

Transformaciones lineales. Núcleo e imagen

Martes 4 de octubre

Ejercicio 1. Decidir si las siguientes funciones de \mathbb{R}^n en \mathbb{R}^m son transformaciones lineales.

(a)
$$T(x,y) = (1+x,y)$$

(e)
$$T(x_1,\ldots,x_n)=(x_1,-x_1,x_2,-x_2,\ldots,x_n,-x_n)$$

(b)
$$T(x,y) = (y, x, x - 2y)$$

(f)
$$T(x_1, \ldots, x_n) = (x_1, 2x_2, \ldots, nx_n)$$

(c)
$$T(x,y) = xy$$

(g)
$$T(x_1, \ldots, x_n) = (x_1, x_1 + x_2, \ldots, x_1 + x_2 + \cdots + x_n)$$

(d)
$$T(x, y, z) = 3x - 2y + 7z$$

(h)
$$T(x_1, \ldots, x_n) = (x_1, x_1.x_2, \ldots, x_1.x_2.\ldots.x_n)$$
.

Ejercicio 2. Para cada una de las siguientes transformaciónes lineales, caracterizar mediante ecuaciones el núcleo y la imagen de T, dar una base de cada uno de estos subespacios. Verificar que en todos los casos la dimensión del núcleo más la de la imagen es igual a la dimensión del espacio de salida. Decidir además cuáles de los siguientes vectores están en el núcleo o la imagen:

$$(-1,1,1),$$
 $(1,2,-1,),$ $(3,1,1),$ $(1,1,2),$ $(1,1,-3).$

(a)
$$T_1: \mathbb{R}^3 \to \mathbb{R}^5$$
 dada por $T_1(x, y, z) = (x - y + z, x + y + 2z, 2x + 3y - 5z, 2x - y + z, 4x + 3y - z)$.

(b)
$$T_2: \mathbb{R}^3 \to \mathbb{R}^2$$
 dada por: $T_2(x, y, z) = (x - y + z, -2x + 2y - 2z)$.

(c)
$$T_3: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por: $T_3(x, y, z) = (-x + 2y + z, 2x - 4y - 2z, -3x + 6y + 3z)$.

(d)
$$T_4: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por: $T_4(x, y, z) = (3x - 2y - z, 7x - 5y - 3z, -x - z)$.

(e)
$$T_5: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por: $T_5(x, y, z) = (x - y + 2z, 3x + y + 4z, 5x - y + 8z)$.

Ejercicio 3. Para cada una de las siguientes funciones de $\mathbb C$ en $\mathbb C$ decidir si son $\mathbb R$ -lineales o $\mathbb C$ -lineales.

(a)
$$T(z) = iz$$
,

(b)
$$R(z) = \overline{z}$$
,

(c)
$$S(z) = \text{Re}(z) + \text{Im}(z)$$
.

Ejercicio 4. Dada $g \in C^1[0,1]$, sea $T_g : C^1[0,1] \mapsto C[0,1]$ la función dada por $T_g(f) = (fg)'$.

- (a) Probar que T_g es lineal y hallar el núcleo de T_g .
- (b) Describir explícitamente el núcleo de T_g en los casos $g(x) = e^x$ y g(x) = x y hallar su dimensión.

Martes 4 de octubre

Ejercicio 5. Para cada una de las siguientes transformaciónes lineales, caracterizar mediante ecuaciones el núcleo y la imagen de T, dar una base de cada uno de estos subespacios. Verificar que en todos los casos la dimensión del nucleo más la de la imagen es igual a la dimensión del espacio de salida. Decidir además cuáles de los siguientes vectores están en el núcleo o la imagen:

$$(-1,1,1),$$
 $(1,2,-1,),$ $(3,1,1),$ $(1,1,2),$ $(1,1,-3).$

(a)
$$T_1: \mathbb{R}^3 \to \mathbb{R}^5$$
 dada por $T_1(x, y, z) = (x - y + z, x + y + 2z, 2x + 3y - 5z, 2x - y + z, 4x + 3y - z)$.

(b)
$$T_2: \mathbb{R}^3 \to \mathbb{R}^2$$
 dada por: $T_2(x, y, z) = (x - y + z, -2x + 2y - 2z)$.

(c)
$$T_3: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por: $T_3(x, y, z) = (-x + 2y + z, 2x - 4y - 2z, -3x + 6y + 3z)$.

(d)
$$T_4: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por: $T_4(x, y, z) = (3x - 2y - z, 7x - 5y - 3z, -x - z)$.

(e)
$$T_5: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por: $T_5(x, y, z) = (x - y + 2z, 3x + y + 4z, 5x - y + 8z)$.

