Chapitre 22 : Géométrie dans l'espace

Dans ce chapitre \mathscr{E} désigne l'espace euclidien muni d'un repère orthonormé $\mathscr{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

1 Espace euclidien et espace vectoriel

1.1 Généralités

Proposition

Tout vecteur \overrightarrow{u} de l'espace peut s'écrire de manière unique sous la forme $\overrightarrow{u} = \alpha \overrightarrow{i} + \beta \overrightarrow{j} + \gamma \overrightarrow{k}$, où α, β et γ sont des nombres réels appelé composantes ou encore coordonnées de \overrightarrow{u} dans la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

Remarque : On vient d'établir une correspondance bijective entre l'espace euclidien \mathscr{E} et l'espace vectoriel réel de dimensions trois \mathbb{R}^3 .

Définition

Si A est un point de l'espace euclidien et \overrightarrow{u} un vecteur de l'espace, on note $A + \overrightarrow{u}$ l'unique point B de l'espace tel que $\overrightarrow{AB} = \overrightarrow{u}$.

Définition

Deux vecteurs de l'espace \overrightarrow{u} et \overrightarrow{v} sont colinéaires (ou proportionnels) si $\overrightarrow{u} = 0$ ou $\exists \lambda \in \mathbb{R}, \overrightarrow{v} = \lambda \overrightarrow{u}$.

1.2 Coordonnées cartésiennes

Définition

Soit M un point de l'espace. Il existe un unique triplet $(x, y, z) \in \mathbb{R}^3$ tel que $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$. Les nombres réels x, y et z s'appellent les coordonnées cartésiennes de M dans le repère \mathscr{R} .

Remarque:

- Les coordonnées cartésiennes dans l'espace dépendent d'un repère orthonormé.
- Par abus ont écrit M(x, y, z) ou encore $\overrightarrow{OM}(x, y, z)$ pour dire que M est un point dont les coordonnées cartésiennes dans le repère \mathcal{R} sont x, y, et z.
- La définition précédente permet d'identifier l'espace \mathscr{E} à \mathbb{R}^3 . Cela justifie l'appellation d'espace vectoriel de dimension 3 pour désigner l'espace euclidien.

Définition

Soit $\overrightarrow{u}(x, y, z)$ un vecteur de l'espace. La norme euclidienne du vecteur \overrightarrow{u} est le nombre réel $\|\overrightarrow{u}\|$ définit par

$$\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}.$$

Lorsque $\|\overrightarrow{u}\| = 1$ on dit que le vecteur \overrightarrow{u} est normé ou unitaire.

Définition

Soient A et B deux points de l'espace euclidien \mathcal{E} . La distance entre les points A et B noté $\mathrm{d}(A,B)$ ou encore AB est la norme du vecteur \overrightarrow{AB} .

1.3 Produit scalaire

Définition

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace E. Le produit scalaire entre \overrightarrow{u} et \overrightarrow{v} est le nombre réel définit par

$$\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}|| \cos(\overrightarrow{u}, \overrightarrow{v}),$$

lorsque les vecteurs \overrightarrow{u} et \overrightarrow{v} sont non nuls et sinon $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Remarque : Si l'on se place dans le plan engendré par les vecteurs \overrightarrow{u} et \overrightarrow{v} la définition du produit scalaire dans l'espace correspond à la définition du produit scalaire dans le plan.

Proposition

Pour tout vecteur \overrightarrow{u} de l'espace, on a $\overrightarrow{u} \cdot \overrightarrow{u} = ||\overrightarrow{u}||^2$.

Démonstration. Par définition, $\overrightarrow{u} \cdot \overrightarrow{u} = ||\overrightarrow{u}||^2 \cos(\overrightarrow{u}, \overrightarrow{u}) = ||\overrightarrow{u}||^2$.

Proposition

Le produit scalaire est bilinéaire, sysmétrique. C'est-à-dire que l'on a

• **Bilinéaire.** Pour tout triplet de vecteurs de l'espace, $(\vec{u}, \vec{v}, \vec{w})$, pour tout nombre réel λ , on a

$$(\overrightarrow{u} + \lambda \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \lambda \overrightarrow{v} \cdot \overrightarrow{w}$$
 et $\overrightarrow{w} \cdot (\overrightarrow{u} + \lambda \overrightarrow{v}) = \overrightarrow{w} \cdot \overrightarrow{u} + \lambda \overrightarrow{w} \cdot \overrightarrow{v}$

• **Symétrie.** Pour tout couple de vecteurs $(\overrightarrow{u}, \overrightarrow{v})$, on a l'égalité

$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

Définition

On dit que deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux lorsque $\overrightarrow{u} \cdot \overrightarrow{v} = 0$. On dit de plus que ces vecteurs sont orthonormés s'ils sont à la fois orthogonaux et tous deux de norme égale à 1.

Proposition

Si $\overrightarrow{u}(a,b,c)$ et $\overrightarrow{v}(x,y,z)$ sont deux vecteurs de l'espace alors

$$\overrightarrow{u} \cdot \overrightarrow{v} = ax + by + cz$$
.

Démonstration. Le repère \mathcal{R} est orthonormé donc les vecteurs \overrightarrow{i} , \overrightarrow{j} et \overrightarrow{k} sont deux à deux orthogonaux et de norme égale à 1. Par bilinéarité et symétrie du produit scalaire, on a

$$\overrightarrow{u} \cdot \overrightarrow{v} = \left(a \overrightarrow{i} + b \overrightarrow{j} + c \overrightarrow{k} \right) \cdot \left(x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k} \right)$$

$$= ax \overrightarrow{i} \cdot \overrightarrow{i} + by \overrightarrow{j} \cdot \overrightarrow{j} + cz \overrightarrow{k} \cdot \overrightarrow{k}$$

$$+ (ay + bx) \overrightarrow{i} \cdot \overrightarrow{j}$$

$$+ (az + cx) \overrightarrow{i} \cdot \overrightarrow{k}$$

$$+ (bz + cy) \overrightarrow{j} \cdot \overrightarrow{k}$$

$$= ax \overrightarrow{i} \cdot \overrightarrow{i} + by \overrightarrow{j} \cdot \overrightarrow{j} + cz \overrightarrow{k} \cdot \overrightarrow{k}$$

$$= ax + by + cz.$$

Proposition

Soit $(\vec{u}, \vec{v}, \vec{w})$ une base orthonormée de l'espace. Tout vecteur \vec{x} de l'espace peut s'écrire comme une unique combinaison linéaire des vecteurs \vec{u} , \vec{v} et \vec{w} .

