STC89C52单片机用户手册

STC89C52R单片机介绍

STC89C52R**C**单片机是宏晶科技推出的新一代高速 / 低功耗 / 超强抗干扰的单片机,指令代码完全兼容传统 8051单片机,12时钟 / 机器周期和 6时钟 / 机器周期可以任意选择。

主要特性如下:

- 增强型 8051单片机,6时钟/机器周期和 12时钟/机器周期可以任意
 选择,指令代码完全兼容传统 8051.
- 2. 工作电压: 5.5V~3.3V(5V单片机)/3.8V~2.0V(3V单片机)
- 3. 工作频率范围: 0~40MHz, 相当于普通 8051的 0~80MHz, 实际工作 频率可达 48MHz
- 4. 用户应用程序空间为 8K字节
- 5. 片上集成 512字节 RAM
- 6. 通用 I/O 口(32个),复位后为: P1/P2/P3/P4 是准双向口/弱上拉, P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为 I/O 口用时,需加上拉电阻。
- 7. ISP(在系统可编程) /IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片
- 8. 具有 EEPRO功能
- 9. 具有看门狗功能
- 10. 共 3 个 16 位定时器 / 计数器。即定时器 TQ、T1、T2
- 11. 外部中断 4 路,下降沿中断或低电平触发电路, Power Down模式可由外部中断低电平触发中断方式唤醒
- 12. 通用异步串行口(UART), 还可用定时器软件实现多个 UART
- 13. 工作温度范围: -40~+85 (工业级) /0~75 (商业级)
- 14. PDIP封装

STC89C52R单片机的工作模式

掉电模式:典型功耗 <0.1 μ A, 可由外部中断唤醒, 中断返回后,继续执行原程序

空闲模式:典型功耗 2mA

正常工作模式:典型功耗 4Ma~7mA

掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备

P1. 5	2	40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21	VCC PO. O/ADO PO. 1/AD1 PO. 2/AD2 PO. 3/AD3 PO. 4/AD4 PO. 5/AD5 PO. 6/AD6 PO. 7/AD7 EA ALE/PROG PSEN P2. 7/A15 P2. 7/A15 P2. 6/A14 P2. 5/A13 P2. 4/A12 P2. 3/A11 P2. 2/A10 P2. 1/A9 P2. 0/A8
-------	---	--	--

STC89C52R引脚图

STC89C52R引脚功能说明

VCC(40 引脚): 电源电压

VSS(20引脚):接地

P0端口(P0.0~P0.7,39~32引脚):P0口是一个漏极开路的 8位双向 I/O口。作为输出端口,每个引脚能驱动 8个TTL负载,对端口 P0写入"1"时,可以作为高阻抗输入。在访问外部程序和数据存储器时, P0口也可以提供低 8位地址和 8位数据的复用总线。此时, P0口内部上拉电阻有效。在 Flash ROM编程时,P0端口接收指令字节;而在校验程序时,则输出指令字节。验证时,要

求外接上拉电阻。

P1端口(P1.0~P1.7,1~8引脚):P1口是一个带内部上拉电阻的 8位双向 I/O口。P1的输出缓冲器可驱动(吸收或者输出电流方式) 4个 TTL输入。对端口写入 1时,通过内部的上拉电阻把端口拉到高电位,这是可用作输入口。 P1口作输入口使用时,因为有内部上拉电阻,那些被外部拉低的引脚会输出一个电流(1/11)。

此外, P1.0和 P1.1 还可以作为定时器/计数器 2 的外部技术输入(P1.0/T2)和定时器/计数器 2 的触发输入(P1.1/T2EX), 具体参见下表:

在对 Flash ROM编程和程序校验时 , P1接收低 8位地址。

表 XX

P1.0和 P1.1 引脚复用功能

引脚号	功能特性			
P1.0	T2(定时器/计数器 2外部计数输入),时钟输出			
P1.1	T2EX(定时器 / 计数器 2 捕获 / 重装触发和方向控制)			

P2端口(P2.0~P2.7, 21~28 引脚): P2口是一个带内部上拉电阻的 8 位双向 I/O 端口。P2的输出缓冲器可以驱动(吸收或输出电流方式) 4 个 TTL输入。 对端口写入 1 时,通过内部的上拉电阻把端口拉到高电平,这时可用作输入口。 P2 作为输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流(1/11)。

在访问外部程序存储器和 16 位地址的外部数据存储器(如执行" MOVX @DPTR"指令)时,P2送出高 8 位地址。在访问 8 位地址的外部数据存储器 (如执行" MOVX @R1"指令)时,P2口引脚上的内容(就是专用寄存器(SFR)区中的 P2寄存器的内容),在整个访问期间不会改变。

在对 Flash ROM编程和程序校验期间 , P2 也接收高位地址和一些控制信号。

P3端口(P3.0~P3.7,10~17引脚):P3是一个带内部上拉电阻的 8位双向 I/O 端口。P3的输出缓冲器可驱动(吸收或输出电流方式) 4个 TTL输入。对端 口写入 1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。 P3 做输入口使用时,因为有内部的上拉电阻, 那些被外部信号拉低的引脚会输入一个电流(1/11)。

在对 Flash ROM编程或程序校验时 , P3还接收一些控制信号。

P3 口除作为一般 I/O 口外,还有其他一些复用功能,如 下表所示:

表 XX

P3 口引脚复用功能

引脚号	复用功能
P3.0	RXD(串行输入口)
P3.1	TXD(串行输出口)
P3.2	/NTO (外部中断 0)
P3.3	/NT1 (外部中断 1)
P3.4	TO(定时器 O的外部输入)
P3.5	T1(定时器 1的外部输入)
P3.6	₩ ™ (外部数据存储器写选通)
P3.7	RD (外部数据存储器读选通)

RST(9引脚):复位输入。当输入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操作。 看门狗计时完成后, RST引脚输出 96个晶振周期的高电平。特殊寄存器 AUXR(地址 8EH)上的 DISRTO位可以使此功能无效。 DISRTO默认状态下,复位高电平有效。

ALEPROG(30 引脚): 地址锁存控制信号 (ALE) 是访问外部程序存储器时,锁存低 8 位地址的输出脉冲。在 Flash编程时,此引脚(\overline{PROG})也用作编程输入脉冲。

在一般情况下, ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别强调,在每次访问外部数据存储器时, ALE脉冲将会跳过。

如果需要,通过将地址位 8EH的 SFR的第 0 位置" 1", ALE操作将无效。这一位置" 1", ALE仅在执行 MOVX或 MOV 指令时有效。否则, ALE将被微弱拉高。这个 ALE使能标志位(地址位 8EH的 SFR的第 0 位)的设置对微控制器处于外部执行模式下无效。

PSEN (29 引脚):外部程序存储器选通信号(\overline{PSEN})是外部程序存储器选通信号。当 AT89C51RQ从外部程序存储器执行外部代码时, \overline{PSEN} 在每个机器周期被激活两次,而访问外部数据存储器时, \overline{PSEN} 将不被激活。

 \overline{EA} /VPR(31引脚):访问外部程序存储器控制信号。 为使能从 0000H到 FFFFH的外部程序存储器读取指令, \overline{EA} 必须接 GND。注意加密方式 1时, \overline{EA} 将内部锁定位 RESEJ 为了执行内部程序指令, \overline{EA} 应该接 VCC 在 Flash编程期间, \overline{EA} 也接收 12 伏 VPP电压。

XTAL1(19引脚):振荡器反相放大器和内部时钟发生电路的输入端。

XTAL2(18 引脚):振荡器反相放大器的输入端。

特殊功能寄存器

在 STC89C52R货内存储器中, 80H~FFH共 128 个单元位特殊功能寄存器 (SFR), SFR的地址空间如 下表 1 所示。

并非所有的地址都被定义,从 80H~FFH共 128 个字节只有一部分被定义。 还有相当一部分没有定义。 对没有定义的单元读写将是无效的 , 读出的数值将不确定,而写入的数据也将丢失。

不应将" 1"写入未定义的单元,由于这些单元在将来的产品中可能赋予新的功能,在这种情况下,复位后这些单元数值总是" 0"。

STC89C52R除了有定时器 / 计数器 0 和定时器 / 计数器 1 之外,还增加了一个一个定时器 / 计数器 2.定时器 / 计数器 2 的控制和状态位位于 T2CON(见表 2)和T2MOD(见表 4)。

定时器 2 是一个 16 位定时/计数器。通过设置特殊功能寄存器 T2CON中的 C/T2 位,可将其作为定时器或计数器(特殊功能寄存器 T2CON的描述如 表 2 所列)。定时器 2 有 3 种操作模式:捕获、自动重新装载(递增或递减计数)和波特率发生器,这 3 种模式由 T2CON中的位进行选择(如 表 2 所列)

