

Big Data

Franz Wimmer franz.wimmer@qaware.de

Big Data

"If all digital data were stored on punch cards, how big would Google's data warehouse be?"

 FOUR BOXES OF PUNCH CARDS OUGHT TO BE ENOUGH FOR ANYONE.

Quelle: https://what-if.xkcd.com/63/

https://www.youtube.com/watch?v=164CQp6zOPk&t=275s (Randall Munroe @ TED)

Big Data – was ist das überhaupt?

Charakteristische Eigenschaften:

- Die Größe des Datensatzes
- Die Komplexität des Datensatzes
- Die Technologien, die Verwendet werden, um den Datensatz zu verarbeiten

"Big data is a term describing the storage and analysis of large and or complex data sets using a series of techniques including, but not limited to: NoSQL, MapReduce and machine learning"

Quelle: . S. Ward und A. Barker. Undefined by data: a survey of big data definitions. arXiv preprint arXiv:1309.5821, 2013.

Big Data

Big Data
Verarbeitung
großer
Datenmengen
durch:

Big Data

- verteilte und hochgradig parallelisierte Verarbeitung.
- verteilte und effizient organisierte Datenablagen.

DATA & AI LANDSCAPE 2019

Wie verwalte und erschließe ich große Datenmengen?

Die Cloud Computing Antwort: Ich verteile sie auf viele Rechner in der Cloud und schaffe eine übergreifende Zugriffsschnittstelle.

Große Datenmengen können effizient nur von parallelen Algorithmen verarbeitet werden.

Ein Algorithmus ist genau dann parallelisierbar, wenn er in einzelne Teile zerlegt werden kann, die keine Seiteneffekte zueinander haben.

■ Funktioniert gut: Quicksort. Aufwand: $O(n \log n) \rightarrow n \times O(\log n)$

```
private void QuicksortParallel<T>(T[] arr, int left, int right)
where T : IComparable<T>
{
    if (right > left)
    {
        int pivot = Partition(arr, left, right);
        Parallel.Do(
            () => QuicksortParallel(arr, left, pivot - 1),
            () => QuicksortParallel(arr, pivot + 1, right));
    }
}
```

Funktioniert nicht: Berechnung der Fibonacci-Folge ($F_{k+2} = F_k + F_{k+1}$). Berechnung ist nicht parallelisierbar.

Ein paralleler Algorithmus (<u>Job</u>) ist aufgeteilt in sequenzielle Berechnungsschritte (<u>Tasks</u>), die parallel zueinander abgearbeitet werden können. Der Entwurf von parallelen Algorithmen folgt oft dem Teile-und-Herrsche Prinzip.

Parallele Programmierung basiert oft auf funktionaler Programmierung.

- Ein funktionales Programm besteht (ausschließlich) aus Funktionen.
- Eine Funktion ist die Abbildung von Eingabedaten auf Ausgabedaten: $f(E) \rightarrow A$ Eine Funktion ändert die Eingabedaten dabei nicht.
- Funktionen sind idempotent:
 - Sie erzeugen neben den Ausgabedaten keine weiteren Seiteneffekte.
 - → Funktionen sind somit ideal parallelisierbar und zur Beschreibung von Tasks geeignet.
 - Sie erzeugen für die gleichen Eingabedaten auch stets die gleichen Ausgabedaten.
 - → Funktionen können im Fehlerfall stets neu ausgeführt werden. Parallele Verarbeitung ist aus technischen Gründen oft fehleranfällig. Damit kann eine Fehlertoleranz sichergestellt werden.

Parallele Programmierung kann sowohl im Kleinen als auch im Großen betrieben werden.

Keine Parallelität

Parallelität im Kleinen

Vorteile im Vergleich:

- Höherer Durchsatz
- Bessere Auslastung der Hardware
- Vertikale Skalierung möglich

Parallelität im Großen Vorteile im Vergleich:

- Höherer Durchsatz
- Horizontale Skalierung möglich (Scale Out).
- Keine hardwarebedingte Limitierung des Datenvolumens
 - (→ Big Data ready).

Big Data erfordert Parallelität im Großen. Die vier Paradigmen der Parallelität im Großen:

Folgt aus Datenmenge im Vergleich zur Programmgröße

Das Grundprinzip von paralleler Verarbeitung.

