Agrégation interne

Calcul différentiel

1. Normes

Exercice 1. Soit a, b > 0. On pose, pour tout $(x, y) \in \mathbb{R}^2$, $N(x, y) = \sqrt{ax^2 + by^2}$.

- (1) Prouver que N est une norme.
- (2) Déterminer le plus petit nombre p > 0 tel que $N \le ||\cdot||_2$ et le plus grand nombre q tel que $q||\cdot||_2 \le N$.

Exercice 2. Soit p > 0. Pour $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, on pose

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad ||x||_\infty = \sup_{1 \le i \le n} |x_i|.$$

(1) On suppose d'abord que n=2. Dessiner l'ensemble

$$\overline{B}_p = \{x \in \mathbb{R}^2 / ||x||_p \le 1$$

dans chacun des cas où $p=1/2,1,3/2,2,3,\infty.$

- (2) Montrer que, si $p \leq q$, $\overline{B}_p \subset \overline{B}_q$.
- (3) La boule $\overline{B}_{1/2}$ dans \mathbb{R}^2 est-elle convexe? Montrer que, plus généralement, que $||\cdot||_p$ n'est pas une norme sur \mathbb{R}^n quand p < 1.
- (4) On fixe $x \in \mathbb{R}^n$. Montrer que $||x||_p$ tend vers $||x||_{\infty}$ quand p tend vers l'infini.
- (5) On suppose maintenant que $p \ge 1$. Montrer que $x_i \mapsto x_i^p$ est une fonction convexe sur $]0, +\infty[$, puis que $x \mapsto ||x||_p^p$ est une fonction convexe sur \mathbb{R}^n . Montrer que $||\cdot||_p$ est une norme sur \mathbb{R}^n .

Exercice 3. Soit E l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . Pour $f \in E$, on pose :

$$||f||_1 = \int_0^1 |f(t)|dt, \quad ||f||_\infty = \sup_{t \in [0,1]} |f(t)|.$$

- (1) Montrer que $||\cdot||_1$ et $||\cdot||_{\infty}$ sont des normes sur E.
- (2) Montrer que pour tout $f \in E$, on a $||f||_1 \le ||f||_{\infty}$.
- (3) Montrer que ces deux normes ne sont pas équivalentes.

Exercice 4. Soit E l'espace vectoriel des suites réelles $(x_n)_{n\in\mathbb{N}}$ nulles à partir d'un certain rang, c'est-à-dire telles qu'il existe un entier l (qui dépend de la suite considérée) tel que tous les x_p , avec p > l, sont nuls. Pour $x = (x_n)_{n\in\mathbb{N}} \in E$, on pose

$$||x||_1 = \sum_{n=0}^{+\infty} |x_n|.$$

- (1) Montrer que $||\cdot||_1$ est une norme sur E.
- (2) Montrer que l'espace vectoriel normé E n'est pas complet.

2. Continuité - Différentiabilité

Exercice 5. On considère l'espace vectoriel E des fonctions continues de [0,1] dans \mathbb{R} . On le munit de la norme $||\cdot||_1$ (comme dans l'exercice 1). On considère l'application $P: E \to E$ qui, à toute fonction continue f associe sa primitive qui s'annule en 0. Montrer que P est un endomorphisme continu et calculer sa norme.

Exercice 6. Soit f limite uniforme, sur \mathbb{R} , d'une suite de polynômes. Montrer que f est un polynôme.

Exercice 7.

Soient E et F deux espaces vectoriels normés de dimension finie, soit a un nombre réel, et soit U un ouvert de E tel que

$$x \in U$$
 et $t > 0 \Rightarrow tx \in U$.

On dit qu'une application différentiable $f:U\to F$ est homogène de degré a si

$$\forall x \in U, \ \forall t > 0, \ f(tx) = t^a f(x).$$

On dit qu'elle vérifie l'identité d'Euler si

$$\forall x \in U, (df)_x(x) = a f(x).$$

On montre dans la suite que ces deux propriétés sont équivalentes.

- (1) On suppose que f est homogène de degré a.
 - (a) Soit x un point de U. On définit

$$\begin{array}{cccc} \phi & : &]0, +\infty[& \to & F \\ & t & \mapsto & f(tx). \end{array}$$

Montrer que ϕ est différentiable sur $]0, +\infty[$ et calculer $\phi'(t)$ (pour tout t).

