B. Claims

A complete listing of all the claims appears below; this listing replaces all earlier amendments and listings of the claims.

 (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (1) in a molecule;

Wherein wherein R represents -A₁-SO₂R₁, R₁ represents OH, a halogen atom,
ONa, OK, or OR_{1a}, R_{1a} and A₁ each independently represent a substituted or unsubstituted
aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a
substituted or unsubstituted heterocyclic structure, n represents an integer selected from 1 to 4, m
represents an integer selected from 0 to 8, and when multiple units exist, R, R₁, R_{1a}, A₁, m, and n
each are independently have the above meaning selected for each unit.

 (Currently Amended) A polyhydroxyalkanoate according to claim 1, comprising one or more units each represented by the chemical formula (2), (3), (4A), or (4B) in a molecule as the units of the chemical formula (1):

wherein R_2 represents OH, a halogen atom, ONa, OK, or OR_{2a} , R_{2a} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group, A_2 represents a linear or branched alkylene group having 1 to 8 carbon atoms, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, <u>and</u> when multiple units exist, A_2 , R_{2a} , R_{2

$$\begin{array}{c} R_{3e} \\ R_{4e} \\ R_{3e} \\ R_{3e} \\ R_{3e} \\ R_{3e} \\ R_{3e} \\ R_{3e} \\ R_{3e$$

wherein R_{3a} , R_{3b} , R_{3c} , R_{3d} , and R_{3e} each independently represent SO_2R_{3f} (R_{3f} represents OH, a halogen atom, ONa, OK, or OR_{3f1} (R_{3f1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen

atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH_2 group, an NO_2 group, $COOR_{3g}$ (R_{3g} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group (Ph represents a phenyl group), and at least one of these groups represents $SO_2R_{3f_5}$ n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, R_{3a} , R_{3b} , R_{3c} , R_{3d} , R_{3e} , R_{3f_5} , R_{3f_5} , R_{3g_5}

Wherein-wherein R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4c}, R_{4f}, and R_{4g} each independently represent SO₂R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or OR_{4o1} (R_{4o1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₁ group, a C₂F₅ group, or a C₃F₇ group (Ph represents a phenyl group), and at

least one of these groups represents SO_2R_{4o} , n represents an integer selected from 1 to 4 and m represents an integer selected from 0 to 8, and wherein when multiple units exist, R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4e} ,

wherein R_{4b} , R_{4i} , R_{4j} , R_{4k} , R_{4h} , R_{4m} , and R_{4n} each independently represent SO_2R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or ΘR_{4o+7} , ΩR_{4o1} (R_{1o1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH_2 group, an NO_2 group, $COOR_{4p}$ (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF_3 group, a C_2F_5 group, or a C_3F_7 group (Ph represents a phenyl group), and at least one of these groups represents SO_2R_{4o} , n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and wherein-when multiple units exist, R_{4b} , R_{4i} , R_{4a} , R_{4o}

meaningselected for each unit.

 (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (5);):

Wherein-wherein R_5 represents a hydrogen atom, a group for forming a salt, or R_{5a} , R_{5a} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, or a group having a saccharide, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, when n = 4, R_5 represents only a group having a saccharide for m = 0, and when multiple units exist, R_5 , R_{5a} , m, and n each are independently have the above meaning selected for each unit.)

 (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by the chemical formula (6)₁₂

$$(CH_2)m$$
 $(CH_2)n^{-O}$

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, when n=3, m represents an integer selected from 0 and 2 to 8, and when multiple units exist, m and n each are independently have the above meaning selected for each unit.

 (Currently Amended) A polyhydroxyalkanoate according to any one of claims 1 to 4, further comprising a unit represented by the chemical formula (7) in a molecules:

wherein (R_7 represents a linear or branched alkylene group having 1 to 11 carbon atoms, an alkyleneoxyalkylene group each alkylene of which has 1 or 2 carbon atoms (alkylene groups each independently have 1 or 2 carbon atoms), or an alkylidene group having 1 to 5 carbon atoms, which may be substituted by <u>an aryl group</u>, and when multiple units exist, $R_7 = R_7$ each <u>is independently have the above meaning</u> for each unit.

 (Currently Amended) A method of producing a polyhydroxyalkanoate represented by the chemical formula (6); comprising the a step of polymerizing a compound represented by the chemical formula (8) in the a presence of a catalyst;

wherein n represents an integer selected from 1 to 4_z when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, and when n = 3, m represents an integer selected from 0 and 2 to 8,

$$(CH_2)m$$

$$(CH_2)n^{-O}$$

$$(6)$$

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1, 2, and 4, m represents an integer selected from 0 to 8, when n = 3, m represents an integer selected from 0 and 2 to 8, and when multiple units exist, m and n each are independently have the above meaning selected for each unit.

7. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (10); comprising the a step of oxidizing a double bond portion of a polyhydroxyalkanoate containing a unit represented by the chemical formula (9);

wherein n represents an integer selected from 1 to 4 and m represents an integer selected from 0 to 8, <u>and</u> when multiple units exist, m and n <u>each are</u> independently <u>have the</u> <u>above meaning-selected</u> for each unit,

wherein R_{10} represents a hydrogen atom or a group for forming a salt, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, m, n, and R_{10} each are independently have the above meaning selected for each unit.

8. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (1),(1) comprising the a step of subjecting a polyhydroxyalkanoate containing a unit represented by the chemical formula (10) and at least one kind of amine compound represented by the chemical formula (11) to a condensation reaction;

Wherein wherein R_{10} represents hydrogen or a group for forming a salt, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, m, n, and R_{10} each are independently have the above meaning selected for each unit;

$$H_2N - A_3 - SO_2R_{11}$$
 (11)

wherein R_{11} represents OH, a halogen atom, ONa, OK, or OR_{11a} , R_{11a} and A_3 are each independently selected from groups each having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R_{11} , R_{11a} , and A_3 each are independently have the above meaning selected for each unit,

wherein R represents - A_1 -SO₂R₁, R₁ represents OH, a halogen atom, ONa, OK, or OR_{1a}, R_{1a} and A₁ each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, n represents an integer selected from 1 to 4, m represents an integer selected from 0 to 8, and when multiple units exist, R, R₁, R_{1a}, A₁, m, and n each-are independently have the above meaningselected for each unit.

9. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by the chemical formula (101), comprising the steps of: allowing a polyhydroxyalkanoate containing a unit represented by the chemical formula (99) to react with a base; and

allowing the \underline{a} compound obtained in the foregoing step to react with a compound represented by the chemical formula (100 $\frac{1}{10}$):

wherein n represents an integer selected from 1 to 4, and when multiple units exist, n's each nis independently have the above meaningselected for each unit,

wherein m represents an integer selected from 0 to 8, X represents a halogen atom, $R_{100} \ represents \ a \ linear \ or \ branched \ alkyl \ or \ aralkyl \ group \ having \ 1 \ to \ 12 \ carbon \ atoms, \ and$ when n=4 in the chemical formula (99), m is not equal to 0,

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, R_{101} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when multiple units exist, R_{101} , m, and n each are independently have the above meaning selected for each unit.

10. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by the-chemical formula (102).(102) comprising the a step of hydrolyzing a polyhydroxyalkanoate containing a unit represented by the-chemical formula (101) in the a presence of an acid or an alkali or the a step of subjecting the polyhydroxyalkanoate to hydrogenolysis including a catalytic reduction:

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, R_{101} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when multiple units exist, R_{101} , m, and n each are independently have the above meaning selected for each unit,

wherein R_{102} represents hydrogen or a group for forming a salt, n represents an integer selected from 1 to 4. when n represents an integer selected from 1 to 3, m represents an integer selected from 1 to 8, when n = 4, m represents an integer selected from 1 to 8, and when multiple units exist, R_{102} , m, and n each-are independently have the above meaning selected for each unit.

11. (Currently Amended) A method of producing a polyhydroxyalkanoate

containing a unit represented by the chemical formula (104) (104) comprising the steps of:

allowing a polyhydroxyalkanoate containing a unit represented by the chemical formula (99) to react with a base; and

allowing the a_compound obtained in the foregoing step to react with a compound represented by the chemical formula (103);

(In the formula, wherein n represents an integer selected from 1 to 4. When, and when multiple units exist, n's each n is independently have the above meaning selected for each units),

Wherein-wherein R_{103} represents $-A_{103}$ -SO₂ R_{103a} , R_{103a} represents OH, a halogen atom, ONa, OK, or OR_{103b} , R_{103b} and A_{103} are each independently selected from groups each having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R_{103} , R_{103a} , R_{103b} , and A_{103} each are independently have the above meaning-selected for each unit.

$$\begin{array}{c}
R & 104 \\
N-H & 0
\end{array}$$

$$\begin{array}{c}
(CH_2)_2 \\
(CH_2)_n - 0
\end{array}$$

$$\begin{array}{c}
(1 & 0 & 4)
\end{array}$$

Wherein wherein n represents an integer selected from 1 to 4, R_{104} represents - A_{104} -SO₂ R_{104a} , R_{104a} represents OH, a halogen atom, ONa, OK, or OR_{104b} , R_{104b} and A_{104} each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist, R_{104} , R_{104a} , R_{104b} , A_{104} , and n are each independently have the above meaning selected for each unit.