V Espérance conditionnelle

5.1. Espérance conditionnelle sur $L^{2}(\Omega, \mathcal{F}, P)$

Soit (Ω, \mathcal{F}, P) un espace probabilisé et soit \mathcal{U} une sous tribu de \mathcal{F} . Soit $X \in \mathcal{L}^2_{\mathbb{R}^d}(\Omega, \mathcal{F}, P)$ (l'espace des vecteurs aléatoires de dimension d à carré intégrable). On notera que le sous espace $L^2_{\mathbb{R}^d}(\Omega, \mathcal{U}, P)$ de $L^2_{\mathbb{R}^d}(\Omega, \mathcal{F}, P)$ constitué des classes d'équivalence des vecteurs aléatoires \mathcal{U} —mesurables, est un sous espace fermé et on a

$$L_{\mathbb{R}^{d}}^{2}\left(\Omega,\mathcal{F},P\right)=L_{\mathbb{R}^{d}}^{2}\left(\Omega,\mathcal{U},P\right)\oplus\left(L_{\mathbb{R}^{d}}^{2}\left(\Omega,\mathcal{U},P\right)\right)^{\perp},$$

οù

$$\left(L_{\mathbb{R}^{d}}^{2}\left(\Omega,\mathcal{U},P\right)\right)^{\perp}=\left\{Y\in L_{\mathbb{R}^{d}}^{2}\left(\Omega,\mathcal{F},P\right):\mathbb{E}\left(\left\langle Y,Z\right\rangle \right)=0\;\forall Z\in L_{\mathbb{R}^{d}}^{2}\left(\Omega,\mathcal{U},P\right)\right\}$$

est l'orthogonal de $L^2_{\mathbb{R}^d}\left(\Omega,\mathcal{U},P\right).$ La relation d'équivalence étant définie par:

$$URV \Leftrightarrow U = V \ p.s.$$

Ainsi X s'écrit d'une manière unique sous la forme:

$$X = Y + Z \qquad (*)$$

où
$$Y \in L^2_{\mathbb{R}^d}\left(\Omega, \mathcal{U}, P\right)$$
 et $Z \in \left(L^2_{\mathbb{R}^d}\left(\Omega, \mathcal{U}, P\right)\right)^{\perp}$.

Définition:

On appelle espérance conditionnelle de X (on la note $\mathbb{E}(X \mid \mathcal{U})$ ou $\mathbb{E}^{\mathcal{U}}(X)$), sa projection

orthogonale sur $L^{2}_{\mathbb{R}^{d}}\left(\Omega,\mathcal{U},P\right)$, i.e.

$$\mathbb{E}\left(X\mid\mathcal{U}\right)=Y,$$

où Y est défini par l'égalité (*).

On notera que $\mathbb{E}(X \mid \mathcal{U})$ est une variable aléatoire.

Remarque:

Il est clair que l'application $X \mapsto \mathbb{E}(X \mid \mathcal{U})$ est linéaire et que si X est \mathcal{U} -mesurable, alors

$$\mathbb{E}\left(X\mid\mathcal{U}\right)=X\ p.s.$$

En effet, X admet comme décomposition, la décomposition triviale X=X+0, où

$$X \in L^{2}_{\mathbb{R}^{d}}(\Omega, \mathcal{U}, P) \text{ et } 0 \in \left(L^{2}_{\mathbb{R}^{d}}(\Omega, \mathcal{U}, P)\right)^{\perp}.$$

Dans toute la suite, on ne considère que le cas où d=1. Les résultats ainsi les démonstrations, dans le cas général, sont exactement les mêmes.

