Fast Almost-Gaussian Filtering

ШКАБАРА Я. А. 3331506/70401

Гауссово размытие

Гауссово размытие — это результат применения математической функции Гаусса к изображению для его размытия.

$$g(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

 σ - среднеквадратичное отклонение;

 μ — мат. ожидание.

Матрица Гауссова размытия

<u>1</u> 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

$$g(x,y) = \frac{1}{2\pi\sigma^2} \cdot e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Матрица Гауссова размытия

Влияние σ на результат обработки

Интегральное изображение

1.	31	2	4	33	5	36
į	12	26	9	10	29	25
į	13	17	21	22	20	18
	24	23	15	16	14	19
ļ	30	8	28	27	11	7
•	1	35	34	3	32	6

$$15 + 16 + 14 + 28 + 27 + 11 = 101 + 450 - 254 - 186 = 111$$

Стандартное отклонение усредняющего фильтра шириной w:

$$\sigma_{av} = \sqrt{\frac{w^2 - 1}{12}} \tag{1}$$

Стандартное отклонение при числе усреднений *n*:

$$\sigma_{nav} = \sqrt{\frac{nw^2 - n}{12}} \tag{2}$$

Вычислим идеальную ширину фильтра на основании σ :

$$w_{ideal} = \sqrt{\frac{12\sigma^2}{n} + 1} \tag{3}$$

Предполагается, что будут использоваться фильтры размеров w_l и w_u : $w_l < w_{ideal} < w_u$ (w_l и w_u - ближайшие к w_{ideal} нечетные целые числа). $w_u = w_l$ +2.

При этом фильтр размера w_l будет применен m раз ($0 \le m \le n$), а фильтр размера w_u - (n-m) раз.

Можно записать уравнение 2 в виде:

$$\sigma = \sqrt{\frac{mw_l^2 + (n-m)w_u^2 - n}{12}}$$

$$= \sqrt{\frac{mw_l^2 + (n-m)(w_l + 2)^2 - n}{12}}$$
(4)

При известных σ , n и w_l из уравнения (4) можно найти m:

$$m = \frac{12\sigma^2 - nw_l^2 - 4nw_l - 3n}{-4w_l - 4} \tag{5}$$

При заданных σ и n алгоритм сводится к следующим действиям:

- 1. С помощью уравнения 3 найти w_{ideal} для определения w_l и w_u ;
- 2. Определить m с помощью уравнения 5;
- 3. Применить фильтр ширины $w_l \ m$ раз;
- 4. Применить фильтр ширины $w_u \, ({\bf n} m)$ раз.

Аппроксимация фильтра Гаусса со стандартным отклонением 40 с использованием 3, 5 и 10 проходов усреднения.

Фактическое стандартное отклонение, полученное за 5 проходов, составило 39,983.

Список литературы

1. P. Kovesi, "Fast Almost-Gaussian Filtering," 2010 International Conference on Digital Image Computing: Techniques and Applications, Sydney, NSW, 2010, pp. 121-125, doi: 10.1109/DICTA.2010.30.