Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 за III семестр

по дисциплине: "Метады и алгоритмы принятия решений" Тема: "Линейная искусственная нейронная сеть. Правило Видроу-Хоффа"

> Выполнил: студент 2 курса группы ПО-4 (1) Галанин П. И.

Проверил: ст. преподаватель Крощенко А. А.

Лабораторная работа №1

Тема: "Линейная искусственная нейронная сеть. Правило Видроу-Хоффа".

Цель: "Изучить обучение и функционирование линейной ИНС при решении задач прогнозирования".

Ход работы:

Вариант 5

Условие

1. Написать на любом ЯВУ программу моделирования прогнозирующей линейной ИНС. Для тестирования использовать функцию:

$$y = a * sin(b * x) + d$$

Варианты заданий приведены в следующей таблице:

№ варианта	a	b	d	Кол-во входов ИНС
1	1	5	0.1	3
2	2	6	0.2	4
3	3	7	0.3	5
4	4	8	0.4	3
5	1	9	0.5	4
6	2	5	0.6	5
7	3	6	0.1	3
8	4	7	0.2	4
9	1	8	0.3	5
10	2	9	0.4	3
11	3	5	0.5	4

Обучение и прогнозирование производить на 30 и 15 значениях соответственно табулируя функцию с шагом 0.1. Скорость обучения выбирается студентом самостоятельно, для чего моделирование проводится несколько раз для разных α . Результаты

Изм	Лист	№ докум.	Подп.	Дата	ЛР.ПО4.190333		••••	
Раз _І Про	•	Галанин Крощенко			Лабораторная работа №1 Линейная искусственная	Лит. Л	Лист 2	Листов 8
Н. к Утв	-	Крощенко			нейронная сеть. Правило Видроу-Хоффа		БрГТ	'У

оцениваются по двум критериям - скорости обучения и минимальной достигнутой ошибке. Необходимо заметить, что эти критерии в общем случае являются взаимо-исключающими, и оптимальные значения для каждого критерия достигаются при разных α .

- 2. Результаты представить в виде отчета содержащего:
 - 1) Титульный лист
 - 2) Цель работы
 - 3) Задание
 - 4) Результаты обучения: таблицу со столбцами: эталонное значение, полученное значение, отклонение; график изменения ошибки в зависимости от итерации.
 - 5) Результаты прогнозирования: таблицу со столбцами: эталонное значение, полученное значение, отклонение.
 - 6) Выводы по лабораторной работе.

Результаты для пунктов 3 и 4 приводятся для значения α , при котором достигается минимальная ошибка. В выводах анализируются все полученные результаты.

Контрольные вопросы

- а) ИНС какой архитектуры Вы использовали в данной работе? Опишите принцип построения этой ИНС.
- б) Как функционирует используема Вами ИНС?
- в) Опишите (в общих чертах) алгоритм обучения Вашей ИНС.
- г) Как формируется обучающая выборка для решения задачи прогнозирования?
- д) Как выполняется многошаговое прогнозирование временного ряда?
- е) Предложите критерий оценки качества результатов прогноза.

Изм	Лист	№ докум.	Подп.	Дата

Исходный код

Листинг: Исходный код

```
import math
   def print_headTable():
     print("| %16s | %16s | %16s | %16s |" % (
       "y[]",
       "etalonoe zn",
       "Polychenoe zn",
       "Otklonenie"
     ))
     print("| %16s | %16s | %16s | %16s |" % (
10
       " ----" ,
11
       "----",
12
       " ----" ,
13
       0 \ \_\_\_\_\_\_\_0
14
     ))
15
16
17
  a = 1
  b = 9
19
  d = 0.5
20
   L = 4
21
22
   alpha = 10e-6
23
  Em = 10e-6
24
25
  w = []
26
  for i in range(L):
27
    w.append(0)
28
29
  T = 1
30
31
  m = 30
32
  m2 = 15
33
   etalon = []
34
  for i in range(m + m2):
35
     etalon.append(0)
```

