НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Обчислювальна математика та програмування

ЗАВДАННЯ І МЕТОДИЧНІ ВКАЗІВКИ ДО САМОСТІЙНОЇ РОБОТИ

для студентів напряму 6.051301 Хімічна технологія інженерно-хімічного факультету

Обчислювальна математика та програмування: завдання і методичні вказівки до самостійної роботи для студентів напряму 6.051301 Хімічна технологія [Електронний ресурс] / [уклад. Абрамова А.О.]. — К: 2015. — 11 с. Системні вимоги: Pentium; 256 Mb RAM; Windows 2000 / XP / Vista / 7; Acrobat Reader 7.0 — Назва з екрану.

Затверджено на засіданні кафедри кібернетики хіміко-технологічних процесів ХТФ НТУУ "КПІ", протокол № 1 від 28.01.2015 р.

Електронне навчальне видання ОБЧИСЛЮВАЛЬНА МАТЕМАТИКА ТА ПРОГРАМУВАННЯ

завдання і методичні вказівки до самостійної роботи для студентів напряму 6.051301 Хімічна технологія

Укладач: Абрамова Алла Олександрівна, канд. техн. наук, старший викладач.

Відповідальний

редактор Джигирей Ірина Миколаївна, канд. техн. наук, доцент.

За редакцією укладача

Зміст

Зміст	3
Вступ	4
Розподіл навчального часу	4
Календарно-тематичний план	4
Індивідуальні завдання	7
Перелік завдань підсумкового контролю	8
Рейтингова система оцінювання успішності	9
Навчально-методичні матеріали1	1

Bcmyn

Дисципліна «Обчислювальна математика» належить до циклу <u>І.2. Цикл природничона</u> наукової підготовки.

Предмет навчальної дисципліни: спеціалізовані розрахунки, що потребують вміння кваліфіковано використання персонального комп'ютера та застосування програмних пакетів.

Міждисциплінарні зв'язки: вивчення дисципліни базується на знаннях, отриманих у середній школі.

Компетенції, отримані студентами в процесі вивчення цієї дисципліни використовуються у процесі подальшого навчання у дисципліні «Інформаційні технології», «Математичне моделювання й застосування ЕОМ у хімічній технології», у спецкурсах при реалізації практичних задач на ПК, в курсових і дипломних роботах і проектах.

Розподіл навчального часу

		Вс	ього	Розподіл навчального часу за видами занять				
Форма навчання	Кредитні модулі	кредитів	годин	Лекції	Практичні (семінарські) заняття	Лабораторні роботи (комп'ютерні практикуми)	CPC	Семестрова атестація
Денна	Всього	4	144	18	0	36	90	
	1	4	144	18	0	36	90	екзамен

Календарно-тематичний план

Тижд ень	Вид і тема робіт	Заходи
1	Пекція 1. Вступ до електронних таблиць МЅ Ехсеl. Можливості електронних таблиць МЅ Ехсеl для збереження та обробки інформації. Система меню МЅ Ехсеl, панель інструментів. Основні поняття: робоча книга, робочий лист, рядки, стовпці та комірки таблиці Основні прийоми роботи у МЅ Ехсеl: Операції з робочими листами. Різні формати даних, їх властивості. Прийоми роботи з комірками та їх групами. Виділення, копіювання, переміщення інформації. Операції з рядками та стовпцями таблиці. Автозаповнення та очищення комірок та їх груп. Форматування комірок та областей таблиці. Лабораторна робота 1. Вивчення інтерфейсу та методів роботи в середовищі МЅ Ехсеl. Інженерні розрахунки у середовищі МЅ Ехсеl. Інженерні розрахунки у середовищі МЅ Ехсеl завдання на СРС: Опанування інтерфейсу МЅ Ехсеl та можливостей його настроювання. Вивчення форматів даних та їх властивостей. Набуття навичок роботи з комірками, діапазонами рядками та стовпцями, а також виконання операцій виділення, копіювання, переміщення інформації та автозаповнення комірок таблиці. Набуття навичок	Отримання завдань і методичних вказівок до самостійної роботи. Отримання завдань і методичних вказівок до лабораторних робіт. Ознайомлення з технікою безпеки в навчальній лабораторії.

