CYKLICKÉ KÓDY

CYKLICKÉ KÓDY OSOU ZULAŠTMÁ PŘÍMADEM LINEMENICH KKOŮ.

=> PLATÍ PRO NË VŠE, LO RYLO REGENO PRO LIMERRAÍ KÓDY + JESTË PĒCO MANIĆ (CYKLIĆMOST)

S MAZDOU ZMAŪKOU NEK JE PRIKEH KÓDU K I LIBOVOLNÝ CYKLICKÝ POSUV N:

No. No. 1 - 1 - 2 - No. No. No. 1 - 2 - K

DAK VYDA'DKIT CYKLIÜNOST HATENATICKY Z ZNAÜKY BUDETIE REPREZENTOLAT POLY-VOHY:

 $V_0 V_1 \dots V_{n-1} \sim V_0 + V_1 \times + \dots + V_{n-1} \times^{n-1}$ $= \sum_{i=1}^{n-1} V_i \times^{i}$

POSUW ZMŪNY DOPLAVA ODPOVÍDA DPELACE NATOBEM X

PIL: 00111010 ~ 2+x3+x5+x6

1 · x

00011101~ 43+x5+x7

HOLEM: KDY MA ZNAUKA IV MOUSTA L'ADU" (T). V PRAVEN KONCOVEN PRUKU) WE MUOW PRUEK, PAK PRESTAVA WRE-DEK MASOREM KORELOMAT I POSUVEM (DOODE "K PRETEDEM").

ENVEDENE TAKOLÉ NA SOBEM POLYMOMŮ,

WE KTERÉM BUDE PLATIT X = 1, TÍM

DOSAMMENE , EKVIVAVENCE" NASOBEM

POLYMOMŮ A CYKLICKÉHO POSUVU

ENAÜKY.

OKRUHY POLYNOMŮ

POLYMON PRONEWNÉ IL MAD TEVESEN T:

Rota, X+... + a, Xh. STUPEN, POLYMONU

JE NEOVĚTŠÍ ÚŠIO 1.5 al play tokale

DE NEDVETTÍ CÍSLO L= MACK) TAKOVÉ, ŽE OK + O.

PR: POLYMONY NAD Z2 = {0,1}.

SEDÍTAÍNÍ POLYMONŮ ODPONÍDAÍ SEOTHAÍNÍ
V LINEAÍRMÍN VEKTORUEN PROSTORU.

SOUTHM ROWMOND LAD TELESTER T $a(x) = a_0 + a_1 \times + ... + a_n \times^n$ $b(x) = b_0 + b_1 \times + ... + b_n \times^n$

C(X) = a(x) + b(x) $C_A = a_A + b_A$ $V_A = a_{A-yA}$

C(x) = a(x).b(x) ci = abi+a,bi,+...+a.b.

Y == 0,1, ..., m

$$(1 + x + x^{2} + x^{3}) + (1 + x + x^{6}) = 1 + 1 + x + x + x + x^{2} + x^{3} + x^{6} = x^{2} + x^{5} + x^{6}$$

(1+x+x2+x3). (1+x+x5) = 1+x+x2+x3+

$$= \sqrt{1 + x_2 + x_0 + x_1}$$

$$+ x_1 + x_2 + x_3 + x_4 + x_6 + x_2 + x_6 + x_4 =$$

Pe: $V \geq_3$ $(1+x+x^2+x^3)+(1+x+x^4)=2+2x+x^2+x^3+x^4$ $(1+x+x^2+x^3)\cdot(1+x+x^4)=1+x+x^2+x^3+$

$$+ x + x^{2} + x^{3} + x^{5} + x^{5} + x^{5} + x^{6} + x^{7} =$$

$$= 1 + 2x + 2x^{2} + 2x^{5} + 2x^{5} + x^{5} + x^{5} + x^{6} + x^{7}$$

HNOTIMA VŠEUU POLYMONŮ MAO TEČESEM T TVOŘÍ OVRUY. ZNAČEM : T[u].

DÉLEM POLY NOHU MAD TÉLESEN T

 $a(x):b(x) \rightarrow book y(x), 200 TER e(x)$ a(x):y(x).b(x)+n(x)

p(x) < p(x)P(x)

$$(x^{2}+x+1):(x+1) = x^{2}+x = q(x)$$

$$- (x^{2}+x^{2})$$

$$1 = h(x)$$

(x3+x+1): (x+1)= x2+2x = g(x) - (123+122) 22+2+1 - (2x2+2x) 22+1 - (2c+2) 2 = 12(X) -1 = 2 DHEUM POLYNON'S MODULO que sume most ZUADEM T/9/41. PRUKY DURUMU T/9/LEI DSOU WELHNY POLYMONY STUPME (M. SEDYMM': OLXI+4(x) MYSOREM: ALX + GIL) DE ZENTEK 10 DE-LEM ALK). 6(x) HOLSMOREM OF(X)

