

泛函分析 - 江泽坚 - 笔记

作者: 若水

邮箱: ethanmxzhou@163.com 主页: helloethanzhou.github.io

时间: July 18, 2024

致谢

由衷感谢 胡前锋 老师对于本课程的帮助

目录

第一草	: 度量线性空间	1
1.1	良序定理, Zorn 引理	1
	1.1.1 良序定理	1
	1.1.2 Zorn 引理	1
1.2	线性空间,Hamel 基	2
	1.2.1 线性空间	2
	1.2.2 Hamel 基	3
1.3	度量空间	4
	1.3.1 度量空间	4
	1.3.2 重要的度量线性空间	5
1.4	度量拓扑	5
	1.4.1 拓扑概念	5
	1.4.2 稠密性与可分性	6
1.5	完备度量空间	7
	1.5.1 完备空间	7
	1.5.2 完备性与闭性	7
1.6	紧致性	8
	1.6.1 紧致性	8
	1.6.2 同等连续	9
1.7	赋范线性空间	9
	1.7.1 范数	9
	1.7.2 收敛性	10
	1.7.3 线性算子	11
1.8	压缩映像原理	15
	1.8.1 压缩映像原理	15
	1.8.2 压缩映像原理的应用	15
	1.8.3 Fréchet 导数	18
1.9	<i>l^p</i> 空间	18
	1.9.1 <i>l^p</i> 空间	18
		19
	1.9.3 l ^p 空间的完备性	20
	1.9.4 l^{p} 空间的可分性	21
1.10	O L^p 空间	22
	$1.10.1$ L^p 空间	22
	$1.10.2~L^p$ 空间的完备性	23
	$1.10.3~L^p$ 空间的可分性	25
1.1	1 s 空间, c 空间与 $S[a,b]$ 空间, $C[a,b]$ 空间 \ldots	30
	$1.11.1\ s$ 空间 \dots	30
	1.11.2 c 空间	33
	1.11.3 $S[a,b]$ 空间	34
	$1.11.4\ C[a,b]$ 空间	37

第二章	Hilbert 空间	39
2.1	内积空间	39
	2.1.1 内积	39
	2.1.2 正交性	39
	2.1.3 内积与范数	41
2.2	正规正交基	43
2.3	射影定理,Frechet-Riesz 表现定理	44
	2.3.1 射影定理	44
	2.3.2 Frechet-Riesz 表现定理	46
2.4	Hilbert 共轭算子,Lax-Milgram 定理	49
	2.4.1 Hilbert 共轭算子	49
	2.4.2 Lax-Milgram 定理	51
第三章	Banach 空间	52
3.1	有界线性算子	52
	3.1.1 算子范数	52
	3.1.2 有界线性算子空间	55
	3.1.3 算子的逆	57
3.2	Hahn-Banach 定理	60
	3.2.1 Hahn-Banach 定理	60
	3.2.2 投影	63
3.3	Baire 纲推理	64
	3.3.1 Baire 纲定理	64
	3.3.2 一致有界原理	66
	3.3.3 开映射定理	70
	3.3.4 闭图形定理	72
3.4	对偶空间, 二次对偶, 自反空间	74
	3.4.1 对偶空间	74
	3.4.2 二次对偶空间	82
	3.4.3 自反空间	83
3.5	Banach 共轭算子	87
附录 A	空间	92
7/4 = P	72 Uh Ah 1 22 × Uh Ah	0.4
-	弱收敛与弱*收敛	94
	弱收敛	94
В.2	弱*收敛	94
附录 C	广义函数	96
附录 D	经典定理	98
	~± / / / / / / /	70

第一章 度量线性空间

1.1 良序定理, Zorn 引理

1.1.1 良序定理

定义 1.1.1 (有序集)

称 \checkmark 为有序集,如果 \checkmark 中任意两个元素间存在先后次序,记 \land 在 \land 之先为 \land \land 人

- 1. 如果a在b之先,那么b不在a之先。
- 2. 如果 a 在 b 之先, b 在 c 之先, 那么 a 在 c 之先。

定义 1.1.2 (良序集)

称有序集 $\mathscr A$ 为良序的,如果对于任意非空子集 $\mathscr L\subset\mathscr A$,存在 $\alpha_0\in\mathscr L$,使得对于任意 $\alpha\in\mathscr L$,成立 $\alpha_0\prec\alpha$ 。

定理 1.1.1 (超限归纳法)

对于良序集 \mathscr{A} ,如果 $P(\alpha_0)$ 为真,其中,且若 $P(\alpha)$ 对于任意满足 $\alpha_0 \prec \alpha \prec \beta$ 的 α 成立,则 $P(\beta)$ 成立,那么 $P(\alpha)$ 对于任意 $\alpha \in \mathscr{A}$ 为真。

1.1.2 Zorn 引理

定义 1.1.3 (部分有序集)

对于有序集 \mathscr{X} , 称 \mathscr{X} 为部分有序集, 如果在某些元素对 $(a,b) \in \mathscr{X} \times \mathscr{X}$ 存在二元关系 $a \prec b$, 且满足

- 1. $a \prec a$
- 2. $a \prec b$ 且 $b \prec a \implies a = b$
- 3. $a \prec b \perp b \prec c \implies a \prec c$

定义 1.1.4 (完全有序集)

对于有序集 \mathcal{X} , 称 \mathcal{X} 为完全有序集,如果对于任意 $(a,b)\in\mathcal{X}\times\mathcal{X}$ 存在二元关系 $a\prec b$ 或 $b\prec a$, 且 满足

- 1. $a \prec a$
- 2. $a \prec b$ 且 $b \prec a \implies a = b$
- 3. $a \prec b$ 且 $b \prec c \implies a \prec c$

定义 1.1.5 (部分有序集的上界)

对于部分有序集 \mathcal{X} ,以及非空子集 $\mathcal{L}\subset\mathcal{X}$,称 $p\in\mathcal{X}$ 为 \mathcal{L} 的上界,如果对于任意 $x\in\mathcal{L}$,成立 $x\prec p$ 。 .

定义 1.1.6 (部分有序集的极大元)

对于部分有序集 \mathcal{X} , 称 m 为 \mathcal{X} 的极大元, 如果对于任意 $x \in \mathcal{X}$, 成立

$$m \prec x \implies m = x$$

定理 1.1.2 (Zorn 引理)

对于非空部分有序集 \mathscr{X} ,如果对于任意完全有序子集 $\mathscr{Y}\subset\mathscr{X}$,存在 $x\in\mathscr{X}$,使得 x 为 \mathscr{Y} 的上界,那 $x\in\mathscr{X}$ 存在极大元。

1.2 线性空间, Hamel 基

1.2.1 线性空间

定义 1.2.1 (线性空间)

称 $(X,+,\cdot)$ 为复数域 $\mathbb C$ 上的线性空间,如果加法运算 $+: X\times X\to X$ 和数乘运算 $\cdot: \mathbb C\times X\to X$ 满足如下性质。

- 1. 加法单位元: 存在 $0 \in X$, 使得对于任意 $x \in V$, 成立 0 + x = x + 0 = x。
- 2. 数乘单位元: 存在 $1 \in \mathbb{C}$, 使得对于任意 $x \in X$, 成立 1x = x。
- 3. 加法逆元: 对于任意 $x \in X$, 存在 $y \in X$, 使得成立 x + y = y + x = 0。
- 4. 加法交换律: x + y = y + x
- 5. 加法结合律: x + (y + z) = (x + y) + z
- 6. 数乘结合律: $\lambda(\mu x) = (\lambda \mu)x$
- 7. 数乘左分配律: $(\lambda + \mu)x = \lambda x + \mu x$
- 8. 数乘右分配律: $\lambda(x+y) = \lambda x + \lambda y$

定义 1.2.2 (线性子空间)

称线性空间中的子集为线性子空间, 如果其对于加法和数乘运算封闭。

定义 1.2.3 (直和)

对于线性空间 X 上的线性子空间 $M,N\subset X$,称 M+N 为直和,并记作 $M\oplus N$,如果满足如下命题之一。

- 1. $M \cap N = \{0\}$
- 2. 对于任意 $x \in M + N$, 存在且存在唯一 $(m,n) \in M \times N$, 使得成立 x = m + n。

证明 $1 \implies 2$: 如果 $M \cap N = \{0\}$,那么任取 $x \in M + N$,那么存在 $(m,n) \in M \times N$,使得成立 x = m + n。 如果存在 $(m',n') \in M \times N$,使得成立 x = m' + n',因此

 $m+n=m'+n' \implies m-m'=n'-n \in M \cap N \iff m-m'=n'-n=0 \iff m=m,n'=n$ 因此存在且存在唯一 $(m,n) \in M \times N$,使得成立 x=m+n。

 $2 \implies 1$: 如果对于任意 $x \in M + N$,存在且存在唯一 $(m,n) \in M \times N$,使得成立 x = m + n,那么任取 $x \in M \cap N$,由于

$$x = x + 0 = 0 + x \implies x = 0$$

那么 $M \cap N = \{0\}$ 。

定义 1.2.4 (代数补)

对于线性空间 X 上的线性子空间 $M, N \subset X$,称 M 与 N 互为代数补,如果 $X = M \oplus N$ 。

定理 1.2.1

对于有限维线性空间 X 上的线性子空间 $M,N\subset X$,如果 $X=M\oplus N$,那么 $\dim X=\dim M+\dim N$ 。。

证明 记 M 的基为 $\{x_k\}_{k=1}^m$, N 的基为 $\{y_k\}_{k=1}^n$ 。由于 X = M + N,那么 $\{x_k\}_{k=1}^m \cup \{y_k\}_{k=1}^n$ 的张成空间为 X。 又因为 $M \cap N = \{0\}$,那么 $\{x_k\}_{k=1}^m \cup \{y_k\}_{k=1}^n$ 线性无关,因此 $\{x_k\}_{k=1}^m \cup \{y_k\}_{k=1}^n$ 为 X 的基,进而

$$\dim X = m + n = \dim M + \dim N$$

1.2.2 Hamel 基

定义 1.2.5 (Hamel 基)

称子集 $H \subset X$ 为线性空间 X 的 Hamel 基,如果 H 线性无关,且 $\operatorname{Sp}(H) = X$ 。

🖹 笔记

- 有限维线性空间的基即为 Hamel 基。
- 无限维 Banach 空间的 Hamel 基的维数不小于连续统。
- 无限维可分 Banach 空间的 Hamel 基的维数为连续统。

定理 1.2.2 (Hamel 基的存在性)

对于线性空间 X, 如果子集 $S \subset X$ 线性无关, 那么存在 Hamel 基 $H \subset X$, 使得成立 $S \subset H$ 。

 \bigcirc

证明 定义

$$\mathscr{P} = \{P : S \subset P \subset X, \ \mathbb{1}P \ \text{\sharp $t \in \mathcal{X}$}\}$$

在子集族 \mathscr{P} 上存在序结构 \subset ,那么 \mathscr{P} 为非空部分有序集。任取完全有序子集 $\mathscr{P}_0 \subset \mathscr{P}$,那么 \mathscr{P}_0 存在上界 $\bigcup_{P \in \mathscr{P}_0} P \in \mathscr{P}_0$ 。由 Z orn 引理1.1.2, \mathscr{P} 存在极大元 $H \in \mathscr{P}_0$,进而 $S \subset H \subset X$ 且 H 线性无关。如果 $Sp(H) \subsetneq X$, $P \in \mathscr{P}_0$,那么存在 $x \in X$,使得 $x \notin Sp(H)$,于是 $S \subset H \subset H \cup \{x\} \subset X$ 且 $H \cup \{x\}$ 线性无关,同时 $H \subsetneq H \cup \{x\}$,这与 H 的极大性矛盾!因此 Sp(H) = X,进而 H 为 X 的 H amel H 。

推论 1.2.1

线性空间的线性子空间存在代数补。

~

证明 对于线性空间 X 的线性子空间 M,由定理1.2.2,X 存在 Hamel 基 H,M 存在 Hamel 基 H_0 ,且满足 $H_0 \subset H$ 。 记 $N = \operatorname{Sp}(H \setminus H_0)$, 那么 X = M + N。 任取 $x \in M \cap N$, 那么存在 $\{u_k\}_{k=1}^m \subset M$, 与 $\{v_k\}_{k=1}^n \subset N$, 以及 $\{\alpha_k\}_{k=1}^m$ 与 $\{\beta_k\}_{k=1}^n$, 使得成立

$$x = \alpha_1 u_1 + \dots + \alpha_m u_m = \beta_1 v_1 + \dots + \beta_n v_n$$

因此

$$\alpha_1 u_1 + \dots + \alpha_m u_m - \beta_1 v_1 - \dots - \beta_n v_n = 0$$

由于 $\{u_k\}_{k=1}^m \cup \{v_k\}_{k=1}^n$ 线性无关,那么

$$\alpha_1 = \dots = \alpha_m = \beta_1 = \dots = \beta_n = 0$$

于是 x = 0, 因此 $M \cap N = \{0\}$, 进而 $X = M \oplus N$, 即 M 的代数补为 N。

1.3 度量空间

1.3.1 度量空间

定义 1.3.1 (度量空间)

称 (X,d) 为复数域 ℂ上的度量空间,如果度量 $d: X \times X \to \mathbb{C}$ 满足如下性质。

- 1. 正定性: $d(x,y) \ge 0$, 当且仅当 x = y 时等号成立。
- 2. 对称性: d(x,y) = d(y,x)
- 3. 三角不等式: $d(x,z) \le d(x,y) + d(y,z)$

定义 1.3.2 (收敛)

称度量空间 (X,d) 中点列 $\{x_n\}_{n=1}^{\infty}$ 依度量 d 收敛到 x,并记作 $x_n \xrightarrow{d} x$,如果

$$\lim_{n \to \infty} d(x_n, x) = 0$$

定义 1.3.3 (度量线性空间)

称复数域 \mathbb{C} 上的度量空间 (X,d) 为度量线性空间,如果度量 d 对于加法和数乘运算连续;换言之

$$\begin{array}{cccc} x_n \stackrel{d}{\longrightarrow} x \, \mathbb{E} y_n \stackrel{d}{\longrightarrow} y & \Longrightarrow & x_n + y_n \stackrel{d}{\longrightarrow} x + y \\ \\ x_n \stackrel{d}{\longrightarrow} x \, \mathbb{E} \lambda_n \longrightarrow \lambda & \Longrightarrow & \lambda_n x_n \stackrel{d}{\longrightarrow} \lambda x \end{array}$$

命题 1.3.1 (度量线性空间的充分条件)

对于度量空间 (X,d), 如果

$$d(x+z, y+z) = d(x,y), \qquad d(\lambda x, 0) \le |\lambda| d(x,0)$$

那么 (X,d) 为度量线性空间。

证明 任取

$$x_n \xrightarrow{d} x, \qquad y_n \xrightarrow{d} y, \qquad \lambda_n \longrightarrow \lambda$$

那么

$$\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(y_n, y) = \lim_{n \to \infty} |\lambda_n - \lambda| = 0$$

由于

 $d(x_n+y_n,x+y) \le d(x_n+y_n,x+y_n) + d(x+y_n,x+y) \le d(x_n,x) + d(y_n,y)$ $d(\lambda_n x_n,\lambda x) \le d(\lambda_n x_n,\lambda_n x) + d(\lambda_n x,\lambda x) = d(\lambda_n (x_n-x),0) + d((\lambda_n - \lambda)x,0) \le |\lambda_n| d(x_n,x) + |\lambda_n - \lambda| d(x,0)$ $\mathbb{R} \angle$

$$\lim_{n \to \infty} d(x_n + y_n, x + y) = \lim_{n \to \infty} d(\lambda_n x_n, \lambda x) = 0$$

因此

$$x_n + y_n \xrightarrow{d} x + y, \qquad \lambda_n x_n \xrightarrow{d} \lambda x$$

进而 (X,d) 为度量线性空间。

1.3.2 重要的度量线性空间

定义 1.3.4 (数列空间)

$$s = \{\{x_n\}_{n=1}^{\infty}\}$$

$$l^{\infty} = \{\{x_n\}_{n=1}^{\infty} : \exists M, \forall n \in \mathbb{N}^*, |x_n| \leq M\}\}$$

$$c = \{\{x_n\}_{n=1}^{\infty} : \exists x \in \mathbb{R}, x_n \to x\}$$

$$c_0 = \{\{x_n\}_{n=1}^{\infty} : x_n \to 0\}$$

$$c_{00} = \{\{x_n\}_{n=1}^{\infty} : \exists N, \forall n > N, x_n = 0\}$$

$$d(\lbrace x_n\rbrace_{n=1}^{\infty}, \lbrace y_n\rbrace_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

$$\|\{x_n\}_{n=1}^{\infty}\|_{\infty} = \sup_{n \in \mathbb{N}^*} |x_n|$$

$$l^p = \{\{x_n\}_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n|^p < \infty\}, \quad 1 \le p < \infty \qquad \|\{x_n\}_{n=1}^{\infty}\|_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$$

$$\|\{x_n\}_{n=1}^{\infty}\|_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$$

定义 1.3.5 (函数空间)

$$L^{\infty}[a,b] = \{f$$
几乎处处有界 $\},$

$$L^{p}[a,b] = \left\{ f : \int |f|^{p} < \infty \right\},\,$$

$$C[a,b] = \{$$
连续函数 $f: [a,b] \rightarrow \mathbb{C}\},$

$$S[a,b] = \{$$
几乎处处有限的可测函数 $f: [a,b] \to \mathbb{R}\},$

$$||f||_{\infty} = \inf_{m(E)=0} \sup_{[a,b]\backslash E} |f|$$

$$||f||_p = \left(\int_a^b |f|^p\right)^{1/p}$$

$$||f|| = \sup_{[a,b]} |f|$$

$$d(f,g) = \int_{a}^{b} \frac{|f-g|}{1+|f-g|}$$

1.4 度量拓扑

1.4.1 拓扑概念

定义 1.4.1 (开球)

对于度量空间 (X,d), 定义开球

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

定义 1.4.2 (邻域)

对于度量空间 (X,d), 称 $U \subset X$ 为 $x \in X$ 的邻域, 如果存在 r > 0, 使得成立 $B_r(x) \subset U$ 。

定义 1.4.3 (内点)

对于度量空间 (X,d), 称 $x \in X$ 为 $U \subset X$ 的内点, 如果存在 r > 0, 使得成立 $B_r(x) \subset U$ 。

定义 1.4.4 (极限点)

对于度量空间 (X,d), 称 $x \in X$ 为 $E \subset X$ 的极限点, 如果对于任意 r > 0, 成立 $B_r(x) \cap E \setminus \{x\} \neq \emptyset$ 。

定义 1.4.5 (接触点)

对于度量空间 (X,d), 称 $x \in X$ 为 $E \subset X$ 的接触点, 如果对于任意 r > 0, 成立 $B_r(x) \cap E \neq \emptyset$ 。

*

定义 1.4.6 (内部)

对于度量空间 (X,d), $E \subset X$ 的所有内点称为 E 的内部,记作 E° 。

.

定义 1.4.7 (导集)

对于度量空间 (X,d), $E \subset X$ 的所有极限点称为 E 的导集,记作 E'。

定义 1.4.8 (闭包)

对于度量空间 (X,d), $E \subset X$ 的所有接触点称为 E 的闭包,记作 \overline{E} 。

定义 1.4.9 (开集)

对于度量空间 (X,d), 称 $G \subset X$ 为开集, 如果 $G = G^{\circ}$ 。

定义 1.4.10 (闭集)

对于度量空间 (X,d), 称 $F \subset X$ 为闭集, 如果 $F = \overline{F}$ 。

定义 1.4.11 (连续映射)

对于度量空间 X 与 Y,称映射 $f: X \to Y$ 为连续的,如果成立如下命题之一。

- 1. 邻域的原像是邻域。
- 2. 开集的原像是开集。
- 3. 闭集的原像是闭集。

•

1.4.2 稠密性与可分性

定义 1.4.12 (稠密集合)

对于度量空间 (X,d), 称子集 $S \subset X$ 为 X 的稠密集, 如果 $\overline{S} = X$ 。

定义 1.4.13 (可分空间)

称度量空间 (X,d) 为可分空间,如果 X 存在可数稠密子集。

定理 1.4.1 (同构保可分性)

对于赋范线性空间 X 与 Y,如果存在保范线性双射 $T: X \to Y$,那么

X 为可分空间 \iff Y 为可分空间

证明 仅证明必要性,如果 X 为可分空间,那么存在可数子集 $S \subset X$,使得成立 $\overline{S} = X$ 。考察可数子集 $T(S) \subset Y$,任取 $y \in Y$,那么存在 $x \in X = \overline{S}$,使得成立 T(x) = y,进而存在 $\{x_n\}_{n=1}^{\infty} \subset S$,使得成立 $x_n \to x$ 。由于 T 为保范算子,那么由定理1.7.4,T 为连续算子,因此

$$\lim_{n \to \infty} T(x_n) = T(\lim_{n \to \infty} x_n) = T(x) = y$$

因此 $\overline{T(S)} = Y$, 进而 Y 为可分空间。

1.5 完备度量空间

1.5.1 完备空间

定义 1.5.1 (Cauchy 序列)

称度量空间 (X,d) 中的序列 $\{x_n\}_{n=1}^\infty$ 为 Cauchy 序列,如果对于任意 $\varepsilon>0$,存在 $N\in\mathbb{N}^*$,使得对于任意 m,n>N,成立 $d(x_m,x_n)<\varepsilon$ 。

定义 1.5.2 (完备度量空间)

称度量空间 (X,d) 为完备的,如果 Cauchy 序列收敛。

定义 1.5.3 (完备化)

称完备的度量空间 (\tilde{X},ρ) 为度量空间 (X,d) 的完备化,如果存在等距映射 $T:X\to \tilde{X}$,使得 T(X) 为 \tilde{X} 的稠密子集。

定理 1.5.1 (度量空间的完备化)

度量空间可完备化, 且完备化空间在等距意义下唯一。

证明 度量空间 (X,d) 的完备化空间为

$$\begin{split} \tilde{X} &= \{X \, \forall \, \text{th Cauchy } \, \dot{\mathbb{F}} \, \emptyset \} / \sim \\ \rho(\{x_n\}_{n=1}^\infty, \{y_n\}_{n=1}^\infty) &= \lim_{n \to \infty} d(x_n, y_n) \end{split}$$

其中等价关系~定义为

$$\{x_n\}_{n=1}^{\infty} \sim \{y_n\}_{n=1}^{\infty} \iff \lim_{n \to \infty} d(x_n, y_n) = 0$$

1.5.2 完备性与闭性

定理 1.5.2 (完备性 ⇒ 闭性)

对于度量空间 X, 如果 S 为 X 的完备子空间, 那么 S 为 X 的闭子空间。

定理 1.5.3 (闭性 ⇒ 完备性)

对于完备度量空间X,如果S为X的闭子空间,那么S为X的完备子空间。

证明 任取 S 中的 Cauchy 序列 $\{x_n\}_{n=1}^{\infty} \subset S \subset X$,那么由于 X 的完备性,存在 $x \in X$,使得成立 $x_n \to x$ 。任 取 r > 0,存在 N > 0,使得对于任意 $n \geq N$,成立 $d(x_n, x) < r$,即 $x_n \in B_r(x)$ 。

如果对于任意 $n \ge N$, 成立 $x_n = x$, 那么 $x = x_N \in S$ 。

如果存在 $n_0 \ge N$, 使得成立 $x_{n_0} \ne x$, 那么 $B_r(x) \cap S \setminus \{x\} \supset \{x_{n_0}\} \ne \emptyset$, 于是 $x \in \overline{S}$ 。又因为 S 是闭的,所以 $\overline{S} = S$,因此 $x \in S$ 。

综上所述, $x \in S$, 进而 S 为完备子空间。

定理 1.5.4 (完备子空间的像为完备子空间)

对于赋范线性空间 X 与 Y ,如果 $T: X \to Y$ 为下有界连续算子,那么对于 X 的完备子空间 A ,T(A) 为 Y 的完备子空间。

7

证明 任取 Cauchy 序列 $\{y_n\}_{n=1}^{\infty} \subset T(A)$,那么存在 $\{x_n\}_{n=1}^{\infty} \subset A$,使得对于任意 $n \in \mathbb{N}^*$,成立 $T(x_n) = y_n$,因此 $\{T(x_n)\}_{n=1}^{\infty}$ 为 Cauchy 序列。由于 T 为下有界算子,那么 $\{x_n\}_{n=1}^{\infty}$ 为 Cauchy 序列。由于 T 为完备子空间,那么存在 T0 人,使得成立 T1 人,因此 T2 人,因此 T3 人。进而 T4 人,为 T4 的完备子空间。

1.6 紧致性

1.6.1 紧致性

定义 1.6.1 (列紧性)

对于度量空间 X, 称子集 $K \subset X$ 为列紧的, 如果 K 中任意序列存在收敛子序列。

定义 1.6.2 (自列紧性)

对于度量空间 X, 称闭的列紧子集 $K \subset X$ 为自列紧集。

定义 1.6.3 (紧致性)

对于度量空间 X, 称子集 $K \subset X$ 是紧致的, 如果 K 的任意开覆盖存在有限子覆盖。

定义 1.6.4 (δ -网)

对于度量空间 X, 称 $N \subset X$ 为 $M \subset X$ 的 δ -网, 如果 $M \subset \bigcup_{x \in N} B_{\delta}(x)$ 。

定义 1.6.5 (完全有界性)

对于度量空间 X, 称子集 $M \subset X$ 是完全有界的, 如果对于任意 $\delta > 0$, 存在有限 δ -网。

定理 1.6.1

对于度量空间,成立

紧致性 ⇔ 自列紧性 ⇒ 列紧性 ⇒ 完全有界性 ⇒ 可分性

定理 1.6.2

对于完备度量空间, 成立

紧致性 ⇔ 自列紧性 ⇒ 列紧性 ⇔ 完全有界性 ⇒ 可分性

定理 1.6.3 (对角线方法)

对于有界数列序列 $\{\{x_n^{(m)}\}_{n=1}^\infty\}_{m=1}^\infty\subset l^\infty$,存在正整数序列 $\{n_k\}_{k=1}^\infty\subset\mathbb{N}^*$,使得对于任意 $m\in\mathbb{N}^*$,数列 $\{x_{n_k}^{(m)}\}_{k=1}^\infty$ 收敛。

证明

- 1. 对于 m=1, 由于数列 $\{x_n^{(1)}\}_{n=1}^\infty$ 有界,那么存在正整数子序列 $\{n_k^{(1)}\}_{k=1}^\infty\subset\mathbb{N}^*$,使得数列 $\{x_{n_k^{(1)}}^{(1)}\}_{k=1}^\infty$ 收敛。
- 2. 假设对于 m=r,存在正整数子序列 $\{n_k^{(r)}\}_{k=1}^{\infty}\subset\mathbb{N}^*$,使得数列 $\{x_{n_k^{(r)}}^{(r)}\}_{k=1}^{\infty}$ 收敛,那么对于 m=r+1,由于数列 $\{x_{n_k^{(r)}}^{(r+1)}\}_{k=1}^{\infty}$ 有界,那么存在正整数子序列 $\{n_k^{(r+1)}\}_{k=1}^{\infty}\subset\{n_k^{(r)}\}_{k=1}^{\infty}\subset\mathbb{N}^*$,使得数列 $\{x_{n_k^{(r+1)}}^{(r+1)}\}_{k=1}^{\infty}$ 收敛。

3. 由数学归纳法,存在 $\mathbb{N}^* \supset \{n_k^{(1)}\}_{k=1}^{\infty} \supset \{n_k^{(2)}\}_{k=1}^{\infty} \supset \cdots$,使得对于任意 $m \in \mathbb{N}^*$,数列 $\{x_{n_k^{(m)}}^{(m)}\}_{k=1}^{\infty}$ 收敛,取 $n_k = n_k^{(k)}$,那么对于任意 $m \in \mathbb{N}^*$,数列 $\{x_{n_k}^{(m)}\}_{k=1}^{\infty}$ 收敛。

1.6.2 同等连续

定义 1.6.6 (同等连续)

对于度量空间 (X,d) 和 (Y,ρ) ,称函数族 $\mathscr{F}=\{f:X\to Y\}$ 为同等连续的,如果对于任意 $\varepsilon>0$,存在 $\delta>0$,使得对于任意 $f\in\mathscr{F}$,当 $d(x_1,x_2)<\delta$ 时,成立 $\rho(f(x_1),f(x_2))<\varepsilon$ 。

定理 1.6.4 (Aezela-Ascoli 定理)

对于连续函数族 $\mathscr{F} \subset C[0,1]$, 成立

罗为列紧子集 ⇔ 罗一致有界且同等连续

引理 1.6.1

对于 $r\mathbb{D}\subset\mathbb{C}$ 上的解析函数序列 $\{f_n\}$,其中 r>1,如果 $\{f_n\}$ 在 $r\mathbb{D}$ 上一致有界,那么 $\{f_n\}$ 在 $\overline{\mathbb{D}}$ 上同等连续。

定理 1.6.5 (Montel 定理)

对于区域 $\Omega\subset\mathbb{C}$ 上的一致有界的解析函数序列 $\{f_n\}_{n=1}^\infty$,那么对于任意满足 $\overline{D}\subset\Omega$ 的有界区域 D,存在 D 上一致收敛的子函数序列 $\{f_{n_k}\}_{k=1}^\infty$ 。

1.7 赋范线性空间

1.7.1 范数

定义 1.7.1 (范数)

称复数域 \mathbb{C} 上的向量空间 X 上的函数 $\|\cdot\|: X \to \mathbb{R}$ 为范数,如果满足如下性质。

- 1. 正定性: $||x|| \ge 0$, 当且仅当 x = 0 时等号成立。
- 2. 绝对齐次性: $\|\lambda \cdot x\| = |\lambda| \|x\|$
- 3. 三角不等式: $||x+y|| \le ||x|| + ||y||$

定义 1.7.2 (赋范线性空间)

称复数域 \mathbb{C} 上的向量空间 $(X, \|\cdot\|)$ 为赋范线性空间,如果 $\|\cdot\|: X \to \mathbb{R}$ 为范数。

定义 1.7.3 (Banach 空间)

称完备的赋范线性空间为 Banach 空间。

定理 1.7.1 (范数可诱导度量)

范数 $\|\cdot\|$ 可诱导度量 $d(\cdot,\cdot)$ 为 $d(x,y) = \|x-y\|$ 。

证明 仅证明三角不等式

$$d(x,z) = ||x - z|| \le ||x - y|| + ||y - z|| = d(x,y) + d(y,z)$$

1.7.2 收敛性

定义 1.7.4 (收敛)

称赋范线性空间 X 上的序列 $\{x_n\}_{n=1}^\infty\subset X$ 收敛于 $x\in X$,并记做 $\lim_{n\to\infty}x_n=x$,如果 $\lim_{n\to\infty}\|x_n-x\|=0$

定理 1.7.2 (范数的连续性)

范数 $\|\cdot\|: X \to \mathbb{R}$ 为 Lipschitz 连续映射。

 \bigcirc

证明

 $|||x|| - ||y||| \le ||x - y||$

推论 1.7.1

赋范线性空间为线性度量空间。

m

定义 1.7.5 (收敛级数)

对于赋范线性空间 X 上的序列 $\{x_n\}_{n=1}^{\infty} \subset X$,称级数 $\sum_{n=1}^{\infty} x_n$ 收敛,如果序列 $\left\{\sum_{k=1}^{n} x_k\right\}_{n=1}^{\infty}$ 收敛。

定义 1.7.6 (绝对收敛级数)

对于赋范线性空间 X 上的序列 $\{x_n\}_{n=1}^\infty\subset X$,称级数 $\sum_{n=1}^\infty x_n$ 绝对收敛,如果数列级数 $\sum_{n=1}^\infty\|x_n\|$ 收敛。

4

定理 1.7.3 (绝对收敛 ⇒ 收敛的充要条件)

对于赋范线性空间X,成立

X的绝对收敛级数为收敛级数 \iff X为 Banach 空间

 \Diamond

证明 对于必要性,任取 Cauchy 序列 $\{x_n\}_{n=1}^{\infty} \subset X$,我们来递归的寻找子序列 $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}^*$,使得对于任意 $k \in \mathbb{N}^*$,成立 $\|x_{n_{k+1}} - x_{n_k}\| < 2^{-k}$ 。

- 1. 取 $\varepsilon = 2^{-1}$, 于是存在 $N_1 \in \mathbb{N}^*$, 使得对于任意 $m, n \ge N_1$, 成立 $||x_m x_n|| < 2^{-1}$ 。取 $n_1 = N_1$ 。
- 2. 如果已取 n_1, \dots, n_k ,那么取 $\varepsilon = 2^{-(k+1)}$,于是存在 $N_{k+1} \in \mathbb{N}^*$,使得对于任意 $m, n \geq N_{k+1}$,成立 $\|x_m x_n\| < 2^{-(k+1)}$ 。取 $n_{k+1} = \max\{N_k, N_{k+1}\} + 1$ 。

递归的,子序列 $\{n_k\}_{k=1}^{\infty}\subset\mathbb{N}^*$ 满足对于任意 $k\in\mathbb{N}^*$,成立 $\|x_{n_{k+1}}-x_{n_k}\|<2^{-k}$,因此 $\sum_{k=1}^{\infty}\|x_{n_{k+1}}-x_{n_k}\|$

 $x_{n_k} \| < 1$,即序列级数 $\sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k})$ 绝对收敛。由必要性假设,序列级数 $\sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k})$ 收敛,即序列 $\left\{\sum_{k=1}^{m} (x_{n_{k+1}} - x_{n_k})\right\}_{m=1}^{\infty}$ 收敛,因此序列 $\left\{x_n\right\}_{n=1}^{\infty}$ 的子序列 $\left\{x_n\right\}_{k=1}^{\infty}$ 收敛。记 $x_{n_k} \to x \in X$,那么任取 $\varepsilon > 0$,存在 $K \in \mathbb{N}^*$,使得对于任意 $k \geq K$,成立 $\|x_{n_k} - x\| < \varepsilon/2$ 。而序列 $\left\{x_n\right\}_{n=1}^{\infty}$ 为 Cauchy 序列,那么对于此 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得对于任意 $m, n \geq N$,成立 $\|x_m - x_n\| < \varepsilon/2$ 。那么当 $n, n_k \geq N$ 且 $k \geq K$, $\|x_n - x\| \leq \|x_n - x_{n_k}\| + \|x_{n_k} - x\| < \varepsilon$,因此 $x_n \to x \in X$,进而 $x_n \to x \in X$,进而 $x_n \to x \in X$,即 Banach 空间。

对于充分性,任取绝对收敛序列级数 $\sum_{n=1}^{\infty} x_n$,那么数列级数 $\sum_{n=1}^{\infty} \|x_n\|$ 收敛,因此对于任意 $\varepsilon > 0$,存在

 $N \in \mathbb{N}^*$, 使得对于任意 $n \geq N$ 和 $p \in \mathbb{N}^*$, 成立 $\sum_{k=n+1}^{n+p} \|x_k\| < \varepsilon$, 那么对于此 $\varepsilon > 0$, 成立

$$\left\| \sum_{k=1}^{n+p} x_k - \sum_{k=1}^{n} x_k \right\| = \left\| \sum_{k=n+1}^{n+p} x_k \right\| \le \sum_{k=n+1}^{n+p} \|x_k\|$$

因此序列 $\left\{\sum_{k=1}^n x_k\right\}_{n=1}^\infty$ 为 Cauchy 序列,由 X 是完备的赋范线性空间,那么序列 $\left\{\sum_{k=1}^n x_k\right\}_{n=1}^\infty$ 收敛,即序列级数 $\sum_{k=1}^\infty x_k$ 收敛。

1.7.3 线性算子

定义 1.7.7 (线性算子)

对于赋范线性空间 X, Y, 称映射 $T: X \to Y$ 为线性算子, 如果

$$T(x+y) = T(x) + T(y), \qquad T(\lambda x) = \lambda T(x)$$

定义 1.7.8 (线性泛函)

对于赋范线性空间 X, 称映射 $f: X \to \mathbb{C}$ 为线性泛函, 如果

$$f(x+y) = f(x) + f(y), \qquad f(\lambda x) = \lambda f(x)$$

定义 1.7.9 (共轭线性算子)

对于赋范线性空间 X,Y, 称映射 $T:X\to Y$ 为共轭线性算子, 如果

$$T(x+y) = T(x) + T(y), \qquad T(\lambda x) = \overline{\lambda}T(x)$$

定义 1.7.10 (有界线性算子)

对于赋范线性空间 X,Y,称线性算子 $T:X\to Y$ 为有界线性算子,如果存在 C,使得对于任意 $x\in X$,成立 $\|T(x)\|\le C\|x\|$ 。

定义 1.7.11 (连续线性算子)

对于赋范线性空间 X, Y, 称线性算子 $T: X \to Y$ 为连续线性算子, 如果

$$x_n \to x \implies T(x_n) \to T(x)$$

定义 1.7.12 (逆线性算子)

对于赋范线性空间 X,Y,称线性算子 $T^{-1}:T(X)\to X$ 为单线性算子 $T:X\to Y$ 的逆线性算子。

定义 1.7.13 (有界可逆线性算子)

对于赋范线性空间 X,Y,称线性算子 $T:X\to Y$ 为有界可逆线性算子,如果 T 为双射,且 T 与 T^{-1} 为 有界线性算子。

定义 1.7.14 (有界线性算子的范数)

对于赋范线性空间 X,Y, 定义有界线性算子 $T:X\to Y$ 的范数为

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||} = \sup_{||x|| \le 1} ||T(x)|| = \sup_{||x|| = 1} ||T(x)||$$

定理 1.7.4 (有界线性算子的等价条件)

对于线性算子 $T: X \to Y$, 其中 X, Y 为赋范线性空间, 如下命题等价。

- 1. T在 0 处连续。
- 2. T 在 $x_0 \in X$ 处连续。
- 3. T 在 X 上连续。
- 4. T在X上一致连续。
- 5. T在X上Lipschitz连续。
- 6. T 在 X 上有界。

证明 $6 \implies 5$: 由于 T 有界,于是存在 C > 0,使得对于任意 $x \in X$,成立 $||T|| \le C||x||$ 。任取 $x, y \in X$,由于 $||T(x) - T(y)|| = ||T(x - y)|| \le C||x - y||$

那么T在X上Lipschitz 连续。

 $5 \implies 4 \implies 3 \implies 2 \implies 1$: \mathbb{Z} !

