Lecture 7: Entry

Kunal Sangani

ECON 416-1

Table of Contents

Quota demand system

Pro-competitive effects of entry (Krugman 1979

Entry with heterogeneous firms

Recap from last time

• Last time, we discussed an isomorphism between distortions and technology.

Distance to Frontier Example

- Local gains from relaxing distortion given by rents Π_i .
- Rents go to zero when distortion no longer binds.

Nonlinearities: Multiple Quotas

Method scales up to multiple interacting quotas

$$\Delta \log Y \approx \Pi' d \log \mathbf{y}^* + \frac{1}{2} (d \log \mathbf{y}^*)' \frac{d\Pi}{d \log \mathbf{y}^*} (d \log \mathbf{y}^*),$$

• Quota demand system $\frac{d\Pi}{d\log \mathbf{y}^*}$ summarizes responses of rents to quotas.

Nonlinearities: Multiple Quotas

Method scales up to multiple interacting quotas

$$\Delta \log Y \approx \Pi' d \log \mathbf{y}^* + \frac{1}{2} (d \log \mathbf{y}^*)' \frac{d\Pi}{d \log \mathbf{y}^*} (d \log \mathbf{y}^*),$$

• Quota demand system $\frac{d\Pi}{d\log \mathbf{y}^*}$ summarizes responses of rents to quotas.

Illustrative Example: Multiple Quotas

• Consider horizontal economy. Response to changes in quotas on firms 1 and 2:

$$\Delta \log Y \approx \underbrace{ \frac{\Pi_1 d \log y_{1^*} + \Pi_2 d \log y_{2^*}}{\text{First order}} }_{\text{First order}} + \underbrace{ \left(1/2 \right) \left(\frac{\partial \Pi_1}{\partial \log y_1^*} \left(d \log y_{1^*} \right)^2 + \frac{\partial \Pi_2}{\partial \log y_2^*} \left(d \log y_{2^*} \right)^2 + 2 \frac{\partial \Pi_1}{\partial \log y_2^*} \left(d \log y_{1^*} \right) \left(d \log y_{2^*} \right) \right)}_{\text{Second order}} .$$

- $\frac{\partial \Pi_1}{\partial \log y_2^*}$ determines whether relaxing y_{1^*} amplifies/reduces gains from relaxing y_{2^*} .
- In horizontal economy, $\frac{\partial \Pi_1}{\partial \log v_c^*} > 0$ if

$$\theta<1-\frac{(\lambda_1-\Pi_1)(\lambda_2-\Pi_2)}{(1-\lambda_1-\lambda_2)\Pi_1\Pi_2}.$$

Necessary condition is that θ < 1, i.e., outputs of firms 1 and 2 are complements.

Nonlinearities: Multiple Quotas

Method scales up to multiple interacting quotas

$$\Delta \log Y \approx \Pi' d \log \mathbf{y}^* + \frac{1}{2} (d \log \mathbf{y}^*)' \frac{d\Pi}{d \log \mathbf{y}^*} (d \log \mathbf{y}^*),$$

• Quota demand system $\frac{d\Pi}{d\log \mathbf{y}^*}$ summarizes responses of rents to quotas.

Nonlinearities: Multiple Quotas

Method scales up to multiple interacting quotas

$$\Delta \log Y \approx \Pi' d \log \mathbf{y}^* + \frac{1}{2} (d \log \mathbf{y}^*)' \frac{d\Pi}{d \log \mathbf{y}^*} (d \log \mathbf{y}^*),$$

- Quota demand system $\frac{d\Pi}{d \log y^*}$ summarizes responses of rents to quotas.
- Similarly, gains from eliminating quotas simultaneously given by:

$$\Delta \log Y \approx -\frac{1}{2}\Pi' \left[\frac{d\Pi}{d\log y^*}\right]^{-1}\Pi.$$

• If i's rents fall when j's quota relaxed, then

gains from relaxing both quotas < sum of gains from relaxing each.

Empirical Example: China's Textile & Clothing Exports

- 1975–1994 Multi-Fiber Agreement capped China's textile & clothing exports to US, EU.
- Staged phase-out:
 - Jan 2002 (Phase III): Knit fabrics, gloves, dressing gowns, brassieres, etc.
 - Jan 2005 (Phase IV): Silk, wool, and cotton textiles, other apparel categories, etc.
- Obtain quota demand system using initial rents & response of exports to liberalization.
- Use quota auction prices for initial rents: $\Pi_{Phase\;III}=\$520M,\,\Pi_{Phase\;IV}=\$1583M.$

- 1. Use quota auction prices for initial quota profits.
- 2. Use response of export quantities to phase-out to recover quota demand system, H.
- 3. Use H to estimate gains from relaxing any subset of quotas.

- 1. Use quota auction prices for initial quota profits.
 - Market prices for quotas to export in each product category in 2001.
 - Quota profits in 2025 USD, $\Pi_{\text{Phase III}} = \520M , $\Pi_{\text{Phase IV}} = \1583M .
- Use response of export quantities to phase-out to recover quota demand system, H.
- 3. Use H to estimate gains from relaxing any subset of quotas.

