

## TODAY'S LECTURE



- 1. Cross-sectional VS Panel Data
- 2. Pooled OLS
- 3. Fixed Effect Model
- 4. Random Effect Model
- 5. Income and Crime Rate
- **6.** Marketing Channels Profitability



Data Scientist in MSD IT



Pavel
Data Scientist in
MSD IT



## Cross-sectional Data

| Person (index) | Income | Education<br>(in years) | Gender<br>(male=0, female=1) | Czechitas Course<br>(no=0, yes=1) |
|----------------|--------|-------------------------|------------------------------|-----------------------------------|
| 1              | 66 000 | 18                      | 1                            | 1                                 |
| 2              | 52 000 | 13                      | 0                            | 1                                 |
|                |        |                         |                              |                                   |
| n              | 64 000 | 22                      | 1                            | 0                                 |

- Individual indices i = 1, 2, ..., n
- Model example:  $income_i = \beta_0 + \beta_1 education_i + \beta_2 gender_i + \beta_3 course_i + \epsilon_i$
- Hypothesis: Czechitas course has positive impact on income
- Omitted Variable Bias?



## Panel Data

Time (t)

2018 (t=1)

2019 (t=2)

2020 (t=3)

| Person<br>(index) | Income | Educatio<br>n<br>(in<br>years) | Gender<br>(male=0,<br>female=<br>1) | Czechita<br>s Course<br>(no=0,<br>yes=1) | Perso<br>(inde |        | Educatio<br>n<br>(in<br>years) | Gender<br>(male=0,<br>female=<br>1) | Czechita<br>s Course<br>(no=0,<br>yes=1) | Person<br>(index) | Income | Educatio<br>n<br>(in<br>years) | Gender<br>(male=0,<br>female=<br>1) | Czechita<br>s Course<br>(no=0,<br>yes=1) |
|-------------------|--------|--------------------------------|-------------------------------------|------------------------------------------|----------------|--------|--------------------------------|-------------------------------------|------------------------------------------|-------------------|--------|--------------------------------|-------------------------------------|------------------------------------------|
| 1                 | 61 000 | 17                             | 1                                   | 0                                        | 1              | 66 000 | 18                             | 1                                   | 0                                        | 1                 | 69 000 | 19                             | 1                                   | 1                                        |
| 2                 | 50 000 | 13                             | 0                                   | 0                                        | 2              | 52 000 | 13                             | 0                                   | 1                                        | 2                 | 55 000 | 13                             | 0                                   | 1                                        |
|                   |        |                                |                                     |                                          |                |        |                                | ***                                 |                                          |                   |        |                                |                                     |                                          |
| n                 | 60 000 | 21                             | 1                                   | 0                                        | n              | 64 000 | 22                             | 1                                   | 0                                        | n                 | 68 000 | 22                             | 1                                   | 0                                        |

- Individual indices i = 1, 2, ..., n
- Time indices  $t = 1, 2, \dots, T$
- Model example:  $income_{it} = \beta_0 + \beta_1 education_{it} + \beta_2 gender_i + \beta_3 course_{it} + \epsilon_{it}$
- Multiple individuals are observed over multiple periods



## Time Series – Side Note

2018 (t=1) 2020 (t=3) Time (t) 2019 (t=2) Income Czechita Person Income Czechita Person Gender Czechita (index) s Course s Course (male=0. s Course (no=0, (no=0, (no=0, yes=1) yes=1) yes=1) 61 000 17 0 0 69 000 19 66 000

- One individual
- Time indices t = 1, 2, ..., T
- Models mainly about dynamic properties (=how past affects future)



# Reminder - Properties of Estimators

Estimates of betas are random variables

## Consistency

- As sample size is increasing probability of getting estimate different from the true beta is going to zero.
- "Shooting at the right target"

## Efficiency

- Variance of estimates
- "How much the shoots are spread out around target"





# Pooled OLS (Ordinary Least Squares)

- Model example:  $income_{it} = \beta_0 + \beta_1 education_{it} + \beta_2 gender_i + \beta_3 course_{it} + \varepsilon_{it}$
- Treating panel data as cross-sectional when estimating  $\beta$ 's (=pooled)

#### **OLS Assumption: Random Sample**

"Data are identically and Independently distributed."

#### Panel Setup:

- Violates independence
- Observations of one individual are correlated across time (=less informative)
- E.g., observing 5x that one individual is a woman is not more informative than observing it once

#### Pooled OLS:

Model is estimated by (pooled) OLS



## Individual Effect - Motivation

## **Causal Impact**

"Impact of X on Y while everything else remains the same."

