ELEC 312 Systems I

Root Locus Design (Part 3)

(Adapted from Notes by Dr. Robert Barsanti) (Images from Nise, 7th Edition)

Required Reading: Chapter 9, Control Systems Engineering

April 22, 2015

ELEC 312: Systems I

Root Locus Design [2 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Given the system above, design a lag-lead compensator so that the system will operate with 20% overshoot and a twofold reduction in settling time. Further, the compensated system will exhibit a tenfold improvement in steady-state error for a ramp input.

Step 1: The value of the damping ratio ζ to yield 20% overshoot is given by

$$\zeta = \frac{-\ln\left(\frac{20\%}{100\%}\right)}{\sqrt{\pi^2 + \ln^2\left(\frac{20\%}{100\%}\right)}} = 0.456.$$

ELEC 312: Systems I

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design

We can design a passive (or active) circuit to improve both the steady-state error and transient response for a given system by following the specific steps below:

- 1. Evaluate the performance of the uncompensated system to determine how much improvement in transient response is required.
- 2. Design the lead compensator to meet the transient response specifications. The design includes the zero location, the pole location, and the loop gain.
- 3. Simulate the system to be sure all requirements have been met.
- 4. Redesign if the simulation shows that requirements have not been met.
- 5. Evaluate the steady-state error performance for the lead-compensated system to determine how much more improvement in steady-state error is required.
- 6. Design the lag compensator to yield the required steady-state error.
- 7. Simulate the system to be sure all requirements have been met.
- 8. Redesign if simulation shows that requirements have not been met.

ELEC 312: Systems I

Root Locus Design [3 of 55]

Root Locus Design [1 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Step 1: The root locus for the uncompensated system with a 0.456-damping-ratio line is shown below.

ELEC 312: Systems I Root Locus Design [4 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Uncompensated Step Response for $G(s) = \frac{192.1}{s(s+6)(s+10)}$

ELEC 312: Systems I Root Locus Design [5 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Step 1: The steady-state error for a unit ramp input to the uncompensated system operating at K=192.1 is determined from the velocity static error constant

$$K_v = \lim_{s \to 0} sG(s) = \lim_{s \to 0} s \left[\frac{K}{s(s+6)(s+10)} \right]$$
$$= \lim_{s \to 0} \frac{K}{(s+6)(s+10)} = \frac{K}{60} = \frac{192.1}{60} = 3.20.$$

The steady-state error for a unit ramp input to the uncompensated system operating at K=192.1 is given by

$$e_{\mathsf{ramp}}\left(\infty\right) = \frac{1}{K_v} = 0.312.$$

ELEC 312: Systems I Root Locus Design [6 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Uncompensated Ramp Response for
$$G(s) = \frac{192.1}{s(s+6)(s+10)}$$

ELEC 312: Systems I Root Locus Design [7 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Uncompensated Ramp Response for
$$G(s) = \frac{192.1}{s(s+6)(s+10)}$$

Improving Steady-State Error and Transient Response:

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Step 1: The dominant, second-order pair of poles that yields $\zeta = 0.456$ is

$$s = -1.794 \pm j3.501.$$

The settling time of the uncompensated system (assuming that the third-order system is approximately second-order) is given by

$$T_s = \frac{4}{\zeta \omega_n} = \frac{4}{\sigma_d} = \frac{4}{1.794} = 2.230$$
 seconds.

To reduce the settling time by a factor of 2 requires that the new settling time be

$$T_s = \frac{2.230 \text{ seconds}}{2} = 1.115 \text{ seconds},$$

and the new dominant, second-order pair of poles that maintains $\zeta=0.456$ is

$$s = -3.588 \pm j7.003.$$

Lag-Lead Compensator Design: Example 1

Step 2: The angular contribution required of the lead compensator is given by

$$\theta_c = -180^\circ + \underbrace{180 - \tan^{-1}\left(\frac{7.003}{3.588}\right)}_{\text{from pole at } s=0} + \underbrace{\tan^{-1}\left(\frac{7.003}{6-3.588}\right)}_{\text{from pole at } s=-6} + \underbrace{\tan^{-1}\left(\frac{7.003}{10-3.588}\right)}_{\text{from pole at } s=-10}$$

$$= -180^\circ + 117.13^\circ + 70.99^\circ + 47.52^\circ = 55.64^\circ.$$

Assume a lead compensator zero at s=-6 $(z_c=6)$. Note that $\theta_c=\theta_z-\theta_p$ so the location for the lead compensator pole is determined from

$$\theta_p = \theta_z - \theta_c = \tan^{-1}\left(\frac{7.003}{6 - 3.588}\right) - 55.64^\circ = 70.99^\circ - 55.64^\circ = 15.35^\circ.$$

