PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-252168

(43)Date of publication of application: 10.09.2003

(51)Int.CI.

B60R 21/26 B01J 7/00 B60R 21/01 B60R 21/32 // F42B 3/12

(21)Application number: 2002-055527

(71)Applicant : DAICEL CHEM IND LTD

(22)Date of filing:

01.03.2002

(72)Inventor: OKAMOTO MITSUYASU

ODA SHINGO

(54) SPARKER FOR AIR BAG SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a sparker for an air bag system having high operability and reducing its weight. SOLUTION: A condenser and an integrated circuit are mounted in the sparker for the air back system utilizing bus lines 10, 11. As the integrated circuit is provided with an impedance converting circuit between the bus lines 10, 11 and a rectification circuit, the condenser of large capacity (µF order) can be charged with small load capacity (pF order).

LEGAL STATUS

[Date of request for examination]

14.10.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

Searching PAJ Page 2 of 2

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-252168

(P2003-252168A)

(43)公開日 平成15年9月10日(2003.9.10)

(51) Int.Cl.'		F I 73-1-(8-4	
B 6 0 R 21/26		B 6 0 R 21/26	3D054
B 0 1 J 7/00		B 0 1 J 7/00	A 4G068
B60R 21/01		B60R 21/01	
21/32 21/32		21/32	
// F 4 2 B 3/12	•	F 4 2 B 3/12	
		審査請求 未請求 請求項	の数34 OL (全 15 頁)
(21)出願番号	特願2002-55527(P2002-55527)	(71)出願人 000002901	
	•	ダイセル化学工	業株式会社
(22)出顧日	平成14年3月1日(2002.3.1)	大阪府堺市鉄砲町1番地	
		(72)発明者 岡本 光泰	
		兵庫県姫路市網	干区坂上386-204
		(72)発明者 小田 慎吾	
	, .	兵庫県姫路市網	千区津市場341-11
		(74)代理人 100063897	
		弁理士 古谷 !	
		Fターム(参考) 3D054 DD11	DD17 DD28 DD40 EE29
			EE39 EE41 EE48 EE52
			FF14 FF15 FF17
		4Q068 DA08	DB15 DC04 DD03 DD15

(54) 【発明の名称】 エアパッグシステム用点火器

(57)【要約】

【課題】 作動性能が良く、減量化できるエアバッグシステム用点火器の提供。

【解決手段】 バス回線10、11を利用したエアバッグシステム用点火器内にコンデンサと集積回路が設置されている。集積回路には、バス回線10、11と整流回路の間にインピーダンス変換回路があるので、小さな負荷容量(pFオーダー)で大きな容量(μFオーダー)のコンデンサを充電することができる。

【特許請求の範囲】

【請求項1】 電源及び衝撃検知センサに接続された電子制御ユニットと、前記電子制御ユニットと接続された、複数のガス発生器とエアバッグとが収容された複数のモジュールケースとを有するエアバッグシステムにおいて使用する、前記複数のガス発生器に1又は2以上組み込まれた点火器であり、

エアバッグシステムが、電子制御ユニットを通過し、電流及び所要情報を供給・伝達する複数本の環状ワイヤからなるバス回線が設けられ、前記バス回線から所要部位において分岐した複数本の導体により、複数のモジュールケースに収容された個々のガス発生器が作動可能に接続されたものであり、

ガス発生器に1又は2以上組み込まれた点火器が、発熱部と、発熱部に接する点火薬を備え、点火電流による発熱部の発熱で点火薬を着火させる電気式の点火器で、点火器とバス回線が複数本の導体により接続されており、点火器内にコンデンサ及び所要機能を発現するための情報が記録された集積回路が設けられ、点火薬着火用の電流をコンデンサに蓄積する充電回路が設けられ、更にバス回線とコンデンサとの間に充電回路のインピーダンスを変換する回路が設けられているエアバッグシステム用点火器。

【請求項2】 コンデンサの容量が250pF~24μ Fである請求項1記載のエアバッグシステム用点火器。 【請求項3】 更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インピーダンスを変換する回路がバス回線から整流回路に至る間に設けられている請求項1又は2記載のエアバッグシステム用点火

【請求項4】 更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インピーダンスを変換する回路が整流回路とコンデンサの間に設けられている請求項1又は2記載のエアバッグシステム用点火器。

器。

【請求項5】 更に整流されたコンデンサ充電用電圧及びバス回線にかかる電圧の少なくとも一方を増幅する機能が存在する請求項3又は4記載のエアバッグシステム用点火器。

【請求項 6 】 インピーダンス変換回路が集積回路内に設けられている請求項 $1 \sim 5$ のいずれか 1 記載のエアバッグシステム用点火器。

【請求項7】 インビーダンス変換回路が電流値の上限を制限する機能を有している請求項1~6のいずれか1 記載のエアバッグシステム用点火器。

【請求項8】 集積回路が、ガス発生器における点火器の発熱部の異常を検知する機能を有する回路、複数のガ 50

ス発生器ごとの識別機能を有する回路、及びコンデンサの不具合を検知する機能を有する回路を有している請求項1~7のいずれか1記載のエアバッグシステム用点火器。

【請求項9】 更に点火器外部で発生したノイズにより、点火器が誤作動しないようにする回路を有している請求項 $1\sim8$ のいずれか1記載のエアバッグシステム用点火器。

【請求項10】 更に点火器ごとにコンデンサに蓄積された点火薬着火用の電流の信号波形を変換する放電波形変換回路を有している請求項1~9のいずれか1記載のエアバッグシステム用点火器。

【請求項11】 放電波形変換回路が集積回路内に存在する請求項10記載のエアバッグシステム用点火器。

【請求項12】 電源及び衝撃検知センサに接続された電子制御ユニットと、前記電子制御ユニットと接続された、複数のガス発生器とエアバッグとが収容された複数のモジュールケースとを有するエアバッグシステムにおいて使用する、前記複数のガス発生器に1又は2以上組み込まれた点火器内に設置する集積回路であり、

エアバッグシステムが、電子制御ユニットを通過し、電流及び所要情報を供給・伝達する複数本の環状ワイヤからなるバス回線が設けられ、前記バス回線から所要部位において分岐した複数本の導体により、複数のモジュールケースに収容された個々のガス発生器が作動可能に接続されたものであり、

ガス発生器に1又は2以上組み込まれた点火器が、発熱部と、発熱部に接する点火薬を備え、点火電流による発熱部の発熱で点火薬を着火させる電気式の点火器で、点火器とバス回線が複数本の導体により接続され、点火器内にコンデンサと集積回路が設けられており、

