Digitális technika 2 második laborgyakorlat

A foglalkozás célja:

A már megismert mikrokontrolleres fejlesztői környezetben egyszerű programozási feladatok készítése:

- Szoftveres késleltetés megvalósítása
- 7 szegmens kijelző kezelése: adat továbbítása bitsorosan a kijelző felé
- Számlálás megvalósítása a kijelzőn

A feladatok megvalósítása során előre elkészített projektet kell betölteni (2_Labor.X), amely tartalmazza a megvalósítandó feladatok vázát, valamint egy külön assembly állományban (init_send.s) a használandó hardver elemek (portok) kezdeti értékadását megvalósító szubrutint (Disp_init) és egy konverter rutint (Disp_conv) amely a paraméterként kapott bináris számhoz (0...99 közötti érték) előállítja a 7 szegmens kijelzőre kiküldendő bitmintát.

1. 1ms szoftver késleltetés

- 1. Töltse le a Villamoskari oktatási portálról (edu.vik.bme.hu) a "2_labor.X.zip" projektet, majd tömörítse ki az asztalra. Indítsa el az MPLAB X IDE v5.50 fejlesztői környezetet, majd "File→Open Project…" funkcióval töltse be ezt a projektet.
- 2. Nyissa meg a "main.s" forráskódot. A projektben található init_send.s állomány tartalmát NE módosítsa!
- 3. Tervezzen szoftveres várakozó ciklust, amely 1ms ideig fut. Helyezze el a kódot a **Delay1ms** szubrutin törzsében. Ügyeljen arra a szubrutinnal szemben támasztott követelményre, hogy a szubrutin nem ronthat el regiszter értékeket!
- 4. Ellenőrizze az algoritmus futási idejét a szubrutin meghívásától indulva a szubrutinból visszatérésig. Az utasítás végrehajtás órajelét állítsa 16MHz értékre a szimulátorban.
- 5. Ha kell, hangolja a szubrutint, hogy a futási idő (beleértve a szubrutin meghívását és a szubrutinból visszatérést) a lehető legjobban közelítse meg az 1ms értéket.
- 6. Dokumentálja a megoldását (Kódrészlet és StopWatch ablak, melyben látszik a megvalósított késleltetés értéke).

2. N ms szoftver késleltetés

- 1. Írja meg a **DelayNms** szubrutint az előző feladatban megvalósított szubrutin felhasználásával.
- 2. Ellenőrizze az algoritmus idejét a szubrutin meghívásától indulva a szubrutinból visszatérésig. Az utasítás végrehajtás órajelét állítsa 16MHz értékre.
 - (Dash board → Conf → Simulator → Instruction Frequency (F_{CYC}))

 Időmérés: "Window → Debugging → Stopwatch"
- 3. Dokumentálja a megoldását. (Kódrészlet és StopWatch ablak)
- 4. Adja meg, hogy a megvalósítása mekkora eltérést jelent 1sec (N=1000) késleltetés esetén.

3. Pontosan 1 sec késleltetés megvalósítása

- 1. Írja meg a **Delay1sec** szubrutint, amely pontosan 1 másodpercet késleltet.
- 2. Ellenőrizze az algoritmus idejét a szubrutin meghívásától indulva a szubrutinból visszatérésig. Az utasítás végrehajtás órajelét állítsa 16MHz értékre.
 - (Dash board→Conf→Simulator→Instruction Frequency (F_{CYC}))
 Időmérés: "Window→Debugging→Stopwatch"
- 3. Írjon kódot, amely végtelen ciklusban minden szubrutin hívás után ellenkezőjére váltja a LED1 és LED2 kijelzők értékét. Kezdetben a LED1 kijelző világítson (a kimeneti bit értéke 1), a LED2 kijelző legyen sötét (a kimeneti bit értéke 0). A LED kijelzők az A port 8. (LED1) és 9. (LED2) bitjén helyezkednek el.
- 4. Csatlakoztassa a fejlesztőpanelt a számítógép USB portjához.
- 5. Állítsa át a konfigurációt szimulátorról hardver eszközre.

(Dashboard ablak – Properties funkció Connected Hardware Tool: Starter Kits (PKOB)-SN:BUR.....)

- 6. Fordítsa le és töltse be az eszközbe a programot.
- 7. Dokumentálja a megoldását. (Kódrészlet)

4. 7 szegmens kijelző kezelése

A 7 szegmens kijelző hardver megvalósítása a következő ábrán látható:

Figyeljük meg, hogy a kijelzendő információt két 8 bites léptető regiszter tárolja. A méréshez használt fejlesztő panelen két "Mikrobus" csatlakozó található. A feladat elvégzéséhez az "A" jelű csatlakozóhoz kapcsolódik a kijelző modul. A következő táblázatban megadjuk mindkét csatlakozó kapcsolódását a mikrokontroller megfelelő portjaihoz.

Mikrobus csatlakozópontok:

Jelnév	A	В	Irány		
RST#	RA13	RA14	О		
CS#	RC9	RA10	О		
SCK	RB15	RC6	О		
MISO	RB13	RB9	I		
MOSI	RB14	RC2	О		
PWM	RC3	RC4	О		

A léptető regiszterekbe a következő protokollal lehet információt juttatni:

Megjegyzések:

A shiftregiszterek törlés bemenetét az RST# jel vezérli, ezt magas értéken kell tartani.

