Model Evaluation Strategies

Why do we need to evaluate model?

 To estimate the predictive performance of our model on future (unseen) data.

To fine-tune the model to increase its predictive performance

 To select the right machine learning algorithm that is best-suited for the problem at hand

Machine Learning(Model) Evaluation

 How do you evaluated machine learned model?

 Goal: Select the model that best performs on unseen(future) data i.e., best generalization capability.

Resubstitution Approach

- Use entire train data for learning as well as evaluation
- The accuracy returned by model on same training set used for learning is called as Resubstitutionaccuracy
- Does this approach makes sense???

Issues with Resubstitution Approach

- Model may not have enough data to fully learn the concept (but on training data we don't know this)
- For noisy data, the model may overfit the training data

Hence, Resub error is always too optimistic i.e., under-estimates true error of model

Resampling Approach

- Hold some observations from train-set, called as validation set
- Use a validation set to estimate how well the model perform on new unseen data(out of sample)
- Resampling methods try to "inject variation" in the system to approximate the model's performance on future samples.

Resampling Methods

- Repeated Holdout*
- Cross Validation*
- Bootstrapping

*Stratified resampling is preferred

Repeated holdout

Repeated Holdout Idea

- n = total number of training data points
 k = number of repetitions
- for i = 1:k
 - Randomly hold 30% of data for validation
 - -train on remaining 70% of data
 - -Acc(i) = accuracy on 30% held data
- Repeated holdout Accuracy = $1/k \Sigma_i Acc(i)$
- Common value for k is 10

Repeated Holdout Illustrated

Original Data

CV Group #1

CV Group #2

CV Group B

K-fold cross validation

K-Fold CV Idea

- n = total number of training data points
 k = number of folds
- Randomly partition our full data set into k disjoint subsets (each roughly of size n/k)
- for i = 1:k
 - -train on all folds of data except ith
 - -Acc(i) = accuracy on ith fold
- Cross-Validation Accuracy = $1/k \Sigma_i Acc(i)$
- Common values for k are 5 and 10 and called as "leave-one-out" when k = n

K-Fold CV Illustrated

Bootstrapping Idea

Bootstrap sample: sample with replacement from a dataset

The probability that a given example is not selected for a bootstrap sample of size n:

$$(1 - 1/n)^n$$

This has a limit as n goes to infinity: 1/e = 0.368

Conclusion: each bootstrap sample is likely to leave out about a third of the examples.

Bootstrapping Illustrated

