Additional Cheat Sheet

By Marcelo Moreno - King Juan Carlos University As part of the Econometrics Cheat Sheet Project

OLS in matrix notation

The general econometric model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + u_i$$

Can be written in matrix notation as:

$$y = X\beta + u$$

Let's call \hat{u} the vector of estimated residuals ($\hat{u} \neq u$):

$$\hat{u} = y - X\hat{\beta}$$

The objective of OLS is to minimize the SSR:

$$\operatorname{Min} \sum \hat{u}_i^2 = \operatorname{Min} \hat{u}^T \hat{u}$$

• Defining $\hat{u}^T \hat{u}$:

$$\hat{u}^T \hat{u} = (y - X\hat{\beta})^T (y - X\hat{\beta}) =$$

$$= y^T y - 2\hat{\beta}^T X^T y + \hat{\beta}^T X^T X\hat{\beta}$$

• Minimizing $\hat{u}^T \hat{u}$:

$$\hat{\beta} = \frac{\partial \hat{u}^T \hat{u}}{\partial \hat{\beta}} = -2X^T y + 2X^T X \hat{\beta} = 0$$

$$\hat{\beta} = (X^T X)^{-1} (X^T y)$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} n & \sum x_1 & \dots & \sum x_k \\ \sum x_1 & \sum x_1^2 & \dots & \sum x_1 x_k \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_k & \sum x_k x_1 & \dots & \sum x_k^2 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \sum y \\ \sum y x_1 \\ \vdots \\ \sum y x_k \end{bmatrix}$$

The second derivative is $\frac{\partial^2 \hat{u}^T \hat{u}}{\partial \hat{a}^2} = X^T X > 0$ (is a min.)

Variance-covariance matrix

$$\operatorname{Var}(\hat{\beta}) = \hat{\sigma}^2(X^TX)^{-1} = \begin{bmatrix} \operatorname{Var}(\hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) & \dots & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_k) \\ \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_0) & \operatorname{Var}(\hat{\beta}_1) & \dots & \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_k) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(\hat{\beta}_k, \hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_k, \hat{\beta}_1) & \dots & \operatorname{Var}(\hat{\beta}_k) \end{bmatrix}$$

where: $\hat{\sigma}^2 = \frac{\hat{u}^T \hat{u}}{n-k-1}$

The standard errors are in the diagonal of:

$$\operatorname{se}(\hat{\beta}) = \sqrt{\operatorname{Var}(\hat{\beta})}$$

Error measures

- $SSR = \hat{u}^T \hat{u} = y^T y \hat{\beta}^T X^T y = \sum (y_i \hat{y}_i)^2$
- $SSE = \hat{\beta}^T X^T y n \overline{y}^2 = \sum_i (\hat{y}_i \overline{y})^2$ $SST = SSR + SSE = y^T y n \overline{y}^2 = \sum_i (y_i \overline{y})^2$

R-squared

$$R^2 = \frac{SSE}{GGW} = 1 - \frac{SSR}{GGW}$$

 $R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$ The R-squared corrected by degrees of freedom:

$$\overline{R}^2 = 1 - \frac{n-1}{n-k-1}(1 - R^2)$$

Variables omission

Most of the time, is hard to get all relevant variables for an analysis. For example, a true model with all variables:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

The estimated model (with the available variables):

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + u$$

Omission of variables provoke OLS bias and inconsistency. Depending of the correlation between x_1 and x_2 and the sign of β_2 , the bias on $\tilde{\beta}_1$ could be:

	$Corr(x_1, x_2) > 0$	$Corr(x_1, x_2) < 0$
$\beta_2 > 0$	(+) bias	(-) bias
$\beta_2 < 0$	(-) bias	(+) bias

- (+) bias $\to \tilde{\beta}_1$ will be higher than it should be (it includes the effect of x_2). $\tilde{\beta}_1 > \beta_1$
- (-) bias $\to \tilde{\beta}_1$ will be lower than it should be (it includes the effect of x_2). $\tilde{\beta}_1 < \beta_1$

If $Corr(x_1, x_2) = 0$, there is no bias on β_1 , because the effect of x_2 will be fully picked up by the error term, u.

