Лекции по алгебре Лектор: Всемирнов Максим Александрович

Содержание

1	Отображения. Композиция отображений.	2
2	Обратимые отображения и их свойства	3
3	Тождественное отображение	4
4	Равносильность инъективности и обратимости слева	4
5	Равносильность сюръективности и обратимости справа	6
6	Инъективное отображение конечного множества на себя является биективным	6
7	Сюръективное отображение конечного множества на себя является биективным	7
8	Бинарные отношения	8
9	Отношение эквивалентности	8
10	Кратные корни	9
11	Число корней многочлена	10
12	Алгебраические замкнутые поля	12
13	Метод Ньютона	12
14	Метод Лагранжа	13
15	Конструкция комплексных чисел, как множества пар.	14
16	Алгебраическая форма записи комплексного числа. Комплексное сопряжение. Свойства комплексного сопряжения.	14
17	Модуль комплексного числа. Мультипликативность модуля. Произведение двух сумм двух квадратов.	15
18	Аргумент комплексного числа. Тригонометрическая форма записи. Арифме- тические операции над комплексными числами в тригонометрической форме.	16
19	Матрицы. Действия над матрицами.	17

1. Отображения. Композиция отображений.

 $\mathfrak{Def}\colon \ {\rm A,B}\ -$ множества. $\varGamma_f\subset A\times B$ \varGamma — график отображения если выполнены два условия:

- 1. $\forall a \in A \exists b \in B(a,b) \in \Gamma_f$
- 2. $\forall a \in A \exists b_1, b_2 \in B(a, b_1) \in \Gamma_f \land (a, b_2) \in \Gamma_f \Rightarrow b_1 = b_2$

 $\mathfrak{Def}\colon\ A,B,\Gamma_f\subset A\times B$

говорим, что задано отображение f из A в B с графком Γ_f

$$f: A \to B$$

$$A \xrightarrow{f} B$$

 $(a,b)\in \varGamma_f \Leftrightarrow b=f(a)$

A — область определения

В — область назначения

$$f: A \to B$$

$$f_1:A_1\to B_1$$

$$f = f_1 \Leftrightarrow A = A_1, B = B_1, \Gamma_f = \Gamma_{f_1}$$

Def: Композиция отображения

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$g \circ f : A \to C$$

$$(g \circ f)(a) = g(f(a))$$

$$\Gamma_{q \circ f}$$

$$(a,c) \in \varGamma_{q \circ f} \Leftrightarrow \exists b \in B(a,b) \in \varGamma_f \land (b,c) \in \varGamma_q$$

Область определение $g \circ f$ — область определения f $\mathrm{Dom}(\mathrm{f})$

Область назначения $g \circ f$ — область назначения g coDom(f)

Теорема 1.1. Композиция отображения ассоциативна.

$$h \circ (q \circ f) = (h \circ q) \circ f$$

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$

lackbox Область определения $Dom(h\circ (g\circ f))=Dom(g\circ f)=Dom(f)=A$ $Dom((h\circ g)\circ f)=Dom(f)=A$ Область назначений $Dom(h\circ (g\circ f))=coDom(h)=D$

$$Dom((h \circ g) \circ f) = coDom((h \circ g)) = coDom(h) = D$$

$$\forall a \in A$$

$$(h \circ (g \circ f))(a) = h(g \circ f(a)) = h(g(f(a)))$$

$$((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a)))$$

2. Обратимые отображения и их свойства

$$f:A o B$$
 $\mathfrak{Def}\colon$ f — обратное справа, если $\exists g:B o A$ $f\circ g=id_B$ f — обратим слева, если $\exists g:B o A$ $g\circ f=id_A$ f обратимо, если $\exists g:B o A$

$$g \circ f = id_A, f \circ g = id_B$$

g — отображение, обратное к f.(обозначение f^{-1})

Теорема 2.1.

- 1. f обратимо \Leftrightarrow f обратимо слава и справа.
- 2. f обратимо, то обратное отображение единственно.

1. f обратимо \Rightarrow f обратимо слева и справа.

Если у f есть и левый и правый обратный, то они совпадают.

 ${
m g}~-$ правый обратный к f, h ~- левый.

$$(h\circ f)\circ g=id_A\circ g=g$$

$$h\circ (f\circ g)=h\circ id_B=h$$

$$\Rightarrow g = h$$

2. Пусть f обратимое и g и h — два обратных. В частности g — обратное справа, h — обратное слева.

Теорема 2.2.
$$f:A \rightarrow B, g:B \rightarrow C$$
 $g \circ f:A \rightarrow C$

- 1. Если f, g обратимы справа, то и $q \circ f$ обратима справа.
- 2. Если f, g обратимы слева, то и $g \circ f$ обратима слева.
- 3. Если f, g обратимы, то $g \circ f$ обратима $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

1.

$$\begin{split} u:B\to A, f\circ u &= id_B\\ v:C\to Bg\circ v &= id_C\\ (g\circ f)\circ (u\circ v) &= g\circ (f\circ (u\circ v)) =\\ &= g\circ ((f\circ u)\circ v) = g\circ (id_B\circ v) = g\circ v = id_C \end{split}$$

 $u \circ v$ — правый обратный к $g \circ f$

2. аналогично

3.

$$(g \circ f)(f^{-1} \circ g^{-1}) = g \circ ((f \circ f^{-1}) \circ g^{-1}) = g \circ (id_B \circ g^{-1}) = g \circ g^{-1} = id_C$$

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1}(g^{-1} \circ g) \circ f = f^{-1} \circ id_B \circ f = f^{-1} \circ f = id_A$$

Следствие 2.2.1. Композиция сюръективных — сюръективна.

