

# EMC TEST REPORT for Intentional Radiator (Wi-Fi Function) No. 140401227SHA-001

Applicant : G-Lab GmbH

Schiffbaustrasse 10, 8005, Zurich, Switzerland

Factory: Hansong(Nanjing) Technology Ltd

8th Kangping Road, Jiangning Economy&Technology

Daniel . Those

Development Zone, Nanjing, 211106, China

Product Name : GENEVA

Product description : Amplified speaker

Type/Model: A010

TEST RESULT : PASS

#### **SUMMARY**

The equipment complies with the requirements according to the following standard(s):

**47CFR Part 15 (2013):** Radio Frequency Devices

**ANSI C63.4 (2009):** American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

**RSS-210 Issue 8 (December 2010):** Low-power Licence-exempt Radio communication Devices (All Frequency Bands): Category I Equipment

**RSS-Gen Issue 3 (December 2010):** General Requirements and Information for the Certification of Radio communication Equipment

Date of issue: Sep 09, 2014

Wade zhang

Prepared by: Reviewed by:

Wade Zhang (*Project Engineer*) Daniel Zhao (*Reviewer*)



# **Description of Test Facility**

Name: Intertek Testing Services Limited Shanghai

Address: Building 86, No. 1198 Qinzhou Rd., North, Shanghai 200233, P.R. China

FCC Registration Number: 236597

IC Assigned Code: 2042B-1

Name of contact: Jonny Jing

Tel: +86 21 61278271 Fax: +86 21 54262353





# Content

| SUMMARY                                                       |    |
|---------------------------------------------------------------|----|
| DESCRIPTION OF TEST FACILITY                                  | 2  |
| 1. GENERAL INFORMATION                                        |    |
| 1.1 Applicant Information                                     |    |
| 1.2 Identification of the EUT                                 | 4  |
| 1.3 Technical specification                                   |    |
| 1.4 Mode of operation during the test / Test peripherals used | 5  |
| 2. TEST SPECIFICATION                                         | 6  |
| 2.1 Instrument list                                           | 6  |
| 2.2 Test Standard                                             | 6  |
| 2.3 Test Summary                                              | 7  |
| 3. MINIMUM 6DB BANDWIDTH                                      | 8  |
| 3.1 Limit                                                     | 8  |
| 3.2 Test Configuration                                        | 8  |
| 3.3 Test Procedure and test setup                             | 8  |
| 3.4 Test Protocol                                             | 9  |
| 4. MAXIMUM PEAK OUTPUT POWER                                  | 13 |
| 4.1 Test limit                                                | 13 |
| 4.2 Test Configuration                                        |    |
| 4.3 Test procedure and test setup                             | 13 |
| 4.4 Test protocol                                             |    |
| 5. POWER SPECTRUM DENSITY                                     | 15 |
| 5.1 Test limit                                                | 15 |
| 5.2 Test Configuration                                        | 15 |
| 5.3 Test procedure and test setup                             | 15 |
| 5.4 Test Protocol                                             |    |
| 6. RADIATED EMISSION                                          | 20 |
| 6.1 Test limit                                                | 20 |
| 6.2 Test Configuration                                        | 20 |
| 6.3 Test procedure and test setup                             | 21 |
| 6.4 Test protocol                                             | 22 |
| 7. EMISSION OUTSIDE THE FREQUENCY BAND                        | 27 |
| 7.1 Limit                                                     | 27 |
| 7.2 Test Configuration                                        | 27 |
| 7.3 Test procedure and test setup                             | 27 |
| 7.4 Test protocol                                             |    |
| 8. POWER LINE CONDUCTED EMISSION                              | 41 |
| 8.1 Limit                                                     | 41 |
| 8.2 Test configuration                                        |    |
| 8.3 Test procedure and test set up                            |    |
| 8.4 Test protocol                                             | 43 |