- (b) Montrer que f vérifie l'identité d'Euler.
- (2) On suppose, réciproquement, que f vérifie l'identité d'Euler.
 - (a) Soit x un point de U. On définit

$$\begin{array}{ccc} \psi & : &]0,+\infty[& \to & F \\ & t & \mapsto & \frac{1}{t^a}f(tx). \end{array}$$

Montrer que ψ est différentiable sur $]0, +\infty[$ et calculer $\psi'(t)$ (pour tout t).

(b) Montrer que f est homogène de degré a.

Exercice 8. Soit $E = \mathbb{R}^n$ et soit $\phi : \mathcal{L}(E) \to \mathcal{L}(E)$ définie par $\phi(u) = u \circ u$. Démontrer que ϕ est de classe \mathcal{C}^1 .

Exercice 9. Soit $f \in \mathcal{C}^1(\mathbb{R})$ telle que f(0) = 0 et

$$F: l^1(\mathbb{R}) \to l^1(\mathbb{R}), x \mapsto F(x) := (f(x_i))_{i \in \mathbb{N}}.$$

Montrer que F est bien définie et partout différentiable et calculer sa différentielle.

Exercice 10. Montrer que pour $k \in \mathbb{N}$, l'application $L(E) \to L(E)$, $u \mapsto u^k$ est \mathcal{C}^1 et calculer sa différentielle.

Montrer que si E est un espace de Banach, alors l'application $GL(E) \to L(E)$, $u \mapsto u^{-1}$ est \mathcal{C}^1 et calculer sa différentielle.

Exercice 11. Sur un espace (vectoriel) euclidien, déterminer en quels points l'application $\varphi: M \mapsto AM^2$ est différentiable et calculer sa différentielle. Même question avec l'application $f: M \mapsto AM$.

3. Applications

Exercice 12. Soit f l'application définie sur $R^2 \setminus \{0\}$ par

$$f(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right).$$

Déterminer $f \circ f$ et montrer que f est un difféomorphisme de classe \mathcal{C}^1 de $\mathbb{R}^2 \setminus \{0\}$ dans lui-même.

Exercice 13. On munit \mathbb{R}^2 de la nome euclidienne et l'espace des matrices carrées 2×2 de la norme habituelle $||M|| = \sup_{||x||_{\infty}=1} ||Mx||_{\infty}$. On considère la matrice

$$A = \left(\begin{array}{cc} a & b \\ b & -a \end{array}\right), \ a, b \in \mathbb{R}.$$

Montrer que $||A|| = \sqrt{a^2 + b^2}$. On considère l'application f de l'exercice 12. Calculer la matrice jacobienne de f et montrer que, pour tout $(x, y) \in \mathbb{R}^2 \setminus \{0\}$, on a

$$||df_{(x,y)}|| = \frac{1}{x^2 + y^2}.$$

Montrer que l'application linéaire $(df)_{(x,y)}$ conserve les angles dans \mathbb{R}^2 .

Exercice 14. Soit \star une loi de groupe sur $\mathbb R$ dont on appelle l'élément neutre e. On suppose que l'application

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$(x,y) \mapsto x \star y$$

est de classe \mathcal{C}^1 . On appelle $\partial_1 f$ et $\partial_2 f$ ses deux dérivées partielles.

(1) Montrer que, pour tous $x, y \in \mathbb{R}$, on a

$$(\partial_2 f)_{(x \star y, e)} = (\partial_2 f)_{(x,y)} \cdot (\partial_2 f)_{(y,e)}.$$

En déduire que $(\partial_2 f)_{(y,e)} > 0$.

(2) On cherche à construire une fonction $\phi : \mathbb{R} \to \mathbb{R}$, de classe \mathcal{C}^1 , telle que

$$\forall x, y \in \mathbb{R}, \phi(xy) = \phi(x) + \phi(y).$$

En dérivant cette relation par rapport à y, montrer que la fonction ϕ doit vérifier

$$\phi(x) = a \int_{e}^{x} \frac{dt}{(\partial_2 f)_{(t,e)}}$$

pour une certaine constante a.

(3) Réciproquement, montrer que, pour toute constante $a \neq 0$, l'égalité précédente définit un difféomorphisme de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} , qui transforme la loi \star en l'addition.