 $1 \implies 6$: 由于 T 在 0 处连续,那么存在 $\delta > 0$,使得当 $\|x\| \le \delta$ 时,成立 $\|T(x)\| \le 1$,因此对于任意 $x \in X \setminus \{0\}$,成立

$$||T(x)|| = \frac{||x||}{\delta} ||T\left(\frac{\delta}{||x||}x\right)|| \le \frac{||x||}{\delta}$$

因此T在X上有界。

命题 1.7.1

对于赋范线性空间 X 中的线性无关子集 $\{x_k\}_{k=1}^n\subset X$,存在 $\mu>0$,使得对于任意 $\{\lambda_k\}_{k=1}^n\subset\mathbb{C}$,成立

$$\sum_{k=1}^{n} |\lambda_n| \le \mu \left\| \sum_{k=1}^{n} \lambda_k x_k \right\|$$

证明 定义

$$\alpha = \inf \left\{ \left\| \sum_{k=1}^{n} \lambda_k x_k \right\| : \sum_{k=1}^{n} |\lambda_n| = 1, \{\lambda_k\}_{k=1}^n \subset \mathbb{C} \right\}$$

因此存在 $\{\{\lambda_k^{(m)}\}_{k=1}^n\}_{m=1}^\infty\subset\mathbb{C}$, 使得成立

$$\lim_{m \to \infty} \|y_m\| = \alpha$$

其中

$$y_m = \sum_{k=1}^n \lambda_k^{(m)} x_k, \qquad \sum_{k=1}^n |\lambda_n^{(m)}| = 1$$

由于对于任意 $1 \le k \le n$,数列 $\{\lambda_k^{(m)}\}_{m=1}^\infty$ 有界,那么由对角线法则,存在子列 $\{m_i\}_{i=1}^\infty$,使得对于任意 $1 \le k \le n$ 成立

$$\lim_{i \to \infty} \lambda_k^{(m_i)} = \gamma_k \implies \sum_{k=1}^n |\gamma_k| = 1 \implies x = \sum_{k=1}^n \gamma_k x_k \neq 0$$

由于对于任意 $i \in \mathbb{N}^*$, 成立

$$||y_{m_i} - x|| = \left\| \sum_{k=1}^n (\lambda_k^{(m_i)} - \gamma_k) x_k \right\| \le \sum_{k=1}^n |\lambda_k^{(m_i)} - \gamma_k| ||x_k|| \implies \lim_{i \to \infty} y_{m_i} = x \implies \lim_{i \to \infty} ||y_{m_i}|| = ||x|| \implies \alpha = ||x|| > 0$$

取 $\mu = 1/\alpha$, 那么对于任意 $\{\lambda_k\}_{k=1}^n \subset \mathbb{C}$, 成立

$$\left\| \sum_{k=1}^{n} \frac{\lambda_k}{\sum_{k=1}^{n} |\lambda_n|} x_k \right\| \ge \frac{1}{\mu} \iff \sum_{k=1}^{n} |\lambda_n| \le \mu \left\| \sum_{k=1}^{n} \lambda_k x_k \right\|$$

命题 1.7.2

对于有限维赋范线性空间 X 中的基 $\{e_k\}_{k=1}^n \subset X$, 成立

$$\lim_{m \to \infty} \sum_{k=1}^{n} \lambda_k^{(m)} e_k = \sum_{k=1}^{n} \lambda_k e_k \iff \lim_{m \to \infty} \lambda_k^{(m)} = \lambda_k, \forall 1 \le k \le n$$

证明 令

$$x_m = \sum_{k=1}^n \lambda_k^{(m)} e_k, \qquad x = \sum_{k=1}^n \lambda_k e_k$$

对于必要性,由命题1.7.1,存在 $\mu > 0$,使得对于任意 $m \in \mathbb{N}^*$,成立

$$\sum_{k=1}^{n} |\lambda_k^{(m)} - \lambda_k| \le \mu \left\| \sum_{k=1}^{n} (\lambda_k^{(m)} - \lambda_k) e_k \right\| = \mu \|x_m - x\|$$

由于 $x_m \to x$,那么对于任意 $1 \le k \le n$,成立 $\lambda_k^{(m)} \to \lambda_k$,必要性得证! 对于充分性,任取 $\varepsilon > 0$,令 $K = \max_{1 \le k \le n} \{\|e_k\|\}$,由于对于任意 $1 \le k \le n$,成立 $\lambda_k^{(m)} \to \lambda_k$,那么存在 $M \in \mathbb{N}^*$,使得对于任意 $m \ge M$ 与 $1 \le k \le n$,成立 $|\lambda_k^{(m)} - \lambda_k| < \varepsilon/(nK)$,那么当 $m \ge M$ 时,成立

$$\left\| \sum_{k=1}^{n} (\lambda_k^{(m)} - \lambda_k) e_k \right\| \le \sum_{k=1}^{n} |\lambda_k^{(m)} - \lambda_k| \|e_k\| \le \sum_{k=1}^{n} \frac{\varepsilon}{nK} K = \varepsilon$$

因此

$$\lim_{m \to \infty} x_m = \lim_{m \to \infty} \sum_{k=1}^n \lambda_k^{(m)} e_k = \sum_{k=1}^n \lambda_k e_k = x$$

充分性得证!

定理 1.7.5

n 维实赋范线性空间与 \mathbb{R}^n 线性同构且同胚。

证明 记 n 维实赋范线性空间 X 的基为 $\{e_k\}_{k=1}^n$, 构造线性双射

$$T: X \longrightarrow \mathbb{R}^n$$

$$\sum_{k=1}^n \lambda_k e_k \longmapsto (\lambda_1, \cdots, \lambda_n)$$

一方面,由命题1.7.1,存在 $\mu>0$,使得对于任意 $\{\lambda_k\}_{k=1}^n$,成立

$$\sum_{k=1}^{n} |\lambda_n| \le \mu \left\| \sum_{k=1}^{n} \lambda_k e_k \right\|$$

对于任意 $x = \sum_{k=0}^{n} \lambda_k e_k \in X$,成立

$$||T(x)||_2 = \left(\sum_{k=1}^n |\lambda_n|^2\right)^{1/2} \le \sum_{k=1}^n |\lambda_n| \le \mu \left\|\sum_{k=1}^n \lambda_k e_k\right\| = \mu ||x||$$

因此T为有界算子。

另一方面,对于任意 $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$,令 $x = \sum_{k=1}^n \lambda_k e_k \in X$ 与 $M = \max_{1k \le n} \|e_k\|$,由 Hölder 不等式1.9.2

$$||x|| = \left| \left| \sum_{k=1}^{n} \lambda_k e_k \right| \right| \le \sum_{k=1}^{n} |\lambda_k| ||e_k|| \le \left(\sum_{k=1}^{n} |\lambda_k|^2 \right)^{1/2} \left(\sum_{k=1}^{n} ||e_k||^2 \right)^{1/2} \le \sqrt{n} M ||T(x)||_2$$

因此 T^{-1} 为有界算子。

由定理1.7.4, T 和 T^{-1} 为连续算子, 因此 T 为同胚映射。

定理 1.7.6 (Bolzana-Weierstrass 聚点定理)

有限维赋范线性空间中有界序列存在收敛子序列。

证明 对于 n 维实赋范线性空间 X, 其基为 $\{e_k\}_{k=1}^n$, 任取有界序列 $\{x_m\}_{m=1}^\infty \subset X$, 令

$$x_m = \sum_{k=1}^n \lambda_k^{(m)} e_k, \qquad ||x_m|| \le M, \qquad m \in \mathbb{N}^*$$

由命题1.7.1,存在 $\mu > 0$,使得对于任意 $m \in \mathbb{N}^*$,成立

$$\sum_{k=1}^{n} |\lambda_n^{(m)}| \le \mu \left\| \sum_{k=1}^{n} \lambda_k^{(m)} e_k \right\| = \mu \|x_m\| \le \mu M \implies |\lambda_n^{(m)}| \le \mu M, \forall m \in \mathbb{N}^*, \forall 1 \le k \le n$$

于是对于任意 $1 \le k \le n$,数列 $\{\lambda_k^{(m)}\}_{m=1}^\infty$ 有界,那么由对角线法则,存在子列 $\{m_i\}_{i=1}^\infty$,使得对于任意 $1 \le k \le n$ 成立

$$\lim_{i \to \infty} \lambda_k^{(m_i)} = \gamma_k$$

由命题1.7.1

$$\lim_{i \to \infty} x_{m_i} = \lim_{i \to \infty} \sum_{k=1}^n \lambda_k^{(m_i)} e_k = \sum_{k=1}^n \gamma_k e_k = x$$

因此序列 $\{x_m\}_{m=1}^{\infty}$ 存在收敛于 x 的子序列 $\{x_{m_i}\}_{i=1}^{\infty}$, 命题得证!

定理 1.7.7 (Riesz 引理)

如果 M 是赋范线性空间 X 的真线性闭子空间,那么对于任意 $0<\varepsilon<1$,存在 $x_{\varepsilon}\in X$,使得成立 $\|x_{\varepsilon}\|=1$,且

$$\inf_{m \in M} \|x_{\varepsilon} - m\| \ge 1 - \varepsilon$$

 \Diamond

证明 任取 $x \in X \setminus M$,由于 M 为闭集,那么由分离定理,d(x,M) = d > 0。任取 $0 < \varepsilon < 1$,存在 $y \in M$,使得成立

$$d \le ||x - y|| \le \frac{d}{1 - \varepsilon}$$

定义

$$x_{\varepsilon} = \frac{x - y}{\|x - y\|}$$

那么 $x_{\varepsilon} \in X$,且 $\|x_{\varepsilon}\| = 1$,同时对于任意 $m \in M$,成立

$$||x_{\varepsilon} - m|| = \left\| \frac{x - y}{||x - y||} - m \right\|$$

$$= \frac{||(m||x - y|| - + y) - x||}{||x - y||}$$

$$\geq \frac{d}{d/(1 - \varepsilon)}$$

$$= 1 - \varepsilon$$

1.8 压缩映像原理

1.8.1 压缩映像原理

定义 1.8.1 (Lipschitz 条件)

对于度量空间 (X,d), 称映射 $T:X\to X$ 满足 Lipschitz 条件,如果存在 Lipschitz 常数 q>0,使得对于 任意 $x,y\in X$,成立 $d(T(x),T(y))\leq qd(x,y)$ 。

定义 1.8.2 (压缩映射)

对于度量空间 (X,d), 称映射 $T: X \to X$ 为压缩映射, 如果存在 Lipschitz 常数 0 < q < 1。

定义 1.8.3 (不动点)

称 $x \in X$ 为映射 $T: X \to X$ 的不动点,如果 T(x) = x。

定理 1.8.1 (压缩映像原理)

对于完备度量空间 (X,d),如果映射 $T:X\to X$ 为以 0<q<1 为 Lipschitz 常数的压缩映射,那么 T 存在且存在唯一不动点 \overline{x} 。进一步,对于任意初始点 $x_0\in X$,逐次迭代点列 $x_{n+1}=T(x_n)$,那么 $x_n\to x$,且

$$d(x_n, \overline{x}) \le \frac{q^n}{1-q} d(T(x_0), x_0)$$

0

推论 1.8.1

如果 T^n 存在且存在唯一不动点 \overline{x} , 那么 T 存在且存在唯一不动点 \overline{x} 。

证明 由于

$$T^n(T(\overline{x})) = T(T^n(\overline{x})) = T(\overline{x}) \implies T(\overline{x}) = \overline{x}$$

那么 \overline{x} 为T的不动点。如果 \overline{y} 为T的不动点,那么 \overline{x} 与 \overline{y} 为 T^n 的不动点,于是x=y,进而T存在且存在唯一不动点 \overline{x} 。

1.8.2 压缩映像原理的应用

命题 1.8.1

存在且存在唯一 [0,1] 上的连续函数 f(x), 使得成立

$$f(x) = \frac{1}{2}\cos f(x) - \varphi(x)$$

其中 $\varphi(x)$ 是 [0,1] 上的连续函数。

证明 构造映射

$$T:C[0,1] \longrightarrow C[0,1]$$

$$f \longmapsto F, \ \sharp \, \forall F(x) = \frac{1}{2} \cos f(x) - \varphi(x)$$

由于

$$||T(f) - T(g)|| = \sup_{0 \le x \le 1} |(T(f))(x) - (T(g))(x)|$$

$$= \sup_{0 \le x \le 1} \frac{1}{2} |\cos f(x) - \cos g(x)|$$

$$= \sup_{0 \le x \le 1} \left| \sin \frac{f(x) + g(x)}{2} \sin \frac{f(x) - g(x)}{2} \right|$$

$$\le \sup_{0 \le x \le 1} \frac{1}{2} |f(x) - g(x)|$$

$$= ||f - g||$$

因此 T 为压缩映射, 由压缩映像原理1.8.1, 存在且存在唯一 $f(x) \in C[0,1]$, 使得成立 T(f) = f, 即

$$f(x) = \frac{1}{2}\cos f(x) - \varphi(x)$$

命题 1.8.2 (Fredholm 积分方程)

当 $|\mu||a-b|M<1$ 时,Fredholm 积分方程

$$f(x) = \varphi(x) + \mu \int_{a}^{b} K(x, y) f(y) dy$$

存在且存在唯一解,其中 $K(x,y), \varphi(x)$ 是 $a \leq x,y \leq b$ 上的连续函数,且 $M = \sup_{a \leq x,y \leq b} |K(x,y)|$ 。

证明 构造映射

$$T: C[a,b] \longrightarrow C[a,b]$$

$$f \longmapsto F, \ \sharp \, \forall F(x) = \varphi(x) + \mu \int_a^b K(x,y) f(y) \mathrm{d}y$$

由于

$$\begin{split} \|T(f) - T(g)\| &= \sup_{x \in [a,b]} |(T(f))(x) - (T(g))(x)| \\ &= |\mu| \sup_{x \in [a,b]} \left| \int_a^b K(x,y)(f(y) - g(y)) \mathrm{d}y \right| \\ &\leq |\mu| \sup_{x \in [a,b]} \int_a^b |K(x,y)| |f(y) - g(y)| \mathrm{d}y \\ &\leq |\mu| |a - b| M \sup_{x \in [a,b]} |f(x) - g(x)| \\ &= |\mu| |a - b| M ||f - g|| \end{split}$$

而 $|\mu||a-b|M<1$,那么T为压缩映射,由压缩映像原理1.8.1,存在且存在唯一 $f\in C[a,b]$,使得成立T(f)=f,因此成立Fredholm 积分方程

$$f(x) = \varphi(x) + \mu \int_{a}^{b} K(x, y) f(y) dy$$

命题 1.8.3 (Volterra 积分方程)

Volterra 积分方程

$$f(x) = \varphi(x) + \mu \int_{a}^{x} K(x, y) f(y) dy$$

存在且存在唯一解, 其中 $K(x,y), \varphi(x)$ 是 $a \le x, y \le b$ 上的连续函数。

证明 定义 Volterra 积分算子

$$V: C[a,b] \longrightarrow C[a,b]$$

$$f \longmapsto F, \ \sharp + F(x) = \varphi(x) + \mu \int_{a}^{x} K(x,y)f(y)dy$$

记 $M = \sup_{a \le x, y \le b} |K(x, y)|$, 递归证明

$$|(T^n(f-g))(x)| \le |\mu|^n M^n \frac{(x-a)^n}{n!} ||f-g||, \qquad n \in \mathbb{N}^*$$

当 n=1 时

$$|(T(f-g))(x)| = \left| \mu \int_a^x K(x,y)(f(y) - g(y)) dy \right|$$

$$\leq |\mu| \int_a^x |K(x,y)||f(y) - g(y)| dy$$

$$\leq |\mu| \int_a^x M ||f - g|| dy$$

$$= |\mu| M(x-a) ||f - g||$$

假设当n = k 时成立

$$|(T^k(f-g))(x)| \le |\mu|^k M^k \frac{(x-a)^k}{k!} ||f-g||$$

那么当n=k+1时

$$\begin{split} |(T^{k+1}(f-g))(x)| &= \left| \mu \int_a^x K(x,y)((T^k(f-g))(y)) \mathrm{d}y \right| \\ &\leq |\mu| \int_a^x |K(x,y)| |(T^k(f-g))(y)| \mathrm{d}y \\ &\leq |\mu| \int_a^x M|\mu|^k M^k \frac{(y-a)^k}{k!} \|f-g\| \mathrm{d}y \\ &= |\mu|^{k+1} M^{k+1} \frac{(x-a)^k}{(k+1)!} \|f-g\| \end{split}$$

由数学归纳法

$$|(T^n(f-g))(x)| \le |\mu|^n M^n \frac{(x-a)^n}{n!} ||f-g||, \qquad n \in \mathbb{N}^*$$

因此

$$||T^n(f) - T^n(g)|| = \sup_{a \le x \le b} |(T^n(f - g))(x)| \le |\mu|^n M^n \frac{(b - a)^n}{n!} ||f - g||$$

由于

$$\lim_{n \to \infty} |\mu|^n M^n \frac{(b-a)^n}{n!} = 0$$

那么存在 $N \in \mathbb{N}^*$, 使得成立

$$|\mu|^N M^N \frac{(b-a)^N}{N!} < 1$$

因此 T^N 为压缩映射,由压缩映像原理1.8.1, T^N 存在且存在唯一不动点 f。由压缩映像原理的推论1.8.1,T 存在且存在唯一不动点 f。

综上所述, Volterra 积分方程

$$f(x) = \varphi(x) + \mu \int_{a}^{x} K(x, y) f(y) dy$$

存在且存在唯一解f。

 \Diamond

定理 1.8.2 (Picard 定理)

对于带形区域 $\{(t,x):|t-t_0|<\delta,x\in\mathbb{R}\}$ 上的连续函数 f(t,x),如果 f(t,x) 对于关于 x 满足 Lipschitz 条件,即存在 L>0,使得对于任意 $|t-t_0|<\delta,x,y\in\mathbb{R}$,成立 $|f(t,x)-f(t,y)|\leq L|x-y|$,那么初值问题

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(t_0) = x_0 \end{cases}$$

在区间 $[t_0 - \beta, t_0 + \beta]$ 上存在且存在唯一连续解, 其中 $0 < \beta < \min\{\delta, 1/L\}$ 。

1.8.3 Fréchet 导数

定义 1.8.4 (Fréchet 可微)

对于 Banach 空间 X 与 Y ,以及 X 的开子集 Ω ,称算子 $T:\Omega\to Y$ 在 $x\in\Omega$ 处 Fréchet 可微,如果存在 有界线性算子 $L:X\to Y$,使得成立

$$\lim_{\|h\| \to 0} \frac{\|T(x+h) - T(x) - L(h)\|}{\|h\|} = 0$$

定义 1.8.5 (Fréchet 导数)

对于 Banach 空间 X 与 Y ,以及 X 的开子集 Ω ,称有界线性算子 $L: X \to Y$ 为算子 $T: \Omega \to Y$ 在 $x \in \Omega$ 处的 Fréchet 导数,如果 T 在 x 处 Fréchet 可微,且

$$\lim_{\|h\| \to 0} \frac{\|T(x+h) - T(x) - L(h)\|}{\|h\|} = 0$$

1.9 *l*^p 空间

1.9.1 *l^p* 空间

定义 **1.9.1** (*l^p* 空间)

对于 $1 \le p \le \infty$, 定义复数域 ℂ上的 l^p 空间

$$\begin{split} l^p &= \{ p \text{ 次绝对可和数列}\{x_n\}_{n=1}^\infty \subset \mathbb{C} \}, \qquad 1 \leq p < \infty \\ l^\infty &= \{ 有界数列\{x_n\}_{n=1}^\infty \subset \mathbb{C} \} \end{split}$$

引入记号

$$\|\{x_n\}_{n=1}^{\infty}\|_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}, \qquad 1 \le p < \infty$$
$$\|\{x_n\}_{n=1}^{\infty}\|_{\infty} = \sup_{n \in \mathbb{N}^*} |x_n|$$

定理 1.9.1

- 1. l^p 为可分 Banach 空间, 其中 $1 \le p < \infty$ 。
- 2. l^{∞} 为不可分 Banach 空间。

C

定理 1.9.2 (Hölder 不等式)

对于 $1 \le p, q \le \infty$ 满足 $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, 如果 $x \in l^p$ 且 $y \in l^q$, 那么成立不等式

$$||xy||_r \le ||x||_p ||y||_q$$

换言之

$$\left(\sum_{n=1}^{\infty} |x_n y_n|^r\right)^{1/r} \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} \left(\sum_{n=1}^{\infty} |y_n|^q\right)^{1/q}$$

定理 1.9.3 (Minkowsky 不等式)

对于 $1 \le p \le \infty$,如果 $x, y \in l^p$,那么成立不等式

$$||x+y||_p \le ||x||_p + ||y||_p$$

换言之

$$\left(\sum_{n=1}^{\infty} |x_n + y_n|^p\right)^{1/p} \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} + \left(\sum_{n=1}^{\infty} |y_n|^p q\right)^{1/p}$$

1.9.2 *l*^p 空间的收敛性

定理 **1.9.4** (l^p 空间的收敛性)

1. 在 l^p 空间中, 成立

$$\{x_n\}_{n=1}^{\infty}$$
依 p -范数收敛于 $x \Longrightarrow \{x_n\}_{n=1}^{\infty}$ 依坐标一致收敛于 x

其中 $1 \le p < \infty$ 。

2. 在 l^{∞} 空间中, 成立

$$\{x_n\}_{n=1}^{\infty}$$
依 ∞ -范数收敛于 $x \iff \{x_n\}_{n=1}^{\infty}$ 依坐标一致收敛于 x

证明 对于 $1 \le p < \infty$

$$\{x_n^{(m)}\}_{n=1}^{\infty} \hat{\mathbf{K}} p - \bar{\mathbf{m}} \, \underline{\mathbf{M}} \, \underline{\mathbf{M}}$$

对于 $p = \infty$

$$\{x_n^{(m)}\}_{n=1}^{\infty} 依 \infty - 范 数 收敛于 \{x_n\}_{n=1}^{\infty}$$

$$\iff \{x_n^{(m)}\}_{n=1}^{\infty} \longrightarrow \{x_n\}_{n=1}^{\infty}$$

$$\iff \lim_{m \to \infty} \|\{x_n^{(m)}\}_{n=1}^{\infty} - \{x_n\}_{n=1}^{\infty}\|_{\infty} = 0$$

$$\iff \lim_{m \to \infty} \|\{x_n^{(m)} - x_n\}_{n=1}^{\infty}\|_{\infty} = 0$$

$$\iff \lim_{m \to \infty} \sup_{n \in \mathbb{N}^*} |x_n^{(m)} - x_n| = 0$$

$$\iff \forall \varepsilon > 0, \exists M \in \mathbb{N}^*, \forall m \geq M, \sup_{n \in \mathbb{N}^*} |x_n^{(m)} - x_n| \leq \varepsilon$$

$$\iff \forall \varepsilon > 0, \exists M \in \mathbb{N}^*, \forall m \geq M, \forall n \in \mathbb{N}^*, |x_n^{(m)} - x_n| \leq \varepsilon$$

$$\iff \{x_n^{(m)}\}_{n=1}^{\infty} 依 \Psi \Leftrightarrow - \mathfrak{H} \Leftrightarrow \mathfrak{H} \Leftrightarrow \mathbb{R}_n^{\infty} = 1$$

1.9.3 *l*^p 空间的完备性

定理 **1.9.5** (l^p 空间的完备性)

 l^p 空间依 p-范数完备, 其中 $1 \le p \le \infty$ 。

证明 对于 $1 \le p < \infty$,任取 Cauchy 序列 $\{\{x_n^{(m)}\}_{n=1}^{\infty}\}_{m=1}^{\infty} \subset l^p$,那么对于任意 $\varepsilon > 0$,存在 $M \in \mathbb{N}^*$,使得对于任意 $i,j \ge M$,成立

$$\|\{x_n^{(i)}\}_{n=1}^{\infty} - \{x_n^{(j)}\}_{n=1}^{\infty}\|_p \le \varepsilon \iff \sum_{n=1}^{\infty} |x_n^{(i)} - x_n^{(j)}|^p \le \varepsilon^p \implies |x_n^{(i)} - x_n^{(j)}| \le \varepsilon, \forall n \in \mathbb{N}^*$$
 (*)

因此对于任意 $n \in \mathbb{N}^*$, $\{x_n^{(m)}\}_{m=1}^{\infty} \subset \mathbb{C}$ 为 Cauchy 序列,因此存在 $x_n \in \mathbb{C}$,使得成立 $\lim_{m \to \infty} x_n^{(m)} = x_n$ 。在式(*)中,取 j = M,令 $i \to \infty$,可得

$$\|\{x_n\}_{n=1}^{\infty} - \{x_n^{(M)}\}_{n=1}^{\infty}\|_p \le \varepsilon$$

因此由 Minkowsky 不等式1.9.3

$$\|\{x_n\}_{n=1}^{\infty}\|_p \le \|\{x_n\}_{n=1}^{\infty} - \{x_n^{(M)}\}_{n=1}^{\infty}\|_p + \|\{x_n^{(M)}\}_{n=1}^{\infty}\|_p \le \varepsilon + \|\{x_n^{(M)}\}_{n=1}^{\infty}\|_p < \infty$$

进而 $\{x_n\}_{n=1}^{\infty} \in l^p$ 。 又由于

$$\lim_{m \to \infty} \|\{x_n\}_{n=1}^{\infty} - \{x_n^{(m)}\}_{n=1}^{\infty} \|_p = \lim_{i, j \to \infty} \|\{x_n^{(i)}\}_{n=1}^{\infty} - \{x_n^{(j)}\}_{n=1}^{\infty} \|_p = 0$$

那么

$$\{x_n^{(m)}\}_{n=1}^{\infty} \longrightarrow \{x_n\}_{n=1}^{\infty}$$

进而lP空间为完备空间。

对于 $p=\infty$, 任取 Cauchy 序列 $\{\{x_n^{(m)}\}_{n=1}^\infty\}_{m=1}^\infty\subset l^p$,那么对于任意 $\varepsilon>0$,存在 $M\in\mathbb{N}^*$,使得对于任意 $i,j\geq M$,成立

$$\|\{x_n^{(i)}\}_{n=1}^{\infty} - \{x_n^{(j)}\}_{n=1}^{\infty}\|_{\infty} \le \varepsilon \iff \sup_{n \in \mathbb{N}^*} |x_n^{(i)} - x_n^{(j)}| \le \varepsilon \implies |x_n^{(i)} - x_n^{(j)}| \le \varepsilon, \forall n \in \mathbb{N}^*$$

因此对于任意 $n \in \mathbb{N}^*$, $\{x_n^{(m)}\}_{m=1}^{\infty} \subset \mathbb{C}$ 为 Cauchy 序列,因此存在 $x_n \in \mathbb{C}$,使得成立 $\lim_{m \to \infty} x_n^{(m)} = x_n$ 。在式(**)中,取 i = M,令 $i \to \infty$,可得

$$\|\{x_n\}_{n=1}^{\infty} - \{x_n^{(M)}\}_{n=1}^{\infty}\|_{\infty} \le \varepsilon$$

因此由 Minkowsky 不等式1.9.3

$$\|\{x_n\}_{n=1}^{\infty}\|_{\infty} \le \|\{x_n\}_{n=1}^{\infty} - \{x_n^{(M)}\}_{n=1}^{\infty}\|_{\infty} + \|\{x_n^{(M)}\}_{n=1}^{\infty}\|_{\infty} \le \varepsilon + \|\{x_n^{(M)}\}_{n=1}^{\infty}\|_{\infty} < \infty$$

进而 $\{x_n\}_{n=1}^{\infty} \in l^{\infty}$ 。又由于

$$\lim_{m \to \infty} \|\{x_n\}_{n=1}^{\infty} - \{x_n^{(m)}\}_{n=1}^{\infty}\|_{\infty} = \lim_{i, i \to \infty} \|\{x_n^{(i)}\}_{n=1}^{\infty} - \{x_n^{(j)}\}_{n=1}^{\infty}\|_{\infty} = 0$$

那么

$$\{x_n^{(m)}\}_{n=1}^{\infty} \longrightarrow \{x_n\}_{n=1}^{\infty}$$

进而 l^{∞} 空间为完备空间。

综上所述, l^p 空间依 p-范数完备, 其中 $1 \le p \le \infty$ 。

1.9.4 *l*^p 空间的可分性

定理 **1.9.6** (l^p 空间的可分性)

- 1. l^p 为可分空间, 其中 1 。
- 2. l^{∞} 不为可分空间。

证明 对于1 ,构造

$$S = \{\{r_1, \dots, r_n, 0, 0, \dots\} : r_k \in \mathbb{Q}, n \in \mathbb{N}^*\}$$

那么S为可数集合。任取 $x = \{x_n\}_{n=1}^{\infty} \in l^p$,任取 $\varepsilon > 0$,由于

$$\|\{x_n\}_{n=1}^{\infty}\|_p < \infty \iff \sum_{n=1}^{\infty} |x_n|^p < \infty$$

那么存在 $N \in \mathbb{N}^*$, 使得成立

$$\sum_{n=N+1}^{\infty} |x_n|^p < \frac{\varepsilon^p}{2}$$

而对于任意 $1 \le n \le N$,存在 $\{r_n^{(m)}\}_{m=1}^{\infty} \subset \mathbb{Q}$,使得成立 $\lim_{m \to \infty} r_n^{(m)} = x_n$,因此存在 $M_n \in \mathbb{N}^*$,使得对于任意 $m \ge M_n$,成立

$$|r_n^{(m)} - x_n| < \frac{\varepsilon}{(2N)^{1/p}}$$

令 $r_m = \{r_1^{(m)}, \cdots, r_N^{(m)}, 0, 0, \cdots\} \in S$,取 $K = \max\{N, M_1, \cdots, M_N\}$,那么当 $m \geq K$ 时,成立

$$||r_m - x||_p = \left(\sum_{n=1}^N |r_n^{(m)} - x_n|^p + \sum_{n=N+1}^\infty |x_n|^p\right)^{1/p} < \left(\sum_{n=1}^N \left(\frac{\varepsilon}{(2N)^{1/p}}\right)^p + \frac{\varepsilon^p}{2}\right)^{1/p} = \varepsilon$$

因此

$$r_m \longrightarrow x$$

于是S为 l^p 的可数稠密子集,所以 l^p 空间为可分空间。

对于 $p = \infty$,构造

$$E = \{\{x_n\}_{n=1}^{\infty} : x_n \in \{0, 1\}\}$$

那么 E 为不可数集。如果 l^{∞} 为可分空间,那么存在可数稠密子集 S, 使得成立 $\overline{S} = l^{\infty}$, 因此

$$\bigcup_{x \in S} B_{\frac{1}{3}}(x) = l^p \supset E$$

从而存在 $s \in S$,与 $x \neq y \in E$,使得成立 $x, y \in B_{\frac{1}{2}}(s)$,于是由 Minkowsky 不等式1.9.3

$$1 = \|x - y\|_{\infty} \le \|x - s\|_{\infty} + \|s - y\|_{\infty} \le \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

矛盾! 因此 l^{∞} 不为可分空间。

1.10 *L*^p 空间

1.10.1 *L^p* 空间

定义 **1.10.1** (*L*^p 空间)

对于 $0 , 定义数域 <math>\mathbb{F}$ 上的测度空间 (X, Σ, μ) 上的 L^p 空间

$$L^p = \{ p$$
 次绝对可积函数 $f: X \to \mathbb{C} \}$, $0 $L^\infty = \{ \mathbb{L} \oplus \mathbb{C} \}$$

引入记号

$$\begin{split} \|f\|_p &= \left(\int_X |f|^p \mathrm{d}\mu\right)^{1/p}, \qquad 0$$

定理 1.10.1

- 1. L^p 为可分 Banach 空间, 其中 $1 \le p < \infty$ 。
- 2. L^{∞} 为不可分 Banach 空间。

\odot

定理 1.10.2 (Young 不等式)

如果 $1 < p, q < \infty$ 满足 $\frac{1}{p} + \frac{1}{q} = 1$ 且 $a, b \ge 0$, 那么成立不等式

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$$

当且仅当 $a^p = b^q$ 时等号成立。

证明 当 ab=0 时不等式显然成立; 当 ab>0 时,记 $t=\frac{1}{p}\in(0,1), x=\frac{a^{1/t}}{b^{1/(1-t)}}\in(0,\infty)$,那么等价于证明 $x^t\leq tx+1-t$,这是容易的。

定理 1.10.3 (Hölder 不等式)

对于 $0 < p,q \le \infty$ 满足 $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, 如果 $f \in L^p$ 且 $g \in L^q$, 那么成立不等式

$$||fg||_r \le ||f||_p ||g||_q$$

换言之

$$\left(\int |fg|^r\right)^{1/r} \leq \left(\int |f|^p\right)^{1/p} \left(\int |g|^q\right)^{1/q}$$

证明 1. 当 $p=q=r=\infty$ 时,由于 $f,g\in L^\infty$,那么存在零测集 $A,B\in \Sigma$,使得成立 $\sup_{X\setminus A}|f|\leq \|f\|_\infty$ 且 $\sup_{Y\setminus B}|g|\leq \|g\|_\infty$,因此

$$\|fg\|_{\infty} = \inf_{\mu(N)=0} \sup_{X \backslash N} |fg| \leq \sup_{X \backslash (A \cup B)} |fg| \leq \sup_{X \backslash A} |f| \cdot \sup_{X \backslash B} |g| \leq \|f\|_{\infty} \|g\|_{\infty}$$

2. 当 $p=\infty$ 且 $q=r<\infty$ 时,由于 $f\in L^\infty$,那么存在零测集 $E\in \Sigma$,使得成立 $\sup_{X\setminus E}|f|\leq \|f\|_\infty$,因此

$$\|fg\|_r = \left(\int_X |fg|^r\right)^{1/r} = \left(\int_{X \setminus E} |fg|^r\right)^{1/r} \leq \|f\|_\infty \left(\int_{X \setminus E} |g|^r\right)^{1/r} = \|f\|_\infty \left(\int_X |g|^r\right)^{1/r} = \|f\|_p \|g\|_q$$

同理可证当 $q=\infty$ 且 $p=r<\infty$ 时,成立不等式 $\|fg\|_r \leq \|f\|_p \|g\|_q$ 。

3. 当 $p,q<\infty$ 时,如果 $\|f\|_p=0$ 或 $\|g\|_q=0$,那么几乎处处于成立 fg=0,于是不等式显然成立。如果

 $\|f\|_p>0$ 且 $\|g\|_q>0$,那么令 $F=f/\|f\|_p$ 且 $G=g/\|g\|_q$,于是 $\|F\|_p=\|G\|_q=1$ 。由 Young 不等式1.10.2

$$\|FG\|_r = \left(\int |FG|^r\right)^{1/r} \leq \left(\frac{r}{p} \int |F|^p + \frac{r}{q} \int |G|^q\right)^{1/r} = \left(\frac{r}{p} \|F\|_p^p + \frac{r}{q} \|G\|_q^q\right)^{1/r} = \left(\frac{r}{p} + \frac{r}{q}\right)^{1/r} = 1$$

进而成立不等式 $||fg||_r \leq ||f||_p ||g||_q$ 。

定理 1.10.4 (Minkowsky 不等式)

1. 对于 $1 \le p \le \infty$,如果 $f,g \in L^p$,那么成立不等式

$$||f + g||_p \le ||f||_p + ||g||_p$$

换言之

$$\left(\int |f+g|^p\right)^{1/p} \leq \left(\int |f|^p\right)^{1/p} + \left(\int |g|^p\right)^{1/p}$$

2. 对于 $0 , 如果<math>f, g \in L^p$, 那么成立不等式

$$||f + g||_p^p \le ||f||_p^p + ||g||_p^p$$

换言之

$$\int |f+g|^p \le \int |f|^p + \int |g|^p$$

证明 一方面,对于 $1 \le p \le \infty$ 。

- 1. 当 p=1 时,不等式蕴含于三角不等式 $|f+g| \le |f| + |g|$ 中。
- 2. 当 $p=\infty$ 时,由于 $f,g\in L^\infty$,那么存在零测集 $A,B\in \Sigma$,使得成立 $\sup_{X\setminus A}|f|\leq \|f\|_\infty$ 且 $\sup_{X\setminus B}|g|\leq \|g\|_\infty$,因此

$$\|f+g\|_{\infty} = \inf_{\mu(N)=0} \sup_{X \backslash N} |f+g| \leq \sup_{X \backslash (A \cup B)} |f+g| \leq \sup_{X \backslash A} |f| + \sup_{X \backslash B} |g| \leq \|f\|_{\infty} \|g\|_{\infty}$$

3. 当 $1 时,令 <math>1 < q < \infty$ 满足 $\frac{1}{p} + \frac{1}{q} = 1$,由 Hölder 不等式1.10.3

$$\begin{split} & \|f+g\|_p^p \\ = & \||f+g|^p \||_1 \\ = & \||f+g|^{p-1}|f+g| \||_1 \\ \leq & \||f+g|^{p-1}|f| \||_1 + \||f+g|^{p-1}|g| \||_1 \\ \leq & (\|f\|_p + \|g\|_p) \cdot \||f+g|^{p-1} \||_q \\ = & (\|f\|_p + \|g\|_p) \cdot \|f+g\|_p^{p-1} \end{split}$$

进而成立不等式 $||f + g||_p \le ||f||_p + ||g||_p$ 。

另一方面,对于0 ,此时成立

$$|f+g|^p \leq |f|^p + |g|^p \implies \int_X |f+g|^p \leq \int_X |f|^p + \int_X |g|^p \iff \|f+g\|_p^p \leq \|f\|_p^p + \|g\|_p^p$$

1.10.2 L^p 空间的完备性

定理 1.10.5 (Levi 单调收敛定理)

对于可测集 $E\subset\mathbb{R}^n$ 上的非负单调递增的可测函数序列 $\{f_n\}_{n=1}^\infty$,成立

$$\int_{E} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_{E} f_n$$

C

定理 **1.10.6** (L^p 空间的完备性)

- 1. 当 $1 \le p \le \infty$ 时, L^p 空间依范数 $\|\cdot\|_p$ 完备。
- 2. 当 $0 时,<math>L^p$ 空间依度量 $\|\cdot \cdot\|_p^p$ 完备。

 \Diamond

证明 一方面,对于0 。

任取 Cauchy 序列 $\{f_n\}_{n=1}^{\infty} \subset L^p$,递归寻找子序列 $\{n_k\}_{k=1}^{\infty} \subset \mathbb{N}^*$,使得对于任意 $k \in \mathbb{N}^*$,成立 $\|f_{n_{k+1}} - f_{n_k}\|_p < 2^{-k}$ 。

1. 取 $\varepsilon = 2^{-1}$,存在 $N_1 \in \mathbb{N}^*$,使得对于任意 $m, n \geq N_1$,成立 $\|f_m - f_n\|_p < 2^{-1}$ 。取 $n_1 = N_1$ 。2. 如果已取 n_1, \dots, n_k ,那么取 $\varepsilon = 2^{-(k+1)}$,于是存在 $N_{k+1} \in \mathbb{N}^*$,使得对于任意 $m, n \geq N_{k+1}$,成立 $\|f_m - f_n\|_p < 2^{-(k+1)}$ 。取 $n_{k+1} = \max\{N_k, N_{k+1}\} + 1$ 。

递归的,可得子序列 $\{n_k\}_{k=1}^\infty\subset\mathbb{N}^*$ 满足对于任意 $k\in\mathbb{N}^*$,成立 $\|f_{n_{k+1}}-f_{n_k}\|_p<2^{-k}$ 。考虑级数

$$f = f_{n_1} + \sum_{k=1}^{\infty} (f_{n_{k+1}} - f_{n_k}), \qquad S_m(f) = f_{n_1} + \sum_{k=1}^{m} (f_{n_{k+1}} - f_{n_k})$$
$$g = |f_{n_1}| + \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|, \qquad S_m(g) = |f_{n_1}| + \sum_{k=1}^{m} |f_{n_{k+1}} - f_{n_k}|$$

1. 当 $0 时,对于任意 <math>m \in \mathbb{N}^*$,由 Minkowsky 不等式1.10.4

$$||S_m(g)||_p^p \le ||f_{n_1}||_p^p + \sum_{k=1}^m ||f_{n_{k+1}} - f_{n_k}||_p^p < ||f_{n_1}||_p^p + \sum_{k=1}^m 2^{-pk} < 1 + ||f_{n_1}||_p^p$$

由 Levi 单调收敛定理1.10.5

$$||g||_p^p = \int_X |g|^p = \int_X \lim_{m \to \infty} |S_m(g)|^p = \lim_{m \to \infty} \int_X |S_m(g)|^p = \lim_{m \to \infty} ||S_m(g)||_p^p \le 1 + ||f_{n_1}||_p^p$$

因此级数 g 几乎处处收敛,于是级数 f 几乎处处绝对收敛,那么存在零测集 $N \in \Sigma$,使得级数 f 在 $X \setminus N$ 上绝对收敛。不妨当 $x \in N$ 时,令 f(x) = 0,那么 f 为可测函数。

注意到

$$||f||_p = \left(\int_X |f|^p\right)^{1/p} = \left(\int_{X\setminus N} |f|^p\right)^{1/p} \le \left(\int_{X\setminus N} |g|^p\right)^{1/p} = \left(\int_X |g|^p\right)^{1/p} = ||g||_p < \infty$$

