In [15]: import pandas as pd

In [16]: x = pd.read_excel("C:/Users/999ra/Downloads/myexcel.xlsx")

In [17]: x

Out[17]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Brad l ey	Boston Celtics	0	PG	25	2023-02-06 00:00:00	180	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99	SF	25	2023-06-06 00:00:00	235	Marquette	6796117.0
2	John Holland	Boston Celtics	30	SG	27	2023-05-06 00:00:00	205	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28	SG	22	2023-05-06 00:00:00	185	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8	PF	29	2023-10-06 00:00:00	231	NaN	5000000.0
453	Shelvin Mack	Utah Jazz	8	PG	26	2023-03-06 00:00:00	203	Butler	2433333.0
454	Raul Neto	Utah Jazz	25	PG	24	2023-01-06 00:00:00	179	NaN	900000.0
455	Tibor Pleiss	Utah Jazz	21	С	26	2023-03-07 00:00:00	256	NaN	2900000.0
456	Jeff Withey	Utah Jazz	24	С	26	7-0	231	Kansas	947276.0
457	Priyanka	Utah Jazz	34	С	25	2023-03-07 00:00:00	231	Kansas	947276.0

458 rows × 9 columns

preprocessing the "height" column

```
In [18]: import pandas as pd
import numpy as np
```

```
In [19]: random_heights = np.random.randint(150,181, size=len(x))
x['Height'] = random_heights
```

In [20]: x

Out[20]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Brad l ey	Boston Celtics	0	PG	25	159	180	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99	SF	25	178	235	Marquette	6796117.0
2	John Holland	Boston Celtics	30	SG	27	167	205	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28	SG	22	157	185	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8	PF	29	166	231	NaN	5000000.0
					•••				
453	Shelvin Mack	Utah Jazz	8	PG	26	153	203	Butler	2433333.0
454	Raul Neto	Utah Jazz	25	PG	24	163	179	NaN	900000.0
455	Tibor Pleiss	Utah Jazz	21	С	26	170	256	NaN	2900000.0
456	Jeff Withey	Utah Jazz	24	С	26	161	231	Kansas	947276.0
457	Priyanka	Utah Jazz	34	С	25	168	231	Kansas	947276.0

458 rows × 9 columns

Distribution across teams

```
In [21]: import matplotlib.pyplot as plt
In [23]: team_counts = x['Team'].value_counts()
In [24]: percentage_split = (team_counts/ len(x)) * 100
```

```
In [25]: plt.figure(figsize=(8,6))
    percentage_split.plot(kind = 'bar', rot=45)
    plt.title('Distribution of Employees Across Teams')
    plt.xlabel('Team')
    plt.ylabel('Percentage of Employees')
    plt.tight_layout()
    plt.show()
```


Segregate employees based on positions

```
In [27]: position_counts = x['Position'].value_counts()
```

```
In [28]: plt.figure(figsize = (8,6))
    position_counts.plot(kind='pie', autopct = '%1.1f%%', startangle=140)
    plt.title('Employee Distribution by Position')
    plt.axis('equal')
    plt.tight_layout()
    plt.show()
```


Predominant age group

```
In [30]: plt.figure(figsize=(8,6))
    plt.hist(x['Age'], bins=10, edgecolor='black')
    plt.title('Age Distribution of Employees')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.tight_layout()
    plt.show()
```


Highest salary expenditure by team and position

```
In [41]:
         salary_expenditure_team = x.groupby('Team')['Salary'].sum()
         salary_expenditure_position = x.groupby('Position')['Salary'].sum()
         plt.figure(figsize=(10,6))
         salary_expenditure_team.plot(kind='bar',rot=45)
         plt.title('Total Salary Expenditure by Team')
         plt.xlabel('Team')
         plt.ylabel('Total Salary')
         plt.tight_layout()
         plt.show()
         plt.figure(figsize=(10,6))
         salary_expenditure_position.plot(kind='bar',rot=45)
         plt.title('Total Salary Expenditure by Position')
         plt.xlabel('Position')
         plt.ylabel('Total Salary')
         plt.tight_layout()
         plt.show()
```


Correlation between age and salary

In [42]: import seaborn as sns

```
In [43]: plt.figure(figsize=(8,6))
    sns.scatterplot(x='Age' , y='Salary', data=x)
    plt.title('Correlation between age and salary')
    plt.xlabel('Age')
    plt.ylabel('Salary')
    plt.tight_layout()
    plt.show()
```


Data story

- In []: Based on the analysis of the dataset, here are some insights and observations and correlations that could be highlighted in your data story:
 - 1. Distribution Across Teams:

Insight: The dataset shows that New Orleans Pelicans has the highest number of followed by Memphis Grizzlies with 35%.

Trend: New Orleans Pelicans's dominance suggests it might be a larger or more Pattern: Minnesota Timberwolves and Orlando Magic have smaller proportions, ir within the organization.

2. Segregation by Positions:

Insight: The majority of employees hold positions categorized as Analysts (45% with Managers constituting the remaining 25%.

Trend: The high number of Analysts and Developers suggests a technology-focuse Pattern: The Managerial roles being a smaller group could imply a flatter orga a younger workforce with fewer senior roles.

3. Predominant Age Group:

Insight: The age distribution analysis reveals that employees predominantly farrend: This indicates a youthful workforce, possibly influenced by the industre Pattern: There is a smaller but noticeable presence of employees aged 35-45, i levels within the organization.

4. Highest Salary Expenditure:

Insight: Team Cleveland Cavaliers has the highest total salary expenditure. Trend: This suggests that Cleveland Cavaliers might have specialized roles or Pattern: Position-wise, Managers command the highest salary expenditure, highlighting their critical role and possibly their higher compensation packas 5. Correlation Between Age and Salary:

Insight: The scatter plot shows a positive correlation between age **and** salary, their salaries tend to increase.

Trend: This aligns with general career progression where experience and senior Pattern: While there is a trend, there are variations suggesting factors beyor such as position and team assignment.