CURRICULUM VITAE

Dobrotvorska Mariya

Affiliation and official address:

Senior Scientist Researcher of Department of Crystalline Materials of Complex Compounds, Institute for Single Crystals of NAS of Ukraine, 61072 Ukraine, Kharkiv, 60 Nauky Ave.

E-mail: mdobro@isc.kharkov.ua, mvdobrotvorska@gmail.com

Education:

1980 – M. Sc. Urals State University, Sverdlovsk, USSR (Physics)

1990 – Ph. D. Institute for Single Crystals, Kharkov, USSR (Solid-State Physics)

2006 Diploma of Senior Researcher (Solid-State Physics), Institute for Single

Crystals NASU, Kharkiv

Career/Employment:

1980-1982	Junior Researcher	Institute of Metals Physics of Urals Department of
		USSR Academy of Sciences, Sverdlovsk, USSR
1983-1993	Scientific Researcher	Physics-Technical Department of Kharkov State
		University, Kharkov, Ukraine
1002 till now	Sonior Posoarchor	Institute for Single Crystale NASII Kharkiy Ilkraine

1993 till now Senior Researcher Institute for Single Crystals NASU, Kharkiv, Ukraine

Main field of activity and current research interest:

Investigations of Surface Composition and Electron Structure of Functional Materials with X-ray Photoelectron Spectroscopy; Optical Ceramics, Nanotechnologies.

Honors, Awards, Fellowships, Membership of Professional Societies:

IWISE (International Women in Science and Engineering) fellow.

Publications and patents:

97 Original Articles, 1 Patent; Scopus h-index: 9

https://www.researchgate.net/profile/Mariya-Dobrotvorskaya/scores https://www.scopus.com/authid/detail.uri?authorld=57212091837

Selected recent publications:

- O.O. Matvienko, Yu.N. Savin, O.S. Kryzhanovska, O.M. Vovk, M.V. Dobrotvorska, N.V. Pogorelova, V.V. Vashchenko. Dispersion and aggregation of quantum dotes in polymerinorganic hybrid films // Thin Solid Films 531 (2013) 226-230. 2019IF: 2.030. https://doi.org/10.1016/j.tsf.2013.03.046. Q2.
- E.I. Rogacheva, A.V. Budnik, M.V. Dobrotvorskaya, A.G. Fedorov, S.I. Krivonogov, P.V. Mateychenko, O.N. Nashchekina, A.Yu. Sipatov. Growth and structure of thermally evaporated Bi₂Te₃ thin films // Thin Solid Films 612 (2016) 128-134. 2019IF: 2.030 https://doi.org/10.1016/j.tsf.2016.05.046. Q2.
- 3. R.P. Yavetskiy, M.V. Dobrotvorskaya, A.G. Doroshenko, A.V. Tolmachev, I.A. Petrusha, V.Z. Turkevich, R. Tomala, D. Hreniak, W. Strek, V.N. Baumer, Fabrication and luminescent properties of (Y_{0.99}Eu_{0.01})₂O₃ transparent nanostructured ceramics // Optical Materials 78 (2018) 285-291. **2019IF: 2.776**. https://doi.org/10.1016/j.optmat.2018.02.034. **Q2**.

- I.O. Vorona, R.P. Yavetskiy, M.V. Dobrotvorskaya, A.G. Doroshenko, S.V. Parkhomenko, A.V. Tolmachev, D.Yu. Kosyanov, L. Gheorghe, C. Gheorghe, S. Hau, M. Enculescu. 1532 nm sensitized luminescence and up-conversion in Yb,Er:YAG transparent ceramics // Optical Materials 77C (2018) 221-225. 2019IF: 2.776. https://doi.org/10.1016/j.optmat.2018.01.038. Q2.
- N.A. Safronova, O.S. Kryzhanovska, M.V. Dobrotvorska, A.E. Balabanov, A.V. Tolmachev, R.P. Yavetskiy, S.V. Parkhomenko, R. Brodskii, V.N. Baumer, D.Yu. Kosyanov, O.O. Shichalin, E.K. Papynov, Jiang Li, Influence of sintering temperature on structural and optical properties of Y₂O₃–MgO composite SPS ceramics, Ceramics International, 46 (2020) 6537–6543.
 2019IF: 3.830. https://doi.org/10.1016/j.ceramint.2019.11.137, Q1.
- N.A. Safronova, R.P. Yavetskiy, O.S. Kryzhanovska, S.V. Parkhomenko, A.G. Doroshenko, M.V. Dobrotvorska, A.V. Tolmachev, R. Boulesteix, A. Maître, T. Zorenko, Yu. Zorenko, Fabrication and VUV luminescence of Lu₂O₃:Eu³⁺ (5 at.%) nanopowders and transparent ceramics, Optical Materials 101 (2020) 109730. 2019IF: 2.776. https://doi.org/10.1016/j.optmat.2020.109730. Q2.
- 7. I.O. Vorona, A.E. Balabanov, M.V. Dobrotvorska, R.P. Yavetskiy, O.S. Kryzhanovska, L.Y. Kravchenko, S.V. Parkhomenko, P.V. Mateychenko, V.N. Baumer, I. Matolínová. Effect of MgO doping on the structure and optical properties of YAG transparent ceramics // Journal of the European Ceramic Society, 40 (2020)861-866. 2019IF: 4.495. pp. https://doi.org/10.1016/j.jeurceramsoc.2019.10.048. Q1.
- N.A. Safronova, R.P. Yavetskiy, O.S. Kryzhanovska, M.V. Dobrotvorska, A.E. Balabanov, I.O. Vorona, A.V. Tolmachev, V.N. Baumer, I. Matolínova, D.Yu. Kosyanov, O.O. Shichalin, E.K. Papynov, S. Hau, C. Gheorghe, A novel IR-transparent Ho³⁺:Y₂O₃–MgO nanocomposite ceramics for potential laser applications, Ceramics International 47 (2021) 1399–1406. 2019IF: 3.830. https://doi.org/10.1016/j.ceramint.2020.08.263, Q1.
- D.Yu. Kosyanov, A.A. Vornovskikh, A.M. Zakharenko, E.A. Gridasova, R.P. Yavetskiy, M.V. Dobrotvorskaya, A.V. Tolmachev, O.O. Shichalin, E.K. Papynov, A.Yu. Ustinov, V.G. Kuryavy, A.A. Leonov, S.A. Tikhonov. Influence of sintering parameters on transparency of reactive SPSed Nd³⁺:YAG ceramics // Optical Materials 112 (2021) 110760. 2019IF: 2.776. https://doi.org/10.1016/j.optmat.2020.110760. Q2.