

Kernel methods

Lecture 14 of "Mathematics and AI"

Outline

- 1. The ordinary-least-squares kernel
- 2. Kernels
- 3. Representer theorems
- 4. Kernel methods in practice
 Support vector machines, kernel ridge regression, kernel lasso

The ordinary-least-squares kernel

• For OLS: The parameter vector $\vec{\beta}$ is a **linear combination** of the feature vectors \vec{x}_i (i = 1, ..., n):

$$\vec{\beta} = \sum_{i=1}^{n} \alpha_i \vec{x}_i$$

Proof:

1. $\vec{\beta}$ is the limit of the sequence $(\vec{\beta}^{(0)}, \vec{\beta}^{(1)}, \vec{\beta}^{(2)}, ...)$ produced by gradient descent with $\vec{\beta}^{(t+1)} = \vec{\beta}^{(t)} - \gamma \frac{\partial L}{\partial \vec{\beta}}$

2. The OLS loss function,

$$L\left(\vec{\beta}\right) = \sum_{i=1}^{n} \left(\vec{\beta} \cdot \vec{x}_i - y_i\right)^2,$$

is convex, so wlog set $\vec{\beta}^{(0)} = 0$.

3. Proof by induction

Base case:

$$\vec{\beta}^{(1)} = \vec{\beta}^{(0)} - \gamma \frac{\partial L}{\partial \vec{\beta}} (\vec{\beta}^{(0)})$$

$$\vec{\beta}^{(1)} = \vec{\beta}^{(0)} - 2\gamma \sum_{i=1}^{n} \left(\vec{\beta}^{(0)} \cdot \vec{x}_i - y_i \right) \vec{x}_i$$

$$\vec{\beta}^{(1)} = 2\gamma \sum_{i=1}^n y_i \vec{x}_i$$

• Induction hypothesis:

$$\vec{\beta}^{(t)} = \sum_{i=1}^{n} \alpha_i^{(t)} \vec{x}_i \rightarrow \vec{\beta}^{(t+1)} = \sum_{i=1}^{n} \alpha_i^{(t+1)} \vec{x}_i$$

• Induction step:

$$\vec{\beta}^{(t+1)} = \vec{\beta}^{(t)} - 2\gamma \sum_{i=1}^{n} (\vec{\beta}^{(t)} \cdot \vec{x}_i - y_i) \vec{x}_i$$

$$\vec{\beta}^{(t+1)} = \sum_{j=1}^{n} \alpha_j^{(t)} \vec{x}_j - 2\gamma \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \alpha_j^{(t)} \vec{x}_j \cdot \vec{x}_i - y_i \right) \vec{x}_i$$

$$\vec{\beta}^{(t+1)} = \sum_{j=1}^{n} \left(\alpha_j^{(t)} - 2\gamma \sum_{j=1}^{n} \alpha_j^{(t)} \vec{x}_j \cdot \vec{x}_i - y_i \right) \vec{x}_i$$

Implications for OLS loss and prediction

OLS loss function rewritten:

$$L(\vec{\beta}) = \sum_{i=1}^{n} (\vec{\beta} \cdot \vec{x}_i - y_i)^2 = \sum_{i=1}^{n} \left[\left(\sum_{j=1}^{n} \alpha_j \vec{x}_j \right) \cdot \vec{x}_i - y_i \right]^2 = \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \alpha_j (\vec{x}_j \cdot \vec{x}_i) - y_i \right]^2$$

• Prediction for query \vec{x}_k :

$$\vec{\beta} \cdot \vec{x}_k = \left(\sum_{i=1}^n \alpha_i \vec{x}_i\right) \cdot \vec{x}_k = \sum_{i=1}^n \alpha_i (\vec{x}_i \cdot \vec{x}_k)$$

Interpretation

$$\vec{\beta} \cdot \vec{x}_k = \sum_{i=1}^n \alpha_i (\vec{x}_i \cdot \vec{x}_k)$$

- Scalar products can be used to assess
 - similarity of vectors
 - e.g., closeness* of two feature vectors in feature space

- Predicted response y_k for a query \vec{x}_k is function of the responses y_i for \vec{x}_i in the training data.
- The y_i for \vec{x}_i that are similar to \vec{x}_k contribute more than others!

