MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

RECAP

- ightharpoonup Probability space, measurability, sigma algebra, $\mathcal{B}(\mathbb{R})$.
- Conditional probability, Bayes rule, law of total probability
- Independence, mutually exclusive event
- Conditional Independence
- Experiments involving counting

Motivation to random variables

Random variable

- ▶ Given a random experiment with associated $(\Omega, \mathcal{F}, \mathbb{P})$, it is sometimes difficult to deal directly with $\omega \in \Omega$. eg. rolling a dice ten times.
- Notice that each sample point $\omega \in \Omega$ is not a number but a sequence of numbers.
- ➤ Also, we may be interested in functions of these sample points rather than samples themselves. eg: Number of times 6 appears in the 10 rolls.
- In either case, it is often convenient to work in a new *simpler* probability space rather than the original space.
- Random variable is a device which precisely helps us make this mapping from $(\Omega, \mathcal{F}, \mathbb{P})$ to a 'simpler' $(\Omega', \mathcal{F}', P_X)$.
- $ightharpoonup P_X$ is called as an induced probability measure on Ω' .

Random variable as a measurable function

A random variable X is a function $X: \Omega \to \Omega'$ that transforms the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to $(\Omega', \mathcal{F}', P_X)$ and is ' $(\mathcal{F}, \mathcal{F}')$ -measurable'.

- ▶ The map $X : \Omega \to \Omega'$ implies $X(\omega) \in \Omega'$ for all $\omega \in \Omega$.
- A random variable could be non-injective and non-surjective.
- For event $B \in \mathcal{F}'$, the pre-image $X^{-1}(B)$ is defined as $X^{-1}(B) := \{\omega \in \Omega : X(\omega) \in B\}$

The ' $(\mathcal{F}, \mathcal{F}')$ -measurability' implies that for every $B \in \mathcal{F}'$, we have $X^{-1}(B) \in \mathcal{F}$.

Random variable as a measurable function

The ' $(\mathcal{F},\mathcal{F}')$ -measurability' implies that for every $B\in\mathcal{F}'$, we have $X^{-1}(B)\in\mathcal{F}$.

- ▶ Since $X^{-1}(B) \in \mathcal{F}$, it can be measured using \mathbb{P} .
- ightharpoonup What is $P_X(B)$?
- $ho P_X(B) := \mathbb{P}(X^{-1}(B))$ for all $B \in \mathcal{F}'$.
- \triangleright $P_X(B)$ is therefore called as the induced probability measure.
- ▶ What if there is no $\omega \in \Omega$ such that $X(\omega) \in B$?

Random variables

- ▶ In general, the following convention is followed in most books:
 - $ightharpoonup \Omega'$ will be the set of real numbers, denoted by \mathbb{R} .
 - $ightharpoonup \mathcal{F}'$ as a result will be Borel σ -algebra, denoted by $\mathcal{B}(\mathbb{R})$.
 - ightharpoonup Remember $\mathcal{B}(\mathbb{R})$?

Borel σ -algebra

▶ Borel σ -algebra $\mathcal{B}(\mathbb{R})$:

If $\Omega = \mathbb{R}$, then $\mathcal{B}(\mathbb{R})$ is the event set generated by open sets of the form (a,b) where $a \leq b$ and $a,b \in \mathbb{R}$.

 $ightharpoonup \mathcal{B}(\mathbb{R})$ contains intervals of the form

$$[a, b]$$

$$[a, b)$$

$$(a, \infty)$$

$$[a, \infty)$$

$$(-\infty, b]$$

$$(-\infty, b)$$

$$\{a\}$$

Random variables $(\Omega' = \mathbb{R})$

- $\Omega \xrightarrow{X} \mathbb{R}$, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$
- Care must be taken such that the events you consider in the new event space $\mathcal{B}(\mathbb{R})$ are also valid events included in \mathcal{F} .
- $X^{-1}(B)$ is called as the preimage or the inverse image of B.

Definition of a random variables

A random variable X is a map $X:(\Omega,\mathcal{F},P)\to (\mathbb{R},\mathcal{B}(\mathbb{R}),P_X)$ such that for each $B\in\mathcal{B}(\mathbb{R})$, the inverse image $X^{-1}(B)\coloneqq\{w\in\Omega:X(w)\in B\}$ satisfies

$$X^{-1}(B) \in \mathcal{F}$$
 and $P_X(B) = \Pr(w \in \Omega : X(w) \in B)$

Random variable

- If Ω' is countable, then the random variable is called a discrete random variable.
- ▶ In this case it is convenient to use \mathcal{F}' as power-set.
- If $\Omega' \subseteq \mathbb{R}$ or uncountable, then the random variable is a continuous random variable.
- In this case, $\mathcal{F}' = \mathcal{B}(\mathbb{R})$ and the definition is a bit tricky. We will deal with it later.
- You can also use $\Omega' = \mathbb{R}$ for a discrete random variable and survive! Lets not get into that.
- Notation: Random variables denoted by capital letters like X, Y, Z etc. and their realizations by small letters x, y, z..

Discrete random variables

Example of rolling two dice

- Example of rolling two dice where we are interested in the sum of two dice.
- ightharpoonup Suppose X = sum of two dice. Then we have

$$\Omega = \left\{ (1,1), (1,2), \dots, (1,6) \\
(2,1), (2,2), \dots, (2,6) \\
\vdots \qquad \xrightarrow{X} \qquad \Omega' = \left\{ 2, 3, \dots, 12 \right\} \\
(6,1), (6,2), \dots, (6,6) \right\}$$

- $ightharpoonup \mathcal{F}$ and \mathcal{F}' are power sets of Ω and Ω' respectively.
- ▶ Is X (\mathcal{F} , \mathcal{F}')-measurable?

Example of rolling two dice

- Example of rolling two dice where we are interested in the sum of two dice.
- ightharpoonup Suppose X = sum of two dice. Then we have

$$\Omega = \left\{ (1,1), (1,2), \dots, (1,6) \\ (2,1), (2,2), \dots, (2,6) \\ \vdots \qquad \qquad \stackrel{X}{\longrightarrow} \qquad \Omega' = \left\{ 2,3, \dots, 12 \right\} \\ (6,1), (6,2), \dots, (6,6) \right\}$$

- X = 3 is an event in \mathcal{F}' . What is its probability $P_X(3)$?
- $P_X(3) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = 3\}) = \mathbb{P}(\{(1,2),(2,1)\}).$

In general for $x \in \Omega'$, we have $P_X(x) := \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})$. Find $P_X(x)$ for all $x \in \Omega'$?