Comparasion d'optimisateurs

Paramètres:

• nombre de neurones: 100

• profondeur:1

• nombre de epoch par default : 1000

• nombre de données : 2

• loss fonction: categorical crossentropy:

$$L_i = -\sum_j \hat{y}_{i,j} \log(y_{i,j})$$

 \hat{y} sont les prédictions, y sont les varies valeurs, i désigne le point de données et j désigne la classe.

Définition:

• sgd: Stochastic gradient descent optimizer.

• rmsprop : rmsprop optimizer. Cet optimiseur est généralement un bon choix pour les réseaux de neurones récurrents.

 adam : Cet algorithme est un moyen de calculer le taux d'apprentissage adaptatif pour chaque paramètre.

• Ctime: Completion time

• loss : Denière valeur de loss fonction

• acc: précision finale

• winAcc: précision finale pour la fenêtre

• outWinAcc : précision finale pour hors de la fenêtre

	sgd	rmsprop	adam normale	adam avec L2
Avec Ctime	loss=0.4314 acc=0.8400 winAcc=0 outWinAcc=0 epoch = 5000	loss= 0.1874 acc= 0.8900 winAcc=0.6562 outWinAcc=0.3438	loss=0.1706 acc= 0.8900 winAcc=0.6875 outWinAcc=0.3750	loss=0.1858 acc= 0.8900 winAcc=0.5312 outWinAcc=0.2188
Sans Ctime	loss= 0.4243 acc=0.8400 winAcc=0 outWinAcc=0 epoch = 5000	loss=0.1875 acc=0.9100 winAcc=0.7188 outWinAcc=0.2812	loss= 0.1818 acc= 0.9150 winAcc=0.8125 outWinAcc=0.3438 epoch = 2000	loss= 0.0044 acc= 1.0000 winAcc=1.0000 outWinAcc=0 epoch = 2000

	adam avec L2(epoch = 2000)
Avec Ctime	loss=0.1599 acc=0.8900 winAcc=0.7188 outWinAcc=0.4062

1. sgd - sans Ctime

2. sgd - avec Ctime

3. rmsprop -avec Ctime

model OutWinAcc

4. rmsprop - sans Ctime

model OutWinAcc

model accuracy

model OutWinAcc

6. adam - avec Ctime

7. adam - sans Ctime et avec L2 (decay = 1e-6)

8. adam - avec Ctime et L2 (decay = 1e-6)

9. adam - avec Ctime et L2 (decay = 1e-6)(epoch = 2000)

