

Teste de Hipótese para uma Amostra Única

OBJETIVOS DE APRENDIZAGEM

Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de:

- 1.Estruturar problemas de engenharia de tomada de decisão, como testes de hipóteses
- 2. Testar hipóteses para a média de uma distribuição normal, usando tanto um procedimento de teste Z como um de teste *t*
- 3. Testar hipóteses para a variância ou o desvio-padrão de uma distribuição normal
- 4. Testar hipóteses para a proporção de uma população
- 5.Usar a abordagem do valor P para tomar decisões em testes de hipóteses
- 6. Calcular potência, probabilidade de erro tipo II e tomar decisões a respeito do tamanho da amostra em testes para médias, variâncias, e proporções
- 7. Explicar e usar a relação entre intervalo de confiança e teste de hipóteses
- 8.Usar o teste qui-quadrado de adequação de ajuste para verificar suposições de distribuição
- 9. Usar testes de tabelas de contingência

Motivação

- Um fabricante alega a vida média das pilhas AA é de 300 minutos. Se você suspeita-se que essa alegação não é válida, como poderia mostrar que ela é falsa?
- Mesmo que estivesse seguro de que a vida média de uma pilha não é 300, a vida média real pode ser muito próximo desse valor e a diferença não é importante.

Fundamentos de testes de hipóteses

- Um teste de hipótese é um procedimento da estatística amostral para testar uma alegação sobre um valor de um parâmetro populacional.
- Uma alegação sobre um parâmetro populacional é chamada de hipótese estatística.
- Um par de hipóteses deve ser estabelecido:
 - Uma hipótese nula H_0 que contém uma afirmativa de igualdade, tal como ≤ = ≥.
 - Uma hipótese alternativa $H_{\acute{a}}$ que é o complemento da hipótese nula.

Estabelecendo as hipóteses

- 1. Uma universidade alega que a proporção de seus alunos formados em quatro anos é de 82%
 - $H_0: p=82\%$
 - H_{a} : p≠ 82%
- 2. Um fabricante de torneiras alega que a taxa de fluxo médio de um determinado tipo é inferior ou igual a 2,5 galões por minuto
 - H_0 : $\mu = 2.5$
 - $H_{a}: \mu > 2.5$

Tipos de erros

- Suponha que alguém afirma que determinada moeda não é viciada. Então, você joga a moeda 100 vezes e obtém 49 caras e 51 coroas. Não há evidência suficiente para rejeitar a alegação.
 - Qual seria a sua conclusão se o resultado fosse 21 caras e 79 coroas?
 - É possível que a moeda não é viciada e você tenha extraído uma amostra incomum.
 - Uma maneira de ter certeza é testar toda a população.
 - Uma vez que o resultado é baseado em uma amostra, deve-se aceitar o fato que sua decisão pode estar incorreta.

9-1.1 Hipóteses Estatísticas

Estimação de parâmetros com teste estatístico de hipóteses e com intervalos de confiança são métodos fundamentais usados no estágio de análise dos dados de um **experimento comparativo**, em que o engenheiro está interessado, por exemplo, em comparar a média de uma população com um certo valor especificado.

Definição

Uma **hipótese estatística** é uma afirmação sobre os parâmetros de uma ou mais populações.

9-1.1 Hipóteses Estatísticas

Por exemplo, suponha que estejamos interessados na taxa de queima de um propelente sólido usado para fornecer energia aos sistemas de escapamento de aeronaves.

- A taxa de queima é um variável aleatória que pode ser descrita por uma distribuição de probabilidade.
- Suponha que nosso interesse esteja focado na taxa **média** de queima (um parâmetro dessa distribuição).
- Especificamente, estamos interessados em decidir se a taxa média de queima é ou não 50 centimétros por segundo.

9-1.1 Hipóteses Estatísticas

Hipótese Alternativa Bilateral

 H_0 : μ =50 cm/s

 H_1 : $\mu \neq 50$ cm/s

Hipótese Nula

Hipótese Alternativa

Hipótese Alternativa Unilateral

 H_0 : μ =50 cm/s H_0 : μ =50 cm/s

 H_1 : $\mu \ge 50$ cm/sv H_1 : $\mu < 50$ cm/s

9-1.1 Hipóteses Estatísticas

Teste de uma Hipóteses

- Um procedimento levando a uma decisão acerca de uma hipótese em particular é chamado de **teste de hipótese**.
- Procedimentos de teste de hipótese se apoiam no uso de informações de uma amostra aleatória proveniente da população de interesse.
- Se essa informação for *consistente* com a hipótese, não rejeitaremos a hipótese; no entanto, se essa informação for *inconsistente* com a hipótese, concluiremos que a hipótese é **falsa**.

