Syntax Analysis

Uday Khedker (www.cse.iitb.ac.in/~uday)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

February 2024

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Outline

- Grammars, derivations, and parse trees
- Introduction to bottom-up parsing
- Shift reduce parsing
- SLR(1) parsing
- Conceptual issues in LR parsing
- CLR(1) parsing
- LALR(1) parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

IIT Bombay cs302: Implementation

of Programming Languages

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

Grammars, derivations, and parse trees

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

Introduction to Parsing

 $parsing\hbox{-}slides\hbox{-}sanyal\hbox{-}part1.pdf$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

A Compiler Front End

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Syntax Analysis aka Parsing

- Determines a structure in the input by discovering relationships between tokens representing the input
- This structure is represented by a syntax tree (aka parse tree)
- If a parse tree can be constructed, the input is *syntactically* valid i.e., it is *well-formed* as defined by the language

It may not be semantically valid

- A description of syntax should be
 - o unambiguous, correct, complete, and
 - o convenient for use by the designers and implementers of a language

A Context-free grammar (aka grammar) meets these requirements

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Derivation

- Transformation of a sequence of grammar symbols
- Obtained by replacing non-terminals by the RHS of a production

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Derivation

- Transformation of a sequence of grammar symbols
- Obtained by replacing non-terminals by the RHS of a production
- Consider the following grammar of expressions

$$E\!\to E\!+\!T\mid T$$

$$T \rightarrow T * F \mid F$$
 $F \rightarrow id$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Derivation

- Transformation of a sequence of grammar symbols
- Obtained by replacing non-terminals by the RHS of a production
- Consider the following grammar of expressions

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow id$

A possible derivation is

$$E \Rightarrow E + T$$

$$\Rightarrow T + T$$

$$\Rightarrow F + T$$

$$\Rightarrow id + T$$

$$\Rightarrow id + T * F$$

$$\Rightarrow id + id * F$$

$$\Rightarrow id + id * id$$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Notational Conventions

Symbol type	Convention
single terminal	letters a, b, c, operators
	delimiters, keywords
single nonterminal	letters A , B , C and $\frac{1}{1}$
	such as <i>declaration</i> , list
	and S is the start symbol
single grammar symbol	X, Y, Z
(symbol from $\{N \cup T\}$)	
string of terminals	letters x , y , z
string of grammar symbols	$lpha$, eta , γ
null string	ϵ

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsin

Formalizing a Derivation

- Let $A \rightarrow \gamma$ denote a production and $\alpha A \beta$ denote a string of grammar symbols
- Replacing A in $\alpha A\beta$ by γ gives $\alpha \gamma \beta$
 - \circ We say that $\alpha A\beta$ derives $\alpha \gamma \beta$ in one step
 - We write it as $\alpha A\beta \Rightarrow \alpha \gamma \beta$
 - o It represents the expansion of a subtree during parsing

- Formally $\alpha_1 \Rightarrow \alpha_2$ is a relation $(N \cup T)^* \times (N \cup T)^*$
- A multi-step derivation is a composition of multiple single step derivations
 - $\circ \ \alpha_1 \stackrel{*}{\Rightarrow} \alpha_2$ means α_1 derives α_2 in zero or more steps
 - $\circ \ \alpha_1 \stackrel{+}{\Rightarrow} \alpha_2$ means α_1 derives α_2 in one or more steps

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

The Language Generated by a Grammar

- $L(G) = \{ w \mid S \stackrel{+}{\Rightarrow} w, w \in T^* \}$, where
 - \circ S is the start non-terminal of grammar G, and
 - T is the set of terminal symbols of G
- The strings in L(G) are called the sentences of G
- A string $S \stackrel{*}{\Rightarrow} \alpha$ is called a sentential form of G
- Every sentence of G is also a sentential form of G
- Grammars G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Sentential Forms and Sentences

$$\begin{array}{|c|c|c|c|c|}\hline G_1 & E \to E + T \mid T \\ & T \to T * F \mid F \\ & F \to \operatorname{id} \end{array} \qquad \begin{array}{|c|c|c|}\hline G_2 & E \to E + E \\ & E \to E * E \\ & E \to \operatorname{id} \end{array}$$

- $L(G_1) = L(G_2)$
- $\{id + id * id, id * id + id\} \subset L(G_1)$ (and hence, also of $L(G_2)$)
- E + T. F + E. id + T * F are sentential forms of G_1 but not of G_2
- E + E. E * E. id + E * E are sentential forms of G_2 but not of G_1

Sentential forms depend on the grammars whereas the sentences depend on the languages generated by grammars

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Leftmost and Rightmost Derivations

- A derivation $\alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_k$ is a
 - o leftmost derivation, denoted $\alpha_1 \stackrel{lm}{\Rightarrow} \alpha_2 \stackrel{lm}{\Rightarrow} \dots \stackrel{lm}{\Rightarrow} \alpha_k$, if

 every α_{i+1} is obtained from α_i by replacing the leftmost non-terminal occurring in α_i by the RHS of some production of the non-terminal
 - o rightmost derivation, denoted $\alpha_1 \stackrel{rm}{\Rightarrow} \alpha_2 \stackrel{rm}{\Rightarrow} \dots \stackrel{rm}{\Rightarrow} \alpha_k$, if every α_{i+1} is obtained from α_i by replacing the rightmost non-terminal occurring in α_i by the RHS of some production of the non-terminal
- A sentential form α is called
 - o a left sentential form, if it occurs in a leftmost derivation
 - o a right sentential form, if it occurs in a rightmost derivation

Note that α could be both a right and a left sentential form

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsir

Leftmost and Rightmost Derivations

Grammar
$$\begin{array}{|c|c|} \hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \operatorname{id} \end{array}$$

Sentence: id + id * id

	Leftmost Derivation	Rightmost Derivation
Ε		

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsir

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Leftmost and Rightmost Derivations

Grammar
$$\begin{array}{|c|c|} \hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \operatorname{id} \end{array}$$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Leftmost and Rightmost Derivations

Grammar
$$\begin{array}{|c|c|} \hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \mathrm{id} \end{array}$$

Sentence: id + id * id

Leftmost Derivation

$$E \stackrel{lm}{\Rightarrow} E + T$$
$$\stackrel{lm}{\Rightarrow} T + T$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsin

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation Rightmost Derivation $F \stackrel{lm}{\Rightarrow} E + T$ $\stackrel{lm}{\Rightarrow} T + T$ $\stackrel{lm}{\Rightarrow} F + T$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation	Rightmost Derivation
$E \stackrel{lm}{\Rightarrow} E + T$ $\stackrel{lm}{\Rightarrow} T + T$ $\stackrel{lm}{\Rightarrow} F + T$ $\stackrel{lm}{\Rightarrow} id + T$ E $+$ T I F I	

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

 $\stackrel{lm}{\Rightarrow}$ id + T

 $\stackrel{lm}{\Rightarrow} id + T * F$ $\stackrel{lm}{\Rightarrow} id + F * F$

 $\stackrel{lm}{\Rightarrow}$ id + id * F

 $\stackrel{lm}{\Rightarrow}$ id + id * id

Sentence: id + id * id

Leftmost Derivation

$E \stackrel{lm}{\Rightarrow} E + T$ $\stackrel{lm}{\Rightarrow} T + T$ $\stackrel{lm}{\Rightarrow} F + T$ E + T

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

$E \stackrel{lm}{\Rightarrow} E + T$ $\stackrel{lm}{\Rightarrow} T + T$ $\stackrel{lm}{\Rightarrow} F + T$ $\stackrel{lm}{\Rightarrow} id + T$ $\stackrel{lm}{\Rightarrow} id + T * F$ $\stackrel{lm}{\Rightarrow} id + F * F$ F = F

id

id

 $\stackrel{lm}{\Rightarrow}$ id + id * F

 $\stackrel{lm}{\Rightarrow}$ id + id * id

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

 $F \stackrel{lm}{\Rightarrow} F + T$

 $\stackrel{lm}{\Rightarrow} T + T$

 $\stackrel{lm}{\Rightarrow} F + T$

 $\stackrel{lm}{\Rightarrow}$ id + T

 $\stackrel{lm}{\Rightarrow}$ id + T * F

 $\stackrel{lm}{\Rightarrow}$ id + F * F

 $\stackrel{lm}{\Rightarrow}$ id + id * F

 $\stackrel{lm}{\Rightarrow}$ id + id * id

Sentence: id + id * id

Leftmost Derivation

id

id

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Leftmost and Rightmost Derivations

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Leftmost Derivation

$E \stackrel{lm}{\Rightarrow} E + T \qquad \qquad E$ $\stackrel{lm}{\swarrow} T + T \qquad \qquad / \mid \searrow$

 $\begin{array}{c}
\stackrel{lm}{\Rightarrow} T + T \\
\stackrel{lm}{\Rightarrow} F + T \\
\stackrel{lm}{\Rightarrow} id + T \\
\stackrel{lm}{\Rightarrow} id + T * F \\
\stackrel{lm}{\Rightarrow} id + F * F \\
\stackrel{lm}{\Rightarrow} id + id * F
\end{array}$ $\begin{array}{c}
\stackrel{lm}{\Rightarrow} id + id * id \\
\stackrel{lm}{\Rightarrow} id + id * id$ $\begin{array}{c}
\stackrel{lm}{\Rightarrow} id + id * id \\
\stackrel{lm}{\Rightarrow} id + id * id$

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Derivations and Sentences

$$\begin{array}{|c|c|c|c|}\hline G_1 & E \to E + T \mid T \\ T \to T * F \mid F \\ F \to \text{id} & & & & E \to E + E \\ \hline G_2 & E \to E + E \\ E \to E * E \\ E \to \text{id} & & & & & & & & & & & & & \\ \hline \end{array}$$

$$G_2 \begin{tabular}{|c|c|c|c|c|}\hline E \rightarrow E + E \\ E \rightarrow E * E \\ E \rightarrow \text{id} \\ \hline \end{tabular}$$

- Although $L(G_1) = L(G_2)$,
 - o G₁ has a unique leftmost(rightmost) derivation for every sentence
 - G_2 admits multiple leftmost(rightmost) derivations for some sentences
- For sentence id + id * id, G_2 admits the following two leftmost derivations

○
$$E \stackrel{lm}{\Rightarrow} E + E \stackrel{lm}{\Rightarrow} id + E \stackrel{lm}{\Rightarrow} id + E * E \stackrel{lm}{\Rightarrow} id + id * E \stackrel{lm}{\Rightarrow} id + id * id$$
This derivation represents the grouping $id + (id * id)$

○
$$E \stackrel{lm}{\Rightarrow} E * E \stackrel{lm}{\Rightarrow} E + E * E \stackrel{lm}{\Rightarrow} id + E * E \stackrel{lm}{\Rightarrow} id + id * E \stackrel{lm}{\Rightarrow} id + id * id$$
This derivation represents the grouping (id + id) * id

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Ambiguous Grammars

- A grammar G is ambiguous, if L(G) contains a sentence for which there are
 - multiple parse tress, or equivalently
 - multiple leftmost derivations, or equivalently
 - o multiple rightmost derivations
- ullet Between the two expressions grammars, G_1 is unambiguous, G_2 is ambiguous

$$G_1 \begin{tabular}{|c|c|c|c|c|}\hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \mathsf{id} \end{tabular}$$

$$E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow id$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

Ambiguity in Expressions Grammar

Grammar

Input

 $E \rightarrow E + E$ $E \rightarrow E * E$

 $E \rightarrow id$

id + id * id

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Ambiguity in Expressions Grammar

Grammar

Input

$$E \rightarrow E + E$$

 $F \rightarrow F * F$

$$id + id * id$$

$$extit{E}
ightarrow ext{id}$$

$$E \stackrel{lm}{\Rightarrow} E + E$$

$$\overset{\mathit{lm}}{\Rightarrow} \mathsf{id} + \mathit{E}$$

$$\stackrel{\textit{Im}}{\Rightarrow} \mathsf{id} + \textit{E} * \textit{E}$$

$$\stackrel{lm}{\Rightarrow}$$
 id + id * E

$$\stackrel{lm}{\Rightarrow}$$
 id + id * id

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Ambiguity in Expressions Grammar

Grammar

Input

$$E\rightarrow E+E$$

$$id + id * id$$

 $E \rightarrow E * E$ $E \rightarrow id$

Language Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsii

Ambiguity in Expressions Grammar

Grammar

Input

$$E \rightarrow E + E$$

 $E \rightarrow id$

 $E \rightarrow E * E$

id + id * id

$$E \stackrel{lm}{\Rightarrow} E * E$$

$$\stackrel{lm}{\Rightarrow} E + E * E$$

$$\stackrel{lm}{\Rightarrow} id + E * E$$

$$\stackrel{lm}{\Rightarrow} id + id * E$$

$$\stackrel{lm}{\Rightarrow} id + id * id$$

Languages

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Pars

Ambiguity in Expressions Grammar

Grammar

Input

$$E \rightarrow E + E$$

id + id * id

 $E \rightarrow E * E$ $E \rightarrow id$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Disambiguating Expressions Grammar

 Option 1: Choose the right derivation during parsing Specify the following in the yacc script

- Give higher precedence to * than +
- Make both + and * as left-associative
- Option 2: Rewrite the grammar to use the same rules as above

$$\begin{array}{c|c}
E \to E + T \mid T \\
T \to T * F \mid F \\
F \to \text{id}
\end{array}$$

- \circ Since "*" is buried inside T, rule $E \to E + T$ gives higher precedence to "*"
- \circ Since rule $E \to E + T$ is left-recursive, it makes "+", left-associative
 - \circ Since rule T o T * F is left-recursive, it makes "*", left-associative

Left recursion: When a non-terminal appears as the leftmost symbol in one of its own production rules. For example, in E -> E + T, the non-terminal E appears at the leftmost position on the right side. Right recursion: When a non-terminal appears as the rightmost symbol in one of its own production rules. For example, a rule like E -> T + E would be right-recursive.

