# **Network Science Notes**

Wei-Hsiang Sun

July, 2020

## NETWORK SCIENCE INTRODUCTION

- 1. Vulnerability Due to Interconnectivity
- 2. Two Forces that Helped Network Science
  - ► The Emergence of Network Maps
  - ► The Universality of Network Characteristics
- 3. The Characteristics of Network Science
  - ► Interdisciplinary Nature
  - Quantitative and Mathematical Nature
  - Computational Nature
- 4. Societal Impact
- 5. Scientific Impact

# NETWORK SCIENCE GRAPH THEORY

- 1. The Bridges of Konisgbergs
- 2. Networks and Graphs
  - ► Number of nodes/vertices: *N*
  - ► Number of links/edges: *L*
  - Links can be directed or undirected, If directed, it is also called a Digraph
- 3. Degree, Average Degree, and Degree Distributions
  - Degree of a node: number of links it has to other nodes
  - for undirected graph:

$$L = \frac{1}{2} \sum_{i=1}^{N} k_i$$

$$\langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2L}{N}$$

for directed graph:

$$k_i = k_i^{in} + k_i^{out}$$

$$L = \sum_{i=1}^{N} k_i^{in} = \sum_{i=1}^{N} k_i^{out}$$

$$\langle k^{in} \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i^{in} = \langle k^{out} \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i^{out} = \frac{L}{N}$$

▶ Degree Distribution  $p_k$ 

$$p_k = \frac{N_k}{N} \ \langle k \rangle = \sum_{k=0}^{\infty} k p_k$$



- 4. Adjacency Matrix
  - A<sub>ij</sub> = 1 if there is a link pointing from node j to i $A_{ij} = 0$  if nodes i and j are not connected to each other
  - for undirected network  $k_i = \sum_{j=1}^{N} A_{ji} = \sum_{j=1}^{N} A_{ij}$ for digraphs  $k_i^{in} = \sum_{j=1}^{N} A_{ij}$ ,  $k_i^{out} = \sum_{j=1}^{N} A_{ji}$
- Real Networks are Sparse for undirected network:

$$L_{max} = {N \choose 2} = {N(N-1) \over 2}$$

- 6. Weighted Networks
  - $A_{ij} = w_{ij}$ , elements carries weight
- 7. Bipartite Networks

definition: a network whose node can be divided into two disjoint sets U and V such that each link connects a U node to a V node

• Projections

Projection U: connects two U nodes by a link if they are linked to the same V-nodes in the bigraph Projection V: connects two V nodes by a link if they are linked to the same U-nodes in the bigraph

#### 8. Paths and Distances

- ▶ Path Length: the route that runs along the links of the network
- Shortest Path: the path with the fewest number of links, it is also known as distance between i and j, denoted by  $d_{ij}$
- Network Diameter: denoted by  $d_{max}$ , is the maximum shortest path in the network, can be found through BFS algorithm
- Average Path Length: (for directed)

$$d = \frac{1}{N(N-1)} \sum_{\substack{i,j=1,N\\i\neq j}} d_{i,j}$$

- Cycle (path with the same start and end node)
   Eulerian path (path that goes through link once),
   Hamiltonian Path (path that goes through node once)
- Number of Shortest Path Between Nodes Let number of distance d paths between i and j be denoted by  $N_{ii}^{(d)}$ , then  $N_{ii}^{(d)} = A_{ii}^{d}$

### 9. Connectedness

- situation where  $d_{ij} = \infty$
- existence of subnetworks components (clusters)
- bridge: link that connects disconnected components
- ways of finding diconnectedness: 1. matrix blocks
  - 2. BFS algorithm

# 10. Clustering Coeffficient

• Clustering Coefficient: for a node i with degree  $k_i$ , it is defined as:

$$C_i = \frac{2\langle L_i \rangle}{k_i(k_i - 1)}$$

where  $L_i$  represents the number of links between the  $k_i$  neighbors of node i,  $L_i \sim b(\frac{k_i(k_i-1)}{2}, p)$ .

• Average Clustering coefficient captures the average of  $C_i$  over all nodes, is defined by:

$$\langle C \rangle = \frac{1}{N} \sum_{i=1}^{N} C_i$$

#### 11. Common Network Characteristics

- Undirected
- ▶ Self-loops: *i*'s where  $A_{ii} = 1$
- ► Multigraph: multiple links to nodes
- Directed
- Weigted
- ► Complete Graph(Clique): all nodes are connected to each other

