近世代数 (H) 第二周作业

涂嘉乐 PB23151786

2025年3月14日

Exercise 1 设 $p \triangleleft R$, 若 R/p 是整环, 则 p 是素理想

Proof $\forall a,b \notin p$, 则 $a+p,b+p \neq p=0_{R/p}$, 由 R/P 是整环知, $(a+p)(b+p)=(ab+p)\neq p=0_{R/p}$,故 $ab\notin p$,因此 p 是素理想

Exercise 2 求证: $2 \in \mathbb{Z}[\sqrt{-3}]$ 是不可约元, 但不是素元

Proof 假设 $2 = (a + b\sqrt{-3})(c + d\sqrt{-3})$, 两边同时取模得

$$2 = \sqrt{(a^2 + 3b^2)(c^2 + 3d^2)} \Rightarrow 4 = (a^2 + 3b^2)(c^2 + 3d^2)$$

所以 $a^2 + 3b^2 = 1, 2, 4$

①若 $a^2 + 3b^2 = 1$, 则只能是 $a = \pm 1, b = 0$, 而 $\pm 1 \in U(\mathbb{Z}[\sqrt{-3}])$ 为平凡分解

②若 $a^2 + 3b^2 = 2$, 因为 a^2, b^2 的取值为 $0, 1, 4, a^2 + 3b^2$ 不可能为 2, 矛盾!

③若 $a^2 + 3b^2 = 4$,此时 $c^2 + 3d^2 = 1$,故只能是 $c = \pm 1, d = 0$,而 $\pm 1 \in U(\mathbb{Z}[\sqrt{-3}])$ 为平凡分解 综上,2 为不可约元

另一方面,我们有 $(1+\sqrt{-3})(1-\sqrt{-3})=4=2\times 2\in (2)$,但实际上 $1+\sqrt{-3},1-\sqrt{-3}\notin (2)$,这是因为若 $1\pm\sqrt{-3}\in (2)$,则 $\exists a+b\sqrt{-3}\in \mathbb{Z}[\sqrt{-3}]$,s.t. $1\pm\sqrt{-3}=2(a+b\sqrt{-3})$,对比实部、虚部得

$$\begin{cases} 2a = 1\\ 2b = \pm 1 \end{cases}$$

这与 $a,b \in \mathbb{Z}$ 矛盾! 故 (2) 不是素理想, 故 2 不是素元

Exercise 3 设 R, S 是环, $\psi: R \to S$ 是环同态, $s \in S$, 则 \exists 环同态 $\tilde{\psi}: R[x] \to S$, s.t. $\tilde{\psi}|_{R} = \psi$, 且 $\tilde{\psi}(x) = s$

Proof 即验证 $\tilde{\psi}$ 是环同态: 首先,对 $\forall n \in \mathbb{N}^*, \tilde{\psi}(x^n) = \overbrace{\tilde{\psi}(x) \cdots \tilde{\psi}(x)}^{n \uparrow} = s^n$,所以

- 1. $\tilde{\psi}(1_{R[x]}) = \psi(1_R) = 1_R$
- 2. 设 $f(x) = a_n x^n + \dots + a_1 x + a_0, g(x) = b_m x^m + \dots + b_1 x + b_0$,若 n > m,我们记 $b_k = 0_R, \forall m < k \le n$,则 $g(x) = b_m x^m + \dots + b_1 x + b_0 = b_n x^n + \dots + b_1 x + b_0$,因此我们不妨设 m = n,则

$$\tilde{\psi}(f(x) + g(x)) = \tilde{\psi}((a_n + b_n)x^n + \dots + (a_1 + b_1)x + (a_0 + b_0))
= \tilde{\psi}(a_n + b_n)\psi(\tilde{x}^n) + \dots + \tilde{\psi}(a_1 + b_1)\psi(\tilde{x}) + \tilde{\psi}(a_0 + b_0)
= \psi(a_n + b_n)s^n + \dots + \psi(a_1 + b_1)s + \psi(a_0 + b_0)
= [\psi(a_n)s^n + \dots + \psi(a_1)s + \psi(a_0)] + [\psi(b_n)s^n + \dots + \psi(b_1)s + \psi(b_0)]
= \tilde{\psi}(a_nx^n + \dots + a_1x + a_0) + \tilde{\psi}(b_nx^n + \dots + b_1x + b_0)
= \tilde{\psi}(f(x)) + \tilde{\psi}(g(x))$$

3. 同上,我们不妨设 $\deg f = \deg g$,注意到 $a_{n+1} = b_{n+1} = a_{n+2} = b_{n+2} = \cdots = a_{2n} = b_{2n} = 0$,则

$$\tilde{\psi}(f(x)g(x)) = \tilde{\psi}\left(\sum_{k=0}^{2n} \left(\sum_{l=0}^{k} a_{l}b_{k-l}x^{k}\right)\right) \\
= \sum_{k=0}^{2n} \left(\sum_{l=0}^{k} \tilde{\psi}(a_{l}b_{k-l}x^{k})\right) = \sum_{k=0}^{2n} \left(\sum_{l=0}^{k} \tilde{\psi}(a_{l}b_{k-l})\tilde{\psi}(x^{k})\right) \\
= \sum_{k=0}^{2n} \left(\sum_{l=0}^{k} \psi(a_{l}b_{k-l})s^{k}\right) = \sum_{k=0}^{2n} \left(\sum_{l=0}^{k} \psi(a_{l})\psi(b_{k-l})s^{k}\right) \\
= [\psi(a_{n})s^{n} + \dots + \psi(a_{1})s + \psi(a_{0})] \cdot [\psi(b_{n})s^{n} + \dots + \psi(b_{1})s + \psi(b_{0})] \\
= \tilde{\psi}(f(x))\tilde{\psi}(g(x))$$

综上, $ilde{\psi}$ 是环同态

Exercise 4 证明: $Ker(ev_a) = (x - a)$

Proof 因为

$$Ker(ev_a) = \{ f(x) \in R[x] | ev_a(f(x)) = 0_R \} = \{ f(x) \in R[x] | f(a) = 0_R \}$$

①. $(x-a) \subseteq \operatorname{Ker}(\operatorname{ev}_a)$: 设 $g(x) \in (x-a)$,则 $\exists h(x) \in R[x]$, s.t. g(x) = h(x)(x-a),所以 $g(a) = h(a)(a-a) = 0_R$,故 $g(x) \in \operatorname{Ker}(\operatorname{ev}_a)$,即 $(x-a) \subseteq \operatorname{Ker}(\operatorname{ev}_a)$

②. $\operatorname{Ker}(\operatorname{ev}_a)\subseteq (x-a)$: 设 $m(x)\in \operatorname{Ker}(\operatorname{ev}_a)$,则 m(a)=0,由留数公式, $\exists q(x)\in R[x], \operatorname{s.t.} m(x)=q(x)(x-a)+m(a)=q(x)(x-a)$,因此 $m(x)\in (x-a)$,即 $\operatorname{Ker}(\operatorname{ev}_a)\subseteq (x-a)$

综上,
$$Ker(ev_a) = (x-a)$$

Exercise 5 设 X 是集合,R 是环, $\mathrm{Map}(X,R) = \{\theta | \theta : X \to R\}$,在 $\mathrm{Map}(X,R)$ 上定义加法、乘法:设 $\theta, \delta \in \mathrm{Map}(X,R)$

$$\theta + \delta : X \longrightarrow R$$

$$x \longmapsto \theta(x) + \delta(x)$$

$$\theta \cdot \delta : X \longrightarrow R$$

$$x \longmapsto \theta(x) \cdot \delta(x)$$

求证 $(Map(X,R),+,\cdot)$ 为含幺交换环

Proof 由定义知加法、乘法满足封闭性,接下来验证八条公理以及交换性

(A1) 加法结合律: 设 $\theta, \varphi, \psi \in \operatorname{Map}(X, R)$, 则 $\forall x \in X$

$$((\theta + \varphi) + \psi)(x) = (\theta + \varphi)(x) + \psi(x) = \theta(x) + \varphi(x) + \psi(x) = \theta(x) + (\varphi + \psi)(x) = (\theta + (\varphi + \psi))(x)$$

由 x 的任意性, $((\theta + \varphi) + \psi) = (\theta + (\varphi + \psi))$

(A2) 加法交换律: 设 $\psi, \varphi \in \operatorname{Map}(X, R)$, 则由 R 是交换环知, $\forall x \in X$

$$(\psi+\varphi)(x)=\psi(x)+\varphi(x)=\varphi(x)+\psi(x)=(\varphi+\psi)(x)$$

由 x 的任意性, $\varphi + \psi = \psi + \varphi$

(A3) 零元存在性:考虑

$$\mathbf{0}: X \longrightarrow R$$
$$\forall x \longmapsto 0_R$$

则 $\forall \varphi \in \operatorname{Map}(X, R), \forall x \in X$

$$(\varphi + \mathbf{0})(x) = \varphi(x) + \mathbf{0}(x) = \varphi(x) + 0_R = \varphi(x) = 0_R + \varphi(x) = \mathbf{0}(x) + \varphi(x) = (\mathbf{0} + \varphi)(x)$$