Композиция инъективных — инъективна.

Композиция биективных — биекция.

Теорема 2.3. $f: A \to B$ f — обратима, тогда f^{-1} обратима и $(f^{-1})^{-1} = f$ $\blacktriangleright f \circ f^{-1} = id_B$ $f^{-1} \circ f = id_A \Rightarrow f$ — обратное к f^{-1} В силу единственности обратного $(f^{-1})^{-1} = f$

3. Тождественное отображение

 $\mathfrak{Def}\colon A, id_A:A\to A$ $\forall a\in Aid_A(a)=a$ id_A — тождественное отображение множетсва A. $\Gamma_{id_A}=$ диагональ $A\times A\{(a,a)|a\in A\}$ **Теорема 3.1.** $f:A\to B$ $f\circ id_A=f=id_B\circ f$ \blacktriangleright Области определения и назначения совпадают. $\forall y\in B, id_B(y)=y$ $a\in A$ $(f\circ id_A)(a)=f(id_A(a))=f(a)$ $a\in A$ $(id_B\circ f)(a)=id_B(f(a))=f(a)$

4. Равносильность инъективности и обратимости слева

 $\mathfrak{Def}\colon \ A, \ B$ $f:A o B, \Gamma_f, f$ — инъективное отображение(инъекция). $\forall a_1,a_2\in A\exists b(a_1,b)\in \Gamma_f\wedge (a_2,b)\in \Gamma_f\Rightarrow a_1=a_2$ $\forall a_1,a_2\in Af(a_1)=f(a_2)\Rightarrow a_1=a_2$ $f:A\rightarrowtail B$ — инъективное отображение.

Def: Отображение f назывется сюръективным (сюрекцией «отображение на»)

$$\forall b \in B \exists a \in A(b = f(a))$$

$$f: A \twoheadrightarrow B$$

Def: f называется биективным(или биекцией) если f и сюръективно и инъективное.

$$f:A$$
 B

$$\{b \in B | \exists c \in Cb = f(c)\} = f(C)$$
 — образ С.

$$\{a \in A | f(a) \in D\} = f'(D)$$
 — полный прообраз D.

$$f(f^{-1}(D)) \subset D$$
 — но не обязательно совпадет.

f инъективно \Leftrightarrow прообраз любого одноэлементного множества содержит не более одного элемента.

f сюръективно $f(A) = B, f: A \to B$

Теорема 4.1.
$$f: A \rightarrow B, g: B \rightarrow A$$

 $g \circ f = id_A$ тогда f — инъективно, g — сюръективно.

1. $a_1, a_2 \in Af(a_1) = f(a_2)$

$$a_1 = a_2$$

$$g(f(a_1)) = g(f(a_2))$$

$$(g \circ f)(a_1) = (g \circ f)(a_2)$$

$$id_A(a_1)=id_A(a_2)$$

$$\uparrow$$

$$a_1 = a_2 \Rightarrow f$$
 — инъективна.

 $2. \ a \in A$

$$g(f(a)) = (g \circ f)(a) = id_A(a) = a$$

$$b = f(a)$$

$$a = g(b)$$

 $\forall a \in A \exists b \in Ba = g(b) \Rightarrow g$ — сюръективно.

Теорема 4.2. $f: A \to B(A \neq 0)$

f обратимо слева $\Leftrightarrow f$ — инъективна.

$$\exists gg \circ f = id_A \Rightarrow f$$
 — инъективно.

$$\Leftarrow$$

$$C = f(A)$$

$$h_1:C\to A$$

$$(c,a) \in \Gamma_{l} \Leftrightarrow (a,c) \in \Gamma_{l}$$

$$\begin{array}{l} (c,a) \in \varGamma_{h_1} \Leftrightarrow (a,c) \in \varGamma_f \\ \text{Почему } \varGamma_{h_1} - \text{график?} \\ \forall c \in C \exists a \in A(a,c) \in \varGamma_f \end{array}$$

$$\forall c \in C \exists a \in A(a,c) \in \Gamma_{\ell}$$

$$\forall c \in C \exists a \in A(c,a) \in \Gamma_{h_1}$$

f — инъективно.

