Matematica Discreta Laurea in Informatica

Andrea Favero

Luglio 2016

Indice

1	Grafi		2
	1.1	Grafi non orientati	2
	1.2	Grafi orientati	5
	1.3	Prime proprietà dei grafi non orientati	7
	1.4	Prime proprietà dei grafi orientati	9
	1.5	Sottografi	11
	1.6	Connettività e tagli	11
	1.7	Grafi bipartiti	13
	1.8	Grafi isomorfi	15
Α	Princ	ipio di Induzione	17

Capitolo 1

Grafi

1.1 Grafi non orientati

Definizione 1.1 (grafo non orientato semplice). Un grafo non orientato semplice G è una coppia ordinata (V,E) dove: $V=\{\nu_1,\ldots,\nu_n\}$ è un insieme finito di vertici (o nodi) ed E è un insieme di coppie $non\ ordinate$ di $vertici\ dette\ spigoli^{12}$. Il grafo è detto $semplice\ perché\ non\ può\ avere\ né\ cappi\ né\ spigoli\ paralleli.$

Esempio 1.1.1. In Figura 1.1 è rappresentato il seguente grafo non orientato semplice:

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$$

$$E = \{(v_1, v_3), (v_1, v_7), (v_2, v_3), (v_4, v_7), (v_6, v_5), (v_4, v_2), (v_3, v_5), (v_5, v_7)\}$$

Si dice che lo spigolo (v_1, v_3) ha come *estremi* i vertici v_1 e v_3 .

Esempio 1.1.2. Il grafo non orientato in Figura 1.2 non è semplice poiché presenta un cappio sul vertice v_1 e ci sono due spigoli paralleli tra i vertici v_1 e v_2 .

Definizione 1.2. Uno spigolo è detto *incidente* nei suoi estremi ed i suoi vertici sono detti *adiacenti*.

Definizione 1.3 (cammino). Un *cammino* è una sequenza di vertici *distinti* in cui ogni coppia di vertici consecutivi è uno spigolo.

Esempio 1.1.3. Nel grafo in Figura 1.3 è presente il cammino $v_4 - v_7 - v_5 - v_3 - v_2$. Un'altra notazione per indicare il cammino è: $(v_4, v_7, v_5, v_3, v_2)$.

Definizione 1.4 (circuito). Cammino nel quale il primo e l'ultimo vertice sono adiacenti.

Esempio 1.1.4. Il grafo in Figura 1.4 ha il circuito: v_4 - v_7 - v_5 - v_3 - v_2 - v_4 .

 $^{^1}$ In molti libri di testo E viene rappresentato come E = { $\{\nu_i,\nu_j\},~\dots\}$ perché non c'è alcun ordine tra gli spigoli.

 $^{^2 {\}rm In}$ inglese gli spigoli sono denominati $\it edges$, per questo motivo l'insieme che li contiene è chiamato E.

Figura 1.1: un grafo semplice non orientato

Figura 1.2: un grafo non orientato che non è semplice

Figura 1.3: un cammino v_4 - v_7 - v_5 - v_3 - v_2

Definizione 1.5 (lunghezza di un circuito/cammino). La lunghezza di un circuito o di un cammino è il numero degli spigoli formati dai nodi del cammino/circuito.

Definizione 1.6 (grafo connesso). Un grafo si dice *connesso* se per ogni coppia di vertici esiste un cammino che li collega, altrimenti si dice *disconnesso*.

Definizione 1.7 (grafo completo). Un grafo è completo se per ogni coppia di vertici esiste uno spigolo che li collega. Se il grafo completo ha n vertici allora è detto grafo k_n .

Figura 1.4: un circuito v_4 - v_7 - v_5 - v_3 - v_2 - v_4

Esempio 1.1.5. In Figura 1.5 sono rappresentati 3 grafi completi.

Figura 1.5: un k_3 , k_4 e k_5

Definizione 1.8 (grafo bipartito). Un grafo è bipartito se i suoi vertici sono partizionati in due sottoinsiemi, U e V, e ogni suo spigolo è incidente in un vertice di U ed uno di V.

