Biost 517 / Biost 514 Applied Biostatistics I / Biostatistics I

Discussion Week 10:

Nonparametric Survival Analysis

Outline

•••••

- Kaplan-Meier estimators
 - Fitting K-M curves in R
 - Estimating survival probabilities and quantiles
 - Comparing Survival Functions with Log-rank Test

Kaplan-Meier plots in R

The Kaplan-Meier estimator is a non-parametric estimator of the survival function from survival data.

We can use the Kaplan-Meier estimate of survival functions to:

- Estimate survival probabilities for a given time
- Estimate survival time for a given quantile
- Easily compare survival curves for different (categorical) groups

Data

We will be using the PSA data set available on Canvas.

Variables of interest:

- inrem: indicator of remission status
- obstime: observation time (until relapse or end of follow-up)
- grade: tumor grade (1=least aggressive, 3=most aggressive)

This week, we will be

- summarizing relapse probabilities and time until relapse
- examining the relationship between tumor grade and relapse

Kaplan-Meier plots in R: setting up

We start by loading in the 'survival' package and creating the event indicator:

```
## Load the required package, "survival"
library("survival")

# The event indicator is 'inrem': 1 = no, 2 = yes.

# Recode event as 1 if patient is not in remission (relapse) at observed time.
psa$event <- ifelse(psa$inrem == "no", 1, 0)</pre>
```

- event = 1 if the event (discontinuation of remission) is observed,
 event = 0 if the event is not observed (still in remission).
- End of remission (event = 1) is equivalent to when 'inrem' is 'no'

K-M plots: Survival object

Surv () creates the survival object from the observed times and event indicator; this will be our outcome variable in our Kaplan-Meier estimator and proportional hazards model.

```
> survobj <- with(psa, Surv(obstime, event))</pre>
> survobj
 [1] 42+ 48+ 40+ 75+ 30+ 24+ 58+ 36+ 40 60+ 60 48
                                                  60+ 48+ 35+ 42+
                                              30
[18] 45 43 42 40 39 36 26 26 22 21 20
                                           18
                                              17
                                                  16
                                                     16
                                                         15 12
    8 9 7 6 3 3 3 6 6 1 31
Γ357
                                           10
                                              14
                                                  12
                                                     32 42+
```

Q. What does "+" indicate about the observations?

K-M plots: Fitting the K-M curve

survfit() computes the Kaplan-Meier estimate from the survival object created earlier.

- The 1 in the formula (survobj ~ 1) indicates we are estimating the survival function for one group
- More on the summary later...

6

8

9

1 M

46

43

42

41

ΛN

1

1

0.860 0.0491

0.840 0.0518

0.820 0.0543

0.0566

0 0586

0.800

a 72a

0.7690

0.7443

0.7201

0.6965

0 6737

7

0.962

0.948

0.934

0.919

 α $\alpha \alpha \lambda$

K-M plots: Plotting the K-M curve

Use plot() on the estimated survival function from survfit():

K-M plots: Plotting the K-M curve

To exclude censoring times, set mark.times=FALSE:

K-M plots: Plotting the K-M curve

To include a 95% CI, set conf.int=TRUE:

Q. What is the estimated probability of remaining in remission at two years?

Q. What is the estimated probability of remaining in remission at two years?

Kaplan-Meier curve, Estimated 2-year relapse rate

Visually:

Q. What is the estimated probability of remaining in remission at two years?

> summary(eS)
Call: survfit(formula = survobj ~ 1)

1.2				-14	1	OFO/ CT		0F0/ CT	
time	n.risk	n.event	survival	sta.err	Lower	95% CI	upper	95% CI	
1	50	1	0.980	0.0198		0.9420		1.000	
3	49	3	0.920	0.0384		0.8478		0.998	
6	46	3	0.860	0.0491		0.7690		0.962	
7	43	1	0.840	0.0518		0.7443		0.948	
8	42	1	0.820	0.0543		0.7201		0.934	
9	41	1	0.800	0.0566		0.6965		0.919	
10	40	1	0.780	0.0586		0.6732		0.904	
12	39	2	0.740	0.0620		0.6279		0.872	
14	37	1	0.720	0.0635		0.6057		0.856	
15	36	1	0.700	0.0648		0.5838		0.839	
16	35	2	0.660	0.0670		0.5409		0.805	
17	33	1	0.640	0.0679		0.5199		0.788	
18	32	1	0.620	0.0686		0.4991		0.770	
20	31	1	0.600	0.0693		0.4785		0.752	
21	30	1	0.580	0.0698		0.4581		0.734	
22	29	1	0.560	0.0702		0.4380		0.716	
26	27	2	0.519	0.0709		0.3967		0.678	
30	25	1	0.498	0.0710		0.3764		0.658	

Q. What is the estimated probability of no remission at two years? From the summary output: .560; 95% CI: (.438, .716)

> summary(eS)
Call: survfit(formula = survobj ~ 1)
time n.risk n.event survival std.err lower 95% CI upper 95% CI