- 1. Use quota auction prices for initial quota profits.
- 2. Use response of export quantities to phase-out to recover quota demand system, H.
 - Because profits go to zero when quotas are removed, $H = \partial \Pi / \partial \log y$ solves:

$$\begin{split} &\Pi_{\text{Phase III}} = \left(d\log y_{\text{Phase III}}^{\text{III}}\right) H_{11}, \\ &\Pi_{\text{Phase III}} = \left(d\log y_{\text{Phase III}}^{\text{IV}}\right) H_{11} + \left(d\log y_{\text{Phase IV}}^{\text{IV}}\right) H_{12}, \\ &\Pi_{\text{Phase IV}} = \left(d\log y_{\text{Phase IV}}^{\text{III}}\right) H_{21} + \left(d\log y_{\text{Phase IV}}^{\text{IV}}\right) H_{22}, \end{split}$$

where $d \log y_x^{\text{III}}$ ($d \log y_x^{\text{IV}}$) is the change in exports for x goods following Phase III (IV).

- Symmetry implies $H_{12} = H_{21}$.
- 3. Use *H* to estimate gains from relaxing any subset of quotas.

$$\begin{split} \log y_{ict} &= \beta_t^{\text{Phase III}} \left(\text{Binding}_c \times 1\{c \text{ quota relaxed in Phase III}\} \times 1\{\text{year} = t\} \right) \\ &+ \beta_t^{\text{Phase IV}} \left(\text{Binding}_c \times 1\{c \text{ quota relaxed in Phase IV}\} \times 1\{\text{year} = t\} \right) + \alpha_t + \delta_i + \varepsilon_{ict}, \end{split}$$

• E.g., $\beta_t^{\text{Phase III}}$ is change in Phase III good exports in t relative to unconstrained goods.

- 1. Use quota auction prices for initial quota profits.
- 2. Use response of export quantities to phase-out to recover quota demand system, H.
 - Because profits go to zero when quotas are removed, $H = \partial \Pi / \partial \log y$ solves:

$$\begin{split} &\Pi_{\text{Phase III}} = \left(d\log y_{\text{Phase III}}^{\text{III}}\right) H_{11}, \\ &\Pi_{\text{Phase III}} = \left(d\log y_{\text{Phase III}}^{\text{IV}}\right) H_{11} + \left(d\log y_{\text{Phase IV}}^{\text{IV}}\right) H_{12}, \\ &\Pi_{\text{Phase IV}} = \left(d\log y_{\text{Phase IV}}^{\text{III}}\right) H_{21} + \left(d\log y_{\text{Phase IV}}^{\text{IV}}\right) H_{22}, \end{split}$$

where $d \log y_x^{\text{III}}$ ($d \log y_x^{\text{IV}}$) is the change in exports for x goods following Phase III (IV).

- Symmetry implies $H_{12} = H_{21}$.
- 3. Use *H* to estimate gains from relaxing any subset of quotas.

- 1. Use quota auction prices for initial quota profits.
- 2. Use response of export quantities to phase-out to recover quota demand system, H.
- 3. Use *H* to estimate gains from relaxing any subset of quotas.
 - Estimated inverse quota demand system:

$$\Pi = \begin{bmatrix} \Pi_{\text{Phase III}} \\ \Pi_{\text{Phase IV}} \end{bmatrix} = \begin{bmatrix} \$520M \\ \$1583M \end{bmatrix}, \qquad \frac{d \log \Pi}{d \log \mathbf{y}^*} = \begin{bmatrix} -0.472 & -0.200 \\ -0.066 & -1.149 \end{bmatrix}.$$

- 1. Use quota auction prices for initial quota profits.
- 2. Use response of export quantities to phase-out to recover quota demand system, H.
- 3. Use *H* to estimate gains from relaxing any subset of quotas.
 - Estimated inverse quota demand system:

$$\Pi = \begin{bmatrix} \Pi_{\mathsf{Phase\ III}} \\ \Pi_{\mathsf{Phase\ IV}} \end{bmatrix} = \begin{bmatrix} \$520\mathsf{M} \\ \$1583\mathsf{M} \end{bmatrix}, \qquad \frac{d \log \Pi}{d \log \mathbf{y}^*} = \begin{bmatrix} -0.472 & -0.200 \\ -0.066 & -1.149 \end{bmatrix}.$$

Intervention	Efficiency gains (2025 USD)
(A) Relaxing Phase III quotas only	\$565M
(B) Relaxing Phase IV quotas only	\$706M
(C) Relaxing both Phase III and IV quotas	\$1075M
Difference: C – (A + B)	\$196M

Distance to Frontier: Argentina's Capital Controls

- In September 2019, Argentina reimposed capital controls, restricting amount that households and firms could access foreign exchange markets.
- Restrictions led to decline in capital outflows from \$7.2B to <\$1.5B per month.
- What are the efficiency losses from these restrictions?
 - Permitted transactions take place at official exchange rate \bar{e} .
 - Unconstrained transactions take place at black-market exchange rate *e*.
 - Gap between \bar{e} and e are profits earned by permit to exchange under controls.

Distance to Frontier: Argentina's Capital Controls

- Option 1: $\Delta \log Y \approx -\frac{1}{2} \Pi_i d \log y_{i^*} \approx -\frac{1}{2} (\log e/\bar{e}) dy_{i^*}$. Measure distortion dy_{i^*} as gap relative to 2016–2019 outflows.
- Option 2: Elasticity of exchange rate to currency purchases, $\log e/\bar{e} = \theta \, (dy_i^*/\text{GDP})$. Then, $\frac{\Delta Y}{\text{GDP}} \approx -\frac{1}{2} \frac{1}{\theta} \, (\log e/\bar{e})^2$. (Blanchard et al. 2015, Adler et al. 2019.)

