Cheat Sheet: Comp Sc BSc, WuS - Name, Surname - WW-XXX-YY-ZZZ

Wahrscheinlichkeit

Grundbegriffe

Def 1.2 - Grundraum: Der Ereignisraum oder Grundraum (sample space) $\Omega \neq \emptyset$ ist die Menge aller möglichen Ergebnisse des betrachteten Zufallsexperiments. Die Elemente $\omega \in \Omega$ heissen Elementarereignisse oder Ausgänge des Experiments (outcomes). Def 1.4 - Potenzmenge und Ereignisse: Die Potenzmenge (power set) von Ω , $\mathcal{P}(\Omega)$ oder 2^{Ω} , ist die Menge aller Teilmengen von Ω . Ein prinzipielles Ereignis (event) ist eine Teilmenge $A \subseteq \Omega$, also eine Kollektion von Elementarereignissen. Die Klasse aller (beobachtbaren) Ereignisse bezeichnen wir mit F. Das ist eine Teilmenge der Potenzmenge von Ω .

Note Berechnungen: Es gilt immer $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B] \text{ (Siebformel)}$ Def 1.5 -\sigma-Algebra: Ein Mengensystem $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ nennt man eine \sigma-Algebra (manchmal \sigma-field), wenn

- 1. $\Omega \in \mathcal{F}$,
- 2. für jedes $A \in \mathcal{F}$ auch das Komplement $A^{\complement} \in \mathcal{F}$ ist.
- 3. für jede Folge $(A_n)_{n\in\mathbb{N}}$ mit $A_n\in\mathcal{F}, n\in\mathbb{N}$, auch die Vereinigung $\cup_{n\in\mathbb{N}}A_n\in\mathcal{F}$ ist.

Def 1.9. (Wahrscheinlichkeitsmass): Sei Ω ein Grundraum und sei $\mathcal F$ eine σ -Algebra. Eine Abbildung

$$\mathbb{P}: \mathcal{F} \to [0,1], \ \mathbf{mit} \ A \mapsto \mathbb{P}[A]$$

heisst Wahrscheinlichkeitsmass (probability measure) auf (Ω,\mathcal{F}) , wenn die folgenden Axiome erfüllt sind,

- 1. Normiertheit: $\mathbb{P}[\Omega] = 1$,
- 2. σ -Additivität: $\mathbb{P}\left[\cup_{n\in\mathbb{N}}A_n\right] = \sum_{n=1}^{\infty}\mathbb{P}\left[A_n\right]$ für paarweise disjunkte Mengen A_n , d.h. $A_n\cap A_m=\emptyset$ für alle $n\neq m$.

Pro 1.10: Für ein Wahrscheinlichkeitsmass $\mathbb P$ auf $(\Omega,\mathcal F)$ und Mengen $A,B\in\mathcal F$ gelten folgende Aussagen:

- 1. $\mathbb{P}\left[A^{\complement}\right] = 1 \mathbb{P}[A]$, und insbesondere $\mathbb{P}[\emptyset] = 0$.
- 2. Monotonie: wenn $A \subseteq B$, dann $\mathbb{P}[A] < \mathbb{P}[B]$,
- 3. Additions regel: $\mathbb{P}[A] + \mathbb{P}[B] = \mathbb{P}[A \cup B] - \mathbb{P}[A \cap B]$

Def Definition 1.12. (Wahrscheinlichkeitsraum): Sei Ω ein Grundraum, $\mathcal F$ eine σ -Algebra und $\mathbb P$ ein Wahrscheinlichkeitsmass auf $(\Omega,\mathcal F)$. Das Tripel $(\Omega,\mathcal F,\mathbb P)$ heisst Wahrscheinlichkeitsraum. Def 1.14. (Laplace Modell): Sei $\Omega=\{\omega_1,\ldots,\omega_N\}$ mit $|\Omega|=N$ ein endlicher Grundraum. $(\Omega,\mathcal F,\mathbb P)$ heisst Laplace Modell auf Ω , wenn

- \bullet $\mathcal{F} = \mathcal{D}(\Omega)$
- \mathbb{P} ist die diskrete Gleichverteilung auf Ω , d.h. alle Elementarereignisse sind gleich wahrscheinlich, $p_1=p_2=\ldots=p_N=\frac{1}{N}$. Insbesondere gilt für beliebige $A\subseteq\Omega$ $\mathbb{P}[A]=\frac{|A|}{|\Omega|}=\frac{\mathbf{Anzahl\ Elementarereignisse\ in\ }A}{\mathbf{Anzahl\ Elementarereignisse\ in\ }\Omega}.$

Def 1.22. (Bedingte Wahrscheinlichkeit): Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Seien A, B zwei Ereignisse mit $\mathbb{P}[B] > 0$. Wir definieren die bedingte Wahrscheinlichkeit von A gegeben B (conditional probability) (d.h. unter der Bedingung, dass B eintritt) wie folgt,

$$\mathbb{P}[A\mid B]:=\frac{\mathbb{P}[A\cap B]}{\mathbb{P}[B]}$$

S 1.25. : Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei B ein Ereignis mit positiver Wahrscheinlichkeit. Dann ist $\mathbb{P}^*: \mathcal{F} \to [0,1]$ definiert durch

$$A \mapsto \mathbb{P}^*[A] := \mathbb{P}[A \mid B]$$

wieder ein Wahrscheinlichkeitsmass auf (Ω, \mathcal{F}) . S 1.29. (Satz von der totalen Wahrscheinlichkeit): Sei B_1, \ldots, B_N mit $\mathbb{P}\left[B_n\right] > 0$ für jedes $1 \leq n \leq N$ eine Partition des Grundraums Ω , d.h. $\bigcup_{n=1}^N B_n = \Omega$ mit $B_n \cap B_m = \emptyset$ für $n \neq m$. Dann gilt für alle $A \in \mathcal{F}$,

$$\mathbb{P}[A] = \sum_{n=1}^{N} \mathbb{P}[A \mid B_n] \mathbb{P}[B_n]$$

Das bedeutet insbesondere

$$\mathbb{P}[B] = \mathbb{P}[B \mid A] \cdot \mathbb{P}[A] + \mathbb{P}[B \mid A^{\complement}] \cdot \mathbb{P}[A^{\complement}]$$

S 1.32. (Satz von Bayes): Sei $B_1,\ldots,B_N\in\mathcal{F}$ eine Partition von Ω mit $\mathbb{P}[B_n]>0$ für alle n. Für jedes Ereignis A mit $\mathbb{P}[A]>0$ und jedes $n\in\{1,\ldots,N\}$ gilt

$$\mathbb{P}\left[B_n \mid A\right] = \frac{\mathbb{P}\left[A \mid B_n\right] \mathbb{P}\left[B_n\right]}{\sum_{k=1}^{N} \mathbb{P}\left[A \mid B_k\right] \mathbb{P}\left[B_k\right]}.$$

Unabhängigkeit

 $\begin{array}{ll} \textbf{Def 1.35. (Unabhängigkeit zweier Ereignisse):} \\ \textbf{Sei} \ (\Omega,\mathcal{F},\mathbb{P}) \ \textbf{ein Wahrscheinlichkeitsraum. Zwei} \\ \textbf{Ereignisse} \ A \ \textbf{und} \ B \ \textbf{heissen (stochastisch)} \\ \textbf{unabhängig, falls} \end{array}$

$$\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

Pro Proposition 1.37.: Seien $A,B\in\mathcal{F}$ zwei Ereignisse mit $\mathbb{P}[A],\mathbb{P}[B]>0$ Dann sind die folgenden Aussagen äquivalent:

- 1. $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B], A \text{ und } B \text{ sind unabhängig,}$
- 2. $\mathbb{P}[A \mid B] = \mathbb{P}[A]$, Eintreten von B hat keinen Einfluss auf A,

3. $\mathbb{P}[B \mid A] = \mathbb{P}[B]$, Eintreten von A hat keinen Einfluss auf B.

