1 Klasifikacija temeljena na Bayesovoj decizijskoj teoriji

/Statistički pristup raspoznavanju uzoraka/

PRIMJER: M=2 $\omega = \omega_1$ JASEN $\omega = \omega_2$ JELA

Slika 1: Primjer

 x_0 - nije dovoljan DRUGA KARAKTERISTIKA: IZRAŽENOST STRUKTURE DRVETA! JASEN ima izraženiju strukturu drveta VEKŢOŖ UZORKA

$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 x_1 - TON, x_2 - STRUKTURA

Slika 2: Prikaz klasa

PRETPOSTAVKA: PROMATRAMO POJAVLJIVANJE DASKE - SLUČAJNO POJAVLJIVANJE VRSTE DASKE (JASEN ili JELA) "IGRA PRIRODE" \to STANJE PRIRODE (ili VANJSKOG SVIJETA) NEKA JE ω

 $\omega = \omega_1$ jasen $\omega = \omega_2$ jela

- Budući da se stanje prirode ne može predvidjeti ω se promatra kao slučajna (engl. random) varijabla
- Ako tvornica proizvodi jednak broj jelovih i jasenovih dasaka \to slijedeći komad daske ima jednaku vjerojatnost da bude jasen ili pak jela

á priori vjerojatnost P(ω_1)/ da daska bude jasena/ á priori vjerojatnost P(ω_2) / jelova daska/ CESU: P(ω_1) ≥ 0; P(ω_2) ≥ 0 i P(ω_1)+P(ω_2)=1

Pretpostavimo da odluku moramo donijeti samo na temelju vrijednosti \acute{a} priori vjerojatnosti:

DECIZIJSKO PRAVILO: Odlučujem se za ω_1 ako je $P(\omega_1)>P(\omega_2)$, inače odlučujem ω_2

"Čudno pravilo" — uvijek donosim istu odluku iako znamo da se
 <u>oba</u> tipa dasaka pojavljuju

Ako je $P(\omega_1)\gg P(\omega_2)$ OK

Ako je P(ω_1)=P(ω_2) 50%-50%

UZMIMO U OBZIR SVJETLINU odn. TON DRVETA!

- različiti uzorci dasaka daju različitu svjetlinu: Neka je x kontinuirana slučajna varijabla čija distribucija zavisi od stanja prirode.

- uvjetna gustoća razdiobe vjerojatnosti (state-conditional probability density function)

 $p(x|\omega_i)$ - gustoća razdiobe vjerojatnosti

Funkcija gustoće razdiobe vjerojatnosti (probability density function) za kontinuiranu varijablu x jeste takva funkcija f(x) koja ima svojstva:

1. $f(x) \ge 0$ za svaki x

$$2. \int_{-\infty}^{+\infty} f(x)dx = 1$$

3.
$$\int_{x_1}^{x_2} f(x)dx = P\{x_1 < x < x_2\}$$

Slika 3: Gustoća razdiobe vjerojatnosti

PRETPOSTAVKA:

- znamo \acute{a} priori vjerojatnosti $P(\omega_j)$ i uvjetne gustoće razdiobe vjerojatnosti $p(x|\omega_i)$ (engl. likelihood of ω_j , vjerodostojnost)

Pretpostavimo da smo izmjerili svjetlinu daske i dobili vrijednost x KAKO TO MJERENJE UTJEČE NA NAŠU ODLUKU O PRAVOM STANJU PRIRODE?

BAYESOVO PRAVILO:
$$P(\omega_j|x) = \underbrace{\frac{p(x|\omega_j)P(\omega_j)}{p(x)}}_{\text{engl. evidence}}$$

$$p(x) = \sum_{j=1}^{2} p(x|\omega_j)P(\omega_j)$$

BAYESOVO PRAVILO→ pokazuje kako promatrana vrijednost x mijenja \acute{a} priori vjerojatnost $P(\omega_i)$ u \acute{a} posteriori vjerojatnost $P(\omega_i|x)$

Slika 4: Aposteriori vjerojatnosti

- imamo promatranje x za koje je $P(\omega_1|x){>}P(\omega_2|x)$ odluka: stanje prirode je $\omega_2!$ VJEROJATNOST POGREŠKE?

