

FIG. 1



FIG. 2

EFFECT OF ANTI-STAPH MAB 96-110 ON SURVIVAL IN A LETHAL S. AUREUS SEPSIS MODEL



F/G. 3

→ WITHOUT MAB → WITH MAB PERCENT SURVIVAL OF CF11 MICE CHALLENGE WITH 3.5 x10<sup>4</sup>9 S. HAY HOURS POST CHALLENGE - 09 50 40 -30 20 10 80 70-90

PERCENT SURVIVAL

FIG. 4

| 6MER.SEQ       |                                              |
|----------------|----------------------------------------------|
|                | 10 20 30                                     |
| 41:13.6mer2-1  | GGGGCTCATG CGGATAGGGT TTATGGGGCC SEQ ID NO.4 |
| 61             | GAHADRVYGA SEQID NO.5                        |
| 42:14.6mer2-2  | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 65             | G A H A D R V Y G A                          |
| 43:15.6mer2-3  | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 66             | G A H A D R V Y G A                          |
| 44:16.6mer2-4  | GGGA-TCATG CGGATAGGGT TTATGGGGCC SEQ ID NO.6 |
| 62             | G ? H A D R V Y G A SEQ ID NO.7              |
| 45:17.6mer2-5  | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 67             | G A H A D R V Y G A                          |
| 46:18.6mer2-6  | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 68             | G A H A D R V Y G A                          |
| 47:19.6mer2-7  | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 69             | G A H A D R V Y G A                          |
| 48:20.6mer2-8  | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 70             | GAHADRVYGA                                   |
| 49:21.6mer2-9  | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 71             | G A H A D R V Y G A                          |
| 51:23.6mer2-11 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 72             | G A H A D R V Y G A                          |
| 52:24.6mer2-12 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 73             | GAHADRV Y GA                                 |
| 53:25.6mer2-13 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 74             | G A H A D R V Y G A                          |
| 54:26.6mer2-14 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 75             | G A H A D R V Y G A                          |
| 55:27.6mer2-15 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 76             | G A H A D R V Y G A                          |
| 56:28.6mer2-16 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 77             | GAH ADRVYGA                                  |
| 58:30.6mer2-18 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 78             | G A H A D R V Y G A                          |
| 59:31.6mer2-19 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 79             | G A H A D R V Y G A                          |
| 60:32.6mer2-20 | GGGGCTCATG CGGATAGGGT TTATGGGGCC             |
| 80             | GAHADRVYGA ·                                 |

