

Data Discovery 과제² 에너지 절감량 예측 모델

2022. 10. 25

CONTENTS

- Ⅰ |추진배경
- Ⅱ│과제개요
- Ⅲ│코드분석
- IV│최종결론

추진배경

추진배경

EERS 정책 현황

법정계획	에너지기본계획 (3차, '18.6)	근 거 저탄소녹색성장 기본법 제4조 기 간 20년 기간,5년 주기 ('24년 4차 예정)
	에너지이용합리화기본계획 (6차 '20.8)	근 거 저탄소녹색성장 기본법 제4조 기 간 20년 기간,5년 주기 ('25년 6차 예정)
	전력수급기본계획 (9차, '20.12)	근 거 저탄소녹색성장 기본법 제44조 기 간 20년 기간, 2년 주기 ('22년 10차 예정)
수시 계획	에너지효율 혁신전략 ('19.8)	● 미세먼지 감축 및 에너지소비 최적화를 위해 수립● 산업·건물·수송효율화/인프라구축/연관산업 육성
	에너지효율 혁신및소비행태 개선방인 ('ʔl.lʔ)	한 국가 NDC 달성 및 탄소중립 견인을 위해 수립 • 산업부문 효율화 / 행태 변화 / 기기효율화 / EERS도입

- > (정책 실행력 확보) 정부 주요계획상 효율정책의 시행효과 극대화 필요
 - ◆ EMS, 스마트산단, 그린리모델링, 스마트조명 등 20개 수단 EERS 연계 검토

추진배경

EERS 사업 방법

고효율기기 교체 및 신설 지원

Prescriptive Incentive Program

고효율 LED (50~70% 절감)

고효율 인버터 (30% 절감)

사출성형기 (30~80% 절감)

회생제동장치 (10~30% 절감)

히트펌프 보일러 (30% 절감)

.....

제3자 대행

Custom Program

ESCO 활용 사업

유통사/제조사 지원사업 (소비자 + 유통·제조사)

LH, 임대주택 LED 교체 사업

....

행동변화

Behavioral Energy Efficiency Programs

에너지캐쉬백

에너지챌린지

미래세대 에너지교육

소비자 교육 절감 경진대회

녹색아파트 조성사업

.

성과검증?

Measurement and Verification

에너지 효율향상 사업(고효율 기기로 교체 또는 운전방식 효율화 등)을 통해 발생한 에너지 절감량을 신뢰성 있게 결정하는 일련의 과정

에너지 절감량

= 기준연도 에너지사용량

개선 후 에너지사용량

조정1)

1) 조정: 기준연도와 개선 후 기간 사이 에너지소비에 영향을 주는 인자(기후,거주자수,사용시간,생산량변화등) 반영

★ M&V (Measurement & Verification) : 측정 및 검증

중요성?

필요성

EERS 도입에 따라 에너지 절감량에 대한 정확도·신뢰성 확보를 위한 M&V 중요성 대두

기존

비용 집행액 평가

>>>

EERS

절감량(GWh) 평가

방법

International Performance MV Protocol 적용

- 샘플 측정(표준화), 실제 절감량 측정(비표준화) 등

KEPCO 계획 본사업(**2021**) 대비 **실측 기반** 에너지 사용량 정보의 **측정·수집·분석**을 위한 **시스템 구축**

측정 및 검증	에너지관리 프로그램에 의한 개별 설비의 실제 절감량을 신뢰성
(M&V)	있게 결정하기 위한 측정 및 검증 프로세스
베이스라인	베이스라인 기간과 관련된 에너지 효율향상 활동 수행 전 계량,
(Baseline)	측정된 설비나 시스템의 에너지 성능
베이스라인 기간 (Baseline Period)	설비나 시스템의 작동을 대표하도록 선택 및 설정한 기간
검증기관 (Verifcation Entity)	에너지 절감 프로젝트의 EMBV계획, 설치 후 및 정기 실적 보고 등에 대하여 검증을 전문적으로 할 수 있는 인적 및 물적 능력을 갖춘 전문기관
계측 (Metering)	· - 측정 설비를 사용하여 시간에 따른 시설의 에너지 데이터를 수집하는 것
검증	의도된 목적에 대한 적합성 평가를 위해 제3자가 수행하는 EMEV계획,
(Verifcation)	정기실적 보고 등의 평가 과정
절감량	에너지사용이나 비용의 절감량을 말하고, 물리적인 절감량은 회피
(Savings)	에너지 비용 또는 정규화 절감량으로 표현
에너지 절감 조치	시설, 시스템 혹은 설비의 일부 에너지 효율을 증가시키기 위하여
(EPIA)	설계된 활동이나 활동의 집합