PK: V Zz

 $x^{2}: (x^{2}+1) = 1 \quad (x^{2}+x): (x^{2}+1) = 1$ $-\frac{(x^{2}+1)}{2} \quad -\frac{(x^{2}+1)}{2} \quad -\frac{(x^{2}+1)}{2} = 1$

OKRUH BUSIONU T (m)

HNOTIMA VĚCH SLOV DĚLKY M V TĚLESE T ZEÍS POLYMOHEM $a_0+a_1\times+\ldots+a_{h-2}\times^{h-2}$ POLYMOHY JSOU PRUKY DKRUHU POLYMOHŮ $\top/\lfloor x^h-1 \rfloor$

DUTTE DEK:

SECTORM - KLASICKY LOGSOREM - VECERO VETAKEM X"= 1

A EXELLEXYLY KEDS

PRO LIBOURINY POURION & (X) & K JSOU VIEWINY MASORKY PLY * ITLY (UDE GUYET) TAKE POLYMONY KNOU K.

IK UMLIUNÉMO KÓOU:

KED LELLOVÉ KONTROLY PARITY DÉLKY n=1. CAKLIÜROLT DE EKEDING.

```
0000
                       = D.(1+x)
1100
         ~ 1+x
                       = 1. (1+x)
1010
         2 1+x2
                       = (1+x).(1+x)
1001
         ~ 1+x3
                       = (1+x+x2). (1+x)
0110
         ~ x+x2
                       = x. (1+x)
0101
         ~ x+x3
                       = (x+x2).(1+x)
0011
         ~ x2+ x3
                       = x2. (1+x)
1111
         ~ 1+x+x2+x1
                       = (1+x2).(1+x)
```

(1+x) ... NENULOUS POLYNON MEDMISSIHO

DETATIV UDZC YNGJŪDNOMN MTATZO

KATOY METRIVIA'LM CYKLICKY (MIL)
KOD K OBSAHUSE POLYMOM g(x)
STUPME M-L. TEU DA'TYTO WAITHOSTI:

- 1) KÓD K SESTAGA ZE USEM MASORKŮ POLYMONU G(X) V T(M), T).

 K = { q(x)g(x) | q(x) \in T(M) }
- 2) POLYMONY g(x), x.g(x), ..., xk-3(x)
 TVORT RAZI KÓDU K.
- 1) POLYMON 4/2) JE DÉLITELEN POLY-LOMU L'h-1 (DELI' DES RELE ELYTKU)

qual se varya generaja nadala cuen. De dediny (actua masorny meficiant).

GENERUSICI MATICE CYKLICHEMO KOOV

1. MABER - ZAPIS POUR NONU GLY

2. EMBER - ZAMS POLYMONU X.g(x)

K. LADEN - ZAMS POLYMONU XK-19(X)

KÓDOVAM INFORMATINICH ZNAKŮ

$$G = \begin{bmatrix} g(x) \\ x \cdot g(x) \\ \vdots \\ x^{k-n} \cdot g(x) \end{bmatrix} \qquad N = G^{T} \cdot M = M_{K-1} x^{k-n} g(x) + M_{K-1} x^{k-n} g(x) + M_{K-1} x^{k-n} g(x) = M_{$$

= g(x). (Mo+Mnx+...+ MK-nxk-1) = g(x).M(x)

NODOWAM: Z INFORMATIMEM ZNAKU

NYTVORTINE POLYMON PROPUE < K ATTIM

NATIONINE POLYMON GLK.

PL: KOD LELKONE KONTROLY PARITY

DAK KODOVAT INFORMATIM DAST MOMMUZ? $(M_0 + M_1 32 + M_2 x^2) \cdot (1 + x) =$ $= M_0 + (M_1 + M_0) \cdot x + (M_1 + M_1) x^2 + M_2 x^3$

PRO M=[110] TO N= 1+22 ~ [1010] TO CHILLICAN KOD OBECUE MEM SYSTEMATHUS (ZEEJNE Z TVARU G).

DE EKN VALENTM'SE SYSTETIATIONY'S LINEA'RM'N WODEN.

POLYLONY BUDDIE ZAPISOUAT OBRACENE
(OD NEWSSI'N HOLMINY K MEDINISSI'). BUDE
VAI EDDINAT ZBYTEK PO DELEM ((x).

