Data Analytics in Finance

FINA 6333 for Spring 2025

Richard Herron

Table of contents

Week 1	7
McKinney Chapter 2 - Python Language Basics, IPython, and Jupyter Notebooks	8
Introduction	8
Language Semantics	8
Scalar Types	16
Control Flow	20
McKinney Chapter 2 - Practice - Blank	24
Announcements	24
Five-Minute Review	24
Practice	24
McKinney Chapter 2 - Practice - Sec 02	27
Announcements	27
Five-Minute Review	27
Practice	27
McKinney Chapter 2 - Practice - Sec 03	38
Announcements	38
Five-Minute Review	38
Practice	38
McKinney Chapter 2 - Practice - Sec 04	49
Announcements	49
Five-Minute Review	49
Practice	49
Week 2	61
Makingan Chantar 2 Duilt In Data Structures Functions and Files	62
McKinney Chapter 3 - Built-In Data Structures, Functions, and Files Introduction	62
	62
Data Structures and Sequences	
List, Set, and Dict Comprehensions	71

Table of contents

McKinney Chapter 3 - Practice - Blank	77
Announcements	. 77
Five-Minute Review	. 77
Practice	. 77
McKinney Chapter 3 - Practice - Sec 02	81
Announcements	. 81
Five-Minute Review	. 81
Practice	. 84
McKinney Chapter 3 - Practice - Sec 03	92
Announcements	. 92
Five-Minute Review	. 92
Practice	. 95
McKinney Chapter 3 - Practice - Blank	103
Announcements	. 103
Five-Minute Review	. 103
Practice	. 106
Week 3	114
McKinney Chapter 4 - NumPy Basics: Arrays and Vectorized Computation	115
Introduction	
The NumPy ndarray: A Multidimensional Array Object	
Universal Functions: Fast Element-Wise Array Functions	
Array-Oriented Programming with Arrays	. 130
McKinney Chapter 4 - Practice - Blank	134
Announcements	. 134
Five-Minute Review	
Practice	. 134
Week 4	137
McKinney Chapter 5 - Getting Started with pandas	138
Introduction	
Introduction to pandas Data Structures	
Essential Functionality	
Summarizing and Computing Descriptive Statistics	159

$Table\ of\ contents$

McKinney Chapter 5 - Practice - Blank	165
Announcements	. 165
Five-Minute Review	165
Practice	. 165
Week 5	167
McKinney Chapter 8 - Data Wrangling: Join, Combine, and Reshape	168
Introduction	
Hierarchical Indexing	. 168
Combining and Merging Datasets	. 175
Reshaping and Pivoting	. 190
McKinney Chapter 8 - Practice	193
Announcements	. 193
Five-Minute Review	. 193
Practice	. 193
Week 6	195
McKinney Chapter 10 - Data Aggregation and Group Operations	196
Introduction	. 196
GroupBy Mechanics	. 196
Data Aggregation	. 202
Apply: General split-apply-combine	. 206
Pivot Tables and Cross-Tabulation	. 208
McKinney Chapter 10 - Practice - Blank	211
Announcements	. 211
Five-Minute Review	. 211
Practice	. 211
Week 7	214
McKinney Chapter 11 - Time Series	215
Introduction	. 215
Time Series Basics	. 215
Date Ranges, Frequencies, and Shifting	. 224
Resampling and Frequency Conversion	
Moving Window Functions	. 233

$Table\ of\ contents$

McKinney Chapter 11 - Practice - Blank	239
Announcements	. 239
Five-Minute Review	
Practice	. 239
Week 8	241
Project 1	242
Week 9	243
Student's Choice 1	244
Week 10	245
Student's Choice 2	246
Week 11	247
Project 2	248
Week 12	249
Student's Choice 3	250
Week 13	25 1
Student's Choice 4	252
Week 14	25 3
MSFQ Assessment Exam	254
Week 15	255
Project 3	256

Welcome to FINA 6333 for Spring 2025 at the D'Amore-McKim School of Business at Northeastern University!

For each course topic, we will have one notebook for the pre-recorded lecture and one for the in-class practice. I will maintain these notebooks on here and everything else on Canvas. You have three choices to access these notebooks:

- 1. Download them from OneDrive
- 2. Download them from GitHub
- 3. Open them on Google Colab

Week 1

McKinney Chapter 2 - Python Language Basics, IPython, and Jupyter Notebooks

Introduction

We must understand the basics of Python before we can use it to analyze financial data. Chapter 2 of McKinney (2022) provides a crash course in Python's syntax, and Chapter 3 provides a crash course in Python's built-in data structures. This notebook focuses on the "Python Language Basics" in Section 2.3, which covers language semantics, scalar types, and control flow.

Note: Indented block quotes are from McKinney (2022) unless otherwise indicated. The section numbers here differ from McKinney (2022) because we will only discuss some topics.

Language Semantics

Indentation, not braces

Python uses whitespace (tabs or spaces) to structure code instead of using braces as in many other languages like R, C++, Java, and Perl.

Spaces are more than cosmetic in Python. Here is a for loop with an if statement that shows how Python uses identation to separate code instead of parentheses and braces.

```
array = [1, 2, 3]
pivot = 2
less = []
greater = []

for x in array:
    if x < pivot:
        print(f'{x} is less than {pivot}')
        less.append(x)
    else:</pre>
```

```
print(f'{x} is NOT less than {pivot}')
greater.append(x)
```

```
1 is less than 2
2 is NOT less than 2
3 is NOT less than 2
```

less

[1]

greater

[2, 3]

Comments

Any text preceded by the hash mark (pound sign) # is ignored by the Python interpreter. This is often used to add comments to code. At times you may also want to exclude certain blocks of code without deleting them.

The Python interpreter ignores any code after a hash mark # on a given line. We can quickly comment/un-comment lines of code with the <Ctrl>-/ shortcut.

```
# We often use comments to leave notes for future us (or co-workers)
# 5 + 5
```

Function and object method calls

You call functions using parentheses and passing zero or more arguments, optionally assigning the returned value to a variable:

```
result = f(x, y, z)
g()
```

Almost every object in Python has attached functions, known as methods, that have access to the object's internal contents. You can call them using the following syntax:

```
obj.some_method(x, y, z)
```

Functions can take both positional and keyword arguments:

```
result = f(a, b, c, d=5, e='foo')
```

More on this later.

Here is a function named add_numbers that adds two numbers.

```
def add_numbers(a, b):
    return a + b
```

```
add_numbers(5, 5)
```

10

Here is a function named add_strings that adds or concatenates two strings separated by a space.

```
def add_strings(a, b):
    return a + ' ' + b
```

```
add_strings('5', '5')
```

'5 5'

What is the difference between print() and return?

- print() returns its argument to the console or "standard output"
- return returns its argument as an output we can assign to variables

Please see the following example.

```
def add_strings_2(a, b):
    string_to_print = a + ' ' + b + ' (this is from the print statement)'
    string_to_return = a + ' ' + b + ' (this is from the return statement)'
    print(string_to_print)
    return string_to_return
```

```
returned = add_strings_2('5', '5')
```

5 5 (this is from the print statement)

```
returned
```

'5 5 (this is from the return statement)'

Variables and argument passing

When assigning a variable (or name) in Python, you are creating a reference to the object on the righthand side of the equals sign.

```
a = [1, 2, 3]

b = a
```

If we assign a to a new variable b, both a and b refer to the *same* object, which is the list [1, 2, 3].

```
a is b
```

True

If we modify a by appending 4, we also modify b because a and b refer to the same list.

```
a.append(4)
```

a

[1, 2, 3, 4]

b

[1, 2, 3, 4]

Likewise, if we modify b by appending 5, we also modify a.

```
b.append(5)
b

[1, 2, 3, 4, 5]
a
```

[1, 2, 3, 4, 5]

Dynamic references, strong types

In contrast with many compiled languages, such as Java and C++, object references in Python have no type associated with them.

Python has *dynamic references*. Therefore, we do not declare variable types, and we can change variable types. This behavior is because variables are names assigned to objects.

For example, above we assign **a** to a list, and below we can reassign it to an integer and then a string.

а

[1, 2, 3, 4, 5]

```
type(a)
```

list

```
a = 5
type(a)
```

int

```
a = 'foo'
type(a)
```

str

Python has strong types. Therefore, Python typically will not convert object types.

For example, '5' + 5 returns either '55' as a string or 10 as an integer in many programming languages. However, below '5' + 5 returns an error because Python will not implicitly convert the type of the string or integer.

```
# '5' + 5 #TypeError: can only concatenate str (not "int") to str
```

However, Python will implicitly convert integers to floats.

```
a = 4.5
b = 2
a / b
```

2.25

Attributes and methods

We can use tab completion to access attributes (characteristics stored inside objects) and methods (functions associated with objects). Tab completion is a feature of the IPython and Jupyter environments.

```
a = 'foo'
a.capitalize()
'Foo'
a.upper().lower()
'foo'
a.count('o')
```

2

Binary operators and comparisons

Binary operators operate on two arguments.

```
5 - 7

-2

12 + 21.5

33.5

5 <= 2
```

False

Table 2-1 from McKinney (2022) summarizes the binary operators.

```
a + b : Add a and b
a - b : Subtract b from a
a * b : Multiply a by b
```

• a / b : Divide a by b

• a // b : Floor-divide a by b, dropping any fractional remainder

• a ** b: Raise a to the b power

• a & b: True if both a and b are True; for integers, take the bitwise AND

• a | b: True if either a or b is True; for integers, take the bitwise OR

- a $\hat{}$ b : For booleans, True if a or b is True , but not both; for integers, take the bitwise EXCLUSIVE-OR

```
• a == b : True if a equals b
```

• a != b: True if a is not equal to b

• a <= b, a < b: True if a is less than (less than or equal) to b

• a > b, a >= b: True if a is greater than (greater than or equal) to b

• a is b: True if a and b reference the same Python object

• a is not b: True if a and b reference different Python objects

Mutable and immutable objects

Most objects in Python, such as lists, dicts, NumPy arrays, and most user-defined types (classes), are mutable. This means that the object or values that they contain can be modified.

A list is a *mutable*, ordered collection of elements, which can be any data type. *Because lists* are *mutable*, we can modify them. Lists are defined using square brackets [] with elements separated by commas. Lists support indexing, slicing, and various methods for adding, removing, and modifying elements.

```
a_list = ['foo', 2, [4, 5]]
a_list
```

['foo', 2, [4, 5]]

Python is zero-indexed! The first element has a zero subscript [0]!

```
a_list[0]
```

'foo'

```
a_list[2]
```

[4, 5]

```
a_list[2][0]
```

4

```
a_list[2] = (3, 4)
a_list
```

```
['foo', 2, (3, 4)]
```

A tuple is an *immutable*, ordered collection of elements, which can be any data type. Because tuples are *immutable*, we cannot modify them. Tuples are defined using optional but helpful parentheses (), with elements separated by commas.

```
a_tuple = (3, 5, (4, 5))
a_tuple
```

```
(3, 5, (4, 5))
```

The Python interpreter returns an error if we try to modify a_tuple because tuples are immutable.

```
# a_tuple[1] = 'four' # TypeError: 'tuple' object does not support item assignment
```

The parentheses () are optional for tuples. However, parentheses () are helpful because they improve readability and remove ambiguity.

```
test = 1, 2, 3
type(test)
```

tuple

We will learn more about Python's built-in data structures in Chapter 3.

Scalar Types

Python along with its standard library has a small set of built-in types for handling numerical data, strings, boolean (True or False) values, and dates and time. These "single value" types are sometimes called scalar types and we refer to them in this book as scalars. See Table 2-4 for a list of the main scalar types. Date and time handling will be discussed separately, as these are provided by the datetime module in the standard library.

Table 2-2 from McKinney (2022) summarizes the standard scalar types.

- None: The Python "null" value (only one instance of the None object exists)
- str: String type; holds Unicode (UTF-8 encoded) strings
- bytes: Raw ASCII bytes (or Unicode encoded as bytes)
- float: Double-precision (64-bit) floating-point number (note there is no separate double type)
- bool: A True or False value
- int: Arbitrary precision signed integer

Numeric types

Integers are unbounded in Python. The ** binary operator raises the number on the left to the power on the right.

```
ival = 17239871
ival ** 6
```

26254519291092456596965462913230729701102721

Floats (decimal numbers) are 64-bit in Python.

```
fval = 7.243
type(fval)
```

float

Dividing integers yields a float, if necessary.

3 / 2

1.5

We use // if we want integer division.

3 // 2

1

Booleans

The two Boolean values in Python are written as True and False. Comparisons and other conditional expressions evaluate to either True or False. Boolean values are combined with the and and or keywords.

We must type Booleans as True and False because Python is case sensitive.

```
True and True
```

True

```
(5 > 1) and (10 > 5)
```

True


```
1 + float(s)
```

4.14159

```
fval = float(s)
type(fval)
```

float

```
int(fval)
```

3

We can recast a string '5' to an integer or an integer 5 to a string to prevent the 5+'5' error above.

```
5 + int('5')
```

10

```
str(5) + '5'
```

'55'

None

None is null in Python. None is like #N/A or =na() in Excel.

```
a = None
a is None
```

True

```
b = 5
b is not None
```

True

```
type(None)
```

NoneType

Control Flow

Python has several built-in keywords for conditional logic, loops, and other standard control flow concepts found in other programming languages.

If you understand Excel's if(), then you understand Python's if, elif, and else.

if, elif, and else

```
x = -1
type(x)
```

int

```
if x < 0:
    print("It's negative")</pre>
```

It's negative

Single quotes and double quotes (' and ") are equivalent in Python. However, in the preceding code cell, we must use double quotes to differentiate between the enclosing quotes and the apostrophe in It's.

Python's elif avoids nested if statements. elif allows another if condition that is tested only if the preceding if and elif conditions were not True. An else runs if no other conditions are met.

```
x = 10
if x < 0:
    print("It's negative")
elif x == 0:
    print('Equal to zero')
elif 0 < x < 5:</pre>
```

```
print('Positive but smaller than 5')
else:
   print('Positive and larger than or equal to 5')
```

Positive and larger than or equal to 5

We can combine comparisons with and and or (or & and |).

```
a = 5
b = 7
c = 8
d = 4
if (a < b) or (c > d):
    print('Made it')
```

Made it

for loops

We use for loops to loop over collections, like lists or tuples.

The continue keyword skips the remainder of the current iteration of the for loop, moving to the next iteration.

The += operator adds and assigns values with one operator. That is, a += 5 is an abbreviation for a = a + 5. There are equivalent operators for subtraction, multiplication, and division (i.e., -=, *=, and /=).

```
sequence = [1, 2, None, 4, None, 5, 'Alex']
total = 0
for value in sequence:
   if value is None or isinstance(value, str):
        continue
   total += value # the += operator is equivalent to "total = total + value"
```

total

12

The break keyword skips the remainder of the current and all remaining iterations of the for loop.

```
sequence = [1, 2, 0, 4, 6, 5, 2, 1]
total_until_5 = 0
for value in sequence:
    if value == 5:
        break
    total_until_5 += value
```

```
total_until_5
```

13

range

The range function returns an iterator that yields a sequence of evenly spaced integers.

The range() function quickly and efficiently generates iterators for for loops.

- With one argument, range() creates an iterator from 0 to that number but excludes that number, so range(10) is an iterator that starts at 0, stops at 9, with a length of 10
- With two arguments, the first argument is the *included* start value, and the second argument is the *excluded* stop value
- With three arguments, the third argument is the iterator step size

```
range(10)
```

range(0, 10)

We can cast a range to a list.

```
list(range(10))
```

```
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```

Python intervals are "closed" (included) on the left and "open" (excluded) on the right. The following is an empty list because we cannot count from 5 to 0 by steps of +1.

```
list(range(5, 0))
```

[]

However, we can count from 5 to 0 in steps of -1.

```
list(range(5, 0, -1))
```

```
[5, 4, 3, 2, 1]
```

Ternary expressions

We can complete simple comparisons on one line in Python.

```
x = -5
value = 'Non-negative' if x \ge 0 else 'Negative'
value
```

^{&#}x27;Negative'

McKinney Chapter 2 - Practice - Blank

Announcements

Five-Minute Review

Practice

Extract the year, month, and day from an 8-digit date (i.e., YYYYMMDD format) using // (integer division) and % (modulo division).

lb = 20080915

Write a function date that takes an 8-digit date argument and returns a year, month, and date tuple (e.g., return (year, month, day)).

Write a function date_2 that takes an 8-digit date as either integer or string.

Write a function date_3 that takes a list of 8-digit dates as integers or strings.

Write a for loop that prints the squares of integers from 1 to 10.

Write a for loop that prints the squares of even integers from 1 to 10.

Write a for loop that sums the squares of integers from 1 to 10.

Write a for loop that sums the squares of integers from 1 to 10 but stops before the sum exceeds 50.

FizzBuzz

Solve FizzBuzz.

Use ternary expressions to make your FizzBuzz solution more compact.

Triangle

Write a function triangle that accepts a positive integer N and prints a numerical triangle of height N-1. For example, triangle (N=6) should print:

Two Sum

Write a function two_sum that does the following.

Given a list of integers nums and an integer target, return the indices of the two numbers that add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Here are some examples:

```
Example 1:
```

Output: [0,1]

```
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]

Example 3:
Input: nums = [3,3], target = 6
```

I saw this question on LeetCode.

Best Time

Write a function best_time that solves the following.

You are given a list prices where prices[i] is the price of a given stock on the i^{th} day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Here are some examples:

Example 1:

Input: prices = [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

I saw this question on LeetCode.

McKinney Chapter 2 - Practice - Sec 02

Announcements

- 1. Check your email inbox for an invitation to a free six-month subscription to DataCamp
 - 1. I added a few short courses to our course group
 - 2. These short courses are completely optional
 - 3. DataCamp has lots of resources to help you learn Python, R, SQL, Excel, etc.
- 2. Here are links to a few finance newsletters I strongly suggest:
 - 1. Matt Levine: https://www.bloomberg.com/account/newsletters/money-stuff
 - 2. Byrne Hobart: https://capitalgains.thediff.co/subscribe?ref=I0N1NGdmJq&_bhlid=7fecfad9eb7fd8bcdb529e945e11346b5897acdc
 - 3. Clifford Asness: https://www.aqr.com/Insights/Perspectives
 - 4. Owen Lamont: https://www.acadian-asset.com/investment-insights/owenomics#

Five-Minute Review

Practice

Extract the year, month, and day from an 8-digit date (i.e., YYYYMMDD format) using // (integer division) and % (modulo division).

```
lb = 20080915
```

1b

20080915

lb // 10_000 # // is integer division

2008 lb % 10_000 # % is modulo or remainder division 915 (lb % 10_000) // 100 9 lb % 100 15 What happened here? • Floor or integer division // drops the digits on the right side (one digit per zero) • Modulo or remainder division % keeps the diggits on the right side (one digit per zero) Here is solution that approximates Excel's LEFT(), MID(), and RIGHT(). This works, but is not very Pythonic. int(str(lb)[:4]) 2008

Write a function date that takes an 8-digit date argument and returns a year, month, and date tuple (e.g., return (year, month, day)).

```
def date(ymd):
    year = ymd // 10_000 # // is integer division
    month = (ymd % 10_000) // 100
    day = ymd % 100
    return (year, month, day)

date(lb)

(2008, 9, 15)

date(20250110)

(2025, 1, 10)
```

Write a function date_2 that takes an 8-digit date as either integer or string.

```
def date_2(ymd):
    # if type(ymd) is str:
    #
    if isinstance(ymd, str):
        ymd = int(ymd)
    return date(ymd)
```

The isinstance(ymd, str) is better than type(ymd) == str because the isinstance() function also tests for all sub-classes of str. More here: https://stackoverflow.com/questions/152580/whats-the-canonical-way-to-check-for-type-in-python/.

```
date_2(str(lb))

(2008, 9, 15)

date_2('20250110')

(2025, 1, 10)
```

Write a function date_3 that takes a list of 8-digit dates as integers or strings.

```
dates_in = [20080915, 20250110]

def date_3(dates_in):
    dates_out = []
    for d in dates_in:
        # dates_out += [date_2(d)] # alternative
        dates_out.append(date_2(d))

    return dates_out
```

I have a slight preference for .append() over += [] because .append() modifies the list the list in place instead of making a copy. However, the speed differences in most cases in this course will be negligible. More here: https://www.geeksforgeeks.org/difference-between-and-append-in-python/.

```
date_3(dates_in)
```

```
[(2008, 9, 15), (2025, 1, 10)]
```

1 4 9 16 25 36 49 64 81 100

Write a for loop that prints the squares of integers from 1 to 10.

```
print('a', 'b', 'c', sep = '---')
a---b---c

for i in range(1, 11):
    print(i**2, end=' ')
```

Write a for loop that prints the squares of *even* integers from 1 to 10.

```
for i in range(1, 11):
    if i % 2 == 0:
        print(i**2, end=' ')

4 16 36 64 100

for i in range(2, 11, 2):
    print(i**2, end=' ')

4 16 36 64 100
```

Write a for loop that sums the squares of integers from 1 to 10.

```
total = 0
for i in range(1, 11):
    total += i**2
```

385

Write a for loop that sums the squares of integers from 1 to 10 but stops before the sum exceeds 50.

30

FizzBuzz

Solve FizzBuzz.

Here is some pseudo code. The test for multiples of 3 and 5 must come first, otherwise it would never run!

```
# for i in range(1, 101):
#  # test for multiple of 3 & 5
#  # print fizzbuzz
#  # test for multiple of 3
#  # print fizz
#  # test for multiple of 5
#  # print buzz
#  # otherwise print i
```

Here is my favorite FizzBuzz solution.

```
for i in range(1, 101):
    if (i % 3 == 0) & (i % 5 == 0):
        print('FizzBuzz', end=' ')
    elif (i % 3 == 0):
        print('Fizz', end=' ')
    elif (i % 5 == 0):
        print('Buzz', end=' ')
    else:
        print(i, end=' ')
```

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Use ternary expressions to make your FizzBuzz solution more compact.

Here is a compact FizzBuzz solution. I consider the solution above easier to read and troubleshoot. The compact solution below uses the trick that we can multiply a string by True to return the string itself or by or False to return an empty string.

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Here is an even more compact FizzBuzz solution. The trick below is that Python's or returns its first truthy value. - If the concatenated string ('Fizz'*(i%3==0) + 'Buzz'*(i%5==0)) is not an empty string, which is falsy in Python, the or evaluates to that string. - If the string is empty, which means i is not divisible by 3 or 5, the or evaluates to i.

```
for i in range(1, 101):
    print('Fizz'*(i%3==0) + 'Buzz'*(i%5==0) or i, end=' ')
```

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Triangle

Write a function triangle that accepts a positive integer N and prints a numerical triangle of height N-1. For example, triangle (N=6) should print:

```
def triangle(N):
    for i in range(1, N):
        print(str(i) * i)
```

```
triangle(6)
```

The solution above works because a multiplying a string by i concatenates i copies of that string.

```
'Test' + 'Test' + 'Test'
'TestTestTest'
'TestTestTest'
```

Two Sum

Write a function two_sum that does the following.

Given a list of integers nums and an integer target, return the indices of the two numbers that add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Here are some examples:

```
Example 1:
```

```
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
```

I saw this question on LeetCode.

```
def two_sum(nums, target):
    for i in range(1, len(nums)):
        for j in range(i):
            if nums[i] + nums[j] == target:
                return [j, i]
```

```
two_sum(nums = [2,7,11,15], target = 9)
```

[0, 1]

```
two_sum(nums = [3,2,4], target = 6)
```

[1, 2]

```
two_sum(nums = [3,3], target = 6)
```

[0, 1]

Best Time

Write a function best_time that solves the following.

You are given a list prices where prices[i] is the price of a given stock on the i^{th} day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Here are some examples:

Example 1:

Input: prices = [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

I saw this question on LeetCode.