A PWM (OE) kimenet magas értéke esetén világítanak a kijelölt szegmensek.

A MISO jel segítségével visszaolvasható a shiftregiszterek tartalma. Fontos, hogy bemenetre legyen állítva ez a portbit.

A CS# jel felfutó élére történik a kijelző látható tartalmának átírása.

A léptető regiszter adatlapja a következő időzítéseket tartalmazza. Az ábrán bekeretezve megadjuk a fenti csatlakozón található elnevezéseket is a jelek megfeleltetése érdekében.

6.6 Timing Requirements

over operating free-air temperature range (unless otherwise noted)

				T _A = 25°C		SN54HC595		SN74HC595		UNIT
			Vcc	MIN	MAX	MIN	MAX	MIN	MAX	UNII
					6		4.2		5	
f _{clock}	Clock frequency		4.5 V		31		21		25	MHz
			6 V		36		25		29	
t _w	Pulse duration	SRCLK or RCLK high or low CS#	2V	80		120		100		ns
			45 V	16		24		20		
			6 V	14		20		17		
		SRCLR low RST#	2 V	80		120		100		
			RST# 4.5 V	16		24	-	20		
			6 V	14		20		17		
t _{su}	Set-up time	SER before SRCLK† MOSI SCK	IOSI 2V	100		150		125		ns
			45 V	20		30		25	ľ	
			6 V	17		25		21		
		SRCLK† before RCLK†(1) SCK CS#	SCIV 2V	75		113		94		
			4.5 V	15		23		19	Ì	
			6 V	13		19		16		
		SRCLR low before RCLK↑ RST# CS#	DCT# 2V	50		75		65	J	
			4.5 V	10		15		13	Ĭ	
			6 V	9		13		11		
			2 V	50		75		60		
		SRCLR high (inactive) before \$	SRCLK↑ 4.5 V	10		15		12	ĵ	
		RST#, S	SCK 6V	9		13		11	ij	
	Hold time, SER after SRCLK↑		2 V	0		0		0	- 4	ns
h			4.5 V	0		0		0		
SCK		6 V	0		0		0			

A panel 3.3V feszültséggel működik, ezért ha a 2V feszültségre előírt értékeket betartjuk, biztosan helyesen fog működni.

A protokollt a következő folyamatábra alapján célszerű megvalósítani:

- 1. A folyamatábra alapján készítse el a **Disp send** szubrutint.
- 2. Állítsa át konfigurációt hardver eszközről szimulátorra.

(Dashboard ablak – Properties funkció

- 3. Ellenőrizze a működést a Logic Analyzer ablakban. (Tipp: Az időzítések ellenőrzéséhez állítsa át a megjelenítést órajel ciklusról idő alapúra)
- 4. Ha kell, hangolja a kódot a Setup időzítések teljesítéséhez.
- 5. Dokumentálja az elvégzett feladatot (Kódrészlet, Logic Analyzer ablak)

5. Másodperc számláló készítése

- 1. Az előző feladatokban megvalósított szubrutin felhasználásával készítsen programot, amely a kijelzőn a mérésvezető által megadott számtartományban (legfeljebb 00 és 99 között), a mérésvezető által megadott irányban (felfelé, lefelé, két irányban) másodpercenként ciklikusan számlál.
- 2. Ellenőrizze a számláló algoritmusát szimulátorban. A **Disp_send** és a **Delay1sec** rutinok elejére egyelőre tegyen egy **return** utasítást, hogy ne kelljen azok idejét is kivárni.
- 3. Ha a számlálási ciklusa helyesen működik, távolítsa az előbb elhelyezett **return** utasításokat.
- 4. Állítsa át konfigurációt szimulátorról hardver eszközre.

(Dashboard ablak – Properties funkció

Connected Hardware Tool: Starter Kits (PKOB)-SN:BUR.....)

5. Fordítsa le és töltse be az eszközbe a programot

- (Production Make Program Device
- 6. Mutassa be a mérésvezetőnek a működést
- 7. Dokumentálja a programot a jegyzőkönyvben. (Kódrészlet)

6. Számláló léptetése gomb megnyomására

- 1. Módosítsa az előző feladatot úgy, hogy a számlálója a BTN1 gomb megnyomásának hatására lépjen, és a mérésvezető által megadott tartományon számláljon ciklikusan (legfeljebb 0...99). A BTN1 gomb aktuális állapota az RA11 porton (PORTA,#11) olvasható le. A 0 érték jelenti gomb megnyomott állapotát.
- 2. Először ellenőrizze a programot a szimulátorban. Ehhez állítsa át a konfigurációt hardver eszközről szimulátorra.

(Dashboard ablak – Properties funkció

Connected Hardware Tool: Simulator)

A gomb megnyomását és elengedését a Stimulus funkcióval szimulálja.

