Precalculus Lecture 16 Factoring Polynomials

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- Factorization overview
- Polynomial division
- Factoring cubics with rational root
- Polynomial inequalities

Lecture 16

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Factorization overview 4/16

Recall that $i^2 = -1$, $\sqrt{-1} = i$.

Example (Polynomial factorizations)

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2(x - (-\frac{5}{2}))(x - 1)$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x + i)(x - i)$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x + 1)(x - i)(x + i)$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= (x - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

$$(x - (-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i))(x - (-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i))$$

Todor Miley

Factorization overview 5/16

Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be factored into product of linear terms

$$p(x) = a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n),$$

where x_1, \ldots, x_n are the (not necessarily different) roots of p(x).

- Every pol. of deg. *n* can be factored as product of *n* linear factors.
- x_1, \ldots, x_n may be complex numbers. Reminder: complex numbers are of the form p + qi, where $i^2 = -1$ and $\sqrt{-1} = i$.
- While we can find $x_1, \ldots x_n$ with arbitrary precision, there may not exist a formula involving radicals for computing each x_1, \ldots, x_n .

Corollary

Every real polynomial can be factored into a product of real linear terms and real quadratic terms with no real roots, i.e., factors of form

- \bullet (x-r), where r is real and
- $ax^2 + bx + c$ with $b^2 4ac < 0$ where a, b, c are real.

Todor Miley Lecture 16 Factoring Polynomials 202

Factorization overview 6/16

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

=prod. real quadratics no roots & lin. terms.

Example

$$2x^{2} + 3x - 5 = (2x + 5)(x - 1) = 2\left(x - \left(-\frac{5}{2}\right)\right)(x - 1) \qquad \text{real roots}$$

$$x^{2} + 1 = x^{2} - (-1) = x^{2} - i^{2} = (x - (-i))(x - i) \qquad \text{complex roots}$$

$$x^{4} - 1 = (x^{2} - 1)(x^{2} + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

$$= (x - 1)(x - (-1))(x - i)(x - (-i)) \qquad \text{mixed roots}$$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1)$$

$$= \left(x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right)$$

$$\left(x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)\right)\left(x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right) \qquad \text{complex roots}$$

Todor Milev

Factorization overview 7/16

Factoring polynomials in practice

In theory every polynomial can be factored.

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- Theory guarantees numerical approximations for roots x_1, \ldots, x_n .
- Can we find algebraic formulas for x_1, \ldots, x_n ?
- No, if using finitely many operations $+, -, *, /, \sqrt[n]{}$.
- First (advanced) proof by Norwegian Niels Henrik Abel(1824) based on work of Italian Paolo Ruffini(1799).
- Yes, with extra operations. Difficult: google Galois Theory to get started.

Todor Milev

Factorization overview 8/16

What does factorization mean?

- Based on context, "to factor a polynomial" means one of:
 - Factor the polynomial over the rational numbers. Use integers/quotients, but no $\sqrt[n]{}$.
 - Factor the polynomial over the real numbers. Use radicals and/or numerical approximations, no use of $i = \sqrt{-1}$.
 - Fully factor the polynomial using complex numbers.

These poly's are equal	Type of factorization	
$x^4 + 1$	factored over rationals	
$(x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$	factored over the reals	
$ \begin{pmatrix} x - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) \end{pmatrix} \\ \left(x - \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)\right) \begin{pmatrix} x - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) \end{pmatrix} $	full complex factorization	

Todor Milev Lecture 16 Factoring Polynomials

2020

Factorization overview 9/16

Factorization over the rationals

 Suppose we want to factor a polynomial using only rational numbers (no numerical approximations).

No guarantee to get:

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = a_0(x - x_1) \dots (x - x_n)$$

- A factorization using rationals may have arbitrarily large factors.
- Efficient algorithms for factoring using rationals exist.
 - Kronecker algorithm (German Leopold Kronecker (1823-1891)).
 - Methods based on finite fields.
 - Lenstra-Lenstra-Lovász algorithm (Dutch, Dutch, Hungarian mathematicians, all contemporary).
- Above methods require computer; no rational roots assumption.
- If we assume rational roots there are practical algorithms by hand.
- We study those for cubics with the aid of scientific calculator.

Todor Miley Lecture 16 Factoring Polynomials 2020

Polynomial division 10/16

Example (Polynomial long division)

Divide with quotient and remainder $x^3 + 2x^2 + 1$ by x - 1.