Folgt aus Praxisanforderung: Viele Knoten bedeutet viele Ausfallmöglichkeiten

- 1. Die Logik folgt den Daten.
- 2. Falls Datentransfer notwendig, dann so schnell wie möglich:
 In-Memory vor lokaler Festplatte vor RemoteTransfer.
- 3. Parallelisierung über *Tasks* (seiteneffektfreie Funktionen) und *Jobs* (Ausführungsvorschrift für Tasks) sowie entsprechend partitionierter Daten (*Shards*).
- Design for Failure: Ausführungsfehler als
 Standardfall ansehen und verzeihend und kompensierend sein.

Notwendige Architekturk on zepte

- 1. Verteilung der Daten
- 2. Verteilung und Überwachung von Tasks
- 3. Aufteilung der Ressourcen
- 4. Entwurfsmuster zur Implementierung von Jobs

Eine Standardarchitektur für Parallelität im Großen

Eine **Job-Steuerung**, die einzelne Jobs zur Ausführung bringt.

Sie übergibt die Tasks eines Jobs entsprechend der Ausführungsvorschrift der Task-Steuerung und verhandelt dabei die notwendigen Ressourcen, überwacht deren Ausführung und kompensiert Fehlersituationen z.B. durch Wiederaufsetzen einzelner Tasks. Es existiert i.d.R. eine Job-Steuerung pro Entwurfsmuster.

Ein Verteilter Datenspeicher

(Dateisystem, Datenbank, Hauptspeicher) mit Datenredundanz u.A. für Ausfallsicherheit, einem Sicherheitskonzept (Rechte&Rollen, Verschlüsselung), integrierter Kompression, einem Metadatenkatalog und hoher Scan-Geschwindigkeit.

Ein Verteilter Daten- und Nachrichtenaustausch.

Grundlage: Zuverlässige und effizientes Kommunikationsprotokoll (i.d.R. binär und komprimiert).

Task-Container (i.d.R. Prozesse) mit exklusiver, temporärer Ressourcen-Zuordnung (*Slot*) zur isolierten Ausführung von Tasks auf einem Knoten.

Task als nicht weiter parallelisierbarer Ausführungsschritt.

Job als logische Klammer um Tasks inkl. deren Ausführungsvorschrift.

Diese leitet sich aus dem verwendeten Entwurfsmuster ab, wie z.B. MapReduce, DAG, MPI, Pipes & Filters.

Eine **Task-Steuerung**, die einzelne Tasks zur Ausführung bringt.

Sie nimmt Anfragen zur Task-Ausführung entgegen, plant sie gemäß einer festgelegten Strategie (z.B. Fairness, Kosteneffizienz, gleichmäßige Auslastung, SLAs, ...) zur Ausführung ein und führt sie schließlich aus und überwacht den Ressourcenverbrauch.

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilté Dateisysteme
- In-Memory Data Grids / Elastic Memory

Verteilte Algorithmen

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilte Dateisysteme
- In-Memory Data Grids / Elastic Memory

Die map und reduce Funktion.

Die map-Funktion: Transformation einer Menge von Datensätzen in eine Zwischendarstellung.
 Erzeugt aus einem Schlüssel und einem Wert eine Liste an Schlüssel-Wert-Paaren.

```
Signatur: map(k, v) \rightarrow list(\langle k', v' \rangle)
```

Die reduce-Funktion: Reduktion der Zwischendarstellung auf das Endergebnis.
 Verarbeitet <u>alle Werte mit gleichem Schlüssel</u> zu einer Liste an Schlüssel-Wert-Paaren.

```
Signatur: reduce(k', list(v')) \rightarrow list(\langle k'', v'' \rangle)
```

Dabeisoll gelten: |list(<k'', v''>)| << |list(<k', v'>)|

Programme werden in (mehrere) Map-Reduce-Zyklen aufgeteilt. Das Framework übernimmt die Parallelisierung.

