

FCC PART 15.247 TEST REPORT

For

POSH Mobile Limited

1011A, 10/F., Harbour Centre Tower 1, No. 1 Hok Cheung St., Hung Hom, Kowloon, Hong Kong

FCC ID: 2AG8KX551

Report Type: **Product Type:** Icon Pro HD Original Report Lion Nias **Test Engineer:** Lion Xiao Report Number: RDG160118001-00D **Report Date:** 2016-01-25 Sula Huang Reviewed By: RF Leader **Test Laboratory:** Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION.	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
External Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE	
APPLICABLE STANDARD	9
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS.	
TEST RESULTS SUMMARY	13
TEST DATA	13
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	18
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS.	
TEST RESULTS SUMMARY	
TEST DATA	21
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	35
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
0 (") (")	

APPLICABLE STANDARD	44
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	46
APPLICABLE STANDARD	46
TEST PROCEDURE	46
TEST EQUIPMENT LIST AND DETAILS.	46
TEST DATA	46
FCC §15.247(e) - POWER SPECTRAL DENSITY	52
APPLICABLE STANDARD	52
TEST PROCEDURE	52
TEST EQUIPMENT LIST AND DETAILS	
Test Data	52
DECLARATION LETTER	61

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *POSH Mobile Limited*'s product, model number: *X551 (FCC ID: 2AG8KX551)* (the "EUT") in this report was a *Icon Pro HD*, which was measured approximately: 15.32 cm (L) x 7.9 cm (W) x 8.2cm (H), rated input voltage: DC3.7V rechargeable Li-ion battery or DC5V charging from adapter.

Report No.: RDG160118001-00D

Adapter information: PART NO.: C02-X511 MODEL: TL6D-0501000

INPUT: 100-240V ~ 50/60Hz 0.15A OUTPUT: DC 5.0V, 1000mA

Note: The model X551 have different samples, they are the same electromagnetic emissions and electromagnetic compatibility characteristics, the difference between them is model name and appearance, the details was explained in the attached declaration letter.

All measurement and test data in this report was gathered from production sample serial number: 160118001 (Assigned by BACL, Dongguan). The EUT was received on 2016-01-19.

Objective

This report is prepared on behalf of *POSH Mobile Limited* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communications Commission's rules

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2AG8KX551 FCC Part 15C DSS submissions with FCC ID: 2AG8KX551 FCC Part 22H, 24E PCE submissions with FCC ID: 2AG8KX551

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 06, 2015.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 4 of 61

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in testing mode, which was provided by manufacturer. For 2.4GHz band, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

Report No.: RDG160118001-00D

For 802.11b, 802.11g, and 802.11n ht20 modes were tested with channel 1, 6 and 11. For 802.11n ht40 mode were tested with Channel 3, 6 and 9.

For Bluetooth LE mode, 40 channels are provided for testing:

			VINISION AND P
Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404		
•••			
•••			
		38	2478
19	2440	39	2480

EUT was tested with channel 0, 19 and 39.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations.

Equipment Modifications

No modification was made to the EUT tested.

FCC Part 15.247 Page 5 of 61

EUT Exercise Software

The worst condition (maximum power with 100% duty cycle) was setting by the software as following table:

Report No.: RDG160118001-00D

Test Mode	Test Software Version	Engineering Mode			
	Test Frequency	2412MHz	2437MHz	2462MHz	
802.11b	Data Rate	1Mbps	1Mbps	1Mbps	
002.112	Power Level Setting	19	19	18	
	Test Frequency	2412MHz	2437MHz	2462MHz	
802.11g	Data Rate	6Mbps	6Mbps	6Mbps	
002.11g	Power Level Setting	17	17	17	
	Test Frequency	2412MHz	2437MHz	2462MHz	
802.11n	Data Rate	MCS0	MCS0	MCS0	
ht20	Power Level Setting	16	16	16	
	Test Frequency	2422MHz	2437MHz	2452MHz	
802.11n	Data Rate	MCS0	MCS0	MCS0	
ht40	Power Level Setting	16	16	16	
BLE	Test Frequency	2402MHz	2440MHz	2480MHz	
DLE	BLE	1Mbps	1Mbps	1Mbps	

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	1	/	/

External Cable

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Cable	No	No	1.0	USB Port of Adater	EUT
Earphone Cable	No	No	1.2	Audio Port of EUT	Earphone

FCC Part 15.247 Page 6 of 61

Block Diagram of Test Setup

FCC Part 15.247 Page 7 of 61

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & \$1.1310 & \$2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247(d)	Spurious Emissions at Antenna Port Complia	
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum conducted output power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge Complian	
§15.247(e)	Power Spectral Density	Compliance

Report No.: RDG160118001-00D

FCC Part 15.247 Page 8 of 61

FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RDG160118001-00D

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

For WiFi mode

Compliant, please refer to the SAR report No: RDG160118001-20.

For bluetooth LE mode

The max tune-up conducted power is -2.9 dBm (0.51 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 0.51/5*($\sqrt{2}$.48) = 0.2 < 3.0

So the stand-alone for BLE SAR evaluation is not necessary.

FCC Part 15.247 Page 9 of 61

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RDG160118001-00D

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has one integral antenna arrangement for Wifi/BT, which was permanently attached and the antenna gain is -2.2 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 10 of 61

Applicable Standard

FCC§15.207

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

Report No.: RDG160118001-00D

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Dongguan) is 3.12 dB (150 kHz to 30 MHz).

Table 1 – Values of U_{cispr}

Measurement	$U_{ m cispr}$
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

FCC Part 15.247 Page 11 of 61

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

Report No.: RDG160118001-00D

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein.