Изм Лист № докум. Подп. Дата

 $\Pi P.\Pi O 4.190333-...$

```
36
37
   for i in range(m + m2):
38
     step = 0.1
39
     x = step * i
40
     etalon[i] = alpha * math.sin(b * x) + d
41
42
   while 1:
43
     E = 0
44
45
     for i in range (m - L):
       y1 = 0
46
47
       for j in range(L):
48
         y1 += w[j] * etalon[i + j]
49
       y1 -= T
50
51
       for j in range(L):
52
         w[j] -= alpha * ( y1 - etalon[i + L] ) * etalon[i + j]
53
54
       T += alpha * (y1 - etalon[i + L])
55
56
       E += 0.5 * math.pow((y1 - etalon[i + L]), 2)
57
58
     if E < Em:
59
       break;
60
61
   print("Training sample:")
62
   print_headTable()
63
64
   trainingSample = []
65
66
   for i in range(m + m2):
67
     trainingSample.append(0)
68
69
   for i in range(m):
     trainingSample[i] = 0
70
71
     for j in range(L):
72
       trainingSample[i] += w[j] * etalon[j + i - L]
73
74
     trainingSample[i] -= T
```

Изм Лист № докум. Подп. Дата

ЛР.ПО4.190333-....

```
75
76
     print("| %16d | %16lf | %16lf | %16lf |" % (
77
       i,
78
       etalon[i],
79
       trainingSample[i],
80
       etalon[i] - trainingSample[i]
81
     ))
82
   print("Forecasting the future:")
83
   print_headTable()
84
85
86
   for i in range(m2):
87
     trainingSample[i + m] = 0
88
89
     for j in range(L):
90
       trainingSample[i + m] += w[j] * etalon[m - L + j + i]
91
92
     trainingSample[i] += T
93
94
     print("| %16d | %16lf | %16lf | %16lf |" % (
95
       i + m,
96
       etalon[i],
97
       trainingSample[i],
       etalon[i] - trainingSample[i]
98
99
     ))
```

Изм	Лист	№ докум.	Подп.	Дата

Вывод в консоль

Листинг: Вывод в консоль

y []	etalonoe zn	Polychenoe zn	Otklonenie
0	0.500000	0.499127	0.000873
1	0.500008	0.499130	0.000878
2	0.500010	0.499133	0.000877
3	0.500004	0.499133	0.000871
4	0.499996	$0.499131 \mid$	0.000864
5	0.499990	0.499129	0.000861
6	0.499999	0.499123	0.000869
7	0.500000	0.499116	0.000884
8	0.500008	0.499115	0.000893
9	0.500010	0.499119	0.000890
10	0.500004	0.499127	0.000877
11	0.499995	0.499131	0.000864
12	0.499990	0.499129	0.000861
13	0.499999	0.499123	0.000870
14	0.500000	0.499116	0.000884
15	0.500008	0.499115	0.000893
16	0.500010	0.499120	0.000890
17	0.500004	$0.499127 \mid$	0.000877
18	0.499995	0.499131	0.000864
19	0.499990	0.499129	0.000861
20	0.499999	0.499123	0.000870
21	0.500001	0.499116	0.000884
22	0.500008	0.499115	0.000893
23	0.500010	0.499120	0.000890
24	0.500004	0.499127	0.000877
25	0.499995	0.499131	0.000864
26	0.499990	0.499129	0.000861
27	0.499993	0.499122	0.000870
28	0.500001	0.499116	0.000885
29	0.500008	$0.499115 \mid$	0.000893
Forecasting the future	:		
y []	etalonoe zn	Polychenoe zn	Otklonenie
30	0.500000	0.749566	-0.249566

Изм	Лист	№ докум.	Подп.	Дата

38	31	0.500008	0.749569	-0.249561
39	32	0.500010	0.749571	-0.249561
40	33	0.500004	0.749572	-0.249567
41	34	0.499996	0.749570	-0.249574
42	35	0.499990	0.749568	-0.249578
43	36	0.499992	0.749561	-0.249569
44	37	0.500000	0.749555	-0.249555
45	38	0.500008	0.749553	-0.249545
46	39	0.500010	0.749558	-0.249548
47	40	0.500004	0.749565	-0.249561
48	41	0.499995	0.749570	-0.249574
49	42	0.499990	0.749568	-0.249578
50	43	0.499992	$0.749561 \mid$	-0.249569
51	44	0.500000	0.749555	-0.249554

Вывод: "Изучили обучение и функционирование линейной ИНС при решении задач прогнозирования".

Изм	Лист	№ докум.	Подп.	Дата