#### Individual Effect Model

- Allows to "control" for time-invariant variables (talent, gender, personality, ...)
- Utilizing repeated observations (more precise estimates)

$$y_{it} = \alpha_i + x_{it}^T \beta + \varepsilon_{it},$$

 $lpha_i$  - individual effect,  $x_{it}$  - vector of explanatory variables



# Individual Effect - Example

## Specific Case

$$income_{it} = \underbrace{\beta_0 + \beta_2 gender_i}_{\alpha_i} + \beta_1 education_{it} + \beta_3 course_{it} + \varepsilon_{it}$$

#### General Case

$$income_{it} = \underbrace{\beta_0 + \beta_2 gender_i + \beta_4 ability_i + \beta_5 ethnicity_i + \cdots}_{\alpha_i} + \beta_1 education_{it} + \beta_3 course_{it} + \varepsilon_{it}$$

- individual effect  $\alpha_i$  captures time-invariant covariates
- we are able to estimate or remove  $lpha_i$  since we observe i-th individual multiple times



# Individual Effect Models - Assumptions

•  $income_{it} = \underbrace{\beta_0 + \beta_2 gender_i + \beta_4 ability_i + \beta_5 ethnicity_i + \cdots}_{\alpha_i} + \beta_1 education_{it} + \beta_3 course_{it} + \varepsilon_{it}$ 

#### Fixed Effect Model

• individual effect  $\alpha_i$  is correlated with some of our explanatory variables

#### Random Effect Model

• individual effect  $\alpha_i$  is NOT correlated with some of our explanatory variables



## A) Fixed Effect Model – Within Estimator

### Model

$$income_{it} = \underbrace{\beta_0 + \beta_2 gender_i}_{\alpha_i} + \beta_1 education_{it} + \beta_3 course_{it} + \varepsilon_{it}$$

#### Demeaned Model

Take averages across time and demean data

$$income_{it} - \overline{income}_{i} = \underbrace{\beta_{0} + \beta_{2} gender_{i} - (\beta_{0} + \beta_{2} gender_{i})}_{\alpha_{i} - \alpha_{i} = 0} + \underbrace{\beta_{1} \left(education_{it} - \overline{education}_{i}\right) + \beta_{3} \left(\underbrace{course_{it} - \overline{course}_{i}}_{"new\ explanatory\ variable"} + \underbrace{\varepsilon_{it} - \overline{\varepsilon}_{i}}_{"new\ error"} \right)}_{"new\ error"}$$



# A) Fixed Effect Model – Within Estimator

#### Demeaned Model

"new explained variable" 
$$\overline{income_{it} - \overline{income}_{i}} =$$

$$\beta_1 \left( education_{it} - \overline{education}_i \right) + \beta_3 \underbrace{\left( course_{it} - \overline{course}_i \right)}_{"new\ explanatory\ variable"} + \underbrace{\varepsilon_{it} - \overline{\varepsilon_i}}_{"new\ error"}$$

#### Within Estimator

- 1. Compute demeaned data
- Use OLS on demeaned data (without intercept)

$$y_{it} - \bar{y}_i = (x_{it} - \bar{x}_i)^T \beta + (\varepsilon_{it} - \bar{\varepsilon}_i)$$



# A) Fixed Effect Model – Dummy Estimator

#### Model

$$y_{it} = \alpha_i + x_{it}^T \beta + \varepsilon_{it},$$

 $lpha_i$  - individual effect,  $x_{it}$  - vector of explanatory variables

- Represent individual i by a dummy variable
   (n variables, each equal to 1 for i-th individual, 0 otherwise)
- Identical estimates to the within estimator
- May be numerically challenging as n is large



# A) Fixed Effect Model – Dummy Estimator

## Two-Way Effect Model

$$y_{it} = \alpha_i + \tau_t + x_{it}^T \beta + \varepsilon_{it},$$

 $lpha_i$  - individual effect,  $au_t$  - time effect,  $au_{it}$  - vector of explanatory variables

- $\tau_t$  represents effect of period t
- Shared across individuals
- Our example: income in 2020 likely affected by COVID



# A) Fixed Effect Model – First Differences Estimator

- 1. Subtracting values from the previous period instead demeaning
- **2.** Apply OLS

#### Notes

- Similar idea to within estimator
- Lose the first period (no zero period is available)
- Sometimes less efficient than within estimator