 $(\text{vjerojatnost pogreške pri svakoj odluci: } P(error|x)) \\ P(error|x)) = \begin{cases} P(\omega_1|x) & \text{ako se odlučimo za } \omega_2 \\ P(\omega_2|x) & \text{ako se odlučimo za } \omega_1 \end{cases}$

MINIMIZIRAJMO VJEROJATNOST POGREŠKE DONOŠENJEM SLIJEDEĆIH ODLUKA:

 ω_1 ako je $P(\omega_1|x) > P(\omega_2|x)$ ili ω_2 ako je $P(\omega_2|x) > P(\omega_1|x)$ Da li ovo pravilo minimizira srednju vjerojatnost pogreške?

$$Da \to P(error) = \int_{-\infty}^{+\infty} P(error, x) dx = \int_{-\infty}^{+\infty} P(error|x) p(x) dx$$

jer ako je za svaki x P(error|x) najmanja moguća vrijednost tada i integral mora biti najmanji.

Bayesovo decizijsko pravilo za minimizaciju vjerojatnosti pogreške: ODLUČI SE ZA ω_1 ako je $P(\omega_1|x)>P(\omega_2|x)$ inače odluči se za ω_2

$$P(\omega_j|x) = \underbrace{\frac{p(x|\omega_j)P(\omega_j)}{p(x)}}_{\text{(nije bitrof!!)}}$$

p(x) samo skalarni faktor koji osigurava da $P(\omega_1|x) + P(\omega_2|x) = 1$ MODIFICIRANO PRAVILO:

ODLUČI SE ZA ω_1 <u>ako</u> je $p(x|\omega_1)P(\omega_1)>p(x|\omega_2)P(\omega_2)$ inače ω_2

Pretpostavimo neke situacije:

- ako je za neki x $p(x|\omega_1) = p(x|\omega_2)$ odluka se temelji na \acute{a} priori vjerojatnosti
- ako je $P(\omega_1) = P(\omega_2)$ odluka se temelji na $p(x|\omega_j) \to \text{vjerojatnost } \omega_j$ u odnosu na x.

UOPĆENJE:

- 1. upotreba više od jedne značajke,
- 2. više od dva stanja prirode,
- 3. dopustit ćemo i akciju umjesto same odluke o stanju prirode,
- 4. uvest ćemo funkciju gubitka kao općenitiju mjeru u odnosu na vjerojatnost pogreške
- 1. upotreba više od jedne značajke
 - umjesto skalara x rabimo vektor značajki $\vec{X} \in R^d; \vec{X}$ je d-dimenzionalni vektor iz Euklidskog prostora R^d
- 2. više od dva stanja prirode
 - Neka je $\{\omega_1,\ldots,\omega_c$ konačan skup od c
 stanja (razreda, kategorija)
- 3. uvođenje akcije umjesto samo odluke o stanju prirode
 - skup $\{\alpha_1,\ldots,\alpha_a$ konačan skup od a mogućih akcija
- 4. funkcija gubitka (engl. loss function) $\lambda(\alpha_i|\omega_j)$ $\overline{\lambda(\alpha_i|\omega_j)}$ opisuje gubitak nastao poduzimanjem akcije α_i kada je stanje prirode ω_j

 \vec{X} - d-dimenzionalni vektor značajki $p(\vec{X}|\omega_j)$ - funkcija uvjetne razdiobe gustoće vjerojatnosti $p(\omega_j)$ - apriorna vjerojatnost da je stanje prirode ω_j

Posteriorna vjerojatnost $P(\omega_j|\vec{X})$ (Bayesova formula):

$$P(\omega_j | \vec{X}) = \frac{p(x|\omega_j)P(\omega_j)}{p(\vec{X})}$$
$$p(\vec{X}) = \sum_{j=1}^{c} p(x|\omega_j)P(\omega_j)$$

- Pretpostavimo da smo promotrili \vec{X} i da smo na temelju tog promatranja poduzeli akciju α_i
 - ako je stanje prirode ω_j , po definiciji, pretrpili smo gubitak $\lambda(\alpha_i|\omega_j)$
- Budući da je $P(\omega_j|\vec{X})$ vjerojatnost da je stanje prirode za
ista ω_j očekujemo gubitak koji nastaje poduzimanjem akcije
 α_i

$$R(\alpha_i|\vec{X}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j) P(\omega_j|\vec{X}) \to \underline{\text{Očekivani gubitak}} \text{ (rizik)}$$

$$R(\alpha_i|\vec{X}) \to \text{uvjetni rizik}$$

Kadgod se susretnemo s određenim \vec{X} , možemo MINIMIZIRATI očekivani gubitak tako da izaberemo AKCIJU koja minimizira uvjetni rizik - Bayesova decizijska procedura daje optimalnu performansu

Decizijsko pravilo je funkcija $\alpha(\vec{X})$ koja nam kaže koju akciju poduzeti za svako promatranie \vec{X} :

