

Department of the Interior.

Books are issued to and returned by employés, between the hours of 11 a. m. and 2 p. m. on all days except Sundays.

The Library is open to employés, for reference, from 9 a. m. till l p. m.

LIBRARY RULES.

1. The employes of the Department of the Interior only are authorized to

borrow books from the Library.

2. Before being allowed to draw books employes will be required to file with
the Librarian a certificate of identity from the Chief Clerk of the Department

the Caprarian a certificate of identity from the Ch of Clerk of the Department or of the Eureau or Office in which employed.

3. No book will be taken from the Library until its fitle and the name of the borrower shall have been registered by the Ubrarian.

4. Of works of single volumes only one at a time may be borrowed of works of two or more volumes two may be taken.

5. The period of a loan of books is for two weeks, and borrowers are strictly prohibited from lending books thus drawn to other persons, whether of the Department or not.

6. Borrowers wishing to retain books for a longer region than two weeks.

6. Borrowers wishing to retain books for a longer period than two weeks. may at the close of the second week renew the loan for an additional two

weeks.
7. The loan of a book will be renewed but once.
8. Books classed as 'Works of Reference' or marked in the Catalogue with an (*), cannot be taken from the Library.
9. When a book has been injured while in the postession of a borrower, it must be replaced by a perfect copy.
10. Application for and return of books must be made in person, except in cases of sickness or absence from the city.
11. Books returned will not be refsessed until they have been examined and replaced muon the shelves.

11. Books returned will not be relissed until they have been examined and replaced upon the shelves.

12. When a book has been retained by a borrower beyond two weeks without tenewal its price will be certained to toe Disbursing (Recer of the Department, and deducted from the salary of the person withholding it.

13. Writing on the leaves or covers of books, and the folding or furning down of their leaves are strictly probabiled, violation of this rule will debar employes from further privileges of the Library.

14. In selecting books from the shelves, care must be used in handling them, replacing those not drawn on the shelves trom which they were taken; the number of the helt may be as cretained from the label above.

15. Deeployes, on quitting the so view of the Department must return all books in the possess ich blorging to the Library. I mal payment of their subarries will be witched by the Disburing Officer and the assaulated that all books charged against them at the Library have been returned.

16. Vew books can be drawn for one week only and not renewed.

17. Current periodicals can be drawn for three days only and not renewed to suspend or refuse the Sections.

By order of the Sections.

By order of the So tetary

GIO A HOWARD

11340 b-1 m

SMITHSONIAN

MISCELLANEOUS COLLECTIONS.

VOL. XXXII.

"EVERY MAN IS A VALUABLE MEMBER OF SOCIETY WHO BY HIS OBSERVATIONS, RESEARCHES,

AND EXPERIMENTS PROCURES KNOWLEDGE FOR MEN."—SMITHSON.

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

ADVERTISEMENT.

The present series, entitled "Smithsonian Miscellaneous Collections," is intended to embrace all the publications issued directly by the Smithsonian Institution in octavo form; those in quarto constituting the "Smithsonian Contributions to Knowledge." The quarto series includes memoirs, embracing the records of extended original investigations and researches, resulting in what are believed to be new truths, and constituting positive additions to the sum of human knowledge. The octavo series is designed to contain reports on the present state of our knowledge of particular branches of science; instructions for collecting and digesting facts and materials for research; lists and synopses of species of the organic and inorganic world; museum catalogues; reports of explorations; aids to bibliographical investigations, etc., generally prepared at the express request of the Institution, and at its expense.

In the Smithsonian Contributions to Knowledge, as well as in the present series, each article is separately paged and indexed, and the actual date of its publication is that given on its special title page, and not that of the volume in which it is placed. In many cases works have been published and largely distributed, years before their combination into volumes.

S. P. LANGLEY,

Secretary S. I.

CONTENTS OF VOL. XXXII

- ARTICLE I. (No. 659.) THE CONSTANTS OF NATURE. PART I. A
 TABLE OF SPECIFIC GRAVITY FOR SOLIDS AND LIQUIDS.
 [New Edition: revised and enlarged.] By Frank Wigglesworth Clarke. 1888. Pp. 420.
- ARTICLE II. (No. 658.) INDEX TO THE LITERATURE OF THE SPECTROSCOPE. By Alfred Tuckerman. 1888. Pp. 433.

----- 659 ------

THE CONSTANTS OF NATURE.

PART I.

A TABLE OF SPECIFIC GRAVITY FOR SOLIDS AND LIQUIDS.

[NEW EDITION. REVISED AND ENLARGED.]

BY

FRANK WIGGLESWORTH CLARKE,

Chief Chemist U. S. Geological Survey.

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

PRINTED AND STEREOTYPED BY

JUDD & DETWEILER,

AT WASHINGTON, D C.

TABLE OF CONTENTS.

_		Page.
	ON	
	NOTES	
I.	Elements	
II.	Inorganic fluorides	
III.	Inorganic chlorides	
	1st. Simple chlorides	
	2d. Double chlorides	. 27
	3d. Oxy- and sulpho-chlorides	
IV.	Inorganic bromides	
	1st. Simple bromides	
	2d. Double, oxy-, and sulpho-bromides	
∇.	Inorganic iodides	
	1st. Simple iodides	
	2d. Double and oxy-iodides	
VI.	Chlorobromides, chloriodides, and bromiodides	
VII.	Ammonio-chlorides, ammonio-bromides, and ammonio-iodides	
VIII.	Inorganic oxides	
	1st. Simple oxides	
	2d. Double and triple oxides	55
IX.	Inorganic sulphides	56
	1st. Simple sulphides	. 56
	2d. Sulpho-salts of arsenic, antimony, and bismuth	61
	3d. Miscellaneous double and oxy-sulphides	64
X.	Selenides	65
XI.	Tellurides	. 66
XII.	Phosphides	66
XIII.	Arsenides	67
XIV.	Antimonides	. 68
XV.	Sulphides with arsenides or antimonides	69
XVI.	Hydrides, borides, carbides, silicides, and nitrides	69
XVII.	Hydroxides	
XVIII.	Chlorates and perchlorates	72
XIX.	· Bromates	73
XX.	Iodates and periodates	74
XXI.	Thiosulphates (hyposulphites), sulphites, and dithionates	74
XXII.	Sulphates	
	1st. Simple sulphates	
	2d. Double and triple sulphates	
	3d. Basic and ammonio-sulphates	
XXIII.	Selenites and selenates	98
XXIV.	Tellurates	

*****		Pege.
XXV.	Chromates	102
XXVI.	Manganites, manganates, and permanganates	105
XXVII.	Molybdates	105
XXVIII.	Tungstates	
XXIX.	Borntes	107
XXX.	Nitrates	108
	1st. Simple nitrates	
	2d. Basic and ammonio-nitrates	
XXXI.	Hypophosphites and phosphites	
XXXII.	Hypophosphates	113
XXXIII.	Phosphates	
	1st. Normal orthophosphutes	
	2d. Basic orthophosphates	
	3d. Meta- and pyro-phosphates	
XXXIV.	Vanadates	
XXXV.	Arsenites and arsenates	
	1st. Normal orthoarsenates	
	2d. Basic orthoarsenates	
	3d. Pyroarsenates and arsenites	
XXXVI.	Phosphates, vanadates, and arsenates, combined with haloids	
XXXVII.	Antimonites and antimonates	
XXXVIII.	Columbates and tantalates	
XXXXIX.	Carbonates	
	1st. Simple carbonates	
	2d. Double carbonates	
	3d. Basic carbonates	
XL.	Silientes	
	1st. Silicates containing but one metal	
	2d. Silicates containing more than one metal	
	3d. Boro-, fluo-, and other mixed silicates	
XLI.	Titanates and stannates	
XLII.	Cyanogen compounds	
	1st. General division	
	2d. Cyanides, cyanates, and sulphocyanates	
XLIII.	Miscellaneous inorganic compounds	
XLIV.	Alloys	145
XLV.	Hydrocarbons	157
	1st. Paraffins	
	2d. Olefines	_ 164
	3d. Acetylene series	
	4th. Benzene series	
	5th. Miscellaneous aromatic hydrocarbons	
	6th. Terpenes	
	7th. Unclassified	
XLVI.	Compounds containing C, H, and O	
	1st. Alcohols of the paraffin series	
	2d. Oxides of the paratin series	
	3d. The fitty acids	
	4th. Anhydrides of the fatty acids	204

		Page.
	5th. Ethers of the series C _n H _{2n} O ₂	205
	6th. Aldehydes of the acetic series	216
	7th. Ketones of the paraffin series	219
	8th. Oxides, alcohols, and ethers of the olefines	222
	9th. Ethers of carbonic acid	225
	10th. Acids and ethers of the oxalic series	226
	11th. Acids and ethers of the glycollic series	280
	12th. Acids and ethers of the pyruvic series	232
	13th. Acids and ethers of the acrylic series	234
	14th. Derivatives of the acrylic series	235
	15th. Acids and ethers, malic-tartaric group	236
	16th. Acids and ethers, citric acid group	237
	17th. Glycerin and its derivatives	
	18th. The allyl group	
	19th. Erythrite, mannite, and the carbohydrates	
	20th. Miscellaneous non-aromatic compounds	
	21st. Phenols	
	22d. Aromatic alcohols	
	23d. Aromatic oxides	
	24th. Aromatic acids and their paraffin ethers	
	25th. Ethers of aromatic radicles	
	26th Aromatic aldehydes	
	27th. Aromatic ketones	
	28th. Camphors, essential oils, etc	
	29th. Miscellaneous compounds	
XLVII.	Compounds containing C, H, and N	
	1st. Cyanides and carbamines of the paraffin series	
	2d. Amines of the paraffin series	
	3d. The aniline series	
	4th. The pyridine series	
	5th. Miscellaneous compounds	
LVIII.	Compounds containing C, H, N, and O	
	1st. Nitrites and nitrates of the paraffin series	
	2d. Nitro-derivatives of the paraffin series	
	3d. Aromatic nitro-compounds	
	4th. Miscellaneous nitrates, nitrites, and nitro-compounds	
	5th. Miscellaneous amido-compounds	
	6th. Miscellaneous cyanogen compounds	
	7th. Miscellaneous compounds	
XLIX.	Chlorides, bromides, and iodides of carbon	
L.	Compounds containing C, Cl, and O	
LI.	Compounds containing C, H, and Cl	
22.1.	1st. Chlorides of the paraffin series	
	2d. Chlorides of the series C _n H _{2n} Cl ₂	
	3d. Miscellaneous non-aromatic chlorides	
	4th. Aromatic compounds	
LII.	Compounds containing C, H, O, and Cl	
LIII.	Compounds containing C, Cl, N, or C, H, Cl, N	
T.TV	Compounds containing C, Cl, N, O or C, H, Cl, N, O	315

TABLE OF CONTENTS.

		Page.
LV.	Compounds containing C, H, and Br	316
	1st. Bromides of the paraffin series	316
	2d. Bromides of the series C _n H _{2n} Br ₂	318
	3d. Miscellaneous non-arountic bromides	
	4th. Aromatic compounds	
LVI.	Compounds containing C, H, O, and Br	325
LVII.	Bromine compounds containing nitrogen	328
LVIII.	Compounds containing C, H, and I	329
	1st. Iodides of the paraffin series	
	2d. Miscellaneous compounds	334
LIX.	Compounds containing C, H, I, O, or C, H, I, N	335
LX.	Compounds containing two or more halogens	
LXI.	Organic compounds of fluorine	339
LXII.	Organic compounds of sulphur	339
	1st. Compounds containing C, II, and S	339
	2d. Compounds containing C, II, S, and O	342
	3d. Sulphur compounds containing nitrogen	344
	4th. Sulphur compounds containing halogens	346
LXIII.	Organic compounds of boron	347
XLIV.	Organic compounds of phosphorus	348
LXV.	Organic compounds of vanadium, arsenic, antimony, and bismuth-	
LXVI.	Organic compounds of silicon	
LXVII.	Organic compounds of tin	353
LXVIII.	Organic compounds of aluminum	354
LXIX.	Organic compounds of zinc, mercury, thallium, and lead	35.5
LXX.	Metallic salts of organic acids	350
LXXI.	Salts of organic bases with inorganic acids	
LXXII.	Miscellaneous organic compounds	366
APPENDIX.	Note on the specific gravity of woods	
INDEX		360

INTRODUCTION.

Early in 1872 I submitted to the Secretary of the Smithsonian Institution, the late Joseph Henry, a manuscript entitled "A Table of Specific Gravities, Boiling Points, and Melting Points for Solids and Liquids." It was accepted for publication, and in February, 1874, the printed copies were ready for distribution. For years previously Professor Henry had had in mind the publication of a series of similar tables somewhat upon the plan long before suggested by Babbage, and accordingly my modest work was given the somewhat ambitious title of "The Constants of Nature" and made the first part of the proposed undertaking. Subsequently Parts II, III, and V were furnished by myself and Part IV by Professor G. F. Becker, and in 1876 I also published a supplement to Part I.

The following tables form, in effect, a new edition of Part I, completely revised, rearranged, and brought down as nearly as possible to the date of printing. They are, however, modified by the omission of boiling and melting points, except when such data seemed essential to the proper identification of a compound, on the ground that the magnificent tables of Professor Carnelley already supply that want. I have limited myself to specific gravity alone, following in the main the plan of arrangement adopted in my earlier work, with such changes as were made necessary by the later developements of chemical thought. Constitutional formulæ have been used, not according to any fixed rule, but according to convenience, and their adoption has been governed, to some extent, by the limitations of the octavo page. All other details have been subject to the same limitations, and it is hoped that their absence will be compensated for by the almost uniformly full references to literature. Some data could not be traced back to their original sources, at least not without unwarrantable labor, and most of these formed part of an early table prepared nearly twenty years ago for my own private use. A few determinations are accredited to standard works of reference, such as Watts' Dictionary, Dana's Mineralogy, and the like, and many have been drawn from the Jahresbericht. Absolute completeness cannot, of course, be claimed, and in some directions it has not

even been attempted. Among minerals, only those having approximately definite formulæ are given, and indefinite substances have been excluded altogether. The tables aim at reasonable completeness only as regards artificial substances of definite constitution, and all else is gratuitous. A good many determinations of specific gravity have been uncarthed from doctoral dissertations, school programmes, and similar foes of the bibliographer, and doubtless other data so printed have escaped my notice altogether. There is a weakness of human nature which, masquerading as patriotism, sometimes leads men of science to bury valuable researches in obscure local publications, and a compiler may never flatter himself that no such paper has eluded his vigilance. I shall be glad to receive notice of all omissions, and will try to rectify such or other errors in future supplements or appendices.

A word in conclusion as to the extent of the table. They contain the specific gravities of 5,227 distinct substances and 14,465 separate determinations. The original edition gave only 2,263 substances, to which nearly 700 were added in the supplement. The increase is a noteworthy indication of existing chemical activity.

F. W. CLARKE.

Washington, June 20, 1888.

EXPLANATORY NOTES.

In references to literature the following abbreviations have been used. In each case, as far as practicable, series, volume, and page are indicated, the page reference signifying, according to circumstances, either the first page of the paper cited, or else the actual page upon which the determination is given. The former rule applies to pages containing many data; the latter to cases in which the specific gravity datum is merely incidental.

A. C. J.-American Chemical Journal.

A. C. P.—Annalen der Chemie und Pharmacie.

A. J. S .- American Journal of Science.

Am. Chem.-American Chemist.

Am. J. P .- American Journal of Pharmacy.

Am. Phil. Soc.—American Philosophical Society.

Ann.—Annales de Chimie et de Physique.

Ann. Phil.—Annals of Philosophy.

Arch, Pharm,-Archiv für Pharmacie,

B. D. Z.—Die Beziehungen zwischen Dichte und Zusammensetzung bei festen und liquiden Stoffen. Leipzig, 1860.

Bei.-Beiblätter zu den Annalen der Physik und Chemie.

Ber.-Berichte der Deutschen Chemischen Gesellschaft.

B. H. Ztg.—Berg-und hüttenmännische Zeitung.

B. J.—Berzelius' Jahresbericht.

Böttger.—Tabellarische Uebersicht der specifischen Gewichte der Körper. Frankfort, 1837.

B. S. C.—Bulletin de la Société Chimique.

B. S. M.—Bulletin de la Société Française de Mineralogie.

Bull. Acad. Belg.—Bulletins, Academie Royale de Belgique.

Bull. Geol.—Bulletin de la Société Géologique.

Bull. Heb.—Bulletin Hebdomadaire de l'Association Scientifique de France.

Bull. U. S. G. S .- Bulletin of the U. S. Geological Survey.

C. C.—Chemisches Centralblatt.

C. G.—Chemical Gazette.

C. N.—Chemical News.

C. R .- Comptes Rendus.

D. J.—Dingler's Polytechnisches Journal.

Dm.—Schröder's "Dichtigkeitsmessungen." Heidelberg, 1873.

Erd. J .- Erdmann's Journal.

F. W. C.—This abbreviation indicates the work of students under the direction of F. W. Clarke.

G. C. I.-Gazzetta Chimica Italiana.

Geol. Mag.-Geological Magazine.

G. F. F.—Geologiska Fóreningar Fórhandlingar.

Gilb. Ann.-Gilbert's Annalen.

Gm. H.-Gmelin's Handbook of Chemistry. Cavendish Society edition.

In. Diss. or Inaug. Diss.—Inaugural or Doctoral Dissertation. Always prefixed by the name of the university from which the dissertation was published.

J.-Jahresbericht über die Fortschritte der Chemie.

J. A. C .- Journal of Analytical Chemistry.

J. C. S .- Journal of the Chemical Society.

J. P. C.-Journal für Praktische Chemie.

J. Ph. Ch.-Journal de Pharmacie et de Chimie.

J. R. C.-Jahresbericht über die Fortschritte * * * der reinen Chemie.

M. C .- Monatshefte fur Chemie.

M. C. S .- Memoirs of the Chemical Society.

Mem. Acad. Belg.-Mémoires, Academie Royale de Belgique.

Min. Mag.-Mineralogical Magazine.

M. P. M .- Mineralogische Petrographische Mittheilungen.

M. St. P. Sav. Et. - Mémoires de Savants Etrangers, St. Petersburg Academy.

N. J .- Neues Juhrbuch für Mineralogie, etc.

Nich. J.—Nicholson's Journal.

Öf. Ak. St.-Öfversigt af K. Vet. Akad. Forhandlingar, Stockholm.

P. A.—Poggendorff's Annalen. For convenience, the second series under Wiedemann is covered by the same abbreviation.

P. des C.—Pesanteur Spécifique des Corps. Brisson, Paris, 1787. A German edition by Blumhof appeared at Leipzig in 1795.

P. M .- Philosophical Magazine. London, Edinburgh, and Dublin.

Proc. Amer. Acad.—Proceedings of the American Academy, Boston.

Proc. Amer. Asso.—Proceedings of the American Association for the Advancement of Science.

P. R. S -Proceedings of the Royal Society. London.

P. R. S. E .- Proceedings of the Royal Society. Edinburgh.

P. R. S. G .- Proceedings of the Royal Society. Glasgow.

P. T .- Philosophical Transactions.

Q. J. S .- Quarterly Journal of Science.

R. T. C .- Recueil des Travaux Chimiques.

Schw. J. - Schweigger's Journal.

S. W. A.—Sitzungsberichte der K. K. Akademie der Wissenschaften. Wien.

Thurston's Report.—Report of the Board on Testing Iron, Steel, and other Metals.
Washington, 1881.

U. N. A.—Upsala, Nova Acta.

V. H. V.-Verhandlungen des naturhistorisches Vereines. Bonn.

Watts' Dict.-Watts' Dictionary of Chemistry.

- Z. A. C.—Zeitschrift für analytische Chemie.
- Z. C.—Zeitschrift für Chemie.
- Z. G. S.—Zeitschrift der Deutschen Geologischen Gesellschaft.
- Z. K. M.—Zeitschriit für Krystallographie und Mineralogie.

A TABLE OF SPECIFIC GRAVITIES

FOR

SOLIDS AND LIQUIDS.

I. THE ELEMENTS.

NAME.	Specific Gravity.	Анхновіту.
Hydrogen. Liquefied	$.025$ 0°	Cailletet and Hautefeuille. C. R. 92, 1086.
" (Occluded by palladium.)	.620 to .623	Dewar. P. M. (4), 47, 334.
Lithium	.578 .589 }	Bunsen. J. 8, 324.
Sodium	.9348 .97223, 15°	Davy. P. T. 1808, 21. Gay Lussac and Thénard. See Böttger.
и	.985	Schröder. J. 12, 12. Troost and Hautefeuille. C. R. 78, 970.
11	$\left\{ \begin{array}{c} .9743, 10^{\circ} \\ .9735, 13^{\circ}.5 \end{array} \right\}$	Baumhauer. Ber. 6, 655.
14	.972 .7414, at boiling point_	Quincke. P. A. 135, 642. Ramsay. Ber. 13, 2145.
:: ::	.9725, 0° .9686, 16°.9, m. of 3	Hagen. P. A. (2), 19, 436.
Potassium	.9287, 97°.6, fused) .865, 15°	Gay Lussac and Thénard. Ann. 66, 205.
<i>(</i> (.874 .8427, fused	Sementini. See Böttger. Playfair and Joule. M. C.S. 3, 76.
11	\[\begin{align*} .8750, 13° \\ .8766, 18° \end{align*} \]	Baumhauer. Ber. 6, 655.
"	\[\.8642, 0° \\ .8298, 62°.1, fused \]	Hagen. P. A. (2), 19, 436.
Rubidium Cæsium	1.872	Bunsen. J. 16, 185.
(1	1.884 \ 1.886 \ \ 2.1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Setterberg. A. C. P. 211, 215.
Glueinum	1.64 (Cor. for impurities).— 1.85, 20°	Debray. J. 7, 336. [384. Nilson and Petterson. Ber. 11, Humpidge. P. R. S. 39, 1.
Magnesium	2.24, m. of 2 1.7430, 5°	Playfair and Joule. M. C. S. 3, 73. Bunsen. J. 5, 363.
	1.69 1.71 170	Kopp.
46	1.75	Deville and Caron. J. 10, 148. H. Wurtz. Am. Chem., Mar. 1876.

Name.	Specific Gravity.	Антновиту.
Zine	6,861 6,862 6,9154 6,939, m. of 3	Brisson. P. des C. Berzelius. See Bottger. Karsten. Schw. J. 35, 394. Playfair and Joule. M. C.S. 3, 67.
() () ()	7.06 to 7.20 6.966 6.975 } 12° 7.21	Bolley. J. 8, 387. Schiff. A. C. P. 107, 59. Daniell.
a Crdinary	7.146 6.895 7.2 7.1812 7.1811	Wertheim, Mallet, D. J. 85, 378. [817, Roberts and Wrightson, Bei, 5,
" Crystalline	6.512, m. of 3 6.48 6.55} Two methods	Kalischer. Ber. 14, 2750. Playfair and Joule. M. C. S. 3, 76. Roberts and Wrightson. Ann. (5, 30, 181.
" Solid " Not pre-sed " Once "	$\left\{ \begin{array}{c} 6.900 \\ 7.119, \ 0^{\circ} \end{array} \right\}$	Quincke. P. A. 135, 642 Spring. Ber. 16, 2724.
Cadmium. Cast Hammered	7.150, 16°) 8.6040 8.6941	Stromeyer. Schw. J. 22, 365. Children. See Bottger.
Wird Wird Pure	8.650 8.6355 8.6689 8.540 8.506	Herapath. P. M. 64 (1824), 321. Karsten. Schw. J. 65, 394. Baudrimont. J. P. C. 7, 278.
a Commercial	8.648 8.655, 11°	Schroder. P. A. 107, 113. Matthicssen. J. 13, 112.
α Fused α Not pressed α Once α	\$.627, 0° \\ 8.894 \\ 5.642, 17° \\ 8.667, 16° \\	Quincke. P. A. 135, 642 Spring. Ber. 16, 2724.
a Twice a	8,667, 16°) 8,6681, 0° 8,3665, 318°, solid 7,989, 318°, molten	Vicentini and Omodei. Bei. 11, 769.
Mercury, Solid	14.391 14.333,—40° 15.745 14.485,—60°	Schulze, Hallstrom, Gilb. Ann. 20, 403, Biddle, P. M. 30, 153,
a a a a a a a a a a a a a a a a a a a	14.0, about 15.19 14.1932 13.5681	Kupffer and Cavallo. Joule. J. 16, 283. Mallet. J. C. S. 34, 275. Brisson. P. des C.
u u	13.575 13.550 13.568, 15°.5 13.613, 10°	Fahrenheit. See Böttger. Muschenbrock. 9 4 Crichton. P. M. 16, 48. Biddle. P. M. 30, 152.
() () () () () () () () () () () () () (13.6078, 02 12.810, boiling } 13.586 13.567	Hallström, Gilb. Ann. 20, 357. Scholz. See Bottger. Kummer.
6. 6	$13.5886, 4^{\circ}$ $18.535, 26^{\circ}$	Kupffer. Ann. (2), 40, 285.

		Sausana Carrage	AUTHORITY.
Name.		SPECIFIC GRAVITY.	Authoriti.
Mercury. Liquid		13.588597	Biot and Arago. Biot's "Traité de Physique."
11 11		13.5592	Karsten. Schw. J. 65, 394.
"		13.582, 5°—10°)	
11 11		13.570, 10°—15° }	Regnault. P. A. 62, 50.
tt tt		10.000, 10	
13 13		13.59599 13.59602 0°	Regnault. Ann. (3), 14, 236.
"		13.59578	Regnadit. 11111. (0); 11) 2001
		13.595, 0°	Kopp. J. 1, 445.
		13 573 15°	Holzmann. J. 13, 112.
££ ££		13.603, 12°	Schiff.
**		13.584, 16°.6	Stewart. P. T. 1863, 430.
tt tt		13.5953, 0°	Volkmann. Ber. 14, 1708.
Caleium		1.566	Matthiessen. J. 8, 324.
		1.584	[126.
"		1.55	Liés-Bodart and Jobin. J. 11,
		1.6 to 1.8	Caron. J. 13, 119.
Strontium		2.504)	Matthiessen. J. 8, 324.
"		2.580 \$	
		2.4	Franz. J. P. C. 107, 253.
Barium		4.00, about	Clarke. Gilb. Ann. 55, 28. Kern. C. N. 31, 243. [52, 63.
		3.75 2.68	Wöhler and Deville. Ann. (3),
		2.5345, 17°.2, m. of 2)	Wollier and Deviller 111111 (9);
111 D ₁₂ .	48	2.618, 13°	Hampe. A. C. P. 183, 85 and 96.
(1 (1)	48	2.611, 20°	A
Aluminum. Cast	t	2.50	Wöhler. J. 7, 327.
	nmered	2.67	
		2.583, 4°	Mallet. P. T. 1880, 1025. Barlow. J. C. S. April, 1883.
	a'l wire	2.688	A P Corbit.) Communicated
	foil		W. Bishop. by R. B. Warder.
Gallium		5.985, 28°)	Boisbaudran. C. R. 83, 611.
(1		$\{5.956, 24^{\circ}.45\}$	Doisbaudran. C. R. 65, 611.
Indium. In gra	ins	$\left\{ \begin{array}{c} 7.110 \\ 7.147 \end{array} \right\} \ 20^{\circ}.4 \right\}$	73 1 3 TO 1 1 T 1 W O 1 1
			Reich and Richter. J. 17, 241.
	180	7.277}	Winkler. J. 18, 233.
ft		7.362, 15° 7.421, 16°.8	J. 20, 262.
Lanthanum		6.049	Hillebrand and Norton. P. A.
		6.163 }{	156, 473.
Cerium		6.628 1	Hillebrand and Norton. P. A.
" After fus			156, 471.
Didymium		6.544	Hillebrand and Norton. P. A.
(D) 111.		11.862	Lamy. J. 15, 180.
Thallium		11 0003	
1116-		$\begin{bmatrix} 11.808 \\ 11.853 \end{bmatrix}$ 11°	De la Rive. J. 16, 248.
		11.777)	Worther I 17 917
		11.900 }	Werther. J. 17, 247.
		_ 11.81)	G 1 T G 2 4001 440
	d		_ Crookes. J. C. S. 1864, 112.
" Wire_		_ 11.91)	1

^{*} According to Hampe, the so-called "crystallized boron" is never pure. Its composition is shown in the formulæ given above.

	NAME.	Specific Gravity.	Антнокиту.
Carbon.	Diamond	3,550	Brisson. P. des C.
11	1.1	3.492	Grailich. Bull. Geol. (2), 13, 542
4.4		3.520	Mohs. Min. 2, 306.
2.2			Shepard.
6.6			Berzelius. A. C. P. 49, 247.
44			Pelouze. Watts' Diet.
4.6		3.5295	Thomson. Min. 1, 46. Schafarik. P. A. 139, 188.
44	66		Schrotter. J. 24, 257.
6.6			Schrauf, J. 24, 257.
+4			Dufrenov. J. 24, 258.
6.4			Baumhauer. J. C. S 32, 849.
4.4	Graphito		Breithaupt. See Bottger.
6.6			Kenngott. S. W. A. 13, 469.
4.4	4.		Regnault. Gm. H.
4.4	44	2.14	Fuchs. J. P. C. 7, 353.
6.6			Berzelius, A. C. P. 49, 247.
6.6		2,3280	Karsten, Schw. J. 65, 394.
4.6	• "	2.3162	Poggendorff. P. A. Erganz. Bd 1848, 363.
4.4			Brodie. J. 12, 68.
6.6		2.26 }	
6.6			Mené,* J. 20, 972.
14	4.6	1 (100)	
			Löwe, J. 8, 297.
4.6	Gas carbon	2.35	Graham.
44	dus carried	2.08	Bandrimont.
6.		4	Mené. J. 20, 972.
4.4	44	1.723, 1.821, 1.982) (From different parts of the retort
6.4	()	2.056, 2556, 18° j = \	Meyn. J. P. C. 26, 482.
1.1	Sugarcharcoal	1.81	Monier. Bull. Heb 14, 13.
6.4	**	1.85	
. 6	Charcoal	1.76	Colquhoun.
6.		2.10 from alcohol =	Scholz. See Bottger. Griffith. " [4, 241
44		1.81	Playfair. Proc. Roy. Soc. Edin
6.6		1.78	Baudrimont.
4.4	Immp-black	1.723 from kerosene)	Difficultinout.
6.6	46	1.780 from coal-tar	
	~ ~ ~	naphtha	Hallock. Bull. 42, U. S. G. S.
4.4		1.752 from matural gas	
4.4		1.773 from dead oil	
Silicon.	Graphitoidal	2.40, 10	Wohler, J. 9, 847.
6.6		2.403	Harmening, P. A. 97, 48c.
6.6		2.004)	1177 11
6 4			Winkler, J. 17, 208, 209,
6.6		2.197)	Mill - D D - 2 1212
6.6		*) *) *) *) ** * * * * * * * * * * * *	Miller. Proc. Roy. Soc. Edin
.1	Administrace	2.48, m. of 6	4, 241. Playfair. Proc. Roy. Soc. Edin
		5 40% 000 4	4, 241.
Germani		5,469, 20°.4	Winkler, J. P. C. (2), 34, 201
Zirconium		4.16	Troost. J. 18, 183. Brisson, P. des C.
III			Muschenbroek, See Böttger.
-		1,	arti-circumoen. rece portiger.

[•] The extremes of 22 determinations made on specimens from different localities.

NAME.	Specific Gravity.	Authority.		
Tin	7.2914	Guyton. Nich. J. (1), 1, 110.		
	7.278, 15°.5			
	7.2911, 17°	Crichton. P. M. 16, 48. Kupffer. Ann. (2), 40, 285.		
"	7.285	Kupffer. Ann. (2), 40, 285.		
	7.600	Herapath. P. M. 64, 321.		
46	7.5565	11erapath. 1. 11. 04, 021.		
((7.2905	Karsten. Schw. J. 65, 394.		
" Wire	7.3395	Baudrimont. J. P. C. 7, 278.		
44 110	7.306, m. of 4	Playfair and Joule. M. C. S. 3, 68.		
" Crystallized	7.178 }			
" Cast	7.293	W. H. Miller. P. M. (3), 22, 263.		
11	7.3043	Kopp. A. C. P. 93, 129.		
" Cooled slowly	7.373)	St. Claire Deville. P. M. (4), 11,		
" quickly	7.239 }	144.		
4410413	7.294, 13°	Matthiessen. J. 13, 112.		
	7.291	Mallet. D. J. 85, 378.		
" Reduced by H. from \		2.0.00,0.00		
Sn Cl ₂ .	$\left\{ egin{array}{l} 7.143 \ 7.166 \end{array} ight\}$	D 11 D 0 707		
" Precipitated	7.195	Rammelsberg. Ber. 3, 725.		
" Remelted	7.310	[817.		
((7.5	Roberts and Wrightson. Bei. 5,		
((7.267, 0°	Quincke. P. A. 135, 642.		
"	7.25	E. Wiedemann. P. A. (2), 20, 232.		
" Allotropic J	5.809, 5.781, 19°]	(// /		
" Allotropic {	5.802, 19.5			
" Allotropie convert-)	7.280, 15°			
ed by heating.	\(\)7.304, 19°	Two lots Schoutel I D C (9)		
" Allotropie	6.020, 6.002, 19°)	Two lots. Schertel. J. P. C. (2), 19, 322.		
()	5.930, 12°.5	19, 022.		
" Allotropic after re- \	7.24 —7.27			
conversion.))			
" Rhombie eryst	6.52	Trechmann. Z. K. M. 5, 625.		
" " " ———	6.56	, and the second		
" Ordinary	7.387	Richards. Tr. Amer. Inst. Min.		
" Allotropic	6.175	Eng. 11, 235.		
" Not pressed	$7.286, 10^{\circ}$ $7.292, 10^{\circ}.25$	G		
"Once "	7.292, 10°.25	Spring. Ber. 16, 2724.		
T WICE	7.296, 11°			
	7.3006, 0°	Vicentini and Omedai D : 11		
	7.1835, 226°, solid	Vicentini and Omodei. Bei. 11,		
	6.988, 226°, molten)	769.		
L used	6.934, m. of 3	Playfair and Joule. M. C. S. 3, 75.		
($\left. egin{array}{l} 7.025 \\ 6.974 \end{array} \right\} ext{Two methods} \left\{ \right.$	Roberts and Wrightson. Ann.		
((((7.144	(5), 30, 181. Quinolza P. A. 125, 642		
Lead	11.445	Quincke. P. A. 135, 642.		
teat	11.352	Muschenbroek. See Böttger. Brisson. P. des C.		
((11.207	Böckmann. See Böttger.		
((11.1603	Guyton. Ann. 21, 3.		
((11.3303	Kupffer. Ann. (2), 40, 292.		
"	11.346, 15°.5	Crichton. P. M. 16, 48.		
" Wire	11.3775	Baudrimont. J. P. C. 7, 278.		
	11.352	Herapath. P. M. 64, 321.		
((11.3888	Karsten. Schw. J. 65, 394.		
((11.231, m. of 4	Playfair and Joule. M. C. S. 3, 68.		
((11.370, 0°	· ·		
66	11.3525, 18° }	Reich. J. P. C. 78, 328.		
((11.395, 4°	Streng. J. 13, 187.		
	,	5. 0. 10, 1011		

NAME.	Specific Gravity.	Аутнонич.
Lend Cooled slowly from	11.361, 70° 11.254)	Mallet. A. J. S. (3), 8, 212.
fusion. "Cooled quickly from fusion. "Electrolytic "Electrolytic, fused	11.363 11.542 11.225	St. Chire Deville. P. M. (4), 11, 144.
and cooled quickly.	11.376, 14° 11.344, 4° } 11.377, 4° } Extremes	Holzmann. J. 13, 112. Schweitzer. Am. Chem. 7, 174.
66 66	11.335, 0°	Quincke. P. A. 97, 896. [817. Roberts and Wrightson. Bei. 5,
" Not pressed	$ \begin{array}{c} 11.350, 14^{\circ} \\ 11.501, 14^{\circ} \\ 11.492, 16^{\circ} \end{array} $	Spring. Ber. 16, 2724.
((11,359, 0° 11,005, 325°, solid 10,645, 325°, molten	Vicentini and Omodei. Bei. 11,769.
Molten	10.509, m. of 3 11.07 10.37 10.65 Two methods {	Playfair and Joule. M. C. S. 3, 74, Mallet. A. J. S. (3), 8, 212. Roberts and Wrightson. Ann. (5), 30, 181.
Thorium*	10,952 7,657 \ 7,795 \ 11,230 \	Quincke. P. A. 135, 642. Chydenius. J. 16, 194.
" Crystallized	11,250 }	Nilson, Bers 16, 160, Compare earlier paper, Ber, 15, 2544, Cailletet and Hautefeuille, C. R 92, 1086.
11 11 11 11 11 11 11 11 11 11 11 11 11	.1552, —146°.6 .5812, —153°.7 .83, —193° .866, —202°	Wroblevsky. C. R. 102, 1010.
((((((((((((((((((((((((((of Park	Ölszewski. P. A. (2), 31, 73.
Phosphorus, Common	1.77 2.00 1.800	Berzelius, See Bottger, Bottger, Watts' Diet, Playfair and Joule, M. C. S. 3, 69
66 66	$1.826 \atop 1.840 $ } 10° $1.8262 \atop 1.8262 \atop 1$	Schrotter, J. 1, 336,
66 66	1.8265 } 1.828, 35° 1.83676, 0 }	Kopp. A. C. P. 93, 129. Gladstone and Dale. J. 12, 73.
" Red	1 \$2321, 20 1.80681, 44 1.964, 10°	Pisati and De Franchis. Ber. 8, 76 Schrotter. J. 1, 236.
(($\left\{ \begin{array}{l} \frac{2.080}{0.106} \\ \frac{2.106}{0.111} \\ \end{array} \right\} = 17^{\circ} - \dots - \dots$	Schrotter. J. 3, 262. Two preparations. Bredie, J. 5
	2.28) 2.34, 15°,5	Hittorf. J. 18, 130,

^{*} Nilson's determinations are the only ones having any present value. Chydenius' work has merely histori al interest.

Name.	Specific Gravity.	AUTHORITY.
Phosphorus. Red. Cryst	2.34, 0°	
	2.148,0°, prep. at 265° [2.19, 0° " 360° [2.293, 0° " 500°]	Troost and Hautefeuille. Ber. 7, 482.
Molten	2.293, 0° " 500° J 1.744 1.88, 45°	Playfair and Joule. M. C. S. 3, 76. Schrötter. J. 1, 336.
($\begin{bmatrix} 1.763 \\ 1.74924, 40^{\circ} \\ 1.6949, 100^{\circ} \end{bmatrix}$	Gladstone and Dale. J. 12, 73.
" " " " " " " " " " " " " " " " " " " "	$1.6027, 200^{\circ}$ $1.52867, 280^{\circ}$	Boils at 278°.3. Pisati and De Franchis. Ber. 8, 70.
Vanadium	1.4850, at boiling point. 1.833	Ramsay and Masson. Ber 13, 2147. Quincke. P. A. 135, 642. Roscoe. P. T. 1869, 679.
16	5.866 5.875 } 15°	Setterberg. Of. Ak. St. 1882, 10,13.
Arsenie	5.7683 5.766 5.7633	Brisson. P. des C. Mohs. See Böttger. Stromeyer. "
<i>(</i> (5.884 5.700 }	Turner. Guibourt. B. J. 7, 128.
	5.672 5.6281	Herapath. P. M. 64, 321. Karsten. Schw. J. 65, 394.
" Native	5.786 5.722 } 5.784 }	Breithaupt. J. P. C. 16, 475. Breithaupt. J. P. C. 11, 151.
:: ::	5.220	Playfair and Joule. M. C.S. 3, 72. Ludwig. J. 12, 183.
" After fusion	5.726 5.728 \} 14° 5.709, 19°	Bettendorff. J. 20, 253. Mallet. B. S. C. 18, 438.
" Allotropic	4.710 4.716 } 14°	Bettendorff, J. 20, 253. Engel. C. R. 96, 498.
" Compressed	4.91 3.7002 to 3.7100, 15°	Spring. Ber. 16, 326. Rückoldt. A. C. P. 240, 215.
Antimony	6.702	Brisson. P. des C. Hatchett. See Böttger. Böckmann. "
	6.852 6.860 6.646	Muschenbroek. " " Bergmann. " " Mohs. " "
(1	6.6101 6.7006	Breithaupt. " " Karsten. Sehw. J. 65, 394.
46	6.715	Marchand and Scheerer. J. P. C. [27, 193.] Dexter. P. A. 100, 567.
(4	6.7102 } Extremes) 6.713, 14°	Matthiessen. J. 13, 112.
"	6.697	Schröder. P. A. 107, 113. Cooke. Proc. Amer. Acad. 1877
"	6.7070 Extremes 5 6.620, 0° 6.675, 15°.5	Quineke. P. A. 135, 642.
Once "	$ \left. \begin{array}{c} 6.753, 15^{\circ}.5 \\ 6.763, 15^{\circ} \\ 6.740, 16^{\circ} \end{array} \right\} $	Spring. Ber. 16, 2724.

Name.	Specific Gravity.	Астиовиту.
Antimony. Amorphous		Gore. J. 13, 172.
u Wolten	5,83	3010. 0.19, 112.
241 (71 (61)	6.646 }	Playfair and Joule, M. C. S. 3, 77.
44 +4	6,529 } 6,528	
Bismuth	9.87	Quincke, P. A. 135, 642. Muschenbroek, See Bottger.
Dismutil	().529	Brisson. P. des C
44	9,800	Leonhard. See Bottger.
()		Thénard.
	9,8827	Berzelius.
6.6		Herapath. P. M. 64, 321.
(Karsten. Schw. J. 65, 394.
" Pure		
" Commercial		Marchand and Scheerer. J. P C.
" Compressed		27, 193.
" Crystallized	9.935	A Company of the Comp
Galeria coolea	9.677	C. St. Claire Deville. J. 8, 15.
from fusion.	9.823.120	Holzmann, J. 13, 112.
46	9.713, m. of 3	Schroder, P. A. 107, 113.
4.	9.82	Roberts and Wrightson. Bel 5.
		817.
44	9.819, 00	Quincke, P. A. 135, 642.
" Not pressed	9.804, 12°.5)	
" Once "		Spring. Ber. 16, 2721
" Twice "	9,863, 150	,
4.		
6		Vicentini and Omodei. B., 11
**		769.
" Molten	. 9.798	Playfair and Joule, M. C. S. 3.
6.6	10.0203	75.
		Roberts and Wrightson. By two methods. Nature, 22, 148.
44		Quincke. P. A. 185, 642.
Columbium. Niobium).	6.0 to 7.37*	Marignae. J. 21, 214
Columnia. (2000)	7.06, 15°.5	Roscoe, C. N. 37, 26
Tantalum		Rose, J. 9, 366.
Oxygen, Liquified		By two methods. Pletet. Ann.
44	9883, m. of 4 f	(5), 13, 193.
		Pictet, recalculated by Offret.
46		Ann. (5), 19, 271.
		Cailletet and Hautefeuille C. R.
44 44	.81, .88, .89,—23	92, 1086.
	895	Wroblevsky, C R. 97, 100,
		Wroblevsky, P. A. (2), 20, 867.
££	7555 —129 .57)	
	.506 —131 . B	Olszewski. Ber. 17, ref. 198
44	.877 —139°.3	
	1.110 \ -181 A, boil- \	101 1: 11 1 1
	1.137 ing point.	Olszewski, P. A. (2), 51, 73
	0, =118°)	Wroblevsky, C. R. 102, 1010.
Cululum P II	1.21—200)	· ·
Sulphur. Roll	1. 11111	Brisson. P ₁ des C.

[•] Probably the hy iride, Cb II.

	NAME.	Specific Gravity.	AUTHORITY.		
Sulphur.	Roll	1.868	Böckmann.		
144	Flowers	2.086	Gehler.		
4.4	Cryst.	1.898	Fontenelle. Quoted by		
4.4	From solution	1.927	Bischof. Marchand		
66	Cryst.	1.989	Breithaupt. and Scheerer.		
4.6	Roll	1.9777 \	Thomson. J. P. C. 24,		
66		2.0000 }	190		
44	Prismatie	2.072	Mons.		
	Native	2.086	Dumas and Roget.		
	Soft Native	2.027 2.05001 \	Osann.		
	From fusion	1,9889	Karsten. Schw. J. 65, 394.		
6.6	Prismatic	1.982			
4.6	Native	2.066			
4.6	From solution	2.0518	Marchand and Scheerer. J. P. C.		
4.6	Soft	1.957	24, 129.		
4.4	Native	2.069	Kopp. A. C. P. 93, 129.		
"	Soft	1.919 }			
"	"	1.928			
4.6	Prismatic	1.958 }	C. St. Claire Deville. J. I, 365.		
4.6	Native	2.070			
"	From solution	2.063 J			
44	Crystallized	(2.010)	Directional Lasts M. C. C. S. E.		
44	Flowers	1.913	Playfair and Joule. M. C. S. 3,79.		
"	Waxy	1.921) 2.0757			
	Native, eryst	1.87 to 1.9319 }	Brame. C. R. 35, 748.		
"	SoftAmorphous.	1.87			
	Yellow.	1.01	15.111		
6.6	Amorphous.	1.91 —1.93	Müller. J. 19, 118.		
	Brown.	j			
"	Crystallized	2.0748, 0°	Pisnti. Ber. 7, 361.		
"	Insoluble	1.9556, 0°			
4.4		1.9496, 20° ·			
44		1.9041, 40°	Spring. Bei. 5, 853.		
4.6		1.9438, 60°	Spring. Bon o, cost		
		1.9559, 80°			
"		1.9643, 100° J			
66	Cryst, from CS_2 .	$\begin{bmatrix} 2.0477, 0^{\circ} \\ 2.0370, 20^{\circ} \end{bmatrix}$			
"		2.0283, 40°			
	" " —	2.0182, 60°			
4.6		2.0014, 80°			
4.6	"	1.9756, 100°	DIE OFF		
4.6	From Sicily	2.0788, 0° } }	Spring. Bei. 5, 854. From Bul-		
4.6	"	2.0688, 20°	letin de l'Acad. Roy. de Belg.		
4.6		2.0583, 40°	(3), 2, 83–110, 1881.		
4.6		2.0479, 60°			
4.6		2.0373, 80°			
4.4	_ "	2.0220, 100° j J			
4.6	Lamellæ	2.041 —2.049	Maquenne. Ber. 17, ref. 199.		
"	Sicilian	2.06665, 16°.75	Sehrauf. Z. K. M. 12, 325.		
	Molten	1.801 Extremes of 5	Playfair and Joule. M. C. S. 3,76.		
66		1.815 \ determinat'ns \			
66		1.4794, m. of 5	At the boiling point, 446°. Ram-		
"		$\begin{pmatrix} 1.4578 \\ 1.5130 \end{pmatrix}$ Extremes \rbrace	say. J. C. S. 35, 471.		
		4.3 to 4.32	Berzelius. See Böttger.		
Selenium 4.3 to 4.32 Berzelius. See Bottger.					

	NAME.	Specific Gravity.	AUTHORITY.
Selenium		4.310	Boullay, See Bottger.
6.6		4.808, 15°	Hittorf. J. 4, 319.
4.4	Cryst. fr. fusion-	4.805]	
4.4		4.796	Schuffgotsch. J. 6, 329.
4.4	Amorphous	4.276 \ 200	Semingoisen. J. 6, 525.
+ 6	46	1.286)	
4.6	Precip. Red		•
4.6		4.275	Schaffgotsch. J. 6, 329.
. 4	Precip. after	4.250	0.0,020,
	heat g to 50 % (4.297)	
4.4	Crystallized		
4.6		4.509 }	
4.4		4.700)	Mitscherlich, J. 8, 314.
4.6	of from so-		
	lution.	\ 15°	
6.6	0 1 11 1	4.788)	V D. 1 100 107
4.4	Crystallized		Neumann. P. A. 126, 138.
	Black		
1.6	D		Rathke, J. P. C. 108, 235.
	Precip. Red	4.20	
4.6			
6.6	Gray		
	Granular -	4.514	
		4.77	
		4.79	
4.6		1.56	
4.4	Cryst. from CS,	1.118	Rammelsberg. P. A. 152, 154.
		1.04	
44			
**	Amorphous	1.27	
	Melted	4.20	
4.6	Menten	4,36	
1.6	Compressed		
. 6		1.7869, 20	
6.6		1.7699, 40	
6.6		1.7526, 60- 7	
4.4			
6.6			
4.4	Uncompressed		Spring. Bei. 5, 854. From. Bul
4.6	0 111 011 111		de l'Acad. Roy. de Belg. (8
4.6	14	1.7010, 40°	2, 88-110, 1881.
+ 4		4,6526, 602	
4%	44	1,6623, 802	
4.4	+ 6	1,65,96, 100	
4.4	Fuscil	4.2	Quincke, P. A. 185, 642,
Tellurin		6.115	Klaproth. Ann. 25, 278.
- 1		0.1379	Magnus. See Bottger.
- 6		6.2115, in. of 5	Berzelius, P. A. 28, 392
+ 6		6.180	Lowe, J. P. C. 60, 163.
4.6		6.343	Reichenstein. See Bottger.
4.6	Compressed	6,2549, 0-1	
4.6		6,2419, 20	
6.6		1, 00011, 10	Samina District Day Day
- 1	» 6	6,2170, 000	Spring, Bei. 5, 854. From Bu
* * *	4	h 1.11 (t, 50)	de l Acad. Roy. de Belg. (5
4.4	4.4	6,1591,100	2, 5~-110, 1551.

NAME.	Specific Gravity.	AUTHORITY.
Tellurium. Uncompressed.	6.2194, 20°	
	6.2052, 40° {	Spring. Bei. 5, 854. From Bull.
	6.1500, 60°	de l'Acad. Roy. de Belg. (3),
tt	6.1640, 100° j	2, 88–110, 1881.
	$\left\{ \begin{array}{c} 6.204 \\ 6.215 \end{array} \right\}$	Klein and Morel. Ann. (6), 5, 61.
Chromium	7.3	Bunsen. Watts' Dict.
" Crystallized	6.81, 25°	Wöhler. J. 12, 169.
" Red. by K Cy_ Molybdenum	6.20 8.490)	Loughlin. J. 21, 220.
	8.490 8.615	Bucholz. Nich. J. 20, 121.
44	8.636) 8.60	Dobray I 11 157
" Red. by K Cy_	8.56	Debray. J. 11, 157. Loughlin. J. 21, 220.
Tungsten	17.60	D'Elhuyart. See Böttger.
"	17.22 17.4	Allan and Aiken. " " Bucholz. Sehw. J. 3, 1.
"	16.54)	
	$17.50 \}$	Uslar. J. 8, 372.
" Reduced by H	17.1 to 17.3	Daman III T 10 150
" C	17.9 to 18.12 }	Bernoulli. J. 13, 152.
"	$\left.\begin{array}{c} 16.6 \\ 17.2 \end{array}\right\}$	Prepared by three methods. Zett-
	18.447, 17°)	now. J. 20, 218.
	19.261, 12° 18.25 \	Rosece. C. N. 25, 61.
	18.77	Waddell. A. C. J. 8, 287.
Uranium	18.40	Peligot. J. 9, 380.
	18.33 18.685, 4°, m. of 3	Peligot. A. C. P. 149, 128. Zimmermann. Ber. 15, 851.
Chlorine. Liquefied	1.33, 15°.5	Faraday. P. T. 1823, 164.
Bromine	2.966	Balard. Ann. (2), 32, 337.
(4	2.99 } 15°	Löwig. See Böttger.
	3.18718, 0°	Pierre. Ann. (3), 20, 5.
4.	$3.18828, 0^{\circ}$ $2.98218, 59^{\circ}.27$ }	Thorpe. J. C. S. 37, 172.
44	2.9483, m. of 4	m 1 1
"	$\frac{2.9471}{2.9503}$ } Extremes }	Taken at the boiling point. Ramsay. Ber. 13, 2146.
	3.1875, 0°	Van der Plaats. J. C. S. 50, 849.
Iodine	4.948	Gay Lussae. Ann. 91, 5.
" Solid	4.9173, 40°.3	
11 11	4.886, 60° 4.857, 79°.6 }	
"	4.841, 89°.8	
" Molten	4.825, 107°	Billet. J. 8, 46.
((((3.988, 111°.7	2
(3.944, 124°.3 [3.918, 133°.5 [
((((3.866, 151°	
	3.796, 170°	DI 6: D D G [4, 241.
" Solid	5.030	Playfair. Proc. Roy. Soc. Edin.

Name.	Specific Gravity.	Антиовіту.
Manganese	6.861)	
77	7.10	Bergmann.
4.6	8.03	Bachmann. See Bottger.
4.	8.013	John. P. M. 2, 176.
44	7 135)	
	7.200	Brunner, J. 10, 202.
Iron	7.785	Brisson. P. des C.
" Wrought	7.790	Karsten, Schw. J. 65, 394.
[7.6305]	
" Wire in several dif-	7,6000	
ferent conditions.	7.7169 }	Baudrimont. J. P. C. 7, 268.
	7.7312	
" Hammered	7.7433	
Dill	7.4889	Broling. See Percy's Metallurgy.
	7.8707)	Berzelius, " " "
tt Padagod by zine (1.0110	
. Reduced by sinc)	7.50	Poumaréde. J. 2, 281.
vapor.	1.04)	
manner of the Common	7.130 8.1393, 15°.5	Playfair and Joule. M. C. S. 3.72.
" Electrolytic	7.580, 16°)	Smith. See Percy's Metallurgy.
	7.700, 10	
forged. " Fused in H., forged	7.868, 160	
" Fused in II., wire _	7.817. 160	Caron. C. R. 70, 1263.
Fused in crucible	7.833, 16°	
" Good commercial	7.852, 16°	
" Reduced by H.	7.995 1	
44	7,998 8,007 6 03	Schitf.
44	6.03	Stahl-chmidt. J. 18, 255.
" Molten	6.88	Roberts and Wrightson. Bei. 5.
		817. [6, 145.
" Molten steel	8.05	Petruschewsky and Alexojeff. Bei.
Nickel	7.807	Brisson. P. des C.
	8.279, east	Richter. Ann. 53, 164.
4 (*not	8.666, forged)	211111111111111111111111111111111111111
(11.6	$\frac{8.380}{8.820}$ } 12°.5	Tupputi. Ann. 78, 133.
· Forged	8.932, 129,5	
()	8.477	Tourte. Ann. 71, 103.
(1)	8.713	Baumgartner. See Bottger.
	8.637	Brunner. " "
44	9,000	Bergmann. "
" Reduced by H	7.861)	
44	7.803 }	Play fair and Joule. M. C. S. 3.71
" Wire	8.88, 49	Arndtsen.
• Reduced by H.	8.975 }	Rammelsberg, J. 2, 282.
41		
**	8.900	Schroder. P. A. 107, 113.
Cobalt	8.710	Lampadius. Erd. J. (1), 5, 3,0.
	8.155	Brunner. See Bottger.
	9.152	
	5,500	Mitscherlich, " "
	8.5131	10. 10. 11.
4	8,5344	Hauv and Tassaert. See Bottger.
a Relieed by H		T. H. Henry, M. C. S. 3, 59.
4 4		Playfair and Joule. M. C. S. 3, 71.
	8,957, m. of 5-	Rammelsberg, J. 2, 282
		211111111111111111111111111111111111111

	NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Сорр	er	8.895	Hatchett. P. T. 1803, 88.
44.	Rolled		Brisson, P. des C.
11	Cast		21.00011. 21.400.0.
. 6	D		Domaslina Cas Distant
	Drawn Hammered	$\left \begin{array}{c} 8.9463 \\ 8.9587 \end{array} \right $	Berzelius. See Böttger.
44	Trammered	8.78	Kupffer. Ann. (2), 25, 356.
4.6		8.900	Herapath. P. M. 64, 321.
6.6		8.721	Karsten. Schw. J. 65, 394.
4.4	Wire in several	8.6225]	
	different con-	8.3912	
	ditions.	8.7059	Baudrimont. J. P. C. 7, 287.
"		8.8787	7
44	Hammered Cast, slowly cooled	8.8893 8.4525	
44	Crystallized	8.940	
4.6	Cast	8.921	
	(8.939	
41	Various sorts of	8.949	[27, 193.
	wire.	8.930 }	Marchand and Scheerer. J. P. C.
		8.951	
44	Sheet	8.952	
4.4	Pressed	8.931	
4.6	Electrolytic	0.00	Mallet. D. J. 85, 378.
4.6	Finely divided		Mariet. D. 5. 65, 576.
4.4	11101) 11111111111111111111111111111111		
4.4		8.360	Diamfair and Jaula M. C. C. 2 FF
4.4	Electrolytic	8.884	Playfair and Joule. M.C.S. 3, 57.
. 4	ιζ	8.941	
11	((8.934 J	
4.4	Finely divided	$\left\{ \begin{array}{c} 8.367 \\ 8.41613 \end{array} \right\} 4^{\circ}$	Playfair and Joule. J.C.S. 1,121.
66	Hammered	8.855]	
4.4	"	8.878	
6.6	Rolled	8.879	007 22 35 1 35 1
4.6		8.898	O'Neill. Memoirs Manchester
4.6	Annealed	8.884	Philosophical Society, (3), 1, 243.
4.6		8.896 J	•
4.4	37	8.902, 12°	Schiff.
44	Native	8.838	Whitney. J. 12, 769.
44		8.952 }	Schröder. P. A. 107, 113.
6.6	Electrolytic, cast	8.916	
4.6	11 11 11	8.958	D11 D 75 (1) 44 (0)
4.4	" wire_	8.853	Diek. P. M. (4), 11, 409.
4.6	11	8.733	
"	Plate	8.902, 0°	Quincke. P. A. 97, 396.
44		8.945, 0° (in vaeuo) }	Hampe. C. C. 6, 379.
"		8.9565, 17	[817.
66	Allotropio	8.8	Roberts and Wrightson. Bei. 5,
	Allotropie	0.0 10 0.2	Schutzenberger. J. Ph. Ch. (4),
44	Molten	7.272	28, 366. Playfair and Joule. M. C. S. 3, 77.
	"	8.217	Roberts and Wrightson. Bei. 5,
			817.
Silver		10.472	Brisson. P. des C.
4.4			Biddle. P. M. 30, 152.

	Name.	Specific Gravity.	AUTHORITY.
Silver		10.43 \	Lengsdorf.
4.4		10.17	
. 6	Cast, slowly cooled	10,4282 10,1053)	Karsten. Schw. J. 65, 394.
6.6	Same mass, rolled	10,5513	
4.6	Hammered	10.4476	
4.4	Brittle	9.8403 }	Baudrimont. J. P. C. 7, 287.
6 4	Granulated	0.0000	
6.6	Cryst. in lamin.e . Wire	9,5588 10,4913	
4.6	11 11 0	10.431	Breithaupt. J. P. C. 11, 151.
44		10.482	Karmarsch. J. P. C. 43, 193.
		10.522 }	Playfair and Joule, M. C. S. 3, 66.
6.6	S	10.587 }	I my fair faid Joure. M. C. S. J. J.
4.6	Cust Pressed	10,505 10,5665	
11	Precip. powdery	10,5582	
4.4	ii	10,6191	G. Rose. P. A. 73, 1.
6.		10,5287, m. of 13	
å +		10.5237, m. of 4	
4.6		10.5283, m. of 8 J	II 1 I 10 110
4.6		10.468, 13°	Holzmann. J. 13, 112. Christomanos. J. 21, 272.
4.4	After heating in	10.512	Dumas. C. N. 37, 82.
6.	vacuo.	10,412, 49	Zimmarmann Par 15 850
4.4		10.57	Zimmermann. Ber. 15, 850. Roberts. C. N. 31, 143.
4.4		10.621, 0°	Quincke. P. A. 135, 642.
	Molten	9.131)	Phyfair and Joule, M. C. S. 3, 78.
4.4	46	0.281)	*
6.	66	9.1612	Roberts. C. N. 31, 143.
66	44	$\left\{\begin{array}{l} 9.51\\ 9.10 \end{array}\right\}$ Two methods	Roberts and Wrightson. Ann. (5), 30, 181.
6.6		10.002	Quincke. P. A. 135, 642.
Gold		19.258	Brisson, P. des C.
	Immered	19.207	Elliot. Quoted by Rose.
44		19.8 to 19.1	Lewis. " " "
44]	Pressed	19.8886, 179.5	
	Ppt. by oxalic acid_ Cast_and_pressed,)	19,2981, 17°,5 119,2881, 17°,5,m_of37	G. Rose. P. A. 73, 1.
`	16 sample differ-	19.2689, 179.5) Ex-	1. 1050. 1. 21. 10, 1.
	ently prepared.	19,3296, 17°,5 } tremes.	
	Ppt. by exalic acid	19.4911	G. Rose, P. A. 75, 103.
64	11 2 11	19.265, 130	Holzmann, J. 13, 112.
	Before rolling	$\left\{ \begin{array}{c} 10.2045 \\ 19.2082 \end{array} \right\}$	Roberts and Rigg. J. C. S. (2),
,	Melten	17.099	12, 203, Quincke, P. A. 135, 642.
	mium	11.0)	
4.4		(11.4)	Deville and Debray. J. 12, 234.
F1 11	-	12.261, 0°	Deville and Debray, C. R. 83,928.
Khodi	um	11.05-	Wollaston, P. T. 1804, 426.
44		11.2	Cloud. Schw. J. 43, 316. Hare, A. J. S. (2), 2, 365.
()		12.1	Deville and Debray. J. 12, 210.
Pallad	linm	11.8	· ·
í e		11.87	Wollaston, See Bottger.
6.6		12.145	Lowry.
1.6		11.852	Lampadius. Watts' Diet.

NAME.	Specific Gravity.	AUTHORITY,
Palladium	11.8	Vauquelin. Ann. 88, 167.
t and tall	11.041, 18°	Cloud. Schw. J. 1, 362.
	10.923	Breithaupt. See Böttger.
((11.628	Benneke and Reinecker. See
		Böttger.
" Hammered	11.30	Cock. M. C. S. 1, 161.
" Hammered	11.752	Breithaupt. J. P. C. 11, 151.
	11.4, 22°.5	Deville and Debray. J. 12, 237.
	12.0	Troost and Hautefeuille. C. R.
		78, 970.
	12.104	Lisenko. Ber. 5, 29.
" Molten	10.8	Quincke. P. A. 135, 642.
Osmium	21.40	Deville and Debray, J. 12, 232.
	22.477	Deville and Debray. C. R. 82,
	,	1076.
Iridium. Porous globule_	18.680	Children. See Böttger.
::	21.78	Eckfeldt and Boyé, for Hare. A.
((21.83)	J. S. (2), 365.
" Black	18.6088	G. Rose. P. A. 75, 403.
	21.15	Deville and Debray. J. 12, 242.
"	22.421, 17°.5	Deville and Debray. P. M. (4),
£ 6	22.38	50, 561.
Platinum	20.85	Matthey. C. N. 40, 240.
1 1401144111	20.98	Borda. Quoted by Marchand.
		J. P. C. 33, 385.
" Cast	$ \begin{array}{c} 21.06 \\ 19.5 \\ 20.3 \end{array} $	0.1.0.50, 556.
" Hammered	20.3 }	Brisson, P. des C.
" Wire	21.0	
tt tt	21.7	Klaproth. Quoted by Marchand.
	21.061	Sickingen. " " "
"	21.45	Berzelius. " " "
"	$\{21.47\}$	Berthier. " " "
(1	±1,00 J	
Cast	17.7	Prechtl. " " "
((Hammored	21.3	Faraday. " " "
Transmered	20.9	E. D. Charke.
" Spongy	21.47	I HOHIOUH.
((21.359	Scholz. See Böttger. Meissner. " "
" Wire	21.16)	Tronsitor.
66 66	21.40	W 11 1 D 1 10 15
££ ££	21.53	Wollaston. P. A. 16, 158.
" Hammered	21.25	
" Spongy	17.572)	
	15.780 }	Liebig. P. A. 17, 101.
((((16.319)	
" Black	17.894	Scholz. See Böttger.
	$21.2668 \atop 21.3092$ 0°	Marchand. J. P. C. 33, 385.
((TT	21.3092 }	0, 2, 0, 00,
" Hammered	21.31	T
	$\left \begin{array}{c} 21.16 \\ 91.99 \end{array}\right $	Hare. A. J. S. (2), 2, 365.
	21.23	
	$\left[egin{array}{c} 16.634 \\ 20.9815 \end{array} \right]$	
" Precip. black	20.7732	Rose. P. A. 75, 403.
" "	22.8926	
	42,0020)	1

Name.	Specific Gravity.	Антновиту.
Very pure	$egin{pmatrix} 17,766 \\ 21,169 \\ 21,243 \\ 21,15 \end{bmatrix}$	Rose. P. A. 75, 403. Playfair and Joule. M. C. S. 3, 57. Deville and Caron. J. 10, 250. Deville and Debray. J. 12, 240. Deville and Debray. P. M. (41, 50, 560. Quincke. P. A. 135, 642.

H. INORGANIC FLUORIDES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydrogen fluoride or hy- drofluoric acid, liquid.	II F	1.0609 =	Davy. P. T. 1813, 263.
16 16 16 16 16 16	44	.9922, 11- .9879, 12°.7 .9885, 12°.6 1.036, 15°.5	Gore. P. T. 1869, 173.
Lithium fluoride	LiF	2.582 2.608 2.612	Schröder, Dm. 1873.
46 44	44	2,295, 21°,5	Clarke. A. J. S. (3), 13, 292.
Sodium fluoride	Na F	2.713, m. of 7 2.601) Ex. 2.772) tremes	Schroder, Dm. 1873.
		2.558, 14%,5 _	Clarke, A. J. S. (3), 13, 292.
Potassium fluoride	K.F.	2.454, 12° 2.459)	Bodeker, B. D. Z.
44 44	66	$\left\{ \frac{2.476}{2.507} \right\}$	Schroder, Dm. 1873.
64 66	"	2.096, 21%5	Clarke, A. J. S. (3), 13, 202.
44 44		2.350, m. of 3	Schroder. Ber. 11, 2018.
Rubidium fluoride.	Rb F	3.202, 16°.5 _	Clarke, A. J. S. (3), 13, 293.
Ammonium hydrogen flu- oride.	Am H F ₂	1.211, 120	Bodeker, B. D. Z.
Silver fluoride Magnesium fluoride	(()	2,472	Schröder, Dm. 1873, Cossn. Ber. 10, 295.
" Sellnite.		2.072	Sträver. Dana's Min., 2d App.
Zine fluoride	$Z_{n} F_{2}$ $Z_{n} F_{2} + H_{2} O$	4,556, 17° 2,567, 10° (Clarke, A. J. S. (3), 13, 291.

	T.		
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Cadmium fluoride	Cd F ₂	5.994, 22°, m.	Kebler. A. C. J. 5,
Calcium fluoride	Ca F ₂	of 7. 3.183, m. of 60	241. Kenngott. J. 6, 853.
££ ££		3.150	Smith. J. 8, 976.
((3.138	Schiff. A. C. P. 108, 21.
11 11		3.162	Luca. J. 13, 98.
" " Precip " Ignited		$\left\{\begin{array}{c} 3.086 \\ 3.150 \end{array}\right\}$	Schröder. Dm. 1873.
Strontium fluoride		4,202)	"
((()	[4.236 }	
(4.210	Schröder. P. A. 6 Erganz. Bd. 622.
Barium fluoride	Ba F ₂	4.58, 13°	Bödeker. B. D. Z.
(((((′	$\left\{ \begin{array}{c} 4.824 \\ 4.833 \end{array} \right\}$	Schröder. Dm. 1873.
Lead fluoride	Pb F ₂	8.241	44 14
Nickel fluoride	Ni F ²	2.855, 14°)	Clarke. A. J. S. (3),
Aluminum fluoride	Ni F ₂ . 3 H ₂ O Al F ₃	2.014, 19° }	13, 291.
Aratimitin intoride	(($\left[\begin{array}{c} 3.065 \\ 3.13 \end{array} \right] \ 12^{\circ} \dots$	Bödeker. B. D. Z.
Arsenic trifluoride, l	As F ₃	2.73	Unverdorben, P.A.
ιι ιι		2.66	7, 316. MacIvor. C. N. 30,
"	((2.6659, 0°	169. Thorpe. J. C. S.
((((2.4497, 60°.4	37, 372, [874]
D:	Bi F ₃	2.734	Moissan. C. R. 99, Gott and Muir. J.
Bismuth fluoride	Bi O F	5.32, 20° }	C. S. 53, 137.
Cryolite. Greenland	Na ₃ Al F ₆	2.9-3.077	Dana's Mineralogy.
" Siberia Colorado	Na _{3,} Al F ₆	2.95 2.972, 24°	Durnew. J. 4, 820. Hillebrand and
Colorado		2.012, 24 1111	Cross. A. J. S. (3), 26, 271.
Chiolite	Na ₅ Al ₈ F ₁₄	2.72	Hermann. J. P. C.
"		2.90	37, 188. Kokscharow. J. 4,
"		2.842—2.898	820. Rammelsberg, P.A. 74, 314.
Chodneffite	Na ₂ ,Al F ₅	3.003)	Rammelsberg. P.A.
46		$\left\{\begin{array}{c} 3.003 \\ 3.077 \end{array}\right\}$ $\left\{\begin{array}{c} \end{array}\right\}$	74, 314.
	**	2.62-2.77	Wörth. Dana's Mineralogy.
Pachnolite.* Colorado	Na Ca Al F ₆ . H_2 O	2.965,17°,m.	Hillebrand and Cross. A. J. S.
	(1 A1 (II O TE)	2,962, 220 }	(3), 26, 271.
Prosopite. Altenberg	Ca Al ₂ (F. O H) ₈	$\frac{2.890}{2.898}$ $\frac{1}{2}$	Scheerer. Dana's Mineralogy.
" Colorado		2.880, 23°	Hillebrand and
		*	Cross. A. J. S.
Ralstonite	$NaMgAl_4F_{15}$. $3H_2O$.	2.4	(3), 26, 271. Brush. A. J. S. (3),
***************************************	3-14-15-01120.		2, 30.

^{*}According to Brandl, pachnolite and thomsenolite are distinct species, but Hillebrand and Cross show them to be identical.

NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Ralstonite	$\operatorname{NaMgAI}_{4}\Gamma_{1}, \operatorname{BII}_{2}\Theta.$	2,62	
"	$({ m MgNa_2}){ m Al_3}({ m F,OH}_{ m 2H_2O})$	2.5(1)	na's Min., 3d App. Penfield and Har-
			per. A. J. S. (3), 32, 381.
Fluocerite	Ce F ₃ , ?_		Berzelius. Dana's Mineralogy.
Tysonite			Allenand Com-te-k. A.J.S.(3), 19, 391.
Yttrocerite	??		Berzelius. Dana's Mineralogy.
Potassium borotluoride	K B F ₄	2.5	Stolla. B. S. C. 18, 309.
Lithium silicofluoride	Li ₂ Si F ₆ . 2 H ₂ O	2.69	Stolba. J. 17, 213. Topsoe. C. C. 4, 76.
Sodium silicofluoride			Stolba. J. P. C. 97. 509.
11 11	(()	" (1") Ex.	Schroder, Dm. 1873.
Potassium silicofluoride	K ₂ Si F ₆	2,0055) 100 -	(Stolba, J. P. C.
64 64 44 44 44 44 44 44 44 44 44 44 44 4	((2.655)	(97, 508.
., .,	٠.	2.701)	Schroder, Dm. 1873.
Rubidium silicofluoride Cresium silicofluoride		8.8848, 20° 8.8756, 17°	
Ammonium silicofluoride.	Am ₂ Si F ₆	2.0ob, m. of op	Topsoe. C. C. 4, 70.
66 66	"	2.071) treme	Schroder, Dm. 1873
Calcium silicofluoride	4.4	2.670	Stolba. J. 33, 200
Strontium silicofluoride		2,254 2,988)	Topsoe, C. C. 4, 76 Stollia, J. 34, 285.
Barium silicofluoride	Ba Si F ₆	. 4.2794, 21	Stolba. J. 18, 170
		4.00 %() 0000	of Missouri, special pub. 1876.
Magnesium silicofluoride Zinc silicofluoride	Zn Si F. 6 H. O _	2,1011	Topsoe. C. C. 4, 76
66 66		$\left\{\begin{array}{c} 2.121\\ 2.1114 \end{array}\right\}$ 17°.5	No. Cont.
Manganese silicofluoride Iron silicofluoride*	$\begin{array}{c} \operatorname{Mn}\operatorname{Si}\operatorname{F_6},\ \operatorname{GH_2O} \\ \operatorname{Fe}\operatorname{Si}\operatorname{F_6},\ \operatorname{GH_2O} \end{array}$	1.555	Topsoc. C. C. 1, 76 Stolla. B. S. C. 26 155,
Nickel silicofluoride Cobalt silicofluoride * _		2.067	Topsoe. C. C. 4, 70
	44 44	2.1011) 19	(Stolba, B. S. C 26, 155.
Copper silicofluoride*	Cu Si F ₆ . 4 H ₂ O Cu Si F ₆ . 6 H ₂ O	12.000	Topsoc. C. C. 4, 76 Stellba J. 20 299.
	11 11	2.1576, 197 2.207 2.182	Tepsee, C.C.4, 70 Tepsee and Christ
			innsen.

^{*}According to Stolba, these salts contain $6\frac{1}{2}$ molecules of water.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
	Copper titanofluoride	K ₂ Ti F ₆ . H ₂ O Cu Ti F ₆ . 4 H ₂ O K ₂ Zr F ₆ Zn Zr F ₆ Ni Zr F ₆ . 6 H ₂ O K ₂ Sn F ₆ . H ₂ O K ₂ Sn F ₆ . H ₂ O An ₂ Sn F ₆ . H ₂ O An ₂ Sn F ₆ . H ₂ O Zn Zr F ₆ . 6 H ₂ O Co Sn F ₆ . 6 H ₂ O K ₂ Cb O F ₅ . H ₂ O Cu Cb O F ₅ . H ₂ O Zn Ta F ₇ . Zn F ₈ . 2 U O ₂ F ₂ Zn F ₈ . 2 U O ₂ F ₂ Zn F ₉ . 2 U O ₂ F ₂	2.992 2.529 3.582 2.255 2.227 3.053 2.887 2.307 2.604 2.813 2.750 4.056 4.263, 20° 4.379, 20° 4.108, 20°	Topsoë. C. C. 4, 76.

III. INORGANIC CHLORIDES.

1st. Simple Chlorides.

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Hydrogen ehloride or l droehloricaeid, lique "" " " " " " " " " " " "	d H Cl	.908, 0° .873, 7°.5 .854, 11°.7 .835, 15°.8 .808, 22°.7 .748, 33° .678, 41°.6	Ansdell. C. N. 41, 76. Critical temperature, 51°.25.
Lithium chloride	Li Cl	.619, 47°.8 J 1.998 2.074	Kremers. J. 10, 67. Schröder. P. A. 107, 113. Quincke. P. A. 138, 141.
Sodium chloride	Na Cl	2.2001	Hassenfratz. Ann.
66 66 66 66 66 66 66 66 66 66 66 66 66			Mohs. Karsten. Schw. J. 65, 394. Unger. See Böttger. Kopp. A. C. P. 36, 1.

Cryst.	NAME. Sodium chloride			FORMULA.	SP. GRAVITY.	.5 Holker. P. M. (3),	
a "Cryst. at 2,195 Deville. J. 8, 15. a "After fun 2,207 Hunt. J. 8, 976. a "Halite 2,135 Hunt. J. 8, 976. a "After fun 2,2142 Schiff. A. C. P 108, 21. a "After fun 2,2163 Schiff. Acc. P 108, 21. a "After fun 2,2163 Schiff. Acc. P 108, 21. a "After fun 2,2163 Schiff. Acc. P 108, 21. a "After fun				Na Cl	2.155, 15°.5		
After formation	4.6	4.4	Cryst	44	2.195)		
Grassi, J. 1, 39. Grassi, J. 1, 39. Hunt, J. 8, 976. Schiff, A. C. P. 2, 148 108, 21. Schröder, P. A. 106 22.161 22.163 108, 21. Schröder, P. A. 106 22.164 108, 21. Schröder, P. A. 106 22.164 Stollon, J. P. C. 97 506. Haggen, P. A. 131 117. Pagennd Keightley J. C. S. (2), 10, 566 Stas. Rudorff, Ber. 12 2.1641, 15° Cryst, at 2.1641, 15° Cryst, at 20° Cryst, at 20° Cryst, at 21.615, 20° Cryst, at 22.1615, 20° Cryst, at 22.1617, 2359 Cryst, at 22.1615, 20° Cryst, at 22.1617, 2359 Cryst, at 22.1615, 20° Cryst, at 22.1617,	+ 6	4.4	After fu-	11	2.201}	Devine. J. 8, 15.	
Cryst. at					0.1405		
## Halite ## 2.145						Grassi, J. 1, 39.	
2.148 Schiff: A. C. P. 108, 21. Schiff: A. C. P. 108, 21. Schiff: A. C. P. 108, 21. Schiff: P. A. 106, 226. Schiff: P. A. 106, 226. Schiff: P. A. 106, 226. Schiff: A. C. P. 4. 106, 2145 Schiff: D. J. P. C. 97, 508. Hangen, P. A. 131, 117. Schiff: P. A. 131, 117. Schiff: Ber. P. A. 132, 117. Schiff: Ber. P. A. 132, 117. Schiff: Ber. P. A. 133, 34. Schiff: A. C. P. 108, 21. Schiff: A. C. P. 108, 21. Schiff: A. C. P. 108, 21. Index. P. M. (3), 21. Ind						Hunt. J. 8, 976.	
Cryst. at	4.6	4.6		(1		Schiff. A. C. P.	
1	4.6	4.6		11	2.153)		
1	. 6				2.161		
10					2.145	Buignet. J. 15, 14.	
117. Page and Keightley J. C.S. (2), 10,566 Stas. Rudorff. Ber. 12 251. Bedson and Wil lams. Ber. 14 2552. Cryst. at 200. Cryst. at 215494 — Nicol. P. M. (5) 15, 94. Braun. J. C. S. (2) 13, 31. Brugelmann. Ber 13, 31. Brugelmann. Ber 14, 2552. Cryst. at 22, 1635, 109 Cryst. at 12, 1635 Cryst.	6.4	. 6	~~~~~	* 6	2.1629, 15°		
## ## ## ## ## ## ## ## ## ## ## ## ##	+ 4			44	2.1543	Haagen, P. A. 131,	
Stas Rudorff Ber. 12 2,137 Bedson and Williams Ber. 14 2552 September	4.6	4.6		"	2.06—2.08	Page and Keightley.	
Natural Carlot	. 6	4.6		44	2.145		
Cryst. at	4.6	4.6	Natural	44	2.137	Rudorff. Ber. 12,	
" " Cryst. at 202. " " Cryst. at 1082. " " " " " 1.612, at the melting point. " " 2.1653, 102. " " 2.1653, 103. " " 2.1655, 103. " " 2.1655, 203. " " 2.1504, 303. " " 2.1504, 303. " " 2.1504, 303. " " 2.1504, 303. " " 2.1504, 503. " " 2.1504, 503. " " 2.1504, 503. " " 2.1881	. 6	s 6			2.1641, 15°	Bedson and Wil- Imms. Ber. 14	
" " " " " " " " " " " " " " " " " " "	.4	. 4			2.16171		
1.612, at the melting point. 13, 31, 13, 31, 13, 31, 13, 31, 13, 31, 14, 10, 12, 10, 10, 12, 10, 10, 11, 10, 1	4.4	6.6	Cry-t. at	44	2.15494		
Comparison of the comparison	. 6	4.4		4.		Braun. J. C. S. (2)	
2.1615, 20° 2.1504, 30° 3.		. 6			2.23	Brugelmann. Ber.	
					2.165a, 10°	[17, 2359.	
(2), 30, 315. (2), 30, 315. (3), 40° (4), 40° (5), 50° (7), 1587 (7), 21887 (8), 40° (9), 1887 (9), 21887 (10), 40°						Andrews I D C	
Company Comp							
Comparison Com	.1					(~) (0 () () () ()	
Chincke, P. A. 135 642, Potassium chloride We will be recommended We will be recommended	+4	6.6			2.1851	Zehnder, P. A. (2)	
Potassium chleride KCl 1,9367 Hassenfratz. Ann 28, 3. """""""""""""""""""""""""""""""""""	1.6	4.6				20, 250,	
Potassium chleride					2.092, 0= }	Quincke, P. A. 135	
4						642. Hassenfratz, Ann	
1.9153					1.836	28, 3. Kirwan, See Bott-	
Kopp. A.C. P 36,1 Ptayfair and Joule M. C. S. 2, 401 Ptayfair and Joule M. C. S. 1, 137. Ptayfair and Joule J. C. S. 1, 137. Ptayfair and Joule J. C. S. 1, 137. Ptilhol. Ann. (3) 21, 415. Schiff. A. C. P 108, 21. Reference of the property	4.4			16	1,9153	Karsten Schw. J.	
1.900 Prayfair and Joule M. C. S. 2, 401. 1.97756, 4 Playfair and Joule M. C. S. 2, 401. 1.97756, 4 Playfair and Joule J. C. S. 1, 137. 1.994 Filhol. Ann. (3) 21, 415. Schiff. A. C. P. 108, 21. 1.918, 15°, 5 Holker. P. M. (3)					1.04*		
1.97756, 4 — Playfair and Joule J. C. S. 1, 137. 1.994 — Filhol. Ann. (3) 21, 415. Schiff. A. C. P 108, 21. 108, 21. Holker. P. M. (3)						Playfair and Joule	
1.994 — Filhol. Ann. (3) 21, 415. 31, 415. 32, 415. 33, 34, 415. 34, 415. 35, 31, 415. 36, 21. 37, 31, 415. 38, 415. 39, 41, 415. 31, 415.	4.4				1.97756, 4	Playfair and Joule	
6 0 1.905 Schiff. A. C. P. 108, 21. 1.918, 15°.5 Holker. P. M. (3)	+ 6				1.994	Filhol. Ann. (3)	
4 1.918, 15°.5 1 Holker. P. M. (3)	4.			.1 ==	1.995	Schiff. A. C. P	
	4.6				. 1.918, 15°.5	108, 21. Holker, P. M. (3) 27, 213.	

	NA	ME.			FORMULA.	SP. GRAVITY	AUTHORITY.
Potassium chloride			K C		1.995		
"		64		66		1.986 1.94526, 15°	,
46		"		"		1.90—1.91	J. C. S. (2), 10,
"		t i		"		1.612, at the	
"		44	Not pressed.	66		melting p't	. 13, 31.
"		"	Once pressed.			2.071, 20°	Spring. Ber. 16,
4.5			Twice pressed.			2.068, 21°	atai.
4:		"		"		1.93	Brügelmann. Ber. 17, 2359.
2.5		16		66		1.932, 0°	Quincke. P. A. 135.
Rubidi	ium eh	lorid	Fused le		I		Setterberg. Of. Ak.
Cæsiun	n ehlor	ide_		Cs Cl		3.992	St. 1882, 6, 23.
Ammo	nium (ehlor	ride	Am (Cl	1.450	Wattson. See Bött-
ι:		"		"		1.54425	Hassenfratz. Ann. 28, 3.
66		6.6		66		1.528	_ Mohs. See Böttger.
66		44		11		1.578, m. of 3	Playfair and Joule. M. C. S. 2, 401.
66		٤ ۲		6.6		1.5333, 4°	
13		"		66		1.52, 15°.5	Holker. P. M. (3), 27, 214.
44		66		66		1.500	Kopp. A.C.P.36,1.
				"		1.522	Schiff. A. C. P. 108, 21.
		66		"		1.550	Buignet. J. 14, 15.
66		66		11		1.5191 > 15°	
		"		"		1.5209) 1.456	503. W. C. Smith. Am.
Silver	hlorid	e		A or Cl		5.4548	J. P. 53, 145. Proust.
6.6	4.6		nfused	66		5.501	a road.
3.3	11		ack'd	4.6		5.5671 }	Karsten. Schw. J.
**			ter fu-	••		5.4582)	65, 394.
6.6	66			4.6		5.129	Herapath. P. M. 64, 321.
6.6	6.6			6.6		5.548	Boullay. Ann. (2), 48, 266.
66	66	7.7		66		5.55	Gmelin.
	66	Na	tive	6.6		5.31	Domeyko. Dana's Min.
44	"			44		5.517	Schiff, A. C. P. 108,
64	66			44		5.5943	21. [226. Schröder. P. A. 106,
							, ~ 2111 00011 1 1 111 100,

		1	
NAME.	Förmula.	SP. GRAVITY.	AUTHORITY.
Silver chloride		5,505, 00)	Rodwell. P. T. 1882,
Wolten Molten	**	4.919, 451°] 5.5	1125. Quincke, P. A. 135,
		5.0	642. Quincke, P. A. 158,
Thallium chloride	T) (')	7.00	1-11. Willim.
Thallium trichloride	T1 C1.	7.02 5.9	Lamy. J. 15, 184.
Magnesium chloride	Mg Cl ₂	2.177, m. of 2	Playfair and Joule, M. C. S. 2, 401.
	Mg Cl ₂ , 6 H ₂ O		4.6 6.6
		1.558	Filhol. Ann. (3), 21, 415.
" Bi-chofit	••	1.65	Ochsenius, B. S. M. 1, 128.
Zinc chloride	Ca Cli	3,6254, 120	Bodoker, B. D. Z.
		= 8.655, 16°.9 == 3.821, m. of 3	P. Knight. F.W.C.
Mercurous chloride		7.1758	W. Knight, F. W.C. Hassenfratz, Ann. 28, 3.
		7.14	Boullay, Ann. (2), 43, 266.
44 44		6,9925	Karsten, Schw. J. 65, 394.
		G.7107 =	Herapath, P. M. 64, 321.
" " Nutiv	e	6,482	Haidinger. Dana's Min.
44		7.178	Playfair and Joule. M. C. S. 2, 401.
		. 6,56	Schitf. A. C. P. 108,
Mercuric chloride	Hg Cl ₂	5.1398	Hassenfratz. Ann. 28, 3.
4		5.14	Gmelin. Boullay. Ann. (2),
		5,4082	43, 266. Karsten. Schw. J.
		(1,1)1)()	65, 394. Playfair and Joule.
		5.118, m. of 3	M. C. S. 2, 401. Schroder, P. A. 107,
Calcium chloride	Ca Cl ₂	2 211 }	113. Boullay. Ann. (2),
	46	2.269 2.0101	13, 266. Kursten, Schw. J.
		2.180	65, 394. Playfair and Joule,
		2 240	M. C. S. 2, 401. Filhol, Ann. (3), 21, 415. [21.
11 11		2.205	Schiff. A. C. P. 108,
44		2.150, 27	C. R. 77, 579.
*6	4.	2.210, 00	Quincke, P. A, 135, 642,

	NAME		FORMULA.	Sp. Gravity.	AUTHORITY.
Calcium	ehlorid	e. Fused_	Ca Cl ₂	2.120	Quincke. P. A. 138, 141.
16	1.6		Ca Cl_2 . 6 $\operatorname{H}_2\operatorname{O}$	1.680, m. of 2_	Playfair and Joule.
4.6	44			1.635	M. C. S. 2, 401. Filhol. Ann. (3), 21, 415.
"	66		11	1.612, 10° 1.701, 17°.1	Kopp. J. 8, 44. Favre and Valson. C. R. 77, 579.
"	11			1.654, m. of 4	Schröder. Dm. 1873.
	4.4			1.642 Ex. 1.671 tremes	Schroder. Dm. 1873.
Strontiur	n ehlor	ide	Sr Cl ₂	2.8033	Karsten. Schw. J. 65, 394.
6.6	44		((2.960	Filhol. Ann. (3), 21, 415.
"	"		"	3.035, 17°.2	Favre and Valson. C. R. 77, 579.
	66		"	3.054	Schröder. A. C. P. 174, 249.
	4.6		"	2.770, at the	Braun. J. C. S. (2),
44	4.6	Fused	"	melting point. 2.770	13, 31. Quincke. P. A. 138,
"	4.6		Sr Cl ₂ . 6 H ₂ O	2.015, m. of 2_	Playfair and Joule.
74	"			1.603	M. C. S. 2, 401. Filhol. Ann. (3), 21, 415.
8 E	11		"	1.921 1.932, 17°.2	Buignet. J. 14, 15. Favre and Valson.
	6.6		4.4		C. R. 77, 579.
46	4.6			1.954 1.964, 16°.7	Schröder. Dm. 1873. Mühlberg. F. W.C.
		2	Ba Cl ₂	3.860	Boullay. Ann. (2),
"	"		"	4.156	43, 266.
14	"		((3.8	Richter. Watts' Diet. Karsten. Schw. J.
			((3,750	65, 394. Filhol. Ann. (3), 21,
					415.
4.6	" "			3.820	Schiff. A. C. P. 108, 21.
44	66		(3.872 }	Schröder. P. A. 107,
4.6	"		66	3.886} 3.7, 17°.5	113.
"	"			3.844, 16°.8	Kremers. P. A. 85,
	66			,	Favre and Valson. C. R. 77, 579.
"	"	Molten _		3.92	Brügelmann. Ber. 17, 2359.
"		Molten _			Quincke. P. A. 138, 141.
"			Ba Cl ₂ . 2 H ₂ O		Playfair and Joule. M. C. S. 2, 401.
	"			2.664	Filhol. Ann. (3), 21, 415.
16				3,05435, 4°	Playfair and Joule. J. C. S. 1, 137.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Barium chloride	Ba Cl ₂ . 2 H ₂ O	3.052	Schiff, A. C. P. 108, 21.
44 4.	6.	3.081	Burgnet, J. 14, 15.
14 14		3.054, 15°.5	Favre and Valson.
44 44	44	3,015	C. K. 77, 579. Schröder, Dm. 1873.
Lead chloride	Pb Cl ₂	5,29	Monro.
α α Native α α Unfused	66		Dana's Min. Karsten, Schw. J.
" After fusion		5.6-211	65, 894.
" Cryst		5.802	Schabus, J. 3 322.
66 66		5.75 5.80534, 15° L	Schiff, J. 11, 11, Stolba, J. P. C. 97,
			503.
		5,88	Brugelmann. Ber. 17, 235.c.
Chromous chloride Chromic chloride	Cr Cl,	2.751. 14°	Grabfield, F. W. C. Schafarik, J. P. C.
		9.00, 11	90, 12.
66 66	**	2.757, 15°, m. of 13.	Grabfield, F. W. C.
Manganous chloride		2.178	Schroder, A. C. P. 174, 249.
66	Mn Cl ₂ . 4 H ₂ O	1.598	
66 66	44	1.913	Schroder, Dm. 1873.
	4.	2.01, 100	Bodeker, B. D. Z.
Ferrous chloride	Fe Cl ₂	2.528	Fillol. Ann. (3), 21,
11 11	4.	2.988, 179,9	415. Grabfield, F. W. C.
"	Fe Cl ₂ . 4 H ₂ O	1.926	Filhol, Ann. 3, 21.
	16	1.987	Schabu . J. 3, 327.
Ferrie chloride	Fe ₂ Cl ₆	2.801, 10°.8 2.56	Grabbield, F. W. C. Schiff, A. C. P. 108,
			21.
Cobalt chloride	Co Cl ₂	2.937, m. of 3	Playfair and Joule, M. C. S. 2, 401.
66 66	Co $\mathrm{Cl}_{\mathfrak{g}}$ 6 H_2 O $=$	1.84, 13°	Bodeker and Ehlers. B. D. Z.
Cuprous chloride	Cu Cl	3.0777	Karster, Schw. J. 65, 324.
	**	0.376	Playfair and Joule. M. C. S. 2, 401
" Nant quite	"	3,930	Breit oupt. J. 25, 1115.
Cupric chloride	Cu (1,	3.054	Playfair and J. de. M. C. S. 2, 401.
	Cu Cl ₂ , 2 H ₂ O B C	2.535, m. of 2 2.47, 18	Boleser, B D Z
Boron trichloride, l.			Wohler and Deville. J. 10, 981.
Gallium chloride Molten	Ga Cl,	2.36, 802	Busbaudran, C. N. 44, 160.
Cerium chloride	Ce Cl ₃		Ridinson, C. N. 50,
Didymium chloride	Di (13. 6 II 2 0	0 0500	a 11.

		1	1	
1	NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
		Sm Cl ₃ , 6 H ₂ O	$\left[\begin{array}{c} 2.375 \\ 2.392 \end{array} \right\} \ 15^{\circ}$	Cleve. U. N. A. 1885.
Carbon chl Silicon tetr		Si Cl ₄	1.52371, 0°	
66	"		1.5083, 5°-10°	26.
4.6	44	((1.4983, 10°-15°	Regnault. P. A.
66		((1.4884, 15°-20°) 62, 50.
66			1.4878, 20°	Haagen. P. A. 131, 117.
66		"	1.49276	Mendelejeff. C. R. 51, 97.
"		44	1.522, 0°	Friedel and Crafts.
			,	A. J. S. (2), 43, 162.
			1.52408,00	Thorpe. J. C. S.
Ciliaan ham		g: 01	1.40294, 57°.57	§ 37, 372.
Silicon nex	chloride	Si ₂ Cl ₆	1.58, 0°	Troost and Haute- feuille. Z. C. 14, 331.
Titanium t	etrachloride	Ti Cl ₄	1.76088, 0°	Pierre. Ann. (3), 20, 21.
66		((1.7487, 5°-10°)
4.4		(1.7403, 10°-15°	Regnault. P. A.
66		(1	1.7322, 15°-20°) 62, 50.
			1.76041, 00	Thorpe. J. C. S.
	a tetrachloride_	Ge Cl ₄	1.52223,136°.41 1.887, 18°	37, 371. Winkler. Ber. 19, ref. 655.
Tin diehlor	ride	Sn Cl ₂ . 2 H ₂ O	2.759	Playfair and Joule. M. C. S. 2, 401.
			2.71, 15°.5, s	Penny. J. C. S. 4,
11 11		(($[2.5876, 37^{\circ}.7, 1]$	} 239.
"		" " "	2.634, 24°	Bishop. F. W. C.
	loride	Sn Cl ₄	2.26712, 0°	Pierre. Ann. (3), 20, 19.
££ ££		((2.2618, 5°-10°	
11 11			2.2492, 10°-15° 2.2368, 15°-20°	Regnault. P. A. 62, 50.
		((2.284, 15°	Gerlach. J. 18, 237.
			2.2328, 200	Haagen. P. A. 131,
			2.27875, 0°	117. Thorpe. J. C. S.
		4.6	1.97813,113°.89	37, 372.
	richloride	N Cl ₃ . ?	1.653	Watts' Dictionary.
Phosphorus	s trichloride	P Cl ₃	1.45	Davy. Watts' Diet.
4.6			1.61616, 0°	Pierre. Ann. (3), 20, 9.
		46	1.6091, 5°-10°)
"		((1.6001, 10°15°	Regnault. P. A.
"			1.5911, 15°-20° 1.6119, 0°, m.	62, 50.
			of 2.	Buff. A. C. P. 4 Supp. Bd. 129.
"		44	1.59708, 10°	Rollingwoint 760
	"		1.47124, 76°	

 $[\]mbox{*}$ The chlorides, bromides, and iodides of carbon are assigned to a special division among organic compounds.

	Nam	Ε.	FORMULA.	SP. GRAVITY.	Антновиту.
Phospho	rus tri	chloride	P Cl ₃	1.5774, 20°	Haagen. P. A. 131,
4.6		4.6	44	1.61275, 0°	117. Thorpe. J. C. S.
4.4			6.6	1.46845, 75°.95	37, 372.
Vanadiu	m diel	loride	V Cl ₂	. 3.23, 18°, s	Roscoe. P. T. 1869, 679.
Vanadia	m triel	hloride	V Cl ₃	. 3.00, 18°, s	19 6 17.
		nchloride	V Cl	1.8584, 0° } 1.8363, 8° }	
11			66	1.8363, 8°	11 (1
	trichlo	ride	As Cl ₃	1.8159, 32° _) 2.20495, 0°	[15, Pierre, Ann. (3), 20,
1 I I SCIII C	11		11	2,1766	Penny and Wallace.
			66	0.1407.000	J. 5, 382.
6.6	6.6			2.1668, 20°	Hangen, P. A. 131, 117.
6.6	4.6		(1	2,20500, 0°	Thorpe. J. C. S.
6.6	6.6		((. 1.91818,130°.21	37, 372.
Antimon	y tricl	rloride	Sb Cl ₃	3.004, 26°, s	Cooke, Proc. Amer. Acad, 1877.
4.4	4.4			2.6766) liquid)
6 h	4.4		((2.6758	Kopp. A. C. P. 95,
4.6	11	1.1	(i) (i)	2.6750 \ 73°.2 2.3461, 20°) 348. Haagen, P. A. 131.
Antimor	iy peni	tachloride _	Sb Cl ₅	2.0401, 20"	117.
Bismuth	trichle	oride	Bi Cl ₃		Bodeker, B. D. Z.
Sulphur	chloric	le	S ₂ Cl ₂	1.687	Dumas, Ann. (2),
4.6			4.6	1.686	49, 204. Marchand, J. P. C.
				1.000	22, 507.
4.4	6.6		11		1
4.6	6.6		44		Regnault. P. A. 62, 50.
44	4.6				Kopp. A. C. P. 15,
6.6	6.6		((1.6802, 169.7)	355.
6.6	6.6		16	1.6828, 200	Haagen, P. A. 131, 117.
1.6	4.4		4.6	1.1848, 1389	Ramsay, J. C. S. 35,
					4(3)
4.4	6.6		14	. 1.70941, 02 1.49201,135 .12	Thorpe, J. C. S. 37, 356.
		ide	Se ₂ Cl ₂	2.906, 178.5	Divers and Shimose.
r-cicinan	2 (1111/1				Ber. 17, 866.
		loride	[C]	3,263, 0	
4.4	4.4		44	3.222, 16°.5 3.206, 18.2	
1.6	4.6		4	3.180, 30	
6.6	6.6		16	3.176, 320	
4.4	4.6		16	3,132, 45 3,127, 18	
4.6	4.6		14	3,084, 60	Hannay, J. C. S.(2),
6.4	6.6		**	3.052, 72	11, 818. Melts at
4.6	4.4		11	3,036, 75	24.7. Boils at 100.5 to 101°.5.
4.4	6.6		11	2.084, 90%	100 .0 10 101 .0.
4.4	6.6			2,964,95	
4.4	4.6		11	2,958, 98 j 3,18223, 0°	Thorpe. J. C. S.
4.6	6.6		14	2.88196, 1012.3	37, 371.
4.4				=) "11, "114"

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Iodine trichloride	I Cl ₃	3.1107	Christomanos. Ber. 10, 789.
Platinum dichloride Platinum tetrachloride	Pt Cl ₂	5.8696, 11° 2.431, 15°	Bödeker. B. D. Z.

2d. Double Chlorides.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ammonium magnesium chloride.	Am ₂ Mg Cl ₄ . 6 H ₂ O ₋	1.456, 10°	Bödeker. B. D. Z.
Potassium zinc ehloride	K ₂ Zn Cl ₄	2.297	Schiff. A. C. P. 112, 88.
Ammonium zinc chloride_	Am ₂ Zn Cl ₄	1.879	Bödeker and Ehlers.
	44		B. D. Z.
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		1.77	Romanis. C. N. 49, 273.
Barium zinc chloride	Ba ₂ Zn Cl ₆ . 4 H ₂ O	2.845	Warner. C. N. 27, 271.
Potassium cadmium chloride.	K ₂ Cd Cl ₄	2.500	Schröder. Dm. 1873.
Strontium cadmium chloride.	Sr Cd ₂ Cl ₆ . 7 H ₂ O	2.708, 24°, m. of 3.	W. Knight. F.W.C.
Barium cadmium chloride	Ba Cd Cl ₄ . 4 H ₂ O		Topsöe. C. C. 4, 76.
((((((2.968	W. Knight. F.W.C.
Sodium mercury chloride.	Na Hg Cl ₃ . 2 H ₂ O	3.011	Playfair and Joule.
Potassium mercury chlo-	K Hg Cl ₃ . H ₂ O	3.735, m. of 3.	M. C. S. 2, 401.
ride. Ammonium mercury chloride.	Am ₂ Hg ₂ Cl ₆ . H _{2,} O	3.822	u u
	Am ₂ Hg Cl ₄ . H ₂ O	2.938	£ ¢ & ¢ ¢
Potassium iron chloride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.162	Schabus. J. 3, 327.
Potassium copper chloride	K ₂ On O ₁₄ . 2 H ₂ O	4.420	Playfair and Joule. M. C. S. 2, 401.
		2.400	Schiff. A. C. P. 112, 88.
· · · · · · · · · · · · · · · · · · ·	((Kopp. J. 11, 10.
	W	2.410	Tschermak. S. W. A. 45, 603.
		2.358)	(1.1. "1. To 10H0
		2.392 } 2.425 }	Schröder. Dm. 1873.
Rubidium copper chloride	Rb ₂ Cu Cl ₄ . 2 H ₂ O		Wyrouboff. B. S.
Ammonium copper chlo-	Am, Cu Cl, 2 H, O		M. 10, 127. Playfair and Joule.
ride.	11111 ₂ Ou Oi ₄ , 2 11 ₂ O ₋	4.010	M. C. S. 2, 401.
· · · · · · · · · · · · · · · · · · ·	٠٠	1.963	Schiff. A. C. P. 112, 88.
		1.977	Kopp. J. 11, 10.
" "	. "	2.066	Tschermak. S. W.
			A. 45, 603.

=			
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ammonium copper chlo- ride.	Am ₂ Cu Cl ₄ . 2 H ₂ O	1.984, 24°	Evans. F. W. C.
Potassium palladiochlo- ride.	K ₂ Pd Cl ₆	2.804	Topsoë. C. C. 4, 76.
Ammonium palladiochlo- ride.	Am ₂ Pd Cl ₆	2.418	11 11
Magnesium palladiochlo- ride.	Mg Pd Cl ₆ . 6 Π_2 O	2.121	44 44
Zine palladiochloride Niekel palladiochloride	Zn Pd Cl ₆ . 6 H ₂ O Ni Pd Cl ₆ . 6 H ₂ O	2.359 2.353	ee ee
Potassium iridichloride	K ₂ Ir ('l ₆ .	3.546, 15°	Bødeker, B. D. Z.
Ammonium iridichloride	K ₂ Ir Cl ₆ . Am ₂ Ir Cl ₆	2.856, 15°	6.6
Potassium platosochloride	K ₂ Pt Cl ₄	3,3056, 20°.3 3,2909, 21°	Clarke. A. J. S. (3), 16, 206.
Ammonium platosochlo- ride.	Am ₂ Pt Cl ₄	2.84	Romanis. C. N. 49, 273.
Sodium platinchloride	Na ₂ Pt Cl ₆ . 6 H ₂ O	2,500	Topsoë. C. C. 4,
Potassium platinchloride_	K ₂ Pt Cl ₂	3,586, 15° 3,694	Bodeker, B. D. Z. Tschermak, S. W.
	6	3.3, 17°)	A. 45, 603. Pettersson, U. N.
		3.32, 17°.2 }	A. 1874.
Rubidium platinchloride	Rb ₂ Pt Cl ₆	3.314	Schröder, Dm. 1873, Pettersson, U. N.
Ammonium platinchlo-	Am ₂ Pt Cl ₆	3.94, 17°.5 } 2.955 \ 15°	A. 1874.
ride.	11112 1 ()6	3.009 } 15°	Bödeker. B. D. Z.
		2.960	Tschermak, S. W. A. 45, 603.
"	(.	3.0, 17°.2	Pettersson, U. N. A. 1874.
		2.936	Schröder, Dm. 1873.
Thallium platinchloride	Tl ₂ Pt Cl ₆	3.065 5.76, 17°	Topsoe. C. C. 4, 78. Pettersson. U. N.
Magnesium platinchlo-	Mg Pt Cl ₆ . 6 H ₂ O	2.437	A. 1874. Topsoe. C. C. 4, 76.
ride.			
Cadmium platinchloride	Mg Pt Cl ₆ . 12 H ₂ O Cd Pt Cl ₆ . 6 H ₂ O	2.060	66 66
Barium platinchloride	Ba Pt Cl ₆ . 4 H ₂ O	2.882 2.868	64 66
Lend platinchloride	Ba Pt Cl_6 . $4 H_2^2 O = Pb Pt Cl_6$. $3 H_2 O = Mn Pt Cl_6$. $6 H_2 O = Mn Pt Cl_6$.	3.681	4. 4.
Manganese platinchloride	Mn Pt Cl ₆ . 6 H ₂ O	2.692	44 4.
Iron platinchloride	Mn Pt Cl ₆ . 12 H ₂ O Fe Pt Cl ₆ . 6 H ₂ O	2.711	4. 44
Copper platinchloride		2.781	44 44
Didymium platinchtoride	Di Pt Cl ₇ . 101 H ₂ O	$\begin{bmatrix} 2.683 \\ 2.696 \end{bmatrix}$ 21° 2	Cleve, U. N. A. 1885.
Samarium platinchloride	Sm Pt Cl ₇ , 10½ 11 ₂ O _	2.709 2.714 21°.8	"
Didymium nurichloride	Di Au Cl $_{6_1}$ 10 H $_2$ 0 .	2.662 2.664 18°	11
Sanmrium aurichloride	$\operatorname{Sm}\operatorname{Au}\operatorname{Cl}_{\overset{\circ}{U}_{1}}\operatorname{10}\operatorname{II}_{2}\operatorname{O}$	2.789 2.741 16°,5 2	**
Potassium stannochloride	$\mathrm{K_2~Sn~Cl_4}.~3~\mathrm{H_2~O}_{}$	2.514	Playfair and Joule. M. C. S. 2, 401.
Ammonium stannochlo- ride.	$\operatorname{Am}_2\operatorname{Sn}\operatorname{Cl}_4$. 3 $\operatorname{H}_2\operatorname{O}$	2.104	6. 66

		,		
NAME.		FORMULA.	SP. GRAVITY.	Аптновіту.
Potassium st	annichloride_ " " " " " " " " " "	K ₂ Sn Cl ₆	1 2.688 (Romanis. C. N. 49,
		Us ₂ Sn Cl ₆		273. Stolba. D. J. 198, 225.
Ammonium ride.	stannichlo-	Am ₂ Sn Cl ₆	2.387, m. of 4 2.381 Ex- 2.396 tremes. 2.511	Schröder. Dm. 1873. Romanis. C. N. 49,
ride.		$ m Mg~Sn~Cl_6.~6~H_2~O_{}$ $ m K_3~Sb~Cl_6.~2~H_2~O_{}$		273. Topsoë and Christiansen. Romanis. C. N. 49, 273.

3d. Oxy- and Sulpho-Chlorides.

	1		
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Matlockite Mendipite Atacamite	Pb ₂ O Cl ₂	7.21 7.0—7.1 3.898	Zepharovich. J. 24,
		3.757	1186. Tschermak. J. 26, 1201.
		3.7688	Zepharovich. J. 26, 1201.
Botallackite	Cu ₄ Cl ₂ (O H) ₆ . 3 H ₂ O	3.6	
Tallingite	Cu ₅ Cl ₂ (O II) ₈	3.5	Church. J. C. S. 18,
Mercuric oxychloride	Hg ₃ O ₂ Cl ₂	8.63	78. Blaas. Z. K. M. 5, 283.
Didymium oxychloride	11	$\begin{bmatrix} 5.785 \\ 5.793, 219.5 \end{bmatrix}$	Cleve. U. N. A. 1885.
Samarium oxychloride		7.047 (
Nitroxyl chloride	N O ₂ Cl	1.3677, 8°	Baudrimont. J. P. C. 31, 478.
		1.32, 14°	Müller. A. C P. 122, 1.
Phosphorus oxychloride	P O Cl ₃	1.673, 14°	
"	((1.70, 120	
	6.6	1.662, 19°.5	
	((1.69371, 10°)
		1.69106, 14°	
"	44	1.68626, 15°	Buff. A. C. P. 4
		1.64945, 51°	Supp. Bd., 129.
"	(1.509116, 110°	, ,

Name.	FORMULA.	Sr. Gravity.	Антновиту.
Phosphorus oxychloride		1.66	Wichellaus, J. 20, 149.
44 44		1.71163, 0°	Thorpe. J. C. S.
11 11	66	1.50967,107°.25 1.5142, 106°.7	(37, 337. Schall, Ber. 17, 2204.
Pyrophosphoricehloride	$P_2 O_3 Cl_4$	1.58, 7°	Genther and Mi-
			chaclis B. S. C. 16, 231.
Vanadyl dichloride	V O Cl		Roscoe, P.T. 1868, 1.
Vanadyl trichloride	V O Cl ₃	1.764, 20	Schafarik, J. P. C. 76, 142.
tt tt		1.841, 149.5	
44 44	11	1.836, 17°.5 1.828, 24°	Roscoe, P.T. 1868, 1.
44 44		1.56584, 0° 1.68073,127°.19	Thorpe, J. C. S.
46 46	66	1.854, 18°	1 37, 348. L'Hôte. C. R. 101,
Antimony oxychloride	Sh O Cl	5,014, s	1151. Cooke. Proc. Am.
			Acad. 1877.
Bismuth oxychloride	Bi O Cl	7.2, 20°, s	Muir, Hoffmeister, and Robbs, J. C.
	111 04		S. 39, 37. [922.
DaubreiteSulphur oxychloride	Bi ₅ O ₆ Cl ₃	6.4-6.5 1.656. 0°	Domeyko, C. R. 82, Ogier, Ber. 15, 922.
Sulphur oxychloride	8 0 Cl2	1.675, 00	Wurtz. J. P. C.
l		1.67673, 00	99, 255. Thorpe. J. C. S.
	44	1.52148, 78°.5 1.6554, 10°.4) 37, 354. Nasini. Bei, 9, 324.
Sulphuryl chloride	S O ₂ Cl ₂	1.661, 210	Behrends, J. 30, 210,
		1.70814, 0° 1.56025, 69°,95	Thorpe. J. C. S. 37, 359.
Disulphuryl chloride	$S_2 \cup_5 Cl_2$	1.818, 16°	H. Rose. P. A. 41,
41	44	1.762	291. [121. Rosenstichl. J. 14,
t: t	44	1.819, 15° 1.85846, 0°	Michaelis. Thorpe. J. C. S.
11 11	11	1,60310,139°,59	37, 360.
Chlore sulphonic acid	S O ₂ . O H. Cl	1.78474, 0 1.54874, 155°,8	Thorpe, J. C. S. 37, 358.
66	44	1.7688, 149	Nasini, Bei. 9, 324.
Selenyl chloride	Se O Cl.	2.41	Weber, J. 12, 91, Michaelis, Z.C.13,
G1 1 1: 11 : 1			460.
Chromyl dichloride	Cr O ₂ Cl ₂	1.9134, 10°	Thouson, P. T. 1827, 159.
	16	1.71, 210	Walter. Ann. (2),
11	u	1.92, 25°	66, 387. Thorpe. J. 21, 226.
		1.7588, 117°	Ramsay, J. C. S. 35, 403.
44 44	((1.96101, 0°) Thorne. J. C. S.
Phosphorus sulphochloride	PSCI,	1.75780, 115° 9 1.631, 22	37, 372. [115. Bandrimont, J. 14.
	66	1.66820,00 ====	Thorpe. J. C. S.
()		1.45599,125°.12) 37, 341.

IV. INORGANIC BROMIDES.

1st. Simple Bromides.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.	
Lithium bromide	Li Br	3.102, 17°	Clarke. A. J. S. (3), 13, 293.	
Sodium bromide	Na Br	2.952	Schiff. A. C. P. 108, 21.	
(((3.079, 17°.5	Kremers. J. 10, 67.	
		3.011	Tschermak. S. W. A. 45, 603.	
(((3.198, 17°.3	Favre and Valson. C. R. 77, 579.	
" Fused		2.448	Quincke. P. A. 138, 141.	
"	Na Br. 4 H ₂ O	2.34	Playfair and Joule.	
ιι ιι		2.165, 16°.8	M. C. S. 2, 401. Favre and Valson. C. R. 77, 579.	
Potassium bromide	K Br	2.415	Karsten. Schw. J.	
(((("	2.672	65, 394. Playfair and Joule.	
	"	2.690, m. of 6_	M. C. S. 2, 401. Schröder. P. A. 106, 226.	
" Fused	£ £	2.712, 12°.7 2.199	Beamer. F. W. C. Quincke. P. A. 138,	
" Not pressed			141.	
" Once "	(($\left\{\begin{array}{c} 2.505 \\ 2.704 \end{array}\right\}$ 18°	Spring. Ber. 16,2724.	
" Twice " Rubidium bromide	Rb Br	2.700) 3.358	Setterberg. Of. Ak.	
Cæsium bromide	Cs Br	4.463	St. 1882, 6, 23.	
Ammonium bromide	Am Br	2.379	Schröder. P. A. 106,	
	((2.266, 10°	226. Bödeker. B. D. Z.	
" Cryst " Sublimed	et	$\left\{ \begin{array}{c} 2.327 \\ 2.3394 \end{array} \right\}$	Eder. Ber. 14, 511.	
11 11	((2.456	Stas. Mem. Acad.	
Silver bromide	Ag Br	6.3534	Belg. 43, 1. Karsten. Schw. J.	
ιι ιι	(6	6.425, m. of 7_	65, 394. Schröder, P. A. 106,	
		6.215, 17°	226. Clarke. A. J. S. (3), 13, 294.	
" " Molton	((6.245, 0° }	Rodwell. P. T. 1882,	
" " Molten		5.595, 427° _ } 6.2	1125. Quincke. P. A. 138,	
Thallium bromide. Precip.		7.540, 21°.7 }	141. Keck. F. W. C.	
" " After fusion.	(1		Keck. F. W. C.	
Zinc bromideCadmium bromide	Zn Br ₂		Bödeker. B. D. Z. Bödeker and Gie-	
ti ti	Cd Br ₂		seeke. B. D. Z.	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cadmium bromide Mercurous bromide	Cd Br ₂ Hg Br	4.794, 19°.9. 7.307	Knight, F. W. C. Karsten, Schw. J. 65, 394.
Mercuric bromide	Hg Br ₂	5.9202 5.7298, 16° =)	Beamer, F. W. C.
Calcium bromide	Ca Br ₂ Sr Br ₂	5.7461, 18° } 3.32, 11° 3.962, 12°	Bodeker. B. D. Z.
11 11	14	3.985, 20°.5	Favre and Valson. C. R. 77, 579.
Barium bromide	Sr Br ₂ . 6 H ₂ O Ba Br ₂	2.358, 18° 4.23	Schiff, A. C. P. 108, 21.
·· ('ryst	Ba Br ₂ . 2 H ₂ O	3.690 3.710 3.588	21
Lend bromide	Pb Br ₂	3,588 } 3,679, 24°,3 6,6302	Harper, F. W. C. Karsten, Schw. J.
и и <u>Рр</u>	(1	6.611, 17°.5 6.572, 19°.2	65, 394. Kremers. J. 5, 397. Keck. F. W. C.
Cuprous bromide	Cu Br B Br ₃	4.72, 12° 2.69, 1	Bödeker, B. D. Z. Wohler and Deville.
Aluminum bromide	Al Br ₃	2.54	J. 10, 94. Deville and Troost. J. 12, 26
Didymium bromide	Di Br ₃ . 6 H ₂ O	2.803) 2.817 (20°.7=	Cleve. U. N. A. 1885.
Samarium bromide	Sn Br ₃ , 6 H ₂ O Si Br ₄	2.969 } 21°.8_ 2.973 } 21°.8_ 2.8128, 0°	Pierre. Ann. (3),
Titanium tetrabromide	Ti Br ₄	2.6 5.117, 17 ⁵	20, 28. Duppa. J. 9, 365. Raymann and Preis.
Tin tetrnbromide	Su Br.	3,322, 39°, 1 3,349, 35°	A. C. P. 223, 323. Bodeker. B. D. Z. Raymann and Preis.
Phosphorus tribromide	P Br ₃	2.02489, 00	À. C. P. 223, 323. Pierre. Ann. (3), 20, 11.
44 44	44		20, 11. Thorpe, J. C. S. 4 87, 335.
Arsenic tribromide Antimony tribromide	As Br ₃	3.641, 90°, 1	Bodeker. B. D. Z. Kopp. A. C. P. 95, 352.
44 44		3,478, 96°, 1 = 4,145, 23°, s ==	Mne Ivor. C. N. 20, 179. Cooke. Proc. Am.
Bismuth tribromide	Bi Br.	5.6041	Acad. 1877. Bodeker, B. D. Z.
**	61	5, 4, 20	Muir. Hoffmeister, and Robbs. J. C. S. 39, 37.
Sulphur bromide		2,628, 49	Hannay, J. C. S. 33, 288.
Selenium bromide	Se ₂ Br ₂	3.004, 15°	Schneider. P. A. 128, 327.

2d. Double, Oxy-, and Sulpho-Bromides.

NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
Ammonium zinc bromide Barium cadmium bromide """" Hydrogen mercury bromide. Potassium mercury bromide. """ Potassium stannibromide. Ammonium stannibro-	Ba Cd Br ₄ . 4 H ₂ O	2.625, 13°	Topsoë. C. C. 4, 76. Harper. F. W. C. Thomsen. J. P. C. (2), 11, 283.
mide. Sodium platinbromide Potassium platinbromide	Am ₂ Sn Br ₆	3.323 4.68, 14° 4.541 4.200 2.802 2.877 2.923 3.713 6.025 2.759 3.715 2.762 2.762 2.634	"" "" "" "" "" "" "" "" "" "" "" "" ""
Didymium auribromide	Di Au Br ₆ . 10 H ₂ O Sm Au Br ₆ . 10 H ₂ O	$\begin{array}{c} 3.297 \\ 3.311 \\ 3.383 \\ 3.398 \\ \end{array} \right\} \begin{array}{c} 21^{\circ}.2 \\ - \end{array}$	Cleve. U.N.A.1885.
Nitrosyl tribromide Phosphoryl tribromide Vanadyl tribromide " Bismuth oxybromide	N O Br ₃	2.628, 22°.6 2.822 2.9673, 0° 2.9325, 14°.5 } 6.70, 20°	Landolt. J. 13, 104. Ritter. J. 8, 301. Roscoe. A. C. P. 8 Supp. Bd. 95. Muir, Hoffmeister, and Robbs. J. C.
Phosphorus sulphobromide.	P S Br ₃	2.85, 17° 2.87	S. 39, 37. Michaelis. A. C. P. 164, 9. Mac Ivor. C. N. 29,
" " Arsenic sulphobromide	P S Br ₃ . H ₂ O	2.7937, 18°	116. Michaelis. A. C. P. 164, 9. " Hannay. J. C. S. 33, 291.

V. INORGANIC IODIDES.

1st. Simple Iodides.

Name.	FORMULA.	SP. GRAVITY.	Аптновиту.
Lithium iodide	I.i I	3.485, 23°	Clarke, A.J.S.(3),
Sodium iodide	Na I	3.450	13, 293. Filhol. Ann. (3),
46 66		3.654, 18°.2	21, 415. Favre and Valson. C. R. 77, 579.
11 11	Na I. 4 II ₂ O	2.448, 20°.8	6.
Potassium iodide	KI	3.104	Boullay, Ann. 2), 43, 266.
	"	2.9081	Karsten, Schw. J. 65, 391.
11 11	٠	3,059	Playfair and Joule. M. C. S. 2, 401.
ee ee	"	3.056	Filhol. Ann. (31, 21, 415.
	"	2.850	Schiff. A. C. P. 108, 21.
66 66	64	2.970	Buignet. J. 14, 15, Schroder, P. A. 106,
66 66	4.4	3.077	226.
66 64	11	2.497 at the	Braun. J. C. S. (2),
		melting p't.	13, 31.
" Fused	44	2.497	Quincke. P. A. 138. 141.
" Not press'd	11	3.012, 20°)	
" ()nce "		3.110, 220	Spring. Ber. 16.
"Twice"	"	3.112, 20°)	2724.
Potassium triiodide	K I ₃	3,498	Johnson. C. N. 34. 256.
Rubidium iodide	Rb I	8.507	Setterberg. Of. Ak. St. 1882, 6, 23.
Casium iodide	('s I =	4.537	11 11 11 11
Ammonium iodide	Am I	2.498, 11°	Bodeker, B. D. Z.
(1 (1 2:2:2:	Am I ₃	2.445	Schroder, Dm. 1873. Johnson, C. N. 37,
Ammonium triiodide	AIII 13	0.140	246.
Iodammonium iodide	N II ₃ 1 ₂	2.46, 15°	Seamon, C. N. 44, 189.
Silver iodide	Ag I	5.611	Boullay, Ann. (2), 43, 266,
(1 11	11	5.0262	Karsten, Schw. J. 65, 394.
£		5,500	Filhol, Ann. (3), 21.
tt t	"	5,85	Schiff. A. C. P. 105,
66 66	11	5,650 }	Schroder. P. A. 106,
46 46			226.
a Cryst	"	5,669, 14°	Damour, Quoted, C. R. 64, 814.

1			
NAME.	FORMULA.	SP. GRAVITY.	Authority.
Silmon indida. Crust	A or T	5 170)	
Silver iodide. Cryst	Ag I	5.470 5.544 \ 0° \	H.St. Claire Deville.
" After fusion	((5.687	P. A. 132, 307. C. R. 64, 325.
" Precipitated	"	5.807, 0° 5.569	Fizeau.
Ppt compressed.	(1	5.675, 0°)	r izeau.
• " After one fusion.	(4	5.660.00 1	
From Ag in H I.	11	5.812, 0° 5.681, 0° }	Rodwell. P. T. 1882,
" Ppt. after fusion, " At max. density.	((5.771, 163° _	1125.
" At min. density.	"	5.673,	
" " Molten	£ £	5.522, 527° _ J 5.64—5.67	Breithaupt, Dana's
Tody Tite 11111		5.01-5.01	Min.
		5.504	Domeyko. Dana's Min.
tt tt tt		5.707	Damour. J. 7, 870.
66 66 66	66	5.366 5.677, 14°	J. L. Smith. J.7,870. Damour. Quoted, C.
		·	R. 64, 314.
Thallium iodide. Precip Cast	Tl I	$\left\{ egin{array}{ll} 7.072, 15^{\circ}.5 \ 7.0975, 14^{\circ}.7 \end{array} ight\}$	Twitchell. F. W. C.
Zine iodide	Zn I ₂	4.696, 10°	Bödeker and Giesecke. B. D. Z.
" "	"	4.666, 14°.2	Kebler. F. W. C.
Cadmium iodide. a variety.	Cd I ₂	5.543, m. of 8	Kebler. A. C. J. 5,
tt tt tt	66	5.622, m. of 8 5.660, m. of 7	235. Six samples, prepared by differ-
tt tt	"	5.729, m. of 6	ent methods. Tem-
(1 (1 (1 (1	££	5.610, m. of 3	peratures of weigh-
	ει 	5.675, m. of 4 J 5.701, m. of 4_	ing, 10°.5 to 20°.4. Twitchell. A. C. J.
β variety.		4.576, 10°	5, 235. Bödeker, B. D. Z.
p variety.		·	(Kebler. A. C. J.
<i>u u u u</i>	"	$\left\{ egin{array}{ll} 4.612, \mathrm{m.of} 7 \\ 4.596, \mathrm{m.of} 7 \end{array} \right\}$	5, 235. Two lots, 14° to 15°.4.
cc		4.688, m. of 5_	Twitchell. A. C. J. 5, 235.
Mereurous iodide	Hg I	7.75	Boullay. Ann. (2), 43, 266.
tt		7.6445	Karsten. Schw. J. 65, 394.
Mercuric iodide	Hg I ₂	6.32	Boullay. Ann. (2), 43, 266.
· · · · · · · · · · · · · · · · · · ·	(6.2009	Karsten. Schw. J. 65, 394.
<i>u</i>		6,250	Filhol Ann. (3), 21, 415.
и и		5.91	Schiff. A. C. P. 108, 21.
<i>(</i> (<i>(</i> (6.27	Tschermak. S. W. A. 45, 603.
" Red		6.231, m. of 7_	Owens. F. W. C.
11 11 11	(1	6.2941 \ 00]	
((((((((11	6.3004 f 6.276, 126°	Rodwell and Elder.
" Yellow		6.225, 126°	P. T. 1882, 1143.

NAME.	FORMULA.	Sp. Gravity.	А итновиту.
Mercuric iodide, Solid	11g 1 ₂	6.179, 200° 5.286, 200°	Rodwell and Elder. P. T. 1882, 1143.
Strontium iodide		4.415, 10°	Bodeker. B. D. Z.
Barium iodide	Bu 12 ==	4.917	Filhol. Ann. (3),
Lead iodide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.673, 20°.3 6.11	21, 415. Leonard. F. W. C. Boullay. Ann. (2), 43, 266.
		6.0212	Karsten, Schw. J.
	(6	6.381	65, 394. Fithol. Ann. (3), 21, 415.
		6,07	Schiff. A. C. P.
.6 66		6.207	108, 21. Schroder. P. A. 107, 113.
" Wolten	11		Rodwell, P. T. 1882,
Iron iodide	Fe I ₂ . 4 H ₂ O		1144. Bodeker, B. D. Z.
Cuprous iodide	Cu I	4.410	Schiff. A. C. P.
		5.6936	108, 21. Rodwell, P. T. 1882, 1153.
Aluminum iodide	Al I ₃	2.63	Deville and Troost.
Tin tetriodide	Sn I,	4.696, 110	J. 12, 26. Bodeker, B. D. Z.
Arsenic triiodide	As 1 ₃	4.39, 130	(1) (1)
Arsenic pentiodide	As 1 ₅	4.374 3.93, approx.	Sloan, C. N. 46,
Antimony triiodide	Sb I,	5.01, 100	194. Bodeker, B. D. Z.
44	**	4.676 4.848, 24°, m.	Schroder, Dm. 1873.
" Hexagona)		of 5.	Cales Personal
" Monoclinic		4.768, 22°, m. of 2.	Cooke, Proc. Am. Acad. 1877.
Bismuth triiodide		5.652, 10°	Bodeker. B. D. Z.
	11	5.544, 18°.4	Kebler, A. C. J. 5, 205.
			Gott and Muir. J.
46 46		5.65 } = 0 - 1	C. S. 58, 187.

2d. Double and Oxy-Iodides.

Name.	FORMULA.	SP. GRAVITY.	А стновиту.
Potassium cadmium iodide Potassium mercury iodide ".""" Silver mercury iodide	4.6	4.280, 200.5.	Leonard, F. W. C. Owens, F. W. C. Belluti and Roman- ese, Bci. 5, 179.
Copper mercury iodide	3 Ag I, Hg I, 2 Cu I, Hg I, 2 Cu I, 2 Hg I,	5.9302, 0° 6.0956, 0° 6.1507, 14°	

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
((((((2 Cu I. 2 Ag I 2 Cu I. 3 Ag I 2 Cu I. 4 Ag I	5.7302 5.7225 5.7160 5.7064	1160.
	2 Cu I. 12 Ag I Pb I ₂ . Ag I Na ₂ Pt I ₆ . 6 H ₂ O K ₂ Pt I ₆	5.6950 5.923, 0° 3.707 5.154 5.198 } 12°	" " " " " " Topsoë. C. C. 4, 76. Bödeker. B. D. Z.
Ammonium platiniodide _ Magnesium platiniodide _ Zinc platiniodide	Am ₂ Pt I ₆	5.031 4.610 3.458	Topsoë. C. C. 4, 76.
Manganese platiniodide Iron platiniodide Nickel platiniodide	Mn Pt I ₆ . 9 H ₂ O Fe Pt I ₆ . 9 H ₂ O Ni Pt I ₆ . 6 H ₂ O	3.604 3.455 3.976 3.549	
Cobalt platiniodide	Co Pt I ₆ . 9 H ₂ O Co Pt I ₆ . 12 H ₂ O	3.618 3.048 6.3 5.7	Liebe. J. 20, 1008. Schwartzemberg.
Lead oxylodide	Pb ₁₁ I ₄ O ₁₀	7.81	Dana's Min. Cross and Sugiura. J. C. S. 33, 406.

VI. CHLOROBROMIDES, CHLORIODIDES, AND BROMIODIDES.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Embolite	Ag (Cl Br)	5.31—5.43	Domeyko. Dana's Min.
	"	5.806	Breithaupt. J. 2,
(Cl ₃ Br ₂)		5.53	781. Yorke. J. C. S. 4,
Lead chlorobromide Silicon chlorobromide	Pb Cl Br Si Cl Br ₃	5.741 2.432	Reynolds. C. N. 55,
Tin chlorobromide	Sn Cl Br ₃	3.349, 35°	223. Reis and Raymann. J. C. S. 44, 424.
Phosphorus oxychlorobro- mide.	P O Cl ₂ Br	2.059, 0°	Menschutkin. J. P. C. 98, 485.
	"	2.12065, 0° 1.83844, 137°.6	
Silver chlorobromiodide*_	Ag I. 2Ag Br. 2Ag Cl	6.152, 0° }	Rodwell. P.T. 1882,
(Iodobromite)		5.5118, 383° ∫ 5.713, 18°	
	Ag I. Ag Br. Ag Cl_	6.1197, 0° } 5.5673, 331° }	Rodwell. P. T. 1882,

^{*}Rodwell's chlorobromiodides may be regarded as alloys. For each of these the higher temperature is the melting point.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
44 44	2 Ag I. Ag Br. Ag Cl 3 Ag I. Ag Br. Ag Cl 4 Ag I. Ag Br. Ag Cl	5,6971, 826 _ } 5,9717, 0°) 5,6430, 854° (Redwell, P.T.1882, 1140.

VII. AMMONIO-CHLORIDES, AMMONIO-BROMIDES, AMMONIO-IODIDES.

Name.	FORMULA.	SP. GRAVITY.	Антновиту.
	N ₂ H ₆ Cd. Cl ₂ N ₂ H ₆ Cd. Br ₂ N H ₂ Hg' ₂ . Cl		6.6
Dimercurammonium chlo- ride.		5,700	4.6
Tetramercurammonium chloride.		7.176, m. of 2.	"
Cuprammonium chloride Copper ammonio-chloride Nickel ammonio-bromide	N_2 H_6 Cu . Cl_2 Cu Cl_2 . 4 N H_3 . H_2 O Ni Br_2 . 6 N H_3	1.672 1.837	11 11 11 11 11 11 11 11 11 11 11 11 11
Nickel ammonio-iodide Purpureo-cobalt hexchlo- ride.	Ni T ₂ . 6 N H ₃ Co ₂ (N H ₃) ₁₀ . Cl ₆	2.101 1.802, 23°	Gibbs and Genth. A. J. S. (2), 23, 234.
Purpureo-cobalt hexbro-	Co. (N H.) Br.	1.802 \ 1.808 \} 15° \{ 2.488, 17°.8	Jorgensen. J. P. C. (2), 19, 49.
mide. Purpureo-cobalt chloro- bromide.	$\text{Co}_{2}\left(\text{N H}_{3}\right)_{10}$. $\text{Cl}_{4}\text{Br}_{2}$	2.095, 16°, 8	
Purpureo-cobalt bromo- chloride.	$\operatorname{Co_2}\left(\operatorname{N} \ \operatorname{H}_3\right)_{10}. \ \operatorname{Cl_2Br_4}$	$\frac{2.161}{2.165}$ 17°==	
Luteo-cobalt hexchloride	Co ₂ (N H ₃ 1 ₁₂ . Cl ₆	1.7016, 20°	Gibbs and Genth. A. J. S. (2), 23, 319.
Purpureo-chromium hex- chloride. Purpureo-chromium chlo-	$Cr_2 (N H_3)_{10}, Cl_6$ $Cr_2 (N H_3)_{10}, Cl_2 Br_4-$	1.687, 15°.5 2.075, 18°.8	Jorgensen, J. P. C. (2), 20, 105.
robromide. Purpureo-rhodium hex-	$\text{Rh}_2 \left(X \Pi_3 \right)_{10}, \text{ Cl}_2 D I_4 =$	2.072, 189.4	Jorgensen, J. P. C.
chloride. "	$\operatorname{Rh}_2\left(\operatorname{N} \coprod_{i=1}^{n}\right)_{10}$. Br_6		(2), 27, 442.) Jorgensen, J. P. C. (2), 27, 464.
Purpureo-rhodium hexio-dide.			Jörgensen, J. P. C. (2), 27, 471.

VIII. INORGANIC OXIDES.

1st. Simple Oxides.

Name		1		
ison. ison. ightherefore the content of the conte	NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
	Water*	H ₂ O	1.0000, 4°.07	
Acad. St. Petersburg, 1831.	(.999889, 0°	
burg, 1831. Stampfer, H ₂ O at 29.755-21.0°. P. 39.75=1.0°. P. A. 21, 75. Despretz, Ann. (2), 70, 5. """""""""""""""""""""""""""""""""""			.988433, 50°	
" " " " " " " " " " " " " " " " " " "	14	- 14	.958737, 100° _	
"	44	11	999887 09)	(Stampfer. H2 O at
"		11		
""	44			
""			.999862, 0°	
			.99988, 00)
"				
"				Mendelejeff, A. C.
" " " " " " " " " " " " " " " " " " "			.93055, 131°.1	
" " " " " " " " " " " " " " " " " " "			90811 \ 156°.7	,
"	. 6			
A. C. P. 4th Supp. 129. Rossetti. Ann. (4), 10, 471. Sp. Gr. given for every degree from 0° to 50°. Bedson and Williams. Ber. 14, 2550. Bedson and Williams. Ber. 14, 2550. Schiff. Ber. 14, 2763. Brunner. H ₂ O at 91912, -10° degree from 0° to 50°. Bedson and Williams. Ber. 14, 2763. Schiff. Ber. 14, 2763. Schiff. Ber. 14, 2763. Schiff. Ber. 14, 2763. Brunner. H ₂ O at 0°=1.0. P. A. 10°=1.0. P. A. 117. A. C. P. 4th Supp. 129. A. C. P. 4th Supp. 129. A. C. P. 4th Supp. 129.				Buff, H.Oat 0°=1.0.
" " " " " " " " " " " " " " " " " " "			,	A. C. P. 4th Supp.
1,000000, 4°.07	-	44	000000 00	129.
" " " " " " " " " " " " " " " " " " "				Porcetti Ann (1)
Given for every degree from 0° to 50°. Gegree from 0° to 50°. Geg				-
" " " " " " " " " " " " " " " " " " "				
" " " " " " " " " " " " " " " " " " "				
" " " " " " " " " " " " " " " " " " "				to 50°.
10				j
" " " " " " " " " " " " " " " " " " "	"		.99831, 20°	liams. Ber. 14,
1.	4.4		0549 1009 1	
Ice " .9587 No. " " .91812, -1° Brunner. H_2 O at 0°=1.0. P. A. 9.2025, -20° " .9184, m. of 2 64, 113. Playfair and Joule.† M. C. S. 2, 401. Dufour. P. M. (4), 5, 20. Duvernoy. P. A. 117, 454. Bunsen. Ann. (4), 9.1674			0.505.5	
Ice " .91812, — 1° Brunner. H. O at " .91912, —10° 64, 113. " .9184, m. of 2 H. C. S. 2, 401. " .9175 Dufour. P. M. (4), 5, 20. Duvernoy. P. A. " .922 117, 454. " .91674 Bunsen. Ann. (4),	4.4	((9587 \ 100°.3	Schiff. Ber. 14, 2766.
"		- ((.91812. — 1° _) Brunner. H. O at
"			. 91912, —10° .	
" " " " " " " " " " " " " " " " " " "			. .92025, —20° .	
"		- ((.9184, m. of 2.	
"	"	- ((9175	Dufour. P. M. (4),
"			.918)	
Dunsen. Ann. (4),				117, 454.
	11		.91674	Bunsen. Ann. (4), 23, 65.

^{*} For water and ice the table makes no pretense at completeness. Only a few important values are given out of a vast number.
† See Playfair and Joule for older values.

Name.	FORMULA.	SP. GRAVITY.	Аптиовиту.
Ice	H ₂ O	.91686, 0°	Petterson. Properties of water and
Hydrogen dioxide	II ₂ O ₂	1.452	ice." Thénard. Watts'
Lithium oxide	Li, O	2.102, 15°	Dict. Brauner and Watts.
Sodium oxide	Na ₂ O	9,5(),5	P. M. (5), 11, 60. Karsten. Schw. J. 65, 394.
Potassium oxide Silver monoxide	$K_2 O \longrightarrow Ag_2 O \longrightarrow$	2.656 7.143, 16°.6	Herapath. P. M. 64,
	**	7.250 ==	321. Boullay. Ann. (2), 43, 266.
	"	8,2558	Knr-ten. Schw. J. 65, 394.
		7.147	Playfair and Joule. M. C. S. 3, 84.
		7.521, m. of 2.	Schroder. Ber. 9, 1888.
Silver dioxide		2.967	Mahla, J. 5, 424. Ekeberg, P. M. (1), 14, 346.
	44	- P CLL -1	Ebelmen. J. 4, 15.
ee ee		. 3.09	
		. 3.027, 10°, ig-	H. Rose, P. A. 74, 433,
61 66	٠.	nited. - 3,021,9°, cryst. - 3,016	Nilson and Petters-
6, 6,			son. C. R. 91, 232.
Magnesium öxide.	Mg Ō	3,674, periclase 3,750	S, 193. Damour. J. 2, 732. Senechi. J. P. C.
			28, 486. Cossa. Bor, 10, 1747.
	46		Karsten, Schw. J. 65, 894.
46 46			II. Rose. P. A. 74, 437.
44 4	4	_ 3.42, amor-	Ebelmen, J. 4, 15, Brugelmann, Ber.
		phous. = 3,1932,0°, cal- eined at 350°	13, 1741.
	" =	3.2014.0 , cal- cined at 140°	
		2.2482,0°,cal- cined at low	
	(,	redness. 3,5699,0°, eal. at bright	
60		redness.	From three different
66 66		3,69	sources. Beckurts. Ber. 14, 2063.

NAME.	FORMULA.	Sp. Gravity,	
NAME.	FORMULA.	SP. GRAVITY,	AUTHORITY.
Zine oxide	Zn O	5.432	Mohs. See Böttger.
(((((1	5.600	Boullay. Ann. (2), 43, 266.
((((((5.7344	Karsten. Schw. J. 65, 394.
11 11	"	5.6067 }	Brooks. P. A. 74, 439.
rt tt	"	5.5298, cryst	W. and T. J. Hera- path. J. C. S. 1, 42.
"		5.612	Filhol. Ann. (3), 21, 415.
		5.782,15°, eryst	
"	"	5.47, amor- phous.	Brügelmann. Ber. 13, 1741.
" Zincite	ft	5.684 5.5—5.6	Blake. J. 13, 752. Gorgen. B. S. C.
Cadmium oxide	Cd O		47, 146.
		8.183, 16°.5	Herapath. P. M. 64, 321.
		6,9502	Karsten. Schw. J. 65, 394.
Mercurous oxide	и Нg ₂ О	8.1108 10.69, 16°.5	Werther. J. 5, 390. Herapath. P. M. 64,
		,	321.
****		8.9503	Karsten. Schw. J. 65, 394.
Mercuric oxide	Hg O	11.074, 17°.5) 11.085, 18°.3 }	Herapath. P. M. 64, 321.
и и		11.0	Boullay. Ann. (2), 43, 266.
и и	(6	11.1909	Karsten. Schw. J. 65, 394.
и и	((11.29	Leroyer and Dumas.
α α		11.344	See Böttger. Playfair and Joule. M. C. S. 3, 84.
· · · · · · · · · · · · · · · · · · ·	(11.136	Playfair and Joule.
Calcium oxide. Lime	Ca O	3.179	J. C. S. 1, 137. Boullay. Ann. (2),
	ιι	3.16105	43, 266. Karsten. Schw. J.
· · · · · · · · · · · · · · · · · · ·	<i>(</i> (3.180	65, 394. Filhol. Ann. (3),
tt tt tt	((3.251, eryst	21, 415. Brügelmann, P. A.
<i>u u u u</i>	"	3.32 "	(2), 4, 282. Levallois and Meu-
			nier. C. R. 90, 1566.
Strontium oxide	Sr O	3.9521	Karsten. Schw. J. 65, 394.
"	(1	4.611	Filhol. Ann. (3), 21, 415.
£¢	((4.750, cryst	Brügelmann. P. A. (2), 4, 282.
ιι ιι	(1	4.51, amor- phous.	Brügelmann. Ber. 13, 1741.

	-		•		
	NAME		FORMULA.	SP. GRAVITY.	AUTHORITY.
Barium	- obixo		Ва О	4.0	Foureroy. See Bott-
6.6	-		44	4.2583	Tunnermann. See Bottger.
4.6			66	4.7000	Karsten, Schw. J. 95, 894.
4.	-		46	4.829)	Playfair and Joule.
4.6			44	4.986 } 5.456	M. C. S. 3, 84. Filhol. Ann. (3), 21,
6.6			66	5.722, eryst	Brügelmann. P. A.
4.4	-		44	5.92 "	(2), 4, 282. Brugelmann. Ber.
Barium o	lioxide		Ba O ₂	4.958	13, 1741. Playfair and Joule.
			B ₂ O ₃	1.803	M. C. S. 3, 84. Davy. See Bottger.
4.6			66	1.83	Breithaupt. "
4.4	6.6		16	1.825, 219.6	Favre and Valson. C. R. 77, 579.
4.4	64		44	1.8766, 0°	
6.6	6.6		14	1.8476, 12° 1.6988, 80°	Ditte. C. N. 36, 287.
4.4	4 h			1.848, 140.4	Bedson and Williams. Ber. 14,
6.6	6.6	Fused		1.853, 15°.8	2554. Quincke. P. A. 135,
					642.
Aluminu	ım trio	xide	Al ₂ O ₃	4.152, 4°	Royer and Dumas. Quoted by Rose, P. A. 47, 429.
4.6	6.6		(Mohs and Breit- haupt. Quoted
4.6	6.6			4.004}	by Rose.
1.6	6.6		**	4.154	Filhol. Ann. (3), 21, 415.
4.4	4.4		.4	3.928, cryst	Ebelmen. J. 414.
44				3.870 \ Artifi- 3.899 \ cial.	
4.4	4.4			3.750 (Heated	
4.4	44	188-5	66	2 705 In Wind	
4.6	4.6		66	3.129 (furn'ee 3.999, ignited	74, 429.
		~		in porcelain furnace.	
4.6	11	-	46	1.0067, 11 , powdered.	
. /				3.959 (13.5,	Schaffgetsch P. A.
4.6	4.6		11	ottor ofter	74, 429.
1.6				4.008 (ignit'n	Nilson and Petters-
- 61		Artificial		3.98, 14°	son. C. R. 91, 222. Grandeau. Ann. (6),
		eryst.			8, 193,
4.6	11	Ruby	Al ₂ O ₃	3,5311 _= 3,994, m. of 9	Brisson, P. des C. Schuffgotsch, P. A.
					74, 429.

	1		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Aluminum trioxide. Ruby	Al ₂ O ₃	3.95, natural)	Williams. C. N. 28,
" " Sapphire_		3.7, artificial } 3.562	101. Muschenbroek. See
		3.9998 }	Böttger. Sehaffgotseh. P. A.
		4.0001	74, 429.
FF 300 No. 301		3.98	Williams. C. N. 28, 101.
	"	3.990	Nilson and Pettersson. C. R. 91, 232.
" Corundum	re	3.899, 15°.5 ₋ 3.929}	Schaffgotsch. P. A.
	: 6	3.974 1	74, 429.
tt tt tt	£ £	4.022	Deville. J. 8, 15.
	66	ignition.	
	(($3.979 \atop 4.03$ } 15°.5 {	Church. Geol. Mag. (2), 2, 320.
Seandium trioxide	Se ₂ O ₃	3.8	Cleve. C. R. 89, 420.
			Nilson. C. R. 91, 118.
Yttrium trioxide	Yt ₂ O ₃	4.842	Ekeberg. P. M. 14, 346.
(((("	5.028, 22°	Cleve and Hoeglund. 1873.
"		5.046	Nilson and Petters- son. C. R. 91,
Indium trioxide	In ₂ O ₃	7.179	232.
Lanthanum trioxide	La, O3	5.94	Hermann. J. 14, 192.
	ű	5.296, 16°	Nordenskiöld. J. 14, 197.
ιι	ιι	6.53. 17°	Cleve. B. S. C. 21, 196.
" " "	(6.480	Nilson and Petters- son. C. R. 91, 232.
Didymium trioxide	Di ₂ O ₃	6.64	Hermann. J. 14, 195.
		5.825, 14°	Nordenskiöld. J. 14, 197.
" " ————		6.852	Cleve. J. C. S. (2), 13, 340.
	"	6.950	Nilson and Pettersson. C. R. 91, 232.
tt tt	"	$\left\{ \begin{array}{c} 7.177 \\ 7.182 \end{array} \right\}$ 13°.5 _	Cleve. U. N. A. 1885.
Didymium pentoxide	$\operatorname{Di}_2\operatorname{O}_5$	5.368, 15°	Brauner. Ber. 15,
Samarium trioxide	Sm ₂ O ₃	8.311, 13° }	113. Cleve, U. N. A. 1885.
Erbium trioxide	Er, O,	8.8)	Cleveand Hoeglund.
tt tt	"	8.9} 8.640	B. S. C. 18, 195. Nilson and Petters-
			son. C. R. 91, 232.
Ytterbium trioxide Carbon dioxide. L	Yb ₂ O ₃	9.175	£ £ £ £
Carbon dioxide. L	C O ₂	.9, —20° }	Thilorier. Ann. (2),
" " " "	(.6, +30°)	60, 427.

	NAME			FORMULA.	Sp. Gravity.	AUTHORITY.
Carbon	dioxide.	L		9	.93, 0°	
44	11	4.6			.8825, 60.4	M:4-1-11 D T 00
6.6	6.4	44			.853, 103,6	Mitchell. B. J. 22,
6.4	4.4	11			.7885, 20°.3	77.
6.5	4.4			=	.9952, —10°	
6:	4.6		44		.9710, -5° -	
4.6	4.6				.0471, 00	
66	66				.9222, +5° -	D'Andreétf. Ann
44	6.6				.8948, 10° { .8635, 15° [(3), 56, 317.
44	4.6	44	-		.8267, 20°	
	6.6				.7831, 25° 1	
6.6	4.6	"			1.057, -34°	
6.6	4.4	44			1.016, -25°	
6.6	6.6	44	4.6		.966, -11°.5	
4.4	6.6	64			.910, -10.6.	
4.6	6.4	6+			.907, +10.8.	Cailletet and Ma-
6.6	4.4				.868, 60.8	thias. C. R. 102
6.4	6.4				.840, 110	1202.
4.4	6 .				.788, 150,9	
6.0	6.6	"			.726, 220.2	
4.6	4.4	Solid _	4.6		1.188 (Landolt, Ber 17, 311
4.6	4.6	- 44			1.199 }	
4.6	6.6	4.6	4.		1.58—1.6	Dewar. Rendat Am Assoc. in 1884.
Silicon	monoxid	le	- 516)	2.893, 40	Mabery, A. C. J. 9
						15.
)	2.20, 12°.5, m.	15. Schaffgotsch. P. A
						15. Schaffgotsch. P. A 68, 147.
Silicon (dioxide.	Artif	Si (2.20, 12°, 5, m. of 9.	15. Schaffgotsch. P. A 68, 147. (Ullik. Ber. 11
	dioxide.	Artif	Si (2.20, 12°.5, m. of 9.	15. Schaffgotsch. P. A 68, 147. Ullik. Ber. 11 2125. From ge
Silicon (dioxide.	Artif	Si (2.20, 12°, 5, m. of 9.	15. Schaffgotsch. P. A 68, 147. Ullik. Ber. 11 2125. From ge latinous silice
Silicon (dioxide.	Artif.	Si (2.20, 12°.5, m. of 9. 2.322} 2.324}	15. Schaffgotsch. P. A 68, 147. Ullik. Ber. 11 2125. From ge latinous silies ignited.
Silicon (dioxide.	Artif	Si (2.20, 12°.5, m. of 9. 2.322} 2.324}	15. Schaffgotsch. P. A 68, 147. { Ullik. Ber. 11 2125. From ge latinous silies ignited. Scheerer.
Silicon (dioxide	Artif	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. { Ullik. Ber. 11 2125. From ge latinous silies ignited. Scheerer.
Silicon	dioxide.	Artif	si (2.20, 12°, 5, m. of 9. 2.322 } 2.324 } 2.653, cryst. 2.659, unneth st 2.744 "	15. Schaffgotsch. P. A 68, 147. { Ullik. Ber. 11 2125. From ge latinous silies ignited. Scheerer.
Silicon	dioxide.	Artif	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ulik. Ber. 11 2125. From ge lutinous silies ignited. Scheerer.
Silicon	dioxide.	Artif	Si (2.20, 12°.5, m. of 9. 2.322 } 2.653, cryst. 2.659, ameth'st 2.744 2.651, smoky 2.658	15. Schaffgotsch. P. A 68, 147. (Ullik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw
Silicon	dioxide.	ArtifQuartz	Si (2.20, 12°.5, m. of 9. 2.322 } 2.653, cryst 2.659, ameth'st 2.744	15. Schaffgotsch. P. A 68, 147. (Ulik. Ber. 11 2125. From ge lutinous silica ignited. Scheerer.
Silicon	dioxide.	ArtifQuartz	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ullik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw
Silicon	dioxide.	ArtifQuartz	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ullik. Ber. 11 2125. From ge Intinous silica ignited. Scheerer. Breithaupt. Schw J. 68, 411.
Silicon o	dioxide.	Artif	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ullik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw J. 68, 411. Beudant. P. A. 14
### ##################################	dioxide.	Artif.	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ulik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw J. 68, 411. Bendant. P. A. 14 474. Extreme
Silicon o	dioxide.	Artif	Si (2.20, 12°.5, m. of 9. 2.322 } 2.653, cryst2.659, uneth'st 2.744	15. Schaffgotsch. P. A 68, 147. Ulik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw J. 68, 411. Bendant. P. A. 14 474. Extreme of eleven exper
Silicon o	dioxide.	Artif.	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ulik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw J. 68, 411. Bendant. P. A. 14 474. Extreme of eleven experiments.
Silicon o	dioxide.	Artif. =	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ullik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw J. 68, 411. Bendant. P. A. 14 474. Extreme of eleven experiments. Neumann. P. A.
Silicon e	dioxide.	Artif. =	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ulik. Ber. 11 2125. From ge Intinous silical ignited. Scheerer. Breithaupt. Schw. J. 68, 411. Bendant. P. A. 14 474. Extreme of eleven experiments. Neumann. P. A 23, 1. Schaffgotsch.* P. A.
Silicon o	dioxide.	Artif.	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ulik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw. J. 68, 411. Bendant. P. A. 14 474. Extreme of eleven experiments. Neumann. P. A 23, 1. Schaffgotsch.* P. A 68, 147.
Silicon o	dioxide.	Artif. =	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ulik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw J. 68, 411. Bendant. P. A. 14 474. Extreme of eleven exper ments. Neumann. P. A 23, 1. Schaffgotsch.* P. A 68, 147.
Silicon d	dioxide.	Artif.	Si (2.20, 12°.5, m. of 9. 2.322	15. Schaffgotsch. P. A 68, 147. (Ulik. Ber. 11 2125. From ge latinous silica ignited. Scheerer. Breithaupt. Schw J. 68, 411. Bendant. P. A. 14 474. Extreme of eleven experiments. Neumann. P. A 23, 1. Schaffgotsch.* P. A 68, 147.

^{*} See the same paper for many determinations of the specific gravity of opaline minerals. \bullet

	NA	ME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Silicon	dioxid	e. Quartz	Si O ₂	2.6507, 0° 2.6502, 5° 2.6498, 10° 2.6493, 15° 2.6488, 20° 2.6484, 25° 2.6479, 30° 2.6460, 50° 2.6409, 100°	Dibbits. (Rock crystal.) Bei. 5, 81. Calculated from sp. g. determinations by Steinheil, data for expansion of water by Regnault and Kopp, and the expansion of quartz as determined by
"	"	Tridymite	Si O ₂	2.295 2.326 } 15°-16° 2.282, 18°.5 2.311)	Pfaff and Fizeau. Vom Rath. J. 21, 1001.
£ ("	tt	"	$\begin{bmatrix} 2.311 \\ 2.317 \\ 2.373 \end{bmatrix}$ Artif.	G. Rose. Ber. 2, 388.
		 Asmannite_	((2.30, 16°, "	Hautefeuille. P. M. (5), 6, 78. v. Rath. A. J. S. (3),
Titaniu		ride	Ti _. O ₂	4.18 3.9311, artif	7, 149. Klaproth. Karsten. Schw. J. 65, 394.
"	"			4.253, powder 4.255, ignited	Rose.
11	66	Rutile	(1	4.249 4.244—4.245	Mohs. See Böttger. Scheerer. P. A. 65, 296.
66	"	"	11	$\left\{ \begin{array}{c} 4.250 \\ 4.291 \\ 4.291 \end{array} \right\}$	Breithaupt.
66	"	"	66	4.420, 0° 4.56 4.26, artificial.	Kopp. Müller. J. 5, 847. Ebelmen. J. 4, 15,
	"	"	((4.283 " 4.3	and J. 12, 14. Hautefeuille. J. 16, 212.
66 66	6 C C C C C C C C C C C C C C C C C C C	Brookite_	((4.173—4.278	Lasaulx. J. 36, 1840.
"	"	"	**	4.181 4.165 4.166	H. Rose.
66	"	"	(1	3.952, orkan- site.	Breithaupt. J. 2,730.
44	"	"	(1	3.892 } 3.949 } 4.03, arkansite	Rammelsberg. J. 2, 730.
£ £	"	"	((4.083 " 4.085 " 4.22	Damour. J. 2, 731. Whitney. J. 2, 731. Frödmann. J. 3, 704.
11	"	"	(1	4.20 4.1, artificial	Beck. J. 3, 704. Hautefeuille. J. 17,
"	"	Anatase_	"	3.857 3.826	214. Vauquelin. Mohs. See Böttger.
4.6	"	۱۰1		3.75	Breithaupt.

			-
NAME.	Formula.	SP. GRAVITY.	Аптновиту.
Titanium dioxide. Anatase	Ti O2	8.82	Kobell.
44 44	(4	3.890)	H. Rose.
66 66 66	41	3.912 }	
61 11 61	44	3.7, artificial	Damour. J. 10, 661. Hautefeuille. J. 17,
44 4. 4.	14	3.9 "	215.
Germanium dioxide	Ge O2	4.703, 18°	Winkler, Ber. 19, ref. 651.
Zirconium dioxide	Zr O ₂	4.80	Klaproth, See Bott- ger.
u u	44	5.5	Sjogren, J. 6, 349.
<i>ii</i>	44	4.0	Berlin, J. 6, 250.
44 44	66	5.49	Hermann. J. 19, 191.
44 44		5.742 15° [Nordenskiold, P. A.
44 44	4.	5.710 15° = { 5.624	114, 626.
44 44		5.42, cryst	Knop. A. C. P. 159,
		0,12,01,101	52.
"	.4	5.52, noria	Knop, A. C. P. 159, 53.
		5.850	Nilson and Peterson, C. R. 91, 232.
Tin monoxide	Sn O	6.666, 16°.5	Herapath. P. M. 64, 321.
44	44	5.9797,0°,olive	
44 44		6.1083,0°, dark	Ditte. Ann. (5), 27,
	44	green.	169 All orvetul-
((((6.500,0°, black	i lina Dramand live
		6.3251,0°, dark violet.	different meth-
4.6	6.	6.4465,0° ditto	od-,
		hented to 300°.	j
Tin dioxide	Sn O2	6.96	Mohs. See Böttger.
(. (1		6.639, 16°.5	Herapath. P. M. 64, 321.
44 44	44	6.90	Boullay, Ann. (2), 43, 266.
44 44		6.892)	
11 11		7.180 }	Breithnupt.
44 44	44	6.952	Neumann. P. A. 23, 1.
(1 (1	11	6.831, 0°	Корр.
" Artif. cryst		6.72	Daubrée, J. 12, 11.
44 44		6,849 }	H. Rose.
44 44		6,7122, 4°	Playfair and Joule.
			J. C. S. 1, 137.
((()	(1	6.753	Mallet. J. 3, 705.
44 44		6,862	Bergemann. J. 10, 661.
44 44	63	6.5432 (150.5.	
44 44		a sing color-	
		(] Cws.	() ''.
(1 (1	11	6.701, 15°.5,	Cussiterite from Bolivia. Forbes.
41 41	44	yellow_ 6.7021, 15°.5,	P. M. (4), 30,139.
" Artif. cryst		black, 6,019	Leeds.

	NAS	ME.	ŀ	ORMULA.	Sp. Gravity.	AUTHORITY.
Tin diox	ide.	Artif. eryst.	Sn O ₂		6.70	Levy and Bourgeois. Bei. 6, 531.
Lead her	nioxi	ide	Pb_2 O		9.772	Playfair and Joule. M. C. S. 2, 83.
Lead mo	noxi	de	РьО		9.277, 17°.5	Herapath. P. M. 64, 321.
"	"		6.6		9.500	Boullay. See Bött-
£ £	13		. (9.2092	ger. Karsten. Schw. J. 65, 394.
	66		4 e		9.250	Playfair and Joule. M. C. S. 3, 84.
	6.6		6.		9.361	Filhol. Ann. (3), 21, 415.
	66	~~==	66		9.3634, 4°	Playfair and Joule. J. C. S. 1, 137.
"	6.6		11		8.02, eryst	Grailieh. J. 11, 186.
6.6	66				9.1699, green- ish vellow.	
"	4.4		44		ish yellow. 9.2089, yellow	Ditte. C. R. 94,
"	6.6				19.8835, brown-	1310. Samples
66	66				ish yellow. 9.5605, green-	differently pre-
					ish grav.	Pb (O H) ₂ with
44	6.6				9.4223, dark green.	КОН.
44	4.6		4.6		9.3757	l j
4.6	6.6	~	6.6		9.29, 15°, yel-]
"	٤٤		4.6		low cryst. 9.126,15°, red	
4.6	"		66		9.125, 14°, red	Geuther. A. C. P.
	٤٤		4.6		9.09, 15°, red pulv.	219, 60–61.
6.6	"				8.74, 14°, red,	
Lead di	oxido	3	Pb O	2	very pure. 8.902, 16°.5	Herapath. P. M. 64,
"	6.6				8.933	321. Karsten. Sehw. J. 65, 394.
	66				8.756 }	Playfair and Joule.
	66				8.897}	M. C. S. 3, 84.
٤.	"				9.045	Wernicke, J. C. S. (2), 9, 306.
Minium			Pb ₃ (04	8.94	Muschenbroek. Watts' Diet.
66			- 60		9.096, 15°	Herapath. P. M. 64, 321.
			- 66		9.190	Boullay. Ann. (2), 43, 266.
66					8.62	Karsten. Schw. J. 65, 394.
Cerium	diox	ide	- Ce O	2	- 5.6059 6,00	
						92, 113.
66	6		- "		$-\begin{bmatrix} 6.93 \\ 6.94 \end{bmatrix}$ 15°.5 $\left\{ \right.$	Nordenskiöld. J. 14, 184.

Name		FORMULA.	Sp. Gravity.	AUTHORITY.
Cerium dioxide.		Ce O ₂	7.09, 14°.5, }	Nordenskióld, J. 14, 184.
44 44 .		"	6.739	Nilson and Peters- son. C. R. 91,
Thorium dioxid	e*	Th O2	9.402	232. Berzelius. P. A. 16,
11 11		"	9.21	Nordenskiold and Chydenius, J. 13,
44 44		41	9.077)	134. Chydenius. J. 16,
44 44		44	9.200}	Nilson and Pettersson. C. R. 91, 232.
44 44		11	$10.2199 \atop 10.2206$ 17°	Nilson. Ber. 15,2536.
4.6		(4	9.876, 15°	Troost and Ouvrard. C. R. 102, 1422.
Nitrogen monog	ide. L	N ₂ ,0	.9756, —5° _] .9370, 0°]	
46 46		4.6	.9177, +5° _ } .8064, 10° }	D'Andreéff. Ann.
++		4.4	.8704, 15° .8365, 20°	(3), 56, 317.
66 66		44	.9004, 0°	Will. C. N. 28, 170. Wroblevsky. C. R. 97, 166.
** **	31		1.002, —20°.6. .952, —11°.6.	}
4.6 6.6			.930, —5°.5 .912, —2°.2	
(,		"	.849, = 6°.6 .810, 11°.7	Cailletet and Mathias. C. R. 102, 1202.
		11	.758, 19°.8 .698, 23°.7	
Nitrogen tetroxi	de. L	$N_2 O_4$	1,451	Dulong. Schw. J. 18, 177.
(1			1.42	Mitscherlich, Schw. J. 63, 109.
46 44		4.	1.4903, 0° 1.43958, 21°.64	Thorpe. J. C. S. 37, 224.
Phosphorus pen Vanadium dioxi		P ₂ O ₃	2.387 3.64, 20°	Brisson. P. des C. Schafarik, J. P. C. 76, 142.
		V ₂ O ₃	4.72, 16°, m. of 3.	Schafarik. J. P. C. 90, 12.
11 11		V ₂ O ₅	$\left\{ \begin{array}{c} 3.472 \\ 3.510 \end{array} \right\} \ 20^{\circ} \ \left\{ \begin{array}{c} \end{array} \right.$	Schafarik, J. P. C. 76, 142. J. J. Watts. Roscoe
11 11		()	3.35	and Schorlem-
Arsenic trioxide		$\operatorname{As}_2\operatorname{O}_3-\dots$	3,698	mer's Trentise. LeRoyerand Dumas. Gm. H. 1, 69.
44 46		44	3.690 }	Leonhard.

^{*} For this substance Nilson's determination is the only one of value.

Manager and the same of the sa		1	
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Arsenic trioxide	As ₂ O ₃	3.695, octahe-)
11 11	"	dral. 3.7385, amor-	Guibourt. B. J. 7, 128.
		phous. 3.729, 17°.2	Herapath. P.M.64,
11 11		3.7026 }	321. Karsten. Schw. J. 65, 394.
ti ti	"	3.798	Taylor. Gm. H. Filhol. Ann. (3), 21,
tt tt	"	3.85, native	415. Claudet. J. 21, 230.
Arsenic pentoxide	As ₂ O ₅	3.7342	Karsten. Schw. J. 65, 394.
tt tt	::	3.985 }	Playfair and Joule. M. C. S. 3, 83.
	Sb ₂ O ₃	5,566	Filhol. Ann. (3), 21, 415.
Antimony trioxide	502 03	5.778	Mohs. See Böttger. Boullay. Ann. (2), 43, 266.
		6.6952	Karsten. Schw. J. 65, 394.
		5.251	Playfair and Joule. M. C. S. 3, 83.
	((5.11, octahedral, 3.72, prismatic.	Terreil. J. P. C. 98, 154.
Valentinite Senarmontite	"	5.566	Dana's Mineralogy.
Antimony tetroxide	Sb ₂ O ₄	4.074	Playfair and Joule. M. C. S. 3, 83. Dana's Mineralogy.
Antimony pentoxide	Sb ₂ O ₅	6.525	Boullay. Ann. (2), 43, 266.
" "	"	3.779	Playfair and Joule. M. C. S. 3, 83.
Bismuth trioxide	Bi ₂ O ₃	8.211, 18°.3	Herapath. P. M. 64, 321.
ει ιι τι ει		8.449	Le Royer and Du- mas. See Böttger.
46 46	и	8.079	Karsten. Schw. J. 65, 394. Playfair and Joule.
		8.855)	M. C. S. 3, 82.
Bismuth tetroxide	Bi ₂ O ₄	8.868 } 5.6, 20°	Schröder. Dm. 1873. Muir, Hoffmeister,
			and Robbs. J. C. S. 39, 32.
Bismuth pentoxide	Bi ₂ O ₅	$5.917 \atop 5.919$ 15° {	Brauner and Watts. P. M. (5), 11, 60.
		5.1, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 39, 32.
Columbium pentoxide	Cb ₂ O ₅	4.56 Extremes of several determinations.	H. Rose. J. 1, 405.
		nations.)

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.	
		From	1	
Columbium pentoxide	Cb ₂ O ₅	6.140 fusion 6.146 with		
		K ₂ S ₂ O ₇ 6.48, ditto, ig-		
££ £;	"	nited. 5.83, more		
		strongly ig- nited.		
		5.90	H. Rose, J. 12, 154.	
6.6	(5.95 From	For full details as	
11 11		5.706 Ch Cl	tomodes of prep-	
11 11		6,239 J 6,725, ditto, ig-	aration, charac-	
		nited.	ter of samples.	
	6.	5.79, more	ete., see the orig-	
		strongly ig-	inal paper.	
		nited.		
66		5.51		
44 44		5.52	J	
	44	4.56 Fxtremes	11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	44	6.51) determi-	H. Rose, J. 13, 145.	
		5.20 (nations.)	Nordenskiöld, J. 14,	
44		5.48 eryst.	200.	
		4 37 1)	
11		3 4c 1 rep.	35 1 15	
45 66		1 51 DV TWO	Marignac. J. 18, 198.	
		4.53 methods		
		5.00	Hermann, J. 18, 209.	
11 11	(1	1.31	Knop. A. C. P. 159, 36.	
Tantalum pentoxide	Ta ₂ O ₅	7.08 Extreme	1	
if it	1. 2 . 5	8.26 determi-	H. Rose, J. 1, 404.	
		(nati na.		
	-	7.055 From		
44 44		7.065 with		
		(K ₂ S ₂ O ₇		
44 44		7.986, ditto, ig-		
		nited.		
		7.028) From		
££ ££		7,280 Ta Cl ₅		
41	"	7.284, ditto,	H. Rose, J. 10, 175	
11	1	erystalline. 7.994, ditto,	For full details	
		ignited.	see the original	
	64	7.652. ditto,	paper.	
		more strong-		
		lv.		
		8.257, ditto, in		
		porcelain fur-		
		nace.	7 10 000	
		7.00	Hermann, J. 18, 209.	
tt tt		- 7.35, from Ta		
	66	Cl ₅ , ignited. S.01, from N H ₄	Marignac. J. P. C.	
		salt.	99, 33.	

			1	1	
	NAME.		FORMULA.	SP. GRAVITY.	AUTHORITY.
Tantalun		ide	Ta ₂ , O ₅	7.60 \ From K	Marignac. J. P.C.
"			(7.64 \ salt.	99, 33.
44	"		(($\left\{ \begin{array}{cccc} 7.234 & \\ 7.253 & \end{array} \right\}$	Oesten. P. A. 100, 342.
Sulphur	dioxide.		S O ₂	1.42	Faraday. P. T. 1823, 189.
44	4.6		εε	1.45	Bussy. P.A.1,237.
6.6	4.4		"	1.4911, —20°.5 1.4609, —9°.9	1
"	66		11	1.4609,9°.9	
66	66		(6	1.4384, —2°.08 1.4318, —0°.25	
66	66		(($1.4252, +2^{\circ}.8$	
66	4.4		"	1.4205, 4°.51	
6.6	6.6			1.4102, 8°.27	
"	66		(1.4017, 11°.5	D'Andreéff. Ann.
"			(,	1.3887, 16°.43 1.3769, 20°.63	(3), 56, 317.
66	66		(6	1.3673, 23°.91	
44	66		((1.3587, 26°.9	
8.6	6.6		"	1.3513. 29°.57	
6.6	4.4		((1.3415, 32°.96	
44	66		(1	1.3350, 35.°29	
"	4.6			1.3258, 38°.65	Į
66	"		(1	1.4338, 0° 1.3757, 21°.7	
4.6	44		((1.3374, 35°.2	,
44	6.6		((1.2872, 52°	
66	4.4		((1.2523, 62°	
6.6	4.4			1.1845, 82°.4	
44	"		(1.1041, 102°.4	10.31.4
"	66			1.0166, 120°.45	
66	44		"	.9560, 130°.3 .8690, 140°.8	thias. C. R. 104, 1563. 156° is the
6.6	"		((.8065, 146°.6	critical tempera-
6.6	44		14	.7317, 151°.75	ture.
6.6	٤٤			.6706, 154°.3	
66	"		((.6370, 155°.05	
		C		.52, 156°	Manuary Watter
Sulphur	trioxide.	S	S O ₃	1.9546, 13°	Morveau. Watts' Dict.
"	"	"	(1.975	Baumgartner.
"	66	L	(1.97, 20°	Bussy. Ann. (2), 26, 411.
6.6	66	S	"	1.92118)	,
6.6	6.6		(1.90915 } 25°	1
"	"	· · · · · · · · · · · · · · · · · · ·	((1.90814)	Buff. A. C. P. 4th
66	"	L	((1.81958	Supp., 129.
	66	"		$\begin{array}{c c} 1.8105 & 47^{\circ} \\ 1.8101 & \end{array}$) ",
11	"	S		1.940, 16°	Weber. P. A. 159,
"	"	"	"	1.9365, 20°	318. Nasini. Ber. 15, 2885.
Selenium	dioxide		Se O ₂	3.9538	Clausnizer. A. C. P.
Telluriur	n dioxio	de	Te O ₂	5.93, 20°	196, 265. Schafarik. J. P. C. 90, 12.
"	"		44	5.7559, 12°.5	F. W. Clarke. A. J.
"	"		"	5.7841, 14° _ }	S. (3), 14, 285.

NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
Tellurium dioxide. Octa- hedral. " "	Te O ₂	5.65 5.67 5.68 0°	
" Ortho- rhombic. " " "	(5.88 5.90 5.91	Klein and Morel. C. R. 100, 1140.
Tellurium trioxide	Te O ₃	5.68, 0° } 5.0704, 14°.5 5.0794, 11° }	F. W. Clarke, A. J.
Chromic oxide	Cr ₂ O ₃	5.1118, 11°) 5.21, cryst	S. (3), 14, 286. Wohler. See Bott- ger. Playfair and Joule.
11 11	"	6.2, cryst 5.010	M. C. S. 3, 82. Schiff, J. 11, 161. Schroder, P. A. 106, 226.
Chromic chromate Chromium trioxide	Cr O ₃	4.0, 10° 2.676, m. of 2_	Geuther, J. 14, 242. Playfair and Joule, M. C. S. 2, 448.
44 44	44	2.737, 14°, eryst 2.629, 14°, after fusion. 2.819, 20°	} Ehlers. B. D. Z. Schafarik. J. P. C.
11 11	11	2.775) Ex- 2.804) tremes {	90, 12. Zettnow. P. A. 143, 474.
Molybdenum dioxide	46	5.67 6.44, 16°	Bucholz, N. J. 20, 121. Mauro and Panebi- anco, Ber. 15, 527.
Molybdenum trioxide	Μο O ₃	3.460	Thomson. See Bott- ger. Berzelius. " " (Weisbach. Dana's
44 44	44	4.50 } native. 4.39, 21°, cryst.	Min. Schafurik. J. P. C. 90, 12.
Tungsten dioxide			Karsten. Schw. J. 65, 394. D'Elhuyart, Gm. H. Herapath. P. M. 64,
11 11	"	7.1396	321. Karsten, Schw. J. 65, 394.
11 11 11	11	7.16, amor-	Nordenskiold, J. 11, 214. Zettnow, J. 20, 216.
Uranons öxide	U O ₂	7.232, 17°, cryst.	Ebelmen. J. P. C.
Uranoso-uranie oxide	υ υ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	7.1982	27, 385. Kursten. Schw. J. 65, 394. Ebelmen, J. P. C.
			27, 385.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Uranie oxide	U .O3	5.02 two { 5.26 lots. {	Brauner and Watts. P. M. (5), 11, 60.
Chlorine trioxide. L	$Cl_2 O_3$	$\begin{bmatrix} 1.3298 \\ 1.387 \end{bmatrix}$ 0° {	Brandau. Z. C. 13, 47.
Iodine pentoxide	I ₂ O ₅	4.250	Filhol. Ann. (3), 21,
и и	((4.7987, 9°	415. Kammerer. P. A. 138, 401.
(t (t	((4.487, 0° 5.037, 0°)	Ditte. Z. C. 13, 303. Ditte. Ann. (4), 21,
" "	<i>"</i>	5.020, 51° }	10.
Manganous oxide	Mn O	4.7264, 17°	Herapath. P. M. 64, 321.
"	"	5.38	Playfair and Joule. M. C. S. 3, 80.
"		5.091	Rammelsberg. J.18, 878.
" Mangan- osite.		5.18	Blomstrand. J. 28, 1209.
	(5.010, 4°	Veley. J. C. S. 1882, 65.
Manganoso-manganic ox-	Mn ₃ O ₄	4.746 }	Playfair and Joule. M. C. S. 3, 80.
11 11 11		4.325	Playfair and Joule.
" "	66	4.718, artif.	J. C. S. 1, 137. Rammelsberg, J. 18,
	"	4.856, native	878.
	"	4.80, artificial	Gorgeu. C. R. 96, 1145.
Manganic oxide	Mn, O3	4.82, braunite_	Haidinger. Gm. H.
<i>ii</i>		$\frac{4.568}{4.619}$ artif.	Playfair and Joule.
" "	"	4.325, artif	M. C. S. 3, 80. Rammelsberg. J.
	ιι	4.752, braun- ite.	18, 878.
Manganese dioxide	M n O2	4.819, pyrolusite 5.026 "	Turner. See Böttger. Rammelsberg. J. 18,
"		4.838 ")	878. Breithaupt. Dana's
ιι ιι		4.880 " } 4.826 "	Min. Pisani. Dana's Min.
		1.020) Dana and Penfield.
	"	$ \begin{cases} 4.965 \\ 5.040 \end{cases} $ polianite.	A. J. S. (3), 35, 246.
Ferroso-ferrie oxide	Fe ₃ O ₄	5.094	Mohs. See Böttger.
<i>ii</i>		4.960 \ 4.900 \	Gerolt. " " Leonhard. See Bött-
	"	5.200 }	ger.
Acr 100 400 400 400 400 400		5.300, 16°.5	Herapath. P. M. 64, 321.
	(,	5.400 }	Boullay. Ann. (2), 43, 266.
	(1	5.168) eryst	Kenngott. Dana's
		5.168 cryst 5.180 mag- netite.	Min.
	((5.453	Playfair and Joule. M. C. S. 3, 81.

Name.	FORMULA.	SP. GRAVITY.	Аптиовиту.
Ferroso-ferrie oxide	Fe ₃ O ₄	5.12, 0°, mag-	Kopp.
		netite.	
44 44 44	66	5.106	1)
		5.148	Rammel-berg.
	**	4.86 two al-	1
11 11 11		5.00) lotropic	Moissan, Ann. (5),
46 46 44	+ 6	5.09 varieties	21, 223.
46 46 46	44	5.21 \ nrtif.	Gorgen, C. R. 104,
	44	5.25 cryst. \	1176.
Ferric oxide	Fe ₂ O ₃	5.251	Mohs. See Bottger.
11 11	.,	5.261	Breithaupt
	**	5.959, 16°.5, ppt.	Herapath. P. M. 64, 321.
64 66	61	5,005	Boullay, Ann. (2), 43, 266.
11 11		5.079, native _	Neumann, P. A. 23, 1.
11 11		5.121, 12°.5	Kopp.
16		4.679	Playfair and Joule.
		5.135,ignit'd }	M. C. S. 3, 80.
11 11		5.241 native_	Rammelsberg.
66	* 6		inimiciabetg.
	**	5.191	G 10 .
		5.214 5 6 5.230	G. Rose.
46 46		5.169, ppt) H. Rose. P. A. 74,
		5.037, ignited.	
44 44		3.95, yellow	Tommasi. Les Mon- des, 1879.
Nickelous oxide	Ni O	5,597	Playfair and Joule. M. C. S. 3, 81.
"	44	5.745, furnace product.	Genth, J. 1, -144.
4.6	11	6,605, cryst	General W. I, III.
11 11	**	6,398	Bergemann. J. 11, 683.
11 11	"	6.661	Runmelsberg, J.2, 282.
44 4	44	6.8, cryst	Ebelmen. J. 4, 16,
Nickelic oxide	Ni ₂ O ₃	4.846, 16°, 5	Heraputh. P. M. 61, 321.
11 11		4.811	Playficir and Joule. M. C. S. 3, 81,
Cobaltous oxide	(°0 ()	5.597) "
11		5.750, ignited_	1
Cobaltoso-cobaltic oxide	(°0, (),	5,833 /	Rammelsberg, J. 2,
(i) (i) (i)	(1)	6,206	150.
Cobaltic oxide	Co ₂ () ₃	5.322, 10°.5 ==	Herapath. P. M. 64, 321.
. 6 6 6 6		5,600	Boullay, Gm. H. 1, 69.
11 14		1.814	Playfair and Joule, M. C. S. 3, 81.
Cuprous oxide	Cu, 0	6.052) 100 - 1	Hempath, P M. 64,
		6.052) 16°.5 (821.
14 14	4.	5,751	Karsten, Schw. J. 65, 394.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cuprous oxide	Cu ₂ O	5.75	Leroyer and Dumas. See Böttger.
	::	5.746	Playfair and Joule. M. C. S. 3, 82.
44 44	66	5.300)	2.2. 0. 2. 0, 02.
11 11	. 4	5,342	Persoz. J. P. C. 47,
44 44	6.	5.375	84.
Cupric oxide	Cu O	6.401, 16°.5	Herapath. P. M. 64, 321.
		6.130	Boullay. Ann. (2), 43, 266.
ιι ιι		6.4304	Karsten. Schw. J. 65, 394.
66 46	4.6	5.90)	Playfair and Joule.
11 11		6.414,ignit'd }	M. C. S. 3, 82.
tt tt		6.322	Filhol. Ann. (3),
66 66	66	6.130)	21, 415.
"	: 6	6.225	Persoz. J. P. C. 47,
44 44	(4	6.400	84.
11 11	46	6.451, furnace	Jenzsch. J. 12, 214.
		product.	0. 12, 211.
ιι ιι		6.400	Hampe. Z. C. 13,
(1 11		6.25, melaco-	Whitney. J. 2, 728.
		nite. 5.952 "	Rammelsberg, P. A.
Ruthenium dioxide	Ru O ₂	7.2	80, 287. Deville and Debray. J. 12, 236.

2d. Double and Triple Oxides.

NAME.	FORMULA.	SP. GRAVITY.	Аптновиту.
Sodium uranium oxide	Na, U, O,	6.912	Drenkmann, J. 14,
Delafossite	2 0 10		257. Friedel. C. R. 77,
Spinel	Mg Al ₂ O ₄	3.452, artif 3.48, natural)	211. Ebelmen. J. 4, 12.
"	" " " " " " " " " " " " " " " " " " "	3.523 "	Haidinger. Dana's
11		3.631) 15°.5, 3.715 (nat.	Min. { Church. Geol. Mag. (2), 2, 320.
"		3.77	Jeremejew. J. 37, 1918.
Gahnite		4.580, artif 4.317) 4.589 \	G. Rose.
((4.89}	Brush. A. J. S. (3), 1, 28.

Name.	FORMULA.	SP. GRAVITY.	Антновиту
Gahnite	Zn Al ₂ Ō ₄	1.576	Genth and Keller. J. 36, 1846.
" Furnace product.		4.49-4.52	Schulze and Stelz- ner. Z. K. M. 7, 603.
Hereynite	Fe'' Al ₂ O ₄	3.91 (Zippe. Dana's Min.
Chrysoberyl	G1 Al ₂ O ₄	3.759, artif 3.597)	Ebelmen, J. 4, 13, Rose, Dana's Min.
	(.	3.689	From three local-
		3.835	Kokscharof, J. 14,
Alexandrite	"	3.641)	976, and J. 15, 715. Nilson and Petters-
	(;		son. C.R. 91, 232. (Church. Geol.
Calcium iron oxide	Ca Fo''' ₂ O ₄	0.000	Perey. P. M. [4), 45, 455.
Magnesioferrite	Mg Fe''' ₂ O ₄	4.568)	
((4.611	Rammelsberg, J. 12, 776.
Hetaerolite	Zn Mn ₂ O ₄	4.938	Moore, J. C. S. 36, 17.
Zine iron oxide	Zn Fe''' ₂ O ₄	5.182 cryst 5.33 "	Ebelmen, J. 4, 12, Gorgen, B S. C.
Zine chromium oxide Manganese chromium ox-	Zn Cr ₂ O ₄ Mn Cr ₂ O ₄	5,309 4 4,87 6	47, 372. Ebelmen. J. 1, 13,
ide.	2 1		
Chromițe	Fe'' Cr ₂ O ₄		Thomson. Dana's Min.
61		4.498 }	Dana's Mineralogy.
Jacobsite	Mg Fe//, O., 2 Mn	4.75, 160	Damour. C. R. 69,
Chrompicotite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.115, 20°	168. Petersen, J. P. C. 106, 137.

IX. INORGANIC SULPHIDES.

1st. Simple Sulphides.

Name.	Formula.	SP. GRAVITY.	Антиовиту.
Hydrogen monosulphide -	H ₂ S	n .9, 1	Faraday, Gm. H 2,
4.	٠,	.91, 15°.5	197. Bleekrode P. R. S. 87, 855.
Hydrogen persulphide			Ramsay, J. C. S. 27, 860.
Sodium sulphide	Nn ₂ S	2.471	Filhol Ann. (3). 21, 415.
Potassium sulphide	K, S	2,130	

NAME.			FORMULA.	Sp. Gravity.	AUTHORITY.
Silver sulphide		le		6.8501, artif	Karsten. Schw. J. 65, 394.
66	66	Argentite_	66	$\left\{ \begin{array}{c} 7.269 \\ 7.317 \end{array} \right\}$	Dauber. J. 13, 748.
66	"	Acanthite_	((7.31 \	Kenngott. J. 8, 908.
66	44	(c	((7.86 \\ 7.164 \rangle ex-)
"	"	"	66	7.326 ∫ tremes.	Dauber. J. 13, 748.
6.6	66	Daleminzite	(,	7.02	Breithaupt. J. 15, 709.
		ohide	Tl ₂ S. Ca S. (Impure)	8.00	Lamy. J. 15, 185. Maskelyne. P. T .
Zine sul	phide		Zn S	3.9235	1870, 196. Karsten, Sehw. J.
"	44	Blende	"	4.060	65, 394. Neumann. P. A.
"	6.6			4.063	23, 1. Henry. J. 4, 756.
"	4.6		"	4.07	Kuhlmann. J. 9, 832.
"	44		44	4.05	Tsehermak. S. W. A. 45, 603.
"	66		66	4.033	Genth. Am. Phil. Soc. 1882.
Cadmiu	m sul	ohide	Cd S	4.5, artificial 4.5 "	Schüler. J. 6, 367. Sochting. Dana's
					Min.
"		Greenockite	"	4.605	Karsten. Schw. J. 65, 394.
6.6	"		"	4.908	Breithaupt. Watts' Diet.
	4.0	"	((4.80	Brooke. P. A. 51, 274.
Mercuri	e sulp	hide	Hg S	8.124	Boullay. Ann. (2), 43, 266.
ε¢	"		((8.0602	Karsten. Schw. J. 65, 394.
ιι	"			8.090, cinna- bar.	
44	66		(7.701 \ natural,	Moore. J. P. C.
	٠.		**	7.748 f amor- phous.	(2), 2, 319.
66			66	7.552, artif.	
••			(7.81, metacin- nabar.	Penfield. A. J. S. (3), 29, 453,
		sulphide		1.66, s	(3), 29, 453. Sidot. C. R. 81, 33.
	aisui	hide	C S ₂	1.272	Berzelius and Mar- eet. Schw. J. 9, 284.
"	66		((1.263	Cluzel, Gm. H.
"	- "		60	1 2693, 15°.1 1.265	Gay Lussac. Couërbe. Ann. (2), 61, 232.
66			(1	1.2823, 5°-10°	,
£ £	66		66	1.2750, 10°-15° 1.2676, 15°-20°	Regnault. P. A. 62, 50.
"			"	1.29312, 0°	Pierre. C. R. 27,
					213.

	NAME		FORMULA.	Sp. Gravity.	AUTHORITY.	
Carlon	lianlishi.	de	C S ₂	1.29858, 0°		
Carnon	timuliu.		11	1.27904, 10°		
4.6	1.1		4.6	1.26652, 17°	H. L. Buff. A. C.	
6.6	1.6		11	1.227431, 46°	P. 4th Supp., 129.	
× 4	6.6		44	1.2661, 20°	Hnagen. P. A. 131,	
				1.2001, 20	117	
1.6	4.6		11	1.2665, 16°.06	Winkelmann, P.A. 150, 592.	
6.6	1.6	00 m 40 m 60 m -		1.2176, 49°	Ramsay, J. C. S. 35, 463,	
4.6	6.6		44	1.29215, 00	Thorpe. J. C. S.	
s 4	s 6		46	1 20040 460 04	37, 303.	
4.6	6.6		11			
4.4	. 1		6.6	1.2234 } 470	Schiff. Ber. 14, 2767.	
6.6	+ 6		4.6	1,2684, 200	Nasini, Ber. 15, 2883.	
6.6	4 6		"	1.266, 15°.2	Friedburg. C. N. 47, 52.	
6.6	4.6			1.26569, 179.86		
* 6	6.4		44	1.26446, 189.58	other tos. Dreck-	
+ 4	6.6		44	1.25031, 28°,21	er. P. A. (2), 20,	
* 6	1.1		16	1.23863, 359.96	870.	
6.6	6.6		11	1.2283, 46°.5_	Schiff, Ber. 19, 560.	
Tin mon	osulphi	de	Sn S	4,8528	Karsten, Schw. J. 65, 394.	
4.6	a 6		11	5.267 =	Boullay. Ann. (2), 48, 266.	
+ 6	4.4		16	4.973	Schneider, J. 8, 396.	
6.6	å u		4.6	5.0802, 00	Ditte, C. R. 96, 1791.	
Tin disu	lphide .		Sn S ₂	4.415	Boullay. Ann. (2),	
+ 4	. 6		4.	4.600	Kursten, Schw. J. 65, 394.	
Lend sul	phide		Pb 8	7.5052, artif		
4.6	" Ci	alena		7,539	Breithaupt, J. P. C. 11, 151.	
4.6				6.9288, 4°. pulv	Playfair and Joule. J. C. S. 1, 137.	
i (tt G	alena	16	7.568	Neumann, P. A. 23, 1.	
4.6	"	=	44	7.51	Tsehermak, S. W. A. 45, 603,	
6.6			44	6.77, artificial	Schneider, J. P. C. (2), 2, 91.	
Lend ses	quisulp	hide		6.865	Playfair and Joule. M. C. S. 3, 89.	
		6,		ő. i	Didier. C. R. 100, 1461.	
	•	de	4	8.29	Chydenius, J. 16, 195.	
Nitroge	n sulph	ide		2.22, 15°	Berthelot and Vi- eille, Ber.14,1558.	
4.6	0.6		44	2.1166, 15°	Michaelis. Z. C. 13, 460.	
		no-ulphide		1.8	Dupré. J. P. C. 21, 253.	
		sulphide	P S6	2.02	44 44	
		ıs trisul-	P. S	2.00, 11	Isambert. C. R. 96,	
phide			(1501.	

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Vanadium disulphide	4.4	4.2, scaly 4.4, powder } 3.7, scaly	Kay. J. C. S. 37, 728.
Vanadium tetrasulphide	V ₂ ,S ₃	4.0, powder }	Sehafarik. J. P. C.
Vanadium pentasulphide_		3.0	90, 12.
·Arsenie disulphide	$\begin{bmatrix} V_2 S_5 & \dots & \\ A S_2 S_2 & \dots & \end{bmatrix}$	3.5444	Kay. J. C.S. 37,728. Karsten. Schw. J. 65, 394.
· · · · · · · · · · · · · · · · · · ·	(,	3.240, realgar_	Neumann. P. A. 23, 1.
Arsenic trisulphide	As_2S_3	3.556 3.459	Mohs. See Böttger. Karsten. Schw. J.
		3.48	65, 394. Haidinger. Dana's Min.
		3.44-3.45	Guibourt. See Bött- ger.
" "Dimorphite Antimony trisulphide	Sb ₂ S ₃	3.58 4.7520	Scacchi. J. 5, 842. Karsten. Schw. J.
	"	4.15, amor-	65, 394. * Fuchs. Watts' Dict.
" " "	(4	phous. 4.614, black	1
(1 (1	(4	4.641, 16° " 4.280, red	H. Rose. J. 6, 361.
	"	4.421, ppt 4.226,26°.7,red]
"	{	4.223, 23°, ppt. 4.228, 28°, gray	Cooke. Proc. Am. Acad. 1877.
	((4.892)	Ditte. C. R. 102, 212.
" " Stibnite.	"	5.012 }	Neumann. P. A.
	"	4.516	23, 1. Haüy. Dana's Min.
Bismuth disulphide	$\operatorname{Bi}_2 \operatorname{S}_2$	4.62 7.29, m. of 5	Werther. J. P. C.
Bismuth trisulphide	Bi ₂ S ₃	7.591, 14°.5	27, 65. Herapath. P. A. 64, 321.
" " ———	"	7.0001	Karsten. Schw. J. 65, 394.
ιι ιι	"	7.16, native	Forbes. P. M. (4), 29, 4.
Selenium sulphide	Se S	$\left. \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ditte. Z. C. 14, 386.
Molybdenite	Mo S ₂	4.591 4.444	Mohs. See Böttger. Seibert. "
Tungsten disulphide	W ₂ S ₂	6.26, 20°	Schafarik, J. P. C. 90, 12.
Chromic sulphide	Cr ₂ S ₃	4.092	Playfair and Joule. M. C. S. 3, 89.
tt tt	"	2.79,10° 3.77,19° } two	Schafarik, J. P. C. 90, 12.
Manganese monosulphide. Alabandite.	Mn S	preparations. 3.95—4.01	Leonhard. See Bött- ger.

Name.	FORMULA.	SP, GRAVITY.	AUTHORITY.
Manganese monosulphide.	Mn S	1.036	Bergemann. N. J.
Alabandite.	$\operatorname{Mn} S_2$	3, 163 =	1857, 394. Von Hauer. J. 1.
Iron hemisulphide	Fe ₂ S	5.80	Playfair and Joule. M. C. S. 3, 88.
Iron monosulphide. Artif.	Fe S	5,035, m. of 2 4.70	Rammelsberg, J.15,
" " Troilite_		1.787	263. Rammelsberg. J. 1,
	** ====================================	4.817	* 1806. Rammelsberg, J. 17, 904.
" " " " " " " " " " " " " " " " " " " "	16	4.75	Smith. J. 8, 1025.
Iron disulphide. Pyrite		5.000 /	Kenngott, J. 6, 780.
		5.185	Zepharovich, S.W. A. 12, 289. Neumann, P. A.
		5.042	23, 1.
" Marcasite	()	4.852	
	4.6	4.678 }	Dana's Mineralogy.
Ferric sulphide		4.216	Playfair and Joule. M. C. S. 3, 88.
	.4	4.41	Rammelsberg, J. 15, 262.
Complex sulphide of iron	Fe ₈ S ₉	4.494	Rammelsberg, J. 15.
Pyrrhotite	Fe ₇ S ₈	4.581	Kenngott, S. W. A. 9, 575.
44			
		$\begin{pmatrix} 4.550 \\ 4.640 \end{pmatrix}$	Rammelsberg. Da- na's Mineralogy.
Nickel hemisulphide	Ni ₂ S	6.05 - <u>-</u>	Playfair and Joule.
Millerite	Ni 8	4,601	M. C. S. 3, 88. Kenngott, S. W. A.
		5,65	9, 575. Rannnelsberg. Da-
Polydymite		1.808 4.816 } 150.7	na's Mineralogy, Laspeyres, J. P. C.
Beyrichite		1.7	(2 , 14, 397, Liebe, N. J. 1871,
Cobalt disulphide	Co S ₂	1.260	S40, Playfair and Joule, M. C. S. 3, 88.
Cobactic sulphideCopper hemisulphide	Co ₂ S ₃	4.8 5.792, 17.7	Hoffmann's Tables Herapath. P. M. 64,
		5,9775	821. Kursten, Schw. J.
			65, 394.
		5.71	Thomson. Dana's
		, 5,5°1 -5,795	Min. Scheerer, P. A. 65, 202.
" Artif. cryst		5.79}	Doelter, Z K. M. 11, 29,

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Copper monosulphide	Cu S	4.1634	Karsten. Schw. J. 65, 394.
" Covellite_		4.636	Zepharovich. J. 7, 810.
Palladium hemisulphide _	Pd ₂ S	7.303, 15°	Schneider. P. A.
Platinum monosulphide	Pt S	8.847, 16°.25	Böttger. J. P. C. 3, 267.
Platinum disulphide	Pt S2	7.224, 18°.75	0, 201. (t
			138, 604.
Platinum sesquisulphide _	Pt ₂ S ₃	5.52	

2d. Sulpho-Salts of Arsenic, Antimony, and Bismuth.

Name.	· FORMULA.	Sp. Gravity.	Антновиту.
Proustite	Ag _{3,4} As S ₃	5.524 5.53 —5.59	Breithaupt. See
Xanthoconite	$Ag_9 As_3 S_{10}$	5.552, 18° 4.112—4.159	Böttger. G.Rose. P.A.15,472. Breithaupt. J. P. C. 20, 67.
Guitermannite	$\mathrm{Pb}_3\;\mathrm{As}_2\;\mathrm{S}_6$	5.94	No. 20., U. S. G. S., 106.
Sartorite	Pb As ₂ S ₄	5.405 } 5.393 } 5.409 }	Waltershausen. J. 8, 914.
Dufrenoysite	$\operatorname{Pb}_2\operatorname{As}_2\operatorname{S}_5$	5.5616	Landolt. P. A. 122, 373.
Enargite	('Cu' ₃ As S ₄	5.561	14, 379. v. Rath. J. 17, 827.
<i>u</i>		4.430 } 4.445 }	Min.
2.0 2.0 4.0		4.37	Kobell. J. 18, 872. Root. J. 21, 998.
" Guavacanite " Clarite		4.39	Field. J. 12, 771.
" Luzonite Julianite		4.42	Weisbach, M. P. M. 1874, 257.
Binnite Tennantite			1971 490
4.0	((ger.
	((4.622	

NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Sodium sulphantimonate.	Na ₃ Sb S ₄ . 9 H ₂ O	1.801)	Schroder Dm. 1873.
Promoconito	la Sh S	1.00/4	Mohs.
Pyrargyrite	Ag ₃ Sb S ₃		Breithaupt. See Bottger.
Miargyrite	$Ag \stackrel{\mathbf{Sb}}{\otimes} \mathbf{S}_2$	5.2117	Weisbach, J.18, 869.
66		5.0225	Bumpf. Z. K. M.
		5.0725 5.0823 20° {	7, 518.
" Artificial		5.28	Doelter. Z. K. M. 11, 29.
Stephanite	Ag ₅ Sb S ₄		Mohs. P. A. 15,
	4.	6.275, 210	H. Rose.
Polybasite	Ag ₉ Sb S ₆	6.28, 18° 6.214	Frenzel. J. 27, 1239. Dana's Mineralogy.
(,		6.009	Genth. Am. Phil. Soc., 1885.
Polyargyrite	$\mathrm{Ag}_{2\underline{b}}\operatorname{Sb}_2\mathrm{S}_{15}\ldots\ldots$	$\binom{6.933}{7.011}$ 18°.2 =	Petersen, J. 22,1197.
Livingstonite	$\text{Hg Sb}_2 \text{ S}_4$	4.81	Barcena. A. J. S. (3), 8, 146.
" Artificial		4.928, 320	Baker, C. N. 42, 196.
Jamesonite	Pb ₂ Sb ₂ S ₅	5.616, 19°	Schaffgotsch. P. A. 38, 403.
" Massive	11	5.601	Lowe. Dana's Min. Rammelsberg, P. A.
" Artificial		5.5	77, 210. Doelter, Z. K. M.
Altinean			11, 29.
Zinkenite	Pb Sb ₂ S ₄	5.303 \ 5.310 \ 12°.5 \	G. Rose. P. A. 7, 91.
11		5.21, 18°	Hillebrand. Bull. 20, U. S. G. S.
Boulangerite	Pb ₃ Sb ₂ S ₆	5,6885,941	Hausmann, P. A. 46, 282.
Massive	11	5,809-5,877 \ 5,69-6,086 }	Zepharovich, S. W. A. 56, (1), 30.
Meneghinite	Pb, Sb2 S7	6,339 }	v. Rath. J. 20, 974.
66		6,115 }	Harrington, J. 37.
Geograpite	P), Sl. S	6, 107	1911. Apjohn, Dana's Min.
ti.	Pb ₅ Sb ₂ S ₈	6.43, 15°	Sauvage. Ann. des Mines, (3), 17, 525.
		6. 15-6. 17, 15°	Kerndt, P. A. 65 302.
Plagionite	Pb ₄ Sb ₆ S ₁₃	5.40 ==	Rammelsberg, P. A. 47, 495.
Epiboulangerite	Pb6 Sb4 S15	6,309	Websky, J. 22, 1198.
Semseyite	Pb ₆ Sb ₄ S ₁₅ Pb ₇ Sb ₆ S ₁₆	5.0518 6.194	Sipoez. Ber. 19, 95. Hausmann. Dana's
Freisslebenite	1 02 Ag3 503 68	0,1,71 ====	Min.
	- "	6.230	v. Payr. J. 13, 746. Vrba. S. W. A. 63
4.	44	6,35	143.
11 Disphorite	44	5.902	Zepharovich. S.W. A. 63, 143.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Brongniardite	Pb Ag ₂ Sb ₂ S ₅	5.950, 18°	Damour. Ann. d. Mines, (4), 16, 227.
Chalcostibite	Cu Sb S ₂	4.748	H. Rose. Dana's
	44	5.015	Breithaupt. Dana's
Famatinite	Cu ₃ Sb S ₄	4.57	Stelzner. M. P. M. 1873, 242.
Guejarite	Cu ₂ Sb ₄ S ₇	5.03	Cumenge. B. S. M. 2, 201.
Tetrahedrite	Cu ₈ Sb ₂ S ₇	4.730 4.58	Wittstein. J. 8, 912. Sandmann. A. C. P.
44	66	4.90	89, 368. Kuhlemann. J. 9,
(1	66		834. Genth. Am. Phil.
Bournonite	Cu' Pb Sb S ₃	5.703—5.796	Soc. 1885. Zineken. J. 2, 724.
	44	5.726—5.855	Bromeis, J. 2, 724.
(("	5.726—5.863	Rammelsberg. J. 2, 724.
"		5.80	Field. J. 14, 374.
	"	5.826	Wait. J. 26, 1147.
		5.737—5.86	Hidegh. J. 37, 1911.
" Artificial		5.7659	Sipöcz. Ber. 19, 95. Doelter. Z. K. M.
Berthierite	$\mathrm{Fe}\;\mathrm{Sb}_2\;\mathrm{S}_4$	4.043	11, 29. Pettko. J. 1, 1159.
Silver bismuth glance*	Ag Bi S ₂	6.92	Rammelsberg, Z. K.
Galenobismutite	Pb Bi ₂ S ₄	6.88	M. 3, 101. Sjögren. G. F. F. 4,
Cosalite	Pb ₂ Bi ₂ S ₅	6.22-6.33	109. Frenzel. J.27,1238.
Beegerite	Pb. Bi. S.	7.273	König. J. 34, 1355.
Rezbanyite	$Pb_{6}^{2}Bi_{2}^{2}S_{9}^{3}$ $Pb_{4}Bi_{10}S_{19}$	$\left. \begin{array}{c} 6.09 \\ 6.38 \end{array} \right\}$	Frenzel. J. 36, 1835.
Chiviatite	Pb ₂ Bi ₆ S ₁₁	6.920	Rammelsberg. P.A. 88, 320.
Emplectite	Cu Bi S ₂	5.18, 5°	Weisbach. J.19, 916.
Wittichenite	Cu ₃ Bi S ₃	4.3	Hilger. J. 18, 870.
Klaprotholite	$\operatorname{Cu}_6^-\operatorname{Bi}_4\operatorname{S}_9$	4.6	Petersen. N. J. 1868, 415.
Aikinite	Cu' Pb Bi S ₃	6.757	Friek. P. A. 31, 530.
Kobellite	Dh D; Ch C	6.1	Chapman. J. 1, 1158.
	Pb ₃ Bi Sb S ₆	$\{6.29, \dots, 6.32, \dots, $	Satterberg. P.A. 55, 635.
		6.145	Rammelsberg. J. P. C. 86, 340.

^{*} Alaskaite, a lead silver salt similar to this, has a sp. gr. 6.878. Koenig, Z. K. M. 6, 42.

3d. Miscellaneous Double and Oxy-Sulphides.

Name.	FORMULA.	SP. GRAVITY.	Антновиту.
Thallium potassium sul- phidė.	K Tl S ₂	4.263	Schneider. P. A. 139, 661.
Iron potussium sulphide- Sodium platinum sulphide	K Fe''' S ₂ Na Pt ₂ S ₃	2.563 6.27, 15	Preis. J. P.C.107,10. Schneider. P. A.
Potassium platinum sul-	K Pt ₂ S ₃	6.44, 15°	138, 604.
Stromeyerite	Ag Cu' S	6,255	Kopp. J. 16, 5. Stromeyer, Schw. J.
Jalpaite	Ag _{3,C} u'S ₄	6.877}	19, 325. Breithaupt. J. 11, 682.
SternbergiteSilver gold sn!phide	Ag Fe ₂ S ₈	4.215 5.159 6.085, 15°	Dana's Mineralogy. Muir. B. S. C. 18, 222.
Argyrodite	$\Lambda g_6 \operatorname{Ge} \tilde{S}_5$	6.093 } 12° {	Richter. Quoted by Winkler. Winkler. J. P. C.
Christophite	Zn_2 Fe S_3	6.111 / 12 \ 3.911—3.931_	(21, 34, 187. Breithaupt. B. H. Ztg. 22, 27.
Guadalcazarite Bornite	$\operatorname{Zn} \operatorname{Hg}_6 \operatorname{S}_7$ Fe $\operatorname{Cu}_3 \operatorname{S}_2$ =	7.15 5.030	Petersen, J. 25,1093 Rammelsberg, Z. G.
"		4.132	S. 18, 19. Forbes, J. 4, 758. Katzer, M. P. M.
Iron coppersulphide. Artif.	Fe ₄ Cu ₉ S ₁₀	4.85	9, 404. Doelter, Z. K. M.
Barnhardtite	Fe ₂ Cu ₄ S ₅	4,521 4,185	11, 29. Genth. J. 8, 910. Forbes. J. 4, 759.
· Artificial		4, I—4,3 4, 196	Dana's Mineralogy. Doelter. Z. K. M.
Iron coppersulphide. Artif. Furnace product. Cryst.	Fe ₄ Cu ₄ S ₇	4.999 3.97	11, 29. Brogger, Z. K. M.
Cubanite	Fe ₂ Cu S ₄	1.026) 1.042 }	3, 495, Breithoupt, P. A. 59, 325.
Chalcopyrrhotite	$\operatorname{Fe_4}$ $\operatorname{\bar{C}u}$ S_6 .	4.18 4.28	Smith. J. 7, 810. Blomstrand Dana's
Carrellite	Co Cu S ₂	4.58 4.85	Min, 2d Append. Faber, J. 5, 840. Swith and Brush.
Pentlandite	Fe Ni ₂ S ₃	4.6	J. 6, 782 Scheerer, P. A. 58,
Horbachite	Fe ₈ Ni ₂ S ₁₃	4.43	316. Knop. N. J. 1873, 523.
Daubreelite Bismuth nickel sulphide = Voltzite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.01 . 9.15 3.5—3.8	Smith. J.C. 8, 36, 33. Werther, J. 5, 389. Vegl. J. 6, 786.
Kermesite	2 Sh ₂ S ₃ , Sh ₂ O ₃	1.5—1.6	Dana's Mineralogy.

Castillite, Grunauite, and Stannite are omitted as having too indefinite composition

X. SELENIDES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Naumannite	Ag ₂ Se	8.0	G. Rose. P. A. 14,
Zinc selenide	Zn Se	5.40, 15°	471. Margottet. J. C. S. 32, 570.
Cadmium selenide	Cd Se		Little. J. 12, 94. Margottet. J. C. S.
Mercurous selenide	Hg ₂ Se	8.877	32, 570. Little. J. 12, 95.
Tiemannite		7.1-7.37	Dana's Mineralogy. Kerl. J. 5, 837.
tt		8.188	Penfield. A. J. S. (3), 29, 449.
Lead selenide. Artificial "Clausthalite	Pb Se	6.8	Little. J. 12, 95. Zinken. P. A. 3, 274.
Ferrie selenideNickel selenide	Fe ₂ Se ₃	6.38 8.462	Little. J. 12, 94.
Cobalt selenide Berzelianite	Co Se	7.647	" Nordenskiöld, J. 20,
Copper selenide	Cu Se	6.655	977. Little. J. 12 95.
Arsenic triselenide	Di, Se,		
" Frenzelite	::	7.406 6.25, 21°	Little. J. 12, 95. Frenzel. N. J. 1874,
" Guanajua- tite.		6.62	679. Fernandez. Dana's Min., 3d App.
Tin monoselenide			Schneider. J. P. C. 98, 236.
	"		Ditte. C. R. 96, 1792.
Tin diselenide	Sn Se ₂	5.133	Little. J. 12, 95. Schneider. J. P. C.
Eucairite	Cu' Ag Se	7.48—7.51	98, 236. Nordenskiöld. J. 20, 977.
Crookesite Lehrbachite	(Cu Ag Tl) ₂ Se (Pb Hg) Se	6.90 7.804—7.876	Dana's Mineralogy.
Zorgite	(Pb Cu) Se (Pb Cu) ₃ Se ₂	6.38	Pisani. J. 32, 1183.

XI. TELLURIDES.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Hessite	Ag, Te	8.412 (C 9 7 1 10 24
61	1		G. Rose. P.A. 18,64
44		., 8.178	Genth. J. 27, 1233
11		8.318	Becke, Z. K. M, 6 205.
Zinc telluride	Zn Te	6.34, 15°	Margottet. J. C. S 32, 570.
Cadmium telluride	Cd Te	- 6.20, 15°	4
Coloradoite	Не Те	8.627	Genth. Z. K. M. 2, 1
Tin telluride	Sn Te	6.478, 0°	Ditte. C. R. 96, 1793
Altnite	Pb Te	8.159	G. Rose. P. A.15,64
Antimony telluride		= 6.47 13°	Bodeker and Gi- secke. B. D. Z.
Joseite			
Wehrlite		8.41	Wehrle. Dana Min.
Tetradymite	Bi, Te,	7.287	Genth. J. 5, 833.
44	44	7.868	Jackson, J. 12, 770
44			Genth. J. 13, 744.
		7.642, 140	Balch, J. 16, 794
Calaverite			
Sylvanite	Au Ag Te ₃		Genth. J. 27, 123;
Petzite			6.
44			
Tapalpite	Ag ₂ Bi ₂ S Te ₂	7.800	Rummelsberg, Z C 8 21, 81.

XII. PHOSPHIDES.

NAME.	FORMULA.	Sp. Gravity.	Антиовиту
Silver phosphide			Schrott r. S.W A. 1849, 301.
Zine phosphide			113.
Tin monophosphide			Schrotter, S.W.A. 1849, 301.
		6,793	Natanson and Vort- mann. Ber. 10, 1460.
Tin diphosphide	Sn P ₂	4.91. 120	Emmerling, Ber. 12, 155,
Chromium phosphide	Mn ₅ P ₂	5.951	Murtius, J. 11, 160 Wohler, J. 6, 359 Schrotter, S.W. A- 1849, 301.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Iron phosphide Nickel phosphide	Fe ₃ P Fe ₃ P ₄	6.28 5.04	Hvoslef. J. 9, 285. Freese. J. 20, 284. Januetaz. J. C. S.
" "			44, 001.
Cobalt phosphide Tricopper phosphide	Co ₃ P ₂	5.62 6.75	ee er
Copper monophosphide	Cu P	6.350	Sidot. J. R. C. 5, 75. Emmerling. Ber. 12, 153.
Molybdenum monophos- phide.			Rautenberg. J. 12, 163.
Tungsten hemiphosphide			1849, 301.
Platinum diphosphide Iridium hemiphosphide *_	1r ₂ 1′	13.768	Clarke. A. C. J. 5, 231.
Gold phosphide	Au ₂ P ₃	6.67	Schrötter. S. W. A. 1849, 301.

XIII. ARSENIDES.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Silver arsenide	Ag As	8.51	Descamps. J. Ph. C.
Trisilver diarsenide	$Ag_3 As_2$	9.01	$(\frac{4}{2}), 27, 424.$
Trisilver diarsenide Trisilver arsenide " Huntilite	Ag_3As	7.47	Wurtz. Dana's
Tricopper diarsenide			Descamps. J. Ph. C.
Dicopper arsenide	Cu ₂ As	7.76	(4), 27, 424.
Tricopper arsenide " Domeykite Algodonite	Cu ₃ As	7.81	Genth. J. 15, 708.
			33, 192.
Whitneyite	Cu ₉ As	8.408	Gentli. J. 12, 771.
Whitneyite	(($\left\{\begin{array}{c} 8.246 \\ 8.471 \end{array}\right\} \ 21^{\circ}_{}$	Genth. J. 15, 708. Descamps. J. Ph. C.
Tricadmium arsenide	Cd ₃ As	6.26	Descamps, J. Ph. C. (4), 27, 424.
Tin hemiarsenide Tin diarsenide	Sn ₂ Λs	7.001, 18°	Bodeker, B. D. Z. Descamps, J. Ph. C.
Lead arsenide Trilead tetrarsenide	Pb As	9.55	(4), 27, 424.
Trilead tetrarsenide	Pb3 As4	9.65	

^{*}Commercial "east iridium." Contains several per cent. of the phosphides of rhodium and ruthenium, with possibly a little phosphide of osmium.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Trilead diarsenide	Pb ₃ As ₂	9.76	Descamps. J. Ph. C.
KanciteLencopyrite	Mn AsFe, As ₃	0.659)	(4), 27, 424. Kanc. Dana's Min. Breithaupt. P. A. 9,
Lolingite	Fe As ₂	6.848	115. Behneke, J. 9, 831.
44		7.409	Hillebrand, A. J. S. (3), 27, 353.
Trinickel arsenide		7.71	Descamps, J. Ph. C. (4), 27, 424. Scheerer, P. A. 65
	11		Ebelmen, Ann. d.
Rammelsbergite	Ni As ₂	7.314	Mines (4), 11, 55 Genth. J. 36, 1829. Breithaupt. Dana's
	4.	6.84	Min. McCay, J. 37, 1905 Rose, J. 5, 836.
Skutterudite	Co As ₃	6.78	Scheerer, P. A. 42 559.
Antimony hemiarsenideAllemontite		6,46	Descamps, J. Ph. C (4), 27, 424. Thomson, Dana's
	1117 2123		Min. Rammelsberg
Bismuth arsenide	Bi ₃ As ₄	8.45	Dana's Min. Descamps, J. Ph. C (4), 27, 424.
Gold arsenide	Au, As ₃	16.20	(4), 27, 424. Waldie, J. 24, 1183

XIV. ANTIMONIDES.*

NAME.	FORMULA.	Sp. Gravity.	А стновіту.
Dyscrasite, Stibiotriargentite, " Dyscrasite, Stibiohexargentite,	Ag_6Sb_2	10.027	311.
Zine antimonide	Zn Sb	6.384) 6.384)	Cooke. P. M. (4),
Breithauptite	Ni Sb	7.541	Breithaupt, Dana's Min.
Tin antimonide *	Sn ₂ Sb	7.07, 19°	Bodeker, B. D. Z.

[.] Compare also the table of alloys.

XV. SULPHIDES WITH ARSENIDES OR ANTIMONIDES.

		1	
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Arsenopyrite	Fe S As	6.269	Kenngott, S. W. A. 9, 584.
	((6.21	Vogel. J. 8, 907.
	"	6.095, in mass.	Potyka. J. 12, 772.
11	((6.004, pulv)
66		$\begin{vmatrix} 6.255 & & \\ 6.16 & & \end{vmatrix}$	Forbes. J. 18, 871.
		0.10	Zepharovich. S. W. A. 56 (1), 42.
££	"	6.05—6.07	MeCay. J. 37, 1905.
		_	Breithaupt and
Pacite	Fe ₅ S ₂ As ₈	$\left\{ \begin{array}{c} 6.297 \\ 6.303 \end{array} \right\}$ $\left\{ \begin{array}{c} \end{array} \right\}$	Weisbach, B. H.
		, (Ztz. 25, 167.
Glaucopyrite	$\operatorname{Fe}_{13}\operatorname{S}_{2}\operatorname{As}_{24}$		Sandberger, J. P. C. (2), 1, 230.
Glaucodot	(Co Fe) S As	5.975-6.003	Breithaupt. P. A. 67, 127.
		5.905-6.011	Schrauf and Dana. S. W. A. 69, 153.
Cobaltite	Co S As	6.0-6.3	Dana's Mineralogy.
Gersdorffite	Ni S As	5 49)	-
(6	"	5.65 }	Forbes. J. 21, 997.
		6.1977	Sipöez. Ber. 19, 95.
Ullmannite	Ni S Sb	6.506, 20°	Rammelsberg. P. A. 64, 189.
			Jannasch. J. 36,
"	77. (1 (4	6.883	1832.
Corynite	Ni S (As Sb)	5.994	Zepharovich. J. 18, 872.
Wolfachite	٠٠	6.372	Sandberger. J. 22, 1193.
Alloclasite	$\operatorname{Co_3}\operatorname{S_4}\operatorname{Bi_4}\operatorname{As_6}$	6.6	Tschermak, J. 49, 919.
((6.23—6.5	Frenzel. J. 36, 1831.

XVI. HYDRIDES, BORIDES, CARBIDES, SILICIDES, NITRIDES, ETC.

NAME.	Formula.	SP. GRAVITY.	Аптновиту.
Sodium hydride	Nа ₂ П	0.959	feuille. C. R. 78,
Palladium hydride			47 991
		11.06	Troost and Haute- feuille. C. R. 78, 970.
Columbium hydride	Çb H	$\left.\begin{array}{c} 6.0 \text{ to } 6.6 \\ 6.15 \text{ to } 7.37 \end{array}\right\}$	Marignac. J. 21, 214. Supposed to be metal.

Name.	FORMULA.	Sp. Gravity.	Аптионтту.
Platinum borideIron silico-carbide	Pt B Fc ₆ Si ₂ C	17.82	Martius. J. 11, 210. Colson. J. C. S. 42, 933.
Titanium carbide	Ti C, impure	5.10	Shimer, J. A. C.
Iron silicidePlatinum silicide	Fe ₂ Si Pt ₃ Si ₂	6,611	1, 4. Huhn. J. 17, 264. Colson. Ber. 15, 724.
и и	Pt ₉ Si	18.97	Memminger. A.C.
Aluminum titanideAluminum zirconide (?)	$\begin{array}{ccccc} \operatorname{Al}_4 \operatorname{Ti} & & & & & \\ \operatorname{Al}_3 \operatorname{Zr}, \operatorname{or} \operatorname{Al}_6 \operatorname{Zr}_2 \operatorname{Si}_{-1} & & & & & \end{array}$	3.11, 16° 3,629	J. 7, 172. Levy. C. R. 106, 66. Melliss. Gottingen
Ammonia. Liquefled	N II ₃	.731, 15°.5	Doct. Diss., 1870. Faraday, P.T. 1845,
11 11 11 11	11	.6234, 0° .6492, —10° .6429, —5°	155. Jolly. J. 14, 165.
11 11 11 11 11 11 11 11 11 11 11 11 11	1:	.6364, 0° .6298, 5° .6230, 10°	D'Andreéff. Ann. (3), 56, 317
££ ££	44	.6160, 15° .6089, 20°	
Titanium nitride	Ti ₂ N ₂	5.28, 18°	Friedel and Guérin. C. R. 82, 974.
Iron nitride. Impure	Fe ₅ N ₂	3.147	Silvestri. Ber. 8, 1356.

XVII. HYDROXIDES.

NAME.	Förmula.	Sp. Gravity.	Астновиту.
Sodium hydroxide	Na O H	2,180	Filhol. Ann. (3), 21, 415.
		1.723	W. C. Smith. Am. J. P. 53, 145.
Potassium hydroxide	2 Na O H. 7 H ₂ O _	1.405	Hermes, J. 16, 178, Dalton.
44 44	**	2.011	Filhol. Ann. (31, 21, 415.
44 44			W. C. Smith, Am. J. P. 53, 145.
Brucite			Hernmun. J. 14, 979.
" Artif. cryst.	44	2.36, 15°	Beck. J. 15, 718. Schulten, C. R. 101, 72.
Zinc hydroxide	Zn (O H)2	2.677 3.053	Nickles, J. 1, 495. Filhol, Ann. (3), 21,
Cudmium hydroxide. Cryst.	Cd (O H)2	4.79, 15°	415. Schulten, C. R. 101, 72.

NAME.	FORMULA.	SP. GRAVITY.	Аптновіту.
Calcium hydroxide			Filhol. Ann. (3), 21, 415.
Strontium hydroxide	Sr (O H) ₂ Sr (O H) ₂ 8 H ₂ O	3.625 1.396 1.911, 16°	" " " Filhol. J. P. C. 36,
Barium hydroxide		4.495	37. Filhol. Ann. (3), 21, 415.
ee ee	Ba (O H) ₂ . 8 H ₂ O	1.656 2.188, 16°	Filhol. J. P. C. 36,
Lead hydroxide	Pb (O H) ₂ . 2 Pb O	7.592, 0°	37. Ditte. J. C. S. 42, 928.
Lead oxyhydroxide	Pb (O H) ₂ O	6.267	Wernicke. J. P. C. (2), 2, 419.
Manganese hydroxide.	Mn (O H) ₂	3.258, 15°	Schulten. C. R. 105, 1266.
Manganese oxyhydroxide_	Mn (O H)2 O	$\frac{2.564}{2.596}$	Wernicke. J. P. C. (2), 2, 419,
.Manganite	Mn ₂ (O H) ₂ O ₂	4.335	Rammelsberg. J.18, 878.
Manganese hydroxide		$\left\{ \begin{array}{c} 4.750 \\ 4.800 \end{array} \right\} \left\{ \begin{array}{c} 4 \circ_{} \left\{ \begin{array}{c} \end{array} \right. \right.$	Veley. J. C. S. 41, 65.
	Mn ₂₄ H ₁₆ O ₅₃	4.671 4.681 \ 4°	
Turgite	Fe ₄ (O H) ₂ O ₅	3.56—3.74 4.681	Hermann. Dana's Min.
		4.14	Bergemann. J. 12, 771. Brush. A.J.S. (2),
Ferric oxyhydroxide		2.91 }	44, 219. Brunck and Graebe.
" Göthite_	::	2.92	Ber. 13, 725.
		4.19}	Yorke. P. M. (3), 27, 265–267.
Limonite	Fe ₄ (O _H) ₆ O ₃	3.6—4.0	Dana's Mineralogy, Bergemann, Dana's
Ferric hydroxide	Fe ₂ (O H) ₆	3.77, precip	Min. Yorke. P. M. (3),
" " Limnite_ Nickelie oxyhydroxide	Ni ₂ (O H) ₄ O	2.69 2.741	27, 269. Church. J. 18, 879. Wernicke. J. P. C.
Cobaltie oxyhydroxide		2.483	(2), 2, 419.
Heterogenite	$Co_5 O_7$. $6 H_2 O_{}$	3.44	Frenzel. J. P. C. (2), 5, 404.
Copper hydroxide Diaspore	Cu (O H) ₂	3.368	Schröder. Dm. 1873. Jackson. A. J. S.
"		3,343	(2), 42, 108. Shepard. A. J. S. (2), 50, 96.
Gibbsite	Al (O H) ₃	2.387	Hermann. J. 1, 1164.
	(1	2.389	Silliman, Jr. J. 2, 389.
Stibiconite	Sb ₂ (O H) ₂ O ₃	5.28	Blum and Delffs. J. P. C. 40, 318.

Name.	FORMULA.	SP GRAVITY.	Authority.
Antimonic hydroxide	Sb (O II)5	6.6	Boullay. Dana's
Bismuth oxyhydroxide			Min. Wernicke, J. P. C.
	(;	5.8, 20°	(2), 2, 419. Muir, Hoffmeister, and Robbs, J. C.
Metabismuthic hydroxide Uranyl hydroxide	Bi (O II) O2	5.75, 20°	S. 39, 32.
Eliasite			211, 2000.
Gummite	U (O H)6	3,0-1,20	
Chalcophanite	Zn Mn ₂ O ₅ , 2 H ₂ O	3.907	
NamaqualiteHydrotalcite	$\begin{array}{c} {\rm Cu_2A1}({\rm OII})_4, 2 {\rm H_2O} \\ {\rm A1Mg_3} {\rm OII})_9, 3 {\rm H_2O} \end{array}$	2.49	Church, J. C. S.23.1 Hermann, J. 1,1168

XVIII. CHLORATES AND PERCHLORATES.

Hydrogen chlorate, or H Cl O ₃ , 7 H ₂ O chloric acid. Sodium chlorate	2,467 2,289 2,82648, 4° 2,826, 17°,5 2,825 2,825 2,825, m. of 5) 2,216)Ex-	Kamme rer, P. A. 138, 390, Berthelot. Bodeker, B. D. Z. Playfair and Joule J. C. S. 1, 137, Kremers, J. 10, 67 Buignet, J. 14, 15 Holker, P. M. (3) 27, 213.
Sodium chlorate	2,289 2,32643, 4° 2,326, 17°,5 2,325 1 1 2,323 2,325, m. of 5) 2,216) Ex-	Bodeker, B. D. Z. Playfair and Joule J. C. S. 1, 137. Kremers, J. 10, 67 Buignet, J. 14, 15 Holker, P. M. 3, 27, 213.
Potassium chlorate	2,289 2,32643, 4° 2,326, 17°,5 2,325 1 1 2,323 2,325, m. of 5) 2,216) Ex-	Playfair and Joule J. C. S. 1, 137. Kremers. J. 10, 67 Buignet. J. 14, 15 Holker. P. M. 3, 27, 213.
" " " " " " " " " " " " " " " " " " "	2,350, 17°,5 2,325 2,325 2,325, m. of 5) 2,216) Ex-	J. C. S. 1, 137, Kremers. J. 10, 67 Buignet. J. 14, 15 Holker. P. M. 3, 27, 213.
Thallium chlorate TI CI O	2.325 1 12 2.323 2 2.325, m. of 5) 2.246) Ex.	Buignet, J. 14, 15 Holker, P. M. 3 27, 213.
## ## ## ## ## ## ## ## ## ## ## ## ##	2.825, m. of 5 ₁ 2.216 ₁ Fz.	Holker, P. M 3, 27, 213.
Silver chlorate Ag Cl O	2,216) Fx. =	1) (1) 1).
Silver chlorate Ag Cl O	2,216) Fx. =	
Silver chlorate Ag Cl O	2,216) Fx. =	. 1 1 . 1 7
Silver chlorate Ag Cl O		Schroder, Du. 157.
Silver chlorate Ag Cl O Thallium chlorate Tl Cl O	2.364) tremes 1	
Thallium chlorate	2.167	W. C. Smith, An J. P. 52, 145,
Thallium chlorate Tl Cl O	4,420	Schroder, J. 12, 1;
Thallium chlorate Tl Cl O	4.430	Topsoc B. S. C. 1: 246.
	5,5047, 9	Muir. C. N. 33, 15
Strontium chlorate Sr Cl ₂ O ₈	5.450)	Sohroder, Du. 187
()	3.154)	
Barium chlorate Ba Cl, O ₆ , H ₂ O	2.988, 15	Bodeker, B. D. Z
66 66 66	3.214)	Schroder Den 187
Lead chlorate Pb Cl ₂ O ₆ . H ₂ O		
(1 (,	4.018)	

^{*}Kammerer also gives figures for other by Irates of chloric act i

	1	1	1
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lead chlorate Mercurous chlorate Mercuric chlorate Basic mercuric chlorate	2 0 2		Topsoë. B. S. C. 19, 246. Schröder. Dm. 1873. " Topsoë, B. S. C. 19, 246.
Hydrogen perchlorate, or perchloric acid. "" Lithium perchlorate "" "" "" "" "" "" "" "" "" "" "" ""	H Cl O_4 , H ₂ O Li Cl O_4 K Ci O_4 Am Cl O_4	1.811, 50°	Roscoe. J. 14, 146. "" Wyrouboff. B. S. M. 6, 53.

XIX. BROMATES.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Sodium bromate Potassium bromate " " " Silver bromate " " Magnesium bromate	K Br O ₃	3.271, 17°.5 3.218 3.323, 19°	Kremers. J. 10, 67. "Topsoë. B. S. C. 19, 246. Storer. F. W. C. "Topsoë. B. S. C. 19,
Zinc bromateCadmium bromateBasic mercuric bromateCalcium bromate	Zn Br ₂ O ₆ . 6 H ₂ O Cd Br ₂ O ₆ . 2 H ₂ O Hg ₂ Br ₃ O ₇ . H ₂ O	2.566 3.758	246. Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19, 246. Topsoë. C. C. 4, 76.
Strontium bromate Barium bromate	Sr Br ₂ O ₆ . H ₂ O Ba Br ₂ O ₆ Ba Br ₂ O ₆ . H ₂ O Pb Br ₂ O ₆ . H ₂ O Ni Br ₂ O ₆ . 6 H ₂ O	3.773 4.0895, 17° }	Storer. F. W. C. Topsoë. C. C. 4, 76.

XX. IODATES AND PERIODATES.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Hydrogen iodate,*or iodic	H 1 O ₃	4,869, 00)	Ditte. Ann. (4), 21
acid. " " Sodium iodate	N T ()	4.816, 50°,8	1)1) mm.
Sodium iodate	Na 1 O ₃	4.277, 179.5	Kremers. J. 10, 67
Potassium iodate		8.979, 17°.5 2.601	Ditte. Ann. (4), 21
46 65	44	3,802, 182	Clarke,
Ammonium iodate	$\mathop{\rm Am}_{\bullet} \mathop{\rm I}_{\bullet} \mathop{\bar{\rm O}}_{{\rm g}} = \dots = \dots$	3.3372, 12°.5 (3.3085, 21° (Fullerton. F. W. C
Silver iodate. Precip. Cryst. from ammonia.	Ag I O ₃	5.4023, 16°.5) 5.6475, 14°.5)	4.6
Magnesium iodate	Mg I ₂ O ₆ . 4 H ₂ O	8.283, 13°.5	Bishop, F. W. C.
Barium iodate	Ba 1, 0,	5.2299, 18°	Fullerton, F. W. C
Lead iodate	Ph I. O.	6.209)	
66 66	. 6	6.248	Schröder, Dm. 1873
	16		Fullerton, F. W. C
Niekel iodate	Ni I, Oc. 6 H, O	8,6954, 220	16 61
Cobalt iodate	Co I ₂ O ₆ . H ₂ O	5,008, 189	44
"	('o 1 ₂ O ₆ , 6 H ₂ O = -	3.6659, 18°.5	. 6
Didymium periodate	Di I O _{5.} 4 H ₂ O	$\begin{bmatrix} 3.755 \\ 3.761 \end{bmatrix}$ 21°.2	Cleve, U. N. A. 1883
Samarium periodate	Sm I O ₅ , 4 H ₂ O	8.793, 21°.2	

XXI. THIOSULPHATES,† SULPHITES, DITHIONATES.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium thiosulphate """ """ Potassium thiosulphate Magnesium thiosulphate Calcium thiosulphate Calcium thiosulphate Calcium thiosulphate Cobalt thiosulphate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,736, 10° 1,734	J. P. 53, 148, Buignet J. 14, 15, Oliver, F. W. C. Richardson, F. W. C.
Hydrogen sulphite or sul- phurous acid.	$H_2 \otimes O_3$, $\otimes H_2 \otimes \dots$	1.147, 15°, eryst.	Geuther. A. C. P. 224, 218.

^{*} For various hydrates of iodic achi see Kaemmerer, P. A. 138, 3.0.

[†] Commonly called hyposulphites.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Sodium sulphite	Na ₂ S O ₃ . 10 H ₂ O Cu ₂ S O ₃ . H ₂ O	1.561 4.46 3.83, 15°	Buignet. J. 14, 15. Etard. Ber. 15, 2233.
Hydrogen dithionate, or dithionic acid.	$H_2 S_2 O_6 + aq.$	1.347	Gay Lussac. Gm. H. 2, 175.
Lithium dithionate Sodium dithionate	$\begin{array}{c} \operatorname{Li}_2 \operatorname{S}_2 \operatorname{O}_6, \ 2 \operatorname{H}_2 \operatorname{O}_{} \\ \operatorname{Na}_2 \operatorname{S}_2 \operatorname{O}_6, \ 2 \operatorname{H}_2 \operatorname{O}_{} \end{array}$	2.158	Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19, 246.
Potassium dithionate	K ₂ S ₂ O ₆	2.175, 11° 2.277	Baker. C. N. 36, 203. Topsoë. B. S. C. 19, 246.
Ammonium dithionateSilver dithionate	Am ₂ S ₂ O ₆	1.704 3.605	Topsoë. C. C. 4, 76.
Magnesium dithionate Zine dithionate	Mg S ₂ O ₆ . 6 H ₂ O Zn S ₂ O ₆ . 6 H ₂ O	1.915	Topsoë. B. S. C. 19, 246. Topsoë. C. C. 4, 76.
Cadmium dithionate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.272	Topsoë. B. S. C. 19,
Strontium dithionate	Sr S ₂ O ₆ . 4 H ₂ O	2.176, 11° 2.373	Baker. C. N. 36, 203. Topsoë. C. C. 4, 76.
Barium dithionate	6.6	4.536, 13°.5 3.142 3.055, 24°.5	Baker. C. N. 36, 203. Topsoë. C. C. 4, 76. Stephan. F. W. C.
Lead dithionate	Pb S ₂ O ₆ . 4 H ₂ O	3.245 3.259, 11°	Topsoë. C. C. 4, 76. Baker. C. N. 36, 203.
Manganese dithionate Iron dithionate Nickel dithionate	Fe S ₂ O ₆ . 7 H ₂ O	1.757 1.875 1.908	Topsoë. C. C. 4, 76.
Cobalt dithionate	Co S ₂ O ₆ . 8 H ₂ O	1.815	

XXII. SULPHATES.

1st. Simple Sulphates.

N	NAME.		Fo	RMULA.	SP. GRAVITY.	Аптновиту.
Hydrogen sulphuric		or	H ₂ S O	į	1.857	Bineau. Ann. (3), 24, 337.
44	"				1.8485	Ure. Schw. J. 35,
66	66		66		1.854, 0°	
44	66		66		1.842, 12°	Marignae. J. 6, 325.
4.6	66		66_		1.834, 24°)	
"	6.6				1.857, 0°	Kolb. Z. A. C. 12, 333.
	4.6		"		1.85289, 0°	Marignae. Ann. (4), 22, 420.
" ("		44		1.8354, 18°	Kohlrausch. P. A. 159, 243.
4.6	"				1.82730, 23°	Nasini. Ber.15,2885.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AUTHORITY.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ertel. Ber. 15,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ge and Nacf.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	er. 16, 953. delejetf. Ber. , ref. 304.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	delejeff. Ber.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cin. J.C.S.49,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kenroder, J. 2,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	delejeff. Ber. , 380.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cin. J. C. S. 49,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ts' Dictionary.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	delejeff. Ber.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sin. J. C. S. 49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Lithium sulphate Li ₂ S O_4 2.210 Kre Rrat	tts' Dictionary. ber. P. A. 159
	mers. J. 10, 67 uner. P. M. (5)
	. 67. est. J. 10, 141.
2.052, 210). i. i., i.i.
0 0 1 Pett	ersson, U. N
	. 1874.
	chröder.
	thaupt. Quotec Schroder.
11 11 2.73 Core	lier. Quoted by
(i (i 2.640 Tho	inson. Ann hil. (2), 10, 435
a a 2,6313 Kur	sten. Schw. J 5, 394
α α	cfur and Joule C. S. 2, 401.
1	nol Ann. (3) 1, 415.
	mers. J. 5, 15
	ystallized at dif ent tempera
	res.
a 2,693, m. of 3. Sch	roder. P.A. 106 26.

					-		
	Name.		Fo	ORMULA.		Sp. Gravity.	Аптногиту.
Sodium su	ılphate		Na ₂ S ()4		2.681, 20°.7	Favre and Valson. C. R. 77, 579.
4.6	4.4		"			2.677) 150 (Pettersson. U. N.
"	**		4.6			$\begin{bmatrix} 2.677 \\ 2.687 \end{bmatrix}$ 17° $\{ \ $	A. 1874.
"	6.6		66			2.66180, cryst.	}
t t	"					at 40°. 2.66372, cryst. at 110°	Nicol. P. M. (5), 15, 94.
"	4.4		ιι			2.104, at the	Braun. J. C. S. (2),
"	"		Na ₂ S (O ₄ . 10 H ₂	0	melting p't. 1.4457	13, 31. Hassenfratz. Ann. 28, 3.
¢¢.	"			6.6		1.350	Thomson. Ann. Phil. (2), 10, 435.
4.6	"			"		1.469, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"			"		1.520	Filhol. Ann. (3), 21, 415.
66	4.4			4.4		1.465	Schiff.
4.6	6.6			66		1.471	
6.6	6.6			4.6		1.4608 \	Buignet. J. 14, 15. Stolba. J. P. C. 97,
"	66			4.6		1.4595 }	503.
"	66			"		1.455, 26°.5	Favre and Valson. C. R. 77, 579.
66	66			66		1.485, 19° \	Pettersson. U. N.
6.6	6.6			44		1.492, 20° [A. 1874.
Potassium	sulpha	ate	K2SO	4		2.636	Wattson.
"			- "			2.4073	Hassenfratz. Ann. 28, 3.
ιι .	66		44			2.880	Thomson. Ann.
"	ii	the tele ter one on our	"			2.6232	Phil. (2), 10, 435. Karsten. Schw. J. 65, 394.
4.6	ιι		"			2.400	Jacquelain. A. C. P. 32, 234.
66	"		66			2.662	Kopp. A. C. P. 36, 1.
6.6	6.6		٤٤			2.640	Playfair and Joule. M. C. S. 2, 401.
"	66		"			2.65606, 4°	Playfair and Joule. J. C. S. 1, 132.
			"			2.625	Filhol. Ann. (3), 21, 415.
"	11	Cryst	٤٤			2.644)	
4.6	"	After fu-	"			2.657 }	Penny. J. 8, 333.
"	"					2.676	Holker. P. M. (3), 27, 213.
66	"					2.653	Schiff. A. C. P. 107, 64.
4.6	"		"			2.658	Schröder. P. A. 106, 226.
66			1.6			2.572	Buignet. J. 14, 15.
46	"		"			2.645	Stolba. J. P. C. 97, 503.
t t	"					2.648	Topsoë and Christ- iansen.

		-				1 pse
N	AME.		Fo	RMULA.	Sp. Gravity.	AUTHORITY.
Potassium s	alabate	- 1	K.S.O.		2.660, 170.1	
1 Otassiiiii s			11		2.667, 180.2	Pettersson, U.N.A.
6.6			4.6		2.669, 189.2	1574.
6.6			4.6		2,685, 199, 5.	Richardson, F. W.C.
4.4			6.4		2.653, 14	Wise, F. W. C.
6.6			£ a		2.715	W. C. Smith. Am.
						J. P. 45, 148.
4.6	* 6				2.1, fused	Quincke. P.A.135,
4.4	6;		4.		2.6651,00	
4.4	4.6		14		2.6627, 10°	
64	4.6		4.4		2.6603, 20°	
6.			6.4		2.6577, 800	
£ Ł	6.6		6 .		2.6551, 402	
t t	64		6.6		2.6522, 502	Spring. Ber. 15.
6.6			4.4		2.6492, 602	1940. Details in
6.6	6.6		+ 6		2,6456, 70°	Bull. Acad. Bel-
4.4	6.0		£ a		2.6420, 802	gique IV., No. 5,
4.4	4.6		4.4		2.4366, 900	1882.
4.4	11		* *			
6.4	Not pr	Direct.	6.6		2.653. 210 ==)	
6.6	Once	44	4.6		2.651, 220	Spring. Ber. 16,
6.6	Twice	44	4.4		2.656, 222)	2724.
Potassium	pyrosulp		$K_2 S_2 O$	7	2.277	Jacquelain. A. C. P. 32, 294.
Rubidium	sulphate		Rb, S (),	3,639, 169,8	Pettersson, U.N.A.
16			2		3.641, 160,8	1874.
4.4	6.6		6.0		3.6433, 00	
6.6	4.6		6.4		3.6402, 10°	
6.6	4.6		4.4		3.6367, 20°	
6.6	4.4		4.4		3.6833, 800	
6.6	4 +		4.6		3,6209, 40°	
4.6	6.6		4.4		3.6250, 500 }	Spring. Ber. 15,
4.4	4.4		6.6		3.6220, 600	1940. Details in
4.4	6.6		4.4		3.6181, 70°	Bull, Acad. Bel-
4.4	4.4		4.0		3.6142, 80° i	gique IV., No. 8,
6.4	6.6		6.6		_ 3,60×9, 90°	1882.
6.6	4.4		4.4		3.0036, 100° }	
Casium su	lphate		Cs ₂ S (),	4.105, 19 .2	Pettersson, U. N.
Ammoniu	ın sulpha	te	$A \operatorname{m}_2 S$	0,	1.7676	Hassenfratz, Ann. 28, 3.
6.6	11		16		1.76	
4.4	6.6				1.75)	Корр. Л. 11, 10.
4.6	6.6		+6		1.750	Playfair and Joule. M. C. S. 2, 401.
6.6	6.6				_ 1.76147, 42	Playfair and Joule, J. C. S. 1, 138.
4.4	4.6				1.628	Schiff. A. C. P. 107,
4.4					= 1.771, m. of 2	Schroder, P. A. 106, 226.
66	4.4		1		- 1,750	Buignet, J. 14, 15.
4.6	6.6		- 44		. 1.770, m. of 4	
44	4.4		1		- 1.766) extreme	
44	6.4		1		1.775 / 17 9 18	
11			1		1.7	W. C. Smith. Am.
						J. P. 53, 145.

## ## ## ## ## ## ## ## ## ## ## ## ##						I
## ## ## ## ## ## ## ## ## ## ## ## ##	NAME.		Form	ULA.	Sp. Gravity.	AUTHORITY.
" " " " " " " " " " " " " " " " " " "	Ammonium sulphat	e	Am ₂ S O ₄		1.765, 20°.5 1.773	Schröder. Ber. 11,
	,,		"		1 ==00 00 5	2211.
" " " " " " " " " " " " " " " " " " "	**		-			
" " " " " " " " " " " " " " " " " " "					1.7734, 20°	
" " " " " " " " " " " " " " " " " " "						
" " " " " " " " " " " " " " " " " " "			-		1.7703, 40°	S
" " " " " " " " " " " " " " " " " " "			-		1.7685, 50° }	
" " " " " " " " " " " " " " " " " " "			-		1.76641 700	
" " " " " " " " " " " " " " " " " " "	"					
					1.7593, 90°	
Mascagnite			-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2400 [71				1.773, 20° }	C D 10
Masegnite Am ₂ S O ₄ 1.72-1.73 Dana's Mineralogy Karsten. Schw. J 65, 394. """"""""""""""""""""""""""""""""""""	Office		_		1.760, 22	
Silver sulphate Ag_2 S O_4 5.341 Karsten. Schw. J 65, 394. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 226. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 226. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 226. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 226. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 226. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 226. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 226. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 226. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 227. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 227. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 228. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3) 2471. Physfair and Joule M. C. S. 2, 401. Filhol. Ann. (3), 232. Physfair and Joule M. C. S. 2, 40	I WICC		Am. S O	H., O	1.72—1.73	
" " " 5.322						Karsten. Schw. J.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					5.322	Playfair and Joule.
## ## ## ## ## ## ## ## ## ## ## ## ##			"		5.410	Filhol. Ann. (3),
Thellium sulphate					5.425	Sehröder. P. A. 106, 226.
## ## ## ## ## ## ## ## ## ## ## ## ##			"		5.54 } 11 {	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$Tl_2 S O_4$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-~					zeaux. Nature 1,
Glucinum sulphate Gl S O ₄					6.79, 17°.8)	
					6.81, 17°.2 }	Pettersson. U.N.A.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			***************************************			Nilson and Petters-
" " " 1.6743, 22°	ιι		Gl S O ₄ . 4	H ₂ O	1.725	Topsoë. C. C. 4,
Magnesium sulphate Mg S O ₄ 2.6066 Karsten. Schw. J 65, 394. """"""""""""""""""""""""""""""""""""						H. Stallo. F.W.C.
Magnesium sulphate Mg S O ₄ 2.6066 Karsten. Schw. J 65, 394. Playfair and Joule M. C. S. 2, 401. W. C. S. 2, 401. Filhol. Ann. (3), 21 Filhol. Ann. (3), 21 415. Pape. P.A. 120, 367 Pettersson. U. N. A 1876. Schröder. J. P. C (2), 19, 266. Two modifications. Thorpe and Watts J. C. S. 37, 102. Bischof. Dana's			••		1,(10	
" " 2.706, m. of 2 Playfair and Joule M. C. S. 2, 401. " " 2.628 Filhol. Ann. (3), 21 415. Pape. P. A. 120, 367 Pettersson. U. N. A. 2.775, 14° 2.795, 14° 2.795, 14° 2.488	Magnesium sulphate		$Mg S O_4 -$		2.6066	Karsten. Sehw. J.
" " 2.628 — Filhol. Ann. (3), 21 415. Pape. P. A. 120, 367 Pettersson. U. N. A 1876. Schröder. J. P. C (2), 19, 266. Two modifications. Thorpe and Watts J. C. S. 37, 102. Bischof. Dana's			"		2.706, m. of 2_	Playfair and Joule.
" " 2.675, 16° Pape. P. A. 120, 367 Pettersson. U. N. A " 2.770, 13°.8 Pettersson. U. N. A " 2.795, 14° Pettersson. U. N. A 1876. Schröder. J. P. C (2), 19, 266. Two modifications. Thorpe and Watts J. C. S. 37, 102. Bischof. Dana's	ii ii				2.628	Filhol. Ann. (3), 21,
" " " " " " " " " " " " " " " " " " "						Pape. P.A.120,367.
" " 2.488 2.471 } } (2.488 2.471 } } (2.71					2.770, 13°.8	Pettersson. U.N.A.
" " 2.471 } { (2), 19, 266. Two modifications. Thorpe and Watts J. C. S. 37, 102. Bischof. Dana's				1	2.795, 14°	
" " 2.829 modifications. Thorpe and Watts J. U. S. 37, 102. Bischof. Dana's					2.488	Senroder. J. P. C. (2) 19 266 Two
" " 2.709, 15° Thorpe and Watts J. C. S. 37, 102. " Mg S O ₄ . H ₂ O 2.517, native_ Bischof. Dana's						modifications.
"	66 66				2.709, 15°	Thorpe and Watts.
THE PARTY OF THE P	"		Mg S O ₄ . H	I ₂ O	2.517, native	

	NAME.		Formu	LA.	SP. GRAVITY.	Аптновиту.
Magnesi	um sulpha	te	Mg S O ₄ . II.	2 ()	2.281, 16°	Pape. P. A. 120,
. 4	4.6		4.6		2.339, 14°	Pettersson, U. N. A.
6.6	6.6				2.840, 16°.5 2.885	1876. Schroder. J. P. C.
						(2), 19, 266.
s 6	4.4		s 6		2.478, m. of 2_	Playfair. J. C. S. 37, 102.
44	4.4		i 6		2.445, 15°	Thorpe and Wutts. J. C. S. 37, 102.
44			Mg S O ₄ . 2 1	H ₂ O	2.279	Playfair. J. C. S.
"	4.6		6.6		2.373, 15°	37, 102. Thorpe and Watts.
			Mg S O., 5 l	II., U	1.869, m. of 2.	J. C. S. 37, 102. Playfair. J. C. S.
						37, 102.
6.6	. 6		Mg S Of. 6		1.751 1.734, 15°	Thorpe and Watts.
4.6	7	nodi-			1.6151}	J. C. S. 27, 102. Schulze. P. A. (2),
44	fic	entions	4.4		1.8981	31, 229.
	. 6		Mg S O ₄ . 7	H ₂ O	1.6603	Hassenfratz. Ann. 28, 3.
	4.6		6 6		1.751	Mohs. See Bottger. Kopp. A. C. P.
1.6	4.6		6.6		1.674	Kopp. A. C. P. 36, 1.
6.6	6.6		. 6		1.660	Playfair and Joule. M. C. S. 2, 401.
6.6	4.6		1.1		1.6829, 4°	Playfair and Joule.
4.6	4.6		4.6		1.751	J. C. S. 1, 138. Filhol. Ann. (3),21,
4.4	4.4		£		1.685	415. Schiff, A. C. P. 107,
						64.
11	44		44			Buignet. J. 14, 15, Forbes. P. M. 32,
						135.
4.6	4.6		6.6		1.665, 15°.5	97 912
4.4	6.6		"		1.701, 16°	Pape. P. A. 120, 373.
4.6	4.6		"			Pettersson, U.N.A.
4.6			4.6			1876.
66			4.6		1.680 1.675	Schroder, J. P. C.
4.6	6.6		4.6			(2), 19, 266.
4.6					1,632	W. C. Smith. Am. J. P. 53, 148.
4 6	4.4		4.6		1.678, 15°	Thorpe and Watts. J. C. S. 37, 102.
Zinc su	lphate		Zn S O ₄		3.681, m. of 2	Playfair and Joule. M. C. S. 2, 401.
4.6			44		3.400	Karsten, Schw. J.
4.6					3.400	65, 394. Filhol. Ann. (3), 21, 415
4.6	4.6		11		. 3.435, 16°	Pape. P. A. 120,
						867.

			l				
	NA	ME.	Formula.		Sp. Gravity.	AUTHORITY.	
Zinc	sulphate		Zn S O ₄		3.520)		
11	11		(3.562 }	Schröder. J. P. C.	
4.6	11		"		3.580)	(2), 19, 266.	
4.6	4.6		"		3.6235, 15°	Thorpe and Watts. J. C. S. 37, 102.	
5.6	11		Zn S O ₄ . H ₂ O		3.215, 16°	Pape. P. A. 120, 369.	
"	"		٠٠		3.076	Schröder. J. P. C. (2), 19, 266.	
٤٤	66				3.259	Playfair. J. C. S. 37, 102.	
6.6	"				3.2845, 15°	Thorpe and Watts. J. C. S. 37, 102.	
4.6	"		$Zn S O_4$. 2 $H_2 O$		2.958, 15°	44 44	
4.6	"				2.206, 15° 2.056		
"	"		$Zn S O_4$. 6 $H_2 O$		2,056	Playfair. J. C. S.	
11	"				2.072, 15°	37, 102. Thorpe and Watts. J. C. S. 37, 102.	
11	"		$Zn S O_4$. $7 H_2 O$		1.912	Hassenfratz. Ann. 28, 3.	
6.6	"		4.6		2.036	Mohs. See Böttger.	
4.6	"		6.6		1.931, m. of 4.	Playfair and Joule. M. C. S. 2, 401.	
ιι	44		"		2.036	Filhol. Ann. (3), 21, 415.	
"	"		16		1.953	Schiff. A. C. P. 107, 64.	
"			"		1.957	Buignet. J. 14, 15.	
4.6	"				1.9534	Stolba. J. P. C. 97,	
"	"		1.4		1.976, 15°.5	503. Holker. P. M. (3),	
"	"		66		1.901, 16°	Pape. P. A. 120, 374.	
11			66		2,015	Schröder. Dm. 1873.	
4.4	44		16		1.953)	Schröder. J. P. C.	
4.4	11		11		1.955	(2), 19, 266.	
"	"		6.6		1.961	W. C. Smith. Am. J. P. 53, 148.	
"	"		6.6		1.974, 15°	Thorpe and Watts. J. C. S. 37, 102.	
Cadn	nium sul	phate	Cd S O ₄		4.447	Schroder. J. P. C. (2), 19, 266.	
	6				2.939	Buignet. J. 14, 15.	
	6		3 Cd S O_4 . 8 H_2	0	3.05, 12°	Giesecke. B. D. Z.	
		lphate	$\operatorname{Hg}_2\operatorname{SO}_4$		7.560	Playfair and Joule. M. C. S. 2, 401.	
Merc	urie sul	phate	$\operatorname{Hg} \operatorname{SO}_4$ $\operatorname{Ca} \operatorname{SO}_4$		6.466	Karsten. Schw. J.	
Care	ium suip	mate	Oa S O4		2.9271	65, 394.	
		"			2.955	Neumann. P. A. 23, 1.	
					3.102	Filhol. Ann. (3), 21, 415.	
		" Artificial cryst.			2.969	Manross. J. 5, 9.	
		" Anhydrite	٠،		2.983	Sehrauf. J.15,756.	

