

Outlier Detection using Centrality and Center-Proximity

Sang-Wook Kim Hanyang University

This is a joint work with Duck-Ho Bae, Se-Mi Hwang, and Minsoo Lee, and has been presented in ACM CIKM.

Outlier

Definition

 An object that is relatively dissimilar to other normal objects in the dataset

Applications

- Detecting network intrusions
 - Identify such packets that are generated intentionally in order to perform harmful operations on the system
- Detecting misuse of medicines
- Detecting financial frauds

Outlier

Types of object

O₁: Normal object

- O₂: Outlier

O₃: Outlier belonging to a micro-cluster

O₄: Normal object (especially, fringe object)

Previous Methods

- Use their own object location features to detect outliers
 - Object location features reflect the relative characteristics of each object over the distribution of whole objects in the dataset

Procedures

- 1. Compute location features of each object
- 2. Assign an outlierness score to the object based on location features
- 3. Consider the top *m* objects as outliers

Page 4745

Previous Methods

- Statistics-based outlier detection
- Distance-based outlier detection
- Density-based outlier detection
- RWR-based outlier detection

Statistics-based Outlier Detection Hanyang University

- Finds the most suitable statistical distribution model (SDM)
 for the distribution of objects in the given dataset
- Detects objects that deviate from the SDM as outliers

- Drawbacks
 - Most real-world data is not generated from a specific SDM
 - Difficult to find an SDM for multi-dimensional datasets

Page 6745

Distance-based Outlier Detection Hanyang University

- Uses the distance among objects as a location feature
- Detects objects whose distance to other objects exceeds a specific threshold as outliers
- DB-outlier
 - Location feature: # of other objects existing within distance d
 - Detects as an outlier if there are less than p objects

Distance-based Outlier Detection Hanyang University

Drawbacks

- The location features only consider the characteristics of the object itself
- Suffer from the local density problem

 Cannot include object o₁ only as outliers without including all the objects in cluster c₂

Density-based Outlier Detection

- Detects an object as an outlier if its density is much lower than that of its neighboring objects
 - Density of an object: the number of objects existing within a specific distance

Density-based Outlier Detection

Drawbacks

- The location features only consider the characteristics of the object itself
 - During the calculation of the outlierness score, however, they consider the location features of neighboring objects together
- Still suffer from the micro-cluster problem

May 10, 2020

Page 10/46

RWR-based Outlier Detection

- Models a given dataset as an integrated graph
 - Characteristics of all the objects could be considered
- Performs the Random Walk with Restart (RWR)

- Outrank-a
 - Models a dataset as a complete weighted graph
 - Edge weight: similarity between every pair of objects
- Outrank-b
 - Deletes the edges with the similarity lower than a specific threshold

May 10, 2020 Page 11/45

RWR-based Outlier Detection

- Drawbacks (will mention in detail later)
 - Cannot differentiate fringe objects from outlier objects
 - The RWR score is transferred through a directed edge in a single direction
 - Outrank-a
 - Directly considers the characteristics of all the other objects
 - Precision of outlier detection could be low
 - Outrank-b

 Precision is greatly affected by the user-defined parameter value (threshold)

May 10, 2020 Page 12/45

Overview

Our goals

- 1. Should detect outliers accurately
 - Can solve (1) local density, (2) micro-cluster, and (3) fringe object problems
- 2. Should provide outlierness scores to the user
 - User can decide the number of outliers intuitively
 - User can get hints on setting the parameter values
- 3. Should be able to handle data of any types/forms
- 4. Should be less affected by the parameter values
 - The number of parameters should be as small as possible
 - The fluctuation of precision by a varying parameter values should be small

May 10, 2020 Page 15/45

Overview

Our strategies

- 1. Propose two novel location features which can consider the characteristics of all the objects in the dataset
 - Can solve local-density, micro-cluster, fringe object problems (Goal 1)
 - The outlierness score of an individual object not to be seriously affected by parameter values (Goal 4)
- 2. Build an integrated graph from a given dataset and calculate the outlierness score by analyzing the graph
 - Can provide users with an outlierness score of every object (Goal 2)
 - Can relax the constrains on the input data types/forms (Goal 3)

May 10, 2020 Page 144 (i

Overview

Procedures

- 1. Model a given dataset as a k-NN graph
- 2. Calculate centrality and center-proximity scores and compute outlierness score using two scores
- 3. Detect top *m* objects as outliers

