Logic

Negation of p:

'not'

F T

• **Conjunction** of *p* and *q*:

'and'

p	q	pΛq
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

 $\neg p$

p

• **Disjunction** of *p* and *q*:

'or'

P	q	p V q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

• Exclusive or (XOR): $p \oplus q$

р	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

• Implication: $p \Rightarrow q$ "if p then q", "q if p"

Contrapositive of $p \Rightarrow q$: $\neg q \Rightarrow \neg p$ logically equivalent

Converse of $p \Rightarrow q$: $q \Rightarrow p$ not equivalent

• Biconditional: $p \Leftrightarrow q$ "p if, and only if q" $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$

q	$p \Rightarrow q$
Т	Т
F	F
Т	Т
F	Т
	T F T

р	q	p⇔q
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

• **Tautology**: a compound proposition that is always true.

e.g.
$$p \lor \neg p$$
 False $\Rightarrow p$

• Contradiction: a compound proposition that is always false.

e.g.
$$p \land \neg p$$

- Logical equivalence $p \equiv q$ when p and q have the same truth table
- De Morgan's Laws

$$\neg(p \lor q) \equiv \neg p \land \neg q$$
$$\neg(p \land q) \equiv \neg p \lor \neg q$$

Other logical equivalences

- Show/prove logical equivalence
 - Compare truth tables
 - Use known logical equivalences

Commutative	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associative	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Identity	$p \wedge T \equiv p$	$p \lor F \equiv p$
Negation	$p \lor \neg p \equiv T$	$p \land \neg p \equiv F$
Idempotent	$p \wedge p \equiv p$	$p \lor p \equiv p$
De Morgan	$\neg (p \lor q) \equiv \neg p \land \neg q$	$\neg(p \land q) \equiv \neg p \lor \neg q$
Double negation	$\neg(\neg p) \equiv p$	

Sets

Definitions

$$x \in S, x \notin S,$$

 $A \subseteq B, A \subset B, A = B$
 $|S|, \{\} \text{ or } \emptyset, \mathbb{U}$

- How to write sets
 - Enumeration
 - Set builder notation
- Special sets

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and their relationships

Operations on sets

Union of *A* and *B*

 $A \cup B$

elements are either in A or in B or in both

Intersection of *A* and *B*

 $A \cap B$

elements are in both A and B

Difference of *A* minus *B*

A - B

elements in A but not in B

Complement of A

 $\overline{A} = \mathbb{U} - A$

Power set of S: $\mathcal{P}(S)$

elements are subsets of S

{ subset with size 0, subsets with size 1, subsets with size 2, ..., subset with size |S| }

Cartesian Product of *A* and *B* $A \times B$

 $\{(a,b): a \in A \text{ and } b \in B\}$

A partition of a set A

$$P = \{A_1, A_2, \cdots, A_n\}$$
 satisfying three conditions

Inclusion-exclusion principle

For two finite sets:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

For three finite sets:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C|$$

- $|B \cap C| + |A \cap B \cap C|$

Venn diagram

• Set properties

Commutative	$A \cap B = B \cap A$	$A \cup B = B \cup A$
Associative	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$
Distributive	$A \cap (B \cup C)$ = $(A \cap B) \cup (A \cap C)$	$A \cup (B \cap C)$ = $(A \cup B) \cap (A \cup C)$
Identity	$A \cap \mathbb{U} = A$	$A \cup \emptyset = A$
Negation	$A \cup \overline{A} = \mathbb{U}$	$A \cap \overline{A} = \emptyset$
Idempotent	$A \cap A = A$	$A \cup A = A$
De Morgan	$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$	$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$
Complement	$\overline{\mathbb{U}} = \emptyset$	$A - B = A \cap \overline{B}$

• Functions:

A mapping from A to B, satisfying that each element in A maps to one element in B

Injective function/injection

• Surjective function/surjection

Bijective function: both injective and surjective

- |A|=|B| if and only if there is a bijection f: A->B
- $|\mathbb{Q}|=|\mathbb{Z}|=|\mathbb{N}|=\aleph_0$ The smallest cardinality that an
- $|\mathbb{R}| > |\mathbb{N}|$

infinite set can have

• A set is countable when $|S| \leq |N|$

Counting

What are we counting?

	r-permutations	r-combinations
Without repetition	$P(n,r) = \frac{n!}{(n-r)!}$	$C(n,r) = \frac{n!}{r!(n-r)!}$
With repetition	n^r	C(n+r-1,r)

Permutations with indistinguishable objects

$$\frac{n!}{n_1! \, n_2! \cdots n_k!}, \qquad n = n_1 + n_2 + \cdots + n_k$$

When does order matter?

Different positions:	Line-up of cricket player	Selection of football players
Different colours:	Roll two dice with different colours	Roll two dice with the same colour
Different time:	Toss one coin twice	Toss two coins at the same time

Imagine a result, and then swap two objects in the outcome.

Is the result different?

Counting rules

Solve problem step by step

The product rule:

$$|A_1 \times A_2 \times ... \times A_n| = |A_1| \times |A_2| \times ... \times |A_n|$$

Divide a problem into different cases

The sums rule:

If
$$\{S_1, S_2, ..., S_n\}$$
 is a partition of finite set S, then,

$$|S| = |S_1| + |S_2| + ... + |S_n|$$

The itertools module in Python

https://docs.python.org/3/library/itertools.html

Probability

Probability

$$P(E) = \frac{|E|}{|S|}$$

S: sample space with equally likely outcomes

E: event, a subset of S

Example: Flip two coins.

How many possible outcomes?

The outcomes are not equally likely!

What's the probability of....?

Write the outcomes as ordered sequence:

$$(H,H)$$
, (H,T) , (T,H) , (T,T)

Combine probabilities

$$- P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 sum rule

- When A, B disjoint (mutually exclusive) $P(A \cup B) = P(A) + P(B)$

$$-P(\bar{E})=1-P(E)$$

$$- P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$-P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$
 product rule

- When A, B independent $P(A \cap B) = P(A)P(B)$

Possibility Trees

To track outcomes of a sequence of events

Step 1: Choose the typeface

Step 2: Choose the style

• What's the probability of choosing Pica with normal style? $P(Pica \cap normal) = P(Pica)P(normal | Pica) = 0.2 \times 0.5 = 0.1$

The random module in Python

https://docs.python.org/3/library/random.html

- Simulate random processes: flip a coin, roll a die, shuffle
 - Generate all possible outcomes
 - Unbiased: ensure equal probability for every outcome
 - Fisher Yates shuffle vs. the alternative shuffle

Pigeonhole principle

If n+1 objects are put into n boxes, then at least one box must contain more than one objects.

Proof

- Direct proof
- Proof by cases
- Proof by counter-examples
- Proof by contradiction
- Proof by contraposition
- Proof by induction
- The format