Practice with modular arithmetic

Learning Objectives. By the end of class, students will be able to:

- Prove that $\{0, 1, \dots, m-1\}$ is a complete residue system modulo m.
- Prove basic facts about modular arithmetic. .

Definition (complete residue system). Let $a, m \in \mathbb{Z}$ with m > 0. We call the set of all $b \in \mathbb{Z}$ such that $a \equiv b \pmod{m}$ the equivalence class of a. A set of integers such that every integer is congruent modulo m is called a *complete residue system modulo* m.

Proposition 1. Let m be a positive integer. Then equivalence modulo m partition the integers. That is, every integer is in exactly one equivalence class modulo m.

Proof This is an immediate consequence of the fact that equivalence modulo m is an equivalence relation.

Notice that this arguments also simplifies the proof the $\{0, 1, ..., m-1\}$ is a complete residue system modulo m. **Proposition 2.** The set $\{0, 1, ..., m-1\}$ is a complete residue system modulo m.

Proof Let $a, m \in \mathbb{Z}$ with m > 0. By the ??, there exist unique $q, r \in \mathbb{Z}$ such that a = qm + r with $0 \le r < m$. In fact, since $0 \le r < m$, we know $r = 0, 1, \ldots, m - 2$, or m - 1. Therefore, every integer is in the equivalence class of $0, 1, \ldots, m - 2$ or m - 1 modulo m. Since every integer is in exactly one equivalence class modulo m, and the remainder from the division algorithm is unique, it is not possible for a to be equivalent to any other element of $\{0, 1, \ldots, m - 1\}$.

In-class Problem 1 Practice: addition and multiplication tables modulo 3, 4, 5, 6, 7. I am adding 9 to include an odd composite.

Solution: Modulo 3

_+	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

*	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

Modulo 4

+	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

*	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

Modulo 5

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[0]
[4]	[4]	[0]	[1]	[2]	[3]

*	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]
[2]	[0]	[2]	[4]	[1]	[3]
[3]	[0]	[3]	[1]	[4]	[2]
[4]	[0]	[4]	[3]	[2]	$\boxed{1}$

Learning outcomes:

Author(s): Claire Merriman

Modulo 6

_ +	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

*	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Modulo 7

_+	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[0]	[1]	[2]	[3]	[4]	[5]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]

Modulo 8

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[0]	[1]	[2]	[3]	[4]	[5]	[6]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[2]	[0]	[2]	[4]	[6]	[0]	[2]	[4]	[6]
[3]	[0]	[3]	[6]	[1]	[4]	[7]	[2]	[5]
[4]	[0]	[4]	[0]	[4]	[0]	[4]	[0]	[4]
[5]	[0]	[5]	[2]	[7]	[4]	[1]	[6]	[3]
[6]	[0]	[6]	[4]	[2]	[0]	[6]	[4]	[2]
[7]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

Modulo 9

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[8]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[2]	[0]	[2]	[4]	[6]	[0]	[1]	[3]	[5]	[7]
[3]	[0]	[3]	[6]	[0]	[3]	[6]	[0]	[3]	[6]
[4]	[0]	[4]	[8]	[3]	[7]	[2]	[6]	[1]	[5]
[5]	[0]	[5]	[1]	[6]	[2]	[7]	[3]	[8]	[4]
[6]	[0]	[6]	[3]	[0]	[6]	[3]	[0]	[6]	[3]
[7]	[0]	[7]	[5]	[3]	[1]	[8]	[6]	[4]	[2]
[8]	[0]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

Definition $(a \equiv b \pmod{m})$. Let $a, b, m \in \mathbb{Z}$ with m > 0. From Friday, we have the following equivalent definitions of congruence modulo m:

(a) $a \equiv b \pmod{m}$ if and only if $m \mid b - a$ (standard definition, generalizing even/odd based on divisibility)

all definitions are if and only if

- (b) $a \equiv b \pmod{m}$ if and only if a and b have the same remainder with divided by m. That is, That is, there exists unique $q_1, q_2, r \in \mathbb{Z}$ such that $a = mq_1 + r$, $b = mq_2 + r$, $0 \le r < m$. (definition generalizing even/odd based on remainder)
- (c) $a \equiv b \pmod{m}$ if and only if a and b differ by a multiple of m. That is, b = a + mk for some $k \in \mathbb{Z}$. (arithmetic progression definition)

Different statements of the definition will be useful in different situations

Proposition 3. Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0, then:

- (a) $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ implies $a \equiv c \pmod{m}$
- (b) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies $a + c \equiv b + d \pmod{m}$
- (c) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies $ac \equiv bd \pmod{m}$.
- (d) $a \equiv b \pmod{m}$ and $d \mid m, d > 0$ implies $a \equiv b \pmod{d}$
- (e) $a \equiv b \pmod{m}$ implies $ac \equiv bc \pmod{mc}$ for c > 0.

Proof Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0.

(a) Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then using the second definition of equivalence, there exists $q_1, q_2, q_3, r \in \mathbb{Z}$ such that

$$a = mq_1 + r,$$
 $0 \le r < m,$
 $b = mq_2 + r,$ $0 \le r < m,$
 $c = mq_3 + r,$ $0 \le r < m.$

Thus, a and c have the same remainder when divided by m, so $a \equiv c \pmod{m}$.

??/?? Assume $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Then by the third definition of equivalence, there exists $j, k \in \mathbb{Z}$ such that b = a + mj and d = c + mk. Thus,

$$b+d=a+c+m(j+k), \qquad \text{and}$$

$$bd=ac+m(ak+cj+mjk).$$

Thus, $a + c \equiv b + d \pmod{m}$ and $ac = bd \pmod{m}$.

- (d) Assume $a \equiv b \pmod{m}$, and d > 0 with $d \mid m$. From the first definition of equivalence modulo $m, m \mid b a$. Since division is transitive, $d \mid b a$, so $a \equiv b \pmod{d}$.
- (e) Assume $a \equiv b \pmod{m}$, and c > 0. From the third definition of equivalence modulo m, there exists $k \in \mathbb{Z}$ such that b = a + mk. Thus, bc = ac + mck, so $ac \equiv bc \pmod{mc}$.

Example 1. Note that $2 \equiv 5 \pmod{3}$. Then $4 \equiv 10 \pmod{3}$ by Proposition ????, since $2 \equiv 2 \pmod{3}$. From part ??, $4 \equiv 10 \pmod{6}$, but $2 \not\equiv 5 \pmod{6}$.