Name: KEY

Remember -- FORMAT is as important as CONTENT - get them both right!

3.4 18, 25 3.6 1, 2, 9, 10, 6.

Warm-up Questions -- Negations of Quantified Statements.

The original quantified statement, in words:	The negation of the original statement, in words:
All dinosaurs like movies.	There is a dinosaur who doesn't like movies.
The original statement, in symbols:	The negation of the original statement, in symbols:
V dedinosaurs, d likes movies.	Idedinosaurs, s.t. d doesn't like movies.

The original quantified statement, in words:	The negation of the original statement, in words:
There is a dinosaur who is purple.	No dinosaur is purple.
The original statement, in symbols:	The negation of the original statement, in symbols:
Fdedinosaurs s.t.d is purple.	Ydedinosaurs, d is not purple.

The original quantified statement, in words:	The negation of the original statement, in words:
The square of any real number is positive.	There exists a real number whose square is not positive
The original statement, in symbols:	The negation of the original statement, in symbols:
$\forall x \in \mathbb{R}, x^2 > 0.$	∃x∈R s.t. x²≤0.

The original quantified statement, in words:	The negation of the original statement, in words:
There is a real number that can be expressed as a fraction (of megas!)	No real number can be expressed as a fraction.
	OR: All real numbers cannot be expressed as fractions.
	as fractions.
The original statement, in symbols:	The negation of the original statement, in symbols:
$\exists x \in \mathbb{R} \text{ s.t. } x \in \mathbb{Q}.$	YxeR, x &Q.

(18) Give a formal proof of the theorem:

Theorem: The product of any two consecutive integers is even.

Proof: Given any two consecutive integers n and n+1, either n is even or n is odd.

Case 1: Assume n is even.

Therefore n = 2k, and n+1 = 2k+1, for some integer k.

Case 2: Assume n is odd.

Therefore
$$n = 2k+1$$
 for some integer k .

Therefore $n+1 = (2k+1)+1 = 2k+2$.

So, $n(n+1) = (2k+1)(2k+2)$

$$= (2k+1)(2)(k+1)$$

$$= 2((2k+1)(k+1))$$

$$= 2(m+eqer) bcs products and sums of integers are integers.

$$= even.$$$$

(25) Give a formal proof of the theorem:

4m or 4m+1

m Typo!

Theorem: The square of any integer has the form 4k or 4k+1 for some integer k.:

Proof: For any integer n, either n is even or n is odd.

Case 1: Suppose n is even.

Therefore n = 2k, for some integer k.

Case 2: Suppose n is odd.

Take half of your number:
Could it possibly be the smallest positive real number? Let's see:
Take half of your number:
Is it still positive?
Is it smaller than your original number?
Ok, let's try again maybe your new number is the smallest possible real number. Let's check:
Take half of your new number:
Is it still positive?
Is it smaller than your original number?
Now, explain why you believe that there is no smallest possible real number:
Let's do the formal proof:
Theorem: There is no positive real number that is smaller than all other positive real numbers.
Proof: Suppose not. In other words, assume that there is some real number x such that x is
positive and for all positive real numbers y, $\underline{x} < \underline{y}$.
Extra question: Rewrite the above statement using symbols instead of words: $\exists x \in \mathbb{R}^{pos} \text{ s.t. } \forall y \in \mathbb{R}^{pos} \text{ , } x < y.$
Consider the number $y = \frac{x}{2}$.
We know that $y = \frac{x}{2}$ is positive because x was positive
We know that $x > \frac{x}{2}$ because half of any positive number is less than the original number.
So, now we know that $x > y$.
But wait! We assumed that x was <u>smaller than</u> all positive real numbers, and
now we've shown that y ispositive and _smaller than x.
Contradiction.
Therefore, there is no smallest positive real number. □.

	Extra question: Rewrite the above statement using symbols instead of words. Use the variable m for your extra variable.
	Ine Zeven s.t. Yme Zeven, n>m.
Cons	ider the number $m = 2n$.
	We know that m is positive because n was positive.
	We know that m is an integer because the product of integers is an integer.
	We know that m is even because it equals twice an integer.
	We know that $2n > n$ because twice any positive number is bigger than the original number
	So, now we know that The original number
	But wait! We assumed that n was greater than all positive even integer, and
ow v	we've shown that m is an even integer and greater than n.
	Contradiction.
	The selection of the se

3.6 (2) Finish the following proof that there is no greatest (largest) positive even integer.

