	Marks	l p.
ion		Remarks
Solution		
1. $\frac{d}{d\theta} \sec 6\theta$ $= \lim_{\theta \to 0} \frac{\sec 6(\theta + h) - \sec 6\theta}{h}$	1M	
$= \lim_{h \to 0} \frac{\cos 6\theta - \cos 6(\theta + h)}{h \cos 6(\theta + h) \cos 6\theta}$ $= \lim_{h \to 0} \frac{\cos 6\theta + 3h \sin 3h}{\sin 3h}$	1M	
$= \lim_{h \to 0} \frac{2\sin(4\theta + h)\cos 6\theta}{h\cos 6(\theta + h)\cos 6\theta}$ $= 6\left(\lim_{h \to 0} \frac{\sin 3h}{3h}\right) \left(\lim_{h \to 0} \frac{\sin(6\theta + 3h)}{\cos 6(\theta + h)\cos 6\theta}\right)$	1M	
$=6\left(\lim_{h\to 0}\frac{3h}{3h}\right)\left(\lim_{h\to 0}\cos 6(\theta+h)\cos \theta\right)$	1M	withhold 1M if the step is skij
$= 6(1) \left(\frac{\sin 6\theta}{\cos^2 6\theta} \right)$ $= 6\sec 6\theta \tan 6\theta$	1A (5)	is ski
2. Note that $(1+ax)^8 = 1 + C_1^8 ax + C_2^8 (ax)^2 + \dots + (ax)^8$ and	1 M	,
$(b+x)^9 = b^9 + C_1^9 b^8 x + C_2^9 b^7 x^2 + \dots + C_7^9 b^2 x^7 + C_8^9 b x^8 + x^9$. Also note that $\lambda_2 : \mu_7 = 7 : 4$ and $\lambda_1 + \mu_8 + 6 = 0$.	1M	
Therefore, we have $\frac{C_2^8 a^2}{C_7^9 b^2} = \frac{7}{4}$ and $8a + 9b + 6 = 0$.	1M	for either one
So, we have $4a^2 = 9b^2$ and $8a + 9b + 6 = 0$.		
Hence, we have $4a^2 - 9\left(\frac{-8a - 6}{9}\right)^2 = 0$.		
Simplifying, we have $7a^2 + 24a + 9 = 0$.	1M	for $pa^2 + qa + r = 0$
Thus, we have $a = -3$ or $a = \frac{-3}{7}$.	1A (5)	for both correct
	(3)	
,		

Solution		
	Marks	Remarks
$ \begin{pmatrix} a & \overline{OP} \\ a & = \frac{2}{2+3}\mathbf{a} + \frac{3}{2+3}\mathbf{b} \\ a & = \frac{2}{2}\mathbf{a} + \frac{3}{5}\mathbf{b} $		
5	1A	
(b) $\begin{aligned} \mathbf{a} \cdot \mathbf{b} \\ &= \mathbf{a} \mathbf{b} \cos \angle AOB \\ &= (45)(20) \left(\frac{1}{4}\right) \end{aligned}$	1M	
= 225	1A	,
(ii) $\left \overrightarrow{OP} \right ^2$ $= \left(\frac{2}{5} \mathbf{a} + \frac{3}{5} \mathbf{b} \right) \cdot \left(\frac{2}{5} \mathbf{a} + \frac{3}{5} \mathbf{b} \right)$		
$= \frac{4}{25} \mathbf{a} ^2 + 2\left(\frac{2}{5}\right) \left(\frac{3}{5}\right) \mathbf{a} \cdot \mathbf{b} + \frac{9}{25} \mathbf{b} ^2$ $= 324 + 108 + 144$ $= 576$	1 M	for using (b)(i)
$ \overrightarrow{OP} $ $= \sqrt{576}$ $= 24$		
	1A (5)