ELEC 312: Systems I

Root Locus Design [10 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

The location of the compensator pole when the compensator zero is at s=-6 is given by

$$\tan(15.35^{\circ}) = \frac{7.003}{p_c - 3.588} \Rightarrow p_c = 3.588 + \frac{7.003}{\tan(15.35^{\circ})} = 29.1.$$

ELEC 312: Systems I

ELEC 312: Systems I

Root Locus Design [11 of 55]

Root Locus Design [9 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Step 2: The lead compensator transfer function is given by

$$G_{\text{lead}}(s) = \frac{s+6}{s+29.1}.$$

X = Closed-loop pole

X = Open-loop pole

ELEC 312: Systems I Root Locus Design [12 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

- X = Closed-loop poleX = Open-loop pole
- Even though the system is a third-order system, we can model it as approximately a second-order system due to one closed-loop pole being so far (at least 5 times the largest time constant) from the two dominant closed-loop poles.
- It is determined that for $\zeta = 0.456$, the open-loop gain must be K = 1977.

ELEC 312: Systems I

Root Locus Design [14 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Step 5: The steady-state error for a unit ramp input to the lead-compensated system operating at K=1977 is determined from the velocity static error constant

$$K_v = \lim_{s \to 0} sG_{LC}(s) = \lim_{s \to 0} sG_{lead}(s)G(s) = \lim_{s \to 0} s \left[\frac{K(s+6)}{s(s+6)(s+10)(s+29.1)} \right]$$
$$= \lim_{s \to 0} \frac{K}{(s+10)(s+29.1)} = \frac{K}{291} = \frac{1977}{291} = 6.794.$$

The steady-state error for a unit ramp input to the lead-compensated system operating at K=1977 is given by

$$e_{\mathsf{ramp}}(\infty) = \frac{1}{K_v} = 0.147.$$

Note that this is an improvement in the steady-state error from the uncompensated system by a factor of

$$\frac{0.312}{0.147} = 2.122.$$

ELEC 312: Systems I

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

ELEC 312: Systems I

0.5

Root Locus Design [15 of 55]

2.5

Root Locus Design [13 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

1.5

Time (seconds)

Lead-Compensated Ramp Response for $G_{LC}(s) = \frac{1977(s+6)}{s(s+6)(s+10)(s+29.1)}$

ELEC 312: Systems I Root Locus Design [16 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Lead-Compensated Ramp Response for
$$G_{LC}(s) = \frac{1977(s+6)}{s(s+6)(s+10)(s+29.1)}$$

ELEC 312: Systems I Root Locus Design [18 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Step 6: Arbitrarily selecting $p_c = 0.01$ (close to the origin) yields

$$z_c = 4.713p_c \approx 0.04713.$$

The lag-lead-compensated system open-loop transfer function is given by

$$\begin{split} G_{\mathrm{LLC}}(s) &= G_{\mathrm{lag}}(s)G_{\mathrm{lead}}(s)G(s) = \frac{K(s+6)(s+0.04713)}{s(s+6)(s+10)(s+29.1)(s+0.01)} \\ &= \frac{K(s+0.04713)}{s(s+10)(s+29.1)(s+0.01)}. \end{split}$$

The root locus for the lag-lead-compensated system is shown the following slide.

ELEC 312: Systems I Root Locus Design [17 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Step 6: To improve the steady-state error of the uncompensated system by a factor of 10 requires that we improve the steady-state error of the lead-compensated system by a factor of 10/2.122=4.713, or

$$e_{\mathrm{ramp}}\left(\infty\right) = \frac{0.147}{4.713} = \frac{0.312}{10} = 0.0312 \text{ and } K_v = \frac{1}{e_{\mathrm{ramp}}\left(\infty\right)} = 32.017.$$

Note that

$$K_v = \lim_{s \to 0} s G_{\mathsf{LLC}}(s) = \lim_{s \to 0} s \left[\frac{K(s+6)(s+z_c)}{s(s+6)(s+10)(s+29.1)(s+p_c)} \right] = \frac{Kz_c}{291p_c}.$$

Solving for the lag compensator zero and assuming the open-loop gain remains approximately $K=1977,\,\mathrm{we}$ have

$$z_c = \frac{291p_c K_v}{K} = 4.713p_c,$$

which is the steady-state improvement factor (over the lead-compensated system) determined above.

