

Máster Física Avanzada

Especialidad: Astrofísica

Trabajo Astrofísica Observacional

Diagrama HR y determinación de parámetros físicos de un cúmulo abierto.

Índice

1.	Objetivos	2
2.	Introducción teórica	2
3.	Metodología	4
4.	Resultados	6
5.	Conclusiones	12

1. Objetivos

Para el cúmulo abierto de M35, los objetivos del presente trabajo serán [1]:

- Obtención del diagrama de Hertzsprung-Russelldel (diagrama HR) con imágenes tomadas con los filtros B y V del sistema de Johnson.
- Determinación de la extinción interestelar y la distancia al cúmulo ajustando la Zero Age Main Sequence (ZAMS).

2. Introducción teórica

Para comprender en profundidad en qué consiste un diagrama HR, y ver su relación con la extinción interestelar y la distancia al cúmulo, se realizará un seguimiento por los conceptos básicos, definiéndolos en orden con la intención de tener un camino claro hacia los objetivos.

En astronomía hay que diferenciar bien entre dos magnitudes: la aparente y la absoluta [2], relacionadas con los flujos de energía recibido y emitido, respectivamente, por un astro.

La magnitud aparente, m, es la medida del brillo de un objeto celeste observado desde la Tierra, y que tiene en cuenta algunos parámetros como el brillo, l, (flujo recibido en la Tierra procedente del cuerpo celeste), entre otras, y viene dada por:

$$m = -2.5 \cdot \log \frac{l}{l_0},\tag{2.1}$$

donde l_0 representa el patrón de brillo de referencia que establece el origen de la escala, que depende implícitamente de la distancia al cuerpo.

Si lo que se quiere es una propiedad intrínseca del astro, y que no dependa de la distancia al mismo como la magnitud aparente, es posible definir una magnitud absoluta, M, (que indica cómo de brillante es la estrella) en función de la luminosidad absoluta, L, (flujo emitido por el cuerpo):

$$M = -2.5 \cdot \log \frac{L}{L_0},\tag{2.2}$$

con L_0 la luminosidad de referencia que fija el origen de la escala de magnitudes absolutas. Dicha constante se toma para que la magnitud absoluta de un astro coincida con su magnitud aparente si estuviese a una distancia de 10 pc del observador. Con esto en mente, la relación más básica entre ambas magnitudes se conoce como módulo de la distancia m - M, y viene dada por:

$$m - M = 5\log d(pc) - 5, (2.3)$$

con d la distancia real al cuerpo celeste medido en pársecs.

Para obtener una relación análoga a (2.3) pero que no depende de la distancia al cuerpo, se usan filtros que toman las medidas del brillo de una estrella en diferentes bandas espectrales (parte del espectro electromagnético que deja pasar un filtro en específico). Por ejemplo, en el sistema Johnson [3], que es el más utilizado, se tienen tres filtros: U, B y V, donde cada uno deja pasar, respectivamente, la luz ultravioleta, el azul y la banda visual.

Sus magnitudes aparentes se definen como U, B y V, respectivamente. Por lo que, con ayuda de (2.3), se llega al siguiente sistema de ecuaciones:

$$U - M_U = 5 \log d(\text{pc}) - 5,$$

 $B - M_B = 5 \log d(\text{pc}) - 5,$
 $V - M_V = 5 \log d(\text{pc}) - 5.$ (2.4)

En el presente trabajo se trabaja con los filtros B y V, por lo que el índice de color B-V se puede reescribir, con ayuda de las dos últimas expresiones, como:

$$B - V = M_B - M_V. (2.5)$$

Dicha ecuación es de gran interés ya que en ella se han conseguido relacionar unas propiedades intrínsecas de la estrella con las magnitudes aparentes (sin que aparezca la distancia al cúmulo). Estas últimas magnitudes suelen ser dadas, tal que $B,\ U$ y V las denominaremos como magnitudes en el sistema estándar, que aparecen en la lista de estrellas estándares.

