1. Voevodsky's connectivity theorem for \mathbb{P}^1 -spectra

The following is from an email from Aravind to me concerning the proof of the connectivity theorem for \mathbb{P}^1 spectra.

Most of the proof appears in Morel's Trieste notes (in the section on the homotopy t-structure for P^1 -spectra). First you prove a connectivity result for P^1 -stable homotopy sheaves by using Morel's S^1 -stable connectivity theorem and studying what happens under G_m loops and G_m -suspension: suspension preserves connectivity, and Morel shows that taking G_m -loops has the effect of making a "contraction". Then, you globalize this.

Our goal is to prove theorem 4.14 of [Voev98], which should be restated in terms of \mathbb{P}^1 -spectra.

Theorem 1.1. Let X be a pointed smooth scheme over $\operatorname{Spec}(k)$ where k is an infinite field. Let \mathcal{Y} be a pointed space. Then for any $n > \dim(X)$, and any integer m

$$\mathcal{SH}(k)(\Sigma^{\infty}X, S^n \wedge \mathbb{G}_m^m \wedge \Sigma^{\infty}\mathcal{Y}) = 0.$$

Remark 1. We can formulate the theorem by using homotopy sheaves. Indeed, if we can show that for any pointed space \mathcal{Y} the homotopy sheaves $\pi_{n+\alpha m}^{\mathbb{A}^1}(\mathcal{Y})$ are -1 connected, the result will follow, as

$$\mathcal{SH}(k)(\Sigma^{\infty}X, S^{n} \wedge \mathbb{G}_{m}^{m} \wedge \Sigma^{\infty}\mathcal{Y}) = \mathcal{SH}(k)(S^{-n} \wedge \mathbb{G}_{m}^{-m} \wedge \Sigma^{\infty}X, \Sigma^{\infty}\mathcal{Y})$$
$$= \pi_{-n-m\alpha}^{\mathbb{A}^{1}}(X).$$

and by the connectivity theorem, this will vanish whenever -n < 0, i.e., whenever n > 0. This is a stronger statement than [?, theorem 4.14].

The line of attack is then to show that for a pointed space \mathcal{Y} , the S^1 suspsension spectrum $\Sigma_s^{\infty} \mathcal{Y}$ in the stable model category is -1 connected. Then we establish the first connectivity theorem which ensures the \mathbb{A}^1 localization of $\Sigma_s^{\infty} \mathcal{Y}$ is -1 connected. Finally, we show that inverting \mathbb{G}_m does not affect the connectivity, i.e., $\Sigma_m^{\infty} \Sigma_s^{\infty} \mathcal{Y}$ is again -1 connected.

2. Assumptions from previous lectures

2.1. Facts about Nisnevich topology. Points and neighborhoods. Distinguished squares determine the topology. Relation to etale, zariski, and fpqc topology.

Proposition 2.1. [Mor04, 2.4.1] Let M be a sheaf of abelian groups on Sm/k, and let $X \in \text{Sm}/k$ with Krull dimension d. Then whenever n > d, $H_{Nis}^n(X; M) = 0$.

Proposition 2.2. [Mor04, 2.4.1] For any $X \in \text{Sm}/k$, and for any $x \in X(k)$, there is an isomorphism of pointed sheaves of sets in the Nisnevich topology

$$X/(X - \{x\}) \cong \mathbb{A}^n/(\mathbb{A}^n - \{0\}).$$

- 2.2. Unstable model category $\Delta^{op} \text{Shv}(\text{Sm}/k, Nis)$.
 - (1) Don't forget the adjunction for sheafification $a_{Nis} \dashv U$. i.e., to give a map $a_{Nis}\mathcal{X} \to \mathcal{Y}$, of sheaves, it is equivalent to just give a map $\mathcal{X} \to U\mathcal{Y}$.
 - (2) Give the unstable model category the injective model structure to start. (This is Morel's choice, so we stick with it)
 - (3) Weak equivalences: $\mathcal{X} \to \mathcal{Y}$ iff for all U the map $\mathcal{X}(U) \to \mathcal{Y}(U)$ a simplicial w.e.

