PHENIKAA UNIVERSITY

HỆ THỐNG NHÚNG

Chương 1: TỔNG QUAN VỀ HỆ THỐNG NHÚNG

Dr. Thanh Nguyen

Email: thanh.nguyenngoc@phenikaa-uni.edu.vn

Office: Room 606 - Building A4

Nội dung

- Giới thiệu về hệ nhúng
- Đặc trưng của hệ nhúng
- Cấu trúc tổng quan của hệ nhúng
- Kiến thức cơ sở phần cứng cho lập trình nhúng
- Hệ thống nhúng thời gian thực

Giới thiệu về hệ nhúng

- Khái niệm
- Các lĩnh vực ứng dụng
- Các họ CPU dùng trong hệ nhúng
- Một số ví dụ
- Cấu trúc hệ thống

Khái niệm

- Hệ thống nhúng là một hệ thống bao gồm cả phần cứng và phần mềm nhúng trong hệ thống lớn hơn
- Thực hiện chức năng chuyên biệt
- (Embedded Systems (ES) = information processing systems embedded

into a larger product)

Máy tính và hệ nhúng

Lĩnh vực ứng dụng

PHENIKAA UNIVERSITY

HỆ THỐNG TỰ ĐỘNG

- Hệ thống cảm biến, điều hướng
- Điều khiển động cơ
- Điều khiển cơ học (phanh, tốc độ, v.v.)

MANG & TRUYÈN THÔNG

- Router
- Hubs, Switch
- Gateways
- Modems
- Firewall, IPS, v.v.

HỆ NHÚNG VĂN PHÒNG

- Fax, máy in, máy chiếu, Copiers, Scanners, v.v.
- Đầu đọc thẻ
- Bộ điều khiển từ xa, V.V.

HỆ THỐNG NHÚNG DÂN DUNG

- TV
- Thiết bị chống trôm, cảnh báo cháy
- Úng dung nhà bếp
- Đổ chơi
- Điện thoại đi đông
- Camera, máy ảnh số
- Thiết bị giáo đục

HỆ THỐNG CÔNG NGHIÊP

- Robotics
- Mạng công nghiệp
- Dây chuyền sản xuất tư đông
- Hệ thống giám sát và điều khiển
- Máv bav
- Không gian, v.v.

NHÚNG TRONG Y

 Hệ thống siêu âm, chiếu chụp, nội soi

HOC

- Hệ thống kiểm tra sức khỏe tự động
- Hệ thống chăm sóc
- Khám bệnh từ xa, v.v.

LĨNH VỰC NHÚNG KHÁC

- An ninh, quốc phòng: tàu ngầm, rađa, tên lửa, vệ tinh, máy bay, v.v.
- Các thiết bị mật mã, an toàn thông tin
- Nông nghiệp: hệ thống cảm biến, tưới tiêu tự động, v.v.

Các họ CPU dùng trong hệ nhúng

HỆ THỐNG TỰ ĐỘNG

NHÚNG TRONG Y HỌC

ARM

8051 AVR

MIPS

ColdFire

MẠNG & TRUYỂN THÔNG

ARM

PowerPC

HỆ THỐNG NHÚNG DÂN DỤNG

HỆ NHÚNG VĂN PHÒNG

ARM

PowerPC

8051

AVR

MIPS

Davinci

HỆ THỐNG CÔNG NGHIỆP

LĨNH VỰC NHÚNG KHÁC

Vi xử lý, vi điều khiển chuyên dụng

Một số hệ nhúng trong ô tô

From Computer Desktop Encyclopedia @ 2008 The Computer Language Co. Inc.

High-Speed Control

- Antilock Braking.
- Central Electronics
- Electronic Throttle
- Engine Control
- Steering Wheel
- Transmission Control

Low-Speed Control

- Audio
- Climate Control
- Driver's Door
- Driver Information
- Passenger Door
- Phone
- Power Seat
- Rear Electronics
- Sun Roof
- Supplemental Restraint System
- Upper Electronics

Máy bán hàng tự động

- Vi điều khiển: 16-bit Hitachi H8/300H
 Processors
- Cơ cấu chấp hành (motor, tay máy)

Bàn chải đánh răng

- Sử dụng vi điều khiển 8 bit

Máy ảnh kỹ thuật số

 Vi điều khiển DIGIC II Image Processor

Phần mềm nhúng trong các thiết bị mạng

Smart home

Internet Of Things

Đặc trưng của hệ nhúng

- Mục đích chuyên dụng
 - Hệ nhúng thường thực hiện một chức năng chuyên dụng
- Ràng buộc chặt chẽ bởi các yếu tố
 - Chi phí
 - Hệ thống đơn giản
 - Dựa trên ít thành phần
 - Tốc độ xử lý
 - Năng lượng tiêu thụ
- Hạn chế về tài nguyên
 - Hiệu năng bộ vi xử lý
 - Dung lượng bộ nhớ

Đặc trưng của hệ nhúng

- Tính tương tác và đáp ứng thời gian thực
 - Thường xuyên tương tác với các sự kiện bên ngoài
 - Đáp ứng thời gian thực (real time)
- Thỏa mãn yêu cầu về
 - Độ tin cậy
 - Khả năng chịu lỗi (hệ nhúng không được treo)
- Phần cứng và phần mềm song hành
 - Phần mềm thường cài đặt cố định lên bộ nhớ trong hệ nhúng (firmware)
 - Thường lưu trữ trong bộ nhớ EEPROM/FLASH

Kiến trúc máy tính mức hệ thống

- Kiến trúc Von Neumann: Lệnh và dữ liệu chia sẻ trong 1 bộ nhớ
- Kiến trúc Havard: Lệnh và dữ liệu lưu trữ trên 2 bộ nhớ phân biệt
- Đối với bộ nhớ, không có sự khác biệt dữ lệnh và dữ liệu (mà do CPU quyết định đối xử khi nhận về)

