Algoritmos

Pedro Hokama

Fontes

- [clrs] Algoritmos: Teoria e Prática (Terceira Edição) Thomas H. Cormen, Charles Eric Leiserson, Ronald Rivest e Clifford Stein.
- [timr] Algorithms Illuminated Series, Tim Roughgarden
- Desmistificando Algoritmos, Thomas H. Cormen.
- Algoritmos, Sanjoy Dasgupta, Christos Papadimitriou e Umesh Vazirani
- Stanford Algorithms https://www.youtube.com/playlist?list=PLXFMmlk03Dt7Q0xr1PIAriY5623cKiH7V https://www.youtube.com/playlist?list=PLXFMmlk03Dt5EMI2s2WQBsLsZ17A5HEK6
- Conjunto de Slides dos Professores Cid C. de Souza, Cândida N. da Silva, Orlando Lee, Pedro J. de Rezende
- Conjunto de Slides do Professores Cid C. de Souza para a disciplina MO420
 Qualquer erro é de minha responsabilidade.

Fundamentos de Criptografia

Fundamentos de Criptografia

- Quando fazemos compras pela internet, temos que enviar o número do cartão de crédito para efetivar a compra.
- A internet é uma rede pública, e qualquer um pode acessar os pacotes de dados que são transmitidos através dela.

Fundamentos de Criptografia

- Quando fazemos compras pela internet, temos que enviar o número do cartão de crédito para efetivar a compra.
- A internet é uma rede pública, e qualquer um pode acessar os pacotes de dados que são transmitidos através dela.
- É mais seguro se você disfarçar os dados do seu cartão de alguma maneira.
- E é o que fazemos quando, por exemplo, usamos um site que começa com "https" ao invés de "http".

- Apesar de ser uma dor de cabeça o roubo do número do cartão de crédito não é a pior coisa que pode ser roubada.
- Informações enviadas de/para forças armadas, diplomáticas, nudes, etc etc...

- Apesar de ser uma dor de cabeça o roubo do número do cartão de crédito não é a pior coisa que pode ser roubada.
- Informações enviadas de/para forças armadas, diplomáticas, nudes, etc etc...
- Portanto além de precisarmos de formas de criptografar e decifrar informações, esse métodos precisam ser dificílimos de derrotar.

• Supostamente, Júlio César teria se comunicado com seus generais usando uma cifra de deslocamento.

- Supostamente, Júlio César teria se comunicado com seus generais usando uma cifra de deslocamento.
- Nessa cifra substitui-se cada letra pela que aparece 3 lugares adiante no alfabeto.

- Supostamente, Júlio César teria se comunicado com seus generais usando uma cifra de deslocamento.
- Nessa cifra substitui-se cada letra pela que aparece 3 lugares adiante no alfabeto.

- Supostamente, Júlio César teria se comunicado com seus generais usando uma cifra de deslocamento.
- Nessa cifra substitui-se cada letra pela que aparece 3 lugares adiante no alfabeto.

• Nesse caso a *chave* é 3 o que é muito óbvio, então se quisermos usar a cifra de deslocamento, o ideal seria escolher outra chave.

3: uivli vclma

3:	uivli vclma
4:	thukh ubklz
5:	sgtjg tajky
6:	rfsif szijx
7:	qerhe ryhiw
8:	pdqgd qxghv
9:	ocpfc pwfgu
10	: nboeb oveft

11: manda nudes

12: Izmcz mtcdr 13: kylby Isbcq 14: jxkax krabp 15: iwjzw jqzao 16: hviyv ipyzn 17: guhxu hoxym 18: ftgwt gnwxl 19: esfvs fmvwk 20: dreur eluvj 21: cqdtq dktui 22: bpcsp cjsth 23: aobro birsg 24: znaqn ahqrf 25: ymzpm zgpqe 1: wkxnk xenoc 2: vjwmj wdmnb

3: uivli vclma	12: Izmcz mtcdr
4: thukh ubklz	13: kylby lsbcq
5: sgtjg tajky	14: jxkax krabp
6: rfsif szijx	15: iwjzw jązao
7: qerhe ryhiw	16: hviyv ipyzn
8: pdqgd qxghv	17: guhxu hoxym
9: ocpfc pwfgu	18: ftgwt gnwxl
10: nboeb oveft	19: esfvs fmvwk
11: manda nudes	20: dreur eluvj

21: cqdtq dktui 22: bpcsp cjsth 23: aobro birsg 24: znagn ahgrf 25: ymzpm zgpqe 1: wkxnk xenoc 2: vjwmj wdmnb

manda nudes

3: uivli vclma 4: thukh ubklz 5: sgtjg tajky 6: rfsif szijx 7: qerhe ryhiw 8: pdqgd qxghv 9: ocpfc pwfgu 10: nboeb oveft 11: manda nudes	12: Izmcz mtcdr 13: kylby Isbcq 14: jxkax krabp 15: iwjzw jqzao 16: hviyv ipyzn 17: guhxu hoxym 18: ftgwt gnwxl 19: esfvs fmvwk 20: dreur eluvj
11: manda nudes	20: dreur eluvj

21: cqdtq dktui 22: bpcsp cjsth 23: aobro birsg 24: znaqn ahqrf 25: ymzpm zgpqe 1: wkxnk xenoc 2: vjwmj wdmnb

 Na cifra de deslocamento existem 25 chaves distintas, fácil de testar todas.

- Na cifra de deslocamento existem 25 chaves distintas, fácil de testar todas.
- Mas podemos fazer algo mais seguro substituindo cada carácter por outro qualquer, não necessariamente o que está a 3 posições no alfabeto.

- Na cifra de deslocamento existem 25 chaves distintas, fácil de testar todas.
- Mas podemos fazer algo mais seguro substituindo cada carácter por outro qualquer, não necessariamente o que está a 3 posições no alfabeto.

ā	1	b	С	d	е	f	g	h	i	j	k		m	n	0	р	q	r	S	t	u
l	ı	W		Х	q	f	р	r	е	n	٧	h	Z	t	j	S	С	g	i	а	k

 Agora existem 26! permutações (chaves) diferente, difícil de testar uma a uma.

- Agora existem 26! permutações (chaves) diferente, difícil de testar uma a uma.
- Entretanto ainda é bastante fácil descobrir um texto criptografado dessa maneira.

j wjzwugxqej gkiij fje j sgezqegj pgutxq uauckq qz veqo xqixq j fetuh xq uwgeh tui khaezui iqzutui u gkiieu ljtlqtagjk iku jfqtieou sgetlesuhzqtaq tui hetrui xq fgqtaq tj hqiaq q tj ikh qzwjgu zjiljk jluiejtuhzqtaq uauckq jkagji hkpugqi tu luzsutru sugu xqiagkeg u etfguqiagkakgu zeheaug xu klguteu q whjckqug gqzqiiui xq ugzui jlexqtauei j wjzwugxqej gkiij fje j sgezqegj pgutxq uauckq qz veqo xqixq j fetuh xq uwgeh tui khaezui iqzutui u gkiieu ljtlqtagjk iku jfqtieou sgetlesuhzqtaq tui hetrui xq fgqtaq tj hqiaq q tj ikh qzwjgu zjiljk jluiejtuhzqtaq uauckq jkagji hkpugqi tu luzsutru sugu xqiagkeg u etfguqiagkakgu zeheaug xu klguteu q whjckqug gqzqiiui xq ugzui jlexqtauei

 Uma ideia é usar frequência de cada carácter, se soubermos que o texto está em português.

u	41
q	33
i	26
g	24
j	22
e	21
t	21
Em	pt-br.
a	14.63%
e	12.57%
0	10.73%
S	7.81%
r	6.53%
i	6.18%
n	5.05%

