In [75]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")

In [76]: | data=pd.read_csv("/home/placement/Downloads/fiat500.csv")

In [77]: data.describe()

Out[77]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [78]: data.head()

Out[78]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700

In [79]: datal=data.drop(['lat','lon','ID'],axis=1)
 datal

Out[79]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

```
In [80]: data1=pd.get_dummies(data1)
```

In [81]: data1.shape

Out[81]: (1538, 8)

In [82]: data1

Out[82]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [83]: y=data1['price']
```

```
In [84]: x = data1.drop('price',axis=1)
```

```
In [85]: y
Out[85]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
          4
          1533
                  5200
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
In [86]: #!pip3 install scikit-learn
In [87]: from sklearn.model_selection import train_test_split
          x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [88]: x_test.head(5)
Out[88]:
               engine_power age_in_days
                                         km previous_owners model_lounge model_pop model_sport
                                 3197 120000
                                                         2
            481
                        51
                                                                     0
                                                                               1
                                                                                          0
                                 2101 103000
            76
                                                         1
                                                                     0
                        62
                                                                               1
                                                                                          0
           1502
                        51
                                  670
                                       32473
                                                         1
                                                                     1
                                                                               0
                                                                                          0
            669
                        51
                                  913
                                       29000
                                                         1
                                                                     1
                                                                               0
                                                                                          0
                                                         1
                                                                               0
                                                                                          0
           1409
                        51
                                  762
                                       18800
                                                                     1
In [89]: x train.shape
Out[89]: (1030, 7)
```

```
In [90]: y_test.head()
Out[90]: 481
                 7900
         76
                 7900
         1502
                 9400
         669
                 8500
                 9700
         1409
         Name: price, dtype: int64
In [91]: y_train.shape
Out[91]: (1030,)
In [92]: from sklearn.linear_model import LinearRegression
In [93]: reg=LinearRegression()
In [94]: reg.fit(x_train,y_train)
Out[94]:
          ▼ LinearRegression
          LinearRegression()
In [95]: ypred=reg.predict(x_test)
```

```
In [96]: ypred
                                  9073.33877162,
                                                  9412.68162121, 10293.69451263,
                  7058.39787506,
                                  6748.5794244 ,
                                                  9785.95841801,
                                                                   9354.09969973,
                 10072.49011135,
                  9507.9444386 , 10443.01608254,
                                                  9795.31884316,
                                                                  7197.84932877,
                                                                  7146.87414965.
                 10108.31707235.
                                  7009.6597206 .
                                                  9853.90699412.
                  6417.69133992,
                                  9996.97382441,
                                                  9781.18795953,
                                                                  8515.83255277,
                                                  7768.57829985,
                                                                  6832.86406122,
                  8456.30006203,
                                  6499.76668237,
                  8347.96113362, 10439.02404036,
                                                                   8562.56562053,
                                                  7356.43463051.
                  9820.78555199, 10035.83571539,
                                                  7370.77198022,
                                                                   9411.45894006,
                 10352.85155564,
                                  8045.21588007, 10446.80664758,
                                                                   3736.20118868,
                 10348.63930496, 10435.96627494,
                                                  6167.80169017, 10390.11317804,
                                  9116.4755691 , 10484.52829
                                                                   9335.69889855,
                  6527.69471073,
                  6709.57413543,
                                  3390.72353093, 10106.33753331,
                                                                   9792.46732008,
                  6239.49568346,
                                  4996.26346266,
                                                  9044.38667681,
                                                                   9868.09959448,
                  5484.13199252.
                                  5698.5954821 , 10086.86206874,
                                                                  8115.81693479.
                 10392.37800936,
                                                                   5738.50576764,
                                  6835.6573351 ,
                                                  6657.61744836,
                  8896.80120764,
                                  9952.37340054, 10390.28377419,
                                                                  9419.10788866,
                  9082.56591129, 10122.82465116, 10410.00504522, 10151.77663915,
                  9714.85367238,
                                  9291.92963633, 10346.99073888,
                                                                   5384.22311343,
                  9772.85146492,
                                  6069.77107828, 9023.26394782, 10220.56195956,
                  9238.89392583.
                                  9931.47195375.
                                                  8321.42715662.
                                                                  8377.80491069.
In [97]: from sklearn.metrics import r2 score
In [98]: r2 score(y test,ypred)
Out[98]: 0.8415526986865394
In [99]: from sklearn.metrics import mean squared error
In [100]: mean squared error(ypred,y test)
Out[100]: 581887.727391353
In [101]: n=581887.727391353 ** (1/2)
          print(n)
          762.8156575420782
```

```
In [102]: !pip3 install scikit-learn
          Requirement already satisfied: scikit-learn in ./anaconda3/lib/python3.10/site-packages (1.2.1)
          Requirement already satisfied: joblib>=1.1.1 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear
          n) (1.1.1)
          Requirement already satisfied: numpy>=1.17.3 in ./anaconda3/lib/python3.10/site-packages (from scikit-lear
          n) (1.23.5)
          Requirement already satisfied: threadpoolctl>=2.0.0 in ./anaconda3/lib/python3.10/site-packages (from sciki
          t-learn) (2.2.0)
          Reguirement already satisfied: scipy>=1.3.2 in ./anaconda3/lib/python3.10/site-packages (from scikit-learn)
          (1.10.0)
In [103]: from sklearn.model selection import GridSearchCV
          from sklearn.linear model import Ridge
          alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20, 30]
          ridge = Ridge()
          parameters = {'alpha': alpha}
          ridge regressor = GridSearchCV(ridge, parameters)
          ridge regressor.fit(x train, y train)
Out[103]:
           ▶ GridSearchCV
           ▶ estimator: Ridge
                 ▶ Ridge
In [104]: ridge regressor.best params
Out[104]: {'alpha': 30}
```

```
In [105]: ridge=Ridge(alpha=30)
    ridge.fit(x_train,y_train)
    y_pred_ridge=ridge.predict(x_test)
```

```
In [106]: from sklearn.metrics import r2_score
r2_score(y_test,y_pred_ridge)
```

Out[106]: 0.8421969385523054

```
In [107]: Results=pd.DataFrame(columns=['price','predicted'])
    Results['price']=y_test
    Results['predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(15)
```

Out[107]:

	index	price	predicted	ID
0	481	7900	5869.741155	0
1	76	7900	7149.563327	1
2	1502	9400	9862.785355	2
3	669	8500	9719.283532	3
4	1409	9700	10035.895686	4
5	1414	9900	9650.311090	5
6	1089	9900	9669.183317	6
7	1507	9950	10115.128380	7
8	970	10700	9900.241944	8
9	1198	8999	9347.080772	9
10	1088	9890	10431.237961	10
11	576	7990	7725.756431	11
12	965	7380	7691.089846	12
13	1488	6800	6583.674680	13
14	1432	8900	9659.240069	14

In []:

In []:

```
In [109]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[109]: []

In []:

In []: