Math 4: Numerical Linear Algebra

Nathan Warner

Computer Science Northern Illinois University United States

Contents

1 Numerical Linear Algebra			ical Linear Algebra	2
	1.1	Intro	oduction	2
1.2 Gaussian Elimination and its variants \dots		Gaus	ssian Elimination and its variants	4
		1.2.1	Matrix Multiplication	4
		1.2.2	Systems of Linear Equations	6
		1.2.3	Triangular systems	7
2	Julia			10
_ 0				
	2.1	Туре	es	10
	2.2	Func	etions	11
	2.3	Linea	ar Algebra	12
		2.3.1	Matrix creation and operations	12

Numerical Linear Algebra

1.1 Introduction

• Matrix Notation: For a matrix $A \in \mathbb{R}^{m \times n}$, we say

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

with $a_{ij} \in \mathbb{R}$.

• Vector notation: For a vector $x \in \mathbb{R}^n$ (or $\mathbb{R}^{n \times 1}$), we have

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

for $x_i \in \mathbb{R}$.

• Submatrix notation (rows):

$$A(i,:) \in \mathbb{R}^{1 \times n} \iff A(i,:) = [a_{i1} \ a_{i2} \ \cdots \ a_{in}].$$

• Submatrix notation (columns):

$$A(:,j) \in \mathbb{R}^{m \times 1} \iff A(:,j) = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}.$$

- Sparse Matrix: A sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns.
- Dense Matrix: if most of the elements are non-zero, the matrix is considered dense
- **Sparsity**: The number of zero-valued elements divided by the total number of elements is sometimes referred to as the sparsity of the matrix.
- Band Matrix: a band matrix or banded matrix is a sparse matrix whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.

2

$$A(i_1:i_2,:) \in \mathbb{R}^{(i_2-i_1+1)\times n} \iff A(i_1:i_2,:) = \begin{bmatrix} a_{i_11} & a_{i_12} & \cdots & a_{i_1n} \\ a_{i_1+1,1} & a_{i_1+1,2} & \cdots & a_{i_1+1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_21} & a_{i_22} & \cdots & a_{i_2n} \end{bmatrix}.$$

$$A(:,j_1:j_2) \in \mathbb{R}^{m \times (j_2-j_1+1)} \iff A(:,j_1:j_2) = \begin{bmatrix} a_{1j_1} & a_{1,j_1+1} & \cdots & a_{1j_2} \\ a_{2j_1} & a_{2,j_1+1} & \cdots & a_{2j_2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{mj_1} & a_{m,j_1+1} & \cdots & a_{mj_2} \end{bmatrix}.$$

Where

 $A(i_1:i_2,:):$ all rows between i_1 and i_2 , across all columns,

 $A(:, j_1:j_2):$ all columns between j_1 and j_2 , across all rows.

• Transposition: $\mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$

$$C = A^{\top} \iff c_{ij} = a_{ji}.$$

• Addition $(\mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n})$

$$C = A + B \implies c_{ij} = a_{ij} + b_{ij}.$$

• Scalar-matrix Multiplication: $(\mathbb{R} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n})$

$$C = \alpha A \implies c_{ij} = \alpha a_{ij}.$$

• Matrix-matrix Multiplication: $(\mathbb{R}^{m \times p} \times \mathbb{R}^{p \times n} \to \mathbb{R}^{m \times n})$

$$C = AB \implies c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

• Matrix-vector Multiplication: $(\mathbb{R}^{m \times n} \times \mathbb{R}^n \to \mathbb{R}^m)$

$$y = Ax \implies y_i = \sum_{j=1}^n a_{ij} x_j.$$

• Inner product (or dot product): $(\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R})$

$$c = x^T y \implies c = \sum_{i=1}^n x_i y_i.$$

• Outer product: $(\mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^{m \times n})$

$$C = xy^T \implies c_{ij} = x_iy_i$$
.

• Flops: A flop is a floating-point operation between numbers stored in a floating-point format on a computer.

If x and y are numbers stored in a floating point format, then the following operations are each one flop

$$x + y$$
 $x - y$ xy x/y .