9-1.2 Testes de Hipóteses Estatístico

Figura 9-1 Critérios de decisão para testar H_0 : $\mu = 50$ centímetros por segundo versus H_1 : $\mu \neq 50$ centímetros por segundo.

9-1.2 Testes de Hipóteses Estatístico

Definições

A rejeição da hipótese nula H_0 quando ela for verdadeira é definida como um **erro tipo I.**

A falha em rejeitar a hipótese nula H_0 quando ela for falsa é definida como **erro tipo II**.

9-1.2 Testes de Hipóteses Estatístico

Algumas vezes, a probabilidade do erro tipo I é chamada de **nível de significância**, ou **error-** α , ou tamanho do teste.

9-1.2 Testes de Hipóteses Estatístico

$$\alpha = P(\overline{X} < 48.5 \text{ when } \mu = 50) + P(\overline{X} > 51.5 \text{ when } \mu = 50)$$

Os valores de z que correspondem aos valores críticos 48.5 e 51.5 são

$$z_1 = \frac{48.5 - 50}{0.79} = -1.90$$
 and $z_2 = \frac{51.5 - 50}{0.79} = 1.90$

Logo,

$$\alpha = P(Z < -1.90) + P(Z > 1.90) = 0.028717 + 0.028717 = 0.057434$$

Figure 9-2 The critical region for H_0 : $\mu = 50$ versus H_1 : $\mu \neq 50$ and n = 10.

 $\alpha = P(\text{Erro tipo I}) = P(\text{rejeitar H}_0 \text{ quando H}_0 \text{ é verdadeira})$ (9-3)

 $\beta = P(\text{Erro tipo II}) = P(\text{falha em rejeitar H}_0 \text{ quando H}_0 \text{ \'e falsa})$ (9-4)

Figura 9-3 A probabilidade do erro tipo II quando $\mu = 52$ e n = 10.

$$\beta = P(48.5 \le \overline{X} \le 51.5 \text{ when } \mu = 52)$$

Os valores z, correspondentes a 48.5 e 51.5 quando µ=52 são

$$z_1 = \frac{48.5 - 52}{0.79} = -4.43$$
 $z_2 = \frac{51.5 - 52}{0.79} = -0.63$

Logo,

$$\beta = P(-4.43 \le Z \le -0.63) = P(Z \le -0.63) - P(Z \le -4.43)$$

= 0.2643 - 0.0000 = 0.2643

$$\beta = P(48.5 \le \overline{X} \le 51.5 \text{ when } \mu = 50.5)$$

Figura 9-4 A probabilidade de erro tipo II quando $\mu = 50.5$ e n = 10.

$$\beta = P(48.5 \le \overline{X} \le 51.5 \text{ when } \mu = 50.5)$$

Como mostrado na Fig. 9-4, os valores de z correspondentes a 48.5 e 51.5 quando µ=50.5 são

$$z_1 = \frac{48.5 - 50.5}{0.79} = -2.53$$
 $z_2 = \frac{51.5 - 50.5}{0.79} = 1.27$

Logo,

$$\beta = P(-2.53 \le Z \le 1.27) = P(Z \le 1.27) - P(Z \le -2.53)$$

= 0.8980 - 0.0057 = 0.8923

$$\beta = P(48.5 \le \overline{X} \le 51.5 \text{ when } \mu = 52)$$

Figura 9-5 A probabilidade do erro tipo II quando μ = 52 e n = 16.

$$\beta = P(48.5 \le \overline{X} \le 51.5 \text{ when } \mu = 52)$$

Quando n=16, e o desvio padrão de \overline{X} é $\sigma/\sqrt{n} = 2.5/\sqrt{16} = 0.625$, e os valores z correspondentes a 48.5 e 51.5, quando μ =52 são

$$z_1 = \frac{48.5 - 52}{0.625} = -5.60$$
 $z_2 = \frac{51.5 - 52}{0.625} = -0.80$

Desse modo,

$$\beta = P(-5.60 \le Z \le -0.80) = P(Z \le -0.80) - P(Z \le -5.60)$$

= 0.2119 - 0.0000 = 0.2119

Região de aceitação	Tamanho da amostra	α	β com μ=52	β com μ=50.5
$48.5 < \overline{x} < 51.5$	10	0.0576	0.2643	0.8923
48 $< \bar{x} < 52$	10	0.0114	0.5000	0.9705
$48.5 < \overline{x} < 51.5$	16	0.0164	0.2119	0.9445
48 $< \bar{x} < 52$	16	0.0014	0.5000	0.9918

Definição

A **potência** de um teste estatístico é a probabilidade de rejeitar a hipótese nula H_0 quando a hipótese alternativa é falsa.