There are two approaches to solve the problem:

- Make use of proxy variables.
- Make use of instrumental variables (IV).

Proxy variables

Is the approach when a relevant variable is not available for the model because is non-observable, and there is no data. A proxy variable is something related with the nonobservable variable that has data available.

For example, the intellectual coefficient is a proxy variable for a subject's capacity (non-observable).

Instrumental variables (IV)

When proxy variables are not available, the alternative approach is to look for a variable, let's call it z, that has a relation with x. The z variable must meet the following requirements to be called an Instrumental Variable (IV):

$$Cov(z, u) = 0$$

 $Cov(z, x) \neq 0$

This method let the omitted variable in the error term, but instead of estimate the model by OLS, it utilizes a method that recognize the presence of an omitted variable. This method can also solve error measurements.

TSLS

Can have multiple instrumental variables (is the IV, but with various instrumental variables at the same time). And Cov(z, u) = 0 can be relaxed, but there has to be a minimum of variables that satisfies it.

Can have multicollinearity problems.

Some tests:

- Endogeneity tests: is TSLS better than OLS when there are no endogenous variables? Do we really need TSLS? \rightarrow Hausman test $\rightarrow H_0$: OLS is consistent (it is better to use OLS).
- Over-identification. An IV should meet:
- $-\operatorname{Corr}(z,u) = 0$ (exogeneity)
- $-\operatorname{Corr}(z,x) \neq 0$ (relevance)
- Is there too many IV? \rightarrow Sagan test $\rightarrow H_0$: all IV seem

Information criteria for selecting AR order

The general formula

$$Cr(n) = log(\hat{\sigma}_u^2(n)) + c_T \psi(n)$$

where: $\hat{\sigma}_u^2(n) = T^{-1} \sum_{t=1}^T \hat{u}_t(n)^2$ is the error variance estimator based on the OLS residuals $\hat{u}_t(n)$ from an AR model of order n.

 $\psi(n)$ is a function that penalizes large AR orders. c_T is a sequence indexed by the sample size. The order that

minimizes the criterion is chosen as estimator $\hat{\rho}$ of the true AR order ρ .

- Akaike (1973):
 - $AIC(n) = log(\hat{\sigma}_{u}^{2}(n)) + \frac{2}{T}n$
- Hannan-Quinn (1979):

$$HQ(n) = log(\hat{\sigma}_u^2(n)) + \frac{2log(log(T))}{T}n$$

• Schwarz (1978):

$$Sc(n) = log(\hat{\sigma}_u^2(n)) + \frac{log(T)}{T}n$$

Incorrect functional forms

Ramsey RESET test: it test the specification errors of a regression. H_0 : the model is correctly specified.

VAR

The VAR model general form:

 $y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + B_0 x_t + \dots + B_q x_{t-q} + CD_t + u_t$

- $y_t = (y_{1t}, ..., y_{Kt})'$ is a vector of K observable endogenous variables.
- $x_t = (x_{1t}, ..., x_{Mt})'$ is a vector of M observable exogenous or unmodelled variables.
- D_t contains all deterministic variables which may consist of a constant, a linear trend, seasonal dummy variables...
- u_t is a K-dimensional unobservable zero mean white noise process with positive definite covariance matrix $E(u_t u_t' = \Sigma_u)$.
- The A_i , B_i and C are parameter matrices of suitable

dimension.

For example, a model with two endogenous variables (with two lags), an exogenous contemporaneous variable, a constant (const) and a trend $(Trend_t)$:

$$\begin{aligned} y_{1t} &= a_{11,1}y_{1,t-1} + a_{12,1}y_{2,t-1} + a_{11,2}y_{1,t-2} + a_{12,2}y_{2,t-2} + b_{11}x_t + c_{11} + c_{12}Trend_t + u_{1t} \\ y_{2t} &= a_{21,1}y_{2,t-1} + a_{22,1}y_{1,t-1} + a_{21,2}y_{2,t-2} + a_{22,2}y_{1,t-2} + b_{21}x_t + c_{21} + c_{22}Trend_t + u_{2t} \\ \text{For example, the equations:} \end{aligned}$$

