Using the Transformer

BERT – Pre-training

Learning goals

- Understand the two pre-training tasks
- Learn how samples are constructed
- Understand the pre-training process

MASKED LANGUAGE MODELING (MLM)

First remark:

- It has nothing to do with Masked Self-Attenion
 - ightarrow Masked Self-Attention is an architectural detail in the decoder of the Transformer, i.e. used by e.g. GPT
- Masked Self-Attention as a way to prevent causality issues in a Transformer decoder
- MLM is a self-supervised modeling objective introduced to couple Self-Attention and (deep) bidirectionality without violating causality

MASKED LANGUAGE MODELING (MLM) CTD.

Training objective:

Given a sentence, predict [MASK] ed tokens

Generation of samples:

Randomly replace* a fraction of the words by [MASK]

*Sample 15% of the tokens; replace 80% of them by [MASK], 10% by a random token & leave 10% unchanged

Input:

Targets:

(fox, lazy)

MASKED LANGUAGE MODELING (MLM) CTD.

Discrepancy between pre-training & fine-tuning:

- [MASK] -token as central part of pre-training procedure
- [MASK] -token does not occur during fine-tuning
- Modified pre-training task:

Predict 15% of the tokens of which only 80% have been replaced by [MASK]

- 80% of the selected tokens:
 - The quick brown fox \rightarrow The quick brown [MASK]
- 10% of the selected tokens:
 - The quick brown fox o The quick brown went
- 10% of the selected tokens:
 - The quick brown fox \rightarrow The quick brown fox

MASKED LANGUAGE MODELING (MLM) CTD.

Source: Jay Alammar

NEXT SENTENCE PREDICTION (NSP)

Training objective:

Given two sentences, predict whether s_2 follows s_1

Generation of samples:

Randomly sample* negative examples (cf. word2vec)

*50% of the time the second sentence is the actual next sentence, 50% of the time it is a randomly sampled sentence

Full Input:

- [CLS] token as sequence representation for classification
- [SEP] token for separation of the two input sequences

NEXT SENTENCE PREDICTION (NSP) CTD.

Source: Jay Alammar

PRE-TRAINING BERT

Ingredients:

- Massive lexical resources (BooksCorpus + Eng. Wikipedia)
 → 13 GB in total
- Train for approximately* 40 epochs
- 4 (16) Cloud TPUs for 4 days for the BASE (LARGE) variant
- Loss function:

$$Loss_{BERT} = Loss_{MLM} + Loss_{NSP}$$

*1.000.000 steps on batches of 256 sequences with a sequence length of 512 tokens

- For their experiments:
 - Pre-train w/ sequence length 128 for 90% of the steps
 - Pre-train w/ sequence length 512 for 10% of the steps (Reason: Learn positional embeddings for all positions)