Package 'Rearrangement'

October 12, 2022

Type Package										
itle Monotonize Point and Interval Functional Estimates by Rearrangement										
Version 2.1										
Author Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon										
Maintainer Ivan Fernandez-Val <ivanf@bu.edu></ivanf@bu.edu>										
Description The rearrangement operator (Hardy, Littlewood, and Polya 1952) for univariate, bivariate, and trivariate point estimates of monotonic functions. The package additionally provides a function that creates simultaneous confidence intervals for univariate functions and applies the rearrangement operator to these confidence intervals.										
License GPL (>= 2)										
LazyLoad yes										
Depends quantreg, splines										
NeedsCompilation no										
Repository CRAN										
Date/Publication 2016-03-02 01:48:30										
R topics documented:										
Rearrangement-package 2 GrowthChart 3 Iclm 4 Icrq2 5 lines.conint 6 IpIm 7 Iprq2 8 plot.conint 9 points.conint 10 polygon.conint 11										

Index	rearrangement simconboot .	 																14
ınuex																		

Rearrangement-package Point and Interval Rearrangement

Description

This package implements the rearrangement operator (Hardy, Littlewood, and Polya 1952) for univariate, bivariate, and trivariate point estimates of monotonic functions. It additionally provides a function that creates simultaneous confidence intervals for univariate functions and applies the rearrangement operator to these confidence intervals.

Details

Package: Rearrangement
Type: Package
Version: 1.0
Date: 2011-09-11
License: GPL(>=2)
LazyLoad: yes

This package is used for rearranging both point and interval estimates of a target function. Given an original point estimate of a target function, one may use rearrangement to monotonize this estimate. One may also create simultaneous confidence interval estimates using simconboot and monotonize these estimates using rconint.

Author(s)

Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon Maintainer: Ivan Fernandez-Val <ivanf@bu.edu>

References

Chernozhukov, V., I. Fernandez-Val, and a. Galichon. 2009. Improving point and interval estimators of monotone functions by rearrangement. Biometrika 96 (3): 559-575.

Chernozhukov, V., I. Fernandez-Val, and a. Galichon. 2010. Quantile and Probability Curves Without Crossing. Econometrica 78(3): 1093-1125.

Hardy, G.H., J.E. Littlewood, and G. Polya, Inequalities, 2nd ed, Cambridge U. Press, 1952

Examples

##rearrangement example:

GrowthChart 3

```
library(splines)
data(GrowthChart)
attach(GrowthChart)
ages <- unique(sort(age))</pre>
aknots <- c(3, 5, 8, 10, 11.5, 13, 14.5, 16, 18)
splines_age <- bs(age,kn=aknots)</pre>
sformula <- height~splines_age
sfunc <- approxfun(age,lm(sformula)$fitted.values)</pre>
splreg <- sfunc(ages)</pre>
rsplreg <- rearrangement(list(ages),splreg)</pre>
plot(age,height,pch=21,bg='gray',cex=.5,xlab="Age(years)",
ylab="Height(cms)", main="CEF (Regression Splines)",col='gray')
lines(ages,splreg,col='red',lwd=3)
lines(ages,rsplreg,col='blue',lwd=2)
legend("topleft",c('Original','Rearranged'),lty=1,col=c('red','blue'),bty='n')
detach(GrowthChart)
##rconint example:
## Not run:
data(GrowthChart)
attach(GrowthChart)
nage <- 2 * pi * (age - min(age)) / (max(age) - min(age))</pre>
formula <- height~I(sin(nage))+I(cos(nage))+I(sin(2*nage)) +</pre>
            I(cos(2*nage))+I(sin(3*nage))+
            I(cos(3*nage)) + I(sin(4*nage)) + I(cos(4*nage))
j <- simconboot(nage,height,lm,formula)</pre>
k <- rconint(j)</pre>
plot(k, border=NA, col='darkgray')
polygon.conint(j, border=NA, col='lightgray')
polygon.conint(k, border=NA, col='darkgray', density=50)
points(nage, height)
detach(GrowthChart)
## End(Not run)
```

GrowthChart

Age and Height of White Males

Description

This data set contains age and height of US-born white males age two through twenty. Note that age is measured in months and expressed in years, and height is measured in centimeters.

