A primer in statistics – Expectation, covariance and the Gaussian distribution

Sensor fusion & nonlinear filtering

Lars Hammarstrand

EXPECTED VALUE AND COVARIANCE

 Probability distributions are often characterized by their mean vectors and covariance matrices.

Expected value (mean vector)

• The expected value (mean) of a random vector $\mathbf{x} = [x_1, x_2, \dots, x_m]^T$ is

$$\mathbb{E}\left\{\mathbf{x}\right\} = \int \mathbf{x} \, p(\mathbf{x}) \, d\mathbf{x}$$

where $\int d\mathbf{x}$ is shorthand for $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} dx_1 \dots dx_m$.

Covariance matrix

 For discrete-valued random variables the above integrals are replaced by the corresponding summations.

GUESS THAT COVARIANCE

Example: Guess that covariance

• Suppose we have independent samples from a zero-mean random vector $\mathbf{x} = [x_1, x_2]^T$. What is the covariance matrix of \mathbf{x} ?

LAW OF LARGE NUMBERS

 The law of large numbers states that sample averages converge to expected values.

Law of large numbers

• If $x_1, x_2, ...$ are independent and identically distributed random variables distributed according to p(x), then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n x_i=\mathbb{E}_{p(x)}\{x\}.$$

Example: Throwing a dice many times...

• ...the average face value converges to the expected value

$$\frac{1+2+3+4+5+6}{6}=3.5$$

GAUSSIAN DISTRIBUTIONS

 The most important distribution is the Gaussian distribution (at least in this course).

Gaussian distribution

- We write $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{Q})$ to denote that \mathbf{x} is a Gaussian random variable with mean $\boldsymbol{\mu}$ and covariance \mathbf{Q} .
- The pdf of **x** is

$$ho(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{Q}) = \frac{1}{\sqrt{\left|2\pi\mathbf{Q}\right|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T\mathbf{Q}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where | · | denotes the determinant.

GAUSSIAN DISTRIBUTIONS

Linear combination of indep. Gaussian random variables

- Let $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{\scriptscriptstyle{X}}, \mathbf{Q}_{\scriptscriptstyle{X}})$ and $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}_{\scriptscriptstyle{Y}}, \mathbf{Q}_{\scriptscriptstyle{Y}})$.
- Then a linear combination of x and y,

$$z = Ax + By$$

where **A** and **B** are deterministic matrices, is also Gaussian with mean

$$oldsymbol{\mu}_{\!\scriptscriptstyle Z} = \mathbb{E}\left\{ \mathsf{A}\mathsf{x} + \mathsf{B}\mathsf{y}
ight\} = \mathsf{A}oldsymbol{\mu}_{\!\scriptscriptstyle X} + \mathsf{B}oldsymbol{\mu}_{\!\scriptscriptstyle Y}$$

and covariance

$$\mathbf{Q}_{z} = \operatorname{Cov} \left\{ \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} \right\} = \operatorname{Cov} \left\{ \mathbf{A}\mathbf{x} \right\} + \operatorname{Cov} \left\{ \mathbf{B}\mathbf{y} \right\} + \underbrace{\operatorname{Cov} \left\{ \mathbf{A}\mathbf{x}, \mathbf{B}\mathbf{y} \right\}}_{=0} + \underbrace{\operatorname{Cov} \left\{ \mathbf{B}\mathbf{y}, \mathbf{A}\mathbf{x} \right\}}_{=0}$$

PROBABILITY THEORY - KEY RESULTS

Conditional distributions:
$$\begin{cases} p(x,z) = p(z|x)p(x) \\ p(z|x) = \frac{p(x,z)}{2} \end{cases}$$

Law of total probability:
$$\begin{cases} p(z) = \int_{x} p(x, z) dx \\ p(z) = \int_{x} p(z|x)p(x) dx \end{cases}$$

1st and 2nd moments:
$$\begin{cases} \mathbb{E}\left\{\mathbf{x}\right\} = \int \mathbf{x} \, p(\mathbf{x}) \, d\mathbf{x} \\ \operatorname{Cov}\left\{\mathbf{x}\right\} = \mathbb{E}\left\{\left[\mathbf{x} - \mathbb{E}\left\{\mathbf{x}\right\}\right]\left[\mathbf{x} - \mathbb{E}\left\{\mathbf{x}\right\}\right]^{T}\right\} \end{cases}$$

Gaussian pdf:
$$\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \mathbf{Q}) = \frac{1}{\sqrt{|2\pi\mathbf{Q}|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T\mathbf{Q}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$