조건부 프로세스 분석 예제

PROCESS macro model 8

문건웅

2019/6/1

이번 강의에서는 processR 을 이용한 조건부프로세스 분석의 예제로 Hayes 책에 있는 예제를 사용하여 실제 분석의 예를 들어보고자 한다.

문제 1. 위의 개념적 모형을 processR 패키지를 이용하여 그려보아라.

데이터 설명: disaster 데이터

- 211명의 참가자에게 아프리카의 심한 가뭄으로 인한 기아상태에 관한 글을 읽게 하였다.
- 약 반의 참가자에게는 기후변화에 따른 가뭄에서 기인한 것이라는 정보를 주었고 (frame=1, 기후변화) 나머지 반에게는 가뭄에 기후변화와 관계있다는 정보를 주지 않았다(frame=0, 자연발생).
- 이 글을 읽은 후에 참가자들에게 피해자들에 대한 원조를 중단하는 것이 정당한 지에 대한 여러 질문을 하였고 이들 질문들에 대한 반응을 모아 justify 변수에 입력하였는데 justify점수가 높을수록 피해자에 대한 원조는 정당하지 않다고 느끼는 것이다.
- 또한 기후변화가 실존하는지에 대한 질문들에 대한 대답들을 모아 skeptic(climate change skepticism, 기후변화에 대한 회의적인 태도) 변수에 기록하였는데 점수가 높을 수록 보다 회의적인 태도를 취하는 것을 뜻한다.
- 또한 희생자들에게 기꺼이 기부하겠느냐는 질문들에 대한 대답들을 모아 donate 변수에 기록하였는데 점수가 높을수록 보다 흔쾌히 기부하겠다는 뜻이다.

문제 2. 다음의 통계적 모형을 그려보아라

문제 3. 이 통계적 모형을 분석할 수 있는 회귀 모형을 만들어 보자.

- 매개변수인 justify를 종속변수로 하는 회귀모형을 만들어 fit1에 저장한다.
- 종속변수인 donate를 종속변수로 하는 회귀모형을 만들어 fit2에 저장한다.

문제 4. 문제 3에서 만든 회귀모형을 이용하여 다음과 같은 모형 요약 표를 그려보아라

					Conse	equent					
			justify(M)					donate(Y)			
Antecedent		Coef	SE	t	р		Coef	SE	t	р	
frame(X)	a ₁	-0.562	0.218	-2.581	.011	c' ₁	0.160	0.268	0.599	.550	
skeptic(W)	^a 2	0.105	0.038	2.756	.006	c′ ₂	-0.043	0.047	-0.907	.365	
frame:skeptic(X:W)	а ₃	0.201	0.055	3.640	<.001	c′3	0.015	0.069	0.217	.829	
justify(M)						b	-0.923	0.084	-10.981	<.001	
Constant	ⁱ M	2.452	0.149	16.449	<.001	i_{Y}	7.291	0.274	26.642	<.001	
Observations			21	1			211				
R2			0.24	46			0.454				
Adjusted R2			0.23	35			0.443				
Residual SE			0.813 (d	f = 207)			0.983 (df = 206)				
F statistic		F(3,2	207) = 22.	543, p < .0	01		F(4,2	206) = 42	.816, p < .0	01	

문제 5. 위의 모형을 lavaan패키지로 분석할 수 있는 다음과 같은 lavaan syntax를 만들어 보아라. 단 조절효과를 분석하기 위해 조절변수의 16, 50, 84번째 백분위수를 사용한다.

```
justify~a1*frame+a2*skeptic+a3*frame:skeptic
donate~c1*frame+c2*skeptic+c3*frame:skeptic+b*justify
skeptic ~ skeptic.mean*1
skeptic ~~ skeptic.var*skeptic
indirect := (a1+a3*2.8)*(b)
direct := c1 + c3 * 2.8
total := direct + indirect
prop.mediated := indirect / total
indirect.below :=(a1+a3*1.592)*(b)
indirect.above :=(a1+a3*5.2)*(b)
direct.below:=c1+c3*1.592
direct.above:=c1+c3*5.2
total.below := direct.below + indirect.below
total.above := direct.above + indirect.above
prop.mediated.below := indirect.below / total.below
prop.mediated.above := indirect.above / total.above
```

문제 6. 문제 5에서 만든 lavaan syntax를 이용하여 sem()함수를 이용하여 모형을 분석하고 분석결과를 semfit에 저장하는 R 코드를 작성하라. 단, 95% 신뢰구간을 얻기위한 bootstraping은 200회를 실시한다.

문제 7. 위의 모형에서 변수들에 대한 상관분석을 실시하여 다음과 같은 그림을 그려라

문제 8. 위의 분석 결과에서 회귀분석 결과 부분을 추출하여 표로 나타내어라.

Variables	Predictors	label	В	SE	Z	р	β
justify	frame	a1	-0.56	0.22	-2.54	0.011	-0.32
justify	skeptic	a2	0.11	0.04	2.46	0.014	0.24
justify	frame:skeptic	a3	0.20	0.06	3.45	0.001	0.50
donate	frame	c1	0.16	0.26	0.63	0.531	0.06
donate	skeptic	c2	-0.04	0.06	-0.77	0.441	-0.07
donate	frame:skeptic	c3	0.01	0.07	0.21	0.833	0.03
donate	justify	b	-0.92	0.08	-11.86	< 0.001	-0.64

문제 9. 위의 분석 결과에서 조건부 효과 부분을 추출하여 표로 나타내어라.

Effect	Equation	estimate	95% Bootstrap CI	р
indirect	(a1+a3*2.8)*(b)	-0.001	(-0.189 to 0.246)	.994
direct	c1+c3*2.8	0.202	(-0.097 to 0.449)	.141
total	direct+indirect	0.201	(-0.103 to 0.582)	.234
prop.mediated	indirect/total	-0.004	(-9.008 to 3.438)	.999
indirect.below	(a1+a3*1.592)*(b)	0.223	(0.011 to 0.627)	.112
indirect.above	(a1+a3*5.2)*(b)	-0.446	(-0.741 to -0.155)	.002
direct.below	c1+c3*1.592	0.184	(-0.169 to 0.519)	.283
direct.above	c1+c3*5.2	0.238	(-0.142 to 0.696)	.245
total.below	direct.below+indirect.below	0.408	(-0.021 to 0.910)	.069
total.above	direct.above+indirect.above	-0.208	(-0.615 to 0.359)	.365
prop.mediated.below	indirect.below/total.below	0.548	(-0.198 to 2.937)	.669
prop.mediated.above	indirect.above/total.above	2.142	(0.732 to 122.048)	.902

boot.ci.type = bca.simple

문제 10. 문제 6의 분석결과를 이용하여 다음과 같은 조건부 직접효과, 간접효과를 요약하는 표를 그려라.

		Indirect Effect (a1+a3*W)*(b)		Direct Effect c1+c3*W		
skeptic(W)	estimate	95% Bootstrap CI	р	estimate	95% Bootstrap CI	р
1.592	0.223	(0.011 to 0.627)	.112	0.184	(-0.169 to 0.519)	.283
2.800	-0.001	(-0.189 to 0.246)	.994	0.202	(-0.097 to 0.449)	.141
5.200	-0.446	(-0.741 to -0.155)	.002	0.238	(-0.142 to 0.696)	.245

boot.ci.type = bca.simple

문제 11. 위 모형의 조건부 효과를 다음과 같은 그림으로 나타내어라

문제 12. 위의 모형을 통계적 모형에 회귀계수를 넣은 다음그림을 그려라.

문제 13. 위의 모형에서 직접효과 모형의 회귀모형을 만들고 다음 조건부 효과 그림을 그려라.

정답 1.

```
require(processR)
require(lavaan)

labels=list(X="frame",M="justify",Y="donate",W="skeptic")
moderator=list(name="skeptic",site=list(c("a","c")))
pmacroModel(8,labels=labels,ylim=c(0.3,1))
```


정답 2. 다음의 통계적 모형을 그려보아라

statisticalDiagram(8,labels=labels,radx=0.12,rady=0.06)

정답 3.

```
eq=tripleEquation(labels=labels,moderator=moderator, mode=1)
cat(eq)
```

```
justify~frame+skeptic+frame:skeptic
donate~frame+skeptic+frame:skeptic+justify
```

```
fit1=lm(justify~frame+skeptic+frame:skeptic,data=disaster)
fit2=lm(donate~frame+skeptic+frame:skeptic+justify,data=disaster)
```

정답 4. 문제 3에서 만든 회귀모형을 이용하여 다음과 같은 모형 요약 표를 그려보아라

eq=tripleEquation(labels=labels,moderator=moderator, mode=1)
fit=eq2fit(eq,data=disaster)
modelsSummaryTable(fit,labels=labels)

		Consequent									
			justify(M)					dona	te(Y)		
Antecedent		Coef	SE	t	р		Coef	SE	t	р	
frame(X)	a ₁	-0.562	0.218	-2.581	.011	c' ₁	0.160	0.268	0.599	.550	
skeptic(W)	^a 2	0.105	0.038	2.756	.006	c' ₂	-0.043	0.047	-0.907	.365	
frame:skeptic(X:W)	a ₃	0.201	0.055	3.640	<.001	c′3	0.015	0.069	0.217	.829	
justify(M)						b	-0.923	0.084	-10.981	<.001	
Constant	ⁱ M	2.452	0.149	16.449	<.001	i_{Y}	7.291	0.274	26.642	<.001	
Observations			21	1			211				
R2			0.2	46			0.454				
Adjusted R2			0.2	35			0.443				
Residual SE			0.813 (d	f = 207)			0.983 (df = 206)				
F statistic		F(3,2	207) = 22.	543, p < .0	01		F(4,2	206) = 42	.816, p < .0	01	

정답 5. 위의 모형을 lavaan패키지로 분석할 수 있는 다음과 같은 lavaan syntax를 만들어 보아라. 단 조절효과를 분석하기 위해 조절변수의 16, 50, 84번째 백분위수를 사용한다.