Za svaki \vec{X} decizijska funkcija $\alpha(\vec{)}$ podrazumijeva izbor jedne od a akcija $\alpha_1, \ldots, \alpha_a$. Ukupan rizik R je očekivani gubitak pridruen zadanom decizijskom pravilu. $R(\alpha_i|X)$ je uvjetni rizik pridružen akciji α_i a budući da decizijsko pravilo specificira akciju ukupan rizik je:

$$R = \int R(\alpha(\vec{X}), \vec{X}) p(\vec{X}) d\vec{X},$$

 $d\vec{X}$ d-volumenski element a \int se "proteže" nad cijelim prostorom značajki.

Ako $\alpha(\vec{X})$ je izabran tako da je $R(\alpha_i(\vec{X}))$ što je moguće manji za svaki \vec{X} , tako da se ukupan rizik minimizira.

Bayesovo decizijsko pravilo:

Da bi minimizirali ukupan rizik, izračunajmo uvjetni rizik

$$R(\alpha_i|\vec{X}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j)P(\omega_j|\vec{X})$$
 za $i=1,2,\ldots,a$ i tada IZABERIMO AKCIJU

 α_i za koju je $R(\alpha_i|\vec{X})$ MINIMUM.

Rezultirajući minimalni ukupni rizik naziva se Bayesov rizik.

Primjer klasifikacije za M=2

```
\overline{\alpha_1} - akcija koja odgovara odluci da je pravo stanje prirode \omega_1
```

 α_2 - akcija koja odgovara odluci ω_2

Ispišimo uvjetni rizik:

$$R(\alpha_1|\vec{X}) = \lambda(\alpha_1|\omega_1)P(\omega_1|\vec{X}) + \lambda(\alpha_1|\omega_2)P(\omega_2|\vec{X})$$

$$R(\alpha_2|\vec{X}) = \lambda(\alpha_2|\omega_1)P(\omega_1|\vec{X}) + \lambda(\alpha_2|\omega_2)P(\omega_2|\vec{X})$$

Bayesovo decizijsko pravilo:

Odluči se za ω_1 ako je $R(\alpha_1 | \vec{X}) < R(\alpha_2 | \vec{X})$

Kraće pišemo $\lambda_{ij} = \lambda(\alpha_i | \omega_j)!$

$$\lambda_{11}P(\omega_1|\vec{X}) + \lambda_{12}P(\omega_2|\vec{X}) < \lambda_{21}P(\omega_1|\vec{X}) + \lambda_{22}P(\omega_2|\vec{X})$$

$$(\lambda_{11} - \lambda_{21})P(\omega_1|\vec{X}) < (\lambda_{22} - \lambda_{12})P(\omega_2|\vec{X})$$

$$-(\lambda_{21} - \lambda_{11})P(\omega_1|\vec{X}) < -(\lambda_{12} - \lambda_{22})P(\omega_2|\vec{X}) / (-1)$$

$$(\lambda_{21} - \lambda_{11})P(\omega_1|\vec{X}) > (\lambda_{12} - \lambda_{22})P(\omega_2|\vec{X})$$

Odlučujemo se za
$$\omega_1$$
 ako je $(\lambda_{21} - \lambda_{11})P(\omega_1|\vec{X}) > (\lambda_{12} - \lambda_{22})P(\omega_2|\vec{X})$

Općenito vrijedi da je $\lambda_{11} < \lambda_{21}$ i $\lambda_{22} < \lambda_{12}$

(gubitak za ispravnu klasifikaciju je manji negoli za neispravnu)

$$\lambda_{21} - \lambda_{11} > 0$$

$$\lambda_{21} - \lambda_{11} > 0$$

$$\lambda_{12} - \lambda_{22} > 0$$

Odlučimo se za ω_1 ako je:

$$(\lambda_{21} - \lambda_{11})P(\omega_1|X) > (\lambda_{12} - \lambda_{22})P(\omega_2|X)$$

Odlucimo se za
$$\omega_1$$
 ako je:
$$(\lambda_{21} - \lambda_{11}) P(\omega_1 | \vec{X}) > (\lambda_{12} - \lambda_{22}) P(\omega_2 | \vec{X})$$

$$\frac{p(\vec{X} | \omega_1)}{p(\vec{X} | \omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \cdot \frac{P(\omega_2)}{P(\omega_1)} \rightarrow \text{omjer vjerodostojnosti (engl. likelihood ratio)}$$

Odlučujemo se za ω_1 , ako je omjer vjerodostojnosti prešao prag koji je <u>nezavisan od \vec{X} !</u>

Prag: $\frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$

- Klasifikacija s najmanjom pogreškom

U problemu klasifikacije \rightarrow svakom se stanju prirode obično pridružuje jedan od c razreda, a akcija α_i se tumači kao odluka da je pravo stanje prirode ω_i :

- Ako je α_i akcija poduzeta i ako je pravo stanje prirode ω_j tada je odluka ispravna ako je i=j, a pogrešna ako je $i \neq j$.
- Ako se pogreška želi izbjeći prirodno je tražiti decizijsko pravilo koje minimizira vjerojatnost pogreške (error rate).

