```
1 # load required packages
 2 import numpy as np
 3 import pandas as pd
4 pd.set option('display.max columns',100)
5 import matplotlib.pyplot as plt
6 %matplotlib inline
7 import seaborn as sns
8 sns.set style('darkgrid')
9 import tensorflow as tf
10 from sklearn.metrics import confusion_matrix
11 from sklearn.preprocessing import LabelBinarizer
12 from sklearn.utils import class weight
 1 # load data
 2 train_df = pd.read_csv('/content/drive/MyDrive/drugsComTrain_raw.tsv', sep = '\
 3 test df = pd.read csv('/content/drive/MyDrive/drugsComTest raw.tsv', sep = '\t'
 1 # remove na values from DataFrame
 2 train df = train df.dropna()
 3 test df = test df.dropna()
 1 # exploration
 2 def explore(df):
      print("Shape: ", df.shape, "/n")
      print(df.dtypes, "/n")
      print(df.head(), "/n")
      # numeric data statistics
      print(df.describe())
      df.hist(figsize=(14,14), xrot=45)
      plt.show()
      # categorical data statistics
      print(df.describe(include = 'object'))
      for column in df.select dtypes(include = 'object'):
           if df[column].nunique() < 10:</pre>
               sns.countplot(y = column, data = df)
               plt.show()
               plt.savefig('{}_dist.png'.format(column))
19 explore(train df)
    Shape: (110121, 7) /n
```

Unnamed: 0 int64 drugName object condition object	
review object	
rating float64	
date object	
usefulCount int64	
dtype: object /n	
	rugName condition \
	nfacine ADHD Lybrel Birth Control
	Lybrel Birth Control ho Evra Birth Control
4 35696 Buprenorphine / n	
	gestrel Emergency Contraception
	review rating \
1 "My son is halfway through hi	
2 "I used to take another oral3 "This is my first time using	
4 "Suboxone has completely turn	
6 "He pulled out, but he cummed	
date usefulCoun	
1 April 27, 2010 19	
•	7
3 November 3, 2015 1 4 November 27, 2016 3	7
	5 /n
Unnamed: 0 rat	
count 110121.000000 110121.000	000 110121.000000
mean 116603.495346 6.919	
std 66249.766260 3.270	
min 3.000000 1.000	
25% 60483.000000 4.000 50% 117681.000000 8.000	
75% 172110.000000 10.000	
max 232289.000000 10.000	
Unnamed: 0	rating
12000	_
	30000
10000	
	25000
8000	
	20000
6000	
	15000
4000	10000
	10000

	arugname	condition	review	aate
count	110121	110121	110121	110121
unique	1324	32	75730	3576
top	Levonorgestrel	Birth Control	"Good"	March 1, 2016
freq	3626	28788	22	106

```
1 # obtain counts for conditions
2 condition_counts = train_df['condition'].value_counts()
3 print(condition_counts[condition_counts > 1000])
```