(a) $\int x^2 e^{-x} dx$ $= -\int x^2 de^{-x}$		
$= -x^{2}e^{-x} + \int e^{-x} dx^{2}$ $= -x^{2}e^{-x} + 2\int x e^{-x} dx$ $= -x^{2}e^{-x} - 2\int x de^{-x}$	1M 1A	for integration by parts
$= -x^{2}e^{-x} - 2\int x de^{-x}$ $= -x^{2}e^{-x} - 2\left(xe^{-x} - \int e^{-x} dx\right)$ $= -x^{2}e^{-x} - 2xe^{-x} - 2e^{-x} + \text{constant}$ $= -e^{-x}(x^{2} + 2x + 2) + \text{constant}$	1A	
(b) The required area $= \int_0^6 x^2 e^{-x} dx$	1M	ı
$= \left[-e^{-x}(x^2 + 2x + 2) \right]_0^6 $ (by (a))	1M	for using the result of (a)
$=2-\frac{50}{e^6}$	1/	(6)
68		

Solution	Marks	Remarks
(a) (i) $\begin{vmatrix} 1 & 2 & -1 \\ 3 & 8 & -11 \\ 2 & 3 & h \end{vmatrix} \neq 0$ $8h - 44 - 9 + 16 + 33 - 6h \neq 0$ $2h - 4 \neq 0$ $h \neq 2$ $1 + 3 + 3 + 5 = 1$	1M	willarks
h < 2 or $h > 2$ (ii) z		
$=\frac{\begin{vmatrix} 1 & 2 & 11 \\ 3 & 8 & 49 \\ 2 & 3 & k \end{vmatrix}}{2h-4}$	1 M	
$=\frac{k-14}{h-2}$	1A	
(b) When $h=2$, the augmented matrix of (E) is		
$ \begin{pmatrix} 1 & 2 & -1 & & 11 \\ 3 & 8 & -11 & & 49 \\ 2 & 3 & 2 & & k \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & & 11 \\ 0 & 1 & -4 & & 8 \\ 0 & 0 & 0 & & k-14 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 7 & & -5 \\ 0 & 1 & -4 & & 8 \\ 0 & 0 & 0 & & k-14 \end{pmatrix} $. 1M	
Since (E) has infinitely many solutions, we have $h=2$ and $k=14$. Thus, the solution set of (E) is $\{(-7t-5, 4t+8, t): t \in \mathbb{R}\}$.	1A(6)	
•		
\$ ************************************		

Solution	Marks	Remarks
Solution Let $r \text{ cm}$ be the radius of the water surface in the container. Since $\frac{r}{h} = \frac{15}{20}$, we have $\frac{r}{h} = \frac{3}{4}$. So, we have $r = \frac{3h}{4}$.	1M	
$A = \pi \left(\frac{3h}{4}\right)\sqrt{h^2 + \left(\frac{3h}{4}\right)^2}$ $= \pi \left(\frac{3h}{4}\right)\sqrt{\frac{25h^2}{16}}$ $= \frac{15}{16}\pi h^2$	1M	
Let d cm be the depth of water when the volume of water in the container is 96π cm ³ . Note that $\frac{\pi d}{3} \left(\frac{3d}{4} \right)^2 = 96\pi$. So, we have $d = 8$. By (a), we have $A = \frac{15}{16}\pi h^2$. At time t s, we have $\frac{dA}{dt} = \frac{15}{8}\pi h \frac{dh}{dt}$. Also note that $\frac{dh}{dt} = \frac{3}{\pi}$.	1M	1