	1	Т
	форматування комірок та діапазонів.	
	Підготовка до захисту лабораторної роботи 1	2
2	<i>Лекція</i> 2. Організація обчислень в середовищі MS Excel.	
	Використання формул для виконання розрахунків.	роботи №1
	Абсолютні, відносні та змішані посилання. Використання	
	функцій при виконанні розрахунків, "майстер функцій",	
	огляд вбудованих функцій. Приклади виконання	
	розрахунків.	
	Завдання на СРС: Опанування інженерних розрахунків за	
	допомогою електронних таблиць. Вивчення категорій	
	наявних функцій.	
	Підготовка до виконання лабораторної роботи №2	
3	<i>Лекція 3.</i> Інтерфейс та панелі інструментів Mathcad.	
	Можливості математичного пакету Mathcad для вирішення	
	математичних задач. Функції Mathcad. Побудова графіків	
	функцій.	
	Застосування чисельних методів у Mathcad. Приклади	
	вирішення нелінійних та диференційних рівнянь у Mathcad	
	Лабораторна робота 2. Наближений розв'язок нелінійних	
	рівнянь. Метод ітерацій. Метод половинного ділення	
	Завдання на СРС: Підготування документів у Mathcad.	
	Інтеграція Mathcad з іншими програмними середовищами	
	Підготовка до захисту лабораторної роботи 2.	
4	Лекція 4. Наближений розв'язок нелінійних рівнянь.	Захист лабораторної
	Постановка задачі. Графічні та аналітичні методи	роботи №2
	відокремлення коренів. Загальна характеристика методів	
	уточнення значень коренів з необхідною точністю. Метод	
	ітерацій: алгоритм методу; приклад розрахунку. Метод	
	половинного ділення: алгоритм методу; приклад розрахунку.	
	Порівняння методів.	
	Завдання на СРС: Методи уточнення значень коренів з	
	необхідною точністю (ітерацій, хорд, Ньютона,	
	комбінований, половинного ділення).	
	Підготовка до виконання лабораторної роботи 3.	
5	Лекція 5. Методи розв'язку систем лінійних алгебраїчних	
	рівнянь. Схема єдиного ділення за методом Гауса. Розв'язок	
	систем лінійних рівнянь методом ітерацій.	
	Лабораторна робота №3. Розв'язок систем лінійних	
	алгебраїчних рівнянь. Схема єдиного ділення. Метод	
	ітерацій Завдання на СРС: Методи рішення систем нелінійних	
	рівнянь. Підготовка до захисту лабораторної роботи 3.	
6	<i>Лекція 6.</i> Чисельне диференціювання на основі Постановка	Захист лабораторної
U	задачі апроксимації. Лінійна апроксимація за методом	роботи №3
	найменших квадратів. Квадратична апроксимація за методом	hoootn Mas
	наименших квадратів. Квадратична апроксимація за методом найменших квадратів. Приклади розрахунків. Постановка	
	задачі інтерполяції. Інтерполяційна формула Лагранжа.	
	Задачі інтерполяції. Інтерполяційна формула лагранжа. Оцінка похибки. Приклади розрахунків. Кінцеві різниці.	
	Інтерполяційні формули Ньютона. Оцінка похибки для	
	формул Ньютона.	
	Завдання на СРС: Апроксимація за методом найменших	
	квадратів з використанням емпіричних залежностей	<u> </u>

