Algorithm 1 Compute an invariant subspace or ensure that no such subspace is

INPUT: a list $\mathcal{M} = \{M_1, \dots, M_r\}$ of square matrices of order n OUTPUT: a basis of a non trivial \mathcal{M} -invariant subspace or None

- 1: function Invariant_Subspace(\mathcal{M})
- 2: compute E_1, \ldots, E_k the generalized eigenspaces of a random linear combination in the M_i 's.
- 3: **for** $1 \le j \le k$ **do**
- 4: **if** dim $(E_j) = 1$ **and** Inv $_{\mathcal{M}}(E_j) \neq \mathbb{C}^n$ **then** return Inv $_{\mathcal{M}}(E_j)$
- 5: **if** k = n **then** return None
- 6: $j := \text{index for which } \dim(E_i) > 1$
- 7: compute $M_i^{[E_j]}$ for each $1 \le i \le r$ where $M^{[E_j]}$ is defined by:

$$T^{-1}MT =: \begin{pmatrix} * & * & * \\ \hline * & M^{[E_j]} & * \\ \hline * & * & * \end{pmatrix}$$
 with T a transition matrix from the canonical basis to a basis adapted to $\mathbb{C}^n = E_1 \oplus \cdots \oplus E_k$

- 8: compute $K := \bigcap_{i=1}^r \operatorname{Ker} \left(M_i^{[E_j]} \lambda_{M_i,j} \right)$
- 9: while $K \neq \{0\}$ do
- 10: take non zero $v \in K$
- 11: **if** $\operatorname{Inv}_{\mathcal{M}}(v) \neq \mathbb{C}^n$ **then** return $\operatorname{Inv}_{\mathcal{M}}(v)$
- 12: compute $M \in Alg(\mathcal{M})$ such that $M^{[E_j]}v \in E_j \setminus \mathbb{C}v$
- 13: replace K by $K \cap \operatorname{Ker} (M^{[E_j]} \lambda_{M,j})$
- 14: compute \mathcal{B} a basis of the algebra generated by \mathcal{M}
- 15: **return** Invariant_Subpace(\mathcal{B})