Def 1.40. (Unabhängigkeit): Sei I eine beliebige Indexmenge. Eine Familie von Ereignissen $(A_i)_{i\in I}$ heisst (stochastisch) unabhängig, wenn für alle endlichen Teilmengen $J\subset I$ gilt:

$$\mathbb{P}\left[\bigcap_{j\in J}A_{j}\right]=\prod_{j\in J}\mathbb{P}\left[A_{j}\right].$$
 Note:

- 1. $\mathbb{P}(A) \in \{0,1\} \Longrightarrow A$ zu jedem Ereignis unabhängig
- **2.** A zu sich selbst unabhängig $\Longrightarrow \mathbb{P}(A) \in \{0, 1\}$
- 3. A, B unabhängig $\Longrightarrow A, B^{C}$ unabhängig
- **4.** $\mathbb{P}[B \mid A^{0}] = 1 \mathbb{P}[B^{0} \mid A^{0}]$

Zuvallsvariablen

Allgemein

Def 3.4.: Sei $A \in \mathcal{F}$ ein Ereignis. Wir sagen A tritt \mathbb{P} -fast sicher (\mathbb{P} -f.s.) ein, falls $\mathbb{P}[A] = 1$. Im Englischen sagen wir \mathbb{P} -almost surely (P.a.s.). Wenn klar ist, welches Wahrscheinlichkeitsmass \mathbb{P} gemeint ist, kürzen wir ab und schreiben einfach fast sicher (f.s.). S 2.21. (Gruppierungen von Zufallsvariablen): Seien X_1,\ldots,X_n unabhängige Zufallsvariablen. Seien $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ Indexe und $\varphi_1,\ldots,\varphi_k$ Abbildungen. Dann sind $Y_1 := \varphi_1\left(X_1,\ldots,X_{i_1}\right),Y_2 := \varphi_2\left(X_{i_1+1},\ldots,X_{i_2}\right),\ldots,Y_k := \varphi_k\left(X_1,\ldots,X_{i_k}\right)$ unabhängig. Def 2.22. (Unabhängig und identisch verteilt): Eine Folge von Zufallsvariablen X_1,X_2,\ldots

- unabhängig falls X_1, \ldots, X_n für alle $n \in \mathbb{N}$ unabhängig sind,
- unabhängig und identisch verteilt (u.i.v.), falls sie unabhängig ist und die Zufallsvariablen dieselbe Verteilungsfunktion haben, d.h. für alle $k,\ell\in\mathbb{N}$ gilt $F_{X_k}=F_{X_\ell}$.
- Im Englischen sagt man independent and identically distributed und benutzt die Abkürzung i.i.d., die auch wir in dieser Vorlesung benutzen werden.

Def 3.7. (Diskrete Zufallsvariablen): Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst diskret, falls eine endliche oder abzählbare Menge $W\subset\mathbb{R}$ existiert, sodass $\mathbb{P}[X\in W]=1$, wenn also die Werte von X fast sicher in W liegen. Def 2.1. (Zufallsvariable): Sei $(\Omega,\mathcal{F},\mathbb{P})$ ein Wahrscheinlichkeitsraum. Eine (reellwertige) Zufallsvariable (Z.V.) ist eine Abbildung $X:\Omega\to\mathbb{R}$, sodass für alle $x\in\mathbb{R}$ gilt,

$$\{\omega \in \Omega \mid X(\omega) \le x\} \in \mathcal{F}.$$

Gewichtsfunktion (pmf)

Def 3.9. (Gewichtsfunktion): Für eine diskrete Zufallsvariable X mit Wertebereich $W(X) = \{x_1, x_2, \ldots\}$ und den dazugehörigen Wahrscheinlichkeiten $\{p_1, p_2, \ldots\}$ definieren wir die Gewichtsfunktion oder diskrete Dichte von X als

$$p_X:W(X)\to [0,1] \qquad \mathbf{mit} \qquad p_X\left(x_k\right):=\mathbb{P}\left[X=x_k\right]=p_X$$

Die Zahlenfolge $\{p_X\left(x_k\right)\}_{x_k\in W(X)}$ nennen wir auch Verteilung von X. Pro 3.10.: Die Gewichtsfunktion p_X einer diskreten Zufallsvariablen X hat folgende Eigenschaften:

- Für alle $x_k \in W(X)$ gilt $p_X(x_k) \in [0,1]$.
- Die Wahrscheinlichkeiten addieren sich zu 1 , $\sum_{x_k \in W(X)} p_X\left(x_k\right) = \mathbb{P}[X \in W(X)] = 1$

Note Verhältnis cdf/pmf: Es gilt:

$$f_X(x) = \frac{d}{dx} F_X(x)$$

Umkehrung stimmt nicht!

Verteilungsfunktion (cdf)

S 3.12. : Sei X eine diskrete Zufallsvariable mit Werten in W und Gewichtsfunktion p_X . Dann ist die Verteilungsfunktion von X gegeben durch

$$F_X(x) = \mathbb{P}[X \le x] = \sum_{\substack{y \le x \\ y \in W}} p_{X(y)}$$

Def 2.10. (Verteilungsfunktion): Sei X eine reellwertige Zufallsvariable auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Die Verteilungsfunktion von X ist die Funktion $F_X: \mathbb{R} \to [0,1]$, definiert durch

$$F_X(x) := \mathbb{P}[X \le x]$$

Pro 2.12: Sei X eine reellwertige Zufallsvariable und seien a < b zwei reelle Zahlen. Dann gilt

$$\mathbb{P}[a < X < b] = F_X(b) - F_X(a).$$

S 2.13. (Eigenschaften von Verteilungsfunktionen): Sei X eine Zufallsvariable auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Die Verteilungsfunktion $F_X: \mathbb{R} \to [0,1]$ von X erfüllt folgende Eigenschaften:

- 1. F_X ist monoton wachsend.
- 2. F_X ist rechtsstetig, d.h. für alle $x \in \mathbb{R}$ gilt $F_X(x) = \lim_{h \searrow 0} F_X(x+h)$.
- 3. Es gelten die Grenzwerte $\lim_{x\to -\infty} F_X(x)=0$ und $\lim_{x\to \infty} F_X(x)=1$.

Note:

- 1. Wenn F_X in einem Punkt $a \in \mathbb{R}$ nicht stetig ist, dann ist die "Sprunghöhe" $F_X(a) - F_X(a-)$ gleich der Wahrscheinlichkeit $\mathbb{P}(X=a)$.
- 2. Falls F_X stetig in einem Punkt $a \in \mathbb{R}$, dann gilt $\mathbb{P}(X=a)=\mathbf{0}$.

Def 2.16. (Gemeinsame Verteilungsfunktion): Seien X_1, \ldots, X_n Zufallsvariablen. Die gemeinsame Verteilungsfunktion von X_1, \ldots, X_n (joint cumulative distribution function) ist die Abbildung $F: \mathbb{R}^n \to [0,1]$ definiert durch

$$(x_1,\ldots,x_n)\mapsto F\left(x_1,\ldots,x_n\right)=\mathbb{P}\left[X_1\leq x_1,\ldots,X_n\leq x_n\right]$$

Def 2.18. (Unabhängigkeit): Seien X_1, \ldots, X_n Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$. Dann heissen X_1, \ldots, X_n unabhängig, wenn für alle $x_1,\ldots,x_n\in\mathbb{R}$ gilt

$$\mathbb{P}\left[X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right] = \mathbb{P}\left[X_{1} \leq x_{1}\right] \cdot \ldots \cdot \mathbb{P}\left[X_{n} \leq x_{n}\right]$$

und somit auch

$$F_{X_1,X_2,\dots}(X_1,X_2,\dots) = F_{X_1}(x_1)F_{X_2}(x_2)\dots$$

Def 3.37. (Stetig verteilte Zufallsvariablen):

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst stetig, wenn eine nicht-negative Funktion $f_X: \mathbb{R} \to \mathbb{R}_+$ existiert, sodass die Verteilungsfunktion F_X dargestellt werden kann als

$$F_X(x) = \int_{-\infty}^x f_X(t) dt.$$

Wir nennen f_X die Dichte(-funktion) von X(probability density function (pdf)). Def 3.38. (Stückweise stetig differenzierbare Funktionen): Im Kontext von \mathbb{R} sagt man oft, dass ein Objekt eine Eigenschaft stückweise (piecewise) erfüllt, wenn sie die Eigenschaft auf einer Partition des Definitionsbereichs erfüllt. Wir sagen, eine Funktion f ist stückweise stetig differenzierbar, wenn es eine Partition

- $-\infty = x_0 < x_1 < \ldots < x_{n-1} < x_n = \infty$ gibt, sodass f auf jedem Intervall (x_i, x_{i+1}) stetig differenzierbar ist.
- Sei X eine Zufallsvariable und sei S 3.39: ihre Verteilungsfunktion F_X stetig und stückweise stetig differenzierbar auf einer **Partition** $-\infty = x_0 < x_1 < ... < x_{n-1} < x_n = \infty$. Dann ist X eine stetige Zufallsvariable und die Dichtefunktion f_X kann wie folgt konstruiert

$$f_X(x) = \begin{cases} F_X'(x) & \exists k \in \{0, \dots, n-1\} : x \in (x_k, x_{k+1}) \\ a_k & x \in \{x_1, \dots, x_{n-1}\}, \end{cases}$$
 Da X die Werte 0 und 1 annimmt,

wobei die Werte a_k beliebig gewählt werden dürfen. In anderen Worten, es gilt $f_X(x) = F'_X(x)$ in allen Stetigkeitspunkten x von

Inverse

Def 2.30. (Verallgem einerte inverse Verteilungsfunktion): Die verallgemeinerte inverse Verteilungsfunktion von F ist eine Abbildung $F^{-1}: (0,1) \to \mathbb{R}$ definiert durch

$$F^{-1}(\alpha) = \inf\{x \in \mathbb{R} \mid F(x) \ge \alpha\}.$$

Nach Definition des Infimums und unter Verwendung der Rechtsstetigkeit von F gilt für jedes $x \in \mathbb{R}$ und $\alpha \in (0,1)$, dass

$$F^{-1}(\alpha) \le x \iff \alpha \le F(x).$$

S 2.31. (Inversionsmethode): $F: \mathbb{R} \to [0,1]$ eine Abbildung mit den Eigenschaften (i)-(iii) aus Satz 2.13. Sei $\mathcal{W} \sim \mathcal{U}([0,1])$. Dann hat die Zufallsvariable $X := F^{-1}(U)$ die Verteilungsfunktion F.

