数学题选讲

唐靖哲

北京航空航天大学计算机学院

2017年3月11日

■ 为什么要讲数学题?

讲道理 51nod 到处都是数学题

- 为什么要讲数学题?

 讲道理 51nod 到处都是数学题

 门槛低,初中生也可以听懂
- 这堂课像萌新 / 大佬这种人能听吗?

玄不救非, 氪不改命

- 为什么要讲数学题?

 讲道理 51nod 到处都是数学题

 门槛低,初中生也可以听懂
- 这堂课像萌新 / 大佬这种人能听吗? 玄不救非,氪不改命 难度已提前标明,我会尽量讲清楚,希望对所有人能有启发
- 预习内容太难了怎么办?

我能怎么办呀?我也很绝望啊!

- 为什么要讲数学题?

 讲道理 51nod 到处都是数学题

 门槛低,初中生也可以听懂
- 这堂课像萌新/大佬这种人能听吗?玄不救非, 氪不改命难度已提前标明,我会尽量讲清楚,希望对所有人能有启发
- 预习内容太难了怎么办?
 我能怎么办呀?我也很绝望啊!
 预习内容会不加证明地 review ,以便于直接使用
- 我还想到一个有趣的问题,可惜这里空白太小,写不下

整体内容

- 质数筛法 versus 启发式分解
- 离散对数与原根
- 容斥原理与二项式系数
- 風勃交流/

■ 操作原理

■ 根据题目特殊性,通过简单的试除法取代复杂的启发式分解

■适用场景

- 启发式分解真的很慢,Pollard's rho 分解 v 期望要 $\mathcal{O}(v^{\frac{1}{4}}\log v)$
- ■写出启发式分解比较困难或调试代价较高
- 怕随机化出现不存在的问题
- 喜欢分类讨论 渴求确定性算法

- 操作原理
 - 根据题目特殊性,通过简单的试除法取代复杂的启发式分解
- ■适用场景
 - 启发式分解真的很慢,Pollard's rho 分解 v 期望要 $\mathcal{O}(v^{\frac{1}{4}}\log v)$
 - ■写出启发式分解比较困难或调试代价较高
 - 怕随机化出现不存在的问题
 - 喜欢分类讨论 渴求确定性算法

- 操作原理
 - 根据题目特殊性,通过简单的试除法取代复杂的启发式分解
- 适用场景
 - 启发式分解真的很慢,Pollard's rho 分解 v 期望要 $\mathcal{O}(v^{\frac{1}{4}}\log v)$
 - 写出启发式分解比较困难或调试代价较高
 - 怕随机化出现不存在的问题
 - 喜欢分类讨论 渴求确定性算法

- 操作原理
 - 根据题目特殊性,通过简单的试除法取代复杂的启发式分解
- 适用场景
 - 启发式分解真的很慢,Pollard's rho 分解 v 期望要 $\mathcal{O}(v^{\frac{1}{4}}\log v)$
 - 写出启发式分解比较困难或调试代价较高
 - 怕随机化出现不存在的问题
 - 喜欢分类讨论 渴求确定性算法

- 操作原理
 - 根据题目特殊性,通过简单的试除法取代复杂的启发式分解
- 适用场景
 - 启发式分解真的很慢,Pollard's rho 分解 v 期望要 $\mathcal{O}(v^{\frac{1}{4}}\log v)$
 - 写出启发式分解比较困难或调试代价较高
 - 怕随机化出现不存在的问题
 - 喜欢分类讨论 渴求确定性算法

- 操作原理
 - 根据题目特殊性,通过简单的试除法取代复杂的启发式分解
- 适用场景
 - 启发式分解真的很慢,Pollard's rho 分解 v 期望要 $\mathcal{O}(v^{\frac{1}{4}}\log v)$
 - 写出启发式分解比较困难或调试代价较高
 - 怕随机化出现不存在的问题
 - 喜欢分类讨论 渴求确定性算法

- 操作原理
 - 根据题目特殊性,通过简单的试除法取代复杂的启发式分解
- 适用场景
 - 启发式分解真的很慢,Pollard's rho 分解 v 期望要 $\mathcal{O}(v^{\frac{1}{4}}\log v)$
 - 写出启发式分解比较困难或调试代价较高
 - 怕随机化出现不存在的问题
 - 喜欢分类讨论 渴求确定性算法

- 有 n 个正整数 a_1, a_2, \cdots, a_n 和 m 个正整数 b_1, b_2, \cdots, b_m
- 定义分数 $Q = \frac{a_1 \cdot a_2 \cdots a_n}{b_1 \cdot b_2 \cdots b_m} = \frac{A}{B}$, 其中 A 与 B 互质
- 处理 k 个询问,每个询问给出一个 M ,求一个整数 C 满足 $0 \le C < M$ 且 $A \equiv BC \pmod{M}$,即 $Q \equiv C \pmod{M}$,不存在则输出 DIVISION BY ZERO
- $1 \le n, m \le 5000$, $1 \le k \le 50$, $2 \le M \le 10^{18}$, $1 \le a_i, b_j \le 10^{18}$ $(i = 1, 2, \cdots, n, j = 1, 2, \cdots, m)$

- 有 n 个正整数 a_1, a_2, \cdots, a_n 和 m 个正整数 b_1, b_2, \cdots, b_m
- 定义分数 $Q=rac{a_1\cdot a_2\cdots a_n}{b_1\cdot b_2\cdots b_m}=rac{A}{B}$, 其中 A 与 B 互质
- 处理 k 个询问,每个询问给出一个 M ,求一个整数 C 满足 $0 \le C < M$ 且 $A \equiv BC \pmod{M}$,即 $Q \equiv C \pmod{M}$,不存在则输出 DIVISION BY ZERO
- $1 \le n, m \le 5000, 1 \le k \le 50, 2 \le M \le 10^{18},$ $1 \le a_i, b_j \le 10^{18} \ (i = 1, 2, \dots, n, j = 1, 2, \dots, m)$

- 有 n 个正整数 a_1, a_2, \cdots, a_n 和 m 个正整数 b_1, b_2, \cdots, b_m
- 定义分数 $Q = \frac{a_1 \cdot a_2 \cdots a_n}{b_1 \cdot b_2 \cdots b_m} = \frac{A}{B}$, 其中 A 与 B 互质
- 处理 k 个询问,每个询问给出一个 M ,求一个整数 C 满足 $0 \le C < M$ 且 $A \equiv BC \pmod{M}$,即 $Q \equiv C \pmod{M}$,不存在则输出 DIVISION BY ZERO
- $1 \le n, m \le 5000$, $1 \le k \le 50$, $2 \le M \le 10^{18}$, $1 \le a_i, b_j \le 10^{18}$ $(i = 1, 2, \dots, n, j = 1, 2, \dots, n)$

- 有 n 个正整数 a_1, a_2, \cdots, a_n 和 m 个正整数 b_1, b_2, \cdots, b_m
- 定义分数 $Q = \frac{a_1 \cdot a_2 \cdots a_n}{b_1 \cdot b_2 \cdots b_m} = \frac{A}{B}$, 其中 A 与 B 互质
- 处理 k 个询问,每个询问给出一个 M ,求一个整数 C 满足 $0 \le C < M$ 且 $A \equiv BC \pmod{M}$,即 $Q \equiv C \pmod{M}$,

不存在则输出 DIVISION BY ZERO

■ $1 \le n, m \le 5000, 1 \le k \le 50, 2 \le M \le 10^{18},$ $1 \le a_i, b_j \le 10^{18} \ (i = 1, 2, \dots, n, j = 1, 2, \dots, m)$

- 整除、因子、质数、最大公约数 (gcd)
- 互质: 没有大于 1 的公共因子, gcd = 1
- 唯一分解: 任意正整数表示成质数幂次的乘积恰好有一种方法
- 质数筛法: $\mathcal{O}(n)$ 求出不超过 n 的所有质数
- 欧几里得算法: $\mathcal{O}(\log a + \log b)$ 求出 $\gcd(a, b)$
- 扩展欧几里得算法: 在求出 gcd(a,b) 的同时求出 sa+tb=gcd(a,b) 的一组解 (s,t) . 并满足 |s|+|t| 是所有解里最小的

- 整除、因子、质数、最大公约数 (gcd)
- 互质: 没有大于 1 的公共因子, gcd = 1
- 唯一分解: 任意正整数表示成质数幂次的乘积恰好有一种方法
- 质数筛法: $\mathcal{O}(n)$ 求出不超过 n 的所有质数
- 欧几里得算法: $\mathcal{O}(\log a + \log b)$ 求出 $\gcd(a, b)$
- 扩展欧几里得算法: 在求出 gcd(a,b) 的同时求出 sa+tb=gcd(a,b) 的一组解 (s,t) . 并满足 |s|+|t| 是所有解里最小的

- 整除、因子、质数、最大公约数 (gcd)
- 互质: 没有大于 1 的公共因子, gcd = 1
- 唯一分解: 任意正整数表示成质数幂次的乘积恰好有一种方法
- 质数筛法: $\mathcal{O}(n)$ 求出不超过 n 的所有质数
- 欧几里得算法: $\mathcal{O}(\log a + \log b)$ 求出 $\gcd(a, b)$
- 扩展欧几里得算法: 在求出 gcd(a,b) 的同时求出 sa+tb=gcd(a,b) 的一组解 (s,t) . 并满足 |s|+|t| 是所有解里最小的

- 整除、因子、质数、最大公约数 (gcd)
- 互质: 没有大于 1 的公共因子, gcd = 1
- 唯一分解: 任意正整数表示成质数幂次的乘积恰好有一种方法
- 质数筛法: $\mathcal{O}(n)$ 求出不超过 n 的所有质数
- 欧几里得算法: $\mathcal{O}(\log a + \log b)$ 求出 $\gcd(a, b)$
- 扩展欧几里得算法: 在求出 gcd(a,b) 的同时求出 sa+tb=gcd(a,b) 的一组解 (s,t) . 并满足 |s|+|t| 是所有解里最小的

- 整除、因子、质数、最大公约数 (gcd)
- 互质: 没有大于 1 的公共因子, gcd = 1
- 唯一分解: 任意正整数表示成质数幂次的乘积恰好有一种方法
- 质数筛法: $\mathcal{O}(n)$ 求出不超过 n 的所有质数
- 欧几里得算法: $\mathcal{O}(\log a + \log b)$ 求出 $\gcd(a, b)$
- 扩展欧几里得算法: 在求出 gcd(a,b) 的同时求出 sa+tb=gcd(a,b) 的一组解 (s,t) ,并满足 |s|+|t| 是所有解里最小的

- 整除、因子、质数、最大公约数 (gcd)
- 互质:没有大于 1 的公共因子, gcd = 1
- 唯一分解: 任意正整数表示成质数幂次的乘积恰好有一种方法
- 质数筛法: $\mathcal{O}(n)$ 求出不超过 n 的所有质数
- 欧几里得算法: $\mathcal{O}(\log a + \log b)$ 求出 $\gcd(a, b)$
- 扩展欧几里得算法: 在求出 gcd(a, b) 的同时求出 sa + tb = gcd(a, b)
 的一组解(s, t), 并满足 |s| + |t| 是所有解里最小的

■ 一个暴力的想法

- $A \equiv BC \pmod{M}$ 即 sB + tM = A 有解的条件是 $gcd(B, M) \mid A$
- 需要得到 A 和 B 的表示,于是消除分子与分母的公因数
- 需要枚举 a'_i, b'_j 求出 $\gcd(a'_i, b'_j)$,复杂度 $\mathcal{O}(nm \log v)$,其中 v 表示数字最大值,会超过时间限制

■ 一个暴力的想法

- $A \equiv BC \pmod{M}$ 即 sB + tM = A 有解的条件是 $gcd(B, M) \mid A$
- 需要得到 A 和 B 的表示,于是消除分子与分母的公因数
- 需要枚举 a'_i, b'_j 求出 $\gcd(a'_i, b'_j)$,复杂度 $\mathcal{O}(nm \log v)$,其中 v 表示数字最大值,会超过时间限制

■ 一个暴力的想法

- $A \equiv BC \pmod{M}$ 即 sB + tM = A 有解的条件是 $gcd(B, M) \mid A$
- 需要得到 A 和 B 的表示,于是消除分子与分母的公因数
- 需要枚举 a'_i, b'_j 求出 $\gcd(a'_i, b'_j)$,复杂度 $\mathcal{O}(nm \log v)$,其中 v 表示数字最大值,会超过时间限制

■ 一个不那么暴力的想法

- 将所有数利用启发式分解算法转换成质数幂次乘积的形式
- 消公因子转化为是幂指数的加减,复杂度 $\mathcal{O}((n+m+k)D(v)+(n+m)k\log v) \text{ , 其中 } D(v) \text{ 表示将 } v \text{ 启发式}$ 分解的复杂度
- 大佬 10 分钟就写完并通过了 萌新还在抄模板、调试、思考人生

■ 一个不那么暴力的想法

- 将所有数利用启发式分解算法转换成质数幂次乘积的形式
- 消公因子转化为是幂指数的加减,复杂度

 $\mathcal{O}((n+m+k)D(v)+(n+m)k\log v)$,其中 D(v) 表示将 v 启发式分解的复杂度

■ 大佬 10 分钟就写完并诵过了

萌新还在抄模板、调试、思考人生

■ 一个不那么暴力的想法

- 将所有数利用启发式分解算法转换成质数幂次乘积的形式
- 消公因子转化为是幂指数的加减,复杂度

$$\mathcal{O}((n+m+k)D(v)+(n+m)k\log v)$$
 , 其中 $D(v)$ 表示将 v 启发式

分解的复杂度

■ 大佬 10 分钟就写完并诵讨了

萌新还在抄模板、调试、思考人生 🌕

- 同余原理: 对于 opt 是加、减、乘的情况,有

 (((x mod M) opt (y mod M)) mod M) = ((x opt y) mod M)
- 乘法逆元: 如果 $\gcd(x,M)=1$, 则 $x^{-1}\pmod{M}$ 有定义,可以用扩展欧几里得算法 $\mathcal{O}(\log x)$ 求出
- lacksquare a_i,b_j 只需要提取出与 M 不互质的部分,而互质的部分可以用逆元计算
- 看上去还是需要分解 M