因此 $f \in L^p$, 同时注意到

$$||f - f_{n_k}||_p^p = \left\| \sum_{i=k+1}^{\infty} (f_{n_{i+1}} - f_{n_i}) \right\|_p^p \le \sum_{i=k+1}^{\infty} ||f_{n_{i+1}} - f_{n_i}||_p^p < \sum_{i=k+1}^{\infty} 2^{-pi} = \frac{2^p}{2^p - 1} \frac{1}{2^{p(k+1)}} \to 0$$

因此子序列 $\{f_{n_k}\}_{k=1}^{\infty}$ 在 L^p 空间中收敛于 f。任取 $\varepsilon>0$,存在 $K\in\mathbb{N}^*$,使得当 $n_k\geq k\geq K$ 时,成立 $\|f-f_{n_k}\|_p<\varepsilon/2$ 且 $\|f_k-f_{n_k}\|_p<\varepsilon/2$,于是

$$||f - f_k||_p^p \le ||f - f_{n_k}||_p^p + ||f_k - f_{n_k}||_p^p < \varepsilon^p \implies ||f - f_k||_p < \varepsilon$$

进而序列 $\{f_n\}_{n=1}^{\infty}$ 在 L^p 空间中收敛于 f。

2. 当 $1 时,对于任意 <math>m \in \mathbb{N}^*$,由 Minkowsky 不等式1.10.4

对收敛。不妨当 $x \in N$ 时,令f(x) = 0,那么f为可测函数。

$$||S_m(g)||_p \le ||f_{n_1}||_p + \sum_{k=1}^m ||f_{n_{k+1}} - f_{n_k}||_p < ||f_{n_1}||_p + \sum_{k=1}^m 2^{-k} < 1 + ||f_{n_1}||_p$$

由 Levi 单调收敛定理1.10.5

$$\|g\|_p = \left(\int_X |g|^p\right)^{1/p} = \left(\int_X \lim_{m \to \infty} |S_m(g)|^p\right)^{1/p} = \lim_{m \to \infty} \left(\int_X |S_m(g)|^p\right)^{1/p} = \lim_{m \to \infty} \|S_m(g)\|_p \le 1 + \|f_{n_1}\|_p$$
 因此级数 g 几乎处处收敛,于是级数 f 几乎处处绝对收敛,那么存在零测集 $N \in \Sigma$,使得级数 f 在 $X \setminus N$ 上绝

注意到

$$||f||_p = \left(\int_X |f|^p\right)^{1/p} = \left(\int_{X \setminus N} |f|^p\right)^{1/p} \le \left(\int_{X \setminus N} |g|^p\right)^{1/p} = \left(\int_X |g|^p\right)^{1/p} = ||g||_p < \infty$$

因此 $f \in L^p$ 。同时注意到

$$||f - f_{n_k}||_p = \left\| \sum_{i=k+1}^{\infty} (f_{n_{i+1}} - f_{n_i}) \right\|_p \le \sum_{i=k+1}^{\infty} ||f_{n_{i+1}} - f_{n_i}||_p < \sum_{i=k+1}^{\infty} 2^{-i} = \frac{1}{2^k} \to 0$$

因此子序列 $\{f_{n_k}\}_{k=1}^{\infty}$ 在 L^p 空间中收敛于 f。任取 $\varepsilon > 0$,存在 $K \in \mathbb{N}^*$,使得当 $n_k \geq k \geq K$ 时,成立 $\|f - f_{n_k}\|_p < \varepsilon/2$ 且 $\|f_k - f_{n_k}\|_p < \varepsilon/2$,于是

$$||f - f_k||_p \le ||f - f_{n_k}||_p + ||f_k - f_{n_k}||_p < \varepsilon$$

进而序列 $\{f_n\}_{n=1}^{\infty}$ 在 L^p 空间中收敛于 f。

另一方面,对于 $p=\infty$ 。任取 Cauchy 序列 $\{f_n\}_{n=1}^\infty\subset L^\infty$,那么对于任意 $\varepsilon>0$,存在 $M\in\mathbb{N}^*$,使得对于任意 $m,n\geq M$,成立 $\|f_m-f_n\|_\infty<\varepsilon$ 。对于任意 $m,n\in\mathbb{N}^*$,存在零测集 $N_{m,n}$,使得成立 $\sup_{X\setminus N_{m,n}}|f_m-f_n|\leq \|f_m-f_n\|_\infty$ 。

记 $N=\bigcup_{m,n\in\mathbb{N}^*}N_{m,n}$,那么 N 为零测集且对于任意 $m,n\in\mathbb{N}^*$,成立 $\sup_{X\setminus N}|f_m-f_n|\leq \|f_m-f_n\|_\infty$,进而当 $m,n\geq M$ 时,成立 $\sup_{X\setminus N}|f_m-f_n|<\varepsilon$,因此对于任意 $x\in X\setminus N$, $|f_m(x)-f_n(x)|<\varepsilon$,于是 $\{f_n(x)\}_{n=1}^\infty\subset\mathbb{C}$ 为 Cauchy 序列,记 $f(x)=\lim_{x\to\infty}f_n(x)$ 。当 $x\in N$ 时,令 f(x)=0,那么 f 为可测函数。

令
$$m \to \infty$$
, 当 $n \ge M$ 时, 成立 $\sup_{X \setminus N} |f - f_n| < \varepsilon$ 。注意到

$$\sup_{X \setminus N} |f| \le \sup_{X \setminus N} |f - f_n| + \sup_{X \setminus N} |f_n| < \varepsilon + \sup_{X \setminus N} |f_n|$$

因此 $f \in L^{\infty}$ 。同时注意到

$$||f - f_n||_{\infty} = \inf_{\mu(N) = 0} \sup_{X \setminus N} |f - f_n| \le \sup_{X \setminus N} |f - f_n| < \varepsilon$$

进而序列 $\{f_n\}_{n=1}^{\infty}$ 在 L^{∞} 空间中收敛于 f。

综上所述, L^p 空间关于范数 $\|\cdot\|_p$ 是完备的, 其中 0 。

1.10.3 L^p 空间的可分性

定理 1.10.7 (Luzin 定理)

- 1. 如果 f 是可测集 E 上的几乎处处有限的可测函数,那么对于任意 $\varepsilon > 0$,存在闭集 $F \subset E$,使得成立 $m(E-F) < \varepsilon$,且 f 在 F 上连续。
- 2. 如果 f 是可测集 E 上的几乎处处有限的可测函数,那么对于任意 $\varepsilon>0$,存在 E 上的连续函数 g,使得成立 $m(f\neq g)<\varepsilon$ 。

定理 1.10.8 (Lebesgue 控制收敛定理)

如果 F 在可测集 $E \subset \mathbb{R}^n$ 上可积,在 E 上的可测函数序列 $\{f_n\}_{n=1}^{\infty}$ 满足 $|f_n| \leq F$,且 f_n 在 E 上依测度 收敛于 f,或 f_n 在 E 上几乎处处收敛于 f,那么 f 在 E 上可积,且

$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_{n}$$

定理 1.10.9 (Weierstrass 逼近定理)

如果 f 为 [a,b] 上的连续函数,那么存在多项式函数序列 $\{f_n\}_{n=1}^{\infty}$,使得 f_n 一致收敛于 f_n

5

定理 1.10.10 (简单函数逼近定理)

对于可测集 $E \subset \mathbb{R}^n$ 上的非负函数 f, 如下命题等价。

- 1. f 是 E 上的可测函数。
- 2. 存在单调递增的非负简单函数序列 $\{\varphi_n\}_{n=1}^{\infty}$, 使得成立 $\varphi_n \to f$ 。

$^{\circ}$

定理 **1.10.11** (L^p 空间的稠密性)

p次幂可积简单函数族在 L^p 空间中稠密, 其中 0 。

 \Diamond

证明 记X上的p次幂可积简单函数族为

$$\chi^p = \left\{ \sum_{k=1}^n a_k \mathbb{1}_{E_k} : a_k \in \mathbb{C}, E_k \in \Sigma, \left\| \sum_{k=1}^n a_k \mathbb{1}_{E_k} \right\|_p < \infty \right\}$$

1. 对于非负实值函数 $f \in L^p$,由简单函数逼近定理1.10.10,存在单调递增的非负 p 次幂可积简单函数序列 $\{\varphi_n\}_{n=1}^{\infty} \subset \chi^p$,使得成立 $\varphi_n \to f$,因此 $|f - \varphi_n|^p \to 0$ 。注意到 $|f - \varphi_n|^p \le |2f|^p$,且 $|2f|^p$ 在 L^1 上可积,那么由 Lebesgue 控制收敛定理1.10.8, $|f - \varphi_n|^p$ 在 L^1 上可积,且

$$\lim_{n \to \infty} \int_X |f - \varphi_n|^p = 0 \implies \lim_{n \to \infty} ||f - \varphi_n||_p = 0$$

2. 对于 $f \in L^p$,由 1. 存在 p 次幂可积简单函数序列 $\{\varphi_n^+\}_{n=1}^{\infty}, \{\varphi_n^-\}_{n=1}^{\infty}, \{\psi_n^+\}_{n=1}^{\infty}, \{\psi_n^+\}_{n=1}^{\infty} \subset \chi^p$,使得成立

 $\lim_{n \to \infty} \| (\operatorname{Re} f)^+ - \varphi_n^+ \|_p = \lim_{n \to \infty} \| (\operatorname{Re} f)^- - \varphi_n^- \|_p = \lim_{n \to \infty} \| (\operatorname{Im} f)^+ - \psi_n^+ \|_p = \lim_{n \to \infty} \| (\operatorname{Im} f)^- - \psi_n^- \|_p = 0$ 因此当 0 时

$$\begin{split} &\lim_{n \to \infty} \|f - ((\varphi_n^+ - \varphi_n^-) + i(\psi_n^+ - \psi_n^-))\|_p^p \\ &\leq \lim_{n \to \infty} \|((\operatorname{Re} f)^+ - \varphi_n^+) - ((\operatorname{Re} f)^- - \varphi_n^-) + i((\operatorname{Im} f)^+ - \psi_n^+) - i(\operatorname{Im} f)^- - \psi_n^-\|_p^p \\ &\leq \lim_{n \to \infty} \|(\operatorname{Re} f)^+ - \varphi_n^+\|_p^p + \lim_{n \to \infty} \|(\operatorname{Re} f)^- - \varphi_n^-\|_p^p + \lim_{n \to \infty} \|(\operatorname{Im} f)^+ - \psi_n^+\|_p^p + \lim_{n \to \infty} \|(\operatorname{Im} f)^- - \psi_n^-\|_p^p \\ &= 0 \end{split}$$

当 $1 \le p < \infty$ 时

$$\begin{split} &\lim_{n \to \infty} \|f - ((\varphi_n^+ - \varphi_n^-) + i(\psi_n^+ - \psi_n^-))\|_p \\ &\leq \lim_{n \to \infty} \|((\operatorname{Re} f)^+ - \varphi_n^+) - ((\operatorname{Re} f)^- - \varphi_n^-) + i((\operatorname{Im} f)^+ - \psi_n^+) - i(\operatorname{Im} f)^- - \psi_n^-\|_p \\ &\leq \lim_{n \to \infty} \|(\operatorname{Re} f)^+ - \varphi_n^+\|_p + \lim_{n \to \infty} \|(\operatorname{Re} f)^- - \varphi_n^-\|_p + \lim_{n \to \infty} \|(\operatorname{Im} f)^+ - \psi_n^+\|_p + \lim_{n \to \infty} \|(\operatorname{Im} f)^- - \psi_n^-\|_p \\ &= 0 \end{split}$$

综上所述, p 次幂可积简单函数族在 L^p 空间中稠密, 其中 0 。

引理 1.10.1 (简单函数族在 L^p 空间中稠密)

记 [a,b] 上的简单函数全体为

$$S[a,b] = \left\{ \sum_{k=1}^{n} a_k \mathbbm{1}_{A_k} : A_k \subset [a,b] \right\},$$

那么 S[a,b] 在 $L^p[a,b]$ 中稠密, 其中于 $1 \le p < \infty$ 。

 \heartsuit

证明 首先证明 $S[a,b] \subset L^p[a,b]$ 。由 Minkowsky 不等式1.10.4,成立

$$\left\| \sum_{k=1}^{n} a_k \mathbb{1}_{A_k} \right\|_p \le \sum_{k=1}^{n} |a_k| \|\mathbb{1}_{A_k}\|_p = \sum_{k=1}^{n} |a_k| (m(A_k))^{1/p} < \infty$$

因此 $S[a,b] \subset L^p[a,b]$ 。

其次证明 S[a,b] 在 $L^p[a,b]$ 中稠密。任取 $f \in L^p[a,b]$,由简单函数逼近定理1.10.10,存在单调递增的非负简单函数序列 $\{\varphi_n\}_{n=1}^{\infty} \subset S[a,b]$,使得成立 $\varphi_n \to f^+$,因此 $|f^+ - \varphi_n|^p \to 0$ 。注意到 $|f^+ - \varphi_n|^p \le |2f^+|^p$,且 $|2f^+|^p$ 在 [a,b] 上可积,那么由 Lebesgue 控制收敛定理1.10.8, $|f^+ - \varphi_n|^p$ 在 [a,b] 上可积,且

$$\lim_{n \to \infty} \int_a^b \left| f^+ - \varphi_n \right|^p = 0 \implies \lim_{n \to \infty} \| f^+ - \varphi_n \|_p = 0$$

同理,存在单调递增的非负简单函数序列 $\{\psi_n\}_{n=1}^{\infty}\subset S[a,b]$,使得成立 $\lim_{n\to\infty}\|f^--\psi_n\|_p=0$ 。由 Minkowsky 不等式1.10.4,成立

 $\lim_{n\to\infty} \|f - (\varphi_n - \psi_n)\|_p = \lim_{n\to\infty} \|(f^+ - \varphi_n) - (f^- - \psi_n)\|_p \le \lim_{n\to\infty} \|f^+ - \varphi_n\|_p + \lim_{n\to\infty} \|f^- - \psi_n\|_p = 0$ 进而 S[a,b] 是 L^p 的稠密子集。

引理 1.10.2 (有界可测函数族在 L^p 空间中稠密)

记 B[a,b] 是 [a,b] 上的有界可测函数全体,那么 B[a,b] 在 $L^p[a,b]$ 中稠密,其中 $1 \le p < \infty$ 。

证明 首先证明 $B[a,b] \subset L^p[a,b]$ 。任取 $f \in B[a,b]$,那么存在 M,使得成立 |f| < M,于是

$$||f||_p = \left(\int_a^b |f|^p\right)^{1/p} < (b-a)^{1/p}M < \infty$$

因此 $f \in L^p[a,b]$, 进而 $B[a,b] \subset L^p[a,b]$ 。

其次证明 B[a,b] 在 $L^p[a,b]$ 中稠密。任取 $f \in L^p[a,b]$,以及 $\varepsilon > 0$ 。定义函数序列 $f_n = \min\{f,n\}$,那么 $f_n \in B[a,b]$ 。由于 $|f|^p \in L^1[a,b]$,那么 $|f|^p$ 可积,由积分绝对连续性,对于此 $\varepsilon > 0$,存在 $\delta > 0$,使得当 $e \subset [a,b]$ 且 $m(e) < \delta$ 时,成立 $\int_{\varepsilon} |f|^p < \varepsilon^p$ 。注意到

$$n^p m(|f| > n) \le \int_{|f| > n} |f|^p \le \int_a^b |f|^p < \infty$$

那么 $m(|f|>n)\to 0$, 因此对于此 $\delta>0$, 存在 $n\in\mathbb{N}^*$, 使得成立 $m(|f|>n)<\delta$, 于是 $\int_{|f|>n}|f|^p<\varepsilon^p$, 进而

$$||f_n - f||_p = \left(\int_a^b |f_n - f|^p\right)^{1/p} = \left(\int_{|f| > n} |f|^p\right)^{1/p} < \varepsilon$$

因此 B[a,b] 在 $L^p[a,b]$ 中稠密。

引理 1.10.3 (连续函数族在 B[a,b] 空间中稠密)

记 C[a,b] 是 [a,b] 上的连续函数全体, 那么 C[a,b] 在 B[a,b] 中稠密, 其中 $1 \le p < \infty$ 。

证明 显然 $C[a,b] \subset B[a,b]$ 。任取 $f \in B[a,b]$,那么存在 M,使得成立 |f| < M。任取 $\varepsilon > 0$,由 Luzin 定理1.10.7,存在 $g \in C[a,b]$,使得成立 $m(f \neq g) < (\varepsilon/2M)^p$ 。记 $h = \max\{\min\{g,M\}, -M\}$,因此 $|h| \leq M$,且 $m(f \neq h) \leq m(f \neq g) < (\varepsilon/2M)^p$,从而

$$||f - h||_p = \left(\int_a^b |f - h|^p\right)^{1/p} = \left(\int_{f \neq g} |f - h|^p\right)^{1/p} \le (2M)(m(f \neq h))^{1/p} = \varepsilon$$

因此 C[a,b] 在 B[a,b] 中稠密。

引理 **1.10.4** (多项式函数族在 C[a,b] 空间中稠密)

记 P[a,b] 是 [a,b] 上的多项式函数全体,那么 P[a,b] 在 B[a,b] 中稠密,其中 $1 \le p < \infty$ 。

证明 显然 $P[a,b] \subset C[a,b]$ 。 任取 $f \in C[a,b]$,由 Weierstrass 逼近定理1.10.9,存在多项式函数序列 $\{f_n\}_{n=1}^{\infty} \subset P[a,b]$,使得 f_n 一致收敛于 f。任取 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得对于任意 $n \geq N$,成立 $|f_n - f| < \varepsilon (b-a)^{-1/p}$,

因此

$$||f_n - f||_p = \left(\int_a^b |f_n - f|^p\right)^{1/p} < \varepsilon$$

进而 P[a,b] 在 C[a,b] 中稠密。

定理 1.10.12 (L^p 空间的可分性)

 $L^p[a,b]$ 为可分空间, 其中 $1 \le p < \infty$ 。

 \Diamond

证明 (法一:简单函数族)由引理1.10.1,我们仅需构造一个简单函数族的可数稠密子集。取 [a,b] 的可数拓扑基

$$\mathscr{B} = \{ [a, b] \cap (p, q) : p, q \in \mathbb{Q} \} = \{ B_n \}_{n=1}^{\infty}$$

事实上,任取开集 $I \subset [a,b]$,那么 I 可表示为可数个不交开区间的并,不妨记 $I = \bigcup_{n=1}^{\infty} (a_n,b_n)$,其中每一个 $(a_n,b_n) \subset (a,b)$ 。对于每一个 (a_n,b_n) ,存在有理数序列 $\{p_{n_k}\}_{k=1}^{\infty} \subset \mathbb{Q}$ 和 $\{q_{n_k}\}_{k=1}^{\infty} \subset \mathbb{Q}$,使得 $p_{n_k} < q_{n_k}$,且 $p_{n_k} \to a_n, q_{n_k} \to b_n$,于是 $(a_n,b_n) = \bigcup_{k=1}^{\infty} (a_{n_k},b_{n_k})$,因此 $I = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} (a_{n_k},b_{n_k})$,于是 \mathcal{B} 为 [a,b] 的可数拓扑基。构造 S[a,b] 的可数子集

$$S_{\mathbb{Q}}[a,b] = \left\{ \sum_{k=1}^{n} r_k \mathbb{1}_{B_{n_k}} : r_k \in \mathbb{Q} \right\}$$

下面我们证明 $S_{\mathbb{Q}}[a,b]$ 为 S[a,b] 的稠密子集, 分三部分进行。

1. 对于可测集 $A \subset [a,b]$, 存在 $\varphi_n \in S_{\mathbb{Q}}[a,b]$, 使得成立 $\|\varphi_n - \mathbb{1}_A\|_n \to 0$ 。

对于任意 $n \in \mathbb{N}^*$,存在开集 $G_n \supset A$,使得成立 $m(G_n \setminus A) < 1/n$ 。由于 \mathscr{B} 为拓扑基,那么对于任意开集 G,存在可数指标集 $\Omega \subset \mathbb{N}^*$,使得成立 $G = \bigcup_{k=0}^\infty B_k$,因此可知

$$m\left(G\setminus\bigcup_{k\in\Omega\cap[1,N]}B_k\right)\to 0, \qquad (N\to\infty)$$

那么对于任意 $\varepsilon > 0$, 存在 $N_0 \in \mathbb{N}^*$, 使得成立

$$m\left(G\setminus\bigcup_{k\in\Omega\cap[1,N_0]}B_k\right)<\varepsilon$$

于是有限指标集 $\Lambda = \Omega \cap [1, N_0]$,满足 $m(G \setminus \bigcup_{k \in \Lambda} B_k) < \varepsilon$ 。进而对于开集 G_n ,存在有限指标集 $\Lambda_n \subset \mathbb{N}^*$,使得成立 $G_n \supset \bigcup_{k \in \Lambda_n} B_k$,且 $m(G_n \setminus \bigcup_{k \in \Lambda_n} B_k) < 1/n$ 。而容易知道对于任意 $E, F \in \mathcal{B}$,成立 $E \cap F \in \mathcal{B}$,因此存在有限指标集 $\Xi_n \subset \mathbb{N}^*$,使得成立

$$\bigcup_{k \in \Lambda_n} B_k = \bigsqcup_{k \in \Xi_n} B_k$$

其中 \square 表示不交并。令 $\varphi_n = \sum_{k \in \Xi_n} \mathbb{1}_{B_k}$,于是由 Minkowsky 不等式1.10.4

$$\begin{split} &\|\varphi_{n} - \mathbb{1}_{A}\|_{p} \\ &= \left\| \sum_{k \in \Xi_{n}} \mathbb{1}_{B_{k}} - \mathbb{1}_{A} \right\|_{p} \\ &= \left\| \mathbb{1}_{\bigcup_{k \in \Xi_{n}} B_{k}} - \mathbb{1}_{A} \right\|_{p} \\ &= \left\| \mathbb{1}_{\bigcup_{k \in \Lambda_{n}} B_{k}} - \mathbb{1}_{A} \right\|_{p} \\ &\leq \left\| \mathbb{1}_{\bigcup_{k \in \Lambda_{n}} B_{k}} - \mathbb{1}_{G_{n}} \right\|_{p} + \left\| \mathbb{1}_{A} - \mathbb{1}_{G_{n}} \right\|_{p} \\ &= m \left(G_{n} \setminus \bigcup_{k \in \Lambda_{n}} B_{k} \right)^{1/p} + m(G_{n} \setminus A)^{1/p} \\ &< \frac{2}{n^{1/p}} \to 0 \end{split}$$

2. 对于可测集 $A \subset [a,b]$, 以及 $r \in \mathbb{R}$, 存在 $\varphi_n \in S_{\mathbb{Q}}[a,b]$, 使得成立 $\|\varphi_n - r\mathbb{1}_A\|_p \to 0$ 。

对于任意 $n\in\mathbb{N}^*$,存在 $r_n\in\mathbb{Q}$,且由 1. 存在 φ_n ,使得成立 $|r-r_n|<1/n$,且 $\|\varphi_n-\mathbb{I}_A\|_p<1/n$,于是由 Minkowsky 不等式1.10.4

$$\begin{aligned} & \|r_{n}\varphi_{n} - r\mathbb{1}_{A}\|_{p} \\ & \leq \|r_{n}\varphi_{n} - r_{n}\mathbb{1}_{A}\|_{p} + \|r_{n}\mathbb{1}_{A} - r\mathbb{1}_{A}\|_{p} \\ & = & |r_{n}| \|\varphi_{n} - \mathbb{1}_{A}\|_{p} + |r_{n} - r| \|\mathbb{1}_{A}\|_{p} \\ & \leq & (|r - r_{n}| + |r|) \|\varphi_{n} - \mathbb{1}_{A}\|_{p} + |r_{n} - r| \|\mathbb{1}_{A}\|_{p} \\ & < \frac{|r| + m(A)}{n} + \frac{1}{n^{2}} \to 0 \end{aligned}$$

3. 对于 $\sum_{k=1}^{m} a_k \mathbb{1}_{A_k} \in S[a,b]$, 存在 $\varphi_n \in S_{\mathbb{Q}}[a,b]$, 使得成立 $\left\| \varphi_n - \sum_{k=1}^{m} a_k \mathbb{1}_{A_k} \right\|_p \to 0$ 。 对于任意 $1 \leq k \leq m$, 由 2. 存在 $\varphi_n^{(k)} \in S_{\mathbb{Q}}[a,b]$, 使得当 $n \to \infty$ 时,成立 $\left\| \varphi_n^{(k)} - a_k \mathbb{1}_{A_k} \right\|_p \to 0$,令

 $\varphi_n = \sum_{k=1}^m \varphi_n^{(k)}$,于是由 Minkowsky 不等式1.10.4

$$\left\| \varphi_n - \sum_{k=1}^m a_k \mathbb{1}_{A_k} \right\|_p \le \sum_{k=1}^m \left\| \varphi_n^{(k)} - a \mathbb{1}_{A_k} \right\|_p \to 0$$

综合 1.2.3. 三点, $S_{\mathbb{Q}}[a,b]$ 是 S[a,b] 的可数稠密子集,因此 $S_{\mathbb{Q}}[a,b]$ 是 $L^p[a,b]$ 的可数稠密子集,于是 $L^p[a,b]$ 为可分空间,命题得证!

(法二:多项式函数族)由引理1.10.2、1.10.3与1.10.4,我们仅需构造一个多项式函数族的可数稠密子集。这是容易的——构造

$$P_{\mathbb{Q}}[a,b] = \left\{ \sum_{k=1}^{n} r_k x^k : r_k \in \mathbb{Q}, x \in [a,b] \right\}$$

任取 $\varphi(x) = \sum_{k=1}^n a_k x^k \in P[a,b]$,以及 $\varepsilon > 0$ 。对于任意 $k = 1, \cdots, n$,存在 $\{r_m^{(k)}\}_{m=1}^\infty \subset \mathbb{Q}$,以及 $M_k \in \mathbb{N}^*$,使

得对于任意
$$m \ge M_k$$
,成立 $|r_m^{(k)} - a_k| < \varepsilon/(n||x^k||_p)$ 。记 $\varphi_m(x) = \sum_{k=1}^n r_m^{(k)} x^k \in P_{\mathbb{Q}}[a,b]$,取 $M = \max_{1 \le k \le n} M_k$,那

么当 $m \ge M$ 时,成立

$$\|\varphi_{m}(x) - \varphi(x)\|_{p}$$

$$= \left\| \sum_{k=1}^{n} r_{m}^{(k)} x^{k} - \sum_{k=1}^{n} a_{k} x^{k} \right\|_{p}$$

$$\leq \sum_{k=1}^{n} |r_{m}^{(k)} - a_{k}| \|x^{k}\|_{p}$$

$$\leq \sum_{k=1}^{n} \frac{\varepsilon}{n \|x^{k}\|_{p}} \|x^{k}\|_{p}$$

因此 $P_{\mathbb{Q}}[a,b]$ 是 P[a,b] 的可数稠密子集,于是 $P_{\mathbb{Q}}[a,b]$ 是 $L^p[a,b]$ 的可数稠密子集,进而 $L^p[a,b]$ 为可分空间,命题得证!

1.11 s 空间, c 空间与 S[a,b] 空间, C[a,b] 空间

1.11.1 s 空间

定义 1.11.1 (s 空间)

$$s = \{\{x_n\}_{n=1}^{\infty} \subset \mathbb{C}\}, \qquad d(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

引理 1.11.1

$$\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}, \qquad x,y \in \mathbb{C}$$

证明 构造函数

$$f(x) = \frac{x}{1+x}, \qquad x \in [0, \infty)$$

由于 f 在 $[0,\infty)$ 上单调递增,那么由三角不等式 $|x+y| \le |x| + |y|$,可得

$$\frac{|x+y|}{1+|x+y|} = f(|x+y|) \le f(|x|+|y|) = \frac{|x|+|y|}{1+|x|+|y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$$

命题 1.11.1 (s 空间为度量空间)

s空间为度量空间。

证明 仅证明三角不等式,由引理1.11.1

$$d(\{x_n\}_{n=1}^{\infty}, \{z_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - z_n|}{1 + |x_n - z_n|}$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|(x_n - y_n) + (y_n - z_n)|}{1 + |(x_n - y_n) + (y_n - z_n)|}$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{|x_n - y_n|}{1 + |x_n - y_n|} + \frac{|y_n - z_n|}{1 + |y_n - z_n|} \right)$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|} + \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|y_n - z_n|}{1 + |y_n - z_n|}$$

$$= d(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) + d(\{y_n\}_{n=1}^{\infty}, \{z_n\}_{n=1}^{\infty})$$

命题 1.11.2 (s 空间为度量线性空间)

s空间为度量线性空间。

证明 任取

$$\{x_n^{(m)}\}_{n=1}^{\infty} \xrightarrow{d} \{x_n\}_{n=1}^{\infty}, \qquad \{y_n^{(m)}\}_{n=1}^{\infty} \xrightarrow{d} \{y_n\}_{n=1}^{\infty}, \qquad \lambda_m \longrightarrow \lambda$$

那么

$$\lim_{m \to \infty} d(\{x_n^{(m)}\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty}) = \lim_{m \to \infty} d(\{y_n^{(m)}\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = \lim_{m \to \infty} |\lambda_m - \lambda| = 0$$

对于加法连续性

$$\begin{split} &d(\{x_{n}^{(m)}\}_{n=1}^{\infty} + \{y_{n}^{(m)}\}_{n=1}^{\infty}, \{x_{n}\}_{n=1}^{\infty} + \{y_{n}\}_{n=1}^{\infty}) \\ &\leq &d(\{x_{n}^{(m)}\}_{n=1}^{\infty} + \{y_{n}^{(m)}\}_{n=1}^{\infty}, \{x_{n}\}_{n=1}^{\infty} + \{y_{n}^{(m)}\}_{n=1}^{\infty}) + d(\{x_{n}\}_{n=1}^{\infty} + \{y_{n}^{(m)}\}_{n=1}^{\infty}, \{x_{n}\}_{n=1}^{\infty} + \{y_{n}\}_{n=1}^{\infty}) \\ &= &d(\{x_{n}^{(m)} + y_{n}^{(m)}\}_{n=1}^{\infty}, \{x_{n} + y_{n}^{(m)}\}_{n=1}^{\infty}) + d(\{x_{n} + y_{n}^{(m)}\}_{n=1}^{\infty}, \{x_{n} + y_{n}\}_{n=1}^{\infty}) \\ &= &\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{|x_{n}^{(m)} - x_{n}|}{1 + |x_{n}^{(m)} - x_{n}|} + \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{|y_{n}^{(m)} - y_{n}|}{1 + |y_{n}^{(m)} - y_{n}|} \\ &= &d(\{x_{n}^{(m)}\}_{n=1}^{\infty}, \{x_{n}\}_{n=1}^{\infty}) + d(\{y_{n}^{(m)}\}_{n=1}^{\infty}, \{y_{n}\}_{n=1}^{\infty}) \end{split}$$

因此

$$\lim_{m \to \infty} d(\{x_n^{(m)}\}_{n=1}^{\infty} + \{y_n^{(m)}\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty} + \{y_n\}_{n=1}^{\infty}) = 0$$

于是

$$\{x_n^{(m)}\}_{n=1}^{\infty} + \{y_n^{(m)}\}_{n=1}^{\infty} \xrightarrow{d} \{x_n\}_{n=1}^{\infty} + \{y_n\}_{n=1}^{\infty}$$

对于数乘连续性, 任取 $\varepsilon > 0$, 由于

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$$

那么存在 $N \in \mathbb{N}^*$, 使得成立

$$\sum_{n=N+1}^{\infty} \frac{1}{2^n} < \frac{\varepsilon}{3}$$

由于

$$\lim_{m \to \infty} d(\{x_n^{(m)}\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty}) = \lim_{m \to \infty} |\lambda_m - \lambda| = 0$$

那么存在 $M \in \mathbb{N}^*$ 与 K > 0,使得对于任意 $m \in \mathbb{N}^*$,成立

$$|\lambda_m| < K$$

且对于任意 $m \ge M$ 与 $n \le N$, 成立

$$|\lambda_m - \lambda| |x_n| < \frac{\varepsilon}{3}, \qquad d(\{x_n^{(m)}\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty}) < \frac{\varepsilon}{3(1+K)}$$

因此当m > M时,由于引理1.11.1以及

$$\frac{|\lambda||x|}{1+|\lambda||x|} \le \frac{(1+|\lambda|)|x|}{1+|x|}, \qquad \forall \lambda, x \in \mathbb{C}$$

那么

$$\begin{split} &d(\lambda_{m}\{x_{n}^{(m)}\}_{n=1}^{\infty},\lambda\{x_{n}\}_{n=1}^{\infty}) \\ &\leq d(\lambda_{m}\{x_{n}^{(m)}\}_{n=1}^{\infty},\lambda_{m}\{x_{n}\}_{n=1}^{\infty}) + d(\lambda_{m}\{x_{n}\}_{n=1}^{\infty},\lambda\{x_{n}\}_{n=1}^{\infty}) \\ &= d(\{\lambda_{m}x_{n}^{(m)}\}_{n=1}^{\infty},\{\lambda_{m}x_{n}\}_{n=1}^{\infty}) + d(\{\lambda_{m}x_{n}\}_{n=1}^{\infty},\{\lambda x_{n}\}_{n=1}^{\infty}) \\ &= \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{|\lambda_{m}||x_{n}^{(m)} - x_{n}|}{1 + |\lambda_{m}||x_{n}^{(m)} - x_{n}|} + \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{|\lambda_{m} - \lambda||x_{n}|}{1 + |\lambda_{m} - \lambda||x_{n}|} \\ &\leq (1 + |\lambda_{m}|) \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{|x_{n}^{(m)} - x_{n}|}{1 + |x_{n}^{(m)} - x_{n}|} + \sum_{n=1}^{N} \frac{1}{2^{n}} \frac{|\lambda_{m} - \lambda||x_{n}|}{1 + |\lambda_{m} - \lambda||x_{n}|} + \sum_{n=N+1}^{\infty} \frac{1}{2^{n}} \frac{|\lambda_{m} - \lambda||x_{n}|}{1 + |\lambda_{m} - \lambda||x_{n}|} \\ &< (1 + K) \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{|x_{n}^{(m)} - x_{n}|}{1 + |x_{n}^{(m)} - x_{n}|} + \sum_{n=1}^{N} \frac{1}{2^{n}} \frac{\varepsilon}{3} + \sum_{n=N+1}^{\infty} \frac{1}{2^{n}} \\ &< (1 + K) d(\{x_{n}^{(m)}\}_{n=1}^{\infty}, \{x_{n}\}_{n=1}^{\infty}) + \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\ &< (1 + K) \frac{\varepsilon}{3(1 + K)} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\ &= \varepsilon \end{split}$$

因此

$$\lim_{m \to \infty} d(\lambda_m \{x_n^{(m)}\}_{n=1}^{\infty}, \lambda \{x_n\}_{n=1}^{\infty}) = 0$$

于是

$$\lambda_m \{x_n^{(m)}\}_{n=1}^{\infty} \xrightarrow{d} \lambda \{x_n\}_{n=1}^{\infty}$$

综上所述,s空间为度量线性空间。

命题 1.11.3 (s 空间为可分空间)

s空间为可分空间。

证明 构造

$$S = \{\{r_1, \dots, r_n, 0, 0, \dots\} : r_k \in \mathbb{Q}, n \in \mathbb{N}^*\}$$

那么 S 为可数集。任取 $x = \{x_n\}_{n=1}^{\infty} \in S$,对于任意 $n \in \mathbb{N}^*$,取 $\{r_n^{(m)}\}_{m=1}^{\infty} \subset \mathbb{Q}$,使得成立 $r_n^{(m)} \to x_n$,令 $t_m = \{r_1^{(m)}, \cdots, r_m^{(m)}, 0, 0, \cdots\}, \qquad m \in \mathbb{N}^*$

那么 $\{t_m\}_{m=1}^{\infty}$ 依坐标收敛于 x。 由命题1.11.4, $\{t_m\}_{m=1}^{\infty}$ 依依度量 d 收敛于 x, 因此 S 为 s 空间的可数稠密集, 进而 s 空间为可分空间。

命题 1.11.4 (s 空间的收敛性)

在 s 空间中, 成立

$$\{x_n\}_{n=1}^{\infty}$$
依度量 d 收敛于 $x \iff \{x_n\}_{n=1}^{\infty}$ 依坐标收敛于 x

证明 如果 $\{\{x_n^{(m)}\}_{n=1}^\infty\}_{m=1}^\infty$ 依坐标收敛于 $\{x_n\}_{n=1}^\infty$, 那么对于任意 $n\in\mathbb{N}^*$, 成立

$$\lim_{m \to \infty} x_n^{(m)} = x_n$$

任取 $\varepsilon > 0$, 由于

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$$

那么存在 $N \in \mathbb{N}^*$, 使得成立

$$\sum_{n=N+1}^{\infty} \frac{1}{2^n} < \frac{\varepsilon}{2}$$

由于对于任意 $n \leq N$, 成立

$$\lim_{m \to \infty} x_n^{(m)} = x_n$$

那么存在 $M \in \mathbb{N}^*$, 使得对于任意 $m \ge M$ 与 $n \le N$, 成立

$$|x_n^{(m)} - x_n| < \frac{\varepsilon}{2}$$

因此当 $m \ge M$ 时,由引理1.11.1

$$d(\{x_n^{(m)}\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n^{(m)} - x_n|}{1 + |x_n^{(m)} - x_n|}$$

$$= \sum_{n=1}^{N} \frac{1}{2^n} \frac{|x_n^{(m)} - x_n|}{1 + |x_n^{(m)} - x_n|} + \sum_{n=N+1}^{\infty} \frac{1}{2^n} \frac{|x_n^{(m)} - x_n|}{1 + |x_n^{(m)} - x_n|}$$

$$\leq \sum_{n=1}^{N} \frac{1}{2^n} \frac{\varepsilon}{2} + \sum_{n=N+1}^{\infty} \frac{1}{2^n}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

于是

$$\lim_{n \to \infty} d(\{x_n^{(m)}\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty}) = 0$$

进而

$$\{x_n^{(m)}\}_{n=1}^{\infty} \xrightarrow{d} \{x_n\}_{n=1}^{\infty}$$

即 $\{\{x_n^{(m)}\}_{n=1}^{\infty}\}_{m=1}^{\infty}$ 依度量 d 收敛于 $\{x_n\}_{n=1}^{\infty}$ 。

如果 $\{\{x_n^{(m)}\}_{n=1}^{\infty}\}_{m=1}^{\infty}$ 不依坐标收敛于 $\{x_n\}_{n=1}^{\infty}$, 那么存在 $n_0 \in \mathbb{N}^*$ 与 $\varepsilon_0 > 0$, 以及子序列 $\{m_k\}_{k=1}^{\infty} \subset \mathbb{N}^*$,使得成立对于任意 $k \in \mathbb{N}^*$,成立

$$|x_{n_0}^{(m_k)} - x_{n_0}| \ge \varepsilon_0$$

于是由引理1.11.1

$$d(\{x_n^{(m_k)}\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n^{(m_k)} - x_n|}{1 + |x_n^{(m_k)} - x_n|} \ge \frac{|x_{n_0}^{(m_k)} - x_{n_0}|}{1 + |x_{n_0}^{(m_k)} - x_{n_0}|} \ge \frac{\varepsilon_0}{1 + \varepsilon_0}$$

因此 $\{\{x_n^{(m)}\}_{n=1}^{\infty}\}_{m=1}^{\infty}$ 不依度量 d 收敛于 $\{x_n\}_{n=1}^{\infty}$.

1.11.2 c 空间

定义 1.11.2 (c 空间)

$$c = \{ 收敛数列\{x_n\}_{n=1}^{\infty} \subset \mathbb{C} \}, \qquad \|\{x_n\}_{n=1}^{\infty}\| = \sup_{n \in \mathbb{N}^*} |x_n|$$

命题 1.11.5 (c 空间为赋范线性空间)

c空间为赋范线性空间。

证明 仅证明三角不等式,由于对于任意 $n \in \mathbb{N}^*$,成立

$$|x_n + y_n| \le |x_n| + |y_n| \le \sup_{n \in \mathbb{N}^*} |x_n| + \sup_{n \in \mathbb{N}^*} |y_n| = \|\{x_n\}_{n=1}^{\infty}\| + \|\{y_n\}_{n=1}^{\infty}\|$$

那么

$$\|\{x_n\}_{n=1}^{\infty} + \{y_n\}_{n=1}^{\infty}\| = \|\{x_n + y_n\}_{n=1}^{\infty}\| = \sup_{n \in \mathbb{N}^*} |x_n + y_n| \le \|\{x_n\}_{n=1}^{\infty}\| + \|\{y_n\}_{n=1}^{\infty}\|$$

命题 1.11.6 (c 空间为可分空间)

c空间为可分空间。

证明 构造

$$S = \{\{r_1, \dots, r_n, r_n, \dots\}\} : r_k \in \mathbb{Q}, n \in \mathbb{N}^*\}$$

那么 S 为可数集。对于任意 $x = \{x_n\}_{n=1}^{\infty} \in c$,记 $x_n \to x_0$,那么存在 $N \in \mathbb{N}^*$,使得对于任意 n > N,成立 $|x_n - x_0| \le \varepsilon/2$ 。取 r_{N+1} 满足 $|r_{N+1} - x_0| \le \varepsilon/2$,此时对于任意 n > N,成立

$$|r_{N+1} - x_n| \le |x_n - x_0| + |r_{N+1} - x_0| \le \varepsilon$$

对于任意 $1 \le n \le N$, 取 r_n 满足 $|r_n - x_n| \le \varepsilon$ 。 令 $x_r = \{r_1, \dots, r_N, r_{N+1}, r_{N+1}, \dots\}$,于是

$$||x_r - x|| = \sup_{n \in \mathbb{N}^*} |r_n - x_n| = \max \left(\sup_{1 \le n \le N} |r_n - x_n|, \sup_{n > N} |r_{N+1} - x_n| \right) \le \varepsilon$$

因此S为稠密集,进而c空间为可分空间。

命题 1.11.7 (c 空间的收敛性)

在c空间中,成立

$$\{x_n\}_{n=1}^{\infty}$$
依范数收敛于 $x \iff \{x_n\}_{n=1}^{\infty}$ 依坐标一致收敛于 x

证明

$$\{\{x_n^{(m)}\}_{n=1}^\infty\}_{m=1}^\infty 依 范 数 收 敛 于 \{x_n\}_{n=1}^\infty$$

$$\iff \{x_n^{(m)}\}_{n=1}^\infty \longrightarrow \{x_n\}_{n=1}^\infty$$

$$\iff \lim_{m \to \infty} \|\{x_n^{(m)}\}_{n=1}^\infty - \{x_n\}_{n=1}^\infty\| = 0$$

$$\iff \lim_{m \to \infty} \|\{x_n^{(m)} - x_n\}_{n=1}^\infty\| = 0$$

$$\iff \lim_{m \to \infty} \sup_{n \in \mathbb{N}^*} |x_n^{(m)} - x_n| = 0$$

$$\iff \forall \varepsilon > 0, \exists M \in \mathbb{N}^*, \forall m \geq M, \sup_{n \in \mathbb{N}^*} |x_n^{(m)} - x_n| \leq \varepsilon$$

$$\iff \forall \varepsilon > 0, \exists M \in \mathbb{N}^*, \forall m \geq M, \forall n \in \mathbb{N}^*, |x_n^{(m)} - x_n| \leq \varepsilon$$

$$\iff \{\{x_n^{(m)}\}_{n=1}^\infty\}_{m=1}^\infty \text{ 依 坐 标 } - \text{ 致 收 敛 } \text{ } \text{ } \{x_n\}_{n=1}^\infty$$

1.11.3 S[a,b] 空间

定义 1.11.3 (S[a,b] 空间)

$$S[a,b]=\{$$
几乎处处有限的可测函数 $f:[a,b] o \mathbb{R}\}, \qquad d(f,g)=\int_a^b rac{|f-g|}{1+|f-g|}$

命题 1.11.8 (S[a,b] 空间为度量空间)

S[a,b] 空间为度量空间。

*

证明 仅证明三角不等式,由引理1.11.1

$$\begin{split} d(f,h) &= \int_a^b \frac{|f-h|}{1+|f-h|} \\ &= \int_a^b \frac{|(f-g)+(g-h)|}{1+|(f-g)+(g-h)|} \\ &\leq \int_a^b \left(\frac{|f-g|}{1+|f-g|} + \frac{|g-h|}{1+|g-h|}\right) \\ &= \int_a^b \frac{|f-g|}{1+|f-g|} + \int_a^b \frac{|g-h|}{1+|g-h|} \\ &= d(f,g) + d(g,h) \end{split}$$

定义 1.11.4 (依测度收敛)

对于可测集 E 上的几乎处处有限的可测函数序列 $\{f_n\}_{n=1}^{\infty}$ 和可测函数 f,称 f_n 在 E 上依测度收敛于 f,并记作 $f_n \xrightarrow{m} f$,如果对于任意 $\varepsilon > 0$,成立

$$\lim_{n \to \infty} m(E[|f_n - f| \ge \varepsilon]) = 0$$

命题 **1.11.9** (S[a,b] 空间为度量线性空间)

S[a,b] 空间为度量线性空间。

证明 任取

$$f_n \xrightarrow{d} f, \qquad g_n \xrightarrow{d} g, \qquad \lambda_n \longrightarrow \lambda$$

那么

$$\lim_{n \to \infty} d(f_n, f) = \lim_{n \to \infty} d(g_n, g) = \lim_{n \to \infty} |\lambda_n - \lambda| = 0$$

对于加法连续性

$$d(f_n + g_n, f + g)$$

$$\leq d(f_n + g_n, f + g_n) + d(f + g_n, f + g)$$

$$= \int_a^b \frac{|f_n - f|}{1 + |f_n - f|} + \int_a^b \frac{|g_n - g|}{1 + |g_n - g|}$$

$$= d(f_n, f) + d(g_n, g)$$

因此

$$\lim_{n \to \infty} d(f_n + g_n, f + g) = \lim_{n \to \infty} d(f_n, f) + \lim_{n \to \infty} d(g_n, g) = 0$$

于是

$$f_n + g_n \xrightarrow{d} f + g$$

对于数乘连续性,容易证明函数序列 $\{(\lambda_n - \lambda)f\}_{n=1}^{\infty}$ 依测度收敛于 0,而

$$\frac{|\lambda_n - \lambda||f|}{1 + |\lambda_n - \lambda||f|} \le |\lambda_n - \lambda||f|$$

那么函数序列

$$\left\{ \frac{|\lambda_n - \lambda||f|}{1 + |\lambda_n - \lambda||f|} \right\}_{n=1}^{\infty}$$

依测度收敛于 0。又由于

$$\frac{|\lambda_n - \lambda||f|}{1 + |\lambda_n - \lambda||f|} \le 1$$

那么由 Lebesgue 控制收敛定理1.10.8,成立

$$d(\lambda_n f, \lambda f) = \int_a^b \frac{|\lambda_n - \lambda||f|}{1 + |\lambda_n - \lambda||f|} \to 0$$

由于 $\lambda_n \to \lambda$, 那么存在 M > 0, 使得对于任意 $n \in \mathbb{N}^*$, 成立 $|\lambda_n| < M$ 。由于引理1.11.1以及

$$\frac{|\lambda||x|}{1+|\lambda||x|} \leq \frac{(1+|\lambda|)|x|}{1+|x|}, \qquad \forall \lambda, x \in \mathbb{C}$$

那么

$$d(\lambda_n f_n, \lambda f)$$

$$\leq d(\lambda_n f_n, \lambda_n f) + d(\lambda_n f, \lambda f)$$

$$= \int_a^b \frac{|\lambda_n||f_n - f|}{1 + |\lambda_n||f_n - f|} + d(\lambda_n f, \lambda f)$$

$$\leq (1 + |\lambda_n|) \int_a^b \frac{|f_n - f|}{1 + |f_n - f|} + d(\lambda_n f, \lambda f)$$

$$< (1 + M)d(f_n, f) + d(\lambda_n f, \lambda f)$$

因此

$$\lim_{n \to \infty} d(\lambda_n f_n, \lambda f) = (1 + M) \lim_{n \to \infty} d(f_n, f) + \lim_{n \to \infty} d(\lambda_n f, \lambda f) = 0$$

于是

$$\lambda_n f_n \xrightarrow{d} \lambda f$$

综上所述,S[a,b] 空间为度量线性空间。

命题 1.11.10 (S[a,b] 空间为完备空间)

S[a,b] 空间为完备空间。

命题 1.11.11 (S[a,b] 空间的收敛性)

在S[a,b],成立

$$\{f_n\}_{n=1}^{\infty}$$
依度量 d 收敛于 $f\iff \{f_n\}_{n=1}^{\infty}$ 依测度收敛于 f

证明 对于必要性,任取 $\{f_n\}_{n=1}^{\infty} \subset S[a,b]$,使得成立 $\{f_n\}_{n=1}^{\infty}$ 依度量 d 收敛于 $f \in S[a,b]$ 。任取 $\varepsilon > 0$,记

$$E_n = \{x \in [a, b] : |f_n(x) - f(x)| \ge \varepsilon\}$$

由引理1.11.1

$$d(f_n, f) = \int_a^b \frac{|f_n - f|}{1 + |f_n - f|}$$

$$\geq \int_{E_n} \frac{|f_n - f|}{1 + |f_n - f|}$$

$$\geq \int_{E_n} \frac{\varepsilon}{1 + \varepsilon}$$

$$= m(E_n) \frac{\varepsilon}{1 + \varepsilon}$$

从而 $m(E_n) \to 0$,因此 $\{f_n\}_{n=1}^{\infty}$ 依测度收敛于 f。

对于充分性, 任取 $\{f_n\}_{n=1}^{\infty}\subset S[a,b]$, 使得成立 $\{f_n\}_{n=1}^{\infty}$ 依测度收敛于 $f\in S[a,b]$, 那么 $\{f_n-f\}_{n=1}^{\infty}$ 依测度收敛于 g0, 而

$$\frac{|f_n - f|}{1 + |f_n - f|} \le |f_n - f|$$

那么函数序列

$$\left\{\frac{|f_n - f|}{1 + |f_n - f|}\right\}_{n=1}^{\infty}$$

依测度收敛于 0。又由于

$$\frac{|f_n - f|}{1 + |f_n - f|} \le 1$$

那么由 Lebesgue 控制收敛定理1.10.8,成立

$$d(f_n, f) = \int_a^b \frac{|f_n - f|}{1 + |f_n - f|} \to 0$$

因此 $\{f_n\}_{n=1}^{\infty}$ 依度量 d 收敛于 f。

1.11.4 C[a,b] 空间

定义 1.11.5 (C[a, b] 空间)

$$C[a,b] = \{ 连续函数 f : [a,b] \rightarrow \mathbb{C} \}, \qquad \|f\| = \sup_{[a,b]} |f|$$

命题 1.11.12 (C[a,b] 空间为赋范线性空间)

C[a,b] 空间为赋范线性空间。

证明 仅证明三角不等式,由于对于任意 $x \in [a,b]$,成立

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le \sup_{[a,b]} |f| + \sup_{[a,b]} |g| = ||f|| + ||g||$$

那么

$$||f+g|| = \sup_{[a,b]} |f+g| \le ||f|| + ||g||$$

命题 1.11.13 (C[a,b] 空间为完备空间)

C[a,b] 空间为完备空间。

证明 任取 Cauchy 序列 $\{f_n\}_{n=1}^{\infty} \subset C[a,b]$, 那么对于任意 $\varepsilon > 0$, 存在 $N \in \mathbb{N}^*$, 使得对于任意 $m, n \geq N$, 成立

$$||f_m - f_n|| \le \varepsilon \iff |f_m(x) - f_n(x)| \le \varepsilon, \forall x \in [0, 1]$$
 (*)

因此对于任意 $x \in [0,1]$,数列 $\{f_n(x)\}_{n=1}^{\infty} \subset \mathbb{C}$ 为 Cauchy 序列,因此存在 $f(x) \in \mathbb{C}$,使得成立 $\lim_{n \to \infty} f_n(x) = f(x)$ 。在(*)式中,令 $m \to \infty$,那么对于任意 $n \ge N$,以及任意 $x \in [0,1]$,成立

$$|f(x) - f_n(x)| \le \varepsilon$$

因此序列 $\{f_n\}_{n=1}^{\infty}$ 一致收敛于 f, 进而 f 连续, 即 $f \in C[a,b]$ 。又由(*)式, 对于任意 $n \geq N$, 成立

$$||f - f_n|| \le \varepsilon \implies \lim_{n \to \infty} ||f - f_n|| = 0$$

综上所述, C[a,b] 为完备空间。

命题 **1.11.14** (C[a,b] 空间的收敛性)

在C[a,b]空间中,成立

$$\{f_n\}_{n=1}^{\infty}$$
依范数收敛于 $f \iff \{f_n\}_{n=1}^{\infty}$ 一致收敛于 f

证明

第二章 Hilbert 空间

2.1 内积空间

2.1.1 内积

定义 2.1.1 (内积)

称复数域 \mathbb{C} 上的向量空间 X 上的函数 $(\cdot,\cdot): X\times X\to \mathbb{C}$ 为内积,如果满足如下性质。

- 1. $(x,x) \ge 0$, 当且仅当 x = 0 时等号成立。
- 2. 共轭对称性: $(x,y) = \overline{(y,x)}$
- 3. 左线性: $(\lambda x + \mu y, z) = \lambda(x, z) + \mu(y, z)$

定义 2.1.2 (内积空间)

称复数域 \mathbb{C} 上的向量空间 $(X,(\cdot,\cdot))$ 为内积空间,如果 $(\cdot,\cdot): X\times X\to \mathbb{C}$ 为内积。

定义 2.1.3 (Hilbert 空间)

称完备的内积空间为 Hilbert 空间。

定理 2.1.1 (内积的连续性)

内积 $(\cdot,\cdot): X\times X\to\mathbb{C}$ 为连续函数。

证明 任取

$$x_n \longrightarrow x, \qquad y_n \longrightarrow y$$

 \Diamond

由三角不等式与 Scharz 不等式2.1.5

 $|(x_n, y_n) - (x, y)| \le |(x_n, y_n) - (x_n, y)| + |(x_n, y) - (x, y)| = |(x_n, y_n - y)| + |(x_n - x, y)| \le ||x_n|| ||y_n - y|| + ||x_n - x|| ||y||$

命题 2.1.1

对于内积空间 X 中稠密子集 $M \subset X$,如果 $x \in X$ 满足对于任意 $y \in M$,成立 (x,y) = 0,那么 x = 0。

证明 由于 $\overline{M} = X$, 那么存在 $\{x_n\}_{n=1}^{\infty} \subset M$, 使得成立 $x_n \to x$, 由内积的连续性2.1.1, 成立

$$(x,x) = \lim_{n \to \infty} (x_n, x) = 0$$

因此 x = 0。

2.1.2 正交性

定义 2.1.4 (正交)

对于内积空间 X, 称 $x,y \in X$ 相互正交, 并记作 $x \perp y$, 如果 (x,y) = 0。

定义 2.1.5 (正规正交集)

称 $\{e_{\lambda}\}_{\lambda \in \Lambda}$ ⊂ X 为内积空间 X 中的正规正交集,如果

$$(e_{\alpha}, e_{\beta}) = \begin{cases} 1, & \alpha = \beta \\ 0, & \alpha \neq \beta \end{cases}$$

定理 2.1.2 (勾股定理)

对于内积空间 X,如果 (x,y)=0,那么

$$||x + y||^2 = ||x||^2 + ||y||^2$$

证明

$$||x + y||^2 = (x + y, x + y)$$

$$= (x, x) + (y, x) + (x, y) + (y, y)$$

$$= (x, x) + (y, y)$$

$$= ||x||^2 + ||y||^2$$

定理 2.1.3

如果 $\{x_k\}_{k=1}^n \subset X$ 为内积空间 X 中的正规正交集, 那么对于任意 $x \in X$, 成立

$$||x||^2 = \sum_{k=1}^n |(x, x_k)|^2 + \left| ||x - \sum_{k=1}^n (x, x_k) x_k||^2 \right|^2$$

证明 由于

$$x = \left(\sum_{k=1}^{n} (x, x_k) x_k\right) + \left(x - \sum_{k=1}^{n} (x, x_k) x_k\right)$$

且

$$\left(\sum_{k=1}^{n} (x, x_k) x_k, x - \sum_{k=1}^{n} (x, x_k) x_k\right) = \sum_{k=1}^{n} (x, x_k) (x_k, x) - \sum_{i,j=1}^{n} (x, x_i) (x_j, x) (x_i, x_j)$$

$$= \sum_{k=1}^{n} (x, x_k) (x_k, x) - \sum_{k=1}^{n} (x, x_k) (x_k, x)$$

$$= 0$$

$$\left\| \sum_{k=1}^{n} (x, x_k) x_k \right\|^2 = \left(\sum_{k=1}^{n} (x, x_k) x_k, \sum_{k=1}^{n} (x, x_k) x_k \right)$$

$$= \sum_{i,j=1}^{n} (x, x_i) (x_j, x) (x_i, x_j)$$

$$= \sum_{k=1}^{n} (x, x_k) (x_k, x)$$

$$= \sum_{k=1}^{n} |(x, x_k)|^2$$

那么由勾股定理2.1.2

$$||x||^2 = \left\| \sum_{k=1}^n (x, x_k) x_k \right\|^2 + \left\| x - \sum_{k=1}^n (x, x_k) x_k \right\|^2 = \sum_{k=1}^n |(x, x_k)|^2 + \left\| x - \sum_{k=1}^n (x, x_k) x_k \right\|^2$$

定理 2.1.4 (Bessel 不等式)

如果 $\{e_k\}_{k=1}^n \subset X$ 为内积空间 X 中的正规正交集,那么对于任意 $x \in X$,成立

$$\sum_{k=1}^{n} |(x, e_k)|^2 \le ||x||^2$$

当且仅当

$$x = \sum_{k=1}^{n} (x, e_k) e_k$$

时等号成立。

证明 由定理2.1.3, 命题显然!

定理 2.1.5 (Scharz 不等式)

对于内积空间 X, 如果 $x,y \in X$, 那么成立不等式

$$|(x,y)| \le ||x|| ||y||$$

证明 如果 x=0 或 y=0, 那么

$$0 = |(x, y)| = ||x|| ||y||$$

如果 $x \neq 0$ 且 $y \neq 0$, 那么由 Bessel 不等式2.1.4

$$\frac{|(x,y)|^2}{\|y\|^2} = \left| \left(x, \frac{y}{\|y\|} \right) \right|^2 \le \|x\| \implies |(x,y)| \le \|x\| \|y\|$$

2.1.3 内积与范数

定理 2.1.6 (内积可诱导范数)

内积 (\cdot,\cdot) 可诱导范数 $\|\cdot\|$ 为 $\|x\| = \sqrt{(x,x)}$ 。

证明 仅证明三角不等式, 由 Scharz 不等式2.1.5

$$\begin{split} \|x+y\|^2 &= \|x\|^2 + 2 \mathrm{Re}(x,y) + \|y\|^2 \\ &\leq \|x\|^2 + 2 |(x,y)| + \|y\|^2 \\ &\leq \|x\|^2 + 2 \|x\| \|y\| + \|y\|^2 \\ &= (\|x\| + \|y\|)^2 \end{split}$$

那么

$$||x + y|| \le ||x|| + ||y||$$

定理 2.1.7 (极化恒等式)

对于内积空间 X 中的 $x,y \in X$, 成立

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2)$$

 \odot

 \Diamond

证明 由于

$$||x + y||^2 = (x, x) + (x, y) + (y, x) + (y, y)$$
$$||x - y||^2 = (x, x) - (x, y) - (y, x) + (y, y)$$
$$||x + iy||^2 = (x, x) - i(x, y) + i(y, x) + (y, y)$$
$$||x - iy||^2 = (x, x) + i(x, y) - i(y, x) + (y, y)$$

那么

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2)$$

定理 2.1.8 (平行四边形法则)

对于内积空间 X 中的 $x,y \in X$, 成立

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

证明 由于

$$||x + y||^2 = (x, x) + (x, y) + (y, x) + (y, y)$$
$$||x - y||^2 = (x, x) - (x, y) - (y, x) + (y, y)$$

那么

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

定理 2.1.9 (范数可诱导内积的等价条件)

对于范数 $\|\cdot\|: X \to \mathbb{R}$, 成立

范数∥.∥可诱导内积 ⇔ 范数∥.∥满足平行四边形法则

此时诱导内积为

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2)$$

命题 2.1.2

$$l^p$$
空间为内积空间 $\iff p=2$

证明 如果 p=2, 那么

$$||x+y||_2^2 + ||x-y||_2^2 = 2(||x||_2^2 + ||y||_2^2), \quad \forall x, y \in l^2$$

由定理2.1.9, l^2 空间为内积空间。

如果
$$p \neq 2$$
, 那么取 $x = (1, 1, 0, \dots)$, $y = (1, -1, 0, \dots)$, 因此

$$||x+y||_p^2 = ||x-y||_p^2 = 4, \qquad ||x||_p^2 = ||y||_p^2 = 2^{2/p}$$

此时

$$||x + y||_p^2 + ||x - y||_p^2 = 2^3, \qquad 2(||x||_p^2 + ||y||_p^2) = 2^{2+2/p}$$

那么

$$||x+y||_p^2 + ||x-y||_p^2 \neq 2(||x||_p^2 + ||y||_p^2)$$

由定理2.1.9, l^p 空间不为内积空间。

命题 2.1.3

L^p 空间为内积空间 $\iff p=2$

证明 如果 p=2, 那么

$$||f + g||_2^2 + ||f - g||_2^2 = 2(||f||_2^2 + ||g||_2^2), \quad \forall f, g \in L^p$$

由定理2.1.9, L^2 空间为内积空间。

如果 $p \neq 2$, 那么取 $f = \mathbb{1}_A$, $g = \mathbb{1}_B$, 其中 $A \cup B = E$, 且 $\mu(A) = \mu(B) = \mu(E)/2 = m < \infty$, 那么 $f + g = |f - g| = \mathbb{1}_E$, 因此

$$||f + g||_p^2 = ||f - g||_p^2 = 2m, \qquad ||f||_p^2 = ||g||_p^2 = m^{2/p}$$

此时

$$||f + g||_p^2 + ||f - g||_p^2 = 4m,$$
 $2(||f||_p^2 + ||g||_p^2) = 4m^{2/p}$

那么

$$||f + g||_p^2 + ||f - g||_p^2 \neq 2(||f||_p^2 + ||g||_p^2)$$

由定理2.1.9, L^p 空间不为内积空间。

2.2 正规正交基

定理 2.2.1 (Schmidt 正交化)

由 Hilbert 空间 \mathcal{H} 中的线性无关向量 $\{\xi_n\}$ 递归构造正规正交集 $\{e_n\}$ 。

$$e_1 = \frac{\xi_1}{\|\xi_1\|}, \qquad e_n = \frac{\xi_n - \sum_{k=1}^{n-1} (\xi_n, e_k) e_k}{\left\|\xi_n - \sum_{k=1}^{n-1} (\xi_n, e_k) e_k\right\|}$$

定义 2.2.1 (正规正交基)

称正规正交集 $\mathcal{N} \subset \mathcal{H}$ 为 Hilbert 空间 \mathcal{H} 的正规正交基,如果满足如下命题之一。

1.

$$M \supset N$$
为正规正交集 $\Longrightarrow M = N$

2.

$$\forall e \in \mathcal{N}, (x, e) = 0 \implies x = 0$$

3.

$$\overline{Sp\,\mathcal{N}}=\mathcal{H}$$

证明 $1 \implies 2$: 任取 $x \in \mathcal{H}$,满足对于任意 $e \in \mathcal{N}$,成立 (x,e) = 0,如果 $x \neq 0$,那么 $\mathcal{N} \cup \{x/\|x\|\} \supseteq \mathcal{N}$ 为正规正交基,矛盾! 因此 x = 0。

 $2 \implies 1$: 任取正规正交集 $\mathcal{M} \supset \mathcal{N}$, 如果 $\mathcal{M} \supsetneq \mathcal{N}$, 那么取 $x \in \mathcal{M} \setminus \mathcal{N}$, 满足对于任意 $e \in \mathcal{N}$, 成立 (x,e) = 0, 但是 $x \neq 0$, 矛盾!

定理 2.2.2 (正规正交基的存在性)

Hilbert 空间存在正规正交基。

 \Diamond

证明 对于 Hilbert 空间 升, 定义

$$\mathcal{T} = \{\mathcal{H}$$
的正规正交集}

那么 ∅≠∅。定义 ∅中的序

$$S \prec T \iff S \subset T$$

那么 \mathcal{I} 依序 \prec 构成部分有序集。任取 \mathcal{I} 中的完全有序子集 $\{S_{\lambda}\}_{\lambda\in\Lambda}$,那么 $\bigcup_{\lambda\in\Lambda} S_{\lambda}\in\mathcal{I}$ 为 $\{S_{\lambda}\}_{\lambda\in\Lambda}$ 的上界,由 Zorn 引理1.1.2, \mathcal{I} 存在极大元 \mathcal{I} ,此为 \mathcal{I} 的正规正交基。

定理 2.2.3 (可分 Hilbert 空间存在可数正规正交基)

可分 Hilbert 空间存在可数正规正交基。

 $^{\circ}$

证明 如果 Hilbert 空间 \mathcal{H} 为可分空间,那么存在可数子集 $\mathcal{S} \subset \mathcal{H}$,使得成立 $\overline{\mathcal{S}} = \mathcal{H}$ 。由数学归纳法,存在线性 无关子集 $\{x_n\}_{n=1}^{\infty}$,使得成立 $\mathcal{S} = \operatorname{Sp}\{x_n\}_{n=1}^{\infty}$ 。利用 Schmidt 正交化2.2.1,得到正规正交集 $\{e_n\}_{n=1}^{\infty}$,那么对于 任意 $n \in \mathbb{N}^*$,存在 $\{\lambda_k^{(n)}\}_{k=1}^n \subset \mathbb{C}$,使得成立

$$x_n = \sum_{k=1}^n \lambda_k^{(n)} e_k$$

任取 $x \in \mathcal{H}$,满足对于任意 $n \in \mathbb{N}^*$,成立 $(x,e_n) = 0$,那么对于任意 $n \in \mathbb{N}^*$,成立 $(x,x_n) = 0$ 。任取 $s \in \mathcal{S}$,由于 $\mathcal{S} = \operatorname{Sp}\{x_n\}_{n=1}^{\infty}$,那么 (x,s) = 0。由命题2.1.1,x = 0。由 x 的任意性, $\{e_n\}_{n=1}^{\infty}$ 为 \mathcal{H} 的正规正交基。

定理 2.2.4 (Parseval 公式)

如果 $\mathcal{N} \subset \mathcal{H}$ 为 Hilbert 空间 \mathcal{H} 的正规正交基,那么对于任意 $x \in \mathcal{H}$,成立

$$x = \sum_{e \in \mathcal{N}} (x, e)e, \qquad ||x||^2 = \sum_{e \in \mathcal{N}} |(x, e)|^2$$

其中级数无条件收敛,即求和与顺序无关,且存在可数正规正交集 $\mathcal{N}_x = \{e_n^{(x)}\}_{n=1}^\infty \subset \mathcal{N}$,使得对于任意 $e \in \mathcal{N} \setminus \mathcal{N}_x$,成立 (x,e) = 0,进而成立

$$x = \sum_{n=1}^{\infty} (x, e_n^{(x)}) e_n, \qquad ||x||^2 = \sum_{n=1}^{\infty} |(x, e_n^{(x)})|^2$$

 \Diamond

定理 2.2.5 (可分 Hilbert 空间的结构)

可分 Hilbert 空间与 l² 空间保内积线性同构。

 \odot

2.3 射影定理, Frechet-Riesz 表现定理

2.3.1 射影定理

定义 2.3.1 (正交补)

定义 Hilbert 空间 H 的子空间 M 的正交补为

$$\mathcal{M}^{\perp} = \{ x \in \mathcal{H} : (x, m) = 0, \forall m \in \mathcal{M} \}$$

*

命题 2.3.1 (正交补为闭子空间)

如果 M 为 HIIbert 空间 \mathcal{H} 的子空间,那么 M^{\perp} 为 \mathcal{H} 的闭子空间。

证明 任取 $x,y \in \mathcal{M}^{\perp}$,以及 $\lambda \in \mathbb{C}$,那么对于任意 $m \in \mathcal{M}$,成立

$$(x,m) = (y,m) = 0$$

因此

$$(x + y, m) = (x, m) + (y, m) = 0,$$
 $(\lambda x, m) = \lambda(x, m) = 0$

于是 $x+y\in\mathcal{M}^{\perp}$,且 $\lambda x\in\mathcal{M}^{\perp}$,进而 \mathcal{M}^{\perp} 为升的子空间。

对于闭性, 任取 $x \in \overline{\mathcal{M}^{\perp}}$, 那么存在 $\{x_n\}_{n=1}^{\infty} \subset \mathcal{M}^{\perp}$, 使得成立 $x_n \to x$ 。任取 $y \in \mathcal{M}$, 那么对于任意 $n \in \mathbb{N}^*$, 成立 $(x_n, y) = 0$, 因此 (x, y) = 0, 进而 $\overline{\mathcal{M}^{\perp}} = \mathcal{M}^{\perp}$, 所以 \mathcal{M}^{\perp} 为 \mathcal{H} 的闭子空间。

命题 2.3.2 (正交补的性质)

如果 M, N 为 Hilbert 空间 \mathcal{H} 的子空间, 且 $M \subset \mathcal{N}$, 那么 $\mathcal{N}^{\perp} \subset \mathcal{M}^{\perp}$ 。

证明 任取 $x \in \mathcal{N}^{\perp}$, 那么对于任意 $m \in \mathcal{M} \subset \mathcal{N}$, 成立 (x, m) = 0, 因此 $x \in \mathcal{M}$, 进而 $\mathcal{N}^{\perp} \subset \mathcal{M}^{\perp}$ 。

命题 2.3.3 (正交补的性质)

如果 M 为 HIlbert 空间 $\mathcal H$ 的子空间,那么 $(\overline{M})^{\perp}=M^{\perp}$ 。

证明 一方面,由于 $\mathcal{M} \subset \overline{\mathcal{M}}$,那么由命题2.3.2, $(\overline{\mathcal{M}})^{\perp} \subset \mathcal{M}^{\perp}$ 。

另一方面,任取 $x \in \mathcal{M}^{\perp}$,以及 $y \in \overline{\mathcal{M}}$,那么存在 $\{y_n\}_{n=1}^{\infty} \subset \mathcal{M}$,使得 $y_n \to y$ 。而对于任意 $n \in \mathbb{N}^*$,成立 $(x,y_n)=0$,因此 (x,y)=0,那么 $x \in (\overline{\mathcal{M}})^{\perp}$,进而 $(\overline{\mathcal{M}})^{\perp} \supset \mathcal{M}^{\perp}$ 。

综合两方面, $(\overline{\mathcal{M}})^{\perp} = \mathcal{M}^{\perp}$ 。

命题 2.3.4 (正交补的性质)

如果 M 为 HIIbert 空间 \mathcal{H} 的子空间, 那么 $\overline{M} = (M^{\perp})^{\perp}$ 。

证明 一方面,任取 $x \in (\mathcal{M}^{\perp})^{\perp}$,由于 $\overline{\mathcal{M}}$ 为 \mathcal{H} 的闭子空间,那么由射影定理2.3.1,存在且存在唯一 $(y,z) \in \overline{\mathcal{M}} \times (\overline{\mathcal{M}})^{\perp}$,使得成立 x = y + z。由命题2.3.3, $z \in \mathcal{M}^{\perp}$,那么

$$0 = (x, z) = (z, z) \implies z = 0 \iff x = y \in \overline{\mathcal{M}} \implies \overline{\mathcal{M}} \supset (\mathcal{M}^{\perp})^{\perp}$$

另一方面,由于 $\mathcal{M} \subset (\mathcal{M}^{\perp})^{\perp}$,且由命题2.3.1,那么

$$\overline{\mathcal{M}} = \mathcal{M} \subset (\mathcal{M}^{\perp})^{\perp}$$

综合两方面, $\overline{\mathcal{M}} = (\mathcal{M}^{\perp})^{\perp}$ 。

定理 2.3.1 (射影定理)

如果 M 为 Hilbert 空间 $\mathcal H$ 的闭子空间,那么对于任意 $x\in\mathcal H$,存在且存在唯一 $(y,z)\in\mathcal M\times\mathcal M^\perp$,使得成立 x=y+z。

证明 由定理1.5.3, \mathcal{M} 为 Hilbert 空间。由定理2.2.2, \mathcal{M} 存在正规正交基 \mathcal{N} 。任取 $x \in \mathcal{H}$,由定理2.2.4,存在可数正规正交集 $\mathcal{N}_x = \{e_n^{(x)}\}_{n=1}^{\infty} \subset \mathcal{N}$,使得对于任意 $e \in \mathcal{N} \setminus \mathcal{N}_x$,成立 (x,e) = 0。令

$$y = \sum_{n=1}^{\infty} (x, e_n^{(x)}) e_n^{(x)}$$

由定理2.2.4, 该级数收敛。由于 M 为闭集, 那么 $y \in M$ 。

令 z = x - y, 那么对于任意 $n \in \mathbb{N}^*$, 成立

$$(z, e_n^{(x)}) = (x - y, e_n^{(x)})$$

$$= (x, e_n^{(x)}) - (y, e_n^{(x)})$$

$$= (x, e_n^{(x)}) - \left(\sum_{k=1}^{\infty} (x, e_k^{(x)}) e_k^{(x)}, e_n^{(x)}\right)$$

$$= (x, e_n^{(x)}) - \sum_{k=1}^{\infty} (x, e_k^{(x)}) (e_k^{(x)}, e_n^{(x)})$$

$$= (x, e_n^{(x)}) - (x, e_n^{(x)})$$

$$= 0$$

对于任意 $e \in \mathcal{N} \setminus \mathcal{N}_x$, 成立

$$(z,e) = (x-y,e) = (x,e) - (y,e) = (x,e) - \left(\sum_{n=1}^{\infty} (x,e_n^{(x)})e_n^{(x)},e\right) = (x,e) - \sum_{n=1}^{\infty} (x,e_n^{(x)})(e_n^{(x)},e) = 0$$

因此对于任意 $e \in \mathcal{N}$,成立 (z,e) = 0。任取 $m \in \mathcal{M}$,由 Parseval 公式2.2.4

$$m = \sum_{e \in \mathcal{N}} (m, e)e \implies (z, m) = 0 \implies z \in \mathcal{M}^{\perp}$$

综上所述,成立

$$x = y + z, \qquad y \in \mathcal{M}, \quad z \in \mathcal{M}^{\perp}$$

唯一性由 $\mathcal{M} \cap \mathcal{M}^{\perp} = \{0\}$ 保证。

2.3.2 Frechet-Riesz 表现定理

定义 2.3.2 (Hilbert 空间的对偶空间)

定义 Hilbert 空间 H 的对偶空间为 Hilbert 空间

$$\mathcal{H}^* = \{ 有界线性泛函f : \mathcal{H} \to \mathbb{C} \}$$

$$(f,g) = \overline{(\tau(f),\tau(g))}$$

定理 2.3.2 (Frechet-Riesz 表现定理)

对于 Hilbert 空间 \mathcal{H} ,存在保范共轭线性双射 $\tau:\mathcal{H}^*\to\mathcal{H}$,使得对于任意 $x\in\mathcal{H}$ 与 $f\in\mathcal{H}^*$,成立 $f(x)=(x,\tau(f))$ 。

证明 首先证明存在映射 $\tau: \mathcal{H}^* \to \mathcal{H}$,使得对于任意 $x \in \mathcal{H}$ 与 $f \in \mathcal{H}$,成立 $f(x) = (x, \tau(f))$ 。任取 $f \in \mathcal{H}^*$,如果 f = 0,那么定义 $\tau(f) = 0$,因此对于任意 $x \in \mathcal{H}$,成立

$$f(x) = 0 = (x, 0) = (x, \tau(f))$$

如果 $f \neq 0$,那么 $\ker f \subsetneq \mathcal{H}$ 。由命题3.1.1, $\ker f \to \mathcal{H}$ 的闭子空间。取 $x_0 \in \mathcal{H} \setminus \ker f$,由射影定理2.3.1,存在且存在唯一 $(y_0, z_0) \in \ker f \times (\ker f)^{\perp}$,使得成立 $x_0 = y_0 + z_0$,因此 $z_0 \neq 0$ 且 $f(z_0) \neq 0$ 。任取 $x \in \mathcal{H}$,令 $\beta_x = f(x)/f(z_0)$,那么

$$f(x) = \beta_x f(z_0) = f(\beta_x z_0) \iff f(x - \beta_x z_0) \in \ker f \iff x - \beta_x z_0 \in \ker f$$

由于 $x = (x - \beta_x z_0) + \beta_x z_0$,那么 $\mathcal{H} = \text{span} (\ker f \cup \{z_0\})$ 。由于

$$(x, z_0) = ((x - \beta_x z_0) + \beta_x z_0, z_0) = (x - \beta_x z_0, z_0) + \beta_x (z_0, z_0) = \beta_x ||z_0||^2$$

因此 $\beta_x = (x, z_0/\|z_0\|^2)$,进而 $f(x) = (x, z_0\overline{f(z_0)}/\|z_0\|^2)$,此时定义 $\tau(f) = z_0\overline{f(z_0)}/\|z_0\|^2$,那么对于任意 $x \in \mathcal{H}$,成立 $f(x) = (x, \tau(f))$ 。

其次证明映射 τ 为保范共轭线性双射。对于保范性,任取 $f \in \mathcal{H}^*$,如果f = 0,那么 $\tau(f) = 0$,因此

$$\|\tau(f)\| = \|f\| = 0$$

如果 $f \neq 0$, 那么由 Scharz 不等式2.1.5

$$\begin{split} &\|\tau(f)\| = \left|\left(\frac{\tau(f)}{\|\tau(f)\|},\tau(f)\right)\right| = \left|f\left(\frac{\tau(f)}{\|\tau(f)\|}\right)\right| \leq \|f\| \\ &\|f\| = \sup_{\|x\| \leq 1} |f(x)| = \sup_{\|x\| \leq 1} |(x,\tau(f))| \leq \sup_{\|x\| = 1} \|x\| \|\tau(f)\| = \|\tau(f)\| \end{split}$$

因此 $||f|| = ||\tau(f)||$, 进而该映射为保范映射。

对于单射性,由命题3.1.2,结合 τ 的保范性, τ 为单射。

对于满射性,对于任意 $x \in \mathcal{H}$,定义 $f_x \in \mathcal{H}^*$,使得对于任意 $y \in \mathcal{H}$,成立 $f_x(y) = (y,x)$,那么 $\tau(f_x) = x$, 进而 τ 为满射。

对于共轭线性, 由于

$$(x, \tau(f+g)) = (f+g)(x) = f(x) + g(x) = (x, \tau(f)) + (x, \tau(g)) = (x, \tau(f) + \tau(g))$$
$$(x, \tau(\lambda f)) = (\lambda f)(x) = \lambda f(x) = \lambda(x, \tau(f)) = (x, \overline{\lambda}\tau(f))$$

那么由命题2.1.1

$$\tau(f+g) = \tau(f) + \tau(g), \qquad \tau(\lambda f) = \overline{\lambda}\tau(f)$$

综上所述,对于 Hilbert 空间 \mathcal{H} ,存在保范共轭线性双射 $\tau:\mathcal{H}^*\to\mathcal{H}$,使得对于任意 $x\in\mathcal{H}$ 与 $f\in\mathcal{H}^*$,成立 $f(x)=(x,\tau(f))$,命题得证!

