Outline

Mathematical Analysis

Lecture 1:Real numbers

Objectives (real numbers 2 sessions)

- Identify the Subsets of the Set of Real Numbers
- Recognize subsets of the real numbers
- Use Inequality symbols
- Evaluate absolute value
- Use absolute value to express distance
- Identify properties of the real numbers
- Simplify algebraic expressions

-The set of real numbers $\,\,$. $\,\,$

- -Review of subsets of the real number system
- -Subsets.
- -Properties of real numbers.
- -Absolute value and properties.

Objectives (real numbers 2 sessions)

- Identify the Subsets of the Set of Real Numbers
- Recognize subsets of the real numbers
- Use Inequality symbols
- Evaluate absolute value
- Use absolute value to express distance
- Identify properties of the real numbers
- Simplify algebraic expressions

Notation

rev

Examples of Real Numbers

- •Set A collection of objects
- •{ } the set of....
- •Examples of set:

$$A = \{ 2, 4, 6, 8 \}$$

 $B = \{x | x \text{ is an odd number}\}$

- 9 9.0000
- 1/8 0.125
- $\sqrt{2}$ 1.14213562...

rev

SUBSETS of R

Reviewing subsets of \mathbb{R}

Natural numbers \mathbb{N}

- counting numbers
- positive integers
- $-\{1, 2, 3, 4, \ldots\}$

Whole numbers

- nonnegative integers
- $-\{0\}\cup\{1,2,3,4,\ldots\}$
- $-\{0, 1, 2, 3, 4, \ldots\}$

2 + x = 1 hasn't solution in N

SUBSETS of R

Reviewing subsets of \mathbb{R}

Integers \mathbb{Z}

- numbers that consist of positive integers, negative integers, and zero,

$$\mathbb{Z} = \{\dots - n, \dots, -3, -2, -1, 0, 1, 2, 3, \dots, n, \dots\} = (-\mathbb{N}) \cup \{0\} \cup \mathbb{N}$$

Reviewing subsets of \mathbb{R}

Rational Numbers Q

- Numbers that can be expressed as a quotient a/b, where a and b are integers.
- · Include fractions and decimals.
- Fractions when turned into decimals

 Decimals either terminate or repeat

Examples:

- 1/2 = .5
- 1/3 = .3
- 4/11 = .363636...
- 7 = 7/1

SUBSETS of R

Reviewing subsets of \mathbb{R}

Irrational Numbers

Don't worry about irrational numbers. The combination of the rational numbers along with the irrational numbers make up the real number system.

Reviewing subsets of \mathbb{R}

Irrational Numbers I

- Decimals that do not end or repeat
- Transcendent numbers (π, e)
- Examples:
 - $\sqrt{2} = 1.414213562...$
 - $\pi = 3.141592654...$
 - .01011011101111...
 - And all square roots of non-perfect squares

rev

Real

Real Numbers ℝ

Real numbers \mathbb{R}

The set of all rational and irrational numbers.

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$

Real numbers are identified with the real line (there is a one-to-one correspondence)

Structure of Real Number System

Real

Properties of real Numbers

The properties of the real number system fall into three categories: algebraic properties, order properties and completeness property

- **Algebraic** properties say how can be added, subtracted and multiplied real numbers
- **Order** properties of real numbers give useful rules to use with inequalities
- **Completeness** property of real number, it says that there are no holes or gaps in it.

What are the Real Numbers?

Some common definitions

- Extension of the rational numbers to include the irrational numbers
- Converging sequence of rational numbers, the limit of which is a real number
- A point on the number line
- Microscope analogy: If you magnify the number line at a very high power,
 - Would the real numbers look the same?
 - Would the rational numbers look the same or be a row of dots separated by spaces?

rev

Real

Algebraic properties

- Commutative (addition & multiplication)
- Associative (addition & multiplication)
- Identity (additive = 0 & multiplicative = 1)
- Inverse (additive = -x & multiplicative = 1/x) except zero
- Distributive (multiplication over addition)
- ALL these properties are useful when manipulating algebraic expressions & equations

Real numbers are ordered

(\mathbb{R} , \leq) is a total order compatible with + and \times

- $x \le y \leftrightarrow y x \in \mathbb{R}^+ \cup \{0\}$ (\le reflexive, antisimetric and transitive)
- If $x, y \in \mathbb{R}$ then $x < y \lor x = y \lor x > y$
- If $x, y \in \mathbb{R}^+$ then $x+y \in \mathbb{R}^+$. $\land x \cdot y \in \mathbb{R}^+$

The extended real line is defined as:

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$$

We extend the real number system by adjoining two "ideal points" denoted by the symbols $+\infty$,- ∞ ("plus infinity" and "minus infinity").

