Analysis

Huang LiChuang of Wie-Biotech

Contents

1	摘要	•		3							
2	研究	设计流	星图	3							
3	材料	和方法		3							
4	分析结果										
	4.1	网络药	i理学分析	4							
		4.1.1	从 HERB 网站获取中药和成分以及靶点数据	4							
		4.1.2	从 Genecards 获取疾病的靶点数据	6							
		4.1.3	数据透视	8							
		4.1.4	以 STRINGdb 构建 PPI 网络	11							
		4.1.5	筛选 HubGenes	12							
		4.1.6	通路富集分析	14							
	4.2	分析糖	尿病肾病肠道差异菌群	15							
		4.2.1	选择公共数据库的 16s rRNA 数据	15							
		4.2.2	下载和预处理 SRA 数据	16							
		4.2.3	使用 Qiime2 作为上游分析	17							
		4.2.4	使用 MicrobiotaProcess 作为下游分析	17							
		4.2.5	Alpha 多样性	17							
		4.2.6	物种丰度	18							
		4.2.7	Beta 多样性	18							
		4.2.8	差异分析	21							
	4.3	分析糖	· 尿病肾病的代谢组学差异	23							
		4.3.1	数据来源	23							
		4.3.2	代谢物筛选	25							
		4.3.3	富集分析	25							
	4.4	关联分	析: 差异菌群与代谢物	27							
		4.4.1	使用关联数据	27							
		4.4.2	从差异菌群到差异代谢物	27							
	4.5	分析糖	F尿病肾病的转录组学差异	29							
		451	数据来源	29							

		4.5.2 数据标准化	30
		4.5.3 差异分析	31
	4.6	转录组学和网络药理学结合	33
	4.7	代谢小分子靶点蛋白分析	33
		4.7.1 分子对接	33
		4.7.2 对接可视化	34
		4.7.3 靶点蛋白的表达量以及相关通路	38
	4.8	复方活性成分	39
		4.8.1 作用于靶点蛋白的主要活性成分	39
5	结论		40
			40
Κŧ	efere	nce	40
T. i	ist (of Figures	
	1	Intersect of target genes of TCMs	9
	2	Intersect of compounds of TCMs	
	3	Intersect of targets of compounds and disease targets	
	4	•	13
	5	•	14
	6	•	15
	7	•	18
	8	Evaluate alpha diversity in multiple methods	18
	9		19
	10	Abundance in Family	20
	11	Abundance in Genus	21
	12	Significant Microbiota boxplot	22
	13	Selected metabolites with multiple selection methods	25
	14	Use MetaboAnalyst for metabolites enrichment	26
	15	Use FELLA for metabolites enrichment	27
	16	Integration of datasets for metabolites and microbiota selection $\dots \dots \dots \dots \dots$	28
	17	Metabolite Trimethylamine levels	29
	18	RNA filtered genes	30
	19	RNA nomalization	31
	20	RNA seq DEG	32
	21	Intersection of target genes as receptor	33
	22	Docking affinity	34
	23	Docking with FOXO3	35
	24	Docking with IRAK1	36
	25	Docking with CDKN1A	37
	26		37

27	Compound structure 3D	38
28	Pathway enrichment of receptors	39
\mathbf{List}	of Tables	
1	TCM information	4
2	TCM compounds	5
3	Compounds targets	5
4	Compounds targets with annotation of biomaRt of ensembl dataset	6
5	Desease targets of diabetic nephropathy	7
6	Desease targets with annotation of biomaRt of ensembl dataset	7
7	ID mapped by STRINGdb	12
8	All MCC scores	13
9	Metadata of the sra data of PRJNA824185	15
10	Metadata of used 16s rRNA data	17
11	FDR significant Microbiota	22
12	Metadata of serum	23
13	Source data of serum	24
14	RNA DEG top table	32
15	Main active compounds to receptors	40

1 摘要

结合网络药理学、肠道菌微生物组 (16s rRNA)、代谢组、转录组、分子对接等技术,筛选复方(肾衰宁)对糖尿病肾病 (DN) 治疗的主要活性成分和作用靶点。

16s rRNA 和代谢组结合,筛选到差异菌 Lachnospiraceae 和差异代谢物 Trimethylamine。DN 患者 Lachnospiraceae 丰度下降,而血清 Trimethylamine 水平升高,提示 DN 患者由于 Lachnospiraceae 菌失调,降低 Trimethylamine 的代谢能力。进一步结合网络药理学和转录组(肾组织),筛选到靶点蛋白 FOXO3,IRAK1,CDKN1A。DN 患者的 FOXO3,IRAK1,CDKN1A 表达量下降。分子对接应用于 Trimethylamine 和 FOXO3,IRAK1,CDKN1A 蛋白,结果显示,Trimethylamine 对三者都有结合可能,且对 FOXO3 有最高的亲和度。作用于 FOXO3,IRAK1,CDKN1A 等蛋白的复方的活性成分共有 12 个,请参考 Tab. 15。

2 研究设计流程图

3 材料和方法

- Qiime2
- MetaboAnalystR
- gutMDisorder
- MicrobiotaProcess
- STRINGdb

- clusterProfiler
- FELLA
- limma
- Autodock Vina
- pymol
- R
- ...