推论 2.3.1

对于 Hilbert 空间 H, 成立

$$||x|| = \sup_{\|y\| \le 1} |(x, y)|$$

m

证明 构造映射

$$f_x: \mathcal{H} \longrightarrow \mathbb{C}$$

 $y \longmapsto (y, x)$

那么 $f_x \in \mathcal{H}^*$ 。由 Frechet-Riesz 表现定理2.3.2,存在保范共轭线性双射 $\tau: \mathcal{H}^* \to \mathcal{H}$,使得对于任意 $x \in \mathcal{H}$ 与 $f \in \mathcal{H}$,成立 $f(x) = (x, \tau(f))$ 。由于 $\tau(f_x) = x$,那么

$$||x|| = ||\tau(f_x)|| = \sup_{\|y\| \le 1} |f_x(y)| = \sup_{\|y\| \le 1} |(x, y)|$$

定理 2.3.3

Hilbert 空间的对偶空间为 Hilbert 空间。

 $^{\circ}$

证明 对于 Hilbert 空间 \mathcal{H} , 其对偶空间为

$$\mathcal{H}^* = \{ 有界线性泛函f : \mathcal{H} \to \mathbb{C} \}$$

 $(f,g) = \overline{(\tau(f),\tau(g))}$

由 Frechet-Riesz 表现定理2.3.2,存在保范共轭线性双射 $\tau:\mathcal{H}^*\to\mathcal{H}$ 。由定理3.1.1, \mathcal{H}^* 为 Hilbert 空间。

定义 2.3.3 (双线性泛函)

对于线性空间 X, 称映射 $f: X \times X \to \mathbb{C}$ 为共轭双线性泛函, 如果成立

$$f(x+y,z) = f(x,z) + f(y,z), \qquad f(\lambda x,y) = \lambda f(x,y) \\ f(x,y+z) = f(x,y) + f(x,z), \qquad f(x,\lambda y) = \lambda f(x,y) \\ \underbrace{\qquad \qquad }_{\bullet} f(x,y) + f(x,z) \\ \underbrace{\qquad \qquad }_{\bullet} f(x,y) +$$

 \Diamond

定义 2.3.4 (共轭双线性泛函)

对于线性空间 X, 称映射 $f: X \times X \to \mathbb{C}$ 为共轭双线性泛函, 如果成立

$$f(x+y,z) = f(x,z) + f(y,z), \qquad f(\lambda x,y) = \lambda f(x,y) \\ f(x,y+z) = f(x,y) + f(x,z), \qquad f(x,\lambda y) = \overline{\lambda} f(x,y) \\ \underbrace{\lambda} f(x,y) = \frac{\lambda}{\lambda} f(x,y) \\ \underbrace{\lambda} f(x,$$

定义 2.3.5 (有界双线性泛函)

对于赋范线性空间 X,称双线性泛函 $f: X \times X \to \mathbb{C}$ 为有界的,如果存在 C,使得对于任意 $x,y \in X$,成立 $|f(x,y)| \leq C ||x||||y||$ 。

定理 2.3.4

对于 Hilbert 空间 \mathcal{H} 上的有界共轭双线性泛函 $f: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$, 存在且存在唯一有界线性算子 $T: \mathcal{H} \to \mathcal{H}$, 使得成立 ||T|| = ||f||, 且对于任意 $x, y \in \mathcal{H}$, 成立 f(x, y) = (T(x), y)。

证明 由 Frechet-Riesz 表现定理2.3.2, 存在保范共轭线性双射 $\tau: \mathcal{H}^* \to \mathcal{H}$, 使得对于任意 $x \in \mathcal{H}$ 与 $\varphi \in \mathcal{H}^*$, 成立 $\varphi(x) = (x, \tau(\varphi))$ 。

定义映射

$$\pi: \mathcal{H} \longrightarrow \mathcal{H}^*$$

$$x \longmapsto \varphi_x, \ \ \sharp \ \forall \varphi_x(y) = \overline{f(x,y)}$$

由于

$$(\pi(x+y))(z) = \overline{f(x+y,z)} = \overline{f(x,z)} + \overline{f(x,z)} = \varphi_x(z) + \varphi_y(z) = (\pi(x))(z) + (\pi(y))(z)$$
$$(\pi(\lambda x))(y) = \varphi_{\lambda x}(y) = \overline{f(\lambda x,y)} = \overline{\lambda}f(x,y) = \overline{\lambda}\varphi_x(y) = \overline{\lambda}(\pi(x))(y)$$

那么

$$\pi(x+y) = \pi(x) + \pi(y), \qquad \pi(\lambda x) = \overline{\lambda}\pi(x)$$

定义映射

$$T = \tau \circ \pi : \mathcal{H} \to \mathcal{H}$$

那么

$$f(x,y) = \overline{\varphi_x(y)} = \overline{(y,\tau(\varphi_x))} = \overline{(y,(\tau\circ\pi)(x))} = \overline{(y,T(x))} = (T(x),y)$$

由于

$$T(x+y) = (\tau \circ \pi)(x+y) = \tau(\pi(x)) + \tau(\pi(y)) = (\tau \circ \pi)(x) + (\tau \circ \pi)(y) = T(x) + T(y)$$
$$T(\lambda x) = (\tau \circ \pi)(\lambda x) = \tau(\pi(\lambda x)) = \tau(\overline{\lambda}\pi(x)) = \lambda \tau(\pi(x)) = \lambda(\tau \circ \pi)(x) = \lambda T(x)$$

那么T为线性算子。

由推论2.3.1

$$||T|| = \sup_{\|x\| \le 1} ||T(x)||$$

$$= \sup_{\|x\| \le 1} \sup_{\|y\| \le 1} |(T(x), y)|$$

$$= \sup_{\|x\| \le 1} \sup_{\|y\| \le 1} |f(x, y)|$$

$$= ||f||$$

因此 T 为有界线性算子。

如果存在有界线性算子 $S: \mathcal{H} \to \mathcal{H}$, 使得对于任意 $x, y \in \mathcal{H}$, 成立 f(x, y) = (S(x), y), 那么

$$((T-S)(x), y) = (T(x), y) - (S(x), y) = f(x, y) - f(x, y) = 0$$

进而 T = S, 进而 T 为唯一的。

2.4 Hilbert 共轭算子, Lax-Milgram 定理

2.4.1 Hilbert 共轭算子

定义 2.4.1 (Hilbert 共轭算子)

对于 Hilbert 空间 X 与 Y, 称有界线性算子 $T^*: Y \to X$ 为有界线性算子 $T: X \to Y$ 的 Hilbert 共轭算子,如果对于任意 $x \in X$ 与 $y \in Y$,成立 $(T(x), y) = (x, T^*(y))$ 。

定理 2.4.1 (Hilbert 共轭算子的存在唯一性)

对于 Hilbert 空间 X 与 Y,如果 $T:X\to Y$ 为有界线性算子,那么存在且存在唯一有界线性算子 $T^*:Y\to X$,使得成立 $\|T^*\|=\|T\|$,且对于任意 $x\in X$ 与 $y\in Y$,成立 $(T(x),y)=(x,T^*(y))$ 。

证明 由 Frechet-Riesz 表现定理2.3.2, 存在保范共轭线性双射为 $\tau: X^* \to X$, 使得对于任意 $x \in X$, 成立 $f(x) = (x, \tau(f))$ 。构造映射

$$\pi: Y \longrightarrow X^*$$

$$y \longmapsto f_y$$

其中

$$f_y: X \longrightarrow \mathbb{C}$$

 $x \longmapsto (T(x), y)$

因此对于任意 $x \in X$,成立 $f_y(x) = (x, \tau(f_y))$,且 $||f_y|| = ||\tau(f_y)||$ 。由于

$$(\pi(x+y))(z) = f_{x+y}(z) = f_x(z) + f_y(z) = (\pi(x))(z) + (\pi(y))(z) (\pi(\lambda y))(x) = f_{\lambda y}(x) = (T(x), \lambda y) = \overline{\lambda}(T(x), y) = \overline{\lambda}f_y(x) = \overline{\lambda}(\pi(y))(x)$$

那么

$$\pi(x+y) = \pi(x) + \pi(y), \qquad \pi(\lambda y) = \overline{\lambda}\pi(y)$$

因此π为共轭线性映射。

构造映射

$$T^* = \tau \circ \pi : Y \to X$$

那么对于任意 $x \in X$ 与 $y \in Y$, 成立

$$(T(x), y) = f_y(x) = (x, \tau(f_y)) = (x, (\tau \circ \pi)(y)) = (x, T^*(y))$$

由于

$$T^{*}(x+y) = \tau(\pi(x+y)) = \tau(\pi(x) + \pi(y)) = \tau(\pi(x)) + \tau(\pi(y)) = T^{*}(x) + T^{*}(y)$$
$$T^{*}(\lambda y) = (\tau \circ \pi)(\lambda y) = \tau(\pi(\lambda y)) = \tau(\overline{\lambda}\pi(y)) = \lambda(\tau(x)) = \lambda(\tau \circ \pi)(y) = T^{*}(y)$$

那么 T* 为线性算子。

由 Frechet-Riesz 表现定理的推论2.3.1

$$\begin{split} \|T^*\| &= \sup_{\|y\| \le 1} \|T^*(y)\| \\ &= \sup_{\|y\| \le 1} \sup_{\|x\| \le 1} |(x, T^*(y))| \\ &= \sup_{\|y\| \le 1} \sup_{\|x\| \le 1} |(T(x), y)| \\ &= \sup_{\|x\| \le 1} \sup_{\|y\| \le 1} |(T(x), y)| \\ &= \sup_{\|x\| \le 1} \|T(x)\| \\ &= \|T\| \end{split}$$

于是 T^* 为有界线性算子。

如果存在有界线性算子 $S: Y \to X$,使得对于任意 $x \in X = Y \in Y$,成立 (T(x), y) = (x, S(y)),那么

$$(x, (T^* - S)(y)) = (x, T^*(y)) - (x, S(y)) = (T(x), y) - (T(x), y) = 0$$

因此 $T^* = S$ 。

命题 2.4.1 (Hilbert 共轭算子的性质)

对于 Hilbert 空间 \mathcal{H} 上的有界线性算子 T 与 S, 成立

$$(S+T)^* = S^* + T^*, \quad (ST)^* = T^*S^*, \quad (T^*)^* = T, \quad (\lambda T)^* = \overline{\lambda}T^*, \quad (T^*)^{-1} = (T^{-1})^*, \quad \|T^*\| = \|T\|$$

证明 任取 $x,y \in \mathcal{H}$, 由于

$$((S+T)^*(x),y) = (x,(S+T)(y)) = (x,S(y)) + (x,T(y)) = (S^*(x),y) + (T^*(x),y) = ((S^*+T^*)(x),y)$$

$$((ST)^*(x),y) = (x,(ST)(y)) = (x,S(T(x))) = (S^*(x),T(y)) = (T^*(S^*(x)),y) = ((T^*S^*)(x),y)$$

$$(x,(T^*)^*(y)) = (T^*(x),y) = \overline{(y,T^*(x))} = \overline{(T(y),x)} = (x,T(y))$$

$$(x,(\lambda T)^*(y)) = ((\lambda T)(x),y) = \lambda(T(x),y) = \lambda(x,T^*(y)) = (x,\overline{\lambda}T^*)(y)$$

$$(x,I^*(y)) = (I(x),y) = (x,y) = (x,I(y))$$

那么

$$(S+T)^* = S^* + T^*, \qquad (ST)^* = T^*S^*, \qquad (T^*)^* = T(\lambda T)^* = \overline{\lambda}T^*, \qquad I^* = I$$

进而

$$T^*(T^{-1})^* = (T^{-1}T)^* = I^* = I, \quad (T^{-1})^*T^* = (TT^{-1})^* = I^* = I \implies (T^*)^{-1} = (T^{-1})^*$$

由 Frechet-Riesz 表现定理的推论2.3.1

$$\begin{split} \|T^*\| &= \sup_{\|y\| \le 1} \|T^*(y)\| \\ &= \sup_{\|y\| \le 1} \sup_{\|x\| \le 1} |(x, T^*(y))| \\ &= \sup_{\|y\| \le 1} \sup_{\|x\| \le 1} |(T(x), y)| \\ &= \sup_{\|x\| \le 1} \sup_{\|y\| \le 1} |(T(x), y)| \\ &= \sup_{\|x\| \le 1} \|T(x)\| \\ &= \|T\| \end{split}$$

命题 2.4.2 (Hilbert 共轭算子的性质)

对于 Hilbert 空间 X 与 Y, 如果 $T: X \to Y$ 为有界线性算子, 那么

$$\ker T = (\operatorname{im} T^*)^{\perp}, \qquad \ker T^* = (\operatorname{im} T)^{\perp} \qquad \overline{\operatorname{im} T} = (\ker T^*)^{\perp}, \qquad \overline{\operatorname{im} T^*} = (\ker T)^{\perp}$$

证明 由于

$$\forall x \in \ker T, T(x) = 0 \implies \forall x \in \ker T, \forall y \in Y, (x, T^*(y)) = (T(x), y) = 0$$

$$\implies \forall x \in \ker T, x \in (\operatorname{im} T^*)^{\perp} \implies \ker T \subset (\operatorname{im} T^*)^{\perp}$$

$$\forall x \in (\operatorname{im} T^*)^{\perp}, \forall y \in Y, (T(x), y) = (x, T^*(y)) = 0 \implies \forall x \in (\operatorname{im} T^*)^{\perp}, T(x) = 0$$

$$\implies \forall x \in (\operatorname{im} T^*)^{\perp}, x \in \ker T \implies \ker T \supset (\operatorname{im} T^*)^{\perp}$$

那么 $\ker T = (\operatorname{im} T^*)^{\perp}$ 。

由于

$$\forall y \in \ker T^*, T^*(y) = 0 \implies \forall y \in \ker T^*, \forall x \in X, (T(x), y) = (x, T^*(y)) = 0$$

$$\implies \forall y \in \ker T^*, y \in (\operatorname{im} T)^{\perp} \implies \ker T^* \subset (\operatorname{im} T)^{\perp}$$

$$\forall y \in (\operatorname{im} T)^{\perp}, \forall x \in X, (x, T^*(y)) = (T(x), y) = 0 \implies \forall y \in (\operatorname{im} T)^{\perp}, T^*(y) = 0$$

$$\implies \forall y \in (\operatorname{im} T)^{\perp}, y \in \ker T^* \implies \ker T^* \supset (\operatorname{im} T)^{\perp}$$

那么 $\ker T^* = (\operatorname{im} T)^{\perp}$ 。

由命题2.3.4

$$\overline{\operatorname{im} T^*} = ((\operatorname{im} T^*)^{\perp})^{\perp} = (\ker T)^{\perp}, \qquad \overline{\operatorname{im} T} = ((\operatorname{im} T)^{\perp})^{\perp} = (\ker T^*)^{\perp}$$

2.4.2 Lax-Milgram 定理

定理 2.4.2 (Lax-Milgram 定理)

对于 Hilbert 空间 \mathcal{H} 上的有界共轭双线性泛函 $f:\mathcal{H}\times\mathcal{H}\to\mathbb{C}$,如果存在 r>0,使得对于任意 $x\in\mathcal{H}$,成 $\dot{\sigma}$ $|f(x,x)|\geq r\|x\|^2$,那么对于任意有界线性泛函 $\varphi:\mathcal{H}\to\mathbb{C}$,存在且存在唯一 $x_\varphi\in\mathcal{H}$,使得对于任意 $x\in\mathcal{H}$,成立 $\varphi(x)=f(x,x_\varphi)$,且 $r\|x_\varphi\|\leq \|\varphi\|$ 。

证明 由 Frechet-Riesz 表现定理2.3.2, 存在保范共轭线性双射为 $\tau: \mathcal{H}^* \to \mathcal{H}$, 使得对于任意 $y \in \mathcal{H}$, 成立 $f(y) = (y, \tau(f))$ 。

由定理2.3.4,存在且存在唯一有界线性算子 $T: \mathcal{H} \to \mathcal{H}$,使得对于任意 $x,y \in \mathcal{H}$,成立f(x,y) = (T(x),y)。由于对于任意 $x \in \mathcal{H}$,成立 $|f(x,x)| \ge r||x||^2$,那么由 Scharz 不等式2.1.5

$$|T||x||^2 \le |f(x,x)| = |(T(x),x)| = |(x,T^*(x))| \le ||x|| ||T^*(x)||$$

从而 $r||x|| \le ||T^*(x)||$,因此 T^* 为下有界线性算子。由命题3.1.2, T^* 为单射。由命题3.1.3,im T^* 为 $\mathcal H$ 的闭子空间。

如果 $\operatorname{im} T^* \subseteq \mathcal{H}$, 那么存在非零元 $x_t \in \mathcal{H}$, 使得成立 $x_t \perp \operatorname{im} T^*$, 从而

$$|T_t||^2 \le |f(x_t, x_t)| = |T_t(x_t), x_t| = |T_t(x_t, T^*(x_t))| = 0$$

因此 $x_t = 0$, 矛盾! 进而 im $T^* = \mathcal{H}$, T^* 为双射。

任取有界线性泛函 $\varphi: \mathcal{H} \to \mathbb{C}$, 令 $x_{\varphi} = ((T^*)^{-1} \circ \tau)(\varphi)$, 那么对于任意 $x \in \mathcal{H}$, 成立

$$\varphi(x) = (x, \tau(\varphi)) = (x, T^*(x_\varphi)) = (T(x), x_\varphi) = f(x, x_\varphi)$$

$$r||x_{\varphi}|| \le ||T^*(x_{\varphi})|| = ||\tau(\varphi)|| = ||\varphi||$$

第三章 Banach 空间

3.1 有界线性算子

3.1.1 算子范数

定义 3.1.1 (算子范数)

对于赋范线性空间 X 与 Y,定义有界线性算子 $T: X \to Y$ 的范数为

$$\|T\| = \sup_{\|x\|=1} \|T(x)\| = \sup_{\|x\| \le 1} \|T(x)\| = \sup_{\|x\| \ne 0} \frac{\|T(x)\|}{\|x\|}$$

定义 3.1.2 (强范数)

对于线性空间 X 上的范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$,称范数 $\|\cdot\|_1$ 强于 $\|\cdot\|_2$,如果成立如下命题之一。

- 1. $||x_n||_1 \to 0 \implies ||x_n||_2 \to 0$
- 2. 存在 C > 0,使得对于任意 $x \in X$,成立 $||x||_2 \le C||x||_1$ 。
- 3. 恒等算子

$$I: (X, \|\cdot\|_1) \longrightarrow (X, \|\cdot\|_2)$$

 $x \longmapsto x$

为连续线性算子。

4. 恒等算子

$$I: (X, \|\cdot\|_1) \longrightarrow (X, \|\cdot\|_2)$$

 $x \longmapsto x$

为有界线性算子。

定义 3.1.3 (等价范数)

对于线性空间 X 上的范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$,称范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$ 等价,如果成立如下命题之一。

- 1. $||x_n||_1 \to 0 \iff ||x_n||_2 \to 0$
- 2. 存在 $C_1, C_2 > 0$,使得对于任意 $x \in X$,成立 $C_1 ||x||_2 \le ||x||_1 \le C_2 ||x||_2$ 。
- 3. 对于恒等算子

$$I:(X,\|\cdot\|_1)\longrightarrow (X,\|\cdot\|_2)$$

$$x \longmapsto x$$

 I, I^{-1} 均为连续线性算子。

4. 对于恒等算子

$$I: (X, \|\cdot\|_1) \longrightarrow (X, \|\cdot\|_2)$$

$$x\longmapsto x$$

 I, I^{-1} 均为有界线性算子。

定义 3.1.4 (有界线性算子)

对于赋范线性空间 X 与 Y , 称线性算子 $T: X \to Y$ 为有界的,如果存在 M>0,使得对于任意 $x \in X$,成立 $\|T(x)\| \le M\|x\|$ 。

定义 3.1.5 (下有界线性算子)

对于赋范线性空间 X 与 Y ,称线性算子 $T: X \to Y$ 为下有界的,如果存在 M>0,使得对于任意 $x \in X$,成立 $\|T(x)\| \geq M\|x\|$ 。

命题 3.1.1 (有界线性算子的核为闭子集)

对于赋范线性空间 X 与 Y, 如果 $T: X \to Y$ 为有界线性算子, 那么 $\ker T$ 为 X 的闭子集。

证明 (朴素)任取 $x \in \overline{\ker T}$,那么存在 $\{x_n\}_{n=1}^{\infty} \subset \ker T$,使得成立 $x_n \to x$ 。由于 T 为有界线性算子,那么由定理1.7.4,T 为连续线性算子,因此

$$T(x) = T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T(x_n) = 0$$

进而 $x \in \ker T$ 。由 x 的任意性, $\ker T$ 为 X 的闭子集。

(优雅)由于 Y 为度量空间,因此 Y 满足 T_1 公理,进而 $\{0\}$ 为 Y 的闭子集。而由定理1.7.4,T 有界 \iff T 连续,因此 $\ker T = T^{-1}(0)$ 为 X 的闭子集。

命题 3.1.2 (下有界线性算子为单射)

对于赋范线性空间 X 与 Y, 如果 $T: X \to Y$ 为下有界线性算子, 那么 T 为单射。

证明 这当然是显然的!

$$T(x) = 0 \iff ||T(x)|| = 0 \implies M||x|| \le 0 \iff x = 0$$

命题 3.1.3 (下有界连续线性算子的像为闭子集)

对于赋范线性空间 X 与 Y , 如果 X 为 Banach 空间,且 $T: X \to Y$ 为下有界连续线性算子,那么 im T 为 Y 的闭子集。

证明 任取 $y \in \overline{\operatorname{Im} T}$,那么存在 $\{x_n\}_{n=1}^{\infty} \subset X$,使得成立 $T(x_n) \to y$,因此 $\{T(x_n)\}_{n=1}^{\infty} \subset Y$ 为 Cauchy 序列。由于 T 为下有界算子,那么 $\{x_n\}_{n=1}^{\infty} \subset X$ 为 Cauchy 序列。由于 X 为 Banach 空间,那么存在 $x \in X$,使得成立 $x_n \to x$ 。由于 T 为连续算子,那么

$$y = \lim_{n \to \infty} T(x_n) = T(\lim_{n \to \infty} x_n) = T(x) = \operatorname{im} T$$

由y的任意性, imT为Y的闭子集。

命题 3.1.4 (积分算子)

对于 $K(x,y) \in C[0,1]^2$, 定义积分算子

$$T:C[0,1]\longrightarrow C[0,1]$$

$$f \longmapsto F, \not \exists \, P F(x) = \int_0^1 K(x, y) f(y) dy$$

其算子范数为

$$||T|| = \sup_{0 \le x \le 1} \int_0^1 |K(x, y)| dy$$

证明 一方面,注意到

$$|(T(f))(x)| \le \int_0^1 |K(x,y)| |f(y)| dy$$

$$\le \sup_{0 \le y \le 1} |f(y)| \int_0^1 |K(x,y)| dy$$

$$= ||f|| \int_0^1 |K(x,y)| dy$$

因此

$$\begin{split} \|T\| &= \sup_{\|f\| \neq 0} \frac{\|T(f)\|}{\|f\|} \\ &= \sup_{\|f\| \neq 0} \sup_{0 \leq x \leq 1} \frac{1}{\|f\|} |(T(f))(x)| \\ &\leq \sup_{\|f\| \neq 0} \sup_{0 \leq x \leq 1} \frac{1}{\|f\|} \|f\| \int_0^1 |K(x,y)| \mathrm{d}y \\ &= \sup_{0 \leq x \leq 1} \int_0^1 |K(x,y)| \mathrm{d}y \end{split}$$

另一方面,由于 $\int_0^1 |K(x,y)| dy$ 为 $0 \le x \le 1$ 上的连续函数,那么存在 $0 \le x_0 \le 1$,使得成立

$$\int_0^1 |K(x_0, y)| dy = \sup_{0 \le x \le 1} \int_0^1 |K(x, y)| dy$$

构造函数

$$k_0: [0,1] \longrightarrow \mathbb{C}$$

$$y \longmapsto \begin{cases} \frac{\overline{K(x_0,y)}}{|K(x_0,y)|}, & K(x_0,y) \neq 0 \\ 0, & K(x_0,y) = 0 \end{cases}$$

那么 $||k_0|| \le 1$,且

$$\int_0^1 K(x_0, y) k_0(y) \mathrm{d}y = \int_0^1 |K(x_0, y)| \mathrm{d}y = \sup_{0 \le x \le 1} \int_0^1 |K(x, y)| \mathrm{d}y$$

由 Luzin 定理
$$1.10.7$$
,对于任意 $\varepsilon>0$,存在 $k\in C[0,1]$,使得 $\|k\|\leq 1$,且
$$m([k\neq k_0])<\frac{\varepsilon}{2\sup_{0\leq x,y\leq 1}|K(x,y)|}$$

从而

$$\begin{split} & \left| \int_0^1 K(x_0, y)(k(y) - k_{x_0}(y)) \mathrm{d}y \right| \\ &= \left| \int_{[k \neq k_{x_0}]} K(x_0, y)(k(y) - k_{x_0}(y)) \mathrm{d}y \right| \\ &\leq \int_{[k \neq k_{x_0}]} |K(x_0, y)|(|k(y)| + |k_{x_0}(y)|) \mathrm{d}y \\ &\leq \sup_{0 \leq x, y \leq 1} |K(x, y)|(||k|| + ||k_0||) \int_{[k \neq k_{x_0}]} \mathrm{d}y \\ &\leq 2m([k \neq k_0]) \sup_{0 \leq x, y \leq 1} |K(x, y)| \end{split}$$

 $<\varepsilon$

进而

$$\begin{split} \|T\| &= \sup_{\|f\|=1} \|T(f)\| \\ &= \sup_{\|f\|=1} \sup_{0 \le x \le 1} |(T(f))(x)| \\ &\geq \sup_{\|f\|=1} |(T(f))(x_0)| \\ &= \sup_{\|f\|=1} \left| \int_0^1 K(x_0, y) f(y) \mathrm{d}y \right| \\ &\geq \left| \int_0^1 K(x_0, y) k(y) \mathrm{d}y \right| \\ &\geq \left| \int_0^1 K(x_0, y) k_0(y) \mathrm{d}y \right| - \left| \int_0^1 K(x_0, y) (k(y) - k_{x_0}(y)) \mathrm{d}y \right| \\ &\geq \sup_{0 \le x \le 1} \int_0^1 |K(x, y)| \mathrm{d}y - \varepsilon \end{split}$$

由ε的任意性,成立

$$||T|| \ge \sup_{0 \le x \le 1} \int_0^1 |K(x, y)| dy$$

综合两方面

$$||T|| = \sup_{0 \le x \le 1} \int_0^1 |K(x, y)| \mathrm{d}y$$

3.1.2 有界线性算子空间

定义 3.1.6 (有界线性算子空间)

对于赋范线性空间 X 与 Y, 定义有界线性算子空间为赋范线性空间

$$\begin{split} \mathcal{L}(X,Y) &= \{ \texttt{有界线性算子}T : X \to Y \} \\ \|T\| &= \sup_{\|x\|=1} \|T(x)\| \end{split}$$

定理 3.1.1 (有界线性算子空间为 Banach 空间)

对于赋范线性空间X与Y,成立

$$Y$$
为 Banach 空间 $\iff \mathcal{L}(X,Y)$ 为 Banach 空间

证明 对于必要性,如果 Y 为 Banach 空间,那么任取 Cauchy 序列 $\{T_n\}_{n=1}^{\infty} \subset \mathcal{L}(X,Y)$,因此对于任意 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得对于任意 $m, n \geq N$,成立

$$||T_m - T_n|| < \varepsilon \implies ||T_m(x) - T_n(x)|| < \varepsilon ||x||, \forall x \in X$$

因此对于任意 $x \in X$, $\{T_n(x)\}_{n=1}^\infty \subset Y$ 为 Cauchy 序列,而 Y 为 Banach 空间,因此存在 $T(x) \in Y$,使得成立 $\lim_{n \to \infty} T_n(x) = T(x)$ 。 由于

$$T(x+y) = \lim_{n \to \infty} T_n(x+y) = \lim_{n \to \infty} T_n(x) + T_n(y) = T(x) + T(y)$$
$$T(\lambda x) = \lim_{n \to \infty} T_n(\lambda x) = \lim_{n \to \infty} \lambda T_n(x) = \lambda T(x)$$

而度量空间中的 Cauchy 序列有界, 那么存在 M>0, 使得对于任意 $n\in\mathbb{N}^*$, 成立 $||T_n||\leq M$, 那么

$$||T|| = \sup_{\|x\| \le 1} ||T(x)|| = \sup_{\|x\| \le 1} \lim_{n \to \infty} ||T_n(x)|| \le \lim_{n \to \infty} \sup_{\|x\| \le 1} ||T_n(x)|| = \lim_{n \to \infty} ||T_n(x)|| \le M$$

因此 $T \in \mathcal{L}(X,Y)$ 。 由于

$$\lim_{n \to \infty} ||T_n - T|| = \lim_{n \to \infty} \sup_{\|x\| = 1} ||T_n(x) - T(x)||$$

$$= \lim_{n \to \infty} \sup_{\|x\| = 1} \lim_{m \to \infty} ||T_n(x) - T_m(x)||$$

$$= \lim_{m, n \to \infty} \sup_{\|x\| = 1} ||T_n(x) - T_m(x)||$$

$$= \lim_{m, n \to \infty} ||T_m - T_n||$$

$$= 0$$

那么 $\mathcal{L}(X,Y)$ 为Banach空间。

对于充分性,如果 $\mathcal{L}(X,Y)$ 为 Banach 空间,那么取 $x_0 \in X \setminus \{0\}$ 。由 Hahn-Banach 定理的推论3.2.1,存在有界线性泛函 $f_0: X \to \mathbb{C}$,使得成立

$$||f_0|| = 1, \qquad f_0(x_0) = ||x_0||$$

任取 Cauchy 序列 $\{y_n\}_{n=1}^{\infty} \subset Y$, 对于任意 $n \in \mathbb{N}^*$, 定义映射

$$T_n: X \longrightarrow Y$$

$$x \longmapsto \frac{f_0(x)}{f_0(x_0)} y_n$$

由于

$$T_n(x+y) = \frac{f_0(x+y)}{f_0(x_0)} y_n = \frac{f_0(x)}{f_0(x_0)} y_n + \frac{f_0(y)}{f_0(x_0)} y_n = T_n(x) + T_n(y)$$

$$T_n(\lambda x) = \frac{f_0(\lambda x)}{f_0(x_0)} y_n = \lambda \frac{f_0(x)}{f_0(x_0)} y_n = \lambda T_n(x)$$

因此 T_n 为线性算子。

由于

$$||T_n(x)|| = \left| \left| \frac{f_0(x)}{f_0(x_0)} y_n \right| \right| = \frac{||y_n||}{||x_0||} ||f_0(x)|| \le \frac{||y_n||}{||x_0||} ||f_0|| ||x|| = \frac{||y_n||}{||x_0||} ||x|| \implies ||T_n|| \le \frac{||y_n||}{||x_0||} ||x||$$

因此 T_n 为有界算子, 进而 $\{T_n\}_{n=1}^{\infty} \subset \mathcal{L}(X,Y)$ 。

由于

$$||T_m - T_n|| = \sup_{\|x\| \le 1} ||T_m(x) - T_n(x)||$$

$$= \sup_{\|x\| \le 1} \left\| \frac{f_0(x)}{f_0(x_0)} (y_m - y_n) \right\|$$

$$= \sup_{\|x\| \le 1} \frac{\|y_m - y_n\|}{\|x_0\|} ||f_0(x)||$$

$$\le \sup_{\|x\| \le 1} \frac{\|y_m - y_n\|}{\|x_0\|} ||f_0|| ||x||$$

$$= \frac{\|y_m - y_n\|}{\|x_0\|}$$

因此 $\{T_n\}_{n=1}^{\infty}$ 为 Cauchy 序列。由于 $\mathcal{L}(X,Y)$ 为 Banach 空间,那么存在 $T \in \mathcal{L}(X,Y)$,使得成立 $T_n \to T$ 。由于 对于任意 $x \in X$,成立

$$||T_n(x) - T(x)|| \le ||T_n - T|| ||x||$$

那么对于任意 $x \in X$,成立 $T_n(x) \to T(x)$ 。特别的, $T_n(x_0) \to T(x_0)$ 。记 $y = T(x_0) \in Y$,那么 $y_n \to y$,进而 Y 为 Banach 空间。

3.1.3 算子的逆

命题 3.1.5

对于赋范线性空间 X 与 Y, 如果 $T: X \to Y$ 为线性算子, 那么

T为单射且逆算子 T^{-1} : im $T \to X$ 为连续算子 \iff 存在M > 0使得成立 $||T|| \ge M$

证明 对于充分性,如果存在 M>0,使得成立 $||T||\geq M$,那么对于任意 $x\in X$,成立 $||T(x)||\geq M||x||$,因此 T(x)=0 蕴含 x=0,进而 $\ker T=\{0\}$,因此 T 为单射。由此可知 T 存在逆算子 $T^{-1}: \operatorname{im} T\to X$,且对于任意 $x\in X$,成立 $||x||\leq ||T^{-1}(x)||/M$,进而 $||T^{-1}||\leq 1/M$,因此 T^{-1} 为有界算子 $\iff T^{-1}$ 为连续算子。

对于必要性,T 为单射且逆算子 T^{-1} : im $T \to X$ 为连续算子,那么 T^{-1} 为有界算子,因此存在 M > 0,使得成立 $\|T^{-1}\| \le 1/M$,进而对于任意 $x \in X$,成立 $\|x\| \le \|T^{-1}(x)\|/M$,那么对于任意 $x \in X$,成立 $\|T(x)\| \ge M\|x\|$,进而 $\|T\| \ge M$ 。

命题 3.1.6

对于 Banach 空间 X, 如果 $T: X \to X$ 为有界线性算子,且 ||T|| < 1,那么 I - T 有界可逆,且

$$(I-T)^{-1} = \sum_{n=0}^{\infty} T^n, \qquad \|(I-T)^{-1}\| \le \frac{1}{1-\|T\|}$$

证明 由于 X 为 Banach 空间,那么 $\mathcal{L}(X)$ 为 Banach 空间。由于 $||T^n|| \leq ||T||^n$,而

$$\sum_{n=1}^{\infty} \|T^n\| \leq \sum_{n=1}^{\infty} \|T\|^n = \frac{1}{1 - \|T\|} < \infty$$

因此数值级数 $\sum_{n=1}^{\infty}\|T^n\|$ 收敛, 进而序列级数 $\sum_{n=1}^{\infty}T^n$ 收敛。

注意到

$$(I-T)\sum_{k=0}^{n} T^{k} = \sum_{k=0}^{n} T^{k}(I-T) = I - T^{n+1}$$

而 $||T^{n+1}|| \le ||T||^{n+1} \to 0$, 因此

$$(I-T)\sum_{n=0}^{\infty} T^n = \sum_{n=0}^{\infty} T^n (I-T) = I$$

从而 I - A 有界可逆,且

$$(I-T)^{-1} = \sum_{n=0}^{\infty} T^n$$

从而

$$\|(I-T)^{-1}\| = \left\| \sum_{n=0}^{\infty} T^n \right\| \le \sum_{n=1}^{\infty} \|T^n\| \le \sum_{n=1}^{\infty} \|T\|^n = \frac{1}{1 - \|T\|}$$

命题 3.1.7

对于 Banach 空间 X, 如果 $T: X \to X$ 为有界线性算子, 那么

$$\lim_{n \to \infty} ||T^n||^{1/n} = \inf_{n \in \mathbb{N}^*} ||T^n||^{1/n}$$

证明 一方面

$$\lim_{n\to\infty}\|T^n\|^{1/n}=\liminf_{n\to\infty}\|T^n\|^{1/n}\geq\inf_{n\in\mathbb{N}^*}\|T^n\|^{1/n}$$

另一方面,对于任意 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得成立

$$||T^N||^{1/N} < \inf_{n \in \mathbb{N}^*} ||T^n||^{1/n} + \varepsilon$$

对于任意 $n \in \mathbb{N}^*$,存在 $0 \le r_n < N$ 以及 $k_n \in \mathbb{N}^*$,使得成立 $n = k_n N + r_n$,那么

$$||T^n|| = ||T^{k_n N + r_n}|| \le ||T^{k_n N}|| ||T^{r_n}|| \le ||T^N||^{k_n} ||T||^{r_n}$$

从而

$$\|T^n\|^{1/n} \le \|T^N\|^{k_n/n} \|T\|^{r_n/n} \le \left(\inf_{n \in \mathbb{N}^*} \|T^n\|^{1/n} + \varepsilon\right)^{k_n N/n} \|T\|^{r_n/n}$$

注意到

$$\frac{k_n N}{n} \to 1, \qquad \frac{r_n}{n} \to 0$$

那么

$$\lim_{n\to\infty} \|T^n\|^{1/n} \le \inf_{n\in\mathbb{N}^*} \|T^n\|^{1/n} + \varepsilon$$

由ε的任意性

$$\lim_{n\to\infty}\|T^n\|^{1/n}\leq \inf_{n\in\mathbb{N}^*}\|T^n\|^{1/n}$$

综合两方面

$$\lim_{n \to \infty} \|T^n\|^{1/n} = \inf_{n \in \mathbb{N}^*} \|T^n\|^{1/n}$$

命题 3.1.8 (Volterra 积分算子)

定义 Volterra 积分算子

其中 K(x,y) 为 $[a,b]^2$ 上的连续函数,那么

$$\lim_{n\to\infty}\|V^n\|^{1/n}=0$$

证明 记 $\mu = \sup_{a \le x, y \le b} |K(x, y)|$, 递归证明

$$|(V^n(f))(x)| \le \mu^n ||f|| \frac{(x-a)^n}{n!}, \qquad n \in \mathbb{N}^*$$

当 n=1 时

$$|(V(f))(x)| = \left| \int_{a}^{x} K(x, y) f(y) dy \right|$$

$$\leq \int_{a}^{x} |K(x, y)| |f(y)| dy$$

$$\leq \mu ||f|| (x - a)$$

假设当n = k 时成立

$$|(V^k(f))(x)| \le \mu^k ||f|| \frac{(x-a)^k}{k!}$$

那么当n = k + 1时

$$|(V^{k+1}(f))(x)| = \left| \int_{a}^{x} K(x, y)(V^{k}(f))(y) dy \right|$$

$$\leq \int_{a}^{x} |K(x, y)| |(V^{k}(f))(y)| dy$$

$$\leq \int_{a}^{b} \mu \cdot \mu^{k} ||f|| \frac{(y - a)^{k}}{k!} dy$$

$$= \mu^{k+1} ||f|| \frac{(x - a)^{k+1}}{(k+1)!}$$

由数学归纳法

$$|(V^n(f))(x)| \le \mu^n ||f|| \frac{(x-a)^n}{n!}, \qquad n \in \mathbb{N}^*$$

因此

$$\|V^n(f)\| = \sup_{a \le x \le b} |(V^n(f))(x)| \le \mu^n \|f\| \frac{(b-a)^n}{n!}$$