```
def max_profit(prices):
    # We start by assuming the first price is the lowest we've seen so far
    min_price = prices[0]

# We initialize our maximum profit to zero, as no profit has been calculated yet
max_profit = 0

# Loop through each price in the list of prices
for price in prices:
    # If the current price is lower than our lowest price seen, update min_price
    min_price = price if price < min_price else min_price

# Calculate the profit if we were to sell at the current price
    profit = price - min_price

# If this profit is better than our max profit so far, update max_profit
    max_profit = profit if profit > max_profit else max_profit

# After checking all prices, return the maximum profit we've found
return max_profit
```

```
max_profit(prices=[7,1,5,3,6,4])
```

5

```
max_profit(prices=[7,6,4,3,1])
```

0

We could replace the ternary statements with the min() and max() functions for a little more compact code.

```
def max_profit_2(prices):
    min_price = prices[0]
    max_profit = 0

for price in prices:
    # Update min_price if current price is lower
    min_price = min(min_price, price)
```

$McKinney\ Chapter\ 2\ -\ Practice\ -\ Sec\ 02$

```
# Calculate profit by selling at the current price
current_profit = price - min_price

# Update max_profit if the current_profit is higher
max_profit = max(max_profit, current_profit)

return max_profit
```

```
max_profit_2(prices=[7,1,5,3,6,4])
```

5

```
max_profit_2(prices=[7,6,4,3,1])
```

McKinney Chapter 2 - Practice - Sec 03

Announcements

- 1. Check your email inbox for an invitation to a free six-month subscription to DataCamp
 - 1. I added a few short courses to our course group
 - 2. These short courses are completely optional
 - 3. DataCamp has lots of resources to help you learn Python, R, SQL, Excel, etc.
- 2. Here are links to a few finance newsletters I strongly suggest:
 - 1. Matt Levine: https://www.bloomberg.com/account/newsletters/money-stuff
 - 2. Byrne Hobart: https://capitalgains.thediff.co/subscribe?ref=I0N1NGdmJq&_bhlid=7fecfad9eb7fd8bcdb529e945e11346b5897acdc
 - 3. Clifford Asness: https://www.aqr.com/Insights/Perspectives
 - 4. Owen Lamont: https://www.acadian-asset.com/investment-insights/owenomics#

Five-Minute Review

Practice

Extract the year, month, and day from an 8-digit date (i.e., YYYYMMDD format) using // (integer division) and % (modulo division).

```
lb = 20080915
```

1b

20080915

lb // 10_000 # // is integer division

Write a function date that takes an 8-digit date argument and returns a year, month, and date tuple (e.g., return (year, month, day)).

```
def date(x):
    year = x // 10_000 # // is integer division
    month = (x % 10_000) // 100
    day = x % 100
    return (year, month, day)
date(20250107)
```

```
(2025, 1, 7)
```

Write a function date_2 that takes an 8-digit date as either integer or string.

```
def date_2(x):
    # if type(x) is str:
    if isinstance(x, str):
        x = int(x)

return date(x)
```

```
date_2(str(lb))

(2008, 9, 15)

date_2(lb)

(2008, 9, 15)

date_2('20250110')
```

```
(2025, 1, 10)
```

Write a function date_3 that takes a list of 8-digit dates as integers or strings.

```
ymds = [20080915, '20250110']
ymds
```

```
[20080915, '20250110']
```

This markdown cell is for *italicized* and **bold** text!

```
def date_3(ymds):
    ymds_out = []
    for ymd in ymds:
        ymds_out.append(date_2(ymd))

    return ymds_out
```

```
date_3(ymds)
```

```
[(2008, 9, 15), (2025, 1, 10)]
```

1 4 9 16 25 36 49 64 81 100

Write a for loop that prints the squares of integers from 1 to 10.

```
print('a', 'b', 'c', sep = '---')
a---b---c

for i in range(1, 11):
    print(i**2, end=' ')
```

Write a for loop that prints the squares of even integers from 1 to 10.

```
for i in range(1, 11):
    if i % 2 == 0:
        print(i**2, end=' ')
```

4 16 36 64 100

```
for i in range(2, 11, 2):
    print(i**2, end=' ')
```

4 16 36 64 100

Write a for loop that sums the squares of integers from 1 to 10.

```
total = 0
for i in range(1, 11):
    total += i**2
```

385

Write a for loop that sums the squares of integers from 1 to 10 but stops before the sum exceeds 50.

FizzBuzz

Solve FizzBuzz.

Here is some pseudo code. The test for multiples of 3 and 5 must come first, otherwise it would never run!

```
# for i in range(1, 101):
#  # test for multiple of 3 & 5
#  # print fizzbuzz
#  # test for multiple of 3
#  # print fizz
#  # test for multiple of 5
#  # print buzz
#  # otherwise print i
```

Here is my favorite FizzBuzz solution.

```
for i in range(1, 101):
    if (i % 3 == 0) & (i % 5 == 0):
        print('FizzBuzz', end=' ')
    elif (i % 3 == 0):
        print('Fizz', end=' ')
    elif (i % 5 == 0):
        print('Buzz', end=' ')
    else:
        print(i, end=' ')
```

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Use ternary expressions to make your FizzBuzz solution more compact.

Here is a compact FizzBuzz solution. I consider the solution above easier to read and troubleshoot. The compact solution below uses the trick that we can multiply a string by **True** to return the string itself or by or **False** to return an empty string.

```
for i in range(1, 101):
    print('Fizz'*(i%3==0) + 'Buzz'*(i%5==0) if (i%3==0) or (i%5==0) else i, end=' ')
```

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Here is an even more compact FizzBuzz solution. The trick below is that Python's or returns its first truthy value. - If the concatenated string ('Fizz'*(i%3==0) + 'Buzz'*(i%5==0)) is not an empty string, which is falsy in Python, the or evaluates to that string. - If the string is empty, which means i is not divisible by 3 or 5, the or evaluates to i.

```
for i in range(1, 101):
    print('Fizz'*(i%3==0) + 'Buzz'*(i%5==0) or i, end=' ')
```

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Triangle

Write a function triangle that accepts a positive integer N and prints a numerical triangle of height N-1. For example, triangle (N=6) should print:

```
def triangle(N):
    for i in range(1, N):
        print(str(i) * i)
```

```
triangle(6)
```

The solution above works because a multiplying a string by i concatenates i copies of that string.

```
'Test' + 'Test' + 'Test'
```

^{&#}x27;TestTestTest'

```
'Test' * 3
```

'TestTestTest'

Two Sum

Write a function two_sum that does the following.

Given a list of integers nums and an integer target, return the indices of the two numbers that add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Here are some examples:

```
Example 1:
```

Output: [0,1]

```
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
```

```
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
```

I saw this question on LeetCode.

```
def two_sum(nums, target):
    for i in range(1, len(nums)):
        for j in range(i):
            if nums[i] + nums[j] == target:
                return [j, i]
```

```
two_sum(nums = [2,7,11,15], target = 9)
```

[0, 1]

```
two_sum(nums = [3,2,4], target = 6)
```

[1, 2]

```
two_sum(nums = [3,3], target = 6)
```

[0, 1]

Best Time

Write a function best_time that solves the following.

You are given a list prices where prices[i] is the price of a given stock on the i^{th} day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Here are some examples:

Example 1:

```
Input: prices = [7,1,5,3,6,4]
```

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

I saw this question on LeetCode.

```
def max_profit(prices):
    # We start by assuming the first price is the lowest we've seen so far
    min_price = prices[0]

# We initialize our maximum profit to zero, as no profit has been calculated yet
    max_profit = 0
```

```
# Loop through each price in the list of prices
for price in prices:
    # If the current price is lower than our lowest price seen, update min_price
    min_price = price if price < min_price else min_price

# Calculate the profit if we were to sell at the current price
    profit = price - min_price

# If this profit is better than our max profit so far, update max_profit
    max_profit = profit if profit > max_profit else max_profit

# After checking all prices, return the maximum profit we've found
return max_profit
```

```
max_profit(prices=[7,1,5,3,6,4])
```

5

```
max_profit(prices=[7,6,4,3,1])
```

0

We could replace the ternary statements with the min() and max() functions for a little more compact code.

```
def max_profit_2(prices):
    min_price = prices[0]
    max_profit = 0

for price in prices:
    # Update min_price if current price is lower
    min_price = min(min_price, price)

# Calculate profit by selling at the current price
    current_profit = price - min_price

# Update max_profit if the current_profit is higher
    max_profit = max(max_profit, current_profit)
```

```
max_profit_2(prices=[7,1,5,3,6,4])
```

5

McKinney Chapter 2 - Practice - Sec 04

HELLO! NIRAMAY!

Announcements

- 1. Check your email inbox for an invitation to a free six-month subscription to DataCamp
 - 1. I added a few short courses to our course group
 - 2. These short courses are completely optional
 - 3. DataCamp has lots of resources to help you learn Python, R, SQL, Excel, etc.
- 2. Here are links to a few finance newsletters I strongly suggest:
 - 1. Matt Levine: https://www.bloomberg.com/account/newsletters/money-stuff
 - 2. Byrne Hobart: https://capitalgains.thediff.co/subscribe?ref=I0N1NGdmJq&_bhlid=7fecfad9eb7fd8bcdb529e945e11346b5897acdc
 - 3. Clifford Asness: https://www.aqr.com/Insights/Perspectives
 - 4. Owen Lamont: https://www.acadian-asset.com/investment-insights/owenomics#

Five-Minute Review

Practice

Extract the year, month, and day from an 8-digit date (i.e., YYYYMMDD format) using // (integer division) and % (modulo division).

1b = 20080915

1b

```
1b // 10\_000 # // is integer division
2008
lb % 10_000 # % is modulo or remainder division
915
(lb % 10_000) // 100
9
lb % 100
15
What happened here?
   • Floor or integer division // drops the digits on the right side (one digit per zero)
   • Modulo or remainder division % keeps the diggits on the right side (one digit per zero)
Here is solution that approximates Excel's LEFT(), MID(), and RIGHT(). This works, but is
not very Pythonic.
int(str(lb)[:4])
2008
int(str(lb)[4:6])
9
int(str(lb)[7:8])
5
```

Write a function date that takes an 8-digit date argument and returns a year, month, and date tuple (e.g., return (year, month, day)).

```
import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
def date(ymd):
    year = ymd // 10_000 # // is integer division
    month = (ymd \% 10_000) // 100
    day = ymd \% 100
    return (year, month, day)
1b
20080915
%who
```

date

lb this

```
date(1b)
(2008, 9, 15)
date(20250110)
(2025, 1, 10)
type(date(20250110))
tuple
Write a function date_2 that takes an 8-digit date as either integer or string.
def date_2(ymd):
    # if type(ymd) is str:
    if isinstance(ymd, str):
        ymd = int(ymd)
    return date(ymd)
date_2(1b)
(2008, 9, 15)
date_2(str(lb))
(2008, 9, 15)
date_2(20250110)
(2025, 1, 10)
date_2('20250110')
(2025, 1, 10)
```

Write a function date_3 that takes a list of 8-digit dates as integers or strings.

```
ymds = [20080915, '20250110']
ymds
```

```
[20080915, '20250110']
```

This markdown cell is for *italicized* and **bold** text!

```
def date_3(ymds):
    ymds_out = []
    for ymd in ymds:
        ymds_out.append(date_2(ymd))

return ymds_out
```

```
date_3(ymds)
```

```
[(2008, 9, 15), (2025, 1, 10)]
```

Write a for loop that prints the squares of integers from 1 to 10.

```
print(1, 2, 3, sep='---')

1---2---3

for i in range(1, 11):
    print(i**2, end=' ')
```

1 4 9 16 25 36 49 64 81 100

Write a for loop that prints the squares of even integers from 1 to 10.

```
for i in range(1, 11):
    if i % 2 == 0:
        print(i**2, end=' ')

4 16 36 64 100

for i in range(2, 11, 2):
    print(i**2, end=' ')

4 16 36 64 100
```

Write a for loop that sums the squares of integers from 1 to 10.

```
total = 0
for i in range(1, 11):
    total += i**2
```

385

Write a for loop that sums the squares of integers from 1 to 10 but stops before the sum exceeds 50.

30

FizzBuzz

Solve FizzBuzz.

Here is some pseudo code. The test for multiples of 3 and 5 must come first, otherwise it would never run!

```
# for i in range(1, 101):
#  # test for multiple of 3 & 5
#  # print fizzbuzz
#  # test for multiple of 3
#  # print fizz
#  # test for multiple of 5
#  # print buzz
#  # otherwise print i
```

Here is my favorite FizzBuzz solution.

```
for i in range(1, 101):
    if (i % 3 == 0) & (i % 5 == 0):
        print('FizzBuzz', end=' ')
    elif (i % 3 == 0):
        print('Fizz', end=' ')
    elif (i % 5 == 0):
        print('Buzz', end=' ')
    else:
        print(i, end=' ')
```

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Use ternary expressions to make your FizzBuzz solution more compact.

Here is a compact FizzBuzz solution. I consider the solution above easier to read and troubleshoot. The compact solution below uses the trick that we can multiply a string by True to return the string itself or by or False to return an empty string.

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Here is an even more compact FizzBuzz solution. The trick below is that Python's or returns its first truthy value. - If the concatenated string ('Fizz'*(i%3==0) + 'Buzz'*(i%5==0)) is not an empty string, which is falsy in Python, the or evaluates to that string. - If the string is empty, which means i is not divisible by 3 or 5, the or evaluates to i.

```
for i in range(1, 101):
    print('Fizz'*(i%3==0) + 'Buzz'*(i%5==0) or i, end=' ')
```

1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz 16 17 Fizz 19 Buzz Fizz 22 23 Fizz

Triangle

Write a function triangle that accepts a positive integer N and prints a numerical triangle of height N-1. For example, triangle (N=6) should print:

```
def triangle(N):
    for i in range(1, N):
        print(str(i) * i)
```

```
triangle(6)
```

The solution above works because a multiplying a string by i concatenates i copies of that string.

```
'Test' + 'Test' + 'Test'
'TestTestTest'
'TestTestTest'
```

Two Sum

Write a function two_sum that does the following.

Given a list of integers nums and an integer target, return the indices of the two numbers that add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Here are some examples:

```
Example 1:
```

```
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
```

I saw this question on LeetCode.

```
def two_sum(nums, target):
    for i in range(1, len(nums)):
        for j in range(i):
            if nums[i] + nums[j] == target:
                return [j, i]
```

```
two_sum(nums = [2,7,11,15], target = 9)
```

[0, 1]

```
two_sum(nums = [3,2,4], target = 6)
```

[1, 2]

```
two_sum(nums = [3,3], target = 6)
```

[0, 1]

Best Time

Write a function best_time that solves the following.

You are given a list prices where prices[i] is the price of a given stock on the i^{th} day.

You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0.

Here are some examples:

Example 1:

Input: prices = [7,1,5,3,6,4]

Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.

Example 2:

Input: prices = [7,6,4,3,1]

Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

I saw this question on LeetCode.

```
def max_profit(prices):
    # We start by assuming the first price is the lowest we've seen so far
    min_price = prices[0]

# We initialize our maximum profit to zero, as no profit has been calculated yet
max_profit = 0

# Loop through each price in the list of prices
for price in prices:
    # If the current price is lower than our lowest price seen, update min_price
    min_price = price if price < min_price else min_price

# Calculate the profit if we were to sell at the current price
    profit = price - min_price

# If this profit is better than our max profit so far, update max_profit
    max_profit = profit if profit > max_profit else max_profit

# After checking all prices, return the maximum profit we've found
return max_profit
```

```
max_profit(prices=[7,1,5,3,6,4])
```

5

```
max_profit(prices=[7,6,4,3,1])
```

0

We could replace the ternary statements with the min() and max() functions for a little more compact code.

```
def max_profit_2(prices):
    min_price = prices[0]
    max_profit = 0

for price in prices:
    # Update min_price if current price is lower
    min_price = min(min_price, price)
```

$McKinney\ Chapter\ 2\ -\ Practice\ -\ Sec\ 04$

```
# Calculate profit by selling at the current price
current_profit = price - min_price

# Update max_profit if the current_profit is higher
max_profit = max(max_profit, current_profit)

return max_profit
```

```
max_profit_2(prices=[7,1,5,3,6,4])
```

5

```
max_profit_2(prices=[7,6,4,3,1])
```

Week 2

McKinney Chapter 3 - Built-In Data Structures, Functions, and Files

Introduction

We must understand Python's core functionality to use NumPy and pandas. Chapter 3 of McKinney (2022) discusses Python's core functionality. We will focus on the following:

- 1. Data structures
 - 1. tuples
 - 2. lists
 - 3. dicts (also known as dictionaries)
- 2. List comprehensions
- 3. Functions
 - 1. Returning multiple values
 - 2. Using anonymous functions

Note: Indented block quotes are from McKinney (2022) unless otherwise indicated. The section numbers here differ from McKinney (2022) because we will only discuss some topics.

Data Structures and Sequences

Python's data structures are simple but powerful. Mastering their use is a critical part of becoming a proficient Python programmer.

Tuple

A tuple is a fixed-length, immutable sequence of Python objects.

We cannot change a tuple after we create it because tuples are immutable. A tuple is ordered, so we can subset or slice it with a numerical index. We will surround tuples with parentheses but they are not required.

```
tup = (4, 5, 6)
Python is zero-indexed, so zero accesses the first element in tup!
tup[0]
4
tup[1]
5
tup[2]
6
nested_{tup} = ((4, 5, 6), (7, 8))
nested_tup[0]
(4, 5, 6)
nested_tup[0][0]
4
tup = ('foo', [1, 2], True)
     If an object inside a tuple is mutable, such as a list, you can modify it in-place.
# tup[2] = False # gives an error, because tuples are immutable (unchangeable)
tup[1].append(3)
tup
('foo', [1, 2, 3], True)
```

You can concatenate tuples using the + operator to produce longer tuples:

Tuples are immutable, but we can combine two tuples into a new tuple.

```
(1, 2) + (1, 2)
```

(1, 2, 1, 2)

```
(4, None, 'foo') + (6, 0) + ('bar',)
```

```
(4, None, 'foo', 6, 0, 'bar')
```

Multiplying a tuple by an integer, as with lists, has the effect of concatenating together that many copies of the tuple:

This multiplication behavior is the logical extension of the addition behavior above. The output of tup + tup should be the same as that of 2 * tup.

```
('foo', 'bar') + ('foo', 'bar')

('foo', 'bar', 'foo', 'bar')

('foo', 'bar') * 2

('foo', 'bar', 'foo', 'bar')
```

Unpacking tuples

If you try to assign to a tuple-like expression of variables, Python will attempt to unpack the value on the righthand side of the equals sign.

```
tup = (4, 5, 6)
a, b, c = tup
```

a

4

b

```
c
6
(d, e, f) = (7, 8, 9) # the parentheses are optional but helpful!

d
7
e
8
f
```

We can unpack nested tuples!

```
tup = 4, 5, (6, 7)
a, b, (c, d) = tup
```

Tuple methods

Since the size and contents of a tuple cannot be modified, it is very light on instance methods. A particularly useful one (also available on lists) is count, which counts the number of occurrences of a value.

```
a = (1, 2, 2, 3, 4, 2)
a.count(2)
```

4

Python is zero-indexed!

```
a.index(2)
```

1

List

In contrast with tuples, lists are variable-length and their contents can be modified in-place. You can define them using square brackets [] or using the list type function.

```
a_list = [2, 3, 7, None]
tup = ('foo', 'bar', 'baz')
b_list = list(tup)
```

```
a_list
```

```
[2, 3, 7, None]
```

```
b_list
```

```
['foo', 'bar', 'baz']
```

Python is zero-indexed!

```
a_list[0]
```

2

Concatenating and combining lists

Similar to tuples, adding two lists together with + concatenates them.

```
[4, None, 'foo'] + [7, 8, (2, 3)]
```

```
[4, None, 'foo', 7, 8, (2, 3)]
```

The .append() method adds its argument as the last element in a list.

```
xx = [4, None, 'foo']
xx.append([7, 8, (2, 3)])
xx
```

```
[4, None, 'foo', [7, 8, (2, 3)]]
```

If you have a list already defined, you can append multiple elements to it using the extend method.

```
x = [4, None, 'foo']
x.extend([7, 8, (2, 3)])
x
```

```
[4, None, 'foo', 7, 8, (2, 3)]
```

Check your output! It will take you time to understand all these methods!

Slicing

Slicing is very important!

You can select sections of most sequence types by using slice notation, which in its basic form consists of start:stop passed to the indexing operator [].

Recall that Python is zero-indexed, so the first element has an index of 0. A consequence of zero-indexing is that start:stop is inclusive on the left edge (start) and exclusive on the right edge (stop).

```
seq = [7, 2, 3, 7, 5, 6, 0, 1] seq
```

```
[7, 2, 3, 7, 5, 6, 0, 1]
```

```
seq[5]
```

6

Python is zero-indexed, so left edge of slide is included and right edge is excluded!

```
seq[1:5]
[2, 3, 7, 5]
     Either the start or stop can be omitted, in which case they default to the start of
     the sequence and the end of the sequence, respectively.
seq[:5]
[7, 2, 3, 7, 5]
seq[3:]
[7, 5, 6, 0, 1]
     Negative indices slice the sequence relative to the end.
seq[-1]
1
seq[-1:]
[1]
seq[-4:]
[5, 6, 0, 1]
seq[-4:-1]
```

[5, 6, 0]

seq[-6:-2]

[3, 7, 5, 6]

A step can also be used after a second colon to, say, take every other element.

seq

seq[::2]

[7, 3, 5, 0]

seq[1::2]

[2, 7, 6, 1]

We can think of the trailing :2 in the preceding code cells as "count by 2". Therefore, the 1::2 slice:

- Starts at 1
- Stops at the end because of the first:
- Counts by 2 because of the trailing: 2

A clever use of this is to pass -1, which has the useful effect of reversing a list or tuple.

We will use slicing (subsetting) all semester, so we must understand the examples above.

dict

dict is likely the most important built-in Python data structure. A more common name for it is hash map or associative array. It is a flexibly sized collection of key-value pairs, where key and value are Python objects. One approach for creating one is to use curly braces {} and colons to separate keys and values.

Elements in dictionaries have named keys, while elements in tuples and lists have numerical indices. Dictionaries are handy for passing named arguments and returning named results.

```
empty_dict = {}
empty_dict
```

{}

```
A dictionary is a set of key-value pairs.

d1 = {'a': 'some value', 'b': [1, 2, 3, 4]}
d1

{'a': 'some value', 'b': [1, 2, 3, 4]}

d1['a']

'some value'

d1[7] = 'an integer'
d1
```

```
{'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}
```

We access dictionary values by key names instead of key positions.

You can delete values either using the del keyword or the pop method (which simultaneously returns the value and deletes the key).

```
d1[5] = 'some value'
d1['dummy'] = 'another value'
d1

{'a': 'some value',
  'b': [1, 2, 3, 4],
  7: 'an integer',
  5: 'some value',
  'dummy': 'another value'}

del d1[5]
d1
```

```
{'a': 'some value',
   'b': [1, 2, 3, 4],
7: 'an integer',
   'dummy': 'another value'}

ret = d1.pop('dummy')

ret

'another value'

d1

{'a': 'some value', 'b': [1, 2, 3, 4], 7: 'an integer'}

   The keys and values method give you iterators of the dict's keys and values, respectively. While the key-value pairs are not in any particular order, these functions output the keys and values in the same order.

d1.keys()

dict_keys(['a', 'b', 7])
```

List, Set, and Dict Comprehensions

d1.values()

We will focus on list comprehensions, which are Pythonic.

dict_values(['some value', [1, 2, 3, 4], 'an integer'])

List comprehensions are one of the most-loved Python language features. They allow you to concisely form a new list by filtering the elements of a collection, transforming the elements passing the filter in one concise expression. They take the basic form:

```
[expr for val in collection if condition]
```

This is equivalent to the following for loop:

```
result = []
for val in collection:
    if condition:
        result.append(expr)
```

The filter condition can be omitted, leaving only the expression.

```
strings = ['a', 'as', 'bat', 'car', 'dove', 'python']
```

We could use a for loop over strings to keep only strings longer than two and then to capitalize them.