集積回路が所要機能を発現するための情報が記録されたもので、点火薬着火用の電流をコンデンサに蓄積する充電回路が設けられ、更にバス回線とコンデンサとの間に充電回路のインピーダンスを変換する回路が設けられているエアバッグシステム用集積回路。

【請求項13】 コンデンサの容量が250pF~24 μ Fである請求項12記載のエアバッグシステム用集積 回路。

【請求項14】 更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インピーダンスを変換する回路がバス回線から整流回路に至る間に設けられている請求項12又は13記載のエアバッグシステム用集積回路。

【請求項15】 更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インビーダンスを変

換する回路が整流回路とコンデンサの間に設けられている請求項12又は13記載のエアバッグシステム用集積回路。

【請求項16】 更に整流されたコンデンサ充電用電圧及びバス回線にかかる電圧の少なくとも一方を増幅する機能が存在する請求項14又は15記載のエアバッグシステム用集積回路。

【請求項17】 インピーダンス変換回路が電流値の上限を制限する機能を有している請求項12~16のいずれか1記載のエアバッグシステム用集積回路。

【請求項18】 集積回路が、ガス発生器における点火器の発熱部の異常を検知する機能を有する回路、複数のガス発生器ごとの識別機能を有する回路、及びコンデンサの不具合を検知する機能を有する回路を有している請求項12~17のいずれか1記載のエアバッグシステム用集積回路。

【請求項19】 更に点火器外部で発生したノイズにより、点火器が誤作動しないようにする回路を有している請求項 $12\sim18$ のいずれか1記載のエアバッグシステム用集積回路。

【請求項20】 更に点火器ごとにコンデンサに蓄積された点火薬着火用の電流の信号波形を変換する放電波形変換回路と接続されている請求項12~19のいずれか1記載のエアバッグシステム用集積回路。

【請求項21】 放電波形変換回路が集積回路内に存在する請求項20記載のエアバッグシステム用集積回路。

【請求項22】 電源及び衝撃検知センサに接続された電子制御ユニットと、前記電子制御ユニットと接続された、複数のガス発生器とエアバッグとが収容された複数のモジュールケースとを有するエアバッグシステムにおいて使用する、前記複数のガス発生器に1又は2以上組み込まれた点火器に設置されたコンデンサの充電方法であり、

エアバッグシステムが、電子制御ユニットを通過し、電流及び所要情報を供給・伝達する複数本の環状ワイヤからなるバス回線が設けられ、前記バス回線から所要部位において分岐した複数本の導体により、複数のモジュールケースに収容された個々のガス発生器が作動可能に接続されたものであり、

ガス発生器に1又は2以上組み込まれた点火器が、発熱部と、発熱部に接する点火薬を備え、点火電流による発熱部の発熱で点火薬を着火させる電気式の点火器で、点火器とバス回線が複数本の導体により接続されており、点火器内にコンデンサ及び所要機能を発現するための情報が記録された集積回路が設置され、点火薬着火用の電流をコンデンサに蓄積する充電回路が設けられ、更にバス回線とコンデンサとの間に充電回路のインピーダンスを変換する回路が設けられており、

電源からバス回線を介して電流を送り、インピーダンス を変換する回路を経てコンデンサを充電するエアパッグ システム用点火器に設置されたコンデンサの充電方法。 【請求項23】 コンデンサの容量が250pF~24 μFである請求項22記載のエアバッグシステム用点火 器に設置されたコンデンサの充電方法。

【請求項24】 更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インビーダンスを変換する回路がバス回線から整流回路に至る間に設けられている請求項22又は23記載のエアバッグシステム用点火器に設置されたコンデンサの充電方法。

【請求項25】 更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インビーダンスを変換する回路が整流回路とコンデンサの間に設けられている請求項22又は23記載のエアバッグシステム用点火器に設置されたコンデンサの充電方法。

【請求項26】 更に整流されたコンデンサ充電用電圧 及びバス回線にかかる電圧の少なくとも一方を増幅する 機能が存在する請求項24又は25記載のエアバッグシ ステム用点火器に設置されたコンデンサの充電方法。

【請求頃27】 インピーダンス変換回路が集積回路内 に設けられている請求項22~26のいずれか1記載の コンデンサの充電方法。

【請求項28】 インビーダンス変換回路が電流値の上限を制限する機能を有している請求項22~27のいずれか1記載のコンデンサの充電方法。

【請求項29】 集積回路が、ガス発生器における点火器の発熱部の異常を検知する機能を有する回路、複数のガス発生器ごとの識別機能を有する回路、及びコンデンサの不具合を検知する機能を有する回路を有している請求項22~28のいずれか1記載のエアバッグシステム用点火器に設置されたコンデンサの充電方法。

【請求項30】 更に点火器外部で発生したノイズにより、点火器が誤作動しないようにする回路を有している請求項22~29のいずれか1記載のエアバッグシステム用点火器に設置されたコンデンサの充電方法。

【請求項31】 更に点火器ごとにコンデンサに蓄積された点火薬着火用の電流の信号波形を変換する放電波形変換回路を有している請求項22~30のいずれか1記載のエアバッグシステム用点火器に設置されたコンデンサの充電方法。

【請求項32】 放電波形変換回路が集積回路内に存在する請求項31記載のエアバッグシステム用点火器に設置されたコンデンサの充電方法。

【請求項33】 ガス排出口を有するハウジング内に、 衝撃によって作動する点火器と、点火器によって着火・ 燃焼されエアバッグを膨張させるための燃焼ガスを発生 するガス発生剤が収容された1又は2以上の燃焼室とを 5

含んで収容してなるエアバッグ用ガス発生器であって、 点火器として請求項1~11のいずれか1記載のエアバ ッグシステム用点火器を備えたエアバッグ用ガス発生 器。

【請求項34】 ガス排出口を有するハウジング内に、衝撃によって作動する請求項1~11のいずれか1記載のエアバッグシステム用点火器と、点火器によって着火・燃焼されエアバッグを膨張させるための燃焼ガスを発生するガス発生剤が収容された1又は2以上の燃焼室とを含んで収容してなるエアバッグ用ガス発生器、衝撃を感知して前記ガス発生器を作動させる衝撃センサ、前記ガス発生器で発生するガスを導入して膨張するエアバッグ、並びに前記エアバッグを収容するモジュールケースとを含むエアバッグシステム。

