第一章 张量的定义及表示

1.1 对偶基,度量

1.1.1 对偶基

设 $\{g_i\}_{i=1}^m$ 是 \mathbb{R}^m 空间中的一组基,即极大线性无关向量组.此时, \mathbb{R}^m 中将唯一存在另一组基 $\{g^i\}_{i=1}^m$,二者满足**对偶关系**:

$$(\mathbf{g}_i, \mathbf{g}^j)_{\mathbb{R}^m} = \delta_i^j = \begin{cases} 1, & j = i; \\ 0, & j \neq i. \end{cases}$$
 (1.1)

式中, $(\mathbf{g}_i, \mathbf{g}^j)_{\mathbb{R}^m}$ 的 δ_i^j 是 Kronecker δ 函数.

证明: 根据内积的定义,

$$(\mathbf{g}_i, \mathbf{g}^j)_{\mathbb{R}^m} = (\mathbf{g}^j)^\mathsf{T} \mathbf{g}_i = \delta_i^j, \tag{1.2}$$

其中的 i、j 可取 $1, 2, \dots, m$. 写成矩阵形式,为^①

$$\begin{bmatrix} \left(\mathbf{g}^{1} \right)^{\mathsf{T}} \\ \vdots \\ \left(\mathbf{g}^{m} \right)^{\mathsf{T}} \end{bmatrix} \left[\mathbf{g}_{1}, \dots, \mathbf{g}_{m} \right] = \mathbf{I}_{m}. \tag{1.3}$$

左边的第一个矩阵拆分成了 m 行,每行是一个 m 维行向量;第二个矩阵则拆分成了 m 列,每行是一个 m 维列向量.根据分块矩阵的乘法,所得结果对角元为 δ_i^i ,非对角元则为 δ_j^i (其中 $i \neq j$),即单位阵.

把第一个矩阵的转置挪到外面,可有

$$\left[\mathbf{g}^{1}, \dots, \mathbf{g}^{m}\right]^{\mathsf{T}} \left[\mathbf{g}_{1}, \dots, \mathbf{g}_{m}\right] = \mathbf{I}_{m}. \tag{1.4}$$

 $\left\{\mathbf{g}_{i}\right\}_{i=1}^{m}$ 作为基,必然满足 $\left[\mathbf{g}_{1},\cdots,\mathbf{g}_{m}\right]$ 非奇异. 因此

$$\left[\mathbf{g}^{1}, \dots, \mathbf{g}^{m}\right]^{\mathsf{T}} = \left[\mathbf{g}_{1}, \dots, \mathbf{g}_{m}\right]^{-1},\tag{1.5}$$

即

$$\left[\mathbf{g}^{1}, \dots, \mathbf{g}^{m}\right] = \left[\mathbf{g}_{1}, \dots, \mathbf{g}_{m}\right]^{-\mathsf{T}}.$$
(1.6)

逆矩阵(及其转置)是存在且唯一的,这就证明了对偶基的存在性和唯一性. □

我们把指标写在下面的基 $\{g_i\}_{i=1}^m$ 称为**协变基**;指标写在上面的基 $\{g^i\}_{i=1}^m$ 称为**逆变基**. 式 (1.6) 明确指出了逆变基与协变基的关系.

① 除非特殊说明,本文中的所有向量均取列向量.

1.1.2 度量

下面引入度量的概念. 其定义为

$$\begin{cases} g_{ij} \triangleq (\mathbf{g}_i, \mathbf{g}_j)_{\mathbb{R}^m}, \\ g^{ij} \triangleq (\mathbf{g}^i, \mathbf{g}^j)_{\mathbb{D}^m}. \end{cases}$$
(1.7-a)

$$g^{ij} \triangleq (g^i, g^j)_{\mathbb{R}^m}. \tag{1.7-b}$$

这两种度量满足

$$g_{ik}g^{kj} = \delta_i^j. (1.8)$$

也可以写成矩阵的形式:

$$[g_{ik}][g^{kj}] = [\delta_i^j] = I_m, \tag{1.9}$$

其中的 I_m 是 m 阶单位阵. 该式的证明将在稍后给出.

由于内积具有交换律,因而度量的两个指标显然可以交换:

$$g_{ij} = g_{ji}, \quad g^{ij} = g^{ji}.$$
 (1.10)

利用度量,可以获得基向量转换关系. 第i个协变基向量 g_i 既然是向量,就必然可以用协变基 或逆变基来表示 $^{\circ}$. 根据对偶关系式 (1.1) 和度量的定义式 (1.7-a)、(1.7-b),可知

$$\begin{cases} \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}_{k})_{\mathbb{R}^{m}} \mathbf{g}^{k} = g_{ik} \mathbf{g}^{k}, \\ \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}^{k})_{\mathbb{R}^{m}} \mathbf{g}_{k} = \delta_{i}^{k} \mathbf{g}_{k} \end{cases}$$
(1.11-a)

$$\left(\mathbf{g}_{i} = \left(\mathbf{g}_{i}, \mathbf{g}^{k}\right)_{\mathbb{R}^{m}} \mathbf{g}_{k} = \delta_{i}^{k} \mathbf{g}_{k}\right) \tag{1.11-b}$$

以及

$$\begin{cases} \mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}_{k})_{\mathbb{R}^{m}} \mathbf{g}^{k} = \delta_{k}^{i} \mathbf{g}^{k}, \\ \mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}^{k})_{\mathbb{R}^{m}} \mathbf{g}_{k} = \mathbf{g}^{ik} \mathbf{g}_{k}. \end{cases}$$
(1.12-a)
$$(1.12-b)$$

$$g^{i} = (g^{i}, g^{k})_{\text{\tiny DM}} g_{k} = g^{ik} g_{k}. \tag{1.12-b}$$

这四个式子中,式 (1.11-b)和 (1.12-a)是平凡的,而式 (1.11-a)和 (1.12-b)则通过度量建立起了协变 基与逆变基之间的关系. 这就称为基向量转换关系, 也可以叫做"指标升降游戏".

需要说明的是,根据 Einstein 求和约定,重复指标(即哑标,这里是 k)且一上一下时,已经 暗含了求和. 后文除非特殊说明, 也都是如此.

现在我们来证明式(1.8):

$$g_{ik}g^{kj} = \delta_i^j. (1.13)$$

证明:

$$g_{ik}g^{kj} = (\boldsymbol{g}_i, \boldsymbol{g}_k)_{\mathbb{R}^m}g^{kj} = (\boldsymbol{g}_i, g^{kj}\boldsymbol{g}_k)_{\mathbb{R}^m}$$
(1.14)

根据式 (1.12-b), 有

$$g^{kj}\mathbf{g}_k = g^{jk}\mathbf{g}_k = \mathbf{g}^j \tag{1.15}$$

因此可得

$$g_{ik} g^{kj} = (\mathbf{g}_i, \mathbf{g}^j)_{\mathbb{R}^m} = \delta_i^j.$$

$$(1.16)$$

① 所谓用某组基来"表示"一个向量,就是把它朝各个基的方向做投影,然后再求和.

1.1.3 向量的分量

对于任意的向量 $\xi \in \mathbb{R}^m$, 它可以用协变基表示:

$$\boldsymbol{\xi} = (\boldsymbol{\xi}, \, \boldsymbol{g}^k)_{\mathbb{R}^m} \, \boldsymbol{g}_k = \boldsymbol{\xi}^k \, \boldsymbol{g}_k \,, \tag{1.17-a}$$

也可以用逆变基表示:

$$\boldsymbol{\xi} = (\boldsymbol{\xi}, \, \boldsymbol{g}_k)_{\mathbb{R}^m} \boldsymbol{g}^k = \boldsymbol{\xi}_k \boldsymbol{g}^k. \tag{1.17-b}$$

式中, ξ^k 是 ξ 与第 k 个逆变基做内积的结果,称为 ξ 的第 k 个**逆变分量**;而 ξ_k 是 ξ 与第 k 个协变 基做内积的结果,称为 ξ 的第 k 个**协变分量**.

以后凡是指标在下的(下标),均称为协变某某;指标在上的(上标),称为逆变某某.

1.2 张量的表示

1.2.1 张量的表示与简单张量

所谓张量,即多重线性函数.

首先用三阶张量举个例子. 考虑任意的 $\Phi \in \mathcal{F}^3(\mathbb{R}^m)$,其中的 $\mathcal{F}^3(\mathbb{R}^m)$ 表示以 \mathbb{R}^m 为底空间的三阶张量全体. 所谓三阶(或三重)线性函数,指"吃掉"三个向量之后变成实数,并且"吃法"具有线性性.

一般地,r阶张量的定义如下:

$$\boldsymbol{\Phi}: \underbrace{\mathbb{R}^{m} \times \mathbb{R}^{m} \times \cdots \times \mathbb{R}^{m}}_{r \uparrow_{\mathbb{R}^{m}}} \ni \left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}\right\} \mapsto \boldsymbol{\Phi}\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}\right) \in \mathbb{R}, \tag{1.18}$$

式中的 Φ 满足

$$\forall \alpha, \beta \in \mathbb{R}, \quad \boldsymbol{\Phi}(\boldsymbol{u}_1, \dots, \alpha \tilde{\boldsymbol{u}}_i + \beta \hat{\boldsymbol{u}}_i, \dots, \boldsymbol{u}_r)$$

$$= \alpha \boldsymbol{\Phi}(\boldsymbol{u}_1, \dots, \tilde{\boldsymbol{u}}_i, \dots, \boldsymbol{u}_r) + \beta \boldsymbol{\Phi}(\boldsymbol{u}_1, \dots, \hat{\boldsymbol{u}}_i, \dots, \boldsymbol{u}_r), \qquad (1.19)$$

即所谓"对第i个变元的线性性". 这里的i可取 1, 2, ..., r.

在张量空间 $\mathcal{T}'(\mathbb{R}^m)$ 上,我们引入线性结构:

$$\forall \alpha, \beta \in \mathbb{R} \text{ } \exists \mathbf{\Phi}, \mathbf{\Psi} \in \mathcal{F}^r(\mathbb{R}^m), \quad (\alpha \mathbf{\Phi} + \beta \mathbf{\Psi}) (\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r)$$

$$\triangleq \alpha \mathbf{\Phi}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r) + \beta \mathbf{\Psi}(\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r), \quad (1.20)$$

于是

$$\alpha \Phi + \beta \Psi \in \mathcal{T}^r(\mathbb{R}^m). \tag{1.21}$$

下面我们要获得 ϕ 的表示.根据之前任意向量用协变基或逆变基的表示,有

$$\forall u, v, w \in \mathbb{R}^m, \quad \Phi(u, v, w)$$
$$= \Phi(u^i g_i, v_j g^j, w^k g_k)$$

考虑到 Φ 对第一变元的线性性,可得

$$= u^i \boldsymbol{\Phi}(\boldsymbol{g}_i, v_i \boldsymbol{g}^j, w^k \boldsymbol{g}_k)$$

同理,

$$= u^i v_i w^k \Phi(\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k). \tag{1.22}$$

注意这里自然需要满足 Einstein 求和约定.

上式中的 $\Phi(g_i, g^j, g_k)$ 是一个数. 它是张量 Φ "吃掉"三个基向量的结果. 至于 $u^i v_j w^k$ 部分,三项分别是 u 的第 i 个逆变分量、v 的第 j 个协变分量和 w 的第 k 个逆变分量. 根据向量分量的定义,可知

$$u^{i}v_{j}w^{k} = (\boldsymbol{u}, \boldsymbol{g}^{i})_{\mathbb{R}^{m}} \cdot (\boldsymbol{v}, \boldsymbol{g}_{j})_{\mathbb{R}^{m}} \cdot (\boldsymbol{w}, \boldsymbol{g}^{k})_{\mathbb{R}^{m}}. \tag{1.23}$$

暂时中断一下思路, 先给出简单张量的定义.

$$\forall u, v, w \in \mathbb{R}^m, \quad \xi \otimes \eta \otimes \zeta(u, v, w) \triangleq (\xi, u)_{\mathbb{R}^m} \cdot (\eta, v)_{\mathbb{R}^m} \cdot (\zeta, w)_{\mathbb{R}^m} \in \mathbb{R}, \tag{1.24}$$

式中的 ξ , η , $\zeta \in \mathbb{R}^n$. "⊗"的定义将在 2.1 节中给出,现在可以暂时把 $\xi \otimes \eta \otimes \zeta$ 理解为一种记号. 简单张量作为一个映照,组成它的三个向量分别与它们"吃掉"的第一、二、三个变元做内积并相乘,结果为一个实数.

考虑到内积的线性性,便有(以第二个变元为例)

$$\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta}(\boldsymbol{u}, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}}, \boldsymbol{w}) \triangleq (\boldsymbol{\xi}, \boldsymbol{u})_{\mathbb{R}^m} \cdot (\boldsymbol{\eta}, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}})_{\mathbb{R}^m} \cdot (\boldsymbol{\zeta}, \boldsymbol{w})_{\mathbb{R}^m} \in \mathbb{R}$$

注意到 $(\boldsymbol{\eta}, \alpha \tilde{\boldsymbol{v}} + \beta \hat{\boldsymbol{v}})_{\mathbb{R}^m} = \alpha(\boldsymbol{\eta}, \tilde{\boldsymbol{v}})_{\mathbb{R}^m} + \beta(\boldsymbol{\eta}, \hat{\boldsymbol{v}})_{\mathbb{R}^m}$,同时再次利用简单张量的定义,可得

$$= \alpha \xi \otimes \eta \otimes \zeta(u, \, \tilde{v}, \, w) + \beta \xi \otimes \eta \otimes \zeta(u, \, \hat{v}, \, w). \tag{1.25}$$

类似地,对第一变元和第三变元,同样具有线性性.因此,可以知道

$$\boldsymbol{\xi} \otimes \boldsymbol{\eta} \otimes \boldsymbol{\zeta} \in \mathcal{T}^3(\mathbb{R}^m). \tag{1.26}$$

可见,"简单张量"的名字是名副其实的,它的确是一个特殊的张量.

回过头来看 (1.23) 式. 很明显,它可以用简单张量来表示. 要注意,由于内积的对称性,可以有两种[®]表示方法:

$$\mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k(\mathbf{u}, \mathbf{v}, \mathbf{w})$$
 (1.27-a)

或者

$$\boldsymbol{u} \otimes \boldsymbol{v} \otimes \boldsymbol{w} (\boldsymbol{g}^i, \boldsymbol{g}_j, \boldsymbol{g}^k),$$
 (1.27-b)

我们这里取上面一种. 代人式 (1.22), 得

$$\Phi(u, v, w)$$

① 这里只考虑把 \mathbf{u} 、 \mathbf{v} 、 \mathbf{w} 和 \mathbf{g}^i 、 \mathbf{g}_i 、 \mathbf{g}^k 分别放在一起的情况.

$$= \Phi(g_i, g^j, g_k) \cdot g^i \otimes g_i \otimes g^k(u, v, w)$$

由于 $\Phi(\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k) \in \mathbb{R}^m$, 因此

$$= \left[\mathbf{\Phi}(\mathbf{g}_i, \mathbf{g}^j, \mathbf{g}_k) \mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k \right] (\mathbf{u}, \mathbf{v}, \mathbf{w}). \tag{1.28}$$

方括号里的部分,就是根据 Einstein 求和约定,用 $\Phi(g_i, g^i, g_k)$ 对 $g^i \otimes g_i \otimes g^k$ 进行线性组合.

由于u, v, w 选取的任意性,可以引入如下记号:

$$\boldsymbol{\Phi} = \boldsymbol{\Phi}(\mathbf{g}_i, \mathbf{g}^i, \mathbf{g}_k) \, \mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k =: \boldsymbol{\Phi}_{ik}^{\ j} \, \mathbf{g}^i \otimes \mathbf{g}_i \otimes \mathbf{g}^k, \tag{1.29}$$

即

$$\boldsymbol{\Phi}_{i,k}^{j} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}_{i}, \boldsymbol{g}^{j}, \boldsymbol{g}_{k}), \tag{1.30}$$

这称为张量的分量,它说明一个张量可以用张量分量和基向量组成的简单张量来表示,

指标 i、j、k 的上下是任意的. 这里,它有赖于式 (1.22) 中基向量的选取.实际上,对于这里 的三阶张量,指标的上下一共有8种可能.指标全部在下面的,称为协变分量:

$$\boldsymbol{\Phi}_{ijk} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}_i, \boldsymbol{g}_j, \boldsymbol{g}_k); \tag{1.31}$$

指标全部在上面的, 称为逆变分量:

$$\boldsymbol{\Phi}^{ijk} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}^i, \boldsymbol{g}^j, \boldsymbol{g}^k); \tag{1.32}$$

其余 6 种,称为混合分量.对于一个 r 阶张量,显然共有 2' 种分量表示,其中协变分量与逆变分量 各一种,混合分量 $2^r - 2$ 种.

