Contents

1	Introduction				
	1.1 Supervised learning	3			
	1.2 Unsupervised learning	3			
	1.3 Reinforcement learning	3			
2	Statistical Learning 2.1 Finite hypothesis class	5			
3	Probably Approximately Correct Learning 3.1 Generalized loss functions				
4	Learning via Uniform Convergence	9			

Introduction

Some kinds of learning include;

1.1 Supervised learning

Given a dataset of pair

$$\mathcal{D}_n = \left\{ (x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \right\}$$
(1.1)

we wish to establish a relationship between $x^{(i)}$ and $y^{(i)}$. Typically, $x^{(i)} \in \mathbb{R}^d$ is a representation of input, called **feature representation**. Based on the format of the output we can have different types of supervised learning:

Classification when the set of possible values of $y^{(i)}$ is discrete (small finite set). If there two possible values then the classification problem is *binary* otherwise, it is called *multi-class*.

Regression when the set of possible values of $y^{(i)}$ is continuous (or a large finite set). That is, $y^{(i)} \in \mathbb{R}^k$.

1.2 Unsupervised learning

Given a dataset we wish to find some patterns or structures in it. There are several types of unsupervised learning:

Density estimation The data is i.i.d from some distribution $p_X(x)$. The goal is to predict the probability $p_X(x^{(n+1)})$.

Clustering the goal is to find a partitioning of the sample data that groups together samples that are similar. Clustering is sometimes used in density estimation.

Dimensionality reduction the goal is to re-represent the same data in \mathbb{R}^l where l < d.

1.3 Reinforcement learning

The goal is to learn a mapping from input values to output values without a direct supervision signal. There is no training set specified *a priori*. Instead, the learning problem is framed as an agent interacting with an environment. Looking at input as our states and output as a

1. Introduction

transition between states, we can assign a reward value $r^{(i,j)}$ to each such transition. We aim to find a policy π that maximizes the long-term sum or average od rewards.

Statistical Learning

A statistical learner needs to know the domain set, \mathcal{X} , label set, \mathcal{Y} , and a training data set (more like a sequence) $S \subset \mathcal{X} \times \mathcal{Y}$. Given these, learner outputs a predictor $h: \mathcal{X} \to \mathcal{Y}$ which is also called hypothesis or classifier. We can assume that $\mathcal{D} = \mathbb{P}_{\mathcal{X}}$ is the distribution on \mathcal{X} and there exists a correct function f that for each sampled x output the corresponding label y = f(x). Then the error of h is defined as

$$L_{\mathcal{D},f}(h) = \mathbb{P}(h(x) \neq f(x))$$

Since we know neither f nor \mathcal{D} we can not find the exact error. To approximate this error, we can use the *empirical error*.

$$L_S(h) = \frac{|\{i \mid h(x_i) \neq y_i\}|}{|S|}$$

Since S is a representation of the real distribution it makes sense to minimize $L_S(h)$ and expect that $L_{\mathcal{D},f}(h)$ is minimized as well. This is called **empirical risk minimization** or ERM for short. Overfitting is one drawback of ERM which arises when S is not fully representitive of \mathcal{D} . In that case, predictor though working well on the training data, fails to generalize and mislabels the new data.

One way to avoid overfitting is to restrict possible hypotheses to a class of hypothese \mathcal{H} . Then

$$ERM_{\mathcal{H}}(S) \in \operatorname*{argmin}_{h \in \mathcal{H}} L_S(h)$$

This way, we increase the bias toward \mathcal{H} and possibly increasing the true error.

2.1 Finite hypothesis class

Suppose \mathcal{D} is finite and assume that there exists a $h^* \in \mathcal{H}$ such that

$$L_{\mathcal{D},f}(h^*) = 0$$

This is called the *realizability assumption*. Furthermore, we can assume that training data are selected independent of each other.

We often assign a probability δ to getting a non-representitive training data. $1-\delta$ is called the *confidence parameter*. We then assign an *accuracy parameter* ϵ where $L_{\mathcal{D},f}(h_S) > \epsilon$ is a failure. We wish the find an upperbound for the probability of getting a training data that results in a failure.

$$\mathbb{P}(S \text{ s.t.} L_{\mathcal{D},f}(h_S) > \epsilon)$$

Let \mathcal{H}_B be the set of bad hypotheses

$$\mathcal{H}_B = \{ h \,|\, L_{\mathcal{D},f}(h) > \epsilon \}$$

and M the set of misleading samples

$$M = \{ S \mid \exists h \in \mathcal{H}_B, \ L_S(h) = 0 \}$$

Probably Approximately Correct Learning

Definition: A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}:]0,1[^2 \to \mathbb{N}]$ and a learning alogrithm such that:

- For every $\epsilon, \delta \in]0, 1[$, distribution \mathcal{D} over \mathcal{X} , and labeling function $f: \mathcal{X} \to \{0, 1\}$
- If the realizable assumption hold with respect to $\mathcal{H}, \mathcal{D}, f$
- Then, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ of i.i.d. samples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that

$$\mathbb{P}(L_{\mathcal{D},f}(h) \le \epsilon) \ge 1 - \delta$$

Remark 1. The minimal function $m_{\mathcal{H}}$ determines the sample complexity of learning \mathcal{H} .

Corollary 3.1. Every finite hypothesis class is PAC learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$$

Let \mathcal{J} be the joint distribution over $\mathcal{X} \times \mathcal{Y}$. Note that, \mathcal{D} is the marginal distribution of \mathcal{J} . Then we can revise the definition for the true error

$$L_{\mathcal{J}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{J}}(h(x) \neq y)$$

Then given \mathcal{J} the best label prediction function is

$$f_{\mathcal{J}}(x) = \begin{cases} 1 & \text{if } \mathbb{P}(y=1 \mid x) \ge \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

that is, there is no other classifier g with $L_{\mathcal{J}}(g) < L_{\mathcal{J}}(f_{\mathcal{J}})$

Definition: A hypothesis \mathcal{H} is **agnostic PAC learnable** if there exist a function $m_{\mathcal{H}}$: $[0,1]^2 \to \mathbb{N}$ and a learning alogrithm such that:

- For every $\epsilon, \delta \in]0, 1[$, distribution \mathcal{J} over $\mathcal{X} \times \mathcal{Y}$
- Then, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ of i.i.d. samples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that

$$\mathbb{P}\Big(L_{\mathcal{J}}(h) \le \min_{h'} L_{\mathcal{J}}(h') + \epsilon\Big) \ge 1 - \delta$$

3.1 Generalized loss functions

Given any set \mathcal{H} and some domain Z, let l be any function from $\mathcal{H} \times Z$ to \mathbb{R}_+ . We call such functions loss functions. We then define the risk function to be

$$L_{\mathcal{Z}}(h) = \mathbb{E}_{\mathcal{Z}}[l(h,z)]$$

where $h \in \mathcal{H}$, and \mathcal{Z} is the distribution on Z. Similarly, the empirical risk over a given sample $S \in \mathbb{Z}^m$ is

$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} l(h, z_i)$$

Then revising the agnostic PAC learnability definition for general loss function gives

Definition: A hypothesis \mathcal{H} is **agnostic PAC learnable** with respect to Z and a loss function $l: \mathcal{H} \times Z \to \mathbb{R}_+$, if there exist a function $m_{\mathcal{H}}:]0,1[^2 \to \mathbb{N}$ and a learning alogrithm such that:

- For every $\epsilon, \delta \in [0, 1[$, distribution \mathcal{Z} over Z
- Then, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ of i.i.d. samples generated by \mathcal{Z} and labeled by f, the algorithm returns a hypothesis h such that

$$\mathbb{P}\Big(L_{\mathcal{Z}}(h) \le \min_{h'} L_{\mathcal{Z}}(h') + \epsilon\Big) \ge 1 - \delta$$

Remark 2. In some situations, \mathcal{H} is a subset of a set \mathcal{H}' , and the loss function can be naturally extended to be a function from $\mathcal{H}' \times Z$. In this cases, we may allow the algorithm to return a hypothese $h' \in \mathcal{H}'$ as long as it satisfies the requirement

$$\mathbb{P}\bigg(L_{\mathcal{Z}}(h') \le \min_{h \in \mathcal{H}} L_{\mathcal{Z}}(h) + \epsilon\bigg) \ge 1 - \delta$$

This is called representation independent learning, or improper learning.

