N_1 Limite finie en a

Soient f une fonction définie sur un intervalle I de $\mathbb R$ et $a\in I$. La fonction f admet une **limite finie** $l\in \mathbb R$ en a quand la distance |l-f(x)| peut être rendue aussi petite que l'on veut si x est suffisamment proche de a. On écrit alors : $\lim_{x\to a} f(x) = l$

D Continuité

La fonction f est continue en a quand : $\lim_{x \to a} f(x) = f(a)$

La fonction f est **continue** sur un intervalle I de $\mathbb R$ quand f est continue pour tout réel $a \in I$. Sa courbe représentative ne possède pas de "trou" sur I: on peut la tracer sans lever le crayon.

□ Dérivabilité et continuité

Une foncton **dérivable** sur un intervalle I de $\mathbb R$ est **continue** sur I.

A Algorithme

L'algorithme suivant permet d'afficher la limite d'une fonction :

```
面
 1 function f(x) {return 3*x + 3;}
                                                                                      Algorithme
 3 var distance = 0.001;
 4 var step = 0.001;
                                                                                     Commentaires
 5 \text{ var } \mathbf{x} = 0;
 6 \text{ var } a = 10;
                                                                                     Créer nombre
 7 \text{ var } 1 = 0;
                                                                                   Demander nombre
 9 while (Math.abs(f(x) - f(a)) > distance)
10 {
                                                                                     Créer chaîne
11
        1 = f(x);
12
        x = x + step;
                                                                                     Créer une liste
13 }
14 algo.output('La limite de la fonction f en '+a+' vaut '+1);
                                                                                    Formater Nombre
15 algo.output('f('+a+') = '+f(a));
                                                                                       Affecter
```

Déterminer les limites suivantes :

 $\lim_{x o 0} f_1(x)$ avec $f_1(x)=5x+9$

- $\lim_{x o -6}\ f_2(x)$ avec $f_2(x)=8x^2$
- $\lim_{x o 2}\,f_3(x)$ avec $f_3(x)=\sqrt{x^2+1}$
- $\lim_{x o 3}\,f_4(x)$ avec $f_4(x)=rac{1}{x+2}$

$\overline{N_2}$ Limite infinie $(+\infty)$ en a

- La fonction f admet une limite infinie $(+\infty)$ en a par valeurs supérieures quand f(x) peut être rendu aussi grand que l'on veut si x > a est suffisamment proche de a. On écrit alors : $\lim_{x \to a^+} f(x) = +\infty$
- La fonction f admet une limite infinie $(+\infty)$ en a par valeurs inférieures quand f(x) peut être rendu aussi grand que l'on veut si x < a est suffisamment proche de a. On écrit alors : $\lim_{x \to a^-} f(x) = +\infty$

Déterminer les limites suivantes :

 $\lim_{x o 0^+}\,f_1(x)$ avec $f_1(x)=rac{1}{x}$

- $\lim_{x o 2^-} \, f_2(x)$ avec $f_2(x)=rac{7}{2-x}$
- $\lim_{x o 4^+}\,f_3(x)$ avec $f_3(x)=rac{x}{2x^2-32}$
- $\lim_{x o 3^-}\,f_4(x)$ avec $f_4(x)=rac{1}{x}+rac{2}{6-2x}$

Limite infinie $(-\infty)$ en a

D Limite

- La fonction f admet une **limite infinie** $(-\infty)$ en a par **valeurs supérieures** quand f(x) peut être rendu aussi <u>petit</u> que l'on veut si x > a est suffisamment <u>proche</u> de a. On écrit alors : $\lim_{x \to a^+} f(x) = -\infty$
- La fonction f admet une limite infinie $(-\infty)$ en a par valeurs inférieures quand f(x) peut être rendu aussi grand que l'on veut si x < a est suffisamment proche de a. On écrit alors : $\lim_{x \to a^-} f(x) = -\infty$

