Escola do Mar, Ciências e Tecnologias

Curso: Engenharia de Computação

Disciplina: Eletrônica Básica

Prof.: Walter Gontijo

Acadêmico: Stephen Michael Apolinário

Objetivo

- Analisar os diferentes tipos de análises AC e DC.

- Realizar as simulações dos circuitos apresentados em aula.

- Observar as características de cada circuito.

Introdução

Existem diferentes tipos de circuitos com divisores de tensão, e cada um possui um funcionamento diferenciado. Neste relatório abordará os tipos de circuitos utilizados nos exercícios propostos em aula da disciplina de eletrônica básica, analisando as característica de cada circuito proposto.

VCC = 20V VCEq = 0.5 * VCC VE = 0.1 * VCCICq = 5mA

Desenvolvimento

Os valores utilizados são:

	Valor Calculado	Valor Comercial
RE	400	390
RC	1K6	1K6
R2	4K	3K9
R1	25K6	27K

Projeto com valores calculados

VARIÁVEIS	SIMULADO	TEÓRICO
IC	4,31 mA	5 mA
IE	1,74 v	2 v
VCE	11,4	10 v

Projeto com valor Comercial:

VARIÁVEIS	SIMULADO	TEÓRICO
IC	4,01 mA	5 mA
IE	1,58 v	2 v
VCE	12	10 v

PROJETO POLARIZAÇÃO POR DIVISOR DE TENSÃO


```
Vceq = 0.5 * 20 V = 10 V

Ve = 0.1 * 20 V = 2 V

Re = Ve / Ie (β mínimo é igual a 100, então Ie é igual a Ic)

Re = Ve / Ic = 2 V / 5mA = 400 \ Ohms

Rc = Vcc - Vc / Ic = (20 - (10 + 2)) / 5 mA = 8 / 5 mA = 1600 \ Ohms

β * Re ≥ 10 * R2 → R2 ≤ (β * Re) / 10 → R2 ≤ (100 * 400) / 10 → R2 ≤ 4000

ohms

Vb = Ve + Vbe = 2 + 0.7 = 2.7 V

R1 = ((R2 * Vcc) / Vb) - R2 = ((4k * 20 V) / 2.7 V) - 4k = 25k6 \ Ohms
```

VARIÁVEIS	CALCULADO	COMERCIAL
R1	25k6 Ohms	27k Ohms
R2	4k Ohms	3k9 Ohms
Re	400 Ohms	390 Ohms
Rc	1k6 Ohms	1k6 Ohms

Abaixo a imagem mostra o valor Vceq, na simulação do circuito com os valores calculados

Abaixo o Ve circuito calculado simulado:

Icq circuito calculado simulado:

Abaixo a imagem mostra o Vceq desta vez com o valor comercial dos resistores, podemos observar o valor da simulação abaixo:

Ve circuito comercial simulado:

Icq circuito comercial simulado:

VARIÁVEIS	ESPECIFICAÇÕES	CALCULADO	COMERCIAL
Vceq	10 v	11,361 V	12,014 V
Ve	2 v	1,742 V	1,578 V
Icq	5 mA	4,31 mA	4,01 mA

POLARIZAÇÃO DC E A ANÁLISE AC

Considere o circuito apresentado. Determine a polarização DC e a análise AC.

Circuito DC

$$Ie = (Vee - Vbe) / Re = (2 V - 0.7 V) / 1k = 1.3 / 1k = 1.3 mA$$
 $Ic = \alpha * Ie = 0.98 * 1.3 mA = 1.27 mA$
 $Vb = 0 V e Ve = 0.7 V$
 $Vc = -Vcc + Ic * Rc = -8 V + (1.27 mA * 4k) = -2.92 V$
 $re = 26 mV / 1.3 mA = 20 Ohm$
 $B = \alpha / 1 - \alpha = 49$

Simulação Ie e Ic:

Simulação Vb, Vc e Ve:

VARIÁVEIS	SIMULADO	CALCULADO
Vc	- 3,21 V	- 2,92 V
Ve	0 V	0 V
Vb	0,779 V	0,7 V
Ic	1,21 mA	1,27 mA
Ie	1,22 mA	1,3 mA

Análise AC:

$$Zi = Re // re = (1k * 20) / (1k + 20) = 19,60 \text{ Ohm}$$

 $Zo = Rc = 4k$
 $Av = vo / vi = Rc / re = 4k / 20 = 200$

