BIOS 755: Fixed versus Random effect models and Longitudinal versus Cross-sectional Effects

Alexander McLain

February 18, 2025

Introduction

- Today we are going to be talking about time-varying and time-invariant covariates.
- Let X_{ij} denote the time-varying covariates and $W_{ij} = W_i$ the time-invariant covariates.
- ► To analyze such data we could use

$$Y_{ij} = \boldsymbol{X}_{ij}\boldsymbol{\beta} + \boldsymbol{W}_i\boldsymbol{\gamma} + \alpha_i + e_{ij}$$

where $\boldsymbol{e}_i \sim N(0, \sigma^2)$.

Fixed effect model

- What if we didn't assume α_i was random, but rather estimated it from the data. What kind of model would we have?
- An issue with this model is that we couldn't estimate the time-invariant covariate effects:
 - **c**an't estimate both γ and the α_i 's.

$$Y_{ij} = \boldsymbol{X}_{ij}\boldsymbol{\beta} + \boldsymbol{W}_i\boldsymbol{\gamma} + \alpha_i + e_{ij}$$

BIOS 755: Fixed versus Random effect models (longitudinal versus cross-sectional effects)

Fixed Models

Fixed effect model

$$Y_{ij} = \boldsymbol{X}_{ij}\boldsymbol{eta} + \boldsymbol{W}_i\boldsymbol{\gamma} + lpha_i + e_{ij}$$

- ightharpoonup We could estimate β
- For example, if we only had two observations:

$$(Y_{i2}-Y_{i1})=(X_{i2}-X_{i1})'\beta+e_{i2}^*$$

which could be fitted using OLS of $(Y_{i2} - Y_{i1})$ on $(\boldsymbol{X}_{i2} - \boldsymbol{X}_{i1})$.

Notice that this model removes the potential for bias due to confounding by all measured and unmeasured time-invariant characteristics of individuals (as long as the effect is constant over time).

Fixed effect model

▶ This approach can be expanded with the mean-centered model

$$Y_{ij}^* = oldsymbol{X}_{ij}^*oldsymbol{eta} + e_{ij}$$

where
$$Y_{ij}^* = Y_{ij} - \bar{Y}_i$$
 and $\boldsymbol{X}_{ij}^* = \boldsymbol{X}_{ij} - \bar{\boldsymbol{X}}_i$.

▶ Or with the *first difference* model for $j = 2, ..., n_i$

$$Y_{ij}^\dagger = oldsymbol{\mathcal{X}}_{ij}^\dagger oldsymbol{eta}^\dagger + e_{ij}^\dagger$$

where
$$Y_{ij}^{\dagger} = Y_{ij} - Y_{i1}$$
 and $\boldsymbol{X}_{ij}^{\dagger} = \boldsymbol{X}_{ij} - \boldsymbol{X}_{i1}$.

BIOS 755: Fixed versus Random effect models (longitudinal versus cross-sectional effects)

Fixed Models

Fixed effect model

- This model removes all the variation due to time-invariant covariates.
- ▶ If the random intercept model is correct, the correlation e_{ij} can be ignored
 - assuming only time-invariant covariates are causing the dependence between measurements.
- ▶ To fit this model we'll use proc glm with an independent correlation matrix.

GO TO EXAMPLE

Random effect versus Fixed effect model

Some technical differences:

- ▶ The fixed effect model allows for correlation between α_i and \boldsymbol{X}_{ij} , and α_i and \boldsymbol{W}_i .
- The random effect model does not allow for this correlation and biases in β arise when violated.
- ► The random effect model allows for estimation of time-invariant fixed-effects, the fixed effect model does not.
- The random effect model is more efficient than the fixed effect model.
- ▶ Individuals must have more than 1 observation in the fixed effect model.

Longitudinal vs Cross-sectional effects

Introduction

- ▶ It is possible to allow for **longitudinal** and **cross-sectional** effects in longitudinal analyses.
- Such an approach acknowledges the two distinct sources of variation in a covariate:
 - one based on within-subject variation, and
 - one based on between-subject variation.
- Such a model recognized that longitudinal data provide information about
 - how individuals differ at any one occasion, and
 - how an individuals response varies over time.
- Commonly these effects are erroneously combined.