Zusammengesetzte

Ex: Sei X mit F_X gegeben und $Y \sim \phi(X)$. Dann kann $F_Y(y)$ berechnen mit:

- 1. Schreibe $F_Y(y)=\mathbb{P}[X\leq \phi^{-1}(y)]$ (Falls quadratisch: $\mathbb{P}[-\surd\leq X\leq \surd])$
- 2. Finde Grenzen: $F_Y(y) \stackrel{!}{=} F_X(x) = 0, 1$
- 3. Schreibe $F_Y(y) = \begin{cases} 0 & x < c_0 \\ F_X(\phi^{-1}(y)) & 0 \le x \le 1 \\ 1 & x > c_1 \end{cases}$

Verteilungen

Bernoulli $(X \sim Ber(p))$

Def 2.24. (Bernoulli) : Sei $p \in [0, 1]$. Eine Zufallsvariable X heisst Bernoulli Zufallsvariable mit Parameter p, wenn gilt

$$\mathbb{P}[X=0]=1-p$$
 und $\mathbb{P}[X=1]=p$.

S 2.26. (Existenzsatz von Kolmogorov): Es existiert ein Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ und eine unendliche Folge von unabhängig und gleichverteilte Bernoulli Zufallsvariablen X_1, X_2, \ldots auf $(\Omega, \mathcal{F}, \mathbb{P})$ mit Parameter $\frac{1}{2}$. Note MLE:

- 1. $\ell = \sum_{i=1}^{n} (k_i \log(p) + (1 k_i) \log(1 p))$
- **2.** $\frac{\partial \ell}{\partial n} = \frac{1}{n} \sum_{i=1}^{n} k_i \frac{1}{1-n} \sum_{i=1}^{n} (1-k_i)$
- 3. $T_{MLE} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- 4. $Bias(T_{MLE}) = 0$ somit Erwartungstreu
- 5. Konsistent

Note Momenterzeugende:

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$M_X(t) = e^{t \cdot 0} \cdot P(X = 0) + e^{t \cdot 1} \cdot P(X = 1)$$

$$M_X(t) = e^0 \cdot (1 - p) + e^t \cdot p$$

$$M_X(t) = (1 - p) + pe^t$$

Binomial $(X \sim Bin(n, p))$

Def Binomialverteilung:

Wiederholung von n unabhängigen Bernoulli-Experimenten mit gleichem Parameter p.

$$p(k) := \mathbb{P}(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

 $mit \ \forall k \in \{0, 1, ..., n\}$ Note Eigenschaften: Es gilt

1. Für $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$ gilt $\lim_{n\to\infty} \mathbb{P}(X_n = k) = \widetilde{\mathbb{P}}(Y = k)$ wobei $Y \sim \mathbf{Poisson}(\lambda)$.

Proof:

1. $P[X_n = k] = {n \choose k} \left(1 - \frac{1}{n}\right)^{n-k} \frac{1}{n^k} =$ $\frac{n!}{k!(n-k)!}\frac{1}{n^k}\left(1-\frac{1}{n}\right)^n\left(1-\frac{1}{n}\right)^{-k}$. Nun gilt, $\left(1-\frac{1}{n}\right)^n \to e^{-1} \text{ und } \left(1-\frac{1}{n}\right)^{-k} \to 1 \text{ wenn } n \to \infty,$ und $\frac{n!}{k!(n-k)!} \frac{1}{n^k} \to 1$, da $\frac{n!}{n^k(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{n^k}, \text{ und}$ $\frac{(n-k+1)^k}{n^k} \leq \frac{n(n-1)\cdots(n-k+1)}{n^k} \leq \frac{n^k}{n^k}, \text{ wobei der linke und rechte Ausdruck jeweils Grenzwert 1}$ haben. Schliesslich, $\lim_{n\to\infty} P[X_n = k] = \frac{1}{k!}e^{-1}$ und $X \sim Poi(1)$ verteilt ist.

Note MLE:

- 1. $\ell = k \log(p) + (N k) \log(1 p) + \log(\binom{N}{k})$
- $\frac{\partial \ell}{\partial p} = k \log(p) + (N-k) \log(1-p) + \frac{\partial}{\partial N} \log\left(\binom{N}{k}\right)$ 3. $T_{MLE} = \frac{1}{X} = \frac{n}{\sum_{i=1}^{n} x_i}$
- 3. $T_{MLE,p} = \frac{k}{N}$, $T_{MLE,n}$ hat keine geschlossene Form
- 4. $Bias(T_{MLE,p}) = 0$ somit Erwartungstreu, $\operatorname{Bias}(T_{MLE,n})$ schwer zu berechnen :/
- 5. Konsistent

Note Momenterzeugende:

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \sum_{k=0}^{n} e^{tk} \cdot P(X = k)$$

$$= \sum_{k=0}^{n} e^{tk} \cdot {n \choose k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^{n} {n \choose k} (pe^t)^k (1-p)^{n-k}$$

$$= ((1-p) + pe^t)^n$$

Geometrisch $(X \sim \text{Geo}(p))$

Def Geometrische Verteilung: Warten auf den 1-ten Erfolg.

$$p(k) := \mathbb{P}(X = k) = (1 - p)^{k-1} \cdot p \quad \forall k \in \{0\}$$

Note Eigenschaften:

1. Die Verteilung erfüllt Gedächtnislosigkeit:

$$P[X > t+s \mid X > s] = P[X > t]$$

Proof:

$$\begin{array}{ll} \textbf{1.} & P[Z>n+k \mid Z>k] = \frac{P[Z>n+k,Z>k]}{P[Z>k]} = \\ & \frac{P[Z>n+k]}{P[Z>k]} = \frac{(1-q)^n+k}{(1-q)^k} = (1-q)^n = P[Z>n] \end{array}$$

Note MLE:

1.
$$\ell = n \log(p) + \sum_{i=1}^{n} (x_i - 1) \log(1 - p)$$

2.
$$\frac{\partial \ell}{\partial p} = \frac{n}{p} - \frac{\sum_{i=1}^{n} (x_i - 1)}{1 - p}$$

3.
$$T_{MLE} = \frac{1}{\bar{X}} = \frac{n}{\sum_{i=1}^{n} x^i}$$

4. $Bias(T_{MLE}) > 0$ somit nicht Erwartungstreu

5. Konsistent

Note Momenterzeugende:

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \sum_{k=0}^{\infty} e^{tk} \cdot P(X = k)$$

$$= \sum_{k=0}^{\infty} e^{tk} \cdot (1 - p)^k \cdot p$$

$$= p \sum_{k=0}^{\infty} (e^t (1 - p))^k$$

$$= p \cdot \frac{1}{1 - e^t (1 - p)}$$

$$= \frac{p}{1 - (1 - p)e^t}$$

Poisson $(X \sim Poi(\lambda))$

Def Poisson-Verteilung:

Grenzwert der Binomialverteilung für grosse n und kleine p.

$$p(k) := \mathbb{P}(X = k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda} \quad \forall k \in \{0, \lambda > 0\}$$

Note Eigenschaften:

- 1. Seien $X_1 \sim \operatorname{Poisson}(\lambda_1)$ und $X_2 \sim \operatorname{Poisson}(\lambda_2)$ unabhängig. Dann gilt $(X_1 + X_2) \sim \operatorname{Poisson}(\lambda_1 + \lambda_2)$.
- 2. Seien $X, Y \sim \operatorname{Poi}(\lambda), \operatorname{Poi}(\mu)$ Es gilt: $P[X = k \mid X + Y = n] = \binom{n}{k} \left(\frac{\lambda}{\lambda + \mu}\right)^k \left(1 \frac{\lambda}{\lambda + \mu}\right)^{n k} = \operatorname{bin}(n, \frac{\lambda}{\lambda + \mu})$

Proof:

