ABSTRACT AND CONCRETE CATEGORJES The Joy of Cats

Jiří Adámek & Horst Herrlich & George E. Strecker October 2, 2020

Contents

1	Categories, Functors, and Natural Transformations		2
	1.1	Categories and Functors	2
		Subcategories	
	1.3	Concrete categories and concrete functors	8
2	Index		12
			13

1 Categories, Functors, and Natural Transformations

1.1 Categories and Functors

1.1.1 Categories

Definition 1.1. A **category** is a quadruple $\mathbf{A} = (\mathcal{O}, \text{hom}, id, \circ)$ consisting

- 1. a class \mathcal{O} , whose members are called **A-objects**
- 2. for each pair (A,B) of **A**-objects, a set $\hom(A,B)$ whose members are called **A-morphisms from** A **to** B

Example 1.1. 1. The following **constructs**; i.e., categories of structured sets and structure-preserving functions between them

(a) $\mathbf{Alg}(\Omega)$ with objects all Ω -algebras and morphisms all Ω -homomorphisms between them. Here $\Omega = (n_i)_{i \in I}$ is a family of natural numbers n_i , indexed by a set I. An Ω -algebra is a pair $X, (\omega_i)_{i \in I}$ consisting of a set X and a family of functions $\omega_i : X^{n_i} \to X$, called n_i -ary operations on X. An Ω -homomorphism $f: (X, (\omega_i)_{i \in I} \to (\widehat{X}, (\widehat{\omega}_i)_{i \in I})$ is a function $f: X \to \widehat{X}$ for which the diagram

$$X^{n_i} \xrightarrow{f^{n_i}} \widehat{X}^{n_i}$$

$$\downarrow^{\widehat{\omega}_i}$$

$$X \xrightarrow{f} \widehat{X}$$

commutes for each $i \in I$.

- (b) Σ -Seq with objects all (deterministic, sequential) Σ -acceptor, where Σ is a finite set of input symbols. Objects are quadruples (Q, δ, q_0, F) where Q is a finite set of states, $\delta: \Sigma \times Q \to Q$ is a transition map, $q_0 \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states. A morphism $f: (Q, \delta, q_0, F) \to (Q', \delta', q'_0, F')$ (called a **simulation**) is a function $f: Q \to Q'$ that preserves
 - i. transitions, i.e., $\delta'(\sigma, f(q)) = f(\delta(\sigma, q))$
 - ii. the initial state, i.e., $f(q_0) = q'_0$
 - iii. the final states, i.e., $f[F] \subseteq F'$
- 2. The following categories where the objects and morphisms are *not* constructed sets and structure-preserving functions:

2

(a) Mat with objects all natural numbers, and for which hom(m,n) is the set of all real $m \times n$ matrices, $id_n : n \to n$ is the unit diagonal matrix, and composition is defined by $A \circ B = BA$

- (b) Aut with objects all (deterministic, sequential, Moore) **automata**. Objects are sectuples $(Q, \Sigma, Y, \delta, q_0, y)$, where Q is the set of states, Σ and Y are the sets of input symbols and output symbols, respectively, $\delta: \Sigma \times Q \to Q$ is the transition map, $q_0 \in Q$ is the initial state, and $y: Q \to Y$ is the output map. Morphisms from an automaton $(Q, \Sigma, Y, \delta, q_0, y)$ to an automaton $(Q', \Sigma', Y', \delta', q'_0, y')$ are triples (f_Q, f_Σ, f_Y) of functions satisfying the following conditions
 - i. preservation of transitions: $\delta'(f_{\Sigma}(\sigma), f_{Q}(q)) = f_{Q}(\delta(\sigma, q))$
 - ii. preservation of outputs: $f_Y(y(q)) = y'(f_Q(q))$
 - iii. preservation of initial state: $f_Q(q_0) = q'_0$

1.1.2 The Dual Principle

Definition 1.2. For any category $\mathbf{A}=(\mathcal{O}, \mathsf{hom}_{\mathbf{A}}, id, \circ)$ the **dual** (or **opposite**) **category of A** is the category $\mathbf{A}^\mathsf{op}=(\mathcal{O}, \mathsf{hom}_{\mathbf{A}^\mathsf{op}}, id, \circ^\mathsf{op})$, where $\mathsf{hom}_{\mathbf{A}^\mathsf{op}}(A, B) = \mathsf{hom}_{\mathbf{A}}(B, A)$ and $f \circ^\mathsf{op} g = g \circ f$

