1. Форматы команд и режимы адресации IBM PC

Список литературы:

https://www.intuit.ru/studies/courses/60/60/lecture/1776

https://www.intuit.ru/studies/courses/60/60/lecture/1778

https://www.intuit.ru/studies/courses/60/60/lecture/1780

http://www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html

- 1. Какую длину может иметь непосредственный операнд в 16разрядном микропроцессоре? 8 и 16 бит
- 2. Значения каких регистров изменяются при выполнении команд межсегментных переходов? CS . IP
- 3. Какое сочетание режимов адресации двухоперандной команды невозможно в системе команд 16-разрядного микропроцессора? іі
- 4. Какой из сегментных регистров используется по умолчанию при формировании физического адреса операндов, находящихся в оперативной памяти, при режимах адресации, использующих для формирования эффективного адреса регистр BP? SS
- 5. Какие из режимов адресации не используются в системе команд 16разрядного микропроцессора? автоинкрементный и автодекрементный
- 6. Какие регистры можно использовать при базово-индексной адресации в 16-разрядном микропроцессоре? *SI, DI, BX, BP*
- 7. Какова разрядность физического адреса 16-разрядного микропроцессора?
 20 бит (сегмент + смещение)
- 8. Какую длину имеет непосредственный операнд в 16-разрядном микропроцессоре при значении признака w=1? 2 байта
- Какие регистры можно использовать при косвенной адресации в 16разрядном микропроцессоре?
 BX, DI, SI

- 10. Какие регистры можно использовать при относительной базовоиндексной адресации в 16-разрядном микропроцессоре? SI, BX, DI, BP
- 11. Какова максимальная длина команды 16-разрядного микропроцессора? 6 байт
- 12. Какова разрядность эффективного адреса 16-разрядного микропроцессора?

 16 бит
- 13. Каково назначение признака s в командах, использующих непосредственный операнд?
 - 1) вместе с битом w определяет разрядность команды и операнда,
 - 2) для возможного сокращения длины команды в случае короткого непосредственного операнда
- 14. Значения каких регистров изменяются при выполнении команд внутрисегментных безусловных переходов? *IP*
- 15. Значения каких регистров изменяются при выполнении команд условных переходов? *IP*
- 16. Какую длину имеет команда прямого межсегментного перехода? *5 байт*

Команды прямого межсегментного перехода формат:

пример: JMP far ptr MARK; переход на метку MARK к команде, находящейся в другом сегменте.

17. Представьте следующую команду в машинном виде минимальной длины (при ответе на этот вопрос можно пользоваться таблицами

- кодирования команд и режимов адресации): SUB [SI+12h], DX 295412h *
- 18. Определить смещение, которое должно быть указано в команде короткого внутрисегментного перехода, расположенной по адресу (IP) = 243Dh и осуществляющей переход на команду по адресу 24C6h.
- 19. Определите адрес команды, которая будет выполняться после команды перехода 7007h, расположенной по адресу (IP) = FFEDh, при следующих значениях флагов: ZF = 1, SF = 0, CF = 0, OF = 1 FFF6
- 20. Представьте в символическом виде команду, имеющую следующий машинный код (при ответе на этот вопрос можно пользоваться таблицами кодирования команд и режимов адресации): 2BB71324h SUB SI, [BX+2413h] *
- 21. Арифметические команды какого формата: "память-регистр" или "регистр-память" выполняются дольше при одинаковом режиме адресации память-регистр
- 22.В каком случае команда условного перехода выполняется дольше? при выполнении условия перехода
- 23. Какое количество тактов будет выполняться следующая команда? ADD DX, [BX+DI+123H] Операнды в памяти выровнены по границе слова. При ответе на этот вопрос можно пользоваться таблицами времени выполнения команд и времени вычисления эффективного адреса.