- A potência é calculada como 1 β, e a potência pode ser interpretada como a probabilidade de rejeitar corretamente uma hipótese nula falsa. Frequentemente, comparamos testes estatísticos através da comparação de suas propriedades de potência.
- Por exemplo, considere o problema da taxa de queima de propelente, quando estamos testando H_0 : $\mu = 50$ centímetros por segundo contra H_1 : $\mu \neq 50$ centímetros por segundo. Suponha que o valor verdadeiro da média seja $\mu = 52$. Quando n = 10, encontramos que $\beta = 0.2643$, assim a potência desse teste é $1 \beta = 1 0.2643 = 0.7357$ quando $\mu = 52$.

9-1.3 Hipóteses Unilaterais e Bilaterias <u>Testes Bilaterais</u>:

$$H_0: \mu = \mu_0$$

$$H_1$$
: $\mu \neq \mu_0$

Testes Unilaterais:

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu > \mu_0$$

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu < \mu_0$$

Exemplo 9-1

Considere o problema da taxa de queima de um propelente. Suponha que se a taxa de queima for menor do que 50 centímetros por segundo, desejamos mostrar esse fato com um conclusão forte. As hipóteses deveriam ser estabelecidas como

 H_0 : $\mu = 50$ cm/s

 H_1 : μ <50 cm/s

Aqui, a região crítica está na extremidade inferior da distribuição de \overline{X} . Visto que a rejeição de H_0 é sempre uma conclusão forte, essa afirmação das hipóteses produzirá o resultado desejado se H_0 for rejeitado. Note que, embora a hipótese nula seja estabelecida com um sinal de igual, deve-se incluir qualquer valor de μ não especificado pela hipótese alternativa. Desse modo, falhar em rejeitar H_0 não significa que μ =50 centímetros por segundo exatamente, mas somente que não temos evidência forte em suportar H_1 .

Um engarrafador quer estar certo de que as garrafas reúnem as especificações de pressão interna média ou resistência à explosão, que, para garrafas de 10 onças, a resistência mínima é de 200 psi . O engarrafador decidiu formular o procedimento de decisão para um lote específico de garrafas como um problema de teste de hipóteses. Há duas formulações possíveis para esse problema:

$$H_0$$
: $\mu = 200 \text{ psi}$ ou H_0 : $\mu = 200 \text{ psi}$ H_1 : $\mu > 200 \text{ psi}$ H_1 : $\mu < 200 \text{ psi}$

9-1.4 Valores P nos Testes de Hipóteses

Definição

O **Valor P** é o menor nível de significância que conduz à rejeição da hipótese nula H_0 , com os dados fornecidos.

9-1.4 Valores P nos Testes de Hipóteses

Considere o teste bilateral para a taxa de queima

Com n =16 e σ =2.5. Suponha que a média amostral observada seja \bar{x} = 51.3 centímetros por segundo. A Fig.9-6 mostra uma região crítica para esse teste com valores críticos em 51,3 e no valor simétrico 48,7. O valor de P do teste é o valor α associado com essa região crítica. Qualquer valor menor para α diminui a região crítica e o teste falha em rejeitar a hipótese nula quando \bar{x} = 51,3 centímetros por segundo. O valor de P é fácil de calcular depois de a estatística de teste ser observada. Nesse exemplo:

P-value = 1 -
$$P(48.7 < \overline{X} < 51.3)$$

= $1 - P(\frac{48.7 - 50}{2.5/\sqrt{16}} < Z < \frac{51.3 - 50}{2.5/\sqrt{16}})$
= $1 - P(-2.08 < Z < 2.08)$
= $1 - 0.962 = 0.038$

9-1.4 Valores P nos Testes de Hipóteses

Figura 9-6 O valor P é a área da região sombreada quando

$$\bar{x} = 51.3.$$

9-1.5 Conexão entre Testes de Hipóteses e Intervalos de Confiança

Há uma relação íntima entre o teste de uma hipótese acerca de um parâmetro, ou seja, θ , e o intervalo de confiança para θ . Se [l,u] for um intervalo de confiança de $100(1-\alpha)\%$ para o parâmetro θ , o teste de tamanho α das hipóteses

$$H_0: \theta = \theta_0$$

 $H_1: \theta \neq \theta_0$

Conduzirá a rejeição de H_0 se e somente se θ_0 não estiver no IC[1,u] de 100(1- α)%. Como ilustração, considere o sistema de escape do problema do propelente, com $\bar{x} = 51,3$, $\sigma = 2,5$ e n = 16. A hipótese nula H_0 : μ =50 foi rejeitada, usando α =0,05. O IC bilateral de 95% para μ pode ser calculado usando a equação 8-7. Esse IC é $51.3 \pm 1.96(2.5/\sqrt{16})$, o que quer dizer $50,075 \le \mu \le 52,525$. Uma vez que o valor $\mu_0 = 50$ não está incluído nesse intervalo, a hipótese nula H_0 : μ =50 é rejeitada

