Building a Decision Tree (Example)

Dataset

		9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

The dataset features the weather conditions for the past two weeks and whether or not John played tennis.

Task: Predict if John will play tennis given that:

New data: D15 Rain High Weak ?

by building a decision tree.

Recall: ID3 Algorithm

Suppose feature A is the **best attribute** to split on.

- Split entire training set on attribute A
- For each subset/ child node:
 - If subset is pure: stop
 - Else: split subset

Recall: Entropy

$$E(S) = -p_{yes}\log_2 p_{yes} - p_{no}\log_2 p_{no}$$

S – subset of training examples

 p_{ves} – proportion of positive (yes) examples

 p_{no} – proportion of negative (no) examples

Recall: Information Gain

Information Gain – expected reduction in entropy after a split on an attribute

$$Gain(S,A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} E(S_v)$$

A – Attribute

Values(A) – possible values of A

S – subset of training examples

 S_v – subset of S for which attribute A have value v

1. Calculate the entropy of the entire training set

S: (9 Yes / 5 No)

$$E(S) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14}$$
$$= 0.940$$

Training	g examples:	9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

Step 1:

Calculate the Information Gain of each feature (Outlook, Humidity, Wind) for the entire dataset

Humidity

Values(Humidity) = {High, Normal}

$$S_{High}$$
: (3 Yes / 4 No)
 $|S_{High}| = 7$
 $E(S_{High}) = -\frac{3}{7} \log \frac{3}{7} - \frac{4}{7} \log \frac{4}{7}$
 $= 0.985$

$$S_{Normal}$$
: (6 Yes / 1 No)
 $|S_{Normal}| = 7$
 $E(S_{Normal}) = -\frac{6}{7} \log \frac{6}{7} - \frac{1}{7} \log \frac{1}{7}$
 $= 0.592$

Humidity

Values(Humidity) = {High, Normal}

$$S_{High}$$
: (3 Yes / 4 No)
 $|S_{High}| = 7$
 $E(S_{High}) = -\frac{3}{7} \log \frac{3}{7} - \frac{4}{7} \log \frac{4}{7}$
 $= 0.985$

$$S_{Normal}$$
: (6 Yes / 1 No)
 $|S_{Normal}| = 7$
 $E(S_{Normal}) = -\frac{6}{7} \log \frac{6}{7} - \frac{1}{7} \log \frac{1}{7}$
 $= 0.592$

$$Gain(S, Humidity) = E(S) - \frac{|S_{High}|}{|S|} E(S_{High}) - \frac{|S_{Normal}|}{|S|} E(S_{Normal})$$
$$= 0.940 - \frac{7}{14} 0.985 - \frac{7}{14} 0.592 = \boxed{\textbf{0.151}}$$

Wind

Values(Wind) = {Weak, Strong}

$$S_{Weak}$$
: (6 Yes / 2 No)
 $|S_{Weak}| = 8$
 $E(S_{Weak}) = -\frac{6}{8} \log \frac{6}{8} - \frac{2}{8} \log \frac{2}{8}$
 $= 0.811$

$$S_{Strong}$$
: (3 Yes / 3 No)
 $|S_{Strong}| = 6$
 $E(S_{Strong}) = -\frac{3}{6}\log\frac{3}{6} - \frac{3}{6}\log\frac{3}{6}$
 $= 1.00$

Wind

Values(Wind) = {Weak, Strong}

$$S_{Weak}$$
: (6 Yes / 2 No)
 $|S_{Weak}| = 8$
 $E(S_{Weak}) = -\frac{6}{8} \log \frac{6}{8} - \frac{2}{8} \log \frac{2}{8}$
 $= 0.811$

$$S_{Strong}$$
: (3 Yes / 3 No)
 $|S_{Strong}| = 6$
 $E(S_{Strong}) = -\frac{3}{6}\log\frac{3}{6} - \frac{3}{6}\log\frac{3}{6}$
 $= 1.00$

$$Gain(S, Humidity) = E(S) - \frac{|S_{Weak}|}{|S|} E(S_{Weak}) - \frac{|S_{Strong}|}{|S|} E(S_{Strong})$$
$$= 0.940 - \frac{8}{14} 0.811 - \frac{6}{14} 1.00 = \boxed{\textbf{0.048}}$$

