What is claimed is:

1	1.	A communications interface, comprising:
2		a bus interface coupleable to a bus;
3		a plurality of transmit channels coupled to the bus interface;
4		a transmit control block coupled to the plurality of transmit channels;
5		a plurality of receive channels coupled to the bus interface; and
6		a receive control block coupled to the plurality of receive control
7	chanı	nels.
1	2.	The communications interface of claim 1, further comprising a direct memory
2	۷.	access controller coupled to the bus interface.
2		access controller coupled to the bus interface.
1	3.	The communications interface of claim 1, wherein the bus interface comprises a
2		plurality of transmit control registers and a plurality of receive control registers.
1	4.	The communications interface of claim 3, wherein the plurality of transmit
2	4.	control registers comprises at least one of:
		-
3		an interface width register coupled to the transmit control block;
4	1	a transmit first in first out (FIFO) register associated with each transmit
5	chani	
6		an end of message (EOM) register associated with each transmit channel;
7		an interface interrupt identification register coupled to the transmit
8	contr	ol block;
9		a transmit frequency select register coupled to the transmit control block;
10		a wait count register coupled to the transmit control block;
11		a clock stop time register coupled to the transmit control block;
12		a channel configuration register associated with each transmit channel;
13	and	
14		a channel status register associated with each transmit channel.

i	5.	The communications interface of claim 3, wherein the plurality of receive
2		control registers comprises at least one of:
3		a receive FIFO register coupled to each receive channel;
4		an interface width register to select a predetermined number of bits to be
5	receiv	ved across the communications interface by the receive control block;
6		a channel stop register associated with each receive channel;
7		a channel start register associated with each receive channel;
8		a wake up register associated with at least one receive channel;
9		an end of message register associated with each receive channel;
10		a channel configuration register associated with each receive channel;
11	and	
12		a channel status register associated with each receive channel.
1	6.	The communications interface of claim 1, wherein each of the plurality of
2		transmit channels and each of the plurality of receive channels comprises a first
3		in first out (FIFO) memory device.
1	7.	The communications interface of claim 1, further comprising a power
2	,,	management unit coupled to each of the plurality of transmit channels and
3		receive channels.
1	o	The communications interfere of claim 1, wherein the transmit central block
1	8.	The communications interface of claim 1, wherein the transmit control block comprises a channel arbiter adapted to select a next one of the plurality of
2		• • • • • • • • • • • • • • • • • • • •
3		transmit channels to be activated.
1	9.	The communications interface of claim 1, wherein the transmit control block
2		comprises a link controller adapted to transmit data from a selected transmit
3		channel across a selected link.

1	10.	The communications interface of claim 1, wherein the receive control block
2		comprises a state machine adapted to store a current active channel number, a
3		number of bits in a current byte being transferred and to write each byte to a
4		selected one of the plurality of receive channels.
1	11.	The communications interface of claim 1, wherein the plurality of transmit
2		channels comprises:
3		at least one channel adapted to send a clock signal;
4		at least one channel adapted to send a strobe signal;
5		at least one channel adapted to send a wait signal; and
6		at least one channel adapted to send data.
1	12.	The communications interface of claim 1, wherein the plurality of receive
2		channels comprises:
3		at least one channel adapted to send a clock signal;
4		at least one channel adapted to send a strobe signal;
5		at least one channel adapted to send a wait signal; and
6		at least one channel adapted to send data.
1	13.	The communications interface of claim 1, wherein at least one of the plurality of
2		transmit channels and the plurality of receive channels comprise a virtual general
3		purpose input/output channel.
1	14.	The communications interface of claim 1, further comprising:
2		a channel stop threshold register adapted to set a threshold value to cause
3	a stoj	message to be sent to a source when a receive FIFO is full; and
4		a start threshold register adapted to set a start threshold value to cause a
5	start	message to be sent to a source when the receive FIFO can receive additional data.

1	15.	The communications interface claim 1, further comprising:
2		a stop message channel coupled to the receive control block and adapted
3	to sen	d a stop message to a source when a receive FIFO reaches a stop threshold value;
4	and	
5		a start message channel coupled to the receive control block and adapted
6	to sen	d a start message to the source when the receive FIFO reaches a start threshold
7	value.	
1	16.	The communications interface of claim 1, further comprising at least one of a
2		direct flow control mode and a message flow control to control a flow of data
3		across the communications interface.
1	17.	The communications interface of claim 1, wherein the transmit control block
2		comprises:
3		a multiplexer coupled to the plurality of transmit channels;
4		a parallel in serial out converter (PISO) coupled to the multiplexer; and
5		a control circuit coupled to the multiplexer and the PISO and adapted to
6	select	one of the plurality of transmit channels to transmit data.
1	18.	The communications interface of claim 1, wherein the receive control block
2		comprises:
3		a demultiplexer coupled to the plurality of receive channels;
4		a serial in parallel out converter (SIPO); and
5		a control circuit coupled to the demultiplexer and adapted to select one or
6	the pl	arality of receive channels to receive data.
1	19.	An electronic system, comprising:
2		a first semiconductor chip;
3		a first communications interface coupled to the first semiconductor chip;

III — njim n

4		a second communications interface coupled to the first communications
5	interfa	ace, wherein each of the first and second communications interfaces include:
6		a bus interface coupled to the first semiconductor chip,
7		a plurality of transmit channels coupled to the bus interface,
8		a transmit control block coupled to the plurality of transmit
9	chann	els,
10		a plurality of receive channels coupled to the bus interface, and
11		a receive control block coupled to the plurality of receive control
12	chann	els; and
13		a second semiconductor chip coupled to the second communications
14	interfa	ace.
1	20.	The electronic system of claim 19, further comprising at least one of a direct
2		flow control mode and a message flow control mode to control the flow of data
3		between the first chip and the second chip.
1	21.	The electronic system of claim 19, wherein at least one of the first or second
2		semiconductor chips is a memory device and further comprising a direct
3		memory access controller coupled to between the memory device and the bus
4		interface.
1	22.	The electronic system of claim 19, wherein the transmit control block comprises
2		a channel arbiter adapted to select a next one of the plurality of transmit
3		channels to be activated.
1	23.	The electronic system of claim 19, wherein the transmit control block comprises
2		a link controller adapted to transmit data from a selected transmit channel to one
3		of the first or second semiconductor chips.