Therefore, we have $\frac{dA}{dt}\Big _{h=8} = \frac{15}{8}\pi(8)\left(\frac{3}{\pi}\right)$. Hence, we have $\frac{dA}{dt}\Big _{h=8} = 45$. Thus, the required rate of change is $45 \text{ cm}^2/\text{s}$.		1A (7)
		1 1

	14TGLK2	1 -
Solution		Remarks
7. (a) $\sin 3x$ $= \sin (x+2x)$ $= \sin x \cos 2x + \cos x \sin 2x$ $= \sin x \cos^2 x$	1 M	
$= \sin x \cos 2x + \cos x \sin 2x$ $= \sin x (\cos^2 x - \sin^2 x) + 2 \sin x \cos^2 x$ $= \sin x (1 - 2 \sin^2 x) + 2 \sin x (1 - \sin^2 x)$ $= 3 \sin x - 4 \sin^3 x$	1	
(b) (i) $\frac{\sin 3\left(x - \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)}$ $\sin\left(3x - \frac{3\pi}{4}\right)$		
$= \frac{\sin 3x \cos \frac{3\pi}{4} - \cos 3x \sin \frac{3\pi}{4}}{\sin x \cos \frac{\pi}{4} - \cos x \sin \frac{\pi}{4}}$	lM	
$= \frac{\frac{-1}{\sqrt{2}}(\sin 3x + \cos 3x)}{\frac{1}{\sqrt{2}}(\sin x - \cos x)}$ $= \frac{\cos 3x + \sin 3x}{\cos x - \sin x}$	1	
(ii) $\frac{\cos 3x + \sin 3x}{\cos x - \sin x} = 2$ $\frac{\sin 3\left(x - \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)} = 2$ (by (b)(i))	1M	for using (b)(i)
Note that $\sin\left(x - \frac{\pi}{4}\right) \neq 0$. $3 - 4\sin^2\left(x - \frac{\pi}{4}\right) = 2 \qquad (by (a))$ $1 - 4\sin^2\left(x - \frac{\pi}{4}\right) = 0$	1M	for using (a)
$\left(1 - 2\sin\left(x - \frac{\pi}{4}\right)\right) \left(1 + 2\sin\left(x - \frac{\pi}{4}\right)\right) = 0$ Since $\frac{\pi}{4} < x < \frac{\pi}{2}$, we have $\sin\left(x - \frac{\pi}{4}\right) = \frac{1}{2}$.	1M	
Therefore, we have $x - \frac{\pi}{4} = \frac{\pi}{6}$. Thus, we have $x = \frac{5\pi}{12}$.	1A (8)	

Solution	Marks Remarks
The slope of the tangent to Γ at P	
() -1(0)	
$(8) = f'(e^3)$	1M
= -3 In(e)	
$ \begin{array}{ll} $	1 1
ℓ	1 1
The equation of the tangent to Γ at P is	
$y - 7 = \frac{6}{e^3}(x - e^3)$	1 1
$6x - e^3y + e^3 = 0$	1A
(b) f(x)	1 1
$= \int \frac{1}{x} \ln x^2 \mathrm{d}x$	1 1
$=2\int \ln x d\ln x$	1M
$= (\ln x)^2 + C$ $= (\ln x)^2 + C$ $= (\ln x)^2 + C$	1M
Since Γ passes through P , we have $7 = (\ln e^3)^2 + C$. Solving, we have $C = -2$.	
Thus, the equation of Γ is $y = (\ln x)^2 - 2$.	1A
(c) Note that $f''(x) = \frac{2 - 2 \ln x}{x^2}$.	1A
Therefore, we have $f''(x) = 0 \iff x = e$.	