Es de interés ver como se relacionan las magnitudes en el sistema estándar con las instrumentales u, v y b, las cuáles están vinculadas, sobre todo, a las características de la instrumentación utilizada, y que pueden variar entre telescopios para una misma estrella.

Para el sistema Johnson, las ecuaciones de transformación que relacionan las magnitudes instrumentales con las estándares son [4]:

$$V = v + \epsilon (B - V) + Z_{v},$$

$$(B - V) = \mu (b - v) + Z_{b-v},$$

$$(U - B) = \phi (u - b) + Z_{u-b}.$$
(2.6)

En ellas, ϵ , μ y ϕ son los coeficientes de la transformación, y Z_v , Z_{b-v} y Z_{u-b} los puntos cero de la transformación. Se usarán las dos primeras ecuaciones ya que se han tomado imágenes con los filtros B y V.

Con todos estos conceptos en mente, un diagrama HR consiste en un gráfico de dispersión de estrellas, colocándose en el eje vertical V, y en el eje horizontal B-V, por ejemplo. En la bibliografía, suele expresarse en el eje vertical una magnitud absoluta en vez de la aparente. La cosa es que, para un cúmulo abierto en el que todas las estrellas se encontrarán a la misma distancia, según (2.3), todas las magnitudes verificarán la misma ecuación.

Si se dan los datos recién mencionados en el párrafo anterior de ese mismo cúmulo, pero sólo para la ZAMS ($Zero\ Age\ Main\ Sequence$), y se ajustan al diagrama HR, es posible hallar la distancia al cúmulo de estudio: el desplazamiento necesario de la ZAMS en el eje vertical hasta que coincida con el diagrama HR corresponde con el módulo de distancia del cúmulo (m-M); mientras que el desplazamiento en el eje horizontal corresponderá con el exceso de color (E(B-V)). Por ende, la distancia al cúmulo será una generalización de la expresión (2.3), en la que se tiene en cuenta la extinción interestelar (la luz sufre absorción al propagarse por el medio interestelar):

$$m - M = 5 \log d(pc) - 5 + A_V,$$
 (2.7)

con d la distancia que se desea hallar al cúmulo en pársecs, y la extinción estelar A_V vendrá dada por:

$$A_V = 3.1 \cdot E(B - V). \tag{2.8}$$

Este parámetro permite diferenciar entre dos estrellas con las mismas magnitudes e índices fotométricos ya que atraviesan distintos medios intergalácticos donde la luz se dispersará y absorberá en su camino hacia la Tierra. Para un cúmulo, esta extinción estelar será aproximadamente la misma porque la luz de sus distintas estrellas atravesarán el mismo medio interestelar.

3. Metodología

El cúmulo de estudio será el cúmulo abierto ubicado en la constelación de Géminis M35 (conocido como *Messier* 35 o NGC 2168), que se puede observar en la Figura 1. Concretamente, estudiaremos la región marcada en rojo, que se puede observar más detalladamente en la Figura 2.

Figura 1: Cúmulo M35. El cuadrado rojo indica la región que se ha estudiado. Esta imagen se corresponde al filtro B con una exposición de 150 s.

A partir de una serie de imágenes astronómicas dadas por el profesor, nuestro primer paso será eliminar la signatura instrumental presente en ellas con la ayuda del paquete de programas IRAF ($Image\ Reduction\ and\ Analysis\ Facility$). Realizaremos las correcciones siguiendo de cerca lo que se hizo en la Práctica 1 [5]: corregiremos la corriente de polarización (se resta una corriente de polarización media al resto de imágenes), la corriente de oscuridad (se resta la corriente de oscuridad por unidad de tiempo multiplicada a cada imagen, multiplicando por el tiempo exposición de la misma), y las variaciones de sensibilidad, que da varios flat promedios. En nuestro caso, trabajaremos con los filtros B y V, por lo que nos interesaremos en sus flats asociados.

Figura 2: Región del cúmulo M35 estudiada. Esta imagen se corresponde al filtro B con una exposición de 150 s.