- 同余原理: 对于 opt 是加、减、乘的情况,有 $(((x \bmod M) \ \mathsf{opt} \ (y \bmod M)) \bmod M) = ((x \ \mathsf{opt} \ y) \bmod M)$
- 乘法逆元: 如果 $\gcd(x, M) = 1$, 则 $x^{-1} \pmod{M}$ 有定义,可以用扩展欧几里得算法 $\mathcal{O}(\log x)$ 求出
- lacksquare a_i,b_j 只需要提取出与 M 不互质的部分,而互质的部分可以用逆元计算
- 看上去还是需要分解 M

- 同余原理: 对于 opt 是加、减、乘的情况,有 $(((x \bmod M) \ \mathsf{opt} \ (y \bmod M)) \bmod M) = ((x \ \mathsf{opt} \ y) \bmod M)$
- 乘法逆元: 如果 $\gcd(x,M)=1$, 则 $x^{-1} \pmod M$ 有定义, 可以用扩展欧几里得算法 $\mathcal{O}(\log x)$ 求出
- $lacksquare a_i, b_j$ 只需要提取出与 M 不互质的部分,而互质的部分可以用逆元计算
- 看上去还是需要分解 M

- 同余原理: 对于 opt 是加、减、乘的情况,有 $(((x \bmod M) \ \mathsf{opt} \ (y \bmod M)) \bmod M) = ((x \ \mathsf{opt} \ y) \bmod M)$
- 乘法逆元: 如果 $\gcd(x, M) = 1$, 则 $x^{-1} \pmod{M}$ 有定义,可以用扩展欧几里得算法 $\mathcal{O}(\log x)$ 求出
- $lacksquare a_i, b_j$ 只需要提取出与 M 不互质的部分,而互质的部分可以用逆元计算
- 看上去还是需要分解 M

- 预处理不超过 $M^{\frac{1}{3}}$ 的质数,对 M 进行试除,最多剩下两个 质因子,即 M'=1 或 M'=p 或 M'=pq 或 $M'=p^2$
- 此时 $gcd(a_i, M'), gcd(b_i, M')$ 至多有四种可能
- 若存在 $gcd(\cdot, M')$ 不是 1 也不是 M' , 分解成功
- 否则 a_i, b_j 只可能含有 M' 的幂次,可以视为整体进行幂指数的加减,复杂度 $\mathcal{O}(kD(M) + (n+m)k\log v)$
- 原来代码还可以这么短

- 预处理不超过 $M^{\frac{1}{3}}$ 的质数,对 M 进行试除,最多剩下两个 质因子,即 M'=1 或 M'=p 或 M'=pq 或 $M'=p^2$
- 此时 $gcd(a_i, M'), gcd(b_i, M')$ 至多有四种可能
- 若存在 $gcd(\cdot, M')$ 不是 1 也不是 M' ,分解成功
- 否则 a_i, b_j 只可能含有 M' 的幂次,可以视为整体进行幂指数的加减,复杂度 $\mathcal{O}(kD(M) + (n+m)k\log v)$
- 原来代码还可以这么短

- 预处理不超过 $M^{\frac{1}{3}}$ 的质数,对 M 进行试除,最多剩下两个 质因子,即 M'=1 或 M'=p 或 M'=pq 或 $M'=p^2$
- 此时 $gcd(a_i, M'), gcd(b_i, M')$ 至多有四种可能
- 若存在 $gcd(\cdot, M')$ 不是 1 也不是 M' , 分解成功
- 否则 a_i, b_j 只可能含有 M' 的幂次,可以视为整体进行幂指数的加减,复杂度 $\mathcal{O}(kD(M) + (n+m)k\log v)$
- 原来代码还可以这么短

分数工厂

- 预处理不超过 $M^{\frac{1}{3}}$ 的质数,对 M 进行试除,最多剩下两个 质因子,即 M'=1 或 M'=p 或 M'=pq 或 $M'=p^2$
- 此时 $gcd(a_i, M'), gcd(b_j, M')$ 至多有四种可能
- 若存在 $gcd(\cdot, M')$ 不是 1 也不是 M' , 分解成功
- 否则 a_i, b_j 只可能含有 M' 的幂次,可以视为整体进行幂指数的加减,复杂度 $\mathcal{O}(kD(M) + (n+m)k\log v)$
- 原来代码还可以这么短

分数工厂

- 预处理不超过 $M^{\frac{1}{3}}$ 的质数,对 M 进行试除,最多剩下两个 质因子,即 M'=1 或 M'=p 或 M'=pq 或 $M'=p^2$
- 此时 $gcd(a_i, M'), gcd(b_j, M')$ 至多有四种可能
- 若存在 $gcd(\cdot, M')$ 不是 1 也不是 M' , 分解成功
- 否则 a_i, b_j 只可能含有 M' 的幂次,可以视为整体进行幂指数的加减,复杂度 $\mathcal{O}(kD(M) + (n+m)k\log v)$
- 原来代码还可以这么短 为什么你会这么熟练啊

- 对任意正整数 u ,定义 f(u) 是 u 的所有质因子组成的集合
- 如果正整数 u 和 v 满足 u 整除 v 且 f(u) = f(v) ,那么认为 u 对 v 来说是友好的
- 给出两个正整数 k_1 和 k_2 ,分别求有多少个数对它们来说是 友好的,其中 k_1 和 k_2 拥有相同的最大质因子,不同的次大 质因子(如果存在)
- $1 < k_1, k_2 < 10^{24}$

- 对任意正整数 u ,定义 f(u) 是 u 的所有质因子组成的集合
- 如果正整数 u 和 v 满足 u 整除 v 且 f(u) = f(v) ,那么认为 u 对 v 来说是友好的
- 给出两个正整数 k_1 和 k_2 ,分别求有多少个数对它们来说是 友好的,其中 k_1 和 k_2 拥有相同的最大质因子,不同的次大质因子(如果存在)
- $1 < k_1, k_2 < 10^{24}$

- 对任意正整数 u ,定义 f(u) 是 u 的所有质因子组成的集合
- 如果正整数 u 和 v 满足 u 整除 v 且 f(u) = f(v) ,那么认为 u 对 v 来说是友好的
- 给出两个正整数 k_1 和 k_2 ,分别求有多少个数对它们来说是 友好的,其中 k_1 和 k_2 拥有相同的最大质因子,不同的次大 质因子(如果存在)
- $1 \le k_1, k_2 \le 10^{24}$

- 对任意正整数 u ,定义 f(u) 是 u 的所有质因子组成的集合
- 如果正整数 u 和 v 满足 u 整除 v 且 f(u) = f(v) ,那么认为 u 对 v 来说是友好的
- 给出两个正整数 k_1 和 k_2 ,分别求有多少个数对它们来说是 友好的,其中 k_1 和 k_2 拥有相同的最大质因子,不同的次大 质因子(如果存在)
- $1 \le k_1, k_2 \le 10^{24}$

■ 积性函数: 若 a,b 互质时有 f(ab) = f(a)f(b) , 则 f 是积性的

■ 若
$$k = \prod_{i=1}^{\omega(k)} p_i^{e_i}$$
 ,则答案是 $\prod_{i=1}^{\omega(k)} e_i$ (不是 k 的约数个数)

■ 注意 $k \le 10^{24}$,可以用 __int128_t 进行加减乘除运算

■ 积性函数: 若 a,b 互质时有 f(ab) = f(a)f(b) , 则 f 是积性的

■ 若
$$k = \prod_{i=1}^{\omega(k)} p_i^{e_i}$$
 ,则答案是 $\prod_{i=1}^{\omega(k)} e_i$ (不是 k 的约数个数)

■ 注意 $k \le 10^{24}$,可以用 __int128_t 进行加减乘除运算

■ 积性函数: 若 a,b 互质时有 f(ab) = f(a)f(b) , 则 f 是积性的

- $lacksymbol{\bullet}$ 若 $k=\prod_{i=1}^{\omega(k)}p_i^{\ e_i}$,则答案是 $\prod_{i=1}^{\omega(k)}e_i$ (不是 k 的约数个数)
- 注意 $k \le 10^{24}$,可以用 __int128_t 进行加减乘除运算

珍爱生命,远离启发式分解

- 预处理不超过 $k^{\frac{1}{4}}$ 的质数,对 k 进行试除,最多会剩下三个质因子
- 令 $p_1 > p_2 > p_3$, k' 可能的情况有 1, p_1 , p_1^2 , p_1p_2 , p_1^3 , $p_1^2p_2$, $p_1p_2^2$, $p_1p_2p_3$
- 还可以利用的性质是 k_1' 与 k_2' 的 p_1 相等(如果存在), p_2 不等(如果存在)

■ 预处理不超过 $k^{\frac{1}{4}}$ 的质数,对 k 进行试除,最多会剩下三个质因子

萌新眉头一皱, 发现事情并不简单

- 令 $p_1 > p_2 > p_3$, k' 可能的情况有 1, p_1 , p_1^2 , p_1p_2 , p_1^3 , $p_1^2p_2$, $p_1p_2^2$, $p_1p_2p_3$
- 还可以利用的性质是 k_1 ′ 与 k_2 ′ 的 p_1 相等(如果存在), p_2 不等(如果存在)

■ 预处理不超过 $k^{\frac{1}{4}}$ 的质数,对 k 进行试除,最多会剩下三个质因子

萌新眉头一皱, 发现事情并不简单

- 令 $p_1 > p_2 > p_3$, k' 可能的情况有 1, p_1 , p_1^2 , p_1p_2 , p_1^3 , $p_1^2p_2$, $p_1p_2^2$, $p_1p_2p_3$
- 还可以利用的性质是 k_1' 与 k_2' 的 p_1 相等(如果存在), p_2 不等(如果存在)

■ 预处理不超过 $k^{\frac{1}{4}}$ 的质数,对 k 进行试除,最多会剩下三个质因子

萌新眉头一皱, 发现事情并不简单

- 令 $p_1 > p_2 > p_3$, k' 可能的情况有 1, p_1 , p_1^2 , p_1p_2 , p_1^3 , $p_1^2p_2$, $p_1p_2^2$, $p_1p_2p_3$
- 还可以利用的性质是 k_1 与 k_2 的 p_1 相等(如果存在), p_2 不等(如果存在)

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$,对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况 $(1,1)$ (p_1, p_2) (p_1, p_2^2) $(p_1, 1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ $(p_1, p_2 p_3)$, $(p_1 p_3, p_2)$ (p_1, p_1) , $(p_1^2, 1)$ $(p_1, p_1 p_2)$, (p_1^2, p_2)

■ 考虑分情况讨论

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$,对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

■ 具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况
 $(1,1)$ (p_1, p_2) (p_1, p_2^2)
 $(p_1, 1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ $(p_1, p_2 p_3)$, $(p_1 p_3, p_2)$
 (p_1, p_1) , $(p_1^2, 1)$ $(p_1, p_1 p_2)$, (p_1^2, p_2)

■ 考虑分情况讨论

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$, 对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

■ 具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况
 $(1,1)$ (p_1, p_2) (p_1, p_2^2)
 $(p_1, 1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ $(p_1, p_2 p_3)$, $(p_1 p_3, p_2)$
 (p_1, p_1) , $(p_1^2, 1)$ $(p_1, p_1 p_2)$, (p_1^2, p_2)

■ 考虑分情况讨论: $\frac{k}{v} = 1$

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$, 对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

■ 具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况
 $(1,1)$ (p_1, p_2) (p_1, p_2^2)
 $(p_1, 1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ (p_1, p_2p_3) , (p_1p_3, p_2)
 (p_1, p_1) , $(p_1^2, 1)$ (p_1, p_1p_2) , (p_1^2, p_2)

■ 考虑分情况讨论: $\frac{k}{n} > 1$ 且为完全平方数

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$, 对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况 $(1,1)$ (p_1, p_2) (p_1, p_2^2) $(p_1,1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ (p_1, p_2p_3) , (p_1p_3, p_2) (p_1, p_1) , $(p_1^2, 1)$ (p_1, p_1p_2) , (p_1^2, p_2)

■ 考虑分情况讨论: v > 1 且为完全平方数

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$, 对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况 $(1,1)$ (p_1, p_2) (p_1, p_2^2) $(p_1,1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ (p_1, p_2p_3) , (p_1p_3, p_2) (p_1, p_1) , $(p_1^2, 1)$ (p_1, p_1p_2) , (p_1^2, p_2)

■ 考虑分情况讨论: $v \mid \frac{k}{v}$

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$,对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况 $(1,1)$ (p_1, p_2) (p_1, p_2^2) $(p_1, 1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ $(p_1, p_2 p_3)$, $(p_1 p_3, p_2)$ (p_1, p_1) , $(p_1^2, 1)$ $(p_1, p_1 p_2)$, (p_1^2, p_2)

■ 考虑分情况讨论: $v<\frac{k}{v}$ (因为 $p_2p_3>M^{\frac{1}{2}}$), 此时已不需要继续分类讨论,因为对答案的贡献都一样

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$,对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

■ 具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况 $(1,1)$ (p_1, p_2) (p_1, p_2^2) $(p_1, 1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ $(p_1, p_2 p_3)$, $(p_1 p_3, p_2)$ (p_1, p_1) , $(p_1^2, 1)$ $(p_1, p_1 p_2)$, (p_1^2, p_2)

■ 考虑分情况讨论: 只能对 *v* 判定素性才知道是哪种情况

■ 通过 $\mathcal{O}(\log k)$ 的代价可以求出 $v = \gcd(k_1, k_2)$, 对于每个 k 可以知道 v 包含 p_1 (如果存在), $\frac{k}{v}$ 包含 p_2 (如果存在)