Learning via Uniform Convergence

Definition: A training set S is called ϵ -representative (w.r.t domain Z, hypothesis class \mathcal{H} , loss function l, and distribution \mathcal{Z}) if

$$\forall h \in \mathcal{H}, \quad |L_S(h) - L_{\mathcal{Z}}(h)| < \epsilon$$

Lemma 4.1. Suppose S is $\frac{\epsilon}{2}$ -representative. Then, any output of $h_S = ERM_{\mathcal{H}}(S)$ satisfies

$$L_{\mathcal{Z}}(h_S) \le \min_{h \in \mathcal{H}} L_{\mathcal{Z}}(h) + \epsilon$$

Proof. Let $h_{\mathcal{Z}}$ be the argmin_h $L_{\mathcal{Z}}(h)$ then

$$|L_{\mathcal{Z}}(h_S) - L_{\mathcal{Z}}(h_{\mathcal{Z}})| = L_{\mathcal{Z}}(h_S) - L_{\mathcal{Z}}(h_{\mathcal{Z}})$$

$$= |L_{\mathcal{Z}}(h_S) - L_S(h_S)| + |L_S(h_{\mathcal{Z}}) - L_{\mathcal{Z}}(h_{\mathcal{Z}})| + |L_S(h_S) - L_S(h_{\mathcal{Z}})|$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} + 0 = \epsilon$$

Another way to prove the statement

$$L_{\mathcal{Z}}(h_S) \le L_S(h_S) + \frac{\epsilon}{2} \le L_S(h) + \frac{\epsilon}{2} \le L_{\mathcal{Z}}(h) + \epsilon, \quad \forall h \in \mathcal{H}$$

Definition: \mathcal{H} has uniform convergence property (w.r.t domain Z and loss function l) if there exists a $m_{\mathcal{H}}^{UC}:]0,1[^2 \to \mathbb{N}$ such that for all $\epsilon, \delta \in]0,1[$, for every distribution \mathcal{Z} over Z, if $|S| \geq m_{\mathcal{H}}^{UC}(\epsilon, \delta)$ and S is i.i.d, then with probability at least $1 - \delta$, S is ϵ -representative.

Proposition 4.2. If \mathcal{H} has uniform convergent property with sample complexity $m_{\mathcal{H}}^{UC}$, then it is agnostically PAC learnable with sample complexity $m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\frac{\epsilon}{2}, \delta)$. Furthermore, in that case the ERM_h paradigm is a successful agnostic learner for \mathcal{H} .

Theorem 4.3. Every finite class has uniform convergence property and thus it is agnostic PAC learnable.

Proof. Fix ϵ, δ , we need to show that for any distribution \mathcal{Z}

$$\mathbb{P}(\{S \mid \forall h, |L_S(h) - L_{\mathcal{Z}}(h)| \le \epsilon\}) \ge 1 - \delta$$

Equivalently

$$\mathbb{P}(\{S \mid \exists h, |L_S(h) - L_{\mathcal{Z}}(h)| > \epsilon\}) \leq \delta$$

$$= \mathbb{P}\left(\bigcup_{h \in \mathcal{H}} \{S \mid |L_S(h) - L_{\mathcal{Z}}(h)| > \epsilon\}\right) \leq \sum_{h \in \mathcal{H}} \mathbb{P}(\{S \mid |L_S(h) - L_{\mathcal{Z}}(h)| > \epsilon\})$$

Note that $\forall h$

$$\mathbb{E}[L_S(h)] = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}[l(h, Z_i)] = \mathbb{E}[l(h, Z_1)] = L_{\mathcal{Z}}(h)$$

and recall that by Hoeffding inequality, if X_1, \ldots, X_n are i.i.d. random variable with $\mathbb{E}[X] = \mu$ and $X \in [a, b]$ then for any $\epsilon > 0$

$$\mathbb{P}(\left|\bar{X} - \mu\right| > \epsilon) \le 2\exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right)$$

Let $X_i = l(h, Z_i)$ then $\bar{X} = L_S(h)$ and $\mathbb{E}[X] = L_Z(h)$ and assume that range of l is [0, 1], By Hoeffding inequality

$$\mathbb{P}(\{S \mid |L_S(h) - L_Z(h)| > \epsilon\}) \le 2e^{-2m\epsilon^2}$$

hence

$$\mathbb{P}(\{S \mid \exists h, |L_S(h) - L_{\mathcal{Z}}(h)| > \epsilon\}) \le \sum_{h \in \mathcal{H}} 2e^{-2m\epsilon^2}$$
$$= 2|\mathcal{H}|e^{-2m\epsilon^2}$$

which implies for

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) \ge \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$$

proves that any finite \mathcal{H} has the uniform convergence property.

Corollary 4.4. Let \mathcal{H} be a finite class, let Z be a domain and let $l: \mathcal{H} \times Z \to [0,1]$ be a loss function. Then, \mathcal{H} is uniformly convergent with sample complexity

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \right\rceil$$

Furthermore, it is agnostically PAC learnable using ERM algorithm with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \le m_{\mathcal{H}}^{UC}(\frac{\epsilon}{2}, \delta) \le \left\lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil$$

Glivenko-Cantelli Classes.