Una vez tenemos las imágenes calibradas (en la Figura 1 observamos un ejemplo), podemos proceder a la obtención de la fotometría de apertura, para lo que se seguirá de cerca la Práctica 2 [6]: con los parámetros configurados, vamos seleccionando estrellas, y sus coordenadas y magnitudes b y v (se guardan las magnitudes en ficheros distintos entre sí automáticamente para diferenciarlos). Con todo este procedimiento, hemos obtenido de una manera sencilla las magnitudes instrumentales y las posiciones x e y de las estrellas de M35.

Para obtener las magnitudes B y V en el sistema estándar de cada estrella, nos ayudaremos de Aladin: una base de datos que recoge para las estrellas de nuestro interés su posición y sus magnitudes recién mencionadas gracias al catálogo APASS.

El último paso corresponderá en obtener, para una misma estrella, b, v, B y V: las magnitudes instrumentales de las que conocemos las coordenadas x e y de las estrellas, y las magnitudes en el sistema estándar donde cada estrella viene ubicada según la declinación, δ , y la ascensión recta, α . Dichas coordenadas se pueden relacionar con ayuda de SAOImageDS9: abrimos la imagen de nuestro cúmulo que tengamos abierta a la par en Aladin, y buscamos la estrella ubicándonos según sus posiciones x e y (de la que ya tenemos v y b), que nos aparecerán con sus respectivas α y δ , con las que nos podemos ubicar en Aladin, y obtener B y V.

Así, tendríamos para una misma estrella lo que buscábamos: las magnitudes instrumentales y en el sistema estándar. Este procedimiento se hará para 19 estrellas, necesarias para poder calibrar el instrumento. Lo obtenido se muestra en el Cuadro 1.

Los valores de M_V y b-v para la ZAMS fueron proporcionados por el profesor, que se encuentran en el Cuadro 3.

Cuadro 1: Magnitudes instrumentales y en el sistema estándar para distintas estrellas. Estas se han utilizado para realizar los ajustes de la primera y segunda ecuación de (2.6).

Coord	enadas	b	v	b-v	В	V	B-V
1719,404	2047,779	19,629	18,63	0,999	10,326	10,033	0,293
1780,693	1932,707	19,398	17,941	1,457	14,434	13,368	1,066
1783,498	2044,239	16,705	16,338	0,367	12,405	12,08	0,325
1859,386	1834,514	19,941	18,715	1,226	15,79	15,039	0,751
1869,653	2083,24	19,956	18,993	0,963	15,529	14,805	0,724
1897,932	1832,091	17,883	17,198	0,685	13,545	13,018	0,528
1911,955	2283,881	18,47	17,695	0,775	16,452	15,809	0,644
1944,411	2111,115	17,797	17,124	0,673	13,478	12,948	0,53
1975,372	2079,989	19,019	18,153	0,866	14,616	13,945	0,672
2005,221	1895,174	19,53	18,314	1,216	15,668	14,244	1,425
2024,919	2094,843	18,663	17,782	0,881	14,334	13,58	0,755
2033,116	2215,177	19,661	18,675	0,986	16,796	15,708	1,088
2039,271	1972,197	21,088	20,284	0,804	16,657	15,901	0,756
2104,02	1963,543	20,966	20,041	0,925	16,25	15,493	0,757
2169,221	1973,541	17,542	16,911	0,631	13,206	12,747	0,46
2200,482	2200,536	15,25	15,047	0,203	10,992	10,826	0,166
2267,931	1981,329	21,769	19,744	2,025	16,791	15,34	1,45
2270,157	2197,893	19,024	18,1	0,924	14,675	13,895	0,78
2297,322	2250,673	19,925	18,589	1,336	15,834	14,594	1,33

4. Resultados

Una vez hechas las correcciones pertinentes de las imágenes hemos extraído la fotometría de apertura, obtenido las magnitudes instrumentales $(b \ y \ v)$ y, finalmente, usando Aladin Sky Atlas, determinado las magnitudes en el sistema estándar de Johnson $(B \ y \ V)$. Todo esto lo hemos hecho siguiendo los pasos explicados anteriormente, y los datos se encuentran en el Cuadro 1.

