Operational Analytics - project-3

1. Project Description

This project focuses on **Operational Analytics**, aiming to investigate company-wide operations using SQL. The analysis involves two case studies:

- Job Data Analysis Understanding performance and quality across job reviews.
- 2. **Metric Spike Investigation** Analyzing behavioral trends and engagement metrics to detect changes in user activity.

2. Project Approach

- Data was provided in .csv files and imported into Pandas (Python) for exploratory analysis and SQL logic simulation.
- Each business question was broken into tasks, followed by SQL query simulation using DataFrame operations.
- Resulting insights were interpreted and summarized to guide strategic recommendations.

3. Tech Stack

- **Python (Pandas)**: For simulating SQL queries and data manipulation.
- MySQL Workbench: Intended SQL engine for final deployment.
- Excel/Google Sheets: For exporting output snapshots.
- Google Drive: For storing and sharing final report.

4. Case Study 1: Job Data Analysis

Task 1: Jobs Reviewed Per Hour (Nov 2020)

SQL Query:

SELECT

DATE(ds) AS review_date,
HOUR(TIMESTAMP(ds)) AS review_hour,
COUNT(*) AS jobs_reviewed

FROM job data

WHERE ds BETWEEN '2020-11-01' AND '2020-11-30'

GROUP BY review_date, review_hour

ORDER BY review_date, review_hour;

Output:

ds	hour	jobs_reviewed
2020-11-25	18	1
2020-11-26	6	1
2020-11-27	20	1

Conclusion:

Hourly review activity was generally balanced with low concurrency. Useful for detecting peak workflow hours.

Insights:

- No visible clustering of job reviews; possibly auto-assigned or evenly distributed workflows.
- Recommending more structured time-window allocation for reviewer efficiency.

Task 2: 7-Day Rolling Throughput

SQL Query:

```
WITH daily_stats AS (
SELECT
ds,
COUNT(*) AS total_jobs,
SUM(time_spent) AS total_time
FROM job_data
GROUP BY ds
)
SELECT
ds,
total_jobs / total_time AS throughput,
AVG(total_jobs / total_time) OVER (ORDER BY ds ROWS BETWEEN 6
PRECEDING AND CURRENT ROW) AS rolling_avg_7d
FROM daily_stats;
```

Output:

ds	throughp ut	rolling_avg_7d
2020-11-28	0.0606	NULL
2020-11-29	0.0500	NULL

Conclusion:

Rolling averages smooth out anomalies, offering better trend analysis over time.

Insights:

• Sudden throughput spikes could indicate system errors or batch task releases.

• Recommend monitoring both raw and smoothed metrics for balance.

Task 3: Language Share (Last 30 Days)

SQL Query:

SELECT

language,

ROUND(100.0 * COUNT(*) / (SELECT COUNT(*) FROM job_data WHERE ds >= DATE_SUB(MAX(ds), INTERVAL 30 DAY)), 2) AS share FROM job_data

WHERE ds >= DATE_SUB(MAX(ds), INTERVAL 30 DAY)
GROUP BY language;

Output:

Language	Share (%)
Persian	37.5
English	12.5
Arabic	12.5
Hindi	12.5
French	12.5

Insights:

- Persian dominates the review language pool. May indicate geographical focus.
- Recommending localization improvements and language-based staffing allocation.

Task 4: Duplicate Detection

SQL Query:

```
SELECT *
FROM job_data
GROUP BY job_id, actor_id, event, language, time_spent, org, ds
HAVING COUNT(*) > 1;
```

Output:

• No duplicate rows detected.

Insights:

• Data integrity confirmed. No remedial action needed for duplicates.

Case Study 2: Investigating Metric Spike

Task 1: Weekly User Engagement

SQL Query:

SELECT
DATE_TRUNC('week', occurred_at) AS week,
COUNT(DISTINCT user_id) AS active_users
FROM events
GROUP BY week;

Output:

Week	Active Users
2014-04-28	701
2014-05-05	1054

Insights:

• Consistent weekly increase in engagement; useful for retention analysis and campaign planning.

Task 2: User Growth Over Time

SQL Query:

SELECT
DATE_TRUNC('week', created_at) AS week,
COUNT(user_id) OVER (ORDER BY DATE_TRUNC('week', created_at))
AS cumulative_users
FROM users;

Output:

Week	Cumulative	
	Users	
2013-01-07	55	
2013-01-14	102	

Insights:

• Growth trajectory is healthy and incremental, signaling good acquisition strategy.

Task 3: Weekly Retention by Cohort

SQL Query:

```
signup_week,
event_week,
COUNT(DISTINCT user_id) AS retained_users
FROM (
SELECT
u.user_id,
DATE_TRUNC('week', u.created_at) AS signup_week,
DATE_TRUNC('week', e.occurred_at) AS event_week
FROM users u
JOIN events e ON u.user_id = e.user_id
) t
GROUP BY signup_week, event_week;
```

Output:

Signup Week Event Week Retained Users

2012-12-31 2014-04-28 2

Insights:

• Small but consistent retention across long periods. Indicates long-term value from early users.

Task 4: Weekly Engagement Per Device

SQL Query:

SELECT
DATE_TRUNC('week', occurred_at) AS week, device,
COUNT(DISTINCT user_id) AS active_users
FROM events
GROUP BY week, device;

Output:

Week	Device	Active Users
2014-04-28	ASUS Chromebook	23

Insights:

• Chromebook and mobile engagement are higher than desktop in early weeks. Recommend responsive UI focus.

Task 5: Email Engagement

SQL Query:

SELECT
DATE_TRUNC('week', occurred_at) AS week, action,
COUNT(*) AS count
FROM email_events
GROUP BY week, action;

Output:

Week	Action	Count
2014-04-28	email_clickthrough	187
2014-04-28	sent_weekly_digest	908

Insights:

- Digest emails are the most frequent and should be optimized for higher click-through rates.
- Re-engagement campaigns need follow-up tracking.