Aufgabe 1 (4 Punkte).

4. Es existierten eindeutig bestimmte monoton wachsende càdlàg Funktionen $b, c \colon \mathbb{R}_+ \to \mathbb{R}$ mit $b_0 = c_0 = 0$, so dass a = b - c und $\operatorname{Var}(a) = b + c$. Diese sind gegeben durch $b = (a + \operatorname{Var}(a))/2$ und c = b - a.

Das ist Proposition 3.3 in [JS13].

Aufgabe 2 (4 Punkte). Zeigen Sie $\mathcal{M}_{loc} \cap \mathcal{V} \subset \mathcal{A}_{loc}$

Hinweis: Betrachten Sie für $A \in \mathcal{M} \cap \mathcal{V}$ die Stoppzeitenfolge $T_n := \inf\{t \in \mathbb{R}_+ \mid \operatorname{Var}(A) > n\}$

Das ist Lemma 3.11 in [JS13]. Es reicht zu zeigen, dass für jedes $A \in \mathcal{M} \cap \mathcal{V}$ gilt $A \in \mathcal{A}_{loc}$. Hierfür fehlt die Begründung. Entsprechend Hinweis wählen wir $T_n := \inf\{t \in \mathbb{R}_+ \mid \operatorname{Var}(A)_t > n\}$. Damit gilt $T_n \uparrow \infty$. Für jedes $t \in \mathbb{R}_+$ gilt nach Aufgabe 1.1, dass $|A_{t^-}| \leq \operatorname{Var}(A)_{t^-}$. Weiterhin gilt nach Aufgabe 1.2 und 1.3, dass $\Delta[\operatorname{Var}(A)]_t = |\Delta A_t| \leq |A_{t^-}| + |A_t|$. Das heißt, $\operatorname{Var}(A)_{T_n} \leq 2n + |A_{T_n}|$. Hier fehlt ebenfalls die Begründung. Es gilt $A \in \mathcal{M}$. Nach dem Doobschen Grenzwertsatz gilt $E[|A_{T_n}|] < \infty$. Mit der gefundenen Abschätzung gilt auch $E[|\operatorname{Var}(A)_{T_n}|] < \infty$, also $\operatorname{Var}(A) \in \mathcal{A}_{loc}^+$. Das heißt $A \in \mathcal{A}_{loc}$.

Aufgabe 3 (4 Punkte). Zeigen Sie: Jedes $A \in \mathscr{A}^+$ ist ein Submartingal der Klasse (D).

Sei $A \in \mathscr{A}^+$. Da A wachsend ist, gilt $A_s = E[A_s|\mathscr{F}_s] \leq A_t$. Aufgrund der Monotonie der bedingten Erwartung ist A ein Submartingal. Da A gleichgradig integrierbar ist, ist A nach Satz 65 der Klasse (D).

Aufgabe 4 (4 Punkte). Zeigen Sie die Eindeutigkeit in Satz 104.

Wir sollen zeigen, dass für $M,N\in \mathscr{H}^2_{\mathrm{loc}}$ der vorhersehbare Prozess $\langle M,N\rangle\in \mathscr{V}$, so dass $MN-\langle M,N\rangle\in \mathscr{M}_{\mathrm{loc}}$ eindeutig ist. Sei hierfür $\langle M,N\rangle'\in \mathscr{V}$ ein anderer vorhersehbarer Prozess, so dass $MN-\langle M,N\rangle\in \mathscr{M}_{\mathrm{loc}}$. Dann ist $\langle M,N\rangle-\langle M,N\rangle'=MN-\langle M,N\rangle-(MN-\langle M,N\rangle')\in \mathscr{V}$

ein vorhersehbares lokales Martingal. Nach Satz 98 gilt $\langle M,N\rangle-\langle M,N\rangle'=0$, zumindest bis auf eine verschwindende Menge.

References

[JS13] JACOD, Jean ; Shiryaev, Albert: Limit theorems for stochastic processes. Bd. 288. Springer Science & Business Media, 2013