Práctico 5

Ejercicio 6. Para cada una de las siguientes transformaciones lineales, caracterizar el núcleo y la imagen de T, dar sus dimensión y una base de cada uno de ellos. Verificar en todos los casos que la dimensión del núcleo más la dimensión de la imagen es igual a la dimensión del espacio de salida.

(a)
$$T: P_2 \to C[0,1], T(ax^2 + bx + c) = (b-a)e^x + (c-a)e^{2x} + (b-c)e^{3x}.$$

(b)
$$T: \mathbb{R}^{2\times 2} \to P_5$$
, $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a-b)x^5 + (c+d)x^4 + (a+b)x^3 + (c+d)x^2 + (2b+3c)x + 7a - 8b$.

(c)
$$T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}, \ T \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} -x + 3y - 2z + w & 7x - 6y + 2z - w \\ -2x + 6y - 4z + 2w & -11x + 13y - 6z + 3w \end{pmatrix}.$$

- (d) $T: P_4 \longrightarrow P_4, T(p(x)) = p'(x).$
- (e) $T: \mathbb{K}^{2\times 2} \longrightarrow \mathbb{K}, T(A) = \operatorname{tr}(A).$

(f)
$$T: P_3 \longrightarrow M_{2\times 2}(\mathbb{R}), T(ax^2 + bx + c) = \begin{pmatrix} a & b+c \\ b+c & a \end{pmatrix}.$$

(g) $T: P_3 \longrightarrow P_4$, T(p(x)) = (x+1)p(x).

Ejercicio 7. Sea $T: \mathbb{C}^3 \to \mathbb{C}^3$ la transformación lineal tal que

$$T(1,0,0) = (1,0,i),$$
 $T(0,1,0) = (0,1,1),$ $T(0,0,1) = (i,1,0).$

Decidir si T es un isomorfismo

Jueves 6 de octubre

Ejercicio 8. En cada caso decidir si si es posible dar una transformación lineal T de \mathbb{R}^n en \mathbb{R}^m que satisfaga las condiciones exigidas. Si existe, estudiar la unicidad; si no existe explicar por qué.

- (a) T(0,1) = (1,2,0,0), T(1,0) = (1,1,0,0).
- (b) T(1,1,1) = (0,1,3), T(1,2,1) = (1,1,3), T(2,1,1) = (3,1,0).
- (c) T(1,1,1) = (3,2), T(1,0,1) = (1,1), T(0,1,0) = (1,0)
- (d) T(0,1,1) = (1,2,0,0), T(1,0,0) = (1,1,0,0).

Ejercicio 9. En cada caso definir, cuando sea posible, una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga las condiciones exigidas. Cuando no sea posible explicar por qué no es posible.

- (a) $\dim \operatorname{Im} T = 2$ y $\dim \operatorname{Nu} T = 2$.
- (b) $(1,1,0) \in \text{Im } T \text{ y } (0,1,1) \in \text{Nu } T.$
- (c) $(1,1,0) \in \operatorname{Im} T$, (0,1,1), $(1,2,1) \in \operatorname{Nu} T$.
- (d) $\operatorname{Im} T \subseteq \operatorname{Nu} T$.
- (e) Nu $T \subseteq \operatorname{Im} T$.

Ejercicio 10.

- (a) Dar una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que su imagen sea al subespacio generado por (1,0,-1) y (1,2,2). Hallar T(x,y,z).
- (b) Definir una transformación lineal $T: \mathbb{R}^4 \to \mathbb{R}^2$ tal que T(1, -1, 1, 1) = (1, 0) y T(1, 1, 1, 1) = (0, 1) y hallar T(x, y, z, w).

Práctico 5

- (c) Definir una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^{2\times 2}$ tal que $\operatorname{Nu}(T) = \{(x,y,z): z=2x=y\}$ e $\operatorname{Im}(T) = \left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| b=a-c, b-d=a+c \right\}$. Hallar T(x,y,z).
- (d) Probar que no existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^{2\times 2}$ tal que $\operatorname{Nu}(T) = \{(x,y,z): z = 2x = y\}$ e $\operatorname{Im}(T) = \left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| b d = a + c\right\}$.

Ejercicio 11. Sea V un espacio vectorial y sea $T:V\to V$ una transformación lineal.

- (a) Probar que $Nu(T) \subseteq Nu(T^2)$.
- (b) Probar que $\operatorname{Nu}(T) = \operatorname{Nu}(T^2)$ si y sólo si $\operatorname{Nu}(T) \cap \operatorname{Im}(T) = \{0\}.$

Ejercicio 12. Sea V un espacio vectorial de dimensión n y sea $T:V\to V$ una transformación lineal.

- (a) Probar que si n es impar entonces $\operatorname{Nu} T \neq \operatorname{Im} T$.
- (b) Sea n par. Dar un ejemplo de una transformación lineal $T:V\to V$ tal que Nu $T=\operatorname{Im} T$.