO 2 2010-12-01 14:32:00	536414 22139 NaN 56 2010-12-01 11:52:00 0.00 536544 21773 DECORATIVE ROSE BATHROOM BOTTLE 1 2010-12-01 14:32:00 2.51 536544 21774 DECORATIVE CATS BATHROOM BOTTLE 2 2010-12-01 14:32:00 2.51 536544 21786 POLKADOT RAIN HAT 4 2010-12-01 14:32:00 0.85 536544 21787 RAIN PONCHO 2 2010-12-01 14:32:00 1.66

We cannot use these rows that are missing customerID in our analysis. So for now we will filter out these rows.

```
In [26]: newdf = df[pd.notnull(df["CustomerID"])]
```

Note missing values checked again after filtering out those rows with missing values for CustomerID

```
In [27]: newdf.isnull().sum()
Out[27]: InvoiceNo
                         0
          StockCode
                         0
         Description
                         0
          Quantity
          InvoiceDate
         UnitPrice
                         0
         CustomerID
                         0
         Country
         dtype: int64
In [28]: newdf.shape
Out[28]: (406829, 8)
```

We lost the following % of our data due to missing info. :

```
In [29]: (df.shape[0]-newdf.shape[0])*100/df.shape[0]
Out[29]: 24.92641726347879
```

040[23]: 21.32011720347073

Let's get more familiar with our data by getting a feel for :

- (i) the number of different products
- (ii) Range of quantities purchased
- (iii) Range of prices
- (iv) Number of Countries
- (iv) Groupings of customers by country and or by products purchased

Number of different products

Top 5 products sold (by count)

```
In [32]: ProdSales = newdf.groupby(["StockCode","Description"])["Quantity"].aggregate(
    'sum').reset_index().sort_values(["Quantity"],ascending=False)
    ProdSales.columns = ["StockCode","Description","Sum of Qty sold"]
    ProdSales.head(5)
```

Out[32]:

	StockCode	Description	Sum of Qty sold
2712	84077	WORLD WAR 2 GLIDERS ASSTD DESIGNS	53215
3586	85099B	JUMBO BAG RED RETROSPOT	45066
2818	84879	ASSORTED COLOUR BIRD ORNAMENT	35314
3593	85123A	WHITE HANGING HEART T-LIGHT HOLDER	34147
361	21212	PACK OF 72 RETROSPOT CAKE CASES	33409

In [33]: CustCountry = newdf.groupby(["Country"])["InvoiceNo"].count().reset_index().so
 rt_values(["InvoiceNo"],ascending=False)
 CustCountry.columns = ["Country", "Count of transactions per country"]
 CustCountry.head(5)

Out[33]:

	Country	Count of transactions per country
35	United Kingdom	361878
14	Germany	9495
13	France	8491
10	EIRE	7485
30	Spain	2533

Top 5 sales (revenue) by country

C:\Users\Kisha\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st able/indexing.html#indexing-view-versus-copy """Entry point for launching an IPython kernel.

Out[34]:

	Country	Total Sales \$
35	United Kingdom	6.767873e+06
23	Netherlands	2.846615e+05
10	EIRE	2.502852e+05
14	Germany	2.216982e+05
13	France	1.967128e+05

Group by product type & count of customers

Out[35]:

		CustomerID
StockCode	Description	
85123A	WHITE HANGING HEART T-LIGHT HOLDER	2070
22423	REGENCY CAKESTAND 3 TIER	1905
85099B	JUMBO BAG RED RETROSPOT	1662
84879	ASSORTED COLOUR BIRD ORNAMENT	1418
47566	PARTY BUNTING	1416
20725	LUNCH BAG RED RETROSPOT	1358
22720	SET OF 3 CAKE TINS PANTRY DESIGN	1232
POST	POSTAGE	1196
20727	LUNCH BAG BLACK SKULL.	1126
21212	PACK OF 72 RETROSPOT CAKE CASES	1080

Top 5 Selling products

In [36]: pd.DataFrame(newdf.groupby(["StockCode","Description"])["Quantity"].sum()).sor
t_values(["Quantity"],ascending=False).head(10)

Out[36]:

		Quantity
StockCode	Description	
84077	WORLD WAR 2 GLIDERS ASSTD DESIGNS	53215
85099B	JUMBO BAG RED RETROSPOT	45066
84879	ASSORTED COLOUR BIRD ORNAMENT	35314
85123A	WHITE HANGING HEART T-LIGHT HOLDER	34147
21212	PACK OF 72 RETROSPOT CAKE CASES	33409
22197	POPCORN HOLDER	30504
23084	RABBIT NIGHT LIGHT	27094
22492	MINI PAINT SET VINTAGE	25880
22616	PACK OF 12 LONDON TISSUES	25321
21977	PACK OF 60 PINK PAISLEY CAKE CASES	24163

Products that have been returned in a different period from which they were purchsed would have an overal negative qty.

