CAMADA DE REDE

Definição: é a terceira camada do modelo OSI, e corresponde a camada de internet na pilha TCP/IP.

Funções

Rotear pacotes entre dois hosts (máquina conectada em uma rede).

Endereçar os pacotes de dados.

Converter endereços lógicos (IP) em endereços físicos (MAC).

Fragmentar os dados a serem transmitidos.

Escolher o melhor caminho, usando o encaminhamento.

Em outras palavras, a camada de rede faz o endereçamento, encapsulamento, desencapsulamento e roteamento.

Endereçamento: é o endereço IP dos dispositivos, eles identificam as máquinas dentro de uma rede.

Encapsulamento: encapsula o PDU (unidade de dados de protocolo) da camada de transporte em um pacote. Adiciona informações de cabeçalho IP, como o endereço IP dos hosts de origem e destino. Esse processo é feito pela fonte do pacote IP.

Roteamento: fornecimento de serviços para direcionar os pacotes a um host de destino em outra rede (ou na mesma).

Desencapsulamento: é realizado quando o pacote chega à camada de rede do host de destino. O destinatário verifica o endereço IP dentro do cabeçalho, caso seja igual, o cabeçalho IP será removido do pacote.

IP - Internet protocol

É um protocolo de entrega de pacotes não confiável, de melhor esforço, isto é, os pacotes podem ser pedidos, ficar fora de ordem ou serem duplicados.

Endereço IP

Pode ser utilizado para identificar um dispositivo dentro de uma rede ou para identificar na internet, ele localiza as máquinas com um endereço único.

O que é?

Uma sequência de 32 bits, dividida em quatro sequência de 8 bits. Cada sequência é chamada de octeto (ou byte).

Por que não utilizar o endereço MAC para identificar os dispositivos na rede?

O endereço MAC guarda somente informações do dispositivo, seria muito custoso fazer uma tabela com todos os endereços MAC do mundo.

O endereço IP além de identificar o dispositivo, ele mostra a localização da máquina, já que em sua estrutura é dividida as sub-redes, dessa forma fica muito mais fácil identificar onde o pacote deve chegar. Com o endereço MAC toda hora que fosse necessário enviar um pacote seria preciso analisar uma lista enorme com vários endereços.

IPv4 (versão 4)

Existem 5 classes, sendo 3 principais e duas complementares.

Classe A: 0.0.0.0 - 127.255.255.255, disponibiliza 128 redes, que individualmente permitem 16.777.214 de dispositivos.

Utilizado onde tem poucas redes, mas grandes quantidades de dispositivos conectados. O primeiro octeto identifica a rede, e o restante, os dispositivos conectados.

Classe B: 128.0.0.0 - 191.255.255.255, disponibiliza 16.384 redes, que individualmente permitem 65.536 dispositivos.

Utilizado quando a quantidade de redes é semelhante ao número de dispositivos. Os dois primeiros octetos identificam a rede.

Classe C: 192.0.0.0 - 223.255.255, disponibiliza 2.097.152 redes, que individualmente permite 254 dispositivos.

Utilizados em lugares que precisam de muitas redes, mas que tenham poucos dispositivos conectados em cada uma.

Os 3 primeiros octetos são usados para identificar a rede.

Classe D: 224.0.0.0 - 239.255.255.255, multicast.

Usada para propagação de pacotes especiais.

Classe E: 240.0.0.0 até 255.255.255. multicast reservado.

reservado para aplicações futuras ou experimentais.

Observação: endereço que começa com 127, geralmente indica uma rede falsa, utilizada para testes.

127.0.0.1 é o próprio dispositivo.

255.255.255 é utilizado para enviar mensagem para todos os hosts de uma rede de forma simultânea.

Endereços privados

Os endereços privados são utilizados para aplicações locais, ou seja, não é possível utilizá-los na internet.

Classe A: 10.0.0.0 - 10.255.255.255;

Classe B: 172.16.0.0 - 172.31.255.255;

Classe C: 192.168.0.0 - 192.168.255.255.

Sub-redes

Auxilia para não desperdiçar endereços IP. Basicamente divide uma rede grande em redes menores. Essa subdivisão permite que cada sub-rede tenha uma performance melhor, pois não será necessário que os dados passem por vários roteadores para chegar ao destino. Além disso, melhora a administração e a segurança.

Significado de máscara em computação

É um dado utilizado para realizar operações de lógica binária (AND, OR, NOT E XOR) nos campos de bit. Com isso, um ou mais bits em um byte pode ser ativado, desativado ou ter seu valor lógico invertido.