```
caps = []
for x in strings:
    if len(x) > 2:
        caps.append(x.upper())
```

```
['BAT', 'CAR', 'DOVE', 'PYTHON']
```

A list comprehension is more Pythonic and replaces four lines of code with one. The general format of a list comprehension is [operation on x for x in list if condition]

```
[x.upper() for x in strings if len(x) > 2]
```

```
['BAT', 'CAR', 'DOVE', 'PYTHON']
```

Here is another example. The following code is a **for** loop and an equivalent list comprehension that squares the integers from 1 to 10.

```
squares = []
for i in range(1, 11):
    squares.append(i ** 2)
squares
```

```
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

```
[i**2 for i in range(1, 11)]
```

```
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
```

What if we wanted the squares of even numbers?

```
[i**2 for i in range(1, 11) if i%2==0]

[4, 16, 36, 64, 100]

[i**2 for i in range(2, 11, 2)]
```

Functions

[4, 16, 36, 64, 100]

Functions are the primary and most important method of code organization and reuse in Python. As a rule of thumb, if you anticipate needing to repeat the same or very similar code more than once, it may be worth writing a reusable function. Functions can also help make your code more readable by giving a name to a group of Python statements.

Functions are declared with the def keyword and returned from with the return keyword:

```
def my_function(x, y, z=1.5):
    if z > 1:
        return z * (x + y)
    else:
        return z / (x + y)
```

There is no issue with having multiple return statements. If Python reaches the end of a function without encountering a return statement, None is returned automatically.

Each function can have positional arguments and keyword arguments. Keyword arguments are most commonly used to specify default values or optional arguments. In the preceding function, x and y are positional arguments while z is a keyword argument. This means that the function can be called in any of these ways:

```
my_function(5, 6, z=0.7)
my_function(3.14, 7, 3.5)
my_function(10, 20)
```

The main restriction on function arguments is that the keyword arguments must follow the positional arguments (if any). You can specify keyword arguments in any order; this frees you from having to remember which order the function arguments were specified in and only what their names are.

Returning Multiple Values

We can write Python functions that return multiple objects. The function f() below returns one tuple that we can unpack to multiple objects.

```
def f():
    a = 5
    b = 6
    c = 7
    return (a, b, c)
```

```
f()
```

```
(5, 6, 7)
```

If we want to return multiple objects with names or labels, we can return a dictionary.

```
def f():
    a = 5
    b = 6
    c = 7
    return {'a' : a, 'b' : b, 'c' : c}
```

```
f()
```

```
{'a': 5, 'b': 6, 'c': 7}
```

```
f()['a']
```

5

Anonymous (Lambda) Functions

Python has support for so-called anonymous or lambda functions, which are a way of writing functions consisting of a single statement, the result of which is the return value. They are defined with the lambda keyword, which has no meaning other than "we are declaring an anonymous function."

I usually refer to these as lambda functions in the rest of the book. They are especially convenient in data analysis because, as you'll see, there are many cases where data transformation functions will take functions as arguments. It's often less typing (and clearer) to pass a lambda function as opposed to writing a full-out function declaration or even assigning the lambda function to a local variable.

Lambda functions are Pythonic and let us to write simple functions on the fly.

```
strings = ['foo', 'card', 'bar', 'aaaa', 'abab']

strings.sort()
strings

['aaaa', 'abab', 'bar', 'card', 'foo']

len(strings[0])

4

strings.sort(key=len)
strings
```

```
['bar', 'foo', 'aaaa', 'abab', 'card']
```

For example, we could use a lambda function to sort strings by the last letter of each string.

```
strings.sort(key=lambda x: x[-1])
strings
```

```
['aaaa', 'abab', 'card', 'foo', 'bar']
```

What if we want to sort by the *second* to last letter?

```
strings.sort(key=lambda x: x[-2])
strings
```

['aaaa', 'abab', 'bar', 'foo', 'card']

McKinney Chapter 3 - Practice - Blank

Announcements

Five-Minute Review

Practice

Swap the values assigned to a and b using a third variable c.

```
a = 1
b = 2
```

Swap the values assigned to a and b without using a third variable c.

```
a = 1
b = 2
```

What is the output of the following code and why?

```
1, 1, 1 == (1, 1, 1)
(1, 1, False)
```

Create a list 11 of integers from 1 to 100.

Slice 11 to create a list 12 of integers from 60 to 50 (inclusive).

Create a list 13 of odd integers from 1 to 21.

Create a list 14 of the squares of integers from 1 to 100.

Create a list 15 that contains the squares of *odd* integers from 1 to 100.

Use a lambda function to sort strings by the last letter in each string.

```
strings = ['Clemson', 'Hinson', 'Pillsbury', 'Shubrick']
```

Given an integer array nums and an integer k, write a function to return the k^{th} largest element in the array.

Note that it is the k^{th} largest element in the sorted order, not the k^{th} distinct element.

Example 1:

```
Input: nums = [3,2,1,5,6,4], k = 2
```

Output: 5

Example 2:

```
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
```

Output: 4

I saw this question on LeetCode.

```
nums = [3,2,3,1,2,4,5,5,6]
k = 4
```

Given an integer array nums and an integer k, write a function to return the k most frequent elements.

You may return the answer in any order.

```
Example 1:
```

```
Input: nums = [1,1,1,2,2,3], k = 2

Output: [1,2]

Example 2:

Input: nums = [1], k = 1

Output: [1]
```

I saw this question on LeetCode.

```
nums = [1,1,1,2,2,3]
k = 2
```

Test whether the given strings are palindromes.

```
Input: ["aba", "no"]
Output: [True, False]
tickers = ["AAPL", "GOOG", "XOX", "XOM"]
```

Write a function calc_returns() that accepts lists of prices and dividends and returns a list of returns.

```
prices = [100, 150, 100, 50, 100, 150, 100, 150]
dividends = [1, 1, 1, 1, 2, 2, 2, 2]
```

Rewrite the function calc_returns() as calc_returns_2() so it returns lists of returns, capital gains yields, and dividend yields.

Write a function rescale() to rescale and shift numbers so that they cover the range [0, 1].

```
Input: [18.5, 17.0, 18.0, 19.0, 18.0]
Output: [0.75, 0.0, 0.5, 1.0, 0.5]
```

```
nums = [18.5, 17.0, 18.0, 19.0, 18.0]
```

Write a function calc_portval() that accepts a dictionary of prices and share holdings and returns the portfolio value

```
data = {
    "AAPL": (150.25, 10), # (price, shares)
    "GOOGL": (2750.00, 2),
    "MSFT": (300.75, 5)
}
```

McKinney Chapter 3 - Practice - Sec 02

Announcements

- 1. Keep forming groups on Canvas under *People* in the left sidebar
- 2. You must ask me for groups larger than four students

Five-Minute Review

List

A list is an ordered collection of objects that is changeable (mutable). You can create an empty list using either [] or list().

```
my_list = [1, 2, 3, [1, 2, 3, [1, 2, 3]]]
my_list
```

```
[1, 2, 3, [1, 2, 3, [1, 2, 3]]]
```

Python is zero-indexed!

```
my_list[0]
```

1

```
my_list[:3] # to get first 3 objects, :3
```

[1, 2, 3]

```
my_list[1:4] # to get next 3 objects from 1, go from 1 to 1+3 or 1:3
```

```
[2, 3, [1, 2, 3, [1, 2, 3]]]
```

Tuple

A tuple is similar to a list but un-changeable (immutable). You can create a tuple using parentheses () or the tuple() function.

```
my_tuple = (1, 2, 3, (1, 2, 3, (1, 2, 3)))
my_tuple
```

```
(1, 2, 3, (1, 2, 3, (1, 2, 3)))
```

Python is zero-indexed!

```
my_tuple[0]
```

1

Tuples are immutable, so they cannot be changed!

Dictionary

A dictionary is an ordered collection of key-value pairs that are changeable (mutable). You can create an empty dictionary using either {} or the dict() function.

```
my_dict = {'wb': 'Warren Buffett', 'sk': 'Seth Klarman'}
my_dict
```

```
{'wb': 'Warren Buffett', 'sk': 'Seth Klarman'}
```

- The key can be anything hashable (string, integer, tuple), but I (almost) always make the key a string
- The *value* can be any python object

```
my_dict['wb']
```

'Warren Buffett'

```
my_dict['pl'] = 'Peter Lynch'
my_dict
```

```
{'wb': 'Warren Buffett', 'sk': 'Seth Klarman', 'pl': 'Peter Lynch'}
```

List Comprehension

A list comprehension is a concise way of creating a new list by iterating over an existing list or other iterable object. It is more time and space-efficient than traditional for loops and offers a cleaner syntax. The basic syntax of a list comprehension is new_list = [expression for item in iterable if condition] where:

- 1. expression is the operation to be performed on each element of the iterable
- 2. item is the current element being processed
- 3. iterable is the list or other iterable object being iterated over
- 4. condition is an optional filter that only accepts items that evaluate to True.

For example, we can use the following list comprehension to create a new list of even numbers from 0 to 8: even_numbers = [x for x in range(9) if x % 2 == 0]

List comprehensions are a powerful tool in Python that can help you write more efficient and readable code (i.e., more Pythonic code).

What if we wanted multiples of 3 or 5 from 1 to 25?

```
threes_fives = [i for i in range(1, 26) if (i\%3==0) | (i\%5==0)]
```

```
threes_fives
```

```
[3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24, 25]
```

```
threes_fives_2 = [print(i) for i in range(1, 26) if (i\%3==0) | (i\%5==0)]
```

```
3
5
6
9
10
12
15
18
20
21
24
25

threes_fives_2
```

[None, None, None, None, None, None, None, None, None, None, None]

Practice

Swap the values assigned to a and b using a third variable c.

```
a = 1
b = 2
c = a
a = b
b = c
print(f'a is {a} and b is {b}')
a is 2 and b is 1
```

More on f-strings!

F-strings offer a concise way to embed expressions inside string literals, using curly braces {}. Prefixed with f or F, these strings allow for easy formatting of variables, numbers, and expressions. For example:

```
name = "Alice"
print(f"Hello, {name}!")
```

This outputs "Hello, Alice!". F-strings simplify complex formatting, making code more readable. For a deeper understanding and more examples: https://realpython.com/python-f-strings/

Swap the values assigned to a and b without using a third variable c.

```
a = 1
b = 2
b, a = a, b
print(f'a is {a} and b is {b}')
```

a is 2 and b is 1

```
a = 1
b = 2
a, b = b, a
print(f'a is {a} and b is {b}')
```

a is 2 and b is 1

What is the output of the following code and why?

```
1, 1, 1 == (1, 1, 1)
(1, 1, False)
```

Without parentheses (), Python reads the final element in the tuple as 1 == (1, 1, 1), which is False. We can use parentheses () to force Python to do what we want!

```
(1, 1, 1) == (1, 1, 1)
```

True

For this example, we must use parentheses () to be unambiguous!

Create a list 11 of integers from 1 to 100.

```
11 = list(range(1, 101))
11[:5]
[1, 2, 3, 4, 5]
11[-5:]
[96, 97, 98, 99, 100]
```

Slice 11 to create a list 12 of integers from 60 to 50 (inclusive).

[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]

```
12 = 11[59:48:-1]
12
[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]

11[48:59]
[49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]

12_alt_1 = 11[49:60][::-1]
12_alt_1
```

```
12_alt_2 = list(reversed(l1[49:60]))
12_alt_2
```

[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]

Create a list 13 of odd integers from 1 to 21.

```
13 = list(range(1, 22, 2))
13
```

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

Python != is the same as Excel's <>.

```
13_alt = [i for i in range(22) if i%2 != 0]
13_alt
```

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

```
13_alt_do_not_do_this = []
for i in range(22):
    if i%2 != 0:
        13_alt_do_not_do_this.append(i)

13_alt_do_not_do_this
```

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

```
13_alt_do_not_do_this
```

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

Create a list 14 of the squares of integers from 1 to 100.

```
14 = [i**2 for i in range(1, 101)]
14[:5]

[1, 4, 9, 16, 25]

Create a list 15 that contains the squares of odd integers from 1 to 100.

15 = [i**2 for i in range(1, 101) if i%2!=0]
15[:5]

[1, 9, 25, 49, 81]

15_alt = [i**2 for i in range(1, 101, 2)]
15_alt[:5]

[1, 9, 25, 49, 81]

15 == 15_alt

True

Which one is faster?!

%timeit [i**2 for i in range(1, 101) if i%2!=0]
```

```
%timeit [i**2 for i in range(1, 101, 2)]
```

 $5.68 \text{ s} \pm 682 \text{ ns} \text{ per loop (mean} \pm \text{ std. dev. of 7 runs, } 100,000 \text{ loops each)}$

3.01 s \pm 475 ns per loop (mean \pm std. dev. of 7 runs, 100,000 loops each)

Premature optimization is the root of all evil

- Donald Knuth

Use a lambda function to sort strings by the last letter in each string.

```
strings = ['Pillsbury', 'Shubrick', 'Clemson', 'Hinson']
strings.sort()
strings
['Clemson', 'Hinson', 'Pillsbury', 'Shubrick']
'Clemson'[-1]
'n'
strings.sort(key=lambda x: x[-1])
strings
['Shubrick', 'Clemson', 'Hinson', 'Pillsbury']
strings.sort(key=len)
strings
['Hinson', 'Clemson', 'Shubrick', 'Pillsbury']
Given an integer array nums and an integer k, write a function to return the k^{th}
largest element in the array.
Note that it is the k^{th} largest element in the sorted order, not the k^{th} distinct element.
Example 1:
Input: nums = [3,2,1,5,6,4], k = 2
Output: 5
Example 2:
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4
I saw this question on LeetCode.
```

```
nums = [3,2,3,1,2,4,5,5,6]
k = 4
```

Given an integer array nums and an integer k, write a function to return the k most frequent elements.

You may return the answer in any order.

Example 1:

```
Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]
Example 2:
Input: nums = [1], k = 1
Output: [1]
```

I saw this question on LeetCode.

```
nums = [1,1,1,2,2,3]
k = 2
```

Test whether the given strings are palindromes.

```
Input: ["aba", "no"]
Output: [True, False]

tickers = ["AAPL", "GOOG", "XOX", "XOM"]
```

Write a function calc_returns() that accepts lists of prices and dividends and returns a list of returns.

```
prices = [100, 150, 100, 50, 100, 150, 100, 150]
dividends = [1, 1, 1, 1, 2, 2, 2]
```

Rewrite the function calc_returns() as calc_returns_2() so it returns lists of returns, capital gains yields, and dividend yields.

Write a function rescale() to rescale and shift numbers so that they cover the range [0, 1].

```
Input: [18.5, 17.0, 18.0, 19.0, 18.0]
Output: [0.75, 0.0, 0.5, 1.0, 0.5]

nums = [18.5, 17.0, 18.0, 19.0, 18.0]
```

Write a function calc_portval() that accepts a dictionary of prices and share holdings and returns the portfolio value

```
data = {
    "AAPL": (150.25, 10), # (price, shares)
    "GOOGL": (2750.00, 2),
    "MSFT": (300.75, 5)
}
```

McKinney Chapter 3 - Practice - Sec 03

Announcements

- 1. Keep forming groups on Canvas under *People* in the left sidebar
- 2. You must ask me for groups larger than four students

Five-Minute Review

List

A list is an ordered collection of objects that is changeable (mutable). You can create an empty list using either [] or list().

```
my_list = [1, 2, 3, [1, 2, 3, [1, 2, 3]]]
my_list
```

```
[1, 2, 3, [1, 2, 3, [1, 2, 3]]]
```

Python is zero-indexed!

```
my_list[0]
```

1

```
my_list[:3] # to get first 3 objects, :3
```

[1, 2, 3]

```
my_list[1:4] # to get next 3 objects from 1, go from 1 to 1+3 or 1:3
```

[2, 3, [1, 2, 3, [1, 2, 3]]]

Tuple

A tuple is similar to a list but un-changeable (immutable). You can create a tuple using parentheses () or the tuple() function.

```
my_tuple = (1, 2, 3, (1, 2, 3, (1, 2, 3)))
my_tuple
```

```
(1, 2, 3, (1, 2, 3, (1, 2, 3)))
```

Python is zero-indexed!

```
my_tuple[0]
```

1

Tuples are immutable, so they cannot be changed!

Dictionary

A dictionary is an ordered collection of key-value pairs that are changeable (mutable). You can create an empty dictionary using either {} or the dict() function.

```
my_dict = {'wb': 'Warren Buffett', 'sk': 'Seth Klarman'}
my_dict
```

```
{'wb': 'Warren Buffett', 'sk': 'Seth Klarman'}
```

- The key can be anything hashable (string, integer, tuple), but I (almost) always make the key a string
- The *value* can be any python object

```
my_dict['wb']

'Warren Buffett'

my_dict['pl'] = 'Peter Lynch'
my_dict

{'wb': 'Warren Buffett', 'sk': 'Seth Klarman', 'pl': 'Peter Lynch'}

my_dict[(0, 1, 2)] = 'Risky! Do not do live demos!'
my_dict

{'wb': 'Warren Buffett',
    'sk': 'Seth Klarman',
    'pl': 'Peter Lynch',
    (0, 1, 2): 'Risky! Do not do live demos!'}
```

List Comprehension

A list comprehension is a concise way of creating a new list by iterating over an existing list or other iterable object. It is more time and space-efficient than traditional for loops and offers a cleaner syntax. The basic syntax of a list comprehension is new_list = [expression for item in iterable if condition] where:

- 1. expression is the operation to be performed on each element of the iterable
- 2. item is the current element being processed
- 3. iterable is the list or other iterable object being iterated over
- 4. condition is an optional filter that only accepts items that evaluate to True.

For example, we can use the following list comprehension to create a new list of even numbers from 0 to 8: even numbers = [x for x in range(9) if x % 2 == 0]

List comprehensions are a powerful tool in Python that can help you write more efficient and readable code (i.e., more Pythonic code).

What if we wanted multiples of 3 or 5 from 1 to 25?

```
threes_fives = [i for i in range(1, 26) if (i\%3==0) | (i\%5==0)]
```

```
threes_fives
[3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24, 25]
threes_fives_2 = [print(i) for i in range(1, 26) if (i\%3==0) | (i\%5==0)]
3
5
6
9
10
12
15
18
20
21
24
25
threes_fives_2
```

[None, None, None, None, None, None, None, None, None, None, None]

Practice

Swap the values assigned to a and b using a third variable c.

```
a = 1
b = 2
c = [a, b]

a = c[1]

b = c[0]
```

```
print(f'a is {a} and b is {b}')

a is 2 and b is 1

Here is another way:

a = 1
b = 2
c = a
a = b
b = c

print(f'a is {a} and b is {b}')

a is 2 and b is 1
```

More on f-strings!

F-strings offer a concise way to embed expressions inside string literals, using curly braces $\{\}$. Prefixed with f or F, these strings allow for easy formatting of variables, numbers, and expressions. For example:

```
name = "Alice"
print(f"Hello, {name}!")
```

This outputs "Hello, Alice!". F-strings simplify complex formatting, making code more readable. For a deeper understanding and more examples: https://realpython.com/python-f-strings/

Swap the values assigned to a and b without using a third variable c.

```
a = 1
b = 2

b, a = a, b

print(f'a is {a} and b is {b}')
```

a is 2 and b is 1

What is the output of the following code and why?

```
1, 1, 1 == (1, 1, 1)
```

(1, 1, False)

Without parentheses (), Python reads the final element in the tuple as 1 == (1, 1, 1), which is False. We can use parentheses () to force Python to do what we want!

```
(1, 1, 1) == (1, 1, 1)
```

True

For this example, we must use parentheses () to be unambiguous!

Create a list 11 of integers from 1 to 100.

```
11 = list(range(1, 101))
```

```
11[:<del>5</del>]
```

[1, 2, 3, 4, 5]

```
11[-5:]
[96, 97, 98, 99, 100]
```

Slice 11 to create a list 12 of integers from 60 to 50 (inclusive).

```
11.index(60)

59

12 = 11[59:48:-1]

12_alt_1 = 11[49:60]
12_alt_1.reverse() # most list methods modify a list "in place"
12_alt_1

[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]

12_alt_2 = 11[49:60][::-1]
12_alt_2

[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]
```

Create a list 13 of odd integers from 1 to 21.

```
13 = list(range(1, 22, 2))
13
```

```
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]
```

```
13_alt_1 = []
for i in range(1, 22):
    if i%2 != 0:
        13_alt_1.append(i)
13_alt_1
```

```
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]
```

```
13_alt_2 = [i for i in range(1, 22) if i%2!=0]
13_alt_2
```

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

Create a list 14 of the squares of integers from 1 to 100.

```
14 = [i**2 for i in range(1, 101)]
14[:5]
```

[1, 4, 9, 16, 25]

Create a list 15 that contains the squares of *odd* integers from 1 to 100.

```
15 = [i**2 for i in range(1, 101) if i%2!=0]
15[:5]
```

[1, 9, 25, 49, 81]

```
15_alt = [i**2 for i in range(1, 101, 2)]
15_alt[:5]
```

[1, 9, 25, 49, 81]

```
15 == 15_alt
```

True

Which one is faster?!

```
%timeit [i**2 for i in range(1, 101) if i%2!=0]
```

 $6.05 \text{ s} \pm 579 \text{ ns}$ per loop (mean \pm std. dev. of 7 runs, 100,000 loops each)

%timeit [i**2 for i in range(1, 101, 2)]

```
2.36 s \pm 121 ns per loop (mean \pm std. dev. of 7 runs, 100,000 loops each)
     Premature optimization is the root of all evil
                                  - Donald Knuth
Use a lambda function to sort strings by the last letter in each string.
strings = ['Pillsbury', 'Shubrick', 'Clemson', 'Hinson']
strings.sort()
strings
['Clemson', 'Hinson', 'Pillsbury', 'Shubrick']
len('Pillsbury')
9
strings.sort(key=len)
strings
['Hinson', 'Clemson', 'Shubrick', 'Pillsbury']
'Pillsbury'[-1]
'у'
strings.sort(key=lambda x: x[-1])
strings
['Shubrick', 'Hinson', 'Clemson', 'Pillsbury']
```

Given an integer array nums and an integer k, write a function to return the k^{th} largest element in the array.

Note that it is the k^{th} largest element in the sorted order, not the k^{th} distinct element.

Example 1:

```
Input: nums = [3,2,1,5,6,4], k = 2
Output: 5
Example 2:
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4
```

I saw this question on LeetCode.

```
nums = [3,2,3,1,2,4,5,5,6]
k = 4
```

Given an integer array \mathtt{nums} and an integer \mathtt{k} , write a function to return the \mathtt{k} most frequent elements.

You may return the answer in any order.

Example 1:

```
Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]
Example 2:
Input: nums = [1], k = 1
Output: [1]
```

I saw this question on LeetCode.

```
nums = [1,1,1,2,2,3]
k = 2
```

Test whether the given strings are palindromes.

```
Input: ["aba", "no"]
Output: [True, False]
```

```
tickers = ["AAPL", "GOOG", "XOX", "XOM"]
```

Write a function calc_returns() that accepts lists of prices and dividends and returns a list of returns.

```
prices = [100, 150, 100, 50, 100, 150, 100, 150]
dividends = [1, 1, 1, 1, 2, 2, 2, 2]
```

Rewrite the function calc_returns() as calc_returns_2() so it returns lists of returns, capital gains yields, and dividend yields.