#### 1. General Information

# 1.1 Applicant Information

Applicant : G-Lab GmbH

Schiffbaustrasse 10, 8005, Zurich, Switzerland

Name of contact : Frank Joosten

Tel: +41 43 205 2570

Fax : +41 43 205 2572

Factory: Hansong(Nanjing) Technology Ltd

8th Kangping Road, Jiangning Economy&Technology

Development Zone, Nanjing, 211106, China

#### 1.2 Identification of the EUT

Equipment : GENEVA

Product description : Amplified speaker

Trade name : GENEVA

Type/model : A010

FCC ID : ZXX-A010

IC: 10107A-A010



#### 1.3 Technical specification

Operation Frequency : 2412~2462 MHz

Band

Type of Modulation : CCK,BPSK,QPSK,DSSS,OFDM

EUT Modes of : 802.11b/g

Modulation

Channel Number : 11Channel

Gain of Antenna : 4.2dBi

Description of EUT: The EUT is a wireless device, and its support 802.11b/g mode.

Port identification : power port 1;

Audio In port 1.

Rating : AC100-240V, 50/60Hz, 60W, Class II apparatus

Declared :  $5^{\circ}\text{C} \sim 40^{\circ}\text{C}$ 

Temperature range

Category of EUT : Class B

EUT type : Table top Floor standing

Sample received date : 2014.04.16

Sample Identification : 0140416-04-001

No

Date of test : 2014.04.16~2014.06.13

#### 1.4 Mode of operation during the test / Test peripherals used

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

The lowest, middle and highest channel were tested as representatives. For 802.11b/g ---- lowest, 2412MHz; middle, 2437MHz; highest, 2462MHz.

The test setting software for 802.11b/g is offered by the manufactory.

The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases.

After this pre-scan, we choose the following table of the data rata as the worst case. 802.11b: 1Mbps; 802.11g: 11Mbps;

Test Peripherals:

PC: HP ProBook 6470b



# 2. Test Specification

# 2.1 Instrument list

|                       |                       |                   |              | T          | 1          |
|-----------------------|-----------------------|-------------------|--------------|------------|------------|
| Equipment             | Туре                  | Manu.             | Internal no. | Cal. Date  | Due date   |
| Test Receiver         | ESCS 30               | R&S               | EC 2107      | 2013-10-21 | 2014-10-20 |
| Test Receiver         | ESIB 26               | R&S               | EC 3045      | 2013-10-20 | 2014-10-19 |
| Test Receiver         | ESCI 7                | R&S               | EC4501       | 2013-12-29 | 2014-12-28 |
| Spectrum<br>Analyzer  | N9010                 | Agilent           | EC4890       | 2013-10-21 | 2014-10-20 |
| Spectrum<br>Analyzer  | E4446                 | Agilent           | /            | 2013-10-21 | 2014-10-20 |
| Power meter           | ML 2495A              | Anritsu           | EC 4895      | 2013-10-21 | 2014-10-20 |
| A.M.N.                | ESH2-Z5               | R&S               | EC 3119      | 2014-1-9   | 2015-1-8   |
| Bilog Antenna         | CBL 6112D             | TESEQ             | EC 4206      | 2014-5-15  | 2015-5-14  |
| Horn antenna          | HF 906                | R&S               | EC 3049      | 2014-5-12  | 2015-5-11  |
| Pre-amplifier         | Pre-amp 18            | R&S               | EC 3222      | 2014-4-11  | 2015-4-10  |
| Pre-amplifier         | Tpa0118-40            | R&S               | EC 4792-2    | 2014-4-11  | 2015-4-10  |
| Log-period antenna    | AT 1080               | AR                | EC 3044-7    | 2014-5-21  | 2015-5-20  |
| Biconical antenna     | 3109PX                | ETS               | EC3564       | 2013-8-25  | 2014-8-24  |
| Semi-anechoic chamber | -                     | Albatross project | EC 3048      | 2014-5-20  | 2015-5-19  |
| Shielded room         | -                     | Zhongyu           | EC 2838      | 2014-1-12  | 2015-1-9   |
| Shielded room         | -                     | Zhongyu           | EC 2839      | 2014-1-12  | 2015-1-9   |
| High Pass Filter      | WHKX 1.0/15G-<br>10SS | Wainwright        | EC4297-1     | 2014-2-1   | 2015-1-31  |
| High Pass Filter      | WHKX 2.8/18G-<br>12SS | Wainwright        | EC4297-2     | 2014-2-1   | 2015-1-31  |
| High Pass Filter      | WHKX 7.0/1.8G-<br>8SS | Wainwright        | EC4297-3     | 2014-2-1   | 2015-1-31  |
| Loop Antenna          | 9230-1                | Schwarzbeck       | 086814       | 2013-12-16 | 2014-12-15 |