Funkcija gubitka za ovaj slučaj (klasifikacija) se obično izabire kao $\underline{\text{SIMETRINČNA}}$ ili $\underline{\text{NULA-JEDAN}}$ funckija gubitka:

ili NULA-JEDAN funckija gubitka:
$$\lambda(\alpha_i|\omega_j) = \begin{cases} 0 & i=j\\ 1 & i\neq j \end{cases} i,j=1,\ldots,c$$

- funkcija gubitka dodjeljuje gubitak 0 za ispravnu odluku, 1 za bilo koju pogrešku (sve pogreške jednako "koštaju").

Rizik koji odgovara toj funkciji je:

$$R(\alpha_i|\vec{X}) = \sum_{j=1}^{C} \lambda(\alpha_i|\omega_j) P(\omega_j|\vec{X}) = \sum_{j\neq i} P(\omega_j|\vec{X}) = 1 - P(\omega_i|\vec{X})$$

 $P(\omega_i|\vec{X})$ je uvjetna vjerojatnost da je akcija α_i .

Bayesovo decizijsko pravilo koje minimizira rizik traži izbor akcije koja minimizira uvjetni rizik.

Da minimiziramo srednju vjerojatnost pogreške, moramo izabrati i koji maksimizira posteriori vjerojatnost $P(\omega_i|\vec{X})$.

Minimalna pogreška se dobiva na ovaj način:

Odluči se za ω_i ako je $P(\omega_i|\vec{X}) > P(\omega_j|\vec{X})$ za sve $j \neq i$

Bayesovo decizijsko pravilo za minimiziranje vjerojatnosti pogreške: Odluči se za ω_1 ako je $P(\omega_1|\vec{X})>P(\omega_2|\vec{X})$ inače odluči se za ω_2

Primjer:

$$\begin{array}{l} \frac{p(\vec{X}|\omega_1)}{p(\vec{X}|\omega_2)} > \frac{(\lambda_{12}-\lambda_{22})}{(\lambda_{21}-\lambda_{11})} \cdot \frac{P(\omega_2)}{P(\omega_1)} \\ \text{"0-1" funckija gubitka:} \\ \lambda_{22} = 0; \; \lambda_{11} = 0; \; \lambda_{12} = 1; \; \lambda_{21} = 1; \\ \frac{p(\vec{X}|\omega_1)}{p(\vec{X}|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)} \end{array}$$

- Ako funkcija gubitka "kažnjava" više pogrešnu klasifikaciju uzorka \vec{X} koji stvarno pripada ω_2 onda je $\lambda_{12} = \lambda(\alpha_1|\omega_2) > \lambda(\alpha_2|\omega_1)$ i pri $\lambda_{11} = \lambda_{22} \ \Theta_a \to \Theta_b$ (područje R_1 se smanjuje!)

Slika 5: Primjer

Primjer klasifikacije za M=c (c>2) razreda

- skup diskriminantnih funkcija $g_i(\vec{X}), i = 1, \dots, c$
- klasifikator razvrstava nepoznati vektor značajki \vec{X} u razred ω_i ako $g_i \vec{X} > g_j \vec{X}$ za sve $j \neq i$ Klasifikator kao "stroj" koji računa c diskriminantnih funkcija i izabire razred koji ima najveću vrijednost diskriminante funkcije

