Análise de Algoritmos Recursivos

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

"Para entender recursão, você primeiro tem que entender recursão."

Anônimo.

Projetando Algoritmos

Entendendo e melhorando

Até agora:

- ▶ Ordenamos incrementalmente com o INSERTION-SORT.
- ▶ Vimos que sua complexidade de pior caso é $\Theta(n^2)$.

Vamos estudar uma maneira alternativa de ordenar números:

- Utilizaremos uma técnica recursiva chamada de divisão e conquista.
- Muitas vezes, obtemos algoritmos mais rápidos do que os incrementais.

Algoritmos recursivos

- Um algoritmo recursivo resolve um problema:
 - Diretamente, se a instância for pequena.
 - Chamando a si mesmo uma ou mais vezes, se a instância não for pequena.
- As chamadas recursivas devem receber instâncias menores.

Divisão e conquista

Um algoritmo de divisão e conquista tem três etapas:

- 1. **DIVISÃO:** Dividir o problema em subproblemas semelhantes, mas com instâncias menores.
- CONQUISTA: Cada subproblema é resolvido recursivamente, ou diretamente se os subproblemas forem pequenos.
- COMBINAÇÃO: As soluções dos subproblemas são combinadas para obter uma solução da instância original.

Exemplo: ordenando usando divisão e conquista

MERGESORT é um exemplo clássico de divisão e conquista.

Ideia:

- 1. **DIVISÃO:** Divida um vetor de tamanho *n* em dois subvetores de tamanhos $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$.
- CONQUISTA: Ordene os dois subvetores recursivamente.
- 3. COMBINAÇÃO: Intercale os dois subvetores obtendo um vetor ordenado.

Vejamos um exemplo: 🖺

O vetor de entrada é representado como $A[p \dots r]$, com $p \le r$.

```
1 se p < r

2 | q \leftarrow \lfloor (p+r)/2 \rfloor

3 | MergeSort(A, p, q)

4 | MergeSort(A, q+1, r)

5 | Intercala(A, p, q, r)
```


O vetor de entrada é representado como $A[p \dots r]$, com $p \le r$.

```
1 se p < r

2 q \leftarrow \lfloor (p+r)/2 \rfloor

3 \frac{\text{MergeSort}(A, p, q)}{\text{MergeSort}(A, q+1, r)}

5 \frac{\text{Intercala}(A, p, q, r)}{\text{MergeSort}(A, p, q, r)}
```


O vetor de entrada é representado como $A[p \dots r]$, com $p \le r$.

```
1 se p < r

2 | q \leftarrow \lfloor (p+r)/2 \rfloor

3 | MERGESORT(A, p, q)

4 | MERGESORT(A, q+1, r)

5 | INTERCALA(A, p, q, r)
```

	р			q			r		
Α	33	44	55	66	99	11	22	77	88

O vetor de entrada é representado como $A[p \dots r]$, com $p \le r$.

```
1 se p < r

2 | q \leftarrow \lfloor (p+r)/2 \rfloor

3 | MERGESORT(A, p, q)

4 | MERGESORT(A, q+1, r)

5 | INTERCALA(A, p, q, r)
```


Combinando soluções dos subproblemas

Problema (Intercalar dois subvetores)

- ▶ **Entrada:** Um vetor A[p...r] tal que os subvetores A[p...q] e A[q+1...r] estão ordenados.
- ▶ **Saída:** Um rearranjo de A[p...r] ordenado.

Entrada:

Saída:

Pseudocódigo de INTERCALA

Algoritmo: Intercala (A, p, q, r)

```
1 para i \leftarrow p até q
 B[i] \leftarrow A[i]
 3 para j \leftarrow q + 1 até r
 A \mid B[r+q+1-j] \leftarrow A[j]
 5 i \leftarrow p
 6 \ i \leftarrow r
 7 para k \leftarrow p até r
         se B[i] < B[j]
              A[k] \leftarrow B[i]
             i \leftarrow i + 1
10
          senão
11
              A[k] \leftarrow B[j]
12
13
```


Complexidade de INTERCALA

Entrada:

Saída:

Tamanho da entrada: n = r - p + 1.

Consumo de tempo: $\Theta(n)$.

Complexidade de MERGESORT

```
1 se p < r

2 | q \leftarrow \lfloor (p+r)/2 \rfloor

3 | MergeSort(A, p, q)

4 | MergeSort(A, q+1, r)

5 | Intercala(A, p, q, r)
```

- ▶ Tamanho da entrada: n = r p + 1.
- Seja T(n) o número de instruções executadas no pior caso.

