

ROTATE SCALE ROTATE DECOMPOSITION

Why

Every matrix $A \in \mathbb{R}^{m \times n}$ maps the unit ball in \mathbb{R}^n to an ellipsoid in \mathbb{R}^m .

Definition

A rotate scale rotate decomposition (or rotate scale rotate factorization) of a matrix $A \in \mathbb{R}^{m \times n}$ is an ordered triple (U, S, V) where U and V are orthogonal and S is diagonal decreasing $(S_{11} \geq S_{22} \geq \cdots \geq S_{pp})$, where $p = \min\{m, n\}$ satisfying

$$A = USV^{\top}$$
.

Other (universal) terminology includes the singular value decomposition or SVD of A. We call diagonal elements of S the singular values of A. We call the column vectors of U the left singular vectors or output singular vectors. We call the column vectors of V the right singular vectors or input singular vectors. We refer to them collectively as the singular vectors.

$$Av_i = \sigma_i u_i$$
.

