Travaux dirigés de Systèmes Poly-Articulés

TD1: Paramétrage - MGI MGD d'un robot SCARA

On étudie le robot Scara 4 axes, référencé « s600 » de marque Adept donné en Figure 1 :

FIGURE 1 - Robot SCARA s600

1 Paramétrage

Question 1.1 • En se basant sur la documentation technique fournie en Annexes, proposer un schéma cinématique de ce robot.

Question 1.2 • Construire sur le schéma, la paramétrisation au sens de Denavit et Hartenberg modifée. Synthétiser les résultats dans le tableau associé.

Tableau de paramètres DHm pour le robot

	$ d_i $	α_i	r_i	θ_i
T_{01}	0	0	0	θ_1
T_{12}	d_2	0	0	θ_2
T_{23}	d_3	0	$r_3(+r_{30})$	0
T_{34}	0	180°	0	θ_4

Les paramètres d_i et α_i sont toujours constants.

Les paramètres r_i et θ_i sont les variables articulaires et sont définies à une constante près.

Question 1.3 • Déterminer chaque matrice homogène de transformation T_{ij} entre les différents corps.

Question 1.3 • Solutions

Matrices homogènes élémentaires de transformations entre repères :

$$\mathbf{T}_{01} = \begin{bmatrix} C\theta_1 & -S\theta_1 & 0 & 0 \\ S\theta_1 & C\theta_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{12} = \begin{bmatrix} \mathbf{C}\theta_2 & -\mathbf{S}\theta_2 & 0 & d_2 \\ \mathbf{S}\theta_2 & \mathbf{C}\theta_2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{23} = \begin{bmatrix} 1 & 0 & 0 & d_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & r_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Pour T_{34} : la matrice de rotation R_{34} est composée de 2 rotations :

$$\mathbf{R}_{34} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C(\pi) & -S(\pi) \\ 0 & S(\pi) & C(\pi) \end{bmatrix} \times \begin{bmatrix} C\theta_4 & -S\theta_4 & 0 \\ S\theta_4 & C\theta_4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{34} = \begin{bmatrix} C\theta_4 & -S\theta_4 & 0\\ -S\theta_4 & -C\theta_4 & 0\\ 0 & 0 & -1 \end{bmatrix}$$

On trouve ainsi:

$$\mathbf{T}_{34} = \begin{bmatrix} C\theta_4 & -S\theta_4 & 0 & 0 \\ -S\theta_4 & -C\theta_4 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Question 1.4 • En déduire l'expression de la transformation globale permettant de passer d'un vecteur exprimé dans le référentiel associé à l'effecteur $\mathcal{R}_{eff.}$, à son expression dans le référentiel associé à la base du robot \mathcal{R}_0 :

$${}^{0}\mathbf{P} = \mathbf{T_{0}}_{\text{eff.}} \, {}^{\text{eff.}}\mathbf{P} \tag{1}$$

Question 1.4 • Solutions

$${}^{0}\mathbf{P} = \mathbf{T}_{01} \, \mathbf{T}_{12} \, \mathbf{T}_{23} \, \mathbf{T}_{34} \, {}^{4}\mathbf{P}$$

Calcul de l'expression de T_{04} .

1 - On commence par calculer le produit $T_{23} \times T_{34}$ car T_{23} est seulement une matrice de translation.

$$\mathbf{T}_{24} = \begin{bmatrix} C\theta_4 & -S\theta_4 & 0 & d_3 \\ -S\theta_4 & -C\theta_4 & 0 & 0 \\ 0 & 0 & -1 & r_3 + cste \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2 - Calcul du produit $T_{12} \times T_{24}$

