T1.Teoría de Conjuntos

1. Conjuntos

Diremos que un conjunto es una **colección bien definida de objetos**, llamados elementos del conjunto. Para que un conjunto esté bien definido **debe ser posible determinar si un objeto particular está o no en él.** En un conjunto no se repiten los elementos ni tampoco influye el orden en que aparecen

Se dice que un elemento α pertenece a A, y se denota $\alpha \in A$, si α es un elemento del conjunto A. En caso contrario, $\alpha \notin A$.

Dos conjuntos *A y B* son iguales si ambos tienen los mismos elementos:

$$A = B \iff \forall x (x \in A \iff x \in B)$$

El c**onjunto vacío** es aquel que no tiene elementos, se denota por \varnothing o por $\{\ \}$.

Un conjunto se dice **unitario** si contiene un único elemento, como, por ejemplo, {1}, {Z}, {a}.

$$a \in \{a\}$$
, pero $a \neq \{a\}$

Un conjunto A se dice **finito** si tiene un número n ($n \in \mathbb{N}$) **de elementos**; este número se llama **cardinal de** A y se denota o bien por |A| o por #A. En caso contrario, se dice que A es **no finito**.

1.1 Subconjuntos

Se dice que A es un subconjunto de B, y se denota por $\mathbf{A} \subseteq \mathbf{B}$, si todo elemento de A pertenece a B.

$$A \subseteq B \iff \forall x (x \in A \Rightarrow x \in B)$$

• Cuando A no está contenido en B, se escribirá A ⊈ B.

$$A \nsubseteq B \iff \exists a (a \in A y a \notin B)).$$

- Cualquier conjunto B, admite como subconjuntos al conjunto vacío \varnothing y al propio conjunto B. Estos se denominan **subconjuntos triviales**.
- Si $A \subseteq B$ y $A \ne B$, se dice que A está **contenido estrictamente** en B: $A \subset B$

Dado un conjunto A, el conjunto **partes de** A es el conjunto formado por **todos los subconjuntos de** A y se denota por P(A)

$$P(A) = \{X \mid X \subseteq A\}$$
 es decir $X \in P(A) \iff X \subseteq A$

Si A es finito y tiene cardinal n, entonces P(A) es finito y tiene cardinal $|P(A)| = 2^n$. Además, e verifica que \emptyset y A son elementos de P(A).

1.2 Operaciones con conjuntos

Complementario

Sea A subconjunto de U, $A \subseteq U$, se llama **complementario** (respecto a U) de A, y se denota por \overline{A} , al **subconjunto de** U formado por todos los **elementos que no pertenecen a** A, es decir:

$$\overline{A} = \{x \in U \mid x \notin A\}.$$

Propiedades 1. Sean A, B \subseteq U. Se verifica:

- 1) $\overline{\varnothing} = U$
- 2) Ū = Ø
- 3) $\overline{A} = A$
- 4) $A \subseteq B \iff \overline{B} \subseteq \overline{A}$

Unión

Unión de A y B, y se representa por $A \cup B$, al conjunto formado por los elementos que pertenecen a A \mathbf{o} a B (o a ambos):

$$A \cup B = \{x \in U \mid x \in A \circ x \in B\}$$

Intersección

Intersección de A y B, y se representa por $A \cap B$, al conjunto formado por los elementos que pertenecen a A y a B:

$$A \cap B = \{x \in U \mid x \in A \ y \ x \in B\}$$

Propiedades:

- 1) Leyes de identidad: $A \cup \emptyset = A \quad y \quad A \cap U = A$.
- 2) Leyes de complementario: $A \cup \overline{A} = U \quad y \quad A \cap \overline{A} = \emptyset$.
- 3) Leyes conmutativas: $A \cup B = B \cup A \quad y \quad A \cap B = B \cap A$.
- 4) Leyes asociativas: A \cup (B \cup C) = (A \cup B) \cup C y A \cap (B \cap C) = (A \cap B) \cap C.
- 5) Leyes distributivas: A \cup (B \cap C) = (A \cup B) \cap (A \cup C) y A \cap (B \cup C) = (A \cap B) \cup (A \cap C).
- 6) Leyes de idempotencia: $A \cup A = A$ $y \cap A = A$.
- 7) Leyes de acotación: A \cup U = U y A \cap \varnothing = \varnothing .
- 8) Leyes de absorción: $A \cup (A \cap B) = A y A \cap (A \cup B) = A$.
- 9) Leyes de De Morgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}$ y $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

10) $A \subseteq (A \cup B)$, $B \subseteq (A \cup B)$.