具体来说,
$$(v, \frac{k}{v})$$
 有这么几种情况 $(1,1)$ (p_1, p_2) (p_1, p_2^2) $(p_1,1)$ (p_1, p_1^2) , (p_1^2, p_1) , $(p_1^3, 1)$ $(p_1, p_2 p_3)$, $(p_1 p_3, p_2)$ (p_1, p_1) , $(p_1^2, 1)$ $(p_1, p_1 p_2)$, (p_1^2, p_2)

■ 考虑分情况讨论, 搞定, 与启发式分解复杂度相仿, 但好写

- 越是博学, 越是想得复杂
- 磨刀不误砍柴功
- 对于不需要规约到大数分解的问题, 试除法可能更加简便
- 此外,在处理较多数字的分解时,试除法或许比启发式分解更优秀, 例如区间筛问题(求 $L \le x \le R$ 的 f(x) ,其中 f(x) 是积性函数, $R \le 10^{12}, R-L \le 10^5$)

- 越是博学, 越是想得复杂
- 磨刀不误砍柴功
- 对于不需要规约到大数分解的问题, 试除法可能更加简便
- 此外,在处理较多数字的分解时,试除法或许比启发式分解更优秀, 例如区间筛问题(求 $L \le x \le R$ 的 f(x) ,其中 f(x) 是积性函数, $R \le 10^{12}, R-L \le 10^5$)

- 越是博学, 越是想得复杂
- 磨刀不误砍柴功
- 对于不需要规约到大数分解的问题, 试除法可能更加简便
- 此外,在处理较多数字的分解时,试除法或许比启发式分解更优秀, 例如区间筛问题(求 $L \le x \le R$ 的 f(x) ,其中 f(x) 是积性函数, $R \le 10^{12}, R-L \le 10^5$)

- 越是博学, 越是想得复杂
- 磨刀不误砍柴功
- 对于不需要规约到大数分解的问题,试除法可能更加简便
- 此外,在处理较多数字的分解时,试除法或许比启发式分解更优秀, 例如区间筛问题(求 $L \le x \le R$ 的 f(x) ,其中 f(x) 是积性函数, $R \le 10^{12}, R-L \le 10^5$)

- 缩系:模m意义下与m互质的元素组成缩系,缩系中任意两个元素的乘积还在缩系中,缩系的大小是 $\varphi(m)$
- 阶: 满足 $x^r \equiv 1 \pmod{m}$ 最小正整数 r 称为 x 的阶 $\operatorname{ord}_m(x)$
- 原根: 缩系中存在元素 g 使得 g^i $(i=1,2,\cdots,\varphi(m))$ 两两不同,则称 g 是模 m 意义下的原根,也意味着缩系中的元素可以表示成 g 的幂次,不难得到 $\mathrm{ord}_m(g)=\varphi(m)$
- 指标: 若缩系有原根 g ,则元素 $x\equiv g^i\pmod m$ 关于 g 指标 为 $\operatorname{ind}_{m,g}(x)=i\bmod \varphi(m)$,显然 $\operatorname{ord}_m(x)=\frac{\varphi(m)}{\gcd(\varphi(m),\operatorname{ind}_{m,g}(x))}$

- 缩系:模m意义下与m互质的元素组成缩系,缩系中任意两个元素的乘积还在缩系中,缩系的大小是 $\varphi(m)$
- 阶: 满足 $x^r \equiv 1 \pmod{m}$ 最小正整数 r 称为 x 的阶 $\operatorname{ord}_m(x)$
- 原根: 缩系中存在元素 g 使得 g^i $(i=1,2,\cdots,\varphi(m))$ 两两不同,则称 g 是模 m 意义下的原根,也意味着缩系中的元素可以表示成 g 的幂次,不难得到 $\mathrm{ord}_m(g)=\varphi(m)$
- 指标: 若缩系有原根 g ,则元素 $x\equiv g^i\pmod m$ 关于 g 指标 为 $\operatorname{ind}_{m,g}(x)=i\bmod \varphi(m)$,显然 $\operatorname{ord}_m(x)=\frac{\varphi(m)}{\gcd(\varphi(m),\operatorname{ind}_{m,g}(x))}$

- 缩系: 模 m 意义下与 m 互质的元素组成缩系,缩系中任意两个元素的乘积还在缩系中,缩系的大小是 $\varphi(m)$
- 阶: 满足 $x^r \equiv 1 \pmod{m}$ 最小正整数 r 称为 x 的阶 $\operatorname{ord}_m(x)$
- 原根:缩系中存在元素 g 使得 g^i $(i=1,2,\cdots,\varphi(m))$ 两两不同,则称 g 是模 m 意义下的原根,也意味着缩系中的元素可以表示成 g 的幂次,不难得到 $\operatorname{ord}_m(g)=\varphi(m)$
- 指标: 若缩系有原根 g ,则元素 $x\equiv g^i\pmod m$ 关于 g 指标 为 $\operatorname{ind}_{m,g}(x)=i\bmod \varphi(m)$,显然 $\operatorname{ord}_m(x)=\frac{\varphi(m)}{\gcd(\varphi(m),\operatorname{ind}_{m,g}(x))}$

- 缩系: 模 m 意义下与 m 互质的元素组成缩系,缩系中任意两个元素的乘积还在缩系中,缩系的大小是 $\varphi(m)$
- 阶: 满足 $x^r \equiv 1 \pmod{m}$ 最小正整数 r 称为 x 的阶 $\operatorname{ord}_m(x)$
- 原根:缩系中存在元素 g 使得 g^i $(i=1,2,\cdots,\varphi(m))$ 两两不同,则称 g 是模 m 意义下的原根,也意味着缩系中的元素可以表示成 g 的幂次,不难得到 $\operatorname{ord}_m(g)=\varphi(m)$
- 指标: 若缩系有原根 g ,则元素 $x\equiv g^i\pmod m$ 关于 g 指标 为 $\operatorname{ind}_{m,g}(x)=i\bmod \varphi(m)$,显然 $\operatorname{ord}_m(x)=\frac{\varphi(m)}{\gcd(\varphi(m),\operatorname{ind}_{m,g}(x))}$

- 对于阶为 u 的元素 x , x^k 的阶为 $\frac{u}{\gcd(u,k)}$, 所以任意元素的 阶整除 $\varphi(m)$,且原根(如果存在)个数为 $\varphi(\varphi(m))$
- 这里存在一个 $\mathcal{O}(\log^2 m)$ 求阶的算法, 也可用于找原根
- 缩系有原根的充要条件是 $m=2,4,p^n,2p^n$,这里 p 是奇质数, n 是任意整数

(证明见Elementary Number Theory第8.3节,简单易懂)

■ 若缩系没有原根,则模 m 缩系可以表示成一系列有原根的缩系的笛卡儿积(图示),在 $8 \nmid m$ 时还可直接表示成生成元的

- 对于阶为 u 的元素 x , x^k 的阶为 $\frac{u}{\gcd(u,k)}$, 所以任意元素的 阶整除 $\varphi(m)$,且原根(如果存在)个数为 $\varphi(\varphi(m))$
- 这里存在一个 $\mathcal{O}(\log^2 m)$ 求阶的算法,也可用于找原根
- 缩系有原根的充要条件是 $m=2,4,p^n,2p^n$,这里 p 是奇质数, n 是任意整数

(证明见Elementary Number Theory第8.3节,简单易懂)

■ 若缩系没有原根,则模 m 缩系可以表示成一系列有原根的缩系的笛卡儿积(图示),在 $8 \nmid m$ 时还可直接表示成生成元的

- 对于阶为 u 的元素 x , x^k 的阶为 $\frac{u}{\gcd(u,k)}$, 所以任意元素的 阶整除 $\varphi(m)$,且原根(如果存在)个数为 $\varphi(\varphi(m))$
- 这里存在一个 $\mathcal{O}(\log^2 m)$ 求阶的算法,也可用于找原根
- 缩系有原根的充要条件是 $m=2,4,p^n,2p^n$,这里 p 是奇质数, n 是任意整数

(证明见Elementary Number Theory第 8.3 节,简单易懂)

■ 若缩系没有原根,则模 m 缩系可以表示成一系列有原根的缩系的笛卡儿积(图示),在 $8 \nmid m$ 时还可直接表示成生成元的

- 对于阶为 u 的元素 x , x^k 的阶为 $\frac{u}{\gcd(u,k)}$, 所以任意元素的 阶整除 $\varphi(m)$,且原根(如果存在)个数为 $\varphi(\varphi(m))$
- 这里存在一个 $\mathcal{O}(\log^2 m)$ 求阶的算法,也可用于找原根
- 缩系有原根的充要条件是 $m=2,4,p^n,2p^n$,这里 p 是奇质数, n 是任意整数

(证明见Elementary Number Theory第 8.3 节,简单易懂)

■ 若缩系没有原根,则模 m 缩系可以表示成一系列有原根的缩系的笛卡儿积(图示),在 $8 \nmid m$ 时还可直接表示成生成元的幂次之积,在 $m = 2^e$ (e > 2) 时, 5 的阶一定是 2^{e-2}

- 考虑解方程 $A^B \equiv C \pmod{M}$, 已知其中三个元素
- 已知 A, B, M 求 C 是模幂问题
- 已知 A, C, M 求 B 是离散对数问题
- 已知 B, C, M 求 A 是高次剩余问题
- 已知 A, B, C 求 M 是大数分解问题

- 考虑解方程 $A^B \equiv C \pmod{M}$, 已知其中三个元素
- 已知 A, B, M 求 C 是模幂问题
- 已知 A, C, M 求 B 是<mark>离散对数</mark>问题
- 已知 B, C, M 求 A 是高次剩余问题
- 已知 A, B, C 求 M 是大数分解问题

- 解方程 $A^B \equiv C \pmod{M}$,已知 A, C, M 求 B ,M 是质数
 - 设一个原根是 g ,问题等价于 $B \mathrm{ind}_{M,g}(A) \equiv \mathrm{ind}_{M,g}(C)$ $(\bmod \ \varphi(M))$
 - ・ 设 $r = \gcd(\operatorname{ind}_{M,g}(A), \varphi(M)) = \frac{\varphi(M)}{\operatorname{ord}_M(A)}$ 问题转化为 $B \frac{\operatorname{ind}_{M,g}(A)}{r} \equiv \frac{\operatorname{ind}_{M,g}(C)}{r} \pmod{\frac{\varphi(M)}{r}}$ 可得 $B \equiv \frac{\operatorname{ind}_{M,g}(C)}{r} (\frac{\operatorname{ind}_{M,g}(A)}{r})^{-1} \pmod{\frac{\varphi(M)}{r}}$
 - 满足 $1 \leq B \leq \varphi(M)$ 的解有 r 个,它们在模 $\mathrm{ord}_M(A)$ 意义下同余,然而想算出具体值还是需要求解 $\mathrm{ind}_{M,g}(A)$ 和 $\mathrm{ind}_{M,g}(C)$,或者说 $\mathrm{ind}_{M,A}(C)$

- 解方程 $A^B \equiv C \pmod{M}$,已知 A, C, M 求 B ,M 是质数
 - 设一个原根是 g ,问题等价于 $B \mathrm{ind}_{M,g}(A) \equiv \mathrm{ind}_{M,g}(C)$ $(\bmod \ \varphi(M))$
 - 设 $r = \gcd(\operatorname{ind}_{M,g}(A), \varphi(M)) = \frac{\varphi(M)}{\operatorname{ord}_M(A)}$ 问题转化为 $B \frac{\operatorname{ind}_{M,g}(A)}{r} \equiv \frac{\operatorname{ind}_{M,g}(C)}{r} \pmod{\frac{\varphi(M)}{r}}$ 可得 $B \equiv \frac{\operatorname{ind}_{M,g}(C)}{r} (\frac{\operatorname{ind}_{M,g}(A)}{r})^{-1} \pmod{\frac{\varphi(M)}{r}}$
 - 满足 $1 \leq B \leq \varphi(M)$ 的解有 r 个,它们在模 $\mathrm{ord}_M(A)$ 意义下同余, 然而想算出具体值还是需要求解 $\mathrm{ind}_{M,g}(A)$ 和 $\mathrm{ind}_{M,g}(C)$,或者说 $\mathrm{ind}_{M,A}(C)$

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求 B , M 是质数
 - 设一个原根是 g ,问题等价于 $B \mathrm{ind}_{M,g}(A) \equiv \mathrm{ind}_{M,g}(C)$ $(\bmod \ \varphi(M))$
 - 设 $r = \gcd(\operatorname{ind}_{M,g}(A), \varphi(M)) = \frac{\varphi(M)}{\operatorname{ord}_M(A)}$ 问题转化为 $B \frac{\operatorname{ind}_{M,g}(A)}{r} \equiv \frac{\operatorname{ind}_{M,g}(C)}{r} \pmod{\frac{\varphi(M)}{r}}$ 可得 $B \equiv \frac{\operatorname{ind}_{M,g}(C)}{r} (\frac{\operatorname{ind}_{M,g}(A)}{r})^{-1} \pmod{\frac{\varphi(M)}{r}}$
 - 满足 $1 \leq B \leq \varphi(M)$ 的解有 r 个,它们在模 $\mathrm{ord}_M(A)$ 意义下同余,然而想算出具体值还是需要求解 $\mathrm{ind}_{M,g}(A)$ 和 $\mathrm{ind}_{M,g}(C)$,或者说 $\mathrm{ind}_{M,A}(C)$

