

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A01N 47:02, 45:02, 43:70 A01N 39:04, 39:02, 37:46 A01N 37:40, 33:22, 33:18) (21) International Application Number: PCT/EPS (22) International Filing Date: 5 October 1993 ((30) Priority data: 92117054.4 6 October 1992 (06.10.92) (34) Countries for which the regional or international application		CZ, DE, DK, ES, FI, GB, HÚ, JP, KP, KR, KZ, LI LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU SD, SE, SK, UA, US, VN, European patent (AT, Bl
(22) International Filing Date: 5 October 1993 ((30) Priority data: 92117054.4 6 October 1992 (06.10.92) (34) Countries for which the regional or international application		CZ, DE, DK, ES, FI, GB, HÚ, JP, KP, KR, KZ, LI LU, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU SD, SE, SK, UA, US, VN, European patent (AT, Bl
was filed: (71) Applicant (for all designated States except US): SH. TERNATIONALE RESEARCH MAATSO B.V. [NL/NL]; Carel van Bylandtlaan 30, NL: The Hague (NL). (72) Inventor; and (75) Inventor/Applicant (for US only): BALTRUSCH. mut [DE/DE]; Deyerstrasse 10-12, D-6532 Sch hausen (DE).	DE et ELL I CHAPI 2596 I	With international search report. N-PIJ HR

(57) Abstract

The efficacy of defined aryloxypicolinamide herbicides, in particular their spectrum of weed control and selectivity for the crop species, is synergistically enhanced by combination with one or more selected second herbicidal compounds.

1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					Mauritania
AT	Austria	FR	France	MR	
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados ·	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Benin	16	Ireland	PL	Poland ·
BR	Brazil	IT	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korca	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
ä	Côte d'Ivoire	ü	Licchtenstein	SK	Slovak Republic
CM	Cameroon	ï.k	Sri Lanka	SN	Senegal
CN	China	ᇤ	Luxembourg	TD	Chad
cs	Czechoslovakia	LV	Latvia	TC	Togo
		MC	Monaco	ÜÄ	Ukraine
CZ	Czech Republic			us	United States of America
DE	Germany	MG	Madagascar		
DK	Denmark	ML	Mali	UZ	Uzbekistan
ES	Spain	MN	Mongolia	VN	Vict Nam
F	Finland				

.

WO 94/07368 PCT/EP93/02737

- 1 -

HERBICIDE MIXTURES

The present invention relates to an improvement in the efficacy of aryloxypicolinamide herbicides by combination with a selected second herbicidal compound.

5

10

15

20

25

Aryloxypicolinamides are a novel group of compounds, claimed in Applicants' European Patent No. 447004, which show excellent herbicidal activity, in particular against broad leaf weeds in cereal crops. However, the aryloxypicolinamides when used as the sole active ingredient do not always achieve effective control of the full spectrum of weed species encountered in commercial agronomic practice, in conjunction with reliable selectivity for the crop species. Such gaps in the spectrum of control can often be remedied by co-treatment with another herbicide known to be effective against the relevant weed species. In the course of their investigations into the efficacy of various partners for aryloxypicolinamides, Applicants have found that selected combinations produce not merely the expected, additive effect, but exhibit a significant synergistic effect (i.e. these combinations show a much higher level of activity than predicted from that of the individual compounds) which enables a greater selectivity for the crop species.

A mixture of herbicides shows a synergistic effect if the herbicidal activity of the mixture is larger than sum of activities of the separately applied compounds. The expected herbicidal activity for a given mixture of two herbicides can be calculated as follows: (comp. Colby, S.R., "Calculating synergistic and antagonistic response of herbicide combinations", Weeds 15, pp 20-22 (1967)):

Yx(100-X)
WE.=X+ 100

Wherein

10

15

20

25

X is the percentage of growth inhibition upon treatment with a herbicide 1 at a dosage of p kg/ha compared with an untreated control (X=0%)

5 Y is the percentage of growth inhibition upon treatment with a herbicide 2 at a dosage of q kg/ha compared with an untreated control

WE. is the herbicidal effect to be expected upon treatment (% of growth inhibition compared with untreated control) with a combination of herbicide 1 and 2 at a dosage of p + q g/ha If the actual weed control (W) exceeds the expected (calculated) weed control (WE), the mixture shows a synergistic effect.

Thus, the combinations of the present invention not only achieve control of certain weed species which are difficult to combat effectively with aryloxypicolinamides alone, in particular grass weeds such as Alopecurus myosuroides; Apera spica-venti; and Echinocloa crus-galli, but also show significant synergistic increase in the level of activity against those weeds and also many broad-leaved weeds. This combination of advantages yields important benefits in practical agronomic applications. Firstly, it provides treatment for cereal crops which will control the majority of the significant weed species; secondly it enables that effective control to be attained with lower application rates of active material - with consequential environmental benefits and also greater selectivity of action in favour of the crop species.

Accordingly, the present invention provides a herbicidal composition comprising a herbicidally acceptable carrier and/or surface active agent together with, as active ingredient, a mixture of:-

30 at least one aryloxypicolinamide of the general formula I

PCT/EP93/02737

in which

Z represents an oxygen or sulphur atom;

R₁ represents a hydrogen or halogen atom or an alkyl or haloalkyl group;

- 5 R₂ represents a hydrogen atom or an alkyl group; q is 0 or 1;
 - R₃ represents a hydrogen atom or an alkyl or alkenyl group; the or each group X independently represents a halogen atom or an optionally substituted alkyl or alkoxy group, preferably a
- haloalkyl group, or an alkenyloxy, cyano, carboxy, alkoxycarbonyl, (alkylthio)carbonyl, alkylcarbonyl, amido, alkylamido, nitro, alkylthio, haloalkylthio, alkenylthio, alkynylthio, alkylsulphinyl, alkylsulphonyl, alkyloximinoalkyl or alkenyloximinoalkyl group; n is 0 or an integer from 1 to 5;
- the or each group Y independently represents a halogen atom or an alkyl, nitro, cyano, haloalkyl, alkoxy or haloalkoxy group; and m is 0 or an integer from 1 to 5; together with a second herbicidal component selected from:
 - a) a urea-type herbicide, in particular chlortoluron,
- 20 isoproturon, linuron or neburon;
 - a triazine-type herbicide in particular atrazine, cyanazine or simazine;
 - c) a hydroxybenzonitrile herbicide in particular bromoxynil or ioxynil; and
- d) an aryloxyalkanoic acid herbicide in particular dichlorprop, diclofop, MCPA or mecoprop (CMPP).
 - e) a dinitroaniline herbicide, such as pendimethalin;
 - f) a thiocarbamate herbicide, such as prosulfocarb;
 - g) amidosulfuron;
- 30 h) a diphenyl ether herbicide, such as aclonifen;
 - i) a pyridazine herbicide, such as pyridate;
 - j) a fluorene carboxylic acid herbicide, such as flurenol;
 - k) a pyridyloxyacetic acid herbicide, such as fluroxypyr;
 - 1) an arylalanine herbicide, such as flamprop-isopropyl.

The pattern of persistence of the aryloxypicolinamide (abbreviated herein as "AOP") is such that the combined treatment of the present invention can be attained either by the application of a prepared mixture as defined above, or by time separated application of separate formulations. Hence, in another embodiment, the present invention provides a method for controlling the growth of weeds at a cereal crop locus which comprises applying to the locus an AOP as defined in above, and a second component which is selected from those listed above.

The treatment according to the invention may be used to control a broad spectrum of weed species in cereal crops, e.g. wheat, barley, rice and maize by pre- or postemergence treatment, especially early and late post-emergence, without significant damage to the crop.

The term "pre-emergence application" means application to a soil in which seeds or seedlings are present before the emergence of the weeds above the surface of the soil. "Post-emergence application" means application to the aerial or exposed portions of the weeds which have emerged above the surface of the soil.

Weeds that may be controlled by the combinations include:

Veronica persica Lamium purpureum Galium aparine Matricarria matricoides Anthemis arvensis Poa annua Phalaris minor Bromus sterilis Cerastes holosteoides Legousia hybrida Myosotis arvensis

5

10

15

20

25

30

Polygonum lapathifolium Polygonum convolvulus Chrysantemum segetum Senecio vulgaris

Veronica hedearaefolia Stellaria media Lamium amplexicaule Alopecurus myosuroides Matricaria inodora Apera spica-venti Avena fatua Poa trivialis Arenaria seryllifolia Geranium dissectum Chenopodium arvensis

Centaurea cyanus Cirsium arvense

Aphanes arvensis Papaver rhoeas Phalaris paradoxa Lolium perenne Spergula arvensis Silene vulgaris Montia perfoliata Polygonum aviculare

Galeopsis tetrahit Viola arvensis

WO 94/07368 PCT/EP93/02737

- 5 -

The preferred compound for use as the aryloxypicolinamide component is of the general formula:-

5

10

15

20

25

30

wherein R_2 is a hydrogen atom or an ethyl group, and Y is a hydrogen or fluorine atom.

The application rate of the AOP component is normally in the range of 25 to 250 grams of active ingredient (gai) per hectare, with rates between 30-100 gai/ha often achieving satisfactory control and selectivity. The optimal rate for a specific application will depend on the crop(s) under cultivation and the predominant species of infesting weed and can readily be determined by established biological tests.

The selection of the second component will likewise be dependent on the crop/weed situation to be treated, and will be readily identifiable by those skilled in this area. The application rate of the second component is determined primarily by the chemical type of that component, since the intrinsic activity of different types of herbicide varies widely. For example, the activity of a triazine herbicide, such as cyanazine or simazine. can be almost tenfold greater than that of a urea herbicide such as chlortoluron or isoproturon. In general, the application rate of the second component is in the range of 500 to 5000 gai/ha, preferably 1000-2500 gai/ha, when the second component is a urea or thiocarbamate herbicide; in the range 25 to 100 gai/ha when the second component is amidosulfuron or a pyridyloxyacetic acid herbicide; and in the range 100 to 750 gai/ha when the second component is one of the other herbicide groups listed above. Again, the optimal rate for the chosen second component will depend on the crop(s) under cultivation and the level of weed infestation, and can readily be determined by established biological tests. Naturally, with such a wide variation in application rate for the

second component, the ratio of AOP to that second component will be determined predominantly by the choice of second component. Thus, the ratio AOP: Second Component may vary from 2:1 (second component = amidosulfuron) to 1:60 (second component = prosulfocarb).

EXAMPLES:

10

15

20

25

General Method:

The trials were carried out under glasshouse conditions as pre- and post-emergence applications. The plant seeds were sown in pots containing a loamy sand soil (0.5 1). The herbicides were applied as single treatments, or in a combination comprising an AOP compound of formula I and a second compound as designated, before or after emergence of weeds and crop. The herbicidal performance was assessed as percent damage in comparison to the untreated control plants. The assessment was done 21 days after the treatment. Wheat and barley were treated at the 3-4 leaf stage, the broad-leaved weeds at the 2-4 leaf stage.

The AOP component employed for most of the evaluation was the compound of formula II above wherein Y is a fluorine atom and \mathbf{R}_2 is a hydrogen atom, and in the results listed hereafter is designated WL 161616. Two other AOP compound of formula II above were also evaluated, namely:- i) the compound wherein Y is a hydrogen atom and R_2 is an ethyl group (designated WL 165181), and ii) the compound wherein Y and R, both represent a hydrogen atom (designated WL 163193).

The second component was selected from those listed above, with application rates (and hence component ratios) chosen to be appropriate to the established activity level of that second component.

The results of these experiments are tabulated as Examples 1 to 17, wherein all the results from a chosen "second component" are 30 collected under the same Example number, different dosage rates/test species being recorded as "lA", "lB" etc. From these results it is clear that all experiments demonstrated the synergism between the AOPs and the designated second compound. Crop tolerance (wheat and barley) was excellent in all treatments.

