Applied Bayesian Data Analysis — Exercise 3 A

Kim Albertsson

CERN and Lulea University of Technology

kim.albertsson@ltu.se

October 14, 2019

Question 1

What is $p(E = Blue|H \in \{Red, Blond\})$?

Q: What is $p(E = Blue|H \in \{Red, Blond\})$?

(1)

Joint probabilities

	Black	Brown	Red	Blond	\sum
Brown	0.11	0.20	0.04	0.01	0.37
Blue	0.03	0.14	0.03	0.16	0.36
Hazel	0.03	0.09	0.02	0.02	0.16
Green	0.01	0.05	0.02	0.03	0.11
\sum	0.18	0.48	0.12	0.21	1.0

Q: What is $p(E = Blue | H \in \{Red, Blond\})$?

$$\begin{split} \rho(E = Blue|H \in \{Red, Blond\}) = \\ \frac{\rho(H \in \{Red, Blond\}|E = Blue)\rho(E = Blue)}{\rho(H \in \{Red, Blond\})} \end{split}$$

Joint probabilities

	Black	Brown	Red	Blond	\sum
Brown	0.11	0.20	0.04	0.01	0.37
Blue	0.03	0.14	0.03	0.16	0.36
Hazel	0.03	0.09	0.02	0.02	0.16
Green	0.01	0.05	0.02	0.03	0.11
\sum	0.18	0.48	0.12	0.21	1.0

Q: What is $p(E = Blue|H \in \{Red, Blond\})$?

$$p(E = Blue|H \in \{Red, Blond\}) = \frac{p(H \in \{Red, Blond\}|E = Blue)p(E = Blue)}{p(H \in \{Red, Blond\})} = \frac{0.03 + 0.16}{0.12 + 0.21} = 0.58$$

Joint probabilities

	Black	Brown	Red	Blond	\sum
Brown	0.11	0.20	0.04	0.01	0.37
Blue	0.03	0.14	0.03	0.16	0.36
Hazel	0.03	0.09	0.02	0.02	0.16
Green	0.01	0.05	0.02	0.03	0.11
\sum	0.18	0.48	0.12	0.21	1.0

Question 2

Create a function to calculate $p(\operatorname{sick}|T)$ where T is any sequence drawn from $\{+,-\}$. Explain how the function operates.

The setting supposes the existence of a disease with prevalence 0.001 in a population ($p(\mathrm{sick}) = 0.001$). It also supposes the existence of a test for said disease with sensitivity 0.99 ($p(+|\mathrm{sick}) = 0.99$) and specificity 0.95 ($p(-|\mathrm{sick}) = 0.05$).

(2)

```
p = {}
# Conditionals
p['+|:('] = 0.99 # True positive
p['+|:)'] = 0.05 # False positive
```

8/12

```
p = \{\}
# Conditionals
p['+|:('] = 0.99 \# True positive]
p['+|:)'] = 0.05 \# False positive
p['-|:(']] = 1 - p['+|:(']]
p['-|:)'] = 1 - p['+|:)']
# Marginals
p[':('] = 0.001 \# p \ sick
p[':)'] = 1 - p[':('] \# p \ healthy]
p['+'] = p['+|:(']*p[':(']+p['+|:)']*p[':)']
p['-'] = 1 - p['+']
```

$$\begin{split} p(h|t_0t_1\ldots) &= p(h|t_0,t_1,\ldots) \\ &= \frac{p(t_0,t_1,\ldots|h)}{p(t_0,t_1,\ldots)} p(h) \\ \text{assume independence} \\ &= \frac{p(t_0|h)p(t_1|h)p(\ldots|h)}{p(t_0)p(t_1)p(\ldots)} p(h) \\ &= \ldots \cdot \frac{p(t_1|h)}{p(t_1)} \cdot \frac{p(t_0|h)}{p(t_0)} \cdot p(h) \end{split}$$

```
def proba_is_sick(test_scores):
    allowed symbols = '-+'
    posterior = p[':(')]
    for symbol in test_scores:
        assert (symbol in allowed symbols)
        prior = posterior
        likelihood = p[f'{symbol}]:(')
        evidence = p[f'{symbol}']
        posterior = likelihood / evidence * prior
    return posterior
```

```
>>> proba_is_sick('')
0.001
>>> proba_is_sick('+')
0.019434628975265017
>>> proba_is_sick('+-')
0.0002047776639544922
```