				5 0	
1	NAME.	Fo	RMULA.	Sp. Gravity.	AUTHORITY.
Calcium su	ilphate. Anhy	- CaSO		2.02, 15°	Fuchs, J. 15, 755.
drite.					
6.6		44		2.736)	
6.6		_= 66		2,759	Two lots, Schroder,
6.6				2.884)	Dm. 1873.
6.6	" Artificia	1		2.08	Gorgeu. Ann. (6),
	eryst.				4, 515.
£ s		11 2 Ca S	O ₄ . H ₂ O	2.757	Johnston, P. M
		9 11 0	0.11 7	0.000	121, 12, 325.
	46	Cn S O	. 2 II ₂ O		Leroyer and Dumas.
6.6				2.310	Mohs,
4.6				. 4.000	Breithaupt, Schw. J. 68, 291.
				2.331	Filhol. Ann. (3),
**				2.771	21, 415.
	" Gypsui			2.317. m. of 15	. Kenngett. J. 6,844.
	" Gypsu			2.3057	Stolba. J. P. C. 97,
••					503,
6.6	" Powder			2.2745, 19°,47	5179.
6.6	66 Es		6.	2.3228, 182.2	Pettersson, U. N. A.
4.4	" Splinter	3 -		2.8086, 18°	1874
6.6	6.6			2.3223, 18°	
Strontium	sulphate. Cel-	es- Sr S O		3.973	
tite.				0.4.700	Min.
4.6	66 66			_ 3.9593	Bendant. Dana's
				0.00	Min.
6.6	**			3.96	
6.6	11 11			3.86	Mohs.
1.6	66 66	~ -		_ 3.962, 15° _ 3.955	Kopp.
6.6				- 9.700	Neumann, P. A.
	" Artific	11		3.927	23, 1.
		IIII		- 9.3'6(Manross. J. 5, 9,
44	eryst	. 1		3.949	Schröder, P.A. Er-
**	-			0.1741.	ganz. Bd. 6, 622.
4.6	" Pp	. 44		8.5888	Karsten, Schw. J.
**	. I			0	65, 394,
66	66 61			8,770	- Filhol. Ann. (3, 21,
					415.
6.6				3,707	- Schroder, P. A. 106,
					1100
6.6	" Ppt. is	-) ((. 3.0679) 180	
4.6	" nited.			3,6949 (18"	
£ (" unigni			3.7383]	Schweitzer. Proc.
4.6				3.9502	Amer. Aso. 1877.
4.4	to t			3,9514	201.
4.4				3.9702	
6.6	" Artif. c			3.0	Gorgeu, Ann. (6).
		•			4, 515.
Barium s	ulphate	Ba S	0,	4.12	- Breithaupt
6.6	11	- 61		1.116	- Mohs. See Bottger
4.6	"			4,2003	Karsten, Schw. J.
					65, 394.
£ £				4,4605, 0°	Kopp.
	" Berito			4.429	
					23, 1.
4.6	6.6			4.4773) ex-	1 (4. ROW, 1. 21. 10
6.6	11 11			4.4872) of 7	. 1) 400.

	NAME	•	1	or:	MULA.	Sp. Gra	VITY.	Аптновіту.
Bariums	sulphate	. Barite)	Ba S	04		4.4794))
6.6	" F	owder.	11			4.4804 5		G. Rose. P. A. 75,
66	"	Precip				$\{4.5271\}$) 409.
"		rtif. eryst.				4.179		Manross. J. 5, 9.
	4.1	itii. Cryst.	l					Precipitates in dif-
11	4.6		16			$\left\{ \begin{array}{c} 4.022 \\ 4.065 \end{array} \right\}$]]	ferent conditions.
44	66			-~-		$\{4.503\}$]	Schröder. P. A.
							Į	106, 226.
44		t. ignited.		~~~		$\begin{bmatrix} 4.2942 \\ 4.2688 \end{bmatrix}$	(Schweitzer. Univer-
	" Pr	ot. dried at 95°.				4.2000	180	sity of Missouri.
44		ot				4.4591	10	Special pub.,1876.
"	" "		6.6			4.4881		
4.6	66 66					4.3958	14°.9)
"	11 11		46			4.3969	11 10	E. Wiedemann. P.
"	((((66			$\{4.3962\}$	14°.5	M. (5), 15, 371.
		rtif. cryst.	66			4.3307)	50	Gorgeu. Ann. (6),
**	A	run. eryst.				1.11-1.	00	4, 515.
Lead sul	lphate		Pb S	0,		6.298		Mohs.
"			4.6			6.1691 _		Karsten. Schw. J.
								65, 394.
66	"					6.30		Filhol. Ann. (3),
"	6.6		4.6			6.35		21, 415. Smith. J. 8, 969.
44			44			6.20		Field. J. 14, 1022.
66		ative	"			6.329		Schröder. P. A. Er-
44		recip	4.6			6.212	}	ganz. Bd. 6, 622.
4.6						5.96, 179		Pettersson. U. N.
tt			6.6			5.97, 169		A. 1874.
	" A	rtif. eryst.	4:			6.16		Gorgeu. Ann. (6),
Managan	020 22122	2016	Mn S	\circ		3.1, 14°		4, 515. Bödeker. B. D. Z.
arangan	ese stripi	nate	11	-		3.192, 10		Pape. P. A. 120, 368.
46	4.6		66			2.954		Schröder. Dm. 1873.
61			61			2.975		Schröder. J. P. C.
								(2), 19, 266.
"	£ L					3.235, 14		Pettersson. U. N.
	e e		"			3.260, 14 3.386		A. 1876. Playfair. J. C. S.
	**			-		9.900		37, 102.
4.6	1.4		66			3.282, 1	5°	Thorpe and Watts.
	66		31 0	0	11.0	0.050.1	10.0	J. C. S. 37, 102.
"	44		MnS	O_4 .	H ₂ O	$\begin{bmatrix} 2.870, 14 \\ 2.903, 14 \end{bmatrix}$		Pettersson. U. N.
44				6.6		2.905, 19		A. 1876.
"	4.6					3.210		Playfair. J. C. S.
								37, 102.
"	"			66		2.845, 1	5°	Thorpe and Watts.
		61 11 1				0.15		J. C. S. 37, 102.
4.6	66	Szmikite		4.6		3.15		Schröckinger. J. 30, 1296.
44			MnS	0	2 H ₂ O	2.526, 1	50	Thorpe and Watts.
			211113	4.	W 112 U = - = =	2.020, 1		J. C. S. 37, 102.
44	"		Mn S	O_{4}	3 H, O	2.356, 1	5°	11
11	. (Mn S	O_4 .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.261		Topsoë. C. C. 4, 76

	NAME		FORMULA		SP. GRAVITY.	AUTHORITY.
			Mn S O ₄ . 5 H ₂	0	1.884	Gmelin.
6.6	4.6		6.6		2.087)	Корр. А. С. Р.
. 6	. 6		"		2.095 { 2.059, 16°	36, 1, Pape. P. A. 120, 372.
4.4	4.4		4.4		2.099, 16°.2	
4.4	4.6		4.6		2.103, 17°.6	Pettersson, U. N. A.
4.6	+ 6 + 6		* £		2.107, 150.2	1876.
* *			••		2.103, 15°	J. C. S. 37, 102.
Ferrous	sulphat	e	Fe S O ₄		2.841	Filhol. Ann. (3), 21, 415.
4.6	4 4				3.138	Playfair and Joule. M. C. S. 2, 401.
6.6	6.6				3.48	Playfair. J. C. S. 37, 102.
11	4.6		(1		3.346, 15°	Thorpe and Watts. J. C. S. 37, 102.
4.6	4.4		Fe S O ₄ . H ₂ O.			Playfair. J. C. S. 87, 102.
	4.6				,	Thorpe and Watts. J. C. S. 37, 102.
4.4	4.6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2.773, 15° 2.268, 16°	Pape. P. A. 120,
6.6	6.6		Fe S O ₄ . 4 H ₂	Ō	2.227, 150	371. Thorpe and Watts. J. C. S. 37, 102.
4.4	6.6		Fe S O ₄ . 7 H ₂	0	1.8399	11 ussenfratz. Ann. 28, 3.
4.4	4.4		4.6		1.857, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
	4.6		6.6		1.8889, 4°	Playfair and Joule. J. C. S. 1, 138.
4.6	4.6		6.6		1.904	Filhol. Ann. (3), 21, 415.
1.6	1.6		. 6		1.884	Schiff, A. C. P. 107, 64.
6.6	4.4	-,	4.4		1.902	Buignet. J. 14, 15.
6.6	6.6		4.6		1.851, 15°.5	Hölker, P. M. (3), 27, 214.
6.6	6.6		4.6		1.9854, 16°	Pape. P. A. 120, 372.
"	6.4		4.4		1.881	Schroder. Dm. 1873
4.6	4.4				1.897	Schroder, J. P. C. (2), 19, 266.
+4	4.4		46		1.896	W. C. Smith. Am. J. P. 53, 145.
	ilphate.		Fe ₂ (S O ₄) ₃		3.097, 18° } 3.098, 18°.5 }	Pettersson. U. N.
4.4	66		44	-	3.103, 18°.2	A. 1874.
Coquim			Fe ₂ (S O ₄) ₃ . 9 I	I, 0	2.0-2.1	Dana's Mineralogy.
44			11		2.092	Breithaupt. See Z. K. M. 3, 520.
Ihleite			Fe ₂ (S O ₄) ₃ , 12 I	H ₂ O		Schrauf. N. J. 1877,
Nickel s	ulphate		Ni S O4		3.643, 16° }	252. Pape. P. A. 120, 369. Schroder. J. P. C.
11	4.6				3.696}	(2), 19, 266.

	NAM	IE.	Formu	LA.	SP. GRAVITY.	AUTHORITY.
Nickel	sulpha	te	Ni S O ₄		3.526	Playfair. J. C. S. 37, 102.
66	66				3.418, 15°	Thorpe and Watts. J. C. S. 37, 102.
4.6	6.6		Ni S O4. 6 H	I, O	2.042 \	
"	6.6		Ni S O ₄ 6 I		2.074 }	Topsoë. C. C. 4, 76.
	" "		"		2.031, 15°	Thorpe and Watts. J. C. S. 37, 102.
	66		Ni S O ₄ . 7 I	H ₂ O	2.037	Kopp. A.C. P. 36,1.
6.6	""		••		1.991	Schiff. A. C. P. 107, 64.
23		Morenosite_	44			Fulda. J. 17, 859. Pape. P. A. 120,
"	66		"		,	Pape. P. A. 120, 373.
"	44		6.6		1.955, 14°	Pettersson. U.N.A. 1876.
6.6	"		44		,	Thorpe and Watts. J. C. S. 37, 102.
Cobalt	sulpha	te	Co S O ₄		3.531	Playfair and Joule. M. C. S. 2, 401.
6.6	4.4				3.614, 15°.6	Pettersson. U.N.A.
4.6	4.6				3.615, 16°	1876.
"					3.444	Playfair. J. C. S. 37, 102.
"	"				,	Thorpe and Watts. J. C. S. 37, 102.
44	٤ ٤		CoSO4. H2	0	3.125, 15°	"
"	"		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O		Playfair. J. C. S. 37, 102.
"	4.4		""		2.668, 15°	Thorpe and Watts. J. C. S. 37, 102.
	4.6		Co S O4. 4]	H ₂ O	2.327, 15°	
""	66		Co S O4. 5	H ₂ O	2.134, 15°	
	"		Co S O ₄ . 6 I	$H_2 \cup \dots$	2.019, 15°	
				H ₂ O		Sehiff. A. C. P. 107, 64.
	"				1	Pettersson. U. N.
"	66		"			A. 1876.
						(2), 19, 266.
44			44		,	J. C. S. 37, 102.
• •	•	ate	Cu S O ₄		3.631	Playfair and Joule. M. C. S. 2, 401.
4.6	4.6		((3.572	Karsten. Schw. J. 65, 394.
6.6	"				3.530	Filhol. Ann. (3), 21, 415.
	"				3.527, 16°	
"	66				3.707, 19°	
66	4.6				3.82, 170.1)	Pettersson, U. N.
4.6	6.6				_ 3.83, 18° }	A. 1874.
"	66	~~~~~			3.651, 11°	Hampe. Z. C. 13, 367.
44	"		- '		3.83	Schröder. J. P. C. (2), 19, 266.

Name. Copper sulphate			FORMULA.		SP. GRAVITY.	Ацтновиту.
					3.606, 15°	Thorpe and Watts.
	6.6		Cu S O ₄ . Π_2 Ō		3.125, 16°	J. C. S. 37, 102, Pape. P. A. 120, 370.
6.6	6.6		6.6		3.235, 179.2	010.
6.6	6.6		6.6		3.239, 18°.1	Pettersson. U. N.
6.6	s. 6		6.4		3,246, 18°	A. 1871.
4.4	6.6		4.4		5,038	Schroder, J. P. C.
4.6	6.6		4+		3.206	Playfair. J. C. S. 37, 102.
"	4.6		14		3.289, 15°	Thorpe and Watts. J. C. S. 37, 102.
6.6	4.6		$\mathrm{Cu}\mathrm{S}\mathrm{O}_4.2\mathrm{H}_2\mathrm{O}$		2.808, 16°	Pape. P. A. 120,
6.6	6.6		6.6		2.878)	Playfair. J. C. S.
4.6	6.6		4 6 6		2,891	37, 102,
4.4	4.4		44		2.953, 15°	Thorpe and Watts. J. C. S. 37, 102.
4.4	4.4		Cu S O ₁ . 3 H ₂	()	2.663, 150	44 4.
4.6	4.		2 Cu S O ₄ , 7 H Cu S O ₄ , 5 H ₂	2	2,648, 15° 2,1943	Hassenfratz. Ann.
			Cu 5 04. 11 112	.,	B.1779	28, 3.
4.6	1.6		6.6		2.2	Gmelin.
4.6	h 6	Native	6.6		2.207	Breithaupt. J. P. C. 11, 151.
11	4.6		8.8		9 0	Kopp. A. C. P. 36, 1.
4.4	4.6		6.6		2,154	Playfair and Joule. M. C. S. 2, 401.
	6.6		6.6		2.286	Filhol. Ann. (3), 21, 415.
4.6	4.4				2.2422)	Playfair and Joule.
1.1	44				2.2781 40	J. C. S. 1, 138.
11	11				2,2901 }	Buignet, J. 14, 15.
4.6			1.6		2.2778	Stolba. J. P. C. 97,
						503,
4.6	6.6		6.6		2.268, 160	Pape. P.A. 120, 371.
4.4	4.4		4.6		2.245, 150.0	Favre and Valson.
			4.4			C. R. 77, 579.
4.6	4.6		14		2.256, 19°, (Pettersson, U. N.
11	4.4		1 (4	- I Dark	2.202, 200	A. 1874. Schroder, Dm. 1873.
	4.6		6.6		2.263	Schröder, J. P. C.
6.6	4.6		4.4		2.206	(2), 19, 266.
4.6	4.6		16		2.830	Rudorff, Ber. 12,
4.6	6.6				2.212	251. W. C. Smith. Am.
£ £	6.6				2.251, 150	J. P. 53, 145. Thorpe and Watts.
Chromi	e sulpl	nate	Cr ₂ (S O ₄) ₃	·	2.743, 17°.2	J. C. S. 37, 102. Favre and Valson.
4.6	4	4	14		3.012	C. R. 77, 579. Nilson and Petters-
4.4		.4	Cr ₂ (S O ₄) ₃ . 13	H ₂ Ō	1.696, 22°	son. C. R. 91, 232. Schrotter. P A. 53, 513.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Chromic sulphate	Cr ₂ (S O ₄) ₃ . 15 H ₂ O ₋	1.867, 17°.2	Favre and Valson. C. R. 77, 579.
Aluminum sulphate	Al ₂ (S O ₄) ₃	2.7400	Karsten. Schw. J.
		2.171	65, 394. Playfair and Joule.
ιι ιι	£ £	2.672, 22°.5	M. C. S. 2, 401. Favre and Valson. C. R. 77, 579.
:: :: ::		$\left\{ \begin{array}{c} 2.710 \\ 2.716 \end{array} \right\}$ 17° $\left\{ \begin{array}{c} \end{array} \right.$	Pettersson. U.N.A. 1874.
	$Al_2 (S O_4)_3$. $18 H_2 O$	1.671, m. of 2.	Playfair and Joule.
· · · · · · · · · · · · · · · · · · ·		1.569	M. C. S. 2, 401. Filhol. Ann. (3),
	l	1.767, 22°.1	21, 415. Favre and Valson.
Indium sulphate	$\operatorname{In}_2\left(\operatorname{SO}_4\right)_{3}$	3.438	C. R. 77, 579. Nilson and Petters- son. C. R. 91, 232.
Scandium sulphate Yttrium sulphate	$Y_2 \stackrel{\text{(S O}_4)_3}{\underset{\iota_{\iota}}{\text{(S O}_4)_3}}$	2.579 2.606, 19°.4)	(t) (t) (t)
tt til ti	1 2 (5 04/3	2.615, 15°	Pettersson, U. N. A.
(1 11		2.626, 19°.3	1876.
"		2.612	Nilson and Petters-
и и	$Y_2 (S O_4)_3$. $8 H_2 O_{}$	2.52	son. C. R. 91, 232. Cleve and Hoeglund.
	· · ·	2.53	B. S. C. 18, 200. Topsoë. Quoted by Pettersson.
		2.531, 19°.6	1 ettersson.
		2.537, 19°.4	Pettersson. U.N.A.
11 11			1876.
**		2.540	Nilson and Pettersson. C. R. 91,232.
Erbium sulphate	Er ₂ (S O ₄) ₃	3.518, 14°.5	Pettersson. U. N.
· · · · · · · · · · · · · · · · · · ·	(4	3.524, 14°.2	A. 1876.
it it	"	3.678	Nilson and Pettersson. C. R. 91, 232.
	Er ₂ (S O ₄) ₃ . 8 H ₂ O		Cleve and Hoeglund. B. S. C. 18, 200.
11 11	11	3.230, 16°.4	D-44 II 37
(((((1	$\left\{\begin{array}{c} 3.242, 16^{\circ}.6 \\ 3.248, 17^{\circ}.1 \end{array}\right\}$	Pettersson. U. N. A. 1876.
		3.180	Nilson and Petters-
77441:	N. (U.O.)	0 700	son. C. R. 91, 232.
Ytterbium sulphate	$\begin{array}{c} {\rm Yb_2~(S~O_4)_3} - {\rm Yb_2~(S~O_4)_3}. \end{array}$	8.793 3.286	11 11
Lanthanum sulphate	$La_2 (S O_4)_3$	3.53, 13°.6 }	Pettersson. U. N.
"	11	3.67, 15°.4	A. 1876.
· · · · · · · · · · · · · · · · · · ·		3.600	Nilson and Petters-
11 11		3.544 \ 150 }	son. C. R. 91, 232. Brauner. S. W. A.
11 11		$\begin{bmatrix} 3.544 \\ 3.545 \end{bmatrix}$ 15° $\left\{ \begin{bmatrix} \\ \end{bmatrix}$	June, 1882.
	La ₂ (S O ₄) ₃ . 9 H ₂ O	2.827	Topsoë. Quoted by Pettersson.
11 11		2.848, 17°.2	Pettersson. U. N.
tt tt		2.864, 17°.4	A. 1876.
		2,853	Nilson and Petters-
		1	son. C. R. 91, 232.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cerium sulphate	Ce ₂ (S U ₄) ₃	3.916, 12°.5	Pettersson, U. N.
11 11	(:	3.912	A. 1876. Nilson and Petters-
((Ce. (SO.), 5 H. O.	3.214, 140,2	son. C. R. 91, 232. Pettersson, U. N. A.
"	Ce ₂ (S O ₄) ₃ , 5 H ₂ O	3.232, 149	1876.
		3.220	Nilson and Petters-
Didymium sulphate	Di. (S O.),	3.722, 149,6	Pettersson, U. N. A
		3.756, 15 .6	1876.
44	11	3.705	Nilson and Petters-
			son. C. R. 91, 232.
	4.	3.662 3.672 18°.3	Cleve. U. N. A.
4.6		8.672) 181.9	1885.
	Di ₂ (S O ₄) ₃ . S H ₂ O	5,45	Cleveand Hoeglund. B. S. C. 18, 200.
46 6.	66	2.877, 16°.4)	Pettersson, U.N.A.
	4.6	2.886, 14°.8 j	1876.
"		2.878	Nilson and Petters- son. C. R. 91, 262.
	6.	2.827, 149.8	0.11.01,272.
11	1.6	2.828. 160 2 4	Cleve, U. N. A. 1885.
	41	2.831, 16°	
Samarium sulphate			4.6
6.	Sm_2 (S $\operatorname{O}_4^{\bullet}$)". S $\operatorname{II}_2\operatorname{O}$	2.928) 150 0	4.
44	**	2.932	
Thorium sulphate	Th (S O ₁) ₂	4.053, 22°.8	Clarke, A. C. J. 2, 175.
"	**	4.2252, 17°	Kruss and Nilson.
11 11	2 Th (S $\mathrm{O_4)_2},~9~\mathrm{H_2}~\mathrm{O},$	3,398, 24°	Ber. 20, 1675. Clarke. A. C. J. 2, 175.
	Th $(S \Theta_1)_2,~9 H_2 \Theta_{-+}$	2.767	Topsoe, B. S. C. 21, 120.
Uranyl sulphate	U Θ_2 . S Θ_4 . 3 Π_2 $\Theta_{}$	3.280, 16°.5	

2d. Double and Triple Sulphates.*

2	NAME.		For	MULA.	SP. GRAVITY.	А СТНОВІТУ.
Sodium hy	drogen su	lphate	Na H S O	4	2.742	Playfair and Joule. M. C. S. 2, 401.
pliate.						Thomson. Ann. Phil. (2), 10, 435.
4.6	6.6	44	h. b		2.168	Jacquelain. A. C. P. 32, 284.
						Playfair and Joule. M. C. S. 2, 401.
6.	6.0		* *		2.17767, 47	Playfair and Joule. J. C. S. 1, 138.

[·] Exclusive of basic or partly basic double sulphates.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY,
Potassium hydrogen sulphate. " "-	K H S O ₄	2.305, cryst 2.354 \ cryst.	Schröder. Dm.
		2.355 ∫ mass. 2.091, after fu-	1873.
	44	sion. 2.245, cryst	Wyrouboff. B. S.
Ammonium hydrogen sulphate.	Am H S O ₄	1.761, m. of 2_	M. 7, 7. Playfair and Joule. M. C. S. 2, 401.
ii ii ii		1.787	Schiff. A. C. P. 107, 64.
Sodium potassium sulphate. "	Na ₂ S O ₄ 3 K ₂ S O ₄	2.668 $\}$	Two lots. Penny. J. 8, 333.
Lithium ammonium sulphate.	Am Li S O ₄	1.164) two mod 1.204) ifications	Wyrouboff. B. S. M. 5, 42.
Sodium ammonium sul- phate.	Am Na S O_4 . $2 H_2 O$	1.63	Schiff. A. C. P. 114, 68.
Potassium ammonium sul- phate.	Am K S O ₄	2.280	Sehiff. A. C. P. 107, 64.
Guanovulite	$Am_2 K_7 H_3 (S O_4)_6.$	$\left\{ \begin{array}{c} 2.33 \\ 2.65 \end{array} \right\}$	Wibel. Ber. 7, 393.
Glauberite	Na ₂ Ca (S O ₄) ₂	2.767	Breithaupt. Schw. J. 68, 291.
Syngenite	K_2 Ca (S O_4) ₂ . H_2 O	2.64 2.603, 17°.5	Ulex. J. 2, 776. Zepharovich. J.25,
"	· · · · · · · · · · · · · · · · · · ·	2.252	Rumpf. Dana's Min., 2d Supp.
Dreelite Polyhalite	$Ca S O_4$. 3 Ba $S O_4$. $K_2 Ca_2 Mg (S O_4)_4$.	3.2—3.4 2.7689	Dana's Mineralogy.
Krugite	${\rm K_2~Ca_4~Mg~(S~O_4)_6.}\atop {\rm 2~H_2~O.}$	2.801	Precht. Ber. 14, 2138.
Simonyite	$Na_2Mg(SO_4)_2$. $4H_2O$.	2.244	Tschermak. J. 22, 1241.
Loewite	$Na_4Mg_2(SO_4)_4$. $5H_2O$.	2.376	Haidinger. J. 1, 1220.
Krönnkite	$\mathrm{Na_2Cu(SO_4)_2}$. $2\mathrm{H_2O}$.	2.5	Domeyko. Dana's Min., 3d Supp.
•			, , , , , , , , , , , , , , , , , , , ,
Potassium magnesium sulphate.	$K_2 \text{ Mg (S O}_4)_2$	2.676	Playfair and Joule. M. C. S. 2, 401.
	"	$\left\{ \begin{array}{cccc} 2.735 & \\ 2.750 & \end{array} \right\}$	Schröder. Ber. 7, 1117.
" "	$K_2 Mg (SO_4)_2$. $6H_2O$.	$2.076, \text{ m. of } 2_{-}$	Playfair and Joule. M. C. S. 2, 401.
<i>u u u</i>		2.05319, 4°	Playfair and Joule. J. C. S. 1, 138.
" " "		1.995	Schiff. A. C. P. 107, 64.
" "	"	2.024	Topsoë and Christ- iansen.
CC CC CC		2.034	Schröder. Dm. 1873.
(((((($\left\{ egin{array}{cccccccccccccccccccccccccccccccccccc$	Schröder. J. P. C.
Ammonium magnesium sulphate.	Am ₂ Mg (S O ₄) ₂		(2), 19, 266.

NA	ME.		FORMULA.	SP. GRAVITY.	AUTHORITY.
Ammonium	magnes	ium	$Am_2 Mg (S O_4)_2$	2.095	Schroder. J. P. C.
sulphate.	::			2.141	(2), 19, 266.
i i	1.1		${\rm Am_2Mg}({\rm SO_4})_2.6{\rm H_2O}$	1.696	Guielin.
1.1	6.6		+4	1.721	Playfair and Joule.
	4.			1 61 40	M. C. S. 2, 401.
4.6	6.6			1.71686, 4°	Playfair and Joule.
1.5	4.4		66	1.680	J. C. S. 1, 138.
				1.000	Schiff. A. C. P. 107,
6.6	1.1		"	1.762	Buignet. J. 14, 15.
6.6	6.6		"	1.720	Topsoe and Christ-
					iansen.
6.6	"		44	1.723 }	Schroder, J. P. C.
			75 77 (11.0.)	1.727	(2), 19, 266.
Potassium zi:	ne sulpha	ste	$K_2 \operatorname{Zn} (S O_4)_2$	2.816	Playfair and Joule.
4.6 4			"	2.946	M. C. S. 2, 401.
6		-	46	2.891	Various lots, dif-
11 1	4.6		44	3.027	ferently treated.
	6.6			2.703	Schroder, J. P. C
4.4			()	2.733	(2), 19, 266.
			$K_2 Zn (SO_4)_2$. 6 $H_2 O$		Kopp. A. C. P. 36, 1
	6 66			2.245	Playfair and Joule M. C. S. 2, 401.
(1				2.24034, 4°	Playfair and Joule
				2.158	J. C. S. 1, 138. Schiff, A. C. P. 107
66 6			4.6	2.249	64. Schroder, Dm. 1873
4.6 6				2.285)	Schroder. J. P. C
6.6 6			"	2.240	(2), 19, 266.
Ammonium	zine sulp	hate	$\operatorname{Am}_2\operatorname{Zn}\left(\operatorname{SO}_4\right)_2$	1) 1)1)1) m:mmm	Playfair and Joule
				1	M. C. S. 2, 401.
4.6	46 66			2.258	Schroder, J. P. C
66	66 66			2.288	(21, 19, 266.
			$\mathrm{Am_2Zu}\left(\mathrm{SO_4}\right)_2$. $6\mathrm{H_2O}$		Playfair and Joule M. C. S. 2, 401.
6.6	(6)		11	1.910	Schiff, A. C. P. 107
"	44 (1	,		1.010	61.
	44)		11	1.919}	Schroder, J. P. C
4.4	4.4 4		16	1.925	(2), 19, 266.
Potassium c	admium	sul-	K2 Cd (SO4)2. 6 H2 U		Schiff. A. C. P. 107
phate.	(10111110111		112 01 (10 01 12 11 11 11 11 11		64.
Ammonium	eadmiun	sul-	Am, Cd (SO4), 6H, C	2.073	
phate.					
	anganes	e sul-	$K_2 \operatorname{Mn} (S O_4), \dots$	3,008, m. of 2.	Playfair and Joule
phate.	+ 6	6.6		9 (191	M C. S. 2, 401.
	11			8.031	Schroder, Ber. 1 1118.
16	6.6	4.6		2.954	Schroder, J. P. C
					(2), 19, 266,
4.6	6.6	4.4	$K_2 \operatorname{Mn} (SO_4)_2$, $4 H_2 O$.	2.813	- 44
Ammonium	manga	Bush	Ain, Mn (SO,), 6 H2 C	1.930	Thomson, Gm. E
sulphate.			4.4	1 (-)()	1, 71.
1.1	6.6	44	1	1.823 1.827	Schroder. J. P. (2), 19, 266.
4.6	6.6				

			1		i i	
N	VAME.		FORMUL	Α.	SP. GRAVITY.	AUTHORITY.
Potassium	iron sul	phate	$\mathrm{K}_{2}\mathrm{Fe}(\mathrm{S}\mathrm{O}_{4})_{2}.$	6 H ₂ O ₋	2.202	
4.6	44				2.189	M. C. S. 2, 401. Sehiff. A. C. P. 107, 64.
Ammonium	n iron su	lphate	Am ₂ Fe(SO ₄)	2. 6 H ₂ O	1.848, m. of 2	
t t	11				1.813	Sehiff. A. C. P. 107, 64.
tt	""		"		1.886	
Potassium r	niekel sv	lphate	$K_2 \text{ Ni (S O}_4)_2$		2.897, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
11	tt				3.086	Schröder. Ber. 7, 1117.
4.4	46		K2 Ni (SO4)2	6 H ₂ O	$\left\{ \begin{array}{ccc} 2.111 & \\ 2.136 & \end{array} \right\}$	Kopp. A. C. P. 36, 1.
11	4.6	"	5.5 5.5 5.6		1.921 1.922 }	Schröder. J. P. C. (2), 19, 266.
Ammonium phate.	nieke	4.6	Am ₂ Ni (SO ₄) ₂	6 H. O	1.783 - 1.915 - 1.915	Kopp. A. C. P. 36, 1.
, 11	ιι obalt su	" "	$K_2 \text{ Co } (S O_4)_2$		1.921)	Schröder. Ber. 7,
	11	_	K ₂ Co (SO ₄) ₂ . 6			1118. Schiff. A. C. P. 107,
"	4.6	66	"	-	2.205, 16°.8)	64. Pettersson. U. N.
Ammonium	eobal:	t sul-	$\mathrm{Am}_{2}\mathrm{Co}\left(\mathrm{SO}_{4} ight)_{2}$. 6H ₂ O	2.214, 16°.6 } 1.873	A. 1876. Sehiff. A. C. P. 107,
phate.	_ "	"	""		1.902, 18°)	64. Pettersson. U. N.
4.6	r r r r	ει	5.5		1.907, 16°.6 } 1.893	A. 1876. Schröder. J. P. C.
Thallium co	balt sul	phate_	$\mathrm{Tl}_2\mathrm{Co}\left(\mathrm{SO}_4\right)_2.$	6 H ₂ O_	3.729, 16°.2)	(2), 19, 266.
6.6	11		"		3.769, 16° 3.803, 16°.4	Pettersson. U. N. A. 1876.
			$\mathrm{K_2}\;\mathrm{Cu}\;(\mathrm{S}\;\mathrm{O_4})_2$		2.797, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
££	44	۱,	"		2.784, 20°.5	Favre and Valson. C. R. 77, 579.
"	"	ιι	11		$\frac{2.754}{2.779}$ \\ \\ \\ \\ \\ \ \ \ \ \ \ \ \ \ \ \	Sehröder. Dm. 1873.
44	"	4.6	6.6		2.789	Senroder, Dm. 1875.
"	1.6	٠٠	$\mathrm{K}_{2}\mathrm{Cu}\;(\mathrm{S}\;\mathrm{O}_{4})_{2}.$	6 H ₂ O	2.244, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
i t	6.6	"	"		2.16376, 4°	Playfair and Joule. J. C. S. 1, 138.
ć t	6.6	11	t t		2.137	Schiff. A.C.P.107, 64.
1.6	4.6	"	"		2.186, 18°.8	Favre and Valson. C. R. 77, 579.
4.6	"	"	11		2.224 2.221, 16°	Sehröder. Dm. 1870. Pettersson. U. N. A.
Ammonium	copper	sul-	Am, Cu (S O4)		2.197, m. of 2	1876. Playfair and Joule.
phate.	copper	"	11	-	2.348	M. C. S. 2, 401. Schröder. J. P. C.
						(2), 19, 266.

NAME.			FORMULA.	Sp. Gravity.	AUTHORITY.
		sul-	$\mathrm{Am_2Cu}(\mathrm{SO_4})_2$. $\mathrm{6H_2\overline{O}}$	1.756}	Kopp. A. C. P.
phate.	6.6	"	44	1.757 { 1.891, m. of 2.	36, 1. Playfair and Joule.
4.6	4.4	"	44	1.89978, 4°	M. C. S. 2, 401. Playfair and Joule.
**		"		1.931	J. C. S. 1, 138. Schiff. A. C. P.
6.6		"			107, 64. Pettersson, U.N.A.
6.6	6.6	11	6.	1.870, 220	1876. Evans. F.W.C.
Magnesium .	zine sulp	hate_	$MgZn(SO_4)_2$. 14 H_2O	1.817	Schiff. A. C. P. 107, 64.
Magnesium e phate.	eadmiun	ı sul-	$\operatorname{Mg}\operatorname{Cd}(\operatorname{SO}_4)_2$. $14\operatorname{H}_2\operatorname{O}$	1.983	44 44
Magnesium Magnesium			$\frac{\text{Mg Fe}(\text{SO}_4)_2}{\text{Mg Cu}(\text{SO}_4)_2}$. $\frac{14 \text{ H}_2\text{O}}{14_2 \text{ H}}$		ee ee
phate. Fauscrite			${ m MgMn}_2({ m SO}_4)_3.15{ m H}_2{ m C}_4$	1.88	
Zinc iron m phate. N		e sul-	Zn Fe Mn $_5$ (S O $_4$ $_7$. 28 H $_2$ O.	2.1627	901. 1les. A. C. J. 3, 420
Mendozite_			Nn Al (SO ₄) ₂ . 11 H ₂ (1.88	Thomson. Dana's
Sodium aluı			Na Al (SO ₄) ₂ . 12 H ₂ C		Min.
	6.6		"	1.567 1.686, 18°	Buignet. J. 14, 15
4.6	4.6			. 1.693, 18°	Pettersson. U. N
6.6				1.694, 18°.2)	A. 1874. Soret. J.C.S. 50, 596
Potassium alum.*	alumi	num	K Al (S O ₄) ₂	V.	Playfair and Joule M. C. S. 2, 401.
66	11		6.6	$= \frac{2.6846}{2.6905} $ $= 15^{\circ}$ $= \frac{1}{2.6905}$	Pettersson. U. N A. 1876.
	4.4		K Al (S O ₄) ₂ . 12 H ₂ (1.7109	Hassenfratz. Ann 28, 3.
4.4			- 44	1.753	Dufrenov.
4.6	6.6		-	1.724 1.726, m. of 4	Kopp. A. C.P. 36,1 Playfair and Joule
6.	4.4			1.75125, 4°	M. C. S. 2, 401. Playfair and Joule
6.6	4.6		-	1.711	J. C. S. 1, 138. Schroder, Dm. 1873
4.4	6.6				V V V
4.6	4.6		- 44	1.753, 210	Pettersson, U. N
4.6	6.6		- 44	1.755, 20°.5) 1.753	A. 1874. W. C. Smith. Am
					J. P. 53, 145.
8.8	4.4		-		Schiff. A. C. P 107, 64.
6.6	6.6		- 66	1.757	Buignet. J. 14, 15
6.6	4.4		-	_ 1.7505	Stolba. J. P. C 97, 503.

^{*} The dehydrated alums are included here for convenience.

N	TAME.		FORMULA.	Sp. Gravity.	AUTHORITY,
Potassium alum ""	alur	ninun	- " " - "	1.7542, 10° 1.7538, 20°	
66 66 66 66 66		((- (- (((((((((((((((- (1	1.7526, 40° 1.7521, 50° 1.7501, 60° 1.7474, 70°	Spring. Ber. 15, 1254, and Bei. 6, 648. Also a series in Ber. 17, 408.
C & C & C & C & C & C & C & C & C & C &		" -	-	1.7067, 90° J	Spring. Ber. 16,
Rubidium a	6.6		Rb Al ₍ (S O ₄) ₂	1 550 100 5	2724. Soret. C. R. 99, 867. Pettersson. U. N. A. 1876.
6.6	"	" -	- 4,7	1.874	Redtenbacher, S.W. A. 51, 248. Pettersson, U.N.A.
6 C C C C C C C C C C C C C C C C C C C	-6	er _ er _ er _	- 46	1.8617 1.8667, 0° 1.8648, 10° 1.8639, 20°	1874.
66 66 66	66	- 11 - 11 - 11	-	1.8631, 40° 1.8624, 50° 1.8619, 60° 1.8611, 70°	Spring. Ber. 15, 1254, and Bei. 6, 648. Also a series
e e e e e e e e e e e e e e e e e e e	6 C C C C C C C C C C C C C C C C C C C	££ _		1.8578, 90° 1.8554, 100° 1.883 \ 20.°6 {	in Ber. 17, 408. Setterberg. Ber. 15, 1740.
Cæsium alu			$CsAl(SO_4)_2.12H_2O_3$	1.852	Soret. C. R. 99, 867. Redtenbacher. S.W. A. 51, 248.
66 66 66	66 66 66	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11		2.0215, 0° 2.0210, 10° 2.0205, 20°	Pettersson. U. N. A. 1874.
6 C 6 C 6 C 6 C 6 C 6 C	22 22 23 24 24	## ##	-	2.0189, 50° 2.0186, 60° 2.0173, 70°	Spring. Ber. 15, 1254, and Bei. 6, 648. Also a series in Ber. 17, 408.
£ £	ee ee	:: -	- "	0.0001 1000 1	
6.6	61	" _		once pressed. 2.005, 20°, twice pressed	Spring. Ber. 16, 2724.

NAME.			FORMULA.	12	SP. GRAVITY.	Λ uthority.	
Cæsium alumi	num alum		Cs AI (SO ₄) ₄ . 12 H ₂ O		1.911	Soret. C. R. 99, 867.	
Ammonium	aluminun		Am Al (S O4)2	1	2.000	Playfair and Joule.	
alum.				ш		M. C. S. 2, 401.	
. 6	"		$A \text{ m Al } (SO_4)_2. 12 \text{ H}_2 \text{ O}$)]	1.602	Breithaupt. J. P. C. 11, 151.	
6.6				. 1	1.625		
4.6	4.6		4.6		1.626 }	Kopp. A. C. P. 36, 1.	
s 6				. 1	1.625	Playfair and Joule. M. C. S. 2, 401.	
4.	и.			. 1	1.621	Schiff. A. C. P. 107, 61.	
4.6	4.6			. 1	1.653	Buignet. J. 14, 15	
4.4				. 1	1.642, m. of 4.		
6.6	11			. 1	1.638) extremes	Pettersson. U. N.	
6.6					1.647) 18 .2 190.5) A. 1874.	
11				_ 1	1.661	W. C. Smith. Am. J. P. 53, 147.	
4.4	44		c;	. 1	1.6857, 0°]		
6.6	6.6				1.6351, 10°		
6.6	6.6	- 1			1.6346, 20°		
(4	6.6		16		1.6845. 80°		
(1			"		1.6340, 40°		
			4 4		1.6836, 50°	Spring. Ber. 15,	
	11		46		1.6332, 60°	1254, and Bei. 6,	
11	4.5				1.6328. 700	618. Also a series	
6.6					1.6323, 80°	in Ber. 17, 408.	
4.4	11				1.6299, 90°		
		-1			1.6275, 100° J		
44				-	1.641, 18°, not		
s 6	"	-1	6.6	Ш	pressed. 1,629, 162,5,		
••			-	7	once pressed.	Spring. Ber. 16.	
	4.6		66		1.634, 150,	2721.	
					twice pressed		
		_ //			1.631	Soret. C. R. 99, 867.	
Methylamine	aluminu	m	(NH2CH3)Al(SO4)2		1.568	4.6	
alum.			12 H, O.				
Thallium alu	ninum alu	111	Tl Al $(SO_4)_2$. $2H_2O$	-	3.615, 17°	Pettersson, U. N. A. 1874.	
6.6	4.6 6.4		Tl Al (SO ₄) ₂ . 12 H ₂ O		2.348, 150,8]		
6.6	6.6	-	44	Ш	2.866, 21°	11 11	
6.6	66 66	- 0	"		2.368, 202.6		
			- "	-	2.381, 17°		
**	11 11		-		2.320, 22°, not pressed.		
6.6			£ (_	2.311, 16°.5,	Spring. Ber. 16	
					once pressed.	2724.	
			- 66		2.311, 15°,		
				1	twice pressed		
6.6			6.		5.3550, Do		
4.4	66 66		- 66	-	2.3213, 100		
4.6	11 11			1	2.3200, 20° 2.3189, 30°	Spring. Ber. 17	
66		-	-	-	2.3184, 40°	108.	
66			-	•	2.3181, 50°		
44			44		2.257	Soret. C. R. 99, 867	
Potassium ch			K Cr (S O4)2		2.1580, 119.1	Petterson, U. N. A	
rogissium ci	1101116 1111111	A	11 (0 04)2	1	2.1618, 119.4		

	NAME.		FORMUI	.A.	SP. GRAVITY.	AUTHORITY.
Potassiun	n chrome	e alum	K Cr (S O ₄) ₂ .	$12\mathrm{H_2O}$	1.848	Kopp. A. C. P. 36, 1.
££	"	٠٠	6.6		1,826	Playfair and Joule.
66	l s	£1			1.85609, 4°	6
"	4.4		"		1.845, 12°	J. C. S. 1, 138. Schiff. A. C. P. 107, 64.
44	4.4	"			1.839, 21°	1 2 2 7 7 2 2 7
6.6	(("	6.6		1.840, 21°	Pettersson, U.N.A.
66	44	"			1.841, 20°.2	1874.
"	46	٠			1.849, 21°	2011.
		st			1.807	Schröder. Dm. 1873.
		::			1.808 \ 1.8278, 0°	
"	"	"	"		1.8273, 10°	
6.6	4.6	"	6.6		1.8269, 20°	
"	4.4	"	4.6		1.8265, 30°	
66	4.6	"	4.6		1.8260, 40°	Spring. Ber. 15,
4.4	6.6	"			1.8255, 50°	1254, and Bei. 6,
"	11	"	66		1.8223, 60°	648. Also a series
4.6	"	"			1.8044, 70°	in Ber. 17, 408.
"	"				1.7456, 80° J	
					1.828, 20°, not pressed.	
££	"	"	44		1.823, 16°.5, once pressed.	Spring. Ber. 16, 2724.
66	66	"	44		1.817	Soret. C. R. 99, 867.
Rubidium	ehrome		$\operatorname{Rb}\operatorname{Cr}(\operatorname{SO}_4)_2$.	12H,0	1.967) 100 0 [Pettersson. U. N.
6.6	4.6	٠٠	4.4		1.500)	A. 1874.
C : 1				10TT ()	1.946	Soret. C. R. 99, 867.
Cæsium el			$\operatorname{Cs}\operatorname{Cr}(\operatorname{SO}_4)_2$.	1¥H ₂ O	2.043	TO II TO TO
Ammoniu	ım enron	ie atum	Am Cr (S^*O_4))2	1.9943, 14°.7	Pettersson. U. N.
6.6	"	"	$\operatorname{Am}\operatorname{Cr}\left(\operatorname{SO}_{4}\right)_{2}$	$12\mathrm{H_2O}$	1.738, 21°	A. 1876. Schrötter. P. A. 53, 513.
6.6	"	"	"		1.728, 20°	Pettersson. U. N. A. 1874.
"	4.	"	4.6		1.719	Soret. C. R. 99, 867.
Thallium			$\operatorname{Tl}\operatorname{Cr}(\operatorname{SO}_4)_2$.	$12\mathrm{H}_2\mathrm{O}$	2.392, 15° }	Pettersson. U. N.
11	"				2.402, 18° }	A. 1874.
				10.11.0	2.236	Soret. C. R. 99, 867.
Potassium	i iron itte		K Fe $(SO_4)_2$. 1	2 H ₂ O_	1.831 1.819, 16°.8)	Topsoë. C. C. 4, 76.
"			44		1.822, 17°.5	Pettersson. U. N.
	11 1	,	4.6		1.831, 17°	Λ. 1874.
44	"	٠	4.4		1.806	Soret. C. R. 99, 867.
Rubidium	iron alu	m	$Rb \operatorname{Fe}(S O_4)_2$.	12H ₂ O	1.916	44 ,44
Cæsium ir			$Cs Fe (S O_4)_2$. $Am Fe (S O_4)_3$	$12 \mathrm{H_{2}^{2} O}$	2.061	
Ammoniu	m iron a	lum	Λ m Fe (S O_4)	2	2.54, 16°.8	Pettersson. U. N.
	"	"	$\mathrm{AmFe}(\mathrm{SO_4})_2$.	12H ₂ O	1.712	A. 1874. Kopp. A. C. P.
"	4.6	"	"		1.718	36, 1. Playfair and Joule.
cc	"		"		1.719	M. C. S. 2, 401. Topsoë. C. C. 4,
"	"	"	"		1.700	76. Sehröder, Dm. 1873.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ammonium iron alum '' '' '' '' '' '' Thullium iron alum		1.720, 18°.2 1.723, 18° 1.725, 17° 1.713 2.351, 15	Pettersson. U. N. A. 1874. Soret. C. R. 99, 867. Pettersson. U. N. A.
Potassium gallium alum_	$\mathrm{K}\mathrm{Gn}(\mathrm{S}\overline{\mathrm{O}}_{4})_{2}.12\mathrm{H}_{2}\mathrm{O}$	2.385 1.895	1874. Soret. C. R. 99, 867. Soret. C. R. 101, 156.
Rubidium gallium alumAmmonium gallium alum	AmGa(SO ₄) ₂ . 12H ₂ O	1.745	Soret. C. R. 99, 867. Soret. C. R. 101,
Rubidium indium alum Cæsium indium alum Ammonium indium alum	$Cs In (S O_4)_2$. 12 H ₂ O	2.065 2.241 2.011	156 Soret. C. R. 99, 867.
Sonomaite	Mg ₃ Al ₂ (SO ₄) ₆ . 33H ₂ O	1.604	Goldsmith. J. 30, 1297.
Roemerite. (Ferroso-ferrie sulphute.)	${\rm Fe_3}{\rm (SO_4)_4}.12{\rm H_2O_{}}$	2.15—2.18	
Uranyl potassium sulphute Uranyl ammonium sul- phate.	$\begin{array}{c} {\rm UO_{2}K_{2}(SO_{4})_2,\ 2H_{2}O} \\ {\rm UO_{2}Am_{2}(SO_{4})_2,\ 2H_{2}O} \end{array}$		Schmidt. F. W. C.
Didymium ammonium sulplinte.	Am Di (S O ₄) ₂	3.075 3.086 150	Cleve. U. N.A.1885.
Samarium ammonium sul-	Am Di $(SO_1)_2$. $4H_2O$ Am Sm $(SO_4)_2 = -$	2.575, 15°	66
phate. " "	$Am Sm(SO_1)_2$, $4H_2O$		

3d. Basic and Ammonio-Sulphates,

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Tetrabasic zinc sulphate_	Zn ₁ S O ₇ . 4 H ₂ O	3.122	Playfair and Joule. M. C. S. 2, 401.
Mercurie orthosulphate, or turpeth mineral.			4.6
Tetrabasic copper sulphute "Langite. Herrengrundite	Cu ₄ S O _{.7} 4 H ₂ O	3.48}	Muskelyne, J. 18,
Langite. Herrengrundite	$\operatorname{Cu}_5\operatorname{S}_2\operatorname{O}_{11}$. 7 $\operatorname{H}_2\operatorname{\overline{O}}_{}$	3,50	Winkler. Dana s Min., 3d App.
Brochantite*	$Cu_7 S_2 \bar{O}_{13}$, 5 $H_2 \bar{O}_{}$	3.78-3.87	
		3.9039	G. Rose. Dana's
" Warringtonite	1.6	3,39-3,47	Maskelyne. J. 18, 902.

[·] Composition uncertain, because of variations in the analyses.

	1	1	
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
LanarkiteLinarite	Pb ₂ S O ₅ Pb Cu S O ₅ . H ₂ O	6.3—6.4 5.43	Thomson. Brooke. Ann. Phil.
Alumian	Al ₂ S ₂ O ₇	2.702 } 2.781 }	(2), 4, 117. Breithaupt. J. 11, 730.
Werthemanite	Ai ₂ S O ₆ . 3 H ₂ O	2.80	Raimondi. Dana's Min., 3d App.
AluminiteFelsobanyite	Al ₂ S O ₆ . 9 H ₂ O Al ₄ S O ₉ . 10 H ₂ O	1.66 2.33	Dana's Mineralogy. Haidinger. J. 7, 863.
Alunite	$K_2 Al_6 S_4 O_{22}$. $6 H_2 O$		Gautier-Lacroze. J. 16, 833.
LöwigiteZincaluminite	$\begin{bmatrix} K_2 A l_6 S_4 O_{22} & 9 H_2 O_2 \\ Z n_6 A l_6 S_2 O_{21} & 18 H_2 O \end{bmatrix}$	2.58	Römer. J. 9, 877. Bertrand and Damour. Z. K. M. 6,
Ettringite	$Ca_{6}Al_{2}S_{3}O_{18}$. $32H_{2}O$	1.7504	298. Lehmann, N. J. 1874, 273.
Amarantite	Fe ₂ S ₂ O ₉ . 7 H ₂ O	2.11	Frenzel. M. P. M. 9, 398.
Raimondite	Fe ₄ S ₃ O ₁₅ , 7 II ₂ O	3.190}	Breithaupt. J. 19, 952.
Hohmannite	Fe ₄ S ₃ O ₁₅ . 13 H ₂ O	2.24	Frenzel. M. P. M.
Copiapite	$\mathrm{Fe_4~S_5~O_{21}}.$ 12 $\mathrm{H_2~O_{}}$	2.14	9, 397. Borcher. Dana's Min.
Fibroferrite	$\text{Fe}_4 \text{ S}_5 \text{ O}_{21}$. 27 $\text{H}_2 \text{ O}_{}$	1.84	Smith. A. J. S. (2),
Carphosiderite	Fe ₆ S ₄ O ₂₁ . 10 H ₂ O	2.728 2.496—2.501	18, 375. Pisani. Dana's Min. Breithaupt. Schw. J. 50, 314.
		3.09	Laeroix. C. R. 103,
Jarosite	$\mathrm{K_2}\;\mathrm{Fe_8}\;\mathrm{S_5}\;\mathrm{O}_{28}$. 9 $\mathrm{H_2}\;\mathrm{O}$	3.256	1037. Breithaupt. J. 6, 845.
UrusiteSideronatrite	$\begin{array}{c} \operatorname{Na_4}\operatorname{Fe_2S_4}\operatorname{O_{17}},\ 8\operatorname{H_2O}\\ \operatorname{Na_2}\operatorname{Fe_2S_3}\operatorname{O_{13}},\ 6\operatorname{H_2O}\\ \operatorname{Ag_2}\operatorname{SO_4},\ 4\operatorname{N}\operatorname{H_3} \end{array}$	2.22 2.153	Frenzel J. 32, 1195. Dana's Min.,3d App.
Silver ammonio-sulphate_	$Ag_2 S O_4$. 4 N H_{3}	2.918, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
Zincammonium sulphate - Tetramereurammonium sulphate.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.479 7.319	
Cuprammonium sulphate	$\begin{array}{c} \operatorname{Cu} \operatorname{N}_2 \operatorname{H}_6, \operatorname{S} \operatorname{O}_4 \\ \operatorname{Cu} \operatorname{N}_2 \operatorname{H}_6, \operatorname{S} \operatorname{O}_4, \operatorname{3} \operatorname{H}_2 \operatorname{O} \end{array}$	2.476	
Copper ammonio-sulphate	Cu S O ₄ . 4 N H ₃ . H ₂ O	1.790 }	
		1.809 \\ 2.133, 24°.3	Evans. F. W. C.
Roseocobalt iodosulphate	$\text{Co}_2\left(\text{N H}_3\right)_{10}\left(\text{S O}_4\right)_2\text{I}_2$	$2.139 \atop 2.149$ 20°.5 _	Wilson. F. W. C.

Note.—Botryogen, elinophæite, johannite, lamprophenite, pissophanite, plagiocitrite, and wattevillite, being of uncertain composition, are omitted. See Dana's Mineralogy and appendixes.

XXIII. SELENITES AND SELENATES.

Name.	FORMULA.	SP. GRAVITY.	А стновіту.
Hydrogen selenite, or se-	H, Se O,	3,128	Topsoë. C. C. 4, 76.
lenious acid.		3.0066	Clausnizer, A. C. P.
Chalcomenite	Cn So () 2 H ()	3.76	196, 265. Des Cloizeaux and
Charcometric	Out 10 Cg. 2 Hg O		Damour, B. S. M.
Mercurous selenite	3 Hg ₂ O. 4 Se $\bar{\mathrm{O}}_{2}$	7.35, 13°.5	4, 51. Kohler. P. A. 89, 149.
YY 3	W 8 0	0.504	Min b slist D A
Hydrogen selenate, or sa- lenic acid. "	H ₂ Se O ₄	2.524 }	Mit-cherlich, P. A. 9, 629.
66 66			Fabian. J. 14, 130.
Lithium selenate	Li ₂ Se O ₄ . H ₂ O	2.439	Topsoe, C. C. 4, 76.
() ()		$\left. \begin{array}{c} 2.564, 18^{\circ} \\ 2.565, 19^{\circ}.5 \end{array} \right\}$	Pettersson, U. N. A. 1874.
Sodium selenate			Topsoc. B. S. C. 19, 246.
			Pettersson, U.N.A.
4. 4		3.217, 17°.6 / 1.584	1874. Topsoe. C. C. 4, 76.
4.		1.612, m. of 5	1 opsoe. C. C. 4. 19.
64		1.603) extremes	Pettersson, U.N.
	64	1.621 / 17 .9-19	
Potassium selenate	K ₂ Se O ₄	3,050 = =	Topsoe, C. C. 4, 76.
		$\left.\begin{array}{c} 3.071, 18 \\ 3.077, 199 \end{array}\right\}$	71 17 57 1
46 6x		3.077, 212	Pettersson, U. N. A. 1874.
Sodium potassium selenate	Na ₂ Se O ₄ , 3 K ₂ Se O ₄	3.095	Topsoe. C. C. 4, 76.
Rubidium selenate	Rh ₂ Se O ₁ = 1	3.923, m. of 5)
1. 1.6		3.896 lextremes	
4.			
Caesium selenate			Pettersson, U. N. A.
Ammonium selenate	Am ₂ Se O ₄	$egin{array}{c} 4.34, 15^{\circ}, 5 & j \\ 2.162 & \end{array}$	1876. Topsde, B. S. C. 19,
24 minomum selenate 1111	- Alling the Cold	D. 170	246.
11		2.197, 189	Pettersson, U. N. A.
66	Cl.	2,198, 189,8	1874.
Ammonium hydrogen se- lenate.			Topsoe. C. C. 4, 76.
Silver selenate	Ag_{2} Se O_{4}	5.92, 179.2	Pettersson, U.N.A.
(31)	1 S () 1 N H	5.98, 17)	1874.
Silver ammonio-selenate Thallium selenate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,854 7,049, 18°)	Topsoe, C. C. 4, 76, Pettersson, U. N. A.
Thamum Scienate	- 112 111 074	7.067, 180.2	1574.
Glucinum selenate.	G Se O ₄ , 4 H ₂ O =		Topsoe. C. C. 4, 76.
Magnesium selenate		1.928	6.6 6.6
		1.955, 15°.2	Petierson, U.N.A.
(i)	- 11 11 11 11 11	1.960, 15°.8	1876.
Zinc selenate	$\operatorname{Zn} \operatorname{Se} O_i = \operatorname{SH}_i O = \operatorname{Zn} \operatorname{Se} O_i = \operatorname{GH}_i O = \operatorname{Zn} \operatorname{Se} O_i = \operatorname{Cn} \operatorname{Cn} O_i = \operatorname{Cn} O_i $	2,591 2,325	Topsoe. C. C. 4, 76.
Cadmium selenate	Cd Se O. 2 II, O.	3.632	- 1

	1	1	
Name.	FORMULA.	Sp. Gravity.	Ацтновіту.
Calcium selenate. Cryst			Michel. C. R. 106, 878.
Strontium selenate. Cryst.	Ca Se O ₄ . 2 H ₂ O Sr Se O ₄	2.676 4.23	Topsoë. C. C. 4, 76. Michel. C. R. 106, 878.
Barium selenate	Ba Se O ₄	4.67, 22°	Schafarik. J. P. C. 90, 12.
" Cryst	(1	4.75	Michel. C. R. 106, 878.
Lead selenate	Pb Se O ₄		Schafarik. J. P. C. 90, 12.
" " "	(1	6.23, 18°, 2 (Pettersson, U.N.A. 1874.
	Mn Se O ₄ . 2 H ₂ O	2.949	Topsoë. B. S. C. 19, 246.
60 60	Mn Se O ₄ . 5 H ₂ O	$\left. \begin{array}{c} 3.001, 15^{\circ}.8 \\ 3.012, 16^{\circ}.6 \end{array} \right\}$	Pettersson, U. N. A. 1876.
	$\lim_{\epsilon \to 0} \operatorname{Se} O_4. \operatorname{S} H_2 \operatorname{O}_{}$	2.334	Topsoë. B. S. C. 19, 246. Pettersson. U. N. A.
Iron selenate	Fe Se O ₄ . 7 H ₂ O	$\begin{array}{c} 2.386 \\ 2.389 \\ 2.073 \end{array} \right\} \ 16^{\circ} \ \left\{ \begin{array}{c} \\ \end{array} \right.$	1876. Topsoë. B. S. C. 19,
Nickel selenate	Ni Se O ₄ . 6 H ₂ O		246.
(1 (1	<i>i</i>	2.335, 13°.8	Pettersson. U.N.A.
Cobalt selenate	Co Se O ₄	4 037 140 9	1876.
(Co Se O ₄ . 5 H ₂ O Co Se O ₄ . 6 H ₂ O	2.512	Topsoë. C. C. 4, 76.
(; (;		2.248, 17° 2.258, 15°.8	Pettersson. U.N.A. 1876.
Copper selenate	Co Se O_4 . 7 H_2 O Cu Se O_4 . 5 H_2 O	2.135 2.559	Topsoë. C. C. 4, 76.
(; ;;		2.561, 19°.2 2.562, 17°.8	Pettersson, U.N.A. 1874.
Yttrium selenate	Y_2 (Se O_4) ₃ . 9 H_2 O -	2.5770, 18°	Cleveand Hoeglund. B. S. C. 18, 289.
		2.780	Topsoë. Quoted by Pettersson.
Erbium selenute	"	2.661, 12°.8	Pettersson, U.N.A. 1876.
" "	$117_2 (130 O_4)_3$. $117_2 O_2$		Topsoë. Quoted by Pettersson.
(1 (1		3.510, 14° 3.529, 13°.4	Pettersson, U.N.A. 1876.
	$\operatorname{Er}_2(\operatorname{Se} \operatorname{O}_4)_3$. 9 $\operatorname{H}_2\operatorname{O}$	3.171	Topsoë. Quoted by Pettersson.
Lanthanum selenate	La ₂ (Se O ₄) ₃ . 6 H ₂ O ₋		Pettersson, U.N.A. 1876.
Didymium selenate	Di ₂ (Se O ₄) ₃	$\left\{ \begin{array}{c} 4.416 \\ 4.430 \\ 1.160 \end{array} \right\}$ 12°.5	Cleve. U. N. A.
		$\left\{ \begin{array}{c} 4.460 \\ 4.461 \end{array} \right\} \left\{ \begin{array}{c} 18^{\circ} \\ 3.710 \end{array} \right\}$) 1885. Pettersson, U.N.A.
(($\operatorname{Di}_{2} (\operatorname{Se} \operatorname{O}_{4})_{3}. \ 5 \operatorname{H}_{2} \operatorname{O}_{-}.$	3.722, 13°.3	1876.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Didymium selenate Samarium selenate """ """ """ Thorium selenate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.677, 15° 3.685, 18°.3 4.077, 10° 3.326 3.329 3.009 3.010 3.026	Cleve, U. N. A.1885. """ """ """ Topsoč. B. S. C. 21, 121.
Magnesium potassium selenate.	Mg K ₂ (SeO ₄) ₂ , 6H ₂ O= MgAm ₂ (SeO ₄) ₂ , 6H ₂ O	2,836	Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19,
Magnesium nunmonium selennte. Zine potassium selennte " " " " Zine ammonium selennte	$\begin{split} &\text{XIR}_{2}(\text{SeO}_{4})_{2}, \text{SH}_{2}\text{O} \\ &\text{Zn K}_{2}(\text{SeO}_{4})_{2}, \text{ 2H}_{2}\text{O} \\ &\text{Zn K}_{2}(\text{SeO}_{4})_{2}, \text{ 6H}_{2}\text{O} \\ &\text{Zn Am}_{2}(\text{SeO}_{4})_{2}, \text{ 6H}_{2}\text{O} \end{split}$	3.210 2.538 2.200	246. Topsoé. C. C. 4, 76.
Cadmium potassium sele- nate. Cadmium ammonium se- lenate.	${ m Cd}{ m K}_2({ m Se}{ m O}_4)_2, { m 2}{ m H}_2{ m O}_2$ ${ m Cd}{ m Am}_2({ m Se}{ m O}_4)_2, { m 2}{ m H}_2{ m O}_4$	2.897	
Munganese potassium selenato. Manganese ammonium selenate.	$\begin{array}{c} {\rm CdAm}_2({\rm SeO}_4)_2, \ {\rm GH}_2{\rm O} \\ {\rm MnK}_2({\rm SeO}_4)_2, \ {\rm 2H}_2{\rm O} \end{array}$ ${\rm MnAm}_2({\rm SeO}_4)_2, \ {\rm GH}_2{\rm O}$	3,070	Topsoč. B. S. C. 19, 246. Topsoč. C. C. 4, 76.
Iron ammonium selenate Nickel potassium selenate	$Ni K_2 (SeO_4)_2$. $6H_2O$	2.580, in. of 5. 2.573) extremes	
Nickel ammonium sele- nate.	NiAm ₂ (ScO ₄) ₂ . 6H ₂ O	2.587 } 16 .4-17°.8 2.228 2.274, 15°.8 2.279, 16°	A. 1876. Topsoc. C. C. 4, 76. Pettersson. U. N. A. 1876.
Nickel thallium selenate Cobalt potassium selenate	$ \text{NiTl}_{2}(\text{Se O}_{4})_{2}. 6\text{H}_{2}\text{O}_{2} \text{Co K}_{2} (\text{Se O}_{4})_{2}. 6\text{H}_{2}\text{O}_{2} \text{Co K}_{2} (\text{Se O}_{4})_{2}. 6\text{H}_{2}\text{O}_{2} \text{Co K}_{2} (\text{Se O}_{4})_{2}. 6\text{H}_{2}\text{O}_{2} \text{Co K}_{3} (\text{Se O}_{4})_{3}. 6\text{H}_{2}\text{O}_{3} \text{Co K}_{3} (\text{Se O}_{4})_{3}. 6$. 1.066, 13°.3	Topsoë, C. C. 4, 76, Pettersson, U. N. A.
Cobalt rubidium selenate Cobalt casium selenate	$\operatorname{Co} \operatorname{Rb}_2(\operatorname{Se} \overline{\operatorname{O}}_4)_2. \ \operatorname{6H}_2$ $\operatorname{Co} \operatorname{Cs}_2(\operatorname{Se} \overline{\operatorname{O}}_4)_2. \ \operatorname{6H}_2$	2.837, 18°.3 2.838, 15°.6 2.844, 18°.6 3.050, 18°.5	
Cobalt ammonium selenate	$\operatorname{CoAm}_{2}(\operatorname{Se} \operatorname{O}_{4})_{2}.\operatorname{GH}_{2}(\operatorname{CoAm}_{2}(\operatorname{Se} \operatorname{O}_{4})_{3})_{3}.\operatorname{CoAm}_{2}(\operatorname{CoAm}_{2}(\operatorname{Se} \operatorname{O}_{4})_{3})_{3}.\operatorname{GH}_{2}(\operatorname{CoAm}_{2$	2.225, 18°.8)	Topsoe, C. C. 4, 76.
Cobalt thallium selenate.	4	4.059, 16°.5	Pettersson, U. N. A. 1876. Topsoé, C. C. 4, 76.
Copper ammonium selemat	. 6	2.556, 17° 2.557, 16°.4	Pettersson, U. N. A. 1876. Topsoe, C. C. 4, 76. Pettersson, U. N. A.
		1	1876.

			t .
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium aluminum alum	NaAl(SeO ₄) ₂ . 12H ₂ O	2.061, 21° 2.069, 20°.8 }	Pettersson, U. N. A.
The transfer of the state of th	17 A1/SoO) 19 H O	2.071, 20°.8	1874.
Potassium aluminum alum	44	[1.998, 21°]	Weber. J. 12, 91. Pettersson. U. N. A.
Ammonium aluminum	Am Al (Se O_4) ₂	2.004, 20°.1 } 2.3676, 20°.4	1874. Pettersson, U. N. A. 1876.
	$AmAl(SeO_4)_2$. $12H_2O$)
"		1.889 extremes 1.895 17°-20°.5	Pettersson. U.N. A. 1874.
Rubidium aluminum alum	66	$\left\{\begin{array}{c} 2.132, 17^{\circ}.2\\ 2.134, 21^{\circ} \end{array}\right\}$	
Guinn aluminum alum		2.135, 17°.2) 2.223, 18°.8)	
Cæsium aluminum alum	((*/*	2.225, 20°	"
Thallium aluminum alum	$TlAl(SeO_4)_2$. $12II_2O$	$\left\{ \begin{array}{l} 2.492, 17^{\circ}.5 \\ 2.514, 17^{\circ} \end{array} \right\}$	
Potassium chromium alum	K Cr (Se O_4) ₂	2.5190, 20°.3	Pettersson. U. N. A. 1876.
66 66 46	$K \operatorname{Cr}(\operatorname{SeO}_4)_2$. 12 $H_2 O$	$\left\{ \begin{array}{l} 2.076, 17^{\circ}.6 \\ 2.077, 17^{\circ} \end{array} \right\}$	Pettersson. U. N. A.
" " —		2.081, 17°.2	1874.
Ammonium chromium alum.	Am Cr (Se O_4) ₂	2.3585, 15°.5	Pettersson. U.N.A. 1876.
cc	$\operatorname{AmCr}(\operatorname{SeO_4})_2$. $12H_2O$	$\begin{bmatrix} 1.980 \\ 1.984 \end{bmatrix}$ 20° {	Pettersson, U. N. A. 1874.
Rubidium chromium alum	$\mathrm{RbCr}(\mathrm{SeO_4})_2$. $12\mathrm{H_2O}$	2.214, 18°.8	" "
Thallium chromium alum	$\text{Tl}\text{Cr}(\text{Se}\text{O}_4)_2$. $12\text{H}_2^{}$	2.223, 17° } 2.630, 20	
Didymium potassium se-	Di K (Se O ₄) ₂	3.839, 13°	Cleve. U. N. A.1885.
lenate.	Di K $(Se O_4)_2$. $5 H_2 O$	3 17.1)	
	41	3.178 (13	"
Didymium ammonium selenate. "	$DiAm(SeO_4)_2$. $5H_2O$	$\begin{bmatrix} 2.957 \\ 2.961 \end{bmatrix}$ 15°	"
Samarium potassium sele- nate. " "	Sm K (Se O ₄) ₂	$\frac{4.098}{4.129}$ 10°	"
(((((((((Sm K (SeO ₄) ₂ . 3 H ₂ O ₋	3.566, 10° }	
Samarium ammonium selenate.	Sm Am (Se O_4) ₂	3.805, 14°	66
11 11 11 11 11 11 11 11 11 11 11 11 11	SmAm: SeO ₄) ₂ . 3H ₂ O	3.277, 14°	"
" " "	66	$3.263, 15^{\circ}$ $3.260, 18^{\circ}.6$	
Potassium selenate with nickel sulphate.	K_2SeO_4 . $NiSO_4$. $6H_2O$	2.34	Gerichten. B. S. C 20, 80.

Note.—For the sp. gr. of some mixtures of sulphates and selenates see Pettersson, Ber. 9, 1676.

XXIV. TELLURATES.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Hydrogen tellurate, or telluric acid. " "	H ₂ Te O ₄	3.440, 19°.2 3.458, 19°.1	Oppenheim. J. 10,
Ammonium tellurate	Am ₂ Te O ₁	2.986, 24°.5	
Thallium tellurate	Tl ₂ Te O ₄	6.742, 16° } 6.760, 17°.5 } 5.687, 22° }	ee ee
Barium tellurate	Ba Te O ₄	4.5805, 100	Clarke. A. J. S. (3), 14, 286.

XXV. CHROMATES.

									_
	NAME.		ŀ	ORMULA.		Sp. Gravity.	Ацті	IORITY.	
Sodium chromate			Nn ₂ C:	r O _c . 10 H ₂ C)	2.7104, 16°,5 / 2.7858, 12° / 1.4828, 20° / 2.7246, 13°	Stanley.	F. W. C	
Potassium	chromat	e	K_2 Cr	()1		2.612 2.6402		Schw.	J.
4.6	i i		6.6			2.705		A. C.	P.
4.6	4.6					2,682, m. of 10		and Jou	
	"		4.4			2.711	Playfair		le.
6.6	11		14			2.72309, 4° 1 2.678, 15°.5.1	Helker.	P. M. (
"	"					2.691	27, 21; Schiff, 7	3. A. C. P. 10	07,
4.6	4.4				- 1	2.7848		J. P. C.	97.
4.6	4.4		1.6			2.719		75 201	-0
1.4	4.6					.)).)	Schroder	. Dm. 18	1.5.
4.4	+ 6	-	1.1			2.7403, 00			
4.6	4.6		4.4			2.7374, 100			
1.6	4.6		4.6			2.7345, 200	Spring.	Ber.	15,
4.4	4.6		6.4		- 1	2.7317, 30	1940,		
4.6	4.6		1.6			9.7954. 100			

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Potassium chromate	K ₂ Cr O ₄	2.7258, 50°)	
" " ———		2.7227, 60°	
		2.7169, 70°	Spring. Ber. 15,
		2.7110, 80°	1940.
(1 (1		2.7102, 90° 2.7095, 100°	
Potassium dichromate		2.6027	Karsten. Schw. J.
		2.624	65, 394. Playfair and Joule.
		2.692, 40	M. C. S. 2, 401. Playfair and Joule.
"	"	0.000	J. C. S. 1, 137.
		2.689	Schabus. J. 3, 312. Schiff. A. C. P. 107,
		2.141	Senin. A. C. P. 107,
16 11		2 6616)	64. Stolba. J. P. C. 97,
11 11		$2.6616 \atop 2.6806$ 15° {	503.
" Pulv	(1	2.702	500.
" After)		2.677)	Schröder. Ber. 11,
" fusion.		2.751 } }	2019.
		2.694	W. C. Smith. Am. J. P. 53, 145.
Potassium trichromate	K ₂ Cr ₃ O ₁₀	2.655, m. of 3_	Playfair and Joule.
"		3.613	M. C. S. 2, 401. Bothe. J. 2, 272.
		2.676 }	Schröder. A. C. P.
"		2.702	174, 249.
Potassium chromium chromate.	2 0 10 2	2.28, 14°	Tommasi. B. S. C. (2), 17, 396.
Ammonium chromate	Am ₂ Cr O ₄	1.9138 } 120	Abbot. F. W. C.
		1.9203 } 12	Abbot. F. W. C.
11 11	.:		Schröder. Dm. 1873.
	A C O	1.011	
Ammonium dichromate		2.367	Schiff. A. C. P. 107, 64.
tt tt		2.152 }	Schröder. Dm. 1873.
		2.153	
		$\left\{ \begin{array}{l} 2.1223, \ 16^{\circ} \\ 2.1805, \ 17^{\circ} \end{array} \right\}$	Abbot. F. W. C.
	$Ag_2 \operatorname{Cr} O_4$	5.770	Playfair and Joule.
Sirver chromate	1162 01 04	0.110	M. C. S. 2, 401.
"		5.536	Rettig. A. C. P. 173,
· · · · · · · · · · · · · · · · · · ·	11	$5.463 \}$	Schröder. Dm. 1873.
Silver dichromate	Ag ₂ , Cr ₂ O ₇	4.662	"
16 11		4.676 }	
Silver ammonio-chromate	Ag ₂ Cr O ₄ . 4 N H ₃	3.063, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
35	M C O T O	2.717	Topsoë. C. C. 4, 76.
Magnesium chromate	Mg Cr O4. H2 O	2.2301 } 170	Abbot. F. W. C.
" " ——	Mg Cr O ₄ . 7 H ₂ O	2.2886 } 17° 1.66, 15°	Kopp. A. C. P.
66		1 55 100	42, 97.
			Bödeker. B. D. Z.
Trimercuric chromate		7 171 189 6	Abbot, F. W. C. II. Stallo. F.W. C.
Strontium chromate	Sr Cr O ₄	3.353	Schröder. Dm. 1873.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Barium chromate	Ba Cr O _i	3.90, 11°	
6	"	4.49, 220	secke. B. D. Z. Schafarik. J. P. C.
44 44		4.5044	90, 12. Schweitzer. University of Missouri. Special pub., 1876.
44 44		$\left. \begin{array}{c} 4.296 \\ 4.304 \end{array} \right\}$	
" Cryst	46	4.60	Bourgeois. C. N. 39, 123.
Lead chromate	Pb Cr O ₄		Mohs. See Bottger.
tt tt	44	5.653	Playfair and Joule.
" Artif. cryst		6.118	Manross. J. 5, 12. Bourgeois. B. S. C.
" Native	((5.965, m. of 3_	47, 884. Schröder. Ber. 11, 2019.
Diplumbic chromate			Playfair and Joule.
Phonicochroite - Potassinm ammonium	Pb ₃ Cr ₂ O ₉	5.75 2.278 2.290	Dana's Minerelogy. Schröder. Dm. 1873.
chromate. "Potassium calcium chromate. "			
11	K ₂ Ca ₄ (CrO ₄) ₅ , 2 H ₂ O ₂	2.772 2.802	
Magnesium potassium chromate.	K. Mg(CrO.) ILO.	2.592)	4.
((((((((((((((((((((((((((2.5804 2.5966 $19^{\circ}.5$	Abbot. F. W. C.
Magnesium ammonium chromate.	Am2Mg(CrO4)2.6H2O	1.8278, 16° 1.8293, 17° 1.8595, 16°	44 44
Vauquelinite Potassium chlorochromate	Pb. Cu Cr. Q.	5,5-5.78	Playlair and Jonie.
		2.49702, 4°	M. C. S. 2, 401. Playfair and Joule.
Sodium chromiodate	Na Cr I O ₆ . H ₂ O	3.21	J. C. S. 1, 137. Berg. C. R. 104, 1514.
Potassium chromiodate			

XXVI. MANGANITES, MANGANATES, AND PERMANGANATES.

NAME.	Formula.	Sp. Gravity.	Антновіту.
Barium manganite Barium manganate Potassium permanganate_ " "	Ba Mn O ₄	4.85, 23°	lier. C. R. 98, 141. Schafarik. J. P. C. 90, 12.

XXVII. MOLYBDATES.

	NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Strontium molybdate Barium molybdate " Lead molybdate " " Lead molybdate " " Cerium molybdate Corium molybdate Samarium molybdate Samarium sodium molyb-	18 Mo O ₃ . 14 N H ₃ . (O H) ₆ . 18 H ₂ O. Sr Mo O ₄ . Ba Mo O ₄ . Pb Mo O ₄ . " Ce ₂ (Mo O ₄) ₃ . Di ₂ (Mo O ₄) ₃ . Sm ₂ (Mo O ₄) ₃ .	2.286 } 2.295 } 2.975 4.1348, 21° } 4.6483, 19°.5 } 4.6589, 17°.5 } 8.11, artificial 6.62 " 6.76 6.95 4.56, cryst. } 4.82, ppt. } 4.75, cryst 5.95	Baerwald. J. C. S. 50, 17. F. O. Marsh. F. W. C. Manross. J. 5, 11. Cossa. G. C. I. 16, 324. Haidinger. Smith. J. 8, 963. Cossa. G. C. I. 16, 324. Cleve. B. S. C. 43, 162.

XXVIII. TUNGSTATES.

NAME.	Fountla.	SP. GRAVITY.	Аптионтт.
Sodium tungstate	Na ₂ W O ₄	4.1883, 18°.5 3.2814, 19°	J. L. Davis, F. W. C.
Sodium metatungstate	$\operatorname{Nn}_2\operatorname{W}_4\operatorname{O}_{13}$. 10 $\operatorname{H}_2\operatorname{O}_2$	3.2588, 17°.5) 3.8467, 13°	Scheibler. J. 14,
Sodium polytungstate	Nu ₆ W ₇ O ₂₄	5,4993	Scheibler. J. 14, 216.
Sodium tungsto-o-tung-	$\begin{array}{c} N_{16}^{\prime} W_{7} O_{4}, \ 16 \ H_{2} O \\ N_{12}^{\prime} W_{3}^{\prime} O_{9}^{\prime 4} \end{array}$	3.987, 14° 6.017	Wright. J. 4, 348.
state.	$\operatorname{Na_2} \operatorname{W_4} \operatorname{O}_{11}$	7.280	Scheibler. J. 14, 223.
Potassium tungstoso-tung- state. " " " " " " " " " "	12 M. O	7.085 \ 7.095 \ 7.135 \ \ 6.58 \ \ 7.6 \ \ 7.58 \ \ 7.6 \	Two preparations. Knorre. J. P. C. (2), 27, 62. Zettnow. J. 20, 224. Knorre. J. P. C.
Sedium potassium tung- steso-tung-tate, "	5 K. W. O. 2 Na.	7.112 } 7.121 } 6.076, artif 6.04	(2), 27, 92. Knorre. J. P. C. (2), 27, 62. Manross. J. 5, 11. Karsten. Schw. J.
		6.03	65, 394, Rammelsberg, J. 3, 752.
	14	6,02	Bernoulli. J. 13, 783.
Barium tung-tate	11	5.0422, 150	J. L. Davis. F. W. C.
Barium metatungstate Lead tungstate	$\begin{array}{c} \operatorname{Ba} \operatorname{W}_4 \operatorname{O}_{13}, \ \operatorname{O} \operatorname{H}_2 \operatorname{O}_{-} \\ \operatorname{Pb} \operatorname{W} \operatorname{O}_{4} \end{array}$	8.202, artif.	Scheibler, J. 14, 220. Manross, J. 5, 11.
	66	8,1032)	Kerndt, J. P. C. 42, 113.
Manganese tungstate	Mn W O4	6.7, artif =	Genther and Fors- lerg. J. 14, 224.
" Hubner- ite.			Breithaupt. Dana's Min.
			Hill brand. A. J. S. (3), 27, 857. Genther and Fors-
Iren tungstate			herg J. 14, 224. Rammelsberg, J. 17,
			S55. Breithaupt. Dana's
Gran man ganese tungstate	2MnWO ₄ , 3FeWO ₄	6,640 7.0, artif	

^{*}Philipp (Ber 15, %) finds the specific gravity of all the "turgsten bronzes" to vary between 7.2 and 7.3, at 16 ± 18 .

- 20

Name.	Formula.	Sp. Gravity.	Аптногиту.
Wolfram* "" Fe2: Mn Nickel tungstate Cerium tungstate Didymium tungstate Samarium tungstate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 7.097 \\ 7.4581 \\ 6.8522, 22^{\circ} \\ 6.8896, 20^{\circ}.5 \end{bmatrix} $ $ \begin{bmatrix} 6.514, 12^{\circ} \\ 6.69, 14^{\circ} \end{bmatrix} $	Gehlen. " " Sipöcz. Ber. 19, 95. J. L. Davis. F. W. C. Cossa and Zeehini. Ber. 13, 1861. Cossa. Ber. 14, 107.

XXIX. BORATES.

NAME.			F	FORMULA.		SP. GRAVITY.	AUTHORITY.
Hydrogo acid.	en bora	te, or borie	H ₃ B O	3		1.479	Kirwan.
16	1.6	"	4.6			1.4347, 15°	Stolba. J. 16, 667.
4.4	6.6					1.493, 20°.5	
"	6.6		"			1.5463, 0° →	
4.6	tt	4.6	1.6			1.5172, 12°	Ditto Poi 9 67
4.6	6.6	"	4.6			1.4165, 60°	Ditte. Bei. 2, 67.
4.4	4.4	"				1.3828, 80°	
Sodium (diborat	e	Na ₂ B ₄	O ₇		2.367	Filhol. Ann. (3) 21, 415.
4.6	"		"			2.371, 20°	Favre and Valson C. R. 77, 579.
6.6	4.6		66			2.368, 16°	Bedson and Wil-
6.6	6.6		4.6		'	2.370, 14°.2	liams. Ber. 14
6.6	4.4		4.6			2.373, 18°.5	2553.
4.6	6.6		"			2.5, fused	Quincke. P. A. 135, 642.
"	"		$\mathrm{Na_2}~\mathrm{B_4}$	O ₇ . 5 E	I ₂ O	1.815	
	1.6		Na. B.	010.1	FLO.	1.757	Wattson.
4.4	14		21112 204	11	12 0	1.723	
						******	28, 3.
4.6	44			4.6		1.716	Mohs. See Böttger.
4.6	4.6			4.6		1.74	
						1.13	1828 (1), 483.
44	4.4			46		1.730, m. of 2_	
"	"			""		1.692	Filhol. Ann. (3), 21, 415.
1.6	4.6			16		1.692	Buignet. J. 14, 15.
4.6	4.6			44		1.7156	Stolba. J. P. C. 97,
						1.1190	503.
66	66			44		1.711, 20°	Favre and Valson.
4.6	44			"		1.736	C. R. 77, 579. W. C. Smith. Am. J. P. 53, 148.

^{*}See Dana's Mineralogy for many other determinations.

NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Potassium borate	К. В. О.	1.740	Buignet. J. 14, 15,
Pinnoite	Mg B, O, 3 H, O	0 07	Staute. Ber. 17, 1584
Magnesium borate	$\begin{array}{c} K_2 \ B_4 \ O_7$	2.987	Ebelmen, J. 4, 13.
Szaibelyite	Mg ₅ B ₄ O ₁₁ , 5 H ₂ O	6.0	Peters. J. 16, 836.
Colemanite	Ca. B. O., 5 H. O	2.428	Evans. J. 37, 1927
Priceite	Ca ₃ B ₈ O ₁₅ . 6 H ₂ O	2.202	Silliman. A. J. S
**	113 D ₈ O ₁₅ . (7 11 ₂ O = -	2.208}	(3), 6, 128.
" Pandermite		2.48	
Y 11 .	DI D O		Min., 3d App.
Lead borate	Pb B ₂ U ₄	5 005	Herapath. J. 2, 227
Lead hydrogen borate Jeremerewite	A) D O	5.235	Damour, J. C. S
Jeremerewite	At 6 03	0.20	44, 719.
Didenius arthabarate	Di B O	5 680 1	1919, 1117.
may man or moostace ===	1. D	5 7.01 150	Cleve, U. N. A. 1885
Didymium orthoborate Didymium borate	Di. B. O.	5.825, 14°	Nordenskiöld, J. 14
			197.
Samarium orthoborate Ulexite	Sm B O,	6.045) Ten 4	(Cleve. U. N. A
	44	6.052 } 100.4-	1885.
Ulexite	Na Ca B, Oq. 6 H, O	I.65	How. A. J. S. (2)
			94 994
Franklandite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.65	Reynolds. J. 30
	Π_2 ().		1288.
Hydroboracite	Mg ₃ Ca ₃ B ₁₆ O ₂₀ . 18	1.9	Hess. P. A. 31, 49
	Mg Mn B ₂ O ₅ . H ₄ O	0.40	7) 1 1 7 0 0
Sussexite	$Mg\ Mn\ B_2\ O_5$. $H_2\ O$	3.42	Brush. A. J. S. (2)
N	M (2- B ()	0.00	46, 240.
Magnesium chromium	$\mathrm{Mg_6}\mathrm{Cr_6}\mathrm{B_4}\mathrm{O}_{21}$	3.82	Ebelmen. J. 4, 13
borate.	Mar Es D ()	3.85	6. 61
Magnesium iron borate Ludwigite	Mg Fe B O21	3,907)	Tschermak, J. 27
13000012100	$\frac{{ m Mg_6^6Fe'''_4Fe''_2H_3}}{{ m B_3O_{20}}})$	4.016	1278.
Rhodizite	A L. N. B. O	3.38	Damour. J. 37, 1927
Borneite	Mg- Bro Oro Cl.	2.9134	Karsten, J. 1, 1227
6.6	Mg ₇ B ₁₆ O ₃₀ Cl ₂	2.974	Mohs. See Bottger

XXX. NITRATES.

1st. Simple Nitrates.

Name.			FORMULA.	SP. GRAVITY.	AUTHORITY.	
Hydrogen acid.	nitrate, o	rnitric	II N O ₃	1.5543, 15°.5	Kirwan, Gilb, Ann. 9, 266.	
4 s					Mitscherlich, P. A. 18, 152.	
6.6	4.		6.	1.508	A. Smith. J. 1, 386.	
					007.	
4.6	6.	14	H N O ₃ . II, O	1.156	A. Smith. J. 1, 386.	
Nitrie sub	hydrate .		H N O ₃ , H ₂ O H N O ₃ , 3 H ₂ O 2 H N O ₃ , N ₂ O ₅	1.642, 150	Weber. J. P. C. (2), 6, 357.	

NAME.			F	ORMULA.	SP. GRAVITY.	AUTHORITY.
Lithium nitrate			Li N ()3	2.334 2.442	Kremers. J. 10, 67. Troost. J. 10, 141.
Sodium nitrate			Na N	O ₃	2.0964	Hassenfratz. Ann.
	4.4		4.6		2.096	Klaproth.
٤,	4.6		4.6		2.1880	Marx. See Böttger.
11	"				2.2256	Karsten. Schw. J. 65, 394.
4.6	u		"		2.200	Kopp. A.C.P. 36, 1.
11			"		2.182, m. of 4_	Playfair and Joule. M. C. S. 2, 401.
4.6	6.6				2.2606, 4°	Playfair and Joule. J. C. S. 1, 137.
11	""		6.6		2.26	Filhol. Ann. (3), 21, 415.
"			"		2.256	Sehröder. P. A. 106, 226.
44			66		2.265	Buignet. J. 14, 15.
66	44				2.236 2.246, 15°.5	Kopp. J. 16, 4. Holker. P. M. (3),
"					2.240, 19 .5	27, 213.
**	•••				$\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Page and Keightley. J. C. S. (2), 10, 566.
"	**		"		2.148	W. C. Smith. Am. J. P. 53, 148.
	4.6	Native	"		2.18, 15°.5	Forbes. P. M. (4), 32, 135.
4.6	44		"		2.290	Hayes.
i i	"		4.6		1.878, at the melting p't.	Melts 314°. Braun. P. A. 154, 190.
u	"		11		2.24	Brügelmann. Ber. 17, 2359.
"	44		Na N	O ₃ . 7 H ₂ O	1.357, 0°, l	Ditte. B. S. C. 24, 366.
	m ni	trate		3	1.9369	Hassenfratz. Ann. 28, 3.
"			"		1.933	Wattson.
11			8.6		2.1006	Karsten. Schw. J. 65, 394.
"			**		2.058	Kopp. A. C. P. 36, 1.
			t t		2.070, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
		11	"		$2.1078 \ 2.10657 \ 4^{\circ} \ $	Playfair and Joule.
			44		$2.10657 \ 2.09584 \ $ 4°	J. C. S. 1, 137.
44		" Large	44		2.109	
"		crystals. " Small	"		2.143}	Grassi. J. 1, 39.
"		crystals. " After	"		2.132]	
"		fusion.	"		2.100	Schiff. A. C. P. 112,
"		"	66		2.086	88. Schröder. P. A. 106,
			66		2.126	226. Ruignet J 14 15
"			"		2.105	Buignet. J. 14, 15. Kopp. J. 16, 4.

	NAME.	FORMULA.	SP. GRAVITY.	Антновиту.	
Potassiun	n nitrate	K N O ₃	2.074, 15°.5	Holker, P. M. (3),	
4.1	44	44	2.0845)	27, 213. Stolba. J. P. C. 97,	
6.6	11	44	2.0904	503.	
6 6		"	2.059, 0°	Quincke, P. A. 135, 642.	
6.6	46	"	2.06	Page and Keightley, J. C.S. (2), 10, 50	
6.6			2.10355, cryst. at 20°.	Nicol. P. M. (5).	
4.0	11	"	2.09916, cryst. at 110°.) 15, 94.	
4.6	"	"	1.702, at the melting p't.	Braun. (Melts at 342°.) P. A. 154.	
Ammonit	ım nitrate	Am X O ₃	1.579	Hassenfratz. Am. 28, 3.	
6.6	11	"	1.707 1.635, m. of 3.	Kopp. A C. P. 36.1. Playfair and Joule. M. C. S. 2, 401.	
4.6		44	1.737, m. of 2	Schroder, P. A. 106, 226.	
6.4			1.709	Schiff, A. C. P. 112, 88,	
4.6	4.4	4.6	1.723	Buignet, J. 14, 15,	
6.6	44		1.6915	Stolba. J. P. C. 97, 503.	
Silver nit	rate	Ag N O3	4.8554	Karsten, Schw. J. 65, 894.	
6.5			4,336	Playfair and Joule. M. C. S. 2, 401.	
		14	4.235		
		44	4.253	Schroder, P. A. 107,	
		4.	4.328	113.	
	nitrate	T1 N O.	5,8	Lamy, J. 15, 186.	
	44		5, 55	Lamy and Des Cloi- zenux. Nature 1,	
Magnesia	nn nitrate	Mg (N O ₃) ₂ 6 H ₂ O.	1.164	116. Playfair and Joule.	
	ate	Zn (N Ō3)2. 6 H2 Ō	2.063, 13° }	M. C. S. 2, 401. Laws. F. W. C.	
Cadmium	n nitrate	Cd (N O ₃) ₂ . 4 H ₂ O ₋₁	2.067, 15° (77 2.450, 14)		
Mercurot	is nitrate	Hg N O ₃ . H ₂ O	2.160, 20° j = 4.785, m. of 3.	Playfair and Joule. M. C. S. 2, 401.	
Calcium i	nitrate	Ca (N O ₃) ₂	2.240	Filhol. Ann. 63, 21, 445.	
6.6	6.		2.172	Kremers. J. 10, 07.	
4.6	44	* 6	2.504, 17 .9	Favre and Valson.	
4+	E to	Ca (N O ₃) ₂ . 4 H ₂ O_	1.78	C. R. 77, 579 Filhol. Ann. (3), 21, 415.	
4.6	"	-		Ordway, J. 12, 115.	
6.6	4.				
4.4	"		1.578, 150	Favre and Valson. C. R. 77, 579.	
				C. 16. 11, 016.	

	NA	ME.		FORMULA.	Sp. Gravity.	Аптновіту.
Stronti	um ni	trate	Sr (N	O ₃) ₂	3.0061	Hassenfratz. Ann.
"	ι				2.8901	Karsten. Sehw. J.
£¢.	6	·	"		2.704	65, 394. Playfair and Joule.
ιι	ι	·			2.857	M. C. S. 2, 401. Filhol. Ann. (3), 21,
ιι					2.962, m. of 4_	415. Schröder. P. A. 106,
11			66		2.805	226. Buignet. J. 14, 15.
					2.980, 16°.8	Favre and Valson. C. R. 77, 579.
"			Sr (N	O ₃) ₂ . 4 H ₂ O		Filhol. Ann. (3), 21, 415.
"	"	`			2.249, 15°.5	Favre and Valson. C. R. 77, 579.
		te		O ₃) ₂	2.9149	Hassenfratz. Ann. 28, 3.
"	"		"		3.1848	Karsten. Schw. J. 65, 394.
ιι	"	*	66		3.284, m. of 5_	Playfair and Joule. M. C. S. 2, 401.
"	66		"		3.16052, 4°	Playfair and Joule. J. C. S. 1, 137.
66	66				3.200	Filhol. Ann. (3), 21,
4.4			"		8.222)]	
6.6	"		"		3.228	Crystallized at differ-
2.3	66		4.6		3.240 \ []	ent temperatures. Kremers, J. 5. 15.
4.4	66		4.6		3.242	
4.6	4.4		6.		5.208	Schröder. P. A. 106,
4.6	4.4		66		3.241 }	226.
4.6	4.4				3.404	Buignet. J. 14, 15.
"	44				3.22	Brügelmann. Ber. 17, 2859.
Lead ni	trate.		Pb (N	O ₃) ₂	4.068	Hassenfratz. Ann. 28, 3.
"	٠		٤,		4.769	Breithaupt. Sehw. J. 68, 291.
"	٠.				4.3993	Karsten. Sehw. J. 65, 394.
66	44		"		4.340	Корр.
"	" -		"		4.316, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
4.6	"		"		4.472, 4°	Playfair and Joule.
66	"		"		4.581	J. C. S. 1, 137. Filhol. Ann. (3).
"	" -		"		4.41, 15°.5	21, 415. Holker. P. M. (3),
ιι					4.423)	27, 214.
"	"		6.6		4.429	Sehröder. P. A. 106,
"			4.4		4.509	226.
66	66		٤٤		4.235	Buignet. J. 14, 15.
44	"		44		4.3, 0°	Ditte. Ber. 15, 1438.
Mangan	ese ni	trate	Mn (N	(O ₃) ₂ . 6 H ₂ O ₋	1,8199, 21°, s.) Ordway. J. 12,
ii			(2	((3)2	1.8104, 21°, 1.	113.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Nickel nitrate Cobalt nitrate Copper nitrate U Didyminm nitrate Symanium nitrate	Cu (N O ₃) ₂ , 3 H ₂ O '' Di (N O ₃) ₃ , 6 H ₂ O	2.174 2.047, m. of 8. 2.245 2.227 } 19°	Hassenfratz. Ann. 28, 3. Playfair and Joule. M. C. S. 2, 401. Cleve. U. N. A. 1885.
Samarium nitrate "" Ferric nitrate "" Bismuth nitrate "" Uranyl nitrate Gold hydrogen nitrate "" ""	$\mathrm{U} \; \mathrm{O}_2 \; (\mathrm{N} \; \mathrm{O}_3)_2. \; 6 \; \mathrm{H}_2 \; \overline{\mathrm{O}}$	2.823, 13° 2.807, 13°	Laws, F. W. C. Bodeker, B. D. Z.

2d. Basic and Ammonio-Nitrates.

$\begin{array}{ c c c c c c c c }\hline N_{AME}. & Formula. & Sp. Gravity. & Authority. \\ \hline Dimercuric nitrate & Hg_2 N_2 O_7, 2 H_2 O_ & 4.242 & Playfair and Joule. \\ M. C. S. 2, 401, & M. C. S. 2, 4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
trate. Purpureochromium chloronitrate. Cr ₂ (NH ₃) ₁₀ Cl ₂ (NO ₃) ₄ 1.569, 17°, 2 Jorgensen, J. P. C. (2), 20, 105.

XXXI. HYPOPHOSPHITES AND PHOSPHITES.

NAME.	FORMULA.	Sp. Gravity.	Authority.
Hydrogen hypophosphite, or hypophosphorous acid Barium hypophosphite	Ba H ₄ P ₂ O ₄ , H ₂ O "" "" "" "" Mg H ₄ P ₂ O ₄ , 6 H ₂ O Zn H ₄ P ₂ O ₄ , 6 H ₂ O "" Ni H ₄ P ₂ O ₄ , 6 H ₂ O "" Co H ₄ P ₂ O ₄ , 6 H ₂ O ""	2.8718, 10° 2.8971, 17° 2.8971, 17° 2.9911	Thomsen. J. P. C. (2), 2, 160. Mohr. F. W. C. Schröder. Ber. 11, 2130. Nye. F. W. C. Mohr. F. W. C. '' '' Thomsen. J. P. C. (2), 2, 160.

XXXII. HYPOPHOSPHATES.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetrasedium hypophosphate. " " Trisodium hypophosphate Disodium hypophosphate. " "	Na ₃ H P ₂ O ₆ . 9 H ₂ O ₋ Na ₂ H ₂ P ₂ O ₆ . 6 H ₂ O	1.8233 1.7427 1.8491	Dufet. C. R. 102, 1328. Dufet. B. S. M. 10, 77. """ Dufet. C. R. 102, 1328.

XXXIII. PHOSPHATES.

1st. Normal Orthophosphates.

Nas	1 E.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Hydrogen phophorics		11 ₃ 1, 0 ⁴	1.84	Schitf. J. 12, 41.
1110-1110-1		(1	1.884, 18°.2	Thomsen. J. P. C.
Trisodium pho	sphate	Na ₃ , P O ₄	2.5111, 12° (2.5362, 17°.5)	C. A. Mohr. F. W.
6.6			1.622	Playfair and Joule.
6			1.618	M. C. S. 2, 401. Schiff, A. C. P. 112, 88.
6.6		"	1.6645	Dufet. B. S. M. 10,
	rogen phos-	Na ₂ H P O ₄ . 3 H ₂ O	1.848	Dufet, C. R. 102, 1328,
phate.	44	Na ₂ H P O ₄ , 7 H ₂ O	1.6789	Dufet. B. S. M. 10,
4.4		Na ₂ H P O ₄ . 12 H ₂ O	1.5139	77. Tünnermann. See
. (. 1.525, m. of 3	Bottger. Playfair and Joule. M. C. S. 2, 401.
6.6			1.586, 8°	Kopp. J. 8, 45.
6.6		6.6	. 1.525	Schiff. A. C. P. 112, 88.
4 6 4 6	11 11		1.550 1.5235, 15°	
6.6			1.535	97, 503. W. C. Smith. Am.
4.	· · · · _		1.5013	J. P. 53, 148. Dufet. B. S. M. 10,
	lrogen pho	Na H ₂ P O ₄ . H ₂ O ₋ .	2.040	Schiff, A. C. P. 112.
phate.	66 66 _		2,0547	88. Dufet, B. S. M. 10,
4.4		Na H ₂ P O ₄ . 2 H ₂ O	1.915	
6.6	44 44		1.9096	Dufet. B. S. M. 10,
Potassium phosphate,	dihydrogen	К Н, Р О,	9,90	Schiff, A. C. P.
44	11 11 -			Buignet. J. 14, 15.
6.6	11 11			Schroder, Dm. 1873.
4.	11 11 -			. Contourt. Dan. 1270.
Diammonium phōspliate.	hydrogen	Am ₂ H P O ₄	1.619	112, 85.
Ammonium	dihydrogen	Am H ₂ P O ₄	1.678	Schiff, A. C. P.
phesphate.		6.	1.700	112. 88. Schroder, Dm. 1873.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ammonium dihydrogen phosphate.	Am H ₂ P O ₄	1.779	Schröder. Ber. 7,
Sodium potassium hydro- gen phosphate.	Na K H P O ₄ . 7 H ₂ O	1.671	Schiff. A. C. P.
Sodium ammonium hydrogen phosphate.	Na Am HPO ₄ . 4H ₂ O	1.554	112, 88.
Trisilver phosphate	Ag ₃ P O ₄	7.321	Stromeyer. See Böttger.
Thallium dihydrogen phosphate.	Tl H ₂ P O ₄	4.723	Lamy and Des Cloizeaux. Nature 1, 116.
Trithallium phosphate Bobierrite	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.89, 10°	Lamy. J. 18, 247. Lacroix. C. R. 106, 632.
Magnesium hydrogen phosphate.	Mg H P O ₄ . H ₂ O	2.326, 15°	Schulten. C. R. 100, 877.
Struvite	Am Mg PO ₄ . 6 H ₂ O	1.65	Teschemacher. P. M. (3), 28, 548.
Hannayite	$\begin{array}{c} \operatorname{Am_3} \operatorname{Mg_3} \operatorname{H_3} (\operatorname{PO_4})_4. \\ \operatorname{8} \operatorname{H_2} \operatorname{O}. \end{array}$	1.893	M. (3), 28, 548. v. Rath. B. S. M. 2, 80.
Hopeite Brushite		2.76—2.85 2.208	Dana's Mineralogy. Moore. A. J. S. (2),
Metabrushite	2 Ca H P O ₄ . 3 H ₂ O	$ \left. \begin{array}{c} 2.288 \\ 2.356 \\ 2.362 \end{array} \right\} 15^{\circ}.5 \left\{ \right. $	39, 43. Julien. A. J. S. (2), 40, 371.
Martinite	$\operatorname{Ca}_{10} \operatorname{H}_{4} (\operatorname{PO}_{4})_{8}. \ \overline{\operatorname{H}_{2} \operatorname{O}}$	2.892—2.896	Kloos. J. C. S. 54, 233.
Reddingite	Mn ₃ (P O ₄) ₂ . 3 H ₂ O ₋	3.102	Brush and Dana. A.
Vivianite	$\text{Fe}_3 (P O_4)_2$. $8 H_2 O_{}$	2.58, 15°	J. S. (3), 16, 120. Rammelsberg. P. A. 64, 411.
"		2.680	Rammelsberg. J. P. C. 86, 344.
Lithiophilite	Mn Li P O ₄	3.482	Brush and Dana. A. J. S. (3), 18, 45.
Triphylite	Fe Li P O ₄	3.6 3.534—3.589	Fuchs. B.J.15,211. Penfield. A. J. S. (3), 17, 226.
Hureaulite	${ m Mn_{10}\ Fe_2\ H_3\ (P\ O_4)_5.} \atop 5\ { m H_2\ O.}$	3.185—3.198	Des Cloizeaux. Ann.
Fairfieldite	MnCa ₂ (PO ₄) ₂ . 2H ₂ O ₋	3.15	(3), 53, 300. Brush and Dana. A. J. S. (3), 17, 359.
Dickinsonite	$\operatorname{Na}\operatorname{Ca}\operatorname{Fe}\operatorname{Mn}_2(\operatorname{PO}_4)_3. H_2 \operatorname{O}.$	3.338 }	Brush and Dana. A. J. S. (3), 16, 114.
Fillowite	$Na_2CaFeMn_6(PO_4)_6$.	3.43	Brush and Dana. A. J. S. (3), 17, 363.
Strengite	Fe''' P O ₄ . 2 H ₂ O	2.87 2.74	Nies. Z. K. M. 1, 94. Schulten. Z. K. M.
Koninckite	Fe''' P O ₄ . 3 H ₂ O	2.3	12, 640. Cesaro. A. J. S. (3),
Aluminum phosphate.	Al P O ₄	2.59	29, 342. Schulten. C. R. 98, 1584.
Berlinite	4 Al P O ₄ . H ₂ O	2.64	Blomstrand. Dana's Min.
Callainite. (Variscite?)	2 Al P O ₄ . 5 H ₂ O	2.50	Damour. C. R. 59, 936.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Variseite	Al P O ₄ . 2 H ₂ O	2.408, 18°	Petersen, N. J. 1871, 357.
Zepharovichite	Al P O ₄ . 3 H ₂ O Y P O ₄	2.384 4.54	Borieky, J. 22, 1235. Smith. J. 7, 857.
44	11	$\left. \begin{array}{c} 4.45 \\ 4.51 \\ 4.39 \end{array} \right\}$	Zchau. J. 8, 966.
Cerium phosphate	Ce P O ₄	4.89 5.22, 14°	Damour. J. 10, 686. Grandeau. Ann. (6),
Cryptolite	4.6	4.6	S, 193. Wohler. P. A. 67, 424.
Rhabdophane (Scovillite)		4.78 3.9—4.01	Watts. J. 2, 773. Brush and Penfield.
Monazite	(Ce La Di) $P O_4 =$	5.203 5.174	A.J.S. (3), 25, 459. Genth. Dana's Min. Rammelsberg. J. 30,
44		5.106—5.110	1298. Kokscharow. J. 15, 762.
44		5.174	Rammelsberg, Z. G. S. 29, 79.
Didymium phosphate	Di 1' O ₄	5.84, 15°	G. S. 29, 79. Grandeau, Ann. (6), S. 193.
Sumarium phosphate	$\operatorname{Sin} \Pr_{\mathcal{U}} \operatorname{O}_4 = = = = = = = = = = = = = = = = = = =$	$5.826 \atop 5.830$ } 17°.5 {	Cleve. U. N. A. 1885.
	8 H. U.	3.05—3.19	Dana's Mineralogy.
Torbernite	Cu (U O_2) ₂ ($P O_4$) ₂ .	3.4—3.6	44 44
Uranocircite	Ba $(U O_2)_2 (P O_4)_2$. 8 H. O.	3.53	Weisbach. J. 30, 1303.
Sodium zirconium phos- phate.		2.43, 14°	Troost and Ouvrard. C. R. 105, 30.
	$Na_{12} Zr_3 (P O_4)_8 \dots$ $Na Zr_2 (P O_4)_3 \dots$	2.88, 14°	
Potassium zirconium	$K_2 \operatorname{Zr} (P O_4)_2$	3.076, 7°	Troost and Ouvrard. C. R. 102, 1422.
Sodium thorium phos-		3.843, 7°	Troost and Ouvrard. C. R. 105, 30.
Potassium thorium phosphate.	$\begin{array}{c} \operatorname{Nn} \operatorname{Th}_2 \left(\operatorname{P} \operatorname{O}_4 \right)_3 - \dots \\ \operatorname{K}_{12} \operatorname{Th}_3 \left(\operatorname{P} \operatorname{O}_4 \right)_8 - \dots \end{array}$	5.62, 16° 3.95, 12°	Troost and Ouvrard. C. R. 102, 1422.
11 11 11	$ K_2 Th (P O_4)_2 \dots K Th_2 (P O_4)_3 \dots $	4.688, 7° 5.75, 12°	

2d. Basic Orthophosphates.

	1		
NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Isoclasite	Ca ₂ (OH)PO ₄ . 2H ₂ O	2.92	Sandberger, J. P.
Libethenite	Cu ₂ (O H) P O ₄	3.6-3.8	C. (2), 2, 125. Hermann. J. P. C.
Tagilite	Cu ₂ (O H) P O ₄ . H ₂ O ₋	3.50	37, 175. Hermann. J. P. C.
11	"	4.076	37, 184. Breithaupt. B. H.
Veszelyite	Cu ₂ (OH)PO ₄ . 2H ₂ O ₋	3.531	Ztg. 24, 309. Schrauf. Z. K. M.
Pseudomalachite	Cu ₈ (O H) ₃ P O ₄	4.175	4, 31. Schrauf, Z. K. M.
Ehlite	$\mathrm{Cu_5(OH)_4(PO_4)_2}$, $\mathrm{H_2O}$	4.102	4, 14. Schrauf. Z. K. M.
Dihydrite	Cu ₅ (O H) ₄ (P O ₄) ₂	4.309	4, 13. Schrauf. Z. K. M.
Triploidite	(Mn Fe) ₂ (O H) P O ₄ -	3.697	4, 12. Brush and Dana. A.
Ludlamite	Fe ₇ (O H) ₂ (P O ₄) ₄ .	3.12	J. S. (3), 16, 42. Maskelyne and
Picite	8 H ₂ O. Fe ₁₄ (O H) ₁₈ (P O ₄) ₈ .	2.83	Field. J. 30, 1300. Streng. J. 34, 1377.
Dufrenite	$^{27} \mathrm{H_2} \mathrm{O}.$ Fe''' ₂ (O H) ₃ P O ₄	3.227	Dufrenoy. Dana's
		3.382	Min. Campbell. A. J. S.
"		3.454	(3), 22, 65. Massie. J. 33, 1433.
	•	3.293	Borieky. S. W. A. 56 (1), 7.
Cacoxenite	$\operatorname{Fe}^{\prime\prime\prime}_{4}(\operatorname{OH})_{6}(\operatorname{PO}_{4})_{2}.$ $\operatorname{9H}_{2}\operatorname{O}.$	3.38	Dana's Mineralogy.
Calcioferrite	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left\{ \begin{array}{c} 2.523 \\ 2.529 \end{array} \right\}$	Reissig. Dana's Min.
Borickite	O ₄) ₂ , 3 H ₂ O ₅	2.696-2.707	Borieky. J. 20, 1002.
Chalcosiderite	Fe''' ₆ Cu (O H) ₈ (P O ₄) ₄ , 4 H ₉ O.	3.108	Maskelyne. J.C.S. 28, 586.
Andrewsite	Fe''' ₈ Cu Fe'' ₄ (PO ₄) ₈	3.475	ii ii
Evensite	$Al_3(OH)_6PO_4$. $6H_2^{6}O$	1.939	Forbes. P. M. (4), 28, 341.
Trolleite	Al ₄ (O H) ₃ (P O ₄) ₃	3.10	Blomstrand. Dana's Min.
Augelite	Al ₄ (O II) ₆ (P O ₄) ₂	2.77	"
Turquois	$Al_4 (O H)_6 (P O_4)_2. H_2O.$	2.621	Hermann. J. P. C. 33, 282.
Peganite	Al, (O H), (P O,)	2.426—2.651 _— 2.492—2.496 _—	Blake. J. 11, 722. Breithaupt. Schw.
Fischerite	$Al_4 (O H)_6 (P O_4)_2.$	2.46	J. 60, 308. Hermann. J. P. C.
Cæruleolactite	$Al_{6} (O H)_{6} (P O_{4})_{4}$.	2.552, 19° }	33, 286. Petersen. N. J. 1871, 353.

NAME.	FORMULA.	SP. GRAVITY.	Ацтновиту.
Wavellite	Al ₆ (O H) ₆ (P O ₄) ₄ .	2.307	Huidinger. Dame's
Wavellite	9 H ₂ O.	2.816	Min. Richardson. Dana's
Planerite	Al ₆ (O H) ₆ (P O ₄) ₄ .	2.65	Min. Hermann. J. 15,
SphæriteLazulite	$Al_{10} (O II)_{18} (P O_4)_4$	2.536	Zepharovich, S. W.
Lazulite	$\text{Al}_2 \text{Mg} (\text{OH})_2 (\text{PO}_4)_2$	3.122	Smith and Brush.
44		3,100-3,123	J. 6, 840. Rammelsberg. P.
11	4.6	3.108	A. 64, 261. Chapman. J. 14, 1033.
Cirrolite	$\mathrm{Al}_{2}\mathrm{Ca}_{3}\left(\mathrm{O}\;\mathrm{H}\right)_{3}(\mathrm{P}\;\mathrm{O}_{4})_{3}$	3.05	
Plumbogummite	Al ₄ Pb (O H) (PO ₄) ₂ .	4.88, 15°.6	Dufrenoy. Ann. (2), 59, 440.
" Hitchcockite_	0 11 ₂ (7.	4.014, 20°	Genth. A.J.S.(2), 23, 424.
Eosphorite	Al Mn (O II) ₂ P O ₄ .	3.124)	
Childrenite	$\begin{array}{c} \text{H}_2\text{ O.}\\ \text{Al Fe (O II)}_2\text{ P O}_4. \end{array}$	3.145)	A. J. S. (3), 16, 35.
Barrandite	II G		104
Dariandite	4 H ₂ Ö.		1000.

3d. Meta- and Pyrophosphates.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Potassium metaphosphate Didymium metaphosphate Samarium metaphosphate Thorium metaphosphate	K P O ₃	$\begin{array}{c} 2.4769, 18^{\circ} \\ 2.503, 20^{\circ} \\ \vdots \\ 2.2639 \\ 3.353 \\ 3.358 \\ 3.489 \\ \end{array} \begin{array}{c} 14^{\circ}.5 \\ 18^{\circ}.4 \\ 3.485 \\ 3.489 \\ \end{array}$	Mohr. F.W.C. Bedson and Williams. Ber. 14, 2555. Mohr. F.W.C. Cleve. U.N.A.1885.
Sodium pyrophosphate	Na ₄ P ₂ O ₇ , 10 H ₄ O	2.8618 / 17° 2.8851 / 17° 1.886	Mohr. F.W.C.

	·		
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium pyrophosphate	Na ₄ P ₂ O ₇ . 10 H ₂ O	1.824	Dufet. C. R. 102, 1328.
		1.8151	Dufet. B. S. M. 10,
Sodium hydrogen pyro- phosphate.	Na ₂ H ₂ P ₂ O ₇ . 6 H ₂ O	1.8616	77.
Potassium pyrophosphate_	K ₄ P ₂ O ₇	2.33	Brügelmann. Ber. 17, 2359.
Silver pyrophosphate	Ag ₄ P ₂ O ₇	5.306	Stromeyer. See Bött-
		5.2596	ger. Tünnermann. See
Thallium pyrophosphate _	Tl ₄ P ₂ C ₇	6.786	Böttger. Lamy and Des Cloi- zeaux. Nature 1,
Magnesium pyrophosphate	Mg ₂ P ₂ O ₇	2.220	116. Schröder. Dm. 1873.
tt tt	. 6'1	$\left\{ \begin{array}{l} 2.559,\ 18^{\circ} \\ 2.598,\ 22^{\circ} \end{array} \right\}$	Lewis. F.W.C.
Zinc pyrophosphate Manganese pyrophosphate	Zn ₂ P ₂ O ₇	$3.7538 \ 3.7574$ 23°	
Manganese pyrophosphate	$\operatorname{Mn}_{\overset{2}{\iota}\iota}\operatorname{P}_{2}\operatorname{O}_{7}$	$\left. \begin{array}{c} 3.5742, 26^{\circ} \\ 3.5847, 20^{\circ} \end{array} \right\}$	"
Nickel pyrophosphate	Ni ₂ P ₂ O ₇	$\left\{ \begin{array}{l} 3.9064,27^{\circ} \\ 3.9303,25^{\circ} \end{array} \right\}$	tt tt
Cobalt pyrophosphate	Co ₂ P ₂ O ₇	$\begin{cases} 3.710, 25^{\circ} \\ 3.746, 23^{\circ} \end{cases}$	
Barium pyrophosphate	Ba ₂ P ₂ O ₇ . H ₂ O	$\left. \begin{array}{c} 3.574 \\ 3.582 \end{array} \right\}$	Schröder. Dm. 1873.
Silicon pyrophosphate	Si P ₂ O ₇	3.590) 3.1, 14°	Hautefeuille and Margottet. C. R.
Zirconium pyrophosphate	Zr P ₂ O ₇	3.12)	96, 1053. Knop. A.C.P.159,
Zirconium pyrophosphate "Tin pyrophosphate	$\operatorname{Sn} \operatorname{P}_2 \operatorname{O}_7$	3.14}	48. Knop. A.C.P.159,
Basic tin pyrophosphate		3.87)	39.
Basic titanium pyrophos-phate.			

XXXIV. VANADATES.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Sodium octovanadate	Nu ₁₂ V ₃ O ₂₆ , 4 H ₂ O	2.85, 189	Carnelley. J. C. S. (2), 11, 323.
Silver octovanadate Thallium metavanudate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.67, 18° 6.010, 11°	66 66
Thallium pyrovanadate	114 \ 2 \ 07	8.21, 18°.5, ppt. s.812, 18°.5,	4.6 6.6
Thallium orthovanadate	Tl ₃ V O ₁	fused.	ιι ιι ι,
Thallium octovanadate Thallium decavanadate Magnesium vanadate.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.59, 17°.5 7.86, 17° 2.198).	
Brown.	Bi V O ₁	2.167	Sugiura and Baker. J. C. S. 35, 716. Frenzel, J. P. C.
Pucherite	$Pb_3 V_2 O_8. Zn_3 V_2 O_8 -$	5.91	(2), 4, 227. Bergemann. J. 3,
		5.83	753. Tschermak, J. 14. 1021.
" Eusynchite Descloizite	Pb Zn (O H) V O	5,596	Rammelsberg, Damour, J. 7, 855.
11	6.6 mm		From two samples. Rammelsberg, J. 33, 1428.
11	11	6.205)	Penfield. A. J. S. (3), 26, 361.
" Light Dark	" (. Pb Cu (O II) V O.	5.814-5.882)	Genth. Am. Phil. Soc. 1885. Roscoc. J. 29, 1259.
Volborthite;	R ₃ (OH) ₃ VO ₄ . GH ₂ O ₂	3.55	Credner. Dana's Min.
Didymium vanadate Didymium metavanadate.	Di V ₅ O ₁₄ . 14 Il ₂ O	4 968 1 -1	Clove, U. N. A. 1885.
Samarium metavanadate	Sm V ₅ O ₁₁ , 12 H ₂ O ₂₂	2.625, 179.5	t. (i
66 66	$\operatorname{Sm} \operatorname{V}_5 \operatorname{O}_{14}$. 14 $\operatorname{H}_2 \operatorname{O}_{-}$	2.52°, 17°.5 2.52°, 17°.8	., .,
Sodium vanadium vana- date.	2Na ₂ O, 2V ₂ O ₄ , V ₂ O ₆ 6 H ₂ O, 2Na ₂ O, 2V ₂ O ₇ V ₂ O ₇	1.389, 15°	Brierly, J. C. S. 49, 30,
Potassium vanadium va-	$\begin{array}{c} 2\mathrm{Na_2O},2\mathrm{V_2O_4},\mathrm{V_2^2O_5},\\ -13\mathrm{H_2^2O},\\ 5\mathrm{K_2O},2\mathrm{V_2O_4},4\mathrm{V_2^2O_5}. \end{array}$	1.214, 15	
nadate. Ammonium vanadium va- nadate.	11. ().	1,335, 15	6.6 h
nadate.	1 112 0		

^{*} Penfield's mineral contained some copper and arsenic. Frenzel's tritochorite (G. 0.25) is similar. † Fermula somewhat doubtful. ‡ R in this formula $= \frac{34}{4}$ Cu and $\frac{1}{4}$ Ca + Ba

XXXV. ARSENITES AND ARSENATES.

1st. Normal Orthoarsenates.

NAME.	Sp. Gravity.	AUTHORITY.	
Sodium dihydrogen arse- nate.	* * *	2.535	Schiff. A. C. P. 112, 88.
		2.6700	Dufet. B. S. M. 10,
" "	Na H ₂ As O ₄ . 2 H ₂ O	2.320	Joly and Dufet. C. R. 102, 1393.
" " "		2.3093	Dufet. B. S. M. 10,
Disodium hydrogen arse-	Na ₂ H As O ₄ . 7 H ₂ O ₋	1.871	77. Schiff. A. C. P.
nate.		1.8825	
	$Na_{2}HAsO_{4}$. $12H_{2}O_{-}$	1.759	77. Thomson. See Bött-
		1.786	ger. Playfair and Joule.
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		1.670	M. C. S. 2, 401. Schiff. A. C. P. 112,
		1.6675	88. Dufet. B. S. M. 10,
Trisodium arsenate	Na ₃ As O ₄	2.8128 } 210	77. Stallo. F. W. C.
((((No ₃ As O ₄ . 12 H ₂ O _	2.8577 }	Playfair and Joule.
((1.762	M. C. S. 2, 401. Schiff. A. C. P. 112,
		1.7593	88. Dufet. B. S. M. 10,
Potassium dihydrogen ar-	K H ₂ As O ₄	2.638	77. Thomson. See Bött-
senate.		2.832	ger. Schiff. A. C. P. 112, 88.
" " "		$2.844 \\ 2.853$	Schröder. Dm. 1873.
" " "	"	2.855) 2.862	Topsoë. B. S. C. 19,
Ammonium dihydrogen	Am H ₂ As O ₄	2.249	246. Schiff. A. C. P. 112,
arsenate.	((2.299)	88.
(((("	$\left. \begin{array}{c} 2.233 \\ 2.309 \\ 2.312 \end{array} \right\}$	Schröder. Dm. 1873.
	(6	2.308	Topsoë. C. C. 4, 76.
arsenate.	Am ₂ II As O ₄	1.989	Schiff. A. C. P. 112, 88.
Potassium sodium hydro- gen arsenate.	K Na H As O ₄ . 7 H ₂ O	1.884	Schiff. A. C. P. 112, 88.
Ammonium sodium hy- drogen arsenate.	4 H. Ö	1.838	"
Hoernesite	$Mg_3 (As O_4)_2$. $8 H_2 O$	2.474	Haidinger. J. 13, 784.

NAME.	FORMULA.	Sp. Gravity.	А стновиту.
Magnesium hydrogen ar-	(H Mg As O ₄) ₂ . H ₂ O	3.155, 15°	Schulten, C. R. 100, 877.
Kottigite Native nickel arsenate		3.1 4.982	Kottig. J. 2, 771. Bergemann. J. 11. 728.
ErythriteCabrerite	$(\text{NiCoMg})_3 (\text{AsO}_4)_2$.	2.948 2.96	Dana's Mineralogy Ferber. B. H. Ztg
Roselite	$(\operatorname{Ca}\operatorname{Co}\operatorname{Mg})_{3}(\operatorname{A=0}_{4})_{2}, \\ \operatorname{Ca}\operatorname{H}_{2}\operatorname{U}, \\ \operatorname{H}_{2}\operatorname{U}.$	3.5—3.6	870
44		3.46, 3°	1874, 871.
Caryinite	(Pb MnCa) ₃ (As O ₄) ₂	4.25	Lundstrom, Dann's Min., 3d App.
Berzeliite Haidingerite Pharnacolite Wapplerite	H Ca As O. H. O.	2.848	Dana's Mineralogy. Turner, Dana's Min Dana's Mineralogy Frenzel. Dana'
Forbesite	7 H ₂ O. 2 H (Co Ni) As O ₄ .	3.086	Min., 2d App. Forbes. P. M. (4)
Scorodite		8.11)	25, 103. Damour. Ann. (3) 10, 406.
4 Artificial	4.	8.28	
Carminite	$\begin{array}{c} {\rm Pb_3 \; Fe^{\prime\prime\prime}_{10} \; (As \; O_4)_{12}} \\ {\rm (U O_2)_3 (As O_4)_2} \\ {\rm 12 \; H_2 \; O_2} \end{array}$	4.105	Dana's Mineralogy
Uranospinite	. $(U O_2)_2 \operatorname{Ca} (\operatorname{As} O_4)_2$.	8.45	1873, 316.
Zeunerite	$(\mathbf{U} \ \mathbf{O}_2)_2 \ \mathbf{Cu} \ (\mathbf{As} \ \mathbf{O}_4)_2. \\ \mathbf{S} \ \mathbf{H}_2 \ \mathbf{O}.$	3.53	66 66

2d. Basic Orthoarsenates.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Adamite	Zn ₂ (Ō H) As O ₄	4.338, 18°	Friedel. C. R. 62,
Native nickel arsenate	Ni ₅ O ₂ (As O ₄) ₂	4.838	
Olivenite	Cu ₂ (O II) As O ₄	4.878	Damour. Ann. (3), 13, 404.
		4.185	
Clinoclasite	Cu ₃ (O H) ₃ As O ₄	1.19-4.86	Dana's Mineralogy.
			13, 404.
		4.38, 19°	Hillebrand, Private communication.
Euchroite	Cu (OH) ₃ AsO ₄ .6H ₂ O Cu ₅ (O H ₄ (As O ₄	3.359	Dam's Mineralogy.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Corn wallite	Cu ₅ (O H) ₄ (As O ₄) ₂ .	4.160	Dana's Mineralogy.
Tyrolite	$Cu_5 (O H)_4 (As O_4)_2$.	3.02—3.098	£
"	"	3.162	Church. J.C.S.26,
"		3.27, 20°.5	Hillebrand. Private communication.
Chalcophyllite	$Cu_8 (O H)_{10} (As O_4)_2$.	2.659	Damour. Ann. (3), 13, 404.
	"	2.435	Hermann. J. P. C. 33, 294.
ConichalciteBayldonite	$Cu Ca (O H) As O_4'$ - $Cu_3Pb(OH)_2(AsO_4)_2$.	4.123 5.35	Fritzsche. J.2,772.
Liroconite	H_2 O. Cu_2 Al (O H), As O_4 .	2.926	265.
"	4 H ₂ O.	2.964	Min. Damour. Ann. (3),
"		2.985	13, 404. Hermann. J. P. C.
Chenevixite	Cu ₃ Fe''' ₂ (O H) ₆	3.93	
PharmacosideriteArseniosiderite	${ m Fe'''_4(OH)_3(AsO_4)_3} \ { m Fe'''_4Ca_3\ (O\ H)_9}$	2.9—3.0 3.520	
	(Ås O ₄) ₃ .	3.88	Rammelsberg. Church. J. C. S. 26,
Allaktite	Mn ₇ (O H) ₈ (As O ₄) ₂ -	3.83—3.85	102. Sjögren. A.J.S.(3),
Rhagite	Bi ₅ (O H) ₉ (Λs O ₄) ₂	6.82, 22°	27, 494. Weisbach. N. J.
Mixite		2.66	1874, 302. Schrauf. Z. K. M.
"	7 H ₂ O.	3.79, 23°.5	
Walpurgite	$({\rm U}\ {\rm O}_2)_3\ {\rm Bi}_{10}\ ({\rm As}\ {\rm O}_4)_4\ ({\rm O}\ {\rm H})_{24}.$	5.64	communication. Weisbach. N. J. 1873, 316.
	•		

3d. Pyroarsenates and Arsenites.

NAME.	FORMULA.	Sp. Gravity.	Authority.
Magnesium pyroarsenate Zinc pyroarsenate """ Manganese pyroarsenate """ Lead arsenite	$Z_{n_2} A_{s_2} O_7$	3.7305, 15° 3.7649, 18° 4.6989 4.7034 21° 3.6625, 25° 3.6832 3.6927 5.85, 23° 2	Stallo. F. W. C.

XXXVI. PHOSPHATES, VANADATES, AND ARSENATES, COMBINED WITH HALOIDS.

NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Sodium fluo-phosphate* Sodium fluo-arsenate* Wagnerite	$\begin{array}{c} Na_{4}(P O_{4}) F, 12 H_{2}O \\ Na_{4}(AsO_{4}) F, 12 H_{2}O \\ Mg_{2} \begin{pmatrix} P O_{4} \end{pmatrix} F \\ & & & & & & & & & & & & & & & & & &$	2.849	Briegleb. J. 8, 338. Briegleb. J. 8, 339. Rammelsberg. P. A. 64, 251. Pisani. Z. K. M.
Artificial vanadium wag- nerite. Herderite			3, 645. Hautefeuille, J. C. S. (2), 12, 131. Hidden and Mack- intosh, A. J. S.
Triplite	44	3.006	(3), 27, 135. Penfield and Harper. A.J.S.(3), 32, 107. Bergemann, J. P. C. 79, 414.
Amblygonite	Al Li (P O ₄) F	3.83 <u>—</u> 3.90 3.118 3.088	Siewert, J. 26, 1185. Breithaupt, J. P. C. 16, 476. Penfield, A. J. S.
" Durangite		3,046	34, 243.
Fluorapatite			G. Rose. P. A. 9, 185.
((4.	9.25	763. Church. J. C. S.
Chlorapatite	Ca ₅ (PO ₄) ₃ Cl	3.054. artif 2.98 "	Manross, J. 5, 10, Daubreé, "Études synthétiques,"
Pyromorphite	Ph ₅ (PO ₄) ₃ Cl	7,008, artif 7.054—7.208	Manross, J. 5, 10.
Vanadinite	Pb ₅ (V O ₁) ₃ Cl	7.36 6.707.12 ,artif	Fuchs. J. 20, 1001. Roscoe, Z. C. 13, 357.
44	41	6,863	872. Struve. J. 12, 805.
Mimetite	- Pb ₅ (As O _{4/3} Cl	7.32	Rammelsberg, J.7. 856.
" Artificial		- 7.12	Michel, B. S. M. 10, 135.
Endlichite	$\begin{array}{c} \text{Pb}_{5} (\text{As } O_{4})_{2} \text{Cl}_{4} = \\ \text{Pb}_{5} (\text{As } O_{4})_{3} \text{Cl}, & \stackrel{\bot}{\subseteq} \\ \text{Pb}_{5} (\text{VO}_{4})_{3} \text{Cl} \end{array}$		M. 2, 806.

Baker (J. C. S., May, 1885) assigns more complex formulæ to these salts.

XXXVII. ANTIMONITES AND ANTIMONATES.

	1		,
NAME.	ME. FORMULA.		AUTHORITY.
Sodium antimonite	Na Sb O ₂ . 3 H ₂ O	2.864	Terreil. Ann. (4),
Sodium hydrogen anti- monite.			
Romeite	Ca (Sb O ₂) (Sb O ₃) ?-	$\left\{ \begin{array}{c} 4.675 \\ 4.714 \end{array} \right\}$	Damour. J. 6, 837.
Atopite	Ca ₂ Sb ₂ O ₇	5.03	Nordenskiöld. Da- na's Min., 3d App.
Barcenite			Mallet. A. J. S. (3), 16, 306.
Monimolite			Igelström. Dana's Min.
Bindheimite			Hermann. J. P. C. 34, 179.
		·	Hillebrand. Bull.
NadoriteStibioferrite	Pb (Sb O ₂) Cl	7.02	Flajolot. J. 23, 1280. Goldsmith. Dana's
*			Min., 2d App.
Thrombolite	Cu ₁₀ Sb ₆ O ₁₉ . 19 H ₂ O	3,668	Schrauf. Z. K. M. 4, 28.

XXXVIII. COLUMBATES AND TANTALATES.*

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Magnesium columbate Manganese columbate Columbite	Mg ₄ Cb ₂ O ₉	4.3	Joly. C. R. 81, 268, Joly. B. S. C. 25, 67,
Columbite	Fe Cb ₂ O ₆	5.469—5.495	Schlieper. Dana's
"	"	5.447 5.432—5.452	Oesten. Dana's Min.
44			720. Müller. J. 11, 721.
Manganese columbite	Mn (Cb O_3) (Ta O_3) -	6.59	Comstock. A. J. S. (3), 19, 131.
Tantalite	Fe Ta ₂ O ₆	7.264	Nordenskiöld. P. A. 26, 488.
"	"	7.936	Berzelius. Dana's Min.
(1	"	7.703	Jenzsch. Dana's Min.
44	"	7.277—7.414	Rose. J. 11, 720.
Mangantantalite			14 393
			54, 234.
Sipylite	Er Co O ₄	4.886, 160	6, 518.

^{*}For samarskite, microlite, fergusonite, and other natural columbotantalates see Dana's Mineralogy. The formulæ here assigned to columbite, tantalite, and sipylite are only approximative, representing the typical compounds.

XXXIX. CARBONATES.

1st. Simple Carbonates.

	Name.		FORMULA.	SP. GRAVITY	Антновиту.
Lithium	carbons	ite	Li ₂ C O ₃	 2.111 1.787, fused	Kremers. J. 10, 67. Quincke. P. A. 138, 141.
Sodium c	arbonat	.e	Na ₂ C O ₃	 2.4659	Karsten. Schw. J. 65, 394.
1.6	4.4			 2.430	Playfair and Joule. M. C. S. 2, 401.
£ £	6.6		4.6	 2.500	Filhol. Ann. (3), 21, 415.
	6.6			 2.407, 20°, 5	Favre and Valson. C. R. 77, 579.
6.6	6.6		66	 $2.49\bar{0}$ $2.51\bar{0}$ \cdots	Schröder, Dm. 1873.
6.6	6.6		44	 2.041, 960°	Braun J. C. S. (2), 13, 31.
6.6	6.6		"	 2.45, fused	Quincke. P. A. 135, 642.
6.6	6.6		Na ₂ C O ₃ . 8 H ₂ O	 1.51	Thomson, Ann. Phil. (2), 10, 442.
	6.6		Na ₂ C O ₃ . 10H ₂ C	 1.423	Haidinger. Sec Bott- ger.
6.6	6.6		4.6	 1.454. m. of 4	Playfair and Joule. M. C. S. 2, 401.
4.4			6.6	 1.475	Schiff. Buignet. J. 14, 15.
66	44		6.6	 1.455, 15°.5	Holker. P. M. (3), 27, 214.
6.6	6.6		6.6	 1.4402	Stolba. J. P. C. 97, 503,
4.6	6.6		6.	 1.456, 19°	Favre and Valson. C. R. 77, 579.
		onate		1.5—1.6 2.2643	Dana's Mineralogy, Karsten, Schw. J.
6.6	6.0			 2.103	65, 394. Playfair and Joule
	6			 2.267	M. C. S. 2, 401. Filhol. Ann. (3)
6.6	6		64	 2.105	
"	6			 2.00, 1150°	J. P. 53, 145. Braun. J. C. S. (2). 18, 31.
Silver ea	rbonnt	е	Ag, C O3	 6,0766	Karsten, Schw. J.
6.6	6.6			 6.0, 17°.5	
Thalliur		nate		 7.06	Lamy and Des Cloi
Magnesi	ium car	bonate	Mg C O ₃	 3,007	zeaux. Nature 1 116. Neumann. P. A 23, 1.

NAME.	FORMULA.	SP. GRAVITY.	Аптнокіту.
Magnesium carbonate	Mg CO	3.056	Mohs.
ii ii		3.065	Scheerer.
		3.017	
		3.033	Breithaupt. Hauer.
"	11	3.017	
		0.011	Marchand and Scheerer. J. 3, 760.
"		3.007)	
"		3.076 }	Jenzsch. J. 6, 848.
" "		3.033	Zepharovich. J. 8, 975.
"		3.015	Zepharovich. J. 18, 906.
" "	Mg C O ₃ . 3 H ₂ O	1.875	Beckurts. J. C. S.
Zinc carbonate	Zn C O ₃	4.339	42, 14. Smithson.
ii ii	(1)		Mohs. See Böttger.
ic cc		4.3765	Karsten. Schw. J.
		1.5100	65, 394.
66		4.45	Naumann.
		4.42	Haidinger.
Cadmium carbonate		4.42, 170	Herapath. P. M. 64,
Cuamian Carsonia Control	ou o ograna	1.12, 11	321.
" " "	((4.4938	Karsten. Schw. J. 65, 394.
66 66	66	4.258	
Calcium carbonate	Ca C O ₃	2.7000 }	Schröder. Dm. 1873. Karsten. Schw. J.
" " Chalk	((2.6946}	65, 394.
" " Aragonite.		2.931	Haidinger.
11 11 11 11 11 11 11 11 11 11 11 11 11		2.927	Biot.
	"	2.945)	
		2.947 }	Beudant.
		2.931	Mohs.
tt 6t tt		2.938)	
	44	2,995 }	Breithaupt.
		2.926	Neumann. P. A.
		2.933, 0°	23, 1. Kopp.
"		2.93	Nendtwich.
" " " " "	"	2.92	Riegel. J. 4, 819.
" " " " ———		2.93	Stieren. J. 9, 882.
" " " " " " " " " " " " " " " " " " " "	((2.932	Luca. J. 11, 732.
" Calcite	"	2.7064 }	Karsten. Schw. J.
" " " ———	((2.6987 {	65, 394.
" " " ———	(2.7213)	Beudant.
<i>(t (t (t</i>		2.7234 }	
" "		2.750	Neumann. P. A. 23, 1.
	"	2.702	Hochstetter. J. 1, 1222.
	"	2.72	Kopp. J. 16, 5.
" " " "	" Artificial	2.71	Bourgeois. Ann.
	Ca C O. 5 H O	1 783	(5), 29, 493.
	Ca C O ₃ . 5 H ₂ O	1.75	Pelouze. Salm-Horstmar. P.
Strontium carbonate	Sr C O ₃	3.605	A. 35, 515. Mohs. See Böttger.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Strontium carbonate	Sr C O ₃	3.6245	Karsten, Schw. J. 65, 394.
	- 44	3.613	v. der Marck. J. 3, 759.
" Precip.		3.548	Schröder, P. A. 106, 226.
Barium carbonate		4.21	Breithaupt.
44 44		4.301	Mohs.
44 44	- 44	4.35	Kirwan.
44 44	- 4.6	4.3019	Karsten, Schw. J. 65, 394.
	- ((4.565	Filhol. Ann. (3), 21, 415.
" Precip.		4.216)	21, 115.
£		4.235	Schroder. P. A. 106,
		4.072)	226.
Ppt. hot		4.1721	Schweitzer. Con-
-		4.1975	trib. Lab. Univ. of
" Ppt. cold	- 66	4.1609	Missouri, 1876.
Lead carbonate	Pb C O	6.465	Mohs. See Bottger.
at at	1 0 0 3	6.5	John.
		6.47	Breithaupt.
44 44		6.4277	Karsten. See Bott-
		1 2 42	ger.
11 11		6.60	Smith. J. 8, 972.
44 44			Schroder, P. A. Ergänz, Bd. 6, 622.
Manganese carbonate		3.592	Mohs. See Bottger.
it it	- 3	3.553	Kersten. J. P. C. 37, 163.
4.6 6.6	4.6	3 6608	Kranz.
44		3.57	Grüner. J. 3, 767.
u u Pp		3.122)	Schroder. P. A.
33 33	4.4	3 · 120}	106, 226.
Iron carbonate		. 8.829	Mohs. See Bottger.
11 11	- 44	3.815	Dufrenoy.
11 11		3.872	Neumann, P. A.
((3.698	23, 1. Breithaupt. J. P. C.
11		0.8(4).00	14, 445.
Lanthanite	La ₂ (C O ₃) ₃ . S H ₂ O.	3.796, 0° 2.605, 20°	Kopp. Genth. A. J. S. (2),
	2 (- 3/3 2		28, 425.
44	- 44	2.666	Blake. J. 6, 850.
Didymium earbonate	- Di ₂ (C O ₃) ₃ , S H ₂ O	$\left\{ \begin{array}{c} 2.850, \\ 2.872, \end{array} \right\} \ 15^{\circ} \ \left\{ \begin{array}{c} \end{array} \right.$	Cleve. U. N. A.
	- 16	2.872,	1885.

2d. Double Carbonates.

NAM	E.	Form	ULA.	SP. GRAVITY.	AUTHORITY.
Hydrogen sodi	um carbon-	Na H C O		2.192, m. of 2.	Playfair and Joule.
ate.		11000	3		M. C. S. 2, 401.
				2.163	Buignet. J. 14, 15.
				2.2208, 15°	Stolba. J. P. C. 97, 503.
21 22		"		$\left\{ \begin{array}{c} 2.207 \\ 2.205 \end{array} \right\}$	Schröder. Dm. 1873.
"		11		2.159	W. C. Smith. Am.
Urao		Na ₃ H (CO	, 3) ₂ . 2 H ₂ O	2.1473, 21°	J. P. 53, 148.
Hydrogen pota	ssium car-	KHCO3.		2.012	communication. Gmelin.
bonate.	и и			2.092	Playfair and Joule.
				2.002	M. C. S. 2, 401.
44		"		2.180	Buignet. J. 14, 15.
"	" " "	- "		2.140	Schröder. Dm. 1873.
66		-		2.167 \$ 2.078	W. C. Smith. Am.
Hydrogenamm		Am H C O	2	1.586	J. P. 53, 145. Playfair and Joule.
bonate.					M. C. S. 2, 401.
Sodium potassit	ım carbon-	K Na C O ₃		2.5289 2.5633	Stolba. J. 18, 166.
11 11	"	K Na C O ₃	. 12 H ₂ O ₋	1.6088 \\ 1.6334 \\	
Silver potassiu	m carbon-	Ag K C O		3.769	Schulten. C. R. 105,
ate.				1 000	813.
Gaylussite		Na ₂ Ca (CO	3) ₂ . 5 H ₂ O	1.928 }	Boussingault. Ann. (2), 31, 270.
Dolomite		Ca Mg (C	0,),	2.914 }	Neumann. P. A.
		4.6		2.918 []	23, 1.
		"		2.89 2.924	Ott. J. 1, 1223.
				2.924	Tschermak. J. 10, 695.
				2.85	Senft. J. 14, 1027.
Hydrodolomite		Ca Mg ₂ (C C	$(H_2O)_3$	2.495	Rammelsberg. Da-
4.6		4.6		2.86	na's Min. Hermann. J. P. C. 47, 13.
Bromlite		Ca Ba (C O	3)2	3.718	Thomson.
44		ιί		3.76, 15°.5	Johnston. P. M. (3), 6, 1.
Barytocaleite		4.6	~ ~ ~ ~ ~ ~ ~	3.66	Children. Ann. Phil. (2), 8, 114.
Manganocalcite		Ca Mn_2 (C	O ₃) ₃	3.037	Breithaupt. P. A. 69, 429.
Pistomesite		Mg Fe (C	03)2	3.412}	Breithaupt. P. A.
Mositito				5.414 }	70, 146.
Mesitite		mg ₂ re (U	3)3	3.349 }	Breithaupt. P. A. 11, 170.
					,

Name.	FORMULA.	Sp. Gravity.	Authority.
Ankerite	Ca (Mg Fe) (C O ₃) ₂	3.01	Luboldt. Dana's
			Ettling. Dana's
		3.072	Boricky, J. 22, 1245.
Dawsonite	Al Na (C \bar{O}_3) (O H) ₂	2.40	

3d. Basic Carbonates.

Name.	FORMULA.	SP. GRAVITY.	А стновиту.
Hydromagnesite Hydrogiobertite	Mg ₄ (C O ₃) ₃ (O H) ₂ .	2.145)	3. 54. 1D. 1 T
((6 H ₂ O.	2.180	6, 851.
Hydrogiobertite	$\mathrm{Mg_2}$ C $\mathrm{O_4}$, 3 $\mathrm{H_2}$ $\mathrm{O_{}}$	2.149—2.174	Scacchi. See Z. K.
Hydrozincite			M. 12, 202
			A C P 108 48
Zaratite	Ni ₃ (CO ₃)(OH) ₄ .4H ₂ O	2.57	B. Silliman, Jr. J.
Zaratite	$Cu_2 (C O_3) (O H)_2$	3.715	Breithaupt. Schw.
(,			J. 68, 291. Breitlaupt, J. P. C.
			16, 475.
14	C. (C.O.) (O.H.)	1.06	Smith, J. 8, 975.
Azurite Bismutosphærite	Cu ₃ (C O ₃) ₂ (O II) ₂ ==	3,5—3,831	Dana's Mineralogy.
Bismutosphærite	Bi ₂ C O ₅	7.28—7.32	Wersbach, J. C. S.
11	.,	7.42	34, 117. Wells, A. J. S. (3),
			34, 271.
Bismutite	Bi ₂ H ₂ C O ₆	6.86	Louis, J. C. S. 54, 23.

XL. SILICATES.*

1st. Silicates Containing But One Metal.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium metasilicate Phenakite	Na ₂ Si O ₃ . 8 H ₂ O Gl ₂ Si O ₄	1.666, 18° }	Kokscharow. J. 10,
"		2.967, 23°	664. Hillebrand. Bull.
		2.95	20, U. S. G. S. Hatch. N. J. 1888,
Bertrandite	$\operatorname{Gl}_4 \operatorname{H}_2 \operatorname{Si}_2 \operatorname{O}_9$	2.593	Bertrand. B. S. M. 3, 96.
"		2.586	Damour. B. S. M. 6, 252.
		2.55	Scharizer, Z. K. M. 14, 41.
Enstatite			Damour. Dana's Min.
"	((3.10-3.13	Brögger and v. Rath.
" Artificial		3.11	Z. K. M. 1, 22. Hautefeuille. J. 17, 212.
Forsterite	${ { m Mg}_2 Si O_4}$	3.243	Rammelsberg. J. 13, 757.
"Boltonite		3.008	
(((()	"	3 3 28 (Smith. J. 7, 821.
Tale	Mg ₃ H ₂ Si ₄ O ₁₂	2.48—2.80 2.682	Scheerer. J. 4, 793. Senft. Z. G. S. 14,
Serpentine	Mg ₃ H ₄ Si ₂ O ₉	2.557	167. Rammelsberg. J. 1, 1195.
	"	2.644	Delesse. J. 1, 1195. Hermann. J. 2, 764.
((2.564—2.593 _— 2.597—2.622 _—	Gilm. J. 10, 678.

^{*} For sp. gr. of silicates before and after fusion see v. Kobell, Bei. 6, 314.

Note.—As regards the natural silicates this table is far from complete. Only those compounds are included which admit of fairly definite chemical formulation, and only a few typical determinations of specific gravity are given in each case. Furthermore, the arrangement is absolutely chemical, and is in no sense dependent upon mineralogical considerations. Thus, for example, all the magnesium silicates are brought together; and so also are the numerous double silicates of aluminum and calcium, quite regardless of their classification as mineral species. Many micas, chlorites, scapolites, etc., are omitted altogether; but the omissions are not serious, for all the important data have been many times collected in the larger treatises on mineralogy, and are, therefore, easily accessible.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Willemite	Zn ₂ Si O ₄	4.18	Levy. B. J. 25, 351.
	6.	4.02	Heringum, J. 2, 743.
		4.16	Mixter. J. 21, 1006.
" Artificial	h 4	4.25	Gorgeu, B. S. C. 47, 146.
Calamine	Zn ₂ Si O ₄ . II ₂ O	8.495	Hermann, J. P. C. 33, 98.
	• 6	13,43-3,49	Monheim, J. 1, 1187.
**	• • •	3,36	Schnebel, J. 11,710. Wieser, J. 21, 1156.
	8 A		McIrby, J. 26, 1175.
Wollastonite	Ca Si O ₃	2.884	Seibert, See Bott- ger.
	44	2.853	v. Rath. J. 24, 1145.
Artificial	4.	2.799	Piquet. J. 25, 1104, Bourgeois, Ann. (5),
44	4 35	2.88	29, 441. Gorgeu. Ann. (6),
Xonaltite	4 Ca Si O ₃ . H ₂ O =	2.710—2.718	4, 515. Rammelsberg, J. 19,
Okenite	Ca Si ₂ O_5 . 2 Π_2 O_{++-}	2.324	932. Schmidt. J. 18, 889.
		0.04	Kobell, Dana's Min.
731 1 2	Mn Si O ₃	2.362	
Rhodonite		2.69	Hermann, J. 2, 738, Igelstrom, J. 4, 768.
. 6		8.65	Fino. J. 36, 1891.
" Artificial	44	8.68	Gorgeu, Ann. (6), 4, 515.
Hydrorhodonite	Mn Si O ₃ , H, O Mn Si O ₃ , 2 H ₂ O	2.70	Engstrom. Collins. Z. K. M. 5, 623.
Tephroite	Mn ₂ Si O ₄	-1.1	Brush. J. 17, 837.
" Artificial			Gorgen, C. R. 98,
	44	4.08	920. Gorgen. Ann. (6), 4, 515.
Friedelite	Mn ₄ II ₄ Si ₃ O ₁₂	3.07	Bertrand, C. R. 82, 1167.
Grunerite	Fe Si O ₃	3.713	
Fayalite	Fe ₂ Si O ₄	4.138	Gmelin, B.J.21, 200.
" Artificial		1.4	Gorgen. Ann. (6).
Chrysocolla	Cu Si O _s . 2 H ₂ O =	2.0-2.238	
Dioptuse	Cu II ₂ Si O ₄	3.314)	Kenngott, J. 3, 732
Kyanite	$Al_2 O_2 Si O_8$	8.48	
"			311
		3.678	Jacobson. P. A. 68 416.
Andquisite		3.070	. Rowney, J.14,982
11	-	3.151	311.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Andalusite	Al ₃ (Si O ₄) ₃ (Al O) ₃ -	3.152	Kersten. J. P. C. 37, 163.
((3.160	Damour. Ann. d.
		3.07-3.12	Mines (5), 4, 53. Schmid. P. A. 97, 113.
Fibrolite	"	3.18—3.21 3.239	Damour. J. 18, 881. Erdmann. B. J. 24, 311.
((Dana. Dana's Min.
Dumortierite	$Al_2 (Si O_4)_3 (Al O)_6$	3.232 3.36	Damour. Z. K. M. 6,
Xenolite	Al_4 (Si O_4) ₃	3.58	289. Nordenskiöld. P.A. 56, 643.
Kaolinite	Al ₂ O II (Si O ₄) ₂ H ₃	2.6	Clark. J. 4, 786. Dana's Mineralogy.
		2.611	Hillebrand. Bull. 20, U. S. G. S.
Pyrophyllite	Al H (Si O ₃) ₂	2.78-2.79	Sjögren. J. 2, 757. Brush. J. 11, 707.
		2.804	Genth. Z. K. M. 4, 384.
	"	2.82	Tyson and Allen. J. 15, 745.
Allophane	Al ₂ Si O ₅ . 6 H ₂ O	2.812 2.02	Genth. J. 36, 1903. Schnabel. J. 2, 756.
Szaboite	Fe''' ₂ (Si O ₃) ₃	1.85—1.89 3.505	Dana's Mineralogy. Koch. Z.K.M.3,308.
Nontronite. Chloropal	$Fe'''_{2} (Si O_{3})_{3} \cdot 5 H_{2} O$	1.727—1.870 _— 2.105 ————	Dana's Mineralogy. Thomson. Dana's
Zireon	Zr Si O_4	4.047	Min. Damour. J.1,1171.
	"	4.595	Wetherill. J. 6,796.
11		$\left\{ \begin{array}{l} 4.602 \\ 4.625 \end{array} \right\}$	Hunt. J. 4, 768.
		4.395 before	
(("	4.515 \ heating. 4.438 \ after	Church. J.17,834.
((4.863 heating]
		4.709, 21°	Cross and Hille- brand, J. 36,1839.
Cerium orthosilicate Thorium metasilicate	$Ce_4 (Si O_4)_3$ Th $(Si O_3)_2$	4.9 5.56, 25°	Didier. C. R.19,882. Troost and Ouvrard.
Thorium orthosilicate		6.82, 16°	C. R. 105, 255.
Thorite. (Orangite)	Th Si O_4 ————————————————————————————————————	5.397	Bergemann. P. A. 82, 562.
		5.34	Krantz. P. A. 82, 586.
" "		5.19	Damour. Ann. d. Mines (5), 1, 587.
· · · · · · · · · · · · · · · · · · ·		4.888-5.205	Chydenius. P. A. 119, 43.
" (Ordinary) Eulytite	Ri (Si O)	4.344—4.397 _— 5.912—6.006 _—	Dana's Mineralogy.
(4	Bi ₄ (Si O ₄) ₃	6.106, 17°	v. Rath. J. 22, 1209.

2d. Silicates Containing More Than One Metal.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Pectolite	H Nn Ca ₂ (Si O ₃) ₃	2.784	Scott. J. 5, 866. Heddle and Greg. J.
			8, 952.
.4		2.878	Charke. Bull. 9, U. S. G. S.
Mulacolite	. Ca Mg (Si O ₃) ₂	3.87	Bonsdorff. Dana's
		3.285	Min. Haushofer. J. 20, 984.
		3.192	Doelter. Z. K. M. 4, 89.
6.6		3.278—3.275	Hunt. Dann's Min
Tremolite	Ca Mg ₃ (Si O ₃) ₄	2.980—8.004	Raminelsberg, J. 11, 694.
"		2.99	Michaelson, Dana's Min.
		9,996, 990	Konig. Z. K. M.
Hedenbergite	Ca Fe (Si O ₃) ₂	3.467, 25°	Wolff. J. P. C. 34,
t.		3,492	Doelter. Z. K. M.
Monticellite	Ca Mg Si O ₄	3.119	4, 90. Rammelsberg, J. 13, 758.
	64	3.05	Freda. J. 36, 1876.
Knebelite	Fe Mn Si O ₄	3.714, 15°.5	Dochereiner, Schw. J. 21, 49,
i		4.122	Erdina: n. Dana's Min.
Kentrolite	$\operatorname{Mn}^{\prime\prime\prime}{}_{2}\operatorname{Pb}_{2}\operatorname{Si}_{2}\operatorname{O}_{9}$ ===	. 6.19	v. Rath. Z. K. M. 5, 35.
Melanotekite	Fe''' ₂ Pb ₂ Si ₂ O ₉	5,78	Lindstron Z. K. M. 6, 515.
Hyalotekite	Ca Ba Pb Si ₆ O ₁₅ °	3.51	Nordenskield.
Petalite		2.117-2.455	Rammelsberg, J. 5, 858.
	44	2.112-2.553	Damour. Dana's
" (Castorite)		2.382-2,401_	Min. Breithaupt. P. A.
Spodumene	Al Li (Si O _{3 2}		69, 438. Mohs. See Bottger.
	44	3,1327—3,137	Rammelsberg, J. 5, 857.
	· · · · · · · · · · · · · · · · · · ·	8.16	Pisani, Z. K. M. 2,
" Hiddenite	6.4	3.177	Genth. Z. K. M. 6, 522.
Eucryptite	Al ₃ Li ₃ S ₁ O _{4 3}	2.647	Brush and Dana. A.
Atuminum lithium silicate	$\Delta l_2 \operatorname{Li}_2 \operatorname{Si}_5 O_{14}$	2.40, 120	4. S. (3, 20, 266, Hautefeuille, C. R.
(4 4	Al Li Si, Ō, Al Na Si, Ō,	2.11, 110	50, 541.
Albite	Al Na Si ₃ O ₈	2.612	Eggertz. Dana's Min.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Albite	Al Na Si ₃ O ₈	2.609, 12°	Streng. J. 24, 1151.
((2.59	Leeds. J. 26, 1166.
(2.604	Leeds. J. 26, 1166. Genth. J. 36, 1896.
**		2.618	Baerwald. J. 36, 1897.
"		2.601	Lacroix. Z. K. M. 14, 112.
" Artificial		2.61	Hautefeuille. Z. K.
Jadeite	Al Na (Si O ₃) ₂	3.26—3.36	M. 2, 107. Damour. B. S. M. 4, 157.
		8.88	Damour. Z. K. M.
			6, 290. Unpub-
(3.326-3.355	Hallock. lished data from
"		3.26—3.34	nawes. 3 II S
		0.00	Taylor. National Museum.
Nephelite	Al ₈ Na ₈ Si ₉ O ₃₄	2.56—2.617	Scheerer. P. A. 49, 359.
"			Kimball. J. 13, 762.
"		2.600-2.6087_	Rammelsberg. Z. G. S. 29, 78.
			Lorenzen. J. 36, 1884.
Analeite	Al Na H ₂ Si ₂ O ₇	2.262-2.288	Waltershausen. J.
ιι		2.236	11, 711. Waltershausen. J. 6, 820.
"		2.278	Thomson. Dana's
ιι		2.222	Min. Bamberger. Z. K. M. 6, 33.
Eudnophite		2.27	Weibye. J. 3, 735.
Paragonite	2 (2/0	2.779	Sehafhäutl. Dana's Min.
" Pregrattite		2.895	Oellacher. Dana's
" Cossaite		2.890-2.896	Gastaldi. Dana's Min., 2d App.
Hydronephelite	Al ₃ Na ₂ II $(Si O_4)_3$. $3 H_2 O$.	2.263	Diller. A. J. S. (3), 31, 267.
Natrolite	$Al_2 Na_2 H_4 (Si O_4^2)_{3}$	2.207, 11°	Gmelin. J. 3, 733.
11		2.254 - 2.258 - 1	Kenngott. J. 6, 820.
			Brush. A. J. S. (2), 31, 365.
Orthoclase	Al K Si ₃ O ₈	2.5702	Breithaupt. See Böttger.
		2.573	Rammelsberg. J. 20, 988.
"	((2.576—2.586	v. Rath. J. 24, 1150.
'' Artificial	((2.572—2.595 2.55, 16°	Genth. J. 36, 1896. Hautefeuille. Z. K.
Leucite	Al K (Si O ₃) ₂		M. 2, 514. Bischof. Dana's
	3/2		Min.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Leucite	Λ1 K (Si Ō ₃) ₂	2.48	Rammelsberg, J. 9,
64	+6	2.479, 230	852. v. Rath. J. 27, 1255.
· Artificial		2.47, 130	Hautefeuille, Z. K. M. 5, 411.
Muscovite	Al ₃ K H ₂ (Si O ₄) ₃	2.817 2.714—2.796	Kussin, Dana's Min.
		2.714—2.796	Grailich. Dana's Min.
41		2.830—2.831	Tschermak. Z. K. M. 3, 127.
	"	2,855	Scharizer, Z. K. M.
Pollucite	Al ₂ Cs ₂ H ₂ (Si O ₃) ₅ -	2.868-2.892_	12, 15. Breithaupt. P. A.
44		2.901	69, 439. Pisani. J. 17, 850.
45		2.893	Rammelsberg, Z. K. M. 6, 286.
Grossularite	Al ₂ Ca ₃ (Si O ₄) ₃	3,522-3,530-	Hunt. Dana's Min.
4.4			Websky, J. 22, 1214. Jannasch. J. 36,
Anorthite	Al. Ca (Si O.).	2.763	1880. Rose. See Bottger.
(1	()	0.72	Daville 1 7 820
44	6		Potyka, J. 12, 785. Silliman, Dane's
66	64		Min.
Idocrase		2.686 3.3123—3,3905	
		3.854	ger. Rammelsberg, J. 2.
11	46	3.44	745. Damour, J. 24, 1153.
			Korn. J. 26, 1874.
(.	4.	3,403-3,472-	Jannasch. J. 36, 1875.
Melilite	Al ₂ Cu ₆ Si ₅ O ₁₉	2.9-3.104	Dana's Mineralogy. Damour. Ann.
			10, 59,
Meionite*	Al ₆ Ca ₄ Si ₆ O ₂₅	2.701-2.707-	v. Rath. P. A. 10.
"		2.716, 16°	Neminar, J. 25, 1227.
Gehlenite	$-\Lambda l_2 \operatorname{Ca}_3 \operatorname{Si}_2 O_{10}$	2.9-2.057	Dana's Mineralogy, Janovsky, J. 26
			1170.
Prehnite	$\operatorname{Al}_2\operatorname{Ca}_2\operatorname{H}_2(\operatorname{Si} \operatorname{O}_4)_{3-1}$	2.845-2.807, 4°	Mohs. See Bottger Streng. N J. 1870
14	6.6	2 1110	314 Genth. J. 86, 1185
Heulandite	Al, Ca II 10 Si 6 O 11-	2.195	Thomson. Dana's
	0.6	2.1963	
Stilbite	Al ₂ Ca H ₁₂ Si ₆ O ₋₁	2.203	2, 503. Munster, P. A. 65 297.

^{*}For other data relative to the scapolite group see Dana's Mineralegy and also Tschermak's memoir in M. C. 4, 881.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stilbite	${ m Al}_2$ Ca ${ m H}_{12}$ Si $_6$ O $_{22}$		Waltershausen. Da- na's Min.
(1)	11 G II G: O	2.16	Sehmid. J. 24, 1158.
Laumontite	Al_2 Ca H_8 Si $_4$ O $_{16}$	2.268	Breithaupt. See Böttger.
		2.252	Mallet. Dana's Min.
Scolezite	Al ₂ Ca ₂ H ₆ Si ₃ O ₁₃	2.280—2.310 _— 2.393 _{————}	Gericke. J. 9, 861. Waltershausen. J.
	- The state of the		6, 819.
		2.28	Collier. Dana's Min.
"		2.27	Lüdecke. Z. K. M. 6, 312.
Chabazite	$Al_2 Ca H_{12} Si_4 O_{18}$		Breithaupt. See Böttger
"		2.08-2.19	Dana's Mineralogy.
((Streng. Z. K. M. 1, 519.
Zoisite	Al ₃ Ca ₂ H Si ₃ O ₁₃	3.251—3.361	Rammelsberg. J. 9, 849.
"		3.226-3.381	Breithaupt. Dana's
Margarite	$\mathrm{Al_4}\mathrm{Ca}\mathrm{H_2}\mathrm{Si_2}\mathrm{O}_{12}$	2.99	Hermann. J. P. C. 53, 16.
Oligoclase	Al ₅ Ca Na ₃ Si ₁₁ O ₃₂	2.66-2.68	Kerndt. J. 1, 1182.
11		2.725 2.643—2.689	v. Rath. J. 11, 706. Petersen. J. 25, 1112.
Andesite	Al ₃ Ca Na Si ₅ O ₁₆	2.651—2.736	Delesse. J. 1, 1183.
7 -1 3 4		2.667—2.674 _— 2.719—2.883 _—	Hunt. J. 14, 995. Delesse. J. 1, 1183.
Labradorite	Al ₇ Ca ₃ Na Si ₉ O ₃₂	2.709	Damour, J. 3, 723,
"		2.697	Hunt. J. 4, 782.
Faujasite	Al CaNa.H.(SiO.).	2.72-2.77,15°.5 1.923	Streng. J. 15, 736. Damour. Ann. d.
J.	${ m Al_4CaNa_2H_4(SiO_3)_{10}.} \ { m 18~H_2~O.}$		Mines (4), 1, 395.
Thomsonite	$\begin{array}{c} 2 \operatorname{Al}_2 \left(\operatorname{Ca} \operatorname{Na}_2 \right) \operatorname{Si}_2 \operatorname{O}_8, \\ 5 \operatorname{H}_2 \operatorname{O}. \end{array}$	2.35—2.38	Zippe. Dana's Min.
"	11 2 O.	2.357	Rammelsberg. J. P. C. 59, 348.
" Lintonite		2.32-2.37	Peckham and Hall.
Canalinita	Al (CoNo \H Si O	9.0~	A. J. S. (3), 19,122. Damour. J. 12, 796.
Gmelinite	$\mathrm{Al_2}(\mathrm{Ca}\mathrm{Na_2})\mathrm{H_{12}Si_4O_{18}}$	2.07 2.099—2.169	Dana's Mineralogy.
((2.100	Liversidge. J. 36,
Milarite	$\mathrm{Al}_2\mathrm{Ca}_2\mathrm{K}\mathrm{H}(\mathrm{Si}_2\mathrm{O}_5)_6$	2.5529	1895. Ludwig. Z. K. M. 2, 631.
Phillipsite	$\operatorname{Al}_2\left(\operatorname{Ca} \operatorname{K}_2\right) \operatorname{II}_8 \operatorname{Si}_4 \operatorname{O}_{16}$	2.201	Waltershausen. Da-
		2.213	na's Min. Marignae, B. J. 26, 351.
£ (2.150, 21° }	W. Fresenius. Z. K. M. 3, 42.
Strontium oligoclase	Al ₅ Sr Na ₃ Si ₁₁ O ₃₂	2.619	Fouqué and Lévy. C. R. 90, 622.
Strontium labradorite Strontium anorthite	Al, Sr, Na Si, O,	2.862	11
Strontium anorthite	$Al_2 Sr (Si O_4)_2$	3.043	"

Name.	FORMULA.	SP. GRAVITY.	Астновиту.
Barium oligoclase	Al_5 Ba Na_3 Si_{11} $\mathrm{O}_{32^{}}$	2,906	Fouqué and Lévy. C. R. 90, 622.
Barium labradorite	Al, Ba, Na Si, O,	3,333	46 46
Barium anorthite	Ala Ba (Si O.)	3,573	4.6
Harmotome	Al_2 Ba $(Si O_4)_2$ Al_2 Ba II_{10} Si_5 O_{19}	0.300	Mohs. See Bottger.
11	10 - 3 19	2.44-2.45	Dana's Mineralogy.
	4.6	2.447	Damour. Dana's Min.
	ct	2.402, 21°	W. Fresenius, Z. K. M. 3, 42.
Lead oligoclase	$\Lambda l_5 \; \mathrm{Pb} \; \mathrm{Na}_3 \; \mathrm{Si}_{11} \; \mathrm{O}_{52^{}}$	3,196	Fouqué and Lévy. C. R. 90, 622.
Lead labradorite	Al, Ph, Na Si, O32	3.609	16 . 16
Lead anorthite	$\operatorname{Al}_2\operatorname{Pb}^3(\operatorname{Si} \operatorname{O}_4)_2$	4.093	
Euclase	Al Gl II Si O5	3.036	Mallet. J. 6, 800.
46	44	3.097	Des Cloizeaux. Da- na's Min.
44		3.096-3.103	Kokscharow, Da- na's Min.
((3.057	Guyet. Z. K. M. 5, 250,
Beryl	V1 G1 (Si O), or	2.813	Mallet. J. 7, 828.
Dervi	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.686	Haughton, J. 15, 720.
i 6		2,650	Petersen, J. 19, 925.
41		2.706	Penfield and Har-
		2.109	per. A. J. S. (3), 32, 111.
		2.681—2.725	Kokscharow, Dann's
" Emerald		2.614	Boussingault, J. 22, 1216.
(1 41		2,710-2,759-	Kummerer. Dana's Min.
Iolite	Al, Mg2 Si5 O18	2.605	Kokscharow, J. 13,
		2.6699, 16°	Schuchtel, Z. K. M. 7, 594.
61		2.670S, 18°	Jost. Z. K. M. 7,
Ripidolite	Al. Mg. Si. O 4 H. (2.774	Rese. Dana's Min.
Tillianite	2. 2. 3 0 14	2.603	Hermann. Dana's Min.
		2.078	Marignae. Dana's Min.
	1.4	2.714	Blake, Dana's Min.
Am. s. lita	Al, Mg Ca H, (Si O4)		Blomstrand.
Arctolite Mangane e garnet. Arti-	$A1_2$ Mn_3 $(Si O_4)_3 = -$	4,05, 11	Gorgen, C. R. 97,
ficul. Karpholite	$-\Lambda l_2 \operatorname{Mir} \operatorname{H}_4 \operatorname{Si}_2 \overline{\operatorname{O}}_{13}$	·) (1,)°)	1303. Breithaupt. Dana's
		2,576	Min. Koninek, Z. K. M.
Almandite	Al ₂ Fe'' ₃ (Si O _{4 3}	3.90-4.286	4, 222. Wachtmeister, Da-
.,		1.196	na's Min. Mallet, Dana's Min.
**	- "	4.197	Websky, J. 21, 1013.
		4,127	Heddle, J. 36, 1881.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
PartschiniteVenasquite		4.006	
Chloritoid	$Al_2 \text{ Fe''} \coprod_2 \text{Si } O_7 = -$	3.52 3.518	4, 413. Smith. J. 3, 741. Hunt. J. 14, 1011.
		3.588	Tschermak and Sipöez. Z. K. M. 3, 508.
Ouvarovite	$\operatorname{Cr}_2\operatorname{Ca}_3(\operatorname{Si}\operatorname{O}_4)_3$	3.5145	Erdmann. B. J. 23, 291.
Aemite	Fe''' Na (Si O ₃) ₂	3.41—3.52 3.536—3.543	Dana's Mineralogy. Breithaupt. See
"		3.530	Böttger. Rammelsberg. J.
		3.520	11, 695. Doelter. Z. K.M. 4, 92.
Andradite	Fe''' ₂ Ca ₃ (Si O ₄) ₃	3.85 3.796—3.798	Damour. J. 9, 848. Kokscharow. J. 12, 782.
		3.797	Fellenberg. J. 20, 984.
		3.740	Dana. Z. K. M. 2,
" Demantoid		3.828	Rammelsberg. Z.
"		,	K. M. 3, 103. Cossa. Z. K. M. 5, 602.
Crocidolite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.200	Stromeyer and Hausmann. P. A. 23, 153.
"		3.2	Chester. A. J. S. (3), 34, 108.
Lievrite		3.711	Tobler. J. 9, 851.
"	:6	4.023	Städeler. J. 19, 934. Lorenzen. J. 36, 1879.
Thuringite. (Owenite)	Fe''' ₄ Fe'' ₄ Si ₃ O ₁₆ . 5 H. O.	3.197, 20°	Genth. A. J. S. (2), 16, 167.
" " ——		3.191	Smith. A. J. S. (2), 18, 376.
		3.177	Zepharovich. Z. K. M. 1, 371.
Sphene	"	3.49—3.51	Hunt. J. 6, 837. Fuchs. Dana's Min.
"Greenovite		3.535	Rose. " " Hintze. Z. K. M.
" Artificial		3,45	2, 310. Hautefeuille. J. 17, 216.
GuariniteZirconium potassium silicate.	$\operatorname{Zr} \operatorname{K}_2^{\iota \iota} \operatorname{Si}_2 \operatorname{O}_7^{}$	3.487 2.79	Guiseardi. J. 11, 718. Mellis. Göttingen Doct. Diss., 1870.
Zirconium sodium silicate Calcium tin silicate	$\operatorname{Zr_8Na_2SiO_{19}}$. $11\operatorname{H_2O}$ Ca Sn Si $\operatorname{O_5}$	3.53 4.34	Bourgeois. C. R. 104, 233.

3d. Boro-, Fluo-, and Other Mixed Silicates.

NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Danburite	Ca B ₂ Si ₂ O ₈	2.986 3.021 2.986	Brush and Dana. Z. K. M. 5, 185. Bodewig, Z. K. M.
Datolite	Ca H B Si O ₅	2.988	7, 297. Mohs. See Bottger. Breithaupt. See Bottger.
44	44	2.983 2.987—3.014_	Whitney, J. 12, 801. Tschermak, J. 13, 778.
Homilite	$\operatorname{Ca_2}$ Fe $\operatorname{B_2}$ Si $_2$ O $_{10}$		Smith. J. 27, 1270. Paikull. Z. K. M. 1, 385.
Howlite	Ca ₂ H ₅ B ₅ Si O ₁₄	2.59	Pentield and Sperry. A. J. S. (3), 34, 221.
Axinite	Al ₅ (Ca Fe Mn), H ₂	3.271	Mohs. See Böttger.
Tourmaline, Colorless	A1 B $O_2 (Si O_4)_2^5 R_6^{21}$	3.07-3.085	Riggs. A. J. S. (3), 35, 35.
re Red		2,998—3.082	Rammelsberg, J. 3,
		2,097-3.028_	Riggs. A. J. S. (3), 35, 35.
Green	E E com on	3.069-3.112-	
. Brown	6.4	3.035-3.068_	6.9 8.4
Black		8,205-8,243_	44
		3.05-3.20	Riggs. A. J. S. (3), 35, 35,
Apophyllite	. $\operatorname{Ca_4} K \operatorname{H}_{\infty} (\operatorname{Si} \operatorname{O_3})_{\operatorname{q}} F$. $\operatorname{4} \operatorname{H_2} \operatorname{O}$	0.00=	Mohs. See Bottger.
		2.305	Jackson, J. 3, 733, Smith, J. 7, 838.
Leucophane	$\operatorname{Gl}_4\operatorname{Cn}_4\operatorname{Nn}_3\operatorname{Si}_7\operatorname{O}_{22}\operatorname{F}_3$	2.964	Rummelsberg, J. 9, 867.
		2.974	Erdmann, B. J. 21, 168,
Melinophane	$\operatorname{GL}\operatorname{Ch}_3\operatorname{Nh}_{13}\operatorname{Sl}_4\operatorname{O}_{14}\operatorname{F}_1$	3,00 3,018	Scheerer. J. 5, 883.
Topaz	_ Al ₂ Si O ₄ F ₂	3,439-3,517-	
"		3,52-3,55	Kokscharow, J. 9.
"		0.514 = 0.500	
"		3,333-3.597-	
	. "	3,578, 22°	Hillebrand Buli, 20, U. S. G. S.
Lepid dite	Al, K Li Si, O, F,	2.531-2.5516	
			-, 0 = 0 .

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lepidolite	Al_2 K Li Si_3 O_9 F_2		Scharizer. Z. K. M. 12, 15.
Phlogopite	$egin{array}{ll} \operatorname{Al_2Mg_5}_{"}^{H}\operatorname{KSi_5O_{18}F_2}_{"} \ & \end{array}$	2.78—2.85 2.81	Dana's Mineralogy. Kenngott. J. 15,
		2.959, 16°	742. Berwerth. Z. K. M. 2, 521.
		2.742—2.867	Tschermak. Z. K. M. 3, 127.
Calcium chlorosilicate			Le Chatelier. C. R.
Sodalite	Al ₄ Na ₅ (Si O ₄) ₄ Cl	2.401	v.Rath. Dana's Min. Lorenzen. J. 36, 1884.
			Bamberger. Z. K. M. 5, 584.
Marialite	$\operatorname{Al_3}\operatorname{Na_4}\operatorname{Si_9}\operatorname{O_{24}}\operatorname{Cl}_{}$	2.294—2.314 _— 2.626, 19° _{——}	Kimball. J. 13, 775. v. Rath. Z. G. S. 18,
Pyrosmalite_v	${ m Mn_5 Fe''_5 H_{14} (Si O_4)_8} \atop { m Cl_m}$	3.168-3.174	635. Lang. J. P. C. 83, 424.
"	., Cl ₂ .	3.081	Hisinger. Dana's
Helvite	Gl ₃ M ₁₁₄ (Si O ₄) ₃ S		Lewis. Z. K. M. 7, 425.
Danalite		3.23—3.37	Kokscharow. J. 22, 1228.
	$Gl_3 Fe_3 Zn (Si O_4)_3 S$		Cooke. A. J. S. (2), 42, 73.
Nosean	$\operatorname{Al}_4\operatorname{Na}_6\mathop{(\operatorname{Si}}_{4}\operatorname{O}_4)_4\operatorname{SO}_{4^-}$	2.25—2.4 2.279—2.399	Dana's Mineralogy. v. Rath. Z. G. S. 16, 86.
Complex silicate and sulphide.	Ca ₁₈ Al ₂ S ₂ O ₃₅ . 2 Ca S		Rammelsberg, J. P. C. (2), 35, 98.
Thaumasite	$Ca_3 Si O_3 S O_4 C O_3$. 14 $H_2 O$.		Lindström. J. 33, 1484.
Calcium silicophosphate	$\operatorname{Ca}_5\operatorname{Si}\operatorname{O}_4\left(\operatorname{P}\operatorname{O}_4\right)_{2^{}}^2$	3.042	Carnot and Richard. B. S. M. 6, 241.

XLI. TITANATES AND STANNATES.

	NAME.		FORMULA.	Sp. Gravity	Authority.
Calcium cial.			Ca Ti O ₃	4.10	Ebelmen.
"	6.6	"		4.00	Hautefeuille. J. 17, 217.
"	i i	Perof- skite.			Rose. B. J. 20, 210.
4.6	6.6	44		4.038	Damour. J. 8, 960.
66	٤ ٤	"	"	3.974, 200	Damour. J. 8, 960. Brun. Z. K. M. 7,
Strontiu	m titanate		$\mathrm{Sr_2}\;\mathrm{Ti_3}\;\mathrm{O_8}$		389.

NAME.	Formula.	Sp. Gravity.	Антновиту.
Barium titanate			103, 141,
Magnesium titanate	Mg Ti O ₃	3.91	Hautefeuille. J. 17,
Magnesium orthotitanate_	$M\underline{\varphi}_2$ Ti O_4	0.52 4.727	217. Marignac. B. J. 26, 372.
Iron orthotitanate	Fe ₂ Ti O ₄ =	4.37	Hautefeuille. J. 17,
Zinc titanate	Zn Ti ₃ O ₇	4.92, 15°	217. Levy. C. R. 105, 380.
Potassium stannate	K ₂ Sn O ₃ . 3 H ₂ O	3,197	Ordway, J. 18, 240.

XLII. CYANOGEN COMPOUNDS,*

1st. General Division.

Name.	FORMULA.	SP. GRAVITY.	Антиовиту.
Cyanogen. Liquefied Hydrocyanic acid Cyanic acid Cyanuric acid Cyanuric acid Cyanuric acid Cyanuric acid Hydrosulphocyanic acid Tricyanogen trichloride Cyanogen icdide	H C N O H ₃ C ₃ N ₃ O ₃ (H C N O) H ₄ C ₁ N S (H C N S (H C N S	.7058, 7°—} .6969, 18°—} .710, 6°—	Porrett, P.T. 1814, 548. Meitzendorff, P. A. 56, 63. Serullas, Ann. (2), 38, 370.

^{*} Exclusive of organic cyanides, or compounds containing organic radicles.

2d. Cyanides, Cyanates, and Sulphocyanides.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Potassium eyanide		1.52, 12° 3.943, 11° 3.77, 13° 4.0036, 14°.2	Bödeker. B. D. Z. Giesecke. " Bödeker. " Clarke. A. J. S.
(; () () () () () () () () () () () () () () (4.0262, 12° 4.0026, 22°.2_ 3.990 4.011}	(3), 16, 201. Creighton. F. W. C. Wittmann. " Schröder. Ber. 13, 1070.
Mercury oxycyanide		$ \begin{array}{c} 4.419 \\ 4.428 \end{array} $ $ \begin{array}{c} 23^{\circ}.2 \end{array} $ $ \begin{array}{c} 4.437, 19^{\circ}.2 \\ 4.514, 26^{\circ} \end{array} $	Clarke. A. J. S. (3), 16, 201. Creighton. F. W. C. Wittmann. "
Mercury potassium cyanide. " " Potassium chromocyanide	K ₂ Hg (C N) ₄ '' K ₄ Cr (C N) ₆	$\left\{\begin{array}{c} 4.531,\ 21^{\circ}.7\\ 2.4470,\ 21^{\circ}.2\\ 2.4551,\ 24^{\circ}\\ 2.4620,\ 21^{\circ}.5 \end{array}\right\}$	Creighton. " Moissan. Ann. (6),
Potassium manganicya- nide.	K ₃ Mn (C N) ₆	1.821	4, 138. Topsoë. B. S. C. 19, 246.
Sodium ferrocyanide Potassium ferrocyanide " " " Thallium ferrocyanide		2.052	Bunsen. Watts' Dictionary. Schiff. J. 12, 41. Buignet J. 14, 15
Ammonium ferrocyanide with ammonium chlo- ride.	$\begin{array}{ccccc} \mathrm{Am}_4 & \mathrm{Fe} & (\mathrm{C} & \mathrm{N})_6, \\ 2 & \mathrm{Am} & \mathrm{Cl.} & 3 & \mathrm{H}_2 & \mathrm{O}. \end{array}$	1.490	zeaux. Nature 1, 142. Topsoë. C. C. 4, 76.
Potassium ferricyanide " " " " " " " " " " " " " " "	K ₃ Fe Cy ₆	1.845 1.845 1.849 1.817 1.849, 15°.3)	Schabus. J. 3, 359. Wallace. J. 7, 378. Schiff. J. 12, 41. Buignet. J. 14, 15.
tt tt	(;	1.854, 15°.3 1.855, 15° 1.861, 15°	Schröder. Dm. 1873.
Silver ammonio-ferricy- anide. "	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.710	Gintl. J. 22, 321. Schröder. Dm. 1873.
11	"	1.716 } ~ 1.6869, 25° 1.713 } 1.731 }	Dudley. F. W. C. Sehröder. Ber. 13, 1070.
Potassium nickel cyanide "" Potassium cobalticyanide	K ₂ Ni (C N) ₄ . H ₂ O L K ₃ Co (C N) ₆	1.871, 14°.5 1.875, 11 1.906, 11°	Dudley. F. W. C. Bödeker. B. D. Z.
Potassium platinocyanide	K ₂ Pt (CN) ₄ . 3H ₂ O	1.913 2.4548, 16° 2.5241, 13° 3.054	Topsoë. C. C. 4, 76. Dudley. F. W. C. Schabus. J. 3, 360.

Name.	Formula.	SP. GRAVITY.	Астионту
Samarium platinocyanide " Thorium platinocyanide.	$\frac{\mathrm{Sm_{2}P}_{3}(\mathrm{CN})_{12},18\mathrm{H}_{2}\mathrm{O}}{\mathrm{ThPt_{2}(CN)_{5}},16\mathrm{H}_{2}\mathrm{O}}$	2.743 } 20°,8 _ 2,460	Cleve, U. N. A. 1885. Topsoë. B. S. C. 21, 118.
Petas lum cyanate	K C N O		Schroder. Ber. 12, 561. Mendins, B. D. Z.
	44	1.906 j 14	73.32 7
Ammonium sulphocyanide Lead sulphocyanide		1.816	Schroder. Ber. 11, 2215.
Phosphorus sulphocyanide Potassium chromium sul-	$P (C S S)_3 = K_6 Cr(CNS)_{12}, 8 H_2 O$	1.625, 18° 1.7051, 17°.5 1.7107, 10°	Miquel. J. C. S. 32, 872. Dudley. F. W. C.
Potessium platinsulphocymide. Potassium platinseleniocyanide. Titanium nitrocyanide.	K_2 Pt (C N S) ₆	2.342, 18° } 2.370, 19° } 3.377, 10 .2	
Titanium nitrocyanide		5.28001	Wollaston, P. T. 1823, 17. Kursten, Schw. J. 65, 394.
Samarium sulphocyanide with mercuric cyanide.	$\frac{\mathrm{Sin}\; (\mathrm{C}\; \mathrm{N}\; \mathrm{S})_{2},\; 3\; \mathrm{Hg}}{(\mathrm{CN})_{2},\; 12\; \mathrm{H_{2}}\; \mathrm{O},} \Big\}$	2.742, 18° 2.749, 18°.4	Cleve. U. N. A. 1885.

XLIII. MISCELLANEOUS INORGANIC COMPOUNDS.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Nitrogen ehlorophosphide	P ₃ N ₃ Cl ₃	1.98	Gladstone and Holmes, J. 17,
Mercury sulphide with copper chloride, Mercury chloride with am- monium dichromate.	Пg Cl ₂ , Am ₂ Cr ₂ О ₇	8.1850, 18° 3.2836, 21°	148. Raschig. A. C. P. 228, 27. Heighway, F. W. C. Langenbeck, P. W.
Mercury cyanide with po-	2 Hg Cy ₂ . K ₂ Cr O ₄ -	3.564, 21°.8	C. II. Schmidt. F. W.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Potassium nitrato-sulphate.	K ₂ S O ₄ . H N O ₃	2.38	Jacquelain. A. C. P. 32, 234.
Potassium phosphato-sul- phate.	K ₂ S O ₄ . H ₃ P O ₄	2.296	
Hanksite	$4 \text{ Na}_2 \text{ S O}_4$. $\text{Na}_2 \text{ C O}_3$	2.562	Hidden. A. J. S. (3), 30, 135.
Phosgenite	Pb ₂ C O ₃ Cl ₂	6.305	Rammelsberg. P. A. 85, 141.
Leadhillite	Pb ₄ S O ₄ (C O ₃) ₃	6.550 6.526	Gadolin. J. 6, 846. Kokscharow. J. 6,
Bastnäsite (Hamartite)	(Ce La Di) (CO ₃) F	4.93	846. Nordenskiöld, J. 22, 1246.
ιι		5.18-5.20	Allen and Comstock. A. J. S. (3), 19,
Parisite	(Ce La Di) ₂ (C O ₃) ₄ .	4.35	Bunsen. Dana's Min.
	Са Г ₂ .	4.317	Dufrenoy. Dana's Min.

XLIV. ALLOYS.*

ALLOY.	Specific Gravity.	AUTHORITY.
SODIUM AND POTASSIUM. Na K ZINC AND CALCIUM.† Zn ₁₂ Ca ALLOYS OF MERCURY. AMALGAMS.		Hagen. P. A. (2), 19, 436. v. Rath. Z. C. 12, 665.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.615 11.93 12.284, 15°.7 11.979, 15°.9 12.49, 17° 12.815, 15°.5 11.3816	Calvert and Johnson. J. 12, 120. Croockewitt. J. 1, 393. Matthiessen. P. T. 1860, 177. Bauer. J. 24, 317. Matthiessen. P. T. 1860, 177. Kupffer. Ann. (2), 40, 285. Holzmann. P. T. 1860, 177.

^{*}This table contains only a moderate number of the many determinations which have been made relative to the specific gravity of alloys. Only those alloys have been admitted which allow of relatively simple chemical formulæ. Some of them are doubtless true chemical compounds, but in most cases the formulæ merely represent proportionate composition.

† See also Norton and Twitchell, A. C. J. 10, 70.

ALLOY.	Specific Gravity.	Астновиту.
ALLOYS OF MERCURY.		
AMALGAMs—continued.		
Hg Sn	10.3447	Kupffer. Ann. (2), 40, 285.
()	10.369, 14°.2 10.255	
Hg Sn ₂	9.3185	Kupffer. Ann. (2), 40, 285.
14	9.362, 9°.9	Holzmann. P. T. 1860, 177.
11 - 2 -	9.314 8.8218	
Hg Sn ₃	8.805	Kupffer. Ann. (2), 40, 285. Calvert and Johnson. J. 12, 120.
Hg Sn ₄	8.510	46 41
Hg Sn ₅	8.012	44
Hg Sn ₆	8.151 11.208	
Hg Bi,	10.693	4.6
	10.45	
Hg Bi,	10.474	Calvert and Johnson. J. 12, 120.
Hg Bis	10.240	66 66
Hg Bi ₅ Hg ₅ Ag ₁₂ . Native	12.703, I7°	Wei-s. J. 36, 1-19.
Hg_2 $\mathrm{Au}_{}$	15.412	Croockewitt. J. 1, 393.
ALLOYS OF ALUMINUM.		
Al Zn	1.532	Hirzel. J. 11, 138.
Ala Sn	3.583	4. 41
Al ₅ Sn	3.791	.6 66
Al, Sn	4.025	**
Al ₂ Sn		
Al'Su	5.454	"
Al Sugar	6,264 6,586	66 66
Al Sn ₃		
Al Ta	7.():2	Marignac. J. 21, 212.
Al Cr	4.6	Wohler. J. 11, 160.
Al, W	5.58 3.402	Michel. J. 13, 130, Michel. J. 13, 131,
Ala Ni	8.647	Michel. J. 13, 132.
Al ₄₆ Cu	2.764	Hirzel. J. 11, 138.
Al ₆ Cu	9,206 9,316	
Al ₅ Cu	0.019	
Al, Cu,	8.721	66
Al, Cu	0.972	44 44
Al ₂ Cu ₄	1.148	
Al Cu	5.751	4.6 4.8
Al Cu,	6.046	66 66
Al Cu ₃	7.204	44 44
Al Cu,		44 44
Al Cus	7.751	44
Al, Cuis	7.884	11: 1 1 1 105
Al ₂ Ag	6,788 5,744	Hirzel. J. 11, 137.
Al Ag,	9.876	44 44

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.
Sn Zn	7.235 7.274 7.115 7.262 7.096 7.188 7.180 7.155 7.140	Croockewitt. J. 1, 394. Calvert and Johnson. J. 12, 120. Croockewitt. J. 1, 394. Calvert and Johnson. J. 12, 120. Croockewitt. J. 1, 394. Calvert and Johnson. J. 12, 120. """" """"""""""""""""""""""""""""""
TIN AND CADMIUM. Sn ₆ Cd	7.434, 12°.7 7.489, 15°	Matthiessen. P. T. 1860, 177.
TIN AND LEAD. Sn ₁₂ Pb	7.628, 19°.4	Vicentini and Omodei. Bei. 12, 178. Melting point, 181°. Kupffer. Ann. (2), 40, 285. Long. P. T. 1860, 177. Kupffer. Ann. (2), 40, 285. Calvert and Johnson. J. 12, 120. Riche. J. 15, 111. Kupffer. Ann. (2), 40, 285. Thomson. J. 1, 1040. Long. P. T. 1860, 177. Calvert and Johnson. J. 12, 120. Pillichody. J. 14, 279. Riche. J. 15, 111.
Sn ₇ Pb ₂	7.8393, 209°, 1	Vicentini and Omodei. Bei. 12, 178. Melting point, 183°.3. Riche. J. 15, 111. Kupffer. Ann. (2), 40, 285. Thomson. J. 1, 1040. Croockewitt. J. 1, 394. Calvert and Johnson. J. 12, 120.

ALLOY.	Specific Gravity.	Аптновиту.
TIN AND LEAD—contin'd		
Sn ₃ Pb	8,4087	Pillichody. J. 14, 279.
City 1		Riche. J. 15, 111.
	8.400, 17°	·
44	8.0821, 182°.9, l. 8.0755, 189°.7	
11		771
44	8.0150, 250° 7.9896, 275°.9	Vicentini and Omodei. Bei. 12,
4.	7.9896, 275°.9	178. Melting point, 182°.9.
44		
	7.9446, 828°.9 7.9212, 849°.5	
Su ₅ Ph ₂	8.565	Riehe. J. 15, 111.
Sn ₂ Pb		Kupffer. Ann. (2), 40, 285.
**	8.777, 130.3	Regnault. P. A. 53, 67.
44	8.688	Thomson. J. 1, 1040. Long. P. T. 1860, 177.
44	8 77.1	Long. P. T. 1860, 177. Calvert and Johnson. J. 12, 120.
44	8.774 8.7257	Pillichody J. 14, 279
44	1 =	Pillichody. J. 14, 279. Riche. J. 15, 111.
44		
	8.6298, 182°.3, s.	
16	8.4509, 1820.8, 1.	
44	8.4381, 189° 8.4038, 207°	
66	8,3532, 2420.5	Vicentini and Omodei. Bei. 12,
44	8.3204, 272°.9	178. Melting point, 182°.3.
"		
**		
Sn ₃ Pb ₂	_ 8.2448, 351°.5 J _ 9.0377	Pillichody. J. 14, 279.
13 1 1/2		Riche. J. 15, 111.
Sn, Pb,	9.2773, 15°	Pohl. J. 3, 324.
Sn Pharman	9,4263	Kupffer. Ann. (2), 40, 285.
44	9.387, 13°.3 	Regnault. P. A. 53, 67.
**		Thomson. J. 1, 1040. Croockewitt. J. 1, 394.
	9,460, 15°,5	Long. P. T. 1860, 177.
4	9.458	Calvert and Johnson. J. 12, 120.
**	9,4330	Pilliehody. J. 14, 279.
4.	9.451 9.422, 20°	Riche. J. 15, 111.
44	9.2809, 181°.8, s.	
11	9.180, 181°.8, 1.	
**	9.1348, 2010,6	
44	9,0953, 216°,7	
1,	9.0438, 233° 8.9864, 248°.8	Vicentini and Omodei. Bei. 12
(,	8,98643, 262°.3	178. Melting point, 181°.8.
16	8,0276, 2030	
44	_ (8.8989, 317°)	
	S.8771, 337°	
733	- 8,8590, 356° J	D.bl I 2 200
Sn ₃ Pb ₄	9.6399, 15° 	
· 11, 1 12	10,0782	Pillichody. J. 14, 279. Kuptfer. Ann. (2), 40, 285.

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.
11111011	- De Bett to Chart III.	AUTHORITI.
TIN AND LEAD—contin'd.		
Sn Pb,	9.966	Croockewitt. J. 1, 394.
66	10.080, 14°.8	Long. P. T. 1860, 177.
	10.105	Calvert and Johnson. J. 12, 120
"	10.0520	Pillichody J 14 279
"	10.110	Pillichody. J. 14, 279. Riche. J. 15, 111.
Sn Pb,	10.3868	Kupffer. Ann. (2), 40, 285.
"	10.421	Calvert and Johnson. J. 12, 120
"	10.3311	Pillichody. J. 14, 279.
"	10.419	Pillichody. J. 14, 279. Riche. J. 15, 111.
Sn Pb4	10.5551	Kupffer, Ann. (2), 40 285.
"	10.590, 14°.3	Long. P. T. 1860, 177.
	10.587	Calvert and Johnson. J. 12, 120
((10.5957	Pillichody. J. 14, 279.
Sn Pb ₅	10.751	Calvert and Johnson. J. 12, 120
Sn Pb ₆	10.815, 15°.6	Long. P. T. 1860, 177.
LEAD AND CADMIUM.		
Cd ₆ Pb	9.160, 13°.7	Holzmann. P. T. 1860, 177.
Cd ₄ Pb	9.353, 120	Holzmann. P. T. 1860, 177.
Cd. Pb	9.755, 14°.7	22
Cd [*] Pb	10.246, 11°.7	66
Cd Pb,	10.656, 13°.4	44
Cd Pb,	10.950, 9°.2	22
Cd Pb ₆	11.044, 14°.8	44
ANTIMONY AND TIN.		
Sb ₁₂ Sn	6.739, 16°.2	Long. P. T. 1860, 177.
Sb ₈ Sn	6.747, 13.04	"
Sb, Sn	6.781, 13°.5	66
Sb ₂ Sn	6.844, 13°.8	"
Sb Sn	6.929, 15°.8	66
Sb Sn ₂	7.023, 15°.8	66
Sb Sn ₃	7.100, 10°.6	66
Sb Sn ₅	7.140, 19° 7.208, 18°.5	**
Sb Sn ₁₀	7.208, 187.9	"
Sb Sn ₂₀	7.276, 19°.4 7.279, 20°	66 66
Sb Sn ₅₀	7.284, 20°.2	66 66
ANTIMONY AND LEAD.	1.203, 27 .2	
ANTIMONI AND BEAD.		
Sb ₈ Pb	7.214	Riche. J. 15, 111.
Sb ₆ Pb	7.861	"
Sb ₅ Pb	7.432	Calvert and Johnson. J. 12, 120.
Sb ₄ Pb	7.525	11
	7.622	Riche. J. 15, 111.
Sb ₃ Pb	7.830	Calvert and Johnson. J. 12, 120.
Sb ₂ Pb	8.330	NE-table and The Total and
"	8.201, 13°.7	Matthiessen. P. T. 1860, 177.
Sb Pb	8.233 8.953	Riche. J. 15, 111.
50 ro	8.989, 11°.7	Calvert and Johnson. J. 12, 120
	8.999	Matthiessen. P. T. 1860, 177. Riche. J. 15, 111.
Sb ₂ Pb ₃	9.502	Wiene. J. 15, 111.
0.02 1 03	VIVVE 1.32222422222222	

_		
ALLOY.	Specific Gravity.	AUTHORITY.
ANTIMONY AND LEAD-		
eontinued.		
Sb Pb	9.723	Calvert and Johnson. J. 12, 120.
16	9.811, 14°.3	Matthies-cn. P. T. 1860, 177.
Sb ₂ Pb ₅	9.817 10.040	Riche. J. 15, 111.
Sb Pb ₃	10.136	Calvert and Johnson. J. 12, 120.
	10.144, 15°.4	Matthiessen. P. T. 1860, 177.
$\operatorname{Sb}_2\operatorname{Pb}_7$	10.211	Riche. J. 15, 111.
Sb Pb	10.387	Calvert and Johnson, J. 12, 120.
	10.455	
Sb ₂ Pb ₉	10.541 10.556	Calvert and Johnson. J. 12, 120.
Sb Pb3	10,586, 199.3	Matthiessen. P. T. 1860, 177.
	10.615	Riche, J. 15, 111.
Sh ₂ Ph ₁₁	10,673	16 14
Sb Pb ₆	10.764	44
Sb Pb,	10.802	4.6
Sh Ph ₁₀	10.930, 19°.9 11.194, 20°.5	Matthiessen. P. T. 1860, 177.
Sb Pb _{.5}	11.1/1, 20 ///	
BISMUTH AND ZINC.		
Bi Zn	9.046	Calvert and Johnson. J. 12, 120
D1 20	***************************************	0112,120
RISMUTH AND CADMIUM.		
Bi ₁ , Cd	9.766, 15°.4	Mutthiessen. P. T. 1860, 177.
Ri Cd	9.737. 149.7	6.6
Bi ₄ Cd Bl ₂ Cd	9,669, 14°.8 9,554, 13°.4	16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Bi Cd	9,858, 15°	+4 4.4
Bi Cd,	9,195, 15%,5	
Bi Cd ₃	9.079, 13°,1	14 44
BISMUTH AND TIN.		
		O D 70 1000 100
Bi ₁₆₀ Sn	9.815, 18°.1	Carty. P. T. 1860, 177.
Bi Su	9.511. 190	
Bi. Sn	0.800, 22 .8	11
Bi ₆₀ Sn	9.774, 23° 9.737, 19°,8	
Bi., Su	9.675.150.9	4.4
Bi. Sn	9.611, 120.7	
Bi _A Sn	9.435, 15° 9.434	
Bi Sn	9,175, 15-,9	Carty. P. T. 1860, 177.
**	9.145	Riche, J. 15, 111.
Bi >n	5,759 5,772, 12°,6	
14	5.754	Riche. J. 15, 112.
Bi _z Sn _s	5,500	Bosnoule D A 59 CT
Bi Sn.	8,085 8,339, 13 .9	

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.		
BISMUTH AND TIN—eontinued.				
Bi Sn ₂	8.327	Riehe. J. 15, 112.		
Bi, Sn ₅				
Bi Sn ₃	8.199 8.112, 14°.2	Carty. P. T. 1860, 177.		
**	. 8.097	Riche. J. 15, 112.		
Bi ₂ Sn ₇	8.017 7.943, 20°	. (1 11 1000 1PM		
Bi Sn ₄	7.438, 19°.9	Carty. P. T. 1860, 177.		
D1 011 ₂₂	1.490, 10 .0			
BISMUTH AND LEAD.				
Bi ₆₀ Pb	9.844, 21°.7	Carty. P. T. 1860, 177.		
Bi ₄₈ Pb	9.845, 21°.6			
Bi ₄₀ Pb	9.850, 21°.3			
Bi ₂₄ Pb	9.887, 20°.6			
Bi ₂₉ Pb	9.893, 19°.5			
Bi ₁₆ Pb	9.934, 21°.1 9.973, 15°	11 11		
Bi ₈ Pb	10.048, 10°.7	44		
6.6	8.6	E. Wiedemann. P. A. (2), 20, 240.		
Bi ₄ Pb	10.235, 12°.5	Carty. P. T. 1860, 177.		
"	10.282	Riche. J. 15, 111.		
"	9.73	E. Wiedemann. P. A. (2), 20,239.		
Bi ₂ Pb	10.538, 14°	Carty. P. T. 1860, 177.		
"	10.519	Riche. J. 15, 111. E. Wiedemann. P. A. (2), 20, 239.		
Bi Pb	10.956, 14°.9	Carty. P. T. 1860, 177.		
"	10.931	Riche. J. 15, 111.		
14	11.03	E. Wiedemann. P. A. (2), 20, 237.		
Bi ₄ Pb ₅	11.038	Riche. J. 15, 111.		
Bi ₂ Pb ₃	11.108	44 44		
Bi ₄ Pb ₇	11.166			
Bi Pb ₂	11.141, 12°.7 11.194	Carty. P. T. 1860, 177. Riche. J. 15, 111.		
	11.4	E. Wiedemann. P. A. (2), 20, 236.		
Bi, Pb,	11.209	Riche. J. 15, 111.		
Bi Pb ₃	11.161, 14°.8	Riche. J. 15, 111. Carty. P. T. 1860, 177.		
711 771	11.225	Riehe. J. 15, 111.		
Bi ₂ Pb ₇	11.235	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Bi Pb ₄ Bi Pb ₅	11.188, 20°.8 11.196, 20°.2	Carty. P. T. 1860, 177.		
Bi Pb ₁₂	11.280, 22°.5	44 44		
Bi Pb ₅₀	11.331, 23°			
BISMUTH AND ANTIMONY.				
Ri Sh	9.435, 9°.4	Holzmann. P. T. 1860, 177.		
Bi ₆ Sb	9.369	Calvert and Johnson. J. 12, 120.		
Bi ₄ Sb	9.276	ii viit tild voimsom. v. 12, 120.		
"	9.277, 12°.1	Holzmann. P. T. 1860, 177.		
Bi ₃ Sb	9.095	Calvert and Johnson. J. 12, 120.		
Bi ₂ Sb	8.859			
Bi Sb	8.886, 14°	Holzmann. P. T. 1860, 177.		
D1 50	8.364 8.392, 11°	Calvert and Johnson. J. 12, 120. Holzmann. P. T. 1860, 177.		
Bi Sb ₂	7.829	Calvert and Johnson. J. 12, 120.		
		Our 1010 tille 0 011115011. 0 . 12, 120.		

ALLOY.	Specific Gravity.	AUTHORITY.
BISMUTH AND ANTIMONY		
—continued.		
Bi Sh,	7.864, 90.4	Holzmann. P. T. 1860, 177.
Bi Sb ₃	7.561	Calvert and Johnson. J. 12, 120.
Bi Sb.	7.370	66 66
Bi Sb ₅	7.271	4.5
3		
IRON AND TIN.		
	~ =04	Paramel Lorg
Fe Sn ₅ . Cryst. furnace	7.504	Rammel-berg.
product.	7.446	Noellner. J. 13, 188.
Fe Sn ₂	8,733	
I e ₃ Sh	C.190	24334151101
IRON AND NICKEL.		
Awaruite. Ni ₂ Fe	8.1	Ulrich. N. J. 1888, 209.
COPPER AND ZINC.*		
0 7	8,605	Mallet. D. J. 85, 378.
Cu ₁₀ Zn	1	,
Cu ₂ Zn		
Cu. Zn		
Cu. Zn	8.591	
Cu ₅ Zn	8.415	
11	. 8.678	
Cu, Zn	8.448	
()	8,650	
Cu ₃ Zn	8.397	
	8,576	
Cu ₂ Zn		
14		
Cu ₃ Zn ₂		
Cu Zn	8.280	
"	7.808	Calvert and Johnson. J. 12, 120.
Cu. Zn. =	7.030	Croockewitt. J. 1, 394.
Cu Zn ₂	8,283	
	7.859	
Cu ₈ Zn ₁₇		
Cu, Zn ₁₈		-
Cu, Zu ₁₉		-
Cu ₈ Zu ₂₀ Cu ₈ Zu ₂₁		
C'11 Z.n	1. ~~.	
Cu Zu-	_ 7.443	- 44
Cu Zn,	. (.11)	_ 11
44	- 7.786	
Cu Zn ₄	- 7.371	
(,	- 7 445	Calvert and Johnson, J. 12, 120
Cu Zn ₅	6,605	Mallet. D. J. 85, 378. Calvert and Johnson. J. 12, 120
	. (.1fd	- Chivert mid Johnson. J. L. L.

^{*} see also the Report of the [U.S.] Boar I on Testing Iron, Steel, and other Metals. Washington, Government Printing Office, 1881.

ALLOY.	Specific Gravity.	AUTHORITY.
COPPER AND TIN.		
Cu ₉₆ Sn	8.564	Thurston's Report, 295.
Cu ₄₈ Sn	8.649	Indiston's Report, 295.
Cu ₂₅ Sn		Calvert and Johnson. J. 12, 120
Cu ₂₄ Sn		Thurston's Report, 295.
Cu Sn	18 793	Calvert and Johnson. J. 12, 120
Cu ₁₅ Sn	8.825	
''	8.84	Riche. J. 21, 270.
(1)	8.80	- Riche. J. 23, 1100.
Cu ₁₂ Sn	8.681	Thurston's Report, 295.
Cu ₁₀ Sn	8.561	Mallet. D. J. 85, 378.
66	8.832 8.87	Calvert and Johnson. J. 12, 120
	8.83	Riche. J. 21, 270 Riche. J. 23, 1100.
Cu ₉ Sn	8.462	Riche. J. 23, 1100. Mallet. D. J. 85, 378.
Cu ₈ Sn	8.459	1 1. 0. 00, 576.
(1)	8.84	Riche. J. 21, 270.
11	8.86	Riche. J. 23, 1100.
Cu ₇ Sn	8.728	Mallet. D. J. 85, 378.
(8.72	Riche, J. 21, 270.
	8.90	Riche. J. 23, 1100.
Cu ₆ Sn	8.750	. Mallet. D. J. 85, 378.
((8.65	Riche. J. 21, 270. Riche. J. 23, 1100.
((8.91	Riche. J. 23, 1100.
((8.565	Thurston's Report, 295.
Cu ₅ Sn	8.575	
(8.965	Calvert and Johnson. J. 12, 120.
((8.62 8.87	Riche. J. 21, 270.
	8.400	Riche. J. 23, 1100.
Cu ₄ Sn	8.948	Mallet. D. J. 85, 378.
**	8.77	Calvert and Johnson. J. 12, 120. Riche. J. 21, 270.
	8.80	Riche. J. 23, 1100.
"	8.938	Thurston's Report, 295.
Cu ₃ Sn	8,539	Mallet. D. J. 85, 378.
44	8.954	Calvert and Johnson. J. 12, 120.
"	8.91	Riche. J. 21, 270.
"	8.96	Riche. J. 23, 1100.
(8.970	Thurston's Report, 295.
Cu ₁₂ Sn ₅	8.682	1 11 11 11
Cu ₂ Sn	8.416	Mallet. D. J. 85, 378.
"	8.512 8.533	Croockewitt. J. 1, 394.
66	8.15	Calvert and Johnson. J. 12, 120.
((8,57	Riche. J. 21, 270.
((8.560	Riche. J. 23, 1100.
Cu ₁₂ Sn ₇	8.442	Thurston's Report, 295.
Cu ₃ Sn ₂		Riche. J. 21, 270.
il 2	8.30	Riehe. J. 23, 1100.
"	8.312	Thurston's Report, 295.
Cu ₄ Sn ₃	8.302	" " " " " " " " " " " " " " " " " " "
$Cu_6 Su_5$	8.182	ts 24
Cu Sn	8.056	Mallet. D. J. 85, 378.
"	8.072	Croockewitt. J. 1, 394.
"	7.992	Calvert and Johnson, J. 12, 120.
11	7.90	Riche. J. 21, 270.
	8.12	Riche. J. 23, 1100

, Alloy.	Specific Gravity.	Астновиту.
COPPER AND TIN-continued.		
Cu Sn Cu ₃ Sn ₄ Cn ₃ Sn ₅ Cu Sn ₂ " Cryst." " " " " " " " " " " " " " " " " " "	8.013 7.948 7.835 7.835 7.738 7.738 7.738 7.83 7.770 6.994 7.652 7.447 7.606 7.44 7.53 7.653 7.653 7.657 7.472 7.558	Thurston's Report, 295. """"" Mallet. D. J. 85, 378. Miller. P. A. 120, 55. Calvert and Johnson. J. 12, 120. Riche. J. 21, 270. Riche. J. 23, 1100. Thurston's Report, 295. Rammelsberg. P. A. 120, 54. Croockewitt. J. 1,304. Mallet. D. J. 85, 378. Calvert and Johnson. J. 12, 120. Riche. J. 21, 270. Riche. J. 23, 1100. Thurston's Report, 295. Mallet. D. J. 85, 378. Calvert and Johnson. J. 12, 120. Riche. J. 21, 270. Riche. J. 21, 270. Riche. J. 21, 270. Riche. J. 23, 1100. Thurston's Report, 295.
Cu Sn ₅ Cu Sn ₁₂ Cu Sn ₁₂ Cu Sn ₄₈ Cu Sn ₉₆ Copper and lead.	7.442 7.517 7.28 7.52 7.487 7.360 7.305 7.200	Mallet. D. J. 85, 378, Calvert and Johnson. J. 12, 120, Riche. J. 21, 270, Riche. J. 23, 1100, Thurston's Report, 295.
Cu Pb	10.753	Croockewitt. J. 1, 394.
Cu ₁₁ Sb ₂ Horsfordite Cu ₄ Sb. Cu ₂ Sb. Cu Sb. Cu Sb.	\$.820 \$.812 \$.871 \$.871 \$.809 7.900 \$.800 \$.00	Laist and Norton, A. C. J. 10, 60. Kamenski.* P. M. (5), 17, 274. Calvert and Johnson, J. 12, 120.
Cu Bi =	0,654	Calvert and Johnson, J. 12, 120,
Ag ₄ Sn Ag ₂ Sn Ag Sn Ag Sn		å 6

^{*} Kamenski gives data for seventeen other Ca Shalleys.

ALLOY.	SPECIFIC GRAVITY.	At	UTHORITY.
SILVER AND TIN—continued.			
Ag Sn ₃ —————Ag Sn ₅ ————————————————————————————————————		Holzmann,	P. T. 1860, 177.
Ag Sn ₆	7.666, 180.4	4.6	14
Ag Sn ₁₈	7.421, 18°.6	44	"
SILVER AND LEAD.			
Ag ₄ Pb	10.800, 13°.5 10.925, 13°.8	Matthiessen.	P. T. 1860, 177.
Ag Pb			44
Ag Pb ₂	11.144, 18°.2	66	66
Ag Pb.	11.196, 21°	1.6	44
Ag Pb ₁₀	11.285, 22°.2	"	"
Ag Pb ₂₅	11.334, 20°.6	44	"
SILVER AND COPPER.*			
Ag Cn	9.9045	Levol. J. 5	769
Ag ₃ Cu ₂ Solid Solid	6.6045.)	1	
" Molten	9.0554	Roberts. C.	N. 31, 143.
GOLD AND TIN.			
Au ₄ Sn	16.367, 15°.4	Holzmann.	P. T. 1860, 177.
Au ₂ Sn	14.244, 14°.2	itoizmam.	1. 1. 1000, 177.
Au Sn	11.833, 14°.6	66	66
Au, Su,	10.794, 23°.6	66	4.6
Au'Sn2	10.168, 23°,7	6.6	66
Au ₂ Sn ₅	9.715, 22°.4	44	44
Au Sn ₃	9.405, 23°.7	44	"
Au Sn ₄	8.931, 25°.6	4.6	"
Au Sn ₆	8.470, 23°.1 8.118, 22°.4	11	- "
Au Sn ₉	7.801, 22°.8	"	46
Au Sn ₅₀	7.441, 22°.9	46	46
50	,		
GOLD AND LEAD.			
Au ₄ Pb	17.013, 14°.3	Matthiessen.	P. T. 1860, 177.
Au ₂ Pb	15.603, 14°.5	6.6	"
Au Pb	14.466, 14°.3	"	4.6
Au Pb ₂	13,306, 22°.1	"	"
Au Pb ₃	12.737, 21°.3	"	£ £
Au Pb ₄		"	44
Au Pb ₅	12.274, 19°.4 11.841, 23°.3	44	66
GOLD AND BISMUTH.	11.011, 20 .022222		
Au ₂ Bi	14.844, 16°	Holzmonn	P T 1860 177
Au Bi	13.403, 16°.5	Holzmann.	P. T. 1860, 177.
Au Bi,	12.067, 16	44	"
Au Bi ₄	11.025, 23°	4.4	"
2	,		

^{*} See Karmarsch, Beiblätter 2, 194, for sixteen Ag Cu alloys.

ALLOY.	Specific Gravity.	Authority,
Geld and dismuth— continued. Au Biz	10.452, 21°.4 10.076, 18°.7 9.942, 21°.2 0.872, 21°	Holzmann. P. T. 1830, 177.
GOLD AND COPPER. Au ₆ Cu	17,9840 17,1658 16,4882	Roberts. Bei. 2, 327.
GOLD AND SILVER. Au ₆ Ag	18.041, 13°.1 17.540, 12°.3 10.354, 13° 14.870, 13° 13.432, 14°.3 12.257, 14°.7 11.760, 13°.1	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6
PALLADIUM AND LEAD. Pd3 Pb PLATINUM AND LEAD.		
Pt Pb IRIDIUM AND OSMIUM. Ir Os. Newjanskite Ir Os. Sisserskite		Berzefius. Dana's Min.
TRIPLE ALLOYS.* Cd Pb ₃ Bi ₄ Cd ₂ Pb ₇ Bi ₈ Pb Sn ₂ Bi Pb Sn ₂ Bi ₂ Pb ₄ Sn ₆ Bi ₇ . Rose's all by Pb ₈ Sn ₆ Bi ₁₃ . Darect's w Sn ₂ Sb Bi Cu ₃ Ni Sb ₃ . Furnace product.	10,563 10,792 9,194, 11 9,253, 205 9,5125, 42 9,6401, 4 7,883, 20 8,004	Spring. Ann. (5), 7, 196.
QUADRUPLE ALLOYS. Cd Sn. Pb. Bi. Cd Sn. Pb. Bi. Cd. Sn. Pb. Bi. Cd. Sn. Pb. Bi. ulloy. Cd. Sn. Pb. Bi.	9,765 9,784 9,1106, 1 9,725 9,685 9,7244, 4*	v. Hauer. J. 18, 236. Spring. Ann. (5), 7, 196. v. Hauer. J. 18, 236. Spring. Ann. (5), 7, 196.

^{*} Fir the triple all ye of the Sn. Zn. see Thurston's Report. For many amalgams see Joule, J. C. S., vol. 16, 1863. For alloys of platinum and gold see Prins. p. P. T. 1828.

XLV. HYDROCARBONS.

1st. Paraffins. C_n $H_{2n} + {}_2$.

			1		1	
	Name	2.	I	FORMULA.	Sp. Gravity.	AUTHORITY.
	_				.37	Wroblevsky. C. R. 99, 136.
: t : t			44		$\left\{ \begin{array}{c} .414 \\ .415 \\ .416 \end{array} \right\}$ —164° -	Olszewski. P. A. (2), 31, 73.
			C_3 H_8)	.613, —25° .600, 0°	Lefebvre. J. 21, 329. Pelouze and Ca-
.,			"		.600, 0° .624, —1°	hours. J. 16, 524. Ronalds. J. 18, 507. Lefebvre. J. 21, 329.
•		. (B. 39°).			.636, 17°	Schorlemmer. J.15, 386.
14	6.6				.6263, 17°	Schorlemmer. J. 19, 527.
4.4	6.6		11		.626, 14°	Cahours and Demar- çay. C. R. 80,1569.
6.6	6.6				.6267, 14°	Lachowicz. A.C. P. 220, 191.
6.6	6.6				.624, 11°.5	Gladstone. Bei. 9, 249.
	6.6		66		.6323, 17°	Norton and Andrews. A. C. J. 8, 7.
	e. (B.	. 30°)			.6415, 11°.2	Frankland. J. 3,
4.					.6385, 14°.2	481.
					.628, 18°	Pelouze and Ca- hours. J. 16, 527.
i i			66		.6375, 13°	Just. A. C. P. 220, 153.
"			11		.6282, 13°.7	Schiff. G. C. I, 13,
					.6132, 30°.5 } .6402, 0° }	177. Bartolli and Strac-
44			""		.6111, 30° }	ciati. Bei. 9, 697.
Normal h	exane.	(B. 69°)_	C ₆ H ₁₄		.6745, 18°	Williams. J. 10, 418.
	4.4		4.6		.669, 16°	Pelouze and Cahours. J. 15, 410.
""	"		"		.678, 15°.5	Schorlemmer. J. 15, 386.
"	"		""		.6617, 17°.5	Dale. J. 17, 381.
ıt	"		4.6		.6645, 16°.5	Wanklyn and Erlenmeyer. J. 16, 521.
"	4.6		""		.6630, 17°	Schorlemmer. A.C. P. 161, 263.
4.6	6.6		4.6		.689, 0°	Warren. J. 21, 330.
64	"		11		.6641, 18°)	Thorpe and Young.
11	44		44		.6620, 19°.5	A. C. P. 165, 1.
11	٤ ٤				.667, 13°	Cahours and Demar- cay. C. R. 80, 1570.
11	"		.,		.6199, 60°.8	Ramsay. J. C. S. 35, 463.

NAME.	FORMULA.	Sp. Gravity.	Антиовиту.
Normal hexane	C ₆ H ₁₄	.6753, 0° }	Zander. A. C. P.
A Committee in Com		[6129, 69°]	214, 181.
"		.69%5, 14°	Lachowicz. A. C. P. 220, 192.
"		.6651, 100.8	A + may 4 Um.
		.6112	Schiff. G. C. I. 13,
		.6112 .6143 68°.6 }	177.
		.6603, 20°	Bruhl. A. C. P. 200, 183,
	44	.6950, 00)	Bartoli and Struc-
		.6343, 680 }	ciati, Bei. 9, 697.
	-	.6745, 150	Norton and An-
		, , , , , , , , , , , , , , , , , , , ,	drews. A. C. J. 8, 7.
Isohexane. (B. 62°)	(1	.7011, 02 ===	Wurtz. J. 8, 576.
14	6.6	.676. 00	Warren. J. 21, 330.
Hexane. B. 48°-62°	_ ((.6017, 250.5	Gladstone. Bei. 9.
			240.
и В. 53°—60°		.110, 250	
Methyl-diethyl-methane (B. 64°.		.6765, 20°.5	Wislicenus, A. C. P. 219, 315.
Tetramethyl-ethane, or		.0769, 100	
diisopropyl. (B. 58°.)		.6701.172.5	Schorlemmer, J. 20,
46 66			566.
		.665, 0°	Riche. Ann. (3, 59, 426.
44		.FS20, 0°)	Zander. A. C. P.
4.		.6286, 58° 11 1	214, 181.
Hexane from suberic acid B. 78°		.071, 26°	Riche. Ann. (3), 59, 426.
Normal heptane. (B.98°.s	. 1	.709, 17°.5	Schorlemmer, J.15, 286.
" "Introleun	- "	.7122, 16°	Schorlemmer, J.16, 532.
a a cazelnicaci	d	.6851, 179.5	Dale. J. 17, 381.
16 fr 16 ff fo	6.	.0540, 20°.5	Schorlenmer and
			Dale, A. C. P. 136, 266,
"		.7085, 0°	Warren and Storer, J. 21, 331.
() ((.791, 120	Cahours and Demar- cay, C. R. 80, 1570
6 6 From petro leum		.0007, 190	Beilstein and Kurbatow. Ber. 13, 2028.
44 46	44	.6015. 199)	Thorpe and Young.
44		.6910, 199	A. C. P. 165, 1.
" (Abietehe).		.601	Wenzell, C. N. 39 182.
44 44 44	11	.70045,00	Thurpe, J. C. S.
66 66 66		.61386, 982,48	37, 371.
		.7176. 20	Lachowicz, A. C. P. 220, 193,
(1 (1	46	.7201, 200	Lachowicz, A. C. P. 220, 203.
(1 (1		7028, 14°	Lachowicz, A. C. P.
			220, 204.

	NA	ME.		FORMULA.	Sp. Gravity.	AUTHORITY.
	nethy	ethyl-amyl, l-butyl-me- 90°.3.	C, H	16	.7069, 0°	Wurtz. J. 8, 576.
*	"				.6819, 170.5	Schorlemmer. A. C.
	66		11			P. 136, 259.
	6.6				.6789, 19°	Schorlemmer. A. C. P. 136, 264.
	4.4		"		.7259, 0°]	Schorlemmer. A. C.
	"		13		.7148, 15° [P. 136, 269. From
	66				.6999, 32° {	petroleum.
	44				.6867, 48° }	-
	"				.6833, 18°.4	Grimshaw. A. C. P. 166, 163.
	66				.69692, 00	Thorpe. J. C. S.
			11		.61606, 90°.3	37, 371.
35 1					.6060, 91°	Ramsay. J. C. S. 35, 463.
thane.	(B.				.6895, 20°	Just. A. C. P. 220, 155.
Triethyl-	nieth	ane. (B.96°)			.689, 27°	Ladenburg. B. S. C. 18, 548.
Dimeth	vl-d	iethyl-me-)	"		.7111,00	Friedel and Laden-
		86°—87°.)	"		.6958, 20°.5	burg. J. P. C.
	`	petroleum_	46		.709, 16°	101, 315. Schorlemmer. A. C.
Hantono	factor	notroloum			.7328, 0°	P. 166, 172.
riebrane		petroleum _ . 92°—94°) _	66		.6473, 92°-94°	
6.6	(2)	. 02 -01)-	11		.7303, 00	Bartoli and Strac-
66			4.6		.6462, 92°-94°	ciati. Bei. 9, 697.
Normalo	etane	. (B. 125°.5)	C ₈ H ₁	8	.6945, 18°	Williams. J. 10, 418.
6.6	"		4.6		.7083, 120.5	Schorlemmer.
"	44		4.6		.7032, 17°	Schorlemmer. A. C. P. 161, 263.
4.6	"		4.6		.723, 00	, , , , , , , , , , , , , , , , , , ,
6.6	6.6		4.4		.721, 100 }	Riche. J. 13, 248.
	11				.719, 17°.5	Schorlemmer. J.15, 386.
"	44		"		.726, 15°	Pelouze and Ca- hours. J. 16, 524.
"	"			*	.728, 0°	Wurtz. J. 16, 509. (Thorpeand Young.
11	"		44		.7207, 15°.5	Two lots. A. C.
11	"		6.6		.7165, 15°.6	P. 165, 1.
"	"		"		.723, 13°	Cahours and Demar- çay. C. R. 80, 1571.
66	66		4.6		.71883, 0°	Thorpe. J. C. S.
"	66		4.6		.61077, 125°.46	37, 371.
"	"	From co- nicein.	"		.712, 110	Hofmann. Ber. 18,
Tetramet	hvl-h		6.6		.6940, 180	Kolbe. J. 1, 559.
		B. 108°.53.)			.0010, 10	11.010C. J. 1, 939.
	"		6.6		.7057, 00	Wurtz. J. 8, 576.
	6.6		66		.7135, 0°	Kopp. A. C. P. 95,
	6.6		6.6		.7001, 16°.4	307.

^{*} For a mixture of hoptane and isoheptane from petroleum, B. 92°—94°, Pelouze and Cahours give a sp. g. of .699, 16°.

N	AMI		I	CORMULA.	SP. GRAVITY.	AUTHORITY.
Tetramethy	:]-}st	itane, or	C. II,	1	.7091, 0°]	
		3. 108°.53.)			.7055, 00	
			* *		.7015, 100	
	4.6				.6931.200	Williams. J. C. S.
	6.6		- 6		.086, 30° [35, 125.
	4 i		4.4		.677, 409	0.9, 12.9.
	4.6		4.6		.669, 500	
			4.6		.626, 100° J	
	4.4				.608, 160.5]	Schorlemmer. J. 20,
	44		11		.6712, 49°) ₁	567.
	4.6		4.4		.61549, 108°,53	Thorpe. J. C. S. 37, 371.
	4.6		6.6		.7001. 12°.1) 01, 011.
	4.6		+ 6		.6166 } 107°.8	Schiff, G. C. I. 13,
	4.6		6.6		6167 1070.8	177.
Octane from	n ne	troleum.	4.1		.702, 120	Lemoine. B. S. C.
		(B. 121°.)				41, 161.
	4.1	(B. 116°-	n 6		.7463, 00) Bartoli and Strac-
64 46	4.5	1180)	6.0		.6536,116°-118°	i cinti. Bei. 9, 697.
Normal nor	ane	. (B. 149°)	C_9 H_2	0	.741	Pelouze and Ca-
						hours.* J. 16, 524.
4.6	4.4		4.4		.744, 13°	Cahours and Demar-
						çay.* C. R. 80,
					7070 100 F	1571.
4.4	6.6				.7279, 13°.5	Thorpe and Young.
44	6.4		4.6		.7330, 0°)	A. C. P. 165, I.
	4.6		6.		.7228, 130.5	
4.6	4.6		4.6		.7217, 150	Krafft, Ber. 15, 1687.
6.6	4.4		6.6		.7177, 200	201111111111111111111111111111111111111
4.4	4.4		4.4		.6541, 99°.1	
6.6	4.4		4.6		.7124, 210	Lachowicz. A. C.
						P. 220, 194.
4.6	i f	(B. 136°)	4.6		.742, 120	Lemoine.* B. S. C
		· i				41, 161.
4.6		(B. 180°)	+ 4		.743, 0°]	
6.6	4.6	6.6	6.6		.784, 120.7	44 44
4.6	4.4	6.6	6.6		.731, 16° [
6.6	6.6	(I) 2040	64		.725. 210	Dunt-li au l Saus
	4.6	(B. 136°	6.6		.7623, 0°6492,136-138°	Bartoli and Strac- einti.* Bei. 9. 697.
## TD = 4 = 1 = 1 = 1 = 1		—138°.)	4.6		.7247, 00	Wurtz. J. 8, 570.
Tetramethy		(B. 132.)			./	11 11112. 0.0, 010.
Normal dec			C 11	72	.7894, 13°.5	Thorpe and Young.
_10/11mm dec		. (15. 151)-	10	22		A. C. P. 165, 1.
4.6	6.4	(B. 170°)	4.4		.7562, 15°)	Jacobson. A. C. P.
6.6	4.6		6.6		.7516, 220	184, 202.
4.6	s &	(B. 175°)_	1.		.7456, 00)	
4.6	4.4		6+		.7452, 00	
	4.4		6.4		.7842, 15° }	Krafft. Ber. 15, 1687.
4.6	4.4		4.6		.7304, 20°	
	s 6		5.6		.6690, 99°.3	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.4	+ 4		+ 6		.73097, 18°	Lachowicz, A. C. P.
Tarr	(1)	1550)	6.4		.7704, 110	220, 180. Frankland, J.3, 479.
Diisounyl.	(13.	1000)			11101, 11	1 milkining. 0.0, 412.

^{*} Preparations from petroleum, boiling at 130 to 140, and doubtless containing admixed isomers

			1
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Diisoamyl. (B. 158°)		.7413, 0° .7282, 20° }	Wurtz. J. 8, 573.
(B. 159°)		.7282, 20° } .7365, 18°	,
(B. 156°)		.753, 0°	Williams. J.10,418. Wurtz. J. 16, 510.
(B. 159°.4)		.7358, 9°.8	Schiff. G. C. I. 13,
((44	.6126, 159°.4	177.
" (B. 160°)		.7463, 22°	Just. A. C. P. 220,
" (B. 157°.1)	- "	.72156, 22°	Lachowicz. A. C. P. 220, 172.
Decane. (B. 160°)		.757, 16°	Pelouze and Ca- hours.* J. 16, 524.
" (B. 159°)		.758, 14°	Cahours and Demar- çay.* C. R. 80,1571.
" (B. 155°—160°)		.760	Cloez.† C. R. 85, 1003.
" (B. 162°—163°).		.7324, 20° }	Lachowicz. † A. C.
" (B. 152°—153°).		.7187, 21° }	P. 220, 195.
"		.764, 0°)	
"	11	.753, 15°.6	Lemoine.* B. S. C.
66	44	.751, 17° [41, 161.
44		.739, 33°.5 j	· ·
		.7711, 0° .6475, 158–162°	Bartoli and Strac- ciati.* Bei.9,697.
Undecane. (B. 181°)		.766	Pelouze and Ca-
Chaceane. (D. 101)	011 1124	.100	hours.* J. 16, 524.
" (B. 177°)	((.770, 14°	Cahours and Demar- cay.* C. R. 80,1571.
" (B. 179°)	"	.769	Cloez.† C. R. 85, 1003.
" (B. 180°–182°)		.7816, 0°	Bartoli and Strac-
	44	.6448,180-1820	ciati.* Bei.9,697.
Normal undecane. (B. 194°.5.)		.7560, 0°	
	11	.7557, 0° {	Krafft. Ber. 15, 1687.
	11	.7448, 15° [Melts at —26°.5.
		.7411, 20°	23 ,31
Dodecane. (B. 202°)		.6816, 99° J .7574, 0°	Winner I 9 550
Dodecane. (B. 202)	C ₁₂ , H ₂₆	.7568, 18°	Wurtz. J. 8, 576. Williams. J. 10, 418.
" (B. 198°)	"	.778, 20°	Pelouze and Ca-
(B. 200°)	"	.784, 14°	hours.* J. 16, 524. Cahours and Demar- çay.* C. R. 80,1571.
" (B. 196°.5)	"	.782	Cloez.† C. R. 85, 1003.
" (B. 201°)	"	.7738, 17°	Schorlemmer. A. C. P. 161, 263.
" (B. 198°–200°)	"	.7915, 0°	Bartoli and Strac-
	46	.6442,198-2000	ciati.* Bei.9,697.
Normal dodecane.		.7655, 0°]	
" (B. 214°.5)	44	.7548, 15° [Krafft. Ber. 15, 1687.
11 11		.7511, 20° []	
***		.6930, 99°.1 J	

^{*}From petroleum. Doubtless a mixture of isomers.

[†] From hydrogen evolved from east iron. Constitution undetermined.

[‡] Two isomers from Galician petroleum. Constitution undetermined.

Professional Control of the Control			
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Tridecane. (B. 219°)	C ₁₃ H ₂₈	.796, 17°	Pelouze and Ca-
" (B. 217°.5)	(;	.793	hours.* J. 16, 524. Clocz.† C. R. 85, 1003.
(B. 218°-220°)	44	.8016, 0°	Bartoli and Strac- ciati.* Bei.9,697.
Normal tridecane.(B.234°)	4.6	.7716, 0° .7713, 0°]	,
44 44	44	·7608, 15° }	Krafft. Ber. 15, 1687.
" Tetradecane. (B. 258°)	C ₁₄ H ₃₀	.7008, 19° J .809, 20°	Pelonze and Ca-
" (B. 236°)		.812	hours.* J. 16, 524. Cloez.† C. R. 85, 1003.
(B. 236°-240°)	44	.8129, 0° .6412,236-240°	Bartoli and Struc- cinti.* Bei.9,097.
Normal tetradecane. (B. 252°,5)	64	.7753, 4°.5 }	,
44 44	44	.7715, 10° .7681, 15°	Krafft, Ber. 15, 1687. Melts at 4°, 5.
66 66	4.	.7645, 20° .7087, 99°.2 .7738, 5°.4	Krafft, Ber. 19, 2218.
Pentadecane. (B. 260°)		.825, 10°	Pelouze and Ca- hours.* J. 16, 524.
(B. 255°)	**	.s30	Cloez.† C. R. 85, 1003.
(B. 258°–262°)	44	.8224, 0° .6385, 258-262°	Bartoli and Strnc- ciati.* Bei.9,697.
Normal pentadecane, (B. 270°,5)	() ()	.7757, 10°] .7759, 10°]	Krafft, Ber. 15, 1987.
	()	.7724, 15° } .7689, 20°7136, 99°.3	Melts at 10°.
Hexdecane, dioctyl, or disoctyl. (B. 278.)	C ₁₆ II ₃₁	.S50	Cloez.† C. R. 85,
66		.7438, 15°	Eichler. Ber. 12, 1882.
(B. 268•.5)		.8022, 0° .80011, 18°	Alechin, Ber. 16, 1225.
(B. 264°) (B. 278°282°)		.8287.00	P. 220, 187. Bartoli and Strac-
Normal hexdeenne.	4.	.0896,278-282° .7754,18°	ciati.* Boi. 9, 697.
(B. 2×7-,5)		.7742, 20° }	Krafft, Ber. 15, 1687. Melts at 18
the state of the s		.7197, 99° _ } .7754, 14°.27744, 22°.5 }	Krafft, Ber. 19, 2218.
Heptadecune. (B. 303)	C ₁₇ H ₌₆	7707, 220 5	Krafft.† Ber. 15,
		.7714, 80°	1687. Melts at 22 .5.

From petroleum. Probably a mixture of isomers
 From hydrogen evolved from east iron. Constitution undetermined.

All of Krefft's paradins are said to belong to the normal series.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Octadecane. (B. 317°)	C ₁₈ H ₃₈	.7768, 28° .7754, 30° .7719, 35° .7685, 40°	Krafft. Ber. 15, 1687. Melts at 28°.
"	C ₁₉ H ₄₀	.7288, 99°] .7766, 28°] .7774, 32°]	Krafft. Ber. 19, 2218.
Eicospne. (M. 36°.7)	$\mathrm{C}_{20}~\mathrm{H}_{42}$.7754, 35° .7720, 40° .7323, 99°.3 .7779, 36°.7	Krafft. Ber. 15, 1687. Melts at 32°.
"	16	.7487, 80°.2 .7863, 99°.2 .7776, 36°.7	Krafft. Ber. 15, 1711. Krafft. Ber. 19, 2218.
Heneicosane. (M. 40°.4)	C ₂₁ H ₄₄	.7783, 40°.4 .7557, 74°.7 .7400, 98°.9	Krafft. Ber. 15, 1711.
Doeosane. (M. 44°.4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7782, 44°.4 .7549, 79°.6 .7422, 99°.2 .7785, 47°.7	ζζ ζζ
Tetracosane. (M. 51°.1)	C ₂₄ H ₅₀	.7570, 80°.8 .7456, 98°.8 .7786, 51°.1	
Heptacosane. (M. 59°.5)	C ₂₇ H ₅₆	.7628, 76° } .7481, 98°.9 } .7796, 59°.5 }	
Hentriacontane. (M.68°,1)	C ₃₁ , H ₆₄	.7659, 80°.8 .7545, 99° } .7808, 68°.1 .7730, 80°.8	
Dotriacontane. (M. 70°) Pentatriacontane.	$C_{22} H_{66}$ $C_{35} H_{72}$.7619, 98°.8 .7810, 70° .7816, 74°.7	Krafft. Ber. 19, 2218.
" (M. 74°.7) " Paraffin.* M. 56°	$C_n H_{2n} +_2$.7775, 80°.8 .7664, 99°.2 .913]	Krafft. Ber. 15, 1711.
" M. 61° " M. 67° " M. 72° " M. 76° " M. 82°	(.921 .927 .934 .940 .943	From ozokerite. Sauerlandt. J. 1879, 1147.
" M. 38°	(.872, 17°	
" M. 46°	(t	.889, 17°	Albrecht. D. J. 218, 280.
" M, 51°	(.775, 60°-65° } .908, 17° } .775, 60°-65° } .912, 17° }	
"		.777, 60°–65° }	

^{*} No attempt has been made to secure completeness concerning the specific gravity of common paraffin. The data given are included only to facilitate comparison.

	NAME.	FORMULA.	SP. GRAVITY.	А стнокіту.
Parafflu.	M. 38°		.874, 24°, s .783, 38° .779, 43°.4 .775, 49° .771, 54°.5 .767, 60° .768, 65°.5	From shale oil. Beilby, J.C.S., Sept., 1883, 388. Data given for sp. g. of paraflin in solution.

2d. Olefines. C_n H_{2n}.

		S- 0-	
Name.	FORMULA.	Sp. Gravity	AUTHORITY.
Ethylene. Liquefied	C ₂ II ₄	$ \begin{array}{c} .414, -21^{\circ} \\ .342, -7^{\circ}, 3 \\ .353, -3^{\circ}, 7 \\ .332, +4^{\circ}, 3 \end{array} $	Cailletet and Mathies, C. R. 102,
Butylene	С, Н ₈	[306, +6°.2] [306, +6°.2] [739, 0° [635, -13°.5]	1202, Chapman, J. 20,581. Puchot. Ann. (5),
Anylene	C ₅ H ₁₀	.639, —14°.2 .6517, 16°.5	28, 207 Mendelejetř. J. 13,7,
14 14 14	44	.6033, 0° .66277, 0° .65490, 10° .64450, 17°	Вицег. J. 14, 600. Вицег. A. C. P., 4
4	44	.62384, 88° .625812, 88°.5 . .62684, 85°.5	Supp. Bd., 129.
	44	.679, 0° .6319, 35° .6617, 9°.9)	Buff. J. 21, 334. Ramsay, J. C. S. 35, 463.
46	44	$ \begin{array}{c} .634\overline{0}, 35^{\circ}.6 \\ .6350, 36^{\circ}.3 \end{array} $ $ \begin{array}{c} .6503, 21^{\circ} \end{array} $	Schiff. G. C. I. 13, 187. Gladstone, Bei. 9,
Trimethyl ethylene	.(.6783, 0° =	249. Le Bel. B. S. C. 25, 547.
3. Ethyl methyl ethylene	44	,670,00	Le Bel. B. S. C. 25, 546.
Isopropyl ethylene	44	.648, 0°	Flawitzky. Ber. 11, 992.
Hexylene		.709, 12°	Pelouze and Ca- hours. J. 16, 526.
44	11	6987 .6986 .702, 0°	Wurtz. J. 17, 512. Geibel and Buff. J.
	44	.6996 .6997 } 0° {	21, 336. Hecht. A. C. P. 165, 146.
Tetramethyl ethyleno		.712	Pawlow. A. C. P. 196, 122.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
a. Ethyl dimethyl ethylene. "		.712, 0° }	Jawein. Ber. 11, 1258.
β. Ethyl dimethyl ethylene. "		.702, 0° .687, 19° }	
Heptylene	C ₇ H ₁₄	.718, 18°	Williams. J. 11, 438.
		.7060, 12°.5 .7026, 19°.5	Schorlemmer. A. C. P. 136, 257.
	"	.7060, 16°	Grimshaw. A.C.P. 166, 163.
		.742, 20°	Renard. Ber. 15, 2368.
"	"	.71812, 20°	Sokolow. Ber. 21, ref. 56.
Dimethyl isopropyl ethylene.	(.6985, 14°	Markownikow. Z. C. 14, 268.
(t) (t) (t)		.7144, 0°	Pawlow. A. C. P. 173, 194.
Octylene	C ₈ H ₁₆	.708, 16°	Cahours. C. R. 31, 143.
ιι 	((.723, 17° .737, 20°	Bouis. J. 7, 582. Fittig. J. 13, 320.
"		.7396, 0°	Warren and Storer. J. 21, 331.
"		.7217, 17°	Möslinger. Ber. 9,
"		.7294, 9°.9 }	Schiff. G. C. I. 13,
	(,	.6306, 123°.4 } .7222, 22°	177. Lachowicz. A. C. P. 220, 185.
"		.7197, 20°	Brühl. A. C. P. 235, 1.
"		.73645, 20°	Sokolow. Ber. 21, ref. 56.
Diisopropyl ethylene	"	.7526, 16°	Williams. Ber. 10, 908.
Methyl ethyl propyl ethylene.		.73138, 20°	Sokolow. Ber. 21, ref. 56.
Difsobutylene		.734, 0°	Butlerow. J. C. S. 34, 122.
"	"	.737, 0°	Lermontoff. A. C. P. 196, 116.
Nonylene. B. 145° B. 153°	C ₉ H ₁₈	.757, 20°.5 .7618, 0°	Fittig. J. 13, 321. Warren and Storer. J. 21, 331.
" B. 134°		.853, 18°.4	Lemoine. B. S. C. 41, 161.
"		.74333, 20°	Sokolow. Ber. 21, ref. 56.
Diamylene. B. 165° B. 151°	C _{10,} H ₂₀	.7777, 0° .8416, 0°)	Bauer. J. 14, 660. Schneider. A. C. P.
" B. 174°.6	"	.8416, 0° } .8248, 20° } .7912, 0°	157, 208. Warren and Storer.
и В. 175°.8	"	.823, 0°	J. 21, 332. Warren and Storer.
٠		.7789, 10°	J. 21, 331. Schiff. G. C. I. 13, 177.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Diamylene. B. 156°	C ₁₀ II ₂₀	.6611 \ 156° {	Schiff. G. C. I. 13,
11	44	1 . ()() [()	177.
. (.77753, 15°.2	Nasini and Bern- heimer, G. C. I.
в. 165°		.855, 14°	15, 50. Lemoine. B. S. C. 41, 161.
В. 164°	11	.7387, 20°	Lachowicz. A. C. P. 220, 177.
Endecylene	C ₁₁ H ₂₂	.782, 00	Warreni. J. 21, 380.
**	66	.8398, 0° } .791, 0° }	Warren and Storer.
Dodecylene, B. 216°	C ₁₂ H ₂₄	.791, 0°	J. 21, 332. Warren, J. 21, 330.
B. 212°.6	12 ***24	8001	, 21,550
B. 205°-219°.	44	.8543 } 0° }	Warren and Storer.
16	4.	.86.31) .7954, —31°)	J. 21, 332.
64	11	7720 00	
14		1117-1	Krafft. Ber. 16, 3018.
11 0	44	.7620, 15° .7511, 30°	
Dihexylene. B. 1969-19.19.	16	.796, 0° 1	73
A Third and a second	11	.786, 190	From two sources. Jawein. Ber. 11,
6 b	11	.509, 00 }	1258.
		1.798, 19°) J	(Butlerow, Mem.
Triisobutylene. B. 178°	44	.774, 0° \	Acad. St. Pe- tersb., 1879.
.4	44	.773 00	Lermontoff. A. C. P. 196, 116.
" B. 180°	4.	.782.00)	1
66	44	.7495, 519.6	
"	44	.707, 99°,5) .785, 0°)	
64	11	.751, 440.9 [
	()	.783, (10)	Five different lots.
14	46	.738, 60°.5 .707, 100°.2	Puchot. Ann. (5), 28, 525.
11	14	.780, 0°	(9), 25, 725.
44	44	.771, 00 1	
Tridecylene	C ₁₃ II ₂₆	.768, 14°) .8445, 0°	Warren and Storer. J. 21,382.
Tetradecylene	C ₁₄ II ₂₈	.7936, —12°	17. =1,00=.
	**	.7852, 00	Krafft Ber. 16, 3018.
	1.6	.7745, 15°	Third with the outer,
Triamylene	C ₁₅ H ₀	.7688, 30° J	Bauer. J. 14, 250.
Cetene, B. 275°	C ₁₆ H ₃₂	.7893, 15°.2	Mendelejeff. J. 13,7.
44		.7915, 10)	
11	66	.7839, 15° _ = (.7686, 37°.1	
		.7917, 19)	Two samples.
		.7842, 150 (Krafft. Ber. 16,
T)' 10 10 10 10 10 10 10 10 10 10 10 10 10		7689, 37°,1) 814, 15°	Bouis. Watts' Dict.
Dioctylene, B 250 Etherel, B 280		9174	Dumas and Boullay.
		1	See Serullas.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Etherol			Serullas. Ann. (2), 39, 178.
Octodecylene	C ₁₈ , H ₃₆	.7910, 18° } .7881, 22°.1 }	Krafft. Ber. 16, 3018.
TetramyleneCerotene	C20 H40	.8710, 0° .861, 15°	Bauer. J. 14, 660. Weltzien's "Zusam-
Melene	C ₃₀ H ₆₀	.89	menstellung.'' Watts' Dictionary.

3d. Acetylene Series and Derivatives.

	1		
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Acetylene. Liquefied	" " " " " " " " " " " " " " " " " " "	.460, —7°456, —3°451, 0°451, 0°441, 4°.4432, 9°420, 16°.4413, 20°.6404, 26°.25397, 30°364, 35°.8364, 35°.869990, 0°687386, 17°65719, 41°65082, 42°652, 11°65082, 42°6709, 18°710, 13°710, 13°7494, 0°7377, 13° }684, 14°68724, 17°64682, 59°.564564, 58°6508, 59°.5 }6508, 59°.5 }	loff. Ber. 11, 1939. Williams. J. 13, 495.
" " Diallylene	 C ₆ H ₈	.6983, 11°.9 .6503, 59°.3 .6880, 20° .8579, 18°.2	Schiff. G. C. I. 13, 177. Brühl. Bei. 4, 780. L. Henry. C. N. 38, 101.

Name.	FORMULA.	SP. GRAVITY.	Антновиту.
Dipropargyl	C6 116	.81, 180	L. Henry, J. C. S.
6 6 as	(.	.52	(2), 11, 1215. Berthelot and Ogier.
Ethyl propyl acetylene	C, H ₁		J. C. S. 40, 719, Běhal. Ber. 20, ref. 809,
Tetramethyl allylene	**	.9518, 9°	L. Henry. Ber. S.
Methyl propyl allylene	**	.5031, 20°	400. Renard. C. R. 91. 419.
Heptidene		.7155, 200	Bruhl. A. C. P.
Conylene	C, H ₁₁	.76076, 15°	235, 1. Wertheim, A. C. P. 123, 157.
From allyl diethyl carbinol.	11	.75856, 159.4	Reformatsky, J. P.
From allyl dipropyl carbi-	C ₁₀ H ₁₈		C. (2), 30, 217.
		.7525 .7855	
(1 (1		.7726 .7705 . 15°	
46 46	(,	.7738)	Reformatsky, J. P.
11 11		.7740, 16°	C. (2), 27, 389.
	**	.7681 200	
		.7665 \ 20° .7703	
The Heal discretization white	(1 11	7728, 20°.6	N. 1. 1. 1. 1 1
From allyl dimethyl carbinol.	C ₁₂ H ₂₀	.8530, 0° (.8385, 20°)	Nikolsky and Saytz- eff. J. P. C. (2), 27, 383.
6	11	.8512, 0°) .8449, 9°.8 }	Albitsky, J. P. C.
16 66	4.	.8319, 210,4	(2), 30, 213.
Dodecylidene	$C_{12}H_{22}$.8030, 0° }	Kraift, Ber. 17, 1371.
11		.7788, 820,5	Arant. Der. 17, 1041.
Tetradecylidene	C11 il.6	.8061, (7.5)	
16		.8000, 15 .2 } .7892, 80° }	
Benylene	(15]]	.9114, 0°	Wertheim, A. C. P.
Trivalerylene	(111,	.802 15	123, 157. Reboul, J. 20 585.
Hexadecylidene	C ₁₆ H ,	.8039, 202) .7969, 30)	Krafft, Ber. 17, 1371
Octud evlidene	C. 11	.80[6, 30]	
Lilvosylene and an annual	C_0 H	.8181.21	Lippmannen l H w- liczek. B r. 12, 72.
			11. 60 11. 17-1. 1-11-1-1

4th. Benzene Series.

	NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ronzon	e	C ₆ H ₆	85, 15°.5)	Familiar P.T. 100
Denzen	e	C6 116		Faraday. P. T. 1825, 440.
٤٤		"	.85	Mitscherlieh. A. C.
44		"	85	P. 9, 43. Mansfield. J. 1, 711.
"		((89911, 0°)	in in it is in it.
**		16	88372, 15°.2	Kopp. P. A. 72, 243.
"		((88354, 15°.3	
1.6		"	.8931, 5°—10°	Regnault. P. A.
		(8827, 10°15°	7 60 70
"		((8838, 15°20°) '
66		.,	8841, 15°	Mendelejeff. J. 13, 7.
		((8667 8957, 0°)	Church. J. 17, 581.
			.8820, 15°.5	Warren. J. 18, 515.
11			895, 3°	Jungfleisch. C. R.
44		"	812, 80°.5 }	64, 911.
11			8995, 0°)	32, 022.
6.6			8890, 10° [Louguinine. Ann.
6.6		"	8784, 20° [(4), 11, 453. Other
3.3			.8568, 40° [values given for
46		"	8349, 60°	intermediate t°s.
44		"	8126, 80°]	
"		11	90023, 0°)	
44		()	89502, 5°	
66			88982, 10° 88462, 15°	
44			.87940, 20°	
6.6		"	87417, 25°	
16		"	.86891, 30°	
66		"	.86362, 35°	
66		((.85829, 40°	Adrieenz. Ber. 6,
6.6		(85291, 45°	442.
11		"	84748, 50°	
			84198, 55°	
66		"	83642, 60°	
"		"	83078, 65°	
44			82505, 70°	
"		//	81923, 75° 81331, 80°	
44		((81651, 80°] 899487, 0°]	
	, .	"	883573, 150	
::			.872627, 25° }	Pisati and Paterno.
2.5		((.846170, 50°	J. C. S. (2), 12,
4.6		(1		686.
"		"		Landolt. Ber. 9, 907.
66		"	8773, 20°	Naumann. Ber. 10,
46		44	.8142, 80°	1422. Ramsay. J. C. S.
			.0112, .0 111	35, 463.
"		"	8858, 15°	Thorpe and Watts.
46		и	.8111, 80°	J. C. S. 37, 102. Schiff. Ber. 14, 2769.

Name.	FORMULA.	Sp. Gravity.	Аптновиту.
Benzene	С ₆ П ₆	.9000, 0° }	Dieff. J. P. C. (2),
.4	11	.8818, 20° ∫	27, 368.
	11	.8839, 14°.2	Schiff. G. C. I. 13,
14	(1	.8111, 80°.1	177.
	66	.8799, 200	Brühl. Bei. 4, 780.
14		.87901, 200	Flink. Bei. 8, 262.
		.8719, 25°.7 .8845, 13°.8	Schall. Ber. 17, 2555.
	11	.8881, 7°5)	
11	11		Gladstone. Bei. 9,
44	(4	.8903 { 10° }	249.
(((.8801, 20°	Knops. V. H. V. 1887, 17.
11	44	.85716, 40°.1	1001, 11.
		.85493, 41°.3	Taken at different
44		.84324, 53°.2 .84006, 54°.7	pressures, each
11	44	.83101, 64°.1	to, being the boil-
44	((.88081, 64°.2	ing point at the
44	61	.82099, 720.9	pressure ob- served. Neu-
11		89079, 739.4	
44	44	.81387) -00 0	beek. Z. P. C. 1, 654.
	46	*O1055# 1	1, 004.
14	* * * * * * * * * * * * * * * * * * * *	.81297, 79°.9]
11	44	.87907, 200	Weegmann, Z. P. C.
Toluene	С, Н,	.86	2, 218. Pelletier and Wal-
6.6	4.6	.821	ter. Gm. II. Couerbe. Gm. II.
44	11	.821 .864, 23°	Glénard and Bou-
11		.87, 18°	dault. Gm. H. Deville. Gm. H.
		.8650	Church. J. 17, 531.
44	11	.8824, 0° .8720, 15° }	Warren. J. 18, 515.
		.8720, 13°)	Tollens and Fittig.
			A. C. P. 131, 303.
	11	.8841, 0°]	Louguinine. Ann.
41		.8657, 20° .8375, 50°	(4), 11, 453. Other
44	11	.8086, 80°	values given for
	44	.7859, 100°	intermediate tos.
44		.866, 200	Post and Mehrtens.
			Ber. 8. 1551.
.4		.8657, 20°	Naumann. Ber. 10, 1425.
(. 44	.7650, 1110	Ramsay, J. C. S. 35, 463.
. 6	14	.5522, 00)
44		.8797, 20.77	
. 6	44	.8722, 10°.89	
		.8692, 14°.18	
14	44	.8653, 18°.43	
	44	.8556, 250.74	
		.5480, 42°.24	
		.8258, 60°.01.	Several other in-
(6		.8136, 72°.46 .7874, 99°.01	
44		.7811, 105°.17	des are given.
		1	

		1		1	
	NAME.	Formu	LA.	Sp. Gravity.	AUTHORITY.
Toluen	e	C, H,		.8708, 13°.1)
46		1,11		.7780)	
+ 4				.77807 \ 109°.2	Sehiff. G. C. I
4.4				.7781	13, 177.
4:				.8656, 200	Brühl. Bei. 4, 780.
44				.7801, 109°	Schall. Ber. 17, 2204.
				.8617, 26° }	Schall. Ber. 17
				.85098, 34°.5 (.8704, 7°.5	2555. Gladstone. Bei. 9,
				· ·	Gladstone. Bei. 9, 249.
				.8643 } 14° {	Glad tone and Tribe.
"				.8691)	J. U. S. 47, 448.
				.82664, 61°.2	
4.6				.82441, 62°.3 .82435, 63°.5	
: 6				.80656, 81°.2	
"		44		.80637, 81°.5	
"		"		.79470 3930.4	
6.6		"		19494)	} Taken at different
16		"		.78576, 102°.6	pressures, each to.
"				.78515, 103°	being the boiling
				$\{.77816, .77$	point at the press-
"				77788 } 110 .1 77741, 110°.7	nre observed. Neubeck. Z. P.
				.77694, 110°.8	C. 1, 656.
Xylene	*	C ₆ H ₄ (C H ₃),	.8309, 15°	Mendelejeff. J. 13, 7.
- 16		0 4 0		.8668, 210	Beilstein. A. C. P.
					133, 37.
		6.6		.8770, 0°]	Louguinine. Ann.
		44		.8600, 20°]	(4), 11, 453. Val-
61		46		.8340, 50° } .8073, 80° }	ues given for other
66		46		.7892, 100°	intermediate tos.
44		46		.8616, 20°	Naumann. Ber. 10,
		66			1426.
				.7335, 132-134°	Ramsay. J. C. S.
		"		2010 900	35, 463. Brühl. A. C. P.
				.8619, 20°	Brühl. A. C. P. 235, 1.
Orthoxy	vlene	44	1.2	.7559, 141°.1	Schiff. Ber. 15, 2974.
"		44		.8632, 18°	Gladstone. Bei. 9,
					249.
16		"		.876, 24°.5	Colson. Ann. (6),
"		4.4		01110 000 1	6, 86.
"				.81449, 90°.4	
		66		.81422, 90°.6 .79497, 112°.7	Taken at different
"		6.6		.79435, 112°.9	pressures, each to.
		66		799040	being the boiling
46		6.6		.78188 \ 123°.8	point at the press-
"		4.6		.77398) _{133°.9}	ure observed.
"		"		.77413)	Neubeek. Z. P.
"		"		.76684 \ 141°.1	C. 1, 656.
"		44		.76569, 142°.5	
44		46		.8932, 0°)	Pinette. A. C. P.
		6.6		.7684, 141°.9	243, 50.
				,)	,

^{*} Exact character not specified. For sp. gr. of several mixed xylenes see Lewinstein, Ber. 17, 446.

NAME.		FORMULA.		SP. GRA	VITY.	AUTHORITY.
Metaxylene	C ₆	Н4 (С Н3)2	. 1.3	,575, ()°	1	Warren. J. 18, 515.
		6.4		, 566, 15	1	17 tillen. 0. 12, 01%
		6.6		.8715, 12		
		6.6		.7567, 10	00	Schiff. G. C. I.
		6.6		.7571	139°.2	13, 177.
		6.6		.7572) .8726, 15	: o =	Gladstone. Bei. 9,
		.,				240,
		4.4		.861, 242	, i)	Colson. Ann. (6),
		6.6		.8055, 20)°	Bruhl. A. C. P. 235, 1.
66		4.6		.80588, 8	50.8	1
		4.4		.80522, 8	390.3	
		4.4		.75722, 1	1080.3	Taken at different
		6 =		78667.1	050.7	pressures, each to.
		1.1		.77483, 1	12(10.5)	being the boiling
		6.6		.77127,	1210.5	point at the press-
		4.4		.76639)	1200.2	l ure observed.
		6.6		.76647 (Nenbeck. Z. P.
		66			138°.1	C. 1, 656.
		6.		.75795 }		
		44		me wife '	- 139°. I	
		44		7 4 7 41	0 1	Pinette. A. C. P.
		£ 4		FF.18 1		243, 50.
		4.6		. 8621. 1		
Paraxylene			2	. ,		A. G. P. 136, 303.
		4.4		7548	1000 -	
		6.6		. 7545)	1360.0	Schiff, Ber. 14, 2760.
		4.6			Go	Gladstone. Bei. 9, 249.
		4.6				
44		4.4		. 80215	l gron	
		1.1		retine")	Taken at different
11		6.6		.78341,	106°.9	pressures, each
		1.3				to being the
44		6.6				boiling point at
						the pressure ob-
		6.6				served. Neu-
				m = 1.) 1	1370.1	
		4.4		M. W. (2077)	}	1, 456
		6.6		75303		+
6 6 ga aga an aga a		6.6				Pinette. A. C. P.
					135	248, 50,
Ethylbenzene		6 H ₅ . C ₂ H			.5	- Firtig and Konig. A. C. P. 141, 277.
4.4		6.4		S760, 9	(10,1)	
11		4 +		.7611	1050.8	Schiff, G. C. I 13, 177.
		6.6		.7612 (1 }
4.6		6.4		88316.	. ()0]	
		4.6				
5.6		4.6		,	J(),	235, 1.
Trimethylbenzer	ie Me- (6 H ₃ (C H ₃)3. 1.3.5	.863, 1	30	

		1			
NA	ME.	For	MULA.	Sp. Gravity.	AUTHORITY.
Trimethylber	nzene. Me-	C ₆ H ₃ (C	$H_3)_3$.8643, 0° .8530, 15° }	Warren. J. 18, 515.
4.6	sitylene.			.8694, 9°.8)	Schiff. G. C. I. 13,
6.6		4.6		.7372, 164°.5	177.
4.4		14		.8558, 20°	Brühl. Bei. 4, 781.
" "		4.6		.8632, 19°	Gladstone. Bei. 9, 249.
" P	seudocumene	"	1.3.4	.8901, 0°	Konowalow. Ber.
Orthomethyle	ethylbenzene	C ₆ H ₄ . CH	. C ₂ H ₅ . 1.2 ₋	.8731, 16°	20, ref. 570. Claus and Mann.
Metamethyle	thylbenzene_	16	1.3_	.869, 20°	Ber. 18, 1122. Wroblevsky. A. C.
Paramethyle	thylbenzene_		1.4.	.8694, 11°.3	P. 192, 198.
44		* 4			Schiff. G. C. I. 13,
4.6					177.
				.864, 20°	Anschütz. A. C. P. 235, 314.
Propylbenzer	ne	C ₆ H ₅ . C ₃	H ₇	.881, 0°	Paterno and Spica. Ber. 10, 294.
44				.88009, 0°	Spica. J.C.S. 36,631.
4.6		11		.8692, 17°	Wispek and Zuber.
4.6				.8702, 9°.8)	A. C. P. 218, 380. Schiff. G. C. I. 13,
"		i.i		.7399, 158°.5	177.
Isopropylben	zene. Cu-	6.6		.87	Pelletier and Wal-
	mene.				ter. Ann. (2), 67, 269.
"	"	"		.8792, 0°)	
"	4.4	11		.8675, 15° }	Warren. J. 18, 515.
	4.6	66		.87976, 0°]	
"	"	"		.85870, 25°	D: .: 1 D .
	4.6			.83756, 50°	Pisati and Paterno.
4.6	4.6	11		.81585, 75° .79324, 100°	J. C. S. (2), 12, 686.
"	"	"		.86576, 17°.5	Liebmann. Ber. 13,
44	44	"		.8776, 0°)	46.
66	44			.8577, 25° }	Two preparations.
"	4.6	6.6		.87798, 00 {	Silva. B. S. C.
				.85766, 25°	43, 317.
4.4	44			.8432, 12°	Gladstone. Bei. 9, 249.
Tetramethylb	enzene	C ₆ H ₂ (C I	I ₃) ₄	.8816, 9°	Knublauch. Tübingen Inaug. Diss., 1872.
Dimethylethy	lbenzene	C ₆ H ₃ (C I	$(H_3)_2 \stackrel{C_2}{=} H_5.$.8783, 20°	Ernst and Fittig.
44		"	1.3.5	.8644, 20°	A. C. P. 139, 192. Jacobsen. B. S. C.
4.6	~	66	"	.861, 20°	24, 73. Wroblevsky. A.C.
44		44	1.3.4	.8686, 20°	P. 192, 217. Anschütz. A.C. P.
Diethylbenzer	ne	C ₆ H ₄ (C ₂	H ₅) ₂ . 1.4	.8707, 15°.5	235, 324. Fittig and König.
					A. C. P. 144, 285.
zene.	ropyrben-	C ₆ 11 ₄ . C11 ₃ .	03:17. 1.0	.000, 10"	Claus and Stuesser. Ber. 13, 899.

NAME.		FORMUL:		SP. GRAVITY.	Authority.
Metamethylpropy	lben- C	511 ₄ . C11 ₃ . C ₃ 1	I ₇ . 1.3	.8725, 00	Spica. Ber. 16, 792.
zene.		4.6		.861.00.8)	Schiff, G. C. 1. 13,
4.		4.4	6.6	.7248, 1750.17	177.
Paramethylpropy zene. Cymene.	lben-	8.6	1.4_	.860, 14°	Gerhardt and Cahours, A. C. P. 38, 345.
6.6		16	4.6	.857, 16°	
4.4	}	6.6	"	.8778, 00)	Kopp. A. C. P. 94,
4.4		6.6	1.1	.8678, 120.6	257.
4.4		1.6	6.6	.8660, 150	
6.6		4.6	(;	.8664, 20°	Williams. J. C. S. 15, 120.
1.6		6.6	4.6	.8697, (10)	From enmin oil.
4.6		4.4	44	.8724, 00	Warren. Mem.
6.4		6.6	66	.8592, I4° =)	Amer. Acad. 9, 154. From cummin oil.
4.6		4.6	4.4	.5705,00	Lougninine, Ann.
4.4		4.6	6.6	.8544, 20° ==	{ (1), 11, 453. Other
11		4.4	6.6	.8302, 50°	values given for
4.6		4.6	6.6	.7803, 100° J	intermediate to. (From camphor.
61		4.6		.8732, 0°	Louguinine, Ann.
4.4		6.6	61	.8574, 200 == }	(1), 11, 453. Other
16		46	11	.8388, 507919, 100°	values given for
			64		intermediate tos.
£ 6 4 6		11	66	.8708, 0° .8572, 20°.2	Beilstein and
4.6		66	4.6	.5732, 0°	Kupffer, J. C. S. (2), 12, 152.
6.6		δ ξ	13	.5707, 0°	Beilstein and Kup- ffer. A. C. P. 170 295,
4.6		64	4.4	.80	Gladstone, J. C. S (2), 11, 659, Ext. of S, from dif-
4.4		6.6	4.4	.5121	
٤ (non make their title	4.6	4.4	.8135	S. (2), 11, 970.
4		44	6.6	.855, 16°	Orlowsky, B. S. C 21, 821.
4.4		4.4	4.6	.57446, 00 == 1	From cummin oil
		11	4.6	.55457, 25	Pisati and Pater
6.6		6.6	6.	.\$2352, 50 .\$1400, 75	no. J. C. S. (2)
66		16	4.4	.79307.1000	12, 656.
4.4			4.6	.57227, 0	
4.6		4.6	* 4	35254, 250	Fromcymylalechol
4.4		4.6	61	, S20,52, 50°	Pisati and Pater
4.6		4.4	EL	.512(10), 7.70	10. J. C. S. (2) 12. 686.
4.6		4.6	£ a	.79129, 1000	1 -, 11,011.
0 6.6		4.4	4.	.57224, 0	From camphor. Pi
11		4.6	6.6	.85207, 25	sati and Paterno
4.6		6.6	6.6	.\$8251, 50° .\$1230, 75°	J. C. S. (2), 12
4.6					

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Paramethylpropylben-zene. Cymene.	C ₆ H ₄ . CH ₃ . C ₃ H ₇ . 1.4	.86542, 0° .78429, 100° }	From thyme oil. Pisati and Paterno. J. C. S.
66	"	.8598, 150	(2), 12, 686. From two sources.
"	"	.8598, 15° }	Kraut. A. C. P.
		\[\begin{align*} .8732, 0° \\ .8595, 15° \\ \end{align*} \] \[.8718, 0° \\ \end{align*} \]	192, 224.
	11 11	.8718, 0° }	Jacobsen. Ber. 11,
	£	.86035, 10° }	1060.
	"	.873, 0° .8720, 20°	Febve. Ber.14, 1720. Kanonnikoff. Bei.
		.0120, 20	7, 542.
"	"	.7248, 176°.2	Schiff. Ber. 15, 2974.
	11 11	.8569	Brühl. A.C.P. 235,1.
((46 66	.8551, 21°	Gladstone. J. C. S.
Methylisopropylbenzene _	"	.86948, 0° }	49, 623. Silva. B. S. C. 43,
it ==		.86211, 25°	317.
		.8702, 0°	Jacobsen. Ber. 12,
Butylbenzene	$C_6 \coprod_5$, $C_4 \coprod_9$.8622, 16°	431. Radziszewski. Ber. 9, 260.
		.875, 0°)	0, 200.
		.864, 15° }	Balbiano. Ber. 10,
		.794, 99°.3)	296.
Isobutylbenzene		.8577, 16°	Riess. Z. C. 14, 3.
a		.89, 15° }	Radziszewski. Ber.
Methyldiethylbenzene	$C_6 H_3$. $C H_3 (C_2 H_5)_2$.	.8726, 16° \{ .8790, 20°	9, 260. Jacobsen. B. S. C.
Dimethylpropylbenzene	1.3.5. C ₆ H ₃ (C H ₃) ₂ C ₃ H ₇	.887, 10°	24, 74. Fittig, Köbrich, and
Laurene. Metaethylpropylbenzene	C ₆ H ₄ ·C ₂ H ₅ ·C ₃ H ₇ · 1.3 ₋		Jilke. J. 20, 701. Renard. Ann. (6),
Amylbenzene			1, 223. Lippmann and Lou-
u			guinine. J.20,667.
((C_6H_5 . $C(CH_3)_2$. C_2H_{5-}	.8731, 21°	Dafert. M.C.4,617.
	C_6H_5 , $C(CH_3)_2$, C_2H_5 - C_6H_5 (CH_2) ₄ (CH) ₃ -	8609 990	Essner. Ber. 14, 2582. Schramm. A. C. P.
****			218, 389.
Isoamylbenzene	C ₆ H ₅ , CH ₂ , CH ₂ , CH (C H ₂)	.859, 12°	Tollens and Fittig. A. C. P. 131, 303.
Orthoisoamylmethylben- zene.	$C_6H_4.CH_3.C_5H_{11}.1.2$.8945	Pabst. B. S. C. 25, 337.
Paraisoamylmethylben- zene.		.8643, 9°	Bigot and Fittig. J. 20, 667.
Parapropylisopropylben-	$C_6 H_4 (C_3 H_7)_2$. 1.4	.8713, 0°	Paterno and Spica.
Isohexylbenzene	C_6 H_5 . C_6 H_{13}	.8568, 16°	Ber. 10, 1746. Sehramm. A. C. P. 218, 391.
Amyldimethylbenzene	$\mathrm{C_6H_3(CH_3)_2.C_5H_{11^-}}$.8951, 9°	Bigot and Fittig. J. 20, 667.
Normal octylbenzene	C_6 H_5 . C_8 H_{17}	.849, 15°	Schweinitz. Ber. 19, 642.
" " ——		.852, 14°	
Diisoamylbenzene	$C_6 H_4 (C_5 H_{11})_2$.8868, 0°	A. Austin. B. S. C. 32, 13.

5th. Miscellaneous Aromatic Hydrocarbons.

Nat	ME.		FORMULA.	SP. GRAVITY.	AUTHORITY.
Allylbenzene		-8	('6 112. ('3 112	.9480, 15°	Perkin. C. N. 36, 211.
Isopropyhally	benzene -		(6 H ₄ , C ₃ H ₇ , C ₂ H ₈ (6 H ₄ , C ₃ H ₇ , C ₃ H ₅	.8902, 15° .890, 15° .8875, 15°	60 8 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6
4.6			C ₂ II ₄ . C ₃ II ₇ . C ₄ II ₇ . C ₂ II. C ₆ II ₅ .	,94658, 0° ,90832, 141°,6	Weger, A. C. P. 221, 61.
 Ethylphenyla	cetylene	1	('2. ('2 H5. C6 H5	.9295, 20° 1111 .929, 21° 1111	Brūhl. A. C. P. 235, 1. Morgan. J. C. S. (3),
			C ₂ H ₃ . C ₆ H ₅	.928, 15°	1, 163. E. Kopp. J. P. C. 37, 283.
			4.6	.924	Blythand Hofmann. A. C. P. 53, 294.
4.6	"		44	,596 / 10*	Schärling, A. C. P. 97, 186. Perkin, J. C. S. 32,
+ 6	"		64		From different
44	6.6			.915 \ 0° (Sources, Krakau, Ber, 11, 1260.
6.6	4 6		66	.7926, 143°	Schiff. G. C. I. 13,
44	6 t t		16	.7914, 146°.2 (Weger, A. C. P. 221, 61. Nasmi and Bern-
. 4	4.4		(1	.9084	heimer. G. C. I. 15, 50.
. 6	6 E		66	.9409, 11° i	Gladstone, J. C. S. 45, 241. Bruhl, A. C. P.
Metaciurame	ne		(C ₈ II ₂) _n	1.054, 13°	235, 1. Scharling, A. C. P. 97, 186.
8.6			C ₄ H ₇ . C ₆ H ₅	1.027, 0° + 1.016, 15° + .9015, 15°.5 +	Erdmann. A. C. P. 216, 189. Aronheim. B. S. C.
4.6			4.	.5864, 12°.1 .5158, 23°	19, 258. Nasini. Bei, 9, 331. Dafert. M. C. 4, 625.
Phenylpenty Phenylisope	ntylene	- 2	**	.878, 16	Schramm. A. C. P. 218, 394.
6.6			$C_2 \coprod_2 (C_6 \coprod_5)_4$ $C_2 \coprod_4 C_6 \coprod_5 C_7 \coprod_7$	1.179 } 1.184 }	Schröder. Ber. 14, 2516. Bandrowski, B. S.
Ditolylethan				974, 20° =	C. 23, 79. Anschutz, A. C. P. 235, 315.
Dixylylethn	ne		$C_2 H_4 (C_8 H_9)_2$.966, 20°	

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Diphenylpropane	C ₃ H ₆ (C ₆ H ₅) ₂	.9956,0°	Silva Pon 10 0070
Tetrahydrotoluene	C_7 H_{12}	.9205, 100° } .797, 18°	Silva. Ber. 12, 2270. Renard. Ann. (6),
Tetrahydroxylene		.814, 0°	1, 223. Wreden. A. C. P.
		.8158	163, 337. Renard. Ann. (6),
Hexhydrobenzene	C ₆ H ₁₂	.76, 00	1, 223. Wreden. J. R. C.
Hexhydrotoluene	C ₇ H ₁₄	.772, 0° }	5, 350. Wreden. Ber. 10,
"	66	.758, 20° } .742, 20°	713. Renard. Ann. (6),
		.7741, 0° } .7587, 19° }	1, 223.
	((.6896, 96°.5 .7956, 4°	Lossen and Zander. A. C. P. 225, 109.
Hexhydroxylene. (B. 137°.6.)	C ₈ H ₁₆		Schiff. Ber. 13, 1407.
(5.121.0) =		.764, 19°	Renard. Ann. (6), 1, 223.
Hexhydroisoxylene. (B. 118°)	(($\{.781, 0^{\circ}, .765, 20^{\circ},\}$	Wreden. Ber. 10, 712.
"	"	.777, 0°	Wreden. J. C. S. (2), 12, 258.
"	(1	$.7814, 0^{\circ} _{} $	Lossen and Zander.
Hexhydrocumene	C ₉ H ₁₈	.6781, 118°) .787, 20°	A. C. P. 225, 109. Renard. Ann. (6),
Hexhydropseudocumene		.7812, 0° } .7667, 20° }	1, 223. Konowaloff. Ber.
Hexhydrocymene	$C_{10}^{''}\Pi_{20}$.8116, 17°	20, ref. 571. Renard. Ann. (6),
β. Benzylene	C ₇ H ₆	1.106, 35°	1, 223. Gladstone and Tribe.
Diphenyl	$C_{12}H_{10}$	1.160}	J. C. S. 47, 448. Schröder. Ber. 14,
• (4	"	1.169 } .9961, 70°.5	2516. Schiff. A. C. P.
Triphenylbenzene	C ₆ H ₃ (C ₆ H ₅) ₃	1.205}	223, 247. Sehröder. Ber. 14,
Phenyltoluene	C_6H_4 . CH_3 . C_6H_5 . 1.4	1.206	2516. Carnelley. J. C. S.
Benzylethylbenzene Metabenzyltoluene	$\begin{array}{c} {\rm C_6H_4,C_2H_5,C_7H_7,1.4} \\ {\rm C_6H_4,CH_3,C_7H_7,1.8} \end{array}$.985, 18°.9 .997, 17°.5	(2), 14, 18. Walker. Ber. 5, 686. Senff. A. C. P. 220,
Parabenzyltoluene	1.4	.995, 17°.5	223. Zincke. A. C. P.
Dibenzyltoluene	С ₆ Н ₃ . С Н ₃ (С ₇ Н ₇) ₂ -	1.049	161, 93. Weber and Zineke.
Phenylxylene	C ₆ H ₃ (C H ₃) ₂ C ₆ H ₅ -	1.01, 0°	J. C. S. (2), 13, 155. Barbier. J. C. S.
Benzyleymene	$C_{6} \ H_{3} \ (C \ H_{3})_{2} \ C_{6} \ H_{5}$ $C_{10} \ H_{13}. \ C_{7} \ H_{7}$.987, 0°	(2), 13, 62. Mazzara. Ber. 12,
Dipentenylbenzene		.9601, 23°	384. Dafert. M. C. 4, 625.
Benzylidenetolylene?	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0032, 18°	Lippmann. Ber. 19, ref. 744.
10 0 0	,		

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Ditolyl	C ₁₄ H ₁₄	.5172, 121°	Schiff. A. C. P.
Dibenzyl	(;	1.002, 14°	223, 247. Limpricht. J. 19,
44		.9945, 10°.5	593. Fittig. A. C. P.
	11	1.0423, 520.3	139, 178. Schiff. A. C. P.
Dixylylene	C ₁₆ H ₁₆	.9984, 220	228, 247. Lippmann. Ber. 19,
Naphthalene, 4,	C ₁₀ H ₈	.9774, 79°.2	ref. 744. Kopp. A. C. P. 95, 307.
11 5.	(;	.9628, 99°, 2 1.15178, 19°	Alluard. J. 12, 472. Vohl.
11		1.158, 189	Watts' Dictionary.
	4	1.048 1.321 } 4° {	Ure. Gm. H. Schröder. Ber. 12,
<i>ii</i>	6.6	1.341 } 4 { .8779, 218°	1611. Ramsay. J. C. S.
			89, 65,
		.9777, 79°.2	Schiff, A. C. P. 223, 247.
"		.982, 79°)	Lossen and Zander. A. C. P. 225, 109.
	1.	.96208, 98°.4	Nasini and Bern- heimer. G. C. I.
Methylnaphthalene	С10 И7. С И3	1.0257, 11°.5	15, 50. Fittig and Remsen.
d f		1.0042, 220	A. C. P. 155, 114. Reingruber, A. C.
Dimethy lnaphthalene	C ₁₀ H ₆ (C H ₃) ₂	1.0176, 20°	P. 206, 376. Giovanozzi, J. C. S. 42, 853.
		1,0283,0° }	Cannizzaro n n d Carnelutti. J. C.
		1.01803, 169.4	(S. 41, 80, Nasini and Bern-
66		1.01058, 27°.7 .97411, 77 .7	heimer. G. C. I. 15, 50.
Ethylnnphthalene		1.0184, 10	Fittig and Remsen. A. C. P. 155, 118.
	"	1.0204, 00	Carnelutti. Ber. 13,
Isopropylnaphthalene		1.0123, 11°.9 (.950), 0° _ =	1672. Roux. Ann. (6), 12,
Amylmaphthalene		.978, 02	319. Roux. Ann. (6), 12,
Naphthalene tetrahydride	C ₁₀ H _s . H ₄	.951, 120	321. Graebe. B. S. C. 18.
		.995, 0°	205. Wreden and Znato-
Naphthalene hexhydride	С 10 Н 8. Н 6	.452.00	wiez. Ber. 9, 1607.
	44	$\{0.9119, 0^{2}, 0.7809, 200^{2}\}$	Lossen and Zander. A. C. P. 225, 109.
44	44	.94557, 100.4 }	Nasini and Bern- heimer. Two
	(1	.95807, 189,4 }	samples. G.C.I 15, 50.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wreden and Znatowicz. Ber. 9, 1607.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	wicz. Ber. 9, 1607.
dride. Dimethylnaphthalene C_{12} H_{12} . H_{6}	
Dimethylnaphthalene C ₁₂ H ₁₂ . H ₆	
	Nasini and Bernheimer. G. C. I.
	15, 50. Miquel. Ber. 9, 1034. Vincent and Roux.
β. Benzylnaphthalene (' 1.176, 0° 1.0300, 103°	B. S. C. 40, 163. " Sehiff. A. C. P. 223,
	247. Reichenbach. Watts' Dict.
	Schiff. A. C. P. 223, 247.
dride.	Graebe. J. C. S. (2), 14, 70. Schiff. A. C. P. 223,
Retene. Solid C ₁₈ H ₁₈ 1.104)	247.
" " 1.110 1.132 16° 1.152	
" " " 1.162 1.063	Ekstrand. A. C. P.
" " 1.067 1.074 1.077	185, 78.
" " 1.087 1.087	

6th. Terpenes.

Name.	FORMULA.	Sp. Gravity	Authority.
Oil of turpentine	C ₁₀ H ₁₆		68.
(C ("	$\begin{bmatrix} .8600 \\ .8614 \\ .8644 \end{bmatrix}$ 20° $\left\{ \begin{bmatrix} \\ \end{bmatrix}$	Four different samples. Gladstone. J. C. S. 17, 1.
From Abies Reginæ-Amaliæ.		.868	Schiff. Bei. 9, 559. Buchner and Theil. J. 17, 536.
From Pinus abies		.880, 15°	Gm. H.
From Pinus maritima	"	.8639, 0° }	

Terpene ?				
From Pinus sylvestris. B	NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
From Pinus sylvestris. B	Dan Dien annilla	CH	875 170	Ruchner I 12 470
B. 1719.		010 1116		
## ## ## ## ## ## ## ## ## ## ## ## ##			1	
Section Sect		4.6	.8746. 00)	
1				Flawitzky, Ber. 11,
Terpene ?	66 66 .6		.8547, 240.5	
Terpene ?			.8764, (10)	Flawitzky. Ber. 20,
Terpene ?	44 44		.S600. 20° (1956.
Section Sect	Terpene ?		.7421 1560 1	Schitf. G. C. I. 13,
Solition				
Seterpene	16 ?	(4	.8587, 20° 1111	
Isoterpene			U711 100 0	
Seterpene	"		.8/11, 105.2	
Trebellene. B. 157° Terebenthene. B. 157° Terebene Te	T A -mana	4.4	84.13 900	
	Isoterpene		.0279, 20	
Thuja terpene. B. 160° "	6 b	4.6	.8627. 00	
Thuja terpene. B. 160° From Sequoia. B. 155° From Sequoia. B. 157° From Sequoia. B. 155° From Sequoia. B. 155° From Sequoia. B. 155° From Sequoia. B. 157° From Sequoia. B. 157° From Sequoia. B. 155° From Sequoia. B. 155° From Sequoia. B. 155° From Sequoia. B. 155° From Sequoia. B. 157° From Sequoia. B. 155° From Sequoia. B. 150°				
From Sequoia, B, 155° Terebilene, B, 134° Australene, B, 157° Terebenthené, B, 158° Ter	Thuia terpene, B. 160°			Jahns. Ber. 16, 2930.
Terebilene, B. 134°	From Sequoia. B. 155°	16	.8522, 150	Lunge and Stein-
Terebilene. B. 134°	1			kauler. Ber. 14,
Australene, B. 157° Australene, B. 157° Terebenthene, B. 158° Ter				
Terebenthené, B. 157° "				
Terebenthené, B. 157° "	Australene, B. 157°	44	.8631, 16°	
## ## ## ## ## ## ## ## ## ## ## ## ##			UP3 300 F	
"	Terebenthene. B. 157°	**	.811, 11, .9	Atterberg. Ber. 14,
	44	4.4	9767 Nº 0	2001.
" S436, 40° - Riban. B. S. C. 21, 27, 60° 173. " S270, 60° 173. " S815, 80° 173. " S812, 0° 1066. " From camphor oil. " 8641, 15° Yoshida. J. C. S. 47, 779. " S605, 10° - 15° 162, 50° 1066. " B. 160° " S564, 15° - 20° 61dstone. J. C. S. 17, 1. " S860, 20° 173. " S8767, 0° - 1800, 80° 175. " S8767, 0° - 1800, 80° 175. " S8767, 0° - 175. " S8767, 10° - 175. " S8767,				
" " " " " " " " " " " " " " " " " " "				
"				
"				173.
"				
"From camphor oil. """				
"From camphor oil. "			.8515, 00	
Terchene			.8724, 12°	
Terebene	" From camphor oil.	4.6	.8641, 100	
September Sept	m 1	. (c=10	
"				1 terre. J. 4, 02.
"				Regnanlt P \
6 B. 160°				
17, I. 17, I. 18, 17, I. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,				
"	37. 1.70		, , , , , , , , , , , , , , , , , , , ,	
Second		(,		
Riban. B. S. C. 21, 173, 1810 a. 18				
"	44		.5433, 40° [Riban B S C 21
"			.8267, 60° [
" S264, 15° Orlowsky. B S. C. 21, 321. Isoterebenthene, B, 175° S586, 0° S586, 0° S78, 40°, 19 " S273, 40°, 19 " S131, 58°, 32			.5100, 500	
21, 321. Berthelot. J. 6, 523. "			1933, 100° J	Orlande De C
Isoterebenthene	13. 1000		.0204, 10"	
"	I storelises been 1 = 50	11	\$430,000	
" (8427, 20°, 28) " (8273, 40°, 19) Ribun, C. R. 79, 314, " (8131, 58°, 32)			.8586. 02	TOTALL TOTAL OF ORO,
" .8273, 40°, 19 Riban, C. R. 79, 314. " .8131, 58°, 32	B-30-11-4		.8427, 200,28	
		44	.5273, 400.19	Riban, C. R. 79, 814.
(70)4, 79°.24		14	.8131, 589.32	
			.7904, 792.24	

		1	
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Isoterebenthene Terpilene. Laevorotatory_	C ₁₀ ,H ₁₆	.7793, 100° .8672, 0°	Riban. C. R.79, 314. Bouchardat and La-
Terpinylene. B. 177° Terpinene. B. 178	(,	.8526, 15° .93, 0°	font. C. R. 102, 50. Tilden. C. N. 37,166. Walitzky. Ber. 15, 1086.
	((.855	Wallach. A. C. P. 230, 260.
Sylvestrene. B. 175°		.8612, 16°	Atterberg. Ber. 10, 1206.
"	"	.8598, 17°.5	Atterberg. Ber. 14, 2531.
"	"	.8658, 14°	Gladstone. Bei. 9,
Austrapyrolene. B. 177° From oil of neroli. B. 173°_		.847 .8466, 20°	Watts' Dictionary. Gladstone. J. C. S.
From oil of orange	((.835	17, 1. Soubeiran and Capitaine.
" " " B.174°		$\begin{bmatrix} .8460 \\ .8468 \end{bmatrix}$ 20° {	Gladstone. J. C. S. 17, 1.
From oil of petit grain	(.8470, 20°	
From Citrus lumia	"	.000	Luca. J. 13, 479.
From Citrus bigaradia	((.8520, 10° \	Luca. C. R. 45, 904.
E C'' ::		.8517, 12° }	,
From Citrus medica		.8514, 15°	Berthelot. J. 6, 521.
" " "		.8466, 20°	Gladstone. J. C. S. 17, 1.
Oil of citron		.8597, 5°—10°	11, 1.
(1 (1	"	.8558, 10°—15°	Regnault. P. A.
		.8518.15°—20°	62, 50.
Citron terpene	"	.8593) 000	,
	"	(6669)	
		.7279	Schiff. Ber. 19, 560.
		$\begin{bmatrix} .7285 \\ .7286 \end{bmatrix}$ 168°	
From oil of lemon		.84)	
" " " " " " " " " " " " " " " " " " "		86	Zeller. Watts' Dict.
	(8380)	Frankenheim. Two
(((()		.8661 } 0 {	samples. J. 1, 68.
" " B.173°	(.8468, 20°	Gladstone. J. C. S. 17, 1.
Citrene. B. 165°	"	.8569	Blanchet and Sell. Gm. H.
From oil of bergamot	"	.856	Ohme. A. C. P. 31, 316.
		.8464 } 200 {	Gladstone. J. C. S.
11 11 11 11		.8466) - (17, 1.
Hesperidene		.8483	Gladstone. Bei. 9, 249.
From oil of angelica	"	.8487	Müller. Ber. 14, 2483.
" " B. 175°		.833, 0°	Naudin. Ber. 15, 254.
" " B. 158°	"	.8609	Beilstein and Wie-
" " B. 173° " B. 176°		.8504 \ 16°.5 \	gand. Ber. 15, 1741.
п. п. 176		.8481)	1741.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
β Terebangeline. B. 166	C ₁₀ II ₁₆	.870, 0°	Naudin. C. R. 96, 1153.
From oil of anise	44	.8580, 200	Gladstone. J. C. S.
From oil of bay	((.908, 15° .8508, 20°	17, 1. Blas. J. 18, 569. Gladstone. J. C. S.
From oil of birch tar	46	.870, 20°	17, 1. Sobrero. Watts'
From oil of calamus		.8793, 0°	Dict. Kurbatow. A. C. P.
From oil of camphor	44	.8739, 20°	173, 1. Yoshida. J. C. S.
From oil of caraway =		.8466, 200	47, 779. Gladstone. J. C. S.
Carvene		.861, 15°	17, 1. Volckel. J. 6, 512.
4.6	()	.8530 20° { .8545 20° {	Gladstone. J. C. S. 17, 1.
44		.8530, 9°.8 .7127)	
4.6	44	$\begin{bmatrix} .7132 \\ .7133 \end{bmatrix}$ 186°.5	Schiff, G. C. I. 13, 177.
,1		.8529, 20°	Kanonnikoff. Bei.
	(4	.849, 15° .=	7, 592. Fluckiger. Ber. 17
From oil of cascarilla		.8467, 200	ref. 358. Gladstone. J. C. S.
From oil of copal		.951, 10°	17, 1. Schibler, J. 12, 516
From oil of cummin	44	.8772, 0° .8657, 15° }	Warren. J. 18, 515
From oil of dill	11	.8467, 20°	Gladstone, J. C. S 17, 1.
From oil of elder	44	., .8468, 20° .849, 11°	Deville, J. 2, 418
From elemi	44	852, 240	Stenhouse, A. C. P 35, 304.
From oil of erechthidis	(8380, 183.5	Beilstein and Wie gand. Ber. 15
From oil of Erigeron cana-		.8464, 189	2854.
dense. From Eucalyptus nmyg-	64	8642, 20°	Gladstone, J. C. S
dalina. From oil galbanum	44	.5512, 90	17, 1. Mossmer, J. 14, 687
From Illicium religiosum.	44	.855	Eykmann, Ber. 14 1721.
From kauri gum		.863, 189	
From laurel turpentine		8618, 20°	Gladstone. J. C. S
From oil of marjoram		.8463, 18°.5	gand Ber. 15
From oil of mint		.8600, 20°	
		.8646, 17°.3	17, 1. Gladstone. J. C. S 49, 623.

Name.	FORMULA.	Sp. Gravity.	Аптновиту.
From oil of peppermint	C ₁₀ H ₁₆	.8602, 20°	Gladstone. J. C. S.
From menthol. B. 168.°6.	((.8254, 00)	17, 1.
() ()	"	.8178, 10° .8111, 20° }	
(((("	.8111, 200 }	Atkinson and Yo- shida. J. C. S. 41,
		.7924, 60° }	49.
From oil of myrtle	"	.8690, 20°	Gladstone. J. C. S. 17, 1.
From oil of nutmeg		.8518 } 20°	
" " B.167°_ " B.164°_	"	.8527 } ²⁰ .8454, 25° }	Gladstone. Bei. 9,
" " B.178°_	"	.8480, 27° }	249.
From oil of parsley		.8732, 20°	Gladstone. J. C. S. 17, 1.
From oil of parsnip	"	.865, 12°	Gerichten. Ber. 9, 259.
From Ptychotis ajowan From oil of rosemary	((.854, 12° .8805, 20°	Stenhouse, J. 9,624.
			Gladstone. J. C. S.
From oil of sage. B. 155° B. 167°.	"	$\begin{bmatrix} .8635* \\ .8866 \end{bmatrix}$ 15° $\{$	Three isomers, Sigi- ura and Muir. J.
" " B. 165°_		.8653) (C. S. 33, 292.
" " B. 170°_	44	$\left\{ \begin{array}{c} .8653 \\ .8667 \end{array} \right\}$ 15° $\left\{ \begin{array}{c} \end{array} \right\}$	Muir. J. C. S. 37,
	"	.8667 } 15	682. Gladstone. J. C. S.
From Satureja hortensis From oil of thyme	((.855, 15° .8635, 20°	49, 623. Jahns. Ber. 15, 819. Gladstone. J. C. S.
Thymene		.868, 20°	17, 1. Lallemand. J. 9, 616.
	"	.8635, 20°	Kanonnikoff. Bei. 7, 592.
From oil of wormwood	"	.8565, 20°	Gladstone. J. C. S. 17, 1.
Cajeputene. B. 165°	٠٠	.850, 15°	Schmidl. J. 13, 481.
Isocajeputene. B. 177°	"	.857, 16°	Schmidl. J. 13, 482.
Camphene	"	.8481, 47°.7 .8387, 58°.9	
66	"	.8211, 79°.7	Riban. B. S. C.
		.8062, 97°.7	24, 9.
16	"	.8345, 99°.84	Spitzer. Ber. 11, 1815.
Camphilene	"	.87 }	Watts' Dictionary.
Caoutehin	((.842, 20°	Bouchardat. B. S. C. 24, 109.
"		.842, 20° } .842, 20°	Williams. J. 13, 495.
Cicutene	(,	.87038, 18°	Van Ankum. J. 21, 794.
Cinaëbene	"	.878	Hirzel. J. 7, 592. Völckel. A. C. P.
Cynene, B. 174°.5		.825, 16°	Völckel. A. C. P. 89, 358.
(("	.8500, 15°)	Holl and Stand
11	"	.8238, 50° }	Hell and Stürcke. Ber. 17, 1972.
		, , ,	,

^{*} Misprinted 0.8435. Corrected in later paper.

NAME.	FORMULA.	SP. GRAVITY.	Антновиту
Cynene. B. 182°	C ₁₀ II ₁₆	.55384, 16°	Wallach and Brass.
From cyneol. B. 179°	6	.85652)	A. C. P. 225, 201.
Fellandrene	6.	.8558, 10°	Pesci. G. C. I. 16,
Gaultherilene		.8510, 20°	625. Glad-tone, J. C. S.
Geraniene	٠	.542 200	17. 1. Jacobsen. Z. C. 14.
Lieurene		.813 20 [.835, 18°	171. Morin. J. C. S. 42.
MaceneOlibene		.8529, 17°, 5 .863, 12°	737. Schacht J. 15, 461. Kurbatow, Z. C 14.
Søfrene	66	.8345, 0°	201. Grimaux and Ru-
Tolene	£.	.858, 100	otte. J. 22, 783. E. Kopp. J. 1, 737.
Polymer of isoprene		.S66, 0° [Bouchardat. Ber. S. 904.
Polymer of valerylene From oil of calamus	C ₁₅ H ₂₁	.826, 15°	Gladstone. J. C. S.
60 60 60	6.	.9275 j =0° { .142, 0°	17. 1. Kurbatow, A. C. P.
From oil of cascarilla	"	.9212, 202	173, 1. Gladstone, J. C. S.
From oil of cedar		.9231, 18°	17, 1. Gledstone. Bei. 9,
From oil of cloves	44	.918, 183	Ettling, Watts
11 11 11 11 11 11 11 11 11 11 11 11 11	16	.9016, 14° .9041, 20°	Diet. Williams, J. 11, 442. Gladstone, J. C. S.
	((.905, 15°	17, 1. Church. J. C. S. (2), 13, 115.
From oil of copaivn		.91	Posselt. J. 2, 455. Soubeiran and Cap-
	4.	.885 .8074, 24°	itaine. Gm. II. Levy. Ber. 18, 3206.
From oil of cubebs	6.	.915	Schmidt.
46 46 46		.988 } .9042, 20°	Gladstone, J. C. S
11 11 11	6.	9259. 02	17, 1. Oglialore. Bor. S.
Cedrono		.981, 147.5.=	1357. Walter. Ann. (3),
	((.915, 15	1, 501. Muir. J. C. S. 37, 13
((64	.9231, 18	Gladstone, J. C S. (2), 10, 1.
From Drybalanops cam-	44	.900 20° }	Lallemand, J. 12, 503.
From gurgun balsum From oil of homp		.9044, 15° .9292, 0°	Werner, J. 15, 461 Valente, J. C. S. 40,
From Laurus nobilis	44	.025, 15°	284. Blas. J. 18, 569.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
· ·	From Ledum palustre	C ₁₅ H ₂₄	.9349, 0°9237, 19°9237, 19°9211, 10°9255 } 20° { .9218 } .946, 0°937, 13° .59042, 20°9137, 12°9197, 24°8970, 41°9190921, 16°9332923, 15°90029002	Rizza. Ber. 20, ref. 562. Strauss. J. 21, 795. Flückiger. J. 8, 646. Oeser. J. 17, 534. Gladstone. J. C. S. 17, 1. Montgolfier. Ber. 10, 234. Gladstone. J. C. S. 17, 1. Sigiura and Muir. J. C. S. 33, 297. Gladstone. J. C. S. (2), 10, 1. Wallach. A. C. P. 238, 85. Gladstone. J. C. S. (2), 10, 1. Brix. Ber. 14, 2267. Haussner. Ber. 16, 1387. Piccard. C. C. (3), 6, 4. Jacobsen. A. C. P. 184, 203. Watts' Dictionary. Berthelot. J. 6, 524. Gladstone. J. C. S. 17, 1. Deville. P. A. 51, 439. Pesci. G. C. I. 16, 225.
Heveéne			.921, 21°	Bouchardat. A. C. P. 37, 30. Riban. C. R. 79,

7th. Unclassified Hydrocarbons.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Heptanaphtene*	C7 H14	.7778, 0° }	Milkowsky. Ber. 18, ref. 186.
Octonaphtene	C ₈ H ₁₆	.7649, 0° }	Markownikoff. Ber. 18, ref. 186.
Isooctonaphtene	44	.7765 0° }	Putochin. Ber. 18,
Nononaphtene	C ₉ II ₁₈	.7637, 17°.5) .7808, 0°	ref. 186. Markownikoff and Ogloblin. Ber. 16,
	<i>u</i>	.7808, 0° }	1877. Konowaloff. Ber.
Dekanaphtene	C ₁₀ H ₂₀	.7652, 26° {	18, ref. 186. Markownikoff and Ogloblin. Ber. 16,
Endekanaphtene	C ₁₁ H ₂₂	.8119, 0°	1877.
Dodekanaphtene Tetradekanaphtene Pentadekanaphtene	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8055, 14° .8390, 0° .8294, 17°	
Nononaphtylene	C ₉ 11 ₁₆		Konowaloff. Ber. 18, ref. 186.
Menthene			Walter, A. C. P. 32, 288.
i.t	16		Moriya. J. C. S., March, 1881.
	44	.8145, 10°	Atkinson and Yo-
44	44	.7909, 40°7761, 60°	shida. J. C. S. 41, 49.
From oil of calamus			Kurbatōw. J. C. S. (2), 12, 259. Montgoltier. Ber.
From turpentine chlorhy- drate Cymhydrene			12, 376. Gladstone. J. C. S.
Terpilene hydride		.8179, 0° 1	49, 616. Montgolfier. C. R.
Ethyl comphene			89, 103. Spitzer. Ber. 11, 1817.
Isobutyl camphene	C ₁₀ H ₁₃ . C ₄ H ₉	.8611, 20°	Spitzer. Ber. 11. 1818.
Camphin	C ₁₉ H-2	N.	Chais, J. P. C. 25, 269.
Diterebenthyl			Renard, C. R. 105, 866, Renard, C. R. 106,
Diterebenthylere		9521, 12°	856. Montgolfier. C. R.
Dicamphone hydride =	.0 A.K 4	1	87, 840.

^{*} According to Kenowaloff, the "naphtenes" are identical with the hexhydrides of the benzene series.

NAME.	FORMULA.	Sp. Gravity.	Аптновіту.	
Didccene	C ₂₀ H ₃₆	.9362, 12°	Renard. C. R. 106, 1086.	
Caoutchene	C ₄ H ₈	.65, —2°	Bouchardat. A. C.	
Tropilidene	C ₇ H ₈	.9129, 0°	P. 37, 30. Ladenburg. A. C,	
From copper camphorate_	$C_8 H_{14}$.793	P. 217, 133. Moitessier. J. 19,	
From decomposition of	C ₁₀ H ₁₂	1.012, 17°.5, s.	410. Roscoe. J. C. S. 47,	
phenol. Eucalyptene Anthemene	C ₁₂ H ₁₈ C ₁₈ H ₃₆	.836, 12° .942, 15°	669. Cloëz. J. 23, 588. Naudin. B. S. C. 41,	
ParaniceneLekene			483.	
			gand. Ber. 16, 1548.	
Könlite	(C ₆ H ₆) _n	.88		
Hartite	(C ₃ H ₅) _n	1.046	Haidinger. P. A. 54, 261.	
From petroleum	(C ₇ H ₄) _n	1.096, 15°	Prunier. Ann. (5),	
Carbopetrocene	$(\mathrm{C}_{10}\mathrm{H}_2)_{\mathrm{n}}\mathrm{or}(\mathrm{C}_{12}\mathrm{H}_2)_{\mathrm{n}}$	1.235, 10°	17, 5.	

XLVI. COMPOUNDS CONTAINING C, H, AND O.

1st. Alcohols of the Paraffin Series.

NAME.		FORMULA.		Sp. Gravity.	AUTHORITY.	
Methyl	l aleoho	1	С Н4)	.798, 20°	Dumas and Peligot. Ann. (2), 58, 5.
	44		11		.807, 9°	Deville.
	"				.813	Regnault.
6.6	i i				.82704, 0°	Pierre. Ann. (3), 15, 325.
66	66		"		.7938, 25°	Kopp. A. C. P. 55,
	4.6				.81796, 0° }	
	"		4.6			Kopp. P. A. 72, 53.
4.6	11		66			Mendelejeff. J. 13, 7.
66	11		11			Delffs. J. 7, 26.
6.6	11					Kopp. A. C. P. 94,
66	6.6		4.6		.7997, 16°.4	
4.6	11		6.6		/	
"	"					Duclaux. Ann. (5), 13, 86.
**	66		11		.8574, 21°	Linnemann. J. 21,
66	٤٤		6.6		.81571, 10°	681. Dupré. P. A. 148, 236.
"	11		"		.7964, 20°	

	NAM	IE.	I	FORMULA.	Sr. Gr	AVITY.	Authority.
Methyl	nlcoho	1	С П4)	.7997, 1	15°	Grodzki and Krä-
							mer. Z. A. C. 14, 103.
4.6	6.6		6.6		.7984,	15°	Kramer and Grod- zki. Ber. 9, 1929.
4.6	4.6		- 64		.8008,	00	Vincent and Delach-
6.6	6.6		6.6		.8014.	140	nnal. J. 1880, 396. De Heen. Bei. 5, 105.
1.4	6.6		4.6		.7475)		(Schiff. G. C. I. 13,
	6.6		6.6		.7477		177.
6.6	4.6		6.6		7958,		Brühl. Bei. 4, 781.
1.6	4.4		1 64		.8111,		Zander. A. C. P.
4.6	6.6				7 (49	56°.2	224, 88.
	66					5°	Regnault and Ville-
6.6	6.6				510, 1	J	jean. C. R. 99, 82.
6.6	6.6		6.6		.7961,	18°	Gladstone. Bei. 9, 249.
4.6	"		6.4		.7923,	200	Winkelmann, P. A.
					W0.07	202	(2), 26, 105.
4.4	4.4		4.6			20°	Traube. Ber. 19,879.
6.6	4.6		6.6		.8612,	0°	Pagliani and Bat- telli. Bei. 10, 222.
4.6	2.5		1		78909	220.94	Values given for
6.6			6.6			100°	every 10° from 80°
	4.6		1.			1500	
					0404,	190	to 238°, 5. Ramsay
6.6	4.6		4.6		0020,	2000	and Young, P.T.
6.6	11		1.6			238°.5	J 178, 313.
Ethyla	dechol	*	C_2H_6	0		170.9	
	4.6		. **		7915,	18°	Dumas and Boullay. P. A. 12, 93.
6 .	4.4		6.4		.8095.	00	Darling.
6.6	4.6		4.4		79(0),	15°	Kopp. A. C. P. 55,
	6.6				.8150,	5°-10°)
6.6	6.6		6.6		8113.	10°-15°	Regnault, P. A.
6.6	6.6					150-209	
	6.6		1 60		.81087		1,
4.6	4.6		1 64			()3	
4.6	61		- 66		.79821	1.10	Kopp. P. A. 72, 62,
4.6	4.6		- 66				
4.6			- 66		8151	02	Pierre. Ann. (3)
							15, 325.
4.6	4.6		- "		7968,	15°.5	Fownes, P. T. 1847, 249.
	4.6		4.4) 010 (Wackenroder, J. 1.
4.4	1.0		6.6		m		682.
4.6	4.4					1, 15°.6_	Drinkwater. J. 1.
	4.6				500	50	682. Delffs. J. 7, 26.
11						100	Wetherill, J. P. C.
					=0.4=	1.0	60, 202, Davidson 1 10 420
	8.6		- 44				Pouillet. J. 12, 439
1.1	1.1						Mendelejeff. J. 13,7
4.6	6.4		- 61				
6.6	6.6	- 1	4.0		1	1100.11	20.

^{*} For this compound there are so many determinations of specific gravity that absolute completeness with regard to them has not been attempted by the compiler.

-

	NAME.			FORMULA.	Sp. Gravity.	AUTHORITY.	
Fthyl:	alcohol		C ₂ II ₆	0	.6796, 130°.9_		
3.3	4.4				.7946) 159 (Baumhauer. J. 13.	
5.4	4.6		1.6		.7947 { 15° }	393.	
14	4.6		14		.80625, 00)		
14	6.6		4.4		.80207, 5°		
14	4.4		4.4		.79788, 10°		
1.4	6.6		4.4		.79367, 15°	Mendelejeff. J. 18,	
4.6	6.6		"		.78945, 20°	469.	
1.4	4.4		4.4		.78522, 25°		
4.4	6.6		4.6		.78096, 30° J		
6.6	4.6		"		.8086, 19°	Linnemann. J. 21, 413.	
"	44				.8090, 17°		
""	4.6				.822, 20°	Pierre and Puchot. Ann. (4), 22, 260.	
4.6	44				.79481, 11°	Erlenmeyer, A.C.P. 162, 374.	
46.	16		44		\begin{pmatrix} .815, 0° 5° \\ .80214, 1 \end{pmatrix}	Pierre. C. N. 27, 93.	
64	66		1.1		.7946, 16°.03		
66	"				.7339, 78°	150, 592.	
4.6	££				.8120, 0°	463. Vincent and Dela-	
						chanal. J. 1880,	
4.6	6.6				.7995, 14°	De Heen. Bei. 5, 105. (Bedson and Wil-	
66	66		11		$\begin{bmatrix} .8019, 20^{\circ} & \\ .7976, 25^{\circ} & \end{bmatrix}$	liams. Ber. 14,	
	_ 66		44			(2550.	
	- "		44		$\begin{bmatrix} .7381 \\ .7382 \end{bmatrix}$ 78°.2.	1)	
4.6	44		4.6		7402 1	Schiff. G. C. I. 13,	
4.6	44		4.4		.7402 78°.3_) 177.	
66	4.6		"		.7968, 20°	Nasini. G. C. I. 13,	
6.6	4.6		+ 6		.8000, 20°	135. Brühl. Bei. 4, 781.	
4.6	44		4.		.79603, 179.86	(Also intermediate	
	6.6		4.4		.77616, 40°.90	values. Drecker.	
			66			(P. A. (2), 20, 870.	
11	66				.7882, 25°.3	Schall. Ber. 17, 2555.	
11	66				.7899, 23°.4		
4.6	44				.79326, 15°	Squibb. C. N. 51, 33.	
**			••		.7906, 20°	Winkelmann, P. A. (2), 26, 105.	
44	6.6		4.4		.79175, 0°	Pagliani and Battelli. Bei. 10, 222.	
4.6	4.4		4.6		.70606, 110°	f Intermediate val-	
44	4.6		4.4		.5570, 200°	J ues given. Ram-	
4.6	4.4		4.6		.3109, 242°.9	say and Young.	
Propyl	alcohol		C ₃ H ₂ C)	.8198, 0°)	P. T. 1886, 129.	
11	4.4				.8125, 9°.6 [Pierre and Puchot.	
4.5	4.6		4.6		.7797, 50°.1	Ann. (4), 22, 276.	
+6	**		4.4		.7494, 84°]	Ami. (4), 22, 210.	

NAME.			FORMULA.		SP. GRAVITY.	Ачтновиту.
Propyl	nleoho]	C ₃ H ₈ Ō		.818, 18°	Chancel. A. C. P. 151, 302.
4 (6.6				.812, 16°	Chapman and Smith. J. C. S.
£ £	4.6				.823. 00	22, 194. Savtzeff. Z. C. 13, 107.
	6.6				.8205, 0°	Rossi. A. C. P. 159,
11	4.4				.8066, 15°	Linnemann. A. C. P. 161, 26.
4.6					.8198. 0°	Pierre, G. N. 27, 93.
4.4	6.6				.80825,15°)	
6.	6.6				.8041, 20°	Bruhl. Ber. 13, 1529.
					.8001, 149	De Heen. Bei. 5, 105.
	11				.8203, 0°] .8127, 9°.71	
11	6.6				.8001, 25°.46	Naccari and Pag-
4.6	4.6				.7898, 389.18	liani. Bei. 5, 88.
4.6	6.6				.7773, 539.10 (Values given at
4.6	6.6				.7646, 679,46	several interme-
4.6	6.6				.7550, 779.69	dinte tos.
	4.6				.7885, 94°.40	
6.	4.4				.5177, 0° }	Zander, A. C. P.
4.4					.7369, 979,4	214, 181.
4.4	4.4				.8190, 20°	Pagliani, Bei. 7, 450.
4.6	4.				.7365)	
4.					7866 . 970.1	Schiff. G. C. I. 13,
6.	6.6				7867	177.
41					.5049, 20°	Winkelmann, P. A. (2), 26, 105.
4.6					. 5051, 20°	
Isopro	pyl alc	ohol=			.791, 15°	
4.					.7915, 16°.5	Siersch. A. C. P.
4.4					.7876, 16°	
4.4				=	7×7, 20°	203, 1.
4.6					797, 15°	Duclaux. Ann. (5), 13, 89.
4.4					.7(0), 00)	Zander, A. C. P.
4.4		"			.7231, 520,5	214, 181.
6.4					.7413 1 610 21	Schiff. G. C. I. 13.
6.6					11-1)	177.
		**	4		5076, 200	- Traube, Ber. 19, 852.
Hydrate of isopropylal w- hol.					- Linuemann. A. C. P. 136, 40,	
a £		11 11	$= \{C, \Pi_8, O\}$.	2 H ₂ O	.832, 15°	- 11
Butyl	ulcoho	l. B. 117°.5	C ₄ H ₁₀ O		826, 0°	- Saytzeff. Z. C. 13,
4.6	6.6				5230, 00]	
	6.6		- 46		_ 48105, 20°	
4.4	4.6				.7994 402	Lieben and Rossi,
6.6	6.6				7788, 959.7	A. C. P. 158, 137.
4.4	4.6					J.

Yave	FORMULA.	Sp. Charren	Δ
NAME.	rokmut.A.	SP. GRAVITY.	AUTHORITY.
Butyl alcohol	C ₄ H ₂₀ O	.8112, 15° } .8135, 22° }	Two samples. Lin- nemann. Ann. (4), 27, 268.
и и		.8152, 14°	De Heen. Bei. 5, 105
11 11	"	.806. 15° .8099, 20°)	Pierre. C. N. 27, 93. Two lots. Brühl.
££ ££		.8096, 20° }	A. C. P. 203, 1.
11 11	11	.8233, 00 }	Zander. A.C. P. 224,
		.7247, 117°.5 } .7269 }	88. Schiff. G. C. I. 13,
(: (/		.7270 } 115°.7	177.
Isobutyl alcohol. B. 108°_		.8032, 18°.5	Wurtz. A. C. P. 93, 107.
((((.817, 0° .809, 11°	
		.774. 550 [Pierre and Puchot.
((((((((((((((((((((44	.732, 100° j	J. 21, 434.
"	"	.8055, 16°.8	Chapman and Smith. J. C. S. 22, 161.
		.8003, 18°	Linnemann. A.C.P. 160, 195.
		.8025, 19°	Linnemann. Ann. (4), 27, 268.
(((($\begin{bmatrix} .8167 \\ .8168 \end{bmatrix}$ 0° $\{$	Menschutkin. A. C. P. 195, 351.
· · · · · · · · · · · · · · · · · · ·	((8020 1	1
" " ————	(6	.8062 } 20°	Brühl. Ber. 13,1520.
(((("	.8162, 0° .8052, 14°.50	Vaccani and Dawli
"	((.7927, 30°.71	Naccari and Pagli- ani. Bei. 6, 89.
" " ————		.7800, 46°.56	} Values given for
((((.7608, 68°.97 .7497, 80°.86	several interme-
		.7295, 101°.97	diste tos.
"	"	.8064, 15°	Duclaux. Ann. (5),
" "	"	.7265, 106°.6	13, 90. Schiff. G. C. I. 13,
		.8062, 20°	177. Landolt. Bei. 7, 846.
((((((.79888, 26°.15	Schall. Ber. 17,
"	11	.77844, 52°.2 .8024, 20°.5	
		.8031, 20°	249. Winkelmann. P. A.
"	66		(2), 26, 105.
Methylethylcarbinol.		.8029, 20° .85, 0°	Traube. Ber. 19,883.
В. 99°.			De Luynes. Ann. (4), 2, 424.
((((.827, 0° }	Lieben. A. C. P.
Trimethylcarbinol.		.810, 22° }	150, 114.
" B. 82°.5		.8075, 0° }	Butlerow. Z. C. 14,
	"	.7788, 30° }	273.
"	44	.7792, 37°	Linnemann. Ann. (4), 27, 268.
"	"	.7864, 20° }	Brühl, A. C. P.
66	((.7813, 25° }	203, 1.

N'A	ME.	FORMULA.	SP. GRAVITY.	A triiority.
Trime hylen	rbinol.	C, II,0 O	.7802, 26°	Bruhl. A. C. P.
·	B. 82°.5 imethylcurb	[C ₄ II ₁₀ O) ₂ . II ₂ O	.8276, 00	203, 1. Butlerow. Z. C. 14,
not Normal amy	1 nleabil	C ₅ II ₁₂ O	.8296, 0°)	273.
7400111101111105	· B. 187	**	.8168. 20°	Lieben and Rossi.
		1	.8065, 40° { .7885, 90°.15 }	A. C. P. 150, 70.
		14	.5252.00) Zander. A. C. P.
	44		.7117, 187°.85 .8299, 0°	Gartannaister
4.4		i	.0-11-1, 0	Gartenmeister, A C. P. 233, 249,
Amylalcoho	ol.* B. 131°.5		8184, 15°	Cahours, A. C. P. 30, 288.
6.6 6.6		1	8197, 15°	Kopp. A. C. P. 55,
44 44		66	.8271, 0° .8185, 15°	Pierre. J. 1, 62. Rieckher. J. 1, 698.
66 66		11	.8253, (10)	nicekiici. 5, 1, 555.
4.6		**	.8144.152.9	Керр. Р. А. 72,
66 44		44	.8127] 16°.4	*,, *, *******************************
			.818.149	Delifs. J. 7, 26.
6.6				Kopp. A. C. P. 94,
44 44			.5113, 18°.7) .519, 18°	257. Schiff.
6.6			.8142, 15°	Mendelejeff, J. 13.7.
4.6 4.4			.8148 140]	From two sources. Schorlemmer, J.
4.6 6.6			8199) ' ' ((19, 527.
.4 46			. ,S26, 0°	Pierre and Puchot. Ann. (4), 22, 336.
4.6			.8204, 15°	Graham.
4.6 4.4	age any any title set the set of		8148, 15°	Duclaux. Ann. (5, 13, 91.
			. 4135, 200	Landolt.
44 44			8244, 0° } .8144, 15° }	Two products. Er-
			8102, 210.5)	Hell. A. C. P.
		4 6	. 8263, 0°	160, 257.
46 44			5126, 105, 7 1	Pierre. C. N. 27,
			_ ,8146, 150)	98.
4.6			. ,8255, 03	Pierre and Pu ⁻ h t. B. S. C. 20, 370.
64 64	Ordinary _ Less active		817) .816, 15)	Ley. Ber. 6, 1352.
16 16	More "		.808, 150)	
4.6			.8123, 20° .8075, 14°	Bruhl. Bei. 4, 781. De Heen. Bei. 5, 105.
66 66		46	(5538, 05	Balbiano, Ber. 9.
			101 200	1437.
			.5104 20°	Two lots. Bruhl. A. C. P. 203, 1.
46 64			, S250, 0"	Flawitzky, Ber. 15,
8.6 8.9			,8085,230	11.

Ordinary, inactive, and in specified.

	NAM	Е.	Fo	RMULA.	Sp. Gravity.	AUTHORITY.
Amyl a	lcohol _		C. H.,)	.7221) 1999 9	G 3100 D
44	- 11		11.		[.7223] 123°.2	Schiff. Ber. 14, 2768.
4.4			44		.7154, 130°.5	Schiff. G. C. I. 13, 177.
6.6			66		.8063, 26°.1	Schall. Ber. 17,
44			66		.7729, 66° }	2555.
1.6	-				.8114, 20°	Winkelmann P. A. (2), 26, 105.
46			66		.8121, 20°	Traube. Ber. 19,
4.6					.8252, 0°	Pagliani and Bat-
Methyl	propyles	arbinol.			.8249) (telli. Bei. 10, 222. Wurtz. Z. C. 11,
	66	B. 119°_	16		$\begin{bmatrix} .8249 \\ .8260 \end{bmatrix}$ 0° {	490.
	66		4.6		.833, 0°	Le Bel. Z. C. 14,
			"		.8239, 0° }	471. Bielohoubek. Ber.
	6.6		44		.8102, 20° }	9, 925.
	4.4		"		.827, 0°)	(Wagner and Saytz-
	6.6		6.6		.815, 18° }	eff. A. C. P. 179, 320.
Methyli	sopropy	lcarbinol.	44		.8308, 0° }	Winogradow. A. C.
	44	B. 112°_	46		.8219, 19° }	P. 191, 125.
	46		"		.833, 0° }	Wischnegradsky.A. C. P. 190, 340.
Diethyle	carbinol	. В. 116°.5	6.6		.832, 0°)	(Wagner and Saytz-
Dictily	11		6.6		.819, 16° }	eff. A. C. P. 175,
	1.6		66		001 00	(Wagner and Saytz-
	44		"		.831, 0° }	eff. A. C. P. 179,
Dimoth	wloth wlo	ambinal	44		,	(320.
Dimethy	ylethyle	B. 102°.5.			.829, 0°	Wurtz. A. C. P. 125, 114.
	44		6.6		.828, 0°	Ermolaien. Z. C.
	4.6		4.6		9959 00	14, 275.
	"		66		.8258, 0° }	Flawitzky. A. C. P. 179, 349.
	"		6.6		.827, 00 1	Wischnegradsky.A.
	66		66		.812, 19° }	C. P. 190, 334.
	"		66		.827, 17° .7241, 101°.6	Münde. Ber. 7, 1370.
					. 121, 101 .0	Schiff. G. C. I. 13, 177.
Normal	hexyl a	lcohol.	$C_6 H_{14} O$.820, 17°	Pelouze and Ca-
66	66	B.157°.	44		019 00	hours. J. 16, 527.
	"		4.6		.813, 0° .819	Buff. J. 21, 336. Franchimont and
						Zincke. C. N. 24, 263.
"	"	"	4.4		.8333, 0°)	200.
66	"	"	11		.8204, 20° }	Lieben and Janecek.
66	"	"	66		.8107, 40°) .813, 17°	J. R. C. 5, 156.
					.010, 11	Frentzel. Ber. 16, 745.
4.6	4.4	"	"		.8312 } 00)
46	"	"	66		.8527)	Zander. A. C. P.
66	6.6	11	"		$.6958 \atop .6982$ 157°	224, 88.
					.0002	

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Normal hexyl alcohol	C ₆ II ₁₄ O =	.8349, 0°	Gartenmeister, A.C. P. 233, 249.
Methyldiethylcarbinol		.8207, 20°]	
(,	66	.8143, 30° .8104.85°	Reformatsky, J. P. C. (2), 36, 340.
Methylpropylcarbylcarbinol. B. 147°.	66	.8396, 0° - } .8244, 23°.7	Two lots. Lieben
(1		.8375, 0° } .8257, 17°.6	and Zeisel. M. C. 4, 32.
Methylbutylcarbinol, or		.8327, 0° } .8209, 16° }	Wanklyn and Erlen-
secondary hexyl alco- hol. B. 136°.		.7482, 99°]	meyer, J. 16, 521.
	4.6	$\begin{bmatrix} .8266 \\ .8306 \end{bmatrix}$ 0°== {	Twosamples, Hecht. A. C. P. 165, 146.
		.8307, 18°	Wislicenus, A.C. P. 219, 310.
Methylisobutylearbinol _	- "	.8271, 0°} .8183, 17°}	Kuwschinow, Ber. 20, ref. 629.
Ethylpropylcarbinol. B. 134°		8335, 0°	Völker, Ber. 8, 1019.
11. 154		83433. 0° }	Oechsner de Co- ninck, C. R. 82, 93.
Isohexyl or caproyl alco-	((833, 0°)	Faget. J. 6, 504.
hol. B. 150°. " -		754, 100° } = .8295, 15° =	Köbig, A. C. P. 195,
Dimethylisopropylearbi- nol. B. 117°.		.8364, 0°	102. Prianichuikow, Z. C. 14, 275.
	- (($\begin{bmatrix} .8387, 0^{\circ} & \\ .8232, 19^{\circ} & \end{bmatrix}$	Pawlow, A. C. P. 196, 122.
Methylethylpropyl alco-			
Trimethylearbylmethylearbinol, or pinacoly		.8347, 0°	
alcohol. B. 120°.5. Normal heptyl nlcohol. B. 175°.5	C, H ₁₆ O	.792, 16°.5	. Wills. J. 6, 508.
	- ((0.0.0 0.0	Städeler, J. 10, 361.
		830, 16° }	Cross. J. C. S. 32,
	(1	8342, 00)	123. Zander. A. C. P.
44 44 44		6876, 175°.8	
Isoheptyl alcohol. ?	"		C. P. 233, 249. Four products from
" B.163°=165°		795, 15° 8479, 16°	different sources. Schorlemmer. A
((((8286, 19%5	C. P. 136, 257 Kurtz, A. C. P. 161,
Dipropylearbinol, B. 150		51 dba oue 1	205. Ustinoff and Saytz-
11		.s1064, 30°	eff. J. P. C. (2).
Diisopropylearbinol.	(1	11131313 1 70	34, 470. Munde. Ber.7, 1370.
B. 131°—132°	•		

	1			
NAME.	Formu	LA.	Sp. Gravity.	AUTHORITY.
Ethylisobutylearbinol.	C ₇ H ₁₆ O		.827, 0°	E. Wagner. B. S.
B. 147°.5. Methylamylcarbinol.			.8185, 17°.5	C. 42, 330. Rohn. A. C. P.
B. 149°. Triethylcarbinol. B. 141°.			.8593, 0°	190, 310. Nahapetian. Z. C.
((.83892, 20° }	14, 274. Barataeff and Saytzeff. J. P. C.
Methylethylpropylcarbi-			.82992, 30° ∫ .8233, 20°	(2), 34, 465. Sokolow. Ber. 21,
nol. Normal octyl alcohol.	C ₈ H ₁₈ O		.830, 16°	ref. 56. Zincke. Z. C. 12,
B. 196°.5.			.8375, 0° } .6807, 195°.5 }	55. Zander. A. C. P.
	"		.8369, 0°	224, 88. Gartenmeister. A.C. P. 233, 249.
Methylhexylcarbinol, or capryl alcohol.			.823, 17°	Bouis. J. 7, 581.
		·	.826, 16°	Pelouze and Cahours. J. 16, 529.
	"		.823, 16°	Neison. J. C. S. (2), 13, 207.
"	"		.6589, 181°	Ramsay. J. C. S. 35,
			.8193, 20°	Brühl. A. C. P. 203, 1.
66			$\begin{bmatrix} .6781 \\ .6782 \end{bmatrix}$ 179°	Schiff. G. C. I. 13, 177. Duclaux. Ann. (5),
"Octylene hydrate"			.811.00	13, 92. Clermont. A. C. P.
Primary isoöctyl alcohol.	£ £		.793, 23° } .841, 0°]	149, 38.
" B. 179°.5_			.833, 12° .828, 20° .821, 30°	Williams. J. C. S.
			.814, 40° (.807, 50° (35, 125.
Secondary isoöctyl alcohol.	11		.867, 100°] .820, 15°]	
" B. 161°.5_	"		.811, 30° .801, 40°	
Methyldipropylcarbinol			.793, 100° J .82357, 20°)	Gortaloff and Saytz-
Tieth-lucourlesshirel	£ £		.81506, 30° .81080, 35°	eff. J. P. C. (2), 33, 202.
Diethylpropylcarbinol Isodibutol. B. 147°			.83794, 20°	Sokolow. Ber. 21, ref. 56. Butlerow. J. C. S.
Nonyl alcohol. B. 187°			.835, 18°.5	34, 122. Lemoine. B. S. C.
Normal nonyl alcohol			.8415, 0°)	41, 161.
Ethyldipropylearbinol			.8346, 10° } .8279, 20° } .83368, 20°	Krafft. Ber. 19, 2221. Tschebotareff and
thy larpropy tearbinor			.82583, 30° .82190, 35°	Saytzeff. J. P. C. (2), 33, 193.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethylhexylearbinol.	C ₉ II ₂₀ O	.839, 0° }	Wagner. Ber. 17, ref. 316.
Normal decyl alcohol	C ₁₀ H ₂₂ O	8389, 70	Krafft. Ber. 16, 1714.
Decyl alcohol. B. 200°	((.7734, 98°.7) .858, 18°.5	Lemoine. B. S. C. 41, 161.
Isodecyl nlcohol. B. 203° Propylhexylenrbinol.		.8569, 0° .839, 0°	Borodin. J. 17, 338. E. Wagner. B.S.C.
B. 210°. Methylnonylearbinol. B. 228°.	C ₁₁ II ₂₄ O	.8268, 19°	42, 330. Giesecke. Z. C. 13, 431.
Normal dodecyl alcohol	C ₁₂ H ₂₆ O	.0201, 10 == }	Krafft, Ber. 16, 1714.
Normal tetradecyl alcohol.	C ₁₄ H ₃₀ O	.8236, 38°)	4.6
Isomer of myristic alco-	44	.7813, 98°.9) .8368, 15°)	Dorlein In I (1
hol. B. 270°—275°. Sormal hexdeeyl alcohol		.8279, 35°)	Perkin, Jr. J. C. S. 43, 77.
11 11 11 11		.8105, 50°	Krafft. Ber. 16, 1714.
Cetyl alcohol_ Normal octodecyl alcohol.	C10 H00 O	.8185, 49°.5 .8124, 59°)	
	44	$\left\{ \begin{array}{c} .8048,70^{\circ} \\ .7849,99^{\circ}.1 \end{array} \right\}$	6.6 6.6

2d. Oxides of the Paraffin Series.*

	NA	ME.	For	RMULA.	SP. GRAVITY.	Authority.
Ethyl	oxide,	or ether	 (C, H ₅) ₂	0	.7119, 240.8	Dobriner. A. C. P. 243. 1. Gay Lussac. Dumas and Boullay.
						Ann. (2), 36, 294. Muncke. M. St. P. Sav. Et. 1, 1831, 249.
"	4.4	6.6	6.6		.73568, 00)	Kopp. P. A. 72, 231.
6.6	4.4	4.4	 4.4		.72895, 60.9	281.
6.6	4.4	6.6	 + 4		.7297, 50-100)
4.4	6.6	6.6	 6.6		.7241, 10°—15°	Regnault. P. A.
6.6	4.4	4.6	 6.6		.7185, 150-200	
6.6	6.6	6.6	 4.6			Pierre. C. R. 27, 213.
4.6	4.4	4.6	 4.6		.728, 70	Delffs. J. 7, 26.

All of Dobriner's ethers represent normal paraffins.

NAME.				For	RMULA.	Sp. Gravity.	AUTHORITY.
Ethyl	l oxide, c	or ether		(C ₂ H ₅) ₂	0	.73644, 0°	
6.6	4.4	6.6		1 "		. 63987, 78°.3	
6.6	: 4	4.4		4.6		60896, 99°.9	ues given. Mendelejeff. A. C.
4.6	" "	6.6		66		.55958, 131°.6	P. 119, 1.
4.6	6.6	66		66		.51735, 157°	1. 119, 1.
64	66	6.6		"		.7271, 10°.2	Matthiessen and
4.6	66	4.4		66		.7204, 15°.8	Hoekin.
66	66	4.6		"		.6956, 34°.5	Ramsay. J. C. S.
44	4.6	44				.7157, 20°	35, 463. Brühl. Ber. 13, 1530.
"	4.4	6.6		""		.7197, 15°	Buchan. C. N. 51,
44	4.6	44		"		.73128, 4°)	94. Squibb. C. N. 51,
66	4.6	6.6		6.6		.71888, 150	67 and 76.
4.6	6.6	66		6.6		.73590, 0° 1	
66	4.6	4.4				.7304, 50	
6.6	44	4.4		44		.7248, 10°	
4.6	66	6.6		6.6		.7192, 15°	
66	6.6	66		6.6		.7135, 20° }	Oudemans. Ber. 19,
66	6.6	66		66		.7077, 25°	ref. 2.
66	4.6	6.6		66		.7019, 30°	}
66	66	44		4.6		.6960, 35°]	
66	66	4.6				.6704, 50°)	Also values for every
2.6	4.6	66		66		.6105, 100°	5° from 0° to 193°.
66	66	6.6		66		.5179, 150°	Ramsay and Young.
4.6	6.6	66		"		.3030, 193°	P. T. 178, 85.
4.6	66	6.6	~	"		.2463, at crit-	
						ical to.	Ramsay and Young. P. M. 1887, 458.
Methy	l propyl	oxide.		C H ₃ . C ₃	H ₇ . O	.7471,00)	Dobriner. A. C. P.
77.1 . 2		• 1				.70415, 38°.9	243, 1.
Ethyl	propyl	oxiae		C_2 H_5 . C_3	H ₇ . O	.7386, 20°	Brühl. Bei. 4, 779.
	1 11					.7545, 0° }	Dobriner. A. C. P.
		1		"		.5871, 53°.6	243, 1.
Ethyl	isopropy	yl oxide	e	••		.7447, 0°	Markownikoff. A. C. P. 138, 374.
Methy	l butyl o			CH ₃ . C ₄	H ₉ . O	.7635, 0° }	Dobriner. A. C. P.
6.6		4.		66		.6901, 70°.3	243, 1.
Propy	l oxide			$(C_3 H_7)_2$	0	.7633, 0° {	Zander. A. C. P.
	"			4.6		.6743, 90°.7	214, 181.
Isopre	pyl oxid	e		. (.7435, 0° }	11 11
4.4	4.4			"		.6715, 69° }	
Ethyl	butyl ox			C ₂ H ₅ . C ₄	H ₉ . O	.7694, 0°)	
6.6	"	44				.7522, 20° }	Lieben and Rossi.
4.6		44		2.2		1.7367, 40° }	A. C. P. 158, 137.
4.6		41		4.6		.761, 0°	Saytzeff.
4.6				4.6		.7680, 0° }	Dobriner. A. C. P.
6.6	4.4			4.6		.6785, 91°.4	243, 1.
Ethyl	isobutyl	oxide_		66		.7507, 0°	Wurtz. J. 7, 574.
Methy	l amyl o	xide		C H ₃ . C ₅	H ₁₁ . O	.6871, 91°	Schiff. Bei. 9, 559.
	isoamyl			C2 H5. C5	H ₁₁ . O	.8036, 14°.7	Mendelejeff. J.13, 7.
"	"	" -		""		.764, 180	Rebouland Truchot.
							J. 20, 582.
Tertian	ry ethyl a	mylox	cide_	6.6		.759, 210	
66	"	"	44	13		.7785, 0°)	Kondakoff. Ber. 20,
				44		.751, 18° }	ref. 549.
Propy	l butyl o	xide		C, H, C,	H ₉ . O	.7773, 0° }	Dobriner. A. C. P.
ii.	"	"		""		.6638, 1170.1	243, 1.
						, ,	,

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Butyl oxide	(C ₄ H ₉) ₂ O=	.784, 0° .7685, 20° .7555, 40° .7865, 0° .6575, 140°.9 .7697, 0°	Lieben and Rossi, A. C. P. 165, 109, Dobriner, A. C. P. 243, 1.
	46 46 46 44	.7294, 46°,4 .7040, 74°,3 .766, 0° .724, 48°,75 .770, 0° .734, 42° .7678, 0° .756, 21°	Puchot. Ann. (5), 28, 521-528. Four samples.
Secondary butyl oxide Ethyl hexyl oxide		.7752, 16°.5 .7638, 30° }	Kossler. A. C. P. 175, 55. Schorlemmer. J. C.
Diethyl-ethyl oxide	"	.7344, 63°) .776, 13° .7865, 0°)	S. 19, 357. Rebouland Truchot. J. 20, 582.
Methyl heptyl oxide	С H ₃ . С ₇ H ₁₅ . О	.7702, 20° } .7574, 40° } .7953, 0° }	Lieben. A. C. P. 178, 14. Dobret. A. C. P.
Ethyl heptyl oxide	C ₂ H ₅ , C ₇ H ₁₅ , O	.6667, 149°.8 } .7949, 0° .65065, 166°.6 .790 16° {	243, 1.
Methyl octyl oxide Methyl capryl oxide	C H ₃ , C ₈ H ₁₇ , O	.5014, 00 (123. Dobriner. A. C. P. 243, 1. Wills. J. 6, 510.
Amyl oxide	$(C_5 H_{11})_2 O = C_3 H_{7} C_7 H_{15} O = C_7 H$.779	Rieckher, J. 1, 698, Wurtz, J. 9, 654, Dobriner, A. C. P. 243, 1.
Ethyl octyl oxide	C ₂ H ₅ , C ₈ H ₁₇ , O	.794, 17°	Moslinger. Ber. 9, 1003. Dobriner. A. C. P.
Ethyl capryl oxide	C ₄ H ₉ , C ₇ H ₁₅ , O	.791, 16° .8028, 0° .6327, 205°.7 }	243, 1. Wills. J. 6, 510. Dobriner. A. C. P. 243, 1.
Propyl octyl oxide	C ₃ H ₇ , C ₈ H ₁₇ , O C ₄ H ₉ , C ₅ H ₁₇ , O	.8039, 0° { .6300, 207° } .8049, 0° { .6277, 225°, 7}	44 44
Amyl capryl oxide Normal heptyl oxide Heptyl octyl oxide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.608, 20- .8152, 0° .6055, 261°.9 .8182, 0°	Wills. J. 6, 510. Dobriner. A. C. P. 243, 1.
Normal octyl oxide		.6038, 278°.8) .8035 } .8050, 17° }	Moslinger. Ber. 9, 1001.
66 66 66	* 6	.82035, 0° .5983, 291°.7	Dobriner. A. C. P. 243, 1.

3d. The Fatty Acids.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Formic acid	C H, O,	1.2353	Liebig. Gm. H.
101111011111111111111111111111111111111	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.2227, 0° }	-
			Kopp. P. A. 72, 248.
11 11		1.2211, 200	Landolt. P. A. 117,
			353.
"	- 44	1.2211 200 {	Semenoff. Ann. (4),
16 66	- 66	(1.2100)	6, 115.
"		1.24482, 0°	Petterson. U. N. A.
"		1.2188, 20°	1879. Brühl. Bei. 4, 781.
"	((1 - 0	Brühl. Bei. 4, 781. Zander. A. C. P.
	tt.		224, 88.
((((Winkelmann. P. A.
			(2), 26, 105.
	- "	1.2182, 22°	Lüdeking. P. A. (2), 27, 72.
(4 (6	"	1.1170, 100°.3	Schiff. Ber. 19, 560.
((()		1.2190, 200	Traube. Ber. 19,884.
((((1.22734, 15°	Perkin. J. C. S. 49,
			777.
Acetic acid		1.0630, 16°	Mollerat. Ann. (1), 68, 88.
((((- "	1.0622	Sebille-Auger.
τι τι		1.0635, 15°	Watts' Diet. Mohr. A. C. P. 31, 277.
	46	1.100, 8°.5, s.) Persoz. Watts'
(t (t		1.0650, 13°, 1.	Diet.
tt tt		1.0647, 5°-10°	j
" "		1.0591, 10°–15°	Regnault. P. A.
	- 44	1.0535,15°-20°) 62, 50.
66 66		1.08005, 0°	Kopp. P. A. 72, 253.
"		1.06195, 17° } 1.0635, 10°	Delffs. A. C. P. 92,
		1.0050, 10	277.
" "		1.0607, 15°	Mendelejeff. J. 13, 7.
· · · · · · · · · · · · · · · · · · ·		1.0563	f Roscoe. J. C. S. 15,
		1.0565 }	270.
" "		1.0514, 20°	Landolt. P. A. 117, 353.
		1.05533, 15°	Oudemans. Z. C. 1866, 750.
· · · · · · · · · · · · · · · · · · ·		1.0626, 20°	Linnemann. A. C. P. 160, 216.
		1.0502	Landolt. Ber. 9, 907.
<i>u u</i>	"	1.0490, 18°	Kohlrausch. P. A.
"	"	.9325, 113°	159, 240. Ramsay. J. C. S. 35, 463.
ιι ιι		1.0635, 15°	Duclaux. Ann. (5), 13, 95.
44 44		1.1149, 0°, s)
	11	1.0576, 12°.79	TT N.
16 16	(6	1.0543, 15°.97	Petterson, U.N.A.
((((16	1.0503, 19°.03] 1879.

Name.			FORMULA.		Sp. Gravity.	Аптиовиту.
Acetic acid			$C_2 H_4 O$	2	1.0559, 20°	Bedson and Wil-
	4.4		6.6		1.0495, 20°	liams, Ber. 14, 2550. Bruhl. Bei. 4, 781.
6.			4.6		1.0701, 0°)	Zander, A. C. P. 224,
4.4			4.4		.9372, 1189.1	88.
6.4			6.6		1.0532, 20°	Winkelmann, P.A.
	44		1.1		1.0465, 22°	(2), 26, 105, Lüdeking, P. A. (2),
44	4.		6.6		1.05704, 15°	27, 72. Perkin. J. C. S. 49,
Provio	nie neid		C. H. O	,,	1.0161, 00)	Корр. А. С. Р. 95,
1 topio	11		"		.9911, 25°.2	307.
4.4	4.4		4.4		.9963, 20°	Landolt. P. A. 117,
6.6	4.6				.992, 18°	Linnemann. J. 21,
4.6	11				.9961, 19°	433. Linnemann. A.C.P. 160, 195.
11	6.6		44		1.0143, 0°)	190, 109.
	6.4		66		.9607, 490.6	Pierre and Puchot.
6.6	64		4.6		.9062, 99°,8	B. S. C. 18, 453.
6.4	4.4		66		.0946, 200	Bruhl. Ber. 13, 1530.
4.6	4.6	=	4.6		1.0199, 0° } .8657, 140°.7 }	Zander, A.C.P.214, 181.
11	4.4				1.0133, 0°	181.
"					.8589 140°.5	Zander. A. C. P.
6.6	4.4				.8599 140°.5	224, 88.
4.6	6.6		4.6		.9939, 20°	Winkelmann, P. A. (2), 26, 105.
"	6.6				.9902, 25°	Ludeking, P.A. (2), 27, 72.
4.4	4.6				.9956, 200	Traube. Ber. 19, 885.
4.6	6.6		+ 6		1.0089, 00 }	Renard. C. R. 103,
4.4	6.6		6.6		.9904, 180)	158.
4.6	13		4.4		99833, 15°	Perkin, J. C. S. 49,
Butyri	e neid.	B. 163°	C, II, C)2	.9675, 25°	Chevreul.
11	6.6		4.		963, 15°	Pelouze and Gélis. P. A. 59, 625.
6.6	4.4		6.6		98165, 0°	Pierre, C. R. 27, 213.
"	4.4				9673, 15° _=	Mendelejeff, J. 13, 7.
4.6	4.6		1		9610, 20°	Landolt. P. A. 117. 353.
£ £	£ (.9850, 13°.5	Bulk. A. C. P. 189, 62.
"	4.4		1.		.9580, 14°	Linnemann. A. C. P. 160, 195.
66	"				9601, 14°	Linnemann. Ann. (41, 27, 268.
"	4.4				.974, 15°	Graham. A. C. P. 123, 99.
4.6	4.4		- 4 4		.0557, 203	Brühl. A. C. P. 203, 1.
	6.6		4.4		.0594, 20°	Landolt, Bei.7, 845.
4 6	4.4		1		8141, 161°.5	Schiff G. C. 1, 13, 177.

NAME.			F	ORMULA.	SP. GRAVITY	AUTHORITY.
Butyrie	hine		СНО)2	.9746) 00	
Dutyrie			04 118	2	$\begin{bmatrix} .9746 \\ .9781 \end{bmatrix}$ 0°)
			66		8000)	Zander. A. C. P.
			66		.8120 \ 162°.5	224, 88.
					.9603, 20°	Winkelmann. P. A.
					.0000, 20	(2), 26, 105.
"	"		ıı	*****	.9549, 25°	Lüdeking. P. A.(2), 27, 72.
"	٠٠		٤٤		.9809, 0°	Gartenmeister. A.C. P. 233, 249.
	"		11		.9624, 20°	Traube. Ber. 19, 885.
Isobutyr		B. 154°	6.6		.98862, 0°)	Kopp. P. A.72, 258.
"	6.6				.9739, 15° }	
"	"		66	*****	.973, 7°	Delffs. A. C. P. 92, 277.
	66				.9598, 0°)	36) (1
"	66		"		.9208, 50° }	Markownikoff. A.C.
2.5					.8965, 100°	P. 138, 368.
"	"		"		.9503, 20°	Linnemann. Ann. (4), 27, 268.
			"		.9697, 0°]	
"	"		"		.9160, 52°.6	Pierre and Puchot.
"	"		66		.8665, 99°.8	B. S. C. 19, 72.
					.8220, 139°.8 J	(
44	"				.9490, 20° .9515, 20°	Brühl. Ber. 13, 1529.
••	••				.5515, 20	Brühl. A. C. P. 200, 180.
"	"		66		.8087, 153°	Sehiff. G. C. I. 13, 177.
66	6.6		4.6		.9651, 0°)	Zander. A. C. P.
"	"				.8054.154°	224, 88.
66	4.4		6.6		.9519, 20°	Traube. Ber. 19, 886.
Normal	valerie	aeid.	C ₅ H ₁₀ (),	9577 00	,,
"	6.6	" B. 185°	3 110		.9415, 20°	T:-1 1 D
66	4.6	"	4.4		.9284, 40° }	Lieben and Rossi.
"	6.6	"	66		.9034, 99°,3	A. C. P. 159, 58.
"	"	"	6.6		.945, 17°.5	Cahours and Demar-
"	"	"	"		.7569, 195°	çay. C. R. 89, 331. Ramsay. J. C. S. 35, 463.
44	4.6		66		.9608, 0°)	Kehrer and Tollens.
4.6	4.4		4.4		.9448, 20° }	A. C. P. 206, 239.
66			66		.9562, 0° }	Zander. A. C. P. 224,
44	44	"			.7828, 185°.4	88.
6.6	6.6	"	4.6		.9568, 0°	Gartenmeister. A.C.
Isovaleri	ic acid.	← B. 175°			.941, 14°)	P. 233, 249.
6.6	6.6		4.6		.932, 28° }	Chevreul.
"	""		66		.944, 10°	Trommsdorf, A. C. P. 6, 176.
"	6.6		66	*	.930, 12.05	Trautwein. Gm. H.
"	"		ιι		.937, 16°.5	Dumas and Stas. J. P. C. 21, 267.
44	13		66		.9403, 15°	Personne. J. 7, 653.
	٤٤		6.6		.9555, 0°)	Корр. А. С. Р. 95,
6.6	66		6.4		.9378, 19°.6	307.

^{*} Including ordinary and unspecified valerianic acid.

NAME.			F	ORMULA.	Sp. Gravity.	AUTHORITY.
Isovaleric	acid		C ₅ H ₁₀ ()2	.985, 15°	Delffs. A. C. P. 92,
4.6	4.6		16		.9558, 15° .9313, 20°	Mendelejeff. J. 13, 7. Landolt. P. A. 117,
4.4	4.6		4.6		.95357, 0°	353. Frankland and Dup- pa. J. 20, 396.
4.6	6.6		6.6		.9470, 0° .8972, 54°.65	Pierre and Puchot.
46	4.6		44		.8542, 99°.9 .8095, 147°.5 .9465, 0° }	B. S. C. 19, 72.
6.6	4.4		4.6		.9285, 20°.2 .9468, 0°	From different sources. Erlen-
6.6	6.6		6.6		.9295, 19°.7 .9462, 0°	meyer and Hell. A. C. P. 150, 257.
4.6 6.6	6.6		66		.9299, 18°.8 } .917, 15° .93087, 17°.4	Ley. Ber. 6, 1362. Schmidt and Sacht-
	4.6		4.6		.9345, 15°	leben. Poetsch. A. C. P.
4.6	4.6		4.6		.9297, 20°	218, 56. Winkelmann, P. A.
	4.6		4.6		.941, 16°	(2), 26, 105. Renord. Ann. (6), 1, 223.
		eetic acid,)	6 11		.9318, 20°	Traube. Ber. 19, 886. (Erlenmeyer and
B. 172°		eric acid.	1		.9505, 0° } .9331, 19°.5 } .938, 24°	Hell. A. C. P. 160, 257. Saur. A. C. P. 188,
4.6	4	6 66			.917, 15°	275. Ley. Ber. 6, 1362.
4.6	4		6.6		.941, 21°	Pagenstecher, A. C. P. 195, 118.
6.6	4				.948, 14°.5	Lescoeur. J. C. S. 31, 589. Schmidt. Ber. 12,
	Lacet	tic acid	6.6		.944, 00}	257. Butlerow, Ber. 7,
Normal e	aproi	e neid. B. 205°	C 6 H 12	02	.905, 50° j .922, 26° +.931, 15°	728. Chevreul. Fehling. A. C. P.
6 6 n 6	4.4		4.6		.9449, 0°]	53, 406.
4.6	66	66	44		.9172, 40° .8947, 99°.1	A. C. P. 159, 70.
4	66	46	66		.9438, 0° .928, 20° .9164, 40°}	Lieben, A. C. P. 170, 89,
4.6	6.6				. 583, 230	Cahours and Demar- cay. C. R. 89, 331.
4.6	66	11			9446, 0° } 7589, 205° }	Zander, A.C. P. 224. 88. Gartenmeister, A.C.
4.6		16				P. 233, 249.

	1		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Isocaproic acid. B. 199°	$C_6H_{12}O_2$.9252, 20°	Landolt. P. A. 117, 353.
Diethylacetic acid. B. 190°	tt	.9237, 20° .925, 27° .945	Brühl. Bei. 4, 781. Sticht. J. 21, 522. Schnapp. Ber. 10,
ιι ιι	ιι 	.9355, 0° }	1954. Saytzeff. Ber. 11, 512.
Methylpropylacetic acid. "B.193° " "	(\[\begin{array}{c} .9414, 0° \\ .9279, 18° \\ .9231, 25° \end{array} \]	Liebermann and
· · · · · · · · · · · · · · · · · · ·	66	.9286, 15°	Scheibler. Ber. 16, 1823. Liebermann and
Methylisopropylaceticacid	"	.928, 15°	Kleemann. Ber. 17, 918. Romburgh. J. C. S.
Methylethylpropionic acid		.930, 15°	52, 232. Romburgh. J. C. S. 52, 228.
Denanthic acid. B. 223°	C ₇ H ₁₄ O ₂	.9167, 24° .9179, 18° } .9175, 20° }	Städeler. J. 10, 360. Landolt. P. A. 117,
		.9212, 24°	353. Franchimont. A. C. P. 165, 237.
tt tt	11	.9345, 0° .9278, 8°.5 .9208, 16°	Grimshaw and Schorlemmer. A.
tt tt	11	.9110, 28° J .9359, 0°)	C. P. 170, 137.
:	11	\begin{array}{c} .9348, 9° \\ .9235, 28° \\ .916, 21° \\ \\ \end{array} =	" " Mehlis. A.C.P. 185,
	"	.935, 0°)	362.
66 66	"	.9198, 20° } .9084, 40° } .924, 21°	Lieben and Janecek. J. R. C. 5, 156. Cahours and Demar-
ιι ιι	((.9160, 20° .9313, 0° }	çay. C. R. 89, 331. Brühl. Bei. 4, 781. Zander. A.C. P. 224,
rr	14	.7429, 223°.2 } .9333, 0°	88. Gartenmeister. A.C.
Isoheptylie acid. B. 211°.5	(.9305, 0° }	P. 233, 249. Hecht. A. C. P. 209,
Isoamylacetic acid. B. 217°	()	.8496, 100°) .9260, 15°	315. Poetsch. A. C. P. 218, 56.
	$C_8H_{16}O_2$.911, 20°	Fehling. A. C. P. 53, 401.
tt tt		.905, 21° .901, 18°	Perrot. J. 10, 353. Fischer. A. C. P. 118, 307.
(4 (4	((.923, 17°	Cahours and Demar- cav. C. R. 89, 331.
(((()	11	$0.9270, 0^{\circ} - 0.7264, 236^{\circ}.5$	Zander. A.C. P. 224, 88.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Caprylic acid	C ₈ H ₁₆ O ₂	.9288, 0°	Gartenmeister, A.C. P. 233, 249.
Isoöctylie acid. B. 219°	C ₉ H ₁₉ O ₂	.926, 0°	Williams, J. C. S. 35, 125. Burton, A. C. J. 3, 389. Perrot, J. 10, 353. Franchimont and
	() () () () () () () () ()	.90656 .90638 .90639 .90639 .90609 .90609 .9109, 12°.5 .9068, 17°.5 .9433, 90°.3	Zincke. C. N. 25, 57. From six different sources. Bergmann. Arch. Pharm. 22, 331. Krafft. Ber. 15, 1687.
Isononylic acid. B. 245°	"	.9082, 0°	Gartenmeister. A. C. P. 233, 249. Kullhem. A. C. P.
Rutylic acid	C ₁₀ H ₂₀ O ₂	.930, 37°, 1 .883, 20°, 7	173, 319. Fischer. A. C. P. 118, 307. Görgev. A. C. P.
Stearic neid	C ₁₈ H ₃₆ O ₂	1.01, 0°, s }	Golgev. A. C. 1. 66, 306. Saussure. Watts' Dict. Kopp. J. 8, 43. Schiff. A. C. P. 223, 247.

4th. Anhydrides of the Fatty Acids.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY
66 6. 66 6.	41	1.0969, 0° \ 1.0799, 15°.2 \ 1.075, 15° 1.0793, 15°	Kopp. A. C. P. 94,
Propionic anhydride	C ₆ H ₁₀ O ₃	1.01, 18°	Bruhl. Bei. 4, 782. Linnemann. J. 21, 433.

NAME.	FORMULA.	Sp. Gravity.	Аптнокіту.		
Isobutyric anhydride Valeric anhydride Oenanthic anhydride	C ₁₀ H ₁₈ O ₃ C ₁₄ H ₂₆ O ₃	.934, 15° .91, 14°	Toennies and Staub. Ber. 17, 851. Watts' Dictionary. Malerba. J. 7, 444. Mehlis. A. C. P. 185, 371.		

5th. Ethers of the Series C_n H_{2n} O_2 .

	Na	ME.	Form	ULA.	Sp. Gravity.	AUTHORITY.
		.te	С Н ₃ . С Н	O ₂	.9984, 0°)	
			"		.9776, 15°.3 .9766, 16° }	Kopp. P. A. 72, 261.
	"				.9928, 0°	Volhard. A. C. P. 176, 135.
"	"				.9797, 15°	Kraemer and Grodz- ki. Ber. 9, 1928.
"	44		66		.9482, 33°	Ramsay. J. C. S. 35, 463.
"	"		"			De Heen. Bei. 5, 105.
••	••				.9566, 32°.3	Sehiff. G. C. I. 13, 177.
44	"		11		.99839, 0° }	Elsässer. A. C. P.
Ethyl i			С ₂ Н ₅ . С Н	0	.95196, 32°.3 } .9157, 18°	218, 302. Gehler. See Böttger.
ii ii	"		C ₂ II ₅ . C II	02	.912	Liebig. Quoted by
						Kopp.
4.4	66		66		.94474, 0°)	**
4.6	6.6		4.6		.92546, 15°.7	Kopp. P. A. 72, 266.
4.6	66		66		.9394, 0° €	"
			"		.9188, 170 }	
66	11		"		.93565, 0°	Pierre. C. R. 27, 213.
"			"		.917	Löwig. J. 14, 599.
					.8649, 55°	Ramsay. J. C. S. 35, 463.
"	"		66		.9064, 20°	Brühl. Ber. 13, 1530.
44	"		"		.9214, 14°	De Heen. Bei. 5, 105.
"			46		.9367, 0°)	
"	"		"		.9238, 10°.84 .9122, 20°.03	Several intermediate
	66		"		.8959, 32°.79	values given. Nae-
4.6	44		66		.8865, 40°.02	eari and Pagliani.
"	6.6				.8740, 49°.76	Bei. 6, 89.
4.6	4.6		6.6		.8707, 510.94	
"	44		"		.8730 } 53°.4 _	(Sehiff. G. C. I. 13,
4.4	4.6		4.4		.8731 } 535.4 -	177.
4.6	4.6		4.6		.93757, 0° }	Elsässer. A. C. P.
	44		"		.86667, 54°.4 }	218, 302.
"	66		"		.9194 } 200 {	Winkelmann. P. A.
46	66		66		.9192) {	(2), 26, 105.
• •			**		.9445, 0°	Gartenmeister. A.C. P. 233, 249.

	NAME.		Forme	LA.	Sp. Gravity.	AUTHORITY.
Propyl	forma	te	C ₃ H ₇ , C II	O ₂	.9197, 0°)	
6.6	1.6				.877, 35°.5 }	Pierre and Puehot.
4.6	13		1.6		.886, 72°.5)	Z. C. 12, 660.
4.6	"		16		.9188, 0° }	Diama and Dark
1.6	66				.835, 720.5	Pierre and Puchot.
44	66				.9026, 14°	Ann. (4), 22, 288. De Heen. Bei. 5,
						105.
- 11					.91838, 0° }	Elsässer. A. C. P.
6.6	11				.82146, 81°	218, 302.
11					.9023 20° }	Winkelmann, P. A. (2), 26, 105.
					.9250, 02 }	Gartenmeister. A.C.
"	4.6		£:		.8270, 51° }	P. 233, 249.
Butyli			C, H, C H		.9108, 0° {	
2501511	16	0	14	~~	.7972, 1060.9	44
Isobuty	al form	ate	6.6		.8845, 0°]	
(1	11		LL		.850, 34°	Diame and Dealer
4.4	44		66		.8224, 59°.8	Pierre and Puchot.
4.6	4.4		11		.7962, 83°.4	Ann. (4), 22, 319.
4.4	"		4.6		.8650, 14°	De Heen. Bei. 5,
4.6	66		ce		.7784, 98°	105. Schiff. G. C. I. 13, 177.
4.6	4.4		6.6		.88543, 00)	Elsässer. A. C. P.
44	4.6				.78287, 970.9	218, 302.
Normal	lamvl	formate	C ₅ H ₁₁ . C H	0,	.9018, 00)	Gartenmeister, A.C.
6.6	"	44	3 11.4		.7692, 130°.4	P. 233, 249.
Isonny	l form	ate	4.6		.884, 15°	Delffs. J. 7, 26.
11	LL		4.6		.8945, 00	Корр. А. С. Р. 96.
6.6	1.3		6.6		.8743, 21° }	
4.6	6.6		11		.8809, 15°	Mendelejeff, J. 13, 7.
4.6	E E		44		.8816, 140	De Heen. Bei. 5, 105.
	14				.7554, 123°.5	Schiff. G. C. I. 13,
6.6	6.6		4.6		.8802, 200	Bruhl. Bei. 4, 782.
4.6	6.6		6.6		.894378, 00) Elsasser. A. C. P.
4.4			6.6		.77027, 123°.3.	218, 302.
Normal	lhexyl	formate	C ₆ II ₁₃ . C H	O ₂	.8195, 17°	Frentzel. Ber. 16,
			4.6		06.77 00	745.
6.6	4.6		6.6		.8977, 0° } .7484, 158°.6 }	Gartenmeister, A.C.
				0		P. 233, 249.
Normal	hepty	1 formate	C7 H15. C H	O ₂	.8937, 0° }	
			CHCH	0	.8929, 0° }	
Normal	l octy1	formate	$C_8 H_{17} C H$	0;	.7156, 198°.1	4.4 6.6
		0	CH _s . C ₂ H ₃		.919, 220	Dumas and Peligot.
211 Ctily t	nectit			2	,	P. A. 36, 117.
6.6	4.,		6.6		.9328, 00)	
4.4	6.6		4.6		.9045, 210 }	Kopp. A C. P. 96.
4.6	6.6		4.4		.9562, 00 }	L' D 1 ~0 0~1
4.6	4.6		6.6		.93755, 15°.6	Kopp. P. A. 72,271.
6.4	6.6		4.4		.86681, 0°	Pierre, C. R. 27, 213.
6.6	6.6		4.4		.940	Grodzki and Krne- mer. Z. A. C. 14,
	6.4		4.6		0000 000	103.
4.6	6.		6.6		.9039, 20°	Bruhl. Ber. 13, 1530. De Heen. Bei. 5, 105.
					14	De Meen. Del. 5, 105.

			Fannu		Sp. Gravity.	AUTHORITY.
NAME.		FORMUL	Λ.			
Mathyl	aceta	te	C H ₃ . C ₂ H ₃ O	2	$\{\frac{.8825}{.8826}\}$ 55° $\{$	Schiff. G. C. I. 13,
Hethy	"		6.6			177.
6.6	6.6		6.6		.95774, 0° }	Elsässer. A. C. P.
6.6	6.6		6.6		.88086, 57°.5	218, 302.
4.6	6.6		4.6		.9424, 0°	Winkelmann. P. A. (2), 26, 105.
66	2.2		"		.9238, 19°.2	Henry. C. R. 101, 250.
44			"		.9643, 00 }	Gartenmeister. Bei.
	44		4.6		1.8873.57°.3	9, 766.
)(C2 H5. C2 H3 C),	.866, 7°	Thénard. Gm. H.
Etnyra	cetate		02 225. 023		.89, 15°	_ Liebig.
**	66		"		.9051, 0°	Frankenheim, P. A. 72, 427.
	4.6		66		.91046, 0°)	
"	66		66		$[.89277, 15^{\circ}.7]$	Kopp. I.A. 12, 210.
	66		4.6			
£ 6	66		66		00001 00	Pierre. C. R. 27, 213.
					000 150 5	
6.6	6.6				.906, 17°.5	Poolson I 5 562
4.6	44				.903, 17°	Becker. J. 5, 563. Goessmann. J. 5,
6.6	6.6		- 66		.932, 20°	563.
44	4.6				.9055, 17°.5	Marsson, J. 6, 501.
66			- 66		.8922, 15°	_ Delffs. J. 7, 26.
4.6	15		- 66		8981, 15°	Mendelejeff. J. 13, 7.
	66		- 66		.903, 0°	Pierre and Puchot.
	•••		-		,	Ann. (4), 22, 261.
44	46			,	868, 24°	Léblanc. Ann. (3), 10, 198.
"	44		-			P. 160, 195.
2.2	4.4		44		.9007, 20°	Brühl. Ber. 13, 1530.
44	66		- 66		.9026, 14°	De Heen. Bei. 5, 105.
11	4.6					Schiff. Ber. 14, 2766.
"	6.6		- 66		1.9227.0°)
	44		- (6		9076, 12°.80	Several intermedi-
	66				8914, 26°.24	ate values given.
	66				8730, 41°.13	Naccari and Pag-
44			- "		8594, 51°.75	liani. Bei. 6, 89.
			- 44		.8466, 61°.87	Intili. Bei. o, oo.
"	4.6				.8309, 73°.74	j
11					.9004	W. I. Clark. Ber
66	4.6				9012	16, 1227.
44					$\begin{array}{c c} .8306 \\ .8294 \end{array}$ 75°.5	Schiff. G. C. I. 13
44	44				.8294 } 15°.5	
	44				.92388, 0°	Elsässer. A. C. P
					.82673, 77°.1	(218, 302.
	46				.9007 } 20°	Winkelmann. P. A
44			66		.9047	$\{(2), 26, 105.$
"	11		"		0070 00	Gartenmeister. Bei 9, 766.
Prom	rl ace	tate	C ₃ H ₇ . C ₂ H	3 O ₂	910, 0°	
1 10 p	y I ace	6	' ' ' '		.8955, 427.0	Pierre and Puchot
		(8137, 84°.6) Z. C. 12, 660.
	6	(
11					.8627, 42°.5	Pierre and Puchot
4.6			- "		8128, 84°.6) Ann. (4), 22, 289

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY,
Propyl acetate	C ₃ H ₇ , C ₂ H ₃ O ₂	.913, 0°	Rossi. A. C. P. 159,
	- "	.8992, 15°	79. Linnemann, A. C. P. 161, 30.
44 44		.8856, 200	Brühl. Ber. 13, 1530.
11		.8871, 14°	De Heen. Bei. 5, 105.
44		.7916 \ .7918 \ 101°.8	Schiff. G. C. I. 13, 177.
44		.909092, 0°	Elsässer. A. C. P.
44 44		.794388, 100°.5	218, 302.
		.9093, 0°	Gartenmeister, A.C. P. 233, 249.
Butyl acetate		.9000, 00)	
1. 11		.8817, 20° }	Lieben and Rossi.
	- "	.8659, 40°) .8768, 23°	A. C. P. 158, 137. Linnemann. Ann.
			(4), 27, 268.
		.9016, 0°) .7683, 124°.5 }	Gartenmeister, A.C. P. 233, 249.
Isobutyl acetate		.8845, 16°	Wurtz. J. 7, 575.
16		.892, 00	Lieben. J. 21, 443.
		.890(06, 60)	
		.8747, 160 }	Chapman and Smith.
11 11		.83143, 50°) .9052, 0°)	J. C. S. 22, 160.
11	,	.8668, 379.1	
		.8328, 68°.9	Pierre and Puchot.
4.6		.8096, 89°.4	Ann. (4), 22, 322.
		.7072, 99°.75	
		.7589, 112°.71	Schiff. G. C. I. 13, 177.
			Elsasser. A. C. P.
Normal amyl acetate			318, 302.
A CONTROL OF THE CONT	5 1111. 02 113 02	. S792, 20° !	Lieben and Rossi.
	4.		A. C. P. 159, 70.
44 44		.8948, 0° }	Gartenmeister, A.C.
71 design and a shad		7461, 147°.6 } 9222, 0°	P. 233, 249.
Methylpropylcarbyl ned	- 11	, 1/222, 0	Wurtz. Z. C. 11, 490.
Diethylearbyl acetate	4.6	909, 0° }	(Wagnerand Saytz-
Diethytenroyi accute 11			eff. A. C. P. 175, 366.
Amylacetate			Kopp. A. C. P. 94,
			1)(), A () Th ().
16 16		8537, 0° —- 8692, 15°.1	Kopp. A. C. P. 94, 257.
14 14		. 863, 10°	Delffs. J. 7, 26.
4. 4.		8762, 150	Mendelejeff. J. 13, 7.
			Schorlemmer, J. 19,
A Interferen		81021	Pulliano Ron O
THACTIC			Balbiano. Ber. 9, 1437.
46 46			De Heen. Bei. 5, 105
		8501, 20°	Bruhl. Bei. 4, 782, Schiff. G. C. I. 13,
66 66		.7429 .7430 138°.5	177.
****		, , , , ,)	(

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Tertiary amyl acetate Normal hexyl acetate	C ₅ H ₁₁ . C ₂ H ₃ O ₂	.8909, 0° } .8738, 19° } .8890, 17°	Flawitzky. A. C. P. 179, 349. Franchimont and Zincke. C. N. 24,
Secondary hexyl acetate_		.8902, 0° .7267, 169°.2 } .8778, 0°)	Gartenmeister. A. C. P. 233, 249. (Wanklyn and Er-
Methyldiethylearbyl ace-	"	.8310, 50° }	lenmeyer. J. 16, 522.
tate. " " " " " Ethylpropylearbyl ace-	44 44	.8772, 25° .8735, 30° .8679, 35° .8525, 0°	Reformatsky. J. P. C. (2), 36, 340. Buff. J. 21, 336.
tate. Methylisobutylcarbylaeetate.		200	Kuwschinow. Ber. 20, ref. 629.
Methylpropylethol ace- tate. Normal heptyl acetate	C ₇ H ₁₅ , C ₂ H ₃ O ₂	.8717, 25°	Lieben and Zeisel. M. C. 4, 33. Cross. J. C. S. 32,
tt tt tt	ιι ιι	.7134, 191.03	123. Gartenmeister. A. C. P. 233, 249.
Isoheptyl acetate	"	.8605, 16° } .8707, 16°.5 .8868, 19° }	Three products. Schorlemmer. A. C. P. 136, 271. (Ustinoffand Saytz-
Dipropylearbyl acetate Methylisoamylearbyl ace-	"	.8742, 0°	eff. J. P. C. (2), 34, 470. Rohn. A. C. P. 190,
tate. Normal octyl acetate	C ₈ H ₁₇ . C ₂ H ₃ O ₂	.8717, 16° .8847, 0° .6981, 210°	312. Zincke. J. 22, 370. Gartenmeister. A. C. P. 233, 249.
Methyldipropylearbylace-tate. "	(t	.8738, 0° }	Gortaloff and Saytzeff. J. P. C. (2), 33, 702.
"Octylene acetate"		$.822, 0^{\circ}$ $.803, 26^{\circ}$ $\}$	Clermont. J. 17, 517.
Ethyldipropylcarbyl acetate. "	C ₉ H ₁₉ . C ₂ H ₃ O ₂	.8795, 0° }	Tschebotareff and Saytzeff. J. P. C. (2), 33, 193.
Isomer of myristic acetate		.8559, 15° .8476, 30° .8448, 35°	Perkin, Jr. J. C. S. 43, 77.
Cetyl acetateMethyl propionate		.858, 20° .9578, 4°	Dollfus. J. 17, 518. Kahlbaum. Ber. 12, 344.
16 16 16 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.8954, 14° .8422 .8423 } 78°.5 _	De Heen. Bei. 5, 105. Schiff. G. C. I. 13, 177.
		.93725, 0° .836798, 79°.9_	Elsässer. A. C. P. 218, 302.
::		.922, 15°	Israel. A. C. P. 231, 197.
.:		.9403, 0°	Garter Gister. Bei. 9, 7/3.

14 s g

	NAME		FORMU	LA.	SP. GRAVITY.	AUTHORITY.
Ethyl pr		le	C ₂ H ₅ . C ₃ H ₅	Ō ₂	.9231, 0° }	Kopp. A. C. P. 95,
4.6	- 11		6.6		.8949, 26°.3	307.
4.4	66		4.6		$.9139, 0^{\circ} = $	Piones and Pushet
4.4	11		4.6		.816, 83°	Pierre and Puchot.
4.6	6.6		46		.8964, 16°)	Ann. (4), 22, 351. Linnemann. A.C.P.
4.4			4.6		.8945, 17° }	160, 195.
4.4	4.4		4.4		.9175, 140	De Heen. Bei. 5, 105.
4.6	3.3		4.6		.7961 } 98°.8	Schiff. G. C: I. 13,
6.6	4.6		4.6		. (393)	177.
4.4	4.4		4.4		.9109, 0°]	
4.4	6.6		4.6		.8968, 12°.60	
6.6	6.6		6.6		.8832, 24°.57	Several intermediate
£ 4	4.6		6.6		.5637, 41°.54	values given. Nac-
6.6	6.6		4.6		.8514, 52°.05	cari and Pagliani.
4.6	4.6		66		.8365, 64°.46	Bei. 6, 89.
6.6	6.6		66		.8247, 74°.46 .8020, 92°.96	
"	"				.91238, 0°)	Elsässer. A. C. P.
6.6	11		11		.79868, 98°.3 }	218, 302.
4.6	4.4		4.4		.91224, 0°	Weger. Ber. 16, 2912.
6.6	4.6		4.6		000 1	Three samples. Is-
4.6			6.6		.8910	rael. A. C. P. 231,
6.4	4.4		4.4		.8900, 19°)	197.
Propyl p	ropion	ate	C3 H7. C3 H5	0,	.9022, 0°]
14	4.4		4.4		.8498, 51°.27	Pierre and Puchot.
4.6	1.3		4.6		.7944, 100°.6	Ann. (4), 22, 293.
t t	4.6		4.4		.7839, 108°.34	
4.6	6.6		6.6		.8885, 13°	Linnemann. A. C.
	4.4		4.6		.8821, 14°	P. 161, 32. De Heen. Bei. 5, 105.
44	6.6		44		# 330 3 /	Schiff. G. C. 1. 13,
44	64		6.6		.7680 121°	177.
6.6	4.6		4.6		.90192, 00	Elsässer. A. C. P.
4.6	6.6		4.4		.772008, 1220.2	
4.6	4.6		4.6		.9023, 0°	Gartenmeister. A. C. P. 233, 249.
Butyl pr	opiona	te	$C_4 H_9$. $C_3 H_5$	O ₂	.8828, 15°	Linnemann. Ann. (4), 27, 268.
4.6	4.4		"		.8953, 0° }	Gartenmeister. A.
4.4	6 .		4.6		.7489, 145°.4	C. P. 233, 249.
		nate	4.6		.S926, 0°	
4.4	4.6		4.		.8437, 490.2	Pierre and Puchot.
4.6	44		44		.7896, 100°.15	Ann. (4), 22, 324.
4.4	4.6		1		.7698, 116°.5 .887595, 0°	Elsasser. A. C. P.
4.6	4.6				.74424, 136°.8	218, 302.
Amyl pi		to	C5 H11. C3 I	I. O.	.8700, 140	De Heen. Bei. 5, 105.
zemyt pi	opioin.		05 1111. 03 1		.7295, 160°	Schiff. G. C. 1. 13,
4.4	4.6		66		000 441 1000 D	Elsasser, A. C. P. 218, 302.
		propionate	C, H15. C3 I	I ₅ O ₂	.8846, 00 }	Gartenmeister. A.
37	4.6		O H C I		.6946, 208°	C. P. 283, 249.
Normal	octyl	ropionate =	C8 H17. C3 F	1 ₅ U ₂	8833, 0°) .6860, 226°.4)	4+ 4+
Methyl	butyral	le	C H3. C4 H7	0,	.92095, 0° }	Kopp. P. A. 72, 280.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl butyrate	C H ₃ . C ₄ H ₇ O ₂	1.02928, 0°	Pierre. C. R. 27, 213.
44 44	"	.9091, 0° }	Kopp. A. C. P. 95,
66 66		.8793, 30°.3	307.
		.9475, 4°	Kahlbaum. Ber. 12,
	46	0000 900	344. Brühl. Ber. 13. 1530]
" " ————	"	.8962, 20° .91939, 0°	Elsässer. A. C. P.
((((.80261, 102°.3	218, 302.
		.9194, 0°	Gartenmeister. A. C. P. 233, 249.
Methyl isobutyrate	"	.9056, 0°)	1.70 1 .
ii ii	4:	.8625, 38°.65	Pierre and Puchot.
	"	.815, 78°.6	B. S. C. 19, 72.
" " ————		.911181, 0°	Elsässer. A. C. P. 218, 302.
"	a H a H o	.80397, 92°.3 { .9003, 18° }	Linnemann. A. C.
Ethyl butyrate	C2 H5. C4 H7 O2	.9003, 18 == {	P. 160, 195.
ii		.8892, 20°	Brühl. Ber. 14, 2800.
"		7700)	Schiff. G. C. I. 13,
"	((7705	177.
"		.90193, 0°	Pierre. C. R. 27, 213.
		8894, 15°	Mendelejeff. J. 13, 7.
		8942, 0°	Frankland and Duppa. J. 18, 306.
		00057 00	Elsässer. A. C. P.
"	(6	.89957, 0° .76940, 119°.9	218, 302.
() ()		.9004, 0°	Gartenmeister. A.
"			C. P. 233, 249.
Ethyl isobutyrate		.90412, 0° }	Корр. Р. А. 72, 287.
Ethyl isobity at a		89065, 13° · ∫	110p 11111 (=) = 011
		.890, 00	
"		.871, 18°.8 }	Pierre and Puchot.
	-	.831, 55°.6 .7794, 100°.1	B. S. C. 19, 72.
tt tt	- ""	.7681, 110°.1	Schiff. G. C. I. 13,
			177.
	(1	890367.0°	Elsässer. A. C. P.
"	(1	77725, 110°.1	218, 302.
Propyl butyrate	C ₃ H ₇ . C ₄ H ₇ O ₂	_ .8789, 15°	Linnemann. A.C.P.
- 1		00000 00	161, 33. Elsässer. A. C. P.
" " ————	- " "	.89299, 0° .745694, 142°.	
"		.8872, 0°	
Propyl isobutyrate	- "	8402, 47°, 24_	Pierre and Puchot.
	- (,	7842, 100°.25	- Ann (4) 22 295.
		_ .7525, 128°.75	-
44 64		884317, 0°	Elsässer. A. C. P.
		74647, 133°.9	
Isopropyl butyrate		.8787, 0° \ .8652, 13° \ -	Silva. Z. C. 12, 508.
" " ———		1 8885 09	
Butyl butyrate	C4 H9. C4 H7 O2	.8717, 20°	Lieben and Rossi.
	- "	_1 .8579, 40°	A. C. P. 158, 137.
11 41	- ((.8760, 12°	Linnemann. Ann.
		1	(4), 27, 268.
.: "			Gartenmeister. A.C.
		.7264, 165°.7	P. 233, 249.

NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Isobutyl butyrate	C4 H9-1C4 H7 O2	.881778, 0°71630, 156°.9	Elsásser. A. C. P. 218, 302.
11 11	44	.8798, 0° } .86635, 16°81838, 98°.4 }	Grunzweig. B.S.C. 18, 125.
Isobutyl isobutyrate	66 66	.8719, 0° .8238, 50°.8 .7753, 99°.8	Pierre and Puchot. Ann. (4), 22, 326.
16 66 16 16	66	.7439, 128°.8 J .874957, 6° .78281, 146°.6	Elsässer. A. C. P. 218, 302.
16 66 16	61	.87519, 0° .86064, 15° .81192, 98°.4	Grunzweig. B.S.C. 18, 125.
Normal amyl butyrate Amyl butyrate	C ₅ H ₁₁ , C ₄ H ₇ O ₂	.8832, 0° } .7092, 184°.8 } .8683, 15°	Gartenmeister, A.C. P. 233, 249. Mendelejeff, J. 13, 7.
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	66	.852, 15° .882306, 0° .71148, 178°.6_	Delifs. J. 7, 26.) Elsässer. A. C. P. (218, 302.
Amyl isobutyrate	66	.873, 10° .8769, 0° .8264, 55°.4	De Heen. Bei.10,313. Pierre and Puchot.
11 16 16 16 16 16 16 16 16 16 16 16 16 1	66	$.7839, 100^{\circ}.2$ $.7446, 139^{\circ}.5$ $.875965, 0^{\circ}$	Aun. (4), 22, 343. Elsässer. A. C. P.
16 61 16	$C_6 \coprod_{13}^{it} C_4 \coprod_7 O_2 = =$.70662, 168°.8_ .8825, 0°	3 218, 302.Gartenmeister, A.C.P. 233, 249.
Normal heptyl butyrate Normal octyl butyrate	* 6	.8827, 0° } .6869, 225°.2 } .8794, 0° }	(t (t
	C ₁₆ H ₃₃ . C ₄ H ₇ O ₂ II - U II ₃ . C ₅ II ₉ O ₂	.6751, 242°.2 } .856, 20° .895, 17°	Dollfus. J. 17, 518. Cahours and Demar-
		.9097, 0° }	cay. C. R. 89, 331. Gartenmeister. Bei. 9, 766.
Methyl isoval rate		.8900, 0° .8806, 16° .901525, 0°	Kopp. A. C. P. 96.
64 64	11	.88687, 15° .88662, 15°.3 } .9005, 0° }	Корр. Р. А. 72, 291.
64 44 44 44	44	.8581, 41°.5 { .8343, 64°.3 .7945, 100°.1 }	Pierre and Puchot. Aun. (4), 22, 249.
44 44	tt	.8908, 16° .885465, 17°	Renard. Ann. (6), 1, 223. Schmidt and Sacht-
11			leben, J. C. S. 26, 189. Bruhl, Bei, 4, 782.
Ethyl valerate	"." C ₂ H ₅ . C ₅ H ₉ O	.594, 0°)	
44 44	"		A. C. P. 165, 109.

		1	,
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl valerate	$C_2 H_5$. $C_5 H_9 O_2$.878, 18°.5	Cahours and Demar-
£		.8939, 0°)	çay. C.R.89,331. Gartenmeister. Bei.
tt tt		.7443, 144°.7	9, 766.
Ethyl isovalerate		.894, 13°	Otto. A. C. P. 25, 62.
66 66	66	.869, 14°	Berthelot. J.7,441.
(((("	\begin{aligned} .8829, 0° \ .8659, 18° \end{aligned}	Kopp. A. C. P. 96.
66 66	"	.886, 0°]	
"		.832, 55°.7	Pierre and Puchot.
((((.7843, 99°.63	Ann. (4), 22, 353.
46 66		.7582, 122°.5 .8661, 20°	Brühl. Bei. 4, 782.
		.88514, 0°	Elsässer. A.C.P.
"		.74764, 134°.3_	218, 302.
((((.8743, 16°	Renard. Ann. (6), 1, 223.
		.8882, 0° }	Frankland and Dup-
		.87166, 18°	pa. J. 20, 396.
Ethyl trimethylacetate	(6	$\begin{bmatrix} .8773, 0^{\circ} \\ .8535, 25^{\circ} \end{bmatrix}$	Friedeland Silva. J.
"		.875, 0°	C. S. (2), 11, 1127. Butlerow. B. S. C.
Ethyl methylethylacetate		.877, 15°	23, 27. Israel. A. C.P. 231, 197.
Propyl valerate	C ₃ H ₇ . C ₅ H ₉ O ₂	.8888, 0° }	Gartenmeister. Bei.
11 (1	((.7264, 167.°5	9, 766.
Propyl isovalerate		.8862, 0° .8387, 50°.8	
		.7906, 100°.15_	} Pierre and Puchot.
(: (("	.7755, 113°.7	Ann. (4), 22, 297.
" " —————		.880915, 0°	Elsässer. A.C. P.
Transport isomelerate		.727405, 155°.9	∫ 218, 302.
Isopropyl isovalerate.		.8702, 0° .8538, 17° }	Silva. Z. C. 12, 508.
Butyl valerate	C ₄ H ₉ , C ₅ H ₉ O ₂	.8847, 00 }	Gartenmeister. Bei.
	((.7095, 185°.8	9, 766.
Isobutyl isovalerate		.8884, 0° .8438, 49°.7	
(((("	.7966, 100°	Pierre and Puchot.
"		.7428, 155°.8	Ann. (4), 22, 330.
((((.873599, 0°	Elsässer. A. C. P.
Normal amyl valerate		.70549, 168°.7	Santan maister Rei
" " " " "	C_5H_{11} , $C_5H_9O_2$.8812, 0° } .6982, 203°.7 }	Gartenmeister. Bei. 9, 766.
Amyl isovalerate	((.8793, 0° }	Kopp. A. C. P. 94,
ii		.8645, 17°.7	257.
66 66		.8596, 15°	Mendelejeff. J. 13, 7.
"	"	.832, 50°.67	TO! 1 TO 1
((((((.787, 100° [Pierre and Puchot.
(((("	.740, 149°.5	Ann. (4), 22, 346.
" " Inactive_	"	.8700, 0°	Balbiano. Ber. 9, 1437.
££	"	.8633, 16°	Renard. Ann. (6), 1, 223.
		.869, 15°	1, 223. Ley. Ber. 6, 1362.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
	CH CHO	9050 900	Dauld Dat 4 200
Amyl isovalerate	C ₅ II ₁₁ , C ₅ II ₉ O ₂	.8658, 20° .863, 10°	Brühl. Bei. 4, 782. De Heen. Bei. 11,
N 11 = 1 1	CH CHO	.8797, 0°)	313. Gartenmeister, Bei.
Normal hexyl valerate	C ₆ H ₁₃ , C ₅ H ₉ O ₂	.6823, 223°.8	9, 766.
Normal heptyl valerate	C_7H_{15} , $C_5H_9O_2$.8786, 0° }	
Normal octyl valerate	C_8H_{17} , $C_5H_9O_{2}$.8784, 0°)	44 44
ti ti ti	11	.6618, 260°.2	
Octyl isovalerate	С ₁₆ П ₃₃ , С ₅ Н ₉ О ₂	.8624, 16° .852, 20°	Zincke. J. 22, 371. Dollfus. J. 17, 518.
Methyl caproate	C II ₃ . C ₆ II ₁₁ O ₂	.8977, 18°	Fehling. A. C. P.
14 14	6.6	.889, 19°	53, 899. Cahours and Demar-
		,	çay. C. R. 89, 331.
11 11	44	.9039, 0° } .7536, 149°.6 }	Gartenmeister. Bei. 9, 766.
Ethyl capronte	C2 II5. C6 H11 O2	.882, 18°	Lerch. A. C. P. 49,
44	((.8765, 17°.5	Franchimont and
***		.0100, 11 .0222	Zincke. A. C. P.
44 44		.8898, 0°)	163, 193.
11 11	44	0000 000	Lieben and Rossi.
11 11			A. C. P. 165, 118.
11 11	11	.8898, 0° }	Lieben. A. C. P.
(1 11		.8596, 40°)	170. 89.
11 11		.878, 19°	Cahours and Demar- cav. C. R. 89, 331.
11 11		.8888, 00 }	Gartenmeister. Bei.
Ethyl isocapronte		0.0 = 0.0	9, 766.
ii ii		.8705, 20° }	Lieben and Rossi.
14 14	14	1.0.2.2 110	A. C. P. 165, 118. Frankland and Dup-
Ethyl diethylacetate		1	pa. J. 18, 308.
11 11		1	Saytzeff. Ber. 11, 512.
Ethylmethylpropylacetate		8816, 0°)	
44 44	- 66	4.4	Lieben and Zeisel.
44 ***			M. C. 4, 26.
Propyl capronte	$C_3 \ H_1$, $C_6 \ H_{11} \ O_{2}$	$\{,,,,,,,$	Gartenmeister. Bei. 9, 766.
Butyl caproate	. C ₄ H ₉ . C ₆ H ₁₁ O ₂		11 11
11 11		_ 1.69.8, 2045.63	
Hexyl caproate	6 1113. 6 1111 02		Zincke. C. N. 24
N. d. 1 d. d	44	.867, 15°	263. Romburgh, J. C. S
Methylethylpropyl me- thylethylpropionate.			52, 223
Normal heptyl caproate	- C7 H15. C6 H11 O2	8769, 0° } _1.6594, 259.°4 }	
Normal octyl caproate	and the same of	8748, 0°)	4.6 8.6
.1 .4 .4		_ ,00000, 2(01,2)	
Methyl oenenthate	C H3. C1 H13 U2	889, 19°	canours and Demar-

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Mathyl cenanthate	CH CH O	8981 00	Gartenmeister. Bei.
Methyl oenanthate Methyl isoöenanthate	13. 67 113 62	.7325, 172.°1 } .8840, 15°	9, 766. Poetsch. A. C. P.
"		.8790, 15°	218, 56. Hecht. A. C. P. 209, 324.
Ethyl oenanthate	C ₂ H ₅ . C ₇ H ₁₃ O ₂	.874, 24°	Franchimont. A.C. P. 165, 237.
"		.8735, 16°	Grimshaw and Schorlemmer. A.
и и		.871, 21°	C. P. 170, 137. Mehlis. A. C. P.
" "		.877, 16°.5	185, 366. Cahours and Demar- çay. C. R. 89, 331.
16 16 11 11 11 11 11 11 11 11 11 11 11 1		.8716, 20° }	Lieben and Janecek.
		$\begin{bmatrix} .8589, 40^{\circ} \\ .87163 \\ .87199 \end{bmatrix}$ 15°	J. R. C. 5, 156.
	"	$\begin{bmatrix} .86477 \\ .86487 \end{bmatrix}$ 25°	Perkin. J. P. C. (2), 32, 523.
it tt	"	.7105; 187°.1 }	Gartenmeister. Bei. 9, 766.
Ethyl isoöenanthate		.8685. 15°)	Poetsch. A. C. P. 218, 56. Hecht. A. C. P. 209,
Propyl oenanthate	C ₃ H ₇ . C ₇ H ₁₃ O ₂	.8570, 27° } .8824, 0° }	324. Gartenmeister. Bei.
Propyl isoöenanthate		.6965, 206°.4 } .8635, 19°	9, 766. Hecht. A. C. P. 209, 324.
Isopropyl isoöenanthate		.859, 19°	Hecht. A. C. P. 209, 325.
Butyl oenanthate	C ₄ H ₉ . C ₇ H ₁₃ O ₂	.8807, 0° } .6839, 225°.1 }	Gartenmeister. Bei. 9, 766.
Normal heptyl oenanthate	i i	.870, 16° .86522, 15°)	Cross. J. C. S. 32, 123. Perkin. J. P. C.
!! !! !!		.85933, 25° }	(2), 32, 523. Gartenmeister. Bei.
Normal octyl oenanthate	C ₈ H ₁₇ . C ₇ H ₁₃ O ₂	.6839, 225°.1 } .8757, 0° } .6419, 290°.4 }	9, 766.
Methyl caprylate	C H ₃ . C ₈ H ₁₅ O ₂	.882	Fehling. A. C. P. 53, 399.
			Cahours and Demar- çay. C. R. 89, 331.
Ethyl eaprylate	Co Hr. Co Hr. Oo	.8942, 0° } .7163, 192°.9 }	Gartenmeister. Bei. 9, 776. Fehling. A. C. P. 53,
ιι ιι		.8728, 16° .878, 17°	399. Zincke. J. 22, 373. Cahours and Demar-
£¢		.8842, 0° } .6980, 205°.8 }	çay. C. R. 89, 331. Gartenmeister. Bei. 9, 766.
		.0000, 200 .0)	0, 100.

			-
Name.	FORMULA.	SP. GRAVITY.	Астновиту
Propel autrelate	CHCHO	.8805, 0°)	Gartenmeister, Bei.
Propyl caprylate	3 117. (8 1115 52	.6867, 2210.7	9, 766.
Butyl caprylate	C4 H9. C8 H15 O2	.8707, 00 }	6. 6.
	4.	.6745, 240°.5	" "
Normal heptyl caprylate	$C_7 H_{15}$, $C_8 H_{15} O_2 = -$.8754, 00 }	6.6
		.6105, 289°.8)	
Normal octyl caprylate _	C ₈ H ₁₇ . C ₈ H ₁₅ O ₂	.8020, 160	Zincke. J. 22, 371.
11 11 11		.8(00, 0°	Gartenmeister, Bei. 9, 766.
Methyl pelargonate	CHCHO	STHE TTO 5	Zincke and Franchi-
Methyr penargonate-11111	113. (9 1117 /2=		mont. A.C P 104,
Ethyl pelargonate	С. И. С. П. О.	.86	Caliours. J. 3, 401
		.8725, 150.5	Delffs. J. 7, 26.
		.8655, 17°.5	
			mont. A.C.P. 164. 333.
"		.83307]	
			With acid from six
() ((c	sources. Berg.
		.86102 .86376	mann. Arch Pharm. 22, 331.
		,86209	F BRITH, 22, 991.
		.87033, 15°	Perkin, J. P. C
14 44		.86107, 25°	(2), 32, 523.
Ethyl isononylate		.86406, 17°	Kullhein, A. C. P 173, 319.
Ethyl rutylate	C. H., C. H., O.	.802	Rowney, J 4, 443
Ethyl ratylate Ethyl laurate	C. H. C. H. O.	,56, 20)	Gorgev. J. 1, 561
6. 68	11 .0 2	.8071, 190	Delfis. J. 7, 26.
Ethyl myristate	C ₂ H ₅ . C ₁₄ H ₂₇ O ₂	.864	Playlair, A.C.P. 65
			158.

6th. Aldehydes of the Acetic Series.

Name.			F	ORMULA.	Sp. Gravity.	Аттнова	IY.
Acetic	aldehyde.	B. 20°.8_	C ₂ H ₄	O	 .7900, 18°	Liebig. A. C	- P. 14
6.1	6.6		4.6	Control	 .79442, 5 .1)		
4.6	6.6		6.	0.1.	 .79888, 55.6	Kopp, P.	1. 70
1.1	6.6		6.6		,S0092, 0°)	13.7.	
	6.6		6.6		.50551, 0°		R. 27
4.6	6.6		6.4		 .700, 150		r. J I
	44		6.4		.8217, 5 -10°)	
4.6	4.6		4.4		.8173, 108-158	Regnault	P. A
4.6	1.1		6.6		.8130, 15°-20°		
4.6	6.6		4.4				C S
1.6	4.4		4.4		,507, 112	Wurtz.	
6.6	4.6		+ 4		.7032, 10	Landolt	
6.6	6.6				.7799, 20°	Bruhl. Bei.	4, 782

		1	1
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Acetic aldehyde	C ₂ H ₄ O	.79509, 10°)	
	- ((. 79138, 13°	Perkin. J. P. C.
		78761, 16°) 81312, —5°)	(2), 32, 523.
	"	81512, —5° .80561, 0°	
"		.80058, 4° }	Perkin. J. C. S. 51,
" " ————		79520, 80	808.
Danaldaharda D 1970	(C II ())	.78826, 13°	75-114 1771 1
Paraldehyde, B. 124°	(C ₂ H ₄ O) ₃	.998, 15°	Kekulé and Zincke. Z. C. 13, 560.
"		$\begin{bmatrix} .9943 \\ .9971 \end{bmatrix}$ 20° $\{$	Two lots. Brühl.
	((9797 1	A. C. P. 203, 1. Schiff. G. C. I. 13,
"		.8739 } 124°.3	177.
((.9909, 19°	Gladstone. Bei. 9,
££		.9982	Louguinine. Ber. 19, ref. 2.
"		.99925, 15°)	Perkin, J. P. C.
T	(C II O)	.99003, 25° ∫	(2), 32, 523.
Isomerofaldehyde. B. 110° Propionic aldehyde.	$C_3H_6O_{}$	1.033, 0° .790, 15°	Bauer. J. 13, 436. Guckelberger. J. 1,
B. 49°.5.	03 116 0	1,100, 10	848.
ti		.8284, 0°	
		.804, 17°	Rossi. A. C. P. 159, 79.
"		.832, 0°)	155, 15.
"		1.8192, 9°.7 }	Pierre and Puchot.
" " ———————————————————————————————————		.7898, 32°.6	Ann. (4), 22, 298.
	*********	.8074, 21°	Linnemann. A.C.P. 161, 23. Brühl. Ber. 13, 1527.
"	66	.8066, 200	
" " ————	(($\begin{bmatrix} .80648, 15^{\circ} \\ .79664, 25^{\circ} \end{bmatrix}$	Perkin. J. P. C. (2), 32, 523.
Butyrie aldehyde. B. 75°		.821, 220	Chancel. C. R. 19, 1440.
		.8341, 0°	Michaelson. J. 17, 336.
	(.8170, 20°	Brühl. A. C. P. 203, 1.
	((.80, 15°	Guckelberger. J. 1, 849.
Isobutyricaldehyde. B.63°	"	.8226, 0°)	040.
((((7919, 27°.75 }	Pierre and Puchot.
" " ———	(.7638, 50°.4	Z. C. 13, 255.
((((((((((((((((((((("	.7950, 20° .803, 20°	Urech. Ber. 12, 1744.
		.805, 20	Linnemann. Ann. (4), 27, 268.
	"	.7938, 20°	Brühl. A.C.P. 203,1.
ιι ιι	((.8057, 0°	Fossek. M. C. 4, 662.
((((.1000, 20	
	(($.79722, 15^{\circ}$ $.78787, 26^{\circ}$	Perkin. J. P. C. (2), 32, 523.
Polymer of isobutyric al-	(C ₄ H ₈ O) _n	.969, 24°	Urech. Ber. 12, 1744.
dehyde.		010	
Isovaleric aldehyde. B. 92°.5.	C ₅ H ₁₀ O	.818	Trautwein.

==					
	Name.		FORMULA.	Sp. Gravity.	Аптновиту.
1sovalerie	nldehyd	е	C ₅ H ₁₀ O	.820, 22°	Chancel, J. P. C. 36, 447.
4.4	6.4		1.1	.8009, 200	Personne. J. 7, 654.
4.4	6.6				Kopp. A. C. P. 94,
6.6	6.6		44	8057, 170.4	257.
6.6	6.6		44	.8209, 00)	
5.6	4.4			.778, 43°.4 }	Pierre and Puchot.
4.6	4.4			.7485. 71°.9	Ann. (4), 22, 340.
4.4	4.4		44	.768, 12°.5	A. Schröder. Z. C. 14, 510.
4.4	6.6		"	.7984, 200	Bruhl. Bei. 4, 782.
4.6	6.6			.8061, 25°	Gladstone. Bei. 9, 249.
**	4.6		44	.7998, 20°	Landolt. P. A. 122, 556.
6.6	6.6		44	80405, 15°)	Perkin. J. P. C.
4.6	6.6		.4	. 79607, 25°	(2), 32, 523.
Polymer of	f valeral.	B. 215°	(C ₅ H ₁₀ O) _n	.90	Wanklyn, J. 22, 530.
Isomer of	capralde B. 180°		C ₆ H ₁₂ O	.842, 15°	
Oenanthic		de, or	C ₇ H ₁₄ O	8271, 7°	Bussy. J. P. C. 37, 92.
11	44			.827, 17°	Williamson. J. 1, 565.
4.6	"		4.6	.823, 16°	
44	4.4		"	8495, 20°	Bruhl. A. C. P. 203, 1.
6.6	4.4		16		
s 6	4.4				Perkin, Jr. Ber. 15,
. 6	4.6			8099, 35°)	2802.
1.6	6.6		44	82264, 15°	Perkin, J. P. C.
1.6 T	44		44	81578, 25°	(2), 32, 523.
Isomer of	B. 161°	-164°.		.835, 14°	Fittig. J. 13, 319.
Caprylie a		B.178°	C ₈ II ₁₆ O	.818, 19°	Bouis. J. 8, 524. Limpricht. A. C. P. 93, 242.
Fuzzlet el	dahvdo	R 919	C ₁₁ H ₂₂ O	.8497, 15°	Williams, J. 11, 443.
Isomer of	myristi	c nlde-	$C_{14}^{11} H_{28}^{22} O_{}$.8274, 30°)	Perkin, Jr. J. C. S.
hyde.	milistr	11	14 11 28	.8258, 85°	43, 71.
			C ₂₁ H ₄₀ O		1.5, 11.
ing com	pound	1015	21 440	.8665, 30° }	Perkin, Jr. J.C.S.
1112 (1111	pound.	+4	1.	.8637, 35°	43, 72.
				, , , , , ,	7

7th. Ketones of the Paraffin Series.

Name.			FORMULA		Sp. Gravity.	AUTHORITY.	
Dimethy tone.	l ketoi B. 56°.		ace-	C H ₃ . C O. C I	I ₃	.7921, 18°	Liebig. Gm. H.
٤ ډ	6.4		"			.8144, 00)	Kopp. P. A. 72,
4.6	4.6		"	6.6		.79945, 13°.9	239.
4.6	11		"	**		.790, 15°	Linnemann. A. C. P. 143, 349.
4.4	"		"			.8008, 15°	Mendelejeff. J. 13,7.
4.4	6.6		"	11		.7938, 18°)	Linnemann. A. C.
4.6	4.6		"	"			P. 161, 18.
4.6				"		.7998, 15°	Grodzki and Krä- mer. Z. A. C.
						01070 00	14, 103.
	"					.81858, 0°	Thorpe. J. C. S.
4.6	16			"		.75369, 56°.53	37, 371.
	4.6		//	"		.7920, 20°	Brühl. Ber. 13, 1527.
4.6	4.4			11		.7489, 56°.3	Zander. A. C. P. 214, 181.
"	"		"	11		.7506, 56°	Schiff. G. C. I. 13,
4.4	6.6					.79652, 15°)	Portsin I P ()
6.6	1.6			"		.78669, 25°	Perkin. J. P. C. (2), 32, 523.
Methyl				$C H_3$. $C O$. $C_2 H$	I ₅	.838, 19°	Fittig. J. 12, 341.
metny	l acetor	ie. D	. 100.	66		.8125, 13°	Frankland and Dun
						.0120, 10	Frankland and Duppa. J. 18, 309.
4.6	4.6	4.6		6.6		.824, 00	Popoff. J. 20, 399.
**	44			1.6		.8063, 15°.3	Grimm. Z. C. 14, 174.
	4.6	44		13		.8045, 19°.8	Schramm. Ber. 16, 1581.
Diethyl pione.	ketone B. 104		pro-	C ₂ H ₅ . C O. C ₂ H	I ₅	.811, 11°.5	Genther. J. 20, 455.
* 44	4.4	4.4		11		.8145, 00)	Chapman and Smith.
6.6	11	16		11		.8015, 15° }	J. 20, 458.
44	"	4.6		11		.813, 20°	Smith. B. S. C. 18, 321.
4.4		4.4		£ £		.829, 0°)	(Wagner and Saytz-
4.6	66	4.6		"		.811, 19° }	eff. A. C. P.
"	**	٤٤				.8335, 0°	(179, 323. Chancel. C. R. 99,
Methyl p	oropyl l	ceton	e.	C H ₃ , C O, C ₃ H	I ₇	.8078, 18°.5	1055. Grimm. Z. C. 14,
4.6		ь.	103°.	11		897 00	174. Friedel I 11 205
**				"		.827, 0° .842, 19°	Friedel. J. 11, 295. Fittig. J. 12, 341.
	11			"		.8132, 13° (Frankland and Dup-
4.6	4.6	4.4		"		.8040, 22° }	pa. J. 18, 307.
4.6	"	"		**		.815, 17°.5	Popoff. A. C. P. 161, 285.
		4.6		£ ¢		000 00	(Wagnerand Saytz-
"	"	"		"		.828, 0° }	eff. A. C. P. 179, 323.
i i	t f	"		"		.8264, 0°	Chancel. C. R. 99, 1055.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl propyl ketone	CH. CO C. H.	.81238 } 15°)	
Methy propy Retune	(1)	.81233 } 15° }	Dalata I D O
44 44		.80447 1 250	Perkin, J. P. C.
11 11 11	6.	.80423)	(2), 32, 523.
Methyl isopropyl ketone.		.8090, 13°	Frankland and Dup-
В. 95°.	4.6	.815, 15°	pa. J. 18, 309. Münch. A. C. P.
	II.	. 00 00	180, 337.
tt tt tt	11	.822, 0°}	Wischnegradsky, A. C. P. 190, 341.
		.8123, 0° }	Winogradow, A.C.
		.8051, 190 }	P. 191, 125.
Ketone from amylene bro- mide. B. 76°-81°.		.832, 0°	Bouchardat. Ber. 14, 2261.
Ethyl propyl ketone. B. 123°.	С ₂ Н ₅ . С О. С ₃ Н ₇	.818, 17°.5	Popotf. A. C. P. 161, 285.
11.1.0		.833, 21°.8	Occhsner de Co- ninck, C. R. 82,93.
Methyl butyl ketone.	C II., CO, C, II.	.8208, 00)	Wanklynand Erlen-
" " B. 128°_		.7846, 50° }	meyer, J. 16, 522.
		.833, 0°	Friedel. J. 11, 295.
Methyl isobutyl ketone.		.81892, 0°	Frankland and
B. 111°. Methyl secondary butyl		.S11, 0°	Duppa, J. 20, 395. G. Wagner. Ber. 18,
ketone. B. 118°.	"	.8181, 14°.5	ref. 180. Wislicenus, A.C.P.
Methyl tertiary butyl ke-	C Π_3 , C O, C (C Π_3) $_3$.7999, 16°	219, 308. Fittig. J. 12, 347.
tone, or pinacolin. B. 106°.			
16 66 66 45	4.	830, 00}	The summanations
44 44 44		791, 50° }	Two preparations. Butlerow. A.C.
6.6 6.6 6.4		823, 0° }	P. 174, 127.
44 44 44		787, 50°)	
*** *** *** *** ***			Schiff. Bei. 9, 559.
Ketone from hexylene. B. 125°.	C ₆ H ₁₂ O		L. Henry, C. R. 97, 260.
Dipropyl ketone, or butyrone. B. 144°.	C ₃ II ₇ . C O. C ₃ H ₇		Chancel, Ann. (3), 12, 146,
			597.
	66		Kurtz. A. C. P. 161, 207.
11 11 11	11	53045, 4°) 52165, 15° }	Perkin, J. C. S. 49,
64 40 66		.81452, 25°	323.
	11		Munch. A.C.P. 150,
Diisopropyl ketone. B. 125°.			331.
Methyl amyl ketone. B. 155°-156°.	C H ₃ . C Ō. C ₅ II ₁₁	813, 20°	E. Schmidt. Ber. 5, 597.
B. 182°.5	· ?	.898, 120	
Methyl isoamyl ketone.	44	428 }	
" " B.144		500 }	Popotl. J. 18, 314.
		.8747, 17°	Grimshaw, A. C. P. 166, 163.
41 11 11 -	- (1	\$175, 17°.2	Rohn. A. C. P. 190,

NAME.	FORMULA.	Sp. Gravity.	Authority.
Methylisopropyl acetone _	C II ₃ . C O. C ₅ H ₁₁	.815, 20°	Romburgh. J. C. S. 52, 232.
Methyldiethylcarbyl ketone, or diethyl acctone. B. 138°.	ш	.8171, 22°	Frankland and Duppa. J. 18, 306.
Methyl amyl pinacolin. "B. 132°_		.842, 0° } .825, 21° }	Wischnegradsky. A. C. P. 178, 103.
Ethyl butyl pinacolin. "B. 126°-	C_2H_5 . $C(CH_3)_{3-}$.831, 0° .810, 21°	
Methyl hexyl ketone. "B. 171°_	C H ₃ . C O. C ₆ H ₁₃	.817, 23° .8185, 20°	Städeler. J. 10, 361. Brühl. A. C. P. 203, 1.
	"	$.6843$ $.6844$ $\}$ 172°.3	Schiff. G. C. 1. 13, 177.
и и В. 209°_		.8430, 15°	Poetsch. A.C.P.218, 56.
tt tt		.8351, 0°	Béhal. B. S. C. 47, 34.
Methyl butyrone. B. 180°.	C ₈ H ₁₆ O	.827, 16°	Limpricht. J. 11,
Isopropyl isobutyl ketone. B. 160°.	C ₃ H ₇ . C O. C ₄ H ₉		296. Williams. C. N. 39, 41.
Ethyl amyl pinacolin. "B.151°-	C ₂ H ₅ . C ₁ O. C ₅ H ₁₁	.845, 0° } .829, 21° }	Wischnegradsky. A. C. P. 178, 103.
Diisobutyl ketone, or vale-	$C_4 H_9$. $C O. C_4 H_{9}.$.833, 20°	E. Schmidt. Ber. 5,
rone. B. 181°. Methyl octyl ketone. B. 211°.	C H ₃ . C O. C ₈ H ₁₇		597. Jourdan. Ber. 13, 434.
11 11 11		$.8379, 3^{\circ}.5$ $.8247, 20^{\circ}$ }	Krafft. Ber.15, 1687.
Diamyl ketone, or caprone.	C_5 H_{11} . C O . C_5 H_{11}	.822, 20°	E. Schmidt. Ber. 5, 597.
B. 220°.		.828, 20°	Limpricht. J. 11, 296.
Methyl nonyl ketone, or methyl caprinol. B. 224°.	$\left\{ \begin{array}{l} \mathrm{C} \ \mathrm{H}_3. \ \mathrm{C} \ \mathrm{O}. \ \mathrm{C}_9 \mathrm{H}_{19^{}} \\ \end{array} \right.$.8295, 17°.5 .8281, 18°.7	Gorup-Besanez and Grimm. Z. C. 13, 290.
		.8268, 20°.5	Giesecke. Z. U. 13,
Dihexyl ketone, or oenan-	C ₆ H ₁₃ . C O. C ₆ H ₁₃	.825, 30°	v. Uslar and See-
thone. B. 264°.		.8870, 15°	kamp. J. 11, 299. Poetsch. A. C. P. 218, 56.
Methyl diheptylcarbyl ketone. B. 302°.			Jourdan. Ber. 13,
Laurone. M. 69°			Krafft. Ber. 15, 1711.
Myristone. M. 76°.3	$\mathrm{C}_{13}\mathrm{H}_{27}$. $\mathrm{C}_{13}\mathrm{G}_{27}$.7888, 90°.9) .8013, 76°.3) .7986, 80°.8 }	
6.6	C H CO C H	7007 829 8	
Palmitone. M. 82°.8		.7947, 90°.9	
Stearone. M. 88°.4	C ₁₇ H ₃₅ . C O. C ₁₇ H ₃₅ .	.7979, 88°.4 .7932, 95° }	

8th. Oxides, Alcohols, and Ethers of the Olefines.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethylene oxide	C ₂ H ₄ . O	.8945, 0°	Wurtz. J. 16, 486.
Propylene oxide. Butylene oxide. B. 56°,5.	C ₄ H ₆ . O	.859, 0°	Oser. J. 13, 448. Eltekow. J. C. S.
Isobutylene oxide. B. 51°.5.	"		44, 566. Eltekow. Ber. 16, 397.
Amylene oxide. B. 95° Trimethylethylene oxide.	C ₅ H ₁₀ . O	.824, 0° .8293, 0°	Bauer. J. 13, 451. Eltekow. Ber. 16,
B. 75°.5. Methylpropylethyleneox- ide. B. 110°.	C ₆ H ₁₂ . O	.8236, 13°.8	29, 553,
δ. Hexylene oxide. B. 103°—104°.		.8739, 0°	Lipp. Ber. 18, 3284.
Octylene oxide. B. 145°	С ₈ П ₁₆ . О	.831, 15°	13, 411,
Diamylene oxide. B. 185°.	C ₁₀ H ₂₀ . O		Schneider, A. C. P. 157, 221.
Diethylene dioxide. B. 102°.	C ₄ H ₈ O ₂	1.0482, 0°	Wurtz. J. 15, 423.
Ethylene ethylidene dioxide. B. 82°.5.	6.	1.0000, 00	Wurtz. J. 14, 656.
Ethylene glycol. B. 197°.	С ₂ Н ₄ . (О Н) ₂	1.125, 0°	Wurtz. Ann. (3),
11 11		.9444, 195°	55, 410. Ramsny. J. C. S. 35, 463.
(, (,	66	1.1120s, 25°	Perkin. J. P. C. (2), 32, 523.
Trimethylene glycol. B. 216°.	C ₃ H ₆ , (O H) ₂		Brühl. Bei. 4, 782. Reboul. C. R. 79, 169.
			Freund. J. C. S. 42, 156.
11 11	66	1.0625, 0° } 	Zander, A. C. P. 214, 181.
Propylene glycol. B. 188°	"	$\left\{\begin{array}{c} 1.051,0^{\circ} \\ 1.038,25^{\circ} \end{array}\right\}$	Wurtz. J.10, 464.
	46		Belohoubek, Ber. 12, 1873.
((((44	1.047, 19°	Loebisch and Looss. J. C. S. 42, 377.
64 64	(1	1.0527, 0° } .8899, 188°.5	Zander, A. C. P. 214, 181.
Butylene glycol, B.183°.5 Dimethylethyleneglycol,	C ₄ H ₈ . (O II) ₂		
B. 207 .5.		1.0259, 0°	473.
Ethylethylene glycol. B. 191°.5	11	1.0189, 0° }	{ Grabowsky and Saytzeff. A. C. P. 179, 333.
Isobutylene glycol, B.177		1.0129, 0° }	Nevolé. C. R. 83

	,		
Name.	FORMULA.	Sp. Gravity	AUTHORITY.
Amylene glyeol. B. 177°_	C ₅ H ₁₀ . (O H) ₂	.987, 0°	Wurtz. J. 11, 424.
Ethylmethylethylene glycol. B. 187°.5.	"	.9945, 0° }	Wagner and Sayt- zeff. A. C. P. 179, 309.
Isopropylethylene gly- eol. B. 206°.		.9987, 0° }	Flavitsky. A.C.P. 179, 353.
Methylpropylethylene glycol. B. 207°.	C ₆ H ₁₂ . (O H) ₂	.9669, 0°	Wurtz. J. 17, 516.
Dimethylbutyleneglycol.	"	.9759, 0° } .9604, 24° }	Sorokin. B. S. C. 31, 72.
Pseudohexylene glycol		.9638, 0°)	Wurtz. J. 17, 513.
δ. Hexylene glycol Pinakone. B. 177°	"	.9809, 0° .96, 15°	Lipp. Ber. 18, 3283. Linnemann. J. 18,
εε		.96718, 15°	315. Perkin. J. P. C.
Oetylene glycol. "B. 235°-240°_	C ₈ H ₁₆ ; (O H) ₂	.96087, 25° } .932, 0° } .920, 29° }	(2), 32, 523. De Clermont. J. 17,
Butyrone pinakone	C ₁₄ H ₂₈ . (O H) ₂	.87, 20°	517. Kurtz. A. C. P. 161, 205.
Diethylene alcohol Triethylene alcohol	$\begin{bmatrix} C_4 & H_{10} & O_3 \\ C_6 & H_{14} & O_4 \end{bmatrix}$	1.132, 0°	Wurtz. J. 16, 489.
	6 114 04	1,100	
Methylene dimethyl ether, or methylal.	C H ₂ . (O C H ₃) ₂	.8551	Malaguti. Ann. (2), 70, 394.
u u u	"	.8604, 20°	Brühl. A. C. P. 203, 1.
ιι ιι ιι		.854, 20°	Arnhold. A. C. P. 240, 192.
Methylene diethyl ether			Greene. J. Am. C. S. 1, 523.
		.8275, 16°.5	L. Henry. C. R. 101, 599.
" "		.834, 20°	Arnhold. A. C. P. 240, 192.
Methylene dipropyl ether- Methylene diisopropyl	$C H_2 (O C_3 H_7)_2$.8345, 20° .831, 20°	
Methylene diisobutyl	C H ₂ (O C ₄ H ₉) ₂	.825, 20°	" "
ether. Methylenediisoamylether Methylene disetyl ether	$\begin{array}{c} C \ H_2 \ (O \ C_5 \ H_{11})_2 \\ C \ H_2 \ (O \ C_8 \ H_{17})_2 \\ C_2 \ H_4 \ O \ H \ O \ C_2 \ H_5 \end{array}$.835, 20°	
Methylene dicetyl ether Ethylene monethyl ether_	$C_2 H_4 O H O C_2 H_5$.846, 20° .926, 13°	Demole. Ber. 9, 746.
Ethylene diethyl ether	$C_2 H_4$. (O $C_2 H_5$)2	.7993, 0°	Wurtz. J. 11, 423.
Ethidene dimethyl ether, or dimethyl acetal.	C ₂ H ₄ . (O C H ₃) ₂		· ·
		.8674, 1° .8787, 0°)	Alsberg. J. 17, 485.
(.8590, 14° [Dancar I 17 494
	"	.8503, 22° } .8497, 23° }	Dancer. J. 17, 484.
" " " " -		.8476, 25° J .8554, 15°	
'		1	ki. Ber. 9, 1930.

-							
NAME.			FORMULA		SP. GRAVITY.	AUTHORITY.	
or dime	ethylno	etul.		C2 II4. (O C II			Bachmann, A. C. P. 218, 49.
1.6		6 8		4.6		.8013, 62°,7	Schiff. G. C. I. 13,
6 f	4 E 4 6	6.6				.85739, 15° .84764, 25°	Perkin. J. P. C. (2), 32, 523.
Ethidene		ethylo	eth-	$C_2H_4.(OCH_3)(OCH_3)$	(C_2H_5)	.8535, 0°	Wurtz. J. 9, 597.
6.6		1.6		4.6		.8433, 220	Bachmann. A. C. P.
. 6	1.6	a 6		*4		.8655, 22°	218, 49. Bachmann. A. C. P. 218, 53.
Ethidene	diethyl	l ether	, or	$\mathrm{C_2~II_4}.~\mathrm{(O~C_2~II}$	5 2	.842, 210	Dobereiner.
4.6	6.6	4.4		6.6		.823, 20°	Liebig. A.C. P.5, 25.
6.6	6.6	6.6		4.4		.821, 220,4	Stas. J. 1, 697.
4.6	11	11		4.6		.8314, 20°	Brühl. A. C. P. 203, 1.
6.6	3.3	6.6		1.6		.829, 13°	Engel and Girtrd. C. R. 90, 692.
6.6	6.6	6.1		6.6		.7363 1039.2	(Schiff. G. C. I. 13,
6.6	6.6	11		4.6		. 1909)	177.
4.6	4.6	6.6		4.6			Laatsch. A. C. P. 218, 26.
4.6	11	11		4.6			Bachmann, A. C. P. 218, 49.
6.6	£	£ £		6.6		.83187, 15°) .82334, 25°)	Perkin. J. P. C. (2), 32, 523.
Ethidene				C2 H4. (O C3 H	7)2	.825, 220.5	Girard. Ber. 13, 2232.
Ethidone		ityl etl:	ier,	C_2 H_4 . (O C_4 H_5	9)2	.816, 220	4.6
Ethidene	itylacei			C2 II4. (O C5 H)	.8317, 150	Alsberg, J. 17, 485.
	ncetal.		101	2 (0	11/2	.8012, 22°	Bachmann, A.C.P. 218, 49.
Propiden	e dipro	pyl etl	her	C ₃ H ₆ . O C ₃ H	7)2 -	.8495, 0°	Schudel, J. C. S. 16, 1283,
Butidene or isob	dieth;		ier,	C_4 H_8 . (O C_2 H	(₅) ₂	.9957, 12°.1	Oeconomides. Ber. 14, 1201.
Dimethy	l valera	1		C ₅ H ₁₀ . (O C H	3 2 ==	.852, 100	Alsherg. J. 17, 486.
Diethyl v				C H ₁₀ . (O C ₂ I	15)2	.835, 12° .849, 7°	Alsberg, J. 17, 485.
Diamyl v Ethidene				С ₅ H ₁₀ . (О С ₂ Н С ₄ H ₁₀ . (О С ₅ Н С ₄ H ₈ О. (О О	$H_3^{11}_3^2$.	.853, 120,5	
Ethidene	oxyeth	vlate.		C, H, O O C,	11,), =	.591, 110	4.6
Ethidene				C, H, O O C,	117/2-	,595, 14%	4.6
Ethidene					119 2	.879, 11	66 66
Ethidene	oxyiso	nınyla	te	C ₄ H ₈ O (O C ₅	H _{11 2}	.874, 11°	
Ethylene	discet	ute		C ₂ H ₄ . (C ₂ H ₃ C	0,)	1.128,00	Wurtz. J. 12, 455.
4.	11			11	2.2	1.1561, 208	Bruhl. B i. 4, 782.
6.6	6 a			6.6		1.11076, 15°	Perkin. J. P. C.
* 1	4.4			46		1.10183, 250	(2), 32, 523.
Ethylene	· diprot	ionnte		C2 H4. (C3 H5	2)2	1.05110, 15°	6.6
Ethylen	dilation	rota	-	CHCH)]	1,04566, 25° 1 1,021, 0°	Wurtz, J. 12, 486,
Propyla	ie diace	tate		C ₂ H ₄ . (C ₄ H ₇ C ₃ H ₆ . (C ₂ H ₃	0, 2	1.109, 112	Wurtz. J. 10, 464.

NAME.	Formula.	Sp. Gravity.	Аптногиту.
Propylene diacetate	$C_3 H_6 \cdot (C_2 H_3 O_2)_{2}$	1.070, 19°	Reboul. C. R. 79,
Propylene divalerate	$C_3 H_6 \cdot (C_5 H_9 O_2)_{2}$.98, 12°	Reboul. J. C. S. 36, 127.
β. Butylene monacetate	$\mathrm{C_4H_8.~O~H.~(C_2H_3O_2)}$	1.055, 0°	Wurtz. C. R. 97, 473.
Hexylene diacetate Pseudohexylene diacetate	C ₆ H ₁₂ . (C ₂ H ₃ O ₂) ₂	1.014, 0° 1.009, 0°	
Ethidene diacetate	C2 H4. (C2 H3 O2)2		Schiff. Ber. 9, 306.
" "		1.073, 15°	S. 44, 452. Rübencamp. A. C.
* * * * * * * * * * * * * * * * * * * *		,	P. 225, 267.
Ethidene acetate propionate.		$\left\{\begin{array}{c} 1.07,10^{\circ} \\ 1.046 $	Geuther. J.17, 329. Two preparations. Rübencamp. A.
nate. " Ethidene dipropionate			C. P. 225, 267. Rübencamp. A. C.
			P. 225, 267. (Two preparations.
Ethidene acetate butyrate_	$ \begin{bmatrix} C_2 & H_4 \cdot & (C_2 & H_3 & O_2) \\ & (C_4 & H_7 & O_2) \end{bmatrix} $	1.016, 15° }	Rübencamp. A. C. P. 225, 267.
Ethidene dibutyrate		.9855, 15°	Rübencamp. A.C. P. 225, 267.
Ethidene acetate valerate_	(C. H. O.)	.991, 15°	
Ethidene divalerateEthidene oxyformate	$C_2 H_4 \cdot (C_5 H_9 O_2)_{2^{}}$.947, 15° 1.134, 21°	Geuther. A. C. P.
Ethidene oxya etate		1.071, 16°	226, 223.
Ethidene oxypropionate	C ₁₀ H ₁₈ O ₅	1.027, 26°	
Ethidene oxybutyrate	012 1122 05	.00x, 40	

9th. Ethers of Carbonic Acid.

NAME.		Form	IULA.	Sp. Gravity.	AUTHORITY.			
Me	thyl	carbon	ate	(C H ₃) ₂ . C	O ₃	1.069, 22°	Councler.	Ber. 13,
	16	"		"		1.065, 17°		Ber. 13,
	"	"		"	the day and any over our to	1.060	Schreiner.	Ber. 13,
Me	thyl	ethylo	earbonate. B. 104°.	C H ₃ . C ₂ I	I ₅ . C O ₃	1.0372	"	"
	66	6.6	" B. 115°.			1.0016	6.6	66
Etl	aylo	earbona	te	$(C_2 H_5)_2$. (C O ³	.975, 19°	Ettling.	A. C. P.
	44	4.6		"		.9998, 0° }	Kopp. A	. C. P. 95.
	"	44		"		.9780, 200 }	307.	,
	"	"		"		.9762, 200	Brühl.	A. C. P.
	et.	"		ιι		.9735	903 1	

Name.	FORMULA.	SP. GRAVITY.	Аптиовиту.
Ethyl propyl carbonate Propyl carbonate Butyl carbonate " " " Isobutyl carbonate Isobutyl carbonate Ethyl orthocarbonate Propyl orthocarbonate Isobutyl orthocarbonate	$(C_3 H_7)_2$, $C O_3$	$\begin{array}{c} .968, 22^{\circ} \\ .949, 17^{\circ} \\ .9407, 0^{\circ} \\ .9244, 20^{\circ} \\ .9111, 40^{\circ} \\ .919, 15^{\circ} \\ .9144 \\ .9065, 15^{\circ}.5 \\ .912, 15^{\circ} \\ .925 \\ .911, 8^{\circ} \\ \end{array}$	746. Rose. Ber. 13, 2418. Lieben and Rossi. A. C. P. 165, 109. Rose. Ber. 13, 2418. Medlock. J. 2, 430. Bruce. J. 5, 605. Röse. Ber. 13, 2418. Bassett. J. 17, 477. Rose. Ber. 13, 2419.

10th. Acids and Ethers of the Oxalic Series.

Name.	FORMULA.	SP. GRAVITY.	Антновиту.	
Oxalic acid	C., H., O.	2.00, 9°	Husemann, B. D. Z.	
CARTIC delda	C. H. O., 2 H. O	1,507	Richter.	
11 11	16	1,622	Playfair and Joule. M. C. S. 2, 401.	
11 11	66	1.629	Buignet. J. 14, 15.	
44 44	4.6	1.63.9°	Husemann, B. D. Z.	
	46	1.680	Schroder. Ber. 10, 851.	
tt (t	((1.531		
tt tt	14	1.57	W. C. Smith. Am. J. P. 53, 145.	
((((4.6	1 653 189.5	Wilson. F. W. C.	
Succinic acid	C. H. O.	1.55	Richter.	
ti ti	(1	1.529, 9°, sub-		
		limed	Husemann R D	
11 11	11	1.552, 9°, cryst.) Z.	
11 11	4.6	1,507	Schroder. Ber. 10, 851.	
Ethyl oxalic acid			Auschutz. Ber. 16, 2412.	
Pyrotartaric reid Methylisopropylmalonie	C ₅ 11 ₄ O ₄	1.408)		
Matheliament lunlanie	CHO	.990, 15°		
acid.	7 1112 04	,	S. 52, 232.	
Sebreie reid	C., H., O.	1.1317, fused =		
La Di Cic i Cia	. 10 18 4			
			1	
Methyl oxalate	C4 H6 O4	1.1566, 50°	Kopp. A. C. P. 95,	
() ()	44			

NAME.	FORMULA.	Sp. Gravity.	Authority.
Methyl ethyl oxalate		1.27, 12° 1.15565, 0° .94693, 173°.7}	Chancel. J. 3, 470. Wiens. Königsberg Inaug. Diss. 1887.
Ethyl oxalete	"	1.0929, 7°.5 1.086, 12° 1.1010, 5°—10°	Dumas and Boullay. P. A. 12, 430. Delffs. J. 7, 26.
44 44 44 44 44 44 44 44 44 44 44 44 44	 	1.0953, 10°-15° 1.0898, 15°-20° 1.1016, 0° } 1.0815, 18°.2 } 1.0824, 15°	Regnault. P. A.62, 50. Kopp. A. C. P. 94, 257. Mendelejeff. J. 13, 7.
	"	1.0793, 20° 1.1023 1.1029 1.1030 0° {	Brühl. A. C. P. 203, 1. Weger. A. C. P. 221, 61.
" " Propyl oxalate	C ₈ H ₁₄ O ₄	1.08563, 15° 1.07609, 25° 1.018, 22°	Perkin. J. P. C. (2), 32, 523. Cahours. Les Mondes, 32, 280.
u u	C ₁₀ H ₁₈ O ₄	1.0384, 0° } .80601, 213°.5 } 1.002, 14°	Wiens. Königsberg Inaug. Diss. 1887. Cahours. C. C. 5, 20.
Ethyl heptyl oxalate	C ₁₁ H ₂₀ O ₄	1.0099, 0° } .780, 243°.4 }	Wiens. Königsberg Inaug. Diss. 1887.
Amyl oxalate	C_{12} H_{22} O_4	.75493, 263°.71 .968, 11° .981435, 0° .72669, 284°.4}	Delffs. J. 7, 26. Wiens. Königsberg Inaug. Diss.
Propyl octyl oxalate	C ₁₃ H ₂₄ O ₄	.97245, 0° .71512, 291°.1_ 1.135, 22°	(1887.) "" Osterland. J. C. S. (2) 12 142
("	1.16028, 15° 1.15110, 25° }	(2), 13, 142. Perkin. J. P. C. (2), 32, 523. Wiens. Königs- berg Inaug. Diss.
Ethyl malonate	C ₇ H ₁₂ O ₄	.95686, 180°.7 f 1.068, 18° 1.06104, 15°)	(1887. Conrad and Bischoff. A. C. P. 204, 127. Perkin. J. P. C.
tt tt	11 11 11 11 11 11 11 11 11 11 11 11 11	1.05248, 25° } 1.07607, 0°	(2), 32, 523. (Wiens. Königsberg Inaug. Diss. 1887.
Ethyl propyl malonate Propyl malonate	$C_{8} \stackrel{\text{H}_{14}}{}_{\iota\iota} O_{4}$ $C_{9} \stackrel{\text{H}_{16}}{}_{\iota\iota} O_{4}$	1.04977, 0° .83542, 211° 1.02705, 0° .79966, 228°.3_	" " " " " " " " " " " " " " " " " " "
Butyl malonate	C ₁₁ H ₂₀ O ₄	1.0049, 0° .800073, 251°.5	}

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl succinate	C ₆ H ₁₀ O ₄	1.1179, 20°	Fehling. A.C. P. 49,
11 11	44	1.1162, 18°	Weger. A. C. P.
11 11	(1	.91200, 195°.2. 1.12611, 15°	§ 221, 61. Perkin. J. P. C.
Methyl ethyl succinate	C ₇ H ₁₂ O ₄	1.11718, 25° } 1.0925, 0°	(2), 32, 523. Weger. A. C. P.
Methyl ethyl succinate	44	.86482, 2080.2	221, 61.
Ethyl succinate	C ₈ H ₁₄ O ₄	1.036	D'Arcet. Ann. (2), 58, 291.
tt tt		$\{1.0718, 0^{\circ} = 1.0475, 25^{\circ}.5\}$	Kopp. A. C. P. 95,
11 11		1.0592) 1.0600 (0°	307.
11 11	11	1.0600 \$.82726, 215°.4	Weger. A. C. P. 221, 61.
44 (4	((1.04645, 150	Perkin. J. P. C. (2), 32, 523.
	G II 0	1.03832, 25° }	(2), 32, 523. (Wiens. Königs-
Ethyl propyl succinate	C ₉ II ₁₆ O ₄	$\{0.03866, 0^{\circ} - 1, 81476, 231^{\circ}, 1\}$	berg Inaug. Diss. 1887.
Propyl succinate	C ₁₀ H ₁₈ O ₄	1.0189, 0° .78183, 247°.1	} " "
Isopropyl succinate	46	1,009,00	Silva. C. R. 69, 416.
44	"	.997, 18°.5 }	(Wiens. Konigs-
Ethyl butyl succinate		$\left. \begin{array}{l} 1.02178, 0^{\circ} \\ .78572, 247^{\circ} \end{array} \right\}$	berg Inaug. Diss. 1887.
Propyl butyl succinate	C ₁₁ H ₂₀ O ₄	1.0106, 0° .77587, 258°.7	} "
Isobutyl succinate	C ₁₂ H ₂₂ O ₄	.97374, 15° .96670, 25°	Perkin. J. P. C. (2), 32, 523. (Wiens. Konigs-
Ethyl heptyl succinate	C ₁₃ II ₂₄ O ₄	.98503, 0° } .73134,291°.4}	Wiens. Konigs- berg Innug. Diss. 1887.
Isoamyl succinate	C ₁₄ H ₂₆ O ₄	.9612, 13°	Gunreschi and Del Zanna, Ber. 12, 1699.
Heptyl succinute	C ₁₈ H ₃₄ O ₄	.951846, 0° } .68174, 350°.1}	Wiens, Konigs- berg Innug, Diss, 1887.
Ethyl methylmalonate	C ₈ H ₁₄ O ₄	1.021, 220	Conrad and Bischoff. A. C. P. 201, 202.
		1.02132, 15° }	Perkin. J. P. C.
Methyl dimethylsuccinate	44	1.01295, 25° } 1.0568, 16°	(2), 32, 523. Barnstein. A. C. P.
	.,		242, 126.
Methyl ethylsuccinate		1.051, 34°	Polko, A. C. P. 242, 113.
Ethyl pyrotartrate	C9 II 16 O4	1.025, 21° 1.01555, 15° }	Reboul Ber. 9, 1129. Perkin. J. P. C.
Ethyl othylmalonate	4.6	1.01126, 25° } 1.008, 18°	(2), 32, 523. Conrad and Bischoff.
(1		1.01285, 15°)	A. C. P. 204, 185. Perkin. J. P. C.
Ethyl dimethylmalonate	11	1.00441, 25° } .9965, 15°	(2), 32, 523. Thorne. Ber. 14,
min and the minimum of the	22222		1644.

		1	
NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
Ethyl dimethylmalonate	C ₉ H ₁₆ O ₄	1.00153, 15° }	Perkin. J. P. C. (2), 32, 523.
Ethyl adipate	C ₁₀ H ₁₈ O ₄	.99356, 25°	Malaguti. A. C. P. 56, 306.
Ethyl methylethylmalo-	(.994, 15°	Conrad and Bischoff. Ber. 13, 595.
Ethyl propylmalonate		.99309, 15° .98541, 25°	Perkin. J. P. C. (2), 32, 523.
Ethyl isopropylmalonate		.997, 20°	Conrad and Bisehoff. Ber. 13, 595.
ιι ιι		.99271, 15° .98521, 25°	Perkin. J. P. C. (2), 32, 523.
Ethyl dimethylsuccinate _		.9976, 17°	Levy and Engländer. A. C. P. 242, 201.
		1.0134, 17°	Barnstein. A. C. P. 242, 126.
Ethyl ethylsuccinate		1.030, 21°	Polko. A. C. P. 242, 113.
Ethyl diethylmalonate	C ₁₁ H ₂₉ O ₄	.990, 16°	Conrad and Bischoff. A. C. P. 204, 139.
	((1.0041,00 }	Shukowski. Ber. 21,
((((.9901, 15° {	ref. 57.
		.99167, 15°) .98441, 25° }	Perkin. J. P. C. (2), 32, 523.
Ethyl isobutylmalonate	(1	.983, 15°	Conrad and Bischoff. Ber. 13, 595.
Ethyl secondary-butyl-malonate.		.988, 15°	Romburgh. Ber. 20, ref. 376
Ethyl methylisopropyl-malonate.	((.990, 15°	Romburgh. Ber. 20, ref. 469.
Methyl subcrate		1.014, 18°	Laurent. Ann. (2), 66, 162.
Ethyl subcrate		1.003, 18°	Laurent. Ann. (2), 166, 160.
((.991, 15°	Hell. B.S. C. 19,365. Perkin. J. P. C.
[[[[[[[[[[[[[[[[[[[[[.97826, 25°	(2), 32, 523. Hell and Wittekind.
Ethyl tetramethylsucci-	"	1.012, 0° { 1.0015, 13°.5 }	Ber. 7, 319.
Methyl sebate	"	.985, 60°, 1	Neison. J. C. S. (3), 1, 316.
Ethyl sebate	C ₁₄ H ₂₆ O ₄	.965, 16°	Neison. J. C. S. (3), 1, 318.
rr	"	.96824, 15° .96049, 25°	Perkin. J. P. C. (2), 32, 523.
Butyl sebate	C ₁₈ H ₃₄ O ₄	.9417, 0° { .9329, 15° }	Gehring. C. R. 104,
Amyl sebate	C ₂₀ H ₃₈ O ₄	.9329, 15° } .951, 18°	1289. Neison. C. N. 32, 298.
Ethyl dioctylmalonate	C ₂₃ H ₄₄ O ₄	.896, 18°	
Ethyl acetomalonate	C ₉ H ₁₄ O ₅	1.080, 23°	Ehrlich. B. S. C. 23, 73.
Ethyl acetosueeinate	C ₁₀ H ₁₆ O ₅	1.079, 21°	Conrad. B. S. C. 23, 73.
11 11		$\left\{ \begin{array}{c} 1.08809, 15^{\circ} \\ 1.08049, 25^{\circ} \end{array} \right\}$	Perkin. J. P. C.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethyl acetoglutarate	C ₁₁ II ₁₈ O ₅	1.0505, 14°.1	pach. A.C. P. 192,
Ethyl B methylacetosue-	4.	1.061, 27°	130. Hardtmuth. A.C.P. 192, 142.
Ethyl a methylacetoglutarate.	C ₁₂ H ₂₀ O ₅	1.043, 20°	Wislicenus and Limpach. A.C. P. 192, 133.
Ethyl dimethylacetosue-			192, 142,
Ethyl 3 ethylacet)succi- nate.		1.064, 16°	Thorne. J. C. S. 39,
Ethyl lactosuccinate	С ₁₁ Н ₁₈ О ₆	1.119,00	Wurtz and Friedel, J. 14, 378.
Ethyl succinosuccinate	C ₁₂ H ₁₆ O ₆	1.4057, 18°	
Ethyl ethidenemalonate	C ₉ II ₁₁ O ₄	1.0435, 15°	Kommenos. A.C.P. 218, 158.

11th. Acids and Ethers of the Glycollic Series.

Name.	FORMULA.	Sp. Gravity.	Антновиту.
Glycollic neid Lactic neid	$C_3 H_4 O_3$	1.197, 13° 1.215, 10°	Cloez. J. 5, 497. Gay Lussac and Pelouze. P. A. 29,
Methyl glycollic neid Ethyl oxyisobutyric neid "" Amyl glycollic neid	C ₆ H ₁₂ O ₃	1.180	Mendelejeff, J. 13,7. Bruhl. Bei. 4, 782. Heintz. J. 12, 359. Helland Waldbauer. Ber. 10, 450.
Methyl glycollate		1.1862	Schreiner. Bei. 3,
Ethyl glycollate			Fahlberg, J. P. C. (2), 7, 340. Schreiner, Bei, 3, 350.
Methyl methylglycollate Ethyl methylglycollate Propyl methylglycollate Methyl ethylglycollate Ethyl ethylglycollate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,0845 1,0746 1,0592 1,0105	Schreiber, Z. C. 13,
	((.9960	168. Schreiner. Bei. 3, 350.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl propylglycollate	C ₆ H ₁₂ O ₃	.9845	Schreiner. Bei. 3, 350.
Ethyl propylglycollate Propyl propylglycollate Methyl lactate	C ₄ H ₁₆ O ₃	.9758 .9678 1.1176	11 11 11 11 11 11 11 11 11 11 11 11 11
Ethyl lactate	$C_5 \stackrel{\text{118}}{\text{H}_{10}} \stackrel{\text{03}}{\text{O}_{3}} =$	$\left\{ \begin{array}{ccc} 1.0542,0^{\circ} & \\ 1.042,13^{\circ} & \end{array} \right\}$	Wurtz and Friedel. J. 14, 373.
Ethyl methyllaetate	C ₆ H ₁₂ O ₃	1.0540	Schreiner. Bei. 3,
Ethyl ethyllaetate	$\begin{bmatrix} C_6 & H_{12} & O_3 & & & \\ C_7 & H_{14} & O_3 & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{bmatrix}$.9203, 0°	Wurtz. J. 12, 294. Schreiner. Bei. 3, 350.
Ethyl oxyisobutyrate	C ₆ H ₁₂ O ₃	.9931, 13° 1.0750	Frankland and Dup- pa. P.T. 1866, 309. Schreiner. Bei. 3,
Ethyl methyloxybutyrate	C ₇ H ₁₄ O ₃	.9768, 13°	350. Frankland and Dup-
t: tt		1.0100	pa. J. 18, 381. Schreiner. Bei. 3, 350.
Ethyl ethyloxybutyrate	C ₈ H ₁₆ O ₃	.930, 19°	Duvillier. Ann. (5), 17, 533. Schreiner. Bei. 3,
Methyl dicthyloxyacetate_		.9896, 16°.5	350. Frankland and Dup-
Ethyl diethyloxyacetate	C ₈ H ₁₁₆ O ₃	.9613, 18°.7 .98	pa. P.T. 1866, 309. L. Henry. B. S. C.
Amyl diethyloxyacetate		.93227, 13°	19, 212. Frankland and Dup- pa. P.T. 1866, 309.
Ethyl amylhydroxalate Ethyl ethylamylhydroxa-	C ₉ H ₁₈ O ₃	.9449, 13°	Frankland and Dup- pa. J. 18, 382. Frankland and Dup-
late. Ethyl diamyloxalate	$C_{11} H_{22} O_3$.9137, 13°	pa. P.T. 1866, 309. Frankland and Dup-
			pa. J. 18, 383.
Ethyl acetoglycollate Ethyl acetolactate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0093, 17° 1.0458, 17°	Heintz. J. 15, 292. Wislicenus. J. 15, 300.
Ethyl propionoglycollate_ Ethyl butyroglycollate	C ₈ H ₁₄ O ₄	1.0052, 22° 1.0288, 22°	Senf. Ber. 14, 2416.
Ethyl isobutyroglycollate Ethyl butyrolactate	C ₉ II ₁₆ O ₄	1.0240, 22°.5 1.024, 0° 1.028, 0°	Wurtz. J. 12, 295. Wurtz. J. 13, 273.
Lactyl ethyl lactate Ethyl diethylglyoxylate	$C_8 H_{14} O_5$ $C_8 H_{16} O_4$.994, 18°	Wurtz and Friedel. J. 14, 377. Schreiber. Z. C. 13,
Oxybutyric lactone	$C_4 \coprod_{\iota\iota} O_2$	1.1441, 0° }	168. Saytzeff Ber. 14, 2688.
	11	1.1302, 20°	Frühling. Ber. 15, 2622.
" " "		1.1295, 10°	Henry. C. R. 101, 1158.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethylbutyric lactone Heptolactone	C ₇ H ₁₂ O ₂	.9818, 4°	226, 339,

12th. Acids and Ethers of the Pyruvic Series.

Name.	FORMULA.	SP. GRAVITY.	А стновіту.
Pyravie, pyroracemic, or acetyl-formic acid.	(1 (1 (1	1.288, 18° 1.2792 1.2403 1.2600 1.2415	Volckel. J. 6, 426. Berzelius. Claisen and Shadwell. Ber.11, 1507. Claisen and Shalwell. Ber. 11, 621.
Propionyl-formic acid		1.2000, 17°.5 1.185, 15°	Chaisen and Moritz. Ber. 13, 2122. Courrd. Ber. 11, 2178.
Methyl pyruvate	C ₄ H ₆ O ₃	1.151,00	Oppenheim, B.S.C.
Methyl acetacetateEthyl acetacetate	$C_5 \stackrel{\textstyle \Pi_8}{\stackrel{\textstyle \Pi_{10}}{\stackrel{\textstyle \Pi_{20}}{\stackrel{\textstyle \textstyle \Pi_{20}}}{\stackrel{\textstyle \textstyle \Pi_{20}}{\stackrel{\textstyle \textstyle \textstyle \Pi_{20}}{\stackrel{\textstyle \textstyle \textstyle \textstyle \Pi_{20}}}{\textstyle \textstyle \textstyle$	1.037, 9° 1.03, 5° 1.0256, 20° _	19, 254. Brandes, J. 19, 306. Geuther, J. 18, 303. Bruhl, A. C. P. 203, 1.
64 46		1.030, 15°	Elion. Ber. 17, ref. 568.
(11 11 11	1.0465, 0° .9880, 55°.8 .9644, 79°.2 .9029, 135°.5 .8458, 180°	Schiff. Ber. 19, 560.
44 44	((1.03174, 15° (1.02353, 25°)	Perkin, J. P. C. (2), 32, 523.
Isobutyl acetacetate	C ₈ II ₁₄ O ₃	.979. 0 }	Emmerling and Oppenheim Ber.
Amyl acetacetate	('9 H ₁₆ ()'2	.954, 10°	(9, 1097. Conrad. A.C. P. 186, 231.
Methyl methylacetacetate Ethyl methylacetacetate	C ₆ H ₁₀ O ₃	1 020, 9°	Brandes, J. 19, 206.
Methyl hevulinate		1.0684, 0° }	Grote, Kehrer, and Tollens, A. C. P. 206, 221.
Ethyl laevulinate	C ₇ II ₁₂ O ₃	1.0325, 0° }	" " "
Propyl hevulinate	C 8 II 14 O8	1.0103, 0° }	44

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl ethylacetacetate Ethyl ethylacetacetate	$\begin{bmatrix} C_7 & H_{12} & O_3 - \dots \\ C_8 & H_{14} & O_3 - \dots \end{bmatrix}$	1.009, 6° .998, 12° .981, 16°	Geuther. J. 18, 303. " James. A. C. P. 226,
		.9834, 16°	202. Frankland and
Propyl ethylacetacetate	C ₉ H ₁₆ O ₃	.981, 0°	Duppa. Burton. A. C. J. 3,
Amyl ethylacetacetate	C ₁₁ H ₂₀ O ₃	.937, 26°	385. Conrad. A.C.P. 186, 232.
Ethyl dimethylacetacetate	C ₈ H ₁₄ O ₃	.9913, 16°	Frankland and Duppa. J. 18, 309.
Ethyl propionyl propionate		.9948, 0° } .9827, 15° }	Hellon and Op- penheim. Ber.
		.9870, 15°	10, 701 and 861. Israel. A. C. P. 231, 197.
Ethyl methylethylacetace-	C ₉ H ₁₆ O ₃	.974, 22°	Saur. A. C. P. 188, 275.
Ethyl isopropylacetacetate		98046, 0°	Frankland and Duppa. J. 20, 395.
Ethyl methylpropylacet- acetate.	C ₁₀ H ₁₈ O ₃	.9575, 17°	Jones. A. C. P. 226, 288.
Ethyl sthulpropionulpro	"	.951, 17°.5	Rohn. A. C. P. 190, 307.
Ethyl ethylpropionylpropionate. Ethyl dipropylacetacetate	C ₁₂ H ₂₂ O ₃	.966, 15°	Israel. A. C. P. 231, 197. Burton. A. C. J.
Ethyl heptylacetacetate	$C_{13} H_{24} O_{3}$.9324	3, 386. Jourdan. Ber. 13,
Ethyl octylacetacetate	C ₁₄ H ₂₆ O ₃	.9354, 18°.5	434. Guthzeit. A. C. P.
Ethyl diisobutylacetace-	"	.947, 10°	204, 3. Mixter. Ber. 7, 501.
Ethyl diheptylacetacetate	C ₂₀ H ₃₈ O ₃	.8907, 17°.5	Jourdan. J. C. S. 38, 314.
Ethyl acetopyruvate	C ₇ H ₁₀ O ₄	1.124, 21°	Claisen and Stylos. Ber. 20, 2189.
Ethyl diacetylacetate	C ₈ H ₁₂ O ₄	1.044, 15°	Elion. Ber. 16, 1369. Elion. Ber. 16, 2762.
Ethyl carbacetacetate		1.064, 15° 1.136, 27°	James. A. C. P. 226, 202. Duisberg. Ber. 15,
Ethyl ethylideneacetace-	C ₈ H ₁₂ O ₃	1.0225, 15°	1387. Claisen and Mat-
tate.			thews. A. C. P. 218, 173.
Ethyl amylideneacetace- tate.	C ₁₁ H ₁₈ O ₃		Matthews. Ber. 16, 1372.
Ethyl ethoxylmethylacetacetate.	C ₉ H ₁₆ O ₄	.976, 220	Isbert. A. C. P. 234, 195.
Ethyl ethoxylethylacet- acetate.	C ₁₀ H ₁₈ O ₄	.551, 22	Isbert. A. C. P. 234, 194.

13th. Acids and Ethers of the Acrylic Series.

NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Methylacrylic acid β. Crotonic, or quartenylic acid.	C ₄ H ₆ O ₂	1.0153, 20° 1.018, 25°	Brühl. Ber. 14, 2800. Gouther. J.P.C. (2), 3, 442.
Pyroterebic acid		1.01	Rabourdin, A. C. P. 52, 395.
"	"		Mielek. A.C.P. 180, 52.
Methylethylaerylie acid	((Lieben and Zeisel. M. C. 4, 71.
Hydrosorbie acid	4.4		Barringer and Fit- tig. Z. C. 13, 425.
Amyldecatoic acid	$C_{15}^{H_{18}} \overset{O_2}{H_{28}} \overset{O_2}{O_2} = \cdots$.9096, 0° .908, 12°.5	Borodin. ? Wulter. C. R. 22, 1143.
Oleic acid	C ₁₈ H ₃₄ O ₂	.808, 19°	Chevreul.
Methyl nerylate. B. 80°.3.	C ₄ H ₆ O ₂	.961, 19°.2	Kahlbaum, Ber. 13, 2349. Weger, A.C.P. 221,
Liquid polymer of methyl	16	.87194, 80°.3 }	61. Kahlbaum. Ber. 13,
nervlate, " " Solid polymer of methyl	(C ₄ II ₆ O ₂) _n	1.125, 18° { 1.2223, 15°.6 }	2849.
ncrylate. " " Ethyl acrylate. B. 98°.5-2	$C_5 \stackrel{\alpha}{\coprod}_8 O_2 = \cdots$	1.2222, 18°.2 { .9252, 0° }	Cuspary and Tollens.
66 66	6.	.9136. 15° (.93928, 0°) .81970, 98°.5 }	B. S. C. 20, 368. Weger, A. C. P. 221, 61.
Propylacrylate, B. 122°.9	11	.91996, 0° } .7847, 122°.9 }	4.6 4.6
Methyl crotonate		.9806, 4°	Kahlbaum. Ber. 12, 344.
Ethyl crotomste	('6 H ₁₀ O ₂	$\begin{pmatrix} .9188 \\ .9199 \\ .9237 \end{pmatrix}$ 20°	Bruhl. A. C.P. 235,1.
66 66		.92680, 15° .91846, 25°	Perkin, J. P. C. (2), 32, 523.
Ethyl 3 crotonate	4.	.927, 199	Geuther. J. P. C. (2), 3, 444.
Ethyl angelate	C ₇ H ₁₂ O ₂	.9347, 0°	Beilstein and Wiegand, Ber. 17, 2261.
Ethyl tiglate		.926, 21°	Geuther and Froh- lich, Z. C. 13, 549.
	44	.9425, 0°	Beilstein and Wie- gand. Ber. 17, 2261.
Ethyl ethylerotonate	$C_s \coprod_{14} O_2$.9203, 13°	
Methyl olente			Laurent. Ann. (2), 65, 294.
Ethyl pleate	C ₂₀ H ₅₈ O ₂	.871, 18°	6.6

NAME.	FORMULA.	Sp. Gravity.	
Ethyl oleate " " " " " " " " " " " " " " " "	10 00 2	$\begin{array}{c} .87589 \\ .87525 \\ .87041 \\ .86991 \\ .872, 18^{\circ} \\ .869, 18^{\circ} \\ .\end{array}$	Perkin. J. P. C. (2), 32, 523. Laurent. Ann. (2), 65, 294.

14th. Derivatives of the Acrylic Series.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Acrolein, or acrylaldehyde Metacrolein Acropinacone	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8410, 20° 1.03, 8° .99, 17°	Brühl. Bei. 4, 780. Geuther. J. 17, 334. Linnemann. J. 18, 317.
Acrolein ethylate	$C_5 H_{10} O_2$.936, 4°	Taubert. J. C. S. 31,
Acrolein diacetate	C ₇ H ₁₀ O ₄	1.076, 22°	296. Hübner and Geu- ther. J. 13, 307.
Crotonaldehyde	C ₄ H ₆ O	1.033, 0°	Roscoe and Schor- lemmer's Treatise.
Diacetate from crotonalde- hyde.	C ₈ H ₁₂ O ₄	1.05, 14°	
Tiglic aldehyde, or guajol. β . Angelical actone	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.871, 15° 1.1084, 0°	Völckel. J. 7, 611. Wolff. A. C. P. 229, 257.
Methylethylacrolein	C ₆ II ₁₀ O	.8577, 20°	
Amyldecaldehyde	C ₁₀ H ₁₈ O	.862, 0° .848, 20° }	Borodin. Ber. 5, 480.
" " Hexylpentylacrylic alde-		.861, 0° } .851, 14° } .8494, 15°)	Gäss and Hell. Ber. 8, 372.
hyde. "	46	.8416, 30° .8392, 35°	Perkin, Jr. Ber. 15, 2804.
" " "	"	.8504, 15°	Perkin, Jr. J. C. S. 44, 81.
Hexylpentylaerylic alcohol.	C ₁₄ H ₂₈ O		Perkin, Jr. Ber. 15, 2810.
Hexylpentylacrylic acetate. " "" "" "" "" "" "" "" "" ""	C ₁₆ II ₃₀ O ₂	.8680, 15° }	Perkin, Jr. Ber. 15, 2809.

15th. Acids and Ethers, Malic-Tartaric Group.

	-		-
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Malic acid	C4 H6 O5	1.559, 4°	Schröder. Ber. 12,
Turturie acid	C4 H6 O6	1.75	Richter.
(1 (1	44	1.764	Schiff. J. 12, 41.
(1 (1	((1.739	Buignet. J. 14, 15.
££ ££		1.754	Schröder. Ber. 10,
11 11		1.77	851. W. C. Smith. Am. J. P. 53, 145.
		1 2012	(Wiedemann and
" Amorphous		1.7617}	Ludeking, P. A.
221100		1.6321 }	(2), 25, 151.
11 11		1.7594, 7°	Perkin. J. C. S. 51, 366.
Racemic acid	C ₄ H ₆ O ₆	1.7782, 7°	11 11
11 11	C4 116 O6. 112 O	1.75	Pasteur. J. 2, 309.
11 11	46	1.69 1.6873, 7°	Buignet. J. 14, 15. Perkin. J. C. S. 51, 366.
Laevotartaric acid	it	1,7496	
Methyl maleate		1.1529, 14°	Anschutz. Ber. 12, 2283.
11 11		. 1.16029, 11°.8	
(1 (1			
			Knops. V. H. V. 1887, 17.
(1 (1	14	1.14211, 29°.4.	1001, 11.
11 11	66	1.13827, 33°	
Ethyl maleate			1 11 11
Propyl maleate	C. H. O.	. 1.02899, 20° L.	- 6 t 6 t
Ethyl fumarate	C ₈ II ₁₂ O ₄	1.106, 11°	Henry. A. C. P. 156, 178.
11 11			2282.
	- 44	1.05199, 20°	1887, 17.
Propyl fumarate	10 . 10 4	1.02782, 14°.8	
()			
		1.02203, 200	
66 66		1.01852, 29°.1	
() ((
Methyl tartrate	C ₆ H ₁₀ O ₆	1.3403, 15°	Anschutz and Pictet. Ber. 13, 1177.
Ethyl tartrate	C ₈ H ₁₄ O ₆	1.1959	
(4 (4		1.2097, 14°	
11 11	- 66	- 1.2097, 15° 1.2019, 25°	Perkin. J. C. S. 51, 363.

NAME.	FORMULA.	Sp. Gravity	Аптновиту.
	C ₁₀ H ₁₈ O ₆	,	Perkin. J. C. S. 51, 363. Anschütz and Pic- tet. Ber. 13, 1177. Pictet. Ber. 15, 2242.

16th. Acids and Ethers, Citric Acid Group.

NAME.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Citric acid	C ₆ H ₈ O ₇	1.617 1.542 1.553 1.557	Richter, Schiff. J. 12, 41. Buignet. J. 14, 15. W. C. Smith. Am. J. P. 53, 145.
Itaconic acid	C ₅ H ₆ O ₄	1.573} 1.632} 1.616 1.618	Schröder. Ber. 13, 1070.
Citraconic anhydride	C ₅ H ₄ O ₃	1.247 1.25360, 12°.4 1.24894, 16°.6 1.24518, 20° 1.24405, 21°	Watts' Dictionary. Knops. V. H. V.
(t (t	:: ::	1.23920, 25°.4 1.23501, 29°.2 1.23073, 33°	
Triethyl citrate		1.142, 21°	21, 267.
Tetrethyl citrateEthyl aconitate Ethyl isaconitate	C ₁₄ H ₂₄ O ₇ C ₁₂ H ₁₈ O ₆	1.1064	Watts' Dictionary. Conen. Ber. 12, 1653.
Methyl itaconate		1.0505, 15° 1.1399, 14°.7	Conrad and Guth- zeit. A. C. P. 222, 255. Anschütz. Ber. 14,
" " " " " " " " " " " " " " " " " " "	(1	1.13195, 12° 1.12410, 18° 1.12182, 20° 1.11882, 22°.5 1.11421, 27°.1 1.10847, 32°.4	2787. Knops. V. H. V. 1887, 17.
Polymer of methyl itaconate. Ethyl itaconate	$(C_7 H_{10} O_4)_n$	1.3126, 20° 1.051, 15°	
		1.04613, 20°	2787. Knops. V. H. V. 1887, 17.
Polymer of ethyl itaconate	$(C_9 H_{14} O_4)_n$	1.2549, 20°	"

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl citraconate	C ₇ H ₁₀ O ₄	1.1168, 15° } 1.1050, 30° }	Perkin. Ber. 14, 2541.
11 11		1.1172, 13°.8	O. Strecker. Ber. 14,
		1.1164, 15°.5	2785. Gladstone. Bei. 9,
11 11		1.11043, 20°	249. Knops. V. H. V.
Ethyl citraconate	C ₉ H ₁₄ O ₄	1.1050, 15°	1887, 17. Perkin. Ber. 14,
	((1.038, 30° }	2543.
11 11	11	1.040, 18°, 5	Watts' Dictionary.
11 11	ξ _λ	1.047, 150	Petri. Ber. 14, 2785.
	**	1.048, 16°.5	Gladstone. Bei. 9, 249.
11 11 "	{ (1.06241, 20°	Knops. V. H. V. 1887, 17.
Methyl mesaconate	C, H ₁₀ O ₄	1.1254, 15°	Perkin. Ber. 14.
44 44	410 04	1.1138, 30°	2543.
		1.1293, 11°.8	O. Strecker, Ber. 14, 2785,
Ex EE Common on the common on	((1.1246, 16°	Gladstone. Bei. 9, 249.
11 11	44	1.12966, 11°.9	1
11 11	44	1.12462, 16°.4	
		1.12097, 20°	
11 11		1.12011, 20°.8	Knops. V. H. V.
		1.11648, 240.3	1887, 17.
	14	1.11180, 28°.6	
(, (,	44	1.10702, 33°	J
Ethyl mesaconate	C ₉ 11 ₁₄ O ₄	1.043, 20°	Pebal. J. 404.
11 11	4	1.051, 15° }	Perkin. Ber. 14
(1	(1	1.039, 30° }	2543.
	(1	1.043, 20°	Petri. Ber. 14, 2785.
	11	1.050, 16°	Gladstone. Bei. 9.
11 11	4.6	1.04674, 200	Knops. V. II, V. 1887, 17.
Methyl crotaconate	C ₇ H ₁₀ O ₄	1.14, 15°	Claus. A. C. P. 191, 78.
Ethyl acetocitrate	С ₁₄ Ц ₂₂ О ₈	1.1459, 15°	Ruhemann, Ber. 20,
Ethyl terebate	C ₉ H ₁₄ O ₄	1.111, 16°	802. Roser, A. C. P. 220. 255.

17th. Glycerin and its Derivatives.

NAME.	FORMULA.	SP. GRAVITY.	Антнокиту.
Glycerin, or glycerol	C ₃ H ₅ (O H) ₃	1.27, 10° 1.28, 15°	Chevreul. Pelouze. Ann. (2),
	"	1.260, 15°.5 1.115, 12°.5	63, 19. Watts' Dictionary. Sokoloff. A. C. P.
66 66		1.2636, 15° 1.26949, 6°.7	106, 95. Mendelejeff. J. 13, 7. Mendelejeff. A. C.
u u	"	1.26244, 16°.6_	P. 114, 165. Godeffroy. C.C.(3), 6, 34.
" Cryst		1.261, 15°.5 1.2688, 0° 1.2590, 20°	Roos. C. N. 33, 39. Emo. Bei. 6, 663. Brühl. Bei. 4, 782.
· · · · · · · · · · · · · · · · · · ·	"	1.262, 17°.5 1.2653, 15°	Strohmer. Ber. 17, ref. 206. Gerlach. Ber. 17, ref.
" " " ——		1.26241, 15° 1.25881, 25°	522. Perkin. J. P. C. (2), 32, 523.
Hexyl glycerin	0 11 (/0	1.0936, 0°	Orloff, A. C. P. 233, 359. Reboul and Louren-
Glycerin ether		1.0907, 18°	co. J. 14, 675. Gegerfeldt. J. 24, 401.
и и		1.16, 16° 1.1453, 0°	Zotta. A. C. P. 174, 87. Silva. J. C. S. 40,
Glyeide		1.165, 0°	1122. Hanriot. Ann. (5), 17, 62.
Ethyl glycide		a1.00 .94, 12°	Reboul. J. 13, 465. Henry. B. S. C. 18, 232.
Amyl glycideAceto-glyceral	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.081, 0°	Reboul. J. 13, 463. Harnitzky and Menschutkin. J. 18, 506.
Valero-glyceral Trimethylin Diethylin	$C_6^{\circ} H_{14}^{16} O_{3}^{\circ}$	1.027, 0° .9483, 0° .92	Alsberg. J. 17, 495. Berthelot. J. 7, 450.
TriethylinTriglycerin tetrethylin	$C_9 \Pi_{20} O_{3}$.8955, 15° 1.022, 14°	Alsberg. J. 17, 495. Reboul and Lourenco. J. 14, 675.
Ethylamylin Monamylin Diamylin	C"H "O"	.92 .98, 20° .907, 9°	Reboul. J. 13, 465. Reboul. J. 13, 464. Reboul. J. 13, 465.
Monoallylin Offormin	C ₆ H ₁₂ O ₃	1.1160, 0° } 1.1013, 25° } 1.304, 15°	Tollens. A. C. P. 156, 149. Van Romburgh.
Monacetin		1.20	Ber. 14, 2827. Berthelot. J. 6, 455.

NAME.	FORMULA.	SP. GRAVITY.	А итновиту.
Directin Triacetin Epiacetin Polymer of epiacetin Monobutyrin Dibutyrin Tributyrin Monovulerin Divalerin Cocinin Tristearin " " " " " " " " " " " " " " " " " "	$C_{10} H_{12} O_{4}$.921, 21°	Berthelot. J. 6, 455. Laufer. J. 1876, 243 Berthelot. J. 7, 349. Breshuer. J. P. C. (2), 20, 188. Berthelot. J. 6, 455. Berthelot. J. 6, 454. Brandes. Kopp. A. C. P. 93, 194. Three modifications. Duffy. J. 5, 510. Berthelot. J. 6, 454. Henry. Ber. 4, 701. Berthelot. J. 6, 455. Kahlbaum. Ber. 16, 1491.

18th. The Allyl Group.

NAME.		AME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Allyl	alcoho	1			Additional values aregiven, Tollens, A. C. P. 158, 104, Dittmrand Steuert, P. R. S. G. 10, 64 Thorpe, J. C. S. 37, 371, Zander, A. C. P.	
11	6.6				Schiff. G. C. I. 13,	

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Allyl alcohol	C ₃ H ₅ . O H ,	.8540, 20°	Brühl. A.C.P. 200,
· · · · · · · · · · · · · · · · · · ·	"	.8563, 23°	139. Gladstone. Bei. 9, 249.
tt tt	"	.85778, 15° }	Perkin, J. P. C.
Ethylvinyl alcohol	C ₄ H ₇ , O H	.85067, 25° } .834, 0° } .818, 21° }	(2), 32, 523. Nevolé. J. C. S. 32, 868.
11 11		.827, 0° } .81, 22° }	Lieben. J.C.S. 32, 868.
Ethylvinylearbinol		.856, 0°	E. Wagner. B.S.C. 42, 330.
Methyl isocrotyl alcohol	C ₆ H ₁₁₂ O	$\begin{bmatrix} .8604 \\ .8625 \end{bmatrix}$ 0°	Wurtz. J. 17, 515.
?_	£ £	.842, 16°.2 .891, 10°	Crow. C. N. 36, 264. Destrem. Ann. (5),
Allyldimethylearbinol	£	.8438, 0° } .8307, 18° }	27, 50. Saytzeff. A. C. P.
Diallyl monohydrate		.8367, 0°	185, 151. Wurtz. J. 17, 515.
Allyldiethylcarbinol	C ₈ H ₁₆ O	.8891, 0° } .8711, 20° }	Sehirokoff and Saytzeff. A. C. P. 196, 114.
Allylmethylpropylear bi-	((.8486, 0° }	Semljanizin. Ber. 12, 2375.
Isopropylallyldimethyl carbinol.		.829, 17°.8	Dieff. J. P. C. (2), 27, 369.
AllyldisopropylcarbinolAllyldisopropylcarbinol	C ₁₀ H ₂₀ O	.8602, 0° } .8427, 24° }	P. and A. Saytzeff. Ber. 11, 1939.
		.8671, 0°	Lebedinsky. J. P. C. (2), 23, 23.
Propargyl alcohol		.9628, 21°	Henry. B. S. C. 18, 236.
Diallylearbinol	C ₇ II ₁₂ O	.9715, 20° .8758, 0°)	Brühl. Bei. 4, 780.
Diellylmethyleenkinel		.8644, 12° } .8478, 32° }	M. Saytzeff. A. C. P. 185, 129.
Diallylmethylcarbinol	C H O	.8638, 0° } .8523, 13° }	Sorokin. A. C. P. 185, 169.
Diallylethylearbinol	C H O	.8776, 0° } .8637, 17° }	Smirensky. Ber. 14, 2688. P. and A. Saytzeff.
Diallylpropylearbinol Diallylisopropylearbinol _	C ₁₀ 11 ₁₈ C	.8707, 0° } .8564, 20° } .8647, 0° }	Ber. 11, 1259.
Diallylisopropylearbinel	"	.8512, 20° }	Rjabinin and Saytz- eff. Ber. 12, 689.
Vinyl ethyl oxide	С. Н. С. Н. О	.7625, 17°.5	Wislicenus. A.C.P.
Methyl allyl oxide	C II ₃ . C ₃ H ₅ . O	.77, 11°	192, 109. Henry. B. S. C. 18,
			232. Brühl. Bei. 4, 780.
Ethyl allyl oxide	$(\tilde{C}_3 H_5)_2$. O	.7651, 20° } .8223, 0° } .7217, 94°.3 }	Zander. A.C.P.214, 181.
Methyl propargyl oxide		.83, 12°.5	Henry. B. S. C. 18, 232.
Ethyl propargyl oxide	C ₂ H ₅ . C ₃ H ₃ . O	.8326, 200	Bruhl. Bei. 4, 780.

-			
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Amyl propargyl oxide	C ₅ H ₁₁ . C ₃ H ₃ . O	.84, 120	Henry. B. S. C. 18,
Diallylearbyl methyl ox-	C ₇ II ₁₁ . C H ₃ . O	.8258, 0° }	232. Rjubinin. Ber. 12,
ide. " " " " " Dinllylearbyl ethyl oxide_	C ₇ H ₁₁ . C ₂ H ₅ . O	.8096, 20° } .8218, 0° }	2374.
Isopropylallyldimethyl- carbyl methyl oxide.	C ₉ H ₁₇ . C H ₃ . O	.8023, 20° } .8027, 4°	Kononowitsch. Ber. 18, ref. 105.
Allyl formate	C ₄ H ₆ O ₂	.9322, 17°.5	Tollens, Weber, and
Allyl neetate	C ₅ H ₈ O ₂	.8220, 103°	Kempf. J. 21, 450. Schiff. G. C. I. 13,
tt tt	f f	.9276, 20° .9258, 24°.5	Brühl. Bei. 4, 780. Gladstone. Bei. 9,
Ethylvinyl acetate	C ₆ H ₁₀ O ₂	.896, 0°	249. Nevolé. J. C. S. 32,
tt		.892, 00	868. Lieben. J. C. S. 32, 868.
Methylisocrotyl acetate	C ₈ H ₁₄ O ₂	.912	Wurtz. J. 17, 514.
Allyldimethylearbyl acetate.	C ₈ H ₁₄ O ₂	.8832, 18°.5	M. and A. Saytzeff. A. C. P. 185, 151.
Allyldipropylearbyl acetate.	C H O	.8903, 0° } .8783, 21° }	Saytzeff. Ber. 11, 1939.
Propargyl acetate	C ₅ H ₆ O ₂	1.0031, 12°	Henry, J. C. S. (2), 11, 1123.
Diallylearbyl acetate	C ₉ H ₁₄ O ₂	.9167, 0° } .8997, 17°.5	Brühl. Bei. 4, 780. M. Saytzeff. A. C. P.
Diallylmethylcarbyl acetate.	C ₁₀ H ₁₆ O ₂	.8997, 0° } .8733, 21° }	185, 129. Sorokin. A. C. P. 185, 169.
Allylacetic acid	C. II. O	.98656, 12° .98416, 15°	Perkin. J. C. S. 49,
Ethyl allylacetate	C, H ₁₂ O ₂	.97670, 25°) .9222, 0°	205. Wurtz. J. 21, 446.
Allyloetylic acid	C ₁₁ H ₂₀ O ₂	.91020, 25° .89930, 45°	Perkin. J. C. S. 49, 205.
Ethyl allyloctylate	C ₁₃ H ₂₄ O ₂	.88271, 15° .87658, 25°	64 66
Diallylacetic acid	C ₈ H ₁₂ O ₂	.9495, 25° .9578, 13°	Wolff. Ber. 10, 1957. Reboul. J. C. S. 32,
	1.1	.95756, 120	594.
11 11	6.6	.95547, 15° .94913, 25°	Perkin. J. C. S. 49, 205.
Ethyl methoxyldiallylace- thte.		.96066, 20°	Barataeff. J. P. C. (2), 35, 2.
Allyl neetucetate	"	.99272, 15° .98542, 25°	Perkin. J. P. C. (2), 32, 523.
Ethyl allylacetacetate	C ₉ H ₁₄ O ₃	.9938, 13°.5	Gladstone. Bei. 9, 249.
11 (1		.982, 20°	Zeidler. B. S. C. 23, 78.
Ethyl diallylacetacetate Ethyl diallylaxyacetate	C ₁₂ H ₁₈ O ₃	1.9873.0°)	Wolff. Ber. 10, 1956. Savtzeff. Ber. 9, 77.
		.9718, Is° }	

NAME.	FORMULA.	Sp. Gravity.	Authority.
Allyl oxalateEthyl allylmalonate			hours. J. 9, 585.
		1.01475, 14°	Ber. 13, 595. Gladstone. Bei. 9, 249.
Ethyl diallylmalonate	C ₁₃ H ₂₀ O ₄	$\left\{ \begin{array}{c} 1.01397, 15^{\circ} \\ 1.00620, 25^{\circ} \end{array} \right\}$ $\left\{ \begin{array}{c} 0.996, 14^{\circ} \end{array} \right\}$	Perkin. J. P. C. (2), 32, 523. Conrad and Bischoff. Ber. 13, 595.
		.99328, 20° 1.00620, 6°.5)	
" " " " " " " " " " " " " " " " " " "	"	$\begin{array}{c} .99940, 15^{\circ} \\ .99252, 25^{\circ} \end{array}$	Kablukow. Ber. 21,
ide. Butallylmethyl pinakone	$C_{12} \stackrel{\text{H}}{\underset{\iota}{}_{22}} O_2$ $C_{13} \stackrel{\text{H}}{\underset{20}{}_{20}} O_7$.9632, 0° }	ref. 54. Kablukow. Ber. 21, ref. 55.
Derivative of tetrabrom- diallylearbin acetate.	O ₁₃ 11 ₂₀ O ₇	1.10013, 0	Dieff. J. P. C. (2), 35, 20.

19th. Erythrite, Mannite, and the Carbohydrates.

	NA	ME.	For	MULA.	Sp. Gravity.	Authority.
Anhyo Mann U Dulcit Sorbit Pinite Ouere	dride of ite or m	erythrol inannitol inannit	C ₄ H ₆ O ₂ C ₆ H ₈ (O	H) ₆	1.486 4° } 1.489 1.489 1.489 1.466, 15° 1.654, 15° 1.5845 1.606 1.593 1.596	15, 22. Schröder. Ber. 12, 1561. Eichler. J. 9, 665. Pelouze. J. 5, 655. Berthelot. J. 8, 675. Prunier. Bei. 2, 68. Brisson. P. des C. Schübler and Renz. Filhol. Playfair and Joule. M. C. S. 2, 401. Brix. J. 7, 618. Dubrunfaut. Maumené. B. S. C. 22, 33.
"	"	66	 "		1.589	W. C. Smith. Am. J. P. 53, 148.

Name.	FORMULA.	SP. GRAVITY.	Антновиту.
Cane sugar, or saccharose " Fused,	C ₁₂ II ₂₂ O ₁₁	1.58046, 17°.5 1.996, 11°.5	Gerlach. Morin, J. Ph. C. (1),
vitreous. Molten	((1.6	28, 34. Quincke. P. A. 138, 141.
u u u Bnrley	(1.598‡}	Wiedemann and Ludeking, P. A. (2), 25, 151.
sugar.		1,5928	Zehnder. P. A. (2), 29, 260.
Milk sugar, or lactose	11	1.584 1.58898, 4°	Filhol. Playfair and Joule. J. C. S. 1, 138.
tt tt		1.525, 4°	Schröder. Ber. 12, 561.
	a H O H O	1,533	W. C. Smith. Am. J. P. 53, 148.
Melezitose	$C_{12} \ H_{22} \ O_{11}. \ H_{2} \ O_{}$		Alckhine, J.C.S. 50, 684.
14	C ₆ H ₁₂ O ₆ , H ₂ O	1.51) 110	Payen and Persoz. Bodeker, B. D. Z.
" FuseI	44	1.37	Quincke, P. A. 138,
Inosite. Anhydrous			Ann. 5, 23, 392.
44	C ₆ II ₁₂ O ₆ . 2 II ₂ O	1.1154, 5° 1.535, 8° } 1.524, 15° }	Vohl. J. 11, 489. Tauret and Villiers. C. R. 86, 486.
Bergenite	$C_8 \coprod_{10} O_5. \coprod_2 O_{}$	1.5445	Morelli, Ber. 14, 2694.
Starch	$(C_6 \Pi_{10} O_5)_n$	1,505	
4.6		1.56	
" Arrowroot " Potato		0 100. 111	Flückiger, Z. C.
Dextrin			O'Sullivan. J. 27, 880.
Inulin	(6		748.
66	- "	1.462	
Cellul se			Weltzien's "Zusam- menstellung."
G(t)	- 44	1.457, air drie 1.525, dried n 100°.	d) Flackiger. Z. C.
" Gum-arabic " " tragacanth " Sonegal " B-sora	44	1.351	Guérin-Varry, P.A. 29, 50.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Graminin Phlein Octaceto-diglucose Octaceto-saccharose		1.522, 12° } 1.480 } 1.27, 16°	Ekstrand and Johanson. Ber. 21, 594. Demole. Ber. 12, 1936.

20th. Miscellaneous Non-Aromatic Compounds.

NAME.	Formula.	Sp. Gravity.	Authority.
Acetopropyl alcohol Acetobutyl alcohol Methyl orthoformate	"	$\left. \begin{array}{c} 1.00514, 15^{\circ} \\ 1.00197, 20^{\circ} \\ .99896, 25^{\circ} \\ 1.0143, 0^{\circ} \\ .99771, 4^{\circ} \\ .98947, 15^{\circ} \\ .98270, 25^{\circ} \\ .974, 23^{\circ} \end{array} \right\}$	Perkin, Jr. J. C. S. 51, 830. Lipp. Ber. 18, 3281. Perkin, Jr. J. C. S. 51, 719. Deutsch. Ber. 12, 115.
Ethyl orthoformate Propyl orthoformate	$\begin{bmatrix} C_7 & H_{16} & O_3 & \dots \\ C_{10} & H_{22} & O_3 & \dots \end{bmatrix}$.8964 .879, 23°	Williamson. Deutsch. Ber. 12,
Isobutyl orthoformate Isoamyl orthoformate Diethoxyl ether Derivative of isobutylal- dehyde.	C ₁₃ H ₂₈ O ₃ C ₁₆ H ₃₄ O ₃ C ₈ H ₁₈ O ₃ C ₈ H ₁₄ O	.861 .864 .8924, 21° .9575, 0°	" " " " Lieben. J. 20, 546.
Derivative of valeral	C ₂₀ H ₃₈ O ₃	.9415, 0° .9027, 17° .895 } .900 } .8831, 15°)	Borodin. J. 17, 339. Borodin. Ber. 5, 480.
Derivative of oenanthol	$C_{28} \stackrel{11}{}_{150} O_{2}$.8751, 30° } .8723, 35° } .8804, 15°.5	Perkin. Ber. 15, 2805. Olewinsky. J. 14, 463.
Diacetone alcohol	0 12 2	.9306, 25°	Heintz. A. C. P. 178, 349.
Methoxylmethyl ethyl acetone.	$C_7 H_{14} O_2$.855, 20°	50.
Dimethoxyl diethyl acetone. From diethylacetone	$\begin{bmatrix} C_9 & II_{18} & O_3 & \\ C_{20} & H_{34} & O_2 & \end{bmatrix}$.886, 15°	
Ethyl diacetone carbonate	$\begin{bmatrix} C_{20} & \Pi_{34} & C_2 & \dots \\ C_{10} & \Pi_{18} & C_3 & \dots \end{bmatrix}$		Frankland and Dup-
Mesityl oxide	C ₆ II ₁₀ O		pa. J. 18, 306. Fittig. J. 12, 344. Gladstone. Bei. 9,
		.8578, 20°	Brühl. A. C. P. 235, 1.
Homologue of mesityl oxide.	C ₈ II ₁₄ O	.8547, 15°.4	

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Phorone	C ₉ II ₁₄ O	.982) 100	
		.939 } 12*	Fittig. J. 12, 344.
	6.	.9614, 20°	Schwanert, J.15,464.
11	6.6	.9645, 15°) .885, 20°)	Schulze. Ber. 15, 64.
6.6		.8793, 27°	D "11 4 C D
((.8785, 25° }	Brühl. A. C. P. 235, 1.
.13	(1 77 ()	.8776, 29°]	200, 1.
Aldol	$C_4 \stackrel{\text{H}}{=} O_2$	1.1208, 0° }	Wurtz. B. S. C. 18,
14	((1.0819, 49°.6	436.
Derivative of aldol	C ₈ H ₁₆ O ₄	1.0941)	Wurtz. C. R. 97,
££ ££		1.0951 00	1526.
Diacetate from the above	C ₁₂ H ₂₀ O ₆	1.0953) 1.095, 0°	
compound.	12 1120 6	1.000, 0 =====	
Derivative of laevulinic	C ₁₄ H ₂₂ O ₇	1.097, 15°	Conrud and Guth-
ether.	0 11 0	1 01 100	zeit. Ber. 17, 2286.
Diethyl glycollic ether Propidene neetic aeid	C ₂₀ II ₃₆ O ₁₀	1.01, 19° .9922, 15°	Geuther. J. 20, 455. Komnenos. A.C.P.
Tropidene neerle neid 1111	5 118 02	.0022, 10	218, 167.
Acetyl trimethylene		.90471, 15°)	
11 11	11	.90083, 20°	Perkin, Jr. J. C. S.
Ethyl acetyltrimethylene-		1.03436, 4°	51, 832.
carboxylate. "	8 1112 03	1.03256, 6°.5	Dealston In T (1 c
		1.02549, 15°	Perkin, Jr. J. C. S. 47, 801.
		1.01834, 25°	
		1.0425, 25°.2	Gladstone. Ber. 19, 2563.
44 44	((1.05174 } 15°])
		1.001001	
	66	1.04810, 20° 1.04390, 25°	Two preparations.
11	14	1.04708 150	Perkin, Jr. J. C. S. 51, 826.
	(4	1.09(00)	
	(1)	1.03930, 25°	j
Ethyl trimethylenediear-	C ₉ H ₁₄ O ₄	1.0708, 7°	Gladstone. J. C. S. 51, 852.
boxylate.		1.06455, 15°)	Perkin. J. C. S. 51,
44 44	11	1.05657, 250	852.
	11	1.06463, 15°	Perkin, Jr. J. C. S.
Ethyl trimethylenetricar-	C ₁₂ II ₁₈ O ₆	1.05664, 25° } 1.127, 15°	47, 801. Conrad and Guth-
boxylate.	13 118 06	1.121, 10	zeit. Ber. 17, 1186.
Tetramethylenemonocar-	C ₅ H ₈ O ₂	1.05480, 15°	
boxylic neid. "	5 H ₈ O ₂	1.05116, 20°	Perkin. J.C.S. 51, 1.
Ethyl tetramethylenedi-	C ₁₀ H ₁₆ O ₄	1.04761, 25°) 1.0484, 14°	Gladstone. Bei. 9,
carboxylate.	1018 04		249.
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1.05328, 9°	D. I. T.O. I. T.
	11	1.04817, 15° 1.04051, 25°	Perkin. J.C.S. 51, 1.
Ethyl ncetyltetramethy-	C. H. O.	1.0668, 13°	Gladstone. Bei. 9,
lenecarboxylate.	A 14 2		249.
M thylpentamethylene-)	C ₇ II ₁₂ O ₂ =	1.02054, 15°	Two lots. Perkin. J. C. S 53, 195
monocarboxylic neid (1.01739, 200	(1) 200

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methylpentamethylene-)	C ₇ H ₁₂ O ₂	1.0256, 4°)	
monocarboxylic acid.	44"	1.0208, 10°	,
"	"	1.0172, 15° 1.0139, 20°	Two lots. Perkin. J. C. S. 53, 195
		1.0109, 25°	and 199.
Methylpentamethylene)	C ₈ H ₁₄ O	.9222. 40 5	
methyl ketone.	"	.9174, 10°	D. M. I C C FO
	((.9136, 15° } .9100, 20° }	Perkin. J. C. S. 53, 200.
	"	.9070, 25°]	
Methylhexamethylene-	C ₈ H ₁₄ O ₂	1.0079, 4°]	
monocarboxylic acid.		1.0033, 10° .99982, 15°	Perkin. J. C. S. 53,
"		.9966, 200	209.
Mathaldahudaahanana	(II ()	.9940, 25°]	
Methyldehydrohexone	C ₆ H ₁₀ O	.92272, 4° }	Perkin. J. C.S. 51,
"	"	.90502, 25°	719.
Ethyl methyldehydro- }	C ₉ H ₁₄ O ₃	1.06457, 15°)
hexonecarboxylate.	11	1.05840, 25° { 1.06840, 15° }	
		1.06470, 20°	
		1.06137, 25°)	Three lots. Perkin.
" " ——	"	1.0744, 9° 1.0696, 15°	J. C. S. 51, 711
	((1.0660, 20°	and 713.
"		1.0626, 25°	j
Ethyl methenyltricarbox- ylate.	C ₁₀ H ₁₆ O ₆	1.10, 19°	Conrad. Ber. 12, 1236.
Ethyl ethenyltricarboxy-	C ₁₁ H ₁₈ O ₆	1.089, 17°	Bischoff. A. C. P. 214, 39.
Methyl diethyl-β-methyl- ethenyltricarboxylate.	"	1.079, 15°	Bischoff. A. C. P. 214, 56.
Ethyl β -methylethenyl-tricarboxylate.	$C_{12} \ H_{20} \ O_6$	1.092, 16°	Bischoff. Ber. 13, 2165.
Ethyl a β-dimethylethe-	C ₁₃ H ₂₂ O ₆	1.0745, 15°	Bischoff and Rach.
nyltricarboxylate. Ethyl butenyltricarboxy-	"	1.065, 17°	A. C. P. 234, 54. Polko. A. C. P. 242,
late. Ethyl isobutenyltricar-		1.064, 17°	113. Barnstein. A. C. P.
boxylate.	11	· ·	_ 242, 126.
		1.0805, 18°	der. A. C. P. 242, 210.
Ethyl propylethenyltri- carboxylate.	C ₁₄ H ₂₄ O ₆	1.052, 13°	Waltz. A.C. P. 214, 58.
Ethyl dicarboxylgluta- conate.	$C_{15} \ H_{22} \ O_8$	1.131, 15°	Conrad and Guth- zeit. Ber. 15, 2842.
Ethyl isoallylenetetra- earboxylate.	C ₁₅ H ₂₄ O ₈	1.102, 15°	Bischoff. Ber. 13, 2164.
Ethyl dimethylacetylenc- tetracarboxylate.	C ₁₆ H ₂₆ O ₈	1.114, 15°	Bischoff and Rach.
Methylisopropenylcarbi-	C ₅ H ₁₀ O	.8571, 0° }	A. C. P. 234, 54. Kondakoff, Ber. 18,
nol. " Pyruvic acetate	C_5 H_8 O_3	1.053, 110	ref. 660. Henry. B. S. C. 19,
Ethyl pyruvyl ether	C ₅ H ₁₀ O ₂	.92, 18°	219. Henry. Ber. 14,
	0 10 2	,	2272.

	11	., ()	-
Name.	FORMULA.	SP. GRAVITY.	Астиовиту
Puresorbie acid	C ₆ H ₃ O ₂	1,068, 15-	Hofmann, J. C. S. 12, 322.
Derivative of mannite ===	C ₆ H ₅ O	.9396, 0°	Fauconnier, J.C.S. 48, 743,
Methyl muchte	$C_s \coprod_H O_s$	$\left\{ \frac{1.48}{1.50} \right\} = 20^{\circ} - \left\{ \right.$	Malaguti. Ann. (2, 63, 86,
Ethyl mucate	C ₁₀ H ₁₈ O ₈	1.17 20°	6, 46
Valerylene diacetate	C ₉ II ₁₆ O ₁	.968	Guthric and Kolbe. J. 12, 365.
Conylene diacetate	C ₁₂ I1 ₂₀ O ₁	.988, 180.2	Wertheim, J. 16,
Amenyl valerone	C ₁₄ H ₂₆ O	.836, 7°	Geuther, Fröhlich, and Loos. Ber. 13, 1356.
Linoleie acid	$\left\{ \begin{array}{l} C_{18} \ H_{32} \ O_2 \ \ldots \ \end{array} \right.$.9206, 14° .940, 15°	Schuler. J. 10, 359. Saahmüller. J. 1,
(((((1	.9502, 15°	562. Norton and Richard- son. A. C. J. 10,
Distillate from linoleic	C ₂₀ K ₃₆ O ₂	.9108, 15°	57.
acid. Distillate from ricinoleic	44		66 66
ncid. Furfurane	C, II, O	0.111 1:0	Henninger. Ann. (6), 7, 209.
Dihydrofurfurane	C, II, O	9668 00)	
Erythrol, (Crotonylene		. 1.55(B, 15°)	4.5
" glycol).	$C_5 H_4 O_9$	1.04653, 20° (
	(6	1.1636, 13°.5 1.168, 15°.5	Fownes, P. T. 1845, 253
66	6.6	1.134) 15°	Volekel. J. 5, 652.
(6		1.1006, 27°	Stenhouse, P. M. (3), 18, 124.
(1		.9310, 1620	Ramsay, J. C. S. 35, 463.
11	6.6	1.0025 160°. 1.0026 bp.	
4.6	• • • • • • • • • • • • • • • • • • • •	1.1814, 19°	
(1		1.1594, 20°	
Ethylfurfurearbinol	C ₇ H ₁₀ O ₂	1.066, 0°]	Pawlinoff and Wag-
Furfurbutylene	$C_8 \coprod_{10} \bar{O}$.9509, 14°.5	
FucusolEthyl pyromucate_	$= \begin{bmatrix} C_5 & \Pi_4 & O_2 \\ C_7 & \Pi_8 & O_2 \end{bmatrix}$	1.150, 13°.5 1.297, 20°	Stenhouse, J. 3, 513, Malaguti, J. P. C.
Triethylpropylphyeite			Wolff. A. C. P. 150, 56.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Acid from petroleum Ethyl ether of the above '' acid. From epichlorhydrin and chlorocarbonic ether.	C ₁₃ H ₂₄ O ₂	$\{.939, 0^{\circ} - \ .919, 27^{\circ}\}$	

21st. Phenols.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Phenol	C ₆ H ₅ . O H	1.062, 20°	Runge. P.A.32, 308.
"		1.065, 18°	Laurent. Ann. (3),
ш		1.0627	3, 195. Serugham. J. C. S.
			7, 237.
"			Kopp. A. C. P. 95,
44		1.0597, 32°.9 } 1.0554	307.
		1.0994	Duelos. A.C.P. 109, 135.
"		1.068	Church. J. C. S. 16,
66	ιι	1.0667, 38°	
66			Zotta. A. C. P. 174,
66	.,		87.
		1.066, cryst	Hamberg. Ber. 4, 751.
"	(1	1.05433, 40°)
, "		1.04663, 50°	
"		1.03804, 60°	
"		1.02890, 70°	Adrieenz. Ber. 6,
"		1.01950, 80°	443.
((1.01015, 90°	
			Į
		1 0400 500	
	"	1 4 0 2 0 2 1 1 1 1 1 1	From four differ-
6 6	"	1 = 0.4 = 0' = 00 }	ent sources. La-
11		1.0560, 46°	denburg. Ber. 7,
		1 = 0.40 = = 00	1687.
16		1 0 5 5 0 4 0 0 5	
"		1.0476, 56° }	j
		8789, 186°	Ramsay. J. C. S. 35,
			463.
"			Bedson and Williams. Ber. 14,
"		1.0545, 45°	2551.
lt		1.0722, 20°	Landolt. P. A. 122,
66	44	1.0702, 20°	558. Brühl. Bei. 4, 782.
(1	11		Flink. Bei. 8, 262.
		1.0598, 21°	Gladstone. Bei. 9,
		, , , , ,	249.
		•	

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Phenol	С И 5. О И	1.0906, 0°, 1. 1.0387, 15°.5 }	Pinette. A. C. P.
Diphenol. Pyrocatechin	C ₆ H ₄ (O H) ₂ . 1.2	.9217, 182°.9)	243, 32. Schröder, Ber. 12,
Resorcin	1.3	1.348	561. Culderon, J. R. C. 5
11 11		1.2717, 15°	313. Schroder. Ber. 12,
11 11	"	1.289	561. Schiff. A. C. P. 223,
" Hydroquinone_	" 1.4		247. Schröder. Ber. 12,
11 11 11		1.328 } 4 {	561.
Triphenol. Pyrogallol	C ₆ H ₄ . C H ₃ . O H	1.463 } 4° 1.039, 23°	Gladstone. Bci. 9,
Orthokresol	(, the contraction of the contra	1.0578, 0°, 1.)	249.
11	((1.0053, 65°.6 }	Pinette. A. C. P. 243, 32.
Metakresol	"	.8867, 190°.8) 1.0330, 19°	Gladstone. Bei. 9, 249.
"		1.0498, 0° } .8744, 202°.8 }	Pinette. A. C. P. 243, 32.
Parakresol. ?		1.033, 23	v. Rad. J. 22, 448.
11	"	1.0522, 0°, l. .9962, 65°.6	Pinette, A. C. P.
Ethylphenol	C. H. C. H. O II	1.049, 14°	243, 32. Auer. Ber. 17, 669.
Orthopropylphenol	C ₆ II (. C ₃ H ₇ . OH	.9370, 100°	Spice. Ber. 12, 295.
Parapropylphenol	"	1.0091, 0° }	Elleri C O I 10
Orthoisopropylphenol		1.01243, 0°	Fileti. G. C. I. 16, 113.
Xylenol. 1.3.4	C ₆ H ₃ . CH ₃ . CH ₃ . OH	1.036, 0° }	Wurtz. J. 21, 460.
"	60 00	1.0362, 0°	Jacobsen. Ber. 11,
?		1.0233, 23°	Wroblevsky, J. 21,
1.3. ?			Wurtz. J. 21, 460.
"	46	1.0129, 80°	Lako. J. 1876, 454.
11		1.0020, 45°	,
Phloreto1	C ₈ H ₁₀ O	.9673, 100° J 1.0374, 12°	Hlasiwetz, J. 10, 329.
Isopropylkresol		1.91971, 100°	Spica. J. C. S. 44, 460.
Propylkresol, Carvacrol			Jacobsen. Ber. 11.
" Thymol	64	1 0000	Jahns. Ber, 15, 817. Stenhouse, J. 9, 624.
	. 44	1.01068, 0°) Two preparations.
66 66		1.009136, 0° .92424, 100°	Pisati and Pater- no. Ber. 8, 71.
			,

NAME.		Formula.		Sp. Gravity	Аптновіту.
" " " " " " " " " " " " " " " " " " "	" "	C ₆ H ₃ . C ₃ H ₇ . CH ₃ . ('' '' '' '' '' '' '' '' ''	 OH	$\begin{array}{l} 1.0101, 4^{\circ} \\ .939, 25^{\circ}, 5 \\ .988, 0^{\circ} \\ .1029 \\ .1034 \\ .92838, 77^{\circ}, 3 \\ .92838, 77^{\circ}, 3 \\ .9490, 49^{\circ}, 3 \\ .94901, 16^{\circ}, 5 \\ .7923, 231^{\circ}, 8 \\ 1.0171 \\ .1171, 13^{\circ} \\ .119, 22^{\circ} \\ 1.119, 17^{\circ}, 5 \\ .10894, 13^{\circ} \\ .\end{array}$	 Haines. J. 9, 623. Febve. Ber. 14, 1720. Sehröder. Ber. 14, 2516. Nasini and Bernheimer. G.C. I. 15, 50. Schiff. A. C. P. 223, 247. Pinette. A. C. P. 243, 32. Perkin. C. N. 39, 39. Hlasiwetz. A. C. P. 106, 366. Sobrero. Völckel. J. 7, 610. Gorup-Besanez.

22d. Aromatic Alcohols.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.	
Benzyl alcohol	C_6 H_5 . C H_2 O $H_{}$	1.059	Cannizzaro. J. 7, 585.	
66 66		1.0628, 0° }	Kopp. A. C. P. 94, 257.	
			Kraut. A. C. P. 152, 134.	
((((1.0429, 20° 1.0412, 22°	Brühl. Bei, 4, 781.	
			249.	
Benzylearbinol			9, 373.	
Phenylpropyl aleohol	$\begin{bmatrix} \mathbf{C_6} \ \mathbf{H_5}, & \mathbf{C} \ \mathbf{H_2}, & \mathbf{C} \ \mathbf{H_2} \end{bmatrix}$	1.008, 18°	Rugheimer. A. C. P. 172, 126.	
Orthoxylyl alcohol	C_6H_4 . CH_3 . CH_2OH	1.0079, 20° 1.08, s	Brühl. Bei. 4, 781. Colson. Ann. (6),	
Metaxylyl alcohol		1.023, 40°, 1. } .9157, 17°	6, 86. Radziszewski a n d	
210000000000000000000000000000000000000		,	Wispek. Ber. 15, 1747.	
11 11		1.036, 0°		
Ethylphenylcarbinol Cymyl alcohol. 1.4	C ₆ H ₄ . CHOH. CH ₃	1.016, 0° }	Wagner. Ber. 17,	
Cymyl alcohol. 1.4	$\begin{bmatrix} \mathbf{C_6H_4}, \mathbf{C_3H_7}, \mathbf{CH_2OH} \end{bmatrix}$.9775, 15°	Kraut. A. C. P. 192, 224.	

NAME.	FORMULA.	Sr. Gravity.	Аптновиту.
Saligenin	$C_6 \Pi_4$. О Н. С $H_2 \tilde{O} \Pi$	1.1613, 25°	Beilstein and Seel- heim. J. 14, 765.
Methylsaligenin, 1.2		1.1200, 23° 1.0532, 100°	Cannizzaro and Koerner, B. S. C. 18, 132.
Anisic alcohol. 1.4	64	1.1093, 26° 1.0507, 100°	£ £
Acetophenone alcohol	C ₉ II ₁₀ O	1.013	
16 66 66 66	4:		Nasini and Bern- heimer, G.C.I. 15, 50.
		1.0318, 13°	Gladstone. Bei. 9, 249.
tt (t	44	1.0354, 31° 1.0346, 32°	Brühl. A. C. P. 235, 1.
Ethylphenylacetylene al-	C ₁₀ H ₁₂ O	1.0338, 33° j .985, 19°	Morgan. J. C. S. (3), 1, 163.
Orthoxylene glycol			Colson. Ann. (6), 6, 86.
Metaxylene glycol	66	1.161, 18°, sur- fused. 1.135, 53°	} "
Paraxylene glycol Mesitylene glycol	C ₆ H ₃ .CH ₃ .(CH ₂ OH) ₂	1.094, 135° 1.23, 15°	Robinet and Colson C. R. 96, 1863.

23d. Aromatic Oxides.

	NAM	E.		Formu	LA.	SP. GRAVITY.	AUTHORITY.
							Gladstone and Tribe. J. C. S. 41, 6. Gladstone. Bei. 9.
501.				C ₆ H ₅ . O. C			Gladstone. Bei. 9 249. Cahours. J. 2, 403
4.4	4.6	4.4	4.6	44		.8608 \ 155° .98784, 21°.8	Schiff, G. C. I. 13 177. Nasini and Bern- heimer, G. C. I
11	11	<i>tt</i>	44	" "		1.0110, 0° }	15, 50. Pinette, A.C.P. 243 32.
tol.	tt ethylo:	x1de, 1°	uene-	6 H ₅ . O. C	2 115	.8198 \ 171°.5 .973, 15°	Schiff, G. C. I. 13 177. Remsen and Orn dorff, A. C. J. 9

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Phenylethyloxide. Phenetol. """ Phenyl propyl oxide	C ₆ H ₅ O. C ₂ H ₅	.9822, 0° }	Pinette. A.C.P. 243, 32.
Phenyl propyl oxide	C ₆ H ₅ . O. C ₃ H ₇	.968, 20°	Cahours. Les Mon- des, 32, 280.
	"	.9639, 0° } .7889, 190°.5 }	Pinette. A.C.P. 243, 32.
Phenyl isopropyl oxide	11	.958, 0° } .947, 12°.5 }	Silva. Z. C. 13, 250.
Phonyl isohutyl oxide	C ₆ H ₅ . O. C ₄ H ₉	.9500, 0° }	Pinette. A.C.P. 243,
Phenyl isobutyl oxide	"	.9388, 16°	32. Riess. J. C. S. 24,
Phenyl n. heptyl oxide Phenyl n. octyl oxide " " " " " "	C ₆ H ₅ . O. C ₇ H ₁₅	.9319, 00 }	221. Pinette. A.C.P. 243, 32.
Phenyl n. octyl oxide	C ₆ H ₅ , O. C ₈ H ₁₇	.9221, 0° }	11 II
Benzyl ether	C ₇ H ₇ . O. C ₇ H ₇	1.0359, 16°	Lowe. J. C. S. 51,
Kresyl ether		1.0352, 16°	701. Gladstone. Bei. 9, 249.
Orthokresyl methyl oxide_	C ₇ H ₇ . O. C H ₃	.9957, 0° } .8331, 171°.3 }	Pinette. A. C. P. 243, 32.
Metakresyl methyl oxide	"	1.9891, 0° }	115, 52.
Parakresyl methyl oxide.	66	.8255, 177°.2 } .8236, 175°.5	Schiff. Bei. 9, 559.
		.9868, 0° } .8241, 175° } .9679, 0° }	Pinette. A. C. P. 243, 32.
Orthokresyl ethyl oxide	C ₇ H ₇ O. C ₂ H ₅	.7941, 184°.8 ("
Metakresyl ethyl oxide	((.97123, 5° }	Staedel. Ber. 14, 898. Pinette. A. C. P.
Parakresyl ethyl oxide	"	.7888, 192° (243, 32. Fuchs. J. 22, 457.
" " " "		.8744, 0°	Pinette. A. C. P.
Orthokresyl propyloxide _		.7884, 189°.9 { .9517, 0° }	243, 32.
Metakresyl propyl oxide		.7675, 204°.1 } .9484, 0° }	"
Parakresyl propyl oxide	"	.7628, 210°.6 } .9497, 0° }	"
Orthokresyl butyl oxide	C, H, O. C, H,	.7635, 210°.4 } .9437, 0° }	"
Metakresyl butyl oxide	(6	.7493, 223° } .9407, 0° }	
Parakresyl butyl oxide		.7422, 229°.2 } .9419, 0° }	te te
Orthokresyln. heptyloxide	С н о с н	.7410, 229°.5 }	tt tt
Metakresyln. heptyloxide		.7016, 277°.5	"
46 66 66	((.9202, 0° } .6927, 283°.2 }	(6 46
Parakresyl n. heptyl oxide		.9228, 0° }	££ £¢
Orthokresyl n. octyl oxide		$\begin{bmatrix} .9231, 0^{\circ} & \\ .6905, 292^{\circ}.9 \end{bmatrix}$	
Metakresyl n. octyl oxide		.9194, 0° .6818, 298°.9	<i>(</i> (
		1	

NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
Parakresyl n. octyl oxide	C ₇ II ₇ . O. C ₈ II ₁₇	.9199, 0° }	Pinette. A. C. P. 218, 32.
Ethyl phenetal Phloryl ethyl oxide Phloryl ethyl oxide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.986, 14°9823, 18°	Auer. Ber. 17, 669. Sigel. A. C. P. 170,
Styrolyl ethyl oxide Orthopropylphenyl me- \	C ₆ H ₄ . C ₃ H ₇ . O. CH ₃ -	.931, 21°.9 .9694, 0° }	345. Thorpe. J. 22, 412. Spica. Ber. 12, 295.
thyl oxide. Parapropylphenyl methyl oxide.	66	.9168, 100° { .9636, 0° } .9125, 100°	11 11 11
Isopropylphenyl methyl oxide.	6.6	.962, 0°	Paterno and Spica. Ber. 10, 84.
Isopropylphenyl ethyl ox- ide, " " " " Orthoisopropylphenyl eth-	. 4		Spica. J. C. S. 38, 167. Fileti. G. C. I. 16,
yl oxide. "Butyl anisol		.85913, 100° J .9368, 27°	113. Studer. Ber. 14, 2187.
Methyl thymol	C ₁₀ H ₁₃ . O. C H ₃	.941, 18°	Engelhardt and Lat- schinoff. J. 22, 466.
44 44	(1 (1	.869281,100° } .954814.0° {	Two samples. Pi- sati and Paterno. Ber. 8, 71.
66 66	44	.870459, 100° { .9531, 0° } .7635, 216°.2 }	Pinette. A. C. P. 243, 32.
Ethyl thymol	$C_{10} H_{13}$, (). $C_2 H_5 = -$.93866, 0° } .85758, 100° } .9334, 0° }	Spica. J. C. S. 44, 460. Pinette. A. C. P.
Propyl thymol	С ₁₀ Ц ₁₃ . О. С ₃ Ц ₇	.7400, 226°.9 } .9276, 0° } .7215, 243°	243, 32
Butyl thymol =	C ₁₀ II ₁₃ . O. C ₄ H ₉	$\{0.9230, \overline{0}^{\circ}, \overline{1}^{\circ}, \overline{1}^$	
Normal heptyl thymol	C ₁₀ H ₁₃ , O. C ₇ H ₁₅	.9097, 0° (.6712, 306°.7) .9026, 0° }	66 66
Metaxylyl ethyl oxide	C ₈ H ₄ . C H ₃ . C H ₂ . O. C ₂ H ₅ .	.6608, 319°.8 } .9302, 17°	Radziszewski n n d Wispek. Ber. 15,
Paraxylyl ethyl oxide		.9304, 17°	1746. Radziszewski a a d Wispek. Ber. 15,
Diphenylearbyl ethyl oxide.	$(C_6H_5)_2CH$, O , C_2H_5	1.029, 20°	1745. Linnemann.
Benzyl anisol	$C_{6} H_{4}, C_{7} H_{7}, O, C H_{3}$ $C_{10} H_{11} O_{}$	1.073, 0° } .993, 100° }	Paterno. B. S. C. 18, 77. Erlenmeyer, Ber.
Phenylvinyl ethyl oxide Orthovinylanisöil	C ₁₀ H ₁₁ O. C H ₃	1.0095, 15° }	14. 1868. Perkin, J. C. S. 33,
Paravinylanisöil	46	1.000, 30° } 1.002, 15° { .9956, 30° }	211.
Orthoallylanisõil	C ₆ H ₄ . C ₃ H ₅ . O. C H ₃	.9972, 15° .9884, 30° .9793, 45°	66 66

	I		
NAME.	FORMULA.	Sp. Gravity.	Аптногиту.
Anethol. 1.4	С ₆ H ₄ . С ₃ H ₅ . О. С Н ₃₋	.984, 20°	Landolph. C. R. 82 227.
" Natural		.9858, 30° }	Perkin.
		.9761, 45° \ \ .9887, 21°.3	Sehiff. A. C. P. 223
		.99132, 14°.9 .98556, 21°.6	Nasini and Bern- heimer. G.C.I. 15
ee		.97595, 34°.4 .94041, 77°.3 .9869, 21° }	50. Gladstone. J.C.S. 49.
" ArtificialOrthobutenylanisöil	C ₆ H ₄ . C ₄ H ₇ . O. C H ₃	.9870, 21° } .9817, 15° }	623. Perkin. J. C. S. 33.
Parabutenylanisöil Phenyl allyl oxide		.9740, 30°	211. " Nasini. Bei. 9, 331.
Kresyl allyl oxide. 1.4 Phenyl propargyl oxide	$ C_7 H_7$, O. $C_3 H_{5} $.9869, 10°	Henry. Ber. 16, 1378.
Veratrol. 1.2 Dimethylresorein. 1.3	С ₆ Н ₄ (ОС Н ₃) ₂	1.086, 15° 1.075, 0°	Merck. J. 11, 256. Coninck. Ber. 13, 1992.
"		1.0803, 0° 1.0317, 55°.8	1002.
	66	1.0104, 79°.2 .9566, 135°.5 .8752, 215°	Sehiff. Ber. 19, 560.
Methylene diphenate	$C H_2 (O C_6 H_5)_2$	1.1136, 18°	Henry. Ann. (5), 30, 269.
"		1.092, 20°	Arnhold. A. C. P. 240, 192.
Methylene diorthokresy-	C H ₂ (O C ₇ H ₇) ₂	1.019, 50°, 1	££' ££
Methylene dimetakresy- late.		1.052, 50°, l	ec ce
Methylene diparakresylate Methylene dibenzylate		1.034, 50°, l 1.053, 20°	
Methylene dithymylate	C H ₂ (O C ₁₀ H ₁₃) ₂	.979, 50°, l	
Ethylene diphenate	C ₂ 11 ₄ (O C ₆ 11 ₅) ₂	1.018, 11	Henry. Ber. 16, 1378.