Outlook

Values(Outlook) = {Sunny, Overcast, Rain}

$$S_{Overcast}$$
: (4 Yes / 0 No)
 $|S_{Overcast}| = 4$
 $E(S_{Overcast}) = -\frac{4}{4} \log \frac{4}{4} - \frac{0}{4} \log \frac{0}{4}$
 $= 0$

Outlook

Values(Outlook) = {Sunny, Overcast, Rain} $\begin{vmatrix}
S: (9 \text{ Yes } / 5 \text{ No}) \\
|S| = 14 \\
E(S) = 0.940
\end{vmatrix}$

$$Gain(S, Outlook)$$

$$= E(S) - \frac{|S_{Sunny}|}{|S|} E(S_{Sunny}) - \frac{|S_{Overcast}|}{|S|} E(S_{Overcast})$$

$$- \frac{|S_{Rain}|}{|S|} E(S_{Rain})$$

$$Gain(S, Outlook) = 0.940 - \frac{5}{14}(0.971) - \frac{4}{14}(0) - \frac{5}{14}(0.971)$$
$$= \boxed{\mathbf{0.246}}$$

- Gain(S, Humidity) = 0.151
- Gain(S, Wind) = 0.048
- Gain(S, Outlook) = 0.246

Outlook has the great Information Gain!

We therefore split the dataset, according to Outlook, into three subsets:

- S_{Sunny} : (2 Yes / 3 No)
- $S_{overcast}$: (4 Yes / 0 No) \rightarrow Pure Subset!
- S_{Rain} : (3 Yes / 2 No)

Since $S_{Overcast}$ is pure, no need to split further. S_{Sunny} and S_{Rain} are not pure and requires further splitting.

Step 2:

Calculate the Information Gain of each of the remaining features (Humidity, Wind) for S_{Sunny} and S_{Rain} .

Let's start with S_{Sunny} .

Recall that:

$$S_{Sunny}$$
: (2 Yes / 3 No)
 $|S_{Sunny}| = 5$
 $E(S_{Sunny}) = 0.971$

```
Day Outlook Humid
                   Wind
   Sunny
           High
                  Weak
D2
   Sunny
           High
                  Strong
                 Weak
          High
D8
  Sunny
           Normal
                  Weak
D9 Sunny
D11 Sunny
           Normal
                  Strong
     2 yes / 3 no
```

Let's start with S_{Sunny} .

Wind S_{Sunny} : (2 Yes / 3 No) $|S_{Sunny}| = 5$ Values(Wind) = {Weak, Strong} $E(S_{Sunnv}) = 0.971$ Wind Weak Strong S_{Strong} : (1 Yes / 1 No) S_{Weak} : (1 Yes / 2 No) $|S_{Strong}| = 2$ $|S_{Weak}| = 3$ $E(S_{Weak}) = 0.918$ $E(S_{Strong}) = 1.00$

$$Gain(S_{Sunny}, Humidity) = E(S_{Sunny}) - \frac{|S_{Weak}|}{|S|} E(S_{Weak}) - \frac{|S_{Strong}|}{|S|} E(S_{Strong})$$
$$= 0.971 - \frac{3}{5}0.918 - \frac{2}{5}1.00 = \boxed{\textbf{0.020}}$$

Let's start with S_{Sunny} .

