## RELATÓRIO FINAL: MEDIDOR DE TENSÃO E CORRENTE POR MICROCONTROLADOR ESP32

Gabriel Silva Meneghin – <u>gabrielmeneghin@gmail.com</u> THIAGO HENRIQUE SOARES SANTOS - thiago.s.soares99@gmail.com VICTOR DANIEL OLIVEIRA GAETE - vdgaete@gmail.com

Resumo: A execução de medidas precisas de vários parâmetros é essencial para o controle de processos nas equipes de competição. No protótipo de carro à combustão da equipe ECOFET-NEAC devem-se manter estáveis os níveis de tensão e corrente de uma bateria para o acionamento correto de um motor de partida. Portanto, o presente trabalho pretende promover uma solução simples para o monitoramento de tais níveis. Por meio de testes de bancada foi possível verificar a validação dos circuitos propostos. Os resultados obtidos provaram ser viável a construção dos módulos.

Palavras-chave: calibração, incerteza, medição, sensores.

## 1. INTRODUÇÃO

Nas equipes de competição, é imprescindível a existência de medidas precisas de vários parâmetros para controle de processos. Com objetivo de otimizar os protótipos projetados, é necessário que as medições tenham uma taxa de erro mínima, pois pequenas alterações nas medidas devem ser levadas em conta para o melhor desempenho. Visto que são muitos parâmetros medidos, a medição torna-se um trabalho oneroso, já que é necessário o monitoramento de diversos equipamentos. Dessa forma, a construção de um módulo que consiga medir diferentes variáveis de forma simultânea e rápida favorece bastante o desenvolvimento e melhoria dos projetos das equipes.

Portanto, duas variáveis importantes de serem medidas no protótipo de carro à combustão da equipe ECOFET-NEAC são a corrente e a tensão da bateria. Tal bateria alimenta o motor de partida que aciona o motor principal por consequência. Logo, é fundamental que os níveis de tensão da bateria e a corrente drenada pelo motor sejam estáveis para a partida, necessitando sensoriamento constante, o qual será provido por dois sensores: um de corrente e outro de tensão, e supervisionado por um microcontrolador que servirá de *hardware* de comunicação e interface entre os sensores e o *dashboard* de visualização do usuário.

O funcionamento do sensor de corrente é dado por meio da geração de uma tensão proporcional à corrente que passa através dele. Ao aplicar-se esta tensão gerada a um amplificador e mais circuitos adicionais que sejam necessários, é possível medir a intensidade de corrente que atravessa um circuito. Os sensores de corrente são usados nas aplicações onde existe uma ênfase na precisão e taxa de repetição sob todas as condições e menos na capacidade de trabalhar com altas correntes [1][2].

Já um sensor de tensão pode ser criado apenas ajustando os níveis de tensão, através de um divisor de tensão em um *buffer* com um amplificador operacional, para o

sistema que servirá para supervisionar a tensão de circuito. Este trabalho visa prover uma solução simples e barata para o monitoramento dos níveis de tensão e corrente de uma bateria.

## 2. MOTIVAÇÃO

A motivação para esse projeto vem da equipe de competição ECOFET e sua necessidade de medir parâmetros da bateria utilizada em seu protótipo. Níveis de tensão e de corrente da bateria, principalmente durante o uso do motor de partida, são necessidades da equipe para o desenvolvimento de circuitos de acionamento e proteção da parte elétrica do carro

Além das variáveis elétricas, a leitura constante da temperatura do motor também é foco de estudo já que influencia diretamente no rendimento do motor. A partir da medição desta grandeza física, motivaria a expansão do projeto dentro da equipe para observação e controle de outras grandezas como, por exemplo, a medição de ângulo de giro do volante que entraria no desenvolvimento de estratégias de melhor rendimento do carro de acordo com a pista.

## 3. APLICAÇÕES

Devido a natureza diversa das aplicações onde os sensores produzidos podem atuar, uma lista geral de ampla abrangência foi descrita abaixo:

## • Sensor de corrente

- Proteção de circuitos elétricos/eletrônicos como placas de acionamento de motores onde grandes correntes são envolvidas no processo;
- Medição direta de correntes AC em circuitos de rede;
- Detecção de sobrecorrentes em circuitos de acionamento industrial;
- Medição de correntes CC independente do sentido:
- Proteção de circuitos elétricos/eletrônicos como placas de acionamento de motores onde grandes correntes são envolvidas no processo;
- o Sensor de tensão
- Medição de tensão AC indireta, após processo de retificação;

- Medição de tensões CC em reguladores de tensão de diversos portes;
- Detecção de sobretensões em circuitos de acionamento industrial;

## 4. OBJETIVO

Construir, calibrar e caracterizar sensores de corrente e de tensão aplicados à medição dos níveis elétricos de uma bateria de corrente contínua utilizada para alimentação do circuito elétrico do carro protótipo do ECOFET.