35

Herbicidal performance of the mixture WL 161616 + Isoproturon (30 g a.i./ha + 1000 g a.i./ha) against broad-leaved weeds in post-emergence application Example 14:

	WL 161616	Isoproturon	WL 161616	+ Isoproturon
Weeds	30 g a.i./ha	1000 g a.i./ha	30 g a.i./ha	+ 1000 g a.i./ha
))	% control	WE	W
Polygonum convolvulus	77	. 07	93	100
Thlaspi arvense	7.0	70	91	86
Capsella bursa-pastoris	82	25	68	66
Sinapis arvense	63	57	84	91
Lamium purpureum	25	40	55	92
Matricaria inodora	25	. 75	81	100
Galium aparine	06	0	06	86

WE = expected response by means of the Colby formula
W = observed response

Expected control of Polygonum convolvulus, Thlaspi arvense, Capsella bursa-pastoris, Sinapis arvense, Lamium purpureum, Matricaria inodora and Galium aparine was 93, 91, 89, 84, 55, 81 and 90 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Isoproturon (30 g a.i./ha + 1000 g a.i./ha + against grass weeds in post-emergence application Example 1B:

+ Isoproturon	1000 g a i /k2	DII /	*		5 68	
WL 161616 +	30 g a.i./ha + 1000 g a i /hz	WE		47	74	
Isoproturon	1000 g a.i./ha	& control		45	73	
WL 161616	30 g a.i./ha	₩ ₩		m	ю	
broad-leaved	מטטנ			Alopecurus myosuorides	Apera spica-venti	

WE = expected response by means of the Colby formula

Expected control of Alopecurus myosuorides and Apera spica-venti was 47 and 74 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Isoproturon (60 g a.i./ha + 1000 g a.i./ha) against Apera spica-venti in post-emergence application Example 10:

broad-leaved weeds	WL 161616 60 g a.1./ha & cc	Isoproturon la 1000 g a.i./ha % control	WL 161616 + 60 g a.i./ha + WE	WL 161616 + Isoproturon 60 g a.i./ha + 1000 g a.i./ha. WE W
Apera spica-venti	20	73	79	92

WE = expected response by means of the Colby formula W = observed response

Expected control of Apera spica-venti was 79, clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Isoproturon (60 g a.i./ha + 960 g a.i./ha) against broad-leaved and grass weeds in pre-emergence application

Example 1D:

,	WL 161616	Isoproturon	WL 161616	+ Isoproturon
Meeds .	60 g a.i./ha	960 g a.1./ha	60 g a.i./ha	60 g a.i./ha + 960 g a.i./ha
)O &	% control	WE	X
Stellaria media	0	22	57	75
Viola arvensis	82	7	82	96
Veronica persica	13	8	17	. 55
Alopecurus	7	22	24	89

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Viola arvensis, Veronica persica and Alopecurus myosuroides was 57, 82, 17, and 24 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Isoproturon (120 g a.i./ha 960 g a.i./ha) against broad-leaved and grass weeds Example 1E:

broad-leaved weeds	WL 161616 120 g a.i./ha	Isoproturon 960 g a.i./ha	WL 161616 120 g a.i./ha	WL 161616 + Isoproturon 120 g a.i./ha + 960 g a.i./ha
	- & COI	* control	ЗM	3
Stellaria media	0	57	57	. 82
Veronica persica	70	2	7.1	80
Alopecurus myosuroides	13	22	32	

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Veronica persica and Alopecurus myosuroides was 57, 71 and 32 resp., clearly demonstrating that the combination was synergistic.

Example 1F:

-12-+ 1440 g a.i./ha Isoproturon 3 85 88 99 94 g a.i./ha WL 161616 Æ 86 99 78 67 9 1440 g a.i./ha Isoproturon 20 9 25 67 control 60 g a.1./ha WL 161616 5 70 82 Veronica persica Stellaria media Viola arvensis broad-leaved myosuroides weeds Alopecurus

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Viola arvensis, Veronica persica and Alopecurus myosuroides was 67; 86, 66 and 78 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Isoproturon (120 g a.i./ha 1440 g a.i./ha) against Alopecurus myosuroides Example 1G:

	WL 161616	Isoproturon	WL 161616 + Isoproturon	Isoproturon
Droad-leaved . weeds	120 g a.i./ha	1440 g a.i./ha	120 g a.i./ha +	120 g a.i./ha + 1440 g a.i./ha
-	₩ ₩	% control	WE	3
Alopecurus myosuroides	12	25	34	87

WE = expected response by means of the Colby formula W = observed response

Expected control of Alopecurus myosuroides was 34, clearly demonstrating that the combination was synergistic.

Example 1E

Herbicidal performance of the mixture IPU/Flurenol (1000 g a.i./ha + 180 g a.i./ha) + WL 161616 (30 g a.i./ha) against broad-leaved weeds in post-emergence application

51616 1.1./ha			-14-
WL 16 ha + 30 g a		96	96
IPU+Flurenol + WL 161616 1000+180 g a.i./ha + 30 g a.i./ha	WE	82	61
WL 161616 30 g a.i./ha	rol	45	25
IPU+Flurenol 1000+180 g a.i./ha	% control	. 89	48
broad-leaved		Galium aparine (2. whorl)	Lamium purpureum

WE = expected response by means of the Colby formula W = observed response

Expected control of Gallum aparine (2. whorl) and Lamium purpureum was 82 and 61 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture IPU/Flurenol (1000 g a.i./ha + 180 g a.i./ha) + WL 161616 (60 g a.i./ha) against broad-leaved weeds and grasses in post-emergence application Example 1J:

broad-leaved weeds	IPU+Flurenol 1000+180 g a.i./ha	WL 161616 1 60 g a.1./ha	IPU+Flurenol + WL 161616 1000+180 g a.i./ha + 60 g a.i./ha	WE 161616 + 60 q a.i./ha	
encept bin	\$ control	rol	3M	3	
Coltrare military					
(1. whorl)	000	45	. 83	. 96	
Lamium purpureum	48	38	89	66	
Alopecurus myosuroides	33	ហ	.36	75	15-
					_

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (1. whorl), Lamium purpureum and Alopecurus myosuroides was 82, 68 and 36 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture IPU/Flurenol (2000 g a.i./ha + 180 g a.i./ha) + WL 161616 (30 g a.i./ha) against broad-leaved weeds and grasses in post-emergence application Example 1K:

broad_leaved weeds	IPU+Flurenol 2000+180 g a.i./ha	. WL 161616 30 g a.i./ha	IPU+Flurenol + WL 161616	WL 161616
and grasses	\$ control	. 10	WE	3 3
Galium aparine (1. whorl)	73	45	. 85	96
Alopecurus myosuroides *	53	4	55	83

* initial efficacy 20 days after treatment

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (1. whorl) and Alopecurus myosuroides was 85 and 55 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture IPU/Flurenol (2000 g a.i./ha + 180 g a.i./ha) + WL 161616 (60 g a.i./ha) against broad-leaved weeds and grasses in post-emergence application Example 1L:

broad-leaved weeds	IPU+Flurenol 2000+180 g a.i./ha	WL 161616 60 g a.1./ha	IPU+Flurenol + WL 161616 2000+180 g a.i./ha + 60 g a.i./ha	WL 161616 + 60 g a.i./ha	
and grasses	& control	rol	WE	З	· - -
Galium aparine (2. whorl)	73	45	. 58	96	
Galium aparine (3. whorl)	. 68	. 09	87	96	
Alopecurus myosuroides *	53	ស	. 55.	92	- 1 . j -

* initial efficacy 20 days after treatment

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (2. whorl), Galium aparine (3. whorl) and Alopecurus myosuroides was 85, 87 and 55 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Chlortoluron (120 g a.i./ha + 1920 g a.i./ha = mixture 1:16) against broad-leaved and grass weeds in post-

emergence application

Example 2A:

, poor	WL 161616 120 g a.i./ha	Chlortoluron 1920 g a.i./ha	WL 161616 120 g a.i./ha	+ Chlortoluron + 1920 q a.i./ha	
a Duba	% control	ıtrol	ЗM	B	
Galium aparine (2. whorl)	53	73	87	100	
Matricaria inodora	8	75	80	100	
Cirsium arvense	50	83	92	100	
Senecio vulgaris	55	43	74	. 86	18-
Lamium purpureum	8	28	61	. 81	
Alopecurus * myosuroides	35	15	45	8.8	

* initial efficacy

WE = expected response by means of the Colby formula W = observed response

= observed response

Expected control of Galium aparine (2. whorl), Matricaria inodora, Cirsium arvense, Senecio vulgaris, Lamium pupureum and Alopecurus myosuroides was 87, 80, 92, 74, 61 and 45 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Chlortoluron (120 g a.i./ha + 960 g a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 2B:

, n	WL 161616 120 g a.i./ha	Chlortoluron 960 g a.i./ha	WL 161616 120 g a.i./ha	+ Chlortoluron + 960 g a.i./ha
7 0 0 0 0 0	% control	trol	WE	W
Galium aparine (1. whorl)	7.3	38	83	100
Galium aparine (2. whorl)	53	25	65	. 100
Stellaria media	15	68	73	100
Veronica hederaefolia	89	0	. 68	96
Matricaria inodora	18	28	41	. 63
Chenopodium album	38	33	8.	100
Cirsium arvense	20	48	. 74	100
Senecio vulgaris		23	65	. 83

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Stellaria media, Veronica hederaefolia, Matricaria inodora, Chenopodium album, Cirsium arvense and Senecio vulgaris was 83, 65, 73, 89, 41, 58, 74 and 65 resp., clearly demonstrating that the combination was synergistic.

- 20·

Herbicidal performance of the mixture WL 161616 + Chlortoluron (120 g a.i./ha + 480 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application Example 2C:

broad-leaved	WL 161616 120 g a.i./ha	Chlortoluron 480 g a.i./ha	WL 161616 120 g a.i./ha	+ Chlortoluron + 480 g a.i./ha	
	% control	ltrol	WE	3	
Galium aparine (1. whorl)	73	10	. 76	100	
Galium aparine (2. whorl)	53	m	54	93	
Stellaria media	. 15	15	28	100	
Veronica hederaefolia	68	0	. 68	97	20 -
Matricaria inodora	18	10	26	06	
Polygonum convolvulus	30	48	65	100	
Chenopodium album	38	εο .	43	82	
Cirsium arvense	. 50	23	. 62	100	

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Stellaria media, Veronica hederaefolia, Matricaria inodora, Polygonum convolvulus, Chenopodium album and Cirsium arvense was 76, 54, 28, 89, 26, 65, 43 and £2 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Chlortoluron (120 g a.i./ha + 240 g a.i./ha = mixture 1:2) against broad-leaved weeds in post-emergence application Example 2D:

broad-leaved	WL 161616 120 g a.1./ha	Chlortoluron 240 g a.i./ha	WL 161616 120 g a.1./ha	+ Chlortoluron + 240 g a.i./ha
SCOOP	% control	trol	. WE	3
Galium aparine (1. whorl)	73	3	74	100
Galium aparine (2. whorl)	23	0	53	. 63
Stellaria media	15	e	18	100
Galeopsis tetrahit	. 58	65	. 82	100
Veronica hederaefolia	. 89.	0	68	6
Matricaria inodora	18	8	25	06
Polygonum convolvulus	30	38	25	100
Cirsium arvense	. 50	13	57	100
		-		

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Stellaria media, Galeopsis tetrahit, Veronica hederaefolia, Matricaria inodora, Polygonum convolvulus and Cirsium arvense was 74, 53, 18, 85, 89, 25, 57 and 57 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Chlortoluron (60 g a.i./ha 1920 g a.i./ha = mixture 1:32) against broad-leaved and grass weeds in postemergence application Example 2E:

ນ 0 0 0	WL 161616 60 g a.i./ha	Chlortoluron 1920 g a.i./ha	WL 161616 60 g a.1./ha	+ Chlortoluron + 1920 g a.i./ha	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	% control	trol	WE	3	
Galium aparine (1. whorl)	09	7.5	06	. 100	
Galium aparine	50	73	87	100	
Matricaria inodora	10	75	78	100	
Cirsium arvense	33	83	89	100	72-
Senecio vulgaris	33	43	62	. 83	
Lamium purpureum	80	58	61	79.	
Alopecurus * myosuroides	18	15	30	80	

* initial efficacy

WE = expected response by means of the Colby formula
W = observed response - observed response

Expected control of Gallum aparine (1. whorl), Gallum aparine (2. whorl), Matricaria inodora, Cirslum arvense, Senecio vulgaris, Lamium pupureum and Alopecurus myosuroides was 90, 87, 78, 89, 62, 61 and 30 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Chlortoluron (60 g a.i./ha 960 g a.i./ha a mixture 1:16) against broad-leaved weeds in post-emergence application Example2F:

				- 23	-		_		
Chlortoluron 960 g a.i./ha	М	100	100	100	92	96	100	100	85
++.		-		1			*		
WL 161616 60 g a.i./ha	WE	75	63	7.1	. 83	32	. 22	65	48
n ha									
Chlortoluron 960 g a.i./ha	trol	38	25	89	0	28	33	48	. 23
ha	% control	·					*		
WL 161616 60 g a.i./ha		09	20	10.	83	10	. 28	33	33
broad-leaved	Special	Galium aparine (1. whorl)	Galium aparine (2. whorl)	Stellaria media	Veronica hederaefolia	Matricaria inodora	Chenopodium album	Cirsium arvense	Senecio vulgaris

WE = expected response by means of the Colby formula W = observed response

vulgaris was 75, 63, 71, 83, 35, 55, 65 and 48 resp., clearly demonstrating that the combination Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Stellaria media, Veronica hederaefolia, Matricaria inodora, Chenopodium album, Cirsium arvense and Senecio was synergistic.