- $$\begin{split} \mathbf{1.} \quad \mathbf{F\ddot{u}r} \ k \in \mathbb{N}_0 \ P[X+Y=k] &= \sum_{l=0}^\infty P[X+Y=k,Y=l] \\ \mathbf{(Totale Wahrscheinlichkeit)} \\ &= \sum_{l=0}^k P[X+Y=k,Y=l] = \sum_{l=0}^k P[X=k-l,Y=l] \\ &= \sum_{l=0}^k P[X=k-l] \cdot P[Y=l] \\ &= \sum_{l=0}^k e^{-\lambda} \frac{\lambda^k l}{(k-l)!} \cdot e^{-\mu} \frac{\mu^l}{l!} \\ &= e^{-(\lambda+\mu)} \frac{1}{k!} \sum_{l=0}^k \frac{k!}{(k-l)! l!} \lambda^{k-l} \mu^l \\ &= e^{-(\lambda+\mu)} \frac{1}{k!} \sum_{l=0}^k \binom{k}{l} \lambda^{k-l} \mu^l = e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^k}{k!} \\ \mathbf{(binomischer Satz)} \end{aligned}$$
- $\begin{aligned} \mathbf{2.} & \ \mathbf{Sei} \ k \in \{0,1,\ldots,n\}; \\ P[X=k|X+Y=n] &= \frac{P[X=k,X+Y=n]}{P[X+Y=n]} = \\ \frac{P[X=k,Y=n-k]}{P[X+Y=n]} &= \frac{P[X=k]P[Y=n-k]}{P[X+Y=n]} \ \text{ (Def. bedingte} \\ \mathbf{Wahrscheinlichkeit}, \ \mathbf{Unabhängigkeit} \ \mathbf{von} \ X, Y \\ &= \frac{e^{-\lambda} \frac{\lambda^k}{k!} \cdot e^{-\mu} \frac{\mu^{n-k}}{(n-k)!}}{e^{-(\lambda+\mu)} \frac{(\lambda+\mu)^n}{n!}} = \frac{e^{-\lambda} e^{-\mu}}{e^{-(\lambda+\mu)}} \cdot \frac{n!}{k!(n-k)!} \cdot \frac{\lambda^k}{(\lambda+\mu)^n} \cdot \frac{\mu^{n-k}}{(\lambda+\mu)^n-k} = \binom{n}{k} \cdot (\frac{\lambda}{\lambda+\mu})^k \cdot \frac{\mu^{n-k}}{(\lambda+\mu)^n-k} = \binom{n}{k} \cdot (\frac{\lambda}{\lambda+\mu})^k \cdot (\frac{\lambda}{\lambda+\mu})^{n-k} \cdot (\frac{\lambda}{\lambda+\mu}$

Note MLE:

- **1.** $\ell = \sum_{i=1}^{n} (x_i \log(\lambda) \lambda \log(x_i!))$
- 2. $\frac{\partial \ell}{\partial \lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i n$
- **3.** $T_{MLE} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 4. $Bias(T_{MLE}) = 0$ somit Erwartungstreu
- 5. Konsistent

Proof Log-Likelihood: Die log-Likelihood-Funktion für die Poissonverteilung lautet

$$\log L(k_1, \dots, k_n; \lambda) = \log \left(\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^k i}{k_i!} \right)$$

$$= \sum_{i=1}^{n} \log \left(e^{-\lambda} \frac{\lambda^k i}{k_i!} \right)$$

$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} k_i - \sum_{i=1}^{n} \log(k_i!).$$

Die Ableitung nach λ ist

$$\frac{\partial}{\partial \lambda} \log L(k_1, \dots, k_n; \lambda) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} k_i$$

und diese ist 0 für

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} k_i.$$

Also ist der ML-Schätzer für λ gleich $T=\frac{1}{n}\sum_{i=1}^{n}X_{i}.$ Note Momenterzeugende:

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \sum_{k=0}^{\infty} e^{tk} \cdot P(X = k)$$

$$= \sum_{k=0}^{\infty} e^{tk} \cdot \frac{\lambda^k e^{-\lambda}}{k!}$$

$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!}$$

$$= e^{-\lambda} \cdot e^{\lambda e^t}$$

$$= e^{\lambda(e^t - 1)}$$

Gleichverteilt $(X \sim \mathcal{U}([a,b]))$

Def 2.27. (Gleichverteilt): Eine Zufallsvariable U heisst gleichverteilt auf [0,1], wir schreiben $U \sim \mathcal{U}([0,1])$, falls ihre Verteilungsfunktion gegeben ist durch

$$F_U(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

S 2.28.: Die Abbildung $X:\Omega \to [0,1]$ definiert in Gleichung $X(\omega) := \sum_{n=1}^{\infty} 2^{-n} X_n(\omega)$ ist eine gleichverteilte Zufallsvariable auf [0,1]. 2.29. (Binärdarstellung) Jedes $x \in [0,1)$ kann eindeutig in der Form

$$x = \sum_{n=1}^{\infty} 2^{-n} x_n$$

dargestellt werden, wobei für alle $n \in \mathbb{N}$ gilt, $x_n \in \{0,1\}$, und für jedes $N \in \mathbb{N}$ gibt es ein k > N, sodass $x_k = 0$ (also die Folge "endet" nicht in unendlichen vielen 1-en.) Die Folge $\{x_n\}_{n\in\mathbb{N}}$ heisst Binärdarstellung von x und wir schreiben $x = (.x_1x_2x_3...)_2$. S 3.3. (Wahrscheinlichkeit eines Punktes): Sei $X:\Omega\to\mathbb{R}$ eine Zufallsvariable mit Verteilungsfunktion F. Für jedes $x \in \mathbb{R}$ gilt $\mathbb{P}[X = x] = F(x) - F(x-)$ Ex: Seien $X, Y, Z \sim \mathcal{U}(0, 1)$. Es gilt: $\mathbb{P}[X > Y] = \int \int_{(x,y) \in [0,1]^2} 1_{(x>y)} f_{X,Y}(x,y) dx dy =$ $\int_{0}^{1} \int_{0}^{x} 1 dy dx = \int_{0}^{1} x dx = \frac{1}{2}$ $\begin{array}{l} J_0 \ J_0 \ Y_0 \ Z_0 \\ \mathbb{P}[X > Y, X > Z] = \\ \int \int \int (x, y, z) \in [0, 1]^3 \ 1(x > y \wedge x > z) f_{X,Y,Z}(x, y, z) dz dy dx = \\ & -1 \ 2 \ -1 \end{array}$ $\int_{0}^{1} \int_{0}^{x} \int_{0}^{x} 1 dz dy dx = \int_{0}^{1} \int_{0}^{x} x dy dx = \int_{0}^{1} x^{2} dx = \frac{1}{3}$ $\mathbb{P}[X > Y \mid X > Z] = \frac{\mathbb{P}[X > Y, X > Z]}{\mathbb{P}[X > Y]} = \frac{2}{3}$ Ex: Seien $X \sim \mathcal{U}(a,b)$ und $X \sim \mathcal{U}(c,d)$ Es gilt $\mathbb{P}[X>Y]=rac{c-a}{b-a}+rac{(b-c)^2}{2(b-a)(d-c)}.$ Des weiteren:

Note MLE:

1.
$$\ell = -n \log(b-a)$$
 für $a \le \min(x_1, x_2, \dots, x_n)$ und $b \ge \max(x_1, x_2, \dots, x_n)$, ansonsten $\ell = -\infty$

- 2. $\frac{\partial \ell}{\partial a} = \frac{n}{a-b}$, $\frac{\partial \ell}{\partial b} = \frac{n}{b-a}$
- 3. $T_{MLE,a} = \min(x_1, x_2, \dots, x_n),$ $T_{MLE,b} = \max(x_1, x_2, \dots, x_n)$
- 4. $\operatorname{Bias}(T_{MLE,a}) = \frac{a-b}{n+1}$, $\operatorname{Bias}(T_{MLE,b}) = \frac{b-a}{n+1}$, somit beide nicht Erwartungstreu
- 5. Konsistent

Note Momenterzeugende:

$$\begin{split} M_X(t) &= \mathbb{E}[e^{tX}] \\ &= \int_a^b e^{tx} \cdot \frac{1}{b-a}, dx \\ &= \frac{1}{b-a} \int_a^b e^{tx}, dx \\ &= \frac{1}{b-a} \left[\frac{e^{tx}}{t} \right]_a^b \\ &= \frac{1}{b-a} \left(\frac{e^{tb} - e^{ta}}{t} \right) \\ &= \frac{e^{tb} - e^{ta}}{t(b-a)} \end{split}$$

Exponential $(X \sim \text{Exp}(\lambda))$

Note Eigenschaften:

1. Die Exponential-Verteilung erfüllt Gedächtnislosigkeit:

$$P[X > t + s \mid X > s] = P[X > t]$$

2. Seien $X, Y \sim \text{Exp}(\lambda_X), \text{Exp}(\lambda_Y)$ Es gilt

$$\mathbb{P}\left[X > Y\right] = \frac{\lambda_Y}{\lambda_Y + \lambda_Y}$$

Proof:

$$\begin{array}{|c|c|c|} \textbf{1.} & \mathbb{P}\left[T>s+t\mid T>s\right] = \frac{\mathbb{P}\left[T>s+t\cap T>s\right]}{\mathbb{P}\left[T>s\right]} = \frac{\mathbb{P}\left[T>s+t\right]}{\mathbb{P}\left[T>s\right]} = \\ & \frac{1-\mathbb{P}\left[T\leq s+t\right]}{1-\mathbb{P}\left[T\leq s\right]} = \frac{1-\left(1-e^{-\alpha}(s+t)\right)}{1-\left(1-e^{-\alpha}s\right)} = \frac{e^{-\alpha}(s+t)}{e^{-\alpha}s} = \\ & e^{-\alpha t} = 1 - \mathbb{P}\left[T\leq t\right] = \mathbb{P}\left[T>t\right] \end{array}$$

$$\begin{aligned} \mathbf{2.} \quad \mathbb{P}[Z > Y] &= \int_{-\infty}^{\infty} \underbrace{\mathbb{P}[Z > y]}_{} \cdot \underbrace{f_{Y}(y)}_{} \quad \mathrm{d}y = \\ &= e^{-\mu y} \underbrace{\lambda e^{-\lambda y}}_{} = \lambda e^{-\lambda y} \\ \int_{0}^{\infty} e^{-\mu y} \lambda e^{-\lambda y} &= \int_{0}^{\infty} \lambda e^{-\lambda y} e^{-\mu y} = \\ &- \frac{\lambda}{\lambda + \mu} \int_{u(0)}^{u(\infty)} e^{u} \ \mathrm{d}u = -\frac{\lambda}{\lambda + \mu} \left[e^{-(\lambda + \mu)y} \right]_{0}^{\infty} = \\ &- \frac{\lambda}{\lambda + \mu} (0 - 1) &= \frac{\lambda}{\lambda + \mu} \end{aligned}$$