표준 유형

MEV 방식	유형	산출방식
기본방식	사전	유형별표준절감량×효율향상단위±조정
실측방식	사후	(효율향상조치시행전계측자료-시행후계측자료)±조정
조정방식	사전/사전+사후	절감량산출모델에투입자료(기기스펙,가동시간등)입력
조사방식	-	행태변화에 따른 에너지절감량 추정

기본 접근방법

- 비용, 기술 한계 등의 측정 한계로 표본추출 측정
- 실측방식 기본 적용(교체 전후 사용량 측정)
- (필요시)생산량,부하,온도등 영향인자조정

에너지절감량 계산 베이스라인 에너지사용량 - 성과기간 에너지 사용량 ± 조정량

Ⅰ 추진배경

◆ EERS 사업 절감량의 정확한 산정을 위해 성과검증의 정확도 향상 필요

현 황 현재 EERS사업 절감량은 수식에 의한 절감량 단순 적용 및 별도 계기 현장부설

문제점 단순적용으로 실제 절감량과 차이가 발생하고, 현장여건(문 잠김, 설치비협조 등)에 따라 계기부설 불가

필요성 EERS 세부품목 별 과거 검침량 분석을 통해 정확한 에너지 절감량 추정모델 개발

업무DB화

- 효율성 및 자료 신뢰도 향상
- 자료보관 용이

사손발생 예방

•사업목표미달성페널티가능성차단

성과검증비용 최소화

- 데이터 정확도 향상으로 측정불요
- 절감량추정가능

Ⅱ 과제개요

✔ Python을 이용한 고객의 전기사용 패턴 분석 및 절감량 예측 모델 개발

분석도구 Jupyter Notebook (사내 데이터 통합플랫폼 Hub-POP)

분석방법 다항 회귀*(Polynomial Regression)

활용자료 전사 LED 사업 참여 고객 3,532호 월사용량 LP데이터 70,225건

분석과정 전력사용량 자료를 이용해 회귀분석을 통해서 정확도 확인 및 향후 수요관리시스템 연계방안 강구

월별 전력사용량 자료 추출

- 2개년 평균치 대비 절감량
- 오류데이터 처리 등 데이터 전처리

다항회귀를 이용한 분석

- •독립변수 및 차수 설정
- •차수별 정확도 확인 및 최적화

수요관리시스템 연계

- 시스템 연계에 따른 전사확대
- •EERS 성과검증 관련 시범사업 발굴

Ⅱ 과제개요

1.2만호 고객의 1년치 EERS 참여고객 에너지 절감량(LP) 패턴 학습

학습 대상

개발

방법

전사

3.5천호 고객

계약종별

주택용

데이터 종류

월사용량

데이터 기간

'20.1~21.12 월

데이터 규모

7만건

데이터 취득

사내/외 데이터

K-AMI (시간별LP)

수요관리정보시스 템(고객정보)

> 공공데이터 (기상정보)

데이터 <u>전처리</u>

가공/보청/병 한

결측치 및 이상치 제거

데이터 보정

데이터 병합

분석 및 예측

학습 및 예측

ARIMA (머신러닝)

LSTM/GRU/RNN (딥러닝)

검증

정확도 검증

예측값 ↔ 실측값 차이 비교

주요코드

```
reg = np.polyfit(Month, kW, 1) # 1차방정식
x = np.linspace(0, 13) # 간격
y = reg[0] * x + reg[1] # y = ax +b,
plt.plot(x, y, 'r') # 그래프 빨간색

plt.scatter(Month, kW) #산점도
plt.xlabel("Month") #x축
plt.ylabel("kW") #y축
```