$$\mathbf{T}_{14} = \begin{bmatrix} \mathsf{C}\theta_2 \mathsf{C}\theta_4 + \mathsf{S}\theta_2 \mathsf{S}\theta_4 & -\mathsf{C}\theta_2 \mathsf{S}\theta_4 + \mathsf{S}\theta_2 \mathsf{C}\theta_4 & 0 & d_3 \mathsf{C}\theta_2 + d_2 \\ \mathsf{S}\theta_2 \mathsf{C}\theta_4 - \mathsf{C}\theta_2 \mathsf{S}\theta_4 & -\mathsf{S}\theta_2 \mathsf{S}\theta_4 - \mathsf{C}\theta_2 \mathsf{C}\theta_4 & 0 & d_3 \mathsf{S}\theta_2 \\ 0 & 0 & -1 & r_3 + cste \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} C(\theta_2 - \theta_4) & S(\theta_2 - \theta_4) & 0 & d_3C\theta_2 + d_2 \\ S(\theta_2 - \theta_4) & -C(\theta_2 - \theta_4) & 0 & d_3S\theta_2 \\ 0 & 0 & -1 & r_3 + cste \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rappel trigonométrique

$$S(a+b) = S(a)C(b) + C(a)S(b)$$

$$C(a+b) = C(a)C(b) - S(a)S(b)$$

3 - Calcul du produit $T_{01} \times T_{14}$

$$\mathbf{T}_{04} = \begin{bmatrix} \mathsf{C}\theta_1 \mathsf{C}(\theta_2 - \theta_4) - \mathsf{S}\theta_1 \mathsf{S}(\theta_2 - \theta_4) & \mathsf{C}\theta_1 \mathsf{S}(\theta_2 - \theta_4) + \mathsf{S}\theta_1 \mathsf{C}(\theta_2 - \theta_4) & 0 & \mathsf{C}\theta_1 (d_3 \mathsf{C}\theta_2 + d_2) - \mathsf{S}\theta_1 (d_3 \mathsf{S}\theta_2) \\ \mathsf{S}\theta_1 \mathsf{C}(\theta_2 - \theta_4) - \mathsf{C}\theta_1 \mathsf{S}(\theta_2 - \theta_4) & \mathsf{S}\theta_1 \mathsf{S}(\theta_2 - \theta_4) - \mathsf{C}\theta_1 \mathsf{C}(\theta_2 - \theta_4) & 0 & \mathsf{S}\theta_1 (d_3 \mathsf{C}\theta_2 + d_2) + \mathsf{C}\theta_1 (d_3 \mathsf{S}\theta_2) \\ 0 & 0 & -1 & r_3 + cste \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} C(\theta_1 + \theta_2 - \theta_4) & S(\theta_1 + \theta_2 - \theta_4) & 0 & d_3C(\theta_1 + \theta_2) + d_2C\theta_1 \\ S(\theta_1 + \theta_2 - \theta_4) & -C(\theta_1 + \theta_2 - \theta_4) & 0 & d_3S(\theta_1 + \theta_2) + d_2S\theta_1 \\ 0 & 0 & -1 & r_3 + cste \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Question 1.5 • Retrouver par un raisonnement géométrique simple les équations définissant le vecteur translation entre le repère \mathcal{R}_0 et le repère de l'effecteur $\mathcal{R}_{\text{eff.}}$.

Question 1.5 • Solutions

Pour retrouver les équations liées à la position de l'effecteur, il suffit de réaliser un schéma dans le plan.

Si on nomme (x, y, z) le vecteur translation entre le repère \mathcal{R}_0 et le repère de l'effecteur \mathcal{R}_{eff} . On retrouve bien :

$$\begin{cases} x = d_3 C(\theta_1 + \theta_2) + d_2 C\theta_1 \\ y = d_3 S(\theta_1 + \theta_2) + d_2 S\theta_1 \end{cases}$$

2 Modélisation Géométrique Directe et Inverse

Question 2.1 • Proposer un paramétrage du repère effecteur $\mathcal{R}_{\text{eff.}}$ par rapport au repère de base du robot \mathcal{R}_0 .

Question 2.1 • Solutions

Pour le robot scara la position et l'orientation de l'organe terminal sont caractérisé par :

- 3 composantes pour la position : x, y, z
- 1 composante pour l'orientation dans le plan : ω

Soit $\mathbf{X} = (x, y, z, \omega)$ le vecteur contenant les paramètres de l'espace des tâches et $\mathbf{q} = (\theta_1, \theta_2, r_3, \theta_4)$ le vecteur contenant les paramètres de l'espace articulaire.