# A) Fixed Effect Model – Assumptions

#### Shared with cross-sectional OLS

- 1. Linearity of the model
- 2. Random sample
- No omitted variable (only time-variant are problematic)
- 4. No multicollinearity
- 5. Homoskedasticity (⇒ heteroskedastic robust errors)

## Additionally

- 1. Only time-variant variables
- 2. Uncorrelated errors  $Cov(\varepsilon_{it}, \varepsilon_{is}) = 0, t \neq s$ 
  - ⇒violation makes inference invalid (standard errors, t-tests for betas)
  - ⇒ use autocorrelation and heteroskedastic robust errors



# A) Fixed Effect Model – Test of Autocorrelation

8. For t  $\neq$  s, errors are uncorrelated, conditional on explanatory variables and  $\alpha_i$ .

#### **HOW TO TEST?**

#### **Durbin-Watson test**

Ho = no first order autocorrelation (first order = lag of one time unit)

 $H_1$  = first order correlation exists

Test result: a test statistic with a value between 0-4:

- 2 is no autocorrelation
- 0 to <2 is positive autocorrelation
- >2 to 4 is negative autocorrelation



# B) Random Effect Model

## Redefined (Longer) Example

$$income_{it} = \beta_0 + \beta_1 education_{it} + \beta_2 gender_i + \beta_3 course_{it} + \underbrace{\alpha_i + \varepsilon_{it}}_{v_i}$$

 $\alpha_i$  - unobserved time-invariant variables (talent, ethnicity, ...)

 $arepsilon_{it}$  - independent errors

## New composite error

$$v_{it} = \alpha_i + \varepsilon_{it}$$

- Correlated across time  $Cov(v_{it}, v_{is}) \neq 0$ , since  $\alpha_i$  is present in every period
- Uncorrelated with explanatory variables (assumption!)



# B) Random Effect Model

## Redefined (Longer) Example

$$income_{it} = \beta_0 + \beta_1 education_{it} + \beta_2 gender_i + \beta_3 course_{it} + \underbrace{\alpha_i + \varepsilon_{it}}_{v_i}$$

#### Idea

- correlation in  $v_i$  makes estimates of betas less efficient in comparison to case where  $v_i$  is not correlated
- Random effect estimator does "quasi-demeaning" that removes correlation in errors
- Remark: equivalent to pooled OLS when  $Var[\alpha_i] = 0$



# B) Random Effect Model - Assumptions

- 1. Linearity of the model
- 2. Random sample
- 3. No omitted variable
- 4. No multicollinearity
- 5. Homoskedasticity (⇒ heteroskedastic robust errors)
- 6. Uncorrelated errors (⇒ autocorrelation robust errors)

→ The model can have variables that are constant in time for all individuals



# FE vs RE – Practical Aspects

## Fixed Effect (FE) Model

- PRO: all time-invariant variables are "controlled" by  $\alpha_i$   $\Rightarrow$  no omitted variable bias caused by unobserved time-invariant variables
- CON: all time-invariant variables are "controlled" by  $\alpha_i$   $\Rightarrow$  cannot study impact of time-invariant variables

## Random Effect (RE) Model

- Pro: allows to study impact of time-invariant variables
- Con: assumption of uncorrelated errors with  $x_{it}$   $\Rightarrow$  omitted variable bias when assumption is violated



# FE vs RE – Statistical Aspects

## Fixed Effect (FE) Model

- PRO: always consistent
- CON: not efficient when RE is correct

## Random Effect (RE) Model

- PRO: efficient ⇒ smaller variance of beta estimates
- CON: inconsistent when FE is correct.



## FE vs RE – Test

Formal assessment: Hausman test

Null hypothesis: Random effects is the preferred model

If we reject the null hypothesis (p-value < 0.05), we need to use fixed effects

• Tests for "presence" of fixed effects



# Summary – Pooled OLS, FE, RE

#### Pooled OLS

- Inconsistent when FE is present
- Efficient when no individual effect is present
- Less efficient than RE when RE is present

#### **Fixed Effect**

- Consistent
- Less efficient than RE or Pooled OLS when FE are not present

#### Random Effect

- Inconsistent when FE is present
- More efficient than
   Pooled OLS when RE is present

Hausman Test



# Quiz 1

You randomly assign a treatment/placebo to a group of people and survey their health condition in 1 month, 2 months and 3 months. You are interested in impact of treatment. What is the best model?