Déterminer les limites suivantes :

$$\lim_{x o 0^+}\,f_1(x)$$
 avec $f_1(x)=rac{1}{x}$

$$\lim_{x o 4^+}\,f_3(x)$$
 avec $f_3(x)=rac{x}{2x^2-32}$

$$\lim_{x o 2^-} \ f_2(x)$$
 avec $f_2(x)=rac{7}{2-x}$

$$\lim_{x o 3^-} f_4(x)$$
 avec $f_4(x)=rac{1}{x}+rac{2}{6-2x}$

N₄ Asymptote verticale

D Asymptote verticale

La courbe représentative \mathcal{C}_f de la fonction f admet une **asymptote verticale** (parallèle à l'axe des ordonnées) d'équation x=a quand $\lim_{x\to a^+} f(x)$ ou $\lim_{x\to a^-} f(x)$ sont infinies $(+\infty \text{ ou } -\infty)$.

C'est à dire que \mathcal{C}_f se "rapproche" de plus de plus de la droite verticale d'équation x=a.

Montrer que les représentations graphiques des fonctions f suivantes admettent une asymptote verticale d'équation x=a $(a\in\mathbb{R})$:

$$oxed{1} f: x \mapsto rac{-1}{x^2} ext{ et } a = 0$$

$$3 \quad f: x \mapsto x^2 + \frac{1}{9-x^2} \text{ et } a = 3$$

$$2 \quad f: x \mapsto 12 + \frac{1}{x-9} \text{ et } a = 9$$

$$\boxed{ 4 \quad f: x \mapsto 2x - 8 + \frac{1}{\sqrt{x}} \text{ et } a = 0 }$$

N₅ Limite finie en l'infini

 \square Limite en $+\infty$ et $-\infty$

- La fonction f admet une **limite finie** $l \in \mathbb{R}$ en $+\infty$ quand la distance |l-f(x)| peut être rendue aussi petite que l'on veut (proche de 0) si x est suffisamment grand (proche de $+\infty$). On écrit alors : $\lim_{x \to +\infty} f(x) = l$
- La fonction f admet une **limite finie** $l \in \mathbb{R}$ en $-\infty$ quand la distance |l f(x)| peut être rendue aussi petite que l'on veut (proche de 0) si x est suffisamment petit (proche de $-\infty$). On écrit alors : $\lim_{t \to \infty} f(x) = l$

$$\lim_{x o -\infty} \, f(x) = l$$

$$\lim_{x o +\infty} \ f(x)$$
 avec $f(x)=rac{-1}{x}$

$$\lim_{x o +\infty} \ f(x)$$
 avec $f(x)=rac{2}{x^2-16}$

$$\lim_{x o -\infty} \ f(x)$$
 avec $f(x)=rac{1}{x^2}$

$$\lim_{x o -\infty}\,f(x)$$
 avec $f(x)=\sqrt{5}-rac{1}{1+x^2}$

N₆ Asymptote horizontale

La courbe représentative \mathcal{C}_f de la fonction f admet une **asymptote horizontale** (parallèle à l'axe des abscisses) d'équation y=l quand $\lim_{x\to +\infty} f(x)=l$ ou $\lim_{x\to -\infty} f(x)=l$. C'est à dire que \mathcal{C}_f se "rapproche" de plus de plus de la droite horizontale d'équation y=l.

Montrer que les représentations graphiques des fonctions f suivantes admettent une asymptote horizontale d'équation $y=a\ (a\in\mathbb{R})$:

$$\boxed{ \ \ \, 1 \ \ \, } f:x\mapsto 3-\frac{1}{x^2} \,\, \text{et} \,\, a=3$$

$$2 \quad f: x \mapsto 12 + rac{1}{x-9} ext{ et } a = 12$$

$$\boxed{ \texttt{3} \quad f: x \mapsto -4 - \frac{1}{x} + \frac{1}{9-x^2} \text{ et } a = -4 }$$