Modèle géométrique directe :

$$\mathbf{X} = f_{MGD}(\mathbf{q})$$

Modèle géométrique inverse :

$$\mathbf{q} = f_{MGI}(\mathbf{X})$$

Question 2.2 • En étudiant successivement le problème en orientation puis en position, exprimer le MGD.

Question 2.2 • Solutions

1 - MGD en orientation:

Orientation de $\vec{z_4}$ opposé à $\vec{z_0}$.

 ω correspond à l'angle entre $(\overrightarrow{x_0}, \overrightarrow{x_4})$. On cherche donc a exprimer $\overrightarrow{x_4}$ dans le repère \mathcal{R}_0

$$\begin{array}{rcl}
0 \overrightarrow{x_4} & = & \mathbf{T_{04}} \stackrel{4}{\overrightarrow{x_4}} & (2) \\
 & = & \mathbf{T_{04}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} & (3) \\
 & = & \begin{pmatrix} \cos(\theta_1 + \theta_2 - \theta_4) \\ \sin(\theta_1 + \theta_2 - \theta_4) \\ 0 \\ 0 \end{pmatrix} & (4)
\end{array}$$

$$= \begin{pmatrix} \cos(\theta_1 + \theta_2 - \theta_4) \\ \sin(\theta_1 + \theta_2 - \theta_4) \\ 0 \\ 0 \end{pmatrix} \tag{4}$$

Par identification de l'expression de $\vec{x_4}$ exprimé dans le repère \mathcal{R}_0 on trouve :

$$\omega = \theta_1 + \theta_2 - \theta_4$$

2 - MGD en position : on détermine les coordonnées de O_4 dans le repère \mathcal{R}_0

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \mathbf{T}_{04} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

On trouve ainsi le MGD:

$$\begin{cases} \omega = \theta_1 + \theta_2 - \theta_4 & (1) \\ x = d_3 C(\theta_1 + \theta_2) + d_2 C\theta_1 & (2) \\ y = d_3 S(\theta_1 + \theta_2) + d_2 S\theta_1 & (3) \\ z = r_3 + cste & (4) \end{cases}$$

Question 2.3 • A l'aide des formulations géométriques données en Annexe des « Notes de cours », exprimer le MGI.

Question 2.3 • Solutions

- 1 Déterminer θ_1 et θ_2 en fonction de x et y
- 2 Déterminer θ_4 permettant de réaliser ω étant donnés θ_1 et θ_2 imposés

$$\begin{cases} x = d_3 C(\theta_1 + \theta_2) + d_2 C\theta_1 \\ y = d_3 S(\theta_1 + \theta_2) + d_2 S\theta_1 \end{cases}$$
 équations de type 8 (notes de cours)

2 solutions (cf. démonstration en annexe) :

$$\theta_2 = \operatorname{atan2}\left(\pm\sqrt{1-\cos^2(\theta_2)},\cos(\theta_2)\right) \quad \operatorname{avec} \quad \cos(\theta_2) = \frac{x^2+y^2-d_2^2-d_3^2}{2d_2d_3}$$

$$\theta_1 = \operatorname{atan2} \left(\sin(\theta_1), \cos(\theta_1) \right) \quad \text{avec} \quad \begin{cases} \cos(\theta_1) = \frac{x B_1 + y B_2}{B_1^2 + B_2^2} \\ \sin(\theta_1) = \frac{y B_1 - x B_2}{B_1^2 + B_2^2} \end{cases} \quad \text{avec} \quad \begin{cases} B_1 = d_2 + d_3 \cos(\theta_2) \\ B_2 = d_3 \sin(\theta_2) \end{cases}$$