SYSTEMATICHÉ CYNLICHE KÓDY (SINAKNÍ)

INFORMADIN UPICT: M(X)

WK-1 UK-2 40 M M K-3 K + ... + M3 X + M0

PETDAT M-K NUL: M(XI.Xh-K

h-1 h-2 h-k-1 0 h-k-1 0 h-k

DELIT g(x):

 $\mu(x) \cdot x^{n-k} = \varphi(x) \cdot \varphi(x) + h(x)$ $o \cdot (h(x)) < h-k$

 $m(x) \cdot x^{h-k} + n(x) = q(x) \cdot q(x)$

DE TO MATOREK GENERASIUHO MANDO-LENU, DE TO TEOY ZMOTA CYKL. KÓOV.

DE VIDET, ZE DE TO SYSTEMATICKY

TARTIMENO RODEN

PK: glx1 = 1+x+x3

KOMBOLM POLYMONY

sturen h(x): h-(n-k) = k

KONTROLM MATICILE VYTVORTT POHOCÍ LLEI.

PK: KÓB LELKOVÉ KOMBOUY PARITY DÉLKY M=4.

$$\frac{\int_{0}^{1} |x|^{2} = 1 + x}{\int_{0}^{1} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{1} |x|^{3} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{1} |x|^{3} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2}}{\int_{0}^{1} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2}}{\int_{0}^{1} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x^{2} + x + 1}{\int_{0}^{1} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{1} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + x + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + 1}{\int_{0}^{3} |x|^{2} + 1} = \frac{\int_{0}^{3} |x|^{2} + 1}{\int_{0}^{3} |x|^{2} + 1$$

CYNLICKY KÓD S KOMTKOLMÍN POLYMONEM LLX) SESTRÍMÍ PRAVĚ Z TĚCH POLYMONŮ N(X) V OKRUHU T^(M) PRO KTERNÉ PLA-TÍ N(X)*L(X) = 0 V T^(M).

KOMBOLM' DATICE

CYKLICKÉ KÓDY V PRAXI

TAKERPETEM AT WAT V 1007-TAKOUNCH RITCH.

DETEKCE (HLUKOVÝCH CHYB. NEPOUTI-VANÍ SE K DPRAVOVAMÍ CHYB.

POUTIME BENERUSIE POLYNOHY:

CRC-32

EMBERREDOMEN' MASTROSTI RŮZNYCH CYMUCKYCH KÓDŮ (ILUSTRACE)

Par + 2	peralities and statistical behalf	a halfale danced all a	and and American and American	

2	Generační mnohočlen	Zabezpočeni lichého počna chyb	Zabezpedeni shlukû chyb délky $z + 1$ (v. %)	Zabezpedeni shlukû chyb delky vêtši než $z+1$ (v %).	Zabezpečeni plati pro max. delku bloku (v bitech)	Zabezpečení 2 shluků chyb		
						max, soudet shluků chyb (v bitech)	max, dělka kratšího shluku (v bitech)	plati pro max. celkovou délku bloku (v bitech)
5	$x^3 + x^2 + 1$ $x^3 + x^2 + x^2 + 1$ $x^5 + x^2 + x + 1$	ne ano ano	93,75	96,9	35	2 2 3	1 1 1	31 15 14
6	$\begin{array}{c} x^4+x+1\\ x^5+x^4+x+1\\ x^6+x^5+x^4+x^2+x+1\\ x^5+x^4+x^2+x^2+x+1\\ x^6+x^5+x^2+x^2+x+1 \end{array}$	ne ano ano ano	96,9	98,4	63	2 4 5 3 2	1 2 2 1 1	63 20 12 30 31
7	$x_3 + x^3 + 1$ $x_3 + x^4 + x^4 + 1$ $x_3 + x^5 + x^4 + x^3 + x + 1$	ne ano ano	98,4	99,2	127	2 3 5	1 1 2	127 62 28
8	$x^6 + x^4 + x^9 + x^2 + 1$ $x^6 + x^6 + x + 1$	ne ano	99,2	99,6	255	2 5	1 2	255 60
9	$x^9 + x^4 + 1 \\ x^9 + x^6 + x^6 + x^6 + x^4 + x^5 + 1$	ne ano	99,6	99,8	511	2 5	1 2	511 124
10	$x^{18} + x^{9} + 1$ $x^{16} + x_{7} + x^{9} + 1$	ne ano	99,8	99,9	1023	2 6	1 3	1023
11	$\begin{array}{c} x^{11}+x^{8}+1 \\ x^{11}+x^{5}+x+1 \\ x^{11}+x^{6}+x_{1}+x+1 \end{array}$	ne ano ano	99,9	99,95	2047	2 6 8	1 3 4	2047 315 105
12	$x^{12} + x^{6} + x^{4} + x + 1$ $x^{13} + x^{7} + x + 1$ $x^{13} + x^{8} + x^{8} + x^{4} + x + 1$	ne ano ano	99,95	99,975	4095	2 7 9	1 3 4	4093 126 126