33 a 26 u deve ser A. 24 22 j wjzwAgxqej gkiij fje j sgezqegj pgAtxq 21 AaAckq qz veqo xqixq j fetAh xq Awgeh tAi 21 khaezAi iqzAtAi A gkiieA ljtlqtagjk ikA jfqtieoA sgetlesAhzqtaq tAi hetrAi xq fgqtaq Em pt-br 14 63% а tj hqiaq q tj ikh qzwjgA zjiljk jlAiejtAhzqtaq 12 57% AaAckq jkagji hkpAgqi tA lAzsAtrA sAgA 10.73% xqiagkeg A etfgAqiagkakgA zeheaAg xA klgAteA q 7 81% whickqAg gqzqiiAi xq AgzAi ilexqtaAei 6.53% Parece ok 6.18%

5.05%

n

u | 41

41 33 26 g deve ser E. 24 22 j wjzwAgxEej gkiij fje j sgezEegj pgAtxE 21 AaAckE Ez veEo xEixE j fetAh xE Awgeh tAi 21 khaezAi iEzAtAi A gkiieA ljtlEtagjk ikA jfEtieoA sgetlesAhzEtaE tAi hetrAi xE fgEtaE Em pt-br. 14 63% а tj hEiaE E tj ikh EzwjgA zjiljk jlAiejtAhzEtaE 12 57% AaAckE jkagji hkpAgEi tA lAzsAtrA sAgA 10.73% xEiagkeg A etfgAEiagkakgA zeheaAg xA klgAteA E 7 81% whjckEAg gEzEiiAi xE AgzAi jlexEtaAei 6.53% Parece ok 6.18% 5.05% n

	u	41
	q	33
• i deve ser O.	į į	26
• I deve ser O.	g	24
j wjzwAgxEej gkOOj fje j sgezEegj pgAtxE	j	22
AaAckE Ez veEo xEOxE j fetAh xE Awgeh tAO	е	21
khaezAO OEzAtAO A gkOOeA ljtlEtagjk OkA	t	21
jfEtOeoA sgetlesAhzEtaE tAO hetrAO xE fgEtaE	Em	pt-br.
tj hEOaE E tj Okh EzwjgA zjOljk jlAOejtAhzEtaE	a	14.63%
AaAckE jkagjO hkpAgEO tA lAzsAtrA sAgA	е	12.57%
xEOagkeg A etfgAEOagkakgA zeheaAg xA klgAteA E	0	10.73%
whjckEAg gEzE00A0 xE AgzA0 jlexEtaAe0	s	7.81%
- F'	r	6.53%
• Ficou estranho, note o OOAO. Pode ser S		6.18%
	n	5.05%

41 33 26 • (i) O deve ser S. 24 22 j wjzwAgxEej gkSSj fje j sgezEegj pgAtxE 21 AaAckE Ez veEo xESxE j fetAh xE Awgeh tAS 21 khaezAS SEzAtAS A gkSSeA ljtlEtagjk SkA jfEtSeoA sgetlesAhzEtaE tAS hetrAS xE fgEtaE Em pt-br 14 63% а tj hESaE E tj Skh EzwjgA zjSljk jlASejtAhzEtaE 12 57% AaAckE jkagjS hkpAgES tA lAzsAtrA sAgA 10.73% xESagkeg A etfgAESagkakgA zeheaAg xA klgAteA E 7 81% whickEAg gEzESSAS xE AgzAS jlexEtaAeS 6.53% Parece Ok 6.18% 5.05% n

	u	41
	q	33
• g deve ser O.	i	26
g deve sel O.	g	24
j wjzwAOxEej OkSSj fje j sOezEeOj pOAtxE	j	22
AaAckE Ez veEo xESxE j fetAh xE AwOeh tAS	е	21
khaezAS SEzAtAS A OkSSeA ljtlEtaOjk SkA	t	21
jfEtSeoA sOetlesAhzEtaE tAS hetrAS xE fOEtaE	Em	pt-br.
tj hESaE E tj Skh EzwjOA zjSljk jlASejtAhzEtaE	a	14.63%
AaAckE jkaOjS hkpAOES tA lAzsAtrA sAOA	e	12.57%
xESaOkeO A etfOAESaOkakOA zeheaAO xA klOAteA E	0	10.73%
whjckEAO OEzESSAS xE AOzAS jlexEtaAeS	s	7.81%
- N - L OF FCCAC D D	r	6.53%
 Note a palavra OEzESSAS. Deve ser R 	i	6.18%
	n	5.05%

33 26 (g)O deve ser R. 24 22 j wjzwARxEej RkSSj fje j sRezEeRj pRAtxE 21 AaAckE Ez veEo xESxE j fetAh xE AwReh tAS 21 khaezAS SEzAtAS A RkSSeA ljtlEtaRjk SkA jfEtSeoA sRetlesAhzEtaE tAS hetrAS xE fREtaE Em pt-br 14 63% tj hESaE E tj Skh EzwjRA zjSljk jlASejtAhzEtaE 12 57% AaAckE jkaRjS hkpARES tA lAzsAtrA sARA 10.73% xESaRkeR A etfRAESaRkakRA zeheaAR xA klRAteA E 7 81% whickEAR REZESSAS xE ARZAS jlexEtaAeS 6.53% Parece ok 6.18%

5.05%

41

	u	41
	q	33
• i deve ser O.	i	26
J deve ser O.	g	24
O wOzwARxEeO RkSSO fOe O sRezEeRO pRAtxE	j	22
AaAckE Ez veEo xESxE O fetAh xE AwReh tAS	e	21
khaezAS SEzAtAS A RkSSeA 10t1EtaR0k SkA	t	21
OfEtSeoA sRetlesAhzEtaE tAS hetrAS xE fREtaE	Em	pt-br.
tO hESaE E tO Skh EzwORA zOS10k OlASeOtAhzEtaE	a	14.63%
AaAckE OkaROS hkpARES tA lAzsAtrA sARA	e	12.57%
xESaRkeR A etfRAESaRkakRA zeheaAR xA klRAteA E	0	10.73%
whOckEAR REZESSAS xE ARZAS OlexEtaAeS	s	7.81%
Parece ok	r	6.53%
• Farece ok.	- i	6.18%
	n	5.05%

• e deve ser l.

O wOzwarxeIO RkSSO fOI O sRIZEIRO pRAtxE
AaAckE Ez vIEO xESXE O fItAh xE AwRIh tAS
khaIZAS SEZATAS A RKSSIA 10t1EtaROK SKA
OfEtSIOA sRITTISAHZETAE TAS HITTAS XE FRETAE
TO HESAE E TO SKH EZWORA ZOSIOK OLASIOTAHZETAE
AAACKE OKAROS HKPARES TA LAZSATTA SARA
XESARKIR A ITTRAESARKAKRA ZIHIAAR XA KIRATIA E
WHOCKEAR REZESSAS XE ARZAS OLIXETAAIS

Parece ok.

41 33 q 26 24 22 21 21 Em pt-br. 14 63% 12 57% 10.73% 7 81% 6.53% 6.18% 5.05%

	u	41
	q	33
a + d N	i	26
• t deve ser N.	g	24
O wOzwARxEIO RkSSO fOI O sRIZEIRO pRANxE	j	22
AaAckE Ez vIEo xESxE O fINAh xE AwRIh NAS	e	21
khaIzAS SEzANAS A RkSSIA 10N1ENaROk SkA	t	21
OfENSIoA sRINlIsAhzENaE NAS hINrAS xE fRENaE	Em	pt-br.
NO hESaE E NO Skh EzwORA zOSlOk OlASIONAhzENaE	a	14.63%
AaAckE OkaROS hkpARES NA lAzsANrA sARA	e	12.57%
xESaRkIR A INfRAESaRkakRA zIhIaAR xA klRANIA E	0	10.73%
whOckEAR REZESSAS xE ARZAS OllxENaAIS	S	7.81%
D 1	r	6.53%
Parece ok.	i	6.18%
	n	5.05%

O próximo seria k por D.