This the five (5) worst selling products (reflecting net returns for that period)

In [37]: pd.DataFrame(newdf.groupby(["StockCode","Description"])["Quantity"].sum()).sor
t_values(["Quantity"],ascending=True).head(5)

Out[37]:

		Quantity
StockCode	Description	
84347	ROTATING SILVER ANGELS T-LIGHT HLDR	-1460
D	Discount	-1194
21645	ASSORTED TUTTI FRUTTI ROUND BOX	-24
CRUK	CRUK Commission	-16
21144	PINK POODLE HANGING DECORATION	-12

```
In [38]:
         newdf["Quantity"].describe()
Out[38]: count
                   406829.000000
         mean
                       12.061303
                      248.693370
         std
                   -80995.000000
         min
         25%
                        2.000000
         50%
                        5.000000
         75%
                       12.000000
                    80995.000000
         max
         Name: Quantity, dtype: float64
```

Note from above, most transaction have a purchase quantity below 12 (since 12 is at the 75th percentile)

Visual of the range of quantity values, reflecting most transactions with the range 0 to below 10,000

Recall boxplot diagrams

This boxplot visualization (below) confirms that the transactions (qty.) typically range below 20k positive and negative. Note the outliers are in the 70k to 80k range with the median close to zero.

Range of prices

```
newdf["UnitPrice"].describe()
In [41]:
Out[41]: count
                   406829.000000
         mean
                        3.460471
          std
                       69.315162
         min
                        0.000000
          25%
                        1.250000
          50%
                        1.950000
          75%
                        3.750000
         max
                    38970.000000
         Name: UnitPrice, dtype: float64
```

Note from statsistical description above for Unit Price 75% of all products are priced below \$3.75.

The mean unit price is \$3.46 and 50% of all products are priced below \$1.95.

Number of different countries

```
In [43]: len(newdf["Country"].unique())
Out[43]: 37
```

Groupings of customers by country (Percentage)

Out[44]:

	Country	CustomerID-Count	CustomerID-Count in Perc %
35	United Kingdom	361878	88.950886
14	Germany	9495	2.333904
13	France	8491	2.087118
10	EIRE	7485	1.839839
30	Spain	2533	0.622620
23	Netherlands	2371	0.582800
3	Belgium	2069	0.508567
32	Switzerland	1877	0.461373
26	Portugal	1480	0.363789
0	Australia	1259	0.309467

We will calculate each required feature starting with:

Recency Let's calculate using the report date as 1 day after the last invoice date

```
In [45]: # Last invoice date
    import datetime as dt
    newdf["InvoiceDate"].max()

Out[45]: Timestamp('2011-12-09 12:50:00')

In [46]: # So, let's set our report date, from which calculations will be done to 1 day
    ahead.
    reportdate = dt.datetime(2011,12,10)
    reportdate
Out[46]: datetime.datetime(2011, 12, 10, 0, 0)
```

In [47]: newdf.head(2)

Out[47]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Co
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	Uni Kinç
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	Unit Kinţ

```
In [48]: #newdf['InvoiceDate'] = pd.to_datetime(newdf['InvoiceDate'])
    RFM_df =newdf.groupby("CustomerID").aggregate({"InvoiceDate" : lambda x:(repor tdate-x.max()).days,"InvoiceNo" : lambda x:x.count(),"SalesAmt_per_Invoice" : lambda x:sum(x)}).reset_index()
    RFM_df.columns = ["CustID","R","F","M"]
    RFM_df.head(5)
```

Out[48]:

	CustID	R	F	М
0	12346.0	325	2	0.00
1	12347.0	2	182	4310.00
2	12348.0	75	31	1797.24
3	12349.0	18	73	1757.55
4	12350.0	310	17	334.40

Let's now calculate the RFM metric (scores) for each customer.

We will do this by first splitting into quantiles then ranking the quantiles for each sub-metric (R, F & M).

Recency ranking Let's rank by quartiles where the upper quartiles for the recency defined as being worse than the lower quartiles. This means that for Q1 that represents the group the lowest 25% recency score this group is the better than the Q2 which has higher recency scores. Recall, we place a higher value on customers who have purchased from us more recently (as depicted by their recency score) than customers who have purchased from us less recently.

Frequency & Monetary value ranking These scores will be ranked opposite to recency since the greater the score the better or more highly we value that customer.