Complexidade de MERGESORT

```
1 se p < r

2 | q \leftarrow \lfloor (p+r)/2 \rfloor

3 | MERGESORT(A, p, q)

4 | MERGESORT(A, q+1, r)

5 | INTERCALA(A, p, q, r)
```

Linha	Tempo				
1 2	⊖(1) ⊖(1)				
3	$T(\lceil n/2 \rceil)$				
4	$T(\lfloor n/2 \rfloor)$				
5	$\Theta(n)$				

$$T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n) + \Theta(2).$$

Recorrência

O tempo de MERGESORT é dado pela fórmula

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{se } n = 2, 3, 4, \dots \end{cases}$$

Obtemos uma fórmula de recorrência:

- É a descrição de uma função em termos de si mesma.
- O tempo de um algoritmo recursivo costuma se descrito por uma recorrência.

Mas queremos uma fórmula fechada!

RECORRÊNCIAS

Resolução de recorrências

Considere a recorrência:

$$T(n) = \begin{cases} d & \text{se } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + an + b & \text{se } n \ge 2, \end{cases}$$

- ightharpoonup Queremos uma **FÓRMULA FECHADA** para T(n).
- Não é necessária a solução exata.
- ▶ Basta encontrar uma função f(n) tal que $T(n) \in \Theta(f(n))$.

Resolução de recorrências

Existem alguns métodos comuns para resolver recorrências:

- Substituição.
- ▶ Iteração.
- Árvore de recorrência.

Veremos também o chamado Teorema Master:

- Aplicável a uma família comum de recorrências.
- Fornece uma fórmula fechada diretamente.

Método da substituição

Ideia:

- 1. ADIVINHAR uma solução.
- 2. Demonstrar que é válida usando indução.

Nem sempre é fácil chutar a solução:

- ► É necessário ter experiência.
- Mas vamos obter sugestões com os métodos estudados.

Exemplo

Exemplo

Encontre uma fórmula fechada para:

$$T(n) = \begin{cases} 1 & \text{se } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n & \text{se } n \ge 2 \end{cases}$$

Chutamos que $T(n) \in O(n \log_2 n)$.

- Observe que há uma constante escondida na notação O.
- Para usar indução, precisamos conhecer essa constante.
- ▶ Então chutamos que $T(n) \le 3n \log_2 n$.

Exemplo: passo da indução

Suponha que a desigualdade vale para k < n.

$$T(n) = \mathbf{T}(\lceil \mathbf{n}/2 \rceil) + \mathbf{T}(\lceil \mathbf{n}/2 \rfloor) + n$$

$$\leq 3 \left\lceil \frac{\mathbf{n}}{2} \right\rceil \log_2 \left\lceil \frac{\mathbf{n}}{2} \right\rceil + 3 \left\lceil \frac{\mathbf{n}}{2} \right\rceil \log_2 \left\lceil \frac{\mathbf{n}}{2} \right\rceil + n \quad \text{(pela h.i.)}$$

$$\leq 3 \left\lceil \frac{\mathbf{n}}{2} \right\rceil \log_2 n + 3 \left\lceil \frac{\mathbf{n}}{2} \right\rceil (\log_2 n - 1) + n$$

$$= 3 \left(\left\lceil \frac{\mathbf{n}}{2} \right\rceil + \left\lceil \frac{\mathbf{n}}{2} \right\rceil \right) \log_2 n - 3 \left\lceil \frac{\mathbf{n}}{2} \right\rceil + n$$

$$= 3n \log_2 n - 3 \left\lceil \frac{\mathbf{n}}{2} \right\rceil + n$$

$$\leq 3n \log_2 n.$$

Mostramos o passo da indução!

Exemplo: base da indução

Äinda falta a base.

- ► Temos T(1) = 1, mas $3 \cdot 1 \cdot \log_2 1 = 0$.
- A desigualdade não vale para n = 1.
- Não temos uma base da indução.

Ok, queremos mostrar apenas $T(n) \in O(n \log_2 n)$.

- ▶ Basta mostrar que a desigualdade vale para $n \ge n_0$.
- ▶ Vamos escolher $n_0 = 2$.