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.247 Page 12 of 61

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2015-10-20	2016-10-20
R&S	L.I.S.N	ESH2-Z5	892107/021	2015-06-09	2016-06-09
R&S	Two-line V-network	ENV 216	3560.6550.12	2015-11-26	2016-11-25
N/A	Coaxial Cable	1.8m	N/A	2015-05-06	2016-05-06
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

Report No.: RDG160118001-00D

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.207</u>, with the worst margin reading of:

10.5 dB at 0.563041 MHz in the Line conducted mode for Wifi

Test Data

Environmental Conditions

Temperature:	22.4°C
Relative Humidity:	44 %
ATM Pressure:	101.6kPa

The testing was performed by Lion Xiao on 2016-01-19

FCC Part 15.247 Page 13 of 61

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Mode: Transmitting (Wi-Fi)

AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	42.7	9.000	L1	9.8	23.3	66.0	Compliance
0.549741	41.1	9.000	L1	9.8	14.9	56.0	Compliance
0.665597	34.7	9.000	L1	9.8	21.3	56.0	Compliance
1.239175	32.9	9.000	L1	9.8	23.1	56.0	Compliance
1.289541	33.2	9.000	L1	9.8	22.8	56.0	Compliance
1.624765	33.2	9.000	L1	9.8	22.8	56.0	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.563041	35.5	9.000	L1	9.8	10.5	46.0	Compliance
0.665597	21.1	9.000	L1	9.8	24.9	46.0	Compliance
0.715082	28.6	9.000	L1	9.8	17.4	46.0	Compliance
1.239175	27.0	9.000	L1	9.8	19.0	46.0	Compliance
1.289541	27.7	9.000	L1	9.8	18.3	46.0	Compliance
1.599078	26.6	9.000	L1	9.8	19.4	46.0	Compliance

FCC Part 15.247 Page 14 of 61

AC120 V, 60 Hz, Neutral:

				VISISIA AIS			
Frequency (MHz)	QuasiPeak (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	38.1	9.000	N	9.7	27.9	66.0	Compliance
0.198249	35.2	9.000	N	9.7	28.5	63.7	Compliance
0.541050	30.0	9.000	N	9.7	26.0	56.0	Compliance
1.048242	25.8	9.000	N	9.8	30.2	56.0	Compliance
1.239175	28.2	9.000	N	9.8	27.8	56.0	Compliance
1.430284	32.2	9.000	N	9.8	23.8	56.0	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.549741	24.7	9.000	N	9.7	21.3	46.0	Compliance
1.023481	19.2	9.000	N	9.8	26.8	46.0	Compliance
1.073601	19.9	9.000	N	9.8	26.1	46.0	Compliance
1.239175	24.1	9.000	N	9.8	21.9	46.0	Compliance
1.407671	23.9	9.000	N	9.8	22.1	46.0	Compliance
15.741362	25.0	9.000	N	10.2	25.0	50.0	Compliance

FCC Part 15.247 Page 15 of 61

Test Mode: Transmitting (BLE)

AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	43.0	9.000	L1	9.8	23.0	66.0	Compliance
0.541050	41.2	9.000	L1	9.8	14.8	56.0	Compliance
0.655073	34.0	9.000	L1	9.8	22.0	56.0	Compliance
0.762149	32.9	9.000	L1	9.8	23.1	56.0	Compliance
1.239175	33.3	9.000	L1	9.8	22.7	56.0	Compliance
1.624765	32.4	9.000	L1	9.8	23.6	56.0	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.297644	31.5	9.000	L1	9.7	18.8	50.3	Compliance
0.528270	34.4	9.000	L1	9.8	11.6	46.0	Compliance
0.665597	30.7	9.000	L1	9.8	15.3	46.0	Compliance
0.762149	25.1	9.000	L1	9.8	20.9	46.0	Compliance
1.239175	27.1	9.000	L1	9.8	18.9	46.0	Compliance
1.624765	27.0	9.000	L1	9.8	19.0	46.0	Compliance

FCC Part 15.247 Page 16 of 61

AC120 V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.151200	37.8	9.000	N	9.7	28.1	65.9	Compliance
0.196675	35.7	9.000	N	9.7	28.0	63.7	Compliance
0.243884	30.5	9.000	N	9.7	31.5	62.0	Compliance
0.545378	30.5	9.000	N	9.7	25.5	56.0	Compliance
1.239175	28.7	9.000	N	9.8	27.3	56.0	Compliance
1.599078	31.0	9.000	N	9.8	25.0	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.536756	23.8	9.000	N	9.7	22.2	46.0	Compliance
0.999305	18.9	9.000	N	9.8	27.1	46.0	Compliance
1.023481	20.2	9.000	N	9.8	25.8	46.0	Compliance
1.239175	23.2	9.000	N	9.8	22.8	46.0	Compliance
1.453260	23.1	9.000	N	9.8	22.9	46.0	Compliance
15.741362	24.9	9.000	N	10.2	25.1	50.0	Compliance

FCC Part 15.247 Page 17 of 61

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

Report No.: RDG160118001-00D

If U_{lab} is less than or equal to U_{cispr} of Table 2, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 2, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical; 200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical; 1G~6GHz: 4.45 dB, 6G~18GHz: 5.23 dB

Table 2 – Values of U_{cispr}

Measurement	$U_{ m cispr}$
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB

EUT Setup

Below 1GHz:

FCC Part 15.247 Page 18 of 61

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits. The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 CHa	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 19 of 61