#### 2.2 Test Standard

47CFR Part 15 (2013); ANSI C63.4 (2009); KDB 558074 (V03R02); RSS-210 Issue 8 (December 2010); RSS-Gen Issue 3 (December 2010).



# 2.3 Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

|                                     |                 | 1                               |        |
|-------------------------------------|-----------------|---------------------------------|--------|
| TEST ITEM                           | FCC REFERANCE   | IC REFERANCE                    | RESULT |
| Minimum 6dB Bandwidth               | 15.247(a)(2)    | RSS-210 Issue 8<br>Annex 8      | Pass   |
| Maximum peak output power           | 15.247(b)       | RSS-210 Issue 8<br>Annex 8      | Pass   |
| Power spectrum density              | 15.247(e)       | RSS-210 Issue 8<br>Annex 8      | Pass   |
| Radiated emission                   | 15.205 & 15.209 | RSS-210 Issue 8<br>Clause 2     | Pass   |
| Emission outside the frequency band | 15.247(d)       | RSS-210 Issue 8<br>Annex 8      | Pass   |
| Power line conducted emission       | 15.207          | RSS-Gen Issue 3<br>Clause 7.2.4 | Pass   |



#### 3. Minimum 6dB Bandwidth

Test result: **PASS** 

#### 3.1 Limit

For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

#### 3.2 Test Configuration



Antenna connector

#### 3.3 Test Procedure and test setup

The minimum 6dB bandwidth per FCC §15.247(a)(2) is measured using the Spectrum Analyzer according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v03r02" for compliance to FCC 47CFR 15.247 requirements (clause 8.2).

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW)  $\geq$  3RBW.
- c) Detector = Peak.
- d) Trace mode =  $\max$  hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.



# 3.4 Test Protocol

Temperature : 25°C Relative Humidity : 55 %

| Mode    | СН | Bandwidth<br>(MHz) | Limit<br>(MHz) |
|---------|----|--------------------|----------------|
|         | L  | 13.02              |                |
| 802.11b | M  | 13.02              | ≥0.5           |
|         | Н  | 13.02              |                |

# Channel L









Page 10 of 44





| Mode    | СН | Bandwidth<br>(MHz) | Limit<br>(MHz) |
|---------|----|--------------------|----------------|
|         | L  | 16.44              |                |
| 802.11g | M  | 16.44              | ≥0.5           |
|         | Н  | 16.44              |                |

# Channel L









Page 12 of 44



# 4. Maximum peak output power

Test result: **PASS** 

#### 4.1 Test limit

| For frequency hopping systems operating in the 2400-2483.5 MHz band employing a         | t  |
|-----------------------------------------------------------------------------------------|----|
| least 75 non-overlapping hopping channels, and all frequency hopping systems in the 572 | 25 |
| 5850 MHz band: 1 watt                                                                   |    |
| For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts        |    |
| For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and           |    |
| 5725-5850 MHz bands: 1 Watt.                                                            |    |

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

# **4.2 Test Configuration**



# 4.3 Test procedure and test setup

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v03r02" for compliance to FCC 47CFR 15.247 requirements (clause 9.1.2).