24th. Aromatic Acids and their Paraffin Ethers.

	NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Benzoie	naid	C ₆ II ₅ . C O O H	1.29, cryst	Kopp.
Delizote	neid	C 6 11 5. C O O II	1.201, 21°, s	Troppi.
4.4		44	1.206, 25°.8, l.	Mendelejeff. J. 11,
4.4	44		1.227, 27°, 1.	274.
4.4			1.0538, 1219.4	Kopp. J. 8, 35.
4.4	(1	44	1.337, sublimed	Rudorff. Ber. 12, 251.
4.4	4.		1.288)	Schröder. Ber. 12,
4.4	**		1.291 } 40 }	561.
4.4			1.297)	
6.6		4.4	1.0800, 121°.4.	Schiff. A. C. P. 223, 247.
Methyl 1	benzoate	C ₈ H ₈ O ₂	1.10, 17°	Dumas and Peligot. Ann. (2), 58, 50.
4.6	4.4		1.1026, 00)	Kopp. A. C. P. 94,
4.4		44	1.0876, 16°.8	257.
4.4		+ (1.0921, 129.8	Mendelejeff. J. 13, 7.
4.4	44	4	1.0562, 200	Bruhl. Bei. 4, 782.
4.4	11 (4	44	1.100, 10°	Do Heen. Bei. 10,
				313.
4.6		((1.103, 15°	Stohmann, Rodatz, and Herzberg. J.
				P. C. (2), 36, 1.
Ethyl be	enzoate	C ₉ II ₁₀ O ₂	1.0539, 10°.5_	Dumas and Boullay. P. A. 12, 430.
6.6			1.06, 18°	Deville. Ann. (3), 3, 188.
6.6			1.049, 140	Delffs. J. 7, 26.
			1.0657, 0°)	Kopp. A. C. P. 94,
4.4	44		1.0556, 10°.5	257.
6.6	44	44	1.0517, 140.1	Mendelejeff, J. 13, 7.
+ 6			1.018, 20°	Naumann. Ber. 10, 2016.
4.6	6.6	4.6	1.0173, 200	Bruhl. Bei. 4, 752.
4.4			1.0502, 16°	Linnemann, A. C. P. 160, 195,
		16	1.160, 10°	De Heen. Bei. 10,
		6.6	1.050.159	Stohmann Radetz
**			1.050, 15°	Stohmann, Rodetz, and Herzberg, J.
Propyll	enzoate	C ₁₀ H ₁₂ O ₂	1.0316, 16°	P. C. (2), 36, 1. Linnemann. A. C.
1.0		10 12 2		P. 161, 29.
4.6			1.0248, 15°	Stohmann, Rodatz, and Herzberg. J. P. C. (2), 36, 1.
Isopropy	l benzoate		1.051,00	Silva. Z. C. 12, 637.
124 1 1		C ₁₁ H ₁₄ O ₂	1.013, 25° } == 1.000, 20°	Linnemann. Ann.
Butyl be	enzoate	C ₁₁ H ₁₄ O ₂	1.000, 20°	(4), 27, 268. De Heen. Bei. 10,
				313.
Isobutyl	benzoate		1.0018, 15°	Stohmann, Rodatz, and Herzberg. J. P. C. (2), 36, 1.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Amyl benzoate	C ₁₂ H ₁₆ O ₂	1.0039, 0° } .9925, 14°.4 } 1.002, 10°	Kopp. A. C. P. 94, 257. De Heen. Bei. 10,
	(1	.9916, 15°	Stohmann, Rodatz, and Herzberg. J.
Hexyl benzoate	C ₁₃ H ₁₈ O ₂	.99846, 17°	P. C. (2), 36, 1. Frentzel. Ber. 16, 745.
Salicylic acid	С ₆ Н ₄ . ОН. СООН. 1.2	1.443 1.482	Rüdorff, Ber. 12, 251. Schröder. Ber. 12,
Metaoxybenzoic acid Paraoxybenzoic acid	" 1.8 " 1.4 "	1.473, 4°	1611.
Methyl salicylate, oil of Betula lenta.	C ₈ H ₈ O ₃	1.180, 15°	Pettigrew. Am. J. P. 55, 385.
Propyl salicylate Methylsalicylic acid. 1.2	$C_{10} H_{12} O_3$ $C_6 H_4 O C H_3 C O O H$		Cahours. Les Mondes, 32, 280. Cahours. Ann. (3),
11 11 11 11	ιι ι: 	1.1845, 15° 1.1969, 0° } 1.1819, 16° }	10, 327. Mendelejeff. J. 13, 7. Kopp. A. C. P. 94,
Anisie acid. 1.4	::	1.1801, 20°	257. Landolt. Bei. 7, 847 Sehröder. Ber. 12,
thylsalicylic acid. 1.2	C_6H_4 . OC_2H_5 . $COOH$	1.364 1.376 1.385 1.097	1611. Baly. J. C. S. 2, 28.
Ethyl ethylsalicylate Ethyl ethylmetaoxybenzoate.	C ₁₁ H ₁₄ O ₃	1.1843, 10° 1.1005 1.0875, 0° 1.0725, 20° }	Delffs. J. 7, 26. Göttig. Ber. 9, 1473. Heintz. A.C.P. 153, 332.
Methyl isopropylsalicylate Protocatechuic acid	$C_6 II_3 (O_{ii})_2$. COOII	1.062, 20°	Kraut. J. 22, 566. Schröder. Ber. 12, 1611.
Gallie acid Phenylacetic, or alpha-	$C_6 H_2 (O H)_3$. COOH $C_6 H_5$. CH ₂ . COOH	1.685 4° 1.703 4° 1.3, solid)	"
toluie acid. "	11 11 11	1.0778, 83° 1.0834, 135°	Möller and Strecker. J. 12, 299. Schröder. Ber. 12,
tt tt	(;	1.220 4° { 1.236 4° { 1.0847, 76°.4	1611. Schiff. A.C.P. 223, 247.
Methyl phenylacetate Ethyl phenylacetate	-	1.044, 16° 1.031	Radziszewski, Z. C. 12, 358.
Propyl phenylacetate Phenylpropionic, or hy-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Hodgkinson, J. C. S. 37, 483. Weger A. C. P.
drocinamic acid. Methyl phenylpropionate	$C_{6}\Pi_{5}$. $C_{2}\Pi_{4}$. $COOH$ C_{10} Π_{12} Ω_{2}	1.07115, 48°.7. .8780, 279°.8. 1.0455, 0°	221, 61. Erlenmeyer. J. 19,
	11	1.018, 49° } 1.0473, 0° .83824, 236°.6_	} Weger. A. C. P. 221, 61.
17 s g			

NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Ethyl phenylpropionate	C ₁₁ H ₁₄ O ₂	1.0313, 0° }	Erlenmeyer, J. 19,
££ ££	11	.9925, 49° { 1.0147, 20 }	367. Bruhl. Bei. 4, 781.
	(1)	1.0348, 02 =	Weger. A. C. P.
"		.80182, 2480.1_	221, 61.
Propyl phenylpropionate.	C ₁₂ II ₁₆ O ₂	1.0152, 0° .77886, 262°.1	}
Amyl phenylpropionate	C ₁₄ H ₂₀ O ₂	.9507, 00 }	Erlenmeyer. J. 19,
Methyl oxyphenylacetate	C ₉ dI ₁₀ O ₃	.9520, 49° } 1.15, 17°.5	367. Fritzsche. Ber. 12,
13.1 I sumbonulnostuto	СНО	1.104, 17°.5	2178.
Ethyl oxyphenylacetate Ethyl oxyphenylpropio-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,360, 17°.5	Saarbach. J. P. C.
nate. Phthalicacid	C ₆ H ₄ . (C O O II) ₂		(2), 21, 156. Schröder. Ber. 13,
At all all all all all all all all all al	C H ()	1.598}	1070.
Methyl phthalate	C ₁₀ H ₁₀ O ₄	$\begin{bmatrix} 1.2001 \\ 1.2022 \end{bmatrix}$ 13°.5.	Three prepara-
		1.2101)	tions. Schmal- zigaug. Inaug.
11 11	11	1.1958	zigaug. Inaug.
11 11		1.1974 \ 1.2058 \ \ \ 1.2058 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Diss. Erlangen, 1883. See also
44	(1	1.1953)	Graebe, Ber. 16,
		1.1938 \ 18°	J 861.
77-1 1 1 1 1 1 - 1 - 1 - 1	C ₁₂ H ₁₄ O ₄	1.2031) 1.1316 } 100 5	Two preparations.
Ethyl phthalate	12 1114 04	1.1321 120.5	Sehmalzigang.
		1.1291 1 150 5	Inaug. Diss. Er-
44	(1) II (1/1) II (1/1) II	1.1200 }	Jangen, 1883.
Orthophenyleneglyoxylic acid.	Con. Coon	1.404	Colson and Gautier. C. R. 102, 689.
Cinnamie, or phenylac- rylic acid.	C ₆ H ₅ .CH.CH.COOH	1.215	E. Kopp. J. P. C. 37, 280.
- 44		1.195	Schabus. J. 3, 302.
66 66		1	Schröder. Ber. 12, 1611.
46			Weger. A. C. P.
		.90974, 3000	221, 61.
Methyl cinnamate	C ₁₀ H ₁₀ () ₂	1.106	E. Kopp. C. R. 21, 1376.
11 11	44 10-1	1.0115, 36°	Weger, A. C. P.
Ethyl cinnamate	C, H, O,	. \$5888, 259°.6 1.126, 0° 1111	(221, 61. E. Kopp. C. R. 21,
11 11	((1.18	1376. Marchand, A. C. P.
No. 40. 40. 40. 40. 40.			30, 010,
	44	1.0456, 0° = 1.0498, 20°.2 i	H. Kopp. A. C. P. 95, 307.
		1.0558)	
11		1.0655 .00	Weger, A.C.P. 221,
		1.0362) 82143, 271°	61.
11 11		1.0190, 200	
Propyl cinnamate	C ₁₂ H ₁₄ O ₂	1.0465	
11 11	- 66	1.0435, 0° =) 7917, 255°.1	Weger, A.C.P. 221,
11 11			01.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl a methylorthox- yphenylaerylate.	C ₁₁ H ₁₁ O ₃	1.1404, 15° 1.1277, 30° 1.1465, 8°.5	Perkin. J. C. S. 39, 409. Gladstone. Bei. 9, 249.
Methyl β methylorthox- β yphenylaerylate.	($\left\{\begin{array}{c} 1.1486, 15^{\circ} \\ 1.1362, 30^{\circ} \\ 1.1556, 9^{\circ}.5 \end{array}\right\}$	Perkin. J. C. S. 39, 409. Gladstone. Bei. 9,
Ethyl α ethylorthoxy- phenylacrylate. Ethyl β ethylorthoxy- phenylacrylate.	C ₁₃ H ₁₆ O ₃	1.084, 15° 1.074, 30° 1.090, 15° 1.090, 10°	249. Perkin. J. C. S. 39, 409.
Methyl a methylorthox- $\}$ yphenylerotonate. $\}$ Methyl β methylorthox- $\}$	C ₁₂ II ₁₄ O ₃	1.1112, 15° } 1.1061, 30° } 1.1279, 15° }	Perkin. J. C. S. 39, 409.
yphenylerotonate. Methyl a methylorthox- yphenylangelate.	C ₁₃ H ₁₆ O ₃	$ \begin{array}{ccc} 1.1136, 30^{\circ} \\ 1.1044, 15^{\circ} \\ 1.0882, 30^{\circ} \end{array} $	er er
Methyl β methylorthox- yphenylangelate. Mandelie acid	 С ₆ Н ₅ . СНОН. СООН	$ \begin{array}{c} 1.1100, 15^{\circ} \\ 1.1008, 30^{\circ} \end{array} $ $ \begin{array}{c} 1.355 \\ 1.367 \end{array} $	" " Schröder. Ber. 12,
Cuminie acid	C ₆ H ₄ . C ₃ H ₇ . COOH _	$ \begin{array}{c} 1.367 \\ 1.156 \\ 1.169 \end{array} $ $ \begin{array}{c} 4^{\circ} \end{array} $	1611.
Quinic acidEthyl veratrate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.637, 8°.5 1.141, 18°	Watts' Dictionary. Will. A. C. P. 37, 198.
Ethyl phenylglyoxylate Ethyl phenylacetacetate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.121, 17°.5 1.0861, 16°	Claisen. Ber. 12, 629. Hodgkinson. J. C. S. 37, 481.
Ethyl benzylacetacetate	C ₁₃ II ₁₆ O ₃		Conrad. Ber. 11, 1056.
Ethyl methylbenzylacet- acetate. Ethyl benzylmalonate	$C_{14} \ H_{18} \ O_3$ $C_{14} \ H_{18} \ O_4$	1.046, 23° 1.077, 15°	Conrad and Bischoff.
Ethyl benzylmethylmalo-	$C_{15} \ H_{20} \ O_{4}$	1.064, 19°	A. C. P. 204, 203. Conrad and Bischoff.
nate. Ethyl benzylidenemalo- nate.	C ₁₄ H ₁₆ O ₄	1.1105, 15°	Ber. 13, 595. Claisen and Crismer. A. C. P. 218, 132.
Ethyl benzylacetosucci-	C ₁₇ H ₂₂ O ₅		Conrad. Ber. 11, 1058.
Monomethyl propylpy- rogallate. Picamar.	C ₁₀ H ₁₄ O ₃	1.10 1.10288, 15°	Reichenbach. Pastrovich. M.C.4, 183.

25th. Ethers of Aromatic Radicles.

Name.	FORMULA.	Sp. Gravity.	Аптновиту.
Phenyl acetate	$C_s H_s O_2$	1.071	Boughton, J. 18,
Kresyl acetate	C ₉ H ₁₀ O ₂	1.0499, 23°	530. Gladstone. Bei. 9,
Benzyl acetate		1.057, 16°.5.	Conrad and Hodg-kinson. A. C. P.
		1.0400, 21° 1.03814, 22°.5	193, 312. Glad-tone. Bei. 9, 249,
Paraxylyl acetate		1.0261, 15	Jacobsen. Ber. 11,
Ethylphenyl acctate		1.0286=	Radziszewski. Ber. 9, 873.
		1.0507, 220.5	Gladstone. Bei. 9, 249.
Methylphenylcarbyl acetate.		1.05, 17°	Radziszewski, C.C. 5, 261.
Parapropylphenyl acetate_	44	1.029, 00 /	Spica. Ber. 12, 295.
Orthoisopropylphenyl acetate.		1.02714, @° / .98818, 100° /	Fileti. G. C. I. 16, 113.
Paraisopropylphenyl ace- tate.	+4	1.026, 00	Paterno and Spica. Ber. 10, 84.
Mesityl acetate		1.0903, 16°.5	Wispek. Ber. 16,
Thymyl acetate	C ₁₂ H ₁₆ O ₂	1.009, 0° - { }	Two preparations. Paterno. J. C. S.
Butylphenyl acetate		1.010, 0°)	(2), 13, 638. Studer. Ber. 14,
Diphenylearbyl acetate		1.49, 220 9	2187. Linnemann. A. C.
Benzyl propionate	C ₁₀ H ₁₂ O ₂	1,036 165,5	P. 133, 20. Conrad and Hodg- kinson, A. C. P. 193, 312.
Benzyl butyrate	C ₁₁ H ₁₄ O ₂	1.016, 160	4.4 4.6
Benzyl isobutyrate		1.016, 150	Hodgkinson, A. C. P. 193, 320
		1,0055,230	Gladstone, Bci. 9.
Is oner of benzyl isobuty-	" ==	1,():):,, :):) ==	4.6
Benzyl pheny a etate	Gu II ₁₄ O ₁	1.101	Slawik, J. C. S. [2], 13, 59,
Benzyl benzylacetate -	C ₁₆ H ₁₆ O ₂	1.074, 21	Cunval and Hedg- kit son. A. C. P. 193, 312.
Benzyl benzylpropionate	C17 H18 ()2	1.046, 167, 5	
Benezil bin yilbutym te Ben yili nevlis diityrate	C _{1*} II, O	1,027, 179.5	44
Berzyl dimethylbenzyl-		1 0285, 18	Hodgkinsen, J. C. S. 2.1, 495.
Berzyllenz ate	$C_{1i} \; \Pi_{1j} \; O_{j} \qquad \qquad \cdots \qquad \cdots$	1.114, 18 .5 ==	Kr. ut. A. C. P. 152, 159
16		1.1224, 197, 1.	Claisen, Ber. 20, 646.

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Benzyl cinnamate			249.
Ethyl phenyl carbonate			C. R. 96, 1863.

26th. Aromatic Aldehydes.

	1		
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Benzaldehyde. Almond oil.	C ₆ H ₅ . C O H	1.075	Chardin-Hardan-
	66	1.038, 15°	Guckelberger, J. 1. 850.
	((Wöhler and Liebig.
"	66	1.0636, 0° } 1.0499, 14°.6 }	Kopp. A. C. P. 94, 257.
"		1.0504	Mendelejeff. J. 13, 7.
		1.067	Lippmann and Hawliczek. Ber. 9, 1461.
	44	$\begin{bmatrix} 1.0471 \\ 1.0474 \end{bmatrix}$ 20°	Landolt.
11		1.0455, 20°	Brühl. Bei. 4, 782.
Toluic aldehyde	$C_6 H_4 C H_3$. $COH_{}$	1.037, 0°)	Gundelach. B. S. C.
Phenylacetic aldehyde		1.024, 22° }	26, 45. Radziszewski. Ber.
Theny facetic aideny de		1.009	9, 372.
Cuminic aldehyde. Cumi-	C ₆ H ₄ . C ₃ H ₇ . C O H	.9832, 0° }	Kopp. A. C. P. 94,
tt tt nol.		.9727, 13°.4 } .9751, 15°	257. Mendelejeff. J. 13, 7.
		.9775, 20°	Gladstone. Bei. 9, 249.
Paratolylpropyl aldehyde	C ₆ H ₄ . CH ₃ . CH ₂ . CH ₂ . CH ₂ . C O II	.9941, 13°	v. Richter and Schüchner. Ber. 17, 1931.
Salieylic aldehyde, or salievlol.	C ₆ H ₄ . O H. C O H	1.1731, 13°.3	Piria. A. C. P. 29,
Anisic aldehyde	" " · · · · · · · · · · · · · · · · · ·	1.1671, 20°	
}			14. 484.
Cinnamie aldehyde		1.1228, 18°	Rossel. Z. C. 12, 561.
Cinnamie aldehyde	C ₉ H ₈ O	1.0497, 20°	Brühl. A. C. P. 235, 1.

27th. Aromatic Ketones.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl phenyl ketone Methyl benzyl ketone	С ₆ П ₅ , С О. С П ₃	1.032, 15° 1.010, 13°	Radziszewski. Ber.
Methyl tolyl ketone		.9891, 220	
Propyl phenyl ketone	C ₆ H ₅ , C O, C ₃ H ₇	.990, 15°	Ber. 17, ref. 429. Schmidt and Fig- berg. J. C. S. (2), 12, 75.
			Popoff. Ber. 6, 560. Einhorn. In. Diss. Tubingen, 1880.
Isopropyl phenyl ketone	16	$0.994, 12^{\circ}$ $0.972, 30^{\circ}$	
Methyl xylyl ketone		.934, 60°) .9962, 19°	Claus and Wollner. Ber. 18, 1856.
Isobutyl phenyl ketone	$C_6~\Pi_5,~C~O,~C_4~\Pi_9~$.	.990, 17°.5	Popoff. A.C.P. 162
Tolyl phenyl ketone	C ₆ H ₅ . C Ō. C ₇ H ₇	1.085, 170.5	
Acetocinnamone	С ₈ Н ₇ . С О. С Н ₃	1.008	252. Engler and Leist. B. S. C. 20, 204.
Propionylacetophenone Butyrylacetophenone		1.081, 15° 1.061, 15°	Stylos, Ber. 20, 2181

28th. Camphors, Essential Oils, Etc.

Name.	FORMULA.	SP. GRAVITY.	Астновиту.
Laurel camphor		.986 .996)	Watts' Dictionary.
Myristicol		.0466, 200	Gladstone. J. C. S.
Absinthol		.973, 246	(2), 10, 1. Leblanc. A. C. P. 56, 357.
44		.9267, 200	Gladstone. J. C. S.
	**	.9128, 200	(2), 10, 4. Gladstone. Bei. 9, 249.
Citrouellel	11	.8742 20°	Two samples Gladstone, J. C. S. (2), 10, 1.
From oil of coriander		.8070	Grosser. Ber. 14,
Ericinol			2505. Frohde, J. P. C. 82, 186,
Oil of Mentha pulegium.	66	.9390	Watts' Dictionary.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Oil of Pulegium micran-	C ₁₀ H ₁₆ O	.932, 17°	Butlerow. J. 7, 595.
thum. From oil of tansy	"	.918, 4°	Bruylants. Ber. 11,
ThujolCajeputol	C ₁₀ H ₁₈ O	.924, 15° .9160, 20°	Jahns. Ber. 16, 2930. Gladstone. J. C. S.
Cajeputene hydrate	ee ee	.8900, 21°.5 .903, 17° .9160, 20°	(2), 10, 1. Schmidl. J. 13, 480. Kanonnikoff. Bei. 7,
Oil of coriander		.871, 14° .8719, 15°	592. Kawalier. J. 5, 624. Grosser. Ber. 14,
Cyneol		.92067, 16°	2486. Wallach and Brass.
и	ec	.9267, 20°	A. C. P. 225, 291. Wallach. A. C. P. 245, 195.
Oil of eucalyptus oleosa		.9075, 20°	Gladstone. J. C. S. (2), 10, 1.
Geraniol Oil of Licari kanali	(C	.8851, 15° } .8813, 21° } .868, 15°	Jacobsen. Z. C. 14, 171. Morin. J. C. S. 40,
Oil of Mclaleuca ericifolia	(t	,	738. Gladstone. J. C. S.
Oil of Melaleuca linarifolia From menthol	((.8985, 20° .9032	(2), 10, 1. Moriya. C. N. 42,
Menthone	εε εε	.9126, 00]	268.
	"	.9048, 10° .8972, 20° .8819, 40° }	Atkinson and Yoshi-
	£	.8665, 60° .8511, 80°	da. J. C. S. 41, 295.
Ngoi camphor	ιι 	.8355, 100° j 1.02	Plowman. J. C. S.
From Osmitopsis asteriscoides.	"	.921	(2), 12, 582. Gorup-Besanez. J.
Salviol	"	.934, 15°	7, 596. Sigiura and Muir. J. C. S. 33, 295.
Terpane	11	.938, 15° .935, 0°	Muir. J. C. S. 37, 13. Bouchardat and
·			Voiry. C. R. 106, 664.
Terpilenol	cc	.961, 0° }	Bouchardat and Lafont. B.S.C.
		.9533, 0°	Lafont. B. S. C. 49, 323.
Terpinol*		.952, 0°	Bouchardat and Voiry. B.S.C. 47,
	((.9296, 10°	870. Gladstone. J. C. S. 49, 623.

^{*}List's terpinol (J. 1, 726) is now known to be a mixture.

= -			
Name.	FORMULA.	SP GRAVITY.	AUTHORITY
Terpinol	C ₁₀ H ₁₈ O=	.0357, 200	Wallach, A. C. P.
ff land land	(1	.9274, 16°	245, 196. Tilden, C. N. 37, 166.
Turpentine hydrate	44	.9339, 0° 1	Flawitzky, Ber. 12,
44	((.9201, 18° {	2355.
44		.9201, 18° { .9511, 10°	Renard, Ber. 18, 932.
11	"	.9193	Kanonnikoff, Bei. 7, 592.
44	()	.9335, 00)	Flawitzky, Ber. 20,
tt	(;	.,9189, 199.5	1959.
From wormseed oil		.9275, 16° .=) .8981, 59° _= }	IT . 11 1 1
66 66		.8553, 100°	Hell and Stürcke. Ber. 17, 1970
			(Twosamples, Glad-
Menthol	C ₁₀ H ₂₀ O	.9891 20"	stone, J. C.S. (2), 10, 1.
44	"	.89, 15°	Moriya. C. N. 42,
			268.
	4.6	.5786, 20°	Kunonnikoff, Bei. 7, 592.
Ethyl camphor	C., H., Ō.,,	.916, 220	Baubigny, J. 19,624.
Eucalyptol	12 20	1,1005, 50	Cloez. Z. C. 12, 411.
		,9173, 15°	Pochl. J. R. C. 5, 538,
From wormseed oil		.919, 20°	Volckel, J. 6, 518.
Anyl camphor ==	C ₁₃ II ₂₆ ()	,919, 15° == =	Baubigny.
Acetyl camphor	C ₁₂ H ₁₈ O ₂	.986, 202	Baubigny, J. 19,624.
Methyl borneol = = = = =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.938, 15°	Baubigny.
Ethyl borneol	C ₁₂ H ₂ O	1.849, 20° 1.11	De Luca. J. C. S.
From Achillea ageratum			31, 826.
From Angostura bark	C. H. O	.984	Herzog, J. 11, 144.
Patchouti camphor	$C_{13} \coprod_{C_{15}} O_{}$	1.051, 19.5	. Gal. Z. C. 12, 220.
Oil of ginger	C. A. H. 100 (1. (1)	898	Papousek, J. 5, 624.
Camphorogenol	C ₁₀ H ₁₈ O ₂	.9791, 200	Yoshida. J. C. S.
			47, 779.
Terpilene formate	C, II, O,	9956, 00)	Two samples. La- font, B. S. C. 49,
		0200	309
Terpilene acetate	C. II. O.	.9827, 0°	Bouchardet and In-
Terpire in the tax care =====	- 120		font, C.R. 102, 318.
Terebenthene acetate		,9820,00	
Terebene acetate		.977, 00	Bouchardat and La-
		03	font C.R. 102,171
Compliene acetate	"	1.002, 0°	Lafont. C. R. 101, 1718.
Camphoric acid	('1) H ₁₆ (),	1.191	
	-	- 1.195	1070.
Ethyleamphöric acid			61, 164.
Ethyl camphorate	C14 II 74 O4	1.020, 16°	22, 4%.
66 64		1.072, 220	Delimel. J. R. C. 4.
16	6.6	1.070, 250	
Propyl camphorate	C ₁₆ H ₇₈ O ₄	1.058, 219	
Ethyl paracamphorate -	- C1, H , O,	1.08, 150	
Camphoric anhydride	- 10 1114 03	1.194, 20°, 5	64, 160.

NAME.	Formula.	SP. GRAVITY.	Антногиту.
Ethyl camphocarbonate Camphrene Diethylcamphresic acid Ethyl camphresate			397.

29th. Miscellaneous Compounds.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Quinone	$C_6 H_4 O_2$	1.307}	Schröder. Ber. 13,
Phlorol	C ₈ H ₁₀ O	1.318 § 1.015, 12°	1070. Sigel. A. C. P. 170,
Carvol	C ₁₀ H ₁₄ O	.953, 15° .9530, 20°	Völckel. Gladstone. J. C. S.
"		.9562, 20°	(2), 10, 1.
tt		$\begin{bmatrix} .959 \\ .9593 \\ .9593 \\ \end{bmatrix}$ 20	Beyer. Ber. 16, 1387.
(.9598) .960, 18°.5 .7866, 228°	Flückiger. Schiff. Ber. 19, 560.
		.9667, 11°	Gladstone. J. C. S. 49, 623.
Eugenol		1.076	Stenhouse. A. C. P. 95, 106.
"		1.0684, 14°	Williams. A. C. P. 107, 240.
		1.066, 15°	Church. J. C. S. (2), 13, 113.
		1.0778, 0° } 1.063, 18°.5 } 1.0703, 14°	Wassermann. J. C. S. (2), 1, 706. Tiemann and Kraaz.
11		1.066, 17°.5	Ber. 15, 2066. Gladstone. Bei. 9,
Isoeugenol	t:	1.080, 16°	249. Tiemann and Kraaz.
Methyl eugenol?	C ₁₁ II ₁₄ O ₂	1.046, 15°	Ber. 15, 2066. Church. J. C. S. (2),
££		1.055, 15°	13, 115. Petersen. Ber. 21, 1060.
Ethyl eugenol	C ₁₂ H ₁₆ O ₂	$\{1.026, 0^{\circ}_{1.0117, 18^{\circ}.5}\}$	Wassermann, A. C. P. 179, 376.
Propyl eugenol		1.0024, 16°	Wassermann. Ber. 10, 237.
Isobutyl eugenol	$C_{15} \stackrel{H_{20}}{H_{22}} O_2$.985, 15° .976, 16°	Wassermann. Ber.
Allyl eugenolCoumarin	C ₁₃ H ₁₆ O ₂	1.018, 15° .9207	10, 238. "Gladstone. Bei. 9,
	og6 02		249.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Safrol		1.1141, 0	Grimanx and Ruotte. Z. C. 12, 411.
Coerulignol	C ₁₀ II ₁₄ O ₂	1.0956, 18° 1.05645, 15°	J. Schiff, Ber. 17, 1935, Pastrovich, M. C. 4,
Phthalic anhydride	C. II. O	1.527 1.530 } 4° {	189. Schroder. Ber. 12,
Benzoic anhydride	$C_{14} \coprod_{i_1} O_3 \dots$	1.530 } 4 = - (1.231) 1.234 } 4°	1611.
Benzo-oenanthic anhy-	C ₁₄ II ₁₈ O ₃	1.247 }	Malerba. J. 7, 444.
dride. Benzo-cinnamic anhy-dride.	C ₁₆ H ₁₂ O ₃	1.184, 23°	Gerhardt. J. 5, 449.
Benzo-cuminic anhydride Pyruvyl benzoate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.115, 28° 1.143, 25°, s	Gerhardt. J. 5, 448. Romburgh. J. C. S.
Tannie acid	14 10 3	1.097	44, 63. W. C. Smith. Am. J. P. 53, 145.
Benzoyl glycollic ether Propylene ethylphenylke-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1509, 20°.4 .988, 22° _	Andrieff. J. 18,344. Morley and Green.
tate. Isomer of benzil Saliretin	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.104.10° 1.1161, 25°	Ber. 17, 3016. Alexeyeff, J. 17, 335. Beilstein and Seel-
Isobenzpinacone	C ₂₆ H ₂₂ O ₂	1.10, 19°	heim. J. 14, 765. Linnemann. J. 18, 556.
Derivative of propyl phenylacetate.	C ₂₄ H ₂₀ O ₃	1.039, 17°	Hodgkinson, J. C. S. 37, 482.
Derivative of ethyl phenylacetacetate.	C ₁₅ H ₁₀ O ₂	1.0628, 20°	11 11
a Naphtol	C ₁₀ II ₈ O	1.224, 4°	Schroder. Ber. 12, 1611.
	(1	1.09589, 98°.7	Nasini and Bernheimer, G.C.I. 15,
3 Nephtol	. (1.217, 4°	50. Schroder. Ber. 12, 1611.
= ===		1.23	Brügelmann. Ber. 17, 2359.
Naphtel		.9048, at boiling point.	Ramsay, J. C. S. 89, 65.
Methyl a naphtol	C ₁₁ H ₁₀ O.	1.09636, 18°.9 1.07931, 34°.5 1.04961, 77°.7	Nasini and Bernheimer, G. C. I. 15, 50.
Propyl a nephtol Methyl a naphtyl oxide Methyl naphtyl ketore	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.04471, 18°,4 1.0974, 15° 1.124, 0°	Staedel, Ber. 14, 898, Roux, Ann. (6, 12,
Anthrequinone	C ₁₄ II, ()	1.428	336,
11	14	1.425	Sehroder. Ber. 13, 1070.
Phenanthrenequinene	6.6	$\left\{\begin{array}{c} 1.404 \\ 1.405 \end{array}\right\}$	4.6

NAME.	FORMULA.	Sp. Gravity.	Антиовіту.
Asarone	C ₁₂ H ₁₆ O ₃	$\begin{array}{c} 1.165, 18^{\circ} - \\ 1.0743, 60^{\circ} \end{array} \right\}$	Butlerow and Rizza.
Salicin. Natural	$C_{13} \stackrel{11}{\prod}_{18} O_{7}$	1.0655, 95°) 1.4338, 26° }	B. S. C. 43, 114. Piria. Ann. (3), 44,
" Artificial Santonin	$C_{13} \coprod_{i1} C_{15} \coprod_{i1} $	1.4257 } 1.247, 20°.5	368. Trommsdorf. A. C. P. 11, 190.
ιι		1.1866	Carnelutti and Nasini. Ber. 13, 2210.
Metasantonin. M. 136° " 160°.5_	rt	$1.1649 \\ 1.1975 \\$	"
Santonid		1.1967	44 44
Parasantonid	"	1.1957 1.2015, 20°	Nasini, Ber. 14,1513.
Santonic acid	C ₁₅ H ₂₀ O ₄	1.251	Carnelutti and Nasini. Ber. 13, 2210.
Methyl santonate Methyl parasantonate	C ₁₆ H ₂₂ O ₄	1 1667	
Ethyl santonate Ethyl parasantonate	$C_{16} \stackrel{H}{\underset{i_1}{}_{i_2}} 0_4$ $C_{17} \stackrel{H}{\underset{i_1}{}_{i_1}} 0_4$	1.1481 1.153	ee ee
Propyl santonate	C ₁₈ H ₂₆ O ₄	1.1185 1.125, 20°	Nasini. G. C. I. 13,
Propyl parasantonate		1.153	Carnelutti and Nasini. Ber. 13, 2210.
Isobutyl santonateAllyl santonate	$ \begin{array}{c} C_{19} \ H_{28} \ O_4 \\ C_{78} \ H_{24} \ O_4 \\ C_{18} \ H_{16} \ O_2 \end{array} $	1.1181 1.1434	:: Doi: 10, 22101
Styraein	C ₁₈ H ₁₆ O ₂	$\left\{ \begin{array}{ccc} 1.154 & \dots & \\ 1.159 & \dots & \\ \end{array} \right\}$	Sehröder. Ber. 13, 1070.
Pimarie acid Sylvie acid Tropilene	$C_{18} \stackrel{\text{i.i.}}{}_{i.i} = C_{20} \stackrel{\text{i.i.}}{}_{i.i} = $	1.047, 18° 1.1611, 18° 1.01, 6°	Siewert. J. 12, 510. "Ladenburg. Ber. 14,
11			2130. Ladenburg. A. C.
Cinaerol	C ₁₀ H ₁₈ O ₂	1.05}	P. 217, 139. Hirzel. Watts' Dictionary.
ColophononeApiol	$egin{array}{cccc} C_{11} & H_{18} & O_{} \\ C_{12} & H_{14} & O_{4} & \end{array}$	1.015	Schiel. J. 13, 489. Lindenborn. Ber. 9,
Calophyllum resin			1478. Levy. C. R. 18, 244. Mulder. A. C. P. 28,
Antiar resin Tannin from Persea lingue			307.
From Sequoia gigantea		1.352, 10° 1.045	Lunge and Stein- kauler. Ber. 14, 2205.
Turmerol	C ₁₉ H ₂₈ O		Jackson and Menke. A. C. J. 4, 371.
Guyaquillite Hartin	$\begin{bmatrix} C_{20} & H_{26} & O_3 & \dots \\ C_{20} & H_{34} & O_2 & \dots \end{bmatrix}$	1.115, 19°	Dana's Mineralogy. Schrötter. P. A. 59, 45.
Resin from rosewood	C ₂₁ H ₂₁ O ₆		Terreil and Wolff. J. C. S. 38, 559.
Cardol	C ₂₁ H ₃₁ O ₂	.978, 23°	Städeler. J. 1, 577.

FORMULA.		AUTHORITY.
C26 II 40 O	.9346, 15°	Planta-Reichenau.
$C_{96} \Pi_{41} O_{}$	1.02, melted	Z. C. 13, 618. Hlasiwetz. A.C.P. 106, 354.
	1.046 1.047 20° {	Mehu. J. C. S. (2), 13, 247.
$C_{36} H_{48} O_{20}, \ 5 H_2 O_{}$	1.46	Tanret. J. Ph. C. (5), 3, 61.
		Maurach. Watts' Dictionary.
		Robiquet, Watts'
C ₄ H ₁₀ O ₃ . ?	.894 1.176	Couerbe. Alms. A. C. P. 1,61.
	$C_{26} H_{44} O_{}$ $C_{36} H_{45} O_{20}, 5 H_{2} O_{}$ $C_{6} H_{7} O_{2}, ?$ $C_{6} H_{8} O_{3}, ?$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

XLVII. COMPOUNDS CONTAINING C, H, AND N.

1st. Cyanides and Carbamines of the Paraffin Series.

Name.	FORMULA.	SP. GRAVITY.	Ацтиовиту.
Methyl cynnide, or aceto-	С П ₃ . С N	,8817, 0°	Kopp. A. C. P. 98,
nitril. " " -	4.	8191, 16° 8052, 0°	channl. C. R. 90,
Methyl carbamine		.7155, 81°.9 .7557, 14°	747. Schiff Bei. 9, 559. Gautier Rescound Schorlemmer's Treatise.
Ethyl eyanide, or propio- nitril.	C2 H2. C N	,7017, 97°	
42 42 42			Thorpe. J. C. S.
66 66 48	44	,70098,970,08	
			Gladstone. Bei. 9 249
44 44			Schiff. Bei. 9, 559
Ethyl carbamine = =		787, 15	Pelouze. Watts Dictionary.
· · · · · · · · · · · · · · · · · · ·	"	7859, 12°,6	Frankland and Kolbe, J. I. 552
Propyl evanide, or buty-	C, H, C Z	,705, [2] ,5	Dumes. J. 1, 594.
Isopropyl carbanine			Gautier. B.S.C.11 224.
Butyl cynnide, or valero- nitril.	C, H, C N	.8164, 00	
Isobutyl evanide, ör iso- valeronitril.		510	Schlieper. A. C. P
valeromaria.		.813, 15°	Guckelberger, J. 1 852.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Isobutyl cyanide, or isovaleronitril.	C ₄ H ₉ , C N	.8146, 10° } .8060, 20° } .6921, 129°.3	
Isobutyl carbamine		.7873, 4°	249. Gautier. Z. C. 12,
Isosmyl cyanide, or eapro-	C ₅ H ₁₁ . C N	.8061, 20°	415. Frankland and Kolbe. J. 1, 559.
			Gladstone. Bei. 9,
Oenanthonitril	C ₆ H ₁₃ . C N	.6861, 154° .895, 22°	Schiff. Bei. 9, 559. Mehlis. A.C.P. 185, 368.
Heptyl cyanide Octyl cyanide	C ₅ H ₁₅ . C N	.8201, 13°.3 .786, 16°	Felletár. J. 21, 634. Eichler. Ber. 12, 1888.
Isoöctyl eyanide Lauronitril	C ₁₁ H ₂₃ . C N	.8187, 14° .8350, 0° } .8273, 15° }	Felletár. J. 21, 634. Krafft and Stauffer.
	C ₁₃ H ₂₇ , C N	1 .0241, 20 == >	Ber. 15, 1728.
Palmitonitril	C ₁₅ H ₃₁ . C N	.7724, 99°) .8224, 31°) .8186, 40° }	"
Stearonitril	C ₁₇ H ₃₅ . C N	$\begin{bmatrix} .8178, 41^{\circ} & \\ .8149, 45^{\circ} & \end{bmatrix}$	"
		.7790, 99°.2)	

2d. Amines of the Paraffin Series.

Name.	Formula.	SP. GRAVITY.	AUTHORITY.
Trimethylamine	N. (C H ₃) ₃	.673, 0°	and Schorlem-
Ethylamine	N H. $(C_2 H_5)_2$.6964, 8° .7262, 0° .7159, 10°	mer's Treatise. Wurtz. J. 3, 446.
(i		.7055, 20° .6949, 30° .6844, 40°	Oudemans. Bei. 6, 353. Values given for every 5°.
. c		.6735, 50° .6680, 55° .7092, 19°	
εε 	N. (C ₂ H ₅) ₃	,	249.
Triethylamine	N. (C ₂ H ₅) ₃	.7277, 20° .7317, 19°	Brühl. Bei. 4, 779. Gladstone. Bei. 9, 249.

Name.	FORMULA.	SP. GRAVITY.	Астновиту.		
Triethylamine	N. (C. H.)	.6621, 89°	Schiff. Ber. 19, 560.		
Triethylamine	N II, C, II,	.7283, 00 1			
		.7184, 210 j =	Silva. Z. C. 12, 638.		
• 6	64	.7186, 20°	Linnemann. A. C. P. 161, 18.		
46	4.6	.6883, 49°.5	Schiff. Ber. 19, 560.		
Isopropylamine	4.		Siersch. J. 21, 682.		
Dipropylamine	44 =	.690, 18° .756, 0°	Vincent. Ber. 19, ref. 680.		
Diisopropylamine	N. H. (C ₃ H ₇) ₂	722, 220	Siersch. J. 21, 682.		
Tripropylamine	N. (C ₃ 11 ₇) ₃	7699, 0	Zander. A. C. P.		
**	6,	.6426, 156°,5	214, 181.		
	6,	.771, 0°	Vincent. Ber. 19, ref, 680.		
Butylaming	N II. C. II.	.7553, () =)	Lieben and Rossi.		
	**	.7333, 260	A. C. P. 93, 124.		
		.7401, 200	Linnemann and		
			Zotta. Ann. (4), 27, 275.		
1-obutylamine	((.7857, 150	Linnemann. Ann.		
1 somety families		.,,	(4), 27, 238.		
11	"		Schiff, Ber. 19, 560.		
Trimethylearbinolamine	"	6987. 150	Linnemann. Ann.		
b é	4.6	m10** (5°	(4), 27, 268.		
	"	.7137. 0°) .7054, 8°)	Rudneff. Ber. 12.		
		.6931, 15°)	1023,		
	41	.7155, 00)			
			Brauner. A. C. P.		
-		.7001, 150)	192, 72.		
Tributylamine	N. (C, H ₉) ₃		Tiologo and Date		
	6.		Lieben and Rossi. A. C. P. 165, 109.		
Triisobutylamine	4.	.785, 21	Sachtleben, Ber. 11.		
·			781.		
Amylamine	N H ₂ , C ₅ H ₁₁		Wurtz, J. 3, 451.		
**		.7517, 220.5	Wurtz. J. 19, 425. Plimpton. J. C. S.		
			34, 33,		
" Active			Phipton, J. C S.		
" Inactive	61	71174 1	39, 331.		
44	4.	6545.94=.5	Schitf Bei. 9, 559.		
Dimethylethylearbulol- amine.	**	,755, 00	Wurtz, J. 19, 425.		
111111111111111111111111111111111111111	6.	.7611.0	Rudnetl. J. C. S. 38,		
٤.	4.	.7475, 150 1	545.		
Diamylamine	N. H. (C ₃ H ₁₁) ₂	.7825, 0 12	Silva. Z. C. 10, 157.		
Active		.7575.02	Primpton, J. C. S.		
Tramplamine, Active		7776, 11° 1 .7061, 13° 1	39, 331.		
Tramylamine. Active Inactive	(6 11113 -	.7882, 10			
Heyylamine	N H, C, H,	1.765, 170	Pelouze and Ca-		
·			honrs, J. 16, 527.		
Secondary hexylamine	6.6	.7635			
Octvlamine	NH CH	. 750	8, 57. Sprice. J. 7, 485.		
Octymmine	113. Ca 1117		1. 1. 1. 1. 1. 1. 1. 1.		

3d. The Aniline Series.

NA	ME.	For	MULA.	SP. GRAVITY.	AUTHORITY.
Amidobenzen	e, or aniline	C ₆ H ₅ . H ₂	N	1.020, 16°	Hofmann. A. C. P. 47, 50.
"	"	6.6		1.028	Fritzche. J. P. C. 20, 453.
£ £	"			1.0361, 0° }	Kopp. A. C. P. 98,
"	"			1.0251, 13°.7	367.
"	"	11		1.018, 15°.5	Städeler and Arndt. J. 17, 425.
"	"			1.024, 17°.5	Lucius.
44	"			1.026, 15°	Kern. Ber. 10, 199.
"	"			.8527, 183°	Ramsay. J. C. S. 35, 463.
"	"			1.0379, 00	Thorpe. J. C. S.
"	"			.87274, 183°.7_	37, 371.
"	"			1.02478, 16°.3_	Johst. P. A. (2), 20, 56.
11	"			1.0216, 20°	Brühl.
((1.0131, 25°.7	Schall. Ber.17,2555.
66	"			.9484, 100°.9	· ·
"				$1.016, 13^{\circ} = 1.0322, 7^{\circ}.5$	Gladstone. Bei. 9, 249.
66				.8751, 183°.1	Schiff. Bei. 9, 559.
. "	"			.92256, 130°.9) Dell. 3, 333.
6.6	"		,	.91858, 135°.1_	
4.6	"	6.6		.90708, 147°.2_	Taken at different
5.6	"	6.6		.90632, 1480	pressures, each
4.6		6.6		.89272, 162°	to. being the boil-
6.6	"	6.6		.89233, 162°.6_	ing point at the
66	ει			$.88077 \ 88097 \ 173^{\circ}.9$	pressure ob-
66				.00001	served. Neu-
66				.87443, 181°.6_ .87424, 181°.8_	beek. Z. P. C. 1, 655.
44	44	6.6		87884)	000.
6.6	6.6	6.6		.87384 $.87356$ } 183°.1	
	٠٠	")	Knops. V. H. V. 1887, 17.
66				1.02204, 20°	Weegmann. Z. P. C. 2, 218.
Methylaniline		C ₆ H ₅ . C I	l ₃ . II N	.976, 15°	Hofmann. Ber. 7, 526.
Benzylamine.		C ₆ H ₅ . C 1	I ₂ H ₂ N	.990, 14°	Limprieht. J. 20, 510.
Orthotoluidin	e	C ₆ H ₄ . C I	H ₃ . H ₂ N	1.0002, 16°.3	Rosenstiehl. J. 21,
4.6				1 000 000 2	745. (Three prepara-
64				1.003, 20°.2 1.002, 22° }	tions. Beilstein
		66		.998, 25°.5}	and Kuhlberg.
					Z. C. 12, 523.
66				1.046	Rüdorff. Ber.12, 251.
				.8302, 197°	Ramsay. J.C.S. 35, 463.
44		4.6		.9986, 20°	Brühl. Bei. 4, 780.
4.6		4.6		1.0038, 15°	Hirsch. Ber. 18,
				,	1511.

N.	AME.	FORMULA.		SP. GRAVITY.	Аптновиту.
Orthotoluidi	ne	C ₆ H ₄ , C H ₃ , H ₂	N	.89397, 1429.7=	1
Orthotomia	116	6 1.1.	1,	.89292, 1439.2	m 1 11 n
1.		4.6		.87527, 1686.2	Taken at different
14		4.6		.87456, 163°,9_	pressures, each
		s 6		.86064 178°.4	t . being the boil-
6.6		6.6		.86078 178°.4	ing point at the
		4.4		\$50111	pressure ob- served. Neu-
. 6		4.6		.85185 186°.9	served. Neu-
		. 4		.84453, 198°	beck. Z. P. C. 1,
				S1218 i	657.
		. 6		.84820 1999	
		4.6		.998, 25°	Lorenz. C. N. 80
Metatoluidir	10	**		10/1/19 40	166.
4.4				6-200	1110.
**		4.4		.88528) 149°.	
* 6		. 4			Taken at different
	68-			.86525, 169° 11	
* *		4.6		.86283, 171	pressures, encl
6.5				.85181. 1849	to, being the boil
3.4		4.6		.85121, 185°	ing point at the
6.6		6.6		.84309, 191°	pressure ob
4.6		6.6		.\$4203, 193°	served. Nen
4.6		+ 6		.88528 2010	beek. Z. P. C. 1
. 6		i +		.83-101	658.
+ 6				.83385 1 2030	
+ 4		. 4		.83351 1	
Paratoluidir	10	4.4		.85010, 143°	1
6 a		a 6		,88269, 1402.	Taken at differen
4.6		4.6		.86131 168°	pressures, each
4.4		4.6		.86130 1 100 5	to. being the boil
+ 6		s 4		.85025, 1780.4.	ince mount at the
4.4		6.6		.54558, 1810	pressure ob
+ 4		i b		.83814 1920.6	served. Neu
		+ 6		.83850 102 .0	
+ 6		11		.83171 2000	beck. Z. P. C. 1
		+ 6		.80178 200	658.
		4		.82995, 201°.5.	i
Dimethylan	iline	$C_6 \ H_5, \ (C \ H_3)_2.$	N	.0553	Hofmann. C. N 27, 1.
6.6		. 6		.9615, 150	Kern. Ber. 10, 193
1.4		+ 6		.7941, 1900	Ramsay. J. C. S
		4.4		.9575, 202	35, 463. Bruhl. A. C. P
					2015, 1.
Erhelanilin	0	C. H. C. H. H	N-	.954, 15	Hefmann, J. 2, 398
Ethylamide	danzene. 1.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_2 N$	(14)=	Berlstein and Kuhl berg, A.C.P. 150
					206.
	1 (.1175, 22	
	1.4	WILL OIL ON	LIN	- 119 Pt Al-	
Methyltolui	idille. 1.2	C ₆ H ₄ , C H ₃ , C H	13 11 .\	.073. 15	Monnet, Reverd's and Nolting, But 11, 2278.
Xvlidine, 1	2.4	C. H. C. H., I	H, N	.9542, 207	Wrobbysky. B
					12, 1227.
* *	"			1.0715, 17 .5_	Jacobson, Bor. 17
	-			.91,15	Noting and Ford
					F r. 18, 2571.
					1

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Xylidine. 1.3.4	C ₆ H ₃ (C H ₃) ₂ H ₂ N -	.985, 18°.5	Tawildarow. Z. C. 13, 418.
		.9184, 25°	Hofmann. Ber. 9, 1295.
		$\begin{bmatrix} .86651 \\ .86687 \end{bmatrix}$ 159°.5	
tt tt		.86687)	Taken at different pressures, each
	16	.83473, 197°	to. being the
tt tt		.82374, 205°	boiling point at
tt tt			the pressure ob-
		$\begin{bmatrix} .81597 & 219 & .9 \\ .81454 & 2109 \end{bmatrix}$	served. Neubeck. Z. P. C. 1, 662.
11 11		.81436 218°]
1.3.5		.9935, 0°	Wroblevsky. Ber.
tt tt		.972, 15°	10, 1249. Nölting and Forel. Ber. 18, 2678.
1.4.2		.980, 15°	Nölting and Forel. Ber. 18, 2680.
		.9867, 19°	Gladstone. Bei. 9, 249.
Dimethyltoluidine. 1.2		.9324	Hofmann. C. N. 27, 1.
" 1.3 " 1.4	tt	.9368	11 11 11 11
Propylaniline		.949, 18°	Pictet and Crépieux. Ber. 21, 1106.
Ethyltoluidine. 1.3	C_6H_4 . CH_3 . C_2H_5HN	.869, 20°	Wroblevsky. J. C. S. (2), 13, 455.
" " 1.4		.9391, 15°.5	Morley and Abel. J. 4, 497.
Cumidine Pseudocumidine. 1.3.5.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8526	Nicholson. J.1,664. Hofmann. C. N.
			27, 1.
DiethylanilineIsobutylaniline	$C_6 H_5 (C_2 H_5)_2 N = C_6 H_5 C_4 H_9 II N = C_6 H_5 C_6 H_5 C_6 H_6 II N = C_6 H_5 C_6 H_6 II N = C_6 H_5 C_6 H_6 H_6 II N = C_6 H_6 II$.9262, 15°	Hofmann. J. 2, 399. Giannetti. Ber. 14, 1759.
		.940, 18°	Pietet and Crépieux. Ber. 21, 1106.
Dimethylxylidine			Hofmann. C. N. 27, 1.
Tetramethylaniline	C_6 II $(C H_3)_4 H_2 N_{}$		Hofmann. Ber. 17, 1912.
Isoamylaniline	C ₆ H ₅ . C ₅ H ₁₁ H N	.928, 15°	Pictet and Crépieux. Ber. 21, 1106.
Diethyltoluidine, 1.4	$\mathrm{C_6H_4.~CH_3(C_2H_5)_2N}$.9242, 15°.5	Morley and Abel. J. 7, 498.
Dimethylmesidine. 1.3.5.6	$C_6 H_2 (C H_3)_3 (C H_3)_2 N$		Hofmann. C. N. 27, 1.
Methylamylaniline		.906, 20°	Claus and Rauten- berg. Ber. 14, 622.
Dipropylaniline	$C_6 \Pi_5 (C_3 \Pi_7)_2 N = $	$.9240, 0^{\circ} $	Zander. A. C. P. 214, 181.
Diisopropylaniline		.9338, 0° } .7504, 221° }	"
Trimethyldiethylaniline	C_{6} · $(CH_{3})_{3}(C_{2}H_{5})_{2}H_{2}N$.971	Ruttan. Ber. 19, 2384.
Allylaniline	C ₆ H ₅ . C ₃ H ₅ H N	.982, 25°	

Name.	FORMULA.	SP. GRAVITY.	Антиониту.
Diallylaniline = Diphenylamine	N H. (C ₆ H ₅) ₂ N	1.156 } 40 {	561. Ramsay, J. C. S. 35,
Methyldiphenylamine	N. (C ₆ H ₅) ₂ C H ₃	1.0476, 20°	463. Bruhl. A. C. P.
Dibenzylamine	N II. (C ₇ II ₇) ₂	1.033, 14°	235, 1. Limpricht. J. 20, 510,
Amidobenzylamine	C ₇ H ₁₀ N ₂	1.08, 20°	
Metamidödimethylaniline	C ₈ H ₁₂ N ₂	.995, 25°	1288. Groll. Ber. 19, 200.

4th. The Pyridine Series.

Name.	FORMULA.	SP. GRAVITY.	Ацтновиту.
Pyridine	C ₅ H ₅ N	.9858, 0°	Anderson, J. 10, 397.
64	66	.924, 22°	Thenius. J. 14, 502. Ramsay. J. C. S. 35,
٠.		.9802, 0°	463. Richard. Ber. 13, 198.
		.8823) 115°	Schiff. Ber. 19, 560.
a Picoline	C ₆ H ₇ N	1.0033, 0° .955, 10°	Ladenburg, Ber. 21, 289, Anderson, A. C. P.
		.9613, 0°	60, 93. Anderson, J. 10, 397. Thenius, J. 14, 502.
4.	4.6	.8197, 134°	Ramsay, J. C. S. 35, 463.
		.9560, 0°	Richard. Ber. 13, 198. 1 Thorpe. J. C. S.
44	6.	.88258, 103°.5 .94093, 23°.5	37.371. Glulstone. Bei. 9,
"		.96559, 0°	249. Lange. Ber. 18, 3436.
	£ 4	.96477, 4°	Schlaugk. Ber.
"	4(.9656, 0°	20, 1660, Ladenburg, C. R. 103, 692.
3 Picoline	4.	.97712, 0° } .94965, 30° } .9771, 0°	Hesekiël. Ber. 18, 2001. Ladenburg, C. R.
**			103, 692.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
γ Picoline	C ₆ H ₇ N	.9708, 0° .9708, 0°	Lange. Ber. 18, 3436. Ladenburg. C. R.
		.9742, 0°	103, 692. Ladenburg. Ber. 21, 287.
a Lutidine	C ₇ H ₉ N	.928	Williams, J. 7, 494.
((11	.9467, 0° .945, 22°	Anderson. J. 10, 397. Thenius. J. 14, 502.
(,	"	.9467, 0°	Williams. J. 17, 437.
		.7916, 154°	Ramsay, J. C. S. 35, 463,
"	"	.9377, 0°	Richard. Ber. 13, 198.
"		.9545, 0°	Ladenburg and
α—γ		.9503, 0°	Roth. Ber. 18, 52. Ladenburg and
" a—a		.9424, 0°	Roth. Ber. 18, 913. Ladenburg. C. R. 103, 692.
β Lutidine	"	.9555, 0°	Williams. J. 17, 437.
	"	.9593, 0°	Coninck. C. R. 91, 296.
a Ethylpyridine	44	$\begin{bmatrix} .9495 \\ .9498 \end{bmatrix}$ 0°{	Ladenburg. Ber. 20,
γ Ethylpyridine	((.9522, 0° }	1653. Ladenburg. Ber. 18,
	() II N	.9358, 20° }	2963.
a Collidine	C ₈ H ₁₁ N	.921 .9439, 0°	Anderson, J. 7, 490.
.,,	::	.953, 22°	Anderson. J. 10, 397. Thenius. J. 14, 502.
**	()	.943	Wurtz. Ber. 12, 1710.
		.7839, 173°	Ramsay. J. C. S. 35, 463.
		.9291, 0°	Richard. Ber. 13, 198.
		.917, 15°	Hantzsch. Ber. 15, 2914.
"	"	.9286, 16°.8	
		.9224, 15°	Mohler. Ber. 21, 1014.
β Collidine	"	.9656, 0°	Coninek. C. R. 91, 296.
Aldehyde collidine		.9389, 4°	Dürkopf. Ber. 18, 920
a Isopropylpyridine		.9342, 0°	Ladenburg. C. R. 103, 692.
7 Isopropylpyridine	"	.9408, 0°	Ladenburg and Schrader. Ber. 17,
		.9439, 0°	1121. Ladenburg. C. R. 103, 692.
γ Propylpyridine	"	.9393, 00)	,
a Propylpyridine		$\left\{ \begin{array}{c} .9411,0^{\circ} \\ .9306,10^{\circ} \end{array} \right\}$	Two lots. Ladenburg. Ber. 17, 772.
Parvoline	C ₉ H ₁₃ N	.966, 22°	Thenius. J. 14, 502.
"		.916, 14°	Engelmann. J.C.S.
			50, 259.

	1	1	
NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Parvoline	C ₉ H ₁₃ N	.94185, 0° }	Dürkopf and Schlaugk. Ber. 21,832.
Coridine		.974, 22° 1.017, 22°	Thenius. J. 14, 502.
Rubidine Viridine	- C ₁₂ H ₁₉ N	1.024, 220	4.6
Allyl pyridine	C ₈ H ₉ N	.9595, 0°	Ladenburg. Ber. 19, 2578.
Piperidine. From piperin	е С, И, N	.8810, 00 }	Ladenburg and
Synthetic		.8814, 4° }	Roth. Ber. 17, 513.
11		.7801 > 105°	Schiff. Ber. 19, 560.
a Methylpiperidine		.7810) .8601, 0°	Ladenburg and
4.6	1	.860, 0°	Roth. Ber. 18, 47. Ladenburg. C. R.
β Methylpiperidine	**	.8686, 4°	103, 747. Hesckiel. Ber. 18,
<i>1</i>	66	.8684, 0°	910. Ladenburg, C. R.
			103, 747.
a-a Dimethylpiperidine		8492, 4°	Ladenburg and Roth. Ber. 18, 54.
a-γ Dimethylpiperidine		.8615, 0°	Ladenburg. C. R. 103, 747.
a Ethylpiperidine		.8674.0°	Ladenburg. Ber. 18, 2963.
γ Ethylpiperidine		.8759, 00	Ladenburg, Ber. 18, 2964.
Methyl-a-ethylpiperidine		.8495, 0°	Ladenburg. C. R. 103, 747.
a Propylpiperidine. Conii	n "	.878	Geiger. Blyth. J. 2, 388.
4.6		846, 12°.5	Petit. B. S. C. 27,
4.6		. ,886	Schorm. Ber. 14.
46 46	- 4	.913, 00 - 1	41776
6.6 4.6	- 44	.899, 15° .842, 90°	Two preparations
44 _	- 11	886, 00)	Schiff, A. C. P. 166, 88.
66 44			190, 00.
		911, 90°))	Ladenburg. Ber. 17
	4.6	.875, 08	774. Ladenburg, Ber. 17
		, k((2n, ()°	772. Ladenburg, Ber. 19
		.570, 0	2580. Ladenburg, Ber. 17
7 Propylpiperidine			* * * · · ·
a Isopropylpiperidine		.8660, 0	Ladenburg, Ber. 17 1676.
"	- 44	8676, 0	Ladenburg, C. R 10c, 747.
	1		

		1	1
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl - α γ - isopropylpiperidine. Copellidine	C ₉ H ₁₉ N	.8593, 0°)	Ladenburg. C. R. 103, 747. Dürkopf. Ber. 18,
Methylcopellidine	C ₉ H ₁₉ N	.8546, 15° }	920.
Dimethylcopellidine		.8440, 13° } .7816, 25°	
a Pipecoleine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8801, 0°	Ladenburg. Ber. 20, 1646.
γ Pipecoline	C ₆ H ₁₃ N	.8674, 0°	Ladenburg. Ber. 21, 288.
a Isopropylpiperideine	C ₈ H ₁₅ N	.8956, 0°	Ladenburg. Ber. 20, 1647.
Hydrolutidine. α-γ	C ₇ H ₁₃ N	.8615, 0°	Ladenburg and Roth. Ber. 18, 919.
Hydrotropidine	C ₈ H ₁₅ N	.9366, 0° }	Ladenburg. Ber. 16, 1409.
a Coniceine		.893, 15°	Hofmann. Ber. 18,
Paradiconiine	C ₁₆ H ₂₇ N	.915, 15°	Schiff. A. C. P. 166, 88.
Quinoline or chinoline	C ₉ H ₇ N	1.081, 10°	Hofmann. A. C. P. 47, 79.
	((1.1081, 0°)	41, 10.
	"	1.0947, 20° }	Skraup. Ber. 14,
		1.0699, 50°)	1002.
		1.1055, 0° } 1.0965, 11°.5 }	Coninek. J. C. S. 44, 89.
44	((1.096	Gladstone. Bei. 9,
"	((1.1021 } 10°	249.
" " " " " " " " " " " " " " " " " " " "		.9211, 234°	Sehiff. Ber. 19, 560.
Lepidine	C ₁₀ H ₉ N	1.072, 15°	Williams. J. 9, 536.
Orthomethylquinoline		$1.0852, 0^{\circ} = 1.0734, 20^{\circ}$	Skraup. Ber. 14,
	44	1.0586, 50°	1002.
Metamethylquinoline	"	1.0839, 0°)	
		1.0722, 20°	Skraup. Ber. 15,
Dancon other lawing line		1.0576, 50°	2255.
Paramethylquinoline		$1.0815, 0^{\circ} - 1.0671, 20^{\circ}$	Skraup. Ber. 14,
	٠.	1.0560, 50°	1002.
Dimethylquinoline	C ₁₁ H ₁₁ N	1.0752, 4°	Berend. Ber. 18, 3165.
α—γ		1.0611, 15°	Beyer, J. P. C. (2), 33, 402.
Metadipyridyl	C ₁₀ H ₈ N ₂	1.1757, 0°)	Skraup and Vort-
		1.1635, 20°	mann. M. C. 4,
Isodipyridine		1.1493, 50°) 1.08	593. Ramsay. P. M. (5),
11		1.1245, 13°	6, 29. Cahours and Etard.
Dipicoline	C ₁₂ H ₁₄ N ₂	1.12	Ber. 13, 777. Ramsay. P. M. (5),
	"	1.077	6, 31.
		1.077	Anderson.

NAME.	FORMULA,	8p. Gravity.	AUTHORITY.
Nicotine.	() () () () ()	$ \begin{array}{c} 1.027,15^{\circ} = \\ 1.018,30^{\circ} = \\ 1.0006,50^{\circ} \\ .9424,101^{\circ}.5 \\ 1.01837,10^{\circ}.2 \\ 1.01101,20^{\circ} = \\ \end{array} $	Landolt. A.C.P.
4.6		,	Skalweit. Ber. 14, 1809.
Hydronicotine	. C ₁₀ H ₁₆ N ₂	.993, 17°	Etard. C. R. 97, 1218.
Dipiperidyl	C ₁₀ H ₂₀ N ₂	0561, 4°	Liebrecht. Ber. 19,
a Stilbazoline	C ₁₃ H ₁₉ N	9874, 0°	2591. Baurath. Ber. 21, 818.
Dihydro-a-stilbazol	C ₁₃ II ₁₃ N	1.0465, 0°	

5th. Miscellaneous Compounds.

Name.	FORMULA.	SP. GRAVITY.	А стиокіту.
Dimethyl hydrazin	C ₂ H ₈ N ₂	.801, 110	Renouf. Ber. 13,
Ethylene diamine	$C_2 \hat{H}_1 (N H_2)_2 = \cdots$.002	2171. Rhoussopolos and Meyer, J. C. S.
Propylene diamine	C ₃ H ₆ (N H ₂) ₂	.878, 15°	42, 940.
Pentamethylene diamine	$C_5 \ H_{10} \ (N \ H_2)_{2}$.9171, 0°	Ladenburg, Ber. 18, 2957,
3 Methyltetramethylene diamine.	. 6		Oldseh. Ber. 20, 1655.
Ethylene cynnide Pyrotartronitril		1,028, 45° .9961, 11°	Simpson, J. 14, 654. Henry, Ber. 18, ref.
Crotonitril	C ₄ II ₅ N	.8389, 12°	330. Will and Korner. Rinne and Tollens.
Allyl carbanine	С П . С Л	.8351, 15° }	A. C. P. 159, 105. Licke, A. C. P.
Allylamine	C ₃ H ₅ , H ₂ N	.794, 17° }	112, 319. Oeser. J. 18, 506.
46	11		Four-samples, Glad- stone, Bei. 9, 249,
Triallylamine	(C ₃ H ₅) ₃ N	.7684, 10°] .7261, 56° .8206, 0° }	Schiff, Bei. 9, 559, Zander, A. C. P.
Propylally lamine	11	.6826. 155°.5 }	214, 181. Liebermann and
Isoamylallylamine	C ₅ H _{II} . C ₈ H ₅ . H N	.7777, 180	Paul. Ber. 16, 523.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
9826, 12° Morin. Ber. 21, ref.
Methylglyoxalin C ₄ H ₆ N ₂ 1.0363 Wallach and Schulze. Ber. 14, 424.
"
Ethylglyoxalin C ₅ H ₈ N ₂ 999 Wallach. Ber. 16, 535.
Oxalmethylethylin " 1.0051, 11° Radziszewski. Ber. 16, 487.
Propylglyoxalin C ₆ H ₁₀ N ₂ 967, 16° Wallach. Ber. 15, 650.
Oxalethylethylin " .9820 Wallach and Strick- er. Ber. 13, 512.
" .980
Oxalethylpropylin C- H ₁₀ N ₀ 9813 ''
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Schulze. Ber. 14, 424.
Amylglyoxalin " .940, 18° Wallach. Ber. 15. 651.
Oxalethylisoamylin C ₉ H ₁₆ N ₂ 9291, 19°.6 Radziszewski a n d Szul. Ber. 17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Oxansoamylisoamylin C_{12} H_{22} N_{2} $9029, 19^{\circ}$

			=======================================
Name.	FORMULA.	Sp. Gravity.	A THORITY.
Oxalmethyloenanthylin -	C ₁₀ H ₁₉ N ₂	.9282, 16°.5	Karcz. Ber. 20, ref.
Ovalethyloenanthylin	C., H., N.	.9210, 16°.5-	474
Oxalethyloenanthylin Oxalpropyloenanthylin	$C_{12}^{11} II_{22}^{20} N_2^2$.9192, 17°	4.6
Benzonitril	C ₆ H ₅ . C N	1.0073, 15°	Fehling. A. C. P 49, 91.
	64	1.0230, 00 }	Kopp. A. C. P. 98
44	66	1.0084, 16°.8) .8880, 192°	367. Ramsay, J. C. S. 35,
	44		463.
	"	1.0052, 18° =	Gladstone, Bei. C. 249.
Benzyl cynnide, or a tol-	C ₇ H ₇ . C N	1.0155, 8°	Radziszewski. Ber.
uic nitril.	6:	1.0146, 18°	3, 198. Hofmann. Ber. 7, 519.
Phenylpropionitril		1.0014, 18°	Hofmann. Ber. 7. 520.
Orthoxylyl cyanide		1.0156, 22°	Radziszewski a n d Wispek. Ber. 18, 1279.
Metaxylyl cyanide		1.0022, 220	4.6
Paraxylyl cyanide	C H C N	.9922, 220	H. former I I for
Cumonitril	3	.765, 14° 1.180)	Hofmann. J. 1, 595.
4.	11	1.196 10	Schroder, Ber. 12,
6.6	44	1,202	561.
	64	.8256, 298°	Ramsay, J. C. S. 35, 463.
Phenyl hydrazin	C ₆ H ₉ N ₂	1.091, 21°	Fischer. A. C. P.
		1.097, 22°.7=	190, 82. Fischer, A. C. P. 236, 198.
Chinaldin	C ₁₀ H ₂ N	1,0646, 200	Kusel, Ber. 19, 2249.
Piperyl hydrazin	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.9288, 149.6	Knorr. A. C. P. 221.
Diethylaniline azylin	C20 H28 N4	1.107, 15°, s	Lippmann and Fleissner, Ber. 16.
Methyl indol	C. H. N	1.0707, 0°	1417. Lipp. Ber. 17, 2511.
Cyanoconicine		.93	E. v. Meyer. B.SC.
Ptomaine	C, H ₁₁ N	,9865, 0°	39, 124. Coninck, C. R 106, 859.
"Acetylamine, ?"	C ₂ H ₅ N. ?	.975, 150	Natanson, J. 9, 527

XLVIII. COMPOUNDS CONTAINING C, H, N, AND O.

1st. Nitrites and Nitrates of the Paraffin Series.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl nitriteEthyl nitrite	C H ₃ . N O ₂ C ₂ H ₅ . N O ₂	.886, 40	Ann. (2), 37, 19.
		.947, 15°	143.
Propyl nitrite	C ₃ H ₇ . N O ₂	.898 .900, 15°.5 .935, 21°	Mohr. J. 7, 561. Brown. J. 9, 575. Cahours. Les Mon- des, 32, 280.
Isopropyl nitrite	44	$\left\{ \begin{array}{l} .856,0^{\circ} \\ .844,24^{\circ} \end{array} \right\}$	Silva. Z. C. 12, 637.
Isobutyl nitrite	C ₄ H ₉ . N O ₂	$\begin{array}{c} .89445,0^{\circ} \\ .8771,16^{\circ} \\ .82568,50^{\circ} \\ .8915,0^{\circ} \end{array}$	C hapman and Smith. J. C. S. 22, 153. Bertoni. Ber. 19, ref.
Amyl nitrite	C ₅ H ₁₁ . N O ₂	.8773 .9020	98. Rieckher. J. 1, 699. Hilger. Am. Ch. 5, 231. Gladstone. Bei. 9,
Dimethylethylcarbyl nitrite.		.9033, 0°	249. Bertoni. G. C. I. 16, 512.
Octyl nitrite			Eichler. Ber. 12, 1887.
Methylhexylearbyl nitrite		.881, 0°	Bertoni. G.C. I. 16, 512.
Wathul nitrate	CHNO	1 100 000	D
Methyl nitrate	$C_2 H_5$. N O_3	1.182, 20° 1.112, 17°	Dumas and Peligot. Ann. (2), 58, 39. Millon. Ann. (3), 8,
((1.1322, 0° } 1.1128, 15°.5 }	236. Kopp. A. C. P. 98, 367.
(, (,		1.0948, 17° .9991, 87°	Wittstein. J.18, 470. Ramsay. J. C. S. 35, 463.
		1.1067, 25°	Gladstone. Bei. 9, 249.
Isopropyl nitrate	C ₃ H ₇ . N O ₃	$1.054, 0^{\circ}$ $1.036, 19^{\circ}$	Silva. Z. C. 12, 637.
Isobutyl nitrate	C ₄ H ₉ . N O ₃	1.0384, 0° }	Chapman and Smith. J. C. S. 22, 153.
Amyl nitrate	C ₅ H ₁₁ . N O ₃	.902, 22°	Rieckher. J. 1, 699. Hofmann. J. 1, 699.
		1.000, 7°—8° -	Chapman and Smith. J. 20, 550.
Cetyl nitrate	C ₁₆ H ₃₃ . N O ₃	.8698, 147° .91	Schiff. Bei. 9, 559. Champion. C. R. 73, 571.

2d. Nitro-Derivatives of the Paraffin Series.

Name.	Formula.	Sp. Gravity.	А стновіту.
NitromethaneNitroethane	$\begin{array}{c} C \ H_3 \ N \ O_2 \ \dots \\ C_2 \ H_5 \ N \ O_2 \dots \end{array}$	1.0236, 101°.5_ 1.0582, 13°	Schiff. Bei. 9, 559. Meyer and Stuber. Ann. (4), 28, 138.
	((.9329, 114°.5 1.0550, 18°	Schiff. Bei. 9, 559. Gladstone. Bei. 9, 249.
Nitroheptane	C, H ₁₅ N O ₂	.9369, 19°	Beilstein and Kurbatow. Ber. 13, 2029.
Dinitroethane		1.258, 220.5	Meer Ber. 8, 1080. Meer. Ber. 8, 1087. Chancel. Ber. 16, 1495.
Dinitrohexane	C ₆ H ₁₂ (N O ₂) ₂	1.1333, 5° 1.1284, 10° 1.1235, 15°	Chancel. C. R. 100, 601.
Ethyl nitroscetate	C ₄ H ₇ N O ₄	1.133, 0°	Forerand. C. R. 88, 975.
Nitrocaprylic acid	C ₈ H ₁₅ N O ₄	1.093, 18°	Wirz. A. C. P. 104, 289.
Ethyl nitrocaprylate	C ₁₀ H ₁₉ N O ₄	1.031, 18°	Wirz. A. C. P. 104, 290.
Nitrosodiethyline Nitrosodipropylamine	$C_6 \stackrel{\text{II}}{\text{H}_{14}} \stackrel{\text{N}_2}{\text{N}_2} \stackrel{\text{O}}{\text{O}} =$.951, 17°.5 .924, 14° .931, 0°	Geuther, J. 16, 409. Siersch, J. 20, 537. Vincent, Ber 19, ref, 680.
Derivative of nitroethane	C ₅ H ₇ N O	1.0102, 15°	Gotting. A. C. P. 243, 104.
.t ts	C ₆ H ₉ N O	.9750, 15° 1.0	Ssokolow. Ber. 19, ref. 540.

3d. Aromatic Nitro-Compounds.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.	JAME.	Formu	JLA.	SP. GRAVITY.	AUTHORITY.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
" " " 1.2002, 0° _ 1.1806, 149, 4	Nitrobenze	ne	C ₆ H ₅ . N O ₂	2	1.209, 15°	Mitscherlich. P.A.
"	4.4		11		1.2002.00)	
" " 1.2159, 59-10° Regnault. P. " 2.255. "	4.4		11		1.1866, 140.4	
"	4.6)
"	1.4		1.6		1.2107 100-150	Regnault P A
"	11		1.6			
"	4.6		11			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					·	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"		46		1.0210, 220°	Ramsay, J. C. S. 35, 463.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.6		11		1.2039, 200	
"	4.6		11			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
1.07134, 150°.77					1 9191 70 #	1 /
## 1.07033, 1538.3 ## 1.06276, 158°.4 ## 1.04807, 173°.2 ## 1.04477, 186°.6 ## 1.03246, 189°.4 ## 1.03059, 189°.4 ## 1.01794, 200°.1 ## 1.00722, 208°.2 ## 1.00722, 208°.2 ## 1.00722, 208°.2 ## 1.00733, 153°.3 ## 1.03246, 189°.4 ## 1.03246, 189°.4 ## 1.03059, 189°.4 ## 1.00722, 208°.2 ## 1.00722, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.00713, 208°.2 ## 1.1649, 15°.5					1.6121, (~.0	
Taken at difference in the pressure of the pre					1.07134, 150°.7)
## 1.06276, 158°.4 ## 1.04807, 173°.2 ## 1.04807, 173°.2 ## 1.03246, 189°.4 ## 1.03059, 189°.4 ## 1.01794, 200°.1 ## 1.00742, 208°.2 ## 1.00713, 208°.2 ## 1.1649, 15°.5 ## 1.1649, 15°.5 ## 1.1649, 15°.5 ## 1.1649, 15°.5 ## 1.1649, 15°.5 ## 1.1649, 15°.5 ## 1.1649, 15°.5 ## 1.1649, 15°.5 ## 1.1649, 15°.5 ## 1.162, 23° ## 1.163, 23°.5 ## 1.163, 23°.5 ## 1.1649, 15°.5 ##	4.6		: 1		1.07033, 153°.3	TR L
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11		4.6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6		11			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1		6.6			to. being the
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			11			boiling point at
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						the pressure ob-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						served. Neu-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						beek. Z. P. C.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		70 n 0		`		Sobial A C D ave
" " " " " " " " " " " " " " " " " " "					,	247.
" " " " " " " " " " " " " " " " " " "	Nitrotoluer	1e	C ₆ H ₄ . C H ₃ .	N O ₂	1.18, 16°.5	
"	6.		4.6	~~~~	1.1231, 54°	Schiff. A. C. P. 223,
Orthonitrotoluene	4.6		16		1.1649, 15°.5	Gladstone. Bei. 9,
Taken at difference Compare Co						
"	Orthonitrot	toluene	11		1.162, 230)	
" " " " " " " " " " " " " " " " " " "	4.6		1.4			
" " " " " " " " " " " " " " " " " " "						
" " " " " " " " " " " " " " " " " " "						Leeds. Ber. 14, 483.
" " " " " " " " " " " " " " " " " " "]
"					1.02483	
" 98403 197°.7 freshres, restrict to being to being to being to being the pressure of					.99814, 186°.1	Taken at different
" "			"		.99679, 187°.1	pressures, each
" " " 98388 197 1 boiling point the pressure of the press					.98403) 1070 5	to. being the
" " 97149, 208°.7 the pressure of served. Ne beck. Z. P. C. " 96063 2100 c.			4.6		.98388 1970.7	boiling point at
" " 97087, 209°.2 served. Ne beck. Z. P. C. " 96177 1655.	13		4.6			the pressure ob-
" " 106192 218° beck. Z. P. C. 655. 655.	4.6		"			served. Neu-
" " 96177 { 210 " 96063 } 2109 8	4.6		11		06109.)	
" " 96063) 2102 0			4.6			
	4.6				06063)	
" " .96032 (213 .0)]	3.3		4.4			
Nestanistataluana (4 1 100 000 11.11 + 1.12	Metanitrote	oluene_	4.6			Beilstein and Kuhl-
Tito, 22 122 Delistelli and Kui	and College of College				1,100, 22	

Metanitrotoluene C ₆ H _c (1.01158 171° 1.01128 1.01128 1.98775 194°.1 1.98737 197227 1.97227 1.97227 1.97287 1	Taken at different pressures, each
44	4.	1.01128) 171 .98775) 194°.1 .98737) .97227 (2070 8	pressures, each
 	4	.98775 1940.1 .98737 1940.1 .97227 2070 8	pressures, each
11	£	.97227 (2070 8	pressures, each
(1	6.		
		.97189	to, being the
4.4	6.5		boiling point at
()	4.	$\frac{.96027}{.96008}$ 218°.8	the pressure ob-
6.6		4,50000	served. Neu-
11		.95084 227	beck. Z. P. C. 1,
4.		.94984, 2279.5	655.
		.94933 9950 5	
44		.94914) = []	
Paranitrotoluene	£;	1.00668, 177°.5	Taken at different
46	1.	1.00467, 178°.5 .98378 .9019	pressures, each
44	(.	.98364 2019	to, being the
**	((.96812, 2130	boiling point at
66		.95455, 225°	the pressure ob- served. Neu-
	(.94531 2370.5	beck. Z. P. C. 1,
44			655.
Dinitrotoluene C ₆ H ₃ .	C H ₃ (N O ₂) ₂ .	.94342, 239° 1.8208, 70°.5	Schiff. A. C. P. 223,
Nitroörthöxylene C ₆ H ₃	(C H ₃) ₂ N O ₂	1.189, 20°	Jacobsen. Ber. 17,
		1.147, 15°	Noelting and Forel.
Nitrometaxylene. 1,3.2		1.126, 17°.5	Ber. 18, 2671. Tawildarow. Z. C. 13, 418
		1.126, 24°.5	Beilstein and Kuhl- berg.
		1.112, 15°	Grevingk. Ber. 17. 2480.
1,3.4		1,124, 25°	Beilstein and Kuhl- berg.
((. 1.185, 15°	Grevingk. Ber. 17, 2429.
		.98667, 176°	
	4.4	.98251, 179°, 5	
46 66		.08057, 1820	Taken et different
(4	66	.97535, 186°	pressures, each
46 66		95631 } 206° 95642 } 206°	boiling point at
	6.5	.94078, 218°	the pressure ob-
16	44	.92961 9330	served. Neu-
66 64		.02945 /	beck. Z. P. C. 1,
4.6	ti.	91794) 2430	ห้อ้อ์.
4.4	64	.111720 1	
6.6	6.	91684, 2419	Noelting and Forel.
Nitroparaxylene	-	_ 1.182, 15°	Ber. 18, 2680.
Nitrocymene C ₁₀ I	I ₁₃ . N O ₂	1,0385, 189	Landolph, C. C. 4,
Dmitrocymene C ₁₀ 1	$1_{17}(N O_2)_{2}$	1.206, 18°.5 1.204, 21° }	66 45
Nitronephthalene C10 I	I ₇ . N Ō ₂	1.321) 4° (Schröder, Ber. 12, 1611.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Nitronaphthelene	C ₁₀ H ₇ . N O ₂	1.2226, 61°.5	Schiff. A. C. P. 223, 247.
Orthonitrophenol	C ₆ H ₄ . O ₁ H. N O ₂	1.443 1.451 4° { $1.2945, 45^{\circ}.2$	Schröder. Ber. 12, 561. Schiff. A. C. P. 223,
Paranitrophenol	11	1.467 1.469 4° { $1.2809, 114^{\circ}$	247. Schröder. Ber. 12, 561. Schiff. A. C. P. 223,
Trinitrophenol, or picric acid.	C ₆ H ₂ . O H. (N O ₂) ₃ .		247. Rüdorff. Ber. 12, 251. Schröder. Ber. 12,
Methyl orthonitrophenate			Ber. 8, 1552.
Methyl paranitrophenate Methyl a dinitrophenate Methyl β dinitrophenate Methyl trinitrophenate Orthonitrobenzoic acid	C_6H_3 . OCH_3 . $(NO_2)_2$ C_6H_3 . OCH_3 . $(NO_3)_3$	1.341, 20° 1.319, 20°	u u u u u v Post and Frerichs.
" " " " " Metanitrobenzoic acid	ιι	$1.574 \ 1.576 \ 4^{\circ} - \{ 1.4721 \ \dots \}$	Ber. 8, 1549. Schröder. Ber. 12, 1611. Post and Frerichs.
ranitrobenzoic acid		$1.492 \atop 1.496 \atop 1.5804 $	Ber. 8, 1549. Schröder. Ber. 12, 1611. Post and Frerichs.
Nitroanisol Orthonitroisobutylanisol _ Paranitroisobutylanisol Metanitraniline	C ₆ H ₄ . O C H ₃ . N O ₂ - C ₆ H ₄ . O C ₄ H ₉ . N O ₂ -	1 249 260	Ber. 8, 1549.
Paranitraniline		1.415 1.433 \} 4°	Schröder. Ber. 12, 561.

4th. Miscellaneous Nitrates, Nitrites, and Nitro-Compounds.

Name.	FORMULA.	SP. GRAVITY.	Аптновиту
Allyl nitrite	C ₃ H ₅ . N O ₂	.9516, 0°	Bertoni, G. C. I. 15, 368.
Allyl nitrate	C ₃ H ₂ . N O ₃	1.00, 10°	Henry. B. S. C. 18, 232.
Ethylene nitrosonitrate Ethylene mononitrate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.472 1.81, 11°	Kekulé, Ber. 2, 329, Henry, Ann. 4, 27, 243,
Ethylene dinitrate	C ₂ H ₁ (N O ₃) ₂	1.4837. 8° 1.48	Champion. Z. C. 14, 470.
a Propylene dinitrite	C3 H6 (N O2)2	1.144, 0°	Bertoni, G. C. I. 16, 512.
Propylene dinitrate	C ₃ H ₆ N O ₃ ₂	1.335, 5°	Henry, Ann. (4), 27, 243.
Ethylene acetonitrate Glyceryl trinitrite	$\begin{bmatrix} \bar{\mathbf{C}}_2 \mathbf{H}_4, \bar{\mathbf{C}}_2 \mathbf{H}_3 \mathbf{O}_2, \mathbf{N} \mathbf{O}_3 \\ \bar{\mathbf{C}}_3 \mathbf{H}_5 (\bar{\mathbf{N}} \mathbf{O}_2)_3 \end{bmatrix}$	1.20, 15° 1.201, 15°.51	Masson. Ber. 16.
Nitrolactic acid	C ₃ H ₅ N O ₅	1.35, 120.8	Henry, Ann. (4, 28, 415,
Ethyl nitroglycollate Ethyl nitrolaetate Ethyl nitromalonate _	C. H. N O.	1.2112, 15°.2 1.1584, 18° 1.119, 15°	Conrad and Bischotf.
Ethyl nitrotartronate	C ₇ H ₁₁ N O ₇	1.2778, 16°	Ber. 13, 599. Henry. Ann. (4, 28, 415.
Ethyl nitromalate Nitroglycerine	C ² H ² N ³ O ²	1.2094, 16° 1.595 / 15° 1.600 / 15°	De Vrij. J. 8, 626.
	44	1,5958 1,60 1,60	Liebe. J. 13, 453, Sobrero, J. 13, 453, Champion, Z. C. 14, 350,
66 66		1.6, 15° 1.735, s 1.599, 1)	Kern. C. N. 31, 153, Brokerhinns, J. R. C. 4, 148,
N		1.601, 14°.5 1.604, 0°, cryst	Hay and Masson. J. C. S. 48, 742.
Nitromannite	C ₆ H ₄ N ₆ O ₁₇	1.446 1.503 fused 1.537	Sokoloff, Ber. 12. 698.
Trinitrolactose Pentaritrolactose Acetonitrose	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,479,0° 1,684,0° 1,8487,18°	Gé. Ber. 15, 2239. Colley. B. S. C. 19,
Acetocthyl nitrate Derivative of menthol			406. Nadler, J. 13, 403. Meriya, J. C.S. 33.
			77.

5th. Miscellaneous Amido-Compounds.

		1	
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethylhydroxylamine Ethylenediamine hydrate_	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.8827, 7°.5 .970, 15°	Gürke. Ber. 14, 258. Rhoussopolos and Meyer. J. C. S. 42, 940.
Oxypropylpropylamine	$\mathrm{N}\mathrm{H.}\mathrm{C_3}\mathrm{H_7.}\mathrm{C_3}\mathrm{H_6}\mathrm{O}\mathrm{H}$.9018, 18°	Liebermann and Paal. Ber. 16, 523.
Oxyisoamylamine	N H ₂ C ₅ H ₁₁ O	.9265, 14°	Radziszewski and Sehramm. Ber. 17, 838.
Dioxyisoamylamine Trioxyamylamine	$\begin{array}{c} N \ H. \ (C_5 \ H_{11} \ O)_2 \\ N \ (C_5 \ H_{11} \ O)_3 \end{array}$.9500, 14° .879, 22°	J. Erdmann. J. 17,
Formamide	N H ₂ . C O H	1.1462, 19°	Gladstone. Bei. 9,
Methylformamide	N H, C H ₃ . C O H	1.011, 19°	Linnemann. J. 22, 601.
Ethylformamide	N H. C ₂ H ₅ . C O H	.967, 2° .952, 21°	Wurtz. J. 7, 567. Linnemann. J. 22, 602.
DiethylformamideAcetamide	N (C ₂ H ₅) ₂ . C O H N H ₂ . C ₂ H ₃ O	.908, 19° 1.11 1.13 } 14°	11 (1
6.	11	1.13 } 14°	Mendius. B. D. Z. Schröder. Ber. 12, 561.
EthylacetamideEthyldiacetamide	$\begin{array}{c} {\rm N} \ {\rm H.} \ {\rm C_2} \ {\rm H_5.} \ {\rm C_2} \ {\rm H_3} \ {\rm O}_2 \\ {\rm N.} \ {\rm C_2} \ {\rm H_5} \ ({\rm C_2} \ {\rm H_3} \ {\rm O})_2 - \end{array}$.942, 4°.5 1.0092, 20°	Wurtz. J. 7, 566. Wurtz. Ann. (2),
Dimethylacetamide	N (C H ₃) ₂ . C ₂ H ₃ O _	.9405, 20°	42, 55. Franchimont. R. T. C. 2, 329.
Diethylacetamide	N. $(C_2 H_5)_2$. $C_2 H_3 O$.9248, 8°.5	Wallach and Ka- mensky. A. C. P. 214, 235.
Propionamide	N H ₂ . C ₃ H ₅ O	$\begin{bmatrix} 1.030 \\ 1.037 \end{bmatrix}$ 4° $\left\{ \begin{bmatrix} 1.030 \\ 1.037 \end{bmatrix} \right\}$	Schröder. Ber. 12, 561.
Amidoacetic acid, or gly- cocoll.	C ₂ H ₅ N O ₂	1.1607	Curtius. B. S. C. 39, 169.
Ethyl diethylglycocollate_	C ₈ H ₁₇ N O ₂	.919, 15°	Kraut. J. R. C. 4, 198.
Amidocaproic acid, or leucine.		1.293, 18°	Engel and Vilmain. B. S. C. 24, 279.
		1.282	Lippmann. Ber. 17, 2837.
Oxamide	C ₂ H ₄ N ₂ O ₄	$\left\{ egin{array}{l} 1.627 \\ 1.657 \\ 1.667 \end{array} ight\} 4^{\circ} \left\{ \left[\right]$	Schröder. Ber. 12, 561.
Dimethyloxamide	$C_4 H_8 N_2 O_2$	1.281 1.307 \ 4° {	Schröder. Ber. 12, 1611.
Diethyloxamide	$C_6 H_{12} N_2 O_2$	$1.164 \ 1.173 \ 4^{\circ}$	r: cr
Asparagine	C ₄ H ₈ N ₂ O ₃ . H ₂ O	1.519, 14° 1.552	Watts' Dictionary. Rüdorff. Ber.12, 252.
Amidosuccinic, or aspartic acid. "	C ₄ H ₇ N O ₄	1.6613, active 1.6632, inactive	} Pasteur. J. 4, 389.

Name.	FORMULA.	SP. GRAVITY.	А стновіту.
Allylsuccinimide	C ₇ II ₉ N O ₂	1.1543, 0°] 1.1432, 12°	
11	66	1.1112, 50° 1.0677, 100°	Moine. J. C. S. 52, 489.
Ethyl amidoncetacetate	C ₆ H ₁₁ N O ₂	1.014, 30°	Duisberg, Ber. 15, 1386.
Ethylamidopropiopropio- natė.		.9774, 15°	Israel. A. C. P. 231, 197.
Mucamide	C ₆ H ₁₂ N ₂ O ₆	1.589, 13°.5	Malaguti, C. R. 22, 854.
Benzamide	N H ₂ , C ₇ H ₅ O	1.338 / 4° {	Schroder, Ber. 12, 1611.
Amidobenzoic acid	N H ₂ . C ₇ H ₅ O ₂	1.506 / 4°	46 46
Amidomethylphenol Dimethylanisidine	C ₇ H ₉ N O C ₉ H ₁₃ N O	1.108, 26° 1.016, 23°	Brunck. J. 20, 620. Mühlhäuser. A. C.
Ethyl orthoamidophenetol		1.021, 180.3	P. 207, 249. Forster, J. P. C. (2).
Methylformanilide	C ₈ H ₉ N O	1.007, 18°	21, 347. Pictetand Crépieux.
Ethylformanilide	C ₉ H ₁₁ N O	1.063, 16°	Ber. 21, 1106.
IsoamylformanilideAcetanilide	C ₉ H ₁₁ N O	1.044, 16° 1.004, 16° 1.099, 10°,5	Williams, J. 17, 424.
44	11	1.205 / 4° (Schroder. Ber. 12, 1611.
Benzanilide	C ₁₃ II ₁₁ N O	1.306 40	.4 44
Oxethenaniline	C ₈ H ₁₁ N O	1.11,00	Demole, J. C. S. (2), 12, 77.
a Ethylbenzhydroxamie neid.ß Ethylbenzhydroxamie	C ₉ H ₁₁ N O ₂ ==	1.185	Gurke. Ber. 14, 258. Gurke. Ber. 14, 259.
neid. Ethyl ethylbenzhydroxa-	C ₁₁ H ₁₅ N O ₂	1.0258, 17°	Gurke. Ber. 14, 257.
mate. Ethyl a dibenzhydroxa-	C ₁₆ H ₁₅ N O ₃		
mate. Ethyl 3 dibenzhydroxa-	"		4.4
mate. Tyrosine	C ₉ H ₁₁ N O ₈	1.456	Siber, Ber. 17, 2837.
Cerbamide, or uren	1	1.85 1.30, 12° 1.35	Proust. Bodeker. B. D. Z. Schubus.
44	44	1.323 1.333 / 4° /	Schroder Ber. 12, 561.
Ethyl carbanide	C ₃ H ₈ N ₂ O	1.209 } 1.213, 18° = }	Two samples.
Diethyl carbamide	C H ₁₂ N ₂ O	1.040)	(C. (2), 21, 11. Schröder. Ber. 13,
Benzyl phenyl cerbamide	C ₁₆ H ₁₆ N ₄ O	.9168, 150	1070. Gladstone. Bei. 9, 249.
Ethyl carlamate, or ure-	C ₃ H ₇ N O ₂	.6862, 218	Wurtz. J. 7, 565.

6th. Miscellaneous Cyanogen Compounds.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Ethyl cyanate Tertiary butyl cyanate	C ₂ H ₅ . C N O C ₄ H ₉ . C N O	1.1271, 15° .8676, 0°	Cloëz. J. 10, 386. Brauner. Ber. 12,
Cyanaldehyde	$C_2 \coprod_3 O \subset N$.881, 15°	1875. Chautard. C. R. 106, 1168.
Ethyl eyanformate	C ₄ H ₅ N O ₂	1.0139, 13°.5	Henry. C. R. 102,
Ethyl cyanacetate Diisobutyryl dicyanide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0664, 13°.5 .96	" Moritz. J. C. S. 40,
Ethylene cyanhydrin	C ₂ H ₄ . O H. C N	1.0588, 0°	13. Erlenmeyer. A. C.
Ethyl acctylcyanacetate	C ₇ H ₉ N O ₃	1.102, 19°	P. 191, 276. Huller and Held. Ber. 15, 2363.
Ethyl methylacetylcyan- acetate.	$C_8 H_{11} N O_3 - \cdots$.996, 20°	Held. B. S. C. 41, 330.
Ethyl ethylaeetyleyanac- etate.	$C_9 H_{13} N O_3$.976, 20°	11 II
Ethoxyacetonitril	C ₄ H ₇ N O	.918, 6°	Henry. B. S. C. 20, 186.
		.9093, 20°	Norton and Tscher- niak.
Phenoxyacetonitril	C ₈ H ₇ N O	1.09, 17°.5	
Mandelic nitril		1.124	Völckel. P. A. 62, 444.
Hydroxisovaleronitril	C ₅ H ₉ N O	.95612, 0°	Lipp. A.C. P. 205,
Hydroxycaprylonitril	C ₈ H ₁₅ N O	.9048, 17°	
Triethoxyacetonitril	$\mathrm{C_8~H_{15}~N~O_3}$	1.0030, 15°.5	Bauer. A. C. P. 229, 163.
Valeracetonitril	$\rm C_{13}~H_{24}~N_2~O_{3}$.79	Schlieper. A. C. P. 49, 19.
Acetoxyacetonitril	$\mathrm{C_4~H_5~N~O_2}$	1.1003, 13°.5	Henry. C. R. 102, 768.
Acetoxypropionitril Cyanöil	$ \begin{array}{c} \mathrm{C_5~H_7~N~O_2} \\ \mathrm{C_6~H_{11}~N~O} \end{array} $	1.077, 13°.5 1.009	Rossignon. A. C. P. 44, 301.

7th. Miscellaneous Compounds.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethyl carbimidePhenyl carbimide	C ₃ II ₅ X O	.8981 1.092, 50°	Wurtz. J. 7, 564. Hofmann. P. R. S. 19, 108.
Ethylmethyl acetoxim Trimethylene diethylalkin Tetrethylallylalkin	С, П ₁₇ N О	.9195, 24° .9199, 4° .9002, 4°	Janny, Ber. 15, 2779. Berend, Ber. 17, 510.
Methylphenylethylalkin - Piperpropylalkin Hydroxypicoline	C ₉ H ₁₃ N O C ₉ H ₁₇ N O C ₆ H ₉ N O	1.08065, 0° .9456, 0° 1.008, 13°	Laun. Ber. 17, 676. Laun. Ber. 17, 680. Etard. J. C. S. 40, 1046.
Collidine monocarbonic ether.	$C_{11} \text{ II}_{15} \text{ N } O_2 \dots$	1.0315, 15°	R. Michael, A. C. P. 225, 121.
Collidine diearbonic ether Nitroxylpiperidine	$C_{14} \ H_{19} \ N \ O_4$ $C_5 \ H_{10} \ N_2 \ O$	1.087, 15° 1.0659, 15°.5	Hantzsch. Ber. 15, 2913. Wertheim. J. 16.
Acetpiperidid	C ₇ H ₁₃ N O	1.01106, 9°	440. Wallach and Ka- mensky. A. C. P.
Acetylcopellidine	C 10 H 12 N O	.9787, 0° }	214, 238. Durkopf. Ber. 18, 924.
Parachinanisol	C ₁₀ H ₉ N O	1.1665. 0°)	Skraup. Ber. 18, ref. 631.
Base from ethylamine camphorate.		1.0177, 15°	Wallach and Ka- mensky, A. C. P. 214, 215.
Uric neid	C ₅ H ₄ N ₄ O ₃	1.855	Schroder. Ber. 13, 1070.
Happuric neidEthyl hippurate	$C_9 \stackrel{\text{II}}{\text{H}_1} \stackrel{\text{N}}{\text{N}} \stackrel{\text{O}_3}{\text{O}_3} = \cdots$	1.308, s 1.043, 28°, s	Schabus. J. 3, 410. Stenhöuse. A. C. P. 31, 145.
Ethyl glycocholate Indigotine	С ₂₈ И ₄₇ N О ₆	1.35	Springer. A. C. J. 1, 181. Weltzien's "Zu-
Creatine hydrate	<u>С</u> , П, N, О ₂ , П ₂ О	1.34)	sammenstellung." Watts' Dictionary.
Cuffeire Piperine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.23, 19° 1.1931, 18°	Pfatt Watts' Dict. Weekenroder.
Strychnine	C _{J1} II ₂₂ N ₂ O ₂	1.359, 18° 1.13	Watts' Dict. F. W. Clarke. Blunt. J. C. S. 50,
Murphine	$C_{17} \coprod_{10} \overset{N}{\underset{11}{\stackrel{\circ}{\longrightarrow}}} O_3, \coprod_2 O_{-}$	1.317}	1047. Schroder. Ber. 13, 1070.
Morphine butyrate	C ₂₁ H ₂₇ N O ₅	1.215, 18°	Decharme. J. 16, 445.
Morphine lactite	$\begin{array}{c} C_{36} \ H_{-3} \ N_2 \ O_9, \ 2 \ H_2 \ \overline{O} \\ C_{20} \ H_{25} \ N^2 \ O_6 \\ C_{18} \ H_{21} \ N^2 \ O_3, \ N_2 \ O \end{array}$	1,8574	Hunt. J. 8, 568.
61	1 44	1.311 -1	Schroder. Ber. 13, 1070.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Thebaine	C ₁₉ H ₂₁ N O ₃	1.282 }	Schröder. Ber. 13, 1070.
Laudanine	C ₂₀ H ₂₅ N O ₄	1.255)	£6 £6
Papaverine	$C_{21} H_{21} N O_{4}$	1.308)	
Cryptopine	C. H. N O.	1.351	"
Narcotine	C ₂₂ H ₂₃ N O ₇	1.391 1.395	66
Pelletierine	C ₈ H ₁₅ N O	.988, 0°	Tanret. Ber. 13, 1031.
Paraffinic acid	C ₁₃ H ₂₆ N O ₅	1.14, 15°	

XLIX. CHLORIDES, BROMIDES, AND IODIDES OF CARBON.

NA	ME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Carbon tetrae	hloride	C Cl ₄	1.599	
"		66	1.56	71, 383. Kolbe. A. C. P. 54, 146.
EL			1.62983, 0°	Pierre. Ann. (3), 33, 210.
	ει	66	1.567, 12° 1.5947, 20°	Riche.
ιι	et			117. Ramsay. J. C. S. 35,
				463. Thorpe. J. C. S.
66		"		Sehiff. G. C. I. 13,
4.4		44	$1.4802, 75^{\circ}.6$ $1.60500, 15^{\circ}$	177. Perkin. J. P. C. (2),
Tetrachloreth		C ₂ Cl ₄	$\begin{bmatrix} 1.58873, 25^{\circ} \\ 1.619, 20^{\circ} \end{bmatrix}$	32, 523. Regnault. Ann. (2),
"		٠٠	1.6490, 0°	71, 353. Pierre. Ann. (3), 33, 230.
"			1.612, 10°	Geuther. A. C. P. 107, 212.
4.6		"	1.6595, 0°	Bourgoin. Ber. 8, 548.
"		"	1.6312, 90.4	Brühl. Bei. 4, 780.
" " " " " " " " " " " " " " " " " " " "		"	1.4489 1200-	Schiff. G. C. I. 13, 177.
Hexchloretha	ne	C ₂ Cl ₆	1.619	Regnault. Ann. (2), 71, 374.
			2.011	Schröder. Ber. 13, 1070.

NAME.	FORMULA.	SP. GRAVITY.	Аптиовиту.
Octochlorpropane	C S Cl ₂	1.487, 817° 1.569, 236° 1.5191, 266° 1.4624, 306° 1.46 1.5498, 0° 1.5339, 11°	Cahours. J. 3, 496. Jungfleisch. J. 20, 36. M. 226°. B. 326°. Jungfleisch. J. 21, 354. Kolbe. A. C. P. 45, 41.
Carbon tetrabromide	C Br	1.5241, 17°) 1.05085, 15° 3.42, 14°	Arsskrift 1884 5. Billeter and Strohl. Ber. 21, 102. Bolas and Groves.
Carbon sulphobromide Bromo-trichlormethane	C S ₂ Br ₄	2.88, 150	J. C. S. 24, 780. Hell and Urech. Ber. 16, 1118.
		2.017, 19 .5 1,842, 100°) 2,05496, 0° 1,82446,104°.07	
Dibrom-tetrachlorethane Dibrom-hexchlorpropane Carbon tetriodide			Malaguti, Ann. (31, 16, 24, Cahours, Gustavson, C R. 78, 1126.

L. COMPOUNDS CONTAINING C, CL, AND O.

NAMI	FORMULA.	SP GRAVITY.	Астновиту.
Carbonyl chloride			(Eunwerling and Lengyel, Z. C. (13, 189, Malaguti, Ann. [3],
•	11		16, 9. (Thorpe, J. C. S.) 37, 371. Anthoine, J. Ph.
Tetrachlermethyl formate	8 10	1.6525, 14= ===	Hentschel, J-P.C. (2), 36, 99.
Hexchore thyl formate Hexchormethyl nectate Dealle of the second of th		1.705, 15	Clocz. Ann. (3), 17, 209. Clocz. Ann. (5), 17, 312.
Perchlorethyl nectate	(, C, C, B, O,		Leblanc. Ann. 3), 10, 202. Léblarc. Ann. (3), 10, 208.

NAME.	Formula.	Sp. Gravity.	Аптновіту.
Hexchlormethyl oxide	C ₂ Cl ₆ O	1.594	Regnault. Ann. (2), 71, 403.
Perchlorethyl oxide	C ₄ Cl ₁₀ O	1.9, 14°.5	Malaguti. Ann. (3), 16, 14.
Hexchloracetone	C ₃ Cl ₆ O	1.75, 10° 1.744, 12°	Plantamour. Cloëz. Ann. (6), 9,
Chloroxethose	C ₄ Cl ₆ O	1.654, 21°	
Derivative of sodium eitrate.	C_5 Cl_{10} O_2	1.66	Watts' Dictionary.
By action of P Cl ₅ on sue- cinyl chloride.	C ₄ Cl ₆ O	1.634	Kauder, J. P. C. (2), 28, 191.

LI. COMPOUNDS CONTAINING C, H, AND CL.

1st. Chlorides of the Paraffin Series.

			1	
	NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl	ehloride	C H ₃ Cl	.99145, 25°.7	1
			95231, 0°	
6.6			.92880, 13°.4	
6.6			. .91969, 17°.9	
"		- 44	. 90875, 23°.8	
6.6		- (. .89638, 30°.2	332.
6.6		- (4	97886, 39°	
Ethyl e		- C ₂ H ₅ Cl	.874, 5°	Thénard.
1.1			.92138, 0°	
6.6			.9253, 0°	Darling. J. 21, 328.
6.6	44	- "	.9176, 8°	Linnemann. A.C.P.
				160, 195.
6.6		- (. 8510, 12°	Ramsay. J. C. S. 35,
				463.
6.6		- "	.92295, 15°	Perkin. J. P. C. (2),
6.6			_[.91708, 25°]	31, 481.
Propyl	ehloride	_ C ₃ H ₇ Cl	9156, 0°)	
6.6	44	- ' '	.8918, 19°.75 }	Pierre and Puchot.
66		- (8671, 39°)	Ann. (4), 22, 281.
6.6			_ .9160, 18° }	Linnemann. A.C.P.
6.6		- ' '	8959, 19° }	161, 38 and 39.
6.6	"	- ' '	_ .8877, 14°	De Heen. Bei. 5, 105.
6.6		-	9123, 0° }	Zander. A.C.P. 214,
66	11		.8536, 46°.5	181.
"	"	- ((_ .8561, 46°	Schiff. G. C. I. 13,
				177.
6.6	((- ((8898, 20°	Brühl. Bei. 4, 778.
"	((- 44		Perkin. J. P. C. (2),
	"	- (1	.88125, 25° \	31, 481.
Isoprop	yl ehloride	- ((.874, 10°	Linnemann.
"		- "	_ .8722, 14°	Linnemann. A. C.
				P. 161, 18.

NAME.	FORMULA.	SE GRAVITY.	AUTHORITY.
Isopropyl chloride	C ₃ H ₇ Cl	.8825, 0°)	Zander, A.C.P. 214,
11	14	.8326, 36°.5	181.
64	11	.86884, 15°	Perkin, J. P. C. (2)
***		.85750, 25°	31, 481.
Butyl chloride	C, H, Cl	.880 .9074, 0°	Gerhard, J. 15, 409. Lieben and Rossi.
16	16	.8874, 200	A. C. P. 158, 137.
		.8972, 14°	Linnemann. Ann.
			(4), 27, 268.
		.8004, bp=	Ramsay, J. C. S. 35, 463.
	64	.8794, 140	De Heen. Bei. 5, 105.
Isobutyl chloride	14	.8953, 00)	
66		.8651, 27%8	Pierre and Puchot.
**		.8281, 500)	Ann. (4), 22, 310.
**		·8798, 15°	Linnemann. A. C.
.6			P. 162, 1. Gladstone. Bei. 9,
		1111201, 111	249.
66 66	6.	·8078, 68°	Schiff. Bei. 9, 559.
46		88356, 15° (Perkin. J. P. C.
66		87393, 25°	(2), 31, 481.
Trimethylcarbyl chloride		.8658, 0°	Puchot. Ann. (5), 28, 549.
4.6		.84712, 150	Perkin. J. P. C.
4.4		,83683, 25°	(2), 31, 481.
Normal pentyl chloride		.9013, 0°)	
		.8824, 200 }	Lieben and Rossi.
46 46 64		.8680, 40°) .8782, 20°	A. C. P. 159, 70.
		10(02, 20,	Lachowicz, A. C. P. 220, 191.
Amyl chloride	11	.8859, 00)	Kopp. A. C. P. 95,
66 66		.8625, 25°.1	307.
64 46		89584, 0°	
66 66		8750) 500	Two products.
66 66	46	- (.8750) <u>- 20° -</u>	Schorlemmer. J.
44 64			(19, 527.
**		.7801, bp	Ramsay, J. S. C. 35, 463.
6		.8716, 140	De Heen. Bei. 5, 105.
		8703, 20°	
			220, 190.
	66	.7903, 99%,5 _	Schiff, Ber. 19, 560.
4.6		88006, 15°	Perkin, J. P. C.
	14	.87164, 25°	(2), 31, 481.
" Active		886	Le Bel. B. S. C. 25, 546.
" " Inactive = -	4.	.8928, 0°	
21 .1 .1 .1 .1 .1 .1 .1	L.	019 70	(Wagner and Saytz-
Methylpropylcarbyl chlo-		912, 0°	eff. A. C. P. 179,
rice.			321.
Diethylcarbyl chloride		9H, 0°	44 44
14 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Warmer T 10 510
Dimethylethylearbyl chloride.			Wurtz. J. 16, 516. (Wischnegradsky.
	4.6	850, 00	1 trischineginds 8)
ride	1.6		A.C.P. 190, 334-

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dimethylethylearbyl chloride. " " Hexyl chloride	C ₅ H ₁₁ Cl C ₆ H ₁₂ Cl	.87086, 15° .86219, 25° .892, 16°	Perkin. J. P. C. (2), 31, 481. Pelouze and Ca-
	"		hours. J. 16, 525. Geibel and Buff. J.
		.895, 13°	Cahours and Demar-
Secondary hexyl chloride_		.871, 24°	cay. C. R. 80, 1570. Domac. Ber. 14, 1712.
Chloride from tetrame- thylethane.		.8943, 14° } .8874, 22° }	Schorlemmer. J. 20,
Dimethylisopropylcarbyl chloride.		.8759, 34° .8966, 0° .8784, 19°	Pawlow. A. C. P. 196, 122.
Pinacolyl chloride	((.8991, 0°	Friedel and Silva. J. C. S. (2), 11,
Heptyl ehloride	C ₇ H ₁₁₅ Cl	.9983, 15° .890, 20°	488. Petersen. J.14,613. Pelouze and Ca-
ιι ιι <u></u>	"	.8737, 18°.5 .8725, 20° }	hours. J. 15, 386. Two preparations. Schorlemmer. A.
(t (t (t	(.8965, 19° .891, 19° .881, 16°) C. P. 136, 257. Schorlemmer. Cross. J. C. S. 32,
Isoheptyl chloride	"	.8814, 16°.5	123.
() () () () () () () () () () () () () ((t	.8780, 18°.5 .8757, 22° .892, 18°	Schorlemmer. A. C. P. 136, 257.
Octyl chloride	C ₈ H ₁₇ Cl	.895, 16°	Schorlemmer. J. 15, 386. Pelouze and Ca-
((((.8802, 16°	hours. J. 16, 528. Zincke. A. C. P.
· · · · · · · · · · · · · · · · · · ·		.850	152, 5. Cahours and Demar- çay. C. R. 80, 1571.
(1 (1		.87857, 15° .87192, 25° }	Perkin. J. P. C. (2), 31, 481.
Isooctyl chloride Methylhexylcarbyl chlo-	11 11	.8834, 10°.5 .8617, 36° }	Schorlemmer. J. 20, 567.
ride. " " Nonyl chlovide, B, 196°	((.87075, 15° } .86388, 25° } .899, 16°	Perkin. J. P. C. (2), 31, 481. Pelouze and Ca-
	((.8962, 14°	hours. J. 16, 529. Thorpe and Young.
" B. 182°	"	.911, 23° }	A. C. P. 165, 1. Lemoine. B. S. C. 41, 161.
Decatyl chloride Dodecatyl chloride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.908, 19°	Pelouze and Ca-
Cetyl chloride			hours. J.16, 530. Tüttscheff. J. 13, 406.

2d. Chlorides of the Series C, H, Cl,

7	AME.		FORMULA.		SP. GRAVITY.	Authority,
Mathylene chloride			C H ₂ Cl ₂		1.344, 189	Regnault Ann. 2
b 4	61		4.6		1.560,00	71, 378.
					1.377765, 02	Butlerow, J. 22, 34 (Thorpe, J. C.)
					1,50093,419,6	37, 371.
	44				1.00771, 15	Perkin, J. P. C. 12
- 1	4.4				1.32197, 25° j	(1), 523,
Ethylene c	hloride		$C_2 \coprod_4 Cl_2$		1.250, 120 - 12	Regnault Ann. 12
6.6	66		4.6		1.217, 180	55, 307. Liebig. A.C-P. 21
6.6	4.6		-		1.28034.00	Pierre, C. R. 27, 21
6.6	6.6		_		1.2562, 20°	Hangen, P. A. 15
						117.
6.6	6.6				1.2, 110	Maumené, J. 22, 84
6.6	4.6		-		1.272, 140	Gladstone and Trib C. N. 29, 212.
6.6	6.6		6.6		1.1356, 81°	Ramsay, J. C. S. 3 463.
4.6	4.6		4.4		1.25052.00	1 Thorpe. J. C.S. 3
6.4	6.6		4.4		1.15635, 83°.5	1 371.
4.6	4.4		-		1.2521, 20°	Bruhl. A. C. 1 203, 1.
6.6	6.6		6.		1.1576, 839.2	Schiff, Ber. 15, 297
. 46	4.4		_		1.2656, 92.8	Schiff. G. C. L. 1
6.6	6.4				1.1576, 83°.3	177.
6.6	4.4				1.272, 11	Glad-tone. Bei.
* *	6.6		4.		1.25991, 15°)	249. Perkin, J. P. C. (2
6 s	4.4		6.6		1.21500, 250	02, 520.
4.6	6.6		-		1.25014, 20° 1	Weegmann, Z. P. (2, 218.
Ithylidene	chlori	de	-		1.174, 17°	Regnault. Ann. (. 71, 357.
	6 +		4.		1.21074, 00	Pierre, C. R. 27, 21
	6.0				1.180, 4 .8	Genther, J. 11, 28
6.6	6.4				1.198, 6.5	Darling, J. 21, 32
6.4	4.6		6.		1.201, 130	Gladstone and Tril
6.6	(4		6.		1.1743, 20	C. N. 20, 212. Brubl. A. C.
66	6.6		6.6		1.1070,56°	203, 1. Ramsay, J. C. S. 3
						463.
4.6	4.6				1.20394, 0° 111 1.10923, 59°.9	Two sample
6.6	6.6		-		(1.201), 0	Thorpe. J.C.
4.6	6.		-		1.1895, 9 .8.) 37,153an 137
6.6	6.		6.	w	1.11425, 569.7	Schiff, G. C- L. 1
4.4	6.				1.11555, 56°.5	177.
4.6	6.		-		1.15450, 15°)	Perkin, J. P. C.
4.6	4.4				1.17120, 25°	32, 523.
4.4	4.6				1.17503, 20°	Weegmann. Z.
						C. 2, 215.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Propylene chloride	C ₃ H ₆ Cl ₂	1.1656, 14°	Linnemann. A. C. P. 161, 18.
tt tt	($\left. \begin{array}{c} 1.184,0^{\circ} \\ 1.155,25^{\circ} \\ 1.182,0^{\circ} \\ 1.153,25^{\circ} \end{array} \right\}$	Friedel and Silva. Z. C. 14, 489.
Trimethylene chloride	"	1.0470, 97°.5 1.201, 15°	Schiff. Bei. 9, 559. Reboul. J. C. S. 36, 127.
"	((1.1896, 17°.6	Freund. Ber. 14, 2270.
Dimethylmethylene chloride. Methylchloracetol.	"	1.117, 0°	Friedel.
		1.06, 16°	Linnemann. A. C. P. 138, 125.
tt	"	1.0827, 16°	Linnemann. A. C. P. 161, 18.
" "	"	$1.1058, 0^{\circ} = $ $1.0744, 25^{\circ}$	Friedel and Silva.
" "	(($\left\{ \begin{array}{c} 1.1125,0^{\circ} - 1.0818,25^{\circ} \end{array} \right\}$	Z. C. 14, 489.
:	66	$\left\{ \begin{array}{c} 1.09620 \\ 1.09657 \end{array} \right\} \ 15^{\circ}$	Perkin. J. P. C.
Propylidene chloride	ι	$\left\{ \begin{array}{c} 1.08430 \\ 1.08476 \\ 1.143, 10^{\circ} \end{array} \right\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(2), 32, 523. Reboul. C. R. 82,
Isobutylene chloride		1.112, 18°	378. Kolbe. J. 2, 338.
" " " Isobutylidene chloride	(1)	1.0953, 0° } 1.0751, 20°.7 } 1.0111, 12°	Kopp. A. C. P. 95, 307. Occonomides. Ber.
Amylene chloride	C ₅ H ₁₀ Cl ₂	1.058, 9° 1	14, 1201. Guthrie. J. 14, 665.
Isoamylidene chloride	(6	1.2219, 0° 1.05, 24°	Bauer. J. 19, 531. Ebersbach. J. 11, 297.
Chloramyl chloride		1.194, 0° 1.087, 20°	
" " B. 163° Heptylene chloride		1.0527, 11° 1.0295, 10°	Henry, C. R. 97, 260.

3d. Miscellaneous Non-Aromatic Chlorides.

N	AME.	Fo	RMULA.	Sp. Gravity.	Аптиовиту.
Chleroform		C H Cl ₃		1.48, 18°	Liebig, A. C. P. 1,
4.4		6.4		1.491, 17°	Regnault. Ann. (2), 71, 381.
4.4		66		1.493	Swan. J. 1, 681.
4.4		4.4		1.413 }	Soubeiran and
4.6		6.6		1.496, 120 }	Mialhe. J. 2, 408.
66				1.500, 15°.5 1.52523, 0°	Gregory, J. 3, 454. Pierre, C. R. 27, 213.
+4		4.6		1.512, 12°	Schiff. A. C. P. 107,
6.6		4.6		1.49	Fluckiger.
6.6		6.6			Geuther.
4.4		4.4		1.507, 17°	Flückiger. Z. A. C. 5, 302.
1.6					Rump. C. C. (3), 6, 34.
4.6				1.500, 15°	Remys. J. C. S. (2), 13, 439.
		4.6		1.3954, 68°	Ramsay, J. C. S. 35, 463.
4.4		6.6			(Thorpe. J. C. S. 37,
+ 6		6.4		1.40877, 61°.2	371.
4.6		4.4		1.4018 63°	Schiff. Ber. 14, 2763-2766.
4.6				_ 1.4081, 60°.6	Schiff, Ber. 15, 2972.
4.6				2 46.60.00 0000	
4.6				1.5039, 11°.8) - 1.4081, 60°.9 (Schiff. G. C. I. 13,
**		4.6		1 40000 100 5	(With intermediate
. 4		4.			values. Drecker. P.A. (2), 20, 870.
+ 6 + 6)
a 6				a decidated in	Perkin. J. P. C. (2), 32, 523.
Trichloret	hame		Cl ₃		Regnault, Ann. (2), 71, 864.
6.6		- 66			Pierre, C. R. 27, 213.
6.6		- 64			32, 523.
Chlörethyl	lene dichloride.	C 112 C	1. C H Cl ₂		Regnault, Ann. (2), 69, 153.
a 8		-		1,42234, 0° 1,4577, 9°.4	
4.6			4.		1
6.6			44	0	5 Schitf. G. C. I. 13,
4.6	1.	-		1.2947)	1.1.
6.6	6.4	-			Delacre, Bull, Acad. Belg. (3), 13, 250
8.6	- 44	-			Perkin, J. P. C.
4.6		-		{1,14803, 25°) (2), 32, 523.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Tetrachlorethane. B. 102°	C H ₂ Cl. C Cl ₃	1.530, 17°	Regnault. Ann. (2), 71, 366.
.: B.135°		1.576, 19°	Regnault. Ann. (2), 68, 162.
		1.61158, 0°	Pierre. C. R. 27, 213.
Acetylene tetrachloride	C H Cl ₂ , C H Cl ₂	$1.614,0^{\circ}_{1.578,24^{\circ}.3}$	Paterno and Pisati.
" " "		1.522, 100°.1 ∫ 1.644	Z. C. 14, 385. Regnault. Ann. (2),
ii .	(1	1.66267, 0°	71, 368. Pierre. C. R. 27,
		1.71, 0° }	213. Paterno. Z. C. 12,
"		1.69, 13° } 1.70893, 0°	245.) Thorpe. J. C. S.
Dichlorethylene	C ₂ H ₂ Cl ₂	1.46052, 159°.1 1.250, 15°	37, 371. Regnault. Ann (2),
Trichlorpropane		1.347	69, 155. Cahours. J. 3, 496.
Trichlorhydrin	$ \stackrel{\circ}{\operatorname{CH}}_{2}\overset{\circ}{\operatorname{Cl}}.\stackrel{\circ}{\operatorname{CH}}_{2}\overset{\circ}{\operatorname{Cl}}.\stackrel{\circ}{\operatorname{CH}}_{2}\overset{\circ}{\operatorname{Cl}} $	1.41, 0°)	Three separate products. Linuemann.
tt	£ £	1.417, 15°) 1.41, 0°	A. C. P. 136, 51. Oppenheim. J. 19,
"		1 20005)	521.
	11	1.39836 } 155-	Perkin, J. P. C.
Isotrichlorhydrin		1.38783 } = 5 =) (2), 32, 523. Romburgh. Ber. 14,
Allylene tetrachloride		1.47, 13°	1400. Borsche and Fittig.
		1.482 }	J. 18, 313. Ganswindt. Jena
Tetrachlorglyeide		1.485	Inaug. Diss. 1873. Pfeffer and Fittig.
Allylidene tetrachloride	"	1.503, 17°.5	J. 18, 504. Hartenstein. J. P.
	"	1.522, 15°	C. (2), 7, 295. Romburgh. Ber. 14,
Tetrachlorpropane		1.548	1400. Cahours. J. 3, 496.
Hexachlorpropane	C ₂ II ₂ Cl ₆	1.55, s 1.626 1.731	Berthelot. Cahours. J. 3, 496.
Heptachlorpropane Chloropropylene	$\begin{bmatrix} C_3^{-1} & H^{-1} & C_1 \\ C_3^{-1} & H_5^{-1} & C_1 \end{bmatrix}$.918, 9°	Linnemann. J. 19, 308.
		.9307, 0°	Oppenheim. J. 19, 521.
		.931, 0°	Oppenheim. J. 21, 339.
Allyl chloride		.934, 0°	Oppenheim. J. 19, 521.
(t ti	(1	.9547, 0°	Tollens. A. C. P. 156, 155.
	"	.9610, 0° }	Zander. A. C. P. 214, 181.
		,	

Name.	· Formula.	Sp. Gravity.	А стиовиту.
Allyl chloride	C. 11. Cl	.9055 1 410 5	Schiff, G. C. I. 13,
**		.9055 44°.8 .	177.
	44	.0379, 200	Bruhl. Bei. 4, 780.
41 11		.94366, 15°	Perkin. J. P. C
	64	.403228, 250	(2), 32, 523.
Allylidene dichloride	C ₃ H ₄ Cl ₂	1.170, 24°, 5	Hubner and Geu- ther. J. 13, 305.
a Dichlorpropylene, Epi- dichlorhydrin.		1.21	Claus. A. C. P. 170 125.
4	4	1,22, 80	Henry. Ber. 5, 965
β Dichlorpropylene. Epi- dichlorhydrin.	4.6	1.21, 20°	Reboul. J. 13, 460
tt	44	1,233, 17°,5	Hartenstein, J. P. C. (2), 7, 295.
εε		1.226, 15°	Romburgh, Ber. 15, 245.
11	(1	1.25, 15°)	(Friedel and Silva
0	44	1.215, 25° }	Quoted by Romburgh.
a Trichlorpropylene	C_3 H_3 Cl_3	1.387, 14°	Borsche and Fittig J. 18, 313.
β Trichlorpropylene		1.414, 20°	Pfelfer and Fittig J. 18, 504.
Propargyl chloride	C ₃ H ₃ Cl	1.0454, 50	Henry, Ber. 8, 398
Crotonylene dichloride	C. H. Cl	1.131	Kekulé. J. 22, 507
Chlorisobutylene	$C_4 \coprod_7 Cl$.9785, 120	Oeconomides. Ber 14, 1201.
Trichlorpentane	C ₅ H ₉ Cl ₃	1.33, 13°	Buff. J. 21, 334.
Tetrachforpentane Chloramylene	C ₅ H ₄ Cl ₄	0.1200	Bauer. J. 19, 531.
Chloramylene	$C_5 H_9 Cl$.9992, 00	41 11
	4.	.872, 5°.1	Bruylants. Ber. 8
Isoprene hydrochlorate ==		.868, 16°	Bouchardat, J. C. S 38, 323.
Isoprene dichloride	\bar{C}_5 $\bar{\Pi}_8$ $\bar{C}1_2$	1.065, 16°	16 16
Trichlorhexane	$C_6^5 \prod_{11}^8 C_{13}^7 \dots$	1.193, 21°	Pelouze and Cn hours. J. 16, 525
Hexachlorhexane	C ₆ H ₄ Cl ₆	1,594, 200	1100115, 9, 19, 020
Chlorhexylene	C. H. Cl	.9686, 110	Henry, C. R. 97, 260
Chlordielly L.	C ₆ H ₁₁ Cl	.9197, 180,2	Henry, J.C.S. 36, 34
Chlordiamylene chloride	Cio Ilia Cla	1.1638, 00	Bauer. J. 20, 583.
Eikosylene chloride	C ₂₀ 11 , Cl ₂	1,013, 24°	Lippmann and Hawliczek. Ber
Isovinyl chloride	(C. II, Cl)	1.406	12, 73. Baumann. A.C. P
			163, 308.
Chloronicene	C ₃ II ₅ CI	1.141, 10°	St. Evre. J. 1, 530

4th. Aromatic Compounds.

				1	1
Nam	E.	F	ORMULA.	SP. GRAVITY.	AUTHORITY.
Manaahlashass		C H (13	1 1400 00	
Monochlorbenz	zene	C ₆ H ₅ (J1	1.1499, 0°]	
4.6				1.1347, 10°	From benzene. So-
. 4			~	1.1258, 20°	koloff: J. 18, 517.
				1.1188, 30°	
4.6		14		1.1199, 0°]	
4.6				1.1085, 10°	From phenol. So-
				1.099, 20° }	koloff. J. 18, 517.
4.6		4.6		1.092, 30° J	
6.6				1.118	Jungfleisch. J. 19, 551.
4.6		66		1.77, -40°	Jungfleisch. J. 20,
4.6		1.6		.980. 1330 }	36.
4.6				1.1293, 0°	Jungfleisch. J. 21, 343.
"		4.6		1.12855, 0°	1)
4.6		66		1.11807, 90.79_	From benzene.
4.6		6.6		1.10467, 22°.43	Adricenz. Ber.
6.6		4.6		1.04428, 77°.27	6, 443.
6.6		4.4		1.12818, 00	1)_
4.4		4.6		1.11421, 9°.79_	From phenol.
4.4		4.4		1.10577, 22°.43	Adrieenz. Ber.
4.6		6.6		1.04299, 77°.27	
4.6		4.6		00171	Sehiff. G. C. I. 13,
11		4.6		.9817 .9818 { 132° }	177.
4.6		4.6		1.1066, 20°	Brühl. Bei. 4, 780.
4.6		44		1.1046, 25°.2)	Schall. Ber. 17.
		44		1.0703, 52°.3	2564.
4.4		4.6		1.106, 15°	Wallach and Heus-
				11100, 19	ler. A. C. P. 243, 226.
Orthodichlorbe	nzene	C ₆ II ₄ C	l ₂	1.3278, 0°	Beilstein and Kurbatow. A. C. P. 176, 41.
66		1.6		1.3254, 0°	Friedel and Crafts. Ann. (6), 10, 416.
Metadichlorben	zene	"		1.3148	Beilstein and Kurbatow. B. S. C. 23, 179.
ιι		44		1.307, 0°	Beilstein and Kurbatow. J. C. S. (2), 13, 450.
Paradichlorben	zene	4.6		1.459, s	Jungfleisch. J. 19, 551.
66		4.4		1.250, 53° }	Jungfleisch. J. 20,
"		44		1.123, 171°	\$6,
6.6		44		1.4581, 20°.5	
6.6		4.6		1.241, 63°	7 0 1 2 7
6.6		6.6		1.2062, 93°	Jungfleisch. J. 21,
4.6		6.6		1.1366, 166°	347.
"		4.4		1.467, 4°	Schröder. Ber. 12,
		4.6		,	561.
6.6				1.2499, 55°.1	Sehiff. A. C. P. 223, 247.

NAME		FORMULA.	Sp. Gravity.	AUTHORITY.
Trichlorbenzene		C ₆ II ₃ Cl ₃	1.457, 7°	Mitscherlich, P. A.
6.4	1.8.4		1.575	35, 372. Jungfleisch. J. 19, 551.
6.4	44	44	1.457, 179, 5.)	Jungfleisch. J. 20.
6.6	4			36.
4.4	4.4			
			1.4658, 10°,l. 1.460, 26°	1
			2 4 5 5 5 7 10 1	Jungfleisch. J. 21, 350,
4.4		11	2 . 3 4 . 3 50 . 0 4	131307,
£ £		4.	1.1954, 120, 1.	Beilstein and Kur- batow. A. C. P.
Tetrachlorbenze	ne. 1.2.4.5	$C_6 H_2 Cl_4$	1.748	192, 230 ₋ Jungfleisch, J. 19,
6.6	6+	11	1,148, 139°)	551. Jungfleisch. J. 20.
6.6			0 12 0 10 13 11 10	36.
6.6	6.6	11		11
l.	h		1.4839, 149°	Jungfleisch, J. 21,
4.	14	4.	1.3955, 179° - 1.3281, 230° -	352.
Pentachlorbenze	'He	0	1.625, 74°	Jungfleisch. J. 20,
4.			1.370, 270° (36,
()		4.	1.8422, 10°] 1.8342, 16°.5 [
6.4		"		Jungfleisch. J. 21,
4.6		44	1.5732, 114°	353.
4.4		4.	1.0521, 2610	
Monochlortolue	ne	C ₆ H ₄ . C H ₃ . Cl _	1.050, 14°	. Limpricht. J. 19, 591.
6.6	1.4	6.	1.0735, 27°.2	Aronheim and Diet- rich. Ber. 8, 1402.
11			9351, 159°.8	Schitf. G. C. I. 13.
6.6		4.		
6.		· · =		
4.6		-	1.049, 45°.71	Cattaneo, Bei.7, 584.
6.6	-		1.029, 67°.80 { 1.013, 83°.86	
4.		6.		
			1.0761, 199	Gladstone, Bei. 9, 249,
Benzyl chloride		C ₆ H ₅ . C H ₂ Cl	1.1137 /	Cannizzaro, J. S.
		**		621.
h 6			1.107, 11°	502.
6.			== (452 / 1750 (Schiff. G. C. I. 13.
6. 66			11.1.1.1	177.
	FF - ES-	1.5	1.100, 30°,01 1.052, 412,37	
1.			1.056, 59	Cattaneo. Bei. 7.
		**	A A RO RO	551.
		"	1.016, 1002.08	10
4. 4.6			1.099, 7°	
6 6		4.	9453, 178°	249 Schiff, G. C. I. 13, 177.

	-				
Nam	Е.	Formula		SP. GRAVITY.	Authority.
Dichlortoluene	. 1.2.4	$C_6 H_3$. $C H_3$. C	12	1.24597, 20°	Lellmann and Klotz. A. C. P. 231, 308.
"	1.2.5	4.6		1.2535, 200	11,000.
4.6	1.3.4	4.4		1.2535, 20° 1.2518, 16°)	Aronheim and Die-
4.6		"		1.2596, 18°.4	trieh. Ber. 8, 1403.
"	"	"		1.2512, 20°	Lellmann and Klotz. A. C. P. 231, 308.
" "	B. 202°			1.256, 13°	Beilstein. J. 13, 412.
"	В. 207°			1.2557, 14°	Limpricht. J. 19, 593.
"		C ₆ H ₅ , C H Cl ₂		1.245, 16° 1.295, 16°	Cahours. J. 1, 711. Hübner and Bente. Ber. 6, 804.
"				1.2699, 0°	
"	"			1.2122, 56°.8	1 C.1:0 D. 10 700
"				1.1877, 79°.2	Schiff. Ber. 19, 563.
66		"		1.1257, 135°.5 1.0407, 203°.5	
Trichlortoluene		C ₆ H ₂ . C H ₃ . C	I	1.413, 9°	Henry. J. 22, 508.
"				1.4093, 19°.5	Aronheim and Dietrich. Ber. 8, 1405.
Dichlorbenzyl Benzyl trichlo	chloride ride	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I ₂ Cl	1.44, 0° 1.61, 13°	Naquet. J. 15, 419. Limpricht. J. 18, 538.
"				1.380, 14°	Limpricht. J. 19, 594.
Tetrachlortolue	ene	$\mathrm{C_6}\;\mathrm{H}\;\mathrm{Cl_4}.\;\mathrm{C}\;\mathrm{H_3}$		1.495, 14°	Limpricht. J. 19, 595.
Trichlorbenzyl	chloride	C ₆ H ₂ Cl ₃ . C H	2 Cl	1.547, 23°	Beilstein and Kuhlberg. J. 21, 361.
11. 11.		$C_6 H_3 Cl_2$. C H			"
Chlorbenzo-trie	chloride.1.3	C ₆ H ₄ Cl. C Cl	3	$\begin{bmatrix} 1.74 \\ 1.76 \end{bmatrix}$ 13° {	Limpright. A. C. P. 134, 58.
"	" 1.2	"		1.51	Kolbe and Laute- mann. A. C. P. 115, 196.
Dichlorbenzo-t	richloride _	$C_6 H_3 Cl_2$. $C C$	l ₃	1.587, 21°	Beilstein and Kuhlberg. Z. C. 21, 363.
1.6		4.6	ŀ	1.5829, 16°	Aronheim and Dietrich. Ber. 8, 1403.
Trichlorbenzyleride.	ene dichlo-	C ₆ H ₂ Cl ₃ . C H		1.607, 22°	Beilstein and Kuhlberg. Z. C. 21, 362.
Tetrachlorbenz Tetrachlorbenz chloride.		$ \begin{array}{cccc} C_6 & H & Cl_4 & C & H_2 \\ C_6 & H & Cl_4 & C & H \end{array} $	Cl	1.634, 25° 1.704, 25°	Beilstein and Kuhlberg. Z. C. 21, 364.
Chlororthoxyle	ne	C ₆ H ₃ . C H ₃ . C	H ₃ . Cl	1.0863, 19°	Claus and Kautz. Ber. 18, 1367.
6.6	1.2.4	44		1.0692, 15°	Krüger. Ber. 18, 1757.
Chlormetaxyler		"		1.0598, 20°	Jacobsen. Ber. 18, 1761.
Isotolyl ehlorid	е	C ₆ H ₄ . C ₁ H ₃ . C	H ₂ Cl	1.079, 0° }	Gundelach. B. S. C. 25, 385.
Chlorethylbenz	ene	C_6 H_4 . C_2 H_5 . C_5	1	1.075, 0°	Istrati. B. S. C. 42, 115.

NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Chlorethylbenzene	$C_6 H_4$. $C_2 H_5$. $Cl ==$	1.058	Istrati. Ber. 18, ref. 704.
Dichlororthoxylene		1.333, s. 1.150, 70°, l. 1.250, 20°, l.	Colson. Ann. (6), 6,
6.	.,	1.0950	Kautz, Freiburg In. Diss. 1885.
Dichlormetaxylene	11	1.302, 20°, s.) 1.202, 40°, I. j 1.343, s	Colson. Ann. (6 , 6, 86.
Orthoxylene dichloride	$C_6 \coprod_4 (C \coprod_2 Cl)_2$	1.898	Colson. C. R. 104, 429.
Metaxylene dichloride Paraxylene dichloride Orthoxylene tetrachloride Metaxylene tetrachloride	C ₆ H ₄ (C ₁ H Cl ₂) ₂		Colson and Gautier.
Paraxylene tetrachloride - Chloreymene, 1.4.6	C ₆ H ₃ . C H ₃ . C ₃ H ₇ . Cl	1.696 1.011, 14°	C. R. 102, 689. Gerichten. Ber. 10, 1249.
Diethylmonochlorbenzene	$C_6 \ \Pi_3$. Cl. $(C_2 \ \Pi_5)_2$ —	1.0%6 =	Istrati. Ber. 18, ref. 704.
Triethylmonochlorben- zene.	$C_6 \ \Pi_2$. Cl. $(C_2 \ \Pi_5)_3 -$	1.028	
Tetrethylmonochlorben-	C_6 II. Cl. $(C_2$ II ₅),	1.022	
Pentethylmonochlorben- zene. \$\beta\$ Chlorstyrolene	$C_6 Cl (C_2 H_1)_5$	2.112, 22°.3	
β Benzene hexchloride	C ₆ H ₆ Cl ₆	1.89, 19°	166. Meunier. Ann. (6),
By action of ethylene on monochlorbenzene.	C ₉ H ₉ C)	1.179	10, 223. Istrati. Ber. 18, ref. 704.
a Chlornaphthalene	C ₁₀ H ₇ Cl	1.2052, 6°.2	Laurent. Quoted by Carius.
4 6		1.2025, 60.4	Carius. A. C. P. 114, 146.
11		1.2025, 15	Koninek and Mar- quart. C. N. 25, 57.
3 Chlornaphthalene Naphthalene dichlorid		1.2656, 16 ² 1.287, 12 .5	Rimarenko. Ber. 9, 664. Gladstone. Bei. 9,
Trichloracenaphtene		1.2645, 18° j 1.43, 17°	249. Kebler and Norton.
Camphryl chloride		1.028, 11°	A. C. J. 10, 218, Schwanert. J. 15,
Geraniol hydrochlorate	C ₁₀ H ₁₇ Cl	1.020, 20°	465. Jacobsen, A. C. P. 157, 236,
Countehin hydrochlorate From terp me of Pinus pu- milio.		1.433 .082, 17°	Watts' Dictionary. Buchner. J. 13, 479.
Terebenthene hydrochlo- rate.	11	1.016 0° {	Two isomers. Bar- bier. C. R. 96, 1066.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Isotercbenthene hydro- chlorate. From terpene of Muscat nut oil.	10 11		Riban. C. R. 79, 225. Cloëz. J. 17, 586.

LII. COMPOUNDS CONTAINING C, H, O, AND CL.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dichlorethyl alcohol	C ₂ H ₄ Cl ₂ O	1.145, 15°	Delacre. Bull. Acad.
Trichlorethyl alcohol	C ₂ H ₃ Cl ₃ O	1.55, 23°.3	Belg. (3), 13, 248. Garzarolli-Thurn- lackh. Ber. 14, 2826.
Dichlorhexyl alcohol	$C_6 H_{12} Cl_2 O_{}$	1.4, 12°	Destrem. Ann. (5), 27, 50.
Dichlormethyl oxide	$C_2 H_4 Cl_2 O$	1.315, 20°	
Tetrachlormethyl oxide	$C_2 H_2 Cl_4 O$	1.606, 20°	Regnault. Ann. (2), 71, 401.
Tetrachlormethylethylox-ide.	$C_3 H_4 Cl_4 O$	1.84, 0°	Magnanini. G. C. I. 16, 330.
Chlorethyl oxide	C ₄ H ₉ Cl O	1.0572, 0°	Henry. C. R. 100, 1007.
Dichlorethyl oxide Tetrachlorethyl oxide	$ \begin{smallmatrix} C_4 & H_8 & Cl_2 & O & \\ C_4 & II_6 & Cl_4 & O & \end{smallmatrix} $	1.174, 23° 1.5008	Lieben. J. 12, 446. Malaguti. Ann. (2), 70, 341.
	::	$1.4379,0^{\circ} - \\ 1.4182,15^{\circ}.2 \\ 1.3055,99^{\circ}.9 \\ 1.4211,15^{\circ} - \\ $	Paterno and Pisati. Ber. 5, 1054. Roscoe and Schor-
Pentachlorethyl oxide		,	lemmer's Treatise. Jacobsen. Z. C. 14,
Chloracetic acid	C_2 II_3 Cl O_2	1.577, 8° 1.366, 73°	444. Henry. Ber. 7, 763. R. Hofmann. J. 10, 348.
Diehloracetic acid	$C_2 H_2 Cl_2 O_2$	1.5216, 15°	Maumené. J. 17, 315.
Trichloracetic acid	C_2 II Cl_3 O_2	1.617, 46°	Dumas. A. C. P. 32, 109.
Chlorpropionie acid	C ₃ II ₅ Cl O ₂	1.28, 0°	Clermont. Z.C.14, 349.
Chlorbutyric acid	C_4 H_7 Cl O_2	1.072, 0°	Balbiano. Ber. 10,
u 2	(:	1.2498, 10°	Henry. C. R. 101, 1158.
· · · · · ?	"	1.065, 15°	Haubst. J. C. S.
Chlorisobutyric acid	"	1.062, 0°	(2), 1, 693. Balbiano. Ber. 11,
Methyl chlorocarbonate	C_2 II_3 Cl O_2	1.236, 15°	1693. Röse. Ber. 13, 2417.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethyl chlorocarbonate	C ₃ H ₅ Cl O ₂	1.133, 15°	Dumas Ann. (2), 54, 230.
Propyl chlorocarbonate Isopropyl chlorocarbonate	C ₄ H ₇ Cl O ₂	1.094, 15° 1.144, 4°	Rose. Ber. 13, 2417. Spica. J. C. S. 52, 1028.
l-obutyl ehlorocarbonate_ Isoamyl chlorocarbonate_ Dichlorethyl formate	C ₅ H ₉ Cl O ₂	1.053, 15° 1.032, 15° 1.261, 16°	Rose. Ber. 13, 2417. Maluguti. Ann. (2),
Pentachloramyl formate			70, 370. Springer. A. C. J. 3,
Methyl monochloracetate	C ₃ H ₅ Cl O ₂	1.22, 15°	293. Henry. B. S. C. 20,
	64	1.2352, 19°.2	Henry. C. R. 101, 250.
Methyl dichloracetate Dichlormethyl acetate	C ₃ II ₄ Cl ₂ O ₂	1.3808, 10°.2 1.25	Malaguti. Ann. (2),
Methyl trichloracetate	C ₃ H ₃ Cl ₃ O ₂	1.1969, 14° 1.4902, 20°.2 }	70, 381. Bauer. A.C.P. 229, 168.
		1.4892, 19°.2	Henry. C. R. 101, 250.
Ethyl monochloracetate			Bruhl. A. C. P. 203, 1. Schiff. G. C. I. 13,
44 44		1.1722, 8°	177. Henry. C. R. 104,
Ethyl dichloracetate			1280. Malaguti. Ann. (2),
			70, 368. Forscher and Geu-
		1.2821, 20°	ther. J. 17, 316. Bruhl. A. C. P. 203, 1.
11 11			Schiff, G. C. I. 13, 177.
Dichlorethyl acetate		1	120S.
Ethyl trichloracetate			Delucre, Bull, Acad. Belg. (3), 13, 255. Bruhl. A. C. P.
ranyr themoraedate			203. 1.
Monochlorethyl dichlor-		- 1.1650) 167°.1 - 1.1651 (1.200, 15°	Delacre. Ber. 21, ref.
ncetate. Dichlorethyl monochlor-		1.216, 15°	183.
Trichlorethyl acctate		1.367	Léblanc, Ann. (3), 10, 207.
	- "	1.35, 20°	Malaguti. Ann. (3), 16, 62.
11 11	- "	1.3907, 23°.3_	lackh. Ber. 14,
		_ 1.187, 15°	2826. Delacre. Ber. 21, ref. 183.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Tetrachlorethyl acetate	C ₄ H ₄ Cl ₄ O ₂	1.485, 25°	Léblanc. Ann. (3)
Monochlorethyl trichloracetate.	•	1.251, 15°	10, 212. Delacre. Ber. 21, ref. 183.
Dichlorethyl dichlorace-		1.25, 15°	109.
Trichlorethyl monochlor- acetate.		1.25	
Trichlorethyl dichlorace-	$C_4 H_3 Cl_5 O_2$	1.267	
Hexchlorethyl acetate	$C_4 H_2 Cl_6 O_2$	1.698, 23°.5	Léblanc. Ann. (3), 10, 215.
Heptachlorethyl acetate	C ₄ H Cl ₇ O ₂	1.692, 24°.5	Léblanc. Ann. (3), 10, 208.
Propyl monochloracetate_	$\mathrm{C_5~H_9~Cl~O_2}$	1.1096, 8°	Henry. C. R. 100,
Butyl monochloracetate		1.013, 0° }	Gehring. C. R. 102, 1400.
Trichlorbutyl acetate	$C_6 H_9 Cl_3 O_2$	1.3440, 8°.5	Garzarolli - Thurn- lackh. Ber. 15, 2619.
Amyl monochloracetate	$\mathrm{C_7~H_{13}~Cl~O_{2}}$	1.063, 0°	Hougounenq. B.S. C. 45, 328.
Methyl a chlorpropionate	$\mathrm{C_4~H_7~Cl~O_2}$	1.075, 4°	Kahlbaum. Ber. 12, 344.
Ethyl a chloropropionate.	$C_5 H_9 Cl O_2$	1.0869, 20°	Brühl. A. C. P. 203, 1.
Ethyl β chloropropionate_		1.1160, 8°	Henry. C. R. 100,
Ethyl dichlorpropionate	$C_5 H_8 Cl_2 O_2$	1.2461, 20°	Brühl. A. C. P. 203, 1.
	11	1.2493, 0°	Klimenko. Z. C. 13, 654.
Dichlorethyl propionate		1.282, 8°	Henry. C. R. 100,
Methyl chlorbutyrate		1.1894, 10°	Henry. C. R. 101, 1158.
Methyl a β dichlorbuty- rate. "		$1.2809, 0^{\circ}$ $1.2614, 18^{\circ}.3$	Zeisel. Ber. 19, ref.
Ethyl ehlorbutyrate	C ₆ H ₁₁ Cl O ₂	1.2355, 41°.1) 1.0517, 20°	749. Brühl. A. C. P.
tt tt		1.1221, 10°	203, 1. Henry. C. R. 101,
	66	1.063, 17°.5	Markownikoff. A.C.
Methyl triehlorpropylcar- bylacetate.	$C_7 H_{11} Cl_3 O_2$	1.3048, 11°.5	P. 153, 243. Garzarolli-Thurn- lackh. A. C. P.
Chloroenanthic ether	C ₉ H ₁₇ Cl O ₂ . ?	1.2912, 16°.5	223, 149. Malaguti. Ann. (2),
Derivative of chlorinated methyl formate.	C ₄ H ₅ Cl ₃ O ₄	1.4786, 14°	70, 363. Guthzeit. Quoted by
"" "" "" "" "" "" "" "" "" "" "" "" ""		1.4741, 27°	Hentschel. J. P. C.
Derivative of chlorinated ether.	$C_8 H_9 Cl_7 O_8$ $C_5 H_{11} Cl O$	1.5191 .9482, 0°	(2), 36, 99. Lieben and Bauer. J. 15, 494.

		1	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Derivative of chlorinated	C ₆ H ₁₃ Cl O	.9735, 00	Lieben and Batter.
ether. Chloracetic anhydride	$C_4 II_5 \bar{C} I \bar{O}_3$	1.201, 21°	J. 15, 393. Authoine. J. Ph.
Trichloracetic anhydride	$\begin{array}{c} C_4 & \Pi_3 & C_{13} & O_3 - \dots \\ C_4 & \Pi_2 & C_{14} & O_3 - \dots \end{array}$	1.530, 20°	Ch. (5), 8, 417.
Tetrachloracetic anhy-dride.	$C_4 H_2 Cl_4 O_3$	1.571, 24°	. 6
Acetyl chloride	C ₂ H ₃ (). Cl	1.125, 11° 1.1305, 0°)	Gerhardt. J. 5, 414. Kopp. A. C. P. 95,
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11	1.1072, 16° J 1.13773, 0°	307. Thorpe. J. C. S.
44	11	1.05698, 50°.73 1.1051. 20°	(37, 371. Brühl. A. C. P.
Chloracetyl chloride Propionyl chloride	C, H, (10. Cl	1.495, 0°	203, 1. Wurtz. J. 10, 346.
			Brühl. A. C. P. 203, 1.
a Chloropropionyl chloride			Henry. C. R. 100,
β Chloropropionyl chloride Butyryl chloride	C ₄ H ₇ O. Cl	1.3307, 13° 1.0277, 20°	Bruhl. A. C. P.
Isobutyryl chloride Chlorobutyryl chloride			203, 1.
			Markownikoff. A. C. P. 153, 241.
"		1.2679, 10°	Henry. C. R. 101, 1158.
Valeryl chloride	('5 H ₉ O. Cl	1.005, 6° .0887, 20°	Bechamp. J. 9, 429. Bruhl. A. C. P. 203, 1.
Chloracetone	С ₃ Ц ₅ С1 О	1.19	Linnemanu. Riche. J. 12, 339.
**	**	1.162, 16°	Linnemann. J. 18, 312.
		1.18, 16°	Linnemann. J. 19, 308.
		1.17 =	Henry. B. S. C. 19, 219.
.,	**	1.158, 13°	Cloez. Ann. (6), 9, 145.
Dichloracetone	C ₃ H ₄ Cl ₂ O	1.236, 21 1.226, 0°	Kane. Fittig. J. 12, 345.
	**	1.326, 0° _	Theegarten, C. C. 4, 580.
		1.234, 15°	Cloez. Ann. (6), 9, 145.
Tetrachloracetore Pentachloracetore	C, H, Cl, O	1.182, 17° 1.6)	
		1.7	(Two isomers.
	16	1.576, 14° }	Cloez. B. S. C. 3., 638 and 640.
Chlord bhyde Paral chloraldchydo	(' H ₃ ('l O	1.23 1.69, s.=	Riche. J. 12, 435. Jacobson. Ber. 8, 88.
Ch ril			Liebig. A. C. P. 1, 195.
	(1	1.5153, 0° _=) 1.4903, 22°.2)	Kopp. A. C. P. 95,

NAME.	FORMULA.	SP. GRAVITY.	Аптновіту.
Chloral	C, H Cl, O	1.5448, 0°)	Thorpe. J. C. S. 37,
44	- "	1.3821, 97°.2	371.
(1.5121, 20°	Brühl. A. C. P.
εί	((1.54179) 40	203, 1.
(($1.54179 \ 1.54170 \ 4^{\circ}$	Passavant. C. N.
((1.3692, 97°.73 1.5292, 9°)) 42, 288.
()		1.5197, 15°	Perkin. J. C. S.
"		1.5060, 25°	51, 808.
Parachloralide	$(C_2 \coprod Cl_3 O)_n$	1.5765, 14°	Clöez. J. 12, 434.
" " " " " " " " " " " " " " " " " " "	$C_2 H_3 Cl_3 O_2$	1.901 1.818, 4°, pulv.	Rüdorff. Ber. 12, 252.) Schröder. Ber. 12,
(: ((1.848, 4°, cryst.	561.
£1		1.6415, 49°.9	Dalia I G G F1
44 44		1.6274, 58°.4 } 1.6136, 66°.9 }	Perkin. J. C. S. 51, 808.
66 66	66	1.5704)	(Jungfleisch, Le-
		1.5719 66°, 1.	baigne, and Rou-
er er		1.5771)	cher. J. Ph. C. (4), 11, 208.
Chloral ethylate	$C_4 H_7 Cl_3 O_2$	1.143, 40°, l	Martins and Men-
			delssohn-Bar-
			tholdy. Z. C. 13, 650.
			Jungfleisch, Le-
££		$\left[\begin{array}{c} 1.3286\\ 1.3439 \end{array}\right]$ 66°,1.	baigne, and Rou-
		1.0409 }	cher. J. Ph. C. (4), 11, 208.
Chloral amylate	C ₇ II ₁₁ Cl ₃ O ₂	1.234, 25°	Martins and Men-
			delssohn-Bar-
			tholdy. Z. C. 13, 650.
Chloraeetyl chloral	C_4 H_4 Cl_4 O_2	1.4761, 17°	Meyer and Dulk.
Discotulable well budgets	C II OLO	1 400 110	A. C. P. 171, 65.
Diacetylchloral hydrate Acetylchloral ethylate	$C_6 \stackrel{\text{II}_7}{\text{II}_9} \stackrel{\text{Cl}_3}{\text{Cl}_3} \stackrel{\text{O}_4}{\text{O}_3}$	1.422, 11° 1.327, 11°	
Derivative of chloral	C _e H _e Cl _e O ₂	1.78, 17°	Henry. Ber. 7, 764.
D-4-1-1-11	$\begin{bmatrix} C_7^{\dagger} & H_{10}^{\dagger} & C\hat{l}_4 & \hat{U}_3 & \dots \\ C_4^{\dagger} & H_5^{\dagger} & C\hat{l}_3 & O & \dots \end{bmatrix}$	1.42, 110	44 44
Butyl ehloral	C ₄ II ₅ OI ₃ O	1.3956, 20°	Brühl. A. C. P. 203, 1.
££ ££		1.4111, 7°	Gladstone. Bei. 9,
Partyl abland bydasta	CUCLO	1.602.)	249.
Butyl chloral hydrate	C4 117 Cl3 O2	$\left[\begin{array}{c} 1.693 \\ 1.695 \end{array} \right] \ 4^{\circ}_{} \left\{ \begin{array}{c} \end{array} \right.$	Schröder. Ber. 12, 561.
Derivative of chloralide	C ₅ H Cl ₇ O ₃	1.7426, 20°	Anschutz and Has-
			lam. A. C. P. 239,
Chlorovaleral	C ₅ H ₉ Cl O	1.108, 14°	300. A. Schröder. Z. C.
			14, 510.
Derivative of valeral	C ₁₀ H ₁₀ Cl ₄ O	1.272, 14°	
Dichlorvinylmethyloxide	$\begin{bmatrix} C_{10} & H_{10} & Cl_4 & O & \\ C_{10} & H_{12} & Cl_6 & O & \\ C_3 & H_4 & Cl_2 & O & \\ \end{bmatrix}$	1.397, 14° 1.2934, 0°)	Denaro. G. C. I.
" " " —			14, 117.
Monochlorvinyl ethyl ox-	C ₄ H ₇ Cl O	1.0361, 19°	Godefroy. C. R. 102,
ide. Trichlorvinyl ethyl oxide	C. H. Cl. O	1.3725.00	869. Paterno and Pisati.
Trichlorvinyl ethyl oxide	4 - 5 - 3	1.2354, 99°.9	J. C. S. (2), 11, 158.

Name.	FORMULA.	Sp. Gravity.	Аптиовиту.
Trichlorvinyl ethyl oxide	C ₄ 1I ₅ Cl ₃ O	1.3322, 19°	Godefroy, C. R. 102, 869.
Methylene aceto-chloride.	C_3 H_5 Cl O_2	1.1953, 14°.2	Henry. B. S. C. 20,
Ethylene aceto-chloride	C ₄ H ₇ Cl O ₂	1.1783, 0° 1.114, 15°	Simpson. J. 12, 487. Franchimont. J. C. S. 44, 452.
Ethylene butyro-chloride Ethylidene oxychloride	$C_4 H_{11} Cl O_2$	1.0854, 0° 1.1376, 12° 1.136, 14°.5	Simpson. J. 12, 489. Lieben. J. 11, 291. Laatsch. A. C. P. 218, 13.
Ethylidene accto-chloride.	C_4 H_7 Ch \bar{O}_2	1.114, 15°	Rubeneamp. A. C.
Ethylidene propio-chlo-ride.	C ₅ H ₉ Cl O ₂	1.071, 15°	P. 225, 267.
Ethylidene butyro-chlo-ride,	C ₆ H ₁₁ Cl O ₂	1.038, 15°	64 66
Ethylidene valero-chloride Aldehydemethyl chloride Trichlordimethyl acetal	C ₃ II ₇ Cl O	.997, 15° .996, 17° 1.28	Magnanini. G. C. I.
Trichlormethylethyl nee-	C ₅ H ₉ Cl ₃ O ₂	1.32	16, 330.
Chloracetal	C ₆ II ₁₃ Cl O ₂	$ \begin{bmatrix} 1.0418, 0^{\circ} - 1.0416, 26^{\circ}.3 \\ 1.0416, 99^{\circ}.9 \end{bmatrix} $	Lieben. J. 10, 437. Paterno and Mazzara. J. C. S. (2), 11, 1217. Klien. J. C. S. 31, 291.
Dichloracetal Trichloracetal	$\begin{array}{c} C_6 \overset{\text{H}_{12}}{\text{H}_{12}} \overset{\text{Cl}_2}{\text{Cl}_3} \overset{\text{Q}_2}{\text{O}_2} \\ \vdots \\ $	1.1617, 99°.96.	Lieben. J. 10, 436. Paterno and Pisati. J. C. S. (2), 11, 258.
Trimethylene chlorhydrin			46.
Propylene chlorhydrin		1.1302, 0°	169. Oeser. J. 13, 448. Oppenheim. J. 21,
Chlorbutylenechlorhydria	C ₄ II ₈ Cl ₂ O	1.0385, 0°	340. Oeconomides. Ber. 14, 1568.
Hexylene chlorhydrin	C ₆ H ₁₃ Cl O	- 1.0143 1.018 } 11°-	Henry. C. R. 97, 260.
Hexylene aceto-chloride Heptylene chlorhydrin	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1.04, 6° - 1.014, 0°)	Clermont. Z.C.13,
Octylene chlorhydrin	C ₈ H ₁₇ Cl O	- 1.003, 0° } 987, 31° }	61 61
Octylene aceto-chloride	- C ₁₀ H ₁₉ Cl O ₂	$\left\{ \begin{array}{c} 1.026,0^{\circ} \\ 1.011,18^{\circ} \end{array} \right\} -$	
Dichlorethoxyethylene	C ₄ II ₆ Cl ₂ O	1.08, 10°	Geuther and Brock- hoff. J. P. C. (2), 7, 114.
Pentachlorpropylene ox ide.			Cloez. Ann. (6), 9, 145.
Ethyl-glycoltic chloride. Chlorolactic ether	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.145, 1° 1.097, 0°	Henry. J. 22, 531. Wurtz. J. 11, 254.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl chloromalonate	C ₇ H ₁₁ Cl O ₄₋	1.185, 20°	Conrad and Bischoff. A. C. P. 209,
Ethyl ethylchloromalo-	C ₉ H ₁₅ Cl O ₄	1.110, 17°	221. Guthzeit. A. C. P. 209, 233.
Ethyl chlorisobutylmalo-	C ₁₁ H ₁₉ Cl O ₄	1.094, 15°	Conrad and Bischoff. Ber 13, 600.
	"	1.091, 15°	Guthzeit. A. C. P. 209, 237.
Succinyl chloride	$C_4 H_4 Cl_2 O_2$	1.39	Gerhardt and Chi- ozza. C. R. 36, 1052.
Chloromaleic ether	$C_8 H_{11} Cl O_4$	1.15, 11°	Henry. A. C. P. 156, 179.
Ethyl chloracetacetate	C ₆ H ₉ Cl O ₃	1.178, 20° 1.19, 14°	Frank. Ber. 10, 928. Allihn. Ber. 11, 569.
Ethyl dichloracetacetate	$C_6 H_9 Cl O_3 - C_6 H_8 Cl_2 O_5 - C_6 H_8 Cl_2 $	1.293, 16°	Conrad. A. C. P. 186, 234.
Ethyl chloracetopropio- nate.	C ₇ H ₁₁ Cl O ₃	1.196, 21°	Conrad and Guth- zeit. Ber. 17, 2287.
Ethyl monochlormethylacetacetate.	C ₇ H ₁₁ Cl O ₃	1.093, 15°	Isbert. A. C. P. 234, 160.
Ethyl dichlormethylacetate.	C ₇ H ₁₀ Cl ₂ O ₃	1.2250, 17°	Isbert. Jena Inaug. Diss. 1866.
Ethyl monochlorethylacetacetate. Ethyl dichlorethylacetace-	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1.0523, 15° 1.183, 15°	Isbert. A. C. P. 234,
tate. Ethyldiethylchloracetace-	$C_{8} H_{12} C_{12} C_{3}$ $C_{10} H_{17} Cl O_{3}$	1.063, 15°	James. J. C. S. 49,
tate. Ethyl diethyldichloracet-	$C_{10} \ H_{16} \ Cl_2 \ O_3$	1.155, 15°	50.
acetate. Acetotrichlorethylidene	C ₈ H ₉ Cl ₃ O ₃	1.342, 15°	Matthews. J. C. S.
acetic ether. Monochlorhydrin	C ₃ H ₇ Cl O ₂	1.31	43, 203. Berthelot. J. 6, 456.
		1.4, 13°	Henry. J. C. S. (2), 13, 346.
Dichlorhydrin	$C_3 H_{\stackrel{6}{6}} Cl_2 O$	1.328, 0° 1.37 1.3699, 9°	Hanrict, Ber. 10,727. Berthelot. J. 7, 449. Henry. A. C. P. 155,
		1.355, 17°.5	324. Gegerfeldt. Z. C. 13,
16		1.383, 0° }	672. Markownikoff, J. C.
11	11	1.367, 19° { 1.3799, 0° }	S. (2), 12, 241. Tollens. A.C.P. 156,
Epichlorhydrin	C ₃ H ₅ Cl O	1.3681, 11°.5 ∫ 1.204, 0°	Darmstaedter. J. 21,
"	"	1.194, 11° 1.20313, 0°	454. Reboul. J. 13, 456. Thorpe. J. C. S. 37,
	"	$1.20515,0$ === $1.05667,116^{\circ}.55$ 1.0588 1.0598 $115^{\circ}.8$	371. Schiff. Ber. 14,
	"	1.0598 } 115°.8 1.194, 11°	2768. Clöez. Ann. (6), 9,
Ethyl monochlorhydrin	C ₅ H ₁₁ Cl O ₂	1.117, 11°	145. Henry. J. C. S. (2),
			13, 346.

Name.	FORMULA.	SP. GRAVITY.	Attilonary
Diethyl monochlorhydrin	C ₇ H ₁₅ Cl O ₂	1.03, 10°, 5 1.005, 17°	Alsberg, J. 17, 496. Reboul and Learner-
Amyl monochlorhydrin_ Acct - hlorhydrin-	$ \begin{smallmatrix} C_8 & \Pi_{17} & C1 & O_2 \\ C_5 & \Pi_{9} & C1 & O_3 \end{smallmatrix} $	1.00, 20° 1.27, 9	co J. 14, 674 Rebonl. J. 13, 464. Henry. J. C. S. 21, 13, 346.
Acto-dichlorhydrin	C ₅ H ₈ Cl ₂ O ₂	1.271.8	Truchot. J. 18, 50. Henry. Ber. 4, 701.
Directo-chlorhydrin Butyro-dichlorhydrin Val ro-aichlorhydrin But nyl monochlorhydrin	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.213, 4° 1.194, 11 1.119, 11 1.2321, 17°	Zives. Ber. 18, ref.
Butenyl dichlorhydrin Butenyl epichlorhydrin Dtallyl dichlorhydrin a Chlorallyl alcohol	C H ₂ Cl ₂ O	1.271, 16° 1.098, 15° 1.1, 7°	433. 6 6 44 Henry. Ber. 7, 416.
	C ₃ H ₅ Cl O		Henry, Ber. 15, 3085.
3 Chlorallyl alcohol		1.162, 15°	Roml urgh. Ber. 15 245. Garzarolli - Thuan
Chlorerotyl alcohol			lackh, A.C.P. 228, 149. Garzarolli - Thurn -
•			lackh. Ber 15, 2610.
Methyl chlorerotonate	" 3	1.03500, 45	Frohlich, J. 21, 517. Kahlbaum, Ber. 12. 314.
Ethyl chlorerotonate	C ₆ H ₂ Cl O ₂	1.113, 15° 1.129, 15°	Frohlich, J. 22, 547 Claus, A. C. P. 191, 64,
Chlorethylacetylene tetra- carbonic ether.		1.076, 20°	Bischoff and Rubi Ber. 17, 278
Citraconyl chloride	(C ₃ H ₁ Cl ₂ O ₂	1,40, 15°	za. J. C. 394 O. Strecker, Ber. 15,
Propylphycite trichlor-	C, II, Cl, O	1.1324, 11°	1640. Wolff, Z. C. 12. 465.
hydrin. Dichleroleic acid Derivative of isobatyl al-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,082,72,9 967,15°	Lefort, J. 6, 451 Boquillon, J. C. 8
cohol. Derivative of isohexic acid		1.171.10	48. Den arçay. Ber 12. 380
Chlorphenol	('6]] ('] () === =	1.3(%), 20%, 5	Petersen and B & Predari A C P
Chlorin thylphen d	С, Н, СІ О	1.182, 9=	157, 125. Henry, Z. C. 12, 247.
Chlorograkresol			Schall and Dralle. Ber. 17, 2529
Chlormethylparakresol. Chlorethylphenol			Henry Z. C. 13, 217.
Methylchlorphenet d. $a = \beta$.	C ₉ II ₁₁ Cl ()	1.127, 19°.5 1.131, 18°)	Wroblevsky. Z. C. 13, 164.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY,
Chloranethol	C ₁₀ H ₁₁ Cl O	1.1154, 0°	Ladenburg. Z. C. 12, 575.
	"	1.191, 20°	Landolph. C. R. 82, 227.
Metachlorsalicylol Metachlorbenzoic acid	C ₇ H ₁₅ Cl O ₂	1.29, 8°	Henry. J. 22, 509. St. Evre. J. 1, 529.
Ethyl metachlorbenzoate_ Ethyl orthodichlorbenzo- ate.	$C_9^{11_{10}} H_8^{10} Cl_2 O_2^{2}$.981, 10° 1.3278, 0°	Beilstein. Ber. 8,
Chlorisopropyl benzoate	C ₁₀ H ₁₁ Cl O ₂	1.172, 19° } 1.149, 45° }	Morley and Green. J. C. S. 47, 135.
Derivative of benzoice ther		1.346, 10°.8	Malaguti. Ann. (2), 70, 375.
Benzyl monochloracetate_	C ₉ H ₉ Cl O ₂	1.2223, 4°	Seubert. Ber. 21, 281.
Benzyl dichloracetate Benzyl trichloracetate	$C_9 H_3 Cl_2 O_2$ $C_9 H_7 Cl_3 O_2$	1.3130, 4° 1.3887, 4°	
Benzoyl chloride	C ₇ H ₅ Cl ³ O 2	1.196	Wöhler and Liebig. A. C. P. 3, 262.
tt tt	(;	$ \begin{bmatrix} 1.250, 15^{\circ} & \dots \\ 1.2324, 0^{\circ} & \dots \\ 1.2142, 19^{\circ} \end{bmatrix} $	Cahours. J. 1, 532. Kopp. A. C. P. 95,
tt tt	"	.9857, 198°	307. Ramsay. J. C. S. 35, 463.
tt tt		1.2122, 20°	Brühl. A. C. P. 235, 1.
Chlorodraeylie chloride		1.377	Emmerling. Ber. 8, 881.
Toluyl chloride Phenylacetic chloride	C ₈ H ₇ Cl O	1.175 1.16817, 20°	Cahours. J. 11, 265. Anschützand Berns. Ber. 20, 1390.
Cumyl chlorideAnisyl chloride	$C_{10} H_{11} Cl O \dots C_8 H_7 Cl O_2 \dots$	1.07, 15° 1.261, 15°	Cahours. J. 1, 534. Cahours. J. 1, 538.
Cinnamyl chloride Phthalyl chloride	C_9 H_7 Cl O_2 C_8 H_4 Cl_2 O_2	1.261, 15° 1.207, 16° 1.0489, 20°	Cahours. J. 1, 535. Brühl. A. C. P. 235, 1.
Dichloracetophenone	$C_8 ext{ H}_6 ext{ Cl}_2 ext{ O}$	1.338, 15°	Gautier. Ber. 20, ref. 12.
Trichloracetophenoue Chlorobenzyl ethylate	$C_8 H_5 Cl_3 O - C_9 H_{11} Cl O - C_9 Cl $	1.427, 15° 1.121, 14°	Naquet. J. 15, 420.
Ethyl benzylehlormalo- nate.	$C_{14} II_{17} Cl O_4$	1.150, 19°	Conrad. Ber. 13, 2159.
Benzodichlorhydrin Trichlorphenomalicacid	$C_{10} \stackrel{\text{H}}{\text{H}}_{10} \stackrel{\text{Cl}}{\text{Cl}}_{2} \stackrel{\text{O}}{\text{O}}_{2}$	1.441, 8° 1.5	Truchot. J. 18, 503. Carius. J. 1866, 561.
Tetrachlorethyl camphorate. Santonyl chloride	C_{14}^{\dagger} H_{20} Cl_4 O_4	1.386, 14° 1.1644	Malaguti. Ann. (2), 70, 360. Carnelutti and Nasi-
	C (C II) O II O		ni Ber. 13, 2210.
Derivative of bergamot oil	H_{16} H_{16} H_{16} H_{2} H	.896	Ohme. A. C. P 31, 318.

LHI. COMPOUNDS CONTAINING C, CL, N, OR C, H, CL, N.

Name	FORMULA.	SP. GRAVITY.	AUTHORITY.
Chloractonitrile	С ₂ Н ₂ С1 N	1.204, 11°.2	Bisschopinek. B. S. C. 20, 450.
Diehl racetonitrile	C ₂ H Cl ₂ N	1.193, 20° 1.374, 11°.4	Engler. Ber. 6, 1003. Bisschopinek. B. S. C. 20, 450.
Trichloracetonitrile	C ₂ Cl ₃ N	1.444 1.439, 12°.2	Dumas. J. 1, 593. Bisschopinek. B. S. C. 20, 450.
Dichlorpropionitrile Chlorobutyronitrile	$\begin{array}{cccc} C_3 & H_3 & Cl_2 & N & \dots \\ C_4 & H_6 & Cl & N & \dots \end{array}$	1.431, 15° 1.1620, 10°	Otto. J. 13, 400. Henry. C. R. 101, 1158.
Dichlorethylamine Chloroxalmethylin	C ₂ H ₅ Cl ₂ N	1.2397, 5° }	Tscherniak. Ber. 9, 147.
			Wallach and Schulze. Ber. 14, 424.
Chloroxalethylin	C ₆ H ₉ Cl N ₂	1.1420, 15° 1.142	Wallach, Ber. 7, 328. Wallach and Strick- er. Ber. 13, 512.
Chloroxalpropylin	C ₈ H ₁₃ Cl N ₂	1.0900	Wallach and Schulze. Ber. 14,
Orthochloraniline			1 LOW. Der. 1, 351.
Metachloraniline		1.2432, 0°	Beilstein and Kurba- tow. A.C. P. 176, 45.
Chlorotoluidine, B. 2220			Wroblevsky, Z. C. 12, 322-544.
B. 235°		1.1855, 20°	Wroblevsky. Z. C. 12, 684.
B. 237°—242° B. 236°	44	1.203, 19° 1.175, 18°	Henry and Radziszewski. Z. C. 12, 542.
Chlorpicoline	C ₆ H ₆ Cl N	1.146, 20°	
Orthochlorehinoline		1.2751, 16°.6 J	Bodewig, Tübingen In, Diss. 1885.
Parachlorehinoline Chloride from methylura-	4.4		Behrend. A. C. P.
cil	111 7-613	1,000,00,000.00	229, 26.

LIV. COMPOUNDS CONTAINING C, CL, N, O, OR C, H, CL, N, O.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Chloronitromethane	C H ₂ Cl N O ₂	1.466, 15°	Tscherniak. Ber. 8, 609.
Dichlordinitromethane	$C Cl_2 N_2 O_4$	1.685, 15°	Marignae. Watts'
Chlorpierin	C Cl ₃ N O ₂	1.6657 1.69225, 0°	Stenhouse. J. 1, 540.
	(i	1.48444, 1110.9	Thorpe. J. C. S. 37, 371.
Dichloramyl nitrite Trichloracetyl cyanide	$ \begin{array}{c} C_5 H_9 Cl_2 N O_2 \\ C_3 Cl_3 N O \end{array} $	1.233, 12° 1.559, 15°	Guthrie. J. 11, 404. Hofferichter. J. P.
Trichloracetic dimethylamide.	C ₄ H ₆ Cl ₃ N O	1.441, 15°	C. (2), 20, 195. Franchimont and Klobbie. Ber. 20, ref. 690.
Ethylene chloronitrin	C ₂ H ₄ Cl N O ₃	1.378, 21°	Henry. Ann. (4), 27, 248.
Propylene chloronitrin	C_3 II_6 Cl N O_3 C_3 II_3 Cl_2 N O	1.28, 12°	£4 ££
Dichlormethoxylacetoni- tril.		1.3885	Bauer. A. C. P. 229, 163.
Dichlorethoxylacetonitril_Dichlorpropoxylacetoni-	$ \begin{array}{c} \mathrm{C_4\ H_5\ Cl_2\ N\ O}_{5\ H_7\ Cl_2\ N\ O} \end{array} $	1.3394, 15°.5 1.2382, 15°.5	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £
tril. Dichlorisobutoxylacetoni-	$\mathrm{C_6~H_9~Cl_2~N~O_{}}$	1.1226, 15°.5	tt tt
tril. Monochlordinitrin	$\mathrm{C_3~H_5~Cl~N_2~O_6}$	1.5112, 9°	Henry. A. C. P. 155, 168.
Dichlormononitrin	$ \begin{array}{c} C_3 \ H_5 \ Cl_2 \ N \ O_3 \ \\ C_4 \ H_3 \ Cl_3 \ N_2 \ O_4 \ \end{array} $	1.465, 10°	11 11
Chlorazol		1.555	Mühlhaüser. J. 7, 671.
Diehlornitrophenol	$C_6 \coprod_3 Cl_2 \coprod O_3$	1.59	Fischer. A. C. P., 7th Supp., 185.
Chlornitrobenzene	C ₆ H ₄ Cl N O ₂	1.377, 0° 1.358, 0°	Sokoloff, J. 19, 552.
ii	"	1.368, 22°	Jungfleisch. J. 21, 345.
" Meta		1.534	Schröder. Ber. 13, 1070.
u Para		1.380, 22°	Jungfleisch. J. 21, 343.
Chlordinitrobenzene	$C_6 H_3 Cl_2 N_2 O_4$	1.697, 22°	Jungfleisch. J. 21, 345.
		1.6867, 16°.5	Jungtleisch. J. 21, 346.
	"	1.72, 18°	Engelhardt and Latschinoff, Z C. 13, 232.
Dichlornitrobenzene	$C_6 \coprod_3 Cl_2 N O_2$	1.669, 22°	Jungfleisch. J. 21, 348.
Trichlornitrobenzene	$\mathbb{C}_6\ \mathrm{II}_2\ \mathrm{Cl}_3\ \mathrm{N}\ \mathrm{O}_2$	1.790, 22°	Jungfleisch. J. 21, 351.
Dichlordinitrobenzene	$C_6 H_2 Cl_2 N_2 \Theta_4$	1.7103, 16°	Jungfleisch. J. 21, 348.
Trichlordinitrobenzene	C ₆ H Cl ₃ N ₂ O ₄	1.850, 25°	Jungfleisch. J. 21, 352.

N vme.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetre chlornitrobenzene	С. И СТ Х О_=	1.744, 25°	Jungfleisch. J. 21,
Pentachlornitrobenzene	Ca Cl, N O	1.718, 251	
Chlornitrotoluene =	$C_7 \coprod_6 C1 \times O_2 \dots$		12, 683.
		1.3259, 18° 1.300, 20	Wroblevsky, Ber.
Parachlormetanitrotolu- ene.	4	1,507, 550	
Dichlornitrotoluene	$C_7 \coprod_5 Cl_2 \boxtimes O_2$	1.455, 17° = ==	
Derivative of acetanilide- Derivative of protein	$C_{12} \prod_{12} Cl_{3} \prod_{13} O_{2} = -$	1.628	Witt. Ber. 8, 1227. Muhlhauser. J. 7, 671.
tt t. tt	C ₁₂ H ₁₂ Cl N O ₄	1.360	

LV. COMPOUNDS CONTAINING C, H, AND BR.

1st. Bromides of the Paraffin Series.

	NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
	bromide	C H, Br	$ \begin{array}{c} -1.66143.0 \\ 1.732 \\ 1.7116 \\ 1.71306.15^{\circ} \\ 1.73306.15^{\circ} \\ 1.72345.25^{\circ} \\ 1.46576.15^{\circ} \\ 1.45567.18^{\circ} \\ 1.45534.20^{\circ} \\ 1.41738.24^{\circ} \\ 1.44738.24^{\circ} \\ 1.44722.27^{\circ} \\ 1.40 \end{array} $	Pierre C R 27,21; Two lots, Merrill, J P. C. (2), 18, 29; Perkin, J. P. C. (2) 31, 481. Weegmann, Z. P. C 2, 218. Lowig, A. C. P. 5
6 6		4. 1.	1,47820, 0° 1,4600, 20	
4.6	4.		1.4621, 92	
4.1			1,1655, 134,5_	Supp., 85. Linnemann A. 0 P. 160, 195.
4.6	44	44	1,4189, 15°	
4.4	4.6		_= 1.4775, 5%-10%	
4.4			1,4679, 100-15	
4.6	6.6	1 11	1.1582,15°-20	62, 50

	NAN	ſE.	F	ORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl	bromid	3	$C_2 H_5$	Br	1.4069, 20°	Naumann. Ber. 10, 2016.
6.6	4 €		11		1.4579, 140	De Heen. Bei. 5, 105.
6.6	2.2		1.6		1.4134, 38°.4	Schiff. Ber. 19, 560.
4.6	4.4		"		1.44988, 15°)	Perkin. J. P. C. (2),
"	- "				1.43250, 25°	31, 481.
10		le		Br	1.353, 16°	Chapman and Smith. J. 22, 360.
44	4.4				1.388, 0°	Rossi. A. C. P. 159, 79.
4.6	66		1.6		1.3497, 0° 1.301, 30°.15 }	
4.6			66			Pierre and Puchot.
	66				1.2589, 54°.2)	Ann. (4), 22, 284.
					1.3577, 16°	Linnemann. A. C. P. 161, 40.
	11		66		$\begin{bmatrix} 1.3520 \\ 1.3520 \end{bmatrix}$ 20° {	Brühl. A. C. P.
	44		66		1.00000	203, 1.
1.6	66				1.3617, 14°	De Heen. Bei. 5, 115.
	66				1.3835, 0° } 1.2639, 71° }	Zander. A. C. P. 214,
	4.6				1.2059, 71	181.
	"				$1.36110, 15^{\circ}$ $1.34739, 25^{\circ}$	Perkin. J. P. C. (2),
		nide	"		1.320, 130	31, 481. Linnemann. J. 18,
6.6	4	4			1.33, 210	489.
1.6	í				1.33, 21° 1.248, 20°	Linnemann. Linnemann. A. C. P. 161, 18.
6.6	4		4.4		1.2997)	,
44	L		4.6		1.3097 } 20° }	Three lots. Brühl.
6.6	4		4.6		1.3117)	A. C. P. 203, 1.
2.2	4		44		1.3397, 0° }	Zander. A. C. P.
44	6		4.6		1.2368, 60°	214, 181.
2.2	4		. 6		1.31978, 15° (Perkin. J. P. C. (2),
11	,		16		1.30522, 25° }	31, 481.
Butyl	bromide		C_4H_9I	3r	1.305, 0°)	Til In
"	6.6		14		1.2792, 20°	Lieben and Rossi.
"	44		66		1.2571, 40°	A. C. P. 158, 137.
					1.2990, 20°	Linnemann. Ann. (4), 27, 268.
To-basts		: 7 -	66		1.2605, 14°	De Heen. Bei. 5, 105.
Isobuty	yl brom	ide			1.274, 160	Wurtz. J. 7, 572.
					1.2702, 16°	Chapmanand Smith. J. C. S. 22, 153.
	11		4.6		1.249, 0°)	731 7 7 1
66	2.2		4.6		1.191, 40°.2	Pierre and Puchot.
"	33		11		1.1408, 73°.5)	Ann. (4), 22, 314.
					1.2038, 16°	Linnemann. A. C. P. 162, 1.
	11		6.6		1.1456, 90°.5	Schiff. Bei. 9, 559.
::	5.6		6.6		1.27221, 15°	Perkin. J.P.C. (2),
		yl bromide_	44	**	1.25984, 25° 5 1.215, 20°	31, 481. Roozeboom. Ber. 14,
4.6		٠٠	4.6		1.20200, 15°)	2396. Perkin. J. P. C. (2),
7.7		"	4.6		1.18922, 25°	31, 481.
Norma	l penty	l bromide	$C_5 H_{11}$	Br	1.246, 00)	,
"	66	"	4.6		1.2234, 20° }	Lieben and Rossi.
4.6	66	"	4.6		1.2044, 40°)	A. C. P. 159, 70.

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Amyl bromide	C ₅ H ₁₁ Br	1.16576, 0° 1.217, 16°	Pierre. C. R. 27, 213. Chapman and
		1.2045, 200	Smith. J. 22, 367. Haagen. P. A. 131, 117.
11 11 11 11 11 11 11 11 11 11 11 11 11	11	1.2059, 15°.7 1.0502, 120°	Mendelejeff, J. 13, 7. Ramsay, J. C. S.
		1.2002, 14°	85, 463.
tt	11	$\left[\frac{1.0126}{1.0127}\right]$ 117°.1	Schiff. Ber. 14, 2766.
			Lachowicz, A. C. P. 220, 171.
" Active	11	1.0881, 118°.51 1.225, 15° 111	Schiff. Ber. 19, 560. Le Bel. B. S. C. 25, 546.
" Inactive		1.2358, 0°	Balbiano. Ber. 9,
tt tt			Perkin, J. P. C. (2), 31, 481.
Normal hexyl bromide		1.1935, 0° } 1.1725, 20°	Lieben and Janceek.
Normal heptyl bromide	C ₇ H ₁₅ Br =		J. R. C. 5, 156, Cross. J. C. S. 32,
Secondary heptyl bromide	٠.	1.122, 170.5	123. Venable. Ber. 13,
Normal octyl bromide		1.116, 16° 1.11798, 15°)	1650, Zincke, J. 22, 371, Perkin, J. P. C.
u u u Secondary octyl bromide	(1	11.10993, 25° }	(2), 31, 481. Luchowicz, A. C. P.
Economic contribution.			220, 185.

2d. Bromides of the Series C_n H_{2n} Br_2 .

NAME.			FORMULA.		SP. GRAVITY.	Астновиту.	
Methylene	bromic	le	С II, Вг ₂			Steiner, Ber. 7, 507, Henry, Ann. (5), 30, 266,	
6.6			4.		$\frac{2.19850}{2.199922}$ $\frac{1}{1}$	Perkin J. P. C.	
tt tt	tt ti branida		 C H, Br. C II,		2.17849 25° 2.47745 25° 2.164, 21°	Perkin, J. P. C. (2), 32, 523. Regnault, Ann. 2.	
12 thy tone 1	ti.		(,			59, 358. D Arcet. J. P. C.	
"	1)		66			5, 28. Pierre, C. R. 27, 213. Butlerow, J. 14, 652.	
8.6	4.6		"			Hangen, P. A. 131,	

1	Name.		Formul	LA.	SP. GRAVITY.	Аптновиту.
Ethylene l	oromide		C H ₂ Br. C I	H ₂ Br	2.198, 10°	Reboul. Z. C. 13, 200.
4.6	4.6		"		2.21324, 0°	Thorpe. J. C. S.
66	6.4				1.93124,131°.45	
6.6	4.6		44		2.1785, 20° }	Anschütz. A. C. P.
4.6	4.6		"		0 1 mar 010 F /	221, 133.
4.4	4.4		4.6		1.9246, 130°.3	Sehiff. Ber. 19, 560.
4.6	44		"		2.18895, 15°)
4.6	44		66		2.17271) 250	Perkin. J. P. C.
(:	66		66		2.17197	(2), 32, 523.
					2.17681, 20°	Weegmann. Z. P. C. 2, 218.
Ethylidene		de	C H ₃ . C H B	r ₂	2.135, 0°	Caventou. J. 14, 608.
6.6	4.6		"		$\{2.129\}$ 10° {	Reboul. Z. C. 13,
"			"		2.152)	200.
6 ("		t t		2.0822, 21°.5	Ausehütz. A. C. P. 221, 133.
6.6	4.6		"		2.10006, 17°.5	Angelbis Frei-
4.6	44		"		2.08905, 20°.5	burg Inaug. Diss. 1884.
"	44		44		2.10297, 15° \	Perkin. J. P. C.
6.6	6.6		66		2.08540, 25° }	(2), 32, 523.
44	"		"		2.05545, 20°	Weegmann. Z. P. C. 2, 218.
Trimethyle	ene bror	nide	CH_2 Br. CH_2 .	$\mathrm{CH_{2}Br}$	2.0177, 0°	Geromont. A. C. P. 158, 370.
6.6	6	٠	6.6		1.9839, 13°.5	Reboul. J. C. S. 36, 127.
"	6	٠		ma	1.9228	Freund. Ber. 14, 2270.
6.6	6	٠	"		2.0060, 0° }	Zander. A.C.P. 214,
6.6	6		4.6		1.7101, 165°	181.
6.6					1.98236, 15° (Perkin. J. P. C. (2),
		٠	"		1.96836, 25°	32, 523.
Propylene		e	CH ₃ . CH Br.	CH ₂ Br	1.7	Reynolds. J. 3, 495.
6.6	""		4.6		1.974	Cahours. J. 3, 496.
					1.955, 9°	Reboul. Z. C. 13, 200.
"	"		"		1.954, 15° }	Linnemann. A. C.
44	66		64		1.950, 16° }	P. 136, 53.
					1.943, 17°	Linnemann. A. C. P. 138, 123.
"	22		66	h	1.972, 0° }	Erlenmeyer. A. C.
66	44		44		1.946, 17° }	P. 139, 226.
44	"		"		1.9586, 0° }	Two products.
66	66		"		1.9256, 20° { 1.9710, 0° }	Friedel and Ladenburg. B. S.
4.6	66		44		1.9383, 20°	denburg. B. S. C. 8, 146.
4.4	66		66		1.9463, 17°	Linnemann. A. C.
"	4.6		"		1.9465, 15°	P. 161, 42.
6.6	44		66		1.9617, 0°	Zander. A. C. P.
"	4.4		"		1.6944, 141°.7_	} 214, 181.
6.6	66		"	~-	1.8893, 18°	Gladstone. Bei. 9,
66	"		44		1.910, 21° }	249.
44	44		66		1.94426 } 15°-)
	"		66	4	1.94474 \$ 10 -	Perkin. J. P. C.
66	"		"		1.93004 } 25°-) (2), 32, 523.
					1.93030 } 25 -	

Name.	FORMULA.	SP. GRAVITY.	Authority.
Domethy in thylene have all the Methy - }	(CH ₃ . CBr ₂ . CH ₃	1.8149, 0 1.7825, 20°)	Friede and Lylen- burg. B. S. C. S. 150. Reboul. Z. C. 13,
	C ₂ H ₅ , CHBr, CH ₂ Br	1.875, 10° 1.84761, 15°) 1.83140, 25) 1.876, 0°	200. Reboul. Perkin, J. P. C. 2), 32, 523. Wurtz, J. 22, 65. Grabowsky – nd Saytzen, A. C.
3 Buty the bromide =		1,52 (0) 1,5110 (0)	(P. 179, 352, Wurtz, J. 20, 573.
		1.5055, 0 12 1 1.7215, 10 13 11 578, 100° 1.74443 150	Pach t. Ann. 5, 28, 543.
	i. i.	1.7: 083 1.7: 12 11 25°	Prixin. J. P. C. 21, 32, 523
Isolaitylene bromide		1.715, 11 1 1 1.5(1, 17°)	Two samples, Lin- n mann, A. C. P. 102, L.
Ethylmethylethylenelro-		1.5 18, 21 1.7 187, 07 1. 5 . 11	Studer, Ber. 11 2188 Wigner and Style of A.C.P.17
Isoamylene l'romide	С ₅ П ₁₀ Вг ₂ =	1.4113.0	Helling, A. C. P 172, 1-1.
		1.650, 217 ==	Gladstono. Boi 249.
		$ \begin{array}{c c} 1. & 399 \\ 1. & 4000 \\ 1. & 250 \\ 1. & 251 \\ \end{array} $ $ \begin{array}{c c} 25 \\ \end{array} $	Terkin, J. P. C 21, 32, 52
Hexy one from ide	C ₆ H ₁₂ Br ₂	1.582, 15	Pelone and Charles, J. 15 52
		1.5975, 1° 1.5° 67, 20 1.005°, 0 1.5809, 19 1.6407, 0°	Thorpe in 1 Y A. C. P. 105, 1 He ht and Struck, C. P. 172, 62 Helling, A. C. P.
Heptylen s bromide	C ₇ H ₁₄ Br ₂ =	1.5116, 15%.5	172, 281. Thorp and Your 2 A. C. P. 105, 1.

3d. Miscellaneous Non-Aromatic Bromides.

		1			,
NA	ME.	Formu	LA.	SP. GRAVITY.	AUTHORITY.
Bromoform		С Н Вгз		2.13	Löwig. A. C. P. 3,
4.4		11		2.9, 12° 2.775, 14°.5	Cahours. J. 1, 501.
				2.81185, 8°.56_	194.
				2.43611, 151°.2	
				$\left\{ egin{array}{ll} 2.90246 \ 2.90450 \ \end{array} ight\} $ 15° _	1)
"		16		2.88253 (250	Perkin. J. P. C. (2), 32, 523.
Bromethylene	dibromide		I Rr	$\begin{bmatrix} 2.88421 \ 2.620, 23^{\circ} \end{bmatrix}$	
"	"			2.663, 0°	Wurtz. J. 10, 461. Simpson. J. 10, 461.
14	"			2.659, 00	Caventou. J. 14, 608.
tt	16			2.624, 16°	Tawildarow. A. C. P. 176, 21.
6.6	"	4.		2.65, 0°	Demole. Ber. 9, 49.
64				2.6189, 17°.5 } 2.6107, 21°.5 }	Anschütz. A. C. P.
41				2.57896, 20°	221, 61. Weegmann. Z. P. C. 2, 218.
Tetrabrometh	ane	CH, Br. CH	3r ₃	2.88, 22°	Reboul. Z.C. 13, 200.
				2.93	Bourgoin. J. C. S. 32, 443.
4.6		66		2.9292, 17°.5	Anschütz. A. C. P.
11		16		2.9216, 21°.5	221, 133.
"				2.88249, 16°.6_	
4.6		4.6		2.87687, 19°.1_ 2.87482, 20°	
4.4		11		2.87214, 21°.2	Weegmann. Z. P.
4.4		4.6		2.86512, 24°.3_	C. 2, 218.
4.6		66		2.85836, 27°.3_	
Acetylene tetr	abromide		Br ₂	2.85189, 30°.2. 2.848, 21°.5	Sabanejeff. A. C. P.
i i	6.6			2.9469) 150 5	178, 114.
	"	4.6		$\frac{2.9409}{2.9517}$ 17°.5	Anschütz. Ber. 12, 2075.
11		4.4		2.9708 1 170 5)
11		44		2.9(12)	Anschütz. A.C. P.
16				2.9629, 21°.5) 221, 133.
"		"		2.92011, 17°.5	Inaug. Diss. 1884.
**				2.96725, 20°	Weegmann. Z. P. C. 2, 218.
Bromethylene, bromide.	, or vinyl	C ₂ H ₃ Br		1.52	Watts' Dictionary.
6.6	"	"		1.5286, 11°	Anschütz. A. C. P.
44	44	11		1.5167, 14° } 1.52504, 9°.6	221, 133. Perkin. J. P. C. (2),
Dibromethyler	ne		1	3.038, 10° }	32, 523.
14		2 112 1112		3.053, 14°.5	Sawitsch. J. 13, 431.
6.6				2.1780, 20°.6	Anschütz, A. C. P. 221, 133.
ົດ1 ~	~		,		1

-									
	NAME.			Fo	ORMULA.		SP. GRAVITY.	AUTI	IORITY.
Acetyl	ene dib	romid	le	C ₂ H ₂ I	3r ₂		2.120, 17°	Tawildar P. 176	ow. A.C.
	c c	64		6.6			2.2023, 220.7_		ff. B. S. C.
		6.6		4.6			2.268, 0°	Plimpter 1812.	
	c c	6.6		"			$2.271,0^{\circ}$ $2.223,19^{\circ}$ $\}$	Sabaneje 1220.	ff. Ber. 16,
	((4.6			2.2714, 179.5	Anschüt: 221, 13	
	6 6 6 6	4.6		66			2.2983, 0° 2.0352, 110°.5_	Weger. 221,	A. C. P.
	6.6	4.6		4.6			2.22889, 20°	Weegma 2, 218.	nn. Z. P.C.
Tribros Tribros				C ₂ H B	Br ₂ . CH	Br	2.68762, 20° 2.336	6.6	J. 3, 496.
				3	"		2.392, 23° 2.39, 10°	Wurtz.	J. 10, 462.
					4.4		2.33, 12°	490. Reboul.	
		1		СН3. С	HBr. CH	Br ₂ .	,	127. Reboul.	
Tribro				CH ₂ Br	CHBr.C	-	2.436, 23°	Wurtz.	J. 10, 463.
					44		2.966, 0° 2.407, 10°	Perrot.	J. 11, 395. A. C. P.
					66		2.41344, 15° } 2.39856, 25° }		J. P. C. (2),
Tetrab		119710		C. H.	Br ₄		2.469	32, 523 Cahours	J. 2, 496.
	ne tetra			C H ₃ . (Br ₂ . C H	Br ₂	2.01, 0°		im. J. 17,
Tetrnb				$CIIBr_2$	CHBr.C	$\Pi_2 \mathrm{Br}$	2.64		J. 13, 462.
				$C_3 H_3$ $C_3 H_5$	Br ₅ Br		2.601 1.364, 19°.5		J. 3, 496. C. R. 79,
	6.6			6.6			1.39, 9°		J. C. S. 36,
	6.6			4.6 4.6			1.42077, 15° 1.40527, 25°		J. P. C. (2),
β Bron	npropy	lene.		4.6			1.400, 13° }	Linnema	inn. A. C.
	44			6.6			1.410, 14° = 5 1.408, 19°	P. 136 Linnema	
	1.4	-					1.4110, 15°	308. Linnem: P. 161	
	c c	-		4.6			1.428, 19°.5		C. R. 79,
Allvl	bromid	C		44			1,472		. J. 3, 496.
44	4.6			6.6			1.451,00	72.11	I D (1.10*
6.6	44						1,4385, 15° 1,3609, 62°	Tollens.	J. P.C. 107.
4.6	44			t t			1.4507, 0°	Tollense	and Hennin- Z. C. 12, 85
6.6	6.6			6.6			1.461, 00 }	Tollens.	A. C. P.
6.6	4.4			6.6			1,436, 15° { 1,4593, 0° }	156, 1 Zander.	
4.4	4.6			46			1.8883, 70°.5	Zander. 214, 1	
				•			1	, -	

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Allyl bromide	C ₃ H ₅ Br	1.396, 20°.5 } 1.3867, 24°.5 }	Gladstone. Bei. 9,
11 11	"	1.3980, 20°	Brühl. A. C. P. 235, 1.
((((66	$1.42532, 15^{\circ}$ $1.41057, 25^{\circ}$	Perkin. J. P. C. (2), 32, 523.
EpidibromhydrinAllylene bromide	C ₃ H ₄ Br ₂	2.06, 11° 1.950	Reboul. J. 13, 461. Cahours. J. 3, 496.
ii ii	44	2.05, 0°	Oppenheim. J. 17,
66 66	"	2.00, 15°	Borsche and Fittig. J. 18, 314.
	((1.98, 15°	Linnemann. J. 18, 490.
Propargyl tribromide Propargyl bromide	C ₃ H ₃ Br ₃	2.53, 10° 1.52, 20°	Henry. Ber. 7, 761. Henry. B. S. C. 20,
" "	(i	1.59, 11°	452.
Propargyl pentabromide -	C, H, Br,	3.01, 10°	Henry. Ber. 7, 761.
Tribromisobutane	C_4 H_7 Br_3	2.187, 17°	Norton and Williams. A. C. J. 9, 88.
Bromamylene	C ₅ H ₉ Br	1.22, 19°	Linnemann. Z. C.
Isoprene bromide		1.175, 15°	Bouchardat. J.C.S. 38, 323.
Isoprene dibromide Bromhexylene.	C ₅ H ₈ Br ₂	1.601, 15° 1.35, 12°	Destrem. Ann. (5),
B. 99°-100°. B. 138°	(1	1.17, 15°	27, 50. Reboul and Truchot.
" B. 140°		1.2205, 0° }	J. 20, 587. Hecht and Strauss.
Hexine dibromide	((1.2025, 15° { 1.6977, 0° {	A. C. P. 172, 62.
Hexine tetrabromide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5543, 100° f	Hecht. Ber. 11, 1054.
Dibromdiallyl	$C_6 \stackrel{\Pi_{10}}{H_8} Br_2$	2.1625, 0° 1.656	Henry. J. C. S. (2),
Dipropargyl tetrabromide	C ₆ H ₆ Br ₄	2.464, 190	11, 1215. Henry. Ber. 7, 761.
Conylene bromide	C ₈ H ₁₄ Br ₂	1.5679, 16°.25_	Wertheim. J. 15, 367.
	C ₁₀ H ₁₉ Br	1.109, 15°	Rebouland Truehot. J. 28, 588.
	(C ₂ H ₃ Br) _n	2.075	Baumann. A. C. P. 163, 308.
Erythrene hexbromide	C ₄ H ₄ Br ₆	2.9, 15°, 1 3.4, solid}	Colson. B.S. C. 48, 52. Two modifications.

4th. Aromatic Compounds.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Bromhenzene	C ₆ H ₅ Br	1.519 00 {	Ladenburg. Ber. 7,
	44	1.522) \ 1.51768, 0°	1685.
44	46	1.50236, 11°.46	Advisors De- 6
	11		Adrieenz. Ber. 6,
11	11	1.41163, 77°.76 1.4914, 20°	Bruhl. Bei. 4, 780.
11	44	1.5203, 0°	Weger. A. C. P.
44	((1.3080, 155°.6_	221, 61.
44	11	1.4958, 16°	Gludstone. Bei. 9,
11	44	1.49225, 23° }	240.
44	44	1.3080, 155° 11 1.3090, 156° 11	Schiff. Bei. 9, 559. Schiff. Ber. 19, 560.
Orthodibrombenzene	C ₆ H ₄ Br ₂	2.003, 0°)	Körner. J. C. S. (3),
4.	14	1.858, 99° }	1, 214.
Metadibrombenzene	14	1,955, 18°.6	Coloridos Dos 10
Paradibrombenzene	14	2.218	Schröder. Ber. 12, 561.
46		1.8408, 89°.3	
Benzyl bromide Orthobromtolnene	C. H. C H. Br	1.438, 220	Kekulė. J. 20, 662.
Orthobromtolnene	C ₆ H ₄ . C H ₃ . Br	1.4092, 21°.5	Glinzer and Fittig.
4.4	4.6	1.4109, 22°	J. 18, 538. Kekulé. J. 20, 663.
44		1.401, 18°	Wroblevsky, A. C.
			P. 168, 147.
Metabromtoluene		1.4009, 21°	
Parabromtoluene = -	44	1.3999, 30°	13, 239. Hübner and Terry.
			Z. C. 14, 232.
Dibromtoluene. B. 236°	C ₆ H ₃ . C H ₃ . Br ₂	1.8127, 19°	Wroblevsky, Z. C.
4 B. 285°-289°.	4.4	1 910 100	13, 239.
B. 246°		1.812, 220	Wroblevsky, Z. C.
			14, 272.
Ethylbrombenzene, 1.4	C6 H4. C2 H5. Br	. 1.31, 13°.5	Fittig and Koenig.
10	CHOUNT P	1 225 910	J. 20, 609.
Bromxylene 1.2.4	C ₆ H ₃ . C ₄ H ₃ . C ₄ H ₃ . B ₁	1.3693. 150	Beilstein, J. 17, 530. Jacobsen, Ber. 17,
			2373.
1.3.5		1.862, 20°	
36	OHOHOHD	1 0 = 11 0 90	P. 192, 215.
Metaxylyl bromide	6 H4. C H3. C H2 D	1.0(11, 20"	Radziszewski and Wispek, Ber. 15,
			1745.
Orthoxylyl bromide		1.8811, 23°	Rudziszewski and
			Wispek. Ber. 15,
D bromorthoxylene	CH (CH) Re	1 7849 159	1747. Jacobsen, Ber. 17,
Danomorthoxynene	6 112. (C 113)7 117	1.7.12, 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Orthoxylylene bromide	C6 H4 (C H2 Br)2 -	1.934, 0°, s. }	
14 14	- 66	1.680, 95°, 1.	86.

NAME.	FORMULA.	SP. GRAVITY.	Authority.
Orthoxylylene bromide	C ₆ H ₄ (C H ₂ Br) ₂	1.988	Colson. C. R. 104,
Metaxylylene bromide	"	1.734, 0°, s. 1.615, 80°, l.	Colson. Ann. (6), 6, 86.
"		1.959	Colson. C. R. 104, 429.
Paraxylylene bromide		2.010, s 1.850, 155°,l.	Colson. Ann. (6), 6, 86.
" " ———		2.012	Colson. C. R. 104, 429.
Brommesitylene. 1.3.5.6.			J. 20, 704.
Isopropylbrombenzene. 1.4.	C ₆ H ₄ . C ₃ H ₇ . Br		Meusel. J. 20, 698.
		1.3014, 15°	Jacobsen. Ber. 12,
Dibromcymene			Claus and Wimmel.
β Bromamylbenzene Benzene hexbromide			Dafert. M. C. 4, 621. Meunier. Ann. (6), 10, 223.
BromdibenzylBromnaphthalene	C ₁₄ H ₁₃ Br	1.318, 9° 1.555 1.503, 12°	Stelling and Fittig. Glaser. J. 18, 562.
ιι ιι	"	1.48875, 16°.5_ 1.47496, 28°.1_ 1.42572, 77°.6_	heimer. G. C. I.
ιί ιί	"	$\left\{ \begin{array}{c} 1.5678, 16^{\circ}.5 \\ 1.5403, 17^{\circ} \\ 1.5403, 18^{\circ} \end{array} \right\}$	Gladstone. Bei. 9, 249.
β		1.605, 0°	Roux. B. S. C. 45, 514.
a Tetrabrom hydrocam- phene.	C ₁₀ H ₁₄ Br ₄	2.2042	Royère. Ber. 19, ref. 438.
β Tetrabromh y drocam- phene.		1.93711	

LVI. COMPOUNDS CONTAINING C, H, O, AND BR.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
aβ Dibrompropyl alcohol_	C ₃ II ₆ Br ₂ O	2.1682, 0° }	Weger. A. C. P.
Monobromtrimethylear- binol.			
Dibromhexyl alcohol	C ₆ H ₁₂ Br ₂ O	1.99, 15°	437. Destrem. Ann. (5), 27, 50.
Bromethyl oxide	C ₄ H ₉ Br O	1.3704, 0°	Henry. C. R. 100, 1007.
Bromacetyl bromide	C_2 H_2 Br_2 O	2.317, 21°.5	Naumann. J. 17, 322.
Propionyl bromide	C ₃ H ₅ O. Br	1.465, 14°	Sestini. J. 22, 528.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Dibromacetic acid	C ₂ II ₂ Br ₂ O ₂	2.25	Perkin and Duppa. J. 11, 285.
Bromobutyric acid	C ₄ H ₇ Br O ₂	1.54, 15°	Schneider. J. 14,
Bromisobutyric acid		1.5225, 60°	Hellund Waldbauer.
Dibromobutyric acid	C_1 H_6 Br_2 O_2	1.500, 100° } 1.97	Bor. 10, 448. Schneider. J. 14,
Bromosterric acid	C _{'8} H ₃₅ Br O ₂	1.0653, 20°	458. Oudemans. J. P. C. 89, 197.
Ethyl bromacetate	C ₄ II ₇ Br O ₂	1.5250, 18°	
Dibromethyl acetate	$\mathrm{C_4}\;\mathrm{H_6}\;\mathrm{Br_2}\;\mathrm{O_2}$	1.962, 17°	Kessel. Ber. 10, 1996.
Ethyl brompropionate		1.396, 11°	Henry, A. C. P. 156, 176.
Methyl dibrompropio- nate, a, " a β	C ₄ H ₆ Br ₂ O ₂	1.9013, 0° } 1.8973, 12° } 1.9777, 0°	Philippi. Göttingen Inaug. Diss. 1873.
Ethyldibrompropionate a	C. H. Br. O.	1.6140, 205°.8 1.7728, 0° {	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4.4	4.4	1.7536, 12° 1.796, 0°	aug. Diss. 1873. Munder and Tollens.
β	46	1 === 1 =0	A. C. P. 167, 222.
11 11	11	1.8234 1.8279	Weger. A. C. P.
Propyl dibrompropionate.	C. H 10 Br 2 O 2	1.4554, 214°.6 1.6842, 0° }) 221, 61. Philippi. Gott. In-
α_{-} α_{-} α_{-}	44	1.6682, 12° }	aug. Diss. 1873. Weger. A. C. P.
11 11		1.3391, 233° } 1.6008, 0° }	221, 61. Philippi. Gott. In-
Butyl dibrompropionate, a α Methyl brombutyrate. γ		1.5778, 12° } 1.450, 5°	aug. Diss. 1873, Henry. C. R. 102,
		1.33, 15°	368. Schneider, J. 14, 458.
Ethyl brombutyrate	6 H ₁₁ bt O ₂	1.345, 12° 1.363, 5°	Cahours. J. 15, 248. Henry. C. R. 102,
Ethyl bromisobutyrate		1.328, 0° }	368 Helland Wittekind.
Ethyl bromvalerate. a	C, H ₁₃ Br O ₂	1.300, 19°.5 { 1.226, 18°	Ber. 7, 319. Juslin. Ber. 17, 2504.
Ethyl bromethylmethyl- ncetate, a.	**	1.2275, 18°	Bocking, A. C. P. 204, 24.
Bromal	C ₂ H Br ₃ O	3.34	Lowig. A. C. P. 3, 305,
Parabromalide	C H P - O		Cloez. J. 12, 433. Sokolowsky, B.S.C.
Bromacetone	C ₃ H ₅ Br O	1.99	27, 371.
Dibronacetone Hexbromethylmethyl ke-	$C_3 H_4 Br_2 O \dots $ $C_4 H_2 Br_6 O \dots$	2.5 2.88, 0°	Demole, Ber. 11,
t me. Ethylene bromhydrin			1712. Henry, Ann. (41, 27,
		2.35, 0°	243. Demole. Ber. 9, 50.
Bromethylene bromhydrin Bromethylene bromacetin	CH Br. Br. C. H. O.	1.98, 0° 1.0632, 12°	Demole. Ber. 9, 51.
Ethylidene bromethylate	Dr. O C2 115	1,000,00,100,000	1007.

	1	1	
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Trimethylene bromhydrin	C ₃ H ₆ . Br. O H	1.5374, 20°	Frühling. Ber. 15, 2622.
Ethoxybromamylene Hexylene bromhydrin Ethyl bromacetacetate	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.23, 19° 1.2959, 11° 1.511, 22°	Reboul. J. 17, 507. Henry. C. R. 97, 260. Duisberg. Ber. 15, 1378.
Ethyl dibromacetacetate_ Ethyl tribromacetacetate_ Ethyl tetrabromacetace-	C ₆ H ₈ Br ₂ O ₃	1.884, 25° 2.144, 22° 2.401, 17°	1616.
tate. Dibromide of dibromacetacetic ether.	C ₆ H ₈ Br ₄ O ₃ . ?	2.320, 21°	186, 233. Compare
Ethyl bromethylacetacetate.	C ₈ H ₁₃ Br O ₃	1.354	Ber. 15, 2133. Wedel. A. C. P. 219, 102.
Ethyl dibromethylacet- acetate. Ethyl tribromethylacet-	$\begin{bmatrix} C_8 & H_{12} & Br_2 & O_3 & \dots \\ C_8 & H_{11} & Br_3 & O_3 & \dots \end{bmatrix}$	1.635	Wedel. A. C. P. 219, 103.
acetate. Ethyl β bromacetopropionate.	C, H ₁₁ Br O ₃	1.439, 15°	Conrad and Guthzeit. Ber. 17, 2286.
Ethyl brompropiopro- pionate.	C ₈ H ₁₃ Br O ₃	1.337, 15°	Israel. A. C. P. 231, 197.
Ethyl dibrompropiopro- pionate. Bromallyl alcohol	$\begin{bmatrix} C_8 H_{12} Br_2 O_3 \\ C_3 H_5 Br O_{} \end{bmatrix}$	1.611, 15°	Henry. B. S. C. 18,
Bromallyl acetateAllyldibrompropionate.β_	$C_5 {\mathrm{H}_7} {\mathrm{Br}} \stackrel{\mathrm{O}_2}{\mathrm{O}_2} = C_6 {\mathrm{H}_8} {\mathrm{Br}_2} \stackrel{\mathrm{O}_2}{\mathrm{O}_2} = 0$	1.57, 12° }	232. " Münderand Tollens.
Dibromallyl oxide	$C_6 H_8 Br_2 O$	1.818, 20° }	A. C. P. 167, 222. Henry. B. S. C. 20, 452.
Brommethylallyl oxide Bromethylallyl oxide	C ₄ H ₇ Br O	1.35, 10°	Henry. B. S. C. 18, 232. Henry. Bor. 5, 186
MonobromhydrinDibromhydrin	C_3 H_5 . Br $(O H)_2$	1.717, 4° 2.11, 10°	Henry. Ber. 5, 186. Veley. C. N. 47, 39. Berthelot and De
		2.11, 18°	Luca. J. 8, 627. Berthelot and De Luca. J. 9, 601.
Epibromhydlin	" C ₃ H ₅ Br O	2.02, 18°.5 1.615, 14°	Zotta. A. C. P. 174, 87. Berthelot and De
Bromdiethylin Diethyl brommøleate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.258, 8° 1.4095, 17°.5	Luca. J. 9, 600. Henry. Ber. 4, 701. Anschütz and Aschman. Ber. 12,
Dibromoleic acid Bromcitropyrotartaric an- hydride.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.272, 7°.5 1.935, 23°	2284. Lefort. J. 6, 451. Bourgoin, J. Ph. C. 26, 234.
Ethyl δ brompyromucate_	C ₇ H ₇ Br O ₃	1.528, 0°	Hill and Sanger. A. C. P. 232, 52.
Orthomonobromphenol Paramonobromphenol	C ₆ H ₅ Br O	1.6606, 30° 1.840, 15°	Körner. J. 19, 574. Hand. A. C. P. 234, 133.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Bromallylphenol ether Brommethyleugenol Benzoyl bromide Monobromeamphor	C ₈ H ₉ Br O	1.5468, 24°.5 1.4182, 24°.5 1.981, 0° 1.957, 12°.5 1.4028, 11° 1.3959, 0° 1.5700, 15°	247. Schall and Dralle. Ber. 17, 2531. Silva. B.S.C., Jan., 1870. Henry. Ber. 16, 1378. Wassermann. C. R. 88, 1207. Claisen. Ber. 14, 2473. Schröder. Ber. 13,
Santonyl bromide.		1.4646	Carnelutti and Nasini. Ber. 13, 2210.

LVII. BROMINE COMPOUNDS CONTAINING NITROGEN.

NAME.	FORMULA.	Sp. Gravity.	Аптиокиту.
Brompierin	C Br ₃ N O ₂	2.811, 12°.5	
((2.816, 13°	
Tetranitroethylene bro-	C ₂ (N O ₂) ₄ Br ₂	1.25, 14°	249. Villiers, J. C. S. 42 815.
mide. Bromonitrie glycol	C ₂ H ₄ Br N O ₃	1.735, 8°	
Bromallyl nitrate	С ₃ П ₄ Вг N О ₃	1.5, 13°	Henry, B. S. C. 18 232.
Nitrobromtoluene, B. 269°	C ₇ H ₅ Br N O ₂	1.612, 20°	Wroblevsky. Z. C.
B. 256		1.631, 18°	
Bromtoluidine, B. 240°	C7 H8 Br N	1.510, 20°	
B. 255°=260	٠	1.1442, 19°	P. 168, 147. Wroblevsky, A. C P. 192, 203.
Brompyridine	C ₅ H ₄ Br N	1.645, 0°	Ciamician and Dennstedt. Ber
4.6	4.6	1 646 00	15, 1174. Danesi, Ber. 15, 1177
44			Hofmann. Ber. 16 589.

LVIII. COMPOUNDS CONTAINING C, H, AND I.

1st. Iodides of the Paraffin Series.

NA	ME.	F	ORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl iodid	le	C H ₃ I		2.227, 22°	Dumas and Peligot.
		"		2.19922, 0°	Ann. (2), 58, 30. Pierre. C. R. 27, 213.
"		4.6		2.2636, 20°	Haagen. P. A. 131, 117.
		"		2.269, 25°	Linnemann. Z. C.
<i>(t</i>		"		2.2905, 16°	11, 285. Sigel. A. C. P. 170.
		دد		2.1905, 42°	345. Ramsay. J. C. S. 35,
(i ei		"		2.28517, 15°)	463. Perkin. J. P. C. (2),
"		44		2.25288, 25°	31, 481.
		6.6		2.3346, 0° }	Dobriner. A. C. P.
"		66		2.2146, 42°.8	243, 23.
			т		
Ethyl iodide		C ₂ H ₅	I	1.9206, 23°.3	Gay Lussac. Ann. (1), 91, 91.
		LE	ally date that the first the size the first the size	1.92, 16°	Marchand. J. P. C. 33, 188.
66 66		66		1.97546, 0°	Pierre. C. R. 27, 213.
66 66		66		1.9567, 5°-10°	1
"				1.0007, 0 -10	Downsult D A
				1.9457, 10°-15°	Regnault. P. A.
"				1.9348, 15°-20°) 62, 50.
"		4.6		1.9464, 16°	Frankland. J. 2,412.
		"		1.9309, 15°	Mendelejeff. J. 13, 7.
		"		1.98, 4°	Berthelot. A. C. P. 115, 114.
ει ει		"		1.927, 20°	Linnemann. A. C. P. 144, 133.
" "		"		1.9265, 19°	Linnemann. A. C. P. 148, 251.
"		66		1.935	Haagen. P. A. 131,
66 66		6.6		1.700	117.
tt (t		6.6		1.979, 0°)	Pierre and Puchot.
"		66		1.907, 30°.4	Ann. (4), 22, 261.
66 66		"		1.9444, 14°.5	Linnemann. A. C. P. 160, 195.
		44		1.944, 15°	Crismer. Ber. 17,652.
"		44		1.9313, 14°	Gladstone. Bei. 9, 249.
				1.8111, 72°.2	Schiff. Ber. 19, 560.
66 66				1.96527, 4°	2011111 2011 20, 000.
66 66				1.94332, 15°	Perkin. J. P. C. (2),
"					
				1.92431, 25°	31, 481.
"		66		1.9795, 0° }	Dobriner. A. C. P.
"		4.6		1.8156, 72°.5 }	243, 23.
Propyl iodid	le	C ₃ H ₇	I	1.789, 16°	Berthelot and De Luca. J. 7, 452.
" "		"		1.7012, 21°	Linnemann. J. 21, 433.

	NAME.	F	ORMULA.	SP. GRAVITY.	AUTHORITY.
_					
Propyl	iodide	C3 117 1		1.7343, 16°	Chapman and Smith. J. C. S. 22, 195.
+ 4		4.6		1.782, 0°	Rossi. A. C. P. 159,
11	44	6.6		1.7472, 16°	Linnemann. A. C. P. 160, 195.
"				1.7077, 230	Linnemann. A. C. P. 161, 25.
11		1.6		1.7610, 16°	Linnemann. A. C. P. 161, 34.
ij	(1	6.6		1.78635, 0°	1. 101, 54.
4.4		4.6		1.75035, 19°.27	D
4.4	(1	- 11		1.74772, 20°.79 1.74628, 20°.91	Brown. J. C. S. 32,
4.6		6.6		1 74628 200 91	837.
4.4	(1	£1		1.7427, 20°	Brühl. A. C. P.
					203, 1.
11	16	11		1.7483, 14° 1.5867, 102°.5_	De Heen. Bei. 5, 105. Zunder. A. C. P.
4.6		6.6		1.7838, 0°	214, 181. Chancel. B. S. C. 39,
4.6	**	11		1.7508, 16°	648. Gladstone. Bei. 9,
. 6	44			1.7842, 0°]	249.
+ 4	**	4.6		1.7674, 9°.1	
4.4	11	14		1.6843, 520.6	Pierre and Puchot.
. 4		1 44		1.6373, 75°.3	Ann. (4), 22, 286.
				1.0010, 100	
4.6				1.76732, 10°)	Perkin. J. P. C. (2),
4.4		6.4		1.75853, 15°	31, 481.
4.4		4.6		1.7829, 0° }	Dobriner. A. C. P.
+ 4		16		1.585, 102°.5	243, 23.
Isoprol	yl iodide			1.70, 15°	Linnemann. J. 18, 489.
4.6				1.714, 16°	Erlenmeyer. A. C. P. 126, 309.
n 4				1.73, 0°	Simpson, A. C. P. 129, 128.
6.6		- 64		1.725, 0°	Wurtz. See A. C. P. 136, 43.
4.4	1.4			1.69, 15°	Linnemann. A. C. P., 3d Supp., 265.
6.4	4.	6.6		1.71, 15°	Linuemann. A. C. P., 3d Supp., 267.
	44	4.4		1.785, 00)	Erlenmeyer. A. C.
4.6		1.6		1.711, 17° }	P. 139, 229.
		1		1 7 7 7 10 1 70	
		14		1.71732, 170	H. L. Buff. A.C.P,
4.6				1.562442, 93°	4th Supp., 129.
6.6		6 .		1.70, 18°	Linnemann. A. C. P. 140, 178.
4.6	"	- 14		1.715, 15°.5	Sierseh. A. C. P. 140, 142.
4.4	**			1.7109, 15°	
4.4	1.0	4.6		1.744, 00	1
+ 4	14	6.6		1.70526, 199.8	
4.6	16	6.6		1.70506, 20°.1	Brown, J. C. S. 32,
+ 4	+ 4	10 11		1.70457, 210.00	
				20100101921 000	12

NAME. Isopropyl iodide			Fo	ORMULA.	Sp. Gravity.	Аптновиту.	
			C ₃ H ₇ I		1.7033, 20°	Brühl. A. C. P.	
6.6	6.6	,	66		1.5650, 89°	203, 1. Zander. A. C. I	
"	"				1.7157, 14°	214, 181. Gladstone. Bei.	
"	"				1.71630, 15° 1.70049, 25°	249. Perkin, J. P. C. (2 31, 481.	
Butyl i	odide_		C, H, I		1.643, 00)	01, 401.	
11	- 41		11		1.6136, 20°	Lieben and Ross	
"	" -		"		1.5894, 40°) 1.5804, 18°	A. C. P. 158, 137 Linnemann. And	
"	-		٠,		1.6166, 20°	Brühl. A. C. I 203, 1.	
4.6	_				1.6172, 14°		
"	- "				1.6476, 00	$\left\{ \begin{array}{l} \text{De Heen. Bei. 5, 108} \\ \text{Dobriner. A. C. I} \\ 243, 23. \end{array} \right.$	
	_	yl iodide			1.4308, 129°.9 1.632, 0°)	§ 243, 23.	
"	119 500		"		1.600, 20° }	De Luynes. J. 17	
4.6	4		1.1		1.584, 30°)	499.	
			16		1.6263, 0°]		
11	6.		41		1.6111, 10° 1.5952, 20°	Lieben. J. 21, 43	
					1.5952, 20° 1.5787, 30°	,	
"	4		ιι		1.634, 0°	Wurtz. A.C.P. 15: 23.	
Isobuty	l iodid	e	"		1.604, 19°	Wurtz. J. 7, 573.	
"	6.6				1.643.0°	Wurtz. J. 20, 57	
	"		11		1.6301, 0°)	Chapman an	
44	44				1.6032, 16° 1.54816, 50°	Smith. J. C. 8 22, 156.	
11					1.6345, 0° }	22, 100.	
4.6	4.6		11		1.6214, 8°.3	D' 1 D 1	
4.4	11		4.6		1.6387, 56°.4	Pierre and Pucho	
4.6	66		44		1.464, 98°.8	Ann. (4), 22, 31	
4.6	٤٤				1.6081, 19°.5	Linnemann. A. (P. 160, 195.	
4.6	"		"		1.592, 22°	Linnemann. Ann (4), 27, 268.	
"	44		"		1.6433, 0°)	Erlenmeyer ar	
11	""		16		1.6278, 10°	Hell. A. C.	
44	"				1.6114, 20°) 1.6401, 0°)	160, 257. Brauner. A. C. 1	
	"				1.6050, 20°	192, 69.	
"	"		"		1.6056, 20°	Brühl. A. C. 1 203, 1.	
"	4.4		"		1.5982	Gladstone. Bei.	
44	4.4				1.4335, 114°.5_	Schiff. Ber. 19, 56	
4.6					1.61385, 15° }	Perkin. J. P. (
11 Thairman		-1:-3:3-0			1.60066, 25° }	(2), 31, 481.	
Fimet	nylcart	yl iodide. ?_	1		1.587, 0° }	1	
	"	"	1		1.571, 0° }	Two lots. Pucho	
	44	44			1.479, 530 }	Ann. (5) , 28, 54	
Norma	penty	l iodide	C ₅ H ₁₁	I	1.5435, 0° }	Lieben and Ross	
11	. Po	6.6	3 ((1)		1.5174, 20°	A. C. P. 159, 70	

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
AAME.	rousicia.		AUTHORITI.
Normal pentyl iodide	C ₅ H ₁₁ I	1.4961, 40°	Lieben and Rossi.
44 44 44		1.5141, 00	A. C. P. 159, 70.) Dobriner. A. C.
66 56 46		1.3128, 151°.7	P. 243, 20.
Amyl iodide		1.51113, 11°.5	Frankland J.3,478.
44 44	66	1.5277, 0° 1.4936, 20°	Frankland. Grimm. J. 7, 543.
16 11	(1	1.4676, 00 1	Kopp. A. C. P. 95,
44 44		1.4387, 220.3	307.
44 44	44	1.5087, 15°.8 1.4734, 20°	Mendelejeff, J. 13, 7.
44 44		1.4704, 20"	Hangen. P. A. 131, 117.
44		1.5005, 14°	De Heen. Bei. 5, 105.
		1.5413,00 }	Flawitzky. Ber. 15,
44 44	44	1.5084, 23°	11.
11 11		1.5048, 14°	Gladstone. Bei. 9, 249.
	44	1.3098, 148°	Schiff. Ber. 19, 560.
	11	1.5100, 15° }	Perkin. J. P. C. (2),
u u Activo	44	1.49811, 25° }	31, 481.
" Active		1.54, 15°	Le Bel. B. S. C. 25, 545.
	44	1.5425, 16°	Just. A. C. P. 220, 150.
Methylpropylcarbyliodide	"	1.537, 0° }	Wurtz. J. 21, 446.
	(;	1.5219, 11°	(Wagnerend Savtz-
44 44	11	1.539, 0° } 1.510, 20° }	eff. A. C. P. 179,
		1.499, 15°	Romburgh. Ber. 16,
Diethylearbyl iodide	44	1.528, 0° }	Wagnerand Saytz- eff. A. C. P. 175,
			(365.
4	4.	. 1.4792	Gladstone. Bei. 9, 249.
44 4-		1.528, 0°	Wagnerand Saytz- eff. A. C. P. 179,
14	44	1.501, 20° 1	318.
Dimethylethylearbyl io-		1.5207, 0° }	Flawitzky, A.C.P.
dide. " "	44	1.4954, 19° (1.524, 0° (179, 348. Wischnegrad-kv. A.
4.6 4.6	44	1.197, 199	C. P 190, 334.
4.6		_ 1.50m, ()° }	Winogradow, A. C.
47 1 1 1 1	44	1.495, 180	P. 191, 125.
Hexyl iodide	C ₆ H ₁₃ I	1,131,19°	hours. J. 16, 526.
41		1,4115	Zincke, C. N. 24, 263.
4.6	11	1.1607, 00 ==)	
. 4 44		_ 1.4363, 20°	Lieben and Janecek.
		1.4178, 40°	J. R. C. 5, 156.
44	11	1.4661, 0° 1.2165, 177°.1	
Secondary hexyl iodide	- 44	1.469	- Wanklyn and Erlen-
			meyer. J. 14, 732.

.

NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
Secondary hexyl iodide	- "	1.3812, 50°	Wanklyn and Erlen meyer. J. 16, 518 Hecht. A.C. P. 165
	- 46	1 4 0000 500	146.
" " " " " " "		1.3839, 50° 1.4193 1.42694, 15° }	Gladstone. Bei. 9 249. Perkin. J. P. C. (2) 31, 481.
Dimethylisopropylcarby iodide. " Pinacolic iodide Normal heptyl iodide		1.3939, 0° } 1.3725, 19° } 1.4739, 0°	Pawlow. A. C. P 196, 122. Friedel and Silva J. C. S. (2), 11,488 Cross. J. C. S. 32
 Dipropylcarbyl iodide			123. Dobriner. A. C. P 243, 23. Kurtz. A. C. P 161, 205.
Normal octyl iodide	" " " " " " " " " " " " " " " " " " "	1.338, 16° 1.355, 0° 1.337, 16° } 1.34069, 15° 1.33163, 25° }	Zincke. J. 22, 371 Krafft. Ber. 19, 2218 Perkin. J. P. C. (2) 31, 481. Dobriner. A. C. P
Methylhexylcarbyliodide """ Normal nonyl iodide		1.3533, 0° } 1.075, 225°.5 } 1.310, 16° } 1.330, 0° } 1.314, 21° } 1.3052, 0° }	243, 23. Bouis. J. 8, 526. De Clermont. J. 21 449.
Normal decyl iodide	- 44	1.2874, 16° } 1.2768, 0° } 1.2599, 16° }	Krafft. Ber. 19, 2218

2d. Miscellaneous Compounds.

NAME.	FORMULA.	Sp. Gravity.	Аптновиту.
Methylene iodide	C H, I,	3,342, 5°	Butlerow, J. 11, 420.
16	***	3.3188, 19°)	,
11 11	* (3.326, 15°.5	Gladstone. Bei. 9,
44	44		249.
11 11	11	3.2843, 16° 3.289, 33° }	Brauns, Bei. 11, 698.
((((44	3.189, 74° }	Diadus, Del. 11, 0.75.
66	((3.28528, 15°)	Perkin, J. P. C. (2),
44	((3.26555, 25°	31, 481.
Ethylene iodide	C ₂ H ₄ I ₂	2.07	E. Kopp. J. P. C. 33, 183.
Ethylidene iodide		2.84, 0°	Gustavson. B. S. C.
Tittly ildene founde 111111		2.03,0	22, 13,
Propylene iodide	C ₃ H ₆ l ₂	2.490, 18°.5	Berthelot and De
44 44	6.6	0.5001 100	Luca. J. 7, 453.
((()	11	2.5631, 19°	Freund. J. C. S. 42, 156.
Trimethylene iodide	((2.59617, 4°)	12, 100.
44 44	(2.57612, 15°	Perkin. Ber. 18,221.
"	((2.56144, 25°)	
Allylene dihydriodate		2.15, 0°	Oppenheim. J. 18, 493.
	"	2.4458, 0°	Semenoff. J. 18, 494.
β Butvlene iodide	C, H, I,	2.291, 0°	Wurtz. C. R. 97,
1			473.
Diallyl dihydriodate		2.024, 0°	Wurtz. J. 17, 511.
Iodoform	CH 13	2.00	Weltzien's Zusam- menstellung.
16	44	4.09	Brügelmann. Ber.
			17, 2359.
Acetylene iodide	C2 H2 I2	3.303, 21°, s.)	Sabanejeff, A. C. P.
Iodethylene (vinyl iodide)	CHI	2.942, 21°, 1.) 1.98	178, 119-121. Regnault.
10dethylene (viny) lodine)	2 111 1	2.09, 0°	Gustavson. Ber. 7,
			731.
Allyl iodide	C3 H3 I	1.789, 16°	Berthelot and De
44 44		1.746, 0°	Luca. Woieikoff. J. 16,
** **		1.740,00	495.
66 66	44	1.818, 120	Linnemann. A. C.
			P., 3d Supp., 267.
(((()	(1	1.839, 14°	Linnemann. A. C.
4.6 4.6		1.8696, 00	P., 3d Supp., 264.) Zander. A. C. P.
16 16	11	1.6601, 1020.6	214, 181.
(, ((1.846, 15°	Romburgh, Ber. 16,
	4.4	1 00100 150	392.
(1 (1		1.82403, 15° 1.80776, 25°	Perkin, J. P. C. (2), 31, 481.
Allylene hydriodate	"		
66 66		1.8028, 16°	Semenoff, J. 18, 494.
Allylene iodide	C ₈ H ₄ I ₂	2.52, 00	Oppenheim, J. 18,
			493.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Iodallylene	0 0		495.
Propargyl iodide Diallyl hydriodate Iodhexylene	C ₆ II, 1	2.0177, 0° 1.497, 0° 1.92, 10°	Henry. Ber. 17, 1132. Wurtz. J. 17, 514. Destrem. Ann. (5).
Iodobenzene			27, 50. Sehutzenberger. J.
"	((1.833 1.64, 15°	14, 348. Kekulé. J. 19, 554. Ladenburg. A. C.
"		1.8403, 11° 1.7732, 56°.8	
	"	1.7374, 79°.2 1.6486, 135°.5	Schiff. Ber. 19, 560.
Orthoiodtoluene	C, H, I	1.5612, 187°.5	Schiff. Bei. 9, 559. Beilstein and Kuhl-
Metsiodtoluene	"	1,697, 20°	berg. A.C.P. 158, 349. Beilstein and Kuhl-
Benzyl iodide			berg. Z. C. 13, 103. Lieben. J. 22, 425.

LIX. COMPOUNDS CONTAINING C, H, I, O, OR C, H, I, N.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetraiodmethyl oxide Moniodethyl oxide	$\begin{bmatrix} C_2 & H_2 & I_4 & O & \dots \\ C_4 & H_9 & I & O & \dots \end{bmatrix}$	3.345 1.6924, 0°	Brüning. J. 10, 432. Henry. C. R. 100, 1007.
Acetyl iodidePropyl iodacetate	$C_2 H_3 O. I \dots $ $C_5 H_9 I O_2 \dots$	1.98, 17° 1.6794, 7°	Guthrie. J. 10, 344. Henry. C. R. 100, 114.
Methyl β iodpropionate Ethyl β iodpropionate	C ₅ H ₉ I O ₂	1.8408, 7° 1.707, 8° 1.6789, 15°	
Methyl γ iodbutyrate		1.666, 5°	
Iodaldehyde	C ₂ H ₃ I O	2.14, 20°	Chautard. C. R. 102, 118.
Iodaeetone	C ₃ H ₅ I O	2.17, 15°	Clermont and Chautard. C.R.100,745.
Iodhydrodiglycide	C ₆ H ₁₁ I O ₃	1.783	Berthelot and De
Diiodhydrin	C ₃ H ₆ I ₂ O	2.4	Nahmacher. Ber. 5, 356.
EpiiodhydrinSantonyl iodide	C ₃ H ₅ I O	2.03, 13°1.3282	
Iodchinolin	C ₉ II ₆ I N	1.9323}	La Coste. Ber. 18, 780.
		1	h

LX. COMPOUNDS CONTAINING TWO OR MORE HALOGENS.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Chlorobrommethane	C II ₂ Cl Br	1.9907, 19°	Henry. C. R. 101, 599.
Bromochloroform	C H Cl ₂ Br	1.9254, 15°	Jacobsen and Neu- meister. Ber. 15,
44	11	1.983	599. Arnhold. A. C. P. 240, 192.
Chlorobromoform	C H Cl Br ₂	2.4450, 15°	Jacobsen and Neu- meister. Ber. 15,
rt		2.447, 200	599. Dyson. J. C. S. 43, 36.
Ethylene chlorobromide			Henry, A. C. P. 156,
	"	1.705, 11°	Montgolfier and Giraud. C. R. 88, 654.
Ethylidene ehlorobromide			Reboul. A. C. P. 155, 215.
	(I		Denzel. Ber. 11, 1739.
Chlorodibromethane	C H2 Br. C H Br Cl.	2.268, 16°	Denzel. Ber. 11,
	CH2 Cl. CH Br Cl.		1740. Lescoeur. J. C. S.
"	11	1.86850, 15° 1.85420, 25°	34, 718. Perkin, J. P. C. (2), 32, 523.
	C H Cl ₂ . C H ₂ Br	1.238, 15°. ?	Delacre, Bull. Acad. Belg. (3), 13, 251.
Brommethylchloroform Chlortribromethane	C H ₂ Br. C Br ₂ Cl	2.602, 16°	Henry, C. R. 98, 371, Denzel, Ber. 11, 1739.
Dichlordibromethane			Denzel. Ber. 11, 1740.
Trichlordibromethane	C H Cl ₂ . C H Br ₂		Sabunejeff. Ber. 16, 1221.
11	44	2.295, 19°.5 2.129, 100°	Paterno. J. P. C. (2), 5, 98.
Chlordibromethylene			1740.
Dieblarbranethylene	C. H. Cl. Br	1.906, 16°	1741.
Acetylene chlorobromide	C ₂ H ₂ Cl Br	1.8157, 0	41, 391.
Propylene chlorobromide.	11	1.7467, 19° (1221. Reboul. A. C. P
	CH ₃ . CH ₂ B ₁	1.585, 0°)	Friedeland Silva. B

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Propylene chlorobromide_ '' '' Dibronichlorpropylene Chlorodibromhydrin	CH ₃ . CH ₂ . CH Cl Br CH ₃ . CH Br. CH ₂ Cl CH ₂ Br. CH ₂ . CH ₂ Cl CH ₃ . CCl Br. CH ₂ Br C ₃ H ₅ Cl Br ₂	1.60, 20° 1.474, 21° 1.63, 8° 2.064, 0° 2.085, 9° 2.088	Reboul. Ber. 7, 1037. "" Friedel. J. 12, 337. Reboul. J. 13, 461. Oppenheim. J. 21,
"		2.004, 15°	341. Darnstaedter. J. 22,
Chlorobromhydroglycide - Derivative of chlorobrom- hydroglycide.	$ \begin{array}{ccccc} C_3 & H_4 & Cl & Br & \dots \\ C_3 & H_4 & Cl & Br_3 & \dots \end{array} $	1.69, 14° 2.39, 14°	375. Reboul. J. 13, 461. Reboul. J. 13, 462.
Derivative of epidichlor- hydrin.	$C_3 H_4 Cl_2 Br_2$	2.10, 13°	
Bromallyl chloride	C ₃ H ₄ Br Cl	1.63, 11°	232.
Chloracetyl bromide Bromacetyl chloride Trichloracetyl bromide	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.913, 9° 1.908, 9° 1.900, 15°	Wilde. J. 17, 320. Wilde. J. 17, 319. Hofferichter. J. P.
Hexchlortetrabromethyl oxide.	$\mathrm{C_4}\;\mathrm{Cl_6}\;\mathrm{Br_4}\;\mathrm{O}_{}$	2.5, 18°	C. (2), 20, 195. Malaguti. Ann. (3), 16, 25.
Chlorobromethyl acetate _	C ₄ H ₆ Cl Br O ₂	1.6499, 11°.4	Henry. C. R. 97, 1308.
Dichlordibromethyl acetacetate. Tribromchloracetone	$C_6 H_6 Cl_2 Br_2 O_3$ $C_3 H_2 Cl Br_3 O_{}$	1.956, 19° 2.270	Conrad and Guth- zeit. Ber. 16, 1551. Cloëz. Ann. (6), 9,
Bromochloral	C ₂ H Cl ₂ Br O	1.9176, 15°	Jacobsen and Neu- meister. Ber. 15, 599.
ChlorobromalChlorobromhydrin	C_2 H Br ₂ Cl O \ldots C_3 H ₆ Cl Br O \ldots	2.2793, 15° 1.740, 12° 1.7641, 9°	Reboul. J. 13, 458. Henry. Z. C. 13, 604.
Phycite bromodichlorhy-drin. "	C ₃ H ₅ Cl ₂ Br O	$\left.\begin{array}{c} 2.1719,0^{\circ}__\\ 2.1426,17^{\circ}.5 \end{array}\right\}$	Wolff. A. C. P. 150, 32.
Chlorodibromnitrome- thane.			610.
Chlorobromnitrin	C ₃ H ₅ Cl Br N O ₃	1.7904, 9°	Henry. Ber. 4, 701.
Chloriodomethane	C H ₂ Cl I	2.49, 20°	Sakurai. J. C. S. 41, 362.
Chloriodoform	C II Cl ₂ I	2.447, 11° } 2.444, 14°.5 } 1.96	Sakurai. J. C. S. 47, 198. Bouchardat. A. C.
Ethylene chloriodide	C ₂ H ₄ Cl I	2.454, 0° } 2.403, 21°.5 } 2.151, 0°	P. 22, 230. Borodine. J. 15, 391. Simpson. J. 16, 485.
· · · · · · · · · · · · · · · · · · ·	"	2.39, 20° 2.16439, 0° 1.87915, 140°.1	Maumené. J. 22, 345. Thorpe. J. C. S. 37, 371.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
ChloriodethyleneAcetylene chloriodide	C ₂ H ₂ Cl I	2.1431, 0° 2.2298	Henry, C. R. 98, 742. Plimpton. J. C. S. 41, 391.
	11	$\left. \begin{array}{c} 2.154,0^{\circ} ___ \\ 2.1175,19^{\circ} \end{array} \right\}$	Sabanejeff. Ber. 16, 1221.
Propylene chloriodide	C ₃ H ₆ Cl I	1.932, 0° 1.824	Simpson. J. 16, 494. Oppenheim. J. 20, 571.
β Chlorallyl iodide a Chlorallyl iodide	C ₃ II ₄ Cl I	$ \begin{bmatrix} 1.977, 15^{\circ} & - \\ 1.880 \\ 1.913 \end{bmatrix} $ 15°	Romburgh. Ber. 16, 393.
DichloriodhydrinOrthochloriodobenzene	C ₃ H ₅ Cl ₂ I C ₆ H ₄ Cl I	2.0476, 9° 1.928, 24°.5	Henry. Ber. 4, 701. Beilstein and Kur- batow. A. C. P.
Chloriodotoluene	C, H, Cl I	1.702, 19°	176, 43. Beilstein and Kuhl- berg. A. C. P.
	"	1.716, 17°	156, 82. Wroblevsky. Z.C. 13, 164.
Chloriodethyl acetate	C. H. Cl I O	1.770, 19°.5 1.9540, 18°	
Iodochlorhydrin			1308.
Bromiodomethane	C H ₂ Br I	2.9262, 16°.8	Henry. C. R. 101, 599.
Ethylene bromiodide	C II2 Br. C II2 I	2.7, 1°	Reboul. A. C. P. 155, 214.
			Simpson. C. N. 29, 53.
		2.514, 30°	
44		. 2.705, 18°, s	
Ethylidene bromiodide		. 2.5, 1°	
		1	Lagermarck. Ber. 7, 907.
Dibromiodethane			Simpson. C. N. 29, 58.
Bromiodethylene			Henry, C. R. 98,
Acetylene bromiodide	"	2.750, 0°, s. 2.6272, 17°.5	41, 391.
Propylene bromiodide	C ₃ H ₆ Br I	2.2, 110	155, 214.
Paraiodorthobromtoluene			Wroblevsky, Z. C. 13, 165.
Metaiodorthobromtolueno			Wroblevsky, Z. C. 14, 210.
Chlorobromiodethane			Henry, C. R. 98
Chlorobromiodhydrin	- C ₃ H ₅ Cl Br I	2.325, 9°	Henry. Ber. 4, 701

LXI. ORGANIC COMPOUNDS OF FLUORINE.*

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Fluobenzene	C ₆ H ₅ F	1.024, 20°	Wallach. A. C. P. 235, 255.
ιι	"	1.0236, 20°	Wallach and Heus- ler. A. C. P. 243,
Paradifluobenzene	C ₆ H ₄ F ₂	1.11	221. Wallach and Heus- ler, A. C. P. 243,
Parafluotoluene	C, H, F	.992, 25°	219.
Parafluochlorobenzene	C ₆ H ₄ Cl F	1.226, 15°	Wallach and Heus- ler. A. C. P. 243,
Parafluobrombenzene Parafluoanilin	C ₆ H ₄ Br F	1.593, 15° 1.153, 25°	219. "Wallach. A. C. P.
Parafluonitrobenzene			235, 255.

LXII. ORGANIC COMPOUNDS OF SULPHUR.

1st. Compounds Containing C, H, and S.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.	
Methyl sulphide	(C H ₃) ₂ S	.845, 21°	Regnault. Ann. (2), 71, 391.	
Ethyl sulphide	(C ₂ H ₅) ₂ S	.825, 20°		
(((("	.83672, 0°	Pierre. C. R. 27, 213. Nasini. Ber. 15,	
Propyl sulphide			2882.	
	, .		19 301	
Ethyl amyl sulphide Butyl sulphide	$\left(C_4 \atop H_9\right)_2 S_{}$.849, 0°	Saytzeff. J. 19, 528.	
		.0300,10	Søytzeff. A. C. P. 175, 351.	
"	((.8317, 23°	Reymann. J. C. S. (2), 13, 141.	
Isobutyl sulphide		.8863, 10°	Beckman. J. P. C. (2), 17, 446.	
Isoamyl sulphide	(C ₅ H ₁₁) ₂ S	.84314, 20°	Nasini. Ber. 15, 2883.	
Oetyl sulphide	(C ₈ H ₁₇) ₂ S	.8419, 17°	Möslinger. Ber. 9, 1004.	

