

Bruce M. Boghosian

Motivation fo regression

The method of least squares

ligher-degree olynomial fit

Nonlinea models

Exponential regression
Logarithmic regression
Logistic regression
Other nonlinea models

Summary

Regression

The Method of Least Squares

Bruce M. Boghosian

Department of Mathematics

Tufts University

Outline

Bruce M. Boghosiar

Motivation for regression

The methood of least squares

Higher-degree

models

Exponential regression

Logarithmic regression

Logistic regression

Other nonlin

- 1 Motivation for regression
- 2 The method of least squares
- 3 Higher-degree polynomial fits
- 4 Nonlinear models
 - Exponential regression
 - Logarithmic regression
 - Logistic regression
 - Other nonlinear models
- 5 Summary

Regression

Bruce M. Boghosiar

Motivation for regression

The methoo of least equares

Higher-degree oolynomial fits

models

Exponential regression

Logarithmic regression

Logistic regression

Other nonlineal models

- Find relationship between two quantities.
- One or both quantities is a random variable.
- The relationship might be that the second is a degree-*m* polynomial function of the first.
- It might be that no such exact relation exists.
- There might be a "closest" degree-*m* polynomial for the given data.
- Finding that polynomial is an example of *regression*.

Approach to the problem

Bruce M. Boghosian

Motivation for regression

The method of least squares

Higher-degree

Nonlinear

Exponential regression Logarithmic regression Logistic regression Other nonlinear

- Suppose we have n data pairs (x_i, y_i) , for i = 1, ..., n.
- Find the "best" linear fit, y = a + bx.
- This would be called *linear regression*.
- Result would be the optimum parameters, a and b.

Tuffs The method of least squares

The method of least

- Suppose we have n data pairs (x_i, y_i) , for $i = 1, \ldots, n$.
- We wish to fit this to a polynomial $p(x) = a + \sum_{i=1}^{m} b_i x^j$
- Find the coefficients that minimize

$$L = \sum_{i=1}^{n} [y_i - p(x_i)]^2$$

- Result will be optimal a_i and b_j where $j = 1, \ldots, m$.
- In the above, note that
 - n is the number of data points.
 - m is the order of the polynomial.

Linear least-squares regression

Bruce M. Boghosian

Motivation for regression

The method of least squares

Higher-degree

Exponential regression
Logarithmic regression
Logistic regression
Other nonlinear models

Summary

- Let the polynomial be linear, p(x) = a + bx
- Find the coefficients that minimize

$$L(a,b) = \sum_{i=1}^{n} [y_i - p(x_i)]^2 = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

■ Find minimum *L* by setting partial derivatives to zero

$$0 = \frac{\partial L}{\partial a} = -2 \sum_{i=1}^{n} [y_i - (a + bx_i)]$$
$$0 = \frac{\partial L}{\partial b} = -2 \sum_{i=1}^{n} [y_i - (a + bx_i)] x_i$$

Linear least-squares regression (continued)

Bruce M. Boghosian

Motivation for regression

The method of least squares

Higher-degree

Nonlinear models

regression
Logarithmic
regression
Logistic
regression
Other nonlinear
models

Summary

■ Find minimum *L* by setting partial derivatives to zero

$$0 = \frac{\partial L}{\partial a} = -2 \sum_{i=1}^{n} [y_i - (a + bx_i)]$$

$$0 = \frac{\partial L}{\partial b} = -2 \sum_{i=1}^{n} x_i \left[y_i - (a + bx_i) \right]$$

Rearrange to obtain

$$\left(\sum_{i=1}^{n} 1\right) a + \left(\sum_{i=1}^{n} x_i\right) b = \sum_{i=1}^{n} y_i$$
$$\left(\sum_{i=1}^{n} x_i\right) a + \left(\sum_{i=1}^{n} x_i^2\right) b = \sum_{i=1}^{n} x_i y_i$$

Two simultaneous equations in two unknowns for a and b

Linear least-squares regression (continued)