Con toda esta información ya somos capaces de construir las ecuaciones de transformación (2.6) y de realizar los ajustes correspondientes para poder obtener los coeficientes de la transformación (ϵ y μ) y los puntos cero de la transformación (ϵ y ϵ y ϵ z_{b-v}). Estos coeficientes nos permitirán transformar las magnitudes instrumentales que hemos medido en magnitudes en el sistema estándar. Además, estos coeficientes nos dan una idea de la conformidad del sistema instrumental con el estándar: si el sistema es conforme, el coeficiente de color ϵ debe ser próximo a 0, mientras que el coeficiente de escala μ será próximos a 1.

Los ajustes se pueden observar en la Figura 3. A partir del ajuste 3(a) podemos determinar ϵ y Z_v , cuyos valores obtenidos son los siguientes:

$$\epsilon = 0.16 \pm 0.03,$$
 (4.1)

$$Z_v = -4.28 \pm 0.03,\tag{4.2}$$

y, a partir del ajuste 3(b), obtenemos μ y Z_{b-v} :

$$\mu = 0.76 \pm 0.12,\tag{4.3}$$

$$Z_{b-v} = 0.04 \pm 0.12. \tag{4.4}$$

A pesar de que los ajustes lineales no sean muy buenos, obtenemos unos resultados que son conformes con el sistema estándar, ya que $\mu \approx 1$ y $\epsilon \approx 0$. Por tanto, podemos

(a) Ajuste para obtener ϵ y Z_v .

(b) Ajuste para obtener μ y Z_{b-v} .

Figura 3: En (a) se ha representado el ajuste de la primera ecuación de (2.6), y en (b) el de la segunda. Se han usado los datos del Cuadro 1.

seguir trabajando gracias a que los ajustes nos proporcionan unos resultados cercanos a los teóricos.

Cuadro 2: Magnitudes instrumentales de todas las estrellas utilizadas en el estudio, así como las magnitudes corregidas después de realizar el ajuste.

Coord	enadas	b	v	b-v	$(B-V)_{corregida}$	$\mathbf{V}_{corregida}$
1697,18	2110,908	20,02	18,983	1,037	0,834	14,835
1711,917	1976,193	20,324	19,289	1,035	0,832	15,141
1719,404	2047,779	19,629	18,63	0,999	0,805	14,477
1726,709	2247,555	18,587	17,955	0,632	0,525	13,757
1771,698	2236,167	18,37	17,551	0,819	0,668	13,376
1780,693	1932,707	19,398	17,941	1,457	1,154	13,845
1781,163	1932,34	19,175	18,015	1,16	0,927	13,882
1783,032	1982,635	18,329	17,442	0,887	0,720	13,276
1783,498	2044,239	16,705	16,338	0,367	0,323	12,107
1822,909	1892,935	17,424	16,796	0,628	0,522	12,597
1859,386	1834,514	19,941	18,715	1,226	0,978	14,591
1858,791	1835,255	20,145	19,212	0,933	0,755	15,051
1869,653	2083,24	19,956	18,993	0,963	0,777	14,836
1896,881	2227,439	22,711	20,323	2,388	1,863	16,343
1897,932	1832,091	17,883	17,198	0,685	0,566	13,006
1907,599	2085,297	20,292	19,761	0,531	0,448	15,550
1911,955	2283,881	18,47	17,695	0,775	0,634	13,515
1944,411	2111,115	17,797	17,124	0,673	0,557	12,931
1972,766	2262,5	20,666	19,984	0,682	0,563	15,792
1975,372	2079,989	19,019	18,153	0,866	0,704	13,984
2005,221	1895,174	$19,\!53$	18,314	1,216	0,970	14,188
2024,919	2094,843	18,663	17,782	0,881	0,715	13,615
2033,116	2215,177	19,661	18,675	0,986	0,795	$14,\!521$
2039,271	1972,197	21,088	20,284	0,804	0,656	$16,\!107$
2049,427	1847,789	20,448	19,315	1,133	0,907	$15,\!179$
2104,02	1963,543	20,966	20,041	0,925	0,748	15,879
2117,218	1814,403	18,888	18,187	0,701	0,578	13,997
2146,237	1921,461	18,712	18,158	0,554	0,466	13,950
2169,221	1973,541	$17,\!542$	16,911	0,631	0,525	12,713
2187,186	1873,196	18,861	18,023	0,838	0,682	13,850
2200,482	2200,536	$15,\!25$	15,047	0,203	0,199	10,796
2204,308	1931,692	20,547	19,855	0,692	0,571	15,664
2254,769	1874,116	18,659	17,789	0,87	0,707	13,620
2267,931	1981,329	21,769	19,744	2,025	1,586	15,719
2268,9	2123,263	21,196	20,143	1,053	0,846	15,997
2270,157	2197,893	19,024	18,1	0,924	0,748	13,938
2272,494	1829,218	16,551	16,157	0,394	0,344	11,929
2287,705	1951,827	20,421	19,481	0,94	0,760	15,321
2297,322	2250,673	19,925	18,589	1,336	1,061	14,478
2309,964	2013,227	20,848	19,782	1,066	0,856	15,638
2381,271	2061,155	20,403	19,453	0,95	0,767	15,294
2403,879	1963,888	20,974	19,812	1,162	0,929	15,680