【発明の詳細な説明】

$[0\ 0'0\ 1]$

【発明の属する技術分野】本発明は、バスシステムを利用したエアバッグシステムに使用するエアバッグシステム用点火器、エアバッグシステム用集積回路、エアバッグシステム用点火器に設置されたコンデンサの充電方法に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】車両の 衝突時における衝撃から乗員を保護するためのエアバッ グシステムは必須のものとなっているが、車両全体の軽 量化の要請から、エアバッグシステムの軽量化が求めら れている。最近では、運転席用、助手席用、後部座席 用、側面衝突用等のようにエアバッグの種類、総数が増 加する傾向にあるため、エアバッグシステムの軽量化の 要請はより大きなものとなっている。

【0003】現在のエアバッグシステムでは、電源(車両のバッテリー)及び衝撃検知センサに接続された電子制御ユニット(ECU: Electronic Control Unit)と個々のガス発生器(モジュールケース内にガス発生器とエアバッグとが収容されている。)とが個別に接続されている。このECUと個々のガス発生器との接続状態をイメージ化したものを図11に示す。

【0004】図11のとおり、ECUと個々のガス発生器の点火器(図12)とは、必ず2本の導体で接続されることになるため、点火器総数の2倍の数の導体が必要となり、多数の導体がエアバッグシステムにおける重量増加の大きな部分を占めている。そして、車両部品の組み立て時の制約から、ECUと個々のガス発生器とは導体のみで接続されるのではなく、複数のコネクタを介して複数の導体を連結して接続されることになるため、コネクタによる重量増加及びコネクタ数の増加による正との点火器作動のためのバックアップ電源用(電源とECU間の配線が断線したときのもの)としてECUに組み込まれたコンデンサの容量増加によるECUの容量(重量)増加

も大きい。

【0005】そこで、パスシステムをエアバッグシステムに利用することにより、ECUと個々のガス発生器との接続に要する導体重量を減少させる試みが検討されている。このパスシステムを利用したエアパッグシステムをイメージ化したものを図1に示す。

【0006】図1のとおり、ECUを通る複数本の環状 ワイヤからなるパス回線が設けられ、個々のガス発生器 は、2本の導体(場合により3本以上)を介してバス回 線に接続され、エアバッグシステムを構成している。そ して、図1のようなエアバッグシステムの場合には、車 両の衝突状況に対応して、必要なガス発生器だけを作動 させるため、個々のガス発生器にECUからの情報伝達 を受領する集積回路と、点火器を作動させる電流を供給 するコンデンサが設置される。バスシステムを利用した 場合、コンデンサの総数は増加するものの、ECUと、 それぞれの点火器に分散配置されるため、1つ当たりの コンデンサの容量及び重量は小さくなり、図11のエア バッグシステムにおけるバックアップ用コンデンサの重 量に比べると著しく軽量化されるので、導体の使用量が 大幅に減少することと合わせれば、システム全体として は大きな重量減少に繋がるため、エアバッグシステムに おける実用化が期待されている。なお、バスシステムを 利用した先行技術としては、特開2000-24109 8号公報、特表 2'000-513799号公報及び特許 第2707250号公報が知られている。

【0007】本発明は、バスシステムをエアバッグシステムに導入して、システム全体の大幅な重量減少を達成すると共に、従来と同様の作動の確実性及び迅速性を確保でき、高い信頼性が得られるエアバッグシステム用集積回路、及びそれを利用したエアバッグシステムの作動制御方法を提供することを課題とする。

[0008]

【課題を解決するための手段】Automotive Safely Rest raint Bus Specification Version 1.0(2001/12/03 Phi lips electorics N. V, TRW Inc. Delphi Electoronics Systems, Autoliv Inc. Special Devices Inc. .) によ れば、バスシステム対応のイニシエータ (Slave) の負 荷容量 (コンデンサの負荷容量) は250 p E以下と定 められている。しかし、このような容量の小さいコンデ ンサでは、システム作動時に点火器の発熱部を確実に発 熱させるには不十分である。従って、点火器作動時の信 頼性を向上させるには、250pFを超える容量のコン デンサ (以下、250pFを超えるものを 「μFオーダ ー」と称する。)を用いることが必要となるが、 μ Fオ ーダーの容量を持つコンデンサを用いた場合、バスシス テム(バス回線)を流れる電流の殆どがコンデンサの充 電に消費され、他の所要機能を発現させるために必要な 電流が賄えなくなるという、バス回線における通信の異 常が予想される。

【0009】そこで本発明者らは、点火器内に配置した 集積回路に、パス回線を流れる電流をコンデンサに蓄積 する充電回路のインピーダンスを変換する回路を設け、 この回路を介してバス回線からの電流を供給すること で、バス回線から見た点火器の負荷容量を実際の負荷容 量より小さくできる、即ちµFオーダーの静電容量を持 つコンデンサでありながら、pFオーダーの静電容量を 持つコンデンサが付いているのと同じ状態にできること を見出し、本発明を完成した。

【0010】(1)第1の解決手段

請求項1に係る発明は、上記課題の解決手段として、電 源及び衝撃検知センサに接続された電子制御ユニット と、前記電子制御ユニットと接続された、複数のガス発 生器とエアパッグとが収容された複数のモジュールケー スとを有するエアバッグシステムにおいて使用する、前 記複数のガス発生器に1又は2以上組み込まれた点火器 であり、エアバッグシステムが、電子制御ユニットを通 過し、電流及び所要情報を供給・伝達する複数本の環状 ワイヤからなるバス回線が設けられ、前記バス回線から 所要部位において分岐した複数本の導体により、複数の モジュールケースに収容された個々のガス発生器が作動 可能に接続されたものであり、ガス発生器に1又は2以 上組み込まれた点火器が、発熱部と、発熱部に接する点 火薬を備え、点火電流による発熱部の発熱で点火薬を着 火させる電気式の点火器で、点火器とバス回線が複数本 の導体により接続されており、点火器内にコンデンサ及 び所要機能を発現するための情報が記録された集積回路 が設けられ、点火薬着火用の電流をコンデンサに蓄積す る充電回路が設けられ、更にバス回線とコンデンサとの 間に充電回路のインビーダンスを変換する回路が設けら れているエアバッグシステム用点火器を提供する。

【0011】このように充電回路のインピーダンスを変 換する回路を設け、インピーダンスを変換する回路を介 して、バス回線からコンデンサに電流供給を行うことに より、小さな負荷容量(pFオーダー)で大きな容量 (µFオーダー) のコンデンサを充電することができる ので、バス回線に流れる電流は、コンデンサの充電と共 に他の所要機能を発現させるために利用される。