由 x 的任意性, $\varphi + \mathbf{0} = \varphi = \mathbf{0} + \varphi$, 则上面定义的 $\mathbf{0}$ 即为零元

(A4) 负元存在性: 对 $\forall \varphi \in \operatorname{Map}(X,R)$, 定义

$$\psi: X \longrightarrow R$$
$$x \longmapsto -\varphi(x)$$

则对 $\forall x \in X$

$$\begin{cases} (\varphi + \psi)(x) = \varphi(x) + \psi(x) = \varphi(x) - \varphi(x) = 0_R = \mathbf{0}(x) \\ (\psi + \varphi)(x) = \psi(x) + \varphi(x) = -\varphi(x) + \varphi(x) = 0_R = \mathbf{0}(x) \end{cases}$$

由 x 的任意性, $\varphi + \psi = \mathbf{0} = \psi + \varphi$, 故 ψ 为 φ 的负元

(M1) 乘法结合律: 设 $\theta, \varphi, \psi \in \operatorname{Map}(X, R)$, 则 $\forall x \in X$

$$((\theta \cdot \varphi) \cdot \psi)(x) = (\theta \cdot \varphi)(x) \cdot \psi(x) = (\theta(x) \cdot \varphi(x)) \cdot \psi(x) = \theta(x) \cdot (\varphi(x) \cdot \psi(x)) = (\theta \cdot (\varphi \cdot \psi))(x)$$

由 x 的任意性, $((\theta \cdot \varphi) \cdot \psi) = (\theta \cdot (\varphi \cdot \psi))$

(M2) 幺元存在性:考虑

$$\mathbf{1}: X \longrightarrow R$$
$$\forall x \longmapsto 1_R$$

则 $\forall \varphi \in \operatorname{Map}(X, R), \forall x \in X$

$$(\varphi \cdot \mathbf{1})(x) = \varphi(x) \cdot \mathbf{1}(x) = \varphi(x) \cdot 1_R = \varphi(x) = 1_R \cdot \varphi(x) = \mathbf{1}(x) \cdot \varphi(x) = (\mathbf{1} \cdot \varphi)(x)$$

由 x 的任意性, $\varphi \cdot 1 = \varphi = 1 \cdot \varphi$, 上面定义的 1 即为幺元

(D1) 左分配律: 对 $\forall \theta, \varphi, \psi \in \operatorname{Map}(X, R), \forall x \in X$

$$((\theta + \varphi) \cdot \psi)(x) = (\theta + \varphi)(x) \cdot \psi(x) = (\theta(x) + \varphi(x)) \cdot \psi(x) = \theta(x) \cdot \psi(x) + \varphi(x) \cdot \psi(x) = (\theta \cdot \psi)(x) + (\varphi \cdot \psi)(x)$$

由 x 的任意性, $(\theta + \varphi) \cdot \psi = \theta \cdot \psi + \varphi \cdot \psi$

(D2) 右分配律: 对 $\forall \theta, \varphi, \psi \in \operatorname{Map}(X, R), \forall x \in X$

$$(\theta \cdot (\varphi + \psi))(x) = \theta(x) \cdot (\varphi + \psi)(x) = \theta(x) \cdot (\varphi(x) + \psi(x)) = \theta(x) \cdot \varphi(x) + \theta(x) \cdot \psi(x) = (\theta \cdot \varphi)(x) + (\theta \cdot \psi)(x)$$

由 x 的任意性, $\theta \cdot (\varphi + \psi) = \theta \cdot \varphi + \theta \cdot \psi$

故 $\operatorname{Map}(X,R)$ 是含幺环,最后验证 $\operatorname{Map}(X,R)$ 是交换的: $\forall \varphi, \psi \in \operatorname{Map}(X,R), \forall x \in X$

$$(\varphi \cdot \psi)(x) = \varphi(x) \cdot \psi(x) = \psi(x) \cdot \varphi(x) = (\psi \cdot \varphi)(x)$$