Consider the property of objects *X* in **A**:

 $\mathcal{P}_{\mathbf{A}}(X) \equiv \text{ For any } \mathbf{A} \text{ -object } A \text{ there exists exactly one } \mathbf{A} \text{ -morphism } f: A \to X$

Step1: In $\mathcal{P}_{\mathbf{A}}(X)$ replace all occurrences of \mathbf{A} by \mathbf{A}^{op} , thus obtaining the property

 $\mathcal{P}_{\mathbf{A}^{\mathrm{op}}}(X) \equiv \text{ For any } \mathbf{A}^{\mathrm{op}} \text{ -object } A \text{ there exists exactly one } \mathbf{A}^{\mathrm{op}} \text{ -morphism } f: A \to X$

Step2: Translate $\mathcal{P}_{\mathbf{A}^{op}}(X)$ into the logically equivalent statement

 $\mathcal{P}_{\mathbf{A}}^{\mathrm{op}}(X) \equiv \textit{ For any } \mathbf{A} \textit{ -object } A \textit{ there exists exactly one } \mathbf{A} \textit{ -morphism } f: X \to A$

The **Duality Principle for Categories** states

Whenever a property \mathcal{P} holds for all categories, then the property \mathcal{P}^{op} holds for all categories.

1.1.3 Isomorphism

Definition 1.3. A morphism $f:A\to B$ in a category is called an **isomorphism** provided that there exists a morphism $g:B\to A$ with $g\circ f=id_A$ and $f\circ g=id_B$. Such a morphism g is called an **inverse** of f

Proposition 1.4. If $f: A \to B, g: B \to A, h: B \to A$ are morphisms s.t. $g \circ f = id_A$ and $f \circ h = id_B$, then g = h

Definition 1.5. Let $F : \mathbf{A} \to \mathbf{B}$ be a functor

- 1. F is called an **embedding** provided that F is injective on morphisms
- 2. *F* is called **faithful** provided that all the hom-set restrictions

$$F: \mathsf{hom}_{\mathbf{A}}(A, A') \to \mathsf{hom}_{\mathbf{B}}(FA, FA')$$

are injective

- 3. F is called **full** provided that all hom-set restrictions are surjective
- 4. F is called **amnestic** provided that an **A**-isomorphism f is an identity whenever Ff is an identity

1.2 Subcategories

Definition 1.6. A category **A** is said to be a **subcategory** of a category **B** provided that the following conditions are satisfied

- 1. $Ob(\mathbf{A}) \subseteq Ob(\mathbf{B})$
- 2. for each $A, A' \in Ob(\mathbf{A})$, $hom_{\mathbf{A}}(A, A') \subseteq hom_{\mathbf{B}}(A, A')$
- 3. for each **A**-object *A*, the **B**-identity on *A* is the **A**-identity on *A*
- 4. the composition law in ${\bf A}$ is the restriction of the composition law in ${\bf B}$ to the morphisms of ${\bf A}$

A is called a **full subcategory** of **B** if in addition to the above, for each $A, A' \in Ob(A)$, $hom_{\mathbf{A}}(A, A') = hom_{\mathbf{B}}(A, A')$

- **Proposition 1.7.** 1. A functor $F : A \to B$ is a (full) embedding if and only if there exists a (full) subcategory C of B with inclusion function $E : C \to B$ and an isomorphism $G : A \to C$ with $F = E \circ G$
 - 2. A functor $F: A \to B$ is faithful iff there exists embeddings $E_1: D \to B$ and $E_2: A \to C$ and an equivalence $G: C \to D$ s.t. the diagram

$$\begin{array}{ccc}
A & \xrightarrow{F} & B \\
\downarrow^{E_2} & E_1 \\
C & \xrightarrow{G} & D
\end{array}$$

Proof. 1. Let $E_1: \mathbf{D} \to \mathbf{B}$ be the inclusion of the full subcategory \mathbf{D} of \mathbf{B} that has as objects all images of \mathbf{A} -objects. Let \mathbf{C} be the category with $Ob(\mathbf{C}) = Ob(\mathbf{A})$, with

$$\mathsf{hom}_{\mathbf{C}}(A, A') = \mathsf{hom}_{\mathbf{B}}(FA, FA')$$

Now define functors $E_2: \mathbf{A} \to \mathbf{C}$ and $G: \mathbf{C} \to \mathbf{D}$ by

$$E_2(A \xrightarrow{f} A') = A \xrightarrow{Ff} A' \quad \text{ and } \quad G(C \xrightarrow{g} C') = FC \xrightarrow{g} FC'$$

