Genetic analysis using the sommer package

Giovanny Covarrubias-Pazaran 2017-04-14

The sommer package has been developed to provide R users with a powerful multivariate mixed model solver for different genetic and non-genetic analysis in diploid and polyploid organisms. This package allows the user to estimate variance components for a mixed model with the advantage of specifying the variance-covariance structure of the random effects and obtain other parameters such as BLUPs, BLUEs, residuals, fitted values, variances for fixed and random effects, etc.

The package is focused on genomic prediction (or genomic selection) and GWAS analysis, although general mixed models can be fitted as well. The package provides kernels to estimate additive (A.mat), dominance (D.mat), and epistatic (E.mat) relationship matrices that have been shown to increase prediction accuracy under certain scenarios. The package provides flexibility to fit other genetic models such as full and half diallel models as well.

Vignettes aim to provide several examples in how to use the sommer package under different scenarios in breeding and genetics. We will spend the rest of the space providing examples for:

- 1) Heritability (h^2) calculation
- 2) Half and full diallel designs
- 3) Genome wide association analysis (GWAS) in diploids and tetraploids
- 4) Genomic selection
- 5) Single cross prediction
- 6) Multivariate genetic models and genetic correlations
- 7) Multivariate GWAS
- 8) Specifying heterogeneous variances in univariate mixed models

Background

The core of the package are the mmer (matrix-based) and mmer2 (formula-based) functions which solve the mixed model equations. The functions are an interface to call one of the 4 ML/REML methods supported in the package; EMMA efficient mixed model association (Kang et al. 2008), AI average information (Gilmour et al. 1995; Lee et al. 2015), EM expectation maximization (Searle 1993; Bernardo 2010), and the default NR Newton-Raphson (Tunnicliffe 1989). All methods can handle multiple random effects and covariance structures.

The mixed model solved by the algorithms has the form:

$$y = X\beta + Zu + \epsilon$$

or

$$y = X\beta + Zu_1 + ... + Zu_i + \epsilon$$

where:

X is an incidence matrix for fixed effects

Z is an incidence matrix for random effects

 β is the vector for BLUEs of fixed effects

u is the vector for BLUPs of random effects

 ϵ are the residuals

The variance of the response is known to be the random part of the model:

$$Var(y) = Var(Zu + \epsilon) = ZGZ + R = V$$

and with
 $u \sim MVN(u, G)$
 $\epsilon \sim MVN(u, R)$

When multiple random effects are present the Z matrix becomes the column binding of each of the Z_i matrices for the i random effects. And the G matrix becomes the diagonal binding of each of the variance covariance structures (K matrices) for the random effects:

$$\mathbf{Z} = [Z_1 \dots Z_i]$$

$$\mathbf{G} = \begin{bmatrix} K_1 \sigma_u^2 1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & K_i \sigma_u^2 i \end{bmatrix}$$

The program takes the Zs and Ks for each random effect and construct the neccesary structure inside and estimates the variance components by ML/REML using any of the 4 methods available in sommer; Direct-Inversion Average Information, Expectation-Maximization, Direct-Inversion Newton-Raphson, and Efficient Mixed Model Association. Please refer to the canonical papers listed in the Literature section to check how the methods work. We have tested widely the methods to make sure they provide the same solution when the likelihood behaves well but for complex problems they might lead to slightly different answers. If you have any concer please contact me at cova_ruber@live.com.mx or covarrubiasp@wisc.edu.

1) Marker and non-marker based heritability calculation

The heritability is one of the most popular parameters in the breeding and genetics community. The heritability is usually estimated as narrow sense $(h^2;$ only additive variance in the numerator σ_A^2), and broad sense $(H^2;$ all genetic variance in the numerator σ_G^2).

In a classical experiment with no molecular markers, special designs are performed to estimate and disect the additive (σ_A^2) and dominance (σ_D^2) variance along with environmental variability. Designs such as generation analysis, North Carolina designs are used to disect σ_A^2 and σ_D^2 to estimate the narrow sense heritability (h^2) . When no special design is available we can still disect the genetic variance (σ_G^2) and estimate the broad sense heritability. In this example we will show the broad sense estimation which doesn't use covariance structures for random effects. For big models with no covariance structures, sommer's direct inversion is a bad idea to use but we will show anyways how to do it, for very sparse models we recommend using the lmer function from the lme4 package from Douglas Bates.

The dataset has 41 potato lines evaluated in 5 locations across 3 years in an RCBD design. We show how to fit the model and extract the variance components to calculate the h^2 .

```
library(sommer)
data(h2)
head(h2)
```

```
## Name Env Loc Year Block y
## 1 W8822-3 FL.2012 FL 2012 FL.2012.1 2
## 2 W8867-7 FL.2012 FL 2012 FL.2012.2 2
## 3 MSL007-B MO.2011 MO 2011 MO.2011.1 3
```

Recently with markers becoming cheaper, thousand of markers can be run in the breeding materials. When markers are available, an special design is not necessary to disect the additive genetic variance. The availability of the additive, dominance and epistatic relationship matrices allow us to estimate σ_A^2 , σ_D^2 and σ_L^2 .