表 1 STC89C52R的特殊功能寄存器

	Bit Addressable		1	Fon Bit Ado	iressable				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000, 0000								F7h
E8h	P4 EEEE, 1111								EFh
E0h	ACC 0000, 0000	MDT_CONTR gr00, 0000	I SP_DATA 1111, 1111	ISP_ADDRH 0000, 0000	I SP_ADDRL 0000, 0000	ISP_CMD 1111,1000	ISP_TRIG	ISP_CONTR 000m, m000	E7h
D8h		$\bigg)$							DFh
DOh	PSW 0000, 0000								D7h
C8Þ	T2CON 0000,0000	T2 M OD xxxx, xx00	RCAP2L 0000, 0000	RCAP 2H 0000, 0000	TL2 0 000, 0000	TH2 0000, 0000			CFh
COL	XICON 0000, 0000								C7h
B8h	IP xx00,0000	SADEN 0000, 0000							BFh
BOh	P3 1111, 1111							IPH 0000, 0000	B7h
A8h	IE 0000, 0000	SADDR 0000, 0000							ÁFh
ÁŒħ	P2 1111, 1111		AUXR1 nnn, OnnO						A7h
98h	SCON 0000,0000	SBUF							9Fh
90h	P1 1111, 1111								97h
88h	TCON 0000,0000	T X DD 0000, 0000	TL0 0000, 0000	TL1 0000, 0000	TH0 0 000, 0000	TH1 0000, 0000	AUXR EERE, EE 00		8Fh
80h	P0 1111, 1111	SP 0000, 0111	IPL 0000, 0000	DPH 0000, 0000				PCON 00x1,0000	87h
	0/8	1/9	2/A	3/B	4/c	5/D	6/E	7/F	

表 2 特殊功能寄存器 T2CON的描述

 T2CON
 地址=OC8H
 可位寻址
 复位值=OOH

 7
 6
 5
 4
 3
 2
 1
 0

 TF2
 EXF2
 RCLK
 TCLK
 EXEN2
 TR2
 C/T2
 CP/RL2

表 3 定时/计数器 2 控制寄存器各位功能说明

符号	
TF2	定时器 2 溢出标志。定时器 2 溢出时,又由硬件置位,必须由软件
	请 0.当 RCLK=1或 TCLK=1时,定时器 2 溢出,不对 TF2置位。
	定时器 2 外部标志。当 EXEN2=1, 且当 T2EX引脚上出现负跳变而
	出现捕获或重装载时 , EXF2置位 , 申请中断。 此时如果允许定时器
EXF2	2 中断,CPU将响应中断,执行定时器 2 中断服务程序, EXF2必须
	由软件清除。 当定时器 2工作在向上或向下计数方式时 (DCEN=1),
	EXF2不能激活中断。
	接收时钟允许。 RCLK=1时,用定时器 2 溢出脉冲作为串口 (工作于
RCLK	工作方式 1 或 3 时)的接收时钟, RCLK=0, 用定时器 1 的溢出脉冲
	作为接收脉冲
	发送时钟允许。 TCLK=1时,用定时器 2 溢出脉冲作为串口(工作于
TCLK	工作方式 1 或 3 时) 的发送时钟 , TCLK=0, 用定时器 1 的溢出脉冲
	作为发送脉冲
	定时器 2 外部允许标志。 当 EXEN2=1时,如果定时器 2 未用于作串
EXEN2	行口的波特率发生器,在 T2EX端口出现负跳变脉冲时,激活定时
	器 2 捕获或者重装载。 EXEN2=0时,T2EX端的外部信号无效。
TR2	定时器 2 启动/停止控制位。 TR2=1时,启动定时器 2.
C/ T2	定时器 2 定时方式或计数方式控制位。 $C^{1/2}_{1/2}=0$ 时,选择定时方式,
	$C/\overline{72}$ =1 时,选择对外部事件技术方式(下降沿触发)。
	捕获/重装载选择。 CP RL2 =1 时,如 EXEN2=1, 且 T2EX端出现负
CP/RL2	跳变脉冲时发生捕获操作。 CP/RL2 =1 时,若定时器 2 溢出或
	EXEN2=1条件下,T2EX端出现负跳变脉冲, 都会出现自动重装载操
	作。当 RCLK=1或 TCLK=1时,该位无效,在定时器 2 溢出时强制其
	自动重装载。

