The exact same construction works for any field K, and we obtain a vector space denoted by $K^{(I)}$ and an injection $\iota \colon I \to K^{(I)}$.

The main reason why the free vector space $K^{(I)}$ over a set I is interesting is that it satisfies a universal mapping property. This means that for every vector space F (over the field K), any function $h \colon I \to F$, where F is considered just a set, has a unique linear extension $\overline{h} \colon K^{(I)} \to F$. By extension, we mean that $\overline{h}(i) = h(i)$ for all $i \in I$, or more rigorously that $h = \overline{h} \circ \iota$.

For example, if $I = \{ \heartsuit, \diamondsuit, \spadesuit, \clubsuit \}$, $K = \mathbb{R}$, and $F = \mathbb{R}^3$, the function h given by

$$h(\heartsuit) = (1, 1, 1), \quad h(\diamondsuit) = (1, 1, 0), \quad h(\clubsuit) = (1, 0, 0), \quad h(\clubsuit) = (0, 0 - 1)$$

has a unique linear extension $\overline{h} \colon \mathbb{R}^{(I)} \to \mathbb{R}^3$ to the free vector space $\mathbb{R}^{(I)}$, given by

$$\begin{split} \overline{h}(a\heartsuit + b\diamondsuit + c\spadesuit + d\clubsuit) &= a\overline{h}(\heartsuit) + b\overline{h}(\diamondsuit) + c\overline{h}(\spadesuit) + d\overline{h}(\clubsuit) \\ &= ah(\heartsuit) + bh(\diamondsuit) + ch(\spadesuit) + dh(\clubsuit) \\ &= a(1,1,1) + b(1,1,0) + c(1,0,0) + d(0,0,-1) \\ &= (a+b+c,a+b,a-d). \end{split}$$

To generalize the construction of a free vector space to infinite sets I, we observe that the formal linear combination $a\heartsuit + b\diamondsuit + c\spadesuit + d\clubsuit$ can be viewed as the function $f: I \to \mathbb{R}$ given by

$$f(\heartsuit) = a, \quad f(\diamondsuit) = b, \quad f(\spadesuit) = c, \quad f(\clubsuit) = d,$$

where $a, b, c, d \in \mathbb{R}$. More generally, we can replace \mathbb{R} by any field K. If I is finite, then the set of all such functions is a vector space under pointwise addition and pointwise scalar multiplication. If I is infinite, since addition and scalar multiplication only makes sense for finite vectors, we require that our functions $f: I \to K$ take the value 0 except for possibly finitely many arguments. We can think of such functions as an infinite sequences $(f_i)_{i \in I}$ of elements f_i of K indexed by I, with only finitely many nonzero f_i . The formalization of this construction goes as follows.

Given any set I viewed as an index set, let $K^{(I)}$ be the set of all functions $f: I \to K$ such that $f(i) \neq 0$ only for finitely many $i \in I$. As usual, denote such a function by $(f_i)_{i \in I}$; it is a family of finite support. We make $K^{(I)}$ into a vector space by defining addition and scalar multiplication by

$$(f_i) + (g_i) = (f_i + g_i)$$

 $\lambda(f_i) = (\lambda f_i).$

The family $(e_i)_{i\in I}$ is defined such that $(e_i)_j = 0$ if $j \neq i$ and $(e_i)_i = 1$. It is a basis of the vector space $K^{(I)}$, so that every $w \in K^{(I)}$ can be uniquely written as a finite linear combination of the e_i . There is also an injection $\iota: I \to K^{(I)}$ such that $\iota(i) = e_i$ for every $i \in I$. Furthermore, it is easy to show that for any vector space F, and for any function