Comparison to k nearest neighbors

- KNN predicts outcome of a query \vec{x} by averaging the k closest observations to \vec{x}
- OLS linear regression predicts outcome of a query \vec{x} by a weighted average of all observations with greatest weights assigned to observations closest to \vec{x}

Comparison to k nearest neighbors

- KNN and OLS have different kernels!
- Informally: A kernel is a function that measures similarity of two vectors
- Formally: A kernel $K(\cdot,\cdot)$ is a positive semi-definite function of two inputs

Nonlinear kernels

Examples of (non-)linear kernels

Linear kernel:

$$K(x,z) = x \cdot z$$

Polynomial kernel:

$$K(x,z) = (1 + x \cdot z)^d$$

Gaussian kernel:

$$K(x,z) = \exp(-\frac{1}{\sigma^2} ||x - z||^2)$$

• Exponential kernel:

$$K(x,z) = \exp(-\frac{1}{2\sigma^2}||x - z||)$$

Hilbert spaces for machine learning

- Consider a feature space \mathcal{X} . Define an associated vector space \mathcal{H} (Hilbert space) of "nice" functions $f(\mathcal{X}) \to \mathbb{R}$, in particular:
 - H has vector addition:

$$\forall f, g \in \mathcal{H}: f + g \in \mathcal{H}$$

• \mathcal{H} has scalar multiplication:

$$\forall f \in \mathcal{H}, c \in \mathbb{R}: cf \in \mathcal{H}$$

• \mathcal{H} has (real-valued) scalar product:

$$\forall f, g \in \mathcal{H} : f \cdot g \in \mathbb{R}$$

Reproducing-kernel Hilbert spaces (RHKS)

An RHKS is a Hilbert space in which

closeness of functions (i.e., ||f - g|| small) implies

pointwise closeness (i.e., small f(x)g(x) for all $x \in \mathcal{X}$) and vice versa.

Such a Hilbert space has some special functions

$$K_x \in \mathcal{H} \text{ s.t. } \forall f \colon f \cdot K_x = f(x)$$

Reproducing-kernel Hilbert spaces (RHKS)

• For any $\in \mathcal{X}$ with associated K_x , $K_z \in \mathcal{H}$:

$$K(x,z) = K_z(x) = K_x(z) = K_x \cdot K_z$$

- When points x, z are close in \mathcal{X} , their associated functions K_x , K_z are close \mathcal{H} .
- The functions K_x , $K_z \in \mathcal{H}$ reproduce the kernel K(x,z)!

Representer theorems

Fitting n points in d dimensions

Representer theorem

Theorem: Consider a positive-definite real-valued kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ on a non-empty set \mathcal{X} with a corresponding reproducing kernel Hilbert space H_k . Let there be given

- ullet a training sample $(x_1,y_1),\ldots,(x_n,y_n)\in\mathcal{X} imes\mathbb{R}$,
- a strictly increasing real-valued function $g:[0,\infty)\to\mathbb{R}$, and
- an arbitrary error function $E: (\mathcal{X} \times \mathbb{R}^2)^n \to \mathbb{R} \cup \{\infty\}$,

which together define the following regularized empirical risk functional on H_k :

$$f \mapsto E((x_1, y_1, f(x_1)), \dots, (x_n, y_n, f(x_n))) + g(||f||).$$

Then, any minimizer of the empirical risk

$$f^* = \operatorname*{argmin}_{f \in H_k} \left\{ E\left(\left(x_1, y_1, f(x_1)
ight), \ldots, \left(x_n, y_n, f(x_n)
ight)
ight) + g\left(\left\| f
ight\|
ight)
ight\}, \quad (*)$$

admits a representation of the form:

$$f^*(\cdot) = \sum_{i=1}^n lpha_i k(\cdot, x_i),$$

where $\alpha_i \in \mathbb{R}$ for all $1 \leq i \leq n$.

Kernel methods in practice

Support vector machines

