1. C언어의 구조

소스코드	설명			
예1) #include <stdio.h> 2</stdio.h>	1줄:standard(표준)input/output(입출력)을 사용하기 위해 반드시 include(포함)시켜야 한다. 2줄:C 언어는 main()함수가 몸체이며 실행시에 main()함수부터 실행한다. 앞에 붙는 void는 반환되는 값의 type(자료형)이 없음을 의미한다.			
예2) #include <stdio.h> void main() { printf("Hello World\n"); }</stdio.h>	3줄:printf()함수는 Consol(콘솔)화면에 출력하 기 위한 명령어이다. printf()안의 " "에 출력할 내용을 넣는다. 명령어(문장)의 마지막에는 ; (세미콜론)로 끝낸다.			
161% · · · · · · · · · · · · · · · · · · ·	 3줄:printf()함수안의 " "에 ₩n(₩n)는 줄넘김			
<pre>#include<stdio.h> 2 pvoid main() { printf("Hello World\n"); printf("Next Line\n"); }</stdio.h></pre>	을 의미한다.			
<pre>#include<stdio.h></stdio.h></pre>	2줄:main()함수 앞의 int 는 반환(return)되는 값(0)이 정수형(int)임을 의미한다.			

4. 변환포맷

1) 숫자와 문자포맷

숫자포맷

정수포맷	%d (int형의 포맷)
실수포맷	%f (float형의 포맷) %lf (double형의 포맷)

문자포맷

문자포맷	%c (char형의 포맷)
문자열포맷	%s (char형 배열의 포맷)

※출력자릿수의 예

명령	출력상태

		г –					
1	printf("%d", 4);	4					
2	printf("%5d", 4);					4	
3	printf("%05d", 4);	0	0	0	0	4	
4	printf("%-5d",4);	4					
(5)	printf("%5c", 'a');					а	
6	printf("%-5c", 'a');	а					
7	printf("%5s", "AM");				Α	М	
8	printf("%-5s", "AM");	Α	М				
9	printf("%5.2f", 1.5);		1		5	0	
10)	printf("%05.2f", 1.5);	0	1		5	0	
11)	printf("%-5.2f", 1.2);	1		2	0		

2. 배열

배열을 사용하면 같은 종류의 대량의 데이터를 효율적으로 간편하게 처리할 수 있다.

- 변수 활용한 저장 공간 선언 ; int a0, s1, s2, s3, s4, s5, s6, s7, s8, s9;
- 배열 활용한 저장 공간 선언 ; int a[10];

1. 배열의 사용

- 1차원 배열: 동일한 자료형으로 구성되어진 기억 공간들에 동일한 자료들을 각각 일괄적으로 처리시키기 위하여 사용하는 자료형 예) int M[10];
- 2차원 배열: 행과 열로 구성된 배열을 말하며 2차원 배열은 1차원 배열들의 모임이다.
- 3차원 배열: 면과 행 그리고 열로 구성된 배열을 말하며 3차원 배열은 2차원 배열들의 모임을 말한다.

1차원 배열의 선언방법	
자료형 배열명[갯수];	예) int a[5]; a[0] a[1] a[2] a[3] a[4]
자료형 배열명[갯수]={값1,값2,값3,값n};	예) int a[5]={1, 10, 20, 5, 12}; int a[]={1, 10, 20, 5, 12}; char ch[]="korea"; 1 10 20 5 12 a[0] a[1] a[2] a[3] a[4] k o r e a ch[0] ch[1] ch[2] ch[3] ch[4]
2차원 배열의 선언방법	
자료형 배열명[행갯수][열갯수];	

		예) i a[0][a[1][a[2][3] a[0][1] a[1][1]	; a[0][2] a[1][2]
자료형	배열명[행갯수][열갯수]= {값1,값2,값3,값n};			={1,2,3,4,5,6}; -{1,2,3,4,5,6}; 3 6

3차원 배열의 선언방법

- 기시년	메르퓌	2201					
			예) int	a[2][3][2];		
	자료형	배열명[면][행][열];	a[0][0][0 a[0][1][0 a[0][2][0	a[0][1][1] a[1][1]	[0] a[1][1][1]
	자료형	배열명[면][행][열]= {값1,값2,값3,값n};	예) int int	a[2][3][2 {1,2,3,4,5 a[][3][2] {1,2,3,4,5	5,6,7,8,9,1 =		
			1 3 5	2 4 6	7 9 11	8 10 12	

1.1. 1차원 배열

실습1) 1차원배열에 저장된 값을 출력하기

실습2) grade배열에 저장된 값들을 출력하는 프로그램

```
1  void main()
2  {
3    int grade[10]={31,63,62,87,14,25,92,70,75,53};
4    int i;
5    for(i=0;i<10;i++)
6    {
7       printf("%5d\text{\psi}n", grade[i]);
8    }
9   }</pre>
```

실습3) grade배열에 저장된 값들의 평균을 출력하는 프로그램

```
void main()
2
3
        int grade[10]=\{31,63,62,87,14,25,92,70,75,53\};
4
        int i, size, hap=0;
5
        double avg;
6
        size=sizeof(grade)/sizeof(grade[0]);
        for(i=0;i \le ize;i++)
8
9
           hap=hap+grade[i];
10
        }
        avg=hap/size;
11
        printf("%lf \\mathbf{W}\n\", avg);
12
13 }
14
```