9-1.6 Procedimento Geral para Testes de Hipóteses

- 1. A partir do contexto do problema, identifique o parâmetro de interesse.
- 2. Estabeleça a hipótese nula, H_0 .
- 3. Especifique uma hipótese alternativa, H₁.
- 4. Escolha um nível de significância, α .
- 5. Determine uma estatística apropriada de teste.
- 6. Estabeleça a região de rejeição para a estatística.
- 7. Calcule quaisquer grandezas amostrais necessárias, substitua-as na equação para a estatística de teste e calcule aquele valor.
- 8. Decida se H₀ deve ou não ser rejeitada e reporte isso no contexto do problema.

9-2.1 Testes de Hipóteses para a Média

Suponha que desejamos testar as hipóteses:

$$H_0: \mu = \mu_0$$

$$H_1$$
: $\mu \neq \mu_0$

A Estatística de Teste é:

$$Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \tag{9-8}$$

9-2.1 Testes de Hipóteses para a Média

Deve-se rejeitar H_0 se o valor observado da estatística de teste z_0 for:

$$z_0 > z_{\alpha/2}$$
 ou $z_0 < -z_{\alpha/2}$

e devemos falhar em rejeitar H_0 se

$$-z_{\alpha/2} < z_0 < z_{\alpha/2}$$

Figura 9-7 A distribuição de Z_0 quando H_0 : $\mu = \mu_0$ for verdadeira, com região crítica para (a) a alternativa bilateral H_1 : $\mu \neq \mu_0$, (b) a alternativa unilateral H_1 : $\mu \neq \mu_0$ e (c) a alternativa unilateral H_1 : $\mu \neq \mu_0$.

Exemplo 9-2

Os sistemas de escapamento de uma aeronave funcionam devido a um propelente sólido. A taxa de queima desse propelente é uma característica importante do produto. As especificações requerem que a taxa média de queima tem de ser 50 centímetros por segundo. Sabemos que o desviopadrão da taxa de queima é σ =2 centímetros por segundo. O experimentalista decide especificar uma probabilidade do erro tipo I, ou nível de significância, de α =0,05. Ele seleciona uma amostra aleatória de n=25 e obtém uma taxa média amostral de queima de \bar{x} = 51,3 centímetros por segundo. Que conclusões poderiam ser tiradas?

Exemplo 9-2

Podemos resolver este problema através do procedimento de 8 etapas, mencionado na seção 9-1.6. Isso resulta em:

- 1.O parâmetro de interesse é µ, a taxa média de queima
- 2. H_0 : μ =50 centímetros por segundo
- 3. H_1 : $\mu \neq 50$ centímetros por segundo
- $4.\alpha = 0.05$
- 5.A estatística de teste é

$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

Exemplo 9-2

- 6. Rejeitar H_0 se $z_0 > 1,96$ ou se $z_0 < 1,96$. Note que isso resulta da etapa 4, em que especificamos α =0.05 e, assim, os limites da região crítica estão em $z_{0.025} = 1,96$ e $-z_{0.025} = -1,96$.
- 7. Cálculos: desde que \bar{x} =51,3 e σ =2,

$$z_0 = \frac{51.3 - 50}{2/\sqrt{25}} = 3.25$$

8. Conclusão: uma vez que $z_0 = 3.25 > 1.96$, rejeitamos H_0 : $\mu = 50$, com nível de significância de 0,05. Dito de forma mais completa, concluímos que a taxa média de queima difere de 50 centímetros por segundo, baseados em uma amostra de 25 medidas. De fato, há uma forte evidência de que a taxa média de queima exceda 50 centímetros por segundo

9-2.1 Testes de Hipóteses para a Média

Podemos também desenvolver procedimentos para testar hipóteses para a média µ, em que a hipótese alternativa seja unilateral. Suponha que especifiquemos as hipóteses como

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$ (9-11)

Na definição da região crítica para esse teste, observamos que um valor negativo da estatística de Z_0 nunca nos levaria a concluir que H_0 : $\mu = \mu_0$ seria falsa. Por conseguinte, colocaríamos a região crítica na **extremidade superior** da distribuição normal padrão e rejeitaríamos H_0 , se o valor calculado para z_0 fosse muito grande. Isto é, rejeitaríamos H_0 se

$$z_0 > z_\alpha \tag{9-12}$$

9-2.1 Testes de Hipóteses para a Média(Continuação)

