Frühjahr 20 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Betrachten Sie die Funktionenreihe $f(x) := \sum_{n=0}^{\infty} 2^{-n} \sin(2^n x)$.

- a) Zeigen Sie, dass die Reihe für alle $x \in \mathbb{R}$ konvergiert, also eine Funktion $f : \mathbb{R} \to \mathbb{R}$ definiert.
- b) Zeigen Sie, dass f stetig ist.

 Hinweis: Sie können die Gleichmäßigkeit der Konvergenz benutzen.
- c) Zeigen Sie, dass f periodisch mit Periode 2π ist.
- d) Zeigen Sie, dass f in 0 nicht differenzierbar ist, indem Sie für die Differenzenquotienten

$$d_k := \frac{f(\pi/2^k) - f(0)}{\pi/2^k} \quad (k \in \mathbb{N})$$

die Beziehung $d_{k+1}=d_k+\frac{2^{k+1}}{\pi}\sin(\frac{\pi}{2^{k+1}})$ ableiten und folgern, dass gilt: $\lim_{k\to\infty}d_k=+\infty$.

Lösungsvorschlag:

- a) Das Wurzelkriterium führt hier zum Ziel, wir verwenden aber das Majorantenkriterium. Für alle $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt $|\sin(2^n x)| \leq 1$, also ist $\sum_{n=0}^{\infty} 2^{-n}$ eine Majorante. Weil es sich um eine geometrische Reihe mit $q = \frac{1}{2}$ handelt und |q| < 1 ist, konvergiert diese absolut. Daher konvergiert auch die Reihe f(x) absolut und ist somit konvergent.
- b) Die Abschätzung aus der vorherigen Aufgabe zeigt weiter, dass die Konvergenz gleichmäßig ist, weil das Weierstraß-Kriterium erfüllt ist, f ist also gleichmäßiger Grenzwert der Funktionenfolge $f_m := \sum_{n=0}^m 2^{-n} \sin(2^n x)$ und stetig, weil alle f_m als Verknüpfungen stetiger Funktionen selbst stetig sind und Stetigkeit unter gleichmäßiger Konvergenz erhalten wird.
- c) Die Sinusfunktion ist periodisch mit Periode 2π , für alle ganzen Zahlen z und alle $x \in \mathbb{R}$ gilt daher $\sin(x+2z\pi) = \sin(x)$. Weil $2^n \in \mathbb{N} \subset \mathbb{Z}$ für alle $n \in \mathbb{N}$ gilt, folgt nun $f(x+2\pi) = \sum_{n=0}^{\infty} 2^{-n} \sin(2^n(x+2\pi)) = \sum_{n=0}^{\infty} 2^{-n} \sin(2^nx+2\cdot 2^n\pi)) = \sum_{n=0}^{\infty} 2^{-n} \sin(2^nx) = f(x)$ für alle $x \in \mathbb{R}$, also ist $f(2\pi)$ -periodisch.
- d) Wir berechnen $f(0) = \sum_{n=0}^{\infty} 2^{-n} \sin(2^n \cdot 0) = \sum_{n=0}^{\infty} 0 = 0$, weil $\sin(0) = 0$ ist. Also ist für alle $k \in \mathbb{N}$:

$$d_k = \frac{2^k}{\pi} \sum_{n=0}^{\infty} 2^{-n} \sin(2^{n-k}\pi) = \frac{1}{\pi} \sum_{n=0}^{k-1} 2^{k-n} \sin(2^{n-k}\pi) = \frac{1}{\pi} \sum_{n=1}^{k} 2^n \sin(2^{-n}\pi),$$

wobei wir verwendet haben, dass alle ganzzahligen Vielfachen von π Nullstellen der Sinusfunktion sind und $2^{n-k} \in \mathbb{N} \subset \mathbb{Z}$ für $n \geq k$ gilt. Im letzten Schritt wurde zudem die Summationsreihenfolge umgekehrt. Aus dieser Darstellung ist sofort die Beziehung $d_{k+1} - d_k = \frac{1}{\pi} 2^{k+1} \sin(2^{-(k+1)}\pi)$ ersichtlich, wonach durch Addition von d_k sofort die Behauptung folgt.

Weil der Sinus auf dem offenen Intervall $(0,\pi)$ nur positive Werte annimmt und für $k\in\mathbb{N}$ das Argument $\frac{\pi}{2^{k+1}}$ nur in diesem Intervall liegt, ist die Folge $(d_k)_{k\in\mathbb{N}}$ streng monoton wachsend, sie muss also entweder gegen einen Grenzwert $d\in\mathbb{R}$ konvergieren oder gegen $+\infty$ divergieren. Angenommen sie würde konvergieren, dann würde im Grenzübergang aus der obigen Beziehung die Gleichung d=d+1, also 0=1 folgen, ein Widerspruch. Demnach muss die Folge gegen $+\infty$ divergieren. Dabei wurde der Grenzwert $\lim_{x\to 0}\frac{\sin(x)}{x}=1$ benutzt und, dass $(\frac{\pi}{2^{k+1}})_{k\in\mathbb{N}}$ eine Nullfolge ist. Insbesondere folgt daraus auch, dass der Differentialquotient von f bei 0 nicht existiert, f ist also in 0 nicht differenzierbar.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$