

<u>Índice</u>

Índice	2
Ferramentas utilizadas	3
Introdução	4
Modo de Funcionamento	5
Desenvolvimento	6
Módulo de Controlo da Máquina	6
Módulo de Controlo da Temperatura	10
Módulo de Controlo do Motor	14
Percurso e Decisões Tomadas	21

Ferramentas utilizadas

A fim de elaborar este projeto foram utilizados:

- Logisim
- Pages by Apple
- Numbers by Apple
- Conhecimentos adquiridos na Cadeira de Sistemas Digitais.

Introdução

Pretende-se criar um sistema de controlo para uma máquina de secar roupa. A máquina é composta pelos seguintes módulos:

- Módulo de controlo da máquina (MAQ);
- Módulo de controlo da temperatura (MCT);
- Módulo de controlo do motor (MTR).

Para além dos módulos de controlo, a máquina tem os seguintes sensores e botões:

- Botão de início (BI): A máquina deve começar a trabalhar quando este botão tomar o valor 1;
- Sensor de porta aberta (SPA): Este sensor toma o valor 1 quando a porta está aberta e 0 quando está fechada;
- Sensor de temperatura (ST): Este sensor toma o valor 1 a temperatura do interior da máquina atingir a temperatura desejada;
- Sensor de roupa seca (SRS): Este sensor toma o valor 1 quando a roupa estiver seca,
 e 0enquanto não estiver seca; e os seguintes componentes:
- Elemento de aquecimento do ar (EA): Este elemento serve para aquecer o ar que por sua vez será usado para secar a roupa. Quando tomar o valor 1, deve estar ligado, quando tomar o valor 0, deve estar desligado;
- Motor que faz rodar o tambor da máquina que tem 2 entradas:
 - a. Motor roda para a direita (RD): Esta entrada serve para rodar o motor para a direita, quando toma o valor 1, o motor roda para a direita;
 - b. Motor roda para a esquerda (RE): Esta entrada serve para rodar o motor para a esquerda, quando toma o valor 1, o motor roda para a esquerda;

Modo de Funcionamento

Quando se inicia o sistema, todos os sensores da máquina devem ter o valor 0 e todos os módulos e componentes devem estar desligados. A máquina é ligada quando o botão de início (BI) toma o valor 1. Depois da máquina estar ligada, se o sensor de porta aberta (SPA) indicar que a porta está fechada e o sensor de roupa seca (SRS) indicar que a roupa ainda não está seca, os módulos de controlo de temperatura e de controlo do motor devem ser ativados.

Enquanto a roupa não estiver seca ou a porta da máquina continuar fechada, os módulos de controlo de temperatura e de controlo do motor devem estar ativos.

Quando o módulo de controlo de temperatura for ativado, este deve ativar o elemento de aquecimento do ar sempre que a temperatura do ar for inferior à temperatura desejada. Este módulo deve ser ativado pelo módulo de controlo da máquina, devendo estar ativo sempre que o Botão de Início (BI) tomar o valor 1. Se a porta for aberta durante o processo de secagem, o elemento de aquecimento deve ser desligado. O mesmo deverá acontecer se a roupa já estiver seca.

O módulo de controlo do motor é o responsável por controlar o motor que faz rodar o tambor da máquina. Quando este módulo é ativado, o motor deve rodar para a direita (RD) durante 2 ciclos de relógio e depois rodar para a esquerda (RE) durante 2 ciclos de relógio. Este ciclo deve continuar até que a porta seja aberta, a roupa esteja seca ou que a máquina seja desligada.

Desenvolvimento

Módulo de Controlo da Máquina

Entradas: BI, SPA e SRS.

Saídas: Módulo de controlo da temperatura e Módulo de controlo do motor.

Modelo ASM

Tabela de verdade

MCM

Q*/X0	BI	SPA	SRS	Q/X0	ТО
Desligado/0	0	0	0	Desligado/0	0
Desligado/0	0	0	1	Desligado/0	0
Desligado/0	0	1	0	Desligado/0	0
Desligado/0	0	1	1	Desligado/0	0
Desligado/0	1	0	0	Ligado/1	1
Desligado/0	1	0	1	Desligado/0	0
Desligado/0	1	1	0	Desligado/0	0
Desligado/0	1	1	1	Desligado/0	0
Ligado/1	0	0	0	Desligado/0	1
Ligado/1	0	0	1	Desligado/0	1
Ligado/1	0	1	0	Desligado/0	1
Ligado/1	0	1	1	Desligado/0	1
Ligado/1	1	0	0	Ligado/1	0
Ligado/1	1	0	1	Desligado/0	1
Ligado/1	1	1	0	Desligado/0	1
Ligado/1	1	1	1	Desligado/0	1

Tabela de excitação e mapas de Karnaugh do flip flop T

Q*	Q	T
0	0	0
0	1	1
1	0	1
1	1	0

Tabela de excitação

Q* BI \ SPA SRS				
00	O	0	O	Ù
01	1	0	0	0
11	0	1	1	1
10	1	1	1	1

Mapa de Karnaugh do Flip-Flop T

Equação do Flip-Flop

 $T = \overline{Q} BI \overline{SPA} \overline{SRS} + Q \overline{BI} + Q SRS + Q SPA$

Circuito

Componentes utilizados:

- 4 portas AND;
- 1 portas OR;
- 5 portas NOT;
- 1 Clock;
- 1 Flip-Flop Edge-Triggered T;
- Sensor SPA;
- Sensor SRS;
- Botão I

Módulo de Controlo da Temperatura

- Entradas: Módulo de Controlo da Máquina (MAQ), SPA e SRS.
- Saídas: Elemento de Aquecimento (EA).

