Przetwarzanie obrazów

Zestaw zadań nr 2

★: zadania na ocenę

1. Próbkowanie sygnału/aliasing $\star (2+2+1)$

Płytka strefowa Fresnela na obrazie poniżej (kosinusoidalny wzór pierścienia, Płytka Fresnela.
png) posiada w reprezentacji 8-bitowej wartości intensywności I obliczone według wzoru:

$$I(r) = 127 \cdot \cos\left(\frac{r^2}{5120}\right) + 128$$

gdzie r to odległość do środka obrazu w pikselach.

(a) Proszę utworzyć w ImageJ profil liniowy wzdłuż przekątnej obrazu płytki strefowej Fresnela ($Analyze \rightarrow Plot\ Profile$, a następnie wybrać opcję $More \rightarrow High\text{-}Resolution\ Plot$).

Proszę zinterpretować profil liniowy obrazu jako sygnał i oznaczyć na grafice punkty próbkowania w przypadku wybrania częstotliwości próbkowania $f=\frac{1}{50\,\mathrm{pikseli}}$.

W których obszarach przy tak wybranej częstotliwości próbkowania rekonstrukcja sygnału nie jest możliwa?

Proszę oszacować, z jaką minimalną częstotliwością f_{\min} należy próbkować obraz, by jego rekonstrukcja była możliwa.

- (b) Płytka strefowa Fresnela ma zostać próbkowana 30 punktami próbkowania (impulsami Diraca) na krawędź. Proszę wykonać próbkowanie (dygitalizację obrazu) i jego rekonstrukcję w ImageJ (poprzez redukcję liczby pikeseli obrazu do 30 × 30 bez opcji interpolacji). Proszę wyjaśniśnić efekt digitalizacji widoczny na zrekonstruowanym obrazie i zaznaczyć obiekty aliasów.
- (c) Proszę wykonać próbkowanie obrazu z częstotliwością $f_{\rm min}$ wyznaczoną w części a).

2. Charakterystyka jakościowa obrazów \star (2)

Proszę wyznaczyć kontrast globalny i lokalny w obrazach muchaA.png, muchaB.png i muchaC.png.

Przy wyznaczaniu kontrastu lokalnego proszę przyjąć następujące sąsiedztwo f_{nb} dla każdego piksela f (sąsiedztwo ośmiospójne):

3. **DFT**

Do obrazów A,B i C proszę przyporządkować (amplitudę) DFT z obrazów a,b i ${\bf c}$

4. **DFT**

Który z obrazów a,b i c przedstawia (amplitudę) DFT obrazu A?

5. Widmo obrazu

W widmie poniższego obrazu wejściowego zostały wyeleminowane (usunięte) pewne obszary, a następnie wykonana została transformacja odwrotna. Proszę zinterpretować zmiany na obrazie wyjściowym.

6. DFT (FFT) w ImageJ \star (2+3)

(a) Dla poniższych obrazów (kwiat
1.png, kwiat2.png) proszę wyznaczyć w Image J
 DFT (FFT).

Proszę zinterpretować zasadniczą różnicę między DFT obu obrazów.

(b) W widmie Fouriera obrazu pewne obszary mogą zostać wyeliminowane (filtrowane), jak pokazują czarne obszary na obrazach $A,\,B,\,C$

i D poniżej. Po przeprowadzeniu odwrotnej transformacji Fouriera ponownie otrzymuje się obraz.

 Proszę wykonać w Image J operacje filtracji widma zgodnie z obrazami
 $A,B,\,C$ iDdla obrazu kwiat 2.png.

Proszę zinterpretować wyniki.

(Uwaga dotycząca usuwania obszarów w Image J
: $Edit \to Options \to Colors \to Background = Black, następnie$ "Clear".

7. FFT - egzamin SL 2024

Do obrazów A,B i C proszę przyporządkować (amplitudę) FFT z obrazów a,b i c

8. Efekt Gibbsa $\star (1+2)$

(a) Proszę utworzyć w ImageJ kwadratowy obraz (o rozmiarach będących potęgą liczby 2) przedstawiający biały pasek na czarnym tle

- (rysunek poniżej). Jaki kierunek posiadają fale płaskie, z których zbudowany jest ten obraz?
- (b) Proszę dokonać aproksymacji widma obrazu przez 2 skończone szeregi Fouriera o różnych długościach, zrekonstruować powstałe obrazy (zastosować odwrotną transformację Fouriera) i utworzyć profile liniowe wzdłuż osi poziomej. Proszę wyjaśnić zjawisko widoczne na rekonstrukcjach i na profilach liniowych.

