Stopping Times and Optional Sampling

MF 790 Stochastic Calculus

Outline

Stopping Times

· Stopping Time σ -algebra.

· Stopped Process.

Optional Sampling Theorem

Stopping Times: Motivation

- · When investing, we often make decisions at times which are not deterministic.
 - E.g.: we sell the stock when the share price reaches 100.
 - E.g.: we refinance our mortgage when mortgage rates fall to a new 5 year low.
- · Making decisions at "random times" is natural.
 - What sounds more reasonable?
 - · "I will sell the stock on Friday, July 15th 2022 at 3:00 PM."
 - · "I will sell the stock when the price reaches a six month high."
- We must understand how to use these random times in our models.

Random Times

- Fix (Ω, \mathcal{F}) . A <u>random time</u> τ is a non-negative random variable which might take the value ∞ .
 - $\cdot \ \tau : \Omega \to [0, \infty]$ is \mathcal{F} measurable.
- · We interpret $\tau(\omega)$ as the time that some event occurs in scenario ω .
 - $\tau(\omega) = \infty$ corresponds to the event never occurring.
- Examples (W is Brownian motion)
 - $\cdot \ \tau(\omega) = \inf[t \mid W_t(\omega) = 2].$
 - $\cdot \ \tau(\omega) = \sup \left[t \mid e^{W_t(\omega)-t} = 3\right].$

Stopping Times

- Suppose we have an information flow \mathbb{F} , and fix a (non-random) time $t \geq 0$.
- Question: can we know if τ occurred by t using our information at t?
 - E.g. $\mathbb{F} = \mathbb{F}^W$ and $\tau(\omega) = \inf[t \mid W_t(\omega) = 2]$.
 - At t, do we know if W has reached 2 or not? YES.
 - E.g. $\mathbb{F} = \mathbb{F}^W$ and $\tau(\omega) = \sup [t \mid e^{W_t(\omega)-t} = 3]$.
 - · At t, do we know that at no later time u, $W_u = u + \log(3)$? NO.
- It is NOT always possible to know if a random time has occurred by t given our information at t.

Stopping Times

- A random time τ is a \mathbb{F} stopping time if for each t we know if τ has occurred by t, given our info at t.
 - · Mathematically: $\{\omega \mid \tau(\omega) \leq t\} \in \mathcal{F}_t$ for all $t \geq 0$.
 - · We say τ is a "stopping time" if the filtration is clear.
- Example: a non-random time. $\tau(\omega) = t_0$ for all ω .

$$\{ au \leq t\} = egin{cases} \Omega & t_0 \leq t \ \emptyset & t_0 > t \end{cases}$$
 and Ω, \emptyset are in every σ -algebra.

Hitting Times

- Fix (Ω, \mathcal{F}) , \mathbb{F} and let X be an adapted process with continuous sample paths.
- \cdot A hitting time for X is a random time of the form
 - $\cdot \ \tau(\omega) = \inf[t \mid X_t(\omega) = \lambda] \text{ for some level } \lambda.$
- Examples:
 - · First time a Brownian motion reaches -2.
 - First time a geometric Brownian motion reaches 1.

Hitting Times

- · Claim: for adapted X with continuous paths, hitting times are stopping times.
 - · For $\tau = \inf[t \mid X_t = \lambda]$ we have $\{\tau \leq t\} \in \mathcal{F}_t, t \geq 0$.
- Proof:
 - $\{\tau \le 0\} = \{\tau = 0\} = \{X_0 = \lambda\} \in \mathcal{F}_0 \text{ as } X \text{ is adapted.}$
 - · Set Q as the rational numbers. For t > 0 we claim

$$\cdot \{\tau \leq t\} = \bigcap_{n=1}^{\infty} \bigcup_{q \in Q, q \leq t} \{\lambda - \frac{1}{n} < X_q < \lambda + \frac{1}{n}\}.$$

- · If we believe this, then $\{\tau \leq t\} \in \mathcal{F}_t$, and we are done.
 - · By adaptivity $\left\{\lambda \frac{1}{n} < X_q < \lambda + \frac{1}{n}\right\} \in \mathcal{F}_q \subseteq \mathcal{F}_t$ as $q \leq t$.
 - As the rational numbers are countable, $\{\tau \leq t\}$ is a countable intersection of a countable union of events in \mathcal{F}_t , hence in \mathcal{F}_t .