Esempio 1.1.6. Due grafi bipartiti sono rappresentati in Figura 1.6.

Nell'ordine:

- un grafo k₃
- un grafo k₄
- un grafo k₅

Figura 1.6: 2 grafi bipartiti

1.2 Grafi orientati

Definizione 1.9 (grafo orientato semplice). Un grafo orientato semplice G è una coppia ordinata (V,A) dove: $V=\{\nu_1,\ldots,\nu_n\}$ è un insieme finito di vertici (o nodi) ed A è un insieme di coppie ordinate di vertici dette archi.

Esempio 1.2.1.

$$\begin{split} G(V,A) \text{ con } V = & \{\nu_1,\nu_2,\nu_3,\nu_4,\nu_5\} \text{ e} \\ A = & \{(\nu_1,\nu_3),(\nu_2,\nu_1),(\nu_2,\nu_5),(\nu_3,\nu_5),(\nu_4,\nu_1),(\nu_4,\nu_3),(\nu_5,\nu_2)\} \end{split}$$

Figura 1.7: un grafo orientato semplice

Il grafo è semplice perché non ha né cappi né archi paralleli. Essendo orientato il grafo ha un nodo iniziale (testa) ed un nodo finale (coda).

Esempio 1.2.2.

$$G(V, A)$$
 $V = \{v_1, v_2\}, A = \{(v_1, v_2), (v_2, v_1)\}$

G è un grafo orientato. L'arco $(\nu_1,\nu_2)\in A$ ha ν_1 come nodo iniziale e ν_2 come finale.

Figura 1.8: un grafo orientato semplice

Esempio 1.2.3. L'immagine in Figura 1.9 non rappresenta un grafo orientato semplice perchè i vertici ν_1 e ν_2 sono collegati da due archi paralleli (ovvero due archi che hanno lo stesso nodo iniziale ed anche quello finale), inoltre c'è un cappio su ν_1 .

Figura 1.9: grafo orientato che non è semplice (un multigrafo orientato)

Definizione 1.10 (cammino orientato). Un *cammino orientato* è una sequenza di nodi distinti dove, ogni coppia di nodi consecutivi nel cammino è collegata da un arco.

Esempio 1.2.4. Nel grafo in Figura 1.10 è presente il cammino orientato:

$$v_1 - v_3 - v_5 - v_2$$

Figura 1.10: cammino orientato

Definizione 1.11 (circuito orientato). Cammino orientato nel quale esiste un arco dal primo all'ultimo nodo.

Esempio 1.2.5. In Figura 1.11 è rappresentato il circuito orientato

$$v_1 - v_3 - v_5 - v_2 - v_1$$

Figura 1.11: circuito orientato

Definizione 1.12 (grafo fortemente connesso). Per ogni coppia di nodi esiste un cammino orientato che li collega.

Esempio 1.2.6.

$$G(V = \{v_1, v_2, v_3\}, \ A = \{(v_2, v_1), (v_1, v_3), (v_3, v_1), (v_3, v_2)\})$$

è un grafo fortemente connesso ed è in Figura 1.12

Figura 1.12: grafo fortemente connesso

1.3 Prime proprietà dei grafi non orientati

Sia G(V, E) un grafo non orientato semplice. Non è difficile notare che il minimo numero di spigoli che un grafo può avere è 0 (ogni vertice è isolato) mentre il massimo è:

$$\frac{|V| (|V|-1)}{2}$$

(|V| indica la cardinalità di V. La cardinalità di un insieme finito è un numero naturale che rappresenta la quantità di elementi che costituiscono l'insieme.)

Esempio 1.3.1. In Figura 1.13 sono rappresentati dei grafi che hanno il massimo numero di spigoli che è possibile avere rispetto al numero dei loro vertici |V| = 3 e |V| = 4.

