Lezione N+2 Geometria 2

Federico De Sisti 2025-05-19

0.1 Fine della dimostrazione precedente

$$\Sigma : \mathbb{Z} \to \pi(S^1, a)$$

$$n \to [a^{(n)}]$$

$$\alpha^{(n)} : [0, 1] \to S^1$$

$$t \to (\cos(2\pi nt), \sin(2\pi nt))$$

Dimostrazione

Abbiamo visto Σ iniettiva, dimostriamo che è omomorfismo di gruppi, Siano $n, m \in \mathbb{Z}$, dobbiamo dimostrare

$$\Sigma(n+m) = \Sigma(n) \cdot \Sigma(m).$$

Abbiamo $\Sigma(n+m) = [\alpha^{(n+m)}]$

 $\Sigma(n) \cdot \Sigma(m) = [\alpha^{(n')}] \cdot [\alpha^{(m)}] = [\alpha^{(n)} \star \alpha^{(m)}]$

Confrontiamo i sollevamenti dei cammini $\alpha^{(n+m)}.\alpha^{(n)}\star\alpha^{(m)}$ sul rivestimento $: \mathbb{R} \to S^1$ solito.

Solleviamo α^{n+m} ottenendo (partendo da 0)

 $(\alpha^{n+m})_0^{\uparrow}(t)=(n+m)t$, parte da 0 e finisce in $n+m\in\mathbb{R}$. Solleviamo $\alpha^{(n)}\star\alpha^{(m)}$ in questo modo:

solleviamo $\alpha^{(n)}$ partendo da 0, otteniamo $(\alpha^{(n)})_0^{\uparrow}(t)=nt$, parte da 9 e finisce in n.

Poi solleviamo $\alpha^{(m)}$ partendo da n, otteniamo

$$(\alpha^m)_n^{\uparrow} = n + nt.$$

La giunzione $(\alpha^{(n)})_0^{\uparrow} \star (\alpha^{(m)})_n^{\uparrow}$ è definita e solleva $\alpha^{(n)} \star \alpha^{(m)}$.

Allora i sollevamenti partono da 0 e finiscono in n+m entrambi. Visto che \mathbb{R} è convesso, questi sollevamenti sono equivalenti, segue

$$\alpha^{(n+m)} \sim \alpha^{(n)} \star \alpha^{(m)}$$
.

Quindi Σ è omeomorfismo di gruppi.

Dimostriamo che Σ è suriettiva.

Sia $\alpha \in \Omega(S^1, a, a)$ dimostriamo che $\exists n \in \mathbb{Z} \quad [a]^{(?)} = [\alpha^{(n)}] = \Sigma(n)$

Solleviamo α partendo da 0, otteniamo

$$\alpha_0^{\uparrow}:[0,1]\to\mathbb{R}.$$

fissiamo un punto di \mathbb{R} che non viene mandato in $a \in S^1$ da ρ , Cioè α_0^{\uparrow} finisce

Confrontiamo α con $\alpha^{(n)}$, i loro sollevamenti $\alpha_0^{\uparrow}, (\alpha^{(n)})_0^{\uparrow}$ partono da 0, finiscono in n, e sono equivalenti (\mathbb{R} convesso). Segue $\alpha \sim \alpha^{(n)}$, cioè

$$\Sigma(n) = [\alpha^{(n)}] = [\alpha].$$

Corollario 1

 S^1 non è retratto di D^2 , e a=(1,0) non è retratto per deformazione di S^1 .

Dimostrazione

Se per assurdo S^1 fosse retratto di D^2

$$i_*: \pi(S^1, a) \to \pi(D^2, a).$$

sarebbe iniettiva, assurdo perché avrei

$$\mathbb{Z} \to \{[1_a]\}.$$

iniettiva.

Per assurdo se $\{a\}$ fosse retratto per deformazione di S^1 , allora $\pi_1(S^1, a) \cong \pi(\{a\}, a)$ che è banale, assurdo.

0.2 Teoremi di Brouwer e Barsuk

Teorema 1 (Brouwer)

Sia $f: D^2 \to D^2$ continua, allora $\exists p \in D^2$ f(p) = p

Dimostrazione

Per assurdo suppongo $f(p) \neq p \ \forall p \in D^2$

Sia g(p) il punto di intersezione fra S^1 e la retta che contiene p e f(p), quello più vicino a p (vedi esercizi settimanali per formula di g(p))
Si verifica dalla formula che

$$a: D^2 \to S^1$$
.

è continua.

Se $q \in S^1$ allora g(q) = q, cioè g è retrazione, assurdo.

Esercizio:

Sia $p:\exists \to X$ rivestimento e sia $f:\S^2 \to X$ continua, siano $y \in S^2$ e $e \in E$ tale che p(e)=f(p)

П

Dimostrare che $\exists g: S^2 \to E$ sollevamento di f tale che g(y) = e

(Suggerimento: Dimostrare che S^2 è omeomorfa a $\frac{[0,1]\times[0,1]}{\sim}$ per una relazione d'equivalenza \sim .