$$\forall a_1, a_2 \in A \exists b \in B(a_1, b) \in \varGamma_f \land (a_2, b) \in \varGamma_f \Rightarrow a_1 = a_2$$

$$\forall a_1, a_2 \in A \exists b \in C(a_1, b) \in I_f \land (a_2, b) \in I_f \Rightarrow a_1 = a_2$$

$$\forall a_1, a_2 \in A \exists b \in C(a_1, b) \in \varGamma_f \land (a_2, b) \in \varGamma_f \Rightarrow a_1 = a_2 \\ \forall a_1, a_2 \in A \exists b \in C(b, a_1) \in \varGamma_{h_1} \land (b, a_2) \in \varGamma_{h_1} \Rightarrow a_1 = a_2$$

```
\begin{split} &\Rightarrow \varGamma_{h_1} - \mathrm{график.} \\ h: B \to A \\ &\text{возьмем какой-то } a \in A \\ h(b) &= \begin{cases} h_1(b), & h_1(b), b \in C \\ a, & b \notin C \end{cases} \\ x \in A \\ (h \circ f)(x) &= h(f(x)) = h_1(f(x)) = x \end{split}
```

5. Равносильность сюръективности и обратимости справа

Аксиома выбора

```
B0 \neq X_b, b \in B
\exists \Phi: B \to \cup_{b \in B} X_b
\forall b \in B\Phi(b) \in X_b
Теорема 5.1.
f — обратимо справа \Leftrightarrow f — сюръективно.

ightharpoons
\Leftarrow
f:A\to B
\forall b \in Bf^{-1}(\{b\}) \neq 0(X_b)
g: B \to \cup_{b \in B} X_b
g(b) \in X_b = f^{-1}(\{b\}), f(g(b)) = b
f^{-1}(\{b\}) = X_b \subset A \Rightarrow \cup_B X_b \subset A
a \in A
a \in X_{f(a)}
g: B \to A
\forall b \in Bf(g(b)) = b
\forall b \in B(f \circ g)(b) = b
f \circ g = id_B
f — обратимо справа.
Следствие 5.1.1.
f — обратимо \Leftrightarrow f — биективно.
```

6. Инъективное отображение конечного множества на себя является биективным

Так как инъекция $a_{m-1} \le a_{n-1}$

$$a_{m-n}=a_{(m-1)-(n-1)}=a$$

$$a_{m-n}=a$$

$$m-n\geq 1$$

$$a=a_{m-n}=f(a_{m-n-1})$$

а есть образ $a_{m-n-1} \Rightarrow f$ — сюръекция.

7. Сюръективное отображение конечного множества на себя является биективным

Теорема 7.1. А — конечное множество. $f:A \twoheadrightarrow A$, тогда f — биекция.

- $1. \ \forall a \exists n_a \{f \circ f \circ \dots \circ f\}(a) = a$
- $2. \ \exists n \forall a (f \circ \dots \circ f)(a) = a$
- 3. f инъекция.

$$\begin{aligned} a_0 &= a \\ a_i f^{-1}(\{a_i\}) \neq 0 \\ \exists a_{i+1} \in f^{-1}(\{a_i\}) \\ \exists m > n a_m = a_n \end{aligned}$$

Лемма 7.1. $a_{m-n}=a$

 \blacktriangleright Индукция по n. База: $n=0, a_m=a_0=a$ Переход:

$$a_m = a_n$$

$$f(a_m) = f(a_n)$$

$$a_{m-1} = f(a_m) = f(a_n) = a_{n-1}$$

По индукционному предположению

$$a_{m-n} = a_{(m-1)-(n-1)} = a$$

$$\begin{split} a_{m-n} &\in f^{-1}(f^{-1} \ldots (\{a\})) \\ f(f(\ldots f(a_{m-n}))) &= a \\ f(f(\ldots f(a))) &= a \\ (f \circ f \circ \ldots)(a) &= a \\ \forall a \in A \exists n_a \geq 1 \underbrace{(f \circ \ldots \circ f)}_{n_a}(a) &= a \\ k \in N \underbrace{(f \circ \ldots \circ f)}_{n_a k}(a) &= a \end{split}$$

(индукция по k)

$$\begin{split} N &= \prod_{a \in A} n_a \underbrace{(f \circ \ldots \circ f)}_{N}(a) = a \\ \\ a, b &\in A \\ f(a) &= f(b) \\ a &= (\underbrace{f \circ \ldots \circ f}_{N-1} \circ f)(a) = (\underbrace{f \circ \ldots \circ f}_{N-1} \circ f)(b) = b \end{split}$$

8. Бинарные отношения

 $\mathfrak{Def}\colon$ На А задано бинарное отношение R, если задано $R\subset A$

 $(a,b) \in R$

а и b находятся в отношение с R

aRb

R = 0 пустое

 $R = A^2$ полное.

 $\mathfrak{Def} \colon A, R \subset A^2$

- 1. R рефлексивно, если $\forall a \in A, aRa(a, a) \in R$
- 2. R антирефлексивно, если $\forall a \in A \neg (aRa)$
- 3. R симметрично, если $\forall a, b \in AaRb \Rightarrow bRa$
- 4. R асимметрично, если $\forall a, b \in AaRb \Rightarrow \neg (bRa)$
- 5. R антисимметрично, если $\forall a,b \in A(aRb \land bRa) \Rightarrow a = b$
- 6. R транзитивно, если $\forall a, b, c \in A(aRb \land bRc) \Rightarrow aRc$

 \mathfrak{Def} : R называется отношением несторого частичного порядка, если оно рефлексивно, транзетивно и антисимметрино.