# RANDOM NETWORKS

- 1. Introduction
- The Random Network Model
   Core idea: a random network consists of N nodes where each node pair is connected with probability p
  - G(N, L) Model: L randomly placed links
  - G(N, p) Model
- 3. Number of Links

$$L \sim b\left(\frac{N(N-1)}{2}, p\right)$$

$$p_L = \left(\frac{N(N-1)}{2}\right) p^L (1-p)^{\frac{N(N-1)}{2}-L}$$

$$\langle k \rangle = \frac{2\langle L \rangle}{N} = p(N-1)$$

- 4. Degree Distribution
  - Binomial Distribution

$$k \sim b(N-1, p)$$
  
 $p_k = {N-1 \choose k} p^k (1-p)^{N-1-k}$ 

Poisson Distribution

$$k \sim Poisson(\langle k \rangle)$$

$$p_k = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!}$$

- 5. Real Networks are Not Poisson
  - Poisson underestimate the number of high degree nodes
  - Spread of real world network is much higher
  - the reason for lacking of large hubs since  $k! \sim \left[\sqrt{2\pi k}\right] \left(\frac{k}{e}\right)^k$  thus  $p_k = \frac{e^{-\langle k \rangle}}{\sqrt{2\pi k}} \left(\frac{e\langle k \rangle}{k}\right)^k$  ,where  $p_k$  decreases rapidly as  $k \uparrow$

- 6. The Evolution of A Random Network
  - p gradually increases with time
  - $\bullet$  let  $N_G$  be the size of the largest connected cluster
  - $N_G/N$  increases once  $\langle k \rangle$  exceeds 1 ( $\exists$  large clusters) when  $\langle k \rangle = 1$ ,  $p \approx \frac{1}{N}$  (sufficient and necessary condition)
    - Subcritical Regime  $(0<\langle k\rangle<1,p<\frac{1}{N})$   $N_G\sim \ln N$ , thus  $\lim_{N\to\infty}N_G/N=0$
    - ► Critical Point  $(1 = \langle k \rangle, p = \frac{1}{N})$  $N_G \sim N^{2/3}$ , thus  $\lim_{N \to \infty} N_G/N = 0$
    - Supercritical Regime  $(1 < \langle k \rangle, p > \frac{1}{N})$  $N_G \sim (p - p_c)N$ , thus  $\lim_{N \to \infty} N_G/N = 0$
    - Connected Regime( $\langle k \rangle > \ln N, \ p > \frac{\ln N}{N}$ )  $N_G \sim N$ , thus  $\lim_{N \to \infty} N_G/N = 0$
- 7. Real Networks are Supercritical however they may contain only one large cluster which contradicts the random network theory

### 8. Small Worlds

- also known as six degree separation
- distance between two random nodes in a network is short
- $\langle k \rangle^d$  nodes at distance d, let N(d) denote the expected number of nodes within distance d, then,

$$N(d) \approx 1 + \langle k \rangle + \langle k \rangle^2 + \cdots + \langle k \rangle^d = \frac{\langle k \rangle^{d+1} - 1}{\langle k \rangle - 1}$$

- $N(d_{max}) \approx N$ , thus when  $\langle k \rangle \gg 1$ ,  $\langle k \rangle^{d_{max}} \approx N$ , as a result  $\langle d_{max} \rangle \approx \frac{\ln N}{\ln \langle k \rangle}$
- $\langle d \rangle \approx \frac{\ln N}{\ln \langle k \rangle}$  is often a better approximation

- 9. Clustering Coefficient
  - Let  $L_i$  denote the number of links between  $k_i$  neighbors, then

$$L_i \sim b(\frac{k_i(k_i-1)}{2}, p)$$

- thus for a random network  $C_i = \frac{2\langle L_i \rangle}{k_i(k_i-1)} = p = \frac{\langle k \rangle}{N} = \langle C_k \rangle$  However, in real networks
- $\frac{\langle C_k \rangle}{\langle k \rangle}$  is independent of N
- $C_k$  is dependent of k
- 10. Summary: Real Networks are Not Random

# THE SCALE FREE PROPERTY

- 1. Introduction
- 2. Power Laws and Scale-Free Networks
  - with the log-log plot of the degree distribution being a straight line,  $p_k \sim k^{-\gamma}$  where  $p_k$  follows a power law distribution and  $\gamma$  being the degree exponent
  - discrete formulization:

$$p_k = Ck^{-\gamma}$$
, where  $C$  is determined by  $\sum_{k=1}^{\infty} p_k = 1$  thus  $C = \frac{1}{\sum_{k=1}^{\infty} k^{-\gamma}} = \frac{1}{\zeta(\gamma)}$ , and thus  $p_k = \frac{k^{-\gamma}}{\zeta(\gamma)}$ 

• continuous formulization:

$$p_k = Ck^{-\gamma}$$
, where  $C$  is determined by  $\int_{k_{min}}^{\infty} p_k = 1$  thus  $C = \frac{1}{\int_{k_{min}}^{\infty} k^{-\gamma} \mathrm{d}k} = (\gamma - 1)k_{min}^{\gamma - 1}$ , and thus  $p(k) = (\gamma - 1)k_{min}^{\gamma - 1}k^{-\gamma}$ 