O wOzwarxeio RDSSO foi o srizeiro pranxe Aaacde ez vieo xesxe o finah xe awrih nas dhaizas sezanas a RDSSIA lonienarod sda ofensioa sriniisahzenae nas hinras xe frenae no hesae e no sdh ezwora zosiod olasionahzenae Aaacde odaros hdpares na lazsanra sara xesardir a infraesardadra zihiaar xa dirania e whocdear rezessas xe arzas olixenaais

O próximo seria k por D.

O wOzwarxEIO RDSSO fOI O sRIZEIRO pRANXE AaAcDE EZ VIEO XESXE O fINAh XE AWRIH NAS DHAIZAS SEZANAS A RDSSIA 10N1ENAROD SDA OFENSIOA SRIN1ISAHZENAE NAS HINTAS XE FRENAE NO HESAE E NO SDH EZWORA ZOSIOD OIASIONAHZENAE AAACDE ODAROS HDPARES NA 1AZSANTA SARA XESARDIR A INFRAESARDADRA ZIHIAAR XA DIRANIA E WHOCDEAR REZESSAS XE ARZAS OIIXENAAIS

• Ficou estranho, olhe o "RDSSO". Deve ser U.

O próximo seria k por D.

O wOzwarxEIO RDSSO fOI O SRIZEIRO PRANXE AaAcDE EZ VIEO XESXE O fINAh XE AWRIH NAS DHAIZAS SEZANAS A RDSSIA 10N1ENAROD SDA OfENSIOA SRIN1ISAHZENAE NAS HINTAS XE FRENAE NO HESAE E NO SDH EZWORA ZOSIOD O1ASIONAHZENAE AAACDE ODAROS HDPARES NA 1AZSANTA SARA XESARDIR A INFRAESARDADRA ZIHIAAR XA D1RANIA E WHOCDEAR REZESSAS XE ARZAS O1IXENAAIS

- Ficou estranho, olhe o "RDSSO". Deve ser U.
- Daqui pra frente começa a falhar um pouco.

• (k)D por U.

O wOzwarxeio Russo foi o srizeiro pranxe Aaacue ez vieo xesxe o finah xe awrih nas uhaizas sezanas a Russia lonienarou sua ofensioa sriniisahzenae nas hinras xe frenae no hesae e no suh ezwora zosiou olasionahzenae Aaacue Ouaros hupares na lazsanra sara xesaruir a infraesaruaura zihiaar xa ulrania e whocuear rezessas xe arzas olixenaais

• (k)D por U.

O wOzwarxEIO RUSSO fOI O sRIZEIRO pRANXE AAACUE EZ VIEO XESXE O fINAh XE AWRIH NAS UHAIZAS SEZANAS A RUSSIA 10N1ENAROU SUA OFENSIOA SRIN1ISAHZENAE NAS HINTAS XE FRENAE NO HESAE E NO SUH EZWORA ZOSIOU O1ASIONAHZENAE AAACUE OUAROS HUPARES NA 1AZSANTA SARA XESARUIR A INFRAESARUAURA ZIHIAAR XA U1RANIA E WHOCUEAR REZESSAS XE ARZAS O1IXENAAIS

REzESSAS deve ser REMESSAS.

• (k) D por U.

O wOzwarxEIO RUSSO fOI O SRIZEIRO PRANXE AAACUE EZ VIEO XESXE O fINAh XE AWRIH NAS UHAIZAS SEZANAS A RUSSIA 10N1ENAROU SUA OFENSIOA SRIN1ISAHZENAE NAS HINTAS XE FRENAE NO HESAE E NO SUH EZWORA ZOSIOU O1ASIONAHZENAE AAACUE OUAROS HUPARES NA 1AZSANTA SARA XESARUIR A INFRAESARUAURA ZIHIAAR XA U1RANIA E WHOCUEAR REZESSAS XE ARZAS O1IXENAAIS

- REzESSAS deve ser REMESSAS.
- Trocar z por M.

z por M.

O wOMWARXEIO RUSSO fOI O SRIMEIRO PRANXE AAACUE EM VIEO XESXE O fINAh XE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA SRINIISAHMENAE NAS HINTAS XE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMSANTA SARA XESARUIR A INFRAESARUAURA MIHIAAR XA UIRANIA E WHOCUEAR REMESSAS XE ARMAS OIIXENAAIS

z por M.

O wOMWARXEIO RUSSO fOI O SRIMEIRO PRANXE AAACUE EM VIEO XESXE O fINAh XE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA SRINIISAHMENAE NAS HINTAS XE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMSANTA SARA XESARUIR A INFRAESARUAURA MIHIAAR XA UIRANIA E WHOCUEAR REMESSAS XE ARMAS OIIXENAAIS

tem xE, xA..

z por M.

O wOMWARXEIO RUSSO fOI O SRIMEIRO PRANXE AAACUE EM VIEO XESXE O fINAH XE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA SRIN1ISAHMENAE NAS HINTAS XE FRENAE NO HESAE E NO SUH EMWORA MOSIOU O1ASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMSANTA SARA XESARUIR A INFRAESARUAURA MIHIAAR XA U1RANIA E WHOCUEAR REMESSAS XE ARMAS O1IXENAAIS

- tem xE, xA..
- x deve ser D

• x por D.

O wOMWARDEIO RUSSO fOI O SRIMEIRO PRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA SRINIISAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMSANTA SARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OIIDENAAIS

x por D.

O wOMWARDEIO RUSSO fOI O SRIMEIRO PRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA SRIN1ISAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMSANTA SARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OIIDENAAIS

sRIMEIRO deve ser PRIMEIRO

x por D.

O wOMWARDEIO RUSSO fOI O SRIMEIRO PRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA SRIN1ISAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMSANTA SARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OIIDENAAIS

- sRIMEIRO deve ser PRIMEIRO
- s deve ser P

• s por P.

O wOMWARDEIO RUSSO fOI O PRIMEIRO PRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRINIIPAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMPANTA PARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OIIDENAAIS

s por P.

O wOMWARDEIO RUSSO fOI O PRIMEIRO PRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRINIIPAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMPANTA PARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OIIDENAAIS

pRANDE deve ser GRANDE

• s por P.

O wOMWARDEIO RUSSO fOI O PRIMEIRO PRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRINIIPAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUPARES NA 1AMPANTA PARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OLIDENAAIS

- pRANDE deve ser GRANDE
- p deve ser G

p por G.

O wOMWARDEIO RUSSO fOI O PRIMEIRO GRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRINIIPAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUGARES NA 1AMPANTA PARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OIIDENAAIS

p por G.

O wOMWARDEIO RUSSO fOI O PRIMEIRO GRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRINIIPAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUGARES NA 1AMPANTA PARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OIIDENAAIS

hUGARES deve ser LUGARES

p por G.

O wOMWARDEIO RUSSO fOI O PRIMEIRO GRANDE AAACUE EM VIEO DESDE O fINAH DE AWRIH NAS UHAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRINIIPAHMENAE NAS HINTAS DE FRENAE NO HESAE E NO SUH EMWORA MOSIOU OIASIONAHMENAE AAACUE OUAROS HUGARES NA 1AMPANTA PARA DESARUIR A INFRAESARUAURA MIHIAAR DA UIRANIA E WHOCUEAR REMESSAS DE ARMAS OIIDENAAIS

- hUGARES deve ser LUGARES
- h deve ser L

• h por L.

O wOMWARDEIO RUSSO fOI O PRIMEIRO GRANDE AAACUE EM VIEO DESDE O fINAL DE AWRIL NAS ULAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRIN1IPALMENAE NAS LINYAS DE FRENAE NO LESAE E NO SUL EMWORA MOSIOU O1ASIONALMENAE AAACUE OUAROS LUGARES NA 1AMPANYA PARA DESARUIR A INFRAESARUAURA MILIAAR DA U1RANIA E WLOCUEAR REMESSAS DE ARMAS O11DENAAIS

h por L.

O wOMWARDEIO RUSSO fOI O PRIMEIRO GRANDE AAACUE EM VIEO DESDE O fINAL DE AWRIL NAS ULAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRIN1IPALMENAE NAS LINYAS DE FRENAE NO LESAE E NO SUL EMWORA MOSIOU O1ASIONALMENAE AAACUE OUAROS LUGARES NA 1AMPANYA PARA DESARUIR A INFRAESARUAURA MILIAAR DA U1RANIA E WLOCUEAR REMESSAS DE ARMAS O11DENAAIS

INFRAESaRUaURA deve ser INFRAESTRUTURA

h por L.

O wOMWARDEIO RUSSO fOI O PRIMEIRO GRANDE AAACUE EM VIEO DESDE O fINAL DE AWRIL NAS ULAIMAS SEMANAS A RUSSIA 10N1ENAROU SUA OFENSIOA PRIN1IPALMENAE NAS LINYAS DE FRENAE NO LESAE E NO SUL EMWORA MOSIOU O1ASIONALMENAE AAACUE OUAROS LUGARES NA 1AMPANYA PARA DESARUIR A INFRAESARUAURA MILIAAR DA U1RANIA E WLOCUEAR REMESSAS DE ARMAS O11DENAAIS

- INFRAESaRUaURA deve ser INFRAESTRUTURA
- f deve ser F mesmo, e a deve ser T

• f por F, a por T

O womwardelo russo foi o primeiro grande atacue em vieo desde o final de awril nas ultimas semanas a russia lonientrou sua ofensioa priniipalmente nas linras de frente no leste e no sul emwora moslou olasionalmente atacue outros lugares na lampanra para destruir a infraestrutura militar da ulrania e wlocuear remessas de armas olidentais

• f por F, a por T

O wOMWARDEIO RUSSO fOI O PRIMEIRO GRANDE ATACUE EM VIEO DESDE O fINAL DE AWRIL NAS ULTIMAS SEMANAS A RUSSIA IONIENTROU SUA OFENSIOA PRINIIPALMENTE NAS LINYAS DE FRENTE NO LESTE E NO SUL EMWORA MOSIOU OIASIONALMENTE ATACUE OUTROS LUGARES NA IAMPANYA PARA DESTRUIR A INFRAESTRUTURA MILITAR DA UIRANIA E WLOCUEAR REMESSAS DE ARMAS OIIDENTAIS

OIIDENTAIS deve ser OCIDENTAIS

• f por F, a por T

O wOMWARDEIO RUSSO fOI O PRIMEIRO GRANDE ATACUE EM VIEO DESDE O fINAL DE AWRIL NAS ULTIMAS SEMANAS A RUSSIA IONIENTROU SUA OFENSIOA PRINIIPALMENTE NAS LINYAS DE FRENTE NO LESTE E NO SUL EMWORA MOSIOU OIASIONALMENTE ATACUE OUTROS LUGARES NA IAMPANYA PARA DESTRUIR A INFRAESTRUTURA MILITAR DA UIRANIA E WLOCUEAR REMESSAS DE ARMAS OIIDENTAIS

- OIIDENTAIS deve ser OCIDENTAIS
- I deve ser C. E assim por diante.

terminando

O BOMBARDEIO RUSSO FOI O PRIMEIRO GRANDE ATAQUE EM KIEV DESDE O FINAL DE ABRIL NAS ULTIMAS SEMANAS A RUSSIA CONCENTROU SUA OFENSIVA PRINCIPALMENTE NAS LINHAS DE FRENTE NO LESTE E NO SUL EMBORA MOSCOU OCASIONALMENTE ATAQUE OUTROS LUGARES NA CAMPANHA PARA DESTRUIR A INFRAESTRUTURA MILITAR DA UCRANIA E BLOQUEAR REMESSAS DE ARMAS OCIDENTAIS

terminando

O BOMBARDEIO RUSSO FOI O PRIMEIRO GRANDE ATAQUE EM KIEV DESDE O FINAL DE ABRIL NAS ULTIMAS SEMANAS A RUSSIA CONCENTROU SUA OFENSIVA PRINCIPALMENTE NAS LINHAS DE FRENTE NO LESTE E NO SUL EMBORA MOSCOU OCASIONALMENTE ATAQUE OUTROS LUGARES NA CAMPANHA PARA DESTRUIR A INFRAESTRUTURA MILITAR DA UCRANIA E BLOQUEAR REMESSAS DE ARMAS OCIDENTAIS

• Note que não é preciso muito esforço.

terminando

O BOMBARDEIO RUSSO FOI O PRIMEIRO GRANDE ATAQUE EM KIEV DESDE O FINAL DE ABRIL NAS ULTIMAS SEMANAS A RUSSIA CONCENTROU SUA OFENSIVA PRINCIPALMENTE NAS LINHAS DE FRENTE NO LESTE E NO SUL EMBORA MOSCOU OCASIONALMENTE ATAQUE OUTROS LUGARES NA CAMPANHA PARA DESTRUIR A INFRAESTRUTURA MILITAR DA UCRANIA E BLOQUEAR REMESSAS DE ARMAS OCIDENTAIS

- Note que não é preciso muito esforço.
- Mesmo tendo 26! chaves.

• Além disso, suponha que você vai encriptar o número do cartão de crédito trocando os dígitos de 0 a 9.

- Além disso, suponha que você vai encriptar o número do cartão de crédito trocando os dígitos de 0 a 9.
- Nesse caso seriam apenas 10! chaves possíveis, ou 3.628.800.

- Além disso, suponha que você vai encriptar o número do cartão de crédito trocando os dígitos de 0 a 9.
- Nesse caso seriam apenas 10! chaves possíveis, ou 3.628.800.
- Que é possível simplesmente testar todas as combinações. Em particular se Maurício tiver roubado o número encriptado de vários cartões.

Cifras de Chave Única

Cifras de Chave Única

Uma criptografia mais robusta que a cifra de substituição simples.
 Envolve a utilização de uma chave maior, e da operação

 (XOR, ou exclusivo).

$$0\oplus 0=0 \tag{1}$$

$$0 \oplus 1 = 1 \tag{2}$$

$$1 \oplus 0 = 1 \tag{3}$$

$$1 \oplus 1 = 0 \tag{4}$$

 A cifra de chave única se baseia no fato de que se ao bit x é aplicado um XOR com um bit y duas vezes, ele volta a ser x, ou seja,

$$(x \oplus y) \oplus y = x$$

 A cifra de chave única se baseia no fato de que se ao bit x é aplicado um XOR com um bit y duas vezes, ele volta a ser x, ou seja,

$$(x \oplus y) \oplus y = x$$

 Você pode entender o XOR como: se y for 0 o resultado é o x, se y for 1 o resultado é o inverso de x.

n u d

n	u	d	е
110	117	100	101

	n	u	d	e
	110	117	100	101
Μ	01101110	01110101	01100100	01100101

	n	u	d	e
	110	117	100	101
Μ	01101110	01110101	01100100	01100101
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011

	n	ш	d	е
	110	117	100	101
Μ	01101110	01110101	01100100	01100101
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011
С	01011011	01010101	10111011	00001110

	n	u	d	е
	110	117	100	101
М	01101110	01110101	01100100	01100101
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011
С	01011011	01010101	10111011	00001110

	n	u	d	е
	110	117	100	101
Μ	01101110	01110101	01100100	01100101
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011
С	01011011	01010101	10111011	00001110
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011

	n	u	d	e
	110	117	100	101
Μ	01101110	01110101	01100100	01100101
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011
C	01011011	01010101	10111011	00001110
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011
Μ	01101110	01110101	01100100	01100101

	n	u	d	е
	110	117	100	101
Μ	01101110	01110101	01100100	01100101
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011
C	01011011	01010101	10111011	00001110
	\oplus	\oplus	\oplus	\oplus
chave	00110101	00100000	11011111	01101011
Μ	01101110	01110101	01100100	01100101
	n	u	d	е

• Se todos os bits da chave forem gerados aleatoriamente.