Slika 6: Shema klasifikatora

Bayesov klasifikator se također može prikazati strukturom na slici

- Za opći slučaj s rizikom možemo izabrati $g_i(\vec{X}) = -R(\alpha_i|\vec{X})$ (maksimalna vrijednost diskriminantne funkcije odgovara minimalnoj vrijednosti uvjetnog
- za slučaj minimalne pogreške možemo uzeti $g_i(\vec{X}) = P(\omega_i | \vec{X})$ tako da maksimum diskriminantne funkcije odgovara maksimumu posteriorne vjerojat-
- VAŽNO: izbor diskriminantne funkcije nije jedinstven
 - diskriminantne fuckije možemo pomnožiti s istom pozitivnom kon-
 - diskriminantnim funkcijama moemo pribrojiti istu pozitivnu kon-
 - svaku $_i(\vec{X})$ možemo zamijeniti s $f(g_i(\vec{X})),$ gdje je f(.) monotono rastuća funkcija

$$g_i(\vec{X}) = P(\omega_i | \vec{X}) = \frac{p(\vec{X} | \omega_i) \cdot P(\omega_i)}{\sum\limits_{j=1}^{c} p(\vec{X} | \omega_j)(\omega_j)}$$

$$g_i(\vec{X}) = p(\vec{X}|\omega_i) \cdot P(\omega_i)$$

$$\begin{split} g_i(\vec{X}) &= p(\vec{X}|\omega_i) \cdot P(\omega_i) \\ g_i(\vec{X}) &= \ln p(\vec{X}|\omega_i) + \ln P(\omega_i), \text{ gdje je ln prirodni logaritam.} \end{split}$$

- Bez obzira na oblik diskriminante funkcije decizijsko pravilo ostaje isto Efekt decizijskog pravila je dijeljenje prostora značajki na decizijska područja $R_1, R_2, \ldots, R_{\underline{c}}$.
 - dručja R_1, R_2, \ldots, R_c . Ako je $g_i(\vec{X}) > g_j(\vec{X})$ za sve $i \neq j$ tada je \vec{X} iz R_i te decizijsko pravilo razvrstava \vec{X} u razred ω_i . Područja su odjeljena decizijskim granicama

Diskrimnantne funkcije i decizijske plohe

- minimizacija vjerojatnosti pogreške je ekvivalentna dijeljenju prostora značajki u M područja (za M razreda);
- Ako su područja R_i i R_j susjedna tada ih dijeli decizijska ploha (u višedimenzionalnom prostoru značajki)
- decizijska ploha je u tom slučaju definirana jednadžbom: $\frac{P(\omega_i|\vec{X}) P(\omega_j|\vec{X}) = 0}{\text{druge strane plohe negativna/}} / \text{s jedne strane plohe razlika je pozitivna, a s}$
- $g_i(\vec{X}) = f(P(\omega_i|\vec{X}))$ gdje je f(.) monotono rastuća funkcija $_i(\vec{X})$ <u>diskriminantna funkcija</u> Pravilo klasirikacije: Klasificiraj \vec{X} u ω_i ako $g_i(\vec{X}) > g_j(\vec{X})$; $j \neq i$
- decizijska ploha koja odvaja dvije susjedne regije (područja) je opisana s: $g_{ij}(\vec{X}) = g_i(\vec{X}) g_i(\vec{X}) = 0; i, j = 1, 2, ..., M; i \neq j$

Bayesova klasifikacija za normalne distribucije

 Jedna od najčešće korištenih funkcija gustoće razdiobe vjerojatnosti (pdfprobability density function) u praksi je Gaussova ili normalna gustoća razdiobe vjerojatnosti.

Razlog: modelira razdiobu u velikom broju slučajeva

- Pretpostavimo da funkcija vjerodostojnosti (engl. likelihood function) od ω_i u odnosu na \vec{X} su u l-dimenzionalnom prostoru značajki predočene s: $p(\vec{X}|\omega_i) = \frac{1}{(2\pi)^{l/2}|\Sigma_i|^{1/2}} \exp{(-\frac{1}{2}(\vec{X}-\vec{\mu_i})^T\Sigma_i^{-1}(\vec{X}-\vec{\mu_i}))},$ gdje je $\vec{\mu_i} = E(\vec{X})$ srednja vrijednost razreda ω_i ; Σ_i je $l \times l$ kovarijantna matrica definirana kao:

$$\Sigma_i = E[(\vec{X} - \vec{\mu_i})(\vec{X} - \vec{\mu_i})^T]$$

 $|\Sigma_i|$ - označava determinantu od Σ_i , a E[.] je srednja vrijednost (ili matematička nada; očekivanje) slučajne varijable.