Humidity

Values(Humidity) = {High, Normal}

$$S_{Sunny}$$
: (2 Yes / 3 No)
 $|S_{Sunny}| = 5$
 $E(S_{Sunny}) = 0.971$

$$S_{High}$$
: (0 Yes / 3 No)
 $\left|S_{High}\right| = 3$
 $E\left(S_{High}\right) = 0$

$$S_{Normal}$$
: (2 Yes / 0 No)
 $|S_{Normal}| = 2$
 $E(S_{Normal}) = 0$

$$Gain(S_{Sunny}, Humidity) = E(S_{Sunny}) - \frac{|S_{High}|}{|S|} E(S_{High}) - \frac{|S_{Normal}|}{|S|} E(S_{Normal})$$
$$= 0.971 - \frac{3}{5}(0) - \frac{2}{5}(0) = \boxed{\textbf{0.971}}$$

- $Gain(S_{Sunny}, Wind) = 0.020$
- Gain(S_{Sunny} , Humidity) = 0.971

Humidity has the greater Information Gain! We therefore split S_{Sunny} into 2 subsets:

- S_{High} : (0 Yes / 3 No) \rightarrow Pure Subset!
- S_{Normal} : (2 Yes / 0 No) \rightarrow Pure Subset!

 S_{High} and S_{Normal} are both pure; no need to split further.

Going now to S_{Rain} .

Recall that:

$$S_{Rain}$$
: (3 Yes / 2 No)
 $|S_{Rain}| = 5$
 $E(S_{Rain}) = 0.971$

Day	Outlook	Humid	Wind		
D4	Rain	High	Weak		
D5	Rain	Normal	Weak		
D6	Rain	Normal	Strong		
D10	Rain	Normal	Weak		
D14	Rain	High	Strong		
3 yes / 2 no					

Going now to S_{Rain} .

Humidity

Values(Humidity) = {High, Normal}

$$S_{Rain}$$
: (3 Yes / 2 No)
 $|S_{Rain}| = 5$
 $E(S_{Rain}) = 0.971$

$$S_{High}$$
: (1 Yes / 1 No)
 $\left|S_{High}\right| = 2$
 $E\left(S_{High}\right) = 1$

$$S_{Normal}$$
: (2 Yes / 1 No)
 $|S_{Normal}| = 3$
 $E(S_{Normal}) = 0.918$

$$Gain(S_{Rain}, Humidity) = E(S_{Rain}) - \frac{|S_{High}|}{|S|} E(S_{High}) - \frac{|S_{Normal}|}{|S|} E(S_{Normal})$$
$$= 0.971 - \frac{2}{5}(1) - \frac{3}{5}(0.918) = \boxed{\textbf{0.020}}$$

Going now to S_{Rain} .

Wind

Values(Wind) = {Weak, Strong}

 S_{Rain} : (3 Yes / 2 No) $|S_{Rain}| = 5$ $E(S_{Rain}) = 0.971$

$$S_{Weak}$$
: (3 Yes / 0 No)
 $|S_{Weak}| = 3$
 $E(S_{Weak}) = 0$

$$S_{Strong}$$
: (0 Yes / 2 No)
 $\left|S_{Strong}\right| = 3$
 $E\left(S_{Strong}\right) = 0$

$$Gain(S_{Rain}, Humidity) = E(S_{Rain}) - \frac{|S_{Weak}|}{|S|} E(S_{Weak}) - \frac{|S_{Strong}|}{|S|} E(S_{Strong})$$
$$= 0.971 - \frac{3}{5}(0) - \frac{2}{5}(0) = \boxed{\textbf{0.971}}$$

- Gain(S_{Rain} , Humidity) = 0.020
- $Gain(S_{Rain}, Wind) = 0.971$

Wind has the greater Information Gain! We therefore split S_{Rain} into 2 subsets:

- S_{Weak} : (3 Yes / 0 No) \rightarrow Pure Subset!
- S_{Strong} : (0 Yes / 2 No) \rightarrow Pure Subset!

 S_{Weak} and S_{Strong} are both pure; no need to split further.

Final Decision Tree

