nkc2xtcz2

December 5, 2024

0.0.1 Hypothesis Test

```
[2]: x=rnorm(100)
     t.test(x,mu=5)
            One Sample t-test
    data: x
    t = -54.004, df = 99, p-value < 2.2e-16
    alternative hypothesis: true mean is not equal to 5
    95 percent confidence interval:
     -0.34924643 0.02990576
    sample estimates:
     mean of x
    -0.1596703
[3]: x1=rnorm(100)
     y1=rnorm(100)
     t.test(x1,y1)
            Welch Two Sample t-test
    data: x1 and y1
    t = -0.26366, df = 197.93, p-value = 0.7923
    alternative hypothesis: true difference in means is not equal to 0
    95 percent confidence interval:
     -0.2933917 0.2241911
    sample estimates:
     mean of x mean of y
    0.04516715 0.07976747
[4]: x2=rnorm(100)
     t.test(x2,mu=2,alternative = 'greater')
```

```
One Sample t-test
     data: x2
     t = -22.032, df = 99, p-value = 1
     alternative hypothesis: true mean is greater than 2
     95 percent confidence interval:
      -0.2368293
     sample estimates:
       mean of x
     -0.08006741
 [6]: x3=rnorm(100)
      wilcox.test(x3,exact=FALSE)
             Wilcoxon signed rank test with continuity correction
     data: x3
     V = 2875, p-value = 0.2295
     alternative hypothesis: true location is not equal to 0
 [8]: cor.test(mtcars$mpg,mtcars$hp)
             Pearson's product-moment correlation
     data: mtcars$mpg and mtcars$hp
     t = -6.7424, df = 30, p-value = 1.788e-07
     alternative hypothesis: true correlation is not equal to 0
     95 percent confidence interval:
      -0.8852686 -0.5860994
     sample estimates:
     -0.7761684
     0.0.2 K Means clustering
 [9]: library(cluster)
      library(ggplot2)
[10]: set.seed(20)
      irisCluster<-kmeans(iris[,3:4],3,nstart=20)</pre>
      irisCluster
```

K-means clustering with 3 clusters of sizes 52, 48, 50

```
Petal.Length Petal.Width
   1
      4.269231
              1.342308
   2
      5.595833
              2.037500
   3
      1.462000
              0.246000
   Clustering vector:
    [149] 2 2
   Within cluster sum of squares by cluster:
   [1] 13.05769 16.29167 2.02200
   (between_SS / total_SS = 94.3 %)
   Available components:
   [1] "cluster"
                                 "withinss"
                                          "tot.withinss"
               "centers"
                        "totss"
   [6] "betweenss"
               "size"
                        "iter"
                                 "ifault"
[11]: irisCluster$cluster<-as.factor(irisCluster$cluster)
   ggplot(iris,aes(Petal.Length,Petal.
    →Width,color=irisCluster$cluster))+geom_point()
```

Cluster means:


```
[12]: d<-dist(as.matrix(mtcars))
hc<-hclust(d)
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

```
[14]: x<-rbind(cbind(rnorm(10,0,0.5),rnorm(10,0,0.5)),cbind(rnorm(15,5,0.5)),rnorm(15,5,0.5)))
clusplot(pam(x,2))
```

clusplot(pam(x = x, k = 2))

clusplot(pam(x = x4, k = 2))

These two components explain 75.95 % of the point variability.

0.0.3 Linear and Logistic Regression

```
[16]: dataset=read.csv("/content/data-marketing-budget-12mo.

