2013 - BMMB 597D: Analyzing Next Generation Sequencing Data

Week 10, Lecture 19

Nick Stoler

The Huck Institutes of the Life Sciences

Penn State

Sequence data to genotypes

A common sequencing workflow

Sequencing reads -- Alignments -- Variant calls **FASTQ**

a list of short sequences

SAM/BAM

a list of short sequences and where they are in the genome

VCF

a list of locations in the genome and what the base is at each

What are variant calls?

Naive variant calling

- Check all the reads that cover base chr1:291
- Add up the bases at chr1:291
- e.g. 10 A's, 2 G's
 - Is this an A/G heterozygous site or two sequencing errors?

Actual variant callers

- Estimate likelihood of a variant site vs a sequencing error
 - Sequencing error rate
 - Quality scores

VCF: Variant Call Format

- Represent a list of locations and the variant call at each
 - Simple, right?
- Yes and no.
 - Simple foundation
 - · Location and base
 - Complex "bonus features"
 - · Indels, structural variants, etc.
 - Multiple samples
 - Haplotype phasing

VCF: The simple part

- location, reference base, your base
 - CHROM/POS, REF, ALT

⊗ — □ ex.vcf					
#CHROM	P0S	ID	REF	ALT	П
chrM	2544		G		
chrM	2545		C		
chrM	2546		C	G	
chrM	2547		T		
chrM	2548		G		
chrM	2550		C	Α	
chrM	2551		C		
					л

- a lot like wgsim's mutations.txt

VCF: The rest

```
##fileformat=VCFv4.1
##samtoolsVersion=0.1.18 (r982:295)
##INFO=<ID=DP.Number=1.Type=Integer.Description="Raw read depth">
##INFO=<ID=DP4,Number=4,Type=Integer,Description="# high-quality ref-forward bases, ref-reverse, alt-forward and alt-reverse bases">
##INFO=<ID=MO.Number=1.Type=Integer.Description="Root-mean-square mapping quality of covering reads">
##INFO=<ID=F0,Number=1,Type=Float,Description="Phred probability of all samples being the same">
##INFO=<ID=AF1,Number=1,Type=Float,Description="Max-likelihood estimate of the first ALT allele frequency (assuming HWE)">
##INFO=<ID=AC1,Number=1,Type=Float,Description="Max-likelihood estimate of the first ALT allele count (no HWE assumption)">
##INFO=<ID=G3,Number=3,Type=Float,Description="ML estimate of genotype frequencies">
##INFO=<ID=HWE, Number=1, Type=Float, Description="Chi^2 based HWE test P-value based on G3">
##INFO=<ID=CLR, Number=1, Type=Integer, Description="Log ratio of genotype likelihoods with and without the constraint">
##INFO=<ID=UGT,Number=1,Type=String,Description="The most probable unconstrained genotype configuration in the trio">
##INFO=<ID=CGT,Number=1,Type=String,Description="The most probable constrained genotype configuration in the trio">
##INFO=<ID=PV4,Number=4,Type=Float,Description="P-values for strand bias, baseQ bias, mapQ bias and tail distance bias">
##INFO=<ID=INDEL,Number=0,Type=Flag,Description="Indicates that the variant is an INDEL.">
##INFO=<ID=PC2,Number=2,Type=Integer,Description="Phred probability of the nonRef allele frequency in group1 samples being larger (,smaller)
than in group2.">
##INFO=<ID=PCHI2,Number=1,Type=Float,Description="Posterior weighted chi^2 P-value for testing the association between group1 and group2
samples.">
##INFO=<ID=QCHI2,Number=1,Type=Integer,Description="Phred scaled PCHI2.">
##INFO=<ID=PR,Number=1,Type=Integer,Description="# permutations vielding a smaller PCHI2.">
##INFO=<ID=VDB,Number=1,Type=Float,Description="Variant Distance Bias">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=GL,Number=3,Type=Float,Description="Likelihoods for RR,RA,AA genotypes (R=ref,A=alt)">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="# high-quality bases">
##FORMAT=<ID=SP,Number=1,Type=Integer,Description="Phred-scaled strand bias P-value">
##FORMAT=<ID=PL,Number=G,Type=Integer,Description="List of Phred-scaled genotype likelihoods">
#CHROM POS
                        REF
                                 ALT
                                         OUAL
                                                 FILTER INFO
                                                                 FORMAT aln10k.bam
chrI
        15891
                        Α
                                 C
                                         9.49
                                                         DP=3; VDB=0.0300; AF1=1; AC1=2; DP4=0,0,0,3; MQ=18; FQ=-36
                                                                                                                   GT:PL:DP:GQ
                                                                                                                                   1/1:41,9,0:3:12
chrI
        47991
                                Т
                                         4.61
                                                         DP=2; VDB=0.0220; AF1=1; AC1=2; DP4=0,0,1,1; MQ=42; FQ=-33
                                                                                                                   GT:PL:DP:G0
                                                                                                                                   1/1:34,6,0:2:5
chrI
        50334
                                G
                                         15.1
                                                                                                                   GT:PL:DP:GQ
                                                         DP=3; VDB=0.0124; AF1=1; AC1=2; DP4=0,0,2,1; MQ=41; FQ=-36
                                                                                                                                   1/1:47,9,0:3:14
chrI
        77885
                                         16.1
                                                                                                                   GT:PL:DP:G0
                                                                                                                                   1/1:48,9,0:3:15
                                                         DP=3; VDB=0.0323; AF1=1; AC1=2; DP4=0,0,1,2; MQ=42; FQ=-36
chrI
        121354 .
                                Т
                                         4.61
                                                                                                                   GT:PL:DP:G0
                                                                                                                                   1/1:34,6,0:2:5
                                                         DP=2; VDB=0.0216; AF1=1; AC1=2; DP4=0,0,1,1; MQ=41; FQ=-33
chrI
        134541
                        TTTGT
                                TT
                                         4.42
                                                         INDEL; DP=1; AF1=1; AC1=2; DP4=0,0,1,0; MQ=40; FQ=-37.5
                                                                                                                   GT:PL:DP:G0
                                                                                                                                   0/1:40,3,0:1:3
                                         4.61
chrI
        156862 .
                                                         DP=2; VDB=0.0257; AF1=1; AC1=2; DP4=0,0,1,1; MQ=42; FQ=-33
                                                                                                                   GT:PL:DP:G0
                                                                                                                                   1/1:34,6,0:2:5
chrI
        169815
                                 ACCC
                                         4.42
                                                         INDEL; DP=1; AF1=1; AC1=2; DP4=0,0,0,1; MQ=40; FQ=-37.5
                                                                                                                   GT:PL:DP:G0
                                                                                                                                   0/1:40,3,0:1:3
chrI
        181090
                                         4.61
                                                         DP=2; VDB=0.0143; AF1=1; AC1=2; DP4=0,0,1,1; MQ=42; FQ=-33
                                                                                                                   GT:PL:DP:G0
                                                                                                                                   1/1:34,6,0:2:5
```