### 3. Hubs

- exponential vs power law
- exponential is formed  $p(k)=Ce^{-kr}$  where C is bounded by  $\int_{k_{min}}^{\infty}p_k\mathrm{d}k=1$ , and  $k_{max}$  can be found by  $\int_{k_{max}}^{\infty}p_k\mathrm{d}k=\frac{1}{N}$ , resulting in  $k_{max}=k_{min}+\frac{\ln N}{\lambda}$
- the power law distribution accordingly follows  $k_{max} = k_{min} N^{\frac{1}{\gamma 1}}$
- $\bullet$  as a result hubs are fobidden even when N is large for random networks. In scale free networks, hubs are presented naturally
- 4. The Meaning of Scale Free
  - the *n*<sup>th</sup> moment of the degree distribution

$$\langle k^n \rangle = \sum_{k_{min}}^{\infty} k^n p_k \approx \int_{k_{min}}^{\infty} k^n p(k) dk$$

- first moment: average
- second moment: variance
- third moment: skewness

# 4. (continue)

• for a scale free network

$$\langle k^n \rangle = \int_{k_{min}}^{k_{max}} k^n p(k) dk = C \frac{k_{max}^{n-\gamma+1} - k_{min}^{n-\gamma+1}}{n-\gamma+1}$$

if  $n-\gamma+1\leq 0$ , moments that satisfies which is finite if  $n-\gamma+1>0$ , moments that satisfies which is infinite

- Random Networks have scale
   \(\lambda k \rangle \) serves as the scale of a random network
   (comparable degree)
- Scale free network lack scale

## 5. Universality

- ► Plotting Degree Distribution
  - log-log plot, log binding
- Measuring the Degree Exponent
- ightharpoonup The Shape of  $p_k$  for Real Networks

- 6. Ultra-Small World Property
  - $\langle d \rangle$  scale free is smaller than its random network equivalent
  - the dependent of  $\langle d \rangle$  on N and  $\gamma$  can be divided into

$$\langle \textit{d} \rangle \sim \begin{cases} \text{const.} & \gamma = 2 & \text{Anomalous Regime} \\ \ln \ln \textit{N} & 2 < \gamma < 3 & \text{Ultra-Small World} \\ \frac{\ln \textit{N}}{\ln \ln \textit{N}} & \gamma = 3 & \text{Critical Point} \\ \ln \textit{N} & \gamma > 3 & \text{Small World} \end{cases}$$

## 7. The Role of The Degree Exponent

- three different regimes
- Anomalous Regime  $\gamma \leq 2$
- Scale-Free Regime 2  $< \gamma <$  3
- Random Network Regime  $\gamma > 3$  the presence of power law follows the equation

$$N = \left(\frac{k_{max}}{k_{min}}\right)^{\gamma - 1}$$

## 8. Generating Networks with Arbitrary Degree Distribution

- Configuration Model
  - probability to have a link between nodes of degree  $k_i$  and  $k_j$  follows:  $p_{ij} = \frac{k_i k_j}{2L-1}$

# 8. Generating Networks (Continue)

- ▶ Degree-Preserving Randomization used to see whether a network property is predicted by its degree distribution alone or ir it represents some additional property p.s Full Randomization (not degree preserving)
- Hidden Parameter Model use: prevent self-loops and multi-links

N isolated nodes assigning each node a hidden parameter  $\eta_i$ , where  $\eta_i$  can be from a predefined sequence or a  $\rho(\eta)$  distribution. The degree distribution thus follows

- $p_k = \int rac{\mathrm{e}^{-\eta}\eta_j^k}{k!} 
  ho(\eta) \mathrm{d}\eta$  if  $\eta$  is from a predefined distribution
- ullet  $p_k=rac{1}{N}\sum_jrac{e^{-\eta}\eta_j^k}{k!}$  if  $\eta_i$  is from a deterimistic sequence
- can create a power law distribution through setting  $\eta_j = \frac{c}{i^{\alpha}}, i = 1, \dots N$  which makes  $p_k \sim k^{-(1+\frac{1}{\alpha})}$ . And through this model we can use the fact that  $\langle \eta \rangle = \langle k \rangle$  to alter  $\langle k \rangle$

## 9. Summary

- Exponentially Bounded
- Fat Tailed Networks



# THE BARABASI-ALBERT MODEL

- 1. Introduction
- 2. Growth and Preferential Attachment
  - Growth: Networks expand through the addition of new nodes
  - Preferential Attachment: Nodes prefer to link to more connected nodes
- The Barabasi-Albert Model use: able to generate scale free network
  - start with  $m_0$  nodes
  - network developes in each timestep
  - Growth: each timestep, a new node is added with m links where  $m \leq m_0$
  - Preferential Attachment:  $\Pi(k_i) = \frac{k_i}{\sum_j k_j}$  is the probability a link of a new node connects to node i with  $k_i$  degree

- 3. The Barabasi-Albert Model(continue)
  - $\bullet$  the mathematical definition of the Barabasi-Albert model Linearized Chord Diagram (LCD)

