M11.5. 1,5 punktu Znaleźć, o ile to możliwe, takie węzły x_0, x_1 i współczynniki A_0, A_1 , żeby dla każdego wielomianu f stopnia ≤ 3 zachodziła równość $\int_0^1 (1+x^2)f(x)\,dx = A_0f(x_0) + A_1f(x_1)$.

wyznaczany zera P_2 ortogonalnego na przedziale [0,1] z wagoz $w(x) = (1+x^2)$

$$P_0(x) = 1,$$
 $P_1(x) = x - c_1,$
 $P_k(x) = (x - c_k)P_{k-1}(x) - d_k P_{k-2}(x)$ $(k = 2, 3, ...),$

$$c_k = \langle x P_{k-1}, P_{k-1} \rangle / \langle P_{k-1}, P_{k-1} \rangle \quad (k \geqslant 1),$$

$$d_k = \langle P_{k-1}, P_{k-1} \rangle / \langle P_{k-2}, P_{k-2} \rangle \quad (k \geqslant 2).$$

 $x_0, x_1 - z_{era}$ tego wyznaczonego wielomianu następnie znajdujemy A i B wstawiając za f(x) holejno $1, x, x^2, x^3$ (ma 6yć równość dla $f \in IT_3$)

obliczenia są okropne więc ich nie robie (nie polecam)