ADL HW2 report

Q1: Data processing

1. Tokenizer

- Describe in detail about the tokenization algorithm you use. You need to explain what it does in your own ways.
 - WordPiece (hfl/chinese-roberta-wwm-ext-large)

The vocabulary is initialized with each characters, and the most frequent combinations of symbols are iteratively added to the vocabulary.

Note: The roberta-wwm-ext model is a roberta-like BERT, so the tokenizer algorithm is differenet from the original roberta (byte-level BPE). (source: https://arxiv.org/pdf/1906.08101.pdf)

2. Answer Span

- How did you convert the answer span start/end position on characters to position on tokens after BERT tokenization?
 - Offset mapping returns the character offset (start_char, end_char), so we can
 use it to map to the tokenized start/end positions.

```
(source: Tokenizer (huggingface.co))
```

- After your model predicts the probability of answer span start/end position, what rules did you apply to determine the final start/end position?
 - Choose the position with the **highest probability** of start and end position.

Q2: Modeling with BERTs and their variants

- 1. Describe
 - your model (configuration of the transformer model)
 - Context Selection

```
{
  "_name_or_path": "hfl/chinese-roberta-wwm-ext",
  "architectures": [
    "BertForMultipleChoice"
],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "directionality": "bidi",
  "eos_token_id": 2,
  "hidden_act": "gelu",
```

```
"hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "torch_dtype": "float32",
  "transformers_version": "4.17.0",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 21128
}
```

• QA

```
"_name_or_path": "hfl/chinese-roberta-wwm-ext-large",
  "architectures": [
   "BertForQuestionAnswering"
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "directionality": "bidi",
  "eos_token_id": 2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 1024,
  "initializer_range": 0.02,
  "intermediate_size": 4096,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 16,
  "num_hidden_layers": 24,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "torch_dtype": "float32",
  "transformers_version": "4.17.0",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 21128
}
```

· performance of your model.

CS (on dev set)	QA (on dev set)	CS+QA (public score)	CS+QA (private score)
0.96	0.823	0.78571	0.78590

(CS: Context Selection)

the loss function you used.

CrossEntropy()

• The optimization algorithm (e.g. Adam), learning rate and batch size.

	Optimization Algorithm	learning rate	batch size	accumulation step
CS	AdamW	2e-5	5	10
QA	AdamW	5e-5	2	5

- 2. Try another type of pretrained model and describe (QA)
 - a. your model

```
"_name_or_path": "bert-base-chinese",
  "architectures": [
   "BertForQuestionAnswering"
  "attention_probs_dropout_prob": 0.1,
  "classifier_dropout": null,
  "directionality": "bidi",
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "torch_dtype": "float32",
  "transformers_version": "4.17.0",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 21128
}
```

b. performance of your model (on dev set)

	bert-base-chinese	chinese-roberta-wwm-ext-large
EM	0.782	0.823

c. the difference between pretrained model (architecture, pretraining loss, etc.)

	bert-base-chinese	chinese-roberta-wwm-ext-large
hidden size	768	1024
intermediate_size	3072	4096
num_attention_heads	12	16
num_hidden_layers	12	24

Q3: Curves

- 1. Plot the learning curve of your QA model
 - a. Learning curve of loss

b. Learning curve of EM

Q4: Pretrained vs Not Pretrained

- 1. Train a transformer model from scratch (without pretrained weights) on the dataset (you can choose either MC or QA)
- 2. Describe
 - a. The configuration of the model and how do you train this model

```
"_name_or_path": "hfl/chinese-roberta-wwm-ext",
  "architectures": [
    "BertForQuestionAnswering"
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "directionality": "bidi",
  "eos_token_id": 2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 256,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 2,
  "num_hidden_layers": 3,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "torch_dtype": "float32",
  "transformers_version": "4.17.0",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 21128
}
```

I only load the configuration of the model, and reduce the model size by changing hidden_size from 768 to 256, num_attention_heads from 12 to 2, num_hidden_layers from 12 to 3.

b. the performance of this model v.s. BERT

	w/o pretrained weights	w/ pretrained weights
EM	5.2	82.3

Q5: Bonus: HW1 with BERTs

- Train a BERT-based model on HW1 dataset and describe
 - 1. your model
 - a. Intent classification

```
"_name_or_path": "roberta-base",
  "architectures": [
   "RobertaForSequenceClassification"
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "problem_type": "single_label_classification",
  "torch_dtype": "float32",
  "transformers_version": "4.17.0",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50265
}
```

b. Slot tagging

```
"_name_or_path": "roberta-base",
  "architectures": [
   "RobertaForTokenClassification"
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "torch_dtype": "float32",
  "transformers_version": "4.17.0",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50265
}
```

- 2. performance of your model.
 - a. Intent classification

Bi-LSTM	Roberta
0.916	0.961

b. Slot tagging

Bi-LSTM	Roberta
0.83	0.86

3. the loss function you used.

Use CrossEntropy() in both tasks.

4. The optimization algorithm (e.g. Adam), learning rate and batch size.

Optimization Algorithm	learning rate	batch size	epoch
AdamW	3e-05	8	2