Therefore, we have $T(x) = 0$	
$x \qquad (0,e) \qquad e \qquad (e,\infty)$	1M
f''(x) + 0 -	
	1A
Thus, the point of inflexion of Γ is $(e,-1)$.	(8)
v · · ·	
	1 1
	1 1
	1 1
	1 1
	1 1
	1 1
	1 1
	1 1

Solution $r+4=0$.	1A	Remarks
9. (a) The equation of the vertical asymptote is $x+4=0$.	1M	
9. (a) The equation of the vector $\frac{36}{x+4}$. Note that $f(x) = x - 9 + \frac{36}{x+4}$.	1A	
Note that $f(x) = x - 9 + \frac{1}{x + 4}$. Thus, the equation of the oblique asymptote is $y = x - 9$.	(3)	
(b) f'(x)		
$=\frac{d}{dx}\left(x-9+\frac{36}{x+4}\right)$		
$\frac{dx}{(x+4)^{-2}}$	1M	
	1A	
$=1-\frac{36}{(x+4)^2}$		
f'(x)		
$= \frac{d}{dx} \left(\frac{x^2 - 5x}{x + 4} \right)$ $= \frac{(x + 4)(2x - 5) - (x^2 - 5x)}{(x + 4)^2}$		
$(x+4)(2x-5)-(x^2-5x)$	1M	
$(x+4)^2$	1 ,,	
$=\frac{x^2+8x-20}{(x+4)^2}$	1A	
$(x+4)^2$	(2)	
2)		
(c) Note that $f'(x) = \frac{(x+10)(x-2)}{(x+4)^2}$.		,
So, we have $f'(x) = 0 \Leftrightarrow x = -10$ or $x = 2$.	1A	
	'	٠,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	124	
f'(x) + 0	1M	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Thus, the maximum point and the minimum point of G are $(-10, -25)$	1A	
Thus, the maximum point and the minimum point	1A	i ·
and (2, -1) respectively.		
$(x+10)(x-2)$ and $f''(x) = \frac{72}{100}$		
Note that $f'(x) = \frac{(x+10)(x-2)}{(x+4)^2}$ and $f''(x) = \frac{72}{(x+4)^3}$.		
So, we have $f'(x) = 0 \Leftrightarrow x = -10$ or $x = 2$.	1A	
Also note that $f''(-10) = \frac{-1}{3} < 0$ and $f''(2) = \frac{1}{3} > 0$.	1M	
Also note that $I(-10) - \frac{3}{3}$		
Further note that $f(-10) = -25$ and $f(2) = -1$.	1 A	1
Thus, the maximum point and the minimum point of G are $(-10, -25)$	1A	1
nd (2, -1) respectively.	(4))
		1

Solution		
The required volume	Marks	Karata Wi
$ \begin{cases} x = \pi $	100	
$= \pi \int_0^5 \left(x^2 - 18x + 81 + \frac{72(x-9)}{x+4} + \frac{1296}{(x+4)^2} \right) dx$		
$= \pi \int_0^3 \left(x^2 - 18x + 153 - \frac{936}{x+4} + \frac{1296}{(x+4)^2} \right) dx$	1100	
$= \pi \left[\frac{x^3}{3} - 9x^2 + 153x - 936 \ln x+4 - \frac{1296}{x+4} \right]_0^3$	100	
$= \left(\frac{2285}{3} - 1872 \ln \left(\frac{3}{2}\right)\right) \pi$	łA.	
The required volume $= \pi \int_0^5 \left(\frac{x^2 - 5x}{x + 4} \right)^2 dx$	IM	
$= \pi \int_{4}^{9} \frac{(x-4)^{2}(x-9)^{2}}{x^{2}} dx$ $= \pi \int_{4}^{9} \left(\frac{x^{4} - 26x^{3} + 241x^{2} - 936x + 1296}{x^{2}} \right) dx$	1M	
$= \pi \int_{4}^{9} \left(x^{2} - 26x + 241 - \frac{936}{x} + \frac{1296}{x^{2}} \right) dx$ $= \pi \left[\frac{x^{3}}{3} - 13x^{2} + 241x - 936 \ln x - \frac{1296}{x} \right]_{4}^{9}$	16	sa
$= \left(\frac{2285}{3} - 1872 \ln \left(\frac{3}{2}\right)\right) \pi$		A(1)

	IAIGI V.2	Remarks
Solution		
Note that $\overrightarrow{AB} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\overrightarrow{AC} = 6\mathbf{i} - 6\mathbf{j}$. $\overrightarrow{AE} = \frac{1}{1+r} \overrightarrow{AC} + \frac{r}{1+r} \overrightarrow{AB}$ $= \frac{2r+6}{r+1} \mathbf{i} + \frac{r-6}{r+1} \mathbf{j} + \frac{r}{r+1} \mathbf{k}$ Also note that $\overrightarrow{AE} = \frac{1}{11} \overrightarrow{AF} + \frac{10}{11} \overrightarrow{AD}$ and $\overrightarrow{AC} = 2 \overrightarrow{AD}$.	1M	any one
$ \begin{array}{c} \overrightarrow{AF} \\ \bullet 11\overrightarrow{AE} - 5\overrightarrow{AC} \\ & 11r \end{array} $	1A	for both.