Proposition 1:

Les assertions suivantes sont équivalentes:

- $(i) Y = \mathbb{E}(X \mid \mathcal{U}) \ p.s.$
- (ii) Y est \mathcal{U} -mesurable et $\int_A X dP = \int_A Y dP$ pour tout $A \in \mathcal{U}$
- (iii) Y est \mathcal{U} -mesurable et $\mathbb{E}(ZX) = \mathbb{E}(ZY)$ pour tout $Z \in \mathcal{L}^2(\Omega, \mathcal{U}, P)$

Remarque:

La propriété (iii) avec Z = 1, entraine en particulier que

$$\mathbb{E}\left(\mathbb{E}\left(X\mid\mathcal{U}\right)\right)=\mathbb{E}\left(X\right).$$

Preuve:

 $(i) \Leftrightarrow (iii)$ est une conséquence directe de la définition de la projection orthogonale. En effet; on a la décomposition évidente X = Y + (X - Y) avec $Y \in L^2(\Omega, \mathcal{U}, P)$ et $X - Y \in (L^2(\Omega, \mathcal{U}, P))^{\perp}$, d'où par liéarité de l'espérance,

$$\mathbb{E}(ZX) = \mathbb{E}(ZY) + \mathbb{E}(Z(X - Y)) = \mathbb{E}(ZY)$$

pour tout $Z \in \mathcal{L}^2(\Omega, \mathcal{U}, P)$.

 $(iii) \Rightarrow (ii)$ car (iii) avec $Z = \mathbf{1}_A$, où $A \in \mathcal{U}$ donne (ii). En effet,

$$\mathbb{E}(ZX) = \int_{A} XdP \text{ et } \mathbb{E}(ZY) = \int_{A} YdP.$$

 $(ii) \Rightarrow (iii)$

Si on a (ii), alors on a pour tout $\varphi = \sum_{i} c_{i} \mathbf{1}_{A_{i}}$ variable aléatoire étagée,

$$\mathbb{E}\left(\varphi X\right) = \sum_{i} c_{i} \mathbb{E}\left(X\mathbf{1}_{A_{i}}\right) = \sum_{i} c_{i} \int_{A_{i}} X dP = \sum_{i} c_{i} \int_{A_{i}} Y dP = \mathbb{E}\left(\varphi Y\right).$$

Si maintenant Z est une variable aléatoire positive. Alors il existe une suite croissante de variables aléatoires étagées (φ_n) qui converge vers Z, d'où d'aprés le théorème de la convergence monotone,

$$\mathbb{E}\left(ZX\right) = \lim_{n \to \infty} \mathbb{E}\left(\varphi_{n}X\right) = \lim_{n \to \infty} \mathbb{E}\left(\varphi_{n}Y\right) = \mathbb{E}\left(ZY\right).$$

Si Z est de signe quelconque, alors on a $Z=Z^++Z^-$, où $Z^+=\max{(Z,0)}\geq 0$ et $Z^-=\max{(-Z,0)}\geq 0$, d'où

$$\mathbb{E}(ZX) = \mathbb{E}(Z^{+}X) + \mathbb{E}(Z^{-}X) = \mathbb{E}(Z^{+}Y) + \mathbb{E}(Z^{-}Y) = \mathbb{E}(ZY),$$

qui signifie que (iii) est vraie.■

Exemple:

Si $\mathcal{U} = \{\phi, \Omega\}$ est la plus petite sous tribu, alors

$$\mathbb{E}(X \mid \mathcal{U}) = \mathbb{E}(X) \ p.s.$$

En effet, $\mathbb{E}(X)$ est une constante donc \mathcal{U} - mesurable et on a

$$\int_{\Phi} X dP = 0 = \int_{\Phi} Y dP \text{ et } \int_{\Omega} X dP = \mathbb{E}(X) = \int_{\Omega} \mathbb{E}(X) dP ,$$

d'où l'affirmation d'aprés (ii). On notera que les seules variables aléatoires $\mathcal{U}-$ mesurables sont les constantes.

