Air Quality Index Prediction Model

-Bhargavi Jadhav

Problem Statement:

Predict various parameters of air quality using Python.

Approach:

- 1. Understanding the data.
- 2. Data processing:

This is done by making relevant changes to the data frame in order to get data that is fit for modelling, like:

- i) Changing the decimal
- ii) Slicing the data frame to get rid of unwanted columns
- iii) Dropping the unwanted rows
- iv) Handling the missing values and converting them to the mean values of the column

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(O3)	т	RH
0	10/03/2004	18.00.00	2.60000	1360.0	150.0	11.9	1046.0	166.000000	1056.0	113.000000	1692.0	1268.0	13.6	48.9
1	10/03/2004	19.00.00	2.00000	1292.0	112.0	9.4	955.0	103.000000	1174.0	92.000000	1559.0	972.0	13.3	47.7
2	10/03/2004	20.00.00	2.20000	1402.0	88.0	9.0	939.0	131.000000	1140.0	114.000000	1555.0	1074.0	11.9	54.0
3	10/03/2004	21.00.00	2.20000	1376.0	80.0	9.2	948.0	172.000000	1092.0	122.000000	1584.0	1203.0	11.0	60.0
4	10/03/2004	22.00.00	1.60000	1272.0	51.0	6.5	836.0	131.000000	1205.0	116.000000	1490.0	1110.0	11.2	59.6
5	10/03/2004	23.00.00	1.20000	1197.0	38.0	4.7	750.0	89.000000	1337.0	96.000000	1393.0	949.0	11.2	59.2

- 3. Time series analysis is done using the FB Prophet model. The following steps were followed:
 - i) Creating a data frame with respect to the Prophet model
 - ii) Using an appropriate format for date and time

data				
	ds	у	RH_lag1	АН
1	2004-03-10 19:00:00	47.7	48.9	0.7255
2	2004-03-10 20:00:00	54.0	47.7	0.7502
3	2004-03-10 21:00:00	60.0	54.0	0.7867
4	2004-03-10 22:00:00	59.6	60.0	0.7888
5	2004-03-10 23:00:00	59.2	59.6	0.7848
9352	2005-04-04 10:00:00	29.3	36.3	0.7568
9353	2005-04-04 11:00:00	23.7	29.3	0.7119
9354	2005-04-04 12:00:00	18.3	23.7	0.6406
9355	2005-04-04 13:00:00	13.5	18.3	0.5139
9356	2005-04-04 14:00:00	13.1	13.5	0.5028

- iii) Fitting the model to the data frame
- iv) The data was split into train and test data, with the last 30 datapoints in the test data
- v) Making future predictions based on the model
- vi) XGBoostRegressor was used further to reduce the residual and improve the prediction of the model. (was chosen after a comparison between xgboost and decision tree model)

Outcomes:

	ds	yhat	yhat_lower	yhat_upper
9351	2005-04-04 10:00:00	44.267761	28.638236	60.915408
9352	2005-04-04 11:00:00	39.478999	24.005444	54.867115
9353	2005-04-04 12:00:00	36.441230	20.818122	51.561437
9354	2005-04-04 13:00:00	34.947269	18.774843	50.474574
9355	2005-04-04 14:00:00	34.261819	18.123449	49.623634

Trend and seasonality:

Results:

The model predicted the rh value for the last 30 datapoints with a confidence interval.

Prophet-only RMSE: 15.794526746007298

DT RMSE: 6.363899368280523 XGB RMSE: 5.391415487728496

XGB was chosen because it has less RMSE. RMSE reduced by 65.87%.

R² value comes out to be 0.91

The models were saved for further use.