 17
- 24. Как зависит время считывания операнда-слова от его месторасположения в оперативной памяти? увеличивается, если операнд не выровнен по границе слова
- 25. Почему считывание из памяти операнда-слова, не выровненного по границе слова, занимает больше времени, чем выровненного операнда? считывание не выровненного операнда требует двух обращений к памяти, вместо одного обращения для выровненного операнда

- 26. Какое количество тактов будет выполняться следующая команда SS: SUB DX, [BX]?
- Ответ: Операнды в памяти выровнены по границе слова. При ответе на этот вопрос можно пользоваться таблицами времени выполнения команд и времени вычисления эффективного адреса. 16
- 27. Для сокращения времени выполнения программы, имеющей циклические участки, требуется...
- Ответ: ...обработку информации на циклических участках проводить, по возможности, в регистровой памяти микропроцессора
- 28. Почему арифметические команды формата "память-регистр" выполняются дольше, чем команды формата "регистр-память" при одинаковом режиме адресации памяти? запись результата в память требует больше времени, чем запись результата в регистр
- 29. От чего зависит время выполнения арифметической команды?
 - 1) от режимов адресации операндов
 - 2) от места расположения приемника результата (регистр или память)
 - 3) от изменения сегментного регистра, используемого по умолчанию для формирования физического адреса операнда в памяти
- 30.Какое количество тактов будет выполняться следующая команда ES: SUB [123h], DX
- Ответ: Операнды в памяти выровнены по границе слова. При ответе на этот вопрос можно пользоваться таблицами времени выполнения команд и времени вычисления эффективного адреса 24
- 31. Почему команда условного перехода выполняется дольше при выполнении условия перехода, чем при невыполнении? необходимо новое заполнение очереди команд в микропроцессоре
- 32. Какое количество тактов будет выполняться следующая команда? ES: ADD [BX], 12H
- Ответ: Операнды в памяти выровнены по границе слова. При ответе на этот вопрос можно пользоваться таблицами времени выполнения команд и времени вычисления эффективного адреса. 23

- 33. Как влияет замена сегментного регистра, используемого по умолчанию для адресации операнда в памяти, на длительность выполнения команды? увеличивает время выполнения команды
- 34. От чего зависит время выполнения команд умножения? от значения множителя от режима адресации операнда, расположенного в памяти
- 35. Какое количество тактов будет выполняться следующая команда? ADD [BX+123H], DX

Ответ: Операнды в памяти выровнены по границе слова. При ответе на этот вопрос можно пользоваться таблицами времени выполнения команд и времени вычисления эффективного адреса. 25

2. Основы схемотехнической реализации ЭВМ

Литература:

https://www.intuit.ru/studies/courses/56/56/lecture/1668

http://otveti-na-

intuit.ru/%D0%BB%D0%BE%D0%B3%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8 %D0%B5-%D0%B8-

%D0%B0%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5-

%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D1%8B-%D0%B8/

пороговое напряжение высокого уровня)

- 1. Какие из следующих параметров логических элементов относятся к статическим?
 - помехоустойчивость потребляемая мощность (нагрузочная способность; ток потребления; напряжение источника питания; пороговое напряжение низкого уровня;
- 2. Какие действий И3 не выполняются при проектировании комбинационных схем? получение возможных минимальных форм логической всех функции
- 3. Как на УГО элемента обозначается инвертирование выходного сигнала относительно логической функции элемента, указанной в основном поле? Кружком

- 4. Что из нижеперечисленного не входит в понятие "система логических элементов"? устройства, обеспечивающие механическую совместимость
- 5. Каким методом можно проводить минимизацию логической функции от 4-х переменных при проектировании комбинационной схемы? любым из перечисленных выше методов
- 6. Сколько элементов "И-НЕ" потребуется для реализации функции, минимальная дизъюнктивная форма которой представлена ниже? f(x,y,z) = xy + xz

2. Запоминающие устройства. Кэш-память https://www.intuit.ru/studies/courses/60/60/lecture/1774

- 1. Какова минимальная адресуемая ячейка памяти в современных ЭВМ?
 - 1 байт
- 2. Какие основные параметры характеризуют запоминающее устройство?
 - Емкость, быстродействие
- 3. Чем определяется быстродействие запоминающего устройства при считывании информации?
 - временем, затрачиваемым на поиск нужной информации в памяти.
 - временем, затрачиваемым на считывание информации
- 4. Какое из представленных запоминающих устройств в составе одной ЭВМ обладает наиболее высоким быстродействием? кэш-память (если в ответах есть регистровая, то она)
- 5. Какое из запоминающих устройств в составе одной ЭВМ обладает наибольшей емкостью?
 - внешняя память
- 6. Чем определяется быстродействие запоминающего устройства при записи информации?
 - временем, затрачиваемым на поиск места в памяти,