- A. Pooled OLS
- B. Fixed Effect
- C. Random Effect

#### Answer: C)

- Random assignment of treatment/placebo guarantees independence of individual effect and treatment ⇒ RE preferred over FE
- Serial correlation is present health condition of one particular patient in  $1^{st}$  month is clearly correlated with his condition in  $2^{nd}$  month  $\Rightarrow$  RE preferred over Pooled OLS



## Quiz 2

You want to evaluate career impact of a particular Czechitas course. You are surveying Czechitas participants about their income, education, etc. on an annual basis over several years. It is an intensive course and you expect that talented and motivated people are more likely enrolled to that course. You do not observe talent. What is the best model?

- A. Pooled OLS
- B. Fixed Effect
- C. Random Effect

#### Answer: B)

• Expecting that certain individuals are more likely to pick the course means that course enrollment is correlated with individual characteristics ⇒ fixed effect.



# Final Remark – What Is Beyond FE and RE?

#### **Short Panel Models**

- discussed today Pooled OLS, FE, and RE
- About studying impact of X on Y within the same period
- Usually high n, low T

## Long (Dynamic) Panel Models

- Out of scope of this course
- About studying impact of past (both X and Y) on current value of Y
- Low n, high T



## MOCKUP EXAMPLE:

How does the income affects crime rate?

## Guns dataset

"Guns is a <u>balanced</u> panel of data on 50 US states, plus the District of Columbia (for a total of <u>51 states</u>), by year for 1977–1999."

For simplicity, we will only use partial data:

- State (i)
- Year (t)
- Income per capita personal income
- Violent violent crime rates (incidents/ 100,000 inhabitants)



# Step 1: Load + transform data



## POLS ignores both cross sectional and time panel structure



| Dep. Variable:    | violent          | R-squared:            | 0.1665    |
|-------------------|------------------|-----------------------|-----------|
| stimator:         | Pooled0LS        | R-squared (Between):  | 0.1946    |
| No. Observations: | 1173             | R-squared (Within):   | -0.0720   |
| ate:              | Fri, Apr 28 2023 | R-squared (Overall):  | 0.1665    |
| Time:             | 17:27:38         | Log-likelihood        | -8374.6   |
| Cov. Estimator:   | Clustered        |                       |           |
|                   |                  | F-statistic:          | 233.84    |
| Entities:         | 51               | P-value               | 0.0000    |
| Avg Obs:          | 23.000           | Distribution:         | F(1,1171) |
| lin Obs:          | 23.000           |                       |           |
| lax Obs:          | 23.000           | F-statistic (robust): | 5.5967    |
|                   |                  | P-value               | 0.0182    |
| Time periods:     | 23               | Distribution:         | F(1,1171) |
| Avg Obs:          | 51.000           |                       |           |
| Min Obs:          | 51.000           |                       |           |
| Max Obs:          | 51.000           |                       |           |
|                   | Parameter        | Estimates             |           |

|        | Parameter | Std. Err. | T-stat  | P-value | Lower CI | Upper CI |
|--------|-----------|-----------|---------|---------|----------|----------|
|        |           |           |         |         |          |          |
| const  | -229.66   | 287.81    | -0.7979 | 0.4251  | -794.35  | 335.03   |
| income | 0.0534    | 0.0226    | 2.3657  | 0.0182  | 0.0091   | 0.0977   |



| ep. Variable:    | violent          | R-squared:            | 0.1665    |
|------------------|------------------|-----------------------|-----------|
| stimator:        | PooledOLS        | R-squared (Between):  | 0.1940    |
| o. Observations: | 1173             | R-squared (Within):   | -0.0726   |
| ate:             | Fri, Apr 28 2023 | R-squared (Overall):  | 0.166     |
| ime:             | 17:27:38         | Log-likelihood        | -8374.6   |
| ov. Estimator:   | Clustered        |                       |           |
|                  |                  | F-statistic:          | 233.84    |
| ntities:         | 51               | P-value               | 0.0000    |
| vg Obs:          | 23.000           | Distribution:         | F(1,1171) |
| in Obs:          | 23.000           |                       |           |
| ax Obs:          | 23.000           | F-statistic (robust): | 5.5967    |
|                  |                  | P-value               | 0.0182    |
| ime periods:     | 23               | Distribution:         | F(1,1171) |
| vg Obs:          | 51.000           |                       |           |
| in Obs:          | 51.000           |                       |           |
| ax Obs:          | 51.000           |                       |           |
|                  | Parameter        | Estimates             |           |