表 4 定时器 2 工作方式

RCLK+TCLK	CP/RL2	TR2	模式
0	0	1	16 位自动重装
0	1	1	16 位捕获
1	X	1	波特率发生器
X	X	0	(关闭)

1、 捕获模式

在捕获模式中,通过 T2CON中的 EXEN2设置 2 个选项。如果 EXEN2=0,定时器 2 作为一个 16 位定时器或计数器(由 T2CON中的 C/T2 位选择),溢出时置位 TF2(定时器 2 溢出标志位)。该位可用于产生中断(通过使能 IE 寄存器中的定时器 2 中断使能位)。如果 EXEN2=1,与以上描述相同,但增加了一个特性,即外部输入 T2EX由 1 变 0 时,将定时器 2 中 TL2和 TH2的当前值各自捕获到 RCAP2L和 RACP2H另外,T2EX的负跳变使 T2CON中的 EXF2置位,EXF2也像 TF2一样能够产生中断(其向量与定时器 2 溢出中断地址相同,定时器 2 中断服务程序通过查询 TF2和 EXF2来确定引起中断的事件),捕获模式 如图 X 所示。在该模式中,TL2和 TH2勿重新装载值,甚至当 T2EX产生捕获时间时,计数器仍以 T2EX的负跳变或振荡频率的 1/2(12 时钟模式)或 1/6(6 时种模式)计数。

图 XX 定时器 2 捕获模式

2、 自动重装模式(递增/递减计数器)

16 位自动重装模式中,定时器 2 可通过 C/T2 配置为定时器/计数器,编程控

制递增/递减。计数的方向有 DCEN递减计数使能位)确定,DCEN位于 T2MMOD 寄存器中,T2MO寄存器各位的功能描述如表 XX所示。当 DCEN=6时,定时器 2 默认为向上计数;当 DCEN=6时,定时器 2 可通过 T2EX确定递增或递减计数。图 XX显示了当 DCEN=6时,定时器 2 自动递增计数。在该模式中,通过设置 EXEN2位进行选择。如果 EXEN2=Q 定时器 2 递增计数到 0FFFFH,并在溢出后将 TF2置位,然后将 RCAP2的 RCAP2中的 16 位值作为重新装载值装入定时器 2。RCAP2的 RCAP2的值是通过软件预设的。

表 5 定时器 2 模式 (T2MOD) 控制寄存器的描述

	也址 =0C9I 位寻址	Н	复位值=XXXX XXOOB						
41.40	17. 41. AT								
	7	6	5	4	3	2	1	0	
	_	-	-	-	-	-	T20E	DCEN	

符号	功能				
-	不可用,保留将来之用 *				
T2OE	定时器 2 输出使能位				
DCEN	向下计数使能位。定时器 2 可配置成向上 / 向下计数器				

*用户勿将其置 1. 这些为在将来 80C51系列产品中用来实现新的特性。在这种情况下,以后用到保留位,复位时或非有效状态时,它的值应为 0. 而在这些位有效状态时,它的值为 1. 保留位读到的值不确定。

如果 EXEN2=1, 16 位重新装载可通过溢出或 T2EX从 1 到 0 的负跳变实现。 此负跳变同时将 EXF2置位。如果定时器 2 中断被使能,则当 TF2或 EXF2置 1 时,定时器 2 递增计数,计数到 0FFFFH后溢出并置位 TF2,还将产生中断(如 果中断被使能)。定时器 2 的溢出将使 RCAP2和 RCAP2中的 16 位值作为重新装 载值放入 TL2和 TH2

当 T2EX置零时,将使定时器 2 递减计数。当 TL2和 TH2计数到等于 RCAP2L 和 RCAP2时,定时器产生中断。

* 在6时钟模式下, d=6; 在12时钟模式下, d=12。

图 XX 定时器 2 自动重装模式(DCEN=0)

图 XX 定时器 2 自动重装模式(DCEN=)

3、 波特率发生器模式

寄存器 T2CON的位 TCLK和(或) RCLK允许从定时器 1 或定时器 2 获得串行口发送和接收的波特率。 当 TCLK=0时,定时器 1 作为串行口发送波特率发生器; 当 TCLK=1时,定时器 2 作为串行口发送波特率发生器。 RCLK对串行口接收波特率有同样的作用。 通过这 2 位,串行口能得到不同的接收和发送波特率, 一个通过定时器 1 产生,另一个通过定时器 2 产生。

