

Lógica Proposicional Sintaxe e Semântica

Disciplina: Lógica para Computação Prof^a. Larissa A. de Freitas larissa@inf.ufpel.edu.br

- Ao apresentarmos uma linguagem formal, precisamos inicialmente fornecer os componentes básicos linguagem, chamado de alfabeto, para em seguida fornecer as regras de formação da linguagem, também chamada de gramática.
- O alfabeto da lógica proposicional é constituído por:

variáveis proposicionais símbolo de verdade conectivos/operadores lógicos símbolo de pontuação /parênteses

- Os elementos da linguagem da lógica proposicional são chamados de fórmulas (ou fórmulas-bem-formadas)
- Uma **fórmula-bem-formada** (FBF) é qualquer sequência de símbolos do **alfabeto** definida pelas regras:
 - Regra 1) Qualquer variável proposicional é uma FBF
 - Regra 2) Se P é FBF, então ~P é FBF
 - Regra 3) Se P e Q são FBF, então (P \land Q), (P \lor Q), (P \rightarrow Q), (P \rightarrow Q) são FBF

- Usamos abreviações que permitem omitir os parênteses em uma diversas situações:
 - Os parênteses mais externos de uma fórmula podem ser omitidos.

Por exemplo: $P \wedge Q$ ao invés de $(P \wedge Q)$

 O uso repetido dos conectivos ∧, ∨, -> e <-> dispensa o uso de parênteses.

Por exemplo: P -> Q -> R ao invés de P -> (Q -> R)

 Em fórmulas onde há uma combinação de conectivos existe uma precedência entre eles.

Por exemplo: $P \lor Q \land R$ representa $P \lor (Q \land R)$

Usamos abreviações que permitem omitir os parêntes em uma diversas situações:

Os parênteses mais externos de uma fórmula podem ser omitidos. Por exemplo: P. A.Q. ao invês de (P. A.Q.)
 O uso repetido dos conectivos A, V, → e <> dispensa o uso de oarênteses. Por exemplo: P > Q → R ao invês

Em fórmulas onde há uma combinação de corectivos existe uma precedência entre eles. Por exemplo: P V O A R renresenta P V IO A RI

 Para reduzir o número de parênteses necessários em uma FBF, deve-se obedecer a seguinte ordem de aplicação dos operadores (ordem de precedência):

- 1. Negação (~)
- 2. Conjunção (∧)
- 3. Disjunção (∨)
- 4. Implicação (->)
- 5. Equivalência (<->)

• Identificar as fórmulas que são FBF.

```
a) P FBF
b) ((PE)Q)(Λ)R) FOF
c) (PΛ(Q(VR))() Λ FOF
d)(PQ) Λ FOF
e) (~(P V R) V Q)
```


 Simplificar as fórmulas, removendo os parênteses desnecessários.

- Na linguagem natural, usam-se palavras para interligar frases dotadas de algum sentido. Na lógica, estas palavras são substituídas por símbolos denominados conectivos/operadores lógicos.
- Trabalharemos com cinco operadores que substituirão simbolicamente as expressões:
 - Negação (~)
 - Conjunção (∧)
 - Disjunção (∨)
 - Implicação/condicional (->)
 - Equivalência/bi-condicional (<->)

- Negação:
 - − Representação: ~
 - Leitura: não, não é o caso que
 - Exemplos:
 - Não fui premiado na loteria semana passada.
 - Não é o caso que fui premiado na loteria semana passada.
 - Formalização: ~P

Conjunção:

- Representação: Λ
- Leitura: e, mas, além disso, ...
- Exemplo:
 - Comprei um bilhete da loteria **e** fui premiado na loteria semana passada.
 - Comprei um bilhete da loteria, além disso fui premiado na loteria semana passada.
- Formalização: P ∧ Q

- Disjunção:
 - Representação: V
 - Leitura: ou, ou ... ou ...
 - Exemplo:
 - Hoje está chovendo ou vou ficar em casa.
 - Ou hoje está chovendo ou vou ficar em casa.
 - Formalização: P V Q

- Implicação:
 - Representação: ->
 - Leitura: se, se...então, somente se
 - Exemplo:
 - Se hoje estiver chovendo então ficarei em casa.
 - Se hoje estiver chovendo, ficarei em casa.
 - Ficarei em casa **se** hoje estiver chovendo.
 - Hoje estará chovendo somente se eu ficar em casa.
 - Formalização: P -> Q