For m = 1

- (1) start with  $G_1^{(0)}$ , corresponding to an empty graph with no nodes
- (2) Given  $G_1^{(t-1)}$  generate  $G_1^t$  by adding the node  $v_t$  a single link between  $v_t$  and  $v_i$  where  $v_i$  is chosen by

$$p = \begin{cases} \frac{k_i}{2t-1} & \text{if } 1 \le i \le t-1\\ \frac{1}{2t-1} & \text{if } i = t \end{cases}$$

## 4. Degree Dynamics

• Assumptions:  $k_i$  be continuous

• 
$$\frac{\mathrm{d}k_i}{\mathrm{d}t} = m\Pi(k_i) = m\frac{k_i}{\sum_{j=1}^{N-1}k_j}$$
, where  $\sum_{j=1}^{N-1}k_j = 2mt - m$ ,

thus 
$$\frac{dk_i}{dt} = \frac{k_i}{2t-1} \approx \frac{k_i}{2t}$$
 for large  $t \to 2tdk_i = k_idt$  and by intergrating both sides,  $2tk_i + C = k_it$  and since  $k_i(t_i) = m$   $C = \ln\frac{t_i^2}{m}$ , thus  $k_i(t) = m\left(\frac{t}{t_i}\right)^{\beta}$ , where  $\beta = \frac{1}{2}$  thus  $\frac{dk_i(t)}{dt} = \frac{m}{2}\frac{1}{\sqrt{t+t}}$ 

# 5. Degree Distribution

- continuum theorem: calculate the degree distribution through
- (1)  $k_i(t) < k \to t_i < t\left(\frac{m}{k}\right)^{\frac{1}{\beta}}$  and since  $N = m_0 + t$ , when t is large  $N \approx t$  thus  $t\left(\frac{m}{k}\right)^{\frac{1}{\beta}}$  is the fraction of nodes that are more than degree k and  $\left(\frac{m}{k}\right)^{\frac{1}{\beta}}$  is the probability for such event
- (2) thus  $P(k)=1-\left(\frac{m}{k}\right)^{\frac{1}{\beta}}$  and take the partial derivative with respect to k, then  $p_k\approx 2m^{\frac{1}{\beta}}k^{-\gamma}$  where  $\gamma=3$
- the exact distribution using LCD model is  $p_k = \frac{2m(m+1)}{k(k+1)(k+2)}$

- 6. The Absence of Growth and Preferential Attachment
  - Lack of Preferential Attachment  $\Pi(k_i) = \frac{1}{(m_0+t-1)}$ , and thus  $k_i(t) = m \ln \left( e \frac{m_0+t-1}{m_0+t_i-1} \right)$  as a result  $p_k = \frac{e}{m} \exp\left( -\frac{k}{m} \right)$ , it follows exponential
  - Lack of Growth
    - adding one link in each timestep without growth
    - $k_i(t) \approx \frac{2}{N}t$  at first is generates a power law, then as  $t \to C_2^n$ , the graph becomes completely connected
- 7. Measuring Preferential Attachment
  - two distinct hypothesis preferential attachment relies on:
  - Hypothesis 1: The likelihood to connect to a node dpends on that node's degree k.(random model is k-independent)
  - Hypothesis 2: The functional form of  $\Pi(k)$  is linear in k
  - $\frac{\Delta k_i}{\Delta t} \sim \Pi(k_i)$

to reduce the noise, we use the cumulative preferential attachment function  $\pi(k) = \sum_{ki=0}^k \Pi(k_i)$  without preferential attachment, thus  $\pi(k) \sim k$ . If preferential attachment is linear,  $\pi(k) \sim k^2$ ,  $\Pi \sim k^{\alpha}$ , when  $\alpha = 0.9 \pm 0.1$ , sublinear is present

- 8. Non-linear Preferential Attachment
  - ▶ Sublinear Preferential Attachment (0 <  $\alpha$  < 1)

• 
$$p_k \sim k^{-\alpha} \exp\left(\frac{-2\mu(\alpha)}{\langle k \rangle(1-\alpha)} k^{1-\alpha}\right)$$

- $k_{max} \sim (\ln t)^{1/(1-\alpha)}$
- Superlinear Preferential Attachment ( $\alpha > 1$ )
  - $k_{max} \sim t$
- 9. The Origins of Preferential Attachment ( 2 kinds of views ):
  - ► Local Mechanism
    - Link Selection Model (create preferential attachment)
    - Growth + Link Selection (both one at a time)
    - $q_k = Ckp_k$ , where  $q_k$  stands for the probability that the node of a randomly chosen link has degree k
    - given the normalization condition we have  $q_k = rac{k p_k}{\langle k 
      angle}$
    - Copying Model
    - Random Connection: probability p the new node links to a random node u
    - Copying: probability 1-p of connecting to an outgoing node of  $\boldsymbol{u}$
    - thus  $\Pi(k) = \frac{p}{N} + \frac{1-p}{2L}k$

(since  $\frac{1}{N}$  of selecting a node u and  $\frac{k}{2L}$  of selecting a degree-k

node through copying )