Bedeutung der Pfeile: Datenfluss

17

Die Map-Phase

Reduce

- Parallele Verarbeitung verschiedener Teilbereiche der Eingabedaten.
- Eingabedaten liegen in Form von Schlüssel/Wert-Paaren vor.
- Abbildung auf variable Anzahl von neuen Schlüssel/Wert-Paaren. Dabei sind alle Abbildungsvarianten zulässig:
- Beispiel: WordCount

Ein- und Ausgabe der Map-Phase:

Pseudocode Map-Phase:

```
map(String key, String value):
    //key: document name
    //value: document contents
    for each word in value:
        EmitIntermediate(word, "1");
```

Die Shuffle-Phase

Map

Shuffle

Reduce

- Verarbeitung der Ergebnisse aus der Map-Phase.
- Ausgaben aus der Map-Phase werden entsprechend ihrem Schlüssel sortiert und gruppiert.
- Im Standard-Fall ist die Shuffle-Phase nicht parallelisiert.
- Sie kann jedoch mittels einer Vor-Sortierung in der Map-Phase über eine Partitionierungsfunktion (z.B. Hash) auf den Schlüssel parallelisiert werden.

Die Reduce-Phase

Split

Мар

Shuffle

Reduce

- Parallele Verarbeitung von Ergebnis-Gruppen aus der Map-Phase.
 Es wird pro Reduce-Vorgang genau eine dieser Gruppen verarbeitet.
- Eingabedaten liegen in Form von Schlüssel-Wertlisten vor.
- Abbildung auf variable Anzahl an Schlüssel/Wert-Paaren. Dabei sind alle Abbildungsvarianten zulässig:

Ein- und Ausgabe der Reduce-Phase:

Pseudocode Reduce-Phase:

```
reduce(String key, Iterator values):
   //key: a word
   //values: a list of counts
   for each value in values:
     result += ParseInt(value);
     Emit(AsString(Key +", "+result));
```

Übersicht über alle Phasen

Anwendungsbeispiele für MapReduce (1/2)

Verteilte Häufigk eitsanalyse

Wie häufig kommen welche Wörter in einem Text vor?

- map (Textfragment) → <Wort, 1>: Erkennt einzelne Wörter im Textfragment.
- reduce(<Wort, list(1)>) → <Wort, Anzahl>: Zählt die Anzahlzusammen.

Verteiler regulärer Ausdruck

In welchen Zeilen eines Textes kommt ein Suchmuster vor?

- map (Textfragment) → <Zeile, 1>: Findet das Suchmuster im Textfragment.
- reduce(<Zeile, list(1)>) → <Zeile, Anzahl>: Zählt pro Zeile die Anzahl zusammen.

Graph mit Seitenverweisen extrahieren

Welche Seiten verweisen aufeinander? Dies ist z.B. Grundlage für den PageRank-Algorithmus.

- map (Webseite) → <Ziel, Quelle>: Findet für die Quelle einzelne Verweise auf Ziel-Seiten.
- reduce (<Ziel, list (Quelle)>) → <Ziel, set (Quelle)>: Erzeugt eine Hyperkante und eliminiert doppelte Quellen pro Ziel.

Anwendungsbeispiele für MapReduce (2/2)

Weitere Beispiele:

- Dijkstra-Algorithmus (kürzester Pfad in einem Graphen): http://famousphil.com/blog/2011/06/a-hadoop-mapreduce-solution-to-dijkstra%E2%80%99s-algorithm/
- Machine Learning Algorithmen: http://mahout.apache.org
- PageRank-Algorithmus: http://www.cs.toronto.edu/~jasper/PageRankForMapReduceSmall.pdf
- Allgemeine Graph-Algorithmen: http://www.adjoint-functors.net/su/web/354/references/graph-processing-w-mapreduce.pdf
- Allgemeine Suche in Daten: http://pig.apache.org

Apache Spark

Spark läuft Hadoop aktuell deutlich den Rang ab.

	Hadoop MR	Spark	Spark
	Record	Record	1 PB
Data Size	102.5 TB	100 TB	1000 TB
Elapsed Time	72 mins	23 mins	234 mins
# Nodes	2100	206	190
# Cores	50400 physical	6592 virtualized	6080 virtualized
Cluster disk	3150 GB/s	618 GB/s	570 GB/s
throughput	(est.)		
Sort Benchmark	Yes	Yes	No
Daytona Rules			
Network	dedicated data	virtualized (EC2)	virtualized (EC2)
	center, 10Gbps	10Gbps network	10Gbps network
Sort rate	1.42 TB/min	4.27 TB/min	4.27 TB/min
Sort rate/node	0.67 GB/min	20.7 GB/min	22.5 GB/min

http://sortbenchmark.org

Die Resilient Distributed Dataset (RDD) Datenstruktur ist die Abstraktion des Spark Cores.