Herbicidal performance of the mixture WL 161616 + Chlortoluron (60 g a.i./ha + 480 g a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 2G:

	WL 161616 60 g a.1./ha	Chlortoluron 480 g a.i./ha	WL 161616 60 g a.i./ha	+ Chlortoluron + 480 g a.i./ha
	% control	trol	WE	3
	09	10	64	100
	50	<i>ب</i>	. 55	80
	10	15	24	100
Veronica hederaefolia	83	0	83	06
	10	10	19	. 85
Polygonum convolvulus	18	48	58	100
	28	ω	34	85
	33	23	48	100
=	33	13	42	75

WE = expected response by means of the Colby formula
W = observed response

Veronica hederaefolia, Matricaria inodora, Polygonum convolvulus, Chenopodium album, Cirsium arvense and Senecio vulgaris was 64,52,24,83,19,58,34,48 and 42 resp., clearly demonstrating that the combination was synergistic. Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Stellaria media,

Herbicidal performance of the mixture WL 161616 + Chlortoluron (60 g a.i./ha + 240 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application Example 2H:

WI 60	WL 161616 60 g a.i./ha	Chlortoluron 240 g a.i./ha	WL 161616: 60 g a.i./ha	+ Chlortoluron + 240 g a.i./ha
	% control	trol	WE	A
	09	3	61	100
Ŋ	20	0	. 05	80
=		£	12	6
55		65	84	100
80		32	86	100
83		0	83	95
18		. 38	49	. 06
ິສ		13	42	100

WE = expected response by means of the Colby formula W = observed response = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Stellaria media, Galeopsis tetrahit, Sinapis arvensis, Veronica hederaefolia, Polygonum convolvulus and Cirsium arvense was 61, 50, 12, 84, 86, 83, 49 and 42 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Chlortoluron (30 g a.i./ha + 960 g a.i./ha = mixture 1:32) against broad-leaved weeds in post-emergence application Example 2J:

broad-leaved	WL 161616 30 g a.1./ha	Chlortoluron 960 g a.i./ha	WL 161616 30 g a.i./ha	+ Chlortoluron + 960 g a.i./ha
2000	% control	trol	WE	М
Galium aparine (1. whorl)	43	38	64	100
Galium aparine (2. whorl)	35	25	51	95
Stellaria media	10	89	7.1	. 95
Veronica hederaefolia	73	0	73	93
Matricaria inodora	ស	28	32	06 .
Chenopodium album	18	33	45	06
Cirsium arvense	23	48	09	100

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Stellaria media, Veronica hederaefolia, Matricaria inodora, Chenopodium album and Cirsium arvense was 64, 51, 71, 73, 32, 45 and 60 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Chlortoluron (30 g a.i./ha + 480 g a.i./ha = mixture 1:16) against broad-leaved weeds in post-emergence application Example 2K:

broad-leaved	WL 161616 30 g a.i./ha	Chlortoluron 480 g a.i./ha	WL 161616 30 g a.i./ha	+ Chlortoluron + 480 g a.i./ha
2000	% control	trol	WE	м
Galium aparine (1. whorl)	43	10	49	92
Galium aparine, (2. whorl)	35	m	37	98
Stellaria media	10	. 21	24	92
Veronica hederaefolia	73	0	73	68
Matricaria inodora	Ŋ	10	. 15	. 75
Polygonum convolvulus	15	48	56	78
Cirsium arvense	23	. 23	41	. 96

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Stellaria media, Veronica hederaefolia, Matricaria inodora, Polygonum convolvulus and Cirsium arvense was 49, 37, 24, 73, 15, 56 and 41 resp., clearly demonstrating that the combination was synergistic.

δ

Herbicidal performance of the mixture WL 161616 + Cyanazine (60 g a.i./ha + 300 a.i./ha = mixture 1:5) against broad-leaved and grass weeds in post-emergence application Example 3A:

	WL 161616	Cyanazine	WL 161616	+ Cyanazine
veeds weeds	60 g a.i./ha	300 g a.i./ha	60 g a.i./ha	60 g a.i./ha + 300 g a.i./ha
	၀၁ န	% control	WE	М
Galium aparine	55	£	15	100
Matricaria inodora	80	10	94	100
Polygonum convolvulus	88	83	97	100
Stellaria media	58	11	88	100
Alopecurus myosuroides	18	28	41	70

WE = expected response by means of the Colby formula W = observed response

= observed response

Expected control of Gallum aparine, Matricaria inodora, Polygonum convolvulus, Stellaria media and Alopecurus myosuroides was 57, 94, 97, 88, and 41 resp., clearly demonstrating that the combination was synergistic.

δ Herbicidal performance of the mixture WL 161616 + Cyanazine (60 g a.i./ha + 240 a.1./ha = mixture 1:4) against broad-leaved weeds in post-emergence application Example 3B:

4	WL 161616	Cyanazine	WL 161616	+ Cyanazine
Dodo-leaved weeds	60 g a.i./ha	240 g a.i./ha	60 g a.i./ha +	+ 240 g a.i./ha
-	9 **	% control	BM	3
Matricaria inodora	67	82	. 93	100
Galium aparine 1. whorl	.70	0	70	08
Galium aparine 3. whorl	09	0	09	. 75
Veronica persica		55	84	100
Stellaria media	09	29	87	100
Lamium amplexicaule	. 25	- -	25	. 70
Polygonum convolvulus	45	47	11	. 88

WE = expected response by means of the Colby formula <math>W = observed response

Expected control of Galium aparine (1. whorl and 3. whorl), Veronica persica, Stellaria media, Lamium amplexicaule and Polygonum convolvulus was 70, 60, 84, 87, 25 and 71 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Cyanazine (30 g a.i./ha + 300 g a.i./ha = aixture 1:10) against broad-leaved weeds in post-emergence application Example 30:

	WL 161616	Cyanazine	. WL 161616	+ Cyanazine
weeds	30 g a.i./ha	300 g a.i./ha	30 g a.i./ha	30 g a.i./ha + 300 g a.i./ha
	၁၁ န	<pre>\$ control</pre>	ME	3
Galium aparine 1. whorl	SS	. 0	55	89
Veronica persica	47	62	80	100
Stellaria media	35	\$82	. 06	86
Lamium amplexicaule	60	- .	80	84
Polygonum convolvulus	30	. 47	63	. 96
Matricaria inodora	63	70	68	100

WE = expected response by means of the Colby formula W = observed response

= observed response

8, 63 and 89 resp., Expected control of Gallum aparine (1. whorl), Veronica persica, Stellaria media, Lamium amplexicaule, Polygonum convolvulus, and Matricaria inodora was 55, 80, 90, 8, 63 and 89 clearly demonstrating that the combination was synergistic.

ρ Herbicidal performance of the mixture WL 161616 + Cyanazine (30 g a.i./ha + 240 a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 3D:

broad - becad	WL 161616	Cyanazine	. WL 161616	+ Cyanazine
xeeds .	30 g a.i./ha	240 g a.i./ha	30 g a.i./ha	30 g a.i./ha + 240 g a.i./ha
	00 &	& control	3M	3
Galium aparine 1. whorl	ກ	. 0	55	. 20
Veronica persica	47	62	79	86
Lamium amplexicaule	L .	8	. б	. 84
Polygonum convolvulus	30	47	63	96

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (1. whorl), Veronica persica, Lamium amplexicaule and Polygonum convolvulus was 55, 79, 9, and 63 resp., clearly demonstrating that the combination was synergistic.

ğ Herbicidal performance of the mixture WL 161616 + Cyanazine (30 g a.i./ha + 150 150 g a.1./ha Cyanazine 3 55 88 g a.i./ha WL 161616 WΕ 89 8 2 a.1./ha = mixture 1:5) against broad-leaved and weeds 30 150 g a.i./ha Cyanazine 48 48 control æ g a.i./ha WL 161616 5 78 63 30 Polygonum convolvulus Matricaria inodora broad-leaved Galium aparine weeds Example 3E:

- 32-

98

100

74

20

48

Stellaria media

WE = expected response by means of the Colby formula = observed response

Expected control of Gallum aparine, Matricaria inodora, Polygonum convolvulus and Stellaria media was 21, 81, 89, and 74 resp., clearly demonstrating that the combination was synergistic.

δ

Herbicidal performance of the mixture WL 163193 + Cyanazine (60 g a.i./ha + 300 a.i./ha = mixture 1:5) against broad-leaved and grass weeds in post-emergence application Example 3F:

broad-leaved	WL 163193	Cyanazine	WL 163193	+ Cyanazine
weeds	60 g a.i./ha	300 g a.i./ha	60 g a.1./ha	60 g a.1./ha + 300 g a.i./ha
	*	% control	WE	×
Galium aparine	70	3	72	75
Matricaria inodora	57	70	87	100
Stellaria media	30	71	80	. 100
Alopecurus myosuroides	25	28	46	. 63

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine, Matricaria inodora, Stellaria media and Alopecurus myosuroides was 72, 87, 80, and 46 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 165181 + Cyanazine (60 g a.i./ha + 240 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application Example 3G:

	WL 165181	Cyanazine	WL 165181 +	Cyanazine
Droad-Leaved Weeds	60 g a.i./ha	240 g a.i./ha	60 g a.i./ha + 240 g a.i./ha	240 g a.i./ha
	*	% control	. EM	ж.
Matricaria inodora	20	. 85	98	16
Galium aparine 1. whorl	80	0	80	96
Stellaria media	80	29	. 86	100
Lamium amplexicaule	23	2	24	66
Polygonum convolvulus	32	47	64	. 66

WE = expected response by means of the Colby formula
W = observed response

Expected control of Matricaria inodora, Galium aparine (1. whorl), Stellaria media, Lamium amplexicaule and Polygonum convolvulus was 86, 80, 93, 24, and 64 resp., clearly demonstrating that the combination was synergistic.

þ Herbicidal performance of the mixture WL 165181 + Cyanazine (30 g a.i./ha + 240 a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 3H:

	WL 165181	Cyanazine	. WL 165181 +	Cyanazine
broad-Leaved weeds	30 g a.i./ha	240 g a.i./ha	30 g a.i./ha +	240 g a.i./ha
	8	% control	WE	*
Galium aparine 1. whorl	09	0	09	°
Veronica persica	67	55	85	100
Lamium amplexicaule	10	7	12	. 87
Polygonum convolvulus	ហ	47	20	100
Stellaria media	67		89	100

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (1. whorl), Veronica persica, Lamium amplexicaule, Polygonum convolvulus and Stellaria media was 60, 85, 12, 50 and 89 resp., clearly demonstrating that the combination was synergistic.

δ Herbicidal performance of the mixture WL 161616 + Bromoxynil Octanoate (120 a.1./ha + 120 g a.e./ha = mixture 1:1) against broad-leaved weeds Example 4A:

	WL 161616 + B1	WL 161616 + Bromoxynil Octanoate	WL 161616 + Bro	WL 161616 + Bromoxynil Octanoate
Droad-leaved weeds	120 g a.i./ha	120 g a.e./ha	120 g a.i./ha +	120 g a.i./ha + 120 g a.e./ha
	&	% control	WE	3
Stellaria media	70	20	85	100
Galeopsis tetrahit	57	20	. 62	. 66
Papaver rhoeas	30	17	42	7.0
Chrysanthemum segetum	40	0	40	45
Galium aparine 1. whorl	80	7.7	95	. 100
Galium aparine 2. whorl	27	40	26	
Galium aparine 3. whorl	35	70	81	06

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Galeopsis tetrahit, Papaver rhoeas, Chrysanthemum segetum, Galium aparine (1st, 2nd and 3rd whorl) using the Colby formula was 85, 79, 42, 40, 95, 56 and 81 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Bromoxynil Octanoate (60 g a.i./ha + 240 g a.e./ha = mixture 1:4) against broad-leaved weeds Example 4B:

	WL 161616 Br	Bromoxynii Octanoate	WL 161616 + Bro	WL 161616 + Bromoxynil Octanoate
broad-leaved weeds	60 g a.i./ha	240 g a.e./ha	60 g a.i./ha + 240 g a.e./ha	240 g a.e./ha
	ar ar	% control	WE	×
Galium aparine 2. whorl	22	57	. 99	88
Galium aparine	20	87	06	66
Stellaria media	55	57	. 18	96
Papaver rhoeas	7	87	88	66
Chrysanthemum segetum	Ŋ	65	67	92 .

