Векторы и действия с ними

Вектор: длина и скалярное произведение

Краткое напутствие

Зачем нужна линейная алгебра?

- Линейная алгебра прекрасна сама по себе!
- Работает «под капотом» практически всех методов машинного обучения.

- Вектор это столбец чисел.
- Сложение двух векторов и умножение на число.
- Расстояние и косинус угла между векторами.

Вектор

 Рабочее определение. Вектор — столбец из нескольких чисел.

$$v = \begin{pmatrix} \sqrt{5} \\ 3 \\ -3.45 \end{pmatrix}$$

- Мы не пишем стрелочку над вектором.
- Идея вектора. Вектор всё, что можно описать столбцом из нескольких чисел.

Длина вектора

Евклидова длина вектора:

Определение. Длина или норма вектора

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

ТООО: картинка с теоремой Пифагора

Простая поэлементная арифметика

• Сложение и вычитание двух векторов:

$$\begin{pmatrix} 2\\3.5\\-1 \end{pmatrix} + \begin{pmatrix} 3\\-3\\1 \end{pmatrix} = \begin{pmatrix} 5\\0.5\\0 \end{pmatrix}$$

• Умножение вектора на число:

$$4 \cdot \begin{pmatrix} 2 \\ 3.5 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 14 \\ -4 \end{pmatrix}$$

Простая геометрия

TODO: картинка

геометрия суммы векторов и произведение число на вектор

Расстояние между векторами

Определение. Евклидово расстояние между векторами

$$d(a,b) = \|a-b\| = \sqrt{(a_1-b_1)^2 + \ldots + (a_n-b_n)^2}$$

TODO: картинка с расстоянием между векторами

- по определению, $d(a, b) \ge 0$.
- также говорят Евклидова метрика

Пространство \mathbb{R}^n

Пространство \mathbb{R}^n :

Множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

Пространство \mathbb{R}^n

Пространство \mathbb{R}^n :

Множество всех возможных векторов из n чисел.

$$\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_1 \in \mathbb{R}, \dots, x_n \in \mathbb{R} \right\}$$

Размерность пространства \mathbb{R}^n :

Количество чисел в каждом векторе, n.

Скалярное произведение и угол

- Скалярное произведение векторов a и b: $\langle a,b \rangle = a_1b_1 + a_2b_2 + ... + a_nb_n$.
- Косинус угла между векторами a и b: Косинусная близость, cosine similarity:

$$\cos \angle(a,b) = \frac{\langle a,b \rangle}{\|a\| \|b\|}$$

Косинус определён, если ||a|| > 0 и ||b|| > 0.

Вектор как направленный отрезок

TODO: Картинка, где изображён угол между векторами

Скалярное произведение и проекция

Если ||a|| = 1, то

•
$$\langle a, b \rangle = ||b|| \cos \phi$$
.

Картинка R1.5.2

Скалярное произведение и проекция

Если ||a|| = 1, то

- $\langle a, b \rangle = ||b|| \cos \phi$.
- $\langle a,b \rangle$ длина * проекции b на a.

Картинка R1.5.2

Свойства скалярного произведения

• Скалярное вектора на себя равно квадрату длины $\langle a,a \rangle = \left\| a \right\|^2$

Свойства скалярного произведения

- Скалярное вектора на себя равно квадрату длины $\langle a,a \rangle = \left\| a \right\|^2$
- Скалярное произведение линейно по аргументам $\langle \lambda a,b \rangle = \langle a,\lambda b \rangle = \lambda \langle a,b \rangle$

Ортогональность векторов

Векторы a и b ортогональны, если $a\perp b$,

$$\langle a, b \rangle = 0$$

Также говорят «перпендикулярны».

ТООО: картинка

Векторы a и b ортогональны, векторы a и c нет.

Вокруг метрик и скалярного произведения:

• Да будет больше разных расстояний!

Вокруг метрик и скалярного произведения:

- Да будет больше разных расстояний!
- Делаем из вектора прямую и гиперплоскость.

Вокруг метрик и скалярного произведения:

- Да будет больше разных расстояний!
- Делаем из вектора прямую и гиперплоскость.
- Ядерные функции из скалярного произведения.

Больше метрик в студию!

Манхэттэнская метрика

Расстояние по Майкопски:

$$d(a,b) = |a_1 - b_1| + |a_2 - b_2| + \ldots + |a_n - b_n|$$

TODO:

Два вектора с евклидовым и манхэттенским расстоянием.

У нас и у них

TODO:

Рядом картинки Манхэттэна и Майкопа

Ещё больше метрик!

Метрика Чебышёва

$$d(a,b) = \max{\{|a_1-b_1|, |a_2-b_2|, \dots, |a_n-b_n|\}}$$

Метрика Минковского

$$d_{p}(a,b) = \left(\sum_{i=1}^{n} \left| a_{i} - b_{i} \right|^{p}\right)^{1/p}$$

Частные случаи метрики Минковского

Евклидова метрика, p = 2

$$\sqrt{(a_1-b_1)^2+\ldots+(a_n-b_n)^2}=d_2(a,b)$$

Манхэттэнская метрика, p=1

$$|a_1-b_1|+|a_2-b_2|+\ldots+|a_n-b_n|=d_1(a,b)$$

Метрика Чебышёва, $p \to \infty$

 $\max\left\{|a_1-b_1|,\ldots,|a_n-b_n|\right\}=\lim\nolimits_{p\to\infty}d_p(a,b)$

Вектор порождает прямую

Прямая порождённая вектором a, Lin a множество векторов, получаемых при домножении вектора a на произвольное число,

$$\operatorname{Lin} a = \{t \cdot a | t \in \mathbb{R}\}\$$

TODO: картинка прямой порожденной вектором

Вектор задаёт гиперплоскость

Вектор a фиксирован, например, a = (1, 2, 3).