De plus, quelquesoit α , β et γ trois nombres réels,

$$\vec{x} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} \iff \begin{cases} \alpha = \vec{u} \cdot \vec{x} \\ \beta = \vec{v} \cdot \vec{x} \\ \gamma = \vec{w} \cdot \vec{x} \end{cases}$$

Démonstration.

• **Unicité.** Si $\overrightarrow{x} = \alpha \overrightarrow{u} + \beta \overrightarrow{v} + \gamma \overrightarrow{w}$, alors par linéarité,

$$\overrightarrow{u} \cdot \overrightarrow{x} = \alpha \overrightarrow{u} \cdot \overrightarrow{u} + \beta \overrightarrow{u} \cdot \overrightarrow{v} + \gamma \overrightarrow{u} \cdot \overrightarrow{w}$$
$$= \alpha ||\overrightarrow{u}||^2$$
$$= \alpha.$$

De même, on obtient

$$\beta = \overrightarrow{v} \cdot \overrightarrow{x}$$
 et $\gamma = \overrightarrow{w} \cdot \overrightarrow{x}$

• Existence. En notant

$$\overrightarrow{y} = (\overrightarrow{u} \cdot \overrightarrow{x}) \overrightarrow{u} + (\overrightarrow{v} \cdot \overrightarrow{x}) \overrightarrow{v} + (\overrightarrow{w} \cdot \overrightarrow{x}) \overrightarrow{w},$$

on a comme précédemment

$$\overrightarrow{u}\cdot\overrightarrow{y}=\overrightarrow{u}\cdot\overrightarrow{x},\quad \overrightarrow{v}\cdot\overrightarrow{y}=\overrightarrow{v}\cdot\overrightarrow{x},\quad \overrightarrow{w}\cdot\overrightarrow{y}=\overrightarrow{w}\cdot\overrightarrow{x},$$

et donc $\overrightarrow{x} - \overrightarrow{y}$ est orthogonal à \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} . Par suite, $\overrightarrow{x} = \overrightarrow{y}$.

Remarque:

• Soit $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ une base orthonormée de l'espace. Par bilinéarité si

$$\overrightarrow{u_1} = x_1 \overrightarrow{u} + y_1 \overrightarrow{v} + z_1 \overrightarrow{w}$$
 et $\overrightarrow{u_2} = x_2 \overrightarrow{u} + y_2 \overrightarrow{v} + z_2 \overrightarrow{w}$,

alors
$$\vec{u_1} \cdot \vec{u_2} = x_1 x_2 + y_1 y_2 + z_1 z_2$$
.

L'expression du produit scalaire en fonction des composantes est toujours la même peu importe la base orthonormée choisie.

• Tout point admet dans un repère orthonormé $(\Omega, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ un unique système de coordonnées cartésiennes, c'est-à-dire un unique triplet (x, y, z) de réels tels que :

$$\overrightarrow{\Omega M} = x\overrightarrow{u} + y\overrightarrow{v} + z\overrightarrow{w}.$$

2 Modes de repérage

2.1 Coordonnées cylindriques

Dans la suite si $\theta \in \mathbb{R}$, on note

$$\overrightarrow{u}(\theta) = \cos(\theta) \overrightarrow{i} + \sin(\theta) \overrightarrow{j}$$
 et $\overrightarrow{v}(\theta) = -\sin(\theta) \overrightarrow{i} + \cos(\theta) \overrightarrow{j}$.

Proposition

Soit M(x, y, z) un point de l'espace. Il existe $(r, \theta) \in \mathbb{R}^2$ tel que $\overrightarrow{OM} = r \overrightarrow{u}(\theta) + z \overrightarrow{k}$.

Démonstration. Soit P(x, y, 0) le projeté orthogonal de M dans le plan (Oxy) muni du repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. Dans ce cas, P est donc un point du plan euclidien (Oxy). Soit (r, θ) ∈ \mathbb{R}^2 un système de coordonnées polaires de P dans ce plan. On a donc

$$\overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{PM}$$

= $r\overrightarrow{u}(\theta) + z\overrightarrow{k}$.

Définition

Étant donné un point M de l'espace \mathscr{E} , on appelle système de coordonnées cylindriques de M par rapport au repère \mathscr{R} tout triplet $(r,\theta,z) \in \mathbb{R}^3$ tel que

$$\overrightarrow{OM} = r \overrightarrow{u}(\theta) + z \overrightarrow{k}$$
.

z \bar{k} \bar{v} v $\bar{OP} = \rho v \bar{p}$

П

Obtention des coordonnées cylindriques

Étant donné un point M de coordonnées cartésiennes (x, y, z) dans l'espace, pour obtenir les coordonnées cylindriques de ce même point :

- On détermine un système de coordonnées polaires du point P(x, y, 0) dans le plan (Oxy).
- Par la relation de Chasles, on remarque que $\overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{PM}$.