Write a function rescale() to rescale and shift numbers so that they cover the range [0, 1].

```
Input: [18.5, 17.0, 18.0, 19.0, 18.0]
Output: [0.75, 0.0, 0.5, 1.0, 0.5]

nums = [18.5, 17.0, 18.0, 19.0, 18.0]
```

Write a function calc_portval() that accepts a dictionary of prices and share holdings and returns the portfolio value

```
data = {
    "AAPL": (150.25, 10), # (price, shares)
    "GOOGL": (2750.00, 2),
    "MSFT": (300.75, 5)
}
```

McKinney Chapter 3 - Practice - Blank

Announcements

- 1. Keep forming groups on Canvas under People in the left sidebar
- 2. You must ask me for groups larger than four students

Five-Minute Review

List

A list is an ordered collection of objects that is changeable (mutable). You can create an empty list using either [] or list().

```
my_list = [1, 2, 3, [1, 2, 3, [1, 2, 3]]]
my_list
```

```
[1, 2, 3, [1, 2, 3, [1, 2, 3]]]
```

Python is zero-indexed!

```
my_list[0]
```

1

```
my_list[:3] # to get first 3 objects, :3
```

[1, 2, 3]

```
my_list[1:4] # to get next 3 objects from 1, go from 1 to 1+3 or 1:3
```

[2, 3, [1, 2, 3, [1, 2, 3]]]

Tuple

A tuple is similar to a list but un-changeable (immutable). You can create a tuple using parentheses () or the tuple() function.

```
my_tuple = (1, 2, 3, (1, 2, 3, (1, 2, 3)))
my_tuple
```

```
(1, 2, 3, (1, 2, 3, (1, 2, 3)))
```

Python is zero-indexed!

```
my_tuple[0]
```

1

Tuples are immutable, so they cannot be changed!

Dictionary

A dictionary is an ordered collection of key-value pairs that are changeable (mutable). You can create an empty dictionary using either {} or the dict() function.

```
my_dict = {'wb': 'Warren Buffett', 'sk': 'Seth Klarman'}
my_dict
```

```
{'wb': 'Warren Buffett', 'sk': 'Seth Klarman'}
```

- The key can be anything hashable (string, integer, tuple), but I (almost) always make the key a string
- The *value* can be any python object

```
my_dict['wb']

'Warren Buffett'

my_dict['pl'] = 'Peter Lynch'
my_dict

{'wb': 'Warren Buffett', 'sk': 'Seth Klarman', 'pl': 'Peter Lynch'}

my_dict[(0, 1, 2)] = {'ad': 'Another dictionary!'}
my_dict

{'wb': 'Warren Buffett',
    'sk': 'Seth Klarman',
    'pl': 'Peter Lynch',
    (0, 1, 2): {'ad': 'Another dictionary!'}}
```

List Comprehension

A list comprehension is a concise way of creating a new list by iterating over an existing list or other iterable object. It is more time and space-efficient than traditional for loops and offers a cleaner syntax. The basic syntax of a list comprehension is new_list = [expression for item in iterable if condition] where:

- 1. expression is the operation to be performed on each element of the iterable
- 2. item is the current element being processed
- 3. iterable is the list or other iterable object being iterated over
- 4. condition is an optional filter that only accepts items that evaluate to True.

For example, we can use the following list comprehension to create a new list of even numbers from 0 to 8: even numbers = [x for x in range(9) if x % 2 == 0]

List comprehensions are a powerful tool in Python that can help you write more efficient and readable code (i.e., more Pythonic code).

What if we wanted multiples of 3 or 5 from 1 to 25?

```
threes_fives = [i for i in range(1, 26) if (i\%3==0) | (i\%5==0)] threes_fives
```

```
[3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24, 25]
```

```
threes_fives_2 = [print(i) for i in range(1, 26) if (i\%3==0) | (i\%5==0)]
threes_fives_2
```

15 18

20

21 24

25

[None, None, None, None, None, None, None, None, None, None, None]

Practice

Swap the values assigned to a and b using a third variable c.

```
a = 1
b = 2
c = a
a = b
b = c
print(f'a is {a} and b is {b}')
```

a is 2 and b is 1

More on f-strings!

F-strings offer a concise way to embed expressions inside string literals, using curly braces {}. Prefixed with f or F, these strings allow for easy formatting of variables, numbers, and expressions. For example:

```
name = "Alice"
print(f"Hello, {name}!")
```

This outputs "Hello, Alice!". F-strings simplify complex formatting, making code more readable. For a deeper understanding and more examples: https://realpython.com/python-f-strings/

Swap the values assigned to a and b without using a third variable c.

```
a = 1
b = 2
```

```
b, a = a, b
```

```
print(f'a is {a} and b is {b}')
```

a is 2 and b is 1

What is the output of the following code and why?

```
1, 1, 1 == (1, 1, 1)
```

```
(1, 1, False)
```

Without parentheses (), Python reads the final element in the tuple as 1 == (1, 1, 1), which is False. We can use parentheses () to force Python to do what we want!

```
(1, 1, 1) == (1, 1, 1)
```

True

For this example, we must use parentheses () to be unambiguous!

Create a list 11 of integers from 1 to 100.

```
11 = list(range(1, 101))
11[:5]
```

[1, 2, 3, 4, 5]

Slice 11 to create a list 12 of integers from 60 to 50 (inclusive).

```
11.index(60)
```

59

```
12 = 11[59:48:-1]
12
```

[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]

```
12_alt_1 = l1[49:60]
12_alt_1.reverse()
12_alt_1
```

[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]

```
12_alt_2 = 11[49:60]
12_alt_2.sort(reverse=True)
12_alt_2
```

[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]

```
11[49:60][::-1]
```

```
[60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50]
```

Create a list 13 of odd integers from 1 to 21.

```
13 = list(range(1, 22, 2))
13
```

```
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]
```

```
13_alt_1 = []
for i in range(1, 22):
    if i%2 != 0:
        13_alt_1.append(i)
13_alt_1
```

```
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]
```

```
13_alt_2 = [i for i in range(1, 22) if i%2!=0]
13_alt_2
```

```
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21]
```

Create a list 14 of the squares of integers from 1 to 100.

```
14 = [i**2 for i in range(1, 101)]
14[:5]
```

```
[1, 4, 9, 16, 25]
```

Create a list 15 that contains the squares of odd integers from 1 to 100.

```
15 = [i**2 \text{ for } i \text{ in } range(1, 101) \text{ if } i\%2!=0]
15[:5]
[1, 9, 25, 49, 81]
15_alt = [i**2 for i in range(1, 101, 2)]
15_alt[:5]
[1, 9, 25, 49, 81]
15 == 15_alt
True
Which one is faster?!
%timeit [i**2 for i in range(1, 101) if i%2!=0]
5.65 s \pm 864 ns per loop (mean \pm std. dev. of 7 runs, 100,000 loops each)
%timeit [i**2 for i in range(1, 101, 2)]
2.18 s \pm 59.8 ns per loop (mean \pm std. dev. of 7 runs, 100,000 loops each)
     Premature optimization is the root of all evil
                                    - Donald Knuth
Use a lambda function to sort strings by the last letter in each string.
```

```
strings = ['Pillsbury', 'Shubrick', 'Clemson', 'Hinson']
strings.sort()
strings
['Clemson', 'Hinson', 'Pillsbury', 'Shubrick']
```

```
len('Pillsbury')
9
strings.sort(key=len)
strings
['Hinson', 'Clemson', 'Shubrick', 'Pillsbury']
'Pillsbury'[-1]
'у'
strings.sort(key=lambda x: x[-1])
strings
['Shubrick', 'Hinson', 'Clemson', 'Pillsbury']
Given an integer array {\tt nums} and an integer k, write a function to return the k^{th}
largest element in the array.
Note that it is the k^{th} largest element in the sorted order, not the k^{th} distinct element.
Example 1:
Input: nums = [3,2,1,5,6,4], k = 2
Output: 5
Example 2:
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4
I saw this question on LeetCode.
nums = [3,2,3,1,2,4,5,5,6]
k = 4
```

Given an integer array nums and an integer k, write a function to return the k most frequent elements.

You may return the answer in any order.

```
Example 1:
```

```
Input: nums = [1,1,1,2,2,3], k = 2

Output: [1,2]

Example 2:

Input: nums = [1], k = 1

Output: [1]
```

I saw this question on LeetCode.

```
nums = [1,1,1,2,2,3]
k = 2
```

Test whether the given strings are palindromes.

```
Input: ["aba", "no"]
Output: [True, False]
tickers = ["AAPL", "GOOG", "XOX", "XOM"]
```

Write a function calc_returns() that accepts lists of prices and dividends and returns a list of returns.

```
prices = [100, 150, 100, 50, 100, 150, 100, 150]
dividends = [1, 1, 1, 1, 2, 2, 2, 2]
```

Rewrite the function calc_returns() as calc_returns_2() so it returns lists of returns, capital gains yields, and dividend yields.

Write a function rescale() to rescale and shift numbers so that they cover the range [0, 1].

```
Input: [18.5, 17.0, 18.0, 19.0, 18.0]
Output: [0.75, 0.0, 0.5, 1.0, 0.5]
```

```
nums = [18.5, 17.0, 18.0, 19.0, 18.0]
```

Write a function calc_portval() that accepts a dictionary of prices and share holdings and returns the portfolio value

```
data = {
    "AAPL": (150.25, 10), # (price, shares)
    "GOOGL": (2750.00, 2),
    "MSFT": (300.75, 5)
}
```

Week 3

McKinney Chapter 4 - NumPy Basics: Arrays and Vectorized Computation

```
import numpy as np
%precision 4
'%.4f'
```

Introduction

Chapter 4 of McKinney (2022) discusses the NumPy package (an abbreviation of numerical Python), which is the foundation for numerical computing in Python, including pandas.

We will focus on:

- 1. Creating arrays
- 2. Slicing arrays
- 3. Applying functions and methods to arrays
- 4. Using conditional logic with arrays (i.e., np.where() and np.select())

Note: Indented block quotes are from McKinney (2022) unless otherwise indicated. The section numbers here differ from McKinney (2022) because we will only discuss some topics.

Here is a simple example of NumPy's speed and syntax advantages relative to Python's built-in data structures. First, we create a list and a NumPy array with values from 0 to 999,999.

```
my_list = list(range(1_000_000))
my_arr = np.arange(1_000_000)
```

We must use a for loop or a list comprehension to double each value in my_list. We will comment this code because it prints a list with one million elements!

```
# [2 * x for x in my_list] # list comprehension to double each value
```

However, we can multiply my_arr by two because math "just works" with NumPy. Jupyter will pretty print the NumPy array, showing only the first and last few elements.

We can use the "magic" function %timeit to time these two calculations.

```
%timeit [x * 2 for x in my_list]
57.3 ms ± 6.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit my_arr * 2
```

```
3.11 ms \pm 702 s per loop (mean \pm std. dev. of 7 runs, 100 loops each)
```

The NumPy version is much faster than the list version! The NumPy version is also faster to type, read, and troubleshoot, and our time is more valuable than computer time!

The NumPy ndarray: A Multidimensional Array Object

One of the key features of NumPy is its N-dimensional array object, or ndarray, which is a fast, flexible container for large datasets in Python. Arrays enable you to perform mathematical operations on whole blocks of data using similar syntax to the equivalent operations between scalar elements.

```
np.random.seed(42) # makes random numbers repeatable
data = np.random.randn(2, 3)
data
```

```
array([[ 0.4967, -0.1383, 0.6477], [ 1.523 , -0.2342, -0.2341]])
```

Multiplying data by 10 multiplies each element in data by 10, and adding data to itself adds each element to itself (i.e., element-wise addition). NumPy arrays must contain homogeneous data types (e.g., all floats or integers) to achieve this common-sense behavior.

data.shape

(2, 3)

2

data.dtype

dtype('float64')

We slice NumPy arrays using [], the same as we slice lists and tuples.

```
data[0]
```

```
array([ 0.4967, -0.1383, 0.6477])
```

We chain []s with arrays, the same as we chain []s with lists and tuples.

```
data[0][0]
```

0.4967

However, with NumPy arrays, we can replace n chained []s with one pair of []s containing n indexes or slices, separated by commas. For example, [i][j] becomes [i, j], and [i][j][k] becomes [i, j, k].

```
data[0, 0] # zero row, zero column
```

0.4967

```
data[0][0] == data[0, 0]
```

np.True_

Creating ndarrays

The easiest way to create an array is to use the array function. This accepts any sequence-like object (including other arrays) and produces a new NumPy array containing the passed data

```
data1 = [6, 7.5, 8, 0, 1]
arr1 = np.array(data1)
arr1
```

```
array([6., 7.5, 8., 0., 1.])
```

```
arr1.dtype
```

```
dtype('float64')
```

Here, np.array() implicitly casts the integers in data1 to floats because NumPy arrays must have homogenous data types. We could explicitly cast all values to integers but would lose information.

```
np.array(data1, dtype=np.int64)
array([6, 7, 8, 0, 1])
We can cast a list of lists to a two-dimensional NumPy array.
data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
arr2 = np.array(data2)
arr2
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])
arr2.shape
(2, 4)
arr2.dtype
dtype('int64')
There are several other ways to create NumPy arrays.
np.zeros((3, 6))
array([[0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.]
np.ones((3, 6))
array([[1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1.],
       [1., 1., 1., 1., 1., 1.]])
```

np.ones_like(arr2)

```
array([[1, 1, 1, 1], [1, 1, 1, 1]])
```

The np.arange() function is similar to Python's built-in range() but creates an array directly.

```
np.array(range(15))
```

```
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
```

```
np.arange(15)
```

```
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
```

Table 4-1 from McKinney (2022) summarizes NumPy array creation functions.

- array: Convert input data (list, tuple, array, or other sequence type) to an ndarray either by inferring a dtype or explicitly specifying a dtype; copies the input data by default
- asarray: Convert input to ndarray, but do not copy if the input is already an ndarray
- arange: Like the built-in range but returns an indarray instead of a list
- ones, ones_like: Produce an array of all 1s with the given shape and dtype; ones_like takes another array and produces a ones array of the same shape and dtype
- zeros, zeros_like: Like ones and ones_like but producing arrays of 0s instead
- empty, empty_like: Create new arrays by allocating new memory, but do not populate with any values like ones and zeros
- full, full_like: Produce an array of the given shape and dtype with all values set to the indicated "fill value"
- eye, identity: Create a square N-by-N identity matrix (1s on the diagonal and 0s elsewhere)

Arithmetic with NumPy Arrays

Arrays are important because they enable you to express batch operations on data without writing any for loops. NumPy users call this vectorization. Any arithmetic operations between equal-size arrays applies the operation element-wise

```
arr = np.array([[1., 2., 3.], [4., 5., 6.]])
arr
```

```
array([[1., 2., 3.], [4., 5., 6.]])
```

NumPy array addition is elementwise.

```
arr + arr
```

```
array([[ 2., 4., 6.], [ 8., 10., 12.]])
```

NumPy array multiplication is elementwise.

```
arr * arr
```

```
array([[ 1., 4., 9.], [16., 25., 36.]])
```

NumPy array division is elementwise.

```
1 / arr
```

```
array([[1. , 0.5 , 0.3333], [0.25 , 0.2 , 0.1667]])
```

NumPy powers are elementwise, too.

```
arr ** 2
```

```
array([[ 1., 4., 9.], [16., 25., 36.]])
```

We can also raise a single value to the elements in an array!

```
2 ** arr
array([[ 2., 4., 8.],
       [16., 32., 64.]])
```

Basic Indexing and Slicing

We index and slice one-dimensional arrays in the same way as lists and tuples.

```
arr = np.arange(10)
arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr[5]
np.int64(5)
arr[5:8]
array([5, 6, 7])
equiv_list = list(range(10))
equiv_list
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
equiv_list[5:8]
```

```
[5, 6, 7]
```

We must jump through some hoops to replace elements 5, 6, and 7 with the value 12 in the list equiv_list.

```
# TypeError: can only assign an iterable
# equiv_list[5:8] = 12
```

```
equiv_list[5:8] = [12] * 3
equiv_list
```

```
[0, 1, 2, 3, 4, 12, 12, 12, 8, 9]
```

However, this operation is easy with NumPy array arr!

```
arr[5:8] = 12
arr
```

```
array([0, 1, 2, 3, 4, 12, 12, 12, 8, 9])
```

We call this behavior "broadcasting".

As you can see, if you assign a scalar value to a slice, as in arr[5:8] = 12, the value is propagated (or broadcasted henceforth) to the entire selection. An important first distinction from Python's built-in lists is that array slices are views on the original array. This means that the data is not copied, and any modifications to the view will be reflected in the source array.

```
arr_slice = arr[5:8]
arr_slice
array([12, 12, 12])
arr_slice[1] = 12345
arr_slice
array([
         12, 12345,
                       12])
arr
array([
           Ο,
                 1,
                        2,
                               3, 4,
                                            12, 12345,
                                                          12,
                                                                  8,
           9])
```

The : slices every element in arr_slice.

```
arr_slice[:] = 64
arr_slice
```

array([64, 64, 64])

arr

```
array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9]
```

If you want a copy of a slice of an ndarray instead of a view, you will need to explicitly copy the array-for example, arr[5:8].copy().

```
arr_slice_2 = arr[5:8].copy()
arr_slice_2
```

array([64, 64, 64])

```
arr_slice_2[:] = 2_001
arr_slice_2
```

array([2001, 2001, 2001])

arr

```
array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
```

Indexing with slices

We can slice across two or more dimensions and use the [i, j] notation.

```
arr2d = np.array([[1,2,3], [4,5,6], [7,8,9]])
arr2d
```

```
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
```

```
arr2d[:2, 1:] = 0
arr2d
```

Always check your output!

Boolean Indexing

We can use Booleans (i.e., True and False) to slice arrays, too. Boolean indexing in Python is like combining index() and match() in Excel.

```
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
np.random.seed(42)
data = np.random.randn(7, 4)
```

```
names
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'], dtype='<U4')
data
array([[ 0.4967, -0.1383, 0.6477, 1.523 ],
       [-0.2342, -0.2341, 1.5792, 0.7674],
       [-0.4695, 0.5426, -0.4634, -0.4657],
       [0.242, -1.9133, -1.7249, -0.5623],
       [-1.0128, 0.3142, -0.908, -1.4123],
       [1.4656, -0.2258, 0.0675, -1.4247],
       [-0.5444, 0.1109, -1.151, 0.3757]])
Here names provides seven names for the seven rows in data.
names == 'Bob'
array([ True, False, False, True, False, False, False])
data[names == 'Bob']
array([[ 0.4967, -0.1383, 0.6477, 1.523 ],
       [0.242, -1.9133, -1.7249, -0.5623])
We can combine Boolean slicing with: slicing.
data[names == 'Bob', 2:]
array([[ 0.6477, 1.523 ],
       [-1.7249, -0.5623]
We can use ~ to invert a Boolean.
cond = names == 'Bob'
data[~cond]
```

```
array([[-0.2342, -0.2341, 1.5792, 0.7674],

[-0.4695, 0.5426, -0.4634, -0.4657],

[-1.0128, 0.3142, -0.908, -1.4123],

[ 1.4656, -0.2258, 0.0675, -1.4247],

[-0.5444, 0.1109, -1.151, 0.3757]])
```

For NumPy arrays, we must use & and | instead of and and or.

We can also create a Boolean for each element.

data

data < 0

```
data[data < 0] = 0
data</pre>
```

```
array([[0.4967, 0. , 0.6477, 1.523], [0. , 0. , 1.5792, 0.7674], [0. , 0.5426, 0. , 0. ], [0.242, 0. , 0. , 0. ], [0. , 0.3142, 0. , 0. ], [1.4656, 0. , 0.0675, 0. ], [0. , 0.1109, 0. , 0.3757]])
```

Universal Functions: Fast Element-Wise Array Functions

A universal function, or ufunc, is a function that performs element-wise operations on data in ndarrays. You can think of them as fast vectorized wrappers for simple functions that take one or more scalar values and produce one or more scalar results.

```
arr = np.arange(10)
arr

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

np.sqrt(arr)

array([0. , 1. , 1.4142, 1.7321, 2. , 2.2361, 2.4495, 2.6458, 2.8284, 3. ])
```

Like above, we can raise a single value to a NumPy array of powers.

```
np.exp(arr)
```

```
array([1.0000e+00, 2.7183e+00, 7.3891e+00, 2.0086e+01, 5.4598e+01, 1.4841e+02, 4.0343e+02, 1.0966e+03, 2.9810e+03, 8.1031e+03])
```

Table 4-4 from McKinney (2022) summarizes fast, element-wise unary functions:

- abs, fabs: Compute the absolute value element-wise for integer, floating-point, or complex values
- sqrt: Compute the square root of each element (equivalent to arr ** 0.5)
- square: Compute the square of each element (equivalent to arr ** 2)
- exp: Compute the exponent e^x of each element
- log, log10, log2, log1p: Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively
- sign: Compute the sign of each element: 1 (positive), 0 (zero), or -1 (negative)
- ceil: Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that number)
- floor: Compute the floor of each element (i.e., the largest integer less than or equal to each element)
- rint: Round elements to the nearest integer, preserving the dtype
- modf: Return fractional and integral parts of array as a separate array
- isnan: Return boolean array indicating whether each value is NaN (Not a Number)
- isfinite, isinf: Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite, respectively
- cos, cosh, sin, sinh, tan, tanh: Regular and hyperbolic trigonometric functions
- arccos, arccosh, arcsin, arcsinh, arctan, arctanh: Inverse trigonometric functions
- logical not: Compute truth value of not x element-wise (equivalent to ~arr).

These "unary" functions operate on one array and return a new array with the same shape. There are also "binary" functions that operate on two arrays and return one array.

```
np.random.seed(42)
x = np.random.randn(8)
y = np.random.randn(8)
```

```
array([ 0.4967, -0.1383,  0.6477,  1.523 , -0.2342, -0.2341,  1.5792,  0.7674])
```

у

```
array([-0.4695, 0.5426, -0.4634, -0.4657, 0.242, -1.9133, -1.7249, -0.5623])
```

```
np.maximum(x, y)
```

```
array([ 0.4967,  0.5426,  0.6477,  1.523 ,  0.242 , -0.2341,  1.5792,  0.7674])
```

Table 4-5 from McKinney (2022) summarizes fast, element-wise binary functions:

- add: Add corresponding elements in arrays
- subtract: Subtract elements in second array from first array
- multiply: Multiply array elements
- divide, floor divide: Divide or floor divide (truncating the remainder)
- power: Raise elements in first array to powers indicated in second array
- maximum, fmax: Element-wise maximum; fmax ignores NaN
- minimum, fmin: Element-wise minimum; fmin ignores NaN
- mod: Element-wise modulus (remainder of division)
- copysign: Copy sign of values in second argument to values in first argument
- greater, greater_equal, less, less_equal, equal, not_equal: Perform element-wise comparison, yielding boolean array (equivalent to infix operators >, >=, <, <=, ==, !=)
- logical_and, logical_or, logical_xor: Compute element-wise truth value of logical operation (equivalent to infix operators & |, ^)

Array-Oriented Programming with Arrays

Using NumPy arrays enables you to express many kinds of data processing tasks as concise array expressions that might otherwise require writing loops. This practice of replacing explicit loops with array expressions is commonly referred to as vectorization. In general, vectorized array operations will often be one or two (or more) orders of magnitude faster than their pure Python equivalents, with the biggest impact in any kind of numerical computations. Later, in Appendix A, I explain broadcasting, a powerful method for vectorizing computations.