Desenvolver um *firmware* capaz de ler em tempo real os sinais elétricos condicionados nas entradas A/D e transmitir via *wi-fi* para um *broker* MQTT as informações coletadas.

## 5. METODOLOGIA

## 5.1. Sensor de Corrente

A montagem foi feita levando em conta o circuito integrado (CI) denominado ACS712ELC-5A. Tal circuito é um sensor de corrente com base em Efeito Hall, em que o sensor pega a entrada em corrente e a converte em uma saída em tensão, de forma linear, como visto na figura 1 abaixo.



Figura 1 - Relação entre saída em tensão pela entrada em corrente. [3]

Considerando o sensor descrito anteriormente, foi prototipado o circuito eletrônico para medição de corrente, de forma que sua faixa de tensão respeitasse os limites definidos pela entrada analógica/digital do microcontrolador (ESP32).

Na figura 2, em que há o diagrama eletrônico do sensor de tensão, é perceptível a entrada de corrente, a saída em tensão e os terminais de alimentação e de referência para o funcionamento apropriado do sensor construído. É possível observar também a adição de um filtro passa-baixa na saída do circuito para a mitigação de eventuais ruídos e surtos de corrente que poderiam prejudicar a medição ou danificar o controlador. Uma observação deve ser feita no esquemático

abaixo, em que uma representação de amplificador operacional foi utilizada para exprimir o sensor de corrente ASC712ELC-5A.



Figura 2 - Desenho do circuito eletrônico

As especificações do sensor escolhido são:

- Trabalha com o CI ACS712 da Allegro;
- Medição: -5A a 5A;
- Tensão de Alimentação: 5V;
- Sensibilidade da saída: 150mV/A;
- Pode ser utilizado com cargas AC ou DC;
- Offset: 2,3V.

Os componentes utilizados são listados abaixo:

- 1 resistor de  $2k\Omega$ ;
- Módulo CI ACS712-5A da Allegro;
- 1 capacitor de 1nF;
- 1 diodo Zener de 5V;

## 5.2. Sensor de Tensão

A medição de tensão é feita tendo em consideração um divisor resistivo, que foi projetado para converter a tensão de uma bateria CC com tensão máxima de 60V em um nível de tensão aceitável para o conversor analógico/digital (A/D) do ESP32. Para evitar o efeito de carga, que pode ser gerado por um circuito puramente resistivo, foi utilizado um amplificador operacional (AmpOp) na configuração buffer para o isolamento entre circuito resistivo e a entrada A/D do microcontrolador pela adição de uma impedância de entrada extremamente alta.

Ademais, pode-se verificar a adição de um filtro passa-baixa na saída do circuito para a mitigação de eventuais ruídos e surtos de corrente que poderiam prejudicar a medição ou danificar o controlador.

O AmpOp utilizado foi o TL084CN, figura 3, da Texas Instruments, e suas características podem ser visualizadas abaixo, na figura 4.



Figura 3 - Pinout do TL084CN.

## Features for the TL084

- High slew rate: 20 V/µs (TL08xH, typ)
- · Low offset voltage: 1 mV (TL08xH, typ)
- Low offset voltage drift: 2 μV/°C
- Low power consumption: 940 μA/ch (TL08xH, typ)
- · Wide common-mode and differential voltage ranges
- Common-mode input voltage range includes V<sub>CC+</sub>
- · Low input bias and offset currents
- Low noise: V<sub>n</sub> = 18 nV/√Hz (typ) at f = 1 kHz
- · Output short-circuit protection
- · Low total harmonic distortion: 0.003% (typ)
- Wide supply voltage: ±2.25 V to ±20 V, 4.5 V to 40 V

Figura 4 - Características construtivas do TL084CN. [4]

O diagrama eletrônico do sensor de tensão pode ser identificado abaixo:



Figura 5 - Diagrama esquemático do sensor de tensão.

A equação que rege a divisão de tensão pode ser vista abaixo:

$$V_{A/D} = V_{bat} \cdot \frac{R_2}{R_1 + R_2} \; (1)$$

Em que: 
$$\frac{R_2}{R_1 + R_2} = 0.055$$

Os componentes utilizados são listados abaixo:

- 1 resistor de  $100k\Omega$ ;
- 1 resistor de  $10k\Omega$ ;
- 1 resistor de 5,6kΩ;
- AmpOp (TL084CN);
- 1 capacitor de 1nF;
- 1 diodo Zener de 5V.