Then E_2 is an embedding, G is an equivalence and $F=E_1\circ G\circ E_2$

Definition 1.8. A category **A** is said to be **fully embeddable** into **B** provided that there exists a full embedding $A \rightarrow B$

Definition 1.9. A full subcategory **A** of a category **B** is called

- 1. **isomorphism-closed** provided that every **B**-object that is isomorphic to some **A**-object is itself an **A**-object
- 2. **isomorphism-dense** provided that every **B**-object is isomorphic to some **A**-object

Remark. If A is a full subcategory of B, then the following conditions are equivalent

- 1. A is an isomorphism-dense subcategory of B
- 2. the inclusion functor $A \hookrightarrow B$ is isomorphism-dense
- 3. the inclusion functor $\mathbf{A} \hookrightarrow \mathbf{B}$ is an equivalence

Example 1.2. The full subcategory of **Set** with the single object \mathbb{N} is neither isomorphism-closed nor isomorphism-dense in **Set**. It is equivalent to the isomorphism-closed full subcategory of **Set** consisting of all countable infinite sets.

Definition 1.10. A **skeleton** of a category is a full, isomorphism-dense subcategory in which no two distinct objects are isomorphic

Example 1.3. 1. The full subcategory of all cardinal numbers is a skeleton for **Set**

Proposition 1.11. 1. Every category has a skeleton

- 2. Any two skeletons of a category are isomorphic
- 3. Any skeleton of a category C is equivalent to C

Proof. 1. This follows from the Axiom of Choice applied to the equivalence relation "is isomorphic to" on the class of objects of the category

Corollary 1.12. *Two categories are equivalent iff they have isomorphic skeletons*

Definition 1.13. Let **A** be a subcategory of **B**, and let *B* be a **B**-object

1. An **A-reflection** (or **A-reflection arrow**) for B is a **B-morphism** $B \to A$ from B to an **A-object** A with the following universal property:

for any **B**-morphism $B \xrightarrow{J} A'$ from B into some **A**-object A', there exists a unique **A**-morphism $f': A \to A$ s.t. the triangle

1 CATEGORIES, FUNCTORS, AND NATURAL TRANSFORMATIONS

commutes

2. **A** is called a **reflective subcategory** of **B** provided that each **B**-object has an **A**-reflection

Example 1.4. 1. Modifications of the Structure

- (a) Making a relation symmetric: $\mathbf{B} = \mathbf{Rel}, \mathbf{A} = \mathbf{Sym}$, the full subcategory of symmetric relations, $(X, \rho) \xrightarrow{id_X} (X, \rho \cup \rho^{-1})$ is an \mathbf{A} -reflection for (X, ρ)
- 2. Improving Objects by Forming Quotients
 - (a) Making a reachable acceptor minimal: $\mathbf{B} = \text{the full subcategory}$ of Σ -Seq consisting of all reachable acceptors (i.e., those for which each state can be reached from the initial one by an input word), $\mathbf{A} = \text{the full subcategory of } \mathbf{B}$ consisting of all **minimal acceptors** (i.e. those reachable acceptors with the property that no two different states are **observably equivalent**. The observability equivalence \approx on a reachable acceptor B is given by: $q \approx q'$ provided that whenever the initial state of B is changed to A, the resulting acceptor recognizes the same language as it does when the initial state is changed to A. Then the canonical map $A \to B = B$ is an A-reflection for A
- 3. Completions

Proposition 1.14. *Reflections are essentially unique, i.e.*

1. if $B \xrightarrow{r} A$ and $B \xrightarrow{r} \hat{A}$ are A-reflections for B, then there exists an A-isomorphism $k: A \to \hat{A}$ s.t. the triangle

commutes

2. if $B \xrightarrow{r} A$ is an **A**-reflection for B and $A \xrightarrow{k} \hat{A}$ is an **A**-isomorphism, then $B \xrightarrow{k \circ r} \hat{A}$ is an **A**-reflection for B

Proposition 1.15. If A is reflective subcategory of B, then the following conditions are equivalent

6

- 1. A is a full subcategory of B
- 2. for each A-object A, $A \xrightarrow{id_A} A$ is an A-reflection
- 3. for each A-object A, A-reflection arrows $A \xrightarrow{r_A} A^*$ are A-isomorphism
- 4. for each A-object A, A-reflection arrows $A \xrightarrow{r_A} A^*$ are A-morphisms

Proof. $2 \rightarrow 3$.

Proposition 1.16. Let A be a reflective subcategory of B, and for each B-object B let $r_B: B \to A_B$ be an A-reflection arrow. Then there exists a unique functor $R: B \to A$ s.t. the following conditions are satisfied

- 1. $R(B) = A_B$ for each **B**-object B
- 2. for each **B**-morphism $f: B \to B'$ the diagram

$$\begin{array}{ccc} B & \xrightarrow{r_B} & R(B) \\ f \downarrow & & \downarrow_{R(f)} \\ B' & \xrightarrow{r_{B'}} & R(B') \end{array}$$

commutes

Proof. Show that functor is well-defined and preserves identities and compositions \Box

Definition 1.17. A functor $R: \mathbf{B} \to \mathbf{A}$ constructed according to the above proposition is called a **reflector for A**

Definition 1.18. Let **A** be a subcategory of **B** and let *B* be a **B**-object

1. An **A-coreflection** (or *A***-coreflection arrow**) for *B* is a **B**-morphism $A \stackrel{c}{\rightarrow} B$ form an **A**-object *A* to *B* with the following universal property: for any **B**-morphism $A' \stackrel{f}{\rightarrow} B$ from some **A**-object A' to B there exists a unique **A**-morphism $f': A' \rightarrow A$ s.t. the triangle

1 CATEGORIES, FUNCTORS, AND NATURAL TRANSFORMATIONS

commutes

2. **A** is called a **coreflective subcategory** of **B** provided that each **B**-object has an **A**-coreflection

Proposition 1.19. *If* A *is a coreflective subcategory of* B *and for each* B-object B, $A_B \xrightarrow{c_B} B$ *is an* A-coreflection arrow, then there exists a unique functor $C: B \to A$ (called a **coreflector for** A) s.t. the following conditions are satisfied

- 1. $C(B) = A_B$ for each **B**-object B
- 2. for each **B**-morphism $f: B \to B'$ the diagram

$$\begin{array}{ccc} C(B) & \xrightarrow{c_B} & B \\ C(f) \downarrow & & \downarrow f \\ C(B') & \xrightarrow{c_{B'}} & B' \end{array}$$

commutes

Exercise 1.2.1. A subcategory **A** of a category **B** is called **isomorphism-closed** provided that every **B**-isomorphism with domain in **A** belongs to **A**. Show that every subcategory **A** of **B** can be embedded into a smallest isomorphism-closed subcategory **A**' of **B** that contains **A**. The inclusion functor $\mathbf{A} \hookrightarrow \mathbf{A}'$ is an equivalence iff all **B**-isomorphisms between **A**-objects belong to **A**

Exercise 1.2.2. 1. Show that a category is discrete iff each of its subcategories is full

- 2. Show that in a poset, considered as a category
 - every subcategory is isomorphism-closed
 - every (co)reflective subcategory is full

1.3 Concrete categories and concrete functors

Definition 1.20. Let **X** be a category. A **concrete category** over **X** is a pair (\mathbf{A}, U) where **A** is the category and $U : \mathbf{A} \to \mathbf{X}$ is a faithful functors. Sometimes U is called the **forgetful** (or **underlying**) **functor** of the concrete category and **X** is called the **base category** for (\mathbf{A}, U)

A concrete category over **Set** is called a **construct**

Remark. We adopt the following conventions:

1 CATEGORIES, FUNCTORS, AND NATURAL TRANSFORMATIONS

1. Since faithful functors are injective on hom-sets, we usually assume that $\operatorname{hom}_{\mathbf A}(A,B)$ is a subset of $\operatorname{hom}_{\mathbf X}(UA,UB)$ for each pair (A,B) of **A**-objects. This allows one to express the property that "for bA-objects A and B and an **X**-morphism $UA \stackrel{f}{\to} UB$ there exists a (necessarily unique) **A**-morphism $A \to B$ with $U(A \to B) = UA \stackrel{f}{\to} UB$ " much more succinctly, by stating

$$UA \xrightarrow{f} UB$$
 is an **A**-morphism (from A to B)

