PSYCH 260 Exam 1

September 23, 2016

	Answer the questions using the Scantron form.	
Name:		

1 Main

- 1. Identify the structure
 - A. Frontal lobe
 - B. Parietal lobe
 - C. Occipital lobe
 - D. Temporal lobe
- 2. Identify the structure
 - A. Forebrain
 - B. Midbrain
 - C. Hindbrain
 - D. Spinal cord
- 3. Identify the structure
 - A. 4th ventricle
 - B. Medulla
 - C. Cerebellum
 - D. Pons
- 4. Identify the structure
 - A. 4th ventricle
 - B. Medulla
 - C. Cerebellum
 - D. Pons

- 5. Identify the structure
 - A. 4th ventricle
 - B. Medulla
 - C. Cerebellum
 - D. Pons
- 6. Identify the structure
 - A. Frontal lobe
 - B. Parietal lobe
 - C. Occipital lobe
 - D. Temporal lobe
- 7. Identify the structure
 - A. Frontal lobe
 - B. Parietal lobe
 - C. Occipital lobe
 - D. Temporal lobe
- 8. These tissues provide external structural support and protection for the CNS.
 - A. Astrocytes
 - B. Meninges
 - C. Cerebral ventricles
 - D. Circle of Willis

- 9. What plane of section is represented in the left panel?
 - A. Coronal
 - B. Sagittal
 - C. Axial/horizontal
 - D. Dorsal
- 10. What plane of section is represented in the middle panel?
 - A. Coronal
 - B. Sagittal
 - C. Axial/horizontal
 - D. Dorsal
- 11. What plane of section is represented in the right panel?
 - A. Coronal
 - B. Sagittal
 - C. Axial/horizontal
 - D. Dorsal
- 12. What fissure or sulcus is represented in the figures?
 - A. Superior temporal sulcus
 - B. Central sulcus
 - C. Longitudinal fissure
 - D. Lateral fissure
- 13. Primary auditory cortex (AI) is found in the _____
 - A. Temporal lobe
 - B. Frontal lobe
 - C. Hypothalamus
 - D. Basal ganglia
 - E. Parietal lobe

14.	Which of the following statements about neurons is <i>incorrect</i> ?
	A. Neurons have very long lives.
	B. Neurons can extend over long distances.
	C. Neurons are the only cells that have negative resting potentials.
	D. Neurons use both electrical and chemical mechanisms to communicate.
15.	Primary somatosensory cortex is found in the
	A. Temporal lobe
	B. Frontal lobe
	C. Hypothalamus
	D. Basal ganglia
	E. Parietal lobe
16.	Your grandmother has a stroke. The neurologist chooses an X-ray-based structural brain imaging method that gives satisfactory, but not especially detailed spatial resolution. What method is that?
	A. Computed tomography (CT).
	B. functional MRI.
	C. Positron Emission Tomography (PET).
	D. Anterograde tract tracers.
17.	The caudate nucleus is part of the
	A. Temporal lobe
	B. Frontal lobe
	C. Hypothalamus
	D. Basal ganglia
	E. Parietal lobe
18.	Theplays a role in biologically crucial behaviors, including those associated with inges-
	tion (eating and drinking) and reproduction.
	A. Temporal lobe
	B. Frontal lobe
	C. Hypothalamus
	D. Basal ganglia
	E. Parietal lobe
19.	The typical flow of information through neurons begins with input on theand ends with output from the
	A. axon; dendrites.
	B. soma; dendrites.
	C. dendrites; terminal button.
	D. terminal button; soma.
20.	Among other functionsplay(s) a role in regulating the extracellular concentration of
	A estrogratus alutamete
	A. astrocytes; glutamate.
	B. myelin sheath; Na+ ions.
	C. Circle of Willis; blood loss.
	D. blood/brain barrier; toxins.

21.		are exploring how chronic conditions like depression can change the size and shape of brain s using high resolution whole brain imaging techniques like
	A.	electroencephalography (EEG).
	В.	hemodynamic response imaging.
	С.	structural MRI.
	D.	Computed Tomography (CT).
22.	How man	y neurons are there in the human brain?
	Α.	About 86 billion.
	В.	About 86 million.
	С.	About the same number of seconds as in the average lifetime.
	D.	It can't be estimated.
23.	This type	e of glial cell provides neurons in the peripheral nervous system (PNS) with a myelin sheath.
	A.	Schwann cells
	В.	Oligodendrocytes
	С.	Microglia
	D.	Purkinje cells
24.	The hipp	ocampus plays a central role in
	A.	Sexual behavior
	В.	Metabolic, physical support of neurons