4 分析结果

4.1 网络药理学分析

4.1.1 从 HERB 网站获取中药和成分以及靶点数据

 $\rm HERB\ http://herb.ac.cn/$

Table 1为表格 TCM information 概览。

(对应文件为 Figure+Table/TCM-information.xlsx)

注: 表格共有 10 行 18 列,以下预览的表格可能省略部分数据;表格含有 10 个唯一'Herb_'。

Table 1: TCM information

Herb_	Herb	Herb	Herb	Herb	Prope	Merid	UsePart	Function	Indic	Toxicity
HERB0	CHEN PI	陈皮	Dried	Peric	Warm;	Lung;	NA	To re	Treat	NA
HERB0	DA HUANG	大黄	root	Radix	Cold;	Splee	root	To ca	Reple	NA
HERB0	DAN SHEN	丹参	root	Radix	Minor	Liver	root	To re	Angin	NA
HERB0	FU LING	茯苓	India	Poria	Mild;	Splee	scler	To ca	Neura	NA
HERB0	GAN CAO	甘草	Root	Radix	Mild;	Lung;	root	To re	1. It	NA
HERB0	HONG HUA	红花	Saffl	Flos	Warm;	Liver	flower	To ac	Ameno	NA
HERB0	HUANG	黄连	rhizo	Rhizo	Cold;	Large	rhizome	To re	Febri	NA
HERB0	NIU XI	牛膝	root	Radix	Mild;	Liver	root	To re	Achin	NA
HERB0	TAI Z	太子参	Heter	Radix	Mild;	Lung;	NA	To re	Treat	NA
HERB0	ZHI B	制半夏	Prepa	Rhizo	Warm;	Lung;	Pinel	Treat	Treat	Extre

Table 2为表格 TCM compounds 概览。

(对应文件为 Figure+Table/TCM-compounds.xlsx)

注: 表格共有 1761 行 4 列,以下预览的表格可能省略部分数据;表格含有 10 个唯一'herb_id'。

Table 2: TCM compounds

herb_id	Ingre2	Ingre3	Ingre4
HERB0	HBIN0	1-A-t	NA
HERB0	HBIN0	(1S,5	(1S,5
HERB0	HBIN0	1-Und	10268
HERB0	HBIN0	22410	2,6-O
HERB0	HBIN0	2-(2	NA
HERB0	HBIN0	2,5,5	2,5,5
HERB0	HBIN0	2,6,1	2,6,1
HERB0	HBIN0	()-2	Bicyc
HERB0	HBIN0	(2S)	NA
HERB0	HBIN0	(2S)	(2S)
HERB0	HBIN0	3-carene	(1S)
HERB0	HBIN0	3-dec	3-dec
HERB0	HBIN0	[(3R)	butan
HERB0	HBIN0	4-ACE	17745
HERB0	HBIN0	5,7-d	(2R)
	•••	•••	

Table 3为表格 compounds targets 概览。

(对应文件为 Figure+Table/compounds-targets.csv)

注: 表格共有 14888 行 6 列,以下预览的表格可能省略部分数据;表格含有 707 个唯一'Ingredient_id'。

Table 3: Compounds targets

Ingre	Targe2	Targe3	Datab	Paper.id	PubMe
HBIN0	HBTAR	PGR	NA	NA	NA
HBIN0	HBTAR	PTGS2	NA	NA	NA
HBIN0	HBTAR	RXRA	NA	NA	NA
HBIN0	HBTAR	DPP4	NA	NA	NA
HBIN0	HBTAR	AR	NA	NA	NA
HBIN0	HBTAR	NR3C1	NA	NA	NA
HBIN0	HBTAR	PRSS1	NA	NA	NA
HBIN0	HBTAR	CA2	NA	NA	NA
HBIN0	HBTAR	ESR1	NA	NA	NA
HBIN0	HBTAR	GABRA1	NA	NA	NA
HBIN0	HBTAR	NCOA2	NA	NA	NA
HBIN0	HBTAR	ACHE	NA	NA	NA

Ingre	Targe2	Targe3	Datab	Paper.id	PubMe
HBIN0	HBTAR	PRSS1	NA	NA	NA
HBIN0	HBTAR	PRSS1	NA	NA	NA
HBIN0	HBTAR	SLC6A2	NA	NA	NA

将 Tab. 3 的基因信息注释:

Table 4为表格 compounds targets with annotation of biomaRt of ensembl dataset 概览。

(对应文件为 Figure+Table/compounds-targets-with-annotation-of-biomaRt-of-ensembl-dataset.xlsx)

注:表格共有 14888 行 13 列,以下预览的表格可能省略部分数据;表格含有 4230 个唯一'Target.name'。

Table 4: Compounds targets with annotation of biomaRt of ensembl dataset

Targe1	Ingre	Targe3	Datab	Paper.id	PubMe	ensem7	ensem8	entre	
6PGD	HBIN0	HBTAR	NA	HBREF	27270429	NA	NA	NA	
AAMP	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	14	
AANAT	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	15	
AANAT	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	15	
AARS1	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	16	
AARS1	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	16	
AARS1	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	16	
AARS1	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	16	
AARS1	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	16	
AARS2	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	57505	
AASS	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	10157	
AASS	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	10157	
ABAT	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	18	
ABAT	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	18	
ABAT	HBIN0	HBTAR	NA	NA	NA	ENSG0	ENST0	18	

