ISTIC - IT & Electronics Department Master EIT Digital in Data Science

Supervisor: Simon Malinowski

Ostap Kharysh: ostap.kharysh@etudiant.univ-rennes1.fr Ignacio Regana: ignacio.regana@etudiant.univ-rennes1.fr

ARBITRATED ENSEMBLING

SCOPE

- WHAT IS ARBITRATED DYNAMIC ENSEMBLE?
- REGRESSION:
 - WEIGHTING: EXPONENTIAL VS INVERSE
- CLASSIFICATION:
 - AVERAGING

ARCHITECTURE OF ADE

HOW WE SPLIT THE DATASET IN CHUNKS?

BETA = 3

M trained on C1 and predict C2

M trained on C1 + C2 and predict C3

M trained on C1 + ... + Cn-1 and predict Cn

WHAT

DOES IT

REGRESSION

REGRESSION

 $(y1 - y1)^{2} = e$

What do we need for metalearner?

e1 e2 e4 ... en

0.5 0.3 0.2 0.4

This is fitted to our metalearner.

RFR

WHY WE CHOSE RANDOM FOREST REGRESOR (RFR)?

- GOOD PREDICTIVE PERFORMANCE OVER NOISY DATA.
- GOOD GENERALIZATION POTENTIAL.
- CONSISTENT FOR AVOIDING OVERFITTING.
- SUITABLE FOR DATASETS WITH HIGH NUMBER OF FEATURES.

REGRESSION PREDICTION

Meta-learner uses observation to predict an error for each base learner.

Metalearner

j1 j2 j3 j4

0.1 0.6 0.5

Baselearner

Meta-learner uses observation to predict an error for each base learner.

REGRESSION REGRESSION PREDICTION: **EXPONENTIAL WEIGHTING**

$$w^{j}_{t} = \frac{exp(-\hat{e_{t}}^{j})}{\sum_{j \in M} exp(-\hat{e_{t}}^{j})}$$

$$\exp(-0.1) + \exp(-0.2) + \exp(-0.5) + \exp(-0.7)$$

$$W11 = 0.32$$

Meta-learner uses observation

REGRESSION **PREDICTION**

REGRESSION PREDICTION: EXPONENTIAL WEIGHTING

$$\hat{y}_t^{ADE} = \sum_{j \epsilon_M} \hat{y}_t^j w_t^j$$

Wjt = (0.32, 0.24, 0.27, 0.28)

$$\hat{y}^{ADE}$$
 2*0.32 + 5*0.24 + 7*0.27 + 8*0.28 = 6.09

$$\hat{y}^{ADE}_{1...4} = (6.09, 7.86, 4.5, 6.24)$$

Meta-learner uses observation to predict an error for each

ê1 ê2 ê3 ê4 0.1 0.2 0.5 0.7 Metalearner 0.2 0.1 0.6 0.5

REGRESSION REGRESSION PREDICTION: **INVERSE WEIGHTING**

PROPORTIONING

$$p_{jt} = \frac{\hat{e_t}}{\sum_{j \in M} \hat{e_t}^j}$$

$$p1...4n = (0.066, 0.25, 0.17, 0.14)$$

Meta-learner uses observation to predict an error for each

REGRESSION REGRESSION PREDICTION: **INVERSE WEIGHTING**

$$p_{1j}^{-1}x_t + p_{2j}^{-1}x_t + p_{3j}^{-1}x_t + \dots + p_{nj}^{-1}x_t = 1$$

$$p1...4n = (0.066, 0.25, 0.17, 0.14)$$

$$p1...4n^{-1} = (15, 4, 5.66, 7)$$

BALANCING

$$\left|w_{jt} = p_{jt}^{-1} x_t\right|$$

$$15*X + 4*X + 5.66*X + 7*X = 1$$

$$X = 0.031$$

$$0.47 + 0.13 + 0.18 + 0.22 = 1$$

Meta-learner uses observation to predict an error for each base learner.

ê1 ê2 ê3 ê4 learner 0.2 0.1 0.6 0.5

REGRESSION REGRESSION PREDICTION: **INVERSE WEIGHTING**

$$\hat{y}_t^{ADE} = \sum_{j \epsilon_M} \hat{y}_t^j w_t^j$$

$$0.47 + 0.13 + 0.18 + 0.22 = 1$$

$$\hat{y}^{ADE}$$
 $y^{1} = 0.47^{*}2 + 0.13^{*}2 + 0.18^{*}7 + 0.22^{*}8 = 4.6$

$$\hat{y}_{1...4} = (4.6, 7.3, 5.15, 5.49)$$

DATASETS

Regression Datasets								
Name	Attributes	# instances						
Cancer	14	3047						
Bike Sharing	15	17379						
Insurance (Charge)	6	1338						
Real Estate	6	415						

Time series Datasets					
Name	# instances				
Bike Sharing	17379				
IBM stock price	1008				
Ozon	518				
Temperature	1461				

EVALUATION

PRIORIZATION

As we evaluate the mean of the predicted error the lower value achieved the better.

