Číselné sústavy

Pozičné číselné sústavy sú sústavy pozostávajúce z určitého počtu cifier (v desiatkovej ich je desať 0 - 9), pričom hodnotu nejakej číslice určuje jej pozícia (rád) v čísle. Ak je L základom číselnej sústavy, tak číslice v nej sú prvkami množiny $\{0,1,2,\dots(L-1)\}$. Tá istá číslica má teda inú hodnotu, ak je umiestnená na inej pozícii v čísle. Napr. v čísle 321 má číslica 3 má hodnotu 300, kým v čísle 231 má hodnotu 30.

Prirodzené číslo môžeme vyjadriť v tvare

$$m = a_n L^n + a_{n-1} L^{n-1} + a_{n-2} L^{n-2} + a_{n-3} L^{n-3} \dots + a_2 L^2 + a_1 L^1 + a_0 L^0,$$

kde
$$a_i \in \{0,1,2, \dots (L-1)\}, a_n \neq 0.$$

Reálne číslo môžeme vyjadriť v tvare

$$m = a_n L^n + a_{n-1} L^{n-1} + a_{n-2} L^{n-2} + \cdots + a_2 L^2 + a_1 L^1 + a_0 L^0 + a_{-1} L^{-1} + a_{-2} L^{-2} + a_{-3} L^{-3} + \cdots$$

kde
$$a_i \in \{0,1,2,...(L-1)\}, a_n \neq 0.$$

V každej pozičnej sústave so základom L nadobúdajú číslice postupne smerom sprava doľava L –násobne vyššiu hodnotu. Teda napr. v desiatkovej sústave (L=10) posunutím číslice o jedno miesto (jeden rád) doľava, nadobudne desaťkrát väčšiu hodnotu. Ak L=2, teda dvojkovej sústave, bude mať dvakrát väčšiu hodnotu, ak L=8, teda osmičkovej sústave, bude mať osemkrát väčšiu hodnotu, ak L=16, teda šestnástkovej sústave, bude mať šestnásťkrát väčšiu hodnotu.

Číslice šestnástkovej sústavy sú $\{0,1,2,3,4,5,6,7,8,9,A(10),B(11),C(12),D(13),E(14),F(15)\}$.

Príklad. Číslo
$$(1AF)_{16} = 1.16^2 + 10.16 + 15 = 256 + 160 + 15 = (431)_{10}$$

Príklad. Číslo
$$(170)_8 = 1.8^2 + 7.8 + 0 = 64 + 56 = (120)_{10}$$

Číslo z ľubovoľnej sústavy sa do desiatkovej sústavy prevedie takto:

- 1. Očíslujeme si rády čísla sprava doľava od desatinnej čiarky smerom naľavo tak, že nad prvú číslicu sprava napíšeme 0, potom 1, pod ďalšiu 2 ...
- 2. Ak má číslo aj nenulovú desatinnú časť, tak rády čísla číslujeme od desatinnej čiarky smerom doprava tak, že nad prvú číslicu napíšeme -1, potom -2, pod ďalšiu -3 ...
- 3. Hľadané číslo v desiatkovej sústave potom dostaneme ako súčet cifier vynásobených základom sústavy na príslušný rád.

Príklad. Číslo
$$(1AF, BC)_{16} = 1.16^2 + 10.16 + 15 + 11.(16)^{-1} + 12.(16)^{-2} = 256 + 160 + 15 + \frac{11}{16} + \frac{12}{256} = (431,734375)_{10}$$

Základom počítania v počítačových systémoch je **dvojková (binárna)** sústava. Jeden bit dokáže vyjadriť dve číslice - nulu a jednotku.

Príklad.

Číslo
$$(101101,101)_2 = 1.2^5 + 0.2^4 + 1.2^3 + 1.2^2 + 0.2^1 + 1.2^0 + 1.(2)^{-1} + 0.(2)^{-2} + 1.(2)^{-3} = (45,625)_{10}$$

Úspornejší zápis ponúka šestnástková - **hexadecimálna** sústava, v ktorej sa štyri číslice dvojkovej sústavy dajú zapísať jedným znakom, alebo osmičková- **oktálna** sústava umožňujúca tri binárne znaky zapísať jedným oktálnym znakom.

Prevod čísel z binárnej do hexadecimálnej sústavy.

Binárne číslo rozdelíme začínajúc od desatinnej čiarky na štvorice - smerom doľava a aj smerom doprava. Každej štvorici priradíme jej hexadecimálnu hodnotu.

Príklad.

$$\check{\text{C}}$$
íslo $(101101,101)_2 = (00101101,1010)_2 = (2D,A)_{16}$

Prevod čísel z binárnej do osmičkovej sústavy.

Binárne číslo rozdelíme začínajúc od desatinnej čiarky na trojice - smerom doľava a aj smerom doprava. Každej trojici priradíme jej oktálnu hodnotu.

Príklad.

$$\check{\text{C}}$$
íslo $(101101,101)_2 = (101101,101)_2 = (55,5)_8$

Prevod čísel do hexadecimálnej sústavy do desiatkovej.

Príklad.
$$(2D, A)_{16} = 2 * 16 + 13 + 10.16^{-1} = (45,625)_{10}$$

Prevod čísel z osmičkovej sústavy do desiatkovej.

$$\text{Č}(\text{slo}(55,5)_8 = 5.8 + 5 + 5.8^{-1} = (45,625)_{10}$$

Prevod celých čísel z dvojkovej sústavy do desiatkovej.

Sa dá robiť buď klasickým rozvojom podľa mocnín dvojky alebo aj pomocou Hornerovej schémy.

Príklad.

Číslo
$$(101101)_2 = (45)_{10}$$
.

	1	0	1	1	0	1
2		2	4	10	22	44
	1	2	5	11	22	45

Prevod čísel z desiatkovej do inej sústavy.

Prevod čísla z desiatkovej sústavy do inej sústavy robíme algoritmom podobným Euklidovmu algoritmu, pričom dané číslo delíme základom Z danej sústavy, až kým nedostaneme číslo nula. Po každom delení zapisujeme zvyšky, ktoré nakoniec usporiadame v opačnom poradí ako vznikali.

Príklad. Číslo 141 do dvojkovej sústavy:

	Podiel	Zvyšok
141:2	70	1
70:2	35	0
35:2	17	1
17:2	8	1
8:2	4	1
4:2	2	0
2:2	1	0
1:2	0	1

Výsledok teda je10011101 (zvyšky zapísané v opačnom poradí).

Príklad. Číslo 141 do päťkovej sústavy:

	Podiel	Zvyšok
141:5	28	1
28:5	5	3
5:5	1	0
1:5	0	1

Výsledok teda je $(1031)_5$ (zvyšky zapísané v opačnom poradí).

Prevod desatinných čísel do dvojkovej sústavy.

Príklad. Konverujte číslo 0.2 do dvojkovej sústavy.

0.2 < 1, píšeme 0.

0.2*2=0.4 < 1, píšeme 0.0

0.4*2=0.8<1, píšeme 0.00

0.8*2=1.6>1, píšeme 0.001

1.6-1=0.6, 0.6*2=1.2>1, máme 0.0011

1.2-1=0.2, 0.2*2=0.4<1,....

Odtiaľto sa celý proces opakuje, dostaneme periodické číslo $0.0011\,\mathrm{.}$