LAPORAN PRAKTIKUM METODE NUMERIK

Judul: Pengenalan Matlab 2

DISUSUN OLEH ILHAM NUR ROMDONI M0520038

PROGRAM INFORMATIKA
FAKULTAS MIPA
UNIVERSITAS SEBELAS MARET
2021

SCREENSHOT PRAKTIKUM

1. Differensial

```
%Ilham Nur Romdoni, M0520038

f = input('Masukan bentuk persamaan f (x) = ');
f_asli = sym (f)
f_turunan = diff(f_asli, 'x')
```

2. Integral

```
%Ilham Nur Romdoni, M0520038

f = input ('Fungsi : ');
f_asli = sym(f)
f_integral = int(f_asli, 'x')
```

plot(x,y,x,z);

3. Grafik

a. Grafik garis 2D

1)

```
%Ilham Nur Romdoni, M0520038
      x = 0:10:100;
      y = x.^3 + 2*x.^2 - 40*x;
      plot(x,y);
2)
      %Ilham Nur Romdoni, M0520038
      x = 0:1:100;
      y = x.^3 + 2*x.^2 - 40*x;
      plot(x,y);
3)
      %Ilham Nur Romdoni, M0520038
      x = linspace(0,20);
      y = \exp(-x/4) \cdot \sin(x);
      plot(x,y);
      xlabel('sumbu x');
      ylabel('Sumbu y');
      title('Gambar grafik persamaan f(x) = \exp(-x/4).*\sin(x)');
4)
      %Ilham Nur Romdoni, M0520038
      x = 0:0.01:2*pi;
      y = -10*sin(2*x) - 8*cos(3*x);
      z = 8*sin(6*x).*-6.*cos(10*x);
```

b. Grafik garis 3D

1) Line Plot

```
%Ilham Nur Romdoni, M0520038

t=0:0.1:6*pi;
x=sqrt(t).*sin(2*t);
y=sqrt(t).*cos(2*t);
z=0.5*t;
plot3(x,y,z,'k','linewidth',l)
grid on
xlabel('x'); ylabel('y'); zlabel('z')
```

2) Mesh Plot

```
%Ilham Nur Romdoni, M0520038
x = -7.5:0.5:7.5;
y = x;
[X, Y] = meshgrid(x,y);
R = sqrt(X.^2 + Y.^2);
Z = sin(R)./R;
mesh(X,Y,Z);
```

3) Contour Plot

```
%Ilham Nur Romdoni, M0520038

x=-3:0.25:3;
y=-3:0.25:3;
[X,Y]=meshgrid(x,y);
Z=1.8.^(-1.5*sqrt(X.^2+Y.^2)).*cos(0.5*Y).*sin(X);
contour3(X,Y,Z,15)
xlabel('x'); ylabel('y')
zlabel('z')
```

ANALISIS PRAKTIKUM

1. Analisis Source Code

a. Differensial

Pada Matlab, terdapat *toolbox* standar yang berisi *function* untuk melakukan *symbolic operartion*, yakni *Symbolic Math Toolbox*. *Symbolic* merupakan *syntax* yang digunakan untuk mendeklarasikan *symbolic object* (objek dapat berupa angka numerik/*variable* yang tidak memiliki nilai numerik) dan *symbolic expression* (formula matematika pada Matlab yang memuat *symbolic object*). Terdapat dua cara untuk menerapkan *symbolic object*, yaitu dengan **sym** dan **syms**. *Syntax* penulisannya **object_name** = **sym(value)**.

