Foundational libraries in Naproche

Marcel Schütz

CICM 2023, Cambridge, UK, 4-8 September 2023

EuroProofNet Joint WG4-WG5 meeting, Cambridge, UK, 6-8 September 2023

September 7, 2023

The Naproche System

Naproche/ForTheL

Naproche = **Na**tural **pro**of **che**cking

- Proof assistant
- Component of Isabelle

ForTheL = **For**mula **The**ory **L**anguage

- Naproche's input language
- Controlled natural language
- LATEX-compatible

Cantor's Theorem in Isabelle/jEdit

FAU fau-beamer September 7, 2023

The Naproche System

FAU

Verification & LATEX Integration

fau-beamer September 7, 2023 3/1

Libraries in Naproche

Three Case Studies

FAU fau-beamer September 7, 2023 4

Libraries in Naproche

Typical examples

ARITHMETIC 03 3235893452210176

Proposition 3.13. Let n, m, k be natural numbers. Then

$$n + (m + k) = (n + m) + k.$$

Proof. Define $\Phi = \{k' \in \mathbb{N} \mid n + (m + k') = (n + m) + k'\}.$

- (1) 0 is contained in Φ . Indeed n + (m + 0) = n + m = (n + m) + 0.
- (2) For all $k' \in \Phi$ we have $k' + 1 \in \Phi$.

Proof. Let $k' \in \Phi$. Then n + (m + k') = (n + m) + k'. Hence

$$n + (m + (k' + 1))$$

$$= n + ((m + k') + 1)$$

$$= (n + (m + k')) + 1$$

$$= ((n + m) + k') + 1$$

$$= (n + m) + (k' + 1).$$

Thus $k' + 1 \in \Phi$. Qed.

Thus every natural number is an element of Φ . Therefore n + (m + k) = (n + m) + k.

Arithmetics: Proof by induction

FOUNDATIONS_10_1897613305577472

Axiom 10.29 (Choice). Let X be a system of nonempty sets. Then there exists a map f such that dom(f) = X and $f(x) \in x$ for any $x \in X$.

Foundations: Axiom of choice

SET_THEORY_02_229593678086144

Definition 2.1. An ordinal number is a transitive set α such that every element of α is a transitive set.

Let an ordinal stand for an ordinal number.

SET THEORY 02 5852994258075648

Definition 2.2. Ord is the class of all ordinals.

Set theory: Definition of ordinal numbers

FAU fau-beamer September 7, 2023 5/1

The LATEX Morkflow

Internal Structuring

Libraries are structured as books with a chapter-structure

→ Chapters can be referenced by their file names:

set-theory/sections/02_ordinals.ftl.tex

→ Chapters depend on each other:

[readtex foundations/sections/11_binary-relations.ftl.tex]

→ Definitions, theorems etc. can be referenced by unique IDs:

SET_THEORY_02_229593678086144

Chapter 2

Ordinal numbers

File:

set-theory/sections/02_ordinals.ftl.tex

[readtex foundations/sections/11_binary-relations.ftl.tex]
[readtex set-theory/sections/01_transitive-classes.ftl.tex]

SET_THEORY_02_229593678086144

Definition 2.1. An ordinal number is a transitive set α such that every element of α is a transitive set.

Let an ordinal stand for an ordinal number.

SET_THEORY_02_5852994258075648

Definition 2.2. Ord is the class of all ordinals.

SET THEORY 02 2358097091756032

FAU fau-beamer September 7, 2023

The LATEX Morkflow

Usage in Other Formalizations

Referencing statements from libraries:

 \rightarrow Using the LATEX package xr:

\usepackage{xr}

→ Specifying a library to reference to:

\externaldocument{set-theory/set-theory}

 \rightarrow Using the referencing command \cref{...}:

```
\cref{SET_THEORY_06_8113916590686208}
```

We have $|F[\kappa_i]| \leq |\kappa_i|$ (by proposition 6.10).

```
\usepackage{xr}
\externaldocument{set-theory/set-theory}
...
We have ... (by \cref{SET_THEORY_06_8113916590686208}).
...
```

Referencing a proposition

```
SET_THEORY_06_8113916590686208 Proposition 6.10. Let x,y be sets and f:x\to y and a\subseteq x. Then |f[a]|\le |a|.
```

The referenced proposition

FAU fau-beamer September 7, 2023 7/1

The Verifying Workflow

Issue I: Scalability

Library	Checking time	Definitions/theorems/axioms
Foundations	\sim 10 min.	235
Set Theory	\sim 30 min.	100
Arithmetics	\sim 30 min.	176

→ Checking time does not scale well with the size of a formalization in Naproche

fau-beamer September 7, 2023

The Verifying Workflow

Issue II: Time redundancy

Naproche rechecks each library whenever it is imported to another formalization.

ightarrow Annoying time redundancies

FAU

fau-beamer September 7, 2023 S

The Verifying Workflow

Issue III: Modularity

We cannot use different theories in one document.

We cannot use theory morphisms.

We cannot work with instances of theories (i.e. mathematical structures).

ightarrow ForTheL lacks a proper **module system**

FAU fau-beamer September 7, 2023 10/1

Conclusion & Ideas for Future Work

We have: Both formal and human-readable libraries that integrate well in the LATEX workflow

Current Issues:

Scalability

 \rightarrow Extending the scope of provers that ForTheL texts can be checked with (e.g. Isabelle, Lean, ...)

Time redundancy

→ Persistently storing caching results or proof objects

Modularity

→ Adding new language features to ForTheL

https://github.com/naproche/naproche

FAU fau-beamer September 7, 2023 11/1