

Révisions – Algèbre linéaire

Exercice 1

1. Résoudre de quatre manières différentes le système suivant (par substitution, par la méthode du pivot de Gauss, en inversant la matrice des coefficients, par la formule de Cramer) :

$$\begin{cases} 2x + y = 1 \\ 3x + 7y = -2 \end{cases}$$

2. Choisir la méthode qui vous paraît la plus rapide pour résoudre, selon les valeurs de *a*, les systèmes suivants :

$$\begin{cases} ax + y = 2 \\ (a^2+1)x + 2ay = 1 \end{cases} \begin{cases} (a+1)x + (a-1)y = 1 \\ (a-1)x + (a+1)y = 1 \end{cases}$$

Correction ▼ [002768]

Exercice 2

Résoudre le système suivant de 5 équations à 6 inconnues :

$$\begin{cases} 2x + y + z - 2u + 3v - w = 1\\ 3x + 2y + 2z - 3u + 5v - 3w = 4\\ 2x + 2y + 2z - 2u + 4v - 4w = 6\\ x + y + z - u + 2v - 2w = 3\\ 3x - 3u + 3v + 3w = -6 \end{cases}$$

[002769]

Exercice 3

Pour chaque couple de matrices (A_i, b_i) , $1 \le i \le 5$, ci-dessous

- 1. donner la nature de l'ensemble des solutions du système $A_iX = b_i$;
- 2. donner une représentation paramétrique de l'ensemble des solutions de $A_iX = b_i$;
- 3. donner une base de l'image et une base du noyau de A_i .

a)
$$A_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 $b_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$; b) $A_2 = \begin{pmatrix} 1 & 2 & 0 & 1 & 3 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$ $b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$;

$$c) A_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad b_{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}; \qquad d) A_{4} = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \qquad b_{4} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix};$$

$$[002770]$$

e)
$$A_5 = \begin{pmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 $b_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$;

Exercice 4

Calculer une base de l'image et une base du noyau de l'application linéaire

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^5$$

$$(x,y,z) \longmapsto (x+y,x+y+z,2x+y+z,2x+2y+z,y+z)$$

Quel est le rang de f?

[002771]

Exercice 5

On considère la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.

- 1. Soient $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$. Montrer que AB = AC. La matrice A peut-elle être inversible?
- 2. Déterminer toutes les matrices F de taille (3,3) telles que AF = 0, (où 0 est la matrice dont tous les coefficients sont nuls).

[002772]

Exercice 6

Pour quelles valeurs de a la matrice

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{array}\right)$$

est-elle inversible? Calculer dans ce cas son inverse.

[002773]

Exercice 7

Soit a et b deux réels et A la matrice

$$A = \left(\begin{array}{cccc} a & 2 & -1 & b \\ 3 & 0 & 1 & -4 \\ 5 & 4 & -1 & 2 \end{array}\right)$$

Montrer que $rg(A) \ge 2$. Pour quelles valeurs de a et b a-t-on rg(A) = 2?

Correction ▼ [002774]

Exercice 8

Calculer l'inverse de la matrice suivante :

$$A = \left(\begin{array}{cccc} 4 & 8 & 7 & 4 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 0 & 0 & 1 & 1 \end{array}\right)$$

[002775]

Exercice 9

On désigne par $\{e_1, e_2, \dots, e_n\}$ la base canonique de \mathbb{R}^n . À une permutation $\sigma \in \mathcal{S}_n$, on associe l'endomorphisme u_{σ} de \mathbb{R}^n suivant :

$$u_{\sigma}: \quad \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$$

$$\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \longmapsto \begin{pmatrix} x_{\sigma(1)} \\ \vdots \\ x_{\sigma(n)} \end{pmatrix}$$

- 1. Soit $\tau = (ij)$ une transposition. Écrire la matrice de u_{τ} dans la base canonique. Montrer que $\det(u_{\tau}) = -1$.
- 2. Montrer que $\forall \sigma, \sigma' \in \mathscr{S}_n, u_{\sigma} \circ u_{\sigma'} = u_{\sigma' \circ \sigma}$.
- 3. En déduire que $\forall \sigma \in \mathscr{S}_n$, $\det u_{\sigma} = \varepsilon(\sigma)$ où ε désigne la signature.