	(
	(показникової, степеневої або іншої функції), метод	
	вирівнювання. Приклади алгоритмів. Сплайн-інтерполяція.	
	Наближене диференціювання функцій.	
	Підготовка до виконання лабораторної роботи 4.	
7	Пекція 7. Наближений розв'язок визначених інтегралів.	
	Постановка задачі. Метод трапецій. Оцінка похибки метода.	
	Метод парабол (Сімпсона). Оцінка похибки інтегрування за	
	методом Сімпсона.	
	Лабораторна робота №4. Методи інтерполяції функції.	
	Формула Лагранжа. Формула Ньютона.	
	Завдання на СРС: Використання Excel для розв'язку	
	інтегралів. Приклади технологічних розрахунків.	
	Підготовка до виконання лабораторної роботи 5.	
8	<i>Лекція</i> 8. Наближений розв'язок диференційних рівнянь.	Захист лабораторної
	Постановка задачі розв'язку звичайних диференційних	роботи №4
	1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,	*
	рівнянь. Метод Ейлера. Метод Рунге-Кутта. Порівняльна оцінка похибок методів. Розв'язок систем звичайних	Видача завдань до ДКР
		1 ' '
	диференційних рівнянь методом Рунге-Кутта. Приклади	Перша атестація
	алгоритмів.	
	Завдання на СРС: Модифікації метода Ейлера, метод Ейлера	
	– Коші. Поняття про краєві задачі та методи їх розв'язку.	
	Поняття про диференційні рівняння в часткових похідних та	
	методи їх розв'язку.	
	Підготовка до виконання лабораторної роботи №5	
9	Лекція 9. Основні поняття математичної статистики. Вступ	
	до теорії кореляції. Основні поняття математичної	
	статистики. Задачі математичної статистики. Генеральна	
	сукупність та вибірка. Проста статистична сукупність.	
	Статистичний ряд. Інтервальне розподілення. Емпірична	
	функція розподілу. Гістограма. Числові характеристики	
	статистичного розподілу. Приклади для хіміко-	
	технологічних величин. Основні поняття і визначення.	
	Лінійна кореляція. Нелінійна кореляція	
	Лабораторна робота 5. Чисельний розв'язок визначених	
	інтегралів. Метод трапецій. Метод Сімпсона.	
	Завдання на СРС: Числові характеристики статистичного	
	розподілення. Вибіркове середнє та вибіркова дисперсія	
	(розрахунок, інтерпретація). Групове і загальне середнє,	
	групова, внутрішньо-групова та міжгрупова дисперсія.	
	Використання Ехсеl для статистичних розрахунків та їх	
	графічної інтерпретації. Приклади для хіміко-технологічних	
	величин. Оцінки характеристик випадкових величин та їх	
	властивості. Точкові та інтервалові оцінки. Надійний	
	інтервал, надійна ймовірність. Рівень значення. Побудова	
	надійних інтервалів для математичного сподівання та	
	дисперсії випадкових величин. Задачі кореляційного аналізу.	
	Вимірювання тісноти зв'язку. Коефіцієнт кореляції.	
	Статистична перевірка статистичних гіпотез: Основні	
	поняття і визначення. Порівняння двох дисперсій	
	нормальних генеральних сукупностей. Порівняння двох	
	дисперсій нормальних генеральних сукупностей. Порівняння	
	вибіркової середньої з гіпотетичною генеральною середньою	

	нормальної сукупності. Порівняння двох середніх	
	нормальних генеральних сукупностей з невідомими	
	дисперсіями (залежні вибірки).	
	Підготовка до захисту лабораторної роботи №5	
10	Завдання на <i>CPC</i> : Підготовка до виконання лабораторної роботи №6.	Захист лабораторної роботи №5
11	Лабораторна робота 6. Чисельний розв'язок звичайних диференційних рівнянь. Метод Ейлера. Метод Рунге-Кутта Завдання на СРС: Підготовка до захисту лабораторної роботи №6	
12	Завдання на <i>CPC</i> : Підготовка до виконання лабораторної роботи №7.	Захист лабораторної роботи № 6
13	Лабораторна робота 7. Статистична обробка експериментальних даних. Графічне зображення вибірок. Числові характеристики випадкових величин Завдання на СРС: Підготовка до захисту лабораторної роботи №7	Подання ДКР на перевірку
14	Завдання на СРС: Підготовка до МКР	Захист лабораторної роботи № 7
15	Завдання на СРС: Підготовка до захисту ДКР	Написання МКР
16	Завдання на СРС:. Підготовка до захисту ДКР	Захист ДКР.
17	Завдання на СРС:. Підготовка до екзамену	Захист ДКР.
18	Залікове заняття	Підбиття підсумків РСО

Індивідуальні завдання

У відповідності до навчального плану в дисципліні передбачено виконання студентами домашньої контрольної роботи. На домашню контрольну роботу відноситься тема «Математичне оброблення експериментальних даних».

Завдання 1. Розв'язати задачу апроксимування для заданої табличної функції: Отримати апроксимувальну функцію за допомогою вибору емпіричної залежності, яка найточніше описує вихідну залежність, для чого

- 1. Визначити загальний вигляд апроксимувальної функції, користуючись графічним і аналітичним способами.
- 2. Визначити конкретний вигляд апроксимувальної функції, користуючись методом найменших квадратів.
 - 3. Оцінити похибку апроксимування:
- а) обчислити середньоквадратичну похибку;
- б) побудувати графік отриманої апроксимувальної функції, порівняти його з точковим графіком заданої функції та зробити висновки.