# 4.4 Test protocol

Temperature : 25°C Relative Humidity : 55 %

| Mode    | СН | Conducted Power (dBm) | Limit<br>(dBm) |
|---------|----|-----------------------|----------------|
|         | L  | 20.69                 |                |
| 802.11b | M  | 20.57                 | ≤30            |
|         | Н  | 20.66                 |                |
|         | L  | 24.91                 |                |
| 802.11g | M  | 24.66                 | ≤30            |
|         | Н  | 24.62                 |                |

The maximum EIRP of the EUT = 24.91dBm + 4.20dBi = 29.11dBm = 814.70mW which is lower than the EIRP limit of RSS-210.



# 5. Power spectrum density

Test result: **PASS** 

#### **5.1 Test limit**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

# **5.2 Test Configuration**



# 5.3 Test procedure and test setup

The power output per FCC § 15.247(e) was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v03r02" (clause 10.2) for compliance to FCC 47CFR 15.247 requirements.



#### **5.4 Test Protocol**

Temperature : 25°C Relative Humidity : 55 %

| Mode    | СН | Spectrum Density<br>(dBm/100kHz) | Limit<br>(dBm/3kHz) |
|---------|----|----------------------------------|---------------------|
|         | L  | 7.74                             |                     |
| 802.11b | M  | 7.78                             | ≤8.00               |
|         | Н  | 7.73                             |                     |

#### 802.11b Channel L



Date: 28.APR.2014 15:10:25









Date: 28.APR.2014 15:12:40

#### 802.11b Channel H



Date: 28.APR.2014 15:14:26





| Mode    | СН | Spectrum Density<br>(dBm/100kHz) | Limit<br>(dBm/3kHz) |
|---------|----|----------------------------------|---------------------|
|         | L  | 5.80                             |                     |
| 802.11g | M  | 5.68                             | ≤8.00               |
|         | Н  | 5.57                             |                     |

# 

Date: 28.APR.2014 15:17:41





Date: 28.APR.2014 15:19:29



Date: 28.APR.2014 15:21:10



# 6. Radiated emission

Test result: PASS

#### 6.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

| Frequency     | Field Strength     | Measurement Distance |
|---------------|--------------------|----------------------|
| (MHz)         | (microvolts/meter) | (meters)             |
| 0.009 - 0.490 | 2400/F(kHz)        | 300                  |
| 0.490 – 1.705 | 24000/F(kHz)       | 30                   |
| 1.705 – 30.0  | 30                 | 30                   |
| 30 – 88       | 100                | 3                    |
| 88 – 216      | 150                | 3                    |
| 216 - 960     | 200                | 3                    |
| Above 960     | 500                | 3                    |

# **6.2 Test Configuration**





#### 6.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

The EUT was tested according to DTS test procedure of KDB558074 D01 DTS "Meas Guidance v03r02" (clause 12) for compliance to FCC 47CFR 15.247 requirements.

Use the following spectrum analyzer settings:

- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Set RBW=100 kHz for f < 1 GHz; VBW  $\ge$  RBW; Sweep = auto; Detector function = peak; Trace = max hold;
- (3) Set RBW = 1 MHz, VBW= 3MHz for  $f \ge 1$  GHz for peak measurement.