- предназначаемого для хранения информации, временем, затрачиваемым на запись информации
- 7. Чем определяется емкость памяти? количеством адресуемых элементов и количеством разрядов, составляющих одну ячейку
- 8. В запоминающем устройстве какого типа время доступа не зависит от места расположения участка памяти? с произвольным доступом
- 9. Чем определяется время обращения к регистровой памяти? *Частотой синхронизации микропроцессора*
- Чем характеризуется идеальное запоминающее устройство?
 Бесконечно большой емкостью и бесконечно малым временем обращения
- 11. Сколько БИС с организацией 1К слов по 1 разряд потребуется для построения ЗУ с организацией 4К слов по 8 разрядов? Сначала собираем БИС по 8 разрядов каждая (получаем схемы 1К слов по 8 разрядов), затем соединяем 4 таких БИС, получая схему 4К слов по 8 разрядов (32)
- 4. Взаимодействие узлов и устройств в персональной ЭВМ», «Архитектура микропроцессора IA- 32»

- 1.С каким этапом совмещается этап формирования адреса следующей команды?
 - с 1-м
- 2. На каком этапе происходит выполнение операции в АЛУ? на 4-м
- 3. Какие действия выполняются в ЭВМ на 4-м этапе выполнения линейной команды?
 - выполнение операции в АЛУ
- 4. На каком этапе происходит запись результата операции по адресу приемника результата? 5
- 5. Как изменится количество этапов выполнения команды пересылки данных MOV [BX+5], AX по сравнению с командой сложения? не изменится
- 6. Содержимое каких регистров меняется при формировании адреса следующей команды в персональной ЭВМ при отсутствии команд перехода?
 - IP
- 7. Почему при формировании физического адреса содержимое сегментного регистра умножается на 16? чтобы увеличить объем адресного пространства, к которому может обращаться микропроцессор

8. Какие из блоков, входящих в состав 32-разрядного микропроцессора, отсутствовали в структуре 16-разрядного микропроцессора?

- блок управления защитой, - кэш-память,
- блок управления переключением задач (+ диспетчер памяти)
- 9. Из каких блоков состоит диспетчер памяти 32-разрядного микропроцессора?
 - блок управления страниц,
 - блок сегментации
- 10. Какова разрядность сегментных регистров в 32-разрядном микропроцессоре?
 - 16
- 11. Сколько сегментных регистров имеется в микропроцессоре с архитектурой IA-32?
 - 6
- 12. Какие дополнительные возможности адресации операндов имеются в системе команд 32-разрядных микропроцессоров по сравнению с 16-разрядными?
 - использование любого из восьми регистров общего назначения при формировании адреса, масштабирование содержимого индексного регистра, использование 8-, 16- и 32- разрядных смещений при относительной адресации
- 13. Сколько 32-разрядных регистров общего назначения представлено в микропроцессоре с архитектурой IA-32? 8 (EAX, EBX, ECX, EDX, EDI, ESI, ESP, EBP)

5. Конвейер

- 1. Какие преимущества обеспечивает конвейерный принцип обработки информации (при идеальном конвейере)?
 - уменьшение времени выполнения программы,
 - повышение скорости загрузки блоков микропроцессора
- 2. Как изменяется длительность такта при переходе от последовательного выполнения команд к конвейерному?
 - Увеличивается

- 3. Чем определяется длительность такта работы микропроцессора при конвейерной обработке информации?
 - длительностью самого длинного этапа выполнения команды при последовательной обработке,
 - имеющимися на данный момент технологическими возможностями производства микропроцессорных БИС
- 4. Какие из действий не выделяются в пятиступенчатом конвейере в отдельный этап?
 - формирование признака результата,
 - формирование адреса следующей команды
- 5. Какими средствами при конвейерной обработке информации обеспечивается повышение производительности работы микропроцессора?
 - Совмещением выполнения различных этапов различных команд в различных блоках микропроцессора
- 6. Чем характеризуется идеальный конвейер? *отсутствием конфликтов*
- 7. Какова длительность выполнения 20 команд в идеальном 5ступенчатом конвейере при длительности такта 10 нс? - 240 нс
- 8. Каковы причины возникновения структурных конфликтов в конвейере?
 - недостаточное дублирование некоторых ресурсов, - некоторые ступени отдельных команд выполняются более
 - одного такта
- 9. Как называются конфликты в конвейере, возникающие при конвейеризации команд переходов? по управлению
- 10. Как называются конфликты в конвейере, возникающие в случаях, когда выполнение одной команды зависит от результата выполнения предыдущей команды? по данным
- Как называются конфликты в конвейере, возникающие в том случае, когда аппаратные средства микропроцессора не могут поддерживать все возможные комбинации команд в режиме

одновременного *- структурные*

6. Управление памятью

Список литературы: https://www.intuit.ru/studies/courses/60/60/lecture/1794

Вопросы

- 1. Какие основные функции выполняет система управления памятью?
 - учет и модернизация состояния свободных и уже распределенных областей памяти,
 - определение потребностей каждой задачи в оперативной памяти,
 - непосредственное выделение задаче оперативной памяти
- 2. Каковы основные системные требования при распределении памяти?
 - увеличение степени использования оперативной памяти при параллельном развитии нескольких процессов в мультипрограммном режиме,
 - обеспечение защиты информации при параллельном развитии нескольких процессов в мультипрограммном режиме,
 - обеспечение взаимодействия между процессами в мультипрограммном режиме
- 3. Каковы основные требования пользователей к распределению памяти?
 - получение оперативной памяти в размерах, превышающих физически существующую,
 - обеспечение быстрого выполнения коротких программ,
 - легкость и простота взаимодействия между программами при использовании общих процедур
- 4. Какая часть программного обеспечения всегда располагается в оперативной памяти?
 - ядро операционной системы
- 5. Что такое виртуальная память? память, объем которой равен сумме объемов ОЗУ и внешних запоминающих устройств данного компьютера, память, используемая программистом при написании программ, и имеющая объем, равный максимально возможному при заданной разрядности адресной шины

- 6. Почему концепция виртуальной памяти базируется на ее страничном разбиении?
 - при страничном разбиении памяти объемы физической и виртуальной страниц совпадают, что позволяет заменять страницу оперативной памяти новой страницей из внешней памяти без возникновения проблем фрагментации памяти
- 7. Каким образом виртуальный адрес преобразуется в физический? номер виртуальной страницы заменяется номером физической. Смещение в странице не меняется
- 8. Какие адреса использует программист при составлении программ? виртуальные
- 9. Каковы особенности статического распределения памяти? вся необходимая оперативная память выделяется процессу в момент его порождения,
 - выделение памяти единым блоком необходимой длины,
 - возникновение свободных участков памяти, которые невозможно без предварительного преобразования использовать для вычислительного процесса, вследствие наличия программ различной длины
- 10. Каковы предпосылки динамического распределения памяти?
 при каждом конкретном исполнении в зависимости от исходных данных некоторые части программы вообще не используются,
 исполнение программы характеризуется принципом локальности ссылок
- 11. Как преобразуется смещение в странице при переводе виртуальных адресов в физические?

 не изменяется
- 12. Почему виртуальная память строится на основе страничного, а не сегментного представления памяти?
 - фиксированная длина страницы обеспечивает эффективное заполнение оперативной памяти в процессе выполнения программ,
 - отсутствует фрагментация оперативной памяти при обмене информацией между внешней и оперативной памятью
- 13. Каковы основные недостатки сегментного распределения памяти?
 - образования фрагментации оперативной памяти при

выполнении программ, сложность обмена между оперативной и внешней памятью при выделении оперативной памяти пользователю

- 14. Каковы преимущества статического распределения памяти?- быстрое время выполнения программы, которой выделена память
- 15. На основе какого разбиения логической памяти строится виртуальная память?
 - на основе страничного разбиения

7. Управление памятью в персональной ЭВМ

Литература: https://www.intuit.ru/studies/courses/60/60/lecture/1796

- 1. Какой принцип логической организации памяти используется в персональной ЭВМ?
 - сегментно-страничный
- 2. Для каких целей используется селектор в персональной ЭВМ? для выбора дескриптора из таблицы дескрипторов
- 3. В какой последовательности проводится преобразование логического адреса в физический в персональной ЭВМ? Информация:

https://studbooks.net/2236940/informatika/preobrazovanie_virtualnogo_adresa_fizic heskiy

Преобразование проводится в два этапа:

Сначала по разрядам A31-A22 линейного адреса в КТС выбирается нужный элемент. Каталог таблиц страниц всегда присутствует в ОП и содержит указания по размещению таблицы страниц, относящейся к тому или иному процессу.

Элемент КТС содержит

адрес начала таблицы страниц, бит присутствия (P) таблицы страниц в оперативной памяти,

бит разрешения чтения/записи (R/W), бит защиты страницы (пользователь/супервизор (U/S)) и некоторые другие атрибуты.

После получения из выбранного элемента КТС начального адреса таблицы страниц происходит обращение к ТС. В выбранной таблице страниц находится элемент, номер которого определяется разрядами A21-A12 линейного адреса. Структура элемента таблицы страниц аналогична структуре элемента КТС. Элемент ТС в соответствующем поле содержит адрес начала требуемой физической страницы и другие атрибуты, аналогичные элементу КТС.

При P = 0 возникает прерывание, необходимая страница подкачивается в ОП, ее адрес заносится в соответствующий элемент TC, и команда выполняется повторно.

Информация из конца страницы https://www.intuit.ru/studies/courses/60/60/lecture/1796

- 4. Где располагаются селекторы дескрипторов? в сегментных регистрах
- 5. Где содержится начальный адрес сегмента информации персональной ЭВМ? в дескрипторе
- 6. Какая информация содержится В дескрипторе сегмента персональной ЭВМ? Дескриптор (рис. 16.2) содержит сведения о сегменте. В одном из его полей содержится >базовый адрес сегмента. В остальных полях записана дополнительная информация о сегменте: > длина. > допустимый уровень прав доступа к данному сегменту с целью находящейся информации, защиты в нем > тип сегмента (сегмент кода, сегмент данных, специальный системный сегмент т.д.) и и некоторые другие атрибуты.
- 7. Какая информация содержится в буфере ассоциативной трансляции?
 - При страничном преобразовании номера виртуальной страницы в номер физической страницы используется

- кэш-буфер ассоциативной трансляции (TLB), содержащий физические адреса 32-х наиболее активно используемых страниц (рис. 16.5) и расположенный непосредственно в микропроцессоре.
- 8. Как определяется номер виртуальной страницы при сегментностраничном преобразовании адреса? - содержится в старших разрядах линейного адреса, полученного после сегментного преобразования
- 9. Из каких частей состоит логический адрес, используемый для получения физического адреса в персональной ЭВМ? из селектора и смещения в сегменте
- 10. Какое минимальное количество обращений к оперативной памяти выполняется в персональной ЭВМ при вычислении физического адреса в сегментированном адресном пространстве без использования средств сокращения времени преобразования адреса?

- 1

11. Какое минимальное количество обращений к оперативной памяти выполняется в персональной ЭВМ при страничном преобразования адреса без использования средств сокращения времени преобразования?

- 2

- 12. Какое минимальное количество обращений к оперативной памяти выполняется в персональной ЭВМ при вычислении физического адреса в сегментно-страничном адресном пространстве без использования средств сокращения времени преобразования? 3
- 13. Какие средства используются в персональной ЭВМ для сокращения времени получения физического адреса памяти в сегментно-страничном адресном пространстве?
 - сохранение базового адреса сегмента, полученного после первого обращения к данному сегменту, в "теневом" регистре микропроцессора,
 - сохранение базового адреса страницы, полученного после первого обращения к данной странице, в буфере ассоциативной трансляции адресов страниц

14. Для каких целей в персональной ЭВМ используется буфер ассоциативной трансляции адреса страницы? - для сокращения времени страничного преобразования адреса