Centrality and Center-Proximity

- Observations
 - An object positioned closer to the cluster center
 - Has many neighbor objects
 - The distances to its neighboring objects are very short
 - An outlier
 - · Has very few objects that are close to it

 In order to quantify such characteristics of objects, we propose two novel location features called centrality and center-proximity

Page 15/45

Centrality Score

- The centrality score of object p indicates how much other objects recognize p as the center of their cluster
- The centrality score increases when
 - 1. The number of objects that recognize *p* as their neighbor increases
 - 2. The center-proximity scores of objects that recognize *p* as their neighbor increase

3. The distances from *p* to objects that recognize *p* as their neighbor decrease

May 10, 2020 Page 17-45

Center-Proximity Score

- The center-proximity score of object p indicates how close p
 is to objects located in the cluster center
- The center-proximity score increases when
 - 1. The number of objects that *p* recognizes as its neighbor increases
 - 2. The centrality scores of objects that *p* recognizes as its neighbor increase
 - 3. The distances from *p* to the objects that *p* recognizes as its neighbor decrease

May 10, 2020 Page 15.45

Compute Two Scores

Two scores are computed by referring to each other in an iterative way

- Centrality score of p: 0.2*0.5 + 0.5*0.4
- Center-Proximity score of p: 0.4*0.3 + 0.2*0.7

May 10, 2020

Compute Two Scores

Equations

-
$$Centrality_{i+1}(p) = \sum_{q \in In(p)} w_{q \to p} * \frac{Center-Proximity_i(q)}{Z_{Out(q)}}$$

-
$$Center - Proximity_{i+1}(p) = \sum_{q \in Out(p)} w_{p \to q} * \frac{Centralit_{i}(q)}{Z_{In(q)}}$$

- In(p): set of objecs that point to p
- Out(p): set of objecs that p points to
- $w_{p\to q}$: weight assigned to edge from p to q
- $Z_{In(q)}$: Sum of all weights assigned to edges from In(q) to q
- $Z_{Out(q)}$: Sum of all weights assigned to edges from q to Out(q)

Equation
 Interface (1) = T_{entrol} K_{entrol} (non-necessity transport to the control transport transport to the control transport transport to the control transport transpo

Properties of Two Scores

1. Have mutual reinforcement relationship

- The centrality score of an object increases if it is pointed to by many other objects having high center-proximity scores
- The center-proximity score of an object increases if it points to many objects having high centrality scores

Similar to that between the hub and authority scores in HITS

Page 21.45

Properties of Two Scores

- 2. Have influence on its neighboring objects in proportion to the weights on the edges
 - An object has a larger influence on other object that is close to itself

May 10, 2020 Page 22/45

Compute Two Scores

Procedures

```
FOR i from 0 to MAX_ITERATIONS by 1

{
FOR j from 1 to NUM_OF_TOTAL_OBJECTS by 1

{
DO Calculate the centrality score of node j using Eq. (1)

DO Calculate the center-proximity score of node j using Eq. (2)

}

BO Normalize the sum of centrality scores of all objects to 1

DO Normalize the sum of center-proximity scores of all objects to 1
```

May 10, 2020 Page 25.45

Number of iterations

- Decides how far an object influences other objects in calculating two scores
 - Set MAX_ITERATIONS as 1
 - Consider the influence of only directly connected neighbors
 - Set MAX_ITERATIONS as the diameter of the graph
 - Consider the influence of all the objects in the dataset
 - Compute two scores repetitively until converged Recommend
 - The mutual reinforcement relationship enables two scores to more clearly differentiate normal objects and outliers

Page 244

Outlierness Score

- Uses the inverse of the converged center-proximity score
 - Can differentiate fringe objects and outliers
 - Both are located outside the boundary of the cluster
 - Both have low centrality scores
 - Fringe objects are located closer to the cluster center
 - Have high center-proximity scores compared to outlier objects

Object	Centrality	Center- proximity
a	0.000	0.128
b	0.040	0.315
С	0.503	0.341
d	0.000	0.313

May 10, 2020 Page 25 4 i

Compared with RWR

- RWR score
 - Considers (1) how many objects point to an object and (2) how many objects exist around the object
 - Similar in concepts to the centrality score
 - Cannot differentiate fringe objects and outliers

Page 25/45

Time Complexity

- O(E*i)
 - E: total number of edges in the graph
 - *i*: number of iterations

Page 27/45