Reading Quiz Section 5.1

- 1. In an induction proof of the fact that P(n) is true for all $n \in \mathbb{N}$, the base case consists of proving that
 - (a) P(1) is false.
 - (b) P(1) is true.
 - (c) For all n, $P(n) \implies P(n+1)$.
 - (d) $P(1) \implies P(2)$.
- 2. In an induction proof of the fact that P(n) is true for all $n \in \mathbb{N}$, the induction hypothesis is the assumption that
 - (a) P(1) is true.
 - (b) For all n, $P(n) \implies P(n+1)$.
 - (c) P(n) is true for some fixed $n \in \mathbb{N}$.
 - (d) P(n) is true for all $n \in \mathbb{N}$.
- 3. True or False: in formal proofs, it is acceptable to write

$$P(n) = \sum_{i=1}^{n} k = \frac{1}{2}n(n+1)$$

as shorthand for "P(n) is the proposition $\sum_{i=1}^{n} k = \frac{1}{2}n(n+1)$."

Practice Problems Section 5.1

- 1. (a) Prove by induction that $\forall n \in \mathbb{N}$ we have $3 \mid (2^n + 2^{n+1})$.
 - (b) Give a direct proof that $3 \mid (2^n + 2^{n+1})$ for all integers $n \ge 1$ and for n = 0.
 - (c) Look carefully at your proof for part (a). If you had started with the base case n=0 instead of n=1, would your proof still be valid? Video Solution