8. Мультипрограммирование

- Чем характеризуется мультипрограммный режим работы ЭВМ?
 Возможность перехода от выполнения одной задачи к другой,
 в памяти ЭВМ одновременно содержатся программы и данные для выполнения нескольких задач,
 - взаимная защита программ и данных, относящихся к различным задачам
- 2. Что такое "процесс" в мультипрограммной ЭВМ? деятельность, связанная с выполнением программы на процессоре
- 3. Чем отличается состояние готовности процесса от состояния ожидания?
 - В состоянии готовности процессу для исполнения необходим только центральный процессор, а в состоянии ожидания процесс не исполняется по причине занятости какого-либо ресурса помимо процессора
- 4. Что характеризует коэффициент мультипрограммирования мультипрограммной ЭВМ?
 - максимальное количество программ, которое может одновременно обрабатываться в мультипрограммном режиме
- 5. В каком случае увеличение коэффициента мультипрограммирования увеличивает пропускную способность ЭВМ? когда устройства ЭВМ недогружены
- 6. Какое из соотношений между последовательностями состояний процесса является верным? порождение всегда предшествует активному состоянию, активное состояние всегда предшествует окончанию
- 7. Какие показатели характеризуют использование аппаратных ресурсов ЭВМ при мультипрограммном режиме работы?

- коэффициент загрузки устройства, - средняя длина очереди к устройству
- 8. Каким образом можно обеспечить повышение пропускной способности мультипрограммной ЭВМ в случае, когда к одному из ресурсов образуется большая очередь?
 заменой данного ресурса на более производительный, переформированием пакета задач
- 9. Как вычисляется интервал существования процесса? это время между порождением и окончанием процесса
- 10. Как изменит повышение приоритета одной из программ пропускную способность мультипрограммной ЭВМ? может привести как к повышению, так и к понижению пропускной способности
- 11. Как в общем случае изменяется время выполнения программы при увеличении коэффициента мультипрограммирования? увеличивается
- Как в общем случае изменяется время выполнения пакета программ при увеличении коэффициента мультипрограммирования?
 уменьшается
- 13. В каких случаях статическое распределение ресурсов предпочтительнее динамического? когда необходимо обеспечить исполнение отдельной программы за минимальное время
- 14. Какие характеристики ресурса порождают конфликты? *исчерпаемость ресурса*
- 15. Какие характеристики соответствуют виртуальному ресурсу?
 Виртуальный ресурс имеет расширенные функциональные возможности по отношению к физическому ресурсу, на базе которого он создан,
 - виртуальный ресурс обладает некоторыми дополнительными свойствами, которых физический ресурс не имеет

9. Распределение ресурсов

https://www.intuit.ru/studies/courses/60/60/lecture/1790

Укажите основные режимы работы мультипрограммной ЭВМ.
 - пакетный,

- разделения времени,

- реального времени
- 2. Укажите основные одно-очередные дисциплины распределения ресурсов.

- LIFO,

- FIFO,

- круговой циклический алгоритм
- 3. В какой из одно-очередных дисциплин распределения ресурсов времянахождения в очереди длинных и коротких запросов зависит только от момента их поступления? FIFO
- 4. Какая из одно-очередных дисциплин распределения ресурсов наиболее благоприятствует выполнению коротких запросов? круговой циклический алгоритм
- Какие из дисциплин распределения ресурсов относятся к многоочередным?
 - дисциплина с динамическим изменением приоритетов программ,
 - дисциплина со статическим указанием приоритетов программ (+ базовый вариант?)
- 6. Какие недостатки имеет существенное сокращение длительности кванта времени, выделяемого программе на владение ресурсом?
 - длинные программы тратят на выполнение недопустимо большое время,
 - значительно возрастает время, необходимое для переключения программ
- 7. На основе какой одноочередной дисциплины распределения ресурсов обычно строятся многоочередные дисциплины? круговой циклический алгоритм
- 8. Какая из многоочередных дисциплин учитывает длину программы при распределении ресурсов?
 - со статическим указанием приоритетов программ
- 9. Для каких целей в мультипрограммной ЭВМ используется алгоритм планирования Корбато?
 - для определения номера очереди, в которую помещается новая программа при многоочередной дисциплине распределения ресурсов