Birth Control	28788
Depression	9069
Pain	6145
Anxiety	5904
Acne	5588
Bipolar Disorde	4224
Insomnia	3673
Weight Loss	3609
Obesity	3568
ADHD	3383
Diabetes, Type 2	2554
Emergency Contraception	2463
High Blood Pressure	2321
Vaginal Yeast Infection	2274
Abnormal Uterine Bleeding	2096
Bowel Preparation	1859
ibromyalgia	1791
Smoking Cessation	1780
Migraine	1694
Anxiety and Stress	1663
Major Depressive Disorde	1607
Constipation	1595
Panic Disorde	1463
Chronic Pain	1455
Migraine Prevention	1413
Urinary Tract Infection	1316
Muscle Spasm	1244
Osteoarthritis	1239
Generalized Anxiety Disorde	1164
Erectile Dysfunction	1086
Opiate Dependence	1079
Irritable Bowel Syndrome	1014
Name: condition, dtype: int64	

```
1 # visualiztions
2 fig, ax = plt.subplots(1, 1)
3 ax = sns.countplot(x = 'condition', data = train_df)
4 ax.set_title('Distribution of Conditions')
5 ax.set_xticklabels(ax.get_xticks(), rotation = 45)
6 fig.show()
7 fig.savefig('condition_dist.png')
```



```
# set data and labels
2 x_train = train_df['review']
3 x_test = test_df['review']
4 y_train = train_df['condition']
5 y_test = test_df['condition']

1 # labels to one hot endoced
2 def prepare_targets(y_train, y_test):
3    one_hot = LabelBinarizer()
4    one_hot.fit(y_train)
5    y_train = np.argmax(one_hot.transform(y_train), axis = 1)
6    y_test_one_hot = one_hot.transform(y_test)
7    y_test = np.argmax(one_hot.transform(y_test), axis = 1)
8    y_test_rev = one_hot.inverse_transform(y_test_one_hot)
9    return y_train, y_test, y_test_one_hot, y_test_rev
10
11    y_train, y_test, y_test_one_hot, y_test_rev = prepare_targets(y_train, y_test)
```

```
1 # create weights for classes
2 class_weights = class_weight.compute_class_weight('balanced', np.unique(y_train
4 weights = dict(enumerate(class_weights))
5 print(weights)
   72276825302986, 1: 1.6418326574427482, 2: 0.6158341535433071, 3: 0.58287284044
1 # baseline model; all predictions birth control
2 count_bc = condition_counts['Birth Control']
 3 base_acc = count_bc/len(y_train)
4 print(base_acc)
    0.26142152722913886
1 # vectorize text
 2 \text{ vocab\_size} = 1500
 3 \text{ review len max} = 200
4 encoder = tf.keras.layers.experimental.preprocessing.TextVectorization(
      max_tokens = vocab_size,
      output_sequence_length = review_len_max)
8 # develop vocabulary
9 encoder.adapt(x_train.values)
11 # vectorize text
12 x train = encoder(x train)
13 x test = encoder(x test)
```

```
1 print('Training input shape: ', x_train.shape)
2 print(len(x_train))
3 print(len(x_train[0]))
4 print(x_train[0].shape)
5 print('Test input shape: ', x_test.shape)
6 print(len(x_test))
7 print(len(x_test[0]))
8 print(x_test[0].shape)
   Training input shape: (110121, 200)
   110121
   200
   (200,)
   Test input shape: (36827, 200)
   36827
   200
   (200,)
1 print(y_train.shape)
   (110121,)
```

```
1 # classifiying with tf.keras RNN
2 model = tf.keras.models.Sequential([
     tf.keras.layers.Embedding(input dim = vocab size + 1, output dim = 16),
     tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(units = 16, dropout = 0.
     tf.keras.layers.Dense(32, activation = 'softmax')
6 1
7)
9 # compile model
10 model.compile(loss = tf.keras.losses.SparseCategoricalCrossentropy(),
             optimizer = 'Adam',
             metrics = ['acc'])
14 model.summary()
   Model: "sequential"
   Layer (type)
                           Output Shape
                                                Param #
   embedding (Embedding)
                           (None, None, 16)
                                                24016
   bidirectional (Bidirectional (None, 32)
                                                4224
   dense (Dense)
                           (None, 32)
                                                1056
   Total params: 29,296
   Trainable params: 29,296
   Non-trainable params: 0
1 # test model
2 history = model.fit(x = x_train, y = y_train,
        epochs = 50,
        batch_size = 50,
        validation split = 0.2,
        class_weight = weights,
   Epoch 1/50
   Epoch 2/50
   Epoch 3/50
   Epoch 4/50
   1762/1762 [=====
                          ========] - 34s 20ms/step - loss: 2.0920 - a
```