$= \frac{-8r+36}{r+1} \mathbf{i} + \frac{41r-36}{r+1} \mathbf{j} + \frac{r-1}{r+1} \mathbf{k}$ Since A, B and F are collinear, we have $\frac{2}{-8r+36} = \frac{1}{41r-36} = \frac{1}{11r}$.	1M	
Solving, we have $r = \frac{6}{5}$.	1A (4)	1.2
(b) (i) Note that $\overrightarrow{AD} = \frac{1}{2} \overrightarrow{AC} = 3\mathbf{i} - 3\mathbf{j}$. By (a), we have $\overrightarrow{AE} = \frac{1}{11} (42\mathbf{i} - 24\mathbf{j} + 6\mathbf{k})$.	1M	for using (a)
$\overrightarrow{AD} \cdot \overrightarrow{DE}$ $= \overrightarrow{AD} \cdot (\overrightarrow{AE} - \overrightarrow{AD})$ $= (3\mathbf{i} - 3\mathbf{j}) \cdot \left(\frac{1}{11} (9\mathbf{i} + 9\mathbf{j} + 6\mathbf{k})\right)$		
=0	1A	
	1M	
(ii) $\overrightarrow{AB} \cdot \overrightarrow{BC}$ $= \overrightarrow{AB} \cdot (\overrightarrow{AC} - \overrightarrow{AB})$ $= (2\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot (4\mathbf{i} - 7\mathbf{j} - \mathbf{k})$		
= 0 Therefore, we have $\angle ABC = 90^{\circ} = \angle ADE$.	1M	
So, we have $\angle CBF = 90^{\circ} = \angle CDF$. Thus, B, D, C and F are concyclic.	1A (5)	f.t.
(c) Note that $\overrightarrow{AF} = 12\mathbf{i} + 6\mathbf{j} + 6\mathbf{k}$ and $\overrightarrow{AP} = \mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$. Since $\angle CBF = 90^{\circ}$, Q is the mid-point of CF .		
Therefore, we have $\overrightarrow{AQ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AF}) = 9\mathbf{i} + 3\mathbf{k}$.	1M	
The volume of the tetrahedron $ABPQ$ $= \frac{1}{6} \left \overrightarrow{AQ} \cdot (\overrightarrow{AB} \times \overrightarrow{AP}) \right $	1M	
$ = \frac{1}{6} \begin{vmatrix} 9 & 0 & 3 \\ 2 & 1 & 1 \\ 1 & 7 & -2 \end{vmatrix} $ $ = 7 $	1A (3)	
75		

Solution		
	Marks	Remarks
$\int_{0}^{1} \frac{1}{x^{2} + 2x + 3} dx$ $= \int_{0}^{1} \frac{1}{(x+1)^{2} + 2} dx$		
$\int_{0}^{1} \int_{0}^{1} \frac{1}{1-1} dx$		
$\int_0^{\infty} (x+1)^2 + 2$	1M	
$= \frac{1}{\sqrt{2}} \left[\tan^{-1} \left(\frac{x+1}{\sqrt{2}} \right) \right]_0^1$		4
	IM	
$=\frac{\sqrt{2}}{2}\left(\tan^{-1}\sqrt{2}-\tan^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$		
$=\frac{\sqrt{2}}{2}\tan^{-1}\left(\frac{\sqrt{2}}{4}\right)$		
$=\frac{1}{2}$ tan $\left(\frac{1}{4}\right)$	1A	
$2 \tan \theta$		-(3)
(b) (i) $\frac{2 \tan^2 \theta}{1 + \tan^2 \theta}$		
$\frac{2\sin\theta}{\cos\theta}$		
$=\frac{\cos\theta}{\sin^2\theta}$		
$1 + \frac{\sin^2 \theta}{\cos^2 \theta}$		
$= 2\sin\theta\cos\theta$ $= \sin2\theta$		
$1-\tan^2\theta$	1	
$1+\tan^2\theta$		
$=\frac{1-\frac{\sin^2\theta}{\cos^2\theta}}{-\frac{1}{\cos^2\theta}}$		
$=\frac{\cos^2\theta}{1+\frac{\sin^2\theta}{\cos^2\theta}}$	1	
$\cos^2\theta$ $=\cos^2\theta - \sin^2\theta$		
$= \cos \theta - \sin \theta$ $= \cos 2\theta$		1
(ii) Let $t = \tan \theta$. Then, we have $\frac{d\theta}{dt} = \frac{1}{1+t^2}$.		1M
111		TIVI
Note that $\frac{1}{\sin 2\theta + \cos 2\theta + 2} = \frac{1}{\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} + 2} = \frac{1+t^2}{t^2 + 2t + 2}$	-3.	