WE = expected response by means of the Colby formula

W = observed response

Expected control of Galium aparine (2nd and 3rd whorl), Stellaria media, Papaver rhoeas and Chrysanthemum using the Colby formula was 66, 90, 81, 88 and 67 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Bromoxynil Octanoate (60 g a.i./ha + 120 g a.e./ha = mixture 1:2) against broad-leaved weeds Example 4C:

7	WL 161616 + 1	Bromoxynil Octanoate	WL 161616 + Brc	WL 161616 + Bromoxynil Octanoate
weeds weeds	60 g a.i./ha	120 g a.e./ha	60 g a.i./ha +	60 g a.i./ha +' 120 g a.e./ha
	ar .	% control	WE	¥
Stellaria media	55	50	. 81	96
Galeopsis tetrahit	. 50	. 05	75	83
Veronica hederaefolia	88	37	92	96
Papaver rhoeas	7	17	23 ·	09
Chrysanthemum segetum	ស	0	ĸ	63
Galium aparine 2. whorl	. 55	40	53	. 42
Galium aparine 3. whorl	20	70	16	80

WE = expected response by means of the Colby formula
W = observed response

Expected control of Stellaria media, Galeopsis tetrahit, Veronica hederaefolia, Papaver rhoeas, Chrysanthemum segetum, Galium aparine (2nd and 3rd whorl) using the Colby formula was 78, 75, 92, 23, 5, 53 and 76 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Bromoxynil Octanoate (60 g a.1./ha + 60 g a.e./ha = mixture 1:1) against broad-leaved weeds Example 4D:

hroad-leased	WL 161616 + B1	WL 161616 + Bromoxynil Octanoate	WL 161616 + Bro	WL 161616 + Bromoxynil Octanoate
weeds	60 g a.i./ha	60 g a.e./ha	60 g a.i./ha +	60 g a.e./ha
)) &	% control	WE	3
Stellaria media	55	17	63	. 06
Galeopsis tetrahit	20	12	55	65
Veronica hederaefolia	88	15	06	. 91
Chenopodium album	30	55	69 .	. 66
Centaurea cyanus	12	83	85	97
Galium aparine 1. whorl	70	72	92	100
		-		

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Galeopsis tetrahit, Veronica hederaefolia, Chenopodium album, Centaurea cyanus, Galium aparine (1st whorl) using the Colby formula was 63, 55, 90, 69, 85 and 92 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Bromoxynil Octanoate (30 g a.i./ha + 240 g a.e./ha = mixture 1:6) against broad-leaved weeds Example 4E:

broad-leaved	WL 161616 + B1	WL 161616 + Bromoxynil Octanoate	WL 161616 + Bro	WL 161616 + Bromoxynil Octanoate
weeds	30 g a.i./ha	240 g a.e./ha	30 g a.i./ha	+ 240 g a.e./ha
	30 as	control	WE	3
Stellaria media	32	57	7.1	66
Veronica hederaefolia	77	80	95	66
Papaver rhoeas	ທ	87	. 88	92
Chrysanthemum segetum	6	65	. 89	78
Galium aparine 2. whorl	17	57	64	06
Galium aparine 3. whorl	. 20	. 98	. 68	65

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Veronica hederaefolia, Papaver rhoeas, Chrysanthemum segetum, Galium aparine (2nd and 3rd whorl) using the Colby formula was 71, 95, 88, 68, 64 and 89 resp., clearly demonstrating that the combination was synergistic.

δ Herbicidal performance of the mixture WL 165181 + Bromoxynil Octanoate (120 a.i./ha + 120 g a.e./ha = mixture 1:1) against broad-leaved weeds Example 4F:

	WL 165181 + Br	WL 165181 + Bromoxynil Octanoate	WL 165181 + Brc	WL 165181 + Bromoxynil Octanoate
DIOGU-TEAVEG Weeds	120 g a.i./ha	120 g a.e./ha	120 g a.i./ha	120 g a.i./ha + 120 g a.e./ha
) 8	% control	WE	3
Stellaria media	09	09	. 08	88
Galeopsis tetrahit	72	50	86	93
Papaver rhoeas	ហ	17	21	. 73
Galium aparine 2. whorl	09	40	. 92	. 82
Galium aparine 3. whorl	52	70	. 86	. 63

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Galeopsis tetrahit, Papaver rhoeas, Galium aparine (2nd and 3rd whorl) using the Colby formula was 80, 86, 21, 76, and 86 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 165181 + Bromoxynil Octanoate (60 g a.i./ha + 240 g a.e./ha = mixture 1:4) against broad-leaved weeds Example 4G:

,	WL 165181 + Br	WL 165181 + Bromoxynil Octanoate	WL 165181 + Bro	WL 165181 + Bromoxynil Octanoate
Needs	60 g a.i./ha	240 g a.e./ha	. 60 g a.i./ha	60 g a.i./ha + 240 g a.e./ha
	25 & .	% control	WE	3
Galium aparine 2. whorl	20	57	99	82
Galium aparine 3. whorl	22	87	06	100
Stellaria media	20	57	99	06
Veronica hederaefolia	88	08	86	66
Papaver rhoeas	m	87	87	. 36
	-			

WE = expected response by means of the Colby formula

W = observed response

Expected control of Galium aparine (2nd and 3rd whorl), Stellaria media, Veronica hederaefolia and Papaver rhoeas using the Colby formula was 66, 90, 66, 98 and 87 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 165181 + Bromoxynil Octanoate (60 g a.i./ha + 120 g a.e./ha = mixture 1:2) against broad-leaved weeds Example 4H:

,	WL 165181 + B	WL 165181 + Bromoxynil Octanoate	1	WL 165181 + Bromoxynil Octanoate
Dodd-leaved Weeds	60 g a.1./ha	120 g a.e./ha	60 g a.i./ha	60 g a.i./ha + 120 g a.e./ha
	ૐ .	. % control	ME	æ
Stellaria media	20	. 50	9	
Galeopsis tetrahit	62	. 05	80	85
Veronica persica	70	37	81	100
Chenopodium album	77	37	98	100
Galium aparine 2. whorl	50	40	22	. 40

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Galeopsis tetrahit, Veronica persica, Chenopodium album, Galium aparine (2nd whorl) using the Colby formula was 60, 80, 81, 86 and 52 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Loxynilsalt (60 g a.i./ha + 120 g a.i./ha = mixture 1:2) against broad-leaved weeds in post-emergence application Example 5A:

broad-leaved	WL 161616 60 g a.1./ha	Ioxynilsalt 120 g a.i./ha	WL 161616 + 60 g a.1./ha +	Ioxynilsalt 120 g a.i./ha
Spaaw	<pre>\$ control</pre>	trol	WE	ж.
Stellaria media	55	. 62	83	98
Chenopodium album	30	-	31	78
Polygonum convolvulus	47	45	71 .	100
Galium aparine (1. whorl)	70	10	73	83
Galium aparine (3. whorl)	20	ιΩ	24	89

WE = expected response by means of the Colby formula = observed response

Expected control of Stellaria media, Chenopodium album, Polygonum convolvulus, Galium aparine (1. and 3. whorl) was 83,31, 71, 73 and 24 resp., clearly demonstrating that the combination

was synergistic.

Herbicidal performance of the mixture WL 161616 + Ioxynilsalt (30 g a.i./ha 120 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application Example 5B:

broad-leaved	WL 161616 30 g a.i./ha	Ioxynilsalt 120 g a.i./ha	WL 161616 + 30 g a.i./ha +	Ioxynilsalt 120 g a.i./ha
20002	% control	trol	ЭМ .	W
Stellaria media	32	62	. 74	94
Galeopsis tetrahit	37	80	87	93
Chenopodium album	20		20	53
Polygonum convolvulus	30	45	62	97
Centaurea cyanus	S	. 84	85	96
Matricaria inodora	40	77	. 98	95
Galium aparine (2. whorl)	. 20	ហ	24	გ.
Veronica persica	70	. 72	. 65	100
Veronica hederaefolia	77	. 82	96	100

WE = expected response by means of the Colby formula
.W = observed response

Expected control of Stellaria media, Galeopsis tetrahit, Chenopodium album, Polygonum, convolvulus, Centaurea cyanus, Matricaria inodora, Galium aparine (2. whorl) and Veronica persica was 74, 87, 20, 62, 85, 86,24 and 92 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 165181 + Ioxynilsalt (60 g a.i./ha + 120 g a.i./ha = mixture 1:2) against broad-leaved weeds in post-emergence application Example 50:

	_	1		46-			
Ioxynilsalt 120 g a.i./ha	3	85	100	100	100	. 89	100
WL 165181 + 60 g a.1./ha +	WE	7.0	78	. 49	78	26	92
Ioxynilsalt 120 g a.i./ha	ltrol	62	-	45	10	ن.	. 72
WL 165181 60 g a.1./ha	& control	20	7.8	35	75	22	70
broad-leaved	999	Stellaria media	Chenopodium album	Polygonum convolvulus	Galium aparine (1. whorl)	Galium aparine (3. whorl)	Veronica persica

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Chenopodium album, Polygonum convolvulus, Galíum aparine (1. and 3. whorl) and Veronica persica was 70, 78, 64, 78, 26 and 92 resp., clearly demonstrating that the combination was synergistic.

Herbicidal response of the mixture WL 161616 + Mecoprop (60 g a.i./ha + 480 g a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 6A:

<u></u>					~ 4 [;]	} -			
+ Mecoprop + 480 g a.i./ha	3		. 66	96	96	66	82	100	
WL 161616 60 g a.i./ha	ЭМ		99	70	64	06	62	06	
Mecoprop/ha	trol		. 85	65	58	75	58	87	
WL 161616 60 g a.i./ha	% control		20	15	. 15	63	10	23	
broad-leaved weeds		,	Galium aparine (2. whorl)	Galium aparine (3. whorl)	Stellaria media	Veronica persica	Chenopodium album	Cirsium arvense	

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (2. whorl); Galium aparine (3. whorl), Stellaria media, Veronica persica, Chenopodium album and Cirsium arvense was 66, 70, 64, 90, 62 and 90 resp., clearly demonstrating that the combination was synergistic.

Herbicidal response of the mixture WL 161616 + Mecoprop (60 g a.i./ha + 240 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application Example 6B;

		 	-48-					
Mecoprop 240 g a.i./ha	3	97	86	66	96	75	. 06	
+ +		-	-	-	-	*	-	
WL 161616 60 g a.i./ha	WE	. 84	28	92	69	40	83	
Mecoprop 240 g a.i./ha	% control	10	10	78	23	33	77	
WL 161616 60 g a.i./ha	& cor	82	. 20	63	09	10	28	
broad-leaved weeds		Galium aparine (1. whorl)	Galium aparine (2. whorl)	Veronica hederaefolia	Veronica persica	Chenopodium album	Cirsium arvense	

WE = expected response by means of the Colby formula W = observed response = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Veronica hederaefolia, Veronica persica, Chenopodium album and Cirsium arvense was 84, 28, 92, 69, 40, 83 resp, clearly demonstrating that the combination was synergistic.

Herbicidal response of the mixture WL 161616 + Mecoprop (30 g a.i./ha + 480 g a.i./ha = mixture 1:16) against broad-leaved weeds in post-emergence application Example 6C:

			-49	-				
Mecoprop 480 g a.i./ha	. М	. 66	96	94	7.0	94	. 88	
+ →	÷			-		-		-
WL 161616 30 g a.i./ha	WE	82		89	09	88	82	
Mecoprop 480 g a.i./ha	ıtrol	50	28	7.5	58	87	. 78	
WL 161616 30 g a.i./ha	% control	63	10	. 52	v	່ ເກ	20	
broad-leaved	weeds	Galium aparine	(1. whori) Stellaria media	Veronica persica	Chenopodium album	Cirsium arvense	Senecio vulgaris	

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (1. whorl), Stellaria media, Veronica persica, Chenopodium album, Cirsium arvense, and Senecio vulgaris was 82, 62, 89, 60, 88, 82 resp., clearly demonstrating that the combination was synergistic.