1.2.2 张量分量之间的关系

我们已经知道,对于任意一个向量 $\xi \in \mathbb{R}^m$,它可以用协变基或逆变基表示:

$$\boldsymbol{\xi} = \begin{cases} \boldsymbol{\xi}^i \boldsymbol{g}_i, \\ \boldsymbol{\xi}_i \boldsymbol{g}^i. \end{cases} \tag{1.33}$$

式中, 协变分量与逆变分量满足坐标转换关系:

$$\begin{cases} \xi^{i} = (\xi, g^{i})_{\mathbb{R}^{m}} = (\xi, g^{ik}g_{k})_{\mathbb{R}^{m}} = g^{ik}(\xi, g_{k})_{\mathbb{R}^{m}} = g^{ik}\xi_{k}, \\ \xi_{i} = (\xi, g_{i})_{\mathbb{R}^{m}} = (\xi, g_{ik}g^{k})_{\mathbb{R}^{m}} = g_{ik}(\xi, g^{k})_{\mathbb{R}^{m}} = g_{ik}\xi^{k}. \end{cases}$$
(1.34-a)

$$\left\{ \xi_i = \left(\xi, \, \mathbf{g}_i \right)_{\mathbb{R}^m} = \left(\xi, \, g_{ik} \mathbf{g}^k \right)_{\mathbb{R}^m} = g_{ik} \left(\xi, \, \mathbf{g}^k \right)_{\mathbb{R}^m} = g_{ik} \xi^k. \right. \tag{1.34-b}$$

每一式的第二个等号都用到了基向量转换关系,见式 (1.11-a) 和 (1.12-b).

现在再来考虑张量的分量. 仍以上文中的张量 $\boldsymbol{\Phi}_{i,k}^{j} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}_{i},\boldsymbol{g}^{j},\boldsymbol{g}_{k})$ 为例,我们想要知道它与张 量 $\Phi^{p_{q'}}_{q} \coloneqq \Phi(g^{p}, g_{q}, g')$ 之间的关系. 利用基向量转换关系,可有

$$\begin{aligned} \boldsymbol{\Phi}_{i k}^{j} &\coloneqq \boldsymbol{\Phi} \left(\mathbf{g}_{i}, \mathbf{g}^{j}, \mathbf{g}_{k} \right) \\ &= \boldsymbol{\Phi} \left(g_{ip} \mathbf{g}^{p}, g^{jq} \mathbf{g}_{q}, g_{kr} \mathbf{g}^{r} \right) \end{aligned}$$

又利用张量的线性性,得

$$= g_{ip}g^{jq}g_{kr}\boldsymbol{\Phi}(\boldsymbol{g}^{p},\boldsymbol{g}_{q},\boldsymbol{g}^{r})$$

$$= g_{ip}g^{jq}g_{kr}\boldsymbol{\Phi}_{q}^{p}. \tag{1.35}$$

可见, 张量的分量与向量的分量类似, 其指标升降可通过度量来实现. 用同样的手法, 还可以得到 诸如 $\boldsymbol{\Phi}^{ijk} = g^{jp} \boldsymbol{\Phi}_{p}^{ik} \setminus \boldsymbol{\Phi}_{p}^{ik} = g_{ip} g^{kq} \boldsymbol{\Phi}_{k}^{ip}$ 这样的关系式.

1.2.3 相对不同基的张量分量之间的关系

 \mathbb{R}^m 空间中,除了 $\{g_i\}_{i=1}^m$ 和相应的对偶基 $\{g^i\}_{i=1}^m$ 之外,当然还可以有其他的基,比如带括号 的 $\{g_{(i)}\}_{i=1}^m$ 以及对应的对偶基 $\{g^{(i)}\}_{i=1}^m$. 前者对应形如 $\boldsymbol{\Phi}_j^{i\ k}\coloneqq \boldsymbol{\Phi}(g^i,g_j,g^k)$ 的张量,后者则对应带 括号的张量,如 $\boldsymbol{\Phi}^{(p)}_{(q)} \coloneqq \boldsymbol{\Phi}(\boldsymbol{g}^{(p)}, \boldsymbol{g}_{(q)}, \boldsymbol{g}^{(r)})$. 下面我们来探讨这两个张量的关系.

首先来建立基之间的关系. 带括号的第i个基向量 $g_{(i)}$,作为 \mathbb{R}^m 空间中的一个向量,自然可以 用另一组基来表示:

$$\mathbf{g}_{(i)} = \begin{cases} \left(\mathbf{g}_{(i)}, \mathbf{g}_{k}\right)_{\mathbb{R}^{m}} \mathbf{g}^{k}, \\ \left(\mathbf{g}_{(i)}, \mathbf{g}^{k}\right)_{\mathbb{R}^{m}} \mathbf{g}_{k}. \end{cases}$$
(1.36)

同理,自然还有它的对偶基:

$$\mathbf{g}^{(i)} = \begin{cases} \left(\mathbf{g}^{(i)}, \mathbf{g}_{k}\right)_{\mathbb{R}^{m}} \mathbf{g}^{k}, \\ \left(\mathbf{g}^{(i)}, \mathbf{g}^{k}\right)_{\mathbb{R}^{m}} \mathbf{g}_{k}. \end{cases}$$
(1.37)

引入记号 $c_{(i)}^k\coloneqq \left(\mathbf{g}_{(i)},\mathbf{g}^k\right)_{\mathbb{R}^m}$ 和 $c_k^{(i)}\coloneqq \left(\mathbf{g}^{(i)},\mathbf{g}_k\right)_{\mathbb{R}^m}$,那么有

$$\begin{cases} \mathbf{g}_{(i)} = c_{(i)}^k \mathbf{g}_k, & (1.38-a) \\ \mathbf{g}^{(i)} = c_k^{(i)} \mathbf{g}^k. & (1.38-b) \end{cases}$$

容易看出,这两个系数具有如下性质:

$$c_k^{(i)} c_{(i)}^k = \delta_i^i. {(1.39)}$$

写成矩阵形式¹,为

$$\left[c_k^{(i)}\right]\left[c_{(j)}^k\right] = \left[\delta_i^j\right] = \boldsymbol{I}_m. \tag{1.40}$$

换句话说,两个系数矩阵是互逆的.

证明:

$$c_k^{(i)}c_{(j)}^k = \left(\mathbf{g}^{(i)},\,\mathbf{g}_k\right)_{\mathbb{R}^m}c_{(j)}^k$$

利用内积的线性性,有

$$= \left(\mathbf{g}^{(i)}, \, c_{(j)}^{k} \mathbf{g}_{k}\right)_{\mathbb{R}^{m}}$$

根据 $c_{(i)}^k$ 的定义,得到

$$= \left(\mathbf{g}^{(i)}, \, \mathbf{g}_{(i)}\right)_{\mathbb{D}^m}.\tag{1.41}$$

带括号的基同样满足对偶关系 (1.1) 式,于是得证.

上面我们用不带括号的基表示了带括号的基. 反之也是可以的:

$$\begin{cases} \mathbf{g}_{i} = (\mathbf{g}_{i}, \mathbf{g}^{(k)})_{\mathbb{R}^{m}} \mathbb{R}^{m} \mathbf{g}_{(k)} = c_{i}^{(k)} \mathbf{g}_{(k)}, \\ \mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}_{(k)})_{\mathbb{R}^{m}} \mathbb{R}^{m} \mathbf{g}^{(k)} = c_{(k)}^{i} \mathbf{g}^{(k)}. \end{cases}$$
(1.42-a)

$$\mathbf{g}^{i} = (\mathbf{g}^{i}, \mathbf{g}_{(k)})_{\mathbb{R}^{m}} \mathbb{R}^{m} \mathbf{g}^{(k)} = c_{(k)}^{i} \mathbf{g}^{(k)}.$$
 (1.42-b)

① 通常我们约定上面的标号作为行号,下面的标号作为列号.

这样一来,就建立起了不同基之间的转换关系. 现在我们回到张量.根据张量分量的定义,

$$\boldsymbol{\Phi}_{j}^{i,k}\coloneqq\boldsymbol{\Phi}\big(\boldsymbol{g}^{i},\,\boldsymbol{g}_{j},\,\boldsymbol{g}^{k}\big)$$

利用之前推导的不同基向量之间的转换关系,得

$$= \boldsymbol{\Phi} \Big(c_{(p)}^{i} \boldsymbol{g}^{(p)}, \, c_{j}^{(q)} \boldsymbol{g}_{(q)}, \, c_{(r)}^{k} \boldsymbol{g}^{(r)} \Big)$$

由张量的线性性,提出系数:

$$= c_{(p)}^{i} c_{j}^{(q)} c_{(r)}^{k} \Phi(\mathbf{g}^{(p)}, \mathbf{g}_{(q)}, \mathbf{g}^{(r)})$$

$$= c_{(p)}^{i} c_{j}^{(q)} c_{(r)}^{k} \Phi_{(q)}^{(p)}.$$
(1.43)

完全类似,还可以有

$$\boldsymbol{\Phi}^{(i)}_{(j)}{}^{(k)} = c_p^{(i)} c_r^g c_r^{(k)} \boldsymbol{\Phi}_q^{p}. \tag{1.44}$$

总结一下这两小节得到的结果. 对于同一组基下的张量分量, 其指标升降通过度量来实现; 对于不同基下的张量分量, 其指标转换则通过不同基之间的转换系数来完成.

第二章 张量的运算性质

2.1 张量积

张量积也叫**张量并**,用符号"⊗"表示.在 1.2.1 小节给出简单张量的定义时,实际上就用到了张量积. 张量积的定义为:

$$\forall \boldsymbol{\Phi} \in \mathcal{T}^{p}(\mathbb{R}^{m}), \, \boldsymbol{\Psi} \in \mathcal{T}^{q}(\mathbb{R}^{m}), \quad \boldsymbol{\Phi} \otimes \boldsymbol{\Psi} \in \mathcal{T}^{p+q}(\mathbb{R}^{m}) \\
= \left(\boldsymbol{\Phi}^{i_{1} \cdots i_{p}} \, \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p}}\right) \otimes \left(\boldsymbol{\Psi}_{j_{1} \cdots j_{q}} \, \boldsymbol{g}^{j_{1}} \otimes \cdots \otimes \boldsymbol{g}^{j_{q}}\right) \\
\triangleq \boldsymbol{\Phi}^{i_{1} \cdots i_{p}} \boldsymbol{\Psi}_{j_{1} \cdots j_{p}} \left(\boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p}}\right) \otimes \left(\boldsymbol{g}^{j_{1}} \otimes \cdots \otimes \boldsymbol{g}^{j_{q}}\right). \tag{2.1}$$

由该定义可以知道,关于简单张量 $\left(\mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p}\right) \otimes \left(\mathbf{g}^{j_1} \otimes \cdots \otimes \mathbf{g}^{j_q}\right)$,相应的张量分量为

$$\left(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}\right)^{i_1 \cdots i_p}_{j_1 \cdots j_q}.\tag{2.2}$$

2.2 e 点积

张量的 e **点积**可以用符号 " $\binom{e}{\cdot}$ "表示. 从这个符号可以看出 e 点积的作用:前 e 个指标缩并,后面的点乘.

对于任意的 $\Phi \in \mathcal{F}^p(\mathbb{R}^m)$, $\Psi \in \mathcal{F}^q(\mathbb{R}^m)$, $e \leq \min\{p,q\} \in \mathbb{N}^*$, e 点积是这样定义的:

$$\begin{split} \boldsymbol{\Phi} \begin{pmatrix} e \\ . \end{pmatrix} \boldsymbol{\Psi} \\ &= \left(\boldsymbol{\Phi}^{i_1 \cdots i_{p-e} i_{p-e+1} \cdots i_p} \, \boldsymbol{g}_{i_1} \otimes \cdots \otimes \boldsymbol{g}_{i_{p-e}} \otimes \, \boldsymbol{g}_{i_{p-e+1}} \otimes \cdots \otimes \boldsymbol{g}_{i_p} \right) \\ & \begin{pmatrix} e \\ . \end{pmatrix} \! \left(\boldsymbol{\Psi}^{j_1 \cdots j_e j_{e+1} \cdots j_q} \, \boldsymbol{g}_{j_1} \otimes \cdots \otimes \boldsymbol{g}_{j_e} \, \otimes \, \boldsymbol{g}_{j_{e+1}} \otimes \cdots \otimes \boldsymbol{g}_{j_q} \right) \end{split}$$

把高亮的部分做内积,得到度量:

$$\triangleq \boldsymbol{\Phi}^{i_1\cdots i_{p-e}i_{p-e+1}\cdots i_p}\boldsymbol{\Psi}^{j_1\cdots j_ej_{e+1}\cdots j_q}$$

$$\cdot \mathbf{g}_{i_{p-e+1}j_1} \cdots \mathbf{g}_{i_pj_e} \Big(\mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_{p-e}} \Big) \otimes \Big(\mathbf{g}_{j_{e+1}} \otimes \cdots \otimes \mathbf{g}_{j_q} \Big)$$

玩一下"指标升降游戏"(注意有两种结合方式:与 ϕ 或 Ψ),可得

$$= \left\{ \boldsymbol{\Phi}^{i_{1}\cdots i_{p-e}} \boldsymbol{\Psi}^{j_{1}\cdots j_{e}} \boldsymbol{\Psi}^{j_{1}\cdots j_{e}} \boldsymbol{J}_{e+1}\cdots j_{q} \atop \boldsymbol{J}_{1}\cdots j_{e}} \right\} \left(\boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p-e}} \right) \otimes \left(\boldsymbol{g}_{j_{e+1}} \otimes \cdots \otimes \boldsymbol{g}_{j_{q}} \right). \tag{2.3}$$

最后一步的花括号中,高亮的 $j_1 \cdots j_e$ 和 $i_{p-e+1} \cdots i_p$ 都是哑标,可以通过求和求掉。因此有

$$\boldsymbol{\Phi}\begin{pmatrix} e \\ \cdot \end{pmatrix} \boldsymbol{\Psi} \in \mathcal{T}^{p+q-2e}(\mathbb{R}^m). \tag{2.4}$$

换句话说, e 点积的作用就是将指标哑标化.

作为一个特殊的应用,接下来我们介绍**全点积**,用符号" \odot "表示. 对于任意的 Φ , $\Psi \in \mathcal{T}^p(\mathbb{R}^n)$, 有

$$\Phi \odot \Psi \triangleq \Phi \begin{pmatrix} p \\ \cdot \end{pmatrix} \Psi
= \left(\Phi^{i_1 \cdots i_p} \mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p}\right) \begin{pmatrix} p \\ \cdot \end{pmatrix} \left(\Psi^{j_1 \cdots j_p} \mathbf{g}_{j_1} \otimes \cdots \otimes \mathbf{g}_{j_p}\right)
= \Phi^{i_1 \cdots i_p} \Psi^{j_1 \cdots j_p} \mathbf{g}_{i_1 j_1} \cdots \mathbf{g}_{i_p j_p}
= \begin{cases} \Phi_{j_1 \cdots j_p} \Psi^{j_1 \cdots j_p} \\ \Phi^{i_1 \cdots i_p} \Psi_{i_1 \cdots i_p} \end{cases} \in \mathbb{R}.$$
(2.5)

可见,全点积将全部指标哑标化.

张量自身和自身的全点积, 定义为它的范数:

$$\boldsymbol{\Phi} \odot \boldsymbol{\Phi} = \boldsymbol{\Phi}^{i_1 \cdots i_p} \boldsymbol{\Phi}_{i_1 \cdots i_p} =: |\boldsymbol{\Phi}|^2_{\mathcal{F}^p(\mathbb{R}^m)}. \tag{2.6}$$

2.3 叉乘

张量的**叉乘**要求底空间为 \mathbb{R}^3 . 对于任意的 $\boldsymbol{\Phi} \in \mathcal{F}^p(\mathbb{R}^3)$, $\boldsymbol{\Psi} \in \mathcal{F}^q(\mathbb{R}^3)$, 叉乘的定义如下:

$$\Phi \times \Psi$$

$$= \left(\boldsymbol{\Phi}^{i_{1}\cdots i_{p-1}i_{p}} \, \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p-1}} \otimes \boldsymbol{g}_{i_{p}} \right) \times \left(\boldsymbol{\Psi}_{j_{1}j_{2}\cdots j_{q}} \, \boldsymbol{g}^{j_{1}} \otimes \boldsymbol{g}^{j_{2}} \cdots \otimes \boldsymbol{g}^{j_{q}} \right)$$

$$\triangleq \boldsymbol{\Phi}^{i_{1}\cdots i_{p}} \boldsymbol{\Psi}_{j_{1}\cdots j_{p}} \, \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p-1}} \otimes \left(\boldsymbol{g}_{i_{p}} \times \boldsymbol{g}^{j_{1}} \right) \otimes \boldsymbol{g}^{j_{2}} \cdots \otimes \boldsymbol{g}^{j_{q}} \in \mathcal{T}^{p+q-1} (\mathbb{R}^{3}). \tag{2.7}$$

注意到,此时简单张量的维数已经降了一阶.