П

由 x 的任意性知 $\varphi \cdot \psi = \psi \cdot \varphi$, 故它是交换环

Exercise 6 验证环同态

$$\operatorname{ev}: R[x] \longrightarrow \operatorname{Map}(R,R)$$

$$g(x) \longmapsto \operatorname{多项式函数} g$$

Proof

①. 因为 $1_{R[x]}$ 为常值多项式 $\mathcal{I}(x)=1_R$, 它对应的多项式函数为

$$\mathcal{I}: R \longrightarrow R$$

 $r \longmapsto \mathcal{I}(r) = 1_R$

故对 $\forall r \in R$ 都有 $\mathcal{I}(r) = 1_R$,即 $\operatorname{ev}(\mathcal{I}(x)) = \mathbf{1}$,其中 $\mathbf{1}$ 为 Exercise $\mathbf{5}$ 中定义的幺元,故 $\operatorname{ev}(1_{R[x]}) = 1_{\operatorname{Map}(R,R)}$ ②. 对 $\forall f(x), g(x) \in R[x], \forall r \in R$

$$ev(f(x) + g(x))(r) = (f + g)(r) = f(r) + g(r) = ev(f(x))(r) + ev(g(x))(r)$$

由 $r \in R$ 的任意性知 $\operatorname{ev}(f(x) + g(x)) = \operatorname{ev}(f(x)) + \operatorname{ev}(g(x))$

③. $\forall f(x), g(x) \in R[x], \forall r \in R$

$$\operatorname{ev}(f(x)g(x))(r) = (f \cdot g)(r) = f(r) \cdot g(r) = \operatorname{ev}(f(x))(r) \cdot \operatorname{ev}(g(x))(r)$$

由 $r \in R$ 的任意性知 $\operatorname{ev}(f(x)g(x)) = \operatorname{ev}(f(x))\operatorname{ev}(g(x))$ 因此 ev 是环同态

Exercise 7 考虑

$$\operatorname{ev}: \mathbb{F}_2[x] \longrightarrow \operatorname{Map}(\mathbb{F}_2, \mathbb{F}_2)$$
$$f(x) \longmapsto f$$

验证:

- (1) ev 为满射
- (2) $Ker(ev) = (x^2 + x)$
- (3) $\operatorname{Map}(\mathbb{F}_2, \mathbb{F}_2)$ 不是整环

Proof 因为 $\mathbb{F}_2 = \{\overline{0}, \overline{1}\}$, 所以

$$\operatorname{Map}(\mathbb{F}_2, \mathbb{F}_2) = \{ \operatorname{Id}_{\mathbb{F}_2}, \mathbf{0}_{\mathbb{F}_2}, \mathbf{1}_{\mathbb{F}_2}, \theta \}$$

其中
$$\mathrm{Id}_{\mathbb{F}_2}$$
 为恒等映射; $\mathbf{0}_{\mathbb{F}_2}(\overline{1}) = \mathbf{0}_{\mathbb{F}_2}(\overline{0}) = \overline{0}$; $\mathbf{1}_{\mathbb{F}_2}(\overline{1}) = \mathbf{1}(\overline{0}) = \overline{1}$; $\theta(\overline{0}) = \overline{1}, \theta(\overline{1}) = \overline{0}$

- (1) 考虑 $f_1(x) = x$,则 $\operatorname{ev}(f_1)(x) = f_1, f_1(\overline{1}) = \overline{1}, f_1(\overline{0}) = \overline{0}$,所以 $\operatorname{ev}(f_1(x)) = \operatorname{Id}_{\mathbb{F}_2}$ 考虑 $f_2(x) = x^2 + x$,则 $\operatorname{ev}(f_2)(x) = f_2, f_2(\overline{1}) = f_2(\overline{0}) = \overline{0}$,所以 $\operatorname{ev}(f_2(x)) = \mathbf{0}_{\mathbb{F}_2}$ 考虑 $f_3(x) = x + \overline{1}$,则 $\operatorname{ev}(f_3)(x) = f_3, f_3(\overline{1}) = \overline{0}, f_3(\overline{0}) = \overline{1}$,所以 $\operatorname{ev}(f_3(x)) = \theta$ 考虑 $f_4(x) = x^2 + x + \overline{1}$,则 $\operatorname{ev}(f_4(x)) = f_4, f_4(\overline{0}) = f_4(\overline{1}) = \overline{1}$,所以 $\operatorname{ev}(f_4(x)) = \mathbf{1}_{\mathbb{F}_2}$ 综上,ev 是满射
- (2) 因为

$$Ker(ev) = \{ f(x) | ev(f(x)) = \mathbf{0}_{\mathbb{F}_2} \} = \{ f(x) | f(\overline{0}) = f(\overline{1}) = \overline{0} \}$$