- 大步小步算法 (Baby-Step Giant-Step Algorithm)
 - 考虑求出 $1 \le B \le \operatorname{ord}_M(A)$ 的唯一解,设 B = uT v ,其中 T 是设定的阈值, $1 \le u \le \frac{\operatorname{ord}(A)}{T}, 0 \le v < T$
 - 由于 $A^i \ (i \in \mathbb{N})$ 的轨道是一个环, $A^B \equiv C$ 可化为 $A^{uT} \equiv CA^v$
 - 预处理 A^v $(v=0,1,\cdots,T)$,枚举 u 检查是否存在解,若存在解则 解唯一,故只需哈希所需的 A^v
 - 复杂度 $\mathcal{O}(T + \frac{\operatorname{ord}_M(A)}{T})$,取 $T = \mathcal{O}(\sqrt{\operatorname{ord}_M(A)})$

- 大步小步算法 (Baby-Step Giant-Step Algorithm)
 - 考虑求出 $1 \le B \le \operatorname{ord}_M(A)$ 的唯一解,设 B = uT v ,其中 T 是设定的阈值, $1 \le u \le \frac{\operatorname{ord}(A)}{T}, 0 \le v < T$
 - 由于 $A^i \ (i \in \mathbb{N})$ 的轨道是一个环, $A^B \equiv C$ 可化为 $A^{uT} \equiv CA^v$
 - 预处理 A^v $(v=0,1,\cdots,T)$,枚举 u 检查是否存在解,若存在解则 解唯一,故只需哈希所需的 A^v
 - 复杂度 $\mathcal{O}(T + \frac{\operatorname{ord}_M(A)}{T})$,取 $T = \mathcal{O}(\sqrt{\operatorname{ord}_M(A)})$

- 大步小步算法 (Baby-Step Giant-Step Algorithm)
 - 考虑求出 $1 \le B \le \operatorname{ord}_M(A)$ 的唯一解,设 B = uT v ,其中 T 是设定的阈值, $1 \le u \le \frac{\operatorname{ord}(A)}{T}, 0 \le v < T$
 - 由于 $A^i \ (i \in \mathbb{N})$ 的轨道是一个环, $A^B \equiv C$ 可化为 $A^{uT} \equiv CA^v$
 - 预处理 A^v $(v=0,1,\cdots,T)$,枚举 u 检查是否存在解,若存在解则解唯一,故只需哈希所需的 A^v
 - 复杂度 $\mathcal{O}(T + \frac{\operatorname{ord}_M(A)}{T})$,取 $T = \mathcal{O}(\sqrt{\operatorname{ord}_M(A)})$

- 大步小步算法 (Baby-Step Giant-Step Algorithm)
 - 考虑求出 $1 \le B \le \operatorname{ord}_M(A)$ 的唯一解,设 B = uT v ,其中 T 是设定的阈值, $1 \le u \le \frac{\operatorname{ord}(A)}{T}, 0 \le v < T$
 - 由于 $A^i \ (i \in \mathbb{N})$ 的轨道是一个环, $A^B \equiv C$ 可化为 $A^{uT} \equiv CA^v$
 - 预处理 A^v $(v=0,1,\cdots,T)$,枚举 u 检查是否存在解,若存在解则解唯一,故只需哈希所需的 A^v
 - \blacksquare 复杂度 $\mathcal{O}(T+\frac{\mathrm{ord}_M(A)}{T})$, 取 $T=\mathcal{O}(\sqrt{\mathrm{ord}_M(A)})$
 - 需要保证 $A^i \ (i \in \mathbb{N})$ 的轨道是一个环,或者说 A^{-1} 存在

- 大步小步算法 (Baby-Step Giant-Step Algorithm)
 - 考虑求出 $1 \le B \le \operatorname{ord}_M(A)$ 的唯一解,设 B = uT v ,其中 T 是设定的阈值, $1 \le u \le \frac{\operatorname{ord}(A)}{T}, 0 \le v < T$
 - 由于 $A^i \ (i \in \mathbb{N})$ 的轨道是一个环, $A^B \equiv C$ 可化为 $A^{uT} \equiv CA^v$
 - 预处理 A^v $(v=0,1,\cdots,T)$,枚举 u 检查是否存在解,若存在解则解唯一,故只需哈希所需的 A^v
 - \blacksquare 复杂度 $\mathcal{O}(T+\frac{\mathrm{ord}_M(A)}{T})$, 取 $T=\mathcal{O}(\sqrt{\mathrm{ord}_M(A)})$
 - 需要保证 A^i $(i \in \mathbb{N})$ 的轨道是一个环,或者说 A^{-1} 存在

- 中国剩余定理: 给定一系列同余方程 $x\equiv r_i\pmod{m_i}$,满足 $m_i\ (i=1,2,\cdots,k)$ 两两互质,则方程组存在唯一的通解 $x\equiv R\pmod{M}$,其中 $M=\text{lcm}(m_1,m_2,\cdots,m_k)$, $R=\sum_{i=1}^k r_i M'_i \frac{M}{m_i}$, M'_i 表示 $\frac{M}{m_i}$ 在模 m_i 意义下乘法逆元
- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求 B , 满足 $\gcd(A, M) = 1, M$ 是奇数(题目:数论之神)
 - \blacksquare 由定理可知,解在模 $\operatorname{ord}_M(A)$ 意义下唯一,大步小步算法适用

- 中国剩余定理:给定一系列同余方程 $x\equiv r_i\pmod{m_i}$,满足 $m_i\ (i=1,2,\cdots,k)$ 两两互质,则方程组存在唯一的通解 $x\equiv R\ (\mathrm{mod}\ M)$,其中 $M=\mathrm{lcm}(m_1,m_2,\cdots,m_k)$, $R=\sum_{i=1}^k r_i M'_i \frac{M}{m_i}$, M'_i 表示 $\frac{M}{m_i}$ 在模 m_i 意义下乘法逆元
- 解方程 $A^B \equiv C \pmod M$,已知 A, C, M 求 B,满足 $\gcd(A, M) = 1, M$ 是奇数(题目:数论之神)
 - 由定理可知,解在模 $ord_M(A)$ 意义下唯一,大步小步算法适用

- 中国剩余定理:给定一系列同余方程 $x\equiv r_i\pmod{m_i}$,满足 $m_i\ (i=1,2,\cdots,k)$ 两两互质,则方程组存在唯一的通解 $x\equiv R\ (\mathrm{mod}\ M)$,其中 $M=\mathrm{lcm}(m_1,m_2,\cdots,m_k)$, $R=\sum_{i=1}^k r_i M'_i \frac{M}{m_i}$, M'_i 表示 $\frac{M}{m_i}$ 在模 m_i 意义下乘法逆元
- 解方程 $A^B \equiv C \pmod M$,已知 A, C, M 求 B,满足 $\gcd(A, M) = 1, M$ 是奇数(题目:数论之神)
 - lacktriangle 由定理可知,解在模 $\operatorname{ord}_M(A)$ 意义下唯一,大步小步算法适用

- gcd(A, M) > 1 时,不妨考虑将 M 表示成 $\prod_{i=1}^{\omega(M)} p_i^{e_i}$ 的形式
- 令 $A\pmod{p_i^{e_i}}=p_i^uv$,当 u>0 时, $ut\geq e_i$ 时 $A^t\equiv 0$ $\pmod{p_i^{e_i}}\text{ ,会有一段不循环的结果,并且之后的循环节是 1}$,否则 $\operatorname{ord}_{p_i^{e_i}}(A)$ 存在,且 $\operatorname{ord}_{p_i^{e_i}}(A)\mid \varphi(p_i^{e_i})$
- 经过不循环的段后,必然产生循环,循环的长度整除 $\operatorname{lcm}(\varphi(p_1^{e_1}), \varphi(p_2^{e_2}), \cdots, \varphi(p_{\omega(M)}^{e_{\omega(M)}})) \mid \varphi(M)$
- 不循环的段长度小于循环的长度
- lacksquare 令 $A^i \mod M$ 向 $A^{i+1} \mod M$ $(i \in \mathbb{N})$ 连边,轨道呈现 ρ 型

- gcd(A, M) > 1 时,不妨考虑将 M 表示成 $\prod_{i=1}^{\omega(M)} p_i^{e_i}$ 的形式
- 令 $A\pmod{p_i^{e_i}}=p_i^uv$,当 u>0 时, $ut\geq e_i$ 时 $A^t\equiv 0$ $\pmod{p_i^{e_i}}\text{ ,会有一段不循环的结果,并且之后的循环节是 1}$,否则 $\operatorname{ord}_{p_i^{e_i}}(A)$ 存在,且 $\operatorname{ord}_{p_i^{e_i}}(A)\mid \varphi(p_i^{e_i})$
- 经过不循环的段后,必然产生循环,循环的长度整除 $\operatorname{lcm}(\varphi(p_1^{e_1}),\varphi(p_2^{e_2}),\cdots,\varphi(p_{\omega(M)}^{e_{\omega(M)}})) \mid \varphi(M)$
- 不循环的段长度小于循环的长度
- lacksquare 令 $A^i \mod M$ 向 $A^{i+1} \mod M$ $(i \in \mathbb{N})$ 连边,轨道呈现 ρ 型

- gcd(A, M) > 1 时,不妨考虑将 M 表示成 $\prod_{i=1}^{\omega(M)} p_i^{e_i}$ 的形式
- 令 $A\pmod{p_i^{e_i}}=p_i^uv$,当 u>0 时, $ut\geq e_i$ 时 $A^t\equiv 0$ $\pmod{p_i^{e_i}}\text{ ,会有一段不循环的结果,并且之后的循环节是 1}$,否则 $\operatorname{ord}_{p_i^{e_i}}(A)$ 存在,且 $\operatorname{ord}_{p_i^{e_i}}(A)\mid \varphi(p_i^{e_i})$
- 经过不循环的段后,必然产生循环,循环的长度整除 $\operatorname{lcm}(\varphi(p_1{}^{e_1}),\varphi(p_2{}^{e_2}),\cdots,\varphi(p_{\omega(M)}{}^{e_{\omega(M)}})) \mid \varphi(M)$
- 不循环的段长度小于循环的长度
- lacksquare 令 $A^i \mod M$ 向 $A^{i+1} \mod M$ $(i \in \mathbb{N})$ 连边,轨道呈现 ρ 型

- gcd(A, M) > 1 时,不妨考虑将 M 表示成 $\prod_{i=1}^{\omega(M)} p_i^{e_i}$ 的形式
- 令 $A\pmod{p_i^{e_i}}=p_i^uv$,当 u>0 时, $ut\geq e_i$ 时 $A^t\equiv 0$ $\pmod{p_i^{e_i}}\text{ ,会有一段不循环的结果,并且之后的循环节是 1}$,否则 $\operatorname{ord}_{p_i^{e_i}}(A)$ 存在,且 $\operatorname{ord}_{p_i^{e_i}}(A)\mid \varphi(p_i^{e_i})$
- 经过不循环的段后,必然产生循环,循环的长度整除 $\operatorname{lcm}(\varphi(p_1^{e_1}),\varphi(p_2^{e_2}),\cdots,\varphi(p_{\omega(M)}^{e_{\omega(M)}})) \mid \varphi(M)$
- 不循环的段长度小于循环的长度
- 令 $A^i \mod M$ 向 $A^{i+1} \mod M$ $(i \in \mathbb{N})$ 连边,轨道呈现 ρ 型

- gcd(A, M) > 1 时,不妨考虑将 M 表示成 $\prod_{i=1}^{\omega(M)} p_i^{e_i}$ 的形式
- 令 $A\pmod{p_i^{e_i}}=p_i^uv$,当 u>0 时, $ut\geq e_i$ 时 $A^t\equiv 0$ $\pmod{p_i^{e_i}}\text{ ,会有一段不循环的结果,并且之后的循环节是 1}$,否则 $\operatorname{ord}_{p_i^{e_i}}(A)$ 存在,且 $\operatorname{ord}_{p_i^{e_i}}(A)\mid \varphi(p_i^{e_i})$
- 经过不循环的段后,必然产生循环,循环的长度整除 $\operatorname{lcm}(\varphi(p_1^{e_1}),\varphi(p_2^{e_2}),\cdots,\varphi(p_{\omega(M)}^{e_{\omega(M)}})) \mid \varphi(M)$
- 不循环的段长度小于循环的长度
- ullet 令 $A^i \mod M$ 向 $A^{i+1} \mod M$ $(i \in \mathbb{N})$ 连边,轨道呈现 ρ 型

- Pollard's rho Algorithm for Logarithms
 - 把集合 $G = \{A^i \mod M | i \in \mathbb{N}\}$ 分成三个部分 S_0, S_1, S_2 (比如根据模 3 的余值来划分),并保证 $1 \notin S_1$
 - 生成一系列 $x=A^iC^j$ 直到某个 x 另一种表示方法 $x=A^xC^y$,则 $(i-x)\equiv B(j-y) \pmod{|G|} \text{ ,方程可能有多解(若不在环上?)}$
 - 沿用 Floyd's Cycle-Finding Algorithm ,生成一系列元素 x_0, x_1, \cdots 满足 $x_{i+1} = f(x_i) \ (i=0,1,\cdots)$,这里 f(x) = Cx if $x \in S_0$, $f(x) = x^2$ if $x \in S_1$,f(x) = Ax if $x \in S_2$
 - 维护 x_i, x_{2i} 找环,期望复杂度 $\mathcal{O}(\sqrt{\frac{\pi n}{2}})$,不需要 G 关于 * 成循环群,证明见 Monte Carlo Methods for Index Computation \pmod{p}

- Pollard's rho Algorithm for Logarithms
 - 把集合 $G = \{A^i \mod M | i \in \mathbb{N}\}$ 分成三个部分 S_0, S_1, S_2 (比如根据模 3 的余值来划分),并保证 $1 \notin S_1$

 - 沿用 Floyd's Cycle-Finding Algorithm ,生成一系列元素 x_0, x_1, \cdots 满足 $x_{i+1} = f(x_i) \ (i=0,1,\cdots)$,这里 f(x) = Cx if $x \in S_0$, $f(x) = x^2 \text{ if } x \in S_1, \ f(x) = Ax \text{ if } x \in S_2$
 - 维护 x_i, x_{2i} 找环,期望复杂度 $\mathcal{O}(\sqrt{\frac{\pi n}{2}})$,不需要 G 关于 * 成循环群,证明见 Monte Carlo Methods for Index Computation \pmod{p}

