IN THE CLAIMS:

1. (Currently Amended) An optical data medium comprising a substrate that is optionally already coated with one or more reflective layers and on the surface of which have been applied

PAGE 06/22

- an information layer that can be recorded on using light, wherein the information layer contains (i) a light-absorbing compound comprising at least one phthalocyanine and (ii) optionally a binder,
- (2) optionally one or more reflective layers, and
- (3) optionally a protective layer or a further substrate or a covering layer, wherein the optical data medium can be recorded on and read using blue light having a wave length in the range of about 360 nm to about 460 nm, wherein the phthalocyanine dye corresponds to the formula (I)

MPc[R ³]	[R ⁴]	$[R^5]$	IR ⁶	ŕ	(1),
W	<u>X</u>		y	z	(1),

in which

Pc represents a phthalocyanine,

M represents two independent H atoms, a divalent metal atom, a trivalent axially monosubstituted metal atom of the formula (la)

X ₁ Me	(la)
Me	

a tetravalent axially disubstituted metal atom of the formula (lb)

	72 (102)1
X ₁	
Me I X ₂	(Ib), or

a trivalent axially monosubstituted and axially monocoordinated metal atom of the formula (ic)

۲ _۱	
Ме	
X ₂	(lc)

with the proviso that when X_1 or X_2 is a charged ligand, the charge is compensated by an oppositely charged ion.

in which

- X^1 and X^2 , independently of one another, represent halogen, hydroxyl, oxygen, cyano, thiocyanato, cyanato, alkenyl, alkynyl, arytthio, dialkylamino, alkyl, alkoxy, acyloxy, alkylthio, aryl, aryloxy, O-PR10R11, -O-P(O)R¹²R¹³, -O-SiR¹⁴R¹⁵R¹⁶, NH₂, alkylamino and the radical of a heterocyclic amine.
- R3, R4, R5 and R6 correspond to substituents of the phenyl ring of the phthalocyanine and independently of one another, represent halogen, cyano, nitro, alkyl, aryl, alkylamino, dialkylamino, alkoxy, alkylthio, aryloxy, arylthio, SO₃H, SO₂NR¹R², CO₂R⁹, CONR¹R², NH-COR⁷, or a radical of the formula -(B)_m-D, in which
 - denotes a bridge member selected from the group consisting of a direct bond, CH2, CO, CH(alkyl), C(alkyl)2, NH, S, O, or -CH=CH-, such that (B)_m denotes a chemically reasonable sequence of bridge members B with m = 1 to 10, and
 - represents the monovalent radical of a redox system of the formula (Red)

<u>or</u> (Ox)

or represents a metallocenyl radical or metallocenylcarbonyl radical. wherein Z1 and Z2, independently of one another, represent NR'R", OR", or SR",

Υ1 represents NR', O, or S,

A5 represents NR'.

represents 1 to 10, and

R' and R", independently of one another, represent hydrogen, alkyl, cycloalkyl, and or hetaryl, or form a direct bond or a bridge to

one of the C atoms of the CHECH

- w, x, y and z, independently of one another, represent 0 to 4 and the sum w+x+y+z is <16.
- R¹ and R², independently of one another, represent hydrogen, alkyl, hydroxyalkyl, or aryl, or R¹ and R², together with the N atom to which they are bonded, form a heterocyclic 5-, 6-, or 7-membered ring, optionally with participation of further hetero atoms, and
- R⁷ to R¹⁶, independently of one another, represent alkyl, arvl, hetaryl, or hydrogen.
- (Original) An optical data medium according to Claim 1 wherein the substrate is transparent.
- (Original) An optical data medium according to Claim 1 wherein the blue light is provided by a laser light.
 - 4. (Cancelled)
- 5. (Original) An optical data medium according to Claim 4 wherein M represents
- (1) two independent H atoms or a divalent metal atom selected from the group consisting of Cu, Ni, Zn, Pd, Pt, Fe, Mn, Mg, Co, Ru, Ti, Be, Ca, Ba, Cd, Hg, Pb, and Sn,
- (2) a trivalent axially monosubstituted metal atom of the formula (Ia) in which Me represents AI, Ga, Ti, In, Fe, or Mn, or
- (3) a tetravalent metal atom of the formula (lb) in which Me represents SI, Ge, Sn, Zn, Cr, Ti, Co, or V.
- 6. (Original) An optical data medium according to Claim 4 wherein M represents a radical of the Formula (Ia) in which Me represents AI, X_1 and X_2 represent halogen, aryloxy, or alkoxy, and X_3 , X_4 , X_5 , X_6 , X_7 , X_8 , X_8 , X_9 , and X_9 each represent 0.
- 7. (Original) An optical data medium according to Claim 4 wherein M represents a radical of the Formula (lb) in which Me represents Si, X_1 and X_2 represent halogen, aryloxy, or alkoxy, and w, x, y, and z each represent 0.

(Original) A process for the production of the optical data medium 8. according to Claim 1 comprising coating a substrate that is optionally already coated with a reflective layer with a phthalocyanine dye, optionally in combination with suitable binders and additives and optionally suitable solvents, and optionally providing the substrate with a reflective layer, further intermediate layers, and optionally a protective layer or a further substrate or a covering layer.

LANXESS

- (Original) A process for the production of the optical data media according to Claim 8 wherein the coating with the phthalocyanine dye is effected by spin-coating, sputtering, or vapor deposition.
- (Original) An optical data medium having a recordable information 10. layer, wherein the optical data medium is obtained by recording on an optical data medium according to Claim 1 using blue light.
- (Original) An optical data medium having a recordable information 11. layer, wherein the optical data medium is obtained by recording on an optical data medium according to Claim 1 using a laser light having a wavelength of 360 to 460
- (Currently Amended) An optical data medium according to Claim 4 12. wherein M represents a radical of a [[the]] formula (IS).
- (Currently Amended) An optical data medium according to Claim 1 in addition to the one information layer further layers further including at least one layer selected from the group consisting of metal layers, dielectric layers, and protective
 - 14. (Cancelled)