Regression: Base-learners								
Dataset	SVR	RFR	DTR	LR	LAS	ELAS	BAY	ARD
Cancer	817.30	477.36	586.67	520.72	519.38	719.79	528.71	509.76
Bike Sharing	23306	13118	13881	22150	22159	26643	22152	22154
Insurance	1.64	1.33	1.35	1.2713	1.2713	1.30	1.2765	1.28
Real Estate	60.10	58.51	60.02	71.88	71.74	74.40	71.26	105.82

Regression: ADE								
Dataset	Ens3	Ens3P	ExEns3	ExEns3P	$\mathrm{Ens}5$	Ens5P	ExEns5	ExEns5P
Cancer	582.04	519.29	604.34	503.87	626.60	708.31	584.01	708.31
Bike Sharing	22344	23719	26655	23719	21292	23508	26654	23508
Insurance	1.32	1.63	3.24	1.63	1.29	1.6484	3.24	1.6484
Real Estate	63.65	70.45	64.36	70.45	60.71	72.25	63.37	72.25

RESULTS

Results of the datasets used in the report are shown for regression and for time series.

Regression for Time series: Base-learners								
Dataset	SVR	RFR	DTR	LR	LAS	ELAS	BAY	ARD
Bike Sharing	26904	8302	9589	11711	11711	11792	11712	11710
IBM	44.38	27.46	58.88	16.30	16.31	16.56	16.35	16.35
Ozone	543.5	358.5	569.8	373.4	373.5	386.3	375.0	389.1
Temperature	22.74	17.86	21.06	16.81	16.85	16.97	16.85	16.87

Regression for Time series: ADE								
Dataset	Ens3	Ens3P	ExEns3	ExEns3P	Ens5	Ens5P	ExEns5	ExEns5P
Bike Sharing	11250	19070	11734	19731	10869	22414	19145	19378
IBM	17.11	119.50	16.94	119.50	16.35	44.29	16.33	44.29
Ozone	413.0	703.4	396.3	703.4	562.8	610.2	608.1	610.2
Temperature	20.92	26.03	24.45	26.03	20.37	23.07	22.56	23.07

NEMENYITEST

REGRESSION

Mean errors with Real Estate dataset.

TIME SERIES

Mean errors with Bike Sharing dataset.

CLASSIFICATION

predictions

predictions

HOW TO CALCULATE THE ERROR?

CLASSIFICATION: ERROR CALCUALTION

Cat Dog Wolf

 $\hat{y}_t^{ADE} = c$, where $\hat{e}_{tc} = \min\left(\frac{\sum_{j \in MC} \hat{e}_{jc}}{N_{MC}}, for \ each \ c \ where \ c \in C\right)$

 $(1 - yj_{Dog}) = error for jn$ at observation t.

Errors

- 0.5

e1 e2 e3 e4X11 X12 X13 **Dog** 0.5 0.7 0.2 0.3 **j2** 0.7 **j3** 0.2

CLASSIFICATION **PREDICTION**

é

j**1** wolf

0.4

j2 dog

0.2

j3 cat

0.6

j4 dog

0.3

j5 wolf

0.4

j6 wolf 0.5

$$cat = [0.6] / Ncat = 0.6$$

$$dog = [0.2, 0.3] / Ndog = 0.25$$

wolf = [0.4, 0.4, 0.5] / Nwolf = 0.43

rabbit, fox, squirrel =

X11 X12

Possible classes:

{cat, dog, wolf, rabbit, fox, squirrel}

$$y1 = dog$$

EVALUATION

DATASETS

2 datasets for binary classification and 2 for multinomial classification.

	Classification Datasets								
Name	Attributes	Classes	# Instances						
Car	6	3	1728						
Obesity	16	4	2211						
Chess	36	2	3196						
Tic-tac-toe	9	2	958						

RESULTS

Results of the datasets used in the report are shown for classification. As we evaluate the accuracy the higher value achieved the better.

Classification: Base-learners									
Dataset	MLR	SVM	SGD	RFC	multNB	bernNB	KNN	ADA	
Car	0.917	0.973	0.905	0.967	0.855	0.863	0.946	0.795	
Obesity	0.831	0.534	0.556	0.958	0.611	0.556	0.910	0.317	
Chess	0.959	0.946	0.956	0.970	0.849	0.850	0.924	0.957	
Tic-tac-toe	0.982	0.975	0.979	0.972	0.677	0.666	0.968	0.857	

Classification: ADE									
Dataset	Ens3	Ens3P	Ens5	Ens5P					
Car	0.761	0.797	0.855	0.963					
Obesity	0.446	0.902	0.798	0.906					
Chess	0.871	0.965	0.912	0.967					
Tic-tac-toe	0.982	0.982	0.975	0.947					

S Informatique Électronique

