Homework 4 Hill Climbing Methods

Daniel Carpenter & Kyle (Chris) Ferguson

${\rm April}\ 2022$

Contents

Question 1: Strategies	2
(a) Initial Solution	2
(b) Neighborhood Structures	2
(c) Infeasibility	2
Global Variables	3
Key Functions	3
Question 2: Local Search with Best Improvement	6
Question 3: Local Search with First Improvement	8
Question 4: Local Search with Random Restarts	10
4.1 Hill Climbing First Accept Function hillClimbFirstAccept()	10
4.2 Random Restarts Function kRestartsHillClimbFirstAccept()	11
4.3 Call the function kRestartsHillClimbFirstAccept()	12
Question 5: Local Search with Random Walk	14
HC w. Random Walk, using First Acceptance	14
Summary Output of each Model	16

Please see the final page for the summary output.

Question 1: Strategies

(a) Initial Solution

Define and defend a strategy for determining an initial solution to this knapsack problem for a neighborhood-based heuristic.

- Our algorithm for the initial_solution() function randomly generates a list of binary ∈ (0,1) values for the knapsack problem, 1 if an item is included in the knapsack and 0 if the item is excluded
- Since the solution could randomly generate an infeasible solution (i.e., the totalWeight ≥ maxWeight),
 the initial_solution() function handles it by randomly removing items from the knapsack until it
 is under the maxWeight.
- After the generation of the initial solution, the evaluate function searches for better solutions.
- We considered beginning with nothing in the knapsack (list of 0's from item 0 to n), but we researched and found that a common approach is to begin with a randomly generated solution.

(b) Neighborhood Structures

Describe 3 neighborhood structure definitions that you think would work well for this problem. Compute the size of each neighborhood.

- 1. Without any adjustment to the neighborhoods: For each neighborhood, there are 150 neighbors. Since the knapsack problem uses a n-dimensional binary vector, the total solution space is 2^n , which is 2^{150}
- 2. Using variable neighborhood search, the algorithm attempts to find a "global optimum", where it explores "distant" neighborhoods relative to the incumbent solution. Similar to other approaches, it will repeat until it finds a local optima. This approach may provide an enhancement since it will compare the incumbent solution to other solutions "far" from it, providing a better opportunity to finding the global maximum. Metaheuristics—the metaphor exposed by Kenneth Sorensen provides an overview of this concept as well.
- 3. Simulated annealing may also work well since it will analyze multiple items to be placed in the knapsack; however, some items may be chosen over others which could cause a local minimum to occur. See *Metaheuristics—the metaphor exposed* by Kenneth Sorensen page 7.

(c) Infeasibility

During evaluation of a candidate solution, it may be discovered to be infeasible. In this case, provide 2 strategies for handling infeasible solutions:

Note both approaches are similar:

- 1. Chosen Method in model: If the solution is infeasible (i.e., the totalWeight ≥ maxWeight), then we will randomly remove values from the knapsack until the bag's weight is less than the max allowable weight.
- 2. If the solution is infeasible, then we will *iteratively* (from last item in list to beginning) remove values from the knapsack until the bag's weight is less than the max allowable weight.

Global Variables

Input variables like the random seed, values and weights data for knapsack, and the maximum allowable weight

Please assume these are referenced by following code chunks

```
# Import python libraries
from random import Random # need this for the random number generation -- do not change
import numpy as np
# Set the seed
seed = 51132021
myPRNG = Random(seed)
n = 150 # number of elements in a solution
# create an "instance" for the knapsack problem
value = []
for i in range(0, n):
   value.append(round(myPRNG.triangular(150, 2000, 500), 1))
weights = []
for i in range(0, n):
    weights.append(round(myPRNG.triangular(8, 300, 95), 1))
# define max weight for the knapsack
maxWeight = 2500
```