Expressing Conditional Logic as Array Operations

The numpy where function is a vectorized version of the ternary expression x if condition else y.

np.where() is an if-else statement, like Excel's if().

```
xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
cond = np.array([True, False, True, False])
```

```
np.where(cond, xarr, yarr)
```

```
array([1.1, 2.2, 1.3, 1.4, 2.5])
```

We could use a list comprehension instead, but it takes longer to type, read, and troubleshoot.

```
np.array([(x if c else y) for x, y, c in zip(xarr, yarr, cond)])
array([1.1, 2.2, 1.3, 1.4, 2.5])
```

np.select() lets us test more than one condition and has a default value if no condition is met.

```
np.select(
    condlist=[cond==True, cond==False],
    choicelist=[xarr, yarr]
)
```

```
array([1.1, 2.2, 1.3, 1.4, 2.5])
```

Mathematical and Statistical Methods

A set of mathematical functions that compute statistics about an entire array or about the data along an axis are accessible as methods of the array class. You can use aggregations (often called reductions) like sum, mean, and std (standard deviation) either by calling the array instance method or using the top-level NumPy function.

```
np.random.seed(42)
arr = np.random.randn(5, 4)
arr
array([[ 0.4967, -0.1383, 0.6477, 1.523 ],
       [-0.2342, -0.2341, 1.5792, 0.7674],
       [-0.4695, 0.5426, -0.4634, -0.4657],
       [0.242, -1.9133, -1.7249, -0.5623],
       [-1.0128, 0.3142, -0.908, -1.4123]])
arr.mean()
-0.1713
arr.sum()
-3.4260
The aggregation methods above aggregated the whole array. We can use the axis argument
to aggregate columns (axis=0) and rows (axis=1).
arr.mean(axis=1)
array([ 0.6323, 0.4696, -0.214 , -0.9896, -0.7547])
arr[0].mean()
0.6323
arr.mean(axis=0)
array([-0.1956, -0.2858, -0.1739, -0.03])
```

The .cumsum() method returns the sum of all previous elements.

```
arr = np.array([0, 1, 2, 3, 4, 5, 6, 7]) # same output as np.arange(8)
arr.cumsum()
array([ 0, 1, 3, 6, 10, 15, 21, 28])
We can also use the .cumsum() method along the axis of a multi-dimensional array.
arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
arr
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
arr.cumsum(axis=0)
array([[ 0, 1, 2],
       [3, 5, 7],
       [ 9, 12, 15]])
arr.cumprod(axis=1)
array([[
          0,
               0,
                    0],
```

Table 4-6 from McKinney (2022) summarizes basic statistical methods:

- ullet sum: Sum of all the elements in the array or along an axis; zero-length arrays have sum 0
- mean: Arithmetic mean; zero-length arrays have NaN mean
- std, var: Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default denominator n)
- min, max: Minimum and maximum

12, 60],

[6, 42, 336]])

[3,

- argmin, argmax: Indices of minimum and maximum elements, respectively
- cumsum: Cumulative sum of elements starting from 0
- cumprod: Cumulative product of elements starting from 1

McKinney Chapter 4 - Practice - Blank

import numpy as np

%precision 4

'%.4f'

Announcements

Five-Minute Review

Practice

Create a 1-dimensional array a1 that counts from 0 to 24 by 1.

Create a 1-dimentional array a2 that counts from 0 to 24 by 3.

Create a 1-dimentional array a3 that counts from 0 to 100 by multiples of 3 or 5.

Create a 1-dimensional array a4 that contains the squares of the even integers through 100,000.

Write a function calc_pv() that mimic Excel's PV function.

Excel's present value function is: =PV(rate, nper, pmt, [fv], [type])

The present value of an annuity payment is: $PV_{pmt} = \frac{pmt}{rate} \times \left(1 - \frac{1}{(1+rate)^{nper}}\right)$

The present value of a lump sum is: $PV_{fv} = \frac{fv}{(1+rate)^{nper}}$

Write a function calc_fv() that mimic Excel's FV function.

```
Excel's future value function is: =FV(rate, nper, pmt, [pv], [type])
```

Replace the negative values in data with -1 and positive values with +1.

```
np.random.seed(42)
data = np.random.randn(4, 4)
```

Write a function $calc_n()$ that calculates the number of payments that generate x% of the present value of a perpetuity.

The present value of a growing perpetuity is $PV = \frac{C_1}{r-g}$, and the present value of a growing annuity is $PV = \frac{C_1}{r-g} \left[1 - \left(\frac{1+g}{1+r} \right)^t \right]$.

Write a function that calculates the internal rate of return of a NumPy array of cash flows.

Write a function calc_returns() that accepts *NumPy arrays* of prices and dividends and returns a *NumPy array* of returns.

```
prices = np.array([100, 150, 100, 50, 100, 150, 100, 150])
dividends = np.array([1, 1, 1, 1, 2, 2, 2])
```

Rewrite the function calc_returns() as calc_returns_2() so it returns *NumPy* arrays of returns, capital gains yields, and dividend yields.

Write a function rescale() to rescale and shift numbers so that they cover the range [0, 1]

```
Input: np.array([18.5, 17.0, 18.0, 19.0, 18.0])
Output: np.array([0.75, 0.0, 0.5, 1.0, 0.5])
```

Write a function calc_portval() that accepts a dictionary of prices and share holdings and returns the portfolio value

First convert your dictionary to a NumPy array with one column for prices and another for shares.

```
data = {
    "AAPL": (150.25, 10), # (price, shares)
    "GOOGL": (2750.00, 2),
    "MSFT": (300.75, 5)
}
```

Write functions calc_var() and calc_std() that calculate variance and standard deviation.

NumPy's .var() and .std() methods return population statistics (i.e., denominators of n). The pandas equivalents return sample statistics (denominators of n-1), which are more appropriate for financial data analysis where we have a sample instead of a population.

Your calc_var() and calc_std() functions should have a sample argument that is True by default so both functions return sample statistics by default.

Write a function calc_ret() to convert quantitative returns to qualitative returns

Returns within one standard deviation of the mean are "Medium". Returns less than one standard deviation below the mean are "Low", and returns greater than one standard deviation above the mean are "High".

```
np.random.seed(42)
returns = np.random.randn(100)
```

Week 4

McKinney Chapter 5 - Getting Started with pandas

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
```

```
%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

Introduction

Chapter 5 of McKinney (2022) discusses the fundamentals of pandas, which will be our main tool for the rest of the semester. pandas is an abbreviation of panel data. Panel data contain observations on multiple entities (e.g., individuals, firms, or countries) over multiple time periods. Panel data combine cross-sectional data (i.e., data across entities at a single point in time) with time-series data (i.e., data over time for a single entity). Panel data are widely used in finance and economics to analyze trends, relationships, and behaviors over time and across entities. We will use pandas every day for the rest of the course!

pandas will be a major tool of interest throughout much of the rest of the book. It contains data structures and data manipulation tools designed to make data cleaning and analysis fast and easy in Python. pandas is often used in tandem with numerical computing tools like NumPy and SciPy, analytical libraries like statsmodels and scikit-learn, and data visualization libraries like matplotlib. pandas adopts significant parts of NumPy's idiomatic style of array-based computing, especially array-based functions and a preference for data processing without for loops.

While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data. NumPy, by contrast, is best suited for working with homogeneous numerical array data.

Note: Indented block quotes are from McKinney (2022) unless otherwise indicated. The section numbers here differ from McKinney (2022) because we will only discuss some topics.

Introduction to pandas Data Structures

To get started with pandas, you will need to get comfortable with its two workhorse data structures: Series and DataFrame. While they are not a universal solution for every problem, they provide a solid, easy-to-use basis for most applications.

Series

A Series is a one-dimensional array-like object containing a sequence of values (of similar types to NumPy types) and an associated array of data labels, called its index. The simplest Series is formed from only an array of data.

The early examples use integer and string labels, but date-time labels are most useful.

```
obj = pd.Series([4, 7, -5, 3])
obj
```

```
0 4
1 7
2 -5
3 3
dtype: int64
```

Contrast obj with its NumPy array equivalent:

```
np.array([4, 7, -5, 3])
array([4, 7, -5, 3])
obj.values
```

```
array([ 4, 7, -5, 3])
```

```
obj.index # similar to range(4)
RangeIndex(start=0, stop=4, step=1)
We did not explicitly create an index for obj, so obj has an integer index that starts at 0. We
can explicitly create an index with the index= argument.
obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
obj2
d
     4
     7
b
    -5
     3
dtype: int64
obj2.index
Index(['d', 'b', 'a', 'c'], dtype='object')
obj2['a']
np.int64(-5)
obj2.loc['a']
np.int64(-5)
obj2.iloc[2]
np.int64(-5)
obj2['d'] = 6
obj2
```

```
6
d
b
     7
    -5
a
     3
dtype: int64
obj2[['c', 'a', 'd']]
     3
С
    -5
a
     6
dtype: int64
A pandas series is like a NumPy array, and we can use Boolean filters and perform vectorized
mathematical operations.
obj2 > 0
d
      True
b
      True
     False
      True
dtype: bool
obj2[obj2 > 0]
     6
d
     7
b
     3
dtype: int64
obj2.loc[obj2 > 0]
     6
d
     7
b
     3
dtype: int64
```

```
obj2 * 2
```

```
d 12
b 14
a -10
c 6
dtype: int64
```

We can also create a pandas series from a dictionary. The dictionary keys become the series index.

```
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
obj3 = pd.Series(sdata)
obj3
```

Ohio 35000
Texas 71000
Oregon 16000
Utah 5000
dtype: int64

If we also specify an index with list states, pandas will:

- 1. Respect the index order
- 2. Keep California because it was in the index
- 3. Drop Utah because it was not in the index

```
states = ['California', 'Ohio', 'Oregon', 'Texas']
obj4 = pd.Series(sdata, index=states)
obj4
```

```
        California
        NaN

        Ohio
        35000.0000

        Oregon
        16000.0000

        Texas
        71000.0000
```

dtype: float64

When we perform mathematical operations, pandas aligns series by their indexes. Here NaN is "not a number", indicating missing values. NaN is a float, so the data type switches from int64 to float64.

obj3 + obj4

 California
 NaN

 Ohio
 70000.0000

 Oregon
 32000.0000

 Texas
 142000.0000

 Utah
 NaN

dtype: float64

DataFrame

A pandas data frame is like a worksheet in an Excel workbook with row labels and column names that provide fast indexing.

A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type (numeric, string, boolean, etc.). The DataFrame has both a row and column index; it can be thought of as a dict of Series all sharing the same index. Under the hood, the data is stored as one or more two-dimensional blocks rather than a list, dict, or some other collection of one-dimensional arrays. The exact details of DataFrame's internals are outside the scope of this book.

There are many ways to construct a DataFrame, though one of the most common is from a dict of equal-length lists or NumPy arrays:

```
data = {
    'state': ['Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
    'year': [2000, 2001, 2002, 2001, 2002, 2003],
    'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]
}
frame = pd.DataFrame(data)
```

	state	year	pop
0	Ohio	2000	1.5000
1	Ohio	2001	1.7000
2	Ohio	2002	3.6000
3	Nevada	2001	2.4000
4	Nevada	2002	2.9000

	state	year	pop
5	Nevada	2003	3.2000

We did not specify an index, so frame has the default index of integers starting at 0.

```
frame2 = pd.DataFrame(
    data,
    columns=['year', 'state', 'pop', 'debt'],
    index=['one', 'two', 'three', 'four', 'five', 'six']
)
frame2
```

	year	state	pop	debt
one	2000	Ohio	1.5000	NaN
two	2001	Ohio	1.7000	NaN
three	2002	Ohio	3.6000	NaN
four	2001	Nevada	2.4000	NaN
five	2002	Nevada	2.9000	NaN
six	2003	Nevada	3.2000	NaN

If we extract one column with df.column or df['column'], we get a series. We can use the df.colname or df['colname'] syntax to extract a column from a data frame as a series. However, we must use the df['colname'] syntax to add a column to a data frame. Also, we must use the df['colname'] syntax to extract or add a column whose name contains whitespace.

frame2['state']

```
Ohio
one
two
            Ohio
            Ohio
three
four
          Nevada
five
         Nevada
          Nevada
six
```

Name: state, dtype: object

frame2.state

```
one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
six Nevada
```

Name: state, dtype: object

Data frames have two dimensions, so we must slice data frames more precisely than series.

- 1. The .loc[] method slices by row labels and column names
- 2. The .iloc[] method slices by integer row and label indexes

frame2.loc['three']

```
year 2002
state Ohio
pop 3.6000
debt NaN
Name: three, dtype: object
```

frame2.iloc[2]

```
year 2002
state Ohio
pop 3.6000
debt NaN
Name: three, dtype: object
```

We can use NumPy's [row, column] syntax within .loc[] and .iloc[].

```
frame2.loc['three', 'state'] # row, column
```

'Ohio'

```
frame2.iloc[2, 1] # row, column
'Ohio'
frame2.loc['three', ['state', 'pop']] # row, column
state Ohio
```

pop 3.6000

Name: three, dtype: object

```
frame2.iloc[2, [1, 2]] # row, column
```

state Ohio pop 3.6000

Name: three, dtype: object

We can assign either scalars or arrays to data frame columns.

- 1. Scalars will broadcast to every row in the data frame
- 2. Arrays must have the same length as the column

```
frame2['debt'] = 16.5
frame2
```

	year	state	pop	debt
one	2000	Ohio	1.5000	16.5000
two	2001	Ohio	1.7000	16.5000
three	2002	Ohio	3.6000	16.5000
four	2001	Nevada	2.4000	16.5000
five	2002	Nevada	2.9000	16.5000
six	2003	Nevada	3.2000	16.5000

```
frame2['debt'] = np.arange(6.)
frame2
```

	year	state	pop	debt
one	2000	Ohio	1.5000	0.0000
two	2001	Ohio	1.7000	1.0000
three	2002	Ohio	3.6000	2.0000
four	2001	Nevada	2.4000	3.0000
five	2002	Nevada	2.9000	4.0000
six	2003	Nevada	3.2000	5.0000

If we assign a series to a data frame column, pandas will use the index to align it with the data frame. Data frame rows not in the series will be NaN.

```
val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
val
```

two -1.2000 four -1.5000 five -1.7000 dtype: float64

	year	state	pop	debt
one	2000	Ohio	1.5000	NaN
two	2001	Ohio	1.7000	-1.2000
three	2002	Ohio	3.6000	NaN
four	2001	Nevada	2.4000	-1.5000
five	2002	Nevada	2.9000	-1.7000
six	2003	Nevada	3.2000	NaN

We can add columns to our data frame, then delete them with del.

```
frame2['eastern'] = (frame2.state == 'Ohio')
frame2
```

	year	state	pop	debt	eastern
one	2000	Ohio	1.5000	NaN	True

	year	state	pop	debt	eastern
two	2001	Ohio	1.7000	-1.2000	True
three	2002	Ohio	3.6000	NaN	True
four	2001	Nevada	2.4000	-1.5000	False
five	2002	Nevada	2.9000	-1.7000	False
six	2003	Nevada	3.2000	NaN	False

```
del frame2['eastern']
frame2
```

	year	state	pop	debt
one	2000	Ohio	1.5000	NaN
two	2001	Ohio	1.7000	-1.2000
$_{\rm three}$	2002	Ohio	3.6000	NaN
four	2001	Nevada	2.4000	-1.5000
five	2002	Nevada	2.9000	-1.7000
six	2003	Nevada	3.2000	NaN

Index Objects

```
obj = pd.Series(range(3), index=['a', 'b', 'c'])
index = obj.index
index
```

```
Index(['a', 'b', 'c'], dtype='object')
```

Index objects are immutable!

```
# index[1] = 'd' # TypeError: Index does not support mutable operations
```

Indexes can contain duplicates, so an index does not guarantee that our data are duplicate-free.

```
dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])
dup_labels
```

```
Index(['foo', 'foo', 'bar', 'bar'], dtype='object')
```

Essential Functionality

This section provides the most common pandas operations. It is difficult to provide an exhaustive reference, but this section introduces the most common operations.

Indexing, Selection, and Filtering

Indexing, selecting, and filtering will be among our most-used pandas features.

```
obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])
obj
    0.0000
a
    1.0000
b
    2.0000
    3.0000
dtype: float64
obj['b']
1.0000
obj.loc['b']
1.0000
obj.iloc[1]
1.0000
obj.iloc[1:3]
b
    1.0000
    2.0000
dtype: float64
```

When we slice with labels, the left and right endpoints are inclusive.

```
obj['b':'c']
   1.0000
b
    2.0000
dtype: float64
obj['b':'c'] = 5
obj
a 0.0000
b 5.0000
c 5.0000
d 3.0000
dtype: float64
data = pd.DataFrame(
    np.arange(16).reshape((4, 4)),
    index=['Ohio', 'Colorado', 'Utah', 'New York'],
    columns=['one', 'two', 'three', 'four']
)
data
```

one	two	three	four
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
	0 4 8	0 1 4 5 8 9	0 1 2 4 5 6 8 9 10

Indexing one column returns a series.

data['two']

```
Ohio 1
Colorado 5
Utah 9
New York 13
Name: two, dtype: int64
```

Indexing columns with a list returns a data frame.

data[['three']]

	three
Ohio	2
Colorado	6
Utah	10
New York	14

data[['three', 'one']]

	three	one
Ohio	2	0
Colorado	6	4
Utah	10	8
New York	14	12

Table 5-4 summarizes data frame indexing and slicing options:

- df [val]: Select single column or sequence of columns from the DataFrame; special case conveniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame (set values based on some criterion)
- df.loc[val]: Selects single row or subset of rows from the DataFrame by label
- df.loc[:, val]: Selects single column or subset of columns by label
- df.loc[val1, val2]: Select both rows and columns by label
- df.iloc[where]: Selects single row or subset of rows from the DataFrame by integer position
- df.iloc[:, where]: Selects single column or subset of columns by integer position
- df.iloc[where_i, where_j]: Select both rows and columns by integer position
- df.at[label i, label j]: Select a single scalar value by row and column label
- df.iat[i, j]: Select a single scalar value by row and column position (integers) reindex method Select either rows or columns by labels
- get_value, set_value methods: Select single value by row and column label

pandas is powerful and these options can be overwhelming! We will typically use df[val] to select columns (here val is either a string or list of strings), df.loc[val] to select rows (here val is a row label), and df.loc[val1, val2] to select both rows and columns. The other options add flexibility, and we may occasionally use them. However, our data will be large enough that counting row and column number will be tedious, making .iloc[] impractical.

Arithmetic and Data Alignment

NaN

An important pandas feature for some applications is the behavior of arithmetic between objects with different indexes. When you are adding together objects, if any index pairs are not the same, the respective index in the result will be the union of the index pairs. For users with database experience, this is similar to an automatic outer join on the index labels.

```
s1 = pd.Series(
    data=[7.3, -2.5, 3.4, 1.5],
    index=['a', 'c', 'd', 'e']
s2 = pd.Series(
    data=[-2.1, 3.6, -1.5, 4, 3.1],
    index=['a', 'c', 'e', 'f', 'g']
)
s1
     7.3000
a
    -2.5000
С
d
     3.4000
     1.5000
dtype: float64
s2
    -2.1000
a
     3.6000
С
е
    -1.5000
     4.0000
f
     3.1000
dtype: float64
s1 + s2
    5.2000
a
    1.1000
С
d
       {\tt NaN}
    0.0000
е
f
```

g NaN dtype: float64

```
df1 = pd.DataFrame(
    data=np.arange(9.).reshape((3, 3)),
    columns=list('bcd'),
    index=['Ohio', 'Texas', 'Colorado']
)
df2 = pd.DataFrame(
    data=np.arange(12.).reshape((4, 3)),
    columns=list('bde'),
    index=['Utah', 'Ohio', 'Texas', 'Oregon']
)
```

df1

	b	c	d
Ohio	0.0000	1.0000	2.0000
Texas	3.0000	4.0000	5.0000
Colorado	6.0000	7.0000	8.0000

df2

	b	d	e
Utah	0.0000	1.0000	2.0000
Ohio	3.0000	4.0000	5.0000
Texas	6.0000	7.0000	8.0000
Oregon	9.0000	10.0000	11.0000

df1 + df2

	b	c	d	e
Colorado	NaN	NaN	NaN	NaN
Ohio	3.0000	NaN	6.0000	NaN
Oregon	NaN	NaN	NaN	NaN
Texas	9.0000	NaN	12.0000	NaN
Utah	NaN	NaN	NaN	NaN

Always check your output!

Arithmetic methods with fill values

```
df1 = pd.DataFrame(
    data=np.arange(12.).reshape((3, 4)),
    columns=list('abcd')
)
df2 = pd.DataFrame(
    data=np.arange(20.).reshape((4, 5)),
    columns=list('abcde')
)
df2.loc[1, 'b'] = np.nan
```

df1

	a	b	c	d
0	0.0000	1.0000	2.0000	3.0000
1	4.0000	5.0000	6.0000	7.0000
2	8.0000	9.0000	10.0000	11.0000

df2

	a	b	c	d	e
0	0.0000	1.0000	2.0000	3.0000	4.0000
1	5.0000	NaN	7.0000	8.0000	9.0000
2	10.0000	11.0000	12.0000	13.0000	14.0000
3	15.0000	16.0000	17.0000	18.0000	19.0000

df1 + df2

_	a	b	c	d	e
0	0.0000	2.0000	4.0000	6.0000	NaN
1	9.0000	NaN	13.0000	15.0000	NaN
2	18.0000	20.0000	22.0000	24.0000	NaN
3	NaN	NaN	NaN	NaN	NaN

We can specify a fill value for \mathtt{NaN} values. pand as fills would-be \mathtt{NaN} values in each data frame before the arithmetic operation.

df1.add(df2, fill_value=0)

	a	b	С	d	e
0	0.0000	2.0000	4.0000	6.0000	4.0000
1	9.0000	5.0000	13.0000	15.0000	9.0000
2	18.0000	20.0000	22.0000	24.0000	14.0000
3	15.0000	16.0000	17.0000	18.0000	19.0000

Operations between DataFrame and Series

Arithmetic operations between series and data frames behave the same as in the example above.

```
frame = pd.DataFrame(
    data=np.arange(12.).reshape((4, 3)),
    columns=list('bde'),
    index=['Utah', 'Ohio', 'Texas', 'Oregon']
)
series = frame.iloc[0]
```

frame

	b	d	e
Utah	0.0000	1.0000	2.0000
Ohio	3.0000	4.0000	5.0000
Texas	6.0000	7.0000	8.0000
Oregon	9.0000	10.0000	11.0000

series

b 0.0000 d 1.0000 e 2.0000

Name: Utah, dtype: float64

frame - series

	b	d	e
Utah	0.0000	0.0000	0.0000
Ohio	3.0000	3.0000	3.0000
Texas	6.0000	6.0000	6.0000
Oregon	9.0000	9.0000	9.0000

series2 = pd.Series(data=range(3), index=['b', 'e', 'f'])

frame

	b	d	е
Utah	0.0000	1.0000	2.0000
Ohio	3.0000	4.0000	5.0000
Texas	6.0000	7.0000	8.0000
Oregon	9.0000	10.0000	11.0000

series2

b 0 e 1 f 2

dtype: int64

frame + series2

	b	d	e	f
Utah	0.0000	NaN	3.0000	NaN
Ohio	3.0000	NaN	6.0000	NaN
Texas	6.0000	NaN	9.0000	NaN
Oregon	9.0000	NaN	12.0000	NaN

pandas has a .sub() method that lets us chain operations, but we might need the axis argument to get the result we want!

series3 = frame['d']

frame

	b	d	e
Utah	0.0000	1.0000	2.0000
Ohio	3.0000	4.0000	5.0000
Texas	6.0000	7.0000	8.0000
Oregon	9.0000	10.0000	11.0000

series3

Utah 1.0000 Ohio 4.0000 Texas 7.0000 Oregon 10.0000

Name: d, dtype: float64

frame.sub(series3, axis='index')

	b	d	e
Utah	-1.0000	0.0000	1.0000
Ohio	-1.0000	0.0000	1.0000
Texas	-1.0000	0.0000	1.0000
Oregon	-1.0000	0.0000	1.0000

Function Application and Mapping

```
np.random.seed(42)
frame = pd.DataFrame(
    data=np.random.randn(4, 3),
    columns=list('bde'),
    index=['Utah', 'Ohio', 'Texas', 'Oregon']
)
frame
```

	b	d	е
Utah	0.4967	-0.1383	0.6477
Ohio	1.5230	-0.2342	-0.2341
Texas	1.5792	0.7674	-0.4695
Oregon	0.5426	-0.4634	-0.4657

frame.abs()

	b	d	e
Utah	0.4967	0.1383	0.6477
Ohio	1.5230	0.2342	0.2341
Texas	1.5792	0.7674	0.4695
Oregon	0.5426	0.4634	0.4657

Another frequent operation is applying a function on one-dimensional arrays to each column or row. DataFrame's apply method does exactly this:

```
frame.apply(lambda x: x.max() - x.min()) # implied axis=0
```

```
b
    1.0825
    1.2309
d
    1.1172
dtype: float64
frame.apply(lambda x: x.max() - x.min(), axis=1) # expli
Utah
         0.7860
Ohio
         1.7572
Texas
         2.0487
Oregon
         1.0083
dtype: float64
However, under the hood, the .apply() method is a for loop and slower than built-in meth-
```

```
%timeit frame['e'].abs()
8.3 s ± 232 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
%timeit frame['e'].apply(np.abs)
```

```
15.4 s \pm 231 ns per loop (mean \pm std. dev. of 7 runs, 100,000 loops each)
```

Summarizing and Computing Descriptive Statistics

```
df = pd.DataFrame(
    [[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]],
    index=['a', 'b', 'c', 'd'],
    columns=['one', 'two']
)
df
```

one two a 1.4000 NaN

_		
	one	two
b	7.1000	-4.5000
\mathbf{c}	NaN	NaN
d	0.7500	-1.3000

```
df.sum() # implied axis=0
```

one 9.2500 two -5.8000 dtype: float64

df.sum(axis=1)

a 1.4000 b 2.6000 c 0.0000 d -0.5500 dtype: float64

df.mean(axis=1, skipna=False)

a NaN
b 1.3000
c NaN
d -0.2750
dtype: float64

The .idxmax() method returns the label for the maximum observation.

df.idxmax()

one b
two d
dtype: object

The .describe() returns summary statistics for each numerical column in a data frame.

df.describe()

	one	two
count	3.0000	2.0000
mean	3.0833	-2.9000
std	3.4937	2.2627
min	0.7500	-4.5000
25%	1.0750	-3.7000
50%	1.4000	-2.9000
75%	4.2500	-2.1000
max	7.1000	-1.3000

For non-numerical data, .describe() returns alternative summary statistics.

```
obj = pd.Series(['a', 'a', 'b', 'c'] * 4)
obj.describe()
```

count 16
unique 3
top a
freq 8
dtype: object

Correlation and Covariance

Ticker Date	AAPL	GOOG	IBM	MSFT
2024-12-27	255.5900	194.0400	222.7800	430.5300
2024-12-30	252.2000	192.6900	220.2500	424.8300
2024-12-31	250.4200	190.4400	219.8300	421.5000
2025-01-02	243.8500	190.6300	219.9400	418.5800
2025-01-03	NaN	193.6100	222.1800	423.5300

Data frame data contains daily prices and volume for AAPL, IBM, MSFT, and GOOG. The Adj Close columns are reverse-engineered daily closing prices that account for dividends and stock splits (and reverse splits). As a result, the .pct_change() of Adj Close correctly considers dividends and price changes, so $r_t = \frac{(P_t + D_t) - P_{t-1}}{P_{t-1}} = \frac{\text{Adj Close}_t - \text{Adj Close}_{t-1}}{\text{Adj Close}_{t-1}}$.

