Hence from Lemma 1.2.a it follows

$$\mu R(\mu)'(xv_{\alpha}^*) = ((\mu - i_{\alpha})R(\mu)'x)v_{\alpha}^*$$

for all x(M . Let ψ_α be the normal linear functional (x \rightarrow ψ (xv $_\alpha^*)) on M and note that <math display="inline">\psi_\alpha$ (v $_\alpha$) \neq 0 . Then

$$< x, (\mu - i\alpha) R(\mu) \psi_{\alpha} > = < ((\mu - i\alpha) R(\mu) 'x) V_{\alpha}^*, \psi > =$$
 $< \mu R(\mu) '(xV_{\alpha}^*), \psi > = \psi(xV_{\alpha}^*) = \psi_{\alpha}(x)$

for all $x \in M$. Consequently $i_{\alpha} \in P_{\sigma}(A)$ and

$$\dim \ker(i_{\alpha} - A') \leq \dim \ker(i_{\alpha} - A)$$
,

which proves the assertion.

Remark 1.9. From the above proof we obtain the following: If $0 \neq \psi_{\alpha} \in \ker(i_{\alpha} - A)$ with polar decomposition $\psi_{\alpha} = u_{\alpha} |\psi_{\alpha}|$ ($\alpha \in \mathbb{R}$) then $A'u_{\alpha} = i_{\alpha}u_{\alpha}$. Conversely, if $0 \neq v_{\alpha} \in \ker(i_{\alpha} - A')$, then there exists $\psi \in \Psi$ such that $\psi(v_{\alpha}v_{\alpha}^{*}) \neq 0$ and the normal linear form

$$\psi_{\alpha} := (x \rightarrow \psi(xv_{\alpha}^*))$$

is an eigenvector of A pertaining to the eigenvalue \mbox{i}_{α} .

If T is a C_0 -semigroup of Markov operators on a commutative C*-algebra with generator A , it has been shown in B-III, that the boundary spectrum $_{\sigma}(A)$ \cap iR of its generator is additively cyclic. This is no longer true in the non commutative case:

For $0 \neq \lambda \in i\mathbb{R}$ and $t \in \mathbb{R}$ let

$$\mathbf{u}_{\mathsf{t}} := \begin{bmatrix} 1 & 0 \\ & \\ 0 & e^{\lambda^{\mathsf{t}}} \end{bmatrix} \qquad \in \, \mathsf{M}_{2}(\mathbb{C}) \quad .$$