

## Exercice 1:

(5) 30 min

6 pts



Soit 11 un entier  $\geq 2$ . On pose :  $\mathbf{U}_{n} = \int_{0}^{\frac{\mathbf{x}}{4}} \tan^{n}(\mathbf{x})$ .

1) Calculer: U2

 $\mathbb{R}$ 

$$L_{1} = \int_{4}^{\frac{\pi}{4}} \tan(x) dx$$







$$\times 1_2 - \int_{-\infty}^{\infty} + ou^2(x) dx$$

$$U_2 = \int_0^{\pi} (1 + \tan x) - 1 dx$$

$$= \int_0^{\pi} (1 + \tan x) - 1 dx$$

$$= \int_0^{\pi} (1 + \tan x) - 1 dx$$

$$=\left(\tan\left(\frac{\pi}{u}\right)-\frac{\pi}{u}\right)-\left(\tan\phi-0\right)$$

$$\begin{cases} 0 & \leq x \leq \frac{\pi}{4} \\ + \cos(0) \leq + \cos x \leq + \cos \frac{\pi}{4} \end{cases}$$

$$= \int - \cos(0) \leq + \cos x \leq$$





b) Montrer que la suite (U<sub>n</sub>) est décroissante.







ona from 
$$0 \le x \le T$$
 =  $0 \le tax \le 1$ 

$$\Rightarrow$$
  $\dot{U}_{n+1} - U_{n} \leq 0$   $\dot{U}_{n} \otimes \dot{U}_{n} \otimes \dot{U}_{n}$ 

a) Montrer que, pour tout entier  $n \ge 2$ ,  $\mathbf{U}_{n+2} + \mathbf{U}_n = \frac{1}{n+1}$ .

$$= \int_{0}^{\infty} (+aux)^{n+2} + (+aux)^{n} dx$$









| donc Un Converge  lue Un = C  +00          | minorée franco<br>Vers l >0                                                                                                               |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| et aussi lu Li                             | 1+2 = L                                                                                                                                   |
| 97 [ ]<br>n+2                              | $+$ $\left( \frac{1}{n+1} \right)$                                                                                                        |
| Jon( / / / / / / / / / / / / / / / / / / / | $+ \ln = \ln \frac{1}{1} = 0$ $+ \ln \ln \frac{1}{1} = 0$ $+ \ln \ln$ |
|                                            |                                                                                                                                           |





- 4) On pose, pour tout entier  $n \ge 2$ ,  $V_n = U_{n+4} U_n$  et  $S_n = \sum_{k=1}^n V_{4k-2}$ .
  - a) Montrer que, pour tout entier  $n \ge 2$ ,  $V_n = \frac{1}{n+3} \frac{1}{n+1}$ .



 $V_n = \int_{A}^{\frac{\pi}{4}} (taux)^{n+4} dx \qquad \int_{A}^{\frac{\pi}{4}} (taux)^{n} dx$ 

$$= \int_{0}^{\pi} \left( tanx \right)^{n} dx \left( tanx \right)^{n} dx$$

= J (toux) ((toux)4 -1) dx

 $= \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \left( + \operatorname{oux} \right)^{n} \left( + \operatorname{oux} - 1 \right) \left( + \operatorname{oux} + 1 \right) dx$ 

 $= \int_{\frac{\pi}{4}} \left(1 + \tan^2 x\right) \left( + \cos^2 x - \tan x \right) dx$ 

 $= \int_{0}^{\pi/4} \left(1 + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - \left(n + tou^{2} \times \right) + ou \times - ou$ 