^{*}See also under organic compounds of boron.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl disulphide	C ₂ H ₆ S ₂	1.046, 18°	Cahours. Ann. (3),
•		3 04050 00	18, 258.
Edul disulphide	C ₄ II ₁₀ S ₂	1.06358, 0° About 1.00	Pierre. C. R. 27, 213. Morin. P. A. 48, 484.
Ethyl disulphide	(1110 52	.99267, 20°	Nasini. Ber. 15,
Amyl disulphide	C ₁₀ H ₂₂ S ₂	.918. 150	2882. O. Henry. J. 1, 700.
Methyl trisulphide	C. H. S.	$\begin{array}{c} .918, 18^{\circ} \\ 1.2162, 0^{\circ} \\ 1.2059, 10^{\circ} \end{array}$	
44 44	11	$\{1.2059, 10^{\circ} \\ 1.199, 17^{\circ} = \}$	Klason, Ber. 20, 3415.
		1.130, 17)	0410.
Ethyl mercaptan	C2 H5. S H	.842, 15°	Zeise. P.A.31,389.
Tatilly interest from	02 445.	.835, 21°	Liebig. A. C. P. 11,
66 66		.8456,5°—10°_	15.
11 11	44	.8406,10°-15°	Regnault. P. A. 53,
11 11	. 44	.8356, 15°-20°) 60.
11	6.6	.83907, 20°	Nasini. Ber. 15, 2882.
Butyl mercaptan	C, H, S H	.858, 0° }	(Grabowsky and
		.843, 16° }	Saytzeff. A. C. P. 175, 851.
Isobutyl mercaptan		.848, 11°.5	Humann. J. 8, 613
		.8299, 17°	Reymann. J. C. S
		.83573, 20°	(2), 13, 141. Nasini. Ber. 15
Amyl mercaptan	C ₅ H ₁₁ . S H	.835, 21°	2882. Krutzsch. J. P. C
11		.8548, 00 }	31, 2. Kopp. A. C. P. 95
14 44		.8405, 16°.9	307.
11 11		.83475, 20°	Nasini. Ber. 15 2883.
Hexyl mereaptan	C ₆ H ₁₃ . S H	.8856, 00	Wanklynand Erlen
			meyer. J. 17, 509
Cyrbon tetrameresptide	C(&C, H ₅),	1.01	Claesson. J. 1877
			520.
Ethylene mercaptan		1.123, 28°.5 .987, 20°	Classon. J. P. C
Ethylene dithioethylate_	$C_2 H_4 (S C_2 H_5)_2$		123, 176. V. Meyer. Ber. 19
Ethylene thiovinylethy-	C_2H_4 . SC_2H_3 . SC_2H_3	1.0192H, 15°.5	3266.
late.		1.0167, 190-20	1
Derivative of dithioglycol	C ₅ H ₁₀ S ₃	1.037, 220	Mansfeld, Ber. 19 2662.
Amylene sulphide	C, II,0 S	.907, 180	Guthrie, J. 14, 665
Vinyl sulphide		1.015, 13°	
Allyl sulphide	(C3 115 2 S	5541, 11°	
11 11		85765, 4°	
Allyl trisulphide Fusyl sulphide	O D S	1.012, 150	Bei. 10, 696. Lowig. J. 13, 399
	11. (1)	1 (7)	1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NAME.	FORMULA.	Sp. Gravity.	Authority.
Trisulphhydrin	C ₃ H ₈ S ₃	1.391, 14°.4	Carius. J. 15, 455.
Methyl trisulphocarbonate	C ₃ H ₆ S ₃	1.159, 18°	Cahours. Ann. (3), 19, 162.
Ethyl trisulphocarbonate_	C ₅ H ₁₀ S ₃	1.152	Salomon. J. P. C.
Amyl trisulphocarbonate.	C ₁₁ H ₂₂ S ₃	.877	(2), 6, 433. Hüsemann. J. 15,
Ethylene trisulphocarbon-	$C_3 H_4 S_3$	1.4768	410. Hüsemann. A.C.P.
ate. Propylene trisulphocar-	C_4 H_6 S_3	1.31, 20°	
Butylene trisulphocarbon-	C ₅ H ₈ S ₃	1.26, 20°	434.
ate. Amylene trisulphocarbon-	C ₆ H ₁₀ S ₃	1.073	
ate. Allyl trisulphocarbonate	C ₇ H ₁₀ S ₃	.943	Hüsemann. J. 15, 410.
Phenyl sulphide	$(C_6 H_5)_2 S_{}$	1.119	Stenhouse. J. 18, 532.
Phenyl tetrasulphide	$(C_6 H_5)_2 S_4$	1.297, 14°.5	Otto. J. P. C. (2), 37, 209.
Phenyl ethyl sulphide	$(C_6 H_5) (C_2 H_5) S_{}$	1.0315, 10°	Beckmann. J. C.
Ethyl paratolyl sulphide _	$(C_7 H_7) (C_2 H_5) S$	1.0016, 17°.5	S. 36, 37. Gäbler. Ber. 13,
Phenyl mercaptan	C ₆ H ₅ . S H C ₇ H ₇ . S H	1.078, 14° 1.058, 20°	1277. Vogt. J. 14, 630.
Benzyl mercaptanXylyl mercaptan	C. H. S H	1.036, 13°	
Mesitylene mercaptan	C ₉ H ₁₁ . S H	1.0192	Holtmeyer. J. 20, 708.
Cymyl mercaptan	C ₁₀ H ₁₃ . S H	.9975, 17°.5 .989	Flesch. C. C. 4, 519. Fittica. A. C. P. 172, 326.
	"	.995	Bechler. Leipzig In-
Methylcymyl mercaptan _ Naphtyl mercaptan	C ₁₁ H ₁₅ . S H	.986	aug. Diss. 1873.
Naphtyl mercaptan	C ₁₀ H ₇ . S H	1.146, 25	Schertel. J.17,533.
Thiophene	C ₄ H ₄ S	1.062, 23°	V. Meyer. Ber. 16, 1471.
66	"	1.08844, 0° 1.0769, 10°	
(("	1.0651, 20°	
"	((1.0533, 30° 1.0413, 40°	C. I. C. D. TO TOTAL
((£6	1.0291, 50°	Schiff. Ber. 18, 1605.
66	((1.0169, 60°	
((1.0045, 70° .9920, 80°	
it		.98741, 84° j	
44	"	1.05928, 4°	Nasini and Scala. Bei. 10, 696.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Thiophene	C, H, S	1.07387, 11°.8.	1
it	46	1.06835, 16°.5	
		1.06466, 19°.7. 1.06432, 20°	
	11	1.06045, 23°.4	Knops. V. H. V.
11		1.05662 260 6	1887, 17.
	6.6	1.05662, 26°.6. 1.05332, 29°.2.	
		1.0534, 32°	
Thiotolene	C ₅ II ₆ S	1.0194, 18°	Meyer and Kreis. Ber. 17, 788.
Orthothioxene	C ₆ II ₈ S	.9777, 21°	Demuth. Ber. 19, 1858.
	"	.9938, 21°	Grunewald, Ber. 20, 2586.
Metathioxene		.9755, 17°.5	Messinger. Ber. 18, 1637.
	16	.9956, 20°	Zelinsky. Ber. 20 2017.
Ethylthiophene	t t	.990, 24°	Meyer and Kreis Ber. 17, 1558.
Normal propylthiophene.	C. II., S	.974, 160	11 11
Normal propylthiophene. Isopropylthiophene.		.9695, 16°	Sebleicher, Ber. 19 673.
Normal butylthiophene	C ₈ H ₁₂ S	.957, 19°	Meyer and Kreis Ber. 17, 1558.
Diethylthiophene		.962, 14°	
Octylthiophene	C ₁₂ H ₂₀ S	.8118, 20°.5	Schweinitz. Ber. 19
β Methylpenthiophene	C ₆ II ₈ S	.9938, 19°	Krekeler, Ber. 19 3271,

2d. Compounds Containing C, H, S, and O.

NAME.			Formu	LA.	SP. GRAVITY.	Аптновиту.
Methyl Methyl	sulphi ethyl s	te	$\begin{pmatrix} C & H_3 \end{pmatrix}_2 S & O_3 \\ (C & H_3) & (C_2 & I) \end{pmatrix}$	I ₅) S O ₃ .	1.0456, 16°.2 1.0675, 18°	Carius. J. 12, 86, Curius. A. C. P.
Ethyl s	ulphite	specificação do derido no no en m	$(C_2 H_5)_2 S C$	3	1.085, 16°	
4.6	1.1					Pierre, C. R. 27, 218.
6.6	4.4		4.4		1.1063, 00 }	Carins. J. P. C. (2),
4.6	4.4		6.6		1.0926, 120.7	2, 285.
4.4	4.4		1.6		4 07 10 110	
Methyl	sulphi	te			1.321, 220	Dumas and Peligot.
2.1. (013)			(0 003/2	4	,	Ann. (2), 55, 33.
4.4	4.6		4.6		1.385, 130	
4.6	4.4		4.6			
						(2), 19, 244.
4.6	11		4.4		1.33344, 15°	(-/,,
6.6						Perkin, J. C. S. 49,
4.6	14		6.6		1.32386, 25°	00 m 20 (1 1

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl sulphate	(C ₂ H ₅) ₂ S O ₄	1.120 1.1837, 19°	Wetherill. J. 1, 692. Claesson. J. P. C. (2), 19, 258.
(1 (1		1.167	Stempnevsky. Ber. 15, 947.
Ethyl sulphurous acid		1.3	Kopp. A. C. P. 35, 343.
Ethyl sulphuric acid		1.319	Vogel. Gmelin's Handbuch.
		1.315 1.317 1.215	Marchand. Gme- lin's Handbuch. Duflos. Gmelin's
Ethyl ethylsulphonate	C ₄ H ₁₀ S O ₃	1.1712, 0° } 1.1508, 20°.4 } 1.14517, 22°	Handbuch. Carius. J. P. C. (2), 2, 269. Nasini. Ber. 15,
Isoamyl ethyl sulphone	C ₇ H ₁₆ S O ₂	1.0315, 18°	Beckmann. J.C.S.
Diisobutyl sulphone Methyl methylxanthate	${^{{\rm C}_8}}{^{{\rm H}_{18}}}{^{{\rm S}}}{^{{\rm O}_2}}{^{$	1.0056, 18° 1.143, 15°	36, 38. "Cahours. Ann. (3),
		1.176, 18°	19, 160. Salomon. J. P. C. (2), 8, 114.
Ethyl methylxanthate	$C H_3 O. C. S. C_2 H_5 S.$	1.12, 18° 1.123, 11°	Chancel. J. 3, 470.
Methyl ethylxanthate	$C_2 H_5 O. C S. C H_3 S$	1.129, 18°	Salomon. J. P. C. (2), 8, 114.
"		1.11892, 4°	Nasini and Scala. Bei. 10, 696.
Ethyl ethylxenthate	$C_2 H_5 O. CS. C_2 H_5 S$	1.0703, 18°	Zeise. A. C. P. 55, 310.
" "		1.07	Debus. A. C. P. 75, 125.
ει ει <u></u>		1.085, 19°	Salomon. J. P. C. (2), 6, 433.
Methyl propylxanthate			Nasini and Scala. Bei. 10, 696.
Ethyl propylxanthateEthyl butylxanthate	$C_3 H_7 O. CS. C_2 H_5 S C_4 H_9 O. CS. C_2 H_5 S$	1.05054, 4° 1.003, 17°	Mylius. B. S. C. 19, 221.
Butyl butylxanthate Ethyl dithioxycarbonate _	$C_{4}H_{9}O. CS. C_{4}H_{9}S. C_{2}H_{5}S.$	1.009, 12° 1.084, 20°	Schmidt and Glutz. J. 21, 575.
"		1.085, 19°	Salomon. J. P. C. (2), 6, 433.
Ethyl thioxycarbonate Ethyl dioxythiocarbonate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0285, 18° 1.032, 1° 1.031, 19°	Debus. J. 3, 465. Salomon. J. P. C.
Ethylbutylthioxycarbon-	C_2H_5S . CO. C_4H_9O	.9939, 10°	(2), 6, 433. Mylius. Ber. 6, 312.
Ethyldioxysulphocarbon-ate. ?	$C_{2}H_{5}O.\ CO.\ C_{4}H_{9}S_{-}$ $C_{6}H_{10}S_{4}O_{2}$.9938, 10° 1.26043, 4°	Nasini and Scala. Bei. 10, 696.
	$C_8 H_{14} S_4 O_2 - \cdots$	1.19661, 4°	li b li

Name.	FORMULA.	SP. GRAVITY.	Ачтиовіту.
Xanthurin	Ū ₄ H ₈ S O ₂	1.012	Couerbe, A. C. P. 40, 297.
Thiacetic acidEthyl ethylthioglycollate	C ₂ H ₄ S O	1.074, 10° 1.0469, 4°	Ulrich. J. 12, 355.
Ethyl amylthioglycollate_		.9797, 4°	23, 445. Claesson. B. S. C.
Ethyl phenylthioglycol-	C ₁₀ H ₁₂ S O ₂	1.136, 4° } 1.1269, 15° }	
Disulphamylene oxide	C ₁₀ H ₂₀ S ₂ O	1.054, 13° 1.049, 8°	Guthrie. J. 12, 483.
Aldehyde with sulphalde- hyde.*	$C_2 H_4 O + C_2 H_4 S_{}$	1.134	Weidenbusch. J. 1, 550
Diheptylene sulphoxide Monosulphhydrin	C ₃ H ₈ S O ₂	1.295, 112,4	Schiff. J. 21, 724. Carius. J. 15, 453.
DisulphhydrinEthyl thioxulate	$C_6 \Pi_{10} \stackrel{S}{S} O_3$	1.1446, 0°	Carins. J. 15, 454. Morley and Saint. J. C. S. 43, 400.
Oxysulphobenzid	C ₁₂ H ₁₀ S O ₄	1.3663, 15°	
Oxyphenyl mercaptan		1.1889, 100°	Haitinger. M.C.4,
Thiophene aldehyde	C ₅ H ₄ S O	1.215, 21°	19, 1853.
Acetoethylthienone	C ₈ H ₁₀ S O	1.167, 24° 1.0959, 20°	Peter. Ber. 17, 2644 Schleicher. Ber. 19 660.
Acetylthioxene	6.6	1.0910, 17°	

3d. Sulphur Compounds Containing Nitrogen.

. Name.		NAME. FORMULA.		SP. GRAVITY.	AUTHORITY.		
Methyl		ite					Cahours. Ann. (3) 18, 261. Pierre. C. R. 27, 213. Nasini and Scala
Ethyl th		C	NC.		-		Bei. 10, 696. Cahours. Ann. (3) 18, 265. Lowig. P. A. 67 101.
4 6 6 5 6 5 8 6	66			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		.870135 } 146°	Buff. Ber. 1, 206
6.6	6.6			6.6			Nasini and Scala Bei. 10, 696.

^{*}Pinner's formula Werdenbusch calls it "suphhydrate of acetyl mercaptan," and writes the formula Γ_{12} $\Pi_{26} >_7$.

.

. NAME.			FORM	ULA.	SP. GRAVITY.	AUTHORITY.
Isopropy	thioeya	nate	N C. S C ₃ I	H ₇	.989, 0° .974, 15° .963, 20°	Gerlich. Ber. 8, 651. L. Henry. J. 22,
Amyl thi	ocyanat	9	$\begin{array}{c c} \mathbf{N} & \mathbf{C}. & \mathbf{S} & \mathbf{C}_5 & \mathbf{I} \\ \mathbf{N} & \mathbf{C}. & \mathbf{S} & \mathbf{C}_6 & \mathbf{I} \end{array}$	H ₁₁		361. O. Henry. J. 1, 700.
Allyl thic						Pelouze and Cahours. J. 16, 526.
Methyl th	1.4		11		$\left\{ \begin{array}{c} 1.071, 0^{\circ} \\ 1.056, 15^{\circ} \\ 1.06912, 4^{\circ} \end{array} \right\}$	Gerlieh. Ber. 8, 653. Nasini and Scala.
Ethyl thi	ocarbim	ide	C S. N. C. 1	H ₅	1.01925, 0°	Bei. 10, 696.
66	"		66		.997525, 21°.4_ .997235, 22° .87909 \ 1202.0	Buff. Ber. 1, 206.
66	44		66		.87909 .873513}133°.2 1.0030, 18°	
"	"		66		.99525, 4°	249. Nasini and Scala. Bei. 10, 696.
			CS. N. C. I		.9187, 15° }	Rudneff. Ber. 12, 1023.
44	6.6		66		$\left \begin{array}{c} .957538,0^{\circ} \\ .94189,17^{\circ} \\ .78749,182^{\circ} \end{array} \right\}$	Buff. Ber. 1, 206.
			CS. N C ₆ I		.9253	Uppenkamp. Ber. 8, 56.
Allyl thic	carbimi	de	C S. N C ₃ I	15	1.015, 20°	Dumas and Pelouze. Ann. (2), 53, 182.
"	* *		6.6		1.009 1.010 1.0282 , 0° 1.0173 , 10°.1	Will. A. C. P. 52, 4. Kopp. A. C. P. 98,
66 66	6 6 6 6		"		$\begin{bmatrix} 1.0173, 10^{\circ}.1 \\ .8739 \\ .8741 \end{bmatrix}$ 150°.1	367. Schiff. Ber. 14, 2767.
66	"		66		.8740, 151°.3 1.00572, 4°	Schiff. Ber. 19, 560. Nasini and Scala.
Phenyl th	iocarbir	nide	C S. N C ₆ 1	I ₅	1.135, 15°.5	Bei. 10, 696. Hofmann. J. 11,
66	"		66		1.155, 17°.5	349. Billeter. C. C. (3), 6, 101.
66	"		"		.9398, 219°.8 1.12891, 4°	Schiff. Bei. 9, 559. Nasini and Scala.
"	"		"			Bei. 10, 696. Madan. C. N. 56, 257.
Sulpho-ui	ea		C H ₄ N ₂ S		1.406, 4°	Schröder. Ber. 12, 561. Schröder. Ber. 13,
Thialdin.					1.191, 18°	1070. Wöhler and Liebig.
Oenantho Diamylen Diamylen nate.	thialdin e dithiog	yanate _			.896, 24° 1.07, 13° 1.16, 13°	A. C. P. 61, 4. Sehiff. J. 21, 724. Guthrie. J. 14, 665.

NAME.	FORMULA.	Sp. Gravity.	Ачтновиту.
Sulphocarbanilide Thiocyanacetone Acetyl thiocyanate	C ₁₃ H ₁₂ N ₂ S C ₄ H ₅ S N O	1.311 } 4° { 1.300 } 4° { 1.209, 0° }	Schroder. Ber. 12, 1611. Teherniak and Hel-
			1205.
Benzoyl thiocyanate			Miquel. C. R. 81, 1210.
Ethyl thiocyanacetate	C ₅ H ₇ N S O ₂	1.174	Heintz. J. 18, 347, Claesson. Ber. 10, 1349.
Cystic oxide	C ₃ H ₇ N S O ₂	1.7143	Venables. Watts' Dict.

4th. Sulphur Compounds Containing Halogens.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetrachlor-methyl mer- captan.	C S Cl,	1.712, 12°.8	Rathke. A. C. P. 167, 198.
14 44	((1.722, 0° 1.7049, 11° 1.6953, 17°.5	Klason. Ber. 20, 2378.
Dichlorethyl sulphide Tetrachlorethyl sulphide	$(C_2 \text{ II}_3 \text{ Cl}_2)_2 \text{ S}$ $(C_2 \text{ H} \text{ Cl}_4)_2 \text{ S}$	1.547, 12° 1.673, 24°	Riche. J. 7, 556. Regnault. Ann. (2), 71, 406.
Ethyl chlorperthiocarbon-	$C_2 \coprod_5 S_2 Cl_2$	1.1408, 16°	
Ethylene dithiodichloride Ethylene dithiodichloride Chlorethylene dithiodi-	$(C_2 \text{ H}_4)_2 \text{ S}_2 \text{ Cl}_2$ $(C_2 \text{ H}_4)_2 \text{ S}_2 \text{ Cl}_2$ $(C_2 \text{ H}_3 \text{ Cl})_2 \text{ S}_2 \text{ Cl}_2$	1.408, 13° 1.346, 19° 1.599, 11°	Guthrie. J. 12, 482. Guthrie. J. 13, 435. Guthrie. J. 13, 433.
chloride. Dichlorethylene thiodi- chloride.	$(C_2 H_2 Cl_2)_2 S Cl_2$	1.225 1.219 } 13°.5 .	
Amylene thiodichloride - Amylene dithiodichloride Trichloramylene thiodi-	$ \begin{array}{c} \text{C}_5 \text{ H}_{10} \text{ S Cl}_2 \\ \text{(C}_5 \text{ H}_{10})_2 \text{ S}_2 \text{ Cl}_2 \\ \text{(C}_5 \text{ H}_7 \text{ Cl}_3)_2 \text{ S Cl}_2 \\ \end{array} $	1.138, 14° 1.149, 12° 1.406, 16°	Guthrie. J. 12, 481. Guthrie. J. 12, 480. Guthrie. J. C. S.
chtoride. Methylsulphonic chloride	С П 3 С1 S О 2	1.51	13, 44. McGowan, J. P. C. (2), 30, 280.
Dichlormethylsulphonic chloride.	C II Čl ₃ S Ō ₂		McGowan, Leipzig In. Diss. 1884.
Ethylsulphonic chloride	C ₂ H ₃ Cl S O ₂		cel. J. 5, 435.
Phonylsulphonic chloride Trichlormethyl amyl sul-	C Cl ₃ , C ₅ H ₁₁ , S O ₃		Gerhardt and Chan- cel. J. 5, 434. Carius. A. C. P.
phite. Ethyl chlorosulphonate			113, 36.
44 44	44	1.8556, 27° 1.824, 61° }	Purgold, J. 21, 416.

Ethyl ehlorosulphonateC_2 E "" ""	", ", ", ", ", ", ", ", ", ", ", ", ", "	1.3539, 27° { 1.3874, 0° } 1.3541, 27° } 1.184, 16° 1.078, 17°.5 1.27, 12° 1.28, 15° 2.3775, 17° 2.7966, 19° 1.652, 23°	38. Annaheim. Ber. 9, 1150. " " " " " " " V. Meyer. Ber. 16, 1470.

LXIII. ORGANIC COMPOUNDS OF BORON.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Boron triethyl	B (C ₂ H ₅) ₃	.6961, 23°	Frankland and Duppa. J. 13, 386.
Trimethyl borate	(C H ₃) ₃ B O ₃	.9551, 0°	Ebelmen and Bouquet. J. P. C. 38,
" " Triethyl borate	(C ₂ H ₅) ₃ B O ₃	.940, 0° } .915, 20° } .8849	Schiff. A. C. P., 5th Supp., 184. Ebelmen and Bou-
и и			quet. J. P. C. 38, 215. Bowman. P. M. (3),
11 11 11 11 11 11 11 11 11 11 11 11 11	66	.887, 0° } .861, 26°.5 }	29, 548. Schiff. A. C. P., 5th Supp., 161.
Methyl diethyl borate Tripropyl borate	. (C ₃ H ₇) ₃ B O ₃	.867, 16°	Schiff. A. C. P., 5th Supp., 197. Cahours. C.C. 4, 482.
Triâmŷl borate	$\left(\left(\operatorname{C}_{5}^{-}\operatorname{H}_{11}^{+}\right) _{3}\operatorname{B}\operatorname{O}_{3}^{-}\right) $.870	Ebelmen and Bouquet. J. P. C., 38, 219.
11 11		.872, 0°	
"		.852, 24°	
(1 11		\begin{pmatrix} .840 \\ .855 \end{pmatrix} 28°	Sehiff. A. C. P., 5th Supp., 189
<i>ii</i>		.853, 29, an- other lot.	

Name.	FORMULA.	SP. GRAVITY.	Authority.
Ethyl diamyl borate Diethyl amyl borate Amyl metaborate "" Tetraphenyl borate "" Ethylene fluoborate	(C ₆ H ₅) ₄ C ₅ H ₁₁ B O ₃ - (C ₆ H ₅) ₄ B ₂ O ₅	.55, 26°	Schiff. A. C. P., 5th Supp., 189. Schiff and Bechi. J. 19, 493. Schiff. A. C. P., 5th Supp., 208.

LXIV. ORGANIC COMPOUNDS OF PHOSPHORUS.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Triethylphosphin	P (C ₂ H ₅) ₃	.812, 15°.5	Hofmann and Ca- hours. J. 10, 372.
Monoctylphosphin	P H ₂ (C ₈ H ₁₇)	.8209, 17°	Möslinger. Ber. 9,
Phenylphosphin	P H ₂ (C ₆ H ₅)	1.001, 15°	Köhler and Michael- is. Ber. 10, 809.
Diphenylphosphin	P H (C ₆ H ₅) ₂	1.07, 16°	Dörken. Ber. 21,
Triphenylphosphin	P (C ₆ H ₅) ₃	1.194	Michaelis and So- den. A.C. P. 229, 302.
		1,186	
Dimethylphenylphosphin	P (C H ₃) ₂ C ₆ H ₅	.9768, 11°	
Diphenylmethylphosphin	P C II ₃ (C ₆ II ₅) ₂	1.0784, 15°	Michaelis and Link. A. C. P. 207, 209.
Diethylphenylphosphin	P (C ₂ H ₅) ₂ C ₆ H ₅	.9571, 13°	Michaelis. Ber. 8, 494.
Ethyl phosphite	(C ₂ H ₅) ₃ P O ₃	1.075	Williamson. J. 7,
Methyl hypophosphate	(C II ₈) ₄ P ₂ O ₆	1.109, 15°	
Ethyl hypophosphate			
Propyl hypophosphate Isobutyl hypophosphate Methyl orthophosphate	C, II, P, O6	1.125, 15° 1.2378, 0°	11 11
14 14	44	_ 1.0019, 197°.2.	221, 61.
Dimethyl ethyl orthophos phate. " " - Ethyl orthophosphate	$(C_{13})_{3} \stackrel{C}{\underset{i_{1}}{\subset}} \Pi_{5}. \Gamma O_{4}$ $(C_{2} H_{5})_{3} \Gamma O_{4}$. 1.1752, 0° .95188, 203°.3. 1.072, 12°	Limpricht. J. 18,
Ethyl pyrophosphateAmyl nmylphosphite	$\begin{array}{c} (C_2 \ H_3)_4 \ P_7 \ O_7 \\ (C_5 \ H_{11})_2 \ H \ P \ O_3 \ \dots \end{array}$	1.172, 17°	

-

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Diamylphosphoric acid Triphenyl phosphite	$(C_5 H_{11})_2 H P O_{4} (C_6 H_5)_3 P O_{3}$	1.025, 20° 1.184, 18°	Fehling. Noack. A.C. P. 218,
Phosphenyl ether	$C_6 H_5 P O_2 (C_2 H_5)_{2}$	1.032, 16°	99. Köhler and Michael-
Phenylphosphinic acid	C ₆ H ₅ . H ₂ P O ₃	1.475, 4°	is. Ber. 10, 817. Schröder. Ber. 12,
Diphenylphosphinic acid_	(C ₆ H ₅) ₂ H P O ₂	1.331 1.347 } 4°	561.
Phenoxyldiphenylphos- phin.	C ₆ H ₅ O (C ₆ H ₅) ₂ P	1.140, 24°	Michaelis and La Coste. Ber. 18,
Triphenylphosphin oxide_	(C ₆ H ₅) ₃ P O	1.2124, 22°.6	2111. Michaelis and La Coste. Ber. 18,
Naphtylphosphinic acid	C ₁₀ H ₇ . H ₂ P O ₃	1.435 \ 40 {	2120. Schröder. Ber. 12, 561.
Naphtylphosphinic acid	C ₁₀ H ₇ . H ₂ P O ₂	1.377, 4°	} "
Complex ether?		iusion.	Geuther. A. C. P. 224, 278.
		1.00.000	
Amylnitrophosphorous acid.	$\begin{pmatrix} (C_5 H_{11})_2 & \Pi & P & N & O_4 \\ & & & & \end{pmatrix}$	$\left\{ \begin{array}{c} 1.02, 20^{\circ} \\ 1.00, 70^{\circ} \end{array} \right\}$	Guthrie. J. 11, 404.
Ethylphosphorouschloride	C ₂ II ₅ P O Cl ₂	1.316, 0°	Menschutkin. A. C. P. 139, 344.
:: :: :: :: :: :: :: :: :: :: :: :: ::	"	1.305265, 0° 1.13989, 117°.5	Thorpe. J. C. S.
Butylphosphorous chloride.	$C_4 H_9 P O Cl_2$	1.191, 0°	Menschutkin. J.19, 487.
Amylphosphorous chloride.	$C_5 H_{11} P O Cl_2$	1.109, 0°	"
Diacetone phosphoroso- chloride.	$C_6 H_{10} P O_2 Cl_{}$	1.209, 17°.5	Michaelis. Ber. 18, 900.
Phenylphosphorous chlo- ride.	$C_6 H_5 P O Cl_2$	1.3549	Hölzer. Quoted by Noack.
" " —		1.348, 18°	Noack. A. C. P. 218, 91.
"		1.3543, 20°	Anschütz and Emery. A. C. P. 239, 310.
Diphenylphosphorous chloride.	$(C_6 H_5)_2 P O_2 Cl$	1.2494	Hölzer. Quoted by Noack.
		1.221, 18°	Noack. A. C. P. 218, 92.
Phosphenyl chloride	$C_6 H_5 P Cl_2$	1.319, 20°	Michaelis. C. C. 4, 548.
((()		1.3428, 0° 1.10415, 224°.6	Thorpe. J. C. S. 37, 372.
Phosphenyl oxychloride	C ₆ H ₅ P Cl ₂ O	1.375, 20°	Michaelis. C. C. 4, 548.
Diphenyl phosphochloride	(C ₆ II ₅) ₂ P Cl	1.2293, 15°	Michaelis and Link. A. C. P. 207, 209.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Metachlorocarbonylphe- nylorthophosphoric chloride.	C, II, P O, Cl,	1.54844, 20°	Anschütz nnd Moore. A. C. P. 239, 335.
Parachlorocarbony lphe- nylorthophosphoric chloride			Anschütz and Moore. A. C. P. 239, 344.
By action of P Cl ₅ on salicylic acid.	C ₇ H ₄ P O ₂ Cl ₅	1.62019, 20°	Anschütz und Moore. A. C. P. 239, 320.
Paraxylylphosphochlo- ride.	C ₈ H ₉ P Cl ₃	1.25, 18°	Weller. Ber. 21, 1494.
Paraxylylphosphoroxy- chloride.	C ₈ H ₉ P O Cl ₂	1.31, 18°	
Sulphophosphorous ether-	(C ₂ H ₅) ₃ P S ₃	1.24, 120	Michaelis, C. N. 25,
Ethyl pyrosulphophos- phate.	$(C_2 H_5)_4 P_2 S_3 O_{4}$	1.1892, 17°	
Amyl sulphophosphate Ethylsulphophosphorous chloride.	$(C_5 H_{11})_3 PSO_3 - C_2 H_5 PSCl_2 - C_2$.849, 12° 1.30, 12°	
Triethoxylpyrophosphor- sulphobromide.	$(C_2 H_5)_3 \operatorname{Br} P_2 S_3 O_3$	1.3567, 19°	Michaelis, A. C. P.
Phosphenyl sulphochlo-	C ₆ H ₅ P Cl ₂ S	1.376, 13°	Kohler and Michaelis. Ber. 9, 1053
Triphenyltrisulphophos- phamide.	(C ₆ H ₅) ₃ H ₃ N ₃ P S	1.31	

LXV. ORGANIC COMPOUNDS OF VANADIUM, ARSENIC, ANTIMONY, AND BISMUTH.

Name.	FORMULA.	Sp. Gravity.	Ачтновиту.
Ethyl orthovanadate	(С ₂ П ₅) ₃ V О ₄	1.167, 17°.5.	Hall. J. C. S. 51, 752.
Dimethylarsine oxide	(A · C ₂ H ₆) ₂ O	1.462, 15°	Bunsen. P. A. 40,
Triethylarsine Methyl arsenite	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.151, 16°.7 1.428, 9°.6	
Ethyl arsenite Amyl arsenite Methyl arsenate	(C, H ₁₁), As O,	1.0525, 00	Crafts. J. 20, 552. Crafts.
Ethyl arsenate	(C ₂ H ₅) ₃ As O ₄	1.3264, 0° }	324. Crafts. J. 20, 551.
Phonylarsenic acid	C ₆ H ₇ As O ₃	$ \begin{vmatrix} 1.760 \\ 1.803 \\ 1.805 \end{vmatrix} 4^{\circ} = \{ $	Schröder. Ber. 12, 561.
Diphenylarsenic acid	C ₁₂ H ₁₁ As O ₂	1,545, 4°	

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Diphenylarsine chloride	As (C ₆ H ₅) ₂ Cl	1.42231, 15°	La Coste and Michaelis. Ber. 11,
Phenylarsine bromide	As (C ₆ H ₅) Br ₂	2.0983, 15°	Michaelis. Ber. 10, 626.
Ethyl thioarsenite	As (S C ₂ H ₅) ₃	1.3141, 16°	
Trimethylstibine Triethylstibine	Sb (C H ₃) ₃	1.523, 15° 1.3244, 16°	Löwig and Schweit-
Triamylstibine	Sb (C ₅ , H ₁₁) ₃	1.1333, 17°	zer. J. 3, 471. Berlé. J. 8, 586.
Triethylstibine chloride		1.0587	Cramer. J. 8, 590. Löwig and Schweit- zer. J. 3, 476.
Triethylstibine bromide Triphenylstibine		1.953, 17° 1.4998, 12°	"
Metatritolylstibine	Sb (C ₇ H ₇) ₃	1.3957, 15°.7	Michaelis and Genz- ken. A. C. P. 242,
Paratritolylstibine	"	1.35448, 15°.6_	185. Michaelis and Genz- ken. A.C. P. 242, 169.
Bismuth trimethyl	Bi (C H ₃) ₃	2.30, 18°	Marquandt. Ber. 20,
Bismuth triethylBismuth triphenyl	Bi (C ₂ H ₅) ₃ Bi (C ₆ H ₅) ₃	1.82 1.5851, 20°	1517. Breed. J. 5, 602. Michaelis and Polis. Ber. 20, 55.

LXVI. ORGANIC COMPOUNDS OF SILICON.

			
NAME.	FORMULA.	SP. GRAVITY.	Authority.
Silicon tetrethyl	Si (C ₂ H ₅) ₄	.7657, 22°.7	Friedel and Crafts. A. J. S. (2), 49, 311.
et et	"	.8341, 0°	Ladenburg. B. S. C. 18, 240.
Silicon hexethyl	Si ₂ (C ₂ H ₅) ₆	.8510, 0° .8403, 20° } {	Friedel and Ladenburg. A. C. P. 203, 251.
Silicon tetrapropyl	Si (C ₃ H ₇) ₄	.7979, 0° .7883, 15° }	Pape. Ber. 14, 1872.
Silicoheptane	Si C ₆ H ₁₆	.7510, 0°	Ladenburg. A. C. P. 164, 300.
Silicodecane	Si C ₉ H ₂₂	.7723, 0° .7621, 15° }	Pape. Ber. 14, 1872.
Silicon triethyl phenyl	Si (C ₂ H ₅) ₃ C ₆ H ₅	.9042, 0°	Ladenburg. C. C. 5, 312.

Name.	FORMULA.	SP. GRAVITY.	А стновіту.
Silicon tetraphenyl Pera-silicon tetratolyl Meta-silicon tetratolyl Silicon tetrabeuzyl	Si (C ₆ H ₅) ₄	1.078, 20° = 1.0793, 20° = 1.1188, 20° = 1.0776, 20° =	Polis, Ber. 19, 1012.
Ethyl metasilicate	$(C_2 H_5)_2 \bar{S}i \bar{O}_3$	1.079, 24°	Ebelmen, A. C. P.
Methyl orthosilicate	$(C/H_3)_4$ Si O_4	1.0589, 0°	57, 339. Friedel and Crafts.
Trimethyl ethyl orthosili-	$(C H_3)_3 C_2 H_5 Si O_4$	1.023	J. 18, 465. Friedel and Crafts.
Dimethyl diethyl ortho-	$(\mathrm{C}\;\mathrm{H_3})_2\big(\mathrm{C_2}\;\mathrm{H_5})_2\mathrm{Si}\;\mathrm{O_4}$	1.004, 00	J. 19, 491.
silicate. Methyl triethyl orthosili-	C H_3 (C ₂ H_5) ₃ Si O ₄ -	.989, 0°	66 66
Ethyl orthosilicate	(C ₂ H ₅) ₄ Si O ₄	.932	Ebelmen, A. C. P. 52, 324.
		.933, 20°	Ebelmen. A. C. P. 57, 334.
	"	.9676, 00	Friedel and Crafts. A. J. S.(2), 48, 158.
" " Propyl orthosilicate	(C H) Si O	.9330, 22°,5 .915, 18°	Mendelejeff, J. 13, 7. Cahours, C.C. 4, 482.
Butyl orthosilicate	(C ₄ H ₉) ₄ Si O ₄	.958, 15°	Cahours, C. C. 5, 20.
Triethyl amyl orthosilicate	$(C_2 H_5)_3 C_5 H_{11} Si O_4 =$.026, 00	Friedel and Crafts. A. J. S. (2), 43, 163.
Diethyl diamyl orthosili- cate.	$(C_2H_5)_2(C_5H_{11})_2SiO_4$.915, 0°	Friedel and Crafts. J. 19, 489.
Ethyl triamyl orthosilicate		.913, 0°	4.6
Amyl orthosilicate	(C ₅ 11 ₁₁), S1 O ₄		Ebelmen. A. C. P. 57, 344.
Hexmethyl disilicate	(C H ₃) ₆ Si ₂ O ₇	1.1441.00	Friedel and Crafts. J. 18, 465.
Hexethyl disilicate		1.0019, 190.24	Friedel and Crafts. J. 19, 489.
Octobyl tetrasilicate.	C ₁₆ H ₄₀ Si ₄ O ₁₂	1.071, 0°) 1.054, 14°.5	Troost and Haute- feuille. B. S. C. 19, 255.
Ethyl silicoacetate		.9283, 0°	Ladenburg, J. C. S.
Methyl silicopropionate.	C ₅ II ₁₆ Si O ₃	.9747, 0°	(2), 12, 40. Ludenburg, A. C. P.
Ethyl silicopropion ite	C ₈ H ₂₀ S O ₃	.9207, 0°	173, 143. Friedel and Laden- burg. A. C. P.
Ethyl silicobenzoate	C ₁₂ H ₂₀ Si O ₃	1.0133, 0° }	159, 259. Ladenburg, J. C. S.
Silicon diethyl diethylate			[24, 11, 1026.] Ladenburg, A. C. P.
Triethylsilicol	$\begin{array}{c c} \operatorname{Si} & \operatorname{C}_6 & \operatorname{H}_{1^5}, & \operatorname{O} & \operatorname{H} \\ \operatorname{Si} & \operatorname{C}_6 & \operatorname{H}_1 & \operatorname{I}_2 & \operatorname{O} & \dots \end{array}$.8709, 0° .8831, 0°	164, 300. Ladenburg. Ber. 4,
		.4590, 0°	Ladenburg, A. C. P.
Silicoheptyl acetate Silicoheptyl ethylate	Si C ₆ H ₁₅ . C ₂ H ₃ O ₁ - Si C ₆ H ₃₅ . C ₂ H ₅ O ₋	.9039, 0°	164, 300.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Silicoheptyl chloride	Si C ₆ H ₁₅ Cl	.9249, 0°	Ladenburg. A. C. P. 164, 300.
Methylsilieic monochlor- hydrin.	Si C ₃ H ₉ Cl O ₃	1.1954, 0°	
Methylsilicic dichlorhy- drin.			
Ethylsilicic monochlorhy- drin.	Si C ₆ H ₁₅ Cl O ₃	1.0483, 0°	Friedel and Crafts. A. J. S. (2), 43, 160.
Ethylsilieic diehlorhydrin	$\operatorname{Si} \operatorname{C}_4 \operatorname{II}_{10} \operatorname{Cl}_2 \operatorname{O}_2$	1.144, 0°	
Ethylsilicic trichlorhydrin	Si C ₂ H ₅ Cl ₃ O	1.241, 0°	
Propylsilicie monochlor- hydrin.	Si C ₉ H ₂₁ Cl O ₃	.980	
Propylsilicic dichlorhy-	Si C_6 H_{14} Cl_2 O_2	1.028	
Derivative of silicon triethylphenyl.	Si C ₁₂ H ₁₉ Cl	1.1085, 0°	Ladenburg. A. C. P. 173, 143.
Silicon iodoform	Si H I ₃	$ \left\{ \begin{array}{cccc} 3.362, 0^{\circ} & \\ 3.314, 20^{\circ} & \end{array} \right\} $	Friedel. A. C. P.

LXVII. ORGANIC COMPOUNDS OF TIN.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stanntetramethyl			13, 605.
Stanndiethyl	Sn ₂ (C ₂ H ₅) ₄	1.558, 15°	Löwig, J. 5, 584,
"Ethylene stannethyl" Stanntriethyl	(t	1.410	Löwig. J. 5, 585.
			15, 004.
Stanntetrethyl	$\operatorname{Sn} \left(\operatorname{C}_{2} \operatorname{H}_{5} \right)_{4}$	1.187, 13°.6	Frankland. J. 12, 411.
StannethyltrimethylStanndiethyldimethyl	$\operatorname{Sn}\left(\operatorname{C}_{2}\operatorname{H}_{5}\right)_{2}\left(\operatorname{C}\operatorname{H}_{3}\right)_{2}-$	1.243 1.2319, 19°	Cahours. J. 14, 551. Frankland. J. 12, 412.
			Two lots. Morgunoff. Z. C. 10, 370.
Stanntetrapropyl			
Stanutriethylphenyl	$\operatorname{Sn} (\operatorname{C}_2 \operatorname{H}_5)_3 \operatorname{C}_6 \operatorname{H}_{5}$	1.2639, 0°	Ladenburg. A. C. P. 159, 251.
Stanntriethyl ethylate			Ladenburg. A. C.
Stanndimethyl iodide	Sn (C H ₃) ₂ I ₂	2.872, 220	Cahours, J. 12, 427.
Stanndimethyl iodide Stanntrimethyl iodide	(1)	2.1432, 0° }	Ladenburg. Z. C.
Stanndiethyl iodide	Sn (C ₂ H ₅) ₂ I ₂	2.1096, 18° J 1.8 2.0329, 15°	Frankland. J. 12, 424.
			413.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Stanntriethyl chloride Stanntriethyl bromide Stanntriethyl iodide Stanntripropyl iodide Stanntributyl iodide "Ethstannethyl chloride" "Ethstannethyl bromide" "Ethstannethyl iodide"	Sn (C ₂ H ₅) ₃ Br	1.630 1.850 1.833, 22° 1.692, 16° 1.540, 15° 1.30 1.48	" " " Cahours. J. 12, 424. Cahours. B.S.C. 19, 301. Cahours. C. C. 5, 20. Löwig. J. 5, 588. "

LXVIII. ORGANIC COMPOUNDS OF ALUMINUM.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Aluminum propylate Aluminum butylate Aluminum butylate Aluminum amylate Aluminum phenylate Aluminum thymolate Aluminum thymolate Aluminum chloride and toluene. " " Aluminum chloride and cymene. " " Aluminum bromide and benzene. " " Aluminum bromide and toluene. " "	Al (C ₃ H ₇ O) ₃	1.026, 4°	C. N. 42, 3.

LXIX. ORGANIC COMPOUNDS OF ZINC, MERCURY, THAL-LIUM, AND LEAD.

NAME.	Formula.	Sp. Gravity.	Authority.
Zinc methyl Zinc ethyl Zinc propyl	Zn (C II ₃) ₂		Frankland and Duppa. J. 16, 473. Frankland. J. 8, 577. Gladstone and
Zine propy!			Tribe. J. S. C. (2), 11, 968. Frankland and Duppa. J. 16,473.
Mercurmethyl Mercurethyl Mercurpropyl	Hg (C H ₃) ₂ Hg (C ₂ H ₅) ₂ Hg (C ₃ H ₇) ₂	3.069 2.444 2.124, 16°	Buckton. J. 11, 388, Buckton. J. 11, 390, Cahours. B. S. C. 19, 301.
Mercurbutyl	Hg (C ₄ H ₉) ₂	1.7469, 0° }	Chapman and Smith. J. C. S. 22, 164.
Mercuramyl	Hg (C ₅ H ₁₁) ₂	1.835, 15° 1.6663, 0°	Cahours. C. C. 5, 20. Frankland and Duppa.
Mercuroctyl	Hg (C ₈ H ₁₇) ₂	1.342, 17°	Eichler. Ber. 12, 1880.
Mercurdiphenyl	Hg (C ₆ H ₅) ₂	$\left\{ egin{array}{c} 2.290 \\ 2.324 \\ 2.340 \end{array} \right\} \ 4$ ° $\left\{ \left[\right]$	Schröder. Ber. 12, 561.
Mercurdinaphtyl	Hg (C ₁₀ H ₇) ₂	$\left\{ \begin{array}{c} 1.918 \\ 1.926 \\ 1.944 \end{array} \right\} 4^{\circ}_{}$	
Mercurmethyl chloride Mercurethyl chloride	$Hg C H_3 Cl$ $Hg C_2 H_5 Cl$	4.063, 4° 3.461 } _{4°}	ee ee
Mercury β hexyl mercaptide.	Hg (C ₆ H ₁₃ S) ₂	3.503 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Wanklyn and Erlenmeyer. J. 17, 510.
Thallium ethylate Thallium amylate	Tl C ₂ H ₅ O Tl C ₅ H ₁₁ O	3.480 } 3.685 } 2.465 }	Lamy. Ann. (4), 3, 373. Lamy. J. 17, 466
Lead tetramethyl Lead diethyl Lead triethyl Lead tetraphenyl Para lead tetratolyl	Pb (C H ₃) ₄	2.034, 0° 1.55 1.62 1.471, 10° 1.5298, 20° 1.4329, 20°	Butlerow. J. 16, 476. Buckton. J. 11, 391. Buckton. J. 12, 409. Klippel. J. 13, 381. Polis. Ber. 20, 716.

LXX. METALLIC SALTS OF ORGANIC ACIDS.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Lithium formate	Li C H O2. H2 O	1.435 }	Schröder. Ber. 14,
Sodium formute	Na C H O2	1.907	tt tt
Potnssium formate	K C H O2	1.896 }	£ € € £
Ammonium formate	Am C H O2	1.264	4.6
Zinc formate	Zu C ₂ II ₂ O ₄	2.368	Schröder. Ber. 14,
11 11	Zn C ₂ H ₂ O ₄ , 2 H ₂ O ₂	2.339	Schröder. Ber. 8,
11 11		2.205	Schröder. Ber. 14,
	(1) (1) (1) (1) (1)	2.1575, 21°.3	23. Breen. F. W. C.
Cudmium formate	Cd C ₂ H ₂ O ₄ . 2 H ₂ O ₋	2.427)	Schröder. Ber. 14,
Calcium formate	Ca C ₂ H ₂ O ₄	2.477}	Schröder. Ber. 8,
14 44 =	44	2.009}	199. Schröder. Ber. 14,
Strontium formate	Sr C ₂ H ₂ O ₄	2.667	22.
11 11	Sr C ₂ H ₂ O ₄ . 2 H ₂ O _	2.266, pulv.	Schröder. Ber. 8, 199.
6.4		2.241, in. of 3.	Schroder. Ber. 14, 22.
Barium formate	Ba C ₂ H ₂ O ₄	3.193, cryst.) 3.219, pulv.	Schröder. Ber. 8, 199.
11 11	44	3.203}	Two lots. Schröder. Ber. 11, 2129.
Lead formate	Pb C ₂ H ₂ O ₄	4.56, 11°	Bödeker and Giesecke, B. D. Z.
44 44	44	4.507 }	Schröder, Dm. 1873.
() ()	44	4.610, cryst. }	Schroder, Ber. 8, 199.
Manganese formate	Mn C ₂ H ₂ O ₄	2.205	Sehröder. Ber. 14, 23.
66 66	Mn C ₂ H ₂ O ₄ . 2 H ₂ O	1.917	4.6 6.6
Nickel formate	Ni C. H. O., 2 H. O.	1.959 2.1547, 20°.2	H. Stalle. F. W. C.
Cobult formate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1080, 20°.2 2.1286, 22°	
Copper formate =	Cu C ₂ H ₂ O ₄ . 4 H ₂ O	1.515, 20°	Gehlen. Ann. 83, 213.
16 16	44	1.511, pulv.) 1.795, cryst.)	Schroder, Ber. 8,
6.6	11		Schroder. Ber. 14,
Strontiam copper formete	Sr ₂ Cu (C H O ₂)6	2.612	Schroder. Ber. 14,

11.7	I	1	
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Strontium copper formate	Sr ₂ Cu (CHO ₂) ₆ . 8H ₂ O	2.132 } 2.133 }	Schröder. Ber. 14,
Barium copper formate Didymium formate	Ba ₂ Cu(CHO ₂) ₆ . 4H ₂ O Di (C H O ₂) ₃	3.427 \ 200 \	Cleve. U. N. A.
Samarium formate	Sm (C ₁ H O ₂) ₃	$\left \begin{array}{c} 3.433 \end{array}\right \left \begin{array}{c} 20 \end{array}\right \left \begin{array}{c} 3.730 \end{array}\right \left \begin{array}{c} 3.732 \end{array}\right \left \begin{array}{c} 20 \end{array} \left \left \begin{array}{c} 20 \end{array} \left \begin{array}{c} 20 \end{aligned} \left \begin{array}{c} 20 \end{array} \left \begin{array}{c} 20 \end{array} \left \begin{array}{c} 20 \end{array} \left \begin{array}{c} 20 \end{array} \left \begin{array}{c} 20 \end{aligned} \left \begin{array}{c} 20 \end{array} \left \begin{array}{c}$	1885.
"		3.737)	
Sodium acetate	Na C ₂ H ₃ O ₂	1.021	Bodeker. B. D. Z. Schröder. Ber. 14,
tt tt		1.529 }	1608. Brügelmann. Ber. 17, 2359.
11 11 11 11 11 11 11 11 11 11 11 11 11	Na C ₂ H ₃ O ₂ . 3 H ₂ O ₋	1.420 1.40, 12°	Buignet. J. 14, 15. Bödeker. B. D. Z.
Sodium triacetate	Na C ₆ H ₁₁ O ₆	1.450 1.456 1.47	Schröder. Ber. 14, 1608. Lescoeur. C. R. 78,
Potassium triacetateSilver acetate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.34 3.1281, 15°	1046. "Liebig and Redten-
			baeher. P. M. (3), 19, 227.
Magnesium acetate	$Mg (C_2 H_3 O_2)_2 - \cdots$	3.222 } 3.259 } 1.419 }	Schröder. Ber. 9, 1888. Sehröder. Ber. 14,
	$Mg(C_2H_3O_2)_2.4H_2O$	1.422 } 1.453 1.455 }	1610.
		1.4487	Kubel. Ber. 19, ref. 283.
Zinc acetate	$\operatorname{Zn} (C_2 H_3 O_2)_2$ $\operatorname{Zn} (C_2 H_2 O_2)_2 \cdot 2 H_2 O_2$	1.810 } 1.869 }	Schröder. Ber. 14, 1610.
Cadmium acetate		1.7175, 12°)	Bödeker. B. D. Z. Schröder. Ber. 14,
	$Cd (C_2 H_3 O_2)_2 . 2 H_2 O$	2.021 }	1611.
Mercuric acetate '' Strontium acetate	$\operatorname{Hg} \left(\operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \right)_{2} \dots $ $\operatorname{Sr} \left(\operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \right)_{2} \dots $	3.2544, 22° 3.2861, 23° 2.099	Hagemann. F.W.C. Schröder. Ber. 14,
:: :: ::	$2 \operatorname{Sr} \left(\operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \right)_{2} . 3 \operatorname{H}_{2} \operatorname{O}$	1.981)	1608.
Barium acetate	Ba (C ₂ H ₃ O ₂) ₂	2.018 }	Sehröder. Ber. 11, 2129.
16 16 11 11 11 11 11 11 11 11 11 11 11 1	((2.316 } 2.440 } 2.480	Two lots. Schröder. Ber. 12, 561. Schröder. Ber. 14,
(t	$\begin{array}{c} \text{Ba } (\text{C}_2 \text{ H}_3 \text{ O}_2)_2 \text{. H}_2 \text{ O} \\ \text{Ba } (\text{C}_2 \text{H}_3 \text{ O}_2)_2 \text{. 3 H}_2 \text{ O} \end{array}$	2.19, 13°	1608. Bödeker. B. D. Z.
Lead acetate	Ba $(C_2 H_3 O_2)_2$. $3 H_2 O$ Pb $(C_2 H_3 O_2)_2$.	2.014 } 2.026 } 3.238 }	Schröder. Ber. 14, 1608. Sehröder. Ber. 14,
	3 2/2	3.264}	1609.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Lead acetate	Pb (C ₂ H ₃ O ₂) ₂ . 3 H ₂ O	2.496	Buignet. J. 14, 15.
46 46		2.559, 13° {	Schröder, Dm. 1873. Schröder, Ber. 14,
44 44	4.6	2.560	1609.
		2.460	W. C. Smith. Am.
Manganese acetate	Mn (C ₂ H ₃ O ₂) ₂	1.737 }	J. P. 53, 145. Schröder. Ber. 14, 1610.
44	Mn (C ₂ H ₃ O ₂) ₂ . 4 H ₂ O	1.588 }	41 11
Nickel acetate	Ni (C ₂ H ₃ O ₂) ₂	1.590 {	
ti ii		1.799 }	(1
11 11	Ni (C ₂ H ₃ O ₂) ₂ . 4 H ₂ O	1.7346, 170.2 }	H. Stallo. F. W. C.
46 44		1.7443, 15°.7 { 1.734 }	Schröder. Ber. 14,
44 44	4.6	1.753	1610.
Cobalt acetate	$Co(C_2 \coprod_3 O_2)_2.4 \coprod_2 O$	1.7031, 15°.7 \ 1.7043, 18°.7 \	H. Stallo, F. W. C.
Copper acctate	Cu (C ₂ H ₃ O ₂) ₂	1.920)	Schröder. Ber. 14,
	14	1.939	1609.
11 11	Cu $(C_2 \Pi_3 O_2)_2$. $\Pi_2 O$	1.914, 20°	Gehlen. Ann. (1), 83, 213.
11 11		1.880, m. of 4)
11 11		1.875) extreme- 1.885} 11°.	Schroder. Dm. 1873.
16 16	6.6	1.875	Schroder. Ber. 14,
T. 11 (1	11	1.890	1600.
Didymium acetate	Di $(C_2H_3O_2)_3$	2.125, 13°.5 2.190, 16°.5	Cleve. U. N. A. 1885.
	Di (C ₂ H ₃ O ₂) ₃ . H ₂ O=	2.230) 200	11 11
11 11	Di (C ₂ H ₃ O ₂) ₃ . 4 H ₂ O	1.991	
44		1.884)	((
Samarium acetate	Sm (C ₂ H ₃ O ₂) ₃	2.208, 18°.3	
44 44	$\operatorname{Sm}(\mathrm{C}_2 \operatorname{H}_3 \operatorname{O}_2)_3.4 \operatorname{H}_2 \mathrm{O}$	1.938, 15°.5	11 11
Calcium copper acetate	$\mathrm{CnCu}(\mathrm{C_2H_3O_2})_4.8\mathrm{H_2O}$	1.4206	Schabus. J. 3, 393.
Lithium uranyl acetate	Li U $O_2 (C_2 \stackrel{\frown}{H_3} \stackrel{\frown}{O_2})_3$.	2.280, 15°	Wyrouboff, B. S. M. 8, 118.
Sodium uranyl acetate	$\operatorname{Nn} \operatorname{U} \operatorname{O}_2 \left(\operatorname{C}_2 \operatorname{H}_3 \operatorname{O}_2 \right)_3$	2.55, 12°	Bodeker and Giesecke. B. D. Z.
Sodium uranyl monochlor- acetate.	$\begin{array}{c} \operatorname{Na} \operatorname{U} \operatorname{O}_2(\operatorname{C}_2\operatorname{H}_2\operatorname{Cl}\operatorname{O}_2)_3 \\ \operatorname{2} \operatorname{H}_2\operatorname{O} \end{array}$	2.748, 14°	Clarke. A. C. J 2, 331.
Silver propionate	Ag C ₃ H ₅ O ₂	2.714	Schroder. Ber. 10, 1872.
Barium propionate	Ba $(C_3 H_3 \overline{O}_2)_2$	2.067, 22°.3 1.970	Stern. F. W. C. Schroder. Ber. 11,
Didymium propionate	Di (C ₃ H ₅ O ₂) ₃	1.861, 12°.5	2129. Cleve. U. N. A. 1885.
	$\mathrm{Di}(\bar{\mathrm{C}}_3\;\bar{\mathrm{H}}_5\bar{\mathrm{O}}_2)_3,3\;\bar{\mathrm{H}}_2\bar{\mathrm{O}}$	1.741, 120.5	1155
Samarium propionate	Sm (C ₃ H ₃ O ₂) ₃	1.742, 13° } 1.894, 14°	11 11
44	Sm (C ₃ H ₅ O ₂) ₃ . 3 H ₂ O	1.784)	
11 11 11	"	1.786 \ 13°.2 1.788 \}	66 66

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Silver butyrate	Ag C ₄ H ₇ O ₂	2.353, 4°	Schröder. Ber. 10, 848.
Barium butyrate Barium isobutyrate	Ba (C ₄ , H ₇ O ₂) ₂	1.768, 22°	Stern. F. W. C. Schröder. Ber. 11,
Silver isovalerate. Ppt	Ag C ₅ H ₉ O ₂	1.800 }	2130. Schröder. Ber. 10,
Silver caproate	Ag C ₆ , H ₁₁ O ₂	2.118) (2.029, ppt.)	848. From two caproic
		2.052, eryst. } 2.053, " 1.866, "	acids, probably
Silver caprylate	Ag C ₈ ,H ₁₅ O ₂	1.877, " } 1.740, ppt.	10, 1872. Schröder. Ber. 10,
		1.771, eryst. }	1873.
Potassium methylsulphate	K C H ₃ S O ₄	2.057	Schröder. Ber. 11,
Barium methylsulphate	$\mathrm{Ba}(\mathrm{C}\mathrm{H_{3}SO_{4}})_{2}.2\mathrm{H_{2}O}$	2.276, 20°.2 2.258)	2020. Geppert. F. W. C. Schröder. Ber. 11,
Potassium ethylsulphate	K C ₀ H ₂ S O ₄	$\begin{bmatrix} 2.275 & \\ 2.275 & \\ 1.792 & \end{bmatrix}$	2130. Schröder. Ber. 11,
Barium ethylsulphate		1.809 } 2.0714, 22°.6 }	2020. Geppert. F. W. C.
tt tt		2.080, 21°.7 § 2.055	Schröder. Ber. 11,
Didymium ethylsulphate_	$\text{Di}(\text{C}_2\text{H}_{{}_{5}}^{}\text{SO}_4)_3.9\text{H}_2\text{O}$	1.860, 17°.8 1.867, 18° }	2130. Cleve. U. N. A. 1885.
Samarium ethylsulphate	4.4	$\left\{ \begin{array}{c} 1.874 \\ 1.885 \end{array} \right\}$ 20°.8	"
Potassium propylsulphate		1.794}	Sehröder. Ber. 11, 2020.
Barium propylsulphate	Ba (C ₃ H ₇ SO ₄) ₂ . 2H ₂ O	1.839 1.844 } 20°.5 _	Geppert. F. W. C. Schröder. Ber. 11,
Potassium isobutylsul-	К С. Н. S О		2130. Schröder. Ber. 11,
phate. "Barium isobutylsulphate -		1.714, 22°	2020. Whetstone. F. W.C.
11 11 11		1.778, 21°.2	Schuermann. F.W.
	" KCH SO	1.738	Schröder. Ber. 11, 2130. Schröder. Ber. 11,
Potassium amylsulphate Barium amylsulphate	4.4	1.418 }	2020.
:: :: ::	11 4/2 2	1.638 }	Whetstone. F.W.C. Schröder. Ber. 11,
Potassium methylxanthate	$K C H_3 \overset{"}{C} O S_2$	1.6754, 15°.2 (2130. Bishop, F.W.C.
Potassium ethylxanthate	K C ₂ H ₅ C O S ₂	1.7002	Geppert. F. W. C.
Potassium isobutylxan-	K C ₄ H ₉ C O S ₂	1.5576, 21°.5 { 1.3713, 15° }	H. Stallo. F. W. C.
thate. "	((1.3832, 14°.5	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lithium oxalateSodium hydrogen oxalate_ Potassium oxalate	Li ₂ C ₂ O ₄	2.1213, 17°.5 2.315 2.104, m. of 2_	Stolba. J. 1880, 283. Buignet. J. 14, 15. Playfair and Joule.
Potassium hydrogen oxu- late.	K H C ₂ O ₄	2.08 1.965, m. of 2.	M. C. S. 2, 401. Schiff. J. 12, 16. Playfair and Joule. M. C. S. 2, 401.
Potassium quadroxalate	(.	2.030 2.088 1.817	Schiff. J. 12, 16. Buignet. J. 14, 15. Playfair and Joule.
ee ee		1.765 1.836	M. C. S. 2, 401. Schiff. J. 12, 16. Buignet. J. 14, 15.
Rubidium quadroxalateAmmonium oxalate	Rb H ₂ (C ₂ O ₄) ₂ , 2 H ₂ O ₋	2.1246, 18°	Stolba. J. 1877, 243. Playfair and Joule. M. C. S. 2, 401.
11 11	4.4	1.475	Sehiff. J. 12, 16.
Ammonium hydrogen ox-	Am H C ₂ O ₄ . H ₂ O	1.501 1.502 1.563, m. of 3	Schröder. Dm. 1873. Playfair and Joule.
alate. Ammonium quadroxalate		1.556	Schiff. J. 12, 16. Playfair and Joule.
Silver avalata	4.4	1 607	M. C. S. 2, 401. Schiff. J. 12, 16. Husemann, B. D. Z.
Thallium oxalate	Ag ₂ C ₂ O ₄	5.005, 4°, ppt. 5.029, 4°, eryst. 6.31	Schröder. Ber. 10 849. Lamy and Des Cloi
Thallium hydrogen ox-	TI II C ₂ O ₄ . II ₂ O	3.971	zeaux. Nature, 1
alate. Zine oxalate		2.547, 18°.3 2.562, 24°.5 2.582, 17°.5	Wilson. F. W. C
Cadmium oxalate	Cil C ₂ O ₄	3,310, 17°)	
Calcium oxalute	('n C ₂ O ₄	2.181	Schröder, Dm. 1873 Schröder, Ber. 12 561.
Barium oxalate	Ba C ₂ O ₄	2.200)	
Lead oxalate	Ph C ₂ O ₄	5.018 }	Schroder, Dm. 1873
Manganese oxalate	Mn C, O,	2.422, 21°.8 2.453, 26°.7 2.457, 21°.8	Freeman. F. W. C
Humboldtine	2 Fe C ₂ O ₄ , 3 H ₂ O ₋	$\begin{bmatrix} 2.13 \\ 2.459 \end{bmatrix}$	Dana's Mineralogy
Nickel oxulate	Ni C, O,	2.218, 19°)	Freeman. F.W. C
Cobalt oxulate	Co (2 O	2.296, 20°.5 2.325, 19°	e t

	1	1	1
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Stannous oxalate	Sn C ₂ O ₄ '' Th (C ₂ O ₄) ₂	3.558, 18 3.576, 22°.5 3.584, 23°.5 4.637, 16°	Wilson. F.W.C. Clarke. A.C.J.2,
Uranyl oxalate	U O ₂ . C ₂ O ₄ . 3 H ₂ O ₋	2.98	175. Ebelmen. J. P. C.
Potassium copper oxalate_	$\mathbf{K_2Cu}(\mathbf{C_2O_4})_2$. $2\mathbf{H_2O}$	2.288, m. of 2_	27, 391. Playfair and Joule.
Ammonium copper oxa-	$\operatorname{Am_2Cu(C_2O_4)_2}$. $\operatorname{2H_2O}$	1.923	M. C. S. 2, 401.
Potassium chromoxalate	$K_3(Cr \supset_{6} O_{12}). 3 H_2 O$	2.1039, 23° 2.1464, 24°	Bishop. F.W.C.
Strontium chromoxalate Strontium potassium chro- moxalate.	$\mathrm{Sr_{3}(CrC_{6}O_{12})_{2}}.\ 10\mathrm{H_{2}O}$ $\mathrm{SrK}(\mathrm{CrC_{6}O_{12}}).\ 6\mathrm{H_{2}O}$	2.148, 8°.8 2.155, 12°.8	Kebler. F.W.C.
Barium chromoxalate	Ba ₃ (Cr C ₆ O ₁₂) ₂ Ba ₃ (Cr C ₆ O ₁₂) ₂ . 6 H ₂ O	2.570, 6°.8 2.445, 13°.9	66 66
Sodium ferroxalate	$\begin{array}{c} \text{Ba}_{3}(\text{CrC}_{6}^{0}\text{O}_{12})_{2}^{12}.12\text{H}_{2}\text{O} \\ 2 \text{Na}_{3} (\text{Fe} \text{C}_{6} \text{O}_{12}). \\ \qquad \qquad \qquad 11 \text{H}_{2} \text{O} \end{array}$	2.372, 27° 1.9731, 17°.5	
Ammonium ferroxalate Platosoxalic acid	${ m Am_3(FeC_6O_{12}).8H_2O} \ { m PtH_2(C_2O_4)_2.H_2O}$	1.7785, 17°.5 2.94, 14°	Söderbaum. Upsala Diss. 1888.
Sodium platosoxalate	$ \text{Na}_{2} \text{Pt}(C_{2} O_{4})_{2}.4 H_{2}O \\ \text{Na}_{2} \text{Pt}(C_{2} O_{4})_{2}.5 H_{2}O $	2.89, 17°.2 2.92, 17°.2	11 11 11 11 11 11 11 11 11 11 11 11 11
Potassium platosoxalate. "Light.	$K_2 Pt (C_2 O_4)_2. 2 H_2 O$	3.037, 11°.6 3.036, 12°} 3.012, 12°	
" Dark. Ammonium platosoxalate. Light.	$\mathrm{Am_2Pt}(\mathrm{C_2O_4})_2.2\mathrm{H_2O}$	3.012, 12° 2.614, 11°.7	16 66
" Dark. Platodiamine platosoxalate. Light.	Pt (N H ₃) ₄ Pt (C ₂ O ₄) ₂	2.58, 11°.5 3.51, 13°.5	" "
Didymium nitratoöxalate.	$\begin{array}{ccc} \text{Di} H_2(N O_3)_2 (C_2 O_4)_3. \\ 11 H_2 O \end{array}$	$3.48, 13^{\circ}.5_{}$ 2.424 2.425 $\left. 13^{\circ}.2_{-} \right.$	(Cleve. U. N. A. 1885.
Ammonium succinate Silver succinate " " " Barium succinate " " Lead succinate	Am ₂ C ₄ H ₄ O ₄ Ag ₂ C ₄ H ₄ O ₄ Ba C ₄ H ₄ O ₄ Pb C ₄ H ₄ O ₄	1.367, 10° 3.518, 10° 3.807	Zachariae. B. D. Z. Husemann. B. D. Z. Schröder. Ber. 10, 849. Schröder. Ber. 11, 2129. Husemann. B. D. Z.
4			Tuccinam. D.D. Z.
Ammonium malate	Am ₂ C ₄ H ₄ O ₅	1.509	Wyrouboff. Bei. 8,
Ammonium hydrogen ma- late.	Am C ₄ H ₅ O ₅	1.55	
	$Ag_2 C_4 H_4 O_5$	4.0016	Liebig and Redten- bacher. A. C. P. 38, 139.

NAME.	FORMULA.	Sp. Gravity.	Антновиту.
Sodium tartrate Potassium tartrate Potassium hydrogen tar-	Na ₂ C ₄ H ₄ O ₆ . 4 H ₂ O K ₂ C ₄ H ₄ O ₆	1.794 1.975 1.960 1.943	Buignet. J. 14, 15. Schiff. J. 12, 16. Buignet. J. 14, 15. Schabus. J. 3, 378.
trate.		1.973	Schiff. J. 12, 16.
Ammonium tartrate		1.956 1.566 1.523	Buignet. J. 14, 15. Schiff. J. 12, 16. Buignet. J. 14, 15.
		1.601	Wyrouboff. Bei. 8, 24.
Ammonium hydrogen tar- trate.			Schiff. J. 12, 16.
Sodium potassium tartrate	6.6	1.74	Mitscherlich. Schiff. J. 12, 16.
tt tt tt		1.790	Buignet. J. 14, 15. W. C. Smith. Am. J. P. 53, 145.
Sodium ammonium tar- trate.		1.58	Mitscherlich.
46 66 66	6.6	1.576	Schiff. J. 12, 16.
Potassium ammonium tar- trate.	K Am C ₄ H ₄ O ₆ . 4 H ₂ U	1.700	44
Rubidium tartrute	Rb ₂ C ₄ H ₄ O ₆ =	2.692	Wyrouboff. Bei. 8,
44 44	Rb ₂ C ₄ H ₄ O ₅ . H ₂ O -	2.584	
Rubidium hydrogen tur- trate.	Rb H C ₄ H ₄ O ₆ , ½ H ₂ C	2.399	60 61
Rubidium lithium tartrate	Rb Li C, H, O6. H2 C	2.281	Wyrouboff. B. S. M. 6, 53.
Rubidium sodium tartrate	Rb Na C ₄ H ₄ O ₆ .2½H ₂ C	2.200	
Silver tartrate	Ag ₂ C ₄ H ₄ O ₆	3.4321	
Thallium tartrate	Tl ₂ C ₄ H ₄ O ₆	5,110	Wyrouboff. B. S. M. 6, 311.
44 44	Tl ₂ C, H, O ₆ . ½ H ₂ O.	4.658	Lamy and Des Cloi- zenux. Nature, 1, 142.
11 11		4.740	M. 9, 102.
Thallium hydrogen tur- trate.	Tl H C ₄ H ₄ O ₆	3,496	Lamy and Des Cloi- zenux. Nature, 1, 142.
4.6 4.6	TH C4 H4 O6. 1 H2 O	3,399	
Thallium lithium tartrate	TI Li C, H, O, H, O	3.356	
Thallium sodium tartrate	$\mathrm{TlNaC_4H_4O_6.2]H_2O}$	3.120	Wyrouboff. Ann. (6), 9, 221.
Strontium tartrate	14	2.579, 17°.1 2.593, 17°.4	Joslin, F. W. C.
66 66	Sr C, H, O ₆ , 4 H ₂ O	1.961, 19° 1.966, 19°.2	

			1
NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Strontium tartrate Barium tartrate	Sr C ₄ H ₄ O ₆ . 4 H ₂ O - Ba C ₄ H ₄ O ₆	1.972, 18°.1 2.965, 21°.5 2.974, 21°.9 2.980, 20°.8	Joslin. F.W.C.
Lead tartrate	Pb C ₄ ,H ₄ O ₆	$\left. \begin{array}{c} 3.998, 16^{\circ}.5 \\ 4.001, 17^{\circ}.5 \\ 4.037, 17^{\circ}.7 \end{array} \right\}$	
Potassium tartrantimo- nite, or tartar-emetic	2 K C ₄ H ₄ Sb O ₇ . H ₂ O	2.5569	Pasteur. Ann. (3), 28, 86. Schiff. J. 12, 16.
ιι ιι	"	2.588	Buignet. J. 14, 15. Topsoë and Christiansen.
Ammonium tartrantimo- nite.	$2 \operatorname{Am} \operatorname{C}_4 \operatorname{H}_4 \operatorname{Sb} \operatorname{O}_7. \operatorname{H}_2 \operatorname{O}$	2.324	Topsoë. C. C. 4, 76.
Silver tartrantimonite Thallium tartrantimonite_	$\begin{array}{c} \operatorname{Ag} \operatorname{C}_4 \operatorname{H}_4 \operatorname{Sb} \operatorname{O}_7 \\ \operatorname{2Tl} \operatorname{C}_4 \operatorname{H}_4 \operatorname{Sb} \operatorname{O}_7 \cdot \operatorname{H}_2 \operatorname{O} \end{array}$	3.4805, 18°.2 3.99	Evans. F. W. C. Lamy and Des Cloizeaux. Nature, 1, 142.
Barium tartrantimonite	Ba $(C_4 \ H_4 \ Sb \ O_7)_2$.	3.112, 19°	Joslin. F. W. C.
Potassium borotartrate	K C ₄ H ₄ B O ₇	1.832	Buignet. J. 14, 15.
Potassium racemate Potassium hydrogen race- mate.	$\begin{array}{c} K_2 C_4 H_4 O_6, 2 H_2 O \\ K H O_4 H_4 O_6 \end{array}$	1.58	Mitscherlich. Wyrouboff. B.S.M. 6, 311.
Potassium lithium race- mate.	K Li C_4 H_4 O_6	1.610	Wyrouboff. B.S.M. 6, 53.
Potassium sodium race- mate.	K Na C ₄ H ₄ O ₆ . 3 H ₂ O	1.783	Wyrouboff. B. S. C. 45, 52.
Rubidium racemate	Rb ₂ C ₄ H ₄ O ₆	2.640	Wyrouboff. Bei. 8,
Rubidium hydrogen race- mate. Rubidium lithium race-	Rb H C_4 H $_4$ O $_6$ Rb Li C_4 H $_4$ O $_6$	2.282	Wyrouboff. B. S. M. 6, 311. Wyrouboff. Bei. 8,
mate. Ammonium racemate	$\mathrm{Am}_2~\mathrm{C}_4~\mathrm{H}_4~\mathrm{O}_6$	1.601	Wyrouboff. B. S. M.
Ammonium hydrogen	Am H C_4 H_4 O_6	1.636	9, 102. Wyrouboff. B.S. M. 6, 311.
Ammonium sodium race- mate.	$\mathrm{Am}\mathrm{Na}\mathrm{C_4}\mathrm{H_4}\mathrm{O_6}.\mathrm{H_2}\mathrm{O}$	1.740	Wyrouboff. Ann. (6), 9, 221.
Silver racemate	$Ag_2 C_4 H_4 O_6$	3.7752	Liebig and Redten- bacher. A. C. P. 38, 139.
Thellium racemate			Two varieties. Wyrouboff. B.S.M. 9, 102.
" " ———	$2 \operatorname{Tl}_2 \operatorname{C}_4 \operatorname{H}_4 \operatorname{O}_6. \operatorname{H}_2 \operatorname{O}$	4.659	Lamy and Des Cloi- zeaux. Nature, 1,
Thallium hydrogen race- mate.	Tl H C_4 H_4 O_6		142. Wyronboff. B.S. M. 6, 311.
Thellium lithium race- mate.	Tl Li C ₄ H ₄ O ₆ . 2 H ₂ O		Wyrouboff. Ann. (6), 9, 221.
Thallium sodium racemate	Tl Na C ₄ H ₄ O ₆ . 2 H ₂ O	3.289	ii' u

		SP. GRAVITY.	AUTHORITY.
Potassium racemuntimo- nite.	$2 \times C_4 \times_4 Sb \otimes_7 K_2 O$	2.4768	Pasteur. Ann. (3), 28, 86.
Potassium citrete*	K ₃ C ₆ H ₅ O ₇ . H ₂ O	1.98	W. C. Smith Am.
Prisodium citrate	$2\mathrm{Na_{3}C_{6}H_{5}O_{7}.11H_{2}O}$	1,857, 23°,5	J. P. 53, 145.
Diemmonium citrate		1.859, 24° } 1.479, 22°	Blakemore, F.W.C.
Uranyl oleate	U O ₂ (C ₁₈ H ₃₃ O ₂) ₂	1.13	Gibbons. Ber. 16, 964.
Calcium hippurate Potassium orthonitrophe- nate.	$\begin{array}{c} 2C_{13}H_{16}N_{2}O_{6},3H_{2}O\\ K_{-}C_{6}H_{4}N_{-}O_{3},H_{2}O\\ \end{array}$	1.318 1.682, 20°	Schubus. J. 3, 411. Post and Mehrtens. Ber. 8, 1552
Silver orthonitrophenute .	Ag C ₆ H ₄ N O ₃	2.661, 20°	66 66
Barium orthonitrophenate Lead orthonitrophenate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3301, 20° 2.712, 20°	11
Potassium metanitrophe- nate.	K C ₆ H ₄ N O ₃ . 2 H ₂ O ₂	1.691, 20°	
Barium metanitrophenate	Ba(C6H4NO3)2.2H2O	2.843, 20°	
Lend metanitrophenate	Pb O (C ₆ H ₄ N O ₃)	2.694, 20°	((((
Potassium paranitrophe- nate.	K C ₆ H ₄ N O ₃ . 2 H ₂ O ₋		11 11
Silver paranitrophenate	Ag C ₆ H ₄ N O ₃ . 2 H ₂ O ₋	2.652, 20° 2.322, 20°	11 11
Barium paranitrophenate. Lead paranitrophenate		2.682, 20°	11 11
Potassium adinitrophenut	$\begin{array}{c} \text{K C}_{6} \text{ H}_{3} \text{ N}_{2} \text{ O}_{5} \text{.} \text{ H}_{2} \text{ O} \\ \text{Ag C}_{6} \text{ H}_{3} \text{ N}_{2} \text{ O}_{5} \text{.} \text{ H}_{2} \text{ O} \\ \text{Ba} (\text{C}_{6} \text{H}_{3} \text{ N}_{2} \text{ O}_{5})_{2} \text{.} 4 \text{H}_{2} \text{O} \\ \end{array}$	1.778, 200	11 11
Silver a dinitrophenate	Ag C ₆ H ₃ N ₂ O ₅ . H ₂ O ₋	2.755, 20°	11 11
Barium a dinitrophenate.	Ba(C ₆ H ₃ N ₂ O ₅) ₂ .4H ₂ O	2.439, 200	11 11
Lend a dinitrophennte	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.817, 20* 1111	
Potassium 3dinitrophenate		1.757, 20°	
Silver 3 dinitrophennte Barium 3 dinitrophenate.	Roll H V O V H O	2.733, 20° 2.406, 20°	66 66
Lead 3 dinitrophenate	$\begin{array}{c} \text{Pb O } (\text{C}_6^{11}\text{H}_3\text{N}_2\text{O}_5)_2\text{-} \\ \text{Li C}_6^{}\text{H}_2^{}\text{N}_3^{}\text{O}_7^{} \end{array}$	2.807, 20°	
Lithium picrate	Li C, H, N, O,	1.716, 19°)	
11		1.724, 200 }	Beamer. F. W. C
Potassium picrate		1.740, 20°) 1.852, 20°	
Silver pierate	Ag C. H. N. O.	2.816, 200	Ber. 8, 1552.
Thallium picrate		3.039	Lamy and Des Choi zenux. Nature, 1
Barium pierate	Ba $(C_6H_2N_3O_7)_2.4H_2O_7$	2.518, 20°	142.
			Ber. 8, 1552.
Lend pierate Samarium pierate		2.831, 20° 1.954, 15°.5	Cleve, U. N. A 1885.
Ammonium benzoate	Am C. H. O	1.260.)(Schröder. Ber. 12

^{*}Smith gives this salt under the name "p dassil citras," and assigns no formula.

NAME.	FORMULA. Sp. GRAVITY.		Authority.	
Silver benzoate Calcium benzoate Barium benzoate Silver cinnamate Mellite	$\begin{array}{c} \operatorname{Ca}\left(\operatorname{C}_{7}\operatorname{H}_{5}\operatorname{O}_{2}\right)_{2}.\ 3\operatorname{H}_{2}\operatorname{O}_{-} \\ \operatorname{Ba}\left(\operatorname{C}_{7}\operatorname{H}_{5}\operatorname{O}_{2}\right)_{2}.\ 3\operatorname{H}_{2}\operatorname{O}_{-} \end{array}$	$\begin{bmatrix} 1.435 \\ 1.457 \\ 1.792 \\ 1.808 \end{bmatrix}$ 4° $\left\{ \begin{bmatrix} 1.792 \\ 4^{\circ} - 1 \end{bmatrix} \right\}$	1889. Sehröder. 1611. Sehröder. 561.	Ber. 9, Ber. 12, Ber. 12,

LXXI. SALTS OF ORGANIC BASES WITH INORGANIC ACIDS.*

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Tetramethylam monium iodide. " " Tetrethylammonium iodide. " " "" "" "" "" "" "" "" "" "	"	1.827, 17° 1.831, 19°.5 } 1.838	Owens. F. W. C. Schröder. Ber. 12, 561.
Tetramethylammonium mercury iodide.	ιι 	3.971, 24° { 3.976, 23°.5 4.003, 23°.2	Owens. F. W. C.
Ethylamine platinchloride " Ethylamine aurochloride.		2.200	Clarke. A. C. J. 2, 175. Topsoë. S. W. A.
Diethylamine aurochlo-			73, 97.
Triethylamine aurochlo- ride. Guanidine carbonate	(C H ₅ N ₃) ₂ H ₂ C O ₃		Sehröder. Ber. 13,
Aniline chlorhydrate	C ₆ H ₇ N. H Cl		Sehröder. Ber. 12, 1611.
Aniline iodateAniline nitrate	C ₆ H ₇ N. H I O ₃ C ₆ H ₇ N. H N O ₃	$\left\{ \begin{array}{c} 1.356 \\ 1.360 \end{array} \right\} \ 4^{\circ} \left\{ \begin{array}{c} \end{array} \right\}$	Beamer. F. W. C. Schröder. Ber. 12,
Aniline sulphateAniline tartrantimonite Rosaniline chlorhydrate	$ \begin{array}{c} (C_6 H_7 N)_2, H_2 S O_4 - \\ C_6 H_7 N, C_4 H_5 Sb O_7 - \\ C_{20} H_{19} N_3, H Cl_{} \end{array} $	1.890, 18° 1.220	Evans. F. W. C. Rüdorff. Ber. 12, 252.
Diazobenzene nitrate Berberine chlorhydrate			Berthelot and Vieille. Bei.5,573.
Berberine platinchloride	}		174.

^{*}Aniline tartrantimonite is included in this table for reasons of convenience.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Strychnine platinchloride	Pt Cl.		174.
Cinchonine chlorhydrate. Picolinic acid platinchlo- ride.	$(C_6 \ H_5 \ N \ O_2) \ H \ Cl_{-2} $	1.234 2.0672, 21°.8	Hesse. J. 15, 371. Weidel. Ber. 12,
Nicotinic acid platinchlo- ride.	(C ₆ H ₅ N O ₂ . H Cl) ₂ Pt Cl ₄ . 2 H ₂ O	2.1297, 21°.8	22 22
Triethylphosphin plato- sochloride.	Pt Cl_2 . $(C_6 H_{15} P)_2 =$	1.5, 105	Z. C. 13, 437.

LXXII. MISCELLANEOUS ORGANIC COMPOUNDS.

NAME.	FORMULA.	SP. GRAVITY.	Антновиту.
Ethyl selenite	$\begin{array}{c} 2 C_6 H_{12} O_6, \text{NnCl. H}_2 O \\ 2 C_{12} H_{22} O_{11}, \ 3 \ \text{Nn I}. \\ 3 \ H_2 O \end{array}$	1.55 11° 1.59 1.854 1.85 3.084	241, 159. Bödeker. B. D. Z Gill. J. C. S. 24 269. Tanret. J. C. S. 40 157. Johnson. C. N. 37 110.

APPENDIX.

NOTE ON THE SPECIFIC GRAVITY OF WOOD.

Although wood is a substance which does not come within the scope of these tables, the following references to literature are given as a matter of convenience.

ASCHAUER.—Dove's Repertorium, 1, 142.

Brisson.—Pesanteur Spécifique des Corps.

ESTRADA.—Cuban woods. Van Nostrand's Magazine, 29, 417. 1883.

Нон.—Beiblätter (Wiedemann's), 2, 534.

IHLSENG.—Amer. Journ. Sci. (3), 17, 125.

KARMARSCH.—Dove's Repertorium, 1, 141.

Kopp.—Dove's Repertorium, 7, 171; also Ann. Chim. Phys. (3), 6, 380.

MENDENHALL.—Ohio Agricultural and Mechanical College, Report for 1878.

Osborne.—"Report on Class III," Melbourne Exhibition of 1861. Many data for Australian woods and essential oils.

SHARPLES.—Vol. IX, Reports of Tenth U. S. Census. Complete as to woods of the United States.

SMITH.—Journ. Chem. Soc., June, 1880, p. 417.

WILEY.—Purdue University (Indiana) Report, No. 2, 1876.

Many figures are also given in Böttger's "Tabellarische Uebersicht."

(367)

INDEX.

Α.	PAGE.
PAGE.	Acid, Alphatoluic 257
Abies Reginae-Amaliae, oil from 179	" Amidoacetic 287
Abietene 158	" Amidobenzoie 288
Absinthol 262	" Amidocaproic 287
Acanthite 57	" Amidosuccinic 287
Acenaphtene 179	" Amyldecatoic 234
Acetal 224	" Amylglycollic 230
Acetamide 287	" Amylnitrophosphorous 349
Acetanilide 288	4 Anisie 257
" Derivative of 316	" Arsenic 49
Acetic aldehyde 216	" Arsenious 48
Acetic anhydride 204	" Aspartic 287
Acetobutyl alcohol 245	" Benzoic 256
Acetochlorhydrin 312	" Boric 107
Acetocinnamone 262	" Bromisobutyrie 326
Acetodichlorhydrin 312	" Bromobutyric 326
Aceto-ethyl nitrate 286	" Bromostearic 326
Acetoethylthienone 344	44 Butyric 200
Acetoglyceral 239	" Camphoric 264
Acetone 218	" Caproic 202
Acetonitril	" Caprylic
Acetonitrose 286	" Chloracetle 305
Acetophenone alcohol	" Chloric 72
Acetopropyl alcohol 245	" Chlorisobutyric 305
Acetothienone 344	" Chlorobutyrie 305
Acetotrichlorethylidene acetic ether 311	" Chloropropionic 305
Acetoxyacetonitril 289	" Chlorosulphonic 30
Acetoxypropionitril	" Chromic 52
Acetpiperidid 230	" Cinnamic 258
Acetyl, Chloride 308	" Citraconic 237
" Iodide 335	" Citrie 237
" Thiocyanate 346	" Columbic 49
Acetylamine	" Crotonic
Acetyl camphor 264	" Cuminic 259
Acetylchloral ethylate 309	" Cyanic 142
Acetylcopellidine 290	" Cyanurie 142
Acetylene 167	" Diallylacetic 242
" Bromiodide 338	" Diamylphosphoric 349
" Chloriodide 338	" Dibromacetic 326
" Chlorobromide 336	" Dibromoleie 327
" Dibromide 322	" Dichloracetic 305
" Iodide 334	" Dichloroleic 312
" Tetrabromide 321	" Diethylacetic 203
" Tetrachloride 299	" Dicthylcamphresic 265
Acetylthioxene 344	" Diphenylarsenic 350
Acetyltrimethylene 246	" Diphenylphosphinic 349
Acetyl valeryl 245	" Dipropylacetic 204
Achillea ageratum, oil of 264	" Dithionic 75
Acid, Acetic 199	" Ethylbenzhydroxamic 288
" Acetylformic 232	" Ethyleamphoric 264
" Acetylpropionic	" Ethylmethylacetic 202
Allylacetic 242	" Ethyloxalie 226
" Allyloctylic 242	" Ethyloxyisobutyric 230
24 s g	(369)

INDEX.

Acid,	Ethylsalicylic	257	Acid, Perchloric.	
6.6	Ethylsulphuric		" Phenylacetic 2	
4.6	Ethylsulphurous		" Phenylaerylle 2"	
64	Formic 1	199	" Phenylarsinic	
44	Gallie	257	" Phenylphosphinic 3	
4.6	Glycollie 2	230	" Phenylpropionie 2	57
6.6	Hippurie	290	" Phosphoric 11	1/1
6.6	Hydrochloric		" Phosphorous	13
4.6	Hydroeinnamic:	257	" Phthalic 2	SH
8.6	Hydrocycnic 1	142	" Phycic 20	
4.6	Hydrofluorie	16	" Picolinic, chloroplatinate of 3	()()
6.6	Hydrosorbie 2	234	" Pierie 25	45
6.6	Hydrosulphocyanic 1	112	" Pimaric 26	67
4.6	Hypophosphorous 1	113	" Platosoxalic 36	61
4.6	Todie	74	" Propionic 20	(10)
4.6	Isoamylacetic	203	" Propionylformic 2	3:3
44	Isobutyric 9	201	" Protocatechule	57
64	Isocaprole	203	" Pyroracemic 2	32
4.6	Isoheptylie	203	" Pyrosulphuric	76
6.6	Isohexic, derivative of 3	312	" Pyrotartaric 2:	
61	Isononylic	204	" Pyroterebic	31
4.6	Isoöctylle 2		" Pyruvic	
44	Isovalerie		" Quartenylic	
4.6	Itaconic 2		" Quinic	
6.6	Lactic		" Racemic	
61	Laevotartaric		" Ricinoleic 2	
4.6	Laevuliuic 2		" Rutylic 2	
	Lauric		" Saljeyllc 2	
	Linoleic		" Santonic	
4.0	Malic		" Sebacic 2	
6.6	Mandelle 2		" Selenie	
	Metachlorbenzoic		" Sclenious	
	Methylacrylic 2		" Stearic	
6.6	Methylethylacrylic 2		" Succinie 2:	
6.6	Methylethylpropionic 2		" Sulphhydric	
	Methylglycollic		" Sulphurie	
	Methylhexemethylenemonocarboxy-		" Sulphurous 51, 7	
	lic 2	247	" Sylvie 20	
64	Methylisopropylacetic 2		" Tannic	
6.6	Methyllsopropylmalonic 2		" Tantalic	
64	Methylpentamethylenemonocarboxy-		" Tartaric 2	
	110 2	246	" Telluric	
61	Methylpropylacetic 2		" Tetramethylenemonocarboxylie 21	
	Methylsalicylic 2		" Thiacetic 21	
	Molybdie		" Trichloracetic 3	
	Moringie 2		" Trichlorphenomali 31	
	Naphtylphosphinle		" Trimethylacetle 20	
	Naphtylphosphorous 3		" Tungstic	
64	Nicotinic, chloroplatinate of 3		" I'rle	
11	Nitrie		" Valeric	
	Nitrobenzoic 2		Acmite	
	Nitrocaprylle		Aerolein	
	Nitrolactic 2		" Diacetate 23	
	Oenanthic		" Ethylate 23	
	Olele 2		Acroplnacone	
	Orthophenyl@neglyoxylic		Acryl aldehyde	15
	Oxalie 2		Adamite	37
	Oxylenzoic 2		Alkinite	
			Alabandite	10
	Paratinie		Alaskaite	
	Parawantonic		Albite	,A
	Pelargonic 2		Aldehyde	16
	ciailonic minimini "	1779	Addenyde	. 15

FAC	A Ere		l'Atri
Aldehyde with sulphaldehyde 3	344	Aluminum	, Ammonium sulphate 9
Aldehyde collidine 2		64	Amylate 35
Aldehyde methyl chloride 3	310	6.6	Barium silicate 13
Aldol 2		4.6	Borate 10
Alexandrite	56	66	Bromide 3
Algodonite	67	66	" with aromatic hydrocar-
Allaktite 1	23		bons 35
Allemontite	68	66	Butylate 35
Alloelasite	69	44	Cæsium selenate 16
Allophane 1	33	44	" silicate 13
Allyl, Acetacetate 2	242	66	" sulphate 9
" Acetate 2		46	Calcium phosphate 11
" Alcohol 2	240	66	" silicates 136, 13
" Bromide 3	122	44	" sulphate 9
" Carbamine		66	Chloride, with aromatic hydro-
" Chloride			carbons 35
" Dibrompropionate 3		66	Copper arsenate 12
" Formate 2		44	Cresolate
" lodide 3		66	Ethylate
" Nitrate		66	Fluorides 1
" Nitrite		66	Fluosilicate
" Oxalate		66	Glucinum silicate
" Oxide 2		66	Hydroxides 7
" Santonate		44	Iodide 3
Santonate 4		4;	Iron silicates
" Sulphides		44	Lead phosphate
111000101111111111111111111111111111111		44	
1 mocyanate		46	" silicate
1115th photos contato minimum o		66	Lithium fluophosphate
Allylamine		66	5111CAVCS 10
Allylaniline 2		46	Magnesium phosphate, 11
Allylanisöil 2		44	" silicate
Allylbenzene 1		••	surphate
Allyldiethylcarbinol 2		66	Manganese phosphate 11
" Derivative of 1			" silicate, 13
Allyldiisopropylearbinol 2		64	Mellitate 36
Allyldimethylearbinol 2		44	Methylamine sulphate 9
" Acetate 2		4.4	Oxide 4
" Derivative of 1		44	Phenolate 35
Allyldipropylearbinol 2		46	Phosphates 115, 116, 117, 11
" Acetate 2		66	Potassium borate 10
" Derivative of 1		66	" selenate 10
Allylene, Bromide 3		44	" silicates 135, I3
" Dihydriodate 3	334	4.6	" sulphates 92, 9
" Hydriodate 3	334	86	Propylate
" Iodide 3		66	Rubidium selenate 10
" Tetrabromide 3	322	44	" sulphate
" Tetrachloride 2	299	66	Silicates 132, 13
Allyleugenol 2	265	46	Sodium earbonate 13
Allylidene, Chlorides 299, 3	300	4.6	" fluoarsenate 12
Allylmethylpropylcarbinol 2		66	" selenate 10
Allylpyridine 2	274	66	" silicates 134, 13
Allylsuccinimide 2	288	66	. " sulphate 9
Almandite		66	Strontium silicate 13
Almond oil		+4	Sulphates 87, 9
Alőisol 2		66	Thallium selenate 10
Altaite		44	" sulphate
Alumian		44	Thymolate 35
Alumina		44	Titanide
Aluminite		66	Zinc sulphate
Aluminum	3	4.6	Zirconide
" Alloys of 1	146	Alums	92, 93, 94, 95, 96, 10
" Ammonium selenate 1			3m, 30, 3°c, 30, 30, 10°c, 30, 3°c, 30, 3°c, 30, 3°c, 30°c,
411111101114111 OUIO111110 1111111111111111111111111111111			

	D - 0 =
PAGE.	PAGE
Amalgams 145	Ammonium. Molybdates 10
Amarantite 97	" Nickel selenate 100
Amblygonite 124	" sulphate 9
Amenyl valerone 248	" Nitrate 110
Amidobenzene 271	" Oxalate 360
Amidobenzylamine	Palladlochloride 29
	" Perchlorate 7:
Amldodimethylanlline 274	" Phosphates
Amldomethylphenol 288	i i
Ammonla 70	I BUILDIOUDING C
Ammonlum. Aluminum selenate 101	" Platinehloride 29
sulphate 94	" Platiniodide 3
" Arsenates 121	Platosochlorlde 29
" Benzoate 364	Platoxalate
" Bromide 31	" Potassium chromate 10-
" Cadminm selenate 100	" sulphates 80
surphare	tartrate
Chioride 21	Quadrozhiate
" Chromate 103	nacemute
Chromlodate 104	" Samarium sulphate 90
" Chromium selenate 101	Selenate
" sulphate 95	" Sillcofluoride
" Citrate 364	" Sodium arsenate 12
" Cobalt selenate 100	" phosphate113
Country selenate	
SHIPIBUC	racemate
Copper citioride	surphate
" oxalate 361	" tartrate 36
" selenate 100	" Stannibromide 33
" sulphate 91	" Stannichtoride 25
Dichromate 103	" Stannifluoride 19
with mercuric chlo-	" Stannochloride 2
ride 144	" Succinate
Didjintum quiphace,	culling
" Dithlonate 75	Surphocyanide
" Ferroeyanlde with ammonium	1 artrantinoutte
chloride 143	" Tartrate 36:
" Ferroxalate 361	" Tellurate 10:
" Formate 356	" Uranoxyfluoride 19
Gallium sulphate 96	" Uranyl sulphate 90
Hydrogen carbonate	" Vanadium vanadate 12
	" Zinc bromide
" fluoride	
111001190	" chloride 2
OARIGIC	setenate
" racemate 363	" sulphate 9
u selenate 98	Amyl. Acetacetate 25
" sulphate 89	" Acetate 208, 208
" tartrate 362	" Alcohols 192, 193
" Indium sulphate 96	" Amylphosphite
" lodate	" Arsenite
	" Benzoate
100110	Della Chicago
11 11 11 11 11 11 11 11 11 11 11 11 11	1501 1000
100 selenate 100	" Bromide 318
" sulphates	" Butyrate
" Lithlum sulphate 89	" Capryl oxide 13:
" Magneslum chloride 27	" Chloride 29
" chromate 101	" Diethyloxyacetate 23
" phosphate 115	" Disulphide
phosphia 110	" Ethylacetacetate
Selenkto 190	Littly intertacetate
741 /11410	1 Office Committee of the Committee of t
" Malate 361	" Iodide 33:
Manganese selenate 100	" Isobutyrate
" sulphate 90	" Isovalerate
" Mercury chloride 27	" Mercartan 340

PAGE.	PAGE
Amyl, Monochloracetate 307	Antimony Bismuth alloys 157
" Nitrate 281	" Bromide 35
" Nitrite 281	" Chlorides 26
" Oxalate 227	" Copper alloys 154
" Oxide 198	" Hydroxide 71, 72
" Phenylpropionate 258	" Iodide 36
" Propargyl oxide 242	" Lead alloys 149, 150
" Propionate 210	" Organic compounds 35
" Sebate	" Oxides 49
" Silicate 352	" Oxychloride 30
" Sulphophosphate 350	" Oxysulphide 64
" Thiocarbimide 345	" Potassium chloride 29
" Thiocyanate 345	" Sulphides 59
" Trisulphocarbonate 341	" Tartrates 363, 365
" Valerate 213	" Telluride 66
Amylamine 270	" Tin alloys 149
Amylbenzene 175	Apatite 124
Amyl camphor 264	Apiol
Amyldecaldehyde235	Apophyllite 140
Amyldimethylbenzene 175	Aragonite 127
Amylene 164	Arctolite
" Chloride	Argentite 57
" Dithiodichloride 346	Argyrodite 64
" Glycol	Arkansite
" Oxide	Arsenic
" Sulphide	" Bromide 32
" Thiodichloride 346	" Chloride
" Trisulphocarbonate 341	" Fluoride
Amyl eugenol	" Iodides 36
Amyl glycide 239	" Organic compounds 350, 351
Amyl glyoxalin	" Oxides
Amyl monochlorhydrin	" Selenide 65
Amylnapthalene 179	" Sulphides 59
Amylpyrrol	" Sulphobromide 33
Amylphosphorous chloride 349	Arseniosiderite 123
Analcite	Arsenopyrite
Anatase 45	Asarone 267
Andalusite 132	Asmannite
Andesite 137	Asparagine
Andesite	Asparagine
Andradite 139	Atacamite
Andradite	Atacamite
Andradite 139 Andrewsite 117 Anethol 255	Atacamite 25 Atopite 126 Augelite 117
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235	Atacamite
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181	Atacamite
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83	Atacamite 25 Atopite 127 Augelite 117 Auribromides 33 Aurichlorides 28, 366 Australene 180
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 131 Anglesite 83 Angostura, oil of 264	Atacamite 26 Atopite 126 Augelite 117 Auribromides 33 Aurichlorides 28,365 Australene 18 Austrapyrolene 181
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81	Atacamite 25 Atopite 125 Augelite 117 Auribromides 33 Aurichlorides 28, 365 Australene 18 Austrapyrolene 18 Autunite 116
Andradite 139 Andrewsite 117 Anethol 225 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 84 Anliline 271	Atacamite 26 Atopite 12 Augelite 117 Auribromides 33 Aurichlorides 28, 365 Australene 18 Austrapyrolene 181 Autunite 116 Awaruite 155
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 " Salts of 365	Atacamite 25 Atopite 12 Augelite 117 Auribromides 33 Aurichlorides 28, 366 Australene 180 Austrapyrolene 181 Autunite 116 Awaruite 155 Axinite 140
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 " Salts of 365 Anise, oil of 182	Atacamite 25 Atopite 127 Augelite 117 Auribromides 33 Aurichlorides 28, 366 Australene 180 Austrapyrolene 181 Autunite 116 Awaruite 155 Axinite 140 Azobenzene 280
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 " Salts of 365 Anise, oil of 182 Anisic alcohol 252	Atacamite 25 Atopite 12 Augelite 117 Auribromides 33 Aurichlorides 28, 366 Australene 180 Austrapyrolene 181 Autunite 116 Awaruite 155 Axinite 140
Andradite 139 Andrewsite 117 Anethol 225 Angelica lactone 235 Angelica, oil of 181 Angesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 " Salts of 365 Anise, oil of 182 Anisic alcohol 252 " aldehyde 261	Atacamite 25 Atopite 127 Augelite 117 Auribromides 33 Aurichlorides 28, 366 Australene 180 Austrapyrolene 181 Autunite 116 Awaruite 155 Axinite 140 Azobenzene 280
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 " Salts of 365 Anise, oil of 182 Anisic alcohol 252 " aldehyde 261 Anisol 252	Atacamite 25 Atopite 127 Augelite 117 Auribromides 33 Aurichlorides 28, 366 Australene 180 Austrapyrolene 181 Autunite 116 Awaruite 155 Axinite 140 Azobenzene 280
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 " Salts of 365 Anise, oil of 182 Anisic alcohol 252 " aldehyde 261 Anisol 252 Anisyl chloride 313	Atacamite 26 Atopite 12 Augelite 117 Aurichlorides 28, 365 Australene 180 Austrapyrolene 181 Autunite 116 Awaruite 155 Axinite 140 Azobenzene 280 Azurite 130
Andradite 139 Andrewsite 117 Ancethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 "Salts of 365 Anise, oil of 182 Anisic alcohol 252 "aldehyde 261 Anisol 252 Anisyl chloride 313 Ankerite 130	Atacamite
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Angesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 "Salts of 365 Anise, oil of 182 Anisic alcohol 252 "aldehyde 261 Anisol 252 Anisyl chloride 313 Ankerite 130 Anorthite 136	Atacamite
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Anniline 271 " Salts of 365 Anise, oil of 182 Anisic alcohol 252 " aldehyde 261 Anisol 252 Anisyl chloride 313 Ankerite 130 Anorthite 136 Anthemene 177	Atacamite
Andradite 139 Andrewsite 117 Anethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 "Salts of 365 Anise, oil of 182 Anisic alcohol 252 "aldehyde 261 Anisol 252 Anisyl chloride 313 Ancerite 130 Anorthite 130 Anthemene 177 Anthracene 179	Atacamite
Andradite 139 Andrewsite 117 Ancethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 "Salts of 365 Anise, oil of 182 Anisic alcohol 252 "aldehyde 261 Anisyl chloride 313 Ankerite 130 Anorthite 136 Anthemene 177 Anthraccne 179 Anthracquinone 266	Atacamite
Andradite 139 Andrewsite 117 Ancethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Anniline 271 "Salts of 365 Anise, oil of 182 Anisic alcohol 252 "aldehyde 261 Anisol 313 Ankerite 130 Ancritite 136 Anthracene 177 Anthracene 177 Anthracene 177 Anthracene 266 Antiar resin 267	Atacamite
Andradite 139 Andrewsite 117 Ancethol 255 Angelica lactone 235 Angelica, oil of 181 Anglesite 83 Angostura, oil of 264 Anhydrite 81 Aniline 271 "Salts of 365 Anise, oil of 182 Anisic alcohol 252 "aldehyde 261 Anisyl chloride 313 Ankerite 130 Anorthite 136 Anthemene 177 Anthraccne 179 Anthracquinone 266	Atacamite

	PAGE.	PAGE
Barinm	Bromate 73	Benzanilide
+4	Bromlde 32	Benzene
+ 4	Butyrate 359	" Hexbromide 325
6.6	Cadmium bromlde	" Hexch/oride 301
0.0	" ehloride 27	Benzil, Isomer of 260
4.6	Calcium carbonate 129	Benzocinnamic anhydride
4.4	" sulphate 59	Benzoeuminie anhydride
1.5	Carbonate	Benzodiehlorhydrin
44		
14	Chlorate 72	Benzooenanthie anhydride
44	Chloride 23	Benzoic anhydride 200
	Chromate 101	Benzolein 240
64	Chromoxalate	Benzonitril 280
44	Copper formate	Benzoyl, Bromide 328
48	Dinitrophenate	" Chloride 513
4.6	Dithionate	" Thiocyanate 346
8.6	Ethylsulphate 350	Benzoylglycollic ether 266
6.6	Feldspars 138	Benzyl. Acetate
4.6	Fluoride	** Alcohol
+ 4	Formate,	Benzoate
6.6		" Benzylacetale
44	Hydroxide	Denzymeetate
	Hypophosphite	Denzyloutyrate 290
44	lodate	27 1103 1107 1107 1107 1107 1107 1107 110
8.6	lodide 36	Benzytpropionate
44	Isobutylsulphate 359	Droinide 324
4.6	lsobutyrate 359	" Butyrate 260
8.6	Manganate 105	" Chloride 392, 303
4.4	Manganite 105	" Cinnamate 261
4.6	Methylsulphote	" Cyanide280
44	Molybdate	" Diehloracetate 513
64	Nitrate	" Dimethylbenzylacetite
4.6		
	Nitrophenates 361	1114400 (20)
	Oxalate 360	15000031800
4.4	Oxides 42	- 1 C1 Ch / Ch C1
6.6	Picrate 364	" Monochloracetate 313
8.0	Platinbromlde 31	" Oxide 253
0.0	Platinchloride 28	" Phenylacetate 260
6.6	Platinocyanide 143	" Propionate 260
6.6	Propionate 358	" Trichloracetate 313
4.6	Propylsulphate	Benzylamine 271
4.6	Pyrophosphate 119	Benzylanisol
+ 6	Selenate 99	Benzylearbinol
	Silicotluoride	Benzyleymene
44		
44	Succinate 361	Benzylene
	Sulphate 82	Benzylethylbenzene
8.6	Tartrantlmonite 363	Benzylidene dichlorlde
4.6	Tartrate 363	Benzylidene tolylene 177
6.6	Tellurate 102	Benzylnaphthalene 179
4.6	Thlosulphate 74	Benzyl phenyl carbami le 288
+4	Titanate 142	Benzyltoluene 177
0.0	Tungstates 106	Berberine, Chlorhydrate
44	Uranyl phosphate	" Platinchloride 365
44	Zine chloride	Bergamot, oil of
		Bergenite
	rdtite (4	Berlinite
	dite 118	Berthierite
	paleite 129	
	dte 145	Bertrandite
	l of 142	Beryl 138
Bayldo	nite 123	Beryllium, see gluch um.
Beeger	lte (t	Herze lauite 65
Benyle	ne	Berzeliite 12.
Benzale	Ichyde 24	Betula lenta, oil of
	alila 959	Itaurichlia

PAGE.	PAGE.
Bindheimite 125	Bromallyl. Chloride 337
Binnite	" Nitrate 328
Birch tar, oil of 182	Bromallylphenol ether 328
Bischofite 22	Bromamylbenzene 325
Bismuth 8	Bromamylene 323
" Amalgams 146	Brombenzene 324
" Antimony alloys 151	Bromcamphor 328
" Arsenate 123	Bromeitropyrotartarie anhydride 327
" Arsenide 68	Bromdecylene323
" Bromide 32	Bromdibenzyl 325
" Cadmium alloys 150	Bromdiethylin
" Carbonates 130	Bromethyl oxide 325
" Chloride 26	Bromethyl allyl oxide 327
" Copper arsenate 123	Bromethylene 321
" Fluoride 17	" Bromacetin 326
" Gold alloys 155, 156	" Bromhydrin 326
" Hydroxides 72	" Dibromide 321
" lodide 36	Bromhexylene
" Lead alloys 151	Bromine 11
" Nickel sulphide 64	Bromiodethylene 338
" Nitrates	Bromiodomethane
6 Oxides	Bromisopropylphonol
"Oxybromide	Bromkresol
" Oxychloride 30	Bromlite 129
" Oxyfluoride 17	Brommesitylene
" Selenide	Brommethyl allyl oxide
" Silicate	Brommethylchloroform
" Sulphides	Brommethyleugenol
" Tellurides 66	Brommethylkresol
" Tin alloys	Brommethylphenol
" Uranyl arsenate	Bromnaphthalene 325
" Vanadate	Bromochloral 337
" Zinc alloys 150	Bromochloroform
Bismuth triethyl 351	Bromoform 321
Bismuth trimethyl	Bromonitric glycol
Bismuth triphenyl	Bromotrichlormethane
Bismutite	Bromphenol
Bismutosphærite	Brompierin 328
Blende 57	Brompropylene
Bobierrite	Brompyridine
Boltonite	Bromtoluene 324
Boracite 108	Bromtoluidine
Borickite	Bromtrimethylcarbinol
Bornite	Bromxylene
Borofluorides 18	
Boron	Brongniardite
" Bromide	Brucite
" Chloride	Brushite
Onto Tide 23	
" Oxide	Butallylmethylcarbin oxide
	Butallylmethyl pinakone
Botallackite	Butane
Boulangerite	Butenylanisoïl
Bournonite	Butenyl chlorhydrins
Braunite	Butenylphenol
Breithauptite	Butidene diethyl ether
Brochantite	Butyl. Acetate
Bromacetone	A1001101 130
Bromacetyl. Bromide	Delizoate 200
Cinoriue	Divinide 314
Bromal	" Butylxanthate 343
Bromallyl. Acetate	" Butyrate 211
" Alcohol 327	" Caproate 214

PAGE,	PAGE
Butyl, Caprylate 216	Cadmium. Arsenide
" Carbonate	" Barlum bromide 3
" Chloride 204	" chloride 2
" Cyanate 250	" Blsmuth alloys 15
" Cyanide 268	Bromate 7
" Dibromproplonate 326	" Bromide 3
" Formate 206	Garbonate 12
" Heptyl oxide	" Chloride
" lodide	4 Dithjonate
.115517161614	1 1001 (d C 1
Meterspiett	FOITING
" Monochloracetate 307	Hydrox)de
" Octyl oxide 198	10010F 5
" Cenanthate 215	4 Lead alloys 14
" Oxalate 2:27	" Magnesium sulphate 9
" Uxide 198	44 Nitrate 13
" Propionate 210	(C) Oxalate
** Sehate 229	" Oxide 4
" Silicate 352	" Platinchloride
" Sulphide	" Potassium chloride 2
" Thiocarbimide	" iodide 3
" Valerate	" selenate 10
Butylamine. 270	" sulphate 9
	·
Butyl amyl	" Selenate 9
Butylanisol 254	Setenide 0
Butylbenzen ²	Strontium emoride
Butylehloral	outhance
" Hydrate 309	Sulphide,
Butylene 164	" Telluride 6
" Bromide 320	" Tin alloys 14
" Glycol 222	Cæsium
" Iodide 331	" Aluminum selenate
" Monacetate 225	" sllicate 13
" Oxide 232	" sulphate 9
" Trisulphocarbonate 341	" Bromide 3
Butylphenyl acetate 260	" Chloride 2
Butylphosphorous chlorido	" Chromium sulphate 9
ButyIthlophene	" Cobalt selenate 10
Butylthymol	" Indium sulphate 9
Butyric aldehyde	" Iodide
	" Iron sulphate 9
anliydride	" Selenate 9
Butyro-diehlorhydrin 312	Seleuate
Butyrone 220	PHILOHOUNG
Butyrone pinakone 223	
Butyronitril 268	" Sulphate
Butyrylacetophenone 262	Calfeine 29
Butyryl chloride 30s	Cajeputene 18
	" Hydrate 20
	Cajeputol 26
C'.	Calamine 13
	Calamus, oil of 182, 184, 18
Cabrerite 122	Calaverite
Cacoxenite 117	t'alcloferrite
Cadmammonlum bromlde	Calcite 1.
44 ehlori le 38	Calcium
Cadmium	" Aluminum phosphate 11
4 Acetate	4 # silleates
4 An algam	44 44 sulphate
4 Ammoniobromille	" Antimonate 1.
Villimontontonth in 92	Alltitionate to
Ammontochioride	(1) TO 11111
44 Anomonium selenate 1 *)	Diff fulli Chi Dollate
	44 4 chlabata

	PAGE.	PA	GE.
	Benzoate 365	Camphor, oil from	
deium.	Borates 108	Camphoric anhydride	
44	Borosilicates	Camphorogenol	264
44	Bromate	Camphrene	265
44	Bromide 32	Camphryl chloride	
46	Carbonate 127	Cane sugar	243
66	Chloride	" " with sodium iodide	366
66	Chlorophosphate 124	Caoutchene	
46	Chlorosilicate 141	Caoutchin	
64	Chlorovanadate 124	" Hydrochlorate	304
64	Chromium silicate 139	Capraldehyde	218
44	Copper acetate 358	Caprone	
6.6	" arsenate 123	Capronitril	
6.6	Dithionate 75	Caproyl alcohol	
4.6	Fluophosphate 124	Capryl alcohol	
6.6	Fluoride 17	Caraway, oil of	182
6.6	Formate 356	Carbamide	288
66	Glucinum fluophosphate 124	Carbon	
66	Hippurate 364	" Bromide	
44	Hydroxide71	" Chloride	
44	Iron arsenate 123	" Dioxide	
44	" oxide 56	" Iodide	
66	" phosphate 115	" Oxychlorides	
66	" silicates 134, 139	" Sulphides	
44	Magnesium borate 108	" Sulphobromide	292
44	" carbonate 129	" Tetramercaptide	
44	" silicates 134	Carbonyl. Chloride	292
44	Manganese carbonate 129	" Thioamyl chloride	
66	" phosphate 115	" Thioethyl chloride	
66	" silicate 134	Carbopetrocene	
44	Mercury antimonate 125	Cardol	267
4.6	Nitrate 110	Carminite	122
44	Oxalate 360	Carphosiderite	
6.6	Oxide 41	Carrollite	64
44	Phosphates 115, 116, 117	Carvaerol	250
"	Potassium chromate 104	Carvene	182
6.6	" sulphate 89	Carvol	
4.6	Selenate 99	Carvinite	
66	Silicates	Cascarilla, oil of 182,	
66	Silicofluoride 18	Cassiterite	40
46	Silicophosphate141	Castorite	134
66	Sodium borate 108	Cedar, oil of	184
4.6	" carbonate 129	Cedrene	18
6.6	" silicate 134	Celestite	89
66	" sulphate 89	Cellulose	24
44	Sulphate 81	Cerargyrite	2
66	Sulphide 57	Cerium	
66	Thiosulphate 74	" Chloride	2.
4.6	Tin silicate 139	" Dioxide	4
66	Titanate 141	" Fluocarbonates	
44	Titanio-silicate 139	" Molybdate	
44	Tung tate 106	" Phosphate	110
44	Uranyl arsenate	" Silicate	13
44	" phosphate	" Sulphate	. 8
66	Zine alloy	" Sulphide	5
allaini	te115	Tungstate	10'
	llum resin	Cerotene	16
	ne	Cervantite	4
66	Acetate	Cetene	16
amphil	lene 183	Cetyl. Acetate	20
	n	" Alcohol	19
	r	" Butyrate	21
P			

PAGI	- 1	n.	GE.
		Chlorlodoform	
Cetyl. Chloride 29	613		
" Isovalerate		Chlorlodomethane	
" Nitrate 28		Chlorlodotolnene	
Chabazite 13		Chlorisobutylene	
Chalcomenite 9		Chlorisopropyl benzoate	
Chalcophanite 7		Chloritold	
Chalcophyllite 12	:3	Chlorkresol	
Chilcopyrite 6	54	Chlormethylphenol	312
Chalcopyrrhotite 6		Chlornaphthalene	304
Chatcosiderite 11		Chlornitrobenzene	315
Chalcostibite 6		Chlornitromethane	315
Chalk		Chlornitrotoluene	316
Chenevixite		Chlorobenzylethylate	
Childrenite		Chlorobromal	
Chinaldin 28		Chlorobromethyl acetate	
Chinotine 27	16.1	Chlorobromhydrin	
		Chlorobromhydroglyelde	
Chiolite 1		Chlorobromiodethane	
Chiviatite 6		Chlorobromiodhydrin	
Chloracetal	17	Chlorobrommethane	
Chloracetic anhydride 30	100	Chlorobromnitrin	
Chloracetone 30			
Chloracetonitril 31		Chlorohromoform	11.50
Chloracetyl bromide 33		Chlorocarbonylphenylorthophosphorle chlo-	
" chlorido 30		rlde	
Chloracetyl chloral 30	19	Chlorodibromethane	
Chloral 30.	18	Chlorodibromethylene	
" Derivatives of 30	19	Chlorodibromhydrln	
Chloraldehyde 30	18	Chlorodibromnitromethane	
Chloralide, derivative of 30	19	Chlorodracylle chloride	
Chlorallyl. Alcohol 31		Chloroenanthie ether	307
4 Iodide 33		Chloroform	298
" Thiocarbinide 31		Chloronicene	300
Chloramyl chloride 29		Chloropal	133
Chloramylene		Chloropropionyl chloride	308
Chloranethol		Chlorotetrabromethane	336
Chloranifines		Chlorotolnidines	314
Chlorapatite		Chlorotribromethane	336
Chloraurotriethylphosphorous ether 36		Chlorovaleral	309
Chlorazol		Chloroxalethylln	
Chlorbenzenes. 30		Chloroxalmethylln	
		Chloroxalpropylin	
Chlorbenzotrlehloride 30		Chloroxethose	
Chlorbutylene chlorhydrin 31		Chlorphenol	
Chlorbutyronltril 3t			
Chlorbutyryl chloride 30		Chlorpicoline	
Chlorchinolines 31		Chlorpropylene	
Chlorerotyl alcohol 31			
Chloreymene 30		Chlorsalicylol	
Chlordialtyl 30		Chlorstyrolene.	
Chlordismylene chloride 30		Chlortoluene	
Chlordinitrobenzene 31	15	Chlorxylene	
Chlorethylacetylenetetra arbonic ether 31		Chodnetlite	
t hlorethylbenzene 30	13	Cholesteriue	
Chlorethylene dichloride 29	98 (Christophite	
dithiodichloride	46	Chrome alums 94, 95,	
Chlorethyl oxlde 30	115	Chromite	
Chierethylphenol		Chromium	
t hiorhexylene 36		11 Aluminum alloy	
Chlerine 1		4 Ammonlochloride	
Trioxlde 5		" Ammonlochiorobromide	
Chleriod ethyl acetate		" Ammonium selenate	101
Chlorlodethylene 3		" sulphate	
Chlorlodobenzene 3.	5	" Caslum sulphate	95

PAGE.	PAGE.
Chromium, Calcium silicate 139	Cobalt. Oxides 54
" Chlorides 24	"Oxyhydroxide 71
" Chromate 52	" Phosphide 67
" Magnesium borate 108	" Platinbromide 33
" Manganese oxide 56	" Platiniodide 37
" Oxalates 361	" Potassium selenate 100
" Oxides 52	" sulphate 91
" Oxychloride 30	" Pyrophosphate 119
" Phosphido 66	" Rubidium selenate 100
" Potassium chromate 103	" Selenate 99
" selenate 101	" Selenide 65
" sulphate 94	" Silicofluoride 18
" sulphocyanide 144	" Stannifluoride 19
" Rubidium selenate 101	" Sulphate
" sulphate 95	" Sulphides 60
" Sulphate 86	" Thallium selenate 100
" Sulphide 59	" sulphate 91
" Thallium selenate 101	" Thiosulphate 74
" sulphate 95	Cobaltite
"Zinc oxide 56	Cochlearin
Chrompicotite	Coeinin
Chromyl dichloride	Codeine. 290
Chrysoberyl	Coeruleolactite
Chrysocolla	Coerulignol 266
Cicutene 183	Colemanite
Cinaerol 267	Collidine 275
Cinaëbene	
Cinchonine chlorhydrate	
	Colophene
Cinnabar	Colophonone
Cinnamene	Coloradoite
Cinnamic acetate	Columbite
" alcohol	Columbium 8
ardon j dominina a constantina	" Aluminum alloy
Cinnamyl chloride	11 y 41 1 4 5 0 5
Cirrolite 118	Carde
Citraconic anhydride 237	Columboxyfluorides 19
Citraconyl chloride	Coniceine
Citrene	Conichalcite
Citron, oil of 181	Coniine
Citronellol	Conylene 168
Citron terpene 181	" Bromide 323
Citrus, oils from 181	" Diacetate 248
Clarite 61	Copaiva, oil of
Clausthalite 65	Copal, oil of 182
Clinoclasite 122	Copellidine 277
Cloves, oil of 184	Copiapite 97
Cobalt 12	Copper 13
" Acetate 358	" Acetate
" Ammoniochlorides 38	" Aluminum alloys 146
" Ammoniobromide 38	" arsenate 123
" Ammonium selenate 100	" Ammoniochlorides 38
" sulphate 91	" Ammonionitrate 112
" Arsenates 122	" Ammoniosulphate 97
" Arsenides 68	" Ammonium chloride 27
" Cæsium selenate 100	" oxalate 361
" Chloride 24	" sclenate 100
" Dithionate 75	" sulphate 91
" Formate 356	" Antimonate 125
" Hypophosphite 113	" Antimony alloys 154
" Iodate 74	" Arsenates 122, 123
" Nitrate 112	" Arsenides 67
" Oxelate 360	" Barium formate 357

Copper.	Bismuth alloys 154	Covellite	
4.6	arsenate 123	Creatine hydrate	
6.6	Bromate 73	Crocidolite	
41	Bromlde 32	Crocoite	
4.6	Calcium acetate	Crookesite	
44	" arsenate 123	Crotonaldehyde	
44	Camphorate, hydrocarbon from 187	Crotonitril	
4.6	Cartonates	Crotonylene dichloride	
6.6	Chlorides 24	813 001	
4.6	Chloride, with mercuric sulphide 144	Cryptolite	
4.6	Columboxythuoride	Cryptopine	
44	Formate 356	Cubanite	
44	Gold alloys 156	Cubebs, oll of	
44	Hydroxide	Cumene	
44	lodide	Cumidine	
44	Iron arsenate 123	tuminic aldehyde	
44	" phosphate	Cuminol	
44	" sulphides	Cummin, oil of	
44	" arsenate	Cumonitril	
44	" chromate	Cumyl chloride	
44	" chromate 103	Cuprammonium chloride	
44	" vanadate	44 sulphate	
44	Magnesium sulphate 92	Cuprite	
4.6	Mercury lodide	Cyamelide	
6.6	Nitrates 112	Cyanaldehydo	
4.6	Oxides 54, 55	Cyanoconicine	
4.6	Oxychloride	Cyanogen	
4.6	Pho-phates	" Chloride	
4.6	Phosphides	" Iodide	142
44	Platinchloride 28	Cyanoil	259
44	Potassium chloride	Cymene	174
4.6	" oxalate 351	Cymhydrene	186
4.6	44 selenate 100	Cymyl alcohol	251
44	44 sulphate 91	" mercaptan	
4.6	Rubidlum chloride 27	Cynene	183
	Rubidlum chloride 27		
4.6	Scienate	Cyneol	263
46		Cyneol	263 346
	Selenate 99 Selenide 65 Selenite 98	Cyneol	346
4.6	Selenate	Cyneol	346
44	Selenate 99 Selenide. 65 Selenite 98 Silicates 132 Silicatenoride 18	Cyneol	346
4.6 4.6 4.6 4.6	Selenate 99 Selenide. 65 Selenite 98 Silicates 132 Silicefluoride 18 Silver alloys 155	Cyneol Cystic oxide	346
4.6 4.6 4.6 4.6 4.6	Selenate. 99 Selenide. 65 Selenite. 98 Silicates. 132 Silicefluoride 18 Silver alloys. 155 " jodide 37	Cyneol Cystic oxide D.	346
4.6 4.6 4.6 4.6 4.6	Selenate. 99 Selenide. 65 Selenite. 98 Silicates. 132 Silicefluoride 18 Silver alloys. 155 4 folide 27 So lium sulphate 89	Cyneol Cystic oxide D. Daleminzite	346 57 141
4.6 4.6 4.6 4.6 4.6 4.6 4.6	Selenate 99 Selenide. 65 Selenide. 98 Sileates. 132 Silteofluoride. 18 Silver alloys. 155 4 folide. 27 Solium sulphate. 89 Strontlum formate. 356	Cyncol Cystic oxide D. Daleminzite Danalite Danburite	57 141 140
4.6 4.6 4.6 4.6 4.6 4.6 4.6	Selenate 99 Selenide. 65 Selenide. 98 Selenide 132 Silicates 132 Silicofluoride 18 Silver alloys 155 4 foldide 37 Solium sulphate 89 Sirontlum formate 356 Sulphates 85, 96	Cystic oxide D, Daleminzite	57 141 140 156
4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	Selenate 99 Selenide. 65 Selenide. 98 Silicates 132 Silicefluoride. 18 Silver alloys 155 " fodide 37 Solium sulphate 89 Strontlum formate 356 Sulphates 85, 96 Sulphides 60, 61	Cyneol Cystic oxide D. Daleminzite Danalite	57 141 140 156 140
46 46 46 46 46 46 46 46	Selenate 99 Selenide. 65 Selente 98 Silicates 132 Silicefluoride 18 Silver alloys 155 " fodide 37 So lium sulphate 89 Strontlum formate 356 Sulphates 85, 96 Sulphides 60, 61 Sulphite 75	Cyneol Cystic oxide D. Daleminzite Danalite Danburite Danburite Datolite Datolite Datolite Datolite Datolite	57 141 140 156 140 €4
44 44 44 44 44 44 44 44 44 44 44 44 44	Selenate 99 Selenide. 65 Selenite. 98 Silicates. 132 Silicefluoride. 18 Silver alloys. 155 4 Iodide. 27 Solium sulphate. 89 Strontlum formate. 356 Sulphates. 85, 96 Sulphides. 60, 61 Sulphite. 75 Tin alloys. 153, 154	Cyneol Cystic oxide D. Daleminzite Danalite Danburite Darcet's alloy Daubreelite Daubreelite Daubreelite Daubreelite	57 141 140 156 140 64 30
44 44 44 44 44 44 44 44 44 44 44 44 44	Selenate 99 Selenide. 65 Selenide. 98 Selenide 132 Silicates 132 Silicofluoride 18 Silver alloys 155 4 folide 37 So lium sulphate 89 Strontlum formate 356 Sulphates 85, 96 Sulphides 60, 61 Sulphite 75 Tin alloys 153, 154 Titanoflaoride 19	Cyncol Cystic oxide Daleminzite Danalite Danburite Danburite Datolite Datolite Daubreelite Daubreelite Dawsoulte	57 141 140 156 140 64 30 130
44 44 44 44 44 44 44 44 44 44 44 44 44	Selenate 99 Selenide. 65 Selenide. 98 Selenide 132 Silicates 132 Silicefluoride 18 Silver alloys 155 4 jodide 27 Solium sulphate 89 Sirontlum formate 356 Sulphates 85,96 Sulphides 60,61 Sulphite 75 Tin alloys 153,154 Titanofhoride 19 Uranyl arsenate 122	Cyneol Cystic oxide D, Daleminzite Danalite Danbrite Darcet's alloy Daubreelite Daubreelite Dawsonite Dawsonite Davanite Davanite	57 141 140 156 140 64 30 130 161
44 44 44 44 44 44 44 44 44 44 44 44	Selenate 99 Selenide. 65 Selenide. 98 Silicates 132 Silicefluoride. 18 Silver alloys 155 " fodide 37 Solium sulphate 89 Strontlum formate 356 Sulphates 85, 96 Sulphides 60, 61 Sulphite 75 Tin alloys 133, 154 Titanofhoride 19 Uranyl arsenate 122 "phosphate 116	Cyneol Cystic oxide Daleminzite Danalite Danalite Danterite Darcet's alloy Datolite Daubreelite Daubreelite Davsonite De chenite Dechenite	57 141 140 156 140 64 30 130 161 120
44 44 44 44 44 44 44 44 44 44 44 44 44	Selenate 99 Selenide. 65 Selenide. 98 Selenide 132 Silicefluoride 18 Silver alloys 155 " folide 27 Solium sulphate 89 Sirontlum formate 356 Sulphides 85, 96 Sulphides 60, 64 Sulphide 75 Tra alloys 133, 154 Titanofloride 19 Uranyl arsenate 122 "phosphate 116 Zinc alloys 152	Cyneol Cystic oxide D. Daleminzite Danalite Danburite Darburite Darbeite Daubreelite Daubreelite Dawsonite Dechenite Decyl, Alcehols	57 141 140 156 140 64 30 130 161 120 196
41 41 41 41 41 41 41 41 41 41 41 41 41 4	Selenate	Cyneol Cystic oxide Daleminzite Danalite Danburite Danburite Datolite Daubreelite Daubreelite Dawsenite Dechenite Dechenite Decyne Chlorite Chlorite	57 141 140 156 140 64 30 130 161 120 196 295
41 41 41 41 41 41 41 41 41 41 41 41 41 4	Selenate 99 Selenide. 65 Selenide. 98 Selenide 132 Silicates 132 Silicefluoride 18 Silver alloys 155 " foldide 27 Solium sulphate 89 Sirontlum formate 356 Sulphates 85, 96 Sulphides 60, 61 Sulphite 75 Tin alloys 153, 154 Tin alloys 153 Tin alloys 152 "phosphate 110 Zinc alloys 152 u 84 let., ell of 262, 263	Cyneol Cystic oxide Daleminzite Danburite Danburite Danburite Datolite Datolite Datolite Datolite Datolite Datolite Davenite Dechenite Dechenite Dechorite Chlorite ' Indide	57 141 140 156 140 64 30 130 161 120 196 295 333
coquim	Selenate 99 Selenide. 65 Selenide. 05 Selenide 132 Silicates 132 Silicefluoride 18 Silver alloys 155 " jodide 27 Solium sulphate 89 Strontlum formate 356 Sulphides 60, 61 Sulphides 60, 61 Sulphides 153, 154 Tin alloys 153, 154 Titanofhoride 19 Uranyl arsenate 122 "phosphate 116 Zinc alloys 152 bit 84 let., cll of 262, 263 e 262, 263	Cystic oxide	57 141 140 156 140 64 30 161 120 196 295 333 186
Coquim	Selenate 99 Selenide. 65 Selenide. 05 Selenide 132 Siliceates 132 Siliceates 15 ' Iodide 27 Solium sulphate 89 Strontlum formate 356 Sulphates 85,96 Sulphides 60,61 Sulphides 60,61 Sulphides 153,154 Titanoflaoride 19 Uranyl arsenate 122 "phosphate 116 Zinc alloys 152 the e 84 ter, ell of 262, 263 e 276 Illie 123	Cystic oxide D. Daleminzite Danalite Danburite Darcet's alloy Datolite Daubreelite Daubreelite Dawronite Despera Dechente Decyl, Alcehols G. Chlori le G. Inchanaphiene Delafossite Delafossite Delafossite Delafossite Delafossite Delafossite	57 141 140 156 140 64 30 130 161 120 196 295 333 186 55
at a	Selenate	Cystic oxide	57 141 140 156 140 64 30 161 120 196 295 333 186 55 120
didition of the control of the control of the control of Corner of	Selenate 99 Selenide. 65 Selenide 98 Selenide 132 Silicates 132 Silicofluoride 18 Silver alloys 155 " folde 27 Solium sulphate 89 Strontlum formate 356 Sulphides 60, 61 Sulphides 60, 61 Sulphides 75 Tin alloys 153, 154 Titanoflaoride 19 Uranyl arsenate 122 "phesphate 116 Zinc alloys 152 the 84 ler, ell of 262, 263 e 276 llite 123 um 43 e 60 c 60	Cystic oxide	57 141 140 156 140 64 30 161 120 196 295 333 186 55 120
at a	Selenate 99 Selenide. 65 Selenide. 98 Selenide 132 Silicates 132 Silicefluoride 18 Silver alloys 155 4 folde 27 Solium sulphate 89 Sirontlum formate 356 Sulphides 60, 61 Sulphides 60, 61 Sulphides 153, 154 Tin alloys 152 "phosphate 122 "phosphate 116 Zincatloys 152 bit 84 letr, ell of 262, 263 e 276 line 123 um 43 e 43 e 43	Cystic oxide D. Daleminzite Danalite Danburite Dartolite Daubreelite Daubreelite Dawrente Devine Devine Devine Chlori le deldossite Dekanaphtene Debaossite Debaossite Debaossite Debaossite Debaossite Debaossite Demanted Desclorate Demanted Desclorate Desclorate Desclorate Desclorate Desclorate Desclorate Desclorate Desclorate Desclorate Diacetin	57 141 140 156 140 64 30 161 120 196 295 333 186 55 120 244 240
de d	Selenate 99 Selenide. 65 Selenide 98 Selenide 132 Silicates 132 Silicofluoride 18 Silver alloys 155 " folde 27 Solium sulphate 89 Strontlum formate 356 Sulphides 60, 61 Sulphides 60, 61 Sulphides 75 Tin alloys 153, 154 Titanoflaoride 19 Uranyl arsenate 122 "phesphate 116 Zinc alloys 152 the 84 ler, ell of 262, 263 e 276 llite 123 um 43 e 60 c 60	Cystic oxide	57 141 140 156 140 64 30 161 120 196 295 333 186 55 120 244 240

PAGE.	PAGE
Diacetone alcohol 245	Dichlorbromethylene 33
Diacetonephosphoroso-chloride	Dichlordibromethane 33
Diacetylchloral hydrate 309	Dichlordibrom-ethyl acetate 33'
Diallyl 167	Dichlordinitrobenzene 313
" Dichlorhydrin 312	Dichlordinitromethane 313
" Dihydriodate 334	Dichlorethoxyethylene 310
" Hydriodate 335	Dichlorethoxylacetonitril 313
" Monohydrate 241	Dichlorethyl. Acetate 306
Diallylaniline 274	" Alcohol 305
Diallylearbinol	" Dichloracetate 307
Diallylcarbyl. Acetate 242	" Formate 300
" Ethyl oxide 242	" Monochloracetate 300
" Methyl oxide 242	" Oxide 305
Diallylene 167	" Propionate 307
Dia!lylethylcarbinol241	" Sulphide 346
Diallylisopropylearbinol 241	Dichlorethylamine 314
Diallylmethylcarbinol 241	Dichlorethylene
Diallylmethylcarbyl acetate 242	"Thiodichloride 346
Diallylpropylearbinol 241	Dichlorhexyl alcohol 305
Diamyl acetal 224	Diehlorhydrin 311
Diamylamine 270	Dichloriodhydrin 338
Diamylene 165, 166	Dichlorisobutoxylacetonitril 315
" Oxide 222	Dichlormethoxylacetonitril 315
" Thiocyanates 345	Dichlormethyl acetate 306
Diamylin 239	" oxide 305
Diamyl ketone 221	Dichlormethylsulphuric chloride 346
Diamyl valeral 224	Dichlormononitrin
Diaphorite 62	Dichlornitrobenzene 315
Diaspore 71	Dichlornitrophenol 315
Diazobenzene nitrate	Dichlornitrotoluene 316
Dibenzyl 178	Dichlorpropionitril
Dibenzylamine	Dichlorpropoxylacetonitril 315
Dibenzyltoluene	Dichlorpropylene 300
Dibromacetone	Dichlortoluene
Dibromallyl oxide	Dichlor-vinyl methyl oxide 309
Dibrombenzene	Dichlorxylenes 304
Dibromchlorpropylene	Dicinnamene
Dibromcymene	Dickinsonite
Dibromdiallyl	Didecene 187
Dibrom-ethyl acetate	Didymium
Dibromethylene	Acetate 308
Dibromhexchlorpropane	Ammonium seienate 101
Dibromhexyl alcohol	amphate 30
	Dorates 108
Dibromiodethane	DI011110C 32
Dibromtetrachlorethane 292	Carounate 128
Dibromthiophene 347	Omoride
Dibromtoluene	Engisurphate
	FOITHate 001
Dibromxylene	Gold blomide
Dibutyrin	CHIOTIGE 20
Dichloracetal 310	Metaphosphate 118
Dichloracetone 308	Mory Date 103
	1/11/1/10/5
Dichloracetonitril	1410 X STATE 301
Dichloracetophenone	Oxides 45
	Oxychiolide 29
Dichlorbenzenes	\$ C110date
Diehlorbenzyl chloride	rhosphates 110
	ristinemoride 28
Dichlorbenzylene dichloride	1 Otas-Idili Scioliate 101
bremoretomemane	" Propionate 358

Didymium, Scienate 99	Dimethyl acetal
Didymium, Scienare	
44 Sulphate 88	Dlmethylacetamide 287
107 Tungstate 107	Dimethylanillne 272
** Vanadates 120	Dimethylanfsldine 288
Diethoxyl ether 245	Dimethylarsine oxide 330
Diethyl acetamide	Dimethylbutylene glycol223
Diethyl acetone	Dlmethylbutylmethane 1°)
Diethylamine	Dimethyleopellidine 277
" Aurochloride 365	Dimethyldiethylmethane
Diethyl amyl borate 348	Dimethyl diethyl sillcate 352
Diethylaniline	Dimethylethylbenzene
Diethylanlline azylin	Dimethylethylearbinol 193
Diethylbenzene	Dimethylethylcarbinolamine
Diethylbenzene	
Diethylbrommaleate	Dimethylethylearbyl chloride
Diethyl carbamide	100100
Dlethylearbinol 193	" nitrite 281
Diethylearbyl acetate	Dimethyl ethyl phosphate 348
" chloride 294	Dimethylethylene giycol 222
11 iodide	Dimethylhydrazin 278
Diethyl diamyl silicate 352	Dimethylisopropylearbinol 194
Diethyl ethyl oxide 198	Dimethyllsopropylcarbyl chloride 295
Diethylene alcohol	" fodlde 333
dioxide	Dimethylisopropylethylene 165
Diethylformamide	Dimethyl ketone
Diethylglycollic ether	Dimethylmesidine
Diethylin	Dimethylmethylene bromide
Diethyl ketone	tt chloride
Diethyl kelone	Dimethylnaphthalene
	Dimethyloxamide
Diethylmonochlorhydrin	
Diethyloxamide	Dimethylphenylphosphin
Diethylphenylphosphin	Dimethylpiperidine
Diethylpropylearbinol 195	Dimethylpropylbenzene
Diethylthiophene	Dimethylquinoline 277
Diethyltoluidine 273	Dimethylresorela 255
Diethyl valeral 221	Dlmethyltoluidlue
Difellandrene 185	Dimethyl valeral
Diffrobenzene	Dimethylxylidine 273
Diformin 239	Dimorphite 59
Diheptylene sulphoxide	Dinitrobenzene 243
Dihexyl ketone	Dinitrobutane
Dihexylene 166	Dinitrocymene
Inhydrite	Dinltroethane 282
Dihydrofurfarane	Dinitrohexane
Dihydrostilbazol	Dinitropropane
	Dinitrotoluene
Diiodhydrin	Dioctyl
Dilsoamyl	
Dijsoamylbenzene 175	Dloetylene 116
Dissobutyl 150, 160	Diolein 240
Dilsobutylene 105	Dioptase 1.12
Dijsobutyl ketone 221	Dioxylsoamylamine
Diisobutyl sulphone	Dipentenyibenzene
Diisobutyryl dieyanide	Diphenols
Dilsopropyl	Diphenyl 177
Dilsopropylamine	Plphenylamine
Difsopropylaniline	Diphenylarsine chloride
Diisopropylearbinol	Diphenylearbyl acetate
DI sopropylethylene	ethyl oxide 2"4
Dirsopropyl ketone	Dlphenylmethylphosphin 318
Dill, oil of	Diphenylphosphin 315
Din ercurammonium chloride	Diphenyl phosphochloride
Inmercure-ammonlum 4	Diphenylphosphorous chloride
Dineth xyldiethyl acetone	Diphenylpropane
Process Aymicing the cone,	1 viliani il distributioni il il

383

PAGE.	PAGE
Dipicoline 277	Eosphorite 118
Dipiperidyl278	Epiacetin
Dipropargyl 168	Epiboulangerite 69
" Bromide 323	Epibromhydrin 327
Dipropylamine	Epichlorhydrin 311
Dipropylaniline 273	Epidibromhydrin 323
Dipropylearbinol	Epidiehlorhydrin 300
Dipropylearbyl acetate 209	" Derivative of 337
" iodide 333	Epiiodhydrin335
Dipropyl ketone	Erbium, Columbate 125
Dipyridyl 277	" Oxide 43
Disulphamylene hydrate 344	" Selenate 99
" oxide 344	" Sulphate 87
Disnlphhydrin	Erechthidis, oil of 182
Disulphuryl chloride 30	Ericinol 262
Diterebene 185	Erigeron, oil of
Diterebenthyl	Erinite 122
Diterebenthylene	Erythrene hexbromide 323
Dithioglycol, derivative of 340	Erythrite 122, 243
Ditolyl	Erythrol
Ditolylethane	Ether
Divalerin	Etherol
Dixylylene	Ethidene ethers
Dixylylethane	Ethoxyacetonitril
Docosane 163	Ethoxybromemulene 209
Dodecane	Ethoxybromamyleue
Dodecyl alcohol	Ethyl. Acetacetate
CHIOTIGE 230	Acetate 207
Dodecylene	Acetochrate 238
Dodecylidene	Acetogratarate 230
Dodekanaphtene	Accosiyedinte 231
Dolomite 129	" Acetolactate 231
Domeykite 67	" Acetomalonate 229
Dotriacontane 163	" Acetopyruvate 233
Dreelite 89	" Acetosuccinate 229
Drybalanops camphora, oil of 184	" Acetylcyanacetate 289
Dufrenite 117	" Acetyltetremethylenecarboxylate 246
Dufrenoysite 61	" Acetyltrimethylenecarboxylate 246
Dulcite	" Aconitate 237
Dumortierite 133	" Acrylate 234
Durangite 124	" Adipate 229
Dyscrasite 68	" Aleohol 188
	" Allylacetacetate 242
	" Allylacetate 242
E.	" Allylmalonate 243
	" Allyloetylate 242
Ehlite 117	" Allyl oxide 241
Eicosane 163	" Amidoacetacetate 288
Eikosylene 168	" Amidopropiopropionate 288
" Chloride 300	4 Amylhydroxalate 231
Ekdemite 124	" Amylideneacetacetate 233
Elder, oil of 182	" Amyl oxide 197
Elemi, oil of	" sulphide 339
Eliasite 72	" Amylthioglycollate 344
Embolite 37	" Angelate
Emerald 138	" Arsenate
Emplectite 63	" Arsenite
Enargite	" Benzoate
Endecylene	" Derivative of 313
Endekanaphtene 186	"Benzylacetacetate
Endlichite124	"Benzylacetosuccinate
Enstatite	"Benzylchlormalonate
	01

	PA	GE.		PA	GE.
Ethyl.	Benzylidenemaionate	259	Ethyl.	Diamyloxalate	
4.6	Benzylmalonate		4.6	Dibenzylhydroxamate	
4.6	Benzylmethylmalonate		44	Dibromacetacetate	
4.4	Borate	317	4.6	Dibromethylacetacetate	
4.6	Bromacetaeetate	327	4.6	Dibrompropionate	
4.4	Bromacetate	326	4.6	Dibromproploproplonate	
8.6	Bromacetopropionate	327	4.6	Dicarboxylglutaconate	
4.6	Brombutyrate	326	4.6	Dichloracetacetate	
4.4	Bromethylacetacetate		4.4	Dichloracetate	300
6.6	Bromethylmethylacetate	326	6.6	Diehlorbenzoate	
4.4	Bromide	316	6.6	Dichlorethylacetacetate	
4.6	Bromisobutyrate	326	4.6	Dichlormethylacetacetate	311
6.6	Brompropionate	326	4.6	Diehlorpropionate	307
4.4	Brompropiopropionate	327	4.4	Diethylacetate	214
4.6	Brompyromucate	327	4.4	Diethylchloracetacetate	
4.4	Bromvalerate		4.4	Diethyldichloracetacetate	311
4.4	Butenyltrlcarboxylate		6.6	Diethylglycocollate	247
4.4	Butylmulonate	229	6.6	Diethylglyoxylate	231
4.4	Butyl oxlde		4.6	Diethylmalonate	220
6.6	Butylsuccinate		6.6	Diethyloxyacetate	231
1.6	Butylthioxycarbonate		6.6	Diheptylacetacetate	233
4.6	Butylxanthate		6.6	Diisobutylacetacetate	
4.6	Butyrate		4.4	Dimethylacetacetate	
4.4	Butyroglycollate		44	Dimethylacetosuccinate	
44	Butyrolaetate		66	Dimethylacetylenetetracarboxylate	
4.6	Camphocarbonate		4.6	Dimethylethenyltrlearboxylate	247
4.6	Camphorate		6.6	Dimethylmalonate	
4.4	Camphresate	265	4.6	Dimethylsuccinate	
4.6	Caproste	214	6.6	Dioctylacctacetate	
4.6	Caprylate	215	4.6	Dioctylmalonate	
6.4	Capryl oxide		6.6	Dioxysulphocarbonate	
4.6	Carbacetacetate		6.6	Dioxythloe rbonate	
4.6	Carbamate		6.6	Dipropylacetacetate	
64	Carbonates 225,		4.6	Disulphide	
6.4	Chloracetacetate		6.6	Dithioxycarbonate	
6.6	Chloracetate		84	Elaldate	
4.6	Chloracetoproplonate		64	Ethenyltricarboxylate	24
6.6	Chlorbutyrate		4.4	Ethidenemalonate	
4.6	Chlorerotonate	312	6.6	Ethoxylethylacetacetate	
6.6	Chloride.		64	Ethoxylmethylacetacetate	
6.6	Chlorisobutylmalonate		4.4	Ethylacetacetate	
4.6	Chlorocarbonate		8.4	Ethylacetosuccinate	
6.6	Chloroenanthate		0.6	Ethylacetylcyanacetate	
4.6	Chlorolactate		6.6	Ethylamylhydroxalate	
4.6	Chloromaleate		44	Ethylbenzhydroxamate	
4.6	Chloromalonate		4.4	Ethylchloromalonate	
4.4	Chloropropionate		4.6	Ethylcrotonate	
4.6	Chlorosulphonate		64	Ethylglycollate	
6.6	Chlorperthiocarbonate		44	Etnylldeneacetacetate	23
4.4	Cinnamate		4.6	Ethyllactate	
4.6	Citraconate		4.6	Ethylmalonate	
44	Cltrates	037	4.4	Ethylmethylacetate	
6.6	Crotonate		4.4	Ethyloxybenzoate	
44	Cyanacetate		44	Ethyloxybutyrate	
44	Cyanate	250	4.4	Ethylpropiopropionate	
41	t yanformate		8.6	Ethylsalleylate	
44	Camida	01.9	4.6	Ethylsuccinate	13 1
44	Cyanide	931	8.6	Ethylsulphonato	
4.6	Diacetylacetate	010	4.6	Ethylthleglycollate	
4.6	Diallyla alonate		1.6	Ethylxanthate.	
4.6	Talalbula watanatuta	010	44	Formate	
44	Diallyloxyacetate		4.4	Fumarate	

	•				
		AGE.			AGE.
Ethyl.	Glycerate		Ethyl.	Myristate	
44	Glycocholate		"	Nitrate	
44	Glyeollate	230		Nitrite	
66	Heptylacetacetate		- "	Nitroacetate	
"	Heptyl oxalate		"	Nitrocaprylate	
"	02106			Nitroglycollate	
	Heptylsuccinate			Nitrolactate	
6.6	Hexyl oxide		"	Nitromalate	
66	Hippurate			Nitromalonate	
44	Hypophosphate		46	Nitrotartronate	
4.4	Iodide		44	Octylacetacetate	
44	Iodpropionate		44	Octyl oxide	
66	Isaconitate	237	"	Oenanthate	
4.6	Isoallylenetetracarboxylate	247	46	Oleate	
44	Isoamyl oxide		66	Orthocarbonate	
64	Isobutenyltricarboxylate	247	18	Orthoformate	245
4.6	Isobutylacetacetate	233	16	Oxalate	227
44	IsobutyImalonate	229	44	Oxide	196
66	Isobutyl oxide	197	- "	Oxyisobutyrate	231
4.6	Isobutyrate	211	144	Oxyphenylacetate	258
6.6	Isobutyroglycollate	231		Oxyphenylacrylate	259
4.6	Isocaproate	214	"	Oxyphenylpropionate	258
66	Isononylate	216	66	Paracamphorate	264
44	Isoöenanthate		4.6	Parasantonate	267
66	Isopropylacetacetate	233	44	Pelargonate	216
44	Isopropylmalonate		6.6	Phenylacetacetate	259
64	Isopropyl oxide		64	" Derivative of	
44	Isovalerate		46	Phenylacetate	257
66	Itaconate		1.6	Phenyl carbonate	
4.6	Lactate		- 46	Phenylglyoxylate	
4.6	Lactosuccinate		66	Phenylpropionate	
4.6	Laevulinate		46	Phenylthioglycollate	
44	Laurate		44	Phosphate	
4.8	Maleate		44	Phosphite	
4.6	Malonate		44	Phthalate	
4.6	Mercaptan		66	Propargyl oxide	
4.6	Mesaconate		"	Propionate	
4.6	Metachlorbenzoate			Propionylglycollate	
66	Metasilicate		6.6	Propionylpropionate	
6.6	Methenyltricarboxylate		"	Propyl carbonate	
66	Methoxyldia lacetate		61	" malonate	
4.6	Methylacetacetate		44	" oxide	
	Methylacetoglutarate		66	" succinate	
44	Methylacetosuccinate		66	Propylethenyltricarboxylate	
46	Methylacetyleyanacetate		4.6	Propylglycollate	
	Methylbenzylacetacetate		"	Propylmalonate	
66	Methyldehydrohexonecarboxylate		61	Propylxanthate	
4.6	Methylethenyltricarboxylate		44	Pyromucate	
66	Methylethylacetacetate		44	Pyrophosphate	
66	Methylethylmalonate		66	Pyrosulphophosphate	
44	Methylglycollate		4.6	Pyrotartrate	
4.6	Methylisopropylmalonate		4.6	Racemate	
64	Methyllactate		4.6	Rutylate	
6.6	Methylmalonate			Santonate	
	Methyloxybutyrate			Sebate	
66	Methylpropylacetacetate			Sclenite	
	Methylpropylacetate			Silicate	
				Silicoacetate	
44	Methylxanthate			21110	
44	Monochloracetate			Silicobenzoate	
46	Monochlorethylacetacetate			Silicopropionate	
	Monochlormethylacetacetate			Suberate	
	Mucate	248		Succinate	228

PAGE.

Ethyl. Succinosuccinate	230		Chloride	296
" Sulphate		4.6	Chloriodide	
" Sulphide	339		Chlorobromide	336
" Sulphite	342		Chloronitrin	315
" Salphophosphite	350	6.6	Chlorothioeyanate	347
" Tartrate	236	6.4	Cyanhydrin	289
"Terebate		6.6	Cyanlde	278
" Tetrabromacetacetate	327	44	Diamine	278
" Tetramethylenedicarboxylate	246	64	" Hydrate	287
" Tetramethylsuccinate	229	4.6	Diethyl ether	003
" Thioarsenite	351	44	Dinitrate	
" Thlocarbimide		4.6	Diphenate	
" Thiocyanacetate	346	4.6	Dithiodichloride	
Thlocyanate		6.6	Dithioethylate	
" Thioxalate		6.6	Ethylldene dioxlde	222
" Thloxycarbonate	343	6.6	Fluoborate	
" Tiglate	234	6.6	Glycol	
" Triamyl silicate		4.4	Iodide	
" Tribromacetacetate		4.6	Mercaptan	
" Tribromethylacetacetate	327	44	Monethyl ether	
" Trichloracetate		16	Mononitrate	
" Trimethylacetate		4.6	Nitrosonitrate	
" Trimethylenedicarboxylate		84	Oxide	
" Trimethylenetricarboxylate		4.6	Propionate	
" Trisulphocarbonate		6.4	Thiodlehloride	
" Valerate		66	Thiovinylethylate	
" Vanadate		44	Trisulphocarbonate	
" Veratrate		Ethylene	stannethyl	
Ethylacetamide			lene glycol	
Ethylamidobenzene		Ethyleuge	enol	26.
Ethylamine		Ethylform	namide.=	1.57
" Anrochloride			mili le	
" t'amphorate, base from			rearbinol	
" Platinchloride			eide	
Ethyl amyl			ollic chloride	
Ethyl amylin			xalin	
Ethyl amyl pinacolin		Ethylhex	ylearbinol	196
Ethylaniline			roxylamine	
Ethylbenzene		Ethyliden	e. Acetochloride	31
Ethylborneol		4.6	Bromile	331
Ethylbrombenzene		4.4	Bromethylate	320
Ethyl butyl pinacolin		4.4	Bromiodide	33
Ethylbutyrle lactone		4.4	Butyrochloride	31
Ethylcamphene		6.6	Chloride	201
Ethyleamphor		4.4	Chlorobromide	330
Ethyl carbamide		•	Indide	. 33
Ethyl carbamine		4.4	Oxychloride	. 316
Ethyl carbimide	290	4.4	Propiochlori le	. 310
Ethyldlacetami le	057	6.6	Valeroehloride	. 31
Ethyldiacetone carb mate		Ethylisob	utylearbinol	. 19
Ethyl limethylethylene			hylacetoxim	
Ethyldipropylearbinol		Ethylmet	hylethylene	. 16
Ethyldipropylearbyl acetate			" Bromble	. 39
Ethylene			" Glycol	. 22
4 Acetat		Ethyl mo	nochlorhydrin	. 31
4 Acetochloride			thalene	
" Aectonitrate	. 296	Ethylorth	oami lophenetol	. 28
" Bromhydrin-,			atolyl sulphide	
Bromlde,		Ethylphe	netol	25
" Bromlodlde		Ethylphe	nol	0.5
" Intyrate		Ethylphe	nyl acetate	. 26
" Butyrochloride			nylacetylene	
-				

387

PAGE.		AOE
Ethylphenylacetylene alcohol 252	Forbesite	
Ethylphenylcarbinol 251	Formamide	287
Ethylphenylpyrazol279	Forsterite	131
Ethylphosphorous chloride 349	Franklandite	108
Ethylpiperidine 276	Freieslebenite	62
Ethylpropylacetylene	Frenzelite	65
Ethylpropylbenzene	Friedelite	
Ethylpropylearbinol	Fuchsine	
Ethylpropylearbyl acetate	Fueuso!	
Ethyl propyl ketone 220	Furfurane	
Ethylpyridine	Furfurbutylene.	
Ethyl pyruvyl ether	Furfurol	
Ethyl pyrrol. 279	Fusyl sulphide	340
Ethylsilicie ehlorhydrins 353		
Ethylsulphonic chloride	G.	
Ethylsulphophosphorous chloride 350		
Ethylthiophene	Gahnite	55
Ethylthymol	Galbanum, oil of	
Ethyltolnidine 273	Galena	
Ethylvinyl acetate	Galenobismutite	
" alcohol 241	Gallium	
Ethylvinylearbinol241	" Alums	
Ettringite 97	" Chloride	
Eucairite 65		
Eucalyptene 187	Gaultherilene	
Eucalyptol	Gaylussite	
Eucalyptus amygdalina, oil of	Gehlenite	
" oleosa, "	Geocronite	
Euchroite 122	Geraniene	
Euclase 138	Geraniol	
	" Hydrochlorate	304
Eucryptite	Gerhardtite	
Eudnophite	Germanium	4
Eugenol 265	" Chloride	25
Eulytite 133	" Oxide	46
Euodyl aldehyde	Gersdorffite	69
Eusynchite 120	Gibbsite	
Evansite 117	Ginger, oil of	
	Glauberite	
F.	Glaucodot	
Et.♥	Glaucopyrite	
Fairfieldite 115	Glueinum	
Famatinite	" Aluminum silicates	
Faujasite		
Fauserite 92	Carcium nuopnosphate	
Fayalite	Oxfue	
Fellandrene 184	Seienate	
	officates	
Felsobanyite 97	Dai primo	
Ferberite 106	Glucose	244
Fibroferrite	" With sodium ehloride	
Fibrolite 133	Glucosine	279
Fillowite 115	Glycerin	239
Fischcrite 117	" Cinnamate	240
Fluoaniline 339	" Salicylate	240
Fluobenzene	Glycerin ether	
Fluobrombenzene	Glyceryl trinitrite	
Fluocerite 18	Glycide	
Fluochlorbenzene	Glycocoll	
Fluonitrobenzene 339	Gmelinite	
Fluorapatite 124	Gold	
Fluorite	"Amalgam	
Fluor spar	" Arsenide	
Fluotoluene 339	" Bismuth alloys 155, 1	150
	Distriction 8110y5 100,	100

PAGE.	Heptelactone
Gold. Copper alloys	Heptyl. Acetate 209
" Didymlum bromide	" Alcohols
" Olethylamine "	Bromide
" Ethylamine "	" Butyrate
" Ethylamine " 112	" Caprente
	" Caprylate
	44 Chloride
I nospitate	" Cyanide
" Samarium bromide	Formate 206
" Silver alloys	" Iodide
" sulphide	" Octyl oxide
" Tellurido	" Oenanthate
" Tin alloys 155	" Oxide 198
" Triethylamine chloride	" Propionate
Gothito	" Succluste
Gramlnin	" Valerate 214
Grape sugar	Heptylene
Greenockite	" Bromide 320
Greenovite	" Chlorhydrin 310
tirossularite 136	" Chloride
Grunerite 132	Heptylthymol
Guadaleazarite	Hercynite 56
Guaineol	Herderite 124
Guajol 235	Herrengrundite 96
Guan justite 65	Hesperidene 181
Guanidine carbonate 365	Hessite 66
Guanovulite 89	Hetaerolite 56
Guarinite 139	Heterogenite
Guavacanite 61	Heulandite 136
Guejarito 63	Hevećne 185
Guitermanuite 61	Hexadecylidene 168
Gum	Hexane 156, 158
Gummite 72	Hexbrom-ethyl methyl ketone 320
Gurgun balsam 184	Hexchloracetone
Guya juillite	Hexchlorbenzene
Gypsum 82	Hexehlorethane
	Hexchlor-ethyl acetate
H.	Hexchlor-ethyl formate
	Hexchlorhexane
Haidiugerite 122	Hexchlor-methyl acetate
Halite	Hexchlor-methyl oxlde
Hamartite 145	Hexehlortetrabromethyloxide. 33
Hank-ite 145	Hexdecane
Hannayite	Hexdeeyl alcohols 193, 19
Harmotome	Hexethyl sillcate
Hartin. 267 Hartite 187	Hexhydrobenzene
Hauerite	Hexhydrocumene
Hed abergite	Hexhydrocymene
Helvi.e	Hexhydrotoluene
Hematite	llexhydroxylenes
Hemp, oil of	Hexine bromldes 32
Hencico ane	Hexmethyl silicate
Hentriacontane	Hexoylene 16
He trabler-chyl acetate	
	Hexyl. Acetates 20
Hert chlororotane	Hexyl. Acetates
Hert chlorprojane 201	Hexyl. Acetates
Heptschane	Hexyl. Acctates
Heptacosano	Hexyl. Acetates
Hert chlorprojane	Hexyl. Acctates

PAGE.	
	PAGE.
Hexyl. Formate	Indium. Ammonium sulphate
" Iodide	Cæsium , 96
mercaptan	VAICO 10
" Thioearbimide 345	"Rubidium sulphate 96
" Thiocymate 345	" Sulphate 87
44 Valerate 214	Inosite 244
Hexylamine 270	Inulin 244
Hexylene 164	Iodacetone 335
" Acetochloride 310	Iodaldehyde
" Bromhydrin 327	Iodallylene
" Bromide	Iodammonium iodide
" Chlorhydrin	Iodbenzene
CIII01146	Iodbromtoluene
Diagetate	Iodchinoline 335
66 Glycol 223	Iodehlorhydrin
" Oxide 222	Iodethylene 334
Hexyl glycerin	Iodethyl oxide
Hexylpentylacrylic compounds 235	Iodhexylene 334
Hiddenite	Iodhydrodiglycide 335
Hitchcockite	Iodine 11
Hoernesite	" Chlorides
Hohmannite	" Pentoxide 53
	Tentoxide
Homilite	Iodobromite
Hopeite 115	Iodoform 334
Horba chite 64	Iodtoluene 335
Horsfordite	Iolite
Howlite 140	Iridichlorides 28
Hübnerite 106	Iridium 15
Huntilite	" Phosphide 67
Hureaulite 115	Iridosmium 156
Hyalotekite 134	Iron
Hydroboracite	" Aluminum phosphate 118
Hydrodolomite	" silicates 138, 139
	511104005 100, 105
Hydrogen1	Ammonium ozarate
Cilioride	seledate 100
11401140	Sulphate
" Oxides 39, 40	" Antlinonate 125
" Sulphides 56	" Arsenates 122, 123
Hydrogiobertite 130	" Arsenides 68
Hydrolutidine 277	" Cæsium sulphate 95
Hydromagnesite 130	" Calcium arsenate 123
Hydronephelite 135	" borosilicate 140
Hydronicotine	" oxide 56
Hydroquinone	" " phosphate 117
Hydrorhodonite	" silicates
	" Carbonate
Hydrotalcite	
Hydrotropidine	CHIOTIGES 21
Hydroxycaprylonitril 289	" Columbate 125
Hydroxyisovaleronitril 289	" Copper arsenate 123
Hydroxypicoline 290	" phosphate 117
Hydrozincite 130	" sulphides 64
	" Dithionate 75
I.	" Hydroxides 71
•	" Iedide 36
Ice	" Lead silicate 134
Idocrase	" Lithium phosphate
Ihleite 84	" Magnesium borates 108
Ilesite	Carbonato 123
Illicium religiosum, oil of	Sulpitato IIII III III III III III III III III
Ilmenite 142	" Manganese phosphates 115, 116
Indigotine 290	" silicates
Indium 3	" tungstate 106, 107

	PAGE.	PA	AGE
Iron	Nickel alloy 152	Isobutyl. Nitrate	
4.6	Nitrate 112	" Nitrite	
4.6	Nitride 70	" Orthoearbonate	226
4.6	Oxides 53, 51	"Orthoformate	245
4.4	Phosphates 115, 116	Oxide	198
4.4	Phosphides 67	" Proplonate	210
64	Platinchloride 28	Santonate	
4.6	Platiniodide	" Succinate	
4.6	Potassinm chloride 27	" Sulphide	
6.6	44 sulphate 90, 95, 97	Isobutyl acetal	
4.6	" sulphide 61	Isobutyl aldehyde, derivative of	015
44	Rubidium sulphate	Isobutylamine	
64	Selenate	Isobutylauiline	
64	Selenide	Isobutylbenzene	
4.6	Silientes		
66		Isobutylcamphene	
4.6		Isobutyl carbamine	
	Silico-earbide	Isobntylene, Bromide	
4.6	Silicofluoride	" Chloride	
6.6	Sodium oxalate 361	" Glycol	
4 +	" silicates 139	O210e	
6.6	" sulphates 97	lsobutyleugenol	
6.6	Sucrocarbonate 366	Isobutylidene ehloride	
6.4	Sulphates 84, 96, 97	Isobutyl phenyl ketone	
4.4	Sulphides 60	Isobutyric aldehyde	
6.6	Tantalate 125	" anhydride	
6.6	Tin alloy 152	Isobutyryl chloride	
6.6	Titanates 142	Isocajeputene	18:
4.6	Tungstate 106	Isoelasite	117
44	Zinc oxide 56	Isodecyl alcohol	196
Isoa	myl. Acetate 208	Isodibutol	19/
4	Carbonate 226	Isodipyridine	200
4	Chlorocarbonate 306	Isoeugenol	26
- 6		Isoheptane	
4		Isoheptyl, Acctate	
4		Alcohol	
	Succinate 228	" Chloride	295
	Sulphide	Isohexane	15
Teca	mylallylamine	Isohexyl alcohol	
	mylaniline273	Isohexylbenzene	
	mylbenzene 175	Isooctonaphtene	
	mylene bromlde	Isočetyl. Alcohol	
	myl ethyl sulphone	" Chloride	
	mylformanllide	" ('vanide	
	mylidene chloride	Isoprene	
	enzplnakone	" Bromides	200
1800	utyl, Acetacelate 232	" Dichloride	
		" Ilydrochlorate	
	4 Acetate	" Polymer of	
	4 Derivative of 312	Isopropyl, Alcohol	
	174111111111111111111111111111111111111	" Benzoate	
	DURGING	" Bromlde	
	DIUITICarrieronianianianianianianianianianianianianian	111 (1111)	
	Butyrate 212	" Butyrate	
	Carbonate 206	1110111110	
	4 Chloride	CHIOLOGHI DANIMIC	
	Chlorocarbonate 306	INTELLO	
	Cyankle 268	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Formate 208	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Hypophosphate 318	" Nitrate	
	Iodide	Nitrite	
	Fobutyrate,	" (lx)de	
	Isovalerate 213	" Sue date	
	Mercaptan	" Tartrate	23

		GE
345	Kresol	250
167	Kresyl. Acetate	260
176	" Allyl oxide	255
242	" Butyl "	253
270		
	Krugite	80
	Kvanite	139
	T	
260	4.1.	
254	Labradorite	138
262		
		120
		100
	OA140	
	Duiphato	
200		
	Lazulite	
		TIC
	Lead	3.00
56	Lead	
56 135	Lead	118
	Lead	118 138
135 64 62	Lead	118 138 145
135 64	Lead " Acetate " Aluminum phosphate " " silicates " Amalgam " Antimonates	118 138 145 125
135 64 62	Lead " Acetate " Aluminum phosphate " silicates " Amalgam " Antimonates " Antimony alloys 149,	118 138 145 125 150
135 64 62 97	Lead " Acetate " Aluminum phosphate " silicates " Amalgam " Antimonates " Antimony alloys 149, 1 " Arsenides 67,	118 138 145 125 150
135 64 62 97 108	Lead " Acetate " Aluminum phosphate " " silicates " Amalgam " Antimonates 149, 1 " Arsenides 67, 1 " Arsenite 97, 1	118 138 145 125 150 68
135 64 62 97 108 66	Lead " Acetate " Aluminum phosphate " " silicates " Amalgam " Antimonates " Antimony alloys 149, 1 " Arsenides 67, 1 " Arsenite 9 " Bismuth alloys 1	118 138 145 125 150 68 123
135 64 62 97 108 66	Lead " Acetate " Aluminum phosphate " silicates " Amalgam " Antimonates " Antimony alloys 149, " Arsenides " Arsenite " Bismuth alloys " Borates 1 Borates	118 138 145 125 150 68 123 151
135 64 62 97 108 66	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " Silicates " Amalgam " Antimonates " Antimony alloys 149, 1 " Arsenides 67, " Arsenite 1 " Bismuth alloys 1 " Borates 1 " Bromate 1	118 138 145 125 150 68 151 108
135 64 62 97 108 66 61	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " silicates " Amalgam " Antimonates " Antimony alloys 149, " Arsenides " Arsenides 67, " Arsenite " Bismuth alloys 1 " Borates 1 " Bromate 1 " Bromide 1	118 138 145 125 150 68 123 151 108 73
135 64 62 97 108 66 61	Lead " Acetate " Aluminum phosphate " " silicates " Amalgam " Antimonates 149, 1 " Arsenides 67, 1 " Arsenite 1 " Bismuth alloys 1 " Bromate 1 " Bromide 1 " Cadmium alloys 1	118 138 145 150 68 123 151 108 32 149
135 64 62 97 108 66 61	Lead " Acetate " Aluminum phosphate " " " silicates " Amalgam " Antimonates 149, " Arsenides 67, " Arsenite " Bismuth alloys 1 " Bromate Bromide " Cadmium alloys 1 " Carbonate 1	118 138 145 125 150 68 123 151 108 73 32 149
135 64 62 97 108 66 61 68 133 138	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " silicates " Amalgam " Antimonates " Antimony alloys 149, 1 " Arsenides 67, " Arsenite 1 " Bismuth alloys 1 " Bromate 1 " Cadmium alloys 1 " Carbonate 1 " Chlorate 1	118 138 145 150 68 123 151 108 73 149 128
135 64 62 97 108 66 61 68 133 138 182	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " " silicates " Amalgam " Antimonates 149, " " " " " " " " " " " " " " " " " " "	118 138 145 125 150 68 123 151 108 73 149 128 72 24
135 64 62 97 108 66 61 63 133 138 182 134	Lead " Acetate " Aluminum phosphate " " silicates " Amalgam " Antimonates 149, 1 " Arsenides 67, 4 " Arsenides 129, 1 " Bismuth alloys 1 " Bromate 1 " Cadmium alloys 1 " Carbonate 1 " Chloride 1 " Chloroarsenate 1	118 138 145 125 150 68 123 151 108 73 128 72 24
135 64 62 97 108 66 61 63 133 138 182 134 64	Lead " Acetate " Aluminum phosphate " " silicates " Amalgam " Antimonates 149, 1 " Arsenides 67, 4 " Arsenides 129, 1 " Bismuth alloys 1 " Bromate 1 " Bromide 1 " Cadmium alloys 1 " Chlorate 1 " Chloroarsenate 1 " Chlorobromide 1	118 138 145 125 150 68 123 151 108 73 32 149 128 24 24 37
135 64 62 97 108 66 61 61 68 133 138 182 134 64 63	Lead " Acetate " Aluminum phosphate " " silicates " Amalgam " Antimonates 149, 1 " Arsenides 67, 4 " Arsenides 19, 1 " Bismuth alloys 1 " Bromate 1 " Cadmium alloys 1 " Carbonate 1 " Chloroace 1 " Chloroarsenate 1 " Chlorocarbonate 1 " Chlorocarbonate 1	118 138 145 156 68 123 151 108 72 149 124 37 145
135 64 62 97 108 66 61 61 68 133 138 182 134 64 63 134	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " silicates " Amalgam " Antimonates " Antimony alloys 149, " " Arsenides 67, " " Arsenite " Bismuth alloys " Bromate " Bromate " Cadmium alloys " Carbonate " Chlorate " Chlorode " Chlorobromide " Chlorobromide " Chlorophosphate 1 " Chlorophosphate 1	118 138 145 150 68 123 151 108 72 24 124 37 145 145
135 64 62 97 108 66 61 133 138 182 134 64 63 134 63	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " silicates " Amalgam " Antimonates 149, 1 " Arsenides 67, 4 67, 4 " Arsenides 18 67, 4 " Bismuth alloys 1 Bromate 1 Bromate " Bromate 1 Cadmium alloys 1 Cadmium alloys " Carbonate 1 Chlorate 1 Chlorote " Chlorode 1 Chlorobromide 1 Chlorobromide " Chlorophosphate 1 Chlorovanadate 1 Chlorovanadate	118 138 145 125 150 68 123 151 1108 73 32 149 124 37 124 124 124
135 64 62 97 108 66 61 61 68 133 138 138 14 64 63 134 63 115	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " silicates " Amalgam " Antimonates 149, 1 " Arsenides 67, 1 " Arsenides 159, 1 " Bismuth alloys 1 Bismuth alloys " Bromate 1 Bromide " Cadmium alloys 1 Cadmium alloys " Chlorate 1 Chloride " Chlorote 1 Chlorote " Chlorobromide 1 Chlorocarbonate 1 Chlorophosphate " Chlorovanadate 1 Chromates 1 Chromates " Chromates 1 Chromates 1 Chromates	118 1138 145 125 150 68 123 151 108 72 24 128 37 124 124 124 124
135 64 62 97 108 66 61 133 138 182 134 63 134 63 115 187	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " silicates " Amalgam " Antimonates " Antimony alloys 149, 1 " Arsenides 67, 1 " Arsenite " Bismuth alloys " Borates " Bromate " Bromate " Cadmium alloys " Carbonate " Chlorate " Chloroarsenate " Chlorobromide " Chlorophosphate 1 " Chlorovanadate 1 " Choromates 1 " Chlorovanadate 1 " Choromates 1 " Chloropanalate 1 " Copper alloys 1	118 138 145 126 150 68 123 151 108 73 32 149 124 37 145 124 124 154
135 64 62 97 108 66 61 61 68 133 138 138 14 64 63 134 63 115	Lead " Acetate " Aluminum phosphate " Aluminum phosphate " silicates " Amalgam " Antimonates 149, 1 " Arsenides 67, 1 " Arsenides 159, 1 " Bismuth alloys 1 Bismuth alloys " Bromate 1 Bromide " Cadmium alloys 1 Cadmium alloys " Chlorate 1 Chloride " Chlorote 1 Chlorote " Chlorobromide 1 Chlorocarbonate 1 Chlorophosphate " Chlorovanadate 1 Chromates 1 Chromates " Chromates 1 Chromates 1 Chromates	118 138 145 150 68 123 151 108 72 24 124 37 145 124 124 154 154
	167 176 242 270 173 325 176 268 221 250 260 254 254 275 342 277 276 180 305 1180 303 303 303 329 217 268 323 299 217 268	167 Kresyl. Acetate. 176 "Allyl oxide. 242 "Butyl " 270 "Ethyl " 173 "Heptyl " 325 "Methyl " 268 "Oxide. 164 "Propyl oxide. Krönnkite. 221 221 Krugite. 250 Kyanite. 254 Labradorite. 137, 254 Lactose. 127 254 Lactyl ethyl lactate. 227 275 Lanrkite. 275 276 Lanthanite. 276 275 Lanthanite. 276 342 Lanthanite. 284 276 Lauthanite. 275 276 Lauthanite. 276 303 "Selenate. 305 305 "Selenate. 306 271 Laurente. 28 282 Laurene. 28 283 Laurene. 28 284

	D.	GE.	PAG	
	Copper sulphate		Limonite	
44	Copper surpliste	100	Linarite	
4.6	venadate	2/1	Lintonite 13	
4.6	Dinitrophenates	OLD A		
	Dithionate	(0)	Lipowitz' alloy 13	
4.6	Feldspars	138	Liroconite 1.	
4.4	Fluoride	17	Litharge	
+6	Formate	356	Lithiophilite 11	
6.6	Gold alloys	155	Lithium	1
6.6	Hydroxides	71	" Aluminum fluophosphate 1.	11
6.6	Indate	74	" silicates 1.	31
+ 6	Todde			
6.6	fron arsenate			
44	" silicate		" Carbonate	
66	Manganese silicate		" Chloride	
44	Molybelate.			
44				
+6	Nitrates 111,		4 14071	
	Nitrophenates		Formste	
4.6	Oxplate		Tourde	
4.6	Oxides		tron phosphate	
4.6	Oxychloride			
4.6	Uxylodide		" Nitrate	
64	Palladium alloy	156	" Oxalate 3	
6.6	Picrate	361	(Oxide	41
6.6	Platinbromide			73
66	Platinchloride	28	" Picrate 3	6.1
6.6	Platinum alloy			65
4.4	Selenate			
11	Selenide	65		
64	Silver allovs			
4.4	4 Indide			
4.6				
	Succinate			
6.6	Sulphates 83		I mantam racemate	
6.6	Sulphatocarbonate		initiale	
84	Sulphides		Clarit accure	
6.6	Sulphocyanide			
4.4	Tartrate	363	Loewite	
4.4	Teiluride	66		
4.4	Tin alloys 147, 148,	149	Lowigite	9
6.6	Tungstate	106	Ludlamite	11
44	Zinc vanadates			()
Lead	diethyl			3
Lead	illite	145		
Land	tetramethyi	355		
Local	tetraphenyl	355		
	tetratoly1			
	triethyl			
Lend	trictify!	105	Macene	
	m palustre, oil of			
	retrite			O
	ne			
	on, oil of			
	line		and the prospilates	
Loplo	lolite	140) SHICKLES	
	ine			
Leu	ite	135		
	ophane		chromate 1	111
	opyrite		g " phosphates 1	11
	henite			0
	ene			
	i kanali, oli of			
	rlte			
LIIIII	ite	4.6		4

" borate 108 " " carbonate 129 " " " silicate 134 " " Carbonate 126, 130 " " Chloride 22 " " Chromate 103 " " Chromium borate 103 "	Dithionate 75 Garnet 138 Hydroxides 71 Iron fluophosphate 124 " phosphates 115, 116 " silicate 134 " tungstates 106, 107 Lead silicate 134
" borate 108 " " carbonate 129 " " silicate 134 " " Carbonate 126, 130 " " Chloride 22 " " Chromate 103 " " Chromium borate 108 "	Hydroxides
" " " " " " " " " " " " " " " " " " "	Iron fluophosphate 124 " phosphates 115, 116 " silicate 134 " tungstates 106, 107
" Carbonate	" phosphates 115, 116 " silicate 134 tungstates 106, 107
"Carbonate 126, 130 "Chloride 22 "Chromate 103 "Chromium borate 108	" phosphates 115, 116 " silicate 134 tungstates 106, 107
"Chloride	" silicate
" Chromate	" tungstates 106, 107
" Chromium borate 108	
	Lithium phosphate 115
Coldinost C	
Copper surpriate	Magnesium borate
Ditmonate	surprime
Fluophosphate 121	Nitrate 111
" Fluoride 16 "	Oxalate 360
" Hydroxide 70 "	Oxides 53
	Phosphide 66
" Iodate 74	Platinbromide 33
108 (6	Platinchloride 28
" carbonate 129	Platiniodide 37
" sulphate 92 "	Potassium selenate 100
" Manganese borate 108	" sulphate 90
" sulphate 92	Pyroarsenate 123
" Nitrate 110	Pyrophosphate 119
	Selenate
Oxide	Silicates
Panadichioride	
Phosphates 115	Silicofluoride
Platinbromide 33	Stannifluoride
" Platinchloride 28	Sulphate 83
	Sulphides 59, 60
" Potassium chromate 104	Tantalate 125
" selenate 100	Tungstate 106
	cite 129
	alite 125
	rivative of
	alsam
	60
	137
	il of 182
	115
" Zine sulphate 92 Matlockite	
lagnetite 53 Meionite	136
	55
Ialacolite	oil of 263
Iandelic nitril	e 134
	244
	136
	e 140
" phosphate 118 Mellite " wendinite	606
" silicate 138 Mendipite	
" Ammonium selenato 100 Meneghinite	62
	egium, oil of 262
	186
	rivatives of 183, 263, 286
" Carbonate	
" Chloride	340
" Chromium oxide	
	tate 357
ACC	

	F2	1000		PAT	
Mercui	y. Ammonioehlorides	38		Bromlde 31	16
4.6	Ammonionitrate	112	4.4	Butyloxide 19	37
4.4	Ammoniosulphate		6.6	Butyrate 21	10
4.4	Ammonium chloride	27	44	Caprocte	
4.6	Bromate	73	44	Caprylate	
4.4	Bromldes		4.6	Capryl oxlde	
4.4	Calclum antimonite		4.6	Carbonate	
44	Chlorates		64	Chlorbutyrate	
44			- 16		
	Chlorldes	20.00	44	Chlorerotonate	
4.6	Chloride with ammonium dichro-			Chloride29	
	mate		4.4	Chlorocarbonate 30	
4.6	Chlorocyanide	143	44	Chlorpropionate 30	17
4.4	Chromate	103	4.6	Cinnamate 2	58
6.6	Cyanide 143,	144	- 14	Citraconate 2	38
6.6	Hexyl mercaptide		4.4	Crotaconate	38
4.4	Hydrogen bromide		4.6	Crotonate	
4.6	Iodides		44	Cyanide, 2	
4.6			4.6	Dibromproplonate 3	
44	Nitrates 110,		44		
	Organic compound4		46	Dichloracetate	
4.4	Oxldes			Diehlorbutyrate 3	
4.4	Oxychloride		4.6	Diethyl borate 3	47
4.8	Oxycyanide	143	44	Diethylmethylethenyltrlearboxy-	
4.6	Potassium bromide	33		late 2	47
4.6	" chloride	27	4.6	Dlethyloxyacetate 2	31
4.6	" cyanide		4.4	Dimethylsuccinate 2	28
4.4	44 lodide		66	Dinitrophenate 2	
4.4	Selenide		44	Elaidate 2	
- 44	Selenate		44	Ethylacetacetate 2	
4.6			1 66	Ethyl carbonate 2	
44	Silver iodide		44		
	Sodium chloride		44	Ethylglycollate	
h 4	Sulphates 81			Ethyl oxalate 2	
6.6	Sulphide		44	Ethyl oxide	
4.4	" with copper chloride	144	- 64	" succinate 2	
6.4	Telluride	66	44	Ethylsuccinate 2	28
Mesitit	e	129	6.6	Ethyl sulphite 3	12
Mesity	l. Acetate	260	4.6	Ethylxanthate 3	
44	Oxlde		44	Formate 2	
Mosity	lene		44	Glycollate 2	
46	Acetate		4.6	Heptyl oxide 1	
4.6			4.6		
44	Glycol		44	Hypophosphate 3	
	Mercaptan		44	Iodbutyrate 3	
	ushite		1	Iodide 3	
	nnainene		44	lodpropionate 3	
Metaer	oleln	235	4.6	Isobutyrate 2	11
Melasa	ntonid	267	4.6	Isodenanthate 2	11.5
Metasa	ntonine	267	6.6	Isopropylsalicylate 2	57
Metate	mplene	185	44	Isovalerate 2	10
	rebenthene		44	Itaeonate 2	
	ylene		- 14	Lactate	
			4.4	Lacyulinate 2	
Methin.	ne	1014	6.6		
Metho	xylmethyl ethyl acctone	245	4.6	Maleate 2	-30
	l. Acetacetite			Malonate.	
44	Acetate		44	Mesaconate 2	
4.4	Acrylate		6.6	Methylacetacetate 2	
- 64	Alcohol	187	4.6	Me-hylglycollate 2	30
4.4	Allyl oxide	211	4.6	Methyloxyphenylacrylate 2	259
4.4	Amyl "	197	44	Methyloxyphenylangelate 2	
4.4	Arsenate		14	Methyloxyphenylcrotonate 2	
4.4	Arsenit		44	Methylpropylpyrogallate	
4.4	Benzoate		4.4	Methylxanthate	
4.4			44		
4.6	Borate		44	Monochloracetate	
	Brombutyrate	3.6	1	Mucate	2180

	PAGE.	P.	AGE.
Methyl.	Naphtyl oxide 266	Methyldiethylbenzene	175
"	Nitrate 281	Methyldiethylcarbinol	
44	Nitrite 281	Methyldiethylcarbyl acetate	
44	Nitrophenate	Methyldiethylearbylketone	
44	Oenanthate 214	Methyldiethylmethane	158
44	Oleate	Methyldiheptylcarbyl ketone	
44	Orthoformate 245	Methyldipropylcarbinol	
44	Oxalate	Methyldipropylcarbyl acctate	
66	Oxyphenylacetate	Methyldiphenylamine	
4.6	Parasantonate	Methylene. Acetochloride	
66	Pelargonate	"Bromide	
44	Phenylacetate	" Chloride	
44		" Dithioethylate	
66	Phenylpropionate	Dimioemyrate	
"	Phosphate	Ethers 01 220,	
44	Phthalate	10010e	
"	Propargyl oxide	Methylethyl acetal	
"	Propionate	Methylethylbenzene	
"	Propylglycollate	Methylethylearbinol	
	Propyl oxide 197	Methyl ethyl ketone	
**	Propylxanthate 343	Methylethylpiperidine	
64	Pyruvate 232	Methylethylpropyl alcohol	
"	Salicylate 257	Methylethylpropylbenzene	
44	Santonate 267	Methylethylpropylcarbinol	
4.6	Sebate 229	Methylethylpropylethylene	165
44	Silicate 352	Methylethylpropylmethane	159
6.6	Silicopropionate 352	Methylethylpropyl methylethylpropionate	214
44	Suberate 229	Methyleugenol	265
4.6	Succinate 228	Methylformamide	287
44	Sulphate 342	Methylformanilide	288
66	Sulphides 339, 340	Methylglyoxalin	
44	Sulphite	Methylhexylcarbinol	
44	Tartrate	Methylhexylcarbyl chloride	
6.6	Thiocarbimide 345	" iodide	
44	Thiocyanate 344	" nitrite	
4.6	Trichloracetate 306	Methyl hexyl ketone	
66	Trichlorpropylearbylacetate 307	Methylindol	
66	Triethyl silicate	Methylisoamylbenzene	
6.6	Trinitrophenate	Methylisoamylearbyl acetate	
	Trisulphocarbonate 341	Methyl isoamyl ketone	
66	Valerate	Methylisobutylcarbinol	
Mothylo	eetone	Methylisobutylcarbyl acetate	
	223	Methyl isobutyl ketone	
	nine alum	Methylisocrotyl acetate	
	mylaniline	" alcohol	
	nylearbinol	Methylisopropenylcarbinol	
	myl ketone 220	Methylisopropylacetone	
	myl pinacolin 221	Methylisopropylbenzene	
	niline 271	Methylisopropylearbinol	
	enzyl ketone 262	Methyl isopropyl ketone	
	orneol 264	Methylisopropylpiperidine	
	romacetol 320	Methylnaphthalene	
	itylearbinol 194	Methyl naphtol	
	utyl ketone 220	Methyl naphtyl ketone	
	utyrone 221	Methylnonylcarbinol	
	rbamine 268	Methyl nonyl ketone	
	aprinol 221	Methyl octyl ketone	221
	ıloracetol	Methylpentamethylene methyl ketone	247
	lorallylearbinol 312	Methylpenthiophene	342
	olorphenetol 312	Methylphenylcarbyl acetate	
	pellidine 277	Methylphenylethylalkin	290
	myl mercaptan 341	Methyl phenyl ketone	262
Methylde	hydrohexone	Methylphenylpyrazol	279

P	AGE.	PAG	P
Methylpiperidine		Morphine. Salts of	
		Mottramite	
Methylpropylallylene			
Methylpropylbenzene 173,		Macamide?	
Methylpropylearbinol		Muscat nut oil, derivative of	
Methylpropylcarbyl acetate	208	Muscovite 1:	
ehloride	294	Myristic acetate, isomer of	
" lodide	332	" aleohol, " 1!	96
Methylpropylcarbylcarbinol		" aldehyde, " 21	18
Methylpropylethylene glycol	12-2-3	Myristicol	
Methylpropylethylene glycol		Myristone	
" oxlde			
Methylpropylethol acetate		Myristonitril 26	
Methyl propyl ketone		Myrtle, oil of	
Methylpyrrol	279	Myrtus pimenta, oll of	55
Methylpyrrolidine	279		
Methylquinoline	277	N.	
Methylsaligenin		44.	
Methylsilicie chlorhydrins		Nadorite	05
		Namaqualite	
Methylsulphonic chloride			
Methyltetramethylene diamine		Nantoquite	
Methylthymol		Naphthalene 1	
Methyltoluidine	200	" Dichloride 30	
Methyl tolyl ketone	262	" Hydrides 178, 1	79
Methyluraeil, ehloride from	314	Naphtol 2	166
Methyl xylyl ketone	000	Naphtyl mercaptan	
Miargyrite	60	Narcotine. 2	
anargyrne	700	Natrolite 1	
Mlea			
Milarite		Naumannite	
Milk sugar		Nephelite	
Millerite	60	Neroli, oil of	
Mimetite	124	Newjanskite 1	56
Minium	47	Ngai camphor 2	263
Minjak lagam oil		Niccolite	
Mint, oil of		Nickel	
Mixite		" Acetate	
		" Aluminum alloy 1	
Molybdenite		ATMITTED 01103	
Molybdenum		Allinour Committee and a committee	
44 Oxides	52	" Ammonio-chloride	
44 Phosphide	67	" Ammonium selenate 1	
Sulphide	59	" sulphate	91
Monacetin	2219	" Arsenates 1	20
Monallylin		" Arsenidos	68
Monamylin		4 Bromate	
Monazite.			
			24
Monimolite		" Dithionate	
Monobromeamphor			
Monobromhydrin		FILOTING	
Monobromthiophene	347	44 Formate 3	
Monobutyrin	240	" Hydrocarbonete 1	
Monochlorbenzene	301	" Hypophosphite 1	113
" Derivative of		" Indate	71
Monochlordinitrin		4 Iron alloy 1	
Monochlorethyl dichloracetate		" Nitrate 1	110
		" Ux late	
themoraeeute		"Oxide	
Monoehlorhydrin			
Monochlortoluene		" Oxyhydroxide	
Monochlor-vinyl ethyl oxide	300	" Pattadiochloride	
Monolein	240	" Phosphide	
Monosulphhydrin	344	" Platinbromide	33
Monovaler(n	240	Platiniodide	37
Monticellite	134	" Potassium selenate 1	
Morenosite	101	" " sulphate	
Morehine	Contraction	" Pyrophosphate	
***************************************	- FS 3	4 7 1 U P 1 1 U P 1 1 1 1 1 1 1 1 1 1 1 1 1	

PAGE.	PAGE.
Nickel. Selenate 99	Octyl. Alcohols 195
" Selenide 65	" Bromide 318
" Silicofluoride 18	" Butyrate 212
" Sulphate 84	" Caproate 214
" with potassium selenate 101	" Caprylate 216
" Sulphide 60	" Chloride 295
" Thallium selenate 100	" Cyanide 269
" Tungstate 107	" Formate 206
" Zircofluoride 19	4 Iodide 333
Nicotine 278	" Isovalerate 214
Niobium, see columbium 8	" Nitrite 281
Nitrandines 285	" Oenanthate 215
Nitroanisol 285	" Oxide 198
Nitrobenzene	" Propionate 210
Nitrobromtoluene 328	" Sulphide 339
Nitrocymene 284	" Valerate 214
Nitroethane 282	Octylamine 270
Nitrogen 6	Octylene 165
" Ch!oride 25	" Acetate 209
" Chlorophosphide 144	" Acetochloride 310
" Oxides 48	" Chlorhydrin 310
" Oxybromide 33	" Glycol 223
" Oxychloride 29	" Hydrate 195
" Sulphide 58	" Oxide 222
Nitroglycerin 286	Octylphosphin
Nitroheptane	Octylthiophene
Nitroisobutylanisol	Octylthymol
Nitromannite 286	Oenanthic aldehyde 218
Nitromethane 282	" anhydride 205
Nitronaphthalene 284	Oenanthol 218
Nitrophenols 285	" Derivative of 245
Nitrosodiethylin	Oenanthone 221
Nitrosodipropylamine 282	Oenanthonitril
Nitrosyl bromide	Oenanthothialdin 345
Nitrotoluenes 283, 284	Okenite 132
Nitrous oxide 48	Oldhamite 57
Nitroxyl chloride 29	Olibene 184
Nitroxylenes 284	Oligocla~e 137, 138
Nitroxylpiperidine	Olivenite 122
Nonane 160	Orange, oil of 181
Nondecane 163	Orangite 133
Nononaphtene 186	Orcin 251
Nononaphtylene 186	O'Rileyite 68
Nontronite 133	Orpiment 59
Nonyl. Alcohol	Orthoclase
" Chloride 295	Osmiridium 156
" Iodide 333	Osmitopsis, oil of 263
Nonylene 165	Osmium
Nosean 141	Ouvarovite 139
Nutmegs, oil of 183	Owenite 139
	Oxalethylethylin279
0.	Oxalethylisoamylin 279
	Oxalethyloenanthylin 280
Octaceto-diglucose 245	Oxalethylpropylin279
Octaceto-saccharose 245	Oxalisoamylisoamylin279
Octadecane 163	Oxalisobutylisoamylin279
Octane 159, 160	Oxalmethylethylin 279
Octochlorpropane	Oxalmethyloenanthylin 280
Octodecylene 167	Oxalpropylethylin 279
Octodecylidene 168	Oxalpropylisoamylin279
Octonaphtene 186	Oxalpropyloenanthylin
Octvl. Acetate	Oxalpropylpropylin

PAGE.	PAGE.
Oxamide 287	Peppermint, oil of 153
Oxethenaniline 283	Perchlor-ethyl acetate 202
Oxybutyrle lactone 231	Perchlor-ethyl oxide 2.3
Oxygen 8	Periclase 4)
Oxyisoamylamine 287	Persea lingue, tannin from
Oxyghenyl mercaptan 314	Petalite 131
Oxypropylpropylamine287	Petit grain, oil of 151
Oxysulphobenzid	Petzite 66
	Pharmacolite
P.	Pharmacosiderite 123
	Phenakite 131
Pachnolite	Phenanthrene
Pacite 69	" Hydride 179
Palladiochlorides 28	Phenanthrene quinone
Palladium 11	Phenetol 252
" Lead alloy 156	Phenol
" Phosphide 67	Phenoxyacetonitril
" Sulphide 61	Phenoxyldiphenylphosphin 349
Palmitone 221	Phenyl. Acetate
Palmitonitril 209	" Allyl oxide
Pandermite 108	" Borate 318
Papaverine 291	" Butyl oxide 253
Parabromalide	" Carbimide 290
Parachinantsol	" Ethyl oxide 252
Parachloralide 309	" sulphide 341
Paradichloraldehyde 308	" Heptyl oxide 253
Paradieonline	" Isobutyl " 255
Paraffin 163, 104	" 1sopropyl " 250
Paragonite 135	44 Mercaptan• 31
Paraldehyde217	" Methyl oxide 55
Paranicene 187	4 Octyl 4 250
Parasantonid	" Oxide 25:
Parisite 145	44 Phosphite
Parsley, oil of	" Propargyl oxide 25
Parsnip, oil of	" Propyl " 25
Partschinite 139	" Sulphbles 34
Parvoline 275	" Thiocarbimlde 34.
Patchouli camphor 264	Phenylaectic aldehyde 26
Patchouli, oil of	6 chloride
Peetelite 131	Phenylacetylene 17
Peganite 117	Phenylarsine bromide 35
Pelletierine 291	Phenylbutylene 17
Pentabrompropane	Phenyleymene 17
Pentachloracetone	Phenyl hydrazin 28
Pentachlor-amyl formate 3 16	Phenylpentylenes
Pentachlorbenzene 202	Phenylphosphin 31
Pentachlorethane 299	Phenylphosphorous chloride
Pentachlor-ethyl oxide	Phenylpropionltrll 28
Pentachtornitrobenzene	Phenylpropyl alechol 25
Pentachlor-propylene oxide	Ph hylsuli honic chloride 31
Pentadeeane 162	Phenyltoluene
Pentadekanaphtene	Ph nyltolylethane 17
Pentamethylene diamine	Phenylvlnyl ethyl oxlde
Pentane 157	Phillipsite 1
Pentanitrola tose	Phlein
Pentatri reontane 163	Phlegopite 11
Pentethylm mochlerbenzene 301	Phb retol 2
Pentlandite = 61	Philorol 2
Pentyl, Bromlde	Phloryl (thyl oxlde
4 Chlorile 291	Phoenicochroite 1
44 lodlde 331	Phorone 23
Penwithite	Phosgenite 1

PAGE.			GE.
Phosphenyl chloride 349	Potassium	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
" ether 349	66	Aluminum borate	
** oxychleride 349	66	" selenate	101
" sulphochloride 350	66	" silicates 135, 136,	137
Phosphorus6	66	" sulphates 92,	97
" Bromide 32	66	Ammonium chromate	104
" Chlorides 25	66	" sulphate	
" Oxybromide 33	6.6	" tartrate	362
" Oxychloride 29, 30	66	Amylsulphate	359
" Oxychlorobromide 37	4.6	Antimony chloride	
" Pentoxide 48	66	Arsenate	
" Sulphides 58	6.6	Berate	
" Sulphobromide 33	66	Borofluoride	
" Sulphochloride 30	66	Borotartrate	
" Sulphocyanide 141	66	Bremate	
Phthalic anhydride	66	Bromide	
Phthalyl chloride	44	Cadmium chloride	
	66		
Phycite bromodichlorhydriu	. "	Todiae	
Picamar	"	acienate	100
Picite	"	surpriate	
Picoline		Calcium chromate	
Picrolichenin	"	" sulphate	
Pinacolie chloride 295	1	Carbonates 126,	
" iodide 333	4.6	Chlorate	
Pinacoline	66	Chloride	20
Pinacolyl alcohol 194	66	Chlorochromate	104
Pinakone 223	66	Chromates 102, 1	103
Pinite 243	"	Chromate with mercuric cyanide.	144
Pinnoite 108	46	Chromiodate	104
Pinus, oils from 179, 180, 304	66	Chromium selenate	
Pipecoleine	66	" sulphate	
Pipecoline	66	" sulphocyanide	
Piperidine 276	66	Chromocyanide	
Piperine		Chromoxalate	
Piperpropylalkiu		Citrate	
Piperyl hydrazin		Cobalt selenate	
Pistomesite	66	" sulphate	
Plagionite	44	Cebalticyanide	
Planerite		Columboxyfluoride	
Platinbronides		Copper chloride	
Platinchlorides	66		
Platiniodides	66	" oxalate	
Platinum 15	44	setenate 1	
		surprinte	
Doride		Cyanate 1	
CHIOTITE 24	1	Cyanide 1	
. 11yu11ue 00	1	Dinitrophenates 3	
nead anoy 190		Dithionate	
r nospinde		Ethylsulphate 3	
Fotassium surpinde		Ethylxanthate 3	
" Silicide 70		Ferricyanide 1	
" Sodium sulphide 64		Ferrocyanide 1	43
" Sulphides 61		Fluoride	16
Platediamine platesoxalates 361	66	Formate 3	56
Platosechlerides	"	Gallium sulphate	96
Plumbogummite 118		Hydrogen oxalate 3	
Polianite 53	- "	" racemate 3	
Pollucite 136	6.6	" sulphate	
Polyargyrite	66	" tartrate 3	
Polybasite 62	44	Hydroxide	
Polydymite 60		Iodate	
Polyhalite		Iedides	
Poplar, oil of		Iridichloride	
-F, Variation 100	,		-0

	PAGE.	PAG	E.
Putassium.	Iron chloride 27	Potassium, Stennifluoride	19
44	" sulphates 90, 95, 97	Stannochloride	23
4.4	" sulphide	" Strontium chromoxalate 30	61
4.4	Isobutylsulphate	" Sulphate	77
4.6	Isobutylxanthate	" Sulphide	56
+ 4	Lithium racemate 363	" Sulphocyanide 1-	
4.6	Magnesium chromate 104	" Tuntalofluöride	
- 14	" selenate 100	" Tartrantimonite	
4.6	" sulphate 8J	" Tartrate 3	
44		" Thallium sulphide	
46	Manganese selenate 100	" Thiosulphate	
44	" sulphate 90	" Thorlum phosphate 1	
	Manganicyanide 143	" Titanofluoride	
4.6	Mercury bromide	I tranoutoride	
44	" chloride 27	1146 (1010)	
**	CAMMING	1 4112 2000 0 2 1	
4.4	" iodide 36	Cranox andorras	
a 4	Metaphosphate 115	Charly temphate	
4.6	Methyl-ulphate	Vallacitum vallaciate	
6.6	Methylxanthate 379	Zine chloride	
4.6	Nickel cyanide 143	4 selenate	
6.6	" selenate 100	" sulphate	
6.6	" sulphate 91	" Zireofluoride	
4.6	Nitrate 109	Zirconium phosphates 1	110
4.6	Nitrato-sulphate 145	sili ate	139
4.6	Nitrophenates 364	Pregrattite 1	135
4.4	Oxalate 300	Prelmite	1:36
4.6	Oxile 40	Priceite	108
4.6	Lalladiochloride 28	Propane	157
64	Perchiorate	Propargyl. Acctate	24:
14	Permanganate	" Alcohol	
4.4	Phosphate 111	" Bromides	
6.6	Pho phato-sulphate 145	" Chloride	
4.6	Pierate	" Iodi le	
4.6	Platinbromide	Propidene acetic acid	
4.4	Platinchloride	Propidene dipropyl ether	177
4.4	Platiniodide	Propionamide	
44	Platinocyanide	Propione	
4.6	Platin m selenioevanide 144	Propionic aldehydo	
44		" anhydride	
44	Entitude	Propionitril	
4.6		Propionylacetophenone	
4.4	Platosceliloride 28	Propionyl bromide	
44	Plat ex date 301		
	Propylsulphate 3*9	C1111/11 1 0 011111111111111111111111111	
4.6	Pyrophosphate	Propyl. Acctate	
4.6	Pyr sulphate 78	. 1 () 4 () () () () () () () () (
4.6	Quadroxalite 360	711 C 211 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
4.4	Racer act	Denzone	
4.6	Racementimonite 361	17011111	
6.6	Selenate	231 17111 1745	
4.4	Silie du ri le	" Butyl ōxide	
4.6	Silver carbonate 129	4 suc thate	
64	Sodlum alloy 145	" Butyrat	
6.6	earbenate 123	44 Campherste	
4.4	" phosphate 115	Capro te	
1.6	" selenate "4	" Caprylate	
4.6	" sulphate 80	" Carbonate	
4.6	44 tartrate	" Chloride	
4.6	44 tungstate 106	" Chlorocarb mate	., 1
4.4	44 variadate 122	" Cinnamate	6 00-1
4.6	Stannate 112	" Cyanide	44
4.4	Stannil romide		3.
4.4	Stannichloride 21	" Dioxysulphocarbonate	

	P.	AGE:	E2	ZGE.
ropyl.	Ethylacetacetate	233	Propylglyoxalin	
6.6	Ethylglycollate	230	Propylhexylcarbinol	
6.6	Formate		Propylidene chloride	
2.6	Fumarate		Propylisopropylbenzene	
	Glycollate		Propylkresol	
66	Heptyl oxalate		Propylnaphtol	
6.6	" oxide		Propylphenol	
6.6	Hypophosphate		Propylphenyl acetate	
6.6	Iodacetate		Propyl phenyl ketone	
66	Iodide	329	Propylphenyl methyl oxide	
4.4	Isobutyrate		Propylphenylpyrazol	
66	Isoöenanthate		Propylphycite trichlorhydrin	
44	Isovalerate		Propylpiperidine	
44	Laevulinate		Propylpyridine	
66	Maleate		Propylsilicic ehlorhydrins	
46	Malonate		Propylthiophene	
44	Methylglycollate		Propylthymol	
66	Monochloracetate		Prosopite	
44	Nitrite		Proteine, derivatives of	
44	Octyl oxalate		Proustite	
4.6	" oxide		Pseudohexylene acetate	
4.6	Oenanthate			
44	Orthocarbonate		" glycol Pseudomalachite	
46	Orthoformate		Ptomaine	
"	Oxalate		Ptychotis ajowan, oil of	
	Oxide		Pucherite	
66	Parasantonate		Pulegium micranthum, oil of	
44	Phenylacetate		Purpureochromium. Chloride	
	" Derivative of		" Chlorobromide	
4.4	Phenylpropionate		" Chloronitrate	
66	Propylglycollate		Purpureocobalt. Bromide	
66	Salicylate		"Bromonitrate	
66	Santonate		" Chloride	
66	Silicate		" Chlorobromide	
6.6	Succinate		"Chloronitrate	
4.6	Sulphide		Purpureorhodium. Bromide	
66	Tartrate		" Chloride	
66	Valerate		" Iodide	
ronvla	cetal		Pyrargyrite	
	llylamine		Pyridine	
	mine		Pyrite	
	niline		Pyrocatechin	250
	enzene		Pyrogallol	250
	ne. Acetate		Pyrolusite	
"	Bromide		Pyromorphite	124
6.6	Bromiodide		Pyrophosphoric chloride	
4.6	Chlorhydrin		Pyrophyllite	
4.6	Chloride		Pyrosmalite	141
4.6	Chloriodide	338	Pyrrhotite	GO
6.6	Chlorobromide	336	Pyrrol	
4.6	Diaminc	278	Pyrrolidine	279
66	Dinitrate	286	Pyrotartronitril	278
4.4	Dinitrite	286	Pyruvic acetate	247
6.6	Ethylphenylketate			
4.6	Glycol		Q.	
6.6	Iodide	334		
6.6	Oxide	222	Quartz	44
6.6	Trisulphocarbonate	341	Ouercite	243
6.6	Valerate	225	Ouinoline	277
ropyle	ugenol	265	Quinoue	266
	9/3			

R.

Raimondi	te	97
Ralstonite		17
	bergite	68
Realgar		59
Reddingit	Θ	115
Reinite	***************************************	106
		250
Retene		179
	θ	63
Rhabdoph	ane	116
		123
		14
64	Ammoniobromide	38
4.4	Ammonlochloride	38
	Ammonioiodide	38
		108
	······	132
		138
	C	96
	>>>>>+++++++++++++++++++++++++++++++++	125
	e chlorhydrate	365
		122
	, oil of	183
	alt jodo-uiphate	97
	оу	156
	oil of	185
103ewoon	resin from	267
Rubbling	[CSIII 41 OHI	276
	· · · · · · · · · · · · · · · · · · ·	1
44	Aluminum selenate	100
44	" sulphate	113
44	Bromi le	31
8.6	Chloride	21
44	Chromium selenate	10
64	" sulphate	95
4.6	Cobait scienate	1(H)
44	Copper chloride	27
44	Fluoride	16
44		96
4.6	trallium sulphate	31.3
16	Hydrogen racemate	362
44		96
4.6	Indium «ulphate	31
44	lodide	
44	Iron sulphate	95
44	Lithium racemate	303
	" tartrate	363
44	Platinchloride	24
	Quadrexalate	3()
4.4	Raccmate	313
	Sclenate	115
6.4	Silledfluoride	15
4.4	So lium tartrate	302
8.6	Sulphate	73
- (4	Turtrate	
Ruby		42
	m	11
6.6	I (vixid),	10
Rutile		45

S.

		GE.
	***************************************	243
	***************************************	181
	***************************************	266
		185
	***************************************	207
	***************************************	252
		261
	•••••••••••••••••	266
	***************************************	19
		263
Samarium.	Acetate	358
44	Ammonium selenate	101
44	surpriete	96
"	Borate	108
44	Bromide	33
44	Chloride	25
"	Ethyl-ulphate	359
64	Formate	357
44	Gold bromide	33
44		18
4.6	Metaphosphate	118
6.6	Molybdate	120
6.6	Nitrate	105
44	Oxide	112
6.6	Oxyenloride	29
6.6	Periodate	74
6.6	Phosphate	116
4.4	Pierate	364
6.6	Platinchloride	23
4.6	Platinoeyanide	144
6.6	Potassium selenate	101
6.6	Propionate	358
4.4	Selenate	1 10
6.6	Sodium molypdate	105
£ 6	Sulphate	88
4.4	Sulphocyanate with mercuric	
	cyanide	144
4.4	Tnngstate	107
Sandal wo	od, oil of	185
Santonid		267
Santonine		267
	Bromide	3.3
(Chloride	312
66	Iodide	735
		4.3
Sartorite		61
Saturcja, o	il of	1-3
	. Oxide	43
6.6	Sulphate	87
		106
	mbergite	37
		137
		122
		116
	Bromide	
	Chloride	
	Inexide	51
	Sulphile	
		. 03

	PAGE.	1	PAG	
Sellait	e 16	Silver	. Phosphide	66
Semse	eyite 62	44	Picrate 3	
Senar	montite 49	64	Potassium carbonate 1	129
Sequo	ia, oil of 180, 267	66	Propionate 3	358
Serpe	ntine 131	46	Pyrophosphate 1	119
esqu:	iterpene 185	66	Racemate	363
	onatrite 97	46	Selenate	98
	44	66	Selenide	65
	luorides 18	66	Succinate	361
	neptyl compounds 351, 352	66	Sulphate	
	1 4	66	Sulphide	
66	Bromide	"	Tartrantimonite	
66	Chlorides	"	Tartrate	
6.6	Chlorobromide	"	Telluride	
66	Organic compounds of 351, 352, 353	"		
8.6		66	Tin alloys	
44	Oxides		Vanadate 1	
	Pyrophosphate		nyite	
			te	
66	Acetate 357		skite 1	
66	Aluminum alloys 146		erudite	
4.6	Amalgam 146		ite	
6.6	Ammonio-chromate 103	Sodal	ite 1	141
6.6	Ammonio-ferricyanide 143	Sodiu	m	1
4.6	Ammonio-selenate 98	16	Acetate 3	357
3.3	Ammonio-sulphate 97	66	Aluminum carbonate 1	130
66	Antimonides		" selenate	101
66	Arsenides		" silicates 134, 135, 1	
66	Benzoate	16	" sulphate	
66	Bismuth glance		Ammonium arsenate	
66	Bromate		" phosphate	
66	Bromide	44	" racemate 3	
44			racemate	
"	Butyrate		surphace	
	Caproate		varitate	
44	Caprylate 359		Antimonites	
	Carbonate 126		Arsenates	
4.6	Chlorate 72	16	Borates	
6.6	Chloride 21	8.6	Bromate	
**	Chlorobromide	44	Bromide	
6.6	Chlorobromiodide 37, 38	66	Calcium borates	108
44	Chromates 103	- 66	" carbonate	129
6 8	Cinnamate 365	46	silicate	134
44	Copper alloys 155	"	" sulphate	89
4.6	" iodide	66	Carbonates 126, 1	
44	Cyanate	44	Chlorate	72
44	Cyanide 143	64	Chloride	
66	Dinitrophenate	66	Chromates	
66	Dithionate		Chromiodate	
66	Fluoride		Citrate	
66	Gold alloys		" Derivative of	
66	" sulphide	- "		
46		1 44	Copper sulphate	
44	Iodate		Dithionate	
	Iodide 34		Ferrocyanide	
66	Iron ammonio-cyanide 143	66	Ferroxalate	
66	Isovalerate 359	"	Fluoarsenate	
6.6	Lead iodide 37	66	Fluophosphate	
4.6	Malate 361	- 44	Fluoride	
4.6	Mercury iodide 36	44	Formate	356
66	Nitrate 110	64	Hydride	69
4.6	Nitrophenates 364	66	Hydrogen oxalate	
6.6	Oxalate	66	" sulphate	
66	Oxides	1.6	Hydroxide	
44	Phosphate 115	6.6	Hypophosphates	
			V 1	

		4.0	
Sodium.	Iodate 71	Stearonitrii	219
4.4	Iodide 31	Stephanite	62
6.4	Iron sulphates 97	Sternbergite	
4.4	Magnesium sulphates 89	Stibiconite	71
4.4	Manganese phosphate 115	Stibioferrite	25
4.4	Mercury chloride 27	Stiblohexargentite	18
4.6	Metaphosphate 118	Stibiotriargentite	
4.6	Meta-iliente	Stibnite	
4.4	Nitrate	Still azoline	
41	Nitroprusside	Stilbene	
44			
44	Oxide 40	Stilbite	
	Phosphates 114	Stolzite	
6.6	Platinbromlde	Strengite	
6.6	Platinchlori le 28	Stromeyerite	
4.4	Platiniodide	Strontianite	127
4.4	Platinum sulphide 64	Strontium	3
4.6	Platoxalate 361	" Acetate	
6.6	Potassium alloy 145	" Aluminum silicates	137
4.6	" arsenate 121	" Bromate	73
4.6	" carbonate 129	" Bromide	32
4.4	44 phosphate 115	" Cadmium chloride	
6.6	racemate	" Carbonate	
41	faccinate	" Chlorate	
	Note liste		
**	surprate e.	Chioride	
4.6	Lartrate	CIII OIII ALE	
4.6	" tungstate 106	" Chromoxalate	
8.6	Pyrophosphates 118, 119	Copper formate	
8.6	Rubidium tartrate 362	"I)ithionate	75
4.4	Samarium molybdate 105	" Feldspars	137
4.6	Selenate 98	" Fluoride	17
4.6	Silicofluoride 18	Formate	356
6.6	Sulphantimonate	" Hydroxide	
4.6	Sulphate	" Iodide	
4.6	Sulphite	" Molybdate	
6.6		" Nitrate	
6.6	Sulphide	4 1 1 1 1 1 1 C	
64	Tartrate	VA140	
	Thallium racemate 363	That in Diolin in Commission and Commission	
4.6	tartrate 365		
4.6	Thiosulphate 74	" Sclenate	
4.6	Thorium phosphates 116		
4.4	Triacetate 357	" Snlphate	5.
4.6	Tungstates 100	" Tartrato	36.
6.4	Uranium oxide 5	"Thiosulphate	7-1
44	Uranyl acetate		
4.6	" monochloracetate		
6.6	Vanadates 12		
6.6			
	Zirconium phosphates 110	Styracii	
	C4114 (54 C		
	ilte 9		
	.0		
Spliene			
Spinel.	δ	Sulpho-urea	31
	nene 13		
	promides		
	hlorides 2		
	luorides		
	chlorides 2		
	rgaule compoun la 353, 35		
		Sugarexite	10
			-
Stearor	1e	Sylvestrene	Lo

PAGE.	PAGE,
Syngenite 89	Tetrachlorpropane 299
Szaboite 133	Tetrachlortoluene
Szaibelyite 108	Tetracosane
Szmikite 83	Tetradecane
	Tetradecyl alcohol 196
т.	Tetradecylene 166
1.	Tetradecylidene 168
Tagilite 117	Tetradymite
Tale 131	Tetrahydrotoluene
Tallingite. 29	Tetrahydroxylene
Tannin	Tetraiod-methyl oxide
Tansy, oil of 263	Tetraiodoxysulphobenzid
Tantalite	Tetramercurammonium chloride
Tantalofluorides	
Tantalum 8	Tetramethylallylene
" Aluminum alloy 146	Tetramethylammonium iodide
" Pentoxide 50	mercury louide 503
Tapalpite 66	Tetramethylaniline
Tellurium 10	Tetramethylbenzene
" Oxides 51, 52	Tetramethylbutane 159, 160
Tennantite 61	Tetramethylethane 158
Tephroite 132	"Tetramethylethylene 164
Terebangeline 182	Tetramethylpentane 160
Terebene 180	Tetramylene 167
" Acetate 264	Tetranitroethylene bromide 328
Terebenthene 180	Tetraphenylethane 176
" Acetate 264	Tetraterebenthene 185
" Hydrochlorate 304	Tetrethylallylalkin 290
Terpane 263	Tetrethylammonium iodide 365
Terpene 180, 181	Tetrethyl citrate 237
Terpilene 181	Tetrethylmonochlorbenzene 304
4. Acetate	Thallium 3
" Formate	" Aluminum selenate 101
" Hydride 186	" sulphate 94
Terpilenol	" Amylate 355
Terpinene 181	" Bromides 31
Terpinol 263	"Carbonate
Terpinylene 181	" Chlorate 72
Tetrabromethane	" Chlorides 22
Tetrabromglycide 322	" Chromium selenate 101
Tetrabromhydrocamphene 325	" sulphate 95
Tetrabromoxysulphobenzid347	" Cobalt selenate
Tetrabrompropane	" " sulphate 91
Tetrachloracetone	"Ethylate
Tetrachloracctic anhydride	" Ferrocyanide
Tetrachlorbenzene 302	" Hydrogen oxalate 360
Tetrachlorbenzyl chloride 303	"Hydrogen racemate
Tetrachlorbenzylene dichloride	" tartrate
Tetrachlorethane 299	" Iodide
Tetrachlor-ethyl acctate. 307	" Iron sulphate 96
Tetrachlor-ethyl camphorate	" Lithium racemate
	" tartrate 362
Tetrachlorethylene	" Nickel selcnate
	Nickel seichate 100
Tetrachlor-ethyl sulphide	Nitrate 110
Tetrachlor methyl ethyl exide	Oxalate
Tetrachlor-methyl ethyl oxide	Peremorate 13
Tetrachlor-méthyl formate	Phosphates 115
Tetrachlor-methyl mercaptan	1 ICIAte
Tetrachlor-methyl oxide 305	ratificinoriac
Tetrachlornitrobenzene 316	Totassium suipmae 64
Tetrachloroxysulphobenzid 347	" Pyrophosphate 119
Tetrachlorpentane 300	" Racemate 363

PAGE.	PAGE.
Thallium. Selenate	Tin. Oxalate 361
" Sodium racemate 363	" Oxides 40
" tartrate 362	4 Phosphides 66
4 Sulphate 79	Totassium emorides
" Sulphide 57	J. Opinocpinato
"Tartrantimonite	" Selenides
	" Sulphides
" Tellurate 102 " Vanadates 120	" Telluride
Thaumasite	" Zinc alloys 1!7
Thebaine 291	Titanotluorides
Thermonatrite 126	Titanium. Bromide
Thialdin	" Calcium silicate
Thiocarbonyl chloride	" ('arbide
Thiocyanacetone	" Chloride
Thionyl ehloride	" Dioxide 45
Thiophene	" Nitride 70
" Aldehyde 314	" Nitrocyanide 144
Thiotolene 342	" Pyrophosphate 119
Thioxene 342	Tolene 1-4
Thomsonite 157	Toluene 170
Thorite 133	Tolule aldehyde
Thorium 6	" nitril 250
" Metaphosphate 118	Toluidines 271, 272
" ()xalate 361	Totuyl chloride 313
48 Oxide 48	Tolyl phenyl ketone 202
" Platinocyanide 144	Tolylpropyl aldehyde 261
" Potassium phosphates 116	Topaz140
" Selenate 100	Torbernite 116
" Silicates 133	Tourmaline
" Sodium phosphates 116	Tremolite
" Sulphate 88	Triacetin
" Sulphide	Triallylamine
Thrombolite	Triamylamine
Thuja terpene	Triamylene
Thujol	Tribromehloracetone
Thuringite	Tribromethylene 32:
Thymene	Tribromhydrin
Thyme, oil of	Tribromisobutane
Thymyl acetate	Tribrompropane
Tiemannite	Tributylamine
Tiglic aldehyde	Tributyrin 240
Tin	Trichloracenaphtene 30
" Aluminum alloys	Trichloracetal
" Amalgams	Trichloracetle anhydride 29
" Ammonium chlorides	Triehlor-acetic anhydride 30
" Antimonides 69, 140	Trichloracetic dimethylamide 31.
" Arsenides 67	Trichloracetonitril
" Bismuth alloys 150	Trichloracetophenone 31
" Bromide 32	Trichloracetyl bromide 37
" Cadmlum alloys 147	" chlorile 29
" Calcium silicate 139	" cyanide 31
" Chlorides 25	Trichloramylene thiodichloride
" Chlorobromide 37	Trichlorbenzene 30
" Copper alloys 153, 154	Trichlorbenzyl chloride
" Fluorides 19	Trichlorhenzylene dichloride 30
" Gold alloys 155	Trichlorbutyl acetate
" lodide 36	
" Iron alloys 152	
" Lead " 147, 148, 149	Trichlordn i're benzene 31
" Organic compounds of 334, 334	Trichlerethane 2.

Trichlor-ethyl acetate 306	
	Trinitrolactose
Trichlor-ethyl alcohol 305	Trinitrophenol 28
Trichlorethyl chloracetates	Triphenols 25
Trichlorhexane	Triphenylbenzene
Trichlorhydrin 299	
	Triphenylphosphin
Trichlor-methyl amyl sulphite 346	" Oxide 34
Trichlormethylethyl acetal 310	Triphenyltrisulphophosphamide 35
Trichlornitrobenzene	Triphenylstibine 35
Trichlorpentane	Triphylite 11
Trichlorpropane	Triplite 12
Trichlorpropylene 300	Triploidite 11
Trichlortolnene	Tripropylamine
Trichtorvinyl ethyl oxide	
	Tristearin 24
Tricosane 163	Trisulphhydrin
Tridecane 162	Tritolylstibine
Trideeylene 166	Trivalerylene 16
Tridymite	Trögerite 12
Triethoxyacetonitril	Troilite 6
Triethoxylpyrophosphorsulphobromide 350	Trolleite11
Triethylamine	Tropilene 26
"Auroehloride	Tropilidano 26
Triethyl amyl orthosilicate	Tropilidene
	Tungsten 1
Triethylarsine	" Aluminum alloy 14
Triethylearbinol 195	Oxides 5
Triethyl citrate 237	" Phosphide 6
Triethyl diglycerin 239	" Sulphide 5
Triethylene alcohol 223	Turgite 7
Triethylin 239	Turmerol
Triethylmethane	Turpentine
Triethylmonochlorbenzene	
	nyurate 26
Triethylphosphin	Turpeth mineral 90
" Platosochloride 366	Turquoise 11
Triethylpropylphycite 248	Tyrolite 12:
Triethylsilicol	Tyrosine
Triethylstibine 351	Tysonite 19
" Bromide 351	
" Chloride 351	
Triglyeerin tetrethylin	U.
Triischutylamine 270	
Triisobutylamine	
Triisobutylene 166	Ulexite 108
Triisobutylene	Ulexite
Triisobutylene 166 Trimethylamine 269 Frimethylbenzene 172	Ulexite
Triisobutylene 166 Trimethylamine 269 Frimethylbenzene 172 Frimethylcarbinol 191	Ulexite
Triisobutylene 166 Frimethylamine 269 Trimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270	Ulexite 10 Ullmannite 66 Undecane 16 Uranium 11 " Arsenate 12
Triisobutylene 166 Trimethylamine 269 Primethylbeuzene 172 Trimethylcarbinol 191 Trimethylcarbinolamine 270 Trimethylcarbinolamine 317	Ulexite 108 Udmannite 66 Undecane 16 Uranium 11 " Arsenate 122 " Barium phosphate 114
Triisobutylene 166 Trimethylamine 269 Frimethylbenzene 172 Irimethylcarbinol 191 Frimethylcarbinolamine 270 Trimethylcarbyl Bromide 317 " Chloride 294	Ulexite 10 Ullmannite 66 Undecane 16 Uranium 11 " Arsenate 12
Triisobutylene 166 Trimethylamine 269 Primethylbeuzene 172 Trimethylcarbinol 191 Trimethylcarbinolamine 270 Trimethylcarbinolamine 317	Ulexite 108 Udmannite 66 Undecane 160 Uranium 11 " Arsenate 125 " Barium phosphate 114 " Bismuth arsenate 125
Triisobutylene 166 Trimethylamine 269 Frimethylbenzene 172 Trimethylcarbinol 191 Trimethylcarbinolamine 270 Trimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331	Ulexite 108 Ullmannite 66 Undecape 161 Uranium 11 " Arsenate 120 " Barium phosphate 116 " Bismuth arsenate 122 " Calcium 122
Triisobutylene 166 Frimethylamine 269 Trimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Trimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281	Ulexite 108 Uthmannite 66 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium 123 "Calcium 125 "phosphate 116
Triisobutylene 166 Frimethylamine 269 Trimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Trimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylcarbylmethylcarbinol 194	Ulexite 108 Ullmannite 66 Undecane 161 Uranium 11 " Arsenate 125 " Barium phosphate 116 " Bismuth arsenate 125 " Calcium 125 " " phosphate 116 " Copper arsenate 125
Triisobutylene 166 Frimethylamine 269 Irimethylbenzene 172 Frimethylcarbinol 191 Frimethylcarbinolamine 270 Trimethylcarbyl. Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethyldiethylaniline 273	Ulexite 108 Ullmannite 66 Undecane 161 Uranium 11 " Arsenate 125 " Barium phosphate 116 " Bismuth arsenate 125 " Calcium 125 " " phosphate 116 " Copper arsenate 125 " " phosphate 125 " " phosphate 125
Triisobutylene 166 Frimethylamine 269 Primethylearbee 172 Frimethylearbinol 191 Frimethylearbinolamine 270 Trimethylearbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylearbylmethylcarbinol 194 Frimethyldiethylaniline 273 Frimethylene Bromhydrin 327	Ulexite 108 Ullmannite 66 Undecape 16 Uranium 11 "Arsenate 192 "Barium phosphate 116 "Bismuth arsenate 122 "Calcium 125 "Copper arsenate 122 "Copper arsenate 122 "Hydroxides 72
Triisobutylene 166 Frimethylamine 269 Frimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethylene/Brombydrin 227 Trimethylene Brombydrin 327 " Bromide 319	Ulexite 108 Uthmannite 66 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Gleium 122 "Calcium 122 "Copper arsenate 126 "Copper arsenate 125 "Ulexite 126 "Uranium 120 "Uranium 122 "Uranium
Triisobutylene 166 Frimethylamine 269 Frimethylenzene 172 Frimethylearbinol 191 Trimethylcarbinolamine 270 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethyldiethylaniline 273 Frimethylene Bromide 319 " Bromide 319 " Chlorhydrin 310	Ulexite 108 Ullmannite 66 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium" 122 "Copper arsenate 126 "Copper arsenate 122 "Hydroxides 72 "Lithium acetate 355 "Nitrate 112
Triisobutylene 166 Frimethylamine 269 Irimethylbenzene 172 Frimethylcarbinol 191 Frimethylcarbinolamine 270 Trimethylcarbinolamine 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylcarbylmethylcarbinol 194 Frimethyldiethylaniline 273 Trimethylene Bromide 319 " Chlorhydrin 310 " Chloride 297	Ulexite 10 Ullmannite 66 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 122 "Calcium" 122 "Copper arsenate 116 "Copper arsenate 122 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364
Triisobutylene 166 Frimethylamine 269 Primethylbenzene 172 Frimethylcarbinol 191 Frimethylcarbinolamine 270 Trimethylcarbinolamine 317 "Chloride 294 "Indide 331 "Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethyldiethylaniline 273 Frimethylene Bromide 319 "Chlorhydrin 310 "Chloride 297 "Glycol 292	Ulexite 108 Ullmannite 66 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium" 122 "Copper arsenate 126 "Copper arsenate 122 "Hydroxides 72 "Lithium acetate 355 "Nitrate 112
Triisobutylene 166 Frimethylamine 269 Primethylbenzene 172 Frimethylcarbinol 191 Frimethylcarbinolamine 270 Trimethylcarbinolamine 270 Trimethylcarbyl. Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Trimethylcarbylmethylcarbinol 194 Frimethyldiethylaniline 273 Trimethylene. Bromhydrin 327 " Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 292	Ulexite 108 Ullmannite 66 Undecape 161 Uranium 11 "Arsenate 125 "Barium phosphate 116 "Bismuth arsenate 125 "Calcium 125 "Copper arsenate 116 "Copper arsenate 122 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxalate 364
Triisobutylene 166 Frimethylamine 269 Frimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethylcarbylmethylcarbinol 194 Frimethylene Bromhydrin 327 " Bromide 319 " Chloride 297 " Glycol 292 " Iodide 334	Ulexite 108 Uthmannite 66 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Elismuth arsenate 122 "Calcium 122 "Copper arsenate 122 "Copper arsenate 122 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxalate 364 "Oxides 52
Triisobutylene 166 Frimethylamine 269 Frimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethyldiethylaniline 273 Frimethylene Bromide 319 " Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 292 " Iodide 334 Frimethylenedicthylalkin 290	Ulexite 10 Uthmannite 66 Undecane 16 Uranium 11 "Arsenate 12 "Barium phosphate 116 "Bismuth arsenate 123 "Calcium 122 "Copper arsenate 12 "Uhosphate 116 "Hydroxides 72 "Lithium acetate 355 "Nitrate 112 "Oleate 364 "Oxalate 364 "Oxides 52 "Sodium acetate 358
Triisobutylene 166 Frimethylamine 269 Frimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Frimethylcarbinolamine 270 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethyldiethylaniline 273 Primethylene Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 292 " Iodide 334 Frimethylenediethylalkin 290 Frimethylethylene 164	Ulexite 108 Ullmannite 66 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Eismuth arsenate 122 "Calcium" 122 "Copper arsenate 122 "Copper arsenate 122 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxalate 361 "Sodium acetate 358 "Sodium acetate 358 "monochloracetate 358
Triisobutylene 166 Frimethylamine 269 Primethylbenzene 172 Frimethylcarbinol 191 Frimethylcarbinolamine 270 Trimethylcarbinolamine 271 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethyldiethylaniline 273 Frimethylene Bromide 319 " Chlorhydrin 310 " Chloride 297 " Glycol 292 " Iodide 334 Frimethylenediethylakin 290 Frimethylenelethylene 164 " Oxide 222	Ulexite 108 Ullmannite 66 Undecape 16 Uranium 11 "Arsenate 12 "Barium phosphate 116 "Bismuth arsenate 122 "Calcium 122 "Copper arsenate 122 "Thosphate 116 "Hydroxides 72 "Lithium acetate 358 "Nitrate 112 "Otalate 361 "Oxides 52 "Sodium acetate 358 "Sodium acetate 358 "Thosphate 358 "Thosphate 358 "Thosphate 361 "Thosphate 362 "
Triisobutylene 166 Frimethylamine 269 Frimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethylene, Brombydrin 327 " Bromide 319 " Chloride 297 " Glycol 292 " Iodide 334 Frimethylenediothylalkin 290 Frimethylenelpelediothylalkin 290 Frimethylethylene 164 " Oxide 292 Frimethyl cthyl orthosilicate 352	Ulexite 108 Ullmannite 66 Undecape 16 Uranium 11 "Arsenate 12 "Barium phosphate 116 "Bismuth arsenate 122 "Calcium" 122 "Copper arsenate 122 "Uhydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxalate 364 "Oxides 52 "Sodium acetate 358 "Sodium acetate 358 "Monochloracetate 358
Triisobutylene 166 Frimethylamine 269 Frimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Primethyldiethylaniline 273 Frimethylene Bromide 319 " Bromide 310 " Chloride 297 " Glycol 292 " Iodide 331 Frimethylenedicthylalkin 290 Frimethylethylene 164 " Oxide 222 Frimethyl cthyl orthosilicate 352 Frimethylin 230	Ulexite 108 Uthmannite 66 Undecane 161 Uranium 11 "Arsenate 122 "Barium phosphate 116 "Bismuth arsenate 122 "Calcium" 122 "Copper arsenate 125 "Uhydroxides 126 "Lithium acetate 358 "Nitrate 112 "Osalate 364 "Oxides 52 "Sodium acetate 358 "Toxides 52 "Sodium acetate 358 "Toxides 52 "Sodium acetate 358 "Toxide 55 "Sulphate 88 Uranocircite 116
Triisobutylene 166 Frimethylamine 269 Frimethylbenzene 172 Frimethylcarbinol 191 Trimethylcarbinolamine 270 Frimethylcarbyl Bromide 317 " Chloride 294 " Iodide 331 " Nitrite 281 Frimethylcarbylmethylcarbinol 194 Frimethylene, Brombydrin 327 " Bromide 319 " Chloride 297 " Glycol 292 " Iodide 334 Frimethylenediothylalkin 290 Frimethylenelpelediothylalkin 290 Frimethylethylene 164 " Oxide 292 Frimethyl cthyl orthosilicate 352	Ulexite 108 Ullmannite 66 Undecape 16 Uranium 11 "Arsenate 12 "Barium phosphate 116 "Bismuth arsenate 122 "Calcium" 122 "Copper arsenate 122 "Uhydroxides 72 "Lithium acetate 358 "Nitrate 112 "Oleate 364 "Oxalate 364 "Oxides 52 "Sodium acetate 358 "Sodium acetate 358 "Monochloracetate 358

rage.	PAGE.
Uranoxyiluorides	Wormseed, oil of 263
U130	Wormwood, oil of
Urea 288	Wuifenite 105
Uretlane, 288	
Ugusite 97	X.
V.	Xanthil
	Xanthoconite(1
Valentinite 49	Xanthurin 311
Valeraceto itril	Xenolite 133
Valeral. Derivatives of	Xenotime, 116
4 Polymer of 218	Xonaltite 1 2
Valorie anhydride 205	Xylene
Valeroglyceral 239	" Inchleri le 3 4
Valerone 221	" Glycols 2° 1
Valeronitril 203	" Tetrachloride 304
Valeryl chloride 308	Xylenol 250
Valerylene 167	Xylidir es 272, 273
44 Inacetate	Xylyl. Acctate 200
Polymer : f	" Alcohols 251
Vanadinite	" Bremides. 21
Vana lium	" Cyanide 280
tana Hum	" Ethyl oxide
o Oxides 48	" Merca tan
	" Phosphochbride
	" Phosphoroxychloride
Car in the contract of the con	The state of the s
. 111	Xylylene bromides 324, 325
Vanadium-waguerite 124	
Variscite 115, 116	Υ.
Vauquelinite 104	
Venasquite	Ytterlium. Oxide 4
Ver drol 255	" Sulphate "7
Veszelyite 117	Yttrium, Oxide 4.
Vinyl. Bremide 321	" Phosphate 110
4 Ethyl oxide 211	Selenate
" ledide 524	" sulphate
" Sulphide 31)	Yttrocerite 1
Vinyl-action	
Viridire 276	Z.
Vitivert, cil of	
Vivianite 115	Zaratite 1.
Volborthite 121	Zepharovichite
Voltzite 61	Zeuncrite 12.
	Zine
W.	" Acetate
	" Aluminum alley 11
Wagnerite 121	u siljhate 97
Wal living	** Amalgam 11
Walj urgite 123	" Ammono sulphate 9
Warringtonite	" Amin nium bremile
Water 3)	ch rile
Wavellite 118	sel na'c
We) ritte	aulphate 0
Werthen anite = 97	4 Antimonides
White eyite.	" Arsonates
Willeting 6	" larium ch rile
Wittlehe mite	" Brema e
We fa hite	" Bromide
Welfram	" Calcium alloy
Wellstoute	" Carlonates 1.7, 1
Wo I	" Chi rile
Wo 1:	4 themian orldo

INDEX.

"Dithionate 75 "Sulphate 80, 96 "Fluoride 16 "Sulphide 57 "Formate 356 "Telluride 66 "Hydroxide 70 "Tin alloy 147 "Hypophosphite 113 "Titanate 142 "Iodide 35 "Zircofinoride 19 "Iron oxide 56 Zincaluminite 97 "Lead vanadates 120 Zinc anyl 355 "Nitrate 110 Zincethyl 355 "Nitrate 110 Zincethyl 355 "Oxide 41 Zinc propyl 355 "Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zinc propyl 355 "Oxysulphide 64 Zincofituorides 19 "Phosphate 115 Zircon 133 "Phosphide 66 Zircofituorides 19 "Platinoride 28 Zirconium 44 "Potassium chloride 27 </th <th></th> <th>PAGE.</th> <th>PAGE.</th>		PAGE.	PAGE.
"Fluoride 16 "Sulphide 57 "Formate 356 "Telluride 66 "Hydroxide 70 "Tin alloy 147 "Hypophosphite 113 "Titanate 142 "Iodide 35 "Zircoffnoride 19 "Iron oxide 56 Zincaluminite 97 "Lead vanadates 120 Zinc ethyl 355 "Magnesium sulphate 92 Zinc ethyl 355 "Nitrate 110 Zincite 41 "Oxalate 360 Zine methyl 355 "Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zinkenite 62 "Paladiochloride 28 Zircofluorides 19 "Phosphate 115 Zirconium 4 "Platinbromide 33 "Oxide 46 "Platinodide 37 Potassium phosphates 116 "Potassium chloride 27 "Selenate 133 "Pyrophosphate </td <td>Zine.</td> <td>. Copper alloys 152</td> <td>Zinc.Silicofluoride</td>	Zine.	. Copper alloys 152	Zinc.Silicofluoride
"Formate 356 "Telluride 66 "Hydroxide 70 "Tin alloy 147 "Hypophosphite 113 "Titanate 142 "Hodde 35 "Zircofinoride 19 "Iron oxide 56 Zincaluminite 97 "Lead vanadates 120 Zinc amyl 355 "Magnesium sulphate 92 Zinc ethyl 355 "Nitrate 110 Zincite 41 "Oxalate 360 Zine methyl 355 "Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zinkenite 62 "Palladiochloride 28 Zircofluorides 13 "Phosphate 115 Zirconium 4 "Phosphide 66 Zirconium 4 "Platinbromide 23 "Oxide 46 "Platinbromide 33 "Potassium phosphates 116 "Potassium chloride 27 "Silicate 133 "Oxide	46	Dithionate 75	" Sulphate 80, 96
"Hydroxide	66	Fluoride 16	" Sulphide 57
"Hypophosphite	66	Formate 356	" Telluride 66
"Iodide	6.6	Hydroxlde 70	" Tin alloy 147
" Iron oxide 56 Zincaluminite 97 " Lead vanadates 120 Zinc amyl 355 " Magnesium sulphate 92 Zinc ethyl 355 " Nitrate 110 Zincite 44 " Oxalate 360 Zine methyl 355 " Oxide 41 Zinc propyl 355 " Oxysulphide 64 Zinkenite 62 " Palladiochloride 28 Zircofluorides 19 " Phosphate 115 Zirconium 4 " Phosphide 66 Zirconium 4 " Phosphide 33 "Oxide 46 " Platinbromide 23 "Oxide 46 " Platiniodide 37 "Potassium phosphates 116 " Potassium chloride 27 "Silicate 133 " sulphate 90 "Silicate 133 " Sulphate 90 Silicate 133 " Pyrophosphate 116 Pyrophosphate 116 "	66	Hypophosphite 113	" Titanate 142
"Lead vanadates 120 Zinc amyl 355 "Magnesium sulphate 92 Zinc ethyl 355 "Nitrate 110 Zinc ite 41 "Oxalate 360 Zinc methyl 355 "Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zinkenite 62 "Palladiochloride 28 Zircofluorides 19 "Phosphate 112 Zircon 133 "Phosphide 66 Zirconium 4 "Platinbromide 33 "Oxide 46 "Platiniodide 37 "Potassium phosphates 110 "Potassium ehloride 27 "Silicate 133 "Sulphate 90 "Silicate 133 "Pyrophosphate 119 "Silicate 133 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	66	Iodide 35	" Zircofinoride 19
"Magnesium sulphate" 92 Zinc ethyl 355 "Nitrate" 110 Zincite 41 "Oxalate 360 Zinc methyl 355 "Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zinc propyl 356 "Palladiochloride 28 Zircofluorides 19 "Phosphate 115 Zircon 133 "Phosphide 66 Zirconium 4 "Platinbromide 33 "Oxide 46 "Platiniodide 37 "Potassium phosphates 116 "Potassium chloride 27 "Silicate 139 "sulphate 90 "Silicate 133 "Pyrophosphate 119 "Silicate 133 "Pyrophosphate 119 "Silicate 133 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	6.6	Iron oxide 56	Zincaluminite 97
"Nitrate 110 Zincite 41 "Oxalate 360 Zine methyl 355 "Oxide 41 Zinc propyl 356 "Oxysulphide 64 Zinkenite 62 "Palladiochloride 28 Zircofluorides 19 "Phosphate 115 Zircon 133 "Phosphide 66 Zirconium 4 "Platinodide 33 "Oxide 46 "Platinoidide 37 "Potassium phosphates 116 "Potassium chloride 27 "Selenate 19 "sulphate 90 "Silicate 133 "Pyrophosphate 119 "Silicate 133 "Pyrophosphate 119 "Silicate 133 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	66	Lead vanadates 120	Zine amyl 355
"Oxalate	66	Magnesium sulphate 92	Zine ethyl 355
"Oxide 41 Zinc propyl 355 "Oxysulphide 64 Zinkenite 62 "Palladiochloride 28 Zircofluorides 19 "Phosphate 115 Zircon 13 "Phosphide 66 Zirconium 4 "Platinbromide 32 "Oxide 46 "Platiniodide 37 "Potassium phosphates 116 "Potassium chloride 27 "Silicate 133 "sulphate 90 "Silicate 133 "Pyroarsenate 123 "Sodium phosphates 116 "Pyrophosphate 119 "silicate 139 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	6.6	Nitrate 110	Zincite 41
"Oxysulphide 64 Zinkenite 62 "Palladiochloride 28 Zircofluorides 19 "Phosphate 115 Zircon 133 "Phosphide 66 Zircon 44 "Platinbromide 23 "Oxide 46 "Platiniodide 37 "Potassium phosphates 116 "Potassium chloride 27 "Silicate 139 "sulphate 90 "Silicate 133 "Pyroarsenate 123 "Sodium phosphates 116 "Pyrophosphate 119 "Silicate 133 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	4.6	Oxalate 360	Zine methyl 355
" Palladiochloride 28 Zircofluorides 19 " Phosphate 115 Zircon 133 " Phosphide 66 Zirconium 4 " Platinbromide 33 "Oxide 46 " Platiniodide 37 "Potassium phosphates 116 " Potassium chloride 27 "silicate 139 " selenate 100 "Pyrophosphate 119 " sulphate 90 "Silicate 133 " Pyroarsenate 123 "Sodium phosphates 116 " Pyrophosphate 119 "silicate 133 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	4.6	Oxide 41	Zine propyl 355
"Phosphate	6.6	Oxysulphide 64	Zinkenite 62
" Phosphide. 66 Zirconium. 4 " Platinbromide. 23 "Oxide. 46 " Platiniodide. 37 "Potassium phosphates. 116 " Potassium chloride. 27 "silicate. 133 " selenate. 100 "Pyrophosphate. 119 " Silicate. 133 Sodium phosphates. 116 " Pyrophosphate. 119 "silicate. 139 " Selenate. 98 Zoisite. 137 " Selenide. 65 Zorgite. 65	66	Palladiochloride 28	Zircoffuorides
" Platinbromide. 33 " Oxide. 46 " Platiniodide. 37 " Potassium phosphates. 116 " Potassium chloride. 27 " silicate. 133 " selenate. 100 " Pyrophosphate. 119 " Sodium phosphates. 123 " Sodium phosphates. 116 " Pyrophosphate. 119 " silicate. 133 " Selenate. 98 Zoisite. 137 " Selenide. 65 Zorgite. 65	66	Phosphate	Zireon 133
Patiniodide	66	Phosphide 66	Zirconium 4
Potassium chloride	6.6	Platinbromide	" Oxide 46
" selenate 100 " Pyrophosphate 119 " sulphate 90 " Silicate 133 " Pyrophosphate 123 " Sodium phosphates 116 " Pyrophosphate 119 " silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	66	Platiniodide 37	" Potassium phosphates 116
"" Selentate 90 "Silicate 133 "" Pyroarsenate 123 "Sodium phosphates 116 "" Pyrophosphate 119 "silicate 139 "" Selenate 98 Zoisite 137 "" Selenide 65 Zorgite 65	64	Potassium chloride 27	" silicate 139
Sulphate 90 Sheare 153 " Pyroarsenate 123 " Sodium phosphates 116 " Pyrophosphate 119 " silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	6.6	" selenate 100	" Pyrophosphate 119
" Pyrophosphate 119 " silicate 139 " Selenate 98 Zoisite 137 " Selenide 65 Zorgite 65	66	" sulphate 90	" Silicate 133
Tyrophosphate 198 Stream 133 "Selenate 98 Zoisite 137 "Selenide 65 Zorgite 65	66	Pyroarsenate 123	" Sodium phosphates 116
" Selenide	6.6	Pyrophosphate 119	" silicate 139
	66	Selenate	Zoisite 137
" Silicates	66	Selenide 65	Zorgite 65
	66	Silicates	

SMITHSONIAN MISCELLANEOUS COLLECTIONS.

-----658 -----

INDEX

TO THE

LITERATURE

OF THE

SPECTROSCOPE.

ALFRED TUCKERMAN, Ph. D.

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

PRINTED AND BTEREOTYPED BY

JUDD & DETWEILER,

AT WASHINGTON, D C.

ADVERTISEMENT.

With the rapid accumulation of scientific memoirs and discussions, published from year to year in numerous journals and society proceedings, a constantly larger expenditure of time and labor is required by both the investigator and the student, to learn the sources of information and the condition of discovery in any given field. Hence is felt the growing need of classified indexes to the work done in the various fields of research, and hence the corresponding tendency of the age to supply such demand.

The present work aims at a general survey of Spectroscopic Literature, with references to authorities in its more special subdivisions, and it has been prepared for the Institution by Mr. Tuckerman, without other remuneration than the expectation of serving the interests of scientific inquirers.

It has been brought down to the middle of the year 1887.

S. P. Langley, Secretary Smithsonian Institution.

Washington, February, 1888.

PREFACE.

This work is intended to be a list of all the books and smaller treatises, especially contributions to scientific periodicals, on the spectroscope and spectrum analysis from the beginning of our knowledge upon the subject until July, 1887; an Index or Bibliography of the Spectroscope and Spectrum Analysis.

It was begun at the suggestion of Dr. Wolcott Gibbs, whose work in connection with the subject is well known.

The object is to enable a chemist to find out at a glance all that has been published in any branch of his subject where the spectroscope is used, and what every writer has published.

The method pursued has been as follows: 1, to examine the bibliographies, booksellers' catalogues, and books on spectrum analysis for books; 2, to examine the scientific periodicals for the shorter treatises, the first and original contributions to the subject, and this was done volume by volume wherever there was no index to a series of years—as in the Comptes Rendus and the later volumes of the Annales de Chemie et de Physique and of (Poggendorff's, now Wiedemann's) Annalen der Physik und Chemie, as well as others. Use was made of the bibliography at the end of Roscoe's Spectrum Analysis, and in the reports of the British Association for 1881 and 1884, for such books and articles as the author could not find elsewhere. Credit is also due to the Astor Library and its managers for the means it afforded the author of making this Index.

After the greater part of the material was collected it was divided into such subjects as the titles indicated, in alphabetical order, easy finding being constantly kept in view. Titles have often been repeated more than once so as to make sure of their being found. Finally, at the suggestion of the Smithsonian Institution, the List of Authors was added.

The author hopes that his two objects, fullness and ready access of all the titles, will prove to have been gained.

New York, 1887.

TABLE OF CONTENTS.

	Pages.		Pages.
History	1–8	Astronomical—Continued.	
Books	8-10	Heat in the solar spectrum_	112–113
Apparatus	11-39	Hydrogen in the solar spec-	
Analysis in general	40-49	trum	113
Qualitative Analysis	49	Intensity of the solar spec-	
Quantitative Analysis	49-51	trum	113
Absorption Spectra	52 - 60	Iron lines in the solar spec-	
Alkalies and Alkaloids	61	trum	114
Aluminium	62-63	Magnesium in the solar spec-	
Antimony	64	trum	114
Arsenic	65	Maps of the solar spectrum_	114-115
Astronomical, in general	66-70	Oscillation-frequencies	115
Comets in general	70-71	Oxygen in the solar spec-	
Comets in particular	71-79	trum	115
Displacement of stellar spec-		Photography of	115-117
tra	79-80	Pressure	117-118
Fixed Stars	80-82	Protuberances	118-122
Measurements	82	Radiation	122-123
Meteors	83	Red end	123-124
Nebulæ	84-85	Rotation	124
Photography	85-86	Storms and cyclones on the	
Planets	86-88	Sun	124
Solar spectrum in general	88-99	Sun-spots	125-129
Solar absorption	99-100	Telluric Rays	129
Solar atmosphere	100-101	Ultra-Violet	129-130
B lines in the solar spec-		Water in the solar spectrum_	131
trum	101	Wave-lengths	131-132
Bright lines in the solar		White lines	132
spectrum	101-102	Twinkling of stars	132
Chemical effects of solar		Atmospheric and Telluric Spec-	
spectrum	102	tra	133-135
Chromosphere and corona	102-105	Aurora and the Zodiacal Light_	136-142
D lines in the solar spec-		Austrium	143
trum	105	Barium	143-144
Dark lines in the solar spec-		Beryllium or Glucinum	144
trum	105-106	Bismuth	145
Displacement of the solar		Blue Grotto	145
spectrum	106	Borax	145-146
Eclipses of the Sun		Bromine	
Elements in the Sun	111	Cadmium	149
Solar eruptions	111-112	Cæsium	150
Gas spectra in the Sun	112		151-152
1	- 1	/ **\	

	Pages.		Pages.
Carbon	153-154	Carbon Compounds—Continued.	
Carbon Compounds, general	154-160	Special:	
Special:		Cureumin	169
Acetic Acid	160	Cyanogen	
Acetylene	160-161	Cymene	170
Acid Brown	161	Decay	170
Agarythrine	161	Diamond	170
Albumen	161	Diazo	170
Alcohol	161	Diphenyl	170
Alizarine		Dipyridene	170
Alkanna	162	Drossera Whittakeri	170
Allyldipropylearbinol	162	Ebonite	171
Alum	162	Eosin	171
Amido-azo-a-naphthalene	162	Ether Vapour	171
Amido-azo-3-naphthalene _	162	Excrements	171
Aniline	162-163	Fast Red	171
Anthracen	163	Fish	171
Anthrapurpurin	163	Flour and Grain	172
Anthrarufin	163	Flowers	172
Aphides	163	Fuchsin	172
Aurin	164	Fungi	172
An Australian Lake	164	Gall	173
Azo-Colors	164	Gelatine	173
Beets	164		173
Benzene	164	3.	173
Biebrich Searlet	164	Heliunthin	173
Bile	164-165	Hematine	173-174
Birds	165	Hemoglobine	174
Bismarck Brown	165	Hoffmann's Violet	174
Blood	165-167	Hydrocarbons	174-175
Bonellia Viridis	167	Hydrobilirubin	175
Brucine	167		175
Butter	. 167	Hydroxyanthraquinone	175
Carbohydrates	167	Indigo	
Carmine	167	lodine Green	
Caryophyllacere	167	Lamp Black	
Chinizarin	. 168	Leaves	
Chinolin	. 168		
Chinon	. 168	Mesucon	
Chotelin	. 168	Metaxylene	
Chromogene	. 168	Methylene Blue	
Chrysoidine	. 168		
Citracon	168	· ·	
Coul	168	1	
Colein	. 168	*	
Crocome Scarlet			
Croton Acid			
Crystalloids	169		
Cumene	169	Ortho-Xylene	. 179

TABLE OF CONTENTS.

