Week 2: Learning to Answer Yes/No

Table of Contents

- Perceptron Hypothesis Set
- Perceptron Learning Algorithm (PLA)
- Guarantees of PLA
- PLA Convergence Theorem
- Pocket Algorithm

Perceptron Hypothesis Set

- 1. Perceptron Hypothesis
 - Two prediction outcomes from the hypothesis: yes(+), and no (-)
 - Vector form of perceptron hypothesis
 - $x_i \in D$: Input vector
 - w_i : Weight vector (magnitude determines importance of the variable, sign determines correlation)
 - threshold: Constant value, above which the hypothesis outputs yes, otherwise no
 - Given a vector of inputs, there can be many choices for weight vectors and constant threshold. Such differences expand the vector form into a hypothesis set, where each hypothesis takes the same general form but with different values.

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) - \operatorname{threshold}\right)$$

$$= \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) + \underbrace{\left(-\operatorname{threshold}\right) \cdot \left(+1\right)}_{\mathbf{w}_{0}}\right)$$

$$= \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w}_{i} x_{i}\right)$$

$$= \operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}\right)$$

- 2, Perceptron in 2D Space
- Perceptron hypothesis set can occupy any dimensional space

- w_0, w_1, \ldots, w_N and x_1, x_2, \ldots, x_N for R^N space
- In 2D plane, perceptrons are a set of lines, dividing the plane into positive and negative
 - Perceptrons are linear (binary) classifiers in 2D space

Perceptron Learning Algorithm (PLA)

- 1. Selecting hypothesis g from hypothesis set H
- Desired $g \approx f$:
 - \circ But the real-world model f is unknown, can only be inferred from sample D
 - \circ Hypothesis set H if of infinite size, impossible/inefficient to perform brute-force search
- Idea: Start from some g_0 , with weight vector w_0 , and *correct* its deviation from D
- 2. PLA
- For t = 0, 1, ...
 - For the current weight vector w_t , find a point $(x_{n(t)}, y_{n(t)})$ in D where $sign(w_t^T x_{n(t)}) \neq y_{n(t)}$
 - In other words, where the current model choice has mis-labeled a sample
 - Iterate to the next weight vector w_{t+1} , such that $w_t + y_{n(t)}x_{n(t)} \rightarrow w_{t+1}$
 - w_{t+1} is *corrected* by adding cross-product of y and x from the mis-labled sample

- Repeat until no more mistakes
- The last weight vector W_{PLA} is that of the optimal hypothesis g
- 3. Cyclic PLA

- A practical PLA implementation
- Perform the above iteration is cycles, until no sample is mislabled in a given cycle
- Can follow a naive cycle (1,...,N) or precomputed random cycle

Guarantees of PLA

- 1. Linear separability
- By definition, the necessary condition for PLA iteration to stop is that, there exists a weight vector w for sample set D, such that all points in D can be correctly classified by the hypothesis g based on w
- Such D is called **linear separable**

- (linear separable)
- (not linear separable)
- (not linear separable)

- 2. Linear separability implies PLA convergence
- Linear separable $D \Rightarrow \text{Exist perfect } w_f \text{ such that } y_n = sign(w_f^T x_n)$
 - Every data point x_n correctly classified by line g

$$\circ \ y_{n(t)} w_f^T x_{n(t)} \ge \min_n y_n w_f^T x_n > 0$$

• $w_f^T w_t$ increases when updated with any previously mis-labeled sample $(x_{n(t)}, y_{n(t)})$

$$\mathbf{w}_{f}^{T}\mathbf{w}_{t+1} = \mathbf{w}_{f}^{T} \left(\mathbf{w}_{t} + y_{n(t)}\mathbf{x}_{n(t)}\right)$$

$$\geq \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \min_{n} y_{n}\mathbf{w}_{f}^{T}\mathbf{x}_{n}$$

$$> \mathbf{w}_{f}^{T}\mathbf{w}_{t} + 0.$$

- Given that $w_f^T w_t$ represents the inner product of these two vectors, larger the value, the closer these two vectors are
 - In other words, $w_t \to w_f^T$ with each update
 - Under the assumption that the length of w_t does not increase steeply with each update (so the inner product growth is mostly due to vectors approaching)
 - Proof:

$$\|\mathbf{w}_{t+1}\|^{2} = \|\mathbf{w}_{t} + y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$= \|\mathbf{w}_{t}\|^{2} + 2y_{n(t)}\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)} + \|y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + 0 + \|y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + \max_{n} \|y_{n}\mathbf{x}_{n}\|^{2}$$

• Above holds because by definition of PLA, w_t is updated **only in caase of mistakes**, or:

•
$$sign(w_t^T x_{n(t)}) \neq y_{n(t)} \Leftrightarrow y_{n(t)} w_t^T x_{n(t)} \leq 0$$

PLA Convergence Theorem

- 1. Define $R^2 = \max_n \|x_n\|^2$, $\rho = \min_n y_n \frac{w_f^T}{\|w_f\|} x_n$, then the perceptron algorithm takes at most $\frac{R^2}{\rho^2}$ errors
 - R^2 = maximum length of input vector
 - ρ = minimum inner product between target vector from sample, and the unit vector predicted by the PLA line
 - $\rho \geq 0$ because all data points are classified correctly
- 2. Assumptions:
 - * Data set is linear separable
 - * Start PLA iteration from $w_0 = 0$
- 3. Proof:
 - From the section above, we have $\|w_{t+1}\|^2 \le \|w_t\|^2 + \max_n \|x_n\|^2$
 - Given definition of R^2 , the above is equivalent to $\|w_{t+1}\|^2 \leq \|w_t\|^2 + R^2$
 - Because PLA starts with $w_0 = 0$, backwards induction t times (to t = 0) results in:
 - $||w_{t+1}||^2 \le TR^2$ (equation 1),
 - In addition, because $w_f^T w_{t+1} \ge w_f^T w_t + \min_n y_n w_f^T x_n$, backwards induction t times gives:
 - $w_{t+1} w_f^T \ge T \rho \| w_f^T \|$
 - Because $\frac{w_{t+1} w_f^T}{\|w_{t+1}\| \|w_f^T\|} \le 1$ by the definition of inner product, we have:
 - $||w_{t+1}|| \ge T\rho$ (equation 2)
 - Combining equation 1 and 2 gives:

_ _ _

$$T^2 \rho^2 \le \|w_{T+1}\|^2 \le TR^2$$

$$\Rightarrow T \le \frac{R^2}{\rho^2}$$

Pocket Algorithm

- 1. PLA assumes data is linear separable, which might not be provable (or simply not true) in real-world use cases
 - Noise
 - · Nature of data
- 2. Instead, try to find the weights that minimize errors on input data

$$w_g \leftarrow \arg\min_{w} \sum_{n=1}^{N} [y_n \neq sign(w^T x_n)]$$

3. Pocket algorithm: Iteratively, keep the current best weights in pocket

initialize pocket weights ŵ

For
$$t = 0, 1, \cdots$$

- 1 find a (random) mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$
- (try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

3 if \mathbf{w}_{t+1} makes fewer mistakes than $\hat{\mathbf{w}}$, replace $\hat{\mathbf{w}}$ by \mathbf{w}_{t+1}

...until enough iterations return $\hat{\mathbf{w}}$ (called \mathbf{w}_{POCKET}) as g