Generating continuous Random variables

Arabin Kumar Dey

Generating continuous Random variables

Arabin Kumar Dey

Assistant Professor

Department of Mathematics Indian Institute of Technology Guwahati

Talk at Indian Institute of Technology Guwahati

29-th january, 2013

The Inverse transform algorithm

Generating Random variables

Arabin Kumar Dev

■ Proposition: Let $U \sim U(0,1)$. For any continuous CDF F, the random variable X defined by $X = F^{-1}(U)$ has distribution F.

- proof in class.
- So long as we can derive the explicit form for F^{-1} , we can use this result to generate from a continuous distribution with CDF F:

step 1: generate a random number U. step 2: set $X = F^{-1}(U)$ and you are done.

proof

Generating continuous Random variables Arabin Kumar Dey

$$X = F^{-1}(U)$$
 has a cdf of F .
Look at cdf

$$P(X \le x) = F_x(X) = P(F(F^{-1}(U)) \le F(x))$$
$$= P(U \le F(x))$$
$$= F(x)$$

therefore F(x) is the cdf of $F^{-1}(U)$.

Some examples

Generating continuous Random variables

Arabin Kumar Dev

Let X come from a distribution with CDF $E(x) = x^{\beta} \cdot 0$ or $x \in \mathbb{N}$

$$F(x) = x^n, 0 < x < 1.$$

We can generate from this distribution by setting $X = U^{1/n}$ after generating U.

- Exponential Suppose X comes from an $Exp(\lambda)$ with PDF $f(x) = \lambda e^{-\lambda x}$, x > 0. We can generate from this distribution by setting $X = -\frac{1}{\lambda}logU$ where U is the generated random number.
- Weibull A random variable X is said to have a Weibull (α, β) distribution if its CDF has the form $F(x) = 1 exp(-\alpha x^{\beta})$, x > 0. Describe a method to generate from this distribution.

Generating a Gamma random variable

Generating continuous Random variables Arabin Kumar Dev

- For a Gamma (n, λ) random variable, note that because we cannot write an explicit form for the expression of the F^{-1} , it is difficult to directly apply inverse transform method.
- However, recall that the sum of independent Exponentials leads us to a Gamma distribution.
- We can generate from a Gamma distribution by generating n random numbers U_1, U_2, \cdots, U_n and then setting $X = -\frac{1}{\lambda} \log U_1 \cdots \frac{1}{\lambda} \log U_n$ $= -\frac{1}{\lambda} \log(U_1 \cdots U_n)$.
- This works provided n is a positive integer.

The rejection method

Generating continuous Random variables Arabin Kumar Dey

- Suppose we wish to generate X from a distribution with PDF f(x).
- Assume that we are able to generate Y from a distribution with PDF g(y) and that there is a constant c such that $\frac{f(y)}{g(y)} \le c$, for all y.
- According to the rejection method, we can generate *X* using the following steps:

```
step 1: generate Y from distribution with density g.
```

step 2: generate a random number U.

step 3: if $U \leq \frac{f(Y)}{cg(Y)}$, set X = Y.

step 4: else return to step 1.

Important results

Generating continuous Random variables Arabin Kumar Dev

$$X \sim U(a, b)$$
, $a < b$
use inverse transform method $F(x) = \int_a^x \frac{1}{b-a} dz = \frac{x-a}{b-a}$

- \blacksquare Generate a random number U
- $\frac{x-a}{b-a} = U \Longrightarrow X = a + U(b-a).$ Examples: $X \sim U(0, 2\pi) \Longrightarrow X = 2\pi U$ $X \sim U(-1, 1) \Longrightarrow X = 2U - 1.$

-continued

Generating continuous Random variables Arabin Kumar Dey

Theorem:

- lacktriangle The random variable X generated by the rejection method has density f.
- The number of iterations required for the rejection algorithm has a geometric distribution with mean c.

proof: to be discussed in class.

Some examples

Generating continuous Random variables Arabin Kumar Dev

- *Example5d*: Use the rejection method to generate from $f(x) = 20x(1-x)^3$, 0 < x < 1.
- Example5e: Use the rejection method to generate from a Gamma(shape para=3/2, scale = 1) density with $f(x) = Kx^{1/2}e^{-x}$, x > 0. where $K = 1/\Gamma(3/2) = 2/\sqrt{\pi}$.