# 9. Origins

- Optimization
  - Cost function:  $C_i = \min_j [\delta d_{ij} + h_j]$  where:  $d_{ij}$  is the distance between new node i and a potential target j,  $h_{ij}$  is the distance of node j to the first node of the network (serves as the center)
  - Depending on  $\delta$ :
    - Star Network  $(\delta < (1/2)^{(1/2)})$ 
      - nodes connect to the center
    - Random Networks  $(N^{1/2} \le \delta)$ 
      - nodes connect to the closest
    - ▶ Scale Free Network ( $4 \le \delta \le N^{1/2}$ )

Sum: Basin of Attraction (optimization) + Randomness (Random location of new node)

- 10. Diameter and Clustering Coefficient
  - for the Barabasi Albert network
    - ▶ Diameter  $\langle d \rangle \sim \frac{\ln N}{\ln \ln N}$
    - Clustering Coefficient

$$\langle C \rangle \sim \frac{(\ln N)^2}{N}$$

# 11. Summary

# **EVOLVING NETWORKS**

#### 1. Introduction

- ullet review: under Barabasi-Albert model,  $k(t) \sim t^{\frac{1}{2}}$ , which indicates the first mover's advantage
- 2. The Bianconi-Barabasi Model
  - Property fitness: intrinsic properties of some nodes
    - ▶ Growth: a new node j with m links and fitness  $\eta$  is added per timestep, where  $\eta$  is a random number chosen from a fitness distribution  $\rho(\eta)$ , and it does not change once assigned
    - Preferential Attachment: Probability that a link of a new node connects to node i is  $\Pi_i = \frac{\eta_i k_i}{\sum_i \eta_j k_j}$
  - Degree Dynamics the degree of node i changes as  $\frac{\partial k_i}{\partial t} = m \frac{\eta_i k_i}{\sum_j \eta_j k_j}$  assuming time evolution of  $k_i$  follows a power law with fitness dependent exponent  $\beta(\eta_i)$ , then  $k(t,t_i,\eta_i) = m \left(\frac{t}{t_i}\right)^{\beta(\eta_i)}$  we get  $\beta(\eta) = \frac{\eta}{C}$  with  $C = \int \rho(\eta) \frac{\eta}{1-\beta(\eta)d\eta}$

- 2. The Bianconi-Barabasi Model(continue)
  - Degree Distribution is  $p_k = C \int d\eta \frac{\rho(\eta)}{\eta} \left( \frac{m}{k} \right)^{\frac{c}{\eta} + 1}$ 
    - Equal Fitnesses assuming  $\rho(\eta) = \delta(\eta 1)$ , thus  $\eta = 1$  and C = 2,  $\beta = 1/2$ ,  $p_k \sim k^{-3}$ , which is the scaling of a Barabasi Albert model
    - Uniform Fitness Distribution assuming  $\eta$  comes from U(0,1), thus  $\exp(-2/C) = 1 1/C \rightarrow C^* \approx 1.255 \ \beta(\eta_i) = \frac{\eta_i}{C^*}$ , and thus  $p_k \sim \int_0^1 d\eta \frac{C^*}{\eta} \frac{1}{k^{(1+C^*)/\eta}} \sim \frac{k^{-(1+C^*)}}{\ln k}$ , obtaining  $\gamma = 2.255$

# 3. Measuring Fitness

- reletive difference between degrees  $\frac{k_2-k_1}{k_1}\sim t^{\frac{\eta_2-\eta_1}{C}}$ , thus for large t is quite significant
- take the citation network as an example:
- $\Pi_i \sim \eta_i c_i^t P_i(t)$  where  $c_i^t$  is the cumulative number of citations acquired by paper i at time t,  $P_i(t)$  indicates that the novelty

of citation fades with time where 
$$P_i(t) = \frac{1}{\sqrt{2\pi t}\sigma} e^{-\frac{(\ln t - \mu_i)^2}{2\sigma^2}}$$

• fitness is typically exponentially bounded



### 4. Bose-Einstein Condensation

- Purpose: to see the effect of fitness distribution on network topology
  - ightharpoonup Fitness ightarrow Energy
    - assigning fitness with an energy  $arepsilon_i = rac{1}{eta_T}\log\eta_i$
  - ▶ Links → Particles
  - ightharpoonup Nodes ightarrow Energy Level
- Scale-free Phase
- fit-gets-rich, any moment in this phase, network is scale-free
- uniform fitness distribution is in this phase
- largest hub grows sublinearly
- Bose-Einstein Condensation
- fittest node grabs a finite fraction of links turning into a super hub (winner takes all)
- presence or absense depends on the finess distribution, occur when  $\rho(\eta)=(1-\zeta)(1-\eta)^{\zeta}$

