

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ .	Информатика и системы управления
КАФЕДРА	Программное обеспечение ЭВМ и информационные технологии

ЛАБОРАТОРНАЯ РАБОТА № 3

«Построение и программная реализация алгоритма сплайн-интерполяции табличных функций»

Студент	Маслова Марина Дмитриевна	
	фамилия, имя, отчество	
Группа	ИУ7-43Б	
Оценка (баллы)		
·		
Преподаватель	Градов Владимир Михайлович	
	фамилия, имя, отчество	

Оглавление

Исходные данные	
Описание алгоритма	3
Код программы	4
Результат работы	10
Контрольные вопросы	11

Цель работы. Получение навыков владения методами интерполяции таблично заданных функций с помощью кубических сплайнов.

Исходные данные

- 1. Таблица функции, заданная с помощью формулы $y=x^2$ в диапазоне [0.. 10] с шагом 1.
 - 2. Значение аргумента х в первом интервале и в середине таблицы.

Описание алгоритма

Участок между каждой парой соседних точек интерполируется кубическим полиномом вида:

$$\psi(x) = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3$$
$$h_i = x_i - x_{i-1}, \ 1 \le i \le N$$

Коэффициенты определяются следующим образом:

1. Определяются коэффициенты c_i методом прогонки:

$$c_i = \xi_{i+1}c_{i+1} + \eta_{i+1}$$

где ξ_{i+1} , η_{i+1} — прогоночные коэффициенты, определяющиеся по формулам:

$$\xi_{i+1} = -\frac{h_i}{h_{i-1}\xi_i + 2(h_{i-1} + h_i)},$$

$$\eta_{i+1} = \frac{f_i - h_{i-1} \eta_i}{h_{i-1} \xi_i + 2(h_{i-1} + h_i)},$$

где

$$f_i = 3(\frac{y_i - y_{i-1}}{h_i} - \frac{y_{i-1} - y_{i-2}}{h_{i-1}}).$$

При этом начальные и конечные условия определяются из равенства нулю производных в крайних точках заданного промежутка:

$$c_1 = 0$$
, $c_{N+1} = 0$, $\xi_2 = 0$, $\eta_2 = 0$

2. По известным коэффициентам c остальные коэффициенты определяются следующим образом:

$$a_{i} = y_{i-1}, \ 1 \leq i \leq N,$$

$$b_{i} = \frac{y_{i} - y_{i-1}}{h_{i}} - h_{i} \frac{c_{i+1} + 2c_{i}}{3}, \ 1 \leq i \leq N - 1,$$

$$b_{N} = \frac{y_{N} - y_{N-1}}{h_{N}} - h_{i} \frac{2c_{N}}{3},$$

$$d_{i} = \frac{c_{i+1} - c_{i}}{3h_{i}}, \ 1 \leq i \leq N - 1,$$

$$d_{i} = -\frac{c_{N}}{3h_{N}}.$$

Код программы

Код программы представлен на листингах 1-2.

```
dy1 = func[i][1] - func[i - 1][1]
        dy2 = func[i - 1][1] - func[i - 2][1]
        f_{coefs.append(3 * (dy1 / h[i - 1] - dy2 / h[i - 2]))}
    return f coefs
def find ksi coefs(h):
       Поиск коэффициентов ξ
   ksi coefs = [0., 0.]
    for i in range (2, len(h) + 1):
        cur ksi = (-h[i-1] / (h[i-2] * ksi coefs[i-1]
                   + 2 * (h[i - 2] + h[i - 1]))
        ksi coefs.append(cur ksi)
    return ksi coefs
def find eta coefs(ksi, h, f):
       Поиск коэффициентов η
    eta coefs = [0., 0.]
    for i in range (2, len(h) + 1):
        cur eta = ((f[i - 1] - h[i - 2] * eta coefs[i - 1]) /
                   (h[i-2] * ksi[i-1] + 2 * (h[i-2] + h[i-1])))
        eta coefs.append(cur eta)
    return eta coefs
def find c coefs(ksi, eta):
       Подсчет коэффициентов с
   num = len(eta)
    c coefs = [0., 0.]
    for i in range (num - 1, 1, -1):
        c_coefs.insert(1, ksi[i] * c_coefs[1] + eta[i])
    return c coefs[:-1]
def get_c_coefs(func, h_coefs):
       Поиск коэффициентов при второй степени сплайна
    ksi coefs = find ksi coefs(h coefs)
    f coefs = find f coefs(func, h coefs)
    eta coefs = find eta_coefs(ksi_coefs, h_coefs, f_coefs)
    c coefs = find c coefs(ksi coefs, eta coefs)
    return c coefs
def get b coefs(func, h, c):
```

```
Подсчет коэффициентов b
   b coefs = []
   N = len(func) - 1
   for i in range (1, N):
       cur b = ((func[i][1] - func[i - 1][1]) / h[i - 1]
                 - (h[i - 1] * (c[i] + 2 * c[i - 1])) / 3)
       b coefs.append(cur b)
   b_{coefs.append((func[N][1] - func[N - 1][1]) / h[N - 1]
                   -h[N-1] * 2 * c[N-1] / 3)
   return b coefs
def get d coefs(h, c):
       Подсчет коэффициентов b
   d coefs = []
   N = len(h)
   for i in range(1, N):
       cur d = (c[i] - c[i - 1]) / (3 * h[i - 1])
       d_coefs.append(cur_d)
   d coefs.append(-c[N-1] / (3 * h[N-1]))
   return d coefs
def get_x_position(func, x):
       Поиск положения элемента в таблице
   pos = 0
   while pos < len(func) and x > func[pos][0]:
       pos += 1
   pos -= 1
   if pos > len(func) - 2:
       pos = len(func) - 2
   if pos < 0:
       pos = 0
   return pos
def count spline(func, x):
       Подсчет значения функции сплайн-интерполяцией
   position = get_x_position(func, x)
```

```
h coefs = find h coefs(func)
    a coefs = [point[1] for point in func[:-1]]
    c_coefs = get_c_coefs(func, h_coefs)
    b coefs = get b coefs(func, h coefs, c coefs)
    d_coefs = get_d_coefs(h coefs, c coefs)
    dif = x - func[position][0]
    answer = a coefs[position]
    answer += \overline{b} coefs[position] * dif
    answer += c coefs[position] * dif ** 2
    answer += d coefs[position] * dif ** 3
    return answer
                            Листинг 2. main.py
11 11 11
   Модуль для запуска программы
    ЛАБОРАТОРНАЯ РАБОТА №3
    ПОСТРОЕНИЕ И ПРОГРАММНАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА
    СПЛАЙН-ИНТЕРПОЛЯЦИИ ТАБЛИЧНЫХ ФУНКЦИЙ
import argparse
import table func
import newton
import spline
def create args():
       Добавление аргументов командной строки
    parser = argparse.ArgumentParser()
    parser.add argument('file name', nargs='?', default='data/data.csv')
    args = parser.parse args()
    return args
if name == " main ":
   ARGS = create args()
    try:
        func table = table func.read table(ARGS.file name)
        func table.sort(key=lambda table: table[0])
        table_func.print_table(func_table)
        x = float(input("\nВведите значения аргумента для интерполяции:
"))
    except FileNotFoundError:
        print("\nТакого файла не существует!")
    except ValueError:
        print("\nНечисловые данные недопустимы!")
        print("\nПроверьте содержимое файла или введенный аргумент!")
    except EOFError:
```

```
print("\nПустой файл!")
    except TypeError:
       print("\nB файле должно быть три столбца с данными!")
    else:
       print("Точное значение:")
       print("{:.6f}".format(x * x))
        print ("Результат сплайн-интерполяции:")
        print("{:.6f}".format(spline.count spline(func table, x)))
        print("Результат интерполяции полиномом Ньютона 3-ей степени:")
        print("{:.6f}".format(newton.find newton y(func table, x, 3)))
                         Листинг 3. table func.py
   Модуль ввода-вывода табличных функций
def read table(file name):
        Чтение табличной функции из файла
    func_table = []
    with open (file name, "r") as file:
        for i, rec in enumerate(file):
            func table.append(list(map(float, rec.split())))
            if len(func table[i]) != 2:
                raise TypeError
    if not func table:
       raise EOFError
    return func table
def print table(table):
       Вывод табличной функции
    if table:
       print("Загруженная таблица:")
       print("
                 X
    else:
       print("Пустой файл!")
    for rec in table:
        print("
                          {:9.2f}".format(rec[0], rec[1]))
                   \{:.2f\}
                           Листинг 4. newton.py
   Модуль интерполяции полиномом Ньютона
def find_x_position(table, arg):
       Поиск положения заданного аргумента в таблице
```

```
prev arg index = 0
    num_table_args = len(table)
    while (prev_arg_index < num_table_args and</pre>
           arg > table[prev arg index][0]):
        prev arg index += 1
    return prev arg index - 1
def create calc table (table, arg position, coef num):
       Выбор значений для подсчета коэффициентов полинома
    res table = []
   begin = arg position - coef num // 2 + 1
    begin = begin if begin >= 0 else 0
    begin = (begin if begin + coef_num < len(table)</pre>
             else len(table) - coef num)
    for i in range(begin, begin + coef num):
        res table.append([x for x in table[i]])
    return res table
def calc divided difference(y0, y1, x0, x1):
       Подсчет разделенной разности
    return (y0 - y1) / (x0 - x1)
def calc coef(calc table, first col):
       Подсчет коэффициентов полинома
        с помощью разделенных разностей
    for y in range(first col, len(calc table)):
        for i in range(0, len(calc table) - y):
            calc table[i].append(calc divided difference(
                calc table[i][y],
                calc_table[i + 1][y],
                calc table[i][0], calc table[i + y][0]))
def calc func(calc table, arg):
       Подсчет значения функции с помощью таблицы разделенных разностей
    result = 0
   mul = 1
    for i in range(1, len(calc table[0])):
        result += calc table[0][i] * mul
        mul *= arg - calc table[i - 1][0]
    return result
```

```
def find_newton_y(table, arg, power):

"""

Поиск значения отсортированной по аргументу табличной функции с помощью интерполяции полиномом Ньютона

"""

arg_position = find_x_position(table, arg)
calculaton_table = create_calc_table(table, arg_position, power + 1)
calc_coef(calculaton_table, 1)
result = calc_func(calculaton_table, arg)

return result
```

Результат работы

Результаты интерполяции кубическим сплайном, полиномом Ньютона 3 степени и точное значение функции:

x	Точное значение	Сплайн	Полином Ньютона
0.5	0.25	0.341506	0.25
4.0	16.00	16.00	16.00
5.5	30.25	30.250345	30.25
7.5	56.25	56.256561	56.25
9.5	90.25	90.341506	90.25

Контрольные вопросы

1. Получить выражения для коэффициентов кубического сплайна, построенного на двух точках.

Пусть даны две точки (x_0, y_0) и (x_1, y_1) .

В интервале аргумента $[x_0, x_1]$ значение коэффициента $c=c_1=0.$

Тогда значения остальных коэффициентов:

$$a = a_1 = y_0$$

$$b = b_1 = \frac{y_1 - y_0}{x_1 - x_0} - (x_1 - x_0) \frac{2c_1}{3} = \frac{y_1 - y_0}{x_1 - x_0} - 0 = \frac{y_1 - y_0}{x_1 - x_0},$$

$$d = d_1 = -\frac{c_1}{3(x_1 - x_0)} = 0.$$

Таким образом, полином будет иметь вид:

$$\psi(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

То есть сплайн будет представлять прямую, проходящую через две заданные точки.

2. Выписать все условия для определения коэффициентов сплайна, построенного на 3-х точках.

На трех точках образуются два интервала аргумента, на каждой строится сплайн, задающийся полиномом с четырьмя коэффициентами. Общее количество коэффициентов, которые необходимо определить, равно 8, то есть необходимо 8 условий.

Первые четыре определяются по совпадению значений полинома сплайна со значениями функции в узлах, а именно:

$$\psi(x_0) = y_0, \ \psi(x_1) = y_1, \ \psi(x_2) = y_2.$$

Откуда получаем:

• по $\psi(x_{i-1}) = y_{i-1} = a_i$, имеем (условия 1-2):

$$a_1 = y_0,$$
 $a_2 = y_1;$

• по $\psi(x_i) = y_i = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3$, имеем (условия 3-4):

$$a_1 + b_1(x_1 - x_0) + c_1(x_1 - x_0)^2 + d_1(x_1 - x_0)^3 = y_1$$

 $a_2 + b_2(x_2 - x_1) + c_2(x_2 - x_1)^2 + d_2(x_2 - x_1)^3 = y_2$

Последние четыре получаем по совпадению первых и вторых производных во внутренних узлах, а также предположению, что на концах участка интерполирования вторая производная равна нулю:

• по $\psi_1'(x_1) = \psi_2'(x_1)$, имеем (условие 5):

$$b_1 + 2c_1(x_1 - x_0) + 3d_1(x_1 - x_0)^2 = b_2$$

• по ψ_1 "(x_1) = ψ_2 "(x_1), имеем (условие 6):

$$c_1 + 3d_1(x_1 - x_0) = c_2$$

• по ψ_1 "(x_0) = 0 и ψ_2 "(x_2) = 0, имеем (условия 7-8):

$$c_1 + 3d_1(x_0 - x_0) = 0 \Rightarrow c_1 = 0$$

$$c_2 + 3d_2(x_2 - x_1) = 0 \Rightarrow d_2 = -\frac{c_2}{3(x_2 - x_1)}$$

3. Определить начальные значения прогоночных коэффициентов, если принять, что для коэффициентов сплайна справедливо $C_1 = C_2$.

Коэффициенты c_i определяются через прогоночные коэффициенты по формуле:

$$c_i = \xi_{i+1}c_{i+1} + \eta_{i+1}$$

В случае если $c_{_1} = c_{_2}\,$, формула имеет вид:

$$c_1 = 1 \cdot c_2 + 0.$$

Таким образом:

$$\xi_2 = 1$$
, $\eta_2 = 0$

4. Написать формулу для определения последнего коэффициента сплайна C, чтобы можно было выполнить обратный ход метода прогонки, если в качестве граничного условия задано $kC_{N-1} + mC_N = p$, где k, m, p - заданные числа.

Коэффициенты c_i определяются через прогоночные коэффициенты по формуле:

$$c_{i-1} = \xi_i c_i + \eta_i.$$

B случае i = N:

$$c_{N-1} = \xi_N c_N + \eta_N.$$

Откуда:

$$c_N = \frac{c_{N-1} - \eta_N}{\xi_N}.$$

Из граничного условия получаем:

$$c_{N-1} = \frac{p - mC_N}{k}.$$

Откуда:

$$c_{N} = \frac{\frac{p - mC_{N}}{k} - \eta_{N}}{\xi_{N}}$$

$$c_{N} \xi_{N} = \frac{p - mC_{N}}{k} - \eta_{N}$$

$$c_{N} \xi_{N} k = p - mC_{N} - \eta_{N} k$$

$$c_N(\xi_N k + m) = p - \eta_N k$$

Таким образом:

$$c_N = \frac{p - \eta_N k}{\xi_N k + m}$$