11)
$$(A \cap B) \subseteq A$$
, $(A \cap B) \subseteq B$.

12)
$$A \subseteq C y B \subseteq C \iff (A \cup B) \subseteq C$$
.

13)
$$C \subseteq A y C \subseteq B \iff C \subseteq (A \cap B)$$
.

14)
$$A \subseteq B \iff A \cup B = B \iff A \cap B = A$$
.

Unión y de intersección para una colección finita $A1, A2, \ldots, An$ de subconjuntos de U:

$$igcup_{i=1}^n A_i = \{x \in U | x \in ext{al menos a un } A_i, i=1,2,\ldots,n\}$$

$$igcap_{i=1}^n A_i = \{x \in U | x \in \operatorname{todos} A_i, i=1,2,\ldots,n\}$$

Dos conjuntos que no tienen ningún elemento en común se dice que son disjuntos: $\mathbf{A} \cap \mathbf{B} = \emptyset$

Si los conjuntos $A1, A2, \ldots, An$ son **finitos y disjuntos dos a dos** (es decir, **Ai** \cap **Aj** = \varnothing) para cualesquiera i, j con $\mathbf{i} \neq \mathbf{j}$), entonces:

$$|A1 \cup A2 \cup \cdots \cup An| = |A1| + |A2| + \cdots + |An|$$
.

En general, para dos conjuntos finitos *A y B*, se verifica:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Diferencia

Se llama **diferencia** entre A y B, y se representa por $A \setminus B$ o por A - B, al conjunto formado por los elementos de A que no pertenecen a B:

$$A \backslash B = \{x \in A \mid x \not \in B\}$$

Partición

Una partición de un conjunto A es una colección $\{A1, A2, \ldots, An\}$ de subconjuntos no vacíos de A que verifica las dos propiedades siguientes:

1)
$$A = \bigcup_{i=1}^n A_i$$
 | El conjunto inicial es la unión de todas las particiones

2) Ai \cap Aj = \emptyset , para todo i, j \in {1, 2, ..., n}, i \neq j. | No se repiten elementos entre particiones

1.3 Producto cartesiano

Se llama producto cartesiano A por B, y se denota por $A \times B$, al conjunto de los pares ordenados en los que el primer elemento pertenece a A y el segundo a B. Esto es:

$$A \times B = \{(a, b) \mid a \in A y b \in B\}$$

Dados los conjuntos $A1, A2, \ldots, An$, se define su producto cartesiano:

$$A1 \times A2 \times \cdots \times An = \{(a1, a2, \dots, an) \mid ai \in Ai, para todo i = 1, 2, \dots, n\}$$

1.4 Aplicaciones

Una aplicación f de A en B es una regla que asocia **a cada elemento a de A un único elemento de** B, que se denomina **imagen de a mediante f** , y se denota f(a). Se dice que A es el conjunto inicial y B el conjunto final.

$$f: A \rightarrow B$$

Se dice que una aplicación $f : A \rightarrow B$ es:

• **Inyectiva** si elementos distintos de *A* tienen imágenes diferentes en *B*. Así, *f* no es inyectiva si existen elementos distintos de A con la misma imagen.

$$\forall$$
 a1, a2 \in A, si a1 \neq a2 entonces f (a1) \neq f (a2).

• **Sobreyectiva** si todo elemento de *B* es imagen de, al menos, un elemento de *A*, es decir:

$$\forall$$
 b \in B existe a \in A tal que b = f (a).

