On my honor, I have not given, nor received, nor witnessed any unauthorized assistance on this work.

Print name and sign:

Question:	1	2	3	Total
Points:	10	12	8	30
Score:				

1. (10 points) Construct a transition diagram for a lexical analyzer that recognizes the following patterns (left hand column) and associated tokens (right hand column):

Pattern	Token Name
(OPEN
)	CLOSE
)(ORDER
()	PAIR
((20PEN
(((30PEN

Label each arc with the symbol that triggers its transition and each accepting state with the token name (from the right hand column) it recognizes. Note the places where a character must be pushed back on the input stream.

2. Consider the following grammar:

E -> T E'
E' -> + T E' |
$$\varepsilon$$

T -> F T'
T' -> * F T' | ε
F -> (E) | digit
digit -> 0 | 1 | 2 | ... | 9

(a) (9 points) Construct a parse tree for the sentence 9 + (0 * 1).

	\ /	part a (in other words, not of the form $x + (y * z)$. You do not need to draw parse trees for the		
3.	Cons	sider the following context-free grammar:		
	S ->	S and S S or S (S) true false		
		(2 points) List the terminal(s) :		
	(b)	(2 points) List the non-terminal(s) :		
		(4 points) A grammar can be ambiguous or unambiguous. The above grammar is ambiguous Provide an example (and associated parse trees) which prove this fact.	ous	