WEEK 6

INTRODUCTION TO EER DIAGRAMS – ENHANCED ENTITY-RELATIONSHIP DIAGRAMS

CS3319

1

STUDENT OBJECTIVES

- Upon completion of this video, you should be able to:
 - Determine when an entity type could be further categorized as a set of subclasses and what their superclass would look like and represent this in an EER diagram
 - Determine when several entity types could be grouped together and generalized to form a superclass and represent this in an EER diagram
 - Determine if the subclasses overlap or are disjoint and represent this in an EER diagram
 - Determine if the instances of superclass must have partial or total participation with the subclasses and represent this in an EER diagram

ENTITIES AS OBJECTS

- If we think of entities as objects, then the entity type is an object class.
 - Eg. Entity STUDENT in an ER Diagram could also be the class STUDENT in Java.
- Then we can introduce *subclasses* (subtypes) to enhance our data modeling.
- Just as with OO programming, subclasses inherit properties from their superclass
- In the database case, they inherit all the attributes and relationships.
- NOTE: an entity cannot exist in the database by JUST being a member of the subclass, it must also be a member of the superclass.
- The Enhanced in Enhanced ER Diagrams (EER Diagrams) means we have ER diagrams with inheritance.

10/15/2023 3

SPECIALIZATION

- Process of finding a set of subclass (subtypes) of an entity.
- Each subclass will have some distinguishing characteristics of the superclass
- Example: laptop and desktop are subclasses of computer
- Remember the ISA rule → Only use this if you can say the subclass IS A superclass.
 - Example:
 - Laptop IS A Computer YES (so laptop can be a subclass of Computer)
 - Country IS A Continent NO (so Country should NOT be a subclass of Continent)

GENERALIZATION

- The opposite of Specialization is *Generalization*
- Identify common features and generalized them into a single superclass.

Example: Suppose you are modeling vehicles:

 And you realize that it makes sense to have a superclass containing the common attributes:

Sometimes the instances of the subclasses overlap – indicated with an o in the circle **Example:** Person emp in this case. Employee Student Alumnus CS319 10/15/2023 10

Can use a *category* to indicate which subclass an instance belongs to **Example:**

In this case, a trigger could insert a new employee into the appropriate 1 subclass based on the value of JobType.

NOTES

- Help to make the conceptual model more accurate (but can cause clutter)
- If subclass has few attributes and no relationships, might want to merge into superclass (specific attributes would be null for entities not a member of the subclass)
- The default for disjoint/overlapping and total/partial is overlapped/partial (only put disjoint and/or total if it makes sense)

QUESTION

 Consider the following entity sets and attributes. Place a checkmark

in ONE column in each row to indicate the relationship.

Entity Set	Has a relationship with	Has an attribute that is	ls a specialization of	ls a generalization of	Entity Set or Attribute
Mother					Person
Daughter					Mother
Student					Person
Student					StudentNumber
School	\checkmark				Student
Animal		_		\	Horse
Horse					Age
Furniture				\checkmark	Chair

Hint: use the "IS A" Rule to help decide!

10/15/2023