- (4) Cofibs: $\mathcal{X} \to \mathcal{Y}$ is a cofib. iff for any $U \in \text{Sm}/k$ the map $\mathcal{X}(U) \to \mathcal{Y}(U)$ is a monomorphism.
- (5) Fibrations: what they need to be.
- (6) The ass. htpy. cat. to the injective model category structure is denoted $\mathcal{H}_s(k)$. The pointed htpy. cat. is denoted $\mathcal{H}_{s,\bullet}(k)$.
- (7) Important properties/constructions in these categories: Cartesian closed, i.e., have smash/tensor \times and \wedge , with right adjoints \underline{Hom} and $\underline{Hom}_{\bullet}$. Representable sheaf functor and constant simplicial set functor.

Definition 2.3. Internal hom. (Ref: P. Pelaez)

Let $U \in \text{Sm}/k$. Let Δ_U^n denote the simplicial sheaf given by

$$(V, m) \in \operatorname{Sm}/k \times \Delta^{op} \to \operatorname{Sm}/k(V, U) \times \Delta_m^n$$

In other words, $\Delta_U^n = (rU) \times c\Delta^n$.

Let $\mathcal X$ and $\mathcal Y$ be spaces. The internal hom in the unpointed category is given by the formula

$$(U, m) \in \operatorname{Sm}/k \times \Delta \to \operatorname{Hom}_{\Delta^{op}\operatorname{Shv}}(X \times \Delta_U^m, Y).$$

How to describe the adjunction?

$$\operatorname{Hom}(\mathcal{X} \times \mathcal{Y}, \mathcal{Z}) \cong \operatorname{Hom}(\mathcal{Y}, Hom(\mathcal{X}, \mathcal{Z}))$$

Certainly we may send a map $g \in \text{Hom}(\mathcal{Y}, \underline{Hom}(\mathcal{X}, \mathcal{Z}))$ to the map $\eta(g)$ given by

$$\eta(g)(U,n) : \mathcal{X}_n(U) \times \mathcal{Y}_n(U) \to \mathcal{Z}_n(U)$$

$$(a,b) \to g(U,n)(U,n)(a, \mathrm{id}, \mathrm{id}).$$

Why is this a bijection?

Definition 2.4. Internal hom in the pointed category. Consider \mathcal{X} and \mathcal{Y} pointed spaces. For a point $x \in \mathcal{X}$, there is an evaluation map $ev_x : \underline{Hom}(\mathcal{X}, \mathcal{Y}) \to \mathcal{Y}$, where at $(U, n) \in (\mathrm{Sm}/k \times \Delta)^{op}$ we send $g : \mathcal{X} \times \Delta_U^n \to \mathcal{Y}$ to $g(U, n)(x, \mathrm{id}, \mathrm{id}) \in \mathcal{Y}_n(U)$. This makes sense as we have the map

$$g(U,n): \mathcal{X}_n(U) \times \operatorname{Sm}/k(U,U) \times \Delta_n^n \to \mathcal{Y}_n(U).$$

The pointed internal hom $\underline{Hom}_{\bullet}(\mathcal{X}, \mathcal{Y})$ is the fiber $ev_x^{-1}(y)$.

2.3. \mathbb{A}^1 localization.

- (1) See [?, Prop 2.3.3.] for details on the various properties of fibrant objects in the unstable motivic category.
- (2)

Definition 2.5. A space \mathcal{X} is called \mathbb{A}^1 local if for any smooth scheme U, the canonical map

$$\operatorname{Hom}(rU,\mathcal{X}) \to \operatorname{Hom}(rU \times \mathbb{A}^1,\mathcal{X})$$

is a bijection.

(3)

Definition 2.6. A map $f: \mathcal{X} \to \mathcal{Y}$ is an \mathbb{A}^1 weak equivalence if

$$\operatorname{Hom}(\mathcal{Y},\mathcal{Z}) \to \operatorname{Hom}(\mathcal{X},\mathcal{Z})$$

is a bijection for every \mathbb{A}^1 local space \mathcal{X} .

