Alternating Series

Chase Mathison¹

Shenandoah University

16 April 2024

Announcements

- Homework in M.O.M.
- ② Office hours today 10am 11am.
- New project in Canvas.

Alternating Series

So far, the tests we've used only work on series with	terms.
But in real life, there are series that have both positive and negative	terms.
A special type of sequence of this sort is called an	

Definition (Alternating Series)

Any series whose terms alternate between positive and negative values is called an alternating series. An alternating series can be written in the forms:

Which of the following are alternating series?

1
$$\sum_{n=1}^{\infty} (-1)^n$$

2 $\sum_{n=1}^{\infty} (\frac{2}{3})^{n-1}$

$$3 \sum_{n=1}^{\infty} \frac{\sin\left(\frac{(2n+1)\pi}{2}\right)}{n}$$

Alternating series test

To show how we can determine the convergence or divergence of an alternating series, let's look at a specific alternating series, the alternating harmonic series:

Alternating series test

Alternating series test

Theorem (The Alternating Series Test)

An alternating series of the form

$$\sum_{n=1}^{\infty} (-1)^n b_n \text{ or } \sum_{n=1}^{\infty} (-1)^{n+1} b_n$$

converges if:

Which of the following series converge:

- 1 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ 2 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{e^n}$ 3 $\sum_{n=1}^{\infty} (-1)^n \ln(n)$

The Remainder of an Alternating Series

Let's see if we can get a bound on the remainder

$$R_N = \sum_{n=1}^{\infty} (-1)^n b_n - \sum_{n=1}^{N} (-1)^n b_n$$
 if the series converges.

What is the remainder if we use

$$\sum_{n=0}^{5} (-1)^n \frac{1}{(2n+1)!}$$

to approximate $\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!}$? (This is $\sin(1)$, by the way).

Absolute vs Conditional Convergence

We've shown now that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges, but we also know that

$$\sum_{n=1}^{\infty} \left| \frac{\left(-1\right)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$

diverges (why)?

A series $\sum_{n=1}^{\infty} a_n$ that converges, but for which $\sum_{n=1}^{\infty} |a_n|$ diverges is called

A series $\sum_{n=1}^{\infty} a_n$ that converges, and for which $\sum_{n=1}^{\infty} |a_n|$ converges is called

Is the series

$$\sum_{n=1}^{\infty} \left(\frac{-1}{4}\right)^n$$

conditionally convergent, absolutely convergent, or divergent?

A useful theorem

A fact that is useful is that if $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series, then

the original series $\sum_{n=1}^{\infty} a_n$ is also convergent.