4.1.2 从 Genecards 获取疾病的靶点数据

Genecards https://www.genecards.org/

Table 5为表格 desease targets of diabetic nephropathy 概览。

(对应文件为 Figure+Table/desease-targets-of-diabetic-nephropathy.xlsx)

注: 表格共有 1309 行 7 列,以下预览的表格可能省略部分数据;表格含有 1309 个唯一'Symbol'。

Table 5: Desease targets of diabetic nephropathy

Symbol	Descr	Category	UniPr	GIFtS	GC_id	Score
ACE	Angio	Prote	P12821	55	GC17P	84.68
HNF1B	HNF1	Prote	P35680	47	GC17M	83.38
GCK	Gluco	Prote	P35557	53	GC07M	83.04
KCNJ11	Potas	Prote	Q14654	50	GC11M	80.35
HNF1A	HNF1	Prote	P20823	51	GC12P	78.94
ABCC8	ATP B	Prote	Q09428	50	GC11M	73.88
IL6	Inter	Prote	P05231	55	GC07P	70.31
HNF4A	Hepat	Prote	P41235	53	GC20P	67.73
PPARG	Perox	Prote	P37231	57	GC03P	64.11
PDX1	Pancr	Prote	P52945	50	GC13P	61.95
COL4A5	Colla	Prote	P29400	48	GC0XP	58.60
WFS1	Wolfr	Prote	O76024	50	GC04P	57.65
TCF7L2	Trans	Prote	Q9NQB0	51	GC10P	56.48
VEGFA	Vascu	Prote	P15692	53	GC06P	56.25
COL4A3	Colla	Prote	Q01955	50	GC02P	55.86

Table 6为表格 desease targets with annotation of biomaRt of ensembl dataset 概览。

(对应文件为 Figure+Table/desease-targets-with-annotation-of-biomaRt-of-ensembl-dataset.xlsx)

注:表格共有 674 行 8 列,以下预览的表格可能省略部分数据;表格含有 674 个唯一'hgnc_symbol'。

Table 6: Desease targets with annotation of biomaRt of ensembl dataset

hgnc	ensem2	ensem3	entre	chrom	start	end_p	descr
ABCB1	ENSG0	ENST0	5243	7	87503017	87713323	ATP b
ABCC8	ENSG0	ENST0	6833	11	17392498	17476894	ATP b
ABCG1	ENSG0	ENST0	9619	21	42199689	42297244	ATP b
ACE	ENSG0	ENST0	1636	17	63477061	63498380	angio
ACHE	ENSG0	ENST0	43	7	10088	10089	acety
ACSL1	ENSG0	ENST0	2180	4	18475	18482	acyl
ACTB	ENSG0	ENST0	60	7	5526409	5563902	actin
ADA	ENSG0	ENST0	100	20	44584896	44652252	adeno

hgnc	ensem2	ensem3	entre	chrom	start	end_p	descr
ADA2	ENSG0	ENST0	51816	22	17178790	17258235	adeno
ADAMTS13	ENSG0	ENST0	11093	HG203	240452	285496	ADAM
ADAR	ENSG0	ENST0	103	1	15458	15462	adeno
ADCY3	ENSG0	ENST0	109	2	24819169	24920237	adeny
ADCY5	ENSG0	ENST0	111	3	12328	12344	adeny
ADD1	ENSG0	ENST0	118	4	2843844	2930076	adduc
ADORA1	ENSG0	ENST0	134	1	20309	20316	adeno

4.1.3 数据透视

以下,以 UpSet 图展示各个数据集之间的交集。

Figure 1为图 intersect of target genes of TCMs 概览。

(对应文件为 Figure+Table/intersect-of-target-genes-of-TCMs.pdf)

Figure 1: Intersect of target genes of TCMs

Figure 2为图 intersect of compounds of TCMs 概览。

(对应文件为 Figure+Table/intersect-of-compounds-of-TCMs.pdf)

Figure 2: Intersect of compounds of TCMs

Figure 3为图 intersect of targets of compounds and disease targets 概览。

(对应文件为 Figure+Table/intersect-of-targets-of-compounds-and-disease-targets.pdf)

Figure 3: Intersect of targets of compounds and disease targets

4.1.4 以 STRINGdb 构建 PPI 网络

以 Fig. 3 中的四个数据集的交集,以 STRINGdb 创建 PPI 网络。

由于 PPI 网络包含过多节点,这里不展示 PPI 图 (较为混乱)。

Table 7为表格 ID mapped by STRINGdb 概览。

(对应文件为 Figure+Table/ID-mapped-by-STRINGdb.xlsx)

注: 表格共有 292 行 9 列,以下预览的表格可能省略部分数据;表格含有 289 个唯一'hgnc_symbol'。

Table 7: ID mapped by STRINGdb

hgnc	STRIN	ensem3	ensem4	entre	chrom	start	end_p	descr
ABCB1	9606	ENSG0	ENST0	5243	7	87503017	87713323	ATP b
ACE	9606	ENSG0	ENST0	1636	17	63477061	63498380	angio
ACHE	9606	ENSG0	ENST0	43	7	10088	10089	acety
ACSL1	9606	ENSG0	ENST0	2180	4	18475	18482	acyl
ACTB	9606	ENSG0	ENST0	60	7	5526409	5563902	actin
ADA	9606	ENSG0	ENST0	100	20	44584896	44652252	adeno
ADA2	9606	ENSG0	ENST0	51816	22	17178790	17258235	adeno
ADA2	9606	ENSG0	ENST0	51816	22	17178790	17258235	adeno
ADAR	9606	ENSG0	ENST0	103	1	15458	15462	adeno
ADD1	9606	ENSG0	ENST0	118	4	2843844	2930076	adduc
ADORA1	9606	ENSG0	ENST0	134	1	20309	20316	adeno
ADRB1	9606	ENSG0	ENST0	153	10	11404	11404	adren
AGXT	9606	ENSG0	ENST0	189	2	24086	24088	alani
AKR1B10	9606	ENSG0	ENST0	57016	7	13452	13454	aldo
ALAD	9606	ENSG0	ENST0	210	9	11338	11340	amino