# 5. Evolving Networks

- Review: restriction of Barabasi-Albert Model
- predicts  $\gamma = 3$
- ignore small-degree saturation and high degree cutoff
- ignore addition and removal of new links/nodes
- Initial Attractiveness to allow unconnected nodes to add links, assuming  $\Pi(k) \sim A + k$ , where A is the initial attractiveness  $(\Pi(0) = A)$ 
  - ▶ Increase the Degree Exponent  $\rightarrow \gamma = 3 + \frac{A}{m}$
  - Generate Small Degree Saturation  $p_k = C(k+A)^{-\gamma}$ , which creates less small degree
- Internal Links
- adding new links between prexisting nodes
- $\Pi(k,k') \sim (A+Bk)(A+Bk')$ 
  - Double Preferential Attachment(A=0) consider adding a new node with m links and n internal links in each timestep, then  $\gamma = 2 + \frac{m}{m+2n} \rightarrow$  increases heterogenity
  - ► Random Attachment(B=0)
    - add links between random node pairs,  $\gamma = 3 \frac{2n}{m}$



# 5. Evolving Networks (Continue)

- Node Deletion
- each timestep, add a new node with m links and with rate r of single-node removal, r-dependent results are as follows:
  - ▶ Scale-free Phase (r < 1)
    - removal < new nodes added ightarrow scale-free with  $\gamma = 3 + \frac{2r}{1-r}$
  - ightharpoonup Exponential Phase (r=1)
  - ▶ Declining Networks (r > 1)
- Accelerated Growth
- degrees increase linearly with time,  $L=\langle k\rangle N/2$ , where  $\langle k\rangle$  is independent of time, yet, degrees may increase faster than N
- assuming arrival of new links follows  $m(t) = m_0 t^{ heta}$

if  $\theta = 0$  m stays is the same

if heta > 0 the network follows accelerated growth and

 $\gamma=3+\frac{2\theta}{1-\theta}$ , for  $\theta=1$ , leads to hyper-accelerating growth

# 5. Evolving Networks(Continue)

Aging

$$\Pi(k_i, t - t_i) \sim k(t - t_i)^{-\nu}$$
 depending on  $\nu$ , three regimes can be identified

- ▶ v < 0</p>
  - -network becomes heterogenious
- $\triangleright$  v > 0
  - new node attach to younger nodes
  - if  $v \to \infty$ , new nodes contact predecessor immediately
- $\sim v > 1$ 
  - effect ovecomes preferential attachment losing the scale free property

### 6. Summary

- Topological Diversity
  - Power Law
  - Stretched Exponential (Sublinear Preferential Attachment)
  - ► Fitness-Induced Corrections
  - Small-Degree Saturation (Initial Attractiveness)
  - High-Degree Cutoffs
- Modeling Diversity
  - Static Models (fixed nodes and links)
  - Generative Models (configuration, hidden parameter)
  - Evolving Network Models

## **DEGREE CORRELATION**

### 1. Introduction

- Paradox: small node link to small nodes, and the probability that degree k node link to k'  $P_{kk'} = \frac{kk'}{2L}$  if connection is random
- 2. Assortativity and Disassortativity
  - three topologies:
    - Neutral Network: follows the equation above
    - Assortative Network: node connect to others with similar degree
    - Disassortative Network: hubs tend to link to small degree nodes
  - network displays degree correlation if links deviate from what is expected by chance
  - degree correlation matrix  $e_{ij}$  is the probability of finding nodes of degree i and j at two ends of a randomly selected link and thus  $\sum_{i,j} e_{ij} = 1$

- 2. Assortativity and Disassortativity (Continue)
  - $q_k = \frac{kp_k}{\langle k \rangle}$  is the probability that degree k node appears at the end of a randomly selected link, thus  $\sum_j e_{ij} = q_i$ , and in neutral network  $e_{ij} = q_i q_j$
  - Disadvantages of Degree using e<sub>ij</sub> matrix:
    - ▶ Difficult to extract information through visual inspection
    - hard to see the magnitude and thus compare networks
    - ightharpoonup contains  $k_{max}^2/2$  r.v.'s
- 3. Measuring Degree Correlations
  - measure the average degree of its neighbor

$$k_{nn}(k) = \frac{1}{k_i} \sum_{j=1}^{N} A_{ij} k_j$$

• degree correlation function: calculate all node with degree k,  $k_{nn} = \sum_{k'} P(k'|k)$  where P(k'|k) is the conditional probability that following a link of a k-degree node we reach a degree k' node

# 3. Measuring Degree Correlations

Neutral Network

$$P(k'|k) = \frac{e_{kk}}{\sum_{k'} e_{kk'}} = \frac{e_{kk'}}{q_k} = \frac{q_{k'} q_k}{q_k} = q_k$$

$$k_{nn}(k) = \sum_{k'} k' q_{k'} = \sum_{k'} k' \frac{k' p(k' p(k'))}{\langle k \rangle} = \frac{\langle k^2 \rangle}{\langle k \rangle}$$

thus results in a friendship paradox (more popular)

