W. H. K. Bester

Scientific Computing 372 LATEX §2: Setting mathematics

Last updated: 19 February 2019

Admin

Schedule

- Introduction and setting text
- 2 Setting mathematics
- Standard environments
- Tables and figures
- 5 Boxes and new environments
- 6 AMS-LATEX
- Beamer and PGF

Mathematics in display style

There are three equivalent ways to **display** mathematics, i.e., to put it on a line of its own.

- 1 Type the math between \$\$ characters.
- Type it between the \[and \] commands. (preferred)
- Place it in the displaymath environment, i.e., between \begin{displaymath} and \end{displaymath}

Example

Sometimes we want to display an equation, such as \[x + y = z,\] on a line of its own.

Sometimes we want to display an equation, such as

$$x + y = z$$

on a line of its own.

Mathematics in text style

There are three equivalent ways of writing mathematics in normal running text:

- Type the math between \$ characters. (preferred)
- Type it between the \(and \) commands.
- Place it in the math environment, i.e., between \begin{math} and \end{math} commands.

Example

Sometimes we want to put an equation, such as \$x + y = z\$, in the normal running text.

Sometimes we want to put an equation, such as x + y = z, in the normal running text.

The standard mathematics font

The standard font in the mathematics environment is **math italics**, which is treated differently from the usual italics you get with the $\ensuremath{\mathtt{emph}}\{\langle \mathtt{text} \rangle\}$ command.

Example

Compare \$different\$ to \emph{different}. Also note what happens to \$two words\$ as opposed to \emph{two words}.

Compare different to different. Also note what happens to twowords as opposed to two words.

Math formatting commands

The appearance of math text can also be changed. Be careful, however: Some commands only affect letters, and not symbols. Note also that the \boldmath and \unboldmath switches must appear in text mode, not in math mode.

Example

Compare \boldmath Compare \[a + \pi x - \rho \] \unboldmath to
$$a + \pi x - \rho$$
\[a + \mathbf{\pi x} - \rho \] to
$$a + \pi x - \rho.$$

Subscripts, superscripts, and primes

Make subscripts with _, superscripts with ^, and primes with '.

Example (subscripts, superscripts, and primes)

Example (roots)

Note the optional argument.

$$\sqrt{xy+z} \neq \sqrt[n]{\frac{x}{y}+z} \neq \sqrt[3]{x+yz}$$

Fractions

For fractions, use the command $\frac{\langle num \rangle}{\langle denom \rangle}$, where $\frac{\langle num \rangle}{\langle denom \rangle}$ are the numerator and denominator, respectively.

Example (fractions)

The fraction \$\frac{\frac{x}{y} + z}{w}\$ is in text style. The same fraction \[\frac{\frac{x}{y} + z}{w}, \] looks different in display style.

The fraction $\frac{\frac{x}{y}+z}{w}$ is in text style. The same fraction

$$\frac{\frac{x}{y}+z}{w}$$
,

looks different in display style.

Example (dots)

\$a \ldots z\$ $a \dots z$ \$a \cdots z\$ $a \cdots z$ \$\vdots\$ \vdots \$\ddots\$

Example (calligraphy)

 $\Lambda B C D$

Example (negation)

We may strike through any mathematics symbol by prefacing it with \not.

\$5 \not\leq 2\\$. $5 \not\leq 2$.

Greek letters and other symbols

Refer to the tables in Chapter 3 of *The Not So Short Introduction Introduction to* $ET_{EX}2_{\epsilon}$.

Example (Greek letters)

\TeX\ is pronounced TeX is pronounced $\tau \epsilon \chi$. \$\tau \epsilon \chi\$.

Example (predefined math functions)

Compare $log(10^{\circ})$ to $log(10^{\circ})$

\$log(10^{\circ})\$ to \$\log(10^{\circ})\$

Example (symbols with subscripts and superscripts)

$$\label{eq:continuity} $$ \left(\sum_{k=1}^{10} x^{k} \right) \\ \not = \int_{a}^{10} x^{k} dx \\ \not = \int_{a}^{b} x^{2} dx \\ \no$$

Example (parenthetic symbols)

These are stretched with \left and \right. Therefore, they must occur in pairs.

Simplify:
$$\left\{ \begin{array}{l} \text{Simplify: } \left(\frac{\frac{b}{d}+c}{d+e} \right) \\ \text{Simplify: } \left(\frac{b}{d+e} \right) \\ \text{$$

Example (donning a hat)

$$\hat{x - y} = z$$

Example (lines and braces)

Example (stacking symbols)

$$\widehat{x-y}=z$$

$$\underbrace{\overline{x} + \underline{y}}_{abc} = \underbrace{z + w + \underline{y}}_{def}$$

$$a \xrightarrow{f'} a$$

Spacing between symbols

```
\, thin space \: medium space
\! negative thin space \; thick space
```

Example (spaces)

Example (Math styles)

Note the difference between text style, \$\sum^{10}_{k=1}x^{k}\$, and display style, \${\displaystyle \sum^{10}_{k=1}x^{k}}\$. Note the difference between text style, $\sum_{k=1}^{10} x^k$, and display style, $\sum_{k=1}^{10} x^k$.

Last thoughts

- This is not the last word on mathematics in 上下
- AMS-TEX was used by the American Mathematical Society
- AMS-MEX runs on top of MEX
- It incorporates many of the ideas developed for the AMS
 - More symbols
 - Advanced, easily adjustable environments
 - Enhanced support for user-defined operators
- Scientific journals frequently use these features
- We will look at the A_MS -LATEX packages in Section 6