PHY226M, Problem Set 2

Special Theory of Relativity $March\ 2025$

- 1. The hypothetical photon rocket. Enthusiasts for space travel proposed the use of radiation as a propellant for a spaceship. Assume that m_0 is the rest mass of a rocket which has a payload of rest mass fm_0 , where f is a fraction. Show that, if $\gamma = 10$, then f is ~ 0.05 .
- 2. Motion under a constant force. A particle of mass m is subject to a constant force F. If it starts from rest at the origin, at time t = 0, find its position (x), as a function of time.
- 3. **Decay of charged pion.** A charged pion at rest decays into a muon and a neutrino. Find the energy of the outgoing muon, in terms of the two rest masses, m_{π} and m_{μ} . Assume $m_{\nu} = 0$.

4. Absorption and emission of photon

(a) Suppose a stationary atom (or nucleus) of rest mass M_0 is struck by a photon of energy Q, which is completely absorbed. The combined system will have (relativistic) mass M' and will recoil with a velocity v. Show that:

$$\beta = \frac{v}{c} = \frac{Q}{M_0 c^2 + Q} \tag{1}$$

(b) Suppose a stationary atom of rest mass M_0 emits a photon of energy Q. The emitting atom, which undergoes recoil, has (relativistic) mass M', rest mass M'_0 and velocity v. Prove that:

$$Q = Q_0 \left(1 - \frac{Q_0}{2M_0 c^2} \right) \tag{2}$$

where Q_0 is the difference between the initial rest energy of the atom before recoil and the final rest energy of the atom after recoil.

- 5. In the Large Hadron Collider (LHC), each proton reaches an energy of 7 TeV. What is the value of Lorentz factor (γ) when proton reaches that energy?
- 6. For what value of β will the relativistic mass of a particle exceed its rest mass by a fraction f?
- 7. Compton scattering. A photon of energy E_0 bounces off an electron, initially at rest. Find the energy E of the outgoing photon, as a function of the scattering angle θ . Write the expression in terms of λ also.