model=tripleEquation(labels=labels,moderator=moderator,rangemode=2,data)

```
justify~a1*frame+a2*skeptic+a3*frame:skeptic
donate~c1*frame+c2*skeptic+c3*frame:skeptic+b*justify
skeptic ~ skeptic.mean*1
skeptic ~~ skeptic.var*skeptic
indirect :=(a1+a3*2.8)*(b)
direct :=c1+c3*2.8
total := direct + indirect
prop.mediated := indirect / total
indirect.below :=(a1+a3*1.592)*(b)
indirect.above :=(a1+a3*5.2)*(b)
direct.below:=c1+c3*1.592
direct.above:=c1+c3*5.2
total.below := direct.below + indirect.below
total.above := direct.above + indirect.above
prop.mediated.below := indirect.below / total.below
prop.mediated.above := indirect.above / total.above
```

정답 6. 문제 5에서 만든 lavaan syntax를 이용하여 sem()함수를 이용하여 모형을 분석하고 분석결과를 semfit에 저장하는 R 코드를 작성하라. 단, 95% 신뢰구간을 얻기위한 bootstraping은 200회를 실시한다.

semfit=sem(model,data=disaster,se="boot",bootstrap=200)

정답 7. 위의 모형에서 변수들에 대한 상관분석을 실시하여 다음과 같은 그림을 그려라

corPlot(semfit)

Correlation Coefficients by Pearson's product-moment correlation

정답 8. 위의 분석 결과에서 회귀분석 결과 부분을 추출하여 표로 나타내어라.

estimatesTable2(semfit)

Variables	Predictors	label	В	SE	Z	р	β
justify	frame	a1	-0.56	0.22	-2.54	0.011	-0.32
justify	skeptic	a2	0.11	0.04	2.46	0.014	0.24
justify	frame:skeptic	a3	0.20	0.06	3.45	0.001	0.50
donate	frame	c1	0.16	0.26	0.63	0.531	0.06
donate	skeptic	c2	-0.04	0.06	-0.77	0.441	-0.07
donate	frame:skeptic	c3	0.01	0.07	0.21	0.833	0.03
donate	justify	b	-0.92	0.08	-11.86	< 0.001	-0.64

정답 9. 위의 분석 결과에서 조건부 효과 부분을 추출하여 표로 나타내어라.

medSummaryTable(semfit)

Effect	Equation	estimate	95% Bootstrap CI	р
indirect	(a1+a3*2.8)*(b)	-0.001	(-0.189 to 0.246)	.994
direct	c1+c3*2.8	0.202	(-0.097 to 0.449)	.141
total	direct+indirect	0.201	(-0.103 to 0.582)	.234
prop.mediated	indirect/total	-0.004	(-9.008 to 3.438)	.999
indirect.below	(a1+a3*1.592)*(b)	0.223	(0.011 to 0.627)	.112
indirect.above	(a1+a3*5.2)*(b)	-0.446	(-0.741 to -0.155)	.002
direct.below	c1+c3*1.592	0.184	(-0.169 to 0.519)	.283
direct.above	c1+c3*5.2	0.238	(-0.142 to 0.696)	.245
total.below	direct.below+indirect.below	0.408	(-0.021 to 0.910)	.069
total.above	direct.above+indirect.above	-0.208	(-0.615 to 0.359)	.365
prop.mediated.below	indirect.below/total.below	0.548	(-0.198 to 2.937)	.669
prop.mediated.above	indirect.above/total.above	2.142	(0.732 to 122.048)	.902

boot.ci.type = bca.simple

정답 10. 문제 6의 분석결과를 이용하여 다음과 같은 조건부 직접효과, 간접효과를 요약하는 표를 그려라.

modmedSummaryTable(semfit)

		Indirect Effect (a1+a3*W)*(b)			Direct Effect c1+c3*W	
skeptic(W)	estimate	95% Bootstrap CI	р	estimate	95% Bootstrap CI	р
1.592	0.223	(0.011 to 0.627)	.112	0.184	(-0.169 to 0.519)	.283
2.800	-0.001	(-0.189 to 0.246)	.994	0.202	(-0.097 to 0.449)	.141
5.200	-0.446	(-0.741 to -0.155)	.002	0.238	(-0.142 to 0.696)	.245

boot.ci.type = bca.simple

정답 11. 위 모형의 조건부 효과를 다음과 같은 그림으로 나타내어라

conditionalEffectPlot(semfit,data=disaster)

정답 12. 위의 모형을 통계적 모형에 회귀계수를 넣은 다음그림을 그려라.

statisticalDiagram(8,labels=labels,fit=semfit,whatLabel="est",radx=0.

정답 13. 위의 모형에서 직접효과 모형의 회귀모형을 만들고 다음 조건부 효과 그림을 그려라.

fit=lm(donate~frame*skeptic,data=disaster)
condPlot(fit,rangemode=2,xpos=c(0.7,0.2),labels=c("Climate change(X=1))

