

NAME DES DOZENTEN: BJÖRN-HELGE BUSCH

KLAUSUR A100 FORMALE GRUNDLAGEN

QUARTAL: Q1/2017

Name des Prüflings:		Matrikelnummer:	Zenturie:	
Dauer: 120 Min.	Seiten ohne	e Deckblatt und Infoblatt: 17	Datum: 14.02.2017	
Hilfsmittel: Bemerkungen:	Bitte kontrollierer Vollständigkeit.Bitte lösen Sie i	Vollständigkeit.		
	Es sind 120 Punkte erreichbar. Zum Bestehen der Klausur sind 60 Punkte ausreichend.			
	Punkte für Aufga	aben		
			von 10	
	Aufgabe 2		von 31	
	Aufgabe 3		von 29	
	Aufgabe 4		von 24	
	Aufgabe 5		von 26	
	Insgesamt		von 120	
Datum:	Note:	Ergänzungspri	üfung:	
Unterschrift:				

Aufgabe 1: Wortmengen und Wortfunktionen

a) Geben Sie Eigenschaften von <u>formalen</u> und <u>natürlichen</u> Sprachen an. Nutzen Sie für Ihre Ausführungen die Tabelle (3 Punkte)

Natürliche Sprache	Formale Sprache	
	•	

b) In welche <u>drei</u> Bestandteile lassen sich Wörter einer Sprache in der Regel zerlegen? Was ist eine unechte Zerlegung? Beziehen Sie Ihre Ausführungen auf das Wort w = acacac. (1 Punkt)

c) Geben Sie <u>zwei</u> Wortfunktionen <u>oder</u> Zahlenfunktionen inklusive des Definitions- und Wertebereichs gemäß üblicher (mengentheoretischer) Funktionsvorschrift und beispielhaftem Funktionsaufruf an.

Erläutern Sie die jeweiligen Zuordnungen von Definitions- und Wertebereich. Ordnen Sie ferner die Eigenschaften total oder partiell, bijektiv, injektiv oder surjektiv zu, sofern möglich. (3 Punkte)

d) Stellen Sie eine Wortfunktion oder Zahlenfunktion <u>Ihrer Wahl</u> als <u>Turingautomaten</u> dar. Geben Sie entsprechenden Zustandsüberführungsfunktionen exemplarisch für das Eingabealphabet

$$\Sigma = \{1,2,3\}$$

an. Alternativ können Sie auch ein eigenes Alphabet definieren. (3 Punkte)

Aufgabe 2: Endliche Automaten

a) Gegeben seien die Sprachen

$$L_1 = \{ w \in \Sigma^* | w = \{a, b, c\} \{dd\}^+ \{a, b\} \}$$

$$L_2 = \{ w \in \Sigma^* | w = \{a, c\}^+ \{d\}^+ \{b\}^* \}$$

Konstruieren Sie den <u>Produktautomaten</u>, der den Schnitt $L_1 \cap L_2$ akzeptiert. Hinweis: Markieren Sie den <u>akzeptierenden</u> Zustand. Der Produktautomat soll <u>ausschließlich</u> den Schnitt akzeptieren. (4 Punkte)

b) Gegeben seien die beiden hübschen Sprachen

$$\begin{split} L_3 &= \{w \in \Sigma^* | w = \{b,c\}^+ \{aaa,fff\}^+ \{bb,cc\}^+ \} \\ L_4 &= \{w \in \Sigma^* | w = \{aa,ff\}^* \{1,2,3\} b^i c^j, i > 1, j > 2, j \bmod 3 = 0 \}. \end{split}$$

