Algebra Linear - Lista de Exercícios 2

Yuri F. Saporito

1. Ache a matriz de eliminação E que reduz a matriz de Pascal em uma menor:

O EA - B

$$E \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{= \underbrace{ \begin{bmatrix} 1 & 0 & 0$$

[A : I] -> [B : E] Augurion [I : A-1]

Qual matriz M reduz a matriz de Pascal a matriz identida

2. Use o método de Gauss-Jordan para achar a inversa da matriz triangular (1)

 $U = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}.$ A-1 A = I

ALLU

3. Para quais valores de a o método de eliminação não dará 3 pivôs?

$$\begin{bmatrix} a & 2 & 3 \\ a & a & 4 \\ a & a & a \end{bmatrix}.$$

 $[A : I] \longrightarrow [E,A : E,]$ EzE A EE

(A : I) — (U : E]

4. Verdadeiro ou falso (prove ou forneça um contra-exemplo):

- (a) Se A^2 está bem definida, então A é quadrada.
- (b) Se AB e BA estão bem definidas, então A e B são quadradas.
- (c) Se AB e BA estão bem definidas, então AB e BA são quadradas.
- (d) Se AB = B, então A = I.

EA = U

5. Mostre que se BA = I e AC = I, então B = C.

6. Ache uma matriz não-zero A tal que $A^2=0$ e uma matriz B com $B^2\neq 0$ e $B^3=0$.

7. Ache as inversas de

I un uneir

$$\begin{bmatrix} 3 & 2 & 0 & 0 \\ 4 & 3 & 0 & 0 \\ 0 & 0 & 6 & 5 \\ 0 & 0 & 7 & 6 \end{bmatrix} e \begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad u_{\text{max}} \quad v_{\text{max}} \quad u_{\text{max}} = (u \ v^{\text{T}})_{\text{max}}$$

8. Verifique que a inversa de $M = I - \mathbf{u}\mathbf{v}^T$ é dada por $M^{-1} = I + \frac{\mathbf{u}\mathbf{v}^T}{1 - \mathbf{v}^T\mathbf{u}}$. Verifique também que a inversa de $N = A - UW^{-1}V$ é dada por $N^{-1} = A^{-1} + A^{-1}U(W - VA^{-1}U)^{-1}VA^{-1}$.

9. Sabemos que a matriz de diferenças tem a seguinte inversa

$$L^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ & 1 & 1 \end{bmatrix}.$$

Use essa propriedade (e sua versão triangular superior) para achar a inversa de

$$T = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

Dica: escreva T como produto de duas matrizes.

- 10. Mostre que I + BA e I + AB são ambas invertíveis ou singulares. Relacione a inversa de I + BA com a inversa de I + AB, caso elas existam.
- 11. (Bônus) Mostre que se $\alpha_k A^k + \alpha_{k-1} A^{k-1} + \dots + \alpha_1 A + \alpha_0 I = 0$, com $\alpha_0 \neq 0$, então A é invertível

1