실습4) a배열에 저장된 값을 b배열로 복사하는 프로그램

```
1
    #include<stdio.h>
2
    #define SIZE 5
    void main()
3
4
5
        int i;
6
        int a[SIZE] = \{1, 2, 3, 4, 5\};
7
       int b[SIZE];
8
       for(i=0;i<SIZE;i++)
9
           b[i]=a[i];
10
11
        }
12 }
13
```

3. 포인터와 포인터 변수

- 포인터란 메모리상의 임의의 위치 값을 말하며 주소, 번지라고도 하며 1바이트 간격으로 부여 된 위치 값을 말한다.
- 포인터 변수란 메모리상의 위치 값을 기억시켜 둘 목적으로 사용하는 기억공간을 말한다.

(1) 포인터의 표기

& : 시작주소 예) &a : a의 시작주소 * : 포인터 예) *a : 포인터 변수 a

포인터 변수

char *ap; 자료형 *변수명1; float *cp; 1) 포인터 변수 선언 자료형 변수명2; int *bp; int b; 주소 변수 기억장소 br 1245052 2) 포인터 변수에 주소 저장 변수명1=&변수명2; ;d&=ad 1245052 3) 포인터 변수를 통하여 상수값 *변수명1=상수값; *bp=100; 저장 3줄:char형의 기억공간의 시작주소를 저장하는 주소변수 1 void main() 2 5줄:int형의 기억공간의 시작주소를 저장하는 주소변수 3 6줄:float형의 기억공간의 시작주소를 저장하는 주소변수 char *ap; 4 int *ap; 8줄:a의 주소를 ap포인터 변수에 저장해 둔다 5 float *cp; 9줄:ap포인터변수에 저장된 "주소를 참조"한 저장 공간에 10을 저장 6 포인터 변수 앞에 *이 붙으면 포인터 변수에 담긴 "주소를 참조"한 int a: 7 ap=&a; 저장 공간이다. 8 *ap=10; 9 } 10

실습1) 포인터 변수의 사용 예

실습2) 포인터 변수를 이용한 값 저장

실습3) 포인터 변수를 이용한 연산

1 void mai() {	1	void main(){
2 int a, *ap	2	int a,b,c,d;
3 int b, *bp	3	int *ap, *bp;

```
4
      ap=&a;
                                           4
                                                    ap=&a;
5
      bp=&b;
                                           5
                                                    bp=&b;
      *ap=10;
6
                                           6
                                                    *ap=5;
                                           7
7
      *bp=20;
                                                    *bp=3;
8
      printf("%d ₩n", *ap);
                                           8
                                                    c=*ap+*bp;
9
      printf("%d ₩n", *bp);
                                           9
                                                    d=a+b;
10
                                           10
                                                    printf("c=%d₩n", c);
                                                    printf("d=%d\foralln", d);
                                           11
11
12
                                           12
                                                    printf("*ap=%u₩n", ap);
                                           13
                                                    printf("%d₩n", *ap);
13
                                           14
                                                    printf("*ap=%u₩n", &a);
14
                                           15
15
                                                }
16
                                           16
결과 또는 설명
                                           결과 또는 설명
```

실습4) 값전달 방식의 swap()함수

실습5) 주소전달 방식의 swap()함수

```
1
    void swap(int a, int b)
                                                  void swap(int *a, int *b)
2
                                             2
3
        int temp;
                                             3
                                                      int temp;
4
        temp=a;
                                                      temp=*a;
                                             4
         a=b;
                                                      *a=*b;
5
                                             5
         b=temp;
                                                      *b=temp;
6
                                             6
7
                                             7
    void main()
                                             8
                                                  void main()
8
                                             9
9
10
        int a=10, b=20;
                                             10
                                                      int a=10, b=20;
         printf("a=%d, b=%d\foralln", a, b);
                                                      printf("a=%d, b=%d\foralln", a, b);
11
                                             11
12
         swap(a, b);
                                             12
                                                      swap(&a, &b);
13
         printf("a=%d, b=%d\foralln", a, b);
                                             13
                                                      printf("a=%d, b=%d\foralln", a, b);
                                             14
14
      }
                                                   }
15
                                             15
                                             16
결과 또는 설명
                                             결과 또는 설명
```

```
포인터와 배열의 관계 (배열명자체가 주소임 즉 a 가 주소)
int a[10]=\{10,20,30,40,50,60,70,80,90,100\};
printf("%d₩n", a[0]);
                      //10
printf("%d₩n", a[1]);
                      //20
printf("%d₩n", a[2]);
                      //30
printf("%d₩n", a[3]);
                      //40
printf("%d₩n", *(a+0));
                      //또는 *a 같음 //10
printf("%d₩n", *(a+1));
                     //20
printf("%d₩n", *(a+2));
                     //30
printf("%d₩n", *(a+3)); //40
printf("%d\foralln", *(a+3)+2); //42
```