Konstruieren Sie einen
 nicht verallgemeinerten DEA A_5 , der
 ausschließlich die Sprache

$$L_5 = L_3 \cup L_4$$

akzeptiert. Geben Sie die <u>graphische</u> Repräsentation mit <u>markierten akzeptierenden</u> Zuständen an. Auf eine mengenwertige Darstellung von δ_5 kann verzichtet werden. (7 Punkte)

c) Erläutern Sie den Begriff <u>Transduktor</u> und skizzieren Sie eine Mealy-Maschine, die das Verhalten eines Parkautomaten widerspiegelt (mindestens fünf Zustände). Was versteht man unter der <u>Semantik</u> einer Mealy-Maschine? (7 Punkte)

d) Was versteht man unter dem Begriff "<u>Moore-Berechenbarkeit</u>"? Geben Sie ein Beispiel für eine <u>Moore-berechenbare</u> Funktion f und erläutern Sie Ihre Antwort auf Basis der mit f korrespondierenden Zustandsüberführungsfunktion δ_f und der Ausgabefunktion λ_f (5 Punkte)

e) Gegeben sei die Sprache

$$L_6 = \{w \in \Sigma^* | w = \{d, f, e\}^+ \{fff\} \{d\}^+\}$$

Konstruieren Sie den korrespondierenden, <u>nicht verallgemeinerten</u> NEA A_6 (Automatengraph genügt) und demonstrieren Sie die Äquivalenz zwischen NEA und DEA, indem Sie A_6 in einen äquivalenten DEA A_6^* <u>transformieren</u>. Nutzen Sie dafür den <u>tabellarischen Ansatz</u> und <u>zeichnen</u> Sie den Graphen von A_6^* . (8 Punkte)

Aufgabe 3: Grammatiken

a) Erläutern Sie die Begriffe Thue- und Semi-Thue-System anhand beispielhafter Produktionen in Bezug auf das Alphabet $\Sigma = \{a, o, u\}$. (2 Punkte)

b) Erläutern Sie die Begriffe <u>Ableitung</u>, <u>Satzform</u>, <u>Terminalsymbol</u> und <u>Nonterminalsymbol auf Basis der Mengen</u> $\Sigma = \{a, b, c\}$ und $N = \{A, B, C\}$ und entsprechender, sinnvoller Regeln aus P (4 Punkte)

c) Gegeben ist die Sprache

$$L_7 = \{w \in \Sigma^* | w = \{aa\}^+ (bcd)^i \{a, b\}, i \ge 2\}.$$

Geben Sie die <u>normierte Grammatik</u> G_7 mit der Regelmenge P_7 an, die ausschließlich die Sprache L_7 erzeugt. <u>Zeichnen</u> Sie den mit P_7 korrespondierenden Automaten (6 Punkte).

d) Erläutern Sie den Begriff <u>Greibach-Normalform</u> auf Basis einer selbst gewählten Regelmenge **P**. (2 Punkte)

e) Gegeben sei die Sprache

$$L_9 = \{ w \in \Sigma^* | w = \{c, d\}^* a^i b^i c^j, i > 0, j > 1 \}$$

Geben Sie die Grammatik G_9 in <u>Chomsky-Normalform</u> mit der Regelmenge P_9 an und konstruieren Sie den korrespondierenden <u>Kellerautomaten</u> K_9 mit Angabe der Zustandsübergangsfunktion δ_9 . (7 Punkte)

f) Erläutern Sie den Begriff mehrdeutige Grammatik. Untermauern Sie Ihre Ausführungen mit einer beispielhaften Regelmenge *P* für eine Sprache Ihrer Wahl. (3 Punkte)

g) Geben Sie den Mehrkellerautomaten K an, der die Sprache

$$L_{10} = \{ w \in \Sigma^* | w = a^i b^i c^i d^i, i > 0 \}$$

Gut findet und daher akzeptiert. Die Angabe der Zustandsüberführungsfunktion genügt. (5 Punkte)