Observe, however, that since ${\cal U}$ doesn't need to be injective on objects, the expression

$$UA \xrightarrow{id_X} UB$$
 is an **A**-morphism (from A to B)

does not imply that A=B or that $id_X=id_A$, although it does imply that UA=UB=X. We call an **A**-morphism $A\stackrel{f}{\to} B$ **identity-carried** if $Uf=id_X$

- 2. Sometimes we will write $\bf A$ for the concrete category $({\bf A},U)$ over ${\bf X}$, when U is clear from the context. In these cases the underlying object of an $\bf A$ -object A will sometimes be denoted by |A|
- 3. If P is a property of categories (or of functors), then we will say that a concrete category (\mathbf{A}, U) has property P provided that \mathbf{A} (or U) has property P

Definition 1.21. Let (A, U) be a concrete category over X

1. The **fibre** of an **X**-object X is the preordered class consisting of all **A**-objects A with U(A) = X ordered by

$$A \leq B \quad \text{iff} \quad id_X: UA \to UB \text{ is an \mathbf{A}-morphism}$$

- 2. **A**-objects A, B are **equivalent** if $A \leq B$ and $B \leq A$
- 3. (A, U) is said to be **amnestic** provided that its fibres are partially ordered classes; i.e., no two different **A**-objects are equivalent
- 4. (**A**, *U*) is said to be **fibre-small** provided that each of its fibres is small, i.e., a preordered set

Remark. A concrete category (\mathbf{A}, U) is amnestic iff the functor U is amnestic. Most of the familiar concrete categories are both amnestic and fibre-small.

Definition 1.22. A concrete category is called

- 1. **fibre-complete** provided that its fibres are (possibly large) complete lattices
- 2. **fibre-discrete** provided that its fibres are ordered by equality

Proposition 1.23. A concrete category (A, U) over X is fibre-discrete iff U reflects identities (i.e. if U(k) is an X-identity, then k must be an A-identity)

Definition 1.24. If (\mathbf{A}, U) and (\mathbf{B}, V) are concrete categories over \mathbf{X} , then a **concrete functor from** (\mathbf{A}, U) **to** (\mathbf{B}, V) is a functor $F: \mathbf{A} \to \mathbf{B}$ with $U = V \circ F$. We denote such a functor by $F: (\mathbf{A}, U) \to (\mathbf{B}, V)$

Proposition 1.25. 1. Every concrete functor is faithful

- 2. Every concrete functor is completely determined by its values on objects
- 3. Objects that are identified by a full concrete functor are equivalent
- 4. Every full concrete functor with amnestic domain is an embedding

Proof. 1. *U* and *V* are faithful

2. Suppose that $G:(\mathbf{A},U)\to (\mathbf{B},V)$ is a concrete functor with G(A)=F(A) for each **A**-object A. Then for any **A**-morphism $A\overset{f}{\to}A'$ we have the **B**-morphism

$$GA = FA \xrightarrow{Ff} FA' = GA'$$

with V(Ff)=U(f)=V(Gf). Since V is faithful, Ff=Gf. Hence F=G

3. Let A and A' be **A**-objects with FA = FA'. Then $id_B : FA \to FA'$ can be lifted to an **A**-isomorphism $g : A \to A'$. Hence A and A' are equivalent

Remark. If $F:(\mathbf{A},U)\to (\mathbf{B},V)$ is a concrete isomorphism, then its inverse $F^{-1}:\mathbf{B}\to\mathbf{A}$ is concrete from (\mathbf{B},V) to (\mathbf{A},U) . Unfortunately, the corresponding result does not hold for concrete equivalences. If $F:(\mathbf{A},U)\to (\mathbf{B},V)$ is a concrete equivalence from (\mathbf{B},V) to (\mathbf{A},U) even though there are equivalences from \mathbf{B} to \mathbf{A} . For example, the embedding of the skeleton of cardinal numbers into \mathbf{Set} is such a concrete categories over \mathbf{X} that is not invertible

Proposition 1.26. 1. The identity functor on a concrete category is a concrete isomorphism

2. Any composite of concrete functors over X is a concrete functor over X

Definition 1.27. The quansicategory that has as objects all concrete categories over X and as morphisms all concrete functors between them is denoted by CAT(X). In particular, CONST = CAT(Set) is the quasicategory of all constructs.