Def: R называется отношением сторого частичного порядка, если оно антирефлексивно, транзетивно и асимметрино.

Если на А задано отношение частичного порядко, то А — частично упорядоченное множество.

9. Отношение эквивалентности

 \mathfrak{Def} : R отношение эквивалентности, если оно рефлексивное, симметричное и транзитивное $a \sim b$.

A, R — отношение эквивалентности. $a \in A[a] = \{b \in A | a \sim b\}$ — класс эквивалентности.

Теорема 9.1. $A, \sim a, b \in A$

Тогда либо $[a] \cap [b] = 0$, либо [a] = [b]

1. $[a] \cap [b] = 0$ — все доказано.

2.
$$\exists c \in [a] \cap [b]$$

[a] = [b]?

$$x \in [a], a \sim x$$

$$c \in [a], a \sim c \Rightarrow c \sim a$$

$$c \in [b], b \sim c$$

$$b \sim c, c \sim a, a \sim x$$

$$b \sim a, a \sim x$$

$$b \sim x \Rightarrow x \sim [b]$$

$$[a] \subset [b]$$

$$[b] \subset [a]$$

Множество классов эквивалентности называется фактормножеством.

10. Кратные корни

А — поле. $f \in A[x], f \neq 0$ с — корень f в А $\Leftrightarrow (x-c)|f$ в А[x](теорема Безу)

 \mathfrak{Def} : Если для некоторого $k \geq 2, \ (x-c)^k | f,$ но $(x-c)^{k+1} \nmid f,$ то говорим, что с — корень f кратности k.

с — корень f кратности k, если $f(x) = (x-c)^k g(x), (x-c) \nmid g(x) \Leftrightarrow f(x) = (x-c)^k g(x), g(c) \neq 0$ Теорема 10.1. A — поле, $char A = 0, f \in A[x], f \neq 0$

с — корень f кратности $k \ge 1 \Leftrightarrow$

1. с — корень f.

 $2. \ c -$ корень f' кратности k - 1.

$$f=(x-c)^kg(x),g(c)\neq 0\Rightarrow c-\text{корень}$$

$$f'=k(x-c)^{k-1}g(x)+(x-c)^kg'=(x-c)^{k-1}(kg+(x-c)g')$$

$$\Rightarrow (x-c)^{k-1}|f'$$

c -не корень kg + (x - c)g'

$$kg(c)+(x-c)g'(c)=kg(c)\neq 0$$

 \leftarrow

c- корень $f\Rightarrow$ корень f кратности l, по доказаному c- корень f' кратности l - 1.

$$l-1=k-1$$

l = k

REM: Предположение charA = 0 существенно.

$$\mathbb{F}_2, f = x^7 + x^2$$

0 — корень кратности 2.

$$f' = x^6$$

0 — кратности 6.

Следствие 10.1.1. А — поле характеристики 0. $0 \neq f \in A[x]$, с — корень f кратности $\geq k \Leftrightarrow$ выполняется равенство

$$0 = f(c) = f'(c) = \dots = f^{(k-1)}(c)$$
$$f^{(k)} = (f^{(k-1)})'$$

$$(fg)^(n) = \sum_{r=0}^n C_n^r f^{(r)} g^{(n-r)}$$

11. Число корней многочлена

с — корень f кратности k, корень g кратности $l \Rightarrow$

c — корень fg кратности k+1

$$f = (x - c)^{k} f_{1}, f_{1}(c) \neq 0$$

$$g = (x - c)^{l} g_{1}, g_{1}(c) \neq 0$$

$$fg = (x - c)^{k+l} f_{1} g_{1}$$

$$f_{1}(c) g_{1}(c) \neq 0$$

 \Rightarrow с — корень fg кратности k + l.

Лемма 11.2. А — область целостности. Какие бы ни были $c \neq d \in A, \ 0 \neq f, g \in A[x], a, k \in \mathbb{N},$ такие, что $f = (x-c)^k g, g(c) \neq 0$, то $(x-d)^a | f \Leftrightarrow (x-d)^a | g$

$$(x-d)^a|g\Rightarrow (x-d)^a|f$$

⇒ Индукция по а. База:

$$a = 1$$

$$x - d|f \Rightarrow f(d) = 0$$

$$(c - d)^k g(d) = 0 \Rightarrow g(d) = 0$$

$$\Rightarrow (x - d)|q$$

Переход $a-1 \to a$ a-1 для всех f и g удовлетворяет условию леммы

$$f = (x - c)^k g$$
$$(x - d)^a | f \Rightarrow (x - d)^{a-1} | f$$

 $(x-d)^{a-1}|d$ по индукционномупредположению.

$$f=(x-d)^af_1$$

$$g=(x-d)^{a-1}g_1$$

$$(x-d)^af_1=(x-c)^k(x-d)^{a-1}g_1$$

$$\begin{split} (x-d)f_1 &= (x-c)^k g_1 \\ \Rightarrow x-d|g_1 \end{split}$$

(по доказанному при a=1)

$$(x-d)^a|g$$

Теорема 11.1. А — область целостности. $0 \neq f \in A[x] \Rightarrow$ число корней f с учетом кратности не превосходит degf