- Pollard's rho Algorithm for Logarithms
 - 把集合 $G = \{A^i \mod M | i \in \mathbb{N}\}$ 分成三个部分 S_0, S_1, S_2 (比如根据模 3 的余值来划分),并保证 $1 \notin S_1$

 - 沿用 Floyd's Cycle-Finding Algorithm ,生成一系列元素 x_0, x_1, \cdots 满足 $x_{i+1} = f(x_i) \; (i=0,1,\cdots)$,这里 f(x) = Cx if $x \in S_0$, $f(x) = x^2$ if $x \in S_1$,f(x) = Ax if $x \in S_2$
 - 维护 x_i, x_{2i} 找环,期望复杂度 $\mathcal{O}(\sqrt{\frac{\pi n}{2}})$,不需要 G 关于 * 成循环群,证明见 Monte Carlo Methods for Index Computation \pmod{p}

- Pollard's rho Algorithm for Logarithms
 - 把集合 $G = \{A^i \mod M | i \in \mathbb{N}\}$ 分成三个部分 S_0, S_1, S_2 (比如根据模 3 的余值来划分),并保证 $1 \notin S_1$
 - 生成一系列 $x = A^i C^j$ 直到某个 x 另一种表示方法 $x = A^x C^y$,则 $(i-x) \equiv B(j-y) \pmod{|G|} \text{ ,方程可能有多解(若不在环上?)}$
 - 沿用 Floyd's Cycle-Finding Algorithm ,生成一系列元素 x_0, x_1, \cdots 满足 $x_{i+1} = f(x_i) \; (i=0,1,\cdots)$,这里 f(x) = Cx if $x \in S_0$, $f(x) = x^2$ if $x \in S_1$,f(x) = Ax if $x \in S_2$
 - 维护 x_i, x_{2i} 找环,期望复杂度 $\mathcal{O}(\sqrt{\frac{\pi n}{2}})$,不需要 G 关于 * 成循环群,证明见 Monte Carlo Methods for Index Computation \pmod{p}

■ 给定整数 seed, p, n 和 k ,求解满足方程 $((seed^{2^x} \bmod p) \bmod n) = k$ 的最小正整数解 x ,无解输出 -1

■ $1 \le seed 是质数$

■ 给定整数 seed, p, n 和 k ,求解满足方程

 $((seed^{2^x} mod p) mod n) = k$ 的最小正整数解 x , 无解输出 -1

■ $1 \le seed 是质数$

- 找到 u $(0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- 找到 x $(1 \le x \le \operatorname{ord}_{\operatorname{ord}_n(seed)}(2)$ 满足 $2^x \equiv v \pmod{\operatorname{ord}_p(seed)}$

- 找到 $u \ (0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- 找到 x $(1 \le x \le \operatorname{ord}_{\operatorname{ord}_n(seed)}(2)$ 满足 $2^x \equiv v \pmod{\operatorname{ord}_p(seed)}$

- 找到 $u \ (0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- 找到 x $(1 \le x \le \operatorname{ord}_{\operatorname{ord}_p(seed)}(2)$ 满足 $2^x \equiv v \pmod{\operatorname{ord}_p(seed)}$

- 找到 $u \ (0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- 找到 x $(1 \le x \le \operatorname{ord}_{\operatorname{ord}_p(seed)}(2)$ 满足 $2^x \equiv v \pmod{\operatorname{ord}_p(seed)}$

- 找到 $u \ (0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- 找到x $(1 \le x \le \operatorname{ord}_{\operatorname{ord}_p(seed)}(2)$ 满足 $2^x \equiv v \pmod{\operatorname{ord}_p(seed)}$ $1 \le seed < p$ 且 p 是质数,所以 $\operatorname{ord}_p(seed)$ 一定存在 但是 $\operatorname{ord}_{\operatorname{ord}_p(seed)}(2)$ 不一定存在
- 采用 Pollard's rho Algorithm for Logarithms 算法

- 找到 $u \ (0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- 找到x (1 ≤ x ≤ ord_{ord_p(seed)}(2) 满足2^x ≡ v (mod ord_p(seed))
 1 ≤ seed p</sub>(seed) 一定存在
 但是 ord_{ord_p(seed)}(2) 不一定存在
- 采用 Pollard's rho Algorithm for Logarithms 算法

- 找到 $u \ (0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- 找到x $(1 \le x \le \operatorname{ord}_{\operatorname{ord}_p(seed)}(2)$ 满足 $2^x \equiv v \pmod{\operatorname{ord}_p(seed)}$ $1 \le seed < p$ 且 p 是质数,所以 $\operatorname{ord}_p(seed)$ 一定存在 但是 $\operatorname{ord}_{\operatorname{ord}_p(seed)}(2)$ 不一定存在
- ullet 采用Pollard's rho Algorithm for Logarithms 算法 最优复杂度 $\mathcal{O}(p^{rac{3}{4}})$,会超过时间限制 不妨从 $G=\{2^i mod \mathbf{ord}_p(seed)|i\in\mathbb{N}\}$ 的形状入手

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求最小非负整数 B
 - 只需最小解,若 gcd(A, M) = 1 , A^{-1} 有定义,大步小步算法适用
- 扩展大步小步算法 (Extended Baby-Step Giant-Step Algorithm)
 - 把方程化为 $A^{B-\delta}A^{\delta} \equiv C \pmod{M}$, 消去公因子变为
 - $A^{B-\delta}A'\equiv C'\pmod{M'}$, 枚举 $\delta=0,1,\cdots$ 进行下面的步骤
 - 若 gcd(A, M') = 1 ,套用大步小步算法
 - 否则检验是否有 $A' \equiv C' \pmod{M'}$,如果有则找到解
 - 如果没有,则增加 δ ,尝试将 A', C', M' 消去公因子 $\gcd(A, M')$
 - 只会进行至多 log。M 步消因子操作

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求最小非负整数 B
 - 只需最小解,若 gcd(A, M) = 1 , A^{-1} 有定义,大步小步算法适用
- 扩展大步小步算法 (Extended Baby-Step Giant-Step Algorithm)
 - 把方程化为 $A^{B-\delta}A^{\delta} \equiv C \pmod{M}$,消去公因子变为
 - $A^{B-\delta}A'\equiv C'\pmod{M'}$, 枚举 $\delta=0,1,\cdots$ 进行下面的步骤
 - 若 $\gcd(A, M') = 1$,套用大步小步算法
 - 否则检验是否有 $A' \equiv C' \pmod{M'}$,如果有则找到解
 - 如果没有,则增加 δ ,尝试将 A',C',M' 消去公因子 $\gcd(A,M')$
 - 只会进行至多 log。M 步消因子操作

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求最小非负整数 B
 - 只需最小解,若 gcd(A, M) = 1 , A^{-1} 有定义,大步小步算法适用
- 扩展大步小步算法 (Extended Baby-Step Giant-Step Algorithm)
 - 把方程化为 $A^{B-\delta}A^\delta\equiv C\pmod M$,消去公因子变为 $A^{B-\delta}A'\equiv C'\pmod {M'}$,枚举 $\delta=0,1,\cdots$ 进行下面的步骤
 - 若 gcd(A, M') = 1, 套用大步小步算法
 - 否则检验是否有 $A' \equiv C' \pmod{M'}$, 如果有则找到解
 - 如果没有,则增加 δ ,尝试将 A', C', M' 消去公因子 $\gcd(A, M')$
 - 只会进行至多 log₂ M 步消因子操作

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求最小非负整数 B
 - 只需最小解,若 gcd(A, M) = 1 , A^{-1} 有定义,大步小步算法适用
- 扩展大步小步算法 (Extended Baby-Step Giant-Step Algorithm)
 - 把方程化为 $A^{B-\delta}A^\delta\equiv C\pmod M$,消去公因子变为 $A^{B-\delta}A'\equiv C'\pmod {M'}$,枚举 $\delta=0,1,\cdots$ 进行下面的步骤
 - 若 gcd(A, M') = 1, 套用大步小步算法
 - 否则检验是否有 $A' \equiv C' \pmod{M'}$, 如果有则找到解
 - 如果没有,则增加 δ ,尝试将 A', C', M' 消去公因子 $\gcd(A, M')$
 - 只会进行至多 log₂ M 步消因子操作

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求最小非负整数 B
 - 只需最小解,若 gcd(A, M) = 1 , A^{-1} 有定义,大步小步算法适用
- 扩展大步小步算法 (Extended Baby-Step Giant-Step Algorithm)
 - 把方程化为 $A^{B-\delta}A^\delta\equiv C\pmod M$,消去公因子变为 $A^{B-\delta}A'\equiv C'\pmod {M'}$,枚举 $\delta=0,1,\cdots$ 进行下面的步骤
 - 若 gcd(A, M') = 1, 套用大步小步算法
 - 否则检验是否有 $A' \equiv C' \pmod{M'}$, 如果有则找到解
 - 如果没有,则增加 δ ,尝试将 A', C', M' 消去公因子 $\gcd(A, M')$
 - 只会进行至多 log₂ M 步消因子操作

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求最小非负整数 B
 - 只需最小解,若 gcd(A, M) = 1 , A^{-1} 有定义,大步小步算法适用
- 扩展大步小步算法 (Extended Baby-Step Giant-Step Algorithm)
 - 把方程化为 $A^{B-\delta}A^\delta\equiv C\pmod M$,消去公因子变为 $A^{B-\delta}A'\equiv C'\pmod {M'}$,枚举 $\delta=0,1,\cdots$ 进行下面的步骤
 - 若 gcd(A, M') = 1, 套用大步小步算法
 - 否则检验是否有 $A' \equiv C' \pmod{M'}$, 如果有则找到解
 - 如果没有,则增加 δ ,尝试将 A', C', M' 消去公因子 gcd(A, M')
 - 只会进行至多 log₂ M 步消因子操作

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求最小非负整数 B
 - 只需最小解,若 gcd(A, M) = 1 , A^{-1} 有定义,大步小步算法适用
- 扩展大步小步算法 (Extended Baby-Step Giant-Step Algorithm)
 - 把方程化为 $A^{B-\delta}A^\delta\equiv C\pmod M$,消去公因子变为 $A^{B-\delta}A'\equiv C'\pmod {M'}$,枚举 $\delta=0,1,\cdots$ 进行下面的步骤
 - 若 gcd(A, M') = 1, 套用大步小步算法
 - 否则检验是否有 $A' \equiv C' \pmod{M'}$, 如果有则找到解
 - 如果没有,则增加 δ ,尝试将 A', C', M' 消去公因子 $\gcd(A, M')$
 - 只会进行至多 log₂ M 步消因子操作

- 解方程 $A^B \equiv C \pmod{M}$, 已知 A, C, M 求最小非负整数 B
 - 只需最小解,若 gcd(A, M) = 1 , A^{-1} 有定义,大步小步算法适用
- 扩展大步小步算法 (Extended Baby-Step Giant-Step Algorithm)
 - 把方程化为 $A^{B-\delta}A^\delta\equiv C\pmod M$,消去公因子变为 $A^{B-\delta}A'\equiv C'\pmod {M'}$,枚举 $\delta=0,1,\cdots$ 进行下面的步骤
 - 若 gcd(A, M') = 1, 套用大步小步算法
 - 否则检验是否有 $A' \equiv C' \pmod{M'}$, 如果有则找到解
 - 如果没有,则增加 δ ,尝试将 A', C', M' 消去公因子 $\gcd(A, M')$
 - 只会进行至多 log₂ M 步消因子操作

- 找到 $u \ (0 \le u < p)$ 満足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- 令 $\operatorname{ord}_p(seed) = 2^e \cdot r$, 求出 $\operatorname{ord}_r(2)$, 并设定阈值 Q
 - 当 $n \leq Q$ 时,枚举 $1 \leq x \leq e + \operatorname{ord}_r(2)$ 检查,模值在模 n 意义下或可视为随机分布,期望复杂度 $\mathcal{O}(Q)$
 - 当 n > Q 时,u 有不超过 $\frac{P}{Q}$ 种取值,枚举 u 求解 v ,再求解 x , 期望复杂度 $O(T + P(\log n + P))$ 、 即 $T = O(P_n)$
 - 期重复示度 $O(1+\frac{1}{Q}(\log p+\frac{1}{2}))$, $\text{Re}_{1}=O(\frac{1}{\sqrt{Q}})$
 - 为均衡两种情况的复杂度,取 $Q = \mathcal{O}(p^{\frac{4}{3}})$

- 找到 $u \ (0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- $lacksymbol{\bullet}$ \Leftrightarrow $\operatorname{ord}_p(seed) = 2^e \cdot r$, 求出 $\operatorname{ord}_r(2)$, 并设定阈值 Q
 - \blacksquare 当 $n \leq Q$ 时,校举 $1 \leq x \leq e + \operatorname{ord}_r(2)$ 检查,模值在模 n 意义下现
 - 可视为随机分布,期望复杂度 $\mathcal{O}(Q)$
 - \blacksquare 当 n > Q 时,u 有不超过 $\frac{\pi}{2}$ 种取值,枚举 u 求解 v ,再求解 x ,
 - 期望复杂度 $\mathcal{O}(T + \frac{p}{Q}(\log p + \frac{p}{T}))$,取 $T = \mathcal{O}(\frac{p}{\sqrt{Q}})$
 - 为均衡两种情况的复杂度,取 $Q = \mathcal{O}(p^{\frac{2}{3}})$