Distance to Frontier: Argentina's Capital Controls

- Option 1: $\Delta \log Y \approx -\frac{1}{2} \Pi_i d \log y_{i^*} \approx -\frac{1}{2} (\log e/\bar{e}) dy_{i^*}$. Measure distortion dy_{i^*} as gap relative to 2016–2019 outflows.
- Option 2: Elasticity of exchange rate to currency purchases, $\log e/\bar{e} = \theta \, (dy_i^*/\text{GDP})$. Then, $\frac{\Delta Y}{\text{GDP}} \approx -\frac{1}{2} \frac{1}{\theta} \, (\log e/\bar{e})^2$. (Blanchard et al. 2015, Adler et al. 2019.)

Table of Contents

Quota demand system

Pro-competitive effects of entry (Krugman 1979)

Entry with heterogeneous firms

Increasing Returns to Scale and Trade

- One reason for trade: differences in technology and factor endowments.
- However, in 1960s–1970s, economists noted that most trade occurs between similar countries (incomes, endowments).
- Moreover, intra-industry trade (e.g., Germany both imports and exports cars).
- "New trade theory" justifies trade with increasing returns and love-of-variety.

Increasing Returns to Scale and Trade

- One reason for trade: differences in technology and factor endowments.
- However, in 1960s–1970s, economists noted that most trade occurs between similar countries (incomes, endowments).
- Moreover, intra-industry trade (e.g., Germany both imports and exports cars).
- "New trade theory" justifies trade with increasing returns and love-of-variety.
- Today, we will start with an adapted version of Krugman (1979).
- Will also help us think about real GDP vs. welfare with entry.

Setup: Production

- Continuum of varieties indexed by θ . Mass M of varieties produced (endogenous).
- Firms pay fixed entry cost f_e in units of labor plus variable labor costs. Cost of producing $y_{\theta}L$ units of output is

$$C_{\theta}(y_{\theta}L) = w \frac{y_{\theta}L}{A_{\theta}} + w f_{\theta},$$

where w is the wage and A_{θ} is the firm's productivity.

- We will have free entry, so in eq., w = l = 1 (take per-capita income as numeraire).
- As in Krugman (1979), we will start by assuming all varieties are symmetric, so that

$$C(yL) = \frac{yL}{A} + f_e.$$

Fixed costs ⇒ "micro increasing returns to scale."

Setup: Preferences

- Krugman uses non-homothetic variable elasticity of substitution (VES) preferences.
- We will use HSA preferences (Matsuyama and Ushchev, 2017).
- Mass L of households with identical preferences.
- ullet For each household, expenditure share on variety ullet is defined by $s(\cdot)$ function,

$$\frac{p_{\theta}y_{\theta}}{I}=s_{\theta}(\frac{p_{\theta}}{P}).$$

where y_{θ} is per-capita consumption and I is per-capita income.

Aggregator P defined implicitly by

$$\int_0^M s_\theta(\frac{p_\theta}{P})d\theta = 1.$$

Setup: Preferences

- What are real output Y and the ideal price index P^Y?
- Locally, we know from Shephard's Lemma that the elasticity of the ideal price index w.r.t. a price change is given by the expenditure share:

$$rac{\partial \log P^Y}{\partial \log p_{ heta}} = rac{p_{ heta} y_{ heta}}{I} = s_{ heta}(rac{p_{ heta}}{P}).$$

Integrating across varieties,

$$d\log P^{Y} = \int_{0}^{M} s_{ heta}(rac{p_{ heta}}{P}) \left[d\log rac{p_{ heta}}{P} + d\log P
ight] d heta
onumber \ = d\log P + \int_{0}^{M} s_{ heta}(rac{p_{ heta}}{P}) \left[d\log rac{p_{ heta}}{P}
ight] d heta.$$

• Integrating across price changes from ∞ to p_{θ}/P ,

$$\log P^{Y} = \log P - \int_{0}^{M} \left[\int_{p_{\theta}/P}^{\infty} \frac{s_{\theta}(\xi)}{\xi} d\xi \right] d\theta + \text{const.}$$

Consumer Surplus Ratio

ullet Define consumer surplus ratio $\delta_{ heta}$. Captures ratio of inframarginal surplus to sales,

$$\delta_{\theta} = \frac{\int_{0}^{y_{\theta}} p_{\theta}(y) dy}{p_{\theta} y_{\theta}} = \frac{A + B}{A} = 1 + \frac{\int_{p_{\theta}/P}^{\infty} \frac{s_{\theta}(\xi)}{\xi} d\xi}{s_{\theta}(\frac{p_{\theta}}{P})}.$$

Setup: Preferences

What is the change in output (welfare)?

$$\log Y = -\log P^Y = -\log P + \int_0^M \left[\int_{p_\theta/P}^\infty \frac{s_\theta(\xi)}{\xi} d\xi \right] d\theta - \text{const.}$$