0.4251

0.0182

-794.35

335.03

-229.66

287.81

- 1. What is value of  $\beta_0 + \beta_1$  coefficients?
- 2. Are both  $\beta_0 + \beta_1$  coefficients significant?
- Based on the model results.
   What would be the crime rate (violent) for income
  - i. 1,000
  - ii. 10,000
  - iii. 20,000



|                   | PooledOLS Es     | timation Summary      |             |
|-------------------|------------------|-----------------------|-------------|
| Dep. Variable:    | violent          | R-squared:            | 0.1665      |
| Estimator:        | PooledOLS        | R-squared (Between):  | 0.1940      |
| No. Observations: | 1173             | R-squared (Within):   | -0.0720     |
| Date:             | Fri, Apr 28 2023 | R-squared (Overall):  | 0.1665      |
| Time:             | 17:27:38         | Log-likelihood        | -8374.6     |
| Cov. Estimator:   | Clustered        |                       |             |
|                   |                  | F-statistic:          | 233.84      |
| Entities:         | 51               | P-value               | 0.0000      |
| Avg Obs:          | 23.000           | Distribution:         | F(1,1171)   |
| Min Obs:          | 23.000           |                       |             |
| Max Obs:          | 23.000           | F-statistic (robust): | 5.5967      |
|                   |                  | P-value               | 0.0182      |
| Time periods:     | 23               | Distribution:         | F(1,1171)   |
| Avg Obs:          | 51.000           |                       |             |
| Min Obs:          | 51.000           |                       |             |
| Max Obs:          | 51.000           |                       |             |
|                   |                  |                       |             |
|                   | Parameter        | Estimates             |             |
|                   |                  |                       |             |
| Parame            | ter Std. Err. T  | -stat P-value Lower   | CI Upper CI |
|                   |                  |                       |             |

287.81

- 1. What is value of  $\beta_0 + \beta_1$  coefficients?
- 2. Are both  $\beta_0 + \beta_1$  coefficients significant?
- Based on the model results.
   What would be the crime rate (violent) for income
   i. income = 1,000 => violent = -176
   ii. income = 10,000 => violent = 304

iii. income = 20,000 => violent = 838



# Step 3a: Test assumptions! Check error term/residuals from the model





# Step 3b: Test assumptions!

## Autocorrelation – Error terms correlation over time?

#### Statistical test

#### **Durbin-Watson test**

Test statistic = 0.089

- 0-2 positive autocorrelation
- 2 zero autocorrelation
- 2-4 negative autocorrelation

A rule of thumb is that values in the range of 1.5 to 2.5 are relatively normal

#### **Outcome**

Autocorrelation is present



Step 3: Test assumptions!

Quiz: Given the outcomes can we use POLS?

Statistical tests

Residuals visual inspection indicates patterns

**Durbin-Watson test**Autocorrelation is present



Quiz: Given the outcomes can we use POLS?