FIG. 5

| 15MER2.SEQ        |                     |                   |                    |                    |                       |                             |                                                                                                  |   |                  |
|-------------------|---------------------|-------------------|--------------------|--------------------|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------|---|------------------|
|                   | 1,0                 | 20                | 30                 | 40                 | 50                    |                             | 09                                                                                               |   |                  |
| 50:07.15mer2-1/0  | GGGCTTGGC           | ATTGGCGTC         | TCGTATTCCT         | CTTCAGCTTG         | TGCTGGTC              | 125                         | EOT                                                                                              | 1 | <b>ω</b> ο       |
| 52:09.15mer2-3/0  | GGGGTCGTC           | GGCATG            | TTTTCTCAT          | TTTTTTCATC         | GTČGTŤCA              | 36                          | H F                                                                                              |   | 10,              |
| 53:10.15mer2-4/0  | GGGGTTGGA           | AGGCTTTG          | TAGTCATTCT         | TATCGTCCTC         | GGGTTCGG              | $\mathcal{C}_{\mathcal{C}}$ | NOK<br>NOK<br>HHH                                                                                |   | 127              |
| 54:11.15mer2-5/0  | GGGGCTAGGC          | ATTGGCGT          | TCGTATTCCT         | ည္ဟ                | CTGCTGGTCG            | 9                           | HHF<br>SOC<br>SOC<br>SOC<br>SOC<br>SOC<br>SOC<br>SOC<br>SOC<br>SOC<br>SOC                        |   | 14r              |
| 56:13.15mer2-7/0  | GGGGTTGGC           | ATTGGCGT          | raţtc              | $\mathcal{C}$      | TGČTGĞTC              | 33                          | MENT<br>SOC<br>SOC                                                                               |   | 100              |
| 57:14.15mer2-8/0  | GGGCTTGGC           | ATTGGCGT          | rațic              | rcăgc              | TGČTGĞTC              | 99                          | A<br>T<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |   | -80              |
| 58:15.15mer2-9/0  | GGGGTCAGG           | TGGCTGTT          | rcčrc              | 3GČTG              | TACTGAGC              | 36                          | THE<br>SOC<br>SEE                                                                                |   | 207              |
| 59:16.15mer2-10/0 |                     | V<br>GGCATGGT     | H                  | TTTTC              | GTČGTŢGA              | 9                           | AHF<br>SOC                                                                                       |   | 22T              |
| 60:17.15mer2-11/0 |                     | GGCATGGT          | rcīca              | ITICA              | TCĞTTĞAT              | 33                          | u<br>N<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |   | 224              |
| 61:18.15mer2-12/0 |                     | GTATGTAT          | ICATO              | IGČGC              | TCGTAGTC              | 99                          | unr<br>unr<br>unr                                                                                |   | 200              |
| 62:19.15mer2-13/0 |                     | GTATGTAT          | ICATO              | rgčec              | TCGTAĞTC              | 9                           | →<br>DOK<br>UELE                                                                                 |   | 200              |
| 63:20.15mer2-14/0 |                     | GGAAGTAT          | ltätc              | IGCGC              | TIGTAĞTC              | 9                           | ATH<br>POS<br>POS<br>POS<br>POS<br>POS<br>POS<br>POS<br>POS<br>POS<br>POS                        |   | 300              |
| 54:21.15mer2-15/0 |                     | GTATGTAT<br>D M V | ICATC<br>H         | rgčgc<br>A         | TCGTAGTC              | 39                          | u II I                                                                                           |   | 325              |
| 55:22.15mer2-16/0 |                     | GTATGTĀT<br>B     | ICATO              | IGČGC<br>,         | TCGTAĞTC              | 9                           | A<br>D<br>S<br>D<br>S<br>D<br>S<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D |   | ) W.<br>Д.       |
| 56:23.15mer2-17/0 |                     | GTATGTAT          | TCATC              | TGČGC              | TCĞTAĞTC              | 9                           | THE<br>DOC                                                                                       |   | 300              |
| 57:24.15mer2-18/0 |                     | GGCATGGT          | TICIC              | TTTTTCATC          | GTCGTTGA              | 9                           | ATH<br>DOC                                                                                       |   | , 80<br>00<br>00 |
| 58:25.15mer2-19/0 |                     | ATTGGCGT          | ΤÀ                 | TCAGC              | TGČTGĞTC              | 99                          | と<br>の<br>の<br>で<br>は<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に<br>に           |   | 404              |
| 59:26.15mer2-20/0 | GGGGCTCGTC<br>G A R |                   | TTTTČTCAT<br>F S H | TTTTTCATC<br>F F H | GGTCGTTGAT<br>R S L I | TGĞGGÇC<br>G                | нн                                                                                               | ! | 42               |
|                   |                     |                   |                    |                    |                       | ,                           |                                                                                                  |   |                  |

5MER1

NO.48 NO.49

|   | ပ          |   |          |   |    |
|---|------------|---|----------|---|----|
| Ω | CAT        | Ξ |          |   |    |
| ¥ | 929        | Ø |          |   | 00 |
| Ы | CATGCGCATC | Н |          |   |    |
| Д | CGI        | ഷ | ATGGGGCC | А | 9  |
| Ы | CAT        | H | GGG      | ტ | H  |
| ≻ | IJ         | တ | 'AT      | X |    |

8 ΠD 0 SEQ TGGGGCC TGGGGCC G A G B TGGGGCC rggggcc GGGGTTCGGC L A ഗ Ø G CATCATGATC PATCGICATC recertiec TTTTTCATC Ø æ TAGTCATTC TCGTATICC A ATTGGCGTCA AGGCTTTGTT AGGCTATGTT GTCATATGCT GGATTACTTT ĸ G A D GGGCTAGTC G A W GGGCTCGTC SGGCTGGGA SGGCTCATG SGGCTTGGA 3GGCTCAGG 3GGCTTGGC SGGCTTGGC GGGCTGATT G A G A G A Ą G A ტ 71: 15mer 1st.16 15mer 2nd.12 15mer 2nd.9 1st.1 15mer 1st.7 15mer 2nd.1 15mer 2nd.3 15mer 2nd.4 2nd.1 : 15mer 6mer MASTERLIST 95: 101 102



