Visco-elastic vacuum and bar braking: a causal extension of the gravitational echo framework

Authors: CosmicThinker and ChatGPT

Version: v0.1 — 2025-09-14

Abstract — The quantum vacuum can behave as an effective medium with nonlocal response. In earlier work we showed that, in the linear regime, such a gravitational "echo" does not by itself sustain flat rotation curves in galaxies, although it does provide modest ($\approx 10\text{--}20\%$) corrections to circular velocities and subtle lensing signatures. Here we propose a causal visco-elastic extension of that framework: a frequency- and scale-dependent susceptibility $\chi(\omega,k)$ that introduces temporal memory and a phase lag between source and response. The imaginary part, Im χ , produces a torque on galactic bars with a clear maximum when Ω_p $\tau\approx 1$ and the bar size matches the nonlocal scale, L_bar $\approx \xi$. This yields falsifiable predictions for the distribution of pattern speeds and the ratio R_CR/L_bar, while keeping the framework as a subdominant effective component (compatible with Λ CDM) rather than a full replacement for dark halos.

1. Introduction

(i) Well-documented negative results are valuable: the linear nonlocal echo alone does not yield sustained flat rotation curves. (ii) A natural extension is to introduce memory: the effective vacuum responds with a delay, like a visco-elastic material. (iii) Galactic bars, with measurable pattern speed Ω p, are an ideal laboratory to detect such a lag.

2. Theoretical framework

2.1 Nonlocal response with memory

We posit $\delta \rho_{v}(\omega,k) = \chi(\omega,k)$ $\rho_{b}(\omega,k)$. A minimal Debye/SLS form is adopted: $\chi(\omega,k) = \chi_{\infty}(k) + [\chi_{0}(k) - \chi_{\infty}(k)]/(1 - i \omega \tau)$, with $\chi_{0}(k) = \alpha/(k^2 + \xi^{-2})^p$. Accordingly, Re χ decreases for $\omega \tau \gg 1$, while Im χ exhibits a peak at $\omega \tau \approx 1$.

2.2 Causality and stability

This form is causal (Kramers–Kronig relations) and avoids runaway behaviour provided τ and α remain in moderate ranges. Free parameters are $\{\alpha, \xi, \tau, p\}$. Observational constraints (Solar System, clusters, lensing) bound α and ξ ; bar dynamics can bound τ .

2.3 Torque on bars

The dissipative torque scales as T \propto Im $\chi(\omega=2\Omega_p, k\approx 1/\xi) \cdot |\Phi_{m=2}|^2$. The immediate prediction is a maximum braking when Ω p $\tau\approx 1$ and L bar $\approx \xi$.

3. Falsifiable predictions

- **P1 (dynamic peak):** maximum braking near $\Omega_p \tau = 1$.
- **P2 (geometric selection):** strongest signal when L_bar $\approx \xi$.

- **P3 (distributions):** a detectable imprint in the distribution of R CR/L bar.
- **P4 (rotation curves):** 10-20% corrections at 10-30 kpc, without self-sustained flats.
- **P5 (lensing):** O(1–5%) differences in tangential shear at R $\gg \xi$ in stacked profiles (Euclid/LSST).

4. Methods (demonstrative)

We employ thin-disk + gas models and compute radial forces via ring summation. We evaluate $\chi(\omega,k)$ at $\omega=2\Omega_p$ and $k\approx1/\xi$; we construct a torque proxy \propto Im χ . Figure 1 shows Re χ and Im χ vs. ω τ (Debye). Figure 2 shows the torque efficiency vs. L_bar/ ξ , peaking near unity.

5. Results

Figures 1–2 exhibit (i) a clear peak of Im χ at ω $\tau \approx 1$ and (ii) a geometric preference around L_bar $\approx \xi$. Together these two signatures are testable in bar samples with measured Ω p (e.g., the Tremaine-Weinberg method).

6. Discussion

Nonlocality explains why the echo accompanies baryons without by itself sustaining flat rotation curves. Memory adds a measurable temporal signature: the galaxy responds with a lag, and that phase lag affects the bar torque. The framework remains a Λ CDM-compatible effective extension rather than a replacement, while opening new observational levers.

7. Limitations

(i) Minimal $\chi(\omega,k)$ form; (ii) not yet coupled to Boltzmann codes for w(z); (iii) real bars have thickness, multiphase gas, and resonances not modelled here; (iv) degeneracies among $\{\alpha, \xi, \tau\}$ to be broken with data.

8. Observational program

- Tremaine-Weinberg pattern speeds and R CR/L bar; search for the predicted peak.
- Stacked lensing to bound α and ξ at R $\gg \xi$.
- SPARC/THINGS: quantify the 10-20% correction to v c as a systematic.

9. Conclusions

The visco-elastic vacuum turns a negative result (no self-sustained flats) into a positive opportunity: dynamic and geometric predictions that can be tested in barred galaxies. The framework is causal, falsifiable, and coherent as a subdominant effective component.

Figure 1 — Real and imaginary parts of Debye-like susceptibility $\chi(\omega)$. The dissipative peak Im χ occurs at $\omega\tau\approx 1$.

Figure 2 — Torque efficiency vs. L_bar/ ξ . The response peaks when the bar length matches the nonlocal scale (L_bar $\approx \xi$).

References (short list)

- [1] Tremaine, S. & Weinberg, M. (1984). A kinematic method for measuring the pattern speed.
- [2] Debye, P. (dielectric relaxation; visco-elastic analogue).
- [3] Reviews on fast/slow bars (add current references).
- [4] Our previous nonlocal echo (DM+DE) work; revised version.