Image Processing and Computer Vision

Multi-Resolution Analysis (MRA)

FFT Vs Wavelet

- FFT, basis functions: sinusoids
- Wavelet transforms: small waves, called wavelet
- FFT can only offer frequency information
- Wavelet: frequency + temporal information
- Fourier analysis doesn't work well on discontinuous, "bursty" data
 - music, video, power, earthquakes,...

Fourier versus Wavelets

Fourier

- Loses time (location) coordinate completely
- Analyses the whole signal
- Short pieces lose "frequency" meaning

Wavelets

- Localized time-frequency analysis
- Short signal pieces also have significance
- Scale = Frequency band

Wavelet Definition

"The wavelet transform is a tool that cuts up data, functions or operators into different frequency components, and then studies each component with a resolution matched to its scale"

Dr. Ingrid Daubechies, Lucent, Princeton U

Fourier transform

Fourier transform:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

Continuous Wavelet transform

```
for each Scale

for each Position

Coefficient (S,P) = Signal x Wavelet (S,P)

all time

end
```


Wavelet Transform

- Scale and shift original waveform
- Compare to a wavelet
- Assign a coefficient of similarity

Scaling-- value of "stretch"

Scaling a wavelet simply means stretching (or compressing) it.

$$f(t) = \sin(t)$$

scale factor1

$$f(t) = \sin(3t)$$

scale factor 3

Prof.(Dr.) Deepali S. Jadhav Dept. of Information Technology, VIT, Pune

More on scaling

- It lets you either narrow down the frequency band of interest, or determine the frequency content in a narrower time interval
- Scaling = frequency band
- Good for non-stationary data
- Low scale → a Compressed wavelet → Rapidly changing details→High frequency .
- High scale $\rightarrow a$ Stretched wavelet \rightarrow Slowly changing, coarse features → Low frequency

Scale is (sort of) like frequency

Small scale

- -Rapidly changing details,
- -Like high frequency

Large scale

- -Slowly changing details
- -Like low frequency

Scale is (sort of) like frequency

The scale factor works exactly the same with wavelets. The smaller the scale factor, the more "compressed" the wavelet.

Shifting

Shifting a wavelet simply means delaying (or hastening) its onset. Mathematically, delaying a function f(t) by k is represented by f(t-k)

Shifted wavelet function $\psi(t-k)$

Shifting

Dept. of Information Technology, VIT, Pune

Five Easy Steps to a Continuous Wavelet Transform

- 1. Take a wavelet and compare it to a section at the start of the original signal.
- 2. Calculate a correlation coefficient c

Five Easy Steps to a Continuous Wavelet Transform

- 3. Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the whole signal.
- 4. Scale (stretch) the wavelet and repeat steps 1 through 3.
- 5. Repeat steps 1 through 4 for all scales.

Coefficient Plots

Discrete Wavelet Transform

- "Subset" of scale and position based on power of two
 - rather than every "possible" set of scale and position in continuous wavelet transform
- Behaves like a filter bank: signal in, coefficients out
- Down-sampling necessary (twice as much data as original signal)

Discrete Wavelet transform

Results of wavelet transform: approximation and details

- Low frequency:
 - approximation (a)

- High frequency
 - Details (d)

 "Decomposition" can be performed iteratively

Levels of decomposition

- Successively decompose the approximation
- Level 5 decomposition = a5 + d5 + d4 + d3 + d2 + d1
- No limit to the number of decompositions performed

Wavelet synthesis

- •Re-creates signal from coefficients
- •Up-sampling required

Multi-level Wavelet Analysis

Multi-level wavelet decomposition tree

Reassembling original signal

$$S = A_1 + D_1$$

$$= A_2 + D_2 + D_1$$

$$= A_3 + D_3 + D_2 + D_1$$

Non-stationary Property of Natural Image

Pyramidal Image Structure

FIGURE 7.2 (a) A pyramidal image structure and (b) system block diagram for creating it.

Prof.(Dr.) Deepali S. Jadhav Dept. of Information Technology, VIT, Pune

Image Pyramids

- Original image, the base of the pyramid, in the level $J = log_2N$, Normally truncated to P+1 levels.
- Approximation pyramids, predication residual pyramids
- Steps: .1. Compute a reduced-resolution approximation (from j to j-1 level) by downsampling; 2. Upsample the output of step1, get predication image; 3. Difference between the predication of step 2 and the input of step1.

Subband Coding

a b

FIGURE 7.4 (a) A two-band filter bank for onedimensional subband coding and decoding, and (b) its spectrum splitting properties.

Subband Coding

- Filters $h_1(n)$ and $h_2(n)$ are half-band digital filters, their transfer characteristics H_0 -low pass filter, output is an approximation of x(n) and H_1 -high pass filter, output is the high frequency or detail part of x(n)
- Criteria: $h_0(n)$, $h_1(n)$, $g_0(n)$, $g_1(n)$ are selected to reconstruct the input perfectly.

