Стохастический градиентный бустинг (SGB)

Известно, что рандомизации могут повышать качество композиции за счёт повышения различности базовых алгоритмов (на этом основаны bagging, RF, RSM)

Идея:

на шагах 3–5 использовать не всю выборку X^{ℓ} , а случайную подвыборку с повторениями, как в бэггинге.

Преимущества:

- улучшается качество
- улучшается сходимость
- уменьшается время обучения

Friedman G. Stochastic Gradient Boosting. 1999.

Частный случай — алгоритм AdaBoost

Исторически первый вариант бустинга (1995). Задача классификации на два класса, $Y=\{-1,+1\}$,

 $\mathscr{L}(b(x_i),y_i)=e^{-b(x_i)y_i}$ — экспоненциальная функция потерь, убывающая функция отступа $M_i=b(x_i)y_i$

Преимущества:

- ullet для обучения b_t на каждом шаге t решается стандартная задача минимизации взвешенного эмпирического риска
- ullet задача оптимизации $lpha_t$ решается аналитически

Недостаток:

• AdaBoost слишком чувствителен к выбросам из-за экспоненциального роста функции потерь при $M_i < 0$

Freund Y., Schapire R. E. A decision-theoretic generalization of on-line learning and an application to boosting. 1995.

Частные случаи при различных функциях потерь $\mathscr L$

Функции потерь $\mathscr{L}(M)$ в задачах классификации на два класса

$$E(M)=e^{-M}$$
 — экспоненциальная (AdaBoost); $L(M)=\log_2(1+e^{-M})$ — логарифмическая (LogitBoost); $G(M)=\exp\left(-cM(M+s)\right)$ — гауссовская (BrownBoost); $Q(M)=(1-M)^2$ — квадратичная; $S(M)=2(1+e^M)^{-1}$ — сигмоидная; $V(M)=(1-M)_+$ — кусочно-линейная (SVM);

Градиентный бустинг над деревьями

Решающее дерево — это кусочно-постоянная функция:

$$b(x) = \sum_{t=1}^{T} \alpha_t [x \in \Omega_t],$$

где T — число листьев, Ω_t — область t-го листа, α_t — прогноз в t-м листе.

Идея: каждый лист — базовый алгоритм $b_t(x) = [x \in \Omega_t]$; градиентным шагом определяется прогноз α_t в t-м листе:

$$lpha_t = \arg\min_{lpha>0} \sum_{\substack{\mathbf{x}_i \in \Omega_t}} \mathscr{L}\left(u_{t-1,i} + \overset{\pmb{lpha}}{,} y_i
ight).$$

После определения всех α_t можно добавить в композицию следующее дерево, оптимизировав его структуру по MSE.

Градиентный бустинг над деревьями

Оптимизация прогнозов в листьях:

$$\alpha_t = \arg\min_{\alpha>0} \sum_{\mathbf{x}_i \in \Omega_t} \mathscr{L}\left(\mathbf{u}_{t-1,i} + \frac{\alpha}{\alpha}, \mathbf{y}_i\right).$$

Для некоторых функций потерь решение находится аналитически:

ullet средний квадрат ошибок, MSE, $\mathscr{L}(b,y) = (b-y)^2$:

$$\alpha_t = \frac{1}{|\Omega_t|} \sum_{x_i \in \Omega_t} (y_i - u_{t-1,i}).$$

ullet средняя абсолютная ошибка, MAE, $\mathscr{L}(b,y)=|b-y|$:

$$\alpha_t = \underset{x_i \in \Omega_t}{\mathsf{median}} \{ y_i - u_{t-1,i} \}.$$

В общем случае аналитического решения нет.

Резюме

- Градиентный бустинг наиболее общий из всех бустингов:
 - произвольная функция потерь
 - произвольное пространство оценок R
 - подходит для регрессии, классификации, ранжирования
- Важное открытие середины 90-х: обобщающая способность бустинга не ухудшается с ростом сложности T
- Стохастический вариант SGB лучше и быстрее
- Градиентный бустинг над решающими деревьями часто работает лучше, чем случайный лес
- Технология Yandex.MatrixNet это градиентный бустинг над «небрежными» решающими деревьями ODT (ODT oblivious decision tree)