TAREFA BÁSICA – MATRIZES

1- Matriz (3x2) – 3linhas e 2colunas, sendo a_{ii} = 2i+3j. Escreva a matriz explicitamente:

Resolução:

a ₁₁	a ₁₂	Substituindo →	$a_{11} = 2.1 + (3.1)$	$a_{12} = 2.1 + (3.2)$	Resultando →	5	8
a ₂₁	a ₂₂	Substituting	$a_{21} =$	a ₂₂ =	Resultando	7	10
a ₃₁	a ₃₂		2.2+(3.1)	2.2+(3.2)		9	12
			a_{31} = 2.3+(3.1)	a_{32} = 2.3+(3.2)			

2- (UFRN) A matriz A = (aij)2x2, onde aij = i2 + 4j2, tem a seguinte representação.

R: A

Resolução:

a ₁₁	a ₁₂	$a_{11} = 1^2 + 4$. $1^2 \rightarrow a_{11} = 1 + 4 = 5$ $a_{12} = 1^2 + 4$. $2^2 \rightarrow a_{12} = 1 + 16 = 17$	Sendo assim →	5	17
a ₂₁	a ₂₂	$\begin{vmatrix} a_{21} = 2^2 + 4 & 1^2 \Rightarrow a_{21} = 4 + 4 = 8 \\ a_{22} = 2^2 + 4 & 2^2 \Rightarrow a_{21} = 4 + 16 = 20 \end{vmatrix}$		8	20

03. Determine x, y, e z de modo que se tenha:

Resolução:

04. Determine x, y e z de modo que se tenha:

Resolução:

Resolução:

$$2x+1=3x$$
 $-x=y$
 $1=z-1$
 $3x-2x=1$
 $y=-1$
 $z=1+1$
 $x=1$
 $z=2$

05. (UN1MEP) É dado um quadrado de lado medindo 1 unidade. A matriz 4x4 tal que aij é a distância entre os vértices de número i e j é:

R: B.

Resolução:

Sendo este o quadrado, a distância de 1 a 1 = 0, portanto para a11; a22; a33; a44 é zero. Então:

- a11 = 0 ==> a distância entre os vértices 1 e 1 é igual a 0
- a12 = 1 ==> a distância entre os vértices 1 e 2 é igual a 1
- a13 = v2 ==> a distância entre os vértices 1 e 3 é igual à diagonal do quadrado (raiz quadrada de 2)
- a14 = 1 ==> a distância entre os vértices 1 e 4 é igual a 1
- a21 = 1 ==> a distância entre os vértices 2 e 1 é igual a 1
- a22 = 0 ==> a distância entre os vértices 2 e 2 é igual a 0
- a23 = 1 ==> a distância entre os vértices 2 e 3 é igual a 1
- a24 = v2 = > distância entre os vértices 2 e 4 é igual à diagonal do quadrado
- a31 = v2 ==> a distância entre os vértices 3 e 1 é igual à diagonal do quadrado
- a32 = 1 ==> a distância entre os vértices 3 e 2 é igual a 1
- a33 = 0 ==> a distância entre os vértices 3 e 3 é igual a 0
- a34 = 1 ==> a distância entre os vértices 3 e 4 é igual a 1
- a41 = 1 ==> a distância entre os vértices 4 e 1 é igual a 1
- $a42 = v2 \Longrightarrow$ a distância entre os vértices 4 e 2 é igual à diagonal do quadrado
- a43 = 1 ==> a distância entre os vértices 4 e 3 é igual a 1
- a44 = 0 ==> a distância entre os vértices 4 e 4 é igual a 0

Então:

0	1	v2	1
1	0	1	v2
v2	1	0	1
1	v2	1	0

06. (UFPA) Sendo
$$A = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$

calcule o valor de 2A-B.

Resolução:

Subtraindo pelo "B", temos:

-2
2
5

$$(-2) - 0 = -2$$

$$4-(-2)=6$$

07. (UFRJ) Dadas as matrizes A e B. Então A-Bt é:

R: B.

Resolução:

Passando a matriz B para uma matriz transposta. Agora, sua primeira linha, como primeira coluna e segunda linha, como segunda coluna. Sendo assim:

08. UEL) Uma matriz quadrada A diz-se simétrica se A = At. Assim, se a matriz é simétrica, então x+y+z é igual a:

R: A.

Resolução: Primeiro, converti a matriz em uma matriz transposta.

Assim:
$$\mathbf{x} = -1$$
 | $2y = 4$ | $-z = 3 * (-1)$ | Somando $x + y + z$, obtemos: $-1 + (-3) + 2 = -2$ | $\mathbf{z} = -3$ |

09. (UEB00) Sejam as matrizes A=(aij)3x2 e B=(bij)3x2, definidas por aij=i+j, se $i\neq j$ e aij=1, se i=j e bij=0, se $i\neq j$ e bij=2i-j, se i=j. Então A+B é igual a:

R: C.

Resolução:

$$A \Rightarrow i \neq j \Rightarrow a12; a21; a31; a32$$

$$A \Rightarrow i \Rightarrow j \Rightarrow a11; a12$$

$$1 \Rightarrow 1+2$$

$$2+1 \Rightarrow 1$$

$$3 \Rightarrow 1$$

$$4 \Rightarrow 5$$

$$B \Rightarrow i \neq j \Rightarrow a12; a21; a31; a32$$

 $B \Rightarrow i = j \Rightarrow a11; a12$

2*1-1	0		1	0
0	2*2-2	→	0	2
0	0		0	0

$$\mathbf{A} + \mathbf{B} = \begin{array}{|c|c|c|} \hline 2 & 3 \\ \hline 3 & 3 \\ \hline 4 & 5 \\ \hline \end{array}$$

10. (UFBA)

R: B.

Resolução:

$$3/2 * M = 3 / 2 * | x 8 |$$
 $|10 y|$

Sendo assim:

$$M = |3x/2 12|$$
 $|15 3y/2|$

$$2/3 * N = 2/3 * |y$$
 6 | $|12 x+4|$

então:

$$N = |2y/3$$
 4| $|8 \quad [2x+8/3]|$

Agora, foram somadas as matrizes, coluna com coluna:

$$|3x/2$$
 $|3x/2 + 2y/3|$ $|3x/2 + 2y/3|$ $|3x/2 + 2y/3|$ $|3x/2 + 2y/3|$

$$|15 3y/2| + |8 [2x+8/3]| = |15 + 8 = 23 (2x+8/3) + 3y/2|$$

Sendo esta soma igual a P:

$$3x/2 + 2y/3 = 7$$

$$2x+8/3 + 3y/2 = 13$$

É feito o MMC nas duas equações:

$$9x/6 + 2 *2y/6 = 42/6$$

$$2(2x+8)/6 + 3 * 3y/6 = 13 * 6$$

$$9x + 4y = 42$$

$$4x + 16 + 9y = 78$$

$$9x + 4y = 42$$

$$4x + 9y = 62$$

Somente o valor de y-x é requerido, então, é feita a subtração de uma equação da outra:

$$9x - 4x + 4y - 9y = 42 - 62$$

$$5x - 5y = -20$$

$$x - y = -4 * (-1)$$

$$y - x = 4$$