

PROBABILITY DISTRIBUTION

Probability distribution is a function that describes the probability of different *possible* values of a random variable.

Probability distribution is a function that describes the probability of different *possible* values of a random variable.

graphs.

Probability distribution is a function that describes the probability of different *possible* values of a random variable.

graphs.

For example, imagine the random variable X that describes the outcome of a coin toss, that is $X \in \{\text{heads}, \text{tails}\}.$

Probability distribution is a function that describes the probability of different *possible* values of a random variable.

graphs.

For example, imagine the random variable X that describes the outcome of a coin toss, that is $X \in \{\text{heads, tails}\}$.

If the coin is fair then P(X = heads) = P(X = tails) = 1/2.

Probability distribution is a function that describes the probability of different *possible* values of a random variable.

araphs.

For example, imagine the random variable X that describes the outcome of a coin toss, that is $X \in \{\text{heads, tails}\}$.

If the coin is fair then P(X = heads) = P(X = tails) = 1/2.

The probability distribution of this random variable is a function

 $f: \{\text{heads}, \text{tails}\} \rightarrow [0, 1]$ which assigns to the element 'heads' the probability P(X = heads) and to 'tails' the probability P(X = tails).

1

Probability distribution is a function that describes the probability of different *possible* values of a random variable.

graphs.

For example, imagine the random variable X that describes the outcome of a coin toss, that is $X \in \{\text{heads}, \text{tails}\}.$

If the coin is fair then P(X = heads) = P(X = tails) = 1/2.

The probability distribution of this random variable is a function

 $f: \{\text{heads}, \text{tails}\} \rightarrow [0,1]$ which assigns to the element 'heads' the probability

P(X = heads) and to 'tails' the probability P(X = tails).

In other words, f(heads) = f(tails) = 1/2.

PROBABILITY DISTRIBUTION - EXAMPLES

• The **probability distribution** of a random variable representing the value of a dice roll is a function

$$f: \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

such that f(k) = 1/6 for all numbers $k \in \{1, 2, 3, 4, 5, 6\}$.

PROBABILITY DISTRIBUTION - EXAMPLES

The probability distribution of a random variable representing the value of a dice roll
is a function

$$f: \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

such that f(k) = 1/6 for all numbers $k \in \{1, 2, 3, 4, 5, 6\}$.

• The probability distribution of a random variable representing the rank of a randomly chosen playing card is a function

PROBABILITY DISTRIBUTION - EXAMPLES

The probability distribution of a random variable representing the value of a dice roll
is a function

$$f: \{1, 2, 3, 4, 5, 6\} \rightarrow [0, 1]$$

such that f(k) = 1/6 for all numbers $k \in \{1, 2, 3, 4, 5, 6\}$.

• The probability distribution of a random variable representing the rank of a randomly chosen playing card is a function

$$f: \{2,3,4,5,6,7,8,9,10,J,Q,K,A\} \rightarrow [0,1]$$

such that f(r) = 4/52 where r is a rank of a playing card.

VISUALIZING PROBABILITY DISTRIBUTIONS – TABLES

Discrete **probability distributions** (meaning distributions of a *discrete* random variable) can be easily represented using **tables**.

Discrete **probability distributions** (meaning distributions of a *discrete* random variable) can be easily represented using **tables**.

For example, the probability distribution of a dice roll is given simply by

Roll	1	2	3	4	5	6
Probability	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$.

For a more abstract example, if X can attain any of the four values a, b, c, d with probabilities P(X = a) = 3/10, P(X = b) = 5/10, P(X = c) = 1/10, P(X = d) = 1/10, then its probability distribution is

Value
 a
 b
 c
 d

 Probability

$$\frac{3}{10}$$
 $\frac{5}{10}$
 $\frac{1}{10}$
 $\frac{1}{10}$

VISUALIZING PROBABILITY DISTRIBUTIONS - GRAPHS

Probability distributions (both *discrete* and *continuous*) can be represented as graphs. These are your typical function graphs which draw inputs on the *x*-axis and outputs on the *y*-axis.

VISUALIZING PROBABILITY DISTRIBUTIONS - GRAPHS

Probability distributions (both *discrete* and *continuous*) can be represented as graphs. These are your typical function graphs which draw inputs on the *x*-axis and outputs on the *y*-axis.