ELEC 312: Systems I Root Locus Design [19 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

ELEC 312: Systems I Root Locus Design [20 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Lag-Lead-Compensated Step Response for $G_{LLC}(s) = \frac{1971(s+6)(s+0.04713)}{s(s+6)(s+10)(s+29.1)(s+0.01)}$

ELEC 312: Systems I Root Locus Design [22 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Lag-Lead-Compensated Ramp Response for $G_{LLC}(s) = \frac{1971(s+6)(s+0.04713)}{s(s+6)(s+10)(s+29.1)(s+0.013)}$

ELEC 312: Systems I Root Locus Design [21 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Steps 7 & 8: The steady-state error for a unit ramp input to the lag-lead-compensated system operating at K=1971 is determined from the velocity static error constant

$$K_v = \lim_{s \to 0} sG_{LLC}(s) = \lim_{s \to 0} sG_{\text{lag}}(s)G_{\text{lead}}(s)G(s)$$

$$= \lim_{s \to 0} s \left[\frac{K(s+6)(s+0.04713)}{s(s+6)(s+10)(s+29.1)(s+0.01)} \right]$$

$$= \lim_{s \to 0} \frac{K(s+0.04713)}{(s+10)(s+29.1)(s+0.01)} = \frac{4.713K}{291} = \frac{9289.323}{291} = 31.922.$$

The steady-state error for a unit ramp input to the lag-lead-compensated system operating at K=1971 is given by

$$e_{\mathsf{ramp}}(\infty) = \frac{1}{K_v} = 0.0313.$$

This represents an actual improvement in the steady-state error by a factor of

$$\frac{0.312}{0.0.0313} = 9.97.$$

ELEC 312: Systems I Root Locus Design [23 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

Lag-Lead-Compensated Ramp Response for $G_{LLC}(s) = \frac{1971(s+6)(s+0.04713)}{s(s+6)(s+10)(s+29.1)(s+0.013)}$

ELEC 312: Systems I Root Locus Design [24 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 1

	Uncompensated	Lead-compensated	Lag-lead-compensated
	K	K	K(s + 0.04713)
Plant and compensator	$\overline{s(s+6)(s+10)}$	$\overline{s(s+10)(s+29.1)}$	s(s+10)(s+29.1)(s+0.01)
Dominant poles	$-1.794 \pm j3.501$	$-3.588 \pm j7.003$	$-3.574 \pm j6.976$
K	192.1	1977	1971
ζ	0.456	0.456	0.456
ω_n	3.934	7.869	7.838
%OS	20	20	20
T_s	2.230	1.115	1.119
T_p	0.897	0.449	0.450
K_{ν}	3.202	6.794	31.92
$e(\infty)$	0.312	0.147	0.0313
Third pole	-12.41	-31.92	-31.91, -0.0474
Zero	None	None	-0.04713
Comments	Second-order approx. OK	Second-order approx. OK	Second-order approx. OK

ELEC 312: Systems I Root Locus Design [25 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 2

A unity-feedback system with the forward transfer function

$$G(s) = \frac{K}{s(s+7)}$$

is operating with a closed-loop step response that has 20% overshoot. Evaluate the settling time.

ELEC 312: Systems I

Root Locus Design [26 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 2

A unity-feedback system with the forward transfer function

$$G(s) = \frac{K}{s(s+7)}$$

is operating with a closed-loop step response that has 15% overshoot. Evaluate the steady-state error for a unit ramp input.

ELEC 312: Systems I

Root Locus Design [27 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 2

A unity-feedback system with the forward transfer function

$$G(s) = \frac{K}{s(s+7)}$$

is operating with a closed-loop step response that has 15% overshoot. Design a lag-lead compensator to decrease the settling time by 2 times and decrease the steady-state error for a unit ramp input by 10 times. Place the lead compensator zero at -3.

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 2

A unity-feedback system with the forward transfer function

$$G(s) = \frac{K}{s(s+7)}$$

is operating with a closed-loop step response that has 15% overshoot. Evaluate the settling time for your compensated system.

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 2

A unity-feedback system with the forward transfer function

$$G(s) = \frac{K}{s(s+7)}$$

is operating with a closed-loop step response that has 15% overshoot. Evaluate how much improvement in settling time was realized.

ELEC 312: Systems I

Root Locus Design [30 of 55]

Improving Steady-State Error and Transient Response: Lag-Lead Compensator Design: Example 2

A unity-feedback system with the forward transfer function

$$G(s) = \frac{K}{s(s+7)}$$

is operating with a closed-loop step response that has 15% overshoot. Evaluate how much improvement in steady-state error was realized.

ELEC 312: Systems I

ELEC 312: Systems I

Root Locus Design [31 of 55]

Physical Realization of Compensation

Inverting Circuit:

$$\frac{V_o(s)}{V_i(s)} = -\frac{Z_2(s)}{Z_1(s)}$$

Function	$Z_1(s)$	$\mathbb{Z}_2(s)$	$G_c(s) = -\frac{Z_2(s)}{Z_1(s)}$	
Gain	$ \stackrel{R_1}{\swarrow}$ $-$	$ \stackrel{R_2}{\swarrow}$ $-$	$-\frac{R_2}{R_1}$	
Integration		<i>c</i> ⊢(←	$-\frac{1}{\frac{RC}{s}}$	
Differentiation	<i>c</i> ⊢(←		-RCs	

Function	Compensator	Transfer function	Characteristics
Improve steady-state error	PI	$K\frac{s+z_c}{s}$	1. Increases system type.

- 2. Error becomes zero.
- 3. Zero at $-z_c$ is small and negative.
- 4. Active circuits are required to implement.

F	unction	$Z_1(s)$	$\mathbb{Z}_2(s)$	$G_c(s) = -\frac{Z_2(s)}{Z_1(s)}$
PI con	troller		$- \stackrel{R_2}{\searrow} \stackrel{C}{\longleftarrow}$	$-\frac{R_2}{R_1} \frac{\left(s + \frac{1}{R_2 C}\right)}{s}$

ELEC 312: Systems I

Root Locus Design [34 of 55]

Passive Physical Realization of Lag Compensation

Function	Compensator	Transfer function	Characteristics
Improve steady-state error	Lag	$K\frac{s+z_c}{s+p_c}$	 Error is improved but not driven to zero. Pole at -p_c is small and negative. Zero at -z_c is close to, and to the left of, the pole at -p_c. Active circuits are not required to implement.

Function	Network	Transfer function, $\frac{{V_o}(s)}{{V_i}(s)}$
ag compensation	$ \begin{array}{c c} R_1 \\ + & \\ V_1(t) \\ - & C \end{array} $	$\frac{R_2}{R_1 + R_2} \frac{s + \frac{1}{R_2 C}}{s + \frac{1}{(R_1 + R_2)C}}$
		$s + (R_1 + i$

ELEC 312: Systems I

Improve steady-state error

Root Locus Design [33 of 55]

1. Error is improved but not driven to zero.

Active Physical Realization of Lag Compensation Compensator Transfer function

 $K\frac{s+z_c}{z+z_c}$

Lag

Compensator

	- 0	$s + p_c$ $Z_2(s)$	 Pole at -p_c is small and negative. Zero at -z_c is close to, and to the left of, the pole at -p_c. Active circuits are not required to implement.
	$\underbrace{V_{i}(s)}_{I_{1}(s)}\underbrace{Z_{1}(s)}_{V_{1}}$	$I_2(s)$ $I_a(s)$	$V_o(s)$
Function	$Z_1(s)$	$\mathbb{Z}_2(s)$	$G_c(s) = -\frac{Z_2(s)}{Z_1(s)}$
Lag compensation		C ₂	$-\frac{C_1}{C_1} \left(s + \frac{1}{R_1 C_1} \right)$

ELEC 312: Systems I

Function

Root Locus Design [35 of 55]

where $R_2C_2 > R_1C_1$

Characteristics

Physical Realization of PD Compensation Transfer function

Improve transient response	PD	$K(s+z_c)$	1. Zero at $-z_c$ is selected to put design point on root locus.
			2. Active circuits are required to implement.
			3. Can cause noise and saturation; implement with rate feedback or with a pole (lead).
		$Z_2(s)$ $I_2(s)$	
	$\underbrace{\frac{V_i(s)}{I_1(s)}}_{I_1(s)}\underbrace{\frac{Z_1(s)}{I_1(s)}}_{I_1(s)}$	$V_1(s)$	$V_o(s)$
Function	$Z_1(s)$	$\mathbb{Z}_2(s)$	$G_c(s) = -\frac{Z_2(s)}{Z_1(s)}$
PD controller		-_	$-R_2C\left(s+\frac{1}{R_1C}\right)$

Active Physical Realization of Lead Compensation

Function	Compensator	Transfer function	Characteristics
Improve transient response	Lead	$K\frac{s+z_c}{s+p_c}$	1. Zero at $-z_c$ and pole at $-p_c$ are selected to put design point on root locus.

- 2. Pole at $-p_c$ is more negative than zero at $-z_c$.
- 3. Active circuits are not required to implement.

Lead compensation	

Function

 $Z_1(s)$

$$\mathbf{Z}_{2}(s) \qquad \mathbf{G}_{c}(s) = -\frac{\mathbf{Z}_{2}(s)}{\mathbf{Z}_{1}(s)}$$

$$-\frac{C_{1}}{C_{2}} \left(s + \frac{1}{R_{1}C}\right)$$

$$-\frac{C_{1}}{C_{2}} \left(s + \frac{1}{R_{2}C}\right)$$

where $R_1C_1 > R_2C_2$

 $Z_2(s)$

 $G_c(s) =$

ELEC 312: Systems I

Function

PID controller

Root Locus Design [38 of 55]

Physical Realization of PID Compensation

Function	Compensator	Transfer function	Characteristics
Improve steady-state error and transient response	PID	$K\frac{(s+z_{\text{lag}})(s+z_{\text{lead}})}{s}$	1. Lag zero at $-z_{\text{lag}}$ and pole at origin improve steady-state error.
			2. Lead zero at $-z_{\text{lead}}$ improves transient response.
			 Lag zero at -z_{lag} is close to, and to the left of, the origin.
			 Lead zero at -z_{lead} is selected to put design point on root locus.
			5. Active circuits required to implement.
			Can cause noise and saturation; implement with rate feedback or with an additional pole.
	$\frac{V_i(s)}{s}$	$Z_1(s)$ $V_1(s)$ $I_2(s)$ $I_3(s)$	$V_o(s)$

 $Z_2(s)$

ELEC 312: Systems I Root Locus Design [37 of 55]

Passive Physical Realization of Lead Compensation

Function	Compensator	Transfer function	Characteristics
Improve transient response	Lead	$K\frac{s+z_c}{s+p_c}$	1. Zero at $-z_c$ and pole at $-p_c$ are selected to put design point on root locus.

- 2. Pole at $-p_c$ is more negative than zero at $-z_c$.
- 3. Active circuits are not required to implement.

Function	Network	Transfer function, $\frac{{V_o}(s)}{{V_i}(s)}$
Lead compensation	$\begin{array}{c c} R_1 \\ + & \\ V_i(t) & C \\ - & - \end{array}$	$\frac{s + \frac{1}{R_1 C}}{s + \frac{1}{R_1 C} + \frac{1}{R_2 C}}$

 $v_o(t)$

Lead compensator

 $R_3C_3 > R_4C_4$

	Characteristics	Transfer function	Compensator	Function
-z _{lag} are use	1. Lag pole at $-p_{\text{lag}}$ and lag zero at $-z_{\text{lag}}$ to improve steady-state error.	$K\frac{(s+z_{\text{lag}})(s+z_{\text{lead}})}{(s+p_{\text{lag}})(s+p_{\text{lead}})}$	Lag-lead	Improve steady-state error and transient response
	 Lead pole at -p_{lead} and lead zero at -used to improve transient response. 			
egative.	3. Lag pole at $-p_{\text{lag}}$ is small and negati			
to the left o	4. Lag zero at $-z_{\text{lag}}$ is close to, and to the lag pole at $-p_{\text{lag}}$.			
	 Lead zero at -z_{lead} and lead pole at -j selected to put design point on root l 			
ive than lea	 Lead pole at -p_{lead} is more negative the zero at -z_{lead}. 			
implemen	7. Active circuits are not required to imp			
	C_4	2	C	
		\leftarrow	\vdash	
)	7. Active circuits are not required to C_4	32		C ₁