Gaussova distribucija (pdf):

 $\mathcal{N}(\vec{\mu}, \Sigma)$

Zadatak: Oblikovati Bayesov klasifikator

- eksponencijalni oblik nije podoban!
- koristit ćemo diskriminantnu funkciju koja rabi monotonu logaritamsku funkciju ln(.):

$$g_{i}(\vec{X}) = \underbrace{f}_{\ln(.)}(P(\omega_{i}|\vec{X}));$$

$$g_{i}(\vec{X}) = \ln(p(\vec{X}|\omega_{i})P(\omega_{i})) = \ln p(\vec{X}|\omega_{i}) + \ln P(\omega_{i}))$$

$$g_{i}(\vec{X}) = -\frac{1}{2}\vec{X}^{T}\Sigma_{i}^{-1}\vec{X} + \frac{1}{2}\vec{X}^{T}\Sigma_{i}^{-1}\vec{\mu}_{i} - \frac{1}{2}\vec{\mu}_{i}^{T}\Sigma_{i}^{-1}\vec{\mu}_{i} + \frac{1}{2}\vec{X}^{T}\Sigma_{i}^{-1}\vec{\mu}_{i} + \frac{1}{2}\vec{X}^{T}\Sigma_{i}^{T}\Sigma_{i}^{T}\vec{\mu}_{i} + \frac{1}{2}\vec{X}^{T}\Sigma_{i}^{T}\vec{\mu}_{i} + \frac{1}{2}\vec{X}^{T}\Sigma_{i}^$$

 $\frac{1}{2}\vec{\mu_i}^T \Sigma_i^{-1} \vec{X} + \ln P(\omega_i) + c_i,$

gdje je c_i konstanta jednaka $-\frac{l}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i|$

Općenito, $g_i(\vec{X})$ je nelinearna kvadratna forma; Na primjer, za l=2 i za

$$\Sigma_i = \begin{pmatrix} \sigma_i^2 & 0\\ 0 & \sigma_i^2 \end{pmatrix}$$

decizijska funkcija
$$g_i(\vec{X})$$
 ima oblik:
$$g_i(\vec{X}) = -\frac{1}{2\sigma_i^2}(x_1^2 + x_2^2) + \frac{1}{\sigma_i^2}(\mu_{i1}x_1 + \mu_{i2}x_2) - \frac{1}{2\sigma_i^2}(\mu_{i1}^2 + \mu_{i2}^2) + \ln P(\omega_i) + c_i$$

Decizijske krivulje:

 $g_i(\vec{X}) - g_i(\vec{X}) = 0$ su kvadratnog oblika (elipsoidi, parabole, hiperbole) za l>2 decizijske granice \rightarrow hiperkvad. forme.

Primjer:

$$\begin{aligned} & \overrightarrow{P(\omega_1)} = P(\omega_2) \\ & \overrightarrow{\mu_1} = [0, 0]^T \text{ i } \overrightarrow{\mu_2} = [1, 0]^T \\ & \Sigma_1 = \begin{bmatrix} 0.1 & 0.0 \\ 0.0 & 0.15 \end{bmatrix}, \ \Sigma_2 = \begin{bmatrix} 0.2 & 0.0 \\ 0.0 & 0.25 \end{bmatrix} \end{aligned}$$

Slika 7: Primjer Gauss

Decizijske hiperravnine(plohe)

Doprinos kvadratnom obliku u izrazu:

$$g_i(\vec{X}) = -\frac{1}{2} \vec{X}^T \Sigma_i^{-1} \vec{X} + \frac{1}{2} \vec{X}^T \Sigma_i^{-1} \vec{\mu_i} - \frac{1}{2} \vec{\mu_i}^T \Sigma_i^{-1} \vec{\mu_i} + \frac{1}{2} \vec{\mu_i}^T \Sigma_i^{-1} \vec{X} + \ln P(\omega_i) + c_i$$
je prvi član $\vec{X}^T \Sigma_i^{-1} \vec{X}$

Ako pretpostavimo da je kovarijantna matrica ista za sve razrede: $\Sigma_i = \Sigma$

kvadratni izraz $\vec{X}^T \Sigma_i^{-1} \vec{X}$ bit će jednak za sve diskriminantne funkcije! - $\vec{X}^T \Sigma_i^{-1} \vec{X}$ i c_i možemo ispustiti!

Decizijska funkcija poprima oblik:

$$g_i(\vec{X}) = \vec{W_i}^T \vec{X} + w_{i0}$$
, gdje je s

$$g_i(\vec{X}) = \vec{W_i}^T \vec{X} + w_{i0}$$
, gdje je :
 $\vec{W_i} = \Sigma^{-1} \vec{\mu_i} \text{ i } w_{i0} = \ln P(w_i) - \frac{1}{2} \vec{\mu_i}^T \Sigma^{-1} \vec{\mu_i}$

imamo
$$g_i(\vec{X}) = (\Sigma^{-1}\vec{\mu_i})^T \vec{X} + (\ln P(\omega_i) - \frac{1}{2}\vec{\mu_i}^T \Sigma^{-1}\vec{\mu_i})$$