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Ambiguity in IF-ELSE Grammar

$$S \rightarrow \mathbf{if} (E) S \mathbf{else} S$$

 $S \rightarrow \mathbf{if} (E) S$ $S \rightarrow \mathbf{id} = E$ **Consider Sentence**

if
$$(x)$$
 if (y) $x = y$ else $y = x$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Disambiguating IF-ELSE Grammar

Common rule followed by programming languages
 Every else must belong to the closest unmatched if

Option 1: Give higher precedence to else than ")"
 Question: What associativities should we use?

Option 2: Rewrite the grammar by defining matchedIF and unmatchedIF statements

 $\begin{array}{c} \mathcal{S} \rightarrow \mathsf{matchedIF} \mid \mathsf{unmatchedIF} \mid \mathsf{id} = E \\ \mathsf{matchedIF} \rightarrow \mathbf{if} \ (E) \ \mathsf{matchedIF} \ \mathsf{else} \ \mathsf{matchedIF} \\ \mathsf{unmatchedIF} \rightarrow \mathbf{if} \ (E) \ \mathcal{S} \\ \mathsf{unmatchedIF} \rightarrow \mathbf{if} \ (E) \ \mathsf{matchedIF} \ \mathsf{else} \ \mathsf{unmatchedIF} \\ \end{array}$

Intuition: When **if** and **else** are derived from the same production, the parse tree between them should not have an unmatched **if**

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$\begin{array}{|c|c|} \hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \mathrm{id} \end{array}$$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$\begin{array}{|c|c|} \hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \operatorname{id} \end{array}$$

Sentence: id + id * id

Rightmost Derivation

$$E \stackrel{rm}{\Rightarrow} E + T$$
$$\stackrel{rm}{\Rightarrow} E + T * F$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$\begin{array}{|c|c|} \hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \operatorname{id} \end{array}$$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsin

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$\begin{array}{|c|c|} \hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \operatorname{id} \end{array}$$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$\begin{array}{|c|c|} \hline E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \operatorname{id} \end{array}$$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

id + id * id

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

$E \stackrel{rm}{\Rightarrow} E + T$ $\stackrel{rm}{\Rightarrow} E + T * F$ $\stackrel{rm}{\Rightarrow} E + T * id$ $\stackrel{rm}{\Rightarrow} E + F * id$ $\stackrel{rm}{\Rightarrow} E + id * id$ $\stackrel{rm}{\Rightarrow} T + id * id$ id $\stackrel{rm}{\Rightarrow} F + id * id$ id id $\stackrel{rm}{\Rightarrow}$ id + id * id

$$id + id * id$$

$$\stackrel{rm}{\Rightarrow} F + id * id$$

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

$E \stackrel{rm}{\Rightarrow} E + T$ $\stackrel{rm}{\Rightarrow} E + T * F$

id

 $\stackrel{rm}{\Rightarrow} E + T * id$ $\stackrel{rm}{\Rightarrow} E + F * id$ $\stackrel{rm}{\Rightarrow} E + id * id$ $\stackrel{rm}{\Rightarrow} T + id * id$ id

id

 $\stackrel{rm}{\Rightarrow} F + id * id$

 $\stackrel{rm}{\Rightarrow}$ id + id * id

$$id + id * id$$

$$\stackrel{rm}{\Rightarrow} F + id * id$$

$$\stackrel{rm}{\Rightarrow} T + id * id$$

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Rightmost Derivation for Bottom-Up Parsing

Sentence: id + id * id

id + id * id

Rightmost Derivation

$F \stackrel{rm}{\Rightarrow} F + T$ $\stackrel{rm}{\Rightarrow} E + T * F$ $\stackrel{rm}{\Rightarrow} E + T * id$ $\stackrel{rm}{\Rightarrow} E + F * id$ $\stackrel{rm}{\Rightarrow} E + id * id$ $\stackrel{rm}{\Rightarrow} T + id * id$ id $\stackrel{rm}{\Rightarrow} F + id * id$ id id $\stackrel{rm}{\Rightarrow}$ id + id * id

$$\stackrel{rm}{\Rightarrow} F + \mathrm{id} * \mathrm{id}$$
 $\stackrel{rm}{\Rightarrow} T + \mathrm{id} * \mathrm{id}$
 $\stackrel{rm}{\Rightarrow} E + \mathrm{id} * \mathrm{id}$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

id + id * id

Rightmost Derivation

$F \stackrel{rm}{\Rightarrow} F + T$ $\stackrel{rm}{\Rightarrow} E + T * F$ $\stackrel{rm}{\Rightarrow} E + T * id$ $\stackrel{rm}{\Rightarrow} E + F * id$ $\stackrel{rm}{\Rightarrow} E + id * id$ $\stackrel{rm}{\Rightarrow} T + id * id$ id $\stackrel{rm}{\Rightarrow} F + id * id$ id id $\stackrel{rm}{\Rightarrow}$ id + id * id

$$\stackrel{m}{\Rightarrow} F + id * id$$

$$\stackrel{m}{\Rightarrow} T + id * id$$

$$\stackrel{m}{\Rightarrow} E + id * id$$

$$\stackrel{m}{\Rightarrow} E + F * id$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

id + id * id

Rightmost Derivation

$E \stackrel{rm}{\Rightarrow} E + T$ $\stackrel{rm}{\Rightarrow} E + T * F$ $\stackrel{rm}{\Rightarrow} E + F * id$ $\stackrel{rm}{\Rightarrow} E + id * id$ $\stackrel{rm}{\Rightarrow} T + id * id$ $\stackrel{rm}{\Rightarrow} F + id * id$ $\stackrel{rm}{\Rightarrow} id + id * id$ $\stackrel{rm}{\Rightarrow} id + id * id$ $\stackrel{rm}{\Rightarrow} id + id * id$

$$\stackrel{rm}{\Rightarrow} F + \mathrm{id} * \mathrm{id}$$
 $\stackrel{rm}{\Rightarrow} F + \mathrm{id} * \mathrm{id}$
 $\stackrel{rm}{\Rightarrow} E + \mathrm{id} * \mathrm{id}$
 $\stackrel{rm}{\Rightarrow} E + F * \mathrm{id}$
 $\stackrel{rm}{\Rightarrow} E + T * \mathrm{id}$
 $\stackrel{rm}{\Rightarrow} F + \mathrm{id} * \mathrm{id}$
 $\stackrel{rm}{\Rightarrow} F + \mathrm{id}$
 $\stackrel{rm}{\Rightarrow} F + \mathrm{id}$
 $\stackrel{rm}{\Rightarrow}$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

Rightmost Derivation

 $\stackrel{rm}{\Rightarrow}$ id + id * id

$E \stackrel{m}{\Longrightarrow} E + T$ $\stackrel{m}{\Longrightarrow} E + T * F$ $\stackrel{m}{\Longrightarrow} E + T * id$ $\stackrel{m}{\Longrightarrow} E + F * id$ $\stackrel{m}{\Longrightarrow} E + id * id$ $\stackrel{m}{\Longrightarrow} T + id * id$ $\stackrel{m}{\Longrightarrow} F + id * id$ $\stackrel{m}{\Longrightarrow} F + id * id$

id

id

$$id + id * id$$

$$\stackrel{m}{\Rightarrow} F + id * id$$

$$\stackrel{m}{\Rightarrow} T + id * id$$

$$\stackrel{m}{\Rightarrow} E + id * id$$

$$\stackrel{m}{\Rightarrow} E + F * id$$

$$\stackrel{m}{\Rightarrow} E + T * id$$

$$\stackrel{m}{\Rightarrow} E + T * F$$

$$\stackrel{m}{\Rightarrow} E + T * F$$

$$\stackrel{m}{\Rightarrow} E + T * F$$

$$\stackrel{m}{\Rightarrow} F + T * F$$

$$\stackrel$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Rightmost Derivation for Bottom-Up Parsing

Grammar
$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

$E \stackrel{rm}{\Longrightarrow} E + T$ $\stackrel{rm}{\Longrightarrow} E + T * F$ $\stackrel{rm}{\Longrightarrow} E + F * id$ $\stackrel{rm}{\Longrightarrow} E + id * id$ $\stackrel{rm}{\Longrightarrow} T + id * id$ $\stackrel{rm}{\Longrightarrow} F + id * id$ $\stackrel{rm}{\Longrightarrow} F + id * id$

 $\stackrel{rm}{\Rightarrow}$ id + id * id

id

id

Topic:

Syntax Analysis

Section:

Grammars. Derivations, and Parse Trees

SLR(1) Parsing

CLR(1) Parsing

Rightmost Derivation for Bottom-Up Parsing

 $\overline{E} \rightarrow \overline{E} + T$ Grammar

Sentence: id + id * id

Rightmost Derivation

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsi

Rightmost Derivation for Bottom-Up Parsing

Grammar $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow \text{id}$

Sentence: id + id * id

Rightmost Derivation

 $E \stackrel{rm}{\Rightarrow} E + T$ $\stackrel{rm}{\Rightarrow} E + T * F$ $\stackrel{rm}{\Rightarrow} E + T * id$ $\stackrel{rm}{\Rightarrow} E + F * id$ $\stackrel{rm}{\Rightarrow} E + id * id$ $\stackrel{rm}{\Rightarrow} F + id * id$

any action)

 $\stackrel{rm}{\Rightarrow}$ id + id * id

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Shift Reduce Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow id$

 $E \rightarrow E + E$ id + id * id

 $E \rightarrow E * E$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar

Input

 $E \rightarrow E + E$ $E \rightarrow E * E$ id + id * id

 $E{
ightarrow}$ id

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow E + E$

 $E \rightarrow E * E$

 $E \rightarrow id$

 $\mathsf{id} + \mathsf{id} * \mathsf{id}$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar Inp

Input

 $E \rightarrow E + E$ $E \rightarrow E * E$ id + id * id

 $E \rightarrow id$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \ \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar

Input

 $E \rightarrow E + E$ $E \rightarrow E * E$

 $E \rightarrow id$

id + id * id

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

 $E \rightarrow E + E$

id + id * id

 $E \rightarrow E * E$ $E \rightarrow id$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar

Input

$$E \rightarrow E + E$$

 $E \rightarrow E * E$

id + id * id

 $extit{E}
ightarrow ext{id}$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar

Input

 $E \rightarrow E + E$ $E \rightarrow E * E$ id + id * id

 $extit{E}{
ightarrow}$ id

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar Ir

 $E \rightarrow E + E$ $E \rightarrow E * E$

 $E
ightarrow \operatorname{\mathsf{id}}$

Input

id + id * id

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar

Input

$$E \rightarrow E + E$$

 $E \rightarrow E * E$

$$id + id * id$$

 $E{
ightarrow}$ id

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \,\, \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar

Input

 $E \rightarrow E + E$ $E \rightarrow E * E$ id + id * id

 $E \rightarrow id$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow E + E$ id + id * id

 $E \rightarrow E * E$ $E \rightarrow id$

bottom up in ambiguous ways

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

An Overview of Shift Reduce Parsing

Grammar

Input

$$E \rightarrow E + E$$

 $E \rightarrow E * E$

$$id + id * id$$

$$E \rightarrow id$$

id

$$id + (id * id)$$

id

id

$$(id + id) * id$$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

An Overview of Shift Reduce Parsing

Grammar Input

$$E \rightarrow E + E$$
 id + id * id

 $E \rightarrow E * E$

 $E \rightarrow id$ lower priority vale pehle apply hote h rule me , then followed by higher priority operaratos, like here, + is used first and * is used later for correct grammar

$$id + (id * id)$$

$$(id + id) * id$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsin

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow E + E$ id + id * id

 $E \rightarrow E * E$ $E \rightarrow id$

Next Action: Shift

id + (id * id)

1 1

Parsing Stack

Topic:

Syntax Analysis

Section:

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow E + E$ id + id * id $F \rightarrow F * F$

Next token id id

id + (id * id)

 $E \rightarrow id$

Next Action: Reduce by $E \rightarrow id$

id

Parsing Stack

id

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

An Overview of Shift Reduce Parsing

Grammar Input

$$E \rightarrow E + E$$
 id + id * id

$$E \rightarrow E * E$$

 $E \rightarrow id$

$$id + (id * id)$$

Next Action: Shift

 ${\sf Parsing} \,\, {\sf Stack}$

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

$$E \rightarrow E + E$$

 $F \rightarrow F * F$

 $E \rightarrow id$

$$id + id * id$$

id + id * id

$$id + (id * id)$$

Next Action: Shift

Parsing Stack

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow E + E$

 $F \rightarrow F * F$ $E \rightarrow id$

id + id * id

Next token id

id + (id * id)

Next Action: Reduce by $E \rightarrow id$

Ε

id

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

An Overview of Shift Reduce Parsing

Grammar

Input

$$E \rightarrow E + E$$

 $F \rightarrow F * F$

 $E \rightarrow id$

$$id + id * id$$

Next token

* id \$

$$id + (id * id)$$

Next Action: Shift

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow E + E$ id + id * id

 $E \rightarrow E * E$ $E \rightarrow id$

Next token id \$

id + (id * id)