5.2. Espérance conditionnelle sur $L^1(\Omega, \mathcal{F}, P)$

Dans ce qui suit, on admettra le théorème suivant:

Théorème:

Pour qu'une variable aléatoire Y, \mathcal{U} -mesurable soit positive p.s., il faut et il suffit que

 $\int YdP$ soit positive pour tout $A \in \mathcal{U}$

On a alors le théorème suivant:

Théorème:

L'application linéaire $\mathbb{E}(. \mid \mathcal{U})$ est positive (i.e. $X \ge 0$ p.s. $\Rightarrow \mathbb{E}(X \mid \mathcal{U}) \ge 0$ p.s.), continue

pour la norme de $L^1(\Omega, \mathcal{F}, P)$ et est de norme ≤ 1 .

Remarque:

La positivité de l'espérance conditionnelle est équivalente à la propriété suivante:

$$X \ge Z \ p.s. \Rightarrow \mathbb{E}(X \mid \mathcal{U}) \ge \mathbb{E}(Z \mid \mathcal{U}) \ p.s.$$

Démonstration:

La positivité provient directement de (ii) de la dernière proposition.

Soit $X \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$. On a $-|X| \leq X \leq |X|$, d'où en utilisant la linéarité et la positivité de l'espérance conditionnelle,

$$-\mathbb{E}\left(\left|X\right|\mid\mathcal{U}\right)\leq\mathbb{E}\left(X\mid\mathcal{U}\right)\leq\mathbb{E}\left(\left|X\right|\mid\mathcal{U}\right).$$

Il s'en suit que

$$|\mathbb{E}(X \mid \mathcal{U})| \leq \mathbb{E}(|X| \mid \mathcal{U}),$$

d'où par positivité de l'espérance,

$$\left\|\mathbb{E}\left(X\mid\mathcal{U}\right)\right\|_{1} = \mathbb{E}\left(\left|\mathbb{E}\left(X\mid\mathcal{U}\right)\right|\right) \leq \mathbb{E}\left(\mathbb{E}\left(\left|X\right|\mid\mathcal{U}\right)\right) = \mathbb{E}\left(\left|X\right|\right) = \left\|X\right\|_{1},$$

qui signifie que $\mathbb{E}(. \mid \mathcal{U})$ est Lipschitzienne pour la norme $\|.\|_1$ donc continue. De plus, on a

$$\|\mathbb{E}\left(.\mid\mathcal{U}\right)\| := \sup_{\|X\|_{1} \le 1} \|\mathbb{E}\left(X\mid\mathcal{U}\right)\|_{1} \le 1.$$

Conséquence:

Comme $\mathcal{L}^2(\Omega, \mathcal{F}, P)$ est dense dans $\mathcal{L}^1(\Omega, \mathcal{F}, P)$, alors l'application $\mathbb{E}(. \mid \mathcal{U})$ se prolonge par continuité sur $\mathcal{L}^1(\Omega, \mathcal{F}, P)$. Ainsi, si $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$, il existe une suite (X_n) de $\mathcal{L}^2(\Omega, \mathcal{F}, P)$, qui converge vers X. Dans cas, par définition

$$\mathbb{E}\left(X\mid\mathcal{U}\right)=\lim_{n\to\infty}\mathbb{E}\left(X_{n}\mid\mathcal{U}\right)\ \text{pour la norme}\left\|.\right\|_{1}.$$

Remarque:

Par un passage à la limite, la proposition 1 reste valable si $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$ au lieu de $\mathcal{L}^2(\Omega, \mathcal{F}, P)$ et si Z est une variable aléatoire bornée et \mathcal{U} -mesurable (au lieu de $Z \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$) car l'ensemble de ces variables aléatoires est dense dans $\mathcal{L}^2(\Omega, \mathcal{F}, P)$.

Définition:

Soient \mathcal{U} et \mathcal{V} deux sous tribus de \mathcal{F} .

On dira qu'une variable aléatoire X est indépendante de $\mathcal U$ si elle est indépendante avec

toute variable aléatoire \mathcal{U} -mesurable.

