Machine learning for predict the IPO

success or failure?

Presentation: Edoardo Pedorcchi

01-The problem

02-The question

03-The dataset

04-The critical point

05-The models used

06-The logistic regression

07-The random forest

08-The comparison

09-The answer

01 - The problem

IPOs are critical for all companies...

IPO

will the company be a success or a failure?

will I have made the right or wrong choice?

02- The question

can a machine learning model predict whether a company will flourish or flounder during its IPO?

But more importantly, can it do so using only data from the company's financial statement?

to be or not to be?

03- The dataset

The dataset contains the analysis of 11 companies(rows).

For each company are reported 8 variables (columns), that are calculated with the companies' financial statement:

- D/E
- EBITDA/revenue
- Net Profit Margin
- current ratio
- Times Interest Earned
- ROA
- ROE
- IPO (only 0=failure and 1=success)

values are only ratios because it does not make sense to use integers values for companies of different sizes and ages.

other 4 companies are used as test dataset

for the data exploration and visualization view the complete project on github!!

04- The critical points

before starting there are 2 problems to be addressed:

small dataset

The data used are few to train a machine learning model

why?

the process to find them is so long...
they will be added over time

stay tuned

few variables:

the training dataset excludes many fundamental variables such as the macroeconomic situation, the stock market situation, the sector in which the company operates, etc.

Why?

the objective of this model is precisely try to predict IPOs using only financial statement data.

in the future, a model will be created that includes more variables

05 - The models used

Logistic regression

- Advantages:
 - Easy to interpret:
 - Fast training and suitable for small to medium-sized datasets.
 - A good when the relationship is linear or linear in the log transformation.
- Disadvantages:
 - Notfor modeling complex or nonlinear
 - Sensitive to outliers in the data.
 - Requires the assumption of linearity

Random forest

Advantages:

- Good with complex and non-linear data.
- Can handle both numerical and categorical data
- Reduces the risk of overfitting compared to a single decision tree.
- Provides feature importance(useful for variable selection).

Disadvantages:

- require more time for training compared to simpler models (like logistic regression).
- Less interpretable compared to linear models(like logistic regression.)

06 - The logisitc regression

9.917340e-01

are the variables significant?

view the odds ratio:

4.140080e-01

odds_ratios (Intercept) DE 5.466274e+01 2.946474e-01 currentratio TimesInteresEarned

NetProfitMargi	EBITDArevenue
1.137880e+0	3.304626e-02
RO	ROA
9.624444e-0	7.585439e-08

accuracy= 50% sensitivity= 50% precision= 50%

*	Actual 🗦	Predicted [‡]	Freq	÷
1	0	0		1
2	1	0		1
3	0	1		1
4	1	1		1

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	4.00118	3.28428	1.218	0.223
DE	-1.22198	1.28626	-0.950	0.342
EBITDArevenue	-3.40985	17.42118	-0.196	0.845
NetProfitMargin	0.12917	0.33489	0.386	0.700
currentratio	-0.88187	0.90705	-0.972	0.331
TimesInteresEarned	-0.00830	0.07312	-0.114	0.910
ROA	-16.39445	32.07900	-0.511	0.609
ROE	-0.03828	0.08965	-0.427	0.669

07 - The Random forest

are the variables significant?

Mean decrease Gini:

	MeanDecreaseGini		
DE	0.6153193		
EBITDArevenue	0.5049369		
NetProfitMargin	0.5585216		
currentratio	0.8164398		
${\tt TimesInteresEarned}$	0.8199105		
ROA	0.7297684		
ROE	0.9194670		

•	Actual ‡	Predicted [‡]	Freq	\$
1	0	0		2
2	1	0		0
3	0	1		0
4	1	1		2

08 - The Comparison (LR vs RF)

random forest accuracy=100%

logistic regression accuracy=50%

such high accuracy is very suspicious

why?

- Lack of Linear Correlation?
- Uninformative Variables?
- few data?

09 - The answer(conclusion)

predicting IPO with ML is possible!!

- random forest work better for this goal
- ROE, TIE, CR are the variables most significative(according to random forest)

more analysis are needed

- use other models
- add more data
- add more variables
- more trials on treshold

Thanks

for more view: https://github.com/EdoardoPedrocchi