Due: Jun 2, 2021

Problem 1: Smooth PSD rank

- (a) Fix $m, n \ge 1$, and let $C := \text{conv}\left(\left\{uv^T : u \in \mathbb{R}_+^m, v \in \mathbb{R}_+^n\right\}\right)$ denote the convex hull of the set of matrices with nonnegative rank 1. Show that C contains every nonnegative $m \times n$ matrix.
- (b) Define the quantity

$$\gamma_{\text{psd}}(M) := \min \left\{ \max_{i,j} \|A_i\|_{S_{\infty}} \|B_j\|_{S_1} : M_{ij} = \text{Tr}(A_i B_j), 1 \le i \le m, 1 \le j \le n \right\},$$

where the minimum is over all collections $A_1, \ldots, A_m, B_1, \ldots, B_n$ of *PSD matrices*, and $\|\cdot\|_{S_\infty}$ and $\|\cdot\|_{S_1}$ are the the Schatten ∞ - and 1-norms, respectively. Show that for every c > 0, the set $\{M \in \mathbb{R}_+^{m \times n} : \gamma_{psd}(M) \leq c\}$ is a closed convex set.

(c) One formulation of John's theorem is that for every symmetric, bounded convex body $K \subseteq \mathbb{R}^d$ with $\operatorname{Vol}_d(K) > 0$, there is an invertible linear map $F_K : \mathbb{R}^d \to \mathbb{R}^d$ such that

$$B_{\ell_2}^d \subseteq F_K(K) \subseteq \sqrt{d}B_{\ell_2}^d$$

where $B_{\ell_2}^d := \{x \in \mathbb{R}^d : ||x||_2 \le 1\}$ is the unit ℓ_2 ball.

Consider any two bounded sets $U, V \subseteq \mathbb{R}^d$ and define $\Delta := \max_{u \in U, v \in V} |\langle u, v \rangle|$. Let K be the convex hull of $U \cup (-U)$ and prove that the map F_K satisfies

$$\max_{u \in U, v \in V} \|F_K u\|_2 \cdot \|(F_K^{-1})^T v\|_2 \leq \sqrt{d} \Delta.$$

(Note that if U doesn't span \mathbb{R}^d , then $\operatorname{Vol}_d(K) = 0$, and one will need to pass a subspace or augment U in a way that doesn't affect the conclusion.)

(d) Use part (c) to show the following: For every $M \in \mathbb{R}_+^{m \times n}$, it holds that

$$\gamma_{\text{psd}}(M) \leqslant (\text{rk}_{\text{psd}}(M))^{O(1)} ||M||_{\ell_{\infty}},$$

where $||M||_{\ell_{\infty}} := \max_{i,j} |M_{ij}|$.

Hint: If $\operatorname{rk}_{\mathsf{psd}}(M) \leq d$, then you should be able to write $M_{ij} = \sum_{s,t=1}^{d} \langle u_{i,s}, v_{j,t} \rangle^2$ for some vectors $u_{i,s}, v_{j,t} \in \mathbb{R}^d$. Now apply (c) to the collections $U_i = \{u_{i,s} : 1 \leq s \leq d\}, V_j = \{v_{j,t} : 1 \leq t \leq d\}$ for each $1 \leq i \leq m, 1 \leq j \leq n$.

Problem 2: Pseudodensities

For a subset $S = \{i_1, i_2, \dots, i_k\} \subseteq [m]$ with $i_1 < i_2 < \dots < i_k$ and $x \in \{0, 1\}^n$, we use x_S to denote the vector $x_S \in \{0, 1\}^{|S|}$ given by $x_S = (x_{i_1}, x_{i_2}, \dots, x_{i_k})$, i.e., the restriction of x to the coordinates indexed by S.