Definizione 1.13 (grado di un vertice). Si chiama grado di un vertice ν e si indica con $gr(\nu)$ il numero di spigoli incidenti in ν .

Figura 1.13: due grafi rispettivamente con V = 3 ed V = 4

Esempio 1.3.2. $gr(\nu_1) = 1$, $gr(\nu_2) = 3$, $gr(\nu_3) = gr(\nu_4) = gr(\nu_5) = 2$.

$$\sum_{v \in V} gr(v) = 1 + 3 + 2 + 2 + 2 = 10 = 2|E| = 2 \times 5$$

Il grafo relativo all'esempio è in 1.14

Figura 1.14

Teorema 1.3.1. In ogni grafo semplice non orientato G(V,E), la somma dei gradi di tutti i vertici è uguale al doppio del numero degli spigoli.

$$\sum_{v \in V} gr(v) = 2|E| \tag{1.1}$$

Dimostrazione. Per induzione su m = |E|:

caso base: m = 0

$$\begin{split} gr(\nu) &= 0 \quad \forall \nu \in V, \quad |E| = 0. \\ \textit{passo induttivo:} \ P(m-1) \implies P(m) \end{split}$$

sia G(V,E) un grafo con $\mathfrak m$ spigoli. Si suppone che 1.1 sia valida \forall grafo con $\mathfrak m-1$ spigoli.

Siano $(\bar{u}, \bar{v}) \in E$ e $G'(V, E' = E \setminus \{(\bar{u}, \bar{v})\})$ ottenuto da G togliendo (\bar{u}, \bar{v}) .

Si può notare che $gr_G(\bar{u})=gr_{G'}(\bar{u})+1$, $gr_G(\bar{v})=gr_{G'}(\bar{v})+1$ e quindi $\forall x\in V,\, x\neq \bar{u},\, x\neq \bar{v}:\, gr_G(x)=gr_{G'}(x).$

$$|E'| = |E| - 1 = m - 1 \implies \text{in } G' \text{ vale l'ipotesi induttiva} \implies \textstyle \sum_{\nu \in V} gr_{G'}(\nu) = 2|E'|.$$

In G:

$$\begin{split} \sum_{\nu \in V} gr(\nu) &= \sum_{\nu \in V, \; \nu \neq \bar{u}, \; \nu \neq \bar{\nu}} gr_G(\nu) + gr_G(\bar{u}) + gr_G(\bar{\nu}) \\ &= \sum_{\nu \in V, \; \nu \neq \bar{u}, \; \nu \neq \bar{\nu}} gr_{G'}(\nu) + gr_{G'}(\bar{u}) + 1 + gr_{G'}(\bar{\nu}) + 1 \\ &= \sum_{\nu \in V} gr_{G'}(\nu) + 2 \underbrace{\qquad}_{ipotesi \; induttiva} 2|E'| + 2 \\ &= 2(m-1) + 2 \\ &= 2m \\ &= 2|E| \end{split}$$

Corollario 1.3.2. In ogni grafo non orientato, il numero dei vertici di grado dispari è pari.

Dimostrazione. Siano G(V,E) un grafo non orientato semplice, $V_d = \{v \in V \mid gr(v) \text{ è dispari}\}\$ e $V_p = \{v \in V \mid gr(v) \text{ è pari}\}\$; quindi $V_d \cap V_p = \emptyset$ e $V_d \cup V_p = V$.

$$\begin{split} \sum_{\nu \in V} gr(\nu) &= 2|E| \\ &= \underbrace{\sum_{\nu \in V_p} gr(\nu)}_{pari} + \underbrace{\sum_{\nu \in V_d} gr(\nu)}_{pari} &= \underbrace{2|E|}_{pari} \end{split}$$

Poichè la somma dei gradi dei vertici che hanno grado pari è un numero pari, allora anche la somma dei gradi dei vertici che hanno grado dispari è un numero pari perché:

$$\sum_{\nu \in V_d} gr(\nu) = \underbrace{2|E|}_{\mathtt{pari}} - \underbrace{\sum_{\nu \in V_p} gr(\nu)}_{\mathtt{pari}}$$

e la differenza tra due numeri pari è un numero pari. Essendo quindi la somma dei gradi dei vertici di grado dispari un numero pari, allora anche il numero dei vertici di grado dispari è un numero pari. Questo perchè se si sommano n numeri dispari, la loro somma è un numero pari se e solo se n è pari.