1	24.	The electronic system of claim 19, wherein the receive control block comprises a
2		state machine adapted to store a currently active channel number, a number of
3		bits in a current byte being transferred and to write each byte to a selected one of
4		the plurality of receive channels.
1	25.	The electronic system of claim 19, wherein each of the plurality of transmit
2		channels and each of the plurality of receive channels comprises:
3		at least one channel adapted to send a clock signal;
4		at least one channel adapted to send a strobe signal;
5		at least one channel adapted to send a wait signal; and
6		at least one channel adapted to send data.
1	26.	The electronic system of claim 19, wherein at least one of the plurality of
2		transmit channels and one of the plurality of receive channels comprise a virtual
3		general purpose input/output channel.
1	27.	The electronic system of claim 19, further comprising:
2	21.	a stop message channel coupled to the bus interface and adapted to send
3	a ston	message to one of the first or the second semiconductor chips when a receive
4	-	reaches a stop threshold value; and
5	1110	a start message channel coupled to the bus interface and adapted to send
6	a stari	t message to the other of the first or the second semiconductor chips when the
7		ve FIFO reaches a start threshold value.
•		
1	28.	A method of transmitting data between semiconductor chips, comprising:
2		writing data into at least one of a plurality of transmit FIFOs;
3		selecting one of the plurality of transmit FIFOs that contains data to be
4	transı	mitted and that is not in a wait state; and
5		transmitting the data to a corresponding one of the plurality of receive
6	FIFO	s that has not exceeded a threshold value.

1	29.	The method of claim 28, further comprising:
2		sending a wait signal to a transmit control block if the corresponding one
3	of the	receive FIFOs cannot receive data; and
4		removing the wait signal when the corresponding one of the receive
5	FIFO	s can receive data.
1	30.	The method of claim 28, further comprising selecting another one of the
2		plurality of transmit FIFOs to send data to another corresponding one of the
3		plurality of receive FIFOs while the corresponding one of the receive FIFOs
4		cannot receive data.
1	31.	The method of claim 28, further comprising:
2		sending a strobe signal to initiate a transmission of data;
3		sending a selected channel number over which the data is to be
4	transn	nitted; and
5		sending an end of message signal after the data has been transmitted.
1	32.	The method of claim 28, further comprising:
2		sending a stop message if the corresponding one of the receive FIFOs
3	canno	t receive data; and
4		sending a start message when the corresponding one of the receive
5	FIFOs	can receive data.
1	33.	The method of claim 28, further comprising:
2		selecting one of the plurality of transmit FIFOs and the corresponding

3

34.

The method of claim 28, wherein the predetermined algorithm is round-robin.

one of the plurality of receive FIFOs by a predetermined algorithm.

1

35.

2		of a serial width, a two-bit width and a nibble width.
1	36.	A method of forming a communications interface, comprising:
2		forming a bus interface;
3		forming a plurality of transmit channels coupled to the bus interface;
4		forming a transmit control block coupled to the plurality of transmit
5	chan	nels;
6		forming a plurality of receive channels coupled to the bus interface; and
7		forming a receive control block coupled to the plurality of receive
8	contr	ol channels.
1	37.	The method of claim 36, wherein forming the bus interface comprises forming a
2		plurality of transmit control registers and a plurality of receive control registers.
1	38.	The method of claim 36, wherein forming the transmit control block comprises:
2		forming a channel arbiter adapted to determine a next one of the plurality
3	of ch	annels to be activated; and
4		forming a link controller adapted to transmit data from a selected
5	transı	mit channel across a selected link.
1	39.	The method of claim 36, wherein forming the receive control block comprises
2		forming a state machine adapted to store a currently active channel number, a
3		number of bits in a current byte being transferred and to write each byte to a
4		selected one of the plurality of receive channels.
1	40.	The method of claim 36, wherein forming the plurality of transmit channels and
2		forming the plurality of receive channels, each comprises:
3		forming at least one channel adapted to send a clock signal;
4		forming at least one channel adapted to send a strobe signal;

The method of claim 28, further comprising selecting a interface width from one

1		forming at least one channel adapted to send a wait signal; and
2		forming at least one channel adapted to send data.
1	41.	The method of claim 36, further comprising forming at least one virtual general
2		purpose input/output channel.
1	42.	The method of claim 36, wherein forming the transmit control block comprises:
2		forming a multiplexer coupled to the plurality of transmit channels;
3		forming a parallel in serial out converter (PISO) coupled to the
4	multip	olexer; and
5		forming a control circuit coupled to the multiplexer and to the PISO.
1	43.	The method of claim 36, wherein forming the receipt control block comprises:
2		forming a demultiplexer coupled to the plurality of receive channels;
3		forming a serial in parallel out converter (SIPO);
4		forming a control circuit coupled to the demultiplexer and adapted to
5	select	one of the plurality of receive channels to receive data.