- Suppose there is a study on the impact of talkativeness and well-being (subjectively measured).
- There could be a positive association between talkativeness and well-being between-people:
 - people who are (on average) more talkative than others are (on average) happier than others.
- ► There could be a positive association between talkativeness and well-being within-people:
 - people who are more talkative today (than they usually are) are happier today (than they usually are).

BIOS 755: Fixed versus Random effect models (longitudinal versus cross-sectional effects)

Longitudinal and Cross-sectional effects

- These effects may be equal,
 - ▶ if a person is 20% more talkative (either between or within), we predict they will score 15% higher on their well-being (on average).

- These effects may be equal,
 - ▶ if a person is 20% more talkative (either between or within), we predict they will score 15% higher on their well-being (on average).
- These effects may be different,
 - ▶ if person A is 20% more talkative than person B (on average), we predict person A will score 5% higher than person B on their well-being (on average), while
 - ▶ if person A is 20% more talkative today (than they usually are), we predict they will score 20% higher than usual on their well-being (on average).

- These effects may be equal,
 - ▶ if a person is 20% more talkative (either between or within), we predict they will score 15% higher on their well-being (on average).
- These effects may be different,
 - ▶ if person A is 20% more talkative than person B (on average), we predict person A will score 5% higher than person B on their well-being (on average), while
 - ▶ if person A is 20% more talkative today (than they usually are), we predict they will score 20% higher than usual on their well-being (on average).
- These effects may be the opposite,
 - ▶ if person A is 20% more talkative than person B (on average), we predict person A will score 5% higher than person B on their well-being (on average), while
 - ▶ if person *A* is 20% more talkative today (than they usually are), we predict they will score 10% lower than usual on their well-being (on average).

- Between person effects
 - ▶ if person A is 20% more talkative than person B (on average), we predict person A will score 5% higher than person B on their well-being (on average), while
 - ▶ if person A is 20% more talkative today (than they usually are), we predict they will score 20% higher than usual on their well-being (on average).
 - ▶ if person *A* is 20% more talkative than person *B* (on average), we predict person *A* will score 5% higher than person *B* on their well-being (on average), while
 - ▶ if person A is 20% more talkative today (than they usually are), we predict they will score 10% lower than usual on their well-being (on average).

Example

▶ Within person effects

- ▶ if person A is 20% more talkative than person B (on average), we predict person A will score 5% higher than person B on their well-being (on average), while
- ▶ if person A is 20% more talkative today (than they usually are), we predict they will score 20% higher than usual on their well-being (on average).
- ▶ if person A is 20% more talkative than person B (on average), we predict person A will score 5% higher than person B on their well-being (on average), while
- ▶ if person *A* is 20% more talkative today (than they usually are), we predict they will score 10% lower than usual on their well-being (on average).

Longitudinal and cross-sectional information

- Assessment of within-subject changes in the response due to aging (for example) can only be achieved within a longitudinal study design.
- What would happen with a cross-sectional design?
- ▶ Recall the Muscatine Coronary Risk Factor (MCRF) study which had five cohorts of children, initially aged 5–7, 7–9, 9–11, 11–13, and 13–15.
- Goal: determine whether the risk for obesity increases with age.
- Measurements were taken in 1977, 1979, and 1981.
- Suppose we have BMI as an outcome of interest.

Model

- ► To combine longitudinal and cross-sectional effects we will include both effects in the model.
- For example, we can use the linear mixed effects model:

$$Y_{ij} = oldsymbol{X}_{ij}^*oldsymbol{eta}^{(L)} + oldsymbol{X}_{i1}'oldsymbol{eta}^{(C)} + oldsymbol{W}_i'\gamma + oldsymbol{Z}_{ij}'b_i + e_{ij}$$

where $\boldsymbol{X}_{ij}^* = \boldsymbol{X}_{ij} - \boldsymbol{X}_{i1}$.

- ▶ Here, $\beta^{(C)}$ represent the cross-section effects while $\beta^{(L)}$ are the longitudinal effects.
- ▶ This is one example, another example is using $X_{ij}^* = X_{ij} \bar{X}_i$ and \bar{X}_i .