设 $f(x) \in \text{Ker}(\text{ev})$, 则 $f(\overline{0}) = f(\overline{1}) = \overline{0}$, 由留数定理, 存在 $q_1(x), q_2(x) \in \mathbb{F}_2[x]$, s.t.

$$\begin{cases} f(x) = q_1(x)(x - \overline{0}) + f(\overline{0}) = q_1(x)x \\ f(x) = q_2(x)(x - \overline{1}) + f(\overline{1}) = q_2(x)(x - \overline{1}) \end{cases}$$

所以 $x-\overline{1} \mid f(x), x \mid f(x)$,因为 $\gcd(x-\overline{1},x)=\overline{1}$,所以 $(x-\overline{1})x \mid f(x)$,即 $\exists h(x) \in \mathbb{F}_2[x]$, s.t.

$$f(x) = h(x)(x - \overline{1})x = h(x)(x^2 - x) = h(x)(x^2 + x)$$

所以 $f(x) \in (x^2 + x)$, 故 $Ker(ev) \subseteq (x^2 + x)$

反之, 设 $a(x) \in (x^2 + x)$, 则 $\exists b(x) \in \mathbb{F}_2[x]$, s.t. $a(x) = b(x)(x^2 + x)$, 所以

$$a(\overline{0}) = b(\overline{0}) \cdot \overline{0} = \overline{0}, \quad a(\overline{1}) = b(\overline{1}) \cdot \overline{0} = \overline{0}$$

所以 $a(x) \in \text{Ker(ev)}$, 故 $(x^2 + x) \subseteq \text{Ker(ev)}$

综上, $Ker(ev) = (x^2 + x)$

(3) 通过比较次数可以看出, $x, x+\overline{1} \notin (x^2+x)$, 故它们不是零映射, 但 $x(x+\overline{1})=x^2+x$ 为零映射, 所以 $\mathrm{Map}(\mathbb{F}_2,\mathbb{F}_2)$ 不是整环

Exercise 8 设 $R=\mathbb{Z}[\sqrt{-3}]$, $a=4,b=(1-\sqrt{-3})^2$, 讨论 $\gcd(a,b)$ 是否存在

Solution 显然 $\forall u \in U(R)$ 为 a,b 的公因子; 假设 $x+y\sqrt{-3} \notin U(R)$ 是 a,b 的公因子, 则 $x+y\sqrt{-3} \mid a,x+y\sqrt{-3} \mid b$, 故 $\exists m,n,p,q \in \mathbb{Z}, \mathrm{s.t.}$

$$\begin{cases} (x+y\sqrt{-3})(m+n\sqrt{-3}) = 4\\ (x+y\sqrt{-3})(p+q\sqrt{-3}) = (1-\sqrt{-3})^2 \end{cases}$$

对第一式比较模长得

$$(x^2 + 3y^2)(m^2 + 3n^2) = 16$$

由于满足上述条件的 x^2+3y^2, m^2+3n^2 为正整数,且为 16 的因数,接下来考虑 m^2, n^2 可取何值,因为 $m^2 \le 16.3n^2 < 16$,所以 $m^2 = 0.1.4.9.16, n^2 = 0.1.4$

(1). $m^2 + 3n^2 = 1$, 则 $m^2 = 1$, $n^2 = 0$, 故 $m + n\sqrt{-3} = \pm 1$, 所以 $x + y\sqrt{-3} = \pm 4$, 进而

$$p + q\sqrt{-3} = \frac{(1 - \sqrt{-3})^2}{+4} = \frac{1 - \sqrt{-3}}{+2} \notin \mathbb{Z}[\sqrt{-3}]$$

故此时 $x+y\sqrt{-3} \nmid b$, 矛盾!