	1	
$\int_0^{\frac{\pi}{4}} \frac{1}{\sin 2\theta + \cos 2\theta + 2} \mathrm{d}\theta$	1	
$= \int_0^1 \frac{1+t^2}{t^2+2t+3} \left(\frac{1}{1+t^2}\right) dt$		1M
$= \int_0^1 \frac{1}{t^2 + 2t + 3} dt$		
$= \int_0^1 \frac{1}{x^2 + 2x + 3} \mathrm{d}x$		
$= \frac{\sqrt{2}}{2} \tan^{-1} \left(\frac{\sqrt{2}}{4} \right)$ (by (a))		lM (a)
		(5)
76		1 1

Solution	Marks	_
(c) Let $y = \frac{\pi}{4} - \theta$. Then, we have $\frac{d\theta}{dy} = -1$.	1M	Remarks
$\int_0^{\frac{\pi}{4}} \frac{\sin 2\theta + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta$ $= -\int_{\frac{\pi}{4}}^0 \frac{\sin\left(\frac{\pi}{2} - 2y\right) + 1}{\sin\left(\frac{\pi}{2} - 2y\right) + \cos\left(\frac{\pi}{2} - 2y\right) + 2} dy$ $= \int_0^{\frac{\pi}{4}} \frac{\cos 2y + 1}{\cos 2y + \sin 2y + 2} dy$ $= \int_0^{\frac{\pi}{4}} \frac{\cos 2\theta + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta$	1	
$\int_0^{\pi} \sin 2\theta + \cos 2\theta + 2$	(2)	
(d) $\int_0^{\frac{\pi}{4}} \frac{8\sin 2\theta + 9}{\sin 2\theta + \cos 2\theta + 2} d\theta$		
$= \int_0^{\frac{\pi}{4}} \frac{4(\sin 2\theta + 1) + 4(\sin 2\theta + 1) + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta$		
$=4\int_0^{\frac{\pi}{4}} \frac{\sin 2\theta + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta + 4\int_0^{\frac{\pi}{4}} \frac{\sin 2\theta + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta + \int_0^{\frac{\pi}{4}} \frac{1}{\sin 2\theta + \cos 2\theta + 2} d\theta$		
$=4\int_{0}^{\frac{\pi}{4}} \frac{\sin 2\theta + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta + 4\int_{0}^{\frac{\pi}{4}} \frac{\cos 2\theta + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta + \int_{0}^{\frac{\pi}{4}} \frac{1}{\sin 2\theta + \cos 2\theta + 2} d\theta (by (c))$	1M	for using (c)
$=4\int_0^{\frac{\pi}{4}} \frac{\sin 2\theta + \cos 2\theta + 2}{\sin 2\theta + \cos 2\theta + 2} d\theta + \int_0^{\frac{\pi}{4}} \frac{1}{\sin 2\theta + \cos 2\theta + 2} d\theta$	1M	
$=4\int_0^{\frac{\pi}{4}} d\theta + \int_0^{\frac{\pi}{4}} \frac{1}{\sin 2\theta + \cos 2\theta + 2} d\theta$		
$= \pi + \frac{\sqrt{2}}{2} \tan^{-1} \left(\frac{\sqrt{2}}{4} \right) $ (by (b)(ii))	1M	π + (b)(ii)
Let $I = \int_0^{\frac{\pi}{4}} \frac{\sin 2\theta + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta$ and $J = \int_0^{\frac{\pi}{4}} \frac{\cos 2\theta + 1}{\sin 2\theta + \cos 2\theta + 2} d\theta$.		