Eine RDD ist in der Außensicht ein klassischer Collection-Typ mit Transformations- und Aktionsmethoden

RDD → RDD → skalarer Typ, Collection, Storage

Die Anatomie eines RDDs.

Data Lineage – keine vollständige Neuberechnung bei Verlust eines RDDs

RDD

Lazy
Evaluation erst wenn
Action
aufgerufen
wird.

RDD

Referenzen auf Daten

Referenz auf Vorgänger RDD

Auszuführende Transformation

- Verteiltes Dateisystem
- Hauptspeicher
- Beliebiger anderer Datenspeicher

Daten verarbeiten: Mehr als Map und Reduce.

Filter

Map

```
val lengths = logData.map(line => line.length)
```

Reduce

```
val maxLength = lengths.reduce(Math.max)
```

Sort

```
val sorted = logData.sortBy(l => l.length)
```

map(func) flatMap(func) filter(func) groupByKey() reduceByKey(func) mapValues(func)

```
take(N)
count()
collect()
reduce(func)
takeOrdered(N)
top(N)
```

Wie funktioniert das?

```
/* SimpleApp.scala */
                                                                           Worker Node
import org.apache.spark.SparkContext
                                                                           Executor
                                                                                 Cache
import org.apache.spark.SparkConf
                                                                                  Task
                                            Driver Program
object SimpleApp {
                                             SparkContext
                                                           Cluster Manager
                                                                             ker Node
 def main(args: Ar; /[String]) {
   val logFile = "UR_SPARK_HOME/README.m"
                                                                           Executor
                                                                                 Cache
   val conf = new parkConf().setAppName("
                                                                                  Task
   val sc = new SparkContext(conf)
   val logData = sc.textFile(logFile, 2).c
   val numAs = logData.filter(line => line.contains("a")).
   akka
   println("Lines with a: %s, Lines with %s".format(num
```


Apachelgnite

"Distributed Database For High-Performance Applications With In-Memory Speed"

Apachelgnite

- Open-Source-Framework für In-Memory-Computing
- 2014 von GridGain vorgestellt, im selben Jahr ins Apache-Programm aufgenommen
- Hauptfeatures:
 - Distributed SQL
 - Distributed Key-Value Store
 - Collocated Processing
 - ACID Transactions
 - Machine Learning (Bingo!)

Ignite Data Grid

- In-Memory Key Value Store
- Implementiert die JCache-Spezifikation [get(), put(), containsKey()]
- Native Persistenz (=> Filesystem) vorhanden
- Eigene Storage-Provider möglich (z.B. SQL, MongoDB, ...)

Ignite Data Grid Beispiel

```
Ignite ignite = Ignition.ignite();
final IgniteCache<Integer, String> cache = ignite.cache("cacheName");
for (int i = 0; i < 10; i++) {
   cache.put(i, Integer.toString(i));
for (int i = 0; i < 10; i++) {
   Integer value = cache.get(i);
   System.out.println(value);
```

Ignite Compute

- Verteilte Verarbeitung von Daten
- Code wird zu den Daten gebracht (Performance!)

- Ahnliche Projekte:
 - Hadoop MapReduce
 - Apache Spark

- 1. Initial Request
- 2. Co-located processing with data
- 3. Reduce multiple results in one

Ignite Compute Beispiel

```
final Ignite ignite = Ignition.ignite();
// Limit broadcast to remote nodes only.
IgniteCompute compute = ignite.compute(ignite.cluster().forServers());
// Print out hello message on remote nodes in the cluster group.
compute.broadcast(() ->
   System.out.println("Hello Node: " + ignite.cluster().localNode().id())
```

Apache Ignite Compute - Map

```
List<String> words = Arrays.stream(arg.split(SEPARATOR_CHAR)).collect(Collectors.toList());
List<ComputeJob> jobs = new ArrayList<>(words.size());
for (String word : words) {
    ComputeJobAdapter adapter = new ComputeJobAdapter() {
        @Override
        public Object execute() throws IgniteException {
            Map<String, Integer> splitMap = new HashMap<>();
            splitMap.put(word, 1);
            return splitMap;
   };
    jobs.add(adapter);
return jobs;
```

Apache Ignite Compute - Reduce

```
Map<String, Integer> resultData = new TreeMap<>();
for (ComputeJobResult result : results) {
   Map<String, Integer> jobData = result.getData();
    for (Map.Entry<String, Integer> entry : jobData.entrySet()) {
        resultData.merge(entry.getKey(), entry.getValue(), (v1, v2) -> v1 + v2);
return resultData;
```

Apache Ignite Streaming

- Manchmal ist der Satensatz so groß, dass er nicht im Ignite-Cluster Platz hat.
- Die Lösung: Streaming und Verarbeitung on the Fly!
 - With Apache Ignite you can load and stream large finite or never-ending volumes of data in a scalable and fault-tolerant way into the cluster."
- Beispiele:
 - Data Loading
 - Real-Time Data Streaming

Quelle: https://ignite.apache.org/features/streaming.html

Apache Ignite Streaming - Beispiel

```
CacheConfiguration<String, String> configuration = new CacheConfiguration<>(CACHENAME);
configuration.setExpiryPolicyFactory(
    FactoryBuilder.factoryOf(new CreatedExpiryPolicy(new Duration(TimeUnit.SECONDS, 5)))
);
IgniteCache<String, String> streamCache = ignite.getOrCreateCache(config);
try (IgniteDataStreamer<String, String> streamer = ignite.dataStreamer(streamCache.getName())) {
    while(true) {
        String randomWord = RandomStringUtils.randomAlphanumeric(12);
        // Stream words into Ignite.
       streamer.addData(randomWord, randomWord);
```


Big Data Datenbanken

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilte Dateisysteme
- In-Memory Data Grids / Elastic
 Memory

Die Anatomie von Big Data Datenbanken

Query Distribution

Data Distribution

Data Persistence

Sharding and Partitioning: Verteilung und Stückelung von großen Datenmengen.

(Re-) Sharding-und
Partitioning-Funktion:
f(Daten) → Shard
f(Daten) → Partition.
+
Replikationsstrategie.
+ Konsistenzstrategie.

Wie werden große Datenmengen technisch so gespeichert, dass eine schnelle Scan-Geschwindigk eit erreicht wird?

The fastest I/O is the one that never takes place: Es werden nur diejenigen Spalten gelesen, die benötigt werden (gerade bei breiten Tabellen wichtig)

Kompression (funktioniert bei Spalten besser als bei Zeilen):

- Datentyp-spezifisch
 (z.B. Dictionaries)
- + ggF. Spalten-Index

Verteilte und parallelisierte Ausführung von Abfragen.

Ein verteilter Ausführungsplan: Ein azyklischer Funktionsgraph.

Remote Transfer (Stream / Bulk)

Logik folgt den Daten

- Passende Sharding-Funk
- Passende Partitioning-Fu
- Passende ReplikationDatentransfer-Optimierung:
- In Memory vor ...
- Lokaler Disk I/O vor ...
- Remote-Transfer.
- Predicate Pushdown.

In-Memory I/O Local Disk

Verteilte Datenbanken

- Apache Cassandra (Wide column store, Tables & Rows)
- Google Bigtable (Wide column store, no relational model)
- Couchbase (document oriented)
- CrateDB (document oriented)
- Amazon DynamoDB (Key-Value)
- Apache HBase (OSS-Implementierung von Bigtable)
- MongoDB (document oriented)
- LinkedIn Voldemort (Key-Value)
- Google Spanner (almost relational, Tables & Rows)
- CockroachDB (OSS-Implementierung von Spanner)

Further reading / viewing

Vortrag "Consistency, Availability and Partition tolerance in practice - A deep dive into CockroachDB"

https://www.slideshare.net/QAware/consistency-availability-and-partition-tolerance-inpractice

Vortrag "Neues aus dem Tindergarten: Auswertung "privater" APIs mit Apache Ignite" @ MRMCD 2018 - Darmstadt

- Video: https://media.ccc.de/v/2018-151-neues-aus-dem-tindergarten-auswertung-privater-apis-mit-apache-ignite
- Folien: https://de.slideshare.net/QAware/neues-aus-dem-tindergarten-auswertung-privater-apis-mit-apache-ignite