∧ AND ∨ OR

Real

Inequalities

$$a \le b \implies a + c \le b + c$$

$$a \le b \implies \begin{cases} a \cdot c \le b \cdot c & \text{si } c > 0 \\ a \cdot c \ge b \cdot c & \text{si } c < 0 \end{cases}$$

$$4x+13 \le 2x+7 \quad 4x+13 \le 6x+7 \quad 2x^{3}+5x^{2}-x-6 \le 0$$

$$4x-2x \le 7-13 \quad 4x-6x \le 7-13 \quad 2(x-1)(x+2)\left(x+\frac{3}{2}\right) \le 0$$

$$2x \le -6 \quad -2x \le -6$$

$$x \le \frac{-6}{2} = -3 \quad x \ge \frac{-6}{-2} = 3$$

$$x \in]-\infty, -2] \cup \left[\frac{-3}{2}, 1\right]$$

$$x \in]-\infty, -3] \quad x \in [3, +\infty[$$

Inequalities

$$a \le b \implies a + c \le b + c$$

$$a \le b \implies \begin{cases} a \cdot c \le b \cdot c & \text{si } c > 0 \\ a \cdot c \ge b \cdot c & \text{si } c < 0 \end{cases}$$

$$4x+13 \le 2x+7 \quad 4x+13 \le 6x+7 \quad 2x^3+5x^2-x-6 \le 0$$

$$4x-2x \le 7-13 \quad 4x-6x \le 7-13 \quad 2(x-1)(x+2)\left(x+\frac{3}{2}\right) \le 0$$

$$2x \le -6 \quad -2x \le -6$$

$$x \le \frac{-6}{2} = -3 \quad x \ge \frac{-6}{-2} = 3$$

$$x \in]-\infty, -3] \quad x \in [3, +\infty[$$

Real

Absolute Value

• Formal definition

$$|x| = |-x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Properties

$$|x| \ge 0$$

$$|x| \le a \ (>0) \Leftrightarrow -a \le x \le a \Leftrightarrow -a \le x \land x \le a \Leftrightarrow x \in [-a,a]$$

$$|x| \ge b \ (>0) \Leftrightarrow b \le x \lor x \le -b \Leftrightarrow x \in]-\infty, -b] \cup [b, +\infty[$$

$$|x \cdot y| = |x| \cdot |y|$$

$$|x + y| \le |x| + |y|$$
 (Minkowski inequality)

Absolute Value

Formal definition

$$|x| = |-x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Properties

$$|x| \ge 0$$

$$|x| \le a \ (>0) \Leftrightarrow -a \le x \le a \Leftrightarrow -a \le x \land x \le a \Leftrightarrow x \in [-a,a]$$

$$|x| \ge b \ (>0) \Leftrightarrow b \le x \lor x \le -b \Leftrightarrow x \in]-\infty, -b] \cup [b, +\infty[$$

$$|x \cdot y| = |x| \cdot |y|$$

$$|x + y| \le |x| + |y| \ \text{(Minkowski inequality)}$$

Exercise: Find $x \in \mathbb{R}$, such as $||x|-2| \le 1$

Absolute Value: distance

- If x and y are real number then the distance between both is d(x,y)=|x-y|
- Open interval with center in "a" and radius "r"

$$I = \{x \in \mathbb{R} / d(x,a) < \delta\} =]a - \delta, a + \delta[$$

Exercise: Find $x \in \mathbb{R}$, such as $||x|-2| \le 1$

• by second property of absolute value

$$||x|-2| \le 1 \iff 1 \le |x| \le 3 \iff |x| \le 3 \land |x| \ge 1$$
$$|x| \le 3 \iff x \in [-3,3]$$

•third property of absolute value $|x| \ge 1 \Leftrightarrow x \in]-\infty, -1] \cup [1, +\infty[$ $[-3, 3] \cap (]-\infty, -1] \cup [1, +\infty[) = [-3, -1] \cup [1, 3]$

Completeness property

The completeness property says that "there are enogh real number to complete the real number line, in the sense that there are no holes or gaps in it"

- This property is essential to the idea of a limit
- Many theorems of calculus would fail it the real number systems were not complete

Don't leave common sense at the door!

- Remember to use logic!
- Can an absolute value ever be less than or equal to a negative value?? NO! (therefore if such an inequality were presented, the solution would be the empty set)
- Can an absolute value ever be more than or equal to a negative value?? YES! ALWAYS! (therefore if such an inequality were given, the solution would be all reals)