Challenge Problems in RED

MATH 243: Worksheet 9

Discussion Section:

This worksheet covers Chap14.8 Lagrange Multiplier, Chap15.1 Double Integrals over Rectangles. **The Lagrange Multipliers**

1. In order to maximize and minimize a function

$$f(x,y)$$
 subject to the given constraint $g(x,y) = k$,

we can use the method of Lagrange multiplier.

- (a) Using the method of Lagrange multipliers, set up a system of equations for finding the minimum and the maximum for the function $f(x, y) = 9xe^y$ subject to the given constraint $x^2 + y^2 = 2$. Do NOT evaluate.
- (b) Using (a), find the extreme values of the function $f(x,y) = 9xe^y$ subject to the given constraint $x^2 + y^2 = 2$.
- 2. In order to maximize and minimize a function

$$f(x, y, z)$$
 subject to the given constraint $g(x, y, z) = k$,

we can use the method of Lagrange multiplier.

- (a) Using the method of Lagrange multipliers, set up a system of equations for finding the minimum and the maximum for the function f(x, y, z) = 8x + 8y + 3z subject to the given constraint $4x^2 + 4y^2 + 3z^2 = 35$. Do NOT evaluate.
- (b) Using (a), find the extreme values of the function f(x, y, z) = 8x + 8y + 3z subject to the given constraint $4x^2 + 4y^2 + 3z^2 = 35$.
- 3. Find the maximum and minimum values of $f(x,y) = 81x^2 + y^2$ subject to the constraint $4x^2 + y^2 = 9$.
- Find the absolute minimum and absolute maximum of $f(x,y) = 2x^2 y^2 + 6y$ on the disk of radius $4, x^2 + y^2 \le 16$.

Double Integrals over Rectangles

- 5. Calculate the iterated integral $\int_{-3}^{3} \int_{0}^{\frac{\pi}{2}} (y + y^{2} \cos x) dx dy$
- **6.** Evaluate the double integral by first identifying it as the volume of a solid.

$$\iint_{R} (y + xy^{-2}) dA, \quad R = \{ (x, y) | 0 \le x \le 2, \ 1 \le y \le 2 \}$$

- 7. Evaluate $\iint_R x \cos^2(y) dA$, where $R = [-2, 3] \times [0, \pi/2]$.
- Evaluate $\iint_R \frac{1}{(2x+3y)^2} dA$, where $R = [0,1] \times [1,2]$.
- 9. Find the volume of the solid that lies under the hyperbolic paraboloid $z = 3y^2 x^2 + 2$ and above the rectangle $R = [-1, 1] \times [1, 2]$.

10. Find the average value of $f(x,y) = x^2y$ over the rectangle R with the vertices (-1,0), (-1,5), (1,5), (1,0).

Suggested Textbook Problems

Chapter 14.8: 3, 9, 11-17, 19-21, 31, 34, 36, 39, 42, 43

Chapter 15.1: 1a, 3, 9-43, 47