DISCRIMINATORY PRICING

FEATURES (410 Rows X 24 Columns)

psoda: price of medium soda

pfries: price of small fries

pentree: price entree

pmeal: price meal

wagest: starting wage

nmgrs: number of managers

nregs: number of registers

hrsopen: hours open

emp: number of employees

compown: =1 if company owned

chain: BK = 1, KFC = 2, Roy Rogers = 3,

Wendy's = 4

density: population density, town

crmrte: crime rate, town

state: NJ = 1, PA = 2

prpblck: proportion black, zipcode

prppov: proportion in poverty, zipcode

prpncar: proportion no car, zipcode

hseval: median housing value, zipcode

nstores: number of stores, zipcode

income: median family income, zipcode

county: county label

NJ=1 for New Jersey

BK=1 if Burger King

KFC=1 if Kentucky Fried Chicken

RR=1 if Roy Rogers

EDA

EDA - Diff 'brands' have diff pricings across counties

EDA

T-test

- H-null: The mean difference of the 'pmeal' of each group is 0.
- H-alt: " is not 0.
 - → The chain is practicing price discrimination for that feature.

T-test

- Split data by chain
- For each feature: split into 2 groups by the median

BK

Income <= Income > 46362 (Median of Income)

'pmeal' DATA 'pmeal' DATA

T-test Result

BK:

Income <= 46362 (Median of Income)</pre>

Income > 46362 (Median of Income)

PVALUE = **0.00278**

Reject null hypothesis, BK practice price discrimination due to income

Wendy's:

Crime Rate <= 0.0482 (Median of Crime Rate)

Crime Rate => 0.0482 (Median of Crime Rate)

PVALUE = **0.0235**

Reject null hypothesis, Wendy's practice price discrimination due to crime rate

Regression - ScikitLearn - LinearRegression()

predictors= ['KFC','RR','BK','income','crmrte']

Running single test - R² score: <u>0.7148012472090188</u>

Cross-Validation (cv = $\underline{10}$) - Mean of R² Score: $\underline{0.6731695730264797}$

- Std deviation of R² Score: 0.08275667233214133

Regression - Statsmodel

- R² score: 0.961

	coef	std err	t	P> t	[0.025	0.975]
KFC	1.9718	0.108	18.262	0.000	1.760	2.184
ВК	0.4664	0.095	4.900	0.000	0.279	0.654
RR	0.5831	0.111	5.243	0.000	0.364	0.802
income	4.324e-05	1.57e-06	27.459	0.000	4.01e-05	4.63e-05
crmrte	7.9129	0.682	11.600	0.000	6.572	9.254

Conclusion

Income and crime rate affects the price but only for Burger King and Wendy's respectively.

What else:

- Standardize our variables