Note MLE:

- 1. $\ell = n \log(\lambda) \lambda \sum_{i=1}^{n} x_i$
- 2. $\frac{\partial \ell}{\partial \lambda} = \frac{n}{\lambda} \sum_{i=1}^{n} x_i$
- **3.** $T_{MLE} = \frac{1}{\bar{X}} = \frac{n}{\sum_{i=1}^{n} x_i}$

- 4. $Bias(T_{MLE}) = 0$ somit Erwartungstreu
- 5. Konsistent

Note Momenterzeugende:

$$M_X(t) = \mathbb{E}[e^{tX}]$$

$$= \int_0^\infty e^{tx} \cdot \lambda e^{-\lambda x}, dx$$

$$= \lambda \int_0^\infty e^{(t-\lambda)x}, dx$$

$$= \lambda \left[\frac{e^{(t-\lambda)x}}{t-\lambda} \right]_0^\infty$$

$$= \lambda \left(\frac{1}{t-\lambda} \right) \quad \text{(für } t < \lambda \text{)}$$

$$= \frac{\lambda}{\lambda - t}$$

Normal $(X \sim \mathcal{N}(\mu, \sigma^2))$

Pro 3.49. (Standardnormalverteilung): Für $X \sim \mathcal{N}(\mu, \sigma^2)$ gilt $\frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$, also

$$F_X(x) = \mathbb{P}[X \leq x] = \mathbb{P}\left[\frac{X - \mu}{\sigma} \leq \frac{x - \mu}{\sigma}\right] = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

Note: Seien X_1,\ldots,X_n unabhängige normalverteilte ZV mit Parametern $(m_1,\sigma_1^2),\ldots,(m_n,\sigma_n^2)$, dann ist

$$Z = m_0 + \lambda_1 X_1 + \ldots + \lambda_n X_n$$

Lem 4.21.: Für das uneigentliche Integral über die gaußsche Glockenkurve gilt

$$\int_{-\infty}^{\infty} e^{\frac{-x^2}{2\sigma^2}} \, \mathrm{d}x = \sqrt{2\pi\sigma^2}$$

Note Eigenschaften:

1.
$$\frac{1}{n}(X_1 + \cdots + X_n)^2 \sim \chi_1^2$$

Proof:

1. Wir wissen, dass $X_1+\cdots+X_n$ einer Normalverteilung folgt mit $\mathbb{E}\left[S_n\right]=\mathbb{E}\left[X_1+X_2+\cdots+X_n\right]=n\cdot\mathbb{E}\left[X_i\right]=0, \mathbb{V}\left(S_n\right)=\mathbb{V}\left(X_1+X_2+\cdots+X_n\right)=n\cdot\mathbb{V}\left(X_i\right)=n\cdot 1=n$ Somit ist $S_n\sim\mathcal{N}(\mathbb{E}[S_n],\mathbb{V}[S_n])=\mathcal{N}(0,n).$ Wir standardisieren S_n und erhalten $\frac{S_n-0}{\sqrt{n}}\sim\mathcal{N}(0,1)$

Dann
$$\chi_1^2 \sim Z^2 \sim \left(\frac{S_n}{\sqrt{n}}\right)^2$$
 und somit
$$\left(\frac{S_n}{\sqrt{n}}\right)^2 \stackrel{\text{Def}}{=} \left(\frac{X_1 + \dots + X_n}{\sqrt{n}}\right)^2 = \frac{(X_1 + \dots + X_n)^2}{n}$$

Note MLE:

- 1. $\ell = -\frac{n}{2}\log(2\pi\sigma^2) \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i \mu)^2$
- 2. $\frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i \mu),$ $\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i \mu)^2$
- 3. $T_{MLE,\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i,$ $T_{MLE,\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2$

- **4.** Bias $(T_{MLE,\mu}) = 0$, Bias $(T_{MLE,\sigma^2}) = -\frac{\sigma^2}{n}$ somit μ ist Erwartungstreu, σ^2 ist nicht Erwartungstreu
- 5. Konsistent

Note Momenterzeugende:

$$\begin{split} &M_X(t)\\ &= \mathbb{E}[e^{tX}]\\ &= \int_{-\infty}^{\infty} e^{tx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, dx\\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} e^{tx - \frac{(x-\mu)^2}{2\sigma^2}}, dx\\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} e^{-\frac{(x^2 - 2\mu x + \mu^2) - 2\sigma^2 tx + 2\sigma^2 t\mu}{2\sigma^2}}, dx\\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} e^{-\frac{(x-(\mu+\sigma^2t))^2}{2\sigma^2}} e^{\frac{\mu^2 + 2\sigma^2 t\mu - 2\sigma^2 t\mu}{2\sigma^2}}, dx \end{split}$$

Chi-Quadrat-Verteilung (χ^2)

Def: Es gilt $\mathcal{X}^2 = Z_1^2 + \cdots + Z_n^2$ mit $Z_1,\ldots,Z_n \sim \mathcal{N}(0,1)$ Note Eigenschaften:

1.
$$\chi_2^2 = X_1^2 + X_2^2 = \text{Exp}(\frac{1}{2})$$
 mit $X_1, X_2 \sim \mathcal{N}(0, 1)$

Proof:

1. Formel for χ^2 numerisch mit n=2 ausrechnen.

Extremwertverteilt (χ^2)

Def: Es gilt:

$$F_{\alpha}(x) = e^{-e^{-(x-\alpha)}}$$

Note Dichtefunktion:

$$f_{\alpha}(x) = F'_{\alpha}(x) = e^{-(x-\alpha)}e^{-e^{-(x-\alpha)}}$$

Note Erwartungswert:

mit $\gamma = -\int_0^\infty \log x e^{-x} dx$

Proof: $E[X] = \int_{\mathbb{R}} x f_{\alpha}(x) dx$

$$E[X] = \gamma + \alpha$$

$$\begin{split} &= \int_{\mathbb{R}} (x-\alpha) f_{\alpha}(x) dx + \alpha \int_{\mathbb{R}} f_{\alpha}(x) dx \\ &= \int_{\mathbb{R}} (x-\alpha) e^{-(x-\alpha)} e^{-e^{-(x-\alpha)}} dx + \alpha \\ &= \int_{\mathbb{R}} s e^{-s} e^{-e^{-s}} ds + \alpha \\ &= \int_{\mathbb{R}} s e^{-s} e^{-e^{-s}} ds + \alpha \\ &\text{Durch die Variablensubstitution } u = e^{-s} \min s = -\log u \\ &\text{und } \frac{ds}{du} = -\frac{1}{u} \text{ erhält man für das verbleibende Integral} \\ &\int_{\mathbb{R}} s e^{-s} e^{-e^{-s}} ds = \int_{0}^{\infty} (-\log u) u e^{-u} \left(-\frac{1}{u}\right) du = \\ &- \int_{0}^{\infty} \log u e^{-u} du = \gamma \end{split}$$

Kompositionen

- $\mathbb{P}[X > Y] = \sum_{i=1}^{n} \mathbb{P}[X > Y \mid Y = j] \mathbb{P}[Y = j]$
- (diskret) $\mathbb{P}[X > Y] = \int_{-\infty}^{\infty} \mathbb{P}[X > Y \mid Y = y] f_Y(y) dy$
- Sei X mit f_x eine ZV und $Y \sim aX + b$. Dann

Erwartungswert

Def 4.1. (Erwartungswert (nicht-negativ)): Sei $X: \Omega \to \mathbb{R}_+$ eine Zufallsvariable mit nicht-negativen Werten und Verteilungsfunktion Fy. Dann heisst

$$\mathbb{E}[X] = \int_0^\infty (1 - F_X(x)) \, \mathrm{d}x$$

der Erwartungswert von X (expected value). S 4.3.: Sei X eine nicht-negative Zufallsvariable. Dann gilt $\mathbb{E}[\bar{X}] \geq 0$. Gleichheit gilt genau dann wenn X = 0 fast sicher gilt. Def 4.4. (Allgemeiner Erwartungswert): X eine reellwertige Zufallsvariable. Falls $\mathbb{E}[|X|] < \infty$, dann heisst

$$\mathbb{E}[X] = \mathbb{E}\left[X_{+}\right] - \mathbb{E}\left[X_{-}\right]$$

der Erwartungswert von X.