Modelo ASM

Tabela de verdade

Q*	MCT	SPA	SRS	ST	Q	Т
Desligado/0	0	0	0	0	Desligado/0	0
Desligado0	0	0	0	1	Desligado/0	0
Desligado/0	0	0	1	0	Desligado/0	0
Desligado/0	0	0	1	1	Desligado/0	0
Desligado/0	0	1	0	0	Desligado/0	0
Desligado/0	0	1	0	1	Desligado/0	0
Desligado/0	0	1	1	0	Desligado/0	0
Desligado/0	0	1	1	1	Desligado/0	0
Desligado/0	1	0	0	0	Ligado/1	1
Desligado/0	1	0	0	1	Desligado/0	0
Desligado/0	1	0	1	0	Desligado/0	0
Desligado/0	1	0	1	1	Desligado/0	0
Desligado/0	1	1	0	0	Desligado/0	0
Desligado/0	1	1	0	1	Desligado/0	0
Desligado/0	1	1	1	0	Desligado/0	0
Desligado/0	1	1	1	1	Desligado/0	0
Ligado/1	0	0	0	0	Desligado/0	1
Ligado/1	0	0	0	1	Desligado/0	1
Ligado/1	0	0	1	0	Desligado/0	1
Ligado/1	0	0	1	1	Desligado/0	1
Ligado/1	0	1	0	0	Desligado/0	1
Ligado/1	0	1	0	1	Desligado/0	1
Ligado/1	0	1	1	0	Desligado/0	1
Ligado/1	0	1	1	1	Desligado/0	1
Ligado/1	1	0	0	0	Ligado/1	0
Ligado/1	1	0	0	1	Desligado/0	1
Ligado/1	1	0	1	0	Desligado/0	1
Ligado/1	1	0	1	1	Desligado/0	1
Ligado/1	1	1	0	0	Desligado/0	1
Ligado/1	1	1	0	1	Desligado/0	1
Ligado/1	1	1	1	0	Desligado/0	1
Ligado/1	1	1	1	1	Desligado/0	1

Tabela de excitação e mapas de Karnaugh do flip flop T

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

 $Q^* = 0$

MAQ SPA \ SRS ST	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	1	0	0	0

Q* = 1

MAQ SPA \ SRS ST	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	0	1	1	1

Equação do Flip-Flop

 $T = *\overline{Q} MAQ \overline{SPA} \overline{SRS} \overline{ST} + *Q \overline{MAQ} + *Q ST + *Q SRS + *Q SPA$

Circuito

Componentes do circuito:

- 5 portas AND;
- 1 porta OR;
- 6 portas NOT;
- 1 Clock;
- 1 Flip-Flop Edge-Triggered T;
- Sensor SPA;
- Sensor SRS;
- Valor de saída do Módulo de controle da Máquina.

Módulo de Controlo do Motor

- Entradas: Módulo de Controlo da Máquina (MAQ), SPA e SRS.
- Saídas: Motor Direito (MD), Motor Esquerdo (ME).