# 5.3. Microcontrolador ESP32 e firmware

Para o display das informações em um *dashboard*, será utilizado o microcontrolador (MCU) ESP32 para conversão dos dados analógicos para digitais através das suas entradas A/D. Já a transmissão destas informações será feita por meio do seu módulo Wi-Fi usando o protocolo de comunicação MQTT. As funcionalidades de cada pino do MCU podem ser resumidas na figura 6.



Figura 6 - Pinout do ESP32. [5]

Como dashoboard foi criado um servidor em [6] que é uma plataforma aberta de Cloud MQTT onde, com o uso do aplicativo de celular "EasyMQTT" foi criado uma conexão entre a nuvem e o ESP32 que usa o esquema Publish/Subscrive, como exemplificado pela Figura 14, de forma simples que permite a comunicação constante entre o MCU e o usuário usando um smartphone.



Figura 14 - Exemplo de uma comunicação MQTT.

Foram escolhidos os pinos ADC1\_6, como entrada de dados do sensor de tensão, ADC2\_0 como entrada dos dados do sensor de corrente. O seu monitoramento se dá de maneira constante durante um *loop* infinito (while(1)) criado no código que fornece informações a todo momento para que sempre que o usuário exija a leitura do sensor, ele consiga obtê-la.

O *firmware* usa conceitos de sistema operacional (OS) que permite um controle via *kernel* muito mais preciso de tempo de execução e tornando o acesso à memória muito mais robusto, com mudanças de *loops* de execução dinâmicas usando filas, ou *Queues*, interrupções e *tasks*.

A lógica de funcionamento foi pensada de forma que o usuário sempre obtenha uma leitura do A/D quando for solicitado por ele. Com os sensores sendo sempre monitorados pelo módulo ADC no *loop* principal, uma atualização na leitura no *dashboard* sempre pode ser requisitada via interrupção externa gerada por um *push button*. Caso haja algum problema de *hardware* na geração desta interrupção externa, um módulo de TIMER foi configurado com um tempo pré-determinado que também gera uma atualização do *dashboard*.

Destrinchando um pouco mais a fundo o *firmware* temos o *loop* principal da main atualizando as leituras de A/D, uma fila foi criada para atender a *task* da interrupção externa do módulo de GPIO e outra para a *task* do TIMER, uma vez que, o acesso às *tasks* se dão quando há um sinal de interrupção gerado pelos seus respectivos módulos.

## 6. RESULTADOS

Todos os resultados foram obtidos utilizando o multímetro digital da Minipa, modelo ET-2082C, visto na figura 7 e as medidas realizadas foram consideradas como referência de calibração.



Figura 7 - Multímetro digital da Minipa, modelo ET-2082C.

Os valores dos componentes passivos dos sensores foram medidos utilizando o ET-2082C e seus valores encontram-se na tabela 1.

Tabela 1 - Medição dos componentes.

| Componentes      | Valor de<br>referência | Valor medido |
|------------------|------------------------|--------------|
| resistor de 100k | 100kΩ                  | 98,3kΩ       |
| resistor de 5,6k | 5,6kΩ                  | 5,3kΩ        |
| resitor de 2,2k  | 2,2kΩ                  | 2,15kΩ       |
| resistor de 10k  | 10kΩ                   | 9,9kΩ        |

A curva estática do conversor A/D foi traçada e pode ser vista na figura 8, e foi comparada com as mesmas medições do multímetro, que foi utilizado como referência de calibração para os experimentos.

Nota-se que as medições retiradas do conversor A/D (calibrado) de 13 bits de resolução aproximam-se muito da curva utilizada como calibração recolhidas do multímetro, com exceção de pontos abaixo de 100mV e acima de 3,15V, onde existe uma saturação dos valores.



Figura 8 - Curva estática da conversão A/D.

Tabela 2 - Valores retirados para plotar a curva estática.

