Digital Signal Processing for Music Part 13: Digital Number Formats

alexander lerch

number formats word length and SNR

w	Δ	Max. Amp	theo. SNR
8 (Int)	± 1	0255	≈48 dB
16 (Int)	± 1	$-32768 \dots 32767$	pprox96 dB
20 (Int)	± 1	-524288524287	pprox120 dB
24 (Int)	± 1	$-16777216 \dots 16777215$	pprox144 dB
32 (Float)	$\pm 1.175 \cdot 10^{-38}$	$\pm 3.403 \cdot 10^{1038}$	1529 dB
64 (Float)	$\pm 2.225 \cdot 10^{-308}$	$\pm 1.798\cdot 10^{10308}$	12318 dB

how do we represent this in bits

number formats word length and SNR

w	Δ	Max. Amp	theo. SNR
8 (Int)	± 1	0255	≈48 dB
16 (Int)	± 1	$-32768 \dots 32767$	pprox96 dB
20 (Int)	± 1	-524288524287	pprox120 dB
24 (Int)	± 1	$-16777216 \dots 16777215$	pprox144 dB
32 (Float)	$\pm 1.175 \cdot 10^{-38}$	$\pm 3.403 \cdot 10^{1038}$	1529 dB
64 (Float)	$\pm 2.225 \cdot 10^{-308}$	$\pm 1.798\cdot 10^{10308}$	12318 dB

how do we represent this in bits

number formats value range

- unnormalized¹: $-2^{w-1} \dots 2^{w-1} 1$
 - used for transmission etc.
- **normalized** (word length independent): -1...1
 - used for floating point representation
 - used for processing

¹remember: non-symmetric step count for positive and negative values

number formats number representation 1/2

- Least Significant Bit (LSB): b₀ (usually on the right)
- Most Significant Bit (MSB): b_{w-1} (usually on the left)

number representation 2/2

format	amplitude	range (normalized)
2-Complement	$x_Q = -b_{w-1} + \sum_{i=0}^{w-2} b_i 2^{-(w-i-1)}$	$-1 \le x_Q \le 1 - 2^{-(w-1)}$
unsigned	$x_Q = \sum_{i=0}^{w-1} b_i 2^{-(w-1)}$	$0 \le x_Q \le 1 - 2^{-w}$

- w : word length
- b_i : ith Bit

quantization: clipping & wrap-around

fixed point and floating point

- unsigned format: small word lengths (4...8 Bit)
- 2's complement: file formats with higher word lengths (16...24 Bit), some DSPs
- floating point: internal representation for processing

Georgia Center for Music Tech College of Design

fixed point and floating point

- unsigned format: small word lengths (4...8 Bit)
- 2's complement: file formats with higher word lengths (16...24 Bit), some DSPs
- floating point: internal representation for processing

fixed point and floating point

Georgia Center for Music Tech College of Design

- unsigned format: small word lengths (4...8 Bit)
- 2's complement: file formats with higher word lengths (16...24 Bit), some DSPs
- floating point: internal representation for processing

fixed point and floating point

Georgia Center for Music Tech Tech College of Design

- unsigned format: small word lengths (4...8 Bit)
- 2's complement: file formats with higher word lengths (16...24 Bit), some DSPs
- floating point: internal representation for processing

number formats floating point 1/2

$$x_Q = M_G \cdot 2^{E_G}$$

• M_G : Normalized Mantissa $0.5 \le M_G < 1$

• E_G : Exponent

32 Bit IEEE 754 Floating Format:

Bit 31: Sign	Bits 30-23: Exponent	Bits 22-0: Mantissa
S	<i>e</i> ₇ <i>e</i> ₀	$m_{22} m_0$

Exceptions

Тур	E_G	M_G	Value
normal	$1 \leq E_G \leq 254$	any	$(-1)^s(0.m)2^{E_G-127}$
NAN (not a number)	255		undefined
Infinity	255		∞
Zero			

number formats floating point 1/2

$$x_Q = M_G \cdot 2^{E_G}$$

• M_G : Normalized Mantissa $0.5 \le M_G < 1$

 \bullet E_G : Exponent

32 Bit IEEE 754 Floating Format:

	Dita 30-23. Exponent	Bits 22-0: Mantissa
5	<i>e</i> ₇ <i>e</i> ₀	$m_{22} m_0$

Exceptions

Тур	E_G	M_G	Value
normal	$1 \leq E_G \leq 254$	any	$(-1)^s(0.m)2^{E_G-127}$
NAN (not a number)	255		undefined
Infinity	255		∞
Zero			

number formats floating point 1/2

$$x_Q = M_G \cdot 2^{E_G}$$

• M_G : Normalized Mantissa $0.5 \le M_G < 1$

 \bullet E_G : Exponent

32 Bit IEEE 754 Floating Format:

Bit 31: Sign	Bits 30-23: Exponent	Bits 22-0: Mantissa
5	<i>e</i> ₇ <i>e</i> ₀	$m_{22} \ldots m_0$

Exceptions

Тур	E_G	M_G	Value
normal	$1 \leq E_G \leq 254$	any	$(-1)^s(0.m)2^{E_G-127}$
NAN (not a number)	255	≠ 0	undefined
Infinity	255	= 0	∞
Zero	0	0	0

floating point 2/2

- high exponent: large quantization error energy
- low exponent: small quantization error energy
- linear quantization within one exponent

floating point 2/2

- high exponent: large quantization error energy
- low exponent: small quantization error energy
- linear quantization within one exponent

floating point 2/2

- high exponent: large quantization error energy
- low exponent: small quantization error energy
- linear quantization within one exponent

number formats quantization: summary

- most common number representations
 - 2-complement for high quality audio storage
 - floating point for high quality audio processing (non-linear quantization)