VCF: The full column list

Col	Field	Description
1	CHROM	Chromosome name
2	POS	1-based position. For an indel, this is the position preceding the indel.
3	ID	Variant identifier. Usually the dbSNP rsID.
4	REF	Reference sequence at POS involved in the variant. For a SNP, it is a single base.
5	ALT	Comma delimited list of alternative seugence(s).
6	QUAL	Phred-scaled probability of all samples being homozygous reference.
7	FILTER	Semicolon delimited list of filters that the variant fails to pass.
8	INFO	Semicolon delimited list of variant information.
9	FORMAT	Colon delimited list of the format of individual genotypes in the following fields.
10+	Sample(s)	Individual genotype information defined by FORMAT.

- Variant call confidence
 - like Phred score and MAPQ

VCF: Multiple variants

- What if your reads have more than 1 base at one location?
 - wgsim's mutations.txt
 - IUPAC notation
- VCF just gives comma-separated lists
 - REF → ALT
 - A → A,C

VCF: Complex variants

- Can show short indels
 - C → CT (insert T)
 - ACG → A (delete CG)

Types of variants

SNPs

Alignment	VCF representation		
ACGT	P0S	REF	ALT
ATGT	2	C	Τ

Deletions

Alignment	VCF I	repres	sentation
ACGT	P ₀ S	REF	ALT
AT	1	ACG	Α

Large structural variants

```
VCF representation
POS REF ALT INFO
100 T <DEL> SVTYPE=DEL; END=300
```

Insertions

Alignment	VCF I	repres	sentation
AC-GT	POS	REF	ALT
ACTGT	2	C	CT

Complex events

Alignment	VCF I	repres	sentation
ACGT	P0S	REF	ALT
A-TT	1	ACG	AT

VCF: Multiple samples

VCF can have a variable number of columns!

Column headings are the sample names

VCF review

- VCF can represent SNV calls
- and much, much more
 - Indels (G → GC)
 - Multiple variants per site (in ALT column)
 - Multiple samples (SAMPLE columns)
- Check poster for quick overview
 - http://vcftools.sourceforge.net/VCF-poster.pdf
- Check full specification for details
 - http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

Samtools can call variants and create a VCF

- Samtools mpileup → BCF
 - BCF is to VCF as BAM is to SAM
 - · (roughly)

```
🗙 — 🗆 Terminal
[Tue Oct 29] me@zen:~/school/bioinformatics/work
$ samtools mpileup -uDf ../refs/sc.fa sc.bam > sc.bcf
[mpileup] 1 samples in 1 input files
<mpileup> Set max per-file depth to 8000
[Tue Oct 29] me@zen:~/school/bioinformatics/work
```

-u: uncompressed output

- -D: include read depth in output
- -f: use ../refs/sc.fa as reference

- The BCF doesn't hold actual calls
 - encodes likelihoods for all variants
- Bcftools view → VCF
 - Performs the actual variant calling

-
Terminal [Tue Oct 29] me@zen:~/school/bioinformatics/work \$ bcftools view -vcg sc.bcf > sc.vcf [afs] 0:26910.091 1:634.591 2:608.317 [Tue Oct 29] me@zen:~/school/bioinformatics/work

-v: only output non-reference sites

-c: do SNP calling

-g: call genotypes at variant sites

More mpileup tricks

Combine multiple BAM files into one BCF

```
Terminal

[Tue Oct 29] me@zen:~/school/bioinformatics/work
$ samtools mpileup -uDf ../refs/sc.fa sc1.bam sc2.bam > sc-total.bcf
[mpileup] 2 samples in 2 input files
<mpileup> Set max per-file depth to 4000
[Tue Oct 29] me@zen:~/school/bioinformatics/work
```

Only include one region

```
Terminal

[Tue Oct 29] me@zen:~/school/bioinformatics/work
$ samtools mpileup -uDf ../refs/sc.fa -r chrI sc.bam > sc-chrI.bcf
[mpileup] 1 samples in 1 input files
<mpileup> Set max per-file depth to 8000
[Tue Oct 29] me@zen:~/school/bioinformatics/work
```

Homework 19

- Take your mutations.txt file from wgsim (or create another one) and create a partial VCF file from the first 10 lines (but skip ones with indels)
 - Only the last header line (#CHROM)
 - Only the first 5 columns
 - Refer to IUPAC nucleic acid codes for non-ACGT bases

- · means it generated reads with both A and T at this location
- Use samtools/bcftools to create a full VCF file from the alignments you created in the previous homework