Term Project Google BigQuery

201736055 한지안 201833299 허서윤

- 1. Specs of BigQuery
- 2. Key Features of BigQuery
- 3. Pros and Cons of BigQuery
- 4. Implementation of BigQuery
- 5. References

Serverless cloud service for users outside Google based on the Dremel project

1 Columnar Storage

- Save the table in an optimized column format
- Same data type data are gathered and stored
- Each table is compressed and encrypted on a disk
- Storage is durable, and each table replicates between data centers

② Tree Architecture Distribution

- ☐ Root server
 - Receives SQL query from the user
 - Splits it into a small SQL query
- ☐ Intermediate server
 - -Query split and sent to leaf node (=slot)
 - -Gets through columnar storage process.
- ☐ Leaf server
 - Reads data from a storage layer
 - Delivers results to the parent node.

Key Features

① Serverless

Usually, there is no server, and computer resources are used only for analysis Only need to pay at this time.

====	00
	00
====	00

② Cloud

No need to install/operate as a service. Large capacity support, fast performance support, low price

Key Features

3 Stability

The risk of data loss is low because three copies are distributed and stored in different data centers

4 Batch & Streaming

It provides a batch that loads data at once, and a streaming function that allows you to input data in real time.

5 Dermel project

Structured data can be distributed and analyzed quickly

Pros of BigQuery

1 Cost-effective because it is possible to estimate query costs

② Models can be created & tested using SQL queries

Cons of BigQuery

Specialized in analysis and OLAP Not suitable for OLTP

Establishing and Using Classification Model in Census Data

US Census Data

United States Census Bureau

2000 and 2010 US Census data

Data Information

Age

Workclass

Marital_Status,

Education_num

Occupation

Hours_per_week

Income_bracket

1. Big query data sets are created to store models.

2. Returns 100 rows from a dataset

3. Create a view to compile training data

┳ 필터 속성 이름 또는 값 입력 모드 필드 이름 INTEGER NULLABLE age workclass STRING NULLABLE marital_status STRING NULLABLE INTEGER NULLABLE STRING NULLABLE INTEGER NULLABLE hours_per_week income bracket STRING NULLABLE dataframe STRING NULLABLE

4. Create a logistic regression model

```
☑ 저장 ▼
                          ⑤ 일정 ▼
                                        ☆ 더보기 ▼
  ▶ 실행
     CREATE OR REPLACE MODEL
        census.census_model
     OPTIONS
       ( model_type='LOGISTIC_REG',
         auto_class_weights=TRUE,
         input_label_cols=['income_bracket']
       ) AS
     SELECT
       * EXCEPT(dataframe)
     FROM
10
11
        `census.input_view`
12
     WHERE
13
       dataframe = 'training'
```

5. Use the ML.EVALUATE function to evaluate the performance of the model

6. Predict the income class of all respondents

7. More detailed analysis with Explainable AI method

행	predicted_income_bracket	predicted_income_bracket_probs.label	predicted_income_bracket_probs.prob	age	workclass	marital_status	education_num	occupation	hours_per_week	income_bracket	dataframe
1	<=50K	>50K	0.05639289147442344	34	?	Married-civ-spouse	7	?	8	<=50K	prediction
		<=50K	0.9436071085255766								
2	<=50K	>50K	0.1311398392666556	311398392666556 21 ?		Married-civ-spouse	9	?	30	<=50K	prediction
		<=50K	0.8688601607333444								
3	<=50K	>50K	0.06491298402568849	25	?	Married-civ-spouse	9	?	4	<=50K	prediction
		<=50K	0.9350870159743115								

6. Predict the income class of all respondents

```
☑ 저장 ▼
  ▶ 실행
                          ⑤ 일정 ▼
                                       ☆ 더보기 ▼
     SELECT
     FROM
      ML.PREDICT (MODEL `census.census_model`
5
6
         SELECT
8
         FROM
9
            `census.input_view`
10
           dataframe = 'prediction'
11
12
13
```

7. More detailed analysis with Explainable AI method

행	predicted_income_bracket	probability	top_feature_attributions.feature	top_feature_attributions.attribution	baseline_prediction_value	prediction_value	approximation_error	age	workclass	marital_status	education_num	occupation	hours_per_week	income_bracket	dataframe
1	>50K	0.5211861694930122	hours_per_week	2.0131952297565316	-0.29878674958313434	0.0847954499691751	0.0	59	Private	Married-civ-spouse	4	Other-service	99	<=50K	evaluation
			education_num	-1.8421287256458136											
			occupation	-1.2016119213892107											
2	>50K	0.5322760998839042	occupation	-1.2016119213892107	-0.29878674958313434	0.12928417465217856	0.0	47	Self-emp-not-inc	Married-civ-spouse	9	Other-service	75	<=50K	evaluation
			hours_per_week	1.1871782572907503											
			marital_status	0.9439379268252633											

Reference

Specs of BigQuery

https://syujisu.tistory.com/190?category=907377

https://voutu.be/LhksTFvVriU

Architecture of BigQuery

https://cloud.google.com/bigguery

https://velog.io/@jch9537/%ED%95%9C-%EC%A4%84-%EC%9A%A9%EC%96%B4%EB%B0%B0%EC%B9%98Batch%EB%9E%80

Pros of BigQuery

https://xo.xello.com.au/blog/google-bigguery-5-benefits-cloud-data-warehouse

https://www.quora.com/What-are-the-pros-and-cons-of-using-Google-BigQuery-as-a-database

https://www.xplenty.com/blog/snowflake-vs-bigguery/

Cons of BigQuery

https://www3.technologyevaluation.com/solutions/53566/google-bigquery

https://dzone.com/articles/introduction-to-google-bigquery

Big Query Implementation

https://cloud.google.com/bigquery-ml/docs/logistic-regression-prediction

Data Source Site

https://console.cloud.google.com/marketplace/product/united-states-census-bureau/us-census-data?project=instant-voyager-332714

Thank You