Ingeniería Superior de Informática. Curso 3º. Ampliación de Estructura de Computadores. Examen Final. TEORÍA. 10 de Septiembre de 2004

Non DNI	nbre:
P1.	 a) ¿Qué ahorros se logran al optar por una implementación multiciclo en comparación con la implementación monociclo de un repertorio de instrucciones? b) ¿Y si optamos por una implementación segmentada en vez de la implementación monociclo'
R1. a. Mu	ulticiclo vs. Monociclo
b. Seg	gmentada vs. monociclo
P2.	Escribe las ecuaciones de detección de los riesgos de datos, para todos los posibles riesgos.
R2.	
P3.	(a) Si definimos $g_{ij} = g_i p_{i+1} \dots p_{j-1} p_j + g_{i+1} p_{i+2} \dots p_{j-1} p_j + \dots + g_{j-1} p_j + g_j$ para $j > i$, como condición de generación de acarreos entre las etapas i y j de un sumador de n bits, ¿para qué relación de valores de los subíndices i , j , k , h se cumple que $g_{ij} = g_{ik} p_{hj} + g_{kj}$? (b) ¿Qué significa la siguiente expresión: $c_i = g_{0j} = g_{ij} + g_{0i-1} p_{ij}$, para cualquier i , tal que $0 < i \le j$?
R3.	(b) (Que significa la significa entreción el Sul Sul Pil) Sul Pil) para camquier s, an que e

Ingeniería Superior de Informática. Curso 3º. Ampliación de Estructura de Computadores. Examen Final. TEORÍA. 10 de Septiembre de 2004

Nomb	re:
DNI:	
P4.	Ecuaciones lógicas del redondeo IEEE-754 en función del signo del resultado y $\log \operatorname{bits} r$, s y p_0
R4.	
P5. número	Dibujar en detalle (a nivel de bits) el esquema de un árbol de Wallace que permita sumar 9 s de 4 bits
R5.	

Ingeniería Superior de Informática. Curso 3º. Ampliación de Estructura de Computadores. Examen Final. PROBLEMAS. 10 de Septiembre de 2004

Nombre:		
DNI:		

P1. Se desea ampliar el repertorio básico de instrucciones MIPS estudiado con una instrucción de multiplicación de enteros sin signo:

mulu rs, rt; multiplica los registros **rs** y **rt** y deja la parte alta del resultado en **rs** y la parte baja en **rt.** Se pide:

- a) Rediseñar la ruta de datos y el controlador para incorporar la instrucción **mulu** utilizando el algoritmo secuencial de sumas y desplazamientos.
- b) Suponiendo que la frecuencia de reloj del procesador fuera 250 MHz, calcular el CPI de un programa cuyas instrucciones se distribuyen porcentualmente de la siguiente manera: tipo-R(**mulu**) = 10%; tipo-R(resto) = 45%; **lw** = 15%; **st** = 11,5%; **beq**(salta) = 3,5%; **beq**(no salta) = 15%

Consideraciones:

- el formato de la instrucción mulu es tipo R
 [op=000000; rs=XXXXX; rt=YYYYY; rd=00000; shamt=00000; funct=011000]
- NO podrán añadirse nuevos REGISTROS.
- NO podrán añadirse NUEVAS FUNCIONES a los REGISTROS (no podrán hacerse desplazadores)
- La funcionalidad de la ALU se amplia ÚNICAMENTE con una nueva operación '100' que genera : C ← A+B >>1 y D ← bit₀ (A+B)
- Pueden añadirse los elementos combinacionales y el cableado hardware necesarios
- El controlador se expresará como secuencia de estados y en lenguaje de transferencia de registros

Ingeniería Superior de Informática. Curso 3º. Ampliación de Estructura de Computadores. Examen Final. PROBLEMAS. 10 de Septiembre de 2004

Nombre:	•	
DNI:		

P2. **a**) Dibujar la estructura de un sumador que sume dos números de 128 bits, construido uniendo mediante *Propagación de arrastres* 8 módulos sumadores de 16 bits cada uno.

Estos módulos sumadores de 16 bits están construidos internamente uniendo mediante puenteo de arrastres 4 módulos de 4 bits construidos con Anticipación de arrastres.

- **b)** Indicar el retardo final de este sumador.
- c) Indicar en qué instante se conocen: S8, S63, S100. (Los bits de suma van del S₀ al S₁₂₇)
- d) ¿Existiría algún problema a la hora de construir realmente este sumador?