Calculus 1 – Exercise 5

All exercises should be submitted by December 6 by 23:00. Delays won't be accepted aside for special cases which will be approved beforehand. These are the submission regulations (also available on the Moodle):

- 1. Exercises are personal and cannot be submitted in groups.
- 2. Write your name, ID and tutorial group in the header of the exercise.
- 3. They should be written clearly on A4 pages. Hard-to-read exercises will not be graded.
- 4. Serious effort has to be shown by the student. Unreadable or extremely partial answers will be disregarded.
- 5. Exercises submitted late without the TA's approval will not be accepted.

Questions:

- 1. Prove each statement by only using the corresponding definition of the limit:
 - (a) $\lim_{x \to 3} \left| 2 \frac{1}{x} \right| = \frac{5}{3}$
 - (b) $\lim_{x \to -3} \frac{x^2 5x}{x 3} = -4$
- 2. Compute each of the following limits, or prove that it doesn't exist:
 - (a) $\lim_{x\to 2} \frac{\sqrt{2x^2+8}-4}{(x-2)\cdot(x^2+2x+4)}$
 - (b) $\lim_{x \to 1} \left(\frac{2}{1-x^2} \frac{3}{1-x^3} \right)$
 - (c) $\lim_{x \to -\infty} \left(\sqrt{4x^2 6x} \sqrt{4x^2 8x} \right)$

3. Let $A \subseteq \mathbb{R}$ and let $a, b \in \mathbb{R}$. Suppose that A and $\mathbb{R} \setminus A$ are dense in \mathbb{R} and that $a \neq b$. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} a & x \in A \\ b & x \notin A \end{cases}$$

Prove that the limit $\lim_{x\to\infty} f(x)$ does not exist.

- 4. Let f, g be two functions defined on a deleted neighbourhood of $x_0 \in \mathbb{R}$ and let $L \in \mathbb{R}$. Prove or disprove each of the following claims:
 - (a) $\lim_{x \to x_0} f(x) = L$ if and only if for every $0 \neq \alpha \in \mathbb{R}$ $\lim_{x \to x_0} \left[\alpha \cdot f(x) \right] = \alpha \cdot L$.
 - (b) If $\lim_{x \to x_0} (f(x) + g(x)) = L$, then $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ both exist, or $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ both do not exist.
 - (c) Let $h: \mathbb{R} \to \mathbb{R}$. If $\lim_{x \to a} h(x) = L$ for every $a \in \mathbb{R}$, then h(x) = L for every $x \in \mathbb{R}$.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ and let $m \in \mathbb{R}$. Consider the set

$$A = \{x \in [a, b) \mid f(x) > m\}$$

- (a) Suppose that $A \neq \phi$. Prove that $\underline{s} = \inf(A)$ exists and that $a \leq \underline{s} < b$.
- (b) Let $L \in \mathbb{R}$, and suppose that $\lim_{x \to \underline{s}} f(x) = L$. Suppose in addition that $\underline{s} \notin A$. Prove that $L \ge m$.