GAME PLAYING

CHAPTER 6

Games vs. search problems

"Unpredictable" opponent \Rightarrow solution is a strategy specifying a move for every possible opponent reply

Time limits \Rightarrow unlikely to find goal, must approximate

Plan of attack:

- Computer considers possible lines of play (Babbage, 1846)
- Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
- Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
- First chess program (Turing, 1951)
- Machine learning to improve evaluation accuracy (Samuel, 1952–57)
- Pruning to allow deeper search (McCarthy, 1956)

Types of games

perfect information

imperfect information

deterministic	chance
chess, checkers,	backgammon
go, othello	monopoly
battleships,	bridge, poker, scrabble
blind tictactoe	nuclear war

Game tree (2-player, deterministic, turns)

Exercise: what is the best strategy for player MAX?

What is best strategy for MIN?

Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value

= best achievable payoff against best play

Minimax algorithm

```
function MINIMAX-DECISION(state) returns an action
   inputs: state, current state in game
   return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(a, state))
function Max-Value(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do v \leftarrow \text{Max}(v, \text{Min-Value}(s))
   return v
function MIN-VALUE(state) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow \infty
   for a, s in Successors(state) do v \leftarrow \text{Min}(v, \text{Max-Value}(s))
   return v
```

Complete??

Complete?? Only if tree is finite (chess has specific rules for this).

NB a finite strategy can exist even in an infinite tree!

Optimal??

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity??

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? $O(b^m)$

Space complexity?? O(bm) (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games \Rightarrow exact solution completely infeasible

But do we need to explore every path?

Why is it called $\alpha-\beta$?

 α is the best value (to MAX) found so far off the current path If V is worse than α , MAX will avoid it \Rightarrow prune that branch Define β similarly for MIN

The α - β algorithm

```
function ALPHA-BETA-DECISION(state) returns an action
   return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(a, state))
function Max-Value (state, \alpha, \beta) returns a utility value
   inputs: state, current state in game
             \alpha, the value of the best alternative for MAX along the path to state
             \beta, the value of the best alternative for MIN along the path to state
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for a, s in Successors(state) do
      v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))
      if v \geq \beta then return v
      \alpha \leftarrow \text{Max}(\alpha, v)
   return v
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   same as MAX-VALUE but with roles of \alpha, \beta reversed
```

Properties of α - β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = $O(b^{m/2})$ \Rightarrow **doubles** solvable depth

A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35^{50} is still impossible!

Resource limits

Standard approach:

- Use CUTOFF-TEST instead of TERMINAL-TEST e.g., depth limit (perhaps add quiescence search)
- Use EVAL instead of UTILITY i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^4 nodes/second

- $\Rightarrow 10^6$ nodes per move $\approx 35^{8/2}$
- $\Rightarrow \alpha \beta$ reaches depth 8 \Rightarrow pretty good chess program

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

e.g., $w_1 = 9$ with

 $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Digression: Exact values don't matter

Behaviour is preserved under any ${\bf monotonic}$ transformation of ${\rm EVAL}$

Only the order matters:

payoff in deterministic games acts as an ordinal utility function

Deterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, b>300, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games: backgammon

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if state is a MAX node then
return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

. . .

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice Backgammon \approx 20 legal moves (can be 6,000 with 1-1 roll)

depth
$$4 = 20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$$

As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished

 α - β pruning is much less effective

 $\begin{aligned} TDGAMMON \text{ uses depth-2 search} &+ \text{ very good } Eval\\ &\approx \text{world-champion level} \end{aligned}$

Digression: Exact values DO matter

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about Al

- \Diamond perfection is unattainable \Rightarrow must approximate
- ♦ good idea to think about what to think about
- uncertainty constrains the assignment of values to states
- ♦ optimal decisions depend on information state, not real state

Games are to Al as grand prix racing is to automobile design