[002776]

Exercice 10

1. Calculer les valeurs propres et les vecteurs propres de la matrice

$$A = \left(\begin{array}{ccc} 0 & 2 & -2 \\ 1 & -1 & 2 \\ 1 & -3 & 4 \end{array}\right).$$

2. Calculer A^n pour tout $n \in \mathbb{N}$.

[002777]

1. (a) **Par substitution.** La première équation s'écrit aussi y = 1 - 2x. On remplace maintenant y dans la deuxième équation

$$3x + 7y = -2 \implies 3x + 7(1 - 2x) = -2 \implies 11x = 9 \implies x = \frac{9}{11}$$

On en déduit $y: y = 1 - 2x = 1 - 2\frac{9}{11} = -\frac{7}{11}$. La solution de ce système est donc le couple $(\frac{9}{11}, -\frac{7}{11})$. N'oubliez pas de vérifier que votre solution fonctionne!

(b) Par le pivot de Gauss. On garde la ligne L_1 et on remplace la ligne L_2 par $2L_2 - 3L_1$:

$$\begin{cases} 2x + y = 1 \\ 3x + 7y = -2 \end{cases} \iff \begin{cases} 2x + y = 1 \\ 11y = -7 \end{cases}$$

On obtient un système triangulaire : on en déduit $y = -\frac{7}{11}$ et alors la première ligne permet d'obtenir $x = \frac{9}{11}$.

(c) Par les matrices. En terme matriciel le système s'écrit

$$AX = Y$$
 avec $A = \begin{pmatrix} 2 & 1 \\ 3 & 7 \end{pmatrix}$ $X = \begin{pmatrix} x \\ y \end{pmatrix}$ $Y = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

On trouve la solution du système en inversant la matrice :

$$X = A^{-1}Y$$
.

L'inverse d'une matrice 2×2 se calcule ainsi

$$\operatorname{si} A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 alors $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Il faut bien sûr que le déterminant $\det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ soit différent de 0.

Ici on trouve

$$A^{-1} = \frac{1}{11} \begin{pmatrix} 7 & -1 \\ -3 & 2 \end{pmatrix}$$
 et $X = A^{-1} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 9 \\ -7 \end{pmatrix}$

(d) **Par les formules de Cramer.** Les formules de Cramer pour un système de deux équations sont les suivantes si le déterminant vérifie $ad - bc \neq 0$:

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases} \implies x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} \quad \text{et} \quad y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

Ce qui donne ici:

$$x = \frac{\begin{vmatrix} 1 & 1 \\ -2 & 7 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 3 & 7 \end{vmatrix}} = \frac{9}{11} \quad \text{et} \quad y = \frac{\begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix}}{\begin{vmatrix} 2 & 1 \\ 3 & 7 \end{vmatrix}} = -\frac{7}{11}$$

2. (a) Avant tout on regarde s'il existe une solution unique, c'est le cas si et seulement si le déterminant est non nul. Pour le premier système le déterminant est $\begin{vmatrix} a & 1 \\ a^2 + 1 & 2a \end{vmatrix} = a^2 - 1$ donc il y a une unique solution si et seulement si $a \neq \pm 1$.

4

Bien sûr toutes les méthodes conduisent au même résultat! Par exemple par substitution, en écrivant la première ligne y=2-ax, la deuxième ligne devient $(a^2+1)x+2a(2-ax)=1$. On en déduit que si $a\neq \pm 1$ alors $x=\frac{4a-1}{a^2-1}$ puis $y=\frac{-2a^2+a-2}{a^2-1}$.