On dira que $\mathcal U$ et $\mathcal V$ sont indépendantes, si toute variable aléatoire $\mathcal U-mesurable$ est

indépendante avec toute variable aléatoire V-mesurable.

On notera que si $\mathcal{U} = \{\phi, \Omega\}$, alors toute variable aléatoire X est indépendante de \mathcal{U} , car les seules variables aléatoires \mathcal{U} —mesurables sont les constantes.

Proposition 2:(propriétés de l'espérance conditionnelle)

Pour tout $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$, on a:

- (i) $\mathbb{E}(X \mid \mathcal{U}) = X \ p.s. \ si \ X \ est \ \mathcal{U}-mesurable$
- (ii) $\mathbb{E}(X \mid \mathcal{U}) = \mathbb{E}(X)$ p.s. si X est indépendante de \mathcal{U} . En particulier si $\mathcal{U} = \{\phi, \Omega\}$, on a

$$\mathbb{E}\left(X\mid\left\{\phi,\Omega\right\}\right)=X\ p.s.$$

(iii)Si \mathcal{U} et \mathcal{V} deux sous tribus de \mathcal{F} telles que $\mathcal{V} \subset \mathcal{U}$, alors on a

$$\mathbb{E}(X \mid \mathcal{V}) = \mathbb{E}(\mathbb{E}(X \mid \mathcal{U}) \mid \mathcal{V}) \ p.s.$$

(Propriété d'emboitement)

- $(iv) \mathbb{E} (\mathbb{E} (X \mid \mathcal{U})) = \mathbb{E} (X)$
- (v) $Z\mathbb{E}(X \mid \mathcal{U}) = \mathbb{E}(ZX \mid \mathcal{U})$ pour toute variable aléatoire bornée et \mathcal{U} -mesurable
- $(vi) \mathbb{E}(ZX) = \mathbb{E}(Z\mathbb{E}(X \mid \mathcal{U}))$ pour toute variable aléatoire bornée et $\mathcal{U}-mesurable$

Preuve:

Soit (X_n) une suite de $\mathcal{L}^2(\Omega, \mathcal{F}, P)$, qui converge vers X.

(i) Comme X est $\mathcal{U}-$ mesurable, alors les variables aléatoires X_n le sont aussi, d'où

$$\mathbb{E}(X_n \mid \mathcal{U}) = X_n \ p.s.,$$

d'où par passage à la limite L^1

$$\mathbb{E}\left(X\mid\mathcal{U}\right)=X\ p.s.$$

(ii)On a pour tout $A \in \mathcal{U}$

$$\int\limits_{A}\mathbb{E}\left(X\right)dP=\mathbb{E}\left(X\right)P\left(A\right)=\mathbb{E}\left(X\right)\mathbb{E}\left(\mathbf{1}_{A}\right)\overset{ind}{=}\mathbb{E}\left(X\mathbf{1}_{A}\right)=\int\limits_{A}XdP,$$

d'où

$$\mathbb{E}(X \mid \mathcal{U}) = \mathbb{E}(X) \ p.s.$$

(iii) La propriété d'enboitement étant vraie pour $X \in \mathcal{L}^2(\Omega, \mathcal{F}, P)$ (voir série $N^{\circ}4$ TD), alors on peut écrire que

$$\mathbb{E}(X_n \mid \mathcal{V}) = \mathbb{E}(\mathbb{E}(X_n \mid \mathcal{U}) \mid \mathcal{V}) \ p.s.$$

D'autre part, la continuité de l'espérance conditionnelle pour la norme de L^1 entraine que

$$\lim_{n \to \infty} \mathbb{E}\left(X_n \mid \mathcal{V}\right) = \mathbb{E}\left(X \mid \mathcal{V}\right) \text{ et } \lim_{n \to \infty} \mathbb{E}\left(\mathbb{E}\left(X_n \mid \mathcal{U}\right) \mid \mathcal{V}\right) = \mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{U}\right) \mid \mathcal{V}\right),$$

d'où par unicité de la limite

$$\mathbb{E}\left(X\mid\mathcal{V}\right) = \mathbb{E}\left(\mathbb{E}\left(X\mid\mathcal{U}\right)\mid\mathcal{V}\right)\ p.s.$$

(iv)Provient directement de la propriété (iii) avec $\mathcal{V} = \{\phi, \Omega\}$.