## Step 4: Fixed Effects (FE) and Random Effects (RE) models

## Is RE better model than FE?

| RandomEffects Estimation Summary |           |            |         |                    |          |           |             | PanelOLS  | Estimatio      | n Summary<br> |              |          |          |
|----------------------------------|-----------|------------|---------|--------------------|----------|-----------|-------------|-----------|----------------|---------------|--------------|----------|----------|
| ========<br>ep. Variable:        |           | violen     | t R-sq  | ========<br>Jared: |          | 0.1128    | Dep. Variab | <br>le:   | viole          | nt R-sq       | uared:       |          | 0.112    |
| stimator:                        | Ra        | ndomEffect | s R-squ | Jared (Betwe       | een):    | 0.1159    | Estimator:  |           | PanelO         | LS R-sq       | uared (Betwo | een):    | 0.114    |
| o. Observations                  |           | 117        | 3 R-sq  | Jared (Withi       | in):     | 0.1127    | No. Observa | tions:    | 11             | .73 R-sq      | uared (With: | in):     | 0.112    |
| ate:                             | Tue,      | May 02 202 | 3 R-sq  | Jared (Overa       | all):    | 0.1156    | Date:       |           | Tue, May 02 20 | 23 R-sq       | uared (Overa | all):    | 0.114    |
| ime:                             |           | 20:30:0    | 0 Log-  | Likelihood         |          | -7109.8   | Time:       |           | 20:30:         | 01 Log-       | likelihood   |          | -7081.   |
| ov. Estimator:                   |           | Unadjuste  | d       |                    |          |           | Cov. Estima | tor:      | Unadjust       | ed            |              |          |          |
|                                  |           |            | F-sta   | atistic:           |          | 148.90    |             |           |                | F-st          | atistic:     |          | 142.3    |
| ntities:                         |           |            | 1 P-va  | Lue                |          | 0.0000    | Entities:   |           |                | 51 P-va       | lue          |          | 0.000    |
| vg Obs:                          |           | 23.00      | 0 Dist  | ribution:          |          | F(1,1171) | Avg Obs:    |           | 23.6           | 00 Dist       | ribution:    |          | F(1,1121 |
| in Obs:                          |           | 23.00      | 10      |                    |          |           | Min Obs:    |           | 23.6           | 100           |              |          |          |
| ax Obs:                          |           | 23.00      | 0 F-sta | atistic (rob       | oust):   | 148.90    | Max Obs:    |           | 23.6           | 100 F-st      | atistic (ro  | oust):   | 142.3    |
|                                  |           |            | P-va    | Lue                |          | 0.0000    |             |           |                | P-va          | lue          |          | 0.000    |
| ime periods:                     |           |            | 3 Dist  | ribution:          |          | F(1,1171) | Time period |           |                | 23 Dist       | ribution:    |          | F(1,1121 |
| vg Obs:                          |           | 51.00      | 10      |                    |          |           | Avg Obs:    |           | 51.6           | 100           |              |          |          |
| in Obs:                          |           | 51.00      | 10      |                    |          |           | Min Obs:    |           | 51.6           | 100           |              |          |          |
| ax Obs:                          |           | 51.00      | 0       |                    |          |           | Max Obs:    |           | 51.0           | 100           |              |          |          |
| Parameter Estimates              |           |            |         |                    |          |           | Parame      | ter Estim | ates           |               |              |          |          |
| Parai                            | meter Std | I. Err.    | T-stat  | P-value            | Lower CI | Upper CI  |             | Parameter | Std. Err.      | T-stat        | P-value      | Lower CI | Upper CI |
| onst 1                           | 75.39     | 48.461     | 3.6193  | 0.0003             | 80.314   | 270.47    | const       | 181.70    | 27.101         | 6.7046        | 0.0000       | 128.53   | 234.88   |
| ncome 0                          | .0239     | 0.0020     | 12.203  | 0.0000             | 0.0200   | 0.0277    | income      | 0.0234    | 0.0020         | 11.933        | 0.0000       | 0.0196   | 0.0273   |



QUIZ: Is RE better model than FE?

Do we reject Null hypothesis of Hausman test?



Statistical test

**Hausmann test** p-value = 0.008

Null hypothesis:

Random effects is the preferred model

**E**chitas

QUIZ: Is RE better model than FE?

Do we reject Null hypothesis of Hausman test?



Statistical test

**Hausmann test** p-value = 0.008

**Null hypothesis:** 

Random effects is the preferred model

**Outcome** 

Null hypothesis is rejected as p-value < 0.05. Fixed Effects should be used.

echitas

Is RE better model than FE?

### Statistical tests

### Hausmann test

p-value = 0.008 < 0.05

Null hypothesis (Random effects is the preferred model) is rejected



FE models is the winner



## Autocorrelation – Error terms correlation over time?

### Statistical test

### **Durbin-Watson test**

Test statistic = 0.4

- 0-2 positive autocorrelation
- 2 zero autocorrelation
- 2-4 negative autocorrelation

A rule of thumb is that values in the range of 1.5 to 2.5 are relatively normal

#### **Outcome**

Autocorrelation improved but is still present



### Statistical tests

Residuals visual inspection looks well

**Durbin-Watson test**Autocorrelation is still present.
Test statistics improved



FE model is the best model we have. We should used **robust estimator**.