(Window – Simulator – Stimulus)

3. Ha a porgram a szimulátorban helyesen működik, állítsa át a konfigurációt szimulátorról hardver eszközre.

(Dashboard ablak – Properties funkció

Connected Hardware Tool: Starter Kits (PKOB)-SN:BUR.....)

4. Fordítsa le és töltse be az eszközbe a programot

(Production – Make Program Device

- 5. Próbálja ki a működést.
- 6. Mutassa be a mérésvezetőnek a működést.
- 7. Dokumentálja a programot a jegyzőkönyvben. (Kódrészlet)
- 8. Zárja be a projektet a "File→Close All Projects" funkcióval.

A feladatok során használt assembly forrás:

```
.global reset; kötelezően exportálandó címke, ettől kerül a reset
              ; vektor helyére a kódunk és nem lesz semmi más a
              ; memóriában
.extern Disp_init ; Máshol megírt szubrutin a hardver inicializálására
.extern Disp conv ; Máshol megírt szubrutin
                ; Be: w0 - 0 ... 99 közötti érték
                 ; Ki: w0 - a 7 seg kijelzőre kiviendő bitminta
.bss
   szam: .space 2
.text
                       ; kötelezo startup kód, ha stack hivatkozás
reset:
                      ; történik ezelott, az reset
   mov #_ SP init,w15
                      ; Stack pointer inicializalas
   mov # SPLIM init,w0;
                      ; stack limit inicializalas
   mov w0, SPLIM
                   ; a kijelzőhoz és a LED-ekhez szükséges
   call Disp init
                       ; portlábak megfelelő állapotának beállitása
main:
;-----
;1. feladat
  1ms késleltetés kipróbálása, ellenőrzése
   call Delay1ms
   bra main
;-----
;2. feladat
  N ms késleltetés kipróbálása
   mov #100, w0
   call DelayNms
   bra main
;3. feladat
; -----
  Pontosan 1sec késleltetés kipróbálása a fejlesztő panelen
 A próba előtt ne felejtse el a konfigurációt
; szimulátorról panelre átállítani
  call Delay1sec
; LED1 (LATA, #8) - LED2 (LATA, #9) felváltva le-fel kapcsol
   bra main
```

```
; -----
;4. feladat
  Disp send elkészítése és kipróbálása
  A jelalak megjelenítése a Logic Analyzer ablakban
  Ne felejtse el a konfigurációt panelről szimulátorra visszaállítani
   mov #0x5AC5, w0
   call Disp send
   bra main
;-----
;5. feladat
  0 ... 99 közötti számláló - szimuláció után kipróbálás a panelen
  A kijelzendő értékhez használja a szam változót
  mov szam,w0
   call Disp_conv ; A 0 és 99 közti számokat
                  ; kijelzőre kiirható formátumra hozza
   call Disp send ; Elküldi a kijelzőre a w0-ban található értéket
   call Delay1ms ; vagy call Delay1sec
; Számláló értékének megváltoztatása
   bra main
;6. feladat
  N ... M közötti számláló
  A számláló a BTN1 gomb megnyomásának hatására lép
   mov szam,w0
   call Disp conv ; A 0 és 99 közti számokat
                 ; kijelzőre kiirható formátumra hozza
   call Disp send ; Elküldi a kijelzőre a w0-ban található értéket
; Gomb figyelése, számláló értékének megváltoztatása
   bra main
```

```
; A mérésen készitendő szubrutinok helye:
;-----
;1. feladat
; 1 ms késleltetés
; Be: -
; Ki: -
; Ront: -
Delay1ms:
; ....
; ....
  return
;2. feladat
;-----
; N msec késleltetés
; Be: w0 - N
; Ki: -
; Ront: w0
DelayNms:
; ....
; ....
  return
;-----
;3. feladat
; Pontosan 1 sec késleltetés
; Be: -
; Ki: -
; Ront: -
Delay1sec:
; ....
; ....
  return
;-----
;4. feladat
; 16 bites érték kiküldése a kijelzőre
; Be: w0 - a kiküldendő érték
; Ki: -
; Ront: w0
Disp send:
; ....
; ....
  return
; -----
```

1. Ellenőrző kérdések

Az alábbi ellenőrző kérdések megválaszolásához nézze át az előadáson elhangzott anyagokat, tanulmányozza a mérési útmutatót és a méréshez tartozó kiegészítő tananyagot.

- Hogyan lehet szoftveres késleltetést megvalósítani?
- A szimulátor melyik funkciójával lehet egy szoftveres késleltetés idejét meghatározni?
- Rajzolja fel a következő utasítás sorozat hatására az A port 9. bitjén előálló kimeneti jelalakot, ha a kimenet értéke kezdetben 0.

```
NOP
BSET LATA,#9
NOP
BCLR LATA,#9
NOP
```

Hány órajelciklust késleltet az alábbi kódrészlet?

```
NOP
MOV W0,W0
NOP
```

- Mire szolgál a kijelző MOSI kivezetése?
- Mire szolgál a kijelző MISO kivezetése?
- Mire szolgál a kijelző SCK kivezetése?
- Mire szolgál a kijelző CS# kivezetése?
- A kijelzőre a OxFEDC adatot írtuk. Mi látható rajta?