- ▶ Индукция по degf
- 1. База: $degf = 0, f = const \neq 0$ нет корней.
- 2. **Переход:** f с корень f кратности k. $f = (x-c)^k g, g(c) \neq 0$ с не корень g. Все корни g это в точности все корни f(кроме c), причем кратность сохраняется. Число корней g(с учетом кратности) $\leq degg$ число корней f = k+число корней $g \leq k+degg=degf$

REM: Предположение, что A — область целостности существенно. \mathfrak{Def} :

$$A, f \in A[x]$$

 $\tilde{f}: A \to A$
 $c \to f(c)$
 $f, g\tilde{f} = \tilde{g}$

Примеры:

$$A = \mathbb{F}_2$$

$$f = 0, g = x^2 + x$$

$$\tilde{f}: 0 \to 0, 1 \to 0$$

$$\tilde{g}: 0 \to 0, 1 \to 0$$

Следствие 11.1.1. А — область целостности.

$$f,g \in A[x], |A| > \max(degf, degg)$$

Тогда, если $\tilde{f}=\tilde{g},$ то f=g.

$$\tilde{f-g}=\tilde{f}-\tilde{g}$$
— тождественно не нулевое отображение

$$\forall c \in A, f(c) - g(c) = 0$$

Число корней $f-g>deg(f-g)\Rightarrow f-g=0$

Следствие 11.1.2. Если А — область целостности.

$$|A|=\infty$$
 и $\tilde{f}=\tilde{g}$, то и $f=g$

12. Алгебраические замкнутые поля

 $\mathfrak{Def}\colon$ Поле A — алгебраически замкнуто, если любой $f\in A[x]\backslash A$ имеет в A хотя бы 1 корень. Теорема 12.1. Следующие условия равносильны.

- 1. А алгебраически замкнуто.
- $2. \ \forall f \in A[x] \ \mathrm{c} \ \mathrm{deg} \ f \geq 1$ делится на линейный многочлен.
- 3. $\forall f \in A[x]$ с deg $f \geq 1$ имеет degf корней (с учетом кратности).
- 4. $\forall f \in A[x] \text{ с } degf \geq 1$ полностью раскладывается на линейные множества в колце многочленов.
- \blacktriangleright 1 \Leftrightarrow 2(следствие теоремы Безу)
- $3 \Rightarrow 1$ очевидно.
- $1 \Rightarrow 3$ Индукция и degf
- 1. **База:** degf = 1

$$ax = b$$

$$x = \frac{b}{a}$$
 — корень.

2. Переход: fdeq f > 2

$$\exists c \in A$$
 корень f кратности $k \geq 1, f = (x - c)^k g$

По индукционному предположению число корней $g = \deg g$.

Все корни f отличные от с это в точности корни g, причем той же кратности.

Число корней f = k+ число корней $g = k + \deg g = \deg f$.

 $4 \Rightarrow 2$ очевидно.

 $2 \Rightarrow 4$ индукция по deg f.

13. Метод Ньютона

$$\mathfrak{Def}\colon\ A\ -$$
 поле. $egin{array}{c|c} x_1 & x_2 \dots & x_n \ \hline y_1 & y_2 \dots & y_n \ \hline \end{array}$

$$x_i \neq x_i$$

Интерполяционная задача: найти многочлен f, deg f< n, $f(x_i) = y_i, i = 1, \dots, n$

Пусть f имеет решение f

$$g = (x-x_1)\dots(x-x_n)$$

$$f_1 = f + gh$$
 — тоже решение.

$$f_1(x_1) = f(x_i) + g(x_i)h(x_i) = f(x_i) = y_i$$

Теорема 13.1. Единственность. В данной постановке задача имеет не более одного решения.

ightharpoonup Пусть f, f_1 — решение одной задачи.

$$f(x_i) = f_1(x_i) = y_i, degf, degf_1 < n$$

$$f-f_1$$
 принимают 0 в $x_1\dots x_n$

$$deg(f-f_1) < n \Rightarrow f-f_1 = 0 \Rightarrow f = f_1$$

 f_i решает интерприционную задачу на первых і точках.

1.
$$i = 1$$
 $f_1(x) = y_1$

$$2. i \rightarrow i+1$$

$$\begin{split} f_i &\to f_{i+1} \\ f_{i+1}(x) &= f_i(x) + c_i(x-x_1) \dots (x-x_i) \\ y_{i+1} &= f_{i+1}(x_{i+1}) = f_i(x_{i+1}) + c_i(x_{i+1}-x_1) \dots (x_{i+1}-x_i) \\ c_i &= \frac{y_{i+1} - f_i(x_{i+1})}{(x_{i+1}-x_1) \dots (x_{i+1}-x_i)} \\ deg f_{i+1} &< i+1 \end{split}$$