Equivalentemente,

$$Im(f) = B$$

• **Biyectiva** si es inyectiva y sobreyectiva.

1.4.1 Imágenes

Sea f : A → B una aplicación y sean $A1 \subseteq A$ y $B1 \subseteq B$.

Se definen: el **conjunto imagen** (directa), por f, del conjunto A1 como

$$f * (A1) = \{f (a) | a \in A1\} \subseteq B$$

Y el **conjunto imagen recíproca**, por f, del conjunto B1 como

$$f * (B1) = \{a \in A \mid f(a) \in B1\} \subseteq A$$

Para A1 = A, el conjunto $\mathbf{f} * (\mathbf{A}) = \mathbf{Im}(\mathbf{f})$ se llama conjunto imagen de \mathbf{f} .

Si los conjuntos A y B son finitos y $f : A \rightarrow B$ es una aplicación, se verifica que:

• Si f es **inyectiva** entonces $|A| \le |B|$

si |A| > |B|, entonces f no es inyectiva

• Si f es **sobreyectiva**, entonces $|\mathbf{A}| \ge |\mathbf{B}|$

si |A| < |B|, entonces f no es sobreyectiva

• Si f es **biyectiva** entonces |A| = |B|

si $|A| \neq |B|$, entonces f no es biyectiva

1.4.3 Composición de Aplicaciones

Dados tres conjuntos A, B y C, y dos aplicaciones f y g tales que

$$f: A \rightarrow B$$
 $g: B \rightarrow C$
 $a \rightsquigarrow f(a) = b$ $b \rightsquigarrow g(b) = c$

Se llama composición de f con g a la aplicación:

$$g \circ f : A \rightarrow C$$

 $a \rightsquigarrow (g \circ f) (a) = g (f (a)) = g (b) = c$

Es decir:

Ejemplo:

La composición de aplicaciones no cumple la propiedad conmutativa:

$$g \mathrel{\circ} f \neq f \mathrel{\circ} g$$

Sin embargo, si cumple la propiedad **asociativa**:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

- Si fy g son inyectivas, también $g \circ f$ es inyectiva.
- Si fyg son sobreyectivas, también $g \circ f$ es sobreyectiva.
- Si f y g son biyectivas, también $g \circ f$ es biyectiva.

- Si $g \circ f$ es inyectiva, entonces k es inyectiva3
- Si $g \circ f$ es sobreyectiva, entonces g es sobreyectiva.

Para cada conjunto A, se llama aplicación **identidad** de *A* a la aplicación

$$IA: A \rightarrow A$$

$$a \rightsquigarrow IA(a) = a$$

Dada cualquier aplicación $f : A \rightarrow B$ se verifica que

$$f \circ IA = f = IB \circ f$$

1.4.4 Aplicación Inversa

Sea $f: A \to B$ una aplicación. Se llama **aplicación inversa de f** , y se denota por f^{-1} , a una aplicación $f^{-1}: B \to A$ tal que, **si b es un elemento de B**:

$$f-1$$
 (b) = a \iff b = f (a)

Dada una aplicación $f : A \rightarrow B$, f admite inversa si, y solo si, f es **biyectiva**.

La inversa de $f: A \rightarrow B$

 $f^{-1} \colon B \to A$ está definida por:

$$f^{-1}(x) = 1$$
 (pues $f(1) = x$),

$$f^{-1}(y) = 3$$
 (porque $f(3) = y$),

$$f^{-1}(z) = 2$$
 (ya que $f(2) = z$).

Además, si f tiene inversa entonces se cumple:

- Su inversa f^1 es la única aplicación que verifica $f \circ f^{-1} = IB \ y \ f^{-1} \circ f = IA$,
- f^{-1} también tiene inversa y $(f^{-1})^{-1} = f$,
- si $f: A \to B$ y $g: B \to C$ son dos aplicaciones invertibles (es decir, tienen inversa), entonces $g \circ f$ también lo es y $(g \circ f) 1 = f^{-1} \circ g^{-1}$.