(4) En particulier, la loi est nécessairement commutative. Montrer que ce n'est pas le cas sur \mathbb{R}^2 , en considérant la loi

$$(x_1, x_2) \star (y_1, y_2) = (x_1 + y_1, x_2 + e^{x_1}y_2).$$

Exercice 15. Soit f une application différentiable de \mathbb{R}^n dans lui-même. On suppose que 0 est un point fixe de f et que 1 n'est pas valeur propre de l'application linéaire $(df)_0$. Montrer que 0 est un point fixe isolé.

Exercice 16. On reprend les notations et les hypothèses de l'exercice précédent. Soit $g: \mathbb{R}^n \to \mathbb{R}^n$ une application de classe \mathcal{C}^1 . Pour tout $a \in \mathbb{R}$, on définit

$$f_a: \mathbb{R}^n \to \mathbb{R}^n$$

 $x \mapsto f(x) + ag(x).$

Montrer qu'il existe

- un réel $\varepsilon > 0$,
- un voisinage V de 0 dans \mathbb{R}^n ,
- une application $\varphi:]-\varepsilon,\varepsilon[\to V$ de classe \mathcal{C}^1

tels que, pour tout $a \in]-\varepsilon, \varepsilon[, \varphi(a)$ est l'unique point fixe de f_a dans V.

Exercice 17. Déterminer les fonctions $f \in \mathcal{C}^1(\mathbb{R}^{+*} \times \mathbb{R})$ telles que

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = \sqrt{x^2 + y^2}.$$

Exercice 18. Déterminer les fonctions $f \in \mathcal{C}^1(\mathbb{R}^{+*} \times \mathbb{R})$ telles que

$$x\frac{\partial f}{\partial y}(x,y) - y\frac{\partial f}{\partial x}(x,y) = kf(x,y).$$

Exercice 19. Calculer le laplacien de $f \in \mathcal{C}^2(\mathbb{C})$ en fonction de z, \overline{z} et en déduire les fonctions de |z| qui sont harmoniques sur $\mathbb{C}\setminus\{0\}$.

Exercice 20. Montrer que le système

$$\begin{cases} x = \frac{1}{4}\sin(x+y) \\ y = 1 + \frac{2}{3}\arctan(x-y) \end{cases}$$

admet une unique solution.

Exercice 21. Montrer que l'application $z\mapsto z^2$ est un difféomorphisme local de $\mathbb{C}\setminus\{0\}$ sur lui-même mais n'est pas un difféomorphisme global.

Exercice 22. Pour quelles valeurs de $a, b \in \mathbb{R}$, l'application $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x + a \sin y, y + b \sin x)$ est elle un difféomorphisme local en tout point? Montrer qu'alors c'est un difféomorphisme de \mathbb{R}^2 sur lui-même.

Exercice 23. Montrer que l'application

$$\phi: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y)$$

est un difféomorphisme sur son image que l'on déterminera.

Exercice 24. Montrer que si $f \in \mathcal{C}^1(\mathbb{R})$ et s'il existe k > 0 tel que $f' \geq k$, alors f est un difféomorphisme de \mathbb{R} sur lui-même. Montrer que ce résultat est faux avec k = 0.

Généralisation en dimension supérieure?

Exercice 25. Montrer que pour tout $t \in \mathbb{R}$ avec $|t| < \frac{\sqrt{2}}{2}$, l'équation $\sin(tx) + \cos(tx) = x$ a une unique solution $x = \phi(t)$. Montrer que ϕ est de classe \mathcal{C}^{∞} et en donner un développement limité à l'ordre 2 en 0.

Exercice 26. Pour tout $a = (a_0, \ldots, a_n) \in \mathbb{R}^{n+1}$, on définit $P_a \in \mathbb{R}[X]$ par

$$P_a(X) = a_0 + a_1 X + \dots + a_n X^n.$$

Soit $b \in \mathbb{R}^{n+1}$. On suppose que $x_b \in \mathbb{R}$ est une racine simple du polynôme P_b . Montrer qu'il existe

- un voisinage ouvert U de b dans \mathbb{R}^{n+1} ,
- un voisinage ouvert de x_b dans \mathbb{R}

tels que pour tout $a \in U$, P_a a une unique racine dans V.

Exercice 27. Montrer que l'équation $\cos(x+y) = 1 + x + 2y$ définit implicitement au voisinage de (0,0) une fonction ϕ de classe \mathcal{C}^1 telle que $\cos(x+\phi(x)) = 1 + x + 2\phi(x)$. Calculer $\phi'(0)$.