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow E + E$

 $E \rightarrow E * E$ $E \rightarrow id$ id + id * id

Next token

id + (id * id)

Next Action: Reduce by $E \rightarrow id$

Parsing Stack

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

An Overview of Shift Reduce Parsing

Grammar Input

 $E \rightarrow E + E$ $F \rightarrow F * F$

 $E \rightarrow id$

id + id * id

Next token

id + (id * id)

Next Action: Reduce by $E \rightarrow E * E$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

An Overview of Shift Reduce Parsing

Grammar

Input

$$E \rightarrow E + E$$

 $F \rightarrow F * F$

 $E \rightarrow id$

$$id + id * id$$

Next token

$$id + (id * id)$$

Next Action: Reduce by $E \rightarrow E + E$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Pars
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

An Overview of Shift Reduce Parsing

Grammar I

 $E \rightarrow E + E$

 $E \rightarrow E * E$ $E \rightarrow id$

Input

id + id * id

Next token

$$id + (id * id)$$

Next Action: Accept

start state 'E' pe vapas aa gya

Ε

Parsing Stack

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$ 2. $E \rightarrow E * E$ id + id * id

3. $E \rightarrow id$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift

Topic:

Syntax Analysis

Section:

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id	+ id * id\$	reduce by 3

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$ 2. $E \rightarrow E * E$ id + id * id

3. $E \rightarrow id$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	shift

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

IC	+	- IC	*	ıd

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$E +	id * id\$	shift
5	E + id	* id\$	reduce by 3

Topic:

Syntax Analysis

Section:

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

ıd	+	ıd	*	id

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	\$E + E	* id\$	shift

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

ıd	+	Ιd	*	id

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	\$E + E	* id\$	shift
7	\$E + E *	id\$	shift
i			

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

3. $E \rightarrow id$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	
5	E + id		reduce by 3
6	E + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

3. $E \rightarrow id$

<i>E</i>	+	<i>E</i> ↓ id	*	<i>E</i> ↓ id	

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$E +	id * id\$	
5	E + id	* id\$	reduce by 3
6	\$E + E	* id\$	
7	\$E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	\$E+E*E	\$	reduce by 2

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

An Overview of Shift Reduce Parsing

Grammar

Input

1. $E \rightarrow E + E$

IC	1 +	- 10	*	ıd

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$E +	id * id\$	shift
5	E + id	* id\$	reduce by 3
6	\$E + E	* id\$	shift
7	\$E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	\$E+E*E	\$	reduce by 2
10	E + E	\$	reduce by 1
		_	

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

An Overview of Shift Reduce Parsing

Grammar

3. $E \rightarrow id$

Input

1. $E \rightarrow E + E$ 2. $F \rightarrow F * F$ id + id * id

\$ = end of input pe 'E', start state aa qya to accepted

 $\begin{array}{c|cccc}
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
\downarrow & & & & & & & \\
id & + & id & * & id
\end{array}$

9) 51 10 51000 10 51			
Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id*id\$	shift
5	E + id	* id\$	reduce by 3
6	\$E + E	* id\$	shift
7	\$E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	\$E+E*E	\$	reduce by 2
10	E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic: Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

An Overview of Shift Reduce Parsing

Grammar

Input

- 1. $E \rightarrow E + E$ 2. $F \rightarrow F * F$
- 2. $E \rightarrow E * E$ 3. $F \rightarrow id$

Observations

- A shift corresponds to creating a leaf node in the parse tree whereas a reduce corresponds to creating an internal node
- In every step i, concatenation of the stack and the remaining input gives a right sentential form (rsf_i)
- For every step i, $rsf_{i+1} \stackrel{rm}{\Rightarrow} rsf_i$
- In every step, the partial parse tree constructed until then, consists of a forest of trees
- In every step, the stack holds the root nodes of the trees contained in the forest

A reduce action may amount to joining some of these trees

)	1)	TCGGCC B
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Shift Reduce Parsing

- In every step *i*, concatenation of the stack and the remaining input gives a right sentential form (rsf_i)
- For every step i, $rsf_{i+1} \stackrel{rm}{\Rightarrow} rsf_i$
- How do we go from rsf_i to rsf_{i+1} ?
 - $\circ S \stackrel{*rm}{\Rightarrow} \alpha A w \stackrel{rm}{\Rightarrow} \alpha \beta w$
 - A bottom-up parser reduces β occurring in $\alpha\beta w$ to A using the production $A\to\beta$
 - The rule $A \to \beta$ and the occurrence of β is the handle in $\alpha \beta w$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsin

Shift Reduce Parsing

- Bottom up parsing is essentially the process of detecting handles and reducing them
- Different bottom-up parsers differ in the way they detect handles

Topic: Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Why do Handles Form the Basis of Bottom Up Parsing?

 Only terminal symbols can appear to the right of a handle in a rightmost sentential form

Why?

- \circ $S \stackrel{*rm}{\Rightarrow} \alpha A w \stackrel{rm}{\Rightarrow} \alpha \beta w$
- \circ Since we are using a rightmost derivation, there cannot be a non-terminal to the right of A.
- The beauty of bottom up parsing lies in dividing a right sentential form $\alpha\beta w$ into two parts

such that the handle always appears on the top of the stack

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

3. $E \rightarrow id$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsir

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

 $2. \ E \rightarrow E * E$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id	+ id * id\$	reduce by 3

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

CLR(1) Parsing

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $F \rightarrow F * F$ 3. $E \rightarrow id$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	shift

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	shift
5	\$ <i>E</i> + id	* id\$	reduce by 3

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id	* id\$	reduce by 3
6	\$E + E	* id\$	shift

E ↓ id	+	<i>E</i> ↓ id	

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$ 3. $E \rightarrow id$ ia į ia s

E	Ε	

id

Step	$Stack \to$	Input	Action	
1	\$	id + id * id\$	shift	
2	\$ id	+ id * id\$	reduce by 3	
3	\$ <i>E</i>	+ id * id\$		
4	\$ <i>E</i> +	id * id\$		
5	\$ <i>E</i> + id		reduce by 3	
6	F + E	* id\$		
7	E + E *	id\$	shift	

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	shift
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	shift
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
——		l	

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	shift
5	\$ <i>E</i> + id	* id\$	reduce by 3
6	E + E	* id\$	shift
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
	•	•	•

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

Input

1. $E \rightarrow E + E$

id + id * id

2. $E \rightarrow E * E$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	shift
5	E + id		reduce by 3
6	F + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	E + E	\$	reduce by 1

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Why do Handles Form the Basis of Bottom Up Parsing?

Grammar

2. $F \rightarrow F * F$

3. $F \rightarrow id$

Input

1. $E \rightarrow E + E$

id + id * id

alpha, beta, w all CAN BE EMPTY too in righ sentential form

	/	E `\	E		
E		Ε		E	
V	\downarrow	\forall	\downarrow	\forall	
id	+	id	*	id	

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$ id	+ id * id\$	reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	shift
5	\$ <i>E</i> + id		reduce by 3
6	\$E + E	* id\$	shift
7	\$E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	F + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

Shift Reduce Parsing

 $parsing\hbox{-}slides\hbox{-}sanyal\hbox{-}part2.pdf$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

SLR: Simple LR (Left-to-Right, Rightmost Derivation) SLR(1): Simple LR with 1-token lookahead

SLR(1) Parsing

bottom-up shift reduce parser, resolving shift-reduce and reduce-reduce conflicts, etc.

Topic:

Syntax Analysis

Section:

Derivations, and Parso Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

SLR(1) Parsing Example

$$1 E \rightarrow E + E
2 E \rightarrow E * E
3 E \rightarrow id$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		> 3√r1	<i>s</i> 4/ 冰 €	<i>r</i> 1	
6		≽ 3√r2	≽ 4/ <i>r</i> 2	r2	

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

SLR(1) Parsing Example

 $\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$

Shift reduce conflicts resolved using precedence and associativity

Parsing/Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	асс	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2	,	/		<i>c</i> 6
5		≽ 3(/r1	<i>s</i> 4/ 冰 €	r1	
6		≽ €/r2	≽ 4/r2	<i>r</i> 2	

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	асс	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		> 3√r1	<i>5</i> 4/ 冰 €	r1	
6		≽ 3√r2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Next Action: Shift 2

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$1 E \rightarrow E + E
2 E \rightarrow E * E
3 E \rightarrow id$$

Next Action: Reduce by Rule 3

Parsing Stack

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

Next Action: Reduce by Rule 3

2 id 0

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsin

SLR(1) Parsing Example

$$1 E \rightarrow E + E
2 E \rightarrow E * E
3 E \rightarrow id$$

Next Action: Cover by 1

Parsing Stack

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parso
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

SLR(1) Parsing Example

$$1 E \rightarrow E + E
2 E \rightarrow E * E
3 E \rightarrow id$$

Next Action: Shift 3

Parsing Stack

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$1 E \rightarrow E + E
2 E \rightarrow E * E
3 E \rightarrow id$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		≥ 3√r1	<i>s</i> 4/ <i>≯</i> €	<i>r</i> 1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Next Action: Shift 2

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		. ,	<i>5</i> 4/ 冰 €	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Next Action: Reduce by Rule 3

id

3

+

E

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		. ,	<i>5</i> 4/ 冰 €	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

3 + 1 *E*

Next Action: Reduce by Rule 3

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Ε	
3	
+	
1	
Ε	
	3 +

Next Action: Cover by 5

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$		r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

3 + 1 E

5

Next Action: Shift 4

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$1 E \rightarrow E + E
2 E \rightarrow E * E
3 E \rightarrow id$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Next Action: Shift 2

Ε

3

+

E

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

2
id
4
*
5
Ε
3
+
1
Ε

Next Action: Reduce by Rule 3

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				c1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

2
id
4
*
5
Ε
3
+
1
Ε

Next Action: Reduce by Rule 3

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Next Action: Cover by 6

+

E

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	//	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

6
Ε
4
*
5
Ε
3
+
1
Ε

Next Action: Reduce by 2

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	/ /	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

6
Ε
4
*
5
Ε
3
+
1
Ε

Next Action: Reduce by 2

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	r1	
6		≽ 3√r2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

E	
3	
+	
1	
Ε	
	ı

Next Action: Cover by 5

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	<i>r</i> 1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

3 + 1 E

5

Next Action: Reduce by Rule ${\bf 1}$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

_					_
	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	<i>r</i> 1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

E 3 + 1 E

Next Action: Reduce by Rule 1

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsin

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Next Action: Cover by 1

Parsing Stack

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

SLR(1) Parsing Example

$$\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$		r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Next Action: Accept

Parsing Stack

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

SLR(1) Parsing Example

$$1 E \rightarrow E + E
2 E \rightarrow E * E
3 E \rightarrow id$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

SLR(1) Parsing Example

$$1 E \rightarrow E + E
2 E \rightarrow E * E
3 E \rightarrow id$$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		≥ 3√r1	<i>s</i> 4/ <i>≯</i> €	<i>r</i> 1	
6		≽ 3√r2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

SLR(1) Parsing Example

 $\begin{array}{c} 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \text{id} \end{array}$

Shift reduce conflicts resolved using precedence and associativity

Parsing/Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2	,	/		<i>c</i> 6
5		≽ 3(/r1	<i>s</i> 4/ 冰 €	<i>r</i> 1	
6		≽ 3√r2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

SLR(1) Parsing Example

Combining the reduce single step for convenience

and the following cover operation into a

Parsing	Table

 $1 F \rightarrow F + F$

 $2 F \rightarrow F * F$

 $3 F \rightarrow id$

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 €	r1	
6		≽ 3√ <i>r</i> 2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Step	Stack o -	Input	Action
1	\$0	:d + id ∗ id\$	<i>s</i> 2
2	\$0 id 2	+ id * iu\$	<i>r</i> 3 and <i>c</i> 1
3	\$0 E 1	+ id * id\$	<i>s</i> 3
4	\$0 E 1 + 3	id * id\$	<i>s</i> 2
5	\$0 E 1 + 3 id 2	* 10.4	<i>r</i> 3 and <i>c</i> 5
6	\$0 E 1 + 3 E 5	* id\$	<i>s</i> 4
7	\$0 E 1 + 3 E 5 * 4	id\$	<i>s</i> 2
8	\$0 E 1 + 3 E 5 * 4 id 2		<i>r</i> 3 and <i>c</i> 6
9	\$0 E 1 + 3 E 5 * 4 E6		r2 and <i>c</i> 5
10	\$0 E 1 + 3 E 5	++	<i>r</i> 1 and <i>c</i> 1
11	\$0 E 1	\$	accept

handle.State x --reduced from--> LHS rule and cover by state

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing

CLR(1) Parsing

LALR(1) Parsing

SLR(1) Parsing Example

 $1 E \rightarrow E + E$ $2 E \rightarrow E * E$ $3 E \rightarrow id$

Parsing Table

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		≥ 3√r1	<i>s</i> 4/ <i>≯</i> €	<i>r</i> 1	
6		≽ 3√r2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Step	$Stack \to$	Input	Action
1	\$0	id + id * id\$	<i>s</i> 2
2	\$0 id 2	+ id * id\$	<i>r</i> 3 and <i>c</i> 1
3	\$0 E 1	+ id * id\$	<i>s</i> 3
4	\$0 E 1 + 3	id * id\$	<i>s</i> 2
5	\$0 E 1 + 3 id 2	* id\$	<i>r</i> 3 and <i>c</i> 5
6	\$0 E 1 + 3 E 5	* id\$	<i>s</i> 4
7	\$0 E 1 + 3 E 5 * 4	id\$	<i>s</i> 2
8	\$0 E 1 + 3 E 5 * 4 id 2	\$	<i>r</i> 3 and <i>c</i> 6
9	\$0 E 1 + 3 E 5 * 4 E6	\$	<i>r</i> 2 and <i>c</i> 5
10	\$0 E 1 + 3 E 5	\$	<i>r</i> 1 and <i>c</i> 1
11	\$0 E 1	\$	accept

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Shift Reduce Parsing: From Intuitions to Formal Algorithms

We undertake this journey in six steps using the ambiguous grammar of expressions. It illustrates how yacc allows disambiguating a grammar without rewriting it

$$\begin{array}{ccc} E & \rightarrow & E+E \\ E & \rightarrow & E*E \\ E & \rightarrow & \text{id} \end{array}$$

1. We assume that both + and * are left associative and * takes precedence over + We see the influence of these choices on derivations by considering four inputs

$$id + id + id$$
, $id * id * id$, $id + id * id$, and $id * id + id$.

