Trabalho de Séries Temporais

V2 - 25.1

Guilherme Duarte Alves Basso 240805 Pedro Constantino de Freitas 253596 Rafaela da Silva Barril 204368 Vitor Ribas Perrone 245040

Escolha da Série e tratamento dos Dados

Escolha da Série e tratamento dos dados

Foi escolhido trabalhar com dados fornecidos mensalmente pela Secretaria de Segurança Pública de SP, referentes aos anos de 2002 a 2024. Cada ano é um banco.

Fonte

Depois de unificar os bancos, foi escolhida a série temporal referente ao crime "Homicídio Culposo por acidente de trânsito" para ser analisada.

```
for (i in 2002:2024) {
  banco ← read_excel(paste0(i, ".xlsx"))
  banco ← t(banco)
  colnames(banco) ← banco[1,]
  banco ← as.data.frame(banco)
  banco ← banco[-c(1,14),]
  banco ← banco %>% mutate(Data = paste0(1:12, "-", i))
  banco ← banco %>% pivot_longer(cols = 1:(ncol(banco)-1), names_to = "Variavel")
  dados_finais ← rbind(dados_finais, banco)
}
dados ← read_csv("DadosCrimesUnidos.csv")
dados ← dados[,-1]
dados$Data ← my(dados$Data)
head(dados_finais)
```

```
# A tibble: 6 × 3
Data Variavel value
<a href="https://www.chr"><a href="https://www.chr">https://www.chr</a><a href="https://www.chr"><a href="https://www.chr">www.chr</a><a href="https://www.chr">www.chr
```

Gráfico de sequência

Gráficos de autocorrelação

 Percebe-se que todas as barras ultrapassam a banda de confiança em todos os lags, o que indica autocorrelação significativa e dependência dos dados

 Também se destaca os picos nos lags 12 e 24 (meses), o que indica uma sazonalidade anual

 Percebe-se que no gráfico de autocorrelação parcial, os três primeiros lags ultrapassam a banda de confiança, ou seja, pode indicar um processo de 3ª ordem

 Além disso, nota-se que os lags múltiplos de 12 ultrapassam a banda de confiança, o que pode indicar a sazonalidade anual

Gráfico de sazonalidade

Decomposição

Decomposição Clássica value = trend + seasonal + random 16 14 value 12 10 8 6 13 12 trend 11 10 9 seasonal 3 random 2005 jan 2010 jan 2015 jan 2020 jan 2025 jan

Data

Ajustando modelos

Tabela: Métricas de Avaliação dos Modelos Usados Para Predição da Média Diária de Homicídios Culposos de Trânsito por Mês.

Modelo	ME	RMSE	MAE	MPE	MAPE	MASE	RMSSE	
AR(2)	-0.223	0.852	0.852	-3.13	8.74	0.816	0.653	
AR(3)	-0.155	0.835	0.835	-2.41	8.49	0.801	0.640	
ARMA(2,2)	-0.161	0.836	0.836	-2.48	8.54	0.802	0.641	legenda:
Decaimento Exp	-0.0788	0.936	0.936	-1.75	9.46	0.899	0.719	
Drift	0.0406	1.07	1.07	-0.491	10.7	1.02	0.817	vermelho - 1º menor valor
Holt	0.0160	0.929	0.929	-0.838	9.35	0.893	0.714	
Holt Winters	0.117	0.774	0.774	0.663	7.67	0.742	0.594	azul - 2º menor valor
MA(2)	-0.377	0.969	0.969	-4.85	10.0	0.925	0.739	dzui Z menorvaror
MA(3)	-0.334	0.902	0.902	-4.35	9.33	0.862	0.689	verde - 3º menor valor
Media	-1.14	1.64	1.64	-13.5	17.6	1.55	1.24	
Naive	0.0185	1.06	1.06	-0.727	10.6	1.01	0.811	
Prophet	0.142	0.904	0.904	1.16	8.90	0.856	0.691	
Regressão	0.0526	0.937	0.937	-0.686	9.46	0.897	0.717	
Snaive	-0.147	1.05	1.05	-2.12	10.4	1.01	0.806	

Modelo ARMA(2,2)

Diagnóstico - Modelo ARMA(2,2)

Modelo AR(3)

Diagnóstico - Modelo AR(3)

Modelo Método de Holt-Winters

Diagnóstico - Modelo Holt-Winters

Melhor modelo selecionado

Tendo em vista a avaliação das métricas de todos os modelos aplicados, e escolhendo os melhores daqueles para avaliação diagnóstica, nota-se que o modelo que mais se adequa aos dados e que melhor prediz observações futuras é o **Método de Holt-Winters**.

É interessante notar que, apesar do AR(3) ter sido o 2º melhor na avaliação das métricas para as predições, o modelo ainda apresenta alta correlação nos lags 12 e 24 (meses).

Obrigado pela atenção!