BÀI TẬP TOÁN CHUYÊN NGÀNH - HÀM BIẾN PHÚC

§1. Hàm biến phức.

Bài 1.Vẽ đồ thị của các miền xác định bởi các phương trình sau trong mặt phẳng phức

1. |z - 4 + 3i| = 5

 $2. \left| z + 2 + 2i \right| = 2$

3. |z + 3i| = 2

4. |2z - 1| = 4

 $5. \operatorname{Im}(\overline{z} + 3i) = 6$

6. Im(z - i) = Re(z + 4 - 3i)

7. $\left| \operatorname{Re}(1 + i\overline{z}) \right| = 3$

8. $z^2 + \overline{z}^2 = 2$

9. $Re(z^2) = 1$

10. $\arg(z) = \pi/4$

Bài 2. Biểu diễn các số phức sau dưới dạng $z=re^{i\phi}$

1. -10

2. $-2\pi i$

3. -4 - 4i

4. $(2+i)^{-1}$

5. $(3-i)^2$

6. $(1+i)^{20}$

Bài 3. Tìm phần thực và phần ảo của các hàm sau

1. f(z) = 6z - 5 + 9i

 $2. f(z) = 3z + 2\overline{z} - i$

3. $f(z) = z^3 - 2z + 6$

4. $f(z) = z^2 + \overline{z}^2$

 $5. f(z) = \frac{\overline{z}}{z+1}$

6. $f(z) = z + \frac{1}{z}$

7. $f(z) = e^{2z+i}$

8. $f(z) = e^{z^2}$

Bài 4. Tìm phần thực và phần ảo của các hàm sau dưới dạng cực

1. $f(z) = \overline{z}$

2. f(z) = |z|

3. $f(z) = z^4$

4. $f(z) = z + \frac{1}{z}$

5. $f(z) = e^z$

6. $f(z) = x^2 + y^2 - yi$

Bài 5. Cho z = x + iy. Biểu diễn các hàm sau qua z và \overline{z} .

1. $f(z) = x^2 + y^2$

2. f(z) = x - 2y + 2 + (6x + y)i

3. $f(z) = x^2 - y^2 - (5xy)i$

4. $f(z) = 3y^2 + (3x^2)i$

Bài 6. Tìm ảnh (Γ') của (Γ) qua ánh xạ w=f(z)

1. $f(z) = \overline{z}$; (Γ) là đường thẳng y = 3

2. $f(z) = \overline{z}$; (Γ) là đường thẳng y = x

3. f(z)=3z; (Γ) là nửa mặt phẳng ${
m Im}(z)>2$

4. $f(z)=\,3z\,;\ (\Gamma)$ là đải $2\leq {\rm Re}\,z<3$

5. f(z) = (1+i)z; (Γ) là đường thẳng x=2

6. f(z) = (1+i)z; (Γ) là đường thẳng y = 2x + 1

7. f(z)=iz+4; (Γ) là nửa mặt phẳng ${\rm Im}(z)\leq 1$

8. f(z) = iz + 4; (Γ) là dải -1 < Im(z) < 2

Bài 7. Cho đường cong (Γ) dưới dạng tham số z(t). Hãy mô tả dạng của (Γ) và tìm biểu diễn tham số của ảnh (Γ') của nó qua ánh xạ w=f(z)

1.
$$z(t) = 2(1-t) + it$$
, $0 \le t \le 1$; $f(z) = 3z$

2. z(t) = i(1-t) + (1+i)t, $0 \le t < \infty$; f(z) = -z

3.
$$z(t) = 1 + 2e^{it}$$
, $0 \le t \le 2\pi$; $f(z) = z + 1 - i$

4.
$$z(t) = i + e^{it}, \ 0 \le t \le \pi; \ f(z) = (z - i)^3$$

5.
$$z(t) = t$$
, $0 \le t \le 2$; $f(z) = e^{i\pi z}$

6.
$$z(t) = 4e^{it}, \ 0 \le t \le \pi; \ f(z) = \text{Re } z$$

Bài 8. Sử dụng biểu diễn tham số, tìm ảnh (Γ') của (Γ) qua ánh xạ w=f(z)

1.
$$f(z)=z^3$$
 , (Γ) là nửa dương của trục ảo.

2.
$$f(z) = iz$$
, (Γ) là đường tròn $|z - 1| = 2$.

3.
$$f(z)=1\!\!\left/z\right.$$
 , (Γ) là đường tròn $\left|z\right|=2$.