- (4) The unstable motivic homotopy category is obtained by left Bousfield localization of the injective model category structure on spaces with respect to the class of maps $W = W_{\mathbb{A}^1} = \{U \times \mathbb{A}^1 \to U \mid U \in \operatorname{Sm}/k\}.$
- (5) The general theory of Bousfield localization then gives a localization functor $L_{\mathbb{A}^1}$: $\mathcal{H}_s(k) \to L_W \mathcal{H}_s(k)$; denote the category $L_W \mathcal{H}_s(k)$ by $\mathcal{H}(k)$. The localization functor sends \mathbb{A}^1 weak equivalences to isomorphisms.

See [?, Definition 3.3.1]. Keep the same underlying category, the weak equivalences are the \mathbb{A}^1 -local weak equivalences, do not change the cofibrations from the ones in the injective model structure on $\Delta^{op}\text{Shv}(\text{Sm}/k, Nis)$, and let the fibrations be what they need to be.

- (6) Morel writes $L_{\mathbb{A}^1}$ for the (derived) functor which sends a space (without base point) \mathcal{X} to an \mathbb{A}^1 -localizion.
- (7) Morel gives an explicit construction which takes a pointed space \mathcal{Y} and produces a space $L^{\infty}\mathcal{Y}$ which is \mathbb{A}^1 local and a map $\mathcal{Y} \to L^{\infty}\mathcal{Y}$ which is an \mathbb{A}^1 weak equivalence.

Let \mathcal{Y}_f be the functorial fibrant replacement of \mathcal{Y} with respect to the injective model structure. Consider \mathbb{A}^1 to be pointed at 0. Morel defines $L^{(1)}(\mathcal{Y})$ to be the cone of the map $ev_1: \underline{Hom}_{\bullet}(\mathbb{A}^1, \mathcal{Y}_f) \to \mathcal{Y}_f$. So there is a map $\mathcal{Y} \to L^{(1)}(\mathcal{Y})$ obtained from the trivial cofibration $\mathcal{Y} \to \mathcal{Y}_f$ and the defining map $\mathcal{Y}_f \to L^{(1)}(\mathcal{Y})$.

So $L^{(1)}(-)$ is a functor with a natural transformation $\eta: \mathrm{id} \to L^{(1)}(-)$. Define by induction $L^{(n)}(\mathcal{Y}) = L^{(1)}(L^{(n-1)}(\mathcal{Y}))$. There is thus a directed system $L^{(n-1)}(\mathcal{Y}) \to L^{(n)}(\mathcal{Y})$. Denote the colimit/direct limit of this directed system by $L^{\infty}(\mathcal{Y})$.

Proposition 2.7. The natural morphism $\mathcal{Y} \to L^{\infty}(\mathcal{Y})$ is an \mathbb{A}^1 weak equivalence, and $L^{\infty}(\mathcal{Y})$ is \mathbb{A}^1 local.

(8) So we can use the functor L^{∞} as an \mathbb{A}^1 localization functor.

(9)

Definition 2.8. Let \mathcal{X} be a space. Define $\pi_0(\mathcal{X})$ to be the sheaf on Sm/k associated to $U \to \pi_0(\mathcal{X}(U))$. A space cal X is called 0-connected if and only if $\pi_0(\mathcal{X})$ is the trivial sheaf.

Let (\mathcal{X}, x) be a pointed space. Define $\pi_n(\mathcal{X})$ to be the sheafification of the presheaf on Sm/k given by

$$U \to \pi_n(\mathcal{X}(U)).$$

A pointed space \mathcal{X} is called *n*-connected if it is 0-connected and for all $i \leq n$, the sheaves $\pi_i(\mathcal{X})$ are trivial.

(10)

Proposition 2.9. Let \mathcal{X} be a 0-connected simplicial sheaf. Then $L^{\infty}\mathcal{X}$ is also 0-connected.