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RDG160118001-00D

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2015-08-03	2016-08-02
Sunol Sciences	Antenna	JB3	A060611-3	2014-11-06	2017-11-05
HP	Amplifier	8447E	2434A02181	2015-09-01	2016-09-01
Agilent	Spectrum Analyzer	E4440A	SG43360054	2015-11-23	2016-11-22
ETS-Lindgren	Horn Antenna	3115	9808-5557	2015-09-06	2018-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2015-02-19	2016-02-19
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2014-06-16	2017-06-15
Quinstar	Amplifier	QLW- 18405536-JO	15964001001	2015-09-06	2016-09-06
N/A	Coaxial Cable	14m	N/A	2015-05-06	2016-05-06
N/A	Coaxial Cable	8m	N/A	2015-05-06	2016-05-06
N/A	Coaxial Cable	0.1m	N/A	2015-05-06	2016-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2015-05-06	2016-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

1.67 dB at 2483.5MHz in the Horizontal polarization for 802.11 n ht40 Mode

FCC Part 15.247 Page 20 of 61

Test Data

Environmental Conditions

Temperature:	21.6 °C
Relative Humidity:	41 %
ATM Pressure:	101.2~101.6kPa

^{*} The testing was performed by Lion Xiao from 2016-01-20 to 2016-01-21.

Report No.: RDG160118001-00D

Test Mode: Transmitting

FCC Part 15.247 Page 21 of 61

Report No.: RDG160118001-00D

802.11b Mode

	R	eceiver	Rx Antenna		Cable	Amplifier	Corrected		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBμV/m)	Margin (dB)
Low Channel: 2412 MHz									
2412	70.59	PK	Н	24.84	3.68	0.00	99.11	N/A	N/A
2412	66.07	AV	Н	24.84	3.68	0.00	94.59	N/A	N/A
2412	69.45	PK	V	24.84	3.68	0.00	97.97	N/A	N/A
2412	64.17	AV	V	24.84	3.68	0.00	92.69	N/A	N/A
2390	27.93	PK	Н	24.80	3.63	0.00	56.36	74.00	17.64
2390	14.96	AV	Н	24.80	3.63	0.00	43.39	54.00	10.61
4824	42.73	PK	Н	29.75	5.03	27.41	50.10	74.00	23.90
4824	39.24	AV	Н	29.75	5.03	27.41	46.61	54.00	7.39
7236	39.26	PK	Н	33.98	6.65	25.90	53.99	74.00	20.01
7236	31.42	AV	Н	33.98	6.65	25.90	46.15	54.00	7.85
9648	33.04	PK	Н	36.39	8.55	27.46	50.52	74.00	23.48
9648	19.74	AV	Н	36.39	8.55	27.46	37.22	54.00	16.78
3131	37.89	PK	Н	26.09	6.93	27.43	43.48	74.00	30.52
3131	25.29	AV	Н	26.09	6.93	27.43	30.88	54.00	23.12
241.9	36.7	QP	Н	12.23	1.86	21.49	29.30	46.00	16.70
				ddle Char	1001001001001	7 MHz			
2437	70.95	PK	Н	24.89	3.75	0.00	99.59	N/A	N/A
2437	66.33	AV	Н	24.89	3.75	0.00	94.97	N/A	N/A
2437	69.28	PK	V	24.89	3.75	0.00	97.92	N/A	N/A
2437	65.85	AV	V	24.89	3.75	0.00	94.49	N/A	N/A
4874	42.44	PK	Н	29.85	5.14	27.42	50.01	74.00	23.99
4874	39.12	AV	Н	29.85	5.14	27.42	46.69	54.00	7.31
7311	39.13	PK	Н	34.10	6.74	25.88	54.09	74.00	19.91
7311	31.45	AV	Н	34.10	6.74	25.88	46.41	54.00	7.59
9748	33.02	PK	Н	36.45	8.61	27.24	50.84	74.00	23.16
9748	19.63	AV	Н	36.45	8.61	27.24	37.45	54.00	16.55
3813	37.88	PK	Н	27.83	4.65	27.37	42.99	74.00	31.01
3813	25.38	AV	Н	27.83	4.65	27.37	30.49	54.00	23.51
3723	36.85	PK	Н	27.65	4.59	27.34	41.75	74.00	32.25
3723	24.26	AV	Н	27.65	4.59	27.34	29.16	54.00	24.84
241.9	36.9	QP	Н	12.23	1.86	21.49	29.50	46.00	16.50
2452	- 4.10			igh Chanı			00.05	377	3.77
2462	71.18	PK	H	24.93	3.75	0.00	99.86	N/A	N/A
2462	67.64	AV	H	24.93	3.75	0.00	96.32	N/A	N/A
2462	70.76	PK	V	24.93	3.75	0.00	99.44	N/A	N/A
2462	66.21	AV	V	24.93	3.75	0.00	94.89	N/A	N/A
2483.5	28.27	PK	Н	24.97	3.67	0.00	56.91	74.00	17.09
2483.5	16.54	AV	H	24.97	3.67	0.00	45.18	54.00	8.82
4924	43.04	PK	H	29.95	5.34	27.43	50.90	74.00	23.10
4924	39.53	AV	H	29.95	5.34	27.43	47.39	54.00	6.61
7386	39.57	PK	Н	34.22	6.83	25.86	54.76	74.00	19.24
7386	31.86	AV	H	34.22	6.83	25.86	47.05	54.00	6.95
9848	33.39	PK	Н	36.51	8.66	26.94	51.62	74.00	22.38
9848	20.06	AV	H	36.51	8.66	26.94	38.29	54.00	15.71
3813	38.34	PK	Н	27.83	4.65	27.37	43.45	74.00	30.55
3813	25.71	AV	Н	27.83	4.65	27.37	30.82	54.00	23.18
241.9	36.1	QP	Н	12.23	1.86	21.49	28.70	46.00	17.30

