

Napredni algoritmi i strukture podataka

Tjedan 3: Strukture podataka za znakovne nizove (string)

Creative Commons

- dijeliti umnožavati, distribuirati i javnosti priopćavati djelo
- prerađivati djelo

- pod sljedećim uvjetima:
 - imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
 - nekomercijalno: ovo djelo ne smijete koristiti u komercijalne svrhe.
 - dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

Reprezentacija znakovnog niza (1)

- Znakovni niz je okarakteriziran svojim alfabetom Σ definira sve znakove koji se u nizu mogu naći
 - Imamo mapiranje $\mu \colon \Sigma \to \mathbb{N}$, kojim se znakovima alfabeta pridodaje cijeli broj
 - Tako definiramo znakovne tablice, poput ASCII (1 bajt 8 bitova) ili Unicode (2 bajta – 16 bitova)
- Osnovna reprezentacija korištenjem ASCII tablice znakovni niz definiramo kao slijed bajtova koji je završen s NULL terminatorom (vrijednost 0) – a koji u predavanju označavamo kao \$

Reprezentacija znakovnog niza (2)

- Reprezentacija uređenim parom (p, l), gdje je
 - p pokazivač na prvi znak znakovnog niza
 - *l* duljina niza
- Ovakva reprezentacija je zanimljiva kada na jednostavan način trebamo izolirati znakovni podniz bez stvaranja nove instance
 - Dobro rješenje kada imamo veći tekst u memoriji, pa u njemu treba mapirati pojedine dijelove
 - Za ovakvu reprezentaciju nije nužno korištenje NULL terminatora

Prefiksno stablo (Trie) (1)

- Zamislimo veći tekst u memoriji računala, te skup ključnih riječi (ili izraza) od interesa u tom tekstu
- Skup ključnih znakovnih nizova (riječi, izrazi, dijelovi teksta) definiramo kao

$$S = \{s_i : 0 < i \le N\}$$

- gdje je N broj znakovnih nizova
- Želimo znati da li je znakovni niz q sadržan u tekstu
 - To možemo provjeriti tako da testiramo hipotezu $q \in S$
 - Naivna implementacija bi prolazila kroz sve znakove znakovnih nizova u skupu S, što rezultira s

$$O(\sum_{s_i \in S} |s_i|)$$

Prefiksno stablo (Trie) (2)

- Trie je uređena trojka $T=(N,E,\mu)$ koja predstavlja m-stablo
 - Funkcija mapiranja $\mu: E \to \Sigma$ mapira bridove stabla na alfabet
 - Korijenski čvor predstavlja prazni znakovni niz
 - Svaki čvor Trie-a može imati najviše |Σ| djece
 - Svaki izlazni brid čvora mora se mapirati na drugi znak alfabeta dva različita izlazna brida jednog čvora ne mogu biti mapirani na isti znak alfabeta
 - Listovi su terminirajući čvorovi čiji su ulazni bridovi mapirani na \$ (NULL terminator)
 - Trie je zapravo konačni deterministički automat koji omogućava parsiranje znakovnog niza

Prefiksno stablo (Trie) (3)

Primjer

$$S_1 = \{"bird\$", "cat\$", "fish\$", "zebra\$"\}$$

 $\Sigma = \{\$, a, b, c, d, e, f, h, i, r, s, t, z\}$

- Problem u ovakvom stablu je pretraživanje izlaznih bridova
 - Kako ustanoviti da li imamo izlazni brid koji je istovjetan našem sljedećem znaku u nizu q
 - Naivna implementacija bi podrazumijevala iteraciju po svim izlaznim bridovima

$$O(|q| * |\Sigma|)$$

Postoji li bolji način od toga?

Prefiksno stablo (Trie) (4)

- U svaki čvor stavimo mapirajuće polje alfabeta s pokazivačima na djecu
 - Iz mapiranja $\mu: \Sigma \to \mathbb{N}$ znamo koji element polja gledamo
 - Ako u tom elementu ima pokazivač, tada ta tranzicija postoji
 - Prostorna kompleksnost se povećava na $O(\sum_{s_i \in S} |s_i| * |\Sigma|)$,
 - No složenost pretraživanja pada na O(|q|)

Prefiksno stablo (Trie) (5)

Mnogo znakovnih nizova u S može dijeliti zajednički prefiks

 $S_2 = \{"analysis\","analgetic\","analogy\","anarchy\","acetone\","acronim\","archaic\"\}$

a	n	a	1	у	s	i	s	
a	n	a	1	g	e	t	i	С
a	n	a	1	О	g	у		
a	n	a	r	С	h	у		
a	С	e	t	О	n	e		
a	С	r	О	n	у	m		
a	r	С	h	a	i	С		

 Sama definicija Trie-a, koja ograničava da više se izlaznih bridova jednog čvora mapira na isti znak alfabeta, nas prisiljava da zajednički prefiksi znakovnih nizova dijele strukturu stabla

Prefiksno stablo (Trie) (6)

- Pretraživanje
 - Uzimamo znak po znak iz znakovnog niza q i slijedimo tranzicije u Trie-u T
 - Ako smo nakon \$ u q došli do lista, tada S (i Trie T) sadrži q
 - Iskoristili smo sve znakove u q, što nas je dovelo do lista Trie-a T
 - U svakom drugom slučaju q nije pronađen u S
 - Što se desi kada tražimo q = "ana\$" u prethodnom Trie-u ?

Prefiksno stablo (Trie) (7)

• Primjer $S_3 = S_2 \cup \{"ana\$"\}$

Prefiksno stablo (Trie) (8)

- Upis novog znakovnog niza s (insert)
 - Krenemo s pretraživanjem q = s
 - Ako pronađemo cijeli q u Trie-u T, tada je $s \in S$ i upis nije potreban
 - Inače stanemo na prvom znaku za kojeg nemamo tranziciju u Trie-u to može biti i \$
 - Stvorimo slijednu strukturu Trie-a za ostatak znakovnog niza s
- Primjer: u S_1 dodamo s = "catfish\$"

```
procedure InsertTrie(T,s)

cn \leftarrow root(T)

for ch \in s do

if there is transition from cn for character ch to cn_{child} then

racktriangleright > array[ch] \neq NULL in cn

cn \leftarrow cn_{child}

else

cn \leftarrow cn_{new}

add transition for character ch from cn to cn_{new}

cn \leftarrow cn_{new}
```


Prefiksno stablo (Trie) (9)

- Brisanje znakovnog niza s (remove)
 - Krenemo s pretraživanjem q = s
 - Ako pronađemo cijeli q u Trie-u T, tada je $s \in S$ i brisanje je moguće
 - Inače stanemo s brisanjem

Vraćamo se od lista do kojeg nas je dovelo pretraživanje s

Tako dugo do dok roditeljski čvor ima samo jedno dijete

• Primjer: u S_3 brišemo s = "analogy\$"

```
procedure RemoveTrie(T,s)

(succ,cn) \leftarrow SearchTrie(T,s)

if not succ then

return \triangleright s not found in Trie

s \leftarrow \text{'reversed}(s)

cn \leftarrow \text{parent}(cn)

for ch \in s do

remove transition from cn for character ch

if cn has no children and there is a parent of cn then

cn \leftarrow \text{parent}(cn)

else

return
```


Patricia stablo (1)

- Struktura Trie-a nije kompaktna
 - Sjetite se svih polja u čvorovima u kojima imamo samo jedan jedini pokazivač
 - Prostorna kompleksnost Trie-a se može smanjiti tako da slijed čvorova koji imaju samo jednu tranziciju pretvorimo u jednu tranziciju
 - Dobivamo kompresirani Trie ili Patricia stablo (Practical Algorithm To Retrieve Information Coded In Alphanumeric)

ysis

cro

nym\$

ogy\$

Patricia stablo (2)

- Neke bitne stavke Patricia stabla
 - Svi unutarnji čvorovi Patricia stabla imaju barem dva djeteta inače se vraćamo na Trie strukturu
 - Reprezentacija znakovnog niza temeljena na uređenom paru (p, l) pokazuje se boljom u Patricia stablima manja potrošnja memorije
 - U memoriji imamo skup znakovnih nizova S
 - Čvorovi pokazuju samo na određene znakovne podnizove u skup S
- Sjetimo se da u svaki čvor Patricia stabla imamo samo jedan ulazni brid
 - U čvoru možemo čuvati uređeni par za tu ulaznu tranziciju

Patricia stablo (3)

- Pokazivači u čvorovima i dalje funkcioniraju kao i kod Trie-a uz malu nadopunu
 - Tranzicije u Patricia stablu predstavljaju znakovni podniz
 - Pokazivač u čvoru odgovara prvom znaku znakovnog podniza tranzicije
 - Nije moguće da dvije tranzicije, dva izlazna brida iz čvora, imaju znakovni podniz koji počinje s istim znakom
 - Ne mogu dijeliti isti prefiks jer bi to značilo da je taj prefiks dio prethodne tranzicije

Patricia stablo (4)

- ullet Pretraživanje zahtijeva usporedbu znakovnog podniza sadržanog u tranziciji sa adekvatnim znakovnim podnizom od q
 - Tijekom pretraživanja trebamo pamtiti na kojem smo mjestu u znakovnom nizu q (varijabla sc)

```
function SEARCHPATRICIA(P, q = (q_v, q_l))
   sc \leftarrow 0
   cn \leftarrow root(P)
   while cn not leaf do
       if there is transition from cn for character q_v[sc] to cn_c then
                                          \triangleright array[q_v[sc]] \neq NULL \text{ in } cn
           (t_p, t_l) \leftarrow string representation in cn_c
           if q_p[sc : sc + t_l] = t_p[0 : t_l] then
                              sc \leftarrow sc + t_1
               cn \leftarrow cn_c
           else
               return false
       else
           return false
   return sc = q_1
```


Patricia stablo (5)

- Upis novog znakovnog niza s je nešto kompliciraniji nego u Trie-u
 - Započinjemo s pretraživanjem
 - Gledamo s aspekta trenutnog čvora počinjemo iz korijenskog čvora
- Nije moguće naći izlaznu tranziciju iz čvora koja bi barem djelomično podudarala ostatku znakovnog niza s
 - Dodamo novi list u strukturu i tranziciju koja je identična ostatku znakovnog niza s

Patricia stablo (6)

- 2. Moguće je naći izlaznu tranziciju iz čvora koja djelomično podudara dijelu ostatka znakovnog niza s
 - Dodamo novi čvor cn_{ins} kojim razdvajamo staru tranziciju na dva dijela, prvi dio koji se podudara s ostatkom znakovnog niza s i drugog dijela koji se ne podudara
 - Dodamo novi list cn_{leaf} i tranziciju između cn_{ins} i cn_{leaf} koja odgovara ostatku znakovnog niza s, a koji se nije podudarao s prvim dijelom razdvojene tranzicije u prethodnom koraku

Patricia stablo (7)

- 3. Moguće je naći izlaznu tranziciju iz čvora koja potpuno podudara dijelu ostatka znakovnog niza *s*
 - Prolazimo tranziciju i pozicioniramo se u novom čvoru
 - Pazimo na ostatak znakovnog niza s

Evolucija Patricia stabla – slijed upisa i brisanja znakovnih nizova u
 S : svaki korak se može vizualizirati

Patricia stablo (8)

• Kompleksnost dodavanja znakovnog niza je $O(|s| + |\Sigma|)$

```
procedure InsertPatricia(P, s = (s_v, s_l))
    sc \leftarrow 0
    cn \leftarrow root(P)
    while cn is root or not leaf do
                                                                            \triangleright O(|s|)
        if there is transition from cn for character s_p[sc] to cn_c then
                                                \triangleright array[s_v[sc]] \neq NULL \text{ in } cn
             (t_p, t_l) \leftarrow \text{string representation in } cn_c
             if s_p[sc:sc+t_l] \subset t_p[0:t_l] then
                                                                            ⊳ case 2
                > we know for sure that the first character is matched
                 i \leftarrow first unmatched character from t_p
                                                                             \triangleright i > 0
                 remove transition between cn and cn<sub>c</sub>
                 add node cn_{ins} with (t_p, i)
                                                                           \triangleright O(|\Sigma|)
                 update node cn_c with (t_p + i, t_l - i)
                 add transition between cn and cn_{ins}
                 add transition between cn_{ins} and cn_c
                 add leaf node cn_{leaf} with (s_p + (sc + i), s_l - (sc + i))
                                                                           \triangleright O(|\Sigma|)
                 add transition between cn_{ins} and cn_{leaf}
                 return
             else if s_p[sc : sc + t_l] = t_p[0 : t_l] then
                                                                            ⊳ case 3
                 sc \leftarrow sc + t_1
                 cn \leftarrow cn_c
        else
                                                                            ⊳ case 1
             add leaf node cn_{leaf} with (s_p + sc, s_l - sc)
                                                                           \triangleright O(|\Sigma|)
             add transition between cn and cn_{leaf}
             return
```


Patricia stablo (9)

- Brisanje znakovnog niza s iz skupa S
 - Započinje pretraživanjem s mora postojati u Patricia stablu
 - Krećemo od lista koji predstavlja s, kao i u Trie-u
 - Uklanjamo list i njegovu ulaznu tranziciju
 - Ako roditelj uklonjenog lista ostane s jednim djetetom, tada se taj roditelj treba ukloniti i njegove tranzicije spojiti – nekompresirani slučaj
 - Spajanje tranzicija za znakovne nizove (p, l) je jednostavno
 - Pokazivač p na početak prebacimo za nekoliko znakova prema početku znakovnog niza
 - Duljinu l povećamo za taj broj znakova

Patricia stablo (10)

• Primjer: uklanjamo s = "analysis"

analogy\$

Patricia stablo (11)

- Znakovni niz "analysis\$" trebamo ukloniti iz memorije (destruktor u C-u)
 - No, imamo još dva pokazivača na tu instancu
 - Pokazivače prebacimo na znakovni niz jedno od preostale djece

Patricia stablo (12)

- Primjer
 - Nacrtajte evoluciju Patricia stabla za upis sljedećeg slijeda znakovnih nizova

("analysis\$", "acronym\$", "analogy\$", "acrobat\$", "ana\$")

Patricia stablo (13)

Patricia stablo (14)

- Neke značajne primjene: IP routing (u routerima), IP filtering, firewall, IP lookup, ...
- Ako za alfabet uzmemo $\Sigma = \{0,1\}$
- IPv4 adrese možemo transformirati u znakovni niz kao

192.168.11.45/32

1100 0000 . 1010 1000 . 0000 1011 . 0010 1101

Ili masku kao

192.168.0.0/16

1100 0000 . 1010 1000 . * . *

Radix stabla (1)

 Radix stablo za IP routing gradimo na sljedeći način – binarno stablo

Radix stabla (2)

- U takvom Radix stablu, podmreža se detektira kroz svoju masku
- Svi čvorovi podstabla predstavljaju članove podmreže 192.168.0.0/16

IP routing

- Kompresiramo Radix stablo dobivamo binarno Patricia stablo
- Sljedeća IP routing tablica

192.168.10.0/24	11000000.10101000.00001010	fer1.hr
192.168.11.0/24	11000000.10101000.00001011	fer2.hr
192.167.45.0/24	11000000.10100111.00101101	fer3.hr
192.167.92.0/24	11000000.10100111.01011100	fer4.hr

- pretvara se u Patricia stablo
- listovi mogu imati pokazivače na definiciju sučelja (ili na nešto drugo)

Sufiksna polja Sufiksna stabla

Sufiks znakovnog niza

- Zamislimo znakovni niz t = program
 - gdje je t = t[1], t[2], ..., t[j], ..., t[n], a t[j] je j-ti znak znakovnog niza
- Iz znakovnog niza možemo izvesti skup svih njegovih sufiksa, gdje je i-ti sufiks znakovnog niza t, definiran kao

$$t_i = t[i], t[i+1], ..., t[n]$$

1	2	3	4	5	6	7	8
p	r	o	g	r	a	m	\$

1	р	r	O	g	r	a	m	\$
2	r	O	g	r	a	m	\$	
3	o	g	r	a	m	\$		
4	g	r	a	m	\$			
5	r	a	m	\$				
6	a	m	\$					
7	m	\$						
8	\$							

Svi sufiksi znakovnog niza

- Reprezentacija znakovnog niza s uređenim parom daje nam prednost kod stvaranja liste svih sufiksa znakovnog niza
- Naivno: kada bismo htjeli stvoriti novu instancu znakovnog niza za iti sufiks t[i], trebali bismo kopirati znakove od i do n u tu novu instancu.
 - Za sve sufikse znakovnog niza to znači sljedeći broj kopiranja

$$(n-1) + (n-2) + \dots + 1 = \frac{n(n+1)}{2} - n$$

- Kada koristimo uređeni par (p,l) kao reprezentaciju znakovnog niza, u n iteracija radimo
 - Pomičemo pokazivač p za jedno mjesto unaprijed
 - Smanjimo l za jedan

Sufiksno polje (1)

 Prethodnu listu sufiksa sortiramo alfabetski (abecedno) i dobivamo sljedeću sortiranu listu sufiksa (sjetimo se \$=0)

i	A_i	t_{A_i}							
1	8	\$							
2	6	a	m	\$					
3	4	g	r	a	m	\$			
4	7	m	\$						
5	3	О	g	r	a	m	\$		
6	1	p	r	О	g	r	a	m	\$
7	5	r	a	m	\$				
8	2	r	O	g	r	a	m	\$	

• gdje je $A=\langle A_1,A_2,\dots,A_i,\dots,A_n\rangle$ sortirani niz sufiksa koji definira sufiksno polje

 $SA = \langle \$, am\$, gram\$, m\$, ogram\$, program\$, ram\$, rogram\$ \rangle$

Sufiksno polje (2)

- Kompleksnost stvaranja sufiksnog polja je dosta visoka
- Koristimo algoritam za sortiranje što je $O(n \log n)$, pa kad tome dodamo usporedbu znakovnih nizova, to se može aproksimirati kao $O(n^2 \log n)$
- Ideja sufiksnog polja je provjeriti da li se znakovni niz q nalazi u znakovnom nizu t
 - Naivno pretraživanje bi bilo O(|q| * n)
 - Pretraživanje sufiksnog polja sa binarnim algoritmom za pretraživanje je $O(|q|\log n)$
 - Binarni algoritam za pretraživanje je sličan pretraživanju binarnog stabla
 - Pronađemo sredinu, pa provjerimo da li je q manji ili veći od te sredine
 - S obzirom na rezultat, pretraživanje svodimo na pola sufiksnog polja
 - Nastavljamo rekurzivno do konačnog rezultata: false ili true

Sufiksno polje (3) (info)

- Stvaranje sufiksnog polja može biti linearno korištenjem posebnih algoritama, kao skew algoritam
- Korištenjem koncepata LCP-a i ℓ -matrice, pretraživanje se može ubrzati na $O(|q| + \log n)$
- Ti su algoritmi i načini stvaranja kompleksni. Studenti koji žele znati više o ovome mogu pronaći te teme u skripti NASP-a.

Sufiksni Trie (1)

- Listu svih sufiksa određenog znakovnog niza možemo transformirati u Trie
- Za alfabet $\Sigma = \{C, A, G, T, \$\}$ (DNA baze) i t = CAGAGG\$ imamo sljedeću listu svih sufiksa
- Pretvoreno u sufiksni Trie

С	A	G	A	G	G	\$
A	G	A	G	G	\$	
G	A	G	G	\$		
A	G	G	\$			
G	G	\$				
G	\$					
\$						

• Svaki list sufiksnog Trie-a sadrži redni broj tog sufiksa ili A_i

Sufiksno stablo (1)

- Sufiksno stablo je kompresirani sufiksni Trie ili Patricia stablo svih sufiksa određenog znakovnog niza
- Ovo se još i naziva eksplicitno sufiksno stablo

Sufiksno stablo (2)

- Implicitno sufiksno stablo dobiva se iz eksplicitnog sljedećom transformacijom:
 - 1. Uklonimo sve NULL terminatore (\$) za bridova eksplicitnog sufiksnog stabla
 - 2. Uklonimo sve bridove koji su ostali s praznim znakovnim nizovima ϵ , uključujući i njihova podstabla
 - Ponovno kompresiramo sufiksno stablo: svi čvorovi osim korijenskog, koji imaju manje od dvoje djece se uklanjaju, a njihove tranzicije konkateniraju

Ukkonenov algoritam (1)

- Naivni pokušaj stvaranja sufiksnog stabla je $O(n^2)$
 - Ovo je nekoliko puta bilo poboljšano raznim algoritmima: McCreigh i Weiner
 - Ukkonen gradi svoj algoritam na Weinerovom algoritmu
 - Ukkonenov algoritam je online algoritam koji gradi sufiksno stablo znak po znak iz t
- Imamo implicitno sufiksno stablo nakon i koraka koje označimo S_i
 - Uzimamo znak t[i+1] i izvršavamo i+1 fazu nadogradnje stabla
 - i + 1 faza se izvodi u i + 1 koraka
 - U svakom koraku dodajemo t[i+1] na sve sufikse prefiksa t[1,i]
 - U i + 1 koraku dodajemo t[i + 1] na korijenski čvor stabla
 - Rezultat je implicitno sufiksno stablo S_{i+1}

Ukkonenov algoritam (2)

- Za t = ABABABC\$ imamo sljedeće faze i korake
 - Varijablom j definiramo sufiks prefiksa t[1,i], ili t[j,i]
- Prolazimo stablo za svaki t[j, i] i dodajemo t[i+1], a imamo tri slučaja:
 - 1. Kod prolaska t[j,i] dolazimo do lista. Cijela vertikalna putanja predstavlja t[j,i]. U zadnjoj tranziciji prije lista samo dodajemo t[i+1] na kraj tranzicije.

Phase 1, $i + 1 = 1$, $t[i + 1] = A$							
Step 1	A						
Phase 2, $i + 1 = 2$, $t[i + 1] = B$							
Step 1, $j = 1$	A	В					
Step 2	В						
Phase 3, $i + 1 = 3$, $t[i + 1] = A$							
Step 1, $j = 1$	A	В	A				
Step 2, $j = 2$	В	A					
Step 3	A						
Phase 4, $i + 1 = 4$, $t[i + 1] = B$							
Step 1, $j = 1$	A	В	A	В			
Step 2, $j = 2$	В	A	В				
Step 3, $j = 3$	A	В					
Step 4,	В						
Phase 7, $i + 1 = 7$, $t[i + 1] = C$							
Step 1, $j = 1$	A	В	A	В	A	В	C
Step 2, $j = 2$	В	A	В	A	В	С	
Step 6, $j = 6$	В	С					
Step 7	С						

Ukkonenov algoritam (3)

- 2. Prošli smo sve znakove t[j,i] i stali na sredini tranzicije. Sljedeći znak u tranziciji **nije** t[i+1]. Dodajemo unutarnji čvor na stablo i razdvajamo tranziciju. Dodajemo list i tranziciju t[i+1] od novo dodanog unutarnjeg čvora do novo dodanog lista. Ista operacija kao i kod Patricia stabla.
- 3. Prošli smo sve znakove t[j,i] i stali na sredini tranzicije. Sljedeći znak u tranziciji **je** t[i+1]. Ne radimo ništa jer t[j,i]t[i+1] je već sadržan u stablu.

Nakon što smo završili gradnju implicitnog sufiksnog stabla, pretvaramo ga u eksplicitno dodavanjem \$ u sve tranzicije koje vode u listove stabla.

Ukkonenov algoritam (4)

- Sufiksne veze dodatak su implicitnom sufiksnom stablu koji omogućavaju brže prolaženje stabla za t[j,i]
 - Imamo čvor n_1 u koji smo stigli prolaskom t[j, i]
 - Ako imamo neki drugi čvor n_2 do kojeg se stigne prolaskom at[j,i], tada je n_2 spojen na n_1 sufiksnom vezom
 - Ovo samo znači da za sve faze $\geq i$ trebamo početi od od oba čvora n_1 i n_2 , čime zapravo preskačemo sve korake koji uključuju podniz a
 - To znači da ne moramo startati s j=1, već odmah nakon podniza a
 - n_2 može biti i korijenski čvor kada je $a=\epsilon$ i j=i

Primjer Ukkonen (1)

- Stvaramo implicitno sufiksno stablo korištenjem Ukkonenovog algoritma za t = ABABABC\$
- Faza 1 : i + 1 = 1, t[i + 1] = A
 - Korak 1 : Imamo samo korijenski čvor. Dodajemo novu tranziciju i list.
- Faza 2: i + 1 = 2, t[i + 1] = B
 - Korak 1 : j = 1, t[j, i] = A. Prolazak nas dovodi do lista 1, što je slučaj 1. Dodajemo B na posljednju tranziciju.
 - Korak 2 : $t[j, i] = \epsilon$. Dodajemo novu tranziciju na korijenski čvor i pripadni list.

Primjer Ukkonen (2)

- Faza 3: i + 1 = 3, t[i + 1] = A
 - Korak 1 : j = 1, t[j, i] = AB. Prolazak nas dovodi do lista 1, što je slučaj 1. Dodajemo A na posljednju tranziciju.
 - Korak 2 : j = 2, t[j, i] = B. Prolazak nas dovodi do lista 2, što je slučaj 1. Dodajemo A na posljednju tranziciju.
 - Korak 3: $t[j,i] = \epsilon$. S obzirom na ϵ , ostajemo u korijenskom čvoru, no prolazak t[i+1] nas vodi u tranziciju, što je slučaj 3. Ne radimo ništa.

Primjer Ukkonen (3)

- Preskačemo niz istih faza
- Faza 7: i + 1 = 7, t[i + 1] = C
 - Korak 1 : j = 1, t[j, i] = ABABAB. Prolazak nas dovodi do lista 1, što je slučaj 1. Dodajemo C na posljednju tranziciju.
 - Korak 2 : j = 2, t[j, i] = BABAB. Prolazak nas dovodi do lista 2, što je slučaj 1. Dodajemo C na posljednju tranziciju.
 - Korak 3 : j = 3, t[j, i] = ABAB. Prelazak nas vodi na sredinu tranzicije, a sljedeći znak nije C, što je slučaj 2. Razdvajamo puteve za ABABABC i ABABC.

Primjer Ukkonen (4)

- Korak 4 : j=4, t[j,i]=BAB. Prelazak nas vodi na sredinu tranzicije, a sljedeći znak nije C, što je slučaj 2. Razdvajamo puteve za BABABC i BABC. U ovom koraku imamo dva unutarnja čvora $n_1=BAB$ i $n_2=ABAB$. Spajamo sufiksnom vezom.
- Korak 5: j = 5, t[j, i] = AB. Prelazak nas vodi na sredinu tranzicije, a sljedeći znak nije C, što je slučaj 2. Razdvajamo puteve za $\{ABABABC, ABABC\}$ i ABC. U ovom koraku imamo dva unutarnja čvora $n_1 = AB$ i $n_2 = BAB$. Spajamo sufiksnom vezom.

Primjer Ukkonen (5)

- Korak 6 : j=6, t[j,i]=B. Prelazak nas vodi na sredinu tranzicije, a sljedeći znak nije C, što je slučaj 2. Razdvajamo puteve za $\{BABABC, BABC\}$ i BC. U ovom koraku imamo dva unutarnja čvora $n_1=B$ i $n_2=AB$. Spajamo sufiksnom vezom. Dodajemo i sufiksnu vezu između čvora $n_2=B$ i korijenskog čvora.
- Korak 7 : $t[j,i] = \epsilon$. S obzirom da niti jedna tranzicija ne počinje C, dodajemo novi list i novu tranziciju.

Ukkonenov algoritam (5)

Sada možemo transformirati implicitno sufiksno stablo u eksplicitno

- Recimo da na ovo sufiksno stablo sada dodajemo osmi znak D (i+1=8)
- U trenutku kada prolazimo prefiks t[1,7] = ABABABC, nailazimo na sufiksne veze
 - Kod ABAB imamo sufiksne veze na 4 dodatna čvora
 - Kod prelaska imamo 5 čvorova od kojih krećemo sa tranzicijama
 - Znamo da možemo preskočiti na t[6,7] jer smo sufikse BAB, AB, B i ϵ imali u prolasku ABAB

Ukkonenov algoritam (6)

 Na t[6,7] krećemo ispočetka jer u našem skupu čvorova nemamo korijenski čvor

t[1,7]	Α	В	Α	В	Α	В	С
t[2,7]		В	A	В	A	В	С
t[3,7]			A	В	A	В	С
t[4,7]				В	A	В	С
t[5,7]					Α	В	С
t[6,7]						В	C
t[7,7]							С

- Time smanjujemo i broj koraka, a i broj prijeđenih znakova u koraku
 - Smanjivanje broja koraka zapravo paraleliziramo izvođenje
 - Pravi dobitak je u smanjenju broja prijeđenih znakova u određenom koraku
 - U prethodnom primjeru smo izostavili prelazak 6 znakova

Pitanja?

