Analyse dans \mathbb{R}^n - Licence 2

Aldric Labarthe - Université Paris 1

Les exercices proposés ici sont ceux de l'année 2024-2025. Chaque séance est prévue sur deux heures et demie. Les exercices marqués par \star sont considérés par l'équipe pédagogique comme incontournables. A l'inverse, ceux indiqués comme $\mathbb C$ sont des exercices présents dans l'ancienne brochure et qui ont été retirés du programme cette année. Ceux-ci sont en général plus théoriques et complexes. Les énoncés sont écrits par Prof. Gisella Groce et les corrections et les rappels de cours sont le travail d'Aldric Labarthe.

TD2 - Topologie (\pm 2 séances)

Exercice 2.1 \mathbb{C} Dessiner l'ensemble $\{(x,y) \in \mathbb{R}^2 : ||(x,y)||_{\infty} \leq r\}$

Correction 2.1 On propose de représenter les normes L1, L2, L4, L ∞ :

** Exercice 2.2 C — Démontrer le théorème de Bolzano-Weierstrass en dimension 2.

Correction 2.2 On propose une preuve en dimension N. On note $\{x_n\} = \{(x_n^1, \dots, x_n^N)\}$. Tout d'abord, il

faut observer que si $\{x_n\}$ est bornée, alors $\{x_n^i\}$ l'est aussi pour tout i. Supposons qu'elle soit majorée par $M \in \mathbb{R}^N$:

$$||x_n|| = \sqrt{\sum_{i=0}^{N} (x_n)^2} \leqslant M \Rightarrow \forall i, |x_n^i| \leqslant M$$

Pour construire la sous-suite, on utilise une méthode itérative. Commençons avec la première composante x^1 . Par Bolzano-Weierstrass dans \mathbb{R} , il existe une sous-suite réelle $\{x_{n_k}^1\}$ qui converge vers une limite l_1 .

Ensuite, considérons la deuxième composante x^2 . La sous-suite $\{x_{n_k}\}$ (déjà extraite) est toujours une suite bornée. Par Bolzano-Weierstrass, on peut en extraire une sous-sous-suite $\{x_{n_{k_2}}^1\}$ qui converge vers une limite l_0

On répète ce processus pour chaque composante x^i , en extrayant successivement des sous-sous-suites convergentes. À la fin, on obtient une sous-suite $\{x_{n_{\max\{k_1,\dots,k_N\}}}\}$ telle que toutes les composantes convergent.

** Exercice 2.3 \mathbb{C} — Montrer l'inégalité de Young : pour p > 1 on pose $p' = \frac{p}{p-1}$. Pour tout

a, b positifs, on a:

$$ab \leqslant \frac{a^p}{p} + \frac{b^{p'}}{p'}$$

En déduire l'inégalité de Hölder :

$$|x \cdot y| \leqslant ||x||_p ||y||_{p'}$$

et celle de Minkowski :

$$||x+y||_p \le ||x||_p + ||y||_p$$

Correction 2.3

Démonstration de l'inégalité de Young : Si a et b sont nuls, l'inégalité est évidente, on suppose donc ci-après a>0,b>0. On applique le logarithme à gauche de l'expression et conclut par la concavité de \ln ·

$$\ln\left(ab\right) = \frac{\ln\left(a^p\right)}{p} + \frac{\ln\left(b^{p'}\right)}{p'} \leqslant \ln\left(\frac{a^p}{p} + \frac{b^{p'}}{p'}\right) \Rightarrow ab \leqslant \frac{a^p}{p} + \frac{b^{p'}}{p'}$$

Une autre preuve de l'inégalité de Young moins évidente... Soient a,b>0 et p>1. On pose $p'=\frac{p}{p-1}$ de sorte que $\frac{1}{p}+\frac{1}{p'}=1$. Nous souhaitons démontrer que

$$ab \leqslant \frac{a^p}{p} + \frac{b^{p'}}{p'}.$$

Pour cela, considérons la fonction auxiliaire $\phi(t) = t^{p-1} - (p-1)t + (p-1)$ pour t > 0. On montre que $\phi(t) \ge 0$ pour tout t > 0:

- $--\phi(1) = 1^{p-1} (p-1) \cdot 1 + (p-1) = 0.$
- $-\phi'(t)=(p-1)t^{p-2}-(p-1)$. En posant $\phi'(t)=0$, on trouve t=1 comme unique solution.
- Pour t > 0, on a $\phi'(t) > 0$ pour t > 1 et $\phi'(t) < 0$ pour t < 1, donc $\phi(t) \ge 0$ pour tout t > 0.

