Is an automatic or manual transmission better for MPG

Sayef Ishauqe October 21, 2017

Executive Summary

This paper looks into the R standard data `mtcars' to answer the question **Is an automatic or manual transmission better for MPG?** and if so, **what is difference in MPG for automatic vs manual transmission**

Method

The analysis concentrates on identifying the best possible multi-variable regression model to calcualte mpg and then interpret the infulence onf transmission being manual or automatic in the model.

Analyze the correlation of variables

- A ggpairs chart has been generated (Figure 1) to see the correlation of variables with mpg.
 - mpg has high correlation with weight (wt), cylinders (cyl) and displacement (disp)
 - cy1 and disp has high correlation within them. Considering the audience of the magazine cy1 could be a simiplar predictor to communicate
 - Trasmission, automated or manual (am) seems doesn't have high coorelation with mpg.
 - So, developing a multi-variable regression model with minimum number of variable is the best way to move. Once, the model is achieved transmission variable can be introduced to see the impact (for inference / hypothesis).

Construct and compare models

- Fit a linear regression model combination of variables as identified above
 - Test the model with log of wight as well to see it is a better fit. This is because it is not logical to calculate mpg for a car with 0 wight.

```
fit1<-lm(mpg~wt,data=mtcars)
fit2<-lm(mpg~wt+factor(am),data=mtcars)
fit3<-lm(mpg~wt+factor(cyl),data=mtcars)
fit4<-lm(mpg~wt+factor(am)+factor(cyl),data=mtcars)
fit5<-lm(mpg~I(log(wt))+factor(am)+factor(cyl),data=mtcars)
anova(fit1,fit2,fit3,fit4,fit5)</pre>
```

```
## Analysis of Variance Table
##
## Model 1: mpg ~ wt
## Model 2: mpg ~ wt + factor(am)
## Model 3: mpg ~ wt + factor(cyl)
## Model 4: mpg ~ wt + factor(am) + factor(cyl)
## Model 5: mpg ~ I(log(wt)) + factor(am) + factor(cyl)
     Res.Df
              RSS Df Sum of Sq
                                    F
                                         Pr(>F)
## 1
        30 278.32
                     0.002 0.0003 0.9856271
## 2
        29 278.32 1
        28 183.06 1
                        95.261 14.0573 0.0008557 ***
## 4
        27 182.97 1
                     0.090 0.0133 0.9089474
## 5
        27 156.21 0
                        26.762
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The model

mpg = 37.02 -12.33 x log(wt) - [0.7 for manual transmission] - [3.03 for 6 cyl or, 4.91 8 cyl]

```
##
                                        t value
                                                    Pr(>|t|)
                 Estimate Std. Error
## (Intercept)
                37.024076
                            3.008701 12.3056666 1.392662e-12
## I(log(wt))
               -12.332869
                            2.850625 -4.3263745 1.857436e-04
## factor(am)1
                -0.704919
                            1.265183 -0.5571677 5.820027e-01
## factor(cyl)6 -3.028674
                            1.402497 -2.1594865 3.985860e-02
## factor(cyl)8 -4.914960
                            1.646150 -2.9857295 5.950103e-03
```

```
## 2.5 % 97.5 %

## (Intercept) 30.850731 43.1974210

## I(log(wt)) -18.181868 -6.4838708

## factor(am)1 -3.300860 1.8910218

## factor(cyl)6 -5.906361 -0.1509873

## factor(cyl)8 -8.292581 -1.5373382
```

The model also indicates that automatics transmission vehicles (am==0) produces slightly higher mpg (0.7) than that of manual transmission vehicle. However, Further looking into the confidence interval of the cofficients, the 95% interval of transimssion variable am included 0. So, the hypothesis that this variable has no impact on milage can not be rejected.

Conclusion

The model shows that millage is mostly correlated with weight and than number of cylinders of a car.

Model showing correlation of mpg with log(wt), cyl & transmission type

While in preliminary analysis, it showed that manual transmission provides higher mpg (*Figure 2*), the model has produced high residuals. A better fit model shows that transmission type doesn't have significant impact on mpg. Analysis of residuals is shown in *Figure 3*. This model is still not safe from high residuals which can be further analyzed to refine the multi-variable regressional model.

Appendix

Figure 1: Pairs plot of all variables in mtcars

```
##
## Call:
## lm(formula = mpg ~ factor(am), data = mtcars)
##
  Residuals:
##
       Min
                10 Median
                                3Q
##
                                       Max
  -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                   15.247 1.13e-15 ***
## (Intercept)
                 17.147
                             1.125
## factor(am)1
                  7.245
                             1.764
                                     4.106 0.000285 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
```

Figure 2: correlation of transmission type with mpg

Figure 3: Residuals of the suggested model