Bruce M. Boghosian

Motivation for regression

The method of least squares

Higher-degre

models

regression
Logarithmic regression
Logistic regression
Other nonlinear models

Summar

■ Two simultaneous equations

$$\left(\sum_{i=1}^{n} 1\right) a + \left(\sum_{i=1}^{n} x_i\right) b = \sum_{i=1}^{n} y_i$$
$$\left(\sum_{i=1}^{n} x_i\right) a + \left(\sum_{i=1}^{n} x_i^2\right) b = \sum_{i=1}^{n} x_i y_i$$

- Define the moments $M_j := \sum_{i=1}^n x_i^j$ and $N_j := \sum_{i=1}^n x_i^j y_i$
- Simultaneous equations are

$$M_0a + M_1b = N_0$$
$$M_1a + M_2b = N_1$$

Note that $M_0 = n$.

Tuffs Linear least-squares regression (continued)

The method of least

Simultaneous equations for a and b

$$M_0a + M_1b = N_0$$
$$M_1a + M_2b = N_1$$

Solutions can be written (using, e.g., Cramer's rule)

$$a = rac{M_2 N_0 - M_1 N_1}{M_0 M_2 - M_1^2}$$
 and $b = rac{M_0 N_1 - M_1 N_0}{M_0 M_2 - M_1^2}$

Alternatively, solve above for b and then use

$$a=\frac{N_0-M_1b}{M_0}.$$

Linear least-squares regression (continued)

Bruce M. Boghosian

Motivation for regression

The method of least squares

Higher-degree

models

Laponential regression
Logarithmic regression
Logistic regression
Other nonlinea models

Summary

Writing the answers in terms of the data

$$a = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$b = \frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

Alternatively, solve above for b and then use

$$a = \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right) - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) b.$$

which can also be written $a = \overline{y} - \overline{x} b$.

Tuffs Linear least-squares regression (continued)

The method of least

- The preceding is the content of Theorem 11.2.1 in Larsen & Marx.
- Another way to understand these results is to note

$$M_0 = n$$
, $M_1 = n\overline{x}$, $M_2 = n\overline{x^2}$, $N_0 = n\overline{y}$ $N_1 = n\overline{x}\overline{y}$

Then the solutions

$$a = \frac{M_2 N_0 - M_1 N_1}{M_0 M_2 - M_1^2}$$
 and $b = \frac{M_0 N_1 - M_1 N_0}{M_0 M_2 - M_1^2}$

become

$$a = \frac{\overline{x^2} \ \overline{y} - \overline{x} \ \overline{xy}}{\overline{x^2} - (\overline{x})^2}$$
 and $b = \frac{\overline{xy} - \overline{x} \ \overline{y}}{\overline{x^2} - (\overline{x})^2}$

Polynomial least-squares regression

Bruce M. Boghosian

Motivation fo regression

The method of least squares

Higher-degree polynomial fits

models

Exponential regression

Logarithmic regression

Logistic regression

Other populates

Summary

For linear regression, we had the simultaneous equations

$$M_0a + M_1b = N_0$$
$$M_1a + M_2b = N_1$$

For higher-degree polynomials, the pattern continues

■ Must solve m+1 equations for the m+1 unknowns

$$a, b_1, b_2, \ldots, b_m$$
.

Result is polynomial $p(x) = a + b_1x + b_2x^2 + \cdots + b_mx^m$.

Tuffs Exponential growth

- Malthusian population growth model (Malthus 1798)
- Fractional growth rate is constant

$$\frac{1}{P}\frac{dP}{dt} = b$$

Results in differential equation

$$\frac{dP}{dt} = bP$$

General solution to this equation is

$$P(t) = ae^{bt}$$

• We collect data (t_i, P_i) and wish to find "best" a and b.

Exponential regression

Bruce M. Boghosian

Motivation fo regression

The method of least squares

Higher-degree

Nonlinear

Exponentia regression Logarithmi regression

regression Logistic regression Other nonlinear models

- Suppose we have *n* data pairs (x_i, y_i) , for i = 1, ..., n.
- We have reason to believe that it fits to $y = ae^{bx}$.
- You could try fitting by minimizing

$$L(a,b) = \sum_{i=1}^{n} \left(y_i - a e^{bx_i} \right)^2$$

- Setting partial derivatives to zero leaves you with difficult-to-solve simultaneous nonlinear equations.
- Fortunately, there is an easier way.

