

EE-608
Deep Learning for Natural Language
Processing

Final Project Presentation

Multi-modal retrieval with smooth weighting of negatives

Aleksandr Timofeev Julia Majkowska Paweł Młyniec Sofia Blinova

Presentation plan

- Problem Statement and Motivation
- Contribution
- Our Approach
- Implementation
- Testing
- Experiments
- Results
- Possible Extensions
- Conclusions

Problem Statement and Motivation

 Multi-modal retrieval task aims to find the most similar images to text queries and vice versa.

 Multi-modal retrieval models are used in search engines for databases containing multiple modalities, recommender systems, matching tasks, etc.

- The standard loss for training multimodal retrieval model is the maximal triplet loss [1] [2] [3]
- There is little research exploring the influence of different loss functions on the model performance
- We explore SimCLR [4] and BarlowTwins [5] loss functions
- Both those approaches exhibited stellar performance in computer vision
- We adapt these losses for the multi-modal setting
- There are different options for model architectures [6] [7]. We separate image and text branches which are represented by DistillBERT [8] and ResNet32 [9].

Problem of the maximal triplet loss

$$\ell_{MH}(i,c) = \max_{c'} \left[\alpha + s(i,c') - s(i,c) \right]_{+} + \max_{i'} \left[\alpha + s(i',c) - s(i,c) \right]_{+}$$

i,c is a positive image-caption pair; **i', c'** denote negative samples; s(i, c) is a similarity function; α is a margin

- This is an adaptation of a hinge loss which is used in SVM
- Better performance than summation over negative samples
- It poses several problems as an objective in DL:
 - Harder to optimize
 - MAX squeezes information about other samples
 - Not robust to outliers
 - O Batch maximum is a biased estimator of the original loss.

Our approach

We introduce a smoothed version of this loss based on SimCLR work:

$$\ell_{SimCLR}(i,c) = -\log \frac{\exp(s(i,c)/\tau)}{\sum_{c' \in C} \mathbb{1}[c' \neq c] \exp(s(i,c')/\tau)} - \log \frac{\exp(s(i,c)/\tau)}{\sum_{i' \in I} \mathbb{1}[i' \neq i] \exp(s(i',c)/\tau)}$$

- It is symmetrized by adding another component
- It does not have any problems mentioned before

Our approach

- BarlowTwins demonstrate better results than SimCLR in computer vision
- It computes a cross-correlation matrix of batch-normalized embeddings and apply the following loss:

$$\mathcal{L}_{\mathcal{BT}} \triangleq \sum_{i} (1 - \mathcal{C}_{ii})^2 + \lambda \qquad \sum_{i} \sum_{j \neq i} \mathcal{C}_{ij}^2$$

Model architecture

Data preprocessing

Image network

The core idea of ResNet is introducing a so-called "identity shortcut connection" that skips one or more layers, as shown in the following figure:

Projection layer: remove classification head and add fully-connected layer (512, 128)

Distillation process

- *Knowledge distillation* is a compression technique in which a small model is trained to reproduce the behavior of a larger model.
- In the teacher-student training, it's trained a student network to mimic the full output distribution of the teacher network (its knowledge).
- Kullback-Leibler loss: $KL(p||q) = \mathbb{E}_p(log(\frac{p}{q})) = \sum_i p_i * log(p_i) \sum_i p_i * log(q_i)$

DistilBERT

DistilBERT is a small version of BERT in which were *removed the token-type embeddings and the pooler* (used for the next sentence classification task) and were kept the rest of the architecture identical while reducing the numbers of layers by a factor of two.

Table 1: **DistilBERT retains 97% of BERT performance.** Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

Projection layer: fully-connected layer (768, 128)

Training process

Text to image retrieval testing

Metrics

$$t2i_recall@K = rac{|\{i,j:rank(text_{i,j},image_i) < K\}|}{N} \ t2i_mean_rank = rac{\sum_{i,j}rank(text_{i,j},image_i)}{N} \ i2t_med_rank = median_{i,j}(rank(image_i,text_{i,j}))$$

Image to text retrieval testing

A steaming bowl of ramen

Marty from Madagascar

That fish from "Finding Nemo"

Shuffled dataset

Ranked dataset

a black and white zebra eating some green grass

A very stylish horse

A very large rain boot

Red bus on the street

Grazing zebra

Sunbathing flamingos

Umbrella factory

A walking pedestrian crossing

A steaming bowl of ramen

That fish from "Finding Nemo"

Marty from Madagascar

Metrics

$$i2t_recall@K = rac{|\{i:min_j(rank(image_i, text_{i,j})) < K\}|}{N} \ i2t_mean_rank = rac{\sum_i min_j(rank(image_i, text_{i,j}))}{N} \ i2t_med_rank = median_i(min_j(rank(image_i, text_{i,j}))))$$

The main problems we faced

- Long training time
 - Figured out that the bottleneck of the training process was in the data loading and fixed it

The main problems we faced

- Long training time
 - Figured out that the bottleneck of the training process was in the data loading and fixed it
- Overfitting and low metrics
 - MS COCO contains 5 captions per image => randomly choose one. Input batch: 256 images and captions.
 - Optimizing hyperparameters
 - MultiStepLR scheduler with reduction by 0.5 on 1,4,10 epochs performs better than CosineAnnealingLR and GradualWarmup
 - Training the whole model is better than training only projections or only one branch
 - Losses parameters: margin = 0.2 for maximum triplet loss and temperature
 = 0.07 for SimCLR

Results

Loss		lr	nage-to-te	ext		Text-to-image					
	r@1↑	r@5↑	r@10↑	Mr↓	Med r↓	r@1↑	r@5↑	r@10↑	Mr↓	Med r↓	
Sum Triplet	16.5	39.0	52.5	41.7	9.0	13.2	36.0	50.3	37.9	10.0	
Max Triplet	15.9	39.4	52.4	42.8	9.0	12.8	34.5	49.0	39.0	11.0	
SimCLR	19.7	43.7	56.4	55.8	7.0	15.7	39.8	54.2	58.5	9.0	
Barlow Twins	2.0	7.6	12.0	397.7	111.0	1.9	7.9	13.6	154.9	62.0	

Examples

"Baby elephant plays in the water"

Examples

"Big hamster plays on the grass"

Predicted

- The elephants are standing beside each other near the water.
- A very big pretty elephant laying down in the water.
- A young elephant walks with adult elephants along a dirt path
- A small baby elephant walking with other larger elephants
- A group of elephants walking in muddy water

Original

- A herd of elephants walking through a lake filled with water.
- A family of elephants washing up at a watering hole
- A group of elephants walking in muddy water
- Group of elephants walking in muddy water today.
- The elephants are standing beside each other near the water

Examples

Closeup of a brown bear sitting in a grassy area
A large bear that is sitting on grass.

A big burly grizzly bear is show with grass in the background
A black bear stands in the wild amongst dead grass
A zeebra running on a grass feild in a park

Possible extensions

- Apply our approach to finetune a SOTA multi-modal retrieval baseline model.
- Experiment with optimizable loss parameters for loss functions
- Test our model on different datasets like Flickr 30K
- Test our approach with a multilingual model [10][11].
- Add image-to-image and caption-to-caption similarity on augmented data
 [12][13]

Conclusion

- The new (in the domain) SimCLR loss showed much better performance
- Smooth loss functions are easier for optimization
- Our method is able to design an embedding space where texts and images with similar sense are close to each other
- Transformers may not show the best results in a combination with inappropriate loss functions
- Choice of right hyper-parameters significantly affect the final performance

Q&A