

Christian-Albrechts-Universität zu Kiel

01_einfuehrung

Allgemeines, Ablauf, Statistische Datenanalyse

"Albernes Zauberstabgefuchtel und kindische Hexereien wird es hier nicht geben. Daher erwarte ich von den wenigsten Begeisterung für die schwierige Lehre und exakte Kunst der Statistik."

Warum überhaupt Statistik...

CAU

Christian-Albrechts-Universität zu Kiel

Für Sie:

Es wird gemacht! Wenn Sie es verstehen wollen, müssen Sie sich damit beschäftigen!

Für die Archäologie als Disziplin:

Mit Statistik wird alles einfacher!

- Aussagen werden verständlicher und vor allem nachvollziehbar
- Aussagen sind statistisch richtig oder falsch, unabhängig vom Renomee des Forschers
- Aussagen und Daten werden vergleichbar
- Materialkenntnis für induktives Verstehen von achäolog.
 Zusammenhängen braucht Jahrzehnte, Erlernen statistischer Verfahren nur mehrere Semester

Figures don't lie, but liars figure.
Samuel Clemens (alias Mark Twain)

Statistik ist nur korrekt, wenn Frage, Ansatz und Methode korrekt sind:

Bsp: Ist soziale Stratifizierung anhand von Metallbeigabe erkennbar? Oder anhand von Schmuckbeigabe? Was, wenn dies vom (nicht erkannten) Geschlecht abhängt...

Messen und vor allem Codieren von Messungen erfordern immer subjektive Entscheidungen:

Gründe für die Entscheidungen sind häufig nicht nachzuvollziehen → Subjektiver Einfluss

Statistik um der Statistik willen?

Ein archäologisch erkennbarer Sinn muß hinter der Untersuchung stecken. Und die Ergebnisse der Untersuchung muß archäologisch überprüfbar sein.

Christian-Albrechts-Universität zu Kiel

Statistikprogramm R: Geschichte (nach Theus)

Christian-Albrechts-Universität zu Kiel

R ist "Nachfolger von S bzw. S-Plus"

- S Historie:
- 1976-1980: S-Version 1; (Entwicklung bei AT&T Labs) Sammlung von Fortran Routinen
- 1980-1984: S-Version 2 Portierung auf UNIX, Definition der Kommando-Sprache
- 1988-1991: S-Version 3 Portierung auf C, Objekte, Modelle
- 1999-heute:

S-Version 4 Verbesserte Objektstruktur (parallel dazu die kommerzielle Version S-Plus)

- R-Historie
- frühe 90er: Entwicklung in Neuseeland (R. Ihaka, R. Gentleman) Lisp basiert, einzige Plattform war der Mac
- mitte 90er: Erweiterung auf andere Plattformen
- ende 90er: Verteilte Entwicklung durch das R-Core-Team
- R-Core-Team: z.Z. 17 Entwickler aus der ganzen Welt.
- R-"Spezialisten": z.Z. ca. 50 Contributer
- Entwickler von R-Paketen: hunderte ... täglich mehr

Statistikprogramm R: Warum?

CAU

Christian-Albrechts-Universität zu Kiel

Open Source

Frei zugänglicher Quellcode: Überprüfbarkeit des Programms Kostenlos: Sie müssen keine horrenden Summen ausgeben oder Raubkopien anfertigen.

Referenz der benutzten Algorithmen

Wissenschaftlich zitierfähig

Mächtigkeit

Das Programm kann alles! Ehrlich!

Verbreitung

Läuft auf allen Betriebssystemen Wird im wissenschaftlichen Umfeld (vor allem Naturwissenschaften) häufig genutzt

Statistikprogramm R: Warum?

CAU

Christian-Albrechts-Universität zu Kiel

Nachteile

- Kommandozeile: ungewohnt (neue Art, mit dem Rechner zu arbeiten)
- GUIs sehen unterschiedlich aus
- Englischkenntnisse erforderlich
- Namen von Funktionen und Parametern müssen behalten werden: heißt es col.names, colnames oder header?
- Dokumentation teilweise nicht sehr intuitiv: man sollte wissen, was man sucht

Christian-Albrechts-Universität zu Kiel

Grundlegende Literatur

Stephan Shennan, Quantifying Archaeology. Unser Lehrbuch!

Dubravko Dolić, Statistik mit R.

John Verzani, Using R for Introductory Statistics.

R-spezifische (einführende) Statistikbücher

Lothar Sachs, Angewandte Statistik. Methodensammlung mit R. http://www.springerlink.com/content/l32744/

Weitere Literatur

- M. Fletcher/G. R. Lock, Digging Numbers: Elementary Statistics for Archaeologists. Oxford Univ. Comm. Arch. Monogr. 332 (Oxford 2005).
- M. J. Baxter, Exploratory Multivariate Analysis in Archaeology (Edinburgh 1994).
- M. Baxter, Statistics in Archaeology (London 2003).
- P. Ihm, Statistik in der Archäologie: Probleme der Anwendung, allgemeine Methoden, Seriation und Klassifikation. Archaeo-Physika 9 (Köln 1978).
- J. Bortz, Statistik für Sozialwissenschaftler4 (Berlin u. a. 1993).

Christian-Albrechts-Universität zu Kiel

Datum	Sitzung	Thema	Shennar Kap	1
28.10.10	1	Allgemeines	1+2	
04.11.10	2	Einführung R		
11.11.10	3	Explorative Statistik		3
18.11.10	4	Deskriptive Statistik		4
25.11.10	5	Nicht-parametrische Tests		5
02.12.10	6	Chi-Quadrat und Zusammenhangsmaße		7
09.12.10	7	Stichprobe und Population, Wahrscheinlichkeitstheorie	5, 6, 14	
16.12.10	8	Verteilungen		6
23.12.10		frei		
30.12.10		frei		
06.01.11		frei		
13.01.11	9	Parametrische Tests		6
20.01.11	10	Regression und Korrelation		8
27.01.11	11	Clusteranalyse		11
03.02.11	12	Korrespondenzanalyse		13
10.02.11	13	Klausur		

Christian-Albrechts-Universität zu Kiel

Arten von Statistik

Deskriptive Statistik:

Zusammenfassung und Beschreibung von Daten mittels von Kenngrößen (Mittelwert, Standartabweichung etc.)

(graphische Darstellung):

Darstellung und Zusammenfassung von Daten mittels Diagrammen (Balken-, Kreisdiagrammen etc.)
Dient zur Beschreibung wie auch zur Musterentdeckung, daher

Zwischenstellung

Explorative Statistik:

Darstellung und Zusammenfassung von Daten, um dahinter liegende Muster zu erkennen (z.B. Korrespondenzanalyse)

Induktive Statistik (Inferenzstatistik):

Testen von Hypothesen über die Daten, die dann statistisch signifikant belegt oder verworfen werden (Statistische Tests, z.B. Chi-Quadrat-Test)

Christian-Albrechts-Universität zu Kiel

Daten, Variablen, Merkmale

Variable oder Merkmal:

Das, was gemessen oder untersucht werden soll

Bsp: Körpergröße

Merkmalsträger

Das, dessen Merkmal gemessen wird.

Bsp: Ich als Besitzer einer Körpergröße, Gräber, Personen...

Variablenausprägen oder Merkmalswerte (oder einfach Werte):

Tatsächlich gemessene Eigenschaften.

Bsp: Meine Körpergröße beträgt 1.81 m.

Diskrete Variablen:

Variable, die nur bestimmte Werte ohne Zwischenwerte annehmen können.

Bsp: Einkommen, Anzahl von Keramikobjekten, Geschlecht (?)

Stetige Variablen:

Variablen, die jeden Wert und jeden Zwischenwert annehmen können.

Bsp: Angaben wie Körpergröße, Temperaturen, Prozentangaben

Grundlegende statistische Verfahren für

archäologische Datenanalyse in R

Christian-Albrechts-Universität zu Kiel

Arten von Statistik

Univariate Statistik:

Nur eine Variable ist beteiligt.

z.B. Gewicht von Bronzebeilen

Bivariate Statistik:

Zwei Variablen sind beteiligt, es interessiert ihr Zusammenhang. z.B. Verhältnis von Länge zu Breite von Bronzebeilen

Multivariate Statistik:

Mehr als zwei Variablen sind beteiligt, es interessiert ihr Zusammenhang. z.B. Ort des Fundes von Beilen (Grab, Depot, Siedlung) in Abhängigkeit von ihrer chemischen Zusammensetzung (Anteil Kupfer, Zinn, Arsen, Blei etc.)

Unabhängige - Abhängige Variable

Christian-Albrechts-Universität zu Kiel

Unabhängige Variable:

Die vermutete Ursache eines Zusammenhangs.

Abhängige Variable:

Die vermutete Wirkung der unabhängigen Variable in einem Zusammenhang.

Beispiel:

Anzahl von Perlen in einem Grab Abhängig

Hypothese: Die Anzahl der Perlen in einem Grab ist abhängig vom Geschlecht der Bestatteten.

Kann (muss) nicht immer festgelegt werden!

Bsp: Volumen und Höhe eines Gefäßes...

Stichprobe und Grundgesamtheit

CAIU

Christian-Albrechts-Universität zu Kiel

Grundgesamtheit

Menge aller Merkmalsträger, die für die Untersuchung relevant sind.

Stichprobe

Auswahl von Merkmalsträgern nach bestimmten Kriterien (z.B. Repräsentativität), die an Stelle der Grundgesamtheit untersucht werden

Bsp. Sonntagsfrage:

Grundgesamtheit: Alle Bundesbürger, die eine Politische Meinung haben. Stichprobe: Diejenigen, die vom Umfrageunternehmen befragt wurden

Totalerhebung ↔ **Teilerhebung**

In der Archäologie gibt es immer nur Teilerhebungen mittels einer Stichprobe! Die Grundgesamtheit bleibt immer fraglich!

Unabhängige - Abhängige Stichprobe

CAIC

Christian-Albrechts-Universität zu Kiel

Abhängige Stichproben:

Das Ergebnis der einen Stichprobe ist teilweise von der anderen abhängig (Untersuchung von Patienten vor/nach Einnahme eines Medikamentes)

Unabhängige Stichproben:

Das Ergebnis der einen Stichprobe ist nicht von der anderen abhängig (Untersuchung von zwei Gräberfeldern)

Gliederung einer statistischen Untersuchung

Christian-Albrechts-Universität zu Kiel

Datenerhebung

z.B. Grabung, Literaturrecherche

Datenerfassung

z.B. Eingabe der Daten in eine Datenbank

Datenaufbereitung und Datendarstellung

z.B. Eliminieren von Null-Werten

Deskriptive Statistik: Diagramme, um sich Überblick zu verschaffen, Kennwerte erheben (Mittelwert etc.)

Datenanalyse

Prüfen von Hypothesen über die Grundgesamtheit, Inferenzstatistik

Christian-Albrechts-Universität zu Kiel

Datenskalierungsebenen

nominal:

Variablenkategorien stehen in keinem definierten Verhältnis zueinander; nur Zählen ist erlaubt (Beispiel: Geschlecht)

ordinal:

Variablenkategorien sind vergleichbar, sie unterscheiden sich in Hinsicht auf ihre Ausprägung [Größe/Stärke/Intensität]; ihre Rangfolge ist bestimmbar (Beispiel: Erhaltungsbedingungen)

metrisch:

Variable folgt einem festen Messsystem; alle Rechenoperationen sind möglich. Zu unterscheiden sind:

1. Intervallskala:

Die Variable besitzt einen willkürlich gewählten Nullpunkt (°C)

2. Verhältnisskala (auch Ratioskala):

Die Variable besitzt einen absoluten Nullpunkt (°K)

manchmal auch benutzt: Absolutskala:

Zählwerte (Einwohneranzahl)

CAU

Christian-Albrechts-Universität zu Kiel

Datenskalierungsebenen

Skalenart	Mögliche Aussagen	Beispiele
Nominalskala	Gleichheit, Verschiedenheit	Telefonnummern, Krankheitsklassifikatio nen, Keramiktypen
Ordinalskala	Größer-kleiner- Relationen	Windstärken, Akademische Ränge, Reichtumsklassen, Stratigraphie
Intervallskala	Gleichheit von Differenzen	Temperatur (in °C), Kalenderzeit
Verhältnisskala	Gleichheit von Verhältnissen	Längenmessung, Gewichtsmessung, Gefäßhöhe

nach Bortz 2005

CAU

Christian-Albrechts-Universität zu Kiel

Datenskalierungsebenen

Skalenart	Sinnvoll interpretierbare Berechnungen			
	Auszählen	Ordnen	Differenz bilden	Quotient bilden
Nominalskala	ja	nein	nein	nein
Ordinalskala	ja	ja	nein	nein
Intervallskala	ja	ja	ja	nein
Verhältnisskala	ja	ja	ja	ja

Christian-Albrechts-Universität zu Kiel

Datenskalierungsebenen

Änderungen der Skalierungsebene:

nach unten:

Immer möglich.

Bsp: Klassifizierung von Messergebnissen (klein-mittel-groß)

Aber: Führt aber zu Informationsverlust.

nach oben:

manchmal möglich.

Bsp: Statt Klassifizierung der Keramik in Grob-Feinware Messung der

Korngröße

Aber: Führt zu größerem Datenaufkommen und Komplexität der

Messung.

Fazit:

Für Analysen ist die am besten geeignete Skalierungsebene zu wählen. Da sich aber Änderungen in den Anforderungen ergeben können, Faustregel: Immer eine Ebene genauer aufnehmen, als man am Ende auswerten will... (wie gesagt, nur eine Faustregel)

Christian-Albrechts-Universität zu Kiel

Datenaufnahme: Urliste

Einfache Auflistung von Daten.

Bsp:

Christian-Albrechts-Universität zu Kiel

Datenaufbereitung: Datenmatrix

Tabellarische Zusammenfassung mehrerer Variablen je Merkmalsträger

Bsp:

Datenaufbereitung: "Strichliste" / Häufigkeitsverteilung

Tabellarische Zusammenfassung mehrerer Merkmalsträger je Merkmalsausprägung

Bsp:

es interessiert ihr Zusammenhang.

		00 111101
Körpergröße	"Striche"	Anzahl
154		3
156		1
167	İII	3
165		2
171	ĺ	1
176	İ	1
187	j	1
190	Ì	1
	-	

Christian-Albrechts-Universität zu Kiel

Datenaufbereitung: Klassifizierung

Tabellarische Zusammenfassung mehrerer Merkmalsträger je einer Klasse von Merkmalsausprägung

Bsp:

Körpergröße	"Striche"	Anzahl
<150		0
150-159	IIII	4
160-169	iiiii	5
170-179	ii	2
180-189	Ï	1
>190	j	1

Klassenbreite hier 10 cm

Faustregeln: ca. 8 – 12 Klassen oder Klassenzahl $k \approx \sqrt{\eta}$ in diesem Fall also $k \approx \sqrt{13} = 3,605551275 \approx 4$

Christian-Albrechts-Universität zu Kiel

CAU

Christian-Albrechts-Universität zu Kiel

Formelzeichen

<150 150-159 160-169 170-179 180-189 >190

ungefähr	a≈b
Anzahl	n n
Summe	$\sum_{i=1}^{\infty} X_{i}$
Bedeutet	$x_1 = 0, x_2 = 4, x_3 = 5, x_4 = 2, x_5 = 1, x_6 = 1; n = 6$
Genauso Produkt	
Körpergröße "Striche"	Anzahl

Christian-Albrechts-Universität zu Kiel

Bsp. Arithmetisches Mittel

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Beobachtungen: x_i:={154, 167, 187, 165, 190, 176, 167, 156, 154, 165, 167, 171, 154} Anzahl Beobachtungen: n=13

$$\bar{x} = \frac{154 + 167 + 187 + 165 + 190 + 176 + 167 + 156 + 154 + 165 + 167 + 171 + 154}{13}$$

$$\bar{x} = \frac{2173}{13}$$

$$\bar{x} = 167,153846154$$

Aufgabe: Beschreibung der Kursteilnehmer

Bilden Sie Gruppen je zwei Rechner und führen Sie die Daten nach der Erhebung zusammen:

Erhebung der Daten in einzelnen Gruppen

- A) Email, Computername (PC-Lab*).
- B) Geschlecht, Semesterzahl.
- C) Alter, PC ja/nein.
- D) Schuhgröße, Bargeld.
- E) angestrebter Abschluss, Körpergröße.
- F) Betriebssystem, Geschlecht.

Tragen Sie die Datenmatrix zusammen (Sie dürfen gern ein Tabellenkalulationsprogramm Ihrer Wahl benutzen), bestimme Sie jeweils das Skalenniveau und präsentieren Sie in 10 Minuten die Ergebnisse.

Christian-Albrechts-Universität zu Kiel

Aufgabe: Beschreibung der Kursteilnehmer

CAU

Christian-Albrechts-Universität zu Kiel

Fazit:

Erhebungen benötigen eine Systematik. Diese wird am besten an einer kleinen Stichprobe entwickelt und ausgewertet ('Pilotstudie'). Anschließend wird die gesamte geplante Erhebung nach einem vorab festgelegten einheitlichem Schema gleichermaßen für alle Fälle durchgeführt.

Es gibt sehr unterschiedliche Arten von Informationen (Skalenniveau).

Jede Art von Informationen geht mit unterschiedlichen Darstellungsmöglichkeiten einher. Es gibt ungeschickte - ungeeignete Arten der Darstellung.

Je nach Aussage gibt es für die gleichen Daten unterschiedliche Arten, sie darzustellen (dazu mehr in der nächsten Sitzung).