Usage

```
data(GrowthChart)
```

4 Iclm

Format

A data frame with 533 observations on the following 3 variables.

```
sex a numeric vector. Male = 1
height a numeric vector. Height in cm
age a numeric vector. Age in years
```

Source

The data consist of repeated cross sectional measurements of height and age from the 2003-2004 National Health and Nutrition Survey collected by the US National Center for Health Statistics.

Examples

```
data(GrowthChart)
attach(GrowthChart)
plot(age,height,pch=21,bg='gray',cex=.5,
xlab="Age (years)",ylab="Height (cms)",col='gray')
detach(GrowthChart)
```

lclm

Local Constant Estimator for Conditional Mean Functions

Description

Implements the local nonparametric method kernel estimator—with box kernel (default), for conditional mean functions.

Usage

```
lclm(x, y, h, xx)
```

Arguments

x	The conditioning covariate
у	The response variable
h	The bandwidth parameter
xx	The points at which the function is to be estimated

Details

The function uses a box kernel.

Value

xx The design points at which the evaluation occurs fitted.values The estimated function values at these design points

lcrq2 5

Author(s)

Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon

Examples

```
data(GrowthChart)
attach(GrowthChart)
ages <- unique(sort(age))
lclm.fit1 <- lclm(age,height,h=1,xx=ages)
detach(GrowthChart)</pre>
```

lcrq2

Local Constant Estimator for Conditional Quantile Functions

Description

Implements the local nonparametric method kernel estimator—with box kernel (default), for conditional quantile functions. This is a modification of Koenker's lprq (from package **quantreg**).

Usage

```
lcrq2(x, y, h, xx, tau)
```

Arguments

X	The conditioning covariate
У	The response variable
h	The bandwidth parameter
XX	The points at which the function is to be estimated
tau	The quantile(s) to be estimated. This should be a list of quantiles if the function estimates the quantile process

Details

The function uses a box kernel.

Value

```
xx The design points at which the evaluation occurs fitted.values The estimated function values at these design points
```

Author(s)

6 lines.conint

See Also

1prq

Examples

```
require(quantreg)
data(GrowthChart)
attach(GrowthChart)

ages <- unique(sort(age))
lcq.fit1 <- lcrq2(age,height,h=1,xx=ages,tau=0.01)
detach(GrowthChart)</pre>
```

lines.conint

Lines Method for Simultaneous Confidence Intervals

Description

A method for the lines generic. It graphs both the upper and lower end-point functions of a confidence interval as lines on a plot.

Usage

```
## S3 method for class 'conint' lines(x, ...)
```

Arguments

x object of class conint... further arguments to lines.default

Details

This is intended for plotting confidence intervals produced by the output of simconboot or rconint.

Author(s)

Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon

See Also

```
lines,plot.conint,points.conint
```

lplm 7

Examples

1plm

Local Linear Regression Methods for Conditional Mean Functions

Description

Implements the local nonparametric method, local linear regression estimator with box kernel (default), for conditional mean functions.

Usage

```
lplm(x, y, h, xx)
```

Arguments

X	The conditioning covariate
У	The response variable
h	The bandwidth parameter
XX	The points at which the function is to be estimated

Details

The function uses a box kernel.

Value

xx The design points at which the evaluation occurs fitted.values The estimated function values at these design points

Author(s)

8 lprq2

Examples

```
data(GrowthChart)
attach(GrowthChart)

ages <- unique(sort(age))
lplm.fit1 <- lplm(age,height,h=1,xx=ages)

detach(GrowthChart)</pre>
```

lprq2

Local Linear Regression Methods for Conditional Quantile Functions

Description

Implements the local nonparametric method, local linear regression estimator with box kernel (default), for conditional quantile functions. This is a modification of Koenker's lprq (from package quantreg).