$$\boxed{ 4 \quad f: x \mapsto \frac{2x^2-8}{4x^2} \text{ et } a=0,5}$$

N_7 | Limite infinie en l'infini

- La fonction f admet une **limite infinie** $(+\infty)$ en $+\infty$ quand f(x) peut être rendu aussi <u>grand</u> que l'on veut (proche de $+\infty$) si x est suffisamment <u>grand</u> (proche de $+\infty$). On écrit alors : $\lim_{x\to +\infty} f(x) = +\infty$
- La fonction f admet une **limite infinie** $(+\infty)$ en $-\infty$ quand f(x) peut être rendu aussi grand que l'on veut (proche de $+\infty$) si x est suffisamment petit (proche de $-\infty$). On écrit alors : $\lim_{x\to -\infty} f(x) = +\infty$
- La fonction f admet une **limite infinie** $(-\infty)$ en $+\infty$ quand f(x) peut être rendu aussi <u>petit</u> que l'on veut (proche de $-\infty$) si x est suffisamment <u>grand</u> (proche de $+\infty$). On écrit alors : $\lim_{x\to +\infty} f(x) = -\infty$
- La fonction f admet une **limite infinie** $(-\infty)$ en $-\infty$ quand f(x) peut être rendu aussi <u>petit</u> que l'on veut (proche de $-\infty$) si x est suffisamment <u>petit</u> (proche de $-\infty$). On écrit alors : $\lim_{x\to -\infty} f(x) = -\infty$

Déterminer les limites suivantes :

$$\lim_{x o +\infty} \ f(x)$$
 avec $f(x)=rac{-1}{x}+x^2$

$$\lim_{x o -\infty} \; f(x)$$
 avec $f(x)=\sqrt{x}$

$$\lim_{x o +\infty} \ f(x)$$
 avec $f(x)=x\sqrt{x}$

$$\lim_{x o -\infty} \; f(x)$$
 avec $f(x)=-2x^6$

$$\lim_{x o -\infty} \, f(x)$$
 avec $f(x)=rac{7x^2+9x-9}{6x-8}$

$$\lim_{x o +\infty} \, f(x)$$
 avec $f(x)=rac{4-x^2}{2-6x}$

$$\displaystyle \lim_{x o +\infty} \; f(x)$$
 avec $f(x)=3x-9$

$$\lim_{x o -\infty} \, f(x)$$
 avec $f(x) = -4x+1$

$\left[oldsymbol{N_8} ight]$ Limite de fonction affine et fonction carrée

P Fonction affine et fonction carrée

Soit a: b et α trois réels :

2010 60 7 0 00 60 01 010 1					
x ightarrow	α	$-\infty$	+∞		
$\lim \left(ax+b ight)$ avec $a>0$	$a\alpha + b$	$-\infty$	+∞		
$\lim \left(ax+b ight)$ avec $a<0$	$a\alpha + b$	+∞	$-\infty$		

Soit α un réel :

		_	_
x ightarrow	α	$-\infty$	+∞
$\lim (x^2)$	$lpha^2$	+∞	+∞

La fonction **affine** $x\mapsto ax+b$ est continue sur $\mathbb R$.

1 Ecrire un </>
algorithme
p

permettant de déterminer $\lim_{x \to -\infty} x^2$

2 Ecrire un </>
algorithme

permettant de déterminer que la fonction f(x) = -2x + 5 est continue en 2.

N₉ Autres fonctions de référence

P Autres fonctions de référence

Soit α un réel non nul :

x ightarrow	α	$-\infty$	0-	0+	+∞
$\lim \left(\frac{1}{x}\right)$	$\frac{1}{\alpha}$	0-	$-\infty$	+∞	0+

La fonction **inverse** $x \mapsto \frac{1}{x}$ est continue sur $]-\infty;0[$ et sur $]0;+\infty[$.

Soit α un réel :

x ightarrow	α	$-\infty$	+∞
$\lim (x)$	lpha	+∞	+∞

La fonction valeur absolue $x \mapsto |x|$ est continue sur $]-\infty;+\infty[$.

