XVI. Nemzetközi Magyar Matematika Verseny

Szeged, 2007. március 14-18.

11. osztály

1. feladat: Egy háromszög a, b és c hosszúságú oldalaira teljesül az

$$\frac{1}{a+b} + \frac{1}{a+c} = \frac{3}{a+b+c}$$

összefüggés. Mekkor az a hosszúságú oldallal szemközti szög?

Bogdán Zoltán (Cegléd)

1. feladat I. megoldása: A nevezőkkel szorozva, majd rendezve egyenletünket az

$$a^2 = b^2 + c^2 - bc$$

összefüggést kapjuk. A koszinusztételből $a^2 = b^2 + c^2 - 2bc \cos \alpha$, ahol α az a hosszúságú oldallal szemközti szög. A két összefüggés összevetéséből $\cos \alpha = 1/2$, azaz $\alpha = 60^\circ$.

- **2. feladat:** Egy ABC háromszög köréírt köréhez A-ban húzott érintő egyenes legyen t. Legyen M a BC oldalegyenes és t metszéspontja. Határozzuk meg az $\frac{MB}{MC}$ arányt k függvényében, ha $k = \frac{AB}{AC}$. Sípos Elvira (Zenta)
- **2. feladat I. megoldása:** $BCA \angle = BAM \angle$ hiszen mindkét szög a háromszögünk köréírt körében az AB ívhez tartozó kerületi szög (az egyik érintő szárú).

Ebből következik, hogy az AMB háromszög hasonló a CMA háromszöghöz. Így

$$\frac{CM}{MA} = \frac{AM}{MB}$$

$$\frac{MA}{AC} = \frac{MB}{BA}$$

A második egyenlet négyzetét az első egyenlettel szorozva kapjuk:

$$\left(\frac{MA}{AC}\right)^2 \frac{CM}{MA} = \left(\frac{MB}{BA}\right)^2 \frac{AM}{MB}$$

$$\frac{MA \cdot CM}{AC^2} = \frac{MB \cdot AM}{BA^2}.$$

Rendezés után adódik, hogy $\frac{MB}{MC} = k^2$.

3. feladat: Bizonyítsuk be, hogy bármely n+2 darab egész szám közül kiválasztható kettő, amelyek négyzetének különbsége osztható 2n+1-gyel.

Bencze Mihály (Brassó)

- 3. feladat I. megoldása: Az a(2n+1), $a(2n+1)\pm 1$, $a(2n+1)\pm 2$, $a(2n+1)\pm 3$, ..., $a(2n+1)\pm n$ képletek az egész számok egy-egy halmazát adják, ha a az egész számokon fut keresztül és \pm a két lehetséges előjel bármelyikének választását takarja. A n+1 képlet olyan, hogy minden egész számot pontosan egy képlet ír le (alkalmas a egész számmal és alkalmas előjellel). A skatulya-elvből n+2 egész szám esetén lesz kettő, amelyeket ugyanaz a képlet ír le. Ekkor azonban a két szám négyzete ugyanazt a maradékot adja 2n+1-gyel osztva. Másképpen négyzeteik különbsége osztható lesz 2n+1-gyel.
 - 4. feladat: Hány megoldása van az

$$x^2 + xy + y^2 = 27$$

egyenletnek az egész számok között? Hány megoldás van a racionális számok között?

Kovács Béla (Szatmárnémeti)

4. feladat I. megoldása: Az egyenletet négyszerezve és rendezve a következő (az eredetivel ekvivalens formához jutunk):

$$(2x+y)^2 + 3y^2 = 108.$$

Ha az egész számok körében dolgozunk, akkor az $N_1+3N_2=108$ formát használhatjuk, ahol N_1 és N_2 két négyzetszám. N_2 a 0,1,4,9,16,25,36 közül kerülhet ki. A lehetőségek végigpróbálása az $N_1=81$ és $N_2=9$, illetve $N_1=0$ és $N_2=36$ megoldásokhoz vezet. Az első lehetőségből a $2x+y=\pm 9,\ y=\pm 3$ (négy darab) egyenletrendszerhez jutunk, a második lehetőségből a $2x+y=0,\ y=\pm 6$ (két darab) egyenletrendszerhez jutunk. A lineáris egyenletrendszerek megoldása a következő hat egész gyökhöz vezet (x,y):(3,3),(-6,3),(6,-3),(-3,-3),(-3,6),(3,-6).