FCC Part 15.247 Page 22 of 61

Report No.: RDG160118001-00D

802.11g Mode

	Re	eceiver	Rx A	Antenna	Cable	Amplifier	Corrected		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBμV/m)	Margin (dB)
			I	Low Channe	1: 2412 N	ИHz			
2412	70.04	PK	Н	24.84	3.68	0.00	98.56	N/A	N/A
2412	61.9	AV	Н	24.84	3.68	0.00	90.42	N/A	N/A
2412	69.35	PK	V	24.84	3.68	0.00	97.87	N/A	N/A
2412	60.09	AV	V	24.84	3.68	0.00	88.61	N/A	N/A
2390	32.42	PK	Н	24.80	3.63	0.00	60.85	74.00	13.15
2390	16.9	AV	Н	24.80	3.63	0.00	45.33	54.00	8.67
4824	41.8	PK	Н	29.75	5.03	27.41	49.17	74.00	24.83
4824	28.25	AV	Н	29.75	5.03	27.41	35.62	54.00	18.38
7236	38.14	PK	Н	33.98	6.65	25.90	52.87	74.00	21.13
7236	24.86	AV	Н	33.98	6.65	25.90	39.59	54.00	14.41
9648	33.33	PK	Н	36.39	8.55	27.46	50.81	74.00	23.19
9648	19.63	AV	Н	36.39	8.55	27.46	37.11	54.00	16.89
3813	37.96	PK	Н	27.83	4.65	27.37	43.07	74.00	30.93
3813	25.22	AV	Н	27.83	4.65	27.37	30.33	54.00	23.67
241.9	36.4	QP	Н	12.23	1.86	21.49	29.00	46.00	17.00
				iddle Chann					
2437	70.79	PK	Н	24.89	3.75	0.00	99.43	N/A	N/A
2437	61.55	AV	Н	24.89	3.75	0.00	90.19	N/A	N/A
2437	69.74	PK	V	24.89	3.75	0.00	98.38	N/A	N/A
2437	60.58	AV	V	24.89	3.75	0.00	89.22	N/A	N/A
4874	41.87	PK	Н	29.85	5.14	27.42	49.44	74.00	24.56
4874	28.42	AV	Н	29.85	5.14	27.42	35.99	54.00	18.01
7311	37.94	PK	Н	34.10	6.74	25.88	52.90	74.00	21.10
7311	24.85	AV	Н	34.10	6.74	25.88	39.81	54.00	14.19
9748	33.37	PK	Н	36.45	8.61	27.24	51.19	74.00	22.81
9748	19.74	AV	Н	36.45	8.61	27.24	37.56	54.00	16.44
3813	37.79	PK	Н	27.83	4.65	27.37	42.90	74.00	31.10
3813	25.21	AV	Н	27.83	4.65	27.37	30.32	54.00	23.68
3687	36.65	PK	Н	27.57	4.61	27.32	41.51	74.00	32.49
3687	24.03	AV	Н	27.57	4.61	27.32	28.89	54.00	25.11
241.9	36.8	QP	Н	12.23	1.86	21.49	29.40	46.00	16.60
2462	70.00	DIZ		High Channe			00.66	NT/A	NT/A
2462	70.98	PK	Н	24.93	3.75	0.00	99.66	N/A	N/A
2462	61.86	AV	H V	24.93	3.75	0.00	90.54	N/A	N/A
2462 2462	69.24	PK AV	V	24.93	3.75	0.00	97.92	N/A N/A	N/A N/A
	60.05	AV		24.93	3.75	0.00	88.73		
2483.5	37.3	PK AV	Н	24.97	3.67	0.00	65.94 49.32	74.00	8.06
2483.5	20.68	AV	Н	24.97	3.67	0.00		54.00	4.68*
4924 4924	42.07	PK	Н	29.95	5.34	27.43	49.93	74.00	24.07
7386	28.74	AV	Н	29.95	5.34 6.83	27.43 25.86	36.60	54.00 74.00	17.40
7386	38.44 25.24	PK AV	Н	34.22 34.22		25.86	53.63 40.43		20.37
9848			Н		6.83			54.00	13.57
9848 9848	33.72 20.06	PK AV	H H	36.51 36.51	8.66 8.66	26.94 26.94	51.95 38.29	74.00 54.00	22.05 15.71
				27.83		27.37			
3813 3813	38.29	PK AV	H H		4.65 4.65	27.37	43.40 30.72	74.00 54.00	30.60 23.28
	25.61			27.83					
241.9	36.5	QP	Н	12.23	1.86	21.49	29.10	46.00	16.90

^{*}within uncertainty measurement!

