Average Active Sessions (AAS) Deeper Meaning

Fundamentals

Active Session = Foreground in a DB call and not idle (on CPU or in active Wait)

$$DB Time = \left[Total Active Session Time \right]_{t_0}^{t_1}$$

$$AAS = \frac{DB \, Time}{Elapsed \, Time} = \frac{DB \, Time}{(t_1 - t_0)}$$

MUST use same time units in numerator and denominator!

The Calculus of DB Time

$$DB Time = F(t)$$

$$F'(t) = \frac{dDB \, Time}{dt} = Active \, Sessions(t)$$

$$DB \ Time(t1) - DB \ Time(t0) = \int_{t_0}^{t_1} Active \ Sessions(t) \ dt$$

$$Time \ Model$$

$$ASH$$

ASH Math

COUNT(*) = DB Time

COUNT(ASH Samples) = DB Time secs

 $\sum_{t_0}^{t_1} Sample \ Count_i * Sample \ Interval_i = DB \ Time \ ms$

ASH Math = Riemann Sum

$$\int_{t_0}^{t_1} Active \, Sessions(t) \, dt \approx \sum_{t_0}^{t_1} ASH \, Samples(t_i) * Interval$$

ASH ~ Time Model

By the Fundamental Theorem of Calculus!

Takeaways

- Active Sessions(t) is the derivative of DB Time(t)
 - Thus DB Time is the integral of the Active Session function
- DB Performance Page is literally a picture of DB Time
 - Active Session integral = area under the curve = amount of DB Time
 - "click on the big stuff": UI directly supports the Method
- ASH counts are Riemann sum estimates of DB Time
 - Top Activity and Performance Page are equivalent
 - "ASH Math" works
- Average Active Sessions is a powerful and fundamental concept

Queuing Theory

stable system: arrival rate = throughput

Little's Law

number being serviced = throughput * mean response time

Little's Law and Sysmetrics

number being serviced = Average Active Sessions

Average Active Sessions

- = Response per Call * Calls per Second
- = Response per Txn * Txns per Second

DB Time increases with either an increase in throughput or a degradation in response time

Thank You

https://github.com/jberesni/AAS-SQL

https://www.linkedin.com/in/john-beresniewicz-986b0/