#### For average measurement:

- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW  $\geq$  1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



# **6.4 Test protocol**

Temperature : 25°C Relative Humidity : 55 %

# **Below 1GHz:**

30MHz~1GHz, Horizontal









# Test data:

| Polarization | Frequency | Measured level | Limits        | Margin | Factor | Detector |
|--------------|-----------|----------------|---------------|--------|--------|----------|
| Folalization | (MHz)     | $(dB\mu V/m)$  | $(dB\mu V/m)$ | (dB)   | (dB)   | Detector |
|              | 30.00     | 23.80          | 40.00         | 16.20  | 22.00  | PK       |
|              | 74.71     | 16.50          | 40.00         | 23.50  | 9.80   | PK       |
| Н            | 105.81    | 23.20          | 43.50         | 20.30  | 15.10  | PK       |
| 11           | 218.56    | 27.70          | 46.00         | 18.30  | 12.30  | PK       |
|              | 364.35    | 31.80          | 46.00         | 14.20  | 17.30  | PK       |
|              | 930.02    | 32.10          | 46.00         | 13.90  | 25.30  | PK       |
|              | 49.44     | 31.80          | 40.00         | 8.20   | 11.30  | PK       |
|              | 59.16     | 31.40          | 40.00         | 8.60   | 8.40   | PK       |
| V            | 105.81    | 37.10          | 43.50         | 6.40   | 15.10  | PK       |
| · ·          | 272.99    | 35.90          | 46.00         | 10.10  | 14.40  | PK       |
|              | 519.86    | 32.90          | 46.00         | 13.10  | 20.90  | PK       |
|              | 564.57    | 35.10          | 46.00         | 10.90  | 21.80  | PK       |

# Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.



# **Above 1GHz:**

802.11b:

| Polarity     | Frequenc<br>y<br>(MHz)         | Measured<br>level<br>(dBuv/m) | Limit (dBuv/m) | Factor (dB) | Antenna (cm) | Turn<br>table<br>(deg) | Margin<br>(dB) | Remark |
|--------------|--------------------------------|-------------------------------|----------------|-------------|--------------|------------------------|----------------|--------|
|              | 2390                           | 63.20                         | 74             | -7.80       | 100          | 190                    | 10.80          | PK     |
|              | 2390                           | 45.30                         | 54             | -7.80       | 100          | 190                    | 8.70           | AV     |
| Van/Han      | V /II 2412                     | 109.50                        | -              | -7.80       | 100          | 190                    | -              | PK     |
| Ver/Hor 2412 | 103.10                         | -                             | -7.80          | 100         | 190          | -                      | AV             |        |
|              | 4924                           | 47.40                         | 74             | -2.10       | 100          | 190                    | 26.60          | PK     |
|              | 4824                           | 36.60                         | 54             | -2.10       | 100          | 190                    | 17.40          | AV     |
| Note:        | 2412MHz is fundamental signal. |                               |                |             |              |                        |                |        |

| Polarity | Frequenc<br>y<br>(MHz)         | Measured<br>level<br>(dBuv/m) | Limit (dBuv/m) | Factor (dB) | Antenna (cm) | Turn<br>table<br>(deg) | Margin<br>(dB) | Remark |
|----------|--------------------------------|-------------------------------|----------------|-------------|--------------|------------------------|----------------|--------|
|          | 2427                           | 107.20                        | -              | -7.80       | 100          | 190                    | -              | PK     |
|          | 2437                           | 102.30                        | -              | -7.80       | 100          | 190                    | -              | AV     |
| Ver/Hor  | 4874                           | 47.70                         | 74             | -2.10       | 100          | 190                    | 26.30          | PK     |
| Ver/Hor  |                                | 37.40                         | 54             | -2.10       | 100          | 190                    | 16.60          | AV     |
|          | 7311                           | 49.50                         | 74             | 6.50        | 100          | 190                    | 24.50          | PK     |
|          |                                | 40.50                         | 54             | 6.50        | 100          | 190                    | 13.50          | AV     |
| Note:    | 2437MHz is fundamental signal. |                               |                |             |              |                        |                |        |

| Polarity | Frequenc<br>y<br>(MHz) | Measured<br>level<br>(dBuv/m) | Limit (dBuv/m) | Factor (dB) | Antenna (cm) | Turn<br>table<br>(deg) | Margin<br>(dB) | Remark |
|----------|------------------------|-------------------------------|----------------|-------------|--------------|------------------------|----------------|--------|
|          | 2462                   | 108.90                        | -              | -7.80       | 100          | 190                    | -              | PK     |
|          | 2462                   | 102.00                        | -              | -7.80       | 100          | 190                    | -              | AV     |
|          | 2483.5                 | 62.50                         | 74             | -7.50       | 100          | 190                    | 11.50          | PK     |
| 37 /11   |                        | 49.80                         | 54             | -7.50       | 100          | 190                    | 14.20          | AV     |
| Ver/Hor  | 4924                   | 47.90                         | 74             | -2.10       | 100          | 190                    | 26.10          | PK     |
|          |                        | 38.60                         | 54             | -2.10       | 100          | 190                    | 15.40          | AV     |
|          | 7386                   | 50.60                         | 74             | 6.50        | 100          | 190                    | 23.40          | PK     |
|          | /380                   | 40.90                         | 54             | 6.50        | 100          | 190                    | 13.10          | AV     |
| Note:    | 2462MHz                | is fundament                  | al signal.     |             |              |                        |                |        |



802.11g:

| Polarity | Frequenc<br>y<br>(MHz)         | Measured<br>level<br>(dBuv/m) | Limit (dBuv/m) | Factor (dB) | Antenna (cm) | Turn<br>table<br>(deg) | Margin<br>(dB) | Remark |  |
|----------|--------------------------------|-------------------------------|----------------|-------------|--------------|------------------------|----------------|--------|--|
|          | 2200                           | 65.60                         | 74             | -7.80       | 100          | 190                    | 8.40           | PK     |  |
|          | 2390                           | 47.80                         | 54             | -7.80       | 100          | 190                    | 6.20           | AV     |  |
| Ver/Hor  | 2412                           | 106.20                        | -              | -7.80       | 100          | 190                    | -              | PK     |  |
|          |                                | 101.70                        | -              | -7.80       | 100          | 190                    | -              | AV     |  |
|          | 4824                           | 46.20                         | 74             | -2.10       | 100          | 190                    | 27.80          | PK     |  |
|          |                                | 39.40                         | 54             | -2.10       | 100          | 190                    | 14.60          | AV     |  |
| Note:    | 2412MHz is fundamental signal. |                               |                |             |              |                        |                |        |  |

| Polarity | Frequenc<br>y<br>(MHz)         | Measured<br>level<br>(dBuv/m) | Limit (dBuv/m) | Factor (dB) | Antenna (cm) | Turn<br>table<br>(deg) | Margin<br>(dB) | Remark |  |
|----------|--------------------------------|-------------------------------|----------------|-------------|--------------|------------------------|----------------|--------|--|
|          | 2437                           | 105.80                        | -              | -7.80       | 100          | 190                    | -              | PK     |  |
|          |                                | 99.70                         | -              | -7.80       | 100          | 190                    | -              | AV     |  |
| Ver/Hor  | 4874                           | 48.60                         | 74             | -2.10       | 100          | 190                    | 25.40          | PK     |  |
|          |                                | 39.70                         | 54             | -2.10       | 100          | 190                    | 14.30          | AV     |  |
|          | 7311                           | 48.20                         | 74             | 6.50        | 100          | 190                    | 25.80          | PK     |  |
|          |                                | 41.40                         | 54             | 6.50        | 100          | 190                    | 12.60          | AV     |  |
| Note:    | 2437MHz is fundamental signal. |                               |                |             |              |                        |                |        |  |