Epocn 5/50							
1762/1762 [====================================	_	345	19ms/sten	_	1055:	1.9465	– а
Epoch 6/50		0.0	233, 3 (110.00	O.
1762/1762 [====================================	_	34s	19ms/step	_	loss:	1.8344	– a
Epoch 7/50			, ,				
1762/1762 [====================================	_	33s	19ms/step	_	loss:	1.7504	– a
Epoch 8/50			, ,				
1762/1762 [====================================	_	30s	17ms/step	_	loss:	1.6362	– a
Epoch 9/50							
1762/1762 [==========]	_	33s	19ms/step	_	loss:	1.5683	- a
Epoch 10/50							
1762/1762 [===========]	_	35s	20ms/step	_	loss:	1.4990	- a
Epoch 11/50							
1762/1762 [====================================	_	33s	19ms/step	_	loss:	1.4578	– a
Epoch 12/50		24	47 / .			4 4004	
1762/1762 [====================================	_	31s	1/ms/step	_	loss:	1.4281	– a
Epoch 13/50		21.	10		1	1 2044	
1762/1762 [====================================	_	315	18IIIS/Step	_	toss:	1.3844	– a
1762/1762 [====================================		350	20mc/cton		10001	1 251/	_ 2
Epoch 15/50		222	Zollis/step		1055.	1:3314	– a
1762/1762 [====================================	_	345	19ms/sten	_	1055:	1.3351	– a
Epoch 16/50		5 15	1311137 3 6 6 9		(0551	113331	a
1762/1762 [====================================	_	34s	19ms/step	_	loss:	1.3112	– a
Epoch 17/50							-
1762/1762 [====================================	_	32s	18ms/step	_	loss:	1.2995	– a
Epoch 18/50							
1762/1762 [====================================	_	34s	19ms/step	_	loss:	1.2925	– а
Epoch 19/50							
1762/1762 [====================================	_	34s	19ms/step	_	loss:	1.2697	- a
Epoch 20/50							
1762/1762 [====================================	_	35s	20ms/step	_	loss:	1.2583	– a
Epoch 21/50		2.4	10 / 1			4 2544	
1762/1762 [====================================	_	345	19ms/step	_	loss:	1.2514	– a
Epoch 22/50 1762/1762 [====================================		25.0	20mc/c+on		10001	1 2/50	
Epoch 23/50	_	335	Zollis/step	_	1055	1.2436	— a
1762/1762 [====================================	_	35c	20ms/sten	_	1000	1 2107	_ a
Epoch 24/50		JJ3	201113/3 CCP		(033:	1:210/	а
1762/1762 [====================================	_	335	19ms/sten	_	1055:	1.1952	– а
Epoch 25/50		555	1311137 3 6 6 5			111332	G
1762/1762 [====================================	_	31s	17ms/step	_	loss:	1.2085	– a
Epoch 26/50			, , , , ,				
1762/1762 [====================================	_	31s	18ms/step	_	loss:	1.1817	– a
Epoch 27/50							
1762/1762 [===========]	_	32s	18ms/step	_	loss:	1.1740	– а
Epoch 28/50							
1762/1762 [====================================	-	33s	19ms/step	_	loss:	1.1762	- a
Epoch 29/50							
1762/1762 [====================================	-	32s	18ms/step	_	loss:	1.1684	– a
Epoch 30/50							

```
1767/1767 [.
 1 # save model
 2 model.save('drug_review_rnn_50.h5')
 1 # model results
 2 acc = history.history['acc']
 3 val_acc = history.history['val_acc']
4 loss = history.history['loss']
5 val loss = history.history['val loss']
6 \text{ epochs} = \text{range}(1, \text{len(acc)} + 1)
8 fig, (ax0, ax1) = plt.subplots(2, 1, figsize = (15,15))
9 fig.suptitle('Model Results')
10 ax0.plot(epochs, acc, 'bo', label = 'Training Accuracy')
11 ax0.plot(epochs, val_acc, 'b', label = 'Validation Accuracy')
12 ax0.set title('Training and Validation Accuracy')
13 ax0.legend()
15 ax1.plot(epochs, loss, 'bo', label = 'Training Loss')
16 ax1.plot(epochs, val_loss, 'b', label = 'Validation Loss')
17 ax1.set_title('Training and Validation Loss')
18 ax1.legend()
19 fig.tight_layout(rect=[0, 0.03, 1, 0.9])
21 fig.savefig('model_results.png')
```

Model Results

- 1 # model performance
- 2 predictions = model.predict(x_test)

```
1 print(predictions[0])
2 print(y test[0])
3 print(v test one hot[0])
4 print(y_test_rev[0])
    [4.1943714e-03 5.3141492e-05 1.1367062e-04 9.5583566e-02 2.2228974e-01
     1.9638129e-02 1.8428185e-03 7.2395586e-08 2.5014702e-05 5.0075510e-06
     2.4951330e-01 7.3006345e-06 3.9542447e-06 1.4613361e-06 1.5919979e-01
     1.8198247e-04 1.3924406e-03 4.0000530e-05 2.0378804e-01 6.9832919e-07
     7.5372423e-05 1.2797008e-06 2.0408104e-04 6.0204049e-05 4.9668624e-06
     5.3810249e-06 4.0609650e-02 6.3067378e-04 3.0860517e-06 4.8659804e-06
     1.6989521e-04 3.5602206e-04]
    10
    Depression
1 # build confusion matrix
2 def plot cm(y true, y pred, figsize = (30, 30)):
      cm = confusion_matrix(y_true, y_pred, labels = np.unique(y_true))
      cm_sum = np.sum(cm, axis = 1, keepdims = True)
      cm_perc = cm / cm_sum.astype(float) * 100
      annot = np.empty like(cm).astype(str)
      nrows, ncols = cm.shape
      for i in range(nrows):
          for j in range(ncols):
              c = cm[i, j]
              p = cm_perc[i, j]
              if i == j:
                 s = cm sum[i]
                 annot[i, j] = \frac{1}{8} \frac{1}{8} \ln \frac{d}{8} (p, c, s)
              elif c == 0:
                 annot[i, j] = ''
              else:
                 annot[i, j] = \frac{1}{8} \ln \frac{1}{8} \ln \frac{1}{8}
      cm = pd.DataFrame(cm, index = np.unique(y_true), columns = np.unique(y_true)
      cm.index.name = 'Actual'
      cm.columns.name = 'Predicted'
      fig, ax = plt.subplots(figsize = figsize)
      sns.heatmap(cm, cmap= "YlGnBu", annot = annot, fmt = '', ax = ax)
      fig.savefig('confusion matrix.png')
26 plot_cm(y_test_one_hot.argmax(axis = 1), predictions.argmax(axis = 1))
```


1

10s completed at 9:36 PM