Условие:

Дано множество из n городов и матрица расстояний между ними. Требуется объехать все города по кратчайшему пути, причем в каждом городе необходимо побывать один раз и вернуться в город, из которого был начат маршрут. Задачу необходимо решить с помощью генетического алгоритма.

	Город l	Город 2	Город 3	Город 4	Город 5
Город 1	0	4	5	3	8
Город 2	4	0	7	6	8
Город 3	5	7	0	7	9
Город 4	3	6	7	0	9
Город 5	8	8	9	9	0

За целевую функцию следует принять сумму расстояний между городами. Размер популяции N = 4. Оператор мутации представляет собой случайную перестановку двух чисел в геноме, которые выбираются случайно. Вероятность мутации 0.01.

Решение вручную:

Исходная популяция

№ строки	Код	Значение целевой функции
1	31254	33
2	32451	35
3	45132	35
4	12345	35

Пусть для скрещивания были выбраны следующие пары: (1,2) и (3,4) В результате были получены потомки:

№ строки	Родители	Потомки	Значение целевой функции для потомков
1	<mark> 312 54</mark>	324 15	<mark>33</mark>
<mark>2</mark>	324 51	<mark> 312 45</mark>	<mark>33</mark>
3	32 45 1	52 13	33
4	45 13 2	32 45 1	35

Популяция первого поколения после отсечения худших особей в результате

работы оператора редукции:

№ строки	Код	Значение целевой функции	Вероятность участия в процессе размножения
1	31254	33	0.25
2	32415	33	0.25
3	31245	33	0.25
4	52134	33	0.25

Пусть для получения второго поколения были выбраны следующие пары строк: (2,3) и (2,4). В результате были получены потомки:

№ строки	Родители	Потомки	Значение целевой функции для потомков
1	32 415	13 245	35
2	31 245	32 415	33
3	32 41 5	52 13 4	33
4	52 13 4	35 41 2	32

Популяция второго поколения после отсечения худших особей в результате работы оператора редукции:

№ строки	Код	Значение целевой функции
1	35412	32
2	31254	33
3	32415	33
4	31245	33

Пусть для получения третьего поколения были выбраны следующие пары строк: (1,4) и (2,3). В результате были получены потомки:

№ строки	Родители	Потомки	Значение целевой функции для потомков
1	35 41 2	13 24 5	35
2	31 24 5	53 41 2	31

3	312 54	432 15	35
4	324 15	321 54	35

Популяция второго поколения после отсечении худших особей приняла вид:

№ строки	Код	Значение целевой функции
1	53412	31
2	35412	32
3	31254	33
4	32415	33

Таким образом после 3 поколений значение целевой функции для лучшего решения изменилось с 33 на 31, среднее значение изменилось с 34.5 до 32.25, а общее качество с 138 до 129.