| Polarity | Frequenc<br>y<br>(MHz) | Measured<br>level<br>(dBuv/m) | Limit (dBuv/m) | Factor (dB) | Antenna<br>(cm) | Turn<br>table<br>(deg) | Margin (dB) | Remark |
|----------|------------------------|-------------------------------|----------------|-------------|-----------------|------------------------|-------------|--------|
|          | 2462                   | 108.60                        | -              | -7.80       | 100             | 190                    | -           | PK     |
|          | 2402                   | 102.30                        | -              | -7.80       | 100             | 190                    | -           | AV     |
|          | 2483.5                 | 67.80                         | 74             | -7.50       | 100             | 190                    | 6.20        | PK     |
| X7 /II   |                        | 46.50                         | 54             | -7.50       | 100             | 190                    | 7.50        | AV     |
| Ver/Hor  | 4924                   | 48.10                         | 74             | -2.10       | 100             | 190                    | 25.90       | PK     |
|          |                        | 39.70                         | 54             | -2.10       | 100             | 190                    | 14.30       | AV     |
|          | 7386                   | 45.30                         | 74             | 6.50        | 100             | 190                    | 28.70       | PK     |
|          |                        | 38.40                         | 54             | 6.50        | 100             | 190                    | 15.60       | AV     |
| Note:    | 2462MHz                | is fundament                  | al signal.     |             |                 |                        |             | _      |



#### Remark:

- 1. Factor = Antenna Factor + Cable Loss (-Amplifier, is employed);
- 2. Measured level = Original Receiver Reading + Correct Factor;
- 3. Margin = limit Measured level;
- 4. If the PK reading is lower than AV limit, the AV testing is omitted.

#### Example:

Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV, Then Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m, Measured level = 10 dBuV + 0.20 dB/m = 10.20 dBuV/m, Assuming limit = 54dBuV/m, Measured level = 10.20dBuV/m, Then Margin = 54 - 10.20 = 43.80 dBuV/m.



# 7. Emission outside the frequency Band

**Test result: PASS** 

#### **7.1** Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

# 7.2 Test Configuration



#### 7.3 Test procedure and test setup

The Emission outside the frequency Band per FCC § 15.247(d) is measured using the Spectrum Analyzer with the resolutions bandwidth set at 100kHz, the video bandwidth set at 300kHz, and the SPAN>>RBW.

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v03r02" (clause 11.0) for compliance to FCC 47CFR 15.247 requirements.



# 7.4 Test protocol

Temperature : 25°C Relative Humidity : 55 %

# **802.11b Out-of-Band Emissions:**

| Mode    | СН | Result | Limit (dB) |
|---------|----|--------|------------|
|         | L  | Pass   |            |
| 802.11b | M  | Pass   | ≥20        |
|         | Н  | Pass   |            |

# Spurious Emission 1MHz $\sim 2.3 GHz$ - Frequency L



Date: 28.APR.2014 16:38:12





Date: 28.APR.2014 15:48:03



Date: 28.APR.2014 16:39:26







Date: 14.MAY.2014 17:10:49

# Spurious Emission 1MHz ~ 2.3GHz - Frequency M



Date: 28.APR.2014 16:48:13





Date: 28.APR.2014 16:01:28



Date: 28.APR.2014 16:41:36







Date: 14.MAY.2014 17:12:14

# Spurious Emission 1MHz ~ 2.3GHz - Frequency H



Date: 28.APR.2014 16:37:14





20 MHz/

Stop 2.5 GHz

Date: 28.APR.2014 16:17:19

Start 2.3 GHz



Date: 28.APR.2014 16:36:13

Stop 25 GHz





1.8 GHz/

Date: 14.MAY.2014 17:16:30

# 802.11g Out-of-Band Emissions:

-80

Start 7 GHz

| Mode    | СН | Result | Limit (dB) |
|---------|----|--------|------------|
|         | L  | Pass   |            |
| 802.11g | M  | Pass   | ≥20        |
|         | Н  | Pass   |            |