4.1.5 筛选 HubGenes

利用 Cytoscape 的插件 CytoHubba¹ 提供的 MCC 算法计算 Hub 基因得分(这里 MCC 算法被集成到 R 中,独立计算)。

Figure 4为图 MCC Top 30 概览。

(对应文件为 Figure+Table/MCC-Top-30.pdf)

Figure 4: MCC Top 30

Table 8为表格 all MCC scores 概览。

(对应文件为 Figure+Table/all-MCC-scores.xlsx)

注: 表格共有 292 行 10 列,以下预览的表格可能省略部分数据;表格含有 289 个唯一'hgnc_symbol'。

Table 8: All MCC scores

hgnc	MCC_s	STRIN	ensem4	ensem5	entre	chrom	start	end_p	descr	
SRC	1441311	9606	ENSG0	ENST0	6714	HG410	254187	315552	SRC p	
HSP90AA1	1353642	9606	ENSG0	ENST0	3320	14	10208	10213	heat	
EGFR	1328596	9606	ENSG0	ENST0	1956	7	55019017	55211628	epide	
ITGB3	941356	9606	ENSG0	ENST0	3690	17	47253827	47313743	integ	
MET	937035	9606	ENSG0	ENST0	4233	7	11667	11679	MET p	
MAPK3	894838	9606	ENSG0	ENST0	5595	16	30114105	30123506	mitog	
KRAS	890536	9606	ENSG0	ENST0	3845	12	25205246	25250936	KRAS	
PTPN11	871709	9606	ENSG0	ENST0	5781	12	11241	11250	prote	
HRAS	849299	9606	ENSG0	ENST0	3265	HSCHR	61883	66928	HRas	

hgnc	MCC_s	STRIN	ensem4	ensem5	entre	chrom	start	end_p	descr	
NRAS	828404	9606	ENSG0	ENST0	4893	1	11470	11471	NRAS	
ERBB2	531274	9606	ENSG0	ENST0	2064	17	39687914	39730426	erb-b	
ACTB	420124	9606	ENSG0	ENST0	60	7	5526409	5563902	actin	
APP	417130	9606	ENSG0	ENST0	351	21	25880535	26171128	amylo	
SNCA	416493	9606	ENSG0	ENST0	6622	4	89700345	89838315	synuc	
MAPT	406245	9606	ENSG0	ENST0	4137	HSCHR	760287	893653	micro	

4.1.6 通路富集分析

使用 clusterProfiler 富集分析 top 30 的基因。

Figure 5为图 GO enrichment of MCC top 30 概览。

(对应文件为 Figure+Table/GO-enrichment-of-MCC-top-30.pdf)

Figure 5: GO enrichment of MCC top 30

Figure 6为图 KEGG enrichment of MCC top 30 概览。

(对应文件为 Figure+Table/KEGG-enrichment-of-MCC-top-30.pdf)

Figure 6: KEGG enrichment of MCC top 30

4.2 分析糖尿病肾病肠道差异菌群

4.2.1 选择公共数据库的 16s rRNA 数据

- 所选数据的文献来源2
 - Title: The Intestinal Microbiota Composition in Early and Late Stages of Diabetic Kidney Disease
 - PMID: 37341590
 - BioProject: PRJNA824185
- 相关信息
 - 引物: 805R (5'-GACTACHVGGGTATCTAATCC-3') and 341F (5'-CCTACGGGNGGCWGCAG-3')

Table 9为表格 metadata of the sra data of PRJNA824185 概览。

(对应文件为 Figure+Table/metadata-of-the-sra-data-of-PRJNA824185.csv)

注: 表格共有 108 行 47 列,以下预览的表格可能省略部分数据;表格含有 108 个唯一'Run'。

Table 9: Metadata of the sra data of PRJNA824185

Run	Relea	LoadDa	atsopots	bases	spots	avgLe	size_N	ABAssem.	downl	Exper Libra	12
SRR18	2023-	2022-	84114	4205700	00	500	13	NA	https	SRX14C_1	
SRR18.	2023-	 2022-	85133	4256650	00	500	13	NA	https	SRX14C_10	
SRR18	2023-	2022-	83213	4177292	2 6	502	12	NA	https	SRX14C_11	