Ticker	AAPL	GOOG	IBM	MSFT
Date				
2004-08-20	0.0029	0.0794	0.0042	0.0030
2004-08-23	0.0091	0.0101	-0.0070	0.0044
2004-08-24	0.0280	-0.0414	0.0007	0.0000
2004-08-25	0.0344	0.0108	0.0042	0.0114
2004-08-26	0.0487	0.0180	-0.0045	-0.0040
2024-12-26	0.0032	-0.0024	0.0021	-0.0028
2024-12-27	-0.0132	-0.0155	-0.0094	-0.0173
2024-12-30	-0.0133	-0.0070	-0.0114	-0.0132
2024-12-31	-0.0071	-0.0117	-0.0019	-0.0078
2025-01-02	-0.0262	0.0010	0.0005	-0.0069

We multiply by 252 to annualize mean daily returns because means grow linearly with time and there are (about) 252 trading days per year.

```
returns.mean().mul(252)
```

Ticker
AAPL 0.3606
GOOG 0.2598
IBM 0.1040

MSFT 0.1941 dtype: float64

We multiply by $\sqrt{252}$ to annualize the volatility of daily returns because standard deviation is the square root of variance, variances grow linearly with time, and there are (about) 252 trading days per year. Ivo Welch explains this calculation at the bottom of Page 7 of Chapter 8 his free corporate finance textbook.

returns.std().mul(np.sqrt(252))

Ticker

AAPL 0.3237 GOOG 0.3060 IBM 0.2267 MSFT 0.2694 dtype: float64

We can calculate pairwise correlations.

```
returns['MSFT'].corr(returns['IBM'])
```

0.4855

We can also calculate correlation matrices.

returns.corr()

Ticker Ticker	AAPL	GOOG	IBM	MSFT
AAPL GOOG IBM MSFT	0.5133 0.4173	0.5133 1.0000 0.3821 0.5623	0.3821 1.0000	$0.5222 \\ 0.5623 \\ 0.4855 \\ 1.0000$

```
returns.corr().loc['MSFT', 'IBM']
```

0.4855

```
np.allclose(
    a=returns['MSFT'].corr(returns['IBM']),
    b=returns.corr().loc['MSFT', 'IBM']
)
```

True

McKinney Chapter 5 - Practice - Blank

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import yfinance as yf
```

```
%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

Announcements

Five-Minute Review

Practice

What are the mean daily returns for these four stocks?

```
tickers = 'AAPL IBM MSFT GOOG'
```

What are the standard deviations of daily returns for these four stocks?

What are the *annualized* means and standard deviations of daily returns for these four stocks?

Plot *annualized* means versus standard deviations of daily returns for these four stocks

Repeat the previous calculations and plot for the stocks in the Dow-Jones Industrial Index (DJIA)

We can find the current DJIA stocks on Wikipedia. We must download new data, into tickers_2, data_2, and returns_2.

Calculate total returns for the stocks in the DJIA

Plot the distribution of total returns for the stocks in the DJIA

Which stocks have the minimum and maximum total returns?

Plot the cumulative returns for the stocks in the DJIA

Repeat the plot above with only the minimum and maximum total returns

Week 5

McKinney Chapter 8 - Data Wrangling: Join, Combine, and Reshape

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import yfinance as yf
```

```
%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

Introduction

Chapter 8 of McKinney (2022) introduces a few important pandas concepts:

- 1. Joining or merging is combining 2+ data frames on 1+ indexes or columns into 1 data frame
- 2. Reshaping is rearranging a data frame so it has fewer columns and more rows (wide to long) or more columns and fewer rows (long to wide)

Note: Indented block quotes are from McKinney (2022) unless otherwise indicated. The section numbers here differ from McKinney (2022) because we will only discuss some topics.

Hierarchical Indexing

We must learn about hierarchical indexing before we learn about combining and reshaping data. A hierarchical index has two or more levels. For example, we could index rows by ticker and date. Or we could index columns by variable and ticker. Hierarchical indexing helps us work with high-dimensional data in a low-dimensional form.

np.random.seed(42)
data = pd.Series(

```
data=np.random.randn(9),
    index=[
        ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],
        [1, 2, 3, 1, 3, 1, 2, 2, 3]
   ]
)
data
      0.4967
a 1
   2
     -0.1383
       0.6477
   3
       1.5230
b 1
   3
     -0.2342
c 1 -0.2341
   2
       1.5792
d 2
        0.7674
   3
       -0.4695
dtype: float64
We can index this series to subset it.
data['b']
     1.5230
   -0.2342
dtype: float64
data.loc['b']
1
     1.5230
    -0.2342
dtype: float64
data['b':'c']
```

```
b 1 1.5230
3 -0.2342
c 1 -0.2341
2 1.5792
dtype: float64
```

data.loc[['b', 'd']]

b 1 1.5230 3 -0.2342 d 2 0.7674 3 -0.4695 dtype: float64

We can subset on the index inner level, too. Here, the : slices all values in the outer index, and the 2 slices the three values with 2 indexes.

data.loc[:, 2]

a -0.1383c 1.5792d 0.7674dtype: float64

Here, data has a stacked or long format. We have multiple observations for each outer index (letters) with different inner indexes (numbers). We can un-stack data to convert the inner index level to columns. New, we have an unstacked or wide format.

data.unstack()

	1	2	3
a	0.4967	-0.1383	0.6477
b	1.5230	NaN	-0.2342
\mathbf{c}	-0.2341	1.5792	NaN
d	NaN	0.7674	-0.4695

We can create a data frame with hierarchical indexes or multi-indexes on rows and columns.

```
frame = pd.DataFrame(
    data=np.arange(12).reshape((4, 3)),
    index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
    columns=[['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']]
)
frame
```

		Ohio Green	Re
	1	0	1
a	2	3	4
<u> </u>	1	6	7
b .	2	9	10

We can name these multi-indexes, but index names are not required.

```
frame.index.names = ['key1', 'key2']
frame.columns.names = ['state', 'color']
frame
```

key1	state color key2	Ohio Green
	1	0
a	2	3
h	1	6
D	2	9

Recall that df[val] selects the val column. Here, frame has a multi-index for the columns, so frame['Ohio'] selects all columns with Ohio as the outer index.

```
frame['Ohio']
```

key1	color key2	Green
a	1	0

McKinney Chapter 8 - Data Wrangling: Join, Combine, and Reshape

key1	color key2	Green
	2	3
h	1	6
D	2	9

We can pass a tuple if we only want one column.

frame[[('Ohio', 'Green')]]

key1	state color key2	Ohio Green
	1	0
a	2	3
h	1	6
b .	2	9

We must do more work to slice the inner level of the column index.

frame.loc[:, (slice(None), 'Green')]

key1	state color key2	Ohio Green
\mathbf{a}	1	0
α	2	3
b	1	6
D .	2	9

We can use pd.IndexSlice[:, 'Green'] an alternative to (slice(None), 'Green').

```
frame.loc[:, pd.IndexSlice[:, 'Green']]
```

key1	state color key2	Ohio Green
a	1	0
	2	3
b	1	6
	2	9

Reordering and Sorting Levels

We can swap index levels with the .swaplevel() method. The default arguments are i=-2 and j=-1, which swap the two innermost index levels.

frame

key1	state color key2	Ohio Green
	1	0
a	2	3
b	1	6
D.	2	9

frame.swaplevel()

key2		Ohio Green	Red	Colorado Green
1	a	0	1	2
2	a	3	4	5
1	b	6	7	8
2	b	9	10	11

We can use index names, too.

frame.swaplevel('key1', 'key2')

key2	color	Ohio Green	Red	Colorado Green
1	a	0	1	2
2	a	3	4	5
1	b	6	7	8
2	b	9	10	11

Indexing with a DataFrame's columns

We can convert a column into an index and an index into a column with the .set_index() and .reset_index() methods.

```
frame = pd.DataFrame({
    'a': range(7),
    'b': range(7, 0, -1),
    'c': ['one', 'one', 'two', 'two', 'two'],
    'd': [0, 1, 2, 0, 1, 2, 3]
})
frame
```

	a	b	c	d
0	0	7	one	0
1	1	6	one	1
2	2	5	one	2
3	3	4	two	0
4	4	3	two	1
5	5	2	two	2
6	6	1	two	3
_				

The .set_index() method converts columns to indexes and drops these columns by default.

```
frame2 = frame.set_index(['c', 'd'])
frame2
```

		a	b
c	d		
	0	0	7
one	1	1	6
	2	2	5
	0	3	4
two	1	4	3
two	2	5	2
	3	6	1

The .reset_index() method drops indexes, adds them as columns by default, and sets an integer index.

frame2.reset_index()

	c	d	a	b
0	one	0	0	7
1	one	1	1	6
2	one	2	2	5
3	two	0	3	4
4	two	1	4	3
5	two	2	5	2
6	two	3	6	1

Combining and Merging Datasets

pandas provides several methods and functions to combine and merge data. We can typically create the same output with several these methods or functions, but one may be more efficient.

When we want to combine data frames with similar indexes, we will tend to use the .join() method. The .join() can also combine three or more data frames.

Otherwise, we will use the .merge() method or pd.merge() function. The pd.merge() function is more flexible than the .join() method, so we will start with the pd.merge() function.

The pandas website provides helpful visualizations.

Database-Style DataFrame Joins

Merge or join operations combine datasets by linking rows using one or more keys. These operations are central to relational databases (e.g., SQL-based). The merge function in pandas is the main entry point for using these algorithms on your data.

```
df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1': range(7)})
df2 = pd.DataFrame({'key': ['a', 'b', 'd'], 'data2': range(3)})
```

df1

	key	data1
0	b	0
1	b	1
2	a	2
3	\mathbf{c}	3
4	a	4
5	a	5
6	b	6

df2

	key	data2
0	a	0
1	b	1
2	d	2

pd.merge(df1, df2)

	key	data1	data2
0	b	0	1
1	b	1	1
2	a	2	0
3	a	4	0
4	a	5	0
5	b	6	1

The default is how='inner', so pd.merge() inner joins left and right data frames by default, keeping only rows that appear in both. We can specify how='outer', so pd.merge() outer joins left and right data frames, keeping all rows that appear in either.

pd.merge(df1, df2, how='outer')

_			
	key	data1	data2
0	a	2.0000	0.0000
1	a	4.0000	0.0000
2	a	5.0000	0.0000
3	b	0.0000	1.0000
4	b	1.0000	1.0000
5	b	6.0000	1.0000
6	\mathbf{c}	3.0000	NaN
7	d	NaN	2.0000

A how='left' merge keeps only rows that appear in the left data frame.

pd.merge(df1, df2, how='left')

	key	data1	data2
0	b	0	1.0000
1	b	1	1.0000
2	a	2	0.0000
3	\mathbf{c}	3	NaN
4	a	4	0.0000
5	a	5	0.0000
6	b	6	1.0000

A how='right' merge keeps only rows that appear in the right data frame.

	key	data1	data2
0	a	2.0000	0
1	a	4.0000	0
2	a	5.0000	0

	key	data1	data2
3	b	0.0000	1
4	b	1.0000	1
5	b	6.0000	1
6	d	NaN	2

By default, pd.merge() merges on any columns that appear in both data frames.

on: label or list Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.

Here, key is the only common column between df1 and df2. We *should* specify on='key' to avoid unexpected results.

pd.merge(df1, df2, on='key')

	key	data1	data2
0	b	0	1
1	b	1	1
2	a	2	0
3	a	4	0
4	a	5	0
5	b	6	1

We *must* specify left_on and right_on if our left and right data frames do not have a common column.

```
df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'], 'data1': range(7)})
df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'], 'data2': range(3)})
```

df3

	lkey	datal
0	b	0
1	b	1
2	a	2
3	\mathbf{c}	3

	lkey	data1
4	a	4
5	\mathbf{a}	5
6	b	6

df4

	rkey	data2
0	a	0
1	b	1
2	d	2

pd.merge(df3, df4) # this code fails/errors because there are not common columns
MergeError: No common columns to perform merge on. Merge options: left_on=None, right_on=None

pd.merge(df3, df4, left_on='lkey', right_on='rkey')

	lkey	data1	rkey	data2
0	b	0	b	1
1	b	1	b	1
2	a	2	a	0
3	a	4	a	0
4	a	5	\mathbf{a}	0
5	b	6	b	1

Here, pd.merge() drops row c from df3 and row d from df4 because pd.merge() inner joins by default. An inner join keeps the intersection of the left and right data frame keys. If we want to keep rows c and d, we can outer join df3 and df4 with how='outer'.

pd.merge(df1, df2, how='outer')

	key	data1	data2
0	a	2.0000	0.0000
1	a	4.0000	0.0000
2	a	5.0000	0.0000

McKinney Chapter 8 - Data Wrangling: Join, Combine, and Reshape

	key	data1	data2
3	b	0.0000	1.0000
4	b	1.0000	1.0000
5	b	6.0000	1.0000
6	\mathbf{c}	3.0000	NaN
7	d	NaN	2.0000

Many-to-many merges have well-defined, though not necessarily intuitive, behavior.

```
df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'], 'data1': range(6)})
df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'], 'data2': range(5)})
```

df1

	key	data1
0	b	0
1	b	1
2	a	2
3	\mathbf{c}	3
4	a	4
5	b	5

df2

	key	data2
0	a	0
1	b	1
2	a	2
3	b	3
4	d	4

pd.merge(df1, df2, on='key')

	key	data1	data2
0	b	0	1
1	b	0	3

	key	data1	data2
2	b	1	1
3	b	1	3
4	a	2	0
5	a	2	2
6	a	4	0
7	a	4	2
8	b	5	1
9	b	5	3

Many-to-many joins form the Cartesian product of the rows. Since there were three b rows in the left DataFrame and two in the right one, there are six b rows in the result. The join method only affects the distinct key values appearing in the result.

Be careful with many-to-many joins! In finance, we do not expect many-to-many joins because we expect at least one of the data frames to have unique observations. pandas will not warn us if we accidentally perform a many-to-many join instead of a one-to-one or many-to-one join.

We can merge on more than one key. For example, we can merge two data sets on ticker-date pairs or industry-date pairs.

left

key1	key2	lval
0 foo	one	1
1 foo	two	2
2 bar	one	3

right

McKinney Chapter 8 - Data Wrangling: Join, Combine, and Reshape

	key1	key2	rval
0	foo	one	4
1	foo	one	5
2	bar	one	6
3	bar	two	7

```
pd.merge(left, right, on=['key1', 'key2'], how='outer')
```

	key1	key2	lval	rval
0	bar	one	3.0000	6.0000
1	bar	two	NaN	7.0000
2	foo	one	1.0000	4.0000
3	foo	one	1.0000	5.0000
4	foo	two	2.0000	NaN

When column names overlap between the left and right data frames, pd.merge() appends $_x$ and $_y$ to the left and right versions of the overlapping column names.

pd.merge(left, right, on='key1')

	key1	key2_x	lval	key2_y	rval
0	foo	one	1	one	4
1	foo	one	1	one	5
2	foo	two	2	one	4
3	foo	two	2	one	5
4	bar	one	3	one	6
5	bar	one	3	two	7

I typically specify the suffixes argument to avoid confusion.

	key1	$key2_left$	lval	key2_right	rval
0	foo	one	1	one	4
1	foo	one	1	one	5

	key1	key2_left	lval	key2_right	rval
2	foo	two	2	one	4
3	foo	two	2	one	5
4	bar	one	3	one	6
5	bar	one	3	two	7

I read the pd.merge() docstring frequently! *Table 8-2* summarizes the commonly used arguments for pd.merge().

- left: DataFrame to be merged on the left side.
- right: DataFrame to be merged on the right side.
- how: One of 'inner', 'outer', 'left', or 'right'; defaults to 'inner'.
- on: Column names to join on. Must be found in both DataFrame objects. If not specified and no other join keys given will use the intersection of the column names in left and right as the join keys.
- left_on: Columns in left DataFrame to use as join keys.
- right_on: Analogous to left_on for left DataFrame.
- left_index: Use row index in left as its join key (or keys, if a MultiIndex).
- right_index: Analogous to left_index.
- sort: Sort merged data lexicographically by join keys; True by default (disable to get better performance in some cases on large datasets).
- suffixes: Tuple of string values to append to column names in case of overlap; defaults to ('_x', '_y') (e.g., if 'data' in both DataFrame objects, would appear as 'data_x' and 'data_y' in result).
- copy: If False, avoid copying data into resulting data structure in some exceptional cases; by default always copies.
- indicator: Adds a special column _merge that indicates the source of each row; values will be 'left_only', 'right_only', or 'both' based on the origin of the joined data in each row.

Merging on Index

If we want to use pd.merge() to join on row indexes, we can use the left_index and right_index arguments.

```
left1 = pd.DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'], 'value': range(6)})
right1 = pd.DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
```

```
left1
```

	key	value
0	a	0
1	b	1
2	a	2
3	a	3
4	b	4
5	\mathbf{c}	5

right1

```
group_val
a 3.5000
b 7.0000
```

```
pd.merge(left1, right1, left_on='key', right_index=True, how='outer')
```

_			
	key	value	group_val
0	a	0	3.5000
2	a	2	3.5000
3	a	3	3.5000
1	b	1	7.0000
4	b	4	7.0000
5	c	5	NaN

The index arguments work for hierarchical indexes (multi indexes), too.

```
pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True, how='outer')
```

	key1	key2	data	event1	event2
4	Nevada	2000	NaN	2.0000	3.0000
3	Nevada	2001	3.0000	0.0000	1.0000
4	Nevada	2002	4.0000	NaN	NaN
0	Ohio	2000	0.0000	4.0000	5.0000
0	Ohio	2000	0.0000	6.0000	7.0000
1	Ohio	2001	1.0000	8.0000	9.0000
2	Ohio	2002	2.0000	10.0000	11.0000

If we use both indexes, pd.merge() will keep the index.

```
pd.merge(left2, right2, how='outer', left_index=True, right_index=True)
```

	Ohio	Nevada	Missouri	Alabama
a	1.0000	2.0000	NaN	NaN
b	NaN	NaN	7.0000	8.0000
\mathbf{c}	3.0000	4.0000	9.0000	10.0000
d	NaN	NaN	11.0000	12.0000
\mathbf{e}	5.0000	6.0000	13.0000	14.0000

DataFrame has a convenient join instance for merging by index. It can also be used to combine together many DataFrame objects having the same or similar indexes but non-overlapping columns.

We can use the .join() method if both data frames have similar indexes.

left2

	Ohio	Nevada
a	1.0000	2.0000
\mathbf{c}	3.0000	4.0000

	Ohio	Nevada
e	5.0000	6.0000

right2

	Missouri	Alabama
b	7.0000	8.0000
\mathbf{c}	9.0000	10.0000
d	11.0000	12.0000
e	13.0000	14.0000

left2.join(right2, how='outer')

	Ohio	Nevada	Missouri	Alabama
a	1.0000	2.0000	NaN	NaN
b	NaN	NaN	7.0000	8.0000
\mathbf{c}	3.0000	4.0000	9.0000	10.0000
d	NaN	NaN	11.0000	12.0000
e	5.0000	6.0000	13.0000	14.0000

The .join() method left joins by default. Because the .join() method uses indexes, it requires fewer arguments than .merge(). The .join() method can also accept a list of data frames.

```
another = pd.DataFrame(
    data=[[7., 8.], [9., 10.], [11., 12.], [16., 17.]],
    index=['a', 'c', 'e', 'f'],
    columns=['New York', 'Oregon']
)
another
```

	New York	Oregon
a	7.0000	8.0000
\mathbf{c}	9.0000	10.0000
e	11.0000	12.0000

	New York	Oregon
f	16.0000	17.0000

left2.join([right2, another])

	Ohio	Nevada	Missouri	Alabama	New York	Oregon
a	1.0000	2.0000	NaN	NaN	7.0000	8.0000
\mathbf{c}	3.0000	4.0000	9.0000	10.0000	9.0000	10.0000
e	5.0000	6.0000	13.0000	14.0000	11.0000	12.0000

left2.join([right2, another], how='outer')

	Ohio	Nevada	Missouri	Alabama	New York	Oregon
a	1.0000	2.0000	NaN	NaN	7.0000	8.0000
\mathbf{c}	3.0000	4.0000	9.0000	10.0000	9.0000	10.0000
e	5.0000	6.0000	13.0000	14.0000	11.0000	12.0000
b	NaN	NaN	7.0000	8.0000	NaN	NaN
d	NaN	NaN	11.0000	12.0000	NaN	NaN
f	NaN	NaN	NaN	NaN	16.0000	17.0000

Concatenating Along an Axis

The pd.concat() function provides a flexible way to combine data frames and series along an axis. I typically use pd.concat() to combine:

- 1. A list of data frames with similar layouts
- 2. A list of series because series do not have .join() or .merge() methods

```
s1 = pd.Series([0, 1], index=['a', 'b'])
s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
s3 = pd.Series([5, 6], index=['f', 'g'])
```

```
pd.concat([s1, s2, s3]) # implicit axis=0
```

```
a 0 b 1 c 2 d 3 e 4 f 5 g 6
```

dtype: int64

pd.concat([s1, s2, s3], axis=1) # explicit axis=1

	0	1	2
a	0.0000	NaN	NaN
b	1.0000	NaN	NaN
\mathbf{c}	NaN	2.0000	NaN
d	NaN	3.0000	NaN
e	NaN	4.0000	NaN
f	NaN	NaN	5.0000
g	NaN	NaN	6.0000

```
result = pd.concat([s1, s2, s3], keys=['one', 'two', 'three']) # implicit axis=0
result
```

```
one a 0 b 1 two c 2 d 3 e 4 three f 5 g 6 dtype: int64
```

result.unstack(level=0)

	one	two	three
a	0.0000	NaN	NaN
b	1.0000	NaN	NaN
\mathbf{c}	NaN	2.0000	NaN

	one	two	three
d	NaN	3.0000	NaN
e	NaN	4.0000	NaN
\mathbf{f}	NaN	NaN	5.0000
g	NaN	NaN	6.0000

```
pd.concat([s1, s2, s3], axis=1, keys=['one', 'two', 'three']) # explicit axis=1
```

	one	two	three
a	0.0000	NaN	NaN
b	1.0000	NaN	NaN
\mathbf{c}	NaN	2.0000	NaN
d	NaN	3.0000	NaN
e	NaN	4.0000	NaN
f	NaN	NaN	5.0000
g	NaN	NaN	6.0000

```
df1 = pd.DataFrame(
    data=np.arange(6).reshape(3, 2),
    index=['a', 'b', 'c'],
    columns=['one', 'two']
)
df2 = pd.DataFrame(
    data=5 + np.arange(4).reshape(2, 2),
    index=['a', 'c'],
    columns=['three', 'four']
)
```

```
pd.concat([df1, df2], axis=1, keys=['level1', 'level2'])
```

	level1		level2		
	one	two	three	four	
a	0	1	5.0000	6.0000	
b	2	3	NaN	NaN	
\mathbf{c}	4	5	7.0000	8.0000	

pd.concat([df1,	df2],	axis=1,	keys=['level1',	'level2'],	names=['upper',	'lower'])
-----------------	-------	---------	-----------------	------------	-----------------	-----------

upper	level	1	level2	
lower	one	two	three	four
a	0	1	5.0000	6.0000
b	2	3	NaN	NaN
c	4	5	7.0000	8.0000

Reshaping and Pivoting

Above, we briefly explore reshaping data with .stack() and .unstack(). Here, we more deeply explore reshaping data.