4. Ordre supérieur

Exercice 28. Soit une application $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 telle que

$$f(0,0)=\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=\frac{\partial^2 f}{\partial x^2}(0,0)=\frac{\partial^2 f}{\partial y^2}(0,0)=0,\quad \frac{\partial^2 f}{\partial x \partial y}(0,0)=1.$$

Montrer que l'application $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(x,y) = \begin{cases} \frac{f(x,y) - xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

est continue.

Exercice 29. Soient E un espace vectoriel normé de dimension finie et $f: E \to \mathbb{R}$ une application de classe C^2 et positive. On suppose qu'il existe une constante M telle que $||(d^2f)_x|| \le M$ pour tout x. Montrer que $||(df)_x|| \le \sqrt{2Mf(x)}$.

Exercice 30. On se place dans \mathbb{R}^n , muni de la norme euclidienne notée $||\cdot||$ et du produit scalaire noté $<\cdot,\cdot>$. On appelle S la sphère unité $S=\{x\in\mathbb{R}^n/\ ||x||=1\}$.

Soit A une matrice symétrique réelle.

(1) Montrer que

$$\begin{array}{cccc} f & : & \mathbb{R}^n \backslash \{0\} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{\langle Ax, x \rangle}{||x||^2} \end{array}$$

est continue et que sa restriction à S admet un maximum sur S. Soit e_1 un vecteur unitaire en lequel ce maximum est atteint.

- (2) Montrer que e_1 est un maximum pour f sur $\mathbb{R}^n \setminus \{0\}$.
- (3) Calculer la différentielle de f et montrer que

$$(df)_{e_1}(x) = 2 < Ae_1, x > -2 < Ae_1, e_1 > < e_1, x >$$

pour tout $x \in \mathbb{R}^n$.

- (4) En déduire que, pour tout $x \in \mathbb{R}^n$, l'égalité $< e_1, x> = 0$ implique l'égalité $< Ae_1, x> = 0$.
- (5) Montrer qu'il existe une base orthonormée de \mathbb{R}^n dans laquelle la matrice A est diagonalisable.

Exercice 31. Soit $n \geq 2$ et $f: \mathbb{R}^n \to \mathbb{R}$ définie par $f(x_1, \dots, x_n) \mapsto x_1 \cdots x_n$. On note $\Gamma = \{(x_1, \dots, x_n) \in (\mathbb{R}^+)^n / x_1 + \dots + x_n = 1\}$.

- (1) Démontrer que f admet un maximum global sur Γ et le déterminer.
- (2) En déduire l'inégalité arithmético-géométrique : pour tout $(x_1, \ldots, x_n) \in (\mathbb{R}^+)^n$, on a

$$\prod_{i=1}^{n} x_i^{1/n} \le \frac{\sum_{i=1}^{n} x_i}{n}.$$

Exercice 32. Etudier les extréma locaux et globaux dans \mathbb{R}^2 de la fonction f définie par $f(x,y) = x^2y^2(1+x+2y)$.

Exercice 33. Soit f une fonction convexe différentiable de \mathbb{R}^n dans \mathbb{R} . Montrer que tout point critique de f est un minimum global.

Exercice 34. Déterminer les extrema de $f:(x,y)\mapsto (x^2+y^2)e^{x^2-y^2}$ et préciser leur nature. Même question avec la fonction $g:(x,y)\mapsto (x^2+y^2)e^{-(x^2+y^2)}$.

Exercice 35. Déterminer le minimum global de $f: M \mapsto AM + BM + CM$ lorsque le triangle $\{A, B, C\}$ dans le plan euclidien n'a que des angles aigus.

Que se passe-t-il lorsque le triangle a un angle obtus?

Exercice 36. Soit B une boule fermée de \mathbb{R}^n et $f \in \mathcal{C}^0(B)$ harmonique dans B. Montrer que f atteint son maximum sur ∂B (on pourra considérer $g(x) = f(x) + \varepsilon x^2$ et passer à la limite quand $\varepsilon \to 0$).

Exercice 37. Quelles sont les solutions maximales de l'équation différentielle $y' = e^{x+y}$?

Exercice 38. Montrer que si f est bornée et de classe \mathcal{C}^1 sur \mathbb{R} , toute solution maximale de y'=yf(x,y) est définie sur \mathbb{R} .