15

Run	Relea	LoadD	atsopots	bases	spots	avgLe	size_	_MBAssem.	downl	Exper Libra1	2
SRR18	2023-	2022-	80525	404235	50	502	12	NA	https	SRX14C_12	
SRR18	2023-	 2022-	83961	419805	00	500	13	NA	https	SRX14C_2	
SRR18	2023-	 2022-	81782	408910	00	500	13	NA	https	SRX14C_3	
SRR18	2023-	 2022-	56959	284795	00	500	9	NA	https	SRX14C_4	
SRR18	2023-	 2022-	85406	427030	00	500	15	NA	https	SRX14C_5	
SRR18		 2022-	87838	439190	00	500	15	NA	https	SRX14C_6	
SRR18		 2022-	87784	438920	00	500	13	NA	https	SRX14C_7	
SRR18		 2022-	85552	427760	00	500	13	NA	https	SRX14C_8	
SRR18	2023-	 2022-	82562	412810	00	500	12	NA	https	SRX14C_9	
SRR18		 2022-	80309	401545	00	500	12	NA	https	SRX14DM_10	•••
SRR18	2023-	 2022-	84125	420625	00	500	13	NA	https	SRX14DM_11	
SRR18	2023-	 2022-	82632	413160	00	500	13	NA	https	SRX14DM_12	

4.2.2 下载和预处理 SRA 数据

使用 sra-toolkit 工具组的 prefetch 下载 SRA 数据,并用 fastq-dump 转化为 fastq 文件。 实际使用的数据为:

- Control 组
- Diabetic Nephropathy 组

Table 10为表格 metadata of used 16s rRNA data 概览。

(对应文件为 Figure+Table/metadata-of-used-16s-rRNA-data.csv)

注:表格共有 78 行 5 列,以下预览的表格可能省略部分数据;表格含有 2 个唯一'group'。

Table 10: Metadata of used 16s rRNA data

sampl	Run	forwa	rever	group
C.1	SRR18	/home	/home	С
C.10	SRR18	/home	/home	\mathbf{C}
C.11	SRR18	/home	/home	\mathbf{C}
C.12	SRR18	/home	/home	\mathbf{C}
C.2	SRR18	/home	/home	С
C.3	SRR18	/home	/home	\mathbf{C}
C.4	SRR18	/home	/home	C
C.5	SRR18	/home	/home	С
C.6	SRR18	/home	/home	\mathbf{C}
C.7	SRR18	/home	/home	С
C.8	SRR18	/home	/home	С
C.9	SRR18	/home	/home	C
DN.16	SRR18	/home	/home	DN
DN.17	SRR18	/home	/home	DN
DN.18	SRR18	/home	/home	DN

4.2.3 使用 Qiime2 作为上游分析

以下分析参照³⁻⁷: https://docs.qiime2.org/2023.7/tutorials/moving-pictures-usage/

- importing data
- Demultiplexing sequences
- Sequence quality control and feature table construction
 - DADA2
- FeatureTable and FeatureData summaries
- Generate a tree for phylogenetic diversity analyses
- Alpha and beta diversity analysis
- Alpha rarefaction plotting
- Taxonomic analysis
- Differential abundance testing with ANCOM

4.2.4 使用 MicrobiotaProcess 作为下游分析

结果见以下部分。

4.2.5 Alpha 多样性

Control 组和 Diabetic Nephropathy 组的 Alpha 多样性没有显著差异 (Fig. 8)。

Figure 7为图 alpha rarefaction curve 概览。

(对应文件为 Figure+Table/alpha-rarefaction-curve.pdf)

Figure 7: Alpha rarefaction curve

Figure 8为图 evaluate alpha diversity in multiple methods 概览。

(对应文件为 Figure+Table/evaluate-alpha-diversity-in-multiple-methods.pdf)

Figure 8: Evaluate alpha diversity in multiple methods

4.2.6 物种丰度

门、纲、目、科、属、种对应为:

taxonomy:

Phylum, Class, Order, Family, Genus, Species

4.2.7 Beta 多样性

在 Beta 分析中,C 组和 DN 组未发生完全区分的聚类。

Figure 9为图 PCoA 概览。

(对应文件为 Figure+Table/PCoA.pdf)

Figure 9: PCoA

Figure 10为图 abundance in Family 概览。

(对应文件为 Figure+Table/abundance-in-Family.pdf)

Figure 10: Abundance in Family

Figure 11为图 abundance in Genus 概览。

(对应文件为 Figure+Table/abundance-in-Genus.pdf)

Figure 11: Abundance in Genus

4.2.8 差异分析

相比于 C 组, DN 组的部分菌丰度显著降低 (Tab. 11)。

Figure 12为图 significant Microbiota boxplot 概览。

(对应文件为 Figure+Table/significant-Microbiota-boxplot.pdf)

Figure 12: Significant Microbiota boxplot

Table 11为表格 FDR significant Microbiota 概览。

(对应文件为 Figure+Table/FDR-significant-Microbiota.csv)

注:表格共有 10 行 8 列,以下预览的表格可能省略部分数据;表格含有 10 个唯一'label'。

Table 11: FDR significant Microbiota

label	nodeC	pvalue	fdr	LDAupper	LDAmean	LDAlower	Sign
gCA	Genus	6.558	0.004	3.355	3.321	3.285	C
sun	Species	6.558	0.004	3.355	3.321	3.285	\mathbf{C}
gLa	Genus	6.577	0.032	4.421	4.383	4.341	\mathbf{C}
7924a	OTU	1.637	0.037	3.598	3.539	3.469	\mathbf{C}

label	nodeC	pvalue	fdr	LDAupper	LDAmean	LDAlower	Sign
d581e	OTU	1.637	0.037	3.465	3.418	3.365	C
fSe	Family	1.512	0.037	4.523	4.469	4.408	\mathbf{C}
sun	Species	1.842	0.037	3.313	3.260	3.201	\mathbf{C}
sun	Species	2.010	0.037	4.400	4.360	4.317	\mathbf{C}
gMe	Genus	2.279	0.037	4.514	4.460	4.398	\mathbf{C}
sun	Species	2.963	0.043	3.263	3.218	3.168	С