- 找到 $u \ (0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- $lacksymbol{\bullet}$ \Leftrightarrow $\operatorname{ord}_p(seed) = 2^e \cdot r$, 求出 $\operatorname{ord}_r(2)$, 并设定阈值 Q
 - 当 $n \leq Q$ 时,枚举 $1 \leq x \leq e + \operatorname{ord}_r(2)$ 检查,模值在模 n 意义下或可视为随机分布,期望复杂度 $\mathcal{O}(Q)$
 - 当 n>Q 时,u 有不超过 $\frac{p}{Q}$ 种取值,枚举 u 求解 v ,再求解 x , 期望复杂度 $\mathcal{O}(T+\frac{p}{Q}(\log p+\frac{p}{T}))$,取 $T=\mathcal{O}(\frac{p}{\sqrt{Q}})$
 - 为均衡两种情况的复杂度,取 $Q = \mathcal{O}(p^{\frac{2}{3}})$

- 找到 u $(0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- $lacksymbol{\bullet}$ \Leftrightarrow $\operatorname{ord}_p(seed) = 2^e \cdot r$, 求出 $\operatorname{ord}_r(2)$, 并设定阈值 Q
 - 当 $n \leq Q$ 时,枚举 $1 \leq x \leq e + \operatorname{ord}_r(2)$ 检查,模值在模 n 意义下或可视为随机分布,期望复杂度 $\mathcal{O}(Q)$
 - \blacksquare 当 n>Q 时,u 有不超过 $\frac{p}{Q}$ 种取值,枚举 u 求解 v ,再求解 x ,期望复杂度 $\mathcal{O}(T+\frac{p}{Q}(\log p+\frac{p}{T}))$,取 $T=\mathcal{O}(\frac{p}{\sqrt{Q}})$
 - 为均衡两种情况的复杂度,取 $Q = \mathcal{O}(p^{\frac{2}{3}})$

- 找到 u $(0 \le u < p)$ 满足 $u \equiv k \pmod{n}$
- 找到 $v \ (1 \le v \le \operatorname{ord}_p(seed))$ 满足 $seed^v \equiv u \pmod{p}$
- $lacksymbol{\bullet}$ \Leftrightarrow $\operatorname{ord}_p(seed) = 2^e \cdot r$, 求出 $\operatorname{ord}_r(2)$, 并设定阈值 Q
 - 当 $n \leq Q$ 时,枚举 $1 \leq x \leq e + \operatorname{ord}_r(2)$ 检查,模值在模 n 意义下或可视为随机分布,期望复杂度 $\mathcal{O}(Q)$
 - \blacksquare 当 n>Q 时,u 有不超过 $\frac{p}{Q}$ 种取值,枚举 u 求解 v ,再求解 x ,期望复杂度 $\mathcal{O}(T+\frac{p}{Q}(\log p+\frac{p}{T}))$,取 $T=\mathcal{O}(\frac{p}{\sqrt{Q}})$
 - 为均衡两种情况的复杂度, 取 $Q = \mathcal{O}(p^{\frac{2}{3}})$

- 给定整数 B, C 和 M ,求解满足方程 $A^B \equiv C \pmod{M}$ 且 $A \leq M$ 的所有非负整数解 A ,无解输出 No Solution
- $lacksymbol{\blacksquare}$ 保证解的数量不超过 \sqrt{M}
- $\blacksquare 1 \le B, C \le M \le 10^9$

- 给定整数 B, C 和 M ,求解满足方程 $A^B \equiv C \pmod{M}$ 且 $A \leq M$ 的所有非负整数解 A ,无解输出 No Solution
- 保证解的数量不超过 \sqrt{M}
- $\blacksquare 1 \le B, C < M \le 10^9$

- 给定整数 B, C 和 M ,求解满足方程 $A^B \equiv C \pmod{M}$ 且 $A \leq M$ 的所有非负整数解 A ,无解输出 No Solution
- 保证解的数量不超过 \sqrt{M}
- $1 \le B, C < M \le 10^9$

- 解方程 $A^B \equiv C \pmod{M}$, 已知 B, C, M 求 A
 - 高次剩余问题
 - M 有原根时问题会好办许多,考虑 M 是质数幂次的情况,然后利用中国剩余定理合并
 - *M* = 2^e 时没有原根,需要完善做法

- 解方程 $A^B \equiv C \pmod{M}$, 已知 B, C, M 求 A
 - 高次剩余问题
 - M 有原根时问题会好办许多,考虑 M 是质数幂次的情况,然后利用中国剩余定理合并
 - *M* = 2^e 时没有原根,需要完善做法

- 解方程 $A^B \equiv C \pmod{M}$, 已知 B, C, M 求 A
 - 高次剩余问题
 - M 有原根时问题会好办许多,考虑 M 是质数幂次的情况,然后利用中国剩余定理合并
 - $M=2^e$ 时没有原根,需要完善做法

- 解高次剩余 $A^B \equiv C \pmod{M}$, $M = p^e$, p 是奇质数
 - 若 $C\equiv 0\pmod M$,则 $x=p^uv\ (\gcd(p,v)=1)$ 满足 $uB\geq e$ 即可,即 $p^{\left\lceil\frac{e}{B}\right\rceil}\mid x$
 - 若 $\gcd(C,M)=1$,可以取一原根 g 将问题转化为 $Bind_{M,g}(x)\equiv ind_{M,g}(C) \pmod{\varphi(M)} \text{ ,消公因子后检查是否有解,}$ 有解则利用扩展欧几里得算法求出通解即可
 - 若 $1 < \gcd(C, M) < M$, 令 $C = p^a b \ (\gcd(a, b) = 1)$, 那么 $B \mid a$, $p^{\frac{a}{B}} \mid x$, 消因子后转化为 $\gcd(C, M) = 1$ 的情况,转化回来时需要 扩张解的所在域(例子)

- 解高次剩余 $A^B \equiv C \pmod{M}$, $M = p^e$, p 是奇质数
 - 若 $C\equiv 0\pmod M$,则 $x=p^uv\ (\gcd(p,v)=1)$ 满足 $uB\geq e$ 即可,即 $p^{\left\lceil\frac{e}{B}\right\rceil}\mid x$
 - 若 $\gcd(C,M)=1$,可以取一原根 g 将问题转化为 $Bind_{M,g}(x)\equiv ind_{M,g}(C) \pmod{\varphi(M)} \text{ ,消公因子后检查是否有解,}$ 有解则利用扩展欧几里得算法求出通解即可
 - 若 $1 < \gcd(C, M) < M$,令 $C = p^a b \left(\gcd(a, b) = 1\right)$,那么 $B \mid a$, $p^{\frac{a}{b}} \mid x$,消因子后转化为 $\gcd(C, M) = 1$ 的情况,转化回来时需要扩张解的所在域(例子)

- 解高次剩余 $A^B \equiv C \pmod{M}$, $M = p^e$, p 是奇质数
 - 若 $C\equiv 0\pmod M$,则 $x=p^uv\ (\gcd(p,v)=1)$ 满足 $uB\geq e$ 即可,即 $p^{\left\lceil\frac{e}{B}\right\rceil}\mid x$
 - 若 $\gcd(C,M)=1$,可以取一原根 g 将问题转化为 $B\mathrm{ind}_{M,g}(x)\equiv\mathrm{ind}_{M,g}(C)\ (\mathrm{mod}\ \varphi(M))$,消公因子后检查是否有解, 有解则利用扩展欧几里得算法求出通解即可
 - 若 $1 < \gcd(C, M) < M$,令 $C = p^a b \ (\gcd(a, b) = 1)$,那么 $B \mid a$, $p^{\frac{a}{B}} \mid x$,消因子后转化为 $\gcd(C, M) = 1$ 的情况,转化回来时需要 扩张解的所在域(例子)

- 解高次剩余 $A^B \equiv C \pmod{M}$, $M = 2^e$
 - $lacksymbol{\bullet}$ 当 e>2 时缩系可以表示成两个循环群的直和 $C_2 \times C_{2^{e-2}}$,然而没有办法使用中国剩余定理
 - $lacksymbol{\blacksquare}$ 看到解的数量不超过 \sqrt{M} ,一个暴力的想法是生成出所有的解
 - 如果有 $A^B \equiv C \pmod{2^e}$, 那么一定有 $A^B \equiv C \pmod{2^{e-1}}$
 - 假设已知 $x^B \equiv C \pmod{2^{e-1}}$,那么可能有 $x^B \equiv C \pmod{2^e}$ 或 $(x+2^{e-1})^B \equiv C \pmod{2^e}$,利用这个必要条件进行 BFS 即可

- 解高次剩余 $A^B \equiv C \pmod{M}$, $M = 2^e$
 - $lacksymbol{\bullet}$ 当 e>2 时缩系可以表示成两个循环群的直和 $C_2 imes C_{2^{e-2}}$,然而没有办法使用中国剩余定理
 - $lacksymbol{\blacksquare}$ 看到解的数量不超过 \sqrt{M} ,一个暴力的想法是生成出所有的解
 - \blacksquare 如果有 $A^B \equiv C \pmod{2^e}$,那么一定有 $A^B \equiv C \pmod{2^{e-1}}$
 - 假设已知 $x^B \equiv C \pmod{2^{e-1}}$,那么可能有 $x^B \equiv C \pmod{2^e}$ 或 $(x+2^{e-1})^B \equiv C \pmod{2^e}$,利用这个必要条件进行 BFS 即可

- 解高次剩余 $A^B \equiv C \pmod{M}$, $M = 2^e$
 - ullet 当 e>2 时缩系可以表示成两个循环群的直和 $C_2 imes C_{2^{e-2}}$,然而没有办法使用中国剩余定理
 - $lacksymbol{\blacksquare}$ 看到解的数量不超过 \sqrt{M} ,一个暴力的想法是生成出所有的解
 - \blacksquare 如果有 $A^B \equiv C \pmod{2^e}$,那么一定有 $A^B \equiv C \pmod{2^{e-1}}$
 - 假设已知 $x^B \equiv C \pmod{2^{e-1}}$,那么可能有 $x^B \equiv C \pmod{2^e}$ 或 $(x+2^{e-1})^B \equiv C \pmod{2^e} \text{ ,利用这个必要条件进行 BFS 即可}$

- 解高次剩余 $A^B \equiv C \pmod{M}$, $M = 2^e$
 - lacktriangle 当 e>2 时缩系可以表示成两个循环群的直和 $C_2 imes C_{2^{e-2}}$,然而没有办法使用中国剩余定理
 - 看到解的数量不超过 \sqrt{M} ,一个暴力的想法是生成出所有的解
 - \blacksquare 如果有 $A^B \equiv C \pmod{2^e}$,那么一定有 $A^B \equiv C \pmod{2^{e-1}}$
 - 假设已知 $x^B\equiv C\pmod{2^{e-1}}$,那么可能有 $x^B\equiv C\pmod{2^e}$ 或 $(x+2^{e-1})^B\equiv C\pmod{2^e}$,利用这个必要条件进行 BFS 即可
 - 由于模 2^e 意义的特殊性,这个方法是可以通过的,直到有一天昨天 我又翻了一遍《数论讲义》······

- 解高次剩余 $A^B \equiv C \pmod{M}$, $M = 2^e$
 - ullet 当 e>2 时缩系可以表示成两个循环群的直和 $C_2 imes C_{2^{e-2}}$,然而没有办法使用中国剩余定理
 - 看到解的数量不超过 \sqrt{M} ,一个暴力的想法是生成出所有的解
 - \blacksquare 如果有 $A^B \equiv C \pmod{2^e}$,那么一定有 $A^B \equiv C \pmod{2^{e-1}}$
 - 假设已知 $x^B\equiv C\pmod{2^{e-1}}$,那么可能有 $x^B\equiv C\pmod{2^e}$ 或 $(x+2^{e-1})^B\equiv C\pmod{2^e}$,利用这个必要条件进行 BFS 即可
 - 由于模 2^e 意义的特殊性,这个方法是可以通过的,直到有一天昨天 我又翻了一遍《数论讲义》······

震惊!

模 2^e 意义也有"原根"!

加油,编的已经快像真的了

- \blacksquare 当 e>2 时,可以归纳证明 $5^{2^{e-3}}\equiv 1+2^{e-1}\pmod{2^e}$,从而得到 $\mathrm{ord}_{2^e}(5)=2^{e-2}$
- 这意味着 5 的幂次可以生成 2^{e-2} 个形如 4k+1 的数字,而 缩系中恰好有 2^{e-2} 个形如 4k+1 的数字
- 形如 4k + 1 的数字乘以 (-1) 即可生成剩下的 2^{e-2} 个与 2^e 互质的数字,它们都是 4k + 3 的形式
- 对于 $gcd(A, 2^e) = 1$ 的情况,有 $A \equiv (-1)^{\frac{A-1}{2}} 5^u \pmod{2^e}$,根据 B 的奇偶性讨论一下即可转化为离散对数问题,不用受

- \blacksquare 当 e>2 时,可以归纳证明 $5^{2^{e-3}}\equiv 1+2^{e-1}\pmod{2^e}$,从而得到 $\mathrm{ord}_{2^e}(5)=2^{e-2}$
- 这意味着 5 的幂次可以生成 2^{e-2} 个形如 4k+1 的数字,而缩系中恰好有 2^{e-2} 个形如 4k+1 的数字
- 形如 4k + 1 的数字乘以 (-1) 即可生成剩下的 2^{e-2} 个与 2^e 互质的数字,它们都是 4k + 3 的形式
- 对于 $gcd(A, 2^e) = 1$ 的情况,有 $A \equiv (-1)^{\frac{A-1}{2}} 5^u \pmod{2^e}$, 根据 B 的奇偶性讨论一下即可转化为离散对数问题,不用受

- \blacksquare 当 e>2 时,可以归纳证明 $5^{2^{e-3}}\equiv 1+2^{e-1}\pmod{2^e}$,从而得到 $\mathrm{ord}_{2^e}(5)=2^{e-2}$
- 这意味着 5 的幂次可以生成 2^{e-2} 个形如 4k+1 的数字,而缩系中恰好有 2^{e-2} 个形如 4k+1 的数字
- 形如 4k + 1 的数字乘以 (-1) 即可生成剩下的 2^{e-2} 个与 2^e 互质的数字,它们都是 4k + 3 的形式
- 对于 $gcd(A, 2^e) = 1$ 的情况,有 $A \equiv (-1)^{\frac{A-1}{2}} 5^u \pmod{2^e}$, 根据 B 的奇偶性讨论一下即可转化为离散对数问题,不用受

