2022-2023

Licence 1: MI-MP

CC1: 13 mars 2023: 10h-11h (11h20 pour les tiers temps) On attachera le plus grand soin à la présentation et aux calculs. Aucun document ni appareil numérique autorisé.

Exercice 1. [4 points]. Résoudre le système suivant (et donner son rang) :

$$\begin{cases} x - y + 2z + t &= 0 \\ 2x - y + z - t &= 0 \\ -x + y + z - t &= 0 \\ 2x - y + 4z - t &= 0 \end{cases}$$

Exercice 2. [4 points] Soit la matrice

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

- 1) [1 point]. Calculer le rang de A.
- 2) [1 point]. Que vaut A^2 ?
- 3) [2 points]. Pour tout $k \in \mathbb{N}^*$, exprimer A^k en fonction de A et de k (justifier l'expression obtenue).

Exercice 3. [5 points] Soit $A, B \in M_n(\mathbb{R})$ telles que AB-BA=A. On note Tr l'opérateur trace.

- 1) [2 point]. Que vaut Tr(A)? (justifier).
- 2) [2 points] Montrer que pour tout entier $k \geq 1$, on a $Tr(A^k) = 0$.
- 3) [1 point]. On suppose maintenant que $AB BA = A^2$. Que vaut $Tr(A^k) = 0$ pour $k \in \mathbb{N}^* \setminus \{1\}$?

Exercice 4. [5 points] Soit I_3 la matrice identité de $M_3(\mathbb{R})$ et soit

$$A = \left(\begin{array}{ccc} 2 & -1 & 2\\ 5 & -3 & 3\\ -1 & 0 & -2 \end{array}\right).$$

- 1) [1 point]. Montrer que $(A + I_3)^3 = A^3 + 3A^2 + 3A + I_3$. 2) [2 points]. Que vaut $(A + I_3)^3$?
- 2) [2 points]. En déduire que A est inversible et exprimer A^{-1} en fonction de I_3 , A, et A^2 .

Exercice 5 (4 points). Soit $m \in \mathbb{R}$ et le système linéaire

$$\begin{cases} x + my + mz &= 1\\ mx + y + mz &= 1\\ mx + my + z &= m^2 \end{cases}$$

- 1) [2 points] Résoudre le système pour m = 1 et donner son rang.
- 2) [2 points] On suppose $m \neq 1$. Lorsque c'est possible, résoudre le système et indiquer son rang.