(v)Soit $A \in \mathcal{U}$. Alors on a

$$\begin{split} \int_A Z \mathbb{E} \left(X \mid \mathcal{U} \right) dP &= \mathbb{E} \left(\mathbf{1}_A Z \mathbb{E} \left(X \mid \mathcal{U} \right) \right) \\ &= \mathbb{E} \left(\mathbf{1}_A Z X \right), \, \text{d'aprés } (iii) \, \text{ de la pro.1 puisque } \mathbf{1}_A Z \, \text{est } \mathcal{U} - \text{mes} \\ &= \int_A Z X dP \\ &= \int_A \mathbb{E} \left(Z X \mid \mathcal{U} \right) dP \, \text{d'aprés } (ii) \, \text{ de la pro.1}, \end{split}$$

d'où l'affirmation

(vi)En appliquant \mathbb{E} aux deux membres de (v) et en utilisant (iv), on obtient

$$\mathbb{E}(ZX) = \mathbb{E}(Z\mathbb{E}(X \mid \mathcal{U})).$$

Proposition 3:(inégalité de Jensen au conditionnel)

Soit $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$ et soit $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction convexe telle que $\varphi \circ X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$.

Alors on a

$$\varphi \circ (\mathbb{E}(X \mid \mathcal{U})) \leq \mathbb{E}(\varphi \circ X \mid \mathcal{U}) \ p.s.$$

La démonstration se conduit exactement de la même manière que celle du cas classique.

Cas particuliers importants

En utilisant la notation $X^+ = \max(X, 0)$, on a

$$\mathbb{E}(X \mid \mathcal{U})^{+} = \mathbb{E}(X^{+} \mid \mathcal{U}),$$

$$|\mathbb{E}(X \mid \mathcal{U})| \leq \mathbb{E}(|X| \mid \mathcal{U}),$$

$$|\mathbb{E}(X \mid \mathcal{U})|^{p} \leq \mathbb{E}(|X|^{p} \mid \mathcal{U}) \text{ pour tout } p \in [1, +\infty[.$$

Corollaire:

On a, pour tout $p \in [1, +\infty[$

$$\left\| \mathbb{E} \left(X \mid \mathcal{U} \right) \right\|_p \le \left\| X \right\|_p$$

et donc $\mathbb{E}(. | \mathcal{U})$ est continue de $L^p(\Omega, \mathcal{F}, P)$ dans $L^p(\Omega, \mathcal{F}, P)$.

Preuve:

On a, d'aprés le troisième cas important,

$$\|\mathbb{E}(X \mid \mathcal{U})\|_{p}^{p} = \mathbb{E}(\mathbb{E}(X \mid \mathcal{U})\|_{p}^{p}) \le \mathbb{E}(\mathbb{E}(|X|^{p} \mid \mathcal{U})) = \mathbb{E}(|X|^{p}) = \|X\|_{p}^{p}$$

d'où l'affirmation.■

L'espérance étant un cas particulier de l'espérance conditionnelle, on a la proposition suivante (sans démonstration).