Key Functions

Functions to provide *initial solution*, create a *neighborhood* and *evaluate* better solutions Please assume these are referenced by following code chunks

```
# If the total weight exceeds the max allowable weight, then
   if totalWeight > maxWeight:
      # Randomly remove ann item. If not feasible, then try evaluating again until feasible
      randIdx = myPRNG.randint(0,n-1) # generate random item index to remove
      x[r] = 0
                                # Don't include the index r from the knapsack
      evaluate(x, r=randIdx)
                                # Try again on the next to last element
   else:
      # Finish the process if the total weight is satisfied
      # (returns a list of both total value and total weight)
      return [totalValue, totalWeight]
   # returns a list of both total value and total weight
   return [totalValue, totalWeight]
# NEIGHBORHOOD FUNCTION - simple function to create a neighborhood
# 1-flip neighborhood of solution x
def neighborhood(x):
   nbrhood = []
   # Set up n number of neighbors with list of lists
   for i in range(0, n):
      nbrhood.append(x[:])
      # Flip the neighbor from 0 to 1 or 1 to 0
      if nbrhood[i][i] == 1:
         nbrhood[i][i] = 0
      else:
         nbrhood[i][i] = 1
   return nbrhood
# INITIAL SOLUTION FUNCTION - create the initial solution
# create a feasible initial solution
def initial_solution():
   x = [] # empty list for x to hold binary values indicating if item i is in knapsack
   # Create a initial solution for knapsack (Could be infeasible), by
   # randomly create a list of binary values from 0 to n. 1 if item is in the knapsack
   for item in range(0, n):
      x.append(myPRNG.randint(0,1))
```

```
totalWeight = np.dot(np.array(x), np.array(weights)) # Sumproduct of weights and is included

# While the bag is infeasible, randomly remove items from the bag.

# Stop once a feasible solution is found.
knapsackSatisfiesWeight = totalWeight <= maxWeight # True if the knapsack is a feasible solution, e

while not knapsackSatisfiesWeight:

randIdx = myPRNG.randint(0,n-1) # Generate random index of item in knapsack and remove item
    x[randIdx] = 0

# If the knapsack is feasible, then stop the loop and go with the solution
    totalWeight = np.dot(np.array(x), np.array(weights)) # Recalc. Sumproduct of weights and is inc
    if (totalWeight <= maxWeight):
        knapsackSatisfiesWeight = True

return x</pre>
```

Question 2: Local Search with Best Improvement

```
## GET INITIAL SOLUTION -----
# variable to record the number of solutions evaluated
solutionsChecked = 0
x_curr = initial_solution() # x_curr will hold the current solution
x_best = x_curr[:] # x_best will hold the best solution
r = randIdx = myPRNG.randint(0,n-1) # a random index for evaluation
# f_curr will hold the evaluation of the current soluton
f_curr = evaluate(x_curr, r)
f_best = f_curr[:]
## BEGIN LOCAL SEARCH LOGIC -----
done = 0
while done == 0:
    # create a list of all neighbors in the neighborhood of x_curr
   Neighborhood = neighborhood(x_curr)
   for s in Neighborhood: # evaluate every member in the neighborhood of x_curr
       solutionsChecked = solutionsChecked + 1
       if evaluate(s, r)[0] > f_best[0]:
           # find the best member and keep track of that solution
           f_best = evaluate(s, r)[:] # and store its evaluation
   # Checks for platueau and feasibility
   if f_best == f_curr and (f_curr[1] < maxWeight): # if there were no improving solutions in the nei
       done = 1
   else:
       x_curr = x_best[:] # else: move to the neighbor solution and continue
       f_curr = f_best[:] # evalute the current solution
       # print("\nTotal number of solutions checked: ", solutionsChecked)
        # print("Best value found so far: ", f_best)
print("\nFinal number of solutions checked: ", solutionsChecked, '\n',
      "Best value found: ", f_best[0], '\n',
      "Weight is: ", f_best[1], '\n',
     "Total number of items selected: ", np.sum(x_best), '\n\n',
     "Best solution: ", x_best)
# for the summary output
```

Question 3: Local Search with First Improvement

```
## GET INITIAL SOLUTION -----
# variable to record the number of solutions evaluated
solutionsChecked = 0
x_curr = initial_solution() # x_curr will hold the current solution
x_best = x_curr[:] # x_best will hold the best solution
r = randIdx = myPRNG.randint(0,n-1) # a random index
# f_curr will hold the evaluation of the current soluton
f_curr = evaluate(x_curr, r)
f_best = f_curr[:]
## BEGIN LOCAL SEARCH LOGIC -----
done = 0
while done == 0:
    # create a list of all neighbors in the neighborhood of x_curr
   Neighborhood = neighborhood(x_curr)
   for s in Neighborhood: # evaluate every member in the neighborhood of x_curr
       solutionsChecked = solutionsChecked + 1
       if evaluate(s, r)[0] > f_best[0]:
           # find the best member and keep track of that solution
           x_best = s[:]
           f_best = evaluate(s, r)[:] # and store its evaluation
           break # >> Exit loop << (first accept change from best acceptance)</pre>
   # Checks for platueau and feasibility
   if f_best == f_curr and (f_curr[1] < maxWeight): # if there were no improving solutions in the nei
       done = 1
   else:
       x_curr = x_best[:] # else: move to the neighbor solution and continue
       f_curr = f_best[:] # evalute the current solution
       print("\nTotal number of solutions checked: ", solutionsChecked)
       print("Best value found so far: ", f_best)
## Total number of solutions checked: 1
## Best value found so far: [16370.1, 2484.5]
```

```
## Total number of solutions checked: 4
## Best value found so far: [14764.6, 2378.2000000000003]
```

```
## Total number of solutions checked: 5
## Best value found so far: [15264.9, 2432.8]
## Total number of solutions checked: 9
## Best value found so far: [14243.6, 2460.2]
## Total number of solutions checked: 14
## Best value found so far: [12617.80000000001, 2276.7]
\label{lem:print("nFinal number of solutions checked: ", solutions Checked, '\n', solutions Ch
                   "Best value found: ", f_best[0], '\n',
                   "Weight is: ", f_best[1], '\n',
                   "Total number of items selected: ", np.sum(x_best), '\n\n',
                   "Best solution: ", x_best)
# for the summary output
##
## Final number of solutions checked: 17
## Best value found: 12617.80000000001
## Weight is: 2276.7
## Total number of items selected: 15
##
q3 = [solutionsChecked, np.sum(x_best), f_best[1], f_best[0]]
```