Esercizio 1.3.1. Trovare G(V, E) con |V| = 7 e $gr(v) = 5 \ \forall v \in V$.

Svolgimento: non esiste alcun grafo di questo tipo, per il corollario di cui sopra. Infatti ho 7 vertici di grado dispari ma, il numero dei vertici di grado dispari deve essere un numero pari, assurdo.

1.4 Prime proprietà dei grafi orientati

Sia G(V, A) un grafo orientato semplice. Allora il minimo numero di archi che questo può avere è 0 (ogni vertice è isolato) mentre il massimo è $|V| \cdot (|V| - 1)$.

Esempio 1.4.1. Due grafi orientati con il loro massimo numero di archi possibili sono rappresentati in Figura 1.15

Figura 1.15: Due grafi orientati con il loro massimo numero di archi possibile

Definizione 1.14 (grado entrante di un vertice). Si chiama grado *entrante* di un vertice ν e si indica con $\text{In-deg}(\nu)$ il numero di archi entranti nel vertice ν .

Definizione 1.15 (grado uscente di un vertice). Si chiama grado uscente di un vertice v e si indica con Out-deg(v) il numero di archi uscenti dal vertice v.

Esempio 1.4.2. La Figura 1.16 rappresenta un grafo con In-deg $(v_1) = 1$ e Out-deg $(v_1) = 3$

Figura 1.16: esempio con In-deg $(v_1) = 1$ e Out-deg $(v_1) = 3$

Teorema 1.4.1. In ogni grafo orientato semplice G(V,A) sono uguali tra loro: la somma dei gradi uscenti dei nodi, la somma dei gradi entranti dei nodi, il numero di archi del grafo.

$$\sum_{\nu \in V} \text{In-deg}(\nu) = \sum_{\nu \in V} \text{Out-deg}(\nu) = |A|$$
 (1.2)

Dimostrazione. Per induzione su m = |A|:

 $\it caso\ base:\ m=0$

 $\begin{array}{l} \sum_{\nu \in V} In\text{-deg}(\nu) = \sum_{\nu \in V} Out\text{-deg}(\nu) = m = |A| = 0. \\ \textit{passo induttivo: } P(m-1) \implies P(m) \end{array}$

sia G(V,E) un grafo orientato con $\mathfrak m$ archi. Si suppone che 1.2 sia valida \forall grafo orientato con $\mathfrak m-1$ archi.

Sia $(\bar{u}, \bar{v}) \in A$ e sia $G'(V, A' = A \setminus \{ (\bar{u}, \bar{v}) \})$ ottenuto da G togliendo (\bar{u}, \bar{v}) .

Allora:3

$$\begin{split} &\sum_{\nu \in V} \text{In-deg}_G(\nu) = \sum_{\nu \in V} \text{In-deg}_{G'}(\nu) + 1 \\ &\sum_{\nu \in V} \text{Out-deg}_G(\nu) = \sum_{\nu \in V} \text{Out-deg}_{G'}(\nu) + 1 \end{split}$$

$$|A'| = |A| - 1 = m - 1 e$$

$$\sum_{\nu \in V} \text{In-deg}_{G^{\,\prime}}(\nu) = \sum_{\nu \in V} \text{Out-deg}_{G^{\,\prime}}(\nu) = \mathfrak{m} - 1 = |A^{\,\prime}|$$

Quindi in G' vale l'ipotesi induttiva.