The probability distribution of a dice roll looks like this

VISUALIZING PROBABILITY DISTRIBUTIONS - GRAPHS

The probability distribution from this table

Value	а	b	С	d
Probability	$\frac{3}{10}$	<u>5</u>	$\frac{1}{10}$	$\frac{1}{10}$.

looks like this

1

DISCRETE PROBABILITY DISTRIBUTIONS

Let *X* be a random variable taking values from a set *A*.

• The probability distribution (or also probability mass function) of X is the function $f: A \to [0, 1]$ defined as f(a) = P(X = a) for $a \in A$.

- The probability distribution (or also probability mass function) of X is the function $f: A \to [0, 1]$ defined as f(a) = P(X = a) for $a \in A$.
- The cumulative distribution function of X gives the probability that a random variable is less than a certain value. It is defined as $F(a) = P(X \le a)$ for $a \in A$.

- The probability distribution (or also probability mass function) of X is the function $f: A \to [0, 1]$ defined as f(a) = P(X = a) for $a \in A$.
- The cumulative distribution function of X gives the probability that a random variable is less than a certain value. It is defined as $F(a) = P(X \le a)$ for $a \in A$.
- The mean of X is defined as $E(X) = \sum_{a \in A} a \cdot P(X = a)$. It represents the 'expected' value of X.

- The probability distribution (or also probability mass function) of X is the function $f: A \to [0, 1]$ defined as f(a) = P(X = a) for $a \in A$.
- The cumulative distribution function of X gives the probability that a random variable is less than a certain value. It is defined as $F(a) = P(X \le a)$ for $a \in A$.
- The mean of X is defined as $E(X) = \sum_{a \in A} a \cdot P(X = a)$. It represents the 'expected' value of X.
- The variance (describing the *dispersion* of the distribution around the mean) of *X* is defined as

$$Var(X) = \sum_{a \in A} (a - E(X))^2 \cdot P(X = a).$$

Let's see what these concepts mean in a simple statistical experiment.

Let's see what these concepts mean in a simple statistical experiment. Suppose we measure the height of a randomly picked 20-year-old males. We might get something akin to the following table

Height	175	176	177	178	179	180	181	182	183
Count									

Let's see what these concepts mean in a simple statistical experiment. Suppose we measure the height of a randomly picked 20-year-old males. We might get something akin to the following table

Height	175	176	177	178	179	180	181	182	183
Count	13	20	11	17	11	8	10	7	3

We can easily calculate the mean and standard deviation of this data.

Height									
Count	13	20	11	17	11	8	10	7	3

Using the formula for the arithmetic mean, we get

$$\bar{x} = \frac{175 \cdot 13 + 176 \cdot 20 + \ldots + 183 \cdot 3}{13 + 20 + \ldots + 3} = 178.1$$

Height	175	176	177	178	179	180	181	182	183
Count	13	20	11	17	11	8	10	7	3

The standard deviation is then

$$\sigma = \sqrt{\frac{13 \cdot (175 - 178.1)^2 + 20 \cdot (176 - 178.1)^2 + \ldots + 3 \cdot (183 - 178.1)^2}{13 + 20 + \ldots + 3}} = 8.203.$$

Height	175	176	177	178	179	180	181	182	183
Count	13	20	11	17	11	8	10	7	3

Let's now define a random variable X which can be any of those heights in the table above.

Height	175	176	177	178	179	180	181	182	183
Count	13	20	11	17	11	8	10	7	3

Let's now define a random variable *X* which can be any of those heights in the table above. We define the probabilities that *X* is a particular height based on the counts above. That gives the following table

Height	175	176	177	178	179	180	181	182	183	
Probability	13 100	20 100	$\frac{11}{100}$	$\frac{17}{100}$	$\frac{11}{100}$	8 100	$\frac{10}{100}$	$\frac{7}{100}$	3	

Height	175	176	177	178	179	180	181	182	183
Count	13	20	11	17	11	8	10	7	3

Let's now define a random variable *X* which can be any of those heights in the table above. We define the probabilities that *X* is a particular height based on the counts above. That gives the following table

Height	175	176	177	178	179	180	181	182	183
Probability	13 100	20 100	$\frac{11}{100}$	$\frac{17}{100}$	$\frac{11}{100}$	8 100	$\frac{10}{100}$	$\frac{7}{100}$	3

In other words, this gives a distribution function f of X where the set $A = \{175, 176, 177, 178, 179, 180, 181, 182, 183\}$ and the outputs of f on each of these numbers are given by the table above.