2. We see the meaning of a shift reduce parser tracing the rightmost derivation in reverse

We see the meaning of handle pruning in tracing the rightmost derivation

- 3. We define the notions of viable prefixes for discovering handles
- 4. We define valid items to recognize viable prefixes
- 5. We define FOLLOW sets to define a criterion of handle pruning
- 6. We see the algorithm that constructs valid items

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Shift Reduce Parsing: From Intuitions to Formal Algorithms

$$1 E \rightarrow E + E$$

$$2 E \rightarrow E * E$$

$$3~\textit{E} \rightarrow id$$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Shift Reduce Parsing: From Intuitions to Formal Algorithms

$$1 E \rightarrow E + E$$
$$2 E \rightarrow E * E$$

 $3 E \rightarrow id$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	E + id		reduce by 3
6	E + E	* id\$	shift
7	E + E *		shift
8	E + E * id		reduce by 3
9	E + E * E		reduce by 2
10	E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Par

Shift Reduce Parsing: From Intuitions to Formal Algorithms

 $1 E \rightarrow E + E$ $2 E \rightarrow E * E$ $3 E \rightarrow id$ Shift reduce conflicts resolved using precedence and associativity

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5	1	S/r1	<i>5</i> 4/ 冰 €	r1	
6		≽ €/r2	≽4 /r2	<i>r</i> 2	

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	
5	E + id		reduce by 3
6	E + E	* id\$	shift
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	
10	E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Step	$Stack \to$	Input	Action
1	\$0	id + id * id\$	<i>s</i> 2
2	\$0 id 2	+ id * id\$	<i>r</i> 3 and <i>c</i> 1
3	\$0 E 1	+ id * id\$	<i>s</i> 3
4	\$0 E 1 + 3	id * id\$	<i>s</i> 2
5	\$0 E 1 + 3 id 2		<i>r</i> 3 and <i>c</i> 5
6	\$0 E 1 + 3 E 5	* id\$	<i>s</i> 4
7	\$0 E 1 + 3 E 5 * 4	id\$	<i>s</i> 2
8	\$0 E 1 + 3 E 5 * 4 id 2	\$	r3 and c 6
9	\$0 E 1 + 3 E 5 * 4 E6	\$	<i>r</i> 2 and <i>c</i> 5
10	\$0 E 1 + 3 E 5	\$	<i>r</i> 1 and <i>c</i> 1
11	\$0 E 1	\$	accept

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Pars

Shift Reduce Parsing: From Intuitions to Formal Algorithms

 $1 E \rightarrow E + E$ $2 E \rightarrow E * E$ $3 E \rightarrow id$

Combining the reduce and the following cover operation into a single step for convenience

_	id	+	*	\$	Ε
	-2				<i>c</i> 1
		<i>s</i> 3	<i>s</i> 4	acc	
		r3	<i>r</i> 3	<i>r</i> 3	
					<i>c</i> 5
	/				<i>c</i> 6
5		$\mathcal{A}/r1$	<i>s</i> 4/ 冰 (r1	
6		≽ 3√ <i>r</i> 2	≽4 / <i>r</i> 2	<i>r</i> 2	

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	E + id		reduce by 3
6	E + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id		
9	E + E * E		reduce by 2
10	E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

- '			
2\te\	\stack →	Input	Action
1		id + id * id\$	<i>s</i> 2
2	\$7 ic 2	+ iu - iu	<i>r</i> 3 and <i>c</i> 1
3	\$0 = 1	+ id * id\$	<i>s</i> 3
4	37 E 7 + 3	id * id\$	<i>s</i> 2
5	\$0 <u>5</u> 1 + 3 ià 2	* IU#	<i>r</i> 3 and <i>c</i> 5
6	\$0 E 1 - 3 \(\bar{5} \)	* id\$	<i>s</i> 4
7	\$0 E 1 + 3 = 5 * 1	id\$	<i>s</i> 2
8	\$0 E 1 + 3 E 5 4 id 2		<i>r</i> 3 and <i>c</i> 6
9	\$0 E 1 + 3 E 5 * 4 E		<i>r</i> 2 and <i>c</i> 5
10	\$0 E 1 + 3 E 5	+	<i>r</i> 1 and <i>c</i> 1
11	\$0 <i>E</i> 1	\$	accept

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Par

Shift Reduce Parsing: From Intuitions to Formal Algorithms

 $1 E \rightarrow E + E$ $2 E \rightarrow E * E$ $3 E \rightarrow id$

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		$\gg r1$	<i>s</i> 4/ 冰 (r1	
6		≽ ≪/r2	> 4∕/r2	<i>r</i> 2	

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	E + id		reduce by 3
6	E + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

	Step	$Stack \to$	Input	Action
	1	\$0	id + id * id\$	<i>s</i> 2
	2	\$0 id 2	+ id * id\$	r3 and c 1
	3	\$0 <i>E</i> 1	+ id * id\$	<i>s</i> 3
	4	\$0 E 1 + 3	id * id\$	<i>s</i> 2
	5	\$0 E 1 + 3 id 2	* id\$	<i>r</i> 3 and <i>c</i> 5
	6	\$0 E 1 + 3 E 5	* id\$	<i>s</i> 4
	7	\$0 E 1 + 3 E 5 * 4	id\$	<i>s</i> 2
	8	\$0 E 1 + 3 E 5 * 4 id 2	\$	<i>r</i> 3 and <i>c</i> 6
	9	\$0 E 1 + 3 E 5 * 4 E6	\$	<i>r</i> 2 and <i>c</i> 5
	10	\$0 E 1 + 3 E 5	\$	<i>r</i> 1 and <i>c</i> 1
	11	\$0 <i>E</i> 1	\$	accept

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

 $\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$

 $E \stackrel{rm}{\Rightarrow} E + E$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

 $\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$

$$E \stackrel{rm}{\Rightarrow} E + E$$
$$\stackrel{rm}{\Rightarrow} E + id$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

 $\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{\mathit{rm}}{\Rightarrow} E + \mathrm{id} + \mathrm{id}$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{\mathit{rm}}{\Rightarrow} \mathit{E} + \mathsf{id} + \mathsf{id}$$

$$\stackrel{\mathit{rm}}{\Rightarrow} \mathsf{id} + \mathsf{id} + \mathsf{id}$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

$$\Rightarrow E + id + id$$

$$\stackrel{rm}{\Rightarrow} id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable **Derivations**

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

$$\stackrel{rm}{\Rightarrow} id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$
$$\stackrel{rm}{\Rightarrow} E + E + E$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

 $\stackrel{rm}{\Rightarrow} id + id + id$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + E + E$$

$$\stackrel{\mathit{rm}}{\Rightarrow} \mathit{E} + \mathit{E} + \mathsf{id}$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable **Derivations**

Input
$$id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{\mathit{rm}}{\Rightarrow} E + \mathsf{id} + \mathsf{id}$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

$$\stackrel{rm}{\Rightarrow} id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + E + E$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

 $\stackrel{rm}{\Rightarrow} id + id + id$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + E + E$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{\mathit{rm}}{\Rightarrow} E + \mathrm{id} + \mathrm{id}$$

$$\stackrel{\mathit{rm}}{\Rightarrow} \mathsf{id} + \mathsf{id} + \mathsf{id}$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

 $\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{m}{\Rightarrow} E + id$$

$$\stackrel{m}{\Rightarrow} E + E + id$$

$$\stackrel{m}{\Rightarrow} E + id + id$$

$$\stackrel{m}{\Rightarrow} id + id + id$$

+ is left associative

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

Input
$$id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

 $\stackrel{rm}{\Rightarrow} id + id + id$

$$\mathsf{Input}\;\mathsf{id}*\mathsf{id}+\mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$E \stackrel{m}{\Rightarrow} E + E$$

$$\stackrel{m}{\Rightarrow} E + E + E$$

$$\stackrel{m}{\Rightarrow} E + E + id$$

$$\stackrel{m}{\Rightarrow} E + id + id$$

$$\stackrel{m}{\Rightarrow} id + id + ic$$

+ is left associative

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable **Derivations**

Input
$$id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

$$\stackrel{\it rm}{\Rightarrow}$$
 id $+$ id $+$ id

+ is left associative

Input id * id + id

$$E \stackrel{rm}{\Rightarrow} E + E$$
$$\stackrel{rm}{\Rightarrow} E + id$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable **Derivations**

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

 $\stackrel{rm}{\Rightarrow} id + id + id$

+ is left associative

Input
$$id*id+id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E * E + id$$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$
$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

 $\stackrel{rm}{\Rightarrow} id + id + id$

$$E \Rightarrow E + E$$

$$\Rightarrow E + E + E$$

$$\Rightarrow E + E + id$$

$$\Rightarrow E + id + id$$

$$\Rightarrow id + id + id$$

+ is left associative

 $\mathsf{Input}\;\mathsf{id}*\mathsf{id}+\mathsf{id}$

$$E \stackrel{m}{\Longrightarrow} E + E$$

$$\stackrel{m}{\Longrightarrow} E + id$$

$$\stackrel{m}{\Longrightarrow} E * E + id$$

$$\stackrel{m}{\Longrightarrow} E * id + id$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$
$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

$$\stackrel{rm}{\Rightarrow} id + id + id$$

$$E \stackrel{rm}{\Longrightarrow} E + E$$

$$\stackrel{rm}{\Longrightarrow} E + E + id$$

$$\stackrel{rm}{\Longrightarrow} E + id + id$$

$$\stackrel{rm}{\Longrightarrow} id + id + id$$

+ is left associative

 $\mathsf{Input}\;\mathsf{id}*\mathsf{id}+\mathsf{id}$

$$E \stackrel{m}{\Longrightarrow} E + E$$

$$\stackrel{m}{\Longrightarrow} E + id$$

$$\stackrel{m}{\Longrightarrow} E * E + id$$

$$\stackrel{m}{\Longrightarrow} E * id + id$$

$$\stackrel{m}{\Longrightarrow} id * id + id$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

Input
$$id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$
 $\stackrel{rm}{\Rightarrow} E + E + id$

$$\Rightarrow E + E + id$$

 $\stackrel{rm}{\Rightarrow} E + id + id$

$$\stackrel{rm}{\Rightarrow}$$
 id + id + id

$$E \stackrel{m}{\Rightarrow} E + E$$

$$\stackrel{m}{\Rightarrow} E + F + E$$

$$\stackrel{m}{\Rightarrow} E + id$$

$$\stackrel{m}{\Rightarrow} E + id + id$$

$$\stackrel{m}{\Rightarrow} id + id + id$$

+ is left associative

Input id*id+id

$$E \stackrel{rm}{\Rightarrow} E + E$$

 $\stackrel{rm}{\Rightarrow} E + id$

$$\stackrel{rm}{\Rightarrow} E * E + id$$

$$\stackrel{rm}{\Rightarrow} E * id + id$$

$$E \stackrel{rm}{\Rightarrow} E * E$$

Topic:

Syntax Analysis

Section:

SLR(1) Parsing

CLR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

Input
$$id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

 $\stackrel{rm}{\Rightarrow} id + id + id$

+ is left associative

Input
$$id*id+id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E * E + id$$

$$\stackrel{rm}{\Rightarrow} E * id + id$$

$$\stackrel{rm}{\Rightarrow} id * id + id$$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

Input
$$id + id + id$$

$$E \stackrel{rm}{\Longrightarrow} E + E$$

$$\stackrel{rm}{\Longrightarrow} E + id$$

$$\stackrel{rm}{\Longrightarrow} E + E + id$$

$$\stackrel{rm}{\Longrightarrow} E + id + id$$

 $\stackrel{rm}{\Rightarrow} id + id + id$

Input id*id+id

$$E \stackrel{rm}{\Longrightarrow} E + E$$

$$\stackrel{rm}{\Longrightarrow} E + id$$

$$\stackrel{rm}{\Longrightarrow} E * E + id$$

$$\stackrel{rm}{\Longrightarrow} E * id + id$$

$$\stackrel{rm}{\Longrightarrow} id * id + id$$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Pars
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

Input
$$id + id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$
$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

$$\stackrel{\it rm}{\Rightarrow} id + id + id$$

+ is left associative

Input id*id+id

$$E \stackrel{mm}{\Rightarrow} E + E$$

$$\stackrel{mm}{\Rightarrow} E + id$$

$$\stackrel{m}{\Rightarrow} E * E + id$$

$$\stackrel{m}{\Rightarrow} E * id + id$$

$$\stackrel{m}{\Rightarrow} id * id + id$$

Topic:

Syntax Analysis

Section:

SLR(1) Parsing

CLR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{rm}{\Rightarrow} E + E$$
$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E + E + id$$

$$\stackrel{rm}{\Rightarrow} E + id + id$$

 $\stackrel{rm}{\Rightarrow} id + id + id$

+ is left associative

Input
$$id * id + id$$

$$E \stackrel{rm}{\Rightarrow} E + E$$

$$\stackrel{rm}{\Rightarrow} E + id$$

$$\stackrel{rm}{\Rightarrow} E * E + id$$

$$\stackrel{rm}{\Rightarrow} E * id + id$$

$$\stackrel{rm}{\Rightarrow} id * id + id$$

Topic:

Syntax Analysis

Section:

SLR(1) Parsing

CLR(1) Parsing

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

$$\mathsf{Input}\;\mathsf{id} + \mathsf{id} + \mathsf{id}$$

$$E \stackrel{m}{\Longrightarrow} E + E$$

$$\stackrel{m}{\Longrightarrow} E + id$$

$$\stackrel{m}{\Longrightarrow} E + E + id$$

$$\stackrel{m}{\Longrightarrow} E + id + id$$

$$\stackrel{m}{\Longrightarrow} id + id + id$$

Left Associativity of + (Left Side): The non-crossed derivation shows that id + id + id is parsed as (id + id) + id, ensuring left associativity. The Derivations, and Parse incorrect right-associative parse (id + (id + id)) is crossed out.

