

Introdução a Sistemas Operacionais

Disciplina: Fundamentos de Informática

Slides originais de:Prof. Adriano Heis <u>adriano.heis@ifsc.edu.br</u>

Adaptados por Prof. Alessandra Schweitzer Alessandra.schweitzer@ifsc.edu.br

Introdução

 Um Sistema Operacional (SO) atua como um intermediário entre o usuário de um computador e o hardware do computador

Sistema Operacional

Hardware

Conceito de Sistema Operacional

 O sistema operacional controla a execução de programas aplicativos e atua como interface entre os aplicativos(software) e hardware;

Principal função do SO:

 Controlar o funcionamento de um computador, gerenciando a utilização e o compartilhamento dos seus diversos recursos, como processadores, memória e dispositivos de entrada e saída

Objetivos de um Sistema Operacional

- ☐ Principais objetivos de um Sistema Operacional:
 - 1. Fornecer uma interface de alto nível
 - Para os usuários
 - Para as aplicações
 - 2. Gerenciar os recursos do sistema
 - Gerenciar o compartilhamento dos recursos
 - Gerenciamento de conflitos de acesso aos recursos compartilhados
 - Segurança no acesso aos recursos

Objetivos do Sistema Operacional

1) Fornecer uma interface de alto nível

- Fornece uma mesma interface independente do hardware subjacente.
- Interface da alto nível para os usuários:
 - Facilidade de uso do sistema
 - Comandos padronizados
 - Interface visual padronizada
 - Abstrações: arquivo, diretório, processo, ...
- Interface da alto nível para as aplicações
 - Interface de chamadas ao sistema padronizada
 - Facilidade de uso sem preocupação com detalhes de baixo nível.
 - Exemplo: Leitura de dados de um arquivo consiste de inúmeras atividades: acionar a cabeça da leitura, posicionar na trilha e setor, realizar a leitura dos blocos de disco para o buffer do sistema operacional, copiar os dados requisitados do buffer do sistema operacional para o buffer do usuário.

Objetivos do Sistema Operacional

2) Gerenciar os recursos do sistema

- ❖ Problema
 - Gerenciar o compartilhamento
 - Otimização de uso
 - Resolução de conflitos
 - Proteção / segurança
- Gerenciar os Recursos: Processador (tempo de CPU) Memória Primária, Memória
 Secundária (Disco), Memória Terciária (Fita), Impressoras, etc
- Detecção de erros
 - De HDW: erros de memória, falhas em dispositivos de E/S, etc
 - De SFW: overflow, acesso não-autorizado a posição de memória, etc
- Contabilidade: Estatísticas, Monitoração de desempenho, Sinalizar upgrades ao hardware, Tarifação de usuários

Componentes de um Sistema Operacional

□ É composto por:

- Núcleo (kernel) do sistema operacional
 - Permanece carregado em memória
- Processos de gerência
- Arquivos de configuração
- Utilitários do sistema
 - Programas básicos necessários para operação do sistema
 - Ex: DOS: format, dir, edit, copy, type,
 - Ex: UNIX: mkfs, ls, ps, vi, ...

Componentes de um Sistema Operacional

Modo de operação do processador

Chamadas de Sistema

- Forma que programas solicitam serviços ao sistema operacional: Transferem o controle para o sistema operacional;
- É o núcleo (kernel) do sistema operacional que implementa as chamadas de sistema;

Chamadas ao Sistema - UNIX

Manipulação de processos

Chamada	Descrição
fork	Duplica um processo
waitpid	Aguarda um processo terminar
execve	Troca a imagem de memória do processo
exit	Termina a execução do processo

Chamadas ao Sistema - UNIX

❖ Ações sobre arquivos

Chamada	Descrição
open	Abre um arquivo
close	Fecha um arquivo aberto
read	Lê dados de um arquivo
write	Escreve dados em um arquivo
ioctl	Funções de controle para arquivos especiais (dispositivos)
Iseek	Posiciona o ponteiro de deslocamento do arquivo
stat	Obtém informações de controle do arquivo (dono, proteção,)

