1 \	XX 71 .	•			4 10
	w hat	10	an	access	network?
	* * * 11at	10	an	access	IICLWOIK.

3) Describe the sources of nodal delay in packet-switched networks.

- 4) What is the equation for end-to-end delay?
- 5) Consider two hosts (A and B) connected by a single link with transmission rate **R** bps. The hosts are separated physically by **d** meters along a cable for which the speed of propagation is **s** meters per second. Host A sends a packet of length **L** bits to host B
 - a. Show the propagation delay d_{prop} in terms of d and s:
 - b. Show the transmission delay d_{trans} in terms of L and R:
 - c. Suppose Host A begins to transmit at time t = 0. At time $t = d_{trans}$ where is the last bit of the packet?
 - d. Suppose that $d_{prop} > d_{trans}$. At time $t = d_{trans}$, where is the first bit of the packet?
 - e. Suppose that $d_{prop} < d_{trans}$. At time $t = d_{trans}$, where is the first bit of the packet?
 - f. Let $s = 2.5 \times 10^8$ m/s, L = 120 bits, R = 56 Kbps. Find d such that $d_{prop} = d_{trans}$.
- 6) Suppose that there are *N* packets in a router's queue. Given a constant packet length of *L*, and a constant transmission rate *R*, what is the average queuing delay for the *N* packets?