REM: $c_1 = \frac{y_2 - y_1}{x_2 - x_1}$

14. Метод Лагранжа

$$\begin{array}{c|c|c} x_1 & x_2 \dots x_i & x_n \\ \hline 0 & 0 \dots 1 & 0 \\ degL_i < n \\ L_i = \frac{(x-x_1) \dots (x-x_{i-1})(x-x_{i+1}) \dots (x-x_n)}{(x_i-x_1) \dots (x_i-x_n)} \\ \hline x_1 & x_2 \dots & x_n \\ \hline y_1 & y_2 \dots & y_n \end{array}$$

$$\begin{split} f &= y_1 L_1 + y_2 L_2 + \ldots + y_n L_n \\ f(x_i) &= \sum_{j=1}^n y_j L_j(x_i) = y_i L_i(x_i) = y_i \\ f(x) &= \sum_{k=1}^n y_k L_k \\ L_k(x) &= \frac{(x-x_1) \ldots (x-x_n)}{(x_k-x_1) \ldots (x_k-x_n)} \\ g(x) &= (x-x_1) \ldots (x-x_n) \end{split}$$

Числитель $L_k = \frac{g(x)}{(x-x_k)}$

$$g'(x) = 1(x - x_2) * \dots * (x - x_n) +$$
$$(x - x_1)1 \dots (x - x_n) + \dots$$

 $g'(x_k)$ — знаменатель $L_k \ degf \leq n$

$$f(x) = \sum_{k=1}^n f(x_k) \frac{g(x)}{(x-x_k)g'(x_k)}$$

15. Конструкция комплексных чисел, как множества пар.

 $\mathbb{R}^2 = \{(a,b) \mid a,b \in \mathbb{R}\}$

Operations:

- $\bullet \ + : \mathbb{R}^2 \mapsto \mathbb{R}^2$ $(a,b) + (c,d) \mapsto (a+c,b+d)$
- $*: \mathbb{R}^2 \mapsto \mathbb{R}^2$ $(a,b)*(c,d) \mapsto (ac-bd,ad+bc)$

Теорема 15.1. \mathbb{R}^2 с введёнными операциями является полем.

 \mathfrak{Def} : Это поле называется полем комплексных чисел \mathbb{C} (Complex).

▶ Упр.

Некотрые заметки:

- 1. $0_c = (0,0)$
- 2. -(a,b) = (-a,-b)
- 3. (1,0)*(a,b) = (a,b)
- 4. $(a,b) \neq 0$, $(a,b)^{-1}$ -?

$$(a,b)^{-1} = (c,d) \Leftrightarrow (a,b) * (c,d) = (1,0)$$

$$+ \begin{cases} ac - bd = 1| \cdot a, \cdot (-b) \\ bc + ad = 0| \cdot b, \cdot a \end{cases}$$

$$\begin{cases} (a^2 + b^2) \cdot c = a \\ (a^2 + b^2) \cdot d = -b \end{cases}$$

$$\Rightarrow a = \frac{a}{a^2 + b^2}, d = \frac{-b}{a^2 + b^2}$$

Найденные значения корректны, т.к. $(a,b) \neq 0 \Rightarrow a^2 + b^2 > 0$

16. Алгебраическая форма записи комплексного числа. Комплексное сопряжение. Свойства комплексного сопряжения.

 $\mathbb{R}\mapsto\mathbb{C}:\ a\mapsto(a,0)$ - инъективный гомоморфизм колец:

$$\begin{cases} \varphi(a+b) = \varphi(a) + \varphi(b) \\ \varphi(ab) = \varphi(a) * \varphi(b) : \quad (a,0) * (b,0) = (ab-0,0+0) = (ab,0) \end{cases}$$

 $\mathbb{C}\supseteq\varphi(\mathbb{R})=\{(a,0)|a\in\mathbb{R}\}$

 $\varphi(\mathbb{R})\cong\mathbb{R}$, поэтому говорят, что $\mathbb{R}\subseteq\mathbb{C}$, имея в виду, что $\varphi(\mathbb{R})\subseteq\mathbb{C}$ $i=(0,1)\Rightarrow i^2=(-1,0)$

 \mathfrak{Def} : (a,b)=(a,0)*(1,0)+(b,0)*(0,1)=a+bi - алгебраическая запись числа.

a называется вещественной частью комплексного числа $(a=Re(z),z\in\mathbb{C})$

b называется мнимой частью комплексного числа $(b=Im(z),z\in\mathbb{C})$

 \mathfrak{Def} : $z \in \mathbb{C}$, z = a + bi, $a, b \in \mathbb{R}$

 \overline{z} называется комплексно сопряжённым с z, если $\overline{z}=a-bi$

REM: Сопряжение \equiv симметрия относительно вещественной оси.

Рисунок1.

Свойства:

1.
$$\overline{\overline{z}} = z$$

2.
$$z = \overline{z} \Leftrightarrow z \in \mathbb{R}$$

$$3. \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

3'.
$$\overline{z_1+z_2+\cdots+z_n}=\overline{z_1}+\overline{z_2}+\cdots+\overline{z_n}$$
 (По индукции из св-ва 3.)

$$4. \ \overline{z_1 * z_2} = \overline{z_1} * \overline{z_2}$$

4'.
$$\overline{z_1*z_2*\cdots*z_n}=\overline{z_1}*\overline{z_2}*\cdots*\overline{z_n}$$
 (По индукции из св-ва 4.)