【0012】インピーダンスを変換する回路は、トラン ジスタによるエミッタフォロワ回路を用いることができ るトランジスタとしてはMOS-FET等を用いること が好ましく、集積回路の内又は外に設けることができ

【0013】コンデンサは、集積回路の内又は外に設け ることができ、容量は250pF~24μFが好まし く、 $250pF\sim12\mu$ Fがより好ましく、250pF $\sim 6 \mu F$ が更に好ましい。

【0014】上記発明では、更にバス回線とコンデンサ との間に、バス回線からのコンデンサ充電用の電流及び 所要情報の内、交流電流を整流し直流電流としてコンデ ンサに流す機能を持つ整流回路を有しており、インヒー ダンスを変換する回路がパス回線から整流回路に至る間 に設けられていることが好ましい。

【0015】上記発明では、更にバス回線とコンデンサ との間に、バス回線からのコンデンサ充電用の電流及び 所要情報の内、交流電流を整流し直流電流としてコンデ ンサに流す機能を持つ整流回路を有しており、インビー ダンスを変換する回路が整流回路とコンデンサの間に設 けられていることが好ましい。

【0016】整流回路は、コンデンサを充電するため、 バス回線からのコンデンサ充電用の電流及び所要情報の 内、電流を整流してコンデンサの充電電流としてコンデ ンサに流す機能を持つ回路であり、前記整流回路には、 整流されたコンデンサ充電用電圧及びバス回線にかかる 電圧の少なくとも一方を増幅する機能が存在することが 好ましい。

【0017】上記発明では、システム全体の簡略化の観 点から、インビーダンス変換回路が集積回路内に設けら れていることが好ましい。

【0018】上記発明では、インピーダンス変換回路が 電流値の上限を制限する機能を有していることが好まし い。このような機能をインピーダンス変換回路に付与す ることにより、バス回線からの電流 (例えば10mA) によりコンデンサを充電するとき、充電開始直後に一瞬 大きな電流が充電回路に流れ、バス回線の正常な電流の 流れが影響を受けることが防止される。

【0019】上記発明では、集積回路は、ガス発生器に おける点火器の発熱部の異常を検知する機能を有する回 路、複数のガス発生器ごとの識別機能を有する回路、及 びコンデンサの不具合を検知する機能を有する回路を有 していることが好ましい。

【0020】集積回路には、車両が衝突したときの状況 に応じ、ECUからの信号を受けて、乗員保護のために 適切なガス発生器を作動させるための基本的機能が付与 されているものであるが、それ以外にも、上記した様々 な機能を付与することで、出荷時における製品の品質検 査、組み立て時における作業性の向上、実用時 (車両の 運転時) における安全性の向上等に好適となる。

【0021】上記発明では、更に点火器外部で発生した ノイズにより、点火器が誤作動しないようにする回路 (ノイズ対策回路)を有していることが好ましい。

【0022】上記発明では、更に点火器ごとにコンデン サに蓄積された点火薬着火用の電流の信号波形を変換す る放電波形変換回路を有していることが好ましく、放電 波形変換回路は集積回路内に存在することが好ましい。

【0023】(2)第2の解決手段

請求項12に係る発明は、上記課題の解決手段として、 電源及び衝撃検知センサに接続された電子制御ユニット と、前記電子制御ユニットと接続された、複数のガス発 生器とエアバッグとが収容された複数のモジュールケー

スとを有するエアバッグシステムにおいて使用する、前 記複数のガス発生器に1又は2以上組み込まれた点火器 内に設置する集積回路であり、エアバッグシステムが、 電子制御ユニットを通過し、電流及び所要情報を供給・ 伝達する複数本の環状ワイヤからなるバス回線が設けら れ、前記バス回線から所要部位において分岐した複数本 の導体により、複数のモジュールケースに収容された個 々のガス発生器が作動可能に接続されたものであり、ガ ス発生器に1又は2以上組み込まれた点火器が、発熱部 と、発熱部に接する点火薬を備え、点火電流による発熱 部の発熱で点火薬を着火させる電気式の点火器で、点火 器とバス回線が複数本の導体により接続され、点火器内 にコンデンサと集積回路が設けられており、集積回路が 所要機能を発現するための情報が記録されたもので、点 火薬着火用の電流をコンデンサに蓄積する充電回路が設 けられ、更にバス回線とコンデンサとの間に充電回路の インピーダンスを変換する回路が設けられているエアバ ッグシステム用集積回路を提供する。

【0024】このように充電回路のインビーダンスを変換する回路を設け、インビーダンスを変換する回路を介して、バス回線からのコンデンサの電流供給を行うことにより、小さな負荷容量(pFオーダー)で大きな容量(μ Fオーダー)のコンデンサを充電することができるので、バス回線に流れる電流は、コンデンサの充電用と共に他の所要機能を発現させるために利用される。

【0025】インピーダンスを変換する回路は、トランジスタ、MOS-FET等を用いることができ、集積回路の内又は外に設けることができる。

【0026】コンデンサは、集積回路の内又は外に設けることができ、容量は $250pF\sim24\mu F$ が好ましく、 $250pF\sim12\mu F$ がより好ましく、 $250pF\sim6\mu F$ が更に好ましい。

【0027】上記発明では、更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インピーダンスを変換する回路がバス回線から整流回路に至る間に設けられていることが好ましい。

【0028】上記発明では、更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インピーダンスを変換する回路が整流回路とコンデンサの間に設けられていることが好ましい。

【0029】整流回路は、コンデンサを充電するため、バス回線からのコンデンサ充電用の電流及び所要情報の内、電流を整流してコンデンサの充電電流としてコンデンサに流す機能を持つ回路であり、前記整流回路には、整流されたコンデンサ充電用電圧及びバス回線にかかる電圧の少なくとも一方を増幅する機能が存在することが

好ましい。

【0030】上記発明では、インビーダンス変換回路が 電流値の上限を制限する機能を有していることが好まし い。このような機能をインビーダンス変換回路に付与す ることにより、バス回線からの電流 (例えば10mA) によりコンデンサを充電するとき、充電開始直後に一瞬 大きな電流が充電回路に流れ、バス回線の正常な電流の 流れが影響を受けることが防止される。

10

【0031】上記発明では、集積回路は、ガス発生器における点火器の発熱部の異常を検知する機能を有する回路、複数のガス発生器ごとの識別機能を有する回路、及びコンデンサの不具合を検知する機能を有する回路を有していることが好ましい。