利用 Levi-Civita 记号,可以进一步展开上式.

$$\mathbf{g}_{i_p} \times \mathbf{g}^{j_1} = \epsilon_{i_p}^{j_1} {}_s \mathbf{g}^s, \tag{2.8}$$

式中的

$$\epsilon_{i_p}^{j_1} = \det \left[\mathbf{g}_{i_p}, \mathbf{g}^{j_1}, \mathbf{g}_{s} \right]. \tag{2.9}$$

于是

$$\boldsymbol{\Phi} \times \boldsymbol{\Psi} = \epsilon_{i_p \ s}^{\ j_1} \boldsymbol{\Phi}^{i_1 \cdots i_p} \boldsymbol{\Psi}_{j_1 \cdots j_p} \boldsymbol{g}_{i_1} \otimes \cdots \otimes \boldsymbol{g}_{i_{p-1}} \otimes \boldsymbol{g}^s \otimes \boldsymbol{g}^{j_2} \cdots \otimes \boldsymbol{g}^{j_q}. \tag{2.10}$$

下面我们再来类比地定义一种混合积 " $\binom{\times}{\cdot}$ ". 对于任意的 $\boldsymbol{\Phi}, \boldsymbol{\Psi} \in \mathcal{F}^{3}(\mathbb{R}^{m})$, 定义

$$\boldsymbol{\Phi} \begin{pmatrix} \mathbf{x} \\ \cdot \end{pmatrix} \boldsymbol{\Psi} = \left(\boldsymbol{\Phi}^{ijk} \, \mathbf{g}_i \otimes \mathbf{g}_j \otimes \mathbf{g}_k \right) \begin{pmatrix} \mathbf{x} \\ \cdot \end{pmatrix} \left(\boldsymbol{\Psi}_{pqr} \, \mathbf{g}^p \otimes \mathbf{g}^q \otimes \mathbf{g}^r \right)$$

$$\triangleq \boldsymbol{\Phi}^{ijk} \, \boldsymbol{\Psi}_{pqr} \, \delta_i^q \, \mathbf{g}_i \otimes \left(\mathbf{g}_k \times \mathbf{g}^p \right) \otimes \mathbf{g}^r$$

缩并掉 Kronecker δ,同时利用 Levi-Civita 记号展开叉乘项,可有

$$= \epsilon_{k,s}^{p} \Phi^{ijk} \Psi_{pjr} \mathbf{g}_{i} \otimes \mathbf{g}^{s} \otimes \mathbf{g}^{r}, \qquad (2.11)$$

式中的

$$\epsilon_{k,s}^{p} = \det\left[\mathbf{g}_{k}, \mathbf{g}^{p}, \mathbf{g}_{s}\right]. \tag{2.12}$$

对于这种混合积,并没有一般的约定.不同的研究者往往会采用不同的写法及表示.

2.4 置换(一)

本节主要介绍置换运算的定义及相关概念,这将使我们暂时离开张量运算的主线.

置换运算实际上是一种交换位置或者改变次序的运算.之后我们还将引入针对张量的置换算子,它是外积运算和外微分运算的基础.这些运算是现代张量分析与微分几何的支柱.

2.4.1 置换的定义

我们从一个例子开始. 下面是一个2×7的"矩阵":

$$\sigma = \begin{bmatrix} 0 & 2 & 3 & 4 & 5 & 6 & 0 \\ 0 & 4 & 5 & 0 & 6 & 2 & 3 \end{bmatrix}. \tag{2.13}$$

矩阵里面的每一个数字表示一个位置.可以想象成7把椅子,先是按第一行的顺序依次排列,再按照第二行的顺序打乱,重新排列.于是这就成为一个7阶置换.这个定义等价于

$$\sigma = \begin{pmatrix} 4 & 9 & 2 & 7 & 5 & 8 & 3 \\ 3 & 7 & 5 & 4 & 8 & 9 & 2 \end{pmatrix},\tag{2.14-a}$$

自然也等价于

$$\sigma = \begin{pmatrix} \bullet & \heartsuit & \diamond & \bullet & \diamondsuit & \Psi & \bullet \\ \bullet & \bullet & \diamondsuit & \bullet & \Psi & \heartsuit & \diamondsuit \end{pmatrix}, \tag{2.14-b}$$

当然,换用任何元素也都是可以的.

通常我们用方括号表示置换的**序号定义**,即标号的排列轮换;用圆括号表示**元素定义**,即标号对应元素的轮换.

2.4.2 置换的符号

接着来定义置换的符号 $sgn\sigma$. 这里我们把每次交换两个数字称为一次"操作". 如果经过偶数次"操作",可以把经置换后的序列恢复为原来的顺序,那么该置换的符号 $sgn\sigma=1$; 而如果经过 奇数次"操作"才可以复原,则 $sgn\sigma=-1$. 若用一个式子表示,则为

$$\operatorname{sgn} \boldsymbol{\sigma} = (-1)^n, \tag{2.15}$$

其中的n是恢复原本顺序所需"操作"的次数.

下面我们以式 (2.13) 所定义的 σ 为例,演示求置换符号的过程. 这里的关键是通过两两交换,按如下步骤把式 (2.14-b) 的第二行变换成第一行:

一共进行了 6 次两两交换, 因此 $sgn \sigma = 1$.

2.4.3 置换的复合

再定义一个置换

$$\boldsymbol{\tau} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 7 & 3 & 6 & 4 & 2 \end{bmatrix}. \tag{2.16}$$

注意这里用了方括号,因此它是一个序号定义.方便起见,以后的序号我们都只用不带圈的普通数字表示.考虑之前定义的置换

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 4 & 5 & 1 & 6 & 2 & 3 \end{bmatrix},\tag{2.17}$$

则 τ 与 σ 的复合

与函数、线性变换等的复合类似,这里也用小圆圈 "。"表示置换的复合.

假设经过置换 σ 、 τ 作用后得到的序列,分别需要 p 次和 q 次两两交换才能复原为原来的序列.那么很显然,经过复合置换 τ 。 σ 作用后的序列,经过 q+p 次两两交换也一定可以复原.因此,复合置换的符号

$$\operatorname{sgn}(\boldsymbol{\tau} \circ \boldsymbol{\sigma}) = (-1)^{q+p} = (-1)^q \cdot (-1)^p = \operatorname{sgn} \boldsymbol{\tau} \cdot \operatorname{sgn} \boldsymbol{\sigma}. \tag{2.19}$$

2.4.4 逆置换

逆置换 σ^{-1} 的定义为

$$\sigma^{-1} \circ \sigma = \mathbf{Id}, \tag{2.20}$$

其中的"Id"是恒等映照.

仍然使用式 (2.14-b):

$$\sigma = \begin{pmatrix} \spadesuit & \heartsuit & \diamondsuit & \clubsuit & \diamondsuit & \Psi & \blacklozenge \\ \spadesuit & \clubsuit & \diamondsuit & \spadesuit & \Psi & \heartsuit & \diamondsuit \end{pmatrix}, \tag{2.21}$$

那么自然有

$$\sigma^{-1} = \begin{pmatrix} \bullet & \bullet & \diamondsuit & \bullet & \nabla & \diamondsuit \\ \bullet & \heartsuit & \diamondsuit & \bullet & \diamondsuit & \nabla & \bullet \end{pmatrix}. \tag{2.22}$$

显然, 我们有 $\sigma^{-1} \circ \sigma = Id$.

回忆一下逆矩阵的定义. 矩阵 A 的逆 A^{-1} 既要满足 $A^{-1}A=I$,又要满足 $AA^{-1}=I$. 对于置换也是如此,因此我们需要检查 $\sigma \circ \sigma^{-1}$: ①

$$\sigma \circ \sigma^{-1} = \begin{pmatrix} \bullet & \bullet & \bullet & \bullet & \nabla & \Diamond \\ \bullet_1 & \nabla_2 & \Diamond_3 & \bullet_4 & \Diamond_5 & \bullet_6 & \bullet_7 \\ \bullet_7 & \bullet_4 & \Diamond_5 & \bullet_1 & \bullet_6 & \nabla_2 & \Diamond_3 \end{pmatrix} \leftarrow \sigma^{-1}$$

$$(2.23)$$

可见的确有 $\sigma \circ \sigma^{-1} = \mathbf{Id}$.

另外,由于恒等映照 Id 作用后序列不发生变化,复原所需的交换次数为 0,因此

$$\operatorname{sgn} \mathbf{Id} = (-1)^0 = 1. \tag{2.24}$$

而根据定义,

$$\mathbf{Id} = \boldsymbol{\sigma}^{-1} \circ \boldsymbol{\sigma}, \tag{2.25}$$

故有

$$\operatorname{sgn} \boldsymbol{\sigma} \cdot \operatorname{sgn} \boldsymbol{\sigma}^{-1} = 1. \tag{2.26}$$

由此,可以推知

$$\operatorname{sgn} \boldsymbol{\sigma} = \operatorname{sgn} \boldsymbol{\sigma}^{-1}, \tag{2.27}$$

即置换与它的逆具有相同的符号.

2.5 置换(二)

本节将介绍置换运算的基本性质.

① 该式中的数字角标用来澄清原始序号.

2.5.1 置换的穷尽

先要做一点铺垫. 设有序数组

$$\{i_1, i_2, \cdots, i_r\}$$

经置换 σ 作用后成为

$$\{\boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r)\},\$$

则根据之前的元素定义(圆括号),可以把 σ 记为

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ \sigma(i_1) & \sigma(i_2) & \cdots & \sigma(i_r) \end{pmatrix}. \tag{2.28}$$

每次置换都将得到一个有序数组. 把它们组合到一起, 就可以得到集合

$$\left\{ \left(\boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma} \in \mathscr{P}_r \right\}. \tag{2.29}$$

其中的 \mathcal{P} , 表示 r 阶置换的全体. 根据排列组合原理, r 阶置换的总数等于 r 个元素的全排列数. 即该集合共有 r! 个元素.

下面我们要证明

$$\left\{ \left(\boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma} \in \mathscr{P}_r \right\}$$

$$= \left\{ \left(\boldsymbol{\tau} \circ \boldsymbol{\sigma}(i_1), \, \boldsymbol{\tau} \circ \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\tau} \circ \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma}, \, \boldsymbol{\tau} \in \mathscr{P}_r \right\}$$

$$\left\{ \left(\boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma}, \, \boldsymbol{\tau} \in \mathscr{P}_r \right\}$$

$$\left\{ \left(\boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma}, \, \boldsymbol{\tau} \in \mathscr{P}_r \right\}$$

$$\left\{ \left(\boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma}, \, \boldsymbol{\tau} \in \mathscr{P}_r \right\}$$

$$\left\{ \left(\boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r) \right) \, \middle| \, \boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_r), \, \boldsymbol{\sigma}(i_r), \, \boldsymbol{\sigma}(i_r), \, \boldsymbol{\sigma}(i_r) \right\}$$

$$\left\{ \left(\boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}, \, \boldsymbol{\sigma}(i_2), \, \cdots, \, \boldsymbol{\sigma}(i_r), \, \boldsymbol{\sigma}(i_r)$$

$$= \left\{ \left(\boldsymbol{\sigma} \circ \boldsymbol{\tau}(i_1), \, \boldsymbol{\sigma} \circ \boldsymbol{\tau}(i_2), \, \cdots, \, \boldsymbol{\sigma} \circ \boldsymbol{\tau}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma}, \, \boldsymbol{\tau} \in \mathcal{P}_r \right\}$$
 (2.30-b)

$$= \left\{ \left(\boldsymbol{\sigma}^{-1}(i_1), \, \boldsymbol{\sigma}^{-1}(i_2), \, \cdots, \, \boldsymbol{\sigma}^{-1}(i_r) \right) \, \middle| \, \forall \, \boldsymbol{\sigma} \in \mathcal{P}_r \right\}. \tag{2.30-c}$$

所谓"穷尽", 就是将 \mathcal{P}_r 中的所有置换 σ 全部枚举出来. 关于 σ 的求和就是一个例子. 以上这条性质说明, 置换 σ 如果作为一个广义上的"哑标", 那么穷尽的结果与用 $\tau \circ \sigma \setminus \sigma \circ \tau$ 或 σ^{-1} 代替该"哑标"的结果是一样的.

这说明置换构成了置换群?

证明: 证明的思路是说明集合互相包含.

对于式 (2.30-a),右边的 $\tau \circ \sigma$ 也是一个 r 阶置换,自然符合左边集合的定义,因此 右边 C 左边.由于这一步是相当显然的,以下的几个证明我们将略去该步.另一方面,左边的 σ 可以表示成

$$\sigma = \operatorname{Id} \circ \sigma = (\tau \circ \tau^{-1}) \circ \sigma = \tau \circ (\tau^{-1} \circ \sigma), \tag{2.31}$$

这就是右边集合的定义,因此左边 ⊂右边.故可证得等式成立.

对于式 (2.30-b), 我们有

$$\sigma = \sigma \circ \mathbf{Id} = \sigma \circ (\tau^{-1} \circ \tau) = (\sigma \circ \tau^{-1}) \circ \tau, \tag{2.32}$$

它符合了右边集合的定义,因此左边 c 右边. 于是等式成立.

对于式 (2.30-c), 我们有

$$\boldsymbol{\sigma} = \left(\boldsymbol{\sigma}^{-1}\right)^{-1},\tag{2.33}$$

它符合了右边集合的定义,因此左边 c 右边. 于是等式成立.

2.5.2 数组元素的乘积

设有序数组 $\{i_1, i_2, \dots, i_r\}$ 、 $\{j_1, j_2, \dots, j_r\}$ 和 $\{k_1, k_2, \dots, k_r\}$ 经 r 阶置换 σ 作用后分别成为 $\{\sigma(i_1), \sigma(i_2), \dots, \sigma(i_r)\}$ 、 $\{\sigma(j_1), \sigma(j_2), \dots, \sigma(j_r)\}$ 和 $\{\sigma(k_1), \sigma(k_2), \dots, \sigma(k_r)\}$,也就是说

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ \sigma(i_1) & \sigma(i_2) & \cdots & \sigma(i_r) \end{pmatrix} = \begin{pmatrix} j_1 & j_2 & \cdots & j_r \\ \sigma(j_1) & \sigma(j_2) & \cdots & \sigma(j_r) \end{pmatrix} = \begin{pmatrix} k_1 & k_2 & \cdots & k_r \\ \sigma(k_1) & \sigma(k_2) & \cdots & \sigma(k_r) \end{pmatrix}. \tag{2.34}$$

我们有如下结论:

$$\forall \sigma \in \mathscr{P}_r, \quad A_{i_1j_1k_1}A_{i_2j_2k_2}\cdots A_{i_rj_rk_r} = A_{\sigma(i_1)\sigma(j_1)\sigma(k_1)}A_{\sigma(i_2)\sigma(j_2)\sigma(k_2)}\cdots A_{\sigma(i_r)\sigma(j_r)\sigma(k_r)}, \tag{2.35}$$

式中的 A_{ijk} 表示三维数组 A 的一个元素,其指标为 ijk.