Ora in G:

$$\begin{split} |A| &= \sum_{\nu \in V} In\text{-deg}_G(\nu) = \sum_{\nu \in V} Out\text{-deg}_G(\nu) \\ &= \underbrace{\sum_{\nu \in V} In\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 = \underbrace{\sum_{\nu \in V} Out\text{-deg}_{G'}(\nu)}_{|A'| = m-1} + 1 \end{split}$$

1.5 Sottografi

Definizione 1.16 (sottografo). Dato G(V,E) grafo non orientato semplice, un suo sottografo è un grafo G'(V',E') con $V'\subseteq V$ e $E'\subseteq E$.

Definizione 1.17 (sottografo indotto). Dato G(V,E) grafo non orientato semplice, un suo sottografo indotto è un suo sottografo G'(V',E') tale che $\forall (u,v) \in E$, se $u,v \in V' \implies (u,v) \in E'$.

Esempio 1.5.1. In Figura 1.17 sono rappresentati un grafo G(V, E), un suo sottografo $G'(V' = \{a, d, f, e\}, E' = \{(a, d), (a, f)\})$ ed un suo sottografo indotto (da V') $G''(V', E'' = \{(a, d), (a, f), (d, f), (f, e)\}).$

1.6 Connettività e tagli

Definizione 1.18 (Connessione di 2 vertici). Sia G(V,E) un grafo non orientato e siano $u,v\in V$. u e v sono connessi se esiste un cammino che ha come estremità u e v.

La connessione è una relazione di equivalenza nell'insieme V dei vertici:

³ Si somma 1 perché in G ci sono un arco entrante in più su $\bar{\nu}$ ed uno uscente in più da \bar{u} dato che $(\bar{u},\bar{\nu})\in A$.

Figura 1.17: Rispettivamente: un grafo G(V,E), un suo sottografo ed un suo sottografo indotto.

- u è connesso a se stesso (riflessività)
- u è connesso a $v \implies v$ è connesso a u (simmetria)
- $\mathfrak u$ è connesso a $\mathfrak v$ e $\mathfrak v$ è connesso a $\mathfrak t$ \Longrightarrow $\mathfrak u$ è connesso a $\mathfrak t$ (transitività)

u e ν sono connessi solo se, partizionato V in V_1, V_2, \ldots, V_k insiemi, sia u che ν appartengono allo stesso insieme V_i (con $1 \leqslant i \leqslant k$). I k insiemi rappresentano le componenti connesse del grafo G. Tale grafo G è connesso se esiste una unica partizione (quindi k=1), altrimenti si dice sconnesso ($k \geqslant 1$). Le componenti connesse di un grafo sono i suoi sottografi connessi massimali.

Esempio 1.6.1. In Figura 1.18 sono rappresentati un grafo connesso ed un grafo sconnesso con 3 componenti connesse.

Una partizione di V è una sua scomposizione in parti disgiunte

Figura 1.18: un grafo connesso ed un grafo sconnesso

Esempio 1.6.2. In Figura 1.19 sono rappresentati un grafo e le sue componenti connesse (ovvero i suoi sottografi connessi massimali).

Definizione 1.19 (taglio). Sia G(V, E) un grafo non orientato e sia $S \subseteq V$. Il taglio (cut) associato ad S è l'insieme degli spigoli che hanno esattamente una estremità in S e si indica con $\delta(S)$.

$$\delta(S) = \{(u, v) \in E : |S \cap \{u, v\}| = 1\}$$

Si dice che $\delta(S)$ separa $u \in v$ se $|S \cap \{u, v\}| = 1$.

Figura 1.19: un grafo e le sue componenti connesse

Figura 1.20: Taglio associato ad $S = \{a, b\}$

Esempio 1.6.3. esempio: $V = \{a, b, c, d, e\}$ sono i nodi del grafo in Figura 1.20 che, ha come taglio associato ad $S = \{a, b\}$ l'insieme $\delta(S) = \{(a, d), (a, c), (b, c), (b, e)\}$.

