ANDROID KONTROLLÜ ROBOT KOL

Merhaba arkadaşlar. Bu yazımızda MIT App Inventor 2 programı ve Arduino ile **Android Kontrollü Robot Kol** uygulaması yapacağız.

Projeden kısaca bahsetmek gerekirse önce MIT App Inventor 2 isimli bir app geliştirme programında arayüz oluşturuyoruz. Oluşturduğumuz app yoluyla Android cihazımızı Arduino'ya bağladığımız Bluetooth modülü ile eşleştiriyoruz. Bu eşleşme sayesinde Robot Kolunu Android cihaz üzerinden kontrol edebiliyoruz.

Projeye ait malzeme listesi:

- 4 x Tower Pro SG90 RC Mini Servo Motor
- Arduino Sensor Shield v5.0
- Arduino Uno
- 12V Adaptör
- HC-06 Bluetooth Modülü
- Klemens Çıkışlı DC Female Barrel Jack
- Jumper Kablo

O zaman başlayalım...

Önce MIT App Inventor 2 programından bir app oluşturalım : *ai2.appinventor.mit.edu*

```
when SCREATING Installar

of the Anticytistes III Screating Surviving Control of the Control of
```

Programın son hali:

Kurmamız gereken devre aşağıdaki şekildedir :

Arduino Programi:

Öncelikle kodun çalışma mantığından bahsetmek istiyorum. Kodumuzun hemen başında Servo motorlarımızı, BT modülümüzü ve pinlerini tanımlıyoruz. Void setup() bölümünde ayrıca seri iletişimi etkinleştirmek için serial.begin(9600); , bluetooth iletişim için bluetooth.begin(9600); fonksiyonlarını yazıyoruz. Void loop() kısmı programımızın ana fonksiyonudur. Eğer 2 bit veya üzeri bluetooth sinyali gelirse ana fonksiyonun çalışmasını istiyoruz. Eğer bu şart gerçekleşiyor ise fonksiyonumuz servo motorumuzun pozisyon bilgisini bluetooth sinyalleri ile okumaya başlıyor. (unsigned int servopos = bluetooth.read(); unsigned int realservo = (servopos1 *256) + servopos;)

Android cihazımızdan gönderdiğimiz BT sinyalleri 1000-1135 arasında ise **birinci** servomuzu 0-135 derece arasında kontrol edebiliyoruz. (**Tut/Bırak**)

BT sinyalleri 2000-2090 arasında ise **ikinci** servomuzu 0-90 derece arasında kontrol edebiliyoruz. (Sağ/Sol)

BT sinyalleri 3000-3180 arasında ise **üçüncü** servomuzu 0-180 derece arasında kontrol edebiliyoruz. (**Yukarı/Aşağı**)

BT sinyalleri 4000-4120 arasında ise **dördüncü** servomuzu 0-150 derece arasında kontrol edebiliyoruz. (**İleri/Geri**)

Not: Derece değerleri robotun mekaniğine göre değişebilir.

ARDUINO KODLARI:

```
#include <SoftwareSerial.h>
#include <Servo.h>
Servo myservo1, myservo2, myservo3, myservo4;
int bluetoothTx = 10;
int bluetoothRx = 11;
SoftwareSerial bluetooth(bluetoothTx, bluetoothRx);
void setup()
{
 myservo1.attach(5);
 myservo2.attach(6);
 myservo3.attach(9);
 myservo4.attach(3);
 Serial.begin(9600);
 bluetooth.begin(9600);
}
void loop()
 if (bluetooth.available() >= 2 )
  unsigned int servopos = bluetooth.read();
  unsigned int servopos1 = bluetooth.read();
  unsigned int realservo = (servopos1 * 256) + servopos;
  if (realservo >= 1000 && realservo <= 1135) {
                                                        // tut bırak
   int servo1 = realservo;
   servo1 = map(servo1, 1000, 1135, 0, 135);
   myservo1.write(servo1);
   delay(10);
```

```
}
 if (realservo >= 2000 && realservo <= 2090) {
                                                    // sağ sol
  int servo2 = realservo;
  servo2 = map(servo2, 2000, 2090, 0, 90);
  myservo2.write(servo2);
  delay(10);
 }
 if (realservo >= 3000 && realservo <= 3180) {
  int servo3 = realservo;
  servo3 = map(servo3, 3000, 3180, 0, 180);
                                                  // yukarı aşağı
  myservo3.write(servo3);
  delay(10);
 }
 if (realservo >= 4000 && realservo <= 4120) { // ileri geri
  int servo4 = realservo;
  servo4 = map(servo4, 4000, 4120, 0, 120);
  myservo4.write(servo4);
  delay(10);
 }
}
```

}