Pada *source code*, baris 1 mendefinisikan fungsi f sebagai permintaan untuk meng*input* suatu persamaan. Lalu pada baris kedua, Membuat *object* numerik dengan nama **f_asli** dengan nilai numerik f. Sedangkan baris terakhir mendefinisikan **f_turunan** di mana diberikan perintah untuk mencari turunan dari fungsi f menggunakan *syntax* **diff**.

b. Integral

Untuk baris 1 dan 2 sama seperti pada percobaan *differensial*, yaitu meminta *input* persamaan dan Membuat *object* numerik. Untuk baris terakhir mendefinisikan **f_integral** untuk mencari integral fungsi. perbedaan terdapat pada baris 3 yakni menggunakan *syntax* **int** untuk mencari integral dari sebuah fungsi f menggunakan *syntax* int. Penulisan **int** adalah **int(f, int_var)** dengan **f** merupakan fungsi dan **int_var** adalah variabel dari fungsi yang bersifat opsional.

c. Grafik

1) Grafik garis 2D

Terdapat 2 *command* untuk membuat plot 2 dimensi pada Matlab, yakni **fplot** dan **plot**. **fplot** dapat digunakan untuk membuat grafik dengan formula $\mathbf{f}(\mathbf{x}) = \mathbf{y}$ dengan spesifikasi limit. Pada percobaan ini hanya menggunakan plot.

a)

Membuat grafik fungsi dengan plot *command* dilakukan dengan cara mendefinisikan salah satu sumbu sebagai domain utama. Pada baris 1 dan 2 berarti pembuatan grafik fungsi dengan didefinisikan $y = x^3 + 2x^2 + 40x$ dengan

range x [0, 100] dengan beda yaitu 10. Sedangkan baris terakhir menggunakan command **plot(x, y)** untuk membuat grafik 2 dimensi.

b)

Sama dengan percobaan sebelumnya hanya saja dengan *range* x [0, 100] dan beda x yaitu 1.

c)

Baris pertama terdapat $\mathbf{x} = \mathbf{linspace}$ (0, 20), *command* linspace digunakan untuk menentukan domain fungsi x dengan *range* [0, 20]. Baris berikutnya mendefinisikan nilai persamaan fungsi yaitu $\mathbf{y} = \mathbf{e}^{\mathbf{x}/4} \times \sin(\mathbf{x})$. Baris ketiga untuk membuat grafik 2 dimensi dari x dan y yang telah didefinisikan. Kemudian pada baris 4 dan 5 terdapat *command* label yang digunakan untuk menambah label pada garis sumbu grafik. *Command* label dituliskan setelah syntax **plot**. Sedangkan fungsi **title** yang terdapat pada baris terakhir digunakan untuk membuat judul untuk grafik yang dibuat oleh *command* **plot**.

d)

Percobaan ini dilakukan pembuatan grafik dari 2 fungsi y dan z seperti yang sudah ditunjukkan pada *screenshot source code* dengan *range* dari x adalah $[0, 2\pi]$ dengan beda x yaitu 0,01.

2) Grafik garis 3D

Pada umumnya, plot pada Matlab ditampilkan dengan garis berwarna biru. Namun warna dapat diubah dengan menambah *argument*. Formulasi untuk menambah *argument* adalah sebagai berikut:

plot(x,y,'lineSpecifier','propertyName','propertiValue')

Dengan keterangan bahwa **lineSpecifier** digunakan untuk mengubah tampilan garis (warna garis maupun jenis garis). Sedangkan **propertyName** dan **propertyValue** digunakan untuk mengubah ukuran *line*.

a) Line Plot

Baris 1 sampai 4 digunakan untuk menentukan *range* atau interval dan fungsi yang akan dibuat grafik garis 3D. *Command* sqrt (*Square Root*) adalah perintah untuk membuat akar kuadrat. Pada baris selanjutnya terdapat

command plot3(x,y,z,'k','linewidth',1) yang berarti command plot3 digunakan untuk membuat plot garis dalam 3 dimensi, ('k') merupakan linespecifier untuk mengubah warna menjadi hitam dan ('linewidth', 1) digunakan untuk mengubah ketebalan garis plot menjadi 1. Kemudian command grid on digunakan untuk mengaktifkan grid.