F/G. 9

### GENERAL CLONING STRATEGY



FIG. 10

| MOUSE HEAVY CHAIN "FRONT" PRIMERS<br>JSS1                                             |
|---------------------------------------------------------------------------------------|
| 5'-ATTTCA <u>GGCCCAGCCGGCCATGG</u> CCGARGTRMAGCTKSAKGAGWC-3' SEQ ID NO.68             |
| JSS2                                                                                  |
| 5'-ATTTCAGGCCCAGCCGGCCATGGCCGARGTYCARCTKCARCARYC-3' SEQ ID NO.69                      |
| JSS3<br>5'-ATTTCA <u>GGCCCAGCCGGCCATGG</u> CCCAGGTGAAGCTKSTSGARTC-3' SEQ ID NO.70     |
| JSS4                                                                                  |
| 5'-ATTTCAGGCCCAGCCGGCCATGGCCGAVGTGMWGCTKGTGGAGWC-3' SEQ ID NO.71 JSS8                 |
| 5'-ATTTCAGGCCCAGCCGGCCATGGCCCAGGTBCARCTKMARSARTC-3' SEQ ID NO.72                      |
| MOUSE HEAVY CHAIN "BACK" PRIMERS                                                      |
| JS160<br>5'-GCTGCCACCGCCACCTGMRGAGACDGTGASTGARG-3' SEQ ID NO.73                       |
| JS161<br>5'-GCTGCCACCGCCACCTGMRGAGACDGTGASMGTRG-3' SEQ ID NO.74                       |
| JS162<br>5'-GCTGCCACCGCCACCTGMRGAGACDGTGASCAGRG-3' SEQ ID NO.75                       |
| MOUSE LIGHT CHAIN LEADER "FRONT" PRIMERS                                              |
| PMC12<br>5'-CCCGGGCCACCATGGAGACACACCTCCTG-3' SEQ ID NO.76                             |
| PMC13 5'-CCCGGGCCACCATGGATTTTCAAGTGCAGATTTTC-3' SEQ ID NO.77                          |
| PMC14                                                                                 |
| 5'-CCCGGGCCACCATGGAGWCACAKWCTCAGGTC-3' SEQ ID NO.78                                   |
| PMC15 5'-CCCGGGCCACCATGKCCCCWRCTCAGYTTCTKG-3' SEQ ID NO.79                            |
| PMC55<br>5'-CCCGGGCACCATGAAGTTGCCTGTTAGGCTG-3' SEQ ID NO.80                           |
| MOUSE LIGHT CHAIN "BACK" PRIMER                                                       |
| OKA57                                                                                 |
| 5'-GCACCTCCAGATGTTAACTGCTC-3' SEQ ID NO. 81                                           |
| "96-110" SPECIFIC PRIMERS                                                             |
| 96110HF2<br>5'-TAATATCGCGACAGCTACAGGTGTCCACTCCCGAAGTGATGCTGGTGGAGWCTG-3' SEQ ID NO.82 |
| 96100HB                                                                               |
| 5'-TTATAGAATTCTGAGGAGACGGTGAGTGAG-3' SEQ ID NO.83                                     |
| 96110BLF<br>5'-TTAGGC <u>GATATC</u> GTTCTCTCCCAGTCTCC-3' SEQ ID NO.84                 |
| 96110BLB                                                                              |
| 5'-GTAACCGTTCGAAAAGTGTACTTACGTTTTATTTCCAGCATGGTCC-3' SEQ ID NO.85                     |

### FIG. 11

96-110 ANTI-STAPH (HAY) HEAVY CHAIN VARIABLE REGION (TYPE IIIA)

GAAGTGATGCTGGTGGAGGATTGGTGCAGCCTAAAGGGTCATTGAAACTCTCATGTGCAGCCTCT EVMLVESGGGLVTGCAGCATTGGTGCAGCCTAAAGGGTCATTGAAACTCTCATGTGCAGCCTCT

