Question	Answer		Mark
Number			
17(a)	The greater the length of the rope, the greater the extension for a given force	(1)	
	Stiffness $k = F / \Delta x$ so stiffness decreases (if extension increases).	(1)	2
17(b)(i)			
17(0)(1)	Use of $E = \frac{\sigma}{\varepsilon}$ and $\sigma = \frac{F}{A}$ and $\epsilon = \frac{\Delta x}{x}$	(1)	
	Use of $F = k\Delta x$	(1)	
	$k = 1.35 \times 10^5 (\text{N m}^{-1})$	(1)	3
	Example of calculation $2.70 \times 10^9 \text{ N m}^{-2} = F \times 6.00 \text{ m} \div (3.00 \times 10^{-4} \text{ m}^2 \times \Delta L)$ $F = (2.70 \times 10^9 \text{ N m}^{-2} \times 3.00 \times 10^{-4} \text{ m}^2 \div 6.00 \text{ m}) \times \Delta L = k \Delta x$ $k = \frac{F}{\Delta L} = \frac{2.70 \times 10^9 \text{ N m}^{-2} \times 3.00 \times 10^{-4} \text{ m}^2}{6.00 \text{ m}}$ $= 1.35 \times 10^5 \text{ N m}^{-1}$		
17(b)(ii)		(1)	
	Correct use of factor of 2 to calculate F or Δx	(1)	
	Use of $\Delta F = k\Delta x$	(1)	
	1.85×10^{-2} (m) (allow ecf from (i))	(1)	3
	Example of calculation $F = 5000 \text{ N/ } 2 = 2500 \text{ N}$		
	$\Delta x = \frac{F}{k} = \frac{2500 \text{ N}}{1.35 \times 10^5 \text{ N m}^{-1}} = 1.85 \times 10^{-2} \text{ m}$		
17(b)(iii)			
	Use of $\Delta E_{\rm el} = \frac{1}{2} F \Delta x$	(1)	
	$\Delta E_{\rm el} = 23.1 \text{ J (allow ecf from (ii))}$	(1)	2
	Example of calculation $\Delta E_{\rm el} = 0.5 \times 2500 \text{ N} \times 1.85 \times 10^{-2} \text{ m} = 23.13 \text{ J}$		
17(c)	Use of W = $F\Delta s$ (to find the work done in lifting the load)	(1)	
	Compares 7 500 J with their calculated value in b(iii) and draws suitable conclusion	(1)	2
	Example of calculation Work done by pulley system = 5×10^3 N × 1.5 m = $7 500$ J 23(.1) (J) << $7 500$ (J) : not significant		
	Total for question 17		12