2003 年第二学期

工程矩阵理论期终考试试卷

(闭卷,考试时间: 150分钟)

		系别_	学号	姓名	成绩
一. 填空题(25%)					
	1.	设 $R[x]_3$ 的子空间 $W = \{p(x) = a_0 + a_1 x + a_2 x^2 \mid p(0) = p(1)\}$,则 W 的一组基			
		为		_;	
	2.	线性变换	\mathfrak{S}_{f} 在基 $\mathfrak{a}_{\scriptscriptstyle 1},\mathfrak{a}_{\scriptscriptstyle 2}$ 下矩阵	$=$ 为 $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$,则 f 在基	$\delta \alpha_1 + k \alpha_2, \alpha_2$ 下的矩阵
		为		_;	
	3.	从 $R^{2\times2}$ 到	IR 的线性映射 f 定义为	$\forall f: f(A) = trA, \ \forall A \in$	$R^{2\times 2}$,则值域 $R(f)$ 的一
		组基为		核空间 $K(f)$ 的一组基为	;
	4.	作为酉空	间 C^6 的子空间,齐次线	性方程组 $\begin{cases} x_1 - x_4 + x_5 \\ x_5 - 2x_6 \end{cases}$	$-x_6 = 0$ 的解空间 W 的正
			的一组标准正交基为		;
	5.	己 知	$ A _F = a, B _F = b, A _2$	$_{2}=c,\left\Vert B\right\Vert _{2}=d$, If	$M = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$, 则
		$\ M\ _f = \underline{\hspace{1cm}}$, $\ M\ _2 = $;
	6.	$\mathcal{L}A = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$	$\begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$,则 $\sin A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$		
二.	(8	%)设Ae	$\in C^{2\times 2}$ 满足 $A^2 = A + 6A$	$I \perp I r(A+2I) = k$, $\Re G$	$\det A$.
三.	(10%) =	己 知 <i>C</i> ^{2×2} 的 子 空 间	$V_1 = \left\{ B \mid AB = BA \right\} ,$	其 中 $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
	V_2	$= \begin{cases} \begin{pmatrix} x & y \\ z & t \end{cases} \end{cases}$	$\left z = x - y = 0 \right . $	别求 $V_{\scriptscriptstyle 1}$, $V_{\scriptscriptstyle 2}$, $V_{\scriptscriptstyle 1}$ \cap $V_{\scriptscriptstyle 2}$,	$V_1 + V_2$ 的基。
四.	(1	0%)已知	$C^{2 imes 2}$ 上的线性变换 $f(X)$	$(X) = (a+b+c+d) \begin{pmatrix} 1\\1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \forall X \in C^{2 \times 2} \ .$

1. 求f在基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵;

- 2. 求 f 的特征值及相应的特征子空间的基。
- 五. (8%) 已知矩阵 A 的最小多项式为 $\lambda(\lambda-1)^2$, t 为复数。试将 e^{At} 表示成 A 的次数不超过 2 的多项式。
- 六. (10%) 设dim V = n, $f \in Hom(V,V)$, 且 R(f) = K(f)。
 - 1. 试证: $f^2 = O$, 且n是偶数;
 - 2. 求 f 的矩阵的 Jordan 标准形。

七. (9%)

- 2. 设 $A \in C^{s \times n}$, r(A) = r。求 AA^+ 的 Jordan 标准形。
- 八. (20%) 证明下列命题:
 - 1. 设 $f,g \in Hom(V,V)$, 且fg = f, 则V = K(f) + R(g);
 - 2. 若内积空间V中向量 $\alpha+\beta$ 与 $\alpha-\beta$ 的长度相等,且 β 与 $\alpha+\beta$ 正交,则 β 是零 向量:
 - 3. 若A是正规矩阵,则A是酉矩阵的充要条件是A的特征值的模全为1;
 - 4. 若n阶 Hermite 矩阵 A 为正定阵,又B 是n阶方阵且 $A-B^HAB$ 也是正定阵,则B 的谱半径 $\rho(A) < 1$ 。