Optimize Neural Networks- Factors affecting NN

1. Model Architecture Optimization

Your network architecture dictates what the model can learn. A poorly chosen architecture may underfit (too simple) or overfit (too complex).

- Start Simple: Begin with a baseline model and measure its performance.
- Architectures to Know:
 - o **CNNs** (e.g., ResNet, VGG, EfficientNet): Good for images.
 - o RNNs / LSTMs / GRUs: Good for time-series or sequences.
 - o **Transformers (e.g., BERT, VIT, GPT)**: Excellent for NLP and image classification with large data.

2. Hyperparameter Tuning

Hyperparameters control learning behavior and directly affect training time and final accuracy.

Key Hyperparameters:

Hyperparameter	Role	Common Ranges
Learning rate	Controls update step	1e-4 to 1e-1
Batch size	Controls gradient noise	16 to 512
Dropout rate	Regularization	0.1 to 0.5
Optimizer	How gradients are applied	Adam, SGD, RMSprop

- Manual tuning (trial and error).
- **Grid search**: Try all combinations slow but systematic.
- Random search: More efficient than grid.
- **Bayesian Optimization**: Smarter, learns from past trials.

3. Training Techniques

Proper training strategies can make or break your network's ability to converge and generalize.

Techniques to Use:

- Early stopping: Stop training when validation loss doesn't improve for X epochs.
- Learning rate scheduling: Reduce LR every few epochs.
- Batch normalization: Normalizes activations to stabilize learning.
- **Gradient clipping**: Keeps gradient magnitude in check (important in RNNs).

Learning rate reducing/scheduling:

The **learning rate** controls how much the model updates its weights in response to the error it sees. If it's **too high**, training becomes unstable. If it's **too low**, training becomes slow or stuck.

ReduceLROnPlateau is a Keras callback that automatically reduces the learning rate when the model's performance stops improving (i.e. plateaus).

If the **validation loss** (or accuracy) hasn't improved for a few epochs, we reduce the learning rate by a **factor**.

- Prevents overshooting near minima.
- **Improves convergence** when the learning plateaus.
- Automates fine-tuning of learning rate during training.

Parameter	Description	
monitor	What to watch (e.g., 'val_loss', 'val_accuracy')	
factor	Factor to reduce learning rate (e.g., 0.5)	
patience	How many epochs to wait before reducing	
min_lr	Lower bound on learning rate	
cooldown	Wait time after LR is reduced before resuming monitoring	

This is useful when the model gets stuck at a local minimum — a smaller learning rate can help it fine-tune further.

Early stopping:

Early Stopping is a regularization technique used to prevent **overfitting** in neural networks by **halting training when the model stops improving** on the validation set.

Rather than training for a fixed number of epochs, we let the model **decide when to stop** based on validation performance.

- Training loss typically decreases.
- Validation loss may decrease at first, but can increase later (overfitting begins).
- Early stopping halts training at the point where validation performance stops improving, preventing the model from "memorizing" the training data.

How It Works:

- 1. Monitor a metric (usually val loss or val accuracy).
- 2. Define **patience** how many epochs to wait for improvement.
- 3. If no improvement after patience epochs, training stops.
- 4. Optionally, **restore the best weights** from before performance dropped.

Parameter	Purpose	
monitor	Metric to track (val_loss, val_accuracy, etc.)	
patience	Number of epochs with no improvement before stopping	
min_delta	Minimum change to qualify as an improvement (default is 0)	
restore_best_weights	If True, model returns to the best weights seen during training	
mode	'auto', 'min', or 'max' depending on whether you want to	
	minimize or maximize the metric	
verbose	Set to 1 to print messages when early stopping is triggered	

Model Check pointing:

Model checkpointing is a technique used during the training of machine learning models to **periodically save the model's state**—including its parameters, optimizer state, and sometimes other metadata—so that training can resume later or the model can be restored for inference or evaluation.

Why Use Check pointing?

1. **Fault Tolerance**: If training is interrupted (e.g., due to system failure), you can resume from the last checkpoint instead of starting over.

- 2. **Best Model Selection**: You can save the model with the **best validation accuracy or lowest loss**, not just the final state.
- 3. **Training Analysis**: Checkpoints allow you to analyze model performance at different training stages.
- 4. **Incremental Improvements**: Continue training later or fine-tune from a particular checkpoint.

4. Regularization to Prevent Overfitting

Overfitting happens when your model learns noise instead of patterns. Regularization helps generalize.

- **Dropout**: Randomly "drops" neurons during training.
- Weight decay (L2 regularization): Penalizes large weights.
- **L1 regularization**: Encourages sparsity.
- **Data augmentation**: Increase training data variety (e.g., rotate/flip images, paraphrase text).

5. Data Quality & Pre-processing

Better data = better model.

Garbage in = garbage out.

- Clean your data: Remove duplicates, fix mislabeled examples.
- Balance classes: Use SMOTE, oversampling, undersampling for class imbalance.
- Feature scaling: Normalize (e.g., MinMax, StandardScaler).
- Augmentation: Random cropping, flipping, noise injection, etc.
- **Tokenization**: For text, use BERT tokenizer or SentencePiece for subword units.

6. Evaluation and Debugging

Training loss going down ≠ good model. You need robust evaluation.

- Cross-validation: Evaluate performance on multiple data splits.
- Confusion matrix: For classification.
- **Precision, Recall, F1-score**: For imbalanced classes.
- Learning curves: Visualize training vs. validation loss.
- Explainability:
 - o **Grad-CAM**: For CNNs.
 - o **SHAP / LIME**: For tabular or NLP models.