MSc - Statisztika Házi feladat

Kiss Dániel Márk 2023

Chapter 1

1. feladat

Az elmúlt évek kutatásai arra irányultak, hogy felmérjék a mosolygós emojik használatának hatását a digitális kommunikációban és a felhasználók boldogságszintjére. Az alábbi adatokkat gyűjtötték össze: bead11.1.csv.

Lineáris regressziós modellt szeretnénk felírni, melyben az eredményváltozó a boldogságszint, míg a magyarázó változók az üzenet hossza és a mosolygós emojik száma.

1.1 a) feladat

Beccsüld meg és értelmezd a lineáris regresszió paramétereit, teszteld le, szignifikánsak-e a magyarázó változók!(5%-os szignifikanciaszinten)

Megodlás: A bead11.1.csv fájl négy oszlopot tartalmaz: "Sorszám," "Üzenet hossza," "Mosolygós emojik száma," és "Boldogságszint." A lineáris regresszió célja az, hogy a függő változót (pl. Boldogságszint) lineáris kapcsolatban álló magyarázó változókkal (pl. Üzenet hossza, Mosolygós emojik száma) modellezze.

A lineáris regresszió modellje általánosan a következő alakú: Y=B0+B1X1+B2X2+E. Kimenet értelmezése: Az alábbi kimenet a Figure 1.1-en látható. Az R-négyzet érték azt

OLS Regression Results								
Dep. Variable:	Boldogságszint				0.870			
Model:	0LS	OLS Adj. R-squared:		0.865				
Method:	Least Squares	F-statistic:		157.5				
Date:	Wed, 06 Dec 2023	Prob (F-statistic): 1.46		1.46e-21				
Time:	11:57:13	Log-Like	elihood:		7.2608			
No. Observations:	50	AIC:			-8.522			
Df Residuals:	47	BIC:			-2.786			
Df Model:	2							
Covariance Type:	nonrobust							
	coef s	td err	t	P> t	[0.025	0.975]		
const	5.2548	0.378	13.886	0.000	4.494	6.016		
Üzenet hossza	0.0077	0.005	1.686	0.098	-0.001	0.017		
Mosolygós emojik szár	na 0.3069	0.070	4.388	0.000	0.166	0.448		
Omnibus:		Durbin-V	lateon:		1.603			
Prob(Omnibus):		Jarque-E			73.474			
Skew:		Prob(JB):			1.11e-16			
Kurtosis:	7.321				1.57e+03			

Figure 1.1: Feladat 1/a kimenet

mutatja, hogy a modell mennyire magyarázza a függő változó (Boldogságszint) változását. Az 0.870 érték azt jelenti, hogy a modell 87%-ban magyarázza a változást. abs(t) kisebb P (szignifikanciaszint): Az egyes együtthatók (const, Üzenet hossza, Mosolygós emojik száma) szignifikanciaszintje. Az értékek alattuk a p-értékeket jelentik. Azok az együtthatók, amelyek p-értéke kevesebb, mint 0.05, szignifikánsak a 0.05 szignifikanciaszinten. Ebben a modellben mind a const, mind a Mosolygós emojik száma szignifikáns, mivel a p-értékük kisebb, mint 0.05. Összességében ez azt jelenti, hogy a

modell jól teljesít a magyarázatokban, és mind a konstans, mind a Mosolygós emojik szám változói szignifikánsan kapcsolódnak a Boldogságszint változóhoz.

1.2 b) feladat

Határozd meg és értelmezd a többszörös determináiós együtthatót!

Megodlás:

A többszörös determináiós együttható (R-négyzet) azt mutatja, hogy a modell mennyire magyarázza a függő változó (Boldogságszint) változását. Az 0.870 érték azt jelenti, hogy a modell 87%-ban magyarázza a változást. Az R érték 0 és 1 közötti értéket vehet fel. Minél közelebb van az 1-hez, annál jobban magyarázza a modell a függő változó (Boldogságszint) változását. Az R-négyzet mellett fontos megjegyezni az "Adj. R-squared" értéket is (itt 0.865), amely korrigálja az R-négyzetet a magyarázó változók számára. Ez különösen fontos, ha több magyarázó változó van a modellben, mivel az R-négyzet hajlamos növekedni a változók számával anélkül, hogy ténylegesen javítaná a modell illeszkedését.

1.3 c) feladat

Teszteld a regressziós modell megbízhatóságát 5%-os szignifikanciaszinten!

Megoldás: A nullhipotézis(H0) az, hogy van összefüggés az emojik és a boldogságszint között, azaz nincs szignifikáns különbség, az ellenhipotézis az, hogy nincs összefüggés. A nullhipotézis elutasításához a p-értéknek nagyobbnak kell lennie, mint a szignifikanciaszint (5%). Az adott kimenetben a F-statistic értéke 157.5, és a hozzá tartozó p-érték a "Prob (F-statistic)" oszlopban található (1.46e-21). Ez az érték rendkívül kicsi, sok nagyságrenddel kisebb, mint 0.05 (5%-os szignifikanciaszint), így elfogadjuk a H0 nullhipotézist. Ez azt jelenti, hogy a modell összességében szignifikánsan jól illeszkedik adatainkhoz.