Usare questo per avere un'applicazione $\tilde{f}:[0,1]\times[0,1]\to X$ e sollevare \tilde{f}).

Teorema 2 (Borsuk)

Non esistono applicazioni continue dispari $S^2 \to S^1$, cioè tali che f(-p) = -f(p).

Dimostrazione

Sia $\rho: \mathbb{R} \to S^1$ il solito rivestimento, per l'esercizio ogni $f: S^2 \to S^1$ si solleva

 $a g: S^2 \to \mathbb{R}$.

supponiamo per assurdo f continua dispari. D'altronde $\exists p_0 \in S^2$ tale che $g(p_0) = -g(-p_0)$

Allora
$$f(p_0) = f(-p_0) = -f(p_0)$$
. (dispari)
 $cio\grave{e} \ f(p_0) \in S^1 \ assurdo$

Corollario 2

Sia $g: S^2 \to \mathbb{R}^2$ continua, allora esiste $x_0 \in S^1$ tale che $g(x_0) = g(-x_0)$

Dimostrazione

Per assurdo supponiamo $g(x) \neq g(-x) \ \forall x \in S^1$ allora:

$$f(x) = \frac{g(x) - g(-x)}{\|g(x) - g(-x)\|}.$$

Allora f è continua e dispari $S^2 \to S^1$, assurdo

Corollario 3

Sia $A \subseteq \mathbb{R}^m$ aperto non vuoto con $m \ge 3$, sia $B \subseteq \mathbb{R}^2$ aperto. Allora A e B non sono omeomorfi (in particolare \mathbb{R}^2 non è omeomorfo a \mathbb{R}^m con $m \ge 3$

Dimostrazione

Sia $a \in A$ allora $\exists \varepsilon > 0$ tale che $B_{\varepsilon}(a) \subseteq A$. Allora $S = \partial B_{\varepsilon/2}(a)$ è contenuta in A e S è omeomorfo a S^{m-1} .

 S^{m-1} contiene sottospazi omeomorfi a S^2 (ad esempio $S^{m-1} \cap (span \ dei \ primi$ 3 vettori della base canonica)

Allora anche S contiene almeno un sottospazio \tilde{S} omeomorfo a S^2

Sia per assurdo $h: A \to B$ omeomorfismo allora $h|_{\tilde{S}}: \tilde{S} \to \mathbb{R}^2$ è continua e iniettiva con \tilde{S} omeomorfo a S^2 assurdo.

0.3Altri legami fra rivestimenti e gruppi fondamentali

Teorema 3

Sia $p: E \to X$ rivestimento, sia $e \in E, x = p(e)$.

- 1. $p_*\pi_1(E,e) \to \pi_1(X,x)$ è iniettiva.
- 2. L'immagine di p_* è l'insieme delle classi $[\alpha]$ dei cammini α tale che α_e^{\uparrow} è un cammino chiuso.

3. Se E è connesso per archi allora c'è una biezione

$$p_*(\pi(E, e) \setminus \pi_1(X, x) \to p^{-1}(x).$$

dove il primo è il quoziente delle classi laterali destre data da

$$p_*(\pi(E,e))[\alpha] \to \alpha_e^{\uparrow}(1).$$

 $(\alpha \in \Omega(X, x, x) [\alpha \in \pi_1(X, x), p_*(\pi_1(E, e)) [\alpha] \ e \ la \ classe \ laterale \ destra)$

Dimostrazione

Dimostriamo singolarmente le affermazioni

- Supponiamo che p* : π¹(E,e → π¹(X,e) è omeomorfismo di gruppi. Dimostriamo che è iniettivo, calcoliamo ker(p*). Sia [β] ∈ π¹(E,e) con β ∈ Ω(E,e,e), allora p*([β]) = [p ∘ β]
 Supponiamo sia l'elemento neutro [1*] cioè p ∘ β ~ 1* in X
 Solleviamo partendo da e. otteniamo β (che solleva p ∘ β) e 1* e
 Segue β ~ 1 e cioè
 [β] = [1*] elemento neutro, cioè p* iniettiva.
- 2. Da dimostrare $[\alpha] \in \pi_1(X,x)$ è in $Im(p_*)$ se e solo se è cammino chiuso. Sia $[\alpha] \in Im(p_*)$ allora

$$[\alpha] = [p \circ \beta] \ dove \ \beta \in \Omega(E, e, e).$$

Solleviamo α e $p \circ \beta$ partendo da $e \in E$: otteniamo α_e^{\uparrow} e β . Questi sollevamenti hanno stesso punto finale $\beta(1) = e$, quindi $\alpha(1) = e$, cioè $\gamma = \alpha_e^{\uparrow}$ è un cammino chiuso.