Como mostrado na Figura 9-7(b). Similarmente, para testar

$$H_0: \mu = \mu_0$$

 $H_1: \mu < \mu_0$ (9-13)

Calcularíamos a estatística de teste Z_0 e rejeitaríamos H_0 se o valor de z_0 fosse muito pequeno. Ou seja, a região crítica está na **extremidade inferior** da distribuição normal padrão, como mostrado na Figura 9-7(c), e rejeitaríamos H_0 se

$$z_0 < -z_{\alpha} \tag{9-14}$$

9-2.1 Testes de Hipóteses para a Média(Continuação)

Hipótese Nula
$$H_0$$
: $\mu = \mu_0$

$$H_0$$
: $\mu = \mu_0$

$$Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Hipótese Alternativa Critério de Rejeição

$$H_1$$
: $\mu \neq \mu_0$ $z_0 > z_{\alpha/2,n-1}$ or $z_0 < -z_{\alpha/2,n-1}$ H_1 : $\mu > \mu_0$ $z_0 > z_{\alpha,n-1}$ H_2 : $\mu < \mu_0$ $z_0 < -z_{\alpha,n-1}$

Valores P em Testes de Hipóteses

O **Valor P** é o menor nível de significância que conduz à rejeição da hipótese nula H_0 , com os dados fornecidos.

$$P = \begin{cases} 2[1 - \Phi(|z_0|)] & \text{for a two-tailed test: } H_0: \mu = \mu_0 & H_1: \mu \neq \mu_0 \\ 1 - \Phi(z_0) & \text{for a upper-tailed test: } H_0: \mu = \mu_0 & H_1: \mu > \mu_0 \\ \Phi(z_0) & \text{for a lower-tailed test: } H_0: \mu = \mu_0 & H_1: \mu < \mu_0 \end{cases}$$
(9-15)

9-2.3 Teste para Amostra Grande

Desenvolvemos o procedimento de teste para a hipótese nula H_0 : $\mu = \mu_0$ considerando que a população fosse distribuída normalmente e que σ^2 fosse conhecida. Em muitas, senão na maioria das situações práticas, σ^2 será desconhecida. Além disso, não podemos estar certos de que a população seja bem modelada por uma distribuição normal. Nessas situações, se n for grande (n > 40), o desvio-padrão s da amostra poderá substituir σ nos procedimentos de teste, tendo pouco efeito. Desse maneira, enquanto demos um teste para a média de uma distribuição normal, com σ^2 conhecida, ele pode ser facilmente convertido em um procedimento de teste para amostra grande no caso de σ^2 desconhecida, que seja válido independentemente da forma da distribuição da população. Esse teste para amostra grande se baseia no teorema do limite central, tal qual o intervalo de confiança para µ no caso de amostra grande, que foi apresentado no capítulo prévio. O tratamento exato no caso em que a população é normal, com σ^2 sendo desconhecida e n pequeno, envolve o uso da distribuição t, sendo adiado até a Seção 9-3.

9-3.1 Testes de Hipótese para a Média

Hipótese Nula

Estatística de Teste

$$H_0$$
: $\mu = \mu_0$

$$T_0 = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

Hipótese Alternativa Critério de Rejeição

H_1 : $\mu \neq \mu_0$	$t_0 > t_{\alpha/2, n-1}$ or	$t_0 < -t_{\alpha/2,n-1}$
$H_1: \mu > \mu_0$	$t_0 > t_{\alpha,n-1}$	
H_1 : $\mu < \mu_0$	$t_0 < -t_{\alpha,n-1}$	

9-3.1 Testes de Hipótese para a Média

Figure 9-9 A distribuição de referência para H_0 : $\mu = \mu_0$ com região crítica para (a) H_1 : $\mu \neq \mu_0$, (b) H_1 : $\mu > \mu_0$, e (c) H_1 : $\mu < \mu_0$.