4.
$$f(z)=1\!\big/z\,$$
 , $(\Gamma)\,$ là đoạn thẳng nổi từ $1-i\,$ đến $2-2i\,.$

5.
$$f(z)=z+\overline{z}$$
, (Γ) là nửa đường tròn $\left|z\right|=1$ nằm trong nửa mặt phẳng trên.

6.
$$f(z)=e^z$$
 , (Γ) là đường thẳng nối từ gốc tọa độ qua điểm $2+\sqrt{3}i$.

Bài 9. Chứng minh rằng các hàm sau không giải tích tại mọi điểm

1.
$$f(z) = \text{Re}(z)$$

2.
$$f(z) = y + ix$$

3.
$$f(z) = 4z - 6\overline{z} + 3$$

4.
$$f(z) = \overline{z}^2$$

5.
$$f(z) = x^2 + y^2$$

6.
$$f(z) = \frac{x}{x^2 + y^2} + i \frac{y}{x^2 + y^2}$$

Bài 10. Chứng minh rằng các hàm sau giải tích tại mọi điểm trong miền xác định của chúng.

1.
$$f(z) = e^{-x} \cos y - ie^{-x} \sin y$$

2.
$$f(z) = x + \sin x \cosh y + i(y + \cos x \sinh y)$$

3.
$$f(z) = e^{x^2 - y^2} \cos 2xy + ie^{x^2 - y^2} \sin 2xy$$

4.
$$f(z) = 4x^2 + 5x - 4y^2 + 9 + i(8xy + 5y - 1)$$

5.
$$f(z) = \frac{x-1}{(x-1)^2 + y^2} + i \frac{y}{(x-1)^2 + y^2}$$

6.
$$f(z) = \frac{x^3 + xy^2 + x}{x^3 + y^3} + i\frac{x^2y + y^3 - y}{x^3 + y^3}$$

7.
$$f(z) = \frac{\cos \phi}{r} - i \frac{\sin \phi}{r}$$

8.
$$f(z) = 5r\cos\phi + r^4\cos 4\phi + i(5r\sin\phi + r^4\sin 4\phi)$$

Bài 11. Tìm các hằng số a, b, c, d để các hàm sau là hàm giải tích.

1.
$$f(z) = 3x - y + 5 + i(ax + by - 3)$$

2.
$$f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$$

Bài 12. Chứng minh rằng các hàm sau không giải tích tại mọi điểm nhưng khả vi dọc theo các đường đã chỉ ra.

1.
$$f(z) = x^2 + y^2 + 2ixy$$
; truc x

2.
$$f(z) = 3x^2y^2 - 6ix^2y^2$$
 ; các trục tọa độ

3.
$$f(z) = x^3 + 3xy^2 - x + i(y^3 + 3x^2y - y)$$
; các trục tọa độ

4.
$$f(z) = x^2 - x + y + i(y^2 - 5y - x); y = x + 2$$

Bài 13. Chứng minh rằng hàm u cho ở dưới đây là hàm điều hòa và tìm hàm điều hòa v liên hợp với nó.

1.
$$u(x,y) = x$$

2.
$$u(x,y) = 2x - 2xy$$

3.
$$u(x,y) = x^2 - y^2$$

4.
$$u(x,y) = x^3 - 3xy^2$$

5.
$$u(x,y) = \ln(x^2 + y^2)$$

6.
$$u(x,y) = \cos x \cosh y$$

7.
$$u(x,y) = e^x(x\cos y - y\sin y)$$

8.
$$u(x,y) = -e^{-x} \sin y$$

Bài 14. Chứng minh rằng u cho ở dưới đây là hàm điều hòa. Tìm hàm điều hòa v liên hợp với nó và tìm hàm giải tích f(z)=u+iv thỏa mãn điều kiện đã cho .

1.
$$u(x,y) = xy + x + 2y$$
; $f(2i) = -1 + 5i$

2.
$$u(x,y) = 4xy^3 - 4x^3y + x$$
; $f(1+i) = 5 + 4i$

Bài 15. Cho hàm
$$v(x,y) = \frac{x}{x^2 + y^2}$$

- 1. Chứng minh rằng $v\,$ là hàm điều hòa trong miền $D\,$ không chứa gốc tọa độ.
- 2. Tìm hàm f(z) = u(x,y) + iv(x,y) giải tích trong miền D.
- 3. Biểu diễn hàm f trong câu 2 ở trên theo z.

