

I SEMESTER M.TECH. (CSE/CSIS) END SEMESTER EXAMINATIONS, Nov 2024

Advanced Data Structures and Algorithms [CSE 5113] REVISED CREDIT SYSTEM (02/12/2024)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- Answer **ALL** the questions.
- Missing data, if any, may be suitably assumed.

Q.	Questions	Mark
No		
1A	Suppose we perform a sequence of stack operations on a stack whose size never exceeds k . After every k operation, we make a copy of the entire stack for backup purposes. Show that the cost of n stack operations, including copying the stack is $O(n)$ by assigning suitable amortised cost to the various stack operations.	3
1B	Define potential method of amortised analysis. Also, compute the amortised cost of incrementing a binary counter using potential method.	3
1C	Define a dynamic table in data structures. Also, show that the amortised cost of dynamic table is O (1)	4
2A	Explain the various rules governing the insertion of nodes in a B-Tree. Also, construct the B-Tree with the keys 52, 32, 23, 92, 12, 15, 22, 72, 27, 94, 82, 95, 25, 30 by successive insertion in one pass method with degree t=2.	4
2B	Illustrate the merge operation step by step on the binomial heaps H1 and H2 shown in figure 2B.	3
	#1 14 8 16 26 28 34 40	
	H2 (17) (4) (4) (36) (8) (28) (6) (44) (44) (45) (32) (25) (50) (44)	
	Figure 2B.	