Quindi definisce la classe $[\alpha_e^{\uparrow}] \in \pi_1(E, e)$ e vale $p_*([\alpha_e^{\uparrow}]) = [p \circ \alpha_e^{\uparrow}] = [\alpha]$

3. L'applicazione è

$$\phi: p_*(\pi(E, e) \setminus \pi_1(X, x) \to p^{-1}(x).$$

 $p_*(\pi_1(E,e))[\alpha] \to \alpha_e^{\uparrow}(1)$

Dobbiamo dimostrare che ϕ è ben definita. Intanto se $\alpha' \sim \alpha$ in $\pi_1(X, x)$ allora

$$(a')_e^{\uparrow}(1) = \alpha_e^{\uparrow}(1).$$

Quindi ϕ non dipende da $\alpha \in [\alpha']$.

Supponiamo di cambiare rappresentante nella stessa classe laterale destra, cioè consideriamo $[\gamma] = [\alpha]$ dove $[\gamma] \in p_*(\pi_1(E, e))$.

Per 2) quando sollevo γ rimane chiuso. Per definire ϕ usando $[\gamma] \cdot [\alpha]$ al posto di α , uso il punto finale di $(\gamma * \alpha)_e^{\uparrow}$ perché $[\gamma][\alpha] = [\gamma \star \alpha]$ Solleviamo $\gamma \star \alpha$: è

$$\gamma_e^{\uparrow} \star \alpha_{\gamma_e^{\uparrow}(1)}^{\uparrow}$$
.

ma essendo γ_e^{\uparrow} un cammino chiuso, i punto finale è e stesso, e il sollevamento di $\gamma \star \alpha$ è $\gamma_e^{\uparrow} \star \alpha_e^{\uparrow}$, il suo punto finale è $\alpha_e^{\uparrow}(1)$, che è lo stesso ottenuto prima. Quindi ϕ è ben definita.

Dimostriamo che ϕ è iniettiva, siamo $[\alpha], [\delta] \in \pi_1(X, x)$, supponiamo le loro classi laterali destre vengano mandate nello stesso punto da ϕ . Cioè α_e^{\uparrow} $e \delta_e^{\uparrow}$ finiscono nello stesso punto. Allora è definita la giunzione $\alpha_e^{\uparrow} \star i(\delta_e^{\uparrow})$ che è un cammino chiuso in E, e solleva $\alpha \star i(\delta)$, quindi $\alpha \star i(\delta)$ se lo solleva rimane chiuso, e allora la sua classe

$$[\alpha \star i(\delta) = [\alpha] \cdot [\delta]^{-1}.$$

 \grave{e} in $p_{\star}(\pi_1(E,e))$ per 2)

Seque che $[\alpha]$ e $[\delta]$ sono nella stessa classe laterale destra modulo $p_*(\pi_1(E,e))$. Quindi ϕ è iniettiva, dimostriamo che è suriettiva.

Cioè $\forall e \in p^{-1}(x)$ deve esistere $\alpha \in \pi_1(X,x)$ tale che $\alpha_e^{\uparrow}(1) = e'$

Dato che E è connesso per archi, scegliamo $\gamma \in \Omega(E, e, e')$.

Allora γ solleva $\alpha = p \circ \gamma$.

La classe $[\alpha] \in \pi_1(X, x)$ soddisfa $p_*(\pi(E, e))[\alpha] \xrightarrow{\varphi} \gamma(1) = e'$. Quindi ϕ è suriettiva.

Osservazione

n=2 considero la proiezione

$$\mathbf{R}^3 \setminus \{0\} \to \mathbb{P}^2_{\mathbb{R}}$$

 $v \to [v]$.

e la restringo a S^2

$$p: S^2 \to \mathbb{P}^2_{\mathbb{R}}.$$

Si dimostra che p è un rivestimento.

Consideriamo $X = S^2 \cap \{z \ge 0\}$ ovvero la semisfera positiva.

INSERISCI IMMAGINE 5:35

 $\alpha \neq 1_N$

0.4 Classificazione dei rivestimenti

Esempio:

$$\pi_1(S^1) \cong \mathbb{Z}$$

Sottogruppi: $\mathbb{Z}, \{0\}, n\mathbb{Z}$ con $n \in \mathbb{Z}_{\geq 1}$ Rivestimenti connessi per archi di S^1 :

Id: $S^1 \to S^1$

$$\rho: \mathbb{R} \to S^1$$

$$S^1 \to S^1$$

$$z \rightarrow z^n$$

Teorema 4

Sia X spazio topologico, $a \in X$. Supponiamo $x \in X$ abbia un sistema fondamentale di intorni semplicemente connessi. Supponiamo X abbia un rivestimento con spazio totale semplicemente connesso. Allora esiste una biezione tra

 $\{ \substack{rivestimenti \ p:E \to X \\ con \ E \ conn. \ per \ archi} \} \to \{sottogruppi \ di \ \pi_1(X,a) \}.$

$$[p] \rightarrow p_*(\pi(E,a)).$$

dove $e \in E$ soddisfa p(e) = a, e due rivestimenti $p: E \to X$ e $p': E' \to X$ sono equivalenti se $\exists f: E \to E'$ omeomorfismo tale che INSERISCI IMMAGINE 5 50 commuta, cioè $p = p' \circ f$.