	Pages.		Pages.
Carbon Compounds—Continued.		Didymium	209-210
Special:		Diffraction	211
Carbonic Acid	179-180	Discontinuous Spectra	
Paratoluidine	181	Dispersion Spectra	212-216
Paraxyline	181	Dissociation	216
Pentaerinus	181	Distribution	217
Phenols	181	Double Spectra	217
Picolene	181	Dysprosium	218
Piperidine	181	Electric Speetra	218-225
Plants	181	Emission Spectra	226
Purpurin	181-182	Energy in the Spectrum	227
Pyridine	182	Erbium	
Quinoline	182	Exchanges	230
Raspberry	182	Explosions	230
Rosaniline	182	Flame and Gas Spectra	
Ruberine	182	Fluorescenee	
Safranin	183	Fluorine	246
Carbonate of Soda	183	Gadolinite	247
Spongilla Fluviatilis	183	Gallium	248
Sulphide of Carbon	183	Germanium	248
Terebinthine	183		
Terpenes	184	Glass	249
Tetrahydroquinoline	184	Gold	250
		Heat Spectra	
Tourmeline	184	Helium	255
Triphenylmenthane	184	High Altitudes	255
Tropæolin	184	Holmium	256
Tropæolin 0 0 0	184	Homologous Spectra	256
Turpentine	184	Hydrogen	
Ultramarine	184	Indigo	261
Urine	185	Indium	261
Wine	185	Interference	262
Wood	185	Inversion	263 - 264
Xantophyll	186	Iodine	265 - 267
Cerium	186	Iridium	267
Chlorine	187	Iron	268-269
Chlorine Compounds	187-191	Jargonium	270
Chlorophyll	192-194	Lanthanum	270
Chromium	195	Lead	271
Cobalt	196	Light	272-273
Colour	197-199	Lightning. (See Electricity.)	
Cone Spectrum	199	Limits of the Spectrum	273
Constants	200	Lines of the Spectrum	
Copper	201-202	Liquids	
Crystals	203	Lithium	279-280
D Line	204	Longitudinal Rays	281
Dark Lines	205-206	Luminous Spectra	281
Davyum	206	Magnesium	
Decipium	207	Manganese	
Density	1	Maps	

Mercury 189 Samarskite 350 Metals 290-294 Scandium 331 Meteorological 295-296 Secondary Spectrum 231 Microscopic Spectra 296 Selenium 232 Mineral Waters 297 Silicium 303 Minium 297 Silver 324-336 Molybdenum 298 Sodium 337-369 Mosandrum 298 Strontium 341-342 Nickel 299 Tellurium 343 Niobium 299 Terbium 343 Nitrogen 300-304 Thallium 344
Metals 290-294 Scandium 331 Meteorological 295-296 Secondary Spectrum 231 Microscopic Spectra 296 Selenium 332 Mineral Waters 297 Silicium 353 Minium 297 Silver 324-336 Molybdenum 298 Sodium 337-369 Mosandrum 298 Strontium 341-342 Nickel 290 Tellurium 343 Niobium 299 Terbium 343
Meteorological 295–296 Secondary Spectrum 231 Microscopic Spectra 296 Selenium 332 Mineral Waters 297 Silicium 353 Minium 297 Silver 324–336 Molybdenum 298 Sodium 337–369 Mosandrum 298 Strontium 340 Multiple Spectra 298 Sulphur 341–342 Nickel 290 Tellurium 343 Niobium 299 Terbium 343
Microscopic Spectra 296 Selenium 332 Mineral Waters 297 Silicium 353 Minium 297 Silver 324-336 Molybdenum 298 Sodium 337-369 Mosandrum 298 Strontium 340 Multiple Spectra 298 Sulphur 341-342 Nickel 290 Tellurium 343 Niobium 299 Terbium 343
Mineral Waters 297 Silicium 353 Minium 297 Silver 324-336 Molybdenum 298 Sodium 337-369 Mosandrum 298 Strontium 340 Multiple Spectra 298 Sulphur 341-342 Nickel 290 Tellurium 343 Niobium 299 Terbium 343
Molybdenum 298 Sodium 237-379 Mosandrum 298 Strontium 340 Multiple Spectra 298 Sulphur 341-342 Nickel 299 Tellurium 343 Niobium 299 Terbium 343
Mosandrum 298 Strontium 340 Multiple Spectra 298 Sulphur 341-342 Nickel 299 Tellurium 343 Niobium 299 Terbium 343
Multiple Spectra 298 Sulphur 341-342 Nickel 299 Tellurium 343 Niobium 299 Terbium 343
Nickel 299 Tellurium 343 Niobium 299 Terbium 343
Nickel 299 Tellurium 343 Niobium 299 Terbium 343
211.010111 ==============================
Nitrogen 300-304 Thalliam 344
Nomenclature 305 Thulium 345
Optics 306 Tin 245
Osmium 307 Titanium 346
Oxygen 308-310 Uranium 347
Palladium 311 Vanadium 347
Paragenic Spectra 311 Violet and Ultra-Violet 348-350
Philippium 311 Volcanoes 350
Phosphorescence 312-314 Water Spectra 351-352
Phosphorus = 315-316 Wave-Lengths = 353-357
Platinum 317 Yellow Bodies 357
Polarized Light 318 Ytterbium. 358
Potassium 319-320 Yttrium 359
Pressure 320 Zinc 360
Radiation 321 Zirconium 361
Red End of the Spectrum 322
Refraction 323-326 List of Authors 363
Rhabdophane (With the pages of the preceding Index
Rhodium 326 on which the titles of their works are
Rubidium 327 given.)
Ruthenium 327
Salt (Common) 328 Number of titles 3.829
Samarium 329 Number of authors 799

LITERATURE OF THE SPECTROSCOPE.

HISTORY.

Arago (Domenique François Jean), 1786–1853. Œuvres complètes, avec Tables, publiées d'après son ordre sous la direction de J. A. Barral. Paris et Leipzig, 1854–'62, 17 vols., ill., 8°.

(Interesting here only in connection with polarized light.)

Barlocci.

(Wrote on the influence of white light.)

Beccaria, 1716-81.

(Wrote on the refraction of rock crystal, about 1750; see Ency. Brit., eighth edition I, 753.)

- Becker (G. F.). Contribution to the History of Spectrum Analysis. Amer. Jour. Sci., (3) 16, 392.
- Bérard. Mem. de la Soc. d'Arcueil, 3 (1817); and Biot's Traité de Physique, 4, 600–18, 673–4.

(A full account of Bérard's experiments on the calorific rays of the spectrum.)

- Berthold (G.). Zur Geschichte der Fluorescenz. Ann. Phys., u. Chem., **158**, 623.
- Biot (J. B.). Traité de Physique expérimentale et mathématique. Paris, 1816, 4 vols., 8°.

- Blair (Dr. Robert), 1787-1829. Edinburgh Transactions, III, 3.

 (He discovered the uses of muriatic acid mixed with antimony in correcting secondary spectra in telescopes.)

(1 T)

Boscovich (Roger Joseph). Opuscula. Bassano, 1784, 5 vols., 4°. Opera pertinentia ad Opticam et Astronomiam (Astor Library).

Ency. Brit., eighth edition, I, 721-2, 753.

(He made a deliente micrometer with double refraction, about 1777, and observed the so-called Secondary Spectrum, consisting of purple and green light.)

Bouguer (Pierre), 1698-1758. Essai d'Optique, sur la Gradation de la Lumière. Paris, 1729, 8°; ed. La Caille, Paris, 1760, 4°.

Ency. Brit., eighth edition, I, 753-4.

(He published a number of treatises on the gradation of light.)

Brewster (Sir David), 1781-1868. Treatise on Optics. Edinburgh, 1831.

New Analysis of Solar Light, indicating three primary colours, forming coincident spectra of equal length. Edinburgh, 1834.

(See Life of B. by Mrs. Gordon.)

Buffon.

In his "Epoques de la Nature" he describes light and heat as known in his times.)

Delaunay. Notice sur la Constitution de l'Universe. Première Partie:
Analyse Spectrale, Annuaire du Bureau des Longitudes, 1869,
Paris, 8°.

(A masterly treatise on the subject at that time.)

- Desains (P.), Recherches expérimentales sur les anneaux colorés de Newton. Comptes Rendus, 78, 219-21; Phil. Mag. (4) 47, 236-7.
- Dolland (John), 1706-61. See Proc. Royal Soc., **50** (1757) 733, and Ency. Brit., eighth edition, I, 749-51.

(He discovered that dispersion depends not on the mean refraction but on the constitution of the diaphanous medium.)

- Draper (Henry). Obituary by G. F. Barker in Amer. Jour. Sci. (3) 25, 89.
- Draper (J. W.). Early Contributions to Spectrum Photography. Nature, 10, 243-4.
- Dutirou (l'abbé). Memoire sur la détermination des indices de réfraction des sept raies de Fraunhofer dans une série nombreuse de verres.

Annales de Chimie et de Physique, (3) 28 (1850) 176.

Exner (K.). Die Fraunhofer 'schen Ringe, die Quetelet 'schen Streifen und verwandte Erscheinungen.

Sitzungsber. de. Wiener Akad. 76, II, 522.

Faye. Note sur l'Association nouvellement fondée en Italie sous le titre de "Societa dei Spettroscopisti Italiani." Comptes Rendus, 74, 913-18, 1240-3.

(See Tacehini, Comptes Rendus, 74, 1237.)

- Forbes (James D.). On the Refraction and Polarization of Heat. Edinburgh Trans., 13 (1836), 131-68, 446-72.
- Rays in the Solar Spectrum. Phil. Mag. (1836) 453.

- Fraunhofer (Joseph von), 1787–1826. "Bestimmung des Brechungsund Farbenzerstreuungs-Vermögens verschiedener Glasarten in Bezug auf die Vervollkommung achromatischer Fernröhre. Von Jos. Fraunhofer in Benedictbaiern." Denkschriften der k. Akad. der Wissenshaften zu München für die Jahre 1814 and 1815. Band V, 193–226, mit drey Kupfertafeln, München, 1817, 4°. (Fraunhofer's announcement of his discovery of the dark lines of the spectrum of sunlight.)

J. von Utschneider, Kurtzer Umriss der Lebensgeschichte des Herrn Dr. J. von Fraunhofer, Munieh, 1826.

Merz, Das Leben und Wirken Fraunhofer, Landshut, 1865.

See Works of Sir David Brewster.

— — —. Neue Modificationen des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben, München (no date).

Edinburgh Jour. Science, No. 13, 109, 15, 7, new series No. 13, 101.

- Gerding (Th.). Geschichte der Chemie. Leipzig, 1867, 8°.
- Herschel (A. S.). Progress of Spectrum Analysis. Chem. News, 19, 157; Jour. Franklin Inst., 88, 49, 136.
- Herschel (Sir John Frederick William), 1792–1871. On the Absorption of Light by coloured Media, and on the Colours of the prismatic Spectrum exhibited by certain Flames; with an Account of a ready Mode of determining the absolute dispersive Power of any Medium, by direct experiment. Edinburgh Trans., 9 (1823), 445.

- Herschel (Sir John Frederick William). Homogeneous yellow and orange Spaces in the Spectrum. Phil. Trans., 90 (1800), 255.

- Hoppe-Seyler (F.). Die Spectralanalyse. Ein Vortrag. Berlin, 1869, 8°.
- Hunt (T. Sterry). Chemistry of the heavenly Bodies since the Time of Newton. Proc. Cambridge Philosoph. Soc., 4, 129-139; Amer. Jour. Sci., (3) 23, 123-138; Ann. Chim. et Phys., (5) 28, 105.
- Huyghens (Christian), 1629-95. Opera Varia, Leyden, 1724, 2 vols., 4°. Opera reliqua, Amsterdam, 1728, 2 vols., 4°.
- Jahresbericht der Chemie (Liebig's), Jahre 1863, 113; 1866, 78.
- Johnson (A.). On Newton, Wollaston, and Fraunhofer's Lines. Nature, 26, 572; Beiblätter, 7, 65 (Abs.).
- Kirchhoff (G.). Geschichtliches über Speetralanalyse. Ann. Physik u. Chēmie, 118, 94, 102; Phil. Mag., (4) 25, 250.
- Kopp (H. . Entwickelung der Chemie in der neueren Zeit. München, 1871-3, 8°.
- Ladd (William). On the Results of Spectrum Analysis as applied to the heavenly bodies. A Lecture delivered before the British Association at the Nottingham Meeting, August 24, 1866. London, 1866, 8°, with photographs of the stellar spectra.

Chem. News, 14, 173, 199, 209, 235.

Lamansky (S.). Geschichtliches über das Wärmespectrum der Sonne. Ann. Phys. u. Chem., **146**, 200, 207, 209.

.

- Lambert (Johann Heinrich), 1728-77. Photometria. Augsburg, 1760, 8°.
- Liveing (G. D.) and Dewar (J.). Note on the History of the Carbon Spectrum. Proc. Royal Soc., 30, 490-4; Beiblätter, 5, 118-22; Nature, 23, 265-6, 338.
- Lloyd (Prof.). Report on Physical Optics. Fourth Rept. British Assoc., 1834, pp. 295-414.
- Malus (E. L.), Paris, 1775–1812. Théorie de la double Réfraction de la Lumière dans les Substances cristallisés, Paris, 1810, 4°. (See Ency. Brit., 8th ed., I, 754, for an account of him.)
- Marie (L'abbé). Nouvelle découverte sur la lumière, pour en mesurer et compter les degrés. Paris, 1700, 8°.

 (Gave the first ideas about photometry.)
- Maskelyne. Account of a new Instrument for measuring small Angles, called the Prismatic Micrometer. Phil. Trans., 47 (1777), 799.
- Mayer (A. M.). The History of Young's Discovery of his Theory of Colour. Phil. Mag., (5) 1, 111-127.
- Meldola (R.). Contributions to the chemical History of the aromatic Derivatives of Methane. Jour. Chem. Soc., 41, 187-201.
- Melloni (Macédoine). See Annales de Chimie et de Physique, **53** (1833), 5-72; do., **48**, 198, Recherches sur plusieurs phénomènes entreprises au moyen du thermomultiplicateur; do., **48**, 385; do., **55**, 337; do., **60**, 402, 410-18; do., **61**, 411; do., **65**, 5; do., **68**, 107; do., **70**, 435; do., **72**, 40, 334; do., **74**, 18, 331; do., **75**, 337.

(Melloni was famous chiefly for his thermomultiplier.)

- Miller (William Allen). Recent Spectrum Discoveries, 1863. Jour. Franklin Inst., 76, 29; Chem. News, 1863.
- Morichini (Domenico Pino), 1773-1830. Sopra la forza magnetizzatrice del lembo estremo del colore violetto. Milano, 1802.

 (A collection of his works was published by Pirotta of Milan in 1836.)
- Mousson (A.). Resumé de nos connaissances actuelles sur le spectre. Archives de Genève (1861).
- Newton (Sir Isaac). Collected Works. Optics, Chap. II, sections 1-3; vol. 3 of Latin edition, London, 1779-85, 5 vols., 4°.
- Nobili, worked with Melloni, above.

- Poggendorff (J. C.). Handwörterbuch der exacten Wissenschaften. Leipzig, 1858-63, 2 vols., lex. 8°.
- Powell (Rev. Baden). Report on Radiant Heat. British Association Repts., 1, 295.
- Priestley (Dr. Joseph). An Account of all the prismatic Colours, made by electrical Explosions on the Surface of Pieces of Metal. Phil. Trans., 58 (1768), 68.
- Ritter.
- (In 1801 he exposed muriate of silver in various parts of the spectrum and found that the action was least of all in the red, greater in the yellow, and greatest beyond the visible violet rays. Forbes, in Ency. Brit., 8 ed., 16, 594.)
- Robison (John). A System of mechanical Philosophy, with notes by David Brewster. London, 1822, 4 vols., 8°. See chapter on the telescope, III, 403-522.
- Rood (O. N.). Newton's Use of the Term Indigo with Reference to a Color of the Spectrum. Amer. Jour. Sci., (5) 19, 135-7; Beiblätter, 4, 460 (Abs.).
- Rowland (H. A.). On recent Progress in photographing the solar Spectrum. Rept. British Assoc. (1884), 635.
- Rudberg (Fr.). Dispersion de la lumière. Ann. de Chimie et de Physique, 36, 439.
- — Sur la réfraction des rayons différemment colorés dans des cristaux à un on deux axes optiques. Ann. de Chimie et de Physique, 48, 225.
- Ruprecht (Rudolph). Bibliotheca chemica et pharmaceutica. Leipzig, 1858-70, 8°.
- Rutherfurd (L. M.). Construction of the Spectroscope. Amer. Jour. Sci., (3) **39**, (1869), 129. Note by Ditscheiner in Sitzungsber. d. Wiener Akad., **52** H, 542, 563-8.
- Schwerd (F. M.). Die Beugungserscheinungen aus dem Fundamentalgesetz der Undulationstheorie analytisch entwickelt und in Bildern dargestellt. Mannheim, 1835, 8°.
- Secchi (A.). Le Soleil. Exposé des principales Découvertes modernes sur la Structure de cet Astre. Paris, Gauthier-Villars, 1870. (See Nature, 13, 188.)

- 4

- Seebeck (T. J.). Berlin, 1770-1831.
 - Abhandlungen der Berliner Akad., 1818-19, 306; Edinburgh Jour. Sci., 1 (1824), 358.
- Stewart (B.). Some Points in the History of Spectrum Analysis. Nature, 21, 35.
- Stieren (E.). Die ersten Beobachtungen über Spectralanalyse veröffentlichte Alter. Ann. Phys. u. Chem., 132, 469.
- Stokes (G. G.). Early History of Spectrum Analysis. Nature, 13, 188-9.
- ————. On the Composition and Resolution of Streams of polarized Light from different Sources. Cambridge Philosoph. Trans., **10** (1852), 399-416.
- ————. On the Change of Refrangibility of Light. Phil. Trans. (1852), 463-562.

(His discovery of fluorescence.)

- Swan (W.). On the Prismatic Spectra of the Flames of Compounds of Carbon and Hydrogen. Edinburgh Trans., 21 (1857), 411-29; Ann. Phys. u. Chem., 100, 306.
- Tarry (H.). Report on the Researches and Experiments made by the Spectroscopic Association of Italy. (From Les Mondes of March 21, 1872.) Chem. News, **25** (1872), 179.
- Thalén (Robert). Om Spektralanalys, med en Spektralkarte. Upsala Universitets Aarpkrift. Upsala, 1866, 8°.
- Wollaston (Dr.), 1766-1828. A Method of examining refractive and dispersive powers by prismatic Reflection. Phil. Trans. (1802), 365-380.
 - (His own account of his discovery of five fixed lines of the solar spectrum, which he said he could not explain.)
- Wünsch (Christian Ernst), 1730–1810. Untersuchungen über die verschiedenen Farben des Lichtes. Leipzig, 1792, 8°, with plates.
- Wurtz (A.). Histoire des Doctrines chimiques depuis Lavoisier jusqu'à nos jours. Paris, 1869, 8°.

Young (Dr. Thomas). Elements of Natural Philosophy, Vol. 1, 786. plate 29.

(Gives a small colored drawing of the spectrum as seen by Dr. Wollaston and himself, with the yellow line.)

Life by Dr. G. Peacock, London, 1855, 8°.

Zantedeschi. Ricerche sulla Luce, Venezia, 1846, 8°; Chap. III. (See Edinburgh Jour. Sei., n. s., 5 (1830), 76, repeating experiments of Barlocci and similar to those of Moriehini.)

BOOKS.

- Agnello (A.). Eclisse totale del 22 dic. 1870. Palermo, 1870.
- Angström (A. J.). Recherches sur le Spectre normal du Soleil. Upsala, W. Schultz, 1868. Avec Atlas et 6 planches.
- Becquerel (Edm.). La Lumière, ses Causes et ses Effets. 2 vols., 8°, Paris, 1867–1868, 16 fr.
- Blaserna (P.). Sulla polarizzazione della Corona solare. Palermo, 1871, 8°.
- Capron (J. R.). Photographed Spectra. 136 photographs of spectra. London, Spon, 1877, 8°. (See review of, in Chem. News, 37 (1878), 118.)
- Champion (P.), Pellet (H.), et Grenier. De la Spectrométrie, Spectromètre. Paris, 1873, 8°.
- Draper (Henry). On diffraction Spectrum Photography. New Haven, 1873, 8°.
- Grandeau (L. N.). Instruction pratique sur l'analyse spectrale. Paris, 1863, 8°, 3 fr.
- Hirn (G. A.). Flamme en combustion et Température du Soleil. Paris, 1873, 8°.
- Hoppe-Seyler (F.). Handbuch der physiologisch-chemischen Analyse. 3. Auflage, Berlin, 1870, 8°.

- Hough (G. W.). The total Solar Eclipse of Aug. 7, 1869. Albany, N. Y., J. Munsell, 1870, 8°.
- Kirchhoff (G.). The Solar Spectrum and Spectra of the Chemical Elements. London, Macmillan, 1861-2, with plates.

 (Translations of the original communications to the Academy of Sciences

Translations of the original communications to the Academy of Science of Berlin.)

- Lecoq de Boisbaudran (F.). Spectres Lumineux. Paris, 1874, 8°, avec atlas.
- Lielegg (A.). Die Spectralanalyse. Weimar, Voigt, 1867.
- Lockyer (J. N.). The Spectroscope and its Applications. London, Maemillan, 1873, 8°.
- Lommel (E.). The Nature of Light. New York, Appleton, 1876, 8°.
- Lorscheid (J.). Die Spectralanalyse. Münster, 1870, 8°.
- Mac Munn (C. A.). The Spectroscope. London, Churchill, 1880.
- Proctor (R. A.). The Spectroscope. London, 1877, 8°.
- Radau (R.). Le Spectre solaire. Paris, 1862, 18°.
- Respighi (L.). Osservazioni spettroscopiche del Bordo e della Protuberanze Solari. Roma, 1871, 8° (with a plate).
- Rood (O. N.). Modern Chromatics, with 130 illustrations. New York, Appleton, 1879.
- Roscoe (H. E.). Spectrum Analysis. London, Macmillan, Fourth Edition, 1886, 8°.
 - (With a short bibliography of the principal works relating to the spectroscope. One of the best text-books, if not the best, on the subject.)
- Ruprecht (R.). Bibliotheca chemica et pharmaceutica. Leipzig, 1858-70, 8°.
- Sands (B. F.) and others. United States Naval Observatory Reports on the total Eclipse of the Sun, Aug. 7, 1869. Government Printing Office, Washington, D. C., 1869.
- Schellen (H.). Die Spectralanalyse. 2 Auflage, Braunschweig, 1871, 8°. (Translated by J. and C. Lassell, London, 1872; reviewed by Roscoe in Nature, 1, 503, and by others in Chem. News, 22, 284; 25, 80.)

- Secchi (A.). Sulle ultime scoperte spettroscopiche nel Sole. Roma, Type delle Belle Arti, 1869.
- Simmler (R. Th.). Beiträge zur chemischen Analyse durch Spectralbeobachtungen. Chur, 1861, 8°.
- Smyth (C. Piazzi). Madeira Spectroscopic. Edinburgh, W. and K. Johnston, 1881, 8°. (Spectroscopic observations made at Madeira.)
- Stein (Th.). Das Licht im Diensie der wissenchaftlichen Forschung. Leipzig, 1877, 8°.
- Stokes (G. G.). Mathematical and physical Papers, reprinted from the original Journals and Transactions, with additional Notes by the Author. Cambridge, University Press, 1880-1883, 2 vols., 8°.
- Thalén (R.). Om Spektralanalys, exposé, med en Spektralkarte. Upsala Universitets Årsskrift, 1866, 8°.
- Valentin (G.). Der Gebrauch des Spectroskops zu physiologischen und ärztlichen Zwecken. Leipzig und Heidelberg, Winter 'sehe Buchhandlung, 1863, 8°.
- Vierordt (K.). Anwendung des Spectralapparates. Tübingen, 1871, 8°.
- Vogel (H. W.). Practische Spectral-Analyse irdischer Stoffe. Nordlingen, 1877, 12°.
- Watts (W. M.). Index of Spectra. London, Gillman, 1872, 8°.
- Wrottesley (Lord). Applications of Spectrum Analysis. London, 1865, 8°,
- Young (C. A.). The Sun. New York, 1881, 8°.

APPARATUS.

ABSORPTION SPECTROSCOPE.

Sur un nouveau spectroscope d'absorption.

Thierry (Maurice de). Comptes Rendus, 101 (1885), 811-813; Jour. Chem. Soc., 50 (1886), 113 (Abs.).

ACTINIC BALANCE.

(See Spectro-bolometer.)

ALKALOID REACTIONS.

Alcaloïdreactionen im Spectralapparate.

Hock (K.). Arch. f. Pharm., 19, 358; Ber. chem. Ges., 14, 2844 (Abs.).

ASTRONOMICAL SPECTROSCOPES.

(See Spectro-telescopes.)

AUTOMATIC SPECTROSCOPES.

A new automatic motion for the spectroscope.

Baily (W.). Phil. Mag., (5) 4, 100-104.

An automatic spectroscope.

Browning (J.). Chem. News, 20 (1870), 222; 21 (1870), 201.

Automatic spectroscope.

Proctor (R. A.). Monthly Notices Astron. Soc., 31 (1871), 47-48.

Automatic spectroscope.

Proctor (R. A.). Monthly Notices Astron. Soc., 31 (1871), 205-208.

Automatic spectroscope for Dr. Huggins's sun observations.

Grubb (H.). Monthly Notices Astron. Soc., 31 (1871), 36.

Automatic spectroscope.

Reynolds (J. E.). Chem. News, 23 (1871), 118.

Universal automatic spectroscope.

Browning (J.). Monthly Notices Astron. Soc., 32 (1872), 213.

Large automatic spectroscope.

Browning (J.). Monthly Notices Astron. Soc., 33 (1873), 410.

Ueber Spectralapparat mit automatischer Einstellung.

Krüss (H.). Z. Instrumentenkunde, 5 (1885), 181-191, 232-244; Beiblatter, 9 (1885), 628 (Abs.).

BESSEMER-FLAME SPECTROSCOPES.

Examination of the Bessemer flame with the spectroscope.

Silliman (J. M.). Amer. Jour. Sci. (2), 50, 297-307; Phil. Mag., 41, 1-12; Jour. Chem. Soc. (2), 9, 97-98 (Abs.).

Examination of the Bessemer flame with coloured glasses and with the spectroscope.

Parker (J. S.). Chem. News, 23 (1871), 25-26; Jour. Chem. Soc. (2), 9, 98 (Abs.).

Spectroscope pour les hauts-fourneaux et pour le procédé Bessemer.

Zenger (Ch. V.). Comptes Rendus, **101** (1885), 1005; Jour. Chem. Soc., **50** (1886), 190 (Abs.).

USE OF THE BLOWPIPE.

Emploi du chalumeau à chlorhydrogène pour l'étude des spectres.

Diacon. Comptes Rendus, 56, 653.

BOLOMETER.

(See Spectro-bolometer.)

BÖRSCH-APPARATUS-

Der Spectralapparat von Börsch zugleich Reflexions-Goniometer.

Börsch. Ann. Phys. u. Chem., 129, 384.

COLLIMATORS.

Sur un nouveau collimateur.

Thollon (L.). Comptes Rendus, 96, 642-643; Nature, 27, 476 (Als.);
z. Instrumentenkunde, 3, 180-181 (Abs.); Beiblatter, 7, 285 (Abs.).

An easy method of adjusting the collimator of a spectroscope.

Schuster (A.). Proc. Physical Soc., 3, 14-17; Phil. Mag., (5) 7, 95-98; Beiblatter, 354 Abs. 1.

Use of a collimating eye-piece in spectroscopy.

Liveing (G. D.) and Dewar J.). Proc. Cambridge Phil. Soc., 4, 336;
Beiblatter, 7, 892 | Abs. |

-

COMPENSATING EYE-PIECE.

Construction of a compensating eye-piece.

Proc. Royal Soc., 21, 426-442.

CYLINDRICAL LENSES.

Zweckmässigkeit cylindrischer Linsen bei Spectralapparaten.

Schönn (L.). Ann. Phys. u. Chem., 144, 334.

DENSIMETER.

Optical densimeter for ocean water.

Hilgard (J. E.). United States Coast Survey Rep't (1877), 108-113; Z. Instrumentenkunde, 1, 206-207 (Abs.); Beiblätter, 5, 658 (Abs.).

DEVIATION IN SPECTROSCOPES.

Spectroskop mit constanter Ablenkung.

Goltzsch (H.). Carl's Repert., **18**, 188–190; z. analyt. Chem., **21**, 556 (Abs.).

Ueber ein einfaches Mittel die Ablenkung oder Zerstreuung eines Lichtstrahles zu vergrössern.

Kohlrausch (F.). Ann. Phys. u. Chem., 143, 147-149.

Die kleinste Ablenkung im Prisma.

Lommel (E.). Ann. Phys. u. Chem., 159, 329.

Die kleinste Ablenkung im Prisma.

Berg (F. W.). Ann. Phys. u. Chem., 158, 651.

Démonstration élémentaire des conditions du minimum de déviation d'un rayon par le prisme.

Hesehus (N.). Jour. soc. phys. chim. russe, **12**, 226-231; Jour. de Phys., **10**, 419-420 (Abs.); Beiblätter, **6**, 227 (Abs.).

Nouvelles démonstrations des conditions du minimum de déviation d'un rayon dans le prisme.

Kraiewitch (K.). Jour. soc. phys. chim. russe, 16, 8-12. Notes surect article, par Wolkoff, 16, 174.

Ueber die Schwankungen in der chemischen Wirkung des Sonnenspectrums und über einen Apparat zur Messung derselben.

Vogel (H.). Ber. chem. Ges., 7, 88-92; Jour. Chem. Soc., (2) 12, 424 (Abs.); Amer. Jour. Sci., (3) 7, 414-415.

Das Minimum der Ablenkung eines Lichtstrahls durch ein Prisma.

Kessler (F.). Ann. Phys. u. Chem., n. F. 15, 333-334.

DIFFRACTION SPECTROSCOPES.

(See "Gratings.")

DIRECT-VISION SPECTROSCOPES,

Nouveau spectroscope à vision directe.

Thollon (L.). Comptes Rendus, **86**, 329-331; Beiblätter, **2**, 253-254 (Abs.).

Théorie du nouveau spectroscope à vision directe.

Thollon (L.). Comptes Rendus, 86, 595; Beiblätter, 2, 253.

Nouveau prisme composé, pour spectroscope à vision directe, de très grande pouvoir dispersif.

Thollon (L.). Comptes Rendus, 88, 80-82; Beiblitter, 3, 355.

Sur l'emploi de prismes à liquide dans le spectroscope à vision directe.

Zenger (C. V.). Comptes Rendus, 92, 1503-1504.

Le spectroscope à vision directe appliqué à l'astronomie physique.

Zenger (C. V.). Comptes Rendus, 93, 429-432; Beiblätter, 5, 793 (Abs.).

Le spectroscope à vision directe, à spath calcaire.

Zenger (C. V.). Comptes Rendus, 93, 720-722; Beiblätter, 6, 21 (Abs.); Z. Instrumentenkunde, 1, 268-266.

Les observations spectroscopiques à la lumière monochromatique.

Zenger (C. V.). Comptes Rendus, 94, 155-156; Chem. News, 45, 86-87 (Abs.); Jour. Chem. Soc., 42, 677 (Abs.); Amer. Jour. Sci., (3) 23, 322-323 (Abs.); Beiblätter, 6, 378; Z. Instrumentenkunde, 2, 114 (Abs.).

Spectroscope à vision directe très puissant.

Zenger (C. V.). Comptes Rendus, **96**, 1039-1041; Nature, **27**, 596 (Abs.); Chem. News, **47**, 213 (Abs.); Beiblatter, **7**, 45:-457 (Abs.), Amer. Jour. Sci., (3) **25**, 469; Z. analyt. Chem., **22**, 540-541 (Abs.).

- 20.

Spectroscope à vision directe pour observation des rayons ultra-violettes.

Zenger (C. V.). Comptes Rendus, 98, 494.

Neues geradsichtiges Taschenspectroskop.

Hilger (A.). Beiblatter, 1, 124-125.

Spectroscopes à vision directe et à grande dispersion.

Thollon (L.). Jour. de Physique, 8, 73-77.

Note on a direct-vision spectroscope on Thollon's plan, adapted to laboratory use and capable of giving exact measurements.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 28, 482–483; Beiblätter, 3, 709 (Abs.).

Ein Spectroskop à vision directe mit nur einem Prisma.

Emsmann (H.). Ann. Phys. u. Chem., 150, 636.

A direct-vision compound prism by Merz; with dispersion almost double that of flint glass.

Gassiot. Proc. Royal Soc., 24, 33.

Combinazioni spettroscopiche a visione diretta.

Riccó (A.). Mem. Spettr. ital., 8, 21-34.

Ueber ein verbessertes Prisma à vision directe.

Braun (C.). Ber. aus Ungarn, 1, 197-200.

Note on a new form of direct-vision spectroscope.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 41 (1886), 449–452.

DISPERSION APPARATUS.

Das Dispersionsparallelopiped und seine Anwendung in der Astrophysik.

Zenger (K. W.). Sitzungsber d. Böhm. Ges. (1881), 416–429; Beiblätter, 6, 286 (Abs.).

Sur un spectroskope à grande dispersion.

Cornu (A.). Jour. de Phys., 12 (1883), 53-57; Amer. Jour. Sei., (3) 25, 469.

Sur un spectroscope à grande dispersion.

Cornu (A.). Séances de la Soc. franç. de Phys., 1882, 165-170; Beiblätter, 7, 285 (Abs.); 8, 33 (Abs.).

Bemerkungen über die Einrichtung eines Dispersiometers.

Mousson (A.). Ann. Phys. u. Chem., 151, 137-145.

ECLIPSE APPARATUS.

(See "Solar and Stellar App.")

EFFICIENCY OF SPECTROSCOPES.

Efficiency of different forms of the spectroscope.

Pickering (E. C.). Amer. Jour. Sei., 95, 301, and (3) 22, 397.

ELECTRIC APPARATUS.

Tube spectro-électrique destiné à l'observation des spectres des solutions métalliques.

Delachanal (B.) et Mermet (A.). Comptes Rendus, 79, 800; 81, 726.

An arrangement of the electric arc for the study of the radiation of vapours, together with preliminary results.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 119-122; Nature, 26, 213-214 (Abs.); Beiblätter, 6, 934-936 (Abs.); Jour. Chem. Soc., 44, 262-263 (Abs.).

On the use of most electrodes.

Hartley (W. N.). Chem. News, 49, 149; Beiblätter, 8, 581.

Apparat zur leichten Darstellung des langen electrischen Spectrums. Müller (J.). Ann. Phys. u. Chem., 130, 137.

ERYTHROSCOP.

Erythroscop und Melanoskop.

Lommel (E.). Ann. Phys. u. Chem., 143, 483-490.

EUTHYOPTIC.

Das einfache euthyoptische Spectroskop.

Kessler (F.). Ann. Phys. u. Chem., 151, 507.

FINDER.

A reliable finder for a spectro-telescope.
Winlock (Prof.). Jour. Franklin Inst., (3) 60, 295.

FIXATOR.

Der Fixator, ein Ergänzungsapparat des Spectrometers. Carl's Repert., 17, 645-651; Jour. de Phys., (2) 1, 198-199 (Abs.).

FLAME APPARATUS.

Spectralapparat un den wärmeren oder kälteren Theile der Flammen beobachten zu können. (For Bessemer flame apparatus look above under Bessemer.)

Salet (G.). Ber. chem. Ges., 3 (1870), 246.

FLUORESCENT EYE-PIECES.

Spectroscope à oculaire fluorescent.

Soret (J. L.). Jour. de Phys., 3 (1874), 253.

Une spectroscope pour étudier les phénomènes de la fluorescence.

Lamansky (S.). Jour. de Phys., 8 (1879), 411.

Some modifications of Soret's fluorescent eye-piece.

Liveing and Dewar. Proc. Cambridge Phil. Soc., 4, 342-343.

Spectroscope à oculaire fluorescent.

Manet. Ann. Chim. et Phys., (5) 11, 72.

Spectralapparat mit fluoreseirendem Okular für den ultravioletten Theil des Spectrums J.

Reye (Th.). Ann. Phys. u. Chem., 149, 407.

Spectroscope à oculaire fluorescent.

Soret (J. L.). Archives de Genève, (2) 49, 338-343; Ann. Phys. u. Chem., 152, 167-171; Jubelband, 407-411; Amer. Jour. Sci., (3) 8, 64-65.

Spectroscope à oculaire fluorescent; seconde note.

Soret (J. L.). Arch. de Genève, (2) 57, 319-333; Ann. Chim. et Phys., (5) 11, 72-86; Amer. Jour. Sci., (3) 14, 415-416 (Abs.); Beiblätter, 1, 190-192 (Abs.).

FULGATOR MODIFIÉ.

Nouveau tube spectro-électrique (fulgator modifié).

Delachanal et Mermet. Comptes Rendus, 81, 726.

GELATINE LEAVES.

Gefärbte Gelatinblättchen als Objecte für das Spectroscop.

Lommel (E.). Ann. Phys. u. Chem., 143, 656.

GRATINGS.

Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes.

Rowland (H. A.). Johns Hopkins Univ. Circular (1882), 248-249;
Phil. Mag., (5) 13, 469-474; Nature, 26, 211-213; Amer. Jour. Sei.,
(3) 24, 63 (Abs.); Observatory (1882), 224-228; Z. Instrumentenkunde, 2, 304 (Abs.).

On concave gratings for optical purposes.

Rowland (H. A.). Amer. Jour. Sci., (3) **26**, 87-98; Phil. Mag., (5) **16**, 197-210; Beiblätter, **7**, 862-863 (Abs.); Z. Instrumentenkunde, **4**, 135-136 (Abs.); Jour. de Phys., (2) **3**, 184 (Abs.).

Curved diffraction gratings.

Glazebrook (R. T.). Proc. Physical Soc., 5, 243-253; Phil. Mag., (5)
15, 414-423; Amer. Jour. Sci., (3) 26, 67 (Abs.); Beiblätter, 8, 34 (Abs.); Jour. de Phys., (2) 3, 152-154 (Abs.).

Remarks on the above by Rowland (H. A.). Amer. Jour. Sci., (3) 26, 214; Phil. Mag., (15) 16, 210; Beiblätter, 8, 34 (Abs.); Jour. de Phys., (2) 3, 184-185 (Abs.).

Coneave gratings for giving a diffraction spectrum.

Rowland (H. A.). Nature, 27, 95.

The spectra formed by curved diffraction gratings.

Baily (W.). Proc. Physical Soc., 5, 181-185; Phil. Mag., (5) 15, 183-187; Beiblätter, 7, 465-566 (Abs.); Jour. de Phys., (2) 3, 152-154; Chem. News, 47 (1883), 54.

Notes on diffraction gratings.

Blake (J. M.). Amer. Jour. Sci., (3) 8, 33-39.

Optische Experimentaluntersuchungen über Beugungsgitter.

Quincke (G.). Ann. Phys. u. Chem., 146, 1-65.

Note on the use of a diffraction grating as a substitute for the train of prisms in a solar spectroscope.

Young (C. A.). Amer. Jour. Sci., (3) 5, 472-473; Phil. Mag., (4) 46, 87-88; Ann. Phys. u. Chem., 152, 368 (Abs.).

Preliminary note on the reproduction of diffraction gratings by means of photography.

Strutt (J. W.). Proc. Royal Soc., 20, 414-417; Phil. Mag., (4) 44, 392-394; Amer. Jour. Sci., (3) 5, 216 (Abs.); Ann. Phys. u. Chem., 152, 175-176 (Abs.).

ъ.

On the manufacture and theory of diffraction gratings.

Rayleigh (Lord). Phil. Mag., (4) 47, 81-93, 193-205.

On copying diffraction gratings.

Rayleigh (Lord). Phil. Mag., (5) 11, 196-205.

On the determination of the coefficient of expansion of a diffraction grating by means of the spectrum.

Medenhall (T. C.). Amer. Jour. Sci. (3) 21, 230-232.

Use of the reflecting grating in eclipse photography.

Lockyer (J. N.). Proc. Royal Soc., 27, 107-108.

Sur les réseaux métalliques de M. Rowland.

Mascart. Soc. franç. de Phys. (1882), 232–238; Jour. de Phys., (2) 2, 5–11; Beiblätter, 7, 466–468 (Abs.).

Sur la théorie des réseaux courbes.

Sokoloff (A.). Jour. soc. phys. chim. russe, 15, 293-305.

On a theorem relating to curved diffraction gratings.

Baily (W.). Phil. Mag., (5) 22 (1886), 47-49.

HAND-SPECTROSCOPE.

Handspectroskop.

Simmler. Jour. prackt. chem., **90**, 299; Ann. Phys. u. Chem., **120**, 623.

HELPS.

Ein neuer Hülfsapparat zur Spectralanalyse.

Schultz (H.). Pfluger's Arch. f. Physiol., 28, 197-199; Ber. chem. Ges., 15, 2754 b (Abs.); Beiblätter, 6, 674 (Abs.).

Ueber einige physikalische Versuche und Hülfseinrichtungen.

Z. Instrumentenkunde, 3, 388-392; Beiblätter, 8, 220 (Abs.).

INDEX.

Selbstleuchtender Index im Spectroskop.

Sundell (A. F.). Astronom. Nachr., 102, 90; Beiblätter, 6, 876-877 (Abs.); Z. Instrumenten., 2, 422 (Abs.).

INTERFERENCE APPARATUS.

Sur les phénomènes d'interférence produits par les réseaux parallèles, interférence-spectromètre.

Crova (A.). Comptes Rendus, 72, 855-858, 74, 932-936; Ann. Chim. et Phys., (5) 1, 407-432.

Sur l'application du spectroscope à l'observation des phénomènes d'interférence.

Mascart. Jour. de Phys., 1 (1872), 177.

KOLORIMETER.

Dr. von Konkoly's Spectralapparat in Verbindung mit einem Kolorimeter.

Gothard (E. von). Centralzeitung für Optik und Mechanik, 4, 241-243.

LAMPS.

Ueber Lampen für monochromatisches Licht.

Laspeyres (H.). Z. Instrumenten., 2, 96-99; Beiblätter, 6, 480.

Un illuminateur spectral.

Le Roux (F. P.). Comptes Rendus, 76, 960, 998-1000; Chem. News, 27 (1873), 233.

Illumination des corps opaques.

Lallemand (A.). Comptes Rendus, 69, 192; 78, 1272.

Spectralilluminator.

Jahresber. d. Chem. (1873), 147.

Illumination of spectroscope micrometers.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250.

End-on in place of transverse illumination in private spectroscopy.

Smyth (Piazzi). Chem. News, 39 (1879), 145, 166, 188; Nature, 19, 400 (Abs.).

Des minima produits, dans une spectre calorifique, par l'appareil réfringent et la lampe qui servent à la formation de ce spectre.

Aymonnet et Maquenne. Comptes Rendus, 87, 494.

Spectre calorifique du Soleil et de la lampe à platine incandescent Bourbouze.

Mouton. Comptes Rendus, 89, 295.

On an improvement of the Bunsen burner for spectrum analysis.

Kingdon (F.). Chem. News, 30, 259.

Sur l'emploi de la lumière Drummond.

Debray (H.). Ann. Chim. et Phys., (3) 65, 331.

Note on the Littrow form of spectroscope.

Brackett (C. F.). Amer. Jour. Sci., (3) 24, 60-61; Beiblatter, 6, 875-876 (Abs.).

The monochromatic lamp.

Brewster (Sir D.J. Trans. Edinburgh Royal Soc., 1822.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Ber. chem. Ges., 8, 96-98.

Relation between radiant energy and radiation in the spectrum of incandescence lamps.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 37 (1884), 157-173

Ein einfacher Brenner für monochromatisches Licht.

Noack. Z. zur Förderung des physischen Unterrichts, 2, 67-69; Beiblätter, 9 (1885), 730 (Abs.).

Natriumlampe für Polarizationsapparate.

Landolt (H.). Z. Instrumentenkunde, 4 (1884), 390; Beiblätter, 8, 339 (Abs.).

FOR MAGNETIC SPECTRA.

Fixing and exhibiting magnetic spectra.

Mayer (A. M.). Jour. Franklin Inst., 91, 355.

MEASURING APPARATUS.

Eine vergleichbare Spectralscale.

Weinhold (A.). Ann. Phys. u. Chem., 138, 417, 434; Jahresber. d. Chemie (1869), 175.

Glass reading-scale for direct-vision spectroscopes.

Proctor (H. R.). Chem. News, 27 (1873), 149; Nature, 6, 473.

Measurement of faint spectra.

Proetor (H. R.). Nature, 6, 534.

Spectroscopic scale.

Capron's Photographed Spectra. London, 1877, p. 17.

Measuring scales for pocket spectroscopes.

Herschel (A. S.). Nature, 18, 300-301; Beiblätter, 2, 560-561 (Abs.).

New form of measuring apparatus for a laboratory spectroscope.

Reynolds (J. E.). Scientific Proc. Dublin Soc., new ser., 1, 5-9; Phil. Mag., (5) 5, 106-110; Chem. News, 37 (1878), 115-116.

Messung des Brechungesexponenten während des Unterrichtes.

Kurz (A.). Carl's Repert., 18, 190-192.

Mesure des indices de réfraction des liquides à l'aide des lentilles formées des mêmes.

Piltehikoff. Jour. soc. phys. chim. russe, **13**, 390-410; Beiblätter, **7**, 189-190 (Abs.); Jour. de Phys. (2) **1**, 578-579 (Abs.).

Eine Interferenz-Seala für das Spectroskop.

Müller J.). Dingler's Jour., 199, 133-145.

Combination der Interferenz-Scala mit der photographischen Spectral-Scala.

Müller (J.). Dingler's Jour., 199, 268-271.

FOR METALLIC SPECTRA.

Apparat zur Objectivdarstellung der Metallspeetren.

Edelmann (Th.). Ann. Phys. u. Chem., 149, 119-122; Chem. Cental-blatt (1872), 691; Jour. Chem. Soc., (2) 11, 461 (Abs.).

METEOROLOGICAL.

A meteorological spectroscope.

Donelly (Col. J. F.). Nature, 26, 501; Beiblätter, 7, 25 (Abs.); Jour. de Phys., (2) 3, 44, (Abs.). (See Rain-Band Spectroscope, below.)

SPECTRO-MICROMETERS.

Illumination of spectroscope micrometers.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250.

A convenient eve-piece micrometer for the spectroscope.

Road (O. N.). Amer. Jour. Sci., (3) 6, 44-45; Phil. Mag., (4) 46, 177.

Direct-vision micrometer for pocket spectroscopes.

Proctor (H. R.). Chem. News, 27 (1873), 150.

A new form of micrometer for use in spectroscopic analysis.

Watts (W. M.). Proc. Physical Soc., 1, 160-164; Phil. Mag., (4) 50, 81-85; Ann. Phys. u. Chem., 156, 313-318; Chem. News, 32 (1875), 14.

MICRO-SPECTROSCOPES. (SPECTRUM-MICROSCOPES.)

Some technical applications of the spectrum-microscope.

Sorby H. C.). Quar. Jour. Microscop. Sci., 9 (1869), 358-383; Director's Jour., 198, 243-254, 334-348.

-

A new and improved microscope spectrum apparatus.

Sorby (H. C.). Monthly Microscop. Jour., 13, 198-208.

A new micro-spectroscope, and on a new method of printing a description of the spectra seen with the spectrum microscope.

Sorby H. C.). Chem. News, 15, 220.

Use of the micro-spectroscope in the discovery of blood-stains. Herepath (W. Bird). Chem. News, 17, 113, 123.

Spectrum analysis as applied to microscopic observation. Suffolk (W. T.). Chem. News, 29 (1874), 195.

Binoculares Spectrum-Mikroscop.

Jahresber. d. Chemie, (1869), 175.

New arrangement of a binocular spectrum-microscope. Crookes (W.). Proc. Royal Soc., 17, 443.

Ueber ein Polari-Spectrum-Mikroscrop, mit Bemerkungen über das Spectrumocular.

> Rollett (A.). Z. Instrumentenkunde, 1, 366-372; Beiblätter, 6, 229-230 (Abs.); Z. analyt. Chemie, 21, 554-555 (Abs.).

Mikrochemische Reactionsmethoden im Dienste der technischen Microscopic.

> Tschirch (A.). Generalversammlung d. deutsch. Apotheker Ver. 1883; Archiv f. Pharm., (3) 20, 801-812; Jour. Chem. Soc., 44, 376-378 (Abs.).

MINERALOGICAL SPECTROSCOPE.

The spectroscope applied to mint-assaying.

Outerbridge (A. E.). Jour. Franklin Inst., 98, 276; Jahresber. d. Chemie, (1868), 130.

MIRRORS.

Sur la transparence actinique de quelques milieux et en particulier sur la transparence actinique des miroirs de Foucault et leur application en photographie.

> Chardonnet (de). Jour. de Phys., (2) 1, 305-312; Comptes Rendus, 94, 1171.

Miroir tremblant pour la recomposition des couleurs du spectre. Luvini (J.). Les Mondes, 43, 427-429; Beiblätter, 1, 556 (Abs.).

Miroir tournant pour la recomposition de la lumière spectrale. Lestrade (Lavaut de). Les Mondes, 44, 416-417.

Neues Spiegelprisma mit konstanten Ablenkungswinkeln. ganzer und halber rechter Winkel mit den Wollaston'schen Spiegelprisma

Bauernfeind (C. M.). Ann. Phys. u. Chem., 134, 169-172.

NEW SPECTROSCOPE.

Un nouveau spectroscope.

Govi (S. G.). Chem. News, 52 (1885), 201 (Abs.); Comptes Rendus, 101 (1885).

Ueber ein neues Spectroskop.

Gothard (E. von). Ber. aus. Ungarn, 2 (1884), 263-265; Beiblatter, 11 (1887), 37 (Abs.).

OPTOMETER.

Sur un optomètre spectroscopique.

Zenger (C. V.). Comptes Rendus, **101** (1885), 1003; Amer. Jour. Sci., (3) **31**, 60.

OVERLAPPING SPECTROSCOPE.

An overlapping spectroscope.

Love (J.). British Assoc. Rept. (1881), 564; Beiblätter, 8.

OXYHYDROGEN APPARATUS.

Production of spectra by the oxyhydrogen flame.

Marvin (T. H.). Phil. Mag., (5) 1, 67-68; Jour. Chem. Soc., 2 (1876), 156 (Abs.).

PHOSPHORESCENT EYE-PIECE.

Spectroscop mit phosphoreseirendem Ocular.

Lommel (E.). Ann. Phys. u. Chem., n. F. 20, 847.

PHOSPHOROGRAPHIES.

Sur les phosphorographies du spectre solaire.

Becquerel (E.). Jour. de Phys., 11 (1882), 189.

Phosphorographies du spectre solaire infra-rouge.

Becquerel (H.). Comptes Rendus, 96 (1883); Amer. Jour. Sci., (3) 25, 230.

Phosphorograph of the spectrum.

Draper. Amer. Jour. Sci., (3) 21, 171.

Phosphorographie, angewandt auf die Photographie des Unsichtbaren.

Zenger (K. V.). Comtes Rendus, 103 (1886), 454-456; Beiblätter, 11 (1887), 94 (Abs.).

- 2

PHOTOGRAPHIC SPECTROSCOPY.

Notice imprimée sur les effects chimiques des radiations et sur l'emploi qu'en a fait M. Daguerre pour fixer les images de la chambre noire.

Biot. Comptes Rendus, 9, 200.

Application aux opérations photographiques des propriétés reconnus par M. Ed. Becquerel dans ce qu'il nomme les rayons continuateurs.

Gaudin. Comptes Rendus, 12, 862.

Action des rayons rouges sur les placques daguerriennes.

Foucault et Fizeau. Comptes Rendus, 23, 679.

Observations sur les expériences de M. M. Foucault et Fizeau.

Becquerel (Ed.). Comptes Rendus, 23, 800.

Remarques. Foucault (L.). Do., 856.

Des actions que les diverses radiations solaires exercent sur les couches d'iodure, de chlorure ou de bromure d'argent.

Claudet. Comptes Rendus, 25, 554.

Note sur ce Mémoire. Becquerel (Ed.). Do., 594.

Note sur les transformations successives de l'image photographique par la prolongation de l'action lumineuse.

Janssen (J.). Comptes Rendus, 91, 199.

Beschreibung eines höchst einfachen Apparatus um das Spectrum zu photographiren.

Vogel (H. W.). Ann. Phys. u. Chem., 154, 306.

Ueber die Hülfsmittel, photographische Schichten für grüne, gelbe und rothe Strahlen empfindlich zu machen.

> Vogel (H. W.). Ber. chem. Ges., 17, 1196-1203; Jour. Chem. Soc., 46, 1081 (Abs.); Beiblätter, 8, 583-585 (Abs.).

Early contributions to spectrum-photography and photo-chemistry.

Draper (J. W.). Nature, 10, 243-244.

Spectrum photography.

Lockyer (J. N.). Nature, 10, 109, 254.

Photographie du spectre chimique.

Prazmowski. Comptes Rendus, 79, 108.

Theory of absorption-bands in the spectrum, and its bearing in photography.

Amory (Dr. Rob't). Proc. Amer. Acad., 13, 216.

Dunkle Linien in dem photographirten Speetrum weit über dem sichtbaren Theil hinaus.

Müller (J.). Ann. Phys. u. Chem., 97, 135.

Physics in photography.

Abney (W. de W.). Nature, 18, 480-491, 528-531, 543-546.

Method of fixing, photographing, and exhibiting the magnetic spectra.

Mayer (A. M.). Chem. News, 23 (1871), 266.

Reversal of the metallic lines as seen in over-exposed photographs of spectra.

Hartley (W. N.). Proc. Royal Soc., 34, 81.

Reversal of the developed photographic image.

Abney (W. de W.). Phil. Mag., (5) 10, 200-208.

Photographische Spectral-Beobachtungen im rothen und indischen Meere. Vogel (H. W.). Ann. Phys. u. Chem., 156, 319-325.

Delicacy of spectrum photography.

Hartley (W. N.). Proc. Royal Soc., 36 (1885), 421-422; Jour. Chem. Soc., 48 (1885), 466 (Abs.).

Ueber neue Fortschritte in dem farbenempfindlichen photographischen Verfahren.

Vogel (H. W.). Sitzungsber, preuss, Akad., 51 (1886), 1205-1208;Photogr. Mitt., 22, 295; Beiblätter, 11 (1887), 255.

Ueber einige geeignete praktische Methoden zur Photographie des Spectrums in seinen verschiedenen Bezirken mit sensibilisirten Bromsilberplatten.

Eder (J. M.). Moratschr. f. Chemie, 7 (1886), 429-451; Beiblatter, 11 (1887), 39 (Abs.); Jour. Chem. Soc., 52 (1887), 93 (Abs.).

PHOTOMETERS.

Ein neues Photometer.

Glan (P.). Ann. Phys. u. Chem., n. F. 1, 251.

Photometrische Untersuchungen.

Ketteler (E.) und Pulfrich (C.). Ann. Phys. u. Chem., n. F. 15. 337-378; Amer. Jour. Sci., (3) 23, 486-487 (Abs.).

.

Études photométriques.

Cornu (A.). Jour. de Phys., 10, 189-198; Beiblätter, 6, 229 (Abs.).

Ein Photometer zu schulhygienischen Zwecken.

Petruschewski (Th.). Jour. soc. phys. chim. russe, **16**, (2) 295–303, 1884; Beiblätter, **9** (1885), 248 (Abs.).

POLARIZATION SPECTROSCOPES.

A rotary polarization spectroscope of great dispersion.

Tait (P. G.). Nature, 22, 360-361; Beiblätter, 4, 725 (Abs.).

Ein Polarizationsapparat aus Magnesiumplatineyanur.

Lommel (E.). Ann. Phys. u. Chem., n. F. 13, 347.

PRISMS.

Absorption of light by prisms.

Robinson (T. R.). Observatory (1882), 53-54; Beiblätter, **6**, 589 (Abs.).

Projection du foyer du prisme.

Crova (A.). Jour. de Phys., (2) 1, 84-86.

Étude des aberrations des prismes et de leur influence sur les observations spectroscopiques.

Crova (A.). Ann. Chim. et Phys., (5) 22, 513-543.

Bemerkungen über Prismen.

Radau (R.). Ann. Phys. u. Chem., 118, 452.

Déplacement des raies du spectre sous l'action de la température du prisme.

Blaserna (P.). Arch. de Genève, (2) **41**, 429-430; Ann. Phys. u. Chem., **143**, 655-656; Jour. Chem. Soc., (2) **10**, 118 (Abs.); Phil. Mag., (4) **43**, 239-240.

A direct-vision compound prism by Merz, with dispersion almost double that of ordinary flint glass.

Mr. Gassiot. Proc. Royal Soc., 24, 33.

Note on the use of compound prisms.

Browning (J.). Monthly Notices Astronom. Soc., 31, 203-205.

Auflösung scheinbar einfacher Linien durch Vermehrung der Prismen. Merz (Sigismund). Ann. Phys. u. Chem., 117, 655. The best form of compound prism for the spectrum microscope.

Sorby (II. C.). Nature, 4, 511-512.

Ueber ein verbessertes Prisma à vision directe.

Braun (C.). Ber. aus Ungarn, 1, 197-200.

Ein Spectroscop à vision directe mit nur einem Prisma.

Emsmann (II.). Ann. Phys. u. Chem., 150, 636.

Geradsichtiges Prisma.

Fuchs (F.). Z. Instrumentenkunde, 1, 349-353; Z. analyt. Chemie., 21, 555.

Nouveau modèle de prisme pour spectroscope à vision directe.

Hofmann (J. G.). Comptes Rendus, 79, 581.

Geradsichtige Prismen.

Riccó (A.). Z. Instrumentenkunde, 2, 105; Z. analyt. Chem., 21, 555 (Abs.); Beiblätter, 6, 794 (Abs.).

Minimum du pouvoir de resolution d'un prisme.

Thollon (L.). Comptes Rendus, 92, 128-130.

The magnifying power of the half-prism as a means of obtaining great dispersion, and on the general theory of the half-prism spectroscope.

Christie (W. H. M.). Proc. Royal Soc., 26, 8-40; Beiblätter, 1, 556-561 (Abs.).

New form of spectroscope with half-prisms.

Chem. News, 35 (1875), 161.

Use of prisms of flint glass.

Rood (O. N.). Amer. Jour. Sci., 85, 356.

Ueber die anomale Dispersion spitzer Prismen.

Lang (V. von). Ann. Phys. u. Chem., 143, 269.

Nicht alle Quarzprismen verlängern das Speetrum am ultra-violetten Ende.

Salm-Horst (Der Furst). Ann. Phys. u. Chem., 109, 158.

Use of carbon bisulphide in prisms.

Draper (H.). Amer. Jour. Sci., (3) 29, 269-277, 1885; Jour. Chem.
 Soc., 48, 853 (Abs.), 1885; Jour. de Phys., (2) 5, 132 (Abs.), 1886.

-

Ueber die Anwendung von Schwefelkohlenstoffprismen zu spectroscopischen Beobachtungen von hoher Präcision.

Hasselberg (B.). Ann. Phys. u. Chem., (2) 27 (1886), 415-436.

Neues Flüssigkeitsprisma für Spectralapparate.

Wernicke (W.). Z. Instrumentenkunde, 1, 353-357; Beiblätter, 6, 94-95 (Abs.); Z. analyt. Chemie, 21, 555.

PROJECTION OF THE SPECTRUM.

Projection du foyer du prisme.

Crova (A.). Jour. de Phys., 11 (1882), 84.

Projection of the Fraunhofer lines of diffraction and prismatic spectra on a screen.

Draper (J. C.). Amer. Jour. Sci., (3) 9, 22-24; Phil. Mag., (4) 49, 142-4.

Nouvelle méthode pour projecter les spectres.

Moigno. Les Mondes, 43, 554-5; Beiblätter, 1, 555.

PROTUBERANCE SPECTROSCOPE.

Protuberanz Spectroscop mit excentrischer bogenförmiger Spaltvorrichtung.

Brunn (J.). Z. Instrumentenkunde, 1, 281-282; Beiblätter, 6, 230 (Abs.).

QUANTITATIVE APPARATUS.

Quantitative Analyse durch Spectralbeobachtung, Apparat.

Hennig (R.). Ann. Phys. u. Chem., 149, 350.

Zur quantitativen Spectralanalyse.

Krüss (H.). Carl's Repert., 2, 17-22.

RAIN-BAND SPECTROSCOPE.

Rain-band Spectroscope.

Bell (L.). Amer. Jour. Sci., (3) 30, 347.

REFLECTOR.

Anwendung eines Reflectors bei Spectraluntersuchungen.

Fleck. Jour. prackt. Chemie, n. F. 3 (1870), 352; Jour. Chem. Soc., (2) 9, 857 (Abs.).

REFRACTOMETERS.

Sur un réfractomètre destiné à la mesure des indices et de la dispersion des corps solides.

Soret (C.). Comptes Rendus, 95, 517-520; Beiblätter, 6, 870-72 (Abs.); Z. Instrumenten., 2, 414-415 (Abs.).

Sur l'emploi d'un verre biréfringent dans certaines observations d'analyse spectrale.

Cruls. Comptes Rendus, 96, 1293-1294; Nature, 28, 45 (Abs.); Beiblätter, 7, 529 (Abs.).

Interference phenomena in a new form of refractometer.

Michelson (A. A.). Amer. Jour. Sci., (3) 23, 395-400; Phil. Mag., (5) 13, 236-242; Beiblätter, 7, 534-535 (Abs.).

Appareils refringents en sel gemme.

Desnins (P.). Comptes Rendus, 97, 689, 732; Beiblatter, 7, 858 (Abs.).

A new refractometer for measuring the mean refractive index of plates of glass and lenses by the employment of Newton's rings.

Royston-Pigott (G. W.). Proc. Royal Soc., 24, 393-399.

REGISTERING SPECTROSCOPE.

A registering spectroscope.

Huggings (W.). Proc. Royal Soc., 19, 317-318; Phil. Mag., (4) 41, 544-546; Ann. Chim. et Phys., (4) 26, 275-276; Chem. News, 23 (1871), 98.

REVERSION SPECTROSCOPES.

Ein neues Reversionsspectroscop.

Zöllner (F.). Ber. d. Sächs, Ges. d. Wiss., 23, 300-306; Ann. Pl.ys. u. Chem., 144, 449-456; Phil. Mag., (4) 43, 47-52; Jahresber. d. Chemie (1869), 175.

Ein neuer Reversionsspectralapparat.

Konkoly (N. von). Centralzeitung f. Optik u. Mechanik, 4, 122-124;Beiblätter, 7, 595; Ber. aus Ungaru, 1, 128-133.

.

Reversion spectroscope.

Langley S. P.). Comptes Rendus (1884), 1145-1147.

On a method of estimating the thickness of Young's Reversing Layer. Pulsifer (W. H.). Amer. Jour. Sci., (3) 17, 303.

A new form of reversible spectroscope.

Stevens (W. L.). Amer. Jour. Sci., (3) 23, 226-229.

RIGID SPECTROSCOPES.

Description of a rigid spectroscope; constructed to ascertain whether the position of the known and well-defined lines of a spectrum is constant while the coefficient of terrestrial gravity under which the observations are taken is made to vary.

Gassiot (J. P.). Proc. Royal Soc., 14, 320.

On the observations made with a rigid spectroscope by Captain Mayne and Mr. Connor.

Gassiot (J. P.). Proc. Royal Soc., 16, 6.

ROTARY SPECTROSCOPE.

Ueber einen rotirenden Spectralapparat.

Lohse (O.). Z. Instrumentenkunde, 1, 22-25; Beiblätter, 5, 278.

SCALES.

(See "Measuring Apparatus.")

SCREENS.

Die Beugungserscheinungen geradlinig begrenzter Schirme.

Lommel (E.). Abhandl. d. bayr. Akad., (2) 15, 529-664, 1886; Beiblätter, 11 (1887), 42-46 (Abs.).

APPARATUS FOR SECONDARY SPECTRA.

On a secondary spectrum of very large size, with a construction for secondary spectra.

Rood (O. N.). Amer. Jour. Sci., (3) 6, 172-180.

Du spectre secondaire et de son influence sur la vision dans les instruments d'optique.

Foueault (Léon). Ann. Chim. et Phys., (5) 15, 283.

SELENACTINOMETER.

Un Selénactinomètre.

Morize (H.). Comptes Rendus, 100, 271-272; Beiblätter, 9, 256.

SLITS FOR SPECTROSCOPES.

Sur un spectroscope à fente inclinée.

Garbe (G.). Comptes Rendus, 96, 836; Jour. de Phys., 12 (1883), 318.

Die Anwendung des Vierordt'sehen Doppelspaltes in der Spectralanalyse.

Dietrich (W.). Beiblätter, 5, 438-441.

Protuberanzspectroscop mit excentrischer, bogenförmiger Spaltvorrichtung.

Brunn (J.). Z. Instrumenten., 1, 281; Beiblätter, 6, 230.

Spectralspalt mit symmetrischer Bewegung der Schneiden.

Kruss (H.). Carl's Repert., 18, 217-228; Z. analyt. Chemie, 21, 182-191;
Beiblätter, 6, 286 (Abs.);
Jour. Chem. Soc., 42, 1229 (Abs.);
Z. Instrumenten., 3, 62-63.

Spectroscope with slide, approved by Tyndall and others.

Hofmann. Chem. News, 26 (1872), 180.

Slit for the spectroscope.

Tucker (Alex. E.). Chem. News, 41 (1880), 79.

SPECTRO-BOLOMETER.

Use of the spectro-bolometer.

Langley (S. P.). Amer. Jour. Sci., (3) 21, 187; 24, 395; 25, 170; 27, 169; 30, 477.

SPECTROGRAPH.

Beschreibung eines Spectrographen mit Flüssigkeitsprisma.

Lohse (O.). Z. Instrumenten., 5 (1884), 11-13; Beiblatter, 9 (1885), 167 (Abs.).

SPECTROMETERS.

Description d'un spectromètre.

Zantedeschi. Comptes Rendus, 54, 208.

Description d'un nouveau spectromètre à vision directe rendu plus simple et moins dispendieux.

Valz. Comptes Rendus, 57, 69, 141, 298.

On a spectrometer and universal goniometer, adapted to the ordinary wants of a laboratory.

Liveing (G. D.). Proc. Cambridge Phil. Soc., 4, 343.

On a new form of spectrometer.

Draper (J. W.). Amer. Jour. Sci., (3) 18, 30-34; Phil. Mag., (5) 7, 313-316; Beiblatter, 3, 621.

.

Interferenzspectrometer.

Fuchs (F.). Z. Instrumenten., 1, 326-329; Beiblätter, 6, 228.

Das Lang'sche Spectrometer.

Miller (F.). Carl's Repert., 16, 250-251.

Der Fixator, ein Ergänzungsapparat des Spectrometers.

Ketteler (E.). Carl's Repert., 17, 645-651.

A Spectrometer.

Browning (J.). Monthly Notices Astronom. Soc., 33, 411.

De la spectrométrie, spectromètre.

Champion (P.), Pellet (H.), et Grenier (M.). Comptes Rendus, **76**, 707-711; Jour. Chem. Soc., (2) **11**, 934 (Abs.).

SPECTROPHOTOMETERS.

Ueber ein Spectrophotometer.

Zahn (von). Ber. d. naturforsch. Ges. in Leipzig, 5, 1-4.

Ein Spectrophotometer.

Fuchs (F.). Z. Instrumenten., 1, 349-353; Beiblätter, 6, 228.

Ein neues Spectrophotometer.

Hüfner (G.). J. praekt. Chemie, n. F. 16 (1877), 290; Chem. News, 37 (1878), 31; Carl's Repert., 15, 116-118.

On a spectrophotometer.

Glazebrook (R. T.). Proc. Cambridge Phil. Soc., **4**, 304-308; Beiblätter, **8**, 211-212 (Abs.).

Étude sur les spectrophotomètres.

Crova (A.). Comptes Rendus, 92, 36-37; Phil. Mag., (5) 11, 155-156.

Description d'un spectrophotomètre.

Crova (A.). Ann. Chim. et Phys., (5) 29, 556-573.

Das neue Spectrophotometer von Crova, verglichen mit dem von Glan, nebst einem Vorschlag zur weiteren Verbesserung beider Apparate. Zenker (W.). Z. Instrumenten., 4, 83-87; Beiblätter, 8, 499.

Ueber die Unwandlung meines Photometers in ein Spectrophotometer.

Wild (H.). Ann. Phys. u. Chem., n. F. 20, 452-468; Nature, 29, 253 (Abs.); Jour. de Phys., (2) 3, 142-143 (Abs.).

Ein Spectrophotometer.

Wild (H.). Dingler's Jour., 252, 462-465.

SPECTROPOLARISCOPE.

A spectropolariscope for sugar analysis.

Levison (W. G.). Amer. Jour. Sci., 124, 469.

3 т

SPECTROSCOPES (MISCELLANEOUS).

Construction of the spectroscope.

Rutherfurd (L. M.). Amer. John. Sci., (3) **39** [1869], 129. Note by Ditscheiner in Sitzungsber. Wiener Akad., **52** H, 542, 563-568.

Construction of the spectroscope.

Cooke (J. P., Jr.). Amer. Jour. Sci., 90, 305.

Description of a large spectroscope.

Gibbs (Wolcott). Amer. Jour. Sci., (2) 25, 110.

Spectral-Apparat.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 162;
Jour. prakt. Chem., 85, 65, 74.

Spectral-Apparat.

Mousson (A.). Ann. Phys. n. Chem., 112, 428.

Ursache der mangelnden Proportionalität in den Abständen bestimmter Streifen bei verschiedenen Apparaten.

Gottschalk (F.). Ann. Phys. u. Chem., 121, 64-96.

Notiz zur Theorie der Spectralapparate.

Ditscheiner (L. Ann. Phys. u. Chem., 129, 336.

Convenient form of spectroscope for use in a laboratory.

Browning (J.). Chem. News, 22 (1870), 229.

Improvement of the spectroscope.

Grubb (T.). Chem. News, 29 (1874), 222.

On a quartz and Iceland spar spectroscope corrected for chromatic aberration.

Stene (W. II.). Chem. News, 41, 91.

Note accompagnant le présentation de trois nouveaux spectroscopes.

Jansen (J.) Comptes Rendus, 55, 576.

Un appareil destiné à réproduire les expériences d'optique, relatives d'en réfraction, à la réflexion de la lumière polarisée, à la mesure des indices et à la spectroscopie.

Lutz. Comptes Rendus, 34, 201,

Eine Verbesserung an Speetralapparaten.

Miller (F.). Z. Instrumenten , 2 20 0; Beiblitt r. 6, 231

.

Ein sehr einfacher und wirksamer Spectralapparat.

Konkoly (N. von). Centralzeitung f. Optik u. Mechanik, 4, 76-77; Beiblätter, 7, 456 (Abs.); Z. Instrumenten., 3, 324 (Abs.); Ber. aus Ungarn, 1, 134.

Vorschlag zur Construction eines neuen Spectralapparates.

Lippich (F.). Z. Instrumenten., 4, 1-8; Beiblätter, 8, 300-302 (Abs.).

Neuere Apparate für die Wollaston'sche Methode zur Bestimmung von Lichtbrechungsverhältnissen.

Liebich (T.). Z. Instrumentenkunde, 4, 185-189.

Nouveau spectroscope.

Thollon (L.). Jour. de Phys., 7, 141-148.

Spectroscop-Apparate.

Jahresber. d. Chemie, (1861) 41, (1862) 27, (1863) 114, (1864) 115, (1865) 94, (1866) 78, (1867) 105, (1868) 130, 132, (1869) 175, (1870) 1062, (1872) 948, (1873) 146, 147, (1874) 152, (1876) 142.

Spectralapparat.

Mitscherlich. Jour. prakt. Chem., 86, 13.

Arcobaleno in mare e modificazione allo spettroscopio descritto nel Vol. V. Riccò (A.). Mem. spettr. ital., 8, 87.

Nouveau spectroscope.

Stoney. Moniteur scientifique (3) 6, 657.

Apparate zur Untersuchung der Farbenempfindungen.

Glan (P.). Archiv. f. Physiol., 24, 307-308; Beiblätter, 5, 445 (Abs.).

A new spectroscope.

Zenger (C. V.). Phil. Mag., (4) 46, 439-445.

An improvement in the construction of the spectroscope.

Madan (H. G.). Phil. Mag., (4) 48, 118.

A home-made spectroscope.

Furniss (J. J.). Pop. Sci. Monthly, 15, 808.

Description of a large spectroscope.

Gassiot (J. P.). Proc. Royal Soc., 12 (1863), 536.

The improvement of the spectroscope.

Grubb (T.). Proc. Royal Soc., 22, 308-309; Phil. Mag., (4) 48, 532-534; Chem. News, 29, 222-223; note by G. G. Stokes, Proc. Royal Soc., 22, 309-310, and Phil. Mag., (4) 48, 534.

Neue Einrichtung des Speetroscops.

Littrow (Otto von). Sitzungsber. Wiener Akad., 46 II, 521; 48 II, 26-32; note by Prof. C. F. Brackett in Amer. Jour. Sci., 124, 60.

SPECTRO-TELESCOPES.

Ein Spectrotelescop.

Glan (P.). Ann. Phys. u. Chem., n. F. 9, 492.

Description of a hand spectrum-telescope.

Huggings (W.). Proc. Royal Soc., 16, 241; Ann. Phys. u. Chem., 136, 167.

Spectrum-telescop.

Jahresber, d. Chemie (1868), 133.

A reliable finder for a spectro-telescope.

Winlock (J.). Jour. Franklin Inst., (3) 60, 295.

Ueber das spectroscopische Reversionsfernrohr.

Zollner (F.). Ber. Sáchs. Acad. Wiss., 24, 129-134; Phil. Mag., (4) 43, 47; 44, 417-421; Ann. Phys. u. Chem., 147, 617-623; Comptes Rendus, 69, 421.

A tele-spectroscope for solar observations.

Browning (J.). Monthly Notices Astronom. Soc., 32, 214-215.

Appareil destiné à observer les raies noires du spectre solaire.

Dujardin (F.). Comptes Rendus, 8, 253.

Improvements in a solar spectroscope made by Mr. Grubb for Prof. Young.

Erck (W.). Monthly Notices Astronom. Soc., 38, 331-332.

Spectroscopes furnished by the Royal Society to Mr. Hennessey for observing the solar celipse of 1868 at Mussoorie, in India.

Proc. Royal Soc., 16, 169.

An eclipse spectroscope.

Lockyer (J. N.). Nature, 18, 224.

Neue Methode die Sonne spectroscopisch zu beobachten.

Seechi (A.). Ann. Phys. u. Chem., 143, 154; Amer. Jour. Sci., 35, 1, 463-464.

Sur un nouveau moyen d'observer les éclipses et les passages de Vénus.

Seechi (A.). Comptes Renda . 73, 984-985; Menthly Notices Astronom. Soc., 31, 202

.

Sur l'emploi de la lunette horizontale pour les observations de la spectroscopie solaire.

Thollon (L.). Comptes Rendus, **96**, 1200-1202; Nature, **28**, 24; Beiblätter, **7**, 456 (Abs.).

Apparatus for recording the position of lines in the spectrum, especially adapted to solar eclipses.

Winlock (J.). Proc. Amer. Acad., 8, 299.

Ein Spectroscop für Cometen-und Fixstern-Beobachtungen.

Gothardt (E. von). Centralzeitung für Optik u. Mechanik, 4, 121; Beiblätter, 7, 595 (Abs.).

A star spectroscope.

Gould (B. A.). Proc. Amer. Acad., 8, 499.

A small universal stellar spectroscope.

Merz (S.). Phil. Mag., (4) 41, 129-132.

The spectroscope and the transit of Venus.

Nature, 11, 171.

Spectroscopie stellaire.

Seechi (A.). Comptes Rendus, 65, 389.

Secchi met sous les yeux de l'Académie l'appareil dont il s'est servi pour ses recherches.

Comptes Rendus, 64, 738.

Un nouveau spectroscope stellaire.

Thollon (L.). Comptes Rendus, **89**, 749-752; Beiblätter, **4**, 360-361 (Abs.).

Ueber ein neues Spectroscop, nebst Beiträgen zur Spectralanalyse der Gestirne.

Zöllner (F.). Ann. Phys. u. Chem., 138, 32, 35; Phil. Mag., (4) 38, 360; Amer. Jour. Sei., 99, 58.

Nouveau spectroscope et recherches spectroscopiques de M. Zöllner; rapport verbal sur ces publications.

Faye. Comptes Rendus, 69, 689.

Ein einfaches Ocularspectroscop für Sterne.

Zöllner (F.). Ann. Phys. u. Chem., **152**, 503; Phil. Mag., (4) **48**, 156-157.

Nouveau spectroscope stellaire.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 616.

TUBES.

Sur les tubes lumineux à électrodes extérieures.

Alvergniat. Comptes Rendus, 73, 561; Jour. Chem. Soc., (2) 9, 1141 (Abs.).

Tube spectro-électrique destiné à l'observation des spectres de solutions métalliques.

Delachanal (B.) et Mermet (A.). Comptes Rendus, 79, 800; Ann. Chim. et Phys., (5) 3, 485.

Nouveau tube spectro-électrique (fulgator modifié).

Delachanal et Mermet. Comptes Rendus, **81**, 726; Bull. Soc. chim., (2) **25**, 191-197; Jour. Chem. Soc., **2** (1876), 35 (Abs.).

Ein einfaches Stativ für Geissler'sche Spectralröhren.

Gothardt (E. von). Z. Instrumenten., 3, 320-321; Centralzeitung f. Optik u. Mechanik, 4, 146-147; Beiblätter, 8, 216.

End-on gas vacuum-tubes in spectroscopy.

Smyth (C. Piazzi). Nature, 19, 458; Beiblätter, 3, 604 (Abs.).

End-on tubes brought to bear upon the earbon and earbo-hydrogen question.

Smyth (C. Piazzi). Nature, 20, 75-76.

Tube for observing the spectra of solutions. Nature, 13, 75.

2,110,110,100,100

Spectralröhren mit lougitudinaler Durchsicht.

Zahu (W. von). Aun. Phys. u. Chem., n. F. 8, 675.

ULTRA-VIOLET APPARATUS.

Spectroscope pour la partie ultra-violette du spectre.

Cornu (A.). Les Mondes, 49, 16-17; B iblatter, 3, 501.

Spectroscope destiné à l'observation des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 8, 185-193; Beiblatter, 4, 31 (Abs.).

UNIVERSAL-SPECTROSCOPIS.

Ein neues Universalstativ für die Bemitzung des Taschenspectroskopes. Lepel (P. von). Ber. them Ges., 12, 263-266.

Ein Universalstativ für die Benützung des Taschenspectrockopes.

Vogel (H. W.). Ber. chem. Ges., 10, 1428-1432; Jour. Chem. Soc., 2 (1877), 915 (Als.).

.

Neues Universalspectroskop für quantitative und qualitative chemische Analyse.

Krüss (G.). Ber. chem. Ges., 19 (1885), 2739–2745; Jour. Chem. Soc., 52, 179 (Abs.), 1887; Amer. Jour. Sei., (2) 33 (1887).

WIDTH IN APPARATUS.

Bei der kleinsten Breite des Spectrums haben die Linien die geringste Krummung in dem Spectralapparat.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 337.

ADDENDA.

On liquids of high dispersive powers for prisms.

Gibbs (Wolcott). Amer. Jour. Sci., vol. 4, 1870.

Appareil destiné à l'étude des intensités lumineuses et chromatiques des couleurs spectrales et de leurs mélanges.

Parinaud et Duboseq. Jour. de Phys., (2) 4 (1885), 271-3.

Sur un nouvel appareil dit "hema-spectroscope."

Thierry (M. de). Comptes Rendus, **100** (1885), 1244.

Sur un nouveau spectroscope d'absorption.

Thierry (M. de). Comptes Rendus, 101, (1885), 811.

Vermischte Mittheilungen, betreffend Spectralapparate.

Vogel (H. C.). Z. Instrumentenkunde, 1, 19-22; Beiblätter, 5, 279 (Abs.).

Sur un nouveau spectroscope stellaire.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 616.

Sur un optomètre spectroscopique.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 1003.

Spectroscope pour les hautes fourneaux et le procédé Bessemer. Zenger (Ch. V.). Comptes Rendus, **101** (1885), 1005.

SPECTRUM ANALYSIS.

a, GENERAL.

On the production of coloured spectra by light.

Abney (W. de W.). Proc. Royal Soc., 29 (1879), 190; Chem. News. 39 (1879), 282.

The production of monochromatic light, or a mixture of colours on a screen.

Abney (W. de W.). Phil. Mag., (5) 20 (1885), 172-174.

Mathematische Theorie der Spectralerscheinungen.

Akin (C. H.). Sitzungsber. Wiener Akad., 53 I, 392; 53 II, 574.

Welchen Stoffen die Fraunhofer'schen Linien angehören.

Angström (A. J.). Ann. Phys. u. Chem., 117, 296-302; Proc. Royal Soc., 19, 120.

Spectra of non-metallic bodies.

Angström and Thalen. Chem. News, 36 (1877), 111.

Spectres de quelques corps composés dans les mélanges gazeux en équilibre.

Berthelot et Richard. Ann. Chim. et Phys., (4) 18, 191; Bull. Soc. chim. Paris, 13, 109.

Nouvelles remarques sur la nature des éléments chimiques.

Berthelot. Comptes Rendus, 77, 1347-52, 1357, 1399-1403.

Certain spectral images produced by a rotating vacuum-tube.

Bidwell (Shelford . Nature, 32 (1885), 30.

Photochemical researches.

Bunsen (R. and Roscoe (H. E.). Rept. British Assoc. (1856), I, 62

Spectralanalytische Untersuchungen.

Bunsen (R.). Ann. Phys. u. Chem., **155**, 230-252, 366-381; P. Mag., (4) **50**, 417-430, 527-539.

Spectrum Analysis.

Carpenter J.). Once a Week, 8, 708.

Untersuchungen über die optischen Eigenschaften von fein vertheilten Körpern.

Christiansen C.). Ann. Phys. u. Chem., (2 24 (1885), 459-449.

.

Spectren der chemischen Elemente und ihrer Verbindungen.

Ciamician (G. L.). Sitzungsber. Wiener Akad., 76 II, 499; Ber. chem. Ges., 14, 1101a.

Spectroskopische Untersuchungen.

Ciamician (G. L.). Sitzungsber. Wiener Akad., 79 II, 8; Amer. Jour. Sci., 1, 301; Chem. News, 40, 285; 43, 211, 270.

The spectroscope and evolution.

Clarke (F. W.). Pop. Sci. Monthly, 2, 320.

Lecture experiments in chemical analysis.

Clemenshaw (E.). Nature, **31** (1885), 329; Phil. Mag., (5) **19** (1885), 365-368; Jour. Chem. Soc., **48**, 1035 (Abs.); note on the above, Chem. News, **51**, 57, 139.

Sur les raies spectrales spontanément renversables et l'analogie de leurs lois de répartition et d'intensité avec celles des raies de l'hydrogène.

Cornu (A.). Jour. de Phys., (2) 5 (1886), 93-100.

Distinction between spectral, lines of solar and terrestrial origin.

Cornu (A.). Phil. Mag., (5) 22 (1887), 458-463; Jour. Chem. Soc., 52, 313 (Abs.).

Radiant matter spectroscopy and residual glow.

Crookes (W.). Chem. News, **53** (1885), 75, 133; **54** (1886), 28, 40, 54, 63, 75; **55** (1887), 107, 119, 131; Ber. chem. Ges., **16**, R. 1689a; note par Damien (B. C.), Jour. de Phys., (2) **4** (1885), 333.

Genesis of the elements.

Crookes (W.). Chem. News, 55 (1887), 83, 99.

Production normale des trois systèmes de franges des rayons rectilignes. Croullebois. Comptes Rendus, **92**, 1009.

Notice sur la constitution de l'univers. Première Partie, Analyse spectrale.

Delaunay. Ann. des Longitudes, 1869.

Sur quelques procédés de spectroscopie pratique.

Demarçay (Eug.). Comptes Rendus, 99 (1885), 1022, 1069-71.

Loi de répartition des raies et des bandes; analogie avec la loi de succession de sons d'un corps solide.

Deslandres. Comptes Rendus, 103 (1887), 972-976; Chem. News, 55 (1887), 204 (Abs.).

De spectral analyse. Academisch Proefschrift.

Dibbits (H. C.), Rotterdam, 1863, with plates.

Over spectroscopische vergelikingen, betrekking hebbende tot de samenstelling van verschillende lichtbronnen en hoofdzalijk tot den licht en kleurenzin.

> Donders. Proc. Verb. Akad. Wetensch., Amsterdam, 1882-3, No. 10, 4-6.

The spectroscope and its revelations.

Draper (II.). Galuxy, 1, 313.

Essai d'analyse spectrale.

Dubrunfaut. Bull. Soc. chim. Paris, n. s. 13, 412; Comptes Rendus, 70, 448.

Chemical Changes produced by Sunlight.

Duclaux (E.). Comptes Rendus, 103 (1887), 881-2.

Comparative Actions of Heat and Solar Radiation.

Duelaux (E.). Comptes Rendus, 104 (1887), 294-7.

Recherches spectrographiques de la scource normale de lumière et de son emploi à la mesure photochimique de, la sensibilité lumineuse.

Eder (J. M.). Wiener, Anzeigen (1885), 93; note par Gripon (E.), Jour. de Phys., (2) 5 (1886), 241, and note by Abney (W. de W.), Chem. News, 49, 57. [Chiefly interesting to photographers.]

Position du foyer des rayons de lumière monochromatique qui, issus d'un même point, ont traversé un prisme à vision directe.

Exner (K.). Wiener Anzeigen (1885); Jour. de Phys., (2) 5 (1886), 237.

Les vibrations de la matière et les ondes de l'éther dans les combinaisons photochimiques.

Favé. Comptes Rendus, 86, 560-565.

Influence du magnétisme sur les caractères des lignes spectrales.

Fievez (Ch.). Mém. Acad. Bruxelles, 9 (1885), No. 3; Chem. News, 52 (1885), 302.

Bestimmung des Brechungs-und Farbenzerstreuungs-Vermögens verschiedener Glasarten.

Fraunhofer (Jos.). Denkschr. d. k. Akad. d. Wiss., Munchen, V (1814-15), 193-226, mit drey Kupfertafeln, Munchen, 1817, 4°.

Mischung von Spectralfarben.

Frey M. von) und Kries (J. von). Archiv f. Physiol. (1881), 336-353; Jour. de Phys., 12, 1, 513-514 (Abs.).

×

Spectrum analysis.

Galsiet (J. P.). Proc. Royal Soc , 12, 536.

Spectre rotatoire.

Govi (G.). Comptes Rendus, 91, 517.

Note on the theoretical explanation of Fraunhofer's lines.

Hartshorne (H.). Jour. Franklin Inst., 75, 38-43; 105, 38; Les Mondes, 45, 517-522; Beiblätter, 2, 561.

On the methods and recent progress of spectrum analysis.

Herschel (A. S.). Chem. News, 19, 157.

Die Fraunhofer'schen Linien auf grossen Höhen dieselben wie in der Ebne.

Heusser (J. C.). Ann. Phys. u. Chem., 91, 319.

Der Gang der Lichtstrahlen durch ein Spectroskop.

Hoorweg (J. L.). Ann. Phys. u. Chem., 154, 423.

On the spectra of some of the chemical elements, with maps.

Huggins (W.). Phil. Trans. (1884), 139; Proc. Royal Soc., 13, 43.

Le prix Lalande decerné à M. Huggins.

Comptes Rendus, 75, 1305.

On some recent spectroscopic researches.

Huggins (W.). Quar. Jour. Sci., April, 1869.

Chemische Wirkung der verschiedenen Theile des Spectrums.

Jahresber. d. Chemie. 1, 197, 221; 2, 156; 3, 154; 4, 152, 201; 4, 152, 201; 5, 124, 125, 126, 131, 211; 6, 167; 7, 137; 8, 123; 12, 643; 13, 598; 14, 27; (1870), 930; (1872), 146; (1873), 152; (1874), 152, 958.

Leçons sur l'analyse spectrale.

Jamin. Jour. de Pharm., (3) 42, 9.

Chemische Analyse durch Spectralbeobachtungen.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., **110**, 161–187; **113**, 337–379; Phil. Mag., (4) **20**, 89.

Spectroscopic method for determining chemical action in solutions containing two or more colored salts.

Krüss (G.). Nature, 26, 568.

Analyse spectrale simplifiée.

Laborde (l'abbé). Comptes Rendus, 60, 53.

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92.

Nouvelle méthode spectroscopique.

Langley (S. P.). Comptes Rendus, 84, 1145-47; Beiblatter, 1, 471-2.

Recomposition de la lumière spectrale.

Lavaut de Lastrade. Les Mondes, 43, 828-830.

Spectroscopic Notes.

Leach (J. H). Nature, 6, 125; J. Franklin Inst., 93, 418.

Remarques sur quelques particularités observées dans des recherches d'analyse spectrale.

Lecoq de Boisbaudran (F.). Comptes Rendus, **69**, 1189; **76**, 1263-1265; Jour. Chem. Soc., (2) **11**, 1257-1258 (Abs.).

Théorie des spectres.

Lecoq de Boisbaudran (F.). Comptes Rendus, 82, 1264-1266; Jour. Chem. Soc., 2 (1876), 470 (Abs.).

Note on "Spectroscopie Papers."

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 166-168; Beiblätter, 4, 38 (Abs.).

On the identity of the spectral lines of different elements.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., **32**, 225; Beiblätter, **5**, 741.

Studies in Spectrum Analysis.

Liveing (G. D.) and Dewar (J.). Proc. Cambridge Phil. Soc., 3, 208-209; Nature, 19, 163-164.

Preliminary note on the compound nature of the line spectra of elementary bodies.

Lockyer (J. N.). Proc. Royal Soc., 24, 352-354; Phil. Mag., (5) 2, 229-231; Ann. Chim. et Phys., (5) 25, 190; Juhresber. d. Chemie, 14, 45.

The spectroscope and its applications.

Lockyer (J. N.). Nuture, 7, 125-466; 8, 10, 89, 104.

Some recent methods in spectroscopy.

Lockyer (J. N.). Chem. News, 33, 29.

On a new method of spectrum observation.

Lockyer J. N.). Proc. Royal Soc., 30 22-31; Chem. News, 41, 84-87; Amer. Jeur. Sci., 31 19, 303-341; Beiblatter, 4, 361 (Abs.); Ber. chem. Ges., 13, 938-9 (Abs.).

-

On the necessity for a new departure in spectrum analysis.

Lockyer (J. N.). Nature, 21, 5-8; Berblatter, 4, 343 [Abs.).

Recomposition of the component colours of white light.

Loudon (J.). Phil. Mag., (5) 1, 170-171.

Das Stokes'sche Gesetz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 9, 665.

Recomposition de la lumière spectrale.

Luvini (J.). Les Mondes, 44, 97-99.

Recherches sur la comparaison photométrique des scources diversement colorées, et en particulier sur la comparaison des divers parties d'une même spectre.

Macé de Lépinay (J.) et Nicati (W.). Bull. soc. franç. de Phys. (1883), 11-23; Jour. de Phys., (2) **2**, 64-76; Ann. Phys. u. Chem., n. F. **22** (1884), 567.

Applications des spectres cannelées de Fizeau et Foucault.

Macé de Lépinay (J.). Jour. de Phys., (2) 4 (1885), 261-271.

The logical spectrum.

Maefarlane (A.). Phil. Mag. (5) 19, 286.

Spectre chimique rendu visible avec ses raies cannelées.

Matthiesen. Comptes Rendus, 16, 1281.

Lectures on spectrum analysis, 1862.

Miller (W. A.). Pharmaceutical Jour., (2) 3, 399; Chem. News, 5, 201.

Recent spectrum discoveries, 1863.

Miller (W. A.). Jour. Franklin Inst., 76, 29.

Exeter Lecture, 1869.

Miller (W. A.). Popular Sci. Rev., Oct., 1869.

Beitrag zur Spectralanalyse.

Mitscherlich (Alex.). Ann. Phys. u. Chem., **116**, 499-504; Ann. Chim. et Phys., (3) **69**, 169; Phil. Mag., (4) **28**, 169.

Sur l'analyse spectrale.

Moigno (Fr.). Cosmos, 22, 23, 52, 75.

Spectrum Analysis.

Morton (II.). Jour. Franklin Inst., (3) 58, 56, 136.

Die Spectren der chemischen Verbindungen.

Moser (J.). Ann. Phys. u. Chem., 160, 177-199; Phil. Mag., (5) 4, 444-449 (Abs.); Nature, 16, 193-194 (Abs.). Résumé de nos connaissances actuelles sur le spectre.

Mousson (A.). Archives de Genève (1861).

Sur le mélange des eouleurs.

Moutier (J.). Bull. Soc. Philom., (7) 7, 19-21; Carl's Repert., 19, 672-674.

On certain spectral images produced by a rotating vacuum-tube.

Muirhead (Dr. Henry). Nature, 32 (1885), 55.

Present state of spectrum analysis.

Nature, 22, 523.

Upon an optical method for the measurement of high temperatures.

Nichols (E. L.). Amer. Jour. Sci., (3) 19, 42-49.

Mutual attraction of spectral lines.

Peirce (C. S.). Nature, 21, 108; Beiblätter, 4, 278 (Abs.)

Die Spectren der chemischen Verbindungen.

Plucker. Ann. Phys. u. Chem., 105, 78.

Spectrum Analysis.

Pritchard (C.). Contemporary Review, 11, 481

Lettre relative à l'analyse spectrale.

Regimbeau. Comptes Rendus, 54, 921.

Die Méthode des Spectrophors.

Reinke J.). Ann. Phys. u. Chem., (2) 27 (1886), 414-448.

Preliminary Report of the Committee appointed to construct and print Catalogues of Spectral Rays arranged upon a Scale of Wavenumbers.

Rept. British Assoc., 1872; later Reports of same Committee, Repts. British Assoc., 1873 and 1874.

Report of the Committee consisting of Professor Dewar, Dr. Williamson, Dr. Marshall Watts, Captain Abney, Mr. Stoney, Prof. W. N. Hartley, Prof. McLeod, Prof. Carey Foster, Prof. A. K. Huntington, Prof. Emerson Reynolds, Prof. Reinold, Prof. Liveing, Lord Rayleigh, Dr. Arthur Schuster, and Mr. W. Chandler Roberts (Secretary), appointed for the purpose of reporting upon the Present State of our Knowledge of Spectrum Analysis.

Reports of the British Association (1881), 317-422; (1884), 295-350.

.

Report of the Committee consisting of Professor Sir H. E. Roscoe, Mr. J. N. Lockyer, Professors Dewar, Wolcott Gibbs, Liveing, Schuster, and W. N. Hartley, Captain Abney, and Dr. Marshall Watts (Secretary), appointed for the purpose of preparing a new series of Wave-length Tables of the Spectra of the Elements. (Gives the wave-lengths of the elements and of certain compounds, "so far as they are known to the committee or have proved accessible.")

Report of the British Association, (1884) 351-446, (1885) 288-322, (1886) 167-204.

Sur quelques phénomènes spectroscopiques singuliers.

Riccò (A.). Comptes Rendus, 102 (1886), 851-853.

Secondary Spectra.

Rood (O. N.). Amer. Jour. Sci., 106, 172.

Spectrum Analysis.

Roseoe (H. E.). Cornhill Mag., 6, 109.

Lectures on Spectrum Analysis, delivered at the Royal Institution of Great Britain, 1861, 1862.

Roscoe (H. E.). Chem. News, 4, 118; 5, 218, 261, 287.

Six Lectures on Spectrum Analysis, delivered in 1868, before the Society of Apothecaries of London.

Roscoe (H. E.). London, 1869 (published in book form by Macmillan).

Address to the Chemical Section of the British Association; Remarks on the Spectroscope and Spectrum Analysis.

Roscoe (Prof. Sir H. E.). Rept. British Assoc. (1884), 664.

Principles of spectrum analysis.

Rowney (T.). Jour. Franklin Inst., 75, 31.

Recherches spectroscopiques.

Salet (G.). Bull. Soc. chim. Paris, n. s. 16, 195.

Teachings of modern spectroscopy.

Schuster (A.). Popular Science Monthly, 19, 468.

Résumé des résultats de l'analyse spectrale.

Secchi (A.). N. Arch. Phil. Nat., 23, 145.

Beitrag zur chemischen Analyse durch Spectralbeobachtungen. Simmler (R. Th.). Ann. Phys. u. Chem., **115**, 242, 425.

Madeira spectroscopic.

Smyth (C. Piazzi), Edinburgh, 1881-1882 (book).

Vorschläge zur Herstellung übereinstimmender Angaben. Steinheil. Ann. Phys. u. Chem., 122, 167.

The Janssen-Lockyer Method of Spectrum Analysis. Stewart (B.). Nature, 7, 301-302, 381-382.

Spectrum Analysis.

Stewart (B.). Nature, 21, 35.

On a simple mode of eliminating errors of adjustment in delicate observations of compared spectra.

> Stokes (G. G.). Proc. Royal Soc., 31, 470–473; Beiblätter, 5, 360–361 (Abs.).

On a remarkable phenomenon of crystalline reflection.

Stokes (G. G.). Nature, 31 (1885), 565-568.

On a method of destroying the effects of slight errors of adjustment in experiments of change of refrangibility due to relative motions in the line of sight.

Stone (E. J.). Proc. Royal Soc., 31, 381.

Sur la récomposition de la lumière blanche avec l'aide des couleurs du spectre.

Stroumbo. Comptes Rendus, 103 (1886), 737-8.

Prismatic Spectra.

Tulbot (II. Fox). Phil. Mag., 9 (1836), 3.

Notices spectroscopiques.

Thenard P.). Comptes Rendus. 91, 387; Beiblatter, 5, 44 (Abs.).

Eine neue Methode für spectralanalytische Untersuchungen.

Timirinsef. Soc. phys. chim. russe, Mar. 27, 1872; Ber. chem. Ges., 5, 328-329 (Abs.); Jour. Chem. Soc., (2) 10, 1113 (Abs.).

Eine Lichteinheit.

Trowbridge (J.). Proc. Amer. Acad. (1885), 494-499; Beiblatter, 9 (1885), 789 (Abs.).

Effect of resistance in modifying spectra.

Tyndall (J.). Nature, 7, 854.

Ueber die Beziehungen zwischen Lichtabsorption und Chemismus.

Vogel H. V.J. Menatsher Berliner Akad (1875), 80-83; Pharmacentical Jour. Trans., (3) 6, 404-465; Scientific American, 1876.

-

Ueber einige Farbenwahrnehmungen und über Photographie in natürlichen Färben.

Vogel (H. W.). Ann. Phys. u. Chem., (2) 28 (1886), 130-135; Jour. Chem. Soc., 50 (1886), 749 (Abs.).

General methods of observing and mapping spectra.

Watts (W. Marshall). Rept. British Ass. (1881), 317.

On a means to determine the pressure at the surface of the Sun and stars, and some spectroscopic remarks.

Wiedemann (E.). Phil. Mag., (5) 10, 123-125; Proc. Phys. Soc., 4, 31-34.

Darstellung eines Spectrums mit einer Fraunhofer'schen Linie. Wüllner (A.). Ann. Phys. u. Chem., 135, 174.

Spectroscopic Notes.

Young (C. A.). Nature, **2**, 338; **3**, 110; **5**, 85-88; Phil. Mag., (5) **16**, 460-463; Beiblätter, **8**, 221 (Abs.); Amer. Jour. Sci., (3) **26**, 333-336; Jour. Franklin Inst., **60**, 331-340; **88**, 416; **90**, 64, 331; **92**, 348; **94**, 349; Chem. News, **22**, 218.

Ueber eine neue spectrometrische Methode.

Zenger (K. W.). Sitzungsber. Prager Ges. (1877), 20-40; Beiblätter, 3, 187-188 (Abs.).

b, QUALITATIVE ANALYSIS.

On the use of the prism in qualitative analysis.

Gladstone (J. H.). Jour. Chem. Soc., 10 (1858), 79.

On a definite method of qualitative analysis of animal and vegetable colouring-matters by means of the spectrum microscope.

Sorby (H. C.). Proc. Royal Soc., 15, 433.

c, QUANTITATIVE ANALYSIS.

Ueber quantitative Bestimmung des Lithiums mit dem Spectral-Apparat.

Ballmann (H.). Z. analyt. Chem., 14, 297-301; Jour. Chem. Soc., 2
(1876), 550 (Abs.).

De la spectrométrie.

Champion (P.), Pellet (H.), et Grenier (M.). Comptes Rendus, **76**, 707-711; Jour. Chem. Soc., (2) **11**, 934 (Abs.).

Note par M. J. Janssen. Comptes Rendus, 76, 711-713; Jour. Chem. Soc., (2) 11, 1258 (Abs.).

Use of the spectroscope in quantitative analysis.

Gibbs (Wolcott). Proc. Amer. Acad., 10, 401, 417.

4 т

De la loi d'absorption des radiations de toute espèce à travers les corps, et de son emploi dans l'analyse spectrale quantitative.

Govi (G.). Comptes Rendus, **85**, 1046-1049, 1100-1103; Phil. Mag., (5) **5**, 78-80; Jour. Chem. Soc., **34**, 190-191 (Abs.); Beiblätter, **2**, 342-343 (Abs.).

Researches on spectrum photography in relation to new methods of quantitative chemical analysis.

Hartley (W. N.). Proc. Royal Soc., 34, 81–84; Ber. chem. Ges., 15, 2924–5 (Abs.); Jour. Chem. Soc., 44, 263–4 (Abs.); Beiblätter, 7, 109–110 (Abs.); Z. analyt. Chem., 22, 539–540 (Abs.); Phil. Trans., 175 (1884), 49–62.

The same, continued. Proc. Royal Soc., 36, 421-2; Chem. News, 49, 128 (Abs.); Beiblätter, 8, 705 (Abs.).

Ueber quantitative Analyse durch Spectralbeobachtung.

Hennig (R.). Ann. Phys. u. Chem., 149, 349-353; Jour. Chem. Soc., (2) 12, 495 (Abs.).

Ueber quantitative Spectralbeobachtung.

Hufner (G.). Jour. prakt. Chem., (2) 16, 290.

Quantitative Spectralanalyse.

Juhresber. d. Chemie, (1872) 873, (1873) 147, 173, (1875) 901.

Analyse spectrale quantitative.

Janssen (J.). Comptes Rendus, 71, 626.

Zur quantitativen Spectralanalyse.

Kruss (II.). Carl's Repert. analyt. Chem., 2, 17-22.

Quantitative Spectralanalyse.

Kruss (H.). Ber. chem. Ges., 18, 983-6; Jour. Chem. Soc., 48 (1885), 835 (Abs.).

Quantitative spectroscopic experiments.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 482-489; Beiblatter, 4, 367 (Abs.).

Quantitative analysis of certain alloys by means of the spectroscope.

Lockyer (J. N.). Proc. Royal Soc., 21, 507-8; Phil. Trans., 164 (1874), 495-499; Phil. Mag., (4) 47, 311-312 (Abs.); Ber. chem. Ges., 6, 1426 (Abs.); Jour. Chem. Soc., (2) 12, 495 (Abs.).

Quantitative Spectralanalyse, insbesondere zu derjenigen des Blutes.

Noorden (C. v.). Ber. chem. Ges., 13 (1880), 439; Z. physiolog. Chem., 4, 9-35.

.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.
Preyer (W.). Ber. chem. Ges., 4, 404.

Analyse quantitative de la lumière blanche.

Rood (O. N.). Les Mondes, 48, 610-611.

Emploi du spectroscope pour la détermination quantitative des matières colorantes.

Schiff (H.). Bull. Soc. chim. Paris, n. s. 16, 97.

Beiträge zur quantitativen Spectralanalyse.

Settegast (H.). Ann. Phys. u. Chem., n. F. 7, 242-271; Jour. Chem. Soc., 36, 828-9 (Abs.).

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat. Vierordt (K.). Ber. chem. Ges., 4, 327, 457, 519.

Zur quantitativen Spectralanalyse.

Vierordt (K.). Ber. chem. Ges., 5, 34-38; Ann. Phys. u. Chem., n. F. 3, 357.

Die Anwendung des Spectralapparates zur Photometrie der Absorptionsspectren und zur quantitativen chemischen Analyse.

Vierordt (Dr. Karl). Tübingen, 1873, 8°.

Die Anwendung der quantitativen Spectralanalyse bei den Titrirmethoden.

Vierordt (K.). Ann. Phys. u. Chem., 177, 31-45; Amer. Jour. Sci., (3) 10, 216-7 (Abs.).

Beschreibung einiger quantitativen Spectralanalyse.

Wolff (C. H.). Ber. chem. Ges., 12, 128; Z. analyt. Chem., 18, 38-49.

Anwendung eines Spectrophotometers zur quantitativen Spectralanalyse. (Von Lahn). Ber. d. naturforsch. Ges. in Leipzig, 5, 1-4.

ABSORPTION SPECTRA.

On the photographic method of registering absorption spectra, and its application to solar physics.

Abney (W. de W.). Proc. Phys. Soc., 3, 43-46; Phil. Mag., (5) 7, 313-316; Beiblätter, 3, 621.

Photographic records of absorption spectra.

Abney (W. de W.). Chem. News, 39 (1879), 132.

Absorption spectra of organic bodies.

Abney (Capt.) and Festing (Col.). Chem. News, 43 (1881), 126.

Absorption-spectra thermograms.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 38, 77-83;Jour. Chem. Soc., 48 (1885), 1175 (Abs.).

Transverse absorption of light.

Ackroyd (W.). Chem. News, 36, 159-161.

Selective absorption of light.

Ackroyd (W.). Proc. Physical Soc., 2, 110-118; Phil. Mag., (5) 2, 423-430; Beiblatter, 1, 350-2 (Abs.).

Note on the absorption of sea-water.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 637; Beiblätter, 7, 372 (Abs.).

Theory of absorption bands in the spectrum, and its bearing in photography and chemistry.

Amory (Dr. Robert). Proc. Amer. Acad., 13, 216.

- Pouvoirs absorbants des corps pour la chaleur; analyse spectroscopique.

 Aymonnet. Comptes Rendus, 83, 971.
- Sur les variations des spectres d'absorption, et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102 (1886), 106-110.

Sur les lois de l'absorption de la lumière dans les cristaux et sur une méthode nouvelle permettant de distinguer dans un cristal certaines bands d'absorption appartenant à des corps différents.

.

Becquerel (II.). Comptes Rendus, 103 (1887), 165-169.

Absorption spectrum of nitrogen peroxide.

Bell (L.). Amer. Chem. Jour., 7, 32-34; Jour. Chem. Soc., 48 (1885), 949 (Abs.).

A new form of absorption cell.

Bostwick. Amer. Jour. Sci., (3) 30, 452.

Ueber das Absorptionsspectrum des übermangansauren Kalis und seine Benützung bei chemisch-analytischen Arbeiten.

Brücke (E.). Chemisches Centralblatt, (3) 8 (1877), 139-143; Jour. Chem. Soc., 34, 242-243 (Abs.).

Das Absorptionsspectrum des Didyms.

Bührig (H.). Jour. prakt. Chem., (2) **12**, 209-215; Amer. Jour. Sci., (3) **11**, 142 (Abs.).

Sur les spectres d'absorption de l'ozone et de l'acide pernitrique.

Chappuis (J.). Comptes Rendus, **94**, 946-948; Jour. Chem. Soc., **42**, 1017 (Abs.); Beiblätter, **6**, 483 (Abs.); Amer. Jour. Sci., (3) **24**, 58-59 (Abs.).

Ueber die Veränderlichkeit der Lage der Absorptionsstreifen.

Claes (F.). Ann. Phys. u. Chem., n. F. 3, 389-414.

Sur la loi de répartition suivant l'altitude de la substance absorbant dans l'atmosphère; les radiations solaires ultra-violettes.

Cornu (A.). Comptes Rendus, 90, 940-946; Beiblätter, 4, 727.

Sur l'observation comparative des raies telluriques et métalliques comme moyen d'évaleur les pouvoirs absorbants de l'atmosphère.

Cornu (A.). Soc. franç. de Phys. (1882), 241-247; Jour. de Phys., (2)2, 58-63; Z. Instrumenten., 3, 290 (Abs.).

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-1207.

Effect of various dyes on the behavior of silver bromide towards the solar spectrum; connection between absorption and photographic sensitiveness.

Eder (J. M.). Monatsschr. f. Chemie, 6, 927-953; Jour. Chem. Soc., 50, 405 (Abs.).

Connection between absorption and photographic sensitiveness.

Eder (J. M.). Monatschr. f. Chemie, 7, 331-350; Jour. Chem. Soc., 50 (1886), 958 (Abs.).

Salpetersaure Nickellösung als Absorptionspäparat.

Emsmann (II.). Ann. Phys. u. Chem., Ergánzungsband 6 (1874), 334-5; Phil. Mag., (4) 46, 329-330; Jour. Chem. Soc., (2) 12, 113.

Sur les raies d'absorption produites dans le spectre par les solutions des acides hypoazotiques, hypochloriques et chloreux.

Gernez (D.). Comptes Rendus, 74, 465-468; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 218 (Abs.).

Note sur le prétendu spectre d'absorption special de l'acide azoteux.

Gernez (D.). Bull. Soc. Philom., (7) 5, 42.

Sur les spectres d'absorption des vapeurs de sélénium, de protochlorure et de bromure de sélénium, de tellure, de protochlorure et de bromure de tellure, protobromure d'iode et d'alizarine.

Gernez (D.). Comptes Rendus, 74, 1190-1192; Jour. Chem. Soc., (2)
10, 665 (Abs.); Phil. Mag., (4) 43, 473-475; Amer. Jour. Sci., (3)
4, 59-60.

Sur les spectres d'absorption de quelques matières colorantes.

Girard (Ch.) et Pabst. Comptes Rendus, 101 (1885), 157-160; Jour. Chem. Soc., 48, 1098 (Abs.).

Ueber den Einfluss der Dichtigkeit eines Körpers auf die Menge des von ihm absorbirten Lichtes.

Glan (P.). Ann. Phys. u. Chem., n. F. 3, 54-82.

Sur la mesure de l'intensité des raies d'absorption et des raies obscures du spectre solaire.

Gouy. Comptes Rendus, 89, 1033-4; Beiblatter, 4, 369-370 (Abs.).

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 372-373 (Abs.); Ber. chem. Ges., 8, 765 (Abs.); Phil. Mag., (5) 1, 244-245.

On the absorption spectrum of ozone.

Hurtley (W. N.). Jour. Chem. Soc., 39, 57-60; Ber. chem. Ges., 14, 672 (Abs.); Beiblätter, 5, 505-506 (Abs.).

On the absorption of solar rays by atmospheric ozone. Part I.

Hartley (W. H.). Jour. Chem. Soc., 39, 111-128; Ber. chem. Ges., 14, 1390 (Abs.).

Researches on the relation between the molecular structure of carbon compounds and their absorption spectra.

Hartley (W. N.). Jour. chem. Soc., 39, 153-168; 41, 45-49; 47, 685-757; 51, 152-202; Beiblatter, 6, 375-6 (Abs.); Nature, 32 (1885), 93-4.

.

Die Oxydationsproducte der Gallenfarbstoffe und ihre Absorptionsstreifen.

Heynsius (A.) und Campbell (G. F.). Archiv. f. Physiol., 4, 497-547;

Jour. Chem. Soc., (2) 10, 307-308 (Abs.).

Absorptionsspectra.

Jahresber. d. Chemie (1875), 124.

Photometrie des Absorptionsspectrums der Blutkörperchen.

Jessen (E.). Zeitschr. f. Biologie, 17, 251-272; Ber. chem. Ges., 15, 952 (Abs.).

On the absorption of radiant heat by carbon dioxide.

Keeler (J. E.). Amer. Jour. Sci., (3) 28, 190-198; Nature, 31, 46.

Zusammenhang zwischen Absorption und Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., 160, 478.

Notiz, betreffend die Dispersionscurve der Mittel mit mehr als einem Absorptionsstreifen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 1, 340-351.

Experimentaluntersuchung über den Zusammenhang zwischen Refraction und Absorption des Lichtes.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 481-519.

Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Wärme.

Kirchhoff (G.). Monatsber. d. Berliner Akad., 27 Oct., 1859; Phil. Mag., (4) 19, 163.

(This contains the statement of the Law of Exchanges, and the first announcement of the discovery of the cause of Fraunhofer's lines.—

Roscoe.)

Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht.

Kirchhoff (G.). Ann. Phys. u. Chem., **109**, 275, 299; Phil. Mag., (4) **20**, 1.

(This paper contains a discussion of the Mathematical Theory of the Law of Exchanges, and is followed by a postscript on the history of the subject.—Roscoe.)

Beziehungen zwischen der Zusammensetzung und den Absorptionsspectren organischer Verbindungen.

Krüss (J.) und Oecomenides (S.). Ber. chem. Ges., **16**, 2051-56; **18**, 1426-33; Jour. Chem. Soc., **44**, 1041-2 (Abs.); **48**, 949; Beiblätter, **7**, 897-9 (Abs.).

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 141, 157-159; Jour. Chem. Soc.,(2) 9, 185 (Abs.); Z. analyt. Chem., (2) 7, 64 (Abs.).

Ueber einige Bezeihungen zwischen der Dispersion und Absorption des Lichtes.

Kundt (A.). Ann. Phys. u. Chem., Jubelband, 615-624.

Ueber den Einfluss des Lösungsmittels auf die Absorptionsspeetra gelöster absorbirenden Medien.

Kundt (A.). Sitzungsber, d. Münchener Akad. 1877, 234-262; Ann. Phys. u. Chem., n. F. 4, 34-54.

Die Absorptionsstreifen in Prismen von Schwefelkohlenstoff, Flintglass und Steinsalz entsprechend.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213-215.

Zur Kenntniss der Absorptionsspeetra.

Landauer (J.). Ber. chem. Ges., 11, 1772-1775; 14, 3b1-394; Jour.
Chem. Soc., 36, 101 (Abs.); 40, 591 (Abs.); Beiblatter, 3, 195-6 (Abs.); 5, 441 (Abs.).

The selective absorption of solar energy.

Langley (S. P.). Amer. Jour. Sci., (3) 25, 169-196; Ann. Phys. 1.
Chem., n. F. 19, 226-244, 384-100; Phil. Mag., (5) 15, 153-185;
Ann. Chim. et Phys., (5) 29, 497-542; Z. Instrumentenkurde, 4, 27-32 (Abs.); Jour. de Phys., (2) 2, 371-374 (Abs.); Jour. Franklin Inst., 88, 157-8 (Abs.).

Note on the above by Koyl (C. H.). Johns Hopkins Univ. Cir., 2 145-6; Phil. Mag., (5) 16, 317-318; Beiblatter, 7, 899.

On the amount of atmospheric absorption.

Langley (S. P.). Amer. Jour. Sci., (3) 28 (1885), 163, 242; Phil. Mag., (5) 18, 289-307; Jour. Chem. Soc., 28 (1885), 319 (Abs.).

Absorption dunkler Wärmestrahlen durch Gasen und Dämpfen.

Lecher und Pernter. Sitzungsber, d. Wiener Akad., 82 11, 265; Ph l. Mag., Jan., 1881; Amer. Jour. Sci., (3) 21, 236.

Ueber die Absorption der Sonnenstrahlung durch die Kohlensaure unserer Atmosphäre.

Lecher (E.). Sitzungber, d. Wiener Akad., 82 11, 851-863.

Ueber Ausstrahlung und Absorption.

Lecher (E.). Sitzungsber, d. Wiener Akad., 85 II, 441-440; A and Phys. u. Chem., n. F. 17, 477-518 (Abs.).

Ueber die Aenderung der Absorptionsspectra einiger Farbstoffe in verschiedenen Lösungsmitteln.

> Lepel (F. von). Ber, chem. Ges., 11, 1146-1151; Jour. Chem. S. L. 34 925 (Als.); Beiblater. 3, 360.

> > - 10

On the absorption of great thicknesses of metallic and metalloidal vapours.

Note 1, of Spectroscopic Notes.

Lockyer (J. N.). Proc. Royal Soc., 22, 371.

On a new class of absorption phenomena.

Lockyer (J. N.). Proc. Royal Soc., 22, 378.

On the absorption spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-349;
Phil. Mag., (5) 1, 234-239; Jour. Chem. Soc., 2 (1876), 156 (Abs.).

Emploi de la gélatine pour montrer l'absorption dans le spectre.

Lommel (E.). Ann. Chim. et Phys., (4) 26, 279.

Theorie der Absorption und Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 251-283.

Sur la théorie de l'absorption atmosphérique de la radiation solaire.

Maurer (J.). Archives de Genève, (3) 9, 374-391.

Absorption des Lichtes durch gefärbten Flüssigkeiten.

Melde (F.). Ann. Phys. u. Chem., 124, 91; 126, 264.

Absorption spectra of brucine, morphine, strychniue, veratrine and santonine in concentrated acids.

Meyer (A.). Archives Pharmaceutical Soc., (3) **13**, 413-416; Jour. Chem. Soc., **36**, 269.

Absorption spectra of anthrapurpurin.

Perkin (W. H.). Jour. Chem. Soc., (2) 11, 433.

New way of observing absorption spectra.

Phipson (T. L.). Chem. News, 31 (1875), 255.

M. Chautard's classification of the absorption band of chlorophyll.

Pocklington (H.). Pharmaceutical Trans., (3) 4, 61-63.

Ueber die Absorptionsspectra der Chlorophyllfarbstoffe.

Pringsheim. Monatsber. d. Berliner Akad. (1874), 628-659.

Photometrische Untersuchungen über die Absorption des Lichtes in isotropen und anisotropen Medien.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 14, 177-218; Amer. Jour. Sci., (3) 23, 50 (Abs.); Jour. de Phys., (2) 1, 285-286.

On the absorption bands in the visible spectrum produced by certain colourless liquids.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., **39** (1881), 168-173; Nature, **22**, 368-70; Beiblätter, **5**, 44-45; Amer. Jour. Sci., (3) **21**, 500-501 (Abs.).

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-866; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Ueber die Absorptionsstreifen des Blattgrüns.

Schonn (L.). Ann. Phys. u. Chem., 145, 166-167; Arch. de Genève, (2) 43, 282-283.

Ueber die Absorption des Lichtes durch Flüssigkeiten.

Schonn (J. L.). Ann. Phys. u. Chem., n. F. 6, 267-270.

Ueber die Absorption des Lichtes durch Wasser, Steinöl, Ammoniak, Alcohol und Glycerin.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband 8 (1878), 670-5; Jour. Chem. Soc., 34, 693.

Ueber die Lichtempfindlichkeit der Silberhaloidsalze und den Zusammenhang von optischer und chemischer Eichtabsorption.

Schulz-Sellack (C.). Ann. Phys. u. Chem., 143, 161-171; Ber. chem.
Ges., 4, 210-211 (Abs.); Jour. Chem. Soc., (2) 9, 302-303 (Abs.);
Phil. Mag., (4) 41, 549-550 (Abs.).

Sur les spectres d'absorption ultra-violets des différents liquides.

Soret (J. L.). Arch. de Genève, (2) 60, 298-300; Beiblätter, 2, 30-31 (Abs.), 410-411 (Abs.).

Recherches sur l'absorption des rayons ultra-violets par diverses substances; spectres d'absorption des terres de la gadolinite et du didyme.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Mendus, 86, 1062-1064; Beiblatter, 3, 196-197 (Abs.).

Sur les spectres d'absorption du didyme et de quelques autres substances extraits de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-424.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; nouvelle étude des spectres d'absorption des métaux terreaux.

> Soret (J. L.). Arch. de Genève, (3) 4, 261-292; Beiblatter, 5, 124-125 (Abs.).

Absorption des rayons ultra-violets.

Soret (J. L.). Arch. de Gen⁵ve, (3) 4, 377-380; remarques par M. A. Rilliet, do., 380-1.

.

Recherches sur l'absorption des rayons ultra-violets par diverses substances.

Soret (J. L.). Arch. de Genève, (3+10, 429-494.

- Spectre d'absorption du sang dans la partie violette et ultra-violette.
 - Soret (J. L.). Comptes Rendus, 97, 1269-70; Jour. Chem. Soc., 46, 381.
- Absorption der unsichtbaren Strahlen durch Alkalien, Glukoside, u. s. w. Stokes (G. G.). Ann. Phys. u. Chem., 123, 43.
- Ueber eine Methode zur Untersuchung der Absorption des Lichtes durch gefärbte Lösungen.

Tumlirz (O.). Wiener Anzeigen (1882), 165-6; Beiblätter, 7, 895-6; Chem. News, 49, 201.

Observations of absorbing vapours upon the Sun.

Trouvelot (E. L.). Monthly Notices Astronom. Soc., 39, 374.

Die graphische Darstellung der Absorptionsspectren.

.Vierordt (K.). Ann. Phys. u. Chem., 151, 119-124.

Ueber die Absorption der chemisch wirksamen Strahlen in der Atmosphäre der Sonne.

Vogel (H. C.). Ber. d. Sächs. Ges. d. Wiss., 24, 135-141; Ann. Phys. u. Chem., 148, 161-168; Phil. Mag., (4) 45, 345-350; Jour. Chem. Soc., (2) 11, 712 (Abs.).

Note on this by A. Schuster in Phil. Mag., (4) 45, 350.

Ueber die Beziehung zwischen chemischer Wirkung des Sonnenspektrums, der Absorption und anomalen Dispersion.

Vogel (H.). Ber. chem. Ges., 7, 976-979; Jour. Chem. Soc., (2) 12, 1121-1122.

Ueber die Beziehungen zwischen Lichtabsorption und Chemismus.

Vogel (H.). Monatsber. d. Berliner Akad. (1875), 82-83.

Spectral-photometrische Untersuchungen insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Absorptionsspectrum des Granats und Rubins.

Vogel (H. W.). Ber. chem. Ges., 10 (1877), 373.

Untersuchungen über Absorptionsspectra.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1878), 409-431.

Ueber Verschiedenheit der Absorptionsspectra eines und desselben Stoffs.

Vogel (H. W.). Ber. chem. Ges., 11, 913-920, 1363-71; Jour. Chem.
Soc., 36, 189 (Abs.); Beiblätter, 2, 699-702 (Abs.); note on the above by J. Moser. Ber. chem. Ges., 11, 1416 and 1562; Bull. Soc. chim.
Paris, n. ser., 32 (1879), 52.

Ueber den Zusammenhang zwischen dem Absorptionsspectrum und der sensibilisirenden Wirkung von Farbstoffen.

Vogel (H. W.). Ann. Phys. u. Chem., (2) 26, 527-30.

Ueber die Absorption und Brechung des Lichtes in metallisch undurchsichtigen Körpern.

Wernicke (W.). Monatsber. d. Berliner Akad. (1874), 728-737; Ann. Phys. u. Chem., 155, 87-95.

Untersuchungen über die bei der Beugung des Lichtes auftretenden Absorptionserscheinungen.

Wien (Willy). Ann. Phys. u. Chem., (2) 28 (1886), 117-130.

Einige neuen Absorptionsspectren.

Wolff (C. H.). Carl's Repert., 2, 55-56; Z. analyt. Chem., 22, 96-7; Chem. News, 47, 178 (Abs.).

Ueber die Absorptionsspectren verschiedener Ultramarinsorten.

Wunder (J.). Ber. chem. Ges., 9, 295-299; Jour. Chem. Soc., 1 (1876), 864-5.

Bemerkungen, von R. Hoffmann. Ber. chem. Ges., 9, 494-5.

(For the absorption spectra of particular substances look under those substances.)

ALCALIES AND ALCALOIDS.

Nachweis der Spectralanalyse der Alcalien.

Belohoubek. Jour. prackt. Chem., 99, 235.

Absorption spectra of the alcaloids.

Hartley (W. N.). Chem. News, 51 (1885), 135; Phil. Trans. (1885),
Part II, 9; Proc. Royal Soc., 38, 1-4 and 191-193; Jour. Chem.
Soc., 48 (1885), 1174 (Abs.).

Spectralreactionen der Alcaloïde.

Hock (C.). Ber. chem. Ges., 14 (1881), 2844b (Abs.); Arch. f. Pharm.,
19, 358-9; Comptes Rendus, 93, 849-51; Jour. Chem. Soc., 42, 349 (Abs.); Beiblätter, 6, 232 (Abs.).

Spectra der Alkalien.

Kirchhoff und Bunsen. Jour. prakt. Chem., 80, 449.

Zur Lehre von den Fäulnissalkaloïden.

Poehl (A.). Ber. chem. Ges., 16, 1975-1988.

Absorptionsspectra der Alkalichromate und der Chromsäure. Sabatier (P.). Beiblätter, 11 (1887), 223.

Absorption der unsichtbaren Strahlen durch Alkaloïde, Glukoside, u. s. w. Stokes (G. G.). Ann. Phys. u. Chem., 123, 43.

Ueber die Lichtempfindlichkeit der Silberhaloïdsalze unter alkalischer Entwickelung.

Vogel (H.). Ber. chem. Ges., 6, 88-92.

Spectra der Alkalien.

Wolf und Diacon. Jour. prakt. Chem., 88, 67.

ALUMINIUM.

Phosphorescence de l'alumine.

Beequerel (E.). Comptes Rendus, 103 (1886), 1224; 104 (1887), 334-5;
Amer. Jour. Sci., (3) 33, 303 (Abs.); Jour. Chem. Soc., 52, 409 (Abs.); Chem. News, 55 (1887), 99.

Aluminium spark spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 19, 40, 47.

Renversement des raies spectrales de l'aluminium.

Cornu (A.). Comptes Rendus, 73, 332.

Détermination des longueurs d'onde des radiations très-réfrangibles de l'aluminium, etc.

Cornu (A.). Jour. de Phys., 10, 425-431; Arch. de Genève, (3) 2, 119-126; Beiblatter, 4, 34-35 (Abs.).

Crimson line of phosphorescent alumina.

Crookes (W.). Proc. Royal Soc., **42** (1887), 25-30; Nature, **35** (1887), 310; Amer. Jour. Sci., (3) **33**, 304 (Abs.); Chem. News, **55** (1887), 25.

Action des fluorures sur l'alumine.

Frémy et Verneuil. Comptes Rendus, 103 (1887), 738-40.

Specific refraction and dispersion of the alums.

Gladstone (J. H.). Phil. Mag., (5) 20, 162-168; Jour. Chem. Soc., 50 (1886), 293 (Abs.).

Spectre continu de l'alumine.

Gouy. Comptes Rendus, 86, 878.

Distribution of heat in the spectra of various scources of radiation; white oxide of aluminium, etc.

Jucques (W. W.). Proc. Amer. Acad., 14, 142.

Spectrum von Aluminium.

Jahresber. d. Chemie (1872), 145.

Aluminium métallique, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 102, planche XV.

.

Sur la fluorescence rouge de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, **103**, 478-482, 554-556, 1107; **104**, 330-334; Jour. Chem. Soc., **52** (1887), 191, 409 (Abs.). Remarques par M. Edm. Becquerel. Comptes Rendus, **104**, 334-36 et 824-26.

Phosphorescence de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103 (1887), 1224-1227;
Jour. Chem. Soc., 52 (1887), 191 (Abs.).

Indice du quartz pour les raies de l'alumine.

Sarasin (Ed.). Comptes Rendus, 85, 1230.

Spectre de l'aluminium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 173.

Indices de réfraction des aluns.

Soret (C.). Comptes Rendus, 101, 156-157; Jour. Chem. Soc., 48 (1885), 1097 (Abs.).

Réaction très-sensible de l'alumine.

Vogel (H. W.). Bull. Soc. chim. Paris, n. sér. 28, 475-8.

ANTIMONY.

Antimony Spark Spectrum.

Capron's Photographed Spectra, London, 1877, p. 19, 34.

L'antimoine n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Protochlorure d'antimoine, en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 150, planche 23.

Spectrum of antimony at elevated temperatures.

Lockyer (J. N.). Chemical News, 30, 98.

ARSENIC.

Arsenic spark spectrum, photographed.

Capron's Photographed Spectra, Lendon, 1877, p. 18.

Spectrum of arsenic.

Huntington (O. W.). Proc. Amer. Akad., (2) 9, 35-38; Amer. Jour. Sci., (3) 22, 214-217; Beiblätter, 5, 868 (Abs.).

The spectrum of arsenic at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Sur l'origine de l'arsénic et de la lithine dans les eaux sulfatées calciques Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-463; Jour. Chem. Soc., 44, 302 (Abs.).

ASTRONOMICAL.

a, GENERAL.

Spectroscopic Researches.

D'Arrest. Nature, 17, 311.

Notes on some recent astronomical experiments at high elevations on the Andes.

Copeland (R.). Nature, 28, 606; Beiblätter, 8, 220-221 (Abs.).

Spectroscopic observations made at the Earl of Crawford's observatory,
Dun Echt.

Copeland (R.). Monthly Notices Astronom. Soc., 45, 90.

Recherches spectroscopiques sur quelques étoiles non encore étudieés.

Cruls (L.). Comptes Rendus, 91, 486-7; Beiblätter, 5, 130-1.

Intorno alle strie degli stellari.

Donati. Il nuovo Cimento, 15, 292.

Rapport sur un mémoire et plusieurs notes de M. Janssen concernant l'analyse prismatique de la lumière solaire et de celle de quelques étoiles.

Fizeau. Comptes Rendus, 58, 795.

Recherches sur les spectres des gaz dans leur rapports avec la constitution du Soleil, des étoiles et des nébuleuses.

Franckland et Lockyer. Comptes Rendus, 68, 1519.

Astrophysical observations made during the year 1882 at the Herény Observatory, Hungary.

> Gothard (E. von). Monthly Notices Astronomical Soc., 43, 420-424; Math.-naturwiss. Ber. aus Ungarn, 1, 207-9.

Spectroscopic observations at the Royal Observatory, Greenwich.

Christic (W. H. M.). Nature, 28, 136-9; 30, 147-8.

Ditto.

Airy (G. B.). Monthly Notices Astronom. Soc., 36, 27-37; 37, 22-36; Beiblatter, 11, 95 (Abs.).

Beiträge zur Untersuchung der Sternbewegungen und der Lichtbewegung durch Spectral-Messungen.

Homann (Hans). Inaugural.-Diss., Berlin, 1885; Beiblätter, 11 (1887), 146.

Spectrum analysis applied to the heavenly bodies.

Huggins (W.). Rept. British Assoc., 1866; do., 1868; Chem. News, 19, 187.

Spectra of some of the fixed stars. [The first complete and accurate investigation of the stellar spectra.—Roscoe.]

Huggins (W.) and Miller (W. A.). Phil. Trans. (1864), 413; Phil.Mag., June, 1866; Proc. Royal Soc., 12, 444; 13, 242.

Lecture on the physical and chemical constitution of the fixed stars and nebulæ.

Huggins (W.). Chem. News, 11, 270.

Further observations of the Sun and of some of the stars and nebulæ; with an attempt to discover therefrom whether these bodies are moving towards or from the earth.

Huggins (W.). Proc. Royal Soc., 16, 382.

Note on the heat of the stars.

Huggins (W.). Proc. Royal Soc., 17, 309.

Spectren von Gestirne.

Jahresber. d. Chemie, (1856) 140, (1862) 26 u. 27, (1863) 107, 108 u. 110, (1864) 115, (1865) 92, (1866) 78, (1867) 107, (1870) 176.

Remarques sur la note du père Secchi relative aux spectres prismatiques des corps célestes.

Janssen. Comptes Rendus, 57, 215.

Nouvelle lettre annoncante la présence de la vapeur d'eau dans les planètes et les étoiles.

Janssen. Comptes Rendus, 68, 376.

Sur quelques spectres stellaires remarquables par les caractères optiques de la vapeur d'eau.

Janssen. Comptes Rendus, 68, 1545.

Les méthodes en astronomie physique.

Janssen. Ann. du Bureau des Longitudes (1883), 779-812; Beiblätter, 7, 323-4 (Abs.).

Note sur divers points de physique céleste.

Janssen. Comptes Rendus, 96, 527-529; Nature, 475 (Abs.).

Testimony of the spectroscope to the nebular hypothesis.

Kirkwood (D.). Amer. Jour. Sei., (3) 2, 155; Phil. Mag., (4) 42, 399.

Astrophysiche Beobachtungen.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 126-127.

Untersuchungen über das Spectrum der Fixsterne.

Lamont. Jahrb. d. Sternwarte bei München (1868), 90.

The Mt. Whitney Expedition.

Langley (S. P.). Nature, 26, 314-317.

Note on the bright lines in the spectra of stars.

Lockyer (J. N.). Proc. Royal Soc., 27, 50.

Spectrum der Fixsterne.

Merz (S.). Ann. Phys. u. Chem., 117, 654.

A course of four lectures on spectrum analysis, with its applications to astronomy; delivered at the Royal Institution of Great Britain in May and June, 1867.

Miller (W. A.). Chem. News, 15, 259, 276; 16, 8, 20, 47, 71.

Spectrum analysis of the Sun and other heavenly bodies.

Miller (W. A.). Pop. Sci. Monthly, 8, 335.

Stars with peculiar spectra, discovered at the astronomical observatory of Harvard College.

Pickering (E. C.). Astronom. Nachr., 101, 73-74; Beiblatter, 6, 106 (Abs.).

The spectroscope in astronomical observation.

Proctor (R. A.). Pop. Sci. Rev., 8, 141.

The measurement of stellar spectra.

Rutherfurd (L. M.). Amer. Jour. Sei., (3) 35, 71.

Sur les spectres prismatiques des corps célestes.

Seechi (A.). Comptes Rendus, 57, 71. Remarques par M. Janssen, do., 215.

Analyse spectrale de la lumière de quelques étoiles. Secchi (A.). Comptes Rendus, 63, 324, 364.

Nouvelles recherches sur l'analyse de la lumière spectrale des étoiles. Seechi (A.). Comptes Rendus, 63, 621.

- 10

Sur les spectres de quelques étoiles. Secchi (A.). Comptes Rendus, 64, 345.

Nouvelle note sur les spectres stellaires.

Secchi (A.). Comptes Rendus. 64, 774.

Note accompagnant la présentation d'un exemplaire de son mémoire "Sur les Spectres stellaires" imprimé dans les publications de la Societé des Quarante de Modène.

Secchi (A.). Comptes Rendus, 65, 562.

Note sur les spectres stellaires.

Secchi (A.). Comptes Rendus, 67, 373.

Étude spectrale des divers rayons du Soleil et rapprochements entre les spectres obtenus et ceux de certaines étoiles.

Secchi (A.). Comptes Rendus, 68, 959.

Note sur l'intervention probable des gaz composés dans les caractères spectroscopiques de la lumière de certaines étoiles ou de diverses régions du Soleil.

Secchi (A.). Comptes Rendus, 68, 1086.

Nouvelles remarques sur les spectres fournis par divers types d'étoiles.

Secchi (A.). Comptes Rendus, **71**, 252; Ann. Phys. u. Chem., **131**, 156.

Les spectres stellaires.

Secchi (A.). Comptes Rendus, 75, 655.

Spettri prismatici delle Stelle fisse.

Secchi (A.). Atti della Soc. Ital., Roma, 1868.

Stellar Spectrometry.

Secchi (A.). Chemical News, 18, 168.

Bright lines in stellar spectra.

Sherman. Amer. Jour. Sci., (3) 30, 378, 475; note by Maunder (E. W.), Monthly Notices, 46 (1885), 282-4; reply to note, do., 47 (1886), 14.

Colour in practical astronomy, spectroscopically examined.

Smyth (Piazzi). Trans. Royal Soc. Edinburgh, 28, 779-843; Beiblätter, 4, 548.

Physical constitution of the Sun and stars.

Stoney (G. J.). Proc. Royal Soc., 16, 25; 17, 1.

Spectroscopic observations with the great Melbourne telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

Spectroscopic observations of various stars.

Sueur (A. Le. Proc. Royal Soc., 19, 18.

Ueber die Spectra der weissen Fixsterne.

Vogel (H. V.). Monatsber. Berliner Akad. (1880), 192-198; Beiblätter, 4, 786 (Abs.); Photographic News, Feb. 20, 1880; Nature, 21, 410.

Einige spectralanalytische Untersuchungen an Sternen, ausgeführt mit dem grossen Refractor der Wiener Sternwarte.

> Vogel (H. W.). Sitzungsber, d. Wiener Akad., 88 II, 791-815; Beiblätter, 8, 598-511 (Abs.).

Spectroscopie stellaire.

Wolf et Rayet. Comptes Rendus, 65, 292.

Analyse spectrale de la lumière de quelques étoiles.

Wolf. Comptes Rendus, 68, 1470.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne und der Fixsterne.

Zollner (F.). Ann. Phys. u. Chem., 141, 373.

b, COMETS.

1, Spectra of Comets in general.

La matière radiante et les comètes.

Begouen. Revue scientifique, 30, 297.

Remarques sur la lumière propre des comètes.

Berthelot. Ann. Chim. et Phys., (5) 27, 232-3; Jour. Chem. Soc., 44, 261 (Abs.).

Comets; their composition, purpose and effect upon the earth.

Boss (L.). Observatory (1882), 215-221.

Sur l'analyse spectrale appliquée aux comètes.

Faye. Comptes Rendus, 93, 361.

Sur les queues des comètes.

Flammarion. Comptes Rendus, 93, 136.

On Comets.

Huggins (W.). Proc. Royal Institution, 10, 1-11; Ann. Chim. et Phys., (5) 27, 408-425.

Ueber die chemische Constitution der Cometen, verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 135-139.

Observations sur la réfraction cométaire.

Meyer | W.). Arch. de Genève, |3) 8, 526-535; Beiblütter, 7, 141-142 (Abs.); Jour. de Phys., (2) 2, 387-8.

.

Sur la polarization de la lumière des comètes.

Prazmowski. Comptes Rendus, 93, 262.

Sur la lumière des comètes.

Respighi. Comptes Rendus, **93**, 439-440; Phil. Mag., (5) **12**, 300-307; Beiblätter, **5**, 745 (Abs.).

Observations sur le spectre des comètes.

Secchi (A.). Comptes Rendus, 78, 1467.

Cometary Theory.

Tyndall (J.). Phil. Mag., (4) 37, 241.

Ueber die Spectra der Cometen.

Vogel (H.). Astronom. Nachr., 80, 183-188; Ann. Phys. u. Chem., 149, 400-408; Nature, 9, 193.

2, Particular Comets.

(In the order of their last known dates.)

Comet c, 1859 (Donati's).

c, 1859, Donati's Comet. Comparaison du spectre produit par la lumière de la comète de Donati et par celle d'Arcturus.

Porro. Comptes Rendus, 47, 873.

Comet a, 1866.

Spectrum of Comet a, 1866.

Huggins (W.). Proc. Royal Soc., 15, 5.

Comet b, 1867.

Spectrum of Comet b, 1867.

Huggins (W.). Monthly Notices Astronom. Soc., 17, 288.

Comet b, 1868.

Spectrum of Comet b, 1868.

Huggins (W.). Proc. Royal Soc., 16, 481.

Comet a, 1871.

Spectrum of Comet a, 1871.

Huggins (W.). Chem. News, 23, 265.

Comet c, 1873.

Spectre de la comète c, 1873.

Wolf (C.) et Rayet (G.). Comptes Rendus, 77, 529.

Comet d, 1873.

Spectre de la comète d, 1873.

Rayet (G.) et André. Comptes Rendus, 77, 564.

Comet c, 1874 (Coggia's).

Observations spectroscopiques de la queue de la comète de Coggia.

Barthélemy (A.). Comptes Rendus, 79, 313, 578.

Spectrum of Coggin's Comet.

Huggins (W.). Proc. Royal Soc., 23, 154-159.

Coggia's Comet, its physical condition and structure. Physical theory of comets.

Norton (W. A.). Amer. Jour. Sci., (3) 15, 161-77.

Note sur le spectre de la comète de Coggia (c, 1874).

Rayet (G.). Comptes Rendus, 78, 1650-2; Amer. Jour. Sci., (3) 8, 156 (Abs.).

Spectre de la comète de Coggia.

Secchi (A.). Comptes Rendus, 79, 20, 284.

Observations spectroscopiques sur la comète de Coggia. Wolf et Rayet. Comptes Rendus, 79, 370-1.

Comet b, 1877 (Winnecke's).

On the spectrum of Comet b, 1877 (Winnecke's).

Airy (G. B.). Monthly Notices Astronom. Soc., 37, 469, 470.

The spectra of comets b and c, 1877.

Lindsay (Lord). Monthly Notices Astronom. Soc., 37, 430.

Spectre de la comète de Winnecke.

Secchi (A.). Comptes Rendus, 66, 1299, 1336.

Lumière de la comète de Winnecke.

Wolf et Rayet. Comptes Rendus, 71, 49.

Comet c, 1877 (Swift-Borelly).

On the spectra of comets b and c, 1877.

Lindsay (Lord). Monthly Notices Astronom. Soc., 37, 430.

.

Observations du spectre de la comète Borelly.

Secchi (A.). Comptes Rendus, 84, 427, 1289.

Ueber das Spectrum des von Borelly am 20, August entdeckten Cometen, sowie über das des hellen von Henry am 23 August aufgefundenen Cometen.

Vogel (II.). Astronom. Nachr. 82, 217-20; Amer. Jour. Sci., (3) 6, 393 (Abs.).

Observations des comètes b (Winnecke) et c (Swift-Borelly), 1877.

Wolf. Comptes Rendus, 84, 929-31, 1289-92.

Comet a, 1878 (Brorsen's).

Spectrum of Brorsen's Comet, observed at Greenwich.

Airy (G. B.). Monthly Notices Astronomical Soc., 39, 428-30.

Spectrum of Brorsen's Comet.

Backhouse (T. W.). Nature, 20, 28.

Spectrum des Brorsen'schen Cometen.

Brédischin (T.). Astronom. Nachr., 95, 15-16.

Spectrum of Brorsen's Comet.

Christie (W. H. M.). Nature, 20, 5, 75; Amer. Jour. Sci., (3) 17 496-7.

Spectrum of Brorsen's Comet.

Huggins (W.). Proc. Royal Soc., 16, 386; Nature, 19, 579.

Vorläufige Anzeige über das Spectrum des Brorsen'schen Cometen.

Konkoly (N. von). Astronom. Nachr., 94, 335-6; 95, 193-6.

Observations of Brorsen's Comet.

Lindsay (Lord). Monthly Notices Astronom. Soc., 39, 430.

Spectre de la comète de Brorsen.

Secchi (A.). Comptes Rendus, 66, 881.

Spectrum of Brorsen's Comet.

Watts (W. M.). Nature, 20, 27-8, 94.

Spectrum of Brorsen's Comet.

Young (C. A.). Amer. Jour. Sci., (3) **17**, 373-5; Nature, **19**, 559; Phil. Mag., (5) **8**, 178-9.

Comet d, 1879 (Palisa's).

Spectroscopische Beobachtung des Cometen Palisa.

Konkoly (N. von). Astronom. Nachr., 96, 39-42.

Observations of the spectrum of comet d, 1879.

Lindsny (Lord). Monthly Notices Astronom. Soc., 40, 23-5.

Comet d, 1880 (Hartwig's). Spectrum of.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 41, 52-3;

Nature, 22, 557; Beiblatter, 5, 129.

Comet b, 1881.

Observations of comet b, 1881.

Backhouse (T. W.). Monthly Notices Astronom. Soc., 42, 413-21.

Spectra of comets b and c, 1881.

Capron (J. R.). Nature, 24, 430-1.

Spectra of comets b and c, 1881.

Greenwich Observatory Reports, Monthly Notices Astronom. Soc., 42, 14-19.

Note on the observations of comet b, 1881, made at the United States
Naval Observatory.

Harkness (W.). Amer. Jour. Sei., (3) 22, 137-9.

Spectroscopische Beobachtungen der Cometen b und c, 1881.

Hasselberg (B.). Bull. Acad. St. Petersburg, 27, 417–25.

Preliminary notes on the photographic spectrum of comet b, 1881.

Huggins (W.). Proc. Royal Soc., 33, 1; Chem. News, 44, 183; Rept.

British Assoc. (1881), 320; Comptes Rendus, 92, 1483; 93, 26.

Note sur la photographie de la comète b, 1881, obtenu à l'observatoire de Meudon.

Janssen (J.). Jour. de Phys., (2) 1, 441-9.

Spectroscopische Beobachtungen der Cometen b und c, 1881, angestellt in O'Gyalla, Ungarn.

Konkoly (N. von). Naturforscher, 14, 321, 323, 331.

Physical observations of comet b, 1881, made at Forrest Lodge, Maresfield.

Noble (W.). Monthly Notices Astronom. Soc., 42, 47-49.

Spectrum of comet b, 1881.

Seabroke (G. M.). Nature, 24, 201, 431.

Observations spectroscopiques sur la comète b, 1881.

Thollon (L.). Comptes Rendus, 93, 37, 259, 383; Nature, 24, 224.

...

Ueber die Spectra der Cometen b und c, 1881.

Vogel (H. C.). Astronom. Nach., **100**, 301-4; Beiblätter, **5**, 867 (Abs.).

Observations de la comète b, 1881.

Wolf (C.). Comptes Rendus, 93, 36.

Spectroscopic observations upon the comet b, 1881.

Young (C. A.). Amer. J. Sci., (3) 22, 135-7; Beiblätter, 5, 663-4 (Abs.).

Comet c, 1881.

Note on the spectrum of comet c, 1881, as seen with a Browning's miniature spectroscope on the $4\frac{1}{2}$ telescope.

Backhouse (T. W.). Monthly Notices Astronom. Soc., 42, 43.

Note on photographs of the spectrum of the comet of June, 1881.

Draper (H.). Amer. Jour. Sci., (3) 22, 134-5; Chem. News, 44, 75-6;
Mem. Spettr. ital., 10, 150-1; Jour. de Phys., (2) 1, 153 (Abs.).

Spectra of comets b and c, 1881.

Greenwich Observatory, Monthly Notices Astronom. Soc., 42, 14-19.

Spectroscopische Beobachtungen der Cometen b und c, 1881.

Hasselberg (B.). Bull. Acad. St. Petersburg, 27, 417-25.

Spectroscopische Beobachtungen der Cometen b und c, 1881, angestellt am astrophysikalischen Observatorium in O'Gyalla (Ungarn).

Konkoly (N. von). Naturforscher, 14, 321, 323, 331.

Études spectroscopiques sur les comètes b et c, 1881.

Thollon (L.). Comptes Rendus, 93, 383.

Ueber die Spectra der Cometen b und c, 1881.

Vogel (H. C.). Astronomische Nachr., 100, 301-4; Beiblätter, 5, 867.

Spectrum of Schaeberle's Comet.

Capron (J. R.). Nature, 24, 430-1. (See also Tacchini, in Comptes Rendus, 93, 261.)

Telbutt's Comet, origination of its proper light.

Smyth (C. Piazzi). Nature, 24, 430.

Comet a, 1882 (Wells's).

Spectrum of comet a, 1882 (Wells's).

Backhouse (T. W.). Nature, 26, 56; Beiblätter, 6, 678.

Les vapeurs du sodium dans la comète de Wells.

Bredichin (T.). Astronom. Nachr., 102, 207; Beiblatter, 6, 678 (Abs.).

Ueber das Spectrum des Cometen Wells.

Dunér (N. C.). Astronom. Nachr., 102, 159, 169; Monthly Notices Astronom. Soc., 42, 412-13; Beiblatter, 6, 678 (Abs.).

Spectroscopic observations of comet a, 1882 (Wells).

Greenwich Observatory Rept., Monthly Notices Astronom. Soc., 42, 251, 410-12.

Ueber das Spectrum des Cometen a, 1882 (Wells).

Hasselberg (B.). Astronom. Nachr., 102, 259-64; Beiblatter, 6, 744 (Abs.); Nature, 26, 344 (Abs.).

On the photographic spectrum of comet a, 1882 (Wells).

Huggins (W.). Proc. Royal Soc., 34, 148-150; Nature, 26, 179
(Abs.); Beiblätter, 6, 679 (Abs.); Amer. Jour. Sci., (3) 24, 402-3;
Comptes Rendus, 94, 1689-91.

Spectroscopische Beobachtungen des Concten Wells, angestellt am astrophysikalischen Observatorium in O'Gyalla (Ungarn).

Konkoly (N. von). Naturforscher, 15, 245; Beiblatter, 6, 678 (Abs.).

On the spectrum of comet a, 1882 (Wells), observed at the Royal Observatory of Greenwich.

Maunder. Monthly Notices Astronom. Soc., 42, 251, 410-12; Mem. Spettr. ital., 11, 79.

Spettro della Cometa Wells osservato à Palermo.

Riccò (A.). Mem. Spettr. ital., 11, 76.

Cometa Wells, Spettro osservato all'Equatore Merz del R. Osservatorio del Collegio romano.

Tacchini (R.). Mem. Spettr. ital., 11, 77-8; Comptes Rendus, 94, 1031-3.

Ueber das Spectrum des Cometen Wells.

Vogel (H. C.). Astronom. Nachr., 102, 159, 199-202; Beiblatter, 6, 678 (Abs.).

Su di una particolaritá luminosa rimarcata a Palermo nella coda della cometa (Wells).

Zona (T.). Mem. Spettr. ital., 11, 76-7; Beiblatter, 6, 679 (Abs.).

-

Comet b, 1882 (Cruls).

Analyse spectrale de la grande comète australe.

Cruls. Comptes Rendus, 95, 825.

Beobachtungen des grossen September Cometen, 1882, am astrophysicalischen Observatorium zu Herény, Ungarn.

Gothard (E. von). Astronom. Nachr., **103**, 377–80; Beiblätter, **7**, 116 (Abs.).

- Spectroscopische Beobachtungen des grossen September Cometen, 1882 II. Gothard (E. von). Astronom. Nachr., **105**, 311-14.
- Sur le déplacement des raies du sodium observé dans le spectre de la grande comète de 1882.

Gouy et Thollon. Comptes Rendus, **96**, 371-2; Nature, **27**, 380 (Abs.); Amer. Jour. Sci., (3) **25**, 309; Beiblätter, **7**, 293 (Abs.).

Zur Spectroscopie des grossen September Cometen, 1882.

Hasselberg (B.). Astronom. Nachr., 104, 13-16; Beiblätter, 7, 293 (Abs.).

Beobachtung des grossen September Cometen auf der Sternwarte in O'Gyalla (Ungarn).

Konkoly (N. von). Astronom. Nachr., 104, 45-8; Monthly Notices Astronom. Soc., 43, 56-7; Beiblätter, 7, 293.

Osservazioni astrofisiche della grande cometa di settembre, 1882.

Riceò (A.). Astronom. Nachr., 103, 281-4; Beiblätter, 7, 28 (Abs.).

Osservazioni spettroscopiche della cometa Cruls fatte collo spettroscopio di Clean applicato al refrattore di Om. 25 nell'Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 11, Sept. 15-17.

- Observations of the great comet b, 1882, made at Sydney Observatory.
 Russell (H. C.). Monthly Notices Astronom. Soc., 43, 31.
- Sur une comète observée à Nice.

Thollon et Gouy. Comptes Rendus, 95, 555-7; Beiblätter, 7, 116 (Abs.).

Observations spectroscopiques sur la grande comète (Cruls).

Thollon et Gouy. Comptes Rendus, 95, 712-14; Nature, 27, 24 (Abs.); Beiblätter, 7, 28-9 (Abs.).

Sur le déplacement des raies du sodium observé dans le spectre de la grande comète de 1882.

Thollon et Gouy. Comptes Rendus, 96, 371.

Beobachtungen des grossen September Cometen, 1882.

Vogel (H. C.). Astronom. Nachr., **103**, 279-282; Beiblätter, **7**, 28 (Abs.).

(See also Tacchini, in Comptes Rendus, 93, 261.)

Comet a, 1883 (Brooks-Swift). Beobachtung des Cometen a, 1883 (Brooks-Swift).

Gothard (E. von). Astronom. Nuchr., 105, 125-6.

Spectroscopic Observations of Comet a, 1883 (Brooks-Swift).

Konkoly (N. von). Monthly Notices Astronom. Soc., 43, 328-9.

Finlay's Comet. Sulla spettro della cometa Finlay, Settembre, 1883.

Hasselberg (B.). Mem. Spettr. ital., 11, no. 11, 1-3; Beiblätter, 7, 293 (Abs.).

Comet a, 1884 (Pons-Brooks).

Aspect de la comète Pons-Brooks, le 13 Janvier, 1884. Cruls (L.). Comptes Rendus, **98**, 898.

Spectroscopische Beobachtungen des Cometen a, 1884 (Pons-Brooks). Gothard (E. von). Astronom. Nuchr., 109, 99-106.

Spectrum of Comet b, 1883 (Pons-Brooks).

Greenwich Observatory Rept., Monthly Notices Astronom. Soc., 44, 62-3.

Spectroscopische Beobachtungen des Cometen Pons-Brooks.
Hasselberg (B.). Astronom. Nachr., 108, 55-56.

Vorläufige spectroscopische Beobachtung des Cometen Pons-Brooks.

Konkoly (N. von). Astronom. Nachr., 107, 41-2; Observatory, 6, 333-4; Amer. Jour. Sci., (3) 27, 76-7; Beiblatter, 8, 33 (Abs.); Monthly Notices Astronom. Soc., 44, 251-3.

Spectroscopische Beobachtungen des Cometen Pons-Brooks. Kövesligethy (R. v.). Astronom. Nachr., 108, 169-174.

Observations spectroscopiques sur la comète Pons-Brooks.
Perrotin. Comptes Rendus, 98, 344.

Spectre de la comète Pons-Brooks, à l'observatoire de Bordeaux. Rayet (G.). Comptes Rendus, 97, 1352; 98, 348.

Sullo spettro della cometa Pons-Brooks.
Riccò (A.). Mem. Spettr. ital., 13, 39-40.

Observations spectroscopiques faites à Nice sur la comète Pons-Brooks.

Thollon (L.). Comptes Rendus, 98, 33; Beiblätter, 8, 221.

Étude spectroscopique de la comète Pons-Brooks, faite au réflecteur de Om. 50 de l'Observatoire d'Alger.

Trépied (C.). Comptes Rendus, 97, 1540-1; Nature, 19, 255 (Abs.).

- 11

Sur le spectre de la comète Pons-Brooks.

Trépied (C.). Comptes Rendus, 98, 32-3.

Variation singulière de la comète Pons-Brooks.

Trépied (C.). Comptes Rendus, 98, 614.

Einige Beobachtungen über den Cometen Pons-Brooks, insbesondere über das Spectrum desselben.

Vogel (H. C.). Astronom. Nachr., 103, 21-6.

Observations of Comet Pons-Brooks.

Young (C. A.). Astronom. Nachr., 103, 305-8.

Encke's Comet.

Note on the spectrum of Encke's Comet.

Huggins (W.). Proc. Royal Soc., 20, 45; Comptes Rendus, 73, 1297– 1301.

Sur le spectre de la comète Encke.

Tacchini (P.). Comptes Rendus, 93, 949; Beiblätter, 6, 106.

Spectre de la comète de Tempel.

Secchi (A.). Comptes Rendus, 62, 210.

Spectrum of comet c, 1886.

Sherman. Amer. Jour. Sci., (3) 32, 1

c, DISPLACEMENT OF STELLAR SPECTRA.

Effect of a star's rotation on its spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 37, 278.

Spectroscopic results for the motions of stars in the line of sight, obtained at the Royal Observatory, Greenwich.

Airy (G. B.). Monthly Notices Astronom. Soc., 36, 218; 38, 493; 41, 109; 42, 230; 43, 80; 44, 89; 45, 330; 46, 126; 47, 101.

Note on the displacement of lines in the spectra of stars.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 36, 313-317.

Remarques sur le déplacement des raies du spectre par le mouvement du corps lumineux ou de l'observateur.

Fizeau. Comptes Rendus, 69, 743; 70, 1062.

Sur un travail de M. l'abbé Spée concernant le déplacement des raies des spectres d'étoiles.

Houzeau et Montigny. Bull. de l'Acad. de Belgique, 47, 318-324.

Sur le déplacement des raies dans les spectres des étoiles produits par leur mouvement dans l'épace.

Huggins (W.). Comptes Rendus, 82, 1291-1293; Phil. Mag., (5) 2, 72-74.

On a method of finding the parallax of double stars, and on the displacement of the lines of the spectrum of a planet.

Niven (C.). Monthly Notices Astronom. Soc., 34, 339-347.

Spectroscopic observations of the motions of stars in the line of sight, made at the Temple Observatory, Rugby.

Seabroke (G. M.). Monthly Notices Astronom. Soc., 39, 450-453; 47 (1887), 93.

Sur le déplacement des raies dans les spectres des étoiles produit par leurs mouvements dans l'épace.

Secchi (A.). Comptes Rendus, 82, 761, 812.

Nouvelles remarques sur question du déplacement des raies spectrales, dû au mouvement propre des astres.

Secchi (A.). Comptes Rendus, 83, 117.

d, FIXED STARS.

1, In general.

Lecture on the physical and chemical constitution of the fixed stars and nebulæ.

Huggins (W.). Chem. News, 11, 270.

Spectra of some of the fixed stars.

Huggins (W.) and Miller (W. A.). Phil. Trans. (1864), 413; Phil. Mag., June, 1866; Proc. Royal Soc., 12, 444; 13, 242.

Untersuchungen über das Speetrum der Fixsterne.

Lamont. Jahrbuch d. Sternwarte bei München (1868), 90.

Spectrum der Fixsterne.

Merz (S.). Ann. Phys. u. Chem., 117, 654.

Spettri prismatici delle stelle fisse.

Secchi (A.). Atti de la Soc Ital., Roma, 1869.

2, Particular fixed stars.

*

Spectrum of Novæ Andromedæ.

Sherman. Amer. Jour. Sci., (3) 30, 378.

Observations of the spectrum of a new star in Andromeda at Greenwich Maunder (E. W.). Monthly Notices Astronom. Soc., 46 (1885), 19-21.

Outburst in Andromeda.

Perry (S. J.). Monthly Notices Astronom. Soc., 46 (1885-6), 22.

Note sur le spectre d'Antarès.

Secchi (A.). Comptes Rendus, 69, 163.

Spectrum of η Argo with bright lines.

Sueur (A. Le). Nature, 1, 517.

Spectroscopische Beobachtung von γ Cassiopeiæ.

Konkoly (N. von). Astronom. Nachr., 107, 61-2; Beiblätter, 8, 221.

Beobachtungen der hellen Linien in dem Spectrum von γ Cassiopeiæ.

Gothard (E. von). Astronom. Nachr., **106**, 293; **103**, 233; Beiblätter, **7**, 862 (Abs.).

Spectrum of a new star in Corona Borealis.

Huggins (W.) and Miller (W. A.). Proc. Royal Soc., 15, 146.

On the spectrum of the new star in Cygnus.

Backhouse (J. W.). Monthly Notices Astronom. Soc., 39, 34-37; Nature, 15, 295-6.

The new star in Cygnus.

Becquerel (E.). Monthly Notices Astronom. Soc., **37**, 200-202; Amer. Jour. Sci., (3) **13**, 395-97.

The new star in Cygnus.

Copeland (R.). Astronom. Nachr., 89, 37-40, 63; 90, 351-2; Nature, 15, 315-16; Amer. Jour. Sci., (3) 15, 76-77.

Sur le spectre de l'étoile nouvelle de la constellation du Cygne.

Cornu (A.). Comptes Rendus, 83, 1172-1174; Nature, 15, 158.

Spectrum of Nova Cygni.

Nature, 16, 400-3.

Étude spectroscopique de la nouvelle étoile signalée par M. Schmidt. Secchi (A.). Comptes Rendus, **34**, 107, 290.

Der neue Stern in Cygnus.

Vogel (H.). Astronom. Nachr., 89, 37-40, 63; 90, 351; Nature, 15, 315; Amer. Jour. Sci., (3) 15, 76.

Spectrum of the star Ll 13412.

Pickering (E. C.). Nature, 23, 604; Beiblätter, 5, 511 (Abs.).

6 т

Photographs of the spectra of a Lyra and of Venus.

Draper (II.). Amer. Jour. Sci., (3) 13, 95; Nature, 15, 218; Phil. Mag., (5) 3, 238.

Beobachtungen der hallen Linien in dem Spectrum von & Lyræ. Gothard (E. von). Astronom. Nachr., 108, 288.

Lettre accompagnant l'envoi d'une figure du spectre d'a d'Orion.

Secchi (A.). Comptes Rendus, 62, 591; Monthly Notices Astronom. Soc., 26, 214.

Spectrum of the variable star a Orionis.

Huggins (W.) and Miller (W. A.). Monthly Notices Astronom. Soc., 26, 215.

Sur le spectre de l'étoile a d'Orion.

Janssen (J.). Comptes Rendus, 57, 1008.

Spectrum of a new star in Orion.

Copeland (R.). Monthly Notices, 46, 109-114. Note by Maunder, do., 284-6.

Observations on the spectrum of Nova Orionis at Greenwich.

Maunder (E. W.). Monthly Notices Astronom. Soc., 46 (1885-6), 114-115.

Disappearance of ε Piscium at its occultation of Jan. 4, 1865, with conclusions as to the non-existence of a lunar atmosphere.

Huggins (W.). Monthly Notices, 25, 60; Chem. News, 11, 175.

Sur le spectre de Sirius.

Janssen (J.). Comptes Rendus, 57, 1008.

Note sur les spectres des trois étoiles de Wolf.

Secchi (A.). Comptes Rendus, 69, 39, 163, 1053.

Sur trois petites étoiles.

Wolf et Rayet. Comptes Rendus, August, 1867.

e, MEASUREMENTS OF STELLAR SPECTRA.

Measurements of stellar lines.

Airy (G. B.). Monthly Notices Astronom. Soc., 23, 190.

.

Stellar spectrometry.

Report of the British Assoc., 1868.

Measurement of stellar spectra.

Rutherfurd (L. M.). Amer. Jour. Sci., 35, 71.

Measurement of a few stellar lines.

Secchi (A.). Astronom. Nachr., 3. Marz, 1863.

f, SPECTRA OF METEORS.

Spectra of the meteors of November 13-14, 1866.
Browning (J.). Phil. Mag., (4) 33, 234.

Presence of lithium in meteorites.

Bunsen. Phil. Mag., (4) 23, 474.

Meteoric Arc Spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 32, 33.

Spectra of shooting stars.

Herschel (A. S.). Nature, 9, 142-3.

Progress of meteor spectroscopy.

Herschel (A. S.). Nature, 24, 507-8; Beiblätter, 5, 871.

Spectroscopische Beobachtungen der Meteorite.

Konkoly (N. von). Astronom. Nachr., 95, 283-6; Monthly Notices Astronom. Soc., 33, 575-6; Nature, 20, 521-2 (Abs.).

Ueber die chemische Constitution der Planeten verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 135-9.

A catalogue of observations of luminous meteors,

by Baden Powell from 1848 till 1859, by Glaisher till 1867, and by others till 1882; all in the Reports of the British Assoc. for those years.

Note sur les spectres stellaires, et sur les étoiles filantes.

Secchi (A.). Comptes Rendus, 65, 979; 75, 606-613.

Sur les diverses circonstances de l'apparition d'un bolide aux environs de Rome et sur les spectres stellaires.

Secchi (A.). Comptes Rendus, 75, 655-9.

L'existence d'essaines d'étoiles filantes à proximité du globe terrestre. Silbermann (J.). Comptes Rendus, 74, 553-7, 638-642.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 294-302; Jour. Chem. Soc. (1876), 1, 27-8 (Abs.).

Preliminary note on an examination of gases of the meteorite of Feb. 12, 1875.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 459-60; Jour. Chem. Soc. (1876), 1, 352 (Abs.).

g, NEBULÆ.

1, In general.

Recherches sur l'intensité relative des raies spectrales des nébuleuses.

Fiévez (C.). Bull. de l'Acad. de Belgique, (2) 49, 107-113; Phil. Mng., (5) 9, 309-312; Beiblätter, 4, 461-2.

Recherches sur les spectres des gaz dans leurs rapports avec la constitution du Soleil, des étoiles et des nébuleuses.

Franckland et Lockyer. Comptes Rendus, 68, 1519.

Spectra of the nebulæ.

Huggins (W.). Phil. Trans. (1864), 437.

Further observations on the spectra of some of the nebulæ.

Huggins (W.). Phil. Trans. (1866), 381-387; Proc. Royal Soc., 15, 17.

On the motions of some of the nebulæ towards or from the Earth.

Huggins (W.). Proc. Royal Soc., 22, 251-4; Amer. Jour. Sci., (3) 8, 75-77; Phil. Mag., (4) 48, 471-4.

Note on the bright lines in the spectra of stars and nebulæ.

Lockyer (J. N.). Proc. Royal Soc., 27, 50.

New planetary nebulæ.

Pickering (E. C.). Amer. Jour. Sci., (3) 20, 303-305; Beiblätter, 5, 130 (Abs.).

Spettro di alcune nebulose.

Seechi (A.). Naturforscher (Berliner), 1, 279; 2, 279, 356; Mein. Spettr. ital., 1, 33.

2, Spectra of particular nebula.

Nebula of Argo.

Le Sueur. Proc. Royal Soc., 18, 245.

The nebula in Cygnus.

Winnecke. Monthly Notices Astronom. Soc., 40, 92.

On the inferences to be drawn from the appearance of bright lines in the spectra of irresolvable nebulæ.

Huggins (W.). Proc. Royal Soc., 26, 179-181.

On a cause for the appearance of bright lines in the spectra of irresolvable star-clusters.

> Stone (E. J.). Proc. Royal Soc., 26, 156-7, 517-19; Monthly Notices Astronom. Soc., 38, 106-8.

> > .

On photographs of the nebula in Orion and of its spectrum.

Draper (H.). Amer. Jour. Sci., (3) 23, 339; Monthly Notices Astronom. Soc., 42, 367-8; Nature, 26, 33; Comptes Rendus, 94, 1243.

Spectrum of the Great Nebula in the Sword-Handle of Orion.

Huggins (W.). Proc. Royal Soc., 14, 39.

On the spectrum of the Great Nebula in Orion, and on the motions of some stars towards or from the earth.

Huggins (W.). Proc. Royal Soc., 20, 379-394; Phil. Mag., (4) 45, 133-147; Nature, 6, 231-235; Amer. Jour. Sci., (3) 5, 75-78; Monthly Notices Astronom. Soc., 32, 359-362; Comptes Rendus, 94, 685.

Photographic spectrum of the Great Nebula in Orion.

Huggins (W.). Nature, 25, 489; Ann. Chim. et Phys., (5) 28, 282;Proc. Royal Soc., 33, 425; Amer. Jour. Sci., (3) 23, 355-6.

Lumière spectrale de la nébuleuse d'Orion.

Secchi (A.). Comptes Rendus, 60, 543.

Observations of the Nebula of Orion, made with the great Melbourne Telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

New planetary nebulæ.

Pickering (E. C.). Amer. Jour. Sci., (3) 20, 303-5; Beiblätter, 5, 130 (Abs.).

Neue Linien im Spectrum planetischer Nebel.

Zöllner (F.). Ann. Phys. u. Chem., 144, 451.

Spectra of southern nebulæ.

Herschel (Lieut. John). Proc. Royal Soc., **16**, 416, 417, 451; **17**, 58 61, 303.

Note on the Rev. T. W. Webb's new nebula.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 91; Beiblätter, 4, 614 (Abs.).

Ueber das Spectrum des von Webb entdeckten Nebels im Schwan.

Vogel (H. C.). Astronom. Nachr., 96, 287; Beiblätter, 4, 468 (Abs.); Monthly Notices Astronom. Soc., 40, 294.

h, photography of stellar spectra.

Researches upon the photography of stellar and planetary spectra.

Draper (H.). Proc. Amer. Acad., n. s. 11, 231-261; Amer. Jour. Sci., (3) 18, 419-425; Nature, 21, 83-85; Beiblätter, 4, 374.

Note on the photographic spectra of stars.

Huggins (W.). Proc. Royal Soc., 25, 445; 30, 20; Nature, 21, 269-270; Phil. Trans., 171, 669-690; Beiblätter, 467-468 (Abs.).

Note préliminaire sur les photographies des spectres stellaires.

Huggins (W.). Comptes Rendus, 83, 1229.

Sur les spectres photographiques des étoiles.

Huggins (W.). Comptes Rendus, 90, 70-73; Amer. Jour. Sci., (3) 19, 317.

Investigations in stellar photography.

Pickering (E. C.). Memoirs Amer. Acad., 11 (1886), 179-226; Beiblätter, 11 (1887), 115 (Abs.).

Report on the present state of celestial photography in England.

Rue (Warren de la). Rep'ts British Assoc. for 1859 and 1861.

Études astrophotographiques.

Zenger (C. V.). Comptes Rendus, 97, 552-555; Beiblätter, 7, 860-862 (Abs.).

i, SPECTRA OF PLANETS.

1, In general.

On some points connected with the chemical constituents of the solar system.

Gladstone (J. H.). Phil. Mag., (5) 4, 379-385; Jour. Chem. Soc., 34, 189 (Abs.).

Ueber die chemische Constitution der Planeten vergliehen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 135-139.

On the displacement of the lines of the spectrum of a planet.

Niven (C.). Monthly Notices Astronom. Soc., 34, 389-347.

Sur les raies atmosphériques des planètes.

Secchi (A.). Comptes Rendus, 59, 182.

Untersuchungen über die Spectra der Planeten.

Vogel (H. C.). Ann. Phys. u. Chem., 158, 461-472.

2, Spectra of particular planets.

On a photograph of Jupiter's spectrum showing evidence of intrinsic light from that planet.

Draper (H.). Monthly Notices Astronom. Soc., 40, 433-435; Amer. Jour. Sci., (3) 20, 118-120.

- 61

Note on the spectrum of the red spot on Jupiter.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 87-88; Beiblätter, 4, 614 (Abs.).

Observation du spectre de Jupiter.

Secchi (A.). Comptes Rendus, 59, 309.

Spectroscopic observations of Jupiter, made with the great Melbourne telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

Physical observations of Mars.

Airy (G. B.). Monthly Notices Astronom. Soc., 38, 34-38.

Spectrum of Mars.

Huggins (W.). Monthly Notices Astronom. Soc., 27, 178; Jour. Franklin Inst., 84, 261.

Note on the spectrum of the eclipsed Moon.

Noble (W.). Monthly Notices Astronom. Soc., 38, 34.

Sur l'application de l'analyse spectrale à la question de l'atmosphère lunaire.

Janssen (J.). Comptes Rendus, 56, 962.

Lettre sur le spectre de la planète Neptune et sur quelques faits d'analyse spectrale.

Seechi (A.). Comptes Rendus, 69, 1050.

Raies du spectre du planète Saturne.

Secchi (A.). Comptes Rendus, 60, 1167; Phil. Mag., (4) 30, 73.

Spectrum of Uranus.

Huggins (W.). Chem. News, 23, 265; Proc. Royal Soc., 19, 488-491; Phil. Mag., (4) 42, 223-226; Nature, 4, 88; Amer. Jour. Sci., (3) 2, 138.

Résultats fournis par l'analyse spectrale de la lumière d'Uranus.

Secchi (A.). Comptes Rendus, 68, 761.

The Transit of Venus.

Cacciatore. Nature, 27, 180.

Osservazioni del passagio di Venere sul disco solare fatte in Italia nel 6 Dicembre 1882.

Crova (A.). Mem. Spettr. ital., 11, Dic. 1-23; Beiblätter, 7, 375 (Abs.).

Photographs of the spectrum of Venus, Dec., 1876.

Draper (H.). Nature, 15, 218; Amer. Jour. Sci., (3) 13, 95; Phil. Mag., (5) 3, 238.

Observations of the transit of Venus, Dec. 6, 1882, made at Mells, ten miles south of Bath.

Horner (Maurer). Mon. Not. Astronom. Soc., 43, 276.

Note sur l'observation du passage de la planète Vénus sur le Soleil.

Janssen (J.). Comptes Rendus, 96, 288-92; Beiblatter, 7, 375.

Observation of the transit of Venus, Dec. 6, 1882, made at the Allegheny Observatory.

Langley (S. P.). Mon. Not. Astronom. Soc., 41, 71.

The spectroscope and the transit of Venus. Nature, 11, 171; 27, 156-157.

Nouveau moyen d'observer les éclipses et les passages de Vénus. Secchi (A.). Comptes Rendus, 73, 984.

Essai pendant une éclipse solaire, de la nouvelle méthode spectroscopique proposée pour le prochain passage de Vénus.

Secchi (A.). Comptes Rendus, 76, 1327.

Observations du passage de Vénus à l'Observatoire royal du Collège romain.

Taechini (P.). Comptes Rendus, 95, 1200-1211.

Observation du passage de Vénus, à Avila, Espagne. Thollon (L.). Comptes Rendus, 95, 1340-42.

Observations of the transit of Venus, Dec. 6, 1882, made at Princeton, N. J., and South Hadley, Mass.

Young (C. A.). Amer. Jour. Sei., (3 25, 321-29.

j, solar spectrum.

1, Solar spectrum in general.

Influence of water in the atmosphere on the solar spectrum.

Abney and Festing. Proc. Royal Soc., 35, 325-341; Beiblatter, 9, 707 (Abs.).

ъ.

Lecture on solar physics.

Abney (W. de W.). Nature, 25, 162-166, 187-191, 252-257.

Sunlight and skylight at high altitudes.

Abney (W. de W.). Nature, **26**, 586; Beiblätter, **7**, 28 (Abs.); Jour. de Phys., (2) **3**, 47-48 (Abs.).

The solar spectrum, from λ 7150 to λ 10000.

Abney (W. de W.). Phil. Trans. (1886), Part II, XIII.

Remarques sur quelques raies du spectre solaire.

Angström (A. J.) Comptes Rendus, **63**, 647; Phil. Mag., (4) **23**, 76; **24**, 1.

Remarques de M. Janssen. Comptes Rendus, 63, 728.

Ueber die Fraunhofer'schen Linien im Sonnenspectrum.

Angström (A. J.). Ann. Phys. u. Chem., 117, 290.

Mémoire sur la constitution du spectre solaire.

Becquerel (E.). Comptes Rendus, 14, 901-3.

Des effets produits sur les corps par les rayons solaires.

Becquerel (E.). Comptes Rendus, 17, 882.

Constitution physique du Soleil.

Boillot (A.). Comptes Rendus, 72, 728.

Mémoire sur le spectre solaire.

Brenta. Comptes Rendus, 11, 766.

On the lines of the solar spectrum, and on those produced by the Earth's atmosphere, and by the action of nitrous acid gas.

Brewster (Sir D.). Phil. Mag., (3) **8**, 384; Proc. Royal Soc., **10**, 339 (Abs.); Comptes Rendus, **30**, 578.

On the lines of the solar spectrum, with a map of the solar spectrum, giving the absorption lines of the Earth's atmosphere.

Brewster and Gladstone. Phil. Trans. (1860), 149.

Catalogue of the oscillation-frequencies of solar rays.

British Association Rep't for 1878.

Ueber die Fraunhofer'schen Linien im Sonnenspectrum, wie sie sich dem unbewaffneten Auge zeigen.

Broch (O. J.). Ann. Phys. u. Chem., Ergänzungsband, 3, 311.

Constitution physique du Soleil.

Chacornae. Comptes Rendus, 60, 170.

Sur la distribution de l'intensité lumineuse et de l'intensité visuelle dans le spectre solaire.

Charpentier (Aug.). Comptes Rendus, 101 (1885), 182-183.

Spectral estimates of the Sun's distance.

Chase (P. E.). Proc. Amer. Philosoph. Soc., 18, 227.

Sur le spectre normal du Soleil.

Cornu (A.). Ann. de l'Ecole normule, (2) 3, 421-434; Arch. de Genève, (2) 52, 62-3 (Abs.).

Constitution du Soleil; reponse à M. Janssen.

Cornu (A.). Comptes Rendus, 73, 545.

Sur quelques conséquences de la constitution du spectre solaire. Cornu (A.). Comptes Rendus, 86, 530.

Considération sur les couleurs du spectre solaire.

Dalet. Comptes Rendus, 28, 273.

Action du spectre solaire sur les sels haloïdes d'argent, accroissement de leur sensibilité dans certaines parties du spectre par l'adjonction de matières colorantes et autres.

Eder (J. M.). Jour. de Phys., (2) 4 (1885), 185.

Constitution physique du Soleil.

Faye. Comptes Rendus, 60, 89, 138, 168.

Résultats concernant la constitution physique du Soleil, obtenus soit par l'analyse spectrale, soit par l'étude mécanique de la rotation.

Faye. Comptes Rendus. 68, 1139.

Analyse spectrale du Soleil.

Faye. Comptes Rendus, 74, 921.

Sur la théorie physique du Soleil proposée par M. Vicaire.

Faye. Comptes Rendus, 77, 293-301.

Sur la constitution physique et mécanique du Soleil.

Faye. Comptes Rendus, 96, 355-361.

Sur une objection de M. Tacchini relative à la théorie du Soleil dans les "Memorie dei Spettroscopisti italiana."

Faye. Comptes Rendus, 96, 811-816.

Réponse à une note de M. Thollon sur l'interprétation d'une phénomène de spectroscopie solaire.

Faye. Comptes Rendus. 97, 779-782.

Studien über den Ursprung der Fraunhofer'schen Linien in ihrer Bezichung zur Constitution der Sonne.

Fievez (Ch.). Bull. de l'Acad. de Belgique, (3) 12 (1886), 25-32; Beildatter, 11 (1887), 94 (Als.)

- 46

Rapport sur un Mémoire et plusieurs Notes de M. Janssen concernant l'analyse prismatique de la lumière solaire.

Fizeau. Comptes Rendus, 58, 795.

Spectroscopische Beobachtungen der Sonne.

Franckland u. Lockyer. Ber. chem. Ges., 2, 742.

On some points connected with the chemical constituents of the solar system.

Gladstone (J. H.). Phil. Mag., (5) **4**, 379-385; Jour. Chem. Soc., **34**, 189 (Abs.).

Solar Chemistry.

H. (G.). Nature, 24, 581-2.

Spectrum of the Sun; spectra of the limb and centre of the Sun.

Hastings (C. S.). Amer. Jour. Sci., 105, 369; Nature, 8, 77.

A theory of the constitution of the sun, founded upon spectroscopic obvations, original and other.

Hastings (C. S.). Amer. Jour. Sci., (3) **21**, 33-44; Phil. Mag., (5) **11**, 91-103; Beiblätter, **5**, 588-592 (Abs.).

The Solar Spectrum.

Herschel (J.). Nature, 6, 454-455.

Action comparative des rayons solaires sous différentes latitudes.

Herschel (J.). Comptes Rendus, 3, 506.

Observations on the spectra of the Sun.

Huggins (W.). Phil. Trans. (1868), 529.

Ueber die Längstreifen im Sonnenspectrum.

Jahresber. d. Chemie, 1, 198; 4, 151; 5, 125; 6, 167.

Spectrum der Sonne.

Jahresber. d. Chemie, 14, 41, 43.

Fraunhofer Linien bei tiefem Stand der Sonne.

Jahresber. d. Chemie, 15, 26.

Constitution der Sonne.

Jahresber. d. Chemie, 17, 84.

Zusammenhang der Distanz der Spectrallinien mit den Dimensionem der Atome.

Jahresber. d. Chemie, 19, 78.

Sonnenspectrum.

Jahresber. d. Chemie, 25, 147.

Objective Darstellung des Sonnenspectrums.

Jahresber, d. Chemie, 29, 158.

Lettre à M. Dumas sur les résultats des observations spectroscopiques concernant la constitution du Soleil.

Janssen (J.). Comptes Rendus, 68, 312.

Constitution du Soleil.

Janssen (J.). Comptes Rendus, 73, 482-6.

Sur ce qu'ont jusqu'à ce jour d'incomplet les résultats fournis par l'analyse spectrale pour nous faire connaître la constitution du Soleil.

Janssen (J.). Comptes Rendus, 73. 793.

Réponse à la note de M. Tacchini inserée au dernier "Comptes Rendus," séance du 14 Mai 1877.

Janssen (J.). Comptes Rendus, 84, 11-2.

Notice sur les progrès récents de la physique solaire.

Janssen (J.). Ann. du Bureau des Longitudes (1879), 623-655; Beiblatter, 4, 277 (Abs.).

Die Chemie des Himmels.

Janssen (J.). Archiv. f. Pharmacie (1875), 51.

Reply to Angström's observations on the solar lines.

Janssen (J.). Phil. Mag., (4) 23. 78.

Objective Darstellung des Sonnenspectrums.

Kessler (F.). Ber. chem. Ges., 9, 577.

Sur la loi de Stokes.

Lamansky (S.). Comptes Rendus, 88, 1192.

In feuchter Luft sind die Streifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., 146, 205-221.

The solar atmosphere, an introduction to an account of researches made at the Alleghany Observatory.

Langley (S. P.). Amer. Jour. Sci., (3) 10, 45,1-497.

A proposed new method in solar spectrum analysis.

Langley (S. P.). Amer. Jour. Sci., (3) 14, 140-146; Beiblatter, 1, 621 (Abs.).

-

Solar spectrum at high altitudes.

Langley (S. P.). Amer. Jour. Sei., (3 24, 343.

Observations du spectre solaire.

Langley (S. P.). Comptes Rendus, 95, 482-487; Jour. Chem. Soc., 44, 137 (Abs.).

Procédé pour obtenir la récomposition de la lumière du spectre solaire. Lavaud de Lestrade. Comptes Rendus, **86**, 61.

On recent discoveries in solar physics made by means of the spectroscope. Lockyer (J. N.). Phil. Mag., (4) 38, 142.

Spectroscopic Observations of the Sun.

Lockyer (J. N.). Proc. Royal Soc., **15**, 256; **17**, 91, 128, 131, 350, 415, 506; **18**, 74; Ber. chem. Ges., **2**, 742; **3**, 578; Nature, **3**, 34.

Researches in spectrum analysis in connection with the spectrum of the sun, No. I.

Lockyer (J. N.). Proc. Royal Soc., 21, 83; Phil. Trans., 163, 253–275; Amer. Jour. Sci., (3) 5, 236–7 (Abs.).

Ditto, No. II.

Lockyer (J. N.). Proc. Royal Soc., 21, 285; Phil. Trans., 163, 639–658; Jour. Chem. Soc., (2) 11, 994–995 (Abs.); Phil. Mag., (4) 46, 407–410 (Abs.); Ber. chem. Ges., 6, 973 (Abs.).

Ditto, No. III.

Lockyer (J. N.). Proc. Royal Soc., 21, 508-514 (Abs.); Phil. Trans., 164, 479-494; Phil. Mag., (4) 47, 384-390.

Ditto, No. IV.

Lockyer (J. N.). Proc. Royal Soc., 22, 391; Phil. Trans., 164, 805-813; Phil. Mag., (4) 49, 326.

Ditto, No. V.

Lockyer (J. N.). Proc. Royal Soc., 25, 546.

Ditto, No. VI.

Lockyer (J. N.). Proc. Royal Soc., 27, 49, 279, 409.

Ditto, No. VII.

Lockyer (J. N.). Proc. Royal Soc., 28, 157-180; Amer. Jour. Sci.,
(3) 17, 93-116; Beiblätter, 3, 88-113; Nature, 19, 197-201, 225-230;
Ann. Chim. et Phys., (5) 16, 107-144; Chem. News, 39, I-5, 11-16.

Note on a recent communication of Messrs. Liveing and Dewar.

Lockyer (J. N.). Proc. Royal Soc., 29, 45-7; Beiblätter, 3, 710-711 (Abs.).

Recent researches in solar chemistry.

Lockyer (J. N.). Proc. Physical Soc., 2, 308-325; Phil. Mag., (5) 6, 161-176; Beiblätter, 3, 353-354 (Abs.).

Spectroscopic observations of the Sun.

Lockyer (J. N.) and Scabroke (G. M.). Phil. Trans., 165, 577-586.

Lectures on solar physics; the chemistry of the Sun.

Lockyer (J. N.). Nature, **24**, 267-274, 296-301, 315-324, 365-370, 391-399.

Constitution physique du Soleil.

Lockyer (J. N.). Comptes Rendus, 69, 121.

Réponse au Père Secchi.

Lockyer (J. N.). Comptes Rendus, 69, 452.

Observations spectroscopiques du Soleil.

Lockyer (J. N.). Comptes Rendus, 70, 1268.

Recherches expérimentales sur le spectre solaire.

Lockyer (J. N.). Comptes Rendus, 75, 1816-19.

Recherches d'analyse spectrale au sujet du spectre solaire.

Lockyer (J. N.). Comptes Rendus, 76, 1399.

Recherches sur les rapports d'analyse spectrale avec le spectre du Soleil.

Lockyer (J. N.). Comptes Rendus, 88, 148-154; Jour. Chem. Soc.,

36, 575-6 (Abs.).

Recherches sur l'analyse spectrale dans ses rapports avec le spectre solaire.

Lockyer (J. N.). Ann. Chim. et Phys., (4) 29, 430.

On a new method of spectrum observation.

Lockyer (J. N.). Amer. Jour. Sci., (3) 19, 303-311.

Solar spectroscopic observations.

Maclear (J. P.). Nature, 6, 514.

Considérations sur le spectre solaire.

Matthiessen. Comptes Rendus, 16, 917.

Spectrum of the Sun.

Mellone (M.). Amer. Jour. Sci., 55, 1.

Spectrum analysis of the Sun.

Miller (W. A.). Pop. Sci. Monthly, 8, 335.

Spectrum des durch Chlor gegangenen Sonnenlichtes.

Morren. Ann. Phys. u. Chem., 137, 165.

On the physical constitution of the Sun.

Norton (W. A.). Amer. Jour. Sci., (3) 1, 395-407; Phil. Mag., (4) 42, 55-67.

.

Spectrum of the Sun.

Olmstead (D.). Amer. Jour. Sci., (2) 48, 137.

Les raies du spectre solaire.

Peslin. Comptes Rendus, 74, 325.

Researches in circular solar spectra.

Pigott (G. West Royston). Proc. Royal Soc., 21, 426.

Spectroscopic discoveries concerning the Sun.

Proctor (R. A.). Temple Bar, 25, 281.

Réponse à une Note précédente du P. Secchi sur quelques particularités de la constitution du Soleil.

Respighi (L.). Comptes Rendus, 74, 1387-90.

Réponse aux critiques présentées par le Père Secchi, à propos des observations faites sur quelques particularités de la constitution du Soleil. Respighi (L.). Comptes Rendus, **75**, 134-138.

Sur la grandeur et les variations du diamètre solaire.

Respighi (L.). Comptes Rendus, 77, 715-720, 774-778.

Sulla constituzione fisica del Sole.

Respighi (L.). R. Accad. dei Lincei, 10 April, 1871.

Osservazioni solari dirette et spettroscopiche esequite nel R. osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 9, 25-36, 61-90, 161-189; 10, 146-147.

Recherches sur les raies du spectre solaire et des différents spectres électriques.

Robiquet. Comptes Rendus, 49, 606.

Solar spectrum in a hailstorm.

Romanes (C. H.). Nature, 25, 507.

Italian spectroscopy.

Secchi (A.). Nature, 6, 465-6.

Ueber den Einfluss der Atmosphäre auf die Linien des Spectrums.

Secchi (A.). Ann. Phys. u. Chem., 126, 485.

Certain spectroscopic observations.

Secchi (A.). Chem. News, 27, 244.

Notes sur les spectres solaires.

Seechi (A.). Comptes Rendus, 66, 124, 398.

Existence d'une couche donnant un spectre continu entre la couche rose et le bord solaire.

Secchi (A.). Comptes Rendus, 68, 580.

Étude spectrale des taches solaires; documents que peut fournir cette étude sur la constitution du Soleil.

Secchi (A.). Comptes Rendus, 68, 1082.

Remarques sur la lettre de M. Lockyer, du 2 Août. Seechi (A.). Comptes Rendus, 69, 315.

Replique à la Note de M. Loekyer, du 16 Août. Secchi (A.). Comptes Rendus, **69**, 549.

Résultats de quelques observations spectrales du Soleil. Secchi (A.). Comptes Rendus, 70, 903.

Note contenant une rectification numérique à sa dernière communication. Secchi (A.). Comptes Rendus, 70, 1062.

Déplacement des raies observées dans le spectre solaire. Secchi (A.). Comptes Rendus, 70, 1213.

Nouveaux observations concernant la constitution physique du Soleil. Secchi (A.). Comptes Rendus, 72, 362.

Quelques nouveaux résultats d'analyse spectrale. Secchi (A.). Comptes Rendus, 74, 593.

Sur quelques particularités de la constitution du Soleil. Secchi (A.). Comptes Rendus, 74, 1087-91.

Réponse aux observations presentées par M. Respighi sur quelques particularités de la constitution du Soleil.

- 70

Secchi (A.). Comptes Rendus, 74, 1501-7.

Observations des variations des diamètres solaires. Secchi (A.). Comptes Rendus, 75, 606-618.

Recherches spectroscopiques solaires.

Seechi (A.). Comptes Rendus, 75, 749.

Sur quelques observations spectroscopiques particulières. Secchi (A.). Comptes Rendus, 76, 1052-56.

Nouvelles recherches sur la diamètre solaire. Secchi (A.). Comptes Rendus, 77, 253-260.

Réponse à M. Respighi.

Sechi A.). Comptes Rendus, 77, 904.

Note on a possible ultra-solar spectroscopic phenomenon.

Smyth (C. Piazzi). Proc. Royal Soc., 20, 136.

The visual, grating and glass-lens, solar spectrum, in 1884.

Smyth (C. Piazzi). Trans. Roy. Soc. of Edinburgh, 32, part III, 519-544, with plates; Monthly Notices Astronom. Soc., 47 (1887), 191-2.

On the Sun as a variable star.

Stewart (B.). Lecture at the Royal Institution, April 12, 1867.

On the change of refrangibility of light; with a drawing of the fixed lines in the solar spectrum in the extreme violet, and in the invisible region beyond.

Stokes (G. G.). Phil. Trans., 1852 II, 463.

Lecture on solar physics.

Stokes (G. G.). Nature, 24, 595-8, 613-18.

On the bearing of recent observations upon solar physics.

Stoney. Phil. Mag., (4) 36, 441.

Osservazioni solari dirette e spettroscopiche fatte a Palermo nel 1 trimestre del 1879, nel secondo trimestre del 1879, nel terzo e quarto trimestre del 1879, nel 1 trimestre del 1880, nel secondo trimestre del 1880, nel 3 trimestre del 1880, nel 4 trimestre del 1880, riassunto delle osservazioni, 1880,

Tacchini (P.). Mem. Spettr. ital., **8**, 37-40, 52-54, 93-97, 102-104; **9**, 49-58, 105-110, 194-203; **10**, 5-11, 12; Comptes Rendus, **88**, 1131; **89**, 519.

Sull'andamento dell'attivitá solare del 1871 al 1878.

Taechini (P.). Mem. Spettr. ital., 8, 65-72.

Nouvelles observations spectrales.

Taechini (P.). Comptes Rendus, 77, 195-198.

Sur le magnésium dans le spectre solaire.

Tacchini (P.). Comptes Rendus, 84, 1450.

Résultats des observations solaires pendant le deuxième trimestre de 1878, et des observations pendant le troisième trimestre de 1878.

Taechini (P.). Comptes Rendus, 87, 259, 1031.

Sur la cause des spectres fugitifs observés par M. Trouvelot sur la limbe solaire.

Tacchini (P.). Comptes Rendus, 91, 156-8.

Observations solaires faites à l'observatoire royal du Collège romain pendant le troisième, 1880.

Tucchini (P.). Comptes Rendus, 91, 1053-4.

Observations solaires faites à l'Observatoire royal du Collège romain pendant le premier, le deuxième et le troisième trimestres de 1881.

Tacchini (P.). Comptes Rendus, 93, 380; 94, 830.

*Comparaison entre le spectre normal du Soleil et celui de réfraction suivant l'échelle de Kirchhoff.

Thalén (R.). Ann. Chim. et Phys., (4) 18, 211.

- Déplacement des raies spectrales, dû au mouvement de rotation du Soleil.

 Thollon (L.). Comptes Rendus, 88, 169-171; Beiblatter, 3, 355-6
 (Abs.); Jour. Chem. Soc., 36, 574.
- Observation faite sur un groupe de raies dans le spectre solaire.

 Thollon (L.). Comptes Rendus, 91, 368-70; Beiblatter, 4, 790 (Abs.);

 Amer. Jour. Sci., (3) 20, 430; Jour. Chem. Soc., 40, 333.
- Quelques phénomènes solaires observés à Nice.

 Thollon (L.). Comptes Rendus, 91, 487-92.
- Études spectroscopiques faites sur le Soleil à l'Observatoire de Paris.
 Thollon (L.). Comptes Rendus, 91, 656-60.
- Sur l'interprétation de quelques phénomènes de spectroscopie solaire.

 Thollon (L.). Comptes Rendus, 97, 747.
- Études faites au sommet du Pie du Midi, en vue de l'établissement d'une station astronomique permanente.

Thollon et Trépied. Comptes Rendus, 97, 834-836; Nature, 29, 7-8; Beiblatter, 8, 824 (Abs.).

Observations relatives à la réponse de M. Faye concernant divers phénomènes de spectroscopie solaire.

Thollon (L.). Comptes Rendus, 97, 900.

Recherches sur la décomposition de l'acide carbonique dans le spectre solaire par les parties vertes des végétaux.

Timirinsef (C.). Ann. Chim. et Phys., (5) 12, 355.

Spectres fugatifs observés près du limbe solaire.

Trouvelot (L.). Ann. Chim. et Phys., (5) 19, 433-449; Beiblatter, 4, 727 (Abs.).

.

Note par M. Tacchini. Comptes Rendus, 91, 156-8.

Sur la constitution physique du Soleil; réponse aux critiques de M. Faye. Vicaire (E.). Comptes Rendus, 75, 527-31; 77, 1401-95. Vermehrung und Verdickung der Fraunhofer'schen Linien bei Sonnenuntergang.

Weiss (A.). Ann. Phys. u. Chem., 116, 191; Phil. Mag., (4) 24, 407.

Remarks on spectroscopic observations of the Sun, made at the Temple Observatory, Rugby School, in 1871-2-3.

Wilson (J. M.) and Seabroke (G. M.). Monthly Notices Astronom. Soc., 34, 26-29.

Application of the spectroscope to observations of the Sun.

Winlock (J.). Proc. Amer. Acad., 8, 330.

Note on the duplicity of the "1474" line in the solar spectrum. Young (C. A.). Amer. Jour. Sci., (3) 11, 429-431.

Spectroscopic observations of the Sun.

Young (C. A.). Nature, 3, 34.

Spectroscopic Notes.

Young (C. A.). Amer. Jour. Sci., (3) **20**, 353-8; (3) **26**, 333; Nature, **23**, 281; Chem. News, **20**, 271; Beiblätter, **5**, 287.

- Anologia delle vibrazioni luminose e delle spettro solare, con 1 tav. Zantedeschi (F.). Sitzungsber. Wiener Akad., 25, 145-165.
- De mutationibus quae contingunt in spectro solari fixo elucabratio, Zantedeschi (F.). Münchener Abhandlungen, **8**, 99.
- Ueber die Temperatur und die physische Beschaffenheit der Sonne.

 Zöllner (F.). Der Naturforscher, 3, 93, 189, 233, 311; Ber. Sächs. Ges.

 Wiss., 25, 158-194; Phil. Mag., (4) 46, 290-304, 343-56.

2, Solar Absorption.

Sur la loi de répartition suivant l'altitude de la substance absorbant dans l'atmosphère.

Cornu (A.). Comptes Rendus, 90, 940-946; Beiblätter, 4, 727-8 (Abs.).

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-7.

Sur la mesure de l'intensité des raies d'absorption et des raies obscures du spectre solaire.

Gouy. Comptes Rendus, 89, 1033-4; Beiblätter, 4, 369 (Abs.).

Absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., **39**, 111-128; Ber. chem. Ges., **14**, 1390 (Abs.).

The selective absorption of solar energy.

Langley (S. P.). Amer. Jour. Sci., (3) 25, 169-196; Ann. Phys. u.
Chem., n. F. 19, 226-244, 384-400; Phil. Mag., (5) 15, 153-183;
Ann. Chim. et Phys., (5) 29, 497-542.

Observations of absorbing vapours upon the Sun.

Trouvelot (E. L.). Monthly Notices Astronom. Soc., 39, 374-379.

Spectral-photometrische Untersuchungen insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (II, C.). Monatsber, d. Berliner Akad. (1877), 104-142.

Ueber die Absorption der chemisch wirksamen Strahlen in der Atmosphäre der Sonne.

Vogel H. C. Ber, Sachs, Ges, Wiss., 24, 135-141; Ann. Phys. u. Chem., 148, 161-168; Phil. Mag., (4) 45, 345-350.
Note by Schuster (A.). Phil. Mag., (4) 45, 350.

3, Solar Atmosphere.

On hydrocarbons in the solar atmosphere.

Abney (W. de W.). Rept. British Assoc. (1881), 524.

Mémoire sur l'atmosphère solaire.

Angelot. Comptes Rendus, 68, 245.

Atmospheric lines of the solar spectrum, with a map.

Hennessey J. B. N. . Phil. Trans., 165, 157-160; Amer. Jour. Sci., 3, 9, 307.

Ursache der Spectren und Folgerungen über die Zustände der Sonnenatmosphäre.

Jahresber, d. Chemie, 15, 32.

Sur une atmosphère incandescente qui entoure la photosphère solaire.

Janssen J. . Comptes Rendus, 68, 181.

Remarques à propos des résultats obtenus par M. Janssen et des connaissances précédemment acquises au sujet de l'atmosphère solaire.

Leverrier. Comptes Rendus, 68, 314.

Atmosphère du Soleil.

Littrow. Comptes Rendus, 68, 435.

Réfrangibilité de la raie jaune brilliante de l'atmosphère solaire. Rayet. Comptes R ndus, 68, 320; Chem News, 19, 178.

Spectre de l'atmosphère solaire.

Rayet. Comptes Rendus, 68, 1321; 71, 301; 77, 529; Ann. Chim. et Phys., (4) 24, 5-80; Archiv. f. Pharmacie. 4, 325-7.

.

- Nouvelles observations sur l'atmosphère et les protubérances solaires. Secchi (A.). Comptes Rendus, **68**, 1243.
- Sur l'état actuel de l'atmosphère solaire. Secchi (A.). Comptes Rendus, **84**, 1430-34.
- Ueber den Einfluss der Atmosphäre auf die Linien des Spectrums. Secchi (A.). Ann. Phys. u. Chem., **126**, 485.
- Résultats des opérations faites en 1877 au bord du Soleil sur les raies b et 1474 k.

Tacchini. Comptes Rendus, 86, 756.

Observation of absorbing vapours on the Sun.

Trouvelot. Monthly Notices Astronom. Soc., 39, 374.

Spectral-photometrische Untersuchungen, insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Influence de la vapeur aqueuse visible dans l'atmosphère, et de la pluie sur le spectre solaire.

Zantedeschi. Comptes Rendus, 63, 644.

4, B lines in the solar spectrum.

- Measures of the Great B line in the spectrum of a high sun.

 Smyth (C. Piazzi). Monthly Notices Astronom. Soc., 39, 38-43.
- Note on the Little b group of lines in the solar spectrum.

 Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 32, 37-44; Nature, 23, 287 (Abs.); Amer. Jour. Sci., (3) 21, 323.
- Résultats des opérations faites en 1877, au bord du Soleil sur les raies b et 1474 k.

Tacchini. Comptes Rendus, 86, 756.

- Constitution et origine du groupe B du spectre solaire.

 Thollon (L.). Jour. de Phys., 13, 421; Nature, 30, 520.
- Mémoire sur la constitution et l'origine du groupe B du spectre solaire.

 Thollon (L.). Bull. astronomique, 1883-4.

 Note by Smyth (C. Piazzi). Nature, **30**, 585.

5, Bright lines in the solar spectrum.

On the existence of bright lines in the solar spectrum.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 38, 473-4.

On the coincidence of the bright lines of the oxygen spectrum with bright lines in the solar spectrum.

Draper (H.). Amer. Jour. Sci., (3) 18, 262-76; Monthly Notices Astronom. Soc., 39, 440-47; Beiblätter, 4, 275 (Abs.).

Report to the Committee on Solar Physics on the basic lines common to Spots and Prominences.

Lockyer (J. N.). Proc. Royal Soc., 29, 247-65; Beiblätter, 4, 45 (Abs.).

On a cause for the appearance of bright lines in the solar spectrum.

Meldola (R.). Phil. Mag., (5) 6, 50-61; Jour. Chem. Soc., 36, 574;Amer. Jour. Sci., (3) 16, 290-300; Beiblätter, 2, 561-2 (Abs.).

Letter to the Superintendent of the U. S. Coast Survey, containing a catalogue of bright lines in the spectrum of the solar atmosphere.

Young (C. A.). Amer. Jour. Sci., (3) 4, 356-62; Nature, 7, 17-20.

6, Chemical effects of the solar spectrum.

Sur l'action chimique des différents rayons du spectre solaire. Claudet. Comptes Rendus, 25, 938.

On the chemical efficiency of sunlight.

Dewar (J.). Phil. Mag., 44, 307-311.

Wirkung der chemischen Strahlen verseniedener Theile der Sonnenscheibe.

Jahresber. d. Chemie, 16, 101.

Rayons violets qui renferment le maximum d'action chimique de toutes les couleurs du spectre solaire.

Poey (A.). Comptes Rendus, 73, 1238.

Expériences sur la transmission des rayons chimiques du spectre solaire à travers différents milieux.

Somerville (Mrs.). Comptes Rendus, 3, 473.

Beziehungen zwischen der chemischen Wirkung des Sonnenspectrums, der Absorption und anomalen Dispersion des Sonnenspectrums.

Vogel (H.). Ber. chem. Ges., 7, 976.

7, Chromosphere and Corona.

и.

Spectre de la couronne.

Blaserna (P.). Comptes Rendus, 74, 379.

The comparative aggregate strength of the light from the red hydrogen stratum, and of that of the rest of the chromosphere.

Hammond (B. E.). Nature, 3, 487.

On the solar corona.

Harkness (W.). Bull. Philosoph. Soc. Washington, 3, 116-119; Beblätter, 5, 128.

Photographing the spectrum of the corona.

Huggins (W.). Nature, 27, 199.

The coronal atmosphere of the Sun.

Janssen (J.). Nature, 8, 127-9, 149-50.

Sur la photographie de la chromosphère.

Janssen (J.). Comptes Rendus, 91, 12; Beiblätter, 4, 615.

L'analyse spectrale de la lumière zodiacale et sur la couronne des éclipses.

Liais (E.). Comptes Rendus, **74**, 262-4; Amer. Jour. Sci., (3) **3**, 390-91.

Note on the unknown chromospheric substance of Young.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 28, 475-7; Beiblätter, 3, 709 (Abs.).

A new method of viewing the chromosphere.

Lockyer (J. N.) and Seabroke (G. M.). Proc. Royal Soc., 21, 105-107; Amer. Jour. Sci., (3) 5, 319 (Abs.); Comptes Rendus, 76, 363-5; Phil. Mag., (4) 45, 222-4.

Note on the existence of carbon in the coronal atmosphere of the Sun.

Lockyer (J. N.). Proc. Royal Soc., 27, 308; Jour. Chem. Soc., 38, 429 (Abs.).

Preliminary note on the substances which produce the chromospheric lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 283-4; Nature, 19, 292;Amer. Jour. Sci., (3) 17, 250; (3) 18, 158; Beiblätter, 3, 420-422.

Discussion of "Young's List of Chromospheric Lines."

Lockyer (J. N.). Proc. Royal Soc., 28, 432-444; Beiblätter, 3, 420 (Abs.).

Photographie der Corona.

Lohse (O.). Astronom. Nachr., 104, 209-212; Beiblätter, 7, 291 (Abs.).

On the corona seen in total eclipses of the Sun.

Norton (W. A.). Amer. Jour. Sci., (3) 1, 5-15; Phil. Mag., (4) 41, 225-236.

Note on the chromosphere.

Perry (S. J.). Monthly Notices Astronom. Soc., 43, 426-7; Nature, 3, 67.

Osservazioni spettroscopiche del Bordo e delle Protaberanze Solari.

Respighi (L.). Roma, 1871.

La corona solare l'eclisse, 22 Dic. 1870.

Ricca (V. S.). Palermo, 1871.

Osservazioni delle inversioni della coronale 1474 k, e delle b del magnesio fatte nel Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 10, 148-51.

Professor Young and the presence of ruthenium in the chromosphere.

Roscoe (H. E.). Nature. 9, 5.

On the spectrum of the corona.

Sampson (W. T.), Amer. John. Sci., (3) 16, 343-5; Beiblatter, 3, 277 (Abs.).

Résultats de quelques observations spectroscopiques des bords du Sobil. Secchi (A.). Comptes Rendus, 67, 1018.

Note sur les spectres des trois étoiles de Wolf et sur l'analyse comparative de la lumière du bord solaire et des taches.

Secchi (A.). Comptes Rendus, 69, 39.

Note sur la constitution de l'auréole solaire et sur quelques particularités du tube de Geissler.

Seechi (A.). Comptes Rendus, 70, 27, 82.

Sur les relations qui existent, dans le Soleil, entre les facules, les protubérances et la couronne.

Secchi (A.). Comptes Rendus, 72, 829-832; 73, 242-246, 593-500

Hydrogène et la raie D₃ dans le spectre de la chromosphère solaire. Secchi (A.). Comptes Rendus, **73**, 1300.

Spectre de la chromosphère.

Secchi (A.I. Comptes Rendus, 74, 305.

Observations de la chromosphère.

Secchi A | Comptes Rendus, 75, 506-613.

Magnésium dans la chromo-phère du Soleil.

Tacchini. Comptes Rendus, 75, 25, 45); Phil. Mag., (4) 44, 15)-150, 479-80.

--

Présence du spectre du magnésium sur le bord entière du Soleil.

Tacchini. Comptes Rendus, 76, 1577; 77, 606-9; 82, 1385-7.

Observations on the Corona seen during the eclipse of Dec. 11 and 12, 1871.

Winter (G. K.). Phil. Mag., (4) 43, 191-4.

On the solar corona.

Young (C. A.). Amer. Jour. Sei., (3) 1, 311-373.

Note on the spectrum of the corona.

Young (C. A.). Amer. Jour. Sci., (3) 2, 53-55; Chem. News, 24, 198-9.

Preliminary catalogue of the bright lines in the spectrum of the chromosphere.

Young (C. A.). Amer. Jour. Sci., 3 2, 332-335; Phil. Mag., (4) 42, 377-380; Nature, 5, 312-313.

Spectrum of the corona of the Sun.

Young (C. A.). Amer. Jour. Sci., (3) 2, 53; Chem. News, 24, 198.

Note on the chromosphere lines.

Young (C. A.). Nature, 3, 266-7.

Spectrum of the chromosphere.

Young (C. A.). Nature, 5, 312.

The corona line.

Young (C. A.). Nature, 7, 28.

Beobachtungen der Corona.

Zöllner (F.). Der Naturforscher (Berlin), 2, 167, 253, 379, 395; 3, 91, 392; Les Mondes (Paris), 21, 345, 602; 22, 142; Nature, 1, 15, 139, 146, 533, 543; 2, 114, 164, 277; 3, 163, 175, 262, 263, 278; Phil. Mag., (4) 38, 281; 39, 17; Monthly Notices Astronom Soc., 30, 193.

8, The D group of lines in the solar spectrum.

Monographie du groupe D dans le spectre solaire.

Thollon. Jour. de Phys., (2) 3, 5-11; Beiblätter, 8, 647.

9, Dark lines in the solar spectrum.

Sur les raies sombres du spectre solaire et la constitution du Soleil.

Cornu (A.). Comptes Rendus, 86, 315.

Sur la distribution de la chaleur dans les régions obscures des spectres solaires.

Desains (P.). Comptes Rendus, 95, 433.

On the presence of dark lines in the solar spectrum which correspond closely to the lines of the spectrum of oxygen.

Draper (J. C.). Amer. Jour. Sci., (3) 16, 256-65; Nature, 18, 654-7; Beiblatter, 3, 188 (Abs.); Jour. Chem. Soc., 36, 997.

Mesure de l'intensité de quelques raies obscures du spectre solaire.

Gouy. Comptes Rendus, 91, 383; Jour. Chem. Soc., 40, 333 (Abs.); Beiblätter, 5, 46 (Abs.).

Dunkle Linien des Sonnenspectrums.

Jahresber. d. Chemie, 16, 107, 110.

A method of examining refractive and dispersive powers by prismatic reflection.

Wollaston (W. II.). Phil. Trans. (1802), 365.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 373.

10, Displacement of the solar spectrum.

Note on the displacement of the solar spectrum.

Hennessey (J. H. N.). Proc. Royal Soc., 22, 219.

Observations on the displacement of lines in the solar spectrum caused by the Sun's rotation.

Young (C. A.). Amer. Jour. Sci., (3) 12, 821-8.

11, Eclipse Spectra.

On the solar eclipse of Dec. 22, 1870, observed at Xeres, in Spain.
Abbay (R.). Monthly Notices Astronom. Soc., 31, 60-62.

Observations on the total eclipse of the Sun of 1869.

Abbe (C.). Amer. Jour. Sci., (3) 3, 264-267.

On the total solar eclipse of May 17, 1882.

Abney (W. de W.) and Shuster (A.). Phil. Trans., 175, 253-271; Proc. Royal Soc., 35, 151 (Abs.); Beiblatter, 7, 896 (Abs.); Nature, 26, 465.

-

Eclisse totale del 22 Dic. 1870.

Agnello (A.). Palermo, 1870.

On the results of the spectroscopic observations of the solar eclipse of July 29, 1878.

Barker (G. F.). Amer. Jour. Sci., (3) 17, 121-5.

碘

Observations sur un artifice semblable auquel ont songé en même temps M. Janssen dans l'Inde et M. Zantedeschi en Italie.

Beaumont (Élie de). Comptes Rendus, 68, 314

The solar eclipse of July 29, 1878.

Draper (H.). Amer. Jour. Sci., (3) **16**, 227-30; Phil. Mag., (5) **6**, 318-320.

The Eclipse.

Draper (H.). Nature, 18, 462-4.

Account of the expedition of the Jesuits from Manilla, eclipse of Aug. 18, 1868.

Faura (F.). Bull. meteorol. dell. Osservatorio del Collegio Romano, 7, no. 12.

Suggestion relative à l'observation de l'éclipse de Soleil du 31 décembre 1861.

Faye. Comptes Rendus, 53, 679.

Observations relatives à la coïncidence des méthodes employées séparément par M. Lockyer et par M. Janssen.

Faye. Comptes Rendus, 67, 840.

Note sur une télégramme et sur une lettre de M. Janssen.

Faye. Comptes Rendus, 68, 112.

Rapport au Bureau des Longitudes sur la prochaine éclipse du 6 mai 1883.

Fizeau, Cloué, Lewy et Janssen. Comptes Rendus, 95, 881-885; Ann. du Bureau des Longitudes (1883), 813-820; Nature, 27, 110-112.

Account of spectroscopic observations of the eclipse of the Sun, Aug. 18, 1868.

Haig (C. T.). Proc. Royal Soc., 17, 74.

On the total eclipse of the Sun of Aug. 18, 1868.

Herschel (Alex.). Proc. Royal Institution, 1868-9.

The total eclipse of Aug. 7, 1869.

Hough (G. W.). Albany (J. Munsell), 1870.

Indication de quelques-uns des résultats obtenus à Cocanada pendant l'éclipse du mois d'août dernier, et à la suite de cette éclipse.

Janssen (J.). Comptes Rendus, 67, 838.

Lettre sur l'éclipse du 18 août.

Janssen (J.). Comptes Rendus, 67, 839.

Resumé des notions acquises sur la constitution du Soleil.

Janssen J. . Comptes Rendus, 63, 312.

Observations spectrales prises pendant l'éclipse du 18 août 1865.

Janssen (J.). Comptes Rendus, 68, 367.

Sur l'éclipse totale du 22 décembre prochain, 1870.

Janssen (J.). Comptes Rendus, 71, 551.

Lettr®sur les résultats du voyage pour observer en Algérie l'éclipse du Soleil du 22 Déc. 1870.

Janssen (J.). Comptes Rendus, 72, 220.

Remarques sur une dernière note de M. Cornu.

Janssen (J.). Comptes Rendus, 73, 790-794.

Télégrammes addressés à l'Académie sur les observations faites pendant l'éclipse du Soleil du 11 Déc. 1871, sur la côte de Malabar.

Janssen (J.). Comptes Rendus, 73, 1437.

Lettre sur l'éclipse du 12 Déc. 1871.

Janssen (J.). Comptes Rendus, 74, 111.

Les conséquences principales qu'il peut tirer de ses observations sur l'éclipse du 12 Déc. 1871.

Janssen J.). Comptes Rendus, 74, 175, 514, 725; Monthly Notices Astronom. Soc., 32, 69-70; Proc. Royal Soc., 20, 128-9; Amer. Jour. Sci., (3) 3, 226; Jour. Chem. Soc., (2) 10, 599 (Alex.).

Sur l'éclipse solaire.

Janssen (J.). Comptes Rendus, 96, 1745; Nature, 28, 216.

Rapport à l'Académie sur la mission en Océanie pour l'observation de l'éclipse totale de Soleil du 6 mai 1883.

Jamssen (J.). Comptes Rendus, 97, 586-602; Mem. Spettr. ital., 12, 201-216.

Rapport à l'Académie relatif à l'observation de l'éclipse du 12 D %, 1871, observée à Schoolor (Indoustan).

Janssen (J.). Ann. Chim. et Phys., 4) 28, 474-99.

Applications utiles de la méthode graphique à la prédiction des éclipses de Soleil.

Laussedat. Comptes Rundus, 70, 240.

Report of observations, etc., of the total eclipse of the Sun taken at "Le Maria Louisa" Vineyard, Cadiz, Dec. 21-22, 1870.

Lindsay (Lord). Monthly Notices Astronom. Soc., 31, 49-60.

.

Remarks on the recent eclipse of the Sun as observed in the United States.

Lockyer (J. N.). Proc. Royal Soc., 18, 179; Comptes Rendus, 70, 1390; Nature, 1, 14.

Note on the recent and coming total solar eclipses.

Lockyer (J. N.). Proc. Royal Soc., 34, 291-300; Nature, 27, 185-9; Beiblätter, 7, 193 (Abs.).

The Mediterranean eclipse, 1870.

Lockyer (J. N.). Nature, **3**, 221-24, 321-2; Amer. Jour. Sci., (3) **3**, 226-30.

The solar eclipse.

Lockyer (J. N.). Nature, 5, 217-19; Amer. Jour. Sci., (3) 3, 226-30.

The Eclipse.

Lockyer (J. N.). Nature, 18, 457-62.

Eclipse notes on the solar spectrum.

Lockyer (J. N.). Nature, 25, 573-8; 26, 100-101.

Spectrum of solar eclipses.

Lockyer (J. N.). Nature, 27, 185.

Report on the total solar eclipse of April 6, 1875.

Lockyer (J. N.). Phil. Trans., 169, 139-154.

The solar eclipse.

Lockyer (J. N.)., Maclear (J. P.). Nature, 5, 219-21; Amer. Jour. Sci., (3) 3, 310-12.

The total eclipse of the Sun of Aug. 7, 1859.

Morton (Henry). Jour. Franklin Inst., (3) 53, 149, 150, 200.

The solar eclipse of Dec. 22, 1870, observed at San Antonio, near Puerto de Sta. Maria.

Perry (S. J.). Monthly Notices Astronom. Soc., 31, 62-3, 149, 151.

Sur l'éclipse du 17 mai 1882.

Puiseux (A.). Comptes Rendus, 94, 1643.

Analyse spectrale des protubérances observées à la presqu'île de Malacca pendant l'éclipse totale du Solcil du 18 août.

Rayet. Comptes Rendus, **67**, 757; Rept. Astronom. Soc., 1868-0, p. 152.

The solar eclipse.

Respighi (L.). Nature, 5, 237-8; Amer. Jour. Sci., (3) 3, 312-14.

Spectralbeobachtungen während der totalen Sonnenfinsterniss des Jahres 1868 zu Aden.

Riha (J.). Sitzungsber. d. Wiener Akad., 58, 11, 655, 721-4.

Some remarks on the total solar eclipse of July 29, 1878.

Schuster (A.). Monthly Notices Astronom. Soc., 39, 41-7.

Essai, pendant une éclipse solaire, de la nouvelle méthode spectroscopiq 1 · proposée pour le prochain passage de Vénus.

Secchi (A.). Comptes Rendus, 76, 1327-31; Chem. News, 27, 320.

- Observations de l'éclipse solaire du 10 octobre 1874, avec le spectroscope.

 Secchi (A.). Comptes Rendus, 79, 885.
- L'observation des protubérances solaires faites hors du moment d'une éclipse par M. Janssen et par M. Lockyer.

Stewart (B.). Comptes Rendus, 67, 904.

- Sull'eclisse totale di sole del 17 maggio 1882, osservato à Sohage in Egitto.

 Tacchini (P.). Mem. Spettr. ital., 11, Sept. 1-14; Comptes Rendus,
 95, 896.
- The total solar eclipse of Dec. 12, 1871.

Tennant (J. F.). Monthly Notices Astronom. Soc., 32, 70-2; Nature, 6, 402.

Report of the Indian Eclipse, Aug. 18, 1868.

Tennant (J. F.). Royal Astronom. Soc. Memoirs, Vol. 7; Nature, 1,
536; Naturforscher (Berlin), 1, 311, 319, 327, 351, 369, 393; 2, 59;
Les Mondes, 18, 130, 168, 272, 296, 362, 413.

Eclipse totale de Soleil, observée à Souhage (haute Égypte) le 17 mai (temps civil) 1882.

Thollon (L.). Comptes Rendus, 94, 1630-35; Beiblatter, 6, 878-80.

Observation de l'éclipse totale du 17 mai 1882. Trépied. Comptes Rendus, 94, 1638.

Reports on the total eclipse of the Sun, Aug. 7, 1869.

United States Naval Observatory (Commodore B. F. Sands and others), Washington, 1869.

On the results of the eclipse observations, Aug. 7, 1869.

Young (C. A.). Amer. Jour. Sci., (3) **3**, 314; Nature, **1**, 14, 170, 203, 336, 552; Les Mondes, **21**, 238, 600; Naturforscher, **2**, 253, 379, 533; **3**, 16, 53, 142, 163, 175.

-

Spectroscopic observations of the American eclipse party in Spain.

Young (C. A.). Nature, 3, 261.

The Sherman astronomical expedition.

Young (C. A.). Nature, 7, 107-109.

Observations upon the solar eclipse of July 29, 1878, by the Princeton Eclipse Expedition.

Young (C. A.). Amer. Jour. Sci., (3) 16, 279-90.

Total solar eclipse of August 28-29, 1886.

By various persons. Abstract in Monthly Notices Astronom. Soc., 47 (1887), 175.

12, Spectra of the elements in the Sun.

On sun-spots and terrestrial elements in the Sun.

Liveing and Dewar. Phil. Mag., (5) 16, 401-408; Beiblätter, 8, 304-5 (Abs.); Jour. de Phys., 13, 418.

Note préliminaire sur les éléments existant dans le Soleil.

Lockyer (J. N.). Comptes Rendus, 77, 1347-52; Ber. d. chem. Ges., 6, 1554-5 (Abs.).

Les éléments présents dans la couche du Soleil qui produit le renversement des raies spectrales.

Lockyer (J. N.) Comptes Rendus, 86, 317.

Sur la composition élémentaire du spectre solaire.

Matthiessen. Comptes Rendus, 19, 112.

13, Spectra of solar eruptions.

Eruzione solare metallica dal 31 luglio, 1880, osservata a Palermo.

Riccò (A.). Mem. Spettr. ital., 9, 96-100.

Sur l'éruption solaire observée le 7 juilliet.

Secchi (A.). Comptes Rendus, 75, 314-322.

Sur les éruptions métalliques solaires observées à Palermo depuis 1871 jusqu'en avril 1877.

Tacchini (P.). Comptes Rendus, 84, 1448-50.

Disegni delle eruzioni etc. del Sole fatti à Roma dal giugno a dicembre 1879.

Tacchini (P.). Mem. Spettr. ital., 4, 5-7.

Sulle eruzioni solari metalliche osservate a Roma nel 1881.

Tacchini (P.). Mem. Spettr. ital., 11, 53-8; Comptes Rendus, 94, 1031-3; 95, 373-8; Beiblätter, 6, 486 (Abs.).

An explosion on the Sun (Sept. 13, 1871).

Young (C. A.) Boston Jour. Chemistry, 1871; Amer. Jour. Sci., (3)2, 468-70; Nature, 4, 488-9; Phil. Mag., (4) 43, 76-79.

14, Gas spectra in the Sun.

Preliminary note of researches on gaseous spectra in relation to the physical constitution of the Sun.

Franckland and Lockyer. Proc. Royal Soc., 17, 288; Comptes Rendus, 68, 420; 69, 264.

15, Heat in the solar spectrum.

Sur la distribution de la chaleur dans les régions obscures des spectres solaires.

Desains (P.). Comptes Rendus, 95, 433.

Lage des Wärmemaximums im Sonnenspectrum.

Knoblauch (H.). Ann. Phys. u. Chem., 120, 193.

Geschichtliches über das Wärmespectrum der Sonne.

Lamansky (S.). Ann. Phys. u. Chem., 146, 200, 207, 209.

Observations on invisible heat-spectra and the recognition of hitherto unmeasured wave-lengths, made at the Aflegheny Observatory, Pa.

Langley (S. P.). Amer. Jour. Sci., (3) 31 (1886), 1-12; 32 (1886), 83-106; Phil. Mag., (5) 21 (1886), 594-409; 22 (1886), 149-173; Ann. Chim. et Phys., (6) 9 (1886), 433-506; Jour. de Phys., 205, 377-380 (Abs.); Beiblatter, 11 (1877), 245 (Abs.)

Influence des différentes heures de la journée sur la position du maximum de température dans la partie obseure du spectre solaire.

Melloni. Comptes Rendus, 11, 111.

Spectre calorifique normal du Soleil.

Menton. Comptes Rendus, 89, 295. Remarques par M. Thenard. Comptes Rendus, 89, 298.

Untersuchungen über die thermischen Wirkungen des Sonnenspeetrums.

Müller (J.). Ann. Phys. u. Chem., 105, 337.

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

> Muller (J.). Ann. Phys. u. Chem., 105, 543; Berichtigung dazu, do., 116, 644.

> > 4

Sur les propriétés échauffantes des rayons solaires par de grandes et de faibles latitudes.

Pentland. Comptes Rendus, 8, 310.

The solar spectrum in 1877-8, with some practical idea of its probable temperature of origination.

Smyth (C. Piazzi). Trans. Royal Soc. Edinburgh, 29, 285-342; Beiblätter, 4, 276 (Abs.).

Sur la température du Soleil.

Soret (J. L.). Archives de Genève, (2) 52, 89-95; Phil. Mag., (4) 50, 155-8.

16, Hydrogen in the solar spectrum.

La circulation de l'hydrogène solaire.

Faye. Comptes Rendus, 76, 597-601.

The comparative aggregate strength of the light from the red hydrogenstratum, and of that from the rest of the Chromosphere.

Hammond (B. E.). Nature, 3, 487.

Dépèche télégraphique addressé de Simla au sujet des lignes de l'hydrogène dans le spectre des protubérances solaires.

Janssen (J.). Comptes Rendus, 68, 245.

17, Intensity of light in the solar spectrum.

- On the variation in the intensity of the fixed lines of the solar spectrum.

 Draper (W.). Phil. Mag., (4) 25, 342.
- The comparative aggregate strength of the light from the red hydrogenstratum, and of that from the rest of the Chromosphere. Hammond (B. E.). Nature, 3, 487.
- Distribution de l'énergie dans le spectre solaire normal.

Langley (S. P.). Comptes Rendus, 92, 701.

Confronto fra la radiazione e l'intensità chimica della luce del sole.

Macagno (J.). Mem. Spettr. ital., 8, App. 13-18.

Étude de la distribution de la lumière dans le spectre solaire.

Macé (J.) et Nicati (W.). Comptes Rendus, **91**, 623, 1073; Beiblätter, **5**, 301 (Abs.).

- Ueber die Vertheilung der chemischen Lichtintensität im Sonnenspectrum.

 Monckhoven. Photographische Mittheilungen, 16, 145-6; Beiblätter,
 4, 49 (Abs.).
- Untersuchungen über die Helligkeitsänderungen in verschiedenen Theilen des Sonnenspectrums bei abnehmender Höhe der Sonne über dem Horizont.

Müller (G.). Astronom. Nachr., **103**, 241-252; Beiblätter, **7**, 111 (Abs.).

18, Iron lines in the solar spectrum.

On the iron lines widened in solar spots.

Lockyer (J. N.). Proc. Royal Soc., 31, 348-9; Beiblätter, 5, 288 (Abs.);Comptes Rendus, 92, 904-910; Jour. Chem. Soc., 40, 669 (Abs.).

19, Magnesium in the solar spectrum.

Spectre du magnésium en rapport avec la constitution du Soleil.

Fievez (Ch.). Ann. Chim. et Phys., (5) 23, 366.

20, Maps of the solar spectrum.

On the photographic method of mapping the least refrangible end of the solar spectrum (with a map of the spectrum from 7600 to 10750). Bakerian Lecture.

Abney (W. de W.). Phil. Trans., 171, 637-667; Comptes Rendus, 90, 182-3; Beiblätter, 4, 375 (Abs.).

Sur le spectre normal du Soleil, partie ultra-violette.

Cornu (A.). Paris, Gauthier-Villars, 1881, 4°. Extrait des Annales de l'École normale supérieur, (2) 9, (1880). Avec deux planches. (Maps drawn by wave-lengths.)

Étude du spectre solaire.

Fievez (Ch.). Bruxelles, F. Hayez, 1882, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., tome IV. Avec une planche. (Wave-lengths, lines 6399 to 4522.)

Étude de la région rouge (A-C) du spectre solaire.

Fievez (Ch.). F. Hayez, Bruxelles, 1883, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., tome V. Avec deux planches. (Wave-lengths, lines 7500 to 6500.)

Untersuchungen über das Sonnenspectrum und die Spectren der chemischen Elemente.

Kirchhaff (G.). Berlin, Dümmber, 1866-1875, 2 Theile, 42. Mit vier Tafeln. Besondere Abdrück aus den Abhandlungen der Berliner Akademie der Wissenschaften, 1861 und 1862. (He used an arbitrary scale.)

Recherches sur le spectre solaire ultra-violet, et sur la détermination des longueurs d'onde, suivies d'une note sur les formules de dispersion.

Mascart (E.). Extrait des Annales scientifiques de l'École normale supérieure, tome I (1864). Paris, Gauthier-Villars, 1864, 4°. Avec un planche.

.

[A photographic map of the solar spectrum is being made by Pref. Rowland, and some thirty parts of it have been distributed privately. At the end of the year 1887 it extended from wave-length 0.0003675 to wave-length 0.0005796.]

Large Maps of the Solar Spectrum,

[by Thollon, in the Annals of the Academy of Nice, Tome I. Not yet published, but about to be so; and Tome II. is to contain another, smaller, map.]

21, Oscillation-frequencies.

Catalogue of the oscillation-frequencies of solar rays.

Rept. British Assoc. for 1878.

22, Oxygen in the solar spectrum.

Discovery of oxygen in the Sun by photography, and a new theory of the solar spectrum.

Draper (H.). Amer. Jour. Sci., (3) 14, 89-96; Nature, 16, 364; 17, 339; Comptes Rendus, 85, 613; Beiblätter, 2, 86-90.

On a photograph of the solar spectrum showing the dark lines of oxygen.

Draper (J. C.). Monthly Notices Astronom. Soc., 40, 14-17; Amer. Jour. Sci., (3) 17, 448-452; Jour. Chem. Soc., 38, 201 (Abs.); Beiblätter, 3, 872.

Telluric oxygen lines in the solar spectrum.

Egoroff. Amer. Jour. Sci., 126, 477; Comptes Rendus, Aug. 27, 1883.

On the presence of oxygen in the Sun.

Schuster (A.). Nature, 17, 148-9; Beiblätter, 2, 90-91.

23, Photography of the solar spectrum.

Preliminary note on photographing the least refracted portion of the solar spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., **36**, 276-7; Phil. Mag., (5) **1**, 414-415.

Photography at the least refrangible end of the solar spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 38, 348-51; Phil. Mag., (5) 6, 154-7.

On the photographic method of mapping the least refrangible end of the solar spectrum (with a map of the spectrum from 7600 to 10750). Bakerian Lecture.

Abney (W. de W.). Phil. Trans., **171**, 653-67; Proc. Royal Soc., **30**, 67 (Abs.); Beiblätter, **4**, 375 (Abs.); **5**, 507-9; Comptes Rendus, **90**, 182-3; Jour. Chem. Soc., **38**, 429.

Use of the spectroscopic camera during the total solar eclipse of May 17, 1882.

Abney and Schuster. Proc. Royal Soc.. 35, 152.

Photography of the ultra-red portions of the solar spectrum.

Abney (W. de W.). Chem. News, 40, 311.

Photographs of the solar spectrum.

Amory (R.). Proc. Amer. Acad., 11, 70, 279, with plates.

Image photographique colorée du spectre solaire.

Becquerel (Éd.). Comptes Rendus, 26, 181.

De l'image photochromatique du spectre solaire, et des images obtenus dans la chambre obseure.

Becquerel (Éd.). Comptes Rendus, 27, 483. Rapport sur ce mémoire, par M. Regnault, do., 28, 200.

Sur les phosphorographies du spectre solaire.

Becquerel (Éd.). Jour. de Phys., (2) 1, 139.

Observations sur un mémoire de M. E. Marchand relatif à la mesure de la force chimique contenu dans la lumière du Soleil.

Becquerel (Éd.). Ann. Chim. et Phys., (4) **30**, 572-3; Jour. Chem. Soc., (2) **12**, 942 (Abs.).

Janssen's new method of solar photography.

Blanford (H. F.). Nature, 18, 643-645.

Ueber directe Photographirung der Sonnenprotuberanzen.

Braun (C.). Astronom. Nachr., 80, 34-42; Ann. Phys. u. Chem., 148, 475-488.

The solar spectrum.

Capron (J. R.). Nature, 6, 492.

Sur la photographie du spectre solaire.

Conche (E.). Comptes Rendus, 90, 689-90.

On the phosphorograph of a solar spectrum, and on the lines of its infra-red region.

Draper (J. W.). Amer. Jour. Sci., (3) 21, 171-182; Phil. Mag., (5) 11, 157-169; Beiblatter, 5, 509-510.

On a method of photographing the solar corona without an celipse.

Huggins (W.). Proc. Royal Soc., 34, 409-414; Nature, 27, 169-201;
Amer. Jour. Sci., (3) 25, 126-130; 27, 27-32; Ann. Chim. et Phys.
(6) 3, 540-550; Beiblatter, 7, 194 (Abs.; Astronom. Nachr., 104-113-118; Jour. de Phys., (2) 2-173 (Abs.); Comptes Rendus, 96-51-53.

*

Photographische Darstellung des Sonnenspectrums.

Jahresber, d. Chemie, 16, 101; 17, 116.

Objective Darstellung des Sonnenspectrums; Vorlesungsversuch. Kessler (F.). Ber. chem. Ges., 9, 577-5; Jour. Chem. Soc., 2, 266. On the use of the reflecting grating in eclipse photography.

Lockyer (J. N.). Proc. Royal Soc., 27, 107-8.

Rutherfurd's Photographie des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 126, 435.

Photographie de l'image du spectre solaire.

Niepce de Saint Victor. Comptes Rendus, 45, 814; 46, 451, 490.

Photography of the infra-red region of the solar spectrum.

Pickering (H. W.). Proc. Amer. Acad., 20, 473.

On recent progress in photographing the solar spectrum. Rowland (H. A.). Rept. British Assoc. (1884), 635.

On photographs of the solar spectrum.

Rowland (H. A.). Amer. Jour. Sci., (3) 31, 319.

Étude photographique du Soleil à l'observatoire impérial de Paris. Sourel. Comptes Rendus, 71, 225.

Le fotografie del Sole fatte all'osservatorio di Meudon dal Professor Janssen.

Tacchini (P.). Mem. Spettr. ital., 9, 1-5.

Photographie der weniger brechbaren Theile des Sonnenspectrums.

Vogel (H. C.) und Lohse (O.). Ann. Phys. u. Chem., 159, 297; 160, 292.

On reversed photographs of the solar spectrum beyond the red, obtained on a collodion plate.

Waterhouse (Capt. J.). Proc. Royal Soc., 24, 186-9.

Ueber den Einfluss des Eosins auf die photographische Wirkung des Sonnenspectrums auf das Silberbromid und Silberbromjodid.

Waterhouse (Capt. J.). Ann. Phys. u. Chem., 159, 616-622; Proc. Royal Soc. Bengal for 1876.

Photographie directe des protubérances solaires sans l'emploi du spectroscope.

Zenger (C. W.). Comptes Rendus, 88, 374.

24, Pressure on the Sun.

On a method of determining the pressure on the solar surface.

Wiedemann (E.). Monthly Notices Astronom. Soc., 40, 627-8.

On a means to determine the pressure at the surface of the Sun and stars, and some spectroscopic remarks.

Wiedemann (E.). Proc. Physical Soc., 4, 31-34; Phil. Mag., (5) 10, 123-5; Beiblatter, 4, 613 (Abs.).

25. Spectra of solar protuberances.

Quadri statistici delle protuberanze e macchie solari osservati all' Collegio Romano nel 1 semestre, 1879.

Barbieri (E.). Mem. Spettr. ital., 8, 75-80.

Constitution des protubérances solaires.

Bianchi. Comptes Rendus, 68, 276.

La découverte du moyen qui permet d'observer en tout temps les protubérances solaires.

Delaunay. Comptes Rendus, 67, 867.

Travaux de M. Respighi pour l'observation spectrale des protubérances solaires.

Faye. Comptes Rendus, 70, 886.

Sur les taches et protubérances solaires observées à l'équatorial du Collège romain.

Ferrari. Comptes Rendus, 87, 971-3.

Spectroscopic observations of the solar prominences.

Herschel (Capt.). Proc. Royal Soc., 18, 62, 119, 355.

Note on a method of viewing the solar prominences without an eclipse.

Huggins (W.). Proc. Royal Soc., 17, 302.

Note on the wide-slit method of viewing the solar prominences.

Huggins (W.). Proc. Royal Soc., 21, 127.

Étude spectrale des protubérances solaires.

Janssen (J.). Comptes Rendus, 68, 93.

Méthode qui permet de constater la matière protubérantielle sur tout le contour du disque solaire.

Janssen (J.). Comptes Rendus, 68, 713.

On the solar protuberances.

Janssen (J.). Proc. Royal Soc., 17, 276.

Notice of an observation of the spectrum of a solar prominence.

Lockyer (J. N.). Proc. Royal Soc., 17, 91, 104, 128.

Report to the Committee on Solar Physics on the Basic Lines common to Spots and Prominences.

Lockyer (J. N.). Proc. Royal Soc., 29, 247-265; Beiblätter, 4, 45 (Abs.).

Protubérances solaires.

Lockyer (J. N.). Comptes Rendus, 67, 949.

Analyse spectrale des protubérances observées à la presqu'île de malacca pendant l'éclipse totale du Soleil du 18 août 1868.

Rayet. Comptes Rendus, 67, 757.

Sur le spectre des protubérances solaires.

Rayet. Comptes Rendus, 68, 62; Ann. Chim. et Phys., (4) 24, 56.

Renversement de deux lignes du sodium dans le spectre de la lumière d'une protubérance.

Rayet. Comptes Rendus, 70, 1333.

Osservazioni spettroscopiche del Bordo e delle Protuberanze Solari [with lithographic plate of the prominences].

Respighi (L.), Roma, 1871.

Sulle protuberanze solari.

Respighi (L.). Bull. meteorol. dell'osservat. del Coll. Rom., 9, 89-91; Amer. Jour. Sci., (3) 1, 283-287.

Spectre des protubérances solaires.

Respighi (L.). Comptes Rendus, 77, 716, 774.

Noch einmal meine Bedenken gegen die Zöllner'sehe Erklärung der Sonnenflecke und Protuberanzen.

Reye (T.). Ann. Phys. u. Chem., 151, 166-173.

Quelques particularités du spectre des protubérances solaires.

Secchi (A.). Comptes Rendus, 67, 1123.

Remarques sur la rélation entre les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, **68**, 237-8.

Sur les relations qui existent, dans le Soleil, entre les facules, les protubérances et la couronne.

Secchi (A.). Comptes Rendus, 72, 829-32; 73, 242-6, 593-9.

Sur les divers aspects des protubérances.

Secchi (A.). Comptes Rendus, 73, 826-36, 979-83.

Sur un nouveau moyen de mesurer les hauteurs des protubérances solaires. Secchi (A.). Comptes Rendus, 74, 218-224.

Spectre des protubérances solaires.

Secchi (A.). Comptes Rendus, 74, 218-24.

Resumé des observations des protubérances solaires du 1 janvier au 29 avril.

Secchi (A.). Comptes Rendus, 74, 1315-20; Monthly Notices Astronom. Soc., 32, 318-20 (Abs.).

Sur les protubérances et les taches solaires.

Secchi (A.). Comptes Rendus, 76, 251.

Quelques observations spectroscopiques particulières.

Secchi (A.). Comptes Rendus, 76, 1052.

Nouvelle série d'observations sur les protubérances solaires; spectre du sodium, de l'hydrogène, du fer, du magnésium, peutêtre des oxydes.

Secchi (A.). Comptes Rendus. 76, 1522-26.

Protubérances solaires.

Seechi (A.). Comptes Rendus, 77, 977.

Observations spectrales des protubérances solaires pendant le dernier trimestre de l'année 1873.

Secchi (A.). Comptes Rendus, 78, 606.

Tableaux des observations des protubérances solaires, du 26 décembre 1873 au 2 août 1874.

Secchi (A.). Comptes Rendus, 79, 885-9.

Études des taches et des protubérances solaires de 1871 à 1875.

Secchi (A.). Comptes Rendus, 80, 1273-8.

Résultats des observations des protubérances et des taches solaires du 23 avril au 28 juin 1875.

Secchi (A.). Comptes Rendus, 81, 563, 605.

Suite des observations spectroscopiques des protubérances solaires, 1875. Secchi (A.). Comptes Rendus, 82, 717.

Nouvelle série d'observations sur les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 83, 26-7.

Observations des protubérances solaires pendant le second trimestre de 1876.

w

Secchi (A.). Comptes Rendus, 84, 423.

Observations des protubérances solaires, pendant le premier semestre de l'année 1877.

Secchi (A.). Comptes Rendus, 86, 98.

Ueber eine ausgezeichnete Protuberanz.

Spörer. Ann. Phys. u. Chem., 148, 171-2.

L'observation des protubérances solaires faites du moment une éclipse par M. Janssen et M. Lockyer.

Stewart (Balfour). Comptes Rendus, 67, 904.

Observations des taches et des protubérances solaires, pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Rendus, 86, 1008.

Observations des taches et protubérances solaires pendant les troisième et quatrième trimestres de 1879.

Tacchini (P.). Comptes Rendus, 90, 358-60.

Observations des protubérances, des facules et des taches solaires pendant le premier semestre de l'année 1880.

Tacchini (P.). Comptes Rendus, 91, 466-7.

Observations des taches, des facules et des protubérances solaires, faites à l'observatoire du Collège romain pendant le dernier trimestre, 1880.

Tacchini (P.). Comptes Rendus, 92, 502-4.

- Protuberanze solari osservate a Palermo nel quarto trimestre del 1878.

 Tacchini (P.). Mem. Spettr. ital., 8, 10-11.
- Riassunto delle protuberanze e delle macchie solari osservate alla specola del Collegio Romano nel mese di Settembre, Ottobre e Dicembre.

 Tacchini (P.). Mem. Spettr. ital., 8, 13-16.
- Sulla distribuzione delle macchie, facole e protuberanze solari sulla superficie del Sole, durante l'anno 1880.

Tacchini (P.). Mem. Spettr. ital., 10, 122-3.

Observations des protubérances, des facules et des taches solaires faites à l'observatoire royal du Collège romain pendant le premier semestre 1882.

Tacchini (P.). Comptes Rendus, 95, 276-8.

Observations des protubérances, facules et taches solaires faites à l'Observatoire royal du Collège romain pendant le troisième et le quatrième trimestre de 1882.

Tacchini (P.). Comptes Rendus, 96, 1290-1; Nature, 28, 48 (Abs.).

Forms of solar protuberances.

Taechini (P.). Nature, 6, 293.

Taches et protubérances solaires observées avec un spectroscope à grande dispersion.

Thollon (L.). Comptes Rendus, 89, 855.

Observation spectroscopique d'une protubérance solaire le 30 août 1880.
Thollon (L.). Comptes Rendus, 91, 432.

Perturbations solaires nouvellement observées.

Thollon (L.). Comptes Rendus, 97, 114.

Taches et protubérances solaires observées avec un spectroscope à très grande dispersion.

Thollon (L.). Jour. de Phys., 9, 118.

Sudden extinction of the light of a solar protuberance.

Trouvelot (E.). Amer. Jour. Sci., (3) 15, 85-8.

Observations of the solar prominences.

Tupman (Capt.). Monthly Notices Astronom. Soc., 33, 105-115; Amer. Jour. Sci., (3) 5, 319.

Sur une méthode employée par M. Lockyer pour observer en temps ordinaire les spectres des protubérances signalées dans les éclipses de Soleil,

Warren de la Rue. Comptes Rendus, 67, 836.

Beobachtung der Sonnenprotuberanzen in monochromatischem Lichte. Zenker (W.). Ann. Phys. u. Chem., **142**, 172-176.

Einrichtung des Spectroskops zur Wahrnehmung der Protuberanzen. Zollner (F.). Ann. Phys. u. Chem., 138, 42.

Beobachtungen von Protuberanzen der Sonne.

Zöllner (F.). Der Naturforscher, 1, 417; 2, 9, 33, 51, 74, 91, 116, 133, 213, 245, 388; 3, 39, 175, 189, 205, 262, 263, 278; Les Mondes, 18, 362, 413; 19, 213, 215, 232, 498; Nature, 1, 172, 195, 607; 2, 131.

26, Radiation and the solar spectrum.

Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques.

Becquerel (Éd.). Comptes Rendus, 9, 145. Remarques sur cette note, par M. Biot, do., 169. Réponse, do., 172-3. Sur de nouveaux procédés pour étudier la radiation solaire, tant directe que diffuse, dans ses rapports avec la phosphorescence.

Biot. Comptes Rendus, 8, 259, 315.

Sur la répartition de la radiation solaire à Montpellier pendant l'année 1875.

Crova (A.). Comptes Rendus, 82, 375-7.

On the present state of our knowledge of solar radiations.

Hunt (R.). Rep'ts British Assoc. for 1850, 1852, 1853.

Étude des radiations superficielles du Soleil.

Langley (S. P.). Comptes Rendus, 81, 436-9.

27, Red end of the solar spectrum.

Photography of the ultra-red portions of the solar spectrum.

Abney (W. de W.). Chem. News, 40, 311.

Work in the infra-red of the spectrum.

Abney (W. de W.). Nature, 27, 15-18; Jour. de Phys., (2) 3, 48; Beiblätter, 7, 695 (Abs.).

Atmospheric absorption in the infra-red of the solar spectrum.

Abney (W. de W.) and Festing (Lieut. Col.). Nature, 28, 45; Proc. Royal Soc., 35, 80.

On the fixed lines in the ultra-red region of the spectrum.

Abney (W. de W.). Phil. Mag., (5) 3, 222; Beiblätter, 1, 239.

On lines in the infra-red region of the solar spectrum.

Abney (W. de W.). Phil. Mag., (5) 11, 300; Beiblätter, 5, 509.

Sur l'observation de la partie infra-rouge du spectre solaire au moyen des effets de phosphorescence.

Beequerel (Éd.). Comptes Rendus, **83**, 249-255; Archives de Genève, (2) **57**, 306-318; Amer. Jour Sei., (3) **13**, 379-80 (Abs.); Ann. Chim. et Phys., (5) **10**, 5-13.

La détermination des longueurs d'onde des rayons de la partie infra-rouge du spectre au moyen des effets de phosphorescence.

Becquerel (Édm.). Comptes Rendus, 77, 302; Amer. Jour. Sci., (3) 28, 391, 459.

On the fixed lines in the ultra-red invisible region of the spectrum.

Draper (J. W.). Phil. Mag., (5) **3**, 86-89; Beiblätter, **1**, 239-40 (Abs.).

Optical spectroscopy of the red end of the solar spectrum.

Hennessey (J. B. N.). Nature, 17, 28.

Der infra-rothe Theile des Sonnenspectrums.

Lang (V. von). Carl's Repert, 19, 107-9; Beiblatter, 7, 374 (Abs.).

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92-105; Beiblätter, 4, 208.

Photography of the infra-red region of the solar spectrum.

Pickering (W. H.). Proc. Amer. Acad., 20, 473.

Eine Wellenlängenmessung im ultrarothen Sonnenspeetrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32; Amer. Jour. Sci., (3) 25, 230.

Optical spectroscopy of the red end of the solar spectrum.