Herbicidal response of the mixture WL 161616 + Mecoprop (30 g a.i./ha + 240 g a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 6D:

broad-leaved weeds WL 161616 a.i./ha weeds MED 161616 a.i./ha well weeds MED 1616 a.i./ha well well weeds MED 161616 a.i./ha well well weeds MED 161616 a.i./ha well well well well well well well wel						
\$ control WE 63 10 67 9 13 , 10 22 8 10 20 28 7 55 78 90 9 55 23 65 9 5 33 36 7 5 78 79 9	broad-leaved	WL 161616 30 g a.i./ha	Mecoprop 240 g a.i./ha	WL 161616 30 g a.i./ha	+ Mecoprop + 240 g a.i./ha	
efolia 55 10 67 a 55 28 a 55 29 a 55 23 65 a 55 33 36 5 78 79		8 COI	ıtrol	WE	. м	γ
63 10 67 13 10 22 10 20 28 55 78 90 5 23 65 5 33 36 5 78 79						_
13 10 22 10 20 28 55 78 90 55 23 65 5 33 36 5 78 79	(1. whorl)		10	<i>L</i> 9	95	20-
10 20 28 55 78 90 55 23 65 5 33 36 5 78 79	Galium aparine (2. whorl)	13	, 10	22.	88	-
55 78 90 55 23 65 5 33 36 5 78 79	Galium aparine (3. whorl)	10	20	28	. 75	
a 55 23 65 nm 5 33 36 5 78 79	Veronica hederaefolia		78	06	86.	
33 34 m. 5 m. 79	Veronica persica	55	. 23	65	66	
5 78 79	Chenopodium album	'n.	. 33	. 36	73	
	Cirsium arvense	2	78	. 67	06	

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Galium aparine (3. whorl), Veronica hederaefolia, Veronica persica, Chenopodium album and Cirsium arvense was 67, 24, 23, 90, 65, 36 and 79 resp., clearly demonstrating that the combination was synergistic.

Herbicidal response of the mixture WL 161616 + Dichlorprop (60 g a.i./ha + 480 g a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 74:

				51-	-					
Dichlorprop . 480 g a.i./ha	3	. 66	. 95	9.7	100	. 73	83	06	94	
+ +					-				-	
WL 161616 60 g a.i./ha	WE	. 48	64	16	09	32	62	77	73	
Dichlorprop 480 g a.i./ha	trol	30	55.	73	. 53	28	28	7.0		
161616 g a.i./ha	% control	82	. 20	15	15		10	23	28	
WE 60									<u> </u>	
broad-leaved	י אַ פּער פּער פּער פּער פּער פּער פּער פּער	Galium aparine	Galium aparine	(2. whori) Galium aparine	Stellaria media	Matricaria inodora	Chenopodium album	Cirsium arvense	Senecio vulgaris	

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Galium aparine (3. whorl), Stellaria media, Matricaria inodora, Chenopodium album, Cirsium arvense and Senecio vulgaris was 87, 64, 76, 60, 32, 62, 77 and 73 resp., clearly demonstrating that the combination was synergistic.

Herbicidal response of the mixture WL 161616 + Dichlorprop (60 g a.i./ha + 240 g a.i./ha = a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application Example 78:

				52-				
Dichlorprop 240 g a.i./ha	М		92	. 80	80	. 86	94	
WL 161616 +	ЭМ	_	98	28	52	91	. 87	-
Dichlorprop 240 g a.i./ha	trol		23	10	43	75	89	
WL 161616 60 g a.i./ha	% control		82	20	15	63	09	
broad-leaved	6000		Galium aparine	Galium aparine	Galium aparine	Veronica hederaefolia	Veronica persica	

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (1: whorl), Galium aparine (2. whorl), Galium aparine (3. whorl), Veronica hederaefolia and Veronica persica was 86, 28, 52, 91 and 87 resp., clearly demonstrating that the combination was synergistic.

Herbicidal response of the mixture WL 161616 + Dichlorprop (30 g a.i./ha + 480 g a.i./ha = mixture 1:16) against broad-leaved weeds in post-emergence application Example 7c:

					53-	<u>-</u>				
+ Dichlorprop + 480 g a.i./ha	W	66	100	93	. 93	89	7.5	. 63	96	
WL 161616 30 g a.i./ha	WE	74	61	16	58	32	09	7.2	68	
Dichlorprop 480 g a.i./ha	trol	30	55	73	53	28	58	7.0	. 60	
WL 161616 30 g a.i./ha	% control	63	1.3	10	10	· vo	ιΩ	ហ .	20	
broad-leaved		Galium aparine (1. whorl)	Galium aparine	Galium aparine	Stellaria media	Matricaria inodora	Chenopodium album	Cirsium arvense	Senecio vulgaris	

WE = expected response by means of the Colby formula = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Galium aparine (3. whorl), Stellaria media, Matricaria inodora, Chenopodium album, Cirsium arvense and Senecio vulgaris was 74, 61,76, 58,32,60,72 and 68 resp., clearly demonstrating that the combination was synergistic.

- n-

Herbicidal response of the mixture WL 161616 + Dichlorprop (30 g a.i./ha + 240 g a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 70:

			-	- 54.				
Dichlorprop	3	89	78	66	96	83	06	
WL 161616 30 g a.i./ha	WE	7.2	49	68	98	9	. 58	
Dichlorprop 240 g a.i./ha	itrol	23	43	7.5	89	63	48	•
wr 161616 30 g a.i./ha	% control	63	10	55	55	ي	. 20	
broad-leaved		Galfum aparine	Galium aparine	Veronica hederaefolia	Veronica persica	Cirsium arvense	Senecio vulgaris	

WE = expected response by means of the Colby formula W = observed response = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (3. whorl), Veronica hederaefolia, Veronica persica, Cirsium arvense and Senecio vulgaris was 72, 49, 89, 86, 65 and 58 resp., clearly demonstrating that the combination was synergistic.

σ

Herbicidal performance of the mixture WL 161616 + Diclofop (120 g a.i./ha + 480 a.i./ha = mixture 1:4) against grass weeds in post-emergence application Example 8A:

grass	WL 161616 120 g a.i./ha	Diclofop 480 g a.i./ha	WL 161616 + 120 g a.i./ha +	+ Diclofop + 480 g a.i./ha	
weeds	% control	trol	WE	3	
Alopecurus myosuroides	23	. 55	. 65	85	
Apera spica-venti	35	ហ	38	70	- 27

WE = expected response by means of the Colby formula W = observed response

Expected control of Alopecurus myosuroides and Apera spica-venti was 65 and 38 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Diclofop (120 g a.i./ha + 240 g a.i./ha = mixture 1:2) against grass weeds in post-emergence application Example 3B:

grass	WL 161616 120 g a.i./ha	Diclofop 240 g a.i./ha	WL 161616 120 g a.i./ha	+ Diclofop + 240 g a.i./ha
reeds	€ 8	% control	ЗM	3
Apera spica-venti	35.	ب	38	
Avena fatua	01	65	. 69	65
Digitaria sanguinalis	7.0	63	68	36

WE = expected response by means of the Colby formula W = observed response

Expected control of Apera spica-venti, Avena fatua and Digitaria sanguinalis was 38, 69 and 89 resp., clearly demonstrating that the combination was synergistic.

δ Herbicidal performance of the mixture WL 161616 + Diclofop (60 g a.i./ha a.i./ha = mixture 1:8) against grass weeds in post-emergence application Example 8C:

grass	WL 161616 60 g a.i./ha	Diclofop 480 g a.i./ha	WL 161616 60 g a.i./ha	+ Diclofop + 480 g a.i./ha
Weeds	% control	itrol	WE	3
Alopecurus myosuroides	20	55	64	93

WE = expected response by means of the Colby formula W = observed response

Expected control of Alopecurus myosuroides was 64, clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Diclofop (60 g a.i./ha + 240 g a.i./ha = a.i./ha = mixture 1:4) against grass weeds in post-emergence application Example 8D:

grass	WL 161616 60 g a.i./ha	Diclofop 240 g a.i./ha	WL 161616 60 g a.i./ha	+ Diclofop + 240 g a.i./ha
weeds	% control	ıtrol	WE	X
Avena fatua	10	65	69	

WE = expected response by means of the Colby formula W = observed response

Expected control of Avena fatua was 69, clearly demonstrating that the combination was synergistic.

Example 9A:

Herbicidal performance of the mixture WL 161616 + MCPA (120 g a.i./ha + 720 g a.i./ha = mixture 1:6) against broad-leaved weeds in post-emergence application

. broad-leaved	WL 161616 120 g a.1./ha	MCPA 720 g a.i./ha	. WL 161616 + 120 g a.i./ha +	MCPA 720 g a.i./ha
weeds	% control	trol	WE	3
Stellaria media	55	89	. 98	100
Papaver rhoeas	4:5	90	73	100
Senecio vulgaris	33	73	82	93
Myosotis arvensis	. 50	28	. 64	66 .
Galium aparine (2. whorl)	53	0	53	78
Galium aparine (3. whorl)		0	15	73

WE = expected response by means of the Colby formula W = observed response

Expected control of Stellaria media, Papaver rhoeas, Senecio vulgaris, Myosotis arvensis, Galium aparine (2. whorl) and Galium aparine (3. whorl) was 86, 73, 82, 64, 53, and 15 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + MCPA (120 g a.i./ha + 540 g a.i./ha = mixture 1:4.5) against broad-leaved weeds in post-emergence application Example 9B:

broad-leaved	WL 161616 120 g a.i./ha	MCPA 540 g a.i./ha	wr 161616 + 120 g a.i./ha +	MCPA 540 g a.i./ha
weeds	% control	ıtrol	WE	×
Lamium purpureum	09	25	. 01	88
Stellaria media	55	0	55	100
Papaver rhoeas	45	38	99	100
Senecio vulgaris	33	43	. 62	94
Myosotis arvensis	20	33	67	63
Centaurea cyanus	S	85	98	. 001
Galium aparine (2. whorl)	53	0	53	80

 $\dot{W}E \approx expected \ response \ by \ means \ of \ the \ Colby \ formula \ W = observed \ response$

86 and Expected control of Lamium purpureum, Stellaria media, Papaver rhoeas, Senecio vulgaris, Myosotis arvensis, Centaurea cyanus and Galium aparine (2. whorl) was 70, 55, 66, 62, 67, 53 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + MCPA (60 g a.i./ha + 720 g a.i./ha = mixture 1:12) against broad-leaved weeds in post-emergence application Example 9C:

	MT 161616	*GCP	. 631 161616		_
broad-leaved	60 g a.i./ha	720 g a.i./ha	60 g a.i./ha +	720 g a.i./ha	
שנים	% control	trol	ME	*	
Lamium purpureum	40	55	73	80	
Stellaria media	30	89	78	96	
Papaver rhoeas	35	20	. 89	100	
Senecio vulgaris	25	73	80	96	
Myosotis arvensis	43	28	59	06	
				-	

WE = expected response by means of the Colby formula W = observed response

Expected control of Lamium purpureum, Stellaria media, Papaver rhoeas, Senecio vulgaris and Myosotis arvensis was 73, 78, 68, 80 and 59 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + MCPA (60 g a.i./ha + 540 g a.i./ha = mixture 1:9) against broad-leaved weeds in post-emergence application Example 9D1

broad-leaved	WL 161616 60 g a.i./ha	MCPA 540 g a.i./ha	. WL 161616 + 60 g a.i./ha +	MCPA 540 g a.i./ha
Reeds	% control	trol	ЭМ	3
Stellaria media	30	. 0	30	63
Papaver rhoeas	35	38	09	100
Thlaspi arvense	25	65	74	. 85
Senecio vulgaris	25	43	57	06 .
Myosotis arvensis	43	33	62	85
Centaurea cyanus	9	85	98	100
Galium aparine (1. whorl)	80	0	80	100

WE = expected response by means of the Colby formula
W = observed response

Myosotis 80 Expected control of Stellaria media, Papaver rhoeas, Thlaspi arvense, Senecio vulgaris, arvensis, Centaurea cyanus and Galium aparine (1. whorl) was 30, 60, 74, 57, 62, 86 and resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + MCPA (60 g a.i./ha + 360 g a.i./ha = mixture 1:6) against broad-leaved weeds in post-emergence application Example %:

					_
broad-leaved	WL 161616 60 g a.i./ha	MCPA 360 g a.i./ha	WL 161616 + 60 g a.i./ha +	MCPA 360 g a.i./ha	
Weedow	% control	ıtrol	WE	ж	
Veronica persica	73	48	98	92	
Papaver rhoeas	35	38	. 09	96	- (
Centaurea cyanus	9	89	70	76	7 -
Galium aparine (1. whorl)	80	0	80	100.	