Teorema 1.6.1. Sia $P = u - \cdots - v$ un cammino su un grafo G(V, E) e sia $\delta(S)$ un taglio che separa u da v, allora $|P \cap \delta(S)| \geqslant 1$.

Dimostrazione. Per la definizione di taglio $\exists S \subset V$ in cui $u \in S$ o $v \in S$ ma, sia u che v non possono appertenere entrambi allo stesso insieme S. Supponiamo che $u \in S$ (un ragionamento analogo lo si può fare per v), allora DA TERMINARE!!!

Teorema 1.6.2. Sia G(V,E) un grafo non orientato, allora $u,v\in V$ appartengono alla stessa componente connessa di $G\iff \delta(S)\neq\emptyset$ $\forall \delta(S\neq\emptyset)$ che separa u e v.

Dimostrazione. Sia G(V, E) un grafo non orientato connesso, sia $S \subseteq V$, $S \neq \emptyset$ e sia $\delta(S)$ un taglio di G che separa due nodi u e v. Dato che G è connesso allora esiste un cammino P tra u e v, per il Teorema 1.6.1 sappiamo che $|P \cap \delta(S)| \geqslant 1$ quindi $\delta(S) \neq \emptyset$. DA TERMINARE!!!

Definizione 1.20 (connettività sugli spigoli). Sia G(V,E) un grafo connesso. Si dice connettività sugli spigoli e si indica con $\lambda(G)$ il minimo numero di spigoli la cui rimozione trasforma G in un grafo sconnesso.

1.7 Grafi bipartiti

Riprendiamo ora la discussione sui grafi bipartiti che sono stati definiti a pagina 4. Un grafo è *bipartito* se i suoi vertici sono partizionati in due sottoinsiemi,

 $^{^4}$ Con P \cap $\delta(S)$ facciamo riferimento all'intersezione dell'insieme formato da tutti gli spigoli che sono parte del cammino P con $\delta(S)$

Algorithm 1 Algoritmo che determina se \exists un cammino tra $\mathfrak u$ e $\mathfrak v$

```
Input: un grafo G(V, E) ed un suo vertice v \in V

Output: Una comp. connessa C che contiene v (tutti i nodi raggiungibili da v)

C = \emptyset

prendo v e lo metto in C {proprietà riflessiva: v è connesso a se stesso}

{Adesso esamino tutti i nodi che sono nella comp. connessa.}

for each u \in C do

aggiungo a C tutti i vertici adiacenti a u che non sono già in C

end for

{ora C è la componente connessa che contieve v, se contiene anche u allora

\exists un cammino tra u e v}
```

 V_1 e V_2 ed ogni spigolo è incidente in un vertice di V_1 e uno di V_2 . Il minimo numero di spigoli che un grafo bipartito può avere è 0, mentre il massimo é $|V_1| \cdot |V_2|$.

Proposizione 1.7.1 (condizione necessaria e sufficiente per grafi bipartiti). Se G(V,E) è un grafo bipartito e G'(V',E') è un suo sottografo allora G'(V',E') è bipartito. Questo equivale a dire che G' non è bipartito \iff G non è bipartito.

Teorema 1.7.2. Un grafo G(V, E) è bipartito \iff ogni circuito di G ha lunghezza pari (la lunghezza di un circuito è il numero degli spigoli).

Dimostrazione. Consideriamo solamente i grafi connessi dato che ogni ciclo è contenuto in una componente connessa e se le componenti connesse sono bipartite allora anche il grafo è bipartito.

 \Longrightarrow) Sia G un grafo bipartito e $c=x_1$ - ... - x_k - x_1 un suo circuito di lunghezza k (in Figura 1.21). Per la definizione di grafo bipartito i nodi del circuito devono essere del tipo: $x_1 \in V_1, \ x_2 \in V_2, \ x_3 \in V_1, \ \dots$

Più precisamente: $x_j \in V_1$ se j è dispari e $x_j \in V_2$ se j è pari, con $j=1,\ldots,k$. Poiché $(x_1,x_k) \in E$, $x_1 \in V_1 \implies x_k \in V_2 \implies k$ è pari e, per come è stato definito il circuito, questo ha lunghezza k.