Let's find out the levels of Recency, Freq. & Monetray value for each quantile Q1,Q2 & Q3

```
In [50]:
         qrt = RFM_df.quantile(q=[0.25,0.5,0.75])
         qrt.columns =["CustID","R","F","M"]
         Rqrt = qrt["R"]
         Fqrt = qrt["F"]
         MVqrt = qrt["M"]
         print(qrt)
         print("\n")
         print("RFM scores\n",RFM_df.head(2))
                                    F
                 CustID
                             R
                                               Μ
         0.25 13812.75
                          16.0
                                 17.0
                                        293.3625
         0.50 15300.50
                          50.0
                                 42.0
                                        648.0750
         0.75 16778.25 143.0 102.0 1611.7250
         RFM scores
              CustID
                        R
                            2
                                  0.0
         0 12346.0 325
         1 12347.0
                       2 182 4310.0
```

Let's further rank 1 to 4 for the quantiles as described earlier.

```
In [51]:
        copyRFM = RFM df
         print(copyRFM.head(5))
            CustID
                      R
                          F
                                   Μ
          12346.0 325
                          2
                                0.00
        1
           12347.0
                    2 182 4310.00
         2 12348.0
                    75
                         31
                             1797.24
           12349.0
                          73
                             1757.55
                    18
         4 12350.0 310
                         17
                              334.40
```

```
In [53]: rk = RFM_df
         print(rk.head(5))
         print(RFM_df.head(5))
                            F
                       R
             CustID
                                      Μ
            12346.0
                     325
                            2
                                   0.00
         1
            12347.0
                          182
                       2
                               4310.00
         2
            12348.0
                      75
                               1797.24
                           31
         3
            12349.0
                     18
                           73
                               1757.55
            12350.0
                     310
                           17
                                 334.40
             CustID
                            F
                      R
                                      Μ
                            2
            12346.0 325
                                   0.00
            12347.0
                          182
                               4310.00
         1
                      2
            12348.0
                      75
                               1797.24
         2
                           31
         3
            12349.0
                     18
                           73
                               1757.55
            12350.0
                     310
                           17
                                 334.40
```

Recall, as explained earlier, the lowest rank is the best for each metric

```
In [54]: def myfun(x,mtype):
              if mtype == "R":
                  if (x <= qrt.loc[0.25][mtype]):</pre>
                      rank = 1
                      return(rank)
                  elif ((x > qrt.loc[0.25][mtype]) & (x <= qrt.loc[0.5][mtype])):
                      rank = 2
                      return(rank)
                  elif ((x > qrt.loc[0.5][mtype]) & (x <= qrt.loc[0.75][mtype])):
                      rank = 3
                      return(rank)
                  elif (x > qrt.loc[0.75][mtype]) :
                      rank = 4
                      return(rank)
              else:
                  if (x <= qrt.loc[0.25][mtype]):</pre>
                      rank = 4
                      return(rank)
                  elif ((x > qrt.loc[0.25][mtype]) & (x <= qrt.loc[0.5][mtype])):
                      rank = 3
                      return(rank)
                  elif ((x > qrt.loc[0.5][mtype]) & (x <= qrt.loc[0.75][mtype])):</pre>
                      rank = 2
                      return(rank)
                  elif (x > qrt.loc[0.75][mtype]) :
                      rank = 1
                      return(rank)
          rk["R"] = rk["R"].apply(myfun,args="R").values
          rk["F"] = rk["F"].apply(myfun,args="F").values
          rk["M"] = rk["M"].apply(myfun,args="M").values
```

```
In [55]: #rk.head(5)
rk["RFM"] = rk["R"].map(str)+ rk["F"].map(str) + rk["M"].map(str)
```

In [56]: rk.head(5)

Out[56]:

	CustID	R	F	M	RFM
0	12346.0	4	4	4	444
1	12347.0	1	1	1	111
2	12348.0	3	3	1	331
3	12349.0	2	2	1	221
4	12350.0	4	4	3	443

```
In [57]: from sklearn.cluster import KMeans
```

kmeans = KMeans(n_clusters=4, init='k-means++', random_state=0)

clusters = kmeans.fit_predict(rk.iloc[:,1:5])
clusters

Out[57]: array([3, 2, 1, ..., 2, 2, 0])

In [58]: rk["ClusterIndx"] = clusters
 rk.head(5)

Out[58]:

		CustID	R	F	M	RFM	ClusterIndx
C)	12346.0	4	4	4	444	3
1	1	12347.0	1	1	1	111	2
2	2	12348.0	3	3	1	331	1
3	3	12349.0	2	2	1	221	0
4	1	12350.0	4	4	3	443	3

Choosing optimal K clusters:

- uses Elbow method (visualization of average distance across clusters for \boldsymbol{k} number of clusters,

```
In [59]: # Finding Optimal clusters
         # Using elbow method
         #https://www.geeksforgeeks.org/elbow-method-for-optimal-value-of-k-in-kmeans/
         from scipy.spatial.distance import cdist
         TotDist = []
         X = rk.iloc[:,1:5]
         Npts = X.shape[0]
         K = range(1,10)
         for k in K:
             kM = KMeans(n_clusters=k).fit(X)
             kM.fit(X)
             TotDist.append(sum(np.min(cdist(X, kM.cluster_centers_,
                                'euclidean'),axis=1)) / Npts)
         print(TotDist)
         plt.plot(K,TotDist)
         plt.show()
```

[105.01030869294542, 52.74187689279378, 30.424566307170487, 9.05343001263375 6, 7.872599089379112, 6.838711380099015, 5.829369723762046, 5.12978565813627 2, 3.9452358631617064]

Optimal K is the pt after which the avg. of TotDist does not decrease by much, soon flattens out "at the elbow".

This optmal K for us is K= 4 (as shown in the graph above)

In [60]: rk.head(10).sort_values("ClusterIndx")

Out[60]:

	CustID	R	F	M	RFM	ClusterIndx
3	12349.0	2	2	1	221	0
5	12352.0	2	2	2	222	0
9	12356.0	2	2	1	221	0
2	12348.0	3	3	1	331	1
1	12347.0	1	1	1	111	2
0	12346.0	4	4	4	444	3
4	12350.0	4	4	3	443	3
6	12353.0	4	4	4	444	3
7	12354.0	4	2	2	422	3
8	12355.0	4	4	3	443	3

```
In [65]: rk["ClusterName"] = rk["ClusterIndx"]
    rk.loc[rk["ClusterIndx"]==3,"ClusterName"] = 4
    rk.loc[rk["ClusterIndx"]==2,"ClusterName"] = 1
    rk.loc[rk["ClusterIndx"]==1,"ClusterName"] = 3
    rk.loc[rk["ClusterIndx"]==0,"ClusterName"] = 2

rk["ClusterDesc"] = rk["ClusterIndx"]
    rk.loc[rk["ClusterIndx"]==3,"ClusterDesc"] = "Worst- Low Budget, rare shopper
    & near churn"
    rk.loc[rk["ClusterIndx"]==2,"ClusterDesc"] = "Best - Gotta Keep"
    rk.loc[rk["ClusterIndx"]==1,"ClusterDesc"] = "Low Budget, rare shopper"
    rk.loc[rk["ClusterIndx"]==0,"ClusterDesc"] = "2nd Best - Loyal Low Budget Spen
    der"
```

In [66]: rk.head(10).sort_values("ClusterDesc")

Out[66]:

	CustID	R	F	M	RFM	ClusterIndx	ClusterName	ClusterDesc
3	12349.0	2	2	1	221	0	2	2nd Best - Loyal Low Budget Spender
5	12352.0	2	2	2	222	0	2	2nd Best - Loyal Low Budget Spender
9	12356.0	2	2	1	221	0	2	2nd Best - Loyal Low Budget Spender
1	12347.0	1	1	1	111	2	1	Best - Gotta Keep
2	12348.0	3	3	1	331	1	3	Low Budget, rare shopper
0	12346.0	4	4	4	444	3	4	Worst- Low Budget, rare shopper & near churn
4	12350.0	4	4	3	443	3	4	Worst- Low Budget, rare shopper & near churn
6	12353.0	4	4	4	444	3	4	Worst- Low Budget, rare shopper & near churn
7	12354.0	4	2	2	422	3	4	Worst- Low Budget, rare shopper & near churn
8	12355.0	4	4	3	443	3	4	Worst- Low Budget, rare shopper & near churn

```
In [67]: # Let's count the number of customers in each segment
    rf_df = rk.groupby(["ClusterDesc"])["CustID"].aggregate("count").reset_index()
        .sort_values("CustID")
    rf_df.columns = ["ClusterDesc","Count_Of_CustID"]
    rf_df["Perc_Cust"] = rf_df["Count_Of_CustID"]*100/rf_df["Count_Of_CustID"].sum
    ()
```

In [68]: rf_df

Out[68]:

	ClusterDesc	Count_Of_CustID	Perc_Cust
2	Low Budget, rare shopper	1064	24.336688
3	Worst- Low Budget, rare shopper & near churn	1085	24.817017
1	Best - Gotta Keep	1096	25.068618
0	2nd Best - Loyal Low Budget Spender	1127	25.777676

Conclusion

We have segmented our customer base into 4 distinct groups shown above. The group names indicate the value of the customer.

Note also, that the groups are roughly evenly divided. We can now focus our marketing efforts mainly towrds our higher valued customer groups: (i) "Best- Gotta keep" (ii) "2nd Best - Loyal Low Budget Spender" Given that we now know the recency, frequency and total spent amount for these customers we can tailor our marketing accordingly.

The End