Usage

```
lprq2(x, y, h, xx, tau)
```

Arguments

x	The conditioning covariate
у	The response variable
h	The bandwidth parameter
xx	The points at which the function is to be estimated
tau	The quantile(s) to be estimated. This should be a list of quantiles if the function estimates the quantile process

Details

The function uses a box kernel.

Value

xx The design points at which the evaluation occurs fitted.values The estimated function values at these design points

Author(s)

plot.conint 9

Examples

```
require(quantreg)
data(GrowthChart)
attach(GrowthChart)

ages <- unique(sort(age))
llq.fit1 <- lprq2(age,height,h=1,xx=ages,tau=0.2)
detach(GrowthChart)</pre>
```

plot.conint

Plot Method for Simultaneous Confidence Intervals

Description

A method for the plot generic. It graphs both the upper and lower end-point functions of a confidence interval as an unfilled polygon.

Usage

```
## S3 method for class 'conint'
plot(x, border, col, ...)
```

Arguments

```
x object of class conintborder, col same usage as in polygon... further arguments to plot.default
```

Details

This is intended for plotting confidence intervals produced by the output of simconboot or rconint.

Author(s)

Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon

See Also

```
plot, lines.conint, points.conint
```

10 points.conint

Examples

points.conint

Points Method for Simultaneous Confidence Intervals

Description

A method for the points generic. It graphs both the upper and lower end-point functions of a confidence interval as points on a plot.

Usage

```
## S3 method for class 'conint'
points(x, ...)
```

Arguments

x object of class conint... further arguments to points.default

Details

This is intended for plotting confidence intervals produced by the output of simconboot or rconint.

Author(s)

Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon

See Also

```
points, plot.conint, lines.conint
```

polygon.conint 11

Examples

polygon.conint

polygon Method for Simultaneous Confidence Intervals

Description

polygon.conint graphs both the upper and lower end-point functions of a confidence interval as a standard polygon on a plot.

Usage

```
polygon.conint(x, ...)
```

Arguments

x object of class conint

... further arguments to polygon

Details

This is intended for plotting confidence intervals produced by the output of simconboot or rconint.

Author(s)

Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon

See Also

polygon

12 rconint

Examples

rconint

Rearrangement of Simultaneous Confidence Intervals

Description

Uses rearrangement to apply the rearrangement operator to objects of class conint.

Usage

```
rconint(x, n = 100, stochastic = FALSE, avg = TRUE)
```

Arguments

x object of class conint
 n an integer denoting the number of sample points desired
 stochastic logical. If TRUE, stochastic sampling will be used
 avg logical. If TRUE, the average rearrangement will be computed and outputed

Details

Implements the rearrangement operator of rearrangement on simultaneous confidence intervals. Intended for use on output of simconboot.

rconint 13

Value

An object of class conint with the following elements:

x the original x data y the original y data

sortedx the original x data, sorted with repeated elements removed

Lower the rearranged lower end-point function. Represented as a vector of values cor-

responding to sortedx

Upper the rearranged upper end-point function. Represented as a vector of values cor-

responding to sortedx

cef the corresponding estimates

Author(s)

Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon

References

Chernozhukov, V., I. Fernandez-Val, and a. Galichon. 2009. Improving point and interval estimators of monotone functions by rearrangement. Biometrika 96 (3): 559-575.

Chernozhukov, V., I. Fernandez-Val, and a. Galichon. 2010. Quantile and Probability Curves Without Crossing. Econometrica 78(3): 1093-1125.