7/













$$= \frac{1}{4k+1} = \frac{1}{4k-1}$$

$$k=1$$

$$= \frac{1}{5} \frac{1}{3} + \frac{1}{9} \frac{1}{7} + \cdots + \frac{1}{4n+1} \frac{1}{4n-1}$$











$$F(x) = \begin{cases} U(x) & \text{if } U(x) \\ 0 & \text{if } U(x) \\ 0 & \text{if } U(x) \end{cases}$$

$$(3) \text{ fat sm } \overline{J}$$

$$(4) \text{ if } \overline{J}$$

$$(5) \text{ fat sm } \overline{J}$$







## Exercice 2

## © 25 min

## 4 pts



On pose: 
$$g(x) = \int_{1}^{2x} \frac{dt}{\sqrt{1+t^{3}}} = \left[F(t)\right]_{n}^{2n} - F(x) \int_{1}^{b} f(t) dt = \left[F(t)\right]_{2}^{b} = F(b) - F(a)$$

- Montrer que g est définie sur R<sup>+</sup>.
- Montrer que g est dérivable sur R<sup>+</sup> et calculer g'(x) pour tout x ∈

on pose 
$$f(n) = \frac{1}{\sqrt{1+x^3}}$$



$$g(x) = F(2x) - F(x)$$

$$g(n) = F(\Im(n)) - F(n)$$





$$2 \qquad y(x) = F(v(n)) - F(n) \qquad n \ge 0$$

$$x \rightarrow F(x)$$
 of  $d^{20} \in \mathbb{R}^{12+}$   $F'(x) = f(x)$ 

$$[o,+\infty[$$

$$v([o,+\infty[)=[o,+\infty[$$

$$Su(2^+)$$

$$g(n) = F(2n) - F(n)$$

$$g'(n) = 2 \times F'(2n) = F'(n)$$
  
= 2 f(2n) - f(x)

$$-2 \frac{1}{\sqrt{1+8x^3}} \frac{1}{\sqrt{1+x^3}}$$





$$g'(x) = \frac{2\sqrt{1+8x^3} - \sqrt{1+8x^3}}{\sqrt{1+8x^3}}$$

$$4(1+x^3) - (1+8x^3)$$

$$\sqrt{1+8x^3}$$
  $\sqrt{1+x^3}$   $(2\sqrt{1+x^3} + \sqrt{1+8n^3})$ 

$$= \frac{3 - 4x^3}{D}$$

$$3-4n^3=0$$
 (=)  $x^3=\frac{3}{4}$ 

$$\mathcal{X} = \sqrt{\frac{3}{4}}$$

$$3 > 4 \times^3 \qquad \sqrt{\times^3} = 2$$

$$(=) \frac{3}{4} > \chi^3$$

$$\sqrt{\frac{3}{4}} > \sqrt{\chi^3}$$

$$\frac{3\sqrt{3}}{\sqrt{4}}$$
 >  $9$ 













$$\frac{\chi}{\sqrt{1+8x^3}} < \int_{-1}^{1} (x) \leq \frac{\chi}{\sqrt{1+x^3}}$$









 $= \lim_{N \to \infty} \frac{1}{N} = 0$ 

For  $\lim_{n \to +\infty} f(n) = 0$ 

 $\frac{1}{x} \in [a, 5] \qquad f(x) \leq f(x) \leq h(x)$ 

· 3, 6, 4 Cat &m [a15]







$$\int_{a}^{b} 4 dx = \left[ 4x \right]_{a}^{b} = 4\left[ b-a \right]$$

$$\int_{a}^{b} m dn = m (b-a)$$

•

$$\int_{D}^{\Lambda} \frac{1}{|X+1|} dx = \frac{1}{|X+1|} (1-0)$$

 $=\frac{1}{2}$ 

 $\int_{A}^{b} (x) dx = \pm A ve$ 

 $\int |\delta mx| dx = \int \delta mx dx = [-cox]_0^T$ 





| <u>_11</u> | ANAMAN) | î                                  |       |
|------------|---------|------------------------------------|-------|
|            |         | 17   8mx   d<br>-TT<br>0 -8nx dx + | Fmx d |
|            |         | TT                                 |       |
|            |         |                                    |       |
|            |         |                                    |       |
|            |         |                                    |       |
|            |         |                                    |       |