Quotient:
$$x^{2} + 3x + 3$$

 $x - 1$ $x^{3} + 2x^{2} + 1$
 $x^{3} - x^{2}$
 $x^{3} - x^{3}$
Remainder: $x^{3} - x^{2}$

(Dividend) = (Quotient) · (Divisor) + (Remainder)

$$(x^3 + 2x^2 + 1) = (x^2 + 3x + 3) \cdot (x - 1) + 4$$

Todor Miley Lecture 16 Factoring Polynomials 2020

Polynomial division 11/16

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(Dividend)=(Quotient) \cdot (Divisor) + (Remainder)$$

$$(6x^3 - 19x^2 + 17x - 3) = (3x^2 - 5x + 1) \cdot (2x - 3)$$

Todor Milev Lecture 16 Factoring Polynomials 2020

Polynomial division 11/16

Example

Demonstrate that $6x^3 - 19x^2 + 17x - 3$ is divisible by 2x - 3 using polynomial long division. Use your work to factor the cubic. Solve the equation $6x^3 - 19x^2 + 17x - 3 = 0$.

$$(6x^{3} - 19x^{2} + 17x - 3) = (3x^{2} - 5x + 1) \cdot (2x - 3)$$

$$= 3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3)$$

No easy factorization of quadratic, so use formula:

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{5 \pm \sqrt{13}}{6}$$
 We are ready to solve the equation.

$$6x^{3} - 19x^{2} + 17x - 3 = 0$$

$$3\left(x - \left(\frac{5 + \sqrt{13}}{6}\right)\right)\left(x - \left(\frac{5 - \sqrt{13}}{6}\right)\right)(2x - 3) = 0$$

$$2x - 3 = 0 \quad \text{or} \quad x = \left(\frac{5 + \sqrt{13}}{6}\right) \quad \text{or} \quad x = \left(\frac{5 - \sqrt{13}}{6}\right)$$

$$x = \frac{3}{2}$$

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$2x^3 + x^2 - 7x - 6 = 0$$

 $(2x+3)(x+1)(x-2) = 0$
 $x = -\frac{3}{2}$ or $x = -1$ or $x = 2$

Make sure to practice with the graphing calculator you will on your exam(s). The graph appears to intersect the x axis at: -1.5, -1, 2. The left hand side should factor as:

$$2(x - (-1.5))(x - (-1))(x - 2) = (2x + 3)(x + 1)(x - 2)$$

$$= (2x^{2} + 5x + 3)(x - 2) = (2x^{3} + 5x^{2} + 3x) - (4x^{2} + 10x + 6)$$

$$= 2x^{3} + x^{2} - 7x - 6$$

Check work to make sure we guessed the roots correctly.

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^3 - x^2 - 8x + 6 = 0$$

(x - 3)(x² + 2x - 2) = 0

The graph appears to intersect the *x* axis at:

 $-\sqrt{3}-1$, $\sqrt{3}-1$, 3. What are the two roots besides 3?

Quotient:
$$x^2 + 2x - 2$$

 $x - 3$ $x^3 - x^2 - 8x + 6$
 $x^3 - 3x^2$
 $2x^2 - 8x + 6$
 $2x^2 - 6x$
 $2x + 6$
Remainder: 0

Plot the left hand side of the equation with a graphing calculator. Solve the equation.

$$x^{3} - x^{2} - 8x + 6 = 0$$

$$(x - 3)(x^{2} + 2x - 2) = 0$$

$$x - 3 = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{(2)^{2} - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1}$$

$$x = 3 \quad x = \frac{-2 \pm \sqrt{12}}{2}$$

$$x = \frac{-2 \pm 2\sqrt{3}}{2} = -1 \pm \sqrt{3}.$$

The graph appears to intersect the x axis at: $-\sqrt{3}-1$, $\sqrt{3}-1$, 3. What are the two roots besides 3?

Final answer:
$$x = 3$$
 or $x = -1 - \sqrt{3}$ or $x = -1 + \sqrt{3}$.

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^3 + x^2 + 5x - 3 = 0$$
$$(x - \frac{1}{2})(2x^2 + 2x + 6) + 0 = 0$$

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)? Factor:

Plot the left hand side of the equation with a graphing calculator. Find all real solutions of the equation.

$$2x^{3} + x^{2} + 5x - 3 = 0$$

$$(x - \frac{1}{2})(2x^{2} + 2x + 6) + 0 = 0$$

$$x - \frac{1}{2} = 0 \quad \text{or} \quad x = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 2 \cdot 6}}{\frac{2 \cdot 2}{2 \cdot 2}}$$

$$x = \frac{1}{2} \qquad x = \frac{-2 \pm \sqrt{-44}}{2 \cdot 2}$$

no real solution

We see only one root, $x = 0.5 = \frac{1}{2}$. Is our guess correct? Is there another root (far away from 0)?

Solve the inequality.

$$\begin{array}{ccc} 2x^2+3x-5 & \geq & 0 \\ (2x+5)(x-1) & \geq & 0 \\ x \in \left(-\infty, -\frac{5}{2}\right] \cup [1, \infty) \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals: $(-\infty, -\frac{5}{2}), (-\frac{5}{2}, 1), (1, \infty)$.

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$$

 $x \in (-\frac{1}{2}, 1) \cup (2, \infty)$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2. The two roots split the real line into four intervals: $\left(-\infty, -\frac{1}{2}\right), \left(-\frac{1}{2}, 1\right), (1, 2), (2, \infty)$.

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)^{-1}$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+