C. Sensory relay

E. CNS protection

D. Memory storage and retrieval

- 25. The thalamus serves this function, among others.
 - A. Metabolic, physical support of neurons
 - B. Sensory relay
 - C. Preparation for action
 - D. Memory storage and retrieval
 - E. CNS protection
- 26. The sympathetic nervous system is crucial for
 - A. Sexual behavior
 - B. Metabolic, physical support of neurons
 - C. Sensory relay
 - D. Preparation for action
 - E. Memory storage and retrieval
- 27. You're having trouble sleeping, so your physician orders a sleep study using polysomnography. You spend a night in the hospital with electrodes on your scalp. This is an example use case for ______.
 - A. electroencephalograpy (EEG).
 - B. Multi-unit recording.
 - C. transcranial magnetic stimulation.
 - D. optical imaging.
- 28. _______, a type of glial cell, help regulate local blood oxygen levels in response to neuronal activity. These cells thus contribute to the signal measured by ______.
 - A. oligodendrocytes; MEG
 - B. Schwann cells; structural MRI
 - C. astrocytes; functional MRI
 - D. microglia; structural and functional MRI
- 29. The neurotransmitters dopamine, norepinephrine, and serotonin originate from nuclei clustered in which midbrain region?
 - A. Basal ganglia
 - B. Lateral geniculate nucleus
 - C. Tegmentum
 - D. Medial frontal cortex

30. The hypothalamus is NOT responsible for which of the following functions?
A. Fleeing
B. Feeding
C. Fighting
D. Falling
31. Which of the following marks the medial boundary of the frontal lobe?
A. Lateral fissure
B. Longitudinal fissure
C. Central sulcus
D. Inferior temporal gyrus
32. This type of myelinating cell, found in the, ensheaths many neurons at once.
A. Astrocytes; PNS
B. Oligodendrocytes; CNS
C. Schwann cells; CNS
D. Schwann cells; PNS
33. Nodes of Ranvier, or gaps in the myelination of an axon, serve which purpose?
A. Increase the speed of propagation
B. Allow space in the axon for neurotransmitter release
C. Provide structural support to the neuron
D. Combine input from different dendrites
34. When a neuron is "at rest," which of the following ions are more heavily concentrated <i>outside</i> of the cell?
A. Na+ and Cl-
B. K+ and A-
C. Na+ and K+
D. Cl- and A-

35	When a neuron's m	embrane potential reaches the threshold for an action potential,
55.		ated K+ channels close
		ated Na+ channels close and inactivate
	~ ~	pump works even harder to keep the concentration balance.
	,	gated Na+ channels open
26		l functions as the neuron's "antennae" by serving as the primary place for receiving
<i>3</i> 0.	input.	runctions as the neuron's antennae by serving as the primary place for receiving
	A. Axon	
	B. Soma	
	C. Dendrite	es
	D. Terminal	Buttons
37.	. During the rising p	hase of the action potential,channels
	A. Ligand-ga	ated K+; close
	B. Voltage-g	ated Na+; close
	C. Voltage-	gated Na+; open
	D. Voltage-g	ated K+; close
38.	3. Neurons ensheathed	l in myelin conduct action potentialsthan those without myelin.
	A. more slow	rly
	B. more qu	ickly
	C. more slow	rly and efficiently
	D. more quic	ckly, but less efficiently
39.	During the absolute	e refractory period, a neuron will
	A. fire again	in response to an especially strong input.
	B. produce a	n action potential that is twice the normal size.
	C. open volta	age-gated Ca++ channels.
	D. not fire	no matter the strength of the input.
40.		otential reaches the axon terminal,open and this causes synaptic in the presynaptic membrane and release neurotransmitter into
	A. Voltage-	gated Ca++ channels; the synaptic cleft.
	B. Ligand-ga	ated Cl- channels; the Nodes of Ranvier.
	C. Na+/K+	pumps; the soma.
	D. Passive/le	eak channels: post-synaptic autoreceptors.

2 Bonus

11.	During the falling phase of the action potential,ions	
	A. K+; flow out	
	B. Na+; flow out	
	C. K+; flow in	
	D. Na+; flow in	
12.	Sodium (Na+) is highly concentrated This means that the force of diffusion acting alone will push Na+	
	A. inside; inward	
	B. outside; inward	
	C. inside; outward	
	D. outside; outward	
13.	In a typical neuron near or slightly above its resting potential chloride (Cl-) ions would flowfollow the concentration gradient. This would move the neuronits firing threshold.	ving
	A. Inward; farther from	
	B. Inward; closer to	
	C. Outward; farther from	
	D. Outward; closer to	
14.	A toxin found in Japanese pufferfish blocks voltage-gated Na+ channels. Applying such a toxin to neurons would have what effect?	
	A. Slower falling phase of the action potential.	
	B. Increasing the concentration of Na+ inside the cell.	
	C. K+ ions would accelerate their flow to compensate.	
	D. Action potentials would be abolished.	