Diskret

S 4.8 (Erwartungswert (diskret)): $X:\Omega\to\mathbb{R}$ eine diskrete Zufallsvariable, deren Werte fast sicher in W (endlich oder abzählbar) liegen. Dann gilt

$$\mathbb{E}[X] = \sum_{x \in W} x \cdot \mathbb{P}[X = x] = \sum_{x \in W} x p_X(x)$$

solange der Erwartungswert wohldefiniert ist. Somit gilt auch

$$\mathbb{E}[a + b \cdot X^{c}] = a + \sum_{x \in W} b \cdot x^{c} p_{X}(x)$$

Stetig

S 4.17. (Erwartungswert (stetig)): eine stetige Zufallsvariable mit Dichte f_X . Dann gilt

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \mathrm{d}x$$

solange das Integral absolut konvergiert, d.h. falls $\int_{-\infty}^\infty |x| f_X(x) \mathrm{d}x < \infty.$ Ist das Integral nicht absolut konvergent, so existiert der Erwartungswert nicht (zumindest nicht in \mathbb{R}). Das ist völlig analog zum diskreten Fall. Es gilt ebenfalls

$$\mathbb{E}\left[a+b\cdot X^{c}\right] = a + \int_{-\infty}^{\infty} b\cdot x^{c} \cdot f_{X}(x)dx$$

Eigenschaften

Sei X eine stetige Zufallsvariable mit Dichte f_X und sei $\varphi : \mathbb{R} \to \mathbb{R}$ eine Abbildung. Dann gilt

$$\mathbb{E}[\varphi(X)] = \int_{-\infty}^{\infty} \varphi(x) f_X(x) dx$$

solange das Integral wohldefiniert ist. S 4.25. (Linearität des Erwartungswerts): Seien $X,Y:\Omega\to\mathbb{R}$ Zufallsvariablen und sei $\lambda \in \mathbb{R}$. Falls die Erwartungswerte wohldefiniert sind, gilt

- 1. $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$
- 2. $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$.

S 4.29. (Monotonie des Erwartungswerts): Seien X, Y zwei Zufallsvariablen, sodass $X \leq Y$ f.s. gilt. Falls beide Erwartungswerte wohldefiniert sind, gilt

$$\mathbb{E}[X] \le \mathbb{E}[Y]$$

Unabhängigkeit

S 4.30 (Erwartungswerte bei Unabhängigkeit): für n unabhängige Zufallsvariablen X_1, \ldots, X_n . Satz 4.31. Seien X_1, \ldots, X_n unabhängige Zufallsvariablen mit endlichen Erwartungswerten $\mathbb{E}[X_1], \dots, \mathbb{E}[X_n]$. Dann gilt

$$\mathbb{E}\left[\prod_{k=1}^{n} X_{k}\right] = \prod_{k=1}^{n} \mathbb{E}\left[X_{k}\right]$$

S 4.32.: Sei X eine Zufallsvariable und sei $f: \mathbb{R} \to \mathbb{R}_+$ eine Abbildung, sodass $\int_{-\infty}^{\infty} f(x) dx = 1$. Dann sind folgende Aussagen äquivalent

- 1. X ist stetig mit Dichte f,
- 2. für jede stückweise stetige, beschränkte Abbildung $\varphi : \mathbb{R} \to \mathbb{R}$ gilt

$$\mathbb{E}[\varphi(X)] = \int_{-\infty}^{\infty} \varphi(x) f(x) dx$$

Seien X, Y zwei Zufallsvariablen. Die folgenden Aussagen sind äquivalent:

- 1. X, Y sind unabhängig.
- 2. Für alle stückweise stetigen, beschränkten Abbildungen $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ gilt

$$\mathbb{E}[\varphi(X)\psi(Y)] = \mathbb{E}[\varphi(X)]\mathbb{E}[\psi(Y)]$$

S 4.34. : Seien X_1, \ldots, X_n Zufallsvariablen. Die folgenden Aussagen sind äquivalent:

- 1. X_1, \ldots, X_n sind unabhängig,
- 2. Für alle stückweise stetigen, beschränkten Abbildungen $\varphi_1, \ldots, \varphi_n : \mathbb{R} \to \mathbb{R}$ gilt

$$\mathbb{E}\left[\varphi_1\left(X_1\right)\cdot\ldots\cdot\varphi_n\left(X_n\right)\right] = \mathbb{E}\left[\varphi_1\left(X_1\right)\right]\cdot\ldots\cdot\mathbb{E}\left[\varphi_n\left(X_n\right)\right].$$

Ungleichungen

S 4.35. (Markow-Ungleichung): Sei X eine nicht-negative Zufallsvariable und sei $g: X(\Omega) \to [0,\infty)$ eine wachsende Funktion. Für jedes $c \in \mathbb{R}$ mit g(c) > 0 gilt

$$\mathbb{P}[X \ge c] \le \frac{\mathbb{E}[g(X)]}{g(c)}$$

S 4.36. (Jensensche Ungleichung): Sei Xeine Zufallsvariable und sei $\varphi: \mathbb{R} \to \mathbb{R}$ eine

konvexe Funktion. Falls $\mathbb{E}[\varphi(X)]$ und $\mathbb{E}[X]$ wohldefiniert sind, gilt

$$\varphi(\mathbb{E}[X]) \le \mathbb{E}[\varphi(X)]$$

Cor 4.37. (Dreiecksungleichung): Anwendung der Jensenschen Ungleichung auf $\varphi(x) = |x|$ liefert die Dreiecksungleichung,

$$|\mathbb{E}[X]| \le \mathbb{E}[|X|]$$

Varianz

Def 4.38. (Varianz Standardabweichung): Sei X eine Zufallsvariable, sodass $\mathbb{E}[X^2] < \infty$. Wir definieren die Varianz von X (variance) durch

$$\mathbb{V}[X] = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Die Wurzel der Varianz nennt man Standardabweichung von X (standard deviation) und sie wird oft mit $\sigma = \sigma_X = \sigma(X) = \sqrt{\mathbb{V}[X]}$ bezeichnet.

Eigenschaften

Pro 4.46.:

Seien X_1, \ldots, X_n paarweise unabhängigen Zufallsvariablen, dann gilt

$$\mathbb{V}\left[\sum_{k=1}^{n} X_k\right] = \sum_{k=1}^{n} \mathbb{V}\left[X_k\right]$$

Note:

1. Sei X ein ZV, sodass $(X^2) < \infty$ und $a, b \in$:

$$\mathbb{V}(a \cdot X + b) = a^2 \cdot \mathbb{V}(X)$$

2. Seien $X_1, ..., X_n$ paarweise unabhängig.

$$\mathbb{V}(X_1 + \ldots + X_n) = \mathbb{V}(X_1) + \ldots + \mathbb{V}(X_n)$$

Cor 4.50. (Chebyshev-Ungleichung): Sei Y eine Zufallsvariable mit endlicher Varianz. Für jedes c > 0 gilt dann

$$\mathbb{P}[|Y - \mathbb{E}[Y]| \ge c] \le \frac{\mathbb{V}[Y]}{c^2}$$

Note:

- 1. $\mathbf{Cov}(X, X) = \mathbb{V}(X)$
- 2. X, Y unabhängig \implies Cov(X, Y) = 0 (Die Umkehrung ist falsch!)
- 3. $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y) + 2\mathbf{Cov}(X,Y)$
- **4.** V(X) > 0

Def 4.51. (Kovarianz): Seien X.Y zwei Zufallsvariablen mit endlichen zweiten Momenten, $\mathbb{E}\left[X^2\right], \mathbb{E}\left[Y^2\right] < \infty$. Die Kovarianz zwischen X und Y (covariance) ist definiert als

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Note Kovarianz: Man kann die Kovarianz ebenfalls ausdrücken durch

$$cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Beweis:

$$\begin{split} &\operatorname{cov}(X,Y) \\ &= \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] \\ &= \mathbb{E}[(XY - \mathbb{E}[X]Y - \mathbb{E}[Y]X + \mathbb{E}[X]\mathbb{E}[Y]] \\ \overset{4.25}{=} \mathbb{E}[XY] - \mathbb{E}[\mathbb{E}[X]Y] - \mathbb{E}[\mathbb{E}[Y]X] + \mathbb{E}[\mathbb{E}[X]\mathbb{E}[Y]] \\ \overset{(1)}{=} \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \end{split}$$

Note Kolleriertheit: Es gilt:

- Wenn cov(X, Y) > 0, dann sind X und Y positiv korreliert.
- wenn cov(X, Y) = 0, dann sind X und Y unkorreliert.
- Wenn cov(X, Y) < 0, dann sind X und Y negativ korreliert oder antikorreliert. Note Eigenschaften: Für die Kovarianz gilt:
- 1. Positive Semidefinitheit: cov(X, X) > 0,
- 2. Symmetrie: cov(X, Y) = cov(Y, X)
- 3. Bilinearität: cov(aX + b, cY + d) = ac cov(X, Y)und cov(X, (eY + f) + (gZ + h)) = $e \operatorname{cov}(X, Y) + q \operatorname{cov}(X, Z)$.