下面通过一个例子来说明这一条性质. 还是用式 (2.14-a) 和 (2.14-b) 所定义的置换 σ :

$$\sigma = \begin{pmatrix} 4 & 9 & 2 & 7 & 5 & 8 & 3 \\ 3 & 7 & 5 & 4 & 8 & 9 & 2 \end{pmatrix} = \begin{pmatrix} \spadesuit & \heartsuit & \diamondsuit & \clubsuit & \diamondsuit & \Psi & \diamondsuit \\ \spadesuit & \spadesuit & \spadesuit & \Psi & \heartsuit & \diamondsuit \end{pmatrix}. \tag{2.36}$$

随意写出一个数组元素乘积:

$$A_{379}A_{264}A_{157}A_{483}A_{698}A_{\Diamond \bullet \bullet \heartsuit}A_{\bullet \Diamond \bullet \bullet}. \tag{2.37}$$

三组下标分别为

$$\begin{cases} 3, 2, 1, 4, 6, \diamond, \diamond; \\ 7, 6, 5, 8, 9, \clubsuit, \varphi; \\ 9, 4, 7, 3, 8, \heartsuit, \blacktriangledown. \end{cases}$$
 (2.38)

考虑 σ 的序号定义式 (2.13):

$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 4 & 5 & 1 & 6 & 2 & 3 \end{bmatrix}. \tag{2.39}$$

所谓序号只是位置的抽象表示,而不代表任何真实的元素.请记住:置换始终是位置的变换,而非元素的变换,不要被式 (2.36) 给迷惑了. 把 σ 作用在这三组下标上,可得

于是之前的数组元素乘积就变成了

$$A_{\bullet \triangle \bullet} A_{483} A_{698} A_{379} A_{\triangle \bullet \bigcirc} A_{264} A_{157}. \tag{2.41}$$

比对一下各元素,可见与式(2.37)的确是完全一样的.

2.5.3 哑标的穷尽

考虑如下集合:

$$\{(i_1, i_2, \cdots, i_r) \mid \{i_1, i_2, \cdots, i_r\} \exists \exists 1, 2, \cdots, m\}.$$
 (2.42)

每个 i_k 都有m种取法,而 i_k 又有r个,因此该集合一共有m"元素. 我们有

$$\begin{split} \forall \, \sigma \in \mathscr{P}_r, \quad & \Big\{ \left(i_1, i_2, \cdots, i_r \right) \, \Big| \, \Big\{ i_1, i_2, \cdots, i_r \Big\} \, \, \overline{\square} \, \mathbb{R} \, 1, \, 2, \cdots, \, m \Big\} \\ & = \Big\{ \left(\sigma(i_1), \, \sigma(i_2), \cdots, \, \sigma(i_r) \right) \, \Big| \, \Big\{ i_1, i_2, \cdots, i_r \Big\} \, \, \overline{\square} \, \mathbb{R} \, 1, \, 2, \cdots, \, m \Big\} \\ & = \Big\{ \left(\sigma^{-1}(i_1), \, \sigma^{-1}(i_2), \cdots, \, \sigma^{-1}(i_r) \right) \, \Big| \, \Big\{ i_1, i_2, \cdots, i_r \Big\} \, \, \overline{\square} \, \mathbb{R} \, 1, \, 2, \cdots, \, m \Big\}. \end{split} \tag{2.43-a}$$

这里, i_k 起的就是哑标的作用.

证明: 无论怎样置换, $\sigma(i_k)$ 都是 1, 2, ..., m 中的数. 因此, 对于 $\forall \sigma \in \mathcal{P}_r$,

$$\left(\sigma(i_1), \sigma(i_2), \cdots, \sigma(i_r)\right) \in \left\{\left(i_1, i_2, \cdots, i_r\right) \mid \left\{i_1, i_2, \cdots, i_r\right\} \ \text{II} \ \mathbb{R} \ 1, 2, \cdots, m\right\}, \tag{2.44}$$

即

$$\left\{ \left(\sigma(i_1), \sigma(i_2), \cdots, \sigma(i_r) \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \ \overline{\square} \ \mathbb{R} \ 1, 2, \cdots, m \right\}$$

$$\subset \left\{ \left(i_1, i_2, \cdots, i_r \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \ \overline{\square} \ \mathbb{R} \ 1, 2, \cdots, m \right\}. \tag{2.45}$$

另一方面,由于 $Id = \sigma^{-1} \circ \sigma$,即

$$(i_1, i_2, \cdots, i_r) = (\boldsymbol{\sigma}^{-1} \circ \boldsymbol{\sigma}(i_1), \, \boldsymbol{\sigma}^{-1} \circ \boldsymbol{\sigma}(i_2), \cdots, \, \boldsymbol{\sigma}^{-1} \circ \boldsymbol{\sigma}(i_r)),$$
(2.46)

而进行一次逆置换仍然使得元素不离开原有的范围, 也就是说

$$(i_1, i_2, \cdots, i_r) \in \left\{ \left(\sigma(i_1), \sigma(i_2), \cdots, \sigma(i_r) \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \, \overline{\eta} \, \mathbb{R} \, 1, \, 2, \, \cdots, \, m \right\}, \tag{2.47}$$

即

$$\left\{ \left(i_{1}, i_{2}, \cdots, i_{r} \right) \mid \left\{ i_{1}, i_{2}, \cdots, i_{r} \right\} \overrightarrow{\Pi} \cancel{\mathbb{R}} 1, 2, \cdots, m \right\}$$

$$\subset \left\{ \left(\sigma(i_{1}), \sigma(i_{2}), \cdots, \sigma(i_{r}) \right) \mid \left\{ i_{1}, i_{2}, \cdots, i_{r} \right\} \overrightarrow{\Pi} \cancel{\mathbb{R}} 1, 2, \cdots, m \right\}. \tag{2.48}$$

两个集合互相包含,也就证得了式 (2.43-a).

用相同的方法也可证得关于逆置换的 (2.43-b) 式,此处从略.

2.6 置换(三)

本节将给出置换运算在线性代数中的一些应用.

2.6.1 行列式

2.7 置换(四)

本节将重回张量运算的主线,引入置换算子.

2.7.1 置换算子:对称张量与反对称张量

对于任意的置换 $\sigma \in \mathcal{P}_{r}$, 定义置换算子

$$I_{\sigma}: \mathcal{T}^{r}(\mathbb{R}^{m}) \ni \boldsymbol{\Phi} \mapsto I_{\sigma}(\boldsymbol{\Phi}) \in \mathcal{T}^{r}(\mathbb{R}^{m}),$$
 (2.49)

式中

$$I_{\sigma}(\boldsymbol{\Phi})(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{r}) \triangleq \boldsymbol{\Phi}(\boldsymbol{u}_{\sigma(1)}, \boldsymbol{u}_{\sigma(2)}, \cdots, \boldsymbol{u}_{\sigma(r)}) \in \mathbb{R}. \tag{2.50}$$

这里的"…∈ℝ"是根据张量的定义:多重线性函数.

如果我们的置换

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ \sigma(i_1) & \sigma(i_1) & \cdots & \sigma(i_1) \end{pmatrix}, \tag{2.51}$$

那么对应的置换算子将满足

$$I_{\sigma}(\boldsymbol{\Phi})(\boldsymbol{u}_{i_1}, \boldsymbol{u}_{i_2}, \cdots, \boldsymbol{u}_{i_r}) \triangleq \boldsymbol{\Phi}(\boldsymbol{u}_{\sigma(i_1)}, \boldsymbol{u}_{\sigma(i_2)}, \cdots, \boldsymbol{u}_{\sigma(i_r)}). \tag{2.52}$$

根据张量的线性性,容易知道置换算子也具有线性性:

证明:

$$\begin{split} \mathbf{I}_{\sigma}(\alpha\boldsymbol{\Phi}+\beta\boldsymbol{\Psi})\big(\boldsymbol{u}_{1},\,\cdots,\,\boldsymbol{u}_{r}\big) &= (\alpha\,\boldsymbol{\Phi}+\beta\,\boldsymbol{\Psi})\big(\boldsymbol{u}_{\sigma(1)},\,\cdots,\,\boldsymbol{u}_{\sigma(r)}\big) \\ &= \alpha\,\boldsymbol{\Phi}\big(\boldsymbol{u}_{\sigma(1)},\,\cdots,\,\boldsymbol{u}_{\sigma(r)}\big) + \beta\,\boldsymbol{\Psi}\big(\boldsymbol{u}_{\sigma(1)},\,\cdots,\,\boldsymbol{u}_{\sigma(r)}\big) \\ &= \alpha\mathbf{I}_{\sigma}(\boldsymbol{\Phi})\big(\boldsymbol{u}_{1},\,\cdots,\,\boldsymbol{u}_{r}\big) + \beta\mathbf{I}_{\sigma}(\boldsymbol{\Psi})\big(\boldsymbol{u}_{1},\,\cdots,\,\boldsymbol{u}_{r}\big) \\ &= \big[\alpha\mathbf{I}_{\sigma}(\boldsymbol{\Phi}) + \beta\mathbf{I}_{\sigma}(\boldsymbol{\Psi})\big]\big(\boldsymbol{u}_{1},\,\cdots,\,\boldsymbol{u}_{r}\big). \end{split} \tag{2.54}$$

两个置换算子复合的结果也是很显然的:

$$\forall \sigma, \tau \in \mathcal{P}_r, \quad I_{\sigma} \circ I_{\tau} = I_{\sigma \circ \tau}. \tag{2.55}$$

证明:

$$\begin{split} \mathbf{I}_{\sigma} \circ \mathbf{I}_{\tau}(\boldsymbol{\Phi}) \big(\boldsymbol{u}_{i_{1}}, \, \cdots, \, \boldsymbol{u}_{i_{r}} \big) &= \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \big(\boldsymbol{u}_{\tau(1)}, \, \cdots, \, \boldsymbol{u}_{\tau(r)} \big) \\ &= \boldsymbol{\Phi} \big(\boldsymbol{u}_{\sigma \circ \tau(1)}, \, \cdots, \, \boldsymbol{u}_{\sigma \circ \tau(r)} \big) \\ &= \mathbf{I}_{\sigma \circ \tau}(\boldsymbol{\Phi}) \big(\boldsymbol{u}_{i_{1}}, \, \cdots, \, \boldsymbol{u}_{i_{r}} \big). \end{split} \tag{2.56}$$

有了置换算子,我们就可以来定义**对称张量**和**反对称张量**. 对称张量的全体记为 Sym,反对称张量的全体记为 Skw. 如果以 \mathbb{R}^m 为底空间,又分别可以记为 $S'(\mathbb{R}^m)$ 和 $\Lambda'(\mathbb{R}^m)$.

对于任意的 $\boldsymbol{\Phi} \in \mathcal{T}^r(\mathbb{R}^m)$,如果

$$I_{\sigma}(\boldsymbol{\Phi}) = \boldsymbol{\Phi}, \tag{2.57}$$

则称 Φ 为对称张量,即 $\Phi \in Sym$ 或 $S^r(\mathbb{R}^m)$;如果

$$I_{\sigma}(\mathbf{\Phi}) = \operatorname{sgn} \mathbf{\sigma} \cdot \mathbf{\Phi}, \tag{2.58}$$

则称 Φ 为反对称张量, 即 $\Phi \in Skw$ 或 $\Lambda'(\mathbb{R}^m)$.

有些书中采用分量形式来定义(反)对称张量. 这与此处的定义是等价的:

$$I_{\sigma}(\boldsymbol{\Phi}) = \boldsymbol{\Phi} \iff \boldsymbol{\Phi}_{\sigma(i_{1})\cdots\sigma(i_{r})} = \boldsymbol{\Phi}_{i_{1}\cdots i_{r}}, \tag{2.59-a}$$

$$I_{\sigma}(\boldsymbol{\Phi}) = \operatorname{sgn} \boldsymbol{\sigma} \cdot \boldsymbol{\Phi} \iff \boldsymbol{\Phi}_{\sigma(i_1)\cdots\sigma(i_n)} = \operatorname{sgn} \boldsymbol{\sigma} \cdot \boldsymbol{\Phi}_{i_1\cdots i_n}. \tag{2.59-b}$$

反对称张量与我们熟知的行列式有些类似:交换两列(对于张量就是两个分量),符号相反.全部分量两两交换一遍,前面的系数自然是置换的符号.而如果无论怎么交换分量(当然需要全部两两交换一遍),符号都不变,那这样的张量就是对称张量.

一个二阶张量的协变(或逆变)分量,可以用一个矩阵表示. 如果这个张量是一个反对称张量,交换任意两个分量要添加负号;对于矩阵而言,这就意味着交换两行(或两列)·····

2.7.2 置换算子的表示

根据上文给出的定义, 我们有

$$\mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \left(\boldsymbol{u}_{i_1}, \cdots, \boldsymbol{u}_{i_r} \right) \triangleq \boldsymbol{\Phi} \left(\boldsymbol{u}_{\sigma(i_1)}, \cdots, \boldsymbol{u}_{\sigma(i_r)} \right). \tag{2.60}$$

首先回忆一下 1.2.1 小节中张量的表示: 选一组基(协变、逆变均可), 然后把张量用这组基表示. 于是

$$\mathbf{I}_{\sigma}(\boldsymbol{\Phi})(\boldsymbol{u}_{i_1},\,\cdots,\,\boldsymbol{u}_{i_r})=\boldsymbol{\Phi}(\boldsymbol{u}_{\sigma(i_1)},\,\cdots,\,\boldsymbol{u}_{\sigma(i_r)})$$

把向量用协变基表示:

$$= \boldsymbol{\Phi} \Big(u_{\sigma(i_1)}^{i_1} \boldsymbol{g}_{i_1}, \, \cdots, \, u_{\sigma(i_r)}^{i_r} \boldsymbol{g}_{i_r} \Big)$$

根据张量的线性性,提出系数:

$$= \boldsymbol{\Phi} \big(\boldsymbol{g}_{i_1}, \, \cdots, \, \boldsymbol{g}_{i_r} \big) \cdot \Big(\boldsymbol{u}_{\sigma(i_1)}^{i_1} \cdots \boldsymbol{u}_{\sigma(i_r)}^{i_r} \Big)$$

前半部分可以用张量分量表示; 而后半部分是一组逆变分量, 可以写成内积的形式

$$= \boldsymbol{\varPhi}_{i_1 \cdots i_p} \left[\left(\boldsymbol{u}_{\sigma(i_1)}, \, \boldsymbol{g}^{i_1} \right)_{\mathbb{R}^m} \cdots \left(\boldsymbol{u}_{\sigma(i_r)}, \, \boldsymbol{g}^{i_r} \right)_{\mathbb{R}^m} \right] \tag{2.61*}$$

注意到方括号中的其实是简单张量的定义,这就有

$$= \boldsymbol{\Phi}_{i_1 \cdots i_n} \boldsymbol{g}^{i_1} \otimes \cdots \otimes \boldsymbol{g}^{i_r} (\boldsymbol{u}_{\sigma(i_1)}, \cdots, \boldsymbol{u}_{\sigma(i_r)}). \tag{2.61}$$

最后一步仍然没能回到 $(\mathbf{u}_{i_1}, \cdots, \mathbf{u}_{i_r})$,因此以上推导只是简单地展开了 $\boldsymbol{\Phi}$,并没有获得实质性的结果.