+ is left associative

$$\mathsf{Input}\;\mathsf{id}*\mathsf{id}+\mathsf{id}$$

ensures id * id + id is interpreted as (id * id) + id, following operator precedence.

The incorrect parse (id) * (id + id), which gives + higher precedence, is crossed out.

* has a higher precedence than +

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step 1: Precedence and Associativity Rule Out Undesirable Derivations

Input id + id + id

Input id * id + id

rm E | E

 $F \stackrel{rm}{\rightleftharpoons} F \perp F$

The moral of the story

- Right sentential forms containing the strings E+E+E , E*E*E , and E*E+E are ruled out by our choice of precedence and associativity
- The grouping that we want is (E+E)+E, (E*E)*E, and (E*E)+E so the non-terminals in the parenthesis should be derived first
- However, the parenthesized term does not occur in the rightmost position and hence it cannot be derived first in a rightmost derivation
- The string E + E * E can appear in a rightmost derivation because the grouping is E + (E * E) and the parenthesized term occurs in the rightmost position

+ is left associative

* has a higher precedence than +

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 2: Shift Reduce Actions, Rightmost Derivations, and Handles

 $E \stackrel{rm}{\Rightarrow} E + E \stackrel{rm}{\Rightarrow} E + E * E \stackrel{rm}{\Rightarrow} E + E * id \stackrel{rm}{\Rightarrow} E + id * id \stackrel{rm}{\Rightarrow} id + id * id$

 $1 E \rightarrow E + E$ $2 E \rightarrow E * E$ $3 E \rightarrow id$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id	\$	
9	E + E * E	\$	reduce by 2
10	\$ <i>E</i> + <i>E</i>	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 2: Shift Reduce Actions, Rightmost Derivations, and Handles

 $E \stackrel{m}{\Rightarrow} E + E \stackrel{m}{\Rightarrow} E + E * E \stackrel{m}{\Rightarrow} E + E * id \stackrel{m}{\Rightarrow} E + id * id \stackrel{m}{\Rightarrow} id + id * id$ $1 E \rightarrow E + E$ $2 E \rightarrow E * E$ $3 E \rightarrow id$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	\$E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	
7	E + E *	id\$	
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	\$ <i>E</i> + <i>E</i>	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step	Stack o	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	\$E + E	* id\$	
7	E + E *		shif+
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	\$E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

 $1 E \rightarrow E + E$

 $2 E \rightarrow E * E$

Step Stack \rightarrow

\$id

\$E

10

\$E +

E + id

\$E + E

\$E + E

\$E

 $3 E \rightarrow id$

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 2: Shift Reduce Actions, Rightmost Derivations, and Handles

 $E \stackrel{m}{\Rightarrow} E + E \stackrel{m}{\Rightarrow} E + E * E \stackrel{m}{\Rightarrow} E + E * id \stackrel{m}{\Rightarrow} E + id * id \stackrel{m}{\Rightarrow} id + id * id$

 $1 E \rightarrow E + E$ $2 E \rightarrow E * E$ $3 E \rightarrow id$

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	
10	\$E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Rightmost derivations are traced in reverse by identifying handles in right sentential forms (beginning with the sentence) and pruning them for constructing the previous right sentential form

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	\$ <i>E</i> + <i>E</i>	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step	Stack o	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
	\$ <i>E</i> +	id*id\$	
5	\$ <i>E</i> + id		reduce by 3
6	\$ <i>E</i> + <i>E</i>	* id\$	shift
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	\$ <i>E</i> + <i>E</i>	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Step	Stack o	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	
7	\$ <i>E</i> + <i>E</i> ∗		_shift
8	E + E * id		reduce by 3
9	E + E * E	\$	reduce by 2
10	\$ <i>E</i> + <i>E</i>	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

 $1~E \rightarrow E + E$

 $2 E \rightarrow E * E$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsin

Step 2: Shift Reduce Actions, Rightmost Derivations, and Handles

Step	Stack \rightarrow	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	
7	E + E *		
8	E + E * id		reduce by 3
9	E + E * E		reduce by 2
10	\$ <i>E</i> + <i>E</i>	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Handle

Right Sentential Form

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Step 2: Shift Reduce Actions, Rightmost Derivations, and Handles

Step	Stack o	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	\$ <i>E</i> + id		reduce by 3
6	E + E	* id\$	
7	E + E *		shift
8	E + E * id		reduce by 3
9	\$E + E * E		reduce by 2
10	\$ <i>E</i> + <i>E</i>		reduce by 1
11	\$ <i>E</i>	\$	accept

 $1 E \rightarrow E + E$

 $2 E \rightarrow E * E$

 $3 E \rightarrow id$

Handle

Right Sentential Form

Topic: Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Step 3: Identifying Handles in Right Sentential Forms

- Our goal is to discover a prefix of right sentential form that ends with a handle
- Viable Prefix. A prefix of a right sentential form that does not extend beyond the handle
 - o It is either a string with no handle, or first kind
 - o a string that ends with the handle second kind
- By suffixing appropriate symbols to a viable prefix of the first kind, we can create a viable prefix of the second kind
- By suffixing terminal symbols to the viable prefix of the second kind, we can create a right sentential form
- The set of viable prefixes forms a regular language, thus they can be recognized by a DFA
- The handles in a viable prefix can be identified using a stack
- We keep pushing viable prefixes on the stack until the handle appears on the top of the stack

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step 3: Viable Prefixes for Our Grammar (After Incorporating Precedences and Associativities)

5

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Step 3: Viable Prefixes for Our Grammar (After Incorporating Precedences and Associativities)

Viable prefix id must be reduced to *E* and no grammar symbol can be suffixed to it (because there is no rule with a symbol after id)

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Snitt Reduce Parsi

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Step 3: Viable Prefixes for Our Grammar (After Incorporating Precedences and Associativities)

Viable prefix E + E must be reduced to E if it is not followed by a "*"

If E + E is followed by a "*", "*" should be shifted and E + E should not be reduced

The occurrence of a potential handle does not mean it should be reduced, the next terminal symbol decides whether it is an actual handle (and if so, it should be reduced)

Handle

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 3: Viable Prefixes for Our Grammar (After Incorporating Precedences and Associativities)

Viable prefix E + id must be reduced to E + E and no grammar symbol can be suffixed to it

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 3: Viable Prefixes for Our Grammar (After Incorporating Precedences and Associativities)

Viable prefix E * E must be reduced to E and no grammar symbol can be suffixed to it

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 3: Viable Prefixes for Our Grammar (After Incorporating Precedences and Associativities)

Viable prefix E * id must be reduced to E * E and no grammar symbol can be suffixed to it

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	E + id		reduce by 3
6	\$E + E	* id\$	
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	\$E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

	$Stack \to$	Input	Action
-	Œ	11 11 110	-L:C
_	\$	id + id * id\$	
2 3	\$id		reduce by 3
	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	
5	E + id	* id\$	reduce by 3
6	\$E + E	* id\$	shift
7	\$E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	
5	E + id	* id\$	reduce by 3
6	\$E + E	* id\$	shift
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	\$E + E * E	\$	reduce by 2
10	E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step	$Stack \to$	Input	Action
1	\$	id + id * id\$	shift
2	\$id		reduce by 3
-	\$ <i>E</i>	+ id * id\$	shift
4	\$ <i>E</i> +	id * id\$	
5	E + id	* id\$	reduce by 3
6	\$E + E	* id\$	shift
7	E + E *	id\$	shift
8	E + E * id	\$	reduce by 3
9	E + E * E	\$	reduce by 2
10	\$E+E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsi

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsi

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

- An item is a grammar production with a dot (●) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic: Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Pa

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Jillie Reddee i e

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Jillie Reduce 1

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Jillit Reduce i a

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Par

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 4: Valid Items for Viable Prefixes

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Kernel Item:
Kernel items are the core items in a parser state that are directly derived from the grammar rules and represent

Topic:

Syntax Analysis

Section:

SLR(1) Parsing

CLR(1) Parsing

Closure Item: Step 4: Valid Items for Viable Prefixes
Closure items are additional items added to a parser state by expanding non-terminals after the dot (•) in kernel items. They represent all possible productions that can be derived from the current state. Example: If the kernel item is A -> alpha . B(beta) and B -> gamma is a production, the closure includes B ->

- •gamma. An item is a grammar production with a dot (•) in it somewhere in the RHS
 - The dot separates what has been seen from what may be seen in the input
 - We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Jillit Reduce Fais

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shirt Reduce r

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Jillit Reduce Fai.

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduc

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

- An item is a grammar production with a dot (•) in it somewhere in the RHS
- The dot separates what has been seen from what may be seen in the input
- We identify a set of items for a viable prefix to form a state of the parser

Topic: Syntax Analysis

Sylicux / tildiy.

Section:

Derivations, and Parse Trees

Jillit Reduce Faisi

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step 4: Valid Items for Viable Prefixes

• An item is a grammar production with a dot (•) in it somewhere in the RHS

• The dot separates what has been seen from what may be seen in the input

- We iden
- An item set may not describe a viable prefix on its own (Prefixes of a viable prefix may be described by other item sets)
- Item sets for different viable prefixes may be same
- In practice, we do not construct the viable prefixes and then the item sets for them

We do the opposite: we construct the item sets and the transitions between them give us the viable prefixes

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Step 5: The Last Piece of Jigsaw Puzzle: Computing FOLLOW Sets

Consider $\beta Aw \stackrel{rm}{\Rightarrow} \beta \alpha w$ and $A \rightarrow \alpha$

When do we reduce occurrence of α in $\gamma = \beta \alpha$ using $A \to \alpha$ using LR(k) items? (i.e., when do we decide that α and $A \to \alpha$ form a handle in γ ?)

Read the input from Left to right

Trace the Rightmost derivation in Reverse

The number of lookahead symbols in the items

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step 5: The Last Piece of Jigsaw Puzzle: Computing FOLLOW Sets

Consider $\beta Aw \stackrel{rm}{\Rightarrow} \beta \alpha w$ and $A \rightarrow \alpha$ When do we reduce occurrence of α in $\gamma = \beta \alpha$ using $A \rightarrow \alpha$ using LR(k) items? (i.e., when do we decide that α and $A \rightarrow \alpha$ form a handle in γ ?)

Read the input from Left to right

Trace the Rightmost derivation in Reverse

The number of lookahead symbols in the items

• As soon as we find α in γ

 \bullet When we find α in γ and the next input token can follow A in some sentential form

ullet When we find lpha in γ and the next input token follows A in γ

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

$\mathsf{SLR}(1)$ Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 5: The Last Piece of Jigsaw Puzzle: Computing FOLLOW Sets

Consider $\beta Aw \stackrel{rm}{\Rightarrow} \beta \alpha w$ and $A \to \alpha$ When do we reduce occurrence of α in $\gamma = \beta \alpha$ using $A \to \alpha$ using LR(k) items? (i.e., when do we decide that α and $A \to \alpha$ form a handle in γ ?)

Read the input from Left to right

Trace the Rightmost derivation in Reverse -

• As soon as we find α in γ current state and grammar rules; for example, in the grammar rule E -> id, if the input contains id + id, the parser reduces the first id to E immediately.

- the input contains id + id, the parser reduces the first id to E immediately. LR(0) items and no lookahead in the input IR(0) Parser
- When we find α in γ and the next input token can follow A in some sentential form

ullet When we find lpha in γ and the next input token follows A in γ

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Step 5: The Last Piece of Jigsaw Puzzle: Computing FOLLOW Sets

Consider $\beta Aw \stackrel{rm}{\Rightarrow} \beta \alpha w$ and $A \rightarrow \alpha$ When do we reduce occurrence of α in $\gamma = \beta \alpha$ using $A \rightarrow \alpha$ using LR(k) items? (i.e., when do we decide that α and $A \rightarrow \alpha$ form a handle in γ ?)

Read the input from Left to right

Trace the Rightmost derivation in Reverse

The number of lookahead symbols in the items

• As soon as we find α in γ LR(0) items and no lookahead in the input

- SLR(0) Parser
- When we find α in γ and the next input token can follow A in some sentential form

 The SLR(1) parser extends the SLR(0) parser by using one lookahead symbol, reducing alpha to A if alpha is found in gamma and the next input token can follow A in some sentential form:
 - LR(0) items and 1 lookahead in the input for example, in the grammar rule E -> Id, if the input is id + id, the parser reduces the first id to E only if the next token (+) can follow E in expressions like E + E.
- When we find α in γ and the next input token follows A in γ

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

Step 5: The Last Piece of Jigsaw Puzzle: Computing FOLLOW Sets

Consider $\beta Aw \stackrel{rm}{\Rightarrow} \beta \alpha w$ and $A \rightarrow \alpha$

When do we reduce occurrence of α in $\gamma = \beta \alpha$ using $A \to \alpha$ using LR(k) items? (i.e., when do we decide that α and $A \to \alpha$ form a handle in γ ?)

The number of lookahead symbols in the items -

• As soon as we find α in γ LR(0) items and no lookahead in the input

- SLR(0) Parser
- When we find α in γ and the next input token can follow A in some sentential form

LR(0) items and 1 lookahead in the input

SLR(1) Parser

The CLR(1) parser is more precise than the SLR(1) parser, using one lookahead symbol and considering the specific context in

ALR(1) Parsing The CLR(1) parser is more precise than the SLR(1) parser, using one lookahead symbol and considering the specific context in which A appears, reducing alpha to A if alpha is found in gamma and the next input token specifically follows A in the current context;

• When we find α in γ and the next input token follows A in γ

for example, in the grammar rule E -> id and input id ')', the CLR(1) parser reduces id to E only if) specifically follows E in the current LR(1) items and 1 lookahead in the input

Topic: Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step 5: FIRST and FOLLOW Sets

• FIRST(β) contains the terminals that may begin a string derivable from β If β derives ϵ , then $\epsilon \in \mathsf{FIRST}(\beta)$

It is computed as the least fixed point solution of the following constraints For $A \to X_1 X_2 \dots X_k$, FIRST $(A) \supseteq X_i, 1 \le i \le k$, provided $\forall i < i, \epsilon \in \mathsf{FIRST}(X_i)$

• FOLLOW(A) contains the terminals that follow A in some sentential form It is computed as the least fixed point solution of the following constraints

For production $A \rightarrow \alpha B \beta$

- If A is the start non-terminal FOLLOW(A) ⊇ {\$}
- FOLLOW(B) \supseteq FIRST(β) { ϵ }
- If β is ϵ or $\epsilon \in \mathsf{FIRST}(\beta)$ FOLLOW(B) \supset FOLLOW(A)

Topic: Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Step 5: FIRST and FOLLOW Sets

FIRST(β) contains the terminals that may begin a string derivable from β
 If β derives ε, then ε ∈ FIRST(β)
 It is computed as the least fixed point solution of the following constraints
 For A → X₁X₂...X_k, FIRST(A) ⊃ X_i, 1 < i < k, provided ∀i < i, ε ∈ FIRST(X_i)

FOLLOW(A) contains the terminals that follow A in some sentential form
 It is computed as the least fixed point solution of the following constraints

For production $A \rightarrow \alpha B \beta$

- If A is the start non-terminal FOLLOW(A) ⊇ {\$}
- $FOLLOW(B) \supseteq FIRST(\beta) \{\epsilon\}$
- If β is ϵ or $\epsilon \in \mathsf{FIRST}(\beta)$ $\mathsf{FOLLOW}(B) \supseteq \mathsf{FOLLOW}(A)$

For our grammar $E \rightarrow E + E$ $E \rightarrow E * E$ $E \rightarrow \text{id}$ FIRST $(E) = \{\text{id}\}$ FOLLOW $(E) = \{\$, +, *\}$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

Step 6: LR(0) Items Sets

 $parsing\hbox{-}slides\hbox{-}sanyal\hbox{-}part 3.pdf$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsi

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

$$\begin{array}{l} 0 \ E' \rightarrow E \\ 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \\ 3 \ E \rightarrow \mathrm{id} \end{array}$$

- Augment the grammar by adding a synthetic start symbol
- Construct the start state by putting a dot at the start of the start symbol and taking a closure (add every rule for every non-terminal that has a dot before it in some rule)
- Identify transitions on every symbol that has a dot before it to construct new states
- For every state so identified, take a closure and identify transitions on every symbol that has a dot before it

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Step 6: Computing LR(0) Item Sets for Expressions Grammar

$$0 E' \rightarrow E$$

$$1 E \rightarrow E + E$$

$$2 E \rightarrow E * E$$

$$3 E \rightarrow id$$

 $\begin{array}{c}
l_0 \\
E' \to \bullet E \\
E \to \bullet E + E \\
E \to \bullet E * E
\end{array}$

Kernel items

- Augment the grammar by adding a synthetic start symbol
- Construct the start state by putting a dot at the start of the start symbol and taking a closure (add every rule for every non-terminal that has a dot before it in some rule)
- Identify transitions on every symbol that has a dot before it to construct new states
- For every state so identified, take a closure and identify transitions on every symbol that has a dot before it

Closure items

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

IIT Bombay

cs302: Implementation of Programming Languages

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

IIT Bombay

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

IIT Bombay

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

IIT Bombay

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

IIT Bombay

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

IIT Bombay

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Topic:

Syntax Analysis
Section:

Grammars,

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsi

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Step 6: Computing LR(0) Item Sets for Expressions Grammar

40/67

Topic:

Syntax Analysis

Section

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Step 6: Computing LR(0) Item Sets for Expressions Grammar

Closure operation expands states by adding relevant productions.

Goto transitions help form the LR(0) parsing table.

Shift-Reduce conflicts appear in states 5 and 6, requiring precedence resolution.

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsi

The DFA of Item Sets Accepts Viable Prefixes

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsi

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

The DFA of Item Sets Accepts Viable Prefixes

The DFA ensures that no invalid prefix enters the stack, helping the parser process inputs correctly.

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

Putting it All Together: Constructing the Parsing Table

empty program is ACCEPTED

$$\begin{array}{ll} 0 \ E' \rightarrow E \\ 1 \ E \rightarrow E + E \\ 2 \ E \rightarrow E * E \end{array} \qquad \begin{array}{ll} FOLLOW(E') = \{\$\} \\ FOLLOW(E) = \{\$, +, *\} \end{array}$$

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Snitt Reduce Pa

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Snitt Reduce Pai

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

		_		σ.	_
	id	+	*	\$	Ε
0	<i>s</i> 2				c1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Snitt Reduce Par

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	73	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	73	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Pars

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		73	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Snitt Reduce Par

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsi

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Pars

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsi

г	_	<u>ا</u> نا			Œ	Ε
L		ıd	+	*	Þ	L
	0	<i>s</i> 2				<i>c</i> 1
I	1		<i>s</i> 3	<i>s</i> 4	acc	
	2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
Γ	3	<i>s</i> 2				<i>c</i> 5
	4	<i>5</i> 2				<i>c</i> 6
ſ	5		r1	<i>s</i> 4	r1	
I	6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Snift Reduce Par

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

	T	id	+	*	\$	Ε
늣	+		_		Ψ	_
Ų	ļ	<i>s</i> 2		Ц.		c_1
1			<i>s</i> 3	<i>s</i> 4	acc	
2	I		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	Ī	<i>s</i> 2				<i>c</i> 5
4	I	<i>s</i> 2				<i>c</i> 6
5	I		r1	<i>s</i> 4	r1	
6	I		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsir

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	52				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Jillit Reduce I a

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

	Π	id	+	*	\$	Ε
0	П	<i>s</i> 2				<i>c</i> 1
1	П		<i>s</i> 3	<i>s</i> 4	acc	
2	I		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	Π	<i>s</i> 2				<i>c</i> 5
4	I	<i>s</i> 2				<i>c</i> 6
5	П		r1	<i>s</i> 4	r1	
6	I		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Snitt Reduce Pa

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsii

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Snift Reduce Pars

SLR(1) Parsing

Conceptual Issues i Parsing

CLR(1) Parsing

LALR(1) Parsi

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Pars

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsi

	id	+	*	\$	Ε
0	<i>s</i> 2				<i>c</i> 1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		r1	<i>s</i> 4	r1	
6		<i>r</i> 2	<i>r</i> 2	<i>r</i> 2	

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsi

Destination Reached: From Intuitions to Formal Algorithms in Shift Reduce Parsing

$$1 E \rightarrow E + E$$
$$2 F \rightarrow F * F$$

2	Ε	\rightarrow	Ε	*	Ε
3	Ε	\rightarrow	id		

	id	+	*	\$	Ε
0	<i>s</i> 2				c1
1		<i>s</i> 3	<i>s</i> 4	acc	
2		<i>r</i> 3	<i>r</i> 3	<i>r</i> 3	
3	<i>s</i> 2				<i>c</i> 5
4	<i>s</i> 2				<i>c</i> 6
5		> 3√ <i>r</i> 1	<i>s</i> 4/ 冰 (r1	
6		≽ ¶/r2	≽ 4/ <i>r</i> 2	<i>r</i> 2	

Step	$Stack \to$		Action
1	\$	id + id * id\$	
2	\$id		reduce by 3
3	\$ <i>E</i>	+ id * id\$	
4	\$ <i>E</i> +	id * id\$	
5	E + id		reduce by 3
6	E + E	* id\$	
7	E + E *		shift
8	E + E * id		reduce by 3
9	E + E * E		reduce by 2
10	E + E	\$	reduce by 1
11	\$ <i>E</i>	\$	accept

	Step	Stack o	Input	Action
	1	\$0	id + id * id\$	<i>s</i> 2
	2	\$0 id 2		<i>r</i> 3 and <i>c</i> 1
	3	\$0 <i>E</i> 1	+ id * id\$	<i>s</i> 3
	4	\$0 E 1 + 3	id * id\$	<i>s</i> 2
1	5	\$0 E 1 + 3 id 2	* id\$	<i>r</i> 3 and <i>c</i> 5
~	6	\$0 E 1 + 3 E 5	* id\$	<i>s</i> 4
	7	\$0 E 1 + 3 E 5 * 4	id\$	<i>s</i> 2
	8	\$0 E 1 + 3 E 5 * 4 id 2	\$	<i>r</i> 3 and <i>c</i> 6
	9	\$0 E 1 + 3 E 5 * 4 E6	\$	<i>r</i> 2 and <i>c</i> 5
	10	\$0 E 1 + 3 E 5	\$	<i>r</i> 1 and <i>c</i> 1
	11	\$0 E 1	\$	accept

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Explaining Conflicts in Yacc

- Using bison -d option to generate .output file
- Using bison -g option to generate dot file of LR(0) automaton
- lex-yacc-intro-programs/yacc-conflict-demo/README
- yacc-actions-demo/simcalc-using-lex-yacc-c++
 To show the need of %prec UMINUS

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Conceptual Issues in Parsing

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Conceptual Issues in Parsing

parsing-slides-sanyal-part4.pdf

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

CLR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Limitation of SLR(1) Parsing

• We illustrate the limitations of SLR(1) parsing by using the pointer assignment grammar given below

$$S \rightarrow L = R \mid R$$

$$L \rightarrow *R \mid id$$

$$R \rightarrow L$$

- We compute the FOLLOW sets and sets of LR(0) items to demonstrate the problem
- We explain the cause of the problem
- This explanation leads us to a more precise method of CLR(1) parsing (Canonical LR(1) parsing that uses the LR(1) items)

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' \rightarrow S$$

$$S \rightarrow L = R \mid R$$

$$\begin{array}{ccc}
L & \rightarrow & *R \mid \text{id} \\
R & \rightarrow & L
\end{array}$$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' \rightarrow S$$
 \Rightarrow FOLLOW(S') \supseteq {\$} FOLLOW(S')

$$S \rightarrow L = R \mid R$$

$$L \rightarrow *R \mid id$$

 $R \rightarrow I$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' \rightarrow S$$
 \Rightarrow FOLLOW(S') \supseteq {\$}
FOLLOW(S) \supseteq FOLLOW(S')
 $S \rightarrow L = R \mid R \Rightarrow$ FOLLOW(L) \supseteq {=}
FOLLOW(R) \supseteq FOLLOW(R)
 $L \rightarrow *R \mid id$
 $R \rightarrow L$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$S' \rightarrow S$$
 \Rightarrow FOLLOW(S') \supseteq {\$}
FOLLOW(S) \supseteq FOLLOW(S')
 $S \rightarrow L = R \mid R \Rightarrow$ FOLLOW(L) \supseteq {=}
FOLLOW(R) \supseteq FOLLOW(S)
 $L \rightarrow *R \mid id \Rightarrow$ FOLLOW(R) \supseteq FOLLOW(L)
 $R \rightarrow I$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

$$S' o S$$
 \Rightarrow FOLLOW(S') \supseteq {\$}
FOLLOW(S) \supseteq FOLLOW(S')
 $S o L = R \mid R \Rightarrow$ FOLLOW(L) \supseteq {=}
FOLLOW(R) \supseteq FOLLOW(R)
 $L o *R \mid id \Rightarrow$ FOLLOW(R) \supseteq FOLLOW(R)
 $R o L \Rightarrow$ FOLLOW(R) \supseteq FOLLOW(R)

