Comparing Receptor-Ligand Restraint Schemes for Alchemical Absolute Binding Free Energy Calculations

Finlay Clark¹; Graeme Robb²; Daniel Cole³; Julien Michel¹

¹EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom ²Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom

³School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

Corresponding author: finlay.clark@ed.ac.uk

Alchemical absolute binding free energies are of increasing interest in drug discovery

- Alchemical absolute binding free energy (ABFE) calculations allow the rigorous calculation of binding free energies of diverse molecules, and show promise to deliver significant value in drug discovery campaigns¹
- Receptor-ligand restraints are required to prevent sampling issues

Closely mimic native receptor-ligand interactions, potentially enhancing convergence

- ✓ Simple
- X Poorest convergence

Lack of orientational restraints produced erroneously negative free energies

- Up to 4 kcal mol⁻¹ more negative than with Boresch
- Likely due to failure to sample alternative orientations over few λ windows

Run 4

Stuck in crystal pose orientation

Largest error

Exploration of alternative pose

LJ terms removed in complex

• 2 kcal mol⁻¹ improvement in

Several varieties of restraints are available

Boresch²

- ✓ Simple analytical correction
- X Limited in the extent of restraint provided
- X Instabilities

Multiple distance restraints³

Distance or positional restraint

Multiple distance restraints can be implemented rigorously

Free energy of releasing decoupled ligand cannot be calculated exactly due to coupling of internal and relative external degrees of freedom

Solutions:

Rigidify anchor points

Release all but one restraint⁴

We use MIF / MIF180 as a test system⁵

- Molecular dynamics engine: SOMD (Sire/ OpenMM), 5 replicates, 4 fs timestep with HMR, ff14SB and GAFF2 force fields.
- Restraints: Automated selection of parameters to accelerate convergence via post-processing of 6 ns MD simulation

Equivalent results obtained with Boresch and multiple distance restraints

Rigorous multiple distance restraint schemes provide binding free energies in good agreement with Boresch restraints

X Performance of nonrigorous multiple distance restraints protocol depends on restrictiveness of restraints

X Removal of orientational restraints results in erroneously negative free energies of binding, likely due to

sampling issues at intermediate stages of vanishing

Conclusions

- Rigorous implementations of multiple distance restraints generate answers equivalent to Boresch restraints but may offer convergence benefits for larger, flexible ligands
- X Failure to restrain orientation results in erroneously negative free energies of binding with our protocol

References

- [1] Z. Cournia et al., J. Chem. Inf. Model., 2020, 60, 4153–4169.
- [2] S. Boresch et al., J. Phys. Chem. B, 2003, 107, 9535–9551.
- [3] C. Mendoza-Martinez et al., Chem. Sci., 2022, 13, 5220-5229. [4] M. Ebrahimi and J. Henin, *J. Chem. Theory Comput.*, 2022, **18**, 2494-2502
- [5] Y. Qian et al., J. Phys. Chem. B, 2019, **123**, 8675–8685.
- [6] F. Clark, G. Robb, D. Cole and J. Michel, ChemRxiv, 2023.

✓ Boresch restraints with different anchor sets generally in good agreement