GOOGLE STOCK PRICE PREDICTION

Α

Project Report

Submitted

In partial fulfillment for the award of the

Degree of **Bachelor of Technology**

In

Computer Science & Engineering

Submitted To:-

Mrs. Nirmala Sharma

(Asst. Professor)

Ms. Chanchal Agarwal

(Asst. Professor)

Submitted By:-

Vikram Kumar (16/492)

Rahul Kumar (16/47)

Nasar Jami (17/753)

Yashwant Kholwar(16/493)

Supervisor:-

R.S.Sharma (Professor)

Gaurav Jain(Asst. Professor)

Department of Computer Science & Engineering

Rajasthan Technical University, Kota

Session (2018-19)

CERTIFICATE

This is to certify that **Mrigaya Saini**, **Naveksha Vijay**, **Sumit Kumar And Yash Changlani** of VII Semester, B. Tech (Computer Science & Engineering) "2018-2019", have completed a minor project "**Local Binary Pattern Histogram (LBPH) Face Recognizer**" in partial fulfillment for the award of the degree of Bachelor of Technology under Rajasthan Technical University.

Mrs. Nirmala Sharma (Asst. Prof.)

Ms. Parul Chauhan (Asst. Prof.)

CANDIDATE'S DECLARATION

We hereby declare that the work, which is being presented in the Project, entitled "Local Binary Pattern Histogram (LBPH) Face Recognizer" in partial fulfillment for the award of Degree of "Bachelor of Technology" in Department of Computer Science & Engineering with Specialization in Computer Engineering, and submitted to the Department of Computer Science & Engineering, University Teaching Department, Rajasthan Technical University is a record of our own investigations carried under the Guidance of Mrs. Nirmala Sharma, Assistant Professor and Ms. Parul Chauhan, Assistant Professor Department of Computer Science & Engineering.

We have not submitted the matter presented in this Report from anywhere for the award of any other Degree.

(Sign. of Candidate) (Sign. of Candidate) (Sign. of Candidate)

Mrigaya Saini Naveksha Vijay Sumit Kumar Yash Changlani Roll No.:16/467 Roll No.:16/468 Roll NO.:16/485 Roll NO.:16/493

ACKNOWLEDGEMENT

We would like to extend my sincere thanks to all of them. We are highly indebted to Mrs. Nirmala Sharma (Asst. Professor) and Ms. Parul Chauhan (Asst. Professor) for their guidance and constant supervision as well as for providing necessary information regarding the project and also for their support in completing the project. We would like to express my gratitude towards Our Parents and Our Colleagues for their kind cooperation and encouragement which help us in completion of this project. We also take the privilege to thank the Project Lab Coordinators Mrs. Nirmala Sharma (Asst. Prof) and Ms. Chanchal Agarwal (Asst. Prof.). We would like to express our special gratitude and thanks to HOD Dr. R.K. Banyal for giving us such attention and time. Our thanks and appreciation also goes to our fellows in developing in the project and people who have willingly helped us out with their abilities. We extend our sincere thanks to all teaching and non-teaching staff of the department of computer science Department.

Finally and perhaps most importantly, we would like to thank our family for their support.

ABSTRACT

The face is one of the easiest ways to distinguish the individual identity of each other. Face recognition is a personal identification system that uses the personal characteristics of a person to identify a person's identity. The human face recognition procedure basically consists of two phases, namely face detection, where this process takes place very rapidly in humans, except under conditions where the object is located at a short distance away, the next is the introduction, which recognizes a face as individuals. The stage is then replicated and developed as a model for facial image recognition (face recognition) is one of the much-studied biometrics technology and developed by experts. There are two kinds of methods that are currently popular in developed face recognition pattern namely, Eigenface method and Local Binary Pattern Histogram method. Local Binary Pattern Histogram (LBPH) face recognizer method is based on local binary operator and is one of the best performing texture descriptors. It is widely used in facial recognition due to its computational simplicity and discriminative power. The area of this project face recognition is Image processing. The software requirements for this project are python editor and web camera.

Keywords: Face recognition, Local Binary Pattern Histogram, texture descriptors, Image processing

TABLE OF CONTENTS

1 INTRODUCTION	01
1.1 Motivation	01
1.2 Problem Statement	02
2 FEASIBILITY ANALYSES	03
2.1 Technical Analysis	03
2.2 Economical Analysis	03
2.3 Operational Feasibility	03
3 REQUIREMENT ANALYSES	04
3.1 Hardware Requirement	04
3.2 Software Requirement	04
3.3 Technology Used	04
4 SYSTEM ANALYSIS & DESIGN	06
4.1 Flowchart representing working of project	06
	4.2 Working 06
5 IMPLEMENTATION	09
6 TESTING	11
6.1 Features to be tested	11
6.2 Test Cases	12
7 CONCLUSION AND FUTURE SCOPE	15
7.1 Conclusion	15
7.2 Future Scope	15
REFERENCES	16

LIST OF FIGURES

Page. N	lo.
Fig 1. Face Recognition System work flow.	01
Fig 2. How PCA works in Eigenface algorithm	05
Fig 3. Flowchart of the face Recognition System	06
Fig 4. Image Acquisition)9
Fig 5. Image processing.	10
Fig 6. Feature extraction	10
Fig 7. Training dataset	10
Fig 8. Recognition	10
Fig 9. Dataset of collected images	11
Fig 10. Recognition of a person with confidence approx. 12	11
Fig 11. Recognition of a person with confidence approx 16	12
Fig 12. The confidence returned from LBPH on changing no. of neighbors	13
Fig 13. The confidence returned from LBPH on changing no. of neighbors	13
Fig 14. The confidence returned from LBPH on changing threshold	14
Fig 15. The confidence returned from LBPH on changing threshold	14
List of Tables	
Table 1 Test cases	13