Bài 16. Cho hàm $u(x,y) = e^{x^2 - y^2} \cos 2xy$

- 1. Chứng minh rằng u là hàm điều hòa trong miền D bất kỳ.
- 2. Tìm hàm điều hòa liên hợp v của u và hàm giải tích f(z)=u(x,y)+iv(x,y) thỏa mãn điều kiện f(0)=1.
 - 3. Biểu diễn hàm f trong câu 2 theo z.

Bài 17. Tìm đao hàm của các hàm sau:

1.
$$f(z) = z^2 e^{z+i}$$

2.
$$f(z) = \frac{3e^{2z} - ie^{-z}}{z^3 - 1 + i}$$

3.
$$f(z) = e^{iz} - e^{-iz}$$

4.
$$f(z) = ie^{1/z}$$

Bài 18. Biểu diễn các biểu thức sau theo $\,x,y\,.\,$

$$1. \left| e^{z^2 - z} \right|$$

2.
$$arg(e^{z-i/z})$$

3.
$$arg(e^{i(z+\overline{z})})$$

4.
$$1 + ie^z$$

Bài 19. Biểu diễn các hàm sau dưới dạng f(z) = u(x,y) + iv(x,y).

1.
$$f(z) = e^{-iz}$$

2.
$$f(z) = e^{2\overline{z} + i}$$

3.
$$f(z) = e^{z^2}$$

4.
$$f(z) = e^{1/z}$$

Bài 20. Tìm tất cả các giá trị phức của các hàm logarithm sau:

$$1.Ln(-5)$$

2.
$$\operatorname{Ln}(-ie)$$

$$3. \operatorname{Ln}(2i - 2)$$

4.
$$Ln(1-i)$$

5.
$$Ln(\sqrt{2} + i\sqrt{6})$$

6.
$$Ln(i - \sqrt{3})$$

Bài 21. Viết giá trị chính của các hàm logarithm sau dưới dạng $\,a+ib\,.\,$

$$1.\ln(6-6i)$$

2.
$$\ln(-e^2)$$

3.
$$\ln(5i - 12)$$

4.
$$\ln(3-4i)$$

5.
$$\ln(1+i\sqrt{3})^5$$

6.
$$\ln(1+i)^4$$

Bài 22. Tìm tất cả các nghiệm phức của các phương trình sau:

1.
$$e^z = 4i$$

2.
$$e^{1/z} = 1$$

3.
$$e^{z-1} = -ie^3$$

4.
$$e^{2z} + e^z + 1 = 0$$

Bài 23. Tìm miền khả vi của các hàm sau và tìm đạo hàm của chúng:

1.
$$f(z) = 3z^2 - e^{2iz} + i \ln z$$

$$2. f(z) = (z+1) \ln z$$

3.
$$f(z) = \frac{\ln(2z - i)}{z^2 + i}$$

4.
$$f(z) = \ln(z^2 + 1)$$

Bài 24. Tìm tất cả các giá trị của hàm lũy thừa với số mũ phức sau:

1.
$$(-1)^{3i}$$

2.
$$3^{2i/\pi}$$

3.
$$(1+i)^{1-i}$$

4.
$$(1 + i\sqrt{3})^i$$

5.
$$(-i)^i$$

6.
$$(ie)^{\sqrt{2}}$$

Bài 25. Tìm giá trị chính của hàm lũy thừa với số mũ phức sau:

1.
$$(-1)^{3i}$$

2.
$$3^{2i/\pi}$$

3.
$$2^{4i}$$

4.
$$i^{i/\pi}$$

5.
$$(1 - i\sqrt{3})^{3i}$$

6.
$$(1+i)^{2-i}$$

Bài 26. Biểu diễn giá trị của các hàm lượng giác sau đây dưới dạng $\,a+ib\,.\,$

$$1. \sin(4i)$$

2.
$$\cos(-3i)$$

3.
$$\cos(2-4i)$$

4.
$$\sin(\frac{\pi}{4} + i)$$

5.
$$tan(2i)$$

6.
$$\cot(\pi + 2i)$$

Bài 27. Tìm tất cả các số phức z thỏa mãn các phương trình sau:

$$1. \sin z = i$$

$$2. \cos z = 4$$

$$3. \sin z = \cos z$$

4.
$$\cos z = i \sin z$$

Bài 28. Biểu diễn giá trị của các hàm hyperbolic sau đây dưới dạng a+ib.

1.
$$\sinh(\frac{\pi}{2}i)$$

2.
$$\cosh(\pi i)$$

3.
$$\cosh(1 - \frac{\pi}{6}i)$$

4.
$$tanh(2 + 3i)$$

Bài 29. Tìm tất cả các số phức z thỏa mãn các phương trình sau:

$$1. \cosh z = i$$

2.
$$\sinh z = -1$$

3.
$$\sinh z = \cosh z$$

4.
$$\sinh z = e^z$$

§2. Tich phân hàm biến phức.

Bài 1. Tính các tích phân sau:

1.
$$\int_{(C)} (z+3)dz$$
, với (C) : $\{x=2t, y=4t-1; 1 \le t \le 3\}$

2.
$$\int_{(C)} (2\overline{z} - z) dz$$
, với (C) : $\{x = -t, y = t^2 + 2; \ 0 \le t \le 2\}$

3.
$$\int_{(C)} z^2 dz$$
, với (C) : $\{z(t) = 3t + 2it; -2 \le t \le 2\}$

4.
$$\int_{(C)} (3z^2 - 2z)dz$$
, với $(C): \{z(t) = t + it^2; \ 0 \le t \le 1\}$

5.
$$\int_{(C)} \frac{z+1}{z} dz$$
, với (C) : $\{|z(t)| = 1; -i \le z \le i\}$

6.
$$\int\limits_{(C)}\left|z\right|^{2}dz\,, \text{v\'oi}\;(C):\left\{x=t^{2},y=\frac{1}{t};\;1\leq t\leq2\right\}$$

7.
$$\int_{(C)} \left[\frac{1}{(z+i)^3} - \frac{5}{z+i} + 8 \right] dz, \text{ v\'oi } (C) : \left\{ \left| z+i \right| = 1 \right\}$$

8. $\int\limits_{(C)} (x^2+iy^3) dz$, với (C) là đường thẳng nối từ z=1 đến z=i .

9.
$$\int\limits_{(C)} (x^2-iy^3)dz$$
, với C là nửa dưới đường tròn $\left|z\right|=1$ $(-1\leq z\leq 1)$

- 10. $\int\limits_{(C)} e^z dz$, với (C) là đường gấp khúc nổi từ $(0,0) \to (2,0) \to (1,\pi)$
- 11. $\int\limits_{(C)} \sin z dz$, với (C) là đường gấp khúc nổi từ $(0,0) \to (1,0) \to (1,1)$
- 12. $\int\limits_{(C)} dz$, với (C) là nửa trái của ellipse $\frac{1}{36}x^2 + \frac{1}{4}y^2 = 1 \; (-2 \leq y \leq 2 \;)$
- 13. $\oint_{(C)} ze^z dz$, với (C) là hình vuông với các đỉnh (0,0);(1,0);(1,1);(0,1)
- 14. Tính $\int\limits_{(C)}(z^2+z+2)dz$ với(C) cho trên các hình sau :

Bài 2. Sử dụng công thức tích phân Cauchy, tính các tích phân sau :

$$1. \oint\limits_{|z|=2} (z + \frac{1}{z}) dz$$

$$2. \oint_{|z|=2} (z + \frac{1}{z^2}) dz$$

$$3. \oint\limits_{|z|=3} \frac{z}{z^2 - \pi^2} dz$$

4.
$$\oint_{|z+i|=1} \frac{10}{(z+i)^4} dz$$

5.
$$\oint_{(C)} \frac{2z+1}{z^2+z} dz$$
 với (C) là : (a) $|z| = \frac{1}{2}$; (b) $|z| = 2$; (c) $|z-3i| = 1$

6.
$$\oint_{(C)} \frac{2z}{z^2 + 3} dz$$
 với (C) là : (a) $|z| = 1$; (b) $|z| = 4$; (c) $|z - 2i| = 1$

7.
$$\oint_{(C)} \frac{2-3z}{z^2-8z+12} dz$$
 với (C) là : (a) $|z-5|=2$; (b) $|z|=9$

8.
$$\oint_{(C)} \left(\frac{3}{z+2} - \frac{1}{z-2i} \right) dz$$
 với (C) là : (a) $|z| = 5$; (b) $|z-2i| = \frac{1}{2}$

9.
$$\oint_{(C)} \frac{z-1}{z(z-i)(z-3i)} dz$$
 với $(C): |z-i| = \frac{1}{2}$

10.
$$\oint_{|z|=1} \frac{1}{z^3 + 2iz^2} dz$$

11.
$$\oint_{|z|=5} \frac{z^2}{(z-3i)^2} dz$$

12.
$$\oint \frac{z^2}{z^2 + 4} dz$$
, với (C) là: (a) $|z - i| = 2$; (b) $|z + 2i| = 1$

