Module 3: Magnetic Circuits 4 Hrs

Electromagnetic Induction: Self and mutual;

Magnetically coupled circuits; Series and parallel magnetic circuits; Dot convention

Course Outcome (CO2)

Analyze the parameters of magnetically coupled circuits and compare various types of electrical machines

Concept of magnetic circuit

Magnetic Circuit Terminology:

- Magnetic flux (φ)
- Magnetic flux density (B)
- Magnetic field intensity (H)
- Magneto Motive Force (mmf)
- Reluctance S (or R_m)
- Permeability (P)
- Magnetization curve

Concept of magnetic circuit

- Reluctance = mmf/flux
- Flux density = flux/unit area
- Series magnetic circuit
- Parallel magnetic circuit
- B-H curve
- Magnetic leakage
- Leakage co-efficient = total flux/useful flux
- Relative permeability

Electric vs Magnetic circuit

Electric Circuit	Magnetic Circuit
e.m.f. E (V)	m.m.f. F _m (AT)
current I (A)	flux Ф (Wb).
resistance R (Ω)	reluctance S (H ⁻¹)
R= ρl / A	$S = I / \mu_0 \mu_r A$
I = E / R	Φ = mmf / S

Leakage flux

 The magnetic flux which does not follow the intended path in a magnetic circuit.

Leakage coefficient or leakage factor

- The ratio of the total flux produced to the useful flux set up in the air gap of the magnetic circuit
- Leakage coefficient =total flux/ useful flux

Magnetically coupled circuits

Magnetically coupled circuit is a combination of two individual circuits which are coupled by magnetic flux.

 N_1

Ex: Transformer

Applications:

Power systems

Radio and television receivers

Self and mutual inductance

- Self inductance is the property of a coil, which causes a self-induced emf to be produced in the coil itself, when the current through it changes.
- Mutual inductance ability of one coil to produce an emf in a nearby coil by induction when current in the first coil changes.

Self induced emf

No. of turns
$$-N$$

Current $-I$
Flux $-\emptyset$

$$v = N \frac{d\emptyset}{dt} \qquad v = L \frac{di}{dt}$$

$$L = N \frac{d\emptyset}{di}$$

(*L* is called the self Inductance)

Mutually induced emf

Voltage induced in coil 1 is

$$v_{1} = N_{1} \frac{d\emptyset_{1}}{dt}$$

$$= N_{1} \frac{d\emptyset_{11}}{di_{1}} \frac{di_{1}}{dt}$$

$$= L_{1} \frac{di_{1}}{dt}$$

$$L_1 = N_1 \frac{d\phi_{11}}{di_1}$$
(self inductance of coil 1)

- L₁ and L₂ are self Inductance of coil 1 and coil 2 respectively
- N₁ and N₂ are number of turns in coil 1 and coil 2 respectively

Voltage induced in coil 2 is

$$v_2 = N_2 \frac{d\phi_{12}}{dt}$$

$$= N_2 \frac{d\phi_{12}}{di_1} \frac{di_1}{dt}$$

$$= M_{21} \frac{di_1}{dt}$$

$$M_{21} = N_2 \frac{d\phi_{12}}{di_1}$$

(mutual inductance of coil 2 w.r.t. coil 1)

Mutually induced emf

Voltage induced in coil 2 is

$$v_2 = N_2 \frac{d\phi_2}{dt}$$

$$= N_2 \frac{d\phi_{22}}{di_2} \frac{di_2}{dt}$$

$$= L_2 \frac{di_2}{dt}$$

 $L_2 = N_2 \frac{d\phi_{22}}{d2}$ (self inductance of coil 2)

- L₁ and L₂ are self Inductance of coil 1 and coil 2 respectively
- N₁ and N₂ are number of turns in coil 1 and coil 2 respectively

Voltage induced in coil 1 is

$$v_1 = N_1 \frac{d\phi_{21}}{dt}$$

$$= N_1 \frac{d\phi_{21}}{di_2} \frac{di_2}{dt}$$

$$= M_{12} \frac{di_2}{dt}$$

$$M_{12} = N_1 \frac{d\phi_{21}}{di_2}$$

(mutual inductance of coil 1 w.r.t. coil 2)

Coefficient of coupling (k)

$$L_1 = N_1 \frac{d\phi_{11}}{di_1}$$
(self inductance of coil 1)

$$M_{12} = N_1 \frac{d\emptyset_{21}}{di_2}$$
(mutual industance)

(mutual inductance of coil 1 w.r.t. coil 2)

$$M = N_1 \frac{\emptyset_{21}}{i_2} = N_1 \frac{k \emptyset_{22}}{i_2}$$

$$M^2 = N_2 \, \frac{k \emptyset_{11}}{i_1} \, N_1 \, \frac{k \emptyset_{22}}{i_2}$$

$$L_2 = N_2 \frac{d\phi_{22}}{d2}$$
(self inductance of coil 2)

$$M_{21} = N_2 \frac{d\emptyset_{12}}{di_1}$$

(mutual inductance of coil 2 w.r.t. coil 1)

$$M = N_2 \frac{\emptyset_{12}}{i_1} = N_2 \frac{k \emptyset_{11}}{i_1}$$

Dot convention