- \blacksquare 当 e>2 时,可以归纳证明 $5^{2^{e-3}}\equiv 1+2^{e-1}\pmod{2^e}$,从而得到 $\operatorname{ord}_{2^e}(5)=2^{e-2}$
- 这意味着 5 的幂次可以生成 2^{e-2} 个形如 4k+1 的数字,而缩系中恰好有 2^{e-2} 个形如 4k+1 的数字
- 形如 4k + 1 的数字乘以 (-1) 即可生成剩下的 2^{e-2} 个与 2^e 互质的数字,它们都是 4k + 3 的形式
- 对于 $gcd(A, 2^e) = 1$ 的情况,有 $A \equiv (-1)^{\frac{A-1}{2}} 5^u \pmod{2^e}$,根据 B 的奇偶性讨论一下即可转化为离散对数问题,不用受解数的限制

- 掉线的同学可以准备重连了
- 大步小步算法是分块算法中的经典算法, 使用时可以记住一点
 - 一次使用,多次受用
- 通过原根可以将问题降低层次,或许会转化为更简单的问题,从这
 - 一点来看原根可以一定程度上代替单位复根
- 高次剩余问题是一个不比离散对数问题难的问题
- 扩张域的技巧有时很有用(循环探求、模意义贝尔数、模意义斐波 那契数等)

- 掉线的同学可以准备重连了 学习使我快乐
- 大步小步算法是分块算法中的经典算法,使用时可以记住一点
 - 一次使用,多次受用
- 通过原根可以将问题降低层次,或许会转化为更简单的问题,从这
- 高次剩余问题是一个不比离散对数问题难的问题
- 扩张域的技巧有时很有用(循环探求、模意义贝尔数、模意义斐波 那契数等)

- 掉线的同学可以准备重连了 学习使我快乐
- 大步小步算法是分块算法中的经典算法,使用时可以记住一点
 - 一次使用,多次受用
- 通过原根可以将问题降低层次,或许会转化为更简单的问题,从这
 - 一点来看原根可以一定程度上代替单位复根
- 高次剩余问题是一个不比离散对数问题难的问题
- 扩张域的技巧有时很有用(循环探求、模意义贝尔数、模意义斐波 那契数等)

- 掉线的同学可以准备重连了 学习使我快乐
- 大步小步算法是分块算法中的经典算法, 使用时可以记住一点
 - 一次使用,多次受用
- 通过原根可以将问题降低层次,或许会转化为更简单的问题,从这
 - 一点来看原根可以一定程度上代替单位复根
- 高次剩余问题是一个不比离散对数问题难的问题
- 扩张域的技巧有时很有用(循环探求、模意义贝尔数、模意义斐波 那契数等)

- 掉线的同学可以准备重连子 学习使我快乐
- 大步小步算法是分块算法中的经典算法,使用时可以记住一点
 - 一次使用,多次受用
- 通过原根可以将问题降低层次,或许会转化为更简单的问题,从这
 - 一点来看原根可以一定程度上代替单位复根
- 高次剩余问题是一个不比离散对数问题难的问题
- 扩张域的技巧有时很有用(循环探求、模意义贝尔数、模意义斐波 那契数等)

■ 容斥原理基础版

■ 在某个全集 U 上有 n 个集合 A_1, A_2, \cdots, A_n , 那么

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|$$

• 例如 $|A \cup B| = |A| + |B| - |A \cap B|$,

$$A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

lacktriangleright 推论:将交和并推广到偏序关系上也成立,例如在某个全集 U 中有

$$n$$
 个元素 x_1, x_2, \cdots, x_n ,那么 $\max\{x_1, x_2, \cdots, x_n\} = n$

$$\sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{1 \le i_1 < i_2 < \dots < i_k \le n \\$$
 娇也就立。 改成 grad length 就立

■ 容斥原理基础版

■ 在某个全集 U 上有 n 个集合 A_1, A_2, \cdots, A_n , 那么

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|$$

■ 例如 $|A \cup B| = |A| + |B| - |A \cap B|$,

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

■ 推论:将交和并推广到偏序关系上也成立,例如在某个全集 U 中有

$$n$$
 个元素 x_1, x_2, \cdots, x_n , 那么 $\max\{x_1, x_2, \cdots, x_n\} = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} \min\{x_{i_1}, x_{i_2}, \cdots, x_{i_k}\}$, 将 \min, \max 互 换也成立, 改成 \gcd, \ker 也成立

■ 容斥原理基础版

■ 在某个全集 U 上有 n 个集合 A_1, A_2, \dots, A_n , 那么

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} |A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}|$$

• 例如 $|A \cup B| = |A| + |B| - |A \cap B|$,

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

■ 推论:将交和并推广到偏序关系上也成立,例如在某个全集 U 中有

$$n$$
 个元素 x_1, x_2, \cdots, x_n ,那么 $\max\{x_1, x_2, \cdots, x_n\} = \sum_{k=1}^n (-1)^{k-1} \sum_{\substack{1 \leq i_1 < i_2 < \cdots < i_k \leq n \\ \text{始也成立 改成 ord lem 也成立}} \min\{x_{i_1}, x_{i_2}, \cdots, x_{i_k}\}$,将 \min, \max 互

■ 容斥原理基础版

• 在某个全集 U 上有 n 个集合 A_1, A_2, \cdots, A_n , 那么

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|$$

• 例如 $|A \cup B| = |A| + |B| - |A \cap B|$,

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

■ 推论:将交和并推广到偏序关系上也成立,例如在某个全集 U 中有

$$n$$
 个元素 x_1, x_2, \cdots, x_n ,那么 $\max\{x_1, x_2, \cdots, x_n\} =$

$$\sum_{k=1}^n (-1)^{k-1} \sum_{\substack{1 \leq i_1 < i_2 < \dots < i_k \leq n \\$$
 换也成立,改成 gcd, lcm 也成立

■ 容斥原理进阶版

■ 有n 个属性集合 U_1,U_2,\cdots,U_n ,和n 个特征子集 A_1,A_2,\cdots,A_n ,满足 $A_i\subseteq U_i$ $(i=1,2,\cdots,n)$,需要对每个属性都满足特征时进行一些计数,而满足特征的较难计数,满足属性全集和满足特征的 补集较易计数 则有

$$\begin{split} & \sum_{x_1,x_2,\cdots,x_n} [x_1 \in A_1][x_2 \in A_2] \cdots [x_n \in A_n] \mathrm{way}(x_1,x_2,\cdots,x_n) = \\ & \sum_{x_1} ([x_1 \in U_1] - [x_1 \in (U_1 - A_1)]) \sum_{x_2} ([x_2 \in U_2] - [x_2 \in (U_2 - A_2)]) \cdots \sum_{x_n} ([x_n \in U_n] - [x_n \in (U_n - A_n)]) \mathrm{way}(x_1,x_2,\cdots,x_n) \end{split}$$

$$\frac{\varphi(m)}{m} = \prod_{\substack{p \mid m, p \text{ is prime}}} (1 - \frac{1}{p}), \text{ Stirling2(n, k)} = \frac{1}{k!} \sum_{r=0}^k (-1)^{k-r} \binom{k}{r} r^n$$

■ 容斥原理进阶版

■ 有 n 个属性集合 U_1, U_2, \cdots, U_n ,和 n 个特征子集 A_1, A_2, \cdots, A_n ,满足 $A_i \subseteq U_i$ $(i=1,2,\cdots,n)$,需要对每个属性都满足特征时进行一些计数,而满足特征的较难计数,满足属性全集和满足特征的补集较易计数,则有

$$\begin{split} \sum_{x_1,x_2,\cdots,x_n} [x_1 \in A_1][x_2 \in A_2] \cdots [x_n \in A_n] \mathrm{way}(x_1,x_2,\cdots,x_n) = \\ \sum_{x_1} ([x_1 \in U_1] - [x_1 \in (U_1 - A_1)]) \sum_{x_2} ([x_2 \in U_2] - [x_2 \in (U_2 - A_2)]) \cdots \sum_{x_n} ([x_n \in U_n] - [x_n \in (U_n - A_n)]) \mathrm{way}(x_1,x_2,\cdots,x_n) \end{split}$$

$$\frac{\varphi(m)}{m} = \prod_{\substack{p \mid m, p \text{ is prime}}} (1 - \frac{1}{p}), \text{ Stirling2(n, k)} = \frac{1}{k!} \sum_{r=0}^k (-1)^{k-r} \binom{k}{r} r^n$$

■ 容斥原理进阶版

■ 有 n 个属性集合 U_1, U_2, \cdots, U_n ,和 n 个特征子集 A_1, A_2, \cdots, A_n ,满足 $A_i \subseteq U_i$ $(i=1,2,\cdots,n)$,需要对每个属性都满足特征时进行一些计数,而满足特征的较难计数,满足属性全集和满足特征的补集较易计数,则有

$$\begin{split} \sum_{x_1,x_2,\cdots,x_n} [x_1 \in A_1][x_2 \in A_2] \cdots [x_n \in A_n] \mathrm{way}(x_1,x_2,\cdots,x_n) = \\ \sum_{x_1} ([x_1 \in U_1] - [x_1 \in (U_1 - A_1)]) \sum_{x_2} ([x_2 \in U_2] - [x_2 \in (U_2 - A_2)]) \cdots \sum_{x_n} ([x_n \in U_n] - [x_n \in (U_n - A_n)]) \mathrm{way}(x_1,x_2,\cdots,x_n) \end{split}$$

■二项式系数

- 二项式定理: $(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$, 其中 $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \prod_{r=0}^r \frac{n+1-i}{i}$
- 从 n 个元素的无序集合里选出包含 r 个元素的子集的方案数为 $\binom{n}{r}$
- 隔板法: 长度为 n 的序列拆成 r 段非空序列的方案数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N}^+ \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N} \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n+r-1}{r-1}$

■ 二项式系数

■ 二项式定理:
$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$$
, 其中

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \prod_{i=1}^{r} \frac{n+1-i}{i}$$

- 从 n 个元素的无序集合里选出包含 r 个元素的子集的方案数为 $\binom{n}{r}$
- 隔板法: 长度为 n 的序列拆成 r 段非空序列的方案数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N}^+ \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N} \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n+r-1}{r-1}$

■ 二项式系数

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \prod_{i=1}^{r} \frac{n+1-i}{i}$$

- 从 n 个元素的无序集合里选出包含 r 个元素的子集的方案数为 $\binom{n}{r}$
- 隔板法: 长度为 n 的序列拆成 r 段非空序列的方案数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N}^+ \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N} \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n+r-1}{r-1}$

■ 二项式系数

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \prod_{i=1}^{r} \frac{n+1-i}{i}$$

- 从 n 个元素的无序集合里选出包含 r 个元素的子集的方案数为 $\binom{n}{r}$
- 隔板法: 长度为 n 的序列拆成 r 段非空序列的方案数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N}^+ \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N} \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n+r-1}{r-1}$

■ 二项式系数

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \prod_{i=1}^{r} \frac{n+1-i}{i}$$

- 从 n 个元素的无序集合里选出包含 r 个元素的子集的方案数为 $\binom{n}{r}$
- 隔板法: 长度为 n 的序列拆成 r 段非空序列的方案数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N}^+ \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N} \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n+r-1}{r-1}$

■ 二项式系数

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \prod_{i=1}^{r} \frac{n+1-i}{i}$$

- 从 n 个元素的无序集合里选出包含 r 个元素的子集的方案数为 $\binom{n}{r}$
- 隔板法: 长度为 n 的序列拆成 r 段非空序列的方案数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N}^+ \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n-1}{r-1}$
- $x_1 + x_2 + \dots + x_r = n, x_i \in \mathbb{N} \ (i = 1, 2, \dots, r)$ 的解数为 $\binom{n+r-1}{r-1}$

- 有 k_1+k_2 个区间 $[L_i,R_i]$,在第 i 个区间里选出一个整数 $x_i\;(i=1,2,\cdots,k_1+k_2)\;\text{,令}\;S=\sum_{i=1}^{k_1+k_2}x_i\;\text{,求}\;S<0,$ S=0,S>0 的概率
- 假设概率可以表示成最简分数 $\frac{A}{B}$, 则需要找到整数 C 满足 $0 \le C < M$ 且 $A \equiv BC \pmod{M}$, 然后给出 C 而不是 A 和 B , 其中 $M = 10^9 + 7$
- $1 \le k_1, k_2 \le 8, -10^7 \le L_i \le R_i \le 10^7 \ (i = 1, 2, \dots, k_1 + k_2)$

- 有 k_1+k_2 个区间 $[L_i,R_i]$,在第 i 个区间里选出一个整数 $x_i\;(i=1,2,\cdots,k_1+k_2)\;\text{,令}\;S=\sum_{i=1}^{k_1+k_2}x_i\;\text{,求}\;S<0,$ S=0,S>0 的概率
- 假设概率可以表示成最简分数 $\frac{A}{B}$,则需要找到整数 C 满足 $0 \le C < M$ 且 $A \equiv BC \pmod{M}$,然后给出 C 而不是 A 和 B ,其中 $M = 10^9 + 7$
- $1 \le k_1, k_2 \le 8, -10^7 \le L_i \le R_i \le 10^7 \ (i = 1, 2, \dots, k_1 + k_2)$