Remarque : Si $M(r,\theta,z)$ est un point de l'espace alors M' l'image par la rotation d'axe (Oz) d'angle φ admet un système de coordonnées cylindrique égale à $(r,\theta+\varphi,z)$. En utilisant les coordonnées cartésiennes avec M(x,y,z) et M'(x',y',z'), on obtient

$$\left\{ \begin{array}{l} x' = r\cos(\theta + \varphi) = \cos(\varphi)x - \sin(\varphi)y \\ y' = r\sin(\theta + \varphi) = \sin(\varphi)x + \cos(\varphi)y \\ z' = z \end{array} \right. .$$

Matriciellement, si
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $X' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ alors

$$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{pmatrix} X = X'.$$

2.2 Coordonnées sphériques

Proposition

Soit M(x, y, z) un point de l'espace. Il existe un triplet $(r, \theta, \varphi) \in \mathbb{R}^3$ de nombres réels tel que

$$\begin{cases} x = r\cos(\varphi)\sin(\theta) \\ y = r\sin(\varphi)\sin(\theta) \\ z = r\cos(\theta) \end{cases}$$

 $D\acute{e}monstration$. Soit $(\rho, \varphi, z) \in \mathbb{R}^3$ un système de coordonnées cylindriques du point M. On définit $r = \|\overrightarrow{OM}\|$. On a alors $\overrightarrow{OM} = \rho r \overrightarrow{u}(\theta) + z \overrightarrow{k} = \rho \cos(\varphi) \overrightarrow{i} + \rho \sin(\varphi) \overrightarrow{j} + z \overrightarrow{k}$ et donc

$$r^2 = \rho^2 + z^2$$

On en déduit qu'il existe $\theta \in \mathbb{R}$ tel que

$$\begin{cases} \rho = r \sin(\theta) \\ z = r \cos(\theta) \end{cases}$$

Finalement, en identifiant les coordonnées cartésiennes, on a

$$\begin{cases} x = \rho \cos(\varphi) = r \cos(\varphi) \sin(\theta) \\ y = \rho \sin(\varphi) = r \sin(\varphi) \sin(\theta) \\ z = r \cos(\theta) \end{cases} .$$

Définition

Étant donné un point M de l'espace E, on appelle système de coordonnées sphériques de M par rapport au repère \mathscr{R} tout triplet $(r, \theta, \varphi) \in \mathbb{R}^3$ tel que $r \ge 0$, $\theta \in [0, \pi]$.

$$\begin{cases} x = r\cos(\varphi)\sin(\theta) \\ y = r\sin(\varphi)\sin(\theta) \\ z = r\cos(\theta) \end{cases} .$$

Dans ce cas, on dit que r est le rayon de M, φ est la longitude de M et θ est la colatitude de M.

Remarque:

- On utilise parfois le vocabulaire de latitude pour désigner $\frac{\pi}{2} \theta$ au lieu de la colatitude (en particulier pour la manipulation des coordonnées terrestres).
- Dans le plan $(O, \vec{k}, \vec{u}(\varphi))$, le point M admet (r,θ) comme système de coordonnées polaires.
- Un système de coordonnées polaires du projeté orthogonal de M sur le plan (Oxy) est $(r\sin(\theta), \varphi)$.

3 Produit vectoriel et produit mixte

3.1 Orthogonalité à deux vecteurs non colinéaires

Lemme

Deux vecteurs $\overrightarrow{u_1}(x_1, y_1, z_1)$ et $\overrightarrow{u_2}(x_2, y_2, z_2)$ sont colinaires si et seulement si

$$\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} = 0.$$

Démonstration.

- Si les vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires alors il existe un réel $\lambda \in \mathbb{R}$ tel que $\overrightarrow{u_1} = \lambda \overrightarrow{u_2}$ ou $\overrightarrow{u_2} = \lambda \overrightarrow{u_1}$. Par un simple calcul, on montre que les trois produits mixtes dans le plan sont nuls.
- Réciproquement, supposons que

$$\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} = 0.$$

- Si l'un des vecteurs est nul, ils sont évidemment colinéaires.
- Sinon, on peut par exemple supposer que $x_1 \neq 0$. Ainsi le vecteur (x_1, y_1) n'est pas nul et donc les vecteurs du plan (x_1, y_1) et (x_2, y_2) sont colinéaires et donc puisque $(x_1, y_1) \neq (0, 0)$, il existe $\lambda \in \mathbb{R}$ tel que $(x_2, y_2) = \lambda(x_1, y_1)$. De même, il existe $\mu \in \mathbb{R}$ tel que $(x_2, z_2) = \mu(x_1, z_1)$.

Ainsi $\lambda x_1 = x_2 = \mu x_1$ et donc $\lambda = \mu$ car $x_1 \neq 0$.

Par suite, $(x_2, y_2, z_2) = \lambda(x_1, y_1, z_1)$ et donc les vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires.

Proposition

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non colinéaires de l'espace.

- Il existe un vecteur \overrightarrow{w} non nul qui est orthogonal à \overrightarrow{u} et \overrightarrow{v} .
- Les vecteurs orthogonaux à \overrightarrow{u} et \overrightarrow{v} sont de la forme $\lambda \overrightarrow{w}$ avec $\lambda \in \mathbb{R}$.
- Les vecteurs orthogonaux à \overrightarrow{w} sont les combinaisons linéaires de \overrightarrow{u} et \overrightarrow{v} .

Démonstration. Soient x_1, x_2, y_1, y_2, z_1 et z_2 six nombres réels tels que

$$\overrightarrow{u} = x_1 \overrightarrow{i} + y_1 \overrightarrow{j} + z_1 \overrightarrow{k}$$
 et $\overrightarrow{v} = x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}$.

Les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires donc on peut supposer par exemple que

$$D = [(x_1, y_1), (x_2, y_2)] \neq 0.$$

Soit $\overrightarrow{w}(x, y, z)$.

$$\overrightarrow{w} \cdot \overrightarrow{u} = \overrightarrow{w} \cdot \overrightarrow{v} = 0 \iff \left\{ \begin{array}{l} xx_1 + yy_1 + zz_1 = 0 \\ xx_2 + yy_2 + zz_2 = 0. \end{array} \right.$$

En appliquant l'algorithme du pivot de Gauss-Jordan, puisque $D \neq 0$, à z fixé, le système précédent admet un unique couple de solution (x, y) et

$$\overrightarrow{w} \cdot \overrightarrow{u} = \overrightarrow{w} \cdot \overrightarrow{v} = 0 \iff \begin{cases} xx_1 + yy_1 + zz_1 = 0 \\ xx_2 + yy_2 + zz_2 = 0. \end{cases}$$

$$\iff \begin{cases} x = z \frac{[(y_1, z_1), (y_2, z_2)]}{[(x_1, y_1), (x_2, y_2)]} \\ x = -z \frac{[(x_1, z_1), (x_2, z_2)]}{[(x_1, y_1), (x_2, y_2)]} \end{cases}$$

Finalement, si

$$\begin{cases} x = [(y_1, z_1), (y_2, z_2)] \\ y = -[(x_1, z_1), (x_2, z_2)] \\ z = [(x_1, y_1), (x_2, y_2)] \end{cases}$$

alors le vecteur \overrightarrow{u} est non nul et orthogonal aux vecteurs \overrightarrow{u} et \overrightarrow{v} .