	FOLLOW
<i>S'</i>	{\$ }
S	{\$ }
R	${=,\$}$
L	$\{=,\$\}$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Languages

Topic:

Syntax Analysis Section:

Grammars,

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

IIT Bombay cs302: Impler

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

IIT Bombay

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Languages

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

IIT Bombay

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

SLR(1) Parsing

CLR(1) Parsing

Languages

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Pars
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsir

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Input

Stack

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Shift 5

Input

id = id\$

IIT Bombay cs302: Implementation

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Reduce by 4

Input

= id\$

5

id

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Stack

Cover by 2

Input

= id\$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Sillit Reduce i a

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Reduce by 5

Input

= id\$

Stack

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Stack

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsir

Limitation of SLR(1) Parsing

Error

No action on =

Input

= id\$

3

R

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Jillit Reduce Fais

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Shift 5

Input

id = id\$

IIT Bombay cs302: Implementation

cs302: Implementation of Programming Languages

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Reduce by 4

Input

= id\$

5

id

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Stack

Cover by 2

Input

= id\$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce

SLR(1) Parsing

Parsing Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

shift 6

Input

2 *L*

 ${\sf Stack}$

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsir

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Shift 5

Input

id\$

Stack

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

	FOLLOW
S'	{\$ }
S	{\$ }
R	$\{=,\$\}$
L	$\{=,\$\}$

Reduce by 4

Input

Stack

5 iЫ

6

=

5

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Cover by 8

Input

put

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

Reduce by 5

Input

	O
	L
	6
:	=
	5
	L
	0

0

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

Limitation of SLR(1) Parsing

Cover by 9

Input

R

6

=

5

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsi

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Reduce by 1

Input

9 R 6 = 5 L

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Cover by 1

Input

S 0

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsi

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Accept

Input

1 5 0

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Pa

SLR(1) Parsing

Conceptual Issues in Parsing

$\mathsf{CLR}(1)$ Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing

Accept

Input

1 5 0

 ${\sf Stack}$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let FOLLOW(A) = {b, c}. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let $FOLLOW(A) = \{b, c\}$. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

• We should declare handle $A \to \alpha$ in a viable prefix γ only if the follow symbols actually follows A in the right sentential form containing γ

Topic: Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Limitation of SLR(1) Parsing: Use of FOLLOW Information

• Let $FOLLOW(A) = \{b, c\}$. Then b may follow A in some right sentential forms whereas in some other right sentential form, c may follow A

A symbol in follow set need not follow A in every right sentential form

- We should declare handle $A \to \alpha$ in a viable prefix γ only if the follow symbols actually follows A in the right sentential form containing γ
- In our grammar, there is no right sentential form with a prefix 'R ='
 - Since we need '=' in our right sentential form, consider $S \stackrel{rm}{=} L = R$
 - L can derive either id or *R but not R

$$\begin{array}{ccc} S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid \mathrm{id} \\ R & \rightarrow & L \end{array}$$

'=' is in $\mathsf{FOLLOW}(R)$ only for the right sentential forms that begin with a '*'

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parso
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) Item Sets

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the core $A \to \alpha \bullet \beta$ and
 - o the *lookahead* a

If S is the start symbol, then I_0 contains $S' \to \bullet S, \$$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \to \alpha \bullet B\beta, a$ on B gives an item

 ${\it A}
ightarrow lpha {\it B} ullet eta, {\it a}$

Topic: Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) Item Sets

Two changes from LR(0) construction

• Items are of the form $A \to \alpha \bullet \beta$, a consisting of

$$\circ$$
 the $\mathit{core}\ A \to \alpha \bullet \beta$ and

If S in the goal is to compute different subsets of FOLLOW(A) for $A \to \alpha$ in different right sentential forms

 Closu of th
 Since the construction of sets of items creates a DFA to recognize all viable prefixes, the subsets of FOLLOW can be computed for the productions in sets of items

Transition of an item $A \to \alpha \bullet B\beta, a$ on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

Topic:

Syntax Analysis

Section:

Derivations, and Parso Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) Item Sets

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta$, a consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S$,\$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \to \alpha \bullet B\beta$, a on B gives an item

$${\it A} \rightarrow \alpha {\it B} \bullet \beta, {\it a}$$

The lookahead does not change during a transition

 $\begin{array}{ccc} S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid \mathrm{id} \\ R & \rightarrow & L \end{array}$

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) Item Sets

Two changes from LR(0) construction

- Items are of the form $A \rightarrow \alpha \bullet \beta$, a consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S$,\$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \to \alpha \bullet B\beta$, a on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

The lookahead does not change during a transition

$$S' \to \bullet S, \qquad \$$$

$$S \to \bullet L = R, \$$$

$$S \to \bullet R, \qquad \$$$

0

$$\begin{array}{ccc} S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid \mathrm{id} \\ R & \rightarrow & L \end{array}$$

Topic: Syntax Analysis

Syntax Analys

Section

Derivations, and Parso Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) Item Sets

Two changes from LR(0) construction

- ullet Items are of the form $A \to \alpha ullet \beta, a$ consisting of
 - \circ the core $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S$,\$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \rightarrow \alpha \bullet B\beta$, a on B gives an item

$${\it A} \rightarrow \alpha {\it B} \bullet \beta, {\it a}$$

$$S' \to \bullet S, \qquad \$$$

$$S \to \bullet L = R, \$$$

$$S \to \bullet R, \qquad \$$$

$$L \to \bullet * R, \qquad =$$

$$L \to \bullet \text{id}, \qquad =$$

$$\begin{array}{ccc} S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid \mathrm{id} \\ R & \rightarrow & L \end{array}$$

Topic: Syntax Analysis

Sylicax Allalys

Section

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) Item Sets

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta, a$ consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S, \$$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \rightarrow \alpha \bullet B\beta$, a on B gives an item

$${\it A} \rightarrow \alpha {\it B} \bullet \beta, {\it a}$$

$$\begin{array}{ll} S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid \mathrm{id} \\ R & \rightarrow & L \end{array}$$

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) Item Sets

Two changes from LR(0) construction

- Items are of the form $A \rightarrow \alpha \bullet \beta, a$ consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S, \$$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \to \alpha \bullet B\beta$, a on B gives an item

$$A o \alpha B ullet eta, a$$

'	\rightarrow	● <i>S</i> ,	\$	
S	\rightarrow	$\bullet L = R,$	\$	
S	\rightarrow	• <i>R</i> ,	\$	
L	\rightarrow	$\bullet * R$,	=	,
L	\rightarrow	∙id,	=	I_0
7	\rightarrow	• <i>L</i> ,	\$	
L	\rightarrow	$\bullet * R$,	\$	
L	\rightarrow	∙id,	\$	

$$\begin{array}{ccc} S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid \mathrm{id} \\ R & \rightarrow & L \end{array}$$

Topic:

Syntax Analysis

Section

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) Item Sets

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta, a$ consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S, \$$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

Transition of an item $A \rightarrow \alpha \bullet B\beta, a$ on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

$$\begin{array}{ccc} S & \rightarrow & L = R \mid R \\ L & \rightarrow & *R \mid \mathrm{id} \\ R & \rightarrow & L \end{array}$$

Topic:

Syntax Analysis

Section

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) Item Sets

Two changes from LR(0) construction

- Items are of the form $A \to \alpha \bullet \beta, a$ consisting of
 - \circ the *core* $A \rightarrow \alpha \bullet \beta$ and
 - o the lookahead a

If S is the start symbol, then I_0 contains $S' \to \bullet S, \$$

• Closure of an item $A \to \alpha \bullet B\beta$, a contains the items of the form $B \to \bullet \gamma$, FIRST(βa)

$$S' \rightarrow \bullet S, \qquad \$$$

$$S \rightarrow \bullet L = R, \$$$

$$S \rightarrow \bullet R, \qquad \$$$

$$L \rightarrow \bullet * R, =$$

$$L \rightarrow \bullet * I, \qquad \$$$

$$L \rightarrow \bullet * R, \qquad \$$$

$$L \rightarrow \bullet A, \qquad \$$$

Transition of an item $A \to \alpha \bullet B\beta, a$ on B gives an item

$$A \rightarrow \alpha B \bullet \beta, a$$

The lookahead does not change during a transition

Reduction by $R \to L \bullet$ only on \$ and not on = No shift reduce conflict

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) Sets of Items for Pointer Assignment Grammar

 I_0

$S' \to \bullet S$,	\$
$S \rightarrow \bullet L = R$?, \$
$S \rightarrow \bullet R$,	\$
$L \to \bullet * R$,	= /\$
$L \rightarrow \bullet id$,	= /\$
$R \rightarrow \bullet L$,	\$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

 $\mathsf{LALR}(1) \; \mathsf{Parsing}$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

 $\mathsf{CLR}(1)$ Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Pars
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) Sets of Items for Pointer Assignment Grammar

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsir

LR(1) Sets of Items for Pointer Assignment Grammar

Topic:

Syntax Analysis

Section

Grammars,
Derivations, and Parso
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) Sets of Items for Pointer Assignment Grammar

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LR(1) (aka CLR(1)) Parsing Table for Pointer Assignment Grammar

Ü	$S' \rightarrow S$
1	$S \rightarrow L =$
2	$S \rightarrow R$
3	$L \rightarrow *R$
4	L o id
5	R o L

R

State		Acti	on			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	c7
5			r4	<i>r</i> 4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4		·	
12	<i>s</i> 11	<i>s</i> 12		·		c10	c13
13				<i>r</i> 3			

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on		Goto		
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	c7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13		·		r3			, and the second

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on	Goto			
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	c7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow *R$
 $L \rightarrow id$
 $R \rightarrow L$

Input

id = id\$

Shift 5

0

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

Ctata		Act	ion			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	s11	<i>s</i> 12				c10	c13
13				r3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

= id\$

Reduce by 4

5 id

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

Ctata		Act	ion			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	s11	<i>s</i> 12				c10	c13
13				r3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

= id\$

Cover by 2

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on	Goto			
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

= id\$

Shift 6

2 *L* Snift

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on		Goto		
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			r3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow * R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

id\$

Shift 11

6 | S | 2 | L |

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on	Goto			
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				<i>r</i> 2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			r3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Reduce by 4

Stack

11

id

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	on	Goto			
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				<i>r</i> 2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			r3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow *R$
 $L \rightarrow id$
 $R \rightarrow L$

Input

\$

Cover by 10

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Act	on			Goto		
State	id	*	=	\$	S	L	R	
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3	
1				acc				
2			<i>s</i> 6	<i>r</i> 5				
3				r2				
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7	
5			r4	r4				
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9	
7			r3	<i>r</i> 3				
8			<i>r</i> 5	<i>r</i> 5				
9				<i>r</i> 1				
10				<i>r</i> 5				
11				r4				
12	<i>s</i> 11	<i>s</i> 12				c10	c13	
13				r3				

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Reduce by 5

Stack

10

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State		Acti	ion			Goto	
State	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				<i>r</i> 2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow *R$
 $L \rightarrow id$
 $R \rightarrow L$

Input

\$

Cover by 9

Stack

R

6

2

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State	Action				Goto		
	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				<i>r</i> 2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				r1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Reduce by 1

Stack

R

2

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State	Action				Goto		
	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow * R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Input

\$

Cover by 1

S

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

LR(1) (aka CLR(1)) Parsing for the Pointer Assignment Grammar

State	Action				Goto		
	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				r2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 11	<i>s</i> 12				c10	<i>c</i> 9
7			r3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			
10				<i>r</i> 5			
11				r4			
12	<i>s</i> 11	<i>s</i> 12				c10	c13
13				<i>r</i> 3			

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Another Example of LR(1) (aka CLR(1)) Parsing

A
ightarrow aBe

A
ightarrow aCd

 $A \rightarrow bBd$ $A \rightarrow bCe$

 $B \rightarrow f$

 $C \to f$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$A \rightarrow aBe$$

 $A \rightarrow aCd$
 $A \rightarrow bBd$
 $A \rightarrow bCe$

$$B \rightarrow f$$

 $C \rightarrow f$

I ₀	
$A' \rightarrow \bullet A$,	\$
$A \rightarrow ullet aBe,$	\$
$A \rightarrow \bullet aCd$,	\$
$A \rightarrow \bullet bBd$,	\$
$A \rightarrow ullet bCe$,	\$

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$A \rightarrow aBe$$

 $A \rightarrow aCd$
 $A \rightarrow bBd$
 $A \rightarrow bCe$
 $B \rightarrow f$
 $C \rightarrow f$

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Another Example of LR(1) (aka CLR(1)) Parsing

Closure of
$$P \to \alpha \bullet Q\beta, p$$
 contains items of the form $Q \to \bullet \gamma$, FIRST(βp)

In our example

- For Q = B, β is e and p is \$

 If we expect to see a string derivable from B in this state, the string must be followed by

 FIRST(βp) = FIRST(e\$) = e
- For Q = C, β is d and p is \$

 If we expect to see a string derivable from C in this state, the string must be followed by

 FIRST(βp) = FIRST(d\$) = d

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Another Example of LR(1) (aka CLR(1)) Parsing

Closure of $P \to \alpha \bullet Q\beta, p$ contains items of the form $Q \to \bullet \gamma$, FIRST (βp)

In our example

- For Q = B, β is d and p is \$

 If we expect to see a string derivable from B in this state, the string must be followed by

 FIRST(βp) = FIRST(d\$) = d
- For Q = C, β is e and p is \$

 If we expect to see a string derivable from C in this state, the string must be followed by

 FIRST(βp) = FIRST(e\$) = e

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsin

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Parsing

• Merge item sets with identical cores (may have different lookaheads)

States $I_i: A \to \alpha \bullet \beta, a$ and $I_j: A \to \alpha \bullet \beta, b$

can be merged to create a new state I_{ij} : $A \rightarrow \alpha \bullet \beta, a/b$

• In practice, we do not construct LR(1) items to construct LALR(1) parser We construct LR(0) items and use a look-ahead propagation algorithm

Topic:

 ${\sf Syntax} \ {\sf Analysis}$

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Parsing for Pointer Assignment Grammar

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

$$\begin{array}{ll} 0 & S' \rightarrow S \\ 1 & S \rightarrow L = R \\ 2 & S \rightarrow R \\ 3 & L \rightarrow *R \\ 4 & L \rightarrow \mathrm{id} \\ 5 & R \rightarrow L \end{array}$$

State	Action				Goto		
	id	*	=	\$	S	L	R
0	<i>s</i> 5	<i>s</i> 4			<i>c</i> 1	<i>c</i> 2	<i>c</i> 3
1				acc			
2			<i>s</i> 6	<i>r</i> 5			
3				<i>r</i> 2			
4	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 7
5			r4	r4			
6	<i>s</i> 5	<i>s</i> 4				<i>c</i> 8	<i>c</i> 9
7			<i>r</i> 3	<i>r</i> 3			
8			<i>r</i> 5	<i>r</i> 5			
9				<i>r</i> 1			

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsin

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Vs CLR(1) Parsing

- Can merging of LR(1) states introduce shift-reduce conflict?
- Can merging of LR(1) states introduce reduce-reduce conflict?

