Programme de colle - Semaine n°22

- Groupe A: Ilyes BENFERHAT, Hamza BOURAS, Julien DENEUBOURG, Célian FORET, Maxime LE BLAN, Pierre LESAGE, Vishwaraj SHABADI, Julien STEVENART, Mohamed Jibril TROUGOUTY, Félix VANDEN-BROUCKE.
- Groupe B: Lucas AGBOTON, Vladislas BANCOD, Pierre CATHELAIN, Matthieu CHARETTE, Célien CHA-ZAL, Jarode COQUEL, Félix CORDONNIER-PORTIER, Maxime DANIEL, Baptiste DAULE SIGAUT, Raphaël DEPUYDT, Ethan DUMONT, Houdayfa EL HAJJIOUI, Gabriel HARENDARZ, Victor KRAWCZIK, Thibaut LA-MARQUE, Juliette LECOUTRE, Mohamed-Yassine LOKMANE, Alexandre MARTINSSE, Clément MONCHIET, Mathieu POULAIN, Clarissa VALLAEYS.
- Groupe C: Ilan AKADJI, Orane BERTOUT, Nathan BISKUPSKI, Pierre BODET, Marc BURGHGRAEVE, Noelien DUTILLEUL, Douae EL FANI, Julien GERY, Paul LEONARD, Noam THIBAUT-GESNEL, Clément TURPIN.

Chapitre 23 - Formules de Taylor

cf. semaine 20.

Chapitre 24 - Analyse asymptotique et Développements Limités

• cf. semaines 20 et 21.

Chapitre 25 - Séries numériques

- cf. semaine 21.
- Séries de référence : séries de Riemann (paramètre réel), séries géométriques et exponentielles (paramètre complexe). Exemple : la série $\sum \frac{3n^2 + n + 5}{n!} \times 7^n$ converge et sa somme vaut $180e^7$. Applications : règle de d'Alembert (au programme de deuxième année), la fonction ζ est strictement décroissante sur
- 1; $+\infty$, est équivalente à 1/(x-1) en 1 et à 1 en $+\infty$ (HP).
- Nature des séries de Bertrand (HP).

Chapitre 26 - Probabilités sur un univers fini

- Vocabulaire probabiliste : expérience aléatoire, univers, éventualités, événements, événement élémentaire, événement impossible, événement certain, espace probabilisable fini $(\Omega, \mathcal{P}(\Omega))$, événement contraire ou complémentaire, union, intersection, inclusion. Dictionnaire langage ordinaire/langage ensembliste. Système complet d'événements.
- Définition d'une probabilité. Exemple de la probabilité de Dirac. Propriétés d'une probabilité. Si (A_1, \ldots, A_n) est un système complet d'événements, alors $\sum_{k=1}^{n} P(A_k) = 1$ (réciproque fausse). Formule du crible pour trois événements (HP). Activité : inégalité de Bonferroni. Événements presque impossibles, presque certains ou presque sûrs.
- Distribution de probabilités. Une distribution de probabilités définit une unique probabilité.
- Équiprobabilité. Problème des anniversaires. L'équiprobabilité n'est pas toujours le choix le plus naturel.
- Probabilités conditionnelles. Exemples. L'application P_A est une probabilité.
- Formule des probabilités composées, formule des probabilités totales.

Chapitres au programme

Chapitres 23 et 24 (exercices uniquement), chapitre 25 (cours et exercices), chapitre 26 (cours uniquement).

Page 1/22023/2024 MP2I Lycée Faidherbe

Questions de cours

Groupes A - B - C:

- 1. Les 11 DL de base.
- 2. Condition nécessaire de convergence d'une série (démonstration). Contre-exemple pour la réciproque. Définition de la divergence grossière.
- 3. Série télescopique associée à une suite. CNS de convergence (sans démonstration).
- 4. Critère des séries alternées (sans démonstration).
- 5. Nature de la série $\sum \frac{n+1}{n^2}$ et de la série $\sum e^{-n^2}$ (démonstration).
- 6. Formule de Stirling (sans démonstration).
- 7. Définition d'un système complet d'événements.
- 8. Définition d'une probabilité sur un univers fini. Définition d'une probabilité conditionnelle.
- 9. Nature des séries de Bertrand lorsque $\alpha \neq 1$ (démonstration).
- 10. Paradoxe des anniversaires pour n élèves (démonstration).
- 11. Formule des probabilités composées (sans démonstration).
- 12. Formule des probabilités totales (les deux versions, sans démonstration).

Groupes B - C:

- 1. Convergence, signe et majoration de la somme de la série $\sum \frac{(-1)^n}{n \ln(n-1)}$.
- 2. Nature de la série $\sum \ln \left(1 + \frac{(-1)^n}{n}\right)$.
- 3. Convergence et somme de la série de terme général $u_n = \frac{3n^2 + n + 5}{n!} \times 7^n$.
- 4. Règle de d'Alembert (démonstration).

Groupe C:

- 1. Si $\theta \neq 0[2\pi]$, nature de la série $\sum \frac{e^{in\theta}}{n}$ (démonstration : on pourra utiliser la valeur de T_n sans démonstration, mais l'examinateur pourra demander de la redémontrer s'il le souhaite).
- 2. Il existe K > 0 tel que $n! \sim K n^{n+\frac{1}{2}} e^{-n}$ (démonstration).
- 3. Valeur de K (démonstration, en admettant la question précédente). L'examinateur rappellera la relation de récurrence des intégrales de Wallis, ainsi que la valeur des intégrales de Wallis de rang pair.
- 4. Encadrement de la fonction ζ et équivalent en 1^+ et en $+\infty$.

Prévisions pour la semaine prochaine

- Fin des probabilités.
- Début des variables aléatoires.

Exercices à préparer

Exercices 32, 36, 37, 38, 39, 43, 44 du chapitre 25 et exercices 1, 2, 3, 4, 6, 8, 9, 11, 17, 20, 21, 35 du chapitre 26.

Cahier de calcul

Chapitre 29.

Page 2/2 2023/2024