

Cognitive Computer Vision Introduction

SS 2018
Prof. Dr. Simone Frintrop

Cognitive Vision Group, Department of Informatics University of Hamburg, Germany

Who are we?

Lecturer

Prof. Dr. Simone Frintrop

frintrop@informatik.uni-hamburg.de

Room R105

Exercises:

Dr. Mikko Lauri
lauri@informatik.uni-hamburg.de
Room R104

Group: Computer Vision:

https://www.inf.uni-hamburg.de/en/inst/ab/cv.html

Just drop by if you have questions

Questionnaire

• At end of lecture...

Organization

- Lecture: Tuesdays 12:15 13:45 (in room G021/022)
- Exercises/Seminar: 14:15–15:45 (either in computer rooms D118/119, or in lecture room G021/022)
- Exercises/Seminar:
 - first few weeks: practical exercises
 - After that: seminar part

Organization

- Exercise:
 - In Python, with Tensorflow + OpenCV
 - Implementing your own saliency system
 - Competition: Which saliency system is best?
 - Deadline for submitting saliency system results: June, 12th

- Seminar: one recent research paper per person, presented during a poster session at end of semester: July 10th
 - First draft of poster ready (student peer-review): June, 26th
 - Prepare a spotlight (teaser talk of 2 min, max 4 slides)
 - Present poster during poster session

Exam

- Exam: oral exam (dates: to be announced)
 1st exam: probably first week after lecture period
- To complete the module, you should:
 - Regularly attend (lecture +) exercises, get a running saliency system
 - Seminar: present a poster
- If you don't, you can take the exam, but you will have to complete the requirements in the next semester to complete the module

Stine and Moodle

- We will use Stine and Moodle
- Stine only for grades, times, rooms
- Moodle: platform to collaborate online
- For emails, sharing material, discussion
- How to access Moodle: will be announced on Stine

 You will find the slides on Moodle: before the lecture a draft, after the lecture the final version. So make sure to update your slides later!

What is Cognitive Computer Vision?

What is Cognition?

Cognition is a group of mental processes that includes

- attention,
- memory,

producing and understanding language

- learning,
- reasoning,
- problem solving, and
- decision making.

[Wikipedia: Cognition]

What is Cognitive Vision?

Cognitive Vision contains the visual aspects of cognition:

- object detection & recognition,
- visual attention,
- visual search,
- scene recognition and categorization,
- visual memory,
- visual learning

What are Cognitive Systems?

- Cognitive Systems are computer systems with cognitive abilities,
 e.g. perception, attention, anticipation, planning, complex motor coordination, reasoning about other agents
- Cognitive Systems are often robots, but can be also wearable cameras such Google Glass or other systems
- Cognitive Computer Vision is often used for the perceptual modules of cognitive systems

Google Glass

iCub

Rhino

Cognitive Systems Space

Cognitive Systems Space

Cognitive Systems in the EU

- Since 2001: Cognitive Systems intensely funded by the EC
- More than 100 projects on Cognitive Systems funded, e.g.: CogX, COSY, MACS, CogVis, NEUROBOTICS, Paco-Plus, POP, ...

"Robots need to be more robust, context-aware and easy-to-use.

Endowing them with advanced learning, cognitive and reasoning capabilities will help them adapt to changing situations, and to carry out tasks intelligently with people"

[Challenge 2: Cognitive Systems, Interaction, Robotics]

INFO
Computing, Sensing, Imaging

Natural & Life Sciences, Neurosciences

COGNO-

http://cordis.europa.eu/fp7/ict/cognition/home_en.html

- Introduction: What is Cognitive Computer Vision? (today)
- The Human Visual System
- Receptive Fields and Digital Filters
- More on Convolutional Neural Networks
- Visual Attention and Saliency
- Visual Search for Objects
- Active Camera Control/Sensor Management
- Semantic Segmentation
- Object Discovery/Object Proposal Detection

- Introduction: What is Cognitive Computer Vision? (today)
- The Human Visual System

- Introduction: What is Cognitive Computer Vision? (today)
- The Human Visual System
- Receptive Fields and Digital Filters

- Introduction: What is Cognitive Computer Vision? (today)
- The Human Visual System
- Receptive Fields and Digital Filters
- More on Convolutional Neural Networks

(a) Standard Neural Net

(b) After applying dropout.

- Introduction: What is Cognitive Computer Vision? (today)
- The Human Visual System
- Receptive Fields and Digital Filters
- More on Convolutional Neural Networks
- Semantic Segmentation

- Introduction: What is Cognitive Computer Vision? (today)
- The Human Visual System
- Receptive Fields and Digital Filters
- More on Convolutional Neural Networks
- Semantic Segmentation
- Visual Attention and Saliency

- Introduction: What is Cognitive Computer Vision? (today)
- The Human Visual System
- Receptive Fields and Digital Filters
- More on Convolutional Neural Networks
- Semantic Segmentation
- Visual Attention and Saliency
- Visual Search for Objects

Active Camera Control/Sensor Management

Object Discovery/Object Proposal Detection

- Introduction: What is Cognitive Computer Vision? (today)
- The Human Visual System
- Receptive Fields and Digital Filters
- More on Convolutional Neural Networks
- Semantic Segmentation
- Visual Attention and Saliency
- Visual Search for Objects
- Active Camera Control/Sensor Management
- Object Discovery/Object Proposal Detection

Literature

- There is no single textbook, we base mainly on papers
- Reasonable is one book on human vision, e.g.:
 - Human Vision: Stephen E. Palmer:
 Vision Science: Photons to Phenomenology, MIT Press 1999
 - Or online: The brain from top to bottom An interactive website about the human brain and behaviour: http://thebrain.mcgill.ca

- Rafael C. Gonzalez and Richard E. Woods: Digital Image Processing,
 Addison-Wesley Publishing Company, 1992, 3rd edition: 2007. or:
- Computer Vision: Algorithms and Applications, Richard Szeliski, Microsoft Research, 2010 (also online: szeliski.org/Book)
- Literature is mentioned at the end of each slide set:
 - Primary literature: directly related. Read to prepare for exam.
 - Secondary literature: references and additional reading

Research oriented course

- The course is strongly research oriented
- Topics are close to research in "computer vision" group
- Enables best preparation for master project, independent study, master thesis, etc.

Who are you?

Questionnaire