Tabela de verdade

x2	X1	x0	МСМ	SPA	SRS	Q/	T2	T1	то
0	0	0	0	0	0	0_0_0	0	0	0
0	0	0	0	0	1	0_0_0	0	0	0
0	0	0	0	1	0	0_0_0	0	0	0
0	0	0	0	1	1	0_0_0	0	0	0
0	0	0	1	0	0	0_0_0	0	0	1
0	0	0	1	0	1	0_0_0	0	0	0
0		0	1	1	0	0_0_0	0	0	0
	0								
0	0	0	1	1	1	0_0_0	0	0	0
0	0	1	0	0	0	0_0_0	0	0	1
0	0	1	0	0	1	0_0_0	0	0	1
0	0	1	0	1	0	0_0_0	0	0	1
0	0	1	0	1	1	0_0_0	0	0	1
0	0	1	1	0	0	0_1_0	0	1	1
0	0	1	1	0	1	0_0_0	0	0	1
0	0	1	1	1	0	0_0_0	0	0	1
0	0	1	1	1	1	0_0_0	0	0	1
0	1	0	0	0	0	0_0_0	0	1	0
0	1	0	0	0	1	0_0_0	0	1	0
0	1	0	0	1	0	0_0_0	0	1	0
0	1	0	0	1	1	0_0_0	0	1	0
0	1	0	1	0	0	0_1_1	0	0	1
0	1	0	1	0	1	0_0_0	0	1	0
0	1	0	1	1	0	0_0_0	0	1	0
0	1	0	1	1	1	0_0_0	0	1	0
0	1	1	0	0	0	0_0_0	0	1	1
0	1	1	0	0	1	0_0_0	0	1	1
0	1	1	0	1	0	0_0_0	0	1	1
0	1	1	0	1	1	0_0_0	0	1	1
0	1	1	1	0	0	1_0_0	1	1	1
0	1	1	1	0	1	0_0_0	0	1	1
0	1	1	1	1	0	0_0_0	0	1	1
0	1	1	1	1	1	0_0_0		1	1
1	0	0	0	0	0	0_0_0	1	0	0
1	0	0	0	0	1	0_0_0	1	0	0
1	0	0	0	1	0	0_0_0	1	0	0
1	0	0	0	1	1	0_0_0	1	0	0
1	0	0	1	0	0	0_0_1	1	0	1
1	0	0	1	0	1	0_0_0	1	0	0
1	0	0	1	1	0	0_0_0	1	0	0
1	0	0	1	1	1	0_0_0	1	0	0
1	0	1	0	0	0	0_0_0	1	0	1
1	0	1	0	0	1	0_0_0	1	0	1
1	0	1	0	1	0	0_0_0	1	0	1
1	0	1	0	1	1	0_0_0	1	0	1
1	0	1	1	0	0	0_0_0	1	0	1
1	0	1	1	0	1	0_0_0	1	0	1
1	0	1	1	1	0	0_0_0	1	0	1
1	0	1	1	1	1	0_0_0	1	0	1
1		0	0	0	0	0_0_0			0
1	1	0					1	1	
•			0	0	1	0_0_0			0
1	1	0	0	1	0	0_0_0	1	1	0
1	1	0	0	1	1	0_0_0	1	1	0
1	1	0	1	0	0	0_0_0	1	1	0
1	1	0	1	0	1	0_0_0	1	1	0
1	1	0	1	1	0	0_0_0	1	1	0
1	1	0	1	1	1	0_0_0	1	1	0
	1	1	0	0	0	0_0_0	1	1	1
1		1	0	0	1	0_0_0	1	1	1
1	1								
1				1	0	0_0_0	1	1	1
	1 1 1	1	0	1	0	0_0_0 0_0_0	1	1	1
1 1 1	1	1	0	1	1	0_0_0	1	1	1
1	1	1	0						

Modelo ASM

Tabelas de excitação e Mapas de Karnaugh para os flip flops T

Equação do Flip-Flop

 $T2 = x1 \times 0 \text{ MCM SPA SRS} + x2$

Equação do Flip-Flop

T1 = x2 x0 MCM SPA SRS + x1 MCM + x1 SRS + x1 SPA + x2 x1

Equação do Flip-Flop

T0 = x2 MCM SPA SRS + x1 MCM SPA SRS + x0

Circuito

Componentes do circuito:

- 8 portas AND;
- 4 porta OR;
- 1 porta XOR;
- 13 portas NOT;
- 1 Clock;
- 3 Flip-Flop Edge-Triggered T;
- Sensor SPA;
- Sensor SRS;
- Motor Direito;
- Motor Esquerdo.

Conjugação dos Módulos Componentes do circuito:

- BI;
- SPA;
- SRS;
- ST;
- Módulo de controlo da Máquina;
- Módulo de controlo da Temperatura;
- Módulo de controlo do Motor;
- Elemento de Aquecimento;
- Motor Direito;
- Motor Esquerdo.

Percurso e Decisões Tomadas

A elaboração deste projeto seguiu o seguinte rumo:

- 1. Elaboração do Modelo ASM do MAQ.
- 2. Elaboração da Tabela de Transição de Estados do MAQ.
- 3. Tomada de decisão acerca do flip-flop a utilizar.
- 4. Implementação do flip-flop no MAQ.
- 5. Desenvolvimento do circuito do MAQ.
- 6. Elaboração do Modelo ASM do MCT.
- 7. Elaboração da Tabela de Transição de Estados do MCT.
- 8. Tomada de decisão acerca do flip-flop a utilizar.
- 9. Implementação do flip-flop no MCT.
- 10. Desenvolvimento do circuito do MCT.
- 11. Elaboração do Modelo ASM do MCT.
- 12. Elaboração da Tabela de Transição de Estados do MCT.
- 13. Tomada de decisão acerca dos flip-flops a utilizar.
- 14. Implementação do flip-flop no MCT.
- 15. Desenvolvimento do circuito do MCT.

Ao longo da elaboração do projeto foi necessário decidir qual o flip-flop a usar. Foi decidida a utilização do flip-flop T tornava mais fácil a transição de estados nos dois primeiros módulos (visto que são apenas dois).

No momento da conjugação dos módulos existiu uma indecisão relativamente a tornar o clock uma entrada em todos os módulos e ligar um clock principal a estas entradas ou oscilar os clocks individualmente. Foi decidido oscilar os clocks individualmente.

Existiu alguma dificuldade em fazer os mapas de karnaugh de 6 variáveis.