然而,只要稍作改动,情况就会大不相同.考虑一下 2.5.2 小节中置换运算有关数组元素乘积的性质:

$$\forall \tau \in \mathscr{P}_r, \quad A_{i_1 j_1} \cdots A_{i_r j_r} = A_{\tau(i_1)\tau(j_1)} \cdots A_{\tau(i_r)\tau(j_r)}, \tag{2.62}$$

中

$$\boldsymbol{\tau} = \begin{pmatrix} i_1 & \cdots & i_r \\ \boldsymbol{\tau}(i_1) & \cdots & \boldsymbol{\tau}(i_r) \end{pmatrix} = \begin{pmatrix} j_1 & \cdots & j_r \\ \boldsymbol{\tau}(j_1) & \cdots & \boldsymbol{\tau}(j_r) \end{pmatrix}. \tag{2.63}$$

由此可以看出,式 (2.61*) 方括号中的部分其实是由 $\sigma(i_k)$ 和 i_k 两套指标确定的一组数:

$$A_{\sigma(i_k)i_k} = \left(\boldsymbol{u}_{\sigma(i_k)}, \, \boldsymbol{g}^{i_k}\right)_{\mathbb{R}^m};\tag{2.64}$$

另一方面,显然有 $\sigma^{-1} \in \mathcal{P}_{\epsilon}$. 于是

$$\begin{split} &\mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \big(\boldsymbol{u}_{i_1}, \, \cdots, \, \boldsymbol{u}_{i_r} \big) \\ &= \boldsymbol{\Phi}_{i_1 \cdots i_r} \bigg[\big(\boldsymbol{u}_{\sigma(i_1)}, \, \boldsymbol{g}^{i_1} \big)_{\mathbb{R}^m} \cdots \big(\boldsymbol{u}_{\sigma(i_r)}, \, \boldsymbol{g}^{i_r} \big)_{\mathbb{R}^m} \bigg] \end{split}$$

应用置换的性质 (2.62) 式:

$$\begin{split} &= \boldsymbol{\varPhi}_{i_1 \cdots i_r} \bigg[\left(\boldsymbol{u}_{\sigma^{-1} \circ \sigma(i_1)}, \, \boldsymbol{g}^{\sigma^{-1}(i_1)} \right)_{\mathbb{R}^m} \cdots \left(\boldsymbol{u}_{\sigma^{-1} \circ \sigma(i_r)}, \, \boldsymbol{g}^{\sigma^{-1}(i_r)} \right)_{\mathbb{R}^m} \bigg] \\ &= \boldsymbol{\varPhi}_{i_1 \cdots i_r} \bigg[\left(\boldsymbol{u}_{i_1}, \, \boldsymbol{g}^{\sigma^{-1}(i_1)} \right)_{\mathbb{R}^m} \cdots \left(\boldsymbol{u}_{i_2}, \, \boldsymbol{g}^{\sigma^{-1}(i_r)} \right)_{\mathbb{R}^m} \bigg] \end{split}$$

同样,用简单张量表示,可得

$$= \Phi_{i_1 \cdots i_r} g^{\sigma^{-1}(i_1)} \otimes \cdots \otimes g^{\sigma^{-1}(i_r)} (u_{i_1}, \cdots, u_{i_r}). \tag{2.65}$$

这样,我们就得到了置换算子的一种表示:

$$I_{\sigma}(\boldsymbol{\Phi}) = I_{\sigma} \left(\boldsymbol{\Phi}_{i_{1} \cdots i_{r}} g^{i_{1}} \otimes \cdots \otimes g^{i_{r}} \right)$$

$$= \boldsymbol{\Phi}_{i_{1} \cdots i_{r}} g^{\sigma^{-1}(i_{1})} \otimes \cdots \otimes g^{\sigma^{-1}(i_{r})}. \tag{2.66}$$

在式 (2.66) 中, i_1 , …, i_r 都是哑标,要被求和求掉. 张量 Φ 的底空间是 \mathbb{R}^m ,所以每个 i_k 都有 m 个取值. 考虑一下 2.5.3 小节中置换运算有关哑标穷尽的性质,有

$$\forall \sigma \in \mathcal{P}_r, \quad \left\{ \left(i_1, i_2, \cdots, i_r \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \ \overline{\square} \ \mathbb{R} \ 1, 2, \cdots, m \right\} \\
= \left\{ \left(\sigma(i_1), \sigma(i_2), \cdots, \sigma(i_r) \right) \mid \left\{ i_1, i_2, \cdots, i_r \right\} \ \overline{\square} \ \mathbb{R} \ 1, 2, \cdots, m \right\}.$$
(2.67)

因此, 我们可以把式 (2.66) 中的指标 i_k 换成 $\sigma(i_k)$:

$$\begin{split} \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) &= \boldsymbol{\Phi}_{i_{1}\cdots i_{r}} \boldsymbol{g}^{\sigma^{-1}(i_{1})} \otimes \cdots \otimes \boldsymbol{g}^{\sigma^{-1}(i_{r})} \\ &= \boldsymbol{\Phi}_{\sigma(i_{1})\cdots \sigma(i_{r})} \boldsymbol{g}^{\sigma^{-1} \circ \sigma(i_{1})} \otimes \cdots \otimes \boldsymbol{g}^{\sigma^{-1} \circ \sigma(i_{r})} \\ &= \boldsymbol{\Phi}_{\sigma(i_{1})\cdots \sigma(i_{r})} \boldsymbol{g}^{i_{1}} \otimes \cdots \otimes \boldsymbol{g}^{i_{r}}. \end{split} \tag{2.68}$$

这是置换算子的另一种表示.

综上,要获得置换算子的表示,若是对张量分量进行操作,就直接使用对分量指标使用置换; 若是对简单张量进行操作,则要对其指标使用逆置换: ^①

$$\begin{split} \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) &= \mathbf{I}_{\sigma} \left(\boldsymbol{\Phi}^{i_{1} \cdots i_{r}} \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{r}} \right) \\ &= \boldsymbol{\Phi}^{\sigma(i_{1}) \cdots \sigma(i_{r})} \boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{r}} \\ &= \boldsymbol{\Phi}^{i_{1} \cdots i_{r}} \boldsymbol{g}_{\sigma^{-1}(i_{1})} \otimes \cdots \otimes \boldsymbol{g}_{\sigma^{-1}(i_{r})}. \end{split} \tag{2.69-a}$$

① 这里稍有改动,用了张量的逆变分量,不过实质都是一样的. 使用协变分量还是逆变分量,这个嘛,悉听尊便.

2.8 对称化算子与反对称化算子

2.8.1 定义

对称化算子 ♂ 和反对称化算子 ♂ 的定义分别为

$$\mathcal{S}(\boldsymbol{\Phi}) \triangleq \frac{1}{r!} \sum_{\sigma \in \mathcal{P}} \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \tag{2.70}$$

和

$$\mathscr{A}(\boldsymbol{\Phi}) \triangleq \frac{1}{r!} \sum_{\sigma \in \mathscr{P}} \operatorname{sgn} \boldsymbol{\sigma} \cdot \mathbf{I}_{\sigma}(\boldsymbol{\Phi}), \tag{2.71}$$

式中, $\Phi \in \mathcal{T}'(\mathbb{R}^m)$. 根据置换算子的线性性,很容易知道对称化算子与反对称化算子也具有线性性.

对于任意的 $\Phi \in \mathcal{T}'(\mathbb{R}^m)$, 我们有

$$\begin{cases} \mathcal{S}(\boldsymbol{\Phi}) \in \operatorname{Sym}, & (2.72-a) \\ \mathcal{A}(\boldsymbol{\Phi}) \in \operatorname{Skw}. & (2.72-b) \end{cases}$$

这说明任意一个张量,对它作用对称化算子之后,将变为对称张量;反之,作用反对称算子之后,将变为反对称张量.[®]

证明: 要判断 $\mathcal{S}(\boldsymbol{\Phi})$ 是不是对称张量,首先需要在其上作用一个置换算子 \mathbf{I}_{τ} :

$$\mathbf{I}_{\tau} \big[\mathcal{S}(\boldsymbol{\Phi}) \big] = \mathbf{I}_{\tau} \left[\frac{1}{r!} \sum_{\sigma \in \mathcal{P}_{r}} \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \right]$$

根据置换算子的线性性 (2.53) 式,可有

$$=\frac{1}{r!}\sum_{\sigma\in\mathscr{P}_r}\mathsf{I}_{\tau}\circ\mathsf{I}_{\sigma}(\boldsymbol{\varPhi})$$

再用一下 (2.55) 式, 得到

$$=\frac{1}{r!}\sum_{\sigma\in\mathscr{D}}\mathrm{I}_{\tau\circ\sigma}(\boldsymbol{\varPhi})$$

这里求和的作用就是把置换 σ 穷尽了. 根据 2.5.1 小节中的内容,再在 σ 上复合一个置换 τ ,结果 将保持不变:

$$= \frac{1}{r!} \sum_{\sigma \in \mathcal{P}} I_{\sigma}(\boldsymbol{\Phi}) = \mathcal{S}(\boldsymbol{\Phi}). \tag{2.73}$$

对照一下对称张量的定义 (2.57) 式,可见的确有 $\mathcal{S}(\boldsymbol{\Phi}) \in Sym$. 类似地,

$$I_{\tau}[\mathcal{A}(\boldsymbol{\Phi})] = I_{\tau}\left[\frac{1}{r!}\sum_{\boldsymbol{\sigma}\in\mathcal{P}_{r}}\operatorname{sgn}\boldsymbol{\sigma}\cdot I_{\boldsymbol{\sigma}}(\boldsymbol{\Phi})\right]$$

① 换一个角度,(反)对称张量实际上可以用(反)对称化算子来定义.

$$\begin{split} &= \frac{1}{r!} \sum_{\sigma \in \mathscr{P}_r} \operatorname{sgn} \sigma \cdot \left[\mathbf{I}_{\tau} \circ \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \right] \\ &= \frac{1}{r!} \sum_{\sigma \in \mathscr{P}_r} \operatorname{sgn} \sigma \cdot \mathbf{I}_{\tau \circ \sigma}(\boldsymbol{\Phi}) \end{split}$$

根据式 (2.19), $\operatorname{sgn} \tau \cdot \operatorname{sgn} \sigma = \operatorname{sgn}(\tau \circ \sigma)$, 于是

$$= \frac{1}{r!} \sum_{\sigma \in \mathscr{D}} \frac{\operatorname{sgn}(\tau \circ \sigma)}{\operatorname{sgn} \tau} \cdot \operatorname{I}_{\tau \circ \sigma}(\boldsymbol{\Phi})$$

注意到始终成立 $\operatorname{sgn} \tau \cdot \operatorname{sgn} \tau = 1$ (因为 $\operatorname{sgn} \tau = \pm 1$), 又有

$$= \frac{\operatorname{sgn} \tau}{r!} \sum_{\sigma \in \mathscr{D}_r} \operatorname{sgn}(\tau \circ \sigma) \cdot \operatorname{I}_{\tau \circ \sigma}(\boldsymbol{\Phi})$$

利用置换的穷尽, $\tau \circ \sigma$ 与 σ 相比, 结果将保持不变:

$$=\operatorname{sgn}\tau\cdot\left[\frac{1}{r!}\sum_{\boldsymbol{\sigma}\in\mathcal{P}_{e}}\operatorname{sgn}\boldsymbol{\sigma}\cdot\operatorname{I}_{\boldsymbol{\sigma}}(\boldsymbol{\Phi})\right]=\operatorname{sgn}\tau\cdot\mathcal{A}(\boldsymbol{\Phi}).\tag{2.74}$$

与反对称张量的定义 (2.58) 式相比,可见的确有 $\mathcal{S}(\Phi) \in Skw$.

这里的操作直接对张量本身进行,没有采用涉及到张量"自变量"(向量)的繁琐计算,因而显得更加于净利落. □

2.8.2 反对称化算子的性质

上文已经定义了反对称化算子 &:

$$\forall \boldsymbol{\Phi} \in \mathcal{F}^r(\mathbb{R}^m), \quad \mathcal{A}(\boldsymbol{\Phi}) \triangleq \frac{1}{r!} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn} \sigma \cdot \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \in \operatorname{Skw} \stackrel{\text{deg}}{\to} \Lambda^r(\mathbb{R}^m). \tag{2.75}$$

即任意一个r阶张量,作用反对称化算子后就变成了r阶反对称张量.r阶反对称张量也称为r-form (r-形式).

下面列出反对称化算子的几条性质.

1. 反对称化算子若重复作用,仅相当于一次作用:

$$\mathcal{A}^2 \coloneqq \mathcal{A} \circ \mathcal{A} = \mathcal{A}. \tag{2.76}$$

根据数学归纳法,显然有

$$\forall p \in \mathbb{N}^*, \quad \mathcal{A}^p \coloneqq \underbrace{\mathcal{A} \circ \cdots \circ \mathcal{A}}_{p \, \uparrow \, \mathcal{A}} = \mathcal{A}. \tag{2.77}$$

证明:

$$\begin{split} \mathcal{A}^2 &= \mathcal{A} \left[\mathcal{A}(\boldsymbol{\Phi}) \right] \\ &\triangleq \mathcal{A} \left[\frac{1}{r!} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn} \sigma \cdot \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \right] \\ &\triangleq \frac{1}{r!} \sum_{\tau \in \mathcal{P}_r} \operatorname{sgn} \tau \cdot \mathbf{I}_{\tau} \left[\frac{1}{r!} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn} \sigma \cdot \mathbf{I}_{\sigma}(\boldsymbol{\Phi}) \right] \end{split}$$

根据线性性,可有

$$= \frac{1}{(r!)^2} \sum_{\tau \in \mathcal{P}} \sum_{\sigma \in \mathcal{P}} \operatorname{sgn} \tau \operatorname{sgn} \sigma \cdot \mathbf{I}_{\tau} \circ \mathbf{I}_{\sigma}(\boldsymbol{\Phi})$$

根据式 (2.19) 和式 (2.55), 有

$$\begin{split} &= \frac{1}{(r!)^2} \sum_{\tau \in \mathcal{P}_r} \sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn}(\tau \circ \sigma) \cdot \operatorname{I}_{\tau \circ \sigma}(\boldsymbol{\Phi}) \\ &= \frac{1}{(r!)^2} \sum_{\tau \in \mathcal{P}_r} \left[\sum_{\sigma \in \mathcal{P}_r} \operatorname{sgn}(\tau \circ \sigma) \cdot \operatorname{I}_{\tau \circ \sigma}(\boldsymbol{\Phi}) \right] \end{split}$$

注意到方括号中的部分穷尽了置换 σ ,因此可以用 σ 取代"指标" $\tau \circ \sigma$:

$$= \frac{1}{(r!)^2} \sum_{\boldsymbol{\tau} \in \mathcal{P}_r} \left[\sum_{\boldsymbol{\sigma} \in \mathcal{P}_r} \operatorname{sgn} \boldsymbol{\sigma} \cdot \mathbf{I}_{\boldsymbol{\sigma}}(\boldsymbol{\Phi}) \right]$$

回到定义,有

$$= \frac{1}{r!} \sum_{\tau \in \mathscr{P}_r} \mathscr{A}(\boldsymbol{\Phi}) = \frac{1}{r!} \cdot r! \, \mathscr{A}(\boldsymbol{\Phi}) = \mathscr{A}(\boldsymbol{\Phi}). \tag{2.78}$$

2. 对任意两个张量 $\Phi \in \mathcal{F}^p(\mathbb{R}^m)$ 和 $\Psi \in \mathcal{F}^q(\mathbb{R}^m)$ 的并施加反对称化算子,可以得到如下结果:

$$\mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}) = \mathcal{A}[\mathcal{A}(\boldsymbol{\Phi}) \otimes \boldsymbol{\Psi}] \tag{2.79-a}$$

$$= \mathcal{A} \left[\mathbf{\Phi} \otimes \mathcal{A}(\mathbf{\Psi}) \right] \tag{2.79-b}$$

$$= \mathscr{A} \left[\mathscr{A}(\boldsymbol{\Phi}) \otimes \mathscr{A}(\boldsymbol{\Psi}) \right]. \tag{2.79-c}$$

证明: 这里只给出式 (2.79-b) 的证明. 另外两式的证明是类似的.

$$\mathscr{A}\big[\boldsymbol{\Phi}\otimes\mathscr{A}(\boldsymbol{\varPsi})\big]=\mathscr{A}\Bigg[\boldsymbol{\Phi}\otimes\left(\frac{1}{q!}\sum_{\boldsymbol{\tau}\in\mathscr{P}_q}\operatorname{sgn}\boldsymbol{\tau}\cdot\mathbf{I}_{\boldsymbol{\tau}}(\boldsymbol{\varPsi})\right)\Bigg]$$

根据张量积的线性性提出系数:

$$= \mathcal{A} \left[\frac{1}{q!} \sum_{\tau \in \mathcal{P}_q} \operatorname{sgn} \tau \cdot \boldsymbol{\Phi} \otimes \mathbf{I}_{\tau}(\boldsymbol{\Psi}) \right]$$

利用置换的穷尽,可以把 τ 换作 τ^{-1} :

$$= \mathscr{A} \left[\frac{1}{q!} \sum_{\boldsymbol{\tau} \in \mathscr{P}_q} \operatorname{sgn} \boldsymbol{\tau}^{-1} \cdot \boldsymbol{\varPhi} \otimes \mathbf{I}_{\boldsymbol{\tau}^{-1}} (\boldsymbol{\varPsi}) \right]$$

注意到 $\operatorname{sgn} \boldsymbol{\tau} = \operatorname{sgn} \boldsymbol{\tau}^{-1}$,于是

$$= \mathscr{A} \left[\frac{1}{q!} \sum_{\tau \in \mathscr{P}_q} \operatorname{sgn} \tau \cdot \boldsymbol{\Phi} \otimes \mathbf{I}_{\tau^{-1}}(\boldsymbol{\Psi}) \right], \tag{2.80}$$

式中,

$$\mathbf{I}_{\tau^{-1}}(\boldsymbol{\varPsi}) = \boldsymbol{\varPsi}^{j_1 \cdots j_q} \, \boldsymbol{g}_{\tau(j_1)} \otimes \cdots \otimes \boldsymbol{g}_{\tau(j_q)}. \tag{2.81}$$