(a) Recall that $\varphi : \{0,1\}^m \to \mathbb{R}$ is a degree-d pseudodensity if it holds that $\langle \varphi, \mathbf{1} \rangle = \mathbb{E}_z[\varphi(z)] = 1$, and

$$\langle \varphi, p^2 \rangle = \underset{z \in \{0,1\}^n}{\mathbb{E}} [\varphi(z)p(z)^2] \ge 0$$

whenever p is a multilinear polynomial with $deg(p) \le d$.

Say that a function $f: \{0,1\}^m \to \mathbb{R}$ is an *S-junta* if the value f(x) only depends on x_S . Say that if $\varphi: \{0,1\}^m \to \mathbb{R}$ is a *d-local pseudodensity* if it holds that for any nonnegative *S*-junta $f: \{0,1\}^m \to \mathbb{R}_+$ with $|S| \le d$, we have

$$\langle \varphi, f \rangle \ge 0.$$

Prove that if φ is a degree-d pseudodensity, then it is also a d-local pseudodensity.

(b) Show that if φ is a d-local pseudodensity, then for every $S \subseteq [m]$ with $|S| \le d$, it holds that φ induces an actual probability density on $\{0,1\}^S$ in the following sense: There is a nonnegative S-junta $g_S : \{0,1\}^m \to \mathbb{R}_+$ such that for every S-junta f, we have

$$\langle \varphi, f \rangle = \mathbb{E}[g_S(z)f(z)].$$

Hint: Define $g_S(y) := \mathbb{E}_z \left[\varphi(z) \mid z_S = y_S \right]$.

(c) Define $\chi_S(x) := (-1)^{\sum_{i \in S} x_i}$, and note that $\{\chi_S : S \subseteq [m]\}$ is an orthonormal basis for the space of functions $f : \{0,1\}^m \to \mathbb{R}$. The Fourier coefficients of such a function are given by

$$\hat{f}(S) = \langle f, \chi_S \rangle = \underset{x \in \{0,1\}^m}{\mathbb{E}} f(x) \chi_S(x),$$

and writing *f* in the Fourier basis gives

$$f = \sum_{S \subseteq [m]} \hat{f}(S) \chi_S.$$

Note that if φ is *d*-local, then for $|S| \le d$, part (b) gives

$$|\hat{\varphi}(S)| = |\mathbb{E}[g_S(z)\chi_S(z)]| \leq \mathbb{E}[g_S(z)] = 1,$$

where we uesd $|\chi_S(z)| \leq 1$.

Prove that if φ is a degree-*d* pseudodensity, then a stronger fact holds:

$$|\hat{\varphi}(S)| \leq 1$$
, $\forall |S| \leq 2d$.

Hint: Use the fact that $1 + \chi_A \chi_B = \frac{1}{2} (\chi_A + \chi_B)^2$ and $1 - \chi_A \chi_B = \frac{1}{2} (\chi_A - \chi_B)^2$.

(d) Suppose that $\varphi : \{0,1\}^m \to \mathbb{R}$ is a degree-d pseudodensity, and let $\varphi_{\leq 2d}$ denote the restriction of φ to terms of degree at most 2d:

$$\varphi_{\leq 2d} := \sum_{|S| \leq 2d} \hat{\varphi}(S) \chi_S.$$

Show that $\varphi_{\leq 2d}$ is a degree-d pseudoensity and use part (c) to show that

$$\|\varphi_{\leq 2d}\|_{\infty} = \max_{z \in \{0,1\}^m} |\varphi_{\leq 2d}(z)| \leq \sum_{k=0}^{2d} {m \choose k}.$$

Problem 3: Pattern matrices

Recall that given a function $g: \{0,1\}^m \to \mathbb{R}_+$ and $n \ge m$, we defined a "pattern matrix" as follows:

$$\mathcal{L}(S,x) := g(x_S),$$

where \mathcal{L} is indexed by subsets $S \subseteq [n]$ with |S| = m and vectors $x \in \{0, 1\}^n$.