Differentiating (and using symmetry),

$$d\log Y = -d\log P + M \left[\int_{p/P}^{\infty} \frac{s(\xi)}{\xi} d\xi \right] d\log M - Ms(\frac{p}{P}) d\log \frac{p}{P}$$

$$= \underbrace{(\delta - 1) d\log M}_{\text{Gains from new varieties}} \underbrace{-d\log p}_{\text{Gains from price changes}}.$$

- For new varieties, consumer gets entire inframarginal utility, $\delta d \log M$, but crowds out $d \log M$ sales of existing varieties.
- Change in real GDP (as measured by statistical agencies) is

$$d\log Q = -\int_0^M s_{ heta}(rac{p_{ heta}}{P})d\log p_{ heta}d heta = -d\log p.$$

Other Demand Statistics

- ullet We have already defined consumer surplus ratio $\delta_{ heta}.$
- Demand elasticity σ_{θ} is

$$\sigma_{\theta}(\frac{p_{\theta}}{P}) = -\frac{\partial \log y_{\theta}}{\partial \log p_{\theta}} = 1 - \frac{\frac{p_{\theta}}{P} s_{\theta}'(\frac{p_{\theta}}{P})}{s(\frac{p_{\theta}}{P})}.$$

- Markup $\mu_{\theta}(\frac{p_{\theta}}{P}) = \sigma_{\theta}/(\sigma_{\theta}-1)$ given by Lerner formula.
- ullet Pass-through of idiosyncratic cost shocks $ho_{ heta}$ given by

$$\rho_{\theta}(\frac{p_{\theta}}{P}) = \frac{1}{1 - \frac{\frac{p_{\theta}}{P} \mu_{\theta}'(\frac{p_{\theta}}{P})}{\mu_{\theta}(\frac{p_{\theta}}{P})}}.$$

Krugman (1979): "This assumption [...] that the elasticity of demand rises when the price of a good is increased, seems plausible. In any case, it seems to be necessary if this model is to yield reasonable results, and I make the assumption without apology."

Free Entry

Free entry sets profits net of fixed costs to zero:

$$p_{\theta}y_{\theta}L - C(y_{\theta}L) = \left(1 - \frac{1}{\mu(\frac{p_{\theta}}{P})}\right)p_{\theta}y_{\theta}L - f_{\theta} = 0.$$

• Since $p_{\theta}y_{\theta}/I = s_{\theta}(\frac{p_{\theta}}{P}) = 1/M$, we have

$$M = \left(1 - \frac{1}{\mu}\right) \frac{L}{f_e}.$$

M increasing in μ , L; decreasing in f_e .

- Suppose we increase the mass of households by d log L.
- What happens to the price aggregator and to prices? Recall:

$$Ms(rac{p}{P})=1.$$

$$\Rightarrow d \log P = d \log p - \frac{1}{\sigma - 1} d \log M = -\frac{1}{\rho} \frac{1}{\sigma - 1} d \log M.$$

For firm prices,

$$d\log p = \frac{d\log \mu(\frac{p}{P})}{d\log \frac{p}{P}} d\log \frac{p}{P} = \left(1 - \frac{1}{\rho}\right) d\log \frac{p}{P} = (1 - \rho) d\log P.$$

Place ρ weight on own marginal cost (unchanged) and $1 - \rho$ on market aggregator.

• What happens to entry? Recall:

$$M = \left(1 - \frac{1}{\mu}\right) \frac{L}{f_{\theta}}.$$

So adjustment in entry is:

$$d \log M = (1-\rho)(\sigma-1) d \log P + d \log L = \rho d \log L$$
.

Why does fall in *P* decrease entry?

• What happens to entry? Recall:

$$M = \left(1 - \frac{1}{\mu}\right) \frac{L}{f_e}.$$

So adjustment in entry is:

$$d \log M = (1-\rho)(\sigma-1) d \log P + d \log L = \rho d \log L$$
.

Why does fall in *P* decrease entry?

$$d \log Y = (\delta - 1) d \log M - d \log p$$

$$= \underbrace{(\delta - 1) \rho d \log L}_{\text{Gains from new varieties}} + \underbrace{(1 - \rho)(\mu - 1) d \log L}_{\text{Gains from price changes}}$$

$$= (\delta - 1) d \log L + (1 - \rho)(\mu - \delta) d \log L.$$

- First term is what we would get if we scaled up economy without changing allocation of labor between entry vs. variable production.
- Second term reflects how allocation is changing due to changes in markups.
- ullet If ho < 1, is allocation to entry increasing or decreasing?
- For ho < 1, why does this term depend on $\mu > \delta$?

$$d \log Y = (\delta - 1) d \log M - d \log p$$

$$= \underbrace{(\delta - 1) \rho d \log L}_{\text{Gains from new varieties}} + \underbrace{(1 - \rho)(\mu - 1) d \log L}_{\text{Grains from price changes}}$$

$$= (\delta - 1) d \log L + (1 - \rho)(\mu - \delta) d \log L.$$

- Second term often referred to as "pro-competitive effect" of trade.
- Notice that reducing markups is not per se beneficial (reducing distortion).
- Here, the allocation of labor to entry is potentially inefficient.
- If markups are too high, too many firms incentivized to enter.

$$d \log Y = (\delta - 1) d \log M - d \log p$$

$$= \underbrace{(\delta - 1) \rho d \log L}_{\text{Gains from new varieties}} + \underbrace{(1 - \rho)(\mu - 1) d \log L}_{\text{Gains from price changes}}$$

$$= (\delta - 1) d \log L + (1 - \rho)(\mu - \delta) d \log L.$$

- Mankiw and Whinston (1986) "business stealing" and non-appropriability externalities.
- ullet Entrant generates consumer surplus in excess of revenues it captures, $\delta-1$.
- ullet Entrant causes all other firms to contract output, leading to loss in profits of $\mu-1$.
- If $\delta > \mu$, increasing entry is beneficial, because additional consumer surplus dominates business stealing.

