

Independent University, Bangladesh

Department of Electrical and Electronic Engineering

Name: Hemal Sharma

ID: 2221855 Sec: 02

Course Title : Digital Signal Processing LAB

Course Code : EEE 321L / ETE 324L (New); ECR 305L (Old)

Instructor : Dr. Kh Shahriya Zaman

Experiment No. : 06

Experiment Name : Study on z-transform.

Objectives:

1. To understand the frequency response.

2. To understand the poles and zeros of a system.

3. To understand the system stability.

MATLAB function for frequency response:

MATLAB provides a function called *freqz* to compute the system function H (z).

- \clubsuit [H, ω] = freqz (b, a, N): returns the N-points frequency vector ω and the N points complex frequency response vector H of the system, given its numerator and denominator coefficients in vector b and a.
- > zplane (b,a) function is used for pole-zero plot.

Lab work:

1. Given that y(n) = 0.9y(n-1) + x(n). Determine the frequency response, H(z) and plot the magnitude and phase angle of H(z). Also sketch the pole-zero plot of H(z).

Lab Assignment-6

1. Given that y(n) = x(n) - 0.9x(n-1) - 0.1x(n-2) - 0.3y(n-1) + 0.04y(n-2). Determine the frequency response, H(z) and plot the magnitude and phase angle of H(z). Also sketch the pole-zero plot of H(z).