Reshaping with Hierarchical Indexing

Hierarchical indexes (multi-indexes) help reshape data.

There are two primary actions: - stack: This "rotates" or pivots from the columns in the data to the rows - unstack: This pivots from the rows into the columns

number state	one	two	three
Ohio Colorado	0 3	1 4	2 5

```
result = data.stack()
result
```

```
      state
      number

      Ohio
      one
      0

      two
      1
      three
      2

      Colorado
      one
      3

      two
      4
      three
      5
```

dtype: int64

result.unstack()

ee
r

```
s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
data2 = pd.concat([s1, s2], keys=['one', 'two'])
data2
```

```
one a 0
b 1
c 2
d 3
two c 4
d 5
e 6
dtype: int64
```

Un-stacking may introduce missing values because data frames are rectangular.

data2.unstack()

a	b	c	d	e
0.0000 NaN	1.0000 NaN	2.0000 4.0000	3.0000 5.0000	

Stacking drops these missing values by default. However, this behavior may change soon, so check your output!

data2.unstack().stack()

```
one a 0.0000
b 1.0000
c 2.0000
d 3.0000
two c 4.0000
d 5.0000
e 6.0000
```

dtype: float64

McKinney provides two more subsections on reshaping data with the <code>.pivot()</code> and <code>.melt()</code> methods. Unlike, the stacking methods, the pivoting methods can aggregate data and do not require an index. We will skip these additional aggregation methods for now.

McKinney Chapter 8 - Practice

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import yfinance as yf
```

```
%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

Announcements

Five-Minute Review

Practice

Download data from Yahoo! Finance for BAC, C, GS, JPM, MS, and PNC and assign to data frame stocks.

Reshape stocks from wide to long with dates and tickers as row indexes and assign to data frame stocks_long.

Name the returns variable Returns, and maintain all multi indexes. *Hint:* Use pd.MultiIndex() to create a multi index for the wide data frame stocks.

Download the daily benchmark return factors from Ken French's data library.

Add the daily benchmark return factors to stocks and stocks_long.

Write a function download() that accepts tickers and returns a wide data frame of returns with the daily benchmark return factors.

We can even add a shape argument to return a wide or long data frame!

Download earnings per share for the stocks in stocks and combine to a long data frame earnings.

Use the .earnings_dates method described here. Use pd.concat() to combine the result of each the .earnings_date data frames and assign them to a new data frame earnings. Name the row indexes Ticker and Date and swap to match the order of the row index in stocks_long.

Combine earnings with the returns from stocks_long.

Plot the relation between daily returns and earnings surprises

Repeat the earnings exercise with the S&P 100 stocks

With more data, we can more clearly see the positive relation between earnings surprises and returns!

Week 6

McKinney Chapter 10 - Data Aggregation and Group Operations

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import yfinance as yf
```

```
%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

Introduction

Chapter 10 of McKinney (2022) discusses groupby operations, the pandas equivalent of pivot tables in Excel. Pivot tables calculate statistics (e.g., sums, means, and medians) for one set of variables by groups of other variables (e.g., weekdays and tickers). For example, we could use a pivot table to calculate mean daily stock returns by weekday.

We will focus on:

- 1. The .groupby() method to group by columns and indexes
- 2. The .agg() method to aggregate columns to single values
- 3. The .pivot_table() method as an alternative to .groupby()

Note: Indented block quotes are from McKinney (2022) unless otherwise indicated. The section numbers here differ from McKinney (2022) because we will only discuss some topics.

GroupBy Mechanics

"Split-apply-combine" is an excellent way to describe pandas groupby operations.

Hadley Wickham, an author of many popular packages for the R programming language, coined the term split-apply-combine for describing group operations. In the first stage of the process, data contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into groups based on one or more keys that you provide. The splitting is performed on a particular axis of an object. For example, a DataFrame can be grouped on its rows (axis=0) or its columns (axis=1). Once this is done, a function is applied to each group, producing a new value. Finally, the results of all those function applications are combined into a result object. The form of the resulting object will usually depend on what's being done to the data. See Figure 10-1 for a mockup of a simple group aggregation.

Figure 10-1 visualizes a split-apply-combine operation that:

- 1. Splits by the key column (i.e., "groups by key")
- 2. Applies the sum operation to the data column (i.e., "and sums data")
- 3. Combines the grouped sums (i.e., "combines the output")

We could describe this operation as "sum the data column by groups of the key column then combines the output."

	key1	key2	data1	data2
0	a	one	0.4967	-0.2341
1	a	two	-0.1383	1.5792
2	b	one	0.6477	0.7674
3	b	two	1.5230	-0.4695
4	a	one	-0.2342	0.5426

Here is the manual way to calculate the means of data1 by groups of key1.

```
df.loc[df['key1'] == 'a', 'data1'].mean()
```

0.0414

```
df.loc[df['key1'] == 'b', 'data1'].mean()
```

1.0854

We can do this calculation more easily!

- 1. Use the .groupby() method to group by key1
- 2. Use the .mean() method to calculate the mean of data1 within each value of key1

```
df['data1'].groupby(df['key1']).mean()
```

```
key1
a 0.0414
b 1.0854
Name: data1, dtype: float64
```

We can wrap data1 with two sets of square brackets if we prefer our result as a data frame instead of a series.

```
df[['data1']].groupby(df['key1']).mean()
```

	data1
key1	
a	0.0414
b	1.0854

We can group by more than one variable!

```
means = df['data1'].groupby([df['key1'], df['key2']]).mean()
means
```

```
key1 key2
a one 0.1313
    two -0.1383
b one 0.6477
    two 1.5230
Name: data1, dtype: float64
```

We can use the .unstack() method if we want to use both rows and columns to organize data. Recall that the .unstack() method un-stacks the inner index level (i.e., level = -1) by default so that key2 values become the columns.

means.unstack()

key2 key1	one	two
a	0.1313	-0.1383
b	0.6477	1.5230

Our grouping variables are typically columns in the data frame we want to group, so the following syntax is more compact and easier to read.

df.groupby(['key1', 'key2'])['data1'].mean().unstack()

key2 key1	one	two
a	0.1313	-0.1383
b	0.6477	1.5230

We can wrap long chains in parentheses to insert line breaks and improve readability.

```
(
    df
    .groupby(['key1', 'key2'])
    ['data1']
    .mean()
    .unstack()
)
```

key2 key1	one	two
a	0.1313	-0.1383
b	0.6477	1.5230

However, we must pass only numerical columns to numerical aggregation methods. Otherwise, pandas will give a type error. For example, in the following code, pandas unsuccessfully tries to calculate the mean of string key2.

```
# df.groupby('key1').mean() # TypeError: agg function failed [how->mean,dtype->object]
```

We avoid this error by slicing the numerical columns.

```
df.groupby('key1')[['data1', 'data2']].mean()
```

	data1	data2
key1		
a	0.0414	0.6292
b	1.0854	0.1490

Grouping with Functions

We can also group with functions. Below, we group with the len function, which calculates the lengths of the labels in the row index.

```
np.random.seed(42)
people = pd.DataFrame(
    data=np.random.randn(5, 5),
    columns=['a', 'b', 'c', 'd', 'e'],
    index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis']
)
people
```

	a	b	c	d	e
Joe	0.4967	-0.1383	0.6477	1.5230	-0.2342
Steve	-0.2341	1.5792	0.7674	-0.4695	0.5426
Wes	-0.4634	-0.4657	0.2420	-1.9133	-1.7249
Jim	-0.5623	-1.0128	0.3142	-0.9080	-1.4123
Travis	1.4656	-0.2258	0.0675	-1.4247	-0.5444

```
people.groupby(len).sum()
```

	a	b	c	d	е
3	-0.5290	-1.6168	1.2039	-1.2983	-3.3714
5	-0.2341	1.5792	0.7674	-0.4695	0.5426
6	1.4656	-0.2258	0.0675	-1.4247	-0.5444

We can mix functions, lists, dictionaries, etc., as arguments to the .groupby() method.

```
key_list = ['one', 'one', 'one', 'two', 'two']
people.groupby([len, key_list]).min()
```

		a
2		-0.4634
3	two	-0.5623
5		-0.2341
6	two	1.4656

```
d = {'Joe': 'a', 'Jim': 'b'}
people.groupby([len, d]).min()
```

		a	b
9	a	0.4967	-(
3	b	-0.5623	-1

```
d_2 = {'Joe': 'Cool', 'Jim': 'Nerd', 'Travis': 'Cool'}
people.groupby([len, d_2]).min()
```

		a
9	Cool	0.4967
9	Nerd	-0.5623
6	Cool	1.4656

Grouping by Index Levels

We can also group by index levels.

		0
cty	tenor	
	1	0.1109
US	3	-1.1510
	5	0.3757
JP	1	-0.6006 -0.2917
Jr	3	-0.2917

hier_df.groupby(level='cty').count()

	0	1	2	3
cty				
JP	2	2	2	2
US	3	3	3	3

hier_df.groupby(level='tenor').count()

	0	1	2	3
tenor				
1	2	2	2	2
3	2	2	2	2
5	1	1	1	1

Data Aggregation

 $\it Table~10-1$ summarizes the optimized group by methods:

- count: Number of non-NA values in the group
- sum: Sum of non-NA values
- mean: Mean of non-NA values

McKinney Chapter 10 - Data Aggregation and Group Operations

- median: Arithmetic median of non-NA values
- std, var: Unbiased (n 1 denominator) standard deviation and variance
- min, max: Minimum and maximum of non-NA values
- prod: Product of non-NA values
- first, last: First and last non-NA values

These optimized methods are fast and efficient. Still, pandas lets us use non-optimized methods. First, any series method is available.

df

key1	key2	data1	data2
a	one	0.4967	-0.2341
a	two	-0.1383	1.5792
b	one	0.6477	0.7674
b	two	1.5230	-0.4695
a	one	-0.2342	0.5426
	a a b b	a one a two b one b two	a one 0.4967 a two -0.1383 b one 0.6477 b two 1.5230

```
df.groupby('key1')['data1'].quantile(0.9)
```

key1

a 0.3697 b 1.4355

Name: data1, dtype: float64

Second, we can write functions and pass them to the <code>.agg()</code> method. These functions should accept an array and return a single value.

```
def max_minus_min(arr):
    return arr.max() - arr.min()
```

```
df.sort_values(by=['key1', 'data1'])
```

	key1	key2	data1	data2
4	a	one	-0.2342	0.5426
1	a	two	-0.1383	1.5792
0	a	one	0.4967	-0.2341
2	b	one	0.6477	0.7674

McKinney Chapter 10 - Data Aggregation and Group Operations

	key1	key2	data1	data2
3	b	two	1.5230	-0.4695

df.groupby('key1')['data1'].agg(max_minus_min)

key1

a 0.7309 b 0.8753

Name: data1, dtype: float64

Some other methods work, too, even if they do not aggregate an array to a scalar.

df.groupby('key1')['data1'].describe()

	count	mean	std	min	25%	50%	75%	max
key1								
a	3.0000	0.0414	0.3972	-0.2342	-0.1862	-0.1383	0.1792	0.4967
b	2.0000	1.0854	0.6190	0.6477	0.8665	1.0854	1.3042	1.5230

The .agg() method provides two more handy features:

- 1. We can pass multiple functions to operate on all columns
- 2. We can pass specific functions to operate on specific columns

First, here are examples of multiple functions that operate on all columns.

	mean	median	min	max
key1				
a	0.0414	-0.1383	-0.2342	0.4967
b	1.0854	1.0854	0.6477	1.5230

```
df.groupby('key1')[['data1', 'data2']].agg(['mean', 'median', 'min', 'max'])
```

key1	data1 mean	median	min	max	data2 mean	median	min	max
a	0.0414	-0.1383	-0.2342	0.4967	0.6292	0.5426	-0.2341	1.5792
b	1.0854	1.0854	0.6477	1.5230	0.1490	0.1490	-0.4695	0.7674

Second, here are examples of specific functions that operate on specific columns.

```
df.groupby('key1').agg({'data1': 'mean', 'data2': 'median'})
```

	data1	data2
key1		
a	0.0414	0.5426
b	1.0854	0.1490

We must do a little more work if we want to rename data1 and data2 to remind ourselves which is the mean and median.

```
df.groupby('key1').agg(
    data1_mean=('data1', 'mean'),
    data2_median=('data2', 'median')
)
```

	data1_mean	data2_median
key1		
a	0.0414	0.5426
b	1.0854	0.1490

We can calculate the mean and standard deviation of data1 and the median of data2 by key1.

```
df.groupby('key1').agg({'data1': ['mean', 'std'], 'data2': 'median'})
```

key1	data1 mean	std	data2 median
a b	0.0414 1.0854	$0.3972 \\ 0.6190$	$0.5426 \\ 0.1490$

Apply: General split-apply-combine

The .agg() method aggregates an array to a scalar. We can use the .apply() method for more general calculations that do not return a scalar. For example, the following top() function selects the top n rows in data frame x sorted by column col. The .sort_values() method sorts from low to high by default.

```
def top(x, col, n=1):
    return x.sort_values(col).head(n)
```

df

	key1	key2	data1	data2
0	a	one	0.4967	-0.2341
1	a	two	-0.1383	1.5792
2	b	one	0.6477	0.7674
3	b	two	1.5230	-0.4695
4	a	one	-0.2342	0.5426

The following code returns the one row with the smallest value of data1 within each group of key1.

```
df.groupby('key1').apply(top, col='data1', include_groups=False)
```

		key2	data1	data2
key1				
a	4	one	-0.2342	0.5426
b	2	one	0.6477	0.7674

The following code returns the *two rows* with the smallest values of data1 within each group of key1.

```
df.groupby('key1').apply(top, col='data1', n=2, include_groups=False)
```

key1	key2	data
a	one	-0.23
	two one	
b	two	

We must use the .reset_index() method if we want to drop the index from df.

```
df
    .groupby('key1')
    .apply(top, col='data1', n=2, include_groups=False)
    .reset_index(level=1, drop=True)
)
```

	key2	data1	data2
key1			
a	one	-0.2342	0.5426
a	two	-0.1383	1.5792
b	one	0.6477	0.7674
b	two	1.5230	-0.4695

Note

The .agg() and .apply() methods both operate on groups created by the .groupby() method. However, they serve different purposes and have distinct use cases.

The .agg() method is designed for aggregating data, meaning it applies functions that reduce a group to a single value (e.g., mean, sum, or custom functions that return a single scalar). This method is useful for summarizing data across groups.

In contrast, the .apply() method is more general and flexible. The .apply() method returns results of varying shapes. The .agg() method is limited to scalar outputs for each group, but the .apply() method is not.

Pivot Tables and Cross-Tabulation

Above, we manually made pivot tables with the .groupby(), .agg(), .apply() and .unstack() methods. pandas provides Excel-style aggregations with the .pivot_table() method and the pandas.pivot_table() function. It is worthwhile to read the .pivot_table() docstring several times.

```
ind = (
    yf.download(tickers='^GSPC ^DJI ^IXIC ^FTSE ^N225 ^HSI')
    .rename_axis(columns=['Variable', 'Index'])
    .stack(future_stack=True)
)
ind.head()
```

[********* 6 of 6 completed

Date	Variable Index	Adj
	^DJI	NaN
1927-12-30	^FTSE ^GSPC	NaN 17.6
1921-12-00	^HSI	NaN
	^IXIC	NaN

Date	Variable Index	Adj
	^DJI ^FTSE	NaN NaN
1927-12-30	^GSPC ^HSI ^IXIC	17.6 NaN NaN
		1.001

The default aggregation function for .pivot_table() is .mean().

ind.loc['2015':].pivot_table(index='Index')

Variable Index	Adj Close	Close	High	Low	Open	Volume
^DJI	27706.3194	27706.3194	27850.4849	27546.7680	27702.7036	299024855.2101
^FTSE	7141.7548	7141.7548	7182.5771	7100.0572	7141.1015	813188499.5647
^GSPC	3358.1502	3358.1502	3375.4918	3338.4761	3357.6779	4005763661.6362
^HSI	23826.9733	23826.9733	23991.8855	23657.6522	23841.0154	2121811591.9984
^IXIC	9862.4747	9862.4747	9927.2504	9788.5201	9861.0625	3503727429.7061
^N225	24831.9359	24831.9359	24967.3558	24687.4126	24831.9677	97743271.9836

ind.loc['2015':].pivot_table(index='Index', aggfunc='median')

Variable Index	Adj Close	Close	High	Low	Open	Volume
^DJI	26692.0947	26692.0947	26816.6045	26561.1299	26699.8799	303325000.0000
$^{\rm FTSE}$	7256.0000	7256.0000	7289.5000	7215.7998	7255.5000	765527900.0000
^GSPC	3005.5850	3005.5850	3016.7800	2991.5000	3006.3800	3819130000.0000
^HSI	24249.4844	24249.4844	24381.0254	24078.3008	24265.7500	1932884000.0000
^IXIC	8520.2598	8520.2598	8539.0698	8457.1650	8475.0903	2905920000.0000
$^{}$ N225	22823.2598	22823.2598	22922.8008	22728.0605	22849.9102	87300000.0000

We can use values to select specific variables, pd.Grouper() to sample different date windows, and aggfunc to select specific aggregation functions.

```
ind
.loc['2015':]
.reset_index()
.pivot_table(
    values='Close',
    index=pd.Grouper(key='Date', freq='YE'),
    columns='Index',
    aggfunc=['min', 'max']
)
```

 $McKinney\ Chapter\ 10$ - Data Aggregation and Group Operations

Index Date	min ^DJI	^FTSE	^GSPC	^HSI	^IXIC	^N225	max ^DJI	^FTS
2015-12-31	15666.4404	5874.1001	1867.6100	20556.5996	4506.4902	16795.9609	18312.3906	7104.0
2016-12-31	15660.1797	5537.0000	1829.0800	18319.5801	4266.8398	14952.0195	19974.6191	7142.7
2017-12-31	19732.4004	7099.2002	2257.8301	22134.4707	5429.0801	18335.6309	24837.5098	7687.7
2018-12-31	21792.1992	6584.7002	2351.1001	24585.5293	6192.9199	19155.7402	26828.3906	7877.5
2019-12-31	22686.2207	6692.7002	2447.8899	25064.3594	6463.5000	19561.9609	28645.2598	7686.6
2020-12-31	18591.9297	4993.8999	2237.3999	21696.1309	6860.6699	16552.8301	30606.4805	7674.6
2021-12-31	29982.6191	6407.5000	3700.6499	22744.8594	12609.1602	27013.2500	36488.6289	7420.7
2022-12-31	28725.5098	6826.2002	3577.0300	14687.0195	10213.2900	24717.5293	36799.6484	7672.3
2023-12-31	31819.1406	7256.8999	3808.1001	16201.4902	10305.2402	25716.8594	37710.1016	8014.2
2024-12-31	37266.6719	7446.2998	4688.6802	14961.1797	14510.2998	31458.4199	45014.0391	8445.7
2025-12-31	42392.2695	8223.9805	5868.5498	19623.3203	19280.7891	NaN	42735.2812	8260.0

McKinney Chapter 10 - Practice - Blank

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import yfinance as yf
```

```
%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

Announcements

Five-Minute Review

Practice

Replicate the following .pivot_table() output with .groupby()

```
ind = (
   yf.download(tickers='^GSPC ^DJI ^IXIC ^FTSE ^N225 ^HSI')
   .rename_axis(columns=['Variable', 'Index'])
   .stack(future_stack=True)
)
```

```
a = (
    ind
    .loc['2015':]
    .reset_index()
    .pivot_table(
        values='Close',
        index=pd.Grouper(key='Date', freq='YE'),
        columns='Index',
        aggfunc=['min', 'max']
    )
)
```

Calulate the mean and standard deviation of returns by ticker for the MATANA (MSFT, AAPL, TSLA, AMZN, NVDA, and GOOG) stocks

Consider only dates with complete returns data. Try this calculation with wide and long data frames, and confirm your results are the same.

```
matana = (
   yf.download(tickers='MSFT AAPL TSLA AMZN NVDA GOOG')
   .rename_axis(columns=['Variable', 'Ticker'])
)
```

Calculate the mean and standard deviation of returns and the maximum of closing prices by ticker for the MATANA stocks

Calculate monthly means and volatilities for SPY and GOOG returns

Plot the monthly means and volatilities from the previous exercise

Assign the Dow Jones stocks to five portfolios based on the *preceding* month's volatility

Plot the time-series volatilities of these five portfolios

Calculate the mean monthly correlation between the Dow Jones stocks

Is market volatility higher during wars?

Here is some guidance:

- 1. Download the daily factor data from Ken French's website
- 2. Calculate daily market returns by summing the market risk premium and risk-free rates (Mkt-RF and RF, respectively)
- 3. Calculate the volatility (standard deviation) of daily returns *every month* by combining pd.Grouper() and .groupby())
- 4. Multiply by $\sqrt{252}$ to annualize these volatilities of daily returns
- 5. Plot these annualized volatilities

Is market volatility higher during wars? Consider the following dates:

- 1. WWII: December 1941 to September 1945
- Korean War: 1950 to 1953
 Viet Nam War: 1959 to 1975
- 4. Gulf War: 1990 to 1991
- 5. War in Afghanistan: 2001 to 2021

Week 7

McKinney Chapter 11 - Time Series

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import yfinance as yf
```

```
%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

Introduction

Chapter 11 of McKinney (2022) discusses time series and panel data, which is where pandas excels! We will use these time series and panel tools every day for the rest of the course.

We will focus on:

- 1. Slicing a data frame or series by date or date range
- 2. Using .shift() to create leads and lags of variables
- 3. Using .resample() to change the frequency of variables
- 4. Using .rolling() to aggregate data over moving or rolling windows

Note: Indented block quotes are from McKinney (2022) unless otherwise indicated. The section numbers here differ from McKinney (2022) because we will only discuss some topics.