Ensuite, une fois θ_1 et θ_2 résolus, on peut déterminer θ_4

$$\theta_4 = \theta_1 + \theta_2 - \omega$$

La dernière relation est évidente :

$$r_3 = z - cste$$

On trouve ainsi le MGI:+

trouve ainsi le MGI :+
$$\begin{cases} \theta_2 = \operatorname{atan2}\left(\pm\sqrt{1-\cos^2(\theta_2)},\cos(\theta_2)\right) & \operatorname{avec} & \cos(\theta_2) = \frac{x^2+y^2-d_2^2-d_3^2}{2d_2d_3} \\ \theta_1 = \operatorname{atan2}\left(\sin(\theta_1),\cos(\theta_1)\right) & \operatorname{avec} & \begin{cases} \cos(\theta_1) = \frac{xB_1+yB_2}{B_1^2+B_2^2} \\ \sin(\theta_1) = \frac{yB_1-xB_2}{B_1^2+B_2^2} \end{cases} & \operatorname{avec} & \begin{cases} B_1 = d_2+d_3\cos(\theta_2) \\ B_2 = d_3\sin(\theta_2) \end{cases} \\ \theta_4 = \theta_1+\theta_2-\omega) \\ r_3 = z-cste \end{cases}$$

Synthèse 3

Analyser le modèle du robot implémenté dans l'application « RoboDK ».

Question 3.0 • Solutions

RoboDK: Logiciel permettant de simuler pour différents robots, différentes trajectoires.

- 1 Ouvrir la librairie en ligne (icône avec la planète). De nombreux robot dont le robots à architecture Scara utilisé dans ce TP sont disponibles.
- 2 Ouvrir le robot Scara utilisé dans le TP. Par défaut, on a directement le repère de référence qui s'affiche et le repère de l'organe terminal. Correspondance des couleurs (X -> rouge, Y -> vert, Z -> bleu)
 - 3 Double clic sur le robot pour faire apparaître la fenêtre des propriétés.
 - Expliquer les différentes sous-parties disponibles.
 - Décoché tous les repères

- Faire apparaître le repère 1 et le repère 2, faire varier l'angle θ_1 et l'angle θ_2 . Comme vu précédemment on peut placer les origines au même endroit : il n'y a qu'un paramètre d_1 qui apparaît.
- Faire le lien avec la variation des paramètres que l'on a dans les différents repères : Attention les notations ne sont pas les mêmes
- 4 Montrer les autres configurations possibles : Attention il n'y a pas 4 configurations, mais seulement 2 : la variation de θ_4 n'est pas entre $-360 \deg$ et $360 \deg$ mais uniquement entre $0 \deg$ et $360 \deg$ (1 seul tour possible).
 - 5 Montrer l'espace de travail complet que l'on peut obtenir.
- 6 Cliquer sur paramètres en haut à droite afin d'accéder au modèle géométrique du robot : Attention, les paramètres géométriques sont décrits au sens du modèle de Denavit Hartenberg (DH) et non au sens de Denavit Hartenberg modifié (DHm)

4 Annexes

FIGURE 2 – Caractéristiques dimensionnelles

FIGURE 3 – Surface balayée par l'effecteur

FIGURE 4 – Extrait de documentation : cinématique

Speci	Specifications				
Reach	600 mm				
Payload	Rated 2 kg				
	Max. 5.5 kg				
Adept Cycle					
Burst Mode	0.42 sec				
Sustained (20°C)	0.45 sec				
Joint Ranges					
Joint 1	± 105°				
Joint 2	± 150°				
Joint 3	210 mm				
Joint 4	± 360°				
Joint Speeds					
Joint 1	386°/sec				
Joint 2	720°/sec				
Joint 3	1100 mm/se				
Joint 4	1200°/sec				
Repeatability					
XY	± 0.017 mm				
Z	± 0.003 mm				
Theta	± 0.019°				

FIGURE 5 – Extrait de documentation : spécifications techniques

Démonstration des solutions de l'équation de type 8 :

Le système a résoudre est le suivant :

$$\begin{cases} x = d_3 C(\theta_1 + \theta_2) + d_2 C\theta_1 \\ y = d_3 S(\theta_1 + \theta_2) + d_2 S\theta_1 \end{cases}$$
 équations de type 8 (notes de cours)

par identification au cours on a $\theta_1 = \theta_i$, $\theta_2 = \theta_j$, $d_2 = X$, $d_3 = Y$, $x = Z_1$ et $y = Z_2$.