Height	175	176	177	178	179	180	181	182	183
Probability	13 100	20 100	$\frac{11}{100}$	$\frac{17}{100}$	$\frac{11}{100}$	8 100	10 100	$\frac{7}{100}$	3

• The cumulative distribution function *F* describes the probability that a randomly chosen person from the group has height *less than* a particular number.

Height	175	176	177	178	179	180	181	182	183
Probability	$\frac{13}{100}$	20 100	$\frac{11}{100}$	$\frac{17}{100}$	$\frac{11}{100}$	8 100	$\frac{10}{100}$	$\frac{7}{100}$	3

• The cumulative distribution function *F* describes the probability that a randomly chosen person from the group has height *less than* a particular number. For example,

$$F(178) = P(X \le 178) = P(X = 175) + P(X = 176) + P(X = 177) + P(X = 178)$$
$$= \frac{13}{100} + \frac{20}{100} + \frac{11}{100} + \frac{17}{100} = \frac{61}{100}.$$

Height	175	176	177	178	179	180	181	182	183
Probability	13	20 100	$\frac{11}{100}$	$\frac{17}{100}$	$\frac{11}{100}$	8 100	$\frac{10}{100}$	$\frac{7}{100}$	3

• The mean of X is the same as the arithmetic mean of the data. Indeed,

$$E(X) = \sum_{a \in A} a \cdot P(X = a)$$

$$= 175 \cdot P(X = 175) + 176 \cdot P(X = 176) + \dots + 183 \cdot P(X = 183)$$

$$= 175 \cdot \frac{13}{100} + 176 \cdot \frac{20}{100} + \dots + 183 \cdot \frac{3}{100} = 178.1.$$

Height	175	176	177	178	179	180	181	182	183
Probability	13	20 100	$\frac{11}{100}$	17 100	$\frac{11}{100}$	8 100	10 100	$\frac{7}{100}$	3

• The variance of X is the same as the standard deviation squared (that is, $Var(X) = \sigma^2$). Indeed,

$$Var(X) = \sum_{a \in A} (a - E(X))^2 \cdot P(X = a)$$

$$= (175 - 178.1)^2 \cdot P(X = 175) + \dots + (183 - 178.1)^2 \cdot P(X = 183)$$

$$= 67.29 = 8.203^2.$$

SOME IMPORTANT DISCRETE DISTRIBUTIONS

THE BERNOULLI DISTRIBUTION

The Bernoulli distribution is a discrete distribution of a random variable which can only attain two distinct values.

THE BERNOULLI DISTRIBUTION

The Bernoulli distribution is a discrete distribution of a random variable which can only attain two distinct values.

If we denote these values as 0 and 1, then the Bernoulli distribution is the function

$$f(x) = \begin{cases} p, & \text{if } x = 1, \\ 1 - p, & \text{if } x = 0, \end{cases}$$

where $p \in [0, 1]$ is a fixed probability.

THE BERNOULLI DISTRIBUTION - EXAMPLE

A coin toss is a perfect example of a Bernoulli distribution with p = 1/2.

A coin toss is a perfect example of a Bernoulli distribution with p=1/2. Indeed, if f is the probability distribution of the result of a coin toss, then

$$f(x) = \begin{cases} \frac{1}{2}, & \text{if } x = \text{heads}, \\ \frac{1}{2}, & \text{if } x = \text{tails}. \end{cases}$$

THE BERNOULLI DISTRIBUTION - PROPERTIES

We compute the distribution, cumulative distribution, mean and variance of the Bernoulli distribution. We assume that $X \in \{0,1\}$ and $p \in [0,1]$.

THE BERNOULLI DISTRIBUTION - PROPERTIES

We compute the distribution, cumulative distribution, mean and variance of the Bernoulli distribution. We assume that $X \in \{0, 1\}$ and $p \in [0, 1]$.

• By definition, f(1) = p and f(0) = 1 - p.

We compute the distribution, cumulative distribution, mean and variance of the Bernoulli distribution. We assume that $X \in \{0, 1\}$ and $p \in [0, 1]$.

- By definition, f(1) = p and f(0) = 1 p.
- Since we have only two values, $F(0) = P(X \le 0) = P(X = 0) = f(0) = 1 p$ and $F(1) = P(X \le 1) = f(0) + f(1) = 1$.