A partir de estos coeficientes podemos transformar las magnitudes, obteniéndose lo que encontramos en el Cuadro 2. Así pues, podemos representar el diagrama HR del cúmulo, cuyo resultado se encuentra en la Figura 4.

Figura 4: Diagrama HR del cúmulo M35. Hemos representado la magnitud V frente al índice de color B-V, cuyos datos han sido extraídos del Cuadro 2.

A continuación, representamos, con los datos proporcionados por el profesor del diagrama HR de la secuencia principal a edad cero, la ZAMS (Cuadro 3), conjuntamente con el diagrama HR representado anteriormente. En la Figura 5, observamos que las secuencias principales no coinciden. Así pues, tenemos que ajustar la ZAMS, moviéndola horizontalmente y verticalmente, hasta que coincidan y así poder calcular la distancia y la extinción estelar. Finalmente, obtenemos lo que se observa en la Figura 6.

Del ajuste de la ZAMS obtenemos un módulo de distancia del cúmulo de (m-M)=10.8, que hace referencia al desplazamiento vertical, y un exceso de color de E(B-V)=0.4, que hace referencia al desplazamiento horizontal. Con este último, podemos calcular la extinción estelar a través de la ecuación (2.8), obteniendo así un valor de $A_V=1.24$. Finalmente, ya tenemos todos los datos que aparecen en la ecuación (2.7), siendo capaces de calcular la distancia del cúmulo, obteniéndose un valor de d=816.58 pc. Si lo comparamos con el valor teórico de $d_{teo}=826\pm3$ pc [7], observamos que hay una ligera diferencia que puede estar causada a que solo nos hemos centrado en una pequeña región del cúmulo.

Cuadro 3: Magnitudes instrumentales de la secuencia principal a edad cero (ZAMS).

$egin{array}{c cccc} \mathbf{M}_V & (\mathbf{B-V})_0 \\ -2 & -0.265 \\ \hline -1.75 & -0.255 \\ \hline -1.5 & -0.245 \\ \hline -1.25 & -0.235 \\ \hline -1 & -0.22 \\ \hline \end{array}$
-1,75 -0,255 -1,5 -0,245 -1,25 -0,235 -1 -0,22
-1,5 -0,245 -1,25 -0,235 -1 -0,22
-1,25 -0,235 -1 -0,22
-1,25 -0,235 -1 -0,22
1 .
0.75 0.005
-0,75 -0,205
-0,5 -0,185
-0,25 -0,17
0 -0,15
0,25 -0,135
0,5 -0,115
0,75 -0,1
1 -0,08
1,25 -0,05
1,5 -0,015
1,75 0,03
2 0,08
2,25 0,145
2,5 0,2
2,75 0,26
3 0,31
3,25 0,355
3,5 0,4
3,75 0,44
4 0,475
4,25 0,51
4,5 0,56
4,75 0,6
5 0,65

Cuadro 4: Magnitudes instrumentales de la secuencia principal a edad cero (ZAMS) desplazadas.

