- **2.9.** Determine parametric equations for the plane π in the following cases:
 - π contains the point M(1,0,2) and is parallel to the vectors $\mathbf{a}_1(3,-1,1)$ and $\mathbf{a}_2(0,3,1)$,
- π contains the points A(-2,1,1), B(0,2,3) and C(1,0,-1),
- π contains the point A(1,2,1) and is parallel to i and j,
- π contains the point M(1,7,1) and is parallel coordinate plane Oyz,
- κ π contains the points $M_1(5,3,4)$ and $M_2(1,0,1)$, and is parallel to the vector $\mathbf{a}(1,3,-3)$,
- π contains the point A(1,5,7) and the coordinate axis Ox.

$$\begin{vmatrix} x-1 & y & z^{-2} \\ 3 & -1 & 1 \\ 0 & 3 & 1 \end{vmatrix} = 0 \Rightarrow b(ii) = \angle(3,-1,1),(0,3,1)$$

$$\overrightarrow{AB} = (0-(-2), 2-1, 3-1) = (2, 1, 2)$$

c)
$$A(1,2,1)$$
 $\| (1,0,0), (0,1,0) =) \vec{v} - (1,0,0)$
 $X = 1 + \lambda \cdot 1 + \mu \cdot 0$ $\vec{w} = (0,1,0)$
 $Y = 2 + \lambda \cdot 0 + \mu \cdot 1$
 $Y = 1 + \lambda \cdot 0 + \mu \cdot 0$

2.3. With the assumptions in Example 1.20, give parametric equations and Cartesian equations for the lines AB, AC, BC both in the coordinate system K and in the coordinate system K'.

Example 1.20 (In dimension 2). Let $\mathcal{K} = (O, (\mathbf{i}, \mathbf{j}))$ and $\mathcal{K}' = (O', (\mathbf{i}', \mathbf{j}'))$ be two coordinate systems (reference frames) of \mathbb{E}^2 . Suppose that we know O', \mathbf{i}' and \mathbf{j}' relative to \mathcal{K} :

$$[O']_{\mathcal{K}} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}_{\mathcal{K}}, \quad i' = -2i + j = \begin{bmatrix} -2 \\ 1 \end{bmatrix}_{\mathcal{K}}, \quad j' = i + 2j = \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\mathcal{K}}.$$

$$A(x_{A}, Y_{A}) \qquad E(O, i_{2}, j_{2}) \qquad i' = -2i + j_{3}$$

$$B(x_{B}, Y_{B}) \qquad E'(O'_{1}, i'_{1}, j'_{1}) \qquad j' = i + 2j$$

$$C(x_{C}, Y_{C}) \qquad A'_{KK'} = \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$A'_{KK'} = \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix} \qquad (X_{A}) = \begin{pmatrix} -2x_{A} + Y_{A} \\ Y_{A} \end{pmatrix} = \begin{pmatrix} -2x_{A} + Y_{A} \\ Y_{A} \end{pmatrix}$$

$$X = i \cdot X_{A} + j + y_{A} \qquad = \sum_{K} [X_{K}]_{K'} = \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix} \cdot (X_{A}) = \begin{pmatrix} -2x_{A} + Y_{A} \\ Y_{A} \end{pmatrix} \cdot (X_{A} + 2y_{A}) \cdot j'$$

$$(X_{K}) = \begin{pmatrix} -2x_{A} + y_{A} \end{pmatrix} \cdot i' + (x_{A} + 2y_{A}) \cdot j'$$