Ajay Kumar Garg Engineering College, Ghaziabad

Department of ECE

Sessional Test-2

Course: B. Tech Semester: V

Session: 2017-18 Section: EN-1, EN-2
Subject: Fundamentals of E.M Theory Sub. Code: NEC-508
Max Marks: 50 Time: 2 hour

Note: Answer all the sections.

Section-A

A. Attempt **all** the parts.

(5x2 = 10)

- 1. Tabulate the analogy between Electric and Magnetic Fields.
- 2. For the current density $I = 10z \sin^2 \emptyset \hat{a}_\rho A/m^2$, Find the current through the cylindrical

surface $\rho = 2, 1 \le z \ge 5 m$.

- 3. Given the potential $V = \frac{10}{r^2} \sin \theta \cos \emptyset$, find the electric flux density **D** at $(2, \pi/2, 0)$.
- 4. State and explain Poison's and Laplace's equation.
- 5. Define continuity equation?

Section-B

B. Attempt **all** the parts.

(5x5 = 25)

- 6. State the Coulombs law and derive the electric field intensity for the infinite line charge distribution.
- 7. Calculate the electric flux density everywhere for a Uniformly Charged Sphere (application of Gauss law) of radius 'a' with a uniform charge ρ_o .

Given that $\mathbf{D} = z\rho \cos^2 \emptyset \ \hat{a}_z \ ^C/_{m^2}$, calculate the charge density at $(1, \pi/4, 3)$ and the total

charge enclosed by the cylinder of radius 1m with $-2 \le z \ge 2$ m.

- 8. Derive an expression for energy density in electrostatic fields.
- 9. A spherical capacitance with a = 1.5 cm, b = 4 cm has an inhomogeneous dielectric of Calculate the capacitance of the capacitance.
- 10. State Biot Savart's law and derive an expression for magnetic field intensity due to infinite straight line current carrying conductor.

Section-C

C. Attempt **all** the parts.

- (2x7.5 = 15)
- 11. Derive all the Maxwell Equation with their physical significance for time invariant electric and magnetic field.
- 12. Discuss various boundary conditions as applied to electric field between dielectric dielectric, conductor dielectric and conductor- free space.