Context-Aware Urban Energy Efficiency Optimization Using Hybrid Physical Models

Ben Choi, Alex Nutkiewicz, Rishee Jain

Introduction

- Buildings are responsible for over 40% of emissions in cities.
- Retrofits, or energy-saving modification to existing buildings, have been developed to reduce building energy consumption (e.g. better-insulated windows).
- Retrofit performance can be affected by neighboring buildings (e.g. shading or passive heat output from a nearby building affects a retrofit of insulated windows).
- Simulations can model retrofits, but don't account for effects of nearby buildings.
- By accounting for these inter-building effects in the prediction of energy consumption, we can identify ways to select optimal retrofits that account for the unique urban layout of each city.

Methods

Data: Hourly energy consumption data for 29 buildings in Sacramento, CA

- Train baseline LSTM model to predict actual energy consumption values using physics-based simulation energy consumption estimates as input.
- With Context model receives simulations for all 29 buildings regardless of target prediction building.
- No Context model receives simulations for relevant target prediction building only.
- Compare With Context and No Context models evaluate influence of urban context.
- Use greedy optimization and trained With Context model to identify optimal subset of buildings to retrofit.

Hybrid data-driven urban energy simulation model

Results

Density plot of actual values and predictions for no context and with context models

Context-aware models improve accuracy at multiple scales

- 23.2% mean average percentage error (MAPE) at hourly, individual building resolution.
- With Context model consistently outperforms No Context model with ~5% less MAPE error. With Context model predicts greater savings and seasonal variance than No Context model.

Consideration of urban context may reduce retrofit installation requirements

• Physics-based simulations estimate that 80% of savings can be achieved by retrofitting 11 buildings, our model suggests that 80% of savings can be achieved by retrofitting 6 buildings.

Stanford ENGINEERING

Cumulative proportion of maximum possible energy savings for each retrofit and model combination

Discussion

- Future work would benefit from testing a wider variety of retrofits and using datasets that span multiple cities.
- Our results represent promising progress towards establishing the viability and utility of hybrid physical models in reducing the environmental footprint of the built environment.

References

Alex Nutkiewicz, Zheng Yang, Rishee K. Jain (2018). "Data-driven urban energy simulation (DUE-S)" In: Applied Energy 225, p. 1176-1189.

Drury B. Crawley, et al. (2001). "EnergyPlus: creating a new-generation building energy simulation program" In: Energy and Buildings 33, p. 319-331.

"Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2018" (2018). U.S. Environmental Protection Agency.