arima函数的bug

- ❖ 问题:上节课我们拟合中国纱产量序列,拟合模型是准确的,但预测结果不准确(同样的问题也出现在例5.9中国农业实际国民收入指数序列的预测中)
- ❖ 这是因为arima函数存在一个系统性bug。它在拟合模型的时候,会直接忽略漂移项。比如:

$$x_{t} = \phi_{0} + x_{t-1} + \varepsilon_{t}$$

$$\Rightarrow \nabla x_{t} = \varepsilon_{t} \quad \varepsilon_{t} \sim WN(\phi_{0}, \sigma^{2})$$

- \diamond 实际上,拟合模型还应该拟合漂移项 ϕ_0 的估计值
- ❖ 如果忽视漂移项的估计,会导致该拟合模型预测时出现系 统性偏差(预测值呈现平稳状态)

纠正方法

- *方法一
 - 调用forecast包中的auto.arima函数
 - 语法: auto.arima(x)
- *方法二
 - 调用forecast包中的Arima函数
 - 语法: Arima(x,order=c(1,1,0),include.drift = T)

本章结构

- 1. 疏系数模型
- 2. 季节加法ARIMA模型
- 3. 季节乘法ARIMA模型

疏系数模型

❖ARIMA(p,d,q)模型是指d阶差分后自相关最高阶数为p,移动平均最高阶数为q的模型,通常它包含p+q个独立的未知系数:

$$\phi_1, \cdots, \phi_p, \theta_1, \cdots, \theta_q$$

❖如果该模型中有部分自相关系数 ϕ_j , $1 \le j \le p$ 或部分移动平滑系数 θ_k , $1 \le k \le q$ 为零,即原模型中有部分系数省缺了,那么该模型称为疏系数模型。

疏系数模型类型

- *如果只是自相关部分有省缺系数,那么该疏系数模型可以简记为 $ARIMA((p_1,\dots,p_m),d,q)$
 - p_1 ,···, p_m 为非零自相关系数的阶数
- *如果只是移动平滑部分有省缺系数,那么该疏系数模型可以简记为 $ARIMA(p,d,(q_1,\cdots,q_n))$
 - q_1, \dots, q_n 为非零移动平均系数的阶数
- ❖ 如果自相关和移动平滑部分都有省缺,可以简记为

$$ARIMA((p_1, \dots, p_m), d, (q_1, \dots, q_n))$$

例5.10

❖对1917年-1975年美国23岁妇女每万人生育率序列建模

自相关图

Series x.dif

偏自相关图

Series x.dif

建模

- *定阶
 - ARIMA((1,4),1,0)
- *参数估计

$$(1-B)x_{t} = \frac{1}{1-0.2583B - 0.3408B^{4}} \varepsilon_{t}$$
$$\varepsilon_{t} \sim N(0,118.2)$$

- ❖模型检验
 - ■模型显著
 - ■参数显著

模型预测

本章结构

- 1. 疏系数模型
- 2. 季节加法ARIMA模型
- 3. 季节乘法ARIMA模型

ARIMA季节模型

- ❖季节加法模型
 - 季节步长差分之后,可以将季节性提取干净
 - 这说明季节和趋势之间没有复杂的交互影响,类似于季节与趋势之间的加法关系
- ❖季节乘法模型
 - 季节步长差分之后,不能将季节性提取干净
 - 这说明季节和趋势之间有复杂的交互影响,类似于季节与趋势之间的乘法关系

季节加法模型

❖季节加法模型是指序列中的季节效应和其它效应 之间是加法关系

$$x_t = S_t + T_t + I_t$$

❖季节加法模型通过简单的趋势差分、季节差分之 后序列即可转化为平稳,它的模型结构通常如下

$$\nabla_D \nabla^d x_t = \frac{\Theta(B)}{\Phi(B)} \varepsilon_t$$

例5.11

❖ 拟合1962——1991年德国工人季度失业率序列

差分平稳

❖ 对原序列作一阶差分消除趋势,再作4步差分消除季节效应的影响,差分后序列的时序图如下

白噪声检验

延迟阶数	χ² 统计量	P值
6	43.84	<0.0001
12	51.71	<0.0001
18	54.48	<0.0001

差分后序列自相关图

差分后序列偏自相关图

模型拟合

- ❖定阶: 1阶4步差分后,拟合AR(1,4)疏系数模型
- ❖记作: ARIMA((1,4),(1,4),0) 或 ARIMA((1,4),1,0)(0,1,0)[4]
- *参数估计

$$(1-B)(1-B^4)x_t = \frac{1}{1-0.4449B+0.272B^4} \varepsilon_t$$

$$\varepsilon_t \sim N(0, 0.09266)$$

拟合效果图

Forecasts from ARIMA(1,1,4)(0,1,0)[4]

本章结构

- 1. 疏系数模型
- 2. 季节加法ARIMA模型
- 3. 季节乘法ARIMA模型

季节乘积模型

- ❖ 使用场合
 - 序列的季节效应、长期趋势效应和随机波动之间有着复杂地相互关联性,简单的季节加法模型不能充分地提取其中的相关关系
- ❖ 构造原理
 - 短期相关性用低阶ARMA(p,q)模型提取
 - 季节相关性用以周期步长S为单位的ARMA(P,Q)模型提取
 - 假设短期相关和季节效应之间具有乘积关系,模型结构如下

$$\nabla^d \nabla_S^D x_t = \frac{\Theta(B)}{\Phi(B)} \frac{\Theta_S(B)}{\Phi_S(B)} \varepsilon_t$$

例5.12:拟合1948——1981年美国女性月度失业率序列

1000

差分平稳

1000

❖一阶、12步差分

差分后序列自相关图

差分后序列偏自相关图

简单季节模型拟合结果

延迟阶数	拟合模型残差白噪声检验						
	AR(1,12)		MA(1,2,12)		ARMA((1,12),(1,12)		
	χ^2 值	P值	χ^2 值	P值	χ^2 值	P值	
6	14.58	0.0057	9.5	0.0233	15.77	0.0004	
12	16.42	0.0883	14.19	0.1158	17.99	0.0213	
结果	拟合模型均不显著						

季节乘积模型拟合

- ❖模型定阶
 - ARIMA $(1,1,1)\times(0,1,1)_{12}$
- *参数估计

$$\nabla \nabla_{12} x_t = \frac{1 + 0.6059B}{1 + 0.729B} (1 - 0.7918B^{12}) \varepsilon_t$$
$$\varepsilon_t \sim N(0, 7444)$$

拟合与预测效果图