Proof. M.V. IHES paper? Sketch of argument? It shouldn't be too hard by chasing components around. \Box

(11) For a sheaf of abelian groups M on Sm/k and a natural number n, a Dold-Kan construction gives a simplifical presheaf K(M, n). It is called the Eilenberg-MacLane

spectrum of type (M, n) and has homotopy sheaves as expected:

$$\pi_m(K(M,n)) = \begin{cases} 0 & \text{if } m \neq n \\ M & \text{if } m = n \end{cases}.$$

Important equation for this construction. For $X \in \text{Sm}/k$, M a sheaf of Abelian groups,

$$\mathcal{H}_s(k)(rX, K(M, n)) \cong H^n_{Nis}(X; M).$$

(12) Use square brackets to denote the maps in the unstable pointed (motivic) homotopy category, i.e., $[\mathcal{X}, \mathcal{Y}] = \mathcal{H}_{\bullet}(k)(\mathcal{X}, \mathcal{Y})$.

Use $\pi_n^{\mathbb{A}^1}(\mathcal{X})$ for the sheaf of homotopy groups in the motivic category, i.e., $\pi_n^{\mathbb{A}^1}(\mathcal{X}) = \pi_n(L^{\infty}\mathcal{X})$. This is also obtained by sheafifying the presheaf given by

$$U \in \mathrm{Sm}/k \mapsto [S^n \wedge U_+, \mathcal{X}].$$

2.4. Homotopy purity, connectedness calculations.

Proposition 2.10. Weak n-connectedness is equivalent to n-connectedness

Proof. Details?
$$\Box$$

Proposition 2.11. If V is an irreducible, smooth k-scheme, and $U \subseteq V$ is a dense open subset, the space $L_{\mathbb{A}^1}(V/U)$ is 0-connected.

Proof. Seems to use that local structure of spaces is given by $\mathbb{A}^n/(\mathbb{A}^n - \{0\}) \wedge L_+$. How do all the reductions work? Also uses some results specific to working over perfect fields. \square

2.5. S^1 -spectra.

Definition 2.12. Let $\operatorname{Spt}_s(k)$ denote the category of S^1 -spectra of spaces $\Delta^{op}\operatorname{Shv}(\operatorname{Sm}/k)$. We first endow this category with the projective model structure, i.e., a map $f: E \to F$ is a weak equivalence iff for any n the map $f_n: E_n \to F_n$ is a w.e.; a map $f: E \to F$ is a fibration iff for all n the map $f_n: E_n \to F_n$ is a fibration. The cofibrations are characterized by the property that $f: E \to F$ is a cofib iff $f_0: E_0 \to F_0$ is a cofib and for any $n \ge 1$

This model structure does not actually invert $S^1 \wedge -$. To accomplish this, we must localize with respect to the stable equivalences.

Definition 2.13. A map $f: E \to F$ of S^1 -spectra is a stable equivalence iff for any $n \in \mathbb{Z}$ the induced map of homotopy sheaves $\pi_n(f): \pi_n(E) \to \pi_n(F)$ is an isomorphism.

The stable model category structure on $\operatorname{Spt}_s(k)$ is given by declaring the weak equivalences to be the stable weak equivalences, and the cofibrations to be the same as those for the projective model structure. This is indeed a left Bousfield localization, but we will not describe it further as such.

Definition 2.14. Let $\operatorname{Spt}_s^{\mathbb{A}^1}(k)$ denote the category of S^1 spectra endowed with the stable model category structure localized at the collection of maps $\{\Sigma^{\infty}U_+ \wedge \mathbb{A}^1 \to \Sigma^{\infty}U_+ | U \in \operatorname{Sm}/k\}$.

Let $\mathcal{SH}^{S^1}(k)$ denote the homotopy category associated to $\operatorname{Spt}_s^{\mathbb{A}^1}(k)$. We will use $\mathcal{SH}_s^{S^1}(k)$ to denote the homotopy category of $\operatorname{Spt}_s(k)$.