- Se todos os bits da chave forem gerados aleatoriamente.
- Cada bit de C tem 50% de chance de ser igual ao bit original e 50% de ser o inverso.
- Ou seja, o bit de *C* não te dará nenhuma informação sobre *M*, ou sobre a chave.

- Se todos os bits da chave forem gerados aleatoriamente.
- Cada bit de C tem 50% de chance de ser igual ao bit original e 50% de ser o inverso.
- Ou seja, o bit de C não te dará nenhuma informação sobre M, ou sobre a chave.
- Portanto podemos considerar que é uma criptografia robusta nesse sentido, entretanto...

• Se M exige b bits, então a chave precisa ter b bits.

- Se M exige b bits, então a chave precisa ter b bits.
- Você só pode usar a chave uma única vez:
 - ▶ Suponha que Maurício obtenha 2 textos cifrados C_1 e C_2 .

- Se M exige b bits, então a chave precisa ter b bits.
- Você só pode usar a chave uma única vez:
 - ▶ Suponha que Maurício obtenha 2 textos cifrados C_1 e C_2 .
 - Apesar de não ter a chave Maurício faz

$$C_1 \oplus C_2$$
 (5)

$$(M_1 \oplus chave) \oplus (M_2 \oplus chave)$$
 (6)

$$M_1 \oplus M_2$$
 (7)

- Se M exige b bits, então a chave precisa ter b bits.
- Você só pode usar a chave uma única vez:
 - ▶ Suponha que Maurício obtenha 2 textos cifrados C_1 e C_2 .
 - Apesar de não ter a chave Maurício faz

$$C_1 \oplus C_2$$
 (5)

$$(M_1 \oplus chave) \oplus (M_2 \oplus chave)$$
 (6)

$$M_1 \oplus M_2$$
 (7)

 Ou seja, Maurício obtém a informação dos bits em que as mensagens originais era iguais (inclusive se ela for toda igual)

Cifra de bloco e encadeamento

Cifra de bloco e encadeamento

 Quanto a mensagem a ser passada é muito grande, precisar de uma chave igualmente grande pode ser ruim.

Cifra de bloco e encadeamento

- Quanto a mensagem a ser passada é muito grande, precisar de uma chave igualmente grande pode ser ruim.
- Podemos usar uma chave mais curta e desmembrar o *M* em vários blocos, aplicando a chave em cada bloco.

• Digamos que temos uma função E() que usa uma certa *chave* e consegue encriptar um bloco de tamanho b.

- Digamos que temos uma função E() que usa uma certa chave e consegue encriptar um bloco de tamanho b.
- Quebramos nosso texto comum M em blocos t_1, t_2, \ldots, t_l , cada um com tamanho b.

- Digamos que temos uma função E() que usa uma certa chave e consegue encriptar um bloco de tamanho b.
- Quebramos nosso texto comum M em blocos t_1, t_2, \ldots, t_l , cada um com tamanho b.
- Poderíamos agora encriptar cada bloco com E(), porém isso ainda daria informação à Maurício sobre quais blocos de M são iguais.

- Digamos que temos uma função E() que usa uma certa chave e consegue encriptar um bloco de tamanho b.
- Quebramos nosso texto comum M em blocos t_1, t_2, \ldots, t_l , cada um com tamanho b.
- Poderíamos agora encriptar cada bloco com E(), porém isso ainda daria informação à Maurício sobre quais blocos de M são iguais.
- Então aplicamos a técnica de encadeamento.

$$c_1 = E(t_1)$$
 (8)
 $c_2 = E(t_2 \oplus c_1)$ (9)
 $c_3 = E(t_3 \oplus c_2)$ (10)
... (11)
 $c_l = E(t_l \oplus c_{l-1})$ (12)

$$c_1 = E(t_1) \tag{8}$$

$$c_2 = E(t_2 \oplus c_1) \tag{9}$$

$$c_3 = E(t_3 \oplus c_2) \tag{10}$$

$$c_l = E(t_l \oplus c_{l-1}) \tag{12}$$

Maurício agora não consegue ver quais blocos são iguais, entretanto se a mensagem for toda igual, a sequencia de blocos também será. Vamos consertar isso com um **vetor de inicialização** c_0 gerado aleatoriamente.

$$c_0 = random();$$
 (13)
 $c_1 = E(t_1 \oplus c_0)$ (14)
 $c_2 = E(t_2 \oplus c_1)$ (15)
 $c_3 = E(t_3 \oplus c_2)$ (16)
... (17)
 $c_l = E(t_l \oplus c_{l-1})$ (18)

• Bob por sua vez, tem a função D e chave capaz de decifrar um bloco de tamanho b e recebe os blocos $c_0, c_1, c_2, \ldots, c_l$.

$$t_1 = D(c_1) \oplus c_0 = (t_1 \oplus c_0) \oplus c_0$$
 (19)

• Bob por sua vez, tem a função D e chave capaz de decifrar um bloco de tamanho b e recebe os blocos $c_0, c_1, c_2, \ldots, c_l$.

$$t_1 = D(c_1) \oplus c_0 = (t_1 \oplus c_0) \oplus c_0$$
 (19)
 $t_2 = D(c_2) \oplus c_1$ (20)
 $t_3 = D(c_2) \oplus c_2$ (21)
... (22)
 $t_l = D(c_l) \oplus c_{l-1}$ (23)

• Um exemplo desse sistema é o AES (*Advanced Encryption Standard*) que faz algo mais elaborado que um XOR, e usa chaves de 128, 192 ou 256 bits para encriptar blocos de 128 bits.

- Um exemplo desse sistema é o AES (Advanced Encryption Standard) que faz algo mais elaborado que um XOR, e usa chaves de 128, 192 ou 256 bits para encriptar blocos de 128 bits.
- Apesar de eficiente esses sistemas tem um grande desafio. Ambas as partes precisam concordar com a *chave* a priori.

- Um exemplo desse sistema é o AES (Advanced Encryption Standard) que faz algo mais elaborado que um XOR, e usa chaves de 128, 192 ou 256 bits para encriptar blocos de 128 bits.
- Apesar de eficiente esses sistemas tem um grande desafio. Ambas as partes precisam concordar com a chave a priori.
- Seria ineficiente, que todo site que frequentamos/compramos exigisse que fossemos num lugar físico pegar a chave em um pendrive.

• Para Alice e Bob se comuniquem eles precisam conhecer a chave que cifra e decifra o texto, certo?

• Para Alice e Bob se comuniquem eles precisam conhecer a chave que cifra e decifra o texto, certo? Errado.

Criptografia de Chave Pública

- Para Alice e Bob se comuniquem eles precisam conhecer a chave que cifra e decifra o texto, certo? Errado.
- Na Criptografia de Chave Pública cada participante tem duas chaves.

Criptografia de Chave Pública

- Para Alice e Bob se comuniquem eles precisam conhecer a chave que cifra e decifra o texto, certo? Errado.
- Na Criptografia de Chave Pública cada participante tem duas chaves.
- Uma chave pública que todo mundo sabe.

Criptografia de Chave Pública

- Para Alice e Bob se comuniquem eles precisam conhecer a chave que cifra e decifra o texto, certo? Errado.
- Na Criptografia de Chave Pública cada participante tem duas chaves.
- Uma chave pública que todo mundo sabe.
- Uma chave secreta que que só ele conhece.

 Bob tem a chave pública P que todos conhecem, inclusive Maurício.

- Bob tem a chave pública P que todos conhecem, inclusive Maurício.
- E tem uma chave secreta S.

• As chaves têm a seguinte relação:

$$M = F_S(F_P(M))$$

• As chaves têm a seguinte relação:

$$M = F_S(F_P(M))$$

• Para que isso funcione dois textos comuns diferentes M_1 e M_2 não podem ter o mesmo resultado C quando aplicado em F_P .