AACTACGCCATGAAT TGGGTCCGCCAGGCTCCAGGAAAGGGTTTGGAATGGGTTGCT N Y A M N W V R Q A P G K G L E W V A

CGCATAAGAAGTAAAGTAATAATTATGCCAATTCAGTGAAAGAC R I R S K S N N Y A T F Y A D S V K D

AGGITCACCATCICCAGAGATGATTCACAAAGCATGCTCTATCTGCAAATGAACAACTTGAAAACTGAGGACACAGCCATGTATTACTGTGTGAGA R F T I S R D D S Q S M L Y L Q M N N L K T E D T A M Y Y C V R

SEQ ID NO. 86 SEQ ID NO. 87 

96-110 ANTI-STAPH (HAY) LIGHT CHAIN VARIABLE REGION (TYPE VI)

CAAATTGTTCTCCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGAAAAGGTCACAATGACTTGC Q I V L S Q S P A I L S A S P G E K V T M T C

AGGGCCAGCTCAAGTGTAAATTACATGCAC

R A S S S V N

TGGTACCAGCAGAGCCAGGATCCTCCCCAAACCCTGGATTTCT GCCACATCCAACCTGGCTTCT W Y Q Q K P G S S P K P N I S A T S N L A S

CAGCAGTGGAGTAGTAACCCACCCACG TTCGGAGGGGGGACCATGCTGGAAATAAGA SEQ ID NO. 89 Q Q W S S N P P T F G G G T M L E I R SEQ ID NO. 89

REGIONS UNDERLINED



FIG. 13



COMMON UNIQUE RESTRICTION SITES SHOWN

FIG. 14



FIG. 15



FIG. 16

OPSONIC ACTIVITY OF HUMAB 96-110 FOR S.EPIDERMIDIS IN A NEUTROPHIL MEDIATED OPSONOPHAGOCYTIC BACTERICIDAL ASSAY USING HUMAN COMPLEMENT



PERCENT BACTERIA KILLED (2HRS)

C- BARB-EX (1:4), HUMAN PMN-HUMAN BACTERIA-S.EPIDERMIDIS (STRAIN HAY)

F/G. 17

PILOT STUDY TO COMPARE THE EFFECT OF MOUSE MAB 96-110 AND HUMAB 96-110 IN A LETHAL MODEL OF S. EPIDERMIDIS SEPSIS



MAB DOSE: 14 mg/kg GIVEN IP, 24 AND 1 HOUR PRIOR TO INFECTION

FIG. 18

SURVIVAL OF CF-1 MICE AFTER INTRAPERITONEAL CHALLENGE WITH 3x10<sup>9</sup> S. EPIDERMIDIS (HAY)



18 mg/kg/DOSE, IP, 24 AND 1 HOUR PRIOR TO INFECTION

FIG. 19

### EFFECT OF HUMAB 96-110 ON BACTEREMIA IN A LETHAL S. EPIDERMIDIS SEPSIS MODEL

# **GEOMETRIC MEAN BACTEREMIA LEVEL**

| 7 × 10 <sup>3</sup>   | 1.7 × 10 <sup>1</sup> | 18 HRS |
|-----------------------|-----------------------|--------|
| 5.2 × 10 <sup>4</sup> | 2.1 × 10 <sup>1</sup> | 12 HRS |
| 7.2 × 10 <sup>4</sup> | 7.5 x 10 <sup>2</sup> | 8 HRS  |
| $6.5 \times 10^4$     | 3 × 10 <sup>2</sup>   | 4 HRS  |
| SALINE<br>PLACEBO     | HuMAB<br>96-110       |        |

## TIME POST INFECTION

HuMAB 96-110 18 mg/kg DOSE OR SALINE GIVEN IP, 24 AND 1 HOUR PRIOR TO IP INFECTION WITH 3 x 10<sup>9</sup> S. EPIDERMIDES (HAY)

### F/G. 20

BACTEREMIA LEVELS 4 HRS AFTER INFECTION WITH 3 x 109 S.EPIDERMIDIS\*



HuMAB 96-110/DOSE

\* CF-1 MICE INFECTED IP WITH STRAIN HAY-HuMAB GIVEN IP x 2

FIG. 21

THE EFFECT OF Hu 96-110 ON SURVIVAL IN A LETHAL NEONATAL S.EPIDERMIDIS\* SEPSIS MODEL: STUDY II



FIG. 22