WE = expected response by means of the Colby formula W = observed response

Expected control of Veronica persica, Papaver rhoeas, Centaurea cyanus and Galium aparine (1. whorl) was 86, 60, 70 and 80 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + MCPA (30 g a.i./ha + 360 g a.i./ha = mixture 1:12) against broad-leaved weeds in post-emergence application **5** Example

broad-leaved	WL 161616 30 g a.i./ha	MCPA 360 g a.i./ha	WL 161616 + 30 g a.i./ha +	MCPA 360 g a.i./ha
xeeds	8 COI	% control	WE	3
Veronica persica	63	48		86 6
Stellaría media	18	0	18	80
Papaver rhoeas	23	38	. 52	88
Thlaspi arvense	18		7.1	85
Senecio vulgaris	13	28	37	80
Centaurea cyanus	0	89		. 86
Galium aparine (1. whorl)		0		100

WE = expected response by means of the Colby formula 3

= observed response

Senecio 65 Expected control of Veronica persica, Stellaria media, Papaver rhoeas, Thlaspi arvense, vulgaris, Centaurea cyanus and Galium aparine (1. whorl) was 81, 18, 52, 71, 37, 68 and resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + MCPA (30 g a.i./ha + 270 g a.i./ha = mixture 1:9) against broad-leaved weeds in post-emergence application Example 9G:

broad-leaved	WL 161616 30 g a.i./ha	MCPA 270 g a.i./ha	WL 161616 + 30 g a.i./ha +	MCPA 270 g a.i./ha
מסטטב	\$ control	ıtrol	WE	3
Veronica persica	63	30	74	96
Centaurea cyanus	0	65	. 65	06
Galium aparine (1. whorl)	65	0	. 65	100

WE = expected response by means of the Colby formula W = observed response

Expected control of Veronica persica, Centaurea cyanus and Galium aparine (1. whorl) was 74, 65 and 65 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture MCPA/Flurenol (180 g a.i./ha + 90 g a.i./ha) + WL 161616 (30 g a.i./ha) against broad-leaved weeds in post-emergence application Example 9H:

broad-leaved	MCPA+Flurenol 180+90 g a.i./ha	WL 161616 30 g a.i./ha	MCPA+Flurenol + 180+90 g a.i./ha +	WL 161616 30 g a.i./ha
Weeds	% control	trol	WE	3
Galium aparine (2. whorl)	09	23	29	. 56
Galium aparine (3. whorl)	30	ω	36	73
Stellaria media	70	30	79	93
Papaver rhoeas	75	35	84	. 86
Thlaspi arvense	. 48	25	61.	68 .
Myosotis arvensis	78	43	87	98

WE = expected response by means of the Colby formula W = observed response

Expected control of Gallum aparine (2, whorl), Gallum aparine (3. whorl), Stellaria media, Papaver rhoeas, Thlaspi arvense and Myosotis arvensis was 67, 36, 79, 84, 61 and 87 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture MCPA/Flurenol (270 g a.i./ha + 90 g a.i./ha) + WL 161616 (30 g a.i./ha) against broad-leaved weeds in post-emergence application ä Example

broad-leaved	MCPA+Flurenol 270+90 g a.i./ha	WL 161616 30 g a.i./ha	MCPA+Flurenol + 270+90 g a.i./ha +	WL 161616 30 g a.i./ha
Weeds	% control	rol	WE	м
Galium aparine (1. whorl)	75		91	100
Galium aparine (2. whorl)	55	23	9	. 93
Galium aparine (3. whorl)	28	ω	33	89
Stellaria media	75	18	80	06
Papaver rhoeas	75	22	81	97
Thlaspi arvense	48	. 18	57	89
Myosotis arvensis	78	30	85	96

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Galium aparine (3. whorl), Stellaria media, Papaver rhoeas, Thlaspi arvense and Myosotis arvensis was 91, 65, 33, 80, 81, 57 and 85 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture MCPA/Flurenol (360 g a.i./ha + 90 g a.i./ha) + WL 161616 (30 g a.i./ha) against broad-leaved weeds in post-emergence application Example 9K:

broad-leaved	MCPA+Flurenol 360+90 g a.i./ha	WL 161616 30 g a.i./ha	MCPA+Flurenol + 360+90 g a.i./ha +	WL 161616 30 g a.i./ha
2	% control	trol	3 M	3
Galium aparine (1. whorl)	78	65	92	100
Galium aparine (2. whorl)	09	23.	0,4	93
Galium aparine (3. whorl)	20	&	54	. 75
Stellaria media	70	18	7.5	. 96
			1	

WE = expected response by means of the Colby formula W = observed response

Expected control of Galium aparine (1. whorl), Galium aparine (2. whorl), Galium aparine (3. whorl) and Stellaria media was 92, 70, 54 and 75 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture MCPA/Flurenol (360 g a.i./ha + 90 g a.i./ha) + WL 161616 (60 g a.i./ha) against broad-leaved weeds in post-emergence application Example qr:

broad-leaved	MCPA+Flurenol 360+90 g a.i./ha	WL 161616 60 g a.1./ha	.MCPA+Flurenol + 360+90 g a.i./ha +	wr 161616 60 g a.i./ha
80000X	\$ cor	% control	WE	М
Galium aparine (1. whorl)	09	40	9.	36
Galium aparine (2. whorl)	20	13	57	83
Stellaria media	. 70	30	79	. 97
Thlaspi arvense	73	. 25	08	91
Matricaria inodora	25	15	36	73

WE = expected response by means of the Colby formula
W = observed response

Expected control of Gallum aparine (1. whorl), Gallum aparine (2. whorl), Stellaria media, Thlaspi arvense and Matricaria inodora was 76, 57, 79, 80 and 36 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture MCPA/Flurenol (360 g a.i./ha + 180 g a.i./ha) + WL 161616 (60 g a.i./ha) against broad-leaved weeds in post-emergence application Example 9M:

broad-leaved weeds	MCPA+Flurenol 360+180 g a.i./ha	WL 161616 60 g a.i./ha	MCPA+Flurenol + 360+180 g a.i./ha +	WL 161616 + 60 g a.i./ha
	& control	rol	aw.	3
Galium aparine (2. whorl)	7.0	40	82	
Galium aparine (3. whorl)	555	13	61	. 75
Lamium purpureum	89	. 40	. 18	06 .
Stellaria media	83	30	88	100
Thlaspi arvense	70	. 25	78	94

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (2. whorl) Galium aparine (3. whorl), Lamium purpureum, Stellaria media and Thlaspi arvense was 82, 61, 81, 88 and 78 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture MCPA/Flurenol (540 g a.i./ha + 180 g a.i./ha) + WL 161616 (60 g a.i./ha) against broad-leaved weeds in post-emergence application Example 9N:

broad-leaved	MCPA+Flurenol 540+180 g a.i./ha	WL 161616 60 g a.i./ha	MCPA+Flurenol + 540+180 g a.1./ha +	WL 161616 60 g a.i./ha
2000	% control	rol	WE	3
Galium aparine (2. whorl)	70	40	82	86
Galium aparine (3. whorl)	. 09	13	65	80
	,	·		
WE = expected response by	by means of the Colby formula	by formula		

Expected control of Galium aparine (2. whorl) and Galium aparine (3. whorl) was 82 and 65 resp., clearly demonstrating that the combination was synergistic.

the mixture MCPA/Flurenol (720 g a.i./ha + 180 g g a.i./ha) against broad-leaved weeds in post-emergence Herbicidal performance of a.i./ha) + WL 161616 (120 application Example 9P:

broad-leaved	MCPA+Flurenol 720+180 g a.i./ha	WL 161616 120 g a.i./ha	MCPA+Flurenol + WL 161616 720+180 g a.i./ha + 120 g a.i./ha	WL 161616 + 120 g a.1./ha
87 DO O O O O O O O O O O O O O O O O O O	% control	rol	WE	3
Galium aparine (2. whorl)	7.0	52	98	97
Galium aparine (3. whorl)	09	15	99	. 87
Matricaria inodora	38	25	53	91

Expected control of Galium aparine (2. whorl), Galium aparine (3. whorl) and Matricaria inodora was 86, 66, and 53 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture MCPA/Flurenol (720 g a.i./ha + 180 g a.i./ha) + WL 161616 (60 g a.i./ha) against broad-leaved weeds in post-emergence application ä Example

MCPA+Flurenol 720+180 g a.i./ha	WL 161616 a 60 g a.i./ha	MCPA+Flurenol + 7.20+180 g a.i./ha +	WL 161616 + 60 g a.i./ha
% control	ntrol	WE	3
7.0	40	82	96
09	13	65	83
89	40	. 08	06
Matricaria inodora 38	15	47	85
	C)	l	4.1

WE = expected response by means of the Colby formula
W = observed response

Expected control of Galium aparine (2. whorl), Galium aparine (3. whorl), Lamium purpureum and Matricaria inodora was 82, 65, 80 and 47 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Pendimethalin (30 g a.i./ha + 120 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application 9 Example

broad-leaved	WL 161616 30 g a.i./ha	Pendimethalin 120 g a.i./ha	WL 161616 + 30 g a.i./ha +	Pendimethalin 120 g a.i./ha
	% control	trol	ME	8
-				
Papaver rhoeas	. 0	65	65	- 80
Veronica persica	55	45	75	94

Expected control of Papaver rhoeas and Veronica persica was 65 and 75 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Prosulfocarb (120 g a.i./ha + 3600 g a.i./ha = mixture 1:30) against broad-leaved weeds in post-emergence application Example 11A

broad-leaved	WL 161616 120 g a.i./ha	Prosulfocarb 3600 g a.i./ha	WL 161616 + 120 g a.i./ha +	Prosulfocarb 3600 g a.i./ha	
S COOL	<pre>\$ control</pre>	ıtrol	WE	. м	
Galium aparine (2. whorl)	33	09	73	86	·
Galium aparine (3. whorl)	40	33	09	88	-75.
Chenopodium album	35	38	09	88	
Polygonum album	40	. 67	80	100	
Stellaria media	28	15	38	. 80	

WE = expected response by means of the Colby formula
W = observed response = observed response

Expected control of Galium aparine (2. whorl), Galium aparine (3. whorl), Chenopodium album, Polygonum album and Stellaria media was 73, 60, 60, 80 and 38 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Prosulfocarb (120 g a.i./ha 1800 g a.i./ha = mixture 1:15) against broad-leaved weeds in post-emergence application Example 11B

broad-leaved	WL 161616 120 g a.i./ha	Prosulfocarb 1800 g a.i./ha	WL 161616 + 120 g a.i./ha +	Prosulfocarb 1800 g a.i./ha
מסטט די	<pre>\$ control</pre>	ntrol	WE	3
Chenopodium album	35	20	48	83
Polygonum convolvulus	40	99	08	. 95
Galium aparine (2. whorl)	33	09	7.3	. 83

WE = expected response by means of the Colby formula
W = observed response

Expected control of Chenopodium album, Polygonum convolvulus and Galium aparine (2. whorl) was 48, 80 and 73 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Prosulfocarb (60 g a.i./ha 3600 g a.i./ha = mixture 1:60) against broad-leaved weeds in post-emergence application Example 11C

broad-leaved	WL 161616 60 g a.1./ha	Prosulfocarb 3600 g a.i./ha	WL 161616 + 60 g a.i./ha +	Prosulfocarb 3600 g a.i./ha
Weeda	% control	ıtrol	WE	3
Viola arvensis	83.	. 18	98	96
Polygonum convolvulus	20	89	74	83
Stellaria media	15	15	28	78
Galium aparine (2. whorl)	28	09	7.1	06
Galium aparine (3. whorl)	. 20	33	46	85

WE = expected response by means of the Colby formula W = observed response

Expected control of Viola arvensis, Polygonum convolvulus, Stellaria media, Galium aparine (2. whorl) and Galium aparine (3. whorl) was 86, 74, 28, 71 and 46 resp., clearly-demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Prosulfocarb (60 g a.i./ha 1800 g a.i./ha = mixture 1:30) against broad-leaved weeds in post-emergence application Example 11D

broad-leaved	WL 161616	Prosulfocarb	WL 161616 +	Prosulfocarb
weeds	% control	trol	WE	3 6
Viola arvensis	83	0	83	94
Chenopodium album	28	20	42	78
Polygonum convolvulus	20	0	. 50	06
Veronica persica	09	73	68	100
Galium aparine (2. whorl)	28	28	48	. 02

WE = expected response by means of the Colby formula

= observed response 3

Expected control of Viola arvensis, Chenopodium album, Polygonum convolvulus, Veronica persica and Galium aparine (2. whorl) was 83, 42, 20, 89 and 48 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Prosulfocarb (30 g a.i./ha 1800 g a.i./ha = mixture 1:60) against broad-leaved weeds in post-emergence application Example 11E

broad-leaved	WL 161616 30 g a.1./ha	Prosulfocarb 1800 g a.i./ha	WL 161616 + 30 g a.i./ha +	Prosulfocarb 1800 g a.i./ha
xeeds	8° CO	% control	ЗМ	. ж
Viola arvensis	53	0	. 23	888
Polygonum convolvulus	10	0	10	7.0
Galium aparine (2. whorl)	15	28	39	85

