$$[q] = \kappa c/c$$
 - расход;
 $[g] = m/c^2$.

Проводя рассуждения аналогичные второй задаче, найдем безразмерную комбинацию: $\frac{q}{\rho g^{\frac{1}{2}} h^{\frac{5}{2}}}$.

Таким образом, можно сделать вывод, что расход пропорционален высоте в степени $\frac{5}{2}$. И при увеличении перепада высот в 2 раза, расход увеличится в $\approx 5,7$ раз.

Задача 10-2 Полетели?

1.1 В момент старта сила тяги, очевидна равна силе тяжести

$$F_{p} = Mg \tag{1}$$

Численное значение $F_{\rm p} = 45 \cdot 10^3 \cdot 10 = 45 \cdot 10^4 \,\mathrm{H} = 450 \,\mathrm{kH}$

- 1.2 Проще всего доказать эту формула в системе отсчета связанной с ракетой в какой-то малый промежуток времени. В этой системе продукты сгорания получают импульс $\mu\Delta t \cdot u$. Следовательно, и ракета получает такой же импульс (только в противоположном направлении) Разделив это выражение на малый промежуток времени Δt получим требуемое выражение для силы тяги. Так как величина силы не зависит от выбора инерциальной системы отсчета, то это выражение справедливо для любого момента времени и любой скорости ракеты.
- 1.3 Так как в начальный момент времени сила тяги равна силе тяжести, то расход топлива можно найти из этого условия

$$\mu u = Mg \quad \Rightarrow \quad \mu = \frac{Mg}{u}, \qquad \mu = 150 \frac{\text{K}\Gamma}{c}$$
 (2)

1.4 Мощность двигателя ракеты: $P = \frac{A}{\Delta t}$, где A – работа, совершенная силами давления

продуктов сгорания в камере сгорания двигателя за промежуток времени Δt . По теореме о кинетической энергии эта работа равна изменению кинетической энергии продуктов сгорания и ракеты. В момент старта ракета покоилась, поэтому:

$$A = \frac{\Delta m u^2}{2} \implies P = \frac{\Delta m u^2}{2\Delta t} = \frac{\mu u^2}{2} = \frac{Mgu}{2}.$$

$$P = \frac{45 \cdot 10^3 \cdot 10 \cdot 3000}{2} = 675 \text{ (MBT)}.$$
(3)

1.5 К моменту времени t после старта масса ракеты уменьшилась и стала равна $M - \mu t$. По второму закону Ньютона:

$$F_{p}-(M-\mu t)g=(M-\mu t)a.$$

Учитывая полученные ранее выражения для силы тяги и расхода топлива, получаем:

$$Mg - \left(M - \frac{Mg}{u}t\right)g = \left(M - \frac{Mg}{u}t\right)a \implies$$

$$a = \frac{g^2t}{v - gt}. \tag{4}$$

В таблице 1 приведены рассчитанные по формуле (8) значения a(t). На рисунке 2 приведен график зависимости a(t) с линейной аппроксимацией между расчетными точками.

1.6 Время работы двигателя определяется скоростью расхода топлива:

$$t_{m} = \frac{kM}{\mu} = \frac{ku}{g};$$

$$t_{m} = \frac{0.9 \cdot 3000}{10} = 270(c).$$
(9)

1.7 Скорость u может быть получена как площадь фигуры, ограниченной осью времени и графиком a(t). Учитывая линейную зависимость a(t) между точками t_{n-1} и t_n , получим для значений скорости:

$$u_n = u_{n-1} + \frac{1}{2} (a_{n-1} + a_n) \Delta t . {10}$$

Полученные значения приведены в таблице 1. Максимальная скорость ракеты $u_{\max} = 4400 \frac{\rm M}{\rm c} \, .$

1.8 Высота, которой достигает ракета, рассчитывается аналогично, используя график зависимости u(t) с линейной аппроксимацией между расчетными точками:

$$h_n = h_{n-1} + \frac{1}{2} (u_{n-1} + u_n) \Delta t.$$
 (11)

Полученные значения приведены в таблице 1.

Trong termine one termin inpuberent is the street in the s											
t,c	0	30	60	90	120	150	180	210	240	270	
$a, \frac{M}{c^2}$	0,0	1,1	2,5	4,3	6,7	10,0	15,0	23,3	40,0	90,0	
$u, \frac{M}{c}$	0,0	17	71	173	337	587	962	1537	2487	4437	
h, M	0,0	250	1563	5214	12857	26714	49946	87429	147786	251643	

Двигатель расходует весь запас топлива на высоте $H = 250 \,\mathrm{km}$.

1.9 Максимальная высота подъема ракеты:
$$z_{\text{max}} = H + \frac{u^2}{2g} = 1240 \, \text{км}$$
 .

Задача допускает и точное решение, требующее знакомства с высшей математикой (не для участников)

Для скорости:

$$u(t) = \int_{0}^{t} a(t)dt \quad \Rightarrow \quad u(t) = \int_{0}^{t} \frac{g^{2}t}{v - gt}dt \quad \Rightarrow \quad u(t) = v \ln\left(\frac{v}{v - gt}\right) - gt. \tag{12}$$

Для высоты:

$$h(t) = \int_{0}^{t} u(t)dt \quad \Rightarrow \quad h(t) = \int_{0}^{t} \left(v \ln \left(\frac{v}{v - gt} \right) - gt \right) dt \quad \Rightarrow \quad h(t) = vt + v \frac{v - gt}{g} \ln \left(\frac{v - gt}{v} \right) - \frac{gt^{2}}{2}.$$

Расчетные данные по формулам (12) и (13) приведены в таблице 2:

t,c	0	30	60	90	120	150	180	210	240	270
$u, \frac{M}{c}$	0	16	69	170	332	579	949	1512	2428	4208
<i>h</i> , м	0	158	1337	4795	12154	25584	48135	84427	142301	238267

Различия незначительны!