Lag compensator

 $R_2C_2 > R_1C_1$

Passive Physical Realization of Lag-Lead Compensation

Function	Compensator	Transfer function	Characteristics
Improve steady-state error and transient response	Lag-lead	$K \frac{(s + z_{\text{lag}})(s + z_{\text{lead}})}{(s + p_{\text{lag}})(s + p_{\text{lead}})}$	1. Lag pole at $-p_{\text{lag}}$ and lag zero at $-z_{\text{lag}}$ are used to improve steady-state error.
			 Lead pole at -p_{lead} and lead zero at -z_{lead} are used to improve transient response.
			2 I as male at my is small and magazine

- Lag pole at -p_{lag} is small and negative.
- **4.** Lag zero at $-z_{lag}$ is close to, and to the left of, lag pole at $-p_{lag}$.
- 5. Lead zero at $-z_{\text{lead}}$ and lead pole at $-p_{\text{lead}}$ are selected to put design point on root locus.
- **6.** Lead pole at $-p_{\text{lead}}$ is more negative than lead zero at $-z_{lead}$.
- 7. Active circuits are not required to implement

Function	Network	Transfer function, $\frac{{V}_{o}(s)}{{V}_{i}(s)}$
Lag-lead compensation	$ \begin{array}{c c} R_1 \\ \downarrow \\ C_1 \\ R_2 \\ \downarrow \\ V_0(t) \\ C_2 \\ \hline - \\ - \\ \end{array} $	$\frac{\left(s + \frac{1}{R_1 C_1}\right) \left(s + \frac{1}{R_2 C_2}\right)}{s^2 + \left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_2} + \frac{1}{R_2 C_1}\right) s + \frac{1}{R_1 R_2 C_1 C_2}}$

Physical Realization of Compensation: Example 1

Implement the PID controller designed previously ($K_1 = 259.5$, $K_2 = 128.6$, and $K_3 = 4.6$).

The transfer function of the PID controller is

$$G_c(s) = \frac{K_1 s + K_2 + K_3 s^2}{s} = K_1 + K_3 s + \frac{K_2}{s} = 259.5 + 4.6s + \frac{128.6}{s}.$$

ELEC 312: Systems I

Root Locus Design [42 of 55]

Physical Realization of Compensation: Example 1

Function	$Z_1(s)$	$\mathbb{Z}_2(s)$	$G_c(s) = -\frac{Z_2(s)}{Z_1(s)}$
PID controller		$ \langle C_2 \rangle$	$-\left[\left(\frac{R_2}{R_1} + \frac{C_1}{C_2}\right) + R_2C_1s + \frac{1}{\frac{R_1C_2}{s}}\right]$

Comparing the transfer function of the PID controller to the transfer function above, we have three equations:

$$\frac{R_2}{R_1} + \frac{C_1}{C_2} = K_1 = 259.5$$

$$\frac{1}{R_1 C_2} = K_2 = 128.6$$

$$R_2 C_1 = K_3 = 4.6$$

Since there are three equations with four unknowns (R_1, R_2, C_1, C_2) , we can arbitrarily select the value of one of the unknowns.

ELEC 312: Systems I

Root Locus Design [43 of 55]

Physical Realization of Compensation: Example 1

Let $C_2 = 0.1 \ \mu\text{F}$. Then,

$$\frac{1}{R_1C_2} = 128.6 \Longrightarrow R_1 = \frac{1}{128.6C_2} = 77.76 \text{ k}\Omega.$$

The equation involving K_1 now becomes

$$\frac{R_2}{77.76 \times 10^3} + \frac{C_1}{10^{-7}} = 259.5 \Longrightarrow 1.286 \times 10^{-5} R_2 + 10^7 C_1 = 259.5.$$

Substituting the equation involving K_3 , we have

$$1.286 \times 10^{-5} \left(\frac{4.6}{C_1}\right) + 10^7 C_1 = 259.5 \Longrightarrow \frac{5.9156 \times 10^5}{C_1} + 10^7 C_1 = 259.5$$
$$\Longrightarrow 10^7 C_1^2 - 259.5 C_1 + 5.9156 \times^{-5} = 0 \Longrightarrow C_1 = 25.72 \ \mu\text{F or } 0.23 \ \mu\text{F}.$$

If $C_1 = 0.23 \mu F$, then

$$R_2 = \frac{4.6}{C_1} = 20 \text{ M}\Omega$$
, a very large value of resistance.