Assume you have a population, and a similar model like the one displayed previously has been fitted. Now we have BLUPs for the genotypes but in addition we have genetic markers.

```
data(CPdata)
CPpheno <- CPdata$pheno; CPpheno$idd <-CPpheno$id; CPpheno$ide <-CPpheno$id
CPgeno <- CPdata$geno
### look at the data
head(CPpheno)</pre>
```

```
color Yield FruitAver Firmness idd ide
         id Row Col Year
## P003 P003
              3 1 2014 0.10075269 154.67
                                             41.93 588.917 P003 P003
## P004 P004
                1 2014 0.13891940 186.77
                                             58.79 640.031 P004 P004
## P005 P005
              5 1 2014 0.08681502 80.21
                                             48.16 671.523 P005 P005
## P006 P006
              6 1 2014 0.13408561 202.96
                                             48.24 687.172 P006 P006
## P007 P007
              7 1 2014 0.13519278 174.74
                                              45.83 601.322 P007 P007
## P008 P008
                1 2014 0.17406685 194.16
                                              44.63 656.379 P008 P008
```

CPgeno[1:5,1:4]

```
scaffold_50439_2381 scaffold_39344_153 uneak_3436043 uneak_2632033
##
## P003
                            0
                                                                0
                                                                               1
## P004
                            0
                                                                               1
                                                                0
## P005
                            0
                                               -1
                                                                               1
## P006
                           -1
                                               -1
                                                               -1
                                                                               0
## P007
                            0
```

```
## [1] 0.7514288
```

```
(h2 <- sum(ans.ADE$var.comp[1,1])/sum(ans.ADE$var.comp[,1]))
```

```
## [1] 0.6214712
```

In the previous example we showed how to estimate the additive (σ_A^2) , dominance (σ_D^2) , and epistatic (σ_I^2) variance components based on markers and estimate broad (H^2) and narrow sense heritability (h^2) .

2) Half and full diallel designs

When breeders are looking for the best single cross combinations, diallel designs have been by far the most used design in crops like maize. There are 4 types of diallel designs depending if reciprocate and self cross (omission of parents) are performed (full diallel with parents n^2 ; full diallel without parents n^2 ; half diallel with parents n^2 ; half diallel without parents n^2 . In this example we will show a full diallel design (reciprocate crosses are performed) and half diallel designs (only one of the directions is performed).

In the first data set we show a full diallel among 40 lines from 2 heterotic groups, 20 in each. Therefore 400 possible hybrids are possible. We have pehnotypic data for 100 of them across 4 locations. We use the data available to fit a model of the form:

```
y = X\beta + Zu_1 + Zu_2 + Zu_S + \epsilon
```

We estimate variance components for GCA_1 , GCA_2 and SCA and use them to estimate heritability. Additionally BLUPs for GCA and SCA effects can be used to predict crosses.

```
data(cornHybrid)
hybrid2 <- cornHybrid$hybrid # extract cross data
head(hybrid2)</pre>
```

```
Location GCA1
                       GCA2
                                     SCA Yield PlantHeight
##
## 1
             1 A258 AS5707 A258:AS5707
                                             NA
                                                          NA
## 2
             1 A258
                         B2
                                 A258:B2
                                             NA
                                                          NA
## 3
             1 A258
                        B99
                                A258:B99
                                             NA
                                                          NA
## 4
             1 A258
                       LH51
                               A258:LH51
                                             NA
                                                          NA
## 5
             1 A258
                       Mo44
                               A258:Mo44
                                             NA
                                                          NA
## 6
             1 A258
                      NC320
                             A258:NC320
                                             NA
                                                          NA
```

modFD <- mmer2(Yield~Location, random=~GCA1+GCA2+SCA, data=hybrid2,silent = TRUE, draw=FALSE)
summary(modFD)</pre>

```
## Method:[1] "NR"
##
## logLik
                 BIC
           AIC
##
   -1342
          2691
                2707
## Random effects:
##
              VarComp VarCompSE Zratio
## Var(GCA1)
                0.000
                        17.65
                              0.0000
                7.205
## Var(GCA2)
                        19.60 0.3677
## Var(SCA)
              187.736
                        44.59 4.2107
## Var(Residual) 221.142
                        17.78 12.4406
## Number of obs: 400 Groups: 20 20 400
## Fixed effects:
##
                  Value
                        Std.Error t.value
## (Intercept) 1.3793e+02 2.1193e+00 65.0845
## Location2
            -1.5632e-13 2.1030e+00
## Location3
             7.8353e+00 2.1030e+00 3.7257
## Location4
            -9.0975e+00 2.1030e+00 -4.3259
## Use the '$' symbol to access all information
Vgca <- sum(modFD$var.comp[1:2,1])</pre>
Vsca <- modFD$var.comp[3,1]</pre>
Ve <- modFD$var.comp[4,1]</pre>
Va = 4*Vgca
Vd = 4*Vsca
Vg <- Va + Vd
(H2 \leftarrow Vg / (Vg + (Ve)))
## [1] 0.7790583
(h2 \leftarrow Va / (Vg + (Ve)))
```

Don't worry too much about the small h2 value, the data was simulated to be mainly dominance variance, therefore the Va was simulated extremely small leading to such value of narrow sense h2.