进而

$$||V^n|| \le \mu^n \frac{(b-a)^n}{n!}$$

由于

$$\lim_{n \to \infty} (n!)^{1/n} = \infty$$

那么

$$\lim_{n \to \infty} \|V^n\|^{1/n} = 0$$

命题 3.1.9

对于赋范线性空间X,定义

$$\mathcal{L}_0(X) = \{$$
有界可逆线性算子 $T: X \to X \}$

定义

$$\tau: \mathcal{L}_0(X) \longrightarrow \mathcal{L}_0(X)$$

$$T \longmapsto T^{-1}$$

那么 $\mathcal{L}_0(X)$ 为 $\mathcal{L}(X)$ 的开子集,且 τ 为连续算子。

证明 任取 $T_0 \in \mathcal{L}_0(X)$,注意到 $T = T_0(I - T_0^{-1}(T_0 - T))$,因此当 $||T_0^{-1}|| ||T_0 - T|| \le 1$ 时, $T \in \mathcal{L}_0(X)$,进而 $\mathcal{L}_0(X)$ 为 $\mathcal{L}(X)$ 的开子集,且

$$T^{-1} = T_0^{-1} + \sum_{n=0}^{\infty} (T_0^{-1}(T_0 - T))^n T_0^{-1}$$

当 $\|T_0^{-1}\|\|T_0-T\| \le 1$ 时, $I-T_0^{-1}(T_0-T) \in \mathcal{L}_0(X)$,且上式级数收敛,于是

$$\begin{split} \|\tau(T) - \tau(T_0)\| &= \|T^{-1} - T_0^{-1}\| \\ &\leq \sum_{n=0}^{\infty} \|T_0^{-1}(T_0 - T)\|^n \|T_0^{-1}\| \\ &\leq \frac{\|T_0^{-1}(T_0 - T)\| \|T_0^{-1}\|}{1 - \|T_0^{-1}(T_0 - T)\|} \\ &\leq \frac{\|T_0^{-1}\|^2}{1 - \|T_0^{-1}\| \|T_0 - T\|} \|T_0 - T\| \end{split}$$

因此 7 为连续算子。

3.2 Hahn-Banach 定理

3.2.1 Hahn-Banach 定理

命题 3.2.1

对于 l^2 中的线性无关的向量序列 $\{\{a_n^{(m)}\}_{n=1}^\infty\}_{m=1}^\infty\subset l^2$,如果存在 M>0,使得对于任意 $m\in\mathbb{N}^*$,以及数列 $\{\lambda_m\}_{m=1}^\infty\subset\mathbb{C}$,成立

$$\left| \sum_{k=1}^{m} \lambda_k b_k \right| \le M \left\| \sum_{k=1}^{m} \lambda_k \{a_n^{(k)}\}_{n=1}^{\infty} \right\|$$

那么线性方程

$$\left(\{a_n^{(m)}\}_{n=1}^{\infty}, \{x_n\}_{n=1}^{\infty} \right) = b_m, \quad m \in \mathbb{N}^*$$

在 l^2 中存在解 $\{x_n\}_{n=1}^{\infty} \in l^2$ 。

证明 定义 l^2 的子空间

$$M = \operatorname{Sp} \{ \{ a_n^{(m)} \}_{n=1}^{\infty} \}_{m=1}^{\infty}$$

构造函数

$$f: \qquad l^2 \longrightarrow \mathbb{C}$$
$$\sum_{k=1}^m \lambda_k \{a_n^{(k)}\}_{n=1}^\infty \longmapsto \sum_{k=1}^m \lambda_k b_k$$

由条件

$$\left| f\left(\sum_{k=1}^{m} \lambda_{k} \{a_{n}^{(k)}\}_{n=1}^{\infty} \right) \right| = \left| \sum_{k=1}^{m} \lambda_{k} b_{k} \right| \leq M \left\| \sum_{k=1}^{m} \lambda_{k} \{a_{n}^{(k)}\}_{n=1}^{\infty} \right\|$$

定理 3.2.1 (Banach 扩张定理)

对于实线性空间 X 的子空间 M 上的线性泛函 $f: M \to \mathbb{R}$, 如果存在 X 上的泛函 $p: X \to \mathbb{R}$, 使得成立

$$p(x+y) \le p(x) + p(y),$$

$$x, y \in X$$

$$p(\lambda x) = \lambda p(x),$$

$$x \in X, \lambda \ge 0$$

$$f(x) \le p(x)$$
,

$$x \in M$$

那么存在线性泛函 $F: X \to \mathbb{R}$, 使得成立

$$F(x) = f(x),$$

$$x \in M$$

$$F(x) \le p(x)$$
,

$$x \in X$$

定理 3.2.2 (Bohnenblust-Sobczyk 定理)

对于复线性空间 X 的子空间 M 上的线性泛函 $f: M \to \mathbb{C}$, 如果存在 X 上的泛函 $p: X \to \mathbb{R}$, 使得成立

$$p(x+y) \le p(x) + p(y),$$

$$x, y \in X$$

$$p(\lambda x) = |\lambda| p(x),$$

$$x \in X, \lambda \in \mathbb{C}$$

$$|f(x)| \le p(x),$$

$$x \in M$$

 \Diamond

那么存在线性泛函 $F: X \to \mathbb{C}$, 使得成立

$$F(x) = f(x),$$

$$x \in M$$

$$|F(x)| \le p(x),$$

$$x \in X$$

定理 3.2.3 (Hahn-Banach 定理)

对于赋范线性空间 X 的子空间 M 上的有界线性泛函 $f:M\to\mathbb{C}$,存在有界线性泛函 $F:X\to\mathbb{C}$,使得成立

$$F|_M = f, \qquad ||F|| = ||f||$$

 $x, y \in X$

 $x \in X, \lambda \in \mathbb{C}$

证明 定义

$$p(x) = ||f|||x||, \qquad x \in X$$

容易知道

$$p(x+y) \le p(x) + p(y),$$

 $p(\lambda x) = |\lambda| p(x),$

 $|f(x)| \le p(x), \qquad x \in M$

那么由 Bohnenblust-Sobczyk 定理3.2.2,存在线性泛函 $F: X \to \mathbb{C}$,使得成立

$$||F|| \le ||f||, \qquad F(x) = f(x), \qquad x \in M$$

而

$$\|F\| = \sup_{x \in X} \frac{|F(x)|}{\|x\|} \ge \sup_{x \in M} \frac{|f(x)|}{\|x\|} = \|f\|$$

因此

$$\|F\|=\|f\|$$

推论 3.2.1

如果 X 为赋范线性空间,那么对于任意 $x \in X \setminus \{0\}$,存在有界线性泛函 $f: X \to \mathbb{C}$,使得成立

$$||f|| = 1, \qquad f(x) = ||x||$$

命题 3.2.2

对于赋范线性空间 X, 如果 E 为 X 的真闭子空间, 那么对于任意 $x \in X \setminus E$, 存在有界线性泛函 $f: X \to \mathbb{C}$, 使得成立

$$f|_E = 0,$$
 $f(x) = 1,$ $||f|| = \frac{1}{d(x, E)}$

证明 定义 X 中的子空间

$$M = \{\lambda x_0 + x : \lambda \in \mathbb{C}, x \in E\}$$

构造 M 上的线性泛函

$$g: M \longrightarrow \mathbb{C}$$

 $\lambda x_0 + x \longmapsto \lambda$

一方面,对于任意 $\lambda x_0 + x \in M$,若 $\lambda \neq 0$,那么

$$\frac{|g(\lambda x_0 + x)|}{\|\lambda x_0 + x\|} = \frac{|\lambda|}{\|\lambda x_0 + x\|} \le \frac{|\lambda|}{\|\lambda\| \|x_0 + x/\lambda\|} \le \frac{1}{d(x_0, E)}$$

 \Diamond

因此

$$||g|| \le \frac{1}{d(x_0, E)}$$

另一方面,对于任意 $\varepsilon > 0$,存在 $y \in E$,使得成立

$$||x_0 - y|| < d(x_0, E) + \varepsilon$$

因此对于任意 $\lambda \in \mathbb{C}$,成立

$$||g|| \ge \frac{|g(\lambda x_0 - \lambda y)|}{||\lambda x_0 - \lambda y||} = \frac{|\lambda|}{|\lambda|||x_0 - y||} > \frac{1}{d(x_0, E) + \varepsilon}$$

由ε的任意性

$$||g|| \ge \frac{1}{d(x_0, E)}$$

综合两方面

$$||g|| = \frac{1}{d(x_0, E)}$$

由 Hahn-Banach 定理3.2.3, 对于赋范线性空间 X 是子空间 M 上的有界线性泛函 $f: M \to \mathbb{C}$, 存在有界线性泛函 $f: X \to \mathbb{C}$, 使得成立

$$f(x) = 0, \quad x \in E; \qquad f(x_0) = 1; \qquad ||f|| = \frac{1}{d(x_0, E)}$$

推论 3.2.2

对于赋范线性空间 X, 如果 M 为 X 中的子空间,且 $x_0 \in X$, 那么 $x_0 \in \overline{M} \iff$ 对于任意线性泛函 $f: X \to \mathbb{C}$ 成立

$$f(x) = 0, \forall x \in M \implies f(x_0) = 0$$

证明 要性由 f 的连续性保证。对于充分性,如果 $x_0 \in X \setminus \overline{M}$,那么由 Hahn-Banach 定理的推论3.2.2,存在有界线性泛函 $f: X \to \mathbb{C}$,使得成立

$$f(x) = 0, \quad x \in \overline{M}; \qquad f(x_0) = 1$$

推论 3.2.3

对于赋范线性空间 X, 如果 S 为 X 中的子集,且 $x_0 \in X$, 那么 $x_0 \in \overline{Sp(S)} \iff$ 对于任意有界线性泛函 $f: X \to \mathbb{C}$, 成立

$$f(x) = 0, \forall x \in \operatorname{Sp}(S) \implies f(x_0) = 0$$

命题 3.2.3

如果 M 为 Banach 空间 X 的有限维子空间,那么存在 X 的闭子空间 N,使得成立 $X=M\oplus N$ 。

证明 假设 M 为 n 维子空间,基为 $\{e_k\}_{k=1}^n$ 。记 $M_i=\operatorname{Sp}\{e_k\}_{k\neq i}$,那么那么存在有界线性泛函 $f_i:X\to\mathbb{C}$,使得成立

$$f_i(e_k) = \begin{cases} 1, & k = i \\ 0, & k \neq i \end{cases}$$

构造满的连续线性算子

$$P: X \longrightarrow M$$

$$x \longmapsto \sum_{i=1}^{n} f_i(x)e_i$$

注意到

$$(f_i \circ P)(x) = f_i(P(x)) = \sum_{i=1}^n f_j(x) f_i(e_j) = f_i(x)$$

因此

$$P^{2}(x) = \sum_{i=1}^{n} (f_{i} \circ P)(x)e_{i} = \sum_{i=1}^{n} f_{i}(x)e_{i} = P(x) \implies P^{2} = P$$

记 $N = \ker P$ 。任取 $x \in M \cap N$,从而存在 $y \in M$,使得成立

$$x = P(y) = P(P(y)) = P(x) = 0$$

因此

$$M \cap N = \{0\}$$

对于任意 $x \in X$, 成立

$$x = P(x) + (x - P(x))$$

而 $P(x) \in M$, 注意到

$$P((x - P(x))) = P(x) - P^{2}(x) = P(x) - P(x) = 0$$

因此 $x - P(x) \in N$, 进而

$$X = M \cup N$$

3.2.2 投影

定义 3.2.1 (投影)

称向量空间 X 上的线性映射 $p: X \to X$ 为投影,如果 $p^2 = p$ 。

定义 3.2.2 (Banach 空间上的投影)

称 Banach 空间 X 上的有界线性算子 $P: X \to X$ 为投影,如果 $P^2 = P$ 。

定义 3.2.3 (Hilbert 空间上的正交投影)

称 Hilbert 空间 \mathcal{H} 上的线性映射 $P: \mathcal{H} \to \mathcal{H}$ 为正交投影,如果 $P = P^2 = P^*$ 。

定义 3.2.4 (代数补)

对于向量空间 X, 称子空间 M 的代数补为 N, 如果 $X = M \oplus N$ 。

定义 3.2.5 (拓扑补)

对于度量空间 X, 称闭子空间 M 的代数补为闭子空间 N, 如果 $X=M\oplus N$ 。

例题 3.1 c_0 在 l^{∞} 中不存在拓扑补。

例题 3.2 Hilbert 空间中的闭子空间存在拓扑补。

定理 3.2.4 (Hahn-Banach 定理的几何形式)

对于赋范线性空间 X, M 为 X 的闭子空间, $x_0 \in X \setminus M$, 如果 $x_0 + M$ 与单位开球 $\mathbb D$ 不相交, 那么存在连续线性泛函 $f: X \to \mathbb C$, 使得成立 $x_0 + M \subset \ker f$, 且 $\ker f \cap \mathbb D = \varnothing$ 。

3.3 Baire 纲推理

3.3.1 Baire 纲定理

命题 3.3.1

对于赋范线性空间 X 与 Y ,线性算子 $T: X \to Y$ 为有界线性算子 $\iff T^{-1}(\{y \in Y: \|y\| \le 1\})$ 的内部非空。

证明 对于充分性,如果 $\{x \in X : ||x - x_0|| < \varepsilon\} \subset T^{-1}(\{y \in Y : ||y|| \le 1\})$,那么对于任意 $||x|| < \varepsilon$,成立 $x + x_0 \in \{x \in X : ||x - x_0|| < \varepsilon\}$,从而

$$||T(x)|| \le ||T(x+x_0)|| + ||T(x_0)|| \le 1 + ||T(x_0)||$$

进而对于任意 $x \in X \setminus \{0\}$,成立

$$\left\| T\left(\frac{\varepsilon}{2\|x\|}x\right) \right\| \le 1 + \|T(x_0)\|$$

即

$$\frac{\|T(x)\|}{\|x\|} \le \frac{2}{\varepsilon} (1 + \|T(x_0)\|)$$

因此T为有界线性算子。

对于必要性,如果 $T: X \to Y$ 为有界线性算子,注意到对于任意 $||x|| \le 1/||T||$,那么

$$||T(x)|| \le ||T|| ||x|| \le 1$$

因此

$$\{x \in X : \|x\| \le 1/\|T\|\} \subset T^{-1}(\{y \in Y : \|y\| \le 1\})$$

定义 3.3.1 (无处稠密的)

称度量空间 X 的子集 S 为无处稠密的,如果成立如下命题之一。

- 1. $(\overline{S})^{\circ} = \emptyset$
- 2. 不存在 X 的开集 U,使得成立 $U \subset \overline{S}$ 。

定义 3.3.2 (第一纲的)

称度量空间 X 的子集 E 为第一纲的,如果存在无处稠密子集族 $\{S_n\}_{n=1}^\infty$,使得成立 $E=\bigcup_{n=1}^\infty S_n$ 。

定义 3.3.3 (第二纲的)

称度量空间X的子集E为第二纲的,如果E不为第一纲的。

定理 3.3.1 (Baire 纲定理)

完备度量空间为第二纲的。

证明 若不然,存在无处稠密子集族 $\{S_n\}_{n=1}^{\infty}$,使得成立 $E=\bigcup_{n=1}^{\infty}S_n$ 。因为 S_1 无处稠密,所以存在 $x_1\in X\setminus \overline{S}_1$,以及 $0< r_1<1$,使得成立 $B_{x_1}(r_1)\cap \overline{S}_1=\varnothing$ 。因为 S_2 无处稠密,所以存在 $x_2\in B_{x_1}(r_1)\setminus \overline{S}_1$,以及 $0< r_2<1/2$,使得成立 $B_{x_2}(r_2)\cap \overline{S}_2=\varnothing$,且 $\overline{B}_{x_2}(r_2)\subset B_{x_1}(r_1)$ 。递归的,存在 $\{x_n\}_{n=1}^{\infty}\subset X$,与 $\{r_n\}_{n=1}^{\infty}\subset \mathbb{R}$,使得对于任意 $n\in \mathbb{N}^*$,成立

$$x_{n+1} \in B_{x_n}(r_n) \setminus \overline{S}_n$$
, $0 < r_n < 2^{1-n}$, $B_{x_n}(r_n) \cap \overline{S}_n = \emptyset$, $\overline{B}_{x_{n+1}}(r_{n+1}) \subset B_{x_n}(r_n)$

由于对于任意 $m \ge n$, 成立

$$d(x_m, x_n) < 2^{1-n}$$

因此 $\{x_n\}_{n=1}^{\infty} \subset X$ 为 Cauchy 序列,因此存在 $x \in X$,使得成立 $x_n \to x$ 。由于对于任意 $n \in \mathbb{N}^*$,当 m > n 时,成立 $x_m \in B_{x_{n+1}}(r_{n+1})$,因此 $x \in \overline{B}_{x_{n+1}}(r_{n+1}) \subset B_{x_n}(r_n)$,进而 $x \notin \overline{S}_n$,此时 $x \notin \bigcup_{n=1}^{\infty} \overline{S}_n = X$,矛盾!

命题 3.3.2

[0,1] 上存在处处连续但处处不可微的函数。

证明 构造函数空间

$$\mathscr{F} = \{ f : \mathbb{R} \to \mathbb{R} \}$$
 周期为1的连续函数 $\}, \qquad ||f|| = \sup_{[0,1]} |f|$

因此 (多, ||·||) 为完备赋范线性空间。构造子集

$$\mathscr{F}_n = \left\{ f \in \mathscr{F} : \exists x_0 \in [0, 1], \forall h > 0, \frac{|f(x_0 + h) - f(x_0)|}{h} \le n \right\}$$

断言:对于任意 $f \in \mathcal{F}$,若存在 $x_0 \in [0,1]$,使得 f 在 x_0 处可微,则存在 $n_0 \in \mathbb{N}^*$,使得成立 $f \in \mathcal{F}_{n_0}$ 。事实上,若 f 在 x_0 处可微,则存在 $\delta > 0$,使得对于任意 $0 < h \le \delta$,成立

$$\frac{|f(x_0+h)-f(x_0)|}{h} \le |f'(x_0)|+1$$

而对于任意 $h > \delta$, 成立

$$\frac{|f(x_0+h)-f(x_0)|}{h} < \frac{|f(x_0+h)|+|f(x_0)|}{\delta} \le \frac{2||f||}{\delta}$$

记 $n_0 = \max\{[|f'(x_0)| + 1], [2||f||/\delta]\} + 1$,则

$$\frac{|f(x_0+h)-f(x_0)|}{h} \le n_0$$

因此 $f \in \mathscr{F}_{n_0}$,断言得证!断言意味着: \mathscr{F} 中在某点处可微的函数 \in 某个 \mathscr{F}_n ,因此 $\mathscr{F} - \bigcup_{n=1}^{\infty} \mathscr{F}_n$ 中的函数均为

处处不可微的连续函数,下面证明 $\mathscr{F} - \bigcup^{\infty} \mathscr{F}_n$ 非空。

任取 $n \in \mathbb{N}^*$,考察子集 \mathscr{F}_n 。任取函数序列 $\{f_k\}_{k=1}^\infty \subset \mathscr{F}_n$,使得 $f_k \to f \in \mathscr{F}$ 。由 $\|\cdot\|$ 的定义, $f_k \to f$ 。由 \mathscr{F}_n 的定义,对于任意 $k \in \mathbb{N}^*$,存在 $x_k \in [0,1]$,使得对于任意 h > 0,成立

$$\frac{|f_k(x_k+h) - f_k(x_k)|}{h} \le n$$

由于 $\{x_k\}_{k=1}^\infty$ 存在收敛子序列,不妨 $x_k \to x_0 \in [0,1]$ 。由于对于任意 $h \ge 0$,成立

$$|(f_k(x_k+h) - f_k(x_k)) - (f(x+h) - f(x))| \le |f_k(x_k+h) - f(x+h)| + |f_k(x_k) - f(x)|$$

$$|f_k(x_k+h) - f(x+h)| \le |f_k(x_k+h) - f(x_k+h)| + |f(x_k+h) - f(x+h)|$$

$$|f_k(x_k) - f(x)| \le |f_k(x_k) - f(x_k)| + |f(x_k) - f(x)|$$

因此

$$f_k(x_k+h)-f_k(x_k)\to f(x+h)-f(x)$$

从而

$$\frac{|f(x+h) - f(x)|}{h} \le n$$

进而 $f \in \mathcal{F}_n$ 。由 $\{f_k\}_{k=1}^{\infty}$ 的任意性, \mathcal{F}_n 为闭集。

任取 $n \in \mathbb{N}^*$,继续考察子集 \mathscr{F}_n 。若 $(\overline{\mathscr{F}}_n)^\circ = \mathscr{F}_n^\circ \neq \varnothing$,则存在 $B_{\varphi}(\varepsilon) \subset \mathscr{F}_n$ 。注意到存在折线函数 $\psi \in B_{\varphi}(\varepsilon)$,使得 ψ 的每一段斜率的绝对值大于 n,因此 $\psi \notin \mathscr{F}_n$,矛盾! 从而 $(\overline{\mathscr{F}}_n)^\circ = \varnothing$,即 \mathscr{F}_n 为无处稠密集。

由 Baire 纲定理3.3.1, $\mathscr F$ 为第二纲的,而 $\bigcup_{n=1}^\infty \mathscr F_n$ 为第一纲的,因此 $\mathscr F-\bigcup_{n=1}^\infty \mathscr F_n$,此为处处连续但处处不可微的函数。

3.3.2 一致有界原理

定理 3.3.2 (一致有界原理/共鸣定理)

对于第二纲的赋范线性空间 X 与赋范线性空间 Y, $\{T_{\lambda}: X \to Y\}_{\lambda \in \Lambda}$ 为一族有界线性算子,如果对于任意 $x \in X$,成立 $\sup_{\lambda \in \Lambda} \|T_{\lambda}(x)\| < \infty$,那么 $\sup_{\lambda \in \Lambda} \|T_{\lambda}\| < \infty$ 。

证明 记 $S_n = \{x \in X : \sup_{\lambda \in \Lambda} \|T_\lambda(x)\| \le n\}$,那么 $X = \bigcup_{n=1}^{\infty} S_n$ 。对于任意 $\lambda \in \Lambda$, T_λ 为连续算子,那么 S_n 为闭集。由于 X 为第二纲的,那么存在 $N \in \mathbb{N}^*$,使得 S_N 不为无处稠密的,即 $(S_N)^\circ \ne \varnothing$,从而存在 $B_\varepsilon(x_0) \subset S_N$ 。如果 $\|x\| < \varepsilon$,那么 $x + x_0 \in B_\varepsilon(x_0)$,因此对于任意 $\lambda \in \Lambda$,成立

$$\begin{split} \|T_{\lambda}(x)\| &\leq \|T_{\lambda}(x+x_{0})\| + \|T_{\lambda}(x_{0})\| \leq 2N \\ \text{由于对于任意 } x \in X \setminus \{0\}, \;\; 成立 \left\|\frac{\varepsilon}{2\|x\|}x\right\| < \varepsilon, \;\; 那么对于任意 \, \lambda \in \Lambda, \;\; 成立 \\ \left\|T_{\lambda}\left(\frac{\varepsilon}{2\|x\|}x\right)\right\| \leq 2N \iff \|T_{\lambda}(x)\| \leq \frac{4N}{\varepsilon}\|x\| \iff \|T_{\lambda}\| \leq \frac{4N}{\varepsilon} \end{split}$$

定理 3.3.3 (有界线性算子的极限为有界线性算子)

对于 Banach 空间 X 与赋范线性空间 Y,以及有界线性算子序列 $\{T_n:X\to Y\}_{n=1}^\infty$,如果对于任意 $x\in X$,存在极限 $\lim_{n\to\infty}T_n(x)$,那么算子 $T=\lim_{n\to\infty}T_n$ 为有界线性算子,且

$$||T|| \leq \liminf_{n \to \infty} ||T_n||$$

证明 由于对于任意 $x \in X$,存在极限 $\lim_{n \to \infty} T_n(x)$,那么 $\sup_{n \in \mathbb{N}^*} \|T_n(x)\| < \infty$ 。由一致有界原理3.3.2,存在 M > 0,使得成立 $\sup_{n \in \mathbb{N}^*} \|T_n\| \le M$ 。

由于对于任意 $n \in \mathbb{N}^*$, T_n 为线性算子, 那么

$$T(x+y) = \lim_{n \to \infty} T_n(x+y) = \lim_{n \to \infty} T_n(x) + T_n(y) = \lim_{n \to \infty} T_n(x) + \lim_{n \to \infty} T_n(y) = T(x) + T(y)$$
$$T(\lambda x) = \lim_{n \to \infty} T_n(\lambda x) = \lambda \lim_{n \to \infty} T_n(x) = \lambda T(x)$$

因此T为线性算子。

由于

$$||T(x)|| = ||\lim_{n \to \infty} T_n(x)|| = \lim_{n \to \infty} ||T_n(x)|| \le \lim_{n \to \infty} ||T_n|| ||x|| \le M||x||$$

因此T为有界算子,进而

$$||T|| = \sup_{\|x\|=1} ||T(x)||$$

$$= \sup_{\|x\|=1} ||\lim_{n \to \infty} T_n(x)||$$

$$= \sup_{\|x\|=1} \lim_{n \to \infty} ||T_n(x)||$$

$$= \sup_{\|x\|=1} \liminf_{n \to \infty} ||T_n(x)||$$

$$\leq \sup_{\|x\|=1} \liminf_{n \to \infty} ||T_n|| ||x||$$

$$= \liminf_{n \to \infty} ||T_n||$$

综上所述 T 为有界线性算子,且

 $||T|| \leq \liminf_{n \to \infty} ||T_n||$

命题 3.3.3

对于 Banach 空间 X 上的点列 $\{x_n\}_{n=1}^{\infty} \subset X$,如果对于任意连续线性泛函 $f: X \to \mathbb{C}$,成立

$$\sum_{n=1}^{\infty} |f(x_n)|^p < \infty$$

其中 $p \ge 1$, 那么存在 $\mu > 0$, 使得对于连续线性泛函 $f: X \to \mathbb{C}$, 成立

$$\sum_{n=1}^{\infty} |f(x_n)|^p < \mu ||f||^p$$

证明 对于任意 $n \in \mathbb{N}^*$, 定义线性算子

$$T_n: X^* \longrightarrow l^p$$

 $f \longmapsto \{f(x_1), \cdots, f(x_n), 0, 0, \cdots\}$

由于

$$||T_n(f)||_p = \left(\sum_{k=1}^n |f(x_k)|^p\right)^{1/p} \le \left(\sum_{k=1}^n ||f||^p ||x_k||^p\right)^{1/p} = ||f|| \left(\sum_{k=1}^n ||x_k||^p\right)^{1/p}$$

那么对于任意 $n \in \mathbb{N}^*$, T_n 为有界线性算子。由于对于任意连续线性泛函 $f: X \to \mathbb{C}$, 成立

$$\sup_{n \in \mathbb{N}^*} \|T_n(f)\|_p = \sup_{n \in \mathbb{N}^*} \left(\sum_{k=1}^n |f(x_k)|^p \right)^{1/p} = \left(\sum_{n=1}^\infty |f(x_n)|^p \right)^{1/p} < \infty$$

那么由一致有界原理3.3.2,存在 $\mu^{1/p}>0$,使得成立 $\sup_{n\in\mathbb{N}^*}\|T_n\|<\mu^{1/p}$,因此对于任意连续线性泛函 $f:X\to\mathbb{C}$,成立

$$\sum_{n=1}^{\infty} |f(x_n)|^p = \sup_{n \in \mathbb{N}^*} \sum_{k=1}^{n} |f(x_k)|^p = \sup_{n \in \mathbb{N}^*} ||T_n(f)||_p^p \le \sup_{n \in \mathbb{N}^*} ||T_n||^p ||f||^p < \mu ||f||^p$$

定义 3.3.4 (Lebesgue 函数)

对于
$$L^2[a,b]$$
 上的正规正交基 $\{e_n\}_{n=1}^\infty$, 称 $\rho_n(x)=\int_a^b\left|\sum_{k=1}^n e_k(x)e_k(y)\right|\mathrm{d}y$ 为 Lebesgue 函数。

命题 3.3.4

对于 $L^2[-\pi,\pi]$ 上的正规正交基

$$\left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos x, \frac{1}{\sqrt{\pi}}\sin x, \cdots \frac{1}{\sqrt{\pi}}\cos nx, \frac{1}{\sqrt{\pi}}\sin nx, \cdots \right\}$$

以及任意 $-\pi < x < \pi$, 成立

$$\lim_{n \to \infty} \rho_n(x) = \infty$$

证明

$$\rho_{n}(x) = \int_{-\pi}^{\pi} \left| \frac{1}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{n} (\cos kx \cos ky + \sin kx \sin ky) \right| dy$$

$$= \int_{-\pi}^{\pi} \left| \frac{1}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{n} \cos k(x - y) \right| dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\sin \frac{2n+1}{2}(x - y)}{\sin \frac{x-y}{2}} \right| dy$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{\sin (n + \frac{1}{2}) y}{\sin \frac{1}{2} y} \right| dy$$

$$\geq \frac{1}{2\pi} \int_{0}^{\pi} \left| \frac{\sin (n + \frac{1}{2}) y}{\sin \frac{1}{2} y} \right| dy$$

$$\geq \frac{1}{2\pi} \int_{0}^{\pi} \left| \frac{\sin (n + \frac{1}{2}) y}{\frac{1}{2} y} \right| dy$$

$$= \frac{1}{\pi} \int_{0}^{(n+\frac{1}{2})\pi} \left| \frac{\sin y}{y} \right| dy$$

$$= \frac{1}{\pi} \sum_{k=1}^{n} \int_{(k-1)\pi}^{k\pi} \left| \frac{\sin y}{y} \right| dy$$

$$\geq \frac{1}{\pi^{2}} \sum_{k=1}^{n} \frac{1}{k} \int_{(k-1)\pi}^{k\pi} |\sin y| dy$$

$$= \frac{1}{\pi^{2}} \sum_{k=1}^{n} \frac{1}{k} \int_{0}^{\pi} \sin y dy$$

$$= \frac{2}{\pi^{2}} \sum_{k=1}^{n} \frac{1}{k}$$

命题 3.3.5

对于 $L^2[a,b]$ 上的正规正交基 $\{e_n\}_{n=1}^{\infty}$,如果 $\rho_n(x_0)\to\infty$,那么存在连续函数 f,使得 f 的 Fourier 级数在 x_0 处发散。

证明 定义 f 的 Fourier 级数的部分和算子

$$S_n: C[a,b] \longrightarrow C[a,b]$$

$$f \longmapsto T(f), \not \exists \, \forall (S_n(f))(x) = \int_a^b \sum_{k=1}^n e_k(x) e_k(y) f(y) dy$$

由命题3.1.4

$$||S_n|| = \int_a^b \left| \sum_{k=1}^n e_k(x) e_k(y) \right| dy$$

如果对于任意 $f \in C[a,b]$, f 的 Fourier 级数在 x_0 处收敛, 那么 $S_n(f)$ 在 C[a,b] 上处处收敛, 因此对于任意 $f \in C[a,b]$, 成立

$$\sup_{n\in\mathbb{N}^*} |(S_n(f))(x_0)| < \infty$$

由一致有界原理,成立

$$\rho_n(x_0) = ||S_n|| < \infty$$

矛盾!

推论 3.3.1

对于数列 $\{x_n\}_{n=1}^{\infty}\subset (-\pi,\pi)$,存在 $f\in C[-\pi,\pi]$,使得对于任意 $n\in\mathbb{N}^*$,f 的 Fourier 级数在 x_n 处发散。

证明 考察

$$H_m = \{ f \in C[-\pi, \pi] : (S_n(f))(x_m) \, \psi \, \hat{\otimes} \}$$

对于 $L^{2}[-\pi,\pi]$ 上的正规正交基

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos x, \frac{1}{\sqrt{\pi}}\sin x, \cdots \frac{1}{\sqrt{\pi}}\cos nx, \frac{1}{\sqrt{\pi}}\sin nx, \cdots\right\}$$

成立

$$||(S_n(f))(x_m)|| = \rho_n(x_m) \to \infty$$

断言 H_m 为第一纲的。事实上,首先,因为收敛点数列是有界的,因此

$$H_m = \bigcup_{k=1}^{\infty} \left\{ f \in C[-\pi, \pi] \middle| (S_n(f))(x_m) \middle| \le k, \forall n \in \mathbb{N}^+ \right\}$$

记 $A_k = \left\{ f \in C[-\pi, \pi] : \left| (S_n(f))(x_m) \right| \le k, \forall n \in \mathbb{N}^+ \right\},$ 则

$$A_k = \bigcap_{n=1}^{\infty} \left\{ f \in C[-\pi, \pi] \Big| |(S_n(f))(x_m)| \le k, \right\}$$

固定 $n, S_n(\cdot)(x_m)$ 是 $C[-\pi, \pi]$ 上的连续线性泛函 (范数是 $\rho_n(x_m)$), 复合取绝对值或者取模, 是连续映射, 则

$$\left\{ f \in C[-\pi, \pi] \middle| |(S_n(f))(x_m)| \le k, \right\} = |S_n(\cdot)(x_m)|^{-1}([0, k])$$

是闭集。闭集的任意交是闭集,故 A_k 是闭集。

其次,下证 $A_k = \overline{A_k}$ 内部为空,即 A_K 没有内点。其中 f_0 是内点的含义是:存在 r > 0 使得开球 $B(f_0, r)$ 包含于 A_k 。由一致有界原理3.3.2可知,对任意一点 x_m ,存在连续函数 f_m 的 Fourier 级数在 x_m 发散。对任意的 $f \in A_K$ 和 r > 0,

$$\frac{r}{2\|f_m\|}f_m + f \in B(f,r)$$

 $\frac{r}{2\|f_m\|}f_m+f$ 的 Fourier 级数也发散。因此 $B(f,r)\not\subseteq A_K$ 因此 A_k 中每一个 f 都不是内点,即内部为空,是无处稠密集。进而 H_m 为第一纲的。

从而 $\bigcup_{m=1}^{\infty} H_m$ 为第一纲的,但是 $C[-\pi,\pi]$ 为第二纲的,从而存在

$$f \in C[-\pi,\pi] \setminus \bigcup_{m=1}^{\infty} H_m$$

如此对于任意 $n \in \mathbb{N}^*$, f 的 Fourier 级数在 x_n 处发散。

定理 3.3.4

定义线性泛函

$$T_n: C[0,1] \longrightarrow \mathbb{R}$$

$$f \longmapsto F, \sharp \, \Psi F(x) = \sum_{k=0}^n A_k^{(n)} f(x_k^{(n)})$$

那么对于任意 $f\in C[0,1]$, $\lim_{n\to\infty}T_n(f)=\int_0^1f(x)\mathrm{d}x\iff$ 存在 M>0,使得对于任意 $n\in\mathbb{N}$,成立 $\sum_{k=0}^n|A_k^{(n)}|\leq M$,且对于任意多项式函数 p(x),成立 $\lim_{n\to\infty}T_n(p)=\int_0^1p(x)\mathrm{d}x$ 。

3.3.3 开映射定理

定义 3.3.5 (集合的和与数乘)

定义线性空间 X 的子集的和与数乘如下

$$A + B = \{x + y : x \in A, y \in B\}, \qquad \lambda A = \{\lambda x : x \in A\}$$

引理 3.3.1

在赋范线性空间中,成立 $\overline{A}+\overline{B}\subset\overline{A+B}$,且 $A^{\circ}+B^{\circ}\subset(A+B)^{\circ}$ 。

证明 一方面, 任取 $x \in \overline{A}, y \in \overline{B}$, 那么存在 $\{x_n\}_{n=1}^{\infty} \subset A, \{y_n\}_{n=1}^{\infty} \subset B$, 使得成立 $x_n \to x, y_n \to y$, 那么 $\{x_n + y_n\}_{n=1}^{\infty} \subset A + B$,且 $x_n + y_n \to x + y$,因此 $x + y \in \overline{A + B}$,进而 $\overline{A} + \overline{B} \subset \overline{A + B}$ 。

另一方面, 任取 $x \in A^{\circ}, y \in B^{\circ}$, 那么存在 r > 0, 使得成立 $B_r(x) \subset A$, 那么

$$x + y \in B_r(x + y) = y + B_r(x) \subset y + A \subset A + B$$

因此 $x + y \in (A + B)^{\circ}$, 进而 $A^{\circ} + B^{\circ} \subset (A + B)^{\circ}$ 。

定理 3.3.5

对于 Banach 空间 X 与 Y,如果 $T:X\to Y$ 为有界线性算子,且 im T 为第二纲的,那么对于任意 $\varepsilon>0$,存在 $\delta>0$,使得成立 $B(\delta)\subset T(B(\varepsilon))$ 。

证明 首先证明,对于任意 r>0,存在 $\eta>0$,使得成立 $B(\eta)\subset \overline{T(B(r))}$ 。容易知道 $0\in \overline{T(B(r))}$,只需证明 0 为 $\overline{T(B(r))}$ 的内点。由于 $\bigcup_{n=1}^{\infty} nB(r/2) = X$,于是

$$\bigcup_{n=1}^{\infty} T(nB(r/2)) = T\left(\bigcup_{n=1}^{\infty} nB(r/2)\right) = T(X) = \operatorname{im} T$$

由于 im T 为第二纲的,那么 $\bigcup_{n=1}^{\infty} T(nB(r/2))$ 为第二纲的,因此存在 n_0 ,使得 $T(n_0B(r/2))$ 不为无处稠密集,那么 $\overline{T(n_0B(r/2))}$ 存在内点,进而 $\overline{T(B(r/2))}$ 存在内点 y_0 。由于对于任意 $|\lambda| \leq 1$,成立

 $\lambda B(r/2)) \subset B(r/2) \implies \lambda T(B(r/2))) = T(\lambda B(r/2))) \subset T(B(r/2)) \implies \lambda \overline{T(B(r/2)))} \subset \overline{T(B(r/2))}$ 从而 $-y_0$ 为 $\overline{T(B(r/2))}$ 的内点,由引理3.3.1

$$0=y_0-y_0\in \left(\overline{T(B(r/2))}\right)^\circ+\left(\overline{T(B(r/2))}\right)^\circ\subset \left(\overline{T(B(r/2))}+\overline{T(B(r/2))}\right)^\circ\subset \left(\overline{T(B(r))}\right)^\circ$$
 进而存在 $\eta>0$,使得成立 $B(\eta)\subset \overline{T(B(r))}$ 。

其次证明,对于任意 $\varepsilon > 0$,以及任意 $n \in \mathbb{N}^*$,存在 δ_n ,使得成立 $B(\delta_n) \subset \overline{T(B(\varepsilon/2^n))}$ 。不妨假设 $\{\delta_n\}_{n=1}^{\infty}$ 单调递减趋于 0。取 $\delta = \delta_1$,断言 $B(\delta) \subset T(B(\varepsilon))$,换言之对于任意 $\|y\| < \delta$,存在 $\|x\| < \varepsilon$,使得成立 T(x) = y。 事实上,任取 $\|y\| < \delta = \delta_1$,由于 $y \in \overline{T(B(\varepsilon/2))}$,那么存在 $\|x_1\| < \varepsilon/2$,以及 $y_1 = T(x_1)$,使得成立 $\|y_1 - y\| < \delta_2$ 。

如果已得到 $\{x_k\}_{k=1}^n\subset X$ 与 $\{y_k\}_{k=1}^n\subset \operatorname{im} T$,使得对于任意 $1\leq k\leq n$,成立 $\|x_k\|<\varepsilon/2^k$,且

$$\left\| y - \sum_{k=1}^{n} y_k \right\| < \delta_{n+1}$$

那么由 $y - \sum_{k=1}^{n} y_k \in \overline{T(B(\varepsilon/2^n))}$, 存在 $||x_{n+1}|| < \varepsilon/2^{n+1}$, 以及 $y_{n+1} = T(x_{n+1})$, 使得成立

$$\left\| y - \sum_{k=1}^{n+1} y_k \right\| < \delta_{n+2}$$

递归的,得到 $\{x_n\}_{n=1}^{\infty} \subset X$ 与 $\{y_n\}_{n=1}^{\infty} \subset \operatorname{im} T$,使得对于任意 $n \in \mathbb{N}^*$,成立 $\|x_n\| < \varepsilon/2^n$,且

$$\left\| y - \sum_{k=1}^{n} y_k \right\| < \delta_{n+1}$$

由于 $\{\delta_n\}_{n=1}^{\infty}$ 单调递减趋于 0,那么级数 $y=\sum_{n=1}^{\infty}y_n$ 收敛。由于

$$\left\| \sum_{k=1}^{n+p} x_k - \sum_{k=1}^{n} x_k \right\| = \left\| \sum_{k=n+1}^{n+p} x_k \right\| \le \sum_{k=n+1}^{n+p} \|x_k\| < \sum_{k=n+1}^{n+p} \frac{\varepsilon}{2^k} = \frac{\varepsilon}{2^n} - \frac{\varepsilon}{2^{n+p}}$$

因此 $\left\{\sum_{k=1}^n x_k\right\}_{n=1}^\infty \subset X$ 为 Cauchy 序列。而 X 为 Banach 空间,因此级数 $x=\sum_{n=1}^\infty x_n$ 收敛,且

$$||x|| = \left|\left|\sum_{n=1}^{\infty} x_n\right|\right| \le \sum_{n=1}^{\infty} ||x_n|| < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} < \varepsilon \implies x \in B(\varepsilon)$$

因此

$$T(x) = T\left(\sum_{n=1}^{\infty} x_n\right) = \sum_{n=1}^{\infty} T(x_n) = \sum_{n=1}^{\infty} y_n = y$$

推论 3.3.2

对于 Banach 空间 X 与 Y, 如果 $T: X \to Y$ 为有界线性算子,且 im T 为第二纲的,那么 T 为满射。

证明 由定理3.3.5, 存在 $\delta > 0$, 使得成立 $B(\delta) \subset T(B(1))$, 那么

$$Y = \bigcup_{n=1}^{\infty} nB(\delta) \subset \bigcup_{n=1}^{\infty} nT(B(1)) = T\left(\bigcup_{n=1}^{\infty} nB(1)\right) = T\left(\bigcup_{n=1}^{\infty} B(n)\right) = T(X) = \operatorname{im} T$$

因此 T 为满射。

定理 3.3.6 (开映射定理)

对于 Banach 空间 X 与 Y, 如果 $T: X \to Y$ 为有界线性算子,且 im T 为第二纲的,那么 T 为开映射。

证明 假设 G 为 X 的开集。对于任意 $y \in T(G)$,存在 $x \in G$,使得成立 y = T(x)。由于 G 为开集,那么 x 为 G 的内点,因此存在 $\varepsilon > 0$,使得成立 $B_{\varepsilon}(x) \subset G$ 。注意到 $B_{\varepsilon}(x) = x + B(\varepsilon)$,且 T 为线性算子,那么

$$T(G) \supset T(B_{\varepsilon}(x)) = T(x + B(\varepsilon)) = T(x) + T(B(\varepsilon)) = y + T(B(\varepsilon))$$

由定理3.3.5,存在 $\delta > 0$,使得成立 $B(\delta) \subset T(B(\varepsilon))$,于是

$$T(G) \supset y + B(\delta) = B_{\delta}(y)$$

因此 y 为 T(G) 的内点。由 y 的任意性, T(G) 为开集, 进而 T 为开映射。

定理 3.3.7 (Banach 逆算子定理)

对于 Banach 空间 X 与 Y, 如果 $T: X \to Y$ 为一一对应的有界线性算子,那么 T^{-1} 为有界线性算子。

证明 对于任意 X 的开集 G,由开映射定理3.3.6,T 为开映射 \iff T^{-1} 为连续算子,进而 T^{-1} 为有界线性算子。

推论 3.3.3

对于向量空间 X 上的范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$,如果 $(X,\|\cdot\|_1)$ 与 $(X,\|\cdot\|_2)$ 为 Banach 空间,且范数 $\|\cdot\|_1$ 强于 $\|\cdot\|_2$,那么范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$ 等价。

证明 由定义 3.1.2 与 3.1.3 以及 Banach 逆算子定理3.3.7, 命题得证!