WE = expected response by means of the Colby formula W = observed response

53, Expected control of Viola arvensis, Polygonum convolvulus and Galium aparine (2. whorl) was 10 and 39 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Prosulfocarb (30 g a.i./ha + Example 11F

					8
t-emergence	Prosulfocarb 900 g a.i./ha	3	83	95	
eaved weeds in pos	WL 161616 + Prosulfocarb 30 g a.i./ha + 900 g a.i./ha	- B	53	69	
ha = mixture 1:30) against broad-leaved weeds in post-emergence	Prosulfocarb 900 g a.i./ha	ıtrol	0	. 30	
i./ha = mixture 1: ion	WL 161616 30 g a.i./ha	% control	53	55	
900 g a.i./ application	broad-leaved	9	, Viola arvensis	Veronica persica	

WE = expected response by means of the Colby formula
W = observed response

Expected control of Viola arvensis and Veronica persica was 53 and 69 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Amidosulfuron (60 g a.i./ha + 30 g a.i./ha = mixture 2:1) against broad-leaved weeds in post-emergence application Example 12:

broad-leaved	wr. 161616 60 g a.i./ha	Amidosulfuron 30 g a.i./ha	WL 161616 + 60 g a.i./ha +	Amidosulfuron 30 g a.i./ha
9000	% control	trol	WE	3
Chenopodium album	ហ	7.1	2.2	0
Cirsium arvense	30		. 92	46
Myosotis arvensis	43	53	73	86

Expected control of Chenopodium album, Cirsium arvense and Myosotis arvensis was 72, 76, and 73 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Aclonifen (60 g a.i./ha 240 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application Example 13A

	Wr. 161616	Aclonifen	WL 161616 + Aclonifen	Aclonifen	
broad-leaved	60 g a.1./ha	240 g a.i./ha	60 g a.i./ha +	, 240 g a.i./ha	
Weeds	% control	trol	. WE	3	
Lamium purpureum	65	63	87	96	
Veronica persica	53	10	58	85	
Galium aparine	73	63	06	86	82
Matricaria inodora	55	ಐ	59	.08	
				-	_

WE = expected response by means of the Colby formula 3

= observed response

Expected control of Lamium purpureum, Veronica persica, Galium aparine and Matricaria inodora was 87, 58, 90 and 59 resp., clearly demonstrating that the combination was synergistic.

Example 13B

Herbicidal performance of the mixture WL 161616 + Aclonifen (30 g a.i./ha 240 g a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application

broad-leaved	WL 161616 30 g a.i./ha	Aclonifen 240 g a.i./ha	WL 161616 + 30 g a.i./ha +	Aclonifen 240 g a.i./ha	
מ ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	% control	trol	WE	3	
					1
Lamium purpureum	45	63	80	94	
Veronica persica	48	10	. 53	08	
					- 83
					\ -

WE = expected response by means of the Colby formula W = observed response

Expected control of Lamium purpureum and Veronica persica was 80 and 53 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Pyridate (120 g a.i./ha + 480 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application 14A Example

					84-	_
Pyridate 480 g a.i./ha	3	100	95	66 .		
+ +						
WL 161616 120 g a.i./ha	WE	77	74	. 89	78	
Pyridate 480 g a.i./ha	trol		7.0	55	23	
WL 161616 120 g a.i./ha	% control	3.5	13	28	. 83	
broad-leaved	weeds.	Stellaria media	Galeopsis tetrahit	Polygonum convolvulus	Senecio vulgaris	

Expected control of Stellaria media, Galeopsis tetrahit, Polygonum convolvulus and Senecio vulgaris was 77, 74, 68, and 78 resp., clearly demonstrating that the combination was synergistic.

δ Herbicidal performance of the mixture WL 161616 + Pyridate (120 g a.i./ha + 240 a.i./ha = mixture 1:2) against broad-leaved weeds in post-emergence application

Example 14B

broad-leaved	WL 161616 120 g a.i./ha	Pyridate 240 g a.i./ha	WL 161616 120 g a.i./ha	+ Pyridate + 240 g a.i./ha
Weeds	\$ con	control	WE	м
Stellaria media	35	30	55	. 100
Galeopsis tetrahit	13	35	43	. 88
Sinap is arvensis	. 75	. 22	88	100
Polygonum convolvulus	28	33	52	100
Chenopodium album	08	0	80	. 88
Galium aparine (1. whorl)	63	55	83	100
Galium aparine (2. whorl)	43	. 43	. 68	
Galium aparine (3. whorl)	23	. 38	52	06

WE = expected response by means of the Colby formula W \cdot = observed response

Expected control of Stellaria media, Galeopsis tetrahit, Sinapis arvensis, Polygonum convulvulus, Chenopodium album, Galium aparine (1. whorl), Galium aparine (2. whorl) and Galium aparine (3. whorl) was 55,43,89,52,80,83,68 and 52 resp., clearly demonstrating that the combination was synergistic.

δ Herbicidal performance of the mixture WL 161616 + Pyridate (120 g a.i./ha + 120 a.i./ha = mixture 1:1) against broad-leaved weeds in post-emergence application 3

Example

broad-leaved	WL 161616 120 g a.i./ha	Pyridate 120 g a.i./ha	WL 161616 120 g a.i./ha	+ Pyridate + 120 g a.i./ha	,
weeds	% control	trol	ЭМ .	3	
Stellaria media	35	13	43	88	
Sinapis arvensis	75	20	80	100	
Veronica hederaefolia	06	0	06	100	
Matricaria inodora	48	53	91	100	
Polygonum convolvulus	28	15	. 68	. 84	
Cirsium arvense	20	30	. 65	75	-86
Galium aparine (1. whorl)	63	18	70	100	-
Galium aparine (2. whorl)	43	. 23	56	986	·

WE = expected response by means of the Colby formula
W = observed response

(1. whorl) and Galium aparine Expected control of Stellaria media, Sinapis arvensis, Veronica hederaefolia, Matricaria inodora, Polygonum convulvulus, Cirsium arvense, Galium aparine (1. whorl) and Galium apa (2. whorl) was 43, 80, 90, 76, 39, 65, 70 and 56 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Pyridate (60 g a.i./ha + 480 g a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application Example 14D

	WL 161616	Pyridate	WL 161616	+ Pyridate	
broad-leaved	60 g a.i./ha	480 g a.i./ha	60 g a.i./ha	+ 480 g a.i./ha	
weeds .	\$ control	trol	WE	. м	
Stellaria media	33	. 65	. 77	100	
Galeopsis tetrahit	10	. 70	73 ·	63	
Polygonum convolvulus	28	5.5	. 89	. 100	87-
Chenopodium album	53	20	7.7	100	

WE = expected response by means of the Colby formula = observed response

Expected control of Stellaria media, Galeopsis tetrahit, Polygonum convolvulus and Chenopodium album was 77, 73, 68, and 77 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Pyridate (60 g a.i./ha + 240 g a.i./ha = mixture 1:4) against broad-leaved weeds in post-emergence application 法 Example

broad-leaved	WL 161616 60 g a.i./ha	Pyridate 240 g a.i./ha	WL 161616 60 g a.i./ha	+ Pyridate + 240 g a.i./ha
S COUDER	\$ cor	control	WE	М
Stellaria media	33	30	53	66
Galeopsis tetrahit	10	35	. 42	. 83
Sinapis arvensis	65	. 22	84	100
Veronica hederaefolia	78	48	. 68	100
Veronica persica	75	. 65	91	100
Polygonum convolvulus	28	33	52	66
Chenopodium album	53	0	53	85
Galium aparine (1. whorl)	55	55	80	100
Galium aparine (2. whorl)	30	43	09	. 08
Galium aparine (3. whorl)	18	. 38	49	85

WE = expected response by means of the Colby formula W = observed response

hederaefolia, Veronica persica, Polygonum convulvulus, Chenopodium album, Galium aparine (1. whorl), Galium aparine (2. whorl) and Galium aparine (3. whorl) was 53, 42, 84, 89, 91, 52, 53, 80, 60 and 49 resp., clearly demonstrating that the combination was synergistic. Expected control of Stellaria media, Galeopsis tetrahit, Sinapis arvensis, Veronica

Herbicidal performance of the mixture WL 161616 + Pyridate (60 g a.i./ha + 120 g a.i./ha = mixture 1:2) against broad-leaved weeds in post-emergence application Example 14F

broad-leaved	WL 161616 60 g a.i./ha	Pyridate 120 g a.i./ha	WL 161616 60 g a.i./ha	+ Pyridate + 120 g a.i./ha
Weeds	% control	trol	WE	×
Stellaria media	33	13	42	85
Galeopsis tetrahit	10	25	33 .	. 55
Sinapis arvensis	65	. 02	72	100
Veronica hederaefolia	7.8	0	78	66
Veronica persica	75	55	. 68	96 .
Matricaria inodora	ι.	53		. 100
Chenopodium album	53	0	53	83
Cirsium arvense	30.	53	67	. 92
Galium aparine (1. whorl)	. 55	. 18	63	97

hederaefolia, Veronica persica, Matricaria inodora, Chenopodium album, Cirsium arvense, and Galium aparine (1. whorl) was 42, 33, 72, 78, 89, 55, 53, 67 and 63 resp., clearly demonstrating that the combination was synergistic. Expected control of Stellaria media, Galeopsis tetrahit, Sinapis arvensis, Veronica

Herbicidal performance of the mixture WL 161616 + Pyridate (30 g a.i./ha + 240 g a.i./ha = a.i./ha = mixture 1:8) against broad-leaved weeds in post-emergence application O ‡ Example

broad-leaved	WL 161616 30 g a.i./ha	Pyridate 240 g a.i./ha	WL 161616 30 g a.i./ha	+ Pyridate + 240 g a.i./ha
9000	100 g	control	WE	3
Stellaria media	15	30	41	9.5
Galeopsis tetrahit	8	35	. 40	7.5
Sinapis arvensis	40	55	73	100
Veronica hederaefolia	65	48	82	66
Veronica persica	70	. 99	06	. 46
Matricaria inodora	ហ	88	89	100
Polygonum convolvulus	18	. 33	45	. 87
Chenopodium album	13	0	13	66
Senecio vulgaris	25	38	54	70.
Galium aparine (1. whorl)	15	. 22	. 62	100
Galium aparine (2. whorl)	10	. 43	49	85

WE = expected response by means of the Colby formula W = observed response

hederaefolia, Veronica persica, Matricaria inodora, Polygonum convulvulus, Chenopodium album, Senecio vulgaris, Galium aparine (1. whorl) and Galium aparine (2. whorl) was 41, 40, 73, 82, 90, 89, 45, 13, 54, 62 and 49 resp., clearly demonstrating that the combination was synergistic. Expected control of Stellaria media, Galeopsis tetrahit, Sinapis arvensis, Veronica

Herbicidal performance of the mixture WL 161616 + Flurenol (120 g a.i./ha + 180 g a.i./ha = mixture 1:1.5) against broad-leaved weeds in post-emergence application Example 15A

broad-leaved	WL 161616 120 g a.i./ha	Flurenol 180 g a.i./ha	WL 161616 + 120 g a.1./ha +	Flurenol 180 g a.i./ha
Weeds	% control	ıtrol	WE	3
Papaver rhoeas	45	58	7.7	95
Sinapis arvensis	.58	53	. 08	. 85
Myosotis arvensis	. 05	58	79	95
Galium aparine (2. whorl)	83	28	80	96

WE = expected response by means of the Colby formula 3

= observed response

Expected control of Papaver rhoeas, Sinapis arvensis, Myosotis arvensis and Galium aparine (2. whorl) was 77,80, 79 and 80 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Flurenol (60 g a.i./ha + 180 g a.i./ha = mixture 1:3) against broad-leaved weeds in post-emergence application Example 15B

broad-leaved	WL 161616 60 g a.i./ha	Flurenol 180 g a.i./ha	WL 161616 + 60 g a.i./ha +	Flurenol 180 g a.i./ha
אַטטאַ	% control	itrol	3%	. 3
-	•	Ç		
ramium purpureum	0.4	99	- 80	36
Stellaria media	30	78	. 88	92
Papaver rhoeas	35	58	73	. 06
Myosotis arvensis	43	58	76	. 88
Galium aparine (2. whorl)	40	58	75	