- 10. При какой дисциплине распределения ресурсов вновь поступивший запрос с максимальным уровнем приоритета будет быстрее принят к
 - В системе с абсолютными приоритетами запросов
- 11. Какая из модификаций многоочередной дисциплины распределения ресурсов предназначена для того, чтобы устранить недопустимо большое время выполнения длинных запросов? система с динамическим изменением приоритетов программ
- 12. Какой из режимов работы мультипрограммной ЭВМ используется в системах управления?
 - режим реального времени
- 28. Какой из режимов работы ориентирован на обеспечение максимальной пропускной способности мультипрограммной ЭВМ? Пакетный
- 29. Для каких программ эффективен пакетный режим работы мультипрограммной ЭВМ?
 - для больших отлаженных программ
- 30. Какой порядок учета приоритета вновь поступивших запросов возможен в базовом варианте многоочередной дисциплины распределения ресурсов (со временем кванта, не зависящим от номера
 - учет приоритетов невозможен
- 31. Какой основной показатель используется при оценке эффективности ЭВМ, работающей в режиме реального времени? выполнение задания за время, не превышающее максимально допустимого для данного задания
- 32. Какой основной показатель используется при оценке эффективности ЭВМ, работающей в пакетном режиме? Пропускная спосоность ЭВМ

10. Прерывания

- 1.В какой момент в современных ЭВМ проводится проверка наличия запроса прерывания?
 - по окончании выполнения команды

- 2. Каково назначение контроллера приоритетных прерываний? определение наиболее приоритетного запроса прерывания индивидуальное маскирование отдельных запросов прерываний
- 3. Чем определяется глубина прерывания? максимальным числом программ, которые могут прерывать друг друга
- 4. Чем отличается обработка прерывания от выполнения подпрограммы?
 - вызов обработчика прерывания связан с необходимостью реакции системы на особую ситуацию, сложившейся при выполнении программы, или на сигнал от внешнего устройства, а вызов подпрограммы запланирован программистом в программе
- 5. Что такое "тип прерывания"? номер, присваиваемый каждому из прерываний для определения адреса обработчика прерывания
- 6. От какого количества источников может воспринимать запросы контроллер приоритетных прерываний? 8
- 7. Какие из действий по обработке прерывания выполняются процессором автоматически?
 - определение источника прерывания, формирование адреса программы обработчика прерывания,
 - определение адреса возврата в прерванную программу
- 9. Каким образом микропроцессор определяет адрес программы обработчика прерывания поступившего запроса?
 адрес считывается из строки таблицы векторов прерывания, номер которой равен по типу поступившего запроса прерывания
- 10. Какую информацию сохраняет микропроцессор при переходе от основной программы к обработчику прерывания?
 счетчик команд,
 - регистр флагов
- 11. Каковы достоинства дейзи-цепочки определения приоритета запроса прерывания?
 - высокое быстродействие

- 12. Что такое "вектор прерывания"? адрес обработчика прерывания от данного источника
- 13. Какими средствами можно запретить все аппаратные маскируемые прерывания?
 - с помощью сброса флага разрешения прерываний в регистре флагов микропроцессора
- 14. Какими средствами реализуется механизм обработки прерываний? программно-аппаратными
- 15. В чем состоит преимущество определения наличия запроса прерывания по окончании команды перед определением наличия запроса по окончании этапа выполнения команды? меньшее количество информации, которую следует сохранять при переходе на обработчик прерывания

11. Защита информации

https://www.intuit.ru/studies/courses/60/60/lecture/1798

- 1. Какие неправомерные действия должны предотвращать средства защиты памяти?
 - неразрешенное взаимодействие пользователей друг с другом,
 - несанкционированный доступ пользователей к данным,
 - использование информации в памяти не в соответствии с ее функциональным назначением,
 - повреждение программ и данных из-за ошибок в программах (+ намеренные попытки разрушить целостность системы)
- 2. На каких классических методах базируется система защиты памяти?
 - Метод граничных регистров,
 - метод ключей защиты

(+ защита отдельных ячеек)

