I. More topological equivalence

Recall X = Y $\chi \stackrel{f}{\rightleftharpoons} \Upsilon$ S.t. $g = f = id_X$, $f = g = id_Y$ sy f:X->Y is a top. equivalence.

$$X_{o} =$$

$$S' \times [o,i]$$

n twist S' x [0,1] anndus Mobius band $X_0 \cong X_2$ Pf: There is an abrions Lijection

Similarly
$$X_0 \cong X_{2k}$$
 k $\geqslant 1$.

and $X_1 \cong X_{2k+1}$

OTOH, $X = \sharp X_1$: Compare boundary

if $X_0 \cong X_1$ then

 $\partial X_0 \cong \partial X_1$

requires prof

Circles

Rank X_0, X_2 cannot be determed one to other in \mathbb{R}^3

(not "isotopic")

if can determ $X_0 + X_2 = X_1$

then can determ $X_0 + X_2 = X_1$

link

Ex T = torus := S'xS'

2

=

Alternatively we would consider

This gives a different space

K= Klein bottle.

Ex (Inked rods)

consider l'inkage

consider the configuration spare

another linkage

12.1=1

12.-2.1=1

12.-2.1=1

17.-2.1=1

0

Z₃

let Y config. space
for linkage

- fixed

$$X \cong Y$$

dimension count: X 13 2 dimensional

Y is also 2-dimensional.

(HWZ).

Basic problem in topology: given X,Y spaces, determine if $X \cong Y$.

Thm P,Q polyhedra. If $P \cong Q$, then $\chi(P) = \chi(Q)$

Consequently if $\chi(P) \neq \chi(Q)$ then $P \not\equiv Q$.

eg. $\chi = 2$ $\chi = 0$ $\chi = 0$ $\chi = 0$

Basic problem in topology: given X,Y spaces, determine if $X \cong Y$.

Thm P,Q polyhedra. If $P \cong Q$, then $\chi(P) = \chi(Q)$ Consequently if $\chi(P) \neq \chi(Q)$ then $P \not= Q$.

eg. $\chi = 2$ $\chi = 0$ $\chi = 0$ $\chi = 0$

Rmk we proved special Lase: if P,Q setisfy assumptions of Euler's than $P \cong S^2 \cong Q$. Theorem predicts $\chi(P) = \chi(Q)$ Indeed by Euler's then $\chi(P) = 2 = \chi(Q)$.

II. Topological Spaces want: general detinition of space that includes all previous examples and more. roughly " a space is a set of extra structure so that H makel sense to talk about continuous functions

Recall f: R" - IR" I continuous if for each x = IR" and 270, 3 570 St. f(Bs(x1) = Bs (f(x1) Bs(x) = {y \in 1 x - y \< }}

 $\frac{R}{s}(x)$ f(x)

Say UCIRM open if for ヨ r 70 St. B,(y) = U. are unions of open mtermls open subsets of R closed intervals are not open can restate: f: Rh—1Rh Continuous if oper UCRM. f'(u) open for every { xeir | f(x) & U?

Basic paperties of open sett in 1Rh motivates: Det A topological space is uset X together with a collection of subsets of X, called open sets, 1 f. (i) X, \$ are open (ii) (arbitrary) union of open sets are open (11) finite intersections of open sets are open. Defn X,Y top. spaces, f: X -> Y continuous if

for each UCY open f'(u) = X also open.

EX If $X \subset \mathbb{R}^3$ can make X a topology on X.

Exercise: this actives a topology on X.

Sell.