- (2). $m^2 + 3n^2 = 2$, 这是不可能的
- (3). $m^2 + 3n^2 = 4$, \mathbb{N} $x^2 + 3y^2 = 4 \Rightarrow x^2 = y^2 = 1$ \mathring{A} $x^2 = 4, y^2 = 0$

$$(3.1)$$
 $x^2=y^2=1$ 时在相伴意义下(差一个 -1),可设 $x+y\sqrt{-3}=1+\sqrt{-3}$ 或 $1-\sqrt{-3}$,因为

$$\begin{cases} (1 - \sqrt{-3})(1 + \sqrt{-3}) = 4\\ (1 - \sqrt{-3})(1 - \sqrt{-3}) = (1 - \sqrt{-3})^2 \end{cases} \begin{cases} (1 + \sqrt{-3})(1 - \sqrt{-3}) = 4\\ (1 + \sqrt{-3})(-2) = (1 - \sqrt{-3})^2 \end{cases}$$

所以 $1+\sqrt{-3}, 1-\sqrt{-3}$ 为 a, b 的公因数

(3.2) $x^2 = 4, y^2 = 0$, 在相伴意义下, 可设 $x + y\sqrt{-3} = 2$, 因为

$$\begin{cases} 2 \times 2 = 4 \\ 2(-1 - \sqrt{-3}) = (1 - \sqrt{-3})^2 \end{cases}$$

所以 2 为 a,b 的公因数

- (4). $m^2 + 3n^2 = 8$, 这是不可能的
- (5). $m^2 + 3n^2 = 16$, 此时 $x^2 + 3y^2 = 1$, 故 $x + y\sqrt{-3} = \pm 1 \in U(R)$ 为平凡分解

综上,a,b 的非平凡公因数为 $2,1+\sqrt{-3},1-\sqrt{-3}$,但从这三者中任取二者,它们没有整除关系,所以 $\gcd(a,b)$ 不存在

Exercise 9 设 k 是域, $0 \neq f(x) \in k[x]$, 求证: $|\text{Root}_k(f)| \leq \deg(f(x))$

Proof 对 deg(f(x)) 作归纳:

若 $\deg(f(x))=0$,则 $f(x)=a_0,a_0\in k\backslash\{0_k\}$,所以 $\forall y\in k, f(y)=a_0\neq 0_k$,故 $\mathrm{Root}_k(f)=\varnothing\Rightarrow 0=|\mathrm{Root}_k(f)|\leq \deg(f(x))=0$

若 $\deg(f(x))=1$,则 $\exists a_1 \in k \setminus \{0_k\}, a_2 \in k, \text{s.t. } f(x)=a_1x+a_0$,由 $a_1 \neq 0_k$ 知, $f(-a_1^{-1}a_0)=0$,且 $\forall y \in k$,若 $y \neq -a_1^{-1}a_0$,则 $f(y) \neq 0$ (否则 $a_1y+a_0=0 \Rightarrow y=-a_1^{-1}a_0$),因此 $\operatorname{Root}_k(f)=\{-a_1^{-1}a_0\}, 1=|\operatorname{Root}_k(f)| \leq \deg(f(x))=1$

假设 $\deg(f(x)) = k - 1$ 时命题成立, 下证 $\deg(f(x)) = k$ 时, 命题也成立

若 $|\text{Root}_k(f)|=0$,则命题显然成立;若 $|\text{Root}_k(f)|\neq 0$,设 $\alpha\in \text{Root}_k(f)$,则 $f(\alpha)=0$,由留数公式, $\exists q(x)\in k[x], s.t.$

$$f(x) = q(x)(x - \alpha) + f(\alpha) = q(x)(x - \alpha)$$

且 $\deg(q(x)) = \deg(f(x)) - 1 = k - 1$,故 $|\operatorname{Root}_k(q)| \le k - 1$,若 $\exists y \in k, \text{s.t.} \ f(y) = 0$,则 $q(y)(y - \alpha) = 0$,则 $y \ne \alpha$ 时,q(y) = 0,因此 $\operatorname{Root}_k(f) \subseteq \operatorname{Root}_k(q) \cup \{\alpha\}$,即

$$|\text{Root}_k(f)| \le |\text{Root}_k(q)| + 1 \le k - 1 + 1 = k$$

由数学归纳法知, 命题对 $\deg(f(x)) = n, \forall n \in \mathbb{N}^*$ 均成立

Exercise 10

- (1) 设 $k \subseteq K, f(x), g(x) \in k[x] \subseteq K[x]$, 求证 $\gcd_{k[x]}(f,g) = \gcd_{K[x]}(f,g)$
- (2) 推广到一般情形 $\theta: k \hookrightarrow K$?