Definition 1.28. If F and G are both concrete functors from (\mathbf{A}, U) to (\mathbf{B}, V) , then F is **finer than** G (or G is **coaser than** F), denoted by $F \leq G$, provided that $F(A) \leq G(A)$ for each **A**-object A

Example 1.5. 1. For order-preserving functions considered as concrete functors over **1**, $f \le g$ iff this relation holds pointwise

Remark. For every concrete category (\mathbf{A}, U) over \mathbf{X} , its dual $(\mathbf{A}^{op}, U^{op})$ is a concrete category over \mathbf{X}^{op} . Moreover, for every concrete functor $F: (\mathbf{A}, U) \to (\mathbf{B}, V)$ over \mathbf{X} its dual functor $F^{op}: (\mathbf{A}^{op}, U^{op}) \to (\mathbf{B}^{op}, V^{op})$ is a concrete functor over \mathbf{X}^{op} . However, unless $\mathbf{X} = \mathbf{X}^{op}$ there is **no** duality for concrete categories over a fixed base category \mathbf{X} . In particular, we don't have a duality principle for constructs. However, since $\mathbf{1} = \mathbf{1}^{op}$, there is a duality principle for concrete categories over $\mathbf{1}$ (i.e., for preordered classes)

If (\mathbf{B},U) is a concrete category over \mathbf{X} and \mathbf{A} is a subcategory of \mathbf{B} with inclusion $E:\mathbf{A}\hookrightarrow\mathbf{B}$, then \mathbf{A} will often be regarded (via the functor $U\circ E$) as a concrete category $(\mathbf{A},U\circ E)$ over \mathbf{X} . In such cases we will call $(\mathbf{A},U\circ E)$ a **concrete subcategory** of (\mathbf{B},U) . In the case that the base category is **Set**, we will call $(\mathbf{A},U\circ E)$ a **subconstruct** of (\mathbf{B},U)

Definition 1.29. A concrete subcategory (\mathbf{A}, U) of (\mathbf{B}, V) is called **concretely reflective** in (\mathbf{B}, V) provided that for each (\mathbf{B}) -object there exists an identity-carried **A**-reflection arrow

Relectors induced by identity-carried reflection arrows are called **concrete reflectors**

Example 1.6. 1. Let **X** be a category consisting of a single object X and two morphisms id_X and s with $s \circ s = id_X$. Let **A** be the concrete category over **X**, consisting of two objects A_0 and A_1 and the morphism sets

$$\mathsf{hom}_{\mathbf{A}}(A_i,A_j) = \begin{cases} \{id_X\} & i = j \\ \{s\} & i \neq j \end{cases}$$

Consider **A** as a concretely reflective subcategory of itself. Then $id_{\mathbf{A}}: \mathbf{A} \to \mathbf{A}$ is a concrete reflector, and the concrete functor $R: \mathbf{A} \to \mathbf{A}$, defined by $R(A_i) = A_{1-i}$ is a reflector that is not a concrete reflector

Proposition 1.30. Every concretely reflective subcategory of an amnestic concrete category is a full subcategory

Proof. Let (\mathbf{A},U) be a concretely reflective subcategory of an amnestic (\mathbf{B},V) , let A be an $r:A\to A^*$ be an identity-carried **A**-reflection arrow for A. We wish to show that $r=id_A$ so that Proposition 1.15 can be applied. By reflectivity there exists a unique **A**-morphism $s:A^*\to A$ s.t. the diagram

commutes.

Since r is identity-carried, $V(r)=id_{VA}$. Since also $V(id_A)=id_{VA}$, we conclude that $V(s)=id_{VA}$. Faithfulness of V gives us $r\circ s=id_{A^*}$. Hence r is a **B**-isomorphism with $V(r)=id_{VA}$. Amnesticity of (\mathbf{B},V) yields $r=id_A$.

Proposition 1.31. For a concrete full subcategory (A, U) of a concrete category (B, V) over X, with inclusion functor $E: (A, U) \hookrightarrow (B, V)$, the following are equivalent

- 1. (A, U) is concretely reflective in (B, V)
- 2. there exists a concrete functor $R:(\mathbf{B},V)\to(\mathbf{A},U)$ that is a reflector with $R\circ E=id_{\mathbf{A}}$ and $id_{\mathbf{B}}\leq E\circ R$
- 3. there exists a concrete functor $R:({\bf B},V)\to ({\bf A},U)$ with $R\circ E\leq id_{\bf A}$ and $id_{\bf B}\leq E\circ R$

Proof. $1 \rightarrow 2$.

2 Index

D dual category4