Note that $I + J = \int_0^{\frac{\pi}{4}} d\theta = \frac{\pi}{4}$.	1M	
By (c), we have $I = J = \frac{\pi}{8}$.	1M	for using (c)
$\int_0^{\frac{\pi}{4}} \frac{8\sin 2\theta + 9}{\sin 2\theta + \cos 2\theta + 2} d\theta$		
$=8I + \int_0^{\frac{\pi}{4}} \frac{1}{\sin 2\theta + \cos 2\theta + 2} d\theta$		
$= \pi + \frac{\sqrt{2}}{2} \tan^{-1} \left(\frac{\sqrt{2}}{4} \right)$ (by (b)(ii))	1M	$\pi + (b)(ii)$
	(3	"

CAL COLUMN TO THE COLUMN TO TH			
Solution	Marks	Remarks	
	1 1M	for usin	g induction assump
(b) (i) Note that $P^{-1} = \begin{pmatrix} -1 & 0 \\ -2 & -1 \end{pmatrix}$. $P^{-1}BP$ $= \begin{pmatrix} -1 & 0 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$ $= \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$ $= A$ (ii) By (b)(i), we have $P^{-1}BP = A$. So, we have $(P^{-1}BP)^n = A^n$.		A	
Therefore, we have $P^{-1}B^{n}P = A^{n}$. Hence, we have $B^{n} = PA^{n}P^{-1}$.		IM IM	

	ı	· · · · · ·
Solution		
$\begin{bmatrix} B & 1 \\ -4 & 1 \end{bmatrix}$ $= 3^{1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 3^{0} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$ So, the statement is true for $n = 1$. Assume that $B^{k} = 3^{k} I + 3^{k-1} k \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$, where k is a positive		
integer. $B^{k+1} = B^k B$ $\begin{pmatrix} 2^k I + 3^{k-1} k & 2 & 1 \\ 2^k I + 3^{k-1} k & 2 & 2 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ -4 & 1 \end{pmatrix}$ (by induction assumption)	IM IM	for using induction assumption
$ \begin{vmatrix} = \left(3^{k}I + 3^{k-1}k \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}\right) \begin{pmatrix} 3I + \begin{pmatrix} -4 & -2 \end{pmatrix} \end{pmatrix} $ $ = 3^{k+1}I + 3^{k}k \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} + 3^{k} \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} + 3^{k-1}k \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}^{2} $		
$= 3^{k+1}I + 3^{k}(k+1)\begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $= 3^{k+1}I + 3^{k}(k+1)\begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$ Therefore, the statement is true for $n = k + 1$ if it is true for $n = k$. By mathematical induction, the statement is true for all positive integers n .	1	
(iii) $ A^m - B^m = 4m^2$ $\begin{vmatrix} 3^{m-1}m \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - 3^{m-1}m \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{vmatrix} = 4m^2$		
$(3^{m-1})^2 m^2 \begin{vmatrix} -2 & 0 \\ 4 & 2 \end{vmatrix} = 4 m^2$	1M	
$-4m^{2}(3^{2(m-1)}) = 4m^{2}$ $3^{2(m-1)} = -1$ Note that $-1 < 0 < 3^{2(m-1)}$.	1M	
Thus, there does not exist a positive integer m such that $ A^m - B^m = 4m^2$.	1A (8)	f.t.