Proof

(1). $\mathsf{i}\mathsf{C} \ d(x) = \gcd_{k[x]}(f(x), g(x)), d'(x) = \gcd_{K[x]}(f(x), g(x))$

 $Case\ 1.\ d(x)=1$,则由 $Bezout\$ 等式知, $\exists u(x), v(x)\in k[x], s.t.\ u(x)f(x)+v(x)g(x)=1$,因为 k 是 K 的子域,所以在 k 中也有 u(x)f(x)+v(x)g(x)=1,由 Bezout 定理知 $\gcd_{K[x]}(f(x),g(x))=1$,故 d'(x)=d(x)=1

 $Case\ 2.\ \deg(d(x))\geq 1$,则可设 d(x)a(x)=f(x),d(x)b(x)=g(x),则由 $Case\ 1$ 知

$$\gcd_{k[x]}(a(x),b(x))=\gcd_{K[x]}(a(x),b(x))=1$$

因为在 K[x] 中,也有 $d(x) \mid f(x), d(x) \mid g(x)$,所以 $d(x) \mid \gcd_{K[x]}(f,g) = d'(x)$,只需证明 $d'(x) \mid d(x)$ 即可证明二者相等,因为 $\gcd_{k[x]}(a(x),b(x)) = 1$,由 Bezout 定理知, $\exists u(x), v(x) \in k[x], \text{s.t. } u(x)a(x) + v(x)b(x) = 1$,这在 K 中也成立,因此在 K 中我们有

$$u(x)a(x)d(x) + v(x)b(x)d(x) = d(x) \Rightarrow u(x)f(x) + v(x)g(x) = d(x)$$

由 Bezout 定理的逆定理知, $d'(x) \mid d(x)$, 因此二者相等

(2). 命题: 考虑环同构

$$\tilde{\theta}: k[x] \longrightarrow \operatorname{Im}\theta[x]$$

$$a \longmapsto \theta(a)$$

$$x \longmapsto x$$

设 $f(x) = a_n x^n + \dots + a_1 x + a_0$, 则 $\tilde{\theta}(f(x)) = \theta(a_n) x^n + \dots + \theta(a_1) x + \theta(a_0)$, 则我们有

$$\tilde{\theta}\left(\gcd(f,g)\right) = \gcd_{\operatorname{Im}\theta[x]}(\tilde{\theta}(f),\tilde{\theta}(g)) = \gcd_{K[x]}(\tilde{\theta}(f),\tilde{\theta}(g))$$

证明: 由于 $\operatorname{Im} \theta \overset{\text{子域}}{\subseteq} K$, 由 (1) 知 $\operatorname{gcd}_{\operatorname{Im} \theta[x]}(\tilde{\theta}(f), \tilde{\theta}(g)) = \operatorname{gcd}_{K[x]}(\tilde{\theta}(f), \tilde{\theta}(g))$, 因此只需证明

$$\tilde{\theta}\left(\gcd(f,g)\right) = \gcd_{\operatorname{Im}\theta[x]}(\tilde{\theta}(f),\tilde{\theta}(g))$$

我们记

$$d(x) = \gcd_{k[x]}(f,g), d'(x) = \gcd_{\mathrm{Im}\theta[x]}(\tilde{\theta}(f), \tilde{\theta}(g))$$

因为 $d(x) \mid f(x), d(x) \mid g(x)$,所以 $\exists a(x), b(x) \in k[x], \text{s.t. } f(x) = a(x)d(x), g(x) = b(x)d(x)$,同时作用 $\tilde{\theta}$ 得

$$\tilde{\theta}(f(x)) = \tilde{\theta}(a(x))\tilde{\theta}(d(x)), \quad \tilde{\theta}(f(x)) = \tilde{\theta}(b(x))\tilde{\theta}(d(x))$$

所以 $\tilde{\theta}(d(x)) \mid d'(x)$

又因为 $\tilde{\theta}^{-1}$ 也为环同构, 所以同理我们有

$$\tilde{\theta}^{-1}(d'(x)) \mid d(x)$$

即 $\exists u(x) \in k[x]$, s.t. $\tilde{\theta}^{-1}(d'(x))u(x) = d(x)$,两边同时作用 $\tilde{\theta}$ 得 $d'(x)\tilde{\theta}(u(x)) = \tilde{\theta}(d(x))$,故 $d'(x) \mid \tilde{\theta}(d(x))$,所以它 们相互整除,故 $d'(x) = \tilde{\theta}(d(x))$