Proposition 4:

Soit (X_n) une suite de variables aléatoires numériques intégrables. Alors on a:

1. Si les X_n sont positives et si $X_n \uparrow X$ intégrable, alors

$$\mathbb{E}(X_n \mid \mathcal{U})$$
 converge vers $\mathbb{E}(X \mid \mathcal{U})$ p.s. et dans $L^1(\Omega, \mathcal{F}, P)$

"Théorème de Beppo-Lèvy au conditionnel"

2. Si les X_n sont positives, alors on a:

a)Si $\underline{\lim} X_n$ est intégrable, alors

$$\mathbb{E}\left(\underline{\lim}X_n\mid\mathcal{U}\right)\leq\underline{\lim}\mathbb{E}\left(X_n\mid\mathcal{U}\right)$$

b) $Si \ \overline{\lim} X_n \ est \ intégrable, \ alors$

$$\mathbb{E}\left(\overline{\lim}X_n\mid\mathcal{U}\right)\geq\overline{\lim}\mathbb{E}\left(X_n\mid\mathcal{U}\right)$$

"Lemme de Fatou au conditionnel"

3.On suppose que la variable aléatoire $\sup_{n} |X_n|$ est intégrable et que (X_n) converge vers X

p.s., alors on a

$$\mathbb{E}(X_n \mid \mathcal{U})$$
 converge vers $\mathbb{E}(X \mid \mathcal{U})$ p.s. et dans $L^1(\Omega, \mathcal{F}, P)$.

Si de plus $\sup_{n} |X_n| \in L^p(\Omega, \mathcal{F}, P)$, alors la convergence a lieu dans $L^p(\Omega, \mathcal{F}, P)$.

"Théorème de la convergence dominée".

Définition:

On appelle probabilité conditionnelle d'un événement $A \in \mathcal{F}$ par rapport à \mathcal{U} , l'espérance

condition nelle

$$P(A \mid \mathcal{U}) := \mathbb{E}(\mathbf{1}_A \mid \mathcal{U}).$$

Remarque:

Si de plus $\mathcal{U} = \{\phi, B, B^c, \Omega\}$ la tribu de Bernoulli associée à $B \in \mathcal{F}$, alors $P(A \mid \mathcal{U})$ n'est

autre que la probabilité conditionnelle de A sachant B.

En effet, comme les fonctions \mathcal{U} —mesurables sont constantes sur B et sur B^c , alors par caractérisation de l'espérance cnditionnelle, on a $P(A \mid \mathcal{U}) = \alpha$ sur B, d'où

$$\alpha P(B) = \int_{B} P(A \mid \mathcal{U}) dP = \int_{B} \mathbf{1}_{A} dP = P(A \cap B),$$

par suite

$$\alpha = \frac{P(A \cap B)}{P(B)}$$
, si $P(B) \neq 0$,

soit

$$P(A \mid \mathcal{U}) = P(A \mid B).$$

5.3 Espérance conditionnelle par rapport à une variable aléatoire

Soient (Ω, \mathcal{F}, P) un espace probabilisé, (E, \mathcal{E}) un espace probabilisable et $U: (\Omega, \mathcal{F}) \to (E, \mathcal{E})$ une variable aléatoire.

Définition:

Soit X une variable aléatoire à valeurs dans $(\mathbb{R}^d, \mathcal{B}_{\mathbb{R}^d})$ et soit $\sigma(U)$ la tribu engendrée par

U. On appelle espérance conditionnelle de X par rapport à U, l'espérance conditionnelle

$$\mathbb{E}\left(X\mid U\right) := \mathbb{E}\left(X\mid\sigma\left(U\right)\right).$$

Remarque:

Comme les fonction $\sigma(U)$ –mesurables s'écrivent sous la forme $\varphi(U)$, où $\varphi: (E, \mathcal{E}) \to (\mathbb{R}^d, \mathcal{B}_{\mathbb{R}^d})$, alors $\mathbb{E}(X \mid U) = \varphi(U)$. En pratique, on calcule d'abord

$$\mathbb{E}\left(X\mid U=u\right)=\varphi\left(u\right).$$

Dans ce cas

$$\mathbb{E}\left(X\mid U\right) = \varphi\left(U\right)$$