Aufgabe 4: Sprachklassen

a) Zeigen Sie mithilfe einer Skizze, dass die Sprache $L_{11}=\{\varepsilon\}$ zur Klasse der regulären Sprache gehört. (1 Punkte)

b) Skizzieren Sie die <u>Chomsky-Hierarchie</u> und erläutern Sie die Unterschiede anhand der Ausdrucksmächtigkeit der klassifizierten Grammatiken (Hinweis: *P* enthält Regeln unterschiedlichen Typs zur Worterzeugung). Geben Sie die jeweiligen <u>Abschlusseigenschaften</u> an. (8 Punkte)

c) Gegeben sei eine beliebige reguläre Sprache L_{12} . Handelt es sich bei L_{12}^+ , also der Plushülle von L_{12} , um eine reguläre Sprache? Nutzen Sie für Ihre Ausführungen eine Skizze. (2 Punkte)

d) Erläutern Sie mithilfe einer Skizze, warum reguläre Sprachen abgeschlossen gegenüber der Vereinigung sind. (2 Punkte)

e) Gegeben seien zwei Typ-2-Grammatiken G_1 und G_2 . Zeigen Sie mithilfe geschickter Modifikationen der Regelmengen, dass Typ-2-Sprachen abgeschlosen gegenüber der Konkatenation und der Vereinigung sind. (3 Punkte)

f) Lässt sich das <u>Wortproblem</u> für Typ 3 – Sprachen lösen? Begründen Sie Ihre Antwort. Auf welche Weisen lässt sich dies bewerkstelligen? (2 Punkte)

g) Gegeben seien die Sprachen

$$\begin{split} L_{12} &= \{ w \in \Sigma^* | w = \{1,2,3\}^+ a^i b^j e^j \{ ccc \}^*, i \geq 2, j \geq 1 \} \\ L_{13} &= \{ w \in \Sigma^* | w = \{ ee \}^+ a^i c^j \{a \}^+, i > 0, j > 0 \} \end{split}$$

Testen Sie mithilfe des <u>Pumping-Lemmas</u>, ob es sich um Typ 3, Typ 2 oder Typ1/Typ0 Sprachen handeln könnte und geben Sie für die jeweilige Zerlegung, sofern möglich, die Pumping-Lemma-Zahl an. (6 Punkte)

Aufgabe 5: Berechenbarkeit

a) Erläutern Sie den Begriff Algorithmus. Wann spricht man von einer berechenbaren Funktion f. Was ist der Unterschied zu einer lösbaren Funktion (2 Punkte)

b) Welche Berechenbarkeitskonzepte sind Ihnen bekannt. Nennen und erläutern Sie diese. Bestehen grundlegende Unterschiede zwischen den einzelnen Konzepten (6 Punkte).

c) Gegeben sei die wichtige Funktion $f: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$, $(x,y) \mapsto x+y+3$. Geben Sie die Turingmaschine TM mit der Zustandsüberführungsfunktion an, die diese Funktion implementiert, wobei die Eingaben gemäß

$$\alpha: \mathbb{N}_0 \longrightarrow \{|\}^*, n \mapsto |^n$$

mit der Null als Trennsymbol für k-stellige Eingaben codiert werden. Für die Ausgabecodierung gilt dementsprechend $\beta = \alpha^{-1}$. (8 Punkte)

d) Stellen Sie die Funktion

$$f: \mathbb{N}_0 \longrightarrow \mathbb{N}_0, x \mapsto x^2 + x$$

mithilfe eines geeigneten Programms (GOTO, WHILE oder LOOP) dar. Ordnen Sie ferner die Attribute total, partiell, bijektiv, injektiv und surjektiv, sofern möglich, zu. (6 Punkte)

e) Erläutern Sie in eigenen Worten das Konzept der <u>primitiven</u> <u>Rekursion</u>. Welche Typen von Funktionen lassen sich mithilfe der primitiven Rekursion berechnen (2 Punkte).

f) Auf welche Weise lässt sich der partielle Charakter von Funktionen ausdrücken, falls eine Turingmaschine den korrespondierenden Algorithmus abbilden soll? Untermauern Sie Ihre Ausführungen mit einer beispielhaften Zustandsüberführungsfunktion (2 Punkte).