Kiến trúc máy tính mức hệ thống

Von Neumann Architecture

Harvard Architecture

Kiến trúc máy tính mức hệ thống

Sự khác biệt giữa RISC và CISC

CISC	RISC
Tập lệnh lớn, dễ lập trình	Tập lệnh ít hơn, khó lập trình
Bộ compiler đơn giản	Bộ Compiler thiết kế phức tạp
Nhiều chế độ đánh địa chỉ >> định dạng lệnh	Ít chế độ đánh địa chỉ, định dạng lệnh luôn cố
phức tạp	định
Độ dài lệnh có thể thay đổi	Độ dài lệnh luôn thay đổi
Tần số cao	Tần số thấp
Nhấn mạnh vào phần cứng	Nhấn mạnh vào phần mềm
Bộ điều khiển CU implement một tập lệnh lớn	Mỗi lệnh được thực thi trực tiếp bởi phần
	cứng
Tốc độ thực thi chậm do các lệnh cần được	Tốc độ thực thi nhanh hơn do các lệnh được
đọc và giải mã.	phần cứng thực thi trực tiếp
Không hỗ trợ Pipeline	Có hỗ trợ Pipeline

Cấu trúc phần cứng hệ nhúng

Sơ đồ chung của các hệ nhúng

Cấu trúc phần cứng hệ nhúng

Các thành phần trong hệ nhúng

Kiến thức cơ sở phần cứng cho lập trình nhúng

- Bộ vi xử lý (Microprocessor)
- Bộ vi điều khiển (Microcontroller)
- Bộ nhớ (Memory)
- Kiến trúc máy tính mức hệ thống
- Không gian địa chỉ

Bộ vi xử lý

Processor:

- Một bộ xử lý độc lập không thể thực hiện được nhiệm vụ gì.
- Cần giao tiếp với bộ nhớ (chứa chương trình, dữ liệu) và thiết bị vào/ra

Microprocessor:

- Bộ vi xử lý được chế tạo trên một chip/mạch tích hợp.
- Các dòng thường dùng: Intel, IBM, MIPS, ARM, SUN PARC, v.v.

- Bao gồm cả CPU, bộ nhớ (ROM/EEROM, RAM), cổng vào ra trên một chip đơn, mạch tích hợp.
 - Thường sử dụng trong các hệ nhúng
 - Phạm vi rộng: AVRs, PICs, ARMs, ...
 - Kiến trúc: 8 bit, 16 bit, 32 bit, (64 bit).
 - Bộ nhớ trong cùng chip hoặc phối ghép mở rộng bên ngoài
- Là một dạng của hệ thống trên chip (SoC)

- Central Processor Unit
- ROM, RAM
- Electrically ErasableProgrammable ROM (EEPROM)/Flash Memory
- Special Function Registers (SFR)
- Program Counter

- Các cổng vào/ra:
 - GPIO (General Purpose Input Output)
 - Kết nối đến các thiết bị ngoại vi
 - Mỗi vi điều khiển có một hoặc nhiều thanh ghi cổng (port registers) kết nối đến các cổng vào/ra

- Các dòng vi điều khiển phổ biến:
 - 8051 (AT89C51, AT89S51, AT89S52) (Intel)
 - AVR (ATMEGA8, ATMEGA16, v.v.) (Atmel)
 - PIC (PIC16F877A, PIC18F4550, PIC18F2550, v.v.) (Microchip)
 - ARM (ARM7, LPC, TMS, ARM9, ARM Cortex-M, ARM Cortex-A)

Cấu trúc phần cứng vi điều khiển

Cấu trúc hệ nhúng

Phân lớp các hệ thống:

Phân loại bộ nhớ

- Bộ nhớ chương trình
- Bộ nhớ dữ liệu
- Bộ nhớ trạng thái (Runtime state)

- Runtime state
 - CPU register
 - Peripheral register

Tổ chức bộ nhớ

Không gian địa chỉ

Không gian địa chỉ

Không gian địa chỉ

- Không gian địa chỉ (address space):
 - Không gian địa chỉ bộ nhớ
 - Không gian địa chỉ cổng vào/ra
- 2 kiểu không gian địa chỉ vào/ra:

Hệ thống nhúng thời gian thực

- Thời gian: hệ thống đúng đắn phụ thuộc không chỉ vào kết quả logic của sự tính toán mà con phụ thuộc vào thời gian diễn ra tiến trình tính toán đó
- Hiện thực: là phản ứng của hệ thống với các sự kiện bên ngoài mà phải
 xảy ra trong suôt quá trình phát triển và hoạt động của hệ thống
- Hệ thống thời gian thực: phải đảm bảo công việc hoàn thành trước một mốc thời gian xác định (Deadline)

Hệ thống nhúng thời gian thực

- Hard real-time hệ thống hoàn toàn cưỡng chế sự trả lời trong khoảng thời gian deadline cho phép. Ví dụ như hệ thống điều khiển bay.
- Soft real-time deadline là quan trọng đối với hệ thống, nhưng cũng tồn tại chức năng để sửa lỗi hệ thống khi deadline không được đáp ứng kịp thời. Ví dụ như hệ thống nhận dữ liệu

Hệ thống nhúng trong loT

Vấn đề bảo mật

(*) David Hwang et.al, Securing Embedded System, IEEE Security & Privacy

Vấn đề bảo mật

Tổng kết

- Tổng quan về hệ nhúng
- Cấu trúc phần cứng và phần mềm của hệ nhúng
- Tổ chức bộ nhớ