Ha a racionális számok körében dolgozunk, akkor végtelen sok gyök lesz. Ezt a következőképpen indokolhatjuk. Az (x,y) gyököket a koordináta-rendszerben ábrázoljuk. Egy racionális gyöknek megfelelő (r,r') pont a (3,3) ponttal összekötve egy racionális (m) meredekségű egyenest határoz meg. Ezen egyenes pontjainak koordinátáit az $x=3+t,\ y=3+t\cdot m$ formulákból kapjuk, ha t végigfut a valós számok halmazán. Keressük meg ezen egyenes és az $x^2+xy+y^2=27$ egyenlettel leírt megoldáshalmaz közös pontjait. Helyettesítés után a $(3+t)^2+(3+t)(3+t\cdot m)+(3+t\cdot m)^2=27$ egyenletet kapjuk. Rendezés után

$$(9m+9)t + (m^2 + m + 1)t^2 = 0$$

egyenletet kapjuk. Ennek egyik megoldása t=0, ami az egyenesünk (3,3) pontjának felel meg. Ami természetesen egyenesünk és a megoldáshalmaz általunk választott metszéspontja. A másik megoldás $t=-\frac{9m+9}{m^2+m+1}$. Ez az $(3-\frac{9m+9}{m^2+m+1},3-\frac{9m^2+9m}{m^2+m+1})$ pontnak felel meg. Minden m racionális számra kapunk egy gyököt: $x=3-\frac{9m+9}{m^2+m+1}=\frac{3m^2-6m-6}{m^2+m+1}$ és $y=3-\frac{9m^2+9m}{m^2+m+1}=\frac{-6m^2-6m+3}{m^2+m+1}$.

5. feladat: Egy háromszög súlyvonalának egyenesét a vele azonos csúcsból (A-ból) induló szögfelező egyenesére tükrözzük. Bizonyítsuk be, hogy a tükörkép az A-val szemközti oldalt az A-ban összefutó két oldal négyzetének arányában osztja.

Dr. Kántor Sándor (Debrecen)

5. feladat I. megoldása: Legyen a szóbanforgó háromszög ABC, ahol a jelöléseket úgy választottuk, hogy $ACB \angle \le ABC \angle$ teljesüljön. Az A csúcsból induló súlyvonal AF, a szögfelező AE, a tükörkép és BC metszéspontja T.

Az AB-vel F-en át húzott párhuzamos AC-t G-ben metszi, az AC-vel T-n át húzott párhuzamos AB-t H-ban metszi.

Nyilvánvaló, hogy $CFG\triangle \sim CBA\triangle$ és $TBH\triangle \sim CBA\triangle$.

Könnyű belátni azt is, hogy $AGF \triangle \sim AHT \triangle$, mert az A-nál levő szögeik egyenlők a szögfelezés és a tükrözés miatt; továbbá $AGF \angle = AHT \angle$ a párhuzamosak miatt. Így $\frac{AG}{GF} = \frac{AH}{HT}$, amit az ABC háromszög oldalainak szokásos a,b,c jelölésével és a TB = x jelöléssel

$$\frac{\frac{b}{2}}{\frac{c}{2}} = \frac{c - \frac{cx}{a}}{\frac{xb}{a}}.$$

Ebből egyszerű számolással $\frac{a-x}{x}=\frac{b^2}{c^2}$ adódik, amit bizonyítani kellett.

6. feladat: Oldjuk meg a következő egyenletet a valós számok halmazán:

$$8x^2 = 2 + \frac{1}{\sqrt{1 - x^2}}.$$

Árokszállási Tibor (Paks)

6. feladat I. megoldása: A jobb oldal csak |x| < 1 esetén van értelmezve. A $x = \cos \alpha$ helyettesítéssel élünk. Egyenletünk új alakja:

$$8\cos^2\alpha = 2 + \frac{1}{|\sin\alpha|}.$$

Ha $\sin \alpha > 0$, akkor egyenletünkben elhagyható az abszolútérték jele és rendezés után a következő alakhoz jutunk:

$$3\sin\alpha - 4\sin^3\alpha = \frac{1}{2}.$$

A bal oldali kifejezés sin 3α , amiből 3α értéke $\frac{\pi}{6}+k\cdot 2\pi$ vagy $\frac{5\pi}{6}+k\cdot 2\pi$ valamely k egész számra. Ebből $x=\cos\alpha$ értékei $\cos\frac{\pi}{18},\,\cos\frac{5\pi}{18},\,\cos\frac{13\pi}{18},\,\cos\frac{17\pi}{18}$ közül kerülnek ki. Ha sin $\alpha<0$, akkor egyenletünk teljesen hasonlóan kezelhető, de új megoldásokat nem kapunk.