1	50	1	0.980	0.0198	0.9420	1.000
3	49	3	0.920	0.0384	0.8478	0.998
6	46	3	0.860	0.0491	0.7690	0.962
7	43	1	0.840	0.0518	0.7443	0.948
8	42	1	0.820	0.0543	0.7201	0.934
9	41	1	0.800	0.0566	0.6965	0.919
10	40	1	0.780	0.0586	0.6732	0.904
12	39	2	0.740	0.0620	0.6279	0.872
14	37	1	0.720	0.0635	0.6057	0.856
15	36	1	0.700	0.0648	0.5838	0.839
16	35	2	0.660	0.0670	0.5409	0.805
17	33	1	0.640	0.0679	0.5199	0.788
18	32	1	0.620	0.0686	0.4991	0.770
20	31	1	0.600	0.0693	0.4785	0.752
21	30	1	0 580	A A698	0 1581	a 734
22	29	1	0.560	0.0702	0.4380	0.716
26	27	2	0.519	0.0709	0.3967	0.678
ЭW	25	ı	V.490	שביש.ש	w.5764	ەدە. ש

Q. What is the estimated median time until relapse?

Kaplan-Meier curve, Survival time until prostate cancer relapse

Q. What is the estimated median time until relapse?

Q. What is the estimated median time until relapse? From the output: 30 months, 95% CI: (18, 43)

```
> print(eS)

Call: survfit(formula = survobj ~ 1)

    n events median 0.95LCL 0.95UCL
    50    36    30    18    43
```

Example: PSA dataset

Suppose we are interested in determining if there is any association between time in remission and tumor grade (1-3, least to most aggressive cancer tumor).

Q. Assess this association by comparing differences in survival probabilities across tumor grade.

Stratified Kaplan-Meier

 Create a categorical tumor grade variable and obtain Kaplan-Meir survival estimates for each tumor grade group:

```
survobj<-with(psa,Surv(obstime,event))
psa$TumorGrade <-as.factor(psa$grade)
kms <- survfit( survobj ~ as.factor(TumorGrade), data=psa)</pre>
```

Stratified Kaplan-Meier Survival Estimates

```
> summary(kms)
Call: survfit(formula = survobj ~ as.factor(TumorGrade), data = psa)
9 observations deleted due to missingness
                as.factor(TumorGrade)=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI
          10
                                              0.732
    1
                   1
                          0.9 0.0949
                                                           1.000
    6
                                                           1.000
                   1
                          0.8
                              0.1265
                                              0.587
   15
                          0.7 0.1449
                                              0.467
                                                           1.000
                                              0.362
                                                           0.995
   26
                          0.6
                              0.1549
   32
                          0.5 0.1581
                                              0.269
                                                           0.929
                          0.4 0.1549
                                              0.187
                                                           0.855
   39
   45
                   1
                          0.3
                               0.1449
                                              0.116
                                                           0.773
   60
           1
                   1
                          0.0
                                   NaN
                                                 NA
                                                              NA
                as.factor(TumorGrade)=2
time n.risk n.event survival std.err lower 95% CI upper 95% CI
    3
          15
                   2
                        0.867 0.0878
                                              0.711
                                                           1.000
    8
                        0.800
          13
                               0.1033
                                              0.621
                                                           1.000
   10
          12
                        0.733
                                              0.540
                                                           0.995
                               0.1142
                        0.667
   12
          11
                   1
                               0.1217
                                              0.466
                                                           0.953
   14
          10
                        0.600 0.1265
                                              0.397
                                                           0.907
                                              0.332
           9
                              0.1288
                                                           0.856
   21
                   1
                        0.533
   42
                        0.444 0.1346
                                              0.246
                                                           0.805
                        0.333 0.1394
   43
                                              0.147
                                                           0.757
                as.factor(TumorGrade)=3
time n.risk n.event survival std.err lower 95% CI upper 95% CI
    3
          16
                        0.938 0.0605
                                             0.8261
                                                           1.000
                                             0.7271
    6
          15
                        0.875
                               0.0827
                                                           1.000
                   1
                        0.812 0.0976
                                                           1.000
          14
                   1
                                             0.6421
                        0.750 0.1083
    9
          13
                   1
                                             0.5652
                                                           0.995
          12
                        0.688
                                             0.4941
                                                           0.957
   16
                               0.1159
```

17

11

1

0.625 0.1210

0.4276

0.914

Stratified Kaplan-Meier Plots

pdf("Kaplan_Meier_Tumor_Grade_PSA.pdf")
kms <- survfit(survobj ~ TumorGrade, data=psa)
plot(kms, mark.time=TRUE,col=c("blue", "red","green"), xlab="time in remission (months)",
ylab="Survival", main="Kaplan-Meier survival estimates for each tumor grade");
legend("topright", lty=1, col=c("blue", "red","green"), legend=levels(psa\$TumorGrade))
dev.off()</pre>

Kaplan-Meier survival estimates for each tumor grade

Log rank test of differences in K-M survival estimates of tumor grades

 Perform a log rank test of differences of the Kaplan-Meier estimates of survival for two or more groups

```
> survdiff(survobj ~ TumorGrade, data=psa)
Call:
survdiff(formula = survobj ~ TumorGrade, data = psa)
n=41, 9 observations deleted due to missingness.
             N Observed Expected (0-E)^2/E (0-E)^2/V
                            7.77
TumorGrade=1 10
                      8
                                  0.00681
                                            0.00963
TumorGrade=2 15
                      9
                           10.13 0.12576 0.20014
TumorGrade=3 16
                    11
                           10.10 0.07992 0.12841
 Chisq= 0.2 on 2 degrees of freedom, p= 0.9
```