Chap11_2

Anjali Krishnan and Richard Troise

```
library(xtable)
library(gmodels)
```

First, set working directory. 'data' is a table with two columns and same number of rows, and should be numeric. Columns have headers indicating the names of the variables. **User will also input desired variable names in double quotes**

```
data <- read.csv("chap11_2.csv", header = FALSE, skip = 1)
colnames(data) <- c("sub_1", "sub_2", "sub_3", "sub_4", "sub_5", "sub_6")</pre>
```

We now combine the observations into one long column (score)

```
colnames(data) <- c("V1", "V2", "V3", "V4", "V5", "V6")
score=c(data$V1,data$V2,data$V3,data$V4,data$V5,data$V6)</pre>
```

We now prepare the labels for the 4x5 scores according to the factor levels: Drug_A Placebo Drub_B, Drug_A Placebo Drug_B......etc for Factor A

```
Drug=gl(3,1,6*3*1, labels=c("Drug_A","Placebo","Drug_B"))
```

 $sub_1 \; sub_1....., \; sub_2 \; sub_2....., sub_3 \; sub_3 \;, sub_4 \; sub_4 \;, \; sub_5 \; sub_5...., \; sub_6 \; sub_6 \; etc \; for \; Factor \; B.$

```
Subject=gl(6,3*1,6*3*1, labels=c("sub _1", "sub_2", "sub_3", "sub_4", "sub_5", "sub_6"))
```

We now form a data frame with the dependent variable and the factors, then we print the results

score	Drug	Subject
124	Drug_A	sub _1
108	Placebo	$\operatorname{sub} _1$
104	$Drug_B$	$\operatorname{sub} _1$
105	$Drug_A$	sub_2
107	Placebo	sub_2
100	$Drug_B$	sub_2
107	$Drug_A$	sub_3
90	Placebo	sub_3
100	$Drug_B$	sub_3
109	$Drug_A$	sub_4
89	Placebo	sub_4
93	$Drug_B$	sub_4
94	$Drug_A$	sub_5
105	Placebo	sub_5
89	$Drug_B$	sub_5

score	Drug	Subject
121	Drug_A	sub_6
71	Placebo	sub_6
84	$Drug_B$	sub_6

Anova when "Subject" is considered as a random factor, then we print the results

Subject

sub _1 sub_2 sub_3 sub_4 sub_5 sub_6

99

97

96

104

```
aov1=aov(score~Drug+Error(Subject),data=data)
summary(aov1)
##
## Error: Subject
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 5
                  750
                          150
## Error: Within
##
            Df Sum Sq Mean Sq F value Pr(>F)
                  900
                          450
                                 3.75 0.0609 .
## Drug
## Residuals 10
                 1200
                           120
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
print(model.tables(aov(score~Drug+Subject), "means"), digits=3)
## Tables of means
## Grand mean
## 100
##
## Drug
## Drug
   Drug_A Placebo Drug_B
##
       110
               95
                        95
##
## Subject
```