3.3.4 闭图形定理

定义 3.3.6 (闭算子)

对于赋范线性空间 X 与 Y, M 为 X 的线性子空间, 称线性算子 $T: M \to Y$ 为闭算子, 如果

$$\lim_{n \to \infty} x_n = x \mathbb{1} \lim_{n \to \infty} T(x_n) = y \implies x \in M \mathbb{1} T(x) = y$$

定义 3.3.7 (图形)

对于赋范线性空间 X 与 Y, M 为 X 的线性子空间, 定义线性算子 $T: M \rightarrow Y$ 的图形为

$$G(T) = \{(x, T(x)) : x \in M\}$$

定理 3.3.8 (闭算子的几何意义)

对于赋范线性空间 X 与 Y , M 为 X 的线性子空间, T : $M \to Y$ 为线性算子,定义向量空间 $X \times Y$ 上的 范数为

$$||(x,y)|| = ||x|| + ||y||$$

那么

$$T$$
为闭算子 \iff $G(T)$ 为闭集

证明 对于必要性,如果T为闭算子,那么任取 $(x,y) \in \overline{G(T)}$,因此存在 $\{x_n\}_{n=1}^{\infty} \subset M$,使得成立

$$\lim_{n \to \infty} (x_n, T(x_n)) = (x, y)$$

$$\iff \lim_{n \to \infty} \|(x_n - x, T(x_n) - y)\| = 0$$

$$\iff \lim_{n \to \infty} ||x_n - x|| + ||T(x_n) - y|| = 0$$

$$\iff \lim_{n \to \infty} ||x_n - x|| = \lim_{n \to \infty} ||T(x_n) - y|| = 0$$

$$\iff \lim_{n \to \infty} x_n = x, \qquad \lim_{n \to \infty} T(x_n) = y$$

由于 T 为闭算子, 那么 $x \in M$ 且 T(x) = y, 因此 $(x,y) \in G(T)$ 。由 (x,y) 的任意性, G(T) 为闭集。

对于充分性,如果 G(T) 为闭集,那么任取 $\{x_n\}_{n=1}^{\infty}\subset M$,使得成立

$$\lim_{n \to \infty} x_n = x, \qquad \lim_{n \to \infty} T(x_n) = y$$

$$\iff \lim_{n \to \infty} \|x_n - x\| = \lim_{n \to \infty} \|T(x_n) - y\| = 0$$

$$\iff \lim_{n \to \infty} \|x_n - x\| + \|T(x_n) - y\| = 0$$

$$\iff \lim_{n \to \infty} \|(x_n - x, T(x_n) - y)\| = 0$$

$$\iff \lim_{n \to \infty} (x_n, T(x_n)) = (x, y)$$

$$\implies (x, y) \in \overline{G(T)}$$

由于 G(T) 为闭集, 那么 $(x,y) \in G(T)$, 因此 $x \in M$ 且 T(x) = y。由 $\{x_n\}_{n=1}^{\infty}$ 的任意性, T 为闭算子。

命题 3.3.6

C[a,b]上的微分算子为无界闭算子。

证明 令

$$M = \{ f \in C[a, b] : f' \in C[a, b] \}$$

那么M为C[a,b]的线性子空间。定义微分算子

$$T: M \longrightarrow C[a, b]$$

 $f \longmapsto f'$

对于无界性,取

$$f_n(x) = \sin \frac{2\pi}{b-a} nx, \qquad x \in [a, b]$$

那么 $||f_n|| = 1$,但是

$$||T(f_n)|| = ||f_n'|| = n$$

因此 T 为无界算子。

对于闭性, 任取 $\{f_n\}_{n=1}^{\infty} \subset M$, 使得满足

$$\lim_{n \to \infty} f_n = f, \qquad \lim_{n \to \infty} f'_n = g$$

由命题1.11.14, f_n 一致收敛于 f, f' 一致收敛于 g, 进而 f'=g。由于 C[a,b] 为 Banach 空间,那么 $f,g\in C[a,b]$,从而 $f\in M$,且 T(f)=g,即 T 为闭算子。

定理 3.3.9 (闭图形定理)

对于 Banach 空间 X 与 Y , 如果 $T: X \to Y$ 为闭线性算子,那么 T 为有界算子。

证明 在 Banach 空间 X 上引入范数

$$[\![\cdot]\!]: X \longrightarrow \mathbb{R}$$

$$x \longmapsto \|x\| + \|T(x)\|$$

依范数 $[\cdot]$ 取 Cauchy 序列 $\{x_n\}_{n=1}^{\infty} \subset X$,那么对于任意 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得对于任意 $m, n \geq N$ 成立

$$[x_m - x_n] = ||x_m - x_n|| + ||T(x_m) - T(x_n)|| \le \varepsilon$$

因此 $\{x_n\}_{n=1}^{\infty} \subset X$ 依范数 $\|\cdot\|$ 构成 Cauchy 序列, $\{T(x_n)\}_{n=1}^{\infty} \subset Y$ 依范数 $\|\cdot\|$ 构成 Cauchy 序列。由于 X 依范数 $\|\cdot\|$ 构成 Banach 空间且 Y 依范数 $\|\cdot\|$ 构成 Banach 空间,因此存在 $x \in X$ 与 $y \in Y$,使得成立

$$\lim_{n \to \infty} x_n = x, \qquad \lim_{n \to \infty} T(x_n) = y$$

由于T为闭算子,那么T(x) = y,因此

$$\lim_{n \to \infty} [x_n - x] = \lim_{n \to \infty} ||x_n - x|| + \lim_{n \to \infty} ||T(x_n) - T(x)|| = 0$$

进而 X 依范数 $[\cdot]$ 构成 Banach 空间。由于范数 $[\cdot]$ 强于 $[\cdot]$ 强于 $[\cdot]$,那么由推论3.3.3,范数 $[\cdot]$ 与 $[\cdot]$ 等价。对于 $z \in X$,任取 $\{z_n\}_{n=1}^{\infty} \subset X$,使得满足

$$\lim_{n \to \infty} ||z_n - z|| = 0 \iff \lim_{n \to \infty} [\![z_n - z]\!] = 0$$

由于

$$\lim_{n \to \infty} ||T(z_n) - T(z)|| \le \lim_{n \to \infty} \llbracket z_n - z \rrbracket = 0$$

那么 T 在 z 处连续, 由定理1.7.4, T 为有界算子。

定理 3.3.10 (Hellinger-Toeplitz 定理)

对于 Hilbert 空间 \mathcal{H} 上的线性算子 $T:\mathcal{H}\to\mathcal{H}$,如果对于任意 $x,y\in\mathcal{H}$,成立 (T(x),y)=(x,T(y)),那 么 T 为有界算子。

证明 (法一)对于任意 $y \in \mathcal{H}$,构造线性泛函

$$f_y: \mathcal{H} \longrightarrow \mathbb{C}$$

 $x \longmapsto (x, T(y))$

由 Scharz 不等式2.1.5

$$||f_y|| = \sup_{\|x\|=1} |f_y(x)| = \sup_{\|x\|=1} |(x, T(y))| \le \sup_{\|x\|=1} ||x|| ||T(y)|| = ||T(y)||$$

因此 $f_y \in \mathcal{H}^*$ 。由 Frechet-Riesz 表现定理2.3.2,成立 $||f_y|| = ||T(y)||$ 。由于对于任意 $x \in \mathcal{H}$,由 Scharz 不等式2.1.5

$$\sup_{\|y\|=1} |f_y(x)| = \sup_{\|y\|=1} |(x, T(y))| = \sup_{\|y\|=1} |(T(x), y)| \le \sup_{\|y\|=1} \|T(x)\| \|y\| = \|T(x)\| < \infty$$

因此由一致有界原理3.3.2,成立 $\sup \|f_y\| < \infty$,因此

$$||T|| = \sup_{\|y\|=1} ||T(y)|| = \sup_{\|y\|=1} ||f_y|| < \infty$$

进而 T 为有界算子。

(法二) 任取 $\{x_n\}_{n=1}^{\infty} \subset X$, 使得成立

$$\lim_{n \to \infty} x_n = x, \qquad \lim_{n \to \infty} T(x_n) = y$$

那么对于任意 $z \in \mathcal{H}$ 以及 $n \in \mathbb{N}^*$, 成立

$$(T(x_n), z) = (x_n, T(z))$$

由内积的连续性

$$(y,z) = (x,T(z)) = (T(x),z)$$

由命题2.1.1, T(x) = y, 因此 T 为闭算子。由闭图形定理3.3.9, T 为有界算子。

3.4 对偶空间, 二次对偶, 自反空间

3.4.1 对偶空间

定义 3.4.1 (赋范线性空间的对偶空间)

定义赋范线性空间 X 的对偶空间为 $X^* = \{ 有界线性泛函 f : X \to \mathbb{C} \}$ 。

定理 3.4.1

n 维赋范线性空间的对偶空间为n 维赋范线性空间。

证明 对于 n 维赋范线性空间 X,其基为 $\{e_k\}_{k=1}^n$,由 Hahn-Banach 定理的推论3.2.2,存在 $\{f_k\}_{k=1}^n \subset X^*$,使得成立

$$f_i(e_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

令

$$\mu_1 f_1 + \dots + \mu_n f_n = 0$$

那么对于任意 $1 \le k \le n$, 成立

$$\mu_k = \mu_1 f_1(e_k) + \dots + \mu_n f_n(e_k) = (\mu_1 f_1 + \dots + \mu_n f_n)(e_k) = 0$$

因此

$$\mu_1 = \dots = \mu_n = 0$$

进而 $\{f_k\}_{k=1}^n$ 线性无关。对于任意 $x \in X$,令

$$x = \sum_{k=1}^{n} \lambda_k e_k$$

那么对于任意 $1 \le i \le n$, 成立

$$f_i(x) = f_i\left(\sum_{j=1}^n \lambda_j e_j\right) = \sum_{j=1}^n \lambda_j f_i(e_j) = \lambda_i$$

因此对于任意 $f \in X^*$, 成立

$$f(x) = f\left(\sum_{k=1}^{n} \lambda_k e_k\right) = \sum_{k=1}^{n} \lambda_k f(e_k) = \sum_{k=1}^{n} f_k(x) f(e_k) = \left(\sum_{k=1}^{n} f(e_k) f_k\right) (x)$$

从而

$$f = \sum_{k=1}^{n} f(e_k) f_k$$

进而 $\{f_k\}_{k=1}^n$ 为 X^* 的基,于是 X^* 为 n 维赋范线性空间。

推论 3.4.1

无穷维赋范线性空间的对偶空间为无穷维赋范线性空间。

 \sim

证明 对于无穷维赋范线性空间 X,如果 X^* 为 n 维赋范线性空间,那么由定理3.4.1, X^{**} 为 n 维赋范线性空间。由定理3.4.9,典型映射 τ 为单的保范线性空间,那么由同构定理

$$X/\ker \tau \cong \operatorname{im} \tau \iff X \cong \tau(X)$$

因此 $\tau(X)$ 为无穷维赋范线性空间。但是 $\tau(X) \subset X^{**}$,矛盾!因此 X^* 为无穷维赋范线性空间。

定理 3.4.2

对于 Banach 空间 X,如果 X^* 为可分空间,那么 X 为可分空间。

 \Im

证明 由于 X^* 为可分空间,那么球面 $\{f \in X^* : ||f|| = 1\}$ 存在可数稠密子集 $\{f_n\}_{n=1}^{\infty}$,那么存在 $\{x_n\}_{n=1}^{\infty} \subset X$,使得对于任意 $n \in \mathbb{N}^*$,成立

$$||x_n|| \le 1, \qquad |f_n(x_n)| > \frac{1}{2}$$

 \Diamond

如果 $\overline{\operatorname{Sp}\{x_n\}_{n=1}^{\infty}} \subsetneq X$ 。由 Hahn-Banach 定理的推论3.2.2,存在 $f \in X^*$,使得对于任意 $n \in \mathbb{N}^*$,成立

$$f(x_n) = 0, \qquad ||f|| = 1$$

从而

$$||f_n - f|| \ge |f_n(x_n) - f(x_n)| = |f_n(x_n)| > \frac{1}{2}$$

与 $\{f_n\}_{n=1}^{\infty}$ 为球面 $\{f\in X^*: \|f\|=1\}$ 的可数稠密子集矛盾!

进而 $\overline{\operatorname{Sp}\{x_n\}_{n=1}^{\infty}} = X$, 构造可数集合

$$S = \{r_1x_1 + \dots + r_nx_n : r_k \in \mathbb{Q}, n \in \mathbb{N}^*\} \subset \operatorname{Sp}\{x_n\}_{n=1}^{\infty}$$

任取 $x \in \operatorname{Sp}\{x_n\}_{n=1}^{\infty}$, 那么不妨假设

$$x = \lambda_1 x_1 + \dots + \lambda_n x_n, \qquad \lambda_k \in \mathbb{C}$$

对于任意 $1 \leq k \leq n$, 取 $\{r_k^{(m)}\}_{m=1}^{\infty} \subset \mathbb{Q}$, 使得成立

$$\lim_{m \to \infty} r_k^{(m)} = \lambda_k$$

记

$$x_r^{(m)} = r_1^{(m)} x_1 + \dots + r_n^{(m)} x_n$$

取 $M = \max_{1 \le k \le n} \|x_k\|$,那么

$$||x_r^{(m)} - x|| = \left| \left| \sum_{k=1}^n (r_k^{(m)} - \lambda_k) x_k \right| \right| \le \sum_{k=1}^n |r_k^{(m)} - \lambda_k| ||x_k|| \le M \sum_{k=1}^n |r_k^{(m)} - \lambda_k|$$

因此

$$\lim_{m \to \infty} x_r^{(m)} = x$$

于是 $x \in \overline{S}$ 。由x的任意性, $\operatorname{Sp}\{x_n\}_{n=1}^{\infty} \subset \overline{S}$,进而

$$X = \overline{\operatorname{Sp}\{x_n\}_{n=1}^{\infty}} \subset \overline{S} \subset X \implies X = \overline{S}$$

进而 X 为可分空间。

定理 3.4.3

对于自反 Banach 空间 X, 成立

$$X$$
为可分空间 \iff $X*$ 为可分空间

证明 充分性由定理3.4.2保证。对于必要性,由于 X 为自反空间,那么由定理3.4.9与定义3.4.9,存在保范线性双射 $\tau: X \to X^{**}$ 。由于 X 为可分空间,那么由定理1.4.1, X^{**} 为可分空间。由定理3.1.1, X^{**} 为 Banach 空间。由定理3.4.2, X^{**} 为可分空间。

定理 3.4.4 (l^1 空间的对偶空间)

对于 l^1 空间,成立

$$(l^1)^* \cong l^\infty$$

其保范线性双射为

$$\tau: (l^1)^* \longrightarrow l^{\infty}$$
$$f \longmapsto \{a_n\}_{n=1}^{\infty}$$

其中

$$f: l^1 \longrightarrow \mathbb{C}$$

$$\{x_n\}_{n=1}^{\infty} \longmapsto \sum_{n=1}^{\infty} a_n x_n$$

证明 任取 $f \in (l^1)^*$ 。考察 l^1 空间的正规正交基 $\{e_n\}_{n=1}^{\infty}$,其中 $e_n = \{0, \cdots, 0, \frac{1}{\Re n^{-}}, 0, 0, \cdots\}$,对于任意 $\{x_n\}_{n=1}^{\infty} \in l^1$,成立

$$\{x_n\}_{n=1}^{\infty} = \sum_{n=1}^{\infty} x_n e_n$$

该级数在 l¹ 中收敛, 因此

$$f({x_n}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} x_n f(e_n)$$

由于 $||e_n|| = 1$, 那么 $|f(e_n)| \le ||f||$ 。令

$$a_n = f(e_n), \qquad n \in \mathbb{N}^*$$

那么 $\{a_n\}_{n=1}^{\infty}$ 为由 f 决定的有界数列, 进而

$$f({x_n}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} a_n x_n$$

一方面

$$||f|| \le \sup_{n \in \mathbb{N}^*} |a_n|$$

另一方面

$$|f(\{x_n\}_{n=1}^{\infty})| \le \sum_{n=1}^{\infty} |a_n| |x_n| \le \sup_{n \in \mathbb{N}^*} |a_n| \sum_{n=1}^{\infty} |x_n| = \sup_{n \in \mathbb{N}^*} |a_n| ||\{x_n\}_{n=1}^{\infty}|| \implies ||f|| \le \sup_{n \in \mathbb{N}^*} |a_n|$$

综合两方面

$$||f|| = \sup_{n \in \mathbb{N}^*} |a_n|$$

定理 3.4.5 (l^p 空间的对偶空间)

对于 l^p 空间, 其中 1 , 成立

$$(l^p)^* \cong l^q$$

其中 $\frac{1}{p} + \frac{1}{q} = 1$,且保范线性双射为

$$\tau: (l^p)^* \longrightarrow l^q$$
$$f \longmapsto \{a_n\}_{n=1}^{\infty}$$

其中

$$f: l^p \longrightarrow \mathbb{C}$$

$$\{x_n\}_{n=1}^{\infty} \longmapsto \sum_{n=1}^{\infty} a_n x_n$$

证明 考察 l^p 空间的正规正交基 $\{e_n\}_{n=1}^{\infty}$, 其中 $e_n=\{0,\cdots,0,\frac{1}{\hat{\mathfrak{g}}_n\wedge},0,0,\cdots\}$, 对于任意 $\{x_n\}_{n=1}^{\infty}\in l^p$, 成立

$$\{x_n\}_{n=1}^{\infty} = \sum_{n=1}^{\infty} x_n e_n$$

该级数在 lp 中收敛, 因此

$$f(\{x_n\}_{n=1}^{\infty} = \sum_{n=1}^{\infty} x_n f(e_n)$$

\$

$$a_n = f(e_n), \qquad n \in \mathbb{N}^*$$

那么 $\{a_n\}_{n=1}^{\infty}$ 由 f 唯一确定,且

$$f({x_n}_{n=1}^{\infty}) = \sum_{n=1}^{\infty} a_n x_n$$

令

$$y_k^{(n)} = \begin{cases} |a_k|^{q-1} \operatorname{sgn}(a_k), & k \le n \\ 0, & k > n \end{cases}$$

那么

$$f(\{y_k^{(n)}\}_{k=1}^{\infty}) = \sum_{k=1}^{n} |a_k|^q$$

而

$$f(\{y_k^{(n)}\}_{k=1}^{\infty}) \leq \|f\| \|\{y_k^{(n)}\}_{k=1}^{\infty}\|_p = \|f\| \left(\sum_{k=1}^{\infty} |y_k^{(n)}|^p\right)^{1/p} = \|f\| \left(\sum_{k=1}^{n} |a_k|^q\right)^{1/p}$$

因此

$$\left(\sum_{k=1}^{n} |a_k|^q\right)^{1/q} \le ||f||$$

 $\diamondsuit n \to \infty$

$$\left(\sum_{n=1}^{\infty} |a_n|^q\right)^{1/q} \le ||f||$$

因此 $\{a_n\}_{n=1}^{\infty} \in l^q$,且

$$||f|| \ge ||\{a_n\}_{n=1}^{\infty}||_q$$

由 Hölder 不等式1.9.2

$$|f(\{x_n\}_{n=1}^{\infty})| \le \sum_{n=1}^{\infty} |a_n||x_n| \le \|\{a_n\}_{n=1}^{\infty}\|_q \|\{x_n\}_{n=1}^{\infty}\|_p \implies \|f\| \le \|\{a_n\}_{n=1}^{\infty}\|_q$$

从而

$$||f|| = ||\{a_n\}_{n=1}^{\infty}||_q$$

定理 3.4.6 ($L^p[a,b]$ 空间的对偶空间)

对于 $L^p[a,b]$ 空间,其中 $1 \leq p < \infty$,存在保范线性双射 $\tau: (L^p[a,b])^* \to L^q[a,b]$,其中 $\frac{1}{p} + \frac{1}{q} = 1$,且对于任意 $F \in (L^p[a,b])^*$ 与 $f \in L^q[a,b]$,成立

$$F(f) = \int_{a}^{b} \tau(F)f$$

 \Diamond

定义 3.4.2 (划分)

定义区间 [a,b] 的划分为

$$a = t_0 < \dots < t_n = b$$

区间 [a, b] 的所有划分记为集合

$$\Delta_a^b = \{ (t_0, \dots, t_n) : t_0 = a, t_n = b, t_0 < \dots < t_n, n \in \mathbb{N}^* \}$$

定义 3.4.3 (变差)

定义连续函数 $f:[a,b]\to\mathbb{C}$ 关于划分 $\Delta\in\Delta_a^b$ 的变差为

$$V_{\Delta}(f) = \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|$$

定义 3.4.4 (全变差)

定义连续函数 $f:[a,b]\to\mathbb{C}$ 的全变差为

$$V_a^b(f) = \sup_{\Delta \in \Delta_a^b} V_{\Delta}(f)$$

定义 3.4.5 (有界变差函数)

称连续函数 $f:[a,b]\to\mathbb{C}$ 为有界变差的,如果存在 $M<\infty$,使得成立 $V_a^b(f)\leq M$ 。

定义 3.4.6 (有界变差函数空间)

 $V[a,b] = \{f: [a,b] \to \mathbb{C}: V_a^b(f) < \infty\}$ $V_0[a,b] = \{f \in V[a,b]: f(a) = 0, f \vdash (a,b) \land f \vdash (a,b)$

定理 3.4.7 (C[0,1] 空间的对偶空间)

一方面,对于任意 $T \in (C[0,1])^*$,存在 $g \in V[0,1]$,使得成立

$$T: C[0,1] \longrightarrow \mathbb{C}$$

$$f \longmapsto \int_0^1 f(x) \mathrm{d}g(x)$$

另一方面,对于任意 $g \in V[0,1]$,泛函

$$T: C[0,1] \longrightarrow \mathbb{C}$$

$$f \longmapsto \int_0^1 f(x) dg(x)$$

成立 $T \in (C[0,1])^*$ 。

两方面同时成立

$$||T|| = V_0^1(g)$$

证明 设 $g \in V[0,1]$, 对于任意 $f \in C[0,1]$, Lebesgue-Stielthes 积分 $\int_0^1 f(x) dg(x)$ 存在。对于任意 $n \in \mathbb{N}^*$,取阶层函数

$$\Phi_n(x) = \sum_{k=1}^n f\left(\frac{k}{n}\right) \left(\varphi_{\frac{k}{n}}(x) - \varphi_{\frac{k-1}{n}}(x)\right)$$

其中 $\varphi_0 = 0$, 且当 $t \in (0,1]$ 时, 成立

$$\varphi_t(x) = \begin{cases} 1, & 0 \le x \le t \\ 0, & t < x \le 1 \end{cases}$$

由于 f 在 [0,1] 上一致连续, 那么 Φ 在 [0,1] 上一致收敛于 f。而

$$\int_0^1 \Phi_n(x) dg(x) = \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \Phi_n(x) dg(x)$$

$$= \sum_{k=1}^n f\left(\frac{k}{n}\right) \int_{\frac{k-1}{n}}^{\frac{k}{n}} dg(x)$$

$$= \sum_{k=1}^n f\left(\frac{k}{n}\right) \left(g\left(\frac{k}{n}\right) - g\left(\frac{k-1}{n}\right)\right)$$

由于对于任意 $0 \le x \le 1$ 与 $n \in \mathbb{N}^*$,成立 $|\Phi_n(x)| \le ||f||$,那么

$$\int_0^1 f(x) dg(x) = \lim_{n \to \infty} \int_0^1 \Phi_n(x) dg(x) = \lim_{n \to \infty} \sum_{k=1}^n f\left(\frac{k}{n}\right) \left(g\left(\frac{k}{n}\right) - g\left(\frac{k-1}{n}\right)\right)$$

从而

$$\begin{split} \left| \int_0^1 f(x) \mathrm{d}g(x) \right| &\leq \sup_{n \in \mathbb{N}^*} \sum_{k=1}^n \left| f\left(\frac{k}{n}\right) \right| \left| g\left(\frac{k}{n}\right) - g\left(\frac{k-1}{n}\right) \right| \\ &\leq \|f\| \sup_{n \in \mathbb{N}^*} \sum_{k=1}^n \left| g\left(\frac{k}{n}\right) - g\left(\frac{k-1}{n}\right) \right| \\ &\leq \|f\| V_0^1(g) \end{split}$$

一方面,对于任意 $g \in V[0,1]$,容易知道

$$T: C[0,1] \longrightarrow \mathbb{C}$$

$$f \longmapsto \int_0^1 f(x) dg(x)$$

成立 $T \in (C[0,1])^*$,且

$$|T(f)| = \left| \int_0^1 f(x) dg(x) \right| \le ||f|| V_0^1(g) \implies ||T|| \le V_0^1(g)$$

另一方面,对于任意 $T \in (C[0,1])^*$,由于C[0,1]为M[0,1]的闭子空间,其中

$$M[0,1] = \{ 有 R 函 数 f : [0,1] \to \mathbb{C} \}$$

由 Hahn-Banach 定理3.2.3, T 可延拓为 M[0,1] 上的连续线性泛函 \tilde{T} , 且 $\|\tilde{T}\| = \|T\|$ 。对于任意 $f \in C[0,1]$,由于 $\Phi_n, \varphi_t \in M[0,1]$,且在 M[0,1] 中 $\Phi_n \to f$,那么

$$\tilde{T}(f) = \lim_{n \to \infty} \tilde{T}(\Phi_n) = \lim_{n \to \infty} \sum_{k=1}^n f\left(\frac{k}{n}\right) \left(\tilde{T}\left(\varphi_{\frac{k}{n}}\right) - \tilde{T}\left(\varphi_{\frac{k-1}{n}}\right)\right)$$

\$

$$g(t) = \tilde{T}(\varphi_t), \qquad t \in [0, 1]$$

对于 [0,1] 的任意划分

$$\Delta: 0 = t_0 < \dots < t_n = 1$$

成立

$$V_{\Delta}(g) = \sum_{i=1}^{n} |g(t_i) - g(t_{i-1})|$$

$$= \sum_{i=1}^{n} \varepsilon_i (g(t_i) - g(t_{i-1}))$$

$$= \sum_{i=1}^{n} \varepsilon_i (\tilde{T}(\varphi_{t_i}) - \tilde{T}(\varphi_{t_{i-1}}))$$

$$= \tilde{T} \left(\sum_{i=1}^{n} \varepsilon_i (\varphi_{t_i} - \varphi_{t_{i-1}}) \right)$$

其中

$$\varepsilon_i = \frac{|g(t_i) - g(t_{i-1})|}{g(t_i) - g(t_{i-1})}, \quad 1 \le i \le n$$

由于

$$\left\|\varepsilon_i(\varphi_{t_i} - \varphi_{t_{i-1}})\right\| = 1$$

那么

$$V_{\Delta}(g) \le \|\tilde{T}\| = \|T\|$$

由 Δ 的任意性

$$V_0^1(g) \le \|T\| \implies g \in V[0,1]$$

进而

$$||T|| = V_0^1(q)$$

此时

$$T(f) = \tilde{T}(f) = \lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \left(g\left(\frac{k}{n} - g\left(\frac{k-1}{n}\right) - \right)\right) = \int_{0}^{1} f(x) \mathrm{d}g(x)$$

定理 3.4.8 (C[0,1] 空间的对偶空间)

对于C[0,1]空间,成立

$$(C[0,1])^* \cong V_0[0,1]$$

其保范线性双射为

$$\tau: (C[0,1])^* \longrightarrow V_0[0,1]$$

$$T \longmapsto g$$

其中

$$T: C[0,1] \longrightarrow \mathbb{C}$$

$$f \longmapsto \int_0^1 f(x) dg(x)$$

3.4.2 二次对偶空间

定义 3.4.7 (二次对偶空间)

定义向量空间 X 的二次对偶空间为 $X^{**} = (X^*)^*$ 。

*

定义 3.4.8 (典型映射)

定义 Banach 空间 X 的典型映射为

$$au: X \longrightarrow X^{**}$$

$$x \longmapsto F_x, \ \sharp \, \forall F_x(f) = f(x)$$

定理 3.4.9

Banach 空间的典型映射为保范线性单射。

证明 Banach 空间 X 的典型映射为

$$\tau: X \longrightarrow X^{**}$$
$$x \longmapsto F_x$$

其中

$$F_x: X^* \longrightarrow \mathbb{C}$$

$$f \longmapsto f(x)$$

显然 τ 为线性单射。

一方面

$$\|\tau(x)\| = \|F_x\| = \sup_{\|f\|=1} |F_x(f)| = \sup_{\|f\|=1} |f(x)| \le \|x\|$$

另一方面,由命题3.2.1,存在 $f_x \in X^*$,使得成立

$$||f_x|| = 1, \qquad f_x(x) = ||x||$$

因此

$$\|\tau(x)\| = \|F_x\| = \sup_{\|f\|=1} |F_x(f)| = \sup_{\|f\|=1} |f(x)| \ge |f_x(x)| = \|x\|$$

综合两方面

$$||\tau(x)|| = ||x||$$

综上所述, τ 为保范线性单射。

推论 3.4.2

如果 X 为 Banach 空间,那么对于任意 $x \in X$,成立

$$||x|| = \sup_{\substack{f \in X^* \\ ||f|| \le 1}} |f(x)|$$

 \odot

命题 3.4.1

对于 Banach 空间 X 的子集 $A \subset X$,如果对于任意 $f \in X^*$,存在 $M_f > 0$,使得成立

$$\sup_{x \in A} |f(x)| \le M_f$$

 \Diamond

那么

 $\sup_{x \in A} \|x\| < \infty$

证明 考虑 X 的典型映射

$$\tau: X \longrightarrow X^{**}$$
$$x \longmapsto F_x$$

其中

$$F_x: X^* \longrightarrow \mathbb{C}$$

$$f \longmapsto f(x)$$

由定理3.4.9, $\|\tau(x)\| = \|x\|$ 。由一致有界原理3.3.2

$$\sup_{x \in A} ||x|| = \sup_{x \in A} ||\tau(x)|| = \sup_{x \in A} ||F_x|| < \infty$$

3.4.3 自反空间

定义 3.4.9 (自反空间)

称 Banach 空间 X 为自反空间,如果 $\tau(X) = X^{**}$,其中 τ 为 X 的典型映射。

Ŷ 笔记 对于 Banach 空间 X, 成立

X为自反空间 \Longrightarrow $X \cong X^{**}$

 $X \cong X^{**} \implies X$ 为自反空间

换言之, 存在 Banach 空间 X, 使得成立 $X \cong X^{**}$, 但是 $\tau(X) \subseteq X^{**}$ 。

例题 3.3 l^1 空间不为自反空间。

证明 由定理3.4.4, $(l^1)^* \cong l^\infty$,从而 $(l^1)^{**} \cong (l^\infty)^*$ 。如果 l^1 空间为自反空间,那么 $(l^1)^{**} \cong l^1$,因此 $l^1 \cong (l^\infty)^*$ 。由于 l^1 空间为可分空间,因此 $(l^\infty)^*$ 空间为可分空间。由定理3.4.2, l^∞ 空间为可分空间,与定理1.9.6矛盾! 因此 l^1 空间不为自反空间。

定理 3.4.10

有限维赋范线性空间为自反空间。

证明 对于n 维赋范线性空间X,由定理3.4.1, X^* 为n 维赋范线性空间,那么 X^{**} 为n 维赋范线性空间。由定理3.4.9,典型映射 τ 为单的保范线性空间,那么由同构定理

$$X/\ker \tau \cong \operatorname{im} \tau \iff X \cong \tau(X)$$

因此 $\tau(X)$ 为n 维赋范线性空间。而 $\tau(X) \subset X^{**}$,那么 $\tau(X) = X^{**}$,进而X为自反空间。

定理 3.4.11

 $L^p[a,b]$ 空间为自反空间, 其中 1 。

证明 $L^p[a,b]$ 空间的典型映射为

$$\tau: L^p[a,b] \longrightarrow (L^p[a,b])^{**}$$

$$f \longmapsto \mathscr{F}, \ \mbox{\sharp} \ \mbox{\dag} \ \mbox{f} \mbox{f} \ \mbox{f} \ \mbox{f} \ \mbox{f} \ \mbox{f} \ \mbox{f} \ \mbox{f} \mbo$$

由定理3.4.9, τ为保范线性单射。

由定理3.4.6,存在保范线性双射

$$\varphi: (L^p[a,b])^* \longrightarrow L^q[a,b], \qquad \psi: (L^q[a,b])^* \longrightarrow L^p[a,b]$$

使得对于任意 $F \in (L^p[a,b])^*$ 与 $f \in L^p[a,b]$,以及任意 $G \in (L^q[a,b])^*$ 与 $g \in L^q[a,b]$,成立

$$F(f) = \int_{a}^{b} \varphi(F)f, \qquad G(g) = \int_{a}^{b} \psi(G)g$$

任取 $\mathscr{F} \in (L^p[a,b])^{**}$, 由于对于任意 $F \in (L^p[a,b])^*$, 成立

$$\mathscr{F}(F) = (\mathscr{F} \circ \varphi^{-1})(\varphi(F)) = \int_{a}^{b} \psi(\mathscr{F} \circ \varphi^{-1})\varphi(F) = F(\psi(\mathscr{F} \circ \varphi^{-1})) = F((\psi \circ (\varphi^{-1})^{*})(\mathscr{F}))$$

因此

$$(\tau \circ \psi \circ (\varphi^{-1})^*)(\mathscr{F}) = \tau((\psi \circ (\varphi^{-1})^*)(\mathscr{F})) = \mathscr{F}$$

由罗的任意性

$$\tau \circ \psi \circ (\varphi^{-1})^* = \mathbb{1}$$

因此 τ 为满射,进而 $L^p[a,b]$ 空间为自反空间。

定理 3.4.12

Hilbert 空间为自反空间。

 \sim

证明 对于 Hilbert 空间 \mathcal{H} ,由 Frechet-Riesz 表现定理2.3.2,存在保范共轭线性双射 $\varphi: \mathcal{H}^* \to \mathcal{H}$,使得对于任意 $x \in \mathcal{H}$ 与 $f \in \mathcal{H}^*$,成立 $f(x) = (x, \varphi(f))$ 。

由定理2.3.3, \mathcal{H}^* 为 Hilbert 空间, 因此由 Frechet-Riesz 表现定理2.3.2, 存在保范共轭线性双射 $\Phi: \mathcal{H}^{**} \to \mathcal{H}^*$,使得对于任意 $f \in \mathcal{H}^*$ 与 $F \in \mathcal{H}^{**}$,成立 $F(f) = (f, \Phi(F))$ 。进而 $\varphi \circ \Phi$ 为保范线性双射。

Hilbert 空间 H 的典型映射为

$$au: \mathcal{H} \longrightarrow \mathcal{H}^{**}$$

$$x \longmapsto F_x, \ \ \sharp \ \forall F_x(f) = f(x)$$

任取 $F \in \mathcal{H}^{**}$,由于对于任意 $f \in \mathcal{H}^{*}$,成立

$$F(f) = (f, \Phi(F)) = \overline{(\varphi(f), \varphi(\Phi(F)))} = (\varphi(\Phi(F)), \varphi(f)) = f(\varphi(\Phi(F))) = f((\varphi \circ \Phi)(F))$$

那么 $(\tau \circ \varphi \circ \Phi)(F) = F$, 因此

$$\tau\circ\varphi\circ\Phi=\mathbb{1}$$

于是 τ 为满射,进而 \mathcal{H} 为自反空间。

定理 3.4.13

对于 Banach 空间 X,如果 X 为自反空间,那么 X 的闭子空间 M 为自反空间。

 \sim

证明 M 的典型映射为

$$\tau: M \longrightarrow M^{**}$$
$$x \longmapsto F_x$$

其中

$$F_x: M^* \longrightarrow \mathbb{C}$$

$$f \longmapsto f(x)$$

任取 $F \in M^{**}$,构造 X^* 上的线性泛函

$$\mathscr{F}: X^* \longrightarrow \mathbb{C}$$

 $f \longmapsto F(f|_M)$

其中

$$f|_M: M \longrightarrow \mathbb{C}$$

 $x \longmapsto f(x)$

由于

$$|\mathscr{F}(f)| = |F(f|_M)| \le ||F|| ||f|_M|| \le ||F|| ||f||$$

因此 $\mathscr{F} \in X^{**}$ 。由于 X 为自反空间,那么存在 $x \in X$,使得对于任意 $f \in X^{*}$,成立 $\mathscr{F}(f) = f(x)$ 。特别的,如果 $f \in X^{*}$ 满足 $f|_{M} = 0$,那么

$$f(x) = \mathcal{F}(f) = F(f|_M) = 0$$

由 Hahn-Banach 定理的推论3.2.2, $x \in M$ 。对于任意 $f \in M^*$,设 f 为 f 的扩张,那么

$$F(f) = F(\mathfrak{f}|_M) = \mathscr{F}(\mathfrak{f}) = \mathfrak{f}(x) = f(x)$$

因此 $\tau(x) = F$,于是 τ 为满射,进而M为自反空间。

定理 3.4.14

对于 Banach 空间 X 与 Y, 如果存在保范线性双射 $T: X \to Y$, 那么

$$X$$
为自反空间 \iff Y 为自反空间

 \Diamond

证明 由定理3.5.3, 命题显然!