Question 4: Local Search with Random Restarts

4.1 Hill Climbing First Accept Function hillClimbFirstAccept()

Function that includes all of the hill climbing with first acceptance logic Returns a list of best solution found (see below for details of list)

```
# Returns a list of the best solution found:
# [0] totalValue: Total value of the value bag
# [1] totalWeight: Associated weight of the bag
  [2] solutionsChecked: Number of solutions checked
\# [3] numberOfItems: Total number\ of\ items\ packed
  [4] itemsPacked: A list of the items packed
# The indices of the solutions returned from `hillClimbFirstAccept()` function
VALUE_IDX = 0 # The value index of the output to the hill climb function
WEIGHT_IDX = 1 # Weight of the solution
SOL_CHCKED_IDX = 2 # The numner of solutions checked
NUM\_ITEMS\_IDX = 3 \# The number of items in the solutions knapsack
ITEMS_PCKD_IDX = 4 # List of the items packed
def hillClimbFirstAccept():
   # variable to record the number of solutions evaluated
   solutionsChecked = 0
   x_curr = initial_solution() # x_curr will hold the current solution
   x_best = x_curr[:] # x_best will hold the best solution
   r = randIdx = myPRNG.randint(0,n-1) # a random index
   # f_curr will hold the evaluation of the current soluton
   f_curr = evaluate(x_curr, r)
   f_best = f_curr[:]
   ## BEGIN LOCAL SEARCH LOGIC -----
   done = 0
   while done == 0:
       # create a list of all neighbors in the neighborhood of x_curr
       Neighborhood = neighborhood(x_curr)
       for s in Neighborhood: # evaluate every member in the neighborhood of x_curr
           solutionsChecked = solutionsChecked + 1
           if evaluate(s, r)[0] > f_best[0]:
               # find the best member and keep track of that solution
               x best = s[:]
               f_best = evaluate(s, r)[:] # and store its evaluation
```

```
break # >> Exit loop << (first accept change from best acceptance)</pre>
    # Checks for platueau and feasibility
    if f best == f curr and (f curr[1] < maxWeight): # if there were no improving solutions in the
        done = 1
    else.
       x_curr = x_best[:] # else: move to the neighbor solution and continue
        f_curr = f_best[:] # evalute the current solution
        # print("\nTotal number of solutions checked: ", solutionsChecked)
        # print("Best value found so far: ", f_best)
                      # Return a list of important values:
return [
    f_best[0],
                     # totalValue
                # totalWeight
    f_best[1],
    solutionsChecked, # solutionsChecked
    np.sum(x_best), # numberOfItems
    x best
                    # itemsPacked
```