See Also

```
simconboot, rearrangement
```

Examples

```
## Not run:
data(GrowthChart)
attach(GrowthChart)
nage <- 2 * pi * (age - min(age)) / (max(age) - min(age))</pre>
formula <- height ~ I(sin(nage))+I(cos(nage))+I(sin(2*nage))+I(cos(2*nage))+
            I(sin(3*nage))+I(cos(3*nage))+I(sin(4*nage))+I(cos(4*nage))
j <- simconboot(nage,height,lm,formula)</pre>
k <- rconint(j)</pre>
plot(k, border=NA, col='darkgray',xlab = 'Age (years)',ylab = 'Height (cms)',xaxt = "n")
axis(1, at = seq(-2*pi*min(age)/(max(age)-min(age)),
        2*pi+1,by=5*2*pi/(max(age)-min(age))), label = seq(0, max(age)+1, by=5))
polygon.conint(j, border=NA, col='lightgray')
polygon.conint(k, border=NA, col='darkgray', density=50)
points(nage,height,col='gray80')
legend(min(nage),max(height),c("95% CI Original",
       "95% CI Rearranged"), lty=c(1,1), lwd=c(2,2),
       col=c("lightgray","darkgray"),bty="n");
detach(GrowthChart)
## End(Not run)
```

14 rearrangement

Description

Monotonize a step function by rearrangement. Returns a matrix or array of points which are monotonic, or a monotonic function performing linear (or constant) interpolation.

Usage

```
rearrangement(x,y,n=1000,stochastic=FALSE,avg=TRUE,order=1:length(x))
```

Arguments

х	a list or data frame, the entries of which are vectors containing the \boldsymbol{x} values corresponding to the fitted \boldsymbol{y} values
У	a vector, matrix, or three-dimensional array containing the fitted values of a model, typically the result of a regression
n	an integer denoting the number of sample points desired
stochastic	logical. If TRUE, stochastic sampling will be used
avg	logical. If TRUE, the average rearrangement will be computed and outputted
order	a vector containing the desired permutation of the elements of $1:length(x)$. The rearrangement will be performed in the order specified if avg= FALSE, otherwise all the possible orderings are computed and the average rearrangement is reported

Details

This function applies this rearrangement operator of Hardy, Littlewood, and Polya (1952) to the estimate of a monotone function.

Note: rearrangement currently only operates on univariate, bivariate, and trivariate regressions (that is, length(x) <= 3).

Value

rearrangement returns a matrix or array of equivalent dimension and size to y that is monotonically increasing in all of its dimensions.

Author(s)

rearrangement 15

References

Chernozhukov, V., I. Fernandez-Val, and a. Galichon. 2009. Improving point and interval estimators of monotone functions by rearrangement. Biometrika 96 (3): 559-575.

Chernozhukov, V., I. Fernandez-Val, and a. Galichon. 2010. Quantile and Probability Curves Without Crossing. Econometrica 78(3): 1093-1125.

Hardy, G.H., J.E. Littlewood, and G. Polya, Inequalities, 2nd ed, Cambridge U. Press, 1952

See Also

```
rconint, quantile
```

Examples

```
##Univariate example:
library(splines)
data(GrowthChart)
attach(GrowthChart)
ages <- unique(sort(age))</pre>
aknots <- c(3, 5, 8, 10, 11.5, 13, 14.5, 16, 18)
splines_age <- bs(age,kn=aknots)</pre>
sformula <- height~splines_age
sfunc <- approxfun(age,lm(sformula)$fitted.values)</pre>
splreg <- sfunc(ages)</pre>
rsplreg <- rearrangement(list(ages),splreg)</pre>
plot(age,height,pch=21,bg='gray',cex=.5,xlab="Age (years)",ylab="Height (cms)",
     main="CEF (Regression Splines)",col='gray')
lines(ages, splreg, col='red', lwd=3)
lines(ages,rsplreg,col='blue',lwd=2)
legend("topleft",c('Original','Rearranged'),lty=1,col=c('red','blue'),bty='n')
detach(GrowthChart)
##Bivariate example:
## Not run: library(quantreg)
data(GrowthChart)
attach(GrowthChart)
ages <- unique(sort(age))</pre>
taus <- c(1:999)/1000
nage <- 2 * pi * (age - min(age)) / (max(age) - min(age))</pre>
nages <- 2 * pi * (ages - min(ages)) / (max(ages) - min(ages))</pre>
fform <- height ~ I(sin(nage))+I(cos(nage))+I(sin(2*nage))+I(cos(2*nage))+
          I(\sin(3*nage))+I(\cos(3*nage))+I(\sin(4*nage))+I(\cos(4*nage))
ffit <- rq(fform, tau = taus)
fcoefs <- t(ffit$coef)</pre>
freg <- rbind(1, sin(nages), cos(nages), sin(2*nages),</pre>
               cos(2*nages), sin(3*nages), cos(3*nages), sin(4*nages), cos(4*nages) )
fcqf <- crossprod(t(fcoefs),freg)</pre>
rrfcqf <- rearrangement(list(taus,ages),fcqf, avg=TRUE)</pre>
tdom <-c(1,10*c(1:99),999)
adom <-c(1,5*c(1:floor(length(ages)/5)), length(ages))</pre>
```