【0032】集積回路には、車両が衝突したときの状況に応じ、ECUからの信号を受けて、乗員保護のために適切なガス発生器を作動させるための基本的機能が付与されているものであるが、それ以外にも、上記した様々な機能を付与することで、出荷時における製品の品質検査、組み立て時における作業性の向上、実用時(車両の運転時)における安全性の向上等に好適となる。

【0033】上記発明では、更に点火器外部で発生した ノイズにより、点火器が誤作動しないようにする回路 (ノイズ対策回路)を有していることが好ましい。

【0034】上記発明では、更に点火器ごとにコンデンサに蓄積された点火薬着火用の電流の信号波形を変換する放電波形変換回路が接続されていることが好ましく、放電波形変換回路は集積回路内に存在することが好ましい。

【0035】(3)第3の解決手段

請求項22に係る発明は、上記課題の解決手段として、 電源及び衝撃検知センサに接続された電子制御ユニット と、前記電子制御ユニットと接続された、複数のガス発 生器とエアバッグとが収容された複数のモジュールケー スとを有するエアバッグシステムにおいて使用する、前 記複数のガス発生器に1又は2以上組み込まれた点火器 に設置されたコンデンサの充電方法であり、エアバッグ システムが、電子制御ユニットを通過し、電流及び所要 情報を供給・伝達する複数本の環状ワイヤからなるバス 回線が設けられ、前記バス回線から所要部位において分 岐した複数本の導体により、複数のモジュールケースに 収容された個々のガス発生器が作動可能に接続されたも のであり、ガス発生器に1又は2以上組み込まれた点火 器が、発熱部と、発熱部に接する点火薬を備え、点火電 流による発熱部の発熱で点火薬を着火させる電気式の点 火器で、点火器とバス回線が複数本の導体により接続さ れており、点火器内にコンデンサ及び所要機能を発現す るための情報が記録された集積回路が設置され、点火薬 着火用の電流をコンデンサに蓄積する充電回路が設けら れ、更にバス回線とコンデンサとの間に充電回路のイン ピーダンスを変換する回路が設けられており、電源から

バス回線を介して電流を送り、インビーダンスを変換する回路を経てコンデンサを充電するエアバッグシステム 用点火器に設置されたコンデンサの充電方法を提供する。

【0036】このように充電回路のインピーダンスを変換する回路を設け、インピーダンスを変換する回路を介して、バス回線から電流供給を行いコンデンサを充電することにより、小さな負荷容量(p F オーダー)で大きな容量(μ F オーダー)のコンデンサを充電することができるので、バス回線に流れる電流は、コンデンサの充電用と共に他の所要機能を発現させるために利用される。

【0037】インピーダンスを変換する回路は、トランジスタ、MOS-FET等を用いることができ、集積回路の内又は外に設けることができる。

【0038】コンデンサは、集積回路の内又は外に設けることができ、容量は $250pF\sim24\mu F$ が好ましく、 $250pF\sim12\mu F$ がより好ましく、 $250pF\sim6\mu F$ が更に好ましい。

【0039】上記発明では、更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インピーダンスを変換する回路がバス回線から整流回路に至る間に設けられていることが好ましい。

【0040】上記発明では、更にバス回線とコンデンサとの間に、バス回線からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路を有しており、インビーダンスを変換する回路が整流回路とコンデンサの間に設けられていることが好ましい。

【0041】整流回路は、コンデンサを充電するため、バス回線からのコンデンサ充電用の電流及び所要情報の内、電流を整流してコンデンサの充電電流としてコンデンサに流す機能を持つ回路であり、前記整流回路には、整流されたコンデンサ充電用電圧及びバス回線にかかる電圧の少なくとも一方を増幅する機能が存在することが好ましい。

【0042】上記発明では、システム全体の簡略化の観点から、インピーダンス変換回路が集積回路内に設けられていることが好ましい。

【0043】上記発明では、インピーダンス変換回路が電流値の上限を制限する機能を有していることが好ましい。このような機能をインピーダンス変換回路に付与することにより、バス回線からの電流(例えば10mA)によりコンデンサを充電するとき、充電開始直後に一瞬大きな電流が充電回路に流れることを防止でき、それによりバス回線の正常な電流の流れが影響を受けることが防止される。

【0044】上記発明では、集積回路は、ガス発生器に

おける点火器の発熱部の異常を検知する機能を有する回路、複数のガス発生器ごとの識別機能を有する回路、及びコンデンサの不具合を検知する機能を有する回路を有していることが好ましい。

【0045】集積回路には、車両が衝突したときの状況 に応じ、ECUからの信号を受けて、乗員保護のために 適切なガス発生器を作動させるための基本的機能が付与 されているものであるが、それ以外にも、上記した様々 な機能を付与することで、出荷時における製品の品質検 査、組み立て時における作業性の向上、実用時(車両の 運転時)における安全性の向上等に好適となる。

【0046】上記発明では、更に点火器外部で発生した ノイズにより、点火器が誤作動しないようにする回路 (ノイズ対策回路)を有していることが好ましい。

【0047】上記発明では、更に点火器ごとにコンデンサに蓄積された点火薬着火用の電流の信号波形を変換する放電波形変換回路を有していることが好ましく、放電波形変換回路は集積回路内に存在することが好ましい。

【0048】上記した第1~第3の解決手段の各発明では、バス回線を形成する環状ワイヤ、バス回線とガス発生器を接続する導体は、2本、3本又は4本以上にすることができるが、システム全体を簡略化する観点からは2本が好ましい。

【0049】点火薬は特に制限されず、金属等と過塩素酸塩等の酸化剤との組み合わせが好ましく、ジルコニウム、チタン、ハフニウム等の金属と過塩素酸塩との組み合わせがより好ましく、特にジルコニウムと過塩素酸カリウムとの混合物(ZPP)が好ましい。ZPPは粒状で、かつジルコニウムと過塩素酸カリウムの粒径が調整されていることが望ましい。

【0050】上記した第1~第3の解決手段の各発明におけるガス発生器における点火器の発熱部の異常を検知する機能を有する回路、複数のガス発生器ごとの識別機能を有する回路、及びコンデンサの不具合を検知する機能を有する回路の詳細は、下記の(1)~(111)のとおりである。

