## Fundamentals concepts in ML

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

a.a. 2020-2021

Giorgio Gambosi

## **Objectives**

#### Machine learning: inductive approach

Learning of commonalities through analysis of a set of examples (training set), which is assumed to be available.

- A training set of n items is represented as a set of input vectors  $\mathbf{x}_1, \dots, \mathbf{x}_n$ , used to derive a model.
- ▶ If the purpose is item classification with respect to a collection of predefined classes, the training set also includes a target vector  $\mathbf{t} = \{t_1, \dots, t_n\}$ , where the class of each training set item is specified.

## **Objectives**



## Types of problems

#### **Supervised learning**

- ▶ We want to predict, given the values of a set (features) of an item x, the unknown value of an additional feature target of the item
  - ▶ Target in  $\mathbb{R}$ : regression. Target in  $\{1, ..., K\}$ : classification.
- ► General approach: defined (by means of learning from a set of examples) a model of the relation between feature and target values.
- ▶ The training set X, t includes a feature vector  $\mathbf{x}_i = \{x_{i1}, \dots, x_{im}\}$  and the corresponding target  $t_i$  for each item.
- ► The model could be:
  - 1. a function y() which, for any item  ${\bf x}$ , returns a value  $y({\bf x})$  as an estimate of t
  - 2. a probability distribution which associates to each possible value  $\overline{y}$  in the target domain, the corresponding probability  $p(y=\overline{y}|\mathbf{x})$

## Types of problems

#### **Unsupervised learning**

- We wish to extract, from a given collection of items dataset)  $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ , with no target associated, some synthetic information, such as:
  - subsets of similar items clustering)
  - ▶ the distribution of items in their domain (density estimation)
  - ► the projection, as informative as possible, of items on lower dimensional subspaces, that is, their characterization by means of a smaller set of features feature selection, feature extraction)
- ► A suitable model, of just the data features, is usually defined and applied also in the case of unsupervised learning.

## Types of problems

#### Reinforcement learning

- ► We want to identify, in a given framework, a sequence of actions to be performed in order to maximize a certain profit
- ► As in supervised learning, no examples are given, but an environment is available which returns a profit in correspondance to the execution of any action

## Machine learning framework: domains

**Domain set**  $\mathcal{X}$ : Set of objects we may wish to label. Each object is modeled as a vector of features. The number of features is the dimensionality of the problem

**Label set**  $\mathcal{Y}$ : Set of possible label values associated to objects in  $\mathcal{X}$ .

- $ightharpoonup \mathcal{Y}$  continuous: regression
- $\triangleright \mathcal{V}$  discrete: classification

Assume for the moment that  $\mid \mathcal{Y} \mid = 2$ , this is case of binary classification

## Machine learning framework: learner input

**Training set**  $\mathcal{T}$ : A set of object-label pairs:  $\mathcal{T} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_n, t_n)\}$ . We shall usually denote as  $\mathbf{X}$  the matrix of objects (feature matrix), that is

$$\mathbf{X} = \begin{pmatrix} - & \mathbf{x}_1 & - \\ & \vdots & \\ - & \mathbf{x}_n & - \end{pmatrix}$$

and as t the vector of labels (target vector), that is

$$\mathbf{t} = \left(\begin{array}{c} t_1 \\ \vdots \\ t_n \end{array}\right)$$

## Machine learning framework: learner output

**Learner output:** The learner (an algorithm A) is requested to return, for a given training set  $\mathcal{T}$ , a prediction rule (classifier, regressor)  $A(\mathcal{T}) = h: \mathcal{X} \mapsto \mathcal{Y}$ 

## Machine learning framework: learner evaluation

**Training objects generation model:** We assume that the objects observed in the training set is a sample from  $\mathcal{X}$ , generated according to some probability distribution  $\mathcal{D}$ . That is, for any  $\mathbf{x} \in \mathcal{X}$ ,  $p_{\mathcal{D}}(\mathbf{x})$  is the probability that  $\mathbf{x}$  is the next object sampled in the training set

Training targets generation model: In the general case, we assume the labels associated to the objects in the training set are generated according to a probability distribution  $\mathcal{D}'$  conditional on  $\mathcal{X}$ . That is, for any  $t \in \mathcal{Y}$ ,  $p_{\mathcal{D}'}(t|\mathbf{x})$  is the probability that the observed label of object  $\mathbf{x}$  in the training set is t. For the moment, we shall assume that the relation between object and label is deterministic, that is it exists an unknown function f such that  $t_i = f(\mathbf{x}_i)$ 

## Machine learning framework: learner evaluation

**Error:** The error of a predictor h derives in general from the comparison of its predictions  $h(\mathbf{x})$  and the given labels y for all objects  $\mathbf{x}_i$  in the domain  $\mathcal{X}$ .

**Loss:** The comparison is performed by applying a predefined loss function  $L: \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R}$  to all pairs *predicted label - target*.

**Risk:** The error of a predictor h is defined in terms of risk (or generalization error), the expected loss on all objects in  $\mathcal{X}$ 

$$\mathcal{R}(h) = \mathcal{E}_{\mathcal{D},f}[L(h(\mathbf{x}), f(\mathbf{x}))] = L(h(\mathbf{x}), f(\mathbf{x})) \cdot p_{\mathcal{D}}(\mathbf{x})$$

In the general case, this is defined as

$$\mathcal{R}(h) = \mathcal{E}_{\mathcal{D},\mathcal{D}'}[L(h(\mathbf{x}), y)] = L(h(\mathbf{x}), y) \cdot p_{\mathcal{D}}(\mathbf{x}) \cdot p_{\mathcal{D}'}(y|\mathbf{x})$$

## Machine learning framework: learner evaluation

Since  $\mathcal{D}$  and  $\mathcal{D}'$  (or f) are not known, the risk can only be estimated from the data available (the training set  $\mathcal{T}$ ).

**Empirical risk:** The risk can be estimated from the training set by estimating the expectation of the loss function as the average loss on the set.

$$\overline{\mathcal{R}}_{\mathcal{T}}(h) = \frac{1}{|\mathcal{T}|} \sum_{(x,t) \in \mathcal{T}} L(h(x), t)$$

# Machine learning framework: from learning to optimization

The fundamental approach in machine learning is deriving a predictor h which (at least approximately) minimizes the empirical risk computed on the available training set.

A learning problem is then reduced to a minimization problem in some functional space  $\mathcal{H}$ , the set of all possible predictors h.

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \, \overline{\mathcal{R}}_{\mathcal{T}}(h)$$

Here,  ${\cal H}$  is the set of hypotheses or inductive bias

#### Issues related to the inductive bias

The choice of the set of hypotheses is an important issue in ML:

- $\blacktriangleright$  what is the effect of the structure and size of  $\mathcal{H}$ ?
- ▶ how to define  $\mathcal{H}$  in such a way to make it feasible to compute  $h^*$ ?

- ightharpoonup The hypotheses class  ${\mathcal H}$  can be viewed as reflecting some prior knowledge that the learner has about the task
  - $\blacktriangleright$  a belief that one of the members of the class  ${\cal H}$  is a low-error model for the task
- $\blacktriangleright$  A trivial way of pursuing this goal would be to define a very rich class, that is assuming that many possible functions belong to  $\mathcal H$
- ▶ As a limit,  $\mathcal H$  could be defined just as the set of all functions  $f: \mathcal X \mapsto \mathcal Y$

#### Problem with large $\mathcal{H}$ :

▶ Assume a binary classification problem with training set  $\mathcal{T} = (\mathbf{X}, \mathbf{t})$ , with 0/1 loss

$$L(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{otherwise} \end{cases}$$

that is, the loss is 1 if the item is misclassified, 0 otherwise. As a consequence, the risk is the expected number of classification errors, while the empirical risk is the fraction of items in the training set which are misclassified.

Assume  $p(t=1|\mathbf{x})=\frac{1}{2}$  for  $\mathbf{x}\in\mathcal{X}$ , that is, the two classes have same size in the population

Consider the classification function defined as:

$$h(x) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{x}_i \in \mathbf{X}, t_i = 1 \\ 0 & \text{otherwise} \end{cases}$$

that is, h assigns to class 1 all items labeled as 1 in the training set. All other items are classified as 0.

Clearly, the empirical risk here is 0 by definition, but the risk is  $\approx \frac{1}{2}$ . When applied to a dataset randomly sampled from the population, the quality of  $h^*$  is the same of a function which randomly assigns items to classes.

This is called overfitting: the classification method behaves well on the training set, but poorly on new data from the population.

With respect to  $\mathcal{H}$ , the following considerations can be done:

- ▶ If  $\mathcal{H}$  is too large (complex), overfitting may occur: a function which behaves very well on the training set may be available which however performs poorly on new data
- ▶ If  $\mathcal{H}$  is too small (simple), underfitting may occur: no function behaving in a satisfactory way, both on the training set and on new sets of data, is available in  $\mathcal{H}$

This is related to the so-called bias variance tradeoff

The risk associated to the  $h^*$ , the predictor which minimizes the empirical risk, can be decomposed in two parts:

$$\mathcal{R}(h^*) = \epsilon_B + \epsilon_V$$

 $lackbox{}{lackbox{}{\epsilon}_B}$  is the minimum risk achievable by any  $h \in \mathcal{H}$ : this is only determined by the inductive bias, and independent from the training set. It is a property of the class of hypotheses considered with respect to the prediction task. This is called bias

ullet is the difference between the above minimum risk in  ${\mathcal H}$  and the risk associated to the best predictor in  ${\mathcal H}$  with respect to the training set: it is related to the fact that empirical risk minimization only provides an estimate of the best predictor achievable for the given inductive bias. It is a measure of how well the predictor computed from a particular training set approximates the best possible one. Its expectation with respect to all possible training sets is a measure of how much a predictor derived from a random training set may result in poorer performances with respect to the best possible one. This is called variance

The choice of  ${\cal H}$  is subject to a bias-variance tradeoff: higher bias tends to induce lower variance, and vice versa.

- ► High bias and low variance implies that all predictors which can be obtained from different training sets tend to behave similarly, with a similar risk (low variance). However, all of them then to behave poorly (high bias), since H is too poor to include a satisfactory predictor for the task considered. This results into underfitting
- ▶ Low bias and high variance implies that lot of predictors are available in \$\mathcal{H}\$, and among them a good one is usually avaliable (low bias). However, quite different predictors can be obtained from different training sets, which implies that it may easily happen that, while a very good performance can be obtained on the training set, the resulting predictor can behave quite differently and more poorly that the best possible one, which implies overfitting





## Computing $h^*$

- ▶ The optimization required to derive  $h^*$  can be complex in the general case, when a function must be derived in a function space.
- ▶ Usually, the situation is made easier by considering  $\mathcal{H}$  as a space of functions parameterized by a suitable set of coefficients (for example, all polynomials of degree at most d, for a given d): this results in a minimization to be performed over a set of d-dimensional points.
- ▶ That is,  $\mathcal{H} = \{h_{\theta} | \theta \in \Theta\}$ , where  $\Theta$  is the coefficients domain and h is a function template, parameterized by elements in  $\Theta$
- ► Minimizing the Empirical risk results into computing

$$\theta^* = \operatorname*{argmin}_{\theta \in \Theta} \overline{\mathcal{R}}_{\mathcal{T}}(h_{\theta})$$

## Computing $h^*$

▶ In most cases,  $\Theta = \mathbb{R}^d$  for some d>0: in this case, the minimization of  $\overline{\mathcal{R}}_{\mathcal{T}}(h_\theta)$  is unconstrained and a (at least local) minimum could be computed setting all partial derivatives to 0

$$\frac{\partial}{\partial \theta_i} \overline{\mathcal{R}}_{\mathcal{T}}(h_\theta) = 0$$

that is, setting to zero the gradient of the empirical risk with respect to the vector of parameters  $\boldsymbol{\theta}$ 

$$\nabla_{\theta} \overline{\mathcal{R}}_{\mathcal{T}}(h_{\theta}) = \mathbf{0}$$

- ► The analytical solution of this set of equations is usually quite hard
- ► Numerical methods can be applied

#### **Gradient descent**

▶ Gradient descent performs minimization of a function  $J(\theta)$  through iterative updates of the current value of  $\theta$  (starting from an initial value  $\theta^{(0)}$ ) in the opposite direction to the one specified by the current value of the gradient  $J'(\theta) = \nabla_{\theta} J(\theta)$ 

$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla_{\theta} J(\theta) \mid_{\theta = \theta^{(k)}}$$

that is, for each parameter  $\theta_i$ 

$$\theta^{(k+1)} = \theta^{(k)} - \eta \frac{\partial J(\theta)}{\partial \theta_i} \Big|_{\theta = \theta^{(k)}}$$

 $\blacktriangleright \ \eta$  is a tunable parameter, which controls the amount of update performed at each step

#### Gradient descent and ERM

In Machine learning, minimization of the Empirical Risk is performed, hence gradient descent takes the form

$$\theta_i^{(k+1)} = \theta_i^{(k)} - \eta \frac{\partial}{\partial \theta_i} \frac{1}{|\mathcal{T}|} \sum_{(x,t)\in\mathcal{T}} L(h_{\theta}(x),t)|_{\theta = \theta^{(k)}}$$
$$= \theta_i^{(k)} - \frac{\eta}{|\mathcal{T}|} \sum_{(x,t)\in\mathcal{T}} \frac{\partial}{\partial \theta_i} L(h_{\theta}(x),t)|_{\theta = \theta^{(k)}}$$

This is called batch gradient descent: observe that, at each step, all items in the training set must be considered

## Stochastic gradient descent

Batch gradient descent can be modified by performing the update, at each step, on the basis of the evaluation at a single item of the training set for single parameters,

$$\theta_i^{(k+1)} = \theta_i^{(k)} - \eta \frac{\partial}{\partial \theta_i} L(h_{\theta}(x_j), t_j)|_{\theta = \theta^{(k)}}$$

## Mini-batch gradient descent

An intermediate case is the one when a subset of the items in the training is considered at each step

$$\theta_i^{(k+1)} = \theta_i^{(k)} - \frac{\eta}{|B_r|} \sum_{(x,t) \in B_r} \frac{\partial}{\partial \theta_i} L(h_\theta(x), t)|_{\theta = \theta^{(k)}}$$

This is called mini-batch gradient descent

## Momentum gradient descent

- ▶ Based on a physical interpretation of the optimization process: a body of mass m=1 is moving on the surface of a cost function  $J(\theta)$ , with potential energy  $U(\theta)=\eta J(\theta)$  and weight force (or acceleration, since m=1)  $F(\theta)=-\nabla U(\theta)=-\eta \nabla J(\theta)$ , at any point  $\theta$
- ▶ In gradient descent, the movement of the body is determined by the acceleration at that point, that is by the gradient  $\nabla J(\theta)$
- In momentum gradient descent, the velocity  $v(\theta)$  of the body is considered: the movement of the body is determined by the velocity, that is,

$$\theta^{(k+1)} = \theta^{(k)} + v^{(k+1)}$$

with the velocity changing as determined by the acceleration

$$v^{(k+1)} = v^{(k)} - \eta \nabla J(\theta^{(k)})$$

## Momentum gradient descent

This results into

$$v^{(k+1)} = -\eta \nabla J(\theta^{(k)}) + v^{(k)} = -\eta \nabla J(\theta^{(k)}) - \eta \nabla J(\theta^{(k-1)}) + v^{(k-1)} = \cdots$$
$$= -\eta \sum_{i=0}^{k} \nabla J(\theta^{(i)}) + v^{(0)}$$

$$\theta^{(k+1)} = \theta^{(k)} + v^{(k+1)} = \theta^{(k)} - \eta \sum_{i=0}^{k} \nabla J(\theta^{(i)}) + v^{(0)}$$

## Nesterov gradient descent

- ▶ The same approach of momentum gradient descent is applied, with the gradient estimation performed not at the current point  $\theta^{(k)}$ , but approximately at the next point  $\theta^{(k+1)}$
- ▶ The approximation derives by considering  $\theta^{(k)} + \gamma v^{(k)}$  instead of  $\theta^{(k+1)}$
- $\blacktriangleright$  The updates of v and  $\theta$  are considered in advance with respect to momentum GD

$$\begin{split} v^{(k+1)} &= \gamma v^{(k)} + \eta \nabla J(\tilde{\theta}^{(k)}) = \gamma v^{(k)} + \eta \nabla J(\theta^{(k)} + \gamma v^{(k)}) \\ \theta^{(k+1)} &= \theta^{(k)} + v^{(k+1)} \end{split}$$

## **Adagrad**

- ▶ In Adagrad, different learning rates are applied to the different parameters  $\theta_i$ : larger gradients in the preceding steps results into smaller rates
- $\blacktriangleright$  in particular, the learning rate of  $\theta_j$  at step k is defined as

$$\eta_j^{(k)} = \frac{\eta}{\sqrt{G_{j,k} + \varepsilon}}$$

where  $\eta$  is a constant,  $G_{j,k} = \sum_{i=0}^k g_{j,i}^2$  is the sum of the squared past gradients  $g_{j,i} = \frac{\partial J(\theta,X)}{\partial \theta_j}\Big|_{\theta=\theta^{(i)}}$  and  $\varepsilon$  is a small *smoothing* constant, to deal with possible null denominators

▶ The update of  $\theta_i$  at step k+1 is then

$$\theta_j^{(k+1)} = \theta_j^{(k)} - \frac{\eta}{\sqrt{G_{j,k} + \varepsilon}} g_{j,k}$$

▶ Learning rates decrease at each step, with the ones associated to parameters which had large gradients in the past decreasing more: that is, parameters which tended to large variation at each step are more "pushed" towards a stable value

34/1

#### **Adadelta**

- ► In Adadelta, past gradients are considered with a decreasing relevance of long past ones:
- ▶ A (decay) is applied my means of a coefficient  $0 < \gamma < 1$

$$G_{j,k} = \gamma G_{j,k-1} + (1 - \gamma)g_{j,k}^2$$

#### Second order methods

- Maxima (or minima) of  $J(\theta)$  can be found by searching points where the gradient (all partial derivatives) zero
- ▶ Any iterative method to compute zeros of a function (such as Newton-Raphson) can the be applied on the gradient  $\nabla J(\theta)$
- ▶ Such methods rely on the gradient of the function considered, hence, the gradient of  $\nabla J(\theta)$  (that is, the Hessian) must be computed

$$H_{ij}(J(\theta)) = \frac{\partial^2 J(\theta)}{\partial \theta_i \partial \theta_j}$$

► At each step, the following iteration is applied (in case Newton-Raphson method is used)

$$\theta^{(k+1)} = \theta^{(k)} - \left(H(J(\theta))^{-1} \nabla J(\theta)\right)\big|_{\theta_{(k)}}$$

## Probabilistic approaches

In this case, a generative approach is followed

- 1. we assume that the observed dataset (features and target) has been derived by randomly sampling:
  - $ightharpoonup \mathcal{X}$  according to the probability distribution  $p_{\mathcal{D}}(x)$  (usually the uniform distribution)
  - $\mathcal{Y}$  according to the conditional distribution  $p_{\mathcal{D}'}(y|x)$
- 2. we may then consider a class of possible conditional distributions and
- **3.** select (infer) the "best" conditional distribution  $\overline{\mathcal{D}}'$  from the dataset
- **4.** given any new item x, apply  $p_{\overline{D}'}(y|x)$  to provide probabilities for each possible value of the corresponding target
- 5. an independent decision strategy must be applied to  $p_{\mathcal{D}'}(y|x)$  to return a specific prediction h(x)

## Inferring a best distribution

- ▶ how to define the class of possible distributions?
- what is a measure of the quality of the distribution (given the dataset)?
  - ▶ this is related to how a dataset generated sampling from  $\mathcal{D}$  (usually uniform) and  $\mathcal{D}'$  could be similar to the available dataset  $\mathcal{T}=(X,t)$

## A different approach

- instead of finding a best distribution and use it to predict probabilities, we could:
- compose the predictions provided by all possible distributions to derive a final prediction