50.021 Artificial Intelligence Theory Homework 1

Due: every Monday, 4PM before class starts

[Q1]. Find any separating hyperplane equation for these three sample points: $\mathbf{x}_1 = (0,0), y_1 = +1, \mathbf{x}_2 = (1,3), y_2 = +1, \text{ and } \mathbf{x}_3 = (0,3), y_3 = -1.$ Draw (by hand) or plot (using Python, see matplotlib) the result.

Solution:

Any line that separates the points into two classes is ok. Below is one example.

[Q2]. Find by hand the value of optimum weights $\hat{\boldsymbol{w}}$ and bias \hat{b} using linear regression for the four following sample points: $\boldsymbol{x}_1 = (1,1), y_1 = +1, \ \boldsymbol{x}_2 = (2,2), y_2 = +1, \ \boldsymbol{x}_3 = (1,3), y_3 = -1 \ \boldsymbol{x}_4 = (2,3), y_4 = -1$. Show your working.

Solution:

We can begin by making the matrix X,

$$X = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 3 & 1 \end{bmatrix}$$

and the vector $\mathbf{y} = [1 \ 1 \ -1 \ -1]^T$. We know that the optimum weight is $\hat{\mathbf{w}} = [w_1 \ w_2 \ \hat{b}]^T = (X^T \cdot X)^{-1} X^T \cdot Y$. Substituting the values above,

$$\hat{\boldsymbol{w}} = \left(\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 3 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

$$X^T \cdot X = \begin{bmatrix} 10 & 14 & 6 \\ 14 & 23 & 9 \\ 6 & 9 & 4 \end{bmatrix}, \ (X^T \cdot X)^{-1} = \begin{bmatrix} 1.1 & -0.2 & -1.2 \\ -0.2 & 0.4 & -0.6 \\ -1.2 & -0.6 & 3.4 \end{bmatrix}$$

Hence,

$$\hat{\boldsymbol{w}} = \begin{bmatrix} 1.1 & -0.2 & -1.2 \\ -0.2 & 0.4 & -0.6 \\ -1.2 & -0.6 & 3.4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0.6 \\ -1.2 \\ 1.8 \end{bmatrix}$$

1

[Q3]. In the lecture notes, we solve the objective function:

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \sum_{i=1}^{n} (y_i - \boldsymbol{w} \cdot \boldsymbol{x}_i)^2$$
(1)

by hand, and we have the analytical solution for optimum weights w* in linear regression,

$$\hat{\boldsymbol{w}} = (X^T \cdot X)^{-1} X^T \cdot Y$$
$$\boldsymbol{x} \cdot \hat{\boldsymbol{w}} \in \mathbb{R}^d$$

Now suppose instead of using x_i directly, we want to use some basis function $\phi(x_i)$ on each dataset i, and suppose that we use a slightly different squared error loss function than the lecture notes,

$$L(y, f(\boldsymbol{x})) = \frac{1}{2N} (y - f(\boldsymbol{x}))^2,$$

$$f(\boldsymbol{x}) = \phi(\boldsymbol{x}) \cdot \boldsymbol{w}$$

- 1. Rewrite the objective function in equation (1) using the new loss function L(y, f(x)) above.
- 2. Show that, even when the loss function is changed from whats shown in the lecture notes to the above, and although we apply basis function $\phi(x_i)$, the solution for optimum weight \hat{v} still takes the similar form,

$$\hat{\boldsymbol{w}} = (\Phi^T \cdot \Phi)^{-1} \Phi^T \cdot Y,$$

where,

$$\Phi = egin{bmatrix} \phi_1(m{x}_1) & ... & \phi_d(m{x}_1) \ dots & \ddots & dots \ \phi_1(m{x}_N) & ... & \phi_d(m{x}_N) \end{bmatrix},$$

and d is number of dimensions of each sample x, and N is the number of samples.

3. Show that if we define a function,

$$\mathcal{K}(\boldsymbol{x}_i, \boldsymbol{x}_r) = \phi(\boldsymbol{x}_i) \cdot \phi(\boldsymbol{x}_t),$$

then f(x) can be written only in terms of the function \mathcal{K} above without the need to specify ϕ explicitly.

Hint: Let $\mathbf{w} = \Phi^T \mathbf{v}$, where v is some new parameter vector that you now maximise.

4. Write down the analytical form of the optimum parameter for L(y, f(x)) using your new expression of f(x) (that now contains \mathcal{K}) in part (3). This can be done by reusing some of your answer in part (2).