주유코드

```
reg = np.polyfit(Month, kW, 2) # y = ax + b, 뒤의 숫자는 차수를 의미 reg # reg[0]*x**2 + reg[1]*x + reg[2]
```

```
x = np.linspace(0, 13)
y = reg[0]*x**2 + reg[1]*x + reg[2]
plt.plot(x,y, 'r')

plt.scatter(Month, kW)
plt.xlabel("Month")
plt.ylabel("kW")

plt.show()
```


주요코드

```
reg = np.polyfit(Month, kW, 3) # y = ax + b, 뒤의 숫자는 차수를 의미 reg
```

```
x = np.linspace(0, 13)
y = reg[0]*x**3 + reg[1]*x**2 + reg[2]*x +reg[3]
plt.plot(x,y, 'r')

plt.scatter(Month, kW)
plt.xlabel("Month")
plt.ylabel("kW")

plt.show()
```


주요코드

```
reg = np.polyfit(Month, kW, 4) # y = ax + b, 뒤의 숫자는 차수를 의미 reg
```

```
x = np.linspace(0, 13)
y = reg[0]*x**4 + reg[1]*x**3 + reg[2]*x**2 + reg[3]*x + reg[4]
plt.plot(x,y, 'r')

plt.scatter(Month, kW)
plt.xlabel("Month")
plt.ylabel("kW")

plt.show()
```


주요코드

Numpy polyfit 함수를 이용해서 다항식으로 변환 후, R-squared*를 통해 적합도 측정

```
reg = np.polyfit(Month, kW, 5) # y = ax + b, 뒤의 숫자는 차수를 의미 reg
```

```
x = np.linspace(0, 13)
y = reg[0]*x**5 + reg[1]*x**4+ reg[2]*x**3 + reg[3]*x**2 + reg[4]*x + reg[5]
plt.plot(x,y, 'r')

plt.scatter(Month, kW)
plt.xlabel("Month")
plt.ylabel("kW")

plt.show()
```


* 선형 회귀모델에 대한 적합도 측정방법

코드결과

4차항으로 구현했을 때 일치율(84.7%)로 가장 높았으며, 차수를 올려도 동일

EERS M&V 실측방식을 'AMI data 활용' 모델(사용패턴 분석)로 대체 활용 가능

As-Is

기존 절감량 산정 방식 사업별 기본방식(기준 절감량) 활용

절감량 산정 : 기기별 평균 사용량 활용

유형별 표준 절감량 × 효율향상 단위 ± 조정

실측 데이터 미사용 -> 오차율 높음

사용량 조정 : 없음

사업 참여고객의 전력소비 행태변화에 따른 에너지절감량 추정 필요!

개선 필요

To-Be

실측데이터 활용 + 개발 모델 적용 당월 검침 실적 보유 기간에 따라 차등 적용

사용 패턴 분석 : AMI data 활용 모델

시행 전 계측자료 - 시행 후 계측자료 ± 조정

AMI 기반 데이터

선월 실석 : 당월 검점 실석 10일 미만 (좌동)

Ⅳ 최종결론

◆ 문제점 및 개선사항

문 제점 자료 표본(사업 신청고객:파워플래너 가입고객 수) 부족으로 적합도가 낮음

개선사항 '23년 23개 사업대상 표본수 확대 추진 (정확도 향상을 위해 월사용량 data → 시간대별 data 활용 분석)

* 디지털변환처 연구과제 정식개발 추진

고효율 펌프

LED

히트펌프 김건조기

고효율 인버터

전동식 사출 성형기

∨ 기대효과

성과검증 정확도 신뢰도 향상에 따른 정량적, 정성적 기대효과

정량적 EERS 사업 성과검증 방법 변경으로, 연간 6.2억원 절감 가능

구 분	산정식
성과검증 절감비용	1,620천원(검증비용) x 372개소(연간 검증개소) = 연간 6.2억원

<mark>정성적</mark> ▶ EERS 사업 절감량의 정확도 향상으로 EERS 신뢰도 향상

성과검증 데이터 신뢰도 향상

감사합니다