Soit α un réel positif :

x ightarrow	α	0	+∞
$\lim \left(\sqrt{x} \right)$	$\sqrt{\alpha}$	0	+∞

La fonction racine carrée $x \mapsto \sqrt{x}$ est continue sur $[0; +\infty[$.

Soit α un réel et n un entier naturel non nul :

x ightarrow	α	$-\infty$	+∞
$\lim (x^n)$ si n est pair	α^n	+∞	+∞
$\lim (x^n)$ si n est impair	α^n	$-\infty$	+∞

La fonction **puissance** $x \mapsto x^n$ est continue sur $]-\infty;+\infty[$.

- $oxed{1}$ Ecrire un $ext{ } ext{ }$
- Ecrire un $\langle \rangle$ algorithme permettant de déterminer que la fonction f(x)=-2x+5 est continue en 2.

N₁₀ Limites d'une somme

Soient deux fonctions f et g. Le tableau ci-dessous présente la limite de la somme f+g en fonction des limites de f et g. Dans certains cas il n'est pas possible de déterminer la limite de la somme, on parle alors de **Forme Indéterminée** (FI).

		$\lim f$		
	+	l_f	+∞	-∞
	l_g	$l_f + l_g$	+∞	$-\infty$
$\lim g$	+∞	+∞	+∞	FI
	$-\infty$	$-\infty$	FI	-∞

 $oldsymbol{l_f}$ et $oldsymbol{l_g}$ sont deux réels.

- $\displaystyle egin{array}{c} \displaystyle \lim_{x
 ightarrow 0} \; f(x) \; ext{avec} \; f(x) = x^6 + rac{1}{x} \; \end{array}$
- $\lim_{x o +\infty} \ f(x)$ avec $f(x)=9-4x+6x^2$
- $\displaystyle egin{array}{c} \displaystyle \lim_{x o 9} \; f(x) \; ext{avec} \; f(x) = x^2 + rac{1}{9-x} \end{array}$
- $egin{array}{|c|c|c|c|}\hline 4 & \lim_{x o 0} \ f(x) \ ext{avec} \ f(x) = \sqrt{x} 8x^2 + rac{-1}{x^5} \end{array}$

N_{11} Limites d'une somme

P Limites d'un produit de deux fonctions

Soient deux fonctions f et g. Le tableau ci-dessous présente la limite du produit $f \times g$ en fonction des limites de f et g. Dans certains cas il n'est pas possible de déterminer la limite de la somme, on parle alors de **Forme Indéterminée** (FI).

		$\lim f$				
	×	$l_f > 0$	$l_f < 0$	$l_f = 0$	+∞	$-\infty$
	$l_g>0$	$l_f l_g$	$l_f l_g$	0	+∞	$-\infty$
	$l_g < 0$	$l_f l_g$	$l_f l_g$	0	$-\infty$	+∞
$\lim g$	$l_g=0$	0	0	0	FI	FI
	+∞	+∞	$-\infty$	FI	+∞	-∞
	$-\infty$	$-\infty$	+∞	FI	$-\infty$	+∞

 $oldsymbol{l_f}$ et $oldsymbol{l_g}$ sont deux réels.

Déterminer les limites suivantes :

$$\displaystyle egin{array}{c} \displaystyle \lim_{x
ightarrow 0} \; f(x) \; ext{avec} \; f(x) = x^6 + rac{1}{x} \; \end{array}$$

$$egin{aligned} & \lim_{x o 9} \; f(x) \; ext{avec} \; f(x) = x^2 + rac{1}{9-x} \end{aligned}$$

$$\lim_{x o +\infty}\,f(x)$$
 avec $f(x)=9-4x+6x^2$

$$\lim_{x o 0}\,f(x)$$
 avec $f(x)=\sqrt{x}-8x^2+rac{-1}{x^5}$

N_{12} Limites d'une fonction composée

Soit f une fonction. Le tableau ci-dessous présente la limite de l'inverse $\frac{1}{f}$ en fonction de la limite de f.