- Assortative Network
- k<sub>nn</sub>(k)increases
- Disassortative Network
- $k_{nn}(k)$  decreases
- by empirical results, we estimate  $k_{nn}(k) = ak^{\mu}$  where:
  - Assortative Network  $(\mu > 0)$
  - ▶ Neutral Network ( $\mu = 0$ )
  - ▶ Disassortative Network  $(\mu < 0)$
- a single number to capture magnitude of correlation, either by  $\mu$  or correlation coefficient  $r = \sum_{jk} \frac{jk(e_{jk} q_j q_k)}{\sigma^2}$  where  $\sigma^2 = \sum_k k^2 q_k [\sum_k k q_k]^2$  r > 0 assortative, r < 0 disassortative, and r = 0 neutral

### 4. Structural Cutoffs

• Conflict: the expected number of links between degree k and k' node is  $E_{kk'}=e_{kk'}\langle k\rangle N$ , in a neutral network,

$$E_{kk'} = \frac{kp_k k' p_{k'}}{\langle k \rangle} N > 1$$

- ullet only for nodes that exceed some  $k_s$  does the conflict happens, known as structural cutfoff, where  $k_s \sim (\langle k \rangle N)^{1/2}$
- comparing  $k_{max}$  and  $k_s$ , in scale free:  $k_{max} \sim N^{\frac{1}{\gamma-1}}$ 
  - ▶ No Structural Cutoff  $(k_{max} < k_s)$
  - Structural Disassortivity  $(k_{max} > k_s)$ 
    - fewer links between hubs than expected -to generate networks free of structural disassortivity:
      - ▶ allow multiple links between nodes (not simple)
      - remove hubs with degree larger than  $k_s$  (simple network)

- 4. Structural Cutoffs (Continue)
  - Correlation Due to Structural Disassortativity or Unknown Process
  - use the following techniques to test
    - Degree Preserving Randomization with Simple Links (R-S)
      - if  $k_{nn}(k)$  and  $k_{nn}^{R-S}(k)$  are indistinguishable, then structural
      - if one shows degree correlation and the other doesn't, then there is an unknown process
    - Degree Preserving Randomization with Multiple Links (R-M)
      - always create neutral network
      - compare  $k_{nn}(k)$  and  $k_{nn}^{R-M}(k)$  to see if

- 5. Generating Correlated Networks
  - Degree Correlation in Static Models
    - Erdos-Renyi Model (Neutral)
    - Configuration Model (Neutral)
      - both follows  $k_{nn}(k) = \frac{\langle k^2 \rangle}{\langle k \rangle}$
    - Hidden Parameter Model
      - neutral if multi-links allowed, if not allowed  $k_{nn}(k) \sim k^{-1}$ , thus being disassortive. (i.e.  $\mu = 1$ )
  - Degree Correlation in Evolving Networks
    - Initial Attractiveness Model ( $\Pi(k) \sim A + k$ )
      - three regimes
        - ▶ Disassortative Regime ( $\gamma$  < 3)
          - $k_{nn}(k) \sim k^{-\frac{|A|}{m}}$
        - Neutral Regime ( $\gamma = 3$ )  $k_{nn}(k) \sim \frac{m}{2} \ln N$
        - ▶ Weak Assortativity Regime  $(\gamma > 3)$ 
          - $k_{nn}(k) \approx (m+A) \ln \left(\frac{k}{m+A}\right)$
    - Bianconi-Barabasi Model
      - uniform fitness: disassortive network (structural), however does not fully overlap, meaning disassortivity not fully explained by scale free

# 5. Generating Correlated Networks (Continue)

- Tuning Degree Correlations
- purpose: generate network with predefined degree distribution with max correlation
- Step 1 Link Selection:
  - choose at random two links, label four nodes at the end of the two links and order them in accordance to the degree value
- Step 2 Rewiring
  - 2A Assortative:
    - pair two highest node and two lowest nodes
  - 2B Disassortative:
    - pair the highest and lowest nodes

if simple network is required, check if rewiring leads to multilinks, and if it does reject and redo step  $1\,$ 

- 6. The Impact of Degree Correlations
  - difference in transition phase of giant components
    - Assortative Network
      - giant component emerges even when  $\langle {\it k} 
        angle < 1$
    - Disassortative Network
      - difficult forming giant component
    - ► Giant Component
      - for large k giant component is smaller for assortative since its harder to attract small degree nodes
  - additional consequences:
    - ▶ for assortative network,  $\langle d \rangle$  is smaller, however,  $\langle d_{max} \rangle$  is larger (the later is due to increase in k = 2 nodes)
    - stability of the network

### 7. Summary

• Complete Degree Correlation is determined by  $P(k^{(1)}, k^{(2)}, \ldots, k^{(k)} | k)$ , a node with degree k connects to node with degree  $k^{(1)}, k^{(2)}, \ldots, k^{(k)}$ 