Tous les vecteurs $\lambda \vec{w}$ sont clairement orthogonaux à \vec{u} et \vec{v} et si (x, y, z) est solution du système précédent alors $(x, y, z) = \frac{z}{D} \vec{w}$.

Par bilinéarité du produit scalaire, toute combinaison linéaire des vecteurs \overrightarrow{u} et \overrightarrow{v} est un vecteur orthogonal à \overrightarrow{w} . Réciproquement, soit $\overrightarrow{a}(x, y, z)$ un vecteur orthogonal à \overrightarrow{w} . Pour tout $(\lambda_1, \lambda_2) \in \mathbb{R}^2$,

$$\overrightarrow{a} = \lambda_1 \overrightarrow{u} + \lambda_2 \overrightarrow{v} \iff \begin{cases} \lambda_1 x_1 + \lambda_2 x_2 &= x \\ \lambda_1 y_1 + \lambda_2 y_2 &= y \\ \lambda_1 z_1 + \lambda_2 z_2 &= z \end{cases}$$

Comme $\gamma = [(x_1, y_1), (x_2, y_2)] \neq 0$ il existe un unique couple (λ_1, λ_2) vérifiant les deux premières équations. D'autre part les vecteurs \overrightarrow{u} et \overrightarrow{v} et $\overrightarrow{a} = \lambda_1 \overrightarrow{u} + \lambda_2 \overrightarrow{v}$ sont orthogonaux à $\overrightarrow{w}(\alpha, \beta, \gamma)$ et donc

$$\alpha x + \beta y + \gamma z = \alpha x_1 + \beta y_1 + \gamma z_1 = \alpha x_2 + \beta y_2 + \gamma z_2 = 0.$$

En ajoutant les deux premières équations du système respectivement multipliées par $-\alpha$ et $-\beta$, on obtient :

$$\gamma(\lambda_1 z_1 + \lambda_2 z_2) = \gamma z,$$

et donc la dernière équation est vraie car $\gamma \neq 0$.

Remarque : D'après la proposition précédente, il existe un unique vecteur orthogonal à \overrightarrow{u} et \overrightarrow{v} si l'on impose une norme et une direction.

Définition

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs non colinéaires de l'espace, on appelle produit vectoriel de \overrightarrow{u} par \overrightarrow{v} et l'on note $\overrightarrow{u} \wedge \overrightarrow{v}$ le vecteur

- orthogonal à \overrightarrow{u} et \overrightarrow{v} ;
- de norme égale à $\|\overrightarrow{u}\| \|\overrightarrow{v}\| |\sin(\overrightarrow{u}, \overrightarrow{v})|$;
- tel que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{u} \wedge \overrightarrow{v})$ est directe.

Si \vec{u} et \vec{v} sont colinéaires on appelle produit vectoriel de \vec{u} par \vec{v} et l'on note $\vec{u} \wedge \vec{v}$ le vecteur $\vec{0}$.

Proposition

Soient $\overrightarrow{u_1}(x_1, y_1, z_1)$ et $\overrightarrow{u_2}(x_2, y_2, z_2)$ deux vecteurs de l'espace dans un repère orthonormé direct. Dans le même repère,

$$\overrightarrow{u_1} \wedge \overrightarrow{u_2} \begin{pmatrix} \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix}, - \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix}, \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \end{pmatrix}.$$

Remarque:

- Par construction dans la proposition précédente, $\overrightarrow{u_1} \wedge \overrightarrow{u_2}$ est nul si et seulement si $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont colinéaires.
- Par construction, $\overrightarrow{u_1} \wedge \overrightarrow{u_2}$ est orthogonal à $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$.
- À un facteur multiplicatif près, si $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ ne sont pas orthogonaux, $\overrightarrow{u_1} \wedge \overrightarrow{u_2}$ est l'unique vecteur orthogonal à $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$.
- Les composantes de $\overrightarrow{u_1} \wedge \overrightarrow{u_2}$ peuvent s'écrire

$$\begin{pmatrix} \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix}, \begin{vmatrix} z_1 & z_2 \\ x_1 & x_2 \end{vmatrix}, \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \end{pmatrix}.$$

Dans ce cas les composantes se déduisent par permutation circulaires des lettres x, y et z.

Exemple: Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace non colinéaires. Le vecteur $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$ est non nul et orthogonal à \overrightarrow{u} donc non colinéaire à \overrightarrow{u} . En définissant $\overrightarrow{v'} = \overrightarrow{w} \wedge \overrightarrow{u}$, on obtient un vecteur non nul qui est orthogonal à \overrightarrow{w} . Ainsi $\overrightarrow{v'}$ est dans le plan dirigé par \overrightarrow{u} et \overrightarrow{v} . De plus, $\overrightarrow{v'}$ est orthogonal à \overrightarrow{u} donc quitte à normer on obtient une base orthonormée du plan dirigé par \overrightarrow{u} et \overrightarrow{v} .

3.2 Propriétés du produit vectoriel

Proposition

Le produit vectoriel est bilinéaire, antisysmétrique. C'est-à-dire que l'on a

• **Bilinéaire.** Pour tout triplet de vecteurs du plan, $(\vec{u}, \vec{v}, \vec{w})$, pour tout nombre réel λ , on a

$$(\overrightarrow{u} + \lambda \overrightarrow{v}) \wedge \overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{w} + \lambda \overrightarrow{v} \wedge \overrightarrow{w}$$
 et $\overrightarrow{w} \wedge (\overrightarrow{u} + \lambda \overrightarrow{v}) = \overrightarrow{w} \wedge \overrightarrow{u} + \lambda \overrightarrow{w} \wedge \overrightarrow{v}$

• Atisymétrie. Pour tout couple de vecteurs $(\overrightarrow{u}, \overrightarrow{v})$, on a l'égalité

$$\overrightarrow{u} \wedge \overrightarrow{v} = -\overrightarrow{v} \wedge \overrightarrow{u}$$

 $D\'{e}monstration$. En appliquant les propriétés de bilinéarité et d'antisymétrie du produit mixte dans le plan, on obtient directement les égalités souhaitées.