→csv",header=T,colClasses=c("numeric","numeric","numeric"))
head(dataset)
```

```
Month Spend
                                         Sales
                        <dbl>
                                <dbl>
                                         <dbl>
                        1
                                 1000
                                         9914
                        2
                                 4000
                                         40487
A data.frame: 6 \times 3
                        3
                                5000
                                         54324
                     4
                        4
                                4500
                                         50044
                     5
                        5
                                 3000
                                         34719
                     6
                       6
                                         42551
                                4000
```

[17]: simple.fit = lm(Sales~Spend,data=dataset)
summary(simple.fit)

Call:

lm(formula = Sales ~ Spend, data = dataset)

Residuals:

Min 1Q Median 3Q Max -3385 -2097 258 1726 3034

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1383.4714 1255.2404 1.102 0.296

Spend 10.6222 0.1625 65.378 1.71e-14 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 2313 on 10 degrees of freedom

Multiple R-squared: 0.9977, Adjusted R-squared: 0.9974

F-statistic: 4274 on 1 and 10 DF, p-value: 1.707e-14

[18]: multi.fit = lm(Sales~Spend+Month, data=dataset)
summary(multi.fit)

Call:

lm(formula = Sales ~ Spend + Month, data = dataset)

Residuals:

Min 1Q Median 3Q Max -1793.73 -1558.33 -1.73 1374.19 1911.58

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -567.6098 1041.8836 -0.545 0.59913

Spend 10.3825 0.1328 78.159 4.65e-14 ***

Month 541.3736 158.1660 3.423 0.00759 **

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1 Residual standard error: 1607 on 9 degrees of freedom Multiple R-squared: 0.999, Adjusted R-squared: 0.9988 F-statistic: 4433 on 2 and 9 DF, p-value: 3.368e-14 [19]: input<- mtcars [,c("am","cyl","hp","wt")] print(head(input)) am cyl hp Mazda RX4 1 6 110 2.620 Mazda RX4 Wag 1 6 110 2.875 Datsun 710 1 4 93 2.320 Hornet 4 Drive 0 6 110 3.215 Hornet Sportabout 0 8 175 3.440 Valiant 0 6 105 3.460 [20]: input<- mtcars [,c("am","cyl","hp","wt")] am.data =glm(formula = am~ cyl+hp+wt,data = input,family = binomial) print(summary(am.data)) Call: glm(formula = am ~ cyl + hp + wt, family = binomial, data = input) Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) 19.70288 8.11637 2.428 0.0152 * 1.07162 0.455 0.6491 cyl 0.48760 hp 0.03259 0.01886 1.728 0.0840 . -9.14947 4.15332 -2.203 0.0276 * wt Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 43.2297 on 31 degrees of freedom Residual deviance: 9.8415 on 28 degrees of freedom AIC: 17.841

9

Number of Fisher Scoring iterations: 8

0.0.4 Time Series Analysis

[21]: kings <- scan("http://robjhyndman.com/tsdldata/misc/kings.dat",skip=3) kings

1. 60 2. 43 3. 67 4. 50 5. 56 6. 42 7. 50 8. 65 9. 68 10. 43 11. 65 12. 34 13. 47 14. 34 15. 49 16. 41 17. 13 18. 35 19. 53 20. 56 21. 16 22. 43 23. 69 24. 59 25. 48 26. 59 27. 86 28. 55 29. 68 30. 51 31. 33 32. 49 33. 67 34. 77 35. 81 36. 67 37. 71 38. 81 39. 68 40. 70 41. 77 42. 56

[22]: kingstimeseries <- ts(kings) kingstimeseries

A Time Series:

1. 60 2. 43 3. 67 4. 50 5. 56 6. 42 7. 50 8. 65 9. 68 10. 43 11. 65 12. 34 13. 47 14. 34 15. 49 16. 41 17. 13 18. 35 19. 53 20. 56 21. 16 22. 43 23. 69 24. 59 25. 48 26. 59 27. 86 28. 55 29. 68 30. 51 31. 33 32. 49 33. 67 34. 77 35. 81 36. 67 37. 71 38. 81 39. 68 40. 70 41. 77 42. 56

[23]: births<-scan("http://robjhyndman.com/tsdldata/data/nybirths.dat") birthstimeseries <- ts(births, frequency=12, start=c(1946,1)) birthstimeseries

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	O
A Time Series: 14×12	1946	26.663	23.598	26.931	24.740	25.806	24.364	24.477	23.901	23.175	23
	1947	21.439	21.089	23.709	21.669	21.752	20.761	23.479	23.824	23.105	23
	1948	21.937	20.035	23.590	21.672	22.222	22.123	23.950	23.504	22.238	23
	1949	21.548	20.000	22.424	20.615	21.761	22.874	24.104	23.748	23.262	22
	1950	22.604	20.894	24.677	23.673	25.320	23.583	24.671	24.454	24.122	24
	1951	23.287	23.049	25.076	24.037	24.430	24.667	26.451	25.618	25.014	25
	1952	23.798	22.270	24.775	22.646	23.988	24.737	26.276	25.816	25.210	25
	1953	24.364	22.644	25.565	24.062	25.431	24.635	27.009	26.606	26.268	26
	1954	24.657	23.304	26.982	26.199	27.210	26.122	26.706	26.878	26.152	26
	1955	24.990	24.239	26.721	23.475	24.767	26.219	28.361	28.599	27.914	27
	1956	26.217	24.218	27.914	26.975	28.527	27.139	28.982	28.169	28.056	29
	1957	26.589	24.848	27.543	26.896	28.878	27.390	28.065	28.141	29.048	28
	1958	27.132	24.924	28.963	26.589	27.931	28.009	29.229	28.759	28.405	27
	1959	26.076	25.286	27.660	25.951	26.398	25.565	28.865	30.000	29.261	29
		•									

[25]: souvenir <- scan("http://robjhyndman.com/tsdldata/data/fancy.dat") souvenirtimeseries <- ts(souvenir, frequency=12, start=c(1987,1))</pre> souvenirtimeseries

Jan Feb Mar May Jun Jul Aug Apr 1987 1664.81 2397.53 2840.71 3547.29 3752.96 3714.74 4349.61 3566 2499.81 7225.14 4752 1988 5198.24 4806.03 5900.88 4951.34 6179.12 1989 4717.02 5702.63 9957.58 5304.78 6492.43 6630.80 7349.62 8176 A Time Series: 7×12 1990 5921.10 8121.227979 5814.58 12421.256369.777609.12 7224.754826.64 1255 1991 6470.239638.77 8821.17 8722.37 10209.48 11276.551992 7615.03 9849.69 11587.33 9332.561988 14558.40 13082.09 16732.78 1993 10243.2411266.8821826.84 17357.33 15997.79 18601.53 26155.15 2858

0.0.5 Data Visualization

