Complex Analysis Homework 6

Colin Williams

October 22, 2020

Question 1

With the aid of the equalities (for z = x + iy),

$$|\sin(z)|^2 = \sin^2(x) + \sinh^2(y),$$
 $|\cos(z)|^2 = \cos^2(x) + \sinh^2(y)$

show that

- (a) $|\sinh(y)| \le |\sin(z)| \le \cosh(y)$
- (b) $|\sinh(y)| \le |\cos(z)| \le \cosh(y)$

Answer. (a)

It is clear from the first equality that $\sinh^2(y) = |\sin(z)|^2 - \sin^2(x)$. Since $\sin(x) \in [-1, 1] \implies \sin^2(x) \in [0, 1]$. Thus, $\sin^2(x) \ge 0$ for all $x \in \mathbb{R} \implies -\sin^2(x) \le 0$ for all $x \in \mathbb{R}$. Thus, using the equality I just found, we get

$$\sinh^{2}(y) = |\sin(z)|^{2} - \sin^{2}(x)$$

$$\leq |\sin(z)|^{2} - 0$$

$$= |\sin(z)|^{2}$$

$$\implies |\sinh(y)| \leq |\sin(z)| \quad \text{the first of the two inequalities we need to show}$$

Likewise, if we use the fact that $\sinh^2(y) = \cosh^2(y) - 1$, then we get from the first equality that $|\sin(z)|^2 = \sin^2(x) + \cosh^2(y) - 1$. Furthermore, using the same analysis on $\sin(x)$ as above, we can determine that $\sin^2(x) \le 1$ for all $x \in \mathbb{R}$. Thus, putting this together, we get:

$$\begin{split} |\sin(z)|^2 &= \sin^2(x) + \cosh^2(y) - 1 \\ &\leq 1 + \cosh^2(y) - 1 \\ &= \cosh^2(y) \\ \Longrightarrow |\sin(z)| &\leq \cosh(y) \quad \text{the second of the two inequalities we need to show} \end{split}$$

Thus, we have now shown that $|\sinh(y)| \le |\sin(z)| \le \cosh(y)$, exactly as desired.

Answer. (b)

It is clear from the second equality that $\sinh^2(y) = |\cos(z)|^2 - \cos^2(x)$. Since $\cos(x) \in [-1, 1] \implies \cos^2(x) \in [0, 1]$. Thus, $\cos^2(x) \ge 0$ for all $x \in \mathbb{R} \implies -\cos^2(x) \le 0$ for all $x \in \mathbb{R}$. Thus, using the equality I just found, we get

$$\sinh^{2}(y) = |\cos(z)|^{2} - \cos^{2}(x)$$

$$\leq |\cos(z)|^{2} - 0$$

$$= |\cos(z)|^{2}$$

$$\implies |\sinh(y)| \leq |\cos(z)| \quad \text{the first of the two inequalities we need to show}$$

Likewise, if we use the fact that $\sinh^2(y) = \cosh^2(y) - 1$, then we get from the second equality that $|\cos(z)|^2 = \cos^2(x) + \cosh^2(y) - 1$. Furthermore, using the same analysis on $\cos(x)$ as above, we can determine that $\cos^2(x) \le 1$ for all $x \in \mathbb{R}$. Thus, putting this together, we get:

$$|\cos(z)|^2 = \cos^2(x) + \cosh^2(y) - 1$$

$$\leq 1 + \cosh^2(y) - 1$$

$$= \cosh^2(y)$$

$$\implies |\cos(z)| \leq \cosh(y) \quad \text{the second of the two inequalities we need to show}$$

Thus, we have now shown that $|\sinh(y)| \le |\cos(z)| \le \cosh(y)$, exactly as desired.