【0051】(i)ガス発生器における点火器の発熱部の 異常(断線又は発熱部と点火薬との接触不良、或いは発 熱部の抵抗値の異常)を検知する機能を有する回路 ガス発生器が正常に作動するための要件の1つとして、 点火器の発熱部と点火薬との接触状態が良いこと(発熱 部と点火薬が圧接状態にあること)が必要であり、例え ば、発熱部と点火薬との間に空隙がある場合には、点火 器が作動したときに点火薬が着火しなかったり、着火遅 れが生じたりするという不具合が生じることが考えられ る。また、発熱部が断線していたり、断線しかかってい るときにも同様の不具合が生じることが考えられ る。また、発熱部が断線していたり、断線しかかってい るときにも同様の不具合が生じることが考えられる。こ のため、前記不具合を検知するための情報を集積回路に 記録しておけば、製品の出荷時においては不良品を排除 することができ、実用時(車両の運転時)においては異

14

常を検知することで、速やかな交換ができるようになる。

【0052】前記発熱部の異常の検知理論(サーマルト ランジェント試験; A.C. Mungerが1980年7月に「Pr ogress of International Pyrotechnic Semina Op 461-478で発表している。)は、次のとおりである。発熱部 と点火薬の接触状態が良い場合には、一定の電流を流し て発生する熱量の相当分が点火薬に移動するため、発熱 部の温度はさほど上昇しない。一方、発熱部と点火薬の 接触状態が悪い場合には、熱の移動が少ないため、発熱 部の温度上昇が通常よりも高くなる。よって、このよう な接触状態の相違による温度変化を抵抗値変化として捉 え、金属抵抗の温度係数 $(r=r_0(1+\alpha\Delta T))$ を 利用して発熱部の温度を求めて、不具合を検知する。よ り具体的には、点火薬を着火させることのない程度の温 度上昇をもたらす微弱な電流iを流したときの抵抗rを 測定した後、電流 iの10~15倍の電流 Iを流したと き(発熱部の温度は50~100℃程度になるが、この 程度では点火薬は着火されない。)の抵抗Rを測定し、 Iとi、Rとrを比較することにより、発熱部の温度変 化による抵抗変化を電圧変化で求めるものであり、集積 回路にこのような測定情報を記録しておく。

【0053】(ii)複数のガス発生器ごとの識別機能 エアバッグ用ガス発生器には、運転席用、助手席用、サ イド用 (側面衝突用)、カーテン用等の種々のものが実 用されており、例えば、サイド用のガス発生器は、運転 席、助手席、2つの後部座席のそれぞれに1つずつの計 4個を取り付ける。このため、サイド用ガス発生器のそ れぞれの集積回路には、運転席、助手席、2つの後部座 席ごとに異なる情報を記録することになるが、これらの 情報を点火器やガス発生器の組み立て時又は組み立て前 に記録するようにすると、点火器やガス発生器は外観が 同じであるため、異なる情報が記録された外観の同じガ ス発生器又は組み立て前であるなら外観の同じ点火器を 取り違えないように区別して保管、運搬する必要があ り、非常に煩雑となる。更に、運転席用のものを助手席 用として間違って車両に取り付けた場合は、ECUから 運転席のエアバッグの作動情報が発せられたとき、助手、 席のエアバッグが膨張するという誤作動が生じることに なる。

【0054】よって、複数のガス発生器ごとの識別機能を発現するための情報の記録を、ガス発生器の組み立て後(外観上、ガス発生器の違いが認識できるとき)、ガス発生器をモジュールケースに組み込んだ後(外観上、モジュールケースの違いが認識できるとき)、又は車両に取り付けた後に行うことにより、ガス発生器の保存、運搬、管理等が容易となり、ガス発生器の取付時における誤認混同が生じることが防止される。

【0055】前記複数のガス発生器ごとの識別機能を発現させる情報は、ガス発生器の組み立て後に記録するこ

とが好ましく、ガス発生器をモジュールケースに組み込んだ後に記録することがより好ましく、車両に取り付けた後に記録することが更に好ましい。

【0056】(111)コンデンサの不具合を検知する機能コンデンサの不具合を検知する機能を発現するための情報は、バルス応答又は誘電正接を測定する情報のほか、コンデンサの基板への取付状態(半田付け状態)の確認情報等も含まれる。

【0057】車両に取付後、コンデンサは充放電を繰り返すために経時的に劣化して行くが、この劣化よる不具合を確認できる情報を集積回路に記録しておくことにより、実用時(車両の運転時)においては異常を検知することで、速やかな交換ができるようになる。また、半田付け状態を確認する情報を記録しておくことにより、製品の出荷時においては不良品を排除することができるようになる。

【0.0.5.8】上記した第 $1\sim$ 第3の解決手段の各発明におけるノイズ対策回路の詳細は次のとおりである。

【0059】例えば車両のセルモーター始動時には大きな電流が流れるが、ノイズ防止手段を付加していない場合、この電流により発生するノイズ (ラジオ聴取時における不快な異常音発生の原因となるノイズ) が車両ボディから伝わって点火器に流れる恐れがあり、このようにしてノイズが伝達されることで点火器が誤作動を引き起こす可能性が高くなる。従って、ノイズ対策回路(点火器が誤作動しないようにする回路)として、車両側から点火器側に電流が流れることを阻止するようなもの、例えば、ダイオード、バリスタ (非線形抵抗素子)を取り付けることにより、上記した点火器の誤作動が防止される。

【0060】上記した第1~第3の解決手段の各発明に おける放電波形変換回路の詳細は次のとおりである。

【0061】この放電波形変換回路は、下記式(I): $i(t) = (V_0/R) \times e^{-t/CR}$ (I)

(式中、 V_0 はコンデンサ充電電圧 (V)、Rは回路抵抗 (Ω)、Cはコンデンサ容量 (μF)、 t は時間 (μ sec)、i は電流 (A)を示す。)で表される放電波形を三角波や台形波に変換する機能を有するものである。その他にも同様の変換機能を付与するため、コンデンサと発熱部との接続回路にコイルを介在させることができ、更にシステム全体の簡略化の観点から、前記放電波形変換回路は集積回路内に設けることもできる。

【0062】(4)他の解決手段

請求項33に係る発明は、上記課題の他の解決手段として、ガス排出口を有するハウジング内に、衝撃によって作動する点火器と、点火器によって着火・燃焼されエアバッグを膨張させるための燃焼ガスを発生するガス発生剤が収容された1又は2以上の燃焼室とを含んで収容してなるエアバッグ用ガス発生器であって、点火器として上記のエアバッグシステム用点火器を備えたエアバッグ