- 有 k_1+k_2 个区间 $[L_i,R_i]$,在第 i 个区间里选出一个整数 $x_i\;(i=1,2,\cdots,k_1+k_2)\;\text{,令}\;S=\sum_{i=1}^{k_1+k_2}x_i\;\text{,求}\;S<0,$ S=0,S>0 的概率
- 假设概率可以表示成最简分数 $\frac{A}{B}$,则需要找到整数 C 满足 $0 \le C < M$ 且 $A \equiv BC \pmod{M}$,然后给出 C 而不是 A 和 B ,其中 $M = 10^9 + 7$
- $1 \le k_1, k_2 \le 8, -10^7 \le L_i \le R_i \le 10^7 \ (i = 1, 2, \dots, k_1 + k_2)$

- 总方案数为 $\prod_{i=1}^{k_1+k_2} R_i L_i + 1$, 在模 M 意义下非 0 , 只需要求出 S < 0 , S = 0 , S > 0 的方案数即可求得概率
- $[L_i \le x_i \le R_i] = [x_i \ge L_i] [x_i \ge R_i + 1]$ $= [(x_i L_i + 1) \in \mathbb{N}^+] [(x_i R_i) \in \mathbb{N}^+]$
- S=0 可以直接容斥转化为隔板问题, S<0 可以增加一个 变元 $x_{b+1,b+1} \in \mathbb{N}^+$ 转化成 $S+x_{b+1,b+1}=0$ 再容斥
- 最坏复杂度 $\mathcal{O}(2^{k_1+k_2+1}(k_1+k_2+1))$, 枚举二进制子集会得

- 总方案数为 $\prod_{i=1}^{k_1+k_2} R_i L_i + 1$, 在模 M 意义下非 0 , 只需要求出 S < 0 , S = 0 , S > 0 的方案数即可求得概率
- $[L_i \le x_i \le R_i] = [x_i \ge L_i] [x_i \ge R_i + 1]$ $= [(x_i L_i + 1) \in \mathbb{N}^+] [(x_i R_i) \in \mathbb{N}^+]$
- S=0 可以直接容斥转化为隔板问题, S<0 可以增加一个 变元 $x_{k_1+k_2+1} \in \mathbb{N}^+$ 转化成 $S+x_{k_1+k_2+1}=0$ 再容斥
- 最坏复杂度 $\mathcal{O}(2^{k_1+k_2+1}(k_1+k_2+1))$, 枚举二进制子集会得

- 总方案数为 $\prod_{i=1}^{k_1+k_2} R_i L_i + 1$, 在模 M 意义下非 0 , 只需要求出 S < 0 , S = 0 , S > 0 的方案数即可求得概率
- $[L_i \le x_i \le R_i] = [x_i \ge L_i] [x_i \ge R_i + 1]$ $= [(x_i L_i + 1) \in \mathbb{N}^+] [(x_i R_i) \in \mathbb{N}^+]$
- S=0 可以直接容斥转化为隔板问题, S<0 可以增加一个 变元 $x_{k_1+k_2+1}\in\mathbb{N}^+$ 转化成 $S+x_{k_1+k_2+1}=0$ 再容斥
- 最坏复杂度 $\mathcal{O}(2^{k_1+k_2+1}(k_1+k_2+1))$, 枚举二进制子集会得

- 总方案数为 $\prod_{i=1}^{k_1+k_2} R_i L_i + 1$, 在模 M 意义下非 0, 只需要求出 S < 0, S = 0, S > 0 的方案数即可求得概率
- $[L_i \le x_i \le R_i] = [x_i \ge L_i] [x_i \ge R_i + 1]$ $= [(x_i L_i + 1) \in \mathbb{N}^+] [(x_i R_i) \in \mathbb{N}^+]$
- S=0 可以直接容斥转化为隔板问题, S<0 可以增加一个 变元 $x_{k_1+k_2+1}\in\mathbb{N}^+$ 转化成 $S+x_{k_1+k_2+1}=0$ 再容斥
- 最坏复杂度 $\mathcal{O}(2^{k_1+k_2+1}(k_1+k_2+1))$, 枚举二进制子集会得到最坏复杂度,利用 DFS 枚举可以剪枝掉不必要的情况

- 有 *n* 个格子排成一列,每个格子可以有黑或白两种颜色,初 始每个格子都是白色的
- 现在要进行 m 次涂绘,第 i 次涂绘有一个限制 a_i $(i=1,2,\cdots,m)$,意味着这次要选出连续的恰好 a_i 个格子,不论它们之前的颜色如何,现在都要将它们涂成黑色
- 不同的操作可能涂绘出相同的局面,如果两个局面是不同的, 那么必然存在一个格子在两种局面里被涂上的颜色不同,问 经过 *m* 次涂绘后可能有多少种不同的局面
- $1 < n < 10^9, 1 < m < 4, 1 < a_i < n \ (i = 1, 2, \dots, m)$

- 有 *n* 个格子排成一列,每个格子可以有黑或白两种颜色,初 始每个格子都是白色的
- 现在要进行 m 次涂绘,第 i 次涂绘有一个限制 $a_i \ (i=1,2,\cdots,m) \ , \$ 意味着这次要选出连续的恰好 a_i 个格子,不论它们之前的颜色如何,现在都要将它们涂成黑色
- 不同的操作可能涂绘出相同的局面,如果两个局面是不同的,那么必然存在一个格子在两种局面里被涂上的颜色不同,问 经过 *m* 次涂绘后可能有多少种不同的局面
- $1 \le n \le 10^9, 1 \le m \le 4, 1 \le a_i \le n \ (i = 1, 2, \dots, m)$

- 有 *n* 个格子排成一列,每个格子可以有黑或白两种颜色,初 始每个格子都是白色的
- 现在要进行 m 次涂绘,第 i 次涂绘有一个限制 $a_i \ (i=1,2,\cdots,m) \ , \$ 意味着这次要选出连续的恰好 a_i 个格子,不论它们之前的颜色如何,现在都要将它们涂成黑色
- 不同的操作可能涂绘出相同的局面,如果两个局面是不同的, 那么必然存在一个格子在两种局面里被涂上的颜色不同,问 经过 *m* 次涂绘后可能有多少种不同的局面

- 有 *n* 个格子排成一列,每个格子可以有黑或白两种颜色,初 始每个格子都是白色的
- 现在要进行 m 次涂绘,第 i 次涂绘有一个限制 $a_i \ (i=1,2,\cdots,m) \ , \$ 意味着这次要选出连续的恰好 a_i 个格子,不论它们之前的颜色如何,现在都要将它们涂成黑色
- 不同的操作可能涂绘出相同的局面,如果两个局面是不同的, 那么必然存在一个格子在两种局面里被涂上的颜色不同,问 经过 *m* 次涂绘后可能有多少种不同的局面
- $1 \le n \le 10^9, 1 \le m \le 4, 1 \le a_i \le n \ (i = 1, 2, \dots, m)$

- 涂绘的结果必然是黑白相间的, 黑色段的数量不超过 m
- 考虑 m 次操作之间的关系,操作的顺序不影响答案,操作的位置可能相交或不相交,而不相交时有先后关系
- 可能的情况有 $\sum_{k=1}^{m}$ Stirling2 $(m,k)k! \le 75$ 种
- 受到第 i_1, i_2, \cdots, i_k 次操作影响的黑段的长度有上下界限制
- 方案数与 $x_1 + x_2 + \dots + x_{2k+1} = n$ 的解数相同,其中 $x_1, x_{2k+1} \in \mathbb{N}, x_{2i+1} \in \mathbb{N}^+ \ (i = 1, 2, \dots, k-1),$ $x_{2i} \in [L_i, R_i] \ (i = 1, 2, \dots, k)$

- lacksquare 涂绘的结果必然是黑白相间的,黑色段的数量不超过 m
- 考虑 *m* 次操作之间的关系,操作的顺序不影响答案,操作的 位置可能相交或不相交,而不相交时有先后关系
- 可能的情况有 $\sum_{k=1}^{m}$ Stirling2 $(m,k)k! \le 75$ 种
- 受到第 i_1, i_2, \cdots, i_k 次操作影响的黑段的长度有上下界限制
- 方案数与 $x_1 + x_2 + \dots + x_{2k+1} = n$ 的解数相同,其中 $x_1, x_{2k+1} \in \mathbb{N}, x_{2i+1} \in \mathbb{N}^+ \ (i = 1, 2, \dots, k-1),$ $x_{2i} \in [L_i, R_i] \ (i = 1, 2, \dots, k)$

- 涂绘的结果必然是黑白相间的, 黑色段的数量不超过 m
- 考虑 *m* 次操作之间的关系,操作的顺序不影响答案,操作的 位置可能相交或不相交,而不相交时有先后关系
- 可能的情况有 $\sum_{k=1}^{m}$ Stirling $2(m,k)k! \le 75$ 种
- 受到第 i_1, i_2, \cdots, i_k 次操作影响的黑段的长度有上下界限制
- 方案数与 $x_1 + x_2 + \dots + x_{2k+1} = n$ 的解数相同,其中 $x_1, x_{2k+1} \in \mathbb{N}, x_{2i+1} \in \mathbb{N}^+ \ (i = 1, 2, \dots, k-1),$ $x_{2i} \in [L_i, R_i] \ (i = 1, 2, \dots, k)$

- lacksquare 涂绘的结果必然是黑白相间的,黑色段的数量不超过 m
- 考虑 *m* 次操作之间的关系,操作的顺序不影响答案,操作的 位置可能相交或不相交,而不相交时有先后关系
- 可能的情况有 $\sum_{k=1}^{m}$ Stirling2 $(m,k)k! \leq 75$ 种
- 受到第 i_1, i_2, \cdots, i_k 次操作影响的黑段的长度有上下界限制
- 方案数与 $x_1 + x_2 + \dots + x_{2k+1} = n$ 的解数相同,其中 $x_1, x_{2k+1} \in \mathbb{N}, x_{2i+1} \in \mathbb{N}^+ \ (i = 1, 2, \dots, k-1),$ $x_{2i} \in [L_i, R_i] \ (i = 1, 2, \dots, k)$

- lacksquare 涂绘的结果必然是黑白相间的,黑色段的数量不超过 m
- 考虑 *m* 次操作之间的关系,操作的顺序不影响答案,操作的 位置可能相交或不相交,而不相交时有先后关系
- 可能的情况有 $\sum_{k=1}^{m}$ Stirling $2(m,k)k! \le 75$ 种
- 受到第 i_1, i_2, \cdots, i_k 次操作影响的黑段的长度有上下界限制
- 方案数与 $x_1 + x_2 + \dots + x_{2k+1} = n$ 的解数相同,其中 $x_1, x_{2k+1} \in \mathbb{N}, x_{2i+1} \in \mathbb{N}^+ \ (i = 1, 2, \dots, k-1),$ $x_{2i} \in [L_i, R_i] \ (i = 1, 2, \dots, k)$

- 75 种情况里有些情况可能有交集
- 需要统计的局面满足至少一种情况

- 75 种情况里有些情况可能有交集
- 需要统计的局面满足至少一种情况
- ■外面套一层容斥

- 75 种情况里有些情况可能有交集
- 需要统计的局面满足至少一种情况
- 外面套一层容斥
- 最坏情况有 396 种有意义的集合,例如 $a = \{2, 3, 4, 5\}$

- 75 种情况里有些情况可能有交集
- 需要统计的局面满足至少一种情况
- 外面套一层容斥
- 最坏情况有 396 种有意义的集合,例如 $a = \{2, 3, 4, 5\}$

Summarize

- 熟练使用 容斥原理 , 理解算反面的意义
- 涉及到排列组合时,注意组合意义与形式推导相结合
- 考虑情况需要面面俱到

Extension

- 错排公式
- 带标号连通图计数
- 禁位棋盘多项式

- Summarize
 - 熟练使用 容斥原理 , 理解算反面的意义
 - 涉及到排列组合时,注意组合意义与形式推导相结合
 - 考虑情况需要面面俱到
- Extension
 - 错排公式
 - 带标号连通图计数
 - 禁位棋盘多项式

Summarize

- 熟练使用 容斥原理 , 理解算反面的意义
- 涉及到排列组合时,注意组合意义与形式推导相结合
- 考虑情况需要面面俱到

Extension

- 错排公式
- 带标号连通图计数
- 禁位棋盘多项式

- Summarize
 - 熟练使用 容斥原理 , 理解算反面的意义
 - 涉及到排列组合时,注意组合意义与形式推导相结合
 - 考虑情况需要面面俱到
- Extension
 - 错排公式
 - 带标号连通图计数
 - 禁位棋盘多项式

- Summarize
 - 熟练使用 容斥原理 , 理解算反面的意义
 - 涉及到排列组合时,注意组合意义与形式推导相结合
 - 考虑情况需要面面俱到
- Extension
 - 错排公式
 - 带标号连通图计数
 - 禁位棋盘多项式

- Summarize
 - 熟练使用 容斥原理 , 理解算反面的意义
 - 涉及到排列组合时,注意组合意义与形式推导相结合
 - 考虑情况需要面面俱到
- Extension
 - 错排公式
 - 带标号连通图计数
 - 禁位棋盘多项式

互动交流

■ Feel free to ask any questions

感谢工作人员提供技术支持

感谢听课的各位的积极参与

祝大家在学习训练中有所收获,在比赛考试中旗开得胜

祝 51nod 越办越好

感谢工作人员提供技术支持

感谢听课的各位的积极参与

祝大家在学习训练中有所收获,在比赛考试中旗开得胜 祝 51nod 越办越好

感谢工作人员提供技术支持

感谢听课的各位的积极参与

祝大家在学习训练中有所收获,在比赛考试中旗开得胜

祝 51nod 越办越好

感谢工作人员提供技术支持

感谢听课的各位的积极参与

祝大家在学习训练中有所收获,在比赛考试中旗开得胜

祝 51nod 越办越好

感谢又善良,又仁慈,又有钱的夹克老爷

感谢工作人员提供技术支持

感谢听课的各位的积极参与

祝大家在学习训练中有所收获,在比赛考试中旗开得胜

祝 51nod 越办越好

感谢又善良,又仁慈,又有钱的夹克老爷全程防冷场