Probleem 1¹

(a) Die gegewe DV is skeibaar

$$\frac{dN}{dt} = 2N - N^2 - 10 = -[(N-1)^2 + 9]$$

$$\int \frac{1}{(N-1)^2 + 9} dN = -\int dt + K$$

$$\frac{3}{9} \arctan\left(\frac{N-1}{3}\right) = -t + K$$

$$\Rightarrow N(t) = 1 + 3\tan(-3t + K).$$

Stel $N(0) = \alpha$ in om te kry

$$N(t) = 1 + 3\tan\left(-3t + \arctan\left(\frac{\alpha - 1}{3}\right)\right). \tag{*}$$

- (b) $\frac{b^2}{4s} = 1 < E = 10$, dus is hierdie "groot jag", dus is daar geen aanvanklike waardes α waarvoor die bevolking visse 'n ewewig bereik nie.
- (c) As die skool visse uitgewis is op tyd T sal

$$N(T) = 0 = 1 + 3\tan\left(-3T + \arctan\left(\frac{\alpha - 1}{3}\right)\right),$$

dus los op vir T in terme van α om te kry

$$T = \frac{1}{3} \left[\arctan\left(\frac{\alpha - 1}{3}\right) - \arctan\left(-\frac{1}{3}\right) \right].$$

Vir enige $\alpha > 0$ sal T eindig wees, en ook T > 0, dus sal die skool visse uitsterf vir alle $\alpha > 0$.

 $^{^{1}}$ Vergelyk die oplos en antwoorde van hierdie probleem met Probleem 4 van Huiswerk #5: vir hierdie probleem moet 'n mens die kwadraat voltooi, terwyl in Huiswerk #5 se probleem het parsiële breuke gewerk.

Probleem 2

Probleem 3

(a) Stel die gegewe waardes in

$$b - sN_j = \frac{1}{N_j} \frac{N_{j+1} - N_{j-1}}{t_{j+1} - t_{j-1}} = \frac{1}{N_j} \frac{N_{j+1} - N_{j-1}}{20}, \qquad j = 2, \dots, n-1,$$

om te kry

$$b - s(5308) = \frac{1}{5308} \frac{7240 - 3929}{20}$$

$$b - s(7240) = \frac{1}{7240} \frac{9638 - 5308}{20}$$

$$b - s(9638) = \frac{1}{9638} \frac{12866 - 7240}{20}$$

$$\vdots$$

In Matlab

>> load hw4_prob4

>> N=y;

>> RHS=(N(3:length(N))-N(1:length(N)-2))./(20*N(2:length(N)-1));

>> NN=N(2:length(N)-1);

>> A=[ones(size(NN)) -NN];

>> format long e

>> bs=A\RHS

bs = 3.169545569967915e-02

1.659246004308007e-07

Dit lewer die skattings

$$b = 3.169545569967915e - 02$$
 $s = 1.659246004308007e - 07.$

As one 1790 as t = 0 kies dan kry one $\alpha = 3929$.

(b)

(c) Die geskatte limietpopulasie vir die bevolking van die VSA is gegee deur

$$\frac{b}{s} = \frac{3.169545569967915e - 02}{1.659246004308007e - 07} = 1.910232456030402e + 05 \approx 191 \text{ miljoen}.$$

 $(d) \gg t=2000-1790$

$$t = 210$$

>> a=3929;

N = 1.799986245509863e+05

Hierdie model gee dat die bevolking van die VSA in 2000 omtrent 180 miljoen sal wees, wat met 101 miljoen uit is \Rightarrow Die logistiese model onderskat die VSA bevolking.

Probleem 4

$$\frac{dv}{dt} + kv = g$$

Integrasie faktor: $I(t) = e^{\int k \, dt} = e^{kt}$

$$e^{kt}\frac{dv}{dt} + ke^{kt}v = ge^{kt}$$

$$\frac{d}{dt}\left(e^{kt}v\right) = ge^{kt}$$

$$e^{kt}v = \frac{g}{k}e^{kt} + C.$$

As t = 0 is v = 0, dus

$$0 = \frac{g}{k} + C \Rightarrow C = -\frac{g}{k}$$

$$\Rightarrow v = \frac{g}{k}(1 - e^{-kt}).$$

Limietsnelheid:

$$v \to \frac{g}{k}$$
 as $t \to \infty$, so ons stel $V = \frac{g}{k}$ (limietsnelheid)
$$v = V(1 - e^{-\frac{g}{V}t})$$
 (analoog van vgl (2.9.6))

Formule vir verplasing:

$$v = \frac{dy}{dt} = V(1 - e^{-gt/V})$$

$$\Rightarrow y = V(t + \frac{V}{g}e^{-gt/V}) + C$$

As t = 0 is y = 0, dus

$$\Rightarrow \quad 0 = V(0 + \frac{V}{g}) + C \Rightarrow C = -\frac{V^2}{g}$$
 Dus $y = V(t + \frac{V}{g}e^{-gt/V} - \frac{V}{g})$ (analoog van (2.9.2))

Bepaal V:

$$8936.5 = V \left(116 + \frac{V}{g} (e^{-g \, 116/V} - 1) \right)$$

 $e^{-\frac{9.81\cdot116}{V}}$ weglaatbaar klein—selfde argument as die notas, met g=9.81

$$8936.5 = V \left(116 - \frac{V}{g} \right)$$

$$\Rightarrow V^2 - 1137.96V + 87667.1 = 0$$

$$\Rightarrow V = 83.11 \text{ m/s}.$$

Groter as voorheen, wat in ooreenstemming is met die feit dat kleiner windweerstand \Rightarrow hoër limietsnelheid.

Stippel lyn
$$y=\frac{V^2}{g}\ln\cosh\frac{gt}{V}$$
 met $V=81.04m/s$ en $g=9.81m/s^2$ Soliede lyn $y=V(t+\frac{V}{g}e^{-gt/V}-\frac{V}{g})$ met $V=83.11m/s$ en $g=9.81m/s^2$.

Dit lyk of die aanname dat lugweerstand eweredig aan snelheid is (en nie die kwadraat v/d snelheid nie) beduidend beter is vir klein waardes van t, min of meer $0 \le t \le 60$