Resumen de intervalos de confianza para una muestra

Parámetro	Estimador puntual	Distribución muestral del estimador puntual	Condiciones	Estimación por intervalo
Media o valor esperado, μ	Media aritmética, \bar{x}	Normal estándar	• σ^2 conocida • X se distribuye normal o $n \ge 30$	$LIC = \overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ $LSC = \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
Media o valor esperado, μ	Media aritmética, \bar{x}	t de Student con n-1 grados de libertad (g.l. o gl)	 σ² desconocida X tiene una distribución general y n ≥ 30 	$LIC = \overline{x} - t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$ $LSC = \overline{x} + t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$
Varianza, σ ²	Varianza muestral, s ²	Ji-cuadrada con <i>n</i> -1 gl	X se distribuye normal o $n \ge 30$	$LIC = \frac{(n-1)s^{2}}{\chi_{n-1,\alpha/2}^{2}}$ $LSC = \frac{(n-1)s^{2}}{\chi_{n-1,1-\alpha/2}^{2}}$
Proporción, p	Proporción muestral, $\ddot{p} = \frac{x}{n}$	Normal estándar	<i>n</i> ṕ ≥ 5	$LIC = \ddot{p} - z_{\alpha/2} \sqrt{\frac{\ddot{p}(1-\ddot{p})}{n}}$ $LSC = \ddot{p} + z_{\alpha/2} \sqrt{\frac{\ddot{p}(1-\ddot{p})}{n}}$

Resumen de intervalos de confianza para dos muestras

Parámetro	Estimador	Distribución	Condiciones	Estimación por intervalo
	puntual	muestral del estimador puntual		
Diferencia de medias, μ ₁ -μ ₂	Diferencia de medias aritméticas, $\overline{x}_1 - \overline{x}_2$	Normal estándar	 Muestras independientes σ₁² y σ₂² conocidas X₁ y X₂ se distribuyen normales o n₁ + n₂ ≥ 30 	$LIC = (\overline{x}_1 - \overline{x}_2) - Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ $LSC = (\overline{x}_1 - \overline{x}_2) + Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
Diferencia de medias, μ ₁ -μ ₂	Diferencia de medias aritméticas, $\overline{x}_1 - \overline{x}_2$	t de Student con $m=n_1+n_2-2$ gl	 Muestras independientes σ₁² y σ₂² desconocidas, pero iguales X₁ y X₂ se distribuyen normales o n₁ + n₂ ≥ 30 	$LIC = (\overline{x}_{1} - \overline{x}_{2}) - t_{m, \frac{\sigma}{2}} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$ $LSC = (\overline{x}_{1} - \overline{x}_{2}) + t_{m, \frac{\sigma}{2}} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$ $s_{p}^{2} = \frac{(n_{1} - 1) s_{1}^{2} + (n_{2} - 1) s_{2}^{2}}{m}; m = n_{1} + n_{2} - 2$
Diferencia de medias, μ ₁ -μ ₂	Diferencia de medias aritméticas, $\overline{x}_1 - \overline{x}_2$	t de Student con $m=n_1+n_2-2$ gl	 Muestras independientes σ₁² y σ₂² desconocidas y distintas X₁ y X₂ se distribuyen general o n₁ + n₂ ≥ 30 	$LIC = (\overline{x}_{1} - \overline{x}_{2}) - t_{m,\frac{\alpha}{2}} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$ $LSC = (\overline{x}_{1} - \overline{x}_{2}) + t_{m,\frac{\alpha}{2}} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$ $m = n_{1} + n_{2} - 2$

Parámetro	Estimador puntual	Distribución muestral del estimador puntual	Condiciones	Estimación por intervalo
Diferencia de proporciones, p_1 - p_2	Diferencia de proporciones muestrales,	Normal estándar	$n_1 \ddot{p}_1 \ge 5$ $n_2 \ddot{p}_2 \ge 5$	$LIC = (\ddot{p}_1 - \ddot{p}_2) - z_{\alpha/2} \sqrt{\frac{\ddot{p}_1(1 - \ddot{p}_1)}{n_1} + \frac{\ddot{p}_2(1 - \ddot{p}_2)}{n_2}}$
	$\ddot{p}_1 - \ddot{p}_2 = \frac{x_1}{n_1} - \frac{x_2}{n_2}$			$LSC = (\ddot{p}_{1} - \ddot{p}_{2}) + z_{\phi/2} \sqrt{\frac{\ddot{p}_{1}(1 - \ddot{p}_{1})}{n_{1}} + \frac{\ddot{p}_{2}(1 - \ddot{p}_{2})}{n_{2}}}$
Razón de varianzas, σ_1^2/σ_2^2	Razón de varianzas muestrales, s_1^2/s_2^2	$F \operatorname{con} n_1$ -1 gl en el numerador y n_2 -1 gl en el denominador	 Muestras independientes X₁ y X₂ se distribuyen normales o n₁ + n₂ ≥ 30 	$LIC = \frac{s_1^2}{s_2^2} \cdot \frac{1}{f_{n_1 - 1, n_2 - 1, \alpha/2}}$ $LSC = \frac{s_1^2}{s_2^2} \cdot f_{n_2 - 1, n_1 - 1, \alpha/2}$