# Step 6: Results interpretation

|                                        | PanelOLS Est     | imation Summary                        |                |
|----------------------------------------|------------------|----------------------------------------|----------------|
| ====================================== | violent          | ====================================== | 0.1127         |
| Estimator:                             |                  | R-squared (Between):                   | 0.1141         |
| No. Observations:                      | 1173             | R-squared (Within):                    | 0.1127         |
| Date:                                  | Fri, May 05 2023 | R-squared (Overall):                   | 0.1140         |
| Time:                                  | 16:59:00         | Log-likelihood                         | -7081.9        |
| Cov. Estimator:                        | Robust           |                                        |                |
|                                        |                  | F-statistic:                           | 142.39         |
| Entities:                              |                  | P-value                                | 0.0000         |
| Avg Obs:                               | 23.000           | Distribution:                          | F(1,1121)      |
| Min Obs:                               | 23.000           |                                        |                |
| Max Obs:                               | 23.000           | F-statistic (robust):                  | 64.082         |
|                                        |                  | P-value                                | 0.0000         |
| Time periods:                          | 23               | Distribution:                          | F(1,1121)      |
| Avg Obs:                               | 51.000           |                                        |                |
| Min Obs:                               | 51.000           |                                        |                |
| Max Obs:                               | 51.000           |                                        |                |
|                                        |                  |                                        |                |
|                                        | Parameter<br>    | Estimates                              |                |
| Paramete                               | r Std. Err. T    | -stat P-value Lowe                     | er CI Upper CI |
| const 181.7                            |                  |                                        | 94.61 258.79   |
| income 0.023                           |                  | .0052 0.0000 0.                        | .0177 0.0292   |



## Step 6: Results interpretation

- 1. What is value of  $\beta_0 + \beta_1$  coefficients?
- 2. Are both  $\beta_0 + \beta_1$  coefficients significant?
- Based on the model results.
   What would be the crime rate (violent) for income

   i. income = 1,000 => violent = 205

ii. income = 10,000 => violent = 415 iii. income = 20,000 => violent = 650

- 1. What is value of  $\beta_0 + \beta_1$  coefficients?
- 2. Are both  $\beta_0 + \beta_1$  coefficients significant?
- 3. Based on the model results.
  What would be the crime rate (violent) for income
  - i. income = 1,000 => violent = 205
  - ii. income = 10,000 => violent = 415
  - iii. income = 20,000 => violent = 650



# What happens when we use wrong model?





## What would be the crime rate (violent) for

| Income <sup>7</sup> | Violent<br>(Fixed effect) | Violent<br>(POLS) |
|---------------------|---------------------------|-------------------|
| 1,000               | 205                       | -176              |
| 10,000              | 415                       | 304               |
| 20,000              | 650                       | 838               |



# What happens when we use wrong model?







# REAL WORLD APPLICATION: MARKETING CHANNELS PROFITABILITY

## Real world applications

## Business questions - examples

- Does companies' investment in environmental sustainability have a positive impact on their profits?
- When interacting with our customers Are some marketing channels more profitable than others?
- What are the variables impacting house prices? What is the impact of unemployment to house prices?
- ...



# When interacting with our customers – Are some marketing channels more profitable than others?

Which data to collect? Which data aggregation to use?



How to validate correctness of the data with business?





Which model is the best?
What happens if we use wrong model?





# Are some marketing channels more profitable than others? Which data to collect



## How to aggregate data?

### Ideal data

Data point for each physician

- Which marketing channels physician was reached
- How each physician prescribes our product
- Price
- Competitor marketing activities



## Due to confidentiality we have aggregated data

- Time dimension monthly data, 3 years
- Cross-sectional dimension 59 departments within Czech Republic
  - # of contacts from each marketing channel
  - price information
  - our sales
  - competitor sales





# Data validation – visualize data and trends validate with business correctness of data





### Discuss with business

- Trends
- Seasonality
- Outliers







## Panel data – what type of data aggregations we can have?

# Panel both time and region

| Region    | date      | total_amount | events |
|-----------|-----------|--------------|--------|
| 01_region | 1/1/2017  | 48029        | 0      |
| 01_region | 2/1/2017  | 49577        | 0      |
| 01_region |           |              |        |
| 01_region | 11/1/2019 | 59072        | 0      |
| 01_region | 12/1/2019 | 81379        | 0      |
| 02_region | 1/1/2017  | 98558        | 242    |
| 02_region | 2/1/2017  | 99100        | 295    |
| 02_region |           |              |        |
| 02_region | 11/1/2019 | 100528       | 464    |
| 02_region | 12/1/2019 | 132593       | 0      |
|           |           | ****         |        |
| 59_region | 1/1/2017  | 493057       | 1048   |
| 59_region | 2/1/2017  | 496547       | 1125   |
|           |           |              |        |
| 59_region | 11/1/2019 | 501323       | 586    |
| 59_region | 12/1/2019 | 638767       | 92     |

