The PERT Method

Optimization Methods in Management Science
Master in Management
HEC Lausanne

Dr. Rodrigue Oeuvray

Fall 2019 Semester

The PERT Method

PERT: Project Evaluation and Review Technique

We consider a complex project:

- a set of tasks with a known duration
- precedence constraints between some tasks

We would like to **order** the tasks and to plan their **start dates** in order to:

- satisfy the precedence constraints
- minimize the total duration of the implementation of the project
- be able to assess the impact of a task delay on the whole project duration

Problem Formulation

This problem is modeled as a **network**:

- the vertices represent the project tasks
- ullet an arc connects two vertices i and j if it exists a precedence constraint between the tasks associated with vertices i and j
- the weight c_{ij} of the arc (i,j) is equal to the duration d_i of the task/vertex i

We also add:

- ullet a vertex lpha representing the **commencement** of the work, which has a **null** duration and preceding all the tasks without any predecessor
- \bullet a vertex ω representing the ${\bf end}$ of the work, with a ${\bf null}$ duration and succeeding all the tasks with no successor

Problem Formulation (Cont'd)

- The graph associated with a project has **no circuit**, only one vertex with no predecessor (α) , and only one vertex with no successor (ω)
- It is called the PERT network
- Determining the minimal duration of the project is equivalent to computing a longest path between α and ω

Example

A cable network company wishes to increase the number of channels it offers to its customers. Tasks and precedences of this project are given below:

Task	Description	Duration (in week)	Precedence	
Α	Choice of the channels	2	_	
В	Administrative work	4	A	
С	Order of the decoders	3	В	
D	Installation of the antennas	2	В	
E	Installation of the decoders	10	C,D	
F	Modification of the billing	4	В	

The Critical Path Algorithm

Input: a PERT network R = (V, E, c) associated with a project and a topological order of its vertices (α and ω are labeled 1 and n respectively)

Output: the minimal duration D of a project and, for each task i, its **earliest** start date δ_i and its **latest** start date φ_i

- (1) Update of δ_k $\delta_1=0$ For k=2 to n, set $\delta_k=\max\{\delta_j+c_{jk}\mid j\in Pred(k)\}$
- (2) Update for φ_k $D = \delta_n, \ \varphi_n = \delta_n$ For k = n 1 to 1, set $\varphi_k = \min \{ \varphi_i c_{kj} \mid j \in Succ(k) \}$

Example (Cont'd)

Task	α	Α	В	С	D	Ε	F	ω
k	1	2	3	4	5	6	7	8
Duration d_k	0	2	4	3	2	10	4	0
Pred(k)	_	α	Α	В	В	C, D	В	E, F
Succ(k)	Α	В	C, D, F	Ε	Ε	ω	ω	
$\delta_k/Pred(k)$	0/-	$0/\alpha$	2/A	6/ <i>B</i>	6/ <i>B</i>	9/ <i>C</i>	6/ <i>B</i>	19/ <i>E</i>
$\varphi_k/Succ(k)$	0/ <i>A</i>	0/ <i>B</i>	2/ <i>C</i>	6/ <i>E</i>	7/E	$9/\omega$	$15/\omega$	19/-

- $\delta_k = \max\{\delta_j + c_{jk} \mid j \in Pred(k)\}, \ \delta_1 = 0, k = 2, ..., n$
- $\varphi_k = \min \{ \varphi_j c_{kj} \mid j \in Succ(k) \}, \ \varphi_n = \delta_n, k = (n-1), \dots, 1$

Terminology

- A task *i* is critical if $\delta_i = \varphi_i$. Every delay in its implementation impacts the total duration of the project
- A critical path is a path from α to ω which is composed solely of critical tasks
- The length of a critical path corresponds to the minimal duration of the project

Example (Cont'd)

In our example, critical tasks are α , A, B, C, E et ω . The unique critical path is

$$C = (\alpha, (\alpha, A), A, (A, B), B, (B, C), C, (C, E), E, (E, \omega), \omega).$$

Its length is 19 and corresponds to the minimal duration of the project