Macro Increasing Returns to Scale

$$d \log Y = (\delta - 1) d \log M - d \log p$$

$$= \underbrace{(\delta - 1) \rho d \log L}_{\text{Gains from new varieties}} + \underbrace{(1 - \rho)(\mu - 1) d \log L}_{\text{Gains from price changes}}$$

$$= (\delta - 1) d \log L + (1 - \rho)(\mu - \delta) d \log L.$$

Notice that the change in (measured) real GDP is

$$d\log Q = (1-\rho)(\mu-1)d\log L.$$

Real GDP increases only if $\rho <$ 1. Moreover, it increases even if $\mu < \delta$.

Macro Increasing Returns to Scale

$$d \log Y = (\delta - 1) d \log M - d \log p$$

$$= \underbrace{(\delta - 1) \rho d \log L}_{\text{Gains from new varieties}} + \underbrace{(1 - \rho)(\mu - 1) d \log L}_{\text{Grins from price changes}}$$

$$= (\delta - 1) d \log L + (1 - \rho)(\mu - \delta) d \log L$$

- How do macro returns to scale compare to micro returns to scale?
- Micro returns to scale is ratio of average cost to marginal cost = $(\mu 1)$.

Macro Increasing Returns to Scale

$$d \log Y = (\delta - 1) d \log M - d \log p$$

$$= \underbrace{(\delta - 1) \rho d \log L}_{\text{Gains from new varieties}} + \underbrace{(1 - \rho)(\mu - 1) d \log L}_{\text{Gains from price changes}}$$

$$= (\delta - 1) d \log L + (1 - \rho)(\mu - \delta) d \log L$$

$$= \underbrace{(\mu - 1) d \log L}_{\text{Micro returns to scale}} - \rho(\mu - \delta) d \log L.$$

- How do macro returns to scale compare to micro returns to scale?
- Micro returns to scale is ratio of average cost to marginal cost = $(\mu 1)$.

Trade Between Two Countries

- We considered a size in the labor force in a closed economy.
- Isomorphic to an economy of size L opening to trade with an infinitesimal country dL with identical preferences and technologies.
- Trade is balanced and varieties of similar goods.

Trade Between Two Countries

- We considered a size in the labor force in a closed economy.
- Isomorphic to an economy of size L opening to trade with an infinitesimal country dL with identical preferences and technologies.
- Trade is balanced and varieties of similar goods.
- Mundell (1957): trade and factor mobility are substitutes.
- If there were frictions to trade but not to migration, there would be an incentive for workers to move to the region which starts with a larger labor force.
- More populous regions offers greater real wage and variety of goods.
- In fact, with large starting population, can even dominate inferior technology.

Table of Contents

Quota demand system

Pro-competitive effects of entry (Krugman 1979

Entry with heterogeneous firms

Aggregate Increasing Returns to Scale: Heterogeneous Firms

- What happens if we allow for realistic firm heterogeneity?
- Same model, now allow for different productivities A_{θ} .
- Will generate heterogeneous σ_{θ} , μ_{θ} , δ_{θ} .

Aggregate Increasing Returns to Scale: Heterogeneous Firms

- What happens if we allow for realistic firm heterogeneity?
- Same model, now allow for different productivities A_{θ} .
- Will generate heterogeneous σ_{θ} , μ_{θ} , δ_{θ} .
- Allow for a "selection margin" by having both entry costs and overhead costs.

$$\pi_{\theta} = \left(1 - \frac{1}{\mu_{\theta}}\right) p_{\theta} y_{\theta} L - f_{o}.$$

- Types θ ordered by profitability. Only types $\theta \geq \theta^*$ enter, where $\pi_{\theta^*} = 0$.
- Free entry determines mass of entrants (who learn productivity after entering),

$$\int_{ heta^*}^1 \pi_{ heta} d heta \geq f_{ heta}.$$

Social Inefficiency

- Three margins of inefficiency: relative size, entry, selection.
- Excessive relative size θ' vs. θ iff:

$$\mu_{ heta'} < \mu_{ heta}$$
.

Excessive entry iff:

$$\mathbb{E}_{\lambda}[\delta_{\theta}] < \mathbb{E}_{\lambda}[\mu_{\theta}^{-1}]^{-1}.$$

• Excessive selection iff:

$$\delta_{ heta^*} > \mathbb{E}_{\lambda}[\delta_{ heta}].$$

where $\mathbb{E}_{\lambda}[\cdot]$ is sales-weighted expectation.

Technical and Allocative Efficiency

Welfare function:

$$Y = \mathcal{Y}(L, \mathcal{X}).$$

where \mathcal{X} is share of labor allocated to each type and use.

