数列的极限

王二民(≥wagermn@126.com)

2019 至 2020 学年

郑州工业应用技术学院·基础教学部

单位圆的面积

= 1.29904 A_6 = 2.59808= 3.00000 A_{12} = 3.10583 A_{24} = 3.13263 A_{48} = 3.13935 A_{96} = 3.14103 A₁₉₂ A₃₈₄ = 3.14145= 3.14156 A₇₆₈ = 3.14158A₁₅₃₆ = 3.14159 A_{3072}

 $A_3, A_6, A_{12}, \cdots, A_{3 \times 2^{n-1}}, \cdots$

$$\sqrt{2}$$

$$\sqrt{2} = 1.4142135623730950488 \cdots$$

$$\sqrt{2} = 1. \cdots$$
 \Longrightarrow $\sqrt{2} \in [1, 2]$
 $\sqrt{2} = 1.4 \cdots$ \Longrightarrow $\sqrt{2} \in [1.4, 1.5]$
 $\sqrt{2} = 1.41 \cdots$ \Longrightarrow $\sqrt{2} \in [1.41, 1.42]$
 $\sqrt{2} = 1.414 \cdots$ \Longrightarrow $\sqrt{2} \in [1.414, 1.415]$

无穷数列

1, 1.4, 1.41, 1.414, 1.4142, ...

表示了无理数 $\sqrt{2}$.

数列

定义(无穷数列)

称定义在正整数上的函数 $x: \mathbb{N}_{\perp} \to \mathbb{R}$ 为**无穷数列**。

通常记

$$x_n \stackrel{\text{def}}{=} x(n)$$

称为数列的一般项或通项。

数列 x 通常记为

$$X_1, X_2, X_3, \cdots, X_n, \cdots$$

也可以简记为 $\{x_n\}$.

数列举例

- **1**, 1, 1, ..., 1, ...
- **1**, 2, 3, ···, n, ···
- **1**, $\frac{1}{2}$, $\frac{1}{3}$, ..., $\frac{1}{n}$, ...
- **5** 0, 1, 0, $\frac{1}{2}$, 0, $\frac{1}{3}$, ..., $\frac{(-1)^n+1}{n}$, ...
- **6** -1, $\frac{1}{2}$, $-\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{(-1)^n}{n}$, ...
- $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$
- **3** $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, ..., $\frac{1}{2^n}$, ...
- **2**, 4, 8, ···, 2ⁿ, ···

一直为 1

振荡

无限变大

无限接近于 0

无限接近于 0

无限接近于 0

无限接近于 1

无限接近于 0

无限变大

数列极限

定义(数列极限)

设 $\{x_n\}$ 为一数列,如果存在常数 $A \in \mathbb{R}$, 使得当 n 无限增大时 x_n 无限接近于 A, 则称 A 为此数列的**极限**,记为

$$\lim_{n\to\infty}x_n=A.$$

并称**数列** $\{x_n\}$ 收敛;否则称数列 $\{x_n\}$ 发散。

当数列 $\{x_n\}$ 收敛时,表达式 $\lim_{n\to\infty}x_n$ 有意义,当数列 $\{x_n\}$ 发散时,表达式 $\lim_{n\to\infty}x_n$ 无意义。

数 x_n 与 A 的接近程度是 $|x_n - A|$, 它越小, x_n 与 A 就越接近。

数列极限的说法

表达式

$$\lim_{n\to\infty} x_n = A$$

可以读为

- 数列 {x_n} 的收敛于 A.
- 数列 {x_n} 的极限为 A.
- 当 n 趋于无穷时 x_n 趋于 A.
- 当 n 趋于无穷时 x_n 的极限为 A.

数列极限理解举例

例 1.
$$\lim_{n\to\infty} \frac{n}{n+1} = 1$$
.

即,随着 n 的增大 $\frac{n}{n+1}$ 与 1 可以任意接近。

数列极限理解举例

例 2.
$$\lim_{n\to\infty} \frac{1+(-1)^n}{n} = 0$$
.

无限接近不一定是越来越接近

$$- 般项 \frac{\frac{1+(-1)^n}{n}}{n} = 5 极限值 0 的接近程度为$$

$$\left| \frac{1+(-1)^n}{n} - 0 \right| = \frac{|1+(-1)^n|}{n} \le \frac{2}{n}$$

$$\left| \frac{1+(-1)^n}{n} - 0 \right| < \frac{1}{100} \qquad \Longleftrightarrow \qquad n > 2000$$

$$\left| \frac{1+(-1)^n}{n} - 0 \right| < \frac{1}{10000} \qquad \Longleftrightarrow \qquad n > 20000$$

$$\left| \frac{1+(-1)^n}{n} - 0 \right| < \varepsilon > 0 \qquad \Longleftrightarrow \qquad n > \frac{2}{\varepsilon}$$

即,随着 n 的增大 $\frac{1+(-1)^n}{n}$ 与 0 可以任意接近。

常用数列极限举例

例 3. 极限 $\lim_{n\to\infty} C = C$.

例 4. 设 k > 0, 求极限 $\lim_{n \to \infty} \frac{1}{n^k}$.

 \mathbf{M} . 由幂函数的图象可知,k > 0 时

$$\lim_{n\to\infty}\frac{1}{n^k}=0$$

同理可知, 当 k > 0 时

$$\lim_{n\to\infty}\frac{(-1)^n}{n^k}=0.$$

等比数列的极限

例 5. 设 $q \in \mathbb{R}$, 观察数列 $\{q^n\}$, 并求极限 $\lim_{n \to \infty} q^n$.

解. 通过指数函数 a^x 的图像可知:

- 当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.
- 当 |q| > 1 时,随着 n 无限增大, q^n 也无限增大,从而数列的极限不存在。
- 当 q = 1 时, $\lim_{n \to \infty} q^n = \lim_{n \to \infty} 1 = 1$.
- 当 q = -1 时, $q^n = (-1)^n$,随着 n 无限增大一直在 1 和 -1 之间振荡,从而数列的极限不存在。

发散数列的例子

无界型 如

$$1, 2, 3, \cdots, n, \cdots$$

振荡型 如

$$-1, 1, -1, 1, -1, 1, \dots, (-1)^n, \dots$$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{3}{4}, \frac{1}{5}, \frac{5}{6}, \frac{1}{7}, \frac{7}{8}, \cdots$$

数列极限的唯一性

定理

如果数列 $\{x_n\}$ 收敛,那么它的极限唯一,即

$$\lim_{\substack{n \to \infty \\ n \to \infty}} x_n = A$$

$$\lim_{\substack{n \to \infty \\ n \to \infty}} x_n = B$$

$$\implies A = B.$$

收敛数列的有界性

定理

如果数列 $\{x_n\}$ 收敛,那么数列 $\{x_n\}$ 有界,即 $\lim_{n\to\infty}x_n=A\implies \exists M\in\mathbb{R}, \forall n\in\mathbb{N}_+, |x_n|\leq M.$

例 6. 讨论数列 0,1,0,2,0,3,··· 的敛散性。

发散

推论

如果数列 $\{x_n\}$ 无界,则数列 $\{x_n\}$ 发散。

极限的保号性

定理

设 $\lim_{n\to\infty} x_n = A$, 若 A > 0(或 A < 0), 则存在 $N \in \mathbb{N}$, 使得当 n > N 时恒有 $x_n > 0$ (或 $x_n < 0$)。

当 A = 0 时没有保号性, 例如 $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$.

推论

设 $\lim_{n\to\infty} x_n = A$, 若存在 $N\in\mathbb{N}$, 使得当 n>N 时有 $x_n\leq 0$ (或 $x_n\geq 0$), 则 $A\leq 0$ (或 $A\geq 0$).

结论中的 \leq 和 \geq 不能改成 \leq 和 \geq ,例如 $\lim_{n\to\infty}\frac{\pm 1}{n}=0$.

作业: 习题 1-2

- 1.(1), 1.(3), 1.(5), 1.(7),
- 2.(2).

