Programme de colle : Semaine 7 Mardi 12 Novembre

1 Cours

- 1. Une étude de fonction en début de colle peut être demandée pendant toute l'année par les colleurs!
- 2. Suites usuelles:
 - (a) Suite arithmétique
 - (b) Suite géométrique
 - (c) Suite arithmético-géométrique
 - (d) Suite récurrente linéaire d'ordre 2 à coefficients constants
- 3. Suites réelles :
 - (a) Etude de suites : monotonie, limites.
 - (b) Théorème de convergence des suites monotones.
 - (c) Théorème d'encadrement.
 - (d) Passage à la limite dans une (in)égalité.
- 4. Python:
 - (a) Instruction conditionnelle (if/else)
 - (b) Fonction
 - (c) Boucle for

2 Exercices Types

1. Donner le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et

$$\forall n \in \mathbb{N}, u_{n+1} = 2u_n + 1$$

2. Donner le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1,\ u_1=2$ et

$$\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} - u_n$$

3. Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N}$

$$u_{n+1} = \sqrt{u_n + 1}$$

- (a) Montrer que $\forall n \in \mathbb{N}, u_n \in [0, 2]$
- (b) Résoudre $\sqrt{x+1} x \ge 0$
- (c) En déduire le sens de variation de $(u_n)_{n\in\mathbb{N}}$
- (d) En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 4. Ecrire une fonction Python qui prend en argument un entier la valeur de la somme $\sum_{k=1}^{n} k^7$
- 5. Ecrire une fonction Python qui prend en argument un entier et retourne True si l'entier est plus grand que 100 et False sinon.
- 6. Ecrire une fonction Python qui prend en argument un entier n et retourne n/2 si il est pair, et 3n+1 sinon.