In this second data set we show a small half diallel with 7 parents crossed in one direction. n(n-1)/2 crosses are possible 7(6)/2 = 21 unique crosses. Parents appear as males or females indistictly. Each with two replications in a CRD. For a half diallel design a single GCA variance component can be estimated and an SCA as well (σ_G^2CA and σ_S^2CA respectively). And BLUPs for GCA and SCA of the parents can be extracted. We would create the design matrices in sommer using the overlay and model.matrix functions for the GCA and SCA matrices respectively.

```
y = X\beta + Zu_q + Zu_s + \epsilon
```

```
data(HDdata)
head(HDdata)
```

rep geno male female sugar

```
1 12 1 2 13.950509
## 1
## 2 2 12 1
                 2 9.756918
                 3 13.906355
## 3 1 13 1
## 4 2 13 1
                 3 9.119455
## 5
    1
       14
           1
                 4 5.174483
## 6 2 14
           1
                   4 8.452221
HDdata$geno <- as.factor(HDdata$geno)</pre>
HDdata$male <- as.factor(HDdata$male)</pre>
HDdata$female <- as.factor(HDdata$female)</pre>
# Fit the model
modHD <- mmer2(sugar~1, random=~male + and(female) + geno,
            data=HDdata, silent = TRUE)
summary(modHD)
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## Linear mixed model fit by restricted maximum likelihood
## ************ sommer 2.7 ************
## Method:[1] "NR"
##
## logLik
        AIC
## -58.18 118.36 120.09
## Random effects:
##
               VarComp VarCompSE Zratio
## Var(and(female)) 5.508 3.5771 1.540
## Var(geno)
           1.816 1.3637 1.332
                3.117 0.9619 3.241
## Var(Residual)
## Number of obs: 42 Groups: 7 21
## Fixed effects:
##
           Value Std.Error t.value
## Intercept 10.3332 1.8183 5.6828
## Use the '$' symbol to access all information
Vgca <- modHD$var.comp[1,1]</pre>
Vsca <- modHD$var.comp[2,1]</pre>
Ve <- modHD$var.comp[3,1]</pre>
Va = 4*Vgca
Vd = 4*Vsca
Vg <- Va + Vd
(H2 <- Vg / (Vg + (Ve/2)) ) # 2 technical reps
```

```
(h2 \leftarrow Va / (Vg + (Ve/2)))
```

3) Genome wide association analysis (GWAS) in diploids and tetraploids

With the development of modern statistical machinery the detection of markers associated to phenotypic traits have become quite straight forward. The days of QTL mapping using biparental populations exclusively are in the past. In this section we will show how to perform QTL mapping for diploid and polyploid organisms with complex genetic relationships. In addition we will show QTL mapping in biparental populations to clarify that the fact that is not required anymore doesn't limit the capabilities of modern mixed model machinery.

First we will start doing the GWAS in a biparental population with 363 individuals genotyped with 2889 SNP markers. This is easily done by creating the variance covariance among individuals and using it in the random effect for genotypes. The markers are added in the W argument to fit the model of the form:

$$y = X\beta + Zu + Wg + \epsilon$$

In this case $X\beta$ is the fixed part only for the intercept, Zu is the random effect for genotypes with the additive relationship matrix (A) as the variance-covariance of the random effect, Wg is the marker matrix and the effects of each marker. This is done in this way:

```
data(CPdata)
CPpheno <- CPdata$pheno
CPgeno <- CPdata$geno
### look at the data
head(CPpheno); CPgeno[1:5,1:4]
##
          id Row Col Year
                                color Yield FruitAver Firmness
## P003 P003
                   1 2014 0.10075269 154.67
                                                  41.93 588.917
               3
## P004 P004
               4
                   1 2014 0.13891940 186.77
                                                  58.79
                                                         640.031
## P005 P005
                   1 2014 0.08681502 80.21
                                                         671.523
               5
                                                  48.16
## P006 P006
                   1 2014 0.13408561 202.96
                                                  48.24
                                                         687.172
               6
## P007 P007
               7
                   1 2014 0.13519278 174.74
                                                         601.322
                                                  45.83
## P008 P008
                   1 2014 0.17406685 194.16
                                                  44.63
                                                        656.379
##
        scaffold_50439_2381 scaffold_39344_153 uneak_3436043 uneak_2632033
## P003
                                                             0
                                              0
                                                                            1
## P004
                           0
                                              0
                                                             0
                                                                            1
## P005
                           0
                                             -1
                                                             0
                                                                            1
## P006
                          -1
                                             -1
                                                            -1
                                                                            0
## P007
                           0
                                                                            1
A <- A.mat(CPgeno) # additive relationship matrix
### fit the model
```

Response is imputed for estimation of variance components in GWAS models.

