Read each question carefully and be sure to SHOW ALL WORK. Correct answer without proper justification will not receive a "Complete" grade. Paç fat! Good luck!

Nama:			
name: _			

Polar/Parametric and Conic Sections Challenge. I can use polar, parametric and conic sections creatively in new situations that require a deep understanding of them.

Criteria for Success: I can solve conceptual questions related to Polar and Parametric equations that lie on the top half of Bloom's Taxonomy (analyze, evaluate, and create).

Question: A space rocket is moving with coordinates $x(t) = -2\sin(t)$, y(t) = -1 + 2t, where t is measured in hours and the coordinates in miles.

- (a) Eliminate the parameter t to find the Cartesian equation in the form x = f(y)
- (b) Compute the following quantities at t = 1:

(i)
$$x(t) =$$

(ii)
$$y(t) =$$

(iii)
$$x'(t) =$$

(iv)
$$y'(t) =$$

(v)
$$\frac{dy}{dx} =$$

- (c) Interpret the meaning of the above rates of change related to the movement of the particle at t = 1, i.e., x'(1), y'(1), $\frac{dy}{dx}$, and speed.
- (d) Suppose that at t = 1 hour, the space rocket runs out of fuel and no force is acting on it. Find the Cartesian equation of the path it's going to move about after t = 1 hour.
- (e) Setup an integral calculating the length of the trip from t = 0 to t = 1 in terms of the parametric equation. You don't need to evaluate the integral. Check that you get the same answer if you used the Cartesian equation.