```
[26]: library(RColorBrewer)
  data(VADeaths)
  par(mfrow=c(2,3))
  hist(VADeaths,breaks=10, col=brewer.pal(3,"Set3"),main="Set3 3 colors")
  hist(VADeaths,breaks=3 ,col=brewer.pal(3,"Set2"),main="Set2 3 colors")
  hist(VADeaths,breaks=7, col=brewer.pal(3,"Set1"),main="Set1 3 colors")
  hist(VADeaths,breaks= 2, col=brewer.pal(8,"Set3"),main="Set3 8 colors")
  hist(VADeaths,col=brewer.pal(8,"Greys"),main="Greys 8 colors")
  hist(VADeaths,col=brewer.pal(8,"Greens"),main="Greens 8 colors")
```



```
[27]: data(AirPassengers)
plot(AirPassengers, type="l")
```



```
[28]: data("iris")
barplot(iris$Petal.Length) #Creating simple Bar Graph
barplot(iris$Sepal.Length,col = brewer.pal(3,"Set1"))
barplot(table(iris$Species,iris$Sepal.Length),col = brewer.pal(3,"Set1"))
```



```
[29]: data(iris)
   par(mfrow=c(2,2))
   boxplot(iris$Sepal.Length,col="red")
   boxplot(iris$Sepal.Length~iris$Species,col="red")
   boxplot(iris$Sepal.Length~iris$Species,col=heat.colors(3))
   boxplot(iris$Sepal.Length~iris$Species,col=topo.colors(3))
   boxplot(iris$Petal.Length~iris$Species)
```



```
[30]: plot(x=iris$Petal.Length) plot(x=iris$Petal.Length,y=iris$Species)
```