Exemplo 9-6

A disponibilidade crescente de materiais leves com uma alta resistência tem revolucionado o projeto e a fabricação de tacos de golfe, particularmente os direcionadores. Tacos com cabeças ocas e faces muito finas podem resultar em tacadas muito mais longas, especialmente para jogadores de habilidades modestas. Isso é devido parcialmente ao "efeito mola" que a face fina impõe a bola. Bater na bola de golfe com a cabeça do taco e medir a razão entre a velocidade de saída da bola e a velocidade de chegada pode quantificar esse efeito mola. A razão de velocidades é chamada de coeficiente de restituição do taco. Um experimento foi feito em 15 tacos direcionadores produzidos por um determinado fabricante de tacos foram selecionados ao acaso e seus coeficientes de restituição foram medidos. No experimento, bolas de golfe foram atingidas a partir de um canhão de ar, de modo que a velocidade de chegada e a taxa de giro da bola poderiam ser precisamente controladas. É de interesse determinar se há evidênia (com α=0,05 que suporte a afirmação de que o coeficiente médio de restituição exceda 0,82). As observações seguem:

0.8411	0.8191	0.8182	0.8125	0.8750
0.8580	0.8532	0.8483	0.8276	0.7983
0.8042	0.8730	0.8282	0.8359	0.8660

Exemplo 9-6

A média e o desvio-padrão da amostra são $\bar{x} = 0.83725$ e s = 0,02465. O gráfico de probabilidade normal dos dados na Figura 9-10 suporta a suposição de que o coeficiente médio da restituição é normalmente distribuído. Uma vez que o objetivo do experimentalista é demonstrar que o coeficiente médio de restituição excede 0,82, um hipótese alternativa unilateral, é apropriada.

- 1. O parâmetro de interesse é o coeficiente médio de restituição, µ.
- 2. H_0 : $\mu = 0.82$.
- 3. H_1 : $\mu > 0.82$. Queremos rejeitar H_0 se o coeficiente médio de restituição exceder 0.82.
- 4. $\alpha = 0.05$ 5. A estatística de teste é: $t_0 = \frac{\overline{x} - \mu}{s/\sqrt{n}}$

Exemplo 9-6

Figura 9-10

Gráfico de probabilidade normal dos dados de carga de falha do Exemplo 9-6.

Example 9-6

- 6. Rejeite H_0 se $t_0 > t_{0.05:14} = 1,761$
- 7. Calculos: Já que x = 0.83725, s = 0.02456, $\mu_0 = 0.82$ e n =15 temos

$$t_0 = \frac{0.83725 - 0.82}{0.02456/\sqrt{15}} = 2.72$$

8. Conclusões: uma vez que $t_0 = 2.72 > 1,761$, rejeitamos H_0 e concluímos, em um nível de 0,05 de significância, que o coeficiente médio de restituição excede 0,82.

9-3.2 Valor P para um Teste t

O valor P para um teste t é apenas o menor nível de significância no qual a hipótese nula seria rejeitada.

Para ilustrar, considere o teste t baseado em 14 graus de liberdade no Exemplo 9-6. Os valores críticos relevantes da Tabela IV do Apêndice são dados a seguir:

Critical Value: 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 Tail Area: 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

Note que $t_0 = 2.72$ no Exemplo 9-6, e que esse valor está entre dois valores tabelados, 2.624 e 2.977. Desse modo, o valor P tem de estar entre 0.01 e 0.005. Esses são efetivamente os limites superior e inferior para o valor P.

9-4.1 Testes de Hipóteses para a Variância

Suponha que desejamos testar a hipótese de que a variância de uma população normal σ^2 seja igual a um valor específico, como σ^2_0 , ou equivalentemente, que o desvio-padrão σ seja igual a σ_0 . Seja $X_1, X_2, ..., X_n$ uma amostra aleatória de n aobservações proveniente dessa população. Para testar

$$H_0$$
: $\sigma^2 = \sigma_0^2$
 H_1 : $\sigma^2 \neq \sigma_0^2$ (9-26)

Usaremos a estatística de teste

$$X_0^2 = \frac{(n-1)S^2}{\sigma_0^2} \tag{9-27}$$

9-4.1 Testes de Hipóteses para a Variância

Se a hipótese nula H_0 : $\sigma^2 = \sigma_0^2$ for verdadeira, então a estatística de teste X_0^2 , definida na Equação 9-27, segue a distribuição qui-quadrado, com n-1 graus de liberdade. Consequentemente, calculamos X_0^2 , o valor da estatística de teste X_0^2 e a hipótese H_0 : $\sigma^2 = \sigma_0^2$ será rejeitada se

$$\chi_0^2 > \chi_{\alpha/2, n-1}^2$$
 or if $\chi_0^2 < \chi_{1-\alpha/2, n-1}^2$

Sendo $X^2_{\alpha/2,n-1}$ e $X^2_{1-\alpha/2,n-1}$ os pontos superior e inferior $100\alpha/2\%$ da distribuição qui-quadrado, com n-1 graus de liberdade, respectivamente. A Fig 9-11(a) mostra a região crítica.