Interpretation

For the baseline measurement, it's straightforward to show that

$$E(Y_{i1}) = \boldsymbol{X}'_{i1} \boldsymbol{\beta}^{(C)} + \boldsymbol{W}'_{i} \gamma$$

so $\beta^{(C)}$ is the expected difference in the baseline outcome for a 1 unit change in X_{i1} .

Further, the model for the within-subject changes is

$$E(Y_{ij} - Y_{i1}) = \mathbf{X}_{ij}^* \beta^{(L)} + \mathbf{X}_{i1}' \beta^{(C)} + \mathbf{W}_{i}' \gamma - \left(\mathbf{X}_{i1}^* \beta^{(L)} + \mathbf{X}_{i1}' \beta^{(C)} + \mathbf{W}_{i}' \gamma \right)$$

$$= (\mathbf{X}_{ij} - \mathbf{X}_{i1})' \beta^{(L)}$$

so $\beta^{(L)}$ is the expected within-person change from baseline in the outcome for a 1 unit increase in X_{ii} from baseline.

Let A_{ij} be the age of person i at measurement j and Y_{ij} their BMI. One option is to fit the model

$$Y_{ij} = \beta_0 + \beta_1 A_{ij} + b_{0i} + \epsilon_{ij}$$

Separating out the cross-sectional and longitudinal effects of age we have

$$Y_{ij} = \beta_0 + \beta_1^{(L)} A_{ij}^* + \beta_1^{(C)} A_{i1} + b_{0i} + \varepsilon_{ij}$$

where $A_{ii}^* = A_{ij} - A_{i1}$ is the change in age from baseline.

When there is not a well-defined baseline measurement, I prefer the average model.

▶ Separating out the cross-sectional and longitudinal effects of age we have

$$Y_{ij} = \beta_0^* + \beta_1^{(L)} A_{ij}^* + \beta_1^{(C)} A_{i1} + b_{0i}^* + \varepsilon_{ij}$$

where $A_{ij}^* = A_{ij} - \bar{A}_i$ and \bar{A}_i is the persons average age in the study.

- For subjects with a baseline age that was 1 unit higher, we expect their baseline outcome to be $\beta_1^{(C)}$ units larger.
- During our study, if an individual ages 1 year from baseline, the expected change in the outcome is $\beta_1^{(L)}$ units from baseline.

▶ We can also do this with the average, where our model is

$$Y_{ij} = \beta_0 + \beta_1^{(L)} A_{ij}^* + \beta_1^{(C)} \bar{A}_i + b_{0i} + \varepsilon_{ij}$$

with
$$\bar{A}_i = \frac{\sum_{j=1}^{n_i} A_{ij}}{n_i}$$
.

- For subjects with an average age that was 1 unit higher, we expect their average outcome to be $\beta_1^{(C)}$ units larger.
- During our study, if an individual ages 1 year, the expected change in the outcome is $\beta_1^{(L)}$ units from their average outcome.

$oldsymbol{eta}^{(L)}$ versus $oldsymbol{eta}^{(C)}$

Notice that when $\beta^{(L)} = \beta^{(C)} = \beta$

$$Y_{ij} = \boldsymbol{X}_{ij}^* \boldsymbol{\beta}^{(L)} + \boldsymbol{X}_{i1}' \boldsymbol{\beta}^{(C)} + \boldsymbol{W}_i' \boldsymbol{\gamma} + \boldsymbol{Z}_{ij}' b_i + e_{ij}$$
$$= \boldsymbol{X}_{ij}' \boldsymbol{\beta} + \boldsymbol{W}_i' \boldsymbol{\gamma} + \boldsymbol{Z}_{ij}' b_i + e_{ij}$$

which is the "standard" mixed effects model

▶ So the hypothesis test $H_0: \beta^{(L)} = \beta^{(C)}$ tests whether longitudinal and cross section effects are equal.

Longitudinal and cross-sectional information

- Could we measure the effect of age using only data from 1977?
- ightharpoonup Differences in $eta^{(L)}$ versus $eta^{(C)}$ can arise when there are cohort or period effects.
- When we assume $\beta^{(L)} = \beta^{(C)} = \beta$, i.e., use the "standard" linear mixed effects model, we get an estimate for β that is a combination of $\beta^{(L)}$ and $\beta^{(C)}$.