 \Leftarrow Sia G un grafo con tutti i circuiti di lunghezza pari. Sia $v \in V$, lo "mettiamo" in V_1 , tutti i suoi adiacenti li "mettiamo" in V_2 , poi prendiamo tutti i vertici distanti 2 da v e li mettiamo in V_1 ... e così via. In generale se esiste un cammino di lunghezza pari che parte da v ed arriva fino ad un certo nodo v, allora mettiamo v in v, se invece il cammino ha lunghezza dispari allora mettiamo v in v. Non possono esistere spigoli che collegano due nodi che si trovano entrambi in v o in v. Supponiamo che v u, v tali che entrambi appartengono a v, che v (v u, v) v0 e E; deve esistere un cammino v1 e un circuito spigolo v2, se alla fine del cammino si aggiunge lo spigolo v3 allora si ottiene un circuito formato da due cammini, il primo è v3 che ha lunghezza pari ed il secondo è v4, che ha lunghezza dispari. Il circuito allora ha lunghezza dispari, ma è assurdo perchè la nostra ipotesi assume che v3

sia un grafo che ha solo circuiti di lunghezza pari. Un ragionamento analogo lo si può fare se u e w appartengono a V_2 .

Figura 1.21: circuito parte ⇒) della dimostrazione

Algorithm 2 Algoritmo per verifica bipartizione di un grafo

```
Da ripetere \forall componente connessa di G(V,E): V_1 = V_2 = \emptyset prendo un qualsiasi v \in V e lo metto in V_1 for each u \in V_1 \cup V_2 do  \{ \text{La prima volta entro per forza nell'if perché } u \text{ può essere solo uguale a } v \}  if u \in V_1 then  \text{aggiungo a } V_2 \text{ tutti i vertici adiacenti a } u \text{ che non sono in } V_1 \cup V_2 \text{ else }   \text{aggiungo a } V_1 \text{ tutti i vertici adiacenti a } u \text{ che non sono in } V_1 \cup V_2 \text{ end if }  end for  G \text{ è bipartito } \iff \text{ogni spigolo ha una estremità in } V_1 \text{ ed una in } V_2
```

1.8 Grafi isomorfi

Definizione 1.21 (grafi isomorfi). Due grafi G(V, E) e G'(V', E') sono *isomorfi* se esiste una corrispondenza biunivoca (*isomorfismo*) tra i vertici di V e quelli di V' tali che: due vertici di V sono adiacenti in $G \iff$ i corrispondenti vertici di V' sono adiacenti in G'.

Stabilire se due grafi sono isomorfi è un problema difficile, per sapere se lo sono si può "cercare l'isomorfismo". Due grafi sono isomorfi se:

- hanno lo stesso numero di vertici
- hanno lo stesso numero di spigoli
- hanno lo stesso numero di vertici con lo stesso grado

sono condizioni necessarie ma non sufficienti

- hanno gli stessi sottografi indotti
- i loro complementari devono essere isomorfi

Esempio 1.8.1. In Figura 1.22 sono rappresentati 2 grafi isomorfi

Figura 1.22: 2 grafi isomorfi

 $\pmb{\mathsf{Esempio}}$ 1.8.2. In Figura 1.23 sono rappresentati 2 grafi complementari non isomorfi

Figura 1.23: 2 grafi complementari non isomorfi

Appendice A

Principio di Induzione

Definizione A.1 (Principio di Induzione). Sia P(n) una proprietà definita per i numeri natuali n, sia α un intero fissato. Supponendo che le seguenti due affermazioni siano vere:

- 1. P(a) è vero
- 2. $\forall k \in \mathbb{N}$ tale che $k \geqslant \alpha$, se P(k) è vero allora P(k+1) è vero.

Allora l'affermazione: per tutti gli n to a mgg ug a, p(n) è vera