$$5^{(1)} = W^{(1)} \times + b^{(1)}$$

$$W^{(1)} = \begin{bmatrix} 1 & -2 & 1 \\ 3 & 4 & -1 \end{bmatrix} \quad b^{(1)} = \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix}$$

$$5^{(1)} = \begin{bmatrix} 1 & -2 & 1 \\ 3 & 4 & -1 \end{bmatrix} \begin{bmatrix} +1 \\ -1 \\ +1 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + 2 + 1 + 1 \\ 3 - 4 - 1 - 2 \end{bmatrix} = \begin{bmatrix} -5 \\ -5 \end{bmatrix}$$

$$V = V(\lambda_{i,j}) = MVX(0',\lambda_{i,j})$$

$$= \left[\max(0, 5) \right]$$

$$= \max(0, -5)$$

$$A^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} (1) = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ 15 \end{bmatrix} \\ = \begin{bmatrix} 5 + 1 \\ 15 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix}$$

$$N^{(2)} = h(S^{(2)}) = max(0, S^{(1)})$$

$$= [max(0, S^{(1)})] = [5]$$

$$A_{1} = \frac{e^{42}}{(.7)9 \times 10^{(8)}} = \frac{e^{-51}}{(.7)9 \times 10^{(8)}} = 1.979 \times 10^{-52} = 0$$

$$A_{2}^{(3)} = \frac{e^{25}}{(.7)9 \times 10^{(8)}} = 4.14 \times 10^{-8}$$

(a) **Feedforward Computation:** Perform the feedforward calculation for the input vector $\mathbf{x} = [+1 - 1 + 1]^{\mathrm{T}}$. Fill in the following table. Follow the notation used in the slides, *i.e.*, $\mathbf{s}^{(l)}$ is the linear activation, $\mathbf{a}^{(l)} = \underline{h}(\mathbf{s}^{(l)})$, and $\dot{\mathbf{a}}^{(l)} = \underline{h}(\mathbf{s}^{(l)})$.

<i>l</i> :	1	2	3
$\mathbf{s}^{(l)}$:	[-5]	[6]	42 -31 25
$\mathbf{a}^{(l)}$:	[5]	[6]	6 4.14×10
$\dot{\mathbf{a}}^{(l)}$:			(not needed)

$$\begin{cases} (b) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (4$$

$$= \begin{bmatrix} 2+o-1 \\ 2+o-1 \end{bmatrix} \odot \mathring{A}^{(2)}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$S^{(1)} = \left[\left(W^{(2)} \right)^{7} \cdot S^{(2)} \right] \odot A^{(1)}$$

$$= \left[\begin{array}{c} 1 \\ -2 \end{array} \right] \left[\begin{array}{c} 0 \\ -2 \end{array} \right] \left[\begin{array}{c} 0 \\ -2 \end{array} \right]$$

$$= \left[\begin{array}{c} 3 \\ 4 \end{array} \right] \left[\begin{array}{c} 0 \\ -2 \end{array} \right] \left[\begin{array}{c} 0 \\ -2 \end{array} \right] \left[\begin{array}{c} 0 \\ -2 \end{array} \right]$$

$$= \left[\begin{array}{c} 3 \\ -2 \end{array} \right] \left[\begin{array}{c} 0 \\ -2 \end{array} \right]$$

$$= \left[\begin{array}{c} 2 \\ 3 \\ -3 \end{array} \right] - 0.5 \left[\begin{array}{c} 0 \\ -2 \end{array} \right] \left[\begin{array}{$$

$$= \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} - 0.5 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 5 & 0 \end{bmatrix}$$

$$=\begin{bmatrix}1&-2&7\\3&4&\end{bmatrix}-0.5\begin{bmatrix}0&0\\5&0\end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.15 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.15 \end{bmatrix}$$

$$W_{(i)} = W_{(i)} - 0.5 S_{(i)} \cdot [\times]$$

$$= \begin{bmatrix} 1 & -2 & 1 \\ 3 & 4 & -2 \end{bmatrix} - 0.5 \cdot \begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} +1 & -1 & +1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 1 \\ 3 & 4 - 2 \end{bmatrix} - 0.5 \begin{bmatrix} 3 & -3 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -0.5 & -0.5 & -0.5 \\ 3 & 4 & -2 \end{bmatrix}$$

(b) **Backpropagation Computation:** Apply standard SGD backpropagation for the input assuming a multi-category cross-entropy loss function and one-hot labeled target: $\mathbf{y} = [\ 0\ 0\ 1\]^{\mathrm{T}}$. Follow the notation used in the slides, *i.e.*, $\delta^{(l)} = \nabla_{\mathbf{s}^{(l)}} C$. Enter the delta values in the table below and provide the updated weights and biases assuming a learning rate $\eta = 0.5$.

l:	1	2	3
$\delta^{(l)}$:			
$\mathbf{W}^{(l)}$:	[-0.5 -0.5 -0.5]	[0.5 4]	\[\begin{aligned} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$\mathbf{b}^{(l)}$:	(-0.5 -2]	[0.5]	- 0,5 7 - 4 - 1,5

2,	
<u>_</u> ,	i. How did you determine a learning rate? What values did you try? What was your final value?
	ii. Describe the method you used to establish model convergence.
	iii. What regularizers did you try? Specifically, how did each impact your model or improve its performance?
	iv. Plot log-loss (<i>i.e.</i> , learning curve) of the training set and test set on the same figure. On a separate figure plot the accuracy against iteration number of your model on the training set and test set. Plot each as a function of the iteration number.
	v. Clasify each input to the binary output "digit is a 2" using a 0.5 threshold. Compute the final loss and final accuracy for both your training set and test set.
(;)	
<u>[</u>	experimented with different learning rates from 0,001 and
in (r	ensing up to 0,5. I found that a learning rate of 0.5
Wns	too high, causing the model to struggle to converge.
	e test loss became very volatile and fluctuated significantly,
ind:	icating poor generalization to the test set. I determined that
٩	learning rate of 0.001 for my final value. It allowed
the	model to converge smoothly and reduced the training
<u>.</u> īī)	nd test loss consistently.
I	established model anvergence by tracking both the binary
	1033 provided in the question and accuracy for the training

leg-1033 provided in the question and accuracy for the training and test sets after each epoch. Additionally, I applied a 0.5 thueshold to the predicted probabilities to classify each input. The m-del 5 considered converged when the log-1033 and accuracy stabilize.

(iii)

I used L2 Regularization in my model, I experimented with 0.0000 to 1. Vshq different lambda unlue from to underfitting and lend generalize well. connet valhe help weak ٩٥ not decided 0,0 my

(vi)

Final Train Loss: 0.12479557917330604

Final Test Loss: 0.12444388318822013

Final Train Accuracy: 0.96943333333333334

Final Test Accuracy: 0.9704