FCC Part 15.247 Page 23 of 61

802 11 n ht20 Mode

002.11 11 1	t20 Mode		- ·						
Frequency	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Limit	Margin
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	(dBµV/m)	(dB)
			L	ow Chann	el: 2412	MHz			
2412	70.4	PK	Н	24.84	3.68	0.00	98.92	N/A	N/A
2412	60.25	AV	Н	24.84	3.68	0.00	88.77	N/A	N/A
2412	69.03	PK	V	24.84	3.68	0.00	97.55	N/A	N/A
2412	59.76	AV	V	24.84	3.68	0.00	88.28	N/A	N/A
2390	31.75	PK	Н	24.80	3.63	0.00	60.18	74.00	13.82
2390	16.83	AV	Н	24.80	3.63	0.00	45.26	54.00	8.74
4824	41.58	PK	Н	29.75	5.03	27.41	48.95	74.00	25.05
4824	27.89	AV	Н	29.75	5.03	27.41	35.26	54.00	18.74
7236	37.7	PK	Н	33.98	6.65	25.90	52.43	74.00	21.57
7236	24.49	AV	Н	33.98	6.65	25.90	39.22	54.00	14.78
9648	32.79	PK	Н	36.39	8.55	27.46	50.27	74.00	23.73
9648	19.28	AV	Н	36.39	8.55	27.46	36.76	54.00	17.24
3813	37.62	PK	Н	27.83	4.65	27.37	42.73	74.00	31.27
3813	24.67	AV	Н	27.83	4.65	27.37	29.78	54.00	24.22
241.9	36.6	QP	Н	12.23	1.86	21.49	29.20	46.00	16.80
				ddle Chan	Valoritory N	MHz			
2437	70.07	PK	Н	24.89	3.75	0.00	98.71	N/A	N/A
2437	60.47	AV	Н	24.89	3.75	0.00	89.11	N/A	N/A
2437	69.23	PK	V	24.89	3.75	0.00	97.87	N/A	N/A
2437	59.82	AV	V	24.89	3.75	0.00	88.46	N/A	N/A
4874	41.54	PK	Н	29.85	5.14	27.42	49.11	74.00	24.89
4874	27.94	AV	Н	29.85	5.14	27.42	35.51	54.00	18.49
7311	37.67	PK	Н	34.10	6.74	25.88	52.63	74.00	21.37
7311	24.48	AV	Н	34.10	6.74	25.88	39.44	54.00	14.56
9748	32.9	PK	Н	36.45	8.61	27.24	50.72	74.00	23.28
9748	19.16	AV	Н	36.45	8.61	27.24	36.98	54.00	17.02
3813	37.55	PK	Н	27.83	4.65	27.37	42.66	74.00	31.34
3813	24.73	AV	Н	27.83	4.65	27.37	29.84	54.00	24.16
3687	36.31	PK	Н	27.57	4.61	27.32	41.17	74.00	32.83
3687	23.72	AV	Н	27.57	4.61	27.32	28.58	54.00	25.42
241.9	36	QP	Н	12.23 igh Chann	1.86	21.49	28.60	46.00	17.40
2462	71.2	DV					00.08	NI/A	NI/A
2462	71.3	PK AV	Н	24.93	3.75	0.00	99.98	N/A	N/A N/A
2462 2462	60.8	AV PK	V	24.93	3.75 3.75	0.00	89.48 98.39	N/A N/A	N/A N/A
2462	59.23	AV	V	24.93	3.75	0.00	98.39 87.91	N/A N/A	N/A N/A
2483.5	39.25	PK	H	24.93	3.67	0.00	67.90	74.00	6.10
2483.5	21.98	AV	Н	24.97	3.67	0.00	50.62	54.00	3.38*
4924	42.79	PK	Н	29.95	5.34	27.43	50.65	74.00	25.35
4924	29.34	AV	Н	29.95	5.34	27.43	37.20	54.00	16.80
7386	39.01	PK	H	34.22	6.83	25.86	54.20	74.00	19.80
7386	25.83	AV	Н	34.22	6.83	25.86	41.02	54.00	12.98
9848	33.26	PK	H	36.51	8.66	26.94	51.49	74.00	22.51
9848	19.62	AV	Н	36.51	8.66	26.94	37.85	54.00	16.15
3813	37.95	PK	Н	27.83	4.65	27.37	43.06	74.00	30.94
3813	25.16	AV	Н	27.83	4.65	27.37	30.27	54.00	23.73
241.9	36.7	QP	Н	12.23	1.86	21.49	29.30	46.00	16.70

FCC Part 15.247 Page 24 of 61

^{*}within uncertainty measurement!

802.11 n ht40 Mode

E	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	T : '4	М
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBμV/m)	Margin (dB)
			L	ow Chann	el: 2422	MHz			
2422	69.54	PK	Н	24.86	3.71	0.00	98.11	N/A	N/A
2422	57.18	AV	Н	24.86	3.71	0.00	85.75	N/A	N/A
2422	68.57	PK	V	24.86	3.71	0.00	97.14	N/A	N/A
2422	56.24	AV	V	24.86	3.71	0.00	84.81	N/A	N/A
2390	36.27	PK	Н	24.80	3.63	0.00	64.70	74.00	9.30
2390	21.67	AV	Н	24.80	3.63	0.00	50.10	54.00	3.90*
4844	37.61	PK	Н	29.79	4.99	27.42	44.97	74.00	29.03
4844	24.15	AV	Н	29.79	4.99	27.42	31.51	54.00	22.49
7266	35.15	PK	Н	34.03	6.68	25.89	49.97	74.00	24.03
7266	21.41	AV	Н	34.03	6.68	25.89	36.23	54.00	17.77
9688	32.18	PK	Н	36.41	8.58	27.37	49.80	74.00	24.20
9688	18.97	AV	Н	36.41	8.58	27.37	36.59	54.00	17.41
3867	36.28	PK	Н	27.93	4.52	27.32	41.41	74.00	32.59
3867	23.63	AV	Н	27.93	4.52	27.32	28.76	54.00	25.24
241.9	36.9	QP	Н	12.23	1.86	21.49	29.50	46.00	16.50
			Mi	ddle Chan	nel: 2437	MHz			
2437	69.18	PK	Н	24.89	3.75	0.00	97.82	N/A	N/A
2437	57.56	AV	Н	24.89	3.75	0.00	86.20	N/A	N/A
2437	68.91	PK	V	24.89	3.75	0.00	97.55	N/A	N/A
2437	56.31	AV	V	24.89	3.75	0.00	84.95	N/A	N/A
4874	37.74	PK	Н	29.85	5.14	27.42	45.31	74.00	28.69
4874	24.29	AV	Н	29.85	5.14	27.42	31.86	54.00	22.14
7311	35.03	PK	Н	34.10	6.74	25.88	49.99	74.00	24.01
7311	21.39	AV	Н	34.10	6.74	25.88	36.35	54.00	17.65
9748	32.04	PK	Н	36.45	8.61	27.24	49.86	74.00	24.14
9748	18.94	AV	Н	36.45	8.61	27.24	36.76	54.00	17.24
3867	36.29	PK	Н	27.93	4.52	27.32	41.42	74.00	32.58
3867	23.68	AV	H	27.93	4.52	27.32	28.81	54.00	25.19
3687	34.47	PK	Н	27.57	4.61	27.32	39.33	74.00	34.67
3687	21.84	AV	Н	27.57	4.61	27.32	26.70	54.00	27.30
241.9	36.2	QP	Н	12.23	1.86	21.49	28.80	46.00	17.20
	.			igh Chanr					
2452	69.44	PK	Н	24.91	3.78	0.00	98.13	N/A	N/A
2452	57.75	AV	Н	24.91	3.78	0.00	86.44	N/A	N/A
2452	68.36	PK	V	24.91	3.78	0.00	97.05	N/A	N/A
2452	56.74	AV	V	24.91	3.78	0.00	85.43	N/A	N/A
2483.5	39.28	PK	Н	24.97	3.67	0.00	67.92	74.00	6.08
2483.5	23.69	AV	Н	24.97	3.67	0.00	52.33	54.00	1.67*
4904	37.89	PK	Н	29.91	5.31	27.43	45.68	74.00	28.32
4904	24.33	AV	Н	29.91	5.31	27.43	32.12	54.00	21.88
7356	35.53	PK	Н	34.17	6.79	25.87	50.62	74.00	23.38
7356	21.8	AV	Н	34.17	6.79	25.87	36.89	54.00	17.11
9808	32.53	PK	Н	36.48	8.64	27.09	50.56	74.00	23.44
9808	19.39	AV	Н	36.48	8.64	27.09	37.42	54.00	16.58
3867	36.64	PK	Н	27.93	4.52	27.32	41.77	74.00	32.23
3867	24.08	AV	Н	27.93	4.52	27.32	29.21	54.00	24.79
241.9	36.5	QP	Н	12.23	1.86	21.49	29.10	46.00	16.90