1.2 Gaussian Elimination and its variants

1.2.1 Matrix Multiplication

• Matrix Multiplication: In general, if A is a real matrix with m rows and n columns, and x is a real vector with n entries, then

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n} \quad \text{and} \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n.$$

If b = Ax, then $b \in \mathbb{R}^m$ and

$$b_i = \sum_{j=1}^n a_{ij} x_j = a_{i1} x_1 + \dots + a_{in} x_n, \quad i = 1, \dots, m.$$

Thus, b_i is the **inner-product** between the *i*-row of A,

$$A(i,:) = [a_{i1} \cdots a_{in}], \quad (i = 1, \dots, m)$$

and the vector x.

Also,

$$b = A(:,1)x_1 + \cdots + A(:,n)x_n,$$

so b is a linear combination of the columns of A, i.e.,

$$A(:,j) = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \quad j = 1, \dots, n.$$

• Matrix-Matrix Multiplication: Let $A \in \mathbb{R}^{m \times n}$ and $X \in \mathbb{R}^{n \times p}$.

If B = AX then $B \in \mathbb{R}^{m \times p}$ and

$$b_{ij} = \sum_{k=1}^{n} a_{ik} x_{kj}, \quad i = 1, \dots, m, \ j = 1, \dots, p.$$

That is, b_{ij} is the inner-product between row i of A and column j of X.

Also, each column of B is a linear combination of the columns of A.

Total flops required for matrix multiplication is

$$\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} 2 = 2mnp.$$

If $A, X \in \mathbb{R}^{n \times n}$, then computing B = AX requires $2n^3 = O(n^3)$ flops.

• Block Matrices: Partition $A \in \mathbb{R}^{m \times n}$ and $X \in \mathbb{R}^{n \times p}$ into blocks:

$$A = \begin{array}{ccc} n_1 & n_2 \\ m_1 & \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} &, X = \begin{array}{ccc} n_1 & p_2 \\ n_2 & \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \end{array}$$

where $n = n_1 + n_2$, $m = m_1 + m_2$, and $p = p_1 + p_2$.

If B = AX, and

$$B = \begin{array}{cc} m_1 & p_2 \\ m_2 & \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, \end{array}$$

then

$$\begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = B = AX = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}X_{11} + A_{12}X_{21} & A_{11}X_{12} + A_{12}X_{22} \\ A_{21}X_{11} + A_{22}X_{21} & A_{21}X_{12} + A_{22}X_{22} \end{bmatrix}$$

That is,

$$B_{ij} = \sum_{k=1}^{2} A_{ik} X_{kj}, \quad i, j = 1, 2.$$

1.2.2 Systems of Linear Equations

- Systems of linear equations: Let $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^m$, our goal is to find $x \in \mathbb{R}^m$ such that Ax = b
- Singularity: A singular matrix is a square matrix that does not have an inverse.

A nonsingular matrix is a square matrix that does have an inverse.

The following are equivalent

- -Ax = b has a unique solution
- $-\det(A) \neq 0$
- $-A^{-1}$ exists
- There is no nonzero vector $y \in \mathbb{R}^m$ such that Ay = 0

If any one of the following are true, they all are true, and A is non-singular

• Solution to Ax = b: If A is nonsingular, then A^{-1} exists, and

$$x = A^{-1}b.$$

Which is the unique solution to Ax = b

Note: Practically, it is not wise to compute A^{-1} , as this can be expensive.

1.2.3 Triangular systems

• Upper triangular: A square matrix A = U of the form

$$A = U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}$$

is called upper triangular

• Lower triangular: A square matrix A = L

$$A = L = \begin{bmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix}$$

is called lower triangular

• Solutions to triangular systems: Consider the system

$$\begin{bmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

So,

$$\ell_{11}x_1 = b_1$$

$$\ell_{21}x_1 + \ell_{22}x_2 = b_2$$

$$\vdots$$

$$\ell_{n1}x_1 + \ell_{n2}x_2 + \dots + \ell_{nn}x_n = b_n.$$

Then,

$$x_1 = \frac{b_1}{\ell_{11}}$$

and,

$$\ell_{22}x_2 = b_2 - \ell_{21}x_1$$
 $\implies x_2 = \frac{b_2 - \ell_{21}x_1}{\ell_{22}}.$

In general, we have

$$x_{i} = \frac{b_{i} - \sum_{j=1}^{i-1} \ell_{ij} x_{j}}{\ell_{ii}}$$

for i = 1, 2, ..., n. This method is called **Forward Substitution**.