# **NETWORK ROBUSTNESS**

- 1. Introduction
- 2. Percolation Theory
  - $\bullet$  Problem: given a lattice, if each intersection has p of being placed a pebble, what is ...
  - the expected size of the largest cluster?
  - the size of the average cluster?
  - $\rightarrow$  the larger the *p* the larger the cluster, thus assuming  $p_c$  to be threshold of percolating cluster, we define:
    - Average Cluster Size  $(\langle s \rangle)$ -  $\langle s \rangle \sim |p - p_c|^{-\gamma_p}$ , diverges as  $p \to p_c$
    - ▶ Order Parameter  $(P_{\infty})$ 
      - the probability that a randomly chosen pebble belongs to the largest cluster  $P_{\infty} \sim (p-p_c)^{\beta_p}$ , 0 as  $p \to p_c$
    - ightharpoonup Correlation Length ( $\zeta$ )
      - the mean distance between two pebble that belong to the same cluster  $\zeta \sim |p-p_c|^{-\nu}$
  - critical exponents:  $\gamma_p, \beta_p, v$ , are universal, i.e. independent of the lattice nature or  $p_c$



# 2. Percolation Theory (Continue)

- $\triangleright$   $p_c$  depends on lattice type
- p<sub>c</sub> depends on lattice dimension (for large dimension, independent)
- critical exponents depend on lattice dimension alone
- Inverse Percolation Transition and robustness
- randomly remove f fraction of nodes, for f larger than  $f_c$  giant component vanishes.
- $P_{\infty}$  is dependent on f and  $f_c$
- f = 1 p

### 3. Robustnesss of Scale-Free Networks

- percolation focus on graphs with nodes of identical degree
- high f<sub>c</sub> for scale free network
- Molloy-Reed Criterion
- for arbitrary distribution, for giant component to exist, connect to at least 2 nodes on average  $k=\frac{\langle k^2\rangle}{\langle k\rangle}>2$

- 3. Robustness of Scale-Free Networks (Continue)
  - Critical Threshold
  - using Molloy-Reed,  $f_c$  for arbitrary distribution follows  $f_c=1-\frac{1}{\frac{\langle k^2 \rangle}{c}-1}$
  - the scale free network's  $f_c$  depends on  $\gamma$  with 3 as threshold
  - Robustness of Finite Networks
  - $f_c pprox 1 rac{C}{N^{rac{3-\gamma}{\gamma-1}}}$  where C is a N-independent term
  - perceive relative size of a giant component using  $\frac{P_{\infty}(f)}{P_{\infty}(0)}$ , where f is the fraction removed
- 4. Attack Tolerance
  - Attack: start with removal of highest degree nodes
  - Critical Threshold Under Attack
  - attack consequences  $k_{max} 
    ightarrow k'_{max}$ ,  $p_k 
    ightarrow p'_k$
  - scale-free is way more fragile under attacks than random networks,  $f_c$  decreases drastically

- 5. Cascading Failures
  - initial failure keeps spreading
  - $p(s) \sim s^{-\alpha}$ , where  $\alpha$  is the avalanche exponent
- 6. Modeling Cascading Failure
  - Failure Propagation Model
  - consider network with arbitrary distribution, each node contains an agent. agent i can be in state 0(healthy) or 1(failed),  $\varphi$  be the breakdown threshold for all  $\varphi_i$
  - all agents are healthy in t=0, in each timestep, randomly pick an agent to update its state
    - if agent i is 0, if at least  $\varphi$  fraction of its  $k_i$  neighbors are in state 1, change it to 1
    - if agent i is 1, remain unchanged
  - Three Regimes:
    - Subcritical Regime ( $\langle k \rangle$  large)
      - size of cascading event s follows exponential
    - Supercritical Regime ( $\langle k \rangle$  small)
    - Critical Regime (boundary of the former two)

## 7. Modeling Cascading Failure

- Braching Model
- failure propogation model being too complicated
- cascading failure follows a branching process
- node with initial failure is the root of the tree
- Details: starts with a single active node, and produces k offsprings based on the a  $p_k$  distribution, if node selects k=0, the branch dies out, if k>0, k new active sites is created
- three regime:
  - Subcritical Regime  $(\langle k 
    angle < 1)$ 
    - terminated
  - Supercritical Regime  $(\langle k \rangle > 1)$ 
    - grow indefinitely
  - Critical Regime ( $\langle k \rangle = 1$ ) size *s* follows a power law
- Use: branching model can help determine the avalanche size distribution p(s) through  $p_k$

- 8. Building Robustness
  - Design Robust Network
  - Robustness Captured by  $f_c$  which depends on  $\langle k^2 \rangle$  and  $\langle k \rangle$ , thus the goal is to maximize  $\langle k^2 \rangle$  and keep  $\langle k \rangle$  (cost) fixed take into account random failures and attack, thus goal is to maximize  $f_c^{tot} = f_c^{rand} + f_c^{targ}$  best achieved by  $p_k = (1-r)\delta(k-k_{min}) + r\delta(k-k_{max})$ , r is frac of node with degree  $k_{max}$ , thus, best achieved when r=1/N
- 9. Summary