16

用ガス発生器を提供する。

【0063】更に請求項34に係る発明は、ガス排出口を有するハウジング内に、衝撃によって作動する上記のエアバッグシステム用点火器と、点火器によって着火・燃焼されエアバッグを膨張させるための燃焼ガスを発生するガス発生剤が収容された1又は2以上の燃焼室とを含んで収容してなるエアバッグ用ガス発生器、衝撃を感知して前記ガス発生器を作動させる衝撃センサ、前記ガス発生器で発生するガスを導入して膨張するエアバッグ、並びに前記エアバッグを収容するモジュールケースとを含むエアバッグシステムを提供する。

[0064]

【発明の実施の形態】本発明のエアバッグシステムは、バス回線を使用することにより、システム全体の軽量化を達成すると共に、上記した解決手段により、システムの作動の確実性等を達成するものである。以下、上記した解決手段を含む実施の形態を説明する。

【0065】本発明を適用したエアバッグシステムは、図1に示すとおり、ECUを通過する2本の環状ワイヤからなるバス回線10、11を使用している。ECUは、図示していない電源(車両のバッテリー)と衝撃検知センサに接続されており、更に車両の衝突時における衝撃により、ECUと電源とを接続する導体が切断された場合のバックアップ用となるコンデンサが配置されている。なお、本発明を適用したエアバッグシステムでは、個々のガス発生器(点火器)ごとにコンデンサは小容量(即ち軽量)のもので良いが、図11で示した従来のエアバッグシステムにおけるバックアップ用となるのエアバッグシステムにおけるバックアップ用となるコンデンサは、バッテリーとECU間のリードワイヤ断線の際には、それ1つで全てのガス発生器を作動させる必要があるため、大容量のものとなる。

【0066】バス回線10、11と、車両内に取り付けられた所要数のモジュールケース(黒丸で図示。ケース内にガス発生器とエアバッグとが収容されている。)内のガス発生器とは、2本(又は場合により3本以上)の導体により、個々のガス発生器が作動可能に接続されている。

【0067】図1で示すエアバッグシステム中、黒丸で図示したモジュールケース内のガス発生器としては、点火器の数に応じて、図2、図3に示すものを用いることができる。図2は、点火器が1つのシングル型(点火器21)の半径方向への断面図であり、図3は、点火器が2つのデュアル型(点火器31、32)の半径方向への断面図である。

【0068】シングル型では、点火器21に2本(又は場合により3本以上)のピン21a、21bが設けられており、コネクタ25を介して、パス回線10、11と接続される。

【0069】デュアル型では、点火器31に2本(又は so

場合により 3本以上)のピン31 a、31 bが設けられ、点火器 32 に 2本(又は場合により 3本以上)のピン32 a、32 bが設けられており、それぞれコネクタ35、36 を介して、バス回線 10、11 と接続される。

【0070】図2、図3で示すガス発生器中、点火器21、点火器31、32としては、例えば、図4、図5で示したものを用いることができる。図4、図5は点火器の縦概略断面図であり、点火器21、点火器31、32は同一構造のものを用いることができるため、以下点火器21として説明する。

【0071】図4に示す点火器21では、ガラスヘッダ上に発熱部が設けられ、発熱部と圧接状態になるように発火薬(例えば、ZPP)が充填されており、下部には、コンデンサ及び所要機能を発現するための情報が記録された集積回路が設けられた基板が設置されている。集積回路と、発熱部及びコンデンサとは、それぞれ2本の導体により接続され、更に集積回路は、導体を介してピン21a、21bと接続されている。

【0072】図5に示す点火器21では、ガラスヘッダ上に基板が設けられており、基板の一面側に所要機能を発現するための情報が記録された集積回路と発熱部が設けられ、他面側にコンデンサ(図示せず)が設けられている。基板は、発熱部を除く部分がエポキシ樹脂等の絶縁材料で封止されており、発熱部のみが点火薬と接触している。

【0073】図4、図5の点火器内に設けられたコンデンサ等や集積回路が設置された基板は、図6~図9の概念図で示す構造にすることができる。図6、図7は、発熱部が1つのもので、図8、図9は発熱部が2つのものである。なお、図10は、図6~図9に示したバス電圧、デジタル出力、充電電圧のバルス波形を示したものである。

【0074】図6~図9では、基板上に、コンデンサと所要回路を含んだ集積回路が設置され、バス回線10、11からコンデンサに至る充電回路にインピーダンス変換回路が設けられている図6、図8では、バス回線10、11とコンデンサとの間に、バス回線10、11からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路が設けられており、インピーダンス回路は、バス回線10、11から整流回路を経てコンデンサに至る充電回路に設けられている。

【0075】図7、図9では、バス回線10、11とコンデンサとの間に、バス回線10、11からのコンデンサ充電用の電流及び所要情報の内、交流電流を整流し直流電流としてコンデンサに流す機能を持つ整流回路が設けられており、インピーダンス回路は、バス回線10、11から整流回路を経てコンデンサに至る充電回路に設けられている。

【0076】図6~図9では、必要に応じて放電波形変換回路(「波形変換器」として破線で表示)を設置することができ、この放電波形変換回路自体を集積回路に組み込むこともできる。

【0077】図6~図9では、点火器が作動の必要のないときは電流を遮断しおき、点火器の作動時には電流の供給を開始するためのスイッチ回路(トランジスタ)が設けられている。スイッチ回路が開いているときには、コンデンサに蓄積された電流は発熱部には通電されない。

【0078】図8、図9では、2つの発熱部が、1つのコンデンサ、所要機能を発現するための情報が記録された集積回路、必要に応じて設けられた放電波形変換回路を共有している。

【0079】図3のようにガス発生器が2つの点火器31、32を有しているときには、車両の衝突状態により、いずれか一方の点火器のみを作動させる場合、一方の点火器を先に作動させ、他方を僅かに遅れて作動させる場合、又は2つの点火器を同時に作動させる場合の3通りの作動形態が考えられるが、図8、図9の点火器の集積回路には、ECUからの前記3通りの指令内容に応じて、2つの発熱部を発熱できるような情報が記録されている。図3に示したガス発生器の点火器31、32は、図6、図7又は図8、図9に示す構造のものにすることができる。

【0080】図6~図9に示す基板上のコンデンサ、インピーダンス回路や整流回路等を含む集積回路は、ピン21a、21bを介してバス回線10、11と接続されている。

【0081】バス回線10、11から供給される電流及び情報は、集積回路に送られた後、A/D変換器(アナログ/デジタル変換器)によりデジタル出力され、MCU(Micro Computer Unit)に送られた後、MCUから、充電制御情報、位置識別情報、発熱部の断線検知情報や抵抗値変化検知情報が発現されるように指令が送られるほか、コンデンサを充電するが、発熱部を発熱させるためには使用されない。