Proposition

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs de l'espace,

$$\|\overrightarrow{u}\wedge\overrightarrow{v}\|^2 + (\overrightarrow{u}\cdot\overrightarrow{v})^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2.$$

Démonstration. Notons (x, y, z) et (a, b, c) les composantes respectives des vecteurs \overrightarrow{u} et \overrightarrow{v} dans le repère \mathscr{R} . Par le calcul, on a

$$\begin{split} \|\overrightarrow{u}\wedge\overrightarrow{v}\|^2 + \left(\overrightarrow{u}\cdot\overrightarrow{v}\right)^2 &= (bx - ay)^2 + (cy - bz)^2 + (az - cx)^2 + (ax + by + cz)^2 \\ &= b^2x^2 + a^2y^2 + c^2y^2 + b^2z^2 + a^2z^2 + c^2x^2 + a^2x^2 + b^2y^2 + c^2z^2 \\ &- 2abxy - 2bcyz - 2acxz + 2(abxy + acxz + bcyz) \\ &= b^2x^2 + a^2y^2 + c^2y^2 + b^2z^2 + a^2z^2 + c^2x^2 + a^2x^2 + b^2y^2 + c^2z^2 \\ &= x^2(b^2 + c^2 + a^2) + y^2(a^2 + c^2 + b^2) + z^2(b^2 + a^2 + c^2) \\ &= (x^2 + y^2 + z^2)(a^2 + b^2 + c^2) \\ &= \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2. \end{split}$$

Remarque:

• En particulier si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux alors $\|\overrightarrow{u} \wedge \overrightarrow{v}\| = \|\overrightarrow{u}\| \|\overrightarrow{v}\|$.

• D'après l'égalité précédente, on en déduit que l'aire du paraléllogramme formé par les vecteurs $\|\vec{u}\|$ et $\|\vec{v}\|$ est égale à

$$\sqrt{\|\overrightarrow{u}\|^2\|\overrightarrow{v}\|^2 - (\overrightarrow{u}\cdot\overrightarrow{v})^2}.$$

• La proposition précédente traduit le théorème de Pythagore dans l'espace.

Proposition (Inégalité de Cauchy-Schwarz)

Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs de l'espace alors

$$|\overrightarrow{u} \cdot \overrightarrow{v}| \le ||\overrightarrow{u}|| ||\overrightarrow{v}||.$$

Démonstration. Cette inégalité découle de la proposition précédente.

Proposition

Si \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont trois vecteurs de l'espace alors

$$(\overrightarrow{u} \wedge \overrightarrow{v}) \wedge \overrightarrow{w} = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{v} \cdot \overrightarrow{w}) \overrightarrow{u}$$

Démonstration. On se place dans une base orthonormée $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ directe dans laquelle

$$\left\{ \begin{array}{ll} \overrightarrow{u} &=& a\overrightarrow{u_1} \\ \overrightarrow{v} &=& b\overrightarrow{u_1} + c\overrightarrow{u_2} \\ \overrightarrow{w} &=& d\overrightarrow{u_1} + e\overrightarrow{u_2} + f\overrightarrow{u_3} \end{array} \right. .$$

Puisque la base est directe, $\overrightarrow{u_3} = \overrightarrow{u_1} \wedge \overrightarrow{u_2}$. On a alors

$$\begin{array}{rcl} \left(\overrightarrow{u}\wedge\overrightarrow{v}\right)\wedge\overrightarrow{w} &=& \left(a\overrightarrow{u_1}\wedge(b\overrightarrow{u_1}+c\overrightarrow{u_2})\right)\wedge\overrightarrow{w} \\ &=& ac\left(\overrightarrow{u_1}\wedge\overrightarrow{u_2}\right)\wedge\overrightarrow{w} \\ &=& ac\overrightarrow{u_3}\wedge\left(d\overrightarrow{u_1}+e\overrightarrow{u_2}+f\overrightarrow{u_3}\right) \\ &=& acd\overrightarrow{u_2}-ace\overrightarrow{u_1} \\ &=& ad\left(\overrightarrow{v}-b\overrightarrow{u_1}\right)-ace\overrightarrow{u_1} \\ &=& ad\overrightarrow{v}-a(bd+ce)\overrightarrow{u_1} \\ &=& (\overrightarrow{u}\cdot\overrightarrow{w})\overrightarrow{v}-(\overrightarrow{v}\cdot\overrightarrow{w})\overrightarrow{u}. \end{array}$$

3.3 Produit mixte dans l'espace orienté

Définition

Le produit mixte ou encore déterminant des trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} de l'espace est le nombre réel défini par

$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = (\overrightarrow{u} \wedge \overrightarrow{v}) \cdot \overrightarrow{w}$$

Proposition

- Le produit mixte est trilinéaire, c'est-à-dire que $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$ est linéaire par rapport à chacun des trois vecteurs $\overrightarrow{u}, \overrightarrow{v}$ et \overrightarrow{w} .
- $\bullet \ \ Le \ poduit \ mixte \ est \ antisymétrique, \ c'est-\`a-dire \ qu'il \ est \ multipli\'e \ par -1 \ lors qu'on \ \'echange \ deux \ vecteurs.$

Exemple : Si l'on note $D = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]$ alors

$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = [\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{u}] = [\overrightarrow{w}, \overrightarrow{u}, \overrightarrow{v}] = D$$
$$[\overrightarrow{u}, \overrightarrow{w}, \overrightarrow{v}] = [\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}] = [\overrightarrow{w}, \overrightarrow{v}, \overrightarrow{u}] = -D$$