于是有

$$\boldsymbol{\Phi} \otimes \mathbf{I}_{\tau^{-1}}(\boldsymbol{\Psi}) = \boldsymbol{\Phi}^{i_1 \cdots i_p} \boldsymbol{\Psi}^{j_1 \cdots j_q} \left(\mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p} \right) \otimes \left(\mathbf{g}_{\tau(j_1)} \otimes \cdots \otimes \mathbf{g}_{\tau(j_q)} \right). \tag{2.82}$$

置换 $\tau \in \mathcal{P}_q$ 的元素定义为

$$\boldsymbol{\tau} = \begin{pmatrix} j_1 & \cdots & j_q \\ \boldsymbol{\tau}(j_1) & \cdots & \boldsymbol{\tau}(j_q) \end{pmatrix}. \tag{2.83}$$

引入它的"延拓"(或曰"增广")置换 $\hat{\mathbf{r}} \in \mathcal{P}_{p+q}$,其定义为

$$\hat{\boldsymbol{\tau}} = \begin{pmatrix} i_1 & \cdots & i_p & j_1 & \cdots & j_q \\ i_1 & \cdots & i_p & \boldsymbol{\tau}(j_1) & \cdots & \boldsymbol{\tau}(j_q) \end{pmatrix}. \tag{2.84}$$

这样一来,就有

$$\Phi \otimes \mathbf{I}_{\tau^{-1}}(\Psi) = \Phi^{i_1 \cdots i_p} \Psi^{j_1 \cdots j_q} \left(\mathbf{g}_{i_1} \otimes \cdots \otimes \mathbf{g}_{i_p} \right) \otimes \left(\mathbf{g}_{\tau(j_1)} \otimes \cdots \otimes \mathbf{g}_{\tau(j_q)} \right)
= \Phi^{i_1 \cdots i_p} \Psi^{j_1 \cdots j_q} \left(\mathbf{g}_{\hat{\tau}(i_1)} \otimes \cdots \otimes \mathbf{g}_{\hat{\tau}(i_p)} \right) \otimes \left(\mathbf{g}_{\hat{\tau}(j_1)} \otimes \cdots \otimes \mathbf{g}_{\hat{\tau}(j_q)} \right)
= \mathbf{I}_{\hat{\tau}^{-1}} \left(\Phi \otimes \Psi \right).$$
(2.85)

另一方面,参与轮换的元素只有后面的 q 个,因此 \hat{r} 起到的作用实际上等同于 τ (当然两者作用范围不同). 所以可知

$$\operatorname{sgn}\hat{\tau} = \operatorname{sgn}\tau. \tag{2.86}$$

把以上这两点代入式 (2.80) 的推导,有

$$\mathcal{A}\left[\boldsymbol{\Phi}\otimes\mathcal{A}(\boldsymbol{\Psi})\right] = \mathcal{A}\left[\frac{1}{q!}\sum_{\boldsymbol{\tau}\in\mathcal{P}_q}\operatorname{sgn}\boldsymbol{\tau}\cdot\boldsymbol{\Phi}\otimes\operatorname{I}_{\boldsymbol{\tau}^{-1}}(\boldsymbol{\Psi})\right]$$
$$= \mathcal{A}\left[\frac{1}{q!}\sum_{\boldsymbol{\tau}\in\mathcal{P}_q}\operatorname{sgn}\boldsymbol{\hat{\tau}}\cdot\operatorname{I}_{\boldsymbol{\hat{\tau}}^{-1}}(\boldsymbol{\Phi}\otimes\boldsymbol{\Psi})\right]$$

再用一次线性性,可得

$$= \frac{1}{q!} \sum_{\boldsymbol{\tau} \in \mathcal{P}_q} \operatorname{sgn} \hat{\boldsymbol{\tau}} \cdot \mathcal{A} \left[\mathbf{I}_{\hat{\boldsymbol{\tau}}^{-1}} (\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}) \right]. \tag{2.87}$$

 $\Phi \otimes \Psi$ 是一个 p+q 阶张量,它作用置换算子后阶数当然保持不变。根据反对称化算子的定义,可有

$$\mathcal{A}\left[\mathbf{I}_{\hat{\boldsymbol{\sigma}}^{-1}}\left(\boldsymbol{\Phi}\otimes\boldsymbol{\Psi}\right)\right] = \frac{1}{(p+q)!} \sum_{\hat{\boldsymbol{\sigma}}\in\mathcal{P}_{p+q}} \operatorname{sgn}\hat{\boldsymbol{\sigma}} \cdot \left[\mathbf{I}_{\hat{\boldsymbol{\sigma}}}\circ\mathbf{I}_{\hat{\boldsymbol{\tau}}^{-1}}\left(\boldsymbol{\Phi}\otimes\boldsymbol{\Psi}\right)\right]
= \frac{1}{(p+q)!} \sum_{\hat{\boldsymbol{\sigma}}\in\mathcal{P}_{p+q}} \operatorname{sgn}\hat{\boldsymbol{\sigma}} \cdot \left[\mathbf{I}_{\hat{\boldsymbol{\sigma}}\circ\hat{\boldsymbol{\tau}}^{-1}}\left(\boldsymbol{\Phi}\otimes\boldsymbol{\Psi}\right)\right],$$
(2.88)

式中的 $\hat{\sigma}$ 和之前定义的 $\hat{\tau}$ 含义相同,只是为了确保哑标不重复,我们采用了不同的字母来表示. 该式 (2.88) 中的 $\operatorname{sgn}\hat{\sigma}$ 可以写成

$$\operatorname{sgn} \hat{\boldsymbol{\sigma}} = \frac{\operatorname{sgn} \left(\hat{\boldsymbol{\sigma}} \circ \hat{\boldsymbol{\tau}}^{-1} \right)}{\operatorname{sgn} \hat{\boldsymbol{\tau}}^{-1}} = \frac{\operatorname{sgn} \left(\hat{\boldsymbol{\sigma}} \circ \hat{\boldsymbol{\tau}}^{-1} \right)}{\operatorname{sgn} \hat{\boldsymbol{\tau}}}.$$
 (2.89)

第二个等号是根据式 (2.27).

注意到 (2.87) 式中也有一个 $\operatorname{sgn} \hat{\tau}$, 因此

$$\begin{split} \mathscr{A}\big[\boldsymbol{\Phi}\otimes\mathscr{A}(\boldsymbol{\varPsi})\big] &= \frac{1}{q!}\sum_{\boldsymbol{\tau}\in\mathscr{P}_q}\operatorname{sgn}\hat{\boldsymbol{\tau}}\cdot\mathscr{A}\Big[\mathrm{I}_{\hat{\boldsymbol{\tau}}^{-1}}\big(\boldsymbol{\Phi}\otimes\boldsymbol{\varPsi}\big)\Big] \\ &= \frac{1}{q!}\sum_{\boldsymbol{\tau}\in\mathscr{P}_q}\operatorname{sgn}\hat{\boldsymbol{\tau}}\cdot\Bigg[\frac{1}{(p+q)!}\sum_{\hat{\boldsymbol{\sigma}}\in\mathscr{P}_{p+q}}\operatorname{sgn}\hat{\boldsymbol{\sigma}}\cdot\Big(\mathrm{I}_{\hat{\boldsymbol{\sigma}}\circ\hat{\boldsymbol{\tau}}^{-1}}\big(\boldsymbol{\Phi}\otimes\boldsymbol{\varPsi}\big)\Big)\Bigg] \end{split}$$

用式 (2.89) 合并掉 $\operatorname{sgn} \hat{\tau}$ 和 $\operatorname{sgn} \hat{\sigma}$:

$$=\frac{1}{q!}\sum_{\boldsymbol{\tau}\in\mathcal{P}_{\boldsymbol{\theta}}}\frac{1}{(p+q)!}\sum_{\hat{\boldsymbol{\sigma}}\in\mathcal{P}_{\boldsymbol{\theta}+\boldsymbol{\theta}}}\operatorname{sgn}\left(\hat{\boldsymbol{\sigma}}\circ\hat{\boldsymbol{\tau}}^{-1}\right)\cdot\left[\mathbb{I}_{\hat{\boldsymbol{\sigma}}\circ\hat{\boldsymbol{\tau}}^{-1}}\big(\boldsymbol{\varPhi}\otimes\boldsymbol{\varPsi}\big)\right]$$

再次利用置换穷尽的性质改变"哑标"置换:

$$=\frac{1}{q!}\sum_{\boldsymbol{\tau}\in\mathcal{P}_q}\frac{1}{(p+q)!}\sum_{\hat{\boldsymbol{\sigma}}\in\mathcal{P}_{p+q}}\operatorname{sgn}\hat{\boldsymbol{\sigma}}\cdot\left[\mathrm{I}_{\hat{\boldsymbol{\sigma}}}\big(\boldsymbol{\varPhi}\otimes\boldsymbol{\varPsi}\big)\right]$$

终于拨开云雾见青天,看到了似曾相识的定义:

$$= \frac{1}{q!} \sum_{\boldsymbol{\tau} \in \mathcal{P}_q} \mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi})$$

$$= \frac{1}{q!} \cdot q! \,\mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}) = \mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}). \tag{2.90}$$

3. 反对称化算子具有所谓反导性:

$$\forall \boldsymbol{\Phi} \in \mathcal{F}^{p}(\mathbb{R}^{m}), \boldsymbol{\Psi} \in \mathcal{F}^{q}(\mathbb{R}^{m}), \quad \mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}) = (-1)^{pq} \cdot \mathcal{A}(\boldsymbol{\Psi} \otimes \boldsymbol{\Phi}). \tag{2.91}$$

证明: 首先单独把反对称算子展开. 它所作用的张量为 p+q 阶, 因而相应的置换 $\sigma\in\mathscr{S}_{p+q}$:

$$\mathcal{A} = \frac{1}{(p+q)!} \sum_{\sigma \in \mathcal{P}_{p+q}} \operatorname{sgn} \sigma \cdot \mathbf{I}_{\sigma}$$

$$= \frac{1}{(p+q)!} \sum_{\sigma \in \mathcal{P}_{p+q}} \operatorname{sgn} \left(\sigma \circ \tau^{-1}\right) \cdot \mathbf{I}_{\sigma \circ \tau^{-1}}.$$
(2.92)

第二的等号与之前一样,利用了置换的穷尽. 这里的 τ 是 \mathcal{S}_{p+q} 中一个任意的置换. 利用置换符号的性质,有

$$\operatorname{sgn}\left(\boldsymbol{\sigma} \circ \boldsymbol{\tau}^{-1}\right) = \operatorname{sgn}\boldsymbol{\sigma} \cdot \operatorname{sgn}\boldsymbol{\tau}^{-1} = \operatorname{sgn}\boldsymbol{\sigma} \cdot \operatorname{sgn}\boldsymbol{\tau}. \tag{2.93}$$

因此

$$\mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}) = \frac{1}{(p+q)!} \sum_{\boldsymbol{\sigma} \in \mathcal{P}_{p+q}} \operatorname{sgn}(\boldsymbol{\sigma} \circ \boldsymbol{\tau}^{-1}) \cdot \mathbf{I}_{\boldsymbol{\sigma} \circ \boldsymbol{\tau}^{-1}}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi})$$

$$= \frac{\operatorname{sgn} \boldsymbol{\tau}}{(p+q)!} \sum_{\boldsymbol{\sigma} \in \mathcal{P}_{p+q}} \operatorname{sgn} \boldsymbol{\sigma} \cdot \mathbf{I}_{\boldsymbol{\sigma} \circ \boldsymbol{\tau}^{-1}}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}). \tag{2.94}$$

把张量展开成分量形式, 可以有

$$\mathbf{I}_{\boldsymbol{\sigma} \circ \boldsymbol{\tau}^{-1}} \big(\boldsymbol{\varPhi} \otimes \boldsymbol{\varPsi} \big) = \mathbf{I}_{\boldsymbol{\sigma} \circ \boldsymbol{\tau}^{-1}} \Big[\boldsymbol{\varPhi}^{i_1 \cdots i_p} \boldsymbol{\varPsi}^{j_1 \cdots j_q} \Big(\boldsymbol{g}_{i_1} \otimes \cdots \otimes \boldsymbol{g}_{i_p} \Big) \otimes \Big(\boldsymbol{g}_{j_1} \otimes \cdots \otimes \boldsymbol{g}_{j_q} \Big) \Big]$$

根据式 (2.55), 可得

$$=\mathbf{I}_{\sigma}\circ\mathbf{I}_{\tau^{-1}}\bigg[\boldsymbol{\varPhi}^{i_{1}\cdots i_{p}}\boldsymbol{\varPsi}^{j_{1}\cdots j_{q}}\left(\boldsymbol{g}_{i_{1}}\otimes\cdots\otimes\boldsymbol{g}_{i_{p}}\right)\otimes\left(\boldsymbol{g}_{j_{1}}\otimes\cdots\otimes\boldsymbol{g}_{j_{q}}\right)\bigg]$$

利用置换算子的表示 (2.69-b) 一式,对简单张量进行操作:

$$= \mathbf{I}_{\sigma} \left[\boldsymbol{\Phi}^{i_{1} \cdots i_{p}} \boldsymbol{\Psi}^{j_{1} \cdots j_{q}} \left(\boldsymbol{g}_{\tau(i_{1})} \otimes \cdots \otimes \boldsymbol{g}_{\tau(i_{p})} \right) \otimes \left(\boldsymbol{g}_{\tau(j_{1})} \otimes \cdots \otimes \boldsymbol{g}_{\tau(j_{q})} \right) \right]. \tag{2.95}$$

根据 τ 的任意性,不妨取^①

$$\boldsymbol{\tau} = \begin{pmatrix} i_1 & \cdots & i_p & j_1 & \cdots & j_q \\ j_1 & \cdots & j_q & i_1 & \cdots & i_p \end{pmatrix}. \tag{2.96}$$

这种取法恰好可以使指标为 i 和 j 的向量交换一下位置. 于是

$$\begin{split} \mathbf{I}_{\sigma \circ \tau^{-1}} \big(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi} \big) &= \mathbf{I}_{\sigma} \bigg[\boldsymbol{\Phi}^{i_{1} \cdots i_{p}} \boldsymbol{\Psi}^{j_{1} \cdots j_{q}} \left(\boldsymbol{g}_{\tau(j_{1})} \otimes \cdots \otimes \boldsymbol{g}_{\tau(j_{q})} \right) \otimes \left(\boldsymbol{g}_{\tau(i_{1})} \otimes \cdots \otimes \boldsymbol{g}_{\tau(i_{p})} \right) \bigg] \\ &= \mathbf{I}_{\sigma} \bigg[\boldsymbol{\Phi}^{i_{1} \cdots i_{p}} \boldsymbol{\Psi}^{j_{1} \cdots j_{q}} \left(\boldsymbol{g}_{i_{1}} \otimes \cdots \otimes \boldsymbol{g}_{i_{p}} \right) \otimes \left(\boldsymbol{g}_{j_{1}} \otimes \cdots \otimes \boldsymbol{g}_{j_{q}} \right) \bigg] \end{split}$$

张量分量作为数,可交换顺序自然无需多言:

$$= I_{\sigma} \Big[\Psi^{j_1 \cdots j_q} \Phi^{i_1 \cdots i_p} \Big(g_{i_1} \otimes \cdots \otimes g_{i_p} \Big) \otimes \Big(g_{j_1} \otimes \cdots \otimes g_{j_q} \Big) \Big]$$

$$= I_{\sigma} \Big(\Psi \otimes \Phi \Big). \tag{2.97}$$

下面再考虑一下 τ 的符号: j_1 先和 i_p 交换,再和 i_{p-1} 交换,以此类推,直到移动至 i_1 的位置,一共交换了 p 次. 而 j_2 , …, j_q 也是同理,各需进行 p 次交换.所以总共是 $p\cdot q$ 次两两交换.因此,

$$\operatorname{sgn} \tau = (-1)^{pq}. \tag{2.98}$$

回到式 (2.94) 的推导,有

$$\mathcal{A}(\boldsymbol{\Phi} \otimes \boldsymbol{\Psi}) = \frac{\operatorname{sgn} \boldsymbol{\tau}}{(p+q)!} \sum_{\boldsymbol{\sigma} \in \mathcal{P}_{p+q}} \operatorname{sgn} \boldsymbol{\sigma} \cdot \mathbf{I}_{\boldsymbol{\sigma} \circ \boldsymbol{\tau}^{-1}} (\boldsymbol{\Phi} \otimes \boldsymbol{\Psi})$$

$$= \frac{(-1)^{pq}}{(p+q)!} \sum_{\boldsymbol{\sigma} \in \mathcal{P}_{p+q}} \operatorname{sgn} \boldsymbol{\sigma} \cdot \mathbf{I}_{\boldsymbol{\sigma}} (\boldsymbol{\Psi} \otimes \boldsymbol{\Phi})$$

$$= (-1)^{pq} \cdot \mathcal{A} (\boldsymbol{\Psi} \otimes \boldsymbol{\Phi}). \tag{2.99}$$

① 矩阵中的 i_p 和 j_q 等未必是对齐的,这里的写法只是为了表示方便.