(a)
$$|z - i| = 2$$
; (b) $|z + 2i| = 1$

13.
$$\oint_{(C)} \frac{z^2 + 3z + 2i}{z^2 + 3z - 4} dz$$
, với (C) là: (a) $|z| = 2$; (b) $|z + 5| = \frac{3}{2}$

(a)
$$|z| = 2$$
; (b) $|z + 5| = \frac{3}{2}$

14.
$$\oint_{|z-3i|=1.3} \frac{z^2+4}{z^2-5iz-4} dz$$
15.
$$\oint_{|z-2i|=2} \frac{\sin z}{z^2+\pi^2} dz$$

15.
$$\oint_{|z-2i|=2} \frac{\sin z}{z^2 + \pi^2} dz$$

16.
$$\oint_{C} \frac{2z+5}{z^2-2z} dz$$
 với (C) là :

16.
$$\oint_C \frac{2z+5}{z^2-2z} dz$$
 với (C) là: (a) $|z|=1$; (b) $|z-1-i|=1$

17.
$$\oint_{(C)} \frac{1}{z^3(z-4)} dz \text{ v\'oi } (C) \text{ là}: \text{ (a) } \left|z\right|=1 \text{ ; (b) } \left|z-2\right|=1$$

18.
$$\oint_{(C)} \frac{z+2}{z^2(z-1-i)} dz$$
 với (C) là: (a) $|z| = 1$; (b) $|z-1-i| = 1$

(a)
$$|z| = 1$$
; (b) $|z - 1 - i| = 1$

19.
$$\oint_{|z|=6} \left[\frac{e^{2iz}}{z^4} - \frac{z^4}{(z-i)^3} \right] dz$$

19.
$$\oint_{|z|=6} \left[\frac{e^{2iz}}{z^4} - \frac{z^4}{(z-i)^3} \right] dz$$
20.
$$\oint_{|z|=3} \left[\frac{\cosh z}{(z-\pi)^3} - \frac{\sin^2 z}{(2z-\pi)^3} \right] dz$$

§3. Chuỗi hàm biến phức.

Bài 1. Tìm chuỗi Maclaurin và bán kính hội tụ của chuỗi đối với các hàm sau:

$$1. f(z) = \frac{z}{1+z}$$

$$2. \ f(z) = \frac{1}{4 - 2z}$$

2.
$$f(z) = \frac{1}{4 - 2z}$$
 3. $f(z) = \frac{1}{(1 + 2z)^2}$

4.
$$f(z) = \frac{z}{(1-z)^3}$$
 5. $f(z) = e^{-2z}$

5.
$$f(z) = e^{-2z}$$

$$6. f(z) = ze^{-z^2}$$

7.
$$f(z) = \sinh z$$

8.
$$f(z) = \cosh z$$

8.
$$f(z) = \cosh z$$
 9. $f(z) = \cos \frac{z}{2}$

10.
$$f(z) = \sin 3z$$
 11. $f(z) = \sin z^2$ 12. $f(z) = \cos z^2$

11.
$$f(z) = \sin z^2$$

12.
$$f(z) = \cos z^2$$

Bài 2. Khai triển các hàm sau thành chuỗi Taylor tâm tại z_0 và tìm bán kính hội tụ của chuỗi nhận được.

1.
$$f(z) = \frac{1}{z}, z_0 = 1$$

2.
$$f(z) = \frac{1}{z}, z_0 = 1 + i$$

3.
$$f(z) = \frac{1}{3-z}, z_0 = 2i$$
 4. $f(z) = \frac{1}{1+z}, z_0 = -i$

4.
$$f(z) = \frac{1}{1+z}, z_0 = -\epsilon$$

5.
$$f(z) = \frac{z-1}{3-z}, z_0 = 1$$
 6. $f(z) = \frac{1+z}{1-z}, z_0 = i$

$$6. f(z) = \frac{1+z}{1-z}, z_0 = i$$

7.
$$f(z) = \cos z, z_0 = \frac{\pi}{4}$$
 8. $f(z) = \sin z, z_0 = \frac{\pi}{2}$

8.
$$f(z) = \sin z, z_0 = \frac{\pi}{2}$$

Bài 3. Tìm chuỗi Maclaurin của các hàm sau và bán kính hội tụ của chúng.