En utilisant cette propriété, on applique l'inégalité de convexité pour $t=\frac{b}{a^{p-1}},$ ce qui donne :

$$\frac{b}{a^{p-1}}\leqslant \frac{\left(\frac{b}{a^{p-1}}\right)^p}{p}+\frac{a^{p-1}}{p'}.$$

En multipliant par a^{p-1} , cela donne :

$$ab \leqslant \frac{a^p}{p} + \frac{b^{p'}}{p'}.$$

Inégalité de Hölder : Considérons deux vecteurs $x=(x_1,\ldots,x_n)$ et $y=(y_1,\ldots,y_n)$ dans \mathbb{R}^n . Nous montrons que :

$$|x \cdot y| \leq ||x||_p ||y||_{p'},$$

où $\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ et $\|y\|_{p'} = \left(\sum_{i=1}^n |y_i|^{p'}\right)^{1/p'}$. Par l'inégalité de Young appliquée à chaque terme $|x_iy_i|$:

$$|x_i y_i| \leqslant \frac{|x_i|^p}{p} + \frac{|y_i|^{p'}}{p'}.$$

En sommant sur i de 1 à n, on obtient :

$$\sum_{i=1}^{n} |x_i y_i| \le \frac{1}{p} \sum_{i=1}^{n} |x_i|^p + \frac{1}{p'} \sum_{i=1}^{n} |y_i|^{p'}.$$

Puisque $\frac{1}{p}+\frac{1}{p'}=1,$ cette inégalité se réécrit comme :

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_{p'}.$$

Inégalité de Minkowski : Pour deux vecteurs $x=(x_1,\ldots,x_n)$ et $y=(y_1,\ldots,y_n)$ dans \mathbb{R}^n , nous montrons que :

$$||x + y||_p \le ||x||_p + ||y||_p.$$

En développant $||x + y||_p^p$, nous avons :

$$||x + y||_p^p = \sum_{i=1}^n |x_i + y_i|^p.$$

En utilisant l'inégalité triangulaire au sens large pour $|x_i + y_i|^p$, nous avons :

$$|x_i + y_i|^p \le (|x_i| + |y_i|)^p$$
.

En utilisant l'inégalité de convexité $(a+b)^p \le 2^{p-1}(a^p+b^p)$, nous avons :

$$|x_i + y_i|^p \leqslant |x_i|^p + |y_i|^p.$$

En sommant sur i, cela donne :

$$||x + y||_p^p \le ||x||_p^p + ||y||_p^p$$
.

En prenant la racine p-ième, on obtient :

$$||x + y||_p \le ||x||_p + ||y||_p.$$

* Exercice 2.4 C —

- 1. Montrer que $||x||_p = \left[\sum_{i=1}^n |x_i|^p\right]^{1/p}$ est une norme sur \mathbb{R}^n , pour p > 1.
- 2. Montrer que $||x||_{\infty} = \max\{|x_i|, i = 1...n\}$ est une norme sur \mathbb{R}^n .

Correction 2.4

- 1. Pour vérifier que $\left\| \cdot \right\|_p$ est une norme, il faut montrer qu'elle satisfait :
 - Positivité: $\|x\|_p \ge 0$ et $\|x\|_p = 0$ si et seulement si x = 0. Par définition, $|x_i|^p \ge 0$ pour tout i, donc $\sum_{i=1}^n |x_i|^p \ge 0$ et $\|x\|_p \ge 0$. Si $\|x\|_p = 0$, alors $\sum_{i=1}^n |x_i|^p = 0$, ce qui implique $|x_i| = 0$ pour tout i, donc x = 0. Réciproquement, si x = 0, alors $\|x\|_p = 0$.
 - Homogénéité : Pour tout $\alpha \in \mathbb{R}$ et $x \in \mathbb{R}^n$, $\|\alpha x\|_p = |\alpha| \|x\|_p$.

$$\|\alpha x\|_{p} = \left[\sum_{i=1}^{n} |\alpha x_{i}|^{p}\right]^{1/p} = \left[|\alpha|^{p} \sum_{i=1}^{n} |x_{i}|^{p}\right]^{1/p} = |\alpha| \left[\sum_{i=1}^{n} |x_{i}|^{p}\right]^{1/p} = |\alpha| \|x\|_{p}$$

— Inégalité triangulaire : Par l'inégalité de Minkowski, on a :

$$\left[\sum_{i=1}^{n}|x_{i}+y_{i}|^{p}\right]^{1/p} \leqslant \left[\sum_{i=1}^{n}|x_{i}|^{p}\right]^{1/p} + \left[\sum_{i=1}^{n}|y_{i}|^{p}\right]^{1/p} \Rightarrow \|x+y\|_{p} \leqslant \|x\|_{p} + \|y\|_{p}$$

- 2. Montrer que $||x||_{\infty} = \max\{|x_i|, i = 1, ..., n\}$ est une norme sur \mathbb{R}^n :
 - $Positivit\acute{e}: \|x\|_{\infty} = \max\{|x_i|\} \ge 0$, et $\|x\|_{\infty} = 0$ si et seulement si $|x_i| = 0$ pour tout i, c'est-à-dire x = 0.
 - $Homog\acute{e}n\acute{e}it\acute{e}: Pour tout \ \alpha \in \mathbb{R}, \text{ on a } \|\alpha x\|_{\infty} = \max\{|\alpha x_i|\} = |\alpha| \max\{|x_i|\} = |\alpha| \|x\|_{\infty}.$
 - Inégalité triangulaire : Pour tout i, on a $|x_i + y_i| \le |x_i| + |y_i|$. Ainsi, $\max\{|x_i + y_i|\} \le \max\{|x_i|\} + \max\{|y_i|\}$. Donc $||x + y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$.

