1

Assignment 19

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment19

1 Problem

Let **A** be an invertible real $n \times n$ matrix .Define a function $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by $F(\mathbf{x}, \mathbf{y}) = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle$ where $\langle \mathbf{x}, \mathbf{y} \rangle$ denotes the inner product of **x** and **y**.Let $DF(\mathbf{x}, \mathbf{y})$ denote the derivative of F at (\mathbf{x}, \mathbf{y}) which is a linear tranformation from $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$.Then

- 1) If $\mathbf{x} \neq 0$, then $DF(\mathbf{x}, 0) \neq 0$
- 2) If $\mathbf{y} \neq 0$, then $DF(0, \mathbf{y}) \neq 0$
- 3) If $(\mathbf{x}, \mathbf{y}) \neq 0$, then $DF(\mathbf{x}, \mathbf{y}) \neq 0$
- 4) If $\mathbf{x} = 0$ or $\mathbf{y} = 0$, then $DF(\mathbf{x}, \mathbf{y}) = 0$

2 **DEFINITIONS**

Invertible	A square matrix is invertible if and only if it does not have a zero eigenvalue. So, from the definition of eigen vector we can write that		
	$\mathbf{A}\mathbf{x} \neq 0$	(2.0.1)	
	The transpose of an invertible matrix is also invertible with inverse $(\mathbf{A}^{-1})^T$.		
	$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I} \implies (\mathbf{A}^{-1})^T \mathbf{A}^T = \mathbf{I}^T = \mathbf{I}$ So, similarly we can say that	(2.0.2)	
	$\mathbf{A}^T \mathbf{y} \neq 0$	(2.0.3)	
Derivative of F	Suppose F: $\mathbb{R}^n \to \mathbb{R}^m$, the derivative of a function F is given by the Jacobian matrix		
	$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$	(2.0.4)	
Inner product	The inner product of \mathbf{x} and \mathbf{y} is given by $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}$	(2.0.5)	

TABLE 1: Definition and Properties used

3 Solution

Given	$F(\mathbf{x}, \mathbf{y}) = \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle$	(3.0.1)	
using inner product definition			
using finici product definition	$F(\mathbf{x}, \mathbf{y}) = (\mathbf{A}\mathbf{x})^T \mathbf{y} = \mathbf{x}^T \mathbf{A}^T \mathbf{y}$	(3.0.2)	
	$F(\mathbf{x}, \mathbf{y}) = \mathbf{y}^T \mathbf{A} \mathbf{x}$	(3.0.3)	
Derivative of F using (2.0.4), We can write that			
	$DF(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \end{pmatrix} = \begin{pmatrix} \mathbf{y}^T \mathbf{A} & \mathbf{x}^T \mathbf{A}^T \end{pmatrix}$	(3.0.4)	
If $\mathbf{x} \neq 0$, then $DF(\mathbf{x}, 0) \neq 0$	using (3.0.4),		
	$DF(\mathbf{x},0) = \begin{pmatrix} 0 & \mathbf{x}^T \mathbf{A}^T \end{pmatrix}$	(3.0.5)	
	From (2.0.1),we know that	` '	
	$\mathbf{A}\mathbf{x} \neq 0$	(3.0.6)	
	$\implies \mathbf{x}^T \mathbf{A}^T \neq 0$	(3.0.7)	
	So, We can say that		
	$DF(\mathbf{x},0) \neq 0$	(3.0.8)	
If $\mathbf{y} \neq 0$, then $DF(0, \mathbf{y}) \neq 0$	using (3.0.4),		
	$DF(0, \mathbf{y}) = \begin{pmatrix} \mathbf{y}^T \mathbf{A} & 0 \end{pmatrix}$	(3.0.9)	
	From (2.0.3),we know that		
	$\mathbf{A}^T \mathbf{y} \neq 0$	(3.0.10)	
	$\implies \mathbf{y}^T \mathbf{A} \neq 0$	(3.0.11)	
	So, We can say that		
	$DF(0, \mathbf{y}) \neq 0$	(3.0.12)	
If $(\mathbf{x}, \mathbf{y}) \neq 0$, then $DF(\mathbf{x}, \mathbf{y}) \neq 0$	using (3.0.4),		

	$DF(\mathbf{x}, \mathbf{y}) = (\mathbf{y}^{T} \mathbf{A} \mathbf{x}^{T} \mathbf{A}^{T})$ As $(\mathbf{x}, \mathbf{y}) \neq 0$, $DF(\mathbf{x}, \mathbf{y}) = 0$ iff $\mathbf{A} = 0$ From (2.0.1),we know that	
	A ≠ 0	(3.0.14)
	So, We can say that	
	$DF(\mathbf{x}, \mathbf{y}) \neq 0$	(3.0.15)
If $\mathbf{x} = 0$ or $\mathbf{y} = 0$, then $DF(\mathbf{x}, \mathbf{y}) = 0$	From (3.0.12),	
	$DF(0, \mathbf{y}) \neq 0$	(3.0.16)
	From (3.0.8),	
	$DF(\mathbf{x},0) \neq 0$	(3.0.17)
	So, if $\mathbf{x} = 0$ or $\mathbf{y} = 0$,	
	$DF(\mathbf{x}, \mathbf{y}) \neq 0$	(3.0.18)
Conclusion	From above, we can say that options 1),2),3) are correct.	

TABLE 2: Finding derivative of linear transformation