

Mestrado Integrado em Engenharia Física

UC de Análise de Circuitos

Departamento de Eletrónica Industrial e Computadores

Paulo Carvalhal pcarvalhal@dei.uminho.pt

Métodos Sistemáticos de Análise de Circuitos Lineares de CC

...relembrando

O **método das tensões nodais** permite obter a tensão em cada um dos (*N-1*) nós de um circuito (o *N*-ésimo nó é definido pela referência, cuja tensão se conhece à partida ou se admite ser 0 V). As (*N-1*) variáveis são obtidas por resolução de um sistema de (*N-1*) equações algébricas linearmente independentes, cuja obtenção se resume à aplicação da KCL aos nós do circuito

O **método das correntes de circulação** permite obter a corrente em cada uma das malhas de um circuito. Note-se que as <u>correntes nas malhas são fictícias</u>, não coincidindo necessariamente com as correntes nos componentes do circuito (estas podem, no entanto, ser obtidas por adição ou subtração das correntes nas malhas). Idêntico ao método anterior, aplica a KVL para obter as correntes de circulação.

- Método das Correntes de Malha/Correntes de Circulação/Correntes Fictícias A aplicação do método das malhas baseia-se nos seguintes passos:
 - 1. Determinação do número total de malhas, (R-(N-1)), do circuito e traçado das correntes, de tal modo que todos os ramos fiquem cobertos
 - obs 1: a troca dos sentidos nas correntes de malha não altera o resultado final
 - obs 2: as correntes de malha traçadas devem cobrir todos os ramos (em cada ramo deve passar, pelo menos uma, corrente de malha). Isto quer dizer que uma corrente de malha só é a corrente de um ramo, se essa for a única corrente nesse ramo.
 - obs 3: num ramo com uma fonte ideal de corrente comum a duas malhas, só deve passar uma corrente fictícia
 - obs 4: Identificar R-(N-1) malhas no circuito, em que:

 $R = n^0$ ramos

N= nº de nós

Método das Correntes de Malha

A aplicação do método das malhas baseia-se nos seguintes passos:

- Definir as polaridades dos componentes de acordo com as correntes de malha adoptadas
- 3. Aplicação da Lei de *Kirchhoff* das malhas (KVL) a cada uma das malhas que não contenha fontes de corrente
- 4. Resolução do sistema de equações de ordem R-(N-1)-C^(*)
- 5. Calcular as correntes nos ramos a partir das correntes de malha obtidas

(*) C - número de ramos com fontes ideais de corrente

Método das Correntes de Malha

R = 9 ramos

N = 6 nós

Método das Correntes de Malha

Método das Correntes de Malha

Método das Correntes de Malha

Exemplo

O circuito inclui 2 malhas pelo que serão necessárias 2 equações para o analisar

Método das Correntes de Malha

 Definição das correntes de malha e obtenção das correntes nos componentes do circuito

1º passo - Determinação do número total de malhas e traçado das correntes de malha

2º passo – Definir as polaridades dos componentes de acordo com as correntes de malha adoptadas

Método das Correntes de Malha

Exemplo

3º passo

A aplicação da Lei de Kirchhoff das tensões às malhas a e b permite obter as duas equações algébricas seguintes:

Malha *a*:
$$V_a = V_1 + V_3$$

Malha *b*:
$$-V_b = V_2 + V_3$$

Método das Correntes de Malha

Exemplo

4º passo

A substituição das características tensão-corrente das resistências (lei de Ohm) permite rescrever as equações na seguinte forma:

Malha a:
$$v_a = R_1 i_a + R_3 (i_a - i_b)$$

Malha b: $-v_b = R_2 i_b + R_3 (i_b - i_a)$

duas eq. (uma por cada malha) ${\rm duas\ incógnitas\ }(\vec{\pmb{I}}_{\rm a}\ {\rm e}\ \vec{\pmb{I}}_{\rm b})$

■ Método das Correntes de Malha – Casos Especiais

Caso 1 - Fontes de Corrente Independentes Pertencentes a Uma Só Malha

Neste caso apenas se aplica a KVL à malha a:

Malha *a*:
$$V_a = R_1 i_a + R_3 (i_a + i_b)$$

Malha *b*:
$$i_b = i_f \rightarrow i_a = \frac{1}{R_1 + R_3} v_a - \frac{R_3}{R_1 + R_3} i_f$$

Substituindo na Malha A e resolvendo em ordem a **i**a

■ Método das Correntes de Malha – Casos Especiais

Caso 2 – Fontes de Corrente Independentes Comuns a Duas Malhas

Embora o circuito tenha 3 malhas, a relação entre i_b e i_c é conhecida (as malhas b e c definem uma "super-malha"):

$$i_c = i_f + i_b$$
 $(i_F = iC - iB)$

Método das Correntes de Malha – Casos Especiais

Caso 2 – Fontes de Corrente Independentes Comuns a Duas Malhas

Assim, a KVL aplica-se apenas à malha a e à super-malha b-c (a tracejado na figura):

Malha *a*:
$$V_a = R_1 i_a + R_4 (i_a - i_b)$$

Super-malha $b - c$: $-V_b = R_2 i_b + R_3 (i_f + i_b) - R_4 (i_a - i_b)$

Ficamos com duas eq. E duas incógnitas

■ Método das Correntes de Malha – Casos Especiais

Caso 2 – Fontes de Corrente Independentes Comuns a Duas Malhas

Em alternativa, atendendo à observação inicial:

obs 3: num ramo com uma fonte ideal de corrente comum a duas malhas, só deve passar uma corrente fictícia

Sena Esteves, 2015

■ Método das Correntes de Malha – Casos Especiais

Caso 2 – Fontes de Corrente Independentes Comuns a Duas Malhas (cont.)

Malha a: $V_a - R_1(i_A + i_C) - R_4i_A = 0$

Malha b: $i_B=i_f$

Malha c: $v_a - R_1(i_A + i_C) - R_2i_C - R_3(i_C + i_B) - v_b = 0$

■ Método dos Nós versus Método das Malhas

	Método dos Nós	Método das Malhas
Variáveis	Tensões nos nós	Correntes nas malhas
Lei utilizada	Lei de Kirchhoff das correntes	Lei de Kirchhoff das tensões
Número de equações	n _e – 1 – (número de fontes de tensão directamente ligadas a nós essenciais)	(número de malhas) – (número de fontes de corrente pertencentes a uma ou mais malhas)
Casos em que se simplifica	Fontes de tensão independentes ligadas ao nó de referência	Fontes de corrente independentes pertencentes a uma só malha
Casos em que se complica	Fontes de tensão ligadas entre dois nós distintos da referência (super-nó)	Fontes de corrente independentes comuns a duas malhas (super-malha)
Especialmente indicado	Circuitos só com fontes de corrente	Circuitos só com fontes de tensão