✓ Congratulations! You passed! ✓ 1/1 point

To make your solution look mighty

To compensate errors of one model by other models

What is the purpose of ensembling?

Correct

Correct! If models make mistakes on different test samples, ensemble will have higher overall quality

Next Item

To learn about overfitting by trial-and-error

Does ensembling always lead to a better quality?

Yes, always

No, almost never

No, but quite often

Correct

Correct! This is why almost every winning solution uses ensembling

Which of the following machine learning techniques can potentially be the best?

Stacking of diversified models

Correct

Yes, potentially stacking is the most powerful technique

- Gradient boosting of k-NN models
- Bagging of decision trees with max_depth=100
- Linear regression

1/1 point

4.

Which class of models can be used as a base model in gradient boosting?

Linear model

Of course, for example, Xgboost contains implementation of boosting over logistic regressions.

Decision Tree

Of course, for example, GBDT boosts over decision trees.

Neural Net

Correct

Of course, it is possible, but not widely used. For example, you can use AdaBoost to do this.