L'équation générique est donc :

$$\begin{cases} XC\theta_i + YC(\theta_i + \theta_j) = Z_1 \\ XS\theta_i + YS(\theta_i + \theta_j) = Z_2 \end{cases}$$

Résolution pour trouver θ_j

On élève au carré les deux équations et on additionne :

$$X^2\mathbf{C}^2(\theta_i) + X^2\mathbf{S}^2(\theta_i) + Y^2\mathbf{C}^2(\theta_i + \theta_j) + Y^2\mathbf{S}^2(\theta_i + \theta_j) + 2XY\underbrace{\left[\mathbf{C}(\theta_i)\mathbf{C}(\theta_i + \theta_j) + \mathbf{S}(\theta_i)\mathbf{S}(\theta_i + \theta_j)\right]}_{\mathbf{C}(\theta_i + \theta_j - \theta_i) \text{ ou } \mathbf{C}(\theta_i - (\theta_i + \theta_i))} = Z_1^2 + Z_2^2\mathbf{C}^2(\theta_i + \theta_j) + Z_2^2\mathbf{C}^2$$

La partie avec une accolade correspond soit à $\cos(\theta_j)$ soit à $\cos(-\theta_j)$. On utilise la propriété du $C^2(a) + S^2(a) = 1$ pour simplifier l'équation précédente. On trouve donc :

$$\cos(\theta_j) = \frac{Z_1^2 + Z_2^2 - X^2 - Y^2}{2XY}$$
 et $\sin(\theta_j) = \sqrt{1 - \cos(\theta_j)}$

d'ou:

$$\theta_j = \operatorname{atan2}\left(\pm\sqrt{1-\cos^2(\theta_j)},\cos(\theta_j)\right)$$

Résolution pour trouver θ_i

Développement du cos(a + b) et sin(a + b)

$$\begin{cases} XC\theta_i + Y \left(C\theta_i C\theta_j - S\theta_i S\theta_j \right) = Z_1 \\ XS\theta_i + Y \left(S\theta_i C\theta_j + C\theta_i S\theta_j \right) = Z_2 \end{cases}$$

$$\begin{cases} C\theta_i \left[X + YC\theta_j \right] + S\theta_i \left[-YS\theta_j \right] = Z_1 \\ C\theta_i \left[YS\theta_j \right] + S\theta_i \left[X + YC\theta_j \right] = Z_2 \end{cases}$$

On note $B_1 = YS\theta_j$ et $B_2 = X + YC\theta_j$. On obtient le système suivant que l'on note (S1)

$$\begin{cases} C\theta_i B_1 - S\theta_i B_2 = Z_1 \\ C\theta_i B_2 + S\theta_i B_1 = Z_2 \end{cases}$$

1 - On multiplie la première équation de (S1) par B_2 et la seconde par B_1 . On obtient :

$$\begin{cases} C\theta_i B_1 B_2 - S\theta_i B_2^2 = Z_1 B_2 & (1) \\ C\theta_i B_1 B_2 + S\theta_i B_1^2 = Z_2 B_1 & (2) \end{cases}$$

En soustrayant l'équation (1) à l'équation (2) on obtient :

$$S\theta_i(B_1^2 + B_2^2) = Z_2B_1 - Z_1B_2$$

d'ou:

$$S\theta_i = \frac{Z_2 B_1 - Z_1 B_2}{B_1^2 + B_2^2}$$
 avec $B_1^2 + B_2^2 \neq 0$

2 - On multiplie la première équation de (S1) par \mathcal{B}_1 et la seconde par $\mathcal{B}_2.$ On obtient :

$$\begin{cases} C\theta_{i}B_{1}^{2} - S\theta_{i}B_{2}B_{1} = Z_{1}B_{1} & (3) \\ C\theta_{i}B_{2}^{2} + S\theta_{i}B_{1}B_{2} = Z_{2}B_{2} & (4) \end{cases}$$

En additionnant l'équation (3) et (4) on obtient :

$$C\theta_i = \frac{Z_1 B_1 + Z_2 B_2}{B_1^2 + B_2^2}$$
 avec $B_1^2 + B_2^2 \neq 0$

Maintenant que l'on a connaisance de $cos(\theta_i)$ et $sin(\theta_i)$ on peu dire :

$$\theta_i = \operatorname{atan2}(S\theta_i, C\theta_i)$$