【0082】MCUと発熱部とを接続する回路間には、 ノイズ防止手段として、バリスタ (非線形抵抗素子)が 配置されおり、点火器外部で発生したノイズにより、点 火器が誤作動しないように作用する。

【0083】発熱部は点火薬に接しており、コンデンサ のみからの電流の供給により発熱して、点火薬を着火さ せる。

【0084】次に、図1~図9により、本発明を適用したエアバッグシステムの動作について説明する。

【0085】車両が通常の走行状態であるときには、バス回線10、11を経て、ECUからガス発生器(点火器に設置された集積回路)に対して、発熱部の断線検知情報や抵抗値変化検知情報、コンデンサの不具合の検知 50

情報、及びガス発生器作動に必要な識別機能を含んだ点 火器が存在しているかどうかの検知情報(衝突時、運転 席や助手席等の必要なガス発生器を適正に作動させるた めの識別機能を有する点火器が正しく配置されているか どうか、更には同じ識別機能を有する点火器が重複配置 されていないかどうかの検知情報)が送られ、それらに 異常がないかどうかが検知される。そして、異常がある ときには、エアバッグシステムと連携して作動する警告 ランプ等で知らせることにより、部品の早期交換ができ るので、安全性を確保することができる。

【0086】また、電源から各点火器のコンデンサへの 充電もなされる。このとき、電源からバス回線10、1 1を介して供給される電流は10mA程度であり、一方 点火器内のコンデンサの静電容量はμFオーダーであ る。このため、バス回線10、11から直接コンデンサ に電流を供給したときは、電流の殆どがコンデンサの充 電に使用されることになり、上記した各機能が充分に発 現されなくなる。しかし、図6~図9に示すとおり、充 電回路にインピーダンス変換回路を設けているので、小 さな負荷容量 (pFオーダー) で大きな負荷容量 (μF オーダー)のコンデンサを充電することができるので、 バス回線10、11に流れる電流は、コンデンサの充電 用と共に他の所要機能を発現させるために利用される。 【0087】エアバッグシステムを設置した車両が衝突 したとき、衝撃検知センサからの情報がECUに送ら れ、ECUからの情報は、バス回線10、11を経て、 乗員の安全確保のためにエアバッグを膨張させる必要が あるガス発生器 (点火器に設置された集積回路) に送ら れる。そして、MCUからスイッチ回路の開閉を指示す る制御用パルスを送ることにより、スイッチ回路が開閉

【0088】スイッチ回路は、MCUより例えば波形幅 100μ secの電流パルスが加えられたとすると、 100μ sec間スイッチを閉じ、コンデンサからの電流を幅 100μ secのパルスとして点火器の発熱部に流すものである。つまり、このスイッチ回路は、サイリスタ、MOS-FET、パイポーラトランジスタをスイッチ回路として使用したときのように、スイッチ回路に電流(制御パルス)が流れている間、スイッチを閉じるという働きをする。このようにして、所定の時間幅($20\sim500\mu$ sec)のパルスを点火器の発熱部に与えることで所要の着火エネルギーにより発熱部が発熱され、点火薬を着火燃焼させる。

【0089】このようなエアバッグシステム用点火器 (又は集積回路)を用いることにより、個々の点火器を正常作動させるに要する電流量 (着火エネルギー量)が減少されるので、点火器全体を正常作動させるに要する電流量 (着火エネルギー量)も減少されることになり、バックアップ電源用コンデンサの容量 (即ち重量)も小さくでき、ECU自体を小さくできる。このため、エア

【0090】点火薬の着火燃焼により、図2、図3のガ ス発生器における伝火薬、更には図2における燃焼室内 のガス発生剤、又は図3における第1燃焼室内の第1ガ ス発生剤と第2燃焼室内の第2ガス発生剤が着火燃焼し てガスが発生し、ガス排出口から排出され、モジュール

バッグシステム全体の重量を減少させることができる。

ケース内にガス発生器と共に収容されたエアバッグを膨 張させる。図3におけるガス発生器では、点火器31、 32同時に若しくは時間をおいて作動させるか、又は点 火器31のみを作動させることができる。

【0091】エアバッグシステムは、図1に示すもの で、図2、図3に示すエアバッグ用ガス発生器とエアバ ッグが収容されたモジュールケースとを備えたものであ り、特開平11-334517号公報の段落番号009 6~0102に具体的に記載され、更に図17で示され たものと同じ構成にすることができる。

【0092】本発明のエアバッグシステム用点火器及び エアバッグシステム用集積回路は、運転席のエアバッグ 用インフレータ、助手席のエアバッグ用インフレータ、 サイドエアバッグ用インフレータ、カーテン用インフレ ータ、ニーボルスター用インフレータ、インフレータブ ルシートベルト用インフレータ、チューブラーシステム 用インフレータ、プリテンショナー用インフレータ等の 各種インフレータ(ガス発生器)に組み込まれた点火 器、前記点火器に設置する集積回路として適用できる。 [0093]

【発明の効果】本発明を適用したエアバッグシステムに よれば、バスシステムを利用することにより、エアバッ グシステム全体の重量を大幅に減少させることができる と共に、従来と同様の作動性能を確保することができ

る。 【図面の簡単な説明】

【図1】 本発明を適用したエアバッグシステムのイメ ージ図。

【図2】 本発明を適用したエアバッグシステムで用い るガス発生器(点火器が1つのもの)の半径方向への断

【図3】 本発明を適用したエアバッグシステムで用い るガス発生器(点火器が2つのもの)の半径方向への断 面図。

【図4】 本発明を適用したエアバッグシステムで用い る点火器の縦断面図。

【図5】 本発明を適用したエアバッグシステムで用い る点火器の他実施形態の縦断面図。

【図6】 本発明を適用したエアバッグシステムで用い る点火器の概念図。

本発明を適用したエアバッグシステムで用い 【図7】 る点火器の概念図。

【図8】 本発明を適用したエアバッグシステムで用い る点火器の概念図。

【図9】 本発明を適用したエアバッグシステムで用い る点火器の概念図。

【図10】 図5~図9で示すバス電圧、デジタル出 力、充填電圧のパルス波形図。

【図11】 従来のエアバッグシステムのイメージ図。

【図12】 従来のエアバッグシステムで用いている点 火器の縦断面図。

【符号の説明】・

10、11 バス回線

[図2]

【図3】

[図6]

[図7]

【図8】

【図9】

【図10】

【図11】

[図12]

 $\mathbb{Q}[\omega]$