第三章 微分同胚

3.1 微分同胚

3.1.1 双射

设 f 是集合 A 到 B 的映照. 如果 A 中不同的元素有不同的像,则称 f 为单射(也叫"一对一"); 如果 B 中每个元素都是 A 中元素的像,则称 f 为满射; 如果 f 既是单射又是满射,则称 f 为**双射**(也叫"一一对应"). 三种情况的示意见图 3.1.

Images/Three_Mappings.PNG

图 3.1: 单射、满射与双射

设开集 $\mathfrak{D}_X, \mathfrak{D}_x \subset \mathbb{R}^m$,它们之间存在双射,即一一对应关系:

$$X(x): \mathfrak{D}_x \ni x = \begin{bmatrix} x^1 \\ \vdots \\ x^m \end{bmatrix} \mapsto X(x) = \begin{bmatrix} X^1 \\ \vdots \\ X^m \end{bmatrix} (x) \in \mathfrak{D}_X.$$
 (3.1)

由于该映照实现了 \mathfrak{D}_{x} 到 \mathfrak{D}_{X} 之间的双射,因此它存在逆映照:

$$\mathbf{x}(\mathbf{X}): \mathfrak{D}_{\mathbf{X}} \ni \mathbf{X} = \begin{bmatrix} X^1 \\ \vdots \\ X^m \end{bmatrix} \mapsto \mathbf{x}(\mathbf{X}) = \begin{bmatrix} x^1 \\ \vdots \\ x^m \end{bmatrix} (\mathbf{X}) \in \mathfrak{D}_{\mathbf{x}}.$$
 (3.2)

我们把 \mathfrak{D}_X 称为**物理域**,它是实际物理事件发生的区域; \mathfrak{D}_X 则称为**参数域**. 由于物理域通常较为复杂,因此我们常把参数域取为规整的形状,以便之后的处理.

设物理量 f(X) 定义在物理域 $\mathfrak{D}_X \subset \mathbb{R}^m$ 上 0 ,则 f 就定义了一个场:

$$f: \mathfrak{D}_{\mathbf{X}} \ni \mathbf{X} \mapsto f(\mathbf{X}). \tag{3.3}$$

所谓的"场",就是自变量用位置刻画的映照。它可以是**标量场**,如温度、压强、密度等,此时 $f(X) \in \mathbb{R}$; 也可以是**向量场**,如速度、加速度、力等,此时 $f(X) \in \mathbb{R}^m$; 对于更深入的物理、力学研究,往往还需引入**张量场**,此时 $f(X) \in \mathcal{F}'(\mathbb{R}^m)$.

X 存在于物理域 \mathfrak{D}_X 中,我们称它为**物理坐标**.由于上文已经定义了 \mathfrak{D}_X 到 \mathfrak{D}_X 之间的双射 (不是 f!),因此 \mathfrak{D}_X 中就有唯一的 X 与 X 相对应,它称为参数坐标(也叫曲线坐标).又因为物理域 \mathfrak{D}_X 上已经定义了场 f(X),参数域中必然唯一存在场 $\tilde{f}(X)$ 与之对应:

$$\tilde{f}: \mathfrak{D}_{x} \ni x \mapsto \tilde{f}(x) = f \circ X(x) = f(X(x)).$$
 (3.4)

x 与 X 是完全等价的,因而 \tilde{f} 与 f 也是完全等价的,所以同样有

$$f(X) = \tilde{f}(x(X)). \tag{3.5}$$

物理域中的场要满足守恒定律,如质量守恒、动量守恒、能量守恒等.从数学上看,这些守恒定律就是 f(X) 需要满足的一系列偏微分方程.将场变换到参数域后,它仍要满足这些方程.但我们已经设法将参数域取得较为规整,故在其上进行数值求解就会相当方便.

3.1.2 参数域方程

上文已经提到,物理域中的场 f(X) 需满足守恒定律,这等价于一系列偏微分方程(PDE)。在物理学和力学中,用到的 PDE 通常是二阶的,它们可以写成

$$\forall X \in \mathfrak{D}_X, \quad \sum_{\alpha=1}^m A_{\alpha}(X) \frac{\partial f}{\partial X^{\alpha}}(X) + \sum_{\alpha=1}^m \sum_{\beta=1}^m B_{\alpha\beta}(X) \frac{\partial^2 f}{\partial X^{\beta} \partial X^{\alpha}}(X) = 0$$
 (3.6)

的形式. 我们的目标是把该物理域方程转化为参数域方程,即关于 $\tilde{f}(x)$ 的 PDE. 多元微积分中已 经提供了解决方案: 链式求导法则.

考虑到

$$f(\mathbf{X}) = \tilde{f}(\mathbf{x}(\mathbf{X})) = \tilde{f}(x^{1}(\mathbf{X}), \dots, x^{m}(\mathbf{X})),$$
(3.7)

于是有

$$\frac{\partial f}{\partial X^{\alpha}}(X) = \sum_{s=1}^{m} \frac{\partial \tilde{f}}{\partial x^{s}} (x(X)) \cdot \frac{\partial x^{s}}{\partial X^{\alpha}}(X). \tag{3.8}$$

这里用到的链式法则,由复合映照可微性定理驱动,它要求 \tilde{f} 关于x可微,同时x关于X可微.

对于更高阶的项,往往需要更强的条件. 一般地,我们要求

$$\begin{cases} X(\mathbf{x}) \in \mathcal{C}^p(\mathfrak{D}_{\mathbf{x}}; \mathbb{R}^m); \\ \mathbf{x}(X) \in \mathcal{C}^p(\mathfrak{D}_{X}; \mathbb{R}^m). \end{cases}$$
(3.9-a)

这里的 \mathcal{C}^p 指直至 p 阶偏导数(存在且)连续的映照全体; p=1 时,它就等价于可微. 至于 p 的具体取值,则由 PDE 的阶数所决定.

① 实际的物理事件当然只会发生在三维 Euclid 空间中(只就"空间"而言),但在数学上也可以推广到 m 维.

通常情况下,已知条件所给定的往往都是 \mathfrak{D}_x 到 \mathfrak{D}_X 的映照

$$X(x): \mathfrak{D}_x \ni x = \begin{bmatrix} x^1 \\ \vdots \\ x^m \end{bmatrix} \mapsto X(x) = \begin{bmatrix} X^1 \\ \vdots \\ X^m \end{bmatrix} (x) \in \mathfrak{D}_X,$$
 (3.10)

用它不好直接得到式 (3.8) 中的 $\partial x^s/\partial X^\alpha$ 项,但获得它的"倒数" $\partial X^\alpha/\partial x^s$ 却很容易,只需利用 **Jacobi 矩阵**:

$$\mathsf{D}X(x) \triangleq \begin{bmatrix} \frac{\partial X^{1}}{\partial x^{1}} & \cdots & \frac{\partial X^{1}}{\partial x^{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial X^{m}}{\partial x^{1}} & \cdots & \frac{\partial X^{m}}{\partial x^{m}} \end{bmatrix} (x) \in \mathbb{R}^{m \times m}, \tag{3.11}$$

它是一个方阵.

有了 Jacobi 矩阵, 施加一些手法就可以得到所需要的 $\partial x^s/\partial X^\alpha$ 项. 考虑到

$$\forall X \in \mathfrak{D}_X, \quad X(x(X)) = X, \tag{3.12}$$

并且其中的 X(x) 和 x(X) 均可微,可以得到

$$\mathsf{D}X(x(X)) \cdot \mathsf{D}x(X) = I_m, \tag{3.13}$$

其中的 I_m 是单位阵. 因此

$$\mathsf{D}\mathbf{x}(\mathbf{X}) \triangleq \begin{bmatrix} \frac{\partial x^{1}}{\partial X^{1}} & \cdots & \frac{\partial x^{1}}{\partial X^{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^{m}}{\partial X^{1}} & \cdots & \frac{\partial x^{m}}{\partial X^{m}} \end{bmatrix} (\mathbf{X}) = (\mathsf{D}\mathbf{X})^{-1}(\mathbf{x}) = \begin{bmatrix} \frac{\partial X^{1}}{\partial x^{1}} & \cdots & \frac{\partial X^{1}}{\partial x^{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial X^{m}}{\partial x^{1}} & \cdots & \frac{\partial X^{m}}{\partial x^{m}} \end{bmatrix}^{-1} (\mathbf{x}). \tag{3.14}$$

用代数的方法总可以求出

$$\varphi_{\alpha}^{s} := \frac{\partial x^{s}}{\partial X^{\alpha}},\tag{3.15}$$

它是通过求逆运算确定的函数,即位于矩阵 Dx 第 s 行第 α 列的元素. 这样就有

$$\frac{\partial f}{\partial X^{\alpha}}(X) = \sum_{s=1}^{m} \frac{\partial \tilde{f}}{\partial x^{s}} (x(X)) \cdot \varphi_{\alpha}^{s} (x(X)). \tag{3.16}$$

接下来处理二阶偏导数. 由上式,

$$\frac{\partial^{2} f}{\partial X^{\beta} \partial X^{\alpha}}(\boldsymbol{X}) = \sum_{s=1}^{m} \left[\left(\sum_{k=1}^{m} \frac{\partial^{2} \tilde{f}}{\partial x^{k} \partial x^{s}} (\boldsymbol{x}(\boldsymbol{X})) \cdot \frac{\partial x^{s}}{\partial X^{\beta}} (\boldsymbol{X}) \right) \cdot \varphi_{\alpha}^{s} (\boldsymbol{x}(\boldsymbol{X})) + \frac{\partial \tilde{f}}{\partial x^{s}} (\boldsymbol{x}(\boldsymbol{X})) \cdot \left(\sum_{k=1}^{m} \frac{\partial \varphi_{\alpha}^{s}}{\partial x^{k}} (\boldsymbol{x}(\boldsymbol{X})) \cdot \frac{\partial x^{k}}{\partial X^{\beta}} (\boldsymbol{X}) \right) \right]$$

继续利用式 (3.15),有

$$=\sum_{s=1}^{m}\left[\left(\sum_{k=1}^{m}\frac{\partial^{2}\tilde{f}}{\partial x^{k}\partial x^{s}}(\mathbf{x}(\mathbf{X}))\cdot\varphi_{\beta}^{s}(\mathbf{x}(\mathbf{X}))\right)\cdot\varphi_{\alpha}^{s}(\mathbf{x}(\mathbf{X}))\right]$$

$$+ \frac{\partial \tilde{f}}{\partial x^{s}} (\mathbf{x}(\mathbf{X})) \cdot \left(\sum_{k=1}^{m} \frac{\partial \varphi_{\alpha}^{s}}{\partial x^{k}} (\mathbf{x}(\mathbf{X})) \cdot \varphi_{\beta}^{k} (\mathbf{x}(\mathbf{X})) \right) \right]. \tag{3.17}$$

这样,就把一阶和二阶偏导数项全部用关于 x 的函数 $^{\circ}$ 表达了出来. 换句话说,我们已经把物理域中 f 关于 X 的 PDE,转化成了参数域中 \tilde{f} 关于 x 的 PDE. 这就是上文要实现的目标.

3.1.3 微分同胚的定义

上文已经指出了 \mathfrak{D}_{x} 到 \mathfrak{D}_{x} 的映照 X(x) 所需满足的一些条件. 这里再次罗列如下:

- 1. $\mathfrak{D}_{\mathbf{x}}$, $\mathfrak{D}_{\mathbf{x}}$ ⊂ \mathbb{R}^m 均为开集^②;
- 2. 存在 $\mathfrak{D}_{\mathbf{x}}$ 同 $\mathfrak{D}_{\mathbf{x}}$ 之间的**双射** $\mathbf{X}(\mathbf{x})$, 即存在**一一对应**关系;
- 3. X(x) 和它的逆映照 x(X) 满足一定的正则性要求.

对第3点要稍作说明.

如果满足这三点,则称 X(x) 为 \mathfrak{D}_x 与 \mathfrak{D}_X 之间的 \mathscr{C}^p -微分同胚,记为 $X(x) \in \mathscr{C}^p(\mathfrak{D}_x; \mathfrak{D}_X)$. 把物理域中的一个部分对应到参数域上的一个部分,需要的仅仅是双射这一条件;而要使得物理域中所满足的 PDE 能够转换到参数域上,就需要"过去"和"回来"都满足 p 阶偏导数连续的条件(即正则性要求).

3.2 向量值映照的可微性

3.2.1 可微性的定义

设 \mathbf{x}_0 是参数域 $\mathfrak{D}_{\mathbf{x}}$ 中的一个内点. 在映照 $\mathbf{X}(\mathbf{x})$ 的作用下,它对应到物理域 $\mathfrak{D}_{\mathbf{x}}$ 中的点 $\mathbf{X}(\mathbf{x}_0)$. 参数域是一个开集. 根据开集的定义,必然存在一个实数 $\lambda > 0$,使得以 \mathbf{x}_0 为球心、 λ 为半径的球能够完全落在定义域 $\mathfrak{D}_{\mathbf{x}}$ 内,即

$$\mathfrak{B}_{\lambda}(\mathbf{x}_0) \subset \mathfrak{D}_{\mathbf{x}},\tag{3.18}$$

其中的 $\mathfrak{B}_{\lambda}(\mathbf{x}_0)$ 表示 \mathbf{x}_0 的 λ 邻域.

如果 $\exists DX(x_0) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^m)^{\circ}$,满足

$$\forall x_0 + h \in \mathfrak{B}_{\lambda}(x_0), \quad X(x_0 + h) - X(x_0) = DX(x_0)(h) + o(\|h\|_{\mathbb{R}^m}) \in \mathbb{R}^m, \tag{3.19}$$

则称向量值映照 X(x) 在 x_0 点**可微**. 其中, $\mathcal{L}(\mathbb{R}^m,\mathbb{R}^m)$ 表示从 \mathbb{R}^m 到 \mathbb{R}^m 的**线性变换**全体.

根据这个定义,所谓可微性,指由自变量变化所引起的因变量变化,可以用一个线性变换近似,而误差为一阶无穷小量.自变量可见到因变量空间最简单的映照形式就是线性映照(线性变换),因而具有可微性的向量值映照具有至关重要的作用.

① 当然它仍然是 X 的隐函数: x = x(X).

② 用形象化的语言来说,如果在区域中的任意一点都可以吹出一个球,并能使球上的每个点都落在区域内,那么这个区域就是**开集**. 这是复合映照可微性定理的一个要求.

③ 正如之前已经定义的,DX 已经用来表示 Jacobi 矩阵. 这里还是请先暂时将它视为一种记号,其具体形式将在下一小节给出.

3.2.2 Jacobi 矩阵

下面我们研究 $\mathsf{D}X(x_0) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^m)$ 的表达形式. 由于 $h \in \mathbb{R}^m$, 所以

$$\boldsymbol{h} = \begin{bmatrix} h^1 \\ \vdots \\ h^m \end{bmatrix} = h^1 \boldsymbol{e}_1 + \dots + h^i \boldsymbol{e}_i + \dots + h^m \boldsymbol{e}_m. \tag{3.20}$$

另一方面, $\mathsf{D}X(x_0) \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^m)$ 具有线性性:

$$\forall \alpha, \beta \in \mathbb{R} \stackrel{\text{fil}}{\hbar}, \hat{h} \in \mathbb{R}^m, \quad \mathsf{D}X(\mathbf{x}_0)(\alpha \tilde{h} + \beta \hat{h}) = \alpha \, \mathsf{D}X(\mathbf{x}_0)(\tilde{h}) + \beta \, \mathsf{D}X(\mathbf{x}_0)(\hat{h}). \tag{3.21}$$

这样就有

$$DX(\mathbf{x}_0)(\mathbf{h}) = DX(\mathbf{x}_0)(h^1 e_1 + \dots + h^i e_i + \dots + h^m e_m)$$

$$= h^1 DX(\mathbf{x}_0)(e_1) + \dots + h^i DX(\mathbf{x}_0)(e_i) + \dots + h^m DX(\mathbf{x}_0)(e_m)$$
(3.22)

注意到 $h^i \in \mathbb{R}$ 以及 $\mathsf{D}X(x_0)(e_i) \in \mathbb{R}^m$,因而该式可以用矩阵形式表述:

$$= \left[\mathsf{D} \boldsymbol{X} (\boldsymbol{x}_0) (\boldsymbol{e}_1), \, \cdots, \, \mathsf{D} \boldsymbol{X} (\boldsymbol{x}_0) (\boldsymbol{e}_m) \right] \begin{bmatrix} h^1 \\ \vdots \\ h^m \end{bmatrix}. \tag{3.23}$$

最后一步要用到分块矩阵的思想: 左侧的矩阵为 1 "行" m 列,每一"行" 是一个 m 维列向量; 右侧的矩阵(向量)则为 m 行 1 列. 两者相乘,得到 1 "行" 1 列的矩阵(当然实际为 m 行),即之前的 (3.22) 式. 在线性代数中, $m \times m$ 的矩阵 $\left[\mathsf{D} \boldsymbol{X}(\boldsymbol{x}_0)(\boldsymbol{e}_1) \cdots \mathsf{D} \boldsymbol{X}(\boldsymbol{x}_0)(\boldsymbol{e}_m) \right]$ 通常称为**变换矩阵** (也叫**过渡矩阵**).

