Stochastic Financial Models 20

Michael Tehranchi

20 November 2023

1 Continuous-time finance

From discrete to continuous. Motivation

- Let $S_n = S_0 \xi_1 \cdots \xi_n$ be the stock price in the binomial model
- If we assume that the $(\xi_n)_n$ are IID, then $\log S_n = \log S_0 + X_1 + \ldots + X_n$ is a random walk
- Now time step n corresponds to time $t = n\delta$ where δ is very small.
- Let $\hat{S}_t = S_{t/\delta}$
- Then

$$\log \hat{S}_t = \log S_0 + \mu t + \sigma W_t$$

where

- $\mu = \mathbb{E}(X)/\delta$
- $\sigma^2 = \operatorname{Var}(X)/\delta$
- $W_t = \frac{X_1 + \dots + X_{t/\delta} \mu t}{\sigma}$

Properties of $(W_t)_{t=n\delta,n\geq 0}$

- $W_0 = 0$
- $\mathbb{E}(W_t W_s) = 0$, $\operatorname{Var}(W_t W_s) = 0$ for all $0 \le s \le t$
- $W_t W_s$ is independent of $(W_u)_{u < s}$ for all $0 \le slet$
- and by the central limit theorem

$$W_t - W_s \approx N(0, t - s)$$

as $\delta \downarrow 0$ (that is, hold s,t fixed and let $m,n\uparrow \infty,$ where $n=t/\delta$ and $m=t/\delta$)

2 Introduction to Brownian motion

Definition. A Brownian motion $(W_t)_{t\geq 0}$ is a stochastic process such that

- $t \mapsto W_t$ is continuous
- $\bullet \ W_0 = 0$
- $W_t W_s$ is independent of $(W_u)_{0 \le u \le s}$ for all $0 \le s \le t$.
- $W_t W_s \sim N(0, t s)$ for all $0 \le s \le t$.

3 Properties of Brownian motion

Theorem (Wiener 1923). Brownian motion exists.

Remark. A Brownian motion is called a Wiener process in the US.

Theorem. Brownian motion is a martingale in its filtration $\mathcal{F}_t = \sigma(W_s : 0 \le s \le t)$.

Proof. Brownian motion is integrable, adapted and

$$\mathbb{E}[W_t - W_s | \mathcal{F}_s] = \mathbb{E}[W_t - W_s] = 0$$

for $0 \le s \le t$ by the independence of $W_t - W_s$ and \mathcal{F}_s .

Theorem. Brownian motion is a Markov process.

Proof. Let g be a bounded function. Since W_s is \mathcal{F}_s measurable and $W_t - W_s$ is independent of \mathcal{F}_s for $0 \le s \le t$, we have

$$\mathbb{E}[g(W_t)|\mathcal{F}_s] = \mathbb{E}[g(W_t - W_s + W_s)|\mathcal{F}_s]$$
$$= \mathbb{E}[g(W_t - W_s + x)]\big|_{x = W_s}$$
$$= \mathbb{E}[g(W_t)|W_s]$$

Definition. A process $(X_t)_{t\geq 0}$ is *Gaussian* iff the random variables X_{t_1}, \ldots, X_{t_n} are jointly normal for all $0 \leq t_1 \leq \ldots \leq t_n$, i.e. the random variable $\sum_{i=1}^n a_i X_{t_i}$ is normally distributed for all constants a_1, \ldots, a_n .

Theorem. The following are equivalent

- 1. $(W_t)_{t\geq 0}$ is a Brownian motion
- 2. $(W_t)_{t>0}$ is a Gaussian process such that
 - $t \mapsto W_t$ is continuous
 - $\mathbb{E}[W_t] = 0$ for all t > 0
 - $\mathbb{E}[W_s W_t] = s \text{ for all } 0 < s < t$

Proof. Suppose $(W_t)_{t\geq 0}$ is a Brownian motion. Fix $0=t_0\leq t_1\leq\ldots\leq t_n$ and a_1,\ldots,a_n . Note

$$\sum_{i=1}^{n} a_i W_{t_i} = \sum_{i=1}^{n} b_i (W_{t_i} - W_{t_{i-1}})$$

where $b_k = \sum_{i=k}^n a_i$. Since $W_{t_1} - W_{t_0}, \dots, W_{t_n} - W_{t_{n-1}}$ are independent normals, and the linear combination of independent normals is normal, we have that $(W_t)_{t\geq 0}$ is Gaussian with $\mathbb{E}[W_t] = \mathbb{E}[W_0] = 0$ and

$$\mathbb{E}[W_s W_t] = \mathbb{E}[W_s^2] + \mathbb{E}[W_s (W_t - W_s)]$$

$$= \operatorname{Var}(W_s) + \mathbb{E}(W_s) \mathbb{E}(W_t - W_s)$$

$$= s.$$

for $0 \le s \le t$, since W_s and $W_t - W_s$ are independent.

Conversely, suppose $(W_t)_{t\geq 0}$ is a continuous Gaussian process such that $\mathbb{E}[W_t] = 0$ and $\mathbb{E}[W_sW_t] = s$ for all $0 \leq s \leq t$. Then for $t \geq 0$ we have $\mathrm{Var}(W_t) = \mathbb{E}(W_t^2) = t$ and hence for $0 \leq s \leq t$, we have

$$Var(W_t - W_s) = Var(W_t) + Var(W_s) - 2Cov(W_s, W_t)$$
$$= t + s - 2s$$
$$= t - s.$$

Finally for $0 \le u \le s \le t$ we have

$$Cov(W_u, W_t - W_s) = \mathbb{E}[W_u W_t] - \mathbb{E}[W_u W_s]$$
$$= u - u = 0$$

By Gaussianity, the increment is independent of $(W_u)_{0 \le u \le s}$. \square Remark. We have used the standard fact that if the random vectors X and Y are jointly Gaussian and Cov(X,Y) = 0, then it follows that X and Y are independent.

Theorem. Let $(W_t)_{t\geq 0}$ be a Brownian motion. Then each of the following processes are also Brownian motions.

- 1. $\tilde{W}_t = cW_{t/c^2}$, for any constant $c \neq 0$.
- 2. $\tilde{W}_t = W_{t+T} W_T$ for any constant $T \ge 0$.
- 3. $\tilde{W}_0 = 0$ and $\tilde{W}_t = tW_{1/t}$ for t > 0.

Proof. Check that each process is a continuous mean-zero Gaussian process with the correct covariance. [For 3, we technically need the Brownian law of large number $\frac{W_s}{s} \to 0$ as $s \to \infty$ to prove continuity of \tilde{W} at t = 0.]