Solution:

1. The function we are going to minimise is the sum of the loss functions over the entire training samples,

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \sum_{i=1}^{N} \frac{1}{2N} (y_i - f(\boldsymbol{x}_i))^2$$
$$= \operatorname{argmin}_{\boldsymbol{w}} \sum_{i=1}^{N} \frac{1}{2N} (y_i - \phi(\boldsymbol{x}_i) \cdot \boldsymbol{w})^2$$

In vectorised form, it is,

$$\hat{\boldsymbol{w}} = \operatorname{argmin}_{\boldsymbol{w}} \frac{1}{2N} \|\boldsymbol{y} - \Phi \boldsymbol{w}\|^2,$$

where $\mathbf{y} = (y_1, ..., y_N)^T$, and $\mathbf{w} = (w_1, ..., w_d)^T$.

2. We can differentiate the equation in part 1 with respect to \boldsymbol{w} and set it to zero. In short, we can use the vector derivative,

$$\nabla_{\boldsymbol{w}} \left[\frac{1}{2N} \| \boldsymbol{y} - \Phi \boldsymbol{w} \|^2 \right] = 0$$

Hence,

$$0 = \frac{1}{2N} \nabla_{\boldsymbol{w}} \left[(\boldsymbol{y} - \Phi \boldsymbol{w})^T (\boldsymbol{y} - \Phi \boldsymbol{w}) \right]$$
$$= \frac{1}{2N} \nabla_{\boldsymbol{w}} \left[\boldsymbol{y}^T \boldsymbol{y} - 2 \boldsymbol{y}^T \Phi \boldsymbol{w} + \boldsymbol{w}^T \Phi^T \Phi \boldsymbol{w} \right]$$
$$= \frac{1}{2N} (-2\Phi^T \boldsymbol{y} + 2\Phi^T \Phi \boldsymbol{w})$$

(Google "Matrix Calculus" if you're lost on how to get the above expression)

$$= -\Phi^T \boldsymbol{y} + \Phi^T \Phi \boldsymbol{w}$$

$$\hat{\boldsymbol{x}} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

3. The key is to first realise that the possible values of \boldsymbol{w} lies in the span of data points $\boldsymbol{x}_i \ \forall \ i=1,...,N$. In other words, the optimal \hat{w} depends on all of the training data,

$$\boldsymbol{w} = \Phi^T \boldsymbol{v},$$

for some vector $\mathbf{v} = (v_1, ..., v_N), \ \mathbf{v} \in \mathbb{R}^N$.

We know that $f(\mathbf{x}) = \phi(\mathbf{x}) \cdot \mathbf{w}$. Plugging in the new expression for \mathbf{w} above,

$$f(\mathbf{x}) = \phi(\mathbf{x}) \cdot (\Phi^T \mathbf{v})$$

$$= \phi(\mathbf{x}) \cdot \left(\sum_{i=1}^N \phi(\mathbf{x}_i) \ v_i\right)$$

$$= \sum_{i=1}^N (\phi(\mathbf{x}) \cdot \phi(\mathbf{x}_i)) \ v_i$$

$$= \sum_{i=1}^N \mathcal{K}(\mathbf{x}, \mathbf{x}_i) \ v_i$$

This is called the *dual* form of linear regression. It is more efficient to compute \mathcal{K} than to compute ϕ , because ϕ . In the literature, \mathcal{K} is known as a *kernel*.

4. Using results from part (2),

$$\begin{split} \boldsymbol{\Phi}^T \boldsymbol{y} &= \boldsymbol{\Phi}^T \boldsymbol{\Phi} \ \hat{\boldsymbol{w}}, \\ \boldsymbol{\Phi}^T \boldsymbol{y} &= \boldsymbol{\Phi}^T \boldsymbol{\Phi} \ (\boldsymbol{\Phi}^T \hat{v}), \\ \therefore \boldsymbol{y} &= \boldsymbol{\Phi} \boldsymbol{\Phi}^T \hat{v}, \\ \hat{v} &= (\boldsymbol{\Phi} \boldsymbol{\Phi}^T)^{-1} \boldsymbol{y}, \\ \hat{v} &= (\mathbf{K})^{-1} \boldsymbol{y}, \end{split}$$

where,

$$\mathbf{K} = egin{bmatrix} \mathcal{K}(oldsymbol{x}_1, oldsymbol{x}_1) & ... & \mathcal{K}(oldsymbol{x}_1, oldsymbol{x}_N) \ dots & \ddots & dots \ \mathcal{K}(oldsymbol{x}_N, oldsymbol{x}_1) & ... & \mathcal{K}(oldsymbol{x}_N, oldsymbol{x}_N) \end{bmatrix}$$