ТООО: две картинки рядом

$$\langle a,v\rangle=0$$
 и $\langle a,v\rangle=1$

Ядерные функции

Векторная функция f фиксирована, например,

$$f: \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \to \begin{pmatrix} -1 \\ v_1^2 + v_2^2 \end{pmatrix}$$

Ядерная функция, ядро K

Скалярное произведение в спрямляющем пространстве: $K(a,b) = \langle f(a), f(b) \rangle$.

Спрямляющее пространство:

ТООО: картинка с исходным и спрямляющим пространством

Линейный оператор: первые шаги

Линейный оператор

Идея линейности

Результат не изменится, если поменять местами действие ${\cal L}$ и

- растягивание вектора, например, L(42a) = 42L(a);
- усреднение двух векторов, L(0.5a+0.5b)=0.5L(a)+0.5L(b).

Стандартное определение линейности

Линейная функция L из \mathbb{R}^n в \mathbb{R}^k

- Для любого числа t и вектора $a \in \mathbb{R}^n$: L(ta) = tL(a).
- Для любых двух векторов a и b из \mathbb{R}^n : L(a+b) = L(a) + L(b).

$L(a) \equiv La$

Растягивание координат

Обобщаем умножение вектора на число!

$$L: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

ТООО: картинка

Перестановка координат вектора

На пути к произвольному повороту

$$L: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_2 \\ a_3 \\ a_1 \end{pmatrix}$$

TODO: картинка

Обрезка компонент вектора

На пути к произвольной проекции

$$L: \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

TODO: картинка

Дописывание нулей

Увеличиваем размерность пространства

$$L: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} a_1 \\ 0 \\ a_2 \end{pmatrix}$$

TODO: картинка

Первая проекция

Проекция на прямую $x_1 + 2x_2 = 0$

Оператор $H:\mathbb{R}^2 \to \mathbb{R}^2$

TODO: картинка для аргументации линейности

Первый поворот

Поворот на 30° против часовой стрелки

Оператор $R:\mathbb{R}^2 \to \mathbb{R}^2$

TODO: картинка для аргументации линейности

Ортогональный линейный оператор

Идея ортогональности

Действие L не изменяет углов и расстояний.

Ортогональный оператор $L:\mathbb{R}^n o \mathbb{R}^n$

Для любых векторов a и b: $\langle La, Lb \rangle = \langle a, b \rangle$

Проекция и поворот на плоскости: формулы

видео с ДОСКОЙ

вывод формулы поворота на плоскости

вывод формулы проекции на плоскости

Ещё больше линейных операторов

Композиция линейных операторов

Делай раз, делай два!

Если последовательно применить два линейных действия, то получится линейное действие, $L_2(L_1(a)) = L(a)$.

доказательство

- $L_2(L_1(ta)) = L_2(tL_1(a)) = aL_2(L_1(a))$
- $L_2(L_1(a+b)) = L_2(L_1(a) + L_1(b)) = L_2(L_1(a)) + L_2(L_1(a))$

Транспонирование

У любого оператора L есть брат L^T

- $d(La,b) = d(a,L^Tb)$
- $\angle(La,b) = \angle(a,L^Tb)$

Транспонирование оператора L

$$\langle La, b \rangle = \langle a, L^T b \rangle$$

Некоторые действия можно отменить!

Тождественный оператор I

Для любого вектора v: I(v) = v.

Обратный оператор L^{-1}

$$L^{-1}L(a) = a$$

Не у всех действий L есть обратное L^{-1} !

Обратимы ли поворот и проекция?

TODO: картинка обратимость поворота и необратимость проекции

Собственные векторы и собственные числа

Определение

Если для действия L найдётся такой вектор v, что $Lv=\lambda\cdot v$, где $\lambda\in\mathbb{R}$, то:

- вектор v называется собственным;
- число λ называется собственным.

Растягивание вдоль осей

Рассмотрим
$$L: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Собственные векторы с $\lambda=2$

$$v = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

Собственные векторы с $\lambda=-3$

$$v = \begin{pmatrix} 0 \\ x \end{pmatrix}$$

Обращение растягивания

Рассмотрим
$$L: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Обратное действие

$$L^{-1}: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \to \begin{pmatrix} \frac{1}{2}a_1 \\ \frac{1}{-3}a_2 \end{pmatrix}$$

$$L^{-1}L = I$$

Транспонирование растягивания

Рассмотрим
$$L: \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}
ightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$

Транспонирование

$$\begin{split} \langle La,b\rangle &= (2a_1)b_1 + (-3a_2)b_2 = \\ a_1(2b_1) + a_2(-3b_2) &= \langle a,Lb\rangle \end{split}$$

$$L^T = L$$

Проекция: собственные векторы и собственные числа, транспонирование

видео с ДОСКОЙ

геометрический смысл собственных векторов

геометрический смысл транспонирования

отсутствие обратного действия

Поворот: обращение, транспонирование,

собственные числа и векторы

видео с ДОСКОЙ

геометрический смысл собственных векторов

геометрический смысл транспонирования

обратный поворот на плоскости

Линейная алгебра и игра Ним

видео с ДОСКОЙ

Важная мысль

числа могут быть не обязательно действительные, например, $\{0,1\}$ сложение может быть необычным

доказываем

что позиция в Ним проигрышна, если и только если сумма векторов кучек равна нулю

Задача о переворачивании монетки на

шахматной доске

видео с ДОСКОЙ в шахматном смысле

Важная мысль

что вектором может быть всё!

вектор это

- Клетка на доске как вектор
- Чётность расстановки монеток на доске как вектор