CS 446: Machine Learning Homework 9

Due on Tuesday, April 10, 2018, 11:59 a.m. Central Time

1.	Consumption μ_k , substalso	points] Gaussian Mixture Models & EM sider a Gaussian mixture model with K components $(k \in \{1,, K\})$, each having mean variance σ_k^2 , and mixture weight π_k . All these are parameters to be learned, and we ume them in the set θ . Further, we are given a dataset $X = \{x_i\}$, where $x_i \in \mathbb{R}$. We use $Z = \{z_i\}$ to denote the latent variables, such that $z_i = k$ implies that x_i is generated the k^{th} Gaussian.
	(a)	What is the log-likelihood of the data $\log p(X;\theta)$ according to the Gaussian Mixture Model? (use μ_k , σ_k , π_k , K , K , K , and K). Don't use any abbreviations.
		Your answer:
	(b)	For learning θ using the EM algorithm, we need the conditional distribution of the latent variables Z given the current estimate of the parameters $\theta^{(t)}$ (we will use the superscript (t) for parameter estimates at step t). What is the posterior probability $p(z_i = k x_i; \theta^{(t)})$. To simplify, wherever possible, use $\mathcal{N}(x_i \mu_k, \sigma_k)$ to denote a Gaussian distribution over $x_i \in \mathbb{R}$ having mean μ_k and variance σ_k^2 .
		Your answer:
	(c)	Find $\mathbb{E}_{z_i x_i;\theta^{(t)}}[\log p(x_i,z_i;\theta)]$. Denote $p(z_i=k x_i;\theta^{(t)})$ as z_{ik} , and use all previous notation simplifications.
		Your answer:
	(d)	$\theta^{(t+1)}$ is obtained as the maximizer of $\sum_{i=1}^{N} \mathbb{E}_{z_i x_i;\theta^{(t)}}[\log p(x_i,z_i;\theta)]$. Find $\mu_k^{(t+1)}$, $\pi_k^{(t+1)}$ and $\sigma_k^{(t+1)}$, by using your answer to the previous question.
		Your answer:

(e)	How are kMeans and Gaussian Mixture Model related? (There are three conditions)	
	Your answer:	