A similar process is used on upper triangular matrices and is called **Backward Substitution**.

• Counting flops for the forward substitution method: We have

```
for i = 1:n
for j=1:i-1
b[i] = b[i] - ell[i,j]b[j]
end
b[i] = b[i] / ell[i,i]
end
```

Thus, the count of flops is

$$n + \sum_{i=1}^{n} 2(i-1) = n + 2\sum_{i=1}^{n} (i-1) = n + 2\left(\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1\right)$$
$$= n + 2\left(\sum_{i=1}^{n} i - n\right) = n + 2\left(\frac{n(n+1)}{2} - n\right)$$
$$= n + n^{2} - n = n^{2}$$

So, forward substitution is $\mathcal{O}(n^2)$

• Column oriented forward substitution: Suppose we have Lx = b when L is lower triangular, we split the matrix into the following blocks

$$\begin{bmatrix} \ell_{11} & 0 \\ \hat{\ell} & \hat{L} \end{bmatrix} \begin{bmatrix} x_1 \\ \hat{x} \end{bmatrix} = \begin{bmatrix} b_1 \\ \hat{b} \end{bmatrix}.$$

With $\hat{\ell} \in \mathbb{R}^{n-1}$, $\hat{L} \in \mathbb{R}^{n-1 \times n-1}$, $\hat{x} \in \mathbb{R}^{n-1}$, $\ell_{11}, x_1, b_1 \in \mathbb{R}$. Note that \hat{L} is also lower triangular.

We have

$$\ell_{11}x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{11}}$$
$$\hat{\ell}x_1 + \hat{L}\hat{x} = \hat{b} \implies \hat{L}\hat{x} = \hat{b} - \hat{\ell}x_1$$

Thus, we reduced the dimension by one. We repeat this process for the remaining x_i . The process is

- 1. Compute $x_1 = \frac{b_1}{\ell_{11}}$
- 2. Compute $\hat{b} \hat{\ell}x_1 = \tilde{b} \in \mathbb{R}^{n-1}$
- 3. Find $\hat{L}x = \tilde{b}$
- Counting flops for column oriented forward substitution: Let f_n be the flop count, we have

$$f_n = 1 + 2(n-1) + f_{n-1}$$
.

With

$$f_{n-1} = 1 + 2(n-2) + f_{n-2}.$$

Until

$$f_1 = 1 + 2 + f_0$$

with $f_0 = 0$

So,

$$f_n = 1 + 2(n-1) + 1 + 2(n-2) + \dots + 1 + 2(n-(n-1))$$

$$= \sum_{i=1}^{n-1} 1 + 2(n-1) = n + 2n^2 - 2\sum_{i=1}^{n} i$$

$$= \dots = n^2.$$

Thus, column oriented forward substitution is also $\mathcal{O}(n^2)$

Julia

2.1 Types

• Subtype constraint <: A <: B means A is a subtype of B

```
0 Int <: Number #true
```

2.2 Functions

2.3 Linear Algebra

2.3.1 Matrix creation and operations

- Array constructors:
 - $Array{T}(undef, dims...)$
 - $\ Vector\{T\} (undef, \, n)$
 - $\ Matrix\{T\} (undef, \, m, \, n)$
- Zeros/ones/fills
 - zeros(n), zeros(m,n)
 - ones(n), ones(m,n)
 - fill(x, dims...)
- Uniform ranges:
 - $\text{ collect(1:n)} \rightarrow \text{vector}$
 - $\ \operatorname{collect}(1:\mathrm{m},\ 1:\mathrm{n}) \to \operatorname{matrix}\ (\operatorname{grid})$