

Grundlagen des maschinellen Lernens

github.com/ML-KA/presentations Martin Thoma | 28. Oktober 2015

Was ist Machine Learning?

Definition by Tom Mitchell: ML

A computer program is said to learn from **experience** E with respect to some class of **tasks** T and **performance measure** P, if its performance at tasks in T, as measured by P, improves with experience E.

Klassifikation (überwacht)

 Basics
 Tools
 Weiteres
 End

 0 ● 0 0 0 0
 0 0
 0 0
 0 0

 Martin Thoma – Grundlagen des maschinellen Lernens
 28. Oktober 2015
 3/14

Klassifikation (überwacht)

 Basics
 Tools
 Weiteres
 End

 0 ● 0 0 0 0
 0 0
 0
 0 0 0 0

 Martin Thoma – Grundlagen des maschinellen Lernens
 28. Oktober 2015
 3/14

Klassifikation (überwacht)

Basics Tools
○●○○○○
Martin Thoma – Grundlagen des maschinellen Lernens

Weiteres

End 0000

und Clustering (unüberwacht)

000000 Martin Thoma - Grundlagen des maschinellen Lernens

Basics

Tools

Weiteres

End 3/14

MNIST - Ziffern klassifizieren

- Klassen: 0, 1, 2, 3, 4, 5, 6,7, 8, 9
- 60 000 Trainigsdaten, 10 000 Testdaten auf yann.lecun.com/exdb/mnist
- Algorithmen zur
 Klassifizierung: SVMs
 (Support Vector Machines),
 CNNs (Convolutional
 Neural Networks),
 k Nearest Neighbors (siehe tinyurl.com/knn-interact)

Datensatz der Klasse "2"; $28 \text{ px} \times 28 \text{ px}$

Daten

- In der Klassifikation: Tupel (X,y), wobei $X \in \mathbb{R}^n$ ein Feature-Vektor, $y \in \{1,\ldots,k\}$ das Label und k die Anzahl der Klassen ist.
- Skalenniveaus
 - Nominal: Namen, Geschlecht
 - Ordinal: Konfektionsgrößen
 - Intervall: Anfangszeit einer Veranstaltung
 - Verhältnis: Temperatur in K
 - Absolut: Anzahl Personen
- Datenmenge: "There is no data like more data"

vgl. Vorlesung "Mustererkennung"

Preprocessing / Feature extraction

- Wie bekomme ich meine Features?
- Bilder: Pixel-Werte für jeden Farbkanal
 - Kleiner Skalieren? Rotieren?
 - Farbraum? (z.B. RGB, HSV, HSL, HSI)
 - lacktriangle Normalisieren auf [0,1]
- Verhältis zweier Größen
- Deep Learning: Auto-Encoder

vgl. Vorlesung "Neuronale Netze"

Generalisierung und Overfitting

- Generalisierung: Wie gut ist man auf ungesehenen Daten?
- Overfitting: Auswendig lernen

5 Datenpunkte, 3 perfekte Modelle

		Trainingsfehler	
		©	☺
Test- fehler	© ©	Klassifizierer; mehr Trainingsdaten Programmierfehler	Overfitting Perfekt

sklearn

Lasagne

- Neuronale Netze trainieren
- Mit GPU, falls CUDA installiert ist
- github.com/Lasagne
- Lasagne for Python Newbies

Anwendungen

- how-old.net
- "Gelöste" Aufgaben:
 - Gesichter in Bild finden, z.B. mit Sliding Window
 - Geschlecht klassifizieren: ♂, ♀
 - Regression beim Alter

Wie alt bin ich auf diesem Bild?

Anwendungen

- how-old.net
- "Gelöste" Aufgaben:
 - Gesichter in Bild finden, z.B. mit Sliding Window
 - Geschlecht klassifizieren: ♂, ♀
 - Regression beim Alter

20 Jahre alt

Thanks for Your Attention!

Tools

Basics

Vorlesungen

- Prof. Dr. Bayerer: Mustererkennung
- Prof. Dr. Waibel:
 - Kognitive Systeme
 - Neuronale Netze (Dr. Kilgour)
- Prof. Dr. Zöllner:
 - Machine Learning 1
 - Machine Learning 2
 - Praktika und Seminare

Materialien

■ Introduction to Machine Learning. 1h 29min

Tools

Basics

Image Sources

sklearn cheat sheet by Andreas Mueller