关于 LDA⁸。

4.3 分析糖尿病肾病的代谢组学差异

4.3.1 数据来源

该数据为血清代谢组。血清代谢组可以反映肠道菌丰度,请参考9。

数据来源:

- Title: Serum Metabolomics Benefits Discrimination Kidney Disease Development in Type 2 Diabetes Patients
- PMID: 35615098

Table 12为表格 metadata of serum 概览。

(对应文件为 Figure+Table/metadata-of-serum.csv)

注:表格共有89行2列,以下预览的表格可能省略部分数据;表格含有3个唯一'group'。

Table 12: Metadata of serum

group	sample
Control	C301
Control	C317
Control	C320
Control	C321
Control	C322
Control	C328
Control	C329
Control	C331
Control	C334
Control	C337
Control	C340
Control	C302
Control	C343

group	sample
Control	C345
Control	C347

Table 13为表格 source data of serum 概览。

(对应文件为 Figure+Table/source-data-of-serum.xlsx)

注: 表格共有 1042 行 90 列,以下预览的表格可能省略部分数据;表格含有 1042 个唯一'rownames'。

Table 13: Source data of serum

Coc	1 (101)	7. (2000)	. C001	Class	. C000		C001	Clan	. Coop	G0.40	Cana	C0.40	C0.45	C0.47	G9.40	C0.40	Cara	COLL
rowna 6136	01 C31	7 C32C) C321	. C322	C328	C329	C331	C334	1 C337	C340	C302	C343	C345	C347	C348	C349	C353	C355
Acryl									-							-	-	-
0.11	0.08	0.08.	0.11	0.09.	0.08	0.14	. 0.19	. 0.12.	0.02	. 0.12	. 0.19	. 0.10	. 0.18	. 0.11	. 0.14	. 0.13	. 0.13	. 0.06
Butanal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.27	7 0.24	0.35.	0.30	0.28	0.35	0.30	. 0.29	. 0.33.	0.31	. 0.25	. 0.29	. 0.32	. 0.30	. 0.30	. 0.32	. 0.34	. 0.26	. 0.20
Acety	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.18	3 0.16	0.22.	0.21	0.21.	0.22	0.20	. 0.19	. 0.24.	0.21	. 0.19	. 0.20	. 0.23	. 0.23	. 0.20	. 0.20	. 0.22	. 0.17	. 0.15
Trime	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.10	0.05	0.00.	0.12	0.09	0.09	0.08	. 0.08	. 0.11.	0.03	. 0.15	. 0.12	. 0.17	. 0.18	. 0.13	0.10	. 0.06	. 0.05	. 0.12
N	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
oxide 0.27	0.24	0.35.	0.30	0.28.	0.35	0.30	. 0.29	. 0.33.	0.31	. 0.25	. 0.29	. 0.32	. 0.17	. 0.30	. 0.32	. 0.34	. 0.26	. 0.20
Hydrol15	30.48	4.1.108	30.266	5.0.188	3.1.310	00.474	.2.068	S. .	0.546	.0.050	.0.606	.1.468	0.820	0.768	.0.207	2.574	0.437	0.087
								0.00.										
Cyste	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0.09	0.15	0.22.	0.20	0.17	0.21	0.18	. 0.10	. 0.33.	0.20	. 0.25	. 0.19	. 0.10	. 0.15	. 0.19	. 0.32	. 0.12	. 0.17	. 0.20
Benzene	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.27	7 0.24	0.35.	0.30	0.28.	0.35	0.30	. 0.29	. 0.33.	0.31	. 0.25	. 0.29	. 0.32	. 0.30	. 0.30	. 0.32	. 0.34	. 0.26	. 0.20
2- 0.85	52.0.71	90.893	3.0.610	0.0.425	50.704	1.0.467	0.650	0.0.843	3.0.590	.0.506	.0.710	.0.969	.0.939	.0.900	0.636	50.732	20.713	0.475
Chl																		
Sulfite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.07	7 0.11	0.14.	0.09	0.13	0.14	0.14	. 0.11	. 0.09.	0.14	. 0.11	. 0.15	. 0.14	. 0.12	. 0.14	0.11	. 0.15	. 0.12	. 0.08
	9.0.33																	
Ami																		
Imida₌	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0.05	0.14	0.18	0.06	0.01	0.06	0.14	0.13	0.15	0.14	0.04	0.09	0.19	0.03	0.05	0.05	0.03	0.07
Penta	0.00		_	_		-								-		_	-	-
- OIIUU	0.00																	

4.3.2 代谢物筛选

Figure 13为图 selected metabolites with multiple selection methods 概览。

(对应文件为 Figure+Table/selected-metabolites-with-multiple-selection-methods.pdf)

Figure 13: Selected metabolites with multiple selection methods

4.3.3 富集分析

取 Fig. 13 的代谢物做富集分析。

以下内容仅供参考,无直接结论。

4.3.3.1 MetaboAnalyst Figure 14为图 use MetaboAnalyst for metabolites enrichment 概览。

(对应文件为 Figure+Table/metabolites_ORA_dot_kegg_pathway_dpi72.pdf)

