Syriatel's Customer Retention Analysis

By: Zach Hyde

Overview

This particular dataset intrigued be because I have been in the customer service industry and currently work within retail. My aspirations are to become an effective Data Scientist where I can utilize my skill-set to bring reliable insight to my business partner(s) where they can take my analysys into high consideration when making decisions to strengthen the whole operation. The dataset that I have analyzed for you today represents information gathered by Telecom of their customers utilization of their product in a variety of features while also describing if that customer churned or not. The goal for this project was to come up with a model that effectively utilized certain features to accurately predict whether or not the customer would continue services or cancel them.

Data Usage

- Kaggle sourced CSV
 - Overview of Data
 - Features 20
 - Data points 3333
 - Target class 'Churn'
 - Imbalanced ratio ~ 85/15% (no/yes)

<class 'pandas.core.frame.DataFrame'> Index: 3333 entries, KS to TN

Data columns (total 20 columns):			
#	Column	Non-Null Count	Dtype
0	account length	3333 non-null	int64
1	area code	3333 non-null	int64
2	phone number	3333 non-null	object
3	international plan	3333 non-null	object
4	voice mail plan	3333 non-null	object
5	number vmail messages	3333 non-null	int64
6	total day minutes	3333 non-null	float64
7	total day calls	3333 non-null	int64
8	total day charge	3333 non-null	float64
9	total eve minutes	3333 non-null	float64
10	total eve calls	3333 non-null	int64
11	total eve charge	3333 non-null	float64
12	total night minutes	3333 non-null	float64
13	total night calls	3333 non-null	int64
14	total night charge	3333 non-null	float64
15	total intl minutes	3333 non-null	float64
16	total intl calls	3333 non-null	int64
17	total intl charge	3333 non-null	float64
18	customer service calls	3333 non-null	int64
19	churn	3333 non-null	bool
<pre>dtypes: bool(1), float64(8), int64(8), object(3)</pre>			

memory usage: 524.0+ KB

Exploratory Data Analysis

- SMOTE utilization balancing out minority value in target
- 3 categorical features:
 - Churn, VM plan, INT'L plan
- Feature Engineering:
 - Dummy variables,
 - o ROC AUC accuracy pre-Gridsearch CV

```
Counter({0.0: 2850, 1.0: 483}) Counter({0.0: 2850, 1.0: 2850})
```


Models

Final Model- Decision Trees--Base(Log Regression)

Accuracy: 91% | 75%

Model effectively learned from synthetic data during SMOTE

Chosen based on high accuracy predictions.

Final model is overfit and cannot accurately predict new information on an average.

Summary

Bagged Trees- $\frac{2}{3}$ of data is split and left aside while other $\frac{1}{3}$ is OOB and used as test set. Model creates X number of decision trees trained on X number of bootstrapped training sets. Final value is average of all X decision trees.

<u>Random Forest</u>- improves on bagging by decorrelating trees with intro of splitting random subset features. This causes variance to be averaged away.

XG Boost- high performance implementation of gradient boosted decision trees. Language: C++, Easy to implement.

<u>Logistic Regression</u>- doesn't need linear relationship between target and dependant variables. Dependant variables MUST be independent of each other. MUST have little to no multicollinearity. Independent variable must be linearly related to log odds.

Next Steps??

- Further research suggests there are other models that can also be utilized (Neural Networks, Ridge Regression)
- Continuous variables could be separated into categorical for more effective decision tree modeling.

Thank you!

GitHub Repository

Linkedin Profile

Email: zacharyhyde14@gmail.com

Resources:

SMOTE, Random Forest, XGBoost, SciKit-Learn