$$\left\{\tau \leq t\right\} = A := \bigcap_{n=1}^{\infty} \bigcup_{q \in Q, q \leq t} \left\{\lambda - \frac{1}{n} < X_q < \lambda + \frac{1}{n}\right\}$$

- Assume $\omega \in \{\tau \leq t\}$. By continuity of X and the density of the rationals.
 - · There is some $s \leq t$ such that $X_s(\omega) = \lambda$.
 - For each n, there are $0 \le a_n < s < b_n \le t$ such that $\lambda \frac{1}{n} < X_r(\omega) < \lambda + \frac{1}{n}$ for all $r \in (a_n, b_n)$.
 - · There is some rational $q_n \in (a_n, b_n)$.
 - · Thus, $\forall n, \exists q_n \text{ s.t. } \omega \in \{\lambda \frac{1}{n} < X_{q_n} < \lambda + \frac{1}{n}\}$
- Thus, $\omega \in A$ and $\{\tau \leq t\} \subseteq A$.

$$\left\{\tau \leq t\right\} = A := \bigcap_{n=1}^{\infty} \bigcup_{q \in Q, q \leq t} \left\{\lambda - \frac{1}{n} < X_q < \lambda + \frac{1}{n}\right\}$$

- Assume $\omega \in A$, and for each n take a rational q_n such that $\lambda \frac{1}{n} < X_{q_n}(\omega) < \lambda + \frac{1}{n}$.
 - $\{q_n\}_n$ is a collection of times in [0, t] which is compact. Thus, (up to a subsequence) $q_n \to q \in [0, T]$.
 - · By continuity $X_{q_n}(\omega) \to X_q(\omega)$.
 - · This implies $X_q(\omega) = \lambda$ for some $q \leq T$.
- Thus, $\omega \in \{\tau \leq t\}$ and $A \subseteq \{\tau \leq t\}$.

Stopping Time σ -algebra

- · The σ algebra associated to a stopping time au is
 - $\cdot \ \mathcal{F}_{\tau} := \{ A \in \mathcal{F} \mid A \cap \{ \tau \leq t \} \in \mathcal{F}_{t}, \forall \ t \geq 0 \}.$
- · Qualitatively,
 - · $A \in \mathcal{F}_{\tau}$ if and only if, when we restrict ourselves from Ω to A, it is still possible, for every $t \geq 0$, to know if τ occurred by t given our information \mathcal{F}_t at t.
- · By definition, $\Omega \in \mathcal{F}_{\tau}$ and trivially $\emptyset \in \mathcal{F}_{\tau}$.
 - · One can show \mathcal{F}_{τ} is closed under complementation and countable unions as well.
 - \cdot $\mathcal{F}_{ au}$ is a σ -algebra.

The Stopped Process

- · Let X be adapted, and τ a stopping time.
 - · Not necessarily a hitting time of X.
- · X_{τ} is the random variable $X_{\tau(\omega)}(\omega)$.
 - · I.e. $X_{\tau} = X_1(\omega)$ if $\tau(\omega) = 1$. $X_{\tau} = X_3(\omega)$ if $\tau(\omega) = 3$.
- · The stopped process $X^{\tau} = \{X_t^{\tau}\}_{t \geq 0}$ is defined by
 - $\cdot X_t^{\tau}(\omega) := X_{t \wedge \tau(\omega)}(\omega).$
 - · Notation: $a \wedge b = \min[a, b]$.
 - · I.e. $X^{\tau} = X$ up until τ , X^{τ} is "stuck" at X_{τ} afterwards.

The Stopped Process

Optional Sampling Theorem (OST)

- · Recall the martingale property.
 - M is martingale if $\mathbb{E}\left[M_t\big|\mathcal{F}_s\right]=M_s$ with probability one for all $0\leq s\leq t$.
- The OST says that we may replace $s \le t$ above with two (bounded) stopping times $\sigma \le \tau$.
 - · We say a stopping time τ is bounded if there is some K > 0 such that $\mathbb{P}\left[\tau \leq K\right] = 1$.

Optional Sampling Theorem (OST)

- Theorem: let M be a martingale, and σ, τ be two bounded stopping times s.t. $\mathbb{P}\left[\sigma \leq \tau\right] = 1$. Then
 - $\cdot \ \mathbb{E}\left[M_{\tau}\big|\mathcal{F}_{\sigma}\right] = M_{\sigma}$ with probability one.
- Idea behind the result.