Завдання 2. На основі експериментальних даних, які наведено у вигляді кореляційної таблиці, вивчити залежність між випадковими величинами X та Y, для чого

- Знайти рівняння прямих ліній регресії Y на X та X на Y.
- Оцінити тісноту зв'язку між величинами X та Y.

ДКР оформлюється на листах формату A4 відповідно до вимог ДСТУ 3008-95. Пояснювальна записка повинна містити:титульний лист;зміст (детально);завдання (загальне та індивідуальне);

-розв'язок задачі 1:

- ► теоретичні відомості щодо точкового квадратичного наближення функції (апроксимування) 3-4 стор.,
- ► точковий графік таблично заданої функції (діаграма MS Excel) з висновками стосовно графічного визначення вигляду емпіричної формули,
- ▶ лист MS Excel з ходом визначення вигляду емпіричної формули аналітичним способом,
- ▶ лист MS Excel з розв'язуванням задачі визначення конкретного вигляду функції МНК,
- ▶ графік отриманої апроксимувальної функції разом з графіком заданої функції (діаграма MS Excel) з висновками,
- ▶ загальні висновки до задачі 1;
- -розв'язок задачі 2:
- ▶ теоретичні відомості щодо лінійної кореляції -2-3 стор.,
- ▶ лист(и) MS Excel з ходом розв'язування задач визначення вигляду функцій регресії та оцінювання тісноти кореляційного зв'язку кореляційну та допоміжні таблиці навести в числовому вигляді та з відображенням формул MS Excel,
- ▶ загальні висновки до задачі 2;

список використаної літератури.

Домашня контрольна робота складається з 3 задач. Робота подається до перевірки не пізніше, ніж за тиждень до захисту. На 12 тижні (перед здачею ДКР на перевірку) програми демонструються на комп'ютері викладачу; без демонстрації працюючої програми робота на перевірку не приймається. Оцінювання такої роботі проводиться за наступною шкалою:

- завдання виконане повністю вірно та виконані всі вимоги до роботи 13-12 балів;
- завдання виконане в цілому вірно і виконується комп'ютером, проте ε деякі неточності від 10 до 11 балів в залежності від кількості вказаних неточностей;
- завдання виконане в цілому невірно, проте вірно виконані окремі її суттєві елементи
 від 8 до 9 балів в залежності від кількості вказаних елементів;
- завдання виконане невірно, або студент не подав до перевірки ДКР без поважних причин 0 балів.

За відсутність будь-якої з наступних частин пояснювальної записки чи не відповідності її змісту нараховується один штрафний бал:

- титульний аркуш;
- зміст;
- завдання;
- теоретичні відомості;
- хід роботи;
- висновки;
- перелік літератури.

За кожен повний або неповний тиждень запізнення з поданням домашньої контрольної роботи на перевірку знімається *два* бали.

При захисті наявність роботи в електронному та оформленому друкованому вигляді обов'язкова.

Перелік завдань підсумкового контролю.

На підсумковий модульний контроль виносяться такі запитання:

- Постановка задачі наближення функцій.
- Методи наближення функцій.
- Постановка задачі інтерполяції.
- Інтерполяційні формули Лагранжа та Ньютона.
- Чисельне диференціювання на основі інтерполяційних формул Ньютона.
- Чисельне інтегрування. Постановка задачі.
- Формули трапецій та Сімпсона (парабол).

Рейтингова система оцінювання успішності

- 1) виконання та захист 7 лабораторних робіт;
- 2) написання модульної контрольної роботи;
- 3) виконання домашньої контрольної роботи;
- 4) відповідь на екзамені.

Система рейтингових балів

1. <u>Лабораторні роботи</u>

Ваговий бал -3. Максимальна кількість балів за всі роботи дорівнює 7×3 бали = 21 балів.

Рейтингові бали кожної роботи складаються з балів за виконання роботі (від 0 до 1), балів за оформлення протоколу роботи (від 0 до 1) і балів за здачу роботи (від 0 до 1). Таким чином за результатами роботи студент може отримати від 0 до 3 балів.

За виконання лабораторної роботи бали виставляються наступним чином:

- робота повністю і вірно виконана у відведений час на лабораторному занятті 1 бал;
- робота виконана у відведений час на лабораторному занятті менше ніж на половину або не виконана – 0 балів.