Smyth (C. Piazzi). Nature, 16, 264.

28, Spectroscopic effect of rotation.

Sur la loi de rotation du Soleil; réponse à une réclamation du P. Seechi et à un mémoire du Dr. Zöllner.

Faye. Comptes Rendus, 73, 1122-31.

Ueber die spectroscopische Beobachtung der Rotation der Sonne, und ein neues Reversionspectroscop.

Zöllner (F.). Ann. Phys. u. Chem., 144, 449.

29, Storms and cyclones on the Sun.

Sur la nouvelle hypothèse du P. Secchi.

Faye. Comptes Rendus, 76, 593-7.

Note sur quelques points de la théorie des cyclones solaires, en répouse à une critique par M. Vicaire.

Faye. Comptes Rendus. 76, 733-41.

Réponse au P. Seechi et à M. Vicaire.

Faye. Comptes Rendus, 76, 919-923, 977-982.

Note sur les cyclones solaires, avec une réponse de M. Respighi à M. M. Vicaire et Secchi.

Faye. Comptes Rendus, 76, 1229-32.

Sur les cyclones du Soleil comparés à ceux de notre atmosphère.

Tarry (H.). Comptes Rendus, 77, 44-8.

Spectre d'une cyclone solaire.

Thollon (L.). Comptes Rendus, 90, 87-9.

Observations sur la théorie des eyelones solaires.

Vicaire (E.). Comptes Rendus, 76, 703-6, 948-52.

30, Sun-spots.

On the spectrum of a solar spot observed at the Royal Observatory, Greenwich.

Airy (G. B.). Monthly Notices Astronom. Soc., 38, 32-3.

On the spectrum of a sun-spot observed at the Royal Observatory, Greenwich, 1880.

Airy (G. B.). Monthly Notices Astronom. Soc., 41, 62-4.

- Dessin des taches solaires observées le 23 mai à 7 heures du soir. Baudin. Comptes Rendus, **70**, 1193.
- On a periodicity of cyclones and rainfalls in connection with sun-spot periodicity.

 British Assoc. Rep'ts for 1873-8.
- Bands observed in the spectra of sun-spots at Stonyhurst Observatory.

 Cortie (A.). Monthly Notices Astronom. Soc., 47 (1886), 19.
- Complément de la théorie physique du Soleil; explication des taches.

 Faye. Comptes Rendus, 75, 1664-72, 1793-6; 76, 301-10, 389-97 (réponse aux critiques de M. M. Secchi et Tacchini).
- Réponse à de nouvelle objections de M. Tacchini. Faye. Comptes Rendus, 77, 381-8, 621-7.
- Théoric des scories solaires selon M. Zöllner. Faye. Comptes Rendus, 77, 501-9.
- Sur l'explication des taches solaires proposée par M. le Dr. Raye. Faye. Comptes Rendus, 77, 855-61.
- Réponse aux remarques de M. Tarry sur la théorie des taches solaires. Faye. Comptes Rendus, 77, 1122-30.
- Théories solaires; réponse à quelques critiques récentes. Faye. Comptes Rendus, 78, 1663-70.
- Observations au sujet de la dernière note M. Tacchini, et du récent mémoire de M. Langley.

Faye. Comptes Rendus, 79, 74-82.

Double série de dessins répresentant les trombes terrestres et les taches solaires executée par M. Faye.

Faye. Comptes Rendus, 79, 265-73.

Sur le dernier numéro des "Memoric dei Spettroscopisti italiani." Faye. Comptes Rendus, 80, 935-6.

Spectrum of the great sun-spot of 1882, Nov. 12-25.

Greenwich Observatory, Monthly Notices Astronom. Soc., 43, 77.

On sun-spots and terrestrial elements in the Sun.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 16, 401-8; Beiblätter. 8, 304 (Abs.); Jour. de Phys., 13, 418.

Temperature of sun-spots.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 17, 302-1; Beiblatter, 8, 768 (Abs.).

On a sun-spot observed Aug. 31, 1880.

Lockyer (J. N.). Proc. Royal Soc., 31, 72; Beiblätter, 5, 129 (Abs.).

Note on the reduction of the observations of the Spectra of 100 sun-spots observed at Kensington.

Lockyer (J. N.). Proc. Royal Soc., 32, 203-6.

Preliminary Report to the Solar Physics Committee on the Sun-spot Observations made at Kensington.

Lockyer (J. N.). Proc. Royal Soc., 33, 154; Chem. News, 44, 297-8; Beiblätter, 6, 281-2 (Abs.).

On the most widened lines in sun-spot spectra; first and second series, from November 12, 1879, to October 15, 1881.

Lockyer (J. N.). Proc. Royal Soc., 36, 443-6; 42 (1887), 37-46.

Observations of sun-spot spectra in 1883.

Perry (S. J.). Monthly Notices Astronom. Soc., 44, 244-8.

On the sun-spot spectrum from D to B.

Perry (S. J.). Rept. British Assoc. (1884), 635.

Analyse spectrale d'une tache solaire.

Rayet. Comptes Rendus, 70, 816.

Réponse à M. Faye concernant les taches solaires.

Reye (T.). Comptes Rendus, 77, 1178-81.

Les minima des taches du Soleil en 1881.

Riccò (A.). Comptes Rendus, 94, 1169-71.

Sulla diversa attività dei due emisferi solari nel 1881.

Riccò (A.). Astronom. Nachr., 103, 155-6.

Remarques sur la relation entre les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 68, 287.

.

Présence de la vapeur d'eau dans le voisinage des taches solaires. Secchi (A.). Comptes Rendus, 68, 358. L'analyse comparative de la lumière du bord solaire et des taches.

Secchi (A.). Comptes Rendus, 69, 39.

Note sur les taches solaires.

Secchi (A.). Comptes Rendus, 69, 163, 589, 652.

Sur les taches et le diamètre solaires.

Secchi (A.). Comptes Rendus, 75, 1581-4.

Taches solaires.

Secchi (A.). Comptes Rendus, 76, 519-27.

La théorie des taches solaires, réponse à M. Faye.

Secchi (A.). Comptes Rendus, 76, 911-19.

Études des taches et des protubérances solaires.

Secchi (A.). Comptes Rendus, 80, 1273-78; 83, 26-7.

Note sur les taches du Soleil.

Sonrel. Comptes Rendus, 70, 1033.

Report to the Solar Physics Committee on a Comparison between apparent Inequalities of Short-period in Sun-spot Areas, and in Diurnal Temperature-ranges at Toronto and at Keno.

Stewart (B.) and Carpenter (W. L.). Proc. Royal Soc., 37, 22, 290.

Macchie solari e facole osservate a Palermo nei mesi di gennaio, febbraio, e marzo 1879 (e durante l'anni 1879 e 1880).

Tacchini (P.). Mem. Spettr. ital., **8**, 35-6, 50-1, 55-6, 90-2, 97-101; **9**, 45-8, 91-2, 190-2; **10**, 1-4, 122-123.

Sur la théorie des tachez solaires; réponse à deux notes précédentes de M. Faye.

Tacchini (P.). Comptes Rendus, 76, 633-5.

Sur la théorie émise par M. Faye des taches solaires.

Tacchini (P.). Comptes Rendus, 76, 826-30.

Nouvelles observations spectrales, en désaccord avec quelques-unes des théories émises sur le taches solaires.

Tacchini (P.). Comptes Rendus, 77, 195-8.

Observations spectroscopiques sur les taches solaires; réponse à M. Faye.

Tacchini (P.). Comptes Rendus, 79, 39.

Sur les taches solaires.

Tacchini (P.). Comptes Rendus, 84, 1079-81.

Spectre d'une tache solaire observée pendant le mois de juin 1877.

Tacchini (P.). Comptes Rendus, 84, 1500.

Observations des taches et des protubérances solaires pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Rendus, 86, 1008.

Observations des taches et des protubérances solaires (pendant les années 1879, 1880, 1881, et 1882).

Tacchini (P.). Comptes Rendus, 90, 358-60; 91, 316-7, 466-7; 93, 382; 95, 276-8; 96, 1290.

Sur la grande tache solaire de novembre 1882, et sur les perturbations magnétiques qui en ont accompagné l'apparition.

Tacchini (P.). Comptes Rendus, 95, 1212-14.

Macchie solari e facole osservate in Roma all'equatoriale di Cauchoix nel terzo trimestre, e nel ultimo trimestre 1879.

Tacchini (P.) e Millosevich (E.). Mem. Spettr. ital., 8, 73-4, 88-9.

Macchie solari e facole osservate a Roma nel mese di gennaio, 1880. Tacchini (P.) e Millosevich (E.). Mem. Spettr. ital., 9, 8.

Observations des taches du Soleil, faites à l'Observatoire de Toulouse en 1874 et 1875.

Tisserand (F.). Comptes Rendus, 82, 765-7.

Sur deux taches solaires actuellement visibles à l'œil nu.

Tremeschini. Comptes Rendus, 70, 340.

On the veiled solar spots.

Trouvelot (L.). Proc. Amer. Acad., 11, 62-69; Amer. Jour. Sci., (3) 11, 169-176.

Sur la théorie des taches et sur le noyau obscur du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1396-9.

Sur la constitution du Soleil, et la théorie des taches.

Vicaire (E.). Comptes Rendus, 76, 1540-4; 77, 40-4.

Note on the temperature of sun-spots.

Wiedemann (E. . Phil. Mag., (5 17, 247-8; Beiblatter, 8, 768 (Abs.).

Études sur la fréquence des taches du Soleil et sa relation avec la variation de la déclinaison magnétique.

Wolf. Comptes Rendus, 70, 741.

Spectroscopic Notes; Spot-spectra.

Yeung (C. A.). Jour. Franklin Inst., 60, 331-40; Nature, 3, 110-113.

Ueber die Periodicität und heliographische Verbreitung der Sonnenflecken.

Zöllner (F.). Ber. Sächs. Ges. d. Wiss., 22, 338-350; Ann. Phys. u. Chem., 142, 524-539.

Ueber den Aggregatzustand der Sonnenflecken.

Zöllner (F.). Ann. Phys. u. Chem., 152, 291-310.

31, Telluric (terrestrial) rays of the solar spectrum.

Étude spectrale du groupe de raies telluriques nommé a (Alpha) par Angström.

Cornu (A.). Comptes Rendus, 95, 801; 98, 169-76; Nature, 29, 351;
 Beiblätter, 8, 305-7 (Abs.); Jour. de Phys., (2) 3, 102-117.

Les bandes telluriques du spectre solaire.

Crova (A.). Comptes Rendus, 87, 107.

Sur les raies telluriques du spectre solaire.

Egoroff (N.). Comptes Rendus, 93, 385, 788; Chem. News, 44, 256 (Abs.); Beiblätter, 5, 871-2 (Abs.); 6, 100-101 (Abs.).

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire par une couche absorbante d'oxygène.

Egoroff (N.). Comptes Rendus, **97**, 555-7; Beiblätter, **7**, 859-60 (Abs.); Amer. Jour. Sci., (3) **26**, 477 (Abs.).

Tellurische Linien der Sonne und der Gestirne.

Jahresber. d. Chemie, 18, 92; 19, 77.

Sur les raies telluriques du spectre solaire.

Janssen (J.). Comptes Rendus, 54, 1280; 56, 189, 538; 57, 1008;
60, 213; 95, 885; Ann. Chim. et Phys., (4) 23, 274-299; Ann. Phys. u. Chem., 126, 480; Phil. Mag., (4) 30, 78.

In feuchter Luft sind die Wärmestreifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., 146, 217.

Étude sur les raies telluriques du spectre solaire.

Thollon (L.). Comptes Rendus, 91, 520-522; Beiblätter, 4, 891 (Abs.).

32, Ultra-violet part of the solar spectrum.

Étude du spectre solaire ultra-violet.

Cornu (A.). Comptes Rendus, 86, 101; Jour. de Phys., 7, 285.

Deux planches relatives au spectre solaire.

Cornu (A.). Comptes Rendus, 86, 983.

Sur l'absorption atmosphériques des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 10, 5.

Sur la limite ultra-violette du spectre solaire.

Cornu (A.). Comptes Rendus, 88, 1101-8; Proc. Royal Soc., 29, 47-55; Jour. Chem. Soc., 36, 861 (Abs.); Beiblätter, 4, 39-40 (Abs.).

Observation de la limite ultra-violette du spectre solaire à diverses altitudes.

Cornu (A.). Comptes Rendus, 89, 808-814; Jour. Chem. Soc., 38, 201 (Abs.); Amer. Jour. Sci., (3) 19, 406.

Loi de repartition, suivant l'altitude, de la substance absorbant dans l'atmosphère des radiations solaires ultra-violettes.

Cornu (A.). Comptes Rendus, 90, 940.

Sur le spectre normal du Soleil; partie ultra-violette.

Cornu (A.). Ann. de l'École Normale, (2) 9, 21-106; Beiblätter, 4, 371-4 (Abs.).

Sur les longueurs d'onde et les caractères des raies violettes et ultraviolettes du Soleil, données par une photographie faite au moyen d'un réseau.

Draper (H.). Comptes Rendus, 78, 682-6.

Influence des rayons ultra-violets du spectre solaire sur la matière verte des végétaux et sur la flexion des tiges.

Guillemin. Comptes Rendus, 45, 62, 543.

Ultra-violette Strahlen des Sonnenspectrums.

Jahresber, d. Chemie (1872), 134.

Sur les raies du spectre solaire ultra-violet.

Mascart. Comptes Rendus, 57, 789; Phil. Mag., (4) 27, 159

Sur l'absorption du nouveau violet extrême par diverses matières.

Matthiessen. Comptes Rendus, 19, 112.

Rayons violets qui renferment le maximum d'action chimique de toutes les couleurs du spectre solaire.

Poey (A.). Comptes Rendus, 73, 1288.

Nouvelles expériences tendant à démontrer qu'il existe une force magnétisante dans l'extrémité violette du spectre solaire.

-

Ridolfi (C.). Ann. Chim. et Phys., (5) 3, 323-4

33, Water in the solar spectrum.

The influence of water in the atmosphere on the solar spectrum and solar temperature.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., **35**, 328-41; Jour. Chem. Soc., **46**, 241; Beiblätter, **8**, 507 (Abs.).

Aqueous lines in the spectrum of the Sun.

Cooke (J. P., Jr.). Amer. Jour. Sci., 91, 178; Phil. Mag., (4) 31, 387.

Influence de la vapeur aqueuse visible dans l'atmosphère, et de la pluie sur le spectre solaire.

Zantedeschi. Comptes Rendus, 63, 644.

34, Wave-lengths of the solar spectrum.

Wave-lengths of A, α , and of prominent lines in the infra-red of the solar spectrum.

Abney (W. de W.). Proc. Royal Soc., 36, 137.

Détermination des longueurs d'onde des raies et bandes principales du spectre solaire infra-rouge.

Beequerel (H.). Comptes Rendus, 99, 417; Amer. Jour. Sci., 123, 391, 459.

Détermination des longueurs d'onde des raies du spectre solaire au moyen des bandes d'interférence.

Bernard (F.). Comptes Rendus; 58, 1153; 59, 32.

Sur la photométrie solaire.

Crova (A.). Comptes Rendus, 94, 1271; 95, 1271-3; 96, 123; Beiblätter, 7, 113 (Abs.).

Bestimmung der Wellenlängen der Fraunhofer'schen Linien des Sonnenspectrums, mit 2 Tafeln.

Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 50 II, 286, 296-341.

Sur les longueurs d'onde et les caractères des raies violettes et ultraviolettes du Soleil, données par une photographie faite au moyen d'un réseau.

Draper (H.). Comptes Rendus, 78, 682-6.

On the normal solar spectrum (giving wave-lengths of the principal lines of the solar spectrum).

Gibbs (Wolcott). Amer. Jour. Sci., 93, 1.

Mesures spectrophotométriques en divers points du disque solaire.

Gouy et Thollon. Comptes Rendus, 95, 834-6; Beiblätter, 7, 113-114 (Abs.).

Wellenlänge und Brechungsexponent der äussersten dunklen Wärinestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543. Berichtigung dazu, 116, 644.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32; Nature. 23, 72.

Relative wave-length of the lines of the solar spectrum.

Rowland (H. A.). Amer. Jour. Sci., (3) 38 (1887), 182-190; Phil. Mag., (5) 23 (1887), 257-65.

Note on Sir David Brewster's Line Y in the infra-red of the solar spectrum.

Smyth (C. Piazzi). Edinburgh Transactions, 32 II, 223-238.

Spectralphotometrische Untersuchungen.

Vogel (H. C.). Monatsber. d. Berliner Akad., (1877) 104-142.

35, White lines in the solar spectrum.

White lines in the solar spectrum.

100

Hennessey (J. H. N.). Proc. Royal Soc., 22, 221; Phil. Mag., (4) 48, 303-6; 53, 259 (appendix to the preceding note).

k, TWINKLING OF STARS.

Ueber das Funkeln der Sterne und die Scintillation überhaupt.

Exner (K.). Sitzungsber. d. Wiener Akad., **84** H, 1038-81; Ann. Phys. u. Chem., n. F. **17**, 305-22; Jour. de Phys., (2) **1**, 373 (Abs.)

Analyse prismatique de la lumière des étoiles scintillantes.

Montigny (Ch.). Bull. del'Acad. de Belgique, (2) 37, 165-90; Comptes Rendus, 66, 910; Ann. Phys. u. Chem., 153, 277-98.

Nouvelles recherches sur la fréquence de la scintillation des étoiles dans ses rapports avec la constitution de leur lumière d'après l'analyse spectrale.

Montigny (Ch.). Bull. de l'Acad. roy. de Belgique, (2) 38, 300-321; Ann. Phys. u. Chem., Erganzungsband, 7, 605-624.

ATMOSPHERIC SPECTRA.

Atmospheric transmission of visual and photographically active light.

Abney (W. de W.). Monthly Notices Astronom. Soc., 47 (1887), 260-5.

Spectre de l'air atmosphérique.

Becquerel (H.). Comptes Rendus, 90, 1407.

La radiation atmosphérique comme agent chimique.

Biot. Comptes Rendus, 8, 598.

Observations of the lines of the solar spectrum, and on those produced by the Earth's atmosphere.

Brewster (Sir D.). Phil. Mag., (3) 8, 384.

On the aqueous lines of the solar spectrum.

Cooke (J. P.). Amer. Jour. Sci., (2) 41, 178; Phil. Mag., (4) 31, 337.

Sur l'absorption par l'atmosphère des radiations ultra-violettes.

Cornu (A.). Comptes Rendus, 88, 1285; Jour. de Phys., 10, 5.

Sur l'observation comparative des raies telluriques et métalliques comme moyen d'observer les pouvoirs absorbants de l'atmosphère.

Cornu (A.). Comptes Rendus, 95, 801-6; Jour. de Phys., (2) 2, 58;
Beiblätter, 7, 110 (Abs.); Amer. Jour. Sci., (3) 25, 78; Bull. Soc. franc. de Phys. (1882), 241-7.

Étude spectrale du groupe de raies telluriques nommé a (alpha) par Angström.

Cornu (A.). Comptes Rendus, 98, 169; Ann. Chim. et Phys., (6) 7 (1886), 5-102; Phil. Mag., (5) 22 (1886), 458-63; Amer. Jour. Sci., (3) 33 (1887), 70 (Abs.); Beiblätter, 11 (1887), 37 (Abs.).

s bandes telluriques du spectre solaire.

Crova (A.). Comptes Rendus, 87, 107.

Recherches sur les raies telluriques du spectre solaire.

Egoroff (N.). Comptes Rendus, 93, 385, 788.

Recherches sur le spectre d'absorption de l'atmosphère terrestre.

Egoroff (N.). Comptes Rendus, 95, 447; Beiblätter, 6, 937; Jour. Chem. Soc., 44, 137.

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire, par une couche d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555.

Note on the atmospheric lines of the solar spectrum and on certain spectra of gases.

Gladstone (J. H.). Proc. Royal Soc., 11, 305.

Bandenspeetrum der Luft.

Goldstein. Sitzungsber. d. Wiener Akad., 84 H, 693; Ann. Phys. u. Chem., n. F. 15, 280.

On the absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-28; Ber. chem. Ges., 14, 1390 (Abs.).

Atmospheric lines of the solar spectrum.

Hennessey (J. H.). Proc. Royal Soc., 19, 1; 23, 201.

Zustand der Atmosphäre.

Jahresber, d. Chemie, 13, 607; 14, 45; 16, 103; 19, 77.

Spectres telluriques.

Jaussen (J.). Comptes Rendus, 101 (1885), 111.

Analyse spectrale des éléments de l'atmosphère terrestre. Janssen (J.). Comptes Rendus, **101** (1885), 649.

In feuchter Luft sind die Wärmestreifen des Sonnenspectrums breiter. Lamansky (S.). Ann. Phys. u. Chem., **146**, 217.

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur. Lang (V. von). Ann. Phys. u. Chem., 153, 448-65; Sitzungsber. Wiener Akad., 69 II, 451-68.

Amount of atmospheric absorption.

Langley (S. P.). Phil. Mag., (5) 18, 289-307; Jour. Chem. Soc., 23, 319; Amer. Jour. Sci., (3) 28 (1885), 163, 242.

Ueber die Absorption der Sonnenstrahlung durch die Kohlensäure unserer Atmosphäre.

Lecher (E.). Sitzungsber. Wiener Akad., 82 II, 851-863.

On the spectrum of the atmosphere.

Maclear (J. P.). Nature, 5, 341.

Sur la théorie de l'absorption atmosphérique.

Maurer (J.). Archives de Genève, (3) 9, 374-91.

Opalescence of the atmosphere for the chemically active rays.

Roscoe (H. E.). Chem. News, 14, 28.

On the atmospheric lines between the D lines.

Russell (H. C.). Monthly Notices Astronom. Soc., 38, 30-32.

٠

Spectrum des electrischen Glimmlichts in atmosphärischer Luft. Schimkow (A.). Ann. Phys. u. Chem., **129**, 513.

Sur l'influence de l'atmosphère sur les raies du spectre. Secchi (A.). Comptes Rendus, **60**, 379.

Spectrum von atmosphärischer Luft.

Vogel (H. C.). Ann. Phys. u. Chem., **146**, 580.

AURORA AND ZODIACAL LIGHT.

The aurora and its spectrum.

Abercromby (R.). Nature, 27, 173; Beiblätter, 7, 193.

Magnetic disturbances, auroras and earth-currents.

Adams (W. G.). Nature, 25, 66-71.

Spectrum of aurora borealis.

Angström (A. J.). Nature, **10**, 210; Ann. Phys. u. Chem., Jubelband, 424-9; Arch. de Genève, (2) **50**, 204 (Abs.); Jour. de Phys., **3**, 210.

Observations of the zodiacal light at Cadiz.

Arcimis (A. T.). Monthly Notices Astronom. Soc., 36, 48-51.

Spectrum of the Aurora.

Backhouse (T. W.). Nature, 4, 66; 7, 182, 463; 28, 209.

A line in the green between b and F; a line in the yellow-green between D and E (principal auroral line); a line in the green-blue at or near F, assumed to be 485 of Alvan Clarke, Jr.; a line in the red between C and D, almost equidistant between C and D; a line in the green at or near b, at 517.

Barker (G. F.). Nature, 7, 182.

Spectrum of the Aurora.

Barker (G. F.). Amer. Jour. Sci., (3) 2, 465-8; 5, 81-84; Jour. Chem. Soc., (2) 10, 119 (Abs.); Chem. News, 24, 270.

On the spectrum of the aurora borealis.

Browning (J.). Monthly Notices Astronom. Soc., **31**, 17; Phil. Marg. (4) **41**, 79; Amer. Jour. Sci., (2) **1**, 215.

Comparison of some tube and other spectra with the spectrum of the aurora.

Capron (J. R.). Phil. Mag., (4) 49, 249-66.

Spectrum of aurora.

Capron (J. R.). Nature, 3, 28; Phil. Mag., (4) 49, 481.

The aurora borealis of Feb. 4, 1872.

Capron (J. R.). Nature, 5, 284-5. (See below under Cornu, K.y. Maclear, Murphy, Perry, Prazmowski, Respighi, Secchi, Smyth. Stone, Tacchini, Twining, and Watts.) Spectrum of the aurora and of the zodiacal light (with a list of authorities on the subject, included here).

Capron (J. R.). Nature, 7, 182-186.

The aurora spectrum.

Capron (J. R.). Nature, 7, 201.

The aurora and its spectrum.

Capron (J. R.). Nature, 25, 53; Jour. de Phys., (2) 2, 97 (Abs.).

The aurora.

Capron (J. R.). Nature, 27, 83-4, 139, 198.

Magnetic storm, aurora and sun-spot.

Christie (W. H. M.). Nature, 27, 83.

Spectrum of the Aurora.

Church (A. H.). Chem. News, 22, 225.

A line in the green-blue at or near F; at 485; assumed to be 486 F hydrogen.

Clark (Alvan, Jr.). Nature, 7, 182.

A line in the green near E (corona line?); at 532; assumed to be 531.6 (corona line).

Clark (Alvan, Jr.). Nature, 7, 182.

A line in the yellow-green between D and E (principal auroral line).

Clark (Alvan, Jr.). Nature, 7, 182.

Line in the indigo at or near G; at 435; supposed to be G hydrogen.
Clark (Alvan, Jr.). Nature, 7, 183.

Observations of the aurora on Aug. 12 and 13, 1880 Copeland (R.). Nature, 22, 510.

Spectre de l'aurore boréale du 4 février.

Cornu (A.). Comptes Rendus, 74, 390.

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-7.

The aurora.

Eiger (T. G.). Nature, 3, 6-7; 7, 182; 27, 85-6.

Spectrum of the aurora.

Ellery (R. J.). Nature, 4, 280.

Spectrum of the aurora.

F. (T.). Nature, 3, 6.

Sur les aurores boréales.

Fave. Comptes Rendus, 77, 546.

The continuous spectrum; faint green reaching from the aurora line to F. Flogel. Nature, 7, 183.

Spectroscopic examination of the aurora, April 10, 1872. Frazer (P.). Proc. Amer. Philosoph. Soc., 12, 579.

On the spectrum of the aurora.

Herschel (A. S.). Phil. Mag., (4) 49, 65-71; Nature, 3, 486.

Line in the yellow-green between D and E (principal auroral line).

Herschel (A. S.). Nature, 7, 182.

Spectrum of the aurora.

Holden (E. S.). Amer. Jour. Sci., (3) 4, 423; Phil. Mag., (4) 44, 478.

Spectrum of the aurora.

Hyntt. Nuture, 3, 105.

Das Nordlichtspectrum.

Juhresber, d. Chemic, (1868) 128, (1869) 180, (1872) 148, (1873) 151, (1875) 123.

Speetrum des Zodiacal-Lichtes.

Jahresber, d. Chemie, (1872) 148.

The aurora borealis of Feb. 4, 1872.

Key (H. Cooper). Nature, 5, 302.

Spectrum of the aurora.

Kirk (E. B.). Observatory, (1882) 271, (1886) 311.

Spectrum of the aurora.

Kirkwood (D.). Nature, 3, 126.

Sur la décharge électrique dans l'aurore boréale, et le spectre du même phénomène.

Lemström (S.). Archives de Genève, (2) 50, 225-42, 355-86; Nature.
28, 60-3, 107-9, 128-30; Jour. de Phys., (2) 2, 315-17 (Abs.).
See Tresen in Comptes Rendus, 96, 1335.)

.

L'analyse spectrale de la lumière zodiacale et sur la couronne des éclipses.

Liais (É). Comptes Rendus, 74, 262.

Spectrum of the aurora.

Lindsay (Lord). Nature, 4, 347, 366; 7, 182.

The aurora borealis of Feb. 4, 1872.

Maclear (J. P.). Nature, 5, 283.

Spectrum of aurora.

Maclear (J. P.). Nature, 6, 329

Spectrum of aurora australis.

Maclear (J. P.). Nature, 17, 11.

Swan lamp spectrum and the aurora.

Munro (J.). Nature, 27, 173; Beiblätter, 7, 193.

The aurora borealis of Feb. 4, 1872.

Murphy (J. J.). Nature, 5, 283.

Spectrum of the aurora.

Newlands (J. A. R.). Chem. News, 23, 213.

Das Nordlichtspectrum.

Oettigen (A. J.). Ann. Phys. u. Chem., 146, 284-7; Ann. Chim. et Phys., (4) 26, 269-73.

The aurora borealis of Feb. 4, 1872.

Perry (S. J.). Nature, 5, 303.

Spectrum of the aurora.

Pickering (E. C.). Nature, 3, 104.

Étude spectrale de la lumière de l'aurore boréale du 4 février.

Prazmowski. Comptes Rendus, 74, 391.

Spectrum of the aurora.

Pringle (G. H.). Nature, 6, 260.

Spectra of the aurora and corona.

Proctor (H. R.). Nature, 3, 6, 68, 346, 369, 468; 6, 161, 220; 7, 242,

Spectrum of the aurora.

Proctor (H. R.). Nature, 7, 1 2.

Sur le spectre de l'aurore boréale.

Rayet (G.). Jour. de Phys., 1, 363.

L'analyse spectrale de la lumière zodiacale.

Respighi (L.). Comptes Rendus, 74, 514.

Le spectre de la lumière zodiacale et le spectre de l'aurore boréale sont identicales.

Respighi (L.). Comptes Rendus, 74, 743.

Observations of the aurora borealis of Feb. 4 and 5, 1872.

Respighi (L.). Nature, 5, 511; Gazz. Ufficiale d. Regno d'Italia, Feb. 5, 1872.

The aurora.

Robinson (H.). Nature, 27, 85.

The aurora.

Romanes (C. H.). Nature, 27, 86.

On the auroral spectrum.

Rowland (H. A.). Amer. Jour. Sci., 5, 320.

Spectre de l'aurore boréale.

Salet (G.). Bull. Soc. chim. Paris, 1 Mars 1872; Ber. chem. Ges., 5, 222.

Spectrum of the aurora.

Schmidt. Nature, 7, 182-3.

The aurora borealis of Feb. 4, 1872.

Seabroke (G. M.). Nature, 5, 283.

Sur l'aurore boréale du 4 février observée à Rome, et sur quelques nouveaux résultats d'analyse spectrale.

Secchi (A.). Comptes Rendus, 74, 583-8.

Aurore boréale observée à Rome le 10 août à 10 heures du matin.

Secchi (A.). Comptes Rendus, 75, 606-613.

La luce zodiacale confronto tra le osservazioni del P. Dechevrens e quelle di G. Jones.

Serpieri (A.). Mem. Spettr. ital., 9, 138-42.

Mémoire sur des faits dont on peut déduire: 1. une théorie des aurores boréales et australes, fondée sur l'existence de marées atmosphériques; 2. l'indication, à l'aide des aurores, de l'existence d'essains d'étoiles filantes à proximité du globe terrestre.

Silbermann (J.). Comptes Rendus, 74, 553-7, 638-42.

Spectra of aurora, corona and zodiacal light.

Smyth (C. Piazzi). Nature, 3, 509-10.

Spectroscopic observations of the zodiacal light in April, 1872, at the Royal Observatory, Palermo.

Smyth (C. Piazzi). Monthly Notices Astronom. Soc., **32**, 277-288; Amer. Jour. Sci., (9, 4, 245) Abs.).,

-

The aurora borealis of Feb. 4, 1872.

Smyth (C. Piazzi). Nature, 5, 282-3.

Spectrum of the aurora.

Smyth (C. Piazzi). Nature, 7, 182.

The aurora of Feb. 4, 1872.

Stone (E. J.). Nature, 5, 443; Amer. Jour. Sci., (3) 3, 391-2.

Beobachtung eines Nordlichtspectrum (Aurora Borealis).

Struve (Otto von). Bull. de l'Acad. de St. Pétersbourg, 3, 49.

Observations of the aurora.

Sueur (A. Le). Proc. Royal Soc., 19, 19.

Spectrum of the aurora.

T. (F.). Nature, 7, 182-3.

Sur l'aurore boréale du 4 février 1872.

Tacchini (P.). Comptes Rendus, 74, 540-2.

Sur l'origine des aurores polaires.

Tarry (H.). Comptes Rendus, 74, 549-53.

Sur les observations de M. Lemström en Laponie.

Tresca. Comptes Rendus, 96, 1335-6.

The aurora of Feb. 4, 1872.

Twining (A. C.). Amer. Jour. Sci., (3) 3, 273-81.

Untersuchungen über das Spectrum des Nordlichtes.

Vogel (H. C.). Ber. Sächs. Ges. d. Wiss., 23, 285-99; Ann. Phys. u.
Chem., 146, 569-85; Jour. Chem. Soc., (2) 10, 1061 (Abs.); Amer.
Jour. Sci., (3) 4, 487 (Abs.).

Spectrum des Nordlichtes.

Vogel (H. C.). Astronom. Nachr., 78, 247-8.

Spectrum of the aurora.

Watts (W. M.). Phil. Mag., (4) 49, 410-11.

The aurora borealis of Feb. 4, 1872.

Watts (W. M.). Nature, 5, 303.

Observations sur le spectre de l'aurore boréale.

Wijkander (A.). Arch. de Genève, (2) 51, 25-30.

Line in the green near E (corona line).

Winlock. Nature, 7, 182.

On the spectrum of the zodiacal light.

Wright (A. W.). Amer. Jour. Sci., (3) 8, 39-46; Ann. Phys. u. Chem., 154, 619-29.

Ueber das Spectrum des Nordlichtes.

Zöllner (F.). Ber. Sächs. Ges. Wiss., 22, 254-260; Ann. Phys. c. Chem., 141, 574-581; Phil. Mag., (4) 41, 122-127; Amer. Jour. Sci., (3) 1, 372-3 (Abs.).

Spectrum of the aurora.

Zöllner (F.). Nature, 7, 182-3.

AUSTRIUM.

Spectrum of austrium.

Linnemann (E.). Monatschr., 7, 121-3; Jour. Chem. Soc., 50 (1886), 773 (Abs.).

BARIUM.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der natürlichen Sulfate des Baryum.

Arzruni (A.). Zeitschr. Krystallogr. u. Mineralog., 1, 165-192; Jahrb. f. Mineral. (1877), 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Barium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 21.

Spectre de chlorure de baryum.

Gouy. Comptes Rendus, 84, 231.

Sur les caractères des flammes chargées du chlorure de baryum.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du baryum.

Gouy. Comptes Rendus, 86, 878.

Spectrum von Baryum.

Jahresber. d. Chemie (1870), 174.

Chemische Analyse durch Spectralbeobachtungen, Baryum. Kirchhoff und Bunsen. Ann. Phys. u. Chem., **110**, 182 Chlorure de Baryum (ou Ba O) dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 57, 62, planche VII.

Bromure de baryum dans le gaz chargé de brome; iodure de baryum dans le gaz chargé d'iode.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 65, planche VIII.

BERYLLIUM OR GLUCINUM.

Beryllium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 22.

Spectrum of beryllium.

Hartley (W. N.). Chem. News, **47**, 201; Jour. Chem. Sec., **43**, 316-19; Ber. chem. Ges., **16**, 1859 (Abs.); Amer. Jour. Sci., (3) **26**, 316-17.

Remarks on the atomic weight of beryllium.

Hartley (W. N.). Proc. Royal Soc., 36, 462-4; Chem. News, 49, 171-2; Beiblatter, 8, 820 (Abs.).

Spectrum of beryllium.

Nature, 29, 90.

Propriétés principales du glucinum.

Nilson L. F. et Petterson O.A. Comptes Rendus, 91, 169.

Note on the atomic weight of beryllium.

Reynolds (J. E.). Proc. Royal Soc., **35**, 248-50; Beiblatter, **8**, 8, 4 (Abs. .

*

Reply by Humpidge (T. S. . Proc. Royal Soc., 35, 35-9.

BISMUTH.

Le bismuth n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Fluorescence des composés de bismuth.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103 (1887), 629-31, 1064-8; Jour. Chem. Soc., 52, 4 (Abs.), 189 (Abs.).

BLUE GROTTO.

Spectroscopische Untersuchung der blauen Grotte auf Capri. Vogel (H. W.). Ann. Phys. u. Chem., **156**, 325.

BORAX.

Boron arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 22.

L'acide borique.

Dieulafait (L.). Ann. Chim. et Phys., (5) **12**, 318-54; Jour. Chem. Soc., **34**, 11 (Abs.).

10 т

Existence de l'acide borique dans les eaux de la Mer Morte.

Dienlafait (L.). Comptes Rendus, 94, 1352-4; Jour. Chem. Soc., 42, 1037 (Abs.); Ann. Chim. et Phys., 5) 25, 145-167.

L'acide borique dans les eaux minérales de Contrexeville et Schinzmach (Suisse).

Diculafait (L.). Comptes Rendus, 95, 999-1001; Jour. Chem. Soc. 44, 301 (Abs.).

Les salpêtres naturels du Chili et du Pérou au point de vue de l'acide borique.

Dieulafait (L.). Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

On line spectra of boron.

Hartley (W. N.). Proc. Royal Soc., 35, 301-4; Chem. News. 48, 1-2; Jour. Chem. Soc., 46, 242 (Abs.); Beiblätter, 8, 120 (Abs.).

Spectra of boric acid and blowpipe beads.

Horner (Charles). Chem. News, 29, 66.

Spectre de l'acide borique dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 101. planche XXVIII.

Spectre de l'acide borique.

Lecoq de Boisbaudran (F.). Comptes Rendus. 76, 883.

Spectrum von Fluorborgas.

Plücker. Ann. Phys. u. Chem., 104, 125.

Propriétés optiques de borax.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Spectra der verschiedenen grünen Flammen, Borax.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Spectre du bore.

Troost et Hautefeuille. Comptes Rendus, 63, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

- 10

BROMINE.

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Spectre du brome dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, **88**, 379-81; Jour. Chem. Soc., **36**, 504-5.

Spectre de bromure de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1.

Spectre d'absorption de protobromure de tellure et de protobromure d'iode.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

Spectre du brome.

Gouy. Comptes Rendus, 85, 70.

- Absorptionsspectrum des Bromtellurs, des Bromselens, und des Bromjods.

 Jahresber. d. Chemie (1872), 140.
- On the action of the less refrangible rays of light on silver iodide and bromide.

Lea (M. Carey). Amer. Jour. Sei., (3) 9, 269-78; Jour. Chem. Soc., 1 (1876), 28 (Abs.).

Notes on the sensitiveness of silver bromide to the green rays as modified by the presence of other substances.

Lea (M. Carey). Amer. Jour. Sci., (3) 11, 459-64.

Réaction spectrale du Brome.

Locoq de Boisbaudran (F.). Comptes Rendus, **91**, 902-3; Phil. Mag., (5) **11**, 77-8; Beiblätter, **5**, 118 (Abs.).

Bromure de baryum dans le gaz chargé de brome.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 63, 65, planche VIII.

Verbindungsspectrum zur Entdeckung von Brom.

Mitscherlich. Jour. prackt. Chem., 97, 218.

Entdeekung sehr geringer Mengen von Brom in Verbindungen.
Mitscherlich. Ann. Phys. u. Chem., 125, 629.

Absorption spectra of bromine.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Ueber die Lichtempfindlichkeit des Bromsilbers.

Vogel (H.). Ber. chem. Ges., 6, 1302-6; Ann. Phys. n. Chem., 150, 453-9; Jour. Chem. Soc., (2) 12, 217 (Abs.); Amer. Jour. Sci., (3) 7, 140-1; Phil. Mag., (4) 47, 273-7.

Ueber die chemische Wirkung des Lichtes auf reines und gefärbtes Bromsilber.

> Vogel (H. W.). Ber. chem. Ges., 8, 1635-6; Jour. Chem. Soc., 1 (1876), 510 (Abs.); Amer. Jour. Sci., (3) 11, 215-16 (Abs.).

Neue Betrachtungen über die Lichtempfindlichkeit des Bromsilbers.

Vogel (H. W.). Ber. chem. Ges., 9, 667-70; Jour. Chem. Soc., 2 (1876), 265 (Abs.).

Ueber die Empfindlichkeit trockner Bromsilberplatten gegen das Sonnenspectrum.

Vogel (H. W.). Ber. chem. Ges., 14, 1024-8; Beiblatter, 5, 521 (Abs.); Jour. Chem. Soc., 40, 773 (Abs.).

Ueber die verschiedenen Modificationen des Bromsilbers.

Vogel (H. W.). Ber. chem. Ges., 16, 1170-79; Beiblätter, 7, 5-65 (Abs.).

Sur la sensibilité du bromure d'argent à l'égard des radiations considérées comme chimiquement inactives.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 21, 233.

Ueber die Brechung und Dispersion des Lichtes im Bronsilber.

Wernieke (W.). Ann. Phys. n. Chem., 142, 560-73; Jour. Chem. Soc., (2) 9, 653 (Abs.); Ann. Chim. et Phys., (4) 26, 287.

~

Uebereinstimmung des Absorptionsspectrums von Brom mit dem Spectrum dessen Dampfes.

Wullner (A. . Ann. Phys. u. Chem., 120, 150.

CADMIUM.

Ultra-violet spectrum of cadmium.

Bell (L.). Amer. Jour. Sci., **31** (1886), 426-31; Jour. Chem. Soc., **50**, 957 (Abs.).

Cadmium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, 23.

Spectrum of chloride of cadmium.

Chem. News, 35, 107.

Déterminations des longueurs d'onde des radiations très réfrangibles du cadmium.

Cornu (A.). Arch. de Genève, (3) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31.

Renversement des raies spectrales du cadmium.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre de chlorure de cadmium.

Gouy. Comptes Rendus, 84, 231.

Spectrum von Cadmium.

Jahresber. d. Chemie (1872), 145.

Chlorure de cadmium en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, 139.

Spectrum of cadmium at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Indice du quartz pour les raies du cadmium.

Sarasin (Ed.). Comptes Rendus, 85, 1230.

CÆSIUM.

Observations on casium.

Allen (O. D.). Phil. Mag., 25, 189; Amer. Jour. Sci., (2) 34 (1862),

On the equivalent and spectrum of eæsium.

Allen (O. D.) and Johnson (S. W.). Phil. Mag., 25, 196; Amer. Jour. Sci., (2) 35 (1863), 94.

On eæsium.

Bunsen (R.). Phil. Mag., 26, 241.

Les salpêtres naturels du Chili et du Pérou au point de vue du casinm.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Recherches sur la présence du casium dans les eaux naturelles.

Grandeau (L.). Ann. Chim. et Phys., (3) 67, 155.

Spectrum von Casium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 113, 337, 379; Phil. Mag., (4) 22, 498.

Chlorure de casium.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, 1, 44, planche III.

On pollux, a silicate of casium.

Pisani. Comptes Rendus, 58, 714.

CALCIUM.

Sur la phosphorescence du sulfure de calcium.

Becquerel (Edm.). Comptes Rendus, **103** (1887), 551-3; Chem. News, **55** (1887), 123.

Action du manganèse sur le pouvoir de phosphorescence du carbonate de chaux.

Becquerel (Edm.). Comptes Rendus, 103 (1886), 1098-1101.

Ueber das Calciumspectrum.

Blochmann (R.). Jour. prackt. Chem., (2) **4**, 282-6; Jour. Chem. Soc., (2) **9**, 1149-1150 (Abs.).

Calcium (Zinc) spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 23.

Spectre de chlorure de calcium.

Gouy. Comptes Rendus, 84, 231.

Recherches photométriques, spectre du calcium.

Gouy. Comptes Rendus, 85, 70.

Sur les flammes chargées du chlorure de calcium.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du calcium.

Gouy. Comptes Rendus, 85, 878, 1078.

Spectrum von Kalk.

Jahresber. d. Chemie (1870), 174.

Linien von Calcium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 177.

Das Wärmespectrum des Kalklichtes.

Lamansky (S.). Monatsber. d. Berliner Akad. (1871), 632-41; Phil. Mag., (4) 43, 282-9; Ann. Phys. u. Chem., 146, 200-32.

Ueber die Dispersion des Aragonits nach arbiträrer Richtung.

Lang (V. von). Sitzungsber. d. Wiener Akad., 83 II, 671-6.

Note on the spectra of calcium fluoride.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 96-8; Beiblätter, 4, 611-12 (Abs.).

Sur de nouvelles raies de calcium.

Lockyer (J. N.). Comptes Rendus, 82, 660-2; Ann. Chim. et Phys.,
(5) 7, 569-72; Chem. News, 33, 166-7; Jour. Chem. Soc., 2 (1876),
35 (Abs.); Ber. chem. Ges., 9, 505 (Abs.); Ann. Phys. u. Chem.
158, 327-9 (Abs.); Bull. Soc. chim. Paris, n. s. 26, 267.

Remarques à propos de la dernière communication de M. Lockyer sude nouvelles raies de calcium, par M. C. Sainte-Claire Devill-Comptes Rendus, 82, 709-10.

Calcium comme corps composé d'après le spectroscope.

Lockyer (J. N.). Comptes Rendus, 87, 673.

Fluorescenz von Kalkspar.

Lommel (E.). Ann. Phys. u. Chem., n. F. 21, 422-7; Jour. Chem. Soc., 46, 649 (Abs.).

Sur l'origine de l'arsénic et de la lithine dans eaux sulfatées calciques.

Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-63; Jour. Chem. Soc., 44, 302 (Abs.).

Sur les causes déterminantes de la phosphorescence du sulfure de calcium.

Vernenil (A.). Comptes Rendus, 103 (1887), 601-4; Beiblätter, 11 (1887), 253; Jour. Chem. Soc., 52, 2.

Ueber die neuen Wasserstofflinien und die Dissociation des Calciums.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 33, 597 (Abs.); Beiblätter, 4, 274, 786; Monatsber. d. Berliner Akad. (1880), 192-8; Nature, 21, 410.

.

Expériences sur divers échantillons de chaux.

Volpicelli (M.). Comptes Rendus, 56, 493; 57, 571.

Coıncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. Mattieu). Nature, 8, 46.

CARBON.

1, CARBON IN GENERAL.

Note on the spectrum of carbon.

Attfield (J.). Phil. Mag., (4) 49, 106-8; Phil. Trans. (1862), 221.

Carbon points ruled out.

Capron (J. R.). Photographed Spectra, London, 1877, 23.

Spectroscopic researches in carbon and cyanogen.

Ciamician (G. L.). Chem. News, 44, 216.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333 (Abs.); Beiblätter, 5, 43 (Abs.); Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Abs.).

Carbon and carbon compounds.

Herschel (A. S.). Nature, 22, 320; Beiblätter, 5, 118-122.

Spectrum von Kohlenstoff.

Jahresber. d. Chemie, (1862) 33, (1863) 113, (1864) 109, (1865) 89, (1869) 176, 178, (1875) 122.

Refractionsäquivalente der Elemente C, etc.

Landolt (R.). Versammlung deutscher Aertzte und Naturforscher,
Aug. 12-18, 1872; Ber. chem. Ges., 5, 808; Chem. Centralblatt, (3)
3, 705; Jour. Chem. Soc., (2) 11, 460 (Abs.).

Note on the history of the carbon spectrum.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., **30**, 490-4; Beiblätter, **5**, 118-22; Nature, **23**, 265-6, 338.

Spectrum of Carbon.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 33, 403-410;
Chem. News, 45, 155 (Abs.); Nature, 25, 545; Jour. Chem. Soc.,
44, 1-2 (Abs.); Beiblatter, 6, 675 (Abs.).

General observations on the spectra of carbon and its compounds.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 123-30.

Spectrum of carbon at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Note on the spectrum of carbon.

Lockyer (J. N.). Proc. Royal Soc., **30**, 335-43, 461-3; Beiblätter, **5**, 118-22 (Abs.).

Sulla questione dei doppi legami tra carbonio e carbonio dal punto di vista della chimica ottica.

Nasini (R.). Gazz. chim. ital., 14, 150-6; Ber. chem. Ges., 17, Referate, 559-61 (Abs.); Atti R. Ac. dei Lincei, 8, 169-73; Beiblatter, 8, 577.

On the spectrum of carbon.

Roscoe (H. E.). Nature, 23, 313-14.

Spectre du carbone.

Salet (G.). Bull. Soc. chim. Paris, 1 Mars 1872; Ber. chem. Ges., 5, 222 (Abs.).

Ueber das Dispersionsäquivalent von Diamant.

Schrauf (A.). Ann. Phys. u. Chem., n. F. 22, 424-9; Jour. Chem. Soc., 48, 14 (Abs.).

Note on the identity of the spectra obtained from the different allotropic forms of carbon.

Schuster (A.) and Roscoe (H. E.). Proc. Manchester Philosoph. Soc., 19, 46-49; Beiblätter, 4, 208 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Smyth (C. Piazzi). Phil. Mag., (4) 49, 24-33.

Carbon and carbo-hydrogen, spectroscoped and spectrometed.

Smyth (C. Piazzi). Phil. Mag., (5) 8, 107-19; Beiblatter, 4, 36 (Abs.).

Speetre du carbone.

Troost et Hautefenille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectra of carbon.

Watts (W. M.). Phil. Mag., (4) 38, 249; 41, 12; 48, 369, 456; 49, 104;
Nature, 23, 197, 266;
Beiblatter, 5, 118;
Chem. News, 22, 172;
Jour. prackt. Chemie, 104, 422.

2, CARBUN COMPOUNDS.

a, In general.

Influence of the molecular grouping in organic bodies on their absorption in the infra-red region of the spectrum.

Abney (W. de W.) and Festing (Lieut, Col.). Proc. Royal Soc., 31, 416; Chem. News, 43, 92, 126; Beiblätter, 5, 506.

.

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent; influence des matières colorantes.

Becquerel (E.). Comptes Rendus, **79**, 185–90; Jour. Chem. Soc., (2) **13**, 30 (Abs.).

Sulla relazioni esistenti tra il potere rifrangente e la constituzione chimica della combinazioni organiche.

Bernheimer e Nasini. Atti della R. Accad. dei Lineei, Transunti, (3) 7, 227-30; Gazz. ehim. ital., 13, 317-20; Beiblätter, 7, 528 (Abs.).

Influence des diverses couleurs sur la végétation.

Bert (P.). Comptes Rendus, 73, 1444.

Sur la région du spectre solaire indispensable à la vie végétale.

Bert (P.). Comptes Rendus, **87**, 695-7; Jour. Chem. Soc., **36**, 836 (Abs.).

Vergleichung von Pigmentfarben mit Spectralfarben.

Bezold (W. von). Ann. Phys. u. Chem., 158, 165, 606.

On the action of various colored bodies on the spectrum.

Brewster (Sir D.). Phil. Mag., (4) 24, 441.

Die Beziehungen zwischen den physikalischen Eigenshaften organischer Körper und ihrer chemischen Constitution.

Brühl (J. W.). Ber. chem. Ges., **12**, 2135-48; **13**, 1119-39, 1520-35; **14**, 2533-39; Jour. Chem. Soc., **38**, 293-5 (Abs.); Beiblätter, **4**, 776-86; Amer. Jour. Sci., (3) **23**, 234-5 (Abs.).

Die chemische Constitution organischer Körper in Beziehung zu deren Dichte und ihren Vermögen das Licht fortzupflanzen. Drei Theile und Nachtrag.

Brühl (J. W.). Ann. Chem. u. Pharm., **200**, 139-231; **203**, 1-33, 255-285, 363-368; Jour. Chem. Soc., **38**, 295-7 (Abs.); **33**, 781-3 (Abs.); Beiblätter, **4**, 776-86.

Ueber den Zusammenhang zwischen den optischen und den thermischen Eigenschaften flüssiger organischer Körper.

Brühl (J. W.). Sitzungsber. d. Wiener Akad., 84 II, 817-75;
Monatschr. f. Chemie, 2, 716-74; Ann. Phys. u. Chem., 211, 121-178;
Jour. Chem. Soc., 42, 263 (Abs.);
Beiblätter, 6, 377 (Abs.).
Berichtigung, Ann. Phys. u. Chem., 211, 371-2.

Untersuchungen über die Molecularrefraction organischer flüssiger Körper von grossen Farbenzerstreuungsvermögen.

Bruhl (J. W.). Ber. chem. Ges., 19 (1886), 2746.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, 88, 379-81, Jour. Chem. Soc., 36, 504 (Abs.).

Relation between the chemical constitution of certain organic compounds and their action upon the ultra-violet rays.

Dunstan (W. R.). Pharmaceutical Trans., (3) 11, 54-6.

Note concernant le mémoire de M. Kanonikoff sur le pouvoir réfringent des substances organiques.

Flavitsky (F.). Jour. Soc. phys. chim. russe, 16, 260-7.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333
(Abs.); Beiblätter, 5, 43 (Abs.).

Refraction equivalents of organic compounds.

Gladstone (J. H.). Jour. Chem. Soc., 45, 241-59; Chem. News, 49, 233 (Abs.); Nature, 30, 119 (Abs.); Ber. chem. Ges., 17, Referate, 556 (Abs.).

Spectres des carbonates.

Gouy. Comptes Rendus, 85, 70.

Influence of certain rays of the spectrum on plants growing in an iron manure.

Griffiths (A. B.). Jour. Chem. Soc., 45, 74.

Ueher das Verhalten einiger Farbstoffe im Sonnenspectrum.

Haerlin (J.). Ann. Phys. u. Chem., 118, 70.

Researches on the absorption of the ultra-violet rays of the spectrum by organic substances.

Hartley (W. N.) and Huntington (A. K.). Proc. Royal Soc., 28, 283;
31, 1; Chem. News, 40, 269; Phil. Trans., 170, 257-74; Beiblätter,
4, 370.

Researches on the relation between the molecular structure of carbon compounds and their absorption spectra.

Hartley (W. N.). Jour. Chem. Soc., 39, 153-68; 41, 45-49; Beiblatter, 6, 375 (Abs.); Amer. Chem. Jour., 3, 373.

Das Auge empfindet alle Strahlen die brechbarer sind als die rothen.

Helmholtz (H.). Ann. Phys. n. Chem., 94, 205.

Absorptionsstreifen färbiger Lösungen.

Jahresber, d. Chemie, (1864) 108, (1865) 85, (1867) 825, (1868) 129, (1873) 147.

.

On the chemical circulation in the body.

Jones (H. Benee). Proc. Royal Institution, May 26, 1865.

Zur Frage über den Einfluss der Structur auf das Lichtbrechungsvermögen organischer Verbindungen.

Kanonnikoff (J.). Jour. russ. phys. chem. Ges. (1881), 268; Der. chem. Ges., 14, 1697-1700.

Sur le pouvoir réfringent des substances organiques dans les dissolutions.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 15, 112-13; Ber. chem. Ges., 16, 950 (Abs.); Jour. prackt. Chemie, n. F. 27, 362-4;
Beiblätter, 7, 593 (Abs.); Jour. Chem. Soc., 44, 1041 (Abs.).

Sur la relation du pouvoir réfringent et la composition des composés organiques.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 15, 434-79; Ber. chem. Ges., 16, 3047-3051 (Abs.); Bull. Soc. chim. Paris, 41, 318 (Abs.); Beiblätter, 8, 375 (Abs.).

Sur les relations entre la composition et le pouvoir réfringent des composés chimiques.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 119-131; Ber. chem. Ges., 17, Referate, 157 (Abs.); Nature, 30, 84 (Abs.); Bull. Soc. chim. Paris, 12, 549.

Réponse à la note de M. Flavitsky.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 448-50; Jour. prackt. Chemie, (2) 31, 321-3 (Abs.).

Spectrum of colour-blind.

König (Dr.). Nature, 29, 168.

Beziehungen zwischen der Zusammensetzung und den Absorptionsspektren organischer Verbindungen.

Krüss (G.) und Oeconomides (S.). Ber. chem. Ges., **16**, 2051-6; Jour. Chem. Soc., **44**, 1041-2 (Abs.); Beiblätter, **7**, 897 (Abs.).

Ueber die Gränzen der Empfindlichkeit des Auges für Spectralfarben. Lamansky (S.). Ann. Phys. u. Chem., **143**, 633–43.

Zur Kenntniss der Absorptionsspectra von Verbindungen.

Landauer (J.). Ber. chem. Ges., **14**, 391-4; Jour. chem. Soc., **40**, 591 (Abs.); Beiblätter, **5**, 441.

Ueber die Molecularrefraction flüssiger organischer Verbindungen.

Landolt (H.). Sitzungsber. d. Berliner Akad. (1882), 64-91; Ann. Phys. u. Chem., 213, 75-112; Jour. Chem. Soc., 42, 909 (Abs.). On the theory of the action of certain organic substances in increasing the sensitiveness of silver haloids.

Lea (M. Carey). Amer. Jour. Sci., (3) 14, 96-9; Beiblatter, 1, 503 (Abs.).

Ueber die Aenderung der Absorptionsspectra einiger Farbstoffe in verschiedenen Lösungsmitteln.

Lepel (F. von). Ber. chem. Ges., 11, 1146-51; Jour. Chem. S ..., 34, 925 (Abs.).

Planzenfarbstoffe als Reagentien auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 766-8; Jour. Chem. Soc., 40, 63 (Abs.).

Contributions to our knowledge of the spectra of the flames of gases containing carbon.

Lielegg (A.). Phil. Mag., (4) 37, 208.

General observations on the spectra of carbon and its compounds.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 123-30; Jour. Chem. Soc., 44, 261 (Abs.).

New organic spectra.

MacMunn (Dr. C. A.). Proc. Roy. Physiolog. Soc. (1884), No. 4; Nature, 31 (1885), 326-7.

De la flamme de quelques gaz carburés (avec une planche du spectre du earbone).

Morren (A.). Ann. Chim. et Phys., (4) 4, 305.

Sur les effets de coloration.

Du spectre musculaire.

Nickles. Comptes Rendus, 62, 93.

Les rapports entre les propriétés spectrales des corps simples avec leurs propriétés physiologiques.

Papillon, Comptes Rendus, 73, 791.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Preyer (W.). Ber. chem. Ges., 4, 404.

11-11-1 (11.).

Ranvier (L.). Comptes Rendus, 78, 1572-5.

Absorptionsspectren verschiedener Farbenlösungen.

Reynolds. Jour. prackt. Chemic, 105, 358.

Versuche über Farbenmischung.

Schelske (R.). Ann. Phys. u. Chem., n. F. 16, 349-58.

4

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Schiff (H.). Ber. chem. Ges., 4, 474; Bull. Soc. chim. Paris, n. s. 16, 97.

On a definite method of qualitative analysis of animal and vegetable colouring matters by means of the spectrum-microscope.

Sorby (H. C.). Proc. Royal Soc., 15, 433.

Comparative vegetable chromatology.

Sorby (H. C.). Proc. Royal Soc., 21, 442.

On the colouring matters derived from the decomposition of some minute organisms.

Sorby (H. C.). Monthly Microscop. Jour., 3, 229-31.

On the examination of mixed colouring matters with the spectrum-microscope.

Sorby (H. C.). Monthly Microscop. Jour., 6, 124-34.

Zur Spectralanalyse gefärbter Flüssigkeiten und Gläser.

Stein. Jour. prackt. Chemie, n. F. 9, 383; 10, 368; Jour. Chemical Soc., (2) 13, 412-14 (Abs.).

On the discrimination of organic bodies by their optical properties.

Stokes (G. G.). Phil. Mag., (4) 27, 388.

Prismatic spectra of the flames of compounds of carbon and hydrogen.

Swan (W.). Edinburgh Philosoph. Trans., 21, 411; Ann. Phys. u. Chem., 100, 306.

Longueur d'ondes des bandes spectrales données par les composés du carbone.

Thollon (L.). Comptes Rendus, **93**, 260; Ann. Chim. et Phys., (5) **25**, 287-8.

Absorptionsspectren verschiedener Farbenlösungen.

Thudichum. Jour. prackt. Chemie, 106, 414-15.

Der Gebrauch des Spectroscops zu physiologischen und ärtztlichen Zwecken.

Valentin (G.). Leipzig, Winter'sche Buchhandlung, 1863.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Vierordt (K.). Ber. chem. Ges., 4, 327, 457, 519; Phil. Mag., (4) 41, 482-4; Amer. Jour. Sci., (3) 2, 138 (Abs.); Bull. Soc. chim. Paris, n. s. 16, 96.

Ueber die abnorme Wirkung mancher Farbstoffe auf die Lichtempfindlichkeit photographischer Platten.

Vogel (H. W.). Ber. chem. Ges., 8, 95-6.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Ber. chem. Ges., 8, 96-8; Jour. Chem. Soc., (2) 13, 604 (Abs.).

Ueber die Absorptionsspectren verschiedener Farbenstoffe und ihre Anwendung zur Entdeckung von Verfälschungen.

Vogel (H. W.). Ber. chem. Ges., 8, 1246-54; Dingler's Journal, 219, 73-81; Bull. Soc. chim. Paris, n. s. 26, 475.

Ueber die Wandlung der Spectren verschiedener Farbstoffe.

Vogel (H. W.). Ber. chem. Ges., 11, 622-4; Jour. Chem. Soc., 34, 545 (Abs.).

Ueber den Zusammenhang zwischen Absorption der Farbstoffen und deren sensibilisirender Wirkung auf Bromsilber.

Vogel (H. V.). Ann. Phys. u. Chem., (2) 26 (1885), 527-30.

Untersuchungen über die Spectra der Kohlenverbindungen.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 17, 427-67; Jour. Chem. Soc., 44, 761 (Abs.); Monatsber. d. Berliner Akad. (1880), 791-4.

Bemerkungen, Wüllner (A.). Ann. Phys. u. Chem., n. F. 14, 363.

b, Carbon compounds in particular.

ACETIC ACID.

Indices de réfraction des dissolutions aqueuses d'acide acétique et d'hyposulfite de soude.

Damien. Comptes Rendus, 91, 323-5; Beiblätter, 5, 41-42 (Abs.).

ACETYLENE.

Bemerkung zu Herrn Wüllner's Aufsatz; Ueber die Spectra des Wasserstoffs und des Acetylens.

Hasselberg (B.). Ann. Phys. u. Chem., n. F 15, 45-49.

Spectrum des Acetylens.

Jahresber, d. Chemie (1869), 182.

De la flamme de quelques gaz carburés, et en particulier de celle de l'acetylène.

Morren (A.). Ann. Chim. et Phys., (4) 4, 305; Jour. prackt. Chem., 87, 50.

- -

Spectrum des Acetylens.

Wüllner (A.). Ann. Phys. u. Chem., n. F. **14**, 355. Bemerkung, Hasselberg (B.), do., **15**, 45-9.

ACID BROWN.

Spectrum of acid brown.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 198.

AGARYTHRINE.

Spectrum of agarythrine, an alcaloid contained in agaricus ruber.

Phipson (T. L.). Chem. News, **46**, 199-200; Ber. ehem. Ges., **16**, 244 (Abs.).

ALBUMEN.

Farbenreactionen des Albumin.

Adamkiewicz (A.). Pfluger's Arch. f. Physiol., 9, 156-162; Jour. Chem. Soc., (2) 13, 172 (Abs.).

Spectroscopic notes on the carbohydrates and albumenoids from grain.
Hartley (W. N.). Jour. Chem. Soc., **51** (1887), 58-61.

ALCOHOL.

Misura dell'indice di rifrazione dell'alcool anisico e dell'alcool metilsalicilico.

Blaserna (P.). Gazz. chim. ital., 2, 69-75.

Brechungscoefficienten einiger Gemische von Anilin und Alkohol.

Johst (W.). Ann. Phys. u. Chem., n. F. 20, 47-62.

Spectre de l'alcohol.

Masson (A.). Comptes Rendus, 32, 129

Ueber die Absorption des Lichtes durch Alcohol, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 8, 670-675; Jour. Chem. Soc., 34, 693 (Abs.).

ALIZARINE.

Notiz über künstliches Alizarin.

Boettger (R.) und Petersen (T.). Ber. chem. Ges., 4, 778-9.

Spectre d'absorption d'alizarine.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

Absorptionsspectrum des Alizarins.

Jahresber. d. Chemie (1872), 140.

11 т

On artificial alizarine.

Perkin (W. H.). Jour. Chem. Soc., (2) 8, 133-43; Ann. Chem. u. Pharm., 158, 315-19 (Abs.); Ann. Chim. et Phys., (4) 26, 136 (Abs.).

Absorptionsspectrum des Alizarins.

Reynolds. Jour. prackt. Chem., 105, 358.

L'alizarine nitrée.

Rosenstiehl (A.). Ann. Chim. et Phys., (5) **12**, 519-529; Jour. Chem. Soc., **34**, 231-2.

Sur les spectres d'alizarine et de quelques matières colorantes qui en derivent.

Rosenstiehl (A.). Comptes Rendus, 88, 1194-6; Jour. Chem. Soc., 36, 807 (Abs.); Beiblätter, 3, 793.

Zur Kenntniss der Alizarin-Farbstoffe.

Vogel (H. W.). Ber. chem. Ges., 11, 1371-4; Jour. Chem. Soc., 36, 83-5 (Abs.).

ALKANNA.

Der Alkannafarbstoff, ein neues Reagens auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 763-6.

ALLYLDIPROPYLCARRINGL.

Untersuchungen über einen aus Allyldipropylearbinol erhaltenen Kohlenwassérstoff.

Reformatsky (S.). Jour. prackt. Chemie, n. F. 27, 389-407; Beiblatter, 7, 689 (Abs.).

ALUM.

Sur les aluns crystallisés.

Soret (C.). Arch. d. Genève, (3) 10, 300; Beiblatter, 8, 374.

AMIDO-AZO-G-NAPHTHALENE.

Spectrum of amido-azo-a-naphthalene, C_{10} H_{\uparrow} $\stackrel{\cdot}{H}_{\uparrow}$ $\stackrel{\cdot}{N}$ $\stackrel{\cdot}{:}$ $\stackrel{\cdot}{N}$ $\stackrel{\cdot}{:}$ $\stackrel{\cdot}{C}_{10}$ $\stackrel{\cdot}{H}_{6}$ $\stackrel{\cdot}{N}$ $\stackrel{\cdot}{H}_{\uparrow}$.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190.

AMIDO-AZO-B-NAPHTHALENE.

Spectrum of amido-azo-3-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 191.

ANILINE.

.

Die Brechungscoesticienten einiger Gemische von Anilin.

Johst (W.). Ann. Phys. u. Chem., n. F. 20, 47-62.

Lo Spettroscopio applicato alla ricerca dei colori di anilina introdati nei vini rossi per sofisticazione.

Macagno (J.). Mem. Spettr. ital. (1881), 35-40; Ber. chem. Ges., 14, 1584 (Abs.).

Aniline colours in the spectroscope.

Reimann (M.). Chem. News, 33, 260.

Absorptionslinien der Anilinfarbstoffe im Spectralapparat.

Schiff. Jour. prackt. Chemie, 89, 229.

Application of the spectroscope in the manufacture of aniline colours.

Schoop (P.). Chemische Industrie, 9 (1886), No. 3; Chem. News, 53 (1886), 287 (Abs.).

Zur Kenntniss der grünen Anilinfarben.

Vogel (II. W.). Ber. chem. Ges., **11**, 1371-4; Jour. Chem. Soc., **36**, 83-5 (Abs.).

ANTHRACEN.

Ueber Anthracen-disulfosäure und deren Umwandlung in Antrarufin.

Liebermann (C.) und Boeck (K.). Ber. chem. Ges., 11, 1613-18;
Jour. Chem. Soc., 36, 257-9.

Ueber die der Chrysazinreihe augehörigen Anthracenverbindungen.

Liebermann (C.). Ber. chem. Ges., 12, 182-8.

Use of the spectroscope in discriminating anthracens.

Nickels (B.). Chem. News, 41, 52, 95, 117; Jour. Chem. Soc., 38, 757 (Abs.); Ber. chem. Ges., 13, 829 (Abs.).

ANTHRAPURPURIN.

Absorptionsspectrum des Anthrapurpurins.

Jahresber. d. Chemie (1873), 451.

Absorptionspectra of anthrapurpurin.

Perkin (W. H.). Jour. Chem. Soc., (2) 11, 433.

ANTHRARUFIN.

Ueber Anthracen-disulfosäure und deren Umwandlung in Anthrarufin. Liebermann (C.) und Boeck (K.). Ber. ehem. Ges., 11, 1613-18;

Jour. Chem. Soc., 36, 257-9 (Abs.).

APHIDES.

On the colouring matter of some aphides.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 11, 352-61.

AURIN.

Spectrum of aurin.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 167-8.

AN AUSTRALIAN LAKE.

Spectrum of a poisonous Australian lake.

Francis (G.). Pharmaceutical Trans., (3) 8, 1047-8; Jour. Chem-Soc., 34, 907 (Abs.).

AZO-COLORS.

Spectrum of azobenzene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 176-8.

Spectrum of amido-azo-α-naphthalene, and of amido-azo-β-naphthalene. Hartley (W. N.). Jour. Chem. Soc., **51** (1887), 190-1.

On the spectra of the azo-colours.

Stebbins (J. H.). Jour. Amer. Chem. Soc., 6 (1884), 117-20, 149-70.

BEETS.

Spectralanalytische Notiz; rothe Rüben in Weinverfälschungen.

Lepel (F. von). Ber. chem. Ges., 10, 1875-7; Jour. Chem. Soc., 34, 168 (Abs.); Bull. Soc. chim. Paris, n. s. 30, 573.

BENZENE.

Description and measurements of the spectrum of benzene.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 694-6.

Spectrum of benzene-nzo-,3-naphtholsulphonic acid.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 196.

Misura dell'indice di rifrazione del cimene, della benzina e di alcuni derivati del timol naturale e del timol sintetico.

> Pisati (G.) e Paterno (E.). Gazz. chim. ital., 4, 557-64; Ber. chem. Ges., 8, 71 (Abs.).

BIEBRICH SCARLET.

Spectrum of biebrich scarlet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 194.

HILE.

Le reazioni dei pigmenti biliari.

Capranica (S.). Gazz. chim. ital., 11, 430-1; Ber. chem. Ges., 15, 262-3 (Abs.); Jour Chem. Soc., 42, 232.

-

Researches into the colouring matters of human urine, with an account of their artificial production from bilirubin and from hæmatin.

MacMunn (C. A.). Proc. Royal Soc., 31, 206-37; Jour. Chem. Soc.,40, 1056-8 (Abs.); Beiblätter, 5, 281.

Observations on the so-called bile of invertebrates.

MacMunn (C. A.). Proc. Royal Soc., 35, 370-403.

Künstliche Umwandlung von Bilirubin in Harnfarbstoff.

Maly (R.). Ann. Chem. u. Pharm., 161, 368-70; 163, 77-95; Jour. Chem. Soc., (2) 10, 514 (Abs.), 835 (Abs.).

A reducible by-product of the oxidation of bile-pigment.

Stockvis (B. J.). Neues Repertorium f. Pharm., 21, 123, 732-7; Jour.
Chem. Soc., (2) 10, 308 (Abs.); 11, 288; Bull. Soc. chim. Paris, n. s. 18, 265.

Researches on bilirubin and its compounds.

Thudiehum (J. L. W.). Jour. Chem. Soc., (2) 13, 389-403.

BIRDS.

Spectres observés au travers d'une plume.

Hugo (L.). Comptes Rendus, 83, 602.

Ueber die Färbungen der Vogeleierschalen.

Liebermann (C.). Ber. chem. Ges., 11, 606-610; Amer. Jour. Sci., (3) 16, 66 (Abs.).

BISMARCK BROWN.

Spectrum of bismarck brown.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 180-1.

BLOOD.

Ueber das Verhalten von Blut und Ozon zu einander.

Binz (C.). Medicinalisches Centralblatt, 20, 721-5; Chemisches Centralblatt (1882), 810-11; Jour. Chem. Soc., 44, 486 (Abs.).

Dosage de l'hemoglobine dans le sang par les procédés optiques.

Branly (E.). Ann. Chim. et Phys., (5) 27, 238-73; Jour. Chem. Soc.,
44, 394 (Abs.); Z. analyt. Chem., 22, 629-32 (Abs.); Jour. de Phys.,
(2) 2, 430 (Abs.).

Absorptionsspectrum des durch Wasserstoffsuperoxyd gebräunten blausäurehaltigen Blutes.

Buchner. Jour. prackt. Chem., 104, 345.

On the action of nitrates on the blood.

Gamge (A.). Phil. Trans. (1868), 589; Ber. chem. Ges., 9, 833; Jour. prackt. Chemie, 105, 287.

Absorptionslinien in Blutspectrum.

Hoppe-Seyler (F.). Juhrb. d. gesammt. Medicin, 114, 3.

Ueber das Verhalten des Blutfarbestoffs in Spectrum des Sonnenlichtes. Hoppe-Seyler (F.). Virchow's Annalen, 22, 446; 29, 233; Chem. Centralblatt, 1862, 170.

Untersuchungen zur physicalischen Chemie des Blutes.

Hüfner (G.). Jour. prackt. Chemie, (2) 22, 362-58; Jour. Chem. Soc., 40, 111-13 (Abs.).

Untersuchungen über den Blutfarbestoff und seine Derivate.

Jaderholm (A.). Zeitschr. f. Biologie, 13, 193-255; Jour. Chem. Soc., 34, 236-7 (Abs.).

Spectren des Blutfarbstoffs.

Jahresber. d. Chemie, 15, 535 (Abs. See Hoppe-Seyler, above.)

Photometrie des Absorptionsspectrums der Blutkörperchen.

Jessen (E.). Zeitschr. f. Biologie, 17, 251-72; Ber. chem. Ges., 15, 952 (Abs.).

Spectrum der Sanguinarlösung.

Naschold. Jour. prackt. Chemie, 106, 407.

Beträge zur Kentniss der Blutfarbstoffe.

Otto (J. G.). Pflüger's Archiv. f. Physiol., **31**, 240-44; Ber. chem. Ges., **16**, 2688-9.

On some improvements in the spectrum method of detecting blood. Sorby (H. C.). Monthly Microscop. Jour., 6, 9-17.

On some compounds derived from the colouring matter of blood. Sorby (H. C.). Quar. Jour. Microscop. Sci., 10, 400-2.

Application of spectrum analysis to microscopical investigations, and especially to the detection of blood stains.

Sorby (H. C.). Chem. News, 11, 186, 194, 232, 256.

On the blood spectrum.

Sorby (H. C.). Nature, 4, 505; 5, 7.

Spectre d'absorption du sang dans la partie violette et ultra-violette.

Soret (J. L.). Comptes Rendus, 97, 1269.

-

Reduction and oxidation of the colouring matter of the blood.

Stokes (G. G.). Proc. Royal Soc., 13, 353.

Ueber das Vorkommen eines neuen, das Absorptionsspectrum des Blutes zeigenden, Körper's im thierischen Organismus.

Struve (H.). Ber. chem. Ges., 9, 623; Bull. Soc. chim. Paris, n. . . 18, 471.

Ueber die spectralanalytische Reaction auf Blut.

Vogel (H. W.). Ber. chem. Ges., 9, 587, 1472; Bull. Soc. chim. Paris, n. s. 27, 83.

BONELLIA VIRIDIS.

Der grüne Farbstoff von Bonellia Viridis.

Schenck (L. S.). Sitzungsber. Wiener Akad., 72 II, 581-5.

On the colouring matter of bonellia viridis.

Sorby (H. C.). Quar. Jour. Microscop. Soc., 15, 166.

BRUCINE.

Absorption spectrum of brucine, etc.

Mcyer (A.). Archives of the Pharmaceutical Soc., (3) 13, 413-16; Jour. Chem. Soc., 36, 269.

BUTTER.

Ueber einige Methylester aus der Propionsäure-und Buttersäuregruppe. Kahlbaum (G. W. A.). Ber. chem. Ges., 12, 343-4; Jour. Chem. Soc., 36, 521 (Abs.).

CARBOHYDRATES.

Spectroscopic notes on the carbohydrates and albuminoids from grain. Hartley (W. N.). Jour. chem. Soc., **51** (1887), 58-61.

CARMINE.

Spectrum von ammoniakalischer Carminlösung und von Blut.

Campani. Ber. chem. Ges., 5, 287.

Spectre du carmin d'indigo.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 27, 83

CARYOPHYLLACE ...

Colouring matter of the caryophyllaceæ.

Hilger (A.) and Bischoff (H.). Landwirthschaftl. Versuch-Statistik, 23, 456-61; Jour. Chem. Soc., 36, 730 (Abs.).

CHINIZABIN.

Ueber Chinizarin.

Grimm (F.). Ber. chem. Ges., 6, 506-12.

Absorptionsspectrum des Chinizarins.

Jahresber. d. Chemie (1873), 455 (Abs.). See Grimm.

CHINOLIN.

Ueber einige im Pyridinkern substituirte Chinolinderivate.

Friedländer (P.) und Weinberg (A.). Ber. chem. Ges., 15, 2679-2685.

CHINON.

Ueber den im Ag. atrotomentosus vorkommenden chinonartigen Körper.

Thörner (W.). Ber. chem. Ges., 12, 1630-5.

CHOTELIN.

Ueber Chotelin.

Liebermann (L.). Pflüger's Archiv. f. Physiol., 11, 181-90; Jour. Chem. Soc. (1876), 1, 407-8 (Abs.).

CHROMOGENE.

Ueber einige Chromogene des Harns und deren Derivate.

Plósz (P.). Zeitschr. f. physiolog. Chemie, **8**, 85-94; Ber. chem. Ges., **16**, 2933 (Abs.).

CHRYSOIDINE.

Das Chrysoidin, eine antiphotogenische Farbe.

Bardy (C.). Chemisches Centralblatt, (3), 9, 109; Jour. Chem. Soc., 34, 613 (Abs.).

Spectrum of chrysoidine.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 178.

CITRACON.

Ueber die Molecularrefraction der Citracon und Mesaconsäureather.

Brühl (J. W.). Ber. chem. Ges., 14, 2736-44; Jour. Chem. Soc., 42, 829-30; Beiblätter, 6, 376.

-

COAL.

Soda flames in coal fires.

Herschel (J.). Nature, 27, 78, 103.

COLEIN.

Spectrum of colein.

Church (J. H.). Jour. Chem. Soc., 1877, 1, 260.

CROCEINE SCARLET.

Spectrum of croceine scarlet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 195.

CROTON ACID.

Ueber die Molecularrefraction der Crotonsäure.

Brühl (J. W.). Ber. chem. Ges., 14, 2797-2801; Jour. Chem. Soc., 42, 827 (Abs.); Beiblätter, 6, 477 (Abs.).

CRYSTALLOIDS.

On the rate of passage of crystalloids in and out of the body.

Jones (H. Bence). Proc. Royal Soc., 14, 400.

CUMENE.

Spectrum of cumene-azo-β-naphtholdisulphonic acid.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 187.

CURCUMIN.

Ueber Curcumin, den Farbstoff der Curcumawurzel.

Daube (F. U.). Neues Repert. d. Pharm., 20, 36; Ber. chem. Ges., 3, 609-13; Jour Chem. Soc., (2) 9, 152 (Abs.).

CYANOGEN.

Photographed spectrum of cyanogen.

Capron (J. R.). Photographed Spectra, London, 1877, 71.

Spectroscopic researches in carbon and cyanogen.

Ciamician. Chem. News, 44, 216.

Spectrum von Cyanogen.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 507.

Constitution of cyanuric acid.

Hartley (W. N.). Jour. Chem. Soc., 41, 45-9; Beiblätter, 6, 375 (Abs.).

Note on the reversal of the spectrum of cyanogen.

Liveing (G. D.) and Dewar (J.). Chem. News, 44, 253; Proc. Royal Soc., 33, 3; Ann. Chim. et Phys., (5) 23, 571.

Sur le chromocyanure de potassium.

Moissan (H.). Comptes Rendus, 93, 1079-81; Chem. News, 45, 22 (Abs.); Ber. chem. Ges., 15, 243 (Abs.).

De la flamme du cyanogen.

Morren (M. A.). Ann. Chim. et Phys., (4) 4, 305.

Bestimmung der Brechungsquotienten einer Cyaninlösung. Pulfrich (C.). Ann. Phys. u. Chem., n. F. 16, 335.

Cyanogen in small induction sparks in free air. Smyth (C. Piazzi). Nature, 28, 340.

CYMENE.

An examination of terpenes for cymene by means of the ultra-violet spectrum.

Hartley (W. N.). Jour. Chem. Soc., 37, 676-8.

(Look above under Cumene.)

DECAY.

Zur Lehre von den Fäulnissalkaloïden.
Poehl (A.). Ber. chem. Ges., 16, 1975-88.

DIAMOND.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333

(Abs.); Beiblätter, 5, 43 (Abs.).

DIAZO.

Spectrum of diazo.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 196.

DIPHENYL.

Ueber Diphenyldüsoindolazofarbstoffe.

Möhlau (R.). Ber. chem. Ges., 15, 2490-7; Jour. Chem. Soc., 44, 342 (Abs.).

- 6

DIPYRIDENE.

Description and measurement of the spectrum of dipyridene (Dr. Ramsay).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 717.

DROSSERA WHITTAKERI.

Absorption spectra of the colouring matter of Drossera Whittakeri.

Rennic (E. H.). Jour. Chem. Soc., 51 (1887), 377.

EBONITE.

On the transmission of radiation of low refrangibility through ebonite.

Abney (W. de W.) and Festing (R.). Proc. Physical Soc., 4, 256-9; Phil. Mag., (5) 11, 466-9; Chem. News, 43, 175 (Abs.); Beiblätter, 5, 506 (Abs.).

Note on the index of refraction of ebonite.

Ayrton (W. E.) and Perry (J.). Proc. Physical Soc., 4, 345-8; Phil. Mag., (5) 12, 196-9; Nature, 23, 519; Beiblätter, 5, 741 (Abs.).

EOSIN.

Photographic action of eosin.

Waterhouse (J.). Photographic Journal, **16**, 135-6; Jour. Chem. Soc., 1876, **2**, 232 (Abs.).

ETHER VAPOUR.

Spectrum or etner vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 74.

EXCREMENTS.

Swei pathologische Harnfarbstoffe.

Baumstark (F.). Pflüger's Arch. f. Physiol., 9, 568-84; Jour. Chem. Soc., (2) 13, 480 (Abs.).

Ueber das Urorosein, einen neuen Harnfarstoff.

Nencki (M.) und Sieber (N). Jour. prackt. Chemie, 26, 333-6; Chem. News, 42, 12 (Abs.); Jour. Chem. Soc., 44, 101 (Abs.); Ber. chem. Ges., 15, 3087.

Ueber einen neuen krystallinischen farbigen Harnbestantheil.

Plósz (P.). Zeitschr. physiol. Chemie, **6**, 504-7; Ber. chem. Ges., **15**, 2626-7 (Abs.).

Ueber einige Chromogene des Harns und deren Derivate.

Plósz (P.). Zeitschr. physiol. Chemie, **8**, 85-94; Ber. chem. Ges., **16**, 2933-4 (Abs.).

FAST REI

Spectrum of fast red.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 197.

FISH.

Spectrum of fish pigment.

Francis (G.). Nature, 13, 167.

FLOUR AND GRAIN.

Spectroscopic notes on the carbohydrates and albuminoids from grain.

Hartley (W. N.). Jour. Chem. Soc., **51** (1887), 58-61.

Matière colorante se forment dans la colle de farine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 94, 562-3; Jour. Chem. Soc., 42, 739 (Abs.).

Ueber den Nachweis von Mutterkorn im Mehle auf spectroscopischem Wege.

Petri (J.). Zeitschr. analyt. Chemie, 18 211-20; Jour. Chem. Soc., 36, 977-9 (Abs.).

FLOWERS.

Ueber Blumenblau.

Schönn (L.). Zeitschr. analyt. Chemie, 9, 327-8.

The colouring matter of the petals of Rosa Gallica.

Senier (H.). Pharmaceutical Trans., (3), 7, 650-652; Jour. Chem. Soc., 1877, 2, 502 (Abs.).

FUCHSIN.

Ueber die Brechungsverhältnisse des Fuchsins.

Christiansen (C.). Oversight k. Danske Vidensk. Selskabs, 1871, 5-17;
Ann. Phys. u. Chem., 143, 250-9; Ann. Chim. et Phys., (4) 25, 400 (Abs.).

Zur Farbenzerstreuung des Fuchsins.

Christiansen (C.). Ann. Phys. u. Chem., 146, 154-155; Jour. Chem. Soc., (2) 11, 236.

Nachweis von Fuchsin im Weine.

Liebermann (L.). Ber. chem. Ges., 10, 866; Jour. Chem. Soc., 1877.
2, 939 (Abs.).

Ueber die optischen Eigenschaften des festen Fuchsins.

Voigt (W.). Gottinger gelehrten Nachr. (1884), 262.

Ueber den Nachweis von Fuchsin in damit gefärbten Weinen durch Stearin.

Wolff (C. H.). Repert. analyt. Chem., 2, 193-4; Chemisches Centralblatt, (3) 13, 670, (Abs.); Jour. Chem. Soc., 44, 384 (Abs.).

FUNGL

Fluorescence of the pigments of fungi.

Weiss (A.). Chem. Centralblatt, 1586, 670-1; Jour. Chem. Soc., 44, 384-5 (Abs.).

- -

GALL.

Die Oxydationsproducte der Gallenfarbstoffe und ihre Absorptionsstreifen.

Heynsius (A.) und Campbell (J. F. F.). Pflüger's Archiv. f. Physiol.,

4, 497-547; Jour. Chem. Soc., (2) 10, 307-8 (Abs.).

Absorptionsspectren der Gallenfarbstoffe.

Jaffe. Jour. prackt. Chemie, 104, 401.

Untersuchungen über die Gallenfarbstoffe.

Maly (R.). Wiener Anzeigen, 9, 39-41; Chem. Centralblatt, (3) 3, 180-1; Jour. Chem. Soc., (2) 10, 638 (Abs.); Jour. prackt. Chem., 103, 255; 104, 38.

Untersuchungen über die Gallenfarbstoffe und ihre Erkennung mittelst des Spectroscops.

Stockvis (B. J.). Ber. chem. Ges., 5, 583-5; Jour. Chem. Soc., (2) 11, 78 (Abs.).

GELATINE.

Emploi de la gélatine pour montrer l'absorption dans le spectre. Lommel (E.). Ann. Chim. et Phys., (4) 26, 279.

GUN-COTTON.

Spectrum explodirender Schiessbaumwolle.

Jahresber. d. Chemie (1873), 151.

Spectrum des Lichtes explodirender Schiessbaumwolle. Lohse (O.). Ann. Phys. u. Chem., **150**, 641.

Spectrum des Lichtes explodirender Schiessbaumwolle.
Vogel (H. W.). Ann. Phys., u. Chem., n. F. 3, 615.

Spectrum of H S $O_3 \cdot C_8$ H₈ · N : N · C₁₀ H₄ (H S O_3)₂ · O H β (Na Salt). Hartley (W. N.). Jour. Chem. Soc., **51** (1887), 188-9.

HELIANTHIN.

Spectrum of helianthin.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 192-3.

HEMATINE.

Action de l'hydrosulfite de soude sur l'hématine du sang (hématine reduite).

Cazeneuve (P.). Bull. Soc. chim. Paris, (2) 27, 258-60; Jour. Chem. Soc., 1877, 2, 346 (Abs.). Ueber Assimilation von Hæmatococcus.

Englemann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7. 200-8; Proc. Verb. K. Akad. Wetenschappen, Amsterdam, March 25, 1882, 3-6 (Abs.); Beiblätter, 7, 377-8 (Abs.).

Researches into the colouring matters of human urine, with an account of their artificial production from bilirubin and from hematine.

MacMunn (C. A.). Proc. Royal Soc., 31, 206-337; Jour. Chem. Soc., 40, 1056-8 (Abs.); Beiblätter, 5, 281.

On hemine, hematine and a phosphorized substance contained in blood corpuscules.

Thudichum (J. L. W.) and Kingzett (C. T.). Jour. Chem. Soc., 1876, 2, 255-64.

HEMOGLOBIN.

Dosage de l'hémoglobine dans le sang par les procédés optiques.

Branly (E.). Ann. Chim. et Phys., (5) 27, 238-273; Jour. Chem. Soc, 44, 394 (Abs.); Zeitschr. analyt. Chem., 22, 629-32 (Abs.); Jour. de Phys., (2), 2, 430 (Abs.).

Ueber die Bestimmung des Hæmoglobin-und Sauerstoff-gehaltnes im Blute.

Hüfner (G.). Zeitschr. physiol. Chem., 3, 1-18; Ber. chem. Ges., 12,

702 (Abs.); Jour. Chem. Soc., 36, 835.

On the evolution of hemoglobine.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 16, 76-85.

Spectralanalytische Bestimmung des Hæmoglobingehaltes des menschlichen Blutes.

Wiskemann (M.). Zeitschr. f. Biologie, **12**, 434-47; Jour. Chem. Soc., 1877, **2**, 808-9.

4

HOFFMANN'S VIOLET.

Spectrum of Hoffmann's violet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1897), 171-4.

HYDROCARBONS.

Hydrocarbons in the solar atmosphere.

Abney (W. de W.). Rept. British Assoc., 1881, 524.

Sur le pouvoir réfringent de l'hydrocarbure C₁₁ H₂₀.

Albitsky (A.). Jour. Soc. phys. chim. russe, 15, 524-6.

Spectrum von Kohlenwasserstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 157.

On the spectra of the compounds of carbon with hydrogen and nitrogen.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 494-509; Nature, 22, 620-3.

On the origin of the hydrocarbon flame spectrum.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 418-29; Nature, 27, 257-9; Chem. News, 46, 293-7; Beiblätter, 7, 288-9 (Abs.).

Nuovo metodo spettroscopico per discoprire nei miscugli gassosi e nelle acque le puì piccole quantità d'un idrocarburo gassoso od almeno molto volatile.

Negri (A. e G. de). Gazz. chim. ital., 5, 438; Jour. Chem. Soc., 1876, 2, 659 (Abs.); Chem. News, 33, 76.

Untersuchungen über einen aus Allildipropylcarbinol erhaltenen Kohlenwasserstoff, C_{10} H_{18} .

Reformatsky (S.). Jour. prackt. Chem., n. F. 27, 389-407; Beiblätter, 7, 689 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Smyth (C. Piazzi). Phil. Mag., (4) 49, 24-33.

Carbon and carbohydrogen, spectroscoped and spectrometed in 1879.

Smyth (C. Piazzi). Phil. Mag., (5) **8**, 107-119; Beiblätter, **4**, 36 (Abs.).

Hydrocarbons of the formula (C₅ H₈)_n.

Tilden (W. A.). Chem. News, **46**, 120-1; Jour. Chem. Soc., **44**, 75-6 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Watts (W. M.). Phil. Mag., (4) 49, 104-6.

HYDROBILIRUBIN.

Ueber Choletelin und Hydrobilirubin.

Liebermann (L.). Pflüger's Arch. Physiol., 11, 181-90; Jour. Chem. Soc., 1876, 1, 407-8 (Abs.).

HYDROCHINON.

Ueber das Phthaleïn des Hydrochinons.

Grimm (F.). Ber. chem. Ges., 6, 506-12.

HYDROXYANTHRAQUINONE.

Spectra of the methyl derivatives of hydroxyanthraquinone.

Liebermann (C.) und Kostanecki (S. von). Ber. chem. Ges., 19, 2327-32; Jour. Chem. Soc., 52 (1887), 1 (Abs.).

INDIGO.

Spectre de l'indigo.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion de l'indigo, etc.

Lallamand (A.). Comptes Rendus, 79, 693.

Spectre du carmin de l'indigo.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 27, 83.

Spectralanalytische Werthbestimmung verschiedener reiner Indigosorten.
Wolff (C. H.). Zeitschr. analyt. Chem., 23, 29-32.

IODINE GREEN.

Spectrum of iodine green.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 174-6.

LAMP-BLACK.

Spectre du noir de fumée.

Lallemand (A.). Comptes Rendus, 78, 1272.

LEAVES.

Das Grün der Blätter.

Müller (J.). Ann. Phys. u. Chem., 142, 615-16; Jour. Chem. Soc., (2) 9, 654.

Ueber Blattgrün.

Schonn (L.). Zeitschr. analyt. Chemie, 9, 327-8; Ann. Phys. u. Chem., 145, 166-7; Arch. de Genève, (2) 43, 282-3.

On the various tints of autumnal foliage.

Sorby (H. C.). Chem. News, 23, 137-9, 148-50; Jour. Chem. Soc., (2) 9, 184 (Abs.).

On the colour of leaves at different seasons of the year.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 11, 215-234.

Ueber die Lichtwirkung versehieden gefärbter Blätter.

Vogel (H. W.). Sitzungsber, d. Münchener Akad., 1872, 183-7.

LUTEÏNE.

Results of researches on luteïne and the spectra of yellow organic substances contained in animals and plants. Researches conducted for the medical department of the Privy Council.

Thudichum (J. L. W.). Proc. Royal Soc., 17, 253; Jour. prackt. Chem., 106, 414.

-

MESACON.

Ueber die Molecularrefraction der Citracon-und Mesacon-säureather.

Brühl (J. W.). Ber. chem. Ges., **14**, 2736-44; Jour. chem. Soc., **42**, 829-30; Beibätter, **6**, 376.

METAXYLENE.

Description and measurement of the speetrum of metaxylene (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 700-7.

METHYLENE BLUE.

On the spectroscopic examination of methylene blue and of South's violet.

Stebbins (J. H., Jr.). Jour. Amer. Chem. Soc., 6 (1884), 304-5.

METHACRYL.

Ueber die Moleeularrefraction der Methacrylsäure.

Brühl (J. W.). Ber. chem. Ges., 14, 2797-2801; Jour. Chem. Soc., 42, 827 (Abs.); Beiblätter, 6, 477 (Abs.).

METHÄMOGLOBIN.

Studien über das Methämoglobin.

Otto (J. G.). Pflüger's Arch. f. Physiol., 31, 245-67; Ber. chem. Ges., 16, 2689 (Abs.).

Jeber das Methämoglobin.

Saarbach (H.). Pflüger's Arch. f. Physiol., 28, 382-8; Ber. chem. Ges., 15, 2752 (Abs.).

MORINDON.

Spectrum der Morindonlösungen.

Stein. Jour. prackt. Chemie, 97, 241.

Spectrum der Morindonlösungen.

Stenhouse. Jour. prackt. Chemie, 98, 127.

MORPHINE.

Absorption spectrum of morphine.

Meyer (A.). Archives of the Pharmaceutical Soc., (3) 13, 413-16; Jour. Chem. Soc., 36, 269.

NAPHTHALENE.

Description and measurement of the spectrum of naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 691-701.

12 т

Spectrum of amido-azo-a-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190.

Spectrum of amido-azo-3-naphthalene.

Hartley (W. N.). Jour. Chem. Sec., 51 (1887), 191.

Absorptionsspectrum von Naphthalin.

Jahresber, d. Chemie (1873), 157.

Spectre de naphthaline pure.

Lallemand (A.). Comptes Rendus, 77, 1218.

Ueber die Fluorescenz des Naphthalinrothes.

Wesendonck (K. . Ann. Phys. u. Chem., (2) 26 (1885), 521-7; Jour. Chem. Soc., 50 (1886), 585; Jour. de Phys., (2) 5 (1886), 517 (Abs.).

OILS.

Olefiant spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 73.

Spectrum analysis of oils.

Doumer and Thibaut. Chem. News, 51 (1855), 229.

The spectroscope applied to the detection of adulterations of fixed oils.

Gilmour (W.). Pharmaceutical Jour. Trans., 3, 6, 981-2; 7, 22-.

On essential oils.

Gladstone (J. H.). Jour. Chem. Soc., (2) 10, 1-12; Ber. chem. Ges., 5, 60 (Abs.).

Examination of essential oils.

Hartley (W. N.) and Huntington (A. K.). Proc. Royal Soc., 29, 27.

Ueber gefärbte ætherische Oele.

Hock (K.). Archiv. f. Pharm., (3) 21, 17-18, 437-8; Zeitschr. and Chemie, 23, 241 (Abs.).

Spectrum fetter Ocle.

Jahresber, d. Chemie (1870), 175.

Objective Darstellung des Spectrums der Oele.

Jahresber, d. Chemie 1876, 962.

Reports of the committee for investigating the constitution and optical properties of essential oils.

.

Reports of the British Assoc., 1872, 1873, and 1874.

ORTHO-TOLUIDINE.

Discription and measurement of the spectrum of ortho-toluidine.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 739.

Ueber einige Derivate der Orthotoluysäure.

Jacobsen (O.) und Weiss (F.). Ber. chem. Ges., 16, 1956-62; Jour. Chem. Soc., 44, 1121 (Abs.).

ORTHO-XYLENE.

Description and measurement of the spectrum of ortho-xylene (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 702-4.

CARBONIC ACID (CARBON AND OXYGEN).

Spectrum von Kohlensäure.

Angström (A. J.). Ann. Phys. u. Cham., 94, 155.

Spectre de l'acide carbonique.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectrum of carbonic acid.

Capron (J. R.). Thotographed Spectra, London, 1877, p. 68.

Action of the spectral rays on the decomposition of carbonic acid in plants.

Crookes (W.). Chem. News, 27, 183.

Spectrum der Flamme von Kohlenoxyd.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 503.

Combustion of carbonic oxide under pressure.

Franckland (E.). Proc. Royal Soc., **16**, 419, 421; Jour. prackt. Chemie, **105**, 190.

Erkennung der Vergiftung mit Kohlenoxyd.

Hoppe-Seyler (F.). Zeitschr. f. analyt. Chem., 3, 439; Phil. Mag., (1) 30, 456.

Funkenspectrum von kohlensäurem Lithium.

Jahresber, d. Chemie (1873), 152.

· Absorption of radiant heat by carbon dioxide.

Keeler (J. E.). Amer. Jour. Sci., (3) 28, 190-198; Nature, 31, 46 (Abs.).

Die Wirkung der Speetralfarben auf die Kohlensäurezersetzung in Pflanzen.

Pfeffer (W.). Versuchs-Stationen Organ, 15, 356-67; Jour. Chem.
Soc., (2) 10, 1107 (Abs.); 11, 400 (Abs.); Ann. Phys. u. Chem.,
148, 86-99; Chem. News, 27, 133-4.

Spectrum von Kohlensäure.

Plücker. Ann. Phys. u. Chem., 105, 76.

Ueber die Dauer der speetralanalytische Reaction von Kohlenoxyd.

Salfeld (E.). Repert. analyt. Chem. (1883), 35-7; Archiv. d. Pharm., (3) 21, 289 (Abs.); Jour. Chem. Soc., 46, 343 (Abs.).

Propriétés optiques d'acide oxalique.

Sénarmont (II. de). Ann. Chim. et Phys., (3) 41, 336.

Die Zerstreuung der C O2 durch die Pflanzen im directen Sonnenspectrum.

Timirinseff (K.). Mém. Acad. St. Pétersbourg, Sept., 1873; Ber. chem. Ges., 6, 1212 (Abs.); Jour. Chem. Soc., (2) 12, 285 (Abs.).

Recherches sur la décomposition de l'acide carbonique dans le spectre solaire par les parties vertes de végétaux (extrait d'un ouvrage "Sur l'assimilation de la lumière par les végétaux," St. Pétersbourg, 1875.)

Timiriaseff (C.). Ann. Chim. et Phys., (5) 12, 355-96; Comptes Rendus, 84, 1236-9; Jour. Chem. Soc. (1877), 2, 635 (Abs.).

Ueber die Nachweisung von Kohlenoxydgas.

Vogel (II. W.). Ber. chem. Ges., 10, 792-5.

Note on the spectrum of carbonic acid.

Wesendonck (C.). Proc. Royal Soc., **32**, 380-2; Chem. News, **44**, 42-3; Jour. Chem. Soc., **40**, 861 (Abs.).

Ueber die Molecularrefraction der gesehwefelten Kohlensäureäther, nebst einigen Bemerkungen über Molecularrefraction im Allgemeinen.

> Wiedemann (E.). Ann. Phys. u. Chem., n. F. 17, 577-80; Jour. Chem. Soc., 44, 762 (Abs.); Jour. de Phys., (2) 2, 139 (Abs.).

Ueber die Brechungsexponenten der geschwefelten Substitutionsproducte des Kohlensäureäthers.

Wiedemann E. Jour, prackt. Chem., 1/6, 457-5

Spectrum von Kohlensäure.

Wullner (A.). Ann. Phys. c. Chem., 144, 485, 500, 507, 716, 517.

.

PARATOLUIDINE.

Description and measurement of the spectrum of paratoluidine. Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 706.

PARAXYLINE.

Description and measurement of the spectrum of Paraxyline (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 707-10.

PENTACRINUS.

Colouring matter of pentacrinus.

Nature, 21, 573.

PHENOLS.

On a new class of colouring matters from the phenols.

Meldola (R.). Jour. Chem. Soc., 39, 37-40

PICOLENE.

Description and measurement of the spectrum of picolene (Dr. Ramsay).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 719-21.

PIPERIDINE.

Description and measurement of the spectrum of piperidine (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 731.

PLANTS.

Zur Theorie des Assimilations-processes in der Pflanzenwelt.
Benkovich (E. von). Ann. Phys. u. Chem., **154**, 468–73.

Zur Frage über die Wirkung des farbigen Lichtes auf die Assimilationsthätigheit der Pflanzen.

Lommel (E.). Ann. Phys. u. Chem., **145**, 442-55; Jour. Chem. Soc., (2) **11**, 292 (Abs.).

Ueber den Einfluss des farbigen Lichtes auf die Assimilation und die damit zusammenhängende Vermehrung der Aschenbestandtheile in Erbsenkeimlingen.

Weber (R.). Landwirthschaftl.-Versuchs-Statistik, 18, 18-48; Jour. Chem. Soc., (2) 13, 1211-15 (Abs.).

PURPURIN.

Displacement of the absorption bands of purpurin in solutions of alum.

Morton (H.). Chem. News, **42**, 207; Jour. Chem. Soc., **40**, 488.

Note on the purple of the ancients.

Schunk (E.). Jour. Chem. Soc., 37, 612-17.

Die Purpurin-Thonerde-Magnesiareaction

Vogel (H. W.). Ber. chem. Ges., 10, 157, 373; Bull. Soc. chim. Paris, n. s. 23, 475, 478.

Ueber die Lichtempfindlichkeit des Purpurins.

Vogel (II. W.). Ber. chem. Ges., 10, 692.

PYRIDINE.

Description and measurement of the spectrum of pyridine (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 711-16.

QUINOLINE.

Description and measurement of the spectrum of quinoline, specimens I and II.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 721-7, 728-30.

(Look below for Tetrahydroquinoline.)

Spectrum of quinoline-red.

Hoffmann (A. W.). Ber. chem. Ges., 20, 4-20; Jour. Chem. Soc., 52 (1887), 380 (Abs.).

RASPBERRY.

Ueber die Untersuchungen von Hinbeersaft.

Vogel (H. W.). Ber. chem. Ges., 10, 1428-32; Jour. Chem. Soc., 1877, 915 (Abs.).

ROSANILINE.

Ucber Rosolsäure.

Gräbe (C.) und Caro (H.). Ann. Phys. n. Chem., 179, 184-203; Jour. Chem. Soc., 1876, 1, 588-91.

Spectrum of rosaniline base.

Hartiey (W. N.). Jour. Chem. Soc., 51 (1887), 164-6.

Spectrum of rosaniline hydrochloride.

Hartley (W. N.). Jour. Chem. Soc., 51 [1887], 169-171.

RUBERINE.

On the colouring matter (ruberine), etc., contained in agaricus ruber.

Phipson T. L., Chem. News, **46**, 199-200; Jour. Chem. Soc., **44**, 100 (Abs.; Ber. chem. Ges., **16**, 244 (Abs.).

~

SAFRANIN.

Absorptionsspectrum von safranin.

Landauer (J.). Ber. chem. Ges., 11, 1772-5; Jour. Chem. Soc., 36, 101 (Abs.); Beiblätter, 3, 195-6.

SODA (CARBONATE).

Propriétés optiques de sous-carbonate de soda.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

SPONGILLA FLUVIATILIS.

Chromatological relations of spongilla fluviatilis.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 15, 47-52.

CARBON AND SULPHUR.

Note on the absorption spectrum of iodine in solution in carbon disulphide.

Abney (W. de W.) and Festing (Lieut. Col.). Proc. Royal Soc., 34,
480.

Spectre du sulphure de carbone.

Becquerel (H.). Comptes Rendus, 85, 1227.

Spectrum von Schwefelkohlenstoff.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 531.

Schwefelkohlenspectrum.

Jahresber. d. Chemie (1875), 122, 125, 126 (Abs.). See Vogel (H. W.), Deutsch. chem. Ges., 1875, 96; Watts (W. M.), Phil. Mag., (4) 48, 369; and Morton (H.), Ann. Phys. u. Chem., 155, 551.

Absorptionsstreifen in Prismen von Schwefelkohlenstoff.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213, 215.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Per. chem. Ges., **8**, 96-8; Jour. Chem. Soc., (2) **13**, 673 (Abs.).

TEREBINTHENE.

Sur les chlorhydrates liquides de térébinthène.

Barbier (P.). Comptes Rendus, 96, 1066-9; Jour. Chem. Soc., 44, 809 (Abs.).

Spectre de l'essence de térébinthène.

Masson (A.). Comptes Rendus, 32, 129.

TERPENES.

Das moleculare Brechungsvermögen der Terpene.

Flawitsky (F.). Ber. chem. Ges., 15, 15-16.

An examination of terpenes for cymene by means of the ultra-violet spectrum.

Hartley (W. N.). Jour. Chem. Soc., 37, 676-8.

TETRAHYDROQUINOLINE.

Description and measurement of the spectrum of tetrahydroquinoline.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 731-4.

Description and measurement of the spectrum of tetrahydroquinoline hydrochloride (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 735-8.

TOURMELINE.

On the nature of the light emitted by heated tourmeline. Stewart (Balfour). Phil. Mag., (4) 21, 391.

TRIPHENYLMENTHANE.

Spectrum of triphenylmenthane.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 162-4.

TROPEOLIN.

Spectrum of tropæolin 0.

Hartley (W. N.). Jour. Chem. Soc., 51, 182-3.

Spectrum of tropæolin 0 0 0.

Hartley (W. N.). Jour. Chem. Soc., 51, 184-7.

TURPENTINE.

Spectrum of turpentine vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 74.

ULTRAMARINE.

Ucber die Absorptionsspectren verschiedener Ultramarinsorten.

Wunder (J.). Ber. chem. Ges., 9, 295-9; Jour. Chem. Soc. (1870), 1, 864.

-

Bemerkungen dazu, Hoffmann R. . Ber, chem. Ges., 9, 494.

URINE.

Researches into the colouring matters of human urine, with an account of the separation of urobilin.

MaeMunn (C. A.). Proc. Royal Soc., 30, 250-2; 31, 26-36; Ber. chem. Ges., 14, 1212-14 (Abs.).

Observations on the colouring matter of the so-called bile of invertebrates, and on some unusual urine pigments, etc.

MacMunn (C. A.). Proc. Royal Soc., **35**, 370-403; Jour. Chem. Soc., **46**, 194-8 (Abs.).

Ueber das Urorosein, einen neuen Harnfarbstoff.

Nencki (M.) und Sieber (N.). Jour. praekt. Chemie, 26, 333-36;
Chem. News, 42, 12 (Abs.); Jour. Chem. Soc., 44, 101 (Abs.); Ber. chem. Ges., 15, 3087 (Abs.).

Substances colorantes de l'urine.

Neusser (E.). Les Mondes, (3) 2, 468-9; Jour. Chen. Soc., 46, 93 (Abs.).

WINE.

Recherche et détermination des principales matières colorantes employées pour falsifier les vins.

Chancel (G.). Comptes Rendus, 84, 348-51; Jour. Chem. Soc. (1877), 2, 371 (Abs.); Ber. chem. Ges., 10, 494.

The detection of foreign colouring matters in wine.

Dupré (A.). Jour. Chem. Soc., **37**, 572-5; Ber. chem. Ges., **13**, 2004-5 (Abs.).

The detection of the colouring matters of logwood, Brazil-wood, and cochineal in wine.

Dupré (A.). Analyst, 1, 26; Jour. Chem. Soc. (1877), 1, 234 (Abs.).

Zur Weinverfälschung.

Lepel (F. von). Ber. chem. Ges., 9, 1906-11; 11, 1552-6.

WOOD.

Preliminary notes on a blue colouring matter found in certain wood undergoing decomposition in the forest.

Girdwood (G. P.) and Bemrose (J.). Rept. British Assoc. (1884), 690.

Absorptionsspectrum von Brazilienholtzabkochung.

Reynolds (J. E.). Jour. prackt. Chemie, 105, 358.

Absorptionsspectrum von Campecheholtzabkochung.

Reynolds (J. E.). Jour. prackt. Chemie, 105, 359.

XANTOPHYLL.

Notiz über die Strahlen des Lichtes welche das Xantophyll der Pflanzen zerlegen.

Wiesner (J.). Ann. Phys. u. Chem., 153, 622-3.

CERIUM.

Contribution to the chemistry of the cerite metals.

Brauner (B.). Jour. Chem. Soc., 43, 278-89; Chem. News, 47, 175 (Abs.).

Sulla diffusione del Cerio, etc.

Cossa (A.). R. Accad. dei Lincei, (3) 3, 17-34; Beiblätter, 4, 48-44 (Abs.).

Le didyme de la cérite est probablement un mélange de plusieurs corps.

Delafontaine. Comptes Rendus, 87, 634-5; Jour. Chem. Soc., 36, 119

(Abs.); Beiblätter, 3, 197-8 (Abs.).

Sur les terres de la cérite.

Demarçay (Eug.). Comptes Rendus, 103 (1887), 580.

Contribution to the chemistry of cerium compounds.

Hartley (W. N.). Jour. Chem. Soc., 41, 202-9; Chem. News, 45, 40 (Abs.).

Le didyme de la samarskite diffère-t-il de celui de la cérite?

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 322; Beiblätter, 2. 358 (Abs.).

- 40

CHLORINE.

1, CHLORINE ALONE.

Spectre du chlore dans les tubes de Geissler. Chautard (J.). Comptes Rendus, 82, 273.

Spectres appartenant à la famille du chlore.
Ditte (A.). Comptes Rendus, 73, 738.

Des spectres d'absorption du chlore.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 17, 258; Ber. ehem. Ges., 5, 219; Comptes Rendus, 74, 465, 660.

Absorptionsspectrum des Chlors.

Jahresber. d. Chemie (1869), 182 (Abs. See Morren, below).

Réaction spectrale du chlore.

Lecoq de Boisbaudran (F.). Comptes Rendus, **91**, 902-3; Phil. Mag., (5) **11**, 77-8; Beiblätter, **5**, 118 (Abs.).

Verbindungsspectrum zur Entdeckung von Chlor.
Mitscherlich. Jour. prackt. Chem., 97, 218.

Absorptionsspectrum des durch Chlor gegangenen Sonnenlichtes.

Morren. Ann. Phys. u. Chem., 137, 165; Comptes Rendus, 68, 876.

2, CHLORINE COMPOUNDS.

Effect of the spectrum of silver chloride.

Abney (W. de W.). Rept. British Assoc. (1881), 594.

Sur les chlorhydrates liquides de térébinthène.

Barbier (P.). Comptes Rendus, **96**, 1066-9; Jour. Chem. Soc., **44**, 809 (Abs.).

Spectre du bichlorure de titane.

Becquerel (II.). Comptes Rendus, 85, 1227.

Tin chloride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 76.

Sur l'indice de réfraction du chlorure d'argent naturel.

Cloiseux (Des). Bull. Soc. mineral. de France, 5, 143; Beiblätter, 7, 25 (Abs.). Spectrum von Kupferchlorid, mit einer Karte.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1.

Spectres des métalloïdes de la famille du chlore.

Ditte (A.). Bull. Soc. chim. Paris, n. s. 16, 229; Comptes Rendus, 73, 738.

Ueber Chlorsäure, ein neues Reagens auf Alkaloïde.

Fraude (G.). Ber. chem. Ges., 12, 1558-60.

Spectrum von Chloroxyd und Unterchlorinsäure.

Gernez (D.). Ber. chem. Ges., 5, 218.

Sur les raies d'absorption produites dans le spectre par les solutions des neides chloreux, etc.

Gernez (D.). Comptes Rendus, 74, 465-8; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 218 (Abs.).

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Comptes Rendus, 74, 660; Bull. Soc. chim. Paris, n. s. 17, 258.

Spectre d'absorption du vapeur de l'acide hypochloreux.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 17, 257; Ber. chem. Ges., 5, 219.

Spectre d'absorption du vapeur de protochlorure de tellure.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

On the violet flame of many chlorides.

Gladstone (J. H.). Phil. Mag., (4) 24, 417.

Spectres de chlorure de baryum, de chlorure de cadmium, de chlorure de calcium, de chlorure de cobalt, de chlorure de cuivre, de chlorure de fer, de chlorure de magnésium, de chlorure de platine, de chlorure de strontium.

Gouy. Comptes Rendus, 84, 231; 85, 439; Chem. News, 35, 107.

Absorptionsspectrum des Mangansuperchlorids.

Jahresber, d. Chemie (1869), 184 (Abs. See Luck, below)

Spectra der Chlormetalle.

Jahresber, d. Chemie (1863), 111 (Abs. See Diacon, above).

Absorptionsspectrum des Chlors und der unterchlorigen Saure. Jahresber, d. Chemie (1872), 138, 139 (Abs. See Gernez, ab ve).

Absorptionsspectrum des einfachen Chlorjods.

Jahresber, d. Chemie (1872), 139 Abs. See Gernez, above).

.

Absorptionsspectrum des Chlorselens.

Jahresber. d. Chemie (1872), 140 (Abs. See Gernez, above).

Absorptionsspectrum des einfachen Chlortellurs.

Jahresber, d. Chemie (1872), 140 (Abs. See Gernez, above).

Speetrum des Phosphorenzlichts von Chlorophan.

Kindt. Ann. Phys. u. Chem., 131, 160.

Spectralanalyse des Chlorberylliums.

Klatzo. Jour. prackt. Chemic, 106, 230.

Protochlorure d'antimoine en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 150, planche XXIII.

Chlorure de baryum dans le gaz et en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 57, 62, planche VII; p. 66, planche IX.

Chlorure de bismuth en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 145, planche XXII.

Chlorure de cadmium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, p. 139, planche XX.

Chlorure de calcium dans le gaz chargé de H Cl; et en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 79,
planche XI; p. 81, planche XII.

Sesquichlorure de chrome en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Chlorure de cobalt en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 129, planche XIX.

Chlorure de cuivre en solution, étincelle; et dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 152, planche XXIV; p. 156, planche XXIV.

Chlorure de didyme en solution concentrée, absorption; et en solution étendue, absorption.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 87, planche XIII; p. 90, planche XIII.

C'ilorure de l'erbium en solution, absorption.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 100, planche XV.

Spectre de chlorure d'or.

Lecoq de Boisbardran (F.). Comptes Rendus, 77, 1152-4; Jour.
Chem. Soc., (2) 12, 217 (Abs.); Ber. chem. Ges., 6, 1418 (Abs.);
Bull. Soc. chim. Paris, n. s. 21, 125.

Chlorure d'or en solution, étincelle; et dans le gaz.

Lecoq de Boisbandran (F.). Spectres Lumineux, Paris, 1874, p. 172, planche XXVI; p. 176, planche XXVI.

Perchlorure de fer en solution, étincelle.

Locoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 122, planche XVIII.

Chlorure de magnésium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 85, planche XII.

Chlorure de manganèse en solution, dans le gaz, étincelle courte, étincelle moyenne.

Leccq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 110, 114, 120, planches XVII, XVIII.

Biehlorure de mercure en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 169. planche XXV.

Chlorure de nickel en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 133, planche XIX.

Chlorure de palladium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 184, planche XXVII.

Chlorure de platine en solution, étineelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 181, planche XXVII.

Chlorure de potassium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 47, planche IV.

Chlorure de rubidium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 46, planche IV.

- 10

Chlorure de strontium dans le gaz chargé de H Cl; et en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 72, 75, planche X; p. 69, planche IX.

Bichlorure de l'étain en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 143, planche XXII.

Chlorure de zinc en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 138, planche XX.

Absorptionsspectrum des Mangansuperchlorids.

Luck (E.). Zeitschr. analyt. Chemie, 8, 405.

Verbindungspectrum zur Entdeckung von Chlor.

Mitscherlich (A.). Jour. prackt. Chemie, 97, 218.

Entdeckung sehr geringer Mengen von Chlor in Verbindungen.
Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Spectroscopic anomalies, especially in chlorides.

Palmieri (L.). Chem. News, 47, 247.

Absorption spectra of bromine and of iodine monochloride.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Spectroscopic observations on dissolved cobaltous chloride.

Russell (W. J.). Chem. News, 51, 259.

Spectren organischer Chlorverbindungen.

Salet (G.). Ber. chem. Ges., 5, 222; Bull. Soc. chim. Paris, 1 mars 1872.

Recent discoveries with the spectroscope, especially in the absorption spectrum of chromochloric anhydride.

Stoney (Johnstone). Chem. News, 23, 104.

Ueber die verschiedenen Modificationen des Chlorsilbers.

Vogel (H. W.). Ber. chem. Ges., 16, 1170-9.

Ueber die Brechung und Dispersion des Lichtes in Chlorsilber.

Wernicke (W.). Ann. Phys. u. Chem., **142**, 560-73; Jour. Chem. Soc., (2) **9**, 653 (Abs.); Ann. Chim. et Phys., (4) **26**, 287 (Abs.).

CHLOROPHYLL.

Propriétés optiques de la chlorophylle.

Ann. Chim. et Phys., (4) 26, 277-9.

Recherches sur les raies de la chlorophylle.

Chautard (J.). Comptes Rendus, 75, 1836.

Examen spectroscopique de la chlorophylle dans les résidus de la digestion.

Chautard (J.). Comptes Rendus, **76**, 103-5; Jour. Chem. Soc., (2) **11**, 521.

Observations par M. Millardet. Comptes Rendus, 76, 105-7.

Modifications du spectre de la ehlorophylle sous l'influence des alealis.

Chautard (J.). Comptes Rendus, **76**, 570; Bull. Soc. chim. Paris, **20**, 89; Jour. Chem. Soc., (2) **11**, 582 (Abs.).

Influence des rayons de diverses couleurs sur le spectre de la chlorophylle.

Chautard (J.). Comptes Rendus, 76, 1031-3; Jour. Chem. Soc., (2)

11, 713 (Abs.).

Examen des différences presentées par le spectre de la chlorophylle, selon la nature du dissolvant.

Chautard (J.). Comptes Rendus, **76**, 1066-9; Jour. Chem. Soc., (2) **11**, 996-7.

Classification des bandes d'absorption de la chlorophylle; raies accidentales.

Chautard (J.). Comptes Rendus. 76, 1278.

(Look below under Pocklington.)

Spectre de la chlorophylle.

Chautard (J.). Comptes Rendus, 77, 596.

Nouvelles bandes surnuméraires produites dans les solutions de chlorophylle sous l'influence des agents sulfurés.

Chautard (J.). Comptes Rendus, 78, 414-16; Jour. Chem. Soc., (2) 12, 643 (Abs.).

Recherches sur le spectre de la chlorophylle.

Chautard J. . Ann. Chim. et Phys., 5 3, 5-51.

Note sur la chlorophylle.

Filhol | F. | Comptes Rendus, 79, 612-11; Jour. Chem. Soc., (2) 13, 874-2 | Abs. |

- 4

Recherches sur la chlorophylle et quelques uns de ses dérivés.

Gerland (E.) et Rauwenhoff (W. H.). Arch. Neerlandaises, 6, 97-116; Ann. Phys. u. Chem., **143**, 231-9; Jour. Chem. Soc., (2) **9**, 1201-2 (Abs.).

Ueber die Einwirkung des Lichtes auf das Chlorophyll.

Gerland (J.). Ann. Phys. u. Chem., **143**, 585-610; Jour. Chem. Soc., (2) **10**, 160 (Abs.).

Ueber die Rolle des Chlorophylls bei der Assimilationsthätigkeit der Planzen und das Spectrum der Blätter.

Gerland (J.). Ann. Phys. u. Chem., **148**, 99-115; Jour. Chem. Soc., (2) **11**, 401 (Abs.).

Purpurophyll, ein neues (?) Derivat des Chlorophylls.

Hartsen (T. A.). Ann. Phys. u. Chem., 146, 158-60.

Absorptionsspectrum des Chlorophylls.

Jahresber. d. Chemie (1872), 136 (Abs. See Chautard, above).

Spectroscopische Untersuchungen des Chlorophylls.

Jahresber. d. Chemie (1873), 154-7 (Abs. See Chautard, above).

Zur Kenntniss der Chlorophyll-farbstoffe.

Krauss (G.). Archives de Genève, (2) 46, 359 (Abs.).

Untersuchungen über das Chlorophyll, den Blumenfarbstoff und deren Beziehungen zum Blutfarbstoffe.

Liebermann (L.). Sitzungsber. d. Wiener Akad., 72 II, 599-618; Chem. Centralblatt, (3) 7, 615-16; Jour. Chem. Soc., 1877, 2, 208 (Abs.).

Ueber das Verhalten des Chlorophylls zum Licht.

Lommel (E.). Ann. Phys. u. Chem., 143, 568-85; Jour. Chem. Soc., (2) 10, 150-60 (Abs.).

Observations sur l'examen spectroscopique de la chlorophylle par M. Chautard.

Millardet (A.). Comptes Rendus, **76**, 105-7; Jour. Chem. Soc., (2) **11**, 996 (Abs.).

Spectroscopic study of chlorophyll.

Nature, 26, 636.

M. Chautard's classification of the absorption-bands of chlorophyll.

Pocklington (H.). Pharmaceutical Trans., (3) 4, 61-3.

Ueber die Absorptionsspectra der Chlorophyllfarbstoffe.

Pringsheim. Monatsber. d. Berliner Akad. (1874), 628-59.

13 т

Ueber natürliehe Chlorophyllmodificationen und die Farbstoffe der Florideen.

Pringsheim. Monatsber. d. Berliner Akad. (1875, 745-59.

Spectroscopic study of chlorophyll.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., 41, 334-41: Nature, 26, 636-9; Ber. chem. Ges., 15, 2746 (Abs.); Chem. News. 45, 250.

Ueber die Bedeutung des Chlorophylls.

Sachsse (R.). Sitzungsber. d. Naturforsch. Ges. zu Leipzig, 2, 120-55; Chemisches Centralblatt, (3) 7, 550-2; Jour. Chem. Soc. (1877. 2, 208 (Abs.).

Ueber eine neue Reaction des Chlorophylls.

Sachsse (R.). Chemisches Centralblatt, (3) 9, 121-5; Jour. Chem Soc., 34, 516 (Abs.).

Die Reindarstellung des Chlorophyllfarbstoffes.

Tschirch (A.). Ber. chem. Ges., 16, 2731-6; Jour. Chem. Spc., 45. 57-62.

Untersuchungen über das Chlorophyll und einige seiner Derivate.

Tschirch (A.). Ann. Phys. u. Chem., n. F. 21, 370-83.

Beziehungen des Lichtes zum Chlorophyll.

Wiesner (J.). Sitzungsber. d. Wiener Akad., 59 I. 327; Ann. Phys. u. Chem., 152, 497; Jour. Chem. Soc., (2) 12, 999 (Abs.).

-

CHROMIUM.

On the colour properties and relations of chromium.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

The chromium arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 26

On the optical properties of a new chromic oxalate.

Hartley (W. N.). Proc. Royal Soc., 21, 499-507; Ber. chem. Ges.. 6, 1425 (Abs.).

Distribution of heat in green oxide of chromium.

Jacques (W. W.). Proc. American Acad., 14, 142.

Sesquichlorure de chrome en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Absorptionsspectra der Alkalichromate und der Chromsäure.

Sabatier (P.). Beiblätter, 11, 223.

COBALT.

On the colour, properties, and relations of cobalt, etc.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

Cobalt are spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 27.

Spectre de chlorure de cobalt.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Spectra of some cobalt compounds in blowpipe chemistry.

Horner (C.). Chem. News, 27, 241; Jour. Chem. Soc., (2) 11, 1161-2 (Abs.).

Spectrum von Kobalt.

Jahresber, d. Chemie (1872), 145. (See Lockyer, below.)

Spectrum von Kobaltverbindungen.

Jahresber. d. Chemie (1873), 150. (See Horner, above.)

Spectre des sels de cobult.

Lallemand (A.). Comptes Rendus, 78, 1272.

Chlorure de cobalt en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 129, planche XIX.

On the spectrum of cobalt.

Lockyer (J. N.). Proc. Royal Soc., 17, 289.

Absorption spectra of cobalt salts.

Russell (W. J.). Proc. Royal Soc., **31**, 51; **32**, 258; Chem. News, **43**, 27.

Spectroscopic observations on dissolved cobaltous chloride.

Russell (W. J.). Chem. News, 51, 259.

Erkennung des Kobalts neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2313-16; Beiblatter, 4, 278 (Abs.); 5, 118 (Abs.).

.

Methods for the determination of cobalt by spectral analysis.

Wolff. Chem. News, 39, 124.

COLOUR.

Metachromism, or colour-change.

Ackroyd (W.). Chem. News, 34, 75-7.

Ueber die Aenderung des Farbentones von Spectralfarben bei abnehmender Lichtstärke.

Albert (E.). Ann. Phys. u. Chem., n. F. 16, 129-60; Jour. Chem. Soc., 42, 1153 (Abs.).

Influence de la lumière sur les animaux.

Béclard. Comptes Rendus, 46, 441.

Influence des rayons colorés du spectre sur le développement des animaux.
Béclard. Comptes Rendus, 73, 1487.

Nouvelles recherches sur les impressions colorées produites lors de l'action chimique de la lumière.

Becquerel (Éd.). Comptes Rendus, 39, 65.

Ueber die Entstehung von farbigem Licht durch elective Reflection.

Behrens (H.). Ann. Phys. u. Chem., 150, 303-11.

Action of various coloured bodies on the spectrum.

Brewster (Sir D.). Phil. Mag., (4) 24, 441.

Étude expérimentale de la réflexion des rayons actiniques; influence du poli speculaire.

Chardonnet (E. de). Comptes Rendus, 96, 441; Jour. de Phys., 12, 219.

La perception des couleurs.

Charpentier (Aug.). Comptes Rendus, 96, 859.

Recherches expérimentales sur les anneaux colorés de Newton.

Desains (P.). Comptes Rendus, 78, 219-21; Phil. Mag., (4) 47, 236-7.

Farbe und Assimilation.

Engelmann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 209-33; Beiblätter, 7, 378-80 (Abs.); Centralblatt f. Agricultur-chemie (1883), 174-8 (Abs.); Jour. Chem. Soc., 44, 819 (Abs.).

Bacterium photometricum.

Engelmann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 252-90; Pflüger's Arch. f. physiol., 30, 95-124; Proc. Verb. K. Akad. v. Wetenschappen, Amsterdam, Mar. 25, 1882, 3-6 (Abs.); Beiblätter, 7, 381 (Abs.).

Das Verhalten verschiedener Wärmefarben bei der Reflexion polarisirten Strahlen von Metallen.

Knoblauch (H.). Ann. Phys. u. Chem., n. F. 10, 654.

Ueber den neutralen Punckt im Spectrum der Farbenblinden.

König (A.). Verhandl. d. physischen Ges. in Berlin (1883), 20-23.

Influence of colour upon reduction by light.

Lea (M. Carey). Amer. Jour. Sci., (3) 7, 200-207.

Influence of colour upon the refraction of Light.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 355-7.

Dr. Vogel's colour theory.

Lea (M. Carey). Amer. Jour. Sci., (3) 12, 43-50.

On the development of the colour sense.

Lubbock (Dr. Montague). Rept. British Assoc. (1881), 715.

On the relations of the colours of the spectrum.

Maxwell (J. Clerk). Proc. Royal Soc., 10, 484.

On the duration of colour impressions upon the retina.

Nichols (E. L.). Amer. Jour. Sci., (3) 28, 243-52.

Eine Beziehung zwischen der Farbe gewisser Flammen und den durch das Licht gefärbten heliographischen Bildern.

Niepce de Saint Victor. Ann. Phys. u. Chem., Ergänzungsband, 3 (1853), 442; Ann. Chim. et Phys., (3) 32, \$73.

On the sensitiveness of the eye to slight differences of colour.

Peirce (B. O., Jr.). Amer. Jour. Sci., (3) 26, 299-302; Z. Instrumentenkunde, 4, 67-8 (Abs.); Beiblätter, 8, 120.

Sur l'achromatisme chimique.

Prazmowski. Comptes Rendus, 79, 107-110; Jour. Chem. Soc., (2) 12, 1125 (Abs.).

Experiments in colour.

Rayleigh (Lord). Nature, 25, 64-6.

Sur l'application de la succession anomale des couleurs dans le spectre de plusieurs substances.

Sellmeier. Jour. de Phys., 1, 104.

Bemerkungen hiezu, A. Levistal. Ann. Phys. u. Chem., 143, 272.

Colour in practical astronomy, spectroscopically examined.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 28, 779-843; Beiblatter, 4, 548 (Abs.).

ъ.

Comparative vegetable chromatology.

Sorby (H. C.). Proc. Royal Soc., 21, 442-83; Jour. Chem. Soc., (2) 12, 279-85 (Abs.).

Sur la transparence des milieux de l'œil pour les rayons ultra-violets.

Soret (J. L.). Comptes Rendus, 88, 1012-15; Beiblätter, 3, 620 (Abs.).

On combinations of colour by means of polarized light.

Spottiswoode (W.). Proc. Royal Soc., 22, 354-8.

Farbenwahrnehmung.

Weinhold (A.). Ann. Phys. u. Chem., n. F. 2, 631.

De l'influence de différentes couleurs du spectre sur la dévellopement des animaux.

Yung (E.). Comptes Rendus, 87, 998-1000.

CONE-SPECTRUM.

The blowpipe cone-spectrum and the distribution of the intensity of light in the prismatic and diffraction spectra.

Draper (J. W.). Nature, 20, 301.

CONSTANTS.

Beziehungen zwischen physikalischen Constanten chemischer Verbindungen.

Brühl (J. W.). Ber. chem. Ges., 15, 467.

Spectroscopische Untersuchung der Constanten von Lösungen. Bürger (H.). Ber. chem. Ges., 11, 1876.

On a new optical constant.

Gibbs (Wolcott). Proc. Amer. Acad., 10, 401-16; Ann. Phys. u. Chem., 156, 120-44.

Optische Constanten.

Janowsky (J. V.). Ber. chem. Ges., 13, 2272-77.

Ucber die Refractionsconstante.

Lorenz (L.). Ann. Phys. u. Chem., n. F. 11, 70-103.

Experimentelle Untersuchungen über die Refractionsconstante.

Prytz (K.). K. Dan. Ges. d. Wiss. 1880, 6, 3-22; Ann. Phys. u. Chem., n. F. 11, 104-20.

Ueber einige von den Herrn J. W. Brühl und V. Zenger aufgestellte Beziehungen zwischen physikalischen Constanten chemischer Verbindungen.

Wiedemann. Ber. chem. Ges., 15, 464-70; Beiblätter, 6, 370 (Abs.), 377 (Abs.).

-

COPPER.

On the colour, properties, and relations of the metals copper, nickel, cobalt, iron, manganese, and chromium.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

On the colour relations of copper and its salts.

Bayley (T.). Phil. Mag., (5) 5, 222-4.

On the analysis of alloys containing copper.

Bayley (T.). Phil. Mag., (5) 6, 14-19.

On the colour properties and colour relations of the metals of the iron-copper group.

Bayley (T.). Jour. Chem. Soc., 39, 362-70.

Copper spark spectrum; copper arc spectrum; copper and silver arc spectrum; copper, gold, and silver (alloy) arc spectrum; copper and iron spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 27, 31, 43.

Spectrum of nitrate of copper.

Chem News, 35, 107.

Renversement des raies spectrales de cuivre.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre du cuivre.

Debray. Comptes Rendus, 54, 169.

Spectre du bromure de cuivre, et du chlorure de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1

Spectre de l'azotate de cuivre.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Caractères des flammes chargées de l'oxyde de cuivre et de l'acetate de cuivre.

Gouy. Comptes Rendus, 85, 439.

Black oxide of copper.

Jacques (W. W.). Proc. Royal Soc., 14, 159.

Spectrum des Kupfers.

Jahresber. d. Chemie, 15, 30. (See Debray, above.)

Spectre de l'oxyde de euivre.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion lumineuse du sulfure et du phosphure de cuivre obtenus sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 693.

Chlorure de cuivre en solution, étincelle; chlorure de cuivre dans le gaz.

Lecoq de Boisbaudran, Paris, 1874, p. 152, 156, planehe XXIV.

Erkennung von Chlor, Brom und Iod durch das Spektrum der Kupferverbindung.

-

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Speetrum von Kupfer.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Methods for the determination of copper by spectral analysis. Wolff. Chem. News, 39, 124.

CRYSTALS.

- Sur le pouvoir rotatoire du quartz dans le spectre ultra-violet. Croullebois. Comptes Rendus, 81, 666.
- Action rotatoire du quartz sur le plan de polarization des rayons calorifiques obscurs d'un spectre.

Desains (P.). Comptes Rendus, 84, 1056.

- Anwendung des Spectroskops zur optischen Untersuchung der Krystalle.
 Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 58 II, 4, 15-29.
- Indices de réfraction ordinaire et extraordinaire du quartz, pour les rayons de différentes longueurs d'onde jusqu'à l'extrême ultraviolet.

Sarasin (E.). Arch. de Genève, (2) 61, 109-19; Comptes Rendus, 85, 1230-2 (Abs.); Beiblätter, 2, 77 (Abs.).

Indices de réfraction ordinaire et extraordinaire du spath d'Islande pour les rayons de diverses longueurs d'onde jusqu'à l'extrême ultraviolet.

Sarasin (E.). Comptes Rendus, 95, 680.

Indices de réfraction du spath-fluor pour les rayons de différentes longueurs d'onde, jusqu'à l'extrême ultra-violet.

Sarasin (E.). Comptes Rendus, 97, 850.

Propriétés optiques de quelques cristaux; acide oxalique, hyposulôte de soude, sous-carbonate de soude, borax.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Sur la polarization rotatoire du quartz.

Soret (J. L.). Arch. de Genève, (3) 8, 5-59, 97-132, 201-28; Jour. de Phys., (2) 2, 281-6 (Abs.).

Sur la polarization rotatoire du quartz.

Soret (J. L.) et Sarasin (E.). Comptes Rendus, 83, 818; 95, 635.

D LINE.

- Dark double line D in the spectrum from the electric arc.

 Foucault. L'Institut (1848), 45.
- Darstellung der dunklen Fraunhofer'schen Linie D. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 148.
- Die Ursache der dunklen Linie D nicht in dem Atmosphäre. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 297.
- Détermination de la valeur absolue de la longueur d'onde de la raie D. Macé de Lépinay (J.). Ann. Chim. et Phys., (6) 10 (1887), 170-199.

- 4

- Détermination de la longueur d'onde de la raie D₂.

 Macé de Lépinay (J.). Jour. de Phys., (2) 5, 411-16.
- Indice du quartz pour la raie D.

 Sarasin (Ed.). Comptes Rendus, 85, 1230.
- D line spectra.

 Stokes (G. G.). Nature, 13, 247.
- Monographie du groupe D du spectre solaire.
 Thollon (L.). Jour. de Phys., 13, 5.

DARK LINES.

Étude des bandes froides des spectres obscurs.

Dessains (P.) et Aymonnet. Comptes Rendus, 81, 423.

Die brechbarsten oder unsichtbaren Lichtstrahlen im Beugungsspectrum, und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 353.

Dark double line D in the spectrum from the electric arc. Foucault. L'Institut (1849), 45.

Anwendung der dunklen Linien des Spectrums als Reagens auf Uran und Mangansäure.

Jahresber. d. Chemie, 5, 125. (See Stokes in L'Institut, 1852, p. 392.)

Umwandlung heller Linien in Dunkle.

Jahresber. d. Chemie, 14, 44. (See Kirchhoff, below.)

Dunkle Spectrallinien der Elemente.

Jahresber. d. Chemie, **17**, 108. (See Hinrichs (G.) in Amer. Jour. Sci., [2] **38**, 31.)

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums, in Dunkle.

> Jahresber. d. Chemie, 18, 90. (See Madan (H. G.) in Phil. Mag., [4] 29, 338.)

Die Ursache der dunklen Linie D nicht in dem Atmosphäre.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 297.

Umkehrung der hellen und dunklen Linien.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 187.

Spectrum des Phosphorescenzlichtes von Chlorophan, etc., mit dunklen Linien.

Kindt. Ann. Phys. u. Chem., 131, 160; Phil. Mag., Dec., 1867.

Absorptionsspectren dunkler Wärmestrahlen in Gasen und Dämpfen. Lecher und Pernter. Sitzungsber. d. Wiener Akad., **82** II, 265.

Dunkle Linien in den Spectren einiger Fixsterne.

Merz (L.). Ann. Phys. u. Chem., 117, 654.

Dunkle Linien in dem photographirten Spectrum weit über dem sichtbaren Theil hinaus.

Müller (J.). Ann. Phys. u. Chem., 97, 135.

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 116, 543; Berichtigung dawn, 116, 644.

- A method of examining refractive and dispersive powers by prismatic reflection. (Contains the first discovery of the dark solar lines.)
 Wollaston (W. H.). Phil. Trans. (1802), 365.
- Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne und der Fixsterne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 373.

DAVYUM.

Spectre du davyum.

Kern (8.). Comptes Rendus, 85, 667; Nature, 17, 245; Chem. News, 36, 114, 155, 164; Beiblätter, 1, 619.

-

DECIPIUM.

Sur le décipium, métal nouveau de la samarskite.

Delafontaine. Comptes Rendus, **87**, 632-4; Jour. Chem. Soc., **36**, 117-8; Amer. Jour. Sei., (3) **17**, 61-2 (Abs.); Beiblätter, **3**, 197-8 (Abs.).

Remarques sur le décipium et ses principaux composés.

Delafontaine. Comptes Rendus, **90**, 221-3; Arch. de Genève, (3) **3**, 250-60; Beiblätter, **4**, 549 (Abs.).

Spectre du nitrate de décipium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

DENSITY.

Ueber den Einfluss der Dichte und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician (G.). Wiener Anzeigen (1878), 158-60; Chemisches Centralblatt (1878), 689-90; Jour. Chem. Soc., **36**, 101 (Abs.).

Ueber den Einfluss der Dichte und der Temperatur auf die Spectren von Dämpfen und Gasen, 1879.

Ciamician (G.). Sitzungsber. d. Wiener Akad., 78 II, 867-90; Chemisches Centralblatt (1879), 507-9, 537-42, 555-7; Nature, 20, 90 (Abs.); Beiblätter, 3, 609-11.

Ueber den Einfluss der Dichtigkeit eines Körpers auf die Menge des von ihm absorbirten Lichtes.

Glan (P.). Ann. Phys. u. Chem., n. F. 3, 54-82.

De l'intensité lumineuse des couleurs spectrales.

Parinaud (H.). Comptes Rendus, 99, 937.

- De l'influence qu'exerce l'intensité de la lumière colorée, etc. Prillieux. Comptes Rendus, 69, 294, 408, 412.
- Weber die Abhängigkeit der Brechungsexponenten anomal dispergirender Medien von der Concentration der Lösung und der Temperatur. Sieben (G.). Ann. Phys. u. Chem., 23, 312.
- Note sur un procédé destiné à mesurer l'intensité relative des éléments constitutifs des différentes scources lumineuses.

Trannin (H.). Comptes Rendus, 77, 1495.

Aenderung der Lage und Breite der Linien in Salpetergas und anderen Substanzen mit der Dicke und Schicht.

Weiss (A.). Ann. Phys. u. Chem., 112, 153.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectra glühender Gase.

> Zollner (F.). Ber. Sächs. Ges. d. Wiss., 22, 233-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

> > - 4

DIDYMIUM.

Sur les variations des spectres d'absorption du didyme.

Becquerel (H.). Comptes Rendus, 103 (1887), 777-80; Chem. News, 55, 148 (Abs.).

Sur le didyme.

Brauner (B.). Comptes Rendus, 94, 1718-19; Chem. News, 46, 16-17; Jour. Chem. Soc., 44, 18 (Abs.); Ber. chem. Ges., 15, 2231 (Abs.).

Das Absorptionsspectrum des Didyms.

Bührig (H.). Jour. prackt. Chemie, (2) **12**, 209-15; Amer. Jour. Sei., (3) **11**, 142 (Abs.).

Erscheinungen beim Absorptionsspectrum des Didyms; Aenderung bei Anwendung polarisirten Lichtes.

Bunsen (R.). Ann. Phys. u. Chem., 128, 100.

On the inversion of the bands in the didymium absorption spectra.

Bunsen (R.). Phil. Mag., (4) 28, 246; 32, 177. (See Roscoe's Spectrum Analysis, Lecture 4, Appendix F, Third Edition.)

Photograph of the didymium are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 28.

Note préliminaire sur le didyme.

Clève (P. T.). Comptes Rendus, **94**, 1528-30; Chem. News, **45**, 273; Jour. Chem. Soc., **44**, 18 (Abs.); Ber. chem. Ges., **15**, 1750 (Abs.); Beiblätter, **6**, 771-2 (Abs.).

Quelques remarques sur le didyme.

Clève (P. T.). Comptes Rendus, 95, 33; Jour. Chem. Soc., 42, 1165 (Abs.); Beiblätter, 6, 772 (Abs.).

Note on the absorption spectrum of didymium.

Crookes (W.). Chem. News, 54 (1886), 27.

Vergleich der Absorptionsspectra von Didym, etc.

Delafontaine. Ann. Phys. u. Chem., 124, 635.

Sur les spectres du didyme et du samarium.

Demarçay (Eug.). Comptes Rendus, 102 (1886), 1551-2.

Absorptionslinien der Didymlösungen.

Erdmann. Jour. prackt. Chemie, 85, 394; 94, 303.

14 T

On an optical test for didymium.

Gladstone (J. H.). Jour. Chem. Soc. (1858), 10, 219.

Absorptionsspectrum des Didymnitrats.

Jahresber, d. Chemie (1870), 321.

Chlorure de didyme en solution concentrée, absorption; do. en solution étendue, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 87, 90, XIII.

The didymium absorption spectrum.

Rood (O. N.). Amer. Jour. Sci., (2) 34, 129; Ann. Phys. u. Chem., 118, 350.

Sur le spectre du nitrate de didyme.

Smith (Lawrence) et Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1167.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; spectre du didyme.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-4; Beiblätter, 2, 410-11; 3, 196-7.

Recherches sur les spectres d'absorption du didyme et de quelques autres substances extraites de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-1.

Om de lysande spectra hos Didym och Samarium (Sur les spectres brilliants du didyme et du samarium).

Thalen (R.). Ofversigt K. Svensk, Vetensk, Akad. Forhandl., 40, No. 7, 3-16; Jour. de Phys., (2) 2, 446-49; Ber. chem. Ges., 16, 2760 (Abs.); Beiblätter, 7, 893 (Abs.).

Om spectra tillhörande didym, yttrium, erbium och lanthan.

Thalen (R.). K. Svensk, Vetenskaps Akad. Forhandlingar, 12, No. 4. 24; Bull. Soc. chim. Paris, (2) 22, 350 (Abs.); Jour. de Phys., 4, 33, avec une planche.

Note on the spectrum of didymium.

Thompson (Claude M.). Chem. News, 55 (1887), 227.

DIFFRACTION.

Spectrum der brechbarston Strahlen.

Crookes. Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 621.

Krümmung der Spectrallinien.

Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 51 II, 341, 368-383.

On diffraction spectrum photography.

Draper (H.). Amer. Jour. Sei., **106**, 401-9; Phil. Mag., (4) **46**, 417-25; Nature, **9**, 224-6; Ann. Phys. u. Chem., **151**, 337-50.

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Albertotypie eines photographirten Diffractionsspectrums.

Jahresber, d. Chemie (1873), 166. (See Draper, above.)

Diffraction bands in the spectrum.

Moreland. Amer. Jour. Sei., (3) 29, 5.

Wärmevertheilung im Diffractionsspectrum.

Müller (J.). Ann. Phys. u. Chem., 105, 355.

Comparison of prismatic and diffraction spectra.

Pickering (E. C.). Proc. Amer. Acad., 11, 273.

On diffraction spectra.

Quincke (G.). Phil. Mag., (4) 45, 365-71.

Beugungserscheinungen im Spectrum.

Rosiky. Sitzungsber. d. Wiener Akad., 71 I, 391.

Reduction for diffraction in spectrum observation.

Rosenberg (E.). Jour. Franklin Inst., 106, 95.

Sur les phénomènes de diffraction produits par les réseaux circulaires.

Soret (J. L.). Archives de Genève, (2) 52, 320-37; Ann. Phys. u. Chem., 156, 99-113; Ann. Chim. et Phys., (5) 7, 409-24.

Einige Bermerkungen über die Diffractionsspectra.

Spée (E.). Bull. de l'Acad. de Belgique, (3) 12, 32-4; Beiblätter, 11 (1887), 99 (Abs.).

Imitation des spectres de diffraction par dispersion.

Zenger (Ch. V.). Comptes Rendus, 96, 521.

DISCONTINUOUS SPECTRA.

On discontinuous spectra in high vacua.

Crookes (W.). Proc. Royal Soc., 32, 206-13; Nature, 24, 89-91; Chem. News, 43, 237-9; Ber. chem. Ges., 14, 1696-7.

DISPERSION SPECTRA.

Experimentelle Prüfung der aelteren und neueren Dispersionsformeln.

Brühl (J. W.). Ber. chem. Ges., 19 (1886), 2821-37; Beiblatter, 11, 244-8; Jour. Chem. Soc., 52, 195-8 (Abs.).

Note on the curvature of lines in the dispersion spectrum, and the method of correcting it.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 34, 263-5. Note on this by Simms, same vol., 363-4.

Specific refraction and dispersion of light by liquids.

Gladstone (J. H.). Rept. British Assoc. (1881), 591; Nature, 24, 468 (Abs.; Beiblätter, 6, 21 (Abs.).

Specific refraction and dispersion of isomeric bodies.

Gladstone (J. H.). Proc. Royal Soc., 4, 94-100; Phil. Mag., (5) 11, 54-60; Ber. chem. Ges., 14, 835 (Abs.); Jour. Chem. Soc., 40, 213 (Abs.); Beiblätter, 5, 276 (Abs.).

Zur Theorie der anomalen Dispersion.

Helmholtz (H.). Monatsber, d. Berliner Akad. (1874), 667-80; Aun. Phys. u. Chem., 154, 582-96.

ъ.

Untersuchungen über das Dispersionsgesetz.

Hesse (O.). Ann. Phys. u. Chem., n. F. 11, 871-90 .

Sur la dispersion anomale.

Hurion. Jour. de Phys., 7, 181; Ann. de l'École normale, (2) 6, 367–412; Beiblätter, 2, 79 (Abs.).

Zusammenhang zwischen Absorption und Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., 160, 466-86.

Das specifische Gesetz der sogenannten auomalen Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., Jubelband, 166-82.

Notiz, betreffend die Dispersionscurve der Mittel mit mehr als einem Absorptionsstreifen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 1, 340-51.

Einige Anwendungen des Dispersionsgesetzes auf durchsichtige, halbdurchsichtige und undurchsichtige Mittel.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 368.

Attempt at a theory of the (anomalous) dispersion of light in singly and doubly refracting media.

Ketteler (E.). Verhandl. d. naturhist. Vereinsd. preuss. Rheinlande und Westphalens, **33** (1876); Phil. Mag., (5) **2**, 332-45, 414-22, 508-22.

Zur Handhabung der Dispersionsformel.

Ketteler (E.). Ann. Phys. u. Chem., (2) 30, 299-31

Recherches sur la dispersion prismatique de la lumière.

Klercker (C. E. de). Bihang till k. Svensk. Vet. Akad. Handl., 7, 1-55; Comptes Rendus, 97, 707 (Abs.).

Ueber anomale Dispersion der Körper mit Oberflächenfarben.

Kundt (A.). Ann. Phys. u. Chem., 142, 163-171; 143, 149-52, 259-79; 144, 128-37; 145, 67-80; Nachtrag, 145, 164-66; Ann. Chim. et Phys., (4) 25, 404-10 (Abs.), 413-19 (Abs.), 419-21 (Abs.).

Ueber einige Beziehungen zwischen der Dispersion und Absorption des Lichtes.

Kundt (A.). Ann. Phys. u. Chem., Jubelband, 615-24.

Ueber anomale Dispersion in glühendem Natriumdampf.

Kundt (A.). Ann. Phys. u. Chem., n. F. 10, 321-5; Phil. Mag., '5 10, 53-57.

Ueber die Dispersion des Aragonits nach arbiträrer Richtung.

Zang (V. von). Sitzungsber. d. Wiener Akad.. 83 FI, 671-6; Wiener Anzeigen (1881), 84 (Abs.).

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Bei-blätter, 4, 610 (Abs.).

Theorie der normalen und anomalen Dispersion.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 329-56.

Ueber einige zweiconstantige Dispersionsformel.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 628-634.

Ueber das Dispersionsgesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 13. 353-60.

Das Gesetz der Rotationsdispersion.

Lommel (E.). Ann. Phys. u. Chem., n. F. 20, 578.

Theorie der Dispersion.

Lorenz (L.). Ann. Phys. u. Chem., n. F. 10, 1-21.

Einige Versuche über totale Reflexion und anomale Dispersion.

Mach (E.) und Arbes (J.). Ann. Phys. u. Chem., (2) 27, 436-44.

Sur la dispersion des gaz.

Mascart. Comptes Rendus, 78, 679-82; Amer. Jour. Sci., (3) 7, 591-2 (Abs.).

Versuch einer Erklärung der anomalen Farbenzerstreuung.

Meyer (O. E.). Ann. Phys. u. Chem., 145, 80-86; Ann. Chim. et Phys., (4) 43, 321-38.

Quelques phénomènes de décomposition produits par la lumière.

Morren. Comptes Rendus, 69, 399.

Une méthode pour mesurer la dispersion dans les différentes parties du spectre fourni par un prisme ou un spectroscope quelconque.

Mousson. Arch. de Genéve, (2) 45, 13; Ann. Phys. u. Chem., 148, 660.

(See Mach in Ann. Phys. u. Chem., 149, 270.)

Sur les lois de la dispersion.

Mouton. Comptes Rendus, 88, 1189-92; Beiblatter, 3, 616 (Abs.): Ann. Chim. et Phys., (5) 18, 145-89.

Dispersion de la lumière.

Ricour (Th.). Comptes Rendus, 69, 1231; 70, 115.

Ueber eine neue Flüssigkeit von hohem specifischen Gewicht, "onem Brechungsexponenten und grosser Dispersion.

Rohrbach (C.). Ann. Phys. u. Chem., n. F. 1, 169-174; Amer. Jour. Sci., (3) 26, 406 (Abs.); Jour. Chem. Soc., 46, 145 (Abs.).

*

Recherches concernant la dispersion électromagnétique sur une spectre de grande étendue.

Schaik (W. C. L. von). Arch. Neerlandaises, 17, 373-90; Beiblätter, 7, 919 (Abs.).

Ueber das Dispersionsäquivalent von Diamant.

Sehrauf (A.). Ann. Phys. u. Chem., n. F. 22, 424-9; Jour. Chem. Soc., 48, 14 (Abs.).

Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die erstern, besonders zur Erklärung der Dispersion und ihrer Anomalien.

Sellmeier (W.). Ann. Phys. u. Chem., **145**, 399-421, 520-49; **147**, 386-403, 525-54.

Untersuchungen über die anomale Dispersion des Lichtes.

Sieben (G.). Ann. Phys. u. Chem., n. F. 8, 137-57.

Micrometrical measures of gaseous spectra under high dispersion.

Smyth (C. Piazzi). Trans. Royal. Soc. Edinburgh, **32** III, 415-60, 1884, with plates.

Sur la dispersion anormale de quelques substances.

Soret (J. L.). Arch. de Genève, (2) 40, 280-3; Ann. Phys. u. Chem.,
143, 325-7; Phil. Mag., (4) 44, 395-6; Ann. Chim. et Phys., (4)
25, 412 (Abs.).

Sur la réfraction et la dispersion des aluns crystallisés.

Soret (C.). Arch. de Genève, (3) 10, 300-2; Beiblätter, 8, 374 (Abs.).

On an easy and at the same time accurate method of determining the ratio of the dispersions of glasses intended for objectives.

Stokes (G. G.). Proc. Royal Soc., 27, 485-94; Beiblätter, 3, 185-7 (Abs.).

Minimum de dispersion des prismes; achromatisme de deux lentilles de mêmes substances.

Thollon (L.). Comptes Rendus, 89, 93-6; Beiblätter, 4, 32-4.

Ueber die Beziehung zwischen chemischer Wirkung des Sonnenspectrums und anomaler Dispersion.

Vogel (H.). Ber. chem. Ges., 7, 976-9; Jour. Chem. Soc., (2) 12, 1121-2.

Theorie der Dispersion.

Voigt (W.). Göttinger gelehrten Nachr. (1884), 262.

Zur Dispersion farblos durchsichtiger Medien.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 17, 580-7; Jour. de Phys., (2) 2, 231 (Abs.).

Ausdehnung der Dispersionstheorie auf die ultra-rothen Strahlen.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 23, 306; Jour. de Phys., (2) 4, 324 (Abs.).

Sur la dispersion du chromate de soude à 4 H, O.

Wyrouboff (G.). Bull. Soc. mineral. de France, 5, 160-1.

DISSOCIATION.

Dissociation of the elements.

Crookes (W.). Chem. News, 39, 65-6.

Ueber die neuen Wasserstofflinien und die Dissociation des Calciums.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 33, 597 (Abs.); Beiblätter, 4, 274.

Ueber Lockver's Dissociationstheorie.

Vogel (H. W.). Sitzungsber. d. Berliner Akad. (1882), 905-7; Nature.
27, 233; Ann. Phys. u. Chem., n. F. 19, 284-287; Phil. Mag., (*)
15, 28-30; Jour. Ckom. Soc., 44, 762 (Abs.); Chem. News, 49, 201 (Abs.).

.

DISTRIBUTION IN THE SPECTRUM.

The distribution of heat in the visible spectrum.

Conroy (Sir J.). Proc. Phys. Soc., 3, 106-12; Phil. Mag., (5) 8, 203-9; Beiblätter, 4, 44 (Abs.).

On the distribution of lines in spectra.

Hinrichs. Amer. Jour. Sci., July, 1864.

Vertheilung der chemischen Wirkung im Spectrum.

Jahresber. d. Chemie (1873), 160.

Distribution de l'energie dans le spectre normal.

Langley (S. P.). Ann. de Chim. et de Phys., (5) 25, 211.

Wärmevertheilung im Normalspectrum.

Lundquist (G.). Ann. Phys. u. Chem., 155, 146.

Sur la distribution des bandes dans les spectres primaires.

Salet (G.). Comptes Rendus, 79, 1229-30; Ber. chem. Ges., 7, 1788 (Abs.); Bull. Soc. chim. Paris, 22, 543.

DOUBLE SPECTRA.

Secondary Spectrum.

Rood (O. N.). Amer. Jour. Sei., 106, 172.

Sur les spectres doubles.

Salet (G.). Jour. de Phys., 4, 225.

On double spectra.

Watts (W. M.). Quar. Jour. Sci., Jan., 1871.

DYSPROSIUM.

Spectre du dysprosium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1005-6; Jour. Chem. Soc., 50, 667 (Abs.).

ELECTRIC SPECTRA.

Relation between electric energy and radiation in the spectrum of incandescence lumps.

Abney and Festing. Proc. Royal Soc., 37, 157.

Continuirliches Spectrum des electrischen Funkens.

Abt (A.). Ann. Phys. u. Chem., n. F. 7, 159; K. Ungar. Acad. d. Wiss. in Buda-Pest, Dec. 11, 1878; Jour. Chem. Soc., 36, 765; Amer. Jour. Sci., (3) 18, 68-9.

Spectrum des electrischen Lichtes.

Angström (A. J.). Ann. Phys. u. Chem., 94, 145; Phil. Mag., (4) 9, 327.

Pouvoir phosphorescent de la lumière électrique.

Becquerel (E.). Comptes Rendus, 8, 217; 101, 205-10; Jour. Chem. Sec., 48, 1098 (Abs.).

Nouvelles expériences sur les effets électriques produits sous l'influence des rayons solaires.

Becquerel (E.). Comptes Rendus, 9, 561; remarques par M. Biot, 569.

Nouvelles expériences sur le même sujet.

Becquerel (E.). Comptes Rendus, 9, 711; nouvelles remarques par M. Biot, 713, 719.

-

Sur le rayonnement chimique qui accompagne la lumière solaire et la lumière électrique.

Beequerel (E.). Comptes Rendus, 11, 702; rapport de M. Biot à propos de ce mémoire, 12, 101.

Effets électro-chimiques produits sous l'influence de la lumière.

Beequerel (E.). Comptes Rendus, 32, 85.

A new form of absorption-cell.

Bostwick (A. E.). Amer. Jour. Sci., Dec., 1885; Phil. Mag., (5) 21, 80 (Abs.).

Einfluss des Drucks auf das Spectrum des electrischen Funkens in Gasen. Cailletet. Ber. chem. Ges., 5, 482.

Kleinste im Inductionsfunken durch die Spectralanalyse noch erkennbare Gewichtsmenge verschiedener Metalle.

Cappel (E.). Ann. Phys. u. Chem., 139, 631-6.

Wolfram arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, 50.

Sur la photographie du spectre de l'étincelle électrique.

Cazin (A.). Bull. Soc. philom. de Paris, 1877, (7) 1, 6-7; Beiblätter,1, 287-8 (Abs.).

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Cazin (A.). Comptes Rendus, 84, 1151-4; Phil. Mag., (5) 4, 153-6;
Beiblätter, 1, 620 (Abs.); Jour. Chem. Soc., 34, 357 (Abs.); Jour. de Phys., 6, 271; Amer. Jour. Sci., (3) 15, 148 (Abs.).

Phénomènes observés dans les spectres produits par la lumière des courants d'induction traversant les gaz raréfiés.

Chautard (J.). Comptes Rendus, 59, 383.

Action exercée par un électro-aimant sur les spectres des gaz raréfiés, traversés par des décharges électriques.

Chautard (J.). Comptes Rendus, 79, 1123-4.

Action des aimants sur les gaz raréfiés renfermés dans les tubes capillaires et illuminés par un courant induit.

Chautard (J.). Comptes Rendus, 80, 1161-4.

Phénomènes magnéto-chimiques produits au sein des gaz raréfiés dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, **81**, 75-7; **82**, 272-274; Jour. Chem. Soc., 1876, **1**, 29 (Abs.).

Observations of the spectrum of lightning.

Clark (J. W.). Chem. News, 30, 25; 32, 65; 35, 2; Beiblätter. 1, 192.

Den Einfluss welchen die Natur der electrischen Stromquelle auf das Aussehen von Gasspectren ausübt.

Czechowicz. Versammlung russischer Naturforscher und Aertzte in Warschau, Sept., 1876; Ber. chem. Ges., 9, 1598 (Abs.).

Analyse spectrale de l'étineelle électrique produite dans les liquides et les gaz.

Daniel. Comptes Rendus, 57, 98.

Notice sur la constitution de l'univers. Première partie, analyse spectrale.

Delaunay. Ann. du Bureau des Longitudes, Paris, 1869.

Sur les spectres des étincelles des bobines à gros fil.

Demarçay (E.). Comptes Rendus, 103 (1887), 678.

Spectre du pôle négatif de l'azote.

Deslandes (H.). Comptes Rendus, 103 (1886), 375-9; Jour. Chem. Soc., 50, 957.

Recherches sur l'influence des éléments électro négatifs sur le spectre des métaux.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 5.

Ueber den Unterschied der prismatischen Spectra des am positiven und negativen Pol im luftverdünnten Raume hervortretenden electrischen Lichtes.

Dove (H. W.). Ann. Phys. u. Chem., 104, 184.

Over de zamenstellung von zonlicht, gaslicht en het von Edison's lamp, vergelijkend onderzocht met behulp der bacterien-methode.

Engelmann (T. W.). Proc. verb. k. Akad. v. Wetensch. te Amsterdam. Nov. 25, 1882, No. 5, 4-5; Beiblatter, 7, 380 (Abs.).

Sur les changements de réfrangibilité observés dans les spectres électriques de l'hydrogène et du magnésium.

Fiévez (C. . Bull. Acad. de Belgique. (3), 7, 145-7; Beiblatter, 8, 506 (Abs.).

.

Spectrum of lightning.

Gibbons (J.). Chem. News, 24, 96; 40, 65.

Spectrum of lightning.

Grandeau (L.). Chem. News, 9, 66.

Note of an experiment on the spectrum of the electric discharge.

Grove (Sir W. R.). Proc. Royal Soc., 28, 181-4; Beiblätter, 3, 360 (Abs.).

Das Stokes'sche Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 8, 369.

The investigation by means of photography of the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195-6; Nature, 29, 89-90; Jour. Chem. Soc., 46, 137 (Abs.); Beiblätter, 8, 302 (Abs.).

Spectrum of lightning.

Herschel (Lieut. John). Proc. Royal Soc., 16, 418; 17, 61.

Spectra of lightning.

Hoh (Th.). Chem. News, 30, 253; Ann. Phys. u. Chem., 152, 173.

Spectrum of lightning. .

Holden (E. S.). Amer. Jour. Sei., (3) 4, 474-5.

Spectrum of the electric light.

Hopkins-Walters (J.). Nature, 25, 103.

Electric spectra in various gases and with electrodes of various substances.

Huggins (W.). Phil. Trans., 1864; Ann. Phys. u. Chem., 124, 275–292, 621.

Photographische Wirkung electrischer Metallspectren.

Jahresber, d. Chemie, (1862) 33, (1863) 104, 106, 107, 113, (1864) 109, 110, 115, (1865) 90, 91, 92, (1868) 126-7, (1872) 148, (1873) 150-2, (1875) 123.

Spectrum des Blitzes.

Jahresber. d. Chemie, (1864) 109, (1868) 126, 127, (1872) 148.

Spectralanalyse mittelst des Inductionsstroms.

Jahresber. d. Chemie, (1865) 91, 92, (1873) 150, 151-2, (1864) 110.

Spectrum of lightning.

Joule (J. P.). Nature, 6, 161.

Spectra of two hundred and fourteen flashes of lightning observed at the astrophysical observatory in Herény, Hungary.

Konkoly (N. von). Observatory (1883), 267-8; Beiblätter, 7, 862 (Abs.). Wärmevertheilung im Spectrum des Kalklichtes bei Flintglas-und Steinsalz-prismen.

Lamansky (S.). Ann. Phys. u. Chem., 146, 227.

Sur la loi de Stokes.

Lamansky (S.). Jour. de Phys., 8, 367; Ann. Phys. u. Chem., n. F. 8, 624.

Observations sur quelques points d'analyse spectrale et sur la constitution des étincelles d'induction.

Lecoq de Boisbaudran (F.). Comptes Rendus, 73, 943.

Spectre de l'ammoniaque par renversement du courant induit.

Lecoq de Boisbaudran (F.). Comptes Rendus, 101 (1885), 42-5; Jour. Chem. Soc., 48, 1025 (Abs.).

Sur un spectre électrique particulier aux terres rares du groupe terbique. Lecoq de Boisbaudran. Comptes Rendus, 102 (1886), 153-5.

Fluorescence des composés du manganèse, soumis à l'effluve électrique dans le vide.

Lecoq de Boisbaudran. Comptes Rendus, 103 (1886), 468-71, 620-31, 1064-7, 1107; Jour. Chem. Soc., 52 (Abs.); Amer. Jour. Sci., (3 33, 149-51 (Abs.); Beiblätter, 11, 37, 39 (Abs.).

An arrangement of the electric arc for the study, with the spectroscope, of the radiation of vapours, together with preliminary results.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 119.

Note on some phenomena attending the reversal of lines in the arc produced by a Siemens machine.

Lockyer (J. N.). Proc. Royal Soc., 28, 428.

Ueber die Glüherscheinungen an Metallectroden innerhalb einer Wasserstoffatmosphäre von verschiedenen Drucke.

Lohse (O.). Ann. Phys. u. Chem., n. F. 12, 109-114.

Das Stokes'sche Gesetz.

Lominel (E.). Ann. Phys. u. Chem., n. F. 8, 244.

Die weitausgedehnten ultravioletten Strahlen im Spectrum des electrischen Funkens mit dem Auge wahrnehmbar.

Mascart. Ann. Phys. u. Chem., 137, 163.

Spectre de la lumière des piles dans l'air.

Masson (A.). Comptes Rendus, 32, 128; Ann. Chim. et Phys., (3) 31, 295.

-

On the photographic effects of metallic and other spectra obtained by means of the electric spark.

Miller (W. Allen). Proc. Royal Soc., 12, 150; Phil. Trans. (1862), 861.

Spectre de la lumière électrique dans le vide.

Du Moncel. Comptes Rendus, 49, 40.

Spectre fluorescent de l'étincelle électrique.

Müller (J.). Ann. Chim. et Phys., (4) 13, 465.

Report on spark spectra, from the British Association Report on the Present State of our Knowledge of Spectrum Analysis.

Nature, 26, 459. (By A. Schuster.)

Ueber das Sauerstoffspectrum und über die electrischen Lichterscheinungen verdünnter Gaze in Röhren mit Flüssigkeitselectroden.

Paalzow. Monatsber. d. Berliner Akad. (1878), 705-9; Phil. Mag.,
(5) 7, 297-300; Ann. Phys. u. Chem., n. F. 7, 130-5; Jour. Chem.
Soc., 36, 861.

Photographing spark spectra.

Parry (J.). Chem. News, 36, 140.

Experimentelle Untersuchung über das electrische Lichtspectrum in Beziehung auf die Farben der Doppelsterne.

Petzval (Jos.). Sitzungsber. d. Wiener Akad., 41, 561, 581-9.

Spectra der electrischen Lichtströmungen.

Plücker. Ann. Phys. n. Chem., **104**, 122; **105**, 67; **107**, 497, 505, 506, 518-642; **116**, 27.

Spectrum of lightning.

Proctor (H. R.). Nature, 6, 161, 220.

Spectra negativer Electroden und lange gebrauchter Geissler'schen Röhren.

Reitlinger (Edm.) und Kuhn (M.). Sitzungsber. d. Wiener Akad., **51** II, 405, 408-16; Ann. Phys. u. Chem., **141**, 135-6.

Electric spectra.

Robinson (Dr.). Phil. Trans. (1863).

Recherches sur les raies du spectre solaire et des différentes spectres électriques.

Robiquet. Comptes Rendus, 49, 606.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft.

Schimkow (A.). Ann. Phys. u. Chem., 129, 513.

On the spectra of lightning.

Schuster (A.). Phil. Mag., (5) 7, 316-21; Beiblätter, 3, 872 (Abs.).

Sur les spectres de l'étincelle électrique dans les gaz composés et en par ticulier dans le fluorure de silicium.

Seguin (J. M.). Comptes Rendus, 54, 933.

Spectrum des Inductionsfunken.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 263.

Beiträge zur Electricitätsleitung der Gase.

Stenger (F.). Ann. Phys. u. Chem., (2) 25, 31-48; Jour. Chem. Soc., 48, 1028 (Abs.). (See Phil. Trans., 171, 65.)

On the long spectrum of the electric light.

Stokes (G. G.). Proc. Royal Soc., 12, 166; Phil. Trans. (1862), 509;Ann. Phys. u. Chem., 123, 30, 37, 472.

Effluviography.

Tomassi (D.). Bull. Soc. chim. Paris, 45, 873; Jour. Chem. Soc., 50, 959 (Abs.).

Ueber die Spectra der Blitze.

Vogel (H.). Ann. Phys. u. Chem., 143, 653-4.

Chemische Intensität des magnesium und electrischen Lichtes.

Vogel (H. W.). Photographische Mittheilungen, 16, 187-8; Beiblatter, 4, 49 (Abs.).

Spectrum of the electric (Jablochkoff) light.

Walker (E). Nature, 18, 384; Beiblätter, 3, 505 (Abs.).

Spectra des electrischen Funkenstroms in verdünnten Gasen.

Waltenhofen (A. von). Dingler's Jour., 177, 38.

Spectrum of the electric light.

Walters (J. Hopkins). Nature, 25, 103.

The prismatic decomposition of the electric, voltaïc, and electro-magnetic sparks.

Wheatstone (C. . Chem. News, 3, 198.

Das Leuchten der Gase durch electrische Entladungen:

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 6, 298.

Das thermische und optische Verhalten von Gasen unter dem Einflusstelectrischer Entladungen.

- 16

Wiedemann E. . Ann. Phys. u. Chem., n. F. 10, 202.

Das electrische Leuchten der Gase.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Note au sujet d'un mémoire de M. Lagarde.

Wiedemann (E.). Ann. Chim. et Phys., (6) 7, 143; Amer. Jour. Sei., (3) 31, 218 (Abs.).

Das electrische Spectrum.

Willigen (S. M. von der). Ann. Phys. u. Chem., **106**, 615, 619, 621, 622, 624, 628; **107**, 473.

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression eroissante.

Wüllner (A.). Comptes Rendus, **85**, 280-1; Ann. Chim. et Phys., (5) **12**, 143-4; Beiblätter, **1**, 620.

Das Linienspeetrum gehört dem Funken, das Bandenspeetrum gehört der Lichthülle an.

Wüllner (A.). Ann. Phys. u. Chem., 147, 324-48.

EMISSION SPECTRA.

Sur la variation des spectres d'absorption et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102, 106-10.

Notes on photographs of the ultra-violet emission spectra of certain elements.

> Hartley (W. N.). Chem. News, 43, 289; Ber. chem. Ges., 15, 1432a, 2924b.

Das Verhältniss zwischen Emission und Abzorption ist bei allen Körpern dasselbe.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 299.

Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Wärme.

> Kirchhoff (G.). Monatsber. d. Berliner Akad., Oct. 27, 1859; Phil. Mag., (4) 19, 163.

> > .

ENERGY IN THE SPECTRUM.

Étude expérimentale de la réflexion des rayons actiniques.

De Chardonnet. Jour. de Phys., 11, 549.

Distribution of chemical force in the spectrum.

Draper (J. W.). Amer. Jour. Sci., 105, 25, 91-8; Phil. Mag., (4) 44, 422-43; Jour. Chem. Soc., (2) 11, 232-5.

Actinometry.

Duclaux (E.). Comptes Rendus, 103, 1010-12; Jour. Chem. Soc., 52, 189 (Abs.).

Einführung des Princips der Erhaltung der Energie in die Theorie der Diffraction.

Fröhlich (J.). Ann. Phys. u. Chem., n. F. 3, 376.

The Bolometer and radiant energy.

Langley (S. P.). Proc. Amer. Acad., 16, 342-58; Zeitschr. Instrumentenkunde, 4, 27-32 (Abs.).

Distribution de l'énergie dans le spectre normal.

Langley (S. P.). Comptes Rendus, 93, 140; Ann. Chim. et Phys., (5) 25, 211.

Distribution of energy in the spectrum.

Rayleigh (Lord). Nature, 27, 559.

La distribution de l'énergie dans le spectre solaire et la chlorophylle.

Timiriaseff. Comptes Rendus, 96, 375.

ERBIUM.

Erbinerdelösungen coïncidirend mit den hellen Streifen leuchtender Erbinerde.

Bahr und Bunsen. Jour. prackt. Chemie, 97, 277; Ann. f. Chem. u. Pharm., 137, 1.

Aenderung des Absorptionsspectrums von Erbium bei Anwendung polarisirten Lichtes.

Bunsen (R.). Ann. Phys. u. Chem., 128, 100.

Erbium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 29.

Sur deux nouveaux éléments dans l'erbine.

Clève (P. T.). Comptes Rendus, **89**, 478-80; Amer. Jour. Sci., (3) **18**, 400-1; Beiblätter, **4**, 43 (Abs.).

Spectre de l'erbine.

Clève (P. T.). Comptes Rendus, 89, 708; 91, 381.

Sur les combinaisons de l'yttrium et de l'erbium.

Clève (P. T.) et Hoegland (O.). Bull. Soc. chim. Paris, 18, 193-201; 289-97; Jour. Chem. Soc., (2) 11, 136.

Note on the spectra of erbia.

Crookes (W.). Chem. News. 53 (1886), 75, 154, 179; Proc. Royal Soc., 40, 77-9, Jour. Chem. Soc., 50, 749 (Abs.); Comptes Rendus, 102, 506.

Absorptionsspectrum von Erbiumlösungen.

Delafontaine. Jour. prackt. Chemie, 94, 303.

Vergleich der Absorptionsspectra von Didym, Erbium und Terbium.

Delafontaine. Ann. Phys. u. Chem., 124, 635; Chem. News, 11, 253; Ann. Chim. et Phys., 135, 194.

4

Note on the spectra of erbia and of some other earths.

Huggins (W.). Chem. News, 22, 175.

Spectren der Erbinerde.

Jahresber. d. Chemie (1873), 150.

Phosphate de l'erbine, émission; erbine, émission; chlorure de l'erbium en solution, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 92, 97, planche XIV; p. 100, planche XV.

Spectre d'émission de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 76, 1080.

Spectre du nitrate de l'erbium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 83, 1167.

Examen spectral de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1342-44; Jour. Chem. Soc., 36, 861 (Abs.); Amer. Jour. Sci., (3) 18, 216-7; Beiblätter, 3, 871 (Abs.).

Spectre de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 516; Beiblätter, 4, 43 (Abs.); Chem. News, 40, 147.

Remarques à M. P. T. Clève "Sur deux nouveaux éléments dans l'erbine." Smith (L.). Comptes Rendus, 89, 480-1; Beiblätter, 4, 43 (Abs.).

Om spectra tillhörande yttrium, erbium, didym och lanthan.

Thalén (R.). K. Svensk. Vetenskaps. Akad. Forhandlinger, 12, No. 4, 24; Bull. Soc. chim. Paris, (2) 22, 350 (Abs.).

Spectrum of erbium.

Thalén (R.). Chem. News, 42, 184; Comptes Rendus, 91, 326; Jour. de Phys., (2) 4, 33.

Spektralundersökningar rörande skandium, ytterbium, erbium och thulium.

Thalén (R.). Ofversigt af Kougl. Vetensk. Acad. Förhandlingar, 38,
No. 6, 13-21; Jour. de Phys., (2) 2, 35-40; Chem. News, 47, 217
(Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

EXCHANGES.

On the Theory of Exchanges.

Stewart (Balfour). Trans. Royal Soc. Edinburgh (1858), Vol. 22 part I, 1; Rept. British Assoc. (1861), 97.

EXPLOSIONS.

Spectroscopic studies on gaseous explosions.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 36, 471-8; Chem. News, 49, 227-9; Nature, 29, 614-15; Beiblätter, 8, 644-5 (Abs.).

Spectral lines of the metals developed by exploding gases

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73; Jour. Chem. Soc., 48 (1885), 317 (Abs.).

Spectroscopic studies of explosions.

Liveing (G. D.) and Dewar (J.). Rept. British Assoc. (1884), 672;
Jour. de Phys., (2) 4, 51 (Abs.).

.

Spectrum des Lichtes explodirender Schiessbaumwolle.

Vogel (H. W.). Ann. Phys. u. Chem., n. F. 3, 615.

FLAME AND GAS SPECTRA.

The dichroism of the vapour of iodine.

Andrews (T.). Chem. News, 24, 75; Jour. Chem. Soc., (2) 9, 973 (Abs.).

Spectres des gaz simples.

Angström (A. J.). Comptes Rendus, **73**, 369; Bull. Soc. chim. Paris n. s. **16**, 228.

Recherches expérimentales sur la polarization rotatoire magnétique dans les gaz.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, **97**, 71-4; Chem. News, **48**, 46 (Abs.); Nature, **28**, 287 (Abs.); Beiblätter, **7**, 701-2 (Abs.); Amer. Jour. Sci., (3) **26**, 321 (Abs.); Ber. chem. Ges., **16**, 2487 (Abs.); Jour. Chem. Soc., **46**, 1 (Abs.); Zeitschr. analyt. Chem., **23**, 49 (Abs.).

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, 99, 374; Amer. Jour. Sci., (3) 28, 459; Phil. Mag., Oct., 1884.

Spectres de quelques corps composés dans les systèmes gazeux en équilibre.

Berthelot et Richard. Comptes Rendus, 68, 1546.

Experimentaluntersuchung zur Bestimmung der Brechungsexponenten verflüssigter Gase.

Bleekrode (L.). Ann. Phys. u. Chem., n. F. 8, 400

Experiments on Flame.

Burch (G. J.). Nature, 31, 272-5; Jour. Chem. Soc., 48, 466 (Abs.).

Einfluss des Drucks auf das Spectrum des electrischen Funkens in Gazen.
Cailletet. Ber. ehem. Ges., 5, 482.

Spectrum of coal gas.

Capron (J. R.). Photographed Spectra, London, 1877, p. 24, 61, 62, 71, 72.

Relative intensity of the spectral lines of gases.

Capron (J. R.). Phil. Mag., (5) 9, 329-30; Jour. Chem. Soc., 38, 685 (Abs.); Beiblätter, 4, 613-14 (Abs.).

Spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Cazin (A.). Comptes Rendus, 84, 1151-4; Phil. Mag., (5) 4, 153-6.

Action des ainmants sur les gaz raréfiés renfermés dans les tubes capillaires et illuminés par un courant induit.

Chautard (J.). Comptes Rendus, **59**, 383; **79**, 1123; **80**, 1161; **81**, 75; Phil. Mag., Nov., 1864.

Ueber den Einfluss des Drucks und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician (G.). Sitzungsber. d. Wiener Akad., 77 11, 829-41; Jour. Chem. Soc., 36, 685 (Abs.); Nature, 23, 160; Beiblatter, 3, 193-4.

Viscosity of gases at high exhaustions.

Crookes (W.). Phil. Trans., 173, 387-434; Chem. News, 43, 85-4.
(Abs.); Nature, 23, 421-3, 443-6 (Abs.); Beiblatter, 5, 836-46 (Abs.).

Position of the chemical rays in the spectra of sunlight and gaslight.

Crookes (W.). Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 619; Bull. London Photogr. Soc., 21 Jan., 1856.

Étude des radiations émises par les corps incandescents.

Crova (A.). Ann. Chim. et Phys., (5) 19, 472-550; Beiblatter, 5, 117 (Abs.).

Spectre du pôle négatif de l'azote.

Deslandres (II.). Comptes Rendus, 103, 375-9; Beiblatter, 11, 36.

Spectra zusammengesetzter Gase.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 538.

Essai d'analyse spectrale appliquée à l'examen de gaz simples et de leurs mélanges.

Dubrumfaut. Comptes Rendus, 69, 1245; Ber. chem. Ges., 2, 745.

Flame-spectra.

Fielding (G. F. M.). Chem. News, 54, 212.

Preliminary note of researches on gaseous spectra in relation to the physical constitution of the Sun, fixed stars and nebulæ.

Franckland (E.) and Lockyer (J. N.). Proc. Royal Soc., 17, 2000 18, 79.

Sur les spectres d'absorption des vapeurs de sélénium, de protochlorure et de bromure de sélénium, de tellure, de protochlorure et de protobromure de tellure, protobromure d'iode et d'alizarine.

Gernez (D.). Comptes Rendus, 74, 1190-2; Jour. Chem. Soc., (2–10, 665 (Abs.); Phil. Mag., (4) 43, 473-5; Amer. Jour. Sci., 4, 59-40.

.

Blue flame from common salt.

Gladstone (J. H.). Proc. Royal Soc., 19, 582.

Note on the atmospheric lines of the solar spectrum, and on certain spectra of gases.

Gladstone (J. H.). Proc. Royal Soc., 11, 305.

Beobachtungen an Gasspektris.

Goldstein (E.). Monatsber. d. Berliner Akad. (1874), 593-610; Ann.
Phys. u. Chem., 154, 128-149; Jour. Chem. Soc., (2) 13, 527 (Abs.);
Phil. Mag., (4) 49, 333-45; Bemerkungen dazu, von A. Wüllner,
Monatsber. d. Berliner Akad. (1874), 755-61; Phil. Mag., (4) 49, 448-53.

Recherches photométriques sur les flammes colorées.

Gouy. Comptes Rendus, 83, 269-72; Phil. Mag., (5) 2, 317-19.

Recherches sur les spectres des métaux à la base des flammes.

Gouy. Comptes Rendus, 84, 231.

Recherches photométriques sur les flammes colorées; sodium, lithium, strontium, calcium, etc.

Gouy. Comptes Rendus, 85, 70.

Sur le caractères des flammes chargées de calcium, de poussières salines, de chlorure de cuivre, de l'azotate et du chlorure de calcium, du chlorure de strontium, du chlorure de baryum, de l'oxyde de cuivre, de l'acetate de cuivre.

Gouy. Comptes Rendus, 85, 439.

Sur la transparence des flammes colorées, spectres continus du potassium, du sodium, des sels de l'alumine et de magnésie, du strontium, du calcium et du baryum.

Gouy. Comptes Rendus, 86, 878.

Transparence des flammes colorées pour leurs propres radiations; la double raie du sodium, la double raie du potassium; lithium, strontium, rubidium, calcium.

Gouy. Comptes Rendus, 86, 1078.

Du pouvoir émissif des flammes colorées.

Gouy. Comptes Rendus, 88, 418.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv darzustellen.

Günther (E.). Ann. Phys. u. Chem., n. F. 2, 477.

De la recherche des composés gazeux et de l'étude de quelques-unes de leur propriétés à l'aide du spectroscope.

> Hautefenille (P) et Chappuis (J.). Comptes Rendus, 92, 80-2; Jour. Chem. Soc., 40, 221-222 (Abs.); Beiblätter, 5, 317 (Abs.).

Bemerkungen zu dem Aufsatze von W. Siemens: Über das Leuchten der Flamme.

Hittorf (W.). Ann. Phys. u. Chem., n. F. 19, 73-7; Jour. Chem. Soc., 44, 697 (Abs.).

Prismatische Zerlegung des Lichtes glühender oder brennender Körper. Juhresber. d. Chemie, 1, 161; 3, 155.

Verschiedene Spectren desselben Gases. Jahresber, d. Chemie (1868), 125.

Jamesber. d. Chemie (1994), 120.

Spectra der Flammen grünfärbender Substanzen.
Juhresber. d. Chemie, 14, 43.

Gas Spectra.

Jahresber, d. Chemie, (1864) 109, (1868) 125, (1869) 176–80, (1870) 176, (1872) 143, (1873) 148, (1875) 122.

Sur le spectre de la vapeur de l'eau.

Janssen (J.). Ann. Chim. et Phys., (4) 24, 215-7; Jour. Chem. Soc., (2) 10, 280 (Abs.).

Flamme bleue du gaz d'éclairage.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 41, planche III.

Spectra kohlenstoffhaltiger Gase.

Lielegg. Jour. prackt. Chemie, 103, 507; Phil. Mag., (4) 37, 208.

Untersuchungen über die Speetra gasförmiger Körper.

Lippich (F.). Sitzungsber. d. Wiener Akad., 82 II, 15-33; Ann. Phys. u. chem., n. F. 12, 380.

Erklärung der Verbreiterung der Spectrallinien in den Gazen.

Lippich (F.). Ann. Phys. u. Chem., 139, 465.

Origin of the spectrum of the hydrocarbon flame.

Liveing (G. D.) and Dewar (J.). Nature, 27, 257.

On the reversal of the lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). No. I in Proc. Royal Soc., 27, 132-6;
No. II in do., 27, 350-4;
No. III in do., 27, 494-6;
No. IV in do., 28, 367-72;
No. VI in do., 28, 471-5;
No. VII in do., 29, 402-6;
Beiblätter, 2, 261-3 (Abs.), 490 (Abs.);
3, 502 (Abs.), 710 (Abs.);
4, 364 (Abs.).

-

Disappearance of some spectral lines and the variation of metallic spectra due to mixed vapours.

Liveing and Dewar. Proc. Royal Soc., 33, 428.

An arrangement of the electric arc for the study, with the spectroscope, of the radiation of vapours, together with preliminary results.

Liveing and Dewar. Proc. Royal Soc., 34, 119.

Spectral lines of metals developed by exploding gases.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73; Jour. Chem. Soc., 48, 317 (Abs.); Jour. de Phys., (2) 4, 51.

Spectroscopic studies on gaseous explosions.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 36, 471-8; Jour. Chem. Soc., 48, 465.

Spectroscopic Notes. Note I, on the absorption of great thicknesses of metallic and metalloidal vapours; Note II, on the evidence of variation in molecular structure; Note III, on the molecular structure of vapours in connection with their densities; Note IV, on a new class of absorption phenomena.

Lockyer (J. N.). Proc. Royal Soc., 22, 371-8.

On a new method of studying metallic vapours.

Lockyer (J. N.). Proc. Royal Soc., 29, 266-72; Beiblätter, 4, 36 (Abs.).

On the spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-9; Phil. Mag., (5) 1, 234-9; Jour. Chem. Soc., 1876, 2, 156 (Abs.).

Sur les spectres des vapeurs, aux températures élévées; hydrogène, nitrogène, potassium, carbone, sodium, zinc, cadmium, antimoine, phosphore, soufre, arsénic, bismuth, iode, mercure, lithium.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 178.

On the indices of refraction of certain compound ethers.

Long (J. H.). Amer. Jour. Sci., (3) 21, 279-86.

Comparaison des spectres des flammes éclairantes et des flammes pâles.

Magnus (G.). Ann. Chim. et Phys., (4) 6, 159.

Réfraction des gaz.

Mascart. Comptes Rendus, 78, 417; Ann. Phys. u. Chem., 153, 153.

Sur la comparaison des gaz et des vapeurs.

Mascart. Comptes Rendus, **86**, 321-3; Jour. Chem. Soc., **34**, 359 (Abs.).

Sur la réfraction des corps organiques considérées à l'état gazeux.

Mascart. Comptes Rendus, **86**, 321-3, 1182-5; Jour. Chem. Soc., **34**, 693 (Abs.); Ann. de l'École normale (2) **6**, 9-78; Beiblatter, **1**, 257-70.

Examination of coloured flames by the prism.

Melvill (T.). Edinburgh Physical and Literary Essays, 2, 12, 1752.

Experiments and observations on some cases of lines in the prismatic spectrum produced by the passage of light through coloured vapours and gases, and from certain coloured flames.

Miller (W. A.). Phil. Mag., (3) 27, 81.

Flame spectra.

Milne (G. A.). Chem. News, 54, 225.

Spectra von Flammen im Allgemeinen.

Mitscherlich (A.). Ann. Phys. u. Chem., 121, 487.

Ueber die Beziehung der chemischen Beschaffenheit zu der lichtbrechenden Kraft der Gaze.

Mohr (F.). Ber. chem. Ges., 4, 149-55; Jour. Chem. Soc., (2) 9, 183 (Abs.).

Sur les moyens propres à la réproduction photographique des spectres ultra-violets des gaz.

Monckhoven (van). Bull, de l'Acad, de Belgique, (2) 43, 187-92; Beiblätter, 1, 286 (Abs.).

De la flamme de quelques gaz carburés.

Morren (M. A.). Ann. Chim. et Phys., (4) 4, 305; Chem. News, 9, 135,

Das Sauerstoffspectrum und die electrischen Erscheinungen verdünnter Gase in Röhren mit Flüssigkeitselectroden.

Phalzow (A.). Ann. Phys. u. Chem., n. F. 7, 130.

The spectroscopic examination of the vapours evolved on heating iron, etc., at atmospheric pressure.

Parry J.). Chem. News, 49, 241-2; 50, 303-4; Ber. chem. Ges., 17.
Referate, 337 (Abs.); Jour. Chem. Soc., 46, 801 (Abs.); Beiblätter, 8, 646 (Abs.).

- 10

Comparaison des indices de réfraction dans quelques éthers composés isomères,

Pierre (Is.) et Puchat (E.). Comptes Rendus, 76, 1566-8.

Spectrum von Fluorborgas.

Plucker (J.). Ann. Phys. u. Chem., 104, 125.

Spectra der verschiedenen Gase wenn durch dieselben bei starker Verdünnung die electrische Entladung hindurchgeht.

Plücker (J.). Ann. Phys. u. Chem., 105, 67.

- Constitution der electrischen Spectra der verschiedenen Gase und Dämpfe. Plücker (J.). Ann. Phys. u. Chem., 107, 497.
- Zusammengesetzte Gase haben wie die einfachen ihr eigenthümliches Spectrum.

Plücker (J.). Ann. Phys. u. Chem., 113, 276.

Recurrente Ströme und ihre Anwendung zur Darstellung von Gasspectren.

Plücker (J.). Ann. Phys. u. Chem., 116, 27.

On the spectra of ignited gases and vapours, with especial regard to the different spectra of the same elementary gaseous substance.

Plücker (J.) and Hittorf (S. W.). Proc. Royal Soc., **13**, 153; Phil. Trans., 1865, p. 1.

De la flamme du soufre et des diverses lumières utilisables en photographie.

Riche (A.) et Burdy (C.). Comptes Rendus, **80**, 238-41; Ber. chem. Ges., **8**, 182-3.

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-6; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Coloration of the hydrogen flame.

Santini (S.). Gazzetta, XIV, 274-6; Jour. Chem. Soc., 48, 465 (Abs.).

Veränderlichkeit der Spectra glühender Gase.

Schenck (O.). Zeitschr. analyt. Chem., **12**, 386-90; Jour. Chem. Soc., (2) **12**, 1122-3 (Abs.).

Notiz über das Flammenspectrum der Schiessbaumwolle.

Schöttner (F.). Carl's Repert., 14, 55-6; Beiblätter, 3, 279.

Harmonic ratios in the spectra of gases.

Schuster (A.). Nature, 20, 533; 31, 337-47; Beiblätter, 4, 37; 5, 435-8 (Abs.).

Spectrum des Bunsen'schen Gasflamme, oder Spectrum des inneren Flammenkegels.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 247.

Spectra der verschiedenen grünen Flammen.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Blue flame from common salt.

Smith (A. P.). Nature, 19, 483; 20, 5; Chem. News, 39, 141; Jour. Chem. Soc., 36, 497 (Abs.).

Gaseous spectra in vacuum tubes.

Smyth (C. Piazzi). Proc. Royal Soc. Edinburgh, 10, 711-12 (Abs.);
Trans. Royal Soc. Edinburgh, 32, Part III, 415-60, with plates.

Observations sur la note de M. M. Stoney et Reynolds sur les spectres des gaz.

Soret (G. L.). Arch. de Geneve, 42, 82-4; Phil. Mag., 42, 464-5; Ann. Chim. et Phys., (4) 26, 269.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

On the effect of pressure on the character of the spectra of gases.

Stearn (C. H.) and Lee (G. H.). Proc. Royal Soc., 21, 282-3; Jour.
Chem. Soc., (2) 11, 996 (Abs.); Ber. chem. Ges., 6, 973 (Abs.); Phil. Mag., (4) 46, 406-7.

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.).. Jour. prackt. Chemie, 10, 368-54; Jour. Chem. Soc., (2) 13, 412-14 (Abs.).

On the cause of the interrupted spectra of gases.

Stoney (G. J.). Phil. Mag., (4) **41**, 291-6; **42**, 41-52; Ann. Chim. et Phys., (4) **26**, 265-6 (Abs.), 266-8 (Abs.). (Look under Soret, above.)

On the blue lines of the spectrum of the non-luminous gas-flame. Swan (W.). Edinburgh Philosoph. Trans., 3, 376; 21, 353.

Prismatic spectra of the flames of earbon and hydrogen.

Swan (W.). Edinburgh Philosoph. Trans., 21 (1857), 411-29; Ann. Phys. u. Chem., 100, 306.

Some experiments on coloured flames.

Talbot (H. Fox). Brewster's Jour. Sci., 5, 1826.

Ueber die photographische Aufnahme von Spectren der in Geisslerrohren eingeschlossenen Gase.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1879), 115-19; Beiblätter, 4, 125-30 (Abs.).

-

Spectroscopische Notizen. Die Wasserstoffflamme in der Spectralanalyse. Vögel (H. W.). Ber. chem. Ges., 12, 2313-16; Beiblatter, 4, 278 (Abs.); 5, 118 (Abs.).

Gasspectra in Geissler'schen Röhren; bei zunehmender Verdünnung der Gase verschwinden die minder brechbaren Streifen zuerst.

Waltenhofen (A. von). Ann. Phys. u. Chem., 126, 527-37.

On the spectrum of the Bessemer flame.

Watts (W. M.). Phil. Mag., (4) 45, 81-90; Jour. Chem. Soc., (2) 11, 460 (Abs.).

Untersuchungen über die Natur der Spectra: 1, Theorie; 2, Spectra gemischter Gase.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 5, 500-24; Phil. Mag., (5) 7, 77-95; Amer. Jour. Sci., (3) 17, 250-1.

Das Leuchten der Gase durch electrische Entladungen; Nachtrag zu der Arbeit über die Natur der Spectra.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 6, 298.

Das thermische und optische Verhalten von Gasen unter dem Einfluss electrischer Entladungen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 10, 202.

Ueber die Dissociationswärme des Wasserstoffmoleculs und das electrische Leuchten der Gasen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 294-302; Jour. Chem. Soc., 1876, 1, 27 (Abs.).

Spectra der Gase unter hohem Druck.

Wüllner (A.). Ann. Phys. u. Chem., **137**, 337-56; Phil. Mag., (4) **37**, 405; **39**, 365.

Ueber die Spectra einiger Gase in Geissler'schen Röhren.

Wüllner (A.). Ann. Phys. u. Chem., **144**, 481-525; **147**, 321-53; **149**, 103-12; Ann. Chim. et Phys., (4) **26**, 258-63 (Abs.); Bull. Soc. chim. Paris, n. s. **12**, 445.

Ueber die Spectra der Gase.

Wüllner (A.). Verhandl. d. naturwiss. Ges. zu Aachen, Dec., 1874;
Ann. Phys. u. Chem., 154, 149-56;
Jour. Chem. Soc., (2) 13, 527 (Abs.).

Reinheit der Spectren von Gasen.

Wüllner (A.). Ber. chem. Ges., 3, 100.

Spectres des Gaz simples.

Wüllner (A.). Comptes Rendus, 70, 125, 890.

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Wüllner (A.). Comptes Rendus, 85, 280-1; Ann. Chim. et Phys., (5)12, 143-4; Beiblätter, 1, 620 (Abs.).

Des transformations que subissent les spectres des gaz incandescents avec la pression et la température.

Wullner (A.). Arch. de Genève, (2) 40, 305-10.

Bemerkungen zu Herrn Goldstein's Beobachtungen an Gasspeetris.

Wüllner (A.). Monatsber. d. Berliner Akad., 1874, 755-61; Phil. Mag., (4) 49, 448-53.

Ueber den Einfluss der Diehtigkeit und Temperatur auf die Spectraglühender Gase.

> Zöllner (F.). Ber, chem. d. k. Sächs, Ges. d. Wiss., 22, 283-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

> > .

FLUORESCENCE.

Observations relatives à une note de M. Lamansky ayant pour titre "Sur la loi de Stokes."

Becquerel (E.). Comptes Rendus, 88, 1237-9; Beiblätter, 3, 619; Jour. Chem. Soc., 36, 862 (Abs.). (Look below, under Lamansky.)

Sur la phosphorescence du sulfure de calcium.

Becquerel (E.). Comptes Rendus, 103, 551-3; Chem. News, 55, 123.

Action du manganèse sur le pouvoir de phosphorescence du carbonate de chaux.

Becquerel (E.). Comptes Rendus, 103, 1098-1101.

Zur Geschichte der Fluorescenz.

Berthold (G.). Ann. Phys. u. Chem., 158, 623.

Ueber die Fluorescenz der lebenden Netzhaut.

Bezold (M. von) und Engelhardt (G.). Sitzungsber. d. Münchener Akad., 7, 226-33; Phil. Mag., (5) 4, 397-400.

On the crimson line of phosphorescent alumina.

Crookes (W.). Proc. Royal Soc., 42, 25-30; Chem. News, 55, 25;Nature, 35, 310; Amer. Jour. Sci., (3) 33, 304 (Abs.).

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Les vibrations de la matière et les ondes de l'éther dans la phosphorescence et la fluorescence.

Favé. Comptes Rendus, 86, 289-94.

Action des fluorures sur l'alumine.

Frémy et Varneuil. Comptes Rendus, 103 (1887), 738-40.

De la fluorescence.

Gripon (E.). Jour. de Phys., 2, 199, 246.

Versuche über Fluorescenz.

Hagenbach (E.). Ann. Phys. u. Chem., 146, 65-89, 232-57, 375-405,
508-38; Jour. Chem. Soc., (2) 10, 1058-61 (Abs.); Phil. Mag., (4)
45, 57-64 (Abs.); Chem. News, 26, 173 (Abs.).

Fernere Versuche über Fluorescenz.

Hagenbach (E.). Ann. Phys. u. Chem., Jubelband, 303-13.

Das Aufleuchten, die Phosphoreseenz und Fluoreseenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber.

chem. Ges., 10, 2232 (Abs.).

Fluorescenz nach Stokes's Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 18, 45-56; Jour. Chem. Soc., 44, 537-8 (Abs.).

Das Stokes'sche Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 8, 369-400.

Note on the behavior of certain fluorescent bodies in castor oil. Horner (C.). Phil. Mag., (4) 48, 165-6.

Herstellung des Spectrums fluorescirender Substanzen. Jahresber. d. Chemie (1867), 105.

Bemerkungen zu den Arbeiten der Herrn Lommel, Glazebrook und Matthieu.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 15, 613.

Ueber Fluorescenz.

Lamansky (S.). Ann. Phys. u. Chem., n. F. 11, 908-12; Jour. Chem. Soc., 40, 214 (Abs.).

Ueber das Stokes'sche Gesetz.

Lamansky (S.). Ann. Phys. u. Chem., n. F. 8, 624-8; Comptes Rendus, 88, 1192-4, 1351; Jour. Chem. Soc., 36, 862 (Abs.); Beiblätter, 3, 619.

(Look above, under Becquerel, and below, under Lubarsch.)

Sur la fluorescence des terres rares.

Lecoq de Boisbaudran. Comptes Rendus, 101 (1885), 552, 588; Jour. Chem. Soc., 48, 1174 (Abs.).

Les fluorescences Z a et Z 3 appartiennent-elles à des terres différentes? Lecoq de Boisbaudran. Comptes Rendus, 102, 899-902; Jour. Ch m. Soc., 50, 666 (Abs.).

Identité d'origine de la fluorescence Z 3 par renversement et des bandes obtenus dans le vide par M. Crookes.

Lecoq de Boisbaudran. Comptes Rendus, 103, 113-17; Jour. Chem. Soc., 50, 958.

Fluorescence des composés du manganèse soumis à l'effluve électrique dans le vide.

Lecoq de Boisbaudran. Comptes Rendus. 103, 468-71, 629-31, 1064-7, 1107; Jour. Chem. Soc., 52, 189, 191; Amer. Jonr. Sci., (3) 33, 149-51.

-

Fluorescence rouge de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 104, 330-4; Jour. Chem. Soc., 52, 409 (Abs.).

Ueber die Fluorescenz in der Anthracenreihe.

Liebermann (C.). Ber. chem. Ges., 13, 913-16.

Ueber Fluorescenz.

Lommel (E.). Sitzungsber. d. phys. med. Ges. Erlangen, 1871, 39-60;
Ann. Phys. u. Chem., 143, 26-51;
Ann. Chim. et Phys., (4) 26, 283 (Abs.).

Ueber Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., **159**, 514-36; Jour. Chem. Soc., 1877, **1**, 676; Amer. Jour. Sci., (3) **13**, 380 (Abs.).

Intensität des Fluorescenzlichtes.

Lommel (E.). Ann. Phys. u. Chem., 160, 75-96.

Fluorescenz.

Lommel (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.); Ann. Phys. u. Chem., n. F. 3, 113-25; Jour. Chem. Soc., 34, 358 (Abs.).

Theorie der Absorption und Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 251-83.

Zwei neue fluoreseirende Substanzen, Anthracenblau und bisulfobiehloranthracenige Säure.

Lommel (E.). Ann. Phys. u. Chem., n. F. 6, 115-118.

Ueber das Stokes'sche Gesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 244.

Die dichroïtische Fluorescenz des Magnesiumplatincyanürs.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 634; 9, 108.

Ueber Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 10, 449-72, 631-54.

Die Fluorescenz des Ioddampfes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 19, 356.

Die Fluorescenz des Kalkspathes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 21, 422; Jour. Chem. Soc., 46, 649 (Abs.).

Beobachtungen über Fluorescenz, Didymglas und Aescorcin.

Lommel (E.). Ann. Phys. u. Chem., (2) 24, 288-92.

Zur Theorie der Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 25, 643-55; Jour. de Phys., (2) 5, 516 (Abs.).

Ueber Fluorescenz.

Lubarsch (O.). Ann. Phys. u. Chem., 153, 420-40; n. F. 6, 248-67; Jour. Chem. Soc., (2) 13, 528 (Abs.).

Das Stokes'sche Gesetz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 9, 665-71.

Neue Experimentaluntersuchungen über Fluorescenz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 11, 46-69; Jour. Chem. Soc., 40, 70 (Abs.).

Bemerkungen zu den Arbeiten des Hernn Lamansky über Fluorescenz. Lubarsch (O.). Ann. Phys. u. Chem., n. F. 14, 575-80.

Observations on the colour of fluorescent solutions.

Morton (H.). Chem. News, 24, 77; Jour. Chem. Soc., (2) 9, 992-3(Abs.); (2) 10, 27; Amer. Jour. Sci., (3) 2, 198, 355.

Fluorescent relations of certain solid hydrocarbons found in coal-tar and petroleum distillates.

Morton (II.). Phil. Mag., (4) 44, 345-9; Ann. Phys. u. Chem., 148, 292-7; Chem. News, 26, 199-201, 272-4; Jour. Chem. Soc., (2) 11, 235 (Abs.).

Fluorescenzverhältnisse gewisser Kohlenwasserstoffverbindungen in den Steinkohlen-und Petroleum-Destillaten.

Morton (II.). Ann. Phys. u. Chem., 155, 551-79.

Fluorescence and the violet end of a projected spectrum.

Morton (II.). Chem. News, 27, 33.

Investigation of the fluorescent and absorption spectra of the uranium salts.

Morton (H.) and Bolton (H. C.). Chem. News. 28, 47-50, 113-16, 164-7, 233-4, 244-6, 257-9, 268-70; Jour. Chem. Soc., (2) 12, 12 (Abs.).

Fluorescent relations of the basic salts of uranic oxide.

Morton (H.). Chem. News, 29, 17-18; Jour. Chem. Soc., (2) 12, 642 (Abs.).

-

Fluorescent relations of chrysene and pyrene.

Morton (H.). Chem. News, 31, 35-6, 45-7.

On the connection between fluorescence and absorption.

Sorby (H. C.). Monthly Microscop. Jour., 13, 161-4.

Sur la fluorescence des sels des métaux terreux.

Soret (J. L.). Comptes Rendus, 88, 1077-8; Jour. Chem. Soc., 36, 862 (Abs.); Beiblätter, 3, 620 (Abs.).

Zur Kenntniss der Fluorescenzerscheinungen.

Stenger (Fr.). Ann. Phys. u. Chem., (2) 28, 201-30; Berichtigung dazu, do., 368.

On the change of refrangibility of light.

Stokes (G. G.). Phil. Trans. (1852), 463-562. (His discovery of what has since been known as fluorescence.)

Sur la fluorescence de la matière colorante des champignons.

Weiss (A.). Acad. de Vienne, Wiener Anzeiger (1885), 111; Jour. de Phys., (2) 5, 240; Chem. Centralblatt (1886), 670-1; Jour. Chem. Soc., 52, 314.

Fluorescence des Naphthalinrothes.

Wesendonck (K.). Ann. Phys., (2) **26**, 521-7; Jour. Chem. Soc., **50**, 585; Jour. de Phys., (2) **5**, 517.

Berichtigung zu einer Notiz des Herrn Lommel betreffend die Theorie der Fluorescenz.

Wüllner (A.). Ann. Phys. u. Chem., Ergänzungsband, 1878, 8, 474-8.

FLUORINE.

Silicie fluoride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 75, 76.

Spectre du fluorure de silieium dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Das Aufleuchten, die Phosphorescenz und die Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber chem. Ges., 10, 2232 (Abs.).

Spectrum des Fluors.

Jahresber, d. Chemie, 15 (1862), 33.

Spectrum des Phosphorescenzlichtes von Flussspath.

Kindt. Ann. Phys. u. Chem., 131, 160.

Note on the spectra of calcium fluoride.

Liveing (G. D.). Proc. Cambridge Philosoph. Soc., 3, 96-8; Beiblätter, 4, 611 (Abs.).

Spectrum von Fluorborgas.

Phicker. Ann. Phys. u. Chem., 104, 125.

Indices de réfraction du spath fluor.

Sarasin (E.). Arch. de Genève, (3) 10, 303-4.

Spectre du fluorure de silicium.

Séguin (J. M.). Comptes Rendus, 54, 993.

Ueber die Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Soc., 46, 649 (Abs.).

-

GADOLINITE.

New elements in gadolinite and samarskite.

Crookes (W.). Proc. Royal Soc., 40, 502-9; Jour. Chem. Soc., 52, 334.

Remarques sur la gadolinite.

Delafontaine. Comptes Rendus, 90, 221.

Gadolinium, le Ya de Marignac.

Lecoq de Boisbaudran (F.). Comptes Rendus, **102**, 902; Jour. Chem. Soc., **50**, 667 (Abs.).

Sur les terres de la gadolinite.

Marignac (C.). Ann. Chim. et Phys., (5) **14**, 247-258; Jour. Chem. Soc., **36**, 113 (Abs.).

Sur l'ytterbine, nouvelle terre contenue dans la gadolinite.

Marignac (C.). Comptes Rendus, 87, 578-81; Amer. Jour. Sci., (3)17, 62-3 (Abs.); Jour. Chem. Soc., 36, 118-19 (Abs.).

Notice sur les nouveaux métaux obtenus du gadolinite.

Mendelejeff. Jour. Soc. phys. chim. russe, 13, 517-20; Bull. Soc. chim. Paris, 38, 139-43.

*Recherches sur l'absorption des rayons ultra-violets par diverses substances. II, Sur les spectres d'absorption des terres de la gadolinite.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-4; Beiblätter, 3, 196 (Abs.); 2, 410-11; Jour. Chem. Soc., 2, 410 (Abs.).

Ueber die Erden des Gadolinits von Ytterby.

Welsbach (C. Auer von). Sitzungsber. d. Wiener Akad., **88** II, 332–44, 1237–51; Zeitschr. analyt. Chem., **23**, 520 (Abs.); Chem. News **51**, 25 (Abs.).

GALLIUM.

Caractères chimiques et spectroscopiques d'un nouveau métal, le gallium, découvert dans une blende de la mine de Pierrefitte, vallée d'Argelès (Pyrénnées).

Lecoq de Boisbaudran (F.). Comptes Rendus, 81, 492-5; 82, 163, 1036, 1098; Bull. Soc. chim. Paris, n. s. 24, 370; Jour. Chem. Soc., 1876, 1, 190 (Abs.); Amer. Jour. Sci., (3) 11, 320 (Abs.); Ann. Chim. et Phys., (5) 10, 117; Ann. Phys. u. Chem., 159, 650; Chem. News, 32, 159, 294.

Remarques à propos de la découverte du gallium.

Mendelejef (D.). Comptes Rendus, 81, 969.

GERMANIUM.

Ueber das Spectrum des Germaniums.

Kobb (G.). Ann. Phys. u. Chem., (2) 29 (1886), 670-2; Jour. Chem. Soc., 52, 313 (Abs.); Amer. Jour. Sci., (3) 33, 151 (Abs.).

Spectre du germanium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1291-5; Jour. Chem. Soc., 50, 768 (Abs.).

GLASS.

Prüfung des gelben Glases für Dunkelzimmer der Photographen.

Foster (Le Neve). Dingler's Journal, **207**, 427; Jour. Chem. Soc., (2) **11**, 948 (Abs.).

Phasenveränderung des Lichtes bei Reflexion an Glas.

Glan (P.). Ann. Phys. u. Chem., 155, 14.

On the influence of temperature on the optical constants of glass.

Hastings (C. S.). Amer. Jour. Sci., (3) 15, 269-75; Beiblätter, 2, 338 (Abs.).

Refractive indices of glass.

Hopkinson (J.). Proc. Royal Soc., 26, 290-7; Beiblätter, 1, 680 (Abs.).

Vertheilung der Wärme im Flintglasspectrum.

Lamansky (S.). Ann. Phys. u. Chem., 146, 207, 209.

The yellow glass of commerce lets through portions of nearly the whole spectrum.

Lea (M. Carey). Amer. Jour. Sci., (3) 33, 363.

On the refractive and dispersive powers of various samples of glass.

Lohse (J. G.). Monthly Notices Astronom. Soc., 40, 563-4; Beiblätter, 4, 891 (Abs.).

Spectra produced in glass by scratching.

Love (E. J. J.). Nature, 32, 270.

Spectrale Untersuchung eines longitudinaltönenden Glasstabes.

Mach (E.). Ann. Phys. u. Chem., 146, 316-17.

Ueber die Dispersionsverhältnisse optischer Gläser.

Merz (S.). Zeitschr. f. Instrumentenkunde, 2, 176-80; Beiblätter, 6, 673 (Abs.).

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (3) 13, 412 (Abs.).

Methoden zur Bestimmung der Brechungsexponenten von Flüssigkeiten und Glasplatten.

Wiedemann (E.). Ann. Phys. u. Chem., 158, 375-86.

GOLD.

Gold are spectrum.

Capron (J. R.). Photographed Speetra, London, 1877, p. 30.

L'or n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Spectrum des Goldehlorids.

Jahresber. d. Chemie (1873), 152.

Chlorure d'or en solution, étincelle; chlorure d'or dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 172, 176, planche XXVI.

Spectre de chlorure d'or.

Lecoq de Boisbaudran (F.). Bull. Soc. chim. Paris, n. s. 21, 125.

Sur quelques spectres métalliques, chlorure d'or.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152-4; Jour. Chem. Soc., (2) 12, 217 (Abs.); Ber. chem. Ges., 6, 1418 (Abs.).

-

HEAT SPECTRA.

Measurement of the so-called thermospectrum.

Abney (W. de W.). Chem. News, 40, 21.

Sur un moyen d'isoler les radiations calorifiques des radiations lumineuses et chimiques.

Assche (F. von). Comptes Rendus, 97, 838.

Spectres calorifiques.

Aymonnet. Comptes Rendus, 82, 1153.

Pouvoirs absorbants des corps pour la chaleur.

Aymonnet. Comptes Rendus, 83, 971.

Nouvelle méthode pour étudier les spectres calorifiques.

Aymonnet. Comptes Rendus, 83, 1102.

Ein einfacher Versuch zur Versinnlichung des Zusammenhanges zwischen der Temperatur eines glühenden Drahtes und der Zusammensetzung des von ihm ausgehenden Lichtes.

Bezold (W. von). Ann. Phys. u. Chem., n. F. 21, 175-8.

Verschiebung der Spectrallinien unter Wirkung der Temperatur des Prismas.

Blaserna (P.). Ann. Phys. u. Chem., 143, 655.

- Einfluss der Temperatur auf die Empfindlichkeit der Spectralreaction. Cappel (E.). Ann. Phys. u. Chem., 139, 628.
- Einfluss des Druckes und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician. Sitzungsber. d. Wiener Akad., 77 II, 839; 78 II, 867.

Distribution of heat in the visible spectrum.

Conroy (Sir J.). Proc. Royal Soc., 3, 106-12; Phil. Mag., (5) 8, 203-9; Beiblätter, 4, 44 (Abs.).

Étude des radiations émises par les corps incandescents. Mesure optique des hautes températures.

Crova (A.). Ann. Chim. et Phys., (5) **19**, 472-550; Beiblätter, **5**, 117-18 (Abs.).

Mesure spectrométrique des hautes températures.

Crova (A.). Comptes Rendus, 87, 979; 90, 252; Jour. de Phys., 8, 196-8.

Recherches sur les spectres calorifiques obscurs.

Desains (P.). Comptes Rendus, 67, 296-7, 1097; 70, 985; 84, 285;
88, 1047; 89, 189; 94, 1144; 95, 433; Jour. Chem. Soc., 36, 864 (Abs.); Beiblätter, 3, 869 (Abs.).

Détermination des longueurs d'onde des rayons calorifiques à basse température dans le spectre.

Desains (P.) et Curie (P.). Comptes Rendus, 90, 1506.

Measurement of high temperatures.

Dewar (J.). Chem. News, 28, 174.

Distribution of heat in the spectrum.

Draper (J. W.). Amer. Jour. Sci., (3) 4, 161-75: Phil. Mag., (4) 44, 104-17; Jour. Chem. Soc., (2) 10, 968 (Abs.).

Absorption of light at different temperatures.

Feussner. Phil. Mag., (4) 29, 471; Monatsber. d. Berliner Akad., März, 1865.

De l'influence de la température sur les caractères des raies spectrales.

Fiévez (C.). Bull. de l'Acad. de Belgique, (3) 7, 348-55; Beiblätter, 8, 645 (Abs.); Les Mondes, (3) 8, 481-3; Chem. News, 50, 128 (Abs.).

Influence of temperature on the optical constants of glass.

Hastings (C. S.). Amer. Jour. Sci., (3) 15, 269-75; Beiblätter, 2, 338 (Abs.).

Distribution of heat in the spectra of various sources of radiation.

Jacques (W. W.). Dissertations of the Johns Hopkins University, 1879; Proc. Amer. Acad., 14, 142-61; Beiblätter, 3, 865 (Abs.).

Einfluss der Temperatur der Flamme auf das Spectrum.

Jahresber, d. Chemie, **15** (1862), 29; **21** (1868), 80; **23** [1870), 148, 175; **26** (1873), 54.

Durchgang der strahlenden Wärme durch polittes und berüsstes Steinsalz; Diffusion der Wärmestrahlen; Lage des Wärmemaximums im Sonnenspeetrum.

Knoblauch (H.). Ann. Phys. u. Chem., 120, 177.

Einfluss der Temperatur auf spectroscopische Beobachtungen.

Krńss (G.). Ber. chem. Ges., 17, 2732b; Jour. Chem. Soc., 48, 209 (Abs.).

.

Geschichtliches über das Wärmespectrum der Sonne; Vertheilung der Warme im Flintglasspectrum.

Lamansky (S.). Ann. Phys. u. Chem., 146, 200-30.

- Abhängigkeit des Brechungsquotienten der Luft von der Temperatur. Lang (V. von). Ann. Phys. u. Chem., **153**, 450.
- Observations on invisible heat-spectra and the recognition of hitherto unmeasured wave-lengths, made at the Alleghany Observatory, Alleghany, Pa.

Langley (S. P.). Amer. Jour. Sci., (3) 31 (1886), 1-12; 32, 83-106;
Phil. Mag., (5) 21, 394-409; 22, 149-173; Jour. de Phys., (2) 5, 377-80;
Ann. Chim. et Phys., (6) 9, 433-506;
Beiblätter, 11, 245.

Ueber die spectrale Vertheilung der strahlenden Wärme.

Lecher (E.). Wiener Anzeigen (1881), 193-4.

Spectra of vapours at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Nothwendigkeit bei spectroscopische Messungen die Temperatur zu berücksichtigen.

Lommel (E.). Ann. Phys. u. Chem., 143, 656.

Om Värmefördelningen i Normalspektrum (Ueber die Wärmevertheilung im Normalspectrum).

Lundquist (G.). Oefversigt af K. Vetensk. Acad. Hand., 1874, 31, X, 19-27; Ann. Phys. u. Chem., 155, 146-55.

Maximum de température.

Magnus (G.). Ann. Chim. et Phys., (4) 6, 155.

Sur l'identité des diverses radiations lumineuses, calorifiques et chimiques.

Melloni. Comptes Rendus, 15, 454.

Température des différentes parties du spectre solaire.

Melloni. Comptes Rendus, 18, 39.

Recherches sur la réflexion métallique des rayons calorifiques obscurs et polarisés.

Mouton. Comptes Rendus, 84, 650.

Spectre calorifique normal du Soleil et de la lampe à platine incandescent Bourbouze.

Mouton. Comptes Rendus, 89, 295.

Wärmevertheilung im Spectrum eines Glas-und Steinsalzprismas.

Müller (J.). Ann. Phys. u. Chem., 105, 347.

Wärmevertheilung im Diffractionsspeetrum.

Müller (J.). Ann. Phys. u. Chem., 105, 355.

- Untersuchungen über die thermischen Wirkungen des Sonnenspectrums.

 Muller (J.). Ann. Phys. u. Chem., 115, 337.
- Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspeetrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543; Berichtigung dazu, 116, 644.

Effect of increased temperature upon the nature of the light emitted by the vapour of certain metals or metallic compounds.

Roscoe and Clifton. Chem. News, 5, 233.

On spectral lines of low temperature.

Salisbury (The Marquis of). Phil. Mag., (4) 45, 241-5; Jour. Chem. Soc., (2) 11, 711 (Abs.); Amer. Jour. Sci., (3) 6, 141 (Abs.).

Stickstoff gibt je nach der Temperatur drei Spectra.
Schimkow (A.). Ann. Phys. u. Chem., 129, 513.

- Ueber die Abhängigkeit der Brechungsexponenten auomal dispergirender Medien von Concentration der Lösung und der Temperatur.
 Sieben (G.). Ann. Phys. u. Chem., n. F. 23, 312.
- Einfluss der Temperatur auf das optische Drehvermögen des Quartzes und des chlorsauren Natrons.

Sohnke (L.). Ann. Phys. u. Chem., n. F. 3, 516.

Rapport sur un travail de M. Fiévez concernant l'influence de la température sur les caractères des raies spectrales.

Stas. Bull. de l'Acad. de Belgique. (3) 7, 290-4.

Ueber den Einfluss der Wärme auf die Brechung des Lichtes in festen Körpern.

Stefan (J.). Sitzungsber, d. Wiener Akad., 63 11, 223-45.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Speetra glühender Gase.

Zollner (F.). Ber. d. k. Sächs. Ges. d. Wiss, 22, 233-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

.

HELIUM.

Sur la raie dite de l'hélium.

Spée (E.). Bull. de l'Acad. de Belgique, (3) **49**, 379-96; Beiblätter, **4**, 614 (Abs.).

SPECTRA AT HIGH ALTITUDES.

Notes on some recent astronomical experiments at high altitudes on the Andes.

Copeland (R.). Nature, 28, 606; Beiblätter, 8, 220 (Abs.).

Ascension scientifique à grande hauteur, exécutée le 22 mars 1874.

Crocé-Spinelli (J.) et Sivel. Comptes Rendus, **78**, 946-50; Amer Jour. Sei., (3) **8**, 36 (Abs.).

(Look below under Janssen and Pecchi.)

- Note sur des observations spectroscopiques, faites dans l'ascension du 24 Spet. 1874, pour étudier les variations des couleurs du spectre. Fonvielle (W. de). Comptes Rendus, 89, 816-17.
- Die Fraunhofer'schen Linien auf grossen Höhen dieselben wie in der Ebne. Heusser (J. C.). Ann. Phys. u. Chem., **90**, 319.
- Remarques sur le spectre d'eau à l'occasion du voyage aérostatique de M. M. Crocé-Spinelli et Sivel.

Janssen (J.). Comptes Rendus, 78, 995-8.

Sunlight and skylight at high altitudes.

Langley (S. P.). Nature, **26**, 586-9; Amer. Jour. Sci., (3) **24**, 393-8; Beiblätter, **7**, 28 (Abs.); Jour. de Phys., (2) **3**, 47 (Abs.).

Observations relatives à une communication de M. Crocé-Spinelli sur les bandes de la vapeur d'eau dans le spectre solaire.

Secchi (A.). Comptes Rendus, 78, 1080-81.

HOLMIUM.

Spectre de holmium.

Clève (P. T.). Comptes Rendus, 89, 478.

Remarques sur le holmium ou philippine.

Delafontaine. Comptes Rendus, 90, 221.

Holmium, ou l'x de M. Soret.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1003-4; Jour. Chem. Soc., 50, 667 (Abs.).

HOMOLOGOUS SPECTRA.

On homologous spectra.

Hartley (W. N.). Jour. Chem. Soc., 43, 390-400; Nature, 27, 522
(Abs.); Chem. News, 47, 138 (Abs.); Amer. Jour. Sci., (3) 26, 401
(Abs.); Ber. chem. Ges., 16, 2659 (Abs.); Beiblatter, 8, 217 (Abs.).

HYDROGEN.

Spectrum von Wasserstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 157.

Wasserstoff hat nur ein Spectrum; die vielfachen Spectren rühren bei Bemengungen her.

Angström (A. J.). Ann. Phys. u. Chem., 144, 302, 304.

Spectres des gaz simples; l'hydrogène, etc.

Angström (A. J.). Comptes Rendus, 73, 369.

Notiz über die Spectrallinien des Wasserstoffs.

Balmer (J. J.). Ann. Phys. u. Chem., (2) **25**, 80-7; Jour. Chem. Soc., **48**, 1025 (Abs.); Jour. de Phys., (2) **5**, 515 (Abs.).

Absorptionsspectrum des durch Wasserstoffsuperoxyd gebräunten blausäurehaltigen Blutes.

Buchner. Jour. prackt. Chemie, 105, 345.

Hydrogen tube spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 61, 62, 63.

Sur le spectre ultra-violet de l'hydrogène.

Cornu (J.). Jour. de Phys., (2) 5, 341-54.

Continuous spectra of hydrogen observed by combustion of hydrogen in oxygen and chlorine.

Dibbits. Ann. Phys. u. Chem., 122, 497.

Recherches sur l'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Fiévez (C.). Bull. de l'Acad. de Belgique, (2) 49, 107-113; Phil.
Mag., (5) 9, 309-12; Beiblätter, 4, 461 (Abs.); Ann. Chim. et Phys.,
(5) 20, 179-85; Jour. Chem. Soc., 40, 69 (Abs.).

Sur l'élargissement des raies de l'hydrogène.

Fiévez (C.). Comptes Rendus, 92, 521-2; Beiblätter, 5, 281 (Abs.); Jour. Chem. Soc., 40, 955 (Abs.).

Combustion of hydrogen and carbonic oxide under great pressure.

Franckland. Proc. Royal Soc., 16, 419.

17 т

The refraction equivalents of earbon, hydrogen, nitrogen, and oxygen in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Ab_{*}.).

Untersuchungen über das zweite Spectrum des Wasserstoffes.

Hasselberg (B.). Mem. Acad. imp. St. Pétersbourg, 30, No. 7, 21;
31, No. 14, 30; Beiblätter, 8, 381-4 (Abs.); Mem. Spettr. ital., 13.
97 (Abs.); Phil. Mag., (5) 17, 329-52; Jour. Chem. Soc., 48, 317 (Abs.); Jour. de Phys., (2) 4, 241 (Abs.).

Bemerkungen zu Hrn. Wüllner's Aufsatz; "Ueber die Speetra des Wasserstoffs und des Acetylens."

Hasselberg (B.). Ann. Phys. u. Chem., n. F. 15, 45-9.

Zusatz zu meinen Untersuchungen über das zweite Spectrum des Wasserstoffs.

Hasselberg (B.). 'Mélanges phys. et chim. tirés du Bull. de l'Acad. de St. Pétersbourg, 12, 203-14; Beiblätter, 9, 519 (Abs.).

Die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-5.

On the spectrum of the flame of hydrogen.

Huggins (W.). Proc. Royal Soc., 80, 576; Amer. Jour. Sci., (3) 20, 121-3; Beiblätter, 4, 658 (Abs.).

L'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Huggins (W.). Bull. de l'Acad. de Belgique, (2) 49, 266-7: Beiblatter, 4, 658 (Abs.).

Speetrum des Wasserstoffs.

Jahresber, d. Chemie, 16 (1863), 111.

Absorptionsspectrum des Phosphorwasserstoffs.

Juhresber, d. Chemie, 25 (1872), 142.

Absorptionsspeetra von Kohlenwasserstoffen.

Jahresber, d. Chemie, 28 (1875), 126.

Absorptionsspectrum des Wasserstoffs.

Jahresber, d. Chemie, 25 (1872), 141, 143-6.

Recherches photométriques sur le spectre de l'hydrogène.

Lagarde (H.). Ann. Chim. et Phys., (6) 4, 248-369, avec 1 planche;
Jour. de Phys., (2) 5, 186 (Abs.); note par Wiedemann (E), Ann.
Chim. et Phys., (6) 7, 143-4.

.

Spectre de l'hydrogène phosphoré.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 187, planche XXVII.

Action de la lumière sur l'acide iodhydrique.

Lemoine (G.). Comptes Rendus, 85, 144-7; Beiblätter, 1, 510 (Abs.).

Spectra of compounds of carbon with hydrogen.

Liveing (G. D.) and Dewar (J.). Nature, 22, 620.

Note on the reversal of hydrogen lines, and on the outburst of hydrogen lines when water is dropped into the arc.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 74-6; Chem.
News, 47, 122; Nature, 28, 21 (Abs.); Beiblätter, 7, 371 (Abs.);
Jour. de Phys., (2) 4, 51.

Note on the spectrum of hydrogen.

Lockyer (J. N.). Proc. Royal Soc., 30, 31-2; Beiblätter, 4, 363 (Abs.).

Sur les spectres des vapeurs aux températures élévées; hydrogène.

Lockyer (J. N.). Comptes Rendus, **78**, 1790; Chem. News, **30**, 98. (Original in French.)

De l'élargissement des raies spectrales de l'hydrogène.

Monckhoven (D. von). Comptes Rendus, 95, 378.

Spectrum von Wasserstoff in der Geissler'schen Röhre.

Plücker. Ann. Phys. u. Chem., 104, 122; 105, 76.

Spectrum von Wasserstoff.

Plüeker. Ann. Phys. u. Chem., 105, 81.

Spectra am negativen Pol in Stickstoff-und Wasserstoff-röhren; Modification beider Röhren nach langer Gebrauch.

Reitlinger (E.). Ann. Phys. u. Chem., 141, 135-6.

Coloration of the hydrogen flame.

Santini (S.). Gazzetta chim. ital., 14, 142-6; Jour. Chem. Soc., 48, 209 (Abs.); Beiblätter, 9, 32 (Abs.).

On the spectrum of hydrogen at low pressure.

Seabroke (G. M.). Monthly Notices Astronom. Soc., 32, 63-4; Phil. Mag., (4) 43, 155-7; Chem. News, 25, 111; Ann. Chim. et Phys., (4) 26, 264 (Abs.).

Remarques sur la relation entre les protubérances et les taches solaires; intérêt qu'auraient les expériences sur la lumière spectrale de l'hydrogène brûlant sous une très forte pression.

Secchi (A.). Comptes Rendus, 68, 237-8.

Hydrogène et la raie D₃ dans le spectre de la chromosphère solaire. Secchi (A.). Comptes Rendus, **73**, 1300.

Prismatic spectra of the flames of compounds of carbon and hydrogen.

Swan. Phil. Trans. Edinburgh, 21, 411; Ann. Phys. u. Chem., 100, 306.

Spectres de l'hydrogène, etc., sur la surface du Soleil. Vicaire (E.). Comptes Rendus, **76**, 1540.

Spectrum von Wasserstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 576.

Ueber die Spectra des Wasserstoffs.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1879), 586-604; Beiblätter, 4, 125-30; Amer. Jour. Sci., (3) 19, 406 (Abs.).

Die Wasserstofflamme in der Spectralanalyse.

Vogel (H. W.). Ber. chem. Ges., 12, 2313; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Ueber die neuen Wasserstofflinien.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 38, 597-8 (Abs.); Beiblätter, 4, 274 (Abs.).

Die Photographie des Wasserstoffspectrums.

Vogel (H. W.). Photographische Mittheilungen, 16, 276-8.

Ueber die Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonek (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour.

Chem. Soc., 46, 649 (Abs.).

Ueber die Dissociationswärme des Wasserstoffmoleculs.
Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Electrische Spectra in Wasserstoff.

Willigen (S. M. van der). Ann. Phys. u. Chem., 106, 622.

Drei Spectra hei Wasserstoff.

Wullner (A.). Ann. Phys. u. Chem., 135, 499.

Spectra der Gase unter höhem Druck; Wasserstoff giht dabei ein continuirliches Spectrum; vier Spectra beim Wasserstoff. Wullner (A.). Ann. Phys. u. Chem., 137, 337-47.

Spectra des Wasserstoffs.

Wullner (A.). Ann. Phys. u. Chem., n. F. 14, 355. (Look above, under Hasselberg.)

- 4

INDIGO (THE).

The indigo color in the spectrum.

Rood (O. N.). Amer. Jour. Sci., (3) 19, 135

INDIUM.

Indium are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 30, 45.

Spectra of indium.

Clayden (A. W.) and Heycock (C. T.). Phil. Mag., (5) 2, 387-9; Amer. Jour. Sci., (3) 13, 57 (Abs.); Beiblätter, 1, 90-2.

Sels d'indium en solution, étincelle.

Leeoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 142, planehe XXI.

Vorläufige Notiz über ein neues Metall (Indium).

Reich (F.) und Richter (Th.). Jour. prackt. Chemie, 89, 441.

Ueber das Indium.

Reich (F.) und Richter (Th.). Jour. prackt. Chemie, 90, 172; Phil. Mag., (4) 26, 488.

Spectrum des Indiums.

Sehrötter. Jour. prackt. Chemie, 95, 446.

Spectrum des Indiums.

Winkler. Jour. prackt. Chemie, 94, 1.

Zur spectralanalytische Ermittelung des Indiums.

Wleugel (S.). Correspondenzblatt d. Vereins analytischer Chemiker, 3, 39; Beiblätter, 5, 281 (Abs.); Zeitschr. analyt. Chemie, 20, 115 (Abs.).

INTERFERENCE.

Beobachtungen dunkler Interferenzstreifen im Spectrum des weissen Lichtes.

Abt (A.). Math. naturwiss. Ber. aus Ungarn, 1, 352-4.

Interferenzstreifen im Spectrum.

Arons (L.). Ann. Phys. u. Chem., (2) 24, 669-71.

Sur les phénomènes d'interférence produits par les réseaux parallèles. Crova (A.). Comptes Rendus, 72, 855-8; 74, 932-36.

Ueber Interferenzstreifen welche durch zwei getrübte Flächen erzeugt werden.

Exner (K.). Sitzungsber. d. Wiener Akad., 72 II, 675.

Sur les conditions d'achromatisme dans les phénomènes d'interférence. Hurion (A.). Comptes Rendus, 94, 1345; 95, 75.

Projection der Interferenz der Flüssigkeitswellen.

Lommel (L.). Anu. Phys. u. Chem., (2) 26, 156.

Sur l'application du spectroscope à l'observation des phénomènes d'interférence.

Maseart. Jour. de Phys., 1, 17; 3, 310.

Bedeutung von Newton's Construction der Farbenordnungen dünner Blättehen für die Speetraluntersuchung der Interferenzfarben. Rollett (Alex.). Sitzungsber. d. Wiener Akad., 75 111, 12.

Graphische Darstellung der Spectren der Interferenzfarben för einen Gypskeil.

Rollett (Alex.). Sitzungsber. d. Wiener Akad., 77 III, 177.

Ueber die an bestaubten und unreinen Spiegeln siehtbare Interferenzerscheinung.

Sekulic. Ann. Phys. u. Chem., 154, 308.

Prismatisches und Beugungsspeetrum, Interferenzerscheinungen in demselben.

> Stefan (J.). Sitzungsber, d. Wiener Akad., 50 H, 127, 138-42; Ann. Phys. u. Chem., 123, 509.

> > 4

Interferenzstreifen im prismatischen und im Beugungsspectrum.
Weinberg (M.). Carl's Repertorium, 18, 600-608.

INVERSION.

Reversal of the sodium lines.

Ackroyd (W.). Chem. News, 36, 164-5.

Renversement des raies spectrales des vapeurs métalliques.

Cornu (A.). Comptes Rendus, 73, 332.

Sur les raies spontanément renversables.

Cornu (A.). Comptes Rendus, 100, 1181-1188; Jour. Chem. Soc., 48, 853 (Abs.), 1885.

Sur le renversement des raies du spectre.

Duhem. Jour. de Phys., (2), 4, 221-4.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv darzustellen.

Günther (C.). Ann. Phys. u. Chem., n. F. 2, 477.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums in dunkle.

Jahresber. d. Chemie (1865), 90.

Umkehrung der Speetra.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 275, 295; 110, 187; Jour. prackt. Chemie, 80, 480-3.

Wandlung der Spectren.

Lepel (F. von). Ber. chem. Ges., 11, 1146.

Reversal of the lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). Nature, 24, 206; 26, 466.

Note on some phenomena attending the reversal of lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 428-32; Beiblätter, 3, 608 (Abs.).

Wandlung der Spectren.

Moser (J.). Ber. chem. Ges., 11, 1416.

Umkehrung der Speetra.

Tyndall. Jour. prackt. Chemie, 85, 261.

Wandlung der Spectren.

Vogel (H. W.). Ber. chem. Ges., 11, 622, 913, 1863, 1562.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 321.

Re-reversal of sodium lines.

Young (C. A.). Nature, 21, 274-5; Beiblätter, 4, 370.

IODINE.

Note on the absorption spectrum of iodine in solution in carbon disulphide.

Abney and Festing. Proc. Royal Soc., 34, 480.

The dichroïsm of the vapour of iodine.

Andrews (T.). Chem. News, **24**, 75; Jour. Chem. Soc., (2) **9**, 993 (Abs.).

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent.

Becquerel (E.). Comptes Rendus, **79**, 185-90; Jour. Chem. Soc., (2) **13**, 30 (Abs.).

Iodine vapour; spark in iodine vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 76.

Spectre de l'iode dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Absorption spectra of iodine.

Conroy (Sir John). Proc. Royal Soc., 25, 46.

Wellenlänge der auf Iodsilber chemisch wirkenden Strahlen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 162.

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Comptes Rendus, 74, 660.

Spectre d'absorption des vapeurs de protobromure d'iode, etc.

Gernez (D.). Comptes Rendus, 74, 1190-92; Jour. Chem. Soc., (2) 10, 665 (Abs.); Phil. Mag., (4) 43, 473-5; Amer. Jour. Sci., (3) 4, 59-60.

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 17, 258; Ber. chem. Ges., 5, 219.

Iodure.

Gouy. Comptes Rendus, 85, 70.

Spectrum des Iods.

Jahresber. d. Chemie, 16, 109.

Absorptionsspectrum des Ioddampfer

Jahresber. d. Chemie, 23, 174.

Absorptionsspectrum des einfachen Chlorjods.

Jahresber, d. Chemie, 25, 139.

Absorptionsspectrum des Bromjods.

Jahresber. d. Chemie, 25, 140.

Absorptionsspectrum des Iods.

Jahresber. d. Chemie, 25, 141.

On the action of the less refrangible rays of light on silver iodide.

Lea (M. Carsy). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc. 1876, 1, 28 (Abs.).

Iodure de baryum dans le gaz chargé d'iode.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 63. 65, planche VIII.

Action de la lumière sur l'acide iodhydrique.

Lemoine (G.). Comptes Rendus, 85, 144-7; Beiblätter, 510 (Abs.).

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Sur les spectres des vapeurs aux températures elévees; iode.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chem. News, 30, 98.

Die Fluoreseenz des Ioddampfes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 19, 356.

Verbindungsspectren zur Entdeckung von Iod.

Mitscherlich (A.). Jour. prackt. Chemie, 97, 218.

Entdeckung sehr geringer Mengen von Chlor, Brown und Iod'in Verbindungen.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Lo spettro di assorbimento del vapore di jodio.

Merghen (A.). Mem. Spettr. ital., 13, 127-31; Beiblatter, 8, 822 (Abs.); Atti R. Accad. Lincei, Transunti, (3) 8, 327-30.

....

Absorption-spectra of bromine and of iodine-monochloride.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Sur la lumière émise par la vapeur d'iode.

Salet (G.). Comptes Rendus, 74, 1249.

Le spectre primaire de l'iode.

Salet (G.). Comptes Rendus, 75, 76; Bull. Soc. chim. Paris, n. s. 18, 216.

Absorptionsspectrum des Ioddampfes.

Thalén (R.). Ann. Phys. u. Chem., 139, 503.

Ueber die Brechung und Dispersion des Lichtes in Iod-Silber.

Wernicke (W.). Ann. Phys. u. Chem., **142**, 560-73; Jour. Chem. Soc., (2) **9**, 653 (Abs.); Ann. Chim. et Phys., (4) **26**, 287 (Abs.).

Uebereinstimmung des Absorptionsspectrums und des ersten Iodspectrums mit dem Spectrum dessen Dampfes.

Wüllner (A.). Ann. Phys. u. Chem., 120, 159, 161.

IRIDIUM.

Iridium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 30.

IRON.

On the estimation of small quantities of phosphorus in iron and steel by spectrum analysis.

Alleyne (Sir J. G. N.). Jour. Iron and Steel Inst. (1875), 62-72.

Iron spark spectrum, and iron arc spectrum; iron meteoric spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 31-3.

Le fer n'à donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 332.

Speetre du chlorure de fer.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Ueber phosphorhaltigen Stahl.

Greiner (A.). Dingler's Jour., 217, 33-41; Jour. Chem. Soc., 1876, 1, 454 (Abs.).

Distribution of heat in the various scources of radiation; black oxide of iron, etc.

Jacques (W. W.). Proc. Amer. Acad., 14, 161.

Speetrum der Bessemerflamme.

Jahresber, d. Chemie, (1867) 105, (1873) 150.

Perchlorure de fer en solution, étincelle.

Lecoq de Boisbandran (F.). Spectres Lumineux, Paris, 1874, p. 122, planche XVIII.

Spectrum der Bessemerflamme.

Lielegg (A.). Sitzungsber. d. Wiener Akad., 55 II, 150, 153-81; 56 II.
3, 24-30; Jour. prackt. Chemie, 100, 383; Phil. Mag., (4) 34, 302.

On the iron lines widened in solar spots.

Lockver (J. N.). Proc. Royal Soc., 31, 34s.

On the examination of the Bessemer flame with colored glasses and with the spectroscope.

Parker (J. Spear). Chem. News, 23, 25.

The spectroscopic examination of the vapours evolved on heating iron at atmospheric pressure.

Parry (J.). Chem. Soc., 49, 241-2; 50, 303; Ber. chem. Ges., 17.
Referate, 337 (Abs.); Jour. Chem. Soc., 46, 801 (Abs.); Beiblatter,
8, 646 (Abs.).

- 4

The spectroscope applied to the Bessemer Process.

Roscoe (H. E). Chem. News, 22, 44; 23, 174; Phil. Mag., (4) 25, 318.

Employment of spectrum analysis in the Bessemer Process.

Roscoe (H. E.). Jour. Iron and Steel Inst., 1871, 2, 38-62; Ber. chem. Ges., 4, 419-21 (Abs.).

Spectre du fer dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 173.

Examination of the Bessemer Flame with colored glasses and with the spectroscope.

Silliman (J. M.). Chem. News, 22, 213; 23, 5.

Ueber das Eisenspectrum, erhalten mit dem Flammenbogen.

Thalén (Rob.). Nova Acta. Roy. Soc. Upsala, (3) 1884; Beiblätter, 9 (1885), 520 (Abs.).

Spectre du fer sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Ueber die Absorptionsspectren einiger Salze der Eisengruppe. Vogel (H. W.). Ber. chem. Ges., **8**, 1533-40.

v oger (11. W.). Ber. chem. Ges., **6**, 1355–40.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde. Vogel (H. W.). Ber. chem. Ges., 9, 1641.

Erkennung von Thonerde neben Eisensalzen.

Vogel (H. W.). Ber. chem. Ges., 10, 373; Jour. Chem. Soc., 1877, 2, 269 (Abs.).

Ueber die Erkennung des Kobalts, neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2313-16; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Spectrum of the Bessemer flame.

Watts (W. M.). Phil. Mag., (4) **34**, 437; **45**, 81; Chem. News, **23**, 49; Jour. prackt. Chemie, **104**, 420.

Coïncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. M.). Nature, 8, 46.

Methods for the determination of metallic iron by spectral analysis.
Wolff. Chem. News, 39, 124.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 294-302; Jour. Chem. Soc., 1876, 1, 27 (Abs.).

JARGONIUM.

Jargonium, a new element accompanying zirconium.

Sorby (H. C.). Chem. News, 19, 121; Proc. Royal Soc., 17, 511

LANTHANUM.

Sur le poids atomique du lanthane.

Clève (P. T.). Bull. Soc. chim. Paris, 39, 151-5; Chem. News, 47, 154-5; Amer. Jour. Sci., (3) 25, 381 (Abs.).

.

Spectre du lanthane, avec une planche.

Thalén (Rob.). Jour. de Phys., 4, 33.

LEAD.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der natürlichen Sulfate des Baryum, Strontium und Blei.

Arzruni (A.). Zeitschr. f. Krystallogr. u. Mineral., 1, 165-92; Jahrb. f. Mineral. (1877), 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Lead are spectrum, lead and antimony spark spectrum, lead and magnesium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 34, 35.

Renversement des raies spectrales du plomb.

Cornu (A.). Comptes Rendus, 73, 332.

Spectre de l'azotate de plomb.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 707.

Spectren zwischen Bleielectroden.

Jahresber. d. Chemie (1873), 152.

Spectre du sulfure de plomb.

Lallemand (A.). Comptes Rendus, 78, 1272.

Spectre du plomb.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Chem. News, 24, 10.

Plomb métallique, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 147, planche XXIII.

LIGHT.

Vitesse de la lumière fait que les bords du spectre sont diffus.

Arago. Comptes Rendus, 36, 43.

Sur la rayonnement chimique qui accompagne la lumière, et sur les effets électriques en résultent.

Becquerel (Ed.). Comptes Rendus, 13, 198.

Note accompagnant la presentation du II. volume de son ouvrage intitulé "Lumière, ses Causes et ses Effets."

Becquerel (Ed.). Comptes Rendus, 67, S.

Étude sur la part de la lumière dans les actions chimiques.

Chastaing (P.). Ann. Chim. et Phys., (5) 11, 145-223; Jour. Chem. Soc., 1877, 2, 818 (Abs.); Beiblätter, 1, 515-20 (Abs.).
(Look below, under Vogel.)

Lage der chemischen Strahlen im Spectrum des Sonnen-und Gas-Lichts.

Crookes (W.). Ann. Phys. u. Chem., 97, 619; Cosmos, 8, 90; Bull. Lond. Photographical Soc., 21 Jan., 1856.

Sur l'emploi de la lumière monochromatique, produite par les sels de soude.

> Henry (L. d'). Comptes Rendus, 76, 222-4 (Abs.); Ann. Chem. u. Pharm., 169, 272; Dingler's Jour., 207, 405-7.

Constanz der Lichtspectren.

Jahresber, d. Chemie (1869), 174.

Sur le spectre anormal de la lumière.

Klercker (de). Comptes Rendus, 89, 734; Phil. Mag., (5) 8, 571-2; Beiblatter, 4, 273-4.

Lichtspectren.

Lecoq de Boisbaudran (F.). Ber, chem. Ges., 3, 140, 503, 572.

Zur Theorie des Lichtes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 16, 427-41.

Emploi du spectroscope pour distinguer une lumière plus faible dans une plus forte.

Seguin. Comptes Rendue, 68, 1322.

Chastaing's neue Theorie der chemischen Wirkung des Lichtes.

Vogel (H. W.). Ber. chem. Ges., 10, 1638-44; Beiblätter, 1, 681 (Abs.).

Les observations spectroscopiques à la lumière monochromatique.

Zenger (Ch. V.). Comptes Rendus, 94, 155; Amer. Jour. Sci., (3) 23, 322.

LIGHTNING.

(Look under Electricity.)

LIMITS.

Limites des couleurs dans le spectre.

Listing. Ann. Chim. et Phys., (4) 13, 460.

Limites des couleurs dans le spectre.

Thalén (Rob.). Ann. Chim. et Phys., (4) 18, 218.

LINES OF THE SPECTRUM.

- Welchen Stoffen die Fraunhofer'schen Linien angehören. Angström (A. J.). Ann. Phys. u. Chem., **117**, 296-302.
- Die Fraunhofer'schen Ringe, die Quetelet'schen Streifen und verwandte Erscheinungen.

Exner (K.). Sitzungsber. d. Wiener Akad., 76 II, 522.

Bestimmung des Brechungs-und Farbenzerstreuungs-Vermögens verschiedener Glasarten.

Fraunhofer (Jos.). Denkschr. d. k. Akad. d. Wiss, zu München, Band V (1814-15), 193-226, mit drey Kupfertafeln, München, 1817, 4°.

Note on the theoretical explanation of Fraunhofer's lines.

Hartshorne (H.). Jour. Franklin Inst., 75, 38-43; 105, 38; Les Mondes, 45, 517-22; Beiblätter, 2, 561.

Die Zusammensetzung des Spectrums.

Jahresber, d. Chemie, 1, 197; 5, 126, 131; 8, 123.

Ueber die Fraunhofer'schen Linien.

Jahresber, d. Chemie, 3, 154; 4, 152; 5, 124; 6, 167; 7, 137.

Anwendung der Fraunhofer'schen Linien als chemisches Reagens.
Jahresber. d. Chemie, 5, 125.

Künstliches Spectrum einer Fraunhofer'schen Linie.
Jahresber, d. Chemie (1868), 124.

Newton, Wollaston, and Fraunhofer's lines.

Johnson (A.). Nature, 26, 572; Beiblätter, 7, 65-6 (Abs.).

On certain remarkable groups in the lower spectrum. Langley (S. P.). Proc. Amer. Acad., 14, 92.

Erklärung der Linien und Streifen in den Lichtspectren. Lecoq de Boisbandran (F.). Ber. chem. Ges., 2, 614.

Mutual attraction of spectral lines.

Peirce (C. S.). Nature, 21, 108; Beiblatter, 4, 278 (Abs.).

On spectral lines of low temperature.

Salisbury (The Marquis of). Phil. Mag., (4) 45, 241-5; Jour. Chem. Soc., (2) 11, 711 (Abs.); Amer. Jour. Sci., (3) 6, 141-2.

.

The relation between spectral lines and atomic weights.

Vogel (E.). Pharmaceutical Jour. Trans., (3) 6, 464-5.

Darstellung eines Spectrums mit einer Fraunhofer'schen Linie. Wüllner (A.). Ann. Phys. u. Chem., 135, 174.

LIQUIDS.

- Pouvoirs absorbants des corps pour la chaleur; solutions dans l'eau, etc.

 Aymonnet. Comptes Rendus, 83, 971.
- Ueber eine einfache Methöde zur appröximativen Bestimmung der Brechungsexponenten flüssiger Körper.

Bodynski (J.). Carl's Repertorium, 18, 502-4; Beiblätter, 6, 932 (Abs.).

Molecular-Refraction flüssiger organischer Verbindungen von hohem Dispersifvermögen.

Bruhl (J. W.). Ann. Phys. u. Chem., 235, 1-106; Ber. chem. Ges., 19, 2746 (Abs.); Jour. Chem. Soc., 52, 191 (Abs.).

Spectroscopische Untersuchung der Constanten von Lösungen.

