Joint Probabilities

Frederik Mallmann-Trenn 6CCS3AIN

Joint probability distribution

 Joint probability distribution for a set of r.v.s (random variables) gives the probability of every atomic event on those r.v.s (i.e., every sample point)

P(Cavity, Weather) is a 2×4 matrix of values

$$\begin{pmatrix}
0.144 & 0.02 & 0.016 & 0.02 \\
0.576 & 0.08 & 0.064 & 0.08
\end{pmatrix}$$

which can be interpreted as

	W. = sunny	W.=rain	W. = cloudy	W. = snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

- **Every** question about a domain can be answered by the joint distribution because every event is a sum of sample points.
- E.g., $P(Cavity = true \ AND \ Weather \neq cloudy)$

(Paramount Pictures)

Example of a joint distribution with three variables (catch is something the doctor can test):

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega : \omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064$$

= 0.2

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

 \blacksquare For any proposition $\phi,$ sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064$$
$$= 0.28$$

Your turn

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- Calculate $Pr(toothache \land cavity)$.
- I encourage you to use the KEATS forum to compare your answers!

Your turn

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- \blacksquare Calculate $Pr(cavity \mid toothache)$.
- I encourage you to use the KEATS forum to compare your answers!

Can also compute conditional probabilities:

$$P(\neg cavity|toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064}$$
$$= 0.4$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
	400			
cavity	.108	.012	.072	.008

 $P(\neg cavity \land toothache) / P(toothache)$

Notation

■ Notation for conditional distributions:

P(Cavity|toothache)

The outcome is a 2-dimensional vector (and so is Cavity). Write it down and compare!

Conditional or posterior probabilities

P(cavity|toothache) = 0.6

given that toothache is all I know

Recall, for convenience we write cavity for Cavity = true and toothache for Toothache = true.

Conditional or posterior probabilities P(cavity|toothache) = 0.6 given that toothache is all I know

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1

Note: the less specific belief (toothache) remains valid after more evidence arrives, but is not always useful

Conditional or posterior probabilities P(cavity|toothache) = 0.6 given that toothache is all I know

If we know more, e.g., cavity is also given, then we have P(cavity|toothache, cavity) = 1

Note: the less specific belief (toothache) remains valid after more evidence arrives, but is not always useful

- New evidence may be irrelevant, allowing simplification $P(cavity|toothache, your\ curtains\ are\ red) = P(cavity|toothache) = 0.6$
- This kind of inference, sanctioned by domain knowledge, is crucial.

Definition of conditional probability:

$$P(a|b) = \frac{P(a \land b)}{P(b)} \text{ if } P(b) > 0$$

■ Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

A general version holds for joint distributions,

$$\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity) \odot \mathbf{P}(Cavity)$$

(View as a $4\cdot 2=8$ set of equations, not matrix multiplication - unless you know exactly what you're doing and you model everything correctly)

Chain rule

■ Chain rule is derived by successive application of product rule. Concrete example:

$$P(a,b,c) = P(a,b)P(c|b,a)$$
$$= P(a)P(b|a)P(c|b,a)$$

■ In general,

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1})\mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2})\mathbf{P}(X_{n-1}|X_{1},...,X_{n-2})\mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= ...
= \prod_{i=1}^{n} \mathbf{P}(X_{i}|X_{1},...,X_{i-1})$$

Normalisation

We can use $\alpha = 1/P(toothache)$ to normalise (we don't need to calculate it!)

$$\begin{aligned} &\mathbf{P}(Cavity|toothache) = \alpha \, \mathbf{P}(Cavity,toothache) \\ &= \alpha \, \left[\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch) \right] \\ &= \alpha \, \left[\begin{pmatrix} 0.108 \\ 0.016 \end{pmatrix} + \begin{pmatrix} 0.012 \\ 0.064 \end{pmatrix} \right] = \alpha \, \begin{pmatrix} 0.12, \\ 0.08 \end{pmatrix} = \begin{pmatrix} 0.6, \\ 0.4 \end{pmatrix} \end{aligned}$$

	toothache		¬ too	¬ toothache	
	catch	¬ catch	catch	¬ catch	
cavity	.108	.012	.072	.008	
¬ cavity	.016	.064	.144	.576	

• Green boxes show step in calculation, not the desired outcome

General version

- Let **X** be all the variables.
- Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E
- Let the hidden variables be $\mathbf{H} = \mathbf{X} \mathbf{Y} \mathbf{E}$

General version

Then the required summation of joint entries is done by summing out the hidden variables:

$$\begin{aligned} \mathbf{P}(\mathbf{Y}|\mathbf{E} = e) &= & \alpha \mathbf{P}(\mathbf{Y}, \mathbf{E} = e) \\ &= & \alpha \sum_{h} \mathbf{P}(\mathbf{Y}, \mathbf{E} = e, \mathbf{H} = h) \end{aligned}$$

■ The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables