$TD \ n^{\circ}3$

Exercice 1 Soit X une v.a. suivant une loi normale centrée réduite, $X \sim \mathcal{N}(0, 1^2)$, calculez en utilisant la table :

- 1. $\mathbb{P}(X \ge 0)$.
- 5. $\mathbb{P}(X > 1, 31)$.
- 2. $\mathbb{P}(X \geq 2)$.
- 6. $\mathbb{P}(1, 5 \le X \le 2)$.
- 3. $\mathbb{P}(X \leq -1, 56)$.
- 7. $\mathbb{P}(-1, 7 \le X \le -1)$
- 4. $\mathbb{P}(X > 1, 62)$
- 8. $\mathbb{P}(-1, 5 < X < 2)$.

Exercice 2 Soit X une v.a. suivant une loi normale centrée réduite, $X \sim \mathcal{N}(0, 1^2)$, déterminer grâce à la table x_0 tel que

- 1. $\mathbb{P}(-x_0 \le x \le x_0) = 0, 5$
- 2. $\mathbb{P}(-x_0 \le x \le x_0) = 0,68$
- 3. $\mathbb{P}(-x_0 \le x \le x_0) = 0.95$
- 4. $\mathbb{P}(-x_0 \le x \le x_0) = 0,997$

Exercice 3 Soit X une v.a.r. suivant une loi $\mathcal{N}(2,3^2)$, $(X \sim \mathcal{N}(2,3^2))$. Calculer

- 1. $\mathbb{P}(X < 1)$.
- 2. $\mathbb{P}(X \geq 2)$.
- 3. $\mathbb{P}(-1 \le X \le 3)$.

Exercice 4 Le temps nécéssaire aux étudiants pour terminer une épreuve d'examen est une variable normale, de moyenne 90 minutes et d'écart type 15 minutes.

- 1. Quelle est la proportion des étudiants qui terminent l'épreuve en moins de 2 heures.
- 2. Quelle devrait être la durée de l'épreuve si l'on souhaite 90% des étudiants puissent la terminer.

Exercice 5 La note obtenue par des étudiants à un examen est une v.a.r. normale $X \sim \mathcal{N}(7, 3^2)$.

- 1. Calculer le pourcentage d'individus ayant plus de 10, et la note en dessous de laquelle se trouvent 10~% des étudiants.
- 2. Compte tenu de ces résultats, on décide de revaloriser l'ensemble des notes par une transformation linéaire Z=aX+b. Quelles valeurs doit-on donner à a et b pour que les valeurs précédentes passent respectivement à 50 % et 7?

Indication: calculer $\mathbb{E}(Z)$ et Var(Z) en fonction de $\mathbb{E}(X)$ et Var(X).

Semestre 3

Exercice 6 L'éclairage d'une commune est assuré par 2000 lampes dont la durée de vie moyenne est 1000 heures. Cette durée de vie suit une loi normale d'écart type $\sigma=300$

- 1. Quel est le nombre de lampes hors d'usage au bout de 700h ? de 1500h ? de 3000h ?
- 2. Au bout de combien d'heures 5% sont hors d'usage?
- 3. D'autres ampoules ont une durée de vie qui suit une loi $\mathcal{N}(1100, 400)$. Quelles ampoules faut-il choisir si l'on veut :
 - i) Que la durée de vie moyenne soit maximale.
 - ii) Que la durée pendant la quelle 95% des ampoules fonctionnent soit maximale.

Exercice 7 Soit F_X la fonction de répartition d'une v.a.r X. La mediane de X est la valeur m telle que $F_X(m) = \frac{1}{2}$, on a alors $\mathbb{P}(X \leq m) = \mathbb{P}(X > m) = \frac{1}{2}$. Trouver m dans chacun des cas suivants

- 1. X suit une loi uniforme sur [a, b].
- 2. X suit une loi $\mathcal{N}(\mu, \sigma^2)$.

١.

3. X suit une loi exponentielle de paramètre λ .

Solution

$$F_X(x) = \int_{-\infty}^x \frac{1}{b-a} . \mathbb{I}_{[a,b]}(t) dt$$
$$= \frac{1}{b-a} \int_{-\infty}^x \mathbb{I}_{[a,b]}(t) dt$$

on distingue alors les cas:

i)
$$x \in]-\infty, a[$$
 dans ce cas $F_X(x)=0$

ii) $x \in [a, b]$ dans ce cas

$$F_X(x) = \frac{1}{b-a} \int_a^x dt = \frac{x-a}{b-a}$$

iii) enfin $x \in]b, +\infty[$, $F_X(x)=1$. on voit donc gu'il faut chercher m dans [a,b], on veut

$$F_X(m) = \frac{m-a}{b-a} = 1/2$$

d'où

$$m = \frac{b+a}{2}$$

Semestre 3

2. Il suffit de centrer et réduire

$$\mathbb{P}(X \le m) = \mathbb{P}(\frac{X - \mu}{\sigma} \le \frac{m - \mu}{\sigma})$$
$$= \mathbb{P}(Z \le \frac{m - \mu}{\sigma})$$

Z étant la v.a. centrée réduite, on cherche donc $x_1=\frac{m-\mu}{\sigma}$ tel que $\mathbb{P}(Z\leq x_1)=1/2$, la table donne $x_1=0$ et donc $m=\mu$ (c'etait prévisible, il suffit de regarder le garphique d'une densité de loi normale!).

3. on avait trouve (Cf fiche 3) la fonction de répartition pour une distribution exponentielle

$$F_X(x) = 1 - e^{-\lambda x}$$

d'où

$$F_X(m) = 1/2 \Leftrightarrow 1 - e^{-\lambda m} = 1/2$$

soit
$$m = \frac{ln2}{\lambda}$$

Exercice 8 Soit X une v.a.r. de fonction de répartition

$$F_X = \begin{cases} 0 & \text{si } x < 0\\ \sin^2(\pi x/2) & \text{si } 0 \le x \le 1\\ 1 & \text{si } x > 1 \end{cases}$$

- 1. Déterminer la densité de probabilité de X.
- 2. Quelle est la probabilité pour que X < 1/4.

Solution I. La densité de probabilité de X est la dérivée de la fonction de répartition, d'où

$$f_X(x) = (F_X)' = \begin{cases} 0 & \text{si } x < 0\\ 2\pi \sin(\pi x/2)\cos(\pi x/2) & \text{si } 0 \le x \le 1\\ 0 & \text{si } x > 1 \end{cases}$$

2.

$$\mathbb{P}(X < 1/4) = F_X(1/4) = \sin^2(\pi/8)$$

Exercice 9 Soit X une v.a.r. de fonction de répartition F_X . Soient a et b deux constantes quelconques, déterminer les fonctions de répartition des v.a.r. suivantes

$$Y = X + b$$
, $Z = a.X$ et $W = a.X + b$

Semestre 3

Solution On supposera $a \neq 0$ car sinon it my a rien à faire pour Z et W.

$$Y < x \Leftrightarrow X + b < x \Leftrightarrow X < x - b$$

d'où

$$F_Y(x) = \mathbb{P}(Y \le x) = \mathbb{P}(X \le x - b) = F_X(x - b)$$

de même $Z \le x \Leftrightarrow X \le x/a$ d'où

$$F_Z(x) = \mathbb{P}(Z \le x) = \mathbb{P}(X \le x/a) = F_X(x/a)$$

et enfin, comme $W \le x \Leftrightarrow a.X + b \le x \Leftrightarrow X \le (x - b)/a$ on a

$$F_W(x) = \mathbb{P}(W < x) = \mathbb{P}(X < (x - b)/a) = F_X((x - b)/a)$$

Exercice 10 Soit X une v.a.r. de densité f_X . Soient a et b deux constantes quelconques, déterminer les densités des v.a.r. suivantes

$$Y = X + b$$
, $Z = a.X$ et $W = a.X + b$

Solution On supposera $a \neq 0$ car sinon il n'y a rien à faire pour Z et W. Grâce à l'exercice précédent on connait les fonctions de répartitions de ces v.a.r., il suffit donc de les dériver pour obtenir les densités associés :

$$f_Y(x) = (F_{X+b}(x)) = (F_X(x-b))' = f_X(x-b)$$

de même

$$f_Z(x) = (F_{aX}(x))' = (F_X(x/a))' = 1/af_X(x/a)$$

et enfin

$$f_W(x) = (F_{aX+b}(x))' = (F_X((x-b)/a))' = 1/af_X((x-b)/a)$$