Technical and allocative efficiency:

$$d\log Y = \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \log L} d\log L}_{\text{technical efficiency}} + \underbrace{\frac{\partial \log \mathcal{Y}}{\partial \mathcal{X}} d\mathcal{X}}_{\text{allocative efficiency}}.$$

• Change in welfare per capita:

$$d\log Y = \underbrace{\left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right)d\log L}_{\text{technical efficiency}} + \underbrace{\left(\xi^{\varepsilon} + \xi^{\theta^{*}} + \xi^{\mu}\right)\bar{\mu}d\log L}_{\text{allocative efficiency}},$$

Change in welfare per capita:

$$d\log Y = \underbrace{\left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right)d\log L}_{\text{technical efficiency}} + \underbrace{\left(\boldsymbol{\xi}^{\boldsymbol{\varepsilon}} + \boldsymbol{\xi}^{\boldsymbol{\theta}^{*}} + \boldsymbol{\xi}^{\boldsymbol{\mu}}\right)\bar{\mu}d\log L}_{\text{allocative efficiency}},$$

$$\textit{Darwinian}: \boldsymbol{\xi^{\varepsilon}} = \left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right) \textit{Cov}_{\lambda}[\sigma_{\theta}, \mu_{\theta}^{-1}] > 0,$$

Change in welfare per capita:

$$d\log Y = \underbrace{\left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right)d\log L}_{\text{technical efficiency}} + \underbrace{\left(\boldsymbol{\xi}^{\boldsymbol{\varepsilon}} + \boldsymbol{\xi}^{\boldsymbol{\theta}^{*}} + \boldsymbol{\xi}^{\boldsymbol{\mu}}\right)\bar{\mu}d\log L}_{\text{allocative efficiency}},$$

$$\begin{split} &\textit{Darwinian}: \boldsymbol{\xi}^{\boldsymbol{\epsilon}} = \left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right) \textit{Cov}_{\lambda}[\sigma_{\theta}, \mu_{\theta}^{-1}] > 0, \\ &+ \textit{Selection}: \boldsymbol{\xi}^{\theta^*} = (\mathbb{E}_{\lambda}[\delta_{\theta}] - \delta_{\theta^*}) \lambda_{\theta^*} \gamma_{\theta^*} \left(\mathbb{E}_{\lambda} \left[\frac{\sigma_{\theta^*}}{\sigma_{\theta}}\right] - 1\right) \lesseqgtr 0, \end{split}$$

Change in welfare per capita:

$$d\log Y = \underbrace{\left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right)d\log L}_{\text{technical efficiency}} + \underbrace{\left(\xi^{\varepsilon} + \xi^{\theta^{*}} + \xi^{\mu}\right)\bar{\mu}d\log L}_{\text{allocative efficiency}},$$

$$\begin{split} &\textit{Darwinian}: \boldsymbol{\xi^{\mathcal{E}}} = \left(\mathbb{E}_{\lambda}[\delta_{\theta}] - 1\right) \textit{Cov}_{\lambda}[\sigma_{\theta}, \mu_{\theta}^{-1}] > 0, \\ &+ \textit{Selection}: \boldsymbol{\xi^{\theta^{*}}} = \left(\mathbb{E}_{\lambda}[\delta_{\theta}] - \delta_{\theta^{*}})\lambda_{\theta^{*}}\gamma_{\theta^{*}}\left(\mathbb{E}_{\lambda}\left[\frac{\sigma_{\theta^{*}}}{\sigma_{\theta}}\right] - 1\right) \lesseqgtr 0, \\ &+ \textit{Pro-competitive}: \boldsymbol{\xi^{\mu}} = \mathbb{E}_{\lambda}\left[(1 - \rho_{\theta})\sigma_{\theta}\left(1 - \frac{\mathbb{E}_{\lambda}[\delta_{\theta}]}{\mu_{\theta}}\right)\right]\mathbb{E}_{\lambda}\left[\sigma_{\theta}^{-1}\right] \lesseqgtr 0. \end{split}$$

Example I: Technical Efficiency Only

Suppose preferences are CES.

$$s_{ heta}(rac{p_{ heta}}{P}) = \left(rac{p_{ heta}}{P}
ight)^{1-\sigma}.$$

Change in welfare per capita:

$$d\log Y = \underbrace{\left(\mathbb{E}_{\lambda}[\delta_{ heta}] - 1
ight)d\log L}_{ ext{technical efficiency}} + \underbrace{0}_{ ext{allocative efficiency}},$$
 $= \underbrace{\left(\mu - 1
ight)d\log L}_{ ext{Micro returns to scale}}.$

Example II: Darwinian Effect Only

Suppose zero overhead costs and preferences given by

$$s_{\theta}(\frac{p_{\theta}}{P}) = \left(\frac{p_{\theta}}{P}\right)^{1-\sigma_{\theta}}.$$

Change in welfare per capita:

$$d\log Y = \underbrace{\left(\mathbb{E}_{\lambda}[\delta_{ heta}] - 1\right)d\log L}_{ ext{technical efficiency}} + \underbrace{\left(\xi^{\epsilon}\right)ar{\mu}d\log L}_{ ext{allocative efficiency}},$$

where

$$extit{Darwinian}: oldsymbol{\xi}^{oldsymbol{arepsilon}} = \left(\mathbb{E}_{\lambda}[\delta_{ heta}] - 1
ight) extit{Cov}_{\lambda}[\sigma_{ heta}, \mu_{ heta}^{-1}] > 0.$$

High- μ firms insulated from \downarrow price index due to low elasticity

 \Rightarrow market expansion alleviates cross-sectional misallocation.