If $\deg_{sos}(g) > d$, we know there exists a degree-d pseudodensity $\varphi : \{0,1\}^m \to \mathbb{R}$ satisfying

$$\langle \varphi, q \rangle < 0.$$

Define the strictly positive quantity $\varepsilon := -\langle \varphi, g \rangle$.

Denote by $\varphi_S: \{0,1\}^n \to \mathbb{R}$ the functionals

$$\varphi_S(x) := \varphi(x_S).$$

Then we have

$$\underset{S,x}{\mathbb{E}}\left[\varphi_S(x)\mathcal{L}(S,x)\right] = \underset{S,x}{\mathbb{E}}\left[\varphi_S(x)g(x_S)\right] = \langle \varphi,g \rangle = \varepsilon < 0,$$

where the expectation is over $S \in \binom{[n]}{m}$ and $x \in \{0,1\}^n$ chosen uniformly at random.

Thus to prove that $\operatorname{rk}_{psd}(\mathcal{L}) > r$, it would suffice to show that

$$\mathbb{E}_{S,x}\left[\varphi_S(x)\operatorname{Tr}(A(S)B(x))\right] > -\frac{\varepsilon}{2} \tag{0.1}$$

whenever $A:\binom{[n]}{m}\to\mathbb{S}_r^+$ and $B:\{0,1\}^n\to\mathbb{S}_r^+$ are functions taking values in $r\times r$ PSD matrices.

(a) The case of low-degree squares. Suppose that $B(x) = Q(x)Q(x)^T$, where $Q: \{0,1\}^n \to \mathbb{R}^{r \times s}$ takes values in arbitrary $r \times s$ real matrices, and $\deg(Q(x)_{ij}) \leqslant d$ for every $1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s$. Show that

$$\mathbb{E}_{S,x}\left[\varphi_S(x)\mathrm{Tr}(A(S)B(x))\right] = \mathbb{E}_{S,x}\left[\varphi_S(x)\mathrm{Tr}(A(S)Q(x)Q(x)^T)\right] \geqslant 0.$$

This suggests the possibility of proving (0.1) by approximating $B(x) \approx \tilde{B}(x)$ where $\tilde{B}(x) = Q(x)Q(x)^T$ and $\deg(Q)$ is small.

(b) The case of local selectors (extra credit!). We could also attempt to approximate the A-side of the factorization. For this purpose, let us consider a submatrix of \mathcal{L} as follows. Assume that n = km so that every $x \in \{0, 1\}^n = (\{0, 1\}^k)^m$ is naturally partitioned into m blocks of size k.

Consider an element $\sigma \in [k]^m$ as a *selector* that chooses one bit from each block. We will abuse notation and consider such a selector as a map $\sigma : \{0,1\}^n \to \{0,1\}^m$ that takes $x \in \{0,1\}^n$ to the string $\sigma(x) \in \{0,1\}^m$ by selecting the corresponding bits from x.

Define a *d-partial selector* as an element $\alpha \in ([k] \cup \{*\})^m$ where $\alpha_i = *$ for all but d indices $1 \le i \le m$. For a selector $\sigma \in [k]^m$, and a partial selector α , let $\sigma_\alpha \in \{0,1\}$ be an indicator variable with $\sigma_\alpha = 1$ if σ and α agree (on all the coordinates where $\alpha_i \ne *$). Let \mathcal{A}_d denote the space of d-partial selectors.

For a function $f:[k]^m \to \mathbb{R}$, define

$$\deg^{\mathrm{S}}(f) \coloneqq \min \left\{ d : f(\sigma) = \sum_{\alpha \in \mathcal{A}_d} c_{\alpha} \sigma_{\alpha} \text{ for some } \{c_{\alpha}\} \subseteq \mathbb{R} \right\}.$$

One can think of this as the degree of f on selectors, i.e., the minimum d such that f is in the span of functions that only look at d indices in σ .