- Equivalência:
 - Representação: <->
 - Leitura: se e somente se
 - Exemplo:
 - Fui premiado na loteria semana passada se e somente se comprei um bilhete da loteria.
 - Formalização: P <-> Q

Traduzir para a linguagem simbólica as proposições:

MAAGO MOVA - MOSEA

- a) (Se Alfredo escreve para Maria então ela não irá para outra cidade.
- b) Ou Alfredo escreve para Maria ou ela não irá para outra cidade.
- c) Alfredo não escreveu para Maria e ela irá para outra cidade.
- d) Alfredo escreverá para Maria, se e somente se, ela for para outra cidade.
- e) Se Alfredo escrever para Maria e João for ao encontro dela, então Maria não irá para outra cidade. (A 17) -> ~ M
- f) Se Alfredo for ao encontro de Maria ou João for ao encontro de Maria, ela não ficará mais na cidade.

 Sejam as proposições: P = Carlos é argentino e Q = João é brasileiro. Traduzir para a linguagem natural as proposições:

- a) PVQ
- b) ~P∧Q
- c) $P \rightarrow Q$
- d) P -> ~Q
- e) ~P <-> Q
- f) ~P ^ ~Q

 Sejam as proposições: P = Carlos é argentino e Q = João é brasileiro. Traduzir para a linguagem natural as proposições:

- a) PVQ Carlos é argentino **OU** João é brasileiro
- b) ~P \(\Lambda \) Carlos N\(\tilde{A}O \) é argentino E Jo\(\tilde{a}O \) é brasileiro
- c) P -> Q SE Carlos é argentino ENTÃO João é brasileiro
- d) P -> ~Q **SE** Carlos é argentino **ENTÃO** João **NÃO** é brasileiro
- e) ~P <-> Q Carlos NÃO é argentino SE E SOMENTE SE João é brasileiro
- f) ~P \lambda ~Q Carlos NÃO é argentino E João NÃO é brasileiro

- Relações definidas entre premissas e conclusão de argumentos :
 - Baseada na sintaxe: $φ_1$, $φ_2$, ..., $φ_n$ ⊢ ψ, significa a partir das premissas $φ_1$, $φ_2$, ..., $φ_n$ podemos derivar a conclusão ψ. Definida pelas **regras de dedução natural**.
 - Baseada na semântica: $φ_1$, $φ_2$, ..., $φ_n \models ψ$, significa que sempre que as premissas $φ_1$, $φ_2$, ..., $φ_n$ são verdadeiras, a conclusão ψ será também verdadeira. Definida pelo valor verdade das fórmulas (**tabela-verdade**).

 Formalize os argumentos abaixo e utilize a tabelaverdade para afirmar se eles são válidos ou não:

- a) Se eu passar na prova, irei viajar. Não passei na prova. Logo, não viajei.
- b) Vou passar de ano se, e somente se, eu estudar e não viajar. Não estudei. Viajei. Logo, passei de ano.
- c) Se o avião não tivesse caído então teríamos feito contato pelo rádio. Não fizemos contato pelo rádio. Portanto, o avião caiu.

 Formalize os argumentos abaixo e utilize a tabelaverdade para afirmar se eles são válidos ou não:

a) Se eu passar na **prova**, irei **viajar** Não passei na prova. Logo, não

PLA (ELNV), NE) V FP

b) Vou **passar** de ano se, e somente se, eu **estudar** e hão **viajar** Não estudei. Viajei. Logo, passei de ano.

<i>Q</i> \	E	11	ر کری	(EMV)	P2->(Emv)	NE_	V	P
	V	1	5	t	F	F	V	V
V	13	ا م	V	V	V	1	Ŧ	8
V	8	13	15		F		7	V
V	8	16	V	F	<u> </u>	7	1	
6	J		14	F	V	=	F	
6	V	10	V	\ \	4	V	Vk	12
Y C	18	V/	V	1 F	1 1	10	1	<u></u>
× ,	15	16	VIS	1 File	TE TO	1.00	ido	
Y				VLE	>=F V(V)	,=V		

NC-RINR FC

c) Se o avião (não) tivesse caído então teríamos feito contato pelo rádio. Não fizemos contato pelo rádio. Portanto, o avião caiu.

