Problems 31 to 40

Shiv Shankar Dayal

August 28, 2019

Choosing numbers

- When you have to choose three numbers in arithmetic progression it is better to choose them as a-d, a, a+d
- When you have to choose four numbers in arithmetic progression it is better to choose them as a-3d, a-d, a+d, a+3d
- ▶ When you have to choose five numbers in arithmetic progression it is better to choose them as a 2d, a d, a + d, a + 2d

31. The sum of three numbers in A.P. is 27 and the sum of their squares is 293. Find the numbers.

Solution: Let the three numbers in A.P. be a-d, a, a+d Given, $a-d+a+a+d=27 \Rightarrow 3a=27$ ∴ a=9 and $(a-d)^2+a^2+(a+d)^2=293$ $\Rightarrow a^2+d^2-2ad+a^2+a^2+d^2+2ad=293$ $3a^2+2d^2=293 \Rightarrow 3.9^2+2d^2=293$ $243+2d^2=293 \Rightarrow 2d^2=50 \Rightarrow d^2=25$ If d=-5, the three numbers are 14, 9, 4 If d=5, the three numbers are 4, 9, 14

 ${\bf 32.}\,$ The sum of four integers in A.P. is 24 and their product is 945. Find the numbers.

```
Solution: Let the four numbers be a-3d, a-d, a+d, a+3d Given, a-3d+a-d+a+d+a+3d=24 \Rightarrow 4a=24 \Rightarrow a=6 and (a-3d)(a-d)(a+d)(a+3d)=945 (a^2-9d^2)(a^2-d^2)=945 (36-9d^2)(36-d^2)=945 d^4-40d^2+144=105 d^4-40d^2+39=0 (d^2-1)(d^2-39)=0 Since numbers are integers \therefore d^2\neq 39, \therefore d^2=1, d=\pm 1 Hence integers are, 3,5,7,9 or 9,7,4,3
```

33. If the p^{th} term of an A.P. is q and the q^{th} term is p, find the first term and common difference. Also, show that $(p+q)^{th}$ term is zero.

Solution: Let x be the first term and d be the common difference.

$$t_p=x+(p-1)d=q$$
 $t_q=x+(q-1)d=p$ Subtracting these two we get, $q-p=(p-q)d\Rightarrow d=-1$ Substituting this value for t_p , we get $q=x+(p-1).-1$ $x=p+q-1$ $t_{p+q}=x+(p+q-1)d=p+q-1+(p+q-1).-1=0$

34. For an A.P. show that $t_m + t_{2n+m} = 2t_{m+n}$.

Solution: Let a be the first term and d be the common difference.

$$\begin{split} t_m &= a + (m-1)d \\ t_{2n+m} &= a + (2n+m-1)d \\ 2t_{m+n} &= 2[a + (m+n-1)d] \\ t_m &+ t_{2n+m} = 2a + (m-1+2n+m-1)d = 2[a + (m+n-1)d] = 2t_{m+n} \end{split}$$

35. Divide 15 into three parts which are in A.P. and the sum of their squares is 83.

Solution: Let a-d, a, a+d be three such numbers. Given, $a-d+a+a+d=15\Rightarrow 3a=15$. a=5 also, $(a-d)^2+a^2+(a+d)^2=83$ $a^2+d^2-2ad+a^2+a^2+d^2+2ad=83$ $3a^2+2d^2=83\Rightarrow 3.5^2+2d^2=83$ $2d^2=8\Rightarrow d=\pm 2$ Therefore, numbers are 3,5,7 or 7,5,3

36. Three numbers are in A.P. Their sum is 27 and the sum of their squares is 275. Find the numbers.

```
Solution: Let a-d, a, a+d be three such numbers. Given, a-d+a+a+d=27\Rightarrow 3a=27. a=9 also, (a-d)^2+a^2+(a+d)^2=275 a^2+d^2-2ad+a^2+a^2+d^2+2ad=275 3a^2+2d^2=275\Rightarrow 3.9^2+2d^2=275 2d^2=32\Rightarrow d=\pm 4 Therefore, numbers are 5,9,13 or 13,9,5
```

37. The sum of three numbers in A.P. is 12 and the sum of their cubes is 408, find them.

Solution: Let a-d, a, a+d be three such numbers. Given, $a-d+a+a+d=12\Rightarrow 3a=12 \therefore a=4$ also, $(a-d)^3+a^3+(a+d)^3=408$ $a^3-3a^2d+3ad^2-d^3+a^3+a^3+3a^2d+3ad^2+d^3=408$ $3a^3+6ad^2=408$ $3.4^3+6.4.d^2=408$ $24d^2=216\Rightarrow d^2=9 \therefore d=\pm 3$ Therefore, numbers are 1,4,7 or 7,4,1.

38. Divide 20 into four parts which are in A.P. such that the product of first and fourth is to product of second and third is 2:3.

Solution: Let
$$a-3d$$
, $a-d$, $a+d$, $a+3d$ be the numbers. Given, $a-3d+a-d+a+d+a+3d=20\Rightarrow a=5$ also, $\frac{(a-3d)(a+3d)}{(a-d)(a+d)}=\frac{2}{3}$
$$\frac{a^2-9d^2}{a^2-d^2}=\frac{2}{3}$$
 $3a^2-27d^2=2a^2-2d^2$ $a^2=25d^2\Rightarrow d=\pm 1$ Therfore, numbers are 2, 4, 6, 8 or 8, 6, 4, 2

39. The sum of three numbers in A.P. is -3 and their product is 8. Find the numbers.

Solution: Let a-d, a, a+d be the numbers. Given, $a-d+a+a+d=-3 \Rightarrow 3a=-3$. a=-1 also, (a-d)a(a+d)=8 $a(a^2-d^2)=8$ $-1(1-d^2)=8$ $d^2=9 \Rightarrow d=\pm 3$ Therefore, numbers are -4, -1, 2 or 2, -1, -4

40. Divide 32 into four parts which are in A.P. such that the ratio of product of extremes to the product of means is 7:15.

Solution: Let
$$a-3d$$
, $a-d$, $a+d$, $a+3d$ be the numbers. Given, $a-3d+a-d+a+d+a+3d=32\Rightarrow a=8$ also, $\frac{(a-3d)(a+3d)}{(a-d)(a+d)}=\frac{7}{15}$
$$\frac{a^2-9d^2}{a^2-d^2}=\frac{7}{15}$$

$$\frac{64-9d^2}{64-d^2}=\frac{7}{15}$$
 960 $-135d^2=448-7d^2$ 128 $d^2=512\Rightarrow d^2=4$ $\therefore d=\pm 2$ Therfore, numbers are 2, 6, 10, 14 or 14, 10, 6, 2