4.2 Random Restarts Function kRestartsHillClimbFirstAccept()

Function that calls the first acceptance function and repeats k number of times Returns the best solution, best solution's index, and the list of restarted solutions

```
def kRestartsHillClimbFirstAccept(k_restarts, numSolutionsToShow):
    # List of the optimal solutions, including the returned output from the
    # `hillClimbFirstAccept()` function
   optimalSolutions = []
   bestIdx
                    = 0 # Stores the index of the best value
    # Iterate through k restarts of hill climbing with first accept
   for theCurrentRestart in range(0, k_restarts):
        optimalSolutions.append(hillClimbFirstAccept())
        # See the optimal value of the restart
        # print('Sol. Idx: [%g]' % theCurrentRestart, '\tVal: %g' %
                optimalSolutions[theCurrentRestart][VALUE_IDX]) # Comment to hide best value from resta
        # Check to see if the current solution is better than the incumbant.
        if (theCurrentRestart != 0) and ( optimalSolutions[theCurrentRestart][VALUE_IDX]
                                         > optimalSolutions[bestIdx][VALUE_IDX]):
            # If this solution is better, then store it as the best index
            bestIdx = theCurrentRestart
    # Simple function to print a solution (from list idx) of restarted solutions
    def printSolution(solutionIdx):
```

```
# Print the output
           print('Solution Index: ', solutionIdx, '\n',
                             'Solution value:', optimalSolutions[solutionIdx][VALUE_IDX], '\n',
                            'Solution weight:', optimalSolutions[solutionIdx][WEIGHT_IDX], '\n',
                            'Number of solutions checked:', optimalSolutions[solutionIdx][SOL_CHCKED_IDX], '\n',
                            \label{lem:number of items in bag:', optimalSolutions[solutionIdx][NUM_ITEMS_IDX], '\n', in the continuous of items of
                            'List of items packed:', optimalSolutions[solutionIdx][ITEMS_PCKD_IDX], '\n'
# RETRIEVE AND PRINT SOLUTIONS -----
# Print best solution
print('\n----- THE *BEST* SOLUTION -----'), printSolution(bestIdx)
print('\n----- %g Other Solutions ----\n' % numSolutionsToShow)
# Print solutions (number to show defined in the function)
for solutionNum in range(0, numSolutionsToShow):
           printSolution(solutionNum) # print another example
# for the summary output
q4 = [optimalSolutions[bestIdx][SOL_CHCKED_IDX],
                 optimalSolutions[bestIdx][NUM_ITEMS_IDX],
                 optimalSolutions[bestIdx][WEIGHT IDX],
                 optimalSolutions[bestIdx][VALUE_IDX]
# Return the best solution, best idx, and the list of restarted solutions
return q4
```

4.3 Call the function kRestartsHillClimbFirstAccept()

Call the function and show the first 2 solutions

##

Question 5: Local Search with Random Walk

HC w. Random Walk, using First Acceptance

Function that performs hill climb with random walk, using best acceptance method. There is a probability of p to either hill climb or go on a random walk

```
## GET INITIAL SOLUTION -----
# variable to record the number of solutions evaluated
solutionsChecked = 0
x_curr = initial_solution() # x_curr will hold the current solution
x_best = x_curr[:] # x_best will hold the best solution
r = randIdx = myPRNG.randint(0,n-1) # a random index
# f_curr will hold the evaluation of the current soluton
f_curr = evaluate(x_curr, r)
f_best = f_curr[:]
## BEGIN LOCAL SEARCH LOGIC -----
done = 0
prob = 0.5 #set a probability you want to use
while done == 0:
   # create a list of all neighbors in the neighborhood of x_curr
   Neighborhood = neighborhood(x_curr)
   test_prob = myPRNG.random() #chooses a random number between 0,1
   if test_prob >= prob: #if the random number is greater than the probability desired
       x_curr = Neighborhood[myPRNG.randint(0,n-1)][:]
       f_curr = evaluate(x_curr,r)
   else:
       for s in Neighborhood: # evaluate every member in the neighborhood of x curr
           solutionsChecked = solutionsChecked + 1
           if evaluate(s, r)[0] > f_best[0]:
               # find the best member and keep track of that solution
               x_best = s[:]
               f_best = evaluate(s, r)[:] # and store its evaluation
               break # >> Exit loop << (first accept change from best acceptance)</pre>
   # Checks for platueau and feasibility
   if f_best == f_curr and (f_curr[1] < maxWeight): # if there were no improving solutions in the nei
       done = 1
   else:
```

```
x_curr = x_best[:] # else: move to the neighbor solution and continue
       f_curr = f_best[:] # evalute the current solution
       print("\nTotal number of solutions checked: ", solutionsChecked)
       print("Best value found so far: ", f_best)
##
## Total number of solutions checked: 1
## Best value found so far: [18332.69999999997, 2350.2]
## Total number of solutions checked: 1
## Best value found so far: [18332.69999999997, 2350.2]
## Total number of solutions checked: 1
## Best value found so far: [18332.69999999997, 2350.2]
## Total number of solutions checked: 1
## Best value found so far: [18332.69999999997, 2350.2]
## Total number of solutions checked: 4
## Best value found so far: [18956.7, 2474.0]
print("\nFinal number of solutions checked: ", solutionsChecked, '\n',
      "Best value found: ", f_best[0], '\n',
      "Weight is: ", f_best[1], '\n',
     "Total number of items selected: ", np.sum(x best), '\n\n',
      "Best solution: ", x_best)
## Final number of solutions checked: 8
## Best value found: 18956.7
## Weight is: 2474.0
## Total number of items selected: 20
##
## Best solution: [1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
```

q5 = [solutionsChecked, np.sum(x best), f best[1], f best[0]]

Summary Output of each Model

knitr::kable(df)

	Iterations	# Items Selected	Weight	Objective
Local Search with Best Improvement	11250	20	2427.6	24760.7
Local Search with First Improvement	17	15	2276.7	12617.8
Local Search with Random Restarts	14	21	2438.7	19460.3
Local Search with Random Walk, using First Acceptence	8	20	2474.0	18956.7