• As chaves têm a seguinte relação:

$$M = F_S(F_P(M))$$

- Para que isso funcione dois textos comuns diferentes M_1 e M_2 não podem ter o mesmo resultado C quando aplicado em F_P .
- Nesse caso $F_S(C)$ não saberia se o texto original é M_1 ou M_2 ,

• Por outro lado é permitido (e até recomendável) que um mesmo texto M tenha mais de uma representação cifrada.

- Por outro lado é permitido (e até recomendável) que um mesmo texto M tenha mais de uma representação cifrada.
- Esse tipo de sistema funciona melhor se a chave for maior que o bloco a ser cifrado (que a Imagem seja maior que o Domínio).

- Por outro lado é permitido (e até recomendável) que um mesmo texto M tenha mais de uma representação cifrada.
- Esse tipo de sistema funciona melhor se a chave for maior que o bloco a ser cifrado (que a Imagem seja maior que o Domínio).
- Em particular podemos colocar algum recheio aleatório na informação a ser cifrada, desde que $F_S()$ esteja preparada para lidar com isso.

O sistema de criptografia RSA se baseia na diferença entre

O sistema de criptografia RSA se baseia na diferença entre

• a facilidade de encontrar números primos grandes

O sistema de criptografia RSA se baseia na diferença entre

- a facilidade de encontrar números primos grandes
- e a dificuldade de fatorar o produto de números primos grandes.

Ron Rivest

Adi Shamir

Leonard Adleman

O RSA depende de algumas facetas da Teoria dos Números, uma delas é a aritmética modular.

O RSA depende de algumas facetas da Teoria dos Números, uma delas é a **aritmética modular**.

• Na aritmética modular escolhemos um inteiro positivo n e sempre que chegamos a n imediatamente voltamos a 0.

O RSA depende de algumas facetas da Teoria dos Números, uma delas é a **aritmética modular**.

- Na aritmética modular escolhemos um inteiro positivo n e sempre que chegamos a n imediatamente voltamos a 0.
- É como aritmética em um relógio, sempre que chega a 12, voltamos para 0. Se você vai dormir as 11 e dorme 8 horas, você acorda as 7.

• É como aritmética com inteiros, mas sempre dividimos por *n* e tomamos o resto. Por exemplo, em uma aritmética módulo 5 os únicos valores possíveis são 0, 1, 2, 3 e 4.

- É como aritmética com inteiros, mas sempre dividimos por *n* e tomamos o resto. Por exemplo, em uma aritmética módulo 5 os únicos valores possíveis são 0, 1, 2, 3 e 4.
- Em módulo 5:

$$\mathbf{3}+\mathbf{4}\equiv\mathbf{2}$$

- É como aritmética com inteiros, mas sempre dividimos por *n* e tomamos o resto. Por exemplo, em uma aritmética módulo 5 os únicos valores possíveis são 0, 1, 2, 3 e 4.
- Em módulo 5:

$$\mathbf{3}+\mathbf{4}\equiv\mathbf{2}$$

• Pois 7 dividido por 5 tem resto 2. Definimos um operador mod para essa operação. de forma que 7 mod 5=2

• $(a+b) \mod n = ((a \mod n) + (b \mod n)) \mod n$,

- $(a+b) \mod n = ((a \mod n) + (b \mod n)) \mod n$,
- $ab \mod n = ((a \mod n)(b \mod n)) \mod n$,

- $(a+b) \mod n = ((a \mod n) + (b \mod n)) \mod n$,
- $ab \mod n = ((a \mod n)(b \mod n)) \mod n$,
- $a^b \mod n = (a \mod n)^b \mod n$.

• Na matemática o **inverso multiplicativo** de um número x é um número y tal que $x \cdot y = 1$.

- Na matemática o inverso multiplicativo de um número x é um número y tal que $x \cdot y = 1$.
- Na aritmética modular temos uma definição parecida. O inverso multiplicativo de um número x em modulo n é um inteiro y tal que

 $x \cdot y \mod n \equiv 1 \mod n$

- Na matemática o inverso multiplicativo de um número x é um número y tal que $x \cdot y = 1$.
- Na aritmética modular temos uma definição parecida. O inverso multiplicativo de um número x em modulo n é um inteiro y tal que

$$x \cdot y \mod n \equiv 1 \mod n$$

• Por exemplo o inverso multiplicativo em módulo 5 de 3 é 2 pois

$$3 \cdot 2 \mod 5 = 6 \mod 5 \equiv 1 \mod 5$$

- Note que se x e n tem fatores em comum por exemplo x=2 e n=6 não existe inverso multiplicativo.
 - $2 * 1 \mod 6 = 2 \mod 6$
 - $2 * 2 \mod 6 = 4 \mod 6$
 - $2*3 \mod 6 \equiv 6 \mod 6 \equiv 0 \mod 6$
 - $2*4 \mod 6 \equiv 8 \mod 6 \equiv 2 \mod 6$
 - $2*5 \mod 6 = 10 \mod 6 \equiv 4 \mod 6$

• Note que se x e n tem fatores em comum por exemplo x=2 e n=6 não existe inverso multiplicativo.

$$2 * 1 \mod 6 = 2 \mod 6$$

$$2 * 2 \mod 6 = 4 \mod 6$$

$$2*3 \mod 6 \equiv 6 \mod 6 \equiv 0 \mod 6$$

$$2 * 4 \mod 6 = 8 \mod 6 \equiv 2 \mod 6$$

$$2 * 5 \mod 6 = 10 \mod 6 \equiv 4 \mod 6$$

• Mas se x e n são primos relativos o inverso multiplicativo existe.

• Seleciona aleatoriamente dois números primos grandes (de pelo menos 1024 bits) distintos p e q.

- Seleciona aleatoriamente dois números primos grandes (de pelo menos 1024 bits) distintos p e q.
- ② Calcule n = pq (Esse número tem pelo menos 2048 bits ou 618 dígitos decimais.)

- Seleciona aleatoriamente dois números primos grandes (de pelo menos 1024 bits) distintos p e q.
- ② Calcule n = pq (Esse número tem pelo menos 2048 bits ou 618 dígitos decimais.)
- **3** Calcule r = (p-1)(q-1) que é quase tão grande quando n

Seleciona um inteiro ímpar pequeno e tal que e seja relativamente primo de r, ou seja, o único divisor comum é 1. Qualquer inteiro pequeno serve.

- Seleciona um inteiro ímpar pequeno e tal que e seja relativamente primo de r, ou seja, o único divisor comum é 1. Qualquer inteiro pequeno serve.
- Calcule d como o inverso multiplicativo de e, módulo r. Isto é ed mod r deve ser igual a 1.

- Seleciona um inteiro ímpar pequeno e tal que e seja relativamente primo de r, ou seja, o único divisor comum é 1. Qualquer inteiro pequeno serve.
- Calcule d como o inverso multiplicativo de e, módulo r. Isto é ed mod r deve ser igual a 1.
- **1** Divulgue o par P = (e, n) como a chave pública.

- Seleciona um inteiro ímpar pequeno e tal que e seja relativamente primo de r, ou seja, o único divisor comum é 1. Qualquer inteiro pequeno serve.
- Calcule d como o inverso multiplicativo de e, módulo r. Isto é ed mod r deve ser igual a 1.
- **1** Divulgue o par P = (e, n) como a chave pública.
- Mantenha S = (d, n) em segredo como a chave secreta.

