Functional Dependencies

By:

Dr. Rinkle Rani Associate Professor, CSED TIET, Patiala

What is Functional Dependency

A functional dependency is a constraint that specifies the relationship between two sets of attributes where one set can accurately determine the value of other sets.

It is denoted as $X \rightarrow Y$, where X is a set of attributes that is capable of determining the value of Y. The attribute set on the left side of the arrow, X is called **Determinant**, while on the right side, Y is called the **Dependent**.

Functional dependencies are used to mathematically express relations among database entities and are very important to understand advanced concepts in Relational Database System.

Example:

roll_no	name	dept_name	dept_building
42	abc	СО	A4
43	pqr	IT	A3the
44	xyz	СО	A4
45	xyz	IT	A3

From This table some valid functional dependencies:

roll_no → { name, dept_name, dept_building }
Here, roll_no can determine values of fields name,
dept_name and dept_building, hence a valid Functional
dependency

roll_no → dept_name, Since, roll_no can determine whole set of {name, dept_name, dept_building}, it can determine its subset dept_name also.

dept_name → dept_building , Dept_name can identify the dept_building accurately.

roll_no → name, {roll_no, name} ---> {dept_name, dept_building}, etc.

Here are some invalid functional dependencies:

name → dept_name Students with the same name can have different dept_name, hence this is not a valid functional dependency.

dept_building → dept_name There can be multiple departments in the same building, For example, in the above table departments ME and EC are in the same building B2, hence dept_building → dept_name is an invalid functional dependency.

More invalid func@onal dependencies: name \rightarrow roll_no, {name, dept_name} \rightarrow roll_no, dept_building \rightarrow roll_no, etc.

Armstrong's axioms/properties of functional dependencies:

Reflexivity: If Y is a subset of X, then $X \rightarrow Y$ holds by reflexivity rule

For example, $\{\text{roll_no, name}\} \rightarrow \text{name is valid.}$

Augmentation: If $X \rightarrow Y$ is a valid dependency, then $XZ \rightarrow YZ$ is also valid by the augmentation rule.

For example, If $\{\text{roll_no}, \text{name}\} \rightarrow \text{dept_building is valid,}$ hence $\{\text{roll_no}, \text{name}, \text{dept_name}\} \rightarrow \{\text{dept_building}, \text{dept_name}\}$ is also valid. \rightarrow

Transitivity: If $X \to Y$ and $Y \to Z$ are both valid dependencies, then $X \to Z$ is also valid by the Transi®vity rule.

For example, roll_no → dept_name & dept_name → dept_building, then roll_no → dept_building is also valid.

Types of Functional dependencies in DBMS:

- 1. Trivial functional dependency
- 2. Non-Trivial functional dependency
- 3. Multivalued functional dependency
- 4. Transitive functional dependency

1. Trivial Functional Dependency

In **Trivial Functional Dependency**, a dependent is always a subset of the determinant.

i.e. If X → Y and Y is the subset of X, then it is called trivial functional dependency

For example,

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

Here, {roll_no, name} → name is a trivial functional dependency, since the dependent name is a subset of determinant set {roll_no, name}
Similarly, roll_no → roll_no is also an example of trivial functional dependency.

2. Non-trivial Functional Dependency

In **Non-trivial functional dependency**, the dependent is strictly not a subset of the determinant.

i.e. If X → Y and Y is not a subset of X, then it is called Non-trivial functional dependency.

For example

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

Here, roll_no → name is a nontrivial functional dependency, since the dependent name is not a subset of determinant roll_no Similarly, {roll_no, name} → age is also a non-trivial functional dependency, since age is not a subset of {roll_no, name}

3. Multivalued Functional Dependency In Multivalued functional dependency, entities of the dependent set are not dependent on each other. i.e. If a → {b, c} and there exists no functional dependency between b and c, then it is called a multivalued functional dependency. For example

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

Here, roll_no → {name, age} is a multivalued functional dependency, since the dependents name & age are no t dependent on each other(i.e. name → age or age → name doesn't exist!)

4. Transitive Functional Dependency

In transitive functional dependency, dependent is indirectly dependent on determinant.

i.e. If $\mathbf{a} \to \mathbf{b} \& \mathbf{b} \to \mathbf{c}$, then according to axiom of transitivity, $\mathbf{a} \to \mathbf{c}$. This is a **transitive functional**

dependency For example

enrol_no	name	dept	building_no
42	abc	СО	4
43	pqr	EC	2
44	xyz	IT	1
45	abc	EC	2

Here, enrol_no →
dept and dept →
building_no,
Hence, according to the axiom
of transitivity, enrol_no →
building_no is a valid
functional dependency. This is
called Transitive functional
dependency.