Unidad 02. Elementos simples cargados axialmente Comportamiento no lineal y elastoplasticidad

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Análisis Estructural Básico

2023b

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Gere and Goodno, 2012).

Derrotero

Comportamiento no lineal

Aálisis elastoplástico

Derrotero

Comportamiento no lineal

Aálisis elastoplástico

Análisis no lineal de las estructuras

Lectura

Análisis no lineal de la mampostería, link.

Cuando el esfuerzo supera el límite de proporcionalidad, los esfuerzos, deformaciones y desplazamientos dependerán de la forma de la curva esfuerzo-deformación en la región después de dicho límite.

Figure: Tipos de comportamiento idealizados de los materiales: (a) curva esfuerzo-deformación elastica no lineal, (b) curva esfuerzo-deformación generalizada no lineal, (c) curva esfuerzo-deformación elastoplástica, y (d) curva esfuerzo deformación bilineal.

Cambios en la longitud de barras

Podemos calcular el acortamiento o elongación de la barra si conocemos su curva E-D.

Figure: Cambio en al longitud de una viga ahusada (tapered) de material por un material que tiene una curva esfuerzo-deformación no lineal.

• El cambio de longitud de toda la barra:

$$\delta = \int_0^L \varepsilon dx.$$

Considerar soluciones numéricas y simplificaciones.

Ley de esfuerzo-deformación de Ramberg-Osgood

Materiales metálicos

La ecuación:

$$\varepsilon = \frac{\sigma}{E} + \frac{\sigma_0 \alpha}{E} \left(\frac{\sigma}{\sigma_0}\right)^m$$

- $E = \sigma_0/\varepsilon_0$ es el módulo de elasticidad en la parte inicial de la curva esfuerzo-deformación.
- ε_0 , σ_0 , α y m son cosntantes propias del material obtenidas por ensavos de tracción.
- Para la gráfica, tomando: E=70 GPa, $\sigma_0=260$ MPa, $\alpha=3/7$ y m=10, la ecuación es:

$$\varepsilon = \frac{\sigma}{70000} + \frac{1}{628.2} \left(\frac{\sigma}{260}\right)^1 0$$

Figure: Curva esfuerzo-deformación para una aleación de aluminio usando la ecuación de Ramberg-Osgood.

Ley de esfuerzo-deformación de Ramberg-Osgood

Materiales metálicos

Ramberg-Osgood relationship

文A 4 languages ~

Article Talk Read Edit View history Tools ➤

From Wikipedia, the free encyclopedia

The **Ramberg-Osgood equation** was created to describe the non linear relationship between stress and strain—that is, the stress-strain curve—in materials near their yield points. It is especially applicable to metals that *harden* with plastic deformation (see work hardening), showing a *smooth* elastic-plastic transition. As it is a phenomenological model, checking the fit of the model with actual experimental data for the particular material of interest is essential.

In its original form, the equation for strain (deformation) is[1]

$$\varepsilon = \frac{\sigma}{E} + K \left(\frac{\sigma}{E}\right)^n$$

here

 ε is strain.

 σ is stress.

E is Young's modulus, and

K and n are constants that depend on the material being considered. In this form K and n are not the same as the constants commonly seen in the Hollomon equation. [2]

Figure: Ramberg-Osgood relationship on Wikipedia.

Análisis no lineal

Para estructuras estáticamente indeterminadas, las relaciones fuerza-desplazamiento ahora serán no lineales, por lo que no será posible obtener soluciones analíticas más que para situaciones muy simples. Se deberá optar por soluciones numéricas usando programas de computador.

Derrotero

Comportamiento no lineal

Aálisis elastoplástico

El acero estructural o acero dulce

Un material elastoplástico es aquel que se comporta inicialmente como un material linealmente elástico con módulo de elasticidad E, y al comenzar la fluencia, las deformaciones incrementan con un mínimo o nulo esfuerzo constante, llamdo el esfuerzo de fluencia σ_Y .

Figure: Curva esfuerzo-deformación idealizada para un material elastoplástico como el acero.

Figure: Diagrama carga-desplazamiento para una barra prismática de un material elastoplástico.

Figure: Análisis elastoplástico de una estructura estáticamente indeterminada.

Análisis: Estudio en el rango elástico-lineal, $\sigma_i < \sigma_Y$.

1. Ecuación de equilibrio vertical:

$$2F_1 + F_2 = P.$$

2. Ecuación de comptabilidad:

$$\delta_1 = \delta_2$$
.

3. Relaciones fuerza-desplazamiento.

$$\delta_1 = \frac{F_1 L_1}{EA} \quad \delta_2 = \frac{F_2 L_2}{EA}.$$

 Solucionamos y calculamos los esfuerzos en el rango elástico-lineal.

$$\sigma_1 = \frac{PL_2}{A(L_1 + 2L_2)}$$
 $\sigma_2 = \frac{PL_1}{A(L_1 + 2L_2)}$.

Figure: Análisis elastoplástico de una estructura estáticamente indeterminada.

Análisis: Estudio en la fluencia, $\sigma_i = \sigma_Y$. ¿Podemos estimar cuál barra alcanza la fluencia primero? Si $L_1 > L_2$, entonces $\sigma_2 > \sigma_1$.

1. Hayamos la carga de fluencia P_Y :

$$F_2 = \sigma_Y A$$

$$P_Y = \sigma_Y A \left(1 + \frac{2L_2}{L_1} \right)$$

2. El desplazamiento de fluencia δ_Y :

$$\delta_Y = \frac{F_2 L_2}{EA} = \frac{\sigma_2 L_2}{E} = \frac{\sigma_Y L_2}{E}.$$

Figure: Análisis elastoplástico de una estructura estáticamente indeterminada.

Figure: Diagrama carga-desplazamiento de la estructura estáticamente indeterminada en estudio.

Figure: Análisis elastoplástico de una estructura estáticamente indeterminada.

Análisis: Estudio en el rango plástico. La estructura llegará a un punto en el cual se plastifica y no puede soportar más carga.

1. Calculamos la carga plástica P_P sabiendo que

$$F_1 = \sigma_Y A \quad F_2 = \sigma_Y A,$$

obtenemos:

$$P_P = 3\sigma_Y A$$
.

2. La **deformación plástica** δ_P en el instante que la carga alcanza la carga plástica:

$$\delta_P = \frac{F_1 L_1}{EA} = \frac{\sigma_1 L_1}{E} = \frac{\sigma_Y L_1}{E}.$$

Referencias

Gere, J. M. and Goodno, B. J. (2012). Mechanics of materials. Cengage learning.