digitrecognition

June 9, 2022

1 See you next year!

This notebook goes over how to use a neural network to read written numbers. This year's coding club has come to a close with this notebook, thank you for coming.

1.1 Imports and Loading Data

```
[1]: import keras # machine learning
import numpy as np # data management
import matplotlib.pyplot as plt # visuals
from keras.datasets import mnist # data

(X_train, y_train), (X_test, y_test) = mnist.load_data()
```

Let's see what the shapes of these arrays are

```
[2]: print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
```

```
(60000, 28, 28) (60000,) (10000, 28, 28) (10000,)
```

1.2 Data Preprocessing

For classification, neural networks like to have a column for each category, with 0 meaning not present and 1 meaning present, rather than just one column for all of the categories. One hot encoding is the transformation from one column to many columns.

```
[3]: def onehot(y):
    encoded = []
    for x in y:
        newarr = []
        for i in range(x):
            newarr.append(0)
        newarr.append(1)
        for i in range(9-x):
```

```
newarr.append(0)
encoded.append(newarr)
return np.array(encoded)
```

1.2.1 Encode and Scale

We encode the categories/labels with the function and then scale the brightness values of the images to be values between 0 and 1. Question: Why divide by 255?

```
[4]: # Encode categories
y_train = onehot(y_train)
y_test = onehot(y_test)
# Scaling the pixel values
X_train = X_train / 255.0
X_test = X_test / 255.0
```

1.3 Model Creation

We are going to use a convolutional neural network (CNN) to do image recognition. You can experiment with the parameters!

```
[5]: from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
model = keras.Sequential([
    Conv2D(500, 3, padding='same', activation='relu', input_shape=(28, 28, 1)),
    MaxPooling2D(strides=(2, 2)),
    Conv2D(300, 3, padding='same', activation='relu'),
    MaxPooling2D(strides=(2, 2)),
    Conv2D(100, 3, padding='same', activation='relu'),
    MaxPooling2D(strides=(2, 2)),
    Flatten(),
    Dense(10, activation='relu'),
    Dense(10, activation='relu'),
    Dense(10, activation='softmax')
])
```

Let's get an idea of the size of our network!

[6]: model.summary()

```
Model: "sequential"
```

```
max_pooling2d_1 (MaxPooling (None, 7, 7, 300)
2D)
                         (None, 7, 7, 100)
conv2d 2 (Conv2D)
                                               270100
max pooling2d 2 (MaxPooling (None, 3, 3, 100)
                                               0
2D)
                         (None, 900)
flatten (Flatten)
                                               0
dense (Dense)
                         (None, 10)
                                               9010
dense_1 (Dense)
                         (None, 10)
                                               110
______
Total params: 1,634,520
Trainable params: 1,634,520
Non-trainable params: 0
```

That's a lot of parameters...

1.3.1 Compiling

Optimizers decrease the learning rate as the model gets better, the loss is basically the error, and accuracy is the percent of images that are read correctly.

```
[7]: model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```

1.4 Training the Model

1.5 Model Assessment

1.5.1 Accuracy (Score)

```
[9]: plt.plot(history.history['accuracy'], label='acc')
   plt.plot(history.history['val_accuracy'], label='val_acc')
   plt.ylim((.90, 1))
   plt.legend()
   plt.title('Accuracy and Validation Accuracy')
```

[9]: Text(0.5, 1.0, 'Accuracy and Validation Accuracy')

1.5.2 Loss (Error)

```
[10]: plt.plot(history.history['loss'], label='loss')
    plt.plot(history.history['val_loss'], label='val_loss')
    plt.ylim((0, 0.07))
    plt.legend()
    plt.title('Loss and Validation Loss')
```

[10]: Text(0.5, 1.0, 'Loss and Validation Loss')

1.5.3 Plotting Examples

To get an idea of what our model can do, we should plot some of its predictions along with the true answer.

```
[11]: plt.imshow(X_test[0])
prediction = model.predict(X_test[0].reshape((1, 28, 28, 1)))
plt.title("P: {}, T: {}".format(prediction.argmax(), y_test[0].argmax()))
```

[11]: Text(0.5, 1.0, 'P: 7, T: 7')

Plotting Incorrect Guesses To see if the model is wrong to an acceptable degree, let's plot 100 numbers that it read incorrectly.

```
[12]: k = 10
     fig, axes = plt.subplots(k, k, figsize=(15, 15))
     predictions = model.predict(X_test.reshape((-1, 28, 28, 1)))
     predictions = [x.argmax() for x in predictions]
     index = 0
     for i in range(k):
         for j in range(k):
             while predictions[index] == y_test[index].argmax():
                 index += 1
             axes[i, j].axis('off')
             axes[i, j].imshow(X_test[index])
             axes[i, j].set_title("P: {}, T: {}".format(predictions[index],__
       index += 1
     plt.subplots_adjust(top=0.94, wspace=0.05, hspace=0.3)
     fig.suptitle("Incorrect Responses")
```

[12]: Text(0.5, 0.98, 'Incorrect Responses')

Incorrect Responses