Base da indução:

Para n=2 e n=3, temos:

$$T(2) = T(1) + T(1) + 2 = 4 \le 3 \cdot 2 \cdot \log_2 2 = 6$$

 $T(3) = T(2) + T(1) + 3 = 8 \le 3 \cdot 3 \cdot \log_2 3 \approx 14,26$

Por que precisamos de DOIS CASOS BÁSICOS?

Modificando um pouco o exemplo

Mas se tivéssemos T(1) = 8?

- A desigualdade não vale para n=2
- Temos T(2) = 8 + 8 + 2 = 18, mas $3 \cdot 2 \cdot \log_2 2 = 6$
- Podemos escolher uma constante multiplicativa maior.
- ▶ Tentando $T(n) \le 10n \log_2 n$, obtemos

$$T(2) = 18 \le 10 \cdot 2 \cdot \log_2 2 = 20$$

 $T(3) = 29 \le 10 \cdot 3 \cdot \log_2 3 \approx 47,55$

Conclusão:

Se o passo da indução vale, então podemos escolher valores adequados para as constantes $c \in n_0$.

Encontrando as constantes

Suponha que já adivinhamos que $T(n) \in O(n \log_2 n)$:

- ▶ Chutamos que $T(n) \le cn \log_2 n$ para c = 3.
- ▶ Depois escolhemos $n_0 = 2$.
- Como podemos encontrar essas constantes?

Uma maneira possível:

- 1. Suponha $T(n) \le cn \log_2 n$ para algum c genérico.
- 2. Substitua e desenvolva a expressão para T(n).
- 3. Determine c e n_0 de forma a provar o passo da indução.

Primeira tentativa

$$T(n) = \mathbf{T}(\lceil \mathbf{n}/2 \rceil) + \mathbf{T}(\lfloor \mathbf{n}/2 \rfloor) + n$$

$$\leq \mathbf{c} \lceil \frac{\mathbf{n}}{2} \rceil \log_2 \lceil \frac{\mathbf{n}}{2} \rceil + \mathbf{c} \lceil \frac{\mathbf{n}}{2} \rceil \log_2 \lceil \frac{\mathbf{n}}{2} \rceil + n$$

$$\leq c \lceil \frac{\mathbf{n}}{2} \rceil \log_2 n + c \lceil \frac{\mathbf{n}}{2} \rceil \log_2 n + n$$

$$= c \lceil \frac{\mathbf{n}}{2} \rceil + \lceil \frac{\mathbf{n}}{2} \rceil \log_2 n + n$$

$$= c n \log_2 n + n$$

Não deu certo...

Segunda tentativa

$$T(n) = \mathbf{T}(\lceil \mathbf{n}/2 \rceil) + \mathbf{T}(\lceil \mathbf{n}/2 \rfloor) + n$$

$$\leq \mathbf{c} \lceil \frac{\mathbf{n}}{2} \rceil \log_2 \lceil \frac{\mathbf{n}}{2} \rceil + \mathbf{c} \lceil \frac{\mathbf{n}}{2} \rceil \log_2 \lceil \frac{\mathbf{n}}{2} \rceil + n$$

$$\leq c \lceil \frac{\mathbf{n}}{2} \rceil \log_2 n + c \lceil \frac{\mathbf{n}}{2} \rceil (\log_2 n - 1) + n$$

$$= c \left(\lceil \frac{\mathbf{n}}{2} \rceil + \lceil \frac{\mathbf{n}}{2} \rceil \right) \log_2 n - c \lceil \frac{\mathbf{n}}{2} \rceil + n$$

$$= c n \log_2 n - c \lceil \frac{\mathbf{n}}{2} \rceil + n$$

$$\leq c n \log_2 n. \quad \text{(escolhendo } n \geq n_0 \text{ adequado)}$$

- ▶ Para a última desigualdade, queremos $-c|n/2| + n \le 0$.
- ▶ Basta que c = 3 e $n_0 > 2$.

Completando o exemplo

- ▶ Já mostramos que $T(n) \in O(n \log_2 n)$.
- ▶ Mas queremos mostrar que $T(n) \in \Theta(n \log_2 n)$.
 - Resta mostrar $T(n) \in \Omega(n \log_2 n)$.
 - A prova é similar.
 - Faça como exercício.

Análise de Algoritmos Recursivos

MO417 - Complexidade de Algoritmos I

Santiago Valdés Ravelo https://ic.unicamp.br/~santiago/ ravelo@unicamp.br