Примітка: в разі якщо студента був відсутній на занятті з **поважної причини** (підтверджується документально) і пред'явив **на наступному занятті** виконане пропущеної завдання роботи то йому виставляється 1 бал.

За оформлення звіту лабораторної роботи бали виставляються наступним чином:

- протокол відповідає вимогам, оформлено охайно, без виправлень і помарок (допускається не більше 1 виправлення на 1 сторінці протоколу) 1 бал;
- протокол відповідає вимогам, але виконаний неохайно або присутня значна кількості виправлень 0 балів.

За захист результатів бали виставляються наступним чином:

- студент вірно і повністю відповів на всі поставлені йому запитання (виконав надані для захисту роботи завдання) – 1 бал;
- студент при відповідях на запитання (виконанні завдання) припустився суттєвих помилок, які самостійно виправив після підказок – 0 бал.

За відсутність на лабораторній роботі без поважної причини знімається *один* бал.

До лабораторної роботи не допускаються студенти без протоколу відповідної лабораторної роботи. Кожен протокол повинен містити: номер лабораторної роботи, тему, завдання, короткі теоретичні відомості, блок-схему алгоритму, хід роботи, результати та висновок.

2. Модульна контрольна робота

Ваговий бал – 16.

Модульна контрольна робота являє собою практичні завдання. Оцінювання такої роботи проводиться за наступною шкалою:

- повне безпомилкове розв'язування завдання з поясненнями 14-16 балів;
- повне розв'язування завдання з несуттєвими неточностями або без пояснень 11-13 балів;
- завдання виконане з певними недоліками 8-10 бали;
- завдання не виконано 0 балів.

В разі, якщо студент не закінчив виконання роботі вчасно, оцінюється та частина, яка фактично виконана.

3. Домашня контрольна робота

Ваговий бал – 13.

Домашня контрольна робота складається з 3 задач. Робота подається до перевірки не пізніше, ніж за тиждень до захисту. На 12 тижні (перед здачею ДКР на перевірку) програми демонструються на комп'ютері викладачу; без демонстрації працюючої програми робота на перевірку не приймається. Оцінювання такої роботі проводиться за наступною шкалою:

- завдання виконане повністю вірно та виконані всі вимоги до роботи 13-12 балів;
- завдання виконане в цілому вірно і виконується комп'ютером, проте є деякі неточності
 від 10 до 11 балів в залежності від кількості вказаних неточностей;
- завдання виконане в цілому невірно, проте вірно виконані окремі її суттєві елементи від 8 до 9 балів в залежності від кількості вказаних елементів;
- завдання виконане невірно, або студент не подав до перевірки ДКР без поважних причин 0 балів.

За відсутність будь-якої з наступних частин пояснювальної записки чи не відповідності її змісту нараховується один штрафний бал:

- титульний аркуш;
- зміст;
- завдання;
- теоретичні відомості;
- хід роботи;
- висновки;
- перелік літератури.

За кожен повний або неповний тиждень запізнення з поданням домашньої контрольної роботи на перевірку знімається *два* бали.

Традиційні оцінки виставляються наступним чином: «відмінно» — 12-13 балів; «добре» — 11-10 балів; «задовільно» — 9-8 балів; «не задовільно» — менше 7 балів.

За результатами навчальної роботи за перші 7 тижнів «ідеальний студент» має набрати 17 балів. На першій атестації (8-й тиждень) студент отримує «зараховано», якщо його поточний рейтинг не менше **8** балів.

За результатами 13 тижнів навчання «ідеальний студент» має набрати 26 балів та здати ДКР на перевірку . На другій атестації (14-й тиждень) студент отримує «зараховано», якщо його поточний рейтинг не менше **16** балів.

Максимальна сума балів протягом семестру складає: $\mathbf{R} = 21 + 16 + 13 = 50$ балів.

Відповідно до «Положення про організацію навчального процесу в НТУУ «КПІ», необхідною умовою допуску до екзамену ϵ відсутність заборгованостей з лабораторних робіт, захист ДКР, а також стартовий рейтинг не менше 25 балів.

На екзамені студенти виконують письмову контрольну роботу. Кожне завдання містить два теоретичних та одне практичне питання. Перелік питань наведений у додатку Б до робочої навчальної програми кредитного модуля. Теоретичне питання оцінюється у 15 балів, практичне - 20 балів.

