Definition 1. Let \mathfrak{a} be an ideal in R. The variety $V(\mathfrak{a})$ of \mathfrak{a} is the subset of $\operatorname{Spec}(R)$ consisting of all prime ideals that contain \mathfrak{a} , i.e.

$$V(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{a} \subset \mathfrak{p} \}.$$

Definition 2. Given an $f \in R$, we define the distinguished or basic set

$$D(f) := \operatorname{Spec}(R) \setminus V(f)$$

Theorem 3. For $f, g \in R$, we have:

- 1. $D(f) \cap D(g) = D(f \cdot g)$.
- 2. $D(f) = \emptyset \iff f \text{ is nilpotent.}$
- 3. $D(f) = \operatorname{Spec}(A) \iff f \in A^{\times}$

1. Let $\mathfrak{p} \in D(f) \cap D(g)$. Proof.

2. We have

$$\mathfrak{p} \in D(f) \cap D(g) \iff \mathfrak{p} \in (\operatorname{Spec}(R) \setminus V(f)) \cap (\operatorname{Spec}(R) \setminus V(g))$$

$$\iff \mathfrak{p} \in \operatorname{Spec}(R) \setminus V(f) \text{ and } \mathfrak{p} \in \operatorname{Spec}(R) \setminus V(g)$$

$$\iff \mathfrak{p} \not\in V(f) \text{ and } \mathfrak{p} \not\in V(g)$$

$$\iff \mathfrak{p} \not\in \{\mathfrak{p} \in \operatorname{Spec}(R) \mid (f) \subset \mathfrak{p}\} \text{ and } \mathfrak{p} \not\in \{\mathfrak{p} \in \operatorname{Spec}(R) \mid (g) \subset \mathfrak{p}\}$$

$$\iff (f) \not\subset \mathfrak{p} \text{ and } (g) \not\subset \mathfrak{p}$$

$$\iff (f)(g) \not\subset \mathfrak{p}$$

2.

$$\begin{split} D(f) &= \emptyset \iff \operatorname{Spec}(R) \setminus V(f) = \emptyset \\ &\iff \operatorname{Spec}(R) = V(f) \\ &\iff \operatorname{All \ prime \ ideals} \mathfrak{p} \ \operatorname{contain} \ (f). \\ &\iff (f) \subset \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p} = \operatorname{Nil}(R) \end{split}$$

Theorem 4. The set $\{\mathfrak{p}\}$ is closed in $\operatorname{Spec}(R)$ if and only if \mathfrak{p} is a maximal ideal.

1. Let $\{\mathfrak{p}\}$ be a closed subset in $\operatorname{Spec}(R)$. Proof.

- 2. By definition, $\{\mathfrak{p}\}=V(\mathfrak{a})$ for some ideal \mathfrak{a} in R.
- 3. If \mathfrak{p} is not maximal, it is contained in a maximal ideal \mathfrak{m} .
- 4. Thus $V(\mathfrak{a}) \supset \{\mathfrak{p}, \mathfrak{m}\}\$
- 1. trivial

Theorem 5. The closure of $\{\mathfrak{p}\}$ is $V(\mathfrak{p})$.

Proof. $\overline{\{\mathfrak{p}\}} \subset V(\mathfrak{p})$

1. trivial since $\mathfrak{p} \subset V(\mathfrak{p})$

 $V(\mathfrak{p}) \subset \overline{\{\mathfrak{p}\}}$

- 1. Let $\mathfrak{p}' \in V(\mathfrak{p}) = \{ \mathfrak{p}' \in \operatorname{Spec}(R) \mid \mathfrak{p} \subset \mathfrak{p}' \}.$
- 2. So $\mathfrak{p} \subset \mathfrak{p}'$.
- 3. I think the idea is simply $\overline{\{\mathfrak{p}\}} = V(\mathfrak{a})$

Is Spec(R) a Kolmogorov-space? Let $\mathfrak{p}_1, \mathfrak{p}_2 \in \operatorname{Spec}(R)$ with $\mathfrak{p}_1 \neq \mathfrak{p}_2$.

Theorem 6. X is irreducible if and only if every pair of non-empty open sets in X has a non-empty intersection. 1. Let X be irreducible, so for any closed subsets X_1 and X_2 with $X = X_1 \cup X_2$ implies $X = X_1$ or

- 2. Let A and B be two non-empty open subsets. 3. Then $X \setminus A$ and $X \setminus B$ is closed.
- 4. We have $(X \setminus A) \cup (X \setminus B) = X \setminus (A \cap B)$
- 5. Assume $A \cap B = \emptyset$.
- 6. contradiction.
- 1. Every pair of non-empty open sets in X has a non-empty intersection. 2. Assume X is reducible, i.e. $X = X_1 \cup X_2$
- 3. $X \setminus X_1$ and $X \setminus X_2$ are open.
- 4. $(X \setminus X_1) \cap (X \setminus X_2) = X \setminus (X_1 \cup X_2) = \emptyset$
- 5. contradiction

Theorem 7. X is irreducible if and only if every non-empty open subset of X is dense in X. 1. Let X be irreducible.

2. Fix an open subset A.

- 3. $X \setminus A$ is closed.
- 4. cl(A) is closed.
- 5. $X = (X \setminus A) \cup \operatorname{cl}(A)$, so $X = \operatorname{cl}(A)$.

Theorem 8. Spec(R) is irreducible if and only if the nilradical of A is a prime ideal.

1. Let Spec(R) be irreducible. Proof.

- 2. Consider $\bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}$ 3. $\bigcap_{\mathfrak{p}\in\mathrm{Spec}(R)}\mathfrak{p}=\bigcap_{\mathfrak{m}}V(\mathfrak{m})$
- 4. $X \setminus \bigcap_{\mathfrak{m}} V(\mathfrak{m}) = \bigcup_{\mathfrak{m}} (X \setminus V(\mathfrak{m}))$
- 5. $V(\mathfrak{m}) = \emptyset$