5.
$$f \in \mathbb{R}[x]$$
 $f = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ Тогда: $\overline{f(z)} = f(\overline{z})$

6. •
$$z + \overline{z} \in \mathbb{R}$$

•
$$z * \overline{z} \in \mathbb{R}, \ z * \overline{z} \ge 0$$

•
$$z * \overline{z} \Leftrightarrow z = 0$$

Два последних пункта следуют из того, что $z*\overline{z}=a^2+b^2$

 \overline{z} (Сопряжение): $\mathbb{C} \mapsto \mathbb{C}$ - гомоморфизм из \mathbb{C} в \mathbb{C} :

$$\begin{cases} \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \\ \overline{z_1 \cdot z_1} = \overline{z_1} \cdot \overline{z_2} \end{cases}$$

 $\overline{z}\cdot\overline{z}=id\Rightarrow$ сопряжение - нетождественный изоморфизм из $\mathbb C$ на себя(автоморфизм).

Def: Автоморфизм - изоморфизм поля с самим собой.

7.
$$z \neq 0, \ z \cdot \overline{z} = |z|^2, \ |z| \neq 0 \text{(t.k. } z \neq 0)$$

$$z \cdot \frac{\overline{z}}{|z|^2} = 1 \Rightarrow \boxed{z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{a - bi}{a^2 + b^2}}$$

PS: определение и проч. про модуль в следующем вопросе.

17. Модуль комплексного числа. Мультипликативность модуля. Произведение двух сумм двух квадратов.

$$z \in \mathbb{C}$$
$$z\overline{z} = a^2 + b^2$$

$$\mathfrak{Def}\colon \sqrt{z\overline{z}}=|z|$$
 - модуль $z.$

$$\underline{\text{Свойство:}}\ |z_1z_2|^2 = |z_1|^2|z_2|^2$$

$$\begin{split} z_1 = a + bi, \ z_2 = c + di \\ (a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2 \end{split}$$

REM: Для $\mathbb{Z}[a,b,c,d]$ (кольцо многочленов) тоже верно.

<u>Напоминание:</u> φ - мультипликативна $\Leftrightarrow \varphi(ab) = \varphi(a)\varphi(b)$. \Rightarrow Модуль мультипликативен.

 $\overline{\underline{\mathrm{Bonpoc}} \colon \mathrm{при} \ \mathrm{какиx} \ k \ \exists \ c_i : \ (a_1^2 + \dots + a_k^2)(b_1^2 + \dots + b_k^2) = (c_1^2 + \dots + c_k^2), \ \mathrm{гдe} \ c_i \ \text{-} \ \mathrm{полиномы} \ \mathrm{or} \ a_j \ \mathrm{u} \ b_l.$

<u>Ответ:</u> Только для k = 1, 2, 4, 8.

k=1: мультипликативность $|\mathbb{R}|$

k=2: мультипликативность $|\mathbb{C}|$

k = 4: мультипликативность модуля кватернионов

k = 8: мультипликативность модуля октав

18. Аргумент комплексного числа. Тригонометрическая форма записи. Арифме- тические операции над комплексными числами в тригонометрической форме.

Рисунок2.

 $z \in \mathbb{C}, \ z = a + bi \Rightarrow (a, b)$ - координата в декартовой системе координат.

В полярной системе координат два других параметра: r - радиус вектор, φ - угол.

$$\begin{cases} a = r\cos(\varphi) \\ b = r\sin(\varphi) \end{cases}$$

Пары (r,φ) и $(r,\varphi+2\pi k)$ определяют одну и ту же точку на комплексной плоскости.

 \mathfrak{Def} : φ - аргумент z(arqz)

Для любого вещественного числа arg = 0.

 $\mathbb{R}, \sim :\varphi_1 \sim \varphi_2 \Leftrightarrow \varphi_1 - \varphi_2 = 2\pi k, k \in \mathbb{Z}$

Упр.: Доказать, что \sim отношение эквивалентности.

$$\mathfrak{Def} \colon [\varphi] = \{ \varphi + 2\pi k | k \in \mathbb{Z} \} \quad \text{Arg } \mathbf{z} = [\varphi] \Leftrightarrow argz = \varphi$$

Пусть $z = a + bi|z| = \sqrt{(a^2 + b^2)}$. arg z = ?:

1. a > 0

$$\frac{b}{a} = \operatorname{tg} \varphi, \ \varphi \in (-\pi/2, \pi/2) \Rightarrow \operatorname{arg} z = \operatorname{arctg}(\frac{b}{a})$$

 $2. \ a < 0$

$$\varphi \in (\pi/2, 3\pi/2) \Rightarrow argz = \pi + \operatorname{arctg}(\frac{b}{a})$$

3. a = 0, b > 0

$$argz = \pi/2$$

4. a = 0, b < 0

$$argz = -\pi/2$$

Def: Тригонометрическая форма записи числа

 $z=a+bi=r\cos\varphi+ir\sin\varphi=r(\cos\varphi+i\sin\varphi),$ где r - модуль $(r\geq 0),$ а φ - аргумент комплексного числа.

$$|\cos \varphi + i \sin \varphi| = \sqrt{\cos^2 \varphi + \sin^2 \varphi} = 1$$

<u>Свойство:</u> $z_1=r_1(\cos\varphi_1+i\sin\varphi_1),\ z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$ Тогда:

$$\boxed{|z_1z_2| = r_1r_2 = |z_1||z_2|, \quad Arg(z_1z_2) = Arg(z_1) + Arg(z_2)}$$

19. Матрицы. Действия над матрицами.