Proof:

$$\begin{aligned} \operatorname{cov}(X,X) &\overset{4.52}{=} \mathbb{E}[XX] - \mathbb{E}[X]\mathbb{E}[X] \\ &= \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\ &\overset{4.40}{=} \mathbb{V}[X] \end{aligned}$$

$$cov(X, Y) \stackrel{4.52}{=} \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$
(1)
$$= \mathbb{E}[YX] - \mathbb{E}[Y]\mathbb{E}[X]$$
(2)
$$\stackrel{4.52}{=} cov(Y, X)$$
(3)

Zusammengesetzte

Note Verteilung einer Ungleichung: für beliebige **ZV** X, Y:

$$\mathbb{P}[X > Y] = \int_{-\infty}^{\infty} \mathbb{P}[X > y] \cdot f_Y(y) dy$$

Gemeinsame Verteilungen

S 5.3.: Eine gemeinsame Verteilung von **Z**ufallsvariablen X_1, \ldots, X_n erfüllt stets

$$\sum_{x_1 \in W_1, \dots, x_n \in W_n} p(x_1, \dots, x_n) = 1$$

Pro 5.5: Aus der gemeinsamen Gewichtsfunktion p bekommt man die gemeinsame Verteilungsfunktion via

$$F\left(x_{1},\ldots,x_{n}\right)=\mathbb{P}\left[X_{1}\leq x_{1},\ldots,X_{n}\leq x_{n}\right]\\ =\sum_{y_{1}\leq x_{1},\ldots,y_{n}\leq x_{n}}\mathbb{P}\left[x_{1}=y_{1},\ldots,X_{n}=y_{n}\right]\\ =\sum_{y_{1}\leq x_{1},\ldots,y_{n}\leq x_{n}}p\left(y_{1},\ldots,y_{n}\right).$$
 solange die Summe wohldefiniert ist, wobei wir hier über alle $x_{1}\in W_{1},\ldots,x_{n}\in W_{n}$ summieren. Solange tie sum $x_{1}\in W_{1},\ldots,x_{n}\in W_{n}$ summieren.

Def 5.18. (Randverteilung): Haben X und Y die gemeinsame Verteilungsfunktion F, so ist die Funktion $F_X: \mathbb{R} \to [0,1]$, gegeben durch

$$x\mapsto F_X(x)=\mathbb{P}[X\leq x]=\mathbb{P}[X\leq x,Y<\infty]=\lim_{y\to\infty}F(x,y)$$
 für alle $x_1\in W_1,\ldots,x_n\in W_n$ gilt

die Verteilungsfunktion der Randverteilung von X. Analog ist

$$F_Y: \mathbb{R} \to [0, 1]$$

$$y \mapsto F_Y(y) = \mathbb{P}[Y \le y] = \mathbb{P}[X < \infty, Y \le y] = \lim_{x \to \infty} F(x, y)$$

die Verteilungsfunktion der Randverteilung von Y.

Diskret

Def 5.1. (Gemeinsame diskrete Verteilung): Seien X_1, \ldots, X_n diskrete Zufallsvariablen, seien für $k \in \{1, \ldots, n\}$ Mengen $W_k \subset \mathbb{R}$ endlich oder abzählbar, sodass $X_k \in W_k$ fast sicher gilt. Die gemeinsame Verteilung von (X_1, \ldots, X_n) ist eine Familie von Wahrscheinlichkeiten

$$\left\{p\left(x_{1},\ldots,x_{n}\right)\right\}_{x_{1}\in W_{1},\ldots,x_{n}\in W_{n}}$$

wobei $p:\mathbb{R}^n \to [0,1]$ die gemeinsame Gewichtsfunktion bezeichnet.

$$p(x_1,\ldots,x_n) = \mathbb{P}[X_1 = x_1,\ldots,X_n = x_n]$$

S 5.6. (Verteilung des Bildes) : Sei $n \ge 1$ und sei $\varphi: \mathbb{R}^n \to \mathbb{R}$ eine Abbildung. Seien X_1, \ldots, X_n diskrete Zufallsvariablen, mit Werten jeweils in W_1,\ldots,W_n (f.s.). Dann ist $Z=\varphi(X_1,\ldots,X_n)$ eine diskrete Zufallsvariable, die f.s. Werte in $W = \varphi(W_1 \times \ldots \times W_n)$ annimmt. Zudem ist die Verteilung von Z für alle $z \in W$ gegeben durch

$$\mathbb{P}[Z=z] = \sum_{\substack{x_1 \in W_1, \dots, x_n \in W_n \\ \varphi(x_1, \dots, x_n) = z}} \mathbb{P}[X_1 = x_1, \dots, X_n = x_n]$$

S 5.7. (Randverteilung): Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit gemeinsamer

Gewichtsfunktion p. Für jedes $k \in \{1, ..., n\}$ und jedes $x \in W_k$ gilt

$$\mathbb{P}\left[X_{k} = x\right] = \sum_{\substack{x_{\ell} \in W_{\ell} \\ \ell \in \{1, \dots, n\} \setminus \{k\}}} p\left(x_{1}, \dots, x_{k-1}, x, x_{k+1}, \dots\right)$$

S 5.9. (Erwartungswert des Bildes): X_1, \ldots, X_n diskrete Zufallsvariablen mit gemeinsamer Verteilung $\{p(x_1,\ldots,x_n)\}_{x_1\in W_1,\ldots,x_n\in W_n}$ und sei $\varphi:\mathbb{R}^n\to\mathbb{R}$ eine Abbildung. Es gilt

$$\mathbb{E}\left[\varphi\left(X_{1},\ldots,X_{n}\right)\right] = \sum_{x_{1},\ldots,x_{n}} \varphi\left(x_{1},\ldots,x_{n}\right) p\left(x_{1},\ldots,x_{n}\right)$$

solange die Summe wohldefiniert ist, wobei wir hier über alle $x_1 \in W_1, \ldots, x_n \in W_n$ summieren. S 5.10.: Seien X_1, \ldots, X_n diskrete Zufallsvariablen mit gemeinsamer Verteilung $\{p(x_1,\ldots,x_n)\}_{x_1\in W_1,\ldots,x_n\in W_n}$. Die folgenden Aussagen sind äquivalent

- 1. X_1, \ldots, X_n sind unabhängig,

$$p(x_1,\ldots,x_n) = \mathbb{P}[X_1 = x_1] \cdot \ldots \cdot \mathbb{P}[X_n = x_n]$$

d.h. die gemeinsame Gewichtsfunktion ist das Produkt der einzelnen Gewichtsfunktionen der Randverteilungen.

Stetig

Def 5.11. (Gemeinsame stetige Verteilung): Sei $n \ge 1$. Wir sagen, dass die Zufallsvariablen $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ eine stetige gemeinsame Verteilung besitzen, falls eine Abbildung $f: \mathbb{R}^n \to \mathbb{R}_+$ existiert, sodass für alle $\begin{array}{l} a_1, \dots, a_n \in \mathbb{R} \ \mathbf{gilt}, \mathbb{P}[X_1 \leq a_1, \dots, X_n \leq a_n] = \\ \int_{-\infty}^{a_1} \dots \int_{-\infty}^{a_n} f(x_1, \dots, x_n) \, \mathrm{d}x_n \dots \mathrm{d}x_1 \end{array}$ Die Funktion f heisst die gemeinsame Dichte von (X_1, \ldots, X_n) (joint probability density function). S 5.12.: Sei f die gemeinsame Dichte der

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) \, \mathrm{d}x_n \cdots \, \mathrm{d}x_1 = 1$$

Zufallsvariablen (X_1, \ldots, X_n) . Dann gilt

Umgekehrt kann jeder Funktion $f: \mathbb{R}^n \to \mathbb{R}_+$, die Gleichung oben erfüllt, ein Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ und nZufallsvariablen X_1, \ldots, X_n zugeordnet werden, sodass f die gemeinsame Dichte von X_1, \ldots, X_n ist. S 5.15. (Erwartungswert des Bildes): Sei $\varphi: \mathbb{R}^n \to \mathbb{R}$ eine Abbildung. Falls X_1, \ldots, X_n eine gemeinsame Dichte f besitzen, dann lässt sich der Erwartungswert der Zufallsvariable $\varphi(X_1,\ldots,X_n)$ berechnen als $\mathbb{E}[\varphi(X_1,\ldots,X_n)] =$ $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \varphi(x_1, \ldots, x_n) f(x_1, \ldots, x_n) dx_n \cdots dx_1$ S 5.21. (Unabhängigkeit von stetigen Zufallsvariablen): Seien X_1, \ldots, X_n Zufallsvariablen mit Dichten f_{X_1}, \ldots, f_{X_n} . Dann sind die folgenden Aussagen äquivalent,

