MATH 668-01 Homework 3

Due: Thursday, February 15, 2018

Instructions: Each of the following problems must be submitted to the instructor on or before the due date. Partial credit may be given for incorrect answers which make some positive progress. Late homework will not be accepted.

1. (10 points) Suppose that $\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_{n-1} \end{pmatrix}$ is a random vector with *n*-dimensional mean vector $\boldsymbol{\mu}$ and $n \times n$

covariance matrix Σ .

Let $\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_{n-1} \\ 0 \end{pmatrix}$ be an n-dimensional constant vector for which the last element is 0. Show that

$$E(\boldsymbol{a}^{\top}\boldsymbol{y}y_n) = \operatorname{tr}(\operatorname{cov}(y_n, \boldsymbol{y})\boldsymbol{a}) + \boldsymbol{a}^{\top}\boldsymbol{\mu}E(y_n).$$

- 2. (10 points) Suppose $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. (a 2pts) Let $\mathbf{B} = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$. Show that $\mathbf{B}^2 = 5\boldsymbol{\Sigma}$. (b 3pts) Let $\mathbf{A} = \begin{pmatrix} .5 & -.5 \\ -.5 & .5 \end{pmatrix}$ and $\boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. Find a scalar c such that $c\boldsymbol{y}^{\mathsf{T}}\mathbf{B}^{-1}\mathbf{A}\mathbf{B}^{-1}\boldsymbol{y} \sim \chi^2(1)$.
- (c 2pts) Show that $\boldsymbol{j}^{\top}\boldsymbol{y}$ and $\boldsymbol{y}^{\top}\mathbf{B}^{-1}\mathbf{A}\mathbf{B}^{-1}\boldsymbol{y}$ are independent, where $\boldsymbol{j} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- (d 3pts) Find a scalar d such that $\frac{d\mathbf{j}^{\top}\mathbf{y}}{\mathbf{y}^{\top}\mathbf{B}^{-1}\mathbf{A}\mathbf{B}^{-1}\mathbf{y}} \sim t(1)$.
- 3. (10 points) For fixed $\lambda \geq 0$ and observed values of x_1, \ldots, x_n and y_1, \ldots, y_n , let

$$\tilde{Q}(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 + \lambda \beta_1^2.$$

(a - 7 pts) Find the values of β_0 and β_1 which minimize \tilde{Q} (as a function of λ , x_1, \ldots, x_n , and y_1, \ldots, y_n). (b - 3 pts) What happens to β_1 if λ is very large? What happens to β_0 if λ is very large?