Figure 14: Use MetaboAnalyst for metabolites enrichment

4.3.3.2 FELLA Figure 15为图 use FELLA for metabolites enrichment 概览。

(对应文件为 Figure+Table/use-FELLA-for-metabolites-enrichment.pdf)

Figure 15: Use FELLA for metabolites enrichment

4.4 关联分析: 差异菌群与代谢物

4.4.1 使用关联数据

血清代谢物和肠道菌群的关联性10

• Title: gutMDisorder: a comprehensive database for dysbiosis of the gut microbiota in disorders and interventions

该数据集反映了肠道菌与代谢物之间的关联。

4.4.2 从差异菌群到差异代谢物

将 Fig. 13 的代谢物和 Fig. 12 的差异菌,结合 gutMDisorder 数据集,进一步筛选差异代谢物和差异菌。 Figure 16为图 Integration of datasets for metabolites and microbiota selection 概览。

(对应文件为 Figure+Table/Integration-of-datasets-for-metabolites-and-microbiota-selection.pdf)

Figure 16: Integration of datasets for metabolites and microbiota selection

Fig. 16 筛选到:

- $\bullet \quad Lachnospiraceae^{11}$
- $\bullet \ \ {\rm Trimethylamine}^{12}$

Figure 17为图 Metabolite Trimethylamine levels 概览。

(对应文件为 Figure+Table/Metabolite-Trimethylamine-levels.pdf)

Figure 17: Metabolite Trimethylamine levels

4.5 分析糖尿病肾病的转录组学差异

4.5.1 数据来源

• GSE199838

data_processing:

Illumina Bcl2FastQ software used for basecalling.

data_processing.1:

Sequenced reads were trimmed for adaptor sequence, and masked for low-complexity or low-quality sequence. The remaining reads were filtered against the rRNA database to remove possible ribosomal RNA contamination, and then mapped to the hg19 whole genome using Hisat2 v2.1.0 with default parameters.

data_processing.2:

HTSeq v0.11.2 was subsequently employed to convert aligned short reads into read counts for each gene model.

data_processing.3:

Assembly: hg19

data_processing.4:

Supplementary files format and content: tab-delimited text files include RPKM for each Sample

4.5.2 数据标准化

Figure 18为图 RNA filtered genes 概览。

(对应文件为 Figure+Table/RNA-filtered-genes.pdf)

Figure 18: RNA filtered genes

Figure 19为图 RNA nomalization 概览。

(对应文件为 Figure+Table/RNA-nomalization.pdf)

Figure 19: RNA nomalization

4.5.3 差异分析

Figure 20为图 RNA seq DEG 概览。

(对应文件为 Figure+Table/RNA-seq-DEG.pdf)

Figure 20: RNA seq DEG

Table 14为表格 RNA DEG top table 概览。

(对应文件为 Figure+Table/RNA-DEG-top-table.csv)

注:表格共有 865 行 7 列,以下预览的表格可能省略部分数据;表格含有 865 个唯一'hgnc_symbol'。

Table 14: RNA DEG top table

hgnc	$\log FC$	AveExpr	t	P.Value	adj.P	В
NPY1R	2.251	6.749	7.572	0.000	0.618	-3.90
HBB	-2.83	8.479	-5.57	0.000	0.618	-3.91
COL14A1	2.124	7.990	5.201	0.001	0.618	-3.94
ASAH1	1.170	7.424	4.806	0.001	0.618	-3.97
VARS	-0.96	7.518	-4.40	0.002	0.618	-3.99
RHOB	-1.15	9.861	-4.31	0.003	0.618	-4.01
MT1E	-3.14	8.226	-4.21	0.003	0.618	-4.02
MT2A	-2.89	8.428	-4.14	0.004	0.618	-4.02
FGL2	1.058	8.156	4.069	0.004	0.618	-4.03
C4B	-1.88	7.510	-3.97	0.005	0.618	-4.04
SLC27A4	-0.76	7.183	-3.82	0.006	0.618	-4.06
VASN	-1.13	7.761	-3.68	0.007	0.618	-4.07

hgnc	logFC	AveExpr	t	P.Value	adj.P	В
PABPC1	-0.71	9.322	-3.67	0.007	0.618	-4.08
TTC28	-0.90	8.207	-3.58	0.008	0.618	-4.08
TRABD2B	-1.78	7.019	-3.73	0.006	0.618	-4.08

4.6 转录组学和网络药理学结合

取 4.1.5 中 top 100 的基因,与 Tab. 14 中满足条件(P.Value <.05, |logFC| > 1)的基因。 Figure 21为图 intersection of target genes as receptor 概览。

(对应文件为 Figure+Table/intersection-of-target-genes-as-receptor.pdf)

Figure 21: Intersection of target genes as receptor

所有的候选受体(用于分子对接 4.7

receptors:

DCN, IRAK1, CDKN1A, FOXO3

4.7 代谢小分子靶点蛋白分析

4.7.1 分子对接

使用 Autodock vina 对接¹³。

流程请参考文献¹⁴ 或者 https://autodock-vina.readthedocs.io/en/latest/docking_basic.html。

Figure 22为图 docking affinity 概览。

(对应文件为 Figure+Table/docking-affinity.pdf)