Definition 2.15. Let E be an S^1 spectrum of spaces. Let π_n denote the sheaf obtained by taking the colimit of the directed system $\pi_{n+r}(E_r)$ in $\underline{Ab}(Sm/k, Nis)$. That is,

$$\pi_n(E) = \operatorname{colim}_r \pi_{n+r}(E_r).$$

In particular, for a $U \in \text{Sm}/k$, we have

$$\pi_n(E)(U) = \operatorname{colim}_r \pi_{n+r}(E_r)(U).$$

Definition 2.16. An S^1 -spectrum E is said to be n-connected if for any $m \leq n$, the homotopy sheaves $\pi_m(E)$ are trivial.

Definition 2.17. There is a left Quillen functor $\Sigma_s^{\infty} : \operatorname{Spc}_{\bullet} \to \operatorname{Spt}_s^{\mathbb{A}^1}(k)$ given by $(\Sigma^{\infty} \mathcal{Y})_n = (S^1)^{\wedge n} \wedge \mathcal{Y}$ with the evident bonding maps. The right adjoint to this functor is given by "evaluation at 0", i.e., $\Omega^{\infty}(E) = E_0$.

Remark 2. The right derived functor $R\Omega^{\infty}: \mathcal{SH}^{S^1}(k) \to \mathcal{H}_{\bullet}(k)$ is given by the formula

$$R\Omega^{\infty}(E) = \operatorname{colim}_{i} \Omega_{\mathfrak{s}}^{i} E_{i}.$$

This comes from the fact that fibrant S^1 spectra are exactly the Ω spectra, and the description of the fibrant replacement functor.

2.6. t structure.

Definition 2.18. Let \mathfrak{C} be a triangulated category. A t-structure on \mathfrak{C} is a pair of full subcategories $(\mathfrak{C}_{>0},\mathfrak{C}_{<0})$ which satisfies

- (1) $(\forall X \in \mathfrak{C}_{\geq 0})(\forall Y \in \mathfrak{C}_{\leq 0})(\mathrm{Hom}_{\mathfrak{C}}(X, Y[-1]) = 0)$
- (2) $\mathfrak{C}_{\geq 0}[1] \subseteq \mathfrak{C}_{\geq 0}$ and $\mathfrak{C}_{\leq 0}[-1] \subseteq \mathfrak{C}_{\leq 0}$
- (3) for any $X \in \mathfrak{C}$ there exists a distinguished triangle

$$Y \to X \to Z \to Y[1]$$

for which $Y \in \mathfrak{C}_{\geq 0}, Z \in \mathfrak{C}_{\leq 0}[-1]..$

The heart of a t-structure is the full subcategory given by $\mathfrak{C}_{\geq 0} \cap \mathfrak{C}_{\leq 0}$.

Definition 2.19 (t-structure on $\mathcal{SH}_s^{S^1}(k)$). Define $\mathcal{SH}_s^{S^1}(k)_{\geq 0}$ to be the full subcategory of $\mathcal{SH}_s^{S^1}(k)$ consisting of objects E such that $\pi_n(E) = 0$ whenver n < 0.

Define $\mathcal{SH}_s^{S^1}(k)_{\leq 0}$ to be the full subcategory of $\mathcal{SH}_s^{S^1}(k)$ consisting of objects E such that $\pi_n(E) = 0$ whenver n > 0.

Theorem 2.20. The triple $(\mathcal{SH}_s^{S^1}(k), \mathcal{SH}_s^{S^1}(k)_{\geq 0}, \mathcal{SH}_s^{S^1}(k)_{\leq 0})$ is a t-structure on $\mathcal{SH}_s^{S^1}(k)$.

Proposition 2.21. [Mor03, Lemma4.2.4] The functor $L^{\infty} : \operatorname{Spt}_{s}^{S^{1}}(k) \to \operatorname{Spt}_{s,\mathbb{A}^{1}}^{S^{1}}(k)$ identifies the \mathbb{A}^{1} -localized S^{1} stable homotopy category with the homotopy category of \mathbb{A}^{1} -local S^{1} spectra.