Assume additionally that n is even and let $\mathcal{B}_n \subseteq \{0,1\}^n$ denote the subset of *balanced strings*, i.e. those that have an equal number of zeros and ones. Suppose that $A(\sigma) = P(\sigma)P(\sigma)^T$, where $P: [k]^m \to \mathbb{R}^{r \times s}$ is such that $\deg^S(P(\sigma)_{ij}) \leq d$ for all $1 \leq i \leq r, 1 \leq j \leq s$. Show that for any $B: \mathcal{B}_n \to \mathbb{S}_r^+$,

$$\mathbb{E}_{\substack{\sigma \in [k]^m, \\ x \in \mathcal{B}_n}} \left[\varphi(\sigma(x)) \mathrm{Tr}(A(\sigma)B(x)) \right] = \mathbb{E}_{\substack{\sigma \in [k]^m, \\ x \in \mathcal{B}_n}} \left[\varphi(\sigma(x)) \mathrm{Tr}(P(\sigma)P(\sigma)^T B(x)) \right] \geqslant 0.$$

Hint: Note that as x ranges uniformly over balanced strings and σ ranges over uniformly random selectors, $\sigma(x) \in \{0,1\}^m$ is uniformly random. What's particularly nice about balanced strings is that even for any *fixed* $x_0 \in \mathcal{B}_n$, it holds that $\sigma(x_0) \in \{0,1\}^m$ is uniformly random as σ ranges over $[k]^m$.

This suggests the possibility of proving that

$$\mathbb{E}_{\substack{\sigma \in [k]_{n}^{m}, \\ x \in \mathcal{B}_{n}}} \left[\varphi(\sigma(x)) \operatorname{Tr}(A(\sigma)B(x)) \right] \geqslant -\frac{\varepsilon}{2}$$

for any $A:[k]^m \to \mathbb{S}^r_+$ by approximating $A(\sigma) \approx \tilde{A}(\sigma) = P(\sigma)P(\sigma)^T$, where $\deg^S(P)$ is small.

(c) **Preparing the factorization for approximation.** If $deg(g) \le 2d$, then by Problem 2(d), we can assume that

$$\|\varphi\|_{\infty} \leqslant m^{2d} + 1. \tag{0.2}$$

(E.g., recall that for the cut polytope, we are interested in functions g with $deg(g) \le 2$.)

This says that a lower bound like (0.1) will be stable in the sense that it will prove $\mathrm{rk}_{\mathsf{psd}}(\tilde{\mathcal{L}}) > r$ for any matrix $\tilde{\mathcal{L}}$ with

$$\left\|\mathcal{L}-\tilde{\mathcal{L}}\right\|_{L^{1}}=\underset{S,x}{\mathbb{E}}\left|\mathcal{L}(S,x)-\tilde{\mathcal{L}}(S,x)\right|\leqslant\frac{\varepsilon}{2}\left(1+m^{2d}\right)^{-1}.$$

Using Problem 1, prove that if $\mathrm{rk}_{\mathsf{psd}}(\mathcal{L}) \leq r$, then for every $0 < \eta < 1$, there are functions

$$A: \binom{[n]}{m} \to \mathbb{S}_r^+, \quad B: \{0,1\}^n \to \mathbb{S}_r^+$$

satisfying the following:

- (i) $\mathbb{E}_{S,x} |\mathcal{L}(S,x) \text{Tr}(A(S)B(x))| \leq \eta ||\mathcal{L}||_{\ell_{\infty}}$
- (ii) $\mathbb{E}_S A(S) = I$,
- (iii) $||A(S)||_{S_{\infty}} \le r^{O(1)}/\eta$ for all $S \in {[n] \choose m}$.
- (iv) $||B(x)||_{S_1} \le ||\mathcal{L}||_{\ell_{\infty}} r^{O(1)}$ for all $x \in \{0, 1\}^n$.

Hint: Given a factorization $\mathcal{L}(S, x) = \text{Tr}(A_0(S)B_0(x))$, it may be helpful to add a small multiple of the identity to each $A_0(S)$ so that $\mathbb{E}_S A_0(S)$ becomes invertible.