9-4.1 Testes de Hipóteses para a Variância

A mesma estatística de teste é usada para as hipóteses alternativas unilaterais. Para hipótese unilateral

$$H_0: \sigma^2 = \sigma_0^2$$

 $H_1: \sigma^2 > \sigma_0^2$ (9-28)

rejeitaríamos H_0 se $X^2_0 > X^2_{\alpha,n-1}$, enquanto para a outra hipótese unilateral

$$H_0: \sigma^2 = \sigma_0^2$$

 $H_1: \sigma^2 < \sigma_0^2$ (9-29)

Rejeitaríamos H_0 se $X^2_{0} < X^2_{1-\alpha,n-1}$. As regiões críticas unilaterais são mostradas nas Figuras 9-11(b) e (c).

9-4.1 Testes de Hipóteses para a Variância

Figura 9-11 A distribuição de referência para o teste H_0 : $\sigma^2 = \sigma^2_0$, com valores da região crítica para (a), H_1 : $\sigma^2 \neq \sigma^2_0$ (b), H_1 : $\sigma^2 > \sigma^2_0$ e (c) H_1 : $\sigma^2 < \sigma^2_0$.

Exemplo 9-8

Uma máquina de enchimento automático é usada para encher garrafas com detergente líquido. Uma amostra aleatória de 20 garrafas resulta em uma variância amostral de volume de enchimento de $s^2 = 0.0153$ (onça fluida)². Se a variância do volume de enchimento exceder 0.01 (onça fluida)², existirá proporção inaceitável de garrafas cujo enchimento não foi completo e cujo enchimento foi em demasia. Há evidências nos dados da amostra que sugira que o fabricante tenha um problema com garrafas cheias com falta e excesso de detergente? Use α =0.05 e considere que o volume de enchimento tenha uma distribuição normal. Usando o procedimento das oito etapas resulta no seguinte:

1.O parâmetro de interesse é a variância da população σ^2 .

 $2.H_0$: $\sigma^2 = 0.01$

 $3.H_1$: $\sigma^2 > 0.01$

4.A = 0.05

5.A estatística do teste é

$$\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

Exemplo 9-8

- 6. Rejeitar H_0 se $X_0^2 > X_{0,05,19}^2 = 30,14$
- 7. Cálculos

$$\chi_0^2 = \frac{19(0.0153)}{0.01} = 29.07$$

8. Conclusões: uma vez que $X_0^2=29,07 < X_{0,05,19}^2=30,14$, concluímos que não há evidência forte de que a variância no volume de enchimento excede 0,01 (onça fluida)².

9-4.2 Erro Tipo II e Escolha do Tamanho da Amostra

Para a hipótese alternativa bilateral:

$$\lambda = \frac{\sigma}{\sigma_0}$$

Curvas características operacionais para os testes quiquadrado na Seção 9-4.1 são fornecidas nos Gráficos VI*i* and VI*j*

Exemplo 9-9

Considere o problema do enchimento das garrafas do Exemplo 9-8. Se a variância do processo de enchimento exceder 0,01 (onça fluida)2, então muitas garrafas não serão cheias completamente. Dessa forma, o valor da hipótese do desvio-padrão é $\sigma 0 = 0,10$. Suponha que se o desvio-padrão verdadeiro do processo de enchimento excedesse esse valor por 25%, gostaríamos de detectar isso com uma probabilidade de no mínimo 0,8. O tamanho da amostra de n=20 é adequado? Para resolver esse problema, note que requeremos

$$\lambda = \frac{\sigma}{\sigma_0} = \frac{0.125}{0.10} = 1.25$$

Esse é o parâmetro da abscissa para o Gráfico VIIk. A partir desse gráfico, com n=20 e λ =1,25, encontramos que β \cong 0,6. Por conseguinte, há somente cerca de 40% de chance de a hipótese nula ser rejeitada, se o desvio-padrão verdadeiro for realmente tão alto quanto σ =0,125 onça fluida.

De modo a reduzir o erro β , uma amostra de maior tamanho tem de ser usada. A partir da curva de característica operacional, com β =0,20 e λ = 1,25, encontramos que n = 7, aproximadamente. Assim, se quisermos que o teste tenha o desempenho requerido, o tamanho da amostra tem de ser no mínimo 75 garrafas.