1.
$$f(z) = \frac{i}{(z-i)(z-2i)}$$

2.
$$f(z) = \frac{z-7}{z^2 - 2z - 3}$$

Bài 4. Tìm chuỗi Laurent của các hàm sau trong hình vành khăn đã cho

$$1. f(z) = \frac{\cos z}{z}, 0 < |z|$$

2.
$$f(z) = \frac{z - \sin z}{z^5}, 0 < |z|$$

3.
$$f(z) = e^{-1/z^2}, 0 < |z|$$

$$4. f(z) = \frac{1 - e^z}{z^2}, 0 < |z|$$

5.
$$f(z) = \frac{e^z}{z - 1}, 0 < |z - 1|$$
 6. $f(z) = z \cos \frac{1}{z}, 0 < |z|$

6.
$$f(z) = z \cos \frac{1}{z}, 0 < |z|$$

Bài 5. Khai triển hàm $f(z) = \frac{1}{z(z-3)}$ thành chuỗi Laurent trong các miền sau:

1.
$$0 < |z| < 3$$

2.
$$|z| > 3$$

3.
$$0 < |z - 3| < 3$$

$$|z-3| > 3$$

5.
$$1 < |z - 4| < 4$$

4.
$$|z-3| > 3$$
 5. $1 < |z-4| < 4$ 6. $1 < |z+1| < 4$

Bài 6. Khai triển hàm $f(z) = \frac{z}{(z+1)(z-2)}$ thành chuỗi Laurent trong các miền sau:

1.
$$0 < |z+1| < 3$$

$$2. |z+1| > 2$$

3.
$$1 < |z| < 2$$

4.
$$0 < |z - 2| < 3$$

5.
$$\sqrt{2} < |z - i| < \sqrt{5}$$

6.
$$\sqrt{5} < |z + 2i| < 2\sqrt{2}$$

Bài 7. Khai triển hàm $f(z) = \frac{1}{z(1-z)^2}$ thành chuỗi Laurent trong các miền sau :

1.
$$0 < |z| < 1$$

2.
$$|z| > 1$$

Bài 8. Khai triển hàm $f(z) = \frac{1}{(z-2)(z-1)^3}$ thành chuỗi Laurent trong các miền sau : 1.

$$0 < |z - 2| < 1$$

$$|z-1|<1$$

Bài 9. Chứng minh rằng z=0 là điểm bất thường bỏ được của các hàm cho ở dưới đây. Xác định giá trị của f(0) để hàm f(z) giải tích tại z=0.

1.
$$f(z) = \frac{e^{2z} - 1}{z}$$

2.
$$f(z) = \frac{z^3 - 4z^2}{1 - e^{z^2/2}}$$

3.
$$f(z) = \frac{\sin 4z - 4z}{z^2}$$

4.
$$f(z) = \frac{1 - \frac{1}{2}z^{10} - \cos z^5}{\sin z^2}$$

Bài 10. Xác định các không điểm và bậc của chúng đối với các hàm sau:

1.
$$f(z) = (z + 2 - i)^2$$
 2. $f(z) = z^4 - 16$ 3. $f(z) = z^4 + z^2$
4. $f(z) = \sin^2 z$ 5. $f(z) = e^{2z} - e^z$ 6. $f(z) = ze^z - z$

2.
$$f(z) = z^4 - 16$$

3.
$$f(z) = z^4 + z^2$$

4.
$$f(z) = \sin^2 z$$

5.
$$f(z) = e^{2z} - e^{-z}$$

$$6. f(z) = ze^z - z$$

Bài 11. Sử dung chuỗi Taylor hoặc chuỗi Maclaurin xác định bậc của không điểm của các hàm sau:

1.
$$f(z) = z(1 - \cos^2 z), z = 0$$
 2. $f(z) = z - \sin z, z = 0$

3.
$$f(z) = 1 - e^{z-1}, z = 1$$

4.
$$f(z) = 1 - \pi i + z + e^z, z = \pi i$$

Bài 12. Xác định bậc của các cực điểm của các hàm sau:

1.
$$f(z) = \frac{3z - 1}{z^2 + 2z + 5}$$

$$2. \ f(z) = 5 - \frac{6}{z^2}$$

3.
$$f(z) = \frac{1+2i}{(z+2)(z+i)^4}$$

4.
$$f(z) = \frac{z-1}{(z+1)(z^3+1)}$$

$$5. f(z) = \tan z$$

$$6. f(z) = \frac{\cos \pi z}{z^2}$$

7.
$$f(z) = \frac{1 - \cosh z}{z^4}$$

8.
$$f(z) = \frac{e^z}{z^2}$$

$$9. f(z) = \frac{1}{1 + e^z}$$

10.
$$f(z) = \frac{e^z - 1}{z^2}$$

11.
$$f(z) = \frac{\sin z}{z^2 - z}$$

12.
$$f(z) = \frac{\cos z - \cos 2z}{z^6}$$

§4. Thặng dư và ứng dụng.

