Exercise 03 for MA-INF 2201 Computer Vision WS15/16 09.11.2015

Submission on 15.11.2015

- 1. Read the image circles.png.
 - 1.1. Detect the circles by a Hough transform using cv::HoughCircles. Visualize the detections by drawing circles on the image.
 - 1.2. Detect the circles by a Hough transform without using cv::HoughCircles. Visualize the detections and the accumulator.
 - 1.3. Using the solution of 1.2., detect both eyes (iris and center) in image face2.png. Visualize the detections and the accumulator.

(6 Points)

- 2. Read the image flower.png and segment the image using the cv::kmeans function. Utilize as features:
 - 2.1. Intensity,
 - 2.2. Color,
 - 2.3. Intensity and (properly scaled) image position.

Visualize the results for all three cases with k = 2, 4, 6, 8, 10.

(3 Points)

3. Read the image flower.png and segment it using mean-shift on Luv-colorspace and image position. Hint: one can discretize the shifts to match pixel coordinates. Further reading for more details: D. Comaniciu and P. Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002.

(8 Points)

- 4. For the graph shown in Figure 1, find the minimum $Cut(C_1, C_2)$ and normalized minimum cut $NCut(C_3, C_4)$. Provide the degree of each node. For both cuts provide:
 - the nodes in C_1 , C_2 , C_3 , and C_4 ,
 - the cost of the cuts $Cut(C_1, C_2)$, $Cut(C_3, C_4)$, $NCut(C_1, C_2)$, and $NCut(C_3, C_4)$,
 - the volumes $Vol(C_1)$, $Vol(C_2)$, $Vol(C_3)$, $Vol(C_4)$.

(3 Points)

Figure 1: A simple graph. All edges are bidirectional and equally weighted (w = 1).