FCC Part 15.247 Page 25 of 61

^{*}within uncertainty measurement!

BLE Mod	e								
F	R	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	T **/	M
Frequency	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/AV)	(H/V)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			L	ow Chann	el: 2402	MHz		<u> </u>	
2402	60.01	PK	Н	24.82	3.66	0.00	88.49	N/A	N/A
2402	54.77	AV	Н	24.82	3.66	0.00	83.25	N/A	N/A
2402	58.45	PK	V	24.82	3.66	0.00	86.93	N/A	N/A
2402	52.12	AV	V	24.82	3.66	0.00	80.60	N/A	N/A
2390	29.24	PK	Н	24.80	3.63	0.00	57.67	74.00	16.33
2390	14.96	AV	Н	24.80	3.63	0.00	43.39	54.00	10.61
4804	33.13	PK	Н	29.71	5.06	27.41	40.49	74.00	33.51
4804	19.34	AV	Н	29.71	5.06	27.41	26.70	54.00	27.30
7206	32.22	PK	Н	33.93	6.61	25.91	46.85	74.00	27.15
7206	18.83	AV	Н	33.93	6.61	25.91	33.46	54.00	20.54
9608	29.89	PK	Н	36.36	8.53	27.55	47.23	74.00	26.77
9608	16.64	AV	Н	36.36	8.53	27.55	33.98	54.00	20.02
3895	38.74	PK	Н	27.99	4.36	27.29	43.80	74.00	30.20
3895	26.12	AV	Н	27.99	4.36	27.29	31.18	54.00	22.82
241.9	36.3	QP	Н	12.23	1.86	21.49	28.90	46.00	17.10
	I		Mi	ddle Chan		MHz			
2440	61.5	PK	Н	24.89	3.76	0.00	90.15	N/A	N/A
2440	55.98	AV	Н	24.89	3.76	0.00	84.63	N/A	N/A
2440	59.62	PK	V	24.89	3.76	0.00	88.27	N/A	N/A
2440	53.32	AV	V	24.89	3.76	0.00	81.97	N/A	N/A
4880	32.74	PK	Н	29.86	5.18	27.42	40.36	74.00	33.64
4880	19.14	AV	Н	29.86	5.18	27.42	26.76	54.00	27.24
7320	32.15	PK	Н	34.11	6.75	25.88	47.13	74.00	26.87
7320	18.77	AV	Н	34.11	6.75	25.88	33.75	54.00	20.25
9760	29.75	PK	Н	36.46	8.62	27.21	47.62	74.00	26.38
9760	16.52	AV	Н	36.46	8.62	27.21	34.39	54.00	19.61
3895	38.7	PK	Н	27.99	4.36	27.29	43.76	74.00	30.24
3895	26.14	AV	Н	27.99	4.36	27.29	31.20	54.00	22.80
4228	35.38	PK	Н	28.61	5.06	27.04	42.01	74.00	31.99
4228	22.81	AV	Н	28.61	5.06	27.04	29.44	54.00	24.56
241.9	36.8	QP	Н	12.23	1.86	21.49	29.40	46.00	16.60
				igh Chann					
2480	61.33	PK	Н	24.96	3.68	0.00	89.97	N/A	N/A
2480	55.14	AV	Н	24.96	3.68	0.00	83.78	N/A	N/A
2480	59.78	PK	V	24.96	3.68	0.00	88.42	N/A	N/A
2480	53.46	AV	V	24.96	3.68	0.00	82.10	N/A	N/A
2483.5	28.51	PK	Н	24.97	3.67	0.00	57.15	74.00	16.85
2483.5	14.67	AV	Н	24.97	3.67	0.00	43.31	54.00	10.69
4960	32.85	PK	Н	30.02	5.34	27.43	40.78	74.00	33.22
4960	19.39	AV	Н	30.02	5.34	27.43	27.32	54.00	26.68
7440	32.59	PK	Н	34.30	6.89	25.97	47.81	74.00	26.19
7440	19.05	AV	Н	34.30	6.89	25.97	34.27	54.00	19.73
9920	29.96	PK	Н	36.55	8.71	26.66	48.56	74.00	25.44
9920	16.75	AV	Н	36.55	8.71	26.66	35.35	54.00	18.65
3895	39.05	PK	Н	27.99	4.36	27.29	44.11	74.00	29.89
3895	26.48	AV	Н	27.99	4.36	27.29	31.54	54.00	22.46
241.9	36.1	QP	Н	12.23	1.86	21.49	28.70	46.00	17.30