Proposition

Étant donné trois vecteurs dont les composantes dans une base orthonormée directe sont données par

$$\overrightarrow{u_1}(x_1, y_1, z_1)$$
 et $\overrightarrow{u_2}(x_2, y_2, z_2)$ et $\overrightarrow{u_3}(x_3, y_3, z_3)$,

on a une expression du produit mixte de ces trois vecteurs

$$[\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}] = x_1 y_2 z_3 + x_2 y_3 z_1 + x_3 y_1 z_2 -x_1 y_3 z_2 - x_2 y_1 z_3 - x_3 y_2 z_1.$$

On écrit aussi

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = [\overrightarrow{u}, \overrightarrow{w}, \overrightarrow{v}]$$

Démonstration. En utilisant la définition du produit mixte, on a

$$[\overrightarrow{u},\overrightarrow{w},\overrightarrow{v}] = x_3 \begin{vmatrix} y_1 & y_2 \\ z_1 & z_2 \end{vmatrix} - y_3 \begin{vmatrix} x_1 & x_2 \\ z_1 & z_2 \end{vmatrix} + z_3 \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix},$$

8

et donc on obtient le résultat en développant.

Remarque : Soient A, B, C et D quatre points de l'espace deux à deux distincts. Si P est un plan contenant A, B et C alors l'aire \mathscr{A} de la base du parallélépipède construit à partir des vecteurs $\overrightarrow{AB}, \overrightarrow{AC}$ et \overrightarrow{AD} vérifie $\overrightarrow{AB} \wedge \overrightarrow{AC} = \mathscr{A} \overrightarrow{w}$ où \overrightarrow{w} est un vecteur unitaire normal à P. La hauteur du parallélépipède étant égale à $h = |\overrightarrow{AD} \cdot \overrightarrow{w}|$, on en déduit que

$$|[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}]| = \mathcal{A}|\overrightarrow{w} \cdot \overrightarrow{AD}| = \mathcal{A}h.$$

L'aire du parallélépipède construit à partir des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} est égale à

$$|[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}]|.$$

Définition

Trois vecteurs sont dit copolanaires si l'un d'entre eux est une combinaison linéaire des deux autres.

Remarque: Une famille de trois vecteurs coplanaires est de rang au plus deux.

Proposition

Trois vecteurs du plan sont coplanaires si et seulement si leur produit mixte est nul.

Démonstration. Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace. Si ces vecteurs sont colinéaires alors ils sont clairement coplanaires et le produit mixte est nul.

Supposons par exemple que \overrightarrow{u} et \overrightarrow{v} ne sont pas coplanaires. On a $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}] = (\overrightarrow{u} \wedge \overrightarrow{v}) \cdot \overrightarrow{w}$ et donc le produit mixte est nul si et seulement si \overrightarrow{w} et $\overrightarrow{u} \wedge \overrightarrow{v}$ sont orthogonaux c'est-à-dire, si et seulement si \overrightarrow{w} est une combinaison linéaire de \overrightarrow{u} et \overrightarrow{v} .

4 Droites, plans et sphères

4.1 Droites

Définition

On dit que d est une droite de l'espace s'il existe un point A et un vecteur $\overrightarrow{u} \neq \overrightarrow{0}$ du plan tels que pour tout point M de l'espace,

$$M \in d \iff \overrightarrow{AM} \wedge \overrightarrow{u} = \overrightarrow{0}$$
.

Dans ce cas, on dit que d est une droite passant par A dirigée par \overrightarrow{u} . Le vecteur \overrightarrow{u} est appelé un vecteur directeur de la droite d.

Remarque : Si d est une droite de l'espace dirigée par le vecteur \overrightarrow{u} alors $\text{Vect}(\overrightarrow{u})\setminus\{\overrightarrow{0}\}$ est l'ensemble des vecteurs directeur de d. Cela explique pourquoi on dit aussi qu'une droite passe par un point et est dirigée par $\text{Vect}(\overrightarrow{u})$.

Dans ce cas, on écrit aussi $d = A + \text{Vect}(\overrightarrow{u})$.

Représentation paramétrique d'une droite

On considère Δ la droite passant par le points $A(x_0, y_0, z_0)$ et dirigée par le vecteur $\overrightarrow{u}(\alpha, \beta, \gamma)$ non nul. Alors pour tout point M(x, y, z) de l'espace, on a

$$M \in \Delta$$
 \iff $\overrightarrow{AM} \land \overrightarrow{u} = \overrightarrow{0}$
 \iff \overrightarrow{AM} et \overrightarrow{u} sont colinéaires.
 \iff $\exists \lambda \in \mathbb{R}, \ \overrightarrow{AM} = \lambda \overrightarrow{u}$
 \iff $\exists \lambda \in \mathbb{R}, \ \begin{cases} x = x_0 + \lambda \alpha \\ y = y_0 + \lambda \beta \\ z = z_0 + \lambda \gamma \end{cases}$

Remarque : Par deux points distincts A et B de l'espace il passe une unique droite notée (AB) passant par A et dirigée par \overrightarrow{AB} .

4.2 Plans

Définition

On dit que P est un plan de l'espace s'il existe A un point de l'espace et deux vecteurs \overrightarrow{u} et \overrightarrow{v} non colinéaires tel que

$$\forall M \in E, M \in P \iff \exists (x, y) \in \mathbb{R}^2, \overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v}.$$

Dans ce cas, on dit que P est le plan passant par A dirigé par les vecteurs \overrightarrow{u} et \overrightarrow{v} .

Remarque : Si P est le plan passant par A dirigé par les vecteurs \overrightarrow{u} et \overrightarrow{v} alors pour tout $(x, y) \in \mathbb{R}^2$, $x\overrightarrow{u} + y\overrightarrow{v} \in \text{Vect}(\overrightarrow{u}, \overrightarrow{v})$. On assimile donc le plan à un espace vectoriel (de dimension deux puisque les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires).

On note $P = (A, \overrightarrow{u}, \overrightarrow{v})$ ou encore $P = A + \text{Vect}(\overrightarrow{u}, \overrightarrow{v})$. Dans ce cas, on dit que P est vectoriellement dirigé par $\text{Vect}(\overrightarrow{u}, \overrightarrow{v})$.

