Question	Scheme	Marks
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\sin 2x + 2\mathrm{e}^{3x}\cos 2x$	
	dx	M1A1A1
	Method A	
	$\frac{d^2 y}{dx^2} = 3(3e^{3x}\sin 2x + 2e^{3x}\cos 2x) + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 6\mathrm{e}^{3x}\cos 2x - 4y$	M1
	$2e^{3x}\cos 2x = \frac{dy}{dx} - 3y \Rightarrow 6e^{3x}\cos 2x = 3\frac{dy}{dx} - 9y$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 9y - 4y \Rightarrow 13y + \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1 [8]
	Method B	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3y + 2\mathrm{e}^{3x}\cos 2x$	
	$\frac{d^2y}{dx^2} = 3\frac{dy}{dx} + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x, \frac{d^2y}{dx^2} = 3\frac{dy}{dx} + 6e^{3x}\cos 2x - 4y$	[M1,M1
	$2e^{3x}\cos 2x = \frac{dy}{dx} - 3y \Rightarrow 6e^{3x}\cos 2x = 3\frac{dy}{dx} - 9y$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 9y - 4y \Rightarrow 13y + \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\frac{\mathrm{d}y}{\mathrm{d}x}$	M1A1]
	Method C	_
	$\frac{d^2y}{dx^2} = 3(3e^{3x}\sin 2x + 2e^{3x}\cos 2x) + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x$	[M1
	$13y + \frac{d^2y}{dx^2} = 13e^{3x}\sin 2x + (5e^{3x}\sin 2x + 12e^{3x}\cos 2x)$	M1
	$6 \frac{dy}{dx} = 6(3e^{3x} \sin 2x + 2e^{3x} \cos 2x)$	M1
	$(= 18e^{3x} \sin 2x + 12e^{3x} \cos 2x)$	
	$LHS = 13e^{3x} \sin 2x + (5e^{3x} \sin 2x + 12e^{3x} \cos 2x)$ $= 18e^{3x} \sin 2x + 12e^{3x} \cos 2x$	M1A1]
	$RHS = 6(3e^{3x}\sin 2x + 2e^{3x}\cos 2x)$	
	$= 18e^{3x} \sin 2x + 12e^{3x} \cos 2x$	
	LHS = RHS	
Total 8 mai		

Questio	Notes	Marks
n		
3	$y = e^{3x} \sin 2x$	
	For an attempt to differentiate the given expression.	

terms. $e^{3x} \sin 2x \rightarrow ke^{3x} \sin 2x + le^{3x} \cos 2x$ with $k, l \neq 0$ • There need to be two terms added.	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\sin 2x + 2\mathrm{e}^{3x}\cos 2x$	
uλ	
One term completely correct.	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\sin 2x + 2\mathrm{e}^{3x}\cos 2x$	
or	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3e^{3x}\sin 2x + 2e^{3x}\cos 2x$	-
Fully correct differentiated expression.	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\sin 2x + 2\mathrm{e}^{3x}\cos 2x$	
Method A	
For an attempt to find $\frac{d^2y}{dx^2}$	
Minimally acceptable attempt is $ke^{3x} \sin 2x + le^{3x} \cos 2x \rightarrow$	
$k(me^{3x}\sin 2x + ne^{3x}\cos 2x) + l(pe^{3x}\cos 2x + qe^{3x}\sin 2x)$]
k, l as in their first derivative, $m, n, p, q \neq 0$	
$\frac{d^2y}{dx^2} = 3(3e^{3x}\sin 2x + 2e^{3x}\cos 2x) + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x$	
For substituting y and $\frac{dy}{dx}$ into their $\frac{d^2y}{dx^2}$	
•	
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 6\mathrm{e}^{3x}\cos 2x - 4y$]
For preparing to eliminate $\cos 2x$ by rearranging their $\frac{dy}{dx}$	
$2e^{3x}\cos 2x = \frac{dy}{dx} - 3y \Rightarrow 6e^{3x}\cos 2x = 3\frac{dy}{dx} - 9y$	
Allow errors in arithmetic but not mathematically incorrect	
process.	
For an unsimplified expression only in terms of y, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$	
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 9y - 4y$	
For the required simplified expression with fully correct working.	1
$13y + \frac{d^2y}{dx^2} = 6\frac{dy}{dx}$	
Method B For an attempt to find $\frac{d^2y}{dx^2}$ using $\frac{dy}{dx} = 3y + 2e^{3x}\cos 2x$	
a .	1

	Minimally acceptable attempt is $\frac{dy}{dx}$	$= ky + le^{3x}\cos 2x \to$	M1,M	
	2			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = k \frac{\mathrm{d}y}{\mathrm{d}x} + l(pe^{3x}\cos 2x + qe^{3x}\sin 2x)$			
	k, l as in their first derivative, $p, q \neq 0$			
	$\frac{d^2y}{dx^2} = 3\frac{dy}{dx} + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x$	x , $\frac{d^2y}{dx^2} = 3\frac{dy}{dx} + 6e^{3x}\cos 2x - 4y$		
	For preparing to eliminate $\cos 2x$ by rearranging their $\frac{dy}{dx}$			
	$2e^{3x}\cos 2x = \frac{dy}{dx} - 3y \Rightarrow 6e^{3x}\cos 2x = 3\frac{dy}{dx} - 9y$			
	Allow errors in arithmetic but not mathematically incorrect			
	process.			
	For an unsimplified expression only in terms of y, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\frac{\mathrm{d}y}{\mathrm{d}x} + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 9y - 4y$			
	For the required simplified expressi	ion with fully correct working.		
	$13y + \frac{d^2y}{dx^2} = 6\frac{dy}{dx}$			
	Method C			
	For an attempt to find $\frac{d^2y}{dx^2}$			
	Minimally acceptable attempt is ke	$^{3x}\sin 2x + le^{3x}\cos 2x \rightarrow$		
	$k(me^{3x}\sin 2x + ne^{3x}\cos 2x) + le$	$(pe^{3x}\cos 2x + qe^{3x}\sin 2x)$	M1	
	k, l as in their first derivative, m , n ,	$p, q \neq 0$		
	$\frac{d^2 y}{dx^2} = 3\left(3e^{3x}\sin 2x + 2e^{3x}\cos 2x\right) + 6e^{3x}\cos 2x - 4e^{3x}\sin 2x$			
	For substituting y and $\frac{d^2y}{dx^2}$ into the LHS of the result.		M1	
	For substituting $\frac{dy}{dx}$ into the RHS	For simplifying the LHS of	M1	
	of the result.	the result and writing as		
	For unsimplified expressions for	$k(3e^{3x}\sin 2x + 2e^{3x}\cos 2x)$	M1	
	the LHS and RHS of the result in			
	terms of $e^{3x} \sin 2x$ and			
	$e^{3x}\cos 2x$ only and method to			
	simplify both sides			
For correctly simplifying the LHS and RHS and showing equal.				
Total 8 mark				
· · · · · · · · · · · · · · · · · · ·				