EXERCISE - II

MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** If tangent at point (1, 2) on the curve $y = ax^2 + bx + \frac{7}{2}$ be parallel to normal at (-2, 2) on the curve $y = x^2 + 6x + 10$, then
- (A) a = 1 (B) a = -1 (C) b = -5/2 (D) b = 5/2
- 2. The co-ordinates of the point(s) on the graph of the function, $f(x) = \frac{x^3}{3} - \frac{5x^2}{2} + 7x - 4$ where the

tangent drawn cut off intercepts from the co-ordinate axes which are equal in magnitude but opposite in sign is

- (A)(2, 8/3)
- (B)(3,7/2)
- (C)(1, 5/6)
- (D) None of these
- 3. The co-ordinates of a point on the parabola $2y = x^2$ which is nearest to the point (0, 3) is
- (A) (2, 2) (B) $(-\sqrt{2}, 1)$ (C) $(\sqrt{2}, 1)$ (D) (-2, 2)
- **4.** Consider the curve $f(x) = x^{1/3}$, then
- (A) the equation of tangent at (0, 0) is x = 0
- (B) the equation of normal at (0, 0) is y = 0
- (C) normal to the curve does not exist at (0, 0)
- (D) f(x) and its inverse meet at exactly 3 points.
- **5.** The equation of tangents to the curve $y = \cos(x + y)$, $-2 \pi \le x \le 2\pi$, that are parallel to the line x + 2y = 0is/are

- (A) $x + 2y = \pi/2$ (B) $x + 2y = -3\pi/2$ (C) $x 2y = \pi/2$ (D) $x 2y = -3\pi/2$
- **6.** The normal to the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta - \theta \cos \theta)$ at any point ' θ ' is such that
- (A) It is at a constant distance from the origin
- (B) It passes through (a $\pi/2$, -a)
- (C) It makes angle $\pi/2 + \theta$ with the x-axis
- (D) It passes through the origin
- **7.** In the curve $x = t^2 + 3t 8$, $y = 2t^2 2t 5$, at point (2, -1)
- (A) length of subtangent is 7/6
- (B) slope of tangent is 6/7
- (C) length of tangent is $\sqrt{(85)}$ /6 (D) None of these
- **8.** If the line, ax + by + c = 0 is a normal to the curve xy = 2, then
- (A) a < 0, b > 0
- (B) a > 0, b < 0
- (C) a > 0, b > 0
- (D) a < 0, b < 0

- **9.** If the curves $\frac{x^2}{a^2} + \frac{y^2}{4} = 1 \& y^3 = 16 x$ intersect at right angles, then values of a is/are

- (A) $\frac{2}{\sqrt{3}}$ (B) 2 (C) $-\frac{2}{\sqrt{3}}$ (D) not possible
- 10. The equation of normal to the curve
- $\left(\frac{x}{a}\right)^{n} + \left(\frac{y}{b}\right)^{n} = 2(n \in \mathbb{N})$ at the point with abscissa equal to 'a' can be
- (A) $ax + by = a^2 b^2$ (B) $ax + by = a^2 + b^2$ (C) $ax by = a^2 b^2$ (D) $bx ay = a^2 b^2$

- **11.** Let the parabolas $y = x^2 + ax + b$ and y = x(c x)touch each other at the point (1, 0). Then
- (A) a = -3

- (B) b = 1 (C) c = 2 (D) b + c = 3
- **12.** For the curve represented parametrically by the equation, $x = 2 \ln \cot t + 1$ and $y = \tan t + \cot t$
- (A) tangent at $t = \pi/4$ is parallel to x-axis
- (B) normal at $t = \pi/4$ is parallel to y-axis
- (C) tangent at $t = \pi/4$ is parallel to the line y = x
- (D) tangent and normal intersect at the point (2, 1)
- **13.** The angle at which the curve $y = ke^{kx}$ intersects the y-axis is:
- (A) $tan^{-1} (k^2)$
- (B) $\cot^{-1} (k^2)$
- (C) $\sin^{-1}\left(\frac{1}{\sqrt{1+k^4}}\right)$ (D) $\sec^{-1}\left(\sqrt{1+k^4}\right)$
- **14.** Which of the following pair(s) of curves is/are orthogonal
- (A) $y^2 = 4ax$; $y = e^{-x/2a}$ (B) $y^2 = 4ax$; $x^2 = 4ay$ (C) $xy = a^2$; $x^2 y^2 = b^2$ (D) y = ax; $x^2 + y^2 = c^2$

- **15.** If y = f(x) be the equation of a parabola which is touched by the line y = x at the point where x = 1. Then

- (A) f'(1) = 1 (B) f'(0) = f'(1) (C) 2f(0) = 1 f'(0) (D) f(0) + f'(0) + f''(0) = 1