Physical Realization of Compensation: Example 1

If $C_1 = 25.72 \ \mu \text{F}$, then

$$R_2=rac{4.6}{C_1}=178.85$$
 k Ω , a reasonable value of resistance.

Therefore, our PID controller circuit has $R_1=77.76~\mathrm{k}\Omega,~R_2=178.85~\mathrm{k}\Omega,~C_1=$ $25.72 \mu \text{F}$, and $C_2 = 0.1 \mu \text{F}$.

ELEC 312: Systems I

Physical Realization of Compensation: Example 2

Using a passive circuit, implement the lead compensator designed previously $(z_c = -4 \text{ and } p_c = 20.09).$

The transfer function of the lead compensator is

$$G_c(s) = \frac{s+z_c}{s+p_c} = \frac{s+4}{s+20.09}.$$

ELEC 312: Systems I

Root Locus Design [46 of 55]

Physical Realization of Compensation: Example 2

Function	Network	Transfer function, $rac{{V}_{o}(s)}{{V}_{i}(s)}$
Lead compensation	$ \begin{array}{c c} R_1 \\ + & C \\ V_i(t) & C \end{array} $	$\frac{s + \frac{1}{R_1 C}}{s + \frac{1}{R_1 C} + \frac{1}{R_2 C}}$

Comparing the transfer function of the lead compensator to the transfer function above, we have two equations:

$$\frac{1}{R_1 C} = z_c = 4$$

$$\frac{1}{R_1 C} + \frac{1}{R_2 C} = p_c = 20.09$$

Since there are two equations with three unknowns (R_1, R_2, C) , we can arbitrarily select the value of one of the unknowns.

ELEC 312: Systems I

Root Locus Design [47 of 55]

Physical Realization of Compensation: Example 2

Let $C=1 \mu F$. Then,

$$\frac{1}{R_1C}=4\Longrightarrow R_1=\frac{1}{4C_2}=250~\mathrm{k}\Omega.$$

Now,

$$\frac{1}{R_1C} + \frac{1}{R_2C} = 20.09 \Rightarrow \frac{1}{R_2C} = 20.09 - 4 = 16.09 \Longrightarrow R_2 = \frac{1}{16.09C_2} = 62.15 \text{ k}\Omega.$$

Therefore, our lead compensator circuit has $R_1=250~{\rm k}\Omega,~R_2=62.15~{\rm k}\Omega,$ and $C=1\mu \mathsf{F}.$

ELEC 312: Systems I Root Locus Design [48 of 55]

Physical Realization of Compensation: Example 2

Passive Circuit Realization of Lead Compensator $G_c(s) = \frac{s+4}{s+20.09}$:

ELEC 312: Systems I Root Locus Design [49 of 55]

Physical Realization of Compensation: Example 3

Implement the compensator given by

$$G_c(s) = \frac{(s+0.1)(s+5)}{s}.$$

Choose a passive realization if possible.

ELEC 312: Systems I Root Locus Design [50 of 55]

Physical Realization of Compensation: Example 3

ELEC 312: Systems I Root Locus Design [51 of 55]

Physical Realization of Compensation: Example 3

ELEC 312: Systems I

Root Locus Design [52 of 55]

[5]

ELEC 312: Systems I

Root Locus Design [53 of 55]

Physical Realization of Compensation: Example 4

Implement the compensator given by

$$G_c(s) = \frac{(s+0.1)(s+2)}{(s+0.01)(s+20)}.$$

Choose a passive realization if possible.

Physical Realization of Compensation: Example 4

ELEC 312: Systems I Root Locus Design [54 of 55]

Physical Realization of Compensation: Example 4

ELEC 312: Systems I Root Locus Design [55 of 55]

Physical Realization of Compensation: Example 4