 $\mathfrak{Def} \colon R$ — кольцо. Матрицей называется таблица элементов кольца

$$(a_{ij}) = (a_{ij})_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} =$$

$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

 \mathfrak{Def} : Множество матриц заданного размера (m строк, n столбцов) на данном кольце R

$$M(m,n,R) = \left\{ (a_{ij})_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} \right\}$$

Def: Сложение матриц

$$+: M(m, n, R) \times M(m, n, R) \to M(m, n, R)$$

$$(a_ij) + (b_ij) \mapsto (a_{ij} + b_{ij})$$

 ${\it Лемма 19.1.}\ \langle M(m,n,R), + \rangle$ есть абелева группа.

Def: Транспонирование — переворот матрицы

$$T: M(m, n, R) \to M(n, m, R)$$
$$(a_{ij})^T = (a_{ji})$$

Def: Умножение матриц

$$imes: M(m,n,R) imes M(n,k,R) o M(m,k,R)$$

$$(a_ij) imes (b_ij) = (c_ij)$$

$$c_{ij} = \sum_{l=1}^n a_{il}b_{lj}$$

Умножение можно запомнить как «строка на столбец».

Почему же умножение именно такое? Рассмотирм систему линейных преобразований

$$\begin{cases} y_1 &= a_{11}x_1 + a_{12}x_2 + \cdots + a_{1m}x_m \\ y_2 &= a_{21}x_1 + a_{22}x_2 + \cdots + a_{2m}x_m \\ \vdots &= \vdots + \vdots + \ddots + \vdots \\ y_n &= a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nm}x_m \end{cases}$$

Теперь её можно записать как

$$(a_{ij}) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Также, если мы аналогично выразим

$$(b_{ij}) \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

то результирующее преобразование

$$(c_{ij}) \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

можно выразить как

$$(c_{ij}) = (a_{ij})(b_{ij})$$

Теорема 19.1. Свойства умножения матриц.

1. $A: n \times m, B: m \times k, C: k \times l$

$$A(BC) = (AB)C$$

2. $A, B: n \times m, C: m \times k$

$$(A+B)C = AC + BC$$

3. $A, B: n \times m, C: k \times n$

$$C(A+B) = CA + CB$$

4. $A: n \times m, B: m \times k, R$ коммутативное кольцо.

$$(AB)^T = B^T A^T$$

- ▶ Надо расписывать суммы
- 1. $BC \leftrightharpoons D \colon m \times l, \ AD \leftrightharpoons E \colon n \times l, \ AB \leftrightharpoons F \colon n \times k, \ FC \leftrightharpoons G \colon n \times l.$ Таким образом, E и G совпадают размерами.

$$e_{ij} = \sum_{x=1}^{m} a_{ix} d_{xj} = \sum_{x=1}^{m} a_{ix} \left(\sum_{y=1}^{k} b_{xy} c_{yj} \right) = \sum_{x=1}^{m} \sum_{y=1}^{k} a_{ix} b_{xy} c_{yj}$$

$$g_{ij} = \sum_{y=1}^{k} f_{iy} c_{yj} = \sum_{y=1}^{k} \left(\sum_{x=1}^{m} a_{ix} b_{xy} \right) c_{yj} = \sum_{y=1}^{k} \sum_{x=1}^{m} a_{ix} b_{xy} c_{yj}$$

Таким образом $e_{ij} = g_{ij}$

2.

$$\begin{split} ((A+B)C)_{ij} &= \sum_{x=1}^m (A+B)_{ix} c_{xj} = \sum_{x=1}^m (a_{ix} + b_{ix}) c_{xj} = \sum_{x=1}^m (a_{ix} c_{xj} + b_{ix} c_{xj}) = \\ &= \sum_{x=1}^m a_{ix} c_{xj} + \sum_{x=1}^m b_{ix} c_{xj} = (AC)_{ij} + (BC)_{ij} = (AC+BC)_{ij} \end{split}$$

3. Аналогично

4.

$$((AB)^T)_{ij} = (AB)_{ji} = \sum_{r=1}^m a_{jx} b_{xi} = \sum_{r=1}^m b_{ix}^T a_{xj}^T = (B^T A^T)_{ij}$$

Заметим, что умножение не коммутативно.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Def: Умножение на скаляр:

$$\times : R \times M(m, n, R) \to M(m, n, R)$$

$$\lambda(a_{ij}) = (\lambda a_{ij})$$

 ${\it Teneps}$ рассмотрим квадратные матрицы — матрицы, у которых количество строк и столбцов совпадают.

Теорема 19.2. Кольцо квадратных матриц. M(n,n,R) — кольцо с единицей. Если $2\mid n,$ то в нём есть делители нуля.

Все необходимые свойства уже доказаны.