1.4 d) feladat

Adj intervallumbecslést 95%-os megbizhatósággal paraméterekre!

Megoldás: Az intervallumok azt mutatják, hogy a konstans érték (const) becslési intervalluma 4.493509 és 6.016082 között van, az Üzenet hossza becslési intervalluma -0.001479 és 0.016810 között van, míg a Mosolygós emojik száma becslési intervalluma 0.166219 és 0.447623 között van.

	0	1
const	4.493509	6.016082
Üzenet hossza	-0.001479	0.016810
Mosolygós emojik száma	0.166219	0.447623

1.5 e) feladat

Készíts előrejelzést az új üzenetek boldogságszintjére, ha az üzenet hossza 130 karakter, és a mosolygós emojik száma 3. Illetve adj ugyanerre 95%-os megbízhatóságú intervallumbecslést is.

Megoldás: Előrejelzés: 7.172034019616269 95%-os megbízhatóságú intervallum: 7.09557490761663 - 7.248493131615907

Ez azt jelenti, hogy az új üzenetek boldogságszintje várhatóan körülbelül 7.2 lesz, és a 95%-os megbízhatóságú intervallum körülbelül 7.1 és 7.2 között lesz.

Chapter 2

2.feladat

A következő kutatás arra irányult, hogy mérje a mosolygós emojik használatának hatását a kommunikációban különböző csoportokban. Az alábbi adatokat gyűjtötték össze: bead11.1.csv.

2.1 a) feladat

Teszteld le, hogy van-e szignifikáns különbség a mosolygós emojik használatának gyakoriságában a különböző csoportokban (E=0.05 szignifikanciaszinten)!

Megoldás:

Mielőtt statisztikai tesztet alkalmazom, megvizsgáltam a normalitást. Ehhez Shapiro-Wilk tesztet használtam. A p-érték alapján meghatározható, hogy az adott csoport normális eloszlású-e vagy sem. A H0 hipotézis az, hogy az adott csoport normális eloszlású, az ellenhipotézis H1 az, hogy nem normális eloszlású. A négy csoport közül egyik sem normális eloszlású, mivel a p-érték mindig kisebb, mint 0.05, így a H0-t elvetjük.

Ezt követően homogenitást kell ellenőrizni. Ehhez Levene tesztet használtam. A p-érték alapján eldönthetjük, hogy az adott csoportok varianciája azonos-e vagy sem. A H0 hipotézis az, hogy az adott csoportok varianciája azonos, az ellenhipotézis H1 az, hogy nem azonos. A teszt eredménye alapján a p-érték mindig nagyobb, mint 0.05, ami azt jelenti, hogy az adott csoportok varianciája azonos, azaz elfogadjuk a H0 nullhipotézist és homogének az adatok.

Annak ellenére, hogy a 2 előfeltétel nem teljesült elvégeztem a statisztikai próbát. Ahhoz, hogy leellenőrizzem, van-e szignifikáns különbség a mosolygós emojik használatának gyakoriságában a különböző csoportokban, statisztikai tesztet kell alkalmazni. Mivel itt több csoportról van szó, egy análízis varianciát (ANOVA) használtam. A H0 nullhipotézis az, hogy nincs szignifikáns különbség a mosolygós emojik használatának gyakoriságában a különböző csoportokban, az ellenhipotézis H1 az, hogy van szignifikáns különbség.

Kimenet értelmezése: Statisztika: 25.558435652569365, p-érték: 5.339953301217143e-14 A H0 nullhipotézist elvetjük, mivel a p érték sokkal kisebb, mint 0,05 így van szignifikáns különbség a csoportok között a mosolygós emojik használatában.

Chapter 3

3.feladat

A bead11.3.csv file egy felmérés adatait mutatja a mosolygós emojik használatának változásáról az elmúlt években egy adott online fórumon.

3.1 a) feladat

Készíts idősor diagramot az adatok alapján, majd számold ki a tapasztalati autokorrelációs és parciális autokorrelációs függvényeket.

Megoldás: A kimenet a Figure 3.1-en és a Figure 3.2-ön látható. Az idősor diagramon látható, hogy a mosolygós emojik használata az elmúlt években folyamatosan periodikusan ismétlődött.

3.2 b) feladat

Az adatok transzformációjával és a trend, valamint a szezonális komponensek kiszűrésével kísérletezve illessz különböző idősor modelleket. Teszteld az illeszkedést.

Megoldás: A megoldáshoz Holt-Winters idősor modellezést használtam majd ARIMA modellt illesztettem. A kimenet a Figure 3.3-on látható. Jól látható, hogy a Holt-Winters modell jobban illeszkedik az adatokra, mint az ARIMA modell.

3.3 c) feladat

Készíts előrejelzést a következő hónapokra várható mosolygós emojik használatára.

Megoldás: A megoldáshoz a Holt-Winters idősor előrejelzést használtam. Az eredmény a Figure 3.4-en látható. 6 hónapos előrejelzést készítettem. Jól látható, hogy követi az idősor trendjét.

(b) Feladat 3/a kimenet - ACF diagram

Figure 3.1: Feladat 3/a kimenetei

Figure 3.2: Feladat 3/a kimenet - PACF diagram

Figure 3.3: Feladat 3/b kimenetei

Figure 3.4: Feladat 3/c kimenet