数列极限的 ε -N 定义

定义(数列极限)

设 $\{x_n\}$ 是一数列,如果存在 $A \in \mathbb{R}$, 使得对于任意 $\epsilon > 0$, 都存在 $N \in \mathbb{N}$, 使得对任意整数 n > N 都有 $|x_n - A| < \epsilon$, 则称 A 为此数列的**极限**, 记为

$$\lim_{n\to\infty} x_n = A.$$

否则, 称极限 $\lim_{n\to\infty} x_n$ 不存在。

 \bigcirc 定义中的 N 是一个关于 ε 变化的量。

用逻辑语言,数列极限 $\lim_{n\to\infty} x_n = A$ 的定义可表示为

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, (\mathbb{N} \ni n > N \implies |x_n - A| < \varepsilon).$$

用定义证明极限举例

例 7. 证明 $\lim_{n\to\infty} \frac{n-1}{n+2} = 1$.

解. 对于任意的正实数 ε, 如果要让 $\left| \frac{n-1}{n+2} - 1 \right| = \frac{3}{n+2} < ε$, 只需要 $n > \frac{3}{ε} - 2$ 即可, 此时我们可取 $N = \left| \frac{3}{ε} - 2 \right|$, 从而当 n > N 时就有 $\left| \frac{n-1}{n+2} - 1 \right| < ε$ 。

- \bigcirc 如果 N 满足定义中的要求,则比 N 大的任意整数也一定满足定义中的要求,即 N 不是惟一的。
- \bigcirc 在寻找 N 时,只要能保证 $\mathbb{N} \ni n > N \implies |x_n A| < \varepsilon$ 即可,不一定非得由不等式 $|x_n A| < \varepsilon$ 解出 n > N. 本题中,取 $N = \left\lfloor \frac{3}{\varepsilon} \right\rfloor$ 也可以。

数列的子列

设
$$\{x_n\}$$
 时一个数列,设 $k_i \in \mathbb{N}_+$, $(i = \mathbb{N}_+)$, 且
$$k_1 < k_2 < k_3 < \cdots < k_n < \cdots$$

则称数列

$$X_{k_1}, X_{k_2}, X_{k_3}, \cdots, X_{k_n}, \cdots$$

为数列 $\{x_n\}$ 的一个子列,可记为 $\{x_{k_n}\}$.

数列 $\{x_n\}$ 的奇数项子列为 $\{x_{2n-1}\}$, 偶数项子列为 $\{x_{2n}\}$.

收敛数列的子列的极限

定理

设
$$\lim_{n\to\infty} x_n = A$$
, 如果数列 $\{y_n\}$ 是数列 $\{x_n\}$ 的一个子列,那么 $\lim_{n\to\infty} y_n = A$.

例 8. 设 $\lim_{n\to\infty} x_n = A$, 如果数列 $\{x_n\}$ 中有无限项 1, 求 A.

解. 取数列 $\{x_n\}$ 中的无限项 1, 可以看成数列 $\{x_n\}$ 的一个子列,记为 $\{y_n\}$, 则 y_n = 1, $\lim_{n\to\infty}y_n$ = $\lim_{n\to\infty}1$ = 1.

又
$$\lim_{n\to\infty} x_n = A$$
, 所以 $A = 1$.

有界数列发散的判断

推论

如果数列 $\{x_n\}$ 有两个收敛子列且它们的极限不相等,则数列 $\{x_n\}$ 发散。

- **例** 9. 证明数列 $x_n = (-1)^n$ 发散。
- 考虑其奇数项子列与偶数项子列
- **解**. 记数列 $\{x_n\}$ 的奇数项子列为 $\{y_n\}$, 则 $y_n = -1$; 记数列 $\{x_n\}$ 的偶数项子列为 $\{z_n\}$, 则 $z_n = 1$. 因为

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} -1 = -1 \qquad \lim_{n \to \infty} z_n = \lim_{n \to \infty} 1 = 1$$

所以数列 {x,} 发散。