W=CPgeno, data=CPpheno, silent=TRUE) # fit the model

ans.A <- mmer2(color~1,random=~g(id), G=list(id=A),</pre>

Response is imputed for estimation of variance components in GWAS models.

Now we will show how to do GWAS in a tetraploid using potato data. Is not very different from diploids. We only need to pay attention to the ploidy argument in the atcg1234 and A.mat functions. In addition, when running the mmer model there is more models that can be implemented according to Rosyara et al. (2016).

```
data(PolyData)
genotypes <- PolyData$PGeno</pre>
phenotypes <- PolyData$PPheno</pre>
## convert markers to numeric format
numo <- atcg1234(data=genotypes, ploidy=4, silent = TRUE); numo[1:5,1:4]; dim(numo)
## Obtaining reference alleles
## Checking for markers with more than 2 alleles. If found will be removed.
## Converting to numeric format
## Calculating minor allele frequency (MAF)
## Imputing missing data with mode
##
               c2_41437 c2_24258 c2_21332 c2_21320
## A96104-2
                       1
                                2
                                          2
## A97066-42
                       2
                                3
                                          2
                                                   4
                       2
                                          2
## ACBrador
                                4
                                                   4
                       0
                                          0
                                4
                                                   4
## ACLPI175395
## ADGPI195204
```

[1]

221 3521

```
# get only plants with both genotypes and phenotypes
common <- intersect(phenotypes$Name,rownames(numo))</pre>
marks <- numo[common,]; marks[1:5,1:4]
##
                  c2_41437 c2_24258 c2_21332 c2_21320
## A97066-42
                       2
                                3
                                       2
## ACBrador
                         2
                                 4
                                           2
                                                    4
                                  2
## AdirondackBlue
                         2
                                           2
                                                    4
## AF2291-10
                         0
                                  4
                                           2
                                                    4
## AF2376-5
                         1
                                  3
                                           2
                                                    4
phenotypes2 <- phenotypes[match(common,phenotypes$Name),];</pre>
phenotypes2[1:5,1:4]
##
               Name total_yield chip_color tuber_eye_depth
## 1
                                      2.35
          A97066-42 13.10
                                                      3.03
## 2
          ACBrador
                         15.56
                                      2.63
                                                      4.37
                                      2.82
                                                      3.76
## 3 AdirondackBlue
                         11.77
## 4
      AF2291-10
                          13.43
                                      1.50
                                                      4.50
## 5
          AF2376-5
                         12.58
                                      1.83
                                                      4.50
# Additive relationship matrix, specify ploidy
K1 <- A.mat(marks, ploidy=4)</pre>
# run the model you want
models <- c("additive","1-dom-alt","1-dom-ref","2-dom-alt","2-dom-ref")</pre>
ans2 <- mmer2(tuber_shape~1, random=~g(Name), G=list(Name=K1), W=marks,</pre>
              method="EMMA", data=phenotypes2, silent = TRUE)
```

Response is imputed for estimation of variance components in GWAS models.

summary(ans2)

```
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## Linear mixed model fit by restricted maximum likelihood
## ************ sommer 2.7 ************
## Method:[1] "EMMA"
##
## logLik
          AIC
                BIC
## -192.5 387.0
              390.3
## Random effects:
##
             VarComp
## Var(g(Name)) 0.60778
## Var(Error)
             0.03807
## Number of obs: 187 Groups: 187
## Fixed effects:
```

```
##
          Value Std.Error t.value
## Intercept 3.307861 0.018302 180.74
## Use the '$' symbol to access all information
```

4) Genomic selection

In this section we will use wheat data from CIMMYT to show how is genomic selection performed. This is the case of prediction of specific individuals within a population. It basically uses a similar model of the form:

```
y = X\beta + Zu + \epsilon
```