Example III: Darwinian Effect + Selection Only

Same setup, but reintroduce overhead costs.

Change in welfare per capita:

$$d \log Y = \underbrace{\left(\mathbb{E}_{\lambda}[\delta_{ heta}] - 1\right) d \log L}_{ ext{technical efficiency}} + \underbrace{\left(\xi^{\varepsilon} + \xi^{\theta^{*}}\right) \bar{\mu} d \log L}_{ ext{allocative efficiency}},$$

where

$$Selection: \xi^{\theta^*} = (\mathbb{E}_{\lambda}[\delta_{\theta}] - \delta_{\theta^*})\lambda_{\theta^*}\gamma_{\theta^*} \left(\mathbb{E}_{\lambda}\left[\frac{\sigma_{\theta^*}}{\sigma_{\theta}}\right] - 1\right) \leq 0.$$

Positive if market expansion increases selection cutoff $(\sigma_{\theta^*} > \mathbb{E}_{\lambda}[\sigma_{\theta}])$ and selection is too weak $(\delta_{\theta^*} < \mathbb{E}_{\lambda}[\delta_{\theta}])$.

Example IV: Pro-Competitive Effect Only

Suppose homogeneous firms (Krugman 1979 example).

Change in welfare per capita:

$$d \log Y = \underbrace{(\delta - 1)d \log L}_{\text{technical efficiency}} + \underbrace{\xi^{\mu} \mu d \log L}_{\text{allocative efficiency}},$$

where

Pro-competitive :
$$\xi^{\mu} = (1 - \rho) \left(1 - \frac{\delta}{\mu} \right) \leq 0$$
.

Positive if markups fall (ho < 1) and entry is initially excessive ($\mu > \delta$).

Aggregate Markup

Change in aggregate markup:

$$d\log \bar{\mu} = \left(\zeta^{\varepsilon} + \zeta^{\theta^*} + \zeta^{\mu}\right) \bar{\mu} d\log L,$$

$$\begin{split} &\textit{Darwinian}: \boldsymbol{\zeta^{\varepsilon}} = (\bar{\mu} - 1)\textit{Cov}_{\lambda}\left[\sigma_{\theta}\mu_{\theta}^{-1}\right] \geq 0, \\ &+ \textit{Selection}: \boldsymbol{\zeta^{\theta^{*}}} = \lambda_{\theta^{*}}\gamma_{\theta^{*}}\left(\frac{\bar{\mu}}{\mu_{\theta^{*}}} - 1\right)\left(\mathbb{E}_{\lambda}\left[\frac{\sigma_{\theta^{*}}}{\sigma_{\theta}}\right] - 1\right), \\ &+ \textit{Pro-competitive}: \boldsymbol{\zeta^{\mu}} = -\mathbb{E}_{\lambda}\left[\frac{\bar{\mu} - 1}{\sigma_{\theta}}\right]\mathbb{E}_{\lambda}[(\sigma_{\theta} - 1)(1 - \rho_{\theta})] \leq 0. \end{split}$$

Measured Real GDP

Change in real GDP,

$$d\log Q = -\mathbb{E}_{\lambda}[d\log p_{ heta}] = \mathbb{E}_{\lambda}[1-\rho_{ heta}]\mathbb{E}_{\lambda}\left[\frac{1}{\sigma_{ heta}}\right]\bar{\mu}d\log L.$$

- Real GDP only increases if $\rho_{ heta} <$ 1.
- If $\rho_{\theta}=$ 1, real GDP per capita is invariant to market size, even though welfare is increasing.

Non-Parametric Calibration

- Will not use off-the-shelf functional form for s_{θ} .
- Belgian data for manufacturing firms.
- Sales and pass-throughs by firm size for ProdCom sub-sample (price and quantity data) from Amiti et al. (19).
- Can back out primitives as solution to ODEs (up to $\bar{\delta}$ and $\bar{\mu}$).

Non-Parametric Calibration

- Inputs:
 - λ_{θ} , ρ_{θ} (data);
 - ullet $ar{\mu}=1/[\mathbb{E}_{\lambda}[1/\mu_{ heta}]]$ and $ar{\delta}=\mathbb{E}_{\lambda}[\delta_{ heta}]$ (postulates).
- Outputs:
 - μ_{θ} , σ_{θ} , $A_{\theta}B_{\theta}$, δ_{θ} , γ_{θ} ;
 - f_e , f_o , $\Upsilon(\cdot)$.

Fitting to Data

Non-Parametric Calibration (Key Equations)

• Changes in λ_{θ} :

$$\frac{d\log\lambda_{\theta}}{d\theta} = \frac{\rho_{\theta}}{\mu_{\theta} - 1} \frac{d\log(A_{\theta}B_{\theta})}{d\theta}.$$

• Changes in μ_{θ} :

$$\frac{d\log\mu_{\theta}}{d\theta} = (1-\rho_{\theta})\frac{d\log(A_{\theta}B_{\theta})}{d\theta}.$$

Non-Parametric Calibration

• Recover μ_{θ} by solving:

$$\frac{d\log\mu_{\theta}}{d\theta} = \frac{(\mu_{\theta}-1)(1-\rho_{\theta})}{\rho_{\theta}}\frac{d\log\lambda_{\theta}}{d\theta} \quad \text{s.t.} \quad \mathbb{E}_{\lambda}[\mu_{\theta}^{-1}]^{-1} = \bar{\mu}.$$