Représentation paramétrique d'un plan

On considère le plan P passant par le points $A(x_0, y_0, z_0)$, dirigé par les vecteurs non colinéaires $\overrightarrow{u_1}(\alpha_1, \beta_1, \gamma_1)$ et $\overrightarrow{u_2}(\alpha_2, \beta_2, \gamma_2)$.

Alors pour tout point M(x, y, z) de l'espace, on a

$$M \in P \iff \exists (\lambda, \mu) \in \mathbb{R}^2, \ \overrightarrow{AM} = \lambda \overrightarrow{u_1} + \mu \overrightarrow{u_2}.$$

$$\iff \exists (\lambda, \mu) \in \mathbb{R}^2, \ \begin{cases} x = x_0 + \lambda \alpha_1 + \mu \alpha_2 \\ y = y_0 + \lambda \beta_1 + \mu \beta_2 \\ z = z_0 + \lambda \gamma_1 + \mu \gamma_2 \end{cases}.$$

Proposition

Une équation cartésienne du plan passant par A et dirigé par deux vecteurs non colinéaires \overrightarrow{u} et \overrightarrow{v} est donnée par

$$[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{AM}] = 0.$$

Démonstration. Un point M(x, y, z) de l'espace est dans le plan passant par A et dirigé par \overrightarrow{u} et \overrightarrow{v} si et seulement si le vecteur \overrightarrow{AM} est une combinaison linéaire des vecteurs \overrightarrow{u} et \overrightarrow{v} si et seulement si, $[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{AM}] = 0$.

Définition

Soit P un plan dirigé par l'espace vectoriel F. On dit que \overrightarrow{u} est un vecteur normal à P lorsque \overrightarrow{u} est orthogonal avec tous les vecteurs de F.

Dans ce cas, on dit aussi que P est orthogonal à \overrightarrow{u} .

Proposition

Dans un repère orthonormé direct, tout plan P admet une équation cartésienne de la forme

$$ax + by + cz + d = 0,$$

où a, b, c et d sont quatre nombres réels et $(a, b, c) \neq (0, 0, 0)$.

De plus (a, b, c) est un vecteur normal au plan P.

Démonstration. Soient $A(x_0, y_0, z_0) \in P$, \overrightarrow{u} et \overrightarrow{v} deux vecteurs non colinéaires qui dirigent P. En notant $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}(a, b, c)$, une équation cartésienne de P est donnée par

$$0 = [\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{AM}]$$

= $\overrightarrow{w} \cdot \overrightarrow{AM}$
= $a(x - x_0) + b(y - y_0) + c(z - z_0)$.

De plus, le vecteur $\overrightarrow{w}(a, b, c)$ est orthogonal à P par définition.

Définition

Deux plans sont dit parallèles s'ils ont la même direction vectorielle.

Remarque: Deux plans sont parallèles si et seulement si ils ont un vecteur normal non nul en commun.

Proposition

Soient P_1 et P_2 deux plans définis par

$$P_1 \mid a_1x + b_1y + c_1z + d_1 = 0$$
 et $P_2 \mid a_2x + b_2y + c_2z + d_2 = 0$.

Il y a équivalence entre les énoncés:

- (i) : P_1 et P_2 sont parallèles.
- (ii): (a_1, b_1, c_1) et (a_2, b_2, c_2) sont proportionnels.

Démonstration. Les deux plans sont parallèles si et seulement si, ils admettent des vecteurs normaux colinéaires. Il s'agit ici d'une retraduction de la définition. □

Remarque : Si les plans P_1 et P_2 sont égaux alors ils sont parallèles et donc il existe λ tel que $(a_1,b_1,c_1)=\lambda(a_2,b_2,c_2)$. Les deux plans, admettent de plus un point en commun donc $d_1=\lambda d_2$.

Réciproquement, si les équations cartésiennes des plans P_1 et P_2 sont proportionnels alors ils sont égaux.

Définition

Soient P_1 et P_2 deux plans définis par

$$P_1 \mid a_1x + b_1y + c_1z + d_1 = 0$$
 et $P_2 \mid a_2x + b_2y + c_2z + d_2 = 0$.

On dit que P_1 et P_2 sont orthogonaux et l'on note $P_1 \perp P_2$ si

$$a_1 a_2 + b_1 b_2 + c_1 c_2 = 0.$$

Remarque : Sous les hypothèses de la proposition précédente, si \overrightarrow{u} est un vecteur normal à P_1 et \overrightarrow{v} est un vecteur normal à P_2 alors $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Proposition

L'intersection de deux plans P_1 et P_2 non parallèles est une droite dirigée par le produit vectoriel de deux vecteurs non nuls normaux respectivement à P_1 et P_2 .

Démonstration. On représente P_1 et P_2 à l'aide d'une équation cartésienne

$$P_1 \mid a_1x + b_1y + c_1z + d_1 = 0$$
 et $P_2 \mid a_2x + b_2y + c_2z + d_2 = 0$.

Les vecteurs (a_1, b_1, c_1) et (a_2, b_2, c_2) ne sont pas proportionnels. On peut donc supposer par exemple que $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \neq 0$. Ainsi pour tout nombre réel $z_0 \in \mathbb{R}$, le système

$$\begin{cases} a_1x + b_1y = -c_1z_0 - d_1 \\ a_2x + b_2y = -c_2z_0 - d_2 \end{cases}$$

admet au moins une solution et donc $P_1 \cap P_2 \neq \emptyset$.

On note \vec{u} un vecteur normal à P_1 , \vec{v} un vecteur normal à P_2 , et $A \in P_1 \cap P_2$. Pour tout point M de l'espace,

$$M \in P_1 \cap P_2 \iff \overrightarrow{AM} \perp \overrightarrow{u} \text{ et } \overrightarrow{AM} \perp \overrightarrow{v}$$

 $\iff \overrightarrow{AM} \parallel \overrightarrow{u} \wedge \overrightarrow{v}.$

On en déduit que $P_1 \cap P_2$ est une droite passant par A dirigée par $\overrightarrow{u} \wedge \overrightarrow{v}$.