$\lim f$	a	$-\infty$	+∞	0+	0-
$\lim rac{1}{f}$	$\frac{1}{a}$	0-	0+	+∞	$-\infty$

 \boldsymbol{a} est un réel non nul.

P Limites d'une composée d'une fonction

Soient u et f deux fonctions telles que pour tout x dans l'ensemble de définition de u, u(x) appartient à l'ensemble de définition de f. a, b et c désignent trois réels ou $-\infty$ ou $+\infty$:

si
$$\lim_{x o a}u(x)=b$$
 et $\lim_{x o b}f(x)=c$ alors $\lim_{x o a}f(u(x))=c$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} f(x) = x^6 + rac{1}{x} \end{aligned}$$

$$\displaystyle igl| \lim_{x o 9} \, f(x)$$
 avec $\displaystyle f(x) = x^2 + rac{1}{9-x}$

$$\lim_{x o +\infty} \, f(x)$$
 avec $f(x)=9-4x+6x^2$

$$\lim_{x o 0}\;f(x)$$
 avec $f(x)=\sqrt{x}-8x^2+rac{-1}{x^5}$

N_{13} Limites et comparaison

☐ Théorème de minoration et majoration

Soient f et g deux fonctions définies que un intervalle de la forme $[a; +\infty[$ telles que pour tout x>a $f(x)\leqslant g(x)$

- ullet si $\lim_{x o +\infty} f(x) = +\infty$ alors $\lim_{x o +\infty} g(x) = +\infty$ et si $\lim_{x o -\infty} f(x) = +\infty$ alors $\lim_{x o -\infty} g(x) = +\infty$
- ullet si $\lim_{x o +\infty} \, g(x) = -\infty$ alors $\lim_{x o +\infty} \, f(x) = -\infty$ et si $\lim_{x o -\infty} \, g(x) = -\infty$ alors $\lim_{x o -\infty} \, f(x) = -\infty$

Théorème d'encadrement

Soient f, g et h trois fonctions définies que un intervalle de la forme $[a; +\infty[$ telles que pour tout x>a $hg(x)\leqslant f(x)\leqslant h(x)$

- ullet Pour un réel l, si $\lim_{x o +\infty} \, g(x) = l$ et $\lim_{x o +\infty} \, h(x) = l$ alors $\lim_{x o +\infty} \, f(x) = l$
- ullet Pour un réel l, si $\lim_{x o -\infty} \, g(x) = l$ et $\lim_{x o -\infty} \, h(x) = l$ alors $\lim_{x o -\infty} \, f(x) = l$

Déterminer les limites suivantes :

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} f(x) = x^6 + rac{1}{x} \end{aligned}$$

$$egin{array}{c} egin{array}{c} egin{array}$$

$$\lim_{x o +\infty} \, f(x)$$
 avec $f(x)=9-4x+6x^2$

$$\lim_{x o 0}\;f(x)$$
 avec $f(x)=\sqrt{x}-8x^2+rac{-1}{x^5}$

Théorème des valeurs intermédaires

Théorème des valeurs intermédaires

Soit une fonction f continue sur un intervalle [a; b].

- ullet f atteint son minimum en m et son maximum en M
- ullet pour tout $k\in[m;M]$, il existe au moins un réel $c\in[a;b]$ tel que f(c)=k

Si la fonction f est strictement monotone sur [a;b] alors le réel c est unique.

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} f(x) = x^6 + rac{1}{x} \end{aligned}$$

$$\lim_{x o 9}\,f(x)$$
 avec $f(x)=x^2+rac{1}{9-x}$

$$\lim_{x o +\infty} \, f(x)$$
 avec $f(x) = 9 - 4x + 6x^2$

$$\lim_{x o 0}\;f(x)$$
 avec $f(x)=\sqrt{x}-8x^2+rac{-1}{x^5}$