Chamadas ao Sistema - Windows

- □ Principais Chamadas Win32
 - Manipulação de processos

Chamada	Descrição
CreateProcess	Cria um processo
WaitForSingleObject	Aguarda um processo terminar
ExitProcess	Termina a execução do processo

Chamadas ao Sistema - Windows

- □ Principais Chamadas Win32
 - ❖ Ações sobre arquivos

Chamada	Descrição
CreateFile	Cria um arquivo ou abre um arquivo existente
CloseHandle	Fecha um arquivo aberto
ReadFile	Lê dados de um arquivo
WriteFile	Escreve dados em um arquivo
SetFilePointer	Posiciona o ponteiro de deslocamento do arquivo
GetFileAttributeEx	Obtém informações de controle do arquivo

Tipos de Sistemas Operacionais

https://www.youtube.com/watch?v=44P feaO1EU

MONOPROGRAMÁVEIS/ MONOTAREFA

São sistemas que permitem a execução apenas de uma tarefa de cada vez Exemplo: MS DOS

- Sistema voltado a execução de um único programa/tarefa (primeiros SOs – década de 60 e 70)
 - Qualquer outra aplicação, para ser executada, deve aguardar o término da corrente
- Processador, memória e periféricos exclusivamente dedicados a execução de um único programa
- Tarefa do SO passa a ser unicamente transferir o controle de um job (programa e dados) para outro
- Desvantagem: memória subutilizada, processador ocioso

MULTIPROGRAMÁVEIS/ MULTITAREFA

Quando um sistema operacional permite a execução de mais de um programa ao mesmo tempo. Exemplos: Linux, Windos, Apple MAC.

Vantagens:

- ✓ Redução do tempo de resposta;
- ✓ Compartilhamento dos recursos computacionais;

MULTIPROGRAMÁVEIS/ MULTITAREFA

- Implementa o conceito de Multiprogramação:
 - SO mantém vários jobs na memória simultaneamente, e a
 CPU é dividida entre eles
 - □ Parte deles fica em uma fila de jobs no disco (todos os processos residentes em disco aguardando alocação na memória principal)
 - SO seleciona e começa a executar um dos jobs na memória
 - ☐ Se job pode ter de aguardar que alguma tarefa seja concluída
 - [SO passa para um novo job e o executa
 - Se job tem que aguardar, CPU seleciona outro job e assim por diante → CPU nunca ficará ociosa

Sistemas Multitarefa

MÚLTIPLOS PROCESSADORES

 Caracterizam-se por possuir dois ou mais processadores interligados e trabalhando em conjunto

Vantagem:

- Vários programas executando ao mesmo tempo, ou;
- Mesmo programa subdividido em partes para serem executadas simultaneamente em mais de um processador.
- Possibilidade de implementação de aplicações voltadas para processamento científico
 - Simulações;
 - Processamento de imagens;
 - Desenvolvimento aeroespacial.

MÚLTIPLOS PROCESSADORES

- Características:
 - Multiprogramação
 - Escalabilidade
 - □ Capacidade de ampliar o poder computacional do sistema adicionando novos processadores
 - Disponibilidade
 - □ Capacidade de manter o sistema em operação mesmo diante de falhas
 - Balanceamento de carga
 - □ Possibilidade de distribuir o processamento entre os diversos processadores

Bibliografia

- SILBERSCHATZ, Abraham, GALVIN, Peter, GAGNE, Greg. Fundamentos de Sistemas Operacionais. 8^a.
 Ed. Rio de Janeiro : LTC, 2010.
- MACHADO, Francis B.; MAIA, Luiz Paulo. Arquitetura de Sistemas Operacionais. 3ª ed. Rio de Janeiro : LTC, 2002.