Z-transform

- Z- transform a generalization of the discrete Fourier transform
- The Z-transform is also the discrete time version of Laplace transform
- Given a sequence {x(n)}, its z-transform is
- X(z) =

$$\sum_{\infty}^{\infty} x(n) z^{-n}$$

29

Subband Coding

$$\begin{split} X(z) &= \frac{1}{2} [H_0(z)G_0(z) + H_1(z)G_1(z)]X(z) + \frac{1}{2} [H_0(-z)G_0(z) + H_1(-z)G_1(z)]X(-z) \\ &\quad H_0(-z)G_0(z) + H_1(-z)G_1(z) = 0 \\ &\quad H_0(z)G_0(z) + H_1(z)G_1(z) = 2 \end{split}$$

Filter	QMF	CQF	Orthonormal
$H_0(z)$	$H_0^2(z) - H_0^2(-z) = 2$	$H_0(z)H_0(z^{-1}) + H_0^2(-z)H_0(-z^{-1}) = 2$	$G_0(z^{-1})$
$H_1(z)$	$H_0(-z)$	$z^{-1}H_0(-z^{-1})$	$G_1(z^{-1})$
$G_0(z)$	$H_0(z)$	$H_0(z^{-1})$	$G_0(z)G_0(z^{-1}) + G_0(-z)G_0(-z^{-1}) = 2$
$G_1(z)$	$-H_0(-z)$	$zH_0(-z)$	$-z^{-2K+1}G_0(-z^{-1})$

TABLE 7.1Perfect reconstruction filter families.

2-D 4-band filter bank

Approximation

Subband Example

FIGURE 7.7 A four-band split of the vase in Fig. 7.1 using the subband coding system of Fig. 7.5.

Haar Transform

Haar transform, separable and symmetric

T = HFH, where F is an N×N image matrix

H is N×N transformation matrix, H contains the Haar basis functions, $h_k(z)$

$$H_0(t) = 1 \text{ for } 0 \le t < 1$$

$$H_{1}(t) = \begin{cases} 1if \ 0 \le t < \frac{1}{2} \\ -1if \ \frac{1}{2} \end{cases}$$

$$H_{2^{p}+n}(t) = \begin{cases} \sqrt{2^{p}} for \frac{n}{2^{p}} \le t < \frac{(n+0.5)}{2^{p}} \\ -\sqrt{2^{p}} for \frac{(n+0.5)}{2^{p}} \le t < \frac{(n+1)}{2^{p}} \end{cases}$$

$$0otherwise$$

where P = 1,2,3,... and $n = 0,1,...,2^p - 1$

Haar Transform

$$H_{1}(t) = \begin{cases} 1if \ 0 \le t < \frac{1}{2} \\ -1if \ \frac{1}{2} \end{cases}$$

$$H_{2^{p}+n}(t) = \begin{cases} \sqrt{2^{p}} for \frac{n}{2^{p}} \le t < \frac{(n+0.5)}{2^{p}} \\ -\sqrt{2^{p}} for \frac{(n+0.5)}{2^{p}} \le t < \frac{(n+1)}{2^{p}} \end{cases}$$

$$0otherwise$$

where
$$P = 1, 2, 3, ... and n = 0, 1, ..., 2^p - 1$$

Series Expansion

- In MRA, scaling function to create a series of approximations of a function or image, wavelet to encode the difference in information between different approximations
- A signal or function f(x) can be analyzed as a linear combination of expansion functions

$$f(x) = \sum_{k} \alpha_{k} \varphi_{k}$$

$$\alpha_{k} - \exp ansion coefficients$$

$$\varphi_{k}(x) - basisfunction$$

Scaling Function

Set $\{\phi_{j,k}(x)\}$ where,

$$\varphi_{j,k}(x) = 2^{j/2} \varphi(2^j x - k) forallj, k \in \mathbb{Z}$$

K determines the position of $\phi_{j,k}(x)$ along the x-axis, j -- $\phi_{j,k}(x)$ width, and $2^{j/2}$ —height or amplitude

The shape of $\phi_{j,k}(x)$ change with j, $\phi(x)$ is called **scaling function**

Haar scaling function

Fundamental Requirements of MRA

- The scaling function is orthogonal to its integer translate
- The subspaces spanned by the scaling function at low scales are nested within those spanned at higher scales
- The only function that is common to all V_j is f(x) = 0
- Any function can be represented with arbitrary precision

Refinement Equation

$$\varphi(x) = \varphi_{0,0}(x)$$

$$\varphi(x) = \sum_{n} h_{\varphi}(n) \sqrt{2} \varphi(2x - n)$$

 $h_{\omega}(x)$ coefficient –scaling function coefficient

 $h_{\omega}(x)$ – scaling vector

The expansion functions of any subspace can built from the next higher resolution space

Wavelet Functions

FIGURE 7.11 The relationship between scaling and wavelet function spaces.

Wavelet Functions

10/15/2024

Wavelet Function

10/15/2024

2-D Wavelet Transform

Prof.(Dr.) Deepali S. Jadhav Dept. of Information Technology, VIT, Pune

Wavelet Packets

2-D Wavelets

a b c d FIGURE 7.23 A three-scale FWT.

Prof.(Dr.) Deepali S. Jadhav Dept. of Information Technology, VIT, Pune

Applications of wavelets

- Pattern recognition
 - Biotech: to distinguish the normal from the pathological membranes
 - Biometrics: facial/corneal/fingerprint recognition
- Feature extraction
 - Metallurgy: characterization of rough surfaces
- Trend detection:
 - Finance: exploring variation of stock prices
- Perfect reconstruction
 - Communications: wireless channel signals
- Video compression JPEG 2000