FCC Part 15.247 Page 26 of 61

Conducted Spurious Emissions at Antenna Port

Report No.: RDG160118001-00D

802.11b Low Channel

802.11b Middle Channel

FCC Part 15.247 Page 27 of 61

Date:

Report No.: RDG160118001-00D

802.11g Low Channel

20.JAN.2016 12:18:51

FCC Part 15.247 Page 28 of 61

802.11g Middle Channel

Report No.: RDG160118001-00D

802.11g High Channel

FCC Part 15.247 Page 29 of 61

802.11n ht20 Middle Channel

FCC Part 15.247 Page 30 of 61

Date:

Report No.: RDG160118001-00D

20.JAN.2016 13:51:50

802.11n ht40 Low Channel

FCC Part 15.247 Page 31 of 61

Stop 25 GHz

Report No.: RDG160118001-00D

Date: 20.JAN.2016 14:02:30

Start 30 MHz

802.11n ht40 High Channel

2.497 GHz/

FCC Part 15.247 Page 32 of 61

BLE Middle Channel

FCC Part 15.247 Page 33 of 61

FCC Part 15.247 Page 34 of 61

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RDG160118001-00D

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r04

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $3 \times RBW$
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	DE31388	2015-05-09	2016-05-09
N/A	Coaxial Cable	0.1m	N/A	2015-05-06	2016-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2015-05-06	2016-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	21.6 °C
Relative Humidity:	41 %
ATM Pressure:	101.2~101.6 kPa

^{*} The testing was performed by Lion Xiao from 2016-01-20 to 2016-01-23

FCC Part 15.247 Page 35 of 61

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

Test mode	Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
	Low	2412	9.30	0.5
802.11b	Middle	2437	9.30	0.5
	High	2462	9.22	0.5
	Low	2412	16.43	0.5
802.11g	Middle	2437	16.51	0.5
	High	2462	16.43	0.5
	Low	2412	17.64	0.5
802.11n20	Middle	2437	17.72	0.5
	High	2462	17.64	0.5
	Low	2422	36.23	0.5
802.11n40	Middle	2437	36.23	0.5
	High	2452	36.23	0.5
	Low	2402	0.73	0.5
BLE	Middle	2440	0.74	0.5
	High	2480	0.74	0.5

Report No.: RDG160118001-00D

802.11b Low Channel

FCC Part 15.247 Page 36 of 61

802.11b Middle Channel

Report No.: RDG160118001-00D

802.11b High Channel

FCC Part 15.247 Page 37 of 61

802.11g Low Channel

Report No.: RDG160118001-00D

802.11g Middle Channel

FCC Part 15.247 Page 38 of 61

802.11g High Channel

Report No.: RDG160118001-00D

802.11n ht20 Low Channel

FCC Part 15.247 Page 39 of 61

802.11n ht20 Middle Channel

Report No.: RDG160118001-00D

Page 40 of 61 FCC Part 15.247

802.11n ht40 Low Channel

Report No.: RDG160118001-00D

Date: 20.JAN.2016 13:54:57

802.11n ht40 Middle Channel

FCC Part 15.247 Page 41 of 61

802.11n ht40 High Channel

Report No.: RDG160118001-00D

Date: 20.JAN.2016 14:03:05

BLE Low Channel

FCC Part 15.247 Page 42 of 61

BLE Middle Channel

Report No.: RDG160118001-00D

FCC Part 15.247 Page 43 of 61

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RDG160118001-00D

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r04

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54210016	2015-11-03	2016-11-03
Agilent	Wideband Power Sensor	N1921A	MY54170013	2015-11-03	2016-11-03
Agilent	P-Series Power Meter	N1912A	MY5000448	2015-11-03	2016-11-03
N/A	Coaxial Cable	0.1m	N/A	2015-05-06	2016-05-06
E-Microwave	DC Blocking	EMDCB- 00036	0E01201047	2015-05-06	2016-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23°C	
Relative Humidity:	45 %	
ATM Pressure:	101.5 kPa	

^{*} The testing was performed by Lion Xiao on 2016-01-20

FCC Part 15.247 Page 44 of 61

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table.