Time Series Basics

Let us create a time series to play with.

```
from datetime import datetime
dates = [
    datetime(2011, 1, 2),
    datetime(2011, 1, 5),
    datetime(2011, 1, 7),
    datetime(2011, 1, 8),
    datetime(2011, 1, 10),
    datetime(2011, 1, 12)
]
np.random.seed(42)
ts = pd.Series(np.random.randn(6), index=dates)
```

atypo: 110ato1

Note that pandas converts the datetime objects to a pandas DatetimeIndex object and a single index value is a Timestamp object.

```
ts.index
```

```
ts.index[0]
```

```
Timestamp('2011-01-02 00:00:00')
```

Recall that pandas automatically aligns objects on indexes.

```
ts
```

McKinney Chapter 11 - Time Series

ts.iloc[::2]

```
2011-01-02 0.4967
2011-01-07 0.6477
2011-01-10 -0.2342
```

dtype: float64

ts + ts.iloc[::2]

```
2011-01-02 0.9934

2011-01-05 NaN

2011-01-07 1.2954

2011-01-08 NaN

2011-01-10 -0.4683

2011-01-12 NaN

dtype: float64
```

Indexing, Selection, Subsetting

pandas uses U.S.-style date strings (e.g., " $\mathrm{M/D/Y}$ ") or unambiguous date strings (e.g., "YYYY-MM-DD") to select data.

```
ts['1/10/2011'] # M/D/YYYY
```

-0.2342

```
ts['2011-01-10'] # YYYY-MM-DD
```

-0.2342

```
ts['20110110'] # YYYYMMDD
-0.2342
ts['10-Jan-2011'] # D-Mon-YYYY
-0.2342
ts['Jan-10-2011'] # Mon-D-YYYY
-0.2342
pandas does not use U.K.-style date strings.
# ts['10/1/2011'] # D/M/YYYY # KeyError: '10/1/2011'
Let us create a longer time series to play with.
np.random.seed(42)
longer_ts = pd.Series(
    data=np.random.randn(1000),
    index=pd.date_range('1/1/2000', periods=1000)
longer_ts
2000-01-01
            0.4967
2000-01-02 -0.1383
2000-01-03 0.6477
2000-01-04
            1.5230
2000-01-05
            -0.2342
               . . .
2002-09-22 -0.2811
2002-09-23 1.7977
2002-09-24
             0.6408
2002-09-25 -0.5712
              0.5726
2002-09-26
```

Freq: D, Length: 1000, dtype: float64

We can specify a year-month to slice all of the observations in May of 2001.

longer_ts['2001-05']

```
2001-05-01
             -0.6466
2001-05-02
             -1.0815
2001-05-03
              1.6871
2001-05-04
              0.8816
2001-05-05
             -0.0080
2001-05-06
              1.4799
              0.0774
2001-05-07
2001-05-08
             -0.8613
2001-05-09
              1.5231
2001-05-10
              0.5389
2001-05-11
             -1.0372
2001-05-12
             -0.1903
2001-05-13
             -0.8756
2001-05-14
             -1.3828
2001-05-15
              0.9262
2001-05-16
              1.9094
2001-05-17
             -1.3986
2001-05-18
              0.5630
2001-05-19
             -0.6506
2001-05-20
             -0.4871
2001-05-21
             -0.5924
2001-05-22
             -0.8640
2001-05-23
              0.0485
2001-05-24
             -0.8310
2001-05-25
              0.2705
2001-05-26
             -0.0502
2001-05-27
             -0.2389
2001-05-28
             -0.9076
2001-05-29
             -0.5768
2001-05-30
              0.7554
2001-05-31
              0.5009
Freq: D, dtype: float64
```

We can also specify a year to slice all observations in 2001.

longer_ts['2001']

```
2001-01-01
              0.2241
              0.0126
2001-01-02
2001-01-03
              0.0977
2001-01-04
             -0.7730
2001-01-05
              0.0245
                . . .
2001-12-27
              0.0184
2001-12-28
              0.3476
2001-12-29
             -0.5398
2001-12-30
             -0.7783
2001-12-31
              0.1958
Freq: D, Length: 365, dtype: float64
```

If we sort our data chronologically, we can also slice with a range of date strings.

ts['1/6/2011':'1/10/2011']

```
2011-01-07 0.6477
2011-01-08 1.5230
2011-01-10 -0.2342
dtype: float64
```

However, we cannot date slice if our data are not sorted chronologically.

```
ts2 = ts.sort_values()
ts2
```

```
2011-01-10 -0.2342

2011-01-12 -0.2341

2011-01-05 -0.1383

2011-01-02 0.4967

2011-01-07 0.6477

2011-01-08 1.5230

dtype: float64
```

The following date slice fails because ts2 is not sorted chronologically.

```
# ts2['1/6/2011':'1/11/2011'] # KeyError: 'Value based partial slicing on non-monotonic Date
```

We can use the .sort_index() method first to allow date slices.

ts2.sort_index()['1/6/2011':'1/11/2011']

As with label slices, date slices are inclusive on both ends.

longer_ts['1/6/2001':'1/11/2001']

Recall that if we modify a slice, we modify the original series or data frame.

Remember that slicing in this manner produces views on the source time series like slicing NumPy arrays. This means that no data is copied and modifications on the slice will be reflected in the original data.

```
ts3 = ts.copy()
ts3
```

```
ts4 = ts3.iloc[:3]
ts4
```

dtype: float64

```
ts4.iloc[:] = 2001
ts4
```

```
    2011-01-02
    2001.0000

    2011-01-05
    2001.0000

    2011-01-07
    2001.0000
```

dtype: float64

ts3

```
2011-01-02 2001.0000

2011-01-05 2001.0000

2011-01-07 2001.0000

2011-01-08 1.5230

2011-01-10 -0.2342

2011-01-12 -0.2341
```

dtype: float64

Series ts is unchanged because ts3 is a copy of ts!

ts

Time Series with Duplicate Indices

Most our of data in this course will be well-formed with one observation per date-time for series or one observation per individual per date-time for data frames. However, we may later receive poorly-formed data with duplicate observations. Here, series dup_ts has three observations on February 2nd.

```
dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/2/2000', '1/3/2000'])
dup_ts = pd.Series(data=np.arange(5), index=dates)
dup_ts
2000-01-01
              0
2000-01-02
              1
2000-01-02
              2
2000-01-02
              3
2000-01-03
              4
dtype: int64
The .is_unique attribute tells us if an index is unique.
dup_ts.index.is_unique
```

False

```
dup_ts['1/3/2000'] # not duplicated
```

np.int64(4)

```
dup_ts['1/2/2000'] # duplicated
```

```
2000-01-02 1
2000-01-02 2
2000-01-02 3
dtype: int64
```

The solution to duplicate data depends on the context. For example, we may want the mean of all observations on a given date. The .groupby() method can help us here.

dup_ts.groupby(level=0).mean()

```
2000-01-01 0.0000
2000-01-02 2.0000
2000-01-03 4.0000
dtype: float64
```

Or keep the first value on each date.

```
dup_ts.groupby(level=0).first()
```

```
2000-01-01 0
2000-01-02 1
2000-01-03 4
dtype: int64
```

Date Ranges, Frequencies, and Shifting

Generic time series in pandas are assumed to be irregular; that is, they have no fixed frequency. For many applications this is sufficient. However, it's often desirable to work relative to a fixed frequency, such as daily, monthly, or every 15 minutes, even if that means introducing missing values into a time series. Fortunately pandas has a full suite of standard time series frequencies and tools for resampling, inferring frequencies, and generating fixed-frequency date ranges.

Shifting Data

Shifting is an important feature! Shifting is moving data backward (or forward) through time.

```
np.random.seed(42)
ts = pd.Series(
    data=np.random.randn(4),
    index=pd.date_range('1/1/2000', periods=4, freq='ME')
)
ts
```

If we specify a positive integer N to the .shift() method:

- 1. The date index remains the same
- 2. Values shift down N observations

McKinney Chapter 11 - Time Series

The .shift() method defaults to N=1.

ts.shift()

```
2000-01-31 NaN

2000-02-29 0.4967

2000-03-31 -0.1383

2000-04-30 0.6477

Freq: ME, dtype: float64
```

ts.shift(1)

```
2000-01-31 NaN

2000-02-29 0.4967

2000-03-31 -0.1383

2000-04-30 0.6477

Freq: ME, dtype: float64
```

ts.shift(2)

```
2000-01-31 NaN
2000-02-29 NaN
2000-03-31 0.4967
2000-04-30 -0.1383
Freq: ME, dtype: float64
```

If we specify a negative integer N to the .shift() method, values shift up N observations.

ts.shift(-2)

```
2000-01-31 0.6477
2000-02-29 1.5230
2000-03-31 NaN
2000-04-30 NaN
Freq: ME, dtype: float64
```

Note

We almost never shift with negative values to prevent a look-ahead bias. That is, assuming chronological sorting, we almost never bring values from the future back to the present. We do not want to assume that financial market participants know the future.

The .shift() examples above shift by N observations without considering time stamps. As a result, the time stamps are unchanged, and values shift down for positive periods or up for negative periods. However, we can specify the freq argument to consider time stamps. With the freq argument, time stamps shift by periods multiples of the freq argument.

ts

ts.shift(periods=2, freq='ME')

```
2000-03-31 0.4967
2000-04-30 -0.1383
2000-05-31 0.6477
2000-06-30 1.5230
Freq: ME, dtype: float64
```

ts.shift(periods=3, freq='D')

M is already months, so min is minutes.

```
ts.shift(periods=1, freq='90min')
```

Calculating returns

We can calculate returns in two ways. First, easily with the .pct_change() method.

```
ts.pct_change()
```

```
2000-01-31 NaN

2000-02-29 -1.2784

2000-03-31 -5.6844

2000-04-30 1.3515

Freq: ME, dtype: float64
```

Second, manaully with the .shift() method.

```
(ts - ts.shift()) / ts.shift()
```

```
2000-01-31 NaN

2000-02-29 -1.2784

2000-03-31 -5.6844

2000-04-30 1.3515

Freq: ME, dtype: float64
```

These two return calculations are the same.

```
np.allclose(
    a=ts.pct_change(),
    b=(ts - ts.shift()) / ts.shift(),
    equal_nan=True
)
```

True

Two observations on these return calculations:

- 1. The first percent change is NaN because there is no previous value to change from
- 2. The default for .shift() and .pct_change() is periods=1

Shifting dates with offsets

We can also shift time stamps to the beginning or end of a period.

```
from pandas.tseries.offsets import MonthEnd
now = datetime(2011, 11, 17)
now
```

```
datetime.datetime(2011, 11, 17, 0, 0)
```

MonthEnd(0) moves to the end of the month but does not leave the current month.

```
now + MonthEnd(0)
```

```
Timestamp('2011-11-30 00:00:00')
```

MonthEnd(1) moves to the end of the *current* month. If already at the end of the *current* month, it moves to the end of the *next* month.

```
now + MonthEnd(1)
```

Timestamp('2011-11-30 00:00:00')

```
now + MonthEnd(1) + MonthEnd(1)
```

```
Timestamp('2011-12-31 00:00:00')
```

Be careful! The MonthEnd() default is n=1!**

```
datetime(2021, 10, 31) + MonthEnd(0)
```

Timestamp('2021-10-31 00:00:00')

```
datetime(2021, 10, 31) + MonthEnd(1)
```

Timestamp('2021-11-30 00:00:00')

```
datetime(2021, 10, 31) + MonthEnd()
```

Timestamp('2021-11-30 00:00:00')

Always check your output!

Resampling and Frequency Conversion

Resampling is an important feature!

Resampling refers to the process of converting a time series from one frequency to another. Aggregating higher frequency data to lower frequency is called downsampling, while converting lower frequency to higher frequency is called upsampling. Not all resampling falls into either of these categories; for example, converting W-WED (weekly on Wednesday) to W-FRI is neither upsampling nor downsampling.

We can resample both series and data frames. The .resample() method syntax is similar to .groupby().

Downsampling

Aggregating data to a regular, lower frequency is a pretty normal time series task. The data you're aggregating doesn't need to be fixed frequently; the desired frequency defines bin edges that are used to slice the time series into pieces to aggregate. For example, to convert to monthly, 'M' or 'BM', you need to chop up the data into one-month intervals. Each interval is said to be half-open; a data point can only belong to one interval, and the union of the intervals must make up the whole time frame. There are a couple things to think about when using resample to downsample data:

- Which side of each interval is closed
- How to label each aggregated bin, either with the start of the interval or the end

```
rng = pd.date_range(start='2000-01-01', periods=12, freq='min')
ts = pd.Series(np.arange(12), index=rng)
ts
```

```
2000-01-01 00:00:00
                         0
2000-01-01 00:01:00
                         1
2000-01-01 00:02:00
                         2
2000-01-01 00:03:00
                         3
2000-01-01 00:04:00
                         4
2000-01-01 00:05:00
                         5
2000-01-01 00:06:00
                         6
2000-01-01 00:07:00
                         7
2000-01-01 00:08:00
                         8
2000-01-01 00:09:00
                         9
2000-01-01 00:10:00
                        10
2000-01-01 00:11:00
                        11
Freq: min, dtype: int64
```

We can aggregate the one-minute frequency data above to five-minute frequency data. Resampling requires an aggregation method. Here, we use the .sum() method.

```
ts.resample('5min').sum()
```

```
2000-01-01 00:00:00 10
2000-01-01 00:05:00 35
2000-01-01 00:10:00 21
Freq: 5min, dtype: int64
```

When we resample with a minute-frequency:

- 1. Left edges of the resampling interval are closed (included) and right edges are open (excluded)
- 2. Labels are by the left edge of the resampling interval by default

In the example above, the first value of 10 at midnight is the sum of values at midnight until 00:05, excluding the value at 00:05. That is, the sums are 10 = 0 + 1 + 2 + 3 + 4 at 00:00, 35 = 5 + 6 + 7 + 8 + 9 at 00:05, and so on. We can use the closed and label arguments to change this behavior.

In finance, we generally prefer closed='right' and label='right' to avoid a lookahead bias.

```
ts.resample('5min', closed='right', label='right').sum()
```

```
2000-01-01 00:00:00 0

2000-01-01 00:05:00 15

2000-01-01 00:10:00 40

2000-01-01 00:15:00 11

Freq: 5min, dtype: int64
```

These defaults for minute-frequency data may seem odd, but any choice is arbitrary. The defaults for weekly and lower frequencies are closed='right' and label='right', which are corect for finance. Still, we should read the docstring and check our output whenever we use the .resample() method!

Upsampling and Interpolation

To downsample (i.e., resample from higher to lower frequency), we must aggregate (e.g., .mean(), .sum(), .first(), or .last()). To upsample (i.e., resample from lower to higher frequency), we must choose how to fill in the new, higher-frequency observations.

```
np.random.seed(42)
frame = pd.DataFrame(
    data=np.random.randn(2, 4),
    index=pd.date_range('1/1/2000', periods=2, freq='W-WED'),
    columns=['Colorado', 'Texas', 'New York', 'Ohio']
)
frame
```

	Colorado	Texas	New York	Ohio
2000-01-05 2000-01-12	0.100.	-0.1383 -0.2341	0.0 1	1.5230 0.7674

We use the .asfreq() method to convert to the new frequency and leave the new observations as missing.

```
df_daily = frame.resample('D').asfreq()
df_daily
```

	Colorado	Texas	New York	Ohio
2000-01-05	0.4967	-0.1383	0.6477	1.5230

 $McKinney\ Chapter\ 11$ - $Time\ Series$

	Colorado	Texas	New York	Ohio
2000-01-06	NaN	NaN	NaN	NaN
2000-01-07	NaN	NaN	NaN	NaN
2000-01-08	NaN	NaN	NaN	NaN
2000-01-09	NaN	NaN	NaN	NaN
2000-01-10	NaN	NaN	NaN	NaN
2000-01-11	NaN	NaN	NaN	NaN
2000-01-12	-0.2342	-0.2341	1.5792	0.7674

We use the .ffill() method to forward fill values to replace missing values.

frame.resample('D').ffill()

	Colorado	Texas	New York	Ohio
2000-01-05	0.4967	-0.1383	0.6477	1.5230
2000-01-06	0.4967	-0.1383	0.6477	1.5230
2000-01-07	0.4967	-0.1383	0.6477	1.5230
2000-01-08	0.4967	-0.1383	0.6477	1.5230
2000-01-09	0.4967	-0.1383	0.6477	1.5230
2000-01-10	0.4967	-0.1383	0.6477	1.5230
2000-01-11	0.4967	-0.1383	0.6477	1.5230
2000-01-12	-0.2342	-0.2341	1.5792	0.7674

frame.resample('D').ffill(limit=2)

	Colorado	Texas	New York	Ohio
2000-01-05	0.4967	-0.1383	0.6477	1.5230
2000-01-06	0.4967	-0.1383	0.6477	1.5230
2000-01-07	0.4967	-0.1383	0.6477	1.5230
2000-01-08	NaN	NaN	NaN	NaN
2000-01-09	NaN	NaN	NaN	NaN
2000-01-10	NaN	NaN	NaN	NaN
2000-01-11	NaN	NaN	NaN	NaN
2000-01-12	-0.2342	-0.2341	1.5792	0.7674

frame.resample('W-THU').ffill()

	Colorado	Texas	New York	Ohio
2000-01-06	0.100.	-0.1383	0.01.1	1.5230
2000-01-13	-0.2342	-0.2341	1.5792	0.7674

Moving Window Functions

Moving or rolling window functions are one of the neatest features of pandas.!

```
df = (
    yf.download(tickers=['AAPL', 'MSFT', 'SPY'])
    .rename_axis(columns=['Variable', 'Ticker'])
)
df.head()
```

[********* 3 of 3 completed

Variable Ticker	Adj Clo AAPL	se MSFT	SPY	Close AAPL	MSFT	SPY	High AAPL	MSFT	SPY	Low AAPL	MSFT	SPY
Date												
1980-12-12	0.0988	NaN	NaN	0.1283	NaN	NaN	0.1289	NaN	NaN	0.1283	NaN	NaN
1980-12-15	0.0937	NaN	NaN	0.1217	NaN	NaN	0.1222	NaN	NaN	0.1217	NaN	NaN
1980-12-16	0.0868	NaN	NaN	0.1127	NaN	NaN	0.1133	NaN	NaN	0.1127	NaN	NaN
1980-12-17	0.0890	NaN	NaN	0.1155	NaN	NaN	0.1161	NaN	NaN	0.1155	NaN	NaN
1980-12-18	0.0915	NaN	NaN	0.1189	NaN	NaN	0.1194	NaN	NaN	0.1189	NaN	NaN

Variable	Adj Clo	se		Close			High			Low		
Ticker	\overline{AAPL}	MSFT	SPY	AAPL	MSFT	SPY	$\overline{\mathrm{AAPL}}$	MSFT	SPY	AAPL	MSFT	SPY
Date												
1980-12-12	0.0988	NaN	NaN	0.1283	NaN	NaN	0.1289	NaN	NaN	0.1283	NaN	NaN
1980 - 12 - 15	0.0937	NaN	NaN	0.1217	NaN	NaN	0.1222	NaN	NaN	0.1217	NaN	NaN
1980-12-16	0.0868	NaN	NaN	0.1127	NaN	NaN	0.1133	NaN	NaN	0.1127	NaN	NaN
1980-12-17	0.0890	NaN	NaN	0.1155	NaN	NaN	0.1161	NaN	NaN	0.1155	NaN	NaN
1980-12-18	0.0915	NaN	NaN	0.1189	NaN	NaN	0.1194	NaN	NaN	0.1189	NaN	NaN

The .rolling() method accepts a window-width and requires an aggregation method. The following example plots AAPL's observed daily price alongside its 252-trading-day rolling mean, 365-calendar-day rolling mean, and calendar year mean.

```
aapl = df.loc['2012':, ('Adj Close', 'AAPL')]
aapl.plot(label='Observed')
aapl.rolling(252).mean().plot(label='252 Trading Day Mean') # min_periods defaults to 252
aapl.rolling('365D').mean().plot(label='365 Calendar Day Mean') # min_periods defaults to 1
aapl.resample('YE').mean().plot(style='.', label='Calendar Year Mean')
plt.legend()
plt.ylabel('AAPL Adjusted Close ($)')
plt.title('Comparison of Rolling and Resampling Means')
plt.show()
```

Comparison of Rolling and Resampling Means

Note

If we specify the rolling window width as an integer:

- 1. Each rolling window is that many observations wide and ignores time stamps
- 2. Each rolling window must have that many non-missing observations

We can specify min_periods to allow incomplete windows. For integer window widths, min_periods defaults to the given integer window width. For string date offsets, min periods defaults to 1.

Binary Moving Window Functions

Binary moving window functions accept two inputs. The most common example is the rolling correlation between two return series.

```
returns = df['Adj Close'].iloc[:-1].pct_change()
returns
```

Ticker	AAPL	MSFT	SPY
Date			
1980-12-12	NaN	NaN	NaN
1980-12-15	-0.0522	NaN	NaN
1980-12-16	-0.0734	NaN	NaN
1980-12-17	0.0248	NaN	NaN
1980-12-18	0.0290	NaN	NaN
			•••
2024-12-26	0.0032	-0.0028	0.0001
2024 - 12 - 27	-0.0132	-0.0173	-0.0105
2024-12-30	-0.0133	-0.0132	-0.0114
2024-12-31	-0.0071	-0.0078	-0.0036
2025-01-02	-0.0262	-0.0069	-0.0025

```
(
    returns['AAPL']
    .rolling(126, min_periods=100)
    .corr(returns['SPY'])
    .plot()
)
plt.ylabel('Correlation between AAPL and SPY')
```

plt.title('Rolling Correlation between AAPL and SPY\n (126-Day Window w/ 100-Day Minimum)')
plt.show()

Rolling Correlation between AAPL and SPY (126-Day Window w/ 100-Day Minimum)


```
(
    returns[['AAPL', 'MSFT']]
    .rolling(126, min_periods=100)
    .corr(returns['SPY'])
    .plot()
)
plt.ylabel('Correlation with SPY')
plt.title('Rolling Correlation with SPY\n (126-Day Window w/ 100-Day Minimum)')
plt.show()
```


User-Defined Moving Window Functions

We can define our own moving window functions and use them with the .apply() method. However, note that .apply() method will be much slower than the optimized methods, like .mean() and .std(). Here, we will calculate rolling volatility with .apply() and .std() and compare their speeds.

```
(
    returns['AAPL']
    .rolling(252)
    .apply(np.std)
    .mul(np.sqrt(252) * 100)
    .plot()
)
plt.ylabel('Volatility (%)')
```

plt.title('Rolling Volatility\n (252-Day Window w/ 252-Day Minimum)')
plt.show()

Do not be afraid to use .apply(), but realize that .apply() is often 1000 times slower than the optimized method!

```
%timeit returns['AAPL'].rolling(252).apply(np.std)
```

624 ms \pm 121 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)

```
%timeit returns['AAPL'].rolling(252).std()
```

296 s \pm 93.6 s per loop (mean \pm std. dev. of 7 runs, 1,000 loops each)

McKinney Chapter 11 - Practice - Blank

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pandas_datareader as pdr
import yfinance as yf
```

```
%precision 4
pd.options.display.float_format = '{:.4f}'.format
%config InlineBackend.figure_format = 'retina'
```

Announcements

Five-Minute Review

Practice

Download daily returns for ten portfolios formed on book-to-market ratios

Plot cumulative returns for all available data

Calculate total returns for each calendar year

Calculate total returns for all 252-trading-day windows

Calculate total returns for 12-months windows with monthly data

Calculate Sharpe Ratios for each calendar year

Calculate rolling betas

```
We can calculate CAPM betas as: \beta_i = \frac{Cov(r_i - r_f, r_M - r_f)}{Var(r_M - r_f)}
```

Calculate rolling Sharpe Ratios

Week 8

Project 1

I will determine assignment details at least one week before each due date.

Week 9

Student's Choice 1

We will vote to determine the "Student's Choice" topics during the first few weeks of class.

Week 10

Student's Choice 2

We will vote to determine the "Student's Choice" topics during the first few weeks of class.

Week 11

Project 2

I will determine assignment details at least one week before each due date.

Week 12

Student's Choice 3

We will vote to determine the "Student's Choice" topics during the first few weeks of class.

Week 13

Student's Choice 4

We will vote to determine the "Student's Choice" topics during the first few weeks of class.

Week 14

MSFQ Assessment Exam

We will take the assessment exam in class on Tuesday of this week.

Week 15

Project 3

I will determine assignment details at least one week before each due date.

References

McKinney, Wes (2022). Python for Data Analysis. 3rd ed. O'Reilly Media, Inc.