\mathbf{M}_V	$(B-V)_0$
8,8	0,135
9,05	0,145
9,3	0,155
9,55	0,165
9,8	0,18
10,05	0,195
10,3	0,215
10,55	0,23
10,8	0,25
11,05	0,265
11,3	0,285
11,55	0,3
11,8	0,32
12,05	0,35
12,3	0,385
12,55	0,43
12,8	0,48
13,05	0,545
13,3	0,6
13,55	0,66
13,8	0,71
14,05	0,755
14,3	0,8
14,55	0,84
14,8	0,875
15,05	0,91
15,3	0,96
15,55	1
15,8	1,05

Figura 5: Diagrama HR (puntos naranja) junto la ZAMS sin desplazar (puntos azules). Se ha representado la magnitud V frente al índice de color B-V con los datos del Cuadro 2 y del Cuadro 3, respectivamente.

Figura 6: Diagrama HR (puntos naranja) junto la ZAMS desplazada (puntos azules). Se ha representado la magnitud V frente al índice de color B-V con los datos del Cuadro 2 y del Cuadro 4, respectivamente.

5. Conclusiones

En este trabajo, gracias a las técnicas adquiridas en clase tales como la fotometría y la utilización del software IRAF, hemos conseguido caracterizar el cúmulo M35. Para ello hemos representado satisfactoriamente el diagrama HR y, mediante el ajuste de la ZAMS, hemos determinado el exceso de color E(B-V)=0.4, la extinción estelar $A_V=1.24$ y, finalmente, la distancia al cúmulo d=816.58 pc. Este último difiere un poco del valor teórico de la bibliografía [7]. Esta ligera discrepancia puede ser debida a varios acontecimientos: no nos hemos basado en toda la imagen del cúmulo sino que lo hemos hecho en una pequeña región central; por otro lado, la precisión a la hora de elegir las estrellas no era muy buena ya que dependíamos de nuestro pulso y para elegir las estrellas y obtener sus datos. Así pues, una posible mejora sería volver a repetir todo el proceso pero eligiendo más estrellas y en distintos lugares del cúmulo.

No obstante, a pesar de estos pequeños inconvenientes, hemos logrado obtener unas ecuaciones de transformación conformes con el sistema estándar obteniendo unos valores de $\mu \approx 1$ y $\epsilon \approx 0$.

Referencias

- [1] Juan Fabregat. Trabajo 1: Diagrama hr y determinación de parámetros físicos de un cúmulo abierto. Astrofísica Observacional, 2023.
- [2] David Galadí-Enríquez, Vicent J Martínez, Enric Marco Soler, and Joan Antoni Miralles. *Astronomía fundamental*, volume 81. Universitat de València, 2005.
- [3] H. L. Johnson, R. I. Mitchell, B. Iriarte, and W. Z. Wisniewski. UBVRIJKL Photometry of the Bright Stars. *Communications of the Lunar and Planetary Laboratory*, 4:99–110, January 1966.
- [4] Juan Fabregat. Apuntes de astrofísica observacional. Astrofísica Observacional, 2023.
- [5] Juan Fabregat. Práctica 1: Calibración y análisis de las imágenes astronómicas. Astrofísica Observacional, 2023.
- [6] Juan Fabregat. Práctica 2: Fotometría de apertura. Astrofísica Observacional, 2023.
- [7] Anna C Childs, Aaron M Geller, Ted von Hippel, Erin Motherway, and Claire Zwicker. Goodbye to chi-by-eye: A bayesian analysis of photometric binaries in six open clusters. arXiv preprint arXiv:2308.16282, 2023.