1. X_1, \ldots, X_n sind unabhängig,

2. X_1, \ldots, X_n sind gemeinsam stetig mit gemeinsamer Dichte $f: \mathbb{R}^n \to \mathbb{R}_+$,

$$f(x_1,\ldots,x_n) = f_{X_1}(x_1)\cdot\ldots\cdot f_{X_n}(x_n)$$

 $^{\prime}$ d.h. die gemeinsame Dichtefunktion f ist das Produkt der einzelnen Randdichten f_{X_h} . Note Randdichten: Haben X und Y eine gemeinsame Dichte f(x,y), so haben auch die Randverteilungen von X und Y Dichten $f_X : \mathbb{R} \to \mathbb{R}_+$ bzw. $\begin{array}{ll} f_Y: \mathbb{R} \to \mathbb{R}_+, \ f_X(x) = \\ \int_{-\infty}^{\infty} f(x,y) \mathrm{d}y \quad \text{und} & f_Y(y) = \int_{-\infty}^{\infty} f(x,y) \mathrm{d}x \end{array}$ Falls bei Verteilungen die Variablen eine Bedingung erfüllen müssen z.b $x^2 + y^2 < 1$, dann bekommt man die Grenzen des Integrals ⁿdurch das umformen der jeweiligen Variabel. **Z.b.** Um $f_X(x)$ zu erhalten (nach y integrieren): $y^2 \le 1 - x^2 \Rightarrow y = \pm \sqrt{1 - x^2}$ Obere Grenze $+\sqrt{1-x^2}$ Untere Grenze $-\sqrt{1-x^2}$ Falls Grenzen nicht beschränkt sind einfach nach ∞ integrieren z.b. mit 0 < x < y gilt $f_Y = \int_x^\infty f_{X,Y}(x,y)dy$

Grenzwertsätze

S 6.2. (Schwaches Gesetz der grossen Zahlen): Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen mit gleichen Erwartungswerten $\mathbb{E}\left[X_{k}\right] = \mu$ und Varianzen $\mathbb{V}[X_k] = \sigma^2$. Sei

$$\bar{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{k=1}^n X_k$$

Dann konvergiert \bar{X}_n für $n \to \infty$ in Wahrscheinlichkeit gegen $\mu = \mathbb{E}[X_k]$, d.h. für jedes $\varepsilon > 0$ gilt

$$\mathbb{P}\left[\left|\bar{X}_{n}-\mu\right|\varepsilon\right]\xrightarrow{n\to\infty}0$$

Note:

- X_i, X_j unkorreliert $\Leftrightarrow \text{Cov}(X_i, X_j) = 0$
- X_i, X_j unabhängig $\Longrightarrow X_i, X_j$ unkorreliert S 6.5. (Starkes Gesetz der grossen Zahlen): Sei X_1, X_2, \ldots eine Folge von unabhängigen Zufallsvariablen, die alle dieselbe Verteilung haben mit endlichem Erwartungswert $\mathbb{E}[X_k]$.

$$\bar{X}_n = \frac{1}{n} S_n = \frac{1}{n} \sum_{k=1}^n X_k$$

gilt dann

 $\bar{X}_n \xrightarrow{n \to \infty} \mu$ P-fast sicher,

das bedeutet.

$$\mathbb{P}\left[\left\{\omega \in \Omega \mid \bar{X}_n(\omega) \xrightarrow{n \to \infty} \mu\right\}\right] = 1.$$

Def 6.7. (Konvergenz in Verteilung): $(X_n)_{n\in\mathbb{N}}$ und X Zufallsvariablen mit Verteilungsfunktionen $(F_n)_{n\in\mathbb{N}}$ und F. Wir sagen $(X_n)_{n\in\mathbb{N}}$ konvergiert in Verteilung gegen X und schreiben

$$X_n \xrightarrow{d} X$$
 für $n \to \infty$

falls für jeden Stetigkeitspunkt $x \in \mathbb{R}$ von F

$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} \mathbb{P}[X_n \le x] = \mathbb{P}[X \le x] = F(x)$$

In der Literatur findet man unter anderem folgende Notation,

$$X_n \xrightarrow{w} X$$
 und $X_n \xrightarrow{L} X$.

Die Buchstaben d. w. L stehen dabei für "convergence in distribution", "weak convergence", bzw. "convergence in law". S 6.10. (zentraler Grenzwertsatz, ZGS): Sei $(X_k)_{k\in\mathbb{N}}$ eine Folge von i.i.d. Zufallsvariablen mit $\mathbb{E}[X_k] = \mu$ und $\mathbb{V}[X_k] = \sigma^2$. Für die Partialsummen $S_n = \sum_{k=1}^n X_k$ gilt dann für alle

$$\lim_{n\to\infty} \mathbb{P}\left[\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right] = \Phi(x)$$

wobei Φ die Verteilungsfunktion der $\mathcal{N}(0,1)$ -Verteilung ist. und somit

$$\frac{\frac{1}{n}S_n - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1)$$

Def 6.16. (Momenterzeugende Funktion): Die momenterzeugende Funktion einer Zufallsvariablen X ist für $t \in \mathbb{R}$ definiert durch

$$M_X(t) = \mathbb{E}\left[e^{tX}\right] \stackrel{\text{S4.18}}{=} \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

S 6.19. (Chernoff-Ungleichung): Seien X_1, \ldots, X_n i.i.d. Zufallsvariablen, für welche die momenterzeugende Funktion $M_X(t)$ für alle $t \in \mathbb{R}$ endlich ist. Für jedes $b \in \mathbb{R}$ gilt dann

$$\mathbb{P}\left[S_n \ge b\right] \le \exp\left(\inf_{t \in \mathbb{R}} \left(n \log M_X(t) - tb\right)\right)$$

S 6.20. (Chernoff-Schranke): Seien X_1, \ldots, X_n unabhängig mit $X_k \sim \operatorname{Ber}(p_k)$ und sei $S_n = \sum_{k=1}^n X_k$. Sei $\mu_n = \mathbb{E}[S_n] = \sum_{k=1}^n p_k$ und $\delta > 0$, dann gilt

$$\mathbb{P}\left[S_n \ge (1+\delta)\mu_n\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_n}$$

Statistik

Def 7.2. (Schätzer): Ein Schätzer ist eine Zufallsvariable der Form

$$T_{\ell} = t_{\ell} \left(X_1, \dots, X_n \right)$$

Die Schätzfunktionen $t_{\ell}:\mathbb{R}^n \to \mathbb{R}$ müssen noch gewählt/gefunden werden. Einsetzen von Daten $x_k = X_k(\omega), k = 1, ..., n$, liefert dann Schätzwerte $T_{\ell}(\omega) = t_{\ell}(x_1, \dots, x_n)$ für $\vartheta_{\ell}, \ell = 1, \dots, m$. Der Kürze halber schreiben wir oft auch $T = (T_1, \ldots, T_m)$ und $\vartheta = (\vartheta_1, \ldots, \vartheta_m)$. Note Fehler: Die Entscheidung bei einem Test kann auf zwei verschiedene Arten falsch herauskommen:

- Fehler 1. Art: die Hypothese wird abgelehnt, obwohl sie richtig ist. Das passiert für $\vartheta \in \Theta_0$ und $T \in K$. $\mathbb{P}_{\vartheta}[T \in K]$ heisst für $\vartheta \in \Theta_0$ die Wahrscheinlichkeit für einen Fehler 1. Art.
- Fehler 2. Art: die Hypothese wird angenommen, obwohl sie falsch ist. Das passiert für $\vartheta \in \Theta_A$ und $T \notin K$. $\mathbb{P}_{\vartheta}[T \notin K] = 1 - \mathbb{P}_{\vartheta}[T \in K]$ heisst für $\vartheta \in \Theta_A$ die Wahrscheinlichkeit für einen Fehler 2. Art.

Def 7.5. (Erwartungstreue): Ein Schätzer T heisst erwartungstreu für ϑ , falls für alle $\vartheta \in \Theta$

$$\mathbb{E}_{\vartheta}[T] = \vartheta$$

Def 7.6. (Bias und MSE): Sei $\vartheta \in \Theta$ und T ein Schätzer. Der Bias (oder erwartete Schätzfehler) von T im Modell \mathbb{P}_{ϑ} ist definiert

$$\mathbb{E}_{\vartheta}[T] - \vartheta$$

Erwartungstreu bedeutet also, dass der Bias gleich Null ist. Der mittlere quadratische Schätzfehler von T im Modell \mathbb{P}_{ϑ} ist definiert

$$MSE_{\vartheta}[T] = \mathbb{E}_{\vartheta}\left[(T - \vartheta)^2 \right]$$

Note MSE: Man kann den MSE in folgender Form zerlegen.

$$MSE_{\theta}[T] = Var_{\theta}[T] + (\mathbb{E}_{\theta}[T] - \theta)^{2}$$

Def Konsistenz: Eine Folge von Schätzern $T^{(n)}, n \in \mathbb{N}$, heisst konsistent für ϑ , falls $T^{(n)}$ für $n \to \infty$ in \mathbb{P}_{ϑ} -Wahrscheinlichkeit gegen ϑ konvergiert, d.h. für jedes $\theta \in \Theta$ und jedes $\varepsilon > 0$ gilt

$$\lim_{n \to \infty} \mathbb{P}_{\vartheta} \left[\left| T^{(n)} - \vartheta \right| > \varepsilon \right] = 0$$

Def 7.9. (Likelihood-Funktion): Likelihood-Funktion ist

$$L\left(x_{1},\ldots,x_{n};\vartheta\right) = \begin{cases} p_{\vec{x}}\left(x_{1},\ldots,x_{n