b) Mesh Plot

Pada baris ke-3 terdapat *command* **meshgrid** yang digunakan untuk Membuat jalinan titik pada plot 3D. [X, Y] = **meshgrid** (x, y) mereplikakan *vector grid* x dan y agar menghasilkan kisi penuh. *Grid* diwakili oleh *array* koordinat *output* dari x dan y. Kemudian *command* **mesh** pada baris terakhir digunakan untuk membuat grafik dari fungsi dengan tampilan seperti jala.

c) Contour Plot

Hampir sama dengan percobaan sebelumnya. Hanya saja pada baris ke-5 terdapat *command* **contour3** (**X**, **Y**, **Z**, **15**). *Command* **contour3** digunakan untuk plot contour dengan 3D. *Command* pada *source code* berarti menggambar contour X, Y dan Z dengan 15 level.

2. Analisis Jalannya Program

a. Differensial

```
>> syms x
>> Differensial
Masukan bentuk persamaan f(x) = x.^2 + 3*x + 4

f_asli =
x^2 + 3*x + 4

f_turunan =
2*x + 3
```

Sebelum program dijalankan, mendeklarasikan terlebih dahulu **syms** x untuk membuat *object* berjenis variabel. **syms** akan membuat hasil memberikan *output* nama *object* dan variabel yang sama. Lalu jalankan program di mana program berjalan dengan menghitung turunan dari persamaan fungsi yang di-*input*-kan.

b. Integral

```
>> syms x
>> Integral
Fungsi : sin(3*x) - 2*x.^3

f_asli =
sin(3*x) - 2*x^3

f_integral =
- cos(3*x)/3 - x^4/2
```

Seperti pada percobaan sebelumnya, yaitu mendeklarasikan **syms** x sebelum *source code* dijalankan. Dengan menjalankan *source code*, program akan memunculkan permintaan meng-*input*-kan persamaan fungsi. Program akan menghitung penyelesaian integral dari fungsi dan menampilkannya pada layar program.

c. Grafik

1) Grafik garis 2D

a)

Program akan menampilkan gambar hasil grafik plot 2D dari fungsi $y = x^2 + 2x^2 + 40x$ dan interval x = [0,100] dengan beda x yaitu 10. Grafik disajikan dengan garis berwarna biru atau *default*.

b)

Program akan menampilkan gambar hasil grafik plot 2D dari fungsi $y=x^2+2x^2+40x$ dan interval x=[0,100] dengan beda x yaitu 1. Grafik disajikan dengan garis berwarna biru atau *default*.

c)

Program akan menampilkan gambar hasil grafik plot 2D dari fungsi $y = e^{x/4} \times \sin(x)$ dan interval x = [0,20]. Grafik disajikan dengan garis berwarna biru atau *default* dan dengan judul yang ada pada atas grafik dan nama sumbu x dan sumbu y pada samping kiri dan bagian bawah grafik.

Program akan menampilkan gambar hasil grafik plot 2D dari fungsi y dan z. Grafik disajikan dengan garis berwarna biru atau *default* untuk fungsi y dan warna jingga untuk fungsi z.

2) Grafik garis 3D

a) Line Plot

Program akan menampilkan grafik plot 3D dari fungsi yang dituliskan pada *source code*. Grafik disajikan dengan *line* berwarna hitam dengan ketebalan garis yaitu 1. Terdapat label x, y, z dan *grid* diaktifkan. Gambar grafik berbentuk seperti angin puting beliung.

b) Mesh Plot

Program akan menampilkan grafik plot 3D dari fungsi yang dituliskan pada *source code*. Gambar grafik berbentuk seperti jala.

c) Contour Plot

Program akan menampilkan grafik plot 3D dari fungsi yang dituliskan pada *source code*. Gambar grafik berbentuk seperti dua angin puting beliung yang dipisah oleh sebuah garis pada bagian tengahnya.