59x36 observations

# Time series total Czech Republic per time

| Region             | date      | total_amount | events |
|--------------------|-----------|--------------|--------|
| totalCzechRepublic | 1/1/2017  | 5457472      | 5351   |
| totalCzechRepublic | 2/1/2017  | 5454035      | 4929   |
| totalCzechRepublic | 3/1/2017  | 4851672      | 3891   |
| totalCzechRepublic | 4/1/2017  | 5595244      | 3588   |
| totalCzechRepublic | 5/1/2017  | 5973403      | 3036   |
| totalCzechRepublic | 6/1/2017  | 4550540      | 4108   |
| totalCzechRepublic | 7/1/2017  | 5631377      | 656    |
| totalCzechRepublic | 8/1/2017  | 5632386      | 210    |
| totalCzechRepublic | 9/1/2017  | 4190666      | 2876   |
| totalCzechRepublic | 10/1/2017 | 5445516      | 2665   |
| totalCzechRepublic |           |              |        |
| totalCzechRepublic | 6/1/2019  | 6460270      | 324    |
| totalCzechRepublic | 7/1/2019  | 5422320      | 0      |
| totalCzechRepublic | 8/1/2019  | 6560794      | 0      |
| totalCzechRepublic | 9/1/2019  | 6889965      | 2603   |
| totalCzechRepublic | 10/1/2019 | 6814626      | 1329   |
| totalCzechRepublic | 11/1/2019 | 5827502      | 3513   |
| totalCzechRepublic | 12/1/2019 | 7560694      | 2175   |

36 observations

### Cross sectional Aggregate to total regions, no time

| Region    | total_amount | events |
|-----------|--------------|--------|
| 01_region | 2040773      | 214    |
| 02_region | 3655331      | 4611   |
| 03_region | 2411411      | 54     |
| 04_region | 694182       | 197    |
| 05_region | 484860       | 104    |
| ····      |              |        |
| 53_region | 1255011      | 1123   |
| 54_region | 5575916      | 2376   |
| 55_region | 1114933      | 837    |
| 56_region | 3894204      | 2071   |
| 57_region | 8689023      | 5949   |
| 58_region | 1921434      | 1132   |
| 59_region | 18188817     | 12849  |

59 observations



## Model specification



```
sales_amount ~
    f(
      number_F2F_interactions,
      events,
      emails,
      telephone_meeting,
      website_visits,
      competitor_information,
      seasonality
    )
```



# Panel data – which aggregation to choose? First visualize

Panel both time and region



59x36 observations

Time series total Czech Republic per time



36 observations

Cross sectional Aggregate to total regions, no time



Number of F2F interactions

59 observations



## What happens if we use wrong model?



**Number of F2F interactions** 



**Number of F2F interactions** 



## How to solve the problem and choose the best model?

- Transform the data (demean)
   + remove average from each region data for all variables (Fixed effects model)
- Hausman test
- Check residuals

   (e.g. Residuals sum of squares metric)
   The lower RSS the better fit

### Histogram of residuals



## How to use model results?







- Marketing mix optimal
- Historical



# Interpretation of results – Are some marketing channels more profitable than others?

- We know coefficient from the model results
- Using model coefficients, we can optimize the mix of marketing channels
  - Same budget
  - How we can change the marketing mix to reach higher sales?
  - Run optimization
     Costs are the same
     Revenues are higher





## Key takeaways

## Benefits of panel analysis

- Allows to estimate impact of marketing to sales
- Allows to compare effectiveness of multiple marketing channels
- Allows to pick optimal mix of marketing activities

## Things to remember

- Visualize data to validate it and to question it
- Data aggregation matters
- Watch out for the bigger the region the higher the sales variables effect
- Check your findings with business



Thank you for your attention!

#### SOURCES

- https://www.statisticshowto.com/durbin-watson-test-coefficient/
- <a href="https://www.youtube.com/watch?v=1SchyQ77VFg">https://www.youtube.com/watch?v=1SchyQ77VFg</a> + many other videos from Ben Lambert
- Theoretical example with python code <a href="https://towardsdatascience.com/a-guide-to-panel-data-regression-theoretics-and-implementa-tion-with-python-4c84c5055cf8">https://towardsdatascience.com/a-guide-to-panel-data-regression-theoretics-and-implementa-tion-with-python-4c84c5055cf8</a>
- Guns dataset <a href="https://vincentarelbundock.github.io/Rdatasets/datasets.html">https://vincentarelbundock.github.io/Rdatasets/datasets.html</a>