Máscara de sub-rede

Tem 32 bits como o endereço IP, e tem como finalidade mascarar partes do endereço IP, ou seja, indicar qual parte é a rede, a sub-rede e qual é o host.

A parte que tem os valores "1" representa qual parcela de um endereço IP serão vistos como endereço de rede, e os bits zeros representam o endereço de host.

Exemplo de uma mascara: 255.255.255.240

Para binário

11111111.111111111.111111111.1111.0000

Vermelho - rede

Verde - sub-rede

Roxo - host

Classes de máscara de sub-rede

A: 255.0.0.0 B: 255.255.0.0;

C: 255.255.255.0.

Exemplo: endereço 192.172.0.50 que tem uma máscara de rede 255.255.255.0. A parte que corresponde à rede é 192.172.0 e o host é 50.

Cálculo de sub-rede

Endereço: 192.168.1.61

Máscara de sub-rede: 255.255.255.0

Como descobrir a qual rede pertence esse IP:

1º transformar para binário

Endereço IP: 11000000.10101000.00000001.00111101

Máscara de sub-rede 11111111.11111111.11111111.000000000

2º realizar operação AND para descobrir a rede

11000000.10101000.00000001.00111101

11111111.111111111.11111111.000000000 =

11000000.10101000.00000001.00000000 (192.168.1.0)

192.168.1.0 - esse é o endereço da rede que esse IP pertence, o 0 indica o host.

Por que utilizamos o operador AND para descobrir a rede?

O operador booleano AND permite mascarar os bits que deseja tirar do caminho. O número binário "1" tem o mesmo significado de 'manter', já o "0" de 'limpar'. Com o operador AND é possível limpar todos os bits do host, deixando dessa forma somente o que queremos, o endereço da rede.

Observação: o endereço "0" é atribuído a um endereço de rede e "255" é atribuído a um endereço de broadcast, e eles não podem ser atribuídos a hosts.

Roteador

Os roteadores utilizam uma tabela de roteamento para saber o lugar (roteadores) que os pacotes devem passar até chegar ao destino, essa tabela pode ser estática ou dinâmica. O algoritmo utilizado para montar essa tabela é o **Dijkstra's algorithm.**

Gateway

É um dispositivo intermediário que faz a conversão de protocolos, ou seja, quando duas redes possuem regras distintas ele estará lá para auxiliar na comunicação. Os roteadores e firewall são exemplos de gateway.

Diferença entre switch de rede e o roteador

O switch de rede encaminha pacotes entre dispositivos pertencentes à mesma rede, já o roteador consegue encaminhar dados entre redes distintas.

Fragmentação

Cada tipo de rede impõe um tamanho máximo aos seus pacotes, por conta de diversos motivos, como hardware, sistema operacional e protocolos.

Em poucas palavras, há um limite de transmissão permitido em cada estrutura de rede, chamado MTU (unidade de transmissão máxima), se o pacote IP ultrapassar esse limite ele será quebrado (fragmentado) em pacotes menores para que seja possível trafegar entre a rede.

Broadcast - envia mensagem para todos.

Roteadores não enviam broadcast para todos (apenas na rede local).

Multicast - envia mensagem para alguns dispositivos.

Unicast - envia mensagem para apenas um dispositivo.

REFERÊNCIAS

https://www.infowester.com/ip.php

https://docente.ifrn.edu.br/tadeuferreira/disciplinas/2012.1/redes-i-eja/Aula17.pdf

https://www.cloudflare.com/pt-br/learning/network-layer/what-is-the-network-layer/

https://ccna.network/caracteristicas-da-camada-de-rede/

https://blog.hosts.green/mascara-de-rede/

https://brasilcloud.com.br/duvidas/o-que-e-uma-mascara-de-sub-rede-sub-mask/

https://networkengineering.stackexchange.com/questions/79546/what-is-the-logic-of-and-and-or-operations-in-subnetting

https://people.richland.edu/dkirby/141anding.htm

https://www.youtube.com/watch?v=wBBrO06HIP4&ab_channel=B%C3%B3sonTreinament os

https://www.cloudflare.com/pt-br/learning/network-layer/what-is-a-subnet/

https://www.cbtnuggets.com/blog/cbt-nuggets/five-reasons-to-subnet

https://portaldeplanos.com.br/artigos/gateway/#pop-up-claro

http://www.bosontreinamentos.com.br/redes-computadores/o-que-e-mascara-de-sub-rede/

https://www.youtube.com/watch?v=GGmhv1Wz6fc&ab channel=Ot%C3%A1vioMiranda