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

• Let $I_i: \begin{bmatrix} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet a\beta, & r \\ B \to \gamma \bullet, & s \end{bmatrix}$ where p, q, r, s are arbitrary terminals

So that the merged state is
$$I_{ij}: \begin{array}{c} A \to \alpha \bullet a\beta, & p/r \\ B \to \gamma \bullet, & q/s \end{array}$$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

• Let $I_i: \begin{bmatrix} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet a\beta, & r \\ B \to \gamma \bullet, & s \end{bmatrix}$ where p, q, r, s are arbitrary terminals

So that the merged state is $I_{ij}: \begin{array}{c} A \to \alpha \bullet a\beta, & p/r \\ B \to \gamma \bullet, & q/s \end{array}$

• For a shift-reduce conflict in I_{ii} , either q or s must be a.

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

• Let $I_i: \begin{bmatrix} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet a\beta, & r \\ B \to \gamma \bullet, & s \end{bmatrix}$ where p, q, r, s are arbitrary terminals

So that the merged state is $I_{ij}: \begin{array}{c} A \to \alpha \bullet a\beta, & p/r \\ B \to \gamma \bullet, & q/s \end{array}$

• For a shift-reduce conflict in I_{ij} , either q or s must be a.

o If q is a, then I_i is $A \to \alpha \bullet a\beta$, $P \to \alpha \bullet a\beta$ and thus I_i has a shift-reduce conflict

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states I_i and I_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

• Let $I_i: \begin{bmatrix} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet a\beta, & r \\ B \to \gamma \bullet, & s \end{bmatrix}$ where p, q, r, s are arbitrary terminals

So that the merged state is $I_{ij}: \begin{array}{c} A \to \alpha \bullet a\beta, & p/r \\ B \to \gamma \bullet, & q/s \end{array}$

• For a shift-reduce conflict in I_{ij} , either q or s must be a.

- $\circ \text{ If } q \text{ is } a \text{, then } I_i \text{ is } \begin{array}{c} A \to \alpha \bullet a\beta, & p \\ B \to \gamma \bullet, & a \end{array}$
- o If s is a, then I_j is $A \to \alpha \bullet a\beta$, $A \to \alpha \bullet \alpha$, $A \to \alpha \bullet$

and thus I_j has a shift-reduce conflict

and thus I_i has a shift-reduce conflict

Topic: Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Shift-Reduce Conflict?

• To merge states l_i and l_j , they should have identical cores but different lookaheads (if the lookaheads are same then the states will not be distinct)

Let Ii: A
B
A set Iii of items in an LALR(1) parser can have a shift-reduce conflict if and only if a set Ii of LR(1) items merged to form Iii has the same shift-reduce conflict
This is because a shift-reduce conflict depends both on a lookahead and a terminal in the core

 \circ If q is

of an item

reduce conflict

 \circ If s is a, then I_j is $A \to \alpha \bullet a\beta$, $r \\ B \to \gamma \bullet$, a and thus I_j has a shift-reduce conflict

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Reduce-Reduce Conflict?

• Let $I_j: \begin{bmatrix} A \to \alpha \bullet, & p \\ B \to \alpha \bullet, & q \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet, & r \\ B \to \alpha \bullet, & s \end{bmatrix}$

$$A \to \alpha \bullet$$
, p
 $B \to \alpha \bullet$, q

$$A \to \alpha \bullet$$
, r
 $B \to \alpha \bullet$, s

So that the merged state is I_{ii} :

$$A \to \alpha \bullet$$
, p/r
 $B \to \alpha \bullet$, q/s

Topic:

Syntax Analysis

Section:

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Reduce-Reduce Conflict?

• Let $I_j: \begin{bmatrix} A \to \alpha \bullet, & p \\ B \to \alpha \bullet, & a \end{bmatrix}$ and $I_j: \begin{bmatrix} A \to \alpha \bullet, & r \\ B \to \alpha \bullet, & s \end{bmatrix}$

and
$$I_j: \begin{array}{c} A \to \alpha \bullet, \\ B \to \alpha \bullet, \end{array}$$

So that the merged state is I_{ii} :

$$A \to \alpha \bullet$$
, p/r
 $B \to \alpha \bullet$, q/s

- For a reduce-reduce conflict in I_{ii} such that there is no reduce-reduce conflict in I_i or I_i ,
 - $\circ p = s$. This is possible without a reduce-reduce conflict in I_i and I_i
 - \circ r=q. This is also possible without a reduce-reduce conflict in I_i and I_i

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Can Merging LR(1) Sets of Items Introduce Reduce-Reduce Conflict?

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Vs LR(1) Parsing

- Merging of LR(1) states for LALR(1) parsing cannot introduce shift-reduce conflicts
- Merging of LR(1) states for LALR(1) parsing may introduce reduce-reduce conflicts

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Vs LR(1) Parsing

- Merging of LR(1) states for LALR(1) parsing cannot introduce shift-reduce conflicts
- Merging of LR(1) states for LALR(1) parsing may introduce reduce-reduce conflicts
- Let $\mathbb{G}(P)$ be the set of grammars admitted by a parsing method P (i.e. conflict-free parsers can be created for these grammars using P)

 Then, $\mathbb{G}(LALR(1)) \subset \mathbb{G}(LR(1))$

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Vs LR(1) Parsing

- Merging of LR(1) states for LALR(1) parsing cannot introduce shift-reduce conflicts
- Merging of LR(1) states for LALR(1) parsing may introduce reduce-reduce conflicts
- Let $\mathbb{G}(P)$ be the set of grammars admitted by a parsing method P (i.e. conflict-free parsers can be created for these grammars using P)
 Then, $\mathbb{G}(LALR(1)) \subset \mathbb{G}(LR(1))$
- Consider a grammar $G \in \mathbb{G}(LALR(1))$
 - Can an LALR(1) parser for G reject $w \in L(G)$ because of merging of states?
 - Can an LALR(1) parser for G accept $w' \notin L(G)$ because of merging of states?

Topic: Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Parsing Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Vs LR(1) Parsing

- Merging of LR(1) states for LALR(1) parsing cannot introduce shift-reduce conflicts
- Merging of LR(1) states for LALR(1) parsing may introduce reduce-reduce conflicts
- Let $\mathbb{G}(P)$ be the set of grammars admitted by a parsing method P (i.e. conflict-free parsers can be created for these grammars using P)
 Then, $\mathbb{G}(LALR(1)) \subset \mathbb{G}(LR(1))$
- Consider a grammar $G \in \mathbb{G}(LALR(1))$
 - Can an LALR(1) parser for G reject $w \in L(G)$ because of merging of states? No
 - Can an LALR(1) parser for G accept $w' \notin L(G)$ because of merging of states? No

If a parsing method admits a grammar G then the corresponding parser for G accepts all sentences in L(G) and rejects all sentences not in L(G)

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

LALR(1) Vs LR(1) Parsing

- Merging of LR(1) states for LALR(1) parsing cannot introduce shift-reduce conflicts
- Merging of LR(1) states for LALR(1) parsing may introduce reduce-reduce conflicts
 Deterministic parsers: LL(1), LR(0), SLR(1), LR(1), LALR(1), etc.
- Let $\mathbb{G}(P)$ be the set of grammars admitted by a parsing method P (i.e. conflict-free parsers can be created for these grammars using P)

 Then, $\mathbb{G}(LALR(1)) \subset \mathbb{G}(LR(1))$
- Consider a grammar $G \in \mathbb{G}(LALR(1))$
 - o Can an LALR(1) parser for G reject $w \in L(G)$ because of merging of states? No
 - Can an LALR(1) parser for G accept $w' \notin L(G)$ because of merging of states? No For deterministic parsers (LL(1), LR(1), etc.), G must be conflict-free.

If a parsing method admits a grammar G then the corresponding parser for G accepts all sentences in L(G) and rejects all sentences not in L(G)

 $\bullet \ \ \mathsf{Consider} \ \mathsf{a} \ \mathsf{grammar} \ \mathsf{G} \notin \mathbb{G}(\mathit{LALR}(1))$

An LALR(1) parser may still accept L(G) because it may admit G' such that L(G) = L(G') this principle applies to other parser types as well, though with some important distinctions 62/67

Topic:

Syntax Analysis

Section:

Grammars, Derivations, and Parse

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Example of Reduce-Reduce Conflict Caused by Merging LR(1) Sets of Items

Topic:

Syntax Analysis

Section:

Grammars,
Derivations, and Parse
Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Example of Reduce-Reduce Conflict Caused by Merging LR(1) Sets of Items

Topic:

Syntax Analysis

Section:

Derivations, and Parse

SLR(1) Parsing

CLR(1) Parsing

LALR(1) Parsing

A Practical Example of Reduce-Reduce Conflict in LR(1) Parsing

program → func_decl var_decl program \rightarrow var_decl func_decl $var_decl \rightarrow data_type ID$; $data_type \rightarrow INT$

func_decl \rightarrow return_type ID ()

return_type \rightarrow INT

return_type → VOID

For the input "int f . . . ", when we see the token INT, the next token is ID

In this situation, the parser does not know if it should reduce INT to return_type or data_type

State I_0 contains the following items

```
data_type \rightarrow \bullet INT. ID
return_type \rightarrow • INT, ID
```

The transition on INT gives the following set of items showing a reduce-reduce conflict on ID

```
data_type \rightarrow INT \bullet, ID
return_type → INT •. ID
```


Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

A Practical Example of Reduce-Reduce Conflict in LR(1) Parsing

In this particular case, the conflict can be removed by replacing every occurrence of the non-terminals data_type and return_type by every RHS of the non-terminal

Original Grammar	Transformed Grammar		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ll} program & \to & func_decl \ var_decl \\ program & \to & var_decl \ func_decl \\ var_decl & \to & INT \ ID \ ; \\ func_decl & \to & INT \ ID \ (\) \\ func_decl & \to & VOID \ ID \ (\) \end{array}$		

Topic:

Syntax Analysis

Section:

Derivations, and Pars Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

A Summary of Bottom Up Parsing Methods

Parsing Method	Items Used	Reduction by $A \rightarrow \alpha$	Remarks
SLR(0)	LR(0)	On any terminal	
SLR(1)	LR(0)	On the terminals in $FOLLOW(A)$	
LR(1), also known as Canonical LR(1) or CLR(1)	LR(1)	On lookahead a in the item " $A \rightarrow \alpha \bullet$, a "	
LALR(1)	LR(1)	On lookahead a in the item " $A o lpha ullet , a$ "	Conceptually, the sets of items are obtained by merging LR(1) item sets that differ only in the lookahead symbols Practically, lookaheads are propagated starting from \$ on LR(0) items

Topic:

Syntax Analysis

Section:

Derivations, and Parse Trees

Shift Reduce Parsing

SLR(1) Parsing

Conceptual Issues in Parsing

CLR(1) Parsing

LALR(1) Parsing

Comparison of Bottom-Up Methods and Corresponding Grammars

- A grammar G is accepted by a parsing method P if a conflict-free parser can be constructed for G using P
- An ambiguous grammar is not accepted by any parsing method
- A grammar is called SLR(0), SLR(1), LR(1), or LALR(1) if it is accepted respectively, by the SLR(0), SLR(1), LR(1), or LALR(1) parsing method
 - Every SLR(0) grammar is also SLR(1) grammar but not vice-versa
 - Every SLR(1) grammar is also LALR(1) grammar but not vice-versa
 - Every LALR(1) grammar is also LR(1) grammar but not vice-versa
- The expressions grammar ($E \rightarrow E + E \mid E * E \mid id$) is not accepted by any parsing method because it is ambiguous

(without post-facto instrumentation of parsing tables using precedences and associativities)