Burger (H.). Ber. chem. Ges., 11, 1876.

Methoder til at maale Brydningsforholdet for farvede Vaedsker (Ueber die Messung des Brechungsverhältnisses gefärbter Flüssigkeiten).

Christiansen (C.). Oversigt kgl. Danske Vidensk. Selsk. Forh. (1882), 217-50; Ann. Phys. u. Chem., n. F. 19, 257-67; Nature, 28, 308 (Abs.).

- Nouvelle méthode de détermination des indices de réfraction des liquides.

 Croullebois (M.). Ann. Chim. et Phys., (4) 22, 139-50.
- Recherches sur le pouvoir réfringent des liquides.

Damien (B. C.). Ann. de l'École normale, (2) 10, 233-304; Bei-blatter, 5, 579-84 (Abs.); Jour. de Phys., 10, 334-401, 431-34 (Abs.).

On the specific refraction and dispersion of light by liquids.

Gladstone (J. H.). Rept. British Assoc. [1881], 591; Nature, 24, 468 (Abs.); Beiblatter, 6, 21 (Abs.).

Ueber Regenbogen, gebildet durch Flüssigkeiten von verschiedenen Brechungsexponenten.

Hammerl (H.). Sitzungsber, d. Wiener Akad., 86 H, 206-15; Beiblatter, 7, 383-5 (Abs.).

Preliminary notice of experiments concerning the chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 22, 241-3; Chem. News, 29, 148.

-

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 372-2; Phil. Mag., (5) 1, 244-5; Ber. chem. Ges., 8, 765 (Abs.).

Application des franges de Talbot à la détermination des indices de réfraction des liquides.

Hurion. Comptes Rendus, 92, 452-3.

Spectren gefärbter Lösungen.

Jahresber. d. Chemie, 15, 34.

Ueber die Constitution von Lösungen.

Krüss (G.). Ber. ehem. Ges., 10, 1243-9; Jour. Chem. Soc., 42, 1018
(Abs.); Nature, 26, 568; Beiblätter, 6, 677 (Abs.); Amer. Jour. Sci.,
(3) 24, 141 (Abs.).

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbirender Mittel.

Kundt (A.). Sitzungsber. d. Münchener Akad. (1877), 234-62; Ann. Phys. u. Chem., n. F. 4, 34-54.

Recherches sur l'illumination des liquides, etc.

Lallemand. Comptes Rendus, 69, 182.

Ueber die Molecularrefraction flüssiger organischer Verbindungen.

Landolt (H.). Sitzungsber. d. Wiener Akad. (1882), 62-91; Ann. Phys. u. Chem., **213**, 75-112; Beiblätter, **7**, 843; Ber. chem. Ges., **15**, 1031-40; Jour. Chem. Soc., **42**, 909 (Abs.).

Absorption des Lichtes durch gefärbte Flüssigkeiten.

Melde (F.). Ann. Phys. u. Chem., 124, 91; 126, 264.

Observations on the colour of fluorescent solutions.

Morton (H.). Amer. Jour. Sei., (3) **2**, 198-9, 355-7; Jour. Chem. Soc., (2) **9**, 992 (Abs.); **10**, 27 (Abs.); Chem. News, **24**, 77.

Ueber die Aenderung des Volumens und des Brechungsexponenten von Flüssigkeiten durch hydrostatischen Druck.

Quincke (G.). Ann. Phys. u. Chem., n. F. 19, 401-35; Sitzungsber.
 d. Berliner Akad. (1883), 409 (Abs.); Nature, 28, 308 (Abs.).

Ueber eine neue Flüssigkeit von hohem specifischen Gewicht, hohem Brechungsexponenten und grosser Dispersion.

Rohrbach (C.). Ann. Phys. u. Chem., n. F. 1, 169-74; Amer. Jour. Sci., (3) 26, 406 (Abs.); Jour. Chem. Soc., 46, 145 (Abs.).

On the absorption bands in the visible spectrum produced by certain colourless liquids.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., **39**, 168-73; Amer. Jour. Sci., (3) **21**, 500 (Abs.); Nature, **22**, 368-70; Beiblätter, **5**, 44-5.

Ueber die Absorption des Lichtes durch Flüssigkeiten.

Schonn (J. L.). Ann. Phys. u. Chem., n. F. 6, 267-70.

Untersuchungen über die Abhängigkeit der Molecularrefraction flüssiger Verbindungen von ihrer chemischen Constitution.

Schröder (H.). Ber. chem. Ges., 15, 994-8; Jour. Chem. Soc., 42, 910 (Abs.).

Fernere Untersuchungen über die Abhängigkeit der Molecularrefraction flüssiger Verbindungen von ihrer chemischen Zusammensetzung.

Schröder (II.). Sitzungsber. d. Münchener Akad. (1882), 57-104; Ann. Phys. u. Chem., n. F. 15, 636-75; 18, 148-75; Jour. Chem. Soc., 42, 1153 (Abs.); 44, 538 (Abs.).

Sur les spectres d'absorption ultra-violets des différents liquides.

Soret (J. L.). Arch. de Genève, (2) **60**, 298-300; Beiblatter, **2**, 50 (Abs.).

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (2) 13, 412 (Abs.).

Méthode nouvelle pour déterminer l'indice de réfraction des liquides.

Terquem et Trannin. Comptes Readus, 78, 1843-5; Dingler's Jour., 212, 552-4; Jour. de Phys., 4, 232-8; Ann. Phys. u. Chem., 157, 302-9.

Ueber eine Methode zur Untersuchung der Absorption des Lichtes durch gef ärbte Lösungen.

Tumlirz (O.). Wiener Anzeigen (1882), 165 (Abs.); Beiblätter, 7, 895 (Abs.); Chem. News, 49, 201 (Abs.).

.

Absorption spectra of certain organic liquids.

Wolff (C. H.). Chem. News, 47, 178.

LITHIUM.

- Ueber quantitative Bestimmung des Lithiums mit dem Spectral-Apparat.

 Ballmann (H.). Zeitschr. analyt. Chemie, 14, 297-301; Jour. Chem. Soc., 1876, 2, 550 (Abs.).
- On the presence of lithium in meteorites.

 Bunsen. Phil. Mag., (4) 23, 474.
- Existence de la lithine et de l'acide borique dans les eaux de la mer Morte.

 Dieulafait. Comptes Rendus, 94, 1352-54; Jour. Chem. Soc., 42, 1037

 (Abs.); Ann. Chim. et Phys., (5) 25, 145-67.
- La lithine, la strontiane et l'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, **95**, 999-1001; Jour. Chem. Soc., **44**, 301 (Abs.).

Les salpêtres naturels du Chili et du Pérou au point de vue du rubidium, du cæsium, du lithium et de l'acide borique.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

On the blue band in the lithium spectrum.

Franckland. Phil. Mag., (4) 22, 472.

Recherches photométriques sur le lithium.

Gouy. Comptes Rendus, 83, 269; 85, 70.

Transparence des flammes colorées pour leur propres radiations; lithium, etc.

Gouy. Comptes Rendus, 86, 1078.

Spectrum des Lithiums in der Wasserstofflamme.

Jahresber. d. Chemie, 15, 30.

Funkenspectrum von kohlensäuren Lithium.

Jahresber. d. Chemie (1873), 152.

Sels de lithine en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 56. planche VI.

Spectre du lithium.

Lecoq de Boisbaudran. Conptes Rendus, 77, 1152; Bull. Soc. chim. Paris, n. s. 21, 125.

On the spectra of magnesium and lithium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 93-9; Beiblätter, 4, 366 (Abs.).

Note on the order of reversibility of the lithium lines.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 76; Chem. News, 47, 133.

Sur les spectres des vapeurs aux températures élévées, lithium.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chem. News, 30, 98.

Sur l'origine de l'arsénic et de la lithine dans les eaux sulfatées calciques. Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-63; Jour. Chem. Soc., 44, 302 (Abs.).

On the flame of lithia.

Talbot (H. Fox). Phil. Mag., (3) 4, 11.

De la présence de la lithine dans le sol de la Limagne et des eaux minérales de l'Auvergne. Dosage de cet alcali au moyen du spectroscope.

Truchot (P.). Comptes Rendus, **78**, 1022-4; Ber. chem. Ges., **7**, 653 (Abs.).

-

The blue band in the lithium spectrum.

Tyndall and Franckland. Phil. Mag., (4) 22, 151, 472.

LONGITUDINAL RAYS.

Note sur les raies longitudinales observées dans le spectre prismatique par M. Zantedeschi.

Babinet. Comptes Rendus, 35, 413. (Look below.)

Raies longitudinales du spectre.

Porro. Comptes Rendus, 35, 479.

Sur les lignes longitudinales du spectre.

Wartmann (E.). Arch. des Sciences phys. et nat., 7, 33; 10, 302; Phil. Mag., 32, 499.

Sur les causes des lignes longitudinales du spectre.

Zantedeschi (F.). Archives des Sciences phys. et nat., 12, 43; Corresp. scient. di Roma, No. 9, 69.

LUMINOUS SPECTRA.

Observations sur le rayonnement des corps lumineux.

Baudrimont. Comptes Rendus, 33, 496.

Divers effets lumineux qui résultent de l'action de la lumière sur les corps.

Becquerel (E.). Comptes Rendus, 45, 817.

Constitution du spectre lumineux.

Lecoq de Boisbaudran (F.). Comptes Rendus, **69**, 445, 606, 657, 694; **73**, 658.

Recherches d'analyse spectrale.

Volpicelli. Comptes Rendus, 57, 571.

Sur les causes des effets lumineux, etc.

Volpicelli. Comptes Rendus, 69, 730.

MAGNESIUM.

Lead and magnesium spark spectrum, magnesium spark spectrum, magnesium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 34, 35, 36.

Détermination des longueurs d'onde des radiations très réfrangibles du magnésium, du cadmium, du zinc et de l'aluminium.

Cornu (A.). Archives de Genève, (3) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31.

Renversement des raies spectrales du magnésium.

Cornu (A.). Comptes Rendus, 73, 332.

Recherches sur le spectre du magnésium en rapport avec la constitution du Soleil.

Fièvez (C.). Bull. de l'Acad. de Belgique, (2) 50, 91-8; Beiblätter, 4, 789 (Abs.); Ann. Chim. et Phys., (5) 23, 366-72.

Spectre de chlorure de magnésium.

Gouy. Comptes Rendus, 84, 231.

Spectre continu des sels de magnésie.

Gouy. Comptes Rendus, 84, 878.

Spectrum des Magnesiumlichtes.

Jahresber, d. Chemie, 18, 96; 23, 174; 25, 145.

Chlorure de magnésium en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 85, planche XII.

Permanganate de potasse en solution.

Leco I de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 108, planche XVI.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde und Magnesia.

Lepel (F. von). Ber. chem. Ges., 9, 1641.

Ueber den Nachweis der Magnesia mit Hülfe des Spectroskops.

Lepel (F. von). Ber. chem. Ges., 9, 1845; 10, 159; Bull. Soc. chim. Paris, n. s. 28, 478; Jour. Chem. Soc., 1877, 1, 676; Beiblätter, 1, 240 (Abs.).

- 4

Der Alkannafarbstoff, ein neues Reagens auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 763-6.

Pflanzenfarbstoffe als Reagentien auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 766-8; Jour. Chem. Soc., 40, 63 (Abs.).

On the spectra of magnesium and lithium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., **30**, 93-9; Beiblätter, **4**, 366 (Abs.).

Investigations on the spectrum of magnesium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., **32**, 189-203; Nature, **24**, 118.

Die dichroïtische Fluorescenz des Magnesiumplatincyanürs.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 634; 9, 108; 13, 247.

Osservazioni delle inversioni della coronale 1474 k, e delle b del magnesio fatte nel Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 10, 148-51.

Spectre du magnésium dans l'arc voltaïque.

Seechi (A.). Comptes Rendus, 77, 173.

Spectre du magnésium.

Secchi (A.). Comptes Rendus, 82, 275.

Magnésium dans la chromosphère du Soleil.

Tacchini (P.). Comptes Rendus, **75**, 23, 430; Phil. Mag., (4) **44**, 159-60.

Présence du spectre du magnésium sur le bord entière du Soleil.

Tacchini (P.). Comptes Rendus, 76, 1577.

Nouvelles observations relatives à la présence du magnésium sur le bord du Soleil, et réponse à quelques points de la théorie émise par M. Faye.

Tacchini (P.). Comptes Rendus, 77, 606-9.

Nouvelles observations relatives à la présence du magnésium sur le bord du Soleil.

Tacchini (P.). Comptes Rendus, 82, 1385-7.

Spectre du magnésium sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Ueber eine empfindliche Spectralreaction auf Magnesium.

Vogel (H. W.). Ber. chem. Ges., 9, 1641; Jour. Chem. Soc., 1877, 1, 742 (Abs.); Beiblätter, 1, 240 (Abs.); Bull. Soc. chim. Paris, n. s. 28, 475.

Die Purpurin-Thonerde-Magnesia-Reaction.

Vogel (H. W.). Ber. chem. Ges., 10, 157, 373.

MANGANESE.

Sur l'effet du manganèse sur la phosphorescence du calcium carbonate.

Becquerel (E.). Comptes Rendus, **103**, 1098–1101; Jour. Chem. Soc., **52**, 190 (Abs.).

Ueber das Absorptionsspectrum des übermangansauren Kalis, und seine Benutzung bei chemisch-analytischen Arbeiten.

Brücke (E.). Chemisches Centralblatt, (3) 8, 139-143; Jour. Chem. Soc., 34, 242 (Abs.).

Manganese are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 36.

On the light reflected by potassium permanganate.

Conroy (Sir J.). Proc. Royal Soc., 2, 340-4; Phil. Mag., (5) 6, 454-8; Jour. Chem. Soc., 36, 425 (Abs.).

Spectre de l'azotate de manganèse.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Absorptionslinien der Manganlösungen.

Hoppe-Seyler. Jour. prackt. Chemie, 90, 303.

Spectra of manganese in blowpipe beads.

Horner (Charles). Chem. News, 25, 139.

Anwendung der dunklen Linien des Spectrums als Reagens auf Mangansäure.

Jahresber, d. Chemie, 5, 125.

Absorptionsspectrum des Mangansuperchlorids.

Jahresber. d. Chemie (1869), 184.

Chlorure de manganèse en solution, étincelle courte; do., étincelle moyenne; do., dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 110, 114, 120, planches XVII, XVIII.

Fluorescence des composés de manganèse dans la vide sous l'influence de l'arc voltaïque.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103, 468-471; Jour. Chem. Soc., 52, 3 (Abs.); Beiblätter, 11, 37.

Das Absorption der Mangansäure nicht die Umkehrung einer durch Manganchlorür gefärbten Flamme.

Müller (J.). Ann. Phys. u. Chem., 128, 335.

Spectrum von Mangan.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 425.

Das von übermangansaurem Kali reflectirte Licht.

Wiedemann (E.). Ann. Phys. u. Chem., 151, 625.

MAPS.

Recherches sur les spectres des métalloïdes.

Angström (A. J.) et Thalén (T. R.). Upsal., E. Berling, 1875, 4°. Extrait des Nova Acta Reg. Soc. Sc. Upsal., Ser. III, Vol. IX. Avec deux planches.

(Wave-lengths. Spectra of carburetted hydrogen; of carbonic oxide; bioxide of nitrogen; of light at the negative pole; of oxygen; of carbon; of hydrogen; some isolated rays of carburetted hydrogen, and of carbonic oxide.)

Sur le spectre normal du Soleil, partie ultra-violette.

Cornu (A.). Paris, Gauthier-Villars, 1881, 4°. Extrait des Annales de l'École normale supérieure, (2) 9 (1880). Avec deux planches. (Wave-lengths.)

Étude du spectre solaire.

Fievez (Ch.). Bruxelles, F. Hayez, 1882, 4°. (Wave-lengths. Lines 6399 to 4522.)

Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., t. IV.

Étude de la région rouge (A-C.) du spectre solaire.

Fievez (Ch.). F. Hayez, Bruxelles, 1883, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., t. V. Avec deux planches. (Wave-lengths. Lines 7500 to 6500.)

Studien auf dem Gebiete der Absorptionsspectralanalyse.

Hasselberg (B.). St. Pétersbourg, et à Leipzig (L. Voss), 1878, 4°.
Mit vier Karten. Mém. Acad. imp. des Sci. de St. Pétersbourg, (7)
26, No. 4.

(Wave-lengths. Absorptionspectra of hypernitric acid at different densities, and absorptionspectrum of bromine.)

Ueber die Spectra der Cometen, und ihre Beziehung zu denjenigen gewisser Kohlenverbindungen.

Hasselberg (B.). St. Pétersbourg, 1880, Leipzig (G. Haessel), 4°. Mit einem Tafel. Mém. de l'Acad. imp. St. Pétersbourg, (7) 28, No. 2.

Untersuchungen über das zweite Spectrum des Wasserstoffs.

Hasselberg (B.). St. Pétersbourg, 1882, Leipzig (G. Haessel), 4°. Mém. de l'Acad. imp. St. Pétersbourg, (7) 30, No. 7. Mit einem Tafel. (Wave-lengths.) Untersuchungen über das Sonnenspectrum und die Spectren der chemischen Elemente.

Kirchhoff (G.). Besondere Abdrucke aus den Abhandlungen der Berliner Akademie der Wissenschaften, 1861 und 1862. I. Theil, Dümmler, Berlin, 1864, 4°. II. Theil, Dümmler, Berlin, 1875, 4°. Mit vier Tafeln.

(He used an arbitrary scale.)

Recherches sur le spectre solaire ultra-violet, et sur la détermination des longueurs d'onde, suivies d'une note sur les formules de dispersion

> Maseart (E.). Extrait des Annales scientifiques de l'École normale supérieure, t. I (1864), Paris, Gauthier-Villars, 1864, 4°.

Recherches sur la détermination des longueurs d'onde.

Mascart (E.). Paris, Gauthier-Villars, 1866, 4°. Extrait des Annales de l'École normale supérieure, t. IV. Avec un planche.

[A photographic map of the solar spectrum is being prepared by Prof. Rowland, and some parts of it have been distributed, viz: wave-lengths, 0.0003675 to 0.0005796.]

Mémoire sur la détermination des longueurs d'onde des raies métalliques.

Thalén (Rob.). Upsal., W. Schultz, 1868, 4°. Mit zwei Tafeln. Extrait des Nova Acta Reg. Soc. Sci. Upsal., Ser. 111, Vol. VI.

(Gives the wave-lengths of the bright rays of the metals.)

Le spectre d'absorption de la vapeur d'iode.

Thalén (Rob.). Upsal., Ed. Berling, 1869, 4°. Avec trois planches.

[Thollon's map of the solar spectrum is in Vol. I of the Annales de l'Observatoire de Nice, which is about to appear. Vol. II will contain a smaller map or sheets of the group B.]

MERCURY.

Mercury spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 37.

Spectre du cinabre, de l'oxide de mercure, de l'iodure de mercure.

Lallemand (A.). Comptes Rendus, 78, 1272.

Bichlorure de mercure en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 169, planche XIV.

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Spectrum of mercury at elevated temperatures.

Lockyer (J. N.). Chem. News, **30**, 98; Nature, **30**, 78; Comptes Rendus, **78**, 178.

Emissionsspectra der Haloïdverbindungen des Quecksilbers.

Peirce (B. O.). Ann. Phys. u. Chem., n. F. 6, 597.

Ueber die Spectren des Wasserstoffs, Quecksilbers, und Stickstoffs.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1879), 586-604; Beiblätter, 4, 125-30; Amer. Jour. Sci., (3) 19, 406 (Abs.).

METALS.

Researches on the spectra of the metalloids.

Angström (A. J.) and Thalén (Rob.). Acta Soc. Upsala, (3) 9; Nature, 15, 401 (Abs.); Beiblätter, 1, 35-47; Bull. Soc. chim. Paris, n. s. 25, 183.

Spectres d'émission infra-rouges des vapeurs métalliques.

Beequerel (H.). Comptes Rendus, 97, 71-4; 99, 374; Chem. News,
48, 46 (Abs.); Nature, 28, 287 (Abs.); Beiblatter, 7, 701 (Abs.);
Amer. Jour. Sci., (3) 26, 321 (Abs.); 28, 459 (Abs.); Ber. chem.
Ges, 16, 2487 (Abs.); Jour. Chem. Soc., 46, 1 (Abs.); Zeitschr. f.
analyt. Chemie, 23, 49 (Abs.); Phil. Mag., Oct., 1884.

Procédé pour obtenir en projection les raies des métaux et leur renversement.

Boudréaux. Jour. de Phys., 3, 306.

Ueber die electrische Spectra der Metallen.

Brassack. Zeitschr. f. d. Gesellsch. f. Naturwiss, 9, 185.

Dissociation of the metalloid elements.

Brodie (B. C.). Nature, 21, 491-2.

Discoveries of the new alcaline metals.

Bunsen (R.). Ber. d. Berliner Akad., 10 Mai, 1860; Chem. News, 3, 182.

Kleinste im Inductionsfunken durch die Spectralanalyse noch erkennbare Gewichtsmenge verschiedener Metalle; do., im Bunsen'schen Gasflamme; Vergleich beider.

Cappel (E.). Ann. Phys. u. Chem., 139, 631.

Some experiments on metallic reflection with the spectroscope.

Conroy (Sir J.). Proc. Royal Soc., 28, 214.

On the projection of the spectra of the metals.

Cooke (J. P.). Amer. Jour. Sci., (2) 40, 243.

Renversement des raies spectrales des vapeurs métalliques.

Cornu (A.). Comptes Rendus, 73, 332; Bull. Soc. chim. Paris, n. s. 15, 5.

*

On the means of increasing the intensity of metallic spectra.

Crookes (W.). Chem. News, 5, 234.

Analyse des spectres colorés par les métaux.

Debray (M. H.). Comptes Rendus, 54, 169.

Sur l'emploi de la lumière Drummond et sur la projection des raies brilliants des flammes colorées par les métaux.

Debray (M. H.). Ann. Chim. et Phys., (3) 65, 331.

Remarques sur les métaux nouveaux de la gadolinite, et de la samarskite; holmium ou philippine, thulium, samarium, décipium.

Delafontaine. Comptes Rendus, 90, 221.

Recherches sur l'influence des éléments électronégatifs sur le spectre des métaux, avec planches des spectres de chloride de cuivre et de bromide de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1.

Sur les spectres des métaux alcalins.

Diacon et Wolf. Mém. de l'Acad. de Montpellier, 1863; Comptes Rendus, 55, 334.

- Spectres des métalloïdes des familles du soufre, du chlore et de l'azote. Ditte. Bull. Soc. chim. Paris, n. s. **16**, 229.
- On the use of the prism in qualitative analysis. (Gives the absorption spectra of many coloured metallic salts.)

Gladstone (J. H.). Jour. Chem. Soc. (1858), 10, 79.

Recherches sur les spectres des métaux à la base des flammes.

Gouy. Comptes Rendus, 84, 231-4; Phil. Mag., (5) 3, 238-40; Chem. News, 35, 107-8; Beiblätter, 1, 238 (Abs.); Bull. Soc. chim. Paris, n. s. 28, 352.

Das electrische Verhalten der im Wasser oder in Salzlösungen getauchten Metalle bei Bestrahlung durch Sonnen-oder Lampen-Licht.

Hankel (W.). Ann. Phys. u. Chem., n. F. 1, 410.

Investigation by means of photography of the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195.

Beiträge zur Spectroscopie der Metalloïde.

Hasselberg (B.). Bull. Acad. St. Pétersbourg, 27, 405-17.

Auflösung heller Streifen in Metallspectren.

Jahresber. d. Chemie., 15, 29.

Unterschiede in den Spectren bei Anwendung der Metalle oder der Chlormetalle.

Jahresber, d. Chemie, 15, 31, 32.

Constanz der Metallspeetren.

Jahresber, d. Chemie, 15, 32.

Electrische Metallspeetren.

Jahresber, d. Chemie, **15**, 33; **16**, 104, 105, 107, 113; **17**, 115; **18**, 90, 91.

Einfluss nichtmetallischer Elemente auf die Speetra der Metalle.

Jahresber, d. Chemie, 18, 87.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des

Juhresber, d. Chemie, 18, 90.

Objectivdarstellung der Metallspectren.

Jahresber, d. Chemie, 26, 147.

Spectren der Metalloïden.

Jahresber, d. Chemie, 26, 149.

Metallspectra.

Jahresber, d. Chemie, 28, 122.

Absorptiouspeetra von Metalldämpfen.

Jahresber, d. Chemie, 28, 124, 125.

Quelques spectres métalliques; plomb, chlorure d'or, thallium, lithium. Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Bull. Soc. chim. Paris, n. s. 21, 125-6.

Sur un nouveau ordre des spectres métalliques.

Lecoq de Boisbaudran (F.). Comptes Rendus, 100, 1437-40; Jour. Chem. Soc., 48, 949 (Abs.).

Spectra of metallic compounds.

Leeds (A. R.). Jour. Franklin Inst., 90, 194

Reversal lines of metallic vapours.

Liveing (G. D. and Dewar (J.). Proc. Royal Soc., (No. I) 27, 182-6; (No. II) 27, 350-4; (No. III) 27, 494-6; (No. IV) 28, 352-8; (No. V) 28, 367-72; (No. VI) 28, 471-5; (No. VII) 29, 402-6. Beiblätter, 2, 261 (Abs.), 490 [Abs.]; 3, 710 [Abs.]; 4, 3, 4 [Abs.].

.

On the disappearance of some spectral lines and the variations of metallic spectra due to mixed vapours.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., **33**, 428-34; Jour. Chem. Soc., **44**, 2-3 (Abs.); Beiblätter, **6**, 676 (Abs.).

Spectral lines of the metals developed by exploding gases.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73.

On the circumstances producing the reversal of the spectral lines of metals.

Liveing (G. D.) and Dewar (J.). Proc. Philosoph. Soc. Cambridge, 4, 256-65; Beiblätter, 7, 530 (Abs.).

Quantitative analysis of certain alloys by means of the spectroscope.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 21, 507-8;
Phil. Trans., 164, 495-9;
Phil. Mag., (4) 47, 311 (Abs.);
Jour. Chem. Soc., (2) 12, 495 (Abs.);
Ber. chem. Ges., 6, 1426 (Abs.).

On the absorption spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-9; Phil. Mag., (5) 1, 234-9; Jour. Chem. Soc., 1872, 2, 156 (Abs.).

On a new method of studying metallic vapours.

Lockyer (J. N.). Proc. Royal Soc., 22, 371-8; 29, 266-72; Beiblätter, 4, 36 (Abs.).

Notice sur les nouveaux métaux obtenus du gadolinite.

Mendelejeff. Jour. Soc. phys. chim. russe, 13, 517-20; Bull. Soc. chim. Paris, 38, 139-43.

Spectra der Haloïdsalze.

Mitscherlich (A.). Ann. Phys. u. Chem., 121, 474.

De l'influence de la température sur les spectres des métalloïdes.

Monckhoven (D. von). Comptes Rendus, 95, 520.

Sur le spectre des métaux alcalins dans les tubes de Geissler.

Salet (G.). Comptes Rendus, 82, 223-6, 274-5; Nature, 13, 314; Phil.
Mag., (5) 1, 331-3; Jour. Chem. Soc., 1876, 1, 863 (Abs.); Ann.
Phys. u. Chem., 158, 329-334.

Sur les spectres des métalloïdes.

Salet (G.). Ann. Chim. et Phys., (4) 28, 5-71; Chem. News, 27, 59, 178 (Abs.).

On the spectra of the metalloids.

Schuster (A.). Phil. Trans. (1879), 170, 37-54; Proc. Royal Soc.,
27, 383-8 (Abs.); Beiblätter, 1, 289; 2, 492 (Abs.); 3, 749 (Abs.);
Jour. Chem. Soc., 38, 430 (Abs.); Nature, 15, 447-8.

Les spectres du fer et de quelques autres métaux dans l'arc voltaïque. Secchi (A.). Comptes Rendus, 77, 173; Chem. News, 28, 82.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; nouvelle étude des spectres d'absorption des métaux terreux.

Sorct (J. L.). Arch. de Genève, (3) 4, 261-92; Beiblätter, 5, 124 (Abs.).

Sur la fluorescence des sels des métaux terreux.

Soret (J. L.). Comptes Rendus, 88, 1077-8; Jour. Chem. Soc., 36, 862 (Abs.); Beiblatter, 3, 620 (Abs.).

Mémoire sur la détermination des longueurs d'onde des raies métalliques; spectres des métaux dessinés d'après leurs longueurs d'onde.

Thalén (R.). Ann. Chim. et Phys., (4) 18, 202.

Optische Eigenschaften dünner metallischen Schichten.

Voigt (W.). Ann. Phys. u. Chem., (2) 25, 95-114.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 321.

Ueber die Absorption und Brechung des Lichtes in metallisch undurchsichtigen Körpern.

> Wernicke (W.). Monatsber. d. Berliner Akad. (1874), 728-37; Ann. Phys. u. Chem., 155, 87-95.

> > -

Electrische Spectra der Metalle.

Willigen (S. M. von der). Ann. Phys. u. Chem., 106, 619.

METEOROLOGICAL.

The spectroscope and weather forecasting.

Abercromby (R.). Nature, 26, 572-3.

Rain-band Spectroscopy.

Bell (L.). Amer. Jour. Sci., (3) 30, 347.

A plea for the rain-band.

Capron (J. R.). Observatory (1882), 42-7, 71-7; Beiblätter, 6, 485 (Abs.).

The spectroscope as an aid to forecasting the weather.

Cory (F. W.). Quar. Jour. Meteorolog. Soc., 9, 234-9.

Ueber Regenbogen gebildet durch Flüssigkeiten von verschiedenen Brechungsexponenten.

Hammerl (H.). Sitzungsber. d. Wiener Akad., 86 II, 206-15; Beiblätter, 7, 383 (Abs.).

Spectroscopic observation of the red-coloured sky at sunset, 1884, Jan. 9, 5 h. 20 min.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250-1.

Observations, à propos d'une note récente de M. Reye sur les analogies qui existent entre les taches solaires et les tourbillons de notre atmosphère.

Marié-Davy. Comptes Rendus, 77, 1227-9.

The green Sun.

Manley (W. R.). Nature, 28, 611-12.

Observations on the rain-band from June, 1882, to Jan., 1883.

Mill (H. R.). Proc. Royal Soc. Edinburgh, 12, 47-56.

Note sur les cyclones terrestres et les cyclones solaires.

Parville (H. de). Comptes Rendus, 77, 1230-3.

The solar spectrum in a hail-storm.

Romanes (C. H.). Nature, 25, 507; Beiblätter, 6, 486 (Abs.).

The spectroscope and the weather.

Smith (C. Mitchie). Nature, 12, 366.

The green Sun.

Smith (C. Mitchie). Nature, 29, 28.

The remarkable sunsets.

Smith (C. Mitchie). Nature, 29, 381-2.

Spectroscopic prevision of rain with a high barometer.

Smith (C. Piazzi). Nature, 12, 231-2, 252-3; Ann. Phys. u. Chem., 157, 175 (Abs.).

The warm rain-band in the daylight spectrum.

Smyth (C. Piazzi). Nature, 14, 9.

Three years' experimenting in spectrum analysis.

Smith (C. Piazzi). Nature, 22, 193.

Spectroscopic weather discussions.

Smyth (C. Piazzi). Nature, 26, 551-4; Beiblätter, 6, 877 (Abs.).

Rain-band spectroscopy attacked again.

Smyth (C. Piazzi). Nature, 29, 525; Zeitschr. d. oesterreicher Ges. f. Meteorol , 14, 151-2.

Precédé pour déterminer la direction et la force du vent ; suppression des girouettes ; application aux cyclones.

Tarry (H.). Comptes Rendus, 77, 1117-20.

The use of the spectroscope in meteorological observations.

Upton (Winslow). U. S. Signal Service Notes (1882), No. 4; Mean. Spettr. ital., 13, 113-18.

MICROSCOPIC SPECTRA

Prismatic examination of microscopic objects.

Huggins (William). Trans. Roy. Microscopical Soc. (1865); Quar-Jour. Microscopical Sci., July, 1865.

. .

Anwendung der Spectralanalyse auf mikroscopische Untersuchungen.

Jahresber, d. Chemie (1867), 105.

MINERAL WATERS.

La lithine, la strontiane et l'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, **95**, 999-1001; Jour. Chem. Soc., **44**, 301 (Abs.).

Existence de l'acide borique en quantité notable dans les lacs salés de la période moderne et dans les eaux salines naturélles, qu'elles soient ou non en relation avec des produits éruptifs.

Dieulafait. Ann. Chim. et Phys., (5) 25, 145-67.

- Untersuchung einiger Mineralwässer und Soole mittelst Spectralanalyse.

 Redtenbacher (Jos.). Sitzungsber. d. Wiener Akad., 44 II, 137, 151, 153-4.
- Sur l'origine de la lithine et de l'arsénic dans les eaux sulfatées calciques. Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-63; Jour. Chem. Soc., 44, 302 (Abs.).
- Spectral-reactionen bündnerischen Gesteine und Mineralwässer. Simmler (R. Th.). Ann. Phys. u. Chem., 115, 434-48.
- De la présence de la lithine dans le sol de la Limagne et dans les eaux minérales d'Auvergne. Dosage de cet alcali au moyen du spectroscope.

Truchot (P.). Comptes Rendus, 78, 1022-4: Ber. chem. Ges., 7, 653.

MINIUM.

Spectre du minium.

Lallemand (A.). Comptes Rendus, 78, 1272.

MOLYBDENUM.

Molybdenum arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 37.

MOSANDRUM.

Le mosandrum, un nouvel élément.

Smith (J. Lawrence). Comptes Rendus, 87, 148-51; note par M. Delafontaine, Comptes Rendus, 87, 600-2, and Jour. Chem. Soc., 36, 117 (Abs.).

MULTIPLE SPECTRA.

Multiple Spectra.

Lockyer (J. N.). Nature, 22, 4-7, 809-12, 562-5; Beiblätter, 5, 118-22 (Abs.).

-

NICKEL.

Nickel arc spectrum; nickel spark spectrum; bismuth and nickel spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 20, 38.

Salpetersaure Nickellösung als Absorptionspräparat.

Emsmann (H.). Ann. Phys. u. Chem., Ergänzungsband, 1874, 6, 334;Phil. Mag., (4) 46, 329;Jour. Chem. Soc., (2) 12, 113.

Spectrum von Nickel.

Jahresber. d. Chemie, (1872) 145, (1873) 154.

Chlorure de nickel en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 133, planche XIX.

Ueber die Erkennung des Kobalts neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., **12**, 2313-16; Beiblätter, **4**, 278 (Abs.); **5**, 118 (Abs.).

NIOBIUM.

Niobium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 38.

NITROGEN.

Spectrum von Stickoxyd, und von Stickstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 156-7.

Spectre de l'acide azotique fumant.

Becquerel (H.). Comptes Rendus, 85, 1227.

Spectre de l'azote.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectre du protoxyde de l'azote.

Becquerel (II.). Comptes Rendus, 90, 1407.

Absorption spectrum of nitrogen peroxide.

Bell (L.). Amer. Chem. Jour., 7, 32-4; Jour. Chem. Soc., 48, 949 (Abs.).

Observations of the lines of the solar spectrum, and on those produced by the Earth's atmosphere and by the action of uitrous acid gas.

Brewster (Sir D.). Phil. Mag., (3) 8, 384.

Carattere spettroscopico della soluzione ammoniacale di carminio, di cocciniglia e di altre sostanze.

Campani (G.). Gazz. chim. ital., 1, 471-2; Jour. Chem. Soc., (2) 9, 1096 (Abs.); Ber. chem. Ges., 5, 287.

Nitrogen spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 55.

Sur le spectre d'absorption de l'acide pernitrique.

Chappuis (J.). Comptes Rendus, 94, 946-8; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 483 (Abs.); Amer. Jour. Sci., (3) 24, 58 (Abs.); Jour. de Phys., (2) 3, 48.

Spectre des bandes de l'azote, son origine.

Deslandres (II.). Comptes Rendus, **101** (1885), 1256-60; Jour. Chem. Soc., **50**, 189 (Abs.).

Spectre de l'azote.

Deslandres (H.). Comptes Rendus, 103, 375-9; Jour. Chem. Soc., 50, 957 (Abs.); Beiblatter, 11, 36 (Abs.).

-

Spectrum von Ammoniak und von Schwefelammon.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 518, 534.

Les lacs salpêtres naturels du Chili et du Pérou.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Spectres appartenant aux familles de l'azote et du chlore.

Ditte (A.). Comptes Rendus, 73, 738; Bull. Soc. chim. Paris, n. s. 16, 229.

Salpetersaure Nickellösung.

Emsmann (H.). Ann. Phys. u. Chem., Ergänzungsband, 6 (1873), 334; Jahresber. d. Chemie (1873), 154.

Recherches sur l'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Fiévez (C.). Bull. Acad. Belgique, (2) 49, 107-113; Phil. Mag., (5)
9, 309-12; Beiblätter, 4, 461 (Abs.); Ann. Chim. et Phys., (5) 20,
179-85; Jour. Chem. Soc., 40, 69-70.

Action of nitrates on the blood.

Gamge (A.). Phil. Trans. (1868), 589; Jour. prackt. Chemie, 105, 287; Ber. chem. Ges., 9, 833.

Sur les raies d'absorption produites dans le spectre par les solutions des acides hypoazotiques.

Gernez (D.). Comptes Rendus, 74, 465-8; Jour. Chem. Sac., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 218; Bull. Soc. chim. Paris, n. s. 17, 257.

Note sur le prétendu spectre d'absorption spécial de l'acide azoteux. Gernez (D.). Bull. Soc. Philom., (7) 5, 42.

The refraction equivalents of nitrogen, etc., in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., **31**, 327-330; Ber. chem. Ges., **14**, 1553 (Abs.).

Spectres de l'azotate de cuivre, de l'azotate de manganèse, de l'azotate de plomb.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Spectre de l'azotate d'argent.

Gouy. Comptes Rendus, 84, 231.

Azotate.

Gouy. Comptes Rendus, 85, 70.

Zur Spectroscopie des Stickstoffs.

Hasselberg (B.). Mém. de l'Aead. de St. Pétersbourg, (7) 32, 50 pp. sep.; Beiblätter, 9, 578 (Abs.).

Ueber die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-101; Jour. Chem. Soc., (2) 11, 340 (Abs.).

Spectrum des Stickstoffs.

Jahresber, d. Chemie, 16 (1863), 110; 25 (1872), 142, 144, 145.

Absorptionsspectrum des Dampfs der salpetrigen-und untersalpeter-Säure.

Jahresber, d. Chemie, 22 (1869), 183.

Spectroscopische Untersuchung der Absorptionsspectren der flüssigen Untersalpetersäure.

Juhresber, d. Chemie, 23 (1870), 172; 25 (1872), 137.

Absorptionsspectrum des Didymnitrats.

Jahresber. d. Chemie, 23 (1870), 321.

Absorptionsspectrum der Ammoniakflamme.

Jahresber, d. Chemie, 25 (1872), 142, 143.

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 142, 157-9; Zeitschr. f. analyt. Chem., (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

Azotate d'argent en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 167, planche XXV.

Constitution des spectres lumineux.

Lecoq de Boisbaudran (F.). Comptes Rendus, 70, 144, 974, 1090.

Spectre du nitrate de didyme.

Lecoq de Boisbaudran (F.) et Smith (Lawrence). Comptes Rendus. 88, 1167.

-

Spectre du nitrate de décipium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

Spectre du nitrate de samarium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

Spectre de l'ammoniaque par renversement du courant induit. Lecoq de Boisbaudran (F.). Comptes Rendus, 101, 42-5.

Spectres des vapeurs aux températures élévées, nitrogène.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Chem. News, 30, 98.

Sur les spectres de l'acide azoteaux et du peroxyde d'azote.

Luck (E.). Bull. Soc. chim. Paris, n. s. 13, 498.

Absorption bands of nitrous acid gas.

Miller (W. Hallows). Phil. Mag., (3) 2, 381.

Benützung des Ammoniaks zur Spectralanalyse.

Mitscherlich. Jour. prackt. Chemie, 86, 14.

Die Spectren der salpetrigen und der untersalpetrigen Säure.

Moser (J.). Ann. Phys. u. Chem., n. F. 2, 139-40.

Spectrum von Stickgas, und von Stickoxydul.

Plücker. Ann. Phys. u. Chem., 105, 76, 81.

Spectra am negativen Pol im Stickstoff und Wasserstoffröhren; Modification beider Röhren nach langem Gebrauch.

Reitlinger (E.). Ann. Phys. u. Chem., 141, 135.

Spectrum einer Lösung von salpetersauren Didymoxyd. Rood (O. N.). Ann. Phys. u. Chem., 117, 350.

Sur le spectre de l'azote et sur celui des métaux alcalins dans les tubes de Geissler.

Salet (G.). Comptes Rendus, 82, 223-6, 274-5; Nature, 13, 314;
Phil. Mag., (5) 1, 331-3; Jour. Chem. Soc., 1876, 1, 863-4 (Abs.);
Ann. Phys. u. Chem., 158, 329-34.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft; Stickstoff gibt je nach der Temperatur drei Spectra.

Schimkow (A.). Ann. Phys. u. Chem., 129, 513-16.

Ueber die Absorption des Lichts durch Ammoniak, etc.

Sehönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 8 (1878), 670-5; Jour. Chem. Soc., 34, 693 (Abs.).

On the spectrum of nitrogen.

Schuster (A.). Proc. Royal Soc., 20, 484-7; Phil. Mag., (4) 44, 537-41; Ann. Phys. u. Chem., 147, 106-12; Amer. Jour. Sci., (3) 5, 131 (Abs.); Jour. Chem. Soc., (2) 11, 340 (Abs.).

Bestimmung der Salpetersäure auf spectralanalytischem Wege. Settegast (H.). Zeitschr. f. analyt. Chemie, 20, 116-117.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

Spectrum of nitrogen.

Stearn (C. H.). Nature, 7, 463.

Spectrum von Stickstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 578.

Ueber allmähliche Ueberführung des Bandenspectrums des Stickstoffs in ein Linienspectrum.

Vogel (H. C.). Sitzungsber, d. Münchener Akad. (1879), 171-207;
Ann. Phys. u. Chem., n. F. 8, 590-623.

On the changes produced in the position of the fixed lines in the spectrum of hyponitric acid by changes in density.

Weiss (A.). Phil. Mag., (4) 22, 80.

Ueberinstimmung der Absorptionsspectra von Untersalpetersäure mit den Spectren dessen Dampfes.

Wullner (A.). Ann. Phys. u. Chem., 120, 159.

Die beiden Stickstoffspectra nicht durch Unterschiede der Temperatur, sondern der Entladungsart erklärbar.

Wullner (Ann. Phys. u. Chem., 135, 526.

Spectra des Stickstoffs unter hohem Druck.

Wullner (A.). Ann. Phys. u. Chem., 137, 356.

Das Spectrum des Stickstoffs ist vielfach; Antwort auf Angström.
Wüllner (A.). Ann. Phys. n. Chem., 144, 520.

- 77

NOMENCLATURE.

Spectroscopic Nomenclature.

Herschel (J.). Nature, 5, 499-500; 6, 438-4.

Spectroscopic Nomenclature.

Young (C. A.). Nature, 6, 101.

OPTICS.

(With special reference to the spectroscope.)

Optische Untersuehungen.

Angström (A. J.). Ann. Phys. u. Chem., 94, 141; Phil. Mag., (4) 9, 327.

Zwei optische Beobachtungsmethoden.

Christiansen (C.). Ann. Phys. u. Chem., 141, 470.

Optische Untersuchungen einiger Reihen isomorpher Substanzen.

Christiansen (C.) und Topsoe (Haldor). Ann. Phys. u. Chem., Ergänzungsband, 6 (1874), 499.

Die optischen Eigenschaften von fein vertheilten Körpern.

Christiansen (C.). Ann. Phys. u. Chem., n. F. 23, 298.

Ueber einen optischen Versueh.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 340.

Optical Notes.

Gibbs (Wolcott). Proc. Amer. Acad., vol. 10; Ann. Phys. u. Chem., 156, 120.

Optische Controversen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 18, 387-421, 631-63.

Elementare Behandlung einiger optischen Probleme.

Lommel (E.). Ann. Phys. u. Chem., 156, 578-90.

Die Newton'schen Staubringe.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 194.

Zur Theorie des Lichtes.

Lominel (E.). Ann. Phys. u. Chem., n. F. 16, 427.

Optische Experimental-Untersuchungen. Ueber das Verhalten des polarisirten Lichtes bei der Beugung.

Quincke (G.). Ann. Phys. u. Chem., 149, 273-324.

Investigations in optics, with special reference to the spectroscope.

Rayleigh (Lord). Phil. Mag., (5) 8, 261-274, 403-11, 477-86; 9, 40-55; Beiblätter, 4, 360.

-

OSMIUM.

On the spectrum of osmium.

Fraser (W.). Chem. News, 8, 34.

Spectrum des Osmiums.

Jahresber. d. Chemie, 16 (1863), 112.

OXYGEN.

The acceleration of oxidation caused by the least refrangible end of the spectrum.

Abney (W. de W.). Proc. Royal Soc., 27, 291, 451.

Spectres des gaz simples; l'oxygène.

Angström (A. J.). Comptes Rendus, 73, 369.

Spectrum von Sauerstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 155.

Sauerstoff hat nur ein Spectrum; die vielfachen rühren bei Bemengungen her.

Angström (A. J.). Ann. Phys. u. Chem., 144, 302, 304.

Recherches expérimentales sur la polarization rotatoire magnétique dans les gaz; oxygène.

Becquerel (H.). Comptes Rendus, 90, 1407.

Ueber das Verhalten von Blut und Ozon zu einander.

Rinz (C.). Medicinalisches Centralblatt, 20, 721-5; Chem. Centralblatt (1882), 810-11; Jour. Chem. Soc., 44, 486-7 (Abs.).

Oxygen spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 65-7.

Spectre d'absorption de l'ozone.

Chappuis (J.). Comptes Rendus, 91, 985; 94, 858-60; Chem. News.
45, 163 (Abs.); Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 482 (Abs.); Amer. Jour. Sci., (3) 24, 56 (Abs.).

Étude spectroscopique sur l'ozone.

Chappuis (J.). Ann. de l'École normale, (2) 11, 137-87; Beiblätter, 7, 458 (Abs.).

Étude sur la part de la lumière dans les actions chimiques et en particulier dans les oxydations.

> Chastaing (P.). Ann. Chim. et Phys., (5) 11, 145–223; Jour. Chem. Soc., 1877, 2, 818 (Abs.); Beiblatter, 1, 517–20 (Abs.).

On the coïncidence of the bright lines of the oxygen spectrum with bright lines in the solar spectrum.

Draper (H.). Mouthly Notices Astronom. Soc., 39, 440-7; Amer. Jour. Sei., (3) 18, 262-76; Beiblätter, 4, 275 (Abs.); Comptes Rendus, 88, 1332 (Abs.).

-

Dark lines of oxygen in the spectrum of the Sun.

Draper (J. C.). Amer. Jour. Sci., (3) 16, 256; (3) 17, 448; Nature,
18, 654; note by Barker (G. F.), Amer. Jour. Sci., (3) 17, 162-6;
Nature, 19, 352-3; Beiblätter, 3, 188 (Abs.).

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire par une couche absorbante d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555; Amer. Jour. Sci., (3) 26, 477.

Spectre d'absorption de l'oxygène.

Egoroff (N.). Comptes Rendus, **101**, 1143-45; Jour. Chem. Soc., **50**, 189 (Abs.).

Sauerstoffausscheidung von Pflanzenzellen im Mikrospeetrum.

Engelmann (T. W.). Pflüger's Archiv. f. Physiologie, 27, 485-90;
Chem. News, 47, 11 (Abs.); Beiblätter, 7, 377 (Abs.).

On the combustion of hydrogen and carbonic oxide in oxygen under great pressure.

Franckland. Proc. Royal Soc., 16, 419.

The refraction equivalents of oxygen, etc., in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Abs.).

The absorption spectrum of ozone.

Hartley (W. N.). Jour. Chem. Soc., **39**, 57-60; Ber. chem. Ges., **14**, 672 (Abs.); Beiblätter, **5**, 505 (Abs.).

On the absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-28; Ber. chem. Ges., 14, 1340 (Abs.); Beiblätter, 5, 505 (Abs.).

Einfacher Versuch zur Demonstration der Sauerstoffausscheidung durch Pflanzen im Sonnenlichte.

Hoppe-Seyler (F.). Zeitschr. f. physiol. Chemie, **2**, 425-6; Ber. chem. Ges., **12**, 701 (Abs.); Jour. Chem. Soc., **36**, 819 (Abs.).

Sur les spectres d'absorption de l'oxygène.

Janssen (J.). Comptes Rendus, 102, 1352-3; Jour. Chem. Soc., 50, 749 (Abs.); Beiblatter, 11, 93.

Spectre de l'oxyde de cuivre.

Lullemand (A.). Comptes Rendus, 78, 1272.

Sur les spectres de l'acide azoteux et du peroxyde de l'azote.

Luck (E.). Bull. Soc. chim. Paris, n. s. 13, 498.

Oxygen in the Sun.

Meldola (R.). Nature, 17, 161-2; Beiblatter, 2, 91.

Das Sauerstoffspectrum und die electrischen Lichterscheinungen verdünnter Gaze in Röhren mit Flüssigkeitselectroden.

Paulzow (A.). Ann. Phys. u. Chem., n. F. 7, 180.

Ueber das Sauerstoffspeetrum.

Paalzow (A.) und Vogel (H. W.). Ann. Phys. u. Chem., n. F. 13, 336-8.

Spectrum von Sauerstoff.

Phicker. Ann. Phys. u. Chem., 104, 126; 105, 78.

Spectrum of Oxygen.

Schuster (A.). Phil. Trans., 170 (1879), 37-54; Proc. Royal Soc., 27, 383-8 (Abs.); Beiblätter, 2, 492 (Abs.); 3, 749 (Abs.); Jour. Chem. Soc., 38, 430.

Spectre d'acide oxalique.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Constitution of the lines forming the low temperature spectrum of Oxygen.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 30, 419-25; Phil.

Mag., (5) 13, 330-37; Nature, 25, 403 (Abs.); Jour. de Phys., (2)
2, 239 (Abs.).

Speetrum von Sauerstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 576.

Photographische Beobachtungen des Sauerstoffspectrums.

Vogel (II. C.). Ber. chem. Ges., 12, 332; Amer. Chem. Jour., 1, 71.

**

Drei Spectra bei Sauerstoff.

Wüllner (A.). Ann. Phys. u. Chem., 135, 515.

Spectra des Wasserstoffs.

Wüllner (A.). Ann. Phys. u. Chem., 137, 350; n. F. 8, 253.

PALLADIUM.

Palladium arc spectrum; palladium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 39.

Chlorure de palladium en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 184, planché XXVII.

PARAGENIC SPECTRA.

Sur la paragénie.

Babinet. Cosmos, 25, 393.

On paragenic spectra.

Brewster (Sir D.). Phil. Mag., January, 1866.

PHILIPPIUM.

On philippium.

Brown (W. G.). Chem. News, 38, 267-8; Jour. Chem. Soc., 36, 204 (Abs.).

Sur un nouveau métal, le philippium.

Delafontaine. Comptes Rendus, **87**, 559-61; Amer. Jour. Sci., (3) **17**, 61 (Abs.); Jour. Chem. Soc., **36**, 116-17 (Abs.); Beiblätter, **3**, 197 (Abs.).

PHOSPHORESCENCE.

On the violet phosphorescence in calcium sulphide.

Abney (W. de W.). Proc. Physical Soc., 5, 35-8; Nature, 35, 355 (Abs.); Phil. Mag., (5) 13, 212-14; Jour. Chem. Soc., 42, 677 (Abs.); Beiblätter, 6, 383 (Abs.); Jour. de Phys., (2) 2, 287-8.

- Propriétés de la lumière des pyrophores, examen spectroscopique.

 Aubert et Dubois. Comptes Reudus, 99, 477.
- Pouvoir phosphorescent de la lumière électrique. Becquerel (E.). Comptes Rendus, 8, 217.
- Réfringibilité des rayons qui excitent la phosphorescence dans les corps.

 Becquerel (E.). Comptes Rendus, 69, 994.
- Analyse de la lumière émise par les composés d'uranium phosphorescents.

 Becquerel (E.). Ann. Chim. et Phys., (4) 27, 539-79; Comptes Rendus, 75, 296-303; Jour. Chem. Soc., (2) 11, 25 (Abs.); Amer. Jour. Sci., (3) 4, 486 (Abs.).
- Sur l'observation de la partie infra-rouge du spectre solaire, au moyen des effets de phosphorescence.

Becquerel (E.). Comptes Rendus, 96, 1215; Ann. Chim. et Phys., (5) 10, 5-13; Jour. de Phys., 6, 137.

Les spectres des corps phosphorescents.

Becquerel (E.). La Lumière, tome I, 207.

Étude spectrale des corps rendus phosphorescents par l'action de la lumière ou par les décharges électriques.

Becquerel (E.). Comptes Rendus, 101, 205-210.

- Effets du manganèse sur la phosphorescence du calcium carbonate.

 Becquerel (É.). Comptes Rendus, 103, 1098.
- Phosphorescence de l'alumine.

Becquerel (E.). Comptes Rendus, 103, 1224; Amer. Jour. Sci., (3 33, 303 (Abs.); Jour. Chem. Soc., 52, 409 (Abs.); Chem. News, 55, 99 (Abs.).

Étude des radiations infra-rouges au moyen des phénomènes de phosphorescence.

Becquerel (H.). Comptes Rendus, 96, 1215; Ann. Chim. et Phys., 15) 30, 5-68; Beiblätter, 8, 120 (Abs.).

.

Maxima et minima d'extinction de la phosphorescence sous l'influence des radiations infra-rouges.

Beequerel (H.). Comptes Rendus, 96, 1853.

Résultats de ses recherches sur les effets de phosphorescence.

Becquerel (H.). Bull. Soc. franç. de Physique (1883), 24-5.

Sur les variations des spectres d'absorption et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102, 106-10.

Sur de nouveaux procédés pour étudier la radiation solaire, tant directe que diffuse, dans ses rapports avec la phosphorescence.

Biot. Comptes Rendus, 8, 259, 315.

Spectrum of the light emitted by the glow-worm.

Conroy (Sir J.). Nature, 26, 319; Beiblätter, 6, 880 (Abs.).

De la lumière verte et phosphorescente du choc moléculaire.

Crookes (W.). Comptes Rendus, 88, 283-4.

Discontinuous phosphorescent spectra in high vacua.

Crookes (W.). Proc. Royal Soc., 32, 206-13; Chem. News, 43, 237-9;
Nature, 24, 89; Comptes Rendus, 92, 1281-3; Beiblätter, 5, 511-13;
Ann. Chim. et Phys., (5) 23, 555.

Les vibrations de la matière et les ondes de l'ether dans la phosphorescence et la fluorescence.

Favé. Comptes Rendus, 86, 289-94.

Wirkung der verschiedenen Theile des Spectrums auf phosphorescirende Substanzen.

Jahresber. d. Chemie, 1 (1847), 164.

Spectren des Lichts phosphorescirender Thiere.

Jahresber. d. Chemie, 17 (1864), 115.

Spectrum des Phosphorenzlichts von Chlorophan, Phosphorit und Flusspath.

Kindt. Ann. Phys. u. Chem., 131, 160; Phil. Mag., Dec., 1867.

Phosphorescence de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103, 1224-7; Jour. Chem. Soc., 52, 191 (Abs.).

Sichtbare Darstellung des Brennpuncktes der ultrarothen Strahlen durch Phosphorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) **26**, 157-9; Phil. Mag., (5) **20**, 547.

Beobachtungen über Phosphorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 30, 473-87; Jour. Chem. Soc., 52, 410 (Abs.).

(Gives the phosphorescent spectra of 16 substances prepared by Dr. Schuchardt and with Balmain's paint.)

Lumière phosphorescent des cucuyos.

Pasteur. Comptes Rendus, 59, 509; Ann. Phys. u. Chem., 124, 192; Jour. prackt. Chemie, 93, 381.

Ueber die Phosphorescenz der organischen und organisirten Körper.

Radziszewski (B.). Ann. Chem. u. Pharm., 203, 305-36; Beiblätter, 4, 620 (Abs.).

Spectrum of the light of the glow-worm.

Spiller (J.). Nature, 26, 343; Beiblätter, 6, 880.

On the causes of a light border frequently noticed in photographs just outside the outline of a dark body seen against the sky; with some introductory remarks on phosphorescence.

Stokes (G. G.). Proc. Royal Soc., 34, 63-68; Nature, 26, 142-3; Beiblätter, 6, 682 (Abs.).

Sur les causes déterminantes de la phosphorescence du sulfure de calcium. Verneuil (A.). Comptes Rendus, 103, 501-4; Beiblätter, 11, 253.

Un composé de calcium sulphide ayant une phosphorescence violette.

Verneuil (A.). Comptes Rendus, 103, 600-3; Jour. Chem. Soc., 52, 2 (Abs.).

9

PHOSPHORUS.

Coloration de la flamme et de ses composés, spectre du phosphore.

Christofle (P.) et Beilstein (F.). Comptes Rendus, **56**, 399; Ann. Chim. et Phys., (4) **3**, 281.

Spectre du phosphate.

Gouy. Comptes Rendus, 85, 70.

Ueber phosphorhaltigen Stahl.

Greiner (A.). Dingler's Jour., 217, 33-41; Jour. Chem. Soc., 1876, 1, 454-7 (Abs.).

Ueber die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-101; Jour. Chem. Soc., (2) 11, 340 (Abs.).

Spectra of phosphoric acid blowpipe beads.

Horner (C.). Chem. News, 29, 66.

Spectrum des Phosphors.

Jahresber. d. Chemie, **16** (1863), 111; **17** (1864), 109; **23** (1870), 173.

Absorptionsspectrum des Phosphorwasserstoffs.

Jahresber. d. Chemie, 25 (1872), 142.

Spectrum des Phosphorescenzlichts von Phosphorit.

Kindt. Ann. Phys. u. Chem., 131, 160.

Sur la diffusion lumineuse du phosphore de cuivre obtenu sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 693.

Phosphate d'erbine, émission.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 92, 97, planche XIV.

Sur les spectres des vapeurs aux températures élévées; phosphore.

Lockyer (J. N.). Comptes Rendus, 78, 178, 1790; Nature, 30, 98.

Expériences spectrales tendant à démontrer la nature composé du phosphore.

Lockyer (J. N.). Comptes Rendus, 89, 514-15; Beiblätter, 4, 132 (Abs.).

Spectrum des Phosphors, etc.

Mulder. Jour. prackt. Chemie, 91, 111.

Recherche du soufre et du phosphore par le spectroscope. Salet (G.). Bull. Soc. chim. Paris, n. s. 13, 289.

Spectres du phosphore et des composés de silicium.

Salet (G.). Comptes Rendus, 73, 1056-59.

Sur les spectres du phosphore et du soufre.

Seguin (J. M.). Comptes Rendus, 53, 1272; Phil. Mag., (4) 23, 416.

PLATINUM.

Platinum arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 39.

Spectre de chlorure de platine.

Gouy (J. R.). Comptes Rendus, 84, 231; Chem. News, 35, 107.

Distribution of heat in the spectra of various scources of radiation; platinum.

Jacques (W. W.). Proc. Amer. Acad., 14, 156.

Die optische Eigenshaften der Platincyanüre.

König (W.). Ann. Phys. u. Chem., n. F. 19, 491.

Spectre du noir de platine.

Lallemand (A.). Comptes Rendus, 78, 1272.

Chlorure de platine en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 181, planche XXVII.

Spectre du platine incandescent.

Masson (A.). Comptes Rendus, 32, 127.

On the character and intensity of the rays emitted by glowing platinum. Nichols (E. L.). Amer. Jour. Sci., (3) 18, 446-68.

Radiation du platine incandescent, spectre du platine.

Violle (J.). Comptes Rendus, 88, 171.

Intensités lumineuses des radiations émises par le platine incandescent.

Violle (J.). Comptes Rendus, **92**, 866-8, 1204-6; Beiblätter, **5**, 503 (Abs.).

POLARIZED LIGHT.

Die Phasenveränderung des parallel zur Einfallsebene polarisirten Lichts durch Reflexion.

Glan (P.). Ann. Phys. u. Chem., 156, 243.

Polarizationswinkel des Fuchsins.

Glan (P.). Ann. Phys. u. Chem., n. F. 7, 321.

Absorption und Emission des polarisirten Lichtes.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 296.

Sur l'illumination des corps transparents par la lumière polarisée.

Lallemand (A.). Comptes Rendus, 69, 917.

Sur la polarization rotatoire du quartz.

Soret (J. L.). Arch. de Genève, (3) 8, 5-59, 97-132, 201-28; Jour. de Phys., (2) 2, 381-6 (Abs.).

Elliptische Polarization des Lichtes und ihre Beziehung zu den Oberflüchenfarben der Körper.

Wiedemann (E.). Ann. Phys. u. Chem., 151, 1.

Ueber die elliptische Polarization des von durchsichtigen Körpern reflectirten Lichtes.

Wernicke (W.). Ann. Phys. u. Chem., (2) 30 (1887), 452-69.

POTASSIUM.

Absorptionsspectrum des übermangansauren Kalis und seine Benützung bei chemisch analytischen Arbeiten.

Brücke (E.). Sitzungsber. d. Wiener Akad., **74** III, 428; Chem. Centralblatt, (3) **9**, 139-43; Jour. Chem. Soc., **34**, 242 (Abs.).

On the light reflected by potassium permanganate.

Conroy (Sir J.). Proc. Physical Soc., 2, 340-44; Phil. Mag., (5) 6, 454-8; Jour. Chem. Soc., 36, 425 (Abs.).

Transparence des flammes colorées pour leurs propres radiations; la double raie du potassium.

Gouy. Comptes Rendus, 86, 1078.

Spectrum des Kaliums.

Jahresber. d. Chemie, 16'(1863), 112.

Linien von Kalium.

Kirchhoff (G.). Ann. Phys. u. Chem., 110, 173.

Permanganate de Potasse en solution, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 108, planche XVI.

Sulfate de potasse fondu, étincelle; chlorure de potassium dans le gas.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 48, planche V.

On the spectra of sodium and potassium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 398-402; Beiblätter, 4, 368 (Λbs.).

Sur le chromocyanure de potassium.

Moissan (H.). Comptes Rendus, 93, 1079-81; Chem. News, 45, 22 (Abs.); Ber. chem. Ges., 15, 243 (Abs.).

Absorption spectra of sodium and potassium at low temperatures.

Roscoe (H. E.) and Schuster (A.). Proc. Royal Soc., 22, 362.

Modifications of the spectrum of potassium which are effected by the presence of phosphoric acid.

Thudichum (J. L. W.). Proc. Royal Soc., 30, 278-86.

Ueber das von übermangansaurem Kali reflectirten Licht.

Wiedemann (E.). Ber. d. k. sächs. Ges. d. Wiss. zu Leipzig, 25, 367–70;
Ann. Phys. u. Chem., 151, 625–28;
Phil. Mag., (4) 48, 231–33;
Jour. Chem. Soc., (2) 13, 120 (Abs.).

PRESSURE.

De l'influence de la pression sur les raies du spectre.

Cailletet (L.). Bull. Soc. chim. Paris, n. s. 18, 213; Ber. chem. Ges., 5, 482; Comptes Rendus, 74, 1282.

-

Gasspectren bei steigendem Druck.

Jahresber, d Chemie, 22 (1869), 178.

Einfluss des Drucks auf das Spectrum.

Jahresber. d. Chemie, 25 (1872), 142.

Effect of pressure on the character of the spectra of gases.

Stearn (C. H.) and Lee (G. H.). Proc. Royal Soc., 21, 282.

RADIATION.

Réflexions à l'occasion d'une experience de M. Dumas relative à la formation d'un acide nouveau sous l'influence de la radiation solaire.

Biot. Comptes Rendus, 8, 622.

Sur les radiations chimiques de la lumière.

Biot. Comptes Rendus, 12, 170.

Radiant Matter Spectroscopy; the Bakerian lecture.

Crookes (W.). Proc. Royal Soc., **35**, 262; Chem. News, **47**, 261; **49**, 159, 169, 181, 194, 205; **51**, 301.

Détermination du pouvoir éclairant des radiations simples.

Crova (A.) et Lagarde. Comptes Rendus, **93**, 959; Jour. de Phys., (2) **1**, 162-9.

De la loi d'absorption des radiations de toute espèce à travers les corps, et de son emploi dans l'analyse spectrale quantitative.

Govi (G.). Comptes Rendus, 85, 1046-9, 1100-3; Phil. Mag., (5) 5, 78-80; Jour. Chem. Soc., 34, 190 (Abs.); Beiblätter, 2, 342 (Abs.).

On the relation between the radiating and absorbing powers of different bodies for light and heat.

Kirchhoff (G.). Phil. Mag., (4) 20, 1.

Ueber Ausstrahlung und Absorption.

Lecher (E.). Sitzungsber. d. Wiener Akad., 85 II, 441-90; Ann. Phys. u. Chem., n. F. 17, 477-518.

The dynamical theory of radiation.

Schuster (A.). Phil. Mag., (5) 12, 261-6; Beiblätter, 5, 793.

RED END OF THE SPECTRUM.

Photography of the red end of the spectrum.

Abney (W. de W.). Nature, 13, 432; Chem. News, 40, 311.

Work in the infra-red of the spectrum.

Abney (W. de W.). Nature, 27, 15.

Atmospheric absorption in the infra-red of the solar spectrum.

Abney (W. de W.) and Festing (Lieut. Col.). Nature, 28, 45.

Wave-lengths of Λ , a and other prominent lines in the red and infra red of the visible spectrum.

Abney (W. de W.). Chem. News, 48, 283.

Sur l'observation de la partie infra-rouge du spectre solaire au moyen des effets de la phosphorescence.

Becquerel (E.). Comptes Rendus, 83, 249.

Étude de la région infra-rouge du spectre.

Becquerel (H.). Comptes Rendus, 96, 121.

Étude des radiations infra-rouges, au moyen des phénomènes de phosphorescence.

Becquerel (H.). Comptes Rendus, 96, 1215; Nature, 29, 227; Amer. Jour. Sci., (3) 26, 321; Ann. Chim. et Phys., (5) 30, 5.

Maxima et minima d'extinction de la phosphorescence sous l'influence des radiations infra-rouges.

Becquerel (H.). Comptes Rendus, 96, 1853.

Sichtbare Darstellung der ultrarothen Strahlen.

Lommel (E.). Ann. Phys. u. Chem., (2) 26 (1885), 157.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32.

Visible representation of the ultra-red rays.

Tyndall. Phil. Mag., (5) 20 (1885), 547; Amer. Jour. Sci., (3) 31, 150.

-

REFRACTION.

- Ueber die Bestimmung des specifischen Brechungsvermögens fester Korper in ihren Lösungen.
 - Bedson (P. P.) and Williams (W. C.). Ber. chem. Ges., 14, 2549-56; Jour. Chem. Soc., 42, 351 (Abs.); Beiblätter, 6, 91-3 (Abs.); Jour. de Phys., (2) 1, 377 (Abs.).
- Réfrangibilité des rayons qui excitent la phosphorescence dans les corps.

 Becquerel (Ed.). Comptes Rendus, 69, 994.
- Spectrum der Brechbaren Strahlen.

Crookes (W.). Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 621.

Sur la double réfraction circulaire et la production normale des trois systèmes de franges des rayons circulaires.

Croullebois. Comptes Rendus, 92, 520.

Sur la variation des indices de réfraction dans les mélanges de sels isomorphes.

Dufet (H). Comptes Rendus, 86, 881-4; Jour. Chem. Soc., 34, 631-2.

Variation des indices de réfraction du quartz sous l'influence de la température.

Dufet (H.). Comptes Rendus, 98, 1265; Jour. de Phys., 10, 513-19; Bull. Soc. minéral., 4, 191-6; 6, 76-80, 287.

Die brechbarsten oder unsichtbaren Lichtstrahlen im Beugungsspectrum und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 353.

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 163.

Ueber die Aenderung der Brechungsexponenten isomorpher Mischungen, mit deren chemischer Zusammensetzung.

Fock (A.). Zeitschr. Krystallogr. u. Mineralog., 4, 583-608; Beiblätter, 4, 662-4 (Abs.).

- Experimentaluntersuchungen über die Intensität des gebeugten Lichtes. Fröhlich (J.). Ann. Phys. u. Chem., n. F. 15, 575-613; Jour. de Phys., (2) 1, 559 (Abs.).
- Recherches sur le réfraction de la lumière.

Gouy. Ann. Chim. et Phys., (6) 8 (1886), 145-92; Beiblätter, 11 (1887), 95 (Abs.).

Das Auge empfindet alle Strahlen die brechbarer sind als die Rothen.

Helmholtz (H.). Ann. Phys. u. Chem., 94, 205.

The refractive index and specific inductive capacity of transparent insulating media.

Hopkinson (J.). Proc. Royal Soc., 5, 38-40.

Aenderung des Moleculargewichtes und Molecularrefractionsvermögen.

Janowsky (J. V.). Sitzungsber. d. Wiener Akad., 81 II, 539-53; 82
II, 147-58.

Sur la relation du pouvoir réfringent et la composition des composés organiques.

Kanonnikoff (J.). Ber. chem. Ges., 16, 3047-51 (Abs.); Jour. Soc. phys. chim. russe, 15, 434-79; Bull. Soc. chim. Paris, 41, 318 (Abs.); Beiblätter, 8, 375 (Abs.).

Sur les relations entre la composition et le pouvoir réfringent des composés chimiques. Second mémoire.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 119-31; Ber. chem. Ges., 17, Referate, 157-9 (Abs.); Nature, 30, 84 (Abs.); Beiblätter, 8, 493-6 (Abs.); Bull. Soc. chim. Paris, 41, 549 (Abs.); Jour. Chem. Soc., 48, 1-2 (Abs.).

Experimentaluntersuchung über den Zusammenhang zwischen Refraction und Absorption des Lichtes.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 481-519.

Constanz des Refractionsvermögens.

Ketteler (E.). Ann. Phys. u. Chem., (2) 30 (1887), 285-99.

Ueber Prismenbeobachtungen mit streifend einfallendem Licht, und über eine Abänderung der Wollaston'sehen Bestimmungsmethode für Lichtbrechungsverhältnisse.

Kohlrausch (F.). Ann. Phys. u. Chem., n. F. 16, 603.

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur.

Lang (V. von). Ann. Phys. u. Chem., 153, 450.

Theorie der Doppelbrechung.

Lommel (E.). Ann. Phys. u. Chem., n. F. 4, 55. (Look below, under Voigt.)

Sur la réfraction des gaz.

Mascart. Comptes Rendus, 78, 417; Ann. Phys. u. Chem., 153, 153.

-

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543; Berichtigung dazu, 116, 644.

Bei zunehmender Verdünnung der Gaze erlöschen zuerst die minder brechbaren Strahlen.

Plücker. Ann. Phys. u. Chem., 116, 27.

Report of the committee, consisting of Dr. J. H. Gladstone, Dr. W. R. E. Hodgkinson, Mr. Carleton Williams, and Dr. P. P. Bedson (Secretary), appointed for the purpose of investigating the Method of Determining the Specific Refraction of Solids from their solutions.

Report of the British Association, 1881, 155.

Indices de réfraction ordinaire et extraordinaire du quartz pour les rayons de différentes longueurs d'onde jusqu'à l'extrème ultra-violet.

Sarasin (E.). Archives de Genève, (2) **61**, 109-19; Comptes Rendus, **85**, 1230-2 (Abs.); Beiblätter, **2**, 77-8 (Abs.).

Indices de réfraction de spath d'Islande.

Sarasin (E.). Arch. de Genève, (3) **8**, 392-4; Jour. de Phys., (2) **2**, 369-71.

Indices de réfraction ordinaire et extraordinaire du spath d'Islande pour les rayons de diverses longueurs d'onde jusqu'à l'extrème ultraviolet.

Sarasin (E.). Comptes Rendus, 95, 680.

Indices de réfraction du spath-fluor pour les rayons de différentes longueurs d'onde.

Sarasin (E.). Comptes Rendus, 97, 850.

Untersuchungen über die Abhängigkeit der Molecularrefraction von der chemischen Constitution der Verbindungen.

Schroder (H.). Ber. chem. Ges., 14, 2513-16; Jour. Chem. Soc., 42, 351 (Abs.).

Indices de réfraction des aluns cristallisés.

Soret (Ch.). Comptes Rendus, 99, 867.

On a method of destroying the effects of slight errors of adjustment in experiments of changes of refrangibility due to relative motions in the line of sight.

Stone (E. J.). Proc. Royal Soc., 31, 381.

Indices de réfraction des liquides.

Terquem et Trannin. Jour. de Phys., 4, 222; Ann. Phys. u. Chem., 157, 302.

Brechungsvermögen und Verbrennungswärme.

Thomsen (J.). Ber. chem. Ges., 15, 66-69; Jour. Chem. Soc., 42, 567 (Abs.); Beiblätter, 6, 377 (Abs.).

Bemerkungen zu Hrn. Lommel's Theorie der Doppelbrechung.

Voigt (W.). Ann. Phys. u. Chem., n. F. 17, 468.

Methode zur Bestimmung des Brechungsexponenten von Flüssigkeiten und Glasplatten.

Wiedemann (E.). Ann. Phys. u. Chem., 158, 375.

RHABDOPHANE.

Analysis of rhabdophane, a new British mineral.

Hartley (W. N.). Jour. Chem. Soc., 41, 210-20; Chem. News, 45, 40 (Abs.).

Analysis of rhabdophane, a new British mineral.

Liveing (G. D.) and Dewar (J.). Jour. Chem. Soc., 41, 210-220; Chem. News, 45, 40 (Abs.).

RHODIUM.

Rhodium are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 40.

-

RUBIDIUM.

Observations on cæsium and rubidium.

Allen (O. D.). Amer. Jour. Sci., Nov., 1862; Phil. Mag., (4) 25, 189.

Les salpêtres naturels du Chili et du Pérou au point de vue du rubidium. Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Spectre du rubidium.

Gouy. Comptes Rendus, 86, 1078.

Beschreibung der Metallen Cæsium und Rubidium.

Kirchhoff und Bunsen. Ann. Phys. u. Chem., 113, 337; Phil. Mag., (4) 22, 498; 24, 46.

Chlorure de rubidium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 46, planche IV.

RUTHENIUM.

Ruthenium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 40.

Professor Young and the presence of ruthenium in the chromosphere.
Roscoe (H. E.). Nature, 9, 5.

SALT.

Blue flame from common salt.

Gladstone (J. H.). Nature, 19, 582.

Sur les caractères des flammes chargées de poussières salines.

Gouy. Comptes Rendus, 85, 439.

Preliminary notice of experiments concerning the chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 22, 241-3; Chem. News, 29, 148

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 372-3; Ber. chem. Ges., 8 765 (Abs.); Phil. Mag., (5) 1, 244-5.

Ausschluss des Kochsalzes.

Jahresber. d. Chemie, 16 (1863), 114.

Absorptionsspectren von Salzlösungen.

Jahresber, d. Chemie, 27 (1874), 96.

On the optical properties of rock salt.

Langley (S. P.). Amer. Jour. Sci., 26 (1885), 477; Jour. de Phys., (2) 5, 138 (Abs.).

Blue flame from common salt.

Smith (A. P.). Nature, 19, 483; 20, 5; Chem. News, 39, 141; Jour. Chem. Soc., 36, 497 (Abs.).

- 77

Propriétés modulaires des pouvoirs réfringents dans les solutions salines. Valson (C. A.). Comptes Rendus, 76, 224-6; Jour. Chem. Soc., 21 11, 460 (Abs.).

SAMARIUM.

Om Samarium.

Clève (P. T.). Ofversigt. k. Vetensk. Akad. Förhandl., 40, No. 7, 17-26;
Beiblätter, 8, 264 (Abs.);
Jour. Chem. Soc., 43, 362-70;
Chem. News, 48, 74-6;
Ber. chem. Ges., 16, 2493 (Abs.);
Comptes Rendus, 97, 94.

Mutual extinction of the spectra of yttrium and samarium.

Crookes (W.). Comptes Rendus, 100, 1495-7; Jour. Chem. Soc., 48, 1025 (Abs.).

Remarques sur les métaux nouveaux de la gadolinite et de la samarskite; holmium ou philippium, thulium, Samarium, décipium.

Delafontaine. Comptes Rendus, 90, 221.

Recherches sur le samarium, radical d'une terre nouvelle extraite de la samarskite.

Lecoq de Boisbaudran (F.). Comptes Rendus, **89**, 212-14; Ber. chem. Ges., **12**, 2160 (Abs.); Beiblätter, **3**, 872 (Abs.).

Om de lysande spectra hos Didym och Samarium.

Thalén (R.). Ofversigt. k. Vetensk. Akad. Förhandl., 40, No. 7, 3-16; Jour. de Phys., (2) 2, 446-9; Ber. chem. Ges., 16, 2760 (Abs.); Beiblätter, 7, 893-5 (Abs.).

SAMARSKITE.

New elements in gadolinite and samarskite.

Crookes (W.). Proc. Royal Soc., 40, 502-9; Jour. Chem. Soc., 52, 334 (Abs.).

Remarques sur la samarskite.

Delafontaine. Comptes Rendus, 90, 221.

Nouvelles raies spectrales observées dans des substances extraites de la samarskite.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 322.

Sur les terres de la samarskite.

Marignac (C.). Comptes Rendus, 90, 899-903.

Sur les spectres d'absorption du didyme et de quelques autres substances extraites de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-4.

SCANDIUM.

Scandium ne donne pas de spectre.

Clève (P. T.). Comptes Rendus, 89, 420.

Sur le scandium, élément nouveau.

Nilson (L. F.). Comptes Rendus, **88**, 645-8; Amer. Jour. Sci., (3) **17**, 478 (Abs.); Beiblätter, **3**, 359 (Abs.).

On Scandium, en ny jordmetall. (Ueber Scandium, ein neues Erdmetall.)
Nilson (L. F.). Oefversigt af k. Vetensk. Akad. Förhand., **36** III,
45-51; Ber. chem. Ges., **12**, 554-7; Jour. Chem. Soc., **36**, 601 (Abs.);
Beiblätter, **4**, 42 (Abs.).

Sur quelques sels caractéristiques du scandium, et sur leurs spectres.

Nilson (L. F.). Comptes Rendus, 91, 118.

Raies brilliantes spectrales du métal scandium.

Thalén (R.). Comptes Rendus, **91**, 45-8; Jour. Chem. Soc., **38**, 685 (Abs.).

Spektralundersökningar rörande Skandium, Ytterbium, Erbium och Thulium.

Thalén (R.). Oefversigt af k. Vetensk. Akad. Förhand., 38, No. 6, 13-21; Jour. de Phys., (2) 2, 35-40; Chem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

Spectraluntersuchungen über Scandium.

Thalén (R.). Oefversigt k. Vetensk. Akad. Förhand. (Stockholm), 1881, No. 6; Beiblätter, 11, 249.

SECONDARY SPECTRUM.

Secondary Spectrum.

Rood (O. N.). Amer. Jour. Sci., (3) 6, 172.

SELENIUM.

Effect of light upon selenium.

Adams (W. G.). Proc. Royal Soc., 23, 535; Ann. Phys. u. Chem., 159, 625.

Nouvelle note sur la propriété spécifique du sélénium à l'égard des radiations thermiques.

Assche (F. van). Comptes Rendus, 97, 945.

Selenium and tellurium spark spectrum; selenium and iron spark spectrum; selenium and aluminium spark spectrum; iron meteoric arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 32, 33, 40.

Spectre du sélénium.

Ditte. Comptes Rendus, 73, 623.

Spectre d'absorption du vapeur de l'acide sélénieux.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 18, 172.

Absorptionsspectrum des Bromselens und des Chlorselens.

Jahresber. d. Chemie, 17 (1864), 109; 25 (1872), 139, 140.

Spectrum des Selens.

Mulder. Jour. prackt. Chemie, 91, 111.

Spectrum von Selenwasserstoff.

Plücker. Ann. Phys. u. Chem., 113, 276, 278.

Spectres du sélénium et du tellure.

Salet (G.). Comptes Rendus, 73, 742, 743.

Ueber die Refraction und Dispersion des Selens.

Sirks (J. L.). Ann. Phys. u. Chem., 143, 429-39; Ann. Chim. ot Phys., (4) 26, 286 (Abs.).

SILICIUM.

Silicie fluoride spectrum; silicie quartz spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 75, 76.

Speetre du fluorure de silieium dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Das Aufleuchten, die Phosphorescenz und Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.).

Line spectra of boron and silicon.

Hartley (W. N.). Proc. Royal Soc., **35**, 301-4; Chem. News, **48**, 1-2; Jour. Chem. Soc., **46**, 242 (Abs.); Beiblätter, **8**, 120.

Spectrum des Phosphorescenzlichts von Flussspath.

Kindt. Ann. Phys. u. Chem., 131, 160.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Lepel (F. von). Ber. chem. Ges., 9, 1641.

Spectres des composés de silicium.

Salet. Comptes Rendus, 73, 1056-9.

Indices de réfraction du spath fluor.

Sarasin (E.). Arch. de Genève, (3) 10, 303-4.

Speetre du fluorure de silicium.

Séguin (J. M.). Comptes Rendus, 54, 993.

Spectre du silicium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Speetre du silicium sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Absorptionsspectrum des Granats und Rubins; Erkennung von Thonerde neben Eisensalzen.

Vogel (H. W.). Ber. chem. Ges., 10, 373-5; Jour. Chem. Soc., 1877,2, 269 (Abs.); Beiblätter, 1, 242 (Abs.).

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Vogel (H. W.). Ber. chem. Ges., 9, 1641.

Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Soc., 46, 649 (Abs.).

SILVER.

Effect of the spectrum on silver chloride.

Abney (W. de W.). Rept. British Assoc., 1881, 594; Chem. News, 44 (1881), 184.

Effect of the spectrum on the haloid salts of silver and on mixtures of the same.

Abney (W. de W.). Proc. Royal Soc., 33, 164-86; Jour. Chem. Soc., 42, 565 (Abs.); Chem. News, 44 (1881), 297.

Comparative effect of different parts of the spectrum on silver salts.

Abney (W. de W.). Proc. Royal Soc., 40, 251-2; Jour. Chem. Soc., 50, 749 (Abs.); see preceding reference.

Action des rayons différemment réfrangibles sur l'iodure et le bromure d'argent; influence des matières colorantes.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Silver spark spectrum; silver are spectrum; silver and copper (alloy) are spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 42, 43.

Sur l'indice de réfraction du chlorure d'argent naturel.

Cloiseaux (Des). Bull. Soc. minéral. de France, 5, 25.

Renversement des raies spectrales de l'argent.

Cornu (A.). Comptes Rendus, 73, 332.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, **88**, 379-81; Jour. Chem. Soc., **36**, 504 (Abs.).

Les salpêtres naturels du Chili et du Pérou.

Diculafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Wellenlänge der auf Iodsilber chemisch wirkenden Strahlen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 162.

Salpetersaure Nickellösung als Absorptionspräparat.

Emsmann (H). Ann. Phys. u. Chem., Erganzungsband, 6 (1874), 334-5; Phil. Mag., (4) 46, 329-30; Jour. Chem. Soc., (2) 12, 113. Spectre de l'azotate de l'argent.

Gouy. Comptes Rendus, 84, 231; Chem News, 35, 107.

Spectroscopische Untersuchung der Absorptionsspectren der flüssigen Untersalpetersäure.

Jahresber. d. Chemie, 23 (1870), 172.

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 141, 157-9; Zeitsch. analyt. Chemie, (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

On the action of the less refrangible rays of light on silver iodide and silver bromide.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc., 1876, 1, 28 (Abs.).

Note on the sensitiveness of silver bromide to the green rays as modified by the presence of other substances.

Lea (M. Carey). Amer. Jour. Sci., (3) 11, 459-64.

On the sensitiveness to light of various salts of silver.

Lea (M. Carey). Amer. Jour. Sci., (3) 13, 369-71; Jour. Chem Soc., 1877, 2, 690 (Abs.); Beiblätter, 1, 405 (Abs.).

On the theory of the action of certain organic substances in increasing the sensitiveness of silver haloids.

Lea (M. Carey). Amer. Jour. Sci., (3) 14, 96-9; Beiblätter, 1, 563 (Abs.).

Azotate de l'argent en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 167, planche XXV.

Ueber die Lichtempfindlichkeit der Silberhaloïdsalze und den Zusammenhang von optischer und chemischer Licht.

Schultz-Selback (C.). Ann. Phys. u. Chem., 143, 161-71; Ber. chem.
Ges., 4, 210 (Abs.); Jour. Chem. Soc., (2) 9, 302 (Abs.); Phil. Mag.,
(4) 41, 549 (Abs.); Ann. Chim. et Phys., (4) 26, 280 (Abs.).

Chemische und mechanische Veränderung der Silberhalbidsalze durch das Licht.

Schultz-Selback (C.). Ann. Phys. u. Chem., 143, 439-49; Ber. chem.Ges., 4, 343-5; Phil. Mag., (4) 41, 550-2.

Bestimmung der Salpetersäure und Phosphorsäure auf spectralanalytischem Wege.

Settegast (H.). Zeitschr. analyt. Chemie, 20, 116-17.

- Azione dei raggi solari sui composti nloidi d'argento.
 - Tommasi (D.). Rend. del R. Ist. Lomb., **11**, 652-8; Beiblätter, **3** 621-2 (Abs.).
- Sur la radiation de l'argent au moment de sa solidification.
 - Violle (J.). Comptes Rendus, 96, 1033-5; Chem. News, 47, 213 (Abs.); Beiblutter, 7, 457 (Abs.).
- Ucber die Lichtempfindlichkeit des Bromsilbers für die sogenannten chemisch unwirksamen Farben.
 - Vogel (H. W.). Ber. chem. Ges., 6, 1302-6; Ann. Phys. u. Chem.
 150, 453-9; Jour. Chem. Soc., (2) 12, 217 (Abs.); Amer. Jour. Sci.,
 (3) 7, 140-1; Phil. Mag., (4) 47, 273-77; Bull. Soc. chim. Paris, n s. 21, 233.
- Ueber die chemische Wirkung des Lichtes auf reines und gefärbtes Bromsilber.
 - Vogel (H. W.). Ber. chem. Ges., 8, 1635-6; Jour. Chem. Soc., 1876.
 1, 510 (Abs.); Amer. Jour. Sci., (3) 11, 215-16 (Abs.).
- Neue Beobachtungen über die Liehtempfindlichkeit des Bromsilbers.
 - Vogel (H. W.). Ber. chem. Ges., 9, 667-70; Jour. Chem. Soc., 1876, 2, 265 (Abs.).
- Ueber die Empfindlichkeit trockner Bromsilberplatten gegen das Sonnenspectrum.
 - Vogel (H. W.). Ber. chem. Ges., 14, 1024-5; Jour. Chem. Soc., 40, 773 (Abs.); Beiblätter, 5, 521 (Abs.).
- Ueber die verschiedenen Modificationen des Bromsilbers und Chlorsilbers. Vogel (H. W.). Ber. chem. Ges., **16**, 1170-9; Beiblätter, **7**, 535 (Abs.).
- Ueber die chemische Wirkung des Sonnenspectrums auf Silberhaloïdsalze. Vogel (H. W.). Ann. Phys. u. Chem., **153**, 218-50; Jour. Chem. Soc., (2) **13**, 326 (Abs.).
- Ueber die Brechung und Dispersion des Lichtes in Iod-, Brom-und Chlor-Silber.
 - Wernicke (W.). Ann. Phys. u. Chem., 142, 560-73; Jour. Chem. Soc., (2) 9, 653-4 (Abs.); Ann. Chim. et Phys., (4) 26, 287 (Abs.).

. 4

SODIUM.

Spectrum of sodium.

Abney (W. de W.). Chem. News, 44, 3.

Note on the spectrum of sodium.

Abney (W. de W.). Proc. Royal Soc., 32, 443.

Reversal of the sodium lines.

Ackroyd (W.). Chem. News, 36, 164-5.

Lumière jaune de la flamme de sodium.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectronatromètre.

Champion (P.), Pellet (H.) et Grenier (M.). Comptes Rendus, 76, 707-11; Jour. Chem. Soc., (2) 11, 934-5 (Abs.). (Look below, under Janssen.)

Spectre de la soude dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

Renversement des raies spectrales du sodium.

Cornu (A.). Comptes Rendus, 73, 332; Jour. de Phys., 1, 206.

Ueber die Opacität der gelben Natronflamme für Licht von ihrer eignen Farbe.

Crookes (W.). Ann. Phys. u. Chem., 112, 344.

Indices de réfraction des dissolutions aqueuses d'acide acétique et d'hyposulfite de soude.

Damien. Comptes Rendus, 91, 323-5; Beiblätter, 5, 41.

Das Verhältniss der Intensitäten der beiden Natriumlinien.

Dietrich (W.). Ann. Phys. u. Chem., n. F. 12, 519.

Spectre de sodium.

Fizeau (H.). Comptes Rendus, 54, 493; Ann. Phys. u. Chem., 116, 492.

Recherches photométriques sur le sodium.

Gouy. Comptes Rendus, 83, 269; 85, 70; 86, 878, 1078.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv dazustellen.

Günther (C.). Ann. Phys. u. Chem., n. F. 2, 477.

22 T

Sur l'emploi de la lumière monochromatique, produite par les sels de soude, pour apprécier les changements de couleur de la teinture de tournesol, dans les essais alkalimétriques.

Henry (L. d'). Comptes Rendus, 76, 222-4; Ann. Chem. n. Pharm., 169, 272; Dingler's Jour., 207, 405-7.

Soda flames in coal fires.

Herschel (J.). Nature, 27, 78, 103.

Spectrum des Natriums.

Jahresber. d. Chemie, 15 (1862), 29, 30.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums, in dunkle.

Jahresber. d. Chemie, 18 (1865), 90.

Note sur l'analyse spectrale quantitative, à propos de la communication précédente de M. M. Champion, Pellet et Grenier.

Janssen (J.). Comptes Rendus, 76, 711-13; Jour. Chem. Soc., (2) 11, 1258 (Abs.).

Chemische Analyse durch Speetralbeobachtungen; Linien von Natrium. Kirchhoff (G.) und Bunsen (R.). Ann. Phys. a. Chem., 110, 161-87.

Ueber anomale Dispersion im glühenden Natriumdamp.

Kundt (A.). Ann. Phys. u. Chem., n. F. 10, 321-5; Phil. Mag., (5) 10, 53-7.

Sulfate de soude fondu, étineelle; sels de soude dans le gaz; sels de soude et de lithine dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 54, 55, planche V, VI.

Reversal of the lines of the metallic vapours, sodium.

Liveing and Dewar. Nature, 24, 206; 26, 466.

On the spectra of sodium and potassium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 398-402; Beiblätter, 4, 368 (Abs.).

Note on some phenomena attending the reversal of lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 428-32; Beiblatter, 3, 608 (Abs.).

Note on the spectrum of sodium.

Lockyer (J. N.). Proc. Royal Soc., 29, 140; Chem. News, 39, 243.

-

Spectrum of sodium at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Sur les raies de la vapeur de sodium.

Lockyer (J. N.). Comptes Rendus, 88, 1124.

Die Natriumline gehört dem Metall an.

Mitscherlich (A.). Ann. Phys. u. Chem., 116, 505.

Absorption spectra of sodium and potassium at low temperatures.

Roscoe (H. E.) and Schuster (A.). Proc. Royal Soc., 22, 362.

Indice du quartz pour les raies du sodium.

Sarasin (Éd.). Comptes Rendus, 85, 1230.

Et spectres du fer et quelques autres métaux dans l'arc voltaïque; sodium.

Secchi (A.). Comptes Rendus, 77, 173; Chem. News, 28, 82.

Spectre du sodium.

Secchi (A.). Comptes Rendus, 82, 275.

Propriétés optiques de sous carbonate de soude et de hyposulfite de soude: Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Sur le déplacement des raies du sodium, observé dans le spectre de la grande comète de 1882.

Thollon et Gouy. Comptes Rendus, 96, 371.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 321; Phil. Mag., (4) 41,

(See Soret. Arch. de Genève, (2) 41, 64-5.)

Sur la dispersion du chromate de soude à 4 H₂ O.

Wyrouboff (G.). Bull. Soc. minéral. de France, 5, 160-1.

Re-reversal of sodium lines.

Young (C. A.). Nature, 21, 274-5; Beiblätter, 4, 370.

STRONTIUM.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der naturlichen Sulfate des Baryum, Strontium und Blei.

Arzruni (A.). Zeitschr. Krystallogr. u. Mineral., 1, 165-192; Jahrb.
 f. Mineral., 1877, 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Strontium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 44.

La strontiane dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, 95, 999-1001; Jour. Chem. Soc., 44, 301 (Abs.).

Recherches photométriques sur le strontium.

Gouy. Comptes Rendus, 83, 269.

Spectre de chlorure de strontium.

Gouy. Comptes Rendus, 84, 231.

Recherches photométriques; spectre du strontium.

Gouy. Comptes Rendus, 85, 70.

Sur les caractères des flammes chargées du chlorure de strontium.

Gouy. Comptes Rendus, 85, 439.

Spectre continu du strontium.

Gouy. Comptes Rendus, 86, 878, 1078.

Spectrum von Strontium.

Jahresber, d. Chemie, 23 (1870), 174.

Chlorure de strontium en solution, étincelle; dans le gaz; dans le gaz chargé de H Cl.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 69, planche IX; p. 72 et 75, planche X.

Linien von Strontium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 174.

SULPHUR.

On the violet phosphorescence in calcium sulphide.

Abney (W. de W.). Proc. Physical Soc., 5, 35-8; Nature, 35, 355 (Abs.); Phil. Mag., (5) 13, 212-14; Jour. Chem. Soc., 42, 677 (Abs.); Beiblätter, 6, 383 (Abs.); Jour. de Phys., (2) 2, 287 (Abs.).

Spectres des gaz simples; soufre.

Angström (A. J.). Comptes Rendus, **73**, 369; Ann. Phys. u. Chem., **94**, 159.

Spectre du sulfure de carbone.

Becquerel (H.). Comptes Rendus, 85, 1227.

Sulphur spectrum, sulphuric acid spectrum, sulphur quartz spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 68, 74, 75.

Spectrum von Schwefel.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 527-34.

Spectre du soufre.

Ditte (A.). Comptes Rendus, **73**, 622-4; Bull. Soc. chim. Paris, n., s. **16**, 229.

Spectres d'absorption des vapeurs de soufre.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 17, 259.

Spectre de sulfate de thallium.

Gouv. Comptes Rendus, 84, 831.

Sulfate acide.

Gouy. Comptes Rendus, 85, 70.

Spectrum of murexide.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 199-200.

Spectrum des Schwefels.

Jahresber. d. Chemie, **16** (1863), 110; **17** (1864), 109; **22** (1869), 181; **23** (1870), 173; **25** (1872), 139, 141; **28** (1875), 122.

Spectre du sulfure de plomb.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion lumineuse du sulfure de cuivre obtenu sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 693.

Die Absorptionsstreifen in Prismen von Schwefelkohlenstoff. Lamansky (S.). Ann. Phys. u. Chem., 146, 213, 215.

Sur les spectres des vapeurs aux températures élévées; spectre du soufre. Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chemical News, 30, 98.

Spectrum des Schwefels, Schwefelkohlenstoffs, Schwefelwasserstoffs und Selens.

Mulder. Jour. prackt. Chemie, 91, 111.

Sulla refrazione atomica dello zolfo.

Nasini (R.). Gazz. chim. ital., 13, 296-311; Jour. Chem. Soc., 46, 149-51 (Abs.); Ber. chem. Ges., 15, 2878-92; Beiblätter, 7, 281 (Abs.).

Dampf des wasserfreien Schwefelsäure.

Plücker. Ann. Phys. u. Chem., 113, 276, 278.

Spectrum des Muroxids.

Reynolds. Jour. prackt. Chemie, 105, 359.

De la flamme du soufre, et des diverses lumières utilisables en photographie.

Riche (A.) et Brady (C.). Comptes Rendus, 80, 238-41; Ber. chem. Ges., 8, 182 (Abs.).

Recherche du soufre par le spectroscope.

Salet (G.). Comptes Rendus, 68, 404; Bull. Soc. chim. Paris, n. s. 11, 302; Ann. Phys. u. Chem., 137, 171.

Speetre du soufre.

Salet (G.). Comptes Rendus, 73, 559.

Recherche du soufre et du phosphore par le spectroscope.

Salet (G.). Bull. Soc. chim. Paris, n. s. 13, 289.

Sur la réaction spectroscopique du soufre et sur la flamme de l'hydrogène.
Salet (G.). Bull. Soc. chim. Paris, n. s. 14, 182.

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-6; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

w

Sur les spectres du phosphore et du soufre.

Séguin (J. M.). Comptes Rendus, 53, 1272.

Propriétés optiques d'hyposulfite de soude.

Sénarmont (H. de). Ann. Phys. u. Chem., (3) 41, 336.

TELLURIUM.

Tellurium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 20, 40, 45.

Spectre du tellure.

Ditte (A.). Comptes Rendus, 73, 622-24.

Sur les spectres d'absorption de tellure, de protochlorure et de protobromure de tellure.

Gernez (D.). Comptes Rendus, 74, 1190-2; Jour. Chem. Soc., (2)
10, 665 (Abs.); Phil. Mag., (4) 43, 473-5; Amer. Jour. Sci., (3) 4, 59 (Abs.); Bull. Soc. chim. Paris, n. s. 18, 172.

Spectrum des Tellurs.

Jahresber. d. Chemie, 25 (1872), 140.

Spectre du tellure.

Salet (G.). Comptes Rendus, 73, 744.

TERBIUM.

Absorptionsspectrum von Terbiumlösungen.

Delafontaine. Jour. prackt. Chemie, 94, 303.

Vergleich der Absorptionsspectra von Didym, Erbium und Terbium.

Delafontaine. Ann. Phys. u. Chem., **124**, 635; Chem. News, **11**, 253; Ann. Chim. et Phys., **135**, 194.

Sur un spectre électrique particulier aux terres rares du groupe terbique.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 153-55; Jour. Chem. Soc., 50, 293 (Abs.).

THALLIUM.

Thallium and indium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 45, 47.

Renversement des raies spectrales du thallium.

Cornu (A.). Comptes Rendus, 73, 332.

Discovery of thallium.

Crookes (W.). Chem. News, 3, 193.

Thallium and its compounds.

Crookes (W.). Jour. Chem. Soc., 17, 112.

Recherches photométriques sur le thallium.

Gouy. Comptes Rendus, 83, 269.

Spectre de sulfate de thallium.

Gouy. Comptes Rendus, 84, 231.

Spectrum des Thalliums und der Thalliumsalzen.

Jahresber, d. Chemie, 16 (1863), 112; 26 (1873), 152, 158.

Sur le thallium, nouveau métal dont l'analyse spectrale a fait connaître l'existence.

Lamy (A.). Comptes Rendus, 54, 1255; Ann. Chim. et Phys., (3) 67 385; Ann. Phys. u. Chem., 116, 495.

Moyen de constater une empoisonnement par le thallium.

Lamy (A.). Comptes Rendus, 57, 442.

Sels de thallium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 141. planche XXI.

Spectre de thallium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Bull. Sociem. de Paris, n. s. 21, 125.

Note on the spectrum of thallium.

Miller (W. A.). Proc. Royal Soc., 12, 407.

Sur la raie spectrale du thallium.

Nickles, Comptes Rendus, 58, 132; Ann. Phys. u. Chem., 121, 339

.

Spectre du thallium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 173.

THULIUM.

Spectre de thulium.

Clève (P. T.). Comptes Rendus, 89, 478; 91, 328.

Remarques sur le thulium.

Delafontaine. Comptes Rendus, 90, 221.

Examen spectral du thulium.

Thalén (R.). Comptes Rendus, **91**, 376-8; Jour. Chem. Soc., **40**, 349-50 (Abs.); Beiblätter, **4**, 789 (Abs.).

Spectralundersökningar rörande Skandium, Ytterbium, Erbium och Thulium.

Thalén (R.). Oefversigt af k. Vetensk. Acad. Förhand., 38, No. 6, 13-21; Jour. de Phys., (2) 2, 35-40; Chem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

TIN.

- Tin arc spectrum; tin and zinc spark spectrum; tin chloride spectrum.

 Capron (J. R.). Photographed Spectra, London, 1877, p. 49, 76.
- Bichlorure d'étain en solution, étincelle.

Lecoq de Boisbaudran (F.), Paris, 1874, p. 143, planche XXII.

Spectres d'étain et ses composés.

Salet (G.). Comptes Rendus, 73, 862-3; Jour. Chem. Soc., (2) 9, 1147-9 (Abs.).

TITANIUM.

Spectre du bichlorure de titanium.

Becquerel (H.). Comptes Rendus, 85, 1227.

Titanium spark spectrum; titanium, aluminium, and palladium spark spectrum; titanium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 47.

Spectre du titanium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Coïncidence of the spectrum lines of iron, calcium, and titanium.
Williams (W. Matthieu). Nature, 8, 46.

URANIUM.

- Analyse de la lumière émise par les composés d'uranium phosphorescents.

 Becquerel (E.). Comptes Rendus, 75, 296-303; Jour. Chem. Soc., (2)

 11, 25 (Abs.); Amer. Jour. Sci., (3) 4, 486 (Abs.).
- Relation entre l'absorption et la phosphorescence des composés d'uranium.

 Becquerel (H.). Comptes Rendus, 101, 1252-6; Jour. Chem. Soc.,
 50, 189 (Abs.).
- Uranium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 50.

- Anwendung der dunklen Linien des Spectrums als Reagens auf Uransäure.

 Jahresber. d. Chemie, 5 (1862), 125.
- Absorptionsspectren der Uransalzen.

 Jahresber. d. Chemie, **26** (1873), 158.
- Investigation of the fluorescent and absorption spectra of the uranium salts.

 Morton (H.) and Bolton (H. C.). Chem. News, **28**, 47-50, 113-16, 164-7, 233-4, 244-6, 257-9, 268-70; **29**, 17-19; Jour. Chem. Soc., (2) **12**, 12-13 (Abs.), 642 (Abs.).
- On some remarkable spectra of compounds of zirconia and of the oxides of uranium.

Sorby (H. C.). Proc. Royal Soc., 18, 197; Ber. chem. Ges., 3, 146.

Spectra der Uranlösungen.

Thudichum. Jour. prackt. Chemie, 106, 415.

Absorption spectrum of uranine.

Wiley (H. W.). Amer. Chem. Jour., 1, 211.

Untersuchungen über das Uran.

Zimmermann (C.). Ann. Phys. u. Chem., 213, 285–329; Chem. News, 46, 172 (Abs.); Zeitschr. analyt. Chemie, 23, 220 (Abs.).

VANADIUM.

Vanadium arc spectrum.

Capron (J..). Photographed Spectra, London, 1877, p. 50.

VIOLET AND ULTRA-VIOLET.

- Sur l'absorption des rayons ultra-violets par quelques milieux. Chardonnet (E. de). Comptes Rendus, 93, 406.
- Vision des radiations ultra-violettes.

Chardonnet (E. de). Comptes Rendus, 96, 509-71; Jour. de Phys., 12, 219.

Sur l'absorption atmosphérique des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 10, 5-16

Erklärung der ultra-violetten Strahlen des Speetrums. Eisenlohr (W.). Ann. Phys. u. Chem., 93, 623.

Note upon certain photographs of the ultra-violet spectra of elementary bodies.

Hartley (W. N.). Jour. Chem. Soc., 41, 84-90; Chem. News, 43, 289 (Abs.); Beiblätter, 5, 659 (Abs.); 6, 789 (Abs.).

Investigation by means of photography of the ultra violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195; note on the above by Wiedemann (E.), Chem. News, 49, 117; Jour. Chem. Soc., 46, 801 (Abs.); Beiblätter, 8, 581 (Abs.).

Visibility of the ultra-violet rays of the spectrum.

Herschel (A. S.). Nature, 16, 22-3.

On the ultra-violet spectra of the elements.

Liveing (G. D.) and Dewar (J.). Phil. Trans., 174, 187-222; Proc.
Royal Soc., 34, 122 (Abs.); Beiblätter, 6, 934 (Abs.); 7, 598, 849-56
(Abs.); Jour. Chem. Soc., 44, 262 (Abs.); Proc. Royal Institution.
10, 245-52.

Notes on the absorption of ultra-violet rays by various substances.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 71.

Détermination des longueurs d'onde des rayons lumineux et des rayons ultra-violets.

Mascart. Comptes Rendus, 58, 1111.

Visibilité des rayons ultra-violets.

Mascart. Comptes Rendus, 68, 402; Ann. Phys. u. Chem., 137, 163.

*

Spectres ultra-violets.

Mascart. Comptes Rendus, 69, 337.

Sur les moyens propres à la réproduction photographique des spectres ultra-violets des gaz.

Monckhoven (van). Bull. Acad. Belgique, (2) **43**, 187-92; Beiblätter, **1**, 286 (Abs.).

Fluorescence and the violet end of a projected spectrum.

Morton (Henry). Chem. News, 27, 33.

Photographie des durch ein Quarzprisma erhaltenen ultra-violetten Theils des Spectrums.

Müller (J.). Ann. Phys. u. Chem., 109, 151.

A comparison of the maps of the ultra-violet spectrum.

Pickering (E. C.). Amer. Jour. Sci., (3) **32**, 223-6; Beiblätter, **11** (1887), 145 (Abs.).

On the lower limit of the prismatic spectrum, with especial reference to some observations of Sir J. Herschel.

Rayleigh (Lord). Phil. Mag., (5) 4, 348-53; Beiblätter, 1, 682 (Abs.).

Report on the ultra-violet spark spectra emitted by metallic elements.

Report of the British Association, 1882, p. 143, presented by Prof. Hartley; Nature, 26, 458.

Nicht alle Quarzprismen verlängern das Spectrum am ultravioletten Ende.

Salm-Horst (Der Fürst zu). Ann. Phys. u. Chem., 109, 158.

Experimente über die Sichtbarkeit ultra-violetter Strahlen.

Sauer (L.). Ann. Phys. u. Chem., 155, 602.

Ueber ultra-violette Strahlen.

Schönn (J. L.). Ann. Phys. u. Chem., n. F. 9, 483-92; 10, 143-8.

Der ultra-violette Theil des Spectrums lässt sich unmittelbar sichtbar machen.

Seculic (M.). Ann. Phys. u. Chem., 146, 157.

Recherches sur l'absorption des rayons ultra-violets par diverses substances.

Soret (J.). Comptes Rendus, 86, 708, 1062-4; Arch. de Genève, (2)
63, 89-112; (3) 4, 261-92, 377-81; 10, 429-94; Beiblätter, 2, 410
(Abs.); 3, 196 (Abs.); 5, 124 (Abs.); Jahresber. d. Chemie (1873), 154.

- Sur la transparence des milieux de l'œil pour les rayons ultra-violets.

 Soret (J. L.). Comptes Rendus, 88, 1012.
- Spectres d'absorption ultra-violets des éthers azotiques et azoteux. Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.
- Sur la visibilité des rayons ultra-violets.

 Soret (J. L.). Comptes Rendus, 97, 314.
- Sur l'absorption des rayons ultra-violets par les milieux de l'œil et par quelques autres substances.

Soret (J. L.). Comptes Rendus, 97, 572, 642.

The Change of Refrangibility of Light. (Gives a drawing of the fixed lines in the solar spectrum in the extreme violet and in the invisible region beyond.)

Stokes (G. G.). Phil. Trans. for 1852, part 11, 463.

Visibilité des rayons ultra-violets, à l'aide du parallelipipède de dispersion.

Zenger (Ch. V.). Comptes Rendus, 98, 1017.

VOLCANOES.

Observations on Mt. Etna.

Langley (S. P.). Amer. Jour. Sci., (3) 20, 33-4; Beiblätter, 4, 790 (Abs.).

4

Recherches spectroscopiques sur les fumerolles de l'éruption du Vesuve en avril 1872.

Palmieri (L.). Comptes Rendus, 76, 1427-8.

WATER SPECTRA.

Colour of the Mediterranean and other waters.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 472-83; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 379 (Abs.).

Note on the absorption of sea-water.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 637; Beiblätter, 7, 372 (Abs.).

Évaporation de l'eau sous l'influence de la radiation solaire ayant traversé des verres colorés.

Baudrimont (A.). Comptes Rendus, 89, 41-3.

Spectre de l'eau.

Becquerel (H.). Comptes Rendus, 85, 1227.

The spectroscope in water analysis.

Church (A. H.). Chem. News, 22, 322.

Indices de réfraction de l'eau en surfusion.

Damien (B. C.). Jour. de Phys., 10, 198-202.

Untersuchungen einiger Wässer.

Dibbits. Jour. prackt. Chemie, 92, 38, 50.

Spectre lumineux de l'eau.

Huggins (W.). Comptes Rendus, 90, 1455.

Spectres d'absorption de la vapeur d'eau.

Janssen (J.). Comptes Rendus, 56, 538; 60, 213; 63, 289; 78, 995;
95, 885; Phil. Mag., (4) 32, 315; Ann. Chim. et Phys., (4) 24, 215–17; Jour. Chem. Soc., (2) 10, 280 (Abs.); Jahresber. d. Chemie (1866), 76.

Spectre de la vapeur d'eau.

Lecoq de Boisbaudran (F.). Comptes Rendus, 74, 1050.

Spectrum of water.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., **30**, 580; **33**, 274-6; Jour. Chem. Soc., **44**, 140 (Abs.); Beiblätter, **6**, 481 (Abs.).

Sur la réfraction de l'eau comprimée.

Mascart. Comptes Rendus, 78, 801-5; Amer. Jour. Sei., (3) 7, 593; Ann. Phys. u. Chem., 153, 154-8. Studî spettrali sub colore delle acque, nota seconda.

Riceò (A.). Mem. Spettr. ital., 8, 1-10.

Ueber die Absorption des Lichts durch Wasser, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 1878, 8, 670-5; Jour. Chem. Soc., 34, 693 (Abs.).

Observations relatives à une communication de M. Crocé-Spinelli sur les bandes de la vapeur d'eau dans le spectre solaire.

Secchi (A.). Comptes Rendus, 78, 1080.

Sur la couleur de l'eau.

Soret (J. L.). Arch. de Genève, (3) 11, 276-96; Beiblätter, 8, 505 (Abs.); Jour. de Phys., 13, 427.

Spectre d'absorption de l'eau.

Soret (J. L.) et Sarasin (Ed.). Comptes Rendus, **98**, 624; Amer. Jour. Sci., (3) **27**, 485.

Ueber die Absorption des Seewassers.

Vogel (H. W.). Beiblätter, 7, 532.

WAVE-LENGTHS.

- Wave-lengths of A, a and lines in the infra-red of the visible spectrum.

 Abney (W. de W.). Nature, 29, 190; Chem. News, 48, 283; Comptes Rendus, 97, 1206.
- Corrections to the computed lengths of waves of light, published in the Philosophical Transactions of the year 1868.

Airy (G. B.). Phil. Trans., 1872, 142, 89-109; Proc. Royal Soc., 20, 21-2 (Abs.).

Wellenlänge Messungen.

Angström (A. J.). Ann. Phys. u. Chem., **123**, 489; Jahresber. d. Chemie (1865), 85.

La détermination des longueurs d'onde des rayons de la partie infra-rouge du spectre au moyen des effets de phosphorescence.

Becquerel (E.). Comptes Rendus, 77, 302; Jahresber. d. Chemie (1873), 160.

Phosphorographie de la région infra-rouge du spectre solaire; longueur d'onde des principales raies.

Becquerel (H.). Comptes Rendus, 96, 121.

On the absolute wave-length of light.

Bell (Louis). Phil. Mag., (5) 23 (1887), 265-82; Amer. Jour. Sci., (3) 33, 167-82.

Photometrische Untersuchungen.

Bohn (C.). Ann. Phys. u. Chem., Ergänzungsband, 6 (1874), 386.

Détermination des longueurs d'onde des radiations très réfrangibles. Cornu (A). Jour. de Phys., 10, 425.

Étude spectrométrique de quelques scources lumineuses.

Crova (A.). Comptes Rendus, 87, 322.

Comparaison photométrique des scources lumineuses des teintes différentes. Crova (A.). Comptes Rendus, 93, 512; Ann. Chim. et Phys., (6) 6, 528-45.

Détermination des longueurs d'onde des rayons calorifiques à basse température dans le spectre.

Desaines (P.) et Curie (P.). Comptes Rendus, 90, 1506.

Wellenlänge der Fraunhofer Linien.

Ditscheiner (L.). Ber. d. Wiener Akad., Bd. II, Abth. 1, 296; Amer. Jour. Sci., (3) 3, 297-9.

23 т

Die brechbarston oder unsichtbaren Liehtstrahlen im Beugungspectrum und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 353; 99, 159-62.

Eine Wellenmessung im Spectrum jenseits des Violetts.

Esselbach (E.). Ann. Phys. u. Chem., 98, 513.

Les vibrations de la matière et les ondes de l'éther dans les combinations photochimiques.

Favé. Comptes Rendus, 86, 560-5.

On the normal solar spectrum. (Gives the wave-lengths of the principal lines of the solar spectrum.)

Gibbs (Wolcott). Amer. Jour. Sci., 93, 1.

On the measurement of wave-lengths by means of indices of refraction.

Gibbs (Wolcott). Amer. Jour. Sci., March, 1869; Phil. Mag., (4) 50, 177. [See also Rep'ts British Association for 1881 and 1884.]

Recherches photométriques sur les flammes colorées.

Gouy. Comptes Rendus, 83, 269-272; 85, 70, 439: 86, 878, 1078; Ann. Chim. et Phys., (5) 18, 5-101.

Measurements of the wave-lengths of lines of high refrangibility in the spectra of elementary substances.

Hartley (W. N.) and Adeney (W. E.). Phil. Trans., 175, 63-137;
 Proc. Royal Soc., 35, 148 (Abs.); Chem. News, 47, 193 (Abs.); Beiblätter, 7, 599 (Abs.).

Zur Reduction der Kirchhoff'schen Speetralbeobachtungen auf Wellenlängen.

Hasselberg (B.). Bull. Acad. St. Pétersbourg, 25, 131-46; Beiblatter, 3, 79.

Note sur l'analyse spectrale.

Janssen (J.). Comptes Rendus, **76**, 711-13; Jour. Chem. Soc., (2) **11**, 1258 (Abs.).

Photometrische Untersuchungen.

Ketteler (E.) und Pulfrich (C.). Ann. Phys. u. Chem., n. F. 15, 337-378; Amer. Jour. Sci., (3) 23, 486 (Abs.); Monatsber. d. Berliner Acad. (1864), 632.

Ueber die Empfindlichkeit des normalen Auges für Wellenlängenunterschiede des Lichtes.

König (A.) und Dieterici (C.). Ann. Phys. u. Chem, n. F. 22, 579-80; Jour. de Phys., (2) 4, 323 (Abs.).

-

Mesure de l'intensité photométrique des raies spectrales. Lagarde (H.). Comptes Rendus, 95, 1350.

Recherches photométriques sur le spectre de l'hydrogène.

Lagarde (H.). Ann. Chim. et Phys., (6) 4, 248-369, planche.

Wave-lengths in the invisible spectrum.

Langley (S. P.). Trans. National Acad. Sci. (1883); Amer. Jour. Sci.,
(3) 27, 169; (3) 30, 480; Ann. Chim. et Phys., (6) 2, 145; Ann. Phys. u. Chem., n. F. 22, 598.

On hitherto unrecognized wave-lengths.

Langley (S. P.). Amer. Jour. Sci., (3) **32**, 83; Phil. Mag., (5) **22** (1886), 149.

Courbe représentant le rapport des longueurs d'ondes aux divisions de mon micrométre.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 194, planche XXIX.

Comparaison photométrique des diverses parties du même spectre.

Macé de Lépinay (J.). Ann. Chim. et Phys., (5) **24**, 289; **30**, 145; Jour. de Phys., **12**, 64.

Sur une méthode pratique pour la comparaison spectroscopique des scources usuelles diversement colorées.

Macé de Lépinay (J.). Comptes Rendus, 97, 1428.

Méthode pour mesurer, en longueurs d'onde, de petites épaisseurs.

Macé de Lépinay (J.). Ann. Chim. et Phys., (6) 10, 68-84; Jour. de Phys., (2) 5, 405-11.

Détermination de la longueur d'onde de la raie A du spectre.

Mascart. Comptes Rendus, 56, 138.

Détermination des longueurs d'onde des rayons lumineux et des rayons ultra-violets.

Maseart. Comptes Rendus, 58, 1111.

Longueurs d'onde de quelques métaux.

Mascart. Ann. de l'École normale, 4 (1866).

Spectralphotometrische Untersuchungen einiger photographischer Sensibilisatoren.

Messersehmidt (J. B.). Ann. Phys. u. Chem., (2) 25, 655-74; Jour. Chem. Soc., 48, 1097 (Abs.); Jour. de Phys., (2) 5, 518.

Sur la détermination des longueurs d'onde calorifiques.

Mouton. Comptes Rendus, 88, 1078-82; Beiblätter, 3, 616-18 (Abs.)

Wellenlänge und Brechungsexponent der äusserstern dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543, Berichtigung dazu, 116, 644; Phil. Mag., (4) 26, 259; 30, 76; Jahresber. d. Chemie, 16 (1863), 191; 18 (1865), 229.

Note on the progress of experiments for comparing a wave-length with a metre.

Peirce (C. S.). Amer. Jour. Sci., (3) 18, 51; Beiblätter, 3, 711 (Abs.).

The ghosts in Rutherford's diffraction spectrum.

Peirce (C. S.). Amer. Jour. Mathematics, 2, 330-47; Nature, 20, 99 (Abs.); Beiblätter, 5, 48-50 (Abs.).

Photometric Researches.

Pickering (W. H.). Proc. Amer. Acad., 15, 236-50; Beiblätter, 4, 728 (Abs.).

Photometrische Untersuchungen.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 14, 177-218; Amer. Jour. Sci., (3) 23, 50 (Abs.); Jour. de Phys., (2) 1, 285 (Abs.).

Tableau de conversion de l'échelle spectrale en longueurs d'onde.

Salet (G.). Bull. Soc. chim. Paris, n. s. 27, 482.

On the relative wave-lengths of the lines of the solar spectrum.

Rowland (Henry A.). Phil. Mag., (5) 23 (1887), 257.

Three years' experimenting in mensurational spectroscopy Smyth (Piazzi). Nature, 22, 193-5, 222-5.

Mémoire sur la détermination des longueurs d'onde des raies métalliques, spectres des métaux dessinés d'après leurs longueurs d'onde. (With a plate giving the lines and wave-lengths of forty-five metals.)

Thalén (Rob.). Ann. Chim. et Phys., (4) 18, 202; Nova Acta Rog. Soc. Sci. Upsala, (3) 6.

.

Longueur d'onde des bandes spectrales données par les composé du carbone.

Thollon (L.). Comptes Rendus, 93, 260; Ann. Chim. et Phys., (5)
25, 287.

Mesures photométriques dans les différentes régions du spectre.

Trannin (H.). Jour. d. Phys., 5, 297, 349.

Photometrie der Fraunhofer Linien.

Vierordt (K.). Ann. Phys. u. Chem., n. F. 13, 338-46.

Resultate spectralphotometrischer Untersuchungen.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1880), 801-11; Beiblätter, 5, 286 (Abs.).

Messung der Wellenlängen des Lichtes mittels Interferenzstreifen im Beugungsstreifen.

Weinberg (M.). Carl's Repertorium, 19, 148-54; Beiblätter, 7, 299 (Abs.).

Note au sujet d'un mémoire de M. Lagarde.

Wiedemann (E.). Ann. Chim. et Phys., (6) 7, 143-4.

YELLOW BODIES.

Spectrum gelber Körper.

Thudichum. Ber. chem. Ges., 2, 63.

YTTERBIUM.

Examen spectrale de l'ytterbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1342.

Sur l'ytterbine, nouvelle terre contenue dans la gadolinite.

Marignae (C.). Comptes Rendus, 87, 578-81; Amer. Jour. Sci., (3) 17, 63 (Abs.); Jour. Chem. Soc., 36, 118 (Abs.).

Sur l'ytterbine, terre nouvelle de M. Marignae.

Nilson (L. F.). Comptes Rendus, 88, 642-5; Amer. Jour. Sci., (3) 17, 478 (Abs.); Ber. chem. Ges., 12, 550-3; Jour. Chem. Soc, 36, 601 (Abs.).

Sur quelques caractéristiques de l'ytterbium et sur leurs spectres.

Nilson (L. F.). Comptes Rendus, 91, 56.

Recherches spectrales de l'ytterbium.

Thalén (R.). Jour. de Phys., 12, 35.

Spectres de l'ytterbium et de l'erbium.

Thalén (R.). Comptes Rendus, 91, 326; Beiblätter, 5, 122; Chemical News, 42, 184.

YTTRIUM.

Yttrium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 51.

Sur les combinaisons de l'yttrium et de l'erbium.

Clève (P. T.) et Hoegland (O.). Bull. Soc. chim. Paris, **18**, 193-201, 289-97; Jour. Chem. Soc., (2) **11**, 136-9.

Sur les poids atomiques de l'yttrium.

Clève (P. T.). Bull. Soc. chim. Paris, **39**, 120-2; Amer. Jour. Sci., (3) **25**, 381 (Abs.).

On radiant matter spectroscopy. The detection and wide distribution of yttrium.

Crookes (W.). Phil. Trans., **174**, 891–918; Proc. Royal Soc., **35**, 262 (Abs.); Chem. News, **47**, 261 (Abs.); Ber. chem. Ges., **16**, 1689 (Abs.); Jour. Franklin Inst., **86**, 118–128; Beiblätter, **7**, 599 (Abs.); Jour. Chem. Soc., **46**, 241 (Abs.); Chem. News, **49**, 159–60, 169–71, 181–2, 194–6, 205–8; Ann. Chim. et Phys., (6) **3**, 145–87.

Spectre des terres faisant partie du groupe de l'yttria et de la cérite; holmium, philippium, samarium, décipium.

Soret (J. L.). Comptes Rendus, 89, 521-3; 91, 378; Ber. chem. Ges., 12, 2267-8; Jour. Chem. Soc., 38, 7 (Abs.); Chem. News, 40, 147.

Spectre de l'yttrium. Avec une planche.

Thalén (R.). Jour. de Phys., 4, 33.

ZINC.

Ueber die optischen Eigenschaften der Zincblende von Santander. (See under Voigt, below.)

Calderon (L.). Zeitschr. Krystallogr. u. Mineralog., 4, 504-17, Beiblätter, 5, 361 (Abs.).

Zine spectra

Capron (J. R.). Photographed Speetra, London, 1877, p. 23, 49, 51, 52.

Déterminations des longueurs d'onde des radiations très réfrangibles du magnésium, du cadmium, du zinc et de l'aluminium.

Cornu (A.). Archives de Genève, (3) 2, 119-126; 3eiblatter, 4, 31 (Abs.); Jour. de Phys., 10, 425-31; Comptes Rendus, 73, 332.

Spectre du chlorure de zinc.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 107.

Chlorure de zinc en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 138, planche XX.

Spectrum of zinc at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98; Proc. Royal Soc., 17, 289; 18, 79; 21, 83; Jahresber. d. Chemie (1872), 145.

Indice du quartz pour les raies du zinc.

.

Sarasin (E.). Comptes Rendus, 85, 1230.

Ueber den Einflüss einer Krümmung der Prismenflächen auf die Messungen von Brechungsindices, und über die Beobachtungen des Herrn Calderon an der Zineblende.

Voigt (W.). Zeitschr. f. Krystallogr. u. Mineral., 5, 113-130; Berblatter, 5, 361-2 (Abs.).

ZIRCONIUM.

Zirconium arc spectrum; zirconium and palladium spack spectrum; zirconium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 53.

On zirconia.

Hannay (J. B.). Jour. Chem. Soc., (2) **11**, 703-10; Ber. chem. Ges., **6**, 571 (Abs.).

Absorption spectra of zircons.

Linnemann (E.). Monatsber. f. Chemie, 6, 531-6; Jour. Chem. Soc., 48, 1173 (Abs.).

On some remarkable spectra of compounds of zirconia and the oxides of uranium.

Sorby (H. C.). Proc. Royal Soc., 18, 197; Ber. chem. Ges., 3, 146.

Spectre du zirconium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim Paris, n. s. 16, 229.

INDEX OF AUTHORS.

(The names indicate the subjects, and the numbers indicate the pages on which the titles of the authors' works are given.)

Abbay (R.). Eclipse Spectra, 106.

ABBÉ (C.). Eclipse Spectra, 106.

ABERCROMBIE (R.). Aurora, 136; Meteorological, 295.

Abney (W. de W.), alone. Analysis, 40, 47; Absorption, 52; Solar in general, 88; Solar Atmosphere, 100; Maps of Solar Sp., 114; Photographs of Solar Sp., 115; Red End, 123; Wave-Lengths of Solar Sp., 131; Atmospheric Sp., 133; Chlorine, 187; Heat, 251; Oxygen, 308; Phosphorescence, 312; Red End, 322; Silver, 334; Sodium, 337; Sulphur, 341; Wave-Lengths, 353.

Abney (W. de W.) and Festing (R.). Apparatus, 21, 26; Absorption, 52; Displacement of Stellar Sp., 79; Solar in general, 88; Red End, 123; Water in the Solar Sp., 131; Carbon Compounds in general, 154; Ebonite, 171; Carbon Disulphide, 183; Electric, 218; Iodine, 265.

ABNEY (W. de W.) and Schuster (A.). Eclipse Sp., 106; Photographs of Solar Sp., 115.

ABT (A.). Electric, 218; Interference, 262.

Ackroyd (W.). Absorption, 52; Color, 197; Inversion, 263; Sedium, 337.

ADAMKIEWICZ (A.). Albumin, 161.

Adams (W. H.). Aurora, 136; Selenium, 332.

AGNELLO (A.). Book (Eclipse of 1870), 8.

AIRY (G. B.). Astronomical in general, 66; Comets, 72, 73; Displacement of Stellar Sp., 79; Measurement of Stellar Sp., 82; Sp. of Planets, 87; Sun-Spots, 125; Wave-Lengths, 353.

AITKEN (J.). Absorption, 52; Water, 351.

AKIN (C. H.). Analysis, 40.

ALBERT (E.). Color, 197.

ALBITZKY (A.). Hydrocarbon, 174.

ALLEN (O. D.). Cæsium, 150; Rubidium, 327.

ALLEYNE (Sir J. Y. N.). Iron, 268.

ALVERGNIAT. Apparatus, 38.

AMORY (R.). Apparatus, 26; Absorption, 52; Photographs of Solar Sp., 116.

André. Comets, 72.

Andrews (T.). Flame, 231; Iodine, 265.

ANGELOT. Solar Atmosphere, 100.

Angström (A. J.), alone. Book, 8; Analysis in general, 40; Solar, 89; Aurora, 136; Hydrocarbon, 174; Carbonic Acid, 179; Electric, 218; Maps, 287; Metals, 290; Nitrogen, 300; Optical, 306; Oxygen, 308.

Angström (A. J.) and Thalén (R.). Maps, 287.

ARAGO. History, 1; Light, 272.

Arcimis (A. T.). Aurora, 136.

Anons (L.). Interference, 262.

ARZRUMI (A.). Barium, 143; Lead, 271; Strontium, 340.

Assche (F. van). Heat, 251; Selenium, 332.

Attfield (J.). Carbon, 153.

AUBERT and DUBOIS. Phosphorescence, 312.

Aymonnet, alone. Absorption, 52; Heat, 251; Liquids, 276.

AYMONNET et DESAINS. Dark Lines, 205.

Aymonnet et Maquenne. Apparatus, 20.

AYRTON (W. C.) and PERRY (J.). Ebonite, 171.

Babinet. Longitudinal, 281; Paragenie, 311.

BACKHOUSE (T. W.). Comets, 73, 74, 75; Fixed Stars, 81; Aurora, 136.

Bahr and Bunsen. Erbium, 228.

Baily (W.). Apparatus, 11, 18, 19.

Ballmann (H.). Quantitative Analysis, 49; Lithium, 279.

Balmer (J. J.). Hydrogen, 257.

Barbier (P.). Terebinthene, 183; Chlorine, 187.

BARBIERI (E.). Protuberances, 118.

BARDY (C.). Chrysoïdine, 168; (RICHE et B.), Flame, 237.

Barker (G. F.). Eclipses, 106; Aurora, 136.

BARLOCCI. History, 1.

BARTHÉLEMY (A.). Comets, 72.

BAUDIN. Sun-Spots, 125.

BAUDRIMONT. Luminous Sp., 281; Water, 351.

BAUERNFEIND (C. M.). Apparatus, 23.

Bayley (T.). Chromium, 195; Cobalt, 196.

Beccaria. History, 1.

BECKER (G. F.). History, 1.

BÉCLARD. Color, 197.

Becquerel (Edm.). Book, 8; Apparatus, 24; Aluminium, 62; Fixed Stars, 81; Solar in general, 89; Photography of Solar Sp., 116; Radiation of Solar Sp., 122; Red End of Solar Sp., 123; Bromine, 147; Calcium, 151; Coloring Matters, 155; Color, 197; Electric, 218, 219; Fluorescent, 241; Iodine, 265; Light, 272; Luminous Sp., 281; Manganese, 285; Phosphorescent, 312, 313; Refraction, 323; Silver, 334; Uranium, 347; Wave-Lengths, 353.

BECQUEREL (H.). Apparatus, 24; Absorption, 52; Solar Wave-Lengths, 131; Atmospheric, 133; Carbonic Acid, 179; Sulphide of Carbon, 183; Chlorine, 187; Didymium, 209; Emission, 226; Flame, 231; Metals, 290; Nitrogen, 300; Oxygen, 308; Red End, 322; Sodium, 337; Sulphur, 341; Titanium, 347; Water, 351; Wave-Lengths, 353.

Bedson (P. P.) and Williams (W. C.). Refraction, 323.

BEGOUEN. Comets, 70.

Behrens (H.). Color, 197.

Bell (L). Apparatus, 29; Absorption, 53; Cadmium, 149; Meteorological, 295; Nitrogen, 300; Wave-Lengths, 353.

Belohoubek. Alkalies, 61.

Benkovich (E. von). Plants, 181.

BÉRARD. History, 1.

Berg (F. W.). Apparatus, 13.

Bernard (F.). Solar Wave-Lengths, 131.

Bernheimer e Nasini. Carbon Compounds in general, 155.

Bert (P.). Carbon Compounds in general, 155.

Berthelot, alone. Comets, 70.

Berthelot et Richard. Analysis, 40; Flame, 231.

Berthold (G.). History, 1; Fluorescent, 241.

Bezold (W. von). Carbon Compounds in general, 155; Fluorescent, 241; Heat, 251.

BIANCHI. Astronomical, 118.

BIDWELL (Shellford). Analysis, 40.

Binz (C.). Blood, 165; Oxygen, 308.

Biot (J. B.). History, 1; Apparatus, 25; Solar Radiation, 122, 123; Twinkling of Stars, 132; Phosphorescent, 313; Radiation, 321.

BLAIR (R.). History, 1.

BLAKE (J. M.). Apparatus, 18.

BLANFORD (H. F.). Solar Photography, 116.

Blaserna (P.). Book, 8; Apparatus, 27; Chromosphere, 102; Alcohol, 161; Heat, 251.

BLEEKRODE (L.). Flame, 231.

BLOCHMAN (R.). Calcium, 151.

Bodynski (J.). Liquids, 276.

BOECK (H.). Anthracen, 163.

Börsch. Apparatus, 12.

BOETTGER (R.). Alizarine, 161.

Bohn (C.). Wave-Lengths, 353.

Bolllot. Solar in general, 89.

Boscovicii (R. J.). History, 2.

Boss (L.). Comets, 70.

Bostwick. Absorption, 53; Electric, 219.

Boudhéaux. Metals, 290.

BOUGUER (P.). History, 2.

Brackett (C. F.). Apparatus, 20, 36.

Branly (E.). Blood, 165; Hemoglobine, 174.

Brassack. Metals, 290.

Braun (C.). Apparatus, 15, 28; Photography of Solar Sp., 116.

Brauner (B.). Cerium, 186; Didymium, 209.

Brédischin (T.). Comets, 73, 76.

Brenta. Solar in general, 89.

Brewster (Sir D.), alone. History, 2; Apparatus, 20; Solar in general, 89; Atmospheric, 133; Carbon Compounds in general, 155; Nitrogen, 300; Paragenic Sp., 311.

Brewster (Sir D.) and Gladstone (J. H.). Solar in general, 89.

Brock (O. J.). Solar in general, 89.

Broder (B. C.). Metals, 290.

Brown (W. G.). Philippium, 311.

Browning (J.). Apparatus, 11, 27, 33, 34, 36; Meteors, 83; Aurora, 136.

Brücke (E.). Absorption, 53; Munganese, 285; Potassium, 319.

Brühl (J. W.). Carbon Compounds in general, 155; Citracon, 168; Mesacon, 177; Methacryll, 177; Constants, 200; Dispersion, 212; Liquids, 276.

Brunn (J.). Apparatus, 29, 32.

BUCHNER. Blood, 165; Hydrogen, 257.

Buffon. History, 2.

Bührig (H.). Absorption, 53; Didymium, 209.

Bunsen (R.). Analysis, 40; Meteors, 83; Cæsium, 150; Didymium, 209; Erbium, 228; Lithium, 279; Metals, 290.

Burch (G. J.). Flame, 231.

Burger (H.). Constants, 200; Liquids, 276.

CACCIATORE. Transit of Venus, 87.

Cailletet. Electric, 219; Flame, 231; Pressure, 320.

Calderon (L.). Zinc, 360.

CAMPANI (G.). Carmine, 167; Nitrogen, 300.

CAPPEL (E.). Electric, 219; Heat, 251; Metals, 290.

CAPRANICA (S.). Bile, 164.

Capron (J. R.). Book, 8; Apparatus, 21; Aluminium, 62; Antimony, 64; Arsenic, 65; Comets, 74, 75; Meteors, 83; Solar Photography, 116; Aurora, 137; Barium, 143; Beryllium, 144; Borax, 145; Cadmium, 149; Calcium, 151; Carbon in general, 153; Cyanogen, 169; Ether, 171; Oils, 178; Turpentine, 184; Chlorine, 187; Chromium, 195; Cobalt, 196; Copper, 201; Didymium, 209; Electric, 219; Flame, 231; Fluorine, 246; Gold, 250; Hydrogen, 257; Indium, 261; Iodine, 265; Iridium, 267; Iron, 268; Lead, 271; Magnesium, 282; Manganese, 285; Mercury, 289; Meteorological, 295; Molybdenum, 298; Niobium, 299; Nitrogen, 300; Oxygen, 308; Palladium, 311; Platinum, 317; Rhodium, 326; Ruthenium, 327; Selenium, 332; Silicium, 333; Silver, 334; Strontium, 340; Sulphur, 341; Tellurium, 343; Thallium, 344; Tin, 345; Titanium, 346; Uranium, 347; Vanadium, 347; Yttrium, 359; Zinc, 360; Zirconium, 361.

CARPENTER (J.). Analysis, 40.

CAZENEUVE (P.). Hematine, 173.

CAZIN (A.). Electric, 219; Flame, 232.

CHACORNAC. Solar in general, 89.

Champion. Book, 8; Apparatus, 33; Quantitative Analysis, 49; Sodium, 337.

CHANCEL (G.). Wine, 185.

Chappuis (J.). Absorption, 53; Nitrogen, 300; Oxygen, 308.

Chardonnet. Apparatus, 23; Color, 197; Energy, 227; Ultra-Violet, 348.

Charpentier (Aug.). Solar in general, 89; Color, 197.

CHASE (P. E.). Solar in general, 90.

Chastaing (P.). Light, 272; Oxygen, 308.

CHAUTARD (J.). Bromine, 147; Chlorine, 187; Chlorophyll, 192; Electric, 219; Flame, 232; Fluorine, 246; Iodine, 265; Silicium, 333; Sodium, 337.

Christiansen (C.). Analysis, 40; Fuchsin, 172; Liquids, 276; Optical, 306.

Christie (W. H.). Apparatus, 28; Astronomical in general, 66; Comets, 73, 74, 79; Bright Lines in the Solar Sp., 101; Aurora, 137; Dispersion, 212.

Christofle (P.). Phosphorus, 315.

CHURCH (A. H.). Aurora, 137; Colein, 168; Water, 351.

CIAMICIAN (G. L.). Analysis, 41; Carbon in general, 153; Density, 207; Flame, 232; Heat, 251.

Claes (F.). Absorption, 53.

CLARK (Alvah, Jr.). Aurora, 137.

CLARKE (F. W.). Analysis, 41.

CLARKE (J. W.). Electric, 220.

CLAUDET. Apparatus, 25; Chemical Effects of Solar Sp., 102.

CLEMENSHAW (E.). Analysis, 41.

CLÈVE (P. T.). Didymium, 209; Erbium, 228; Holmium, 256; Lanthanum, 270; Samarium, 329; Scandium, 331; Thulium, 345; Yttrium, 359.

CLIFTON (Roscoe and). Heat, 254.

CLOISEAUX (Des). Chlorine, 187; Silver, 334.

CLOUÉ. Eclipse Sp., 107.

CONCHE (E.). Solar Photography, 116.

Conroy (Sir J.). Distribution, 217; Heat, 251; Iodine, 265; Manganese, 285; Metals, 290; Phosphorescent, 313; Potassium, 319.

Cooke (J. P., Jr.). Apparatus, 34; Water in the Solar Sp., 131; Metals, 290.

Copeland (R.). Astronomical in general, 66; Fixed Stars, 81, 82; Aurora, 137; High Altitudes, 255.

CORNU (A.). Apparatus, 15, 27, 38; Analysis, 41; Absorption, 53;

Aluminium, 62; Antimony, 64; Fixed Stars, 81; Solar in general, 90; Solar Absorption Sp., 99; Dark Lines in the Solar Sp., 105; Telluric Rays in the Solar Sp., 129; Ultra-Violet Rays of the Solar Sp., 129, 130; Atmospheric, 133; Aurora, 137; Bismuth, 145; Cadmium, 149; Copper, 201; Gold, 250; Hydrogen, 257; Inversion, 263; Iron, 268; Lead, 271; Magnesium, 282; Maps, 287; Metals, 290; Silver, 334; Sodium, 337; Thallium, 344; Ultra-Violet, 348; Wave-Lengths, 353; Zinc, 360.

CORTIE (A.). Sun-Spots, 125.

Cory (F. W.). Meteorological, 295.

Cossa (A.). Cerium, 186.

CROCÉ-SPINELLI (J.) et SIVEL. High Altitudes, 255.

CROOKES (W.). Apparatus, 23; Analysis, 41; Aluminium, 62; Carbonic Acid, 179; Didymium, 209; Diffraction, 211; Discontinuous, 212; Erbium, 228; Flame, 232; Fluorescent, 241; Gadolinite, 247; Light, 272; Metals, 290; Phosphorescent, 313; Radiation, 321; Refraction, 323; Samarium, 329; Samarskite, 330; Sodium, 337; Thallium, 344; Yttrium, 359.

Cros (Ch.). Carbon Compounds in general, 156; Silver, 334.

CROULLEBOIS. Analysis, 41; Crystals, 203; Liquids, 276; Refraction, 323.

CROVA (A.). Apparatus, 19, 27, 29, 33; Absorption Sp., 53; Solar Absorption, 99; Solar Radiation, 123; Telluric Rays of the Solar Sp., 129; Solar Wave-Lengths, 131; Atmospheric, 133; Aurora, 137; Flame, 232; Heat, 251; Radiation, 321; Wave-Lengths, 353.

Cruls (L.). Apparatus, 30; Astronomical in general, 66; Comets, 76, 77.

Czechowicz. Electric, 220.

· Dalet. Solar in general, 90.

Damien. Acetic Acid, 160; Liquids, 276; Sodium, 337; Water, 351.

Daniel. Electric, 220.

Daube (F. U.). Curcumin, 169.

DAUMER et THIBAUT. Oils, 178.

Debray (H.). Apparatus, 20; Metals, 291.

Delachanal (B.). Apparatus, 17, 18, 38.

Delafontaine. Cerium, 186; Decipium, 207; Didymium, 209; Erbium, 228; Gadolinite, 247; Holmium, 256; Metals, 291; Philippium, 311; Samarium, 329; Samarskite, 330; Terbium, 343; Thulium, 345.

24 T

- Delaunay. History, 2; Analysis, 41; Solar Protuberances, 118; Electric, 220.
- Demarçay (Eug.). Analysis, 41; Cerium, 186; Didymium, 209; Electric, 220.
- Desaines (P.). History, 2; Apparatus, 30; Dark Lines in the Solar Sp., 105; Heat in the Solar Sp., 112; Color, 197; Crystals, 203; Dark Lines, 205; Heat, 252; Wave-Lengths, 353.
- Deslandres (H.). Analysis, 41; Electric, 220; Flame, 232; Nitrogen, 300.
- Dewar (J.). Analysis, 47; Chemical Effects of the Solar Sp., 102; Heat, 252.
- Diacon. Apparatus, 12; Alkalies, 61; Bromine, 147; Chlorine, 188; Copper, 201; Electric, 220; Metals, 291.
- DIBBITS (H. C.). Cyanogen, 169; Carbonic Acid, 179; Sulphide of Carbon, 183; Flame, 232; Hydrogen, 257; Nitrogen, 300; Sulphur, 341; Water, 351.
- DIETRICH (W.). Apparatus, 32; Sodium, 337.
- Dieulafait. Borax, 145, 146; Cæsium, 150; Lithium, 279; Mineral Waters, 297; Nitrogen, 301; Rubidium, 327; Silver, 334; Strontium, 340.
- DITSCHEINER (L.). Apparatus, 34, 39; Solar Wave-Lengths, 131; Crysstals, 203; Diffraction, 211; Optical, 306; Wave-Lengths, 353.
- DITTE (A.). Chlorine, 188; Metals, 291; Nitrogen, 301; Selenium, 332; Sulphur, 341; Tellurium, 343.

DOLLAND (J.). History, 2.

DONATI. Comets, 71.

Donders. Analysis, 42.

Donelly (J. F.). Apparatus, 22.

Dove (H. W.). Electric, 220.

- DRAPER (H.). History, 2; Books, 8; Apparatus, 24, 28; Analysis, 42; Comets, 75; Fixed Stars, 82; Nebulæ, 85; Photography of Stellar Sp., 85; Jupiter, 86; Venus, 88; Bright Lines in the Solar Sp., 102; Eclipses, 107; Oxygen in the Solar Sp., 115; Ultra-Violet Solar Sp., 130; Solar Wave-Lengths, 131; Diffraction, 211; Oxygen, 308.
- Draper (J. C.). Apparatus, 29; Dark Lines in the Solar Sp., 106; Solar Eclipses, 107; Oxygen in the Solar Sp., 115; Oxygen, 309.
- DRAPER (J. W.). History, 2; Apparatus, 25, 32; Solar Photography, 116; Red End of the Solar Sp., 123; Cone Sp., 199; Energy in the Sp., 227; Heat, 252.

.

Draper (W.). Intensity of the Solar Sp., 113.

DUBRUNFAUT. Analysis, 42; Flame, 232.

Duclaux (E.). Analysis, 42; Energy in the Sp., 227.

Dufet (H.). Refraction, 323.

Duhem. Inversion, 263.

DUJARDIN (F.). Apparatus, 36.

Dunér (N. C.). Comets, 76.

Dunstan (W. R.). Carbon Compounds in general, 156.

Dupré (A.). Wine, 185.

DUTIROU (L'Abbé). History, 2.

EDELMANN (Th.). Apparatus, 22.

EDER (J. M.). Apparatus, 26; Analysis, 42; Absorption, 53; Solar in general, 90.

EGOROFF (N.). Oxygen in the Solar Sp., 115; Telluric Rays in the Solar Sp., 129; Oxygen, 309.

EIGER (T. G.). Aurora, 137.

EISENLOHR (W.). Dark Lines, 205; Diffraction, 211; Fluorescent, 241; Iodine, 265; Refraction, 323; Silver, 334; Ultra-Violet, 348; Wave-Lengths, 354.

Ellery (R. J.). Aurora, 137.

Emsmann (H.). Apparatus, 15, 28; Absorption, 54; Nickel, 299; Nitrogen, 301; Silver, 334.

ENGELHART (G.) and BEZOLD. Fluorescent, 241.

ENGELMANN (T. W.). Hematine, 174; Color, 197; Electric, 220; Oxygen, 309.

ERCK (W.). Apparatus, 36; Didymium, 209.

Erdmann. Didymium, 209.

Esselbach (E.). Wave-Lengths, 354.

EXNER (K.). History, 2; Analysis, 42; Twinkling of Stars, 132; Interference, 262; Lines of the Sp., 274.

FAURA (F.). Eclipses, 107.

Favé. Analysis, 42; Fluorescent, 241; Phosphorescent, 313; Wave-Lengths, 354.

FAYE. History, 3; Apparatus, 37; Comets, 70; Solar Sp. in general, 90; Solar Eclipses, 107; Hydrogen in the Sun, 113; Solar Protuberances, 118; Solar Rotation, 124; Solar Storms, 124; Sun-Spots, 125; Aurora, 138.

FERRARI. Solar Protuberances, 118.

FEUSSNER. Heat, 252.

FIELDING (G. F. M.). Flame, 232.

Fievez (Ch.). Analysis, 42; Nebulæ, 84; Solar in general, 90; Magnesium in the Sun, 114; Electric, 220; Heat, 252; Hydrogen, 257; Magnesium, 282; Map, 114, 287; Nitrogen, 301.

FILHOL (E.). Chlorophyll, 192.

Fizeau. Astronomical in general, 66; Displacement of Stellar Sp., 79 Solar in general, 91; Solar Eclipses, 107; Sodium, 337.

FLAMMARION. Comets, 70.

FLAVITSKY (F.). Carbon Compounds in general, 156; Terpenes, 184.

FLECK. Apparatus, 29.

FLÖGEL. Aurora, 138.

Fock (A.). Refraction, 323.

Fonvielle (W. de). High Altitudes, 255.

Forbes (J. D.). History, 3.

FOSTER (Le Neve). Glass, 249.

FOUCAULT (L.). Apparatus, 31; Dark Lines, 205.

FOUCAULT et FIZEAU. Apparatus, 25.

Francis (G.). Australian Lake, 164; Fish Pigment, 171.

Franckland (E.). Carbonic Acid, 179; Hydrogen, 257; Lithium 279; Oxygen, 309.

Franckland and Lockyer. Astronomy in general, 66; Nebulæ, 84 Solar in general, 91; Gas in the Solar Sp., 112; Flame, 232.

Fraser (W.). Osmium, 307.

FRAUDE G. . Chlorine, 188.

FRAUNHOFER (J. von). History, 3; Lines of the Sp., 274.

Frazer (P.). Aurora, 138.

FRÉMY. Aluminium, 62.

FREY (M. von . Analysis, 42.

FRIEDLÄNDER (P.). Chinolin, 168.

Fröhlich J.). Energy, 227; Refraction, 323.

Fucus (F.). Apparatus, 28, 32, 33.

Furniss (J. J.). Apparatus, 35.

Gamge (A.). Blood, 166; Nitrogen, 301.

Garber G.). Apparatus, 31.

Gassior. Apparatus, 15, 27, 31, 35; Analysis, 42.

GAUDIN. Apparatus, 25.

GERDING (Th.). History, 3.

GERLAND (E.). Chlorophyll, 193.

GERLAND (J.). Chlorophyll, 193.

Gernez (D.). Absorption, 54; Bromine, 147; Alizarine, 161; Chlorine, 188; Flame, 232; Iodine, 265; Nitrogen, 301; Selenium, 332; Sulphur, 341; Tellurium, 343.

Gibbons (J.). Electric, 220.

Gibbs (Wolcott). Apparatus, 34; Analysis, 47; Quantitative Analysis, 49; Solar Wave-Lengths, 131; Constants, 200; Optical, 306; Wave-Lengths, 354.

GILMOUR (W.). Oils, 178.

GIRARD (H.) et BABST. Absorption, 54.

GIRDWOOD (G. P.). Wood, 185.

GLADSTONE (J. H.). Qualitative Analysis, 49; Aluminium, 62; Planets, 86; Solar in general, 91; Atmospheric, 134; Carbon, 153; Carbon Compounds, 156; Diamond, 170; Oils, 178; Chlorine, 188; Didymium, 210; Dispersion, 213; Flame, 233; Hydrogen, 258; Liquids, 276; Metals, 291; Nitrogen, 301; Oxygen, 309; Salt, 328.

GLAN (P.). Apparatus, 26, 35, 36; Absorption, 54; Density, 207; Glass, 249; Polarized Light, 318.

GLAZEBROOK (R. T.). Apparatus, 18, 33.

GOLDSTEIN. Atmospheric, 134; Flame, 233.

Goltzsch (H.). Apparatus, 13.

GOTHARD (E. von). Apparatus, 20, 24, 38: Astronomical in general, 66; Comets, 77, 78; Fixed Stars, 81, 82.

GOTTSCHALK (F.). Apparatus, 34.

Gould (B. A.). Apparatus, 37.

Gouy. Absorption, 54; Aluminium, 62; Solar Absorption, 99; Dark Lines in the Solar Sp., 106; Barium, 143: Bromine, 147; Cadmium, 149; Calcium. 151; Carbonates, 156; Chlorine, 188; Cobalt, 196; Copper, 201; Flame, 233; Iodine, 265; Iron, 268; Lead, 271; Lithium, 279; Magnesium, 282; Manganese, 285; Metals, 291; Nitrogen, 301; Phosphorus, 315; Platinum, 317; Potassium, 319; Refraction, 323; Rubidium, 327; Salt, 328; Silver, 335; Sodium, 337; Strontium, 340; Sulphur, 341; Thallium, 344; Wave-Lengths, 354; Zine, 360.

GOUY et THOLLON. Comets, 77; Solar Wave-Lengths, 131.

Govi (S. G.). Apparatus, 24; Analysis, 43; Quantitative Analysis, 50.

GOVI (S. G.) et LAGARDE. Radiation, 321.

GRÄBE (C.) und CARO (H.). Rosaniline, 182.

Grandeau (L. N.). Book 8; Casium, 150; Electric, 220.

GREINER (A.). Iron, 268; Phosphorus, 315.

Griffiths (A. B.). Plants, 181.

GRIMM (F.). Chinizarin, 168; Hydrochinon, 175.

Gripon (E.). Fluorescent, 241.

GROVE (Sir W. R.). Electric, 221.

GRUBB (H.). Apparatus, 11.

GRUBB (T.). Apparatus, 34, 35.

Guillemin. Ultra-Violet Solar, 130.

GÜNTHER (C.). Flame, 233; Inversion, 263; Sodium, 337.

HAGENBACH (E.). Electric, 221; Fluorescent, 242; Fluorine, 246; Silicium, 333.

HAIG (C. T.). Eclipses, 107.

Hammerl (H.). Liquids, 276; Meteorological, 295.

Hammond (B. E.). Corona, 103; Hydrogen in the Solar Sp., 113; Intensity of the Solar Sp., 113.

HAERLIN (J.). Carbon Compounds in general, 156.

HANKEL (W.). Metals, 291.

Hannay (J. B.). Zireonium, 361.

HARKNESS (W.). Comets, 74; Chromosphere, 103.

Hartley (W. N.). Apparatus, 16, 26; Analysis, 47; Quantitative Analysis, 50; Absorption, 54; Alkalies, 61; Solar Absorption, 99; Atmospheric, 134; Beryllium, 144; Borax, 146; Carbon Compounds, 156; Acid Brown, 161; Amido Azo, etc., 162; Aurin, 164; Benzene, 164; Azo, 164; Bismarck Brown, 165; Carbohydrates, 167; Chrysoïdine, 168; Croceïne Scarlet, 169; Cymene, 170; Dipyridene, 170; Fast Red, 171; Flour and Grain, 172; Helianthin, etc., 173; Iodine Green, 176; Metaxylene, 177; Naphthalene, 177, 178; Oils, 178; Orthotoluidine, 179; Paratoluidine, 181; Picolene, 181; Pyridine, 182; Rosaniline Base, 182; Terpenes, 184; Tetrahydroquinoline, etc., 184; Tropæolin, 184; Cerium, 186; Chromium, 195; Electric, 221; Emission, 226; Homologous Spectra, 256; Liquids, 276; Metals, 291; Oxygen, 309; Rhabdophane, 326; Salt, 328; Silicium, 333; Sulphur, 341; Violet, 348; Wave-Lengths, 354.

HARTSEN (T. A.). Chlorophyll, 193.

HARTSHORNE (H.). Analysis, 43; Lines of the Sp., 274.

HASSELBERG (B.). Apparatus, 29; Comets, 74, 78; Acetylene, 160; Hydrogen, 258; Maps, 287; Metals, 291; Nitrogen, 301; Wave-Lengths, 354.

Hastings (C. S.). Solar in general, 91; Glass, 249; Heat, 252.

HAUTEFEUILLE (P.) et CHAPPUIS (J.). Flame, 234.

Heinrichs. Distribution, 217.

Helmholtz (H.). Carbon Compounds, 156; Dispersion, 212; Refraction, 324.

Hennessey (J. B. N.). Solar Atmosphere, 100; Displacement in the Solar Sp., 106; Red End of the Solar Sp., 123; White Lines in the Solar Sp., 132; Atmospheric Sp., 134.

Hennig (R.). Apparatus, 29; Quantitative Analysis, 50.

Henry (L. d'). Light, 272; Sodium, 338.

HEREPATH (W. B.). Apparatus, 23.

HERSCHEL (A. S.). History, 3; Apparatus, 21; Analysis, 43; Meteors, 83; Eclipses, 107; Aurora, 138; Carbon, 153; Nomenclature, 305; Violet, 348.

HERSCHEL (Lieut. John). Nebulæ, 85; Solar Protuberances, 118; Electric, 221.

HERSCHEL (Sir John). History, 3, 4; Solar in general, 91; Coal, 168; Soda, 338.

Hesehus (N.). Apparatus, 13.

Hesse (O.). Dispersion, 212.

Heusser (J. C.). Analysis, 43; High Altitudes, 255.

HEYNSIUS (A.) and CAMPBELL (J. F. F.). Absorption, 55; Gall, 173.

HILGARD (J. E.). Apparatus, 13.

HILGER (A.). Apparatus, 14; Caryophyllaceæ, 167.

HIRN (G. A.). Book, 8.

HITTORF (W.). Flame, 234, 237.

Hock (K.). Apparatus, 11; Alkalies, 61; Oils, 178.

HOFFMANN (A. W.). Quinoline-Red, 182.

HOFMAN (J. G.). Apparatus, 28, 32; Hydrogen, 258; Nitrogen, 302; Phosphorus, 315.

Hoн (Th.). Electric, 221.

HOLDEN (E. S.). Aurora, 138; Electric, 221.

Homann (H.). Astronomical in general, 66.

Hoorweg (J. L.). Analysis, 43.

HOPKINSON (J.). Glass, 249; Refraction, 324.

HOPPE-SEYLER (F.). History, 4; Book, 8; Blood, 166; Carbonic Acid, 179; Manganese, 285; Oxygen, 309.

HORNER (M. C.). Venus, 88; Borax, 146; Cobalt, 196; Fluorescence, 242; Manganese, 285; Phosphorus, 315.

Horgh (G. W.). Book, 9.

HOUZEAU et MONTIGNY. Displacement of Stellar Sp., 79.

HÜFNER (G.). Apparatus, 33; Quantitative Analysis, 50.

Huggins (W.). Apparatus, 30, 36; Analysis, 43; Astronomical in general, 67; Comets, 70, 79; Displacement of the Stellar Sp., 79; Fixed Stars, 80, 82; Nebulæ, 85; Photography of Stellar Sp., 85; Sp. of Planets, 86; Solar in general, 91; Chromosphere, 103; Photography of Solar Sp., 116; Solar Protuberances, 118; Electric, 221; Erbium, 228; Hydrogen, 258; Microscopic, 296; Water, 351.

HUGGINS (W.) and MILLER (W. A.). Fixed Stars, 80.

Hugo (L.). Birds, 165.

Hunt (T. Sterry). History, 4.

HUNTINGTON (O. W.). Arsenie, 65.

Hurion. Dispersion, 213; Interference, 262; Liquids, 277.

HUYGHENS (C.). History, 4.

Hyatt. Aurora, 138.

JACQUES (W. W.). Aluminium, 62; Chromium, 195; Copper, 201; Heat, 252; Iron, 268; Platinum, 317.

JAFFE. Gall, 173.

Jamin. Analysis, 43.

Janowski (J. V.). Refraction, 324.

Janssen (J.). Apparatus, 25, 34; Quanțitative Analysis, 50; Astronomical in general, 67; Comet, 74; Fixed Stars, 82; the Moon, 87; Venus, 88; Solar in general, 89, 92; Solar Atmosphere, 100; Corona, 103; Eclipses, 107, 108; Hydrogen in the Solar Sp., 113; Solar Protuberances, 118; Telluric Rays in the Solar Sp., 129; Atmospheric Sp., 134; Flame, 234; High Altitudes, 255; Sodium, 338; Water, 351.

Jussen (E.). Absorption, 55.

JOEST (W.). Alcohol, 161; Aniline, 162.

Johnson (A.). History, 4; Lines of the Sp., 274.

Jones (H. Bence). Carbon Compounds, 157; Crystalloids, 169.

JOULE (J. P.). Electric, 221.

KAHLBAUM (G. W. A.). Butter, 167.

Kanonnikoff (J.). Carbon Compounds, 157; Refraction, 324.

Keeler (J. E.). Absorption, 55; Carbonic Acid, 180.

Kern (J.). Davyum, 206.

Kessler (F.). Apparatus, 13, 16; Solar in general, 92; Solar Photography, 116.

Ketteler (E.). Apparatus, 26, 33; Absorption, 55; Dispersion, 213; Fluorescence, 242; Optics, 306; Refraction, 324.

KETTELER und PULFRICH. Wave-Lengths, 354.

KEY (H. Cooper). Aurora, 138.

Kindt. Chlorine, 189; Dark Lines, 205; Fluorine, 246; Phosphorescence, 313; Phosphorus, 315; Silicium, 333.

KINGDON (F.). Apparatus, 20.

Kirchhoff (G.). History, 4; Book, 9; Apparatus, 34; Analysis, 43; Absorption, 55; Barium, 143; Cæsium, 150; Calcium, 151; D Lines, 204; Dark Lines, 205; Emission Sp., 226; Inversion, 263; Maps, 288; Polarized Light, 318; Potassium, 319; Radiation, 321; Sodium, 338; Strontium, 340.

KIRCHHOFF und BUNSEN. Alkalies, 61; Rubidium, 327.

Kirk (E. B.). Aurora, 138.

Kirkwood (D.). Astronomical in general, 67; Aurora, 138.

KLATZO. Chlorine, 189.

KLERCKER (C. E. de). Dispersion, 213; Light, 272.

Knoblauch (H.). Heat in the Solar Sp., 112; Color, 198; Heat, 252.

Kobb (G.). Germanium, 248.

Kohlrauch (F.). Apparatus, 13; Refraction, 324.

König (A.). Color-blind, 157; Color, 198; Platinum, 317.

König und Dieterici. Wave-Lengths, 354.

Konkoly (N. von). Apparatus, 20, 22, 30, 35; Astronomical in general, 67; Comets, 70, 73, 78; Fixed Stars, 81; Meteors, 83; Planets, 86; Electric, 221; Meteorological, 295.

Kopp (H.). History, 4.

Kövesligethy. Comets, 78.

Kraiewitsch (K.). Apparatus, 13.

Krauss (G.). Chlorophyll, 1931

Krüss (G.). Apparatus, 39; Heat, 252; Liquids, 277.

Krüss und Oeconomides. Carbon Compounds, 157.

Krüss (H.). Apparatus, 12, 29, 32; Analysis, 43; Quantitative Analysis, 50.

KRESS (J.). Absorption, 55.

Kundt (A.). Absorption, 55; Dispersion, 213; Liquids, 277; Nitrogen, 302; Silver, 335; Sodium, 338.

Kurz (A.). Apparatus, 21.

LABORDE (L'Abbé). Analysis, 43.

Ladd (W.). History, 4.

LAGARDE (II.). Hydrogen, 258; Wave-Lengths, 355.

LALLEMAND (A.). Apparatus, 20; Indigo, 176; Lamp-Black, 176;
Naphthalene, 177; Cobalt, 196; Copper, 202; Lead, 271; Liquids, 277; Mercury, 289; Minium, 297; Oxygen, 309; Phosphorus, 315; Platinum, 317; Polarized Light, 318; Sulphur, 341.

Lamansky (S.). History, 4; Apparatus, 17; Absorption, 56; Solar in general, 92; Heat in the Solar Sp., 112; Telluric Rays in the Solar Sp., 129; Atmospheric Sp., 134; Calcium, 151; Carbon Compounds, 157; Sulphide of Carbon, 183; Electric, 222; Fluorescence, 242; Glass, 249; Heat, 253; Sulphur, 342.

LAMONT. Astronomical in general, 68; Fixed Stars, 80.

Lamy (A.). Thallium, 344.

Landauer (J.). Absorption, 56; Carbon Compounds, 157; Safranin, 183.

Landolt (H.). Apparatus, 21; Carbon, 153; Carbon Compounds, 157; Liquids, 277.

Lang (V. von). Apparatus, 28; Red End of the Solar Sp., 124; Atmospheric Sp., 134; Calcium, 151; Dispersion, 213; Heat, 353; Refraction, 324.

Langley (S. P.). Apparatus, 30, 32; Analysis, 43, 44; Absorption, 56; Astronomical in general, 68; Venus, 88; Solar in general, 92, 93; Solar Absorption, 100; Solar Heat, 112; Intensity of the Solar Sp., 113; Radiation of the Solar Sp., 122; Red End of the Solar Sp., 124; Atmospheric, 134; Energy, 227; Heat, 253; High Altitudes, 255; Lines of the Sp., 274; Salt, 328; Volcanoes, 350; Wave-Lengths, 355.

LASPEYRES (H.). Apparatus, 20.

Laussedat. Eclipses, 108.

LAVAUD DE LASTRADE. Apparatus, 23; Solar in general, 93.

Lea (M. Carey). Bromine, 147; Carbon Compounds, 158; Color, 198; Glass, 249; Silver, 335.

LEACH (J. H.). Analysis, 44.

LECHER (E.). Absorption, 56; Atmospheric, 134; Heat, 253; Radiation, 321.

LECHER und PERNTER. Absorption, 56; Dark Lines, 205.

LECOQ DE BOISBAUDRAN (F.). Book, 9; Analysis, 44; Aluminium, 62, 63; Antimony, 64; Barium, 144; Bismuth, 145; Borax, 146. Bromine, 147; Cadmium, 149; Cæsium, 150; Flour and Grain, 172; Cerium, 186; Chlorine, 187, 189-191; Chromium, 195; Cobalt, 196; Copper, 202; Decipium, 207; Didymium, 210; Dysprosium, 218; Electric, 222; Erbium, 229; Flame, 234; Fluorescence, 242, 243; Gadolinite, 247; Gallium, 248; Germanium, 248; Gold, 250; Holmium, 256; Hydrogen, 259; Indium, 261; Iodine, 266; Iron, 268; Lead, 271; Light, 272; Lines of the Spectrum, 274; Lithium, 279; Luminous Sp., 281; Magnesium, 282; Manganese, 285; Mercury, 289; Metals, 292; Nickel, 299; Nitrogen, 302; Palladium, 311; Phosphorescence, 313; Phosphorus, 315; Platinum, 317; Potassium, 319; Rubidium, 327; Samarium, 329; Samarskite, 330; Silver, 335; Sodium, 338; Strontium, 340; Terbium, 343; Thallium, 344; Tin, 345; Water, 351; Wave-Lengths, 355; Ytterbium, 358; Zinc, 360.

Leeds (A. R.). Metals, 292.

Lemoine (G.). Hydrogen, 259; Iodine, 266.

Lemström (S.). Aurora, 138.

LEPEL (F. von). Apparatus, 38; Absorption, 56; Carbon Compounds, 158; Alkanna, 162; Beets, 164; Wine, 185; Inversion, 263; Magnesium, 282; Silicium, 333.

LE Roux (F. P.). Apparatus, 20.

LEVERRIER. Solar Atmosphere, 100.

LEVISON (W. G.). Apparatus, 32.

Lewy. Eclipses, 107.

Liais (E.). Corona, 103; Aurora, 138.

LIEBERMANN (C.). Anthracen, 163; Anthrarufin, 163; Egg-Shells, 165; Chotelin, 168; Hydroxyanthraquinone, 175.

LIEBERMANN (L.). Fuchsin, 172; Hydrobilirubin, 175; Chlorophyll, 193; Fluorescence, 243.

LIEBICH (T.). Apparatus, 35.

Lielegg (A.). Book, 9; Carbon Compounds in general, 158; Flame, 234; Iron, 268.

LINDSAY (Lord). Comets, 72, 73; Nebulæ, 85; Jupiter, 87; Eclipses, 108; Aurora, 139.

LINNEMANN (E.). Austrium, 143; Zirconium, 361.

LIPPICH (F.). Apparatus, 35; Flame, 234.

LISTING. Limits of the Sp., 273.

Littrow (Otto von). Apparatus, 36; Solar Atmosphere, 100.

LIVEING (G. D.). Apparatus, 17; Analysis, 46; Calcium, 151; Dispersion, 214; Fluorine, 246; Iodine, 266; Mercury, 289.

LIVEING (G. D.) and DEWAR (J.). History, 5; Apparatus, 12, 15, 16, 17; Analysis, 44; Quantitative Analysis, 50; Corona, 103; Elements in the Sun, 111; Sun-Spots, 126; Carbon, 153; Carbon Compounds, 158; Cyanogen, 169; Hydrocarbons, 175; Electric, 222; Explosions, 230; Flame, 234, 235; Hydrogen, 259; Inversion, 263; Lithium, 280; Magnesium, 283; Metals, 292, 293; Potassium, 319; Rhabdophane, 326; Sodium, 338; Violet, 348; Water, 351.

LLOYD. History, 5.

LOCKYER (J. N.). Book, 9; Apparatus, 19, 25, 36; Analysis, 44, 47; Quantitative Analysis, 50; Absorption, 57; Antimony, 64; Arsenic, 65; Astronomy in general, 66, 68; Nebulæ, 84; Solar in general, 93, 94; Bright Lines in the Solar Sp., 102; Chromosphere, 103; Carbon, 153, 154; Electric, 222; Flame, 235; Heat, 253; Hydrogen, 259; Inversion, 263; Iodine, 266; Iron, 268; Lithium, 280; Mercury, 289; Multiple Sp., 298; Nitrogen, 302; Phosphorus, 315; Sodium, 338; Sulphur, 342; Zine, 360.

Lockyer and Seabroke. Corona, 103.

Lonse (O.). Apparatus, 31, 32; Corona, 103; Gun-Cotton, 173; Electric, 222; Glass, 249.

LOMMEL (E.). Book, 9; Apparatus, 13, 16, 17, 24, 27, 31; Absorption, 57; Chlorophyll, 193; Dispersion, 214; Electric, 222; Fluorescence, 243, 244; Heat, 253; Interference, 262; Iodine, 266; Light, 272; Optics, 306; Phosphorescence, 313, 314; Red End of the Sp., 322; Refraction, 324.

Long (J. H.). Flame, 235.

LORENZ (L.). Constants, 200; Dispersion, 214.

LORSCHEID (J.). Book, 9.

Lordon (J.). Analysis, 45.

Love (E. J.). Apparatus, 24; Glass, 249.

Lubarsch (O.). Analysis, 45; Fluorescence, 244.

LUBBOCK (Dr. M.). Color, 198.

Luck (E.). Nitrogen, 302; Oxygen, 309.

LUNDQUIST. Distribution, 217; Heat, 253.

Lutz. Apparatus, 34.

Luvini. Apparatus, 23; Analysis, 45.

MACAGNO (J.). Intensity in the Solar Sp., 113; Aniline, 163.

- 10

Macé de Lépinay (J.). Analysis, 45; D Lines, 204; Wave-Lengths, 355.

Macé (J.) et Nicati (W.). Intensity in the Solar Sp., 113.

MACFARLANE (A.). Analysis, 45.

Mach (E.). Dispersion, 214; Glass, 249.

Maclear. Solar in general, 94; Atmospheric Sp., 134; Aurora, 139.

MacMunn (C. A.). Book, 9; Carbon Compounds, 158; Bile, 165; Hematine, 174; Urine, 185.

MADAN (H. G.). Apparatus, 35.

Magnus (G.). Flame, 235; Heat, 253:

Malus (E. L.). History, 5.

Maly (R.). Bile, 165; Gall, 173.

Manet. Apparatus, 17.

Manly (W. R.). Meteorological, 295.

Marié-Davy. Meteorological, 295.

Marignac (C.). Gadolinite, 247; Samarskite, 330; Ytterbium, 358.

Marvin (T. H.). Apparatus, 24.

MASCART. Apparatus, 19; Ultra-Violet Solar Sp., 130; Dispersion, 214; Electric, 222; Flame, 235; Interference, 262; Maps, 288; Refraction, 324; Ultra-Violet, 348; Water, 351; Wave-Lengths, 355.

Maskeleyne. History, 5.

Masson (A.). Alcohol, 161; Terebinthene, 183; Electric, 222; Platinum, 317.

MATTHESSEN. Analysis, 45; Solar in general, 94; Solar elements, 111; Ultra-Violet Solar Sp., 130.

Maunder (E. W.). Comets, 76; Fixed Stars, 81, 82.

Maurer (J.). Absorption, 57; Atmospheric, 134.

MAXWELL (J. C.). Color, 198.

MAYER (A. M.). History, 5; Apparatus, 21, 26.

Melde (F.). Absorption, 57; Liquids, 277.

Meldola (R.). History, 5; Bright Lines in the Solar Sp., 102; Phenols, 181; Oxygen, 310.

Melloni. History, 5; Solar in general, 94; Heat, 253.

MELVILL (T.). Flame, 236.

Mendelejeff (D.). Gadolinite, 247; Gallium, 248; Metals, 293.

MENDENHALL (T. C.). Apparatus, 18.

MERMET. Apparatus, 17.

MERZ (S.). Apparatus, 27, 37; Astronomical in general, 68; Fixed Stars, 80; Dark Lines, 205; Glass, 249.

Messerschmidt (J. B.). Wave-Lengths, 355.

MEYER (A.). Absorption, 57; Morphine, 177.

MEYER (O. E.). Dispersion, 214.

MEYER (W.). Comets, 70; Brucine, 167.

Michelson (A.). Apparatus, 30.

MILL (H. R.). Meteorological, 295.

MILLARDET (A.). Chlorophyll, 193.

MILLER (F.). Apparatus, 33, 34.

MILLER (W. A.). History, 5; Analysis, 45; Astronomical in general, 67, 68; Solar in general, 94; Electric, 223; Flame, 236; Thallium, 344.

MILLER (H. Hallows). Nitrogen, 303.

MILNE (G. A.). Flame, 236.

MITSCHERLICH. Apparatus, 35; Analysis, 45; Bromine, 148; Chlorine, 191; Flame, 236; Iodine, 266; Metals, 293; Nitrogen, 303; Sodium, 339.

Мöhlau (R.). Diphenyl, 170.

Монк (F.). Flame, 236.

Moigno (F.). Apparatus, 29; Analysis, 45.

Moissan (H.). Cyanogen, 169; Potassium, 319.

Moncel (Du). Electric, 223.

Monckhoven. Intensity of the Solar Sp., 106; Flame, 236; Hydrogen, 259; Metals, 293; Ultra-Violet, 349.

MONTIGNY. Displacement of Stellar Sp., 79; Twinkling of Stars, 132.

Moreland. Diffraction, 211.

Morghen (A.). Iodine, 266.

Morichini (D. P.). History, 5.

MORIZE (H.). Apparatus, 31.

Morren (A.). Solar in general, 94; Carbon Compounds, 158; Acetylene, 160; Cyanogen, 170; Chlorine, 187; Dispersion, 214; Flame, 236.

MORTON (H.). Analysis, 45; Eclipses, 109; Purpurin, 181; Fluorescent, 244; Liquids, 277; Uranium, 347; Ultra-Violet, 349.

Moser (J.). Analysis, 45; Inversion, 263; Nitrogen, 303.

Mousson (A.). History, 5; Apparatus, 15, 34; Analysis, 46; Dispersion, 214.

₩.

MOUTIER (J.). Analysis, 46.

Mouron. Apparatus, 20; Heat in the Solar Sp., 112; Dispersion, 214; Heat, 253; Wave-Length, 355.

Muirhead (H.). Analysis, 46.

MULDER. Phosphorus, 316; Selenium, 332; Sulphur, 342.

MÜLLER (G.). Intensity of the Solar Sp., 113.

Müller (J.). Apparatus, 16, 22, 26; Heat in the Solar Sp., 112; Photography of the Solar Sp., 117; Solar Wave-Lengths, 132; Dark Lines, 205; Diffraction, 211; Electric, 223; Heat, 253, 254; Manganese, 286; Refraction, 325; Ultra-Violet, 349; Wave-Lengths, 355.

Munro (J.). Aurora, 139.

Murphy (J. J.). Aurora, 139.

NASCHOLD. Blood, 166.

NASINI (R.). Carbon, 154; Carbon Compounds, 155 (Bernheimer et N.).

NEGRI (A. e G. de). Hydrocarbon, 175.

NENCKI und LIEBER. Excrements, 171; Urine, 185.

NEUSSER (E.). Urine, 185.

Newlands (J. A. R.). Aurora, 139.

NEWTON (Sir Isaac). History, 5.

NICATI (W.). Intensity of the Solar Sp., 113.

NICHOLS (E. L.). Analysis, 46; Color, 198, Platinum, 317.

Nickles. Carbon Compounds, 158; Thallium, 344.

NIEPCE DE SAINT VICTOR. Photography of Solar Sp., 117; Color, 198.

NILSON (L. F.). Scandium, 331; Ytterbium, 358.

NILSON (L. F.) and Peterson (E.). Beryllium, 144.

NIVEN (C.). Displacement of Stellar Sp., 80; Planets, 86.

Noack. Apparatus, 21.

Noble (W.). Comets, 74; Moon, 87.

Noorden (C. von). Quantitative Analysis, 50.

NORTON (W. A.). Comets, 72; Solar in general, 94; Corona, 103.

OETTIGEN (A. J.). Aurora, 139.

OLMSTEAD (D.). Solar in general, 94.

Otto (J. G.). Blood, 166; Methamoglobin, 177.

OUTERBRIDGE (A.). Apparatus, 23.

Paalzow. Electric, 223; Flame, 236; Oxygen, 310.

Palmieri (L.). Chlorine, 191; Volcanoes, 350.

Papillon. Carbon Compounds, 158.

PARINAUD et DUBOSCQ. Apparatus, 39; Density, 207.

Parker (J. Spear). Apparatus, 12; Iron, 268.

Parry (J.). Electric, 223; Flame, 236; Iron, 268.

Parville (H. de). Meteorological, 295.

Pasteur. Phosphorescence, 314.

Peirce (B. O. J.). Color, 198; Mercury, 289.

Peirce (C. S.). Analysis, 46; Lines of the Sp., 274; Wave-Length, 356.

Pentland. Heat of the Solar Sp., 112.

Perkin (W. H.). Absorption, 57; Alizarine, 162; Anthrapurpurine, 163.

PERNTER, LECHER und. Absorption, 56.

PERROTIN. Comets, 78.

Perry (S. J.). Fixed Stars, 81; Chromosphere, 104; Eclipses, 109; Sun-Spots, 126; Aurora, 139; Ebonite, 171.

Peslin. Solar Sp. in general, 95.

Petri (J.). Flour and Grain, 172.

Petruschewski (Th.). Apparatus, 27.

Petzval (Jos.). Electric, 223

PEEFFER (W.). Carbonic Acid, 180.

Phipson (T. L.). Absorption, 57: Ruberine, 182.

Pickering (E.C.). Apparatus, 15; Astronomical in general, 68; Fived Stars, 81; Nebulæ, 84, 85; Photography of Stellar Sp., 117; Red End of Solar Sp., 124; Aurora, 139; Diffraction, 211; Ultra-Violet, 349; Wave-Lengths, 356.

PIERRE Is.) et PUCHAT (E.). Flame, 236.

Pigort (G. W. Royston). Apparatus, 30; Solar in general, 95.

Рилзенькогт. Apparatus, 21.

PISANI. Casium, 150.

PISATI (G.) e PATERNO. Benzene, 164.

Plosz (P.). Chromogene, 168; Excrements, 171.

Perckun. Analysis, 46; Borax, 146; Carbonic Acid, 180; Electric, 223; Flame, 236, 237; Fluorine, 246; Hydrogen, 259; Nitrogen, 303; Oxygen, 310; Refraction, 325; Selenium, 332; Sulphur, 342.

Pocklington (H.). Absorption, 57: Chlorophyll, 193.

Poull. (A.). Alkalies, 61.

Poey (A.). Chemical Effects of the Solar Sp., 102; Ultra-Violet Solar Sp., 130.

Poggendorff (J. C.). History, 6.

Porro. Comets, 71; Longitudinal Rays, 281.

POWELL (J. Baden). History, 6.

Prazmowski. Apparatus, 25; Comets, 71; Aurora, 139; Color, 198.

PREYER (W.). Quantitative Analysis, 50; Carbon Compounds, 158.

PRIESTLEY (Dr. J.). History, 6.

PRILLIEUX. Density, 208.

PRINGLE (G. H.). Aurora, 139.

Pringsheim. Absorption, 57; Red End of the Solar Sp., 124; Solar Wave-Lengths, 132; Chlorophyll, 193, 194; Red End of the Spectrum, 322.

PRITCHARD (C.). Analysis, 46.

PROCTOR (H. R.). Apparatus, 21, 22; Electric, 223.

PROCTOR (R. A.). Book, 9; Apparatus, 11; Astronomical in general, 68; Solar in general, 95; Aurora, 139.

PRYTZ (K.). Constants, 200.

Puiseux (A.). Eclipses, 109.

Pulfrich (C.). Absorption, 57; Wave-Lengths, 356.

Pulsifer (W. H.). Apparatus, 30.

Quincke (G.). Apparatus, 18; Diffraction, 211; Liquids, 277; Optics, 306.

Radau (R.). Book, 9; Apparatus, 27.

Radzizewski (B.). Phosphorescent, 314.

RANVIER (L.). Carbon Compounds, 158.

RAYET (G.). Astronomical in general, 70; Comets, 72, 78; Solar Atmosphere, 100; Solar Eclipses, 109; Solar Protuberances, 119; Sun-Spots, 126; Aurora, 139.

RAYET et André. Comets, 72.

RAYLEIGH (Lord). Apparatus, 18; Analysis, 46; Color, 198; Energy, 227; Optics, 306; Ultra-Violet, 349.

REDTENBACHER (J.). Mineral Waters, 297.

REFORMATSKY (S.). Hydrocarbon, 175.

RÉGIMBEAU. Analysis, 46.

REICH (F.) und RICHTER (Th.). Indium, 261.

REIMANN (M.). Aniline, 163.

REINKE (J.). Analysis, 46.

25 т

REINOLD. Analysis, 46.

Reitlinger (Edm.). Electric, 223; Hydrogen, 259; Nitrogen, 303.

RENNIE (E. H.). Drossera Whittakeri, 170.

Respight (L.). Book, 9; Comets, 71; Solar Sp. in general, 95; Corona, 104; Eclipses, 109; Solar Protuberances, 119; Aurora, 140.

Reye (Th.). Apparatus, 17; Solar Protuberances, 119; Sun-Spots, 126.

REYNOLDS (J. E.). Apparatus, 11, 21; Analysis, 46; Beryllium, 144; Carbon Compounds, 158; Alizarine, 162; Brazil-wood, 185; Sulphur, 342.

RICCA (V. S.). Corona, 104.

Riccò (A.). Apparatus, 15, 28, 35; Analysis, 47; Comets, 76, 77, 78; Solar in general, 95; Corona, 104; Solar Eruptions, 111; Sun-Spots, 126; Magnesium, 283; Water, 352.

RICHARD et BERTHELOT. Analysis, 40; Flame, 231.

RICHE et BARDY. Flame, 237; Sulphur, 342.

RICOUR (Th.). Dispersion, 214.

RIDOLFI (C.). Water in the Solar Sp., 130.

Rîne (J.). Eclipse, 110.

RITTER. History, 6.

Roberts (W. C.). Analysis, 46.

ROBIQUET. Solar Sp. in general, 95; Electric, 223.

Robinson (H.). Aurora, 140.

Robinson (T. B.). Apparatus, 27.

ROBINSON (J.). History, 6.

Rohrbach (C.). Dispersion, 214; Liquids, 278.

Rollett (A.). Apparatus, 23; Interference, 262.

Romanes (C. H.). Solar Sp. in general, 95; Aurora, 140; Meteorological, 295.

Rood (O. N.). History, 6; Books, 9; Apparatus, 22, 28, 31; Analysis, 47; Quantitative Analysis, 51; Didymium, 210; Double Spectra, 217; Indigo, 261; Nitrogen, 303; Secondary Spectra, 331.

Roscoe (H. E.). Books, 9; Analysis, 47; Corona, 104; Atmospheric, 134; Bromine, 148; Carbon, 154; Chlorine, 191; Heat, 254; Iodine, 266; Iron, 269; Potassium, 319; Ruthenium, 327; Sodium, 339.

Rosenberg (E.). Diffraction, 211.

ROSENSTIEHL (A.). Alizarine, 162.

Rosiky. Diffraction, 211.

Rowland (H. A.). History, 6; Apparatus, 17, 18; Maps, 114; Solar Photography, 117; Solar Wave-Lengths, 132; Aurora, 140; Wave-Lengths, 356.

ROWNEY (T.). Analysis, 47.

RUDBERG (Fr.). History, 6.

Rue (Warren de la). Photography of Stellar Sp., 86; Solar Protuberances, 122.

RUPRECHT (R.). History, 6; Book, 9.

Russell (H. C.). Comet, 77; Atmospheric, 134.

Russell (W. J.). Absorption, 57; Chlorine, 191; Chlorophyll, 194; Cobalt, 196; Liquids, 278.

RUTHERFURD (L. M.). History, 6; Astronomical in general, 68; Measurement of Stellar Sp., 82.

SAARBACH (H.). Methamoglobin, 177.

Sabatier (P.). Alkalies, 61; Chromium, 195.

SACHSSE (R.). Chlorophyll, 194.

SAINTE-CLAIRE DEVILLE. Calcium, 152.

Salet (G.). Apparatus, 16; Analysis, 47; Absorption, 58; Aurora, 140; Carbon, 154; Chlorine, 191; Distribution, 217; Double Sp., 217; Flame, 237; Iodine, 266; Metals, 293, Nitrogen, 303; Phosphorus, 316; Selenium, 332; Silicium, 333; Sulphur, 342; Tellurium, 343; Tin, 345; Wave-Lengths, 356.

Salisbury (The Marquis of). Heat, 254; Lines of the Sp., 274.

Salm-Horst (Der Fürst zu). Apparatus, 28; Ultra-Violet, 349.

Sampson (W. T.). Corona, 104.

Sands (B. F.). Book, 9; Eclipse, 110.

Santini (S.). Flame, 237; Hydrogen, 259.

Sarasın (Ed.). Aluminium, 63; Cadmium, 149; Crystals, 203; D Lines, 204; Fluorine, 246; Refraction, 325; Silicium, 333; Zinc, 360.

SAUER (L.). Ultra-Violet, 349.

SCHAICK (W. C. von). Dispersion, 215.

Schellen (H.). Book, 9.

Schelske (R.). Carbon Compounds, 158.

SCHENCK (L. S.). Bonellia Viridis, 167; Flame, 237.

Schimkow (A.). Atmospheric, 135; Electric, 223; Heat, 254; Nitrogen, 303.

Schiff (H.). Quantitative Analysis, 51; Carbon Compounds, 159; Aniline, 163.

SCHMIDT. Aurora, 140.

Schönn (L.). Apparatus, 13; Absorption, 58; Alcohol, 161; Flowers, 172; Leaves, 176; Liquids, 278; Nitrogen, 303; Ultra-Violet, 309; Water Sp., 352.

Schoop (P.). Aniline, 163.

SCHOTTNER (F.). Flame, 237.

Schrauf (A.). Carbon, 154; Dispersion, 215.

Schröder (H.). Liquids, 278; Refraction, 325.

Schrötter. Indium, 261.

Schultz (H.). Apparatus, 19.

Schulz-Sellac (C.). Absorption, 58; Silver, 335.

Schunck (E.). Purple, 182.

Schuster (A.). Apparatus, 12; Analysis, 47; Eclipses, 110; Oxygen in the Solar Sp., 115; Carbon, 154; Electric, 223; Flame, 237; Metals, 293; Nitrogen, 303; Oxygen, 310; Radiation, 321.

Schwerd (F. M.). History, 6.

Seabroke (G. M.). Comet, 74; Displacement of Stellar Sp., 80; Solar in general, 99; Aurora, 140; Hydrogen, 259.

SECCHI (A.). History, 6; Books, 10; Apparatus, 36, 37; Analysis, 47; Aluminium, 63; Astronomical in general, 68, 69; Comets, 71, 72, 73, 79; Displacement of Stellar Sp., 80; Fixed Stars, 80, 81, 82; Measurement of Stellar Sp., 82; Meteors, 83; Nebulæ, 84; Planets, 86, 87, 88; Solar in general, 95, 96; Solar Atmosphere, 101; Solar Corona, 104; Eelipses, 110; Solar Eruptions, 111; Solar Protuberances, 119, 120, 121; Solar Storms, 124; Sun-Spots, 127; Atmospheric, 135; Aurora, 140; High Altitudes, 255; Hydrogen, 259, 260; Iron, 269; Magnesium, 283; Metala, 294; Sodium, 339; Thallium, 344; Water Sp., 352.

SEEBECK (T. J.). History, 7.

Seguin (J. M.). Electric, 224; Fluorine, 246; Light, 272; Phosphorus, 316; Silicium, 333; Sulphur, 342.

Sekulic. Interference, 262; Ultra-Violet, 349.

Sellmeier (W.). Color, 198; Dispersion, 215.

SÉNARMONT (H. de). Borax, 146; Carbonic Acid, 180; Carbonate of Soda, 183; Crystals, 203; Oxygen, 310; Sodium, 339; Sulphur, 342.

Senier (H.). Flowers, 172.

Serpieri (A.). Aurora, 140.

Settegast (H.). Quantitative Analysis, 51; Nitrogen, 303; Silver, 335.

SHERMAN. Astronomical, 69; Comets, 79; Fixed Stars, 80.

SIEBEN. Density, 208; Dispersion, 215; Heat, 254.

SILBERMANN (J.). Meteors, 83; Aurora, 140.

SILLIMAN (J. M.). Apparatus, 12; Iron, 269.

SIMMLER (R. Th.). Book, 10; Apparatus, 19; Analysis, 47; Borax, 146; Copper, 202; Electric, 224; Flame, 237; Mineral Waters, 297.

Sirks (J. L.). Selenium, 332.

SMITH (A. P.). Flame, 238; Salt, 328.

SMITH (Lawrence). Didymium, 210; Erbium, 229; Mosandrum, 298.

SMITH (C. Mitchie). Meteorological, 295, 296.

SMYTH (C. Piazzi). Book, 10; Apparatus, 20, 38; Analysis, 47; Astronomical in general, 69; Solar in general, 97; B Lines in the Solar Sp., 101; Heat in the Solar Sp., 113; Red End of the Solar Sp., 124; Solar Wave-Lengths, 132; Aurora, 140; Carbon, 154; Cyanogen, 170; Hydrocarbon, 175; Color, 198; Dispersion, 215; Flame, 238; Meteorological, 296; Oxygen, 310; Wave-Lengths, 356.

SOHNKE (L.). Heat, 254.

Sokoloff (A.). Apparatus, 19.

Somerville (Mrs.). Chemical Effects of the Solar Sp., 102.

Sonrel. Photography of the Solar Sp., 117; Sun-Spots, 127.

Sorby (H. C.). Apparatus, 22, 28; Qualitative Analysis, 49; Carbon Compounds, 159; Aphides, 163; Blood, 166; Bonellia Viridis, 167; Hemoglobin, 174; Leaves, 176; Spongilla Fluviatilis, 183; Color, 199; Fluorescence, 244; Jargonium, 270; Uranium, 347; Zirconium, 361.

Soret (C.). Apparatus, 30; Aluminium, 63; Alum, 162; Dispersion, 215; Fluorescence, 245.

SORET (J. L.). Apparatus, 17; Absorption, 58, 59; Heat in the Solar Sp., 113; Blood, 166; Color, 199; Crystals, 203; Didymium, 210; Diffraction, 211; Dispersion, 215; Flame, 238; Gadolinite, 247; Liquids, 278; Metals, 296; Nitrogen, 303; Polarized Light, 318; Samarskite, 330; Ultra-Violet, 349, 350; Water Sp., 352; Yttrium, 359.

SPÉE. Diffraction, 211; Helium, 255.

SPILLER (J.). Phosphorescence, 314.

Spörer. Solar Protuberances, 121.

Spottiswoode (W.). Color, 199.

STAS. Heat, 254.

STEARN (C. H.) and LEE (G. H.). Flame, 238; Nitrogen, 303; Pressure, 320.

Stebbin J. H.). Azo Colors, 164; Lamp-Black, 176.

Stefen (J.). Heat, 254; Interference, 262.

STEIN (W.). Carbon Compounds, 159; Morindon, 117; Flame, 238; Glass, 249; Liquids, 278.

STEINHEIL. Analysis, 48.

STENGER (F.). Electric, 224; Fluorescent, 245.

STENHOUSE. Morindon, 117.

STEVENS (W. L.). Apparatus, 30.

STEWART (B.). History, 7; Analysis, 48; Solar in general, 97; Eclipses, 110; Solar Protuberances, 121; Sun-Spots, 127; Tourmeline, 184; Exchanges, 230.

STIEREN (E.). History, 7.

STOCKVIS (B. J.). Bile, 165; Gall, 173.

STOKES (G. G.). History, 7; Book, 10; Analysis, 48; Alcalies, 61; Solar in general, 97; Carbon Compounds, 159; Blood, 166; D Lines, 204; Dispersion, 215; Electric, 224; Phosphorescent, 314; Ultra-Violet, 350.

Stone (E.). Analysis, 48; Nebulæ, 84; Aurora, 141.

STONE (W. H.). Apparatus, 34.

Stoney (Johnstone). Apparatus, 35; Astronomical in general, 69; Solar in general, 97; Chlorine, 191; Flame, 238.

STROUMBO. Analysis, 48.

STRUTT (J. W.). Apparatus, 18.

Struve (O. von). Aurora, 141.

Sueur (A. Le). Astronomical in general, 69; Fixed Stars, 81; Nebulæ, 84, 85; Planets, 87; Aurora, 141.

Suffolk (W. T.). Apparatus, 23.

SUNDELL (A. F.). Apparatus, 19.

Swan (W.). History, 7; Carbon Compounds, 159; Flame, 238; Hydrogen, 260.

TACCHINI (P.). Comets, 76, 79; Venus, 88; Solar in general, 97, 98; Solar Atmosphere, 101; B Lines in the Solar Sp., 101; Solar Chromosphere, 104; Eelipses, 110; Solar Eruptions, 111; Photography of Solar Sp., 117; Solar Protuberances, 121, 122; Sun-Spots, 127, 128; Aurora, 141; Magnesium, 283.

Tait (P. G.). Apparatus, 27.

TALBOT (H. Fox). Analysis, 48; Flame, 238; Lithium, 280.

TARRY (H.). History, 7; Solar Storms, 124; Aurora, 141; Meteorological, 296.

TENNANT (J. F.). Eclipses, 110.

TERQUEM et TRANNIN. Liquids, 278; Refraction, 326.

Thalén (Rob.). History, 7; Book, 10; Analysis, 84; Solar in general, 98; Didymium, 210; Erbium, 229; Iodine, 267; Iron, 269; Lanthanum, 270; Limits of the Sp., 273; Maps, 288; Metals, 294; Samarium, 329; Scandium, 331; Thulium, 345; Wave-Lengths, 356; Ytterbium, 358; Yttrium, 359.

THÉNARD (P.). Analysis, 48; Heat in the Solar Sp., 112.

THIERRY (M. de). Apparatus, 11, 39.

Thollon (L.). Apparatus, 12, 14, 28, 35, 37; Comets, 74, 77, 78; Venus, 88; Solar in general, 98; B Lines in the Solar Sp., 101; D Lines in the Solar Sp., 105; Eclipses, 110; Solar Protuberances, 122; Solar Storms, 124; Telluric Solar Sp., 129; Carbon Compounds, 159; D Lines, 204; Dispersion, 215; Maps, 288; Sodium, 339; Wave-Lengths, 356.

THOMPSON (C. M.). Didymium, 210.

THÖRNER (W.). Chinon, 168.

Thudichum (J. L. W.). Bile, 165; Hematine, 174; Lutherine, 176; Potassium, 319; Uranium, 347.

TILDEN (W. A.). Hydrocarbon, 175.

TIMIRIASEF. Analysis, 48; Solar in general, 98; Carbonic Acid, 180; Energy in the Sp., 227.

TISSERAND (F.). Sun-Spots, 128.

Tommasi (D.). Electric, 224; Silver, 336.

Trannin (H.). Density, 208; Wave-Lengths, 356.

TREMESCHINI. Sun-Spots, 128.

Trépied (C.). Comets, 79; Eclipses, 110.

Tresca. Aurora, 141.

TROOST and HAUTEFEUILLE. Borax, 146; Carbon, 154; Silicium, 333; Titanium, 346; Zirconium, 361.

Trouvelot (E. L.). Absorption, 59; Solar in general, 98; Solar Absorption, 100; Solar Atmosphere, 101; Protuberances, 122; SunSpots, 128.

TROWBRIDGE (J.). Analysis, 48.

TRUCHOT (P.). Lithium, 280; Mineral Waters, 297.

TSCHIRCH (A.). Apparatus, 23; Chlorophyll, 194.

Tucker (A. E.). Apparatus, 32.

Tumliez (O.). Absorption, 59; Liquids, 278.

TUPMAN (Capt.). Protuberances, 122.

TWINING (A. C.). Aurora, 141.

Tyndall (J.). Analysis, 48; Comets, 71; Inversion, 263; Lithium. 280; Red End of the Sp., 322.

UPTON (Winslow). Meteorological, 296.

VALENTINE (G.). Book, 10; Carbon Compounds, 159.

Valson (C. A.). Salt, 328.

Valz. Apparatus, 32.

VERNEUIL (A.). Aluminium, 62; Calcium, 152; Phosphorescent, 314.

VICAIRE (E.). Solar in general, 98; Solar Storms, 124; Sun Spots, 128; Hydrogen, 260; Iron, 269; Magnesium, 283; Silicium, 333.

Vierordt (K.). Book, 10; Apparatus, 39; Quantitative Analysis, 51; Absorption, 59; Carbon Compounds, 159; Wave-Lengths, 356.

VIOLLE (J.). Platinum, 317; Silver, 336.

VOGEL (E.). Lines of the Sp., 275.

Vogel (H.). Absorption, 59; Comets, 70, 71, 75; Chemical Effect of the Solar Sp., 102; Bromine, 148; Dispersion, 215; Electric, 224.

VOGEL (H. C.). Apparatus, 13, 21, 25, 26, 39; Absorption, 59; Comets, 75, 76, 77, 79; Fixed Stars, 81; Nebulæ, 85; Planets, 86; Solar Absorption, 100; Solar Atmosphere, 101; Photography of Solar Sp., 117; Solar Wave-Lengths, 132; Atmospheric, 135; Aurora, 141; Hydrogen, 260; Nitrogen, 303, 304; Oxygen, 310; Wave-Lengths, 357.

VOGEL (H. V.). Analysis, 48; Astronomical in general, 70

VOGEL (H. W.). History, 7; Analysis, 49; Absorption, 59, 60; Astronomical in general, 70; Dissociation, 216; Electric, 224; Flame, 238; Iron, 269; Light, 273; Magnesium, 284; Mercury, 289; Nickel, 299; Silicium, 333; Silver, 336; Water, 352.

Voigt (W.). Fuchsin, 172; Dispersion, 215; Metals, 294; Refraction, 326; Zinc, 360.

-

Volpicelli. Calcium, 152; Luminous Sp., 281.

Walker (E.). Electric, 224.

Waltenhöfen (A. von). Electric, 224; Flame, 239

Walters (J. Hopkins). Electric, 224.

WARREN DE LA RUE. [Above under Rue.]

WARTMANN (E.). Longitudinal Rays, 281.

Waterhouse (J.). Photography of the Solar Sp., 117; Eosin, 171.

Watts (W. M.). Books, 10; Apparatus, 22; Analysis, 47, 49; Comets, 73; Aurora, 141; Carbon, 154; Hydrocarbon, 175; Double Sp., 217; Flame, 239; Iron, 269.

Weber (R.). Plants, 181.

Weinberg (M.). Interference, 262; Wave-Lengths, 357.

Weinhold (A.). Apparatus, 21; Color, 199; Inversion, 264; Metals, 294; Sodium, 339.

Weiss (A.). Solar in general, 99; Fungi, 172; Density, 208; Fluorescent, 245; Nitrogen, 304.

Welsbach (C. A.). Gadolinite, 247.

WERNICKE (W.). Apparatus, 29; Absorption, 60; Bromine, 148; Chlorine, 191; Iodine, 267; Metals, 294; Polarized Light, 318; Silver, 336.

Wesendonck (K.). Carbon Compounds, 160; Napthalin-Red, 178; Carbonic Acid, 180; Fluorescent, 245; Fluorine, 246; Hydrogen, 260; Silicium, 333.

WHEATSTONE (C.). Electric, 224.

Wiedemann (E.). Analysis, 49; Pressure on the Sun, 117; Sun-Spots,
128; Carbonic Acid, 180; Constants, 200; Electric, 224, 225;
Flame, 239; Glass, 249; Hydrogen, 260; Manganese, 286; Polarized Light, 318; Potassium, 320; Refraction, 326; Wave-Lengths, 357.

WIEN (Wille). Absorption, 60.

Wiesner (J.). Xantophyll, 186; Chlorophyll, 194.

WIJKANDER. Aurora, 141.

WILD (H.). Apparatus, 33.

WILEY (H. W.). Uranium, 347.

WILLIAMS (W. M.). Calcium, 152; Iron, 269; Titanium, 346.

Willigen (S. M. van der). Electric, 225; Hydrogen, 260; Metals, 294.

WILSON (J. M.) and SEABROKE. Solar in general, 99.

WINKLER. Indium, 261.

WINLOCK (Prof.). Apparatus, 16, 36, 37; Solar in general, 99; Aurora, 141.

WINNECKE. Nebulæ, 84.

WINTER (G. K.). Corona, 105.

WISKEMANN (M.). Hemoglobine, 174.

WLEUGEL (S.). Indium, 261.

Wolff (C. H.). Quantitative Analysis, 51; Absorption, 60; Alkalies, 61; Astronomical in general, 70; Comets, 72, 73, 75; Fixed Stars, 82; Sun-Spots, 128; Fuchsin, 172; Indigo, 176; Cobalt, 196; Copper, 202; Iron, 269; Liquids, 278.

Wollaston (Dr.). History, 7; Dark Lines in the Solar Sp., 106; Dark Lines, 206.

Wright (A. W.). Meteors, 83; Aurora, 142; Flame, 239; Iron, 269. Wrotesley (Lord). Books, 10.

WÜLLNER (A.). Analysis, 49; Bromine, 148; Acetylene, 161; Carbonic Acid, 180; Dispersion, 216; Electric, 225; Flame, 239, 240; Fluorescent, 245; Hydrogen, 260; Iodine, 267; Lines of the Spectrum, 275; Nitrogen, 304; Oxygen, 310.

Wunder (J.). Absorption Sp., 60; Ultra-Marine, 184.

WÜNSCH (C. E.). History, 7.

WURTZ (A.). History, 7.

Wyrouboff (G.). Dispersion, 216; Sodium, 339.

Young (C. A.). Books, 10; Apparatus, 18; Analysis, 49; Comets, 73, 75, 79; Planets, 88; Solar in general, 99; Bright Lines in the Solar Sp., 102; Corona, 105; Displacement of Solar Sp., 106; Eclipses, 110, 111; Sun-Spots, 128; Inversion, 264; Nomenclature, 305; Sodium, 339.

Young (T.). History, 8.

Yung (E.). Color, 199.

Zahn. Apparatus, 33, 38; Quantitative Analysis, 51.

Zantedeschi. History, 8; Apparatus, 32; Solar in general, 99; Longitudinal, 281.

Zenger (C. V.). Apparatus, 12, 14, 15, 24, 35, 37, 39; Diffraction, 211; Light, 273; Ultra-Violet, 350.

ZENGER (K. W.). Analysis, 49; Photography of Solar Sp., 117.

Zenker (W.). Apparatus, 33; Solar Protuberances, 122.

ZIMMERMANN (C.). Uranium, 347.

ZÖLLNER (F.). Apparatus, 30, 36, 37; Astronomical in general, 70;
Nebulæ, 85; Sölar in general, 99; Corona, 105; Dark Lines in the Solar Sp., 106; Sölar Protuberances, 122; Solar Rotation, 124; Sun-Spots, 129; Aurora, 142; Dark Lines, 206; Density, 208; Flame, 240; Heat, 254.

Zona. Comet, 76.

SUPPLEMENT.

As the omission of the authors' names in connection with references to the Jahresberichte der Chemie has been pointed out as a serious defect in the Index, these names are now supplied below.

```
Jahresber, d. Chemie (1847-'8), 161, analysis, by Draper.
                      (1847-'8), 164, analysis, by Becquerel.
                      (1847-'8), 197, analysis, by Brewster.
                      (1847-'8), 197, analysis, by Airy.
                      (1847-'8), 198, analysis, by Melloni.
                66
                      (1847-'8), 198, analysis, by Brewster.
                      (1847-'8), 221, ehlorine and hydrogen, by Favre
                          and Silbermann.
                66
                      (1849), 164, photography of, by Beequerel.
                66
                      (1850), 154, lines in the sp., by Brewster.
                      (1851), 151, longitudinal lines, by Ragona-Seinà.
                      (1851), 134; (1852), 117, interference sp., both by
                          Nobert.
                      (1851), 152, Fraunhofer lines, by Broeh.
                66
                      (1851), 152, electric sp., by Masson.
                      (1852), 124, Fraunhofer lines, by Phillips and by
                          Merz.
                      (1852), 125, analysis, by Stokes.
                66
                      (1852), 125, longitudinal lines, by Zantedeschi.
                      (1852), 126, measurements of the sp., by Porro.
                66
                      (1852), 126, 131, analysis, by Helmholtz.
                      (1853), 167, Fraunhofer lines, by Kuhn.
                "
                      (1853), 167, Longitudinal lines, by Salm-Horstmar.
                      (1853), 178, colors, by Grassmann.
                      (1854), 137, Fraunhofer lines, by Heusser.
                      (1854), 197, solar sp. in general, by Becquerel.
                66
    66
                66
                      (1855), 123, analysis, by Helmholtz.
                      (1855), 123, lines of the sp., by Grassmann.
```

(395)

000		170 1 1 1112211121 1 .
Jahresber, d.	Chemie	(1859), 643, analysis, by Kirchhoff and Bunsen.
4+	64	(1860), 598, analysis, by Kirchhoff and Bunsen.
**	6 =	(1860), 608, analysis, by Merz.
11	**	(1861), 41, analysis, by Kirchhoff and Bunsen.
4.	4.6	(1861), 43, electric, by W. A. Miller.
4.	4 +	(1861), 44, phosphorus and sulphur, by Seguin.
	6.5	(1861), 44, thallium, by Crookes.
**	6.	(1861), 44, dark lines, by Kirchhoff.
6.0	6.0	(1861), 45, solar atmosphere, by Tyndall and Roscoe.
6.	4.6	(1861), 45, analysis, by Kirchhoff and Bunsen.
4.+	**	(1862), 26, Fraunhofer lines at sunset, by A. Weiss.
6.9	a 6	(1862), 26, cause of the durk lines in the solar sp., by Janssen.
6 &	4.4	(1862), 26, dark lines in the sp. of stars, by Merz.
6.	6 4	(1862), 27, coïncidence of the Fraunhofer lines with those of various metals, by Angström.
66	6+	(1862), 27; general treatises on spectrum analysis, by Jamin, W. A. Miller, and Roscoe.
66	41	(1862), 27, various forms of the spectroscope, by Janssen, Kirchhoff and Bunsen, A. Waugh, E. Hauer, and O. N. Rood.
**	4.6	(1862), 27, 28, methods for obtaining constant spectra, by Mitscherlich, Crookes, Diacon et Wolf, Debray, Roscoe and Clifton, and Plücker.
6.6	4.4	(1862), 29, spectrum of soda, by Fizenu.
66	4.6	(1862), 29, division of bright rays into metallic spectra in good spectroscopes, by J. P. Cooke.
T6.6	**	(1862), 29, influence of the temperature of a flame on the spectrum produced by it, by Kirchhoff and Bünsen, Roscoe and Clifton, and Crookes.
6.6	8.6	(1862), 30, constancy of the spectra, both of metals and of their compounds, by Wolf et Diacon.
"	**	(1862), 31, differences between the spectra of various metals and those of their chlorine compounds, especially the influence of salts, by Mitscherlich.
44	6.	(1862), 32, cause of spectra and consequences from this in regard to the condition of the solar nt- mosphere, by Mitscherlich.

- Jahresber. d. Chemie (1862), 33, metallic spectra produced by electric sparks, by W. A. Miller, Stokes, and T. R. Robinson.
 - " (1862), 33, spectra of carbon and of fluorine, by Sequin, Attfield, and Swan.
 - " (1862), 34, violet coloring given to the flame by various chlorides, by Gladstone.
 - " (1862), 34, spectra of colored solutions, by Brewster, Gladstone, and by Rood.
 - " (1862), 29, spectrum of sodium, by Wolf et Diacon.
 - " (1862), 30, spectrum of lithium in the hydrogen flame, by Wolf et Diacon.
 - " (1862), 30, spectra of copper and of lead, by Debray.
 - " (1862), 535, spectrum of blood, by F. Hoppe.
 - " (1863), 101, photography of the solar spectrum, by Mascart.
 - " (1863), 104, 106, 107, photographic effect of electric spectra of metals, by W. A. Miller.
 - " (1863), 107, 110, dark lines in the solar spectrum, by Kirchhoff.
 - " (1863), 108, note, atmospheric or telluric lines of the solar spectrum, by Jasssen.
 - " (1863), 108, note, spectra of the stars, by Secchi.
 - " (1863), 109, spectrum of iodine, by A. Wüllner.
 - " (1863), 110, accuracy and comparison of spectroscopes, by Bunsen and Kirchhoff, and by J. P. Cooke.
 - " (1863), 110, spectra of sulphur and of nitrogen, by Plücker and Hittorf.
 - " (1863), 111, spectra of the chlorine metals, by E. Diacon.
 - " (1863), 111, spectrum of hydrogen, by Leclancé.
 - " (1863), 111, spectra of phosphorus, by Christofle and Beilstein.
 - " (1863), 112, use of spectrum analysis in the manufacture of steel, by Roscoe.
 - " (1863), 112, spectra of sodium and potassium, by L. M. Rutherfurd.

Jahresber. d.	Chemie	(1863), 112, spectrum of thallium, by W. A. Miller and by J. P. Gassiot.
6.6	6.6	(1863), 112, spectrum of osmium, by W. Fraser.
4.	6.6	(1863), 113, history of spectrum analysis, by G. Kirchhoff and by H. C. Dibbits.
4.6		(1863), 113, spectra of various metals in electricity, by Daniel.
4.6	6	(1863), 113, spectrum of earbon, by Daniel.
6.6	4.6	(1863), 114, apparatus, by Wolcott Gibbs, Littrow, R. Th. Simmler, J. P. Gassiot, H. Osann, B. Valz, and E. Mulder.
44	44	(1864), 108, spectrum analysis of colored solutions, by C. Werner.
"	6.6	(1864), 108, dark lines of the elements, by R. Bunsen.
66	4.5	(1864), 109, spectrum of lightning, by L. Grandeau.
4.6	6 4	(1864), 109, spectrum of the non-luminous carbon flame, by A. Morren.
4.	5.5	(1864), 109, spectra of phosphorus, sulphur, and selenium, by E. Mulder.
6.4	6.	(1864), 109, spectra of flames, by H. C. Dibbits.
4.6	٠.	(1864), 110, spectra of glowing gases and vapours in electricity, by J. Plücker and S. W. Hittorf.
44	66	(1864), 112, spectra of the elements and of their compounds, by A. Mitscherlich.
"	£ £	(1864), 115, electric spectra of metals, by W. Huggins.
4.6	4.4	(1864), 115, spectrum of the light from phosphorescent animals, by Pasteur.
4.6	"	(1864), 115, note, spectra of the sun, fixed stars, planets, and nebulæ, by Janssen, W. A. Miller, and Huggins.
"	4.6	(1864), 115, apparatus with 11 sulphide of carbon prisms, by J. P. Gassiot.
66	44	(1864), 115, harmonious results given by the spectroscope, by F. Gottschalk.
44	66	(1865), 85, absorption spectra of colored solutions, by F. Melde.

Jahresber.	d. Chemie	(1867), 107, spectra of the stars, by A. Seechi.
6.6	6.6	(1868), 130, spectroscope for testing minerals, by J. E. Reynolds.
4 6	4.6	(1868), 132, comparison of prisms for spectroscopes, by E. C. Pickering.
4.6	4.6	(1868), 80, spectrum of heat, by E. Desaines.
**	4.6	(1868), 124, artificial spectrum of a Fraunhofer line, by A. Wüllner.
4.6	+4	(1868), 125, various spectra of the same gas, by A. Wüllner.
4.6	* 6	(1868), 126, 127, speetra of lightning, by A. Kundt.
4.6	4.4	(1868), 128, spectrum of the aurora, by O. Struve.
6.6	+ 6	(1868), 128, flame spectra of gases containing carbon, by A. Lielegg.
8.6	» 6	(1868), 129, spectrum of potassium and of barium, by J. H. Freeman.
s 6	4.6	(1868), 129, absorption spectra of liquids for dyeing, by Reynolds.
. 6	+4	(1868), 130, application of the spectroscope to the examination of crystals, L. Ditscheiner.
44	"	(1868), 133, spectrum telescope, by W. Huggins.
. 6	8-6	(1869), 174, history of spectrum analysis, by A. S. Herschel.
66	6.6	(1869), 174, constitution of spectra of light, by Lecoq de Boisbaudran.
6.6	4.4	(1869), 175, spectrum scale, by A. Weinhold.
6.6	6.6	(1869), 175, reversion spectroscope, by F. Zöllner.
**	•4	(1869), 175, binocular spectrum microscope, by W. Crookes.
4.6	14	(1869), 175, appearance of opal in the spectroscope, by W. Crookes.
4.6	4.6	(1869), 176, spectrum of carbon, by W. M. Watts.
4.6	4.6	(1869), 176, 180, spectra of gases, by E. Frankland and J. N. Lockyer.
4.6	6.	(1869), 177, difference of the spectra under various circumstances, by A. Secchi and Lecoq de Bois- baudran.
44	4.6	(1869), 178, spectra of gases under increasing pressure, by A. Wüllner and by Frankland.

Jahresber.	d. Chemie	(1869), 180, spectrum of the aurora, by Angström.
6.6	"	(1869), 181, spectrum of sulphur, by G. Salet.
6.6	66	(1869), 182, spectrum of acetylene, by Berthelot and F. Richard.
46	66	(1869), 182, absorption spectrum of chlorine, by Morren.
4.6	66	(1869), 183, absorption spectra of steam and of saltpetre, by E. Luck.
66	44	(1869), 184, absorption spectrum of mangansuper- chloride, by E. Luck.
"	46	(1870), 148, spectrum of heat, by Becquerel.
4.6	"	(1870), 172, spectrum analysis, by A. Kundt.
6.6	66	(1870), 172, absorption spectra of liquid nitrates, by A. Kundt.
46	"	(1870), 173, spectroscopic examination of sulphur and phosphorus, by Salet.
6.6	66	(1870), 174, absorption spectrum of iodine vapour, by R. Thalén.
4.6	46	(1870), 174, spectra of chalk, magnesia, baryta, and strontium, by Huggins.
66 .	66	(1870), 175, spectrum of fat oils, by J. Müller.
+6	66	(1870), 175, influence of temperature on the sensitiveness of spectrum reactions, by E. Cappel.
4.6	"	(1870), 177, spectra of gases, by A. Secchi.
4.6	46	(1870), 177, note, spectra of stars, by Leseueur, Hennessey, Secchi, Lockyer, and Young (C. A.).
66	46	(1870), 321, absorption spectrum of nitrates of didymium, by Erk.
44	66	(1870), 930, spectrum analysis in general, by H. C. Sorby.
66	66	(1871), 120, heat spectra of sunlight and limelight, by S. Lamansky.
46	66	(1871), 144–149, spectra of colored bodies, by W. Stein.
66	66	(1871), 150, use of a reflector behind the spectrum apparatus, by H. Fleck.
6.6	46	(1871), 150, spectrum of calcium, by R. Blochmann.
44	"	(1871), 151, diffraction and dispersion of selenium, by J. L. Sirks.
9.0	m	•

Jahresber, d.	Chemie	(1871), 151, diffraction and dispersion in iodide, bromide, and chloride of silver, by W. Wernicke.
6.6	6.6	(1871), 153, diffractive power of various liquids, by Croullebois.
46	4.	(1871), 153, diffractive power of gases, by Fr. Mohr.
66	61	(1871), 154-160, anomalous dispersion of bodies colored on the surface, by A. Kundt.
6 6	44	(1871), 160, interference-scale for spectroscopic measurements, by J. Müller and by Sorby.
**	64	(1871), 160, variable spectra, by A. J. Angström.
44	4.4	(1871), 160-165, spectra of gases, by Angström.
4+	6.0	(1871), 165, spectrum analysis, by G. Salet.
6 •	6.0	(1871), 167, speetrum of lightning, by H. Vogel.
4.	44	(1871), 168, solar spectrum, by J. Janssen.
**	6.6	(1871), 169, speetrum of the aurora, by Browning, Zöllner, R. J. Ellery, Lord Lindsay, G. F. Barker, and H. Vogel.
6.6	"	(1871), 169, comparative investigations of the spectrum, by L. Troost and P. Hautefeuille.
٠.	6.5	(1871), 172, absorption by iodine-vapour, by Audrews.
44	64	(1871), 173, inversion of the spectrum lines, by A. Weinhold.
6.6	44	(1871), 175, illumination, absorption, and fluorescence, by A. Lallemand.
44	44	(1871), 179-189, chemical effects of light, by H. E. Roscoe and T. E. Thorpe.
66	4.	(1871), 189, quantitative analysis, by Vierordt.
44	•6	(1871), 191, phosphorescence, by A. Førster.
4.4	6.6	(1872), 134, ultra-violet rays of the solar spectrum, by Sekulic.
4.6	6 4	(1872), 136, absorption spectrum of chlorophyll, by Chautard.
44	64	(1872), 137, absorption spectrum of saltpetre, by D. Gernez.
66	66	(1872), 138, absorption spectrum of chlorine, by Gernez.
4.6	66	(1872), 139, 141, absorption spectrum of sulphur, by Gernez

Jahresber. d.	Chemie	(1872), 139, absorption spectra of the chloric acids and of selenium, by D. Gernez.
66	66	(1872), 140, absorption spectra of chloride of selenium, of bromide of selenium, of tellurium, of chloride of tellurium, and of bromide of tellurium, and of alizarine, by D. Gernez.
"	66	(1872), 141, spectrum of iodine and of sulphur, by G. Salet.
. 1	"	(1872), 141, 143, 144, 145, 146, spectrum of hydrogen, by G. M. Seabroke, Lecoq de Boisbaudran, A. Schuster, L. Cailletet, and E. Villari.
	"	(1872), 142, spectrum of phosphoretted_hydrogen, by K. B. Hofmann.
46	"	(1872), 142, 144, 145, spectrum of nitrogen, by Schuster.
66	"	(1872), 142, spectrum of the flame of ammonia, by K. B. Hofmann.
44	66	(1872), 143, spectrum of ammonia, by A. Schuster
"	"	(1872), 143, spectra of gases, by Schuster and by Angström.
66	i.e	(1872), 145, spectra of aluminium, magnesium, zinc, cadmium, cobalt, and nickel, by Lockyer.
66	"	(1872), 145, influence of pressure on the spectrum of the induction spark, by L. Cailletet.
66	"	(1872), 146, spectrum analysis, by C. Horner.
"	66	(1872), 147, solar spectrum, by C. A. Young.
66	"	(1872), 148, spectrum of the aurora, by H. C. Vogel.
66	"	(1872), 148, spectrum of the zodiacal light, by E. Liais.
66	66	(1872), 148, spectrum of lightning, by E. S. Holden.
66	46	(1872), 873, spectrum analysis, by Vierordt.
"	"	(1872), 948, micro-spectroscope, by Timiriasef.
"	66	(1873), 54, use of the spectrum in measuring high temperatures, by J. Dewar and by Gladstone.
"	66	(1873), 146, spectroscopes, by Hartley, Emsmann, Zenger, H. R. Proctor, O. N. Rood, C. A. Young, F. P. Le Roux, Th. Edelmann, R. Hennig and M. M. Champion, Pellet et Grenier.

Jahresber, d.	Chemie	(1873), 148, spectra of gases, by A. Wüllner.
4.6	"	(1873), 149, spectra of the metalloids, by G. Salet.
4.6	44	(1873), 150, spectrum of the Bessemer flame, by W. M. Watts.
44	6.6	(1873), 150, spectra of the erbium earths, by Lecoq de Boisbaudran.
4.6	"	(1873), 150, supposed spectrum-line of iron, by A. Secchi.
6.6	44	(1873), 150, spectrum of the electro-carbon light, by A. Secchi.
s 6	"	(1873), 150, spectra of cobalt compounds, by Ch. Horner.
46	44	(1873), 151, spectrum of exploding gun-cotton, by O. Lohse.
6.6	4.6	(1873), 151, spectrum of the aurora, by G. F. Barker.
4.6	"	(1873), 151, spectra obtained by the induction spark, by Lecoq de Boisbaudran.
6.6	66	(1873), 152, spectra between leaden electrodes, by Lecoq de Boisbaudrau.
46	4.6	(1873), 152, spectrum of chloride of gold, by Lecoq de Boisbaudran.
4.6	44	(1873), 152, flame-spectrum of the thallium salts, by Lecoq de Boisbaudran.
44	6.6	(1873), 152, electric spectrum of carbonate of lithium, by Lecoq de Boisbaudran.
66	"	(1873), 152, dependence of the spectra of chemical compounds on their composition, by J. N. Lockyer.
6.6	"	(1873), 153, quantitative spectrum analysis of "Legirungen," by J. N. Lockyer and W. C. Roberts.
6.6	66	(1873), 154, ultra-violet speetra, by L. Soret.
4.6	6.6	(1873), 154, nitrate of nickel used as for absorption, by H. Emsmann.
4.6	46	(1873), 154-157, spectroscopic investigation of chlorophyll, by G. Kraus, J. Chautard, and H. Pocklington.
44	"	(1873), 157, absorption spectrum of napthaline, by A. Lallemand.

(1875), 124, absorption spectra, by T. L. Phipson.

66

200		
Jahresber.	d. Chemie	(1875), 126, fluorescence and absorption spectra of the earbonates, by H. Morton.
**	b 6	(1875), 119, indices of refraction of the spectra of fuchsin and of silver, by W. Wernicke.
**	0.6	(1875), 120, 121, spectroscopes, by A. K. Eaton, W. M. Watts, J. C. Dalton, and by B. Delachanal and A. Mermet.
4+	* 6	(1875), 121, history, by H. Wartz, who claims for the American, D. Alter, priority over Kirch- hoff and Bunsen.
* *	1.6	(1875), 121, relations between atomic weight and wave-lengths, by E. Vogel.
6.6	**	(1875), 121, relation between magnetism and spectroscopy, by J. Chautard.
* 4	14	(1875), 121, spectrum of sodium, by Wills.
4.6	h &	(1875), 127, spectrum of chlorophyll, by Pringsheim.
. 4	66	(1875), 127, spectrum of bonellia viridis, by S. L. Schenk.
6.6	44	(1875), 128, absorption-spectra of real red wine and of its adulterations, by H. W. Vogel.
4.6	. 4	(1875), 128, spectrum analysis, by R. Bunsen.
4.6	44	(1875), 129, spectrum analysis of the carbonates, by A. and G. de Negri.
6.6	4.4	(1875), 901, quantitative spectrum analysis, by K. Vierordt.
4.6	44	(1876), 158, projection of the solar spectrum on a screen, by F. Kessler.
44	16	(1876), 936, spectrum of oils, by W. Gilmour.
	14	(1876), 142, spectroscopes, by Terquem and Tran- nin, by Wiedemann, and by Stoney.
14	66	(1876), 142, the Talbot lines and interferent constants, by Wolcott Gibbs.
4.6		(*876), 142, comparison of colors for dyeing with colors of the spectrum, by W. von Bezold.
4.6	14	(1876), 142, spectra of the metalloids, by Thalén and Angström.
6.6	4.6	(1876), 143, spectrum of nitrogen, by A. Cazin, Angström, Schuster, and Salet.

Jahresber, d. Chemie (1876), 143, spectrum of chlorine, by Czechowitz. (1876), 143, spectrum of carbonic acid, by Czechowitz. (1876), 143, spectrum of fluoride of silicon. by Czechowitz. 46 (1876), 144, spectra of gases, by E. Goldstein. (1876), 144, spectrum of indium, by A. W. Claydon and C. T. Haycock. (1876), 144, spectrum of gallium, by Lecoq de Boisbaudran. 66 " (1876), 144, spectrum of calcium, by J. N. Lockyer. 44 (1876), 145, the D lines of the solar spectrum, by W. A. Ross. 66 (1876), 145, the ultra-red spectrum, by E. Becquerel. 66 (1876), 145, constants of absorption of light in metallic silver, by W. Wernicke. 66 (1876), 145, absorption spectra of various kinds of ultra-marine, by J. Wunder. (1876), 146, absorption spectra of iodine, by John Conroy and by Schultz-Sellack. 66 (1876), 147, absorption spectra of the vapours of bromine and of simple chloride of iodine, by H. E. Roscoe and T. E. Thorpe. (1876), 155, photographs of the ultra-red rays of 66 the solar spectrum, by J. Waterhouse. (1877), 1031, map of the solar spectrum, by J. N. Lockyer, the first part of his map. 66 (1877), 1245, photography of the less refractive part of the solar spectrum, by H. W. Vogel. (1877), 1247, rice-grains in the solar spectrum, by Janssen. 66 (1877), 185, quantitative spectrum analysis, by G. Govi. 66 (1877), 181, spectroscopes, by W. H. M. Christie, H. W. Vogel, H. Schellen, and G. Hüfner. 66 (1877), 181, spectrum of the electric spark in compressed gases, by A. Cazin. 66 (1877), 1034, electric spectrum of indium, by W. Claydon and Ch. T. Heywon.

Jahresber. d.	Chemie	(1877), 1034, use of chloride of calcium and of chloride of magnesium in spectroscopy, by A.
		R. Leeds.
46	66	(1877), 102, distribution of heat in the spectrum of the electric light, by P. Desaines.
4.5	6.6	(1877), 182, photographs of ultra-violet gas-spectra, by Van Monekhoven.
6.6	6.6	(1877), 182, spectrum of davyum, by S. Kern.
6.	6.6	(1877), 182, spectra of colored flames, by Gouy.
* *	66	(1877), 183, spectra of the chemical compounds, by J. Moser.
66	6.6	(1877), 183, lines of oxygen and nitrogen in the solar spectrum, by H. Draper.
6.6	64	(1877), 183, spectra of lightning, by J. W. Clark.
"	44	(1877), 184, theory of the dispersion and absorption of light, by E. Ketteler.
44	6.6	(1877), 184, inversion of the sodium lines, by J. Martenson.
**	6.6	(1877), 184, absorption spectrum of the garnet and the ruby, by H. W. Vogel.
44	66	(1877), 185, absorption of solutions, by G. Govi.
66	"	(1877), 185, quantitative spectrum analysis, by G. Govi.
66	6.	(1877), 195, photography of the infra-red lines of the solar spectrum, by J. W. Draper.
46	66	(1877), 196, dissolution of earbonic acid in plants under the influence of the solar spectrum, by C. Timirjaseff.
66	44	(1877), 1245, photography of the solar spectrum, by H. W. Vogel.
6.6	6.	(1878), 7, comparative spectrum analysis, by N. Lockyer.
6.6	44	(1878), 67, use of spectrum analysis in determining high temperatures, by A. Crova.
44	44	(1878), 179, apparatus, by Thollon and by A. S. Herschel.
66	44	(1878), 169, conversion of Kirchhoff's scale into wave-lengths, by B. Hasselberg.
66	6.6	(1878), 169, calculation of the distribution of the
		spectrum lines, by L. Pfaundler.

safraniu, by J. Landauer.

Jahresber. d.	Chemie	(1878), 180, spectroscopic investigation of solutions, by J. Landauer.
6.6	66	(1878), 181, spectrum of the light of super-manganate of potassium, by J. Conroy.
66	4.6	(1878), 181, absorption of the ultra-violet rays, by L. Soret.
66	66	(1878), 181, ultra-violet absorption spectra of gadolinite, by J. L. Soret.
4.6	4.6	(1878), 182, inversion of the spectrum lines of metallic vapours, by G. D. Liveing and J. Dewar.
66	"	(1878), 185, spectroscopic observations of the sun, by J. N. Lockyer.
66	66	(1878), 185, oxygen in the solar atmosphere, by J. C. Draper.
66	46	(1878), 185, map of the ultra-violet part of the solar spectrum, in continuation of Angström's map, by A. Cornu.
66	4.6	(1878), 187, photography of the red and infra-red spectrum, by Abney.
44	6.6	(1878), 188, oxidation hastened by the least refractive end of the spectrum, cause of solarization, by Abney and by Chastaing.
44	4.6	(1878), 191, flame for spectroscopic observations, by H. Gilm.
66	**	(1879), 10, spectroscopic investigation of the elements, by J. N. Lockyer.
44	6.6	(1879), 159, nature of spectra, by E. Wiede- mann.
66	64	(1879), 160, band and lime spectrum, by A. Wüllner.
66	4.6	(1871), 163, influence of temperature on the spectra of gases and vapours, by G. Ciamician.
4.6	4.6	(1879), 166, limits of the ultra-violet spectrum, by A. Cornu.
6.6	+ 6	(1879), 161, spectroscopic investigations, by J. N. Lockyer.
44	46	(1879), 1022, quantitative spectrum analysis, by C. H. Wolf.

	SUPPLEMENT. 411
Jahresber. d. Chemi	e (1879), 1022, analysis of absorption spectra, by B. Hasselberg.
46 66	(1879), 1023, spectroscopic notes, by H. W. Vogel.
66	(1879), 157, character of the rays issuing from glowing platinum, by E. L. Nickols.
"	(1880), 201, new method of spectroscopic observa- tion, by J. N. Lockyer.
46 46	(1880), 201, disappearance of lines in the apparatus, by Ch. Fievez.
66 66	(1880), 201, the line H in the spectrum of hydrogen, by J. N. Lockyer.
£6 £6	(1880), 201, relative intensity of spectrum lines, by J. Rand Capron.
46 46	(1880), 201, harmonic relations in the spectra of gases, by A. Schuster.
66 66	(1880), 202, spectrotelescope, by P. Glan.
66 66	(1880), 203, quantitative spectroscopic researches, by Liveing and Dewar.
46	(1880), 205, spectroscopic notes, by C. A. Young.
66 66	(1880), 205, spectroscopic investigations continued, by Ciamician.
46 46	(1880), 206, spectroscopes, by J. E. Reynolds and G. Hüfner.
66 66	(1880), 206, spectrum of the hydrogen flame, by W. Huggins.
£6 CE	(1880), 206, spectrum of hydrogen and of the carburetted hydrogen flame, by G. D. Liveing and J. Dewar.
46 46	(1880), 206, the helium line D_3 attributed to hydrogen, by E. Spée.
ee 66	(1880), 207, absorption spectrum of ozone, by J.

Chappuis.

and J. Dewar.

by J. N. Lockyer.

G. D. Liveing and J. Dewar.

(1880), 207, spectra of the compounds of carbon

(1880), 207, fourth note on the spectrum of carbon,

(1880), 207, history of the spectrum of carbon, by

with hydrogen and nitrogen, by G. D. Liveing

66

66

Juhresber, d.	Chemie	(1880), 207, spectra of the compounds of carbon with hydrogen and nitrogen, especially the sensitiveness of the spectroscopic reactions of carbo-nitrogen compounds, by G. D. Liveing and J. Dewar.
61	4.6	(1880), 208, the repeated inversion of the sodium lines, by C. A. Young.
66	6.6	(1880), 208, method for a constant sodium flame, by Fleck.
66	61	(1880), 208, spectra of magnesium and lithium, by G. D. Liveing and J. Dewar.
66	61	(1880), 209, spectroscopic relations of copper, nickel, cobalt, iron, manganese, and chromium, by Th. Bayley.
66	4.6	(1880), 209, absorption spectra of the yttrium group, by J. L. Soret.
66	4.6	(1880), 210, emission spectrum of erbium and ytter- bium, by R. Thalén.
4.6	66	(1880), 211, spectrum of thulium, by R. Thalén.
44	6.4	(1880), 212, spectrum of seandium, by R. Thalén.
"	6 4	(1880), 212, displacement of the absorption lines of purpurin in various solutions, by H. Morton.
4.6	64	(1880), 212, ultra-violet rays, by J. Schönn.
4.6	4.6	(1880), 213, limits of the ultra-violet end of the spectrum, by A. Cornu.
66	6.6	(1880), 213, absorption of the ultra-violet rays by organic bodies, by W. R. Dunstan.
	46	(1880), 214, the ultra-violet absorption spectra of ytterbium, erbium, holmium, philippium, terbium, samarium, decipium, didymium, and zirconium, by J. L. Soret.
66	61	(1880), 219, photography of the spectra of stars, by Huggins.
6.6	4.6	(1880), 219, photographs of the spectrum of bromide of silver, by Abney.
66	61	(1880), 219, photochemistry of silver, by J. M. von Eder.
66	"	(1881), 117, spectroscopic measurement of high temperatures, by A. Crova.

- Jahresber. d. Chemie (1881), 117, use of Vierordt's double slit in spectroscopic analysis, by W. Dietrich.
 - " (1881), 117, spectrophotometer, by A. Crova.
 - " (1881), 117, phosphorography of the solar spectrum and the ultra-red lines, by J. W. Draper.
 - " (1881), 118, inversion of spectrum lines, by G. D. Liveing and J. Dewar.
 - " (1881), 118, disappearance of spectrum lines, by Ch. Fievez.
 - " (1881), 119, coïncidence of spectrum lines of various elements, by G. D. Liveing and J. Dewar.
 - " (1881), 119, spectrum of oxygen, by A. Paalzow and H. W. Vogel.
 - " (1881), 120, spectra of hydrogen and of sulphur, by B. Hasselberg.
 - " (1881), 120, spectrum of arsenic, by O. W. Huntington.
 - " (1881), 121, spectra of sodium and calcium, by Abney.
 - " (1881), 121, relative intensity of the sodium lines D_a and D_{β} , by W. Dietrich.
 - " (1881), 121, spectrum of magnesium, by G. D. Liveing and J. Dewar.
 - " (1881), 122, spectra of magnesium, sodium, copper, baryum, and iron in their harmonic relations, by A. Schuster.
 - " (1881), 122, spectrum of iron, by J. N. Lockyer.
 - " (1881), 122, 123, spectra of the carbon compounds, by E. Wesendonck; remarks by A. Wüllner, claiming priority.
 - " (1881), 123, spectroscopic lines of the arc of Jamin's lamp, by Thollon.
 - " (1881), 123, spectrum of carbonic acid, by C. Wesendonck.
 - " (1881), 123, 124, spectrum of acetylene, by A. Wüllner.
 - " (1881), 125, color of water, by F. Boas.
 - " (1881), 125, absorption of the solar rays in the atmosphere, by E. Lecher.

Jahresber, d.	Chemie	(1881), 125, absorption of light in various media, by C. Pulfrich.
64	44	(1881), 126, molecular structure of carbon compounds and their absortion spectra, by W. N. Hartley.
66	44	(1881), 127, influence of the molecular arrangement of organic substances on their absorption in the ultra-red part of the spectrum, by Abney and Festing.
4.6	4.6	(1881), 127, the absorption spectrum of ozone, by W. N. Hartley.
4.6	44	(1881), 127, absorption spectra of cobalt salts, by W. J. Russell.
66	4.6	(1881), 128, absorption bands in the visible spectra of colorless liquids, by W. J. Russell and W. Lapraik.
44	44	(1881), 128, spectra of terpenes and volatile oils, by W. N. Hartley and A. K. Huntington.
4.6	4.6	(1881), 129, chrysoidine and the allied azo dyestuffs, by J. Landauer.
6.6	"	(1881), 129, alkaloid reactions in spectroscopic apparatus, by K. Hock.
44	44	(1881), 129, absorption of the ultra-violet rays, by De Chardonnet.
66	"	(1881), 129, passage of rays of small refraction through ebonite, by Abney and Festing.
44	44	(1881), 130, spectrum of eyanine, by V. von Lang.
44	"	(1881), 130, 131, 132, discontinuous spectra of phosphorescent bodies, by W. Crookes; E. Becquerel claims priority for a part.
4.6	"	(1881), 132, phosphorescence of Balmain's illuminating matter, by E. Dreher.
64	44	(1881), 133, the light of phosphorescent substances, by E. Obach.
"	6.6	(1881), 133, fluorescence, by O. Lubarsch.
66	6.6	(1881), 133, comparative effects of light and heat in chemical reactions, by G. Lemoine.
66	66	(1881), 135, sensitiveness of dry plates of bromide of silver to the solar spectrum, by H. W. Vogel.

by G. D. Liveing and J. Dewar.

Jahresber.	d. Chemie	(1882), 180, photographs of the ultra-violet spectra of the elements, by W. N. Hartley.
" "	66	(1882), 181, inversion of the metallic lines in too long exposed photographs of spectra, by W. N. Hartley.
à a	66	(1882), 181, map of the more refractive part of the spectrum of hydrogen, by G. D. Liveing and J. Dewar.
4.6	4.6	(1882), 181, apparatus for the study of glowing vapours, by G. D. Liveing and J. Dewar.
6.6	4.6	(1882), 181, displacement of the spectrum lines of hydrogen, by D. von Monckhoven.
4.6	b 6	(1882), 182, intensity of the spectrum lines of hydrogen, by H. Lagarde.
6.6	4.6	(1882), 183, spectrum of oxygen at low temperatures, by Piazzi Smyth.
4.6	6.6	(1882), 184, 185, spectra of carbon and of its compounds, by G. D. Liveing and J. Dewar.
46	46	(1882), 185, spectra of earbon compounds, by K. Wesendonck.
4.6	6.6	(1882), 186, disappearance of spectrum lines and their changes in mixed vapours, by G. D. Live- ing and J. Dewar.
b 4.	6.6	(1882), 186, remarks on Lockyer's theory of disso- ciation, especially in regard to iron lines in sun-spots, by H. W. Vogel.
4.5	4.6	(1882), 187, remarks on Von Lang's examination of powerful absorbants, by C. Pulfrich.
64	4.6	(1882), 187, absorption spectrum of hypernitric acids, by J. Chappuis.
46 *	64	(1882), 187, absorption spectrum of ozone, by J. Chappuis.
44	44	(1882), 188, absorption spectrum of the atmosphere, by N. Egoroff.
4.6	4.6	(1882), 188, relations of carbon compounds to their absorption spectra, by W. N. Hartley.
66	6.6	(1882), 189, wave-lengths of various earbon compounds, by Thollon.
44	4.6	(1882), 189, absorption spectrum of chlorophyll, by W. J. Russell and W. Lapraik.

- Jahresber. d. Chemie (1882), 190, absorption curves of liquids, by E.

 Ketteler and C. Pulfrich.

 " (1882) 190, violet, phosphoroscopec, of coloium
 - " (1882), 190, violet phosphorescence of calcium sulphide, by W. de W. Abney.
 - " (1882), 190, origin of phosphorescence, by E. Dreher.
 - " (1882), 199, sensitiveness of bromide and chloride of silver to the solar spectrum, by H. W. Vogel.
 - " (1882), 201, photography of spectra in connection with new methods of quantitative chemical analysis, by W. N. Hartley.
 - " (1883), 1554, duration of the spectroscopic reaction of carbonic acid in the blood, by E. Salfeld.
 - " (1883), 1655, apparatus, by H. Schulze, O. Tumlirz, F. Lippich, and W. Ramsay.
 - " (1883), 232, a spectrophotometer, by A. Crova.
 - " (1883), 240, direct-vision spectroscope, by Ch. V. Zenger.
 - " (1883), 1397, energy in the solar spectrum, by C.
 Timiriaseff.
 - " (1883), 240, spectroscopic studies in the ultra-red end, by E. Lommel.
 - " (1883), 241, wave-lengths of the extreme warm rays, by E. Pringsheim.
 - " (1883), 241, phosphorographic studies in the ultrared part of the solar spectrum, by H. Becquerel.
 - " (1883), 242, on the wave-lengths near the lines A and α in Fievez's map, by W. de W. Abney.
 - " (1883), 242, distribution of heat in the solar spectrum, by P. Desains.
 - " (1883), 242, selective absorption of the atmosphere and distribution of energy in the solar spectrum, by S. P. Langley.
 - " (1883), 243, spectra of sun-spots, by G. D. Liveing and J. Dewar.
 - " (1883), 243, spectroscopic observations of sun-spots, by C. A. Young.
 - " (1883), 243, emission spectra of metallic vapours, by H. Becquerel.

Jahresber, d.	Chemie	(1883), 244, ultra-red emission spectra of the metallic vapours, by H. Becquerel.
66	6.6	(1883), 244, spectra of didymium and samarium, by R. Thalén.
66	66	(1883), 244, emission spectra of scandium, ytter- bium, erbium, and thulium, by Th. Thalén.
66	6.6	(1883), 245, ultra-violet spectra of the elements, by W. N. Hartley.
46	66	(1883), 245, method of photographing diffraction spectra, by W. N. Hartley and W. E. Adeney.
46	46	(1883), 246, ultra-violet emission spectra of the elements and their compounds photographically examined, by W. N. Hartley.
66	"	(1883), 246, spectrum of beryllium, by W. N. Hartley.
66	66	(1883), 246, spectra of boron and silicon, by W. N. Hartley.
66	4.6	(1883), 246, 247, absorption spectra of various substances, by G. D. Liveing and J. Dewar.
6.6	66	(1883), 248, inversion of the spectral lines of the metals, by G. D. Liveing and J. Dewar.
4.6	"	(1883), 248, inversion of the hydrogen lines and of the lithium lines, by G. D. Liveing and J. Dewar.
6.6	4.6	(1883), 248, spectrum of phosphorescent light and of yttrium, by W. Crookes.
4.6	66	(1883), 248, spectrum of hydrogen and of acetylene, by B. Hasselberg.
6.6	66	(1883), 249, spectrum of hydrogen in the vacuum tube, by Piazzi Smyth.
66	64	(1883), 249, spectrum of the hydro-earbon flame, by G. D. Liveing and J. Dewar.
٤ 4	6.6	(1883), 249, absorption and fluorescent spectra of various bodies, by E. Linhardt.
4.6	66	(1883), 250, absorption spectrum of sea-water, by H. W. Vogel and J. Aitken.
66	44	(1883), 250, absorption spectrum of the solution of iodine in sulphate of carbon, by Abney and
		Festing.

- Jahresber. d. Chemie (1883), 250, use of selenium in separating the heat rays from the light and the chemical rays, by F. van Assche.
 - " (1883), 251, absorption of the blood, by J. L. Soret.
 - " (1883), 251, sight of the ultra-violet rays by man and by vertebrates, by De Chardonnet; remarks by Mascart and by Soret.
 - " (1883), 252, absorption spectra of organic compounds, by G. Krüss and S. Oeconomides.
 - " (1883), 253, dissociation of phosphorescence under the influence of the ultra-red rays, by H. Becquerel.
 - " (1883), 253, phosphorescence of sulphur, by H. Schwarz.
 - " (1883), 254, phosphorescence of organic bodies, by B. Radzizewski.
 - " (1883), 254, Stokes's Law of Phosphorescence, maintained by Hagenbach against Lommel and Lubarsch.
 - " (1883), 254, optical characteristics of the cyanides of platinum, by W. König.
 - ' (1883), 258, sensitiveness of the salts of silver to light, by H. W. Vogel.
 - " (1883), 258, electro-chemical energy of light, by F. Griveaux.
 - " (1884), 289, lines peculiar to solar light, by A. Cornu.
 - " (1884), 294, displacement and inversion of the lines of the spectrum, by Ch. Fievez.
 - " (1884), 295, cause of the displacement of the lines of the spectrum, by E. Wiedemann and W. N. Hartley.
 - " (1884), 283, measurement of wave-lengths, by H. Merczyng.
 - " (1884), 289, 290, wave-lengths and refraction in the invisible part of the spectrum, obtained with the bolometer of his own invention and with a very large Rowland convex grating, by S. P. Langley.

420		5011111111111111111
Jahresber.	l. Chemie	(1884), 291, bands in the ultra-red part of the solar spectrum and the ultra-red spectrum of glowing
		metallic vapours, by H. Becquerel.
66	6.6	(1884), 292, spectra of metals, by E. Demarçay.
46	44	(1884), 292, spectroscopic studies of exploding gases, by G. D. Liveing and J. Dewar.
"	6.6	(1884), 292, spectra of vapours, by J. Parry.
"	4.4	(1884), 293, phosphorescent spectra, by W. Crookes.
66	6 6	(1884), 293, spectrum of hydrogen, by B. Hasselberg.
66	66	(1884), 293, spectra of fluoride of silicon and of hydrate of silicon, by K. Wesendonek.
66	6.6	(1884), 293, influence of temperance on spectroscopic observations, by G. Krüss.
44	"	(1884), 293, changes in the refraction of the H and Mg lines, by Ch. Fievez.
46	4.6	(1884), 294, displacement and inversion of the spectrum lines, by Ch. Fievez.
66	66	(1884), 295, displacement of the spectrum lines, by E. Wiedemann and W. N. Hartley.
"	66	(1884), 295, spectroscopic studies of dyes, by E. L. Nichols.
"	66	(1884), 296, color of water, by J. L. Soret.
66	6.6	(1884), 296, absorption spectrum of water, by J. L. Soret and E. Sarasin.
"	66	(1884), 297, absorption spectrum of iodine vapour, by A. Morghen.
"	66	(1884), 297, absorption spectrum of chloroehromic acid, by G. J. Stoney and J. E. Emerson.
"	44	(1884), 297, absorption spectra of asseuline solutions, by K. Wesendonck.
"	66	(1884), 298, absorption spectra of the aromatic series, by J. S. Konic.
64	66	(1884), 298, absorption spectra of the alkaloids, by W. N. Hartley.
"	6.	(1884), 298, formula for the dispersion of the ultra- red rays, by A. Wüllner.
"	**	(1884), 1429, influence of the spectrum on the production of carbonic acid gas by plants, by J.
		Reinke.

" (1885), 322, spectroscopic observations of blue crystals of rock-salt, by C. Ochsenius.

solution, by A. E. Bostwick.

(1885), 322, absorption vessel for a poor absorbent

1		
Jahresber. d.	Chemie	(1885), 322, spectroscopic observations of solutions of chloride of cobalt, by W. J. Russell.
6.6	66	(1885), 323, absorption spectrum of blue oxalate of potassium, by C. A. Schunk.
6.6	6.6	(1885), 323, absorption spectra in the extreme red, by Abney and Festing.
. 6	4.6	(1885), 323, 324, absorption spectra of various dyestuffs, by Ch. Girard and Pabst.
6.6	16	(1885), 324, absorption spectra of the sub-nitrates, by L. Bell.
4.6	66	(1885), 324, absorption spectrum of oxygen, by N. Egoroff.
6.6	"	(1885), 324, 325, absorption of atmospheric air and of hydrogen, by J. Janssen.
6.6	"	(1885), 325, absorption spectra of the alkaloids, by W. N. Hartley.
6.6	46	(1885), 326, absorption spectrum of benzol vapour, by J. S. Konic.
66	"	(1885), 327, connection between the absorption spectra and the molecular structure of organic compounds, by G. Krüss and Occonomides.
6.6	"	(1885), 328, connection between molecular structure and the absorption of light, by N. von Klobukow.
4.6	66	(1885), 329, relations between molecular structure and the absorption of carbon compounds, by W. N. Hartley.
66	66	(1885), 329, 330, relations between the absorptive power and the emission of phosphorescent rays, by H. Becquerel.
66	6.6	(1885), 331, spectroscopy of radiant matter, by W. Crookes.
66	66	(1885), 332, spectra of samarium and of yttrium, by W. Crookes.
"	66	(1885), 332, a new kind of metallic spectra and spectra of metallic solutions, by Lecoq de Boisbaudran.
"	6.	(1885), 333, theory of fluorescence, by E. Lommel.
66	66	(1885), 333, 334, fluorescence, especially of didymium, by E. Lommel.

Jahresber. d. Chemie (1885), 335, fluorescence of naphthalin-red, by K. Wesendonck.

Report of the committee, consisting of Professors Olding, Huntington, and Hartley, appointed to investigate by means of photography the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions; drawn up by Professor W. M. Hartley (secretary). Report of the British Association for 1885, pp. 276–284.

Report of the committee, consisting of Professor Sir H. E. Roscoe, Mr. J. N. Lockyer, Professors Dewar, Wolcott Gibbs, Liveing, Schuster, and W. N. Hartley, Captain Abney, and Dr. Marshall Watts (secretary), appointed for the purpose of preparing a new series of wavelength tables of the spectra of the elements and compounds. Report of the British Association for 1885, pp. 288–322, and for 1886, pp. 167–204.

- On the spectrum of the Stella Nova visible in the great nebula in Andromeda, by William Huggins. Rept. Brit. Assoc. for 1885, p. 932.
- On the solar spectroscopy in the infra-red, by Daniel Draper. Rept. Brit. Assoc. for 1885, p. 935.
- On the formation of a pure spectrum by Newton, by G. Griffith. Rept. Brit. Assoc. for 1885, p. 940.
- On the absorption spectra of uranium salts, by W. J. Russell and W. Lapraik. Rept. Brit. Assoc. for 1886.
- Pritchard's Wedge Photometer, by S. P. Langley, C. A. Young, and E. C. Pickering.

