Asymptotic Analysis of Expressions Basic Problems 2: Homework

Mpangi Erick Musungu

April 7, 2025

E1: Graphical Representation of Expressions

We analyze the following expressions in terms of Θ -order and display their graphical growth. Expressions:

- 1. $n \log n$
- 2. n^{-1}
- 3. $\log n$
- 4. $n^{\log n}$
- 5. $10n + n^{3/2}$
- 6. π^n
- 7. 2^n
- 8. $2^{\log n}$
- 9. $2^{\log^2 n}$
- 10. $\log n!$

Figure 1: Graphical comparison of n \log n.

Figure 2: Graphical comparison of n^{-1} .

Figure 3: Graphical comparison of log n.

Figure 4: Graphical comparison of n^{logn} .

Figure 5: Graphical comparison of $10n + n^{3/2}$.

Figure 6: Graphical comparison of π^n .

Figure 7: Graphical comparison of 2^n .

Figure 8: Graphical comparison of 2^{logn} .

Figure 9: Graphical comparison of $2^{2^{logn}}$.

Figure 10: Graphical comparison of $log\ n!$.

Note: $\log n!$ is approximated using Stirling's approximation: $\log n! \approx n \log n - n$.

Figure 11: Graphical comparison of E1 expressions.

E2: Ordering Expressions by Θ -Growth

We have:

- 1. 2^{2^n}
- 2. 2^{n^2}
- 3. $n^2 log n$
- 4. n
- 5. n^{2n}

Increasing Order of Growth

By asymptotic comparison, the increasing order of growth is:

$$n \prec n^{2\log n} \prec 2^n \prec 2^{n^2} \prec n^{2n}$$

Graphical Representation

Figure 12: Graphical growth comparison of 2^{2^n} .

Figure 13: Graphical growth comparison of 2^{n^2} .

Figure 14: Graphical growth comparison of $n^2 \log n$.

Figure 15: Graphical growth comparison of n.

Figure 16: Graphical growth comparison of n^{2n} .

Figure 17: Graphical growth comparison of E2 expressions.

Conclusion

This document illustrates the visual comparison of various functions used in asymptotic analysis. The plots support our theoretical growth comparisons using Θ -notation.