 $g_i(\vec{X})$ je LINEARNA FUNKCIJA od \vec{X} i decizijske plohe su hiperravnine! Istražimo malo dalje:

• Kovarijantna matrica neka je dijagonalna s jednakim elementima

- pojedine značajke koje oblikuju vektor značajki su međusobno nekorelirane i imaju jednaku varijancu:

$$E[(x_i - \mu_i)(x_j - \mu_j)] = \sigma^2 \delta_{ij}$$

$$\Sigma = \sigma^2 I$$
, gdje je I $l \times l$ jedinična matrica $g_i(\vec{X}) = \vec{W_i}^T \vec{X} + w_{i0}$, gdje je $\vec{W_i} = \Sigma^{-1} \vec{\mu_i}$ postaje:

je
$$W_i = \Sigma^{-1} \mu_i$$
 postaje:

$$g_i(\vec{X}) = \frac{1}{\sigma^2} \mu_i \vec{X} + w_{i0} \text{ jer je } \Sigma^{-1} = \begin{bmatrix} \frac{1}{\sigma^2} & 0 & 0 & \dots & 0\\ 0 & \frac{1}{\sigma^2} & 0 & \dots & 0\\ \vdots & & & & \\ 0 & 0 & 0 \dots & \frac{1}{\sigma^2} \end{bmatrix}$$

- Decizijska hiperravnina je:

$$\begin{array}{l} g_{ij}(\vec{X}) = g_i(\vec{X}) - g_j(\vec{X}) = \vec{W}^T(\vec{X} - \vec{X_0}) = 0 \text{ gdje je} \\ \vec{W}\vec{\mu_i} - \vec{\mu_j} \text{ i } \vec{X_0} = \frac{1}{2}(\vec{\mu_i} + \vec{\mu_j}) - \sigma^2 \ln(\frac{P(\omega_i)}{P(\omega_j)}) \frac{\vec{\mu_i} - \vec{\mu_j}}{\|\vec{\mu_i} - \vec{\mu_j}\|^2} \end{array}$$

gdje je
$$\|\vec{X}\| = \sqrt{x_1^2 + x_2^2 + \ldots + x_l^2}$$
 Euklidska norma od \vec{X} .

- hiperravnina prolazi kroz točku $\vec{X_0}$; ako je $P(\omega_i) = P(\omega_j)$ onda je $\vec{X_0} = \frac{1}{2}(\vec{\mu_i} + \vec{\mu_j})$

tj. hiperravnina prolazi srednjom vrijednosti od $\vec{\mu_i}$ i $\vec{\mu_j}$

- decizijska hiperravnina (u našem slučaju: pravac) je ortogonalan na $\vec{\mu_i} - \vec{\mu_j}$
- za svaku točku \vec{X} koja leži na decizijskoj hiperravnini, vektor $\vec{X} \vec{X_0}$

$$g_{ij}(\vec{X}) = 0 \Rightarrow \vec{W}^T(\vec{X} - \vec{X_0}) = (\vec{\mu_i} - \vec{\mu_j})^T \cdot (\vec{X} - \vec{X_0}) = 0.$$

također leži na hiperravnini i vrijedi $g_{ij}(\vec{X}) = 0 \Rightarrow \vec{W}^T(\vec{X} - \vec{X_0}) = (\vec{\mu_i} - \vec{\mu_j})^T \cdot (\vec{X} - \vec{X_0}) = 0.$ Iz toga slijedi da je $\vec{\mu_i} - \vec{\mu_j}$ ortogonalan na decizijsku hiperravninu.

- hiperravnina je bliža $\vec{\mu_i}$ ako je $P(\omega_i < P(\omega_i))$, odnosno bliža $\vec{\mu_i}$ ako je $P(\omega_i) > P(\omega_j)$

$$\vec{X}_0 = \frac{1}{2}(\vec{\mu_i} + \vec{\mu_j}) - \sigma^2 ln(\frac{P(\omega_i)}{P(\omega_i)}) \frac{\vec{\mu_i} - \vec{\mu_j}}{\|\vec{\mu_i} - \vec{\mu_i}\|^2}$$

- ako je σ^2 mala vrijednost u odnosu na $\|\vec{\mu_i} - \vec{\mu_j}\|$ položaj hiperravnine je prilično "neostjetljiv" na vrijednosti $P(\omega_i)$ i $P(\omega_i)$.

