# RSVP: ROBOT SCENARIO VISUAL PLANNING

**CISC1003** 

**Exploring Robotics** 

# RSVP: ROBOT SCENARIO VISUAL PLANNING

- Making a picture or a "visual representation" of the scenario and instructions you want the robot to perform
  - can be great way to ensure your robot performs the tasks properly
- A picture of the instructions the robot will perform allows you to think through the steps before translating them to the code

# RSVP: ROBOT SCENARIO VISUAL PLANNING

- The RSVP is composed of three types of visuals:
  - A floorplan of the physical environment of the scenario
  - A statechart of the robot and object's states
  - Flowcharts of the instructions for the tasks

#### Mapping the Scenario

- The first part of the RSVP is a map of the scenario
- A map is a symbolic representation of the environment
  - where the tasks and situations will take place
  - The environment for the scenario is the world in which the robots operate

# Mapping Example

A robot world for NXT Mindstorms Test Pad



<sup>\*</sup>Robot Programming: A Guide to Controlling Autonomous Robots, C. Hughes and T. Hughes

#### State Chart

- A statechart is one way to visualize a state machine.
- For example, a "change of state" can be as simple as a change of location.
  - When the robot travels from its initial location to the location next to the table, this is a change of the robot's state.
  - Another example is that the birthday candles change from an unlit state to a lit state.

#### State Chart

- The state machine captures the events, transformations, and responses.
- A statechart is a diagram of these activities.
- The statechart is used to capture the possible situations for that object in that scenario

### Example – State Machine



<sup>\*</sup> Robot Programming: A Guide to Controlling Autonomous Robots, C. Hughes and T. Hughes

#### Pseudocode and Flowcharting

- Flowcharts are a type of statechart
  - they contain states that are converted to actions and activities
    - Things like decisions and repetitions are easily represented
      - what happens as the result of a branch can be simply depicted.
  - Some suggest flowcharting before writing pseudocode

#### Pseudocode and Flowcharting

- Pseudocode has the advantage of being easily converted to a programming language or utilized for documenting a program
  - It can also be easily changed.
- A flowchart requires a bit more work to change when using flowcharting software.

#### PseudoCode

- What is the problem we are trying to solve?
  - Identify the behavior you need
  - Write down the sequence of behaviors that is needed
    - To achieve your goals
  - Identify the sub-tasks needed to achieve your goals

#### Pseudocode

- As we increase the level of details, we will reach commands we can express directly in programming language
- This is the plan the robot needs to follow
- The steps are written in English
  - So can be understood by the human programmer
- This is called *Pseudocode*

# Pseudocode and Flowcharting

| RSVP Type                                                                                                                       | Advantages                                                                                        | Disadvantages                                              |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Pseudocode:                                                                                                                     | Easily created and modified in<br>any word processor.  Implementation is useful in<br>any design. | Is not visual.                                             |
| A method of describing com-<br>puter instructions using a<br>combination of natural lan-<br>guage or programming lan-<br>guage. |                                                                                                   | No standardized style or                                   |
|                                                                                                                                 |                                                                                                   | format.  More difficult to follow the logic.               |
|                                                                                                                                 | Written and understood easily.                                                                    |                                                            |
|                                                                                                                                 | Easily converted to a program-<br>ming language.                                                  |                                                            |
| Flowcharting:                                                                                                                   | Is visual, easier to communi-<br>cate to others.<br>Problems can be analyzed<br>more effectively. | Can become complex and<br>clumsy for complicated<br>logic. |
| Flow from the top to the bot-                                                                                                   |                                                                                                   |                                                            |
| tom of a page. Each command                                                                                                     |                                                                                                   | •                                                          |
| is placed in a box of the appro-<br>priate shape, and arrows are<br>used to direct program flow.                                |                                                                                                   | Alterations may require<br>redrawing completely.           |

### Flowcharting

- The four common symbols used in flowcharting are
- Start and stop:
  - The start symbol represents the beginning of the flowchart with the label "start" appearing inside the symbol.
  - The stop symbol represents the end of the flowchart with the label "stop" appearing inside the symbol. These are the only symbols with keyword labels.
- Input and output:
  - The input and output symbol contains data that is used for input (e.g., provided by the user)
    - and data that is the result of processing (output)

### Flowcharting

#### Decisions:

 The decision symbol contains a question or a decision that has to be made.

#### Process:

 The process symbol contains brief descriptions (a few words) of a rule or some action taking place .

### Common Flowchart Symbols



<sup>\*</sup>Robot Programming: A Guide to Controlling Autonomous Robots, C. Hughes and T. Hughes

# Example - Candlelighting Flowchart



<sup>\*</sup>Robot Programming: A Guide to Controlling Autonomous Robots, C. Hughes and T. Hughes

#### Flowcharting

- The task a robot executes can be a series of steps performed one after another
  - a sequential flow of control.
- Flow of control details the direction the process takes
  - which way program control "flows
- Flow of control determines how a computer responds
  - when given certain conditions and parameters

# Example: Sequential Flowchart



<sup>\*</sup>Robot Programming: A Guide to Controlling Autonomous Robots, C. Hughes and T. Hughes

### Flowcharting

- A decision symbol is used to construct branching for alternative flow controls.
- Decision symbols can be used to express decision, repetition, and case statements
- A simple decision is structured as an if-then or if-then-else statement

#### Example – Guest Welcoming Flowchart



<sup>\*</sup>Robot Programming: A Guide to Controlling Autonomous Robots, C. Hughes and T. Hughes

#### Summary

- The RSVP is composed of three types of visuals:
  - A floorplan of the physical environment of the scenario
  - A statechart of the robot and object's states
  - Flowcharts of the instructions for the tasks
- These visuals ensure that you have a "clear picture" of what has to be done
  - to program a robot to save the world
    - or light the candles on a cake

#### • Questions?