事实上,仅证明必要性,考虑X的典型映射

$$\varphi: X \longrightarrow X^{**}$$

$$x \longmapsto F_x, \ \sharp + F_x(f) = f(x)$$

Y的典型映射

$$\psi: Y \longrightarrow Y^{**}$$

$$y \longmapsto G_y, \ \ \sharp \ \forall G_y(g) = g(y)$$

 $T: X \to Y$ 的 Banach 共轭算子

$$T^*:Y^*\longrightarrow X^*$$

$$f\longmapsto f\circ T$$

 $T^*: Y^* \to X^*$ 的 Banach 共轭算子

$$T^{**}: X^{**} \longrightarrow Y^{**}$$

$$F \longmapsto F \circ T^{*}$$

由定理3.5.2, T^* 与 T^{**} 为保范线性双射。

如果 X 为自反空间,那么 φ 为保范线性双射。交换图为

任取 $G \in Y^{**}$,对于任意 $g \in Y^{*}$,存在且存在唯一

$$x \in X$$
, $f \in X^*$, $F \in X^{**}$, $y \in Y$

使得成立

$$T^{**}(F) = G,$$
 $T^{*}(g) = f,$ $\varphi(x) = F,$ $T(x) = y$

因此

$$y = T(x) = T(\varphi^{-1}(F)) = T(\varphi^{-1}((T^{**})^{-1}(G))) = (T \circ \varphi^{-1} \circ (T^{**})^{-1})(G)$$

此时

$$G(g) = (T^{**}(F))((T^*)^{-1}(f))$$

$$= (F \circ T^*)((T^*)^{-1}(f))$$

$$= (F \circ T^* \circ (T^*)^{-1})(f)$$

$$= F(f)$$

$$= f(x)$$

$$= (T^*(g))(T^{-1}(y))$$

$$= (g \circ T)(T^{-1}(y))$$

$$= (g \circ T \circ T^{-1})(y)$$

$$= g(y)$$

因此

$$\psi(y) = G$$

进而 Y 为自反空间。

定理 3.4.15

对于 Banach 空间 X, 成立

X为自反空间 \iff X^* 为自反空间

 \Diamond

证明 X 的典型映射为

$$\psi: X \longrightarrow X^{**}$$

$$x \longmapsto F_x, \ \sharp \, \forall F_x(f) = f(x)$$

X*的典型映射为

对于必要性,如果 X 为自反空间,那么 ψ 为满射。任取 $\mathscr{F} \in X^{***}$,对于任意 $F \in X^{**}$,存在 $x \in X$,使得成立 $\psi(x) = F$,因此对于任意 $f \in X^*$,成立 F(f) = f(x),于是

$$\mathscr{F}(F) = \mathscr{F}(\psi(x)) = (\mathscr{F} \circ \psi)(x) = F(\mathscr{F} \circ \psi)$$

所以 $\Psi(\mathscr{F} \circ \psi) = \mathscr{F}$,那么 Ψ 为满射,进而 X^* 为自反空间。

对于充分性,如果 X^* 为自反空间,那么由必要性, X^{**} 为自反空间。由定理3.4.9, ψ 为下有界连续算子。由命题3.1.3, $\operatorname{im}\psi$ 为 X^{**} 的闭子空间。由定理3.4.13, $\operatorname{im}\psi$ 为自反空间。由定理3.4.9, ψ 为单射,因此 $X\cong\operatorname{im}\psi$ 。由定理3.4.14, X 为自反空间。

3.5 Banach 共轭算子

定义 3.5.1 (Banach 共轭算子)

对于 Banach 空间 X 与 Y, 定义有界线性算子 $T: X \to Y$ 的 Banach 共轭算子为

$$T^*:Y^*\longrightarrow X^*$$
$$g\longmapsto g\circ T$$

例题 3.4 对于 n 维 Banach 空间 X,其基矩阵为 $e=(e_1,\cdots,e_n)$,定义线性算子 $T:X\to X$ 的矩阵表示为 Te=eA。由定理3.4.1,存在 X^* 的基矩阵 $f=(f_1,\cdots,f_n)$,使得成立 $T^*f=fA^T$,且

$$f_i(e_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

例题 3.5 对于 $1 且 <math>\frac{1}{p} + \frac{1}{q} = 1$, K(x,y) 为定义在矩形 $a \le x,y \le b$ 上的复值可测函数,且

$$\int_{a}^{b} \int_{a}^{b} |K(x,y)|^{q} \mathrm{d}x \mathrm{d}y < \infty$$

定义以 K(x,y) 为核的积分算子

$$\mathscr{T}: L^p[a,b] \longrightarrow L^q[a,b]$$

$$f \longmapsto \mathscr{T}(f), \sharp \div (\mathscr{T}(f))(x) = \int_a^b K(x,y)f(y)\mathrm{d}y$$

由 Hölder 不等式1.10.3

$$\begin{split} \int_a^b |(\mathcal{T}(f))(x)|^q \mathrm{d}x &= \int_a^b \left| \int_a^b K(x,y) f(y) \mathrm{d}y \right|^q \mathrm{d}x \\ &\leq \int_a^b \left(\int_a^b |K(x,y)|^q \mathrm{d}y \right) \left(\int_a^b |f(y)|^p \mathrm{d}y \right)^{q/p} \mathrm{d}x \\ &= \|f\|_p^q \|K(x,y)\|_q^q \end{split}$$

因此

$$\|\mathscr{T}(f)\|_{q} = \left(\int_{a}^{b} |(\mathscr{T}(f))(x)|^{q} dx\right)^{1/q}$$
$$\leq \|f\|_{p} \|K(x,y)\|_{q}$$

于是 ⑦ 为有界线性算子。

由定理3.4.6,存在保范线性双射

$$\tau: (L^q[a,b])^* \longrightarrow L^p[a,b]$$
$$T \longmapsto g$$

其中

$$T: L^q[a, b] \longrightarrow \mathbb{C}$$

$$f \longmapsto \int_a^b f(x)g(x)dx$$

因此对于任意 $T \in (L^q[a,b])^*$,以及 $f \in L^p[a,b]$,记 $g = \tau(T)$,成立

$$\begin{split} (\mathscr{T}^*(T))(f) &= (T \circ \mathscr{T})(f) \\ &= T(\mathscr{T}(f)) \\ &= \int_a^b (\mathscr{T}(f))(x)g(x)\mathrm{d}x \\ &= \int_a^b \left(\int_a^b K(x,y)f(y)\mathrm{d}y\right)g(x)\mathrm{d}x \\ &= \int_a^b f(y)\left(\int_a^b K(x,y)g(x)\mathrm{d}x\right)\mathrm{d}y \end{split}$$

又因为

$$(\mathscr{T}^*(T))(f) = \int_a^b f(y)(\mathscr{T}g)(y) dy$$

因此

$$(\mathscr{T}g)(y) = \int_a^b K(x,y)g(x)\mathrm{d}x$$

即

$$(\mathscr{T}g)(x) = \int_{a}^{b} K(y, x)g(y) dy$$

那么 \mathcal{T}^* 的核为 K(y,x)。

例题 3.6 由例题3.5, 以 $K(x,y) \in L^2[0,1]^2$ 为核的积分算子

$$T: L^2[0,1] \longrightarrow L^2[0,1]$$

$$f \longmapsto T(f), 其中(T(f))(x) = \int_0^1 K(x,y)f(y)\mathrm{d}y$$

为有界线性算子,那么

$$(T^*(f), g) = (f, T(g))$$

$$= \int_0^1 f(x) \overline{(T(g))(x)} dx$$

$$= \int_0^1 f(x) \left(\overline{\int_0^1 K(x, y) g(y)} dy \right) dx$$

$$= \int_0^1 \overline{g(y)} \left(\overline{\int_0^1 \overline{K(x, y)} f(x)} dx \right) dy$$

因此对于任意 $f,g \in L^2[0,1]$,成立

$$(T^*(f))(y) = \int_0^1 \overline{K(x,y)} f(x) \mathrm{d}x$$

即

$$(T^*(f))(x) = \int_0^1 \overline{K(y,x)} f(y) \mathrm{d}y$$

那么 T^* 的核为 $\overline{K(y,x)}$ 。

命题 3.5.1

$$(T+S)^* = T^* + S^*, \qquad (\lambda T)^* = \lambda T^*$$

命题 3.5.2

对于 Banach 空间 X, 如果 $T,S:X\to X$ 为有界线性算子, 那么

$$(S \circ T)^* = T^* \circ S^*$$

命题 3.5.3

对于 Banach 空间 X, 如果 $T: X \to X$ 为有界可逆线性算子, 那么

$$(T^*)^{-1} = (T^{-1})^*$$

定理 3.5.1

有界线性算子 $T:X\to Y$ 的 Banach 共轭算子 $T^*:Y^*\to X^*$ 为有界线性算子,且 $\|T\|=\|T^*\|$,其中 X,Y 为 Banach 空间。

证明 由推论3.4.2

$$||T(x)|| = \sup_{\substack{g \in Y^* \\ ||f|| \le 1}} |f(T(x))|$$

因此

$$||T|| = \sup_{\|x\| \le 1} ||T(x)||$$

$$= \sup_{\|x\| \le 1} \sup_{\substack{g \in Y^* \\ \|f\| \le 1}} |g(T(x))|$$

$$= \sup_{\|x\| \le 1} \sup_{\substack{g \in Y^* \\ \|g\| \le 1}} |(g \circ T)(x)|$$

$$= \sup_{\|x\| \le 1} \sup_{\|g\| \le 1} |(T^*(g))(x)|$$

$$= \sup_{\|g\| \le 1} \sup_{\|x\| \le 1} |(T^*(g))(x)|$$

$$= \sup_{\|g\| \le 1} ||T^*(g)||$$

$$= ||T^*||$$

定理 3.5.2

对于 Banach 空间 X 与 Y, 如果 $T: X \to Y$ 为保范线性双射, 那么 $T^*: Y^* \to X^*$ 为保范线性双射。

证明 对于线性

$$T^*(f+g) = (f+g) \circ T = f \circ T + g \circ T = T^*(f) + T^*(g)$$

$$T^*(\lambda g) = (\lambda g) \circ T = \lambda (g \circ T) = \lambda T^*(g)$$

对于双射性,构造算子

$$(T^*)^{-1}: X^* \longrightarrow Y^*$$

 $f \longmapsto f \circ T^{-1}$

由于

$$((T^*)^{-1} \circ T^*)(g) = (T^*)^{-1}(T^*(g)) = (T^*)^{-1}(g \circ T) = g \circ T \circ T^{-1} = g \implies (T^*)^{-1} \circ T^* = \mathbb{1}_{Y^*}$$

$$(T^* \circ (T^*)^{-1})(f) = T^*((T^*)^{-1}(f)) = T^*(f \circ T^{-1}) = f \circ T^{-1} \circ T = f \implies T^* \circ (T^*)^{-1} = \mathbb{1}_{X^*}$$
 那么 T^* 为风射。

对于保范性,一方面

$$|(T^*(g))(x)| = |(g \circ T)(x)| = |g(T(x))| \le ||g|| ||T(x)|| = ||g|| ||x|| \implies ||T^*(g)|| \le ||g||$$

另一方面,对于任意 $n \in \mathbb{N}^*$,由于 $||g|| = \sup_{\|y\| \le 1} |g(y)|$,那么存在 $y_n \in Y$,使得成立

$$||y_n|| \le 1, \qquad |g(y_n)| \ge ||g|| - \frac{1}{n}$$

由于 T 为双射, 那么存在 $\{x_n\}_{n=1}^{\infty} \subset X$, 使得对于任意 $n \in \mathbb{N}^*$, 成立

$$T(x_n) = y_n, ||x_n|| = ||T(x_n)|| = ||y_n|| \le 1$$

因此

$$|(T^*(g))(x_n)| = |(g \circ T)(x_n)| = |g(T(x_n))| = |g(y_n)| \ge ||g|| - \frac{1}{n}$$

进而

$$||T^*(g)|| = \sup_{\|x\| \le 1} |(T^*(g))(x)| \ge \sup_{n \in \mathbb{N}^*} |(T^*(g))(x_n)| \ge \sup_{n \in \mathbb{N}^*} ||g|| - \frac{1}{n} = ||g||$$

综合两方面, $||T^*(g)|| = ||g||$, 因此 T^* 为保范算子。

综上所述, T^* 为保范线性双射。

定理 3.5.3

对于 Banach 空间 X, Y, 如果 $T: X \to Y$ 为有界线性算子, 那么

$$T^{**}\circ\varphi=\psi\circ T$$

其中 $\varphi: X \to X^{**}$ 与 $\psi: Y \to Y^{**}$ 为典型映射。

证明 由于

$$T^*:Y^*\longrightarrow X^*$$

$$g\longmapsto g\circ T$$

那么

$$T^{**}: X^{**} \longrightarrow Y^{**}$$

$$F \longmapsto F \circ T^{*}$$

由定理3.5.1, $T^{**}: X^{**} \to Y^{**}$ 为有界线性泛函。由于

$$\varphi: X \longrightarrow X^{**}$$
 $\psi: Y \longrightarrow Y^{**}$ $x \longmapsto F_x$ $y \longmapsto G_y$

其中

$$F_x: X^* \longrightarrow \mathbb{C}$$
 $G_y: Y^* \longrightarrow \mathbb{C}$ $f \longmapsto f(x)$ $g \longmapsto g(y)$

那么任取 $x \in X 与 g \in Y^*$,成立

$$((T^{**} \circ \varphi)(x))(g) = (T^{**}(\varphi(x)))(g) = ((\varphi(x)) \circ T^{*})(g) = (\varphi(x))(T^{*}(g)) = (T^{*}(g))(x) = (g \circ T)(x) = g(T(x))$$

$$((\psi \circ T)(x))(g) = (\psi(T(x)))(g) = g(T(x))$$

因此

$$T^{**} \circ \varphi = \psi \circ T$$

定理 3.5.4

对于 Hilbert 空间 X 与 Y,如果 $T_{\rm H}^*$ 与 $T_{\rm B}^*$ 分别为有界线性算子 $T:X\to Y$ 的 Hilbert 共轭算子与 Banach 共轭算子,那么存在保范共轭线性双射 $\varphi:X^*\to X$ 与 $\psi:Y^*\to Y$,使得成立

$$T_{\mathrm{H}}^* \circ \psi = \varphi \circ T_{\mathrm{B}}^*$$

证明 由 Frechet-Riesz 表现定理2.3.2,存在保范共轭线性双射 $\varphi: X^* \to X$,使得对于任意 $x \in X$ 与 $f \in X^*$,成立 $f(x) = (x, \varphi(f))$ 。同理,存在保范共轭线性双射 $\psi: Y^* \to Y$,使得对于任意 $y \in Y$ 与 $g \in Y^*$,成立 $g(y) = (y, \psi(g))$ 。

对于任意 $x \in X$ 与任意 $g \in Y^*$, 成立

$$(x, (\varphi \circ T_{\mathsf{B}}^*)(g)) = (x, \varphi(T_{\mathsf{B}}^*(g))) = (x, \varphi(g \circ T)) = (g \circ T)(x) = g(T(x))$$
$$(x, (T_{\mathsf{H}}^* \circ \psi)(g)) = (x, T_{\mathsf{H}}^*(\psi(g))) = (T(x), \psi(g)) = g(T(x))$$

由命题2.1.1

$$T_{\rm H}^* \circ \psi = \varphi \circ T_{\rm B}^*$$

附录 A 空间

定义 A.0.1 (拓扑空间 topological space)

称 (X,τ) 为拓扑空间,如果拓扑 τ ⊂ $\mathscr{P}(X)$ 满足如下性质。

- 1. $\varnothing, X \in \tau$
- 2. τ对于任意并运算封闭。
- 3. τ对于有限交运算封闭。

定义 A.0.2 (向量空间 vector space / 线性空间 linear space)

称 $(V,+,\cdot)$ 为数域 $\mathbb F$ 上的向量空间/线性空间,如果加法运算 $+:V\times V\to V$ 和数乘运算 $\cdot:\mathbb F\times V\to V$ 满足如下性质。

- 1. 加法单位元: 存在 $0 \in V$,使得对于任意 $x \in V$,成立 0+x=x+0=x。
- 2. 数乘单位元: 存在 $1 \in \mathbb{F}$, 使得对于任意 $x \in V$, 成立 $1 \cdot x = x$ 。
- 3. 加法逆元: 对于任意 $x \in V$, 存在 $y \in V$, 使得成立 x + y = y + x = 0。
- 4. 加法交换律: x + y = y + x
- 5. 加法结合律: x + (y + z) = (x + y) + z
- 6. 数乘结合律: $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$
- 7. 数乘左分配律: $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
- 8. 数乘右分配律: $\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$

定义 A.0.3 (度量空间 metric space)

称 (X,d) 为数域 \mathbb{F} 上的度量空间,如果度量 $d: X \times X \to \mathbb{F}$ 满足如下性质。

- 1. 正定性: $d(x,y) \ge 0$, 当且仅当 x = y 时等号成立。
- 2. 对称性: d(x,y) = d(y,x)
- 3. 三角不等式: $d(x,z) \le d(x,y) + d(y,z)$

定义 A.0.4 (度量线性空间 metric linear space)

称数域 \mathbb{F} 上的度量空间 (X,d) 为度量线性空间,如果度量 d 对于加法和数乘运算连续;换言之

$$x_n \xrightarrow{d} x \mathbb{E} y_n \xrightarrow{d} y \implies x_n + y_n \xrightarrow{d} x + y$$

$$x_n \xrightarrow{d} x \mathbb{E} \lambda_n \to \lambda \implies \lambda_n x_n \xrightarrow{d} \lambda x$$

定义 A.0.5 (赋范空间 normed space)

称数域 \mathbb{F} 上的向量空间 $(V, \|\cdot\|)$ 为赋范空间,如果范数 $\|\cdot\|: V \to \mathbb{F}$ 满足如下性质。

- 1. 正定性: $||x|| \ge 0$, 当且仅当 x = 0 时等号成立。
- 2. 绝对齐次性: $\|\lambda \cdot x\| = |\lambda| \|x\|$
- 3. 三角不等式: $||x+y|| \le ||x|| + ||y||$

定义 A.0.6 (内积空间 inner product space)

称数域 \mathbb{F} 上的向量空间 $(V,(\cdot,\cdot))$ 为内积空间,如果内积 $(\cdot,\cdot):V\times V\to\mathbb{F}$ 满足如下性质。

- 1. 正定性: (x,x) > 0, 当且仅当 x = 0 时等号成立。
- 2. 共轭对称性: $(x,y) = \overline{(y,x)}$

3. 左线性: $(\lambda \cdot x + \mu \cdot y, z) = \lambda(x, z) + \mu(y, z)$

*

定义 A.0.7 (Banach 空间)

称完备的赋范空间为 Banach 空间。

4

定义 A.0.8 (Hilbert 空间)

称完备的内积空间为 Hilbert 空间。

*

命题 A.0.1 (空间关系)

内积空间 ○ 赋范空间 ○ 度量线性空间 ○ 度量空间 ○ 向量空间, 拓扑空间

附录 B 弱收敛与弱*收敛

B.1 弱收敛

定义 B.1.1 (弱收敛)

对于 Banach 空间 X, 称序列 $\{x_n\}_{n=1}^{\infty}\subset X$ 弱收敛于 $x\in X$, 并记作 $x_n\xrightarrow{w}x$, 如果对于任意有界线性 泛函 $f:X\to\mathbb{C}$, 成立

$$\lim_{n \to \infty} f(x_n) = f(x)$$

定义 B.1.2 (弱收敛)

对于 Hilbert 空间 \mathcal{H} , 称序列 $\{x_n\}_{n=1}^{\infty} \subset \mathcal{H}$ 弱收敛于 $x \in \mathcal{H}$, 并记作 $x_n \xrightarrow{w} x$, 如果成立如下命题之一。

1. 对于任意有界线性泛函 $f: \mathcal{H} \to \mathbb{C}$, 成立

$$\lim_{n \to \infty} f(x_n) = f(x)$$

2. 对于任意 $y \in \mathcal{H}$, 成立

$$\lim_{n \to \infty} (x_n, y) = (x, y)$$

定义 B.1.3 (弱列紧性)

称 Banach 空间 X 的子集 $K \subset X$ 为弱列紧的,如果 K 中任意序列存在弱收敛子序列。

定义 B.1.4 (弱连续)

对于 Hilbert 空间 \mathcal{H} ,称泛函 $f:\mathcal{H}\to\mathbb{C}$ 为弱连续的,如果对于任意弱收敛于 $x\in\mathcal{H}$ 的序列 $\{x_n\}_{n=1}^\infty\subset\mathcal{H}$,成立 $f(x_n)\to f(x)$ 。

定理 B.1.1 (Pettis 定理)

自反空间中的单位开球为弱列紧的。

B.2 弱*收敛

定义 B.2.1 (弱*收敛)

对于 Banach 空间 X, 称序列 $\{f_n\}_{n=1}^{\infty}\subset X^*$ 弱 * 收敛于 $f\in X^*$, 并记作 $f_n\xrightarrow{w^*}f$, 如果对于任意 $x\in X$, 成立

$$\lim_{n \to \infty} f_n(x) = f(x)$$

定义 B.2.2 (弱 * 列紧性)

称 Banach 空间 X 的对偶空间 X^* 的子集 $K \subset X^*$ 为弱 * 列紧的,如果 K 中任意序列存在弱 * 收敛子序 列。

定理 B.2.1 (Alaoglu 定理)

Banach 空间的对偶空间中的单位闭球为弱*列紧的。

 \Diamond

附录 C 广义函数

定义 C.0.1 (支集)

定义函数 φ 的支集为

$$\operatorname{supp}(\varphi) = \overline{\{x : \varphi(x) \neq 0\}}$$

定义 C.0.2 (基本函数空间 ②)

 $\mathcal{D} = \{ \varphi : \mathbb{R} \to \mathbb{R} \}$ 无穷此连续可微函数且 $\sup (\varphi)$ 为紧集

定义 C.0.3 (基本函数空间 Ø 中的收敛)

称序列 $\{\varphi_n\}_{n=1}^{\infty}\subset \mathcal{Q}$ 收敛于 $\varphi\in \mathcal{Q}$,并记作 $\varphi_n\overset{\mathcal{D}}{\longrightarrow}\varphi$,如果存在紧集 K,使得成立 $\bigcup_{n=1}^{\infty}\operatorname{supp}(\varphi_n)\subset K$,且对于任意 $k\in\mathbb{N}$,数列 $\{\varphi_n^{(k)}(x)\}_{n=1}^{\infty}$ 关于 $x\in\mathbb{R}$ 一致收敛于 $\varphi(x)$ 。

定义 C.0.4 (②广义函数)

称泛函

$$f: \mathscr{D} \longrightarrow \mathbb{R}$$
$$\varphi \longmapsto \langle f, \varphi \rangle$$

为 ② 广义函数,如果成立如下命题。

1. 线性性: 对于任意 $\varphi, \psi \in \mathcal{D}$ 与 $\lambda \in \mathbb{R}$, 成立

$$\langle f, \varphi + \psi \rangle = \langle f, \varphi \rangle + \langle f, \psi \rangle, \qquad \langle f, \lambda \varphi \rangle = \lambda \langle f, \varphi \rangle$$

2. 连续性:对于任意序列 $\{\varphi_n\}_{n=1}^{\infty}\subset \mathcal{D}$,成立

$$\varphi_n \xrightarrow{\mathscr{D}} \varphi \implies \langle f, \varphi_n \rangle \to \langle f, \varphi \rangle$$

命题 C.0.1 (局部可积函数为 Ø 广义函数)

如果 $f: \mathbb{R} \to \mathbb{R}$ 为局部可积函数,那么存在且存在唯一 \mathcal{D} 广义函数

$$T_f: \mathscr{D} \longrightarrow \mathbb{R}$$

$$\varphi \longmapsto \int_{\mathbb{R}} f \varphi$$

命题 C.0.2 (Dirac 函数)

Dirac 函数

$$\delta: \mathscr{D} \longrightarrow \mathbb{R}$$
$$\varphi \longmapsto \varphi(0)$$

为 ② 广义函数, 其显性表达为

$$\delta(x) = \begin{cases} 0, & x \neq 0 \\ \infty, & x = 0 \end{cases}, \qquad \int_{-\infty}^{+\infty} \delta(x) dx = 1$$

定义 C.0.5 (少广义函数的导数)

定义分广义函数

$$f: \mathscr{D} \longrightarrow \mathbb{R}$$

$$\varphi \longmapsto \langle f, \varphi \rangle$$

为分广义函数

$$f': \mathscr{D} \longrightarrow \mathbb{R}$$

$$\varphi \longmapsto \langle f', \varphi \rangle = -\langle f, \varphi' \rangle$$

命题 C.0.3 (Heaviside 函数)

Heaviside 函数

$$H(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

为 \mathcal{D} 广义函数, 且其导数为 $H' = \delta$ 。

证明 由于 H 为局部可积函数,因此由命题C.0.1, H 为 \mathcal{D} 广义函数。注意到,对于任意 $\varphi \in \mathcal{D}$,成立

$$\langle H',\varphi\rangle = -\langle H,\varphi'\rangle = -\int_{\mathbb{R}} H\varphi' = -\int_{\mathbb{R}_{>0}} \varphi' = \varphi(0) = \langle \delta,\varphi\rangle$$

由 φ 的任意性, $H' = \delta$ 。

定理 C.0.1

对于 \mathcal{D} 广义函数序列 $\{f_n\}_{n=1}^{\infty}$ 与 \mathcal{D} 广义函数 f,如果对于任意 $\varphi \in \mathcal{D}$,成立

$$\lim_{n\to\infty} \langle f_n, \varphi \rangle = \langle f, \varphi \rangle$$

那么对于任意 $k \in \mathbb{N}$ 与 $\varphi \in \mathcal{D}$, 成立

$$\lim_{n \to \infty} \langle f_n^{(k)}, \varphi \rangle = \langle f^{(k)}, \varphi \rangle$$

定理 C.0.2

对于 \mathscr{D} 广义函数序列 $\{f_n\}_{n=1}^{\infty}$, 如果对于任意 $\varphi\in\mathscr{D}$, 存在极限 $\lim_{n\to\infty}\langle f_n,\varphi\rangle$, 那么存在 \mathscr{D} 广义函数 f,使得对于任意 $\varphi\in\mathscr{D}$,成立

$$\lim_{n\to\infty}\langle f_n^{(k)},\varphi\rangle=\langle f^{(k)},\varphi\rangle$$

 \odot

 \Diamond

附录 D 经典定理

定理 D.0.1 (Frechet-Riesz 表现定理)

对于 Hilbert 空间 \mathcal{H} ,存在保范共轭线性双射 $\tau:\mathcal{H}^*\to\mathcal{H}$,使得对于任意 $x\in\mathcal{H}$ 与 $f\in\mathcal{H}^*$,成立 $f(x)=(x,\tau(f))$ 。

证明 首先证明存在映射 $\tau: \mathcal{H}^* \to \mathcal{H}$,使得对于任意 $x \in \mathcal{H}$ 与 $f \in \mathcal{H}$,成立 $f(x) = (x, \tau(f))$ 。任取 $f \in \mathcal{H}^*$,如果 f = 0,那么定义 $\tau(f) = 0$,因此对于任意 $x \in \mathcal{H}$,成立

$$f(x) = 0 = (x, 0) = (x, \tau(f))$$

如果 $f \neq 0$,那么 $\ker f \subsetneq \mathcal{H}$ 。由命题3.1.1, $\ker f \to \mathcal{H}$ 的闭子空间。取 $x_0 \in \mathcal{H} \setminus \ker f$,由射影定理2.3.1,存在且存在唯一 $(y_0, z_0) \in \ker f \times (\ker f)^{\perp}$,使得成立 $x_0 = y_0 + z_0$,因此 $z_0 \neq 0$ 且 $f(z_0) \neq 0$ 。任取 $x \in \mathcal{H}$,令 $\beta_x = f(x)/f(z_0)$,那么

$$f(x) = \beta_x f(z_0) = f(\beta_x z_0) \iff f(x - \beta_x z_0) \in \ker f \iff x - \beta_x z_0 \in \ker f$$

由于 $x = (x - \beta_x z_0) + \beta_x z_0$, 那么 $\mathcal{H} = \text{span} (\ker f \cup \{z_0\})$ 。由于

$$(x, z_0) = ((x - \beta_x z_0) + \beta_x z_0, z_0) = (x - \beta_x z_0, z_0) + \beta_x (z_0, z_0) = \beta_x ||z_0||^2$$

因此 $\beta_x = (x, z_0/\|z_0\|^2)$,进而 $f(x) = (x, z_0\overline{f(z_0)}/\|z_0\|^2)$,此时定义 $\tau(f) = z_0\overline{f(z_0)}/\|z_0\|^2$,那么对于任意 $x \in \mathcal{H}$,成立 $f(x) = (x, \tau(f))$ 。

其次证明映射 τ 为保范共轭线性双射。对于保范性、任取 $f \in \mathcal{H}^*$ 、如果 f = 0、那么 $\tau(f) = 0$ 、因此

$$\|\tau(f)\| = \|f\| = 0$$

如果 $f \neq 0$, 那么由 Scharz 不等式2.1.5

$$\begin{split} &\|\tau(f)\| = \left| \left(\frac{\tau(f)}{\|\tau(f)\|}, \tau(f) \right) \right| = \left| f \left(\frac{\tau(f)}{\|\tau(f)\|} \right) \right| \leq \|f\| \\ &\|f\| = \sup_{\|x\| < 1} |f(x)| = \sup_{\|x\| < 1} |(x, \tau(f))| \leq \sup_{\|x\| = 1} \|x\| \|\tau(f)\| = \|\tau(f)\| \end{split}$$

因此 $||f|| = ||\tau(f)||$, 进而该映射为保范映射。

对于单射性,由命题3.1.2,结合 τ 的保范性, τ 为单射。

对于满射性,对于任意 $x \in \mathcal{H}$,定义 $f_x \in \mathcal{H}^*$,使得对于任意 $y \in \mathcal{H}$,成立 $f_x(y) = (y,x)$,那么 $\tau(f_x) = x$, 进而 τ 为满射。

对于共轭线性, 由于

$$(x, \tau(f+g)) = (f+g)(x) = f(x) + g(x) = (x, \tau(f)) + (x, \tau(g)) = (x, \tau(f) + \tau(g))$$
$$(x, \tau(\lambda f)) = (\lambda f)(x) = \lambda f(x) = \lambda(x, \tau(f)) = (x, \overline{\lambda}\tau(f))$$

那么由命题2.1.1

$$\tau(f+g) = \tau(f) + \tau(g), \qquad \tau(\lambda f) = \overline{\lambda}\tau(f)$$

综上所述,对于 Hilbert 空间 \mathcal{H} ,存在保范共轭线性双射 $\tau:\mathcal{H}^*\to\mathcal{H}$,使得对于任意 $x\in\mathcal{H}$ 与 $f\in\mathcal{H}^*$,成立 $f(x)=(x,\tau(f))$,命题得证!

定理 D.0.2 (Hahn-Banach 定理)

对于赋范线性空间 X 的子空间 M 上的有界线性泛函 $f:M\to\mathbb{C}$,存在有界线性泛函 $F:X\to\mathbb{C}$,使得成立

$$F|_{M} = f, \qquad ||F|| = ||f||$$

证明 定义

$$p(x) = ||f|||x||, \qquad x \in X$$

容易知道

$$p(x+y) \le p(x) + p(y), \qquad x, y \in X$$

$$p(\lambda x) = |\lambda| p(x), \qquad x \in X, \lambda \in \mathbb{C}$$

$$|f(x)| \le p(x), \qquad x \in M$$

那么由 Bohnenblust-Sobczyk 定理3.2.2,存在线性泛函 $F: X \to \mathbb{C}$,使得成立

$$||F|| \le ||f||, \qquad F(x) = f(x), \qquad x \in M$$

而

$$\|F\| = \sup_{x \in X} \frac{|F(x)|}{\|x\|} \ge \sup_{x \in M} \frac{|f(x)|}{\|x\|} = \|f\|$$

因此

$$\|F\| = \|f\|$$

定理 D.0.3 (Baire 纲定理)

完备度量空间为第二纲的。

Ç

证明 若不然,存在无处稠密子集族 $\{S_n\}_{n=1}^{\infty}$,使得成立 $E=\bigcup_{n=1}^{\infty}S_n$ 。因为 S_1 无处稠密,所以存在 $x_1\in X\setminus\overline{S}_1$,以及 $0< r_1<1$,使得成立 $B_{x_1}(r_1)\cap\overline{S}_1=\varnothing$ 。因为 S_2 无处稠密,所以存在 $x_2\in B_{x_1}(r_1)\setminus\overline{S}_1$,以及 $0< r_2<1/2$,使得成立 $B_{x_2}(r_2)\cap\overline{S}_2=\varnothing$,且 $\overline{B}_{x_2}(r_2)\subset B_{x_1}(r_1)$ 。递归的,存在 $\{x_n\}_{n=1}^{\infty}\subset X$,与 $\{r_n\}_{n=1}^{\infty}\subset \mathbb{R}$,使得对于任意 $n\in\mathbb{N}^*$,成立

$$x_{n+1} \in B_{x_n}(r_n) \setminus \overline{S}_n, \quad 0 < r_n < 2^{1-n}, \quad B_{x_n}(r_n) \cap \overline{S}_n = \varnothing, \quad \overline{B}_{x_{n+1}}(r_{n+1}) \subset B_{x_n}(r_n)$$

由于对于任意 $m \ge n$, 成立

$$d(x_m, x_n) < 2^{1-n}$$

因此 $\{x_n\}_{n=1}^{\infty} \subset X$ 为 Cauchy 序列,因此存在 $x \in X$,使得成立 $x_n \to x$ 。由于对于任意 $n \in \mathbb{N}^*$,当 m > n 时,成立 $x_m \in B_{x_{n+1}}(r_{n+1})$,因此 $x \in \overline{B}_{x_{n+1}}(r_{n+1}) \subset B_{x_n}(r_n)$,进而 $x \notin \overline{S}_n$,此时 $x \notin \bigcup_{n=1}^{\infty} \overline{S}_n = X$,矛盾!

定理 D.0.4 (一致有界原理/共鸣定理)

对于第二纲的赋范线性空间 X 与赋范线性空间 Y, $\{T_{\lambda}: X \to Y\}_{\lambda \in \Lambda}$ 为一族有界线性算子,如果对于任意 $x \in X$,成立 $\sup_{\lambda \in \Lambda} \|T_{\lambda}(x)\| < \infty$,那么 $\sup_{\lambda \in \Lambda} \|T_{\lambda}\| < \infty$ 。

证明 记 $S_n = \{x \in X : \sup_{\lambda \in \Lambda} \|T_\lambda(x)\| \le n\}$,那么 $X = \bigcup_{n=1}^\infty S_n$ 。对于任意 $\lambda \in \Lambda$, T_λ 为连续算子,那么 S_n 为闭集。由于 X 为第二纲的,那么存在 $N \in \mathbb{N}^*$,使得 S_N 不为无处稠密的,即 $(S_N)^\circ \ne \varnothing$,从而存在 $B_\varepsilon(x_0) \subset S_N$ 。如果 $\|x\| < \varepsilon$,那么 $x + x_0 \in B_\varepsilon(x_0)$,因此对于任意 $\lambda \in \Lambda$,成立

$$\begin{split} \|T_{\lambda}(x)\| &\leq \|T_{\lambda}(x+x_{0})\| + \|T_{\lambda}(x_{0})\| \leq 2N \\ \text{由于对于任意 } x \in X \setminus \{0\}, \;\; 成立 \; \left\|\frac{\varepsilon}{2\|x\|}x\right\| < \varepsilon, \;\; 那么对于任意 \, \lambda \in \Lambda, \;\; 成立 \\ \left\|T_{\lambda}\left(\frac{\varepsilon}{2\|x\|}x\right)\right\| &\leq 2N \iff \|T_{\lambda}(x)\| \leq \frac{4N}{\varepsilon}\|x\| \iff \|T_{\lambda}\| \leq \frac{4N}{\varepsilon} \end{split}$$

定理 D.0.5 (开映射定理)

对于 Banach 空间 X 与 Y, 如果 $T: X \to Y$ 为有界线性算子,且 im T 为第二纲的,那么 T 为开映射。

 \heartsuit

证明 假设 G 为 X 的开集。对于任意 $y \in T(G)$,存在 $x \in G$,使得成立 y = T(x)。由于 G 为开集,那么 x 为 G 的内点,因此存在 $\varepsilon > 0$,使得成立 $B_{\varepsilon}(x) \subset G$ 。注意到 $B_{\varepsilon}(x) = x + B(\varepsilon)$,且 T 为线性算子,那么

$$T(G) \supset T(B_{\varepsilon}(x)) = T(x + B(\varepsilon)) = T(x) + T(B(\varepsilon)) = y + T(B(\varepsilon))$$

由定理3.3.5,存在 $\delta > 0$,使得成立 $B(\delta) \subset T(B(\varepsilon))$,于是

$$T(G) \supset y + B(\delta) = B_{\delta}(y)$$

因此y为T(G)的内点。由y的任意性,T(G)为开集,进而T为开映射。

定理 **D.0.6** (闭图形定理)

对于 Banach 空间 X 与 Y, 如果 $T: X \to Y$ 为闭线性算子, 那么 T 为有界算子。

 \odot

证明 在 Banach 空间 X 上引入范数

$$\llbracket \; \cdot \; \rrbracket : X \longrightarrow \mathbb{R}$$

$$x \longmapsto ||x|| + ||T(x)||$$

依范数 $[\cdot]$ 取 Cauchy 序列 $\{x_n\}_{n=1}^{\infty} \subset X$,那么对于任意 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$,使得对于任意 $m, n \geq N$ 成立

$$[x_m - x_n] = ||x_m - x_n|| + ||T(x_m) - T(x_n)|| \le \varepsilon$$

因此 $\{x_n\}_{n=1}^{\infty} \subset X$ 依范数 $\|\cdot\|$ 构成 Cauchy 序列, $\{T(x_n)\}_{n=1}^{\infty} \subset Y$ 依范数 $\|\cdot\|$ 构成 Cauchy 序列。由于 X 依范数 $\|\cdot\|$ 构成 Banach 空间且 Y 依范数 $\|\cdot\|$ 构成 Banach 空间,因此存在 $X \in X$ 与 $Y \in Y$,使得成立

$$\lim_{n \to \infty} x_n = x, \qquad \lim_{n \to \infty} T(x_n) = y$$

由于T为闭算子,那么T(x) = y,因此

$$\lim_{n \to \infty} [x_n - x] = \lim_{n \to \infty} ||x_n - x|| + \lim_{n \to \infty} ||T(x_n) - T(x)|| = 0$$

进而 X 依范数 $[\cdot]$ 构成 Banach 空间。由于范数 $[\cdot]$ 强于 $|\cdot|$, 那么由推论3.3.3, 范数 $[\cdot]$ 与 $|\cdot|$ 等价。对于 $z \in X$,任取 $\{z_n\}_{n=1}^{\infty} \subset X$,使得满足

$$\lim_{n \to \infty} ||z_n - z|| = 0 \iff \lim_{n \to \infty} \llbracket z_n - z \rrbracket = 0$$

由于

$$\lim_{n \to \infty} ||T(z_n) - T(z)|| \le \lim_{n \to \infty} \llbracket z_n - z \rrbracket = 0$$

那么 T 在 z 处连续,由定理1.7.4, T 为有界算子。