- 3. Каковы основные преимущества метода защиты отдельных ячеек памяти?
 - возможность отладки новых программ на ЭВМ, функционирующей в рабочем режиме,
 - защита на минимально возможном уровне представления информации

- 4. Каковы основные недостатки метода ключей защиты? реализация метода требует больших дополнительных аппаратных затрат
- 5. Каковы основные защиты? метода ключей достоинства - метод позволяет реализовать доступ программы к областям памяти, организованным в виде отдельных модулей, представляющих собой единый массив, - метод разрешает или запрещает доступ к блоку программы в зависимости от типа обращения (запись или чтение)
- 6. Каковы основные достоинства метода граничных регистров? Простота реализация метода
- 7. Каковы основные недостатки метода граничных регистров?
 Метод поддерживает работу лишь с непрерывными областями памяти
- 8. Каковы основные механизмы защиты памяти в персональной ЭВМ?
 Защита при управлении памятью,
 защита по привилегиям
- 9. Какая из проверок при управлении памятью базируется на методе граничных регистров?
 - Превышение эффективным адресом длины сегмента
- 10. Какое количество уровней привилегий поддерживается на аппаратном уровне в персональных компьютерах? 4
- 11. Какие проверки выполняются в персональной ЭВМ средствами защиты при управлении памятью?
 - превышения эффективным адресом длины сегмента,
 - проверка прав доступа к сегменту на запись или только на чтение,
 - проверка функционального назначения сегмента
- 12. Какие проверки в процессе функционирования программы на персональной ЭВМ выполняются средствами защиты по привилегиям?
 - возможность выполнять некоторые команды, - возможность выполнять команды ввода-вывода на том или ином внешнем устройстве,
 - возможность обращаться к данным других программ

- 13. Чем определяется уровень привилегий сегмента персональной ЭВМ?
 - значением поля привилегий в дескрипторе сегмента
- В каком кольце защиты следует располагать программы при использовании одноуровневой программной системы?
 на нулевом уровне

12. Устройства ввода-вывода

- 1. Какие проблемы должны быть решены при разработке систем вводавывода информации?
 - обеспечить возможность реализации ЭВМ с переменным составом оборудования,
 - организовать параллельную во времени работу процессора над вычислительной частью программы и выполнение периферийными устройствами процедур ввода-вывода,
 - обеспечить независимость программирования ввода-вывода от особенностей того или иного периферийного устройства (+ автоматическое распознавание и реакция процессора на
 - многообразие ситуаций, возникающих в УВВ)
- 2. Каков основной недостаток магистрально-модульного способа организации ЭВМ?
 - невозможность одновременного взаимодействия более двух модулей
- 3. Какая информация должна быть занесена в контроллер прямого доступа к памяти при его инициализации?
 - начальный адрес области ОП, с которой производится обмен,
 - длина передаваемого массива данных
- 4. Какие существуют способы обеспечения параллельности между вычислительной частью программы и выполнением периферийными устройствами процедур ввода-вывода? за счет использования контроллеров устройств ввода-вывода
- 5. Какие из сигналов на шине ISA используются системой прерывания персонального компьютера?
 - IRQi

- 6. Что из перечисленного не входит в понятие интерфейса? режимы адресации
- 7. В какое состояние переводятся шины микропроцессора при поступлении сигнала от контроллера на прямой доступ к памяти? в третье
- 8. Какой основной недостаток обмена информацией в режиме прямого доступа к памяти?
 - процедура первоначальной инициализации контроллера ПДП занимает значительное время, что нерационально при передаче небольших блоков информации
- 9. Каков основной недостаток программно-управляемого способа передачи информации? нерациональное использование мощности микропроцессора
- 10. Какими параметрами характеризуется интерфейс?
 пропускная способность,
 максимальная частота передачи,
 информационная ширина интерфейса (+ максимально допустимое расстояние между соединяемыми устройствами, общее число линий в интерфейсе)
- 11. В каких случаях программно-управляемый обмен между памятью и устройством ввода-вывода эффективнее обмена в режиме прямого доступа к памяти?

 при передаче небольших объемов информации
- 12. Каким образом чаще всего решается проблема построения ЭВМ с переменным набором составляющих ее модулей? использованием магистрально-модульного принципа