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = A_1 \cdot \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + A_2 \cdot \begin{bmatrix} y_{1,t-2} \\ y_{2,t-2} \end{bmatrix} + B_0 \cdot \begin{bmatrix} x_t \end{bmatrix} + C \cdot \begin{bmatrix} const \\ Trend_t \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} a_{11,1} & a_{12,1} \\ a_{21,1} & a_{22,1} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + \begin{bmatrix} a_{11,2} & a_{12,2} \\ a_{21,2} & a_{22,2} \end{bmatrix} \cdot \begin{bmatrix} y_{1,t-2} \\ y_{2,t-2} \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} \cdot \begin{bmatrix} x_t \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \cdot \begin{bmatrix} const \\ Trend_t \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

Information criterias

VECM

 $\Delta y_t = \Pi^* \begin{bmatrix} y_{t-1} \\ D_{t-1}^{co} \end{bmatrix} + \Gamma_1 \Delta y_{t-1} + \dots + \Gamma_p \Delta y_{t-p} + B_0 x_t + \dots + B_q x_{t-q} + CD_t + u_t$ where:

- $\Pi^* = \alpha \beta^{T*}$.
- D_t^{co} contains all deterministic terms included in the cointegration relations.

• D_t contains all remaining deterministic variables. For example. The matrix form:

$$\begin{bmatrix} \Delta y_{1t} \\ \Delta y_{2t} \\ \Delta y_{2t} \end{bmatrix} = \Pi^* \begin{bmatrix} y_{t-1} \\ const \end{bmatrix} + \Gamma_1 \cdot \begin{bmatrix} \Delta y_{1,t-1} \\ \Delta y_{2,t-1} \end{bmatrix} + B_0 \cdot \begin{bmatrix} x_t \end{bmatrix} + C \cdot \begin{bmatrix} Trend_t \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

$$\begin{bmatrix} \Delta y_{1t} \\ \Delta y_{2t} \end{bmatrix} = \alpha \begin{bmatrix} \beta^T \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + C^* \begin{bmatrix} const \end{bmatrix} \end{bmatrix} + \Gamma_1 \cdot \begin{bmatrix} \Delta y_{1,t-1} \\ \Delta y_{2,t-1} \end{bmatrix} + B_0 \cdot \begin{bmatrix} x_t \end{bmatrix} + C \cdot \begin{bmatrix} Trend_t \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

$$\begin{bmatrix} \Delta y_{1t} \\ \Delta y_{2t} \end{bmatrix} = \begin{bmatrix} \alpha_{11} \\ \alpha_{12} \end{bmatrix} \begin{bmatrix} [\beta_{11} \quad \beta_{21}] \begin{bmatrix} y_{1,t-1} \\ y_{2,t-1} \end{bmatrix} + [c^*] \begin{bmatrix} const \end{bmatrix} + \begin{bmatrix} \gamma_{11} \quad \gamma_{12} \\ \gamma_{21} \quad \gamma_{22} \end{bmatrix} \cdot \begin{bmatrix} \Delta y_{1,t-1} \\ \Delta y_{2,t-1} \end{bmatrix} + \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} \cdot \begin{bmatrix} x_t \end{bmatrix} + \begin{bmatrix} c_{11} \\ c_{21} \end{bmatrix} \cdot \begin{bmatrix} Trend_t \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix}$$

$$The \ VECM \ model \ general \ form:$$

 $\Delta y_t = \Pi y_{t-1} + \Gamma_1 \Delta y_{t-1} + ... + \Gamma_p \Delta y_{t-p} + B_0 x_t + ... + B_q x_{t-q} + C D_t + u_t$ where:

- $y_t = (y_{1t}, ..., y_{Kt})'$ is a vector of K observable endogenous variables.
- $x_t = (x_{1t}, ..., x_{Mt})'$ is a vector of M observable exogenous or unmodelled variables.
- $\Pi = \alpha \beta'$. Suppose $\operatorname{rk}(\Pi) = r = \operatorname{rk}(\alpha) = \operatorname{rk}(\beta)$
- D_t contains all deterministic variables which may consist of a constant, a linear trend, seasonal dummy variables...
- u_t is a K-dimensional unobservable zero mean white noise process with positive definite covariance matrix $E(u_t u_t' = \Sigma_u)$.
- The A_i , B_j and C are parameter matrices of suitable dimension.