Proof: Suppose not. In other words, suppose that there is some positive, even integer n such that n

<u>Theorem</u>: There is no greatest even integer.

3.6	(9)	Prove the theorem	in two	wavs b	v contraposit	ion and by	contradiction
0.0	(~)		III CAAO	vvays b	y contraposit	ion and by	Contiduation

Theorem: The negative of any irrational number is irrational.

By contraposition:

Exploration: Rewrite the theorem as an if-then conditional:

 $\forall x \in \mathbb{R}$, if \underline{x} is irrational, then $\underline{-x}$ is irrational.

Write the contraposition of your if-then statement:

 $\forall x \in \mathbb{R}$, if $\underline{-x}$ is rational, then \underline{x} is rational

Now, let's do the proof by contraposition:

<u>Theorem</u>: The negative of any irrational number is irrational.

<u>Proof</u>: It is sufficient to show that: $\frac{\forall x \in \mathbb{R}}{\text{(insert your contrapositive statement)}}$.

Since x is national, $-x = \frac{a}{h}$ where $a,b \in \mathbb{Z}$ and $b \neq 0$.

therefore x = -a

= integer bes products of integers non-zero integers.

= rational. II.

By contradiction:

Exploration: Write the negation of the theorem:

Suppose There is some irrational number whose negative is.

Now, let's do the proof by contradiction:

Theorem: The negative of any irrational number is irrational.

Proof: Suppose not. In other words there is some irrational number (insert your negation of the theorem).

whose negative is rational.

Let x be our irrational number.

But -x is rational, so $-x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$

Therefore $x = \frac{-a}{h}$

- integer bus products of integers.

non-zero integer are integers.

But we assumed that & was irrational! Contradiction.

3.6 (10) Prove the theorem in two ways by contraposition and by contradiction.
Theorem: If the square of an integer is odd, then the original integer is odd.
By contraposition:
Exploration: Rewrite the theorem as an if-then conditional:
$\forall n \in \mathbb{Z}$, if n^2 is odd, then n is odd
Write the contraposition of your if-then statement:
$\forall n \in \mathbb{Z}$, if <u>n is even (not odd)</u> , then <u>n² is even (not odd)</u> .
Now, let's do the proof by contraposition:
Theorem: If the square of an integer is odd, then the original integer is odd.
Proof: It is sufficient to show that: \\ \ne\ \mathbb{Z} \if n is even, then n^2 is even, \(\text{(insert your contrapositive statement).} \)
Since n is even, n = 2k for some integer k.
There fore, $n^2 = (2k)^2$
$=4k^2$
= 2(ZKZ) = 2(mtegar) bes products of integers are integers.
= even.
By contradiction:
Exploration: Write the negation of the theorem:
Suppose there is some even integer whose square is odd.
Now, let's do the proof by contradiction:
Theorem: If the square of an integer is odd, then the original integer is odd.
Proof: Suppose not. In other words there exists some even integer whose (insert your negation of the theorem). Square is add.
Let n be our even integer.
Since n is even, n = 2k for some integer k.
then, $N^2 = (ZK)^2$
$=4k^2$
$=2(2k^2)$
= 2 (integer) bes products are integers
But we assumed that nz was odd! Contradiction

3.6 (6) Finish the following proof.

Theorem: The difference of any rational and any irrational number is irrational.

<u>Proof</u>: Suppose not. In other words, suppose that there is a rational number x and an irrational number y such that z = x - y is rational.

Extra question: Rewrite the above statement using symbols instead of words. $\exists x, y \in \mathbb{R} \text{ s.t. } x \in \mathbb{Q} \text{ and } y \notin \mathbb{Q} \text{ and}$ Z = x - y 1s rational. $OR? \text{ if } z = x - y \text{ then } z \in \mathbb{Q}.$

Since x is rational, $x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ and $b \neq 0$.

Since Z is rational, Z = a for some c, d ∈ Z and d ≠ C

then Z=x-y

Implies = a - y

implies $y = \frac{a}{b} - \frac{c}{d}$

= ad - cb

- integer non-zero integer bes products and soms of integers are integers of non-zero integers are non-zero.

= a rational number.

But, we assumed that y was irrational!

Contradiction.