• Recover δ_{θ} by solving:

$$rac{d\log\delta_{ heta}}{d heta} = rac{\mu_{ heta} - \delta_{ heta}}{\delta_{ heta}} rac{d\log\lambda_{ heta}}{d heta} \quad ext{s.t.} \quad \mathbb{E}_{\lambda}[\delta_{ heta}] = ar{\delta}.$$

Postulates for Boundary Conditions

- Calibrate $\bar{\mu} = 1.09$.
- Take one of two values for $\bar{\delta}$:
 - $\bar{\delta} = \bar{\mu}$ (efficient entry);
 - ullet $ar{\delta}=\delta_{ heta^*}$ (efficient selection).

Estimates

Residual Demand Curve

(a) Residual demand curve (efficient entry, $\bar{\mu}=$ 1.09).

(b) Log-log residual demand curve (efficient entry, $\bar{\mu}=$ 1.09).

Estimates (Efficient Selection vs. Efficient Entry)

(a) Infra-marginal surplus ratio δ_{θ} (efficient selection, $\bar{\mu}=$ 1.045).

(b) Infra-marginal surplus ratio δ_{θ} (efficient entry, $\bar{\mu}=$ 1.045).

Comparison to Klenow-Willis

- Other approach is to use off-the-shelf functional form, e.g., Klenow & Willis (2016).
- Standard calibration: Elasticity (σ = 5), "super-elasticity" (ε = 1.6), $A_{\theta} \sim$ Pareto(8).

Counterfactual: 1% Population Shock

	$ar{\mu}=$ 1.090		
		$\bar{\delta}=\bar{\mu}$	KW
Welfare	0.259	0.278	
Tech. effic.	0.033	0.090	
Alloc. effic.	0.225	0.188	

Counterfactual: 1% Population Shock

	$ar{\mu}=$ 1.090		
	$ar{\delta} = \delta_{ heta^*}$	$\bar{\delta}=\bar{\mu}$	KW
Welfare	0.259	0.278	
Tech. effic.	0.033	0.090	
Alloc. effic.	0.225	0.188	
Darwinian effect	0.235	0.631	
Selection effect	0.000	-0.344	
Markups effect	-0.010	-0.099	
GDP per capita	0.043	0.043	
Aggregate markup	0.494	0.494	

Table: The elasticity of welfare and real GDP per capita to population with heterogeneous firms.

Counterfactual: 1% Population Shock

	$ar{\mu}=$ 1.090		
	$ar{\delta} = \delta_{ heta^*}$	$ar{\delta}=ar{\mu}$	KW
Welfare	0.259	0.278	0.268
Tech. effic.	0.033	0.090	0.260
Alloc. effic.	0.225	0.188	0.008
Darwinian effect	0.235	0.631	0.009
Selection effect	0.000	-0.344	-0.000
Markups effect	-0.010	-0.099	-0.001
GDP per capita Aggregate markup	0.043 0.494	0.043 0.494	

Table: The elasticity of welfare and real GDP per capita to population with heterogeneous firms.

Counterfactual: 1% Population Shock (Homogenous Firms)

	$ar{ar{b}}=$ 1.090 $ar{ar{\delta}}=ar{\delta}_{ heta^*}$ $ar{ar{\delta}}=ar{\mu}$	
	$ar{\delta} = \delta_{ heta^*}$	$ar{\delta}=ar{\mu}$
Welfare	0.061	0.090
Technical efficiency	0.033	0.090
Allocative efficiency	0.027	0.000
Real GDP per capita	0.043	0.043
Average markup	-0.043	-0.043

Table: The elasticity of welfare and real GDP per capita to population with homogenous firms.

Counterfactual: Nonlinearities

(a) Welfare: change in technical & allocative efficiency with $\Delta \log L$ (efficient selection, $\bar{\mu} = 1.09$).

(b) Darwinian, selection, and pro-competitive effects with $\Delta \log L$ (efficient selection, $\bar{\mu}=1.09$).

Changes in Industrial Concentration

As market becomes larger, market is becoming more concentrated.

Counterfactual: Entry tax

$ar{\delta} = \delta_{ heta^*}$	$ar{\mu}=$ 1 $ar{\delta}=ar{\mu}$.090
Welfare	-0.155	-0.161
Darwinian effect Other effects	-0.215 0.060	-0.579 0.418

Counterfactual: Entry tax

$ar{\delta} = \delta_{ heta^*}$	$ar{ar{b}}=1 \ ar{ar{\delta}}=ar{\mu}$.090
Welfare	-0.155	-0.161
Darwinian effect	-0.215	-0.579
Other effects	0.060	0.418
Welfare w/ homog. firms	0.027	0.000

Table: Change in welfare due to an entry tax.

• Entry subsidy spurs beneficial Darwinian reallocations.

Taking Stock

- With entry/exit of goods, changes in real GDP (measured using price changes of continuing varieties) need not coincide with changes in welfare.
- Non-appropriability: new products create consumer surplus > sales.
- Business stealing: new products reduce output of other firms.
- Efficiency of entry depends on strength of these two margins.
- Due to composition effects, changes in aggregate markup do not necessarily align with changes in market competitiveness or welfare.