9-5.1 Testes para uma Proporção, Amostra Grande

Em muitos problemas de engenharia de tomadas de decisão incluem testar hipóteses usando teste p.

$$H_0: p = p_0$$

$$H_1: p \neq p_0$$

Uma estatística do teste:

$$Z_0 = \frac{X - np_0}{\sqrt{np_0(1 - p_0)}} \tag{9-32}$$

and reject H_0 : $p = p_0$ if

$$z_0 > z_{\alpha/2}$$
 or $z_0 < -z_{\alpha/2}$

Exemplo 9-10

Um fabricante de semicondutores produz controladores usados em aplicações no motor de automóveis. O consumidor requer que a fração de defeitos em uma etapa crítica da fabricação não exceda 0,05 e que o fabricante demonstre uma capacidade de processo desse nível de qualidade, usando $\alpha = 0,05$. O fabricante de semicondutores retira uma amostra aleatória de 200 aparelhos e encontra que quatro deles são defeituoso. O fabricante pode demonstrar uma capacidade de processo para o consumidor? Podemos resolver esse problema usando o procedimento das 8 etapas do teste de hipótese, conforme se segue

- 1.O parâmetro de interesse é a fração defeituosa do processo p
- $2.H_0: p = 0.05$
- $3.H_1: p < 0.05$

Essa formulação do problema permitirá ao fabricante fazer uma afirmativa forte sobre a capacidade defeituoso do processo p se a hipótese nula H₀:p=0,05 for rejeitada

4.
$$\alpha = 0.05$$

Exemplo 9-10

5. A estatística de teste é (da Equação 9-32)

$$z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$$

Sendo
$$x = 4 n = 200 e p_0 = 0.05$$

- 6. Rejeite H_0 : p = 0.05 se $z_0 < -z_{0.05} = -1.645$
- 8. Conclusões: uma vez que $z_0 = -1,95 < -z_{0,05} = 1,645$, rejeitamos H_0 e concluímos que a fração defeituosa do processo, p, é menor do que 0,05. O valor P para esse valor da estatística de teste z_0 é P = 0,0256, que é menor que α . Concluímos que o processo é capaz.

Outra forma de Estatíticas de Teste Z_0

$$Z_0 = \frac{X/n - p_0}{\sqrt{p_0(1 - p_0)/n}}$$
 ou $Z_0 = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}}$

9-5.2 Erro Tipo II e Escolha do Tamanho da Amostra

Para Alternativa Bilateral

$$\beta = \Phi\left(\frac{p_0 - p + z_{\alpha/2}\sqrt{p_0(1 - p_0)/n}}{\sqrt{p(1 - p)/n}}\right) - \Phi\left(\frac{p_0 - p - z_{\alpha/2}\sqrt{p_0(1 - p_0)/n}}{\sqrt{p(1 - p)/n}}\right)$$
(9-34)

Se a Alternativa for $p < p_0$

$$\beta = 1 - \Phi\left(\frac{p_0 - p - z_\alpha \sqrt{p_0(1 - p_0)/n}}{\sqrt{p(1 - p)/n}}\right)$$
(9-35)

Se a Alternativa for $p > p_0$

$$\beta = \Phi\left(\frac{p_0 - p + z_{\alpha}\sqrt{p_0(1 - p_0)/n}}{\sqrt{p(1 - p)/n}}\right)$$
(9-36)

9-5.3 Erro do Tipo II e Escolha do Tamanho da

Amostra Para alternativa Bilateral

$$n = \left[\frac{z_{\alpha/2} \sqrt{p_0 (1 - p_0)} + z_{\beta} \sqrt{p(1 - p)}}{p - p_0} \right]^2$$
 (9-37)

Para alternativa Unilateral

$$n = \left[\frac{z_{\alpha}\sqrt{p_0(1-p_0)} + z_{\beta}\sqrt{p(1-p)}}{p-p_0}\right]^2$$
 (9-38)

Exemplo 9-11

Considere o fabricante de semicondutores do Exemplo 9-10. Suponha que a fração defeituosa de seu processo seja realmente o = 0,03. Qual é o

Suponha que a fração defeituosa de seu processo seja realmente o = 0,03. Qual e o erro β para esse teste de capacidade de processo, que usa n=200 e α =0,05?

O erro β pode ser calculado usando a Equação 9-35, conforme se segue:

$$\beta = 1 - \Phi \left[\frac{0.05 - 0.03 - (1.645)\sqrt{0.05(0.95)/200}}{\sqrt{0.03(1 - 0.03)/200}} \right] = 1 - \Phi(-0.44) = 0.67$$

Assim, a probabilidade é cerca de 0,7 do fabricante de semicondutores falhar em concluir que o processo seja capaz, se a fração verdadeira defeituosa do processo for p = 0,03 (3%). Ou seja, a potência do teste contra essa alternativa particular é somente cerca de 0,3. Isso parece ser um grande erro β (ou baixa potência), porém a diferença entre p = 0,05 e p = 0,03 é razoavelmente pequena e o tamanho da amostra n = 200 não é particularmente grande.