• Para criptografar uma mensagem M fazemos

$$F_P(M) = M^e \pmod{n}$$

• Para criptografar uma mensagem M fazemos

$$F_P(M) = M^e \pmod{n}$$

• Para transformar um texto cifrado C:

$$F_S(C) = C^d \pmod{n}$$

• Bob sorteia p=17 e q=29 (Na prática sorteia números de no mínimo 1024 bits)

- Bob sorteia p=17 e q=29 (Na prática sorteia números de no mínimo 1024 bits)
- Calcula n = pq = 493

- Bob sorteia p=17 e q=29 (Na prática sorteia números de no mínimo 1024 bits)
- Calcula n = pq = 493
- Calcula r = (p-1)(q-1) = 448

- Bob sorteia p=17 e q=29 (Na prática sorteia números de no mínimo 1024 bits)
- Calcula n = pq = 493
- Calcula r = (p-1)(q-1) = 448
- Seleciona e=5 que é um primo relativo de 448

- Bob sorteia p=17 e q=29 (Na prática sorteia números de no mínimo 1024 bits)
- Calcula n = pq = 493
- Calcula r = (p-1)(q-1) = 448
- Seleciona e = 5 que é um primo relativo de 448
- Calcula d = 269, já que $5 \cdot 269 \mod r = 1345 \mod r = 1$

- Bob sorteia p=17 e q=29 (Na prática sorteia números de no mínimo 1024 bits)
- Calcula n = pq = 493
- Calcula r = (p-1)(q-1) = 448
- Seleciona e = 5 que é um primo relativo de 448
- Calcula d = 269, já que $5 \cdot 269 \mod r = 1345 \mod r = 1$
- Publica a chave P = (5,493)

- Bob sorteia p=17 e q=29 (Na prática sorteia números de no mínimo 1024 bits)
- Calcula n = pq = 493
- Calcula r = (p-1)(q-1) = 448
- Seleciona e = 5 que é um primo relativo de 448
- Calcula d = 269, já que $5 \cdot 269 \mod r = 1345 \mod r = 1$
- Publica a chave P = (5,493)
- Guarda com carinho a chave S = (269, 493)

• Alice quer enviar a mensagem 327

$$F_P(327) = 327^5 \mod 493$$
 (24)

Chaves de Bob
$$P = (5,493)$$
 e $S = (269,493)$

• Alice quer enviar a mensagem 327

$$F_P(327) = 327^5 \mod 493$$
 (24)
= 3.738.856.210.407 mod 493 (25)

Chaves de Bob
$$P = (5,493)$$
 e $S = (269,493)$

• Alice quer enviar a mensagem 327

$$F_P(327) = 327^5 \mod 493$$
 (24)
= 3.738.856.210.407 mod 493 (25)
= 259 (26)

• Na verdade Alice não precisa lidar com números astronômicos. (iclusive muito maiores que esse)

327 ⁵ mod 493	(27)
$327^2 \cdot 327^3 \mod 493$	(28)
$(327^2 \mod 493 \cdot 327^3 \mod 493) \mod 493$	(29)
(106929 mod $493 \cdot 327^3 \mod 493$) mod 493	(30)
(441 · 327³ mod 493) mod 493	(31)
(441 · 441 · 327 mod 493) mod 493	(32)
$78153 \mod 493 = 259$	(33)

ullet Bob então recebe a mensagem criptografada C=259. E decifra ela:

$$F_S(259) = 259^{269} \mod 493 =$$

ullet Bob então recebe a mensagem criptografada C=259. E decifra ela:

$$F_S(259) = 259^{269} \mod 493 = 327$$

• Bob então recebe a mensagem criptografada ${\it C}=259.$ E decifra ela:

$$F_S(259) = 259^{269} \mod 493 = 327$$

• Que de fato é a mensagem original de Alice!

Corretude do RSA

Mostrando que F_P e F_S são inversas uma da outra

- Para criptografar um texto M fazemos: $F_P(M) = M^e(\text{mod } n)$
- Para transformar um cifrado C: $F_S(C) = C^d(\text{mod}\,n)$

Corretude do RSA

Mostrando que F_P e F_S são inversas uma da outra

- Para criptografar um texto M fazemos: $F_P(M) = M^e(\text{mod } n)$
- Para transformar um cifrado C: $F_S(C) = C^d (\text{mod } n)$ O sistema RSA de fato é capaz de encriptar e decodificar mensagens

$$F_S(F_P(M)) = F_S(M^e(\bmod n))$$

$$= (M^e(\bmod n))^d(\bmod n)$$

$$= M^{ed}(\bmod n)$$

• Queremos mostrar então que

$$M^{ed}(\bmod n) = M \bmod n$$

e como M < n então

$$M \mod n = M$$

Queremos mostrar então que

$$M^{ed}(\bmod n) = M \bmod n$$

e como M < n então

$$M \mod n = M$$

• Começaremos mostrando que

$$M^{ed}(\operatorname{mod} p) = M(\operatorname{mod} p)$$

• Lembrando que r = (p-1)(q-1),

- Lembrando que r = (p-1)(q-1),
- e que e é um primo relativo de r,

- Lembrando que r = (p-1)(q-1),
- e que e é um primo relativo de r,
- e que d é um inverso multiplicativo de e em aritmética módulo r, o que equivale a dizer que existe um inteiro h tal que:

$$ed = 1 + h(p-1)(q-1)$$

ullet Seja $\mathbb{Z}_{m{p}}=\{0,1,\ldots,n-1\}$

- Seja $\mathbb{Z}_p = \{0, 1, \dots, n-1\}$
- Seja \mathbb{Z}_p^* o conjunto dos elementos de \mathbb{Z}_p que são primos relativos de p. Ou seja, se $a \in \mathbb{Z}_p^*$ então mdc(p,a) = 1.

- Seja $\mathbb{Z}_p = \{0, 1, \dots, n-1\}$
- Seja \mathbb{Z}_p^* o conjunto dos elementos de \mathbb{Z}_p que são primos relativos de p. Ou seja, se $a \in \mathbb{Z}_p^*$ então mdc(p,a) = 1.

Pequeno teorema de Fermat

Seja p um número primo e $a \in \mathbb{Z}_p^*$, então

$$a^{p-1} \equiv 1(\bmod p)$$

Considere a sequência $L=(a,2a,3a,\ldots,(p-1)a)$ de (p-1) múltiplos de a.

Considere a sequência $L=(a,2a,3a,\ldots,(p-1)a)$ de (p-1) múltiplos de a.

• Nenhum é múltiplo de p já que a e p são primos relativos. E para todo $ka \in L$, $k \le (p-1)$.

Considere a sequência $L=(a,2a,3a,\ldots,(p-1)a)$ de (p-1) múltiplos de a.

- Nenhum é múltiplo de p já que a e p são primos relativos. E para todo $ka \in L$, $k \le (p-1)$.
- Em L não tem 2 elementos congruentes em módulo p.

ullet Suponha por absurdo que exitem $k_1,k_2\in\{1,2,\ldots,p-1\}$ com $k_1
eq k_2$ tal que

$$ak_1 \mod p \equiv ak_2 \mod p$$
 (34)

• Suponha por absurdo que exitem $k_1, k_2 \in \{1, 2, \dots, p-1\}$ com $k_1 \neq k_2$ tal que

$$ak_1 \mod p \equiv ak_2 \mod p$$
 (34)

Seja a' o inverso multiplicativo de a.

$$a'ak_1 \mod p \equiv a'ak_2 \mod p$$
 (35)

$$k_1 \bmod p \equiv k_2 \bmod p \tag{36}$$

• Suponha por absurdo que exitem $k_1, k_2 \in \{1, 2, \dots, p-1\}$ com $k_1 \neq k_2$ tal que

$$ak_1 \mod p \equiv ak_2 \mod p$$
 (34)

Seja a' o inverso multiplicativo de a.

$$a'ak_1 \mod p \equiv a'ak_2 \mod p$$
 (35)

$$k_1 \bmod p \equiv k_2 \bmod p \tag{36}$$

Como k_1 e k_2 são menores que p

$$k_1 = k_2$$

• Suponha por absurdo que exitem $k_1, k_2 \in \{1, 2, \ldots, p-1\}$ com $k_1 \neq k_2$ tal que

$$ak_1 \mod p \equiv ak_2 \mod p$$
 (34)

Seja a' o inverso multiplicativo de a.

$$a'ak_1 \bmod p \equiv a'ak_2 \bmod p \tag{35}$$

$$k_1 \bmod p \equiv k_2 \bmod p \tag{36}$$

Como k_1 e k_2 são menores que p

$$k_1 = k_2(ABSURDO) (37)$$

Considere a sequência $L=(a,2a,3a,\ldots,(p-1)a)$ de (p-1) múltiplos de a.