Bài 1. Sử dụng chuỗi Laurent, tìm thặng dư của các hàm sau tại các cực điểm đã chỉ ra.

1.
$$f(z) = \frac{2}{(z-1)(z+4)}$$
; Res $[f(z),1]$ 2. $f(z) = \frac{e^{-z}}{(z-2)^2}$; Res $[f(z),2]$

3.
$$f(z) = \frac{2}{z^3(1-z)^3}$$
; Res $\left[f(z),0\right]$ 4. $f(z) = \frac{4z-6}{z(2-z)}$; Res $\left[f(z),0\right]$

4.
$$f(z) = \frac{4z - 6}{z(2-z)}$$
; Res $[f(z), 0]$

5.

$$f(z) = (z+3)^2 \sin\left(\frac{2}{z+3}\right); \text{Res}[f(z), -3]$$

6.
$$f(z) = e^{-2/z^2}$$
; Res $[f(z), 0]$

Bài 2. Tìm thặng dư tại các cực điểm của các hàm sau:

1.
$$f(z) = \frac{z}{z^2 + 16}$$

$$2. \ f(z) = \frac{4z + 8}{2z - 1}$$

3.
$$f(z) = \frac{1}{z^4 + z^3 - 2z^2}$$

4.
$$f(z) = \frac{1}{(z^2 - 2z - 2)^2}$$

5.
$$f(z) = \frac{2z - 1}{(z - 1)^4 (z + 3)}$$

6.
$$f(z) = \frac{5z^2 - 4z + 3}{(z+1)(z+2)(z+3)}$$

7.
$$f(z) = \frac{\cos z}{z^2 (z - \pi)^3}$$

8.
$$f(z) = \frac{e^z}{e^z - 1}$$

Bài 3. Sử dụng thặng dư, tính các tích phân dọc theo các đường cong kín sau:

1.
$$\oint_{(C)} \frac{dz}{z^2 + 4z + 13}$$
; $(C): |z - 3i| = 3$ 2. $\oint_{(C)} \frac{dz}{z^3 (z - 1)^4}$; $(C): |z - 2| = \frac{3}{2}$

2.
$$\oint_{(C)} \frac{dz}{z^3(z-1)^4}$$
; $(C): |z-2| = \frac{3}{2}$

3.
$$\oint \frac{zdz}{(z+1)(z^2+1)}$$
; $(C): 16x^2+y^2=4$ 4. $\oint \frac{zdz}{z^4-1}$; $(C): |z|=2$

4.
$$\oint_{(C)} \frac{zdz}{z^4 - 1}$$
; $(C) : |z| = 2$

5.
$$\oint_{(C)} \frac{ze^z dz}{z^2 - 1}$$
; $(C) : |z| = 2$

6.
$$\oint_{(C)} \frac{e^z dz}{z^3 + 2z^2}$$
; $(C) : |z| = 3$

7.
$$\oint_{(C)} \frac{\tan z}{z} dz$$
; $(C): |z-1| = 2$ 8. $\oint_{(C)} \frac{\cot \pi z}{z^2} dz$; $(C): |z| = \frac{1}{2}$

8.
$$\oint_{(C)} \frac{\cot \pi z}{z^2} dz$$
; $(C): |z| = \frac{1}{2}$

9.
$$\oint\limits_{(C)}\cot\pi z\mathrm{d}z;\;(C)$$
 là hình chữ nhật tạo bởi $x=\frac{1}{2},x=\pi,y=1,y=-1$

10.
$$\oint\limits_{(C)} \frac{(2z-1)dz}{z^2(z^3+1)}; \ (C)$$
 là hình chữ nhật tạo bởi $x=-2, x=\pi, y=-\frac{1}{2}$ và $y=1$