· Assume
$$\sigma(\omega) = \begin{cases} 1 & \omega \in E \\ 2 & \omega \in E^c \end{cases}$$
, $\tau(\omega) = \begin{cases} 2 & \omega \in F \\ 3 & \omega \in F^c \end{cases}$.

- σ, τ stopping times provided $E \in \mathcal{F}_1$ and $F \in \mathcal{F}_2$.
- · Claim: M_{σ} is \mathcal{F}_{σ} measurable.

$$egin{aligned} igltarrow \{ extit{$M_{\sigma} \leq \lambda$} \} \cap \{ \sigma \leq t \} = egin{cases} \emptyset \in \mathcal{F}_t & 0 \leq t < 1 \ \{ extit{$M_1 \leq \lambda$} \} \cap E \in \mathcal{F}_1 \subseteq \mathcal{F}_t & 1 \leq t < 2. \ \{ extit{$M_2 \leq \lambda$} \} \cap E^c \in \mathcal{F}_2 \subseteq \mathcal{F}_t & 2 \leq t \end{cases} \end{aligned}$$

$$\mathbb{E}\left[M_{ au}\middle|\mathcal{F}_{\sigma}
ight]=M_{\sigma},\ M_{\sigma}\ ext{is}\ \mathcal{F}_{\sigma}\ ext{mbl}$$

· We need only verify $\mathbb{E}\left[M_{\tau}1_{A}\right]=\mathbb{E}\left[M_{\sigma}1_{A}\right]$ for $A\in\mathcal{F}_{\sigma}$.

$$\begin{split} \mathbb{E}\left[M_{\tau}1_{A}\right] &= \mathbb{E}\left[(M_{2}1_{F} + M_{3}1_{F^{c}})1_{A}(1_{\sigma=1} + 1_{\sigma=2})\right], \\ &\stackrel{(1)}{=} \mathbb{E}\left[M_{2}1_{F}1_{A}(1_{\sigma=1} + 1_{\sigma=2}) + 1_{F^{c}}1_{A}(1_{\sigma=1} + 1_{\sigma=2})\mathbb{E}\left[M_{3}\big|\mathcal{F}_{2}\right]\right], \\ &\stackrel{(2)}{=} \mathbb{E}\left[M_{2}1_{A}1_{\sigma=1} + M_{2}1_{A}1_{\sigma=2}\right], \\ &\stackrel{(3)}{=} \mathbb{E}\left[M_{1}1_{A}1_{\sigma=1} + M_{2}1_{A}1_{\sigma=2}\right], \\ &= \mathbb{E}\left[M_{\sigma}1_{A}\right] \end{split}$$

- · (1): $F^c \in \mathcal{F}_2$, $\underbrace{A \cap \{\sigma = 1\} \in \mathcal{F}_1}_{\text{b/c}}$, $\underbrace{A \cap \{\sigma = 2\}}_{\text{b/c}} \in \mathcal{F}_2$, TOWER, TOWK.
- \cdot (2): M is a martingale, collecting terms.
- · (3): $A \cap \{\sigma = 1\} \in \mathcal{F}_1$, TOWER/TOWK, M is a martingale.

OST Notes

- · We proved OST when σ, τ take 2 values.
 - Extension to when σ, τ take a finite number of values follows arguments very similar to what we did.
 - · But, notationally more complex.
- Extension to general bounded stopping times is very technical.
- Extension to unbounded stopping times requires additional assumptions.
 - E.g. if $\tau = \infty$ what is M_{τ} ?

Consequences of OST

- Consequences of OST
 - For a martingale M and bounded stopping time τ , the stopped process M^{τ} is a Martingale.
 - · OST gives $\mathbb{E}\left[M_t^{\tau}\middle|\mathcal{F}_{\tau\wedge s}\right] = \mathbb{E}\left[M_{\tau\wedge t}\middle|\mathcal{F}_{\tau\wedge s}\right] = M_{\tau\wedge s} = M_s^{\tau}$.
 - · One can use this to extend to $\mathbb{E}\left[M_t^{\tau}\big|\mathcal{F}_s\right]=M_s^{\tau}$.
 - · For a martingale M and bounded stopping time τ we have
 - $\cdot \ \mathbb{E}\left[M_{ au}\right] = M_0 \text{ (OST with } \sigma \equiv 0$)
 - · Application: $\mathbb{E}^{\mathbb{Q}}\left[D_{\tau\wedge T}V_{\tau\wedge T}\right]=V_0$ for any stopping time.