Expected control of Lamium purpureum, Stellaria media, Papaver rhoeas, Myosotis arvensis and Galium aparine (2. whorl) was 81, 85, 73, 76 and 75 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Flurenol (60 g a.i./ha + 90 g a.i./ha = mixture 1:1.5) against broad-leaved weeds in post-emergence application Example 150

broad-leaved	WL 161616 60 g a.i./ha	Flurenol 90 g a.i./ha	WL 161616 + 60 g a.i./ha +	Flurenol 90 g a.i./ha
	% control	trol	ЭМ	3
Veronica persica	73	43	84	93
Papaver rhoeas	35	58	73	. 84
Myosotis arvensis	43	48	7.0	. 85
Galium aparine (2. whorl)	40	50	70	. 66

WE = expected response by means of the Colby formula W = observed response

Expected control of Veronica persica, Papaver rhoeas, Myosotis arvensis and Galium aparine (2. whorl) was 84, 73, 70 and 70 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Flurenol (30 g a.i./ha 90 g a.i./ha = mixture 1:3) against broad-leaved weeds in post-emergence application Example 15D

broad-leaved	WL 161616 30 g a.1./ha	Flurenol 90 g a.i./ha	WL 161616: + 30 g a.i./ha +	Flurenol 90 g a.i./ha
אפפנימ	% control	trol	WE	М
Veronica persica	63	43	79	88
Lamium purpureum	33	58	72	. 83
Galium aparine (1. whorl)	65	23	73	92

WE = expected response by means of the Colby formula 3

= observed response

Expected control of Veronica persica, Lamium purpureum and Galium aparine (2. whorl) was 79, 72 and 73 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Fluroxypyr (120 g a.i./ha + 90 g a.i./ha) against broad-leaved weeds in post-emergence application Example 16A

broad-leaved	WL 161616 120 g a.i./ha	Fluroxypyr 90 g a.i./ha	WL 161616. + 120 g a.i./ha +	Fluroxypyr 90 g a.i./ha
	\$ control	trol	ЭМ	3
Matricaria inodora	45	65	18	97
Rumex crispus	43	89	82	66 .
Cirsium arvense	53		55	. 73

WE = expected response by means of the Colby formula W = observed response

= observed response

Expected control of Matricaria inodora, Rumex crispus and Cirsium arvense was 81, 82 and 55 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Fluroxypyr (60 ga.1./ha + 90 ga.1./ha) against broad-leaved weeds in post-emergence application Example 16B

broad-leaved	WL 161616 60 g a.i./ha	Fluroxypyr 90 g a.i./ha	WL 161616 + 60 g a.i./ha +	Fluroxypyr 90 g a.i./ha
2000 2000 2000 2000 2000 2000 2000 200	% control	trol	WE	М
-			٠	
Matricaria inodora	40	65	19	16
Chenopodium album	83	32	. 68	96

WE = expected response by means of the Colby formula W = observed response

Expected control of Matricaria inodora and Chenopodium album was 79 and 89 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Fluroxypyr (60 ga.i./ha + 45 ga.i./ha) against broad-leaved weeds in post-emergence application Example 160

broad-leaved	WL 161616 60 g a.i./ha	Fluroxypyr 45 g a.i./ha	WL 161616 + 60 g a.i./ha +	Fluroxypyr 45 g a.i./ha	
8 DOM .	% control	trol	ME	3	
Galeopsis tetrahit	20	09	08	68	
Matricaria inodora	40	<u>.</u>	43	47	
Veronica persica	. 89	73	. 68	100	- 97
					ı –

WE = expected response by means of the Colby formula W = observed response

Expected control of Galeopsis tetrahit, Matricaria inodora and Veronica persica was 80, 43 and 89 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Flamprop-M-isopropyl (120 g a.i./ha + 700 g a.i./ha) against grass weeds in post-emergence application Example 17A

grass	WL 161616 120 g a.i./ha	FlampM-isoprop. 700 g a.i./ha	WL 161616 + 1 120 g a.i./ha +	WL 161616 + FlampM-isoprop. 120 g a.i./ha + 700 g a.i./ha
weeds) %	% control	WE	M
Setaria viridis	73	0	73	06
Digitaria sanguinalis	63	0	63	92

Expected control of Setaria viridis and Digitaria sanguinalis was 73 and 63 resp., clearly demonstrating that the combination was synergistic.

Herbicidal performance of the mixture WL 161616 + Flamprop-M-isopropyl (60 a.i./ha + 700 g a.i./ha) against grass weeds in post-emergence application Example 17B

grass	WL 161616 60 g a.i./ha	FlampM-isoprop. 700 g a.i./ha	WL 161616 + 60 g a.i./ha +	WL 161616 + FlampM-isoprop. 60 g a.i./ha + 700 g a.i./ha
weeds	90 #	% control	WE	. м
Digitaria sanguinalis	53	0	53	85

- 99-

Expected control of Digitaria sanguinalis was 53, clearly demonstrating that the combination was synergistic.

WO 94/07368 PCT/EP93/02737

- 100 -

CLAIMS

1. Herbicidal composition comprising a herbicidally acceptable carrier and/or surface active agent together with, as active ingredient, a mixture of at least one aryloxypicolinamide compound of the general formula I

$$\begin{array}{c}
X \\
N = \\
CZ-NR_3-(CHR_2)_q
\end{array}$$
(1)

in which

5

Z represents an oxygen or sulphur atom;

 R^{1} represent a hydrogen or halogen atom or an alkyl or haloalkyl group:

10 R² represents a hydrogen atom or an alkyl group;

q is 0 or 1;

R³ represents a hydrogen atom or an alkyl or alkenyl group; the or each group X independently represents a halogen atom or an optionally substituted alkyl or alkoxy group, or an alkenyloxy,

- alkynyloxy, cyano, carboxy, alkoxycarbonyl, (alkylthio)carbonyl, alkylcarbonyl, amido, alkylamido, nitro, alkylthio, haloalkylthio, alkenylthio, alkynylthio, alkylsulphinyl, alkylsulphonyl, alkyloximinoalkyl or alkenyloximinoalkyl group; n is 0 or an integer from 1 to 5;
- the or each group Y independently represents a halogen atom or an alkyl, nitro, cyano, haloalkyl, alkoxy or haloalkoxy group; and m is 0 or an integer from 1 to 5; together with a second component selected from:-

WO 94/07368 PCT/EP93/02737

- 101 -

a) a urea-type herbicide;

b) a triazine-type herbicide;

a hydroxybenzonitrile herbicide;

d) an aryloxyalkanoic acid herbicide;

e) a dinitroaniline herbicide;

f) a thiocarbamate herbicide;

g) amidosulfuron;

5

30

h) a diphenyl ether herbicide;

i) a pyridazine herbicide;

j) a fluorene carboxylic acid herbicide;

k) a pyridyloxyacetic acid herbicide; and

1) an arylalanine herbicide.

2. Composition as claimed in claim 1, wherein the aryloxypicolinamide is of the general formula II

- 3. Composition as claimed in claim 1 or 2 wherein the second component is selected from chlortoluron, isoproturon, linuron, neburon, atrazine, cyanazine, simazine, bromoxynil, ioxynil, dichloroprop, diclofop, MCPA, mecoprop (CMPP), pendimethalin, prosulfocarb, amidosulfuron, aclonifen, pyridate, flurenol.
- 20 prosulfocarb, amidosulfuron, aclonifen, pyridate, flurenol, fluroxypyr, and flamprop-isopropyl.
 - 4. Composition as claimed in claim 1, 2 or 3 wherein the ratio (by weight) of the aryloxypicolinamide to the second component is from 2:1 to 1:60.
- 5. Composition as claimed in any one of claims 1-4 wherein the second component is a urea or thiocarbamate herbicide and the ratio of AOP to that second component is 1:10 to 1:60.
 - 6. Composition as claimed in any one of claims 1 to 4 wherein the second component is amidosulfuron or a pyridyloxyacetic acid and the ratio of AOP to that second component is 2:1 to 1:20.

- 7. Method of controlling the growth of weeds at a cereal locus which comprises applying to the locus an aryloxypicolinamide as defined in claim 1 or 2, and a second component selected from those defined in claim 1 or 3.
- 8. Method as claimed in claim 7 wherein the AOP is applied to the locus at a rate of 25 to 250 gai/ha.
 - 9. Method as claimed in claim 7 or 8 wherein the second component is a urea or thiocarbamate herbicide and is applied to the locus at the rate of 1000-2500 gai/ha.
- 10. Method as claimed in claim 7 or 8 wherein the second component is amidosulfuron or a pyridyloxyacetic acid herbicide and is applied to the locus at the rate of 25 to 100 gai/ha.

nal Application No Inter. PCT/EP 93/02737

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 A01N43/40 //(A01N43/40,47:36,47:30,47:12,47:02,45:02,43:70, 39:04,39:02,37:46,37:40,33:22,33:18) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 5 A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category * Citation of document, with indication, where appropriate, of the relevant passages 1-5,7-9 EP,A,O 447 004 (SHELL INTERNATIONALE RESEARCH) 18 September 1991 cited in the application see page 2, line 3 - line 12 see page 2, line 27 - line 58 see page 6, line 18 - line 21 see page 7, line 32 - line 33 see page 48, line 18 - line 21 1-5,7-9 EP,A,O 211 518 (MAY & BAKER) 25 February see page 1, line 15 - page 6, line 8 1-10 EP,A,O 223 449 (MAY & BAKER) 27 May 1987 A see page 1, line 3 - page 5, line 25 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when document is combined with one or more other such document. ments, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 10.01.94 22 December 1993 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016

Lamers, W

Inter. nal Application No
PCT/EP 93/02737

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/EP 93/02/3/
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP,A,O 210 818 (MAY & BAKER) 4 February 1987 see page 2, line 11 - page 4, line 28	1-10
A	EP,A,O 255 272 (MAY & BAKER) 3 February 1988 see page 2, line 1 - page 4, line 19	1-10
	EP,A,O 273 668 (MAY & BAKER) 6 July 1988 see page 2, line 17 - page 3, line 4	1-10
	EP,A,O 257 771 (MAY & BAKER) 2 March 1988 see page 2, line 1 - page 7, line 2	1-10
	FR,A,2 611 437 (RHONE POULENC AGROCHIMIE) 9 September 1988 see page 1, line 1 - line 33	1-10
·	EP,A,O 274 892 (MAY & BAKER) 20 July 1988 see page 2, line 18 - line 44	1-10

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Inter. aal Application No
PCT/EP 93/02737

Patent document cited in search report	Publication date		t family nber(s)	Publication date
EP-A-0447004	18-09-91	AU-B-	636967	13-05-93
2, ,, 0, 00.	-0.00	AU-A-	7357091	19-09-91
		CN-A-	1054974	02-10-91
		JP-A-	4217959	07-08-92
EP-A-0211518	25-02-87	AU-B-	584218	18-05-89
2. // 0====0=0		AU-A-	5937886	08-01-87
	•	CA-A-	1273500	04-09-90
		DE-A-	3681373	17-10-91
		JP-A-	62026206	04-02-87
•		US-A-	5013353	07-05-91
		US-A-	4990177	05-02-91
EP-A-0223449	27-05-87	AU-B-	589461	12-10-89
		AU-A-	6450886	07-05-87
•		JP-A-	62120303	01-06-87
FP-A-0210818	04-02-87	AU-B-	588344	14-09-89
		AU-A-	6038486	29-01-87
•		CA-A-	1282975	16-04-91
•		JP-A-	62022704	30-01-87
		US-A-	5264411	23-11-93
 ЕР-А-0255272	03-02-88	AU-B-	591311	30-11-89
		AU-A-	7578287	28-01-88
		CA-A-	1300391	12-05-92
		DE-A-	3775134	23-01-92
		JP-A-	63033307	13-02-88
		US-A-	4940484	10-07-90
 EP-A-0273668	06-07-88	AU-B-	605223	10-01-91
		AU-A-	8286587	23-06-88
		CA-A-	1300915	19-05-92
		DE-A-	3780141	06-08-92
		· JP-A-	63166811	11-07-88
		US-A-	4929271	29-05-90
	· · -	ZA-A-	8709580	20-06-88
 EP-A-0257771	02-03-88	AU-B-	604487	20-12-90
-	•	AU-A-	7578187	28-01-88

information on patent family members

Inten aal Application No
PCT/EP 93/02737

Patent document cited in search report	Publication date		t family iber(s)	Publication date
EP-A-0257771		CA-A- JP-A- US-A-	1300914 63033306 4875925	19-05-92 13-02-88 24-10-89
FR-A-2611437	09-09-88	NONE		
EP-A-0274892	20-07-88	DE-A-	3781130	17-09-92