

Credit Card Fraud

This dataset consists of credit card transactions in the western United States. It includes information about each transaction including customer details, the merchant and category of purchase, and whether or not the transaction was a fraud.

Note: You can access the data via the File menu or in the Context Panel at the top right of the screen next to Report, under Files. The data dictionary and filenames can be found at the bottom of this workbook.

Source: Kaggle 🛂 The data was partially cleaned and adapted by DataCamp.

We've added some guiding questions for analyzing this exciting dataset! Feel free to make this workbook yours by adding and removing cells, or editing any of the existing cells.

Explore this dataset

Here are some ideas to get your started with your analysis...

- 1. **Explore:** What types of purchases are most likely to be instances of fraud? Consider both product category and the amount of the transaction
- 2. | Visualize: Use a geospatial plot to visualize the fraud rates across different states.
- 3. Analyze: Are older customers significantly more likely to be victims of credit card fraud?

Scenario: Accurately Predict Instances of Credit Card Fraud

This scenario helps you develop an end-to-end project for your portfolio.

Background: A new credit card company has just entered the market in the western United States. The company is promoting itself as one of the safest credit cards to use. They have hired you as their data scientist in charge of identifying instances of fraud. The executive who hired you has have provided you with data on credit card transactions, including whether or not each transaction was fraudulent.

Objective: The executive wants to know how accurately you can predict fraud using this data. She has stressed that the model should err on the side of caution: it is not a big problem to flag transactions as fraudulent when they aren't just to be safe. In your report, you will need to describe how well your model functions and how it adheres to these criteria.

You will need to prepare a report that is accessible to a broad audience. It will need to outline your motivation, analysis steps, findings, and conclusions.

You can query the pre-loaded CSV file using SQL directly. Here's a sample query, followed by some sample Python code and outputs:

~	trans_date_trans_time	merchant v	category ~	amt ~	city ~	state v	lat ~	long ~	city_pop v	job ~	dob
0	2019-01-01T00:00:44.000	Heller, Gutma	grocery_pos	107.23	Orient	WA	48.8878	-118.2105	149	Special	1978-
1	2019-01-01T00:00:51.000	Lind-Buckridge	entertainment	220.11	Malad C	ID	42.1808	-112.262	4154	Nature	1962-
2	2019-01-01T00:07:27.000	Kiehn Inc	grocery_pos	96.29	Grenada	CA	41.6125	-122.5258	589	Systems	1945-
3	2019-01-01T00:09:03.000	Beier-Hyatt	shopping_pos	7.77	High Roll	NM	32.9396	-105.8189	899	Naval a	1967-
4	2019-01-01T00:21:32.000	Bruen-Yost	misc_pos	6.85	Freedom	WY	43.0172	-111.0292	471	Educati	1967-
↓											
5 rows <u>↓</u>											

~	trans_date_trans_time ~	merchant ∨	category ~	amt v	city ~	state	∨ lat	~	long ~	city_pop ~	job v	d
15	2019-01-01 00:49:25	LITTIE, GUTMAN	snopping_net	85.52	kavenna	NE	4:	L.U233	-98.9041	2202	Solicitor,	15
14	2019-01-01 00:56:12	Swaniawski, L	shopping_pos	317.14	Parks	AZ	3	5.2563	-111.95	759	Geologi	19
15	2019-01-01 00:56:59	Reichert, Huel	shopping_net	113.4	Fort Was	WY	43	3.0048	-108.8964	1645	Freight f	19
16	2019-01-01 01:00:48	Howe Lt	misc_pos	218.71	Littleton	СО	39	9.5994	-105.0044	320420	Water e	19
17	2019-01-01 01:02:16	Wolf Inc	grocery_pos	89.11	Meadville	МО	39	9.7795	-93.3014	964	Tourist i	19
18	2019-01-01 01:04:48	Vandervort-Fu	grocery_pos	50.68	Moab	UT	38	3.5677	-109.5271	9772	Locatio	19
19	2019-01-01 01:09:41	Ledner-Pfann	gas_transport	90.54	Hawthor	CA	33	3.9143	-118.3493	93193	Editor,	19
20	2019-01-01 01:19:02	Schaefer, Mc	gas_transport	51.33	Manville	WY		42.73	-104.7024	241	Educati	19
21	2019-01-01 01:22:56	Fisher-Schow	shopping_net	226.33	June Lake	CA	3	7.7773	-119.0825	633	Health s	19
22	2019-01-01 01:23:00	Medhurst PLC	shopping_net	215.99	Sixes	OR	4	12.825	-124.4409	217	Retail m	19
23	2019-01-01 01:23:17	Kerluke Inc	misc_net	1.47	Holstein	NE	40	0.4542	-98.6538	331	Telecom	19
24	2019-01-01 01:23:50	Bauch-Rayno	grocery_pos	122.05	Westervi	NE	4:	1.4193	-99.3844	73	Product	19
25	2019-01-01 01:34:25	Hills-Olson	grocery_net	27.03	Ballwin	МО	;	38.577	-90.5255	92608	Enginee	21
26	2019-01-01 01:36:06	Durgan-Aue	misc_net	23.8	Fields La	CA	40	0.7268	-124.2174	276	Scientis	19
27	2019-01-01 01:41:39	Pacocha-Bauch	shopping_pos	2.1	Grenada	CA	4:	L.6125	-122.5258	589	Systems	19

Data Dictionary

100 rows $\underline{\downarrow}$

transdatetrans_time	Transaction DateTime
merchant	Merchant Name
category	Category of Merchant
amt	Amount of Transaction
city	City of Credit Card Holder
state	State of Credit Card Holder
lat	Latitude Location of Purchase
long	Longitude Location of Purchase
city_pop	Credit Card Holder's City Population
job	Job of Credit Card Holder
dob	Date of Birth of Credit Card Holder
trans_num	Transaction Number
merch_lat	Latitude Location of Merchant
merch_long	Longitude Location of Merchant
is_fraud	Whether Transaction is Fraud (1) or Not (0)

·	merchant	is_fraud	A
0	Stokes, Christiansen and Sipes		
1	Predovic Inc		
2	Wisozk and Sons		
3	Murray-Smitham		
4	Friesen Lt		
5	Raynor, Reinger and Hagenes		
6	Heller-Langosh		
7	Padberg-Welch		
8	McGlynn-Heathcote		
9	Dooley-Thompson		
10	Gottlieb, Considine and Schultz		
11	Moen, Reinger and Murphy		
12	Hauck, Dietrich and Funk		
13	Pouros-Haag		_
14	Goyette Inc		
4		_	

1,782 rows <u>↓</u>

14 rows <u>↓</u>

0		
	shopping_net	
1	misc_net	
2	shopping_pos	
3	grocery_pos	
4	entertainment	
5	misc_pos	
6	home	
7	food_dining	
8	gas_transport	
9	personal_care	
10	kids_pets	
11	health_fitness	
12	grocery_net	
13	travel	

Fraud Rates Across States

To determine if older customers are significantly more likely to be victims of credit card fraud, you can use statistical analysis combined with visualization.

Statistical Significance Testing To determine if older customers are significantly more likely to be fraud victims, perform a hypothesis test (e.g., Chi-Square Test or T-Test).

To compare fraud rates for specific age ranges, you can calculate fraud rates for custom-defined age ranges and visualize or test them statistically.

Visualize Fraud Rates by Age Range Use a bar plot to compare fraud rates for the specified age ranges.