Bài 4. Tính các tích phân của các hàm lượng giác sau:

$$1. \int_{0}^{2\pi} \frac{2}{2 + \sin \phi} d\phi$$

2.
$$\int_{0}^{2\pi} \frac{1}{10 - 6\cos\phi} d\phi$$

$$3. \int_{0}^{2\pi} \frac{\cos\phi}{3+\sin\phi} d\phi$$

4.
$$\int_{0}^{2\pi} \frac{1}{3 + \cos^2 \phi} d\phi$$

5.
$$\int_{0}^{\pi} \frac{1}{2 - \cos \phi} d\phi$$
 HD: đặt $t = 2\pi - \phi$ 6. $\int_{0}^{\pi} \frac{1}{1 + \sin^{2} \phi} d\phi$

6.
$$\int_{0}^{\pi} \frac{1}{1+\sin^2\phi} d\phi$$

$$7. \int_{0}^{2\pi} \frac{\sin^2 \phi}{5 + 4\cos \phi} d\phi$$

$$8. \int_{0}^{2\pi} \frac{\cos^2 \phi}{3 - \sin \phi} d\phi$$

9.
$$\int_{0}^{2\pi} \frac{\cos 2\phi}{5 - 4\cos\phi} d\phi$$

10.
$$\int_{0}^{2\pi} \frac{1}{\cos \phi + 2\sin \phi + 3} d\phi$$

$$11. \int_{0}^{2\pi} \frac{\cos^2 \phi}{2 + \sin \phi} d\phi$$

$$12. \int_{0}^{2\pi} \frac{\cos 3\phi}{5 - 4\cos\phi} d\phi$$

Bài 5. Chứng minh các hệ thức sau:

1.
$$\int_{0}^{2\pi} \frac{1}{(a+b\cos\phi)^2} d\phi = \frac{2\pi a}{\sqrt{(a^2-b^2)^3}} (a>b>0)$$

$$\int_{0}^{2\pi} \frac{1}{(a+b\cos\phi)^2} d\phi = \frac{2\pi a}{\sqrt{(a^2-b^2)^3}} (a>b>0)$$

2.
$$\int_{0}^{2\pi} \frac{\sin^2 \phi}{a + b \cos \phi} d\phi = \frac{2\pi}{b^2} \left(a - \sqrt{a^2 - b^2} \right) \ (a > b > 0)$$

Bài 6. Tính giá trị chính Cauchy của các tích phân suy rộng sau:

$$1. \int_{-\infty}^{\infty} \frac{1}{x^2 - 2x + 2} dx$$

2.
$$\int_{-\infty}^{\infty} \frac{1}{x^2 - 6x + 25} dx$$

3.
$$\int_{-\infty}^{\infty} \frac{1}{(x^2 + 4)^2} dx$$

$$4. \int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2} dx$$

$$5. \int_{-\infty}^{\infty} \frac{1}{(x^2+1)^3} dx$$

$$6. \int_{-\infty}^{\infty} \frac{x}{(x^2+4)^3} dx$$

7.
$$\int_{-\infty}^{\infty} \frac{2x^2 - 1}{x^4 + 5x^2 + 4} dx$$

8.
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2(x^2+9)} dx$$

9.
$$\int_{-\infty}^{\infty} \frac{x^2 + 1}{x^4 + 1} dx$$

$$10. \int_{-\infty}^{\infty} \frac{1}{x^6 + 1} dx$$

11.
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2(x^2+2x+2)} dx$$
 12.
$$\int_{-\infty}^{\infty} \frac{x^2}{x^6+1} dx$$

12.
$$\int_{-\infty}^{\infty} \frac{x^2}{x^6 + 1} dx$$

Bài 7. Tính giá trị chính Cauchy của các tích phân suy rộng sau:

$$1. \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} dx$$

$$2. \int_{-\infty}^{\infty} \frac{\cos 2x}{x^2 + 1} dx$$

$$3. \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 1} dx$$

$$4. \int_{-\infty}^{\infty} \frac{\cos x}{(x^2+4)^2} dx$$

$$5. \int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2+1)^2} dx$$

$$6. \int_{-\infty}^{\infty} \frac{\sin x}{x^2 + 4x + 5} dx$$

$$7. \int_{-\infty}^{\infty} \frac{\cos 2x}{x^4 + 1} dx$$

$$8. \int_{-\infty}^{\infty} \frac{x \sin x}{x^4 + 1} dx$$

9.
$$\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + 1)(x^2 + 9)} dx$$

10.
$$\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2 + 1)(x^2 + 4)} dx$$