Theorem 2.22 (S^1 stable connectivity theorem). Let $E \in \mathcal{SH}_s^{S^1}(k)$, and suppose that whenever n < 0 the sheaf $\pi_n E = 0$. Then for all n < 0, $\pi_n L_{\mathbb{A}^1} E = 0$.

Theorem 2.23. The pair $(\mathcal{SH}_{>0}^{S^1}(k), \mathcal{SH}_{<0}^{S^1}(k))$ is a *t*-structure on the category $\mathcal{SH}^{S^1}(k)$.

Definition 2.24. Strictly \mathbb{A}^1 invariant sheaf of Abelian groups.

If M is strictly \mathbb{A}^1 invariant sheaf of groups, define the Eilenberg-MacLane spectrum HM associated to it.

Proposition 2.25. HM is \mathbb{A}^1 local iff M is strictly \mathbb{A}^1 invariant.

Proposition 2.26. The heart of the homotopy t structure is equivalent to the category of strictly \mathbb{A}^1 invariant sheaves.

- 3. Inverting \mathbb{G}_m ; \mathbb{P}^1 spectra
- 3.1. \mathbb{G}_m suspension and loops.
- 3.2. Homotopy sheaves of $\underline{Hom}(\mathbb{G}_m, E)$.

Definition 3.1. Contraction of a sheaf of pointed sets G (or abelian groups G). G_{-1} Introduce notation G_{con} to help clear up index confusion.

Theorem 3.2. [Mor03, Lemma 4.3.11] $\pi_n(\underline{Hom}(\mathbb{G}_m, E)) \to \pi_n(E)_{-1}$ is iso.

Lemma 3.3. If M is a strictly \mathbb{A}^1 invariant sheaf of abelian groups, then

$$\underline{Hom}(\mathbb{G}_m, HM) \cong H(M_{-1})$$

Lemma 3.4. When $n \neq 0$,

$$[\Sigma^{\infty} \mathbb{G}_m, HM[n]]_s^{S^1} = 0.$$

The following map is an iso.

(2)
$$[\Sigma^{\infty} \mathbb{G}_m, HM]_s^{S^1} \to [S^0, H(M_{-1})]_s^{S^1}$$

References

[A-1974] Adams, J.F., Stable Homotopy and Generalized Homology. Chicago Lectures in Mathematics, (1974).

 [B] Blander, Benjamin, Local Projective Model Structures on Simplicial Presheaves. K-Theory, 24 (2001) 283–301.

 $[\mathrm{DHI}] \qquad \mathrm{Dugger}, \ \mathrm{Dan}; \ \mathrm{Hollander}, \ \mathrm{Sharon}; \ \mathrm{Isaksen}, \ \mathrm{Dan}, \ \mathit{Hypercovers} \ \ \mathit{and} \ \ \mathit{simplicial} \ \ \mathit{presheaves}.$

[DLØRV] Dundas, B.; Levine, M.; Østvær, P.; Röndigs, O.; Voevodsky, V., Motivic Homotopy Theory. Springer (2000).

[Hir] Phillip, Hirschhorn, Model Categories and Their Localization. AMS (2003).

[H-Mod] Hovey, Mark, Model Categories. online preprint (1991).

[H-Spt] Hovey, Mark, Spectra and symmetric spectra in general model categories, journal? (2001).

[J] Jardine, J.F., Simplicial presheaves. Journal of Pure and Applied Algebra, 47 (1987) 35–87.

[Mor03] Morel, Fabien, An introduction to \mathbb{A}^1 homotopy theory.

[Mor04] Morel, Fabien, On the motivic π_0 of the sphere spectrum. NATO science series.

[Mor05] Morel, Fabien, The stable \mathbb{A}^1 connectivity theorems. preprint (2004).

[Voev98] Voevodsky, Vladimir. A¹-Homotopy Theory. Doc. Math. J., (1998) pp. 579–604.