接下来要搞清楚变换矩阵的具体形式. 取

$$\boldsymbol{h} = \begin{bmatrix} 0, \dots, \lambda, \dots, 0 \end{bmatrix}^{\mathsf{T}} = \lambda \, \boldsymbol{e}_i \in \mathbb{R}^m, \tag{3.24}$$

即除了 h 的第 i 各元素为 λ 外,其余元素均为 0($\lambda \neq 0$). 因而有 $\|h\|_{\mathbb{R}^m} = \lambda$. 代入可微性的定义 (3.19) 式,可得

$$X(\mathbf{x}_{0} + \mathbf{h}) - X(\mathbf{x}_{0}) = X(\mathbf{x}_{0} + \lambda \mathbf{e}_{i}) - X(\mathbf{x}_{0})$$

$$= \left[\mathsf{D}X(\mathbf{x}_{0})(\mathbf{e}_{1}), \cdots, \mathsf{D}X(\mathbf{x}_{0})(\mathbf{e}_{i}), \cdots, \mathsf{D}X(\mathbf{x}_{0})(\mathbf{e}_{m}) \right] \left[0, \cdots, \lambda, \cdots, 0 \right]^{\mathsf{T}} + o(\lambda)$$

$$= \lambda \cdot \mathsf{D}X(\mathbf{x}_{0})(\mathbf{e}_{i}) + o(\lambda). \tag{3.25}$$

由于 λ 是非零实数,故可以在等式两边同时除以 λ 并取极限:

$$\lim_{\lambda \to 0} \frac{X(x_0 + \lambda e_i) - X(x_0)}{\lambda} = DX(x_0)(e_i), \tag{3.26}$$

这里的 $o(\lambda)$ 根据其定义自然趋于 0. 该式左侧极限中的分子部分,是自变量 x 第 i 个分量的变化所引起因变量的变化;而分母,则是自变量第 i 个分量的变化大小. 我们引入下面的记号:

$$\frac{\partial \mathbf{X}}{\partial x^{i}}(\mathbf{x}_{0}) := \lim_{\lambda \to 0} \frac{\mathbf{X}(\mathbf{x}_{0} + \lambda \mathbf{e}_{i}) - \mathbf{X}(\mathbf{x}_{0})}{\lambda} \in \mathbb{R}^{m}, \tag{3.27}$$

它表示因变量 $X \in \mathbb{R}^m$ 作为一个整体,相对于自变量 $x \in \mathbb{R}^m$ 第 i 个分量 $x^i \in \mathbb{R}$ 的"变化率",即 X 关于 x^i (在 x_0 处)的偏导数.由于我们没有定义向量的除法,因此自变量作为整体所引起因变量的变化,是没有意义的.利用偏导数的定义,可有

$$\left[\mathsf{D} \boldsymbol{X} (\boldsymbol{x}_0) (\boldsymbol{e}_1), \cdots, \mathsf{D} \boldsymbol{X} (\boldsymbol{x}_0) (\boldsymbol{e}_i), \cdots, \mathsf{D} \boldsymbol{X} (\boldsymbol{x}_0) (\boldsymbol{e}_m) \right] \\
= \left[\frac{\partial \boldsymbol{X}}{\partial x^1} (\boldsymbol{x}_0), \cdots, \frac{\partial \boldsymbol{X}}{\partial x^i} (\boldsymbol{x}_0), \cdots, \frac{\partial \boldsymbol{X}}{\partial x^m} (\boldsymbol{x}_0) \right] \in \mathbb{R}^{m \times m}. \tag{3.28}$$

下面给出 $\partial X/\partial x^i(x_0)$ 的计算式. 根据定义,有

$$\frac{\partial \mathbf{X}}{\partial x^{i}}(\mathbf{x}_{0}) := \lim_{\lambda \to 0} \frac{\mathbf{X}(\mathbf{x}_{0} + \lambda \mathbf{e}_{i}) - \mathbf{X}(\mathbf{x}_{0})}{\lambda} \in \mathbb{R}^{m}$$

$$= \lim_{\lambda \to 0} \frac{1}{\lambda} \cdot \left(\begin{bmatrix} X^{1} \\ \vdots \\ X^{m} \end{bmatrix} (\mathbf{x}_{0} + \lambda \mathbf{e}_{i}) - \begin{bmatrix} X^{1} \\ \vdots \\ X^{m} \end{bmatrix} (\mathbf{x}_{0}) \right)$$

$$= \lim_{\lambda \to 0} \begin{bmatrix} \frac{X^{1}(\mathbf{x}_{0} + \lambda \mathbf{e}_{i}) - X^{1}(\mathbf{x}_{0})}{\lambda} \\ \vdots \\ \frac{X^{m}(\mathbf{x}_{0} + \lambda \mathbf{e}_{i}) - X^{m}(\mathbf{x}_{0})}{\lambda} \end{bmatrix}. \tag{3.29}$$

向量极限存在的充要条件是各分量极限均存在,即存在

$$\frac{\partial X^{\alpha}}{\partial x^{i}}(\mathbf{x}_{0}) := \lim_{\lambda \to 0} \frac{X^{\alpha}(\mathbf{x}_{0} + \lambda \mathbf{e}_{i}) - X^{\alpha}(\mathbf{x}_{0})}{\lambda} \in \mathbb{R}, \tag{3.30}$$

其中的 $\alpha = 1, \dots, m$. 这其实就是我们熟知的多元函数偏导数的定义. 用它来表示向量值映照的偏导数,可有

$$\frac{\partial \mathbf{X}}{\partial x^{i}}(\mathbf{x}_{0}) = \begin{bmatrix} \frac{\partial X^{1}}{\partial x^{i}}(\mathbf{x}_{0}) \\ \vdots \\ \frac{\partial X^{m}}{\partial x^{i}}(\mathbf{x}_{0}) \end{bmatrix} = \sum_{\alpha=1}^{m} \frac{\partial X^{\alpha}}{\partial x^{i}}(\mathbf{x}_{0}) \mathbf{e}_{\alpha}.$$
(3.31)

向量值映照 X 关于 x^i 的偏导数,从代数的角度来看,是 Jacobi 矩阵的第 i 列;从几何的角度来看,则是物理域中 x^i 线的切向量;从计算的角度来看,又是(该映照)每个分量偏导数的组合.

现在我们重新回到 Jacobi 矩阵. 情况已经十分明了: 只需把之前获得的各列并起来,就可以得到完整的 Jacobi 矩阵. 于是

$$DX(\mathbf{x}_{0})(\mathbf{h}) = \begin{bmatrix} \frac{\partial X}{\partial x^{1}}, & \cdots, & \frac{\partial X}{\partial x^{m}} \end{bmatrix} (\mathbf{x}_{0})(\mathbf{h})$$

$$= \begin{bmatrix} \frac{\partial X^{1}}{\partial x^{1}} & \cdots & \frac{\partial X^{1}}{\partial x^{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial X^{m}}{\partial x^{1}} & \cdots & \frac{\partial X^{m}}{\partial x^{m}} \end{bmatrix} (\mathbf{x}_{0}) \cdot \begin{bmatrix} h^{1} \\ \vdots \\ h^{m} \end{bmatrix}.$$
(3.32)

这与 3.1.2 小节中 (3.11) 式给出的定义是完全一致的.

3.2.3 偏导数的几何意义

这一小节中, 我们要回过头来, 澄清向量值映照偏导数的几何意义.

如图 3.2, X(x) 是定义域空间 $\mathfrak{D}_x \subset \mathbb{R}^m$ 到值域空间 $\mathfrak{D}_X \subset \mathbb{R}^m$ 的向量值映照. 在定义域空间 \mathfrak{D}_x 中,过点 x_0 作一条平行于 x^i 轴的直线,称为 x^i -线. x^i 轴定义了向量 e_i ,因而 x^i -线上的任意一点均可表示为 $x_0 + \lambda e_i$,其中 $\lambda \in \mathbb{R}$.

Images/Vector-Value_Mapping.PNG

图 3.2: 向量值映照偏导数的几何意义

在 X(x) 的作用下,点 x_0 被映照到 $X(x_0)$,而 $x_0 + \lambda e_i$ 则被映照到了 $X(x_0 + \lambda e_i)$. 这样一来, x^i -线也就被映照到了值域空间 \mathfrak{D}_X 中,成为一条曲线.

根据前面的定义, 当 $\lambda \to 0$ 时,

$$\frac{\boldsymbol{X}(\boldsymbol{x}_0 + \lambda \boldsymbol{e}_i) - \boldsymbol{X}(\boldsymbol{x}_0)}{\lambda} \to \frac{\partial \boldsymbol{X}}{\partial x^i}(\boldsymbol{x}_0). \tag{3.33}$$

对应到图 3.2 中, 就是 x^{i} -线(值域空间中)在 $X(x_0)$ 处的切向量.

完全类似,在定义域空间 \mathfrak{D}_x 中,过点 \mathbf{x}_0 作出 \mathbf{x}^j -线(自然是平行于 \mathbf{x}^j 轴),其上的点可以表示为 $\mathbf{x}_0+\lambda\mathbf{e}_i$. 映射到值域空间 \mathfrak{D}_X 上,则成为 $\mathbf{X}(\mathbf{x}_0+\lambda\mathbf{e}_i)$. 很显然,

$$\frac{\partial \mathbf{X}}{\partial x^{j}}(\mathbf{x}_{0}) = \frac{\mathbf{X}(\mathbf{x}_{0} + \lambda \mathbf{e}_{j}) - \mathbf{X}(\mathbf{x}_{0})}{\lambda}$$
(3.34)

就是 x^i -线在 $X(x_0)$ 处的切向量. 在定义域空间中, x^i -线作为直线共有 m 条,它们之间互相垂直. 作用到值域空间后,这样的 x^i -线尽管变为了曲线,但仍为 m 条.相应的切向量,自然也有 m 个.

3.3 局部基

这里的讨论基于曲线坐标系(即微分同胚) $X(x) \in \mathscr{C}^p(\mathfrak{D}_x; \mathfrak{D}_X)$.

我们已经知道, X(x) 的 Jacobi 矩阵可以表示为

$$\mathsf{D}\boldsymbol{X}(\boldsymbol{x}) = \left[\frac{\partial \boldsymbol{X}}{\partial x^1}, \, \cdots, \, \frac{\partial \boldsymbol{X}}{\partial x^i}, \, \cdots, \, \frac{\partial \boldsymbol{X}}{\partial x^m}\right](\boldsymbol{x}) \in \mathbb{R}^{m \times m},\tag{3.35}$$

式中的

$$\frac{\partial X}{\partial x^{i}}(x) = \lim_{\lambda \to 0} \frac{X(x + \lambda e_{i}) - X(x)}{\lambda}.$$
(3.36)

在参数域 \mathfrak{D}_x 中作出 x^i -线. 映照到物理域后,它变成一条曲线,我们仍称之为 x^i -线. 3.2.3 小节已 经说明,(3.36) 式表示物理域中 x^i -线的切向量. 在张量分析中,我们通常把它记作 $g_i(x)$.

由于微分同胚要求是双射,因而 Jacobi 矩阵

$$\mathsf{D}X(\mathbf{x}) = \left[\mathbf{g}_1, \, \cdots, \, \mathbf{g}_i, \, \cdots, \, \mathbf{g}_m\right](\mathbf{x}) \in \mathbb{R}^{m \times m} \tag{3.37}$$

必须是非奇异的. 这等价于

$$\left\{ \mathbf{g}_{i}(\mathbf{x}) = \frac{\partial \mathbf{X}}{\partial x^{i}}(\mathbf{x}) \right\}_{i=1}^{m} \subset \mathbb{R}^{m}$$
(3.38)

线性无关. 由此,它们可以构成 ℝ‴上的一组基.

用任意的 $x \in \mathfrak{D}_x$ 均可构建一组基. 但选取不同的 x,将会使所得基的取向有所不同. 因而这种基称为**局部协变基**. 和之前一样,我们用"协变"表示指标在下方.

有了局部协变基 $\{g_i(x)\}_{i=1}^m$,根据 1.1.1 小节中的讨论,必然唯一存在与之对应的**局部逆变基** $\{g^i(x)\}_{i=1}^m$,满足

$$\left[\mathbf{g}^{1}(\mathbf{x}), \dots, \mathbf{g}^{m}(\mathbf{x})\right]^{\mathsf{T}}\left[\mathbf{g}_{1}(\mathbf{x}), \dots, \mathbf{g}_{m}(\mathbf{x})\right] = \begin{bmatrix} \left(\mathbf{g}^{1}\right)^{\mathsf{T}} \\ \vdots \\ \left(\mathbf{g}^{m}\right)^{\mathsf{T}} \end{bmatrix} (\mathbf{x}) \cdot \mathsf{D}\mathbf{X}(\mathbf{x}) = \mathbf{I}_{m}. \tag{3.39}$$

下面我们来寻找逆变基 $\left\{ \mathbf{g}^{i}(\mathbf{x}) \right\}_{i=1}^{m}$ 的具体表示.考虑到 0

$$X(x(X)) = X \in \mathbb{R}^m, \tag{3.40}$$

并利用复合映照可微性定理, 可知

$$\mathsf{D}X(x(X)) \cdot \mathsf{D}x(X) = I_m, \tag{3.41}$$

即有

$$\mathsf{D}\mathbf{x}(\mathbf{X}) = (\mathsf{D}\mathbf{X})^{-1} (\mathbf{x}(\mathbf{X})). \tag{3.42}$$

于是

$$\begin{bmatrix} (\mathbf{g}^{1})^{\mathsf{T}} \\ \vdots \\ (\mathbf{g}^{m})^{\mathsf{T}} \end{bmatrix} (\mathbf{x}) = (\mathsf{D}\mathbf{X})^{-1}(\mathbf{x}) = \mathsf{D}\mathbf{x}(\mathbf{X}) = \begin{bmatrix} \frac{\partial x^{1}}{\partial X^{1}} & \cdots & \frac{\partial x^{1}}{\partial X^{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^{m}}{\partial X^{1}} & \cdots & \frac{\partial x^{m}}{\partial X^{m}} \end{bmatrix} (\mathbf{X}). \tag{3.43}$$

① 这里的几步推导在 3.1.2 小节中也有所涉及.

这样我们就得到了局部逆变基的具体表示(注意转置):

$$\mathbf{g}^{i}(\mathbf{x}) = \begin{bmatrix} \frac{\partial x^{i}}{\partial X^{1}} \\ \vdots \\ \frac{\partial x^{i}}{\partial X^{m}} \end{bmatrix} (\mathbf{X}) = \sum_{\alpha=1}^{m} \frac{\partial x^{i}}{\partial X^{\alpha}} (\mathbf{X}) \, \mathbf{e}_{\alpha}. \tag{3.44}$$

定义标量场 f(x) 的梯度为

$$\nabla f(\mathbf{x}) \triangleq \sum_{\alpha=1}^{m} \frac{\partial f}{\partial x^{\alpha}}(\mathbf{x}) \, \mathbf{e}_{\alpha}, \tag{3.45}$$

则局部逆变基又可以表示成

$$\mathbf{g}^{i}(\mathbf{x}) = \nabla x^{i}(\mathbf{X}). \tag{3.46}$$

这里的梯度实际上就是我们熟知的三维情况在 m 维下的推广.