Система оцінювання теоретичного питання:

«відмінно», повна відповідь (не менше 90% потрібної інформації) — **14-15 балів**:

«добре», достатньо повна відповідь (не менше 75% потрібної інформації, або незначні неточності) – **11-13 балів**;

«задовільно», неповна відповідь (не менше 60% потрібної інформації та деякі помилки) — **9- 10** балів:

«незадовільно», незадовільна відповідь — 0 балів.

Система оцінювання практичного питання:

«відмінно», повне безпомилкове розв'язування завдання – **18-20 балів**;

«добре», повне розв'язування завдання з несуттєвими неточностями — 15-17 балів;

«задовільно», завдання виконане з певними недоліками — 12-14 балів;

«незадовільно», завдання не виконано — 0 балів.

Сума стартових балів і балів за екзаменаційну контрольну роботу переводиться до екзаменаційної оцінки згідно з таблицею:

Бали $R=r_{ m C}+r_{ m E}$	ECTS-оцінка	Екзаменаційна оцінка
95100	A	відмінно
8594	В	добре
7584	С	
6574	D	and was in the
6064	Е	задовільно
Менше 60	Fx	незадовільно
Rc < 25 або не виконані інші	F	не допущений
умови допуску до екзамену		

Навчально-методичні матеріали

Основна література

- 1. Веденеева, Е. А. Функции и формулы Excel 2007. Библиотека пользователя [Текст] / Е. А. Веденеева. СПб.: Питер, 2008. 384 с.:ил. ISBN 978-5-388-00071-2
- 2. Дьяконов, В. П. Энциклопедия Mathcad 2001i и Mathcad 11 [Текст] / В. П. Дьяконов. M:COЛOH-Пресс, 2004. 832 с.
- 3. Брановицька, С. В. Обчислювальна математика та програмування: Обчислювальна математика в хімії і хімічній технології [Текст] / С. В. Брановицька, Р. Б. Медведєв, Ю. А. Фіалков. К.: ІВЦ «Видавництво «Політехніка», ТОВ «Фірма «Періодика», 2004. 220 с.: іл. ISBN 966-622-162-4
- 4. Гмурман, В. Е. Теория вероятностей и математическая статистика [Текст] / В. Е. Гмурман. 9-е изд., стер. М.: Высш. шк., 2003. 479 с.:ил. ISBN 5-06-004214-6
- 5. Обчислювальна математика та програмування. 2. Чисельні методи [Електронний ресурс] : методичні вказівки до самостійної роботи і контрольні завдання до розрахунковографічної роботи для студентів заочної форми навчання напрямку 6.05130 «Хімічна технологія» / С. В. Брановицька, С. Г. Бондаренко, О. В. Сангінова ; НТУУ «КПІ». Електронні текстові дані. Київ : НТУУ «КПІ», 2010.

Допоміжна література

- 6. Математичні методи в хімії та хімічній технології [Текст] / Ю. К. Рудавський, Є. М.Мокрий, З. Г. Піх, М. М. Чип, І. Й. Куриляк. Львів: Світ, 1993. 208 с.
- 7. Заграй Я.М., Котовенко О.А., Карасьова В.О. Статистичні обчислення в екології: Навчальний посібник. К.: КНУБА, 2001. 111 с.
- 8. Джонсон, К. Численные методы в химии [Текст] / К. Джонсон. М.: Мир, 1983. 504 с.
- 9. Павленко, В. Г. Математические методы обработки экспериментальных данных [пособие для инженеров, аспирантов и научных работников] / В. Г. Павленко, И. О. Гордеев. Новосибирск, 1972. 138 с.
- 10. Демидович, Б. П. Численные методы анализа [Текст] / Б. П. Демидович, И. А.Марон М.: Наука, 1967. 524 с.
- 11. Копченова, Н. В. Вычислительная математика в примерах и задачах [Текст] / Н. В. Копченова, И. А. Марон. М.: Физматгиз, 1972. 264 с.
- 12. Математическая обработка экспериментальных данных. Пособие для студентов химикотехнологического факультета [Текст] / С. В. Брановицкая, С. Г. Бондаренко, А. А. Квитка, Р. Б. Медведев, А. И. Ткачук. К.: НТУУ «КПИ», 1997. 76 с.
- 13. Заварыкин, В. М. Численные методы [Учебное пособие] / В. М. Заварыкин, В. Г. Житомирский, М. П. Лапчик. М.: Просвещение, 1990.-176 с.