

Lineare Algebra für Informatik - Woche 7

Cosmin Aprodu

Technische Universität München

Online, 27 Mai 2021

Wiederholung - Vektorräume

Eine Menge V ist ein K-**Vektorraum** zusammen mit zwei Abbildungen $\oplus: V \times V \to V, (v, w) \mapsto v \oplus w$ und $\odot: K \times V \to V, (a, v) \mapsto a \odot v$, so dass folgende Axiome gelten:

- (1) (V, \oplus) ist eine kommutative (abelsche) Gruppe.
- (2) Für alle $a \in K$ und $v, w \in V$ gilt:

$$a \odot (v \oplus w) = a \odot v \oplus a \odot w$$

(3) Für alle $a, b \in K$ und $v \in V$ gilt:

$$(a+b) \odot v = a \odot v \oplus b \odot v$$

(4) Für alle $a, b \in K$ und $v \in V$ gilt:

$$(a \cdot b) \odot v = a \odot (b \odot v)$$

(5) Für alle $v \in V$ gilt:

$$1 \odot v = v, 1 \in K$$

Lineare Abbildungen

Sei K ein Körper, V ein K-Vektorraum mit Abbildungen \oplus , \odot und W ein K-Vektorraum mit Abbildungen \oplus , \odot . Eine $\varphi:V\to W$ heißt **linear** und $\varphi(0)=0$, falls:

- Für alle $v, v' \in V$, $\varphi(v \oplus v') = \varphi(v) \oplus \varphi(v')$
- Für alle $v \in V$ und $a \in K$, $\varphi(a \odot v) = a \odot \varphi(v)$

Im folgenden, verwenden wir *als Notation* die Addition (+) und die Multiplikation (·) anstelle von \oplus , \odot und \oplus , \odot . Dies bedeutet *nicht*, dass wir uns nur auf die erste beiden Operationen beziehen!

Wichtige Beispiele:

- Die Abbildung $V \to W, v \mapsto 0$ ist *linear* und heißt **Nullabbildung**.
- Sei $A \in K^{m \times n}$ eine Matrix, dann ist φ_A eine *lineare* Abbildung, wobei:

$$\varphi_A: K^n \to K^m, \ v \mapsto A \cdot v$$

Kern und Bild

Sei $\varphi: V \to W$ eine *lineare* Abbildung.

- $\operatorname{Kern}(\varphi) := \{ v \in V \mid \varphi(v) = 0 \} \subseteq V$. Zusätzlich ist $\operatorname{Kern}(\varphi) \subseteq V$ ein Unterraum.
- $\mathsf{Bild}(\varphi) := \varphi(V) = \{\varphi(v) \mid v \in V\} \subseteq W$. Zusätzlich ist $\mathsf{Bild}(\varphi) \subseteq W$ ein Unterraum.

Bemerkung: Die folgende Äquivalenzen gelten:

$$\varphi$$
 ist *injektiv* \Leftrightarrow Kern $(\varphi) = \{0\}$

$$\varphi$$
 ist $surjektiv \Leftrightarrow \dim(\mathsf{Bild}(\varphi)) = \dim(W)$

Dimensionssatz: Sei $\varphi: V \to W$ eine *lineare* Abbildung. Dann gilt:

$$\dim(V) = \dim(\operatorname{\mathsf{Kern}}(\varphi)) + \dim(\operatorname{\mathsf{Bild}}(\varphi))$$

Isomorphismen

Eine *lineare* Abbildung $\varphi: V \to W$ heißt **Isomorphismus**, falls φ **bijektiv** ist. Dann ist auch $\varphi^{-1}: W \to V$ ein *Isomorphismus*. $\to V$ und W heißen **isomorph**, falls es ein *Isomorphismus* $V \to W$ gibt. Notation: $V \cong W$.

Es gelte $\dim(V) = \dim(W) < \infty$ und $\varphi : V \to W$ sei eine *lineare* Abbildung. Dann sind äquivalent:

- φ ist ein *Isomorphismus*.
- φ ist *injektiv*.
- φ ist *surjektiv*.