Date: 28.APR.2014 16:52:48

# Low Band Edge - Frequency L



Date: 28.APR.2014 16:54:21







Date: 28.APR.2014 16:57:47

# Spurious Emission 7GHz $\sim$ 25GHz - Frequency L



Date: 14.MAY.2014 17:14:32







Date: 28.APR.2014 16:59:46

# Band Edge - Frequency M



Date: 28.APR.2014 17:00:54







Date: 28.APR.2014 16:58:57

# Spurious Emission 7GHz ~ 25GHz - Frequency M



Date: 14.MAY.2014 17:14:56







Date: 28.APR.2014 17:09:54

# High Band Edge - Frequency H



Date: 28.APR.2014 17:11:51







Date: 28.APR.2014 17:41:03

# Spurious Emission 7GHz ~ 25GHz - Frequency H



Date: 14.MAY.2014 17:16:58



# 8. Power line conducted emission

**Test result:** PASS

# **8.1 Limit**

| Frequency of Emission (MHz)                      | Conducted Limit (dBuV) |            |  |  |  |
|--------------------------------------------------|------------------------|------------|--|--|--|
|                                                  | QP                     | AV         |  |  |  |
| 0.15-0.5                                         | 66 to 56*              | 56 to 46 * |  |  |  |
| 0.5-5                                            | 56                     | 46         |  |  |  |
| 5-30                                             | 60                     | 50         |  |  |  |
| * Decreases with the logarithm of the frequency. |                        |            |  |  |  |

# 8.2 Test configuration



- ☑ For table top equipment, wooden support is 0.8m height table
- ☐ For floor standing equipment, wooden support is 0.1m height rack.



#### 8.3 Test procedure and test set up

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a  $50\Omega/50uH$  coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a  $50\Omega/50uH$  coupling impedance with  $50\Omega$  termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement. The bandwidth of the test receiver is set at 9 kHz.

Intertek FCC ID: ZXX-A010 IC: 10107A-A010

# 8.4 Test protocol

Temperature : 25°C Relative Humidity : 55 %





Page 43 of 44



#### Test data:

| 1 CSt uata | Test data. |                          |       |                 |       |                |       |  |  |
|------------|------------|--------------------------|-------|-----------------|-------|----------------|-------|--|--|
| Line       | Frequency  | Corrected Reading (dBuV) |       | Limit<br>(dBuV) |       | Margin<br>(dB) |       |  |  |
|            |            | QP                       | AV    | QP              | AV    | QP             | AV    |  |  |
|            | 0.156      | 49.69                    | 34.32 | 65.67           | 55.67 | 15.98          | 21.35 |  |  |
|            | 0.354      | 39.27                    | 37.60 | 58.87           | 48.87 | 19.60          | 11.27 |  |  |
| L          | 1.057      | 31.89                    | 31.50 | 56.00           | 46.00 | 24.11          | 14.50 |  |  |
| L          | 1.761      | 27.71                    | 27.51 | 56.00           | 46.00 | 28.29          | 18.49 |  |  |
|            | 2.473      | 23.59                    | 23.21 | 56.00           | 46.00 | 32.41          | 22.79 |  |  |
|            | 3.882      | 23.27                    | 22.21 | 56.00           | 46.00 | 32.73          | 23.79 |  |  |
|            | 0.152      | 50.56                    | 33.48 | 65.87           | 55.87 | 15.31          | 22.39 |  |  |
|            | 0.352      | 36.94                    | 35.35 | 58.90           | 48.90 | 21.96          | 13.55 |  |  |
| N          | 0.703      | 25.54                    | 22.34 | 56.00           | 46.00 | 30.46          | 23.66 |  |  |
| IN .       | 1.057      | 26.21                    | 24.66 | 56.00           | 46.00 | 29.79          | 21.34 |  |  |
|            | 3.882      | 23.95                    | 22.30 | 56.00           | 46.00 | 32.05          | 23.70 |  |  |
|            | 5.998      | 21.87                    | 20.79 | 60.00           | 50.00 | 38.13          | 29.21 |  |  |

Remark: Margin (dB) = Limit - Corrected Reading.