Test mode	Channel	Frequency (MHz)	Max Peak Conducted Output Power (dBm)	Max Conducted Average Output Power (dBm)	Limit (dBm)
	Low	2412	19.50	17.68	30
802.11b	Middle	2437	19.59	17.74	30
	High	2462	19.76	17.87	30
	Low	2412	20.35	15.55	30
802.11g	Middle	2437	20.57	15.79	30
	High	2462	20.50	15.67	30
	Low	2412	20.05	15.34	30
802.11n20	Middle	2437	20.36	15.62	30
	High	2462	21.01	16.38	30
	Low	2422	21.56	14.60	30
802.11n40	Middle	2437	21.31	14.37	30
	High	2452	21.24	14.28	30
	Low	2402	-3.44		30
BLE	Middle	2441	-2.95	/	30
	High	2480	-2.95	/	30

Report No.: RDG160118001-00D

FCC Part 15.247 Page 45 of 61

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RDG160118001-00D

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	DE31388	2015-05-09	2016-05-09
N/A	Coaxial Cable	0.1m	N/A	2015-05-06	2016-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2015-05-06	2016-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	21.6°C	
Relative Humidity:	41 %	
ATM Pressure:	101.2~101.6 kPa	

^{*} The testing was performed by Lion Xiao from 2016-01-20 to 2016-01-23

Test mode: Transmitting

FCC Part 15.247 Page 46 of 61

802.11b: Band Edge, Left Side

Report No.: RDG160118001-00D

802.11b: Band Edge, Right Side

FCC Part 15.247 Page 47 of 61

802.11g: Band Edge, Left Side

Report No.: RDG160118001-00D

Date: 20.JAN.2016 12:26:19

802.11g: Band Edge, Right Side

FCC Part 15.247 Page 48 of 61

802.11n ht20 Band Edge, Left Side

Report No.: RDG160118001-00D

Date: 20.JAN.2016 13:44:55

802.11n ht20 Band Edge, Right Side

FCC Part 15.247 Page 49 of 61

802.11n ht40 Band Edge, Left Side

Report No.: RDG160118001-00D

Date: 20.JAN.2016 13:58:17

802.11n ht40 Band Edge, Right Side

FCC Part 15.247 Page 50 of 61

BLE Band Edge , Left Side

Report No.: RDG160118001-00D

Date: 21.JAN.2016 19:21:23

BLE Band Edge, Right Side

FCC Part 15.247 Page 51 of 61

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RDG160118001-00D

Test Procedure

According to KDB 558074 D01 DTS Meas Guidance v03r04

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	DE31388	2015-05-09	2016-05-09
N/A	Coaxial Cable	0.1m	N/A	2015-05-06	2016-05-06
E-Microwave	DC Blocking	EMDCB- 00036	0E01201047	2015-05-06	2016-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	21.6°C	
Relative Humidity:	41 %	
ATM Pressure:	101.2~101.6 kPa	

^{*} The testing was performed by Lion Xiao from 2016-01-20 to 2016-01-21

FCC Part 15.247 Page 52 of 61

Test Result: Compliant. Please refer to the following table and plots

Test mode	Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
	Low	2412	-12.85	8
802.11b	Middle	2437	-12.77	8
	High	2462	-12.52	8
	Low	2412	-13.39	8
802.11g	Middle	2437	-13.18	8
	High	2462	-13.22	8
	Low	2412	-13.68	8
802.11n20	Middle	2437	-13.38	8
	High	2462	-13.25	8
	Low	2422	-14.51	8
802.11n40	Middle	2437	-14.75	8
	High	2452	-14.78	8
	Low	2402	-18.69	8
BLE	Middle	2440	-18.21	8
	High	2480	-18.20	8

Power Spectral Density, 802.11b Low Channel

FCC Part 15.247 Page 53 of 61

Power Spectral Density, 802.11b Middle Channel

Power Spectral Density, 802.11b High Channel

FCC Part 15.247 Page 54 of 61

Power Spectral Density, 802.11g Low Channel

Power Spectral Density, 802.11g Middle Channel

FCC Part 15.247 Page 55 of 61

Power Spectral Density, 802.11g High Channel

Power Spectral Density, 802.11n ht20 Low Channel

FCC Part 15.247 Page 56 of 61

Power Spectral Density, 802.11n ht20 Middle Channel

Power Spectral Density, 802.11n ht20 High Channel

FCC Part 15.247 Page 57 of 61

Power Spectral Density, 802.11n ht40 Low Channel

Power Spectral Density, 802.11n ht40 Middle Channel

FCC Part 15.247 Page 58 of 61

Power Spectral Density, 802.11n ht40 High Channel

Report No.: RDG160118001-00D

Power Spectral Density, BLE Low Channel

FCC Part 15.247 Page 59 of 61

Power Spectral Density, BLE Middle Channel

Power Spectral Density, BLE High Channel

FCC Part 15.247 Page 60 of 61

DECLARATION LETTER

Declaration of Alteration

Report No.: RDG160118001-00D

To Whom It May Concern,

We, POSH Mobile Limited, hereby declare that there are some differences between our Multiple Models and testing products. Details as below:

(This is for your reference only.)

(This is for ye			1				
Name		Icon Pro HD					
	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P		POSH				
			Shenzhen Posh Mobile Limited				
Pro		ct No.	RDG160118001,RDG160118001 -20				
		0-7 7/1-17	Differenc	es Description			
Testing Pro	ducts	Multip	le Models	Differences Items	Details		
Abdylenie politica (IV) Morel in Letter Alliand (Vitaliania)		X551A,X	551B,X551C	Model name.Appearence	They are same motherboard, and just have the different model name and appearence.		

Notes: Testing products-the products tested by BACL

Multiple Model- have the same or similar appearance, structure, PCB, Material and function to the testing products, and only are different for little parameters.

Besides the differences in the table above, we declare the products are identical We guarantee all the information provided above is true, and notice that we'll bear all the consequences caused by any false information or concealing

Best Regards,

Signature:

Print Name: Warren Chan

Title: Manager

ADD: 1011A, 10-F., Harbour Centre Tower I, No.1 Hok Cheung St., Hung Hom, Kowloon, Hong Kong 31889834 Fax: 852 3904 4979 Email: Warren@poslmobile.com.lik

QPDG004R32 Version1.0 (20140717)

***** END OF REPORT *****

FCC Part 15.247 Page 61 of 61