TD3 - Domaine de définition, graphe, limites ($\pm 2 s\'{e}ances$)

Exercise 3.1 $\[\]$ Soit $f(x,y) = \frac{x^2}{x^2 + u^2}$. Montrer que $\lim_{x \to 0} [\lim_{y \to 0} f(x,y)] \neq \lim_{y \to 0} [\lim_{x \to 0} f(x,y)]$.

Correction 3.1

D'une part, on calcule $\lim_{y\to 0} f(x,y)$ pour $x\neq 0$ fixé :

$$\lim_{y \to 0} f(x, y) = \lim_{y \to 0} \frac{x^2}{x^2 + y^2} = \frac{x^2}{x^2} = 1$$

En utilisant le résultat précédent, on a $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y)\right] = 1$.

D'autre part on calcule $\lim_{x\to 0} f(x,y)$ pour $y\neq 0$ fixé :

$$\lim_{x \to 0} f(x, y) = \lim_{x \to 0} \frac{x^2}{x^2 + y^2} \frac{0}{0 + y^2} = 0$$

En utilisant le résultat précédent, on a $\lim_{y\to 0} [\lim_{x\to 0} f(x,y)] = 0$.

Ainsi, les deux limites sont différentes.

Exercice 3.2
$$\[\bigcirc \]$$
 Soit $f(x,y) = \begin{cases} y \sin \frac{1}{x} + x \sin \frac{1}{y} & x \neq 0 \land y \neq 0 \\ 0, & x = 0 \lor y = 0 \end{cases}$. Montrer que la limite de f

pour $(x,y) \to (0,0)$ existe, mais que les deux limites $\lim_{x\to 0} [\lim_{y\to 0} f(x,y)]$, $\lim_{y\to 0} [\lim_{x\to 0} f(x,y)]$ n'existent pas.

Correction 3.2 On commence par calculer $\lim_{(x,y)\to(0,0)} f(x,y)$ avec $x\neq 0, y\neq 0$. Puisque $\sin\frac{1}{x}$ et $\sin\frac{1}{y}$ sont bornées entre -1 et 1, on a :

$$|f(x,y)| \le |y| \cdot 1 + |x| \cdot 1 = |x| + |y| \Rightarrow \lim_{(x,y) \to (0,0)} |f(x,y)| \le \lim_{(x,y) \to (0,0)} (|x| + |y|) = 0$$

En vérifiant également que f(0,y)=0 et f(x,0)=0, il s'ensuit que : $\lim_{(x,y)\to(0,0)}f(x,y)=0$ ¹.

Etudions $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y)\right]$ en fixant $x\neq 0$: $f(x,y)=y\sin\frac{1}{x}+x\sin\frac{1}{y}$ Lorsque $y\to 0$, le terme $x\sin\frac{1}{y}$ oscille indéfiniment car $\sin\frac{1}{y}$ ne converge pas. Par conséquent, $\lim_{y\to 0} f(x,y)$ n'existe pas. On obtient la même chose pour le cas $\lim_{y\to 0} \left[\lim_{x\to 0} f(x,y)\right]$ ce qui permet de conclure.

Exercise 3.3 \mathbb{C} Soit $f(x,y) = \frac{xy}{x^2+y^2}$. Montrer que $\lim_{x\to 0} [\lim_{y\to 0} f(x,y)] = \lim_{y\to 0} [\lim_{x\to 0} f(x,y)]$.

Correction 3.3

D'une part, on calcule $\lim_{y\to 0} f(x,y)$ pour $x\neq 0$ fixé :

$$\lim_{y \to 0} f(x, y) = \lim_{y \to 0} \frac{xy}{x^2 + y^2} = 0$$

En utilisant le résultat précédent, on a $\lim_{x\to 0} [\lim_{y\to 0} f(x,y)] = \lim_{x\to 0} 0 = 0$.

D'autre part on calcule $\lim_{x\to 0} f(x,y)$ pour $y\neq 0$ fixé :

$$\lim_{x \to 0} f(x, y) = \lim_{x \to 0} \frac{xy}{x^2 + y^2} = 0$$

En utilisant le résultat précédent, on a $\lim_{y\to 0} [\lim_{x\to 0} f(x,y)] = \lim_{x\to 0} 0 = 0$.

Par conséquent : $\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y)\right] = \lim_{y\to 0} \left[\lim_{x\to 0} f(x,y)\right]$.

^{1.} On utilise ici : si f(x) est une fonction telle que $\lim_{x\to a} |f(x)| = 0$, alors $\lim_{x\to a} f(x) = 0$.