Exponential regression (continued)

Bruce M. Boghosian

Motivation fo regression

The metho of least squares

Higher-degree

Nonlinear

models Exponentia

Logarithmic regression
Logistic regression
Other nonlinear models

- We want to fit data to $y = ae^{bx}$.
- Note that this is equivalent to $\ln y = \ln a + bx$.
- So the pairs $(x_i, \ln y_i)$ have a linear relation.
- Do linear least-square fit to obtain coefficients *A* and *B*.
- Then identify $\ln a = A$ and b = B, or $a = e^A$ and b = B.
- Note that all the y_i must be positive for this to work.

Tuffs Power-law growth

Fractional growth rate decays in time

$$\frac{1}{P}\frac{dP}{dt} = \frac{b}{t}$$

Results in differential equation

$$\frac{dP}{dt} = b\frac{P}{t}$$

General solution to this equation is

$$P(t) = at^b$$

• We collect data (t_i, P_i) and wish to find "best" a and b.

Logarithmic regression

Bruce M. Boghosian

Motivation fo regression

The methoo of least squares

Higher-degree

models
Exponential regression
Logarithmic regression
Logistic

- We want to fit data to $y = ax^b$.
- Note that this is equivalent to $\ln y = \ln a + b \ln x$.
- So the pairs $(\ln x_i, \ln y_i)$ have a linear relation.
- Do linear least-square fit to obtain coefficients *A* and *B*.
- Then identify $\ln a = A$ and b = B, or $a = e^A$ and b = B.
- Note that all x_i and y_i must be positive for this to work.

Tufts Logistic growth

Malthusian growth leads to infinite population as $t \to \infty$.

- Before this happens, resources are exhausted and reproduction decreases to zero at carrying capacity P = L.
- Verhulst (1838) proposed logistic growth

$$\frac{1}{P}\frac{dP}{dt} = b\left(1 - \frac{P}{L}\right)$$

Results in differential equation

$$\frac{dP}{dt} = bP\left(1 - \frac{P}{L}\right)$$

General solution to this equation is

$$P(t) = \frac{L}{1 + e^{a-bt}} \to L \text{ as } t \to \infty$$

• We collect data (t_i, P_i) and wish to find "best" a and b.

Logistic regression

Bruce M. Boghosian

Motivation for regression

The method of least squares

Higher-degree polynomial fit

models
Exponentia
regression
Logarithmic
regression

Logistic regression Other nonlinear models

- We want to fit data to $y = \frac{L}{1 + e^{a + bx}}$, where L is known.
- Note that this is equivalent to $\frac{L}{V} 1 = e^{a+bx}$, or

$$\ln\left(\frac{L}{y}-1\right)=a+bx$$

- So the pairs $(x_i, \ln(L/y_i 1))$ have a linear relation.
- Do linear least-square fit to obtain coefficients *a* and *b*.
- Note that all $\frac{L}{v_i} 1$ must be positive for this to work.
- Since $y = \frac{L}{1 + e^{a + bx}} < L$, choose L greater than $\max_i y_i$.
- You can learn to "eyeball" the data to make a guess for L.

Tuffs Transformations for other nonlinear models

Other models and corresponding differential equations

Differential equation	Solution	Linear fit
$\frac{dy}{dx} = -by^2$	$y = \frac{1}{a + bx}$	$\frac{1}{y}$ versus x
$\frac{dy}{dx} = +b\frac{y^2}{x^2}$	$y = \frac{x}{b + ax}$	$\frac{1}{y}$ versus $\frac{1}{x}$
$\frac{dy}{dx} = -\frac{b(1-y)\ln(1-y)}{x}$	$y = 1 - e^{-\frac{x^b}{a}}$	$ \ln \ln \left(\frac{1}{1-y}\right) $ versus $\ln x$

- In all cases above.
 - parameter b appears in the differential equation.
 - parameter a is the arbitrary constant in the solution.

Tufts Summary

- We have introduced the topic of regression of data.
- We introduced the methodology behind least-squares fits.
- We began with linear fits.
- We showed how this could be extended to arbitrary polynomial fits.
- We then showed how transformations could be applied to data so fits to other nonlinear functions could be handled.