| Tensão de<br>referência | Tensão A/D | Valor binário<br>referente à tensão<br>em decimal | Valor do<br>multímetro |
|-------------------------|------------|---------------------------------------------------|------------------------|
| 0                       | 142mV      | 0                                                 | 0.5mV                  |
| 100mV                   | 142mV      | 0                                                 | 100.7mV                |
| 150mV                   | 165mV      | 25                                                | 151.2mV                |
| 200mV                   | 220mV      | 95                                                | 201.2mV                |
| 250mV                   | 264mV      | 155                                               | 251.6mV                |
| 400mV                   | 410mV      | 332                                               | 402.3mV                |
| 800mV                   | 810mV      | 819                                               | 804mV                  |
| 1V                      | 1.017V     | 1072                                              | 1.005V                 |
| 1.25V                   | 1.270V     | 1392                                              | 1.256V                 |
| 1.5V                    | 1.53V      | 1708                                              | 1.508V                 |
| 2V                      | 2.026V     | 2309                                              | 2.010V                 |
| 2.5V                    | 2.523V     | 2932                                              | 2.512V                 |
| 2.9V                    | 2.924V     | 3610                                              | 2.914V                 |
| 3V                      | 3.024V     | 3818                                              | 3.015V                 |
| 3.05V                   | 3.075V     | 3922                                              | 3.065V                 |
| 3.1V                    | 3.122V     | 4035                                              | 3.115V                 |
| 3.15V                   | 3.145V     | 4095                                              | 3.166V                 |
| 3.2V                    | 3.145V     | 4095                                              | 3.216V                 |

Os resultados obtidos do sensor de corrente podem ser vistos na tabela 3 e ilustrados nas figuras abaixo, em que uma fonte de corrente contínua foi utilizada para variar a corrente que percorre o sensor de 0A a 5A com o passo de 1A



Figura 9 - Tensão de saída para corrente de 0A.



Figura 10 - Tensão de saída para corrente de 1A.



Figura 11 - Tensão de saída para corrente de 2A.

Tabela 3 - Resultados obtidos do sensor de corrente.

| Tensão de<br>saída (V) |
|------------------------|
| 2,3 ± 0,01             |
| 2,45 ± 0,01            |
| 2,6 ± 0,01             |
| 2,75 ± 0,01            |
| 2,9 ± 0,01             |
| 3,05 ± 0,01            |
|                        |

O resultado obtido para o sensor de tensão foi o esperado a partir da equação (1) e pode ser ilustrada na figura 12 abaixo, e as medições vistas na tabela 4.



Figura 12 - Tensão de saída do sensor de tensão para uma entrada de  $10\mathrm{V}$ .

Tabela 4 - Medições do sensor de tensão.

| Tabela + - Medições do selisor de telisão. |                        |  |
|--------------------------------------------|------------------------|--|
| Tensão de<br>entrada (V)                   | Tensão de saída<br>(V) |  |
| 0 ± 1%                                     | 0 ± 1%                 |  |
| 5 ± 1%                                     | 0,275 ± 1%             |  |
| 10 ± 1%                                    | 0,550 ± 1%             |  |
| 15 ± 1%                                    | 0,825 ± 1%             |  |
| 20 ± 1%                                    | 1,100 ± 1%             |  |
| 25 ± 1%                                    | 1,375 ± 1%             |  |
| 30 ± 1%                                    | 1,650 ± 1%             |  |

A montagem completa está exposta na figura 13.



Figura 13 - Montagem completa.

## 7. CONCLUSÃO

A construção do sensor de corrente e de tensão foram bem sucedidas, uma vez que o resultado foi conforme o esperado pelos níveis de tensão calculados pela equação (1), e dentro do limite linear de conversão analógico/digital do ESP32, definido pela figura 8. Além disso, a calibração feita pelo multímetro apresentou resultados dentro da faixa de precisão aceitável.

O desenvolvimento do *firmware* foi bem-sucedido, já que foi possível a comunicação com o broker MQTT criado e houve o acesso pelo ESP32 para a atualização das informações obtidas pelo ADC. Também foi com sucesso o acesso às tasks criadas devido a cada uma das interrupções geradas, dando controle ao usuário do acesso às leituras dos sensores desenvolvidos.

## REFERÊNCIAS

- [1] "Sensores de corrente Vishay Dale". Embarcados Sua fonte de informações sobre Sistemas Embarcados. https://embarcados.com.br/sensores-de-corrente-vishay-dale/ (consult. 2022-11-25).
- [2] "Current Sensing | Analog Devices". Mixed-signal and digital signal processing ICs | Analog Devices. https://www.analog.com/en/applications/technology/precision-sensor-interface/current-sensing.html (consult. 2022-11-25).
- [3] Allegro MicroSystems., "Fully Integrated, Hall-Effect-Based Linear Current Sensor IC with 2.1 kVRMS Isolation and a Low-Resistance Current Conductor," Datasheet, Allegro MicroSystems, 2022.
- [4] Texas Instruments., "L08xx FET-Input Operational Amplifiers (Rev. M)," Datasheet, Texas Instruments, 2021.
- [5] "API Reference ESP32 — ESP-IDF Programming Guide latest documentation". Technical Documents | Espressif Systems. https://docs.espressif.com/projects/espidf/en/latest/esp32/api-reference/index.html (consult. 2022-11-25).
- [6] https://myqtthub.com/