Remarque : Sous les hypothèses de la proposition précédente, $\mathcal{D} = P_1 \cap P_2$ est une droite dont une équation cartésienne

$$\left\{ \begin{array}{l} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{array} \right. .$$

Réciproquement, si \mathscr{D} est une droite passant par A et dirigée par un vecteur unitaire \overrightarrow{u} . On peut construire une base orthonormée directe $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ où $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$. En considérant P_1 le plan pasant par A normal à \overrightarrow{v} et P_2 le plan passant par A dirigé par \overrightarrow{w} , on a $P_1 \cap P_2$ est une droite dirigée par $\overrightarrow{v} \wedge \overrightarrow{w} = \overrightarrow{u}$ passant par A donc égale à \mathscr{D} .

4.3 Projection et distance

Proposition

Soit E une droite ou bien un plan de l'espace. Pour tout point A de l'espace, il existe un unique point $H \in E$ tel que $\overrightarrow{AH} \perp E$.

On dit que H est le projeté orthogonal de A sur E. C'est le point de E le plus proche de E au sens de la norme euclidienne. On appelle distance de E et l'on note dE et l'on note

Démonstration. (Admis)

Proposition

Soit P le plan passant par A et dirigé par les vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$. Pour tout point M de l'espace

$$d(M,P) = \frac{|(\overrightarrow{u_1} \wedge \overrightarrow{u_2}) \cdot \overrightarrow{AM}|}{\|\overrightarrow{u_1} \wedge \overrightarrow{u_2}\|} = \frac{|[\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{AM}]|}{\|\overrightarrow{u_1} \wedge \overrightarrow{u_2}\|}$$

Démonstration. Si M est un point de l'espace et H est le projeté orthogonal de M sur P alors les vecteurs \overrightarrow{MH} et $\overrightarrow{u_1} \wedge \overrightarrow{u_2}$ sont colinéaires et donc il existe $\lambda \in \mathbb{R}$ tel que $\overrightarrow{MH} = \lambda \overrightarrow{u_1} \wedge \overrightarrow{u_2}$. De plus,

$$\overrightarrow{AM} = \overrightarrow{AH} + \overrightarrow{HM}$$

donc

$$\overrightarrow{AM} \cdot \left(\overrightarrow{u_1} \wedge \overrightarrow{u_2}\right) = \overrightarrow{HM} \cdot \left(\overrightarrow{u_1} \wedge \overrightarrow{u_2}\right) = \lambda \|\overrightarrow{u_1} \wedge \overrightarrow{u_2}\|^2.$$

Proposition

Soit P un plan défini par l'équation cartésienne

$$P \mid ax + by + cz + d = 0,$$

avec a, b, c et d quatre nombres réels et $(a, b, c) \neq (0, 0, 0)$. Si M(x, y, z) est un point de l'espace alors

$$d(M, P) = \frac{|ax + by + cz + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Démonstration. Soit $A(x_0, y_0, z_0)$ ∈ P. Alors par définition, $d = -ax_0 - by_0 - cz_0$. On note $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ deux vecteurs non colinaires qui dirigent P et (α, β, γ) les coordonnées du vecteur $\overrightarrow{u_1} \wedge \overrightarrow{u_2}$. Si M(x, y, z) est un point de l'espace alors la proposition précédente affirme que

$$\mathsf{d}(M,P) = \frac{|\alpha(x-x_0) + \beta(y-y_0) + \gamma(z-z_0)|}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}.$$

Or (a, b, c) est un vecteur normal à P donc les vecteurs (α, β, γ) et (a, b, c) sont proportionnels et donc quitte à multiplier par une quantité non nulle au numérateur et au dénominateur, on a

$$d(M,P) = \frac{|a(x-x_0) + b(y-y_0) + c(z-z_0)|}{\sqrt{a^2 + b^2 + c^2}}$$
$$= \frac{|ax + by + cz + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Proposition

Soit \mathcal{D} la droite passant par un point A et dirigée par le vecteur \overrightarrow{u} . Si M est un point de l'espace alors

$$d(M,\mathcal{D}) = \frac{\|\overrightarrow{AM} \wedge \overrightarrow{u}\|}{\|\overrightarrow{u}\|}$$

Démonstration. Si M est un point de l'espace et H le projeté orthogonal de M sur la droite \mathcal{D} , on a

$$\overrightarrow{AM} \wedge \overrightarrow{u} = \overrightarrow{AH} \wedge \overrightarrow{u} + \overrightarrow{HM} \wedge \overrightarrow{u} = \overrightarrow{HM} \wedge \overrightarrow{u}$$
.

Or les vecteurs \overrightarrow{HM} et \overrightarrow{u} sont perpendiculaires donc

$$\|\overrightarrow{HM} \wedge \overrightarrow{u}\| = \|\overrightarrow{HM}\| \|\overrightarrow{u}\| = d(M, \mathcal{D}) \times \|\overrightarrow{u}\|.$$

4.4 Sphères

Définition

On appelle sphère de centre A et de rayon R > 0 l'ensemble noté S(A, R) défini par

$$\mathbb{S}(A,R) = \left\{ M \ / \ \|\overrightarrow{AM}\| = R \right\}.$$

Remarque : En notant A(a, b, c), la définiton précédente, donne une équation cartésienne de la sphère $\mathbb{S}(A, R)$

$$\mathbb{S}(A,R) | (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

Proposition

Étant donné une sphère S de centre A et de rayon R > 0, un plan P et H le pojeté orthogonal de A sur H:

- si d(A, P) > R alors $P \cap S = \emptyset$,
- si d(A, P) = R alors $P \cap S = \{H\}$,
- si d(A, P) < R alors $P \cap S$ est le cercle de centre H et de rayon $\sqrt{R^2 d(A, P)^2}$ dans le plan P.

Démonstration. Si M est un point de P alors d'après le théorème de Pythagore,

$$AM^2 = AH^2 + HM^2.$$

Donc M est aussi dans la sphère si et seulement si

$$HM^2 = R^2 - d(A, P)^2$$
.