如图 XX所示为定时器工作在波特率发生器模式。与自动重装模式相似,当 TH2 溢出时,波特率发生器模式使定时器 2 寄存器重新装载来自寄存器 RCAP2H 和 RCAP2的 16 位的值,寄存器 RCAP2刷 RCAP2的值由软件预置。 当工作与模式 1 和模式 3 时,波特率由下面的公式所决定:

图 XX 定时器 2波特率发生器模式

定时器可配置成"定时"或"计数"方式,在许多应用上,定时器被设置为"定时"方式(C/T2=0)。当定时器 2作为定时器时,它的操作不同于波特率发生器。通常定时器 2作为定时器,它会在每个机器周期递增(1/6 或 1/12 振荡频率)。当定时器 2作为波特率发生器时,它在 6时钟模式下,以振荡器频率递增(12时钟模式时为 1/12 振荡频率)。

这时的波特率公式如下:

式中: n=16(6 时钟模式)或 32(12 时钟模式); (RCAP2H, RCAP2L)是 RCAP2HIRCAP2L 的内容,为 16 位勿符号整数。

如图 XX(上面)所示,定时器 2 是作为波特率发生器,仅当寄存器 T2CON中的 RCLK和(或)TCLK=1时,定时器 2 作为波特率发生器才有效。注意: TH2溢出并不置位 TF2,也不产生中断。这样当定时器作为波特率发生器时,定时器 2 中断不必禁止。如果 EXEN2(T2 外部使能标志)被置位,在 T2EX中由 1 到 0 的转换会置位 EXF2(T2 外部标志位),但并不导致(TH2,TL2)重新装载 ()。当定时器 2 用作波特率发生器时,如果需要, T2EX可用作附加的外部中断。

当计时器工作在波特率发生器模式下,则不要对 TH2和 TL2 进行读 / 写,每 $f_{\underline{osc}}$ 隔一个状态时间($f_{\underline{osc}}$)或由 T2 进入的异步信号,定时器 2 将加 1. 在此情况下

对 TH2和 TL2进行读 / 写是不准确的;可对 RCAP寄存器进行读,但不要进行写, 否则将导致自动重装错误。当对定时器 2 或寄存器 RCAP进行访问时。应关闭定 时器 (清零 TR2)。表 XX列出了常用的波特率和如何用定时器 2 得到这些波特率。 表 XX 由定时器 2 产生的常用波特率

波料	寺率	振荡器频率	定时器2			
12 时钟模式	6 时钟模式	/MHz	RCAP2H	RCAP2L		
375 000	750 000	12	FF	FF		
9 600	19 200	12	FF	D9		
2 800	9 600	12	FF	B2		
2 400	4 800	12	FF	64		
1 200	2 400	12	FE	C8		
300	600	12	FB	1 E		
110	220	12	F2	AF		
300	600	6	FD	8F		
110	220	6	F9	57		

看门狗应用

STC89C52R单片机看门狗定时器特殊功能寄存器

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
WDT_CONTR	E1h	Watch-Dog-Timer Control register	-	-	EN_WDT	CLR_WDT	IDLE_WDT	PS2	PS1	PS0	xx00,0000

符号	功能					
EN_WDT	看门狗允许位,当设置为"1",看门狗启动					
CLR_WDT	看门狗清"0"位,当设为"1"时,看门狗将重新计数。硬件将自动					
	清"0"此位					
IDLE_WDT	看门狗" IDLE"模式位,当设置为" 1"时,看门狗定时器在"空闲					
	模式"计数;当清" 0"该位时,看门狗在"空闲模式"时不计数					
PS2,PS1,	看门狗定时器预分频值,不同值对应预分频数如 表 XX所示					
PS0						

表 XX 20MHz 晶振看门狗定时器预分频值

PS2	PS1	PS0	预分频	看门狗溢出时间
0	0	0	2	39.3ms
0	0	1	4	78.6 ms
0	1	0	8	157.3 ms
0	1	1	16	314.6 ms
1	0	0	32	629.1 ms
1	0	1	64	1.25s
1	1	0	128	2.5s
1	1	1	256	5s

看门狗溢出时间与预分频值有直接的关系,公式如下:

式中,N表示 STC单片机的时钟模式。 STC单片机有两种时钟模式,一种是单倍速,也就是 12 时钟模式,在该模式下, STC单片机与其他公司 51 系列单片机具有相同的机器周期,即 12 个振荡周期为一个机器周期;另一种是双倍速,又称6 时钟模式,在该模式下, STC单片机比其他公司的 51 单片机运行速度快一倍。