Slika 8: Slika za dvodimenzionalni slučaj

/ mala varijanca pokazuje da su slučajni vektori grupirani u malom radijusu oko njihovih srednjih vrijednosti, tako da mali pomak hiperravnine ima mali utjecaj na rezultat klasifikacije/

• Konvarijantna matrica nije dijagonalna

$$\begin{array}{l} g_{ij}(\vec{X}) = \vec{W}^T(\vec{X} - \vec{X_o}) = 0 \\ \vec{W} = \Sigma^{-1}(\vec{\mu_i} - \vec{\mu_j}) \text{ i } \vec{X_0} = \frac{1}{2}(\vec{\mu_i} + \vec{\mu_j}) - ln(\frac{P(\omega_i)}{P(\omega_j)}) \frac{\vec{\mu_i} - \vec{\mu_j}}{\|\vec{\mu_i} - \vec{\mu_j}\|^2} \\ \text{gdje je } \left\| \vec{X} \right\|_{\Sigma^{-1}} \equiv (\vec{X}^T \Sigma^{-1} \vec{X})^{1/2}, \ \underline{\Sigma^{-1} \text{ norma od } \vec{X}} \\ \text{Komentari izneseni za slučaj prije vrijede i sada (hiperravnina prolazi kroz$$

točku $\vec{X_0}$, odnos hiperravnine naprema $\vec{\mu_i}$ i $\vec{\mu_j}$ u zavisnosti od $P(\omega_i)$ i $P(\omega_j))$ ali uz razliku da decizijska hiperravnina nije više ortogonalna na vektor $\vec{\mu_i}$ i $\vec{\mu_j}$ već na njegovu linearnu transformaciju $\Sigma^{-1}(\vec{\mu_i} - \vec{\mu_j})$.

Klasifikator na temelju minimalne udaljenosti

- pojednostavimo izraz:
$$g_i(\vec{X}) = -\frac{1}{2}(\vec{X} - \vec{\mu_i})^T \Sigma_i^{-1}(\vec{X} - \vec{\mu_i}) + \ln P(\omega_i) + c_i$$
 pretpostavkom da su svi razredi jednako vjerojatni i da imaju istu kovarijantnu

 $g_i(\vec{X}) = -\frac{1}{2}(\vec{X} - \vec{\mu_i})^T \Sigma_i^{-1}(\vec{X} - \vec{\mu_i})$ /konstantu c_i isto zanemarimo/

constantu
$$c_i$$
 isto zanemarimo/

- za slučaj $\Sigma = \sigma^2 I$ maksimum $g_i(\vec{X})$ podrazumijeva <u>minimum</u> $d_e = \left\| \vec{X} \vec{\mu_i} \right\|$, gdje je d_e Euklidska udaljenost
 - Vektor značajki klasificira se u razred u skladu s minimalnom vrijednosti Euklidske udaljenosti (između točke koja predstavlja taj vektor

i srednju vrijednost $\vec{\mu_i}$)

Slika 9: Klasifikacija najmanjom udaljenosti

- za slučaj kada Σ nije dijagonalna matrica; $g_i(\vec{X})$ postiže maksimum kada je Σ^{-1} norma minimalna: $d_m = (\vec{X} \vec{\mu_i})^T \Sigma^{-1} (\vec{X} \vec{\mu_i})^{1/2} \ d_m =$ Mahalanobisova udaljenost
 - u tom slučaju za $d_m = c$ krivulje su elipse (hiperelipse)
 - Kovarijantna matrica je simetrična i može biti dijagonizirana $\Sigma=\phi\Lambda\phi^T,$ gdje je $\phi^T=\phi^{-1}$ i Λ je dijagonalna matrica čiji elementi su svojstvene vrijednosti od $\Sigma.$
 - ϕ ima stupce koji predstavljaju odgovarajuće (ortonormalne) svojstvene vektore od Σ

$$\phi = [\vec{v_1}, \vec{v_2}, \dots, \vec{v_l}]$$

Kombinacijom $d_m = ((\vec{X} - \vec{\mu_i})^T \Sigma^{-1} (\vec{X} - \vec{\mu_i}))^{1/2}$ i $\Sigma = \phi \Lambda \phi^T$ dobivamo:

dobivamo:
$$(\vec{X}-\vec{\mu_i})^T\phi\Lambda^{-1}\phi^T(\vec{X}-\vec{\mu_i})=c^2$$

te $\vec{X}' = \phi^T \vec{X}$ dobivamo da su koordinate od \vec{X}' jednake $\vec{v_k} \vec{X}$, k = 1, 2, ..., l, tj. projekcije \vec{X} na svojstvene vektore.