Traitons maintenant les cas particuliers. Si a = 1 alors le système devient : $\begin{cases} x + y = 2 \\ 2x + 2y = 1 \end{cases}$ Mais on ne peut avoir en même temps x + y = 2 et $x + y = \frac{1}{2}$. Donc il n'y a pas de solution.

Si a = -1 alors le système devient : $\begin{cases} -x + y = 2 \\ 2x - 2y = 1 \end{cases}$ et il n'y a pas de solution.

(b) Ici le déterminant est
$$\begin{vmatrix} a+1 & a-1 \\ a-1 & a+1 \end{vmatrix} = (a+1)^2 - (a-1)^2 = 4a$$
.

Si $a \neq 0$ alors on trouve la solution unique (x, y). Par exemple avec la formule de Cramer

$$x = \frac{\begin{vmatrix} 1 & a-1 \\ 1 & a+1 \end{vmatrix}}{4a} = \frac{1}{2a} \text{ et } y = \frac{\begin{vmatrix} a+1 & 1 \\ a-1 & 1 \end{vmatrix}}{4a} = \frac{1}{2a}.$$

Si a = 0 il n'y a pas de solution.

Correction de l'exercice 7 ▲

Avant toute, un coup d'œil sur la matrice nous informe de deux choses : (a) A n'est pas la matrice nulle donc $rg(A) \ge 1$; (b) il y a 3 lignes donc $rg(A) \le 3$ (le rang est plus petit que le nombre de colonnes et que le nombre de lignes).

- 1. Montrons de différentes façons que $rg(A) \ge 2$.
 - **Première méthode : sous-déterminant non nul.** On trouve une sous-matrice 2×2 dont le déterminant est non nul. Par exemple la sous-matrice extraite du coin en bas à gauche vérifie $\begin{vmatrix} 3 & 0 \\ 5 & 4 \end{vmatrix} = 12 \neq 0$ donc $rg(A) \geq 2$.
 - Deuxième méthode : espace vectoriel engendré par les colonnes. On sait que l'image de l'application linéaire associée à la matrice A est engendrée par les vecteurs colonnes. Et le rang est la dimension

de cette image. On trouve facilement deux colonnes linéairement indépendantes : la deuxième $\begin{pmatrix} 2\\0\\4 \end{pmatrix}$

et la troisième
$$\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$$
 colonne. Donc $\operatorname{rg}(A) \geq 2$.

- Troisième méthode : espaces vectoriel engendré par les lignes. Il se trouve que -miraculeusement- la dimension de l'espace vectoriel engendré par les lignes égal la dimension de l'espace vectoriel engendré par les colonnes (car $rg(A) = rg(^tA)$). Comme les deuxième et troisième lignes sont linéairement indépendantes alors $rg(A) \ge 2$.

Attention : les dimensions des espaces vectoriels engendrés sont égales mais les espaces sont différents !

2. En utilisant la dernière méthode : le rang est exactement 2 si la première ligne est dans le sous-espace engendré par les deux autres. Donc

$$\begin{aligned} \operatorname{rg}(A) &= 2 \iff (a,2,-1,b) \in \operatorname{Vect} \big\{ (3,0,1,-4), (5,4,-1,2) \big\} \\ &\iff \exists \lambda, \mu \in \mathbb{R} \quad (a,2,-1,b) = \lambda (3,0,1,-4) + \mu (5,4,-1,2) \\ &\iff \exists \lambda, \mu \in \mathbb{R} \quad \begin{cases} 3\lambda + 5\mu &= a \\ 4\mu &= 2 \\ \lambda - \mu &= -1 \\ -4\lambda + 2\mu &= b \end{cases} \iff \begin{cases} \lambda &= -\frac{1}{2} \\ \mu &= \frac{1}{2} \\ a &= 1 \\ b &= 3 \end{aligned}$$

5

Conclusion la rang de A est 2 si (a,b) = (1,3). Sinon le rang de A est 3.