- Nenhum é múltiplo de p já que a e p são primos relativos. E para todo $ka \in L$, $k \le (p-1)$.
- Em L não tem 2 elementos congruentes em módulo p.

Considere a sequência $L=(a,2a,3a,\ldots,(p-1)a)$ de (p-1) múltiplos de a.

- Nenhum é múltiplo de p já que a e p são primos relativos. E para todo $ka \in L$, $k \le (p-1)$.
- Em L não tem 2 elementos congruentes em módulo p.
- ullet Cada $I\in L$ então é congruente a $\{1,2,\ldots,p-1\}$

$$a \cdot 2a \dots (p-1)a \equiv 1 \cdot 2 \dots (p-1) \pmod{p} \tag{38}$$

$$a^{p-1}.(p-1)! \equiv (p-1)! (\bmod p) \tag{39}$$

$$a^{p-1} \equiv 1(\bmod p) \tag{40}$$

 $M^{ed}(\bmod p)$

 $M^{ed} (\bmod p)$ $= (M \bmod p)^{ed} \bmod p$

```
M^{ed} (\bmod p)
= (M \bmod p)^{ed} \bmod p
= (M \bmod p)^{1+h(p-1)(q-1)} \bmod p
```

```
M^{ed}(\operatorname{mod} p)
= (M \operatorname{mod} p)^{ed} \operatorname{mod} p
= (M \operatorname{mod} p)^{1+h(p-1)(q-1)} \operatorname{mod} p
= (M \operatorname{mod} p) \cdot (M \operatorname{mod} p)^{h(p-1)(q-1)} \operatorname{mod} p
```

```
M^{ed} (\bmod p)
= (M \bmod p)^{ed} \bmod p

= (M \bmod p)^{1+h(p-1)(q-1)} \bmod p

= (M \bmod p) \cdot (M \bmod p)^{h(p-1)(q-1)} \bmod p

= (M \bmod p) \cdot ((M \bmod p)^{(p-1)})^{h(q-1)} \bmod p
```

```
M^{ed} (\bmod p)
= (M \bmod p)^{ed} \bmod p

= (M \bmod p)^{1+h(p-1)(q-1)} \bmod p

= (M \bmod p) \cdot (M \bmod p)^{h(p-1)(q-1)} \bmod p

= (M \bmod p) \cdot ((M \bmod p)^{(p-1)})^{h(q-1)} \bmod p

= (M \bmod p) \cdot ((M \bmod p)^{(p-1)})^{h(q-1)} \bmod p

= (M \bmod p) \cdot ((M \bmod p)^{(p-1)})^{h(q-1)} \bmod p
```

```
M^{ed} (\bmod p)
= (M \bmod p)^{ed} \bmod p

= (M \bmod p)^{1+h(p-1)(q-1)} \bmod p

= (M \bmod p) \cdot (M \bmod p)^{h(p-1)(q-1)} \bmod p

= (M \bmod p) \cdot ((M \bmod p)^{(p-1)})^{h(q-1)} \bmod p

= (M \bmod p) \cdot ((M \bmod p)^{(p-1)})^{h(q-1)} \bmod p

= (M \bmod p) \cdot ((M \bmod p)^{(p-1)} \bmod p)^{h(q-1)} \bmod p

= (M \bmod p) \cdot (1)^{h(q-1)} \bmod p
```

```
M^{ed} (\bmod p)
= (M \mod p)^{ed} \mod p
= (M \bmod p)^{1+h(p-1)(q-1)} \bmod p
= (M \bmod p) \cdot (M \bmod p)^{h(p-1)(q-1)} \bmod p
= (M \bmod p) \cdot ((M \bmod p)^{(p-1)})^{h(q-1)} \bmod p
= (M \bmod p) \cdot ((M \bmod p)^{(p-1)} \bmod p)^{h(q-1)} \bmod p
= (M \mod p) \cdot (1)^{h(q-1)} \mod p
= (M \mod p)
```

• Analogamente $M^{ed}(\operatorname{mod} q) = (M \operatorname{mod} q)$.

- Analogamente $M^{ed}(\text{mod }q) = (M \text{ mod } q)$.
- Além disso se

$$x \mod p = y \mod p$$

е

$$x \mod q = y \mod q$$

então

$$x \mod pq = y \mod pq$$

• Como $M^{ed}(\text{mod }p) = M \text{ mod } p$,

- Como $M^{ed}(\text{mod }p) = M \text{ mod } p$,
- ullet e $M^{ed} \mod q = M \mod q$

- Como $M^{ed}(\text{mod }p) = M \text{ mod } p$,
- ullet e $M^{ed} \mod q = M \mod q$
- então

$$M^{ed}(\operatorname{mod} pq) = M \operatorname{mod} pq$$

- Como $M^{ed}(\text{mod }p) = M \text{ mod } p$,
- ullet e M^{ed} mod q = M mod q
- então

$$M^{ed}(\operatorname{mod} pq) = M \operatorname{mod} pq$$

- Como pq = n
- então

$$M^{ed}(\bmod n) = M \bmod n$$

• e portanto a chave secreta de Bob decifra *C*

• Além disso, talvez você tenha reparado que se Bob cifrar um texto comum com a sua chave secreta S = (d, n):

$$F_S(M) = M^d \pmod{n}$$

• Além disso, talvez você tenha reparado que se Bob cifrar um texto comum com a sua chave secreta S = (d, n):

$$F_S(M) = M^d \pmod{n}$$

• Alice pode decifra-la com a chave pública.

$$F_P(M^d(\operatorname{mod} n)) = M^{de}(\operatorname{mod} n) = M^{ed}(\operatorname{mod} n) = M$$

• Além disso, talvez você tenha reparado que se Bob cifrar um texto comum com a sua chave secreta S = (d, n):

$$F_S(M) = M^d \pmod{n}$$

Alice pode decifra-la com a chave pública.

$$F_P(M^d(\operatorname{mod} n)) = M^{de}(\operatorname{mod} n) = M^{ed}(\operatorname{mod} n) = M$$

 Isso n\(\tilde{a}\) tem muita utilidade se o objetivo era esconder \(M\) j\(\tilde{a}\) que todo mundo conhece \(P\). • Entretanto serve para Bob provar que foi ele quem escreveu M. Já que ninguém mais conseguiria cifrar M dessa forma.

- Entretanto serve para Bob provar que foi ele quem escreveu M. Já que ninguém mais conseguiria cifrar M dessa forma.
- Se Bob então enviar M e $F_S(M)$, Alice e quem mais quiser terá certeza que foi Bob que enviou a mensagem.

- Entretanto serve para Bob provar que foi ele quem escreveu M. Já que ninguém mais conseguiria cifrar M dessa forma.
- Se Bob então enviar M e $F_S(M)$, Alice e quem mais quiser terá certeza que foi Bob que enviou a mensagem.
- Além disso se Bob enviar M e $F_S(M)$, Alice terá certeza que a mensagem M não foi corrompida por exemplo.

• Note que Alice pode gerar as suas próprias chaves e Bob também poderá enviar mensagens cifradas que só ela poderá ler.

- Note que Alice pode gerar as suas próprias chaves e Bob também poderá enviar mensagens cifradas que só ela poderá ler.
- Além disso se toda a codificação e decodificação usando aritmética modular for pesado para a quantidade de informações que Alice e Bob querem trocar. Eles podem usar o RSA para trocar chaves simétricas que sejam mais rápidas de calcular.