Figure 22: Docking affinity

4.7.2 对接可视化

使用 PyMol 工具将结果可视化 15 。

Figure 23为图 docking with FOXO3 概览。

(对应文件为 Figure+Table/1146_into_21qh.png)

Figure 23: Docking with FOXO3

Figure 24为图 docking with IRAK1 概览。

(对应文件为 Figure+Table/1146_into_6bfn.png)

Figure 24: Docking with IRAK1

Figure 25为图 docking with CDKN1A 概览。

(对应文件为 Figure+Table/1146_into_6p8h.png)

Figure 25: Docking with CDKN1A $\,$

对接的化合物的结构为:

Figure 26为图 compound structure 2D 概览。

(对应文件为 Figure+Table/1146_2D.pdf)

Figure 26: Compound structure 2D

Figure 27为图 compound structure 3D 概览。

(对应文件为 Figure+Table/1146.png)

Figure 27: Compound structure 3D

4.7.3 靶点蛋白的表达量以及相关通路

Figure 28为图 pathway enrichment of receptors 概览。

(对应文件为 Figure+Table/pathway-enrichment-of-receptors.pdf)

Figure 28: Pathway enrichment of receptors

4.8 复方活性成分

4.8.1 作用于靶点蛋白的主要活性成分

Table 15为表格 main active compounds to receptors 概览。

(对应文件为 Figure+Table/main-active-compounds-to-receptors.xlsx)

注: 表格共有 16 行 8 列,以下预览的表格可能省略部分数据;表格含有 12 个唯一'Ingredient.name'。

Table 15: Main active compounds to receptors

Herb	Ingre2	${\rm Ingre3}$	Targe4	Targe5	Datab	Paper.id	PubMe
DAN SHEN	aloee	AC1Q6	HBTAR	CDKN1A	NA	NA	NA
FU LING	aloee	AC1Q6	HBTAR	CDKN1A	NA	NA	NA
GAN CAO	beta	MolPo	HBTAR	CDKN1A	NA	NA	NA
GAN CAO	capsa	capsa	HBTAR	CDKN1A	NA	NA	NA
NIU XI	d-man	1630	HBTAR	IRAK1	NA	NA	NA
CHEN PI	naringin	(2S)	HBTAR	CDKN1A	NA	NA	NA
DA HUANG	naringin	(2S)	HBTAR	CDKN1A	NA	NA	NA
HONG HUA	naringin	(2S)	HBTAR	CDKN1A	NA	NA	NA
CHEN PI	nobil	Spect	HBTAR	CDKN1A	NA	NA	NA
DA HUANG	nobil	Spect	HBTAR	CDKN1A	NA	NA	NA
GAN CAO	pachy	pachy	HBTAR	CDKN1A	NA	NA	NA
FU LING	salvi	4CN-1	HBTAR	FOXO3	NA	HBREF	31193821
FU LING	tansh	I14-1	HBTAR	CDKN1A	NA	NA	NA
FU LING	tansh	SCHEM	HBTAR	CDKN1A	NA	NA	NA
NIU XI	tetra	NCI60	HBTAR	CDKN1A	NA	HBREF	29605511
	•••						

5 结论

见 1

Reference

- 1. Chin, C.-H. *et al.* CytoHubba: Identifying hub objects and sub-networks from complex interactome. *BMC Systems Biology* **8**, S11 (2014).
- 2. Zhang, L. et al. The intestinal microbiota composition in early and late stages of diabetic kidney disease. Microbiology Spectrum 11, (2023).
- 3. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using qiime
- 2. Nature Biotechnology **37**, 852–857 (2019).
- 4. McDonald, D. *et al.* The biological observation matrix (biom) format or: How i learned to stop worrying and love the ome-ome. *GigaScience* 1, 7 (2012).
- Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nature methods 13, 581 (2016).
- 6. Hamday, M., Walker J., J., Harris, J. K., Gold J., N. & Knight, R. Error-correcting barcoded primers allow hundreds of samples to be pyrosequenced in multiplex. *Nature Methods* 5, 235–237 (2008).

- 7. Hamday, M. & Knight, R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. *Genome Research* **19**, 1141–1152 (2009).
- 8. Rai, S. N. et al. Microbiome data analysis with applications to pre-clinical studies using qiime2: Statistical considerations. Genes \& Diseases 8, (2021).
- 9. Wilmanski, T. et al. Blood metabolome predicts gut microbiome α -diversity in humans. Nature Biotechnology 37, (2019).
- 10. Cheng, L., Qi, C., Zhuang, H., Fu, T. & Zhang, X. GutMDisorder: A comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. *Nucleic Acids Research* 48, (2019).
- 11. Vacca, M. et al. The controversial role of human gut lachnospiraceae. Microorganisms 8, (2020).
- 12. Praveenraj, S. S. et al. The role of a gut microbial-derived metabolite, trimethylamine n-oxide (tmao), in neurological disorders. *Molecular neurobiology* **59**, 6684–6700 (2022).
- 13. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical Information and Modeling* **61**, 3891–3898 (2021).
- 14. Forli, S. et al. Computational proteinligand docking and virtual drug screening with the autodock suite. Nature Protocols 11, (2016).
- 15. Seeliger, D. & Groot, B. L. de. Ligand docking and binding site analysis with pymol and autodock/vina. *Journal of Computer-Aided Molecular Design* **24**, (2010).