We compute the distribution, cumulative distribution, mean and variance of the Bernoulli distribution. We assume that $X \in \{0, 1\}$ and $p \in [0, 1]$.

- By definition, f(1) = p and f(0) = 1 p.
- Since we have only two values, $F(0) = P(X \le 0) = P(X = 0) = f(0) = 1 p$ and $F(1) = P(X \le 1) = f(0) + f(1) = 1$.
- We calculate,

$$E(X) = \sum_{a \in \{0,1\}} a \cdot f(a) = 0 \cdot f(0) + 1 \cdot f(1) = 0 \cdot (1-p) + 1 \cdot p = p.$$

We compute the distribution, cumulative distribution, mean and variance of the Bernoulli distribution. We assume that $X \in \{0, 1\}$ and $p \in [0, 1]$.

- By definition, f(1) = p and f(0) = 1 p.
- Since we have only two values, $F(0) = P(X \le 0) = P(X = 0) = f(0) = 1 p$ and $F(1) = P(X \le 1) = f(0) + f(1) = 1$.
- We calculate,

$$E(X) = \sum_{a \in \{0,1\}} a \cdot f(a) = 0 \cdot f(0) + 1 \cdot f(1) = 0 \cdot (1-p) + 1 \cdot p = p.$$

And also

$$\mathsf{Var}(X) = \sum_{a \in \{0,1\}} (a - E(X))^2 \cdot f(a) = (0 - p)^2 \cdot (1 - p) + (1 - p)^2 \cdot p = p(1 - p).$$

1

$\bigcup_{\text{VARIATIONS & COMBINATIONS}}$

Imagine 11 people standing in supermarket queue. How many different ways can they order themselves in that queue?

Imagine 11 people standing in supermarket queue. How many different ways can they order themselves in that queue?

The answer is relatively simple.

Imagine 11 people standing in supermarket queue. How many different ways can they order themselves in that queue?

The answer is relatively simple.

Imagine 11 empty boxes and count how many ways can you distribute 11 people into them.

What if there were only 1 human?

What if there were only 1 human?

What if there were only 1 human?

I'd have exactly 11 options where to put him.

So, I put him in a random box and in comes the second human.

So, I put him in a random box and in comes the second human.

So, I put him in a random box and in comes the second human.

I'd have only 10 boxes left to place him into.

For the third human, only 9 boxes are left, etc.

FACTORIAL

FACTORIAL

Overall, given *n* objects, I have

$$n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1$$

ways how to order them. This number is written as n! and read n factorial.

The same argument applies.

The same argument applies.

If I have only 5 boxes and 11 humans, I have

$$11 \cdot 10 \cdot 9 \cdot 8 \cdot 7$$

ways to put 5 of those humans into all the boxes.

The same argument applies.

If I have only 5 boxes and 11 humans, I have

$$11 \cdot 10 \cdot 9 \cdot 8 \cdot 7$$

ways to put 5 of those humans into all the boxes.

VARIATIONS

If I have *n* elements, the number of ways how to order any *k* of them is

$$n\cdot (n-1)\cdot (n-2)\cdot \ldots \cdot (n-k+1)=\frac{n!}{(n-k)!}.$$

This number is sometimes called the number of variations of *k* elements out of *n*.

WHAT IF I DON'T CARE ABOUT THE ORDER?

Finally, suppose I'm not interested in the differences between individual humans and I just want to place some 5 of them into boxes.

WHAT IF I DON'T CARE ABOUT THE ORDER?

Finally, suppose I'm not interested in the differences between individual humans and I just want to place some 5 of them into boxes.

In other words, I don't care about the order I put them into those boxes. It doesn't matter to me which human goes to which box as long as all the boxes are full.

WHAT IF I DON'T CARE ABOUT THE ORDER?

Finally, suppose I'm not interested in the differences between individual humans and I just want to place some 5 of them into boxes.

In other words, I don't care about the order I put them into those boxes. It doesn't matter to me which human goes to which box as long as all the boxes are full.

This is a similar problem. The only difference is that I disregard all the ways I can order those k elements inside the boxes.

COMBINATIONS

COMBINATIONS

If I have *n* elements, the number of ways I can choose any *k* of them regardless of order, is

$$\frac{n\cdot (n-1)\cdot (n-2)\cdot \ldots \cdot (n-k+1)}{k!}=\frac{n!}{(n-k)!k!}.$$

This number is typically written as $\binom{n}{k}$ and read 'n choose k'.