16 simconboot

simconboot

Simultaneous Confidence Interval Estimation using Bootstrap

Description

simconboot obtains a simultaneous confidence interval for a function. It estimates the lower and upper endpoint functions of the interval by bootstrap.

Usage

Arguments

X	a numerical vector of x values
у	a numerical vector of y values
estimator	estimator to be used in regression
formula	formula to be used in the estimator

B an integer with the number of bootstrap repetitions

alpha a real number between 0 and 1 reflecting the desired confidence level

sampsize an integer with the sample size of each bootstrap repetition seed if desired, seed to be set for the random number generator

colInt the points to be evaluated when ploting

... further arguments to be passed to the estimator

Details

estimator can be any of a set of standard regression models, most commonly 1m or rq (from package **quantreg**) for global estimators and the built-in functions 1clm, 1plm, 1crq2, 1prq2 for local estimators.

Note: formula=0 for all the local estimators.

simconboot 17

Value

An object of class conint with the following elements:

x the original x data y the original y data

sortedx the original x data, sorted with repeated elements removed

Lower the lower endpoint function. Represented as a vector of values corresponding to

sortedx

Upper the upper endpoint function. Represented as a vector of values corresponding to

sortedx

cef the corresponding estimates

Author(s)

Wesley Graybill, Mingli Chen, Victor Chernozhukov, Ivan Fernandez-Val, Alfred Galichon

See Also

rconint

Examples

Index

* aplot	lm, <i>16</i>
lines.conint, 6	lplm, 7, <i>16</i>
points.conint, 10	lprq, 5, 6, 8
polygon.conint,11	lprq2, 8, <i>16</i>
* datasets	
GrowthChart, 3	plot, 9
Rearrangement-package, 2	plot.conint, 6 , 9 , 10
* device	plot.default, 9
plot.conint,9	points, 10
* manip	points.conint, 6 , 9 , 10
rconint, 12	points.default, <i>10</i>
rearrangement, 14	polygon, <i>9</i> , <i>11</i>
Rearrangement-package, 2	polygon.conint, 11
* models	
rconint, 12	quantile, <i>15</i>
rearrangement, 14	rconint, 2, 6, 9–11, 12, 15, 17
Rearrangement-package, 2	Rearrangement (Rearrangement-package), 2
simconboot, 16	rearrangement, 2, 12–14, 14
* optimize	Rearrangement-package, 2
rconint, 12	rg, 16
rearrangement, 14	r q, 10
* package	simconboot, 2, 6, 9–13, 16
Rearrangement-package, 2	3111001110000, 2, 3, 3, 12, 10
* regression	
lclm, 4	
lcrq2, 5	
lplm, 7	
1prq2, 8	
rconint, 12	
rearrangement, 14	
Rearrangement-package, 2	
simconboot, 16	
GrowthChart, 3	
lclm, 4, 16	
lcrg2, 5, <i>16</i>	
lines, 6	
lines.conint, 6, 9, 10	
lines.default, 6	