and takes advantage of the variance covariance matrix for the genotype effect known as the additive relationship

```
matrix (A) and calculated using the A.mat function to establish connections among all individuals and predict
the BLUPs for individuals that were not measured. The prediction accuracy depends on several factors such
as the heritability (h^2), training population used (TP), size of TP, etc.
data(wheatLines);
X <- wheatLines$wheatGeno; X[1:5,1:4]; dim(X)</pre>
        wPt.0538 wPt.8463 wPt.6348 wPt.9992
##
## [1,]
               -1
                          1
                                    1
## [2,]
                1
                          1
                                    1
                                              1
## [3,]
                          1
                                    1
                                             1
                1
## [4,]
               -1
                          1
                                    1
                                             1
## [5,]
               -1
                                    1
                                             1
## [1]
        599 1279
Y <- data.frame(wheatLines$wheatPheno); Y$id <- rownames(Y); head(Y);
##
                 Х1
                              X2
                                           Х4
                                                       X5
                                                             id
## 775
         1.6716295 -1.72746986 -1.89028479
                                               0.0509159
                                                           775
## 2166 -0.2527028  0.40952243  0.30938553 -1.7387588  2166
        0.3418151 -0.64862633 -0.79955921 -1.0535691 2167
         0.7854395 0.09394919
## 2465
                                  0.57046773 0.5517574 2465
## 3881
         0.9983176 -0.28248062
                                  1.61868192 -0.1142848 3881
         2.3360969 0.62647587 0.07353311 0.7195856 3889
rownames(X) <- rownames(Y)</pre>
# select environment 1
K <- A.mat(X) # additive relationship matrix</pre>
# GBLUP pedigree-based approach
set.seed(12345)
v.trn <- Y
vv <- sample(rownames(Y),round(dim(Y)[1]/5))</pre>
y.trn[vv,"X1"] <- NA
ans <- mmer2(X1~1,random=~g(id), G=list(id=K), method="EMMA",
              data=y.trn, silent = TRUE) # kinship based
cor(ans$u.hat$`g(id)`[vv,],Y[vv,"X1"])
```

[1] 0.4885687

```
## maximum prediction value that can be achieved
sqrt(ans$var.comp[1,1]/sum(ans$var.comp[,1]))
```

```
## Var(g(id))
## 0.5771923
```

5) Single cross prediction

When doing prediction of single cross performance the phenotype can be dissected in three main components, the general combining abilities (GCA) and specific combining abilities (SCA). This can be expressed with the same model analyzed in the diallel experiment mentioned before:

```
y = X\beta + Zu_1 + Zu_2 + Zu_S + \epsilon with:

u_1 \sim \mathcal{N}(0, K_1\sigma_u^2 1)

u_2 \sim \mathcal{N}(0, K_2\sigma_u^2 2)

u_s \sim \mathcal{N}(0, K_3\sigma_u^2 s)
```

And we can specify the K matrices. The main difference between this model and the full and half diallel designs is the fact that this model will include variance covariance structures in each of the three random effects (GCA1, GCA2 and SCA) to be able to predict the crosses that have not ocurred yet. We will use the data published by Technow et al. (2015) to show how to do prediction of single crosses.

```
data(Technow_data)

A.flint <- Technow_data$AF # Additive relationship matrix Flint
A.dent <- Technow_data$AD # Additive relationship matrix Dent

pheno <- Technow_data$pheno # phenotypes for 1254 single cross hybrids
head(pheno); dim(pheno)</pre>
```

```
##
      hybrid dent flint
                            GY
                                           hy
## 1 518.298
                        -8.04 -0.85 518:298
             518
                    298
## 2 518.305
              518
                    305 -11.10 1.70 518:305
## 3 518.306 518
                    306 -16.85 2.24 518:306
## 4 518.316
              518
                    316
                          2.08 -1.33 518:316
## 5 518.323
                          5.65 -2.71 518:323
              518
                    323
## 6 518.327
              518
                    327 -16.95 -0.52 518:327
## [1] 1254
               6
```

```
# CREATE A DATA FRAME WITH ALL POSSIBLE HYBRIDS
DD <- kronecker(A.dent,A.flint,make.dimnames=TRUE)
hybs <- data.frame(sca=rownames(DD),yield=NA,matter=NA,gcad=NA, gcaf=NA)
hybs$yield[match(pheno$hy, hybs$sca)] <- pheno$GY
hybs$matter[match(pheno$hy, hybs$sca)] <- pheno$GM
hybs$gcad <- as.factor(gsub(":.*","",hybs$sca))
hybs$gcaf <- as.factor(gsub(".*:","",hybs$sca))
head(hybs)</pre>
```

```
sca yield matter gcad gcaf
## 1 513:316 10.02 -2.05 513 316
## 2 513:323 6.97 -3.78 513 323
                 NA 513 330
## 3 513:330 NA
           NA
## 4 513:336
                NA 513 336
## 5 513:340 NA NA 513 340
## 6 513:341 NA NA 513 341
# RUN THE PREDICTION MODEL
y.trn <- hybs
vv1 <- which(!is.na(hybs$yield))</pre>
vv2 <- sample(vv1, 100)</pre>
y.trn[vv2, "yield"] <- NA
anss2 <- mmer2(yield~1, random=~g(gcad) + g(gcaf), G=list(gcad=A.dent, gcaf=A.flint),
            method="EM", silent=TRUE, data=y.trn)
## With var-cov structures (G) present you may want to try the AI or NR algorithm.
summary(anss2)
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## Linear mixed model fit by restricted maximum likelihood
## *********** sommer 2.7 **********
## Method:[1] "EM"
##
## logLik
        AIC
              BTC
## -5036 10073 10078
## Random effects:
##
             VarComp
## Var(g(gcad))
             16.17
## Var(g(gcaf))
              11.26
## Var(Residual)
              17.66
## Number of obs: 1154 Groups: 123 86
## Fixed effects:
           Value Std.Error t.value
## Intercept 0.24555 0.20354 1.2064
## Use the '$' symbol to access all information
cor(anss2$fitted.y[vv2], hybs$yield[vv2])
```

In the previous model we only used the GCA effects (GCA1 and GCA2) for practicity, although it's been shown that the SCA effect doesn't actually help that much in increasing prediction accuracy and increase a lot the computation intensity required since the variance covariance matrix for SCA is the kronecker product of the variance covariance matrices for the GCA effects, resulting in a 10578x10578 matrix that increases in a very intensive manner the computation required.

A model without covariance structures would show that the SCA variance component is insignificant compared to the GCA effects. This is why including the third random effect doesn't increase the prediction accuracy.

6) Multivariate genetic models and genetic correlations

Sometimes is important to estimate genetic variance-covariance among traits, multi-reponse models are very useful for such task. Currently sommer can deal with multivariate models for multiple random effects of the form:

$$Y = X\beta + Zu + \epsilon$$

with:

$$\mathbf{Y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_t \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} X & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & X \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} Z_1 G_1 Z_1' + \dots + Z_1 R_1 Z_1' & \dots & Z_1 H_1 Z_t' + \dots + Z_1 S_1 Z_t' \\ \dots & \dots & \dots \\ Z_t H_1 Z_1' + \dots + Z_t S_1 Z_1' & \dots & Z_t G_1 Z_t' + \dots + Z_t R_1 Z_t' \end{bmatrix}$$

for 't' traits, where G are H are variance and covariance matrices among random effects for the "t" trait, and R and S are variance and covariance matrices among residuals. Here $R=S=I\sigma_{\epsilon}$, where I is an identity matrix. We can specify the covariance matrices. BLUPs will also be corrected for such covariances usually leading to more accurate predictions.

```
data(CPdata)
CPpheno <- CPdata$pheno
CPgeno <- CPdata$geno
### look at the data
head(CPpheno); CPgeno[1:5,1:4]</pre>
```

```
##
          id Row Col Year
                               color Yield FruitAver Firmness
                                                41.93 588.917
## P003 P003
                   1 2014 0.10075269 154.67
## P004 P004
                  1 2014 0.13891940 186.77
                                                58.79
                                                       640.031
## P005 P005
               5
                 1 2014 0.08681502 80.21
                                                48.16
                                                       671.523
## P006 P006
               6
                   1 2014 0.13408561 202.96
                                                48.24
                                                       687.172
               7
## P007 P007
                   1 2014 0.13519278 174.74
                                                45.83
                                                       601.322
## P008 P008
                   1 2014 0.17406685 194.16
                                                44.63 656.379
        scaffold_50439_2381 scaffold_39344_153 uneak_3436043 uneak_2632033
##
## P003
```

```
## P004
                                                   0
## P005
                      0
                                      -1
                                                   0
## P006
                      -1
                                      -1
                                                   -1
                                                                0
## P007
                      0
                                       0
                                                   Λ
                                                                1
## fit a model including additive effects
A <- A.mat(CPgeno) # additive relationship matrix
####=======####
#### ADDITIVE MODEL ####
####======####
ans.A <- mmer2(cbind(color, Yield, Firmness)~1, random=~g(id), G=list(id=A),</pre>
             MVM=TRUE, data=CPpheno, silent = TRUE)
summary(ans.A)
## Information contained in this structure:
## * Results for a multi response model
## Displayed:
## * Variance-covariance component summaries
## Use the '$' sign to access parameters
Multivariate Linear Mixed Model fit by REML
## *********** sommer 2.7 ***********
## Method:[1] "MNR"
       logLik
                   AIC
                           BIC
## MVM -435.9851 877.9703 892.9493
## Variance-Covariance components:
##
## Var-Covar(g(id))
##
            color
                     Yield Firmness
          0.005219
                     0.2984
                             0.5462
## color
          0.298362 663.1160 -122.6967
## Yield
## Firmness 0.546208 -122.6967 1264.8873
##
## Var-Covar(Residual)
##
             color
                      Yield
                            Firmness
           0.002713
## color
                     0.2224
                             -0.06052
           0.222351 4011.1719 189.58719
## Yield
## Firmness -0.060518 189.5872 1200.92942
## -----
## Standard errors for variance components:
                            VarComp VarCompSE Zratio
## g(id).color-color
                           5.219e-03 1.047e-03 4.9844
## g(id).color-Yield
                          2.984e-01 4.334e-01 0.6885
                          5.462e-01 3.977e-01 1.3734
## g(id).color-Firmness
## g(id).Yield-Yield
                          6.631e+02 3.260e+02 2.0341
## g(id).Yield-Firmness
                         -1.227e+02 2.260e+02 -0.5430
## g(id).Firmness-Firmness 1.265e+03 2.969e+02 4.2602
                         2.713e-03 2.979e-04 9.1068
## Residual.color-color
## Residual.color-Yield
                          2.224e-01 2.261e-01 0.9833
## Residual.color-Firmness
                        -6.052e-02 1.320e-01 -0.4586
## Residual.Yield-Yield
                         4.011e+03 3.424e+02 11.7162
```

1.896e+02 1.433e+02 1.3230

Residual.Yield-Firmness

Now you can extract the BLUPs using the 'randef' function or simple accessing with the '\$' sign and pick 'u.hat'. Calculate genetic correlations and heritabilities easily.

```
## genetic variance covariance
gvc <- ans.A$var.comp$`g(id)`</pre>
## extract variances (diagonals) and get standard deviations
sd.gvc <- as.matrix(sqrt(diag(gvc)))</pre>
## get possible products sd(Vgi) * sd(Vgi')
prod.sd <- sd.gvc %*% t(sd.gvc)</pre>
## genetic correlations cov(gi,gi')/[sd(Vgi) * sd(Vgi')]
(gen.cor <- gvc/prod.sd)</pre>
##
                color
                            Yield
                                   Firmness
## color
            1.0000000 0.1603880 0.2125959
            0.1603880 1.0000000 -0.1339714
## Yield
## Firmness 0.2125959 -0.1339714 1.0000000
## heritabilities
(h2 <- diag(gvc) / diag(cov(CPpheno[,names(diag(gvc))], use = "complete.obs")))
##
                 Yield Firmness
## 0.8389640 0.1457021 0.4936389
```

7) Multivariate GWAS

Following the same theory of multivariate methods, theorically the marker effects can take advantage of the information contained in the correlation among traits besides exploiting the correlations between individuals. We have extended the GWAS framework to multivariate GWAS. Here, we will show a multivariate GWAS in a biparental population using the information of 4 traits.

```
data(CPdata)
CPpheno <- CPdata$pheno
CPgeno <- CPdata$geno
### look at the data
head(CPpheno); CPgeno[1:5,1:4]</pre>
```

```
## id Row Col Year color Yield FruitAver Firmness
## P003 P003 3 1 2014 0.10075269 154.67 41.93 588.917
## P004 P004 4 1 2014 0.13891940 186.77 58.79 640.031
```

```
## P005 P005
                   1 2014 0.08681502 80.21
                                                 48.16
                                                       671.523
               5
                   1 2014 0.13408561 202.96
## P006 P006
               6
                                                 48.24
                                                        687.172
## P007 P007
                   1 2014 0.13519278 174.74
                                                 45.83
               7
                                                        601.322
## P008 P008
                   1 2014 0.17406685 194.16
                                                 44.63
                                                        656.379
               8
##
        scaffold_50439_2381 scaffold_39344_153 uneak_3436043 uneak_2632033
## P003
                                                            0
                                             0
                                                                          1
## P004
                          0
                                                            0
                                             0
                                                                          1
## P005
                          0
                                                            0
                                                                          1
                                             -1
## P006
                         -1
                                             -1
                                                           -1
                                                                          0
## P007
                          0
## fit a model including additive effects
A <- A.mat(CPgeno) # additive relationship matrix
####=======####
#### ADDITIVE MODEL ####
####=======####
ans.A <- mmer2(cbind(color,Firmness)~1, random=~g(id),G=list(id=A),</pre>
               MVM=TRUE, data=CPpheno, silent = TRUE, W=CPgeno, IMP=TRUE,
               map=CPdata$map)
```

Response is imputed for estimation of variance components in GWAS models.

summary(ans.A)

```
## Information contained in this structure:
## * Results for a multi response model
## Displayed:
## * Variance-covariance component summaries
## Use the '$' sign to access parameters
Multivariate Linear Mixed Model fit by REML
  ************* sommer 2.7 ***********
## Method:[1] "MNR"
##
        logLik
                  AIC
## MVM -261.3855 526.7709 535.946
  _____
## Variance-Covariance components:
##
## Var-Covar(g(id))
##
          color Firmness
         0.7695
## color
                 0.1323
## Firmness 0.1323
                 0.4954
##
## Var-Covar(Residual)
##
            color Firmness
          0.39991 -0.01485
## color
```

```
## Firmness -0.01485 0.46815
  ______
## Standard errors for variance components:
##
                          VarComp VarCompSE
## g(id).color-color
                          0.76953
                                   0.15437
                                           4.9848
                                   0.09560 1.3838
## g(id).color-Firmness
                          0.13228
## g(id).Firmness-Firmness
                          0.49536
                                   0.11634 4.2578
## Residual.color-color
                          0.39991
                                   0.04392 9.1064
## Residual.color-Firmness
                         -0.01485
                                   0.03164 -0.4693
## Residual.Firmness-Firmness 0.46815
                                   0.04664 10.0385
## Fixed effects:
##
            color Firmness
  (Intercept) 0.023 -0.02618
## Groups and observations:
##
       Observ Groups
## g(id)
          363
## -----
## Use the '$' sign to access parameters
```

8) Specifying heterogeneous variances in univariate models

Very often in multi-environment trials, the assumption that genetic variance is the same across locations may be too naive. Because of that, specifying a general genetic component and a location specific genetic variance is the way to go. Although the function 'mmer' implemented in sommer can be used to do that, can be quite cumbersome and messy to create the incidence and variance covariance matrices for fitting those models. For that reason the function 'mmer' was added to the package to make such models easier to fit.

We estimate variance components for GCA_2 and SCA specifying the variance structure.

```
data(cornHybrid)
hybrid2 <- cornHybrid$hybrid # extract cross data
head(hybrid2)

## Location GCA1 GCA2 SCA Yield PlantHeight</pre>
```

```
## 1
            1 A258 AS5707 A258:AS5707
## 2
                                           NA
                                                        NA
            1 A258
                        B2
                               A258:B2
            1 A258
                       B99
                              A258:B99
                                           NA
                                                        NA
## 4
            1 A258
                      LH51
                             A258:LH51
                                           NΑ
                                                        NA
## 5
            1 A258
                      Mo44
                             A258:Mo44
                                           NA
                                                        NA
## 6
            1 A258
                    NC320 A258:NC320
                                                        NΑ
```

```
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
```

```
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## Linear mixed model fit by restricted maximum likelihood
## ************ sommer 2.7 ***********
## -----
## Method:[1] "NR"
##
## logLik
         AIC
               BIC
## -1404
         2810
              2814
## Random effects:
##
                             VarComp VarCompSE Zratio
## Var(GCA2)
                              42.04
                                      22.52 1.867
## Var(at(Location,c("3","4"))3:GCA2)
                              47.36
                                      45.02 1.052
## Var(at(Location,c("3","4"))4:GCA2)
                             124.69
                                      70.36 1.772
## Var(Residual)
                             372.97
                                      28.29 13.182
## Number of obs: 400 Groups: 20 20 20
## Fixed effects:
            Value Std.Error t.value
                  1.8695 74.269
## Intercept 138.8469
## -----
## Use the '$' symbol to access all information
```

In addition, other functions can be added on top to fit models with covariance structures:

```
##
## Information contained in this fitted model:
## * Variance components, Residuals, Fitted values
## * BLUEs and BLUPs, Inverse phenotypic variance(V)
## * Variance-covariance matrix for fixed & random effects
## * Predicted error variance (PEV), LogLikelihood
## Use the '$' symbol to access such information
## -----
## Linear mixed model fit by restricted maximum likelihood
## *********** sommer 2.7 ***********
## Method:[1] "NR"
##
## logLik
          AIC
               BIC
## -1407
              2819
         2815
```

```
## Random effects:
                               VarComp VarCompSE
##
                                                  Zratio
## Var(g(GCA2))
                                 20.25
                                           14.42
                                                  1.4042
## Var(at(Location)1:g(GCA2))
                                  0.00
                                           14.73
                                                  0.0000
## Var(at(Location)2:g(GCA2))
                                  0.00
                                                  0.0000
                                           14.73
## Var(at(Location)3:g(GCA2))
                                 16.36
                                           21.80
                                                  0.7505
## Var(at(Location)4:g(GCA2))
                                 75.49
                                           39.27
                                                  1.9222
## Var(Residual)
                                381.91
                                           29.32 13.0256
## Number of obs: 400 Groups: 20 20 20 20
## Fixed effects:
##
                Value Std.Error t.value
## Intercept 138.5460
                          1.3708 101.07
## Use the '$' symbol to access all information
```

Good luck with your analysis.

Literature

Covarrubias-Pazaran G. 2016. Genome assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11(6):1-15.

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390 pp.

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51(4):1440-1450.

Henderson C.R. 1975. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics vol. 31(2):423-447.

Kang et al. 2008. Efficient control of population structure in model organism association mapping. Genetics 178:1709-1723.

Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.

Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance components. Paper invited for the 1993 American Statistical Association Meeting, San Francisco.

Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Genetics 38:203-208.

Abdollahi Arpanahi R, Morota G, Valente BD, Kranis A, Rosa GJM, Gianola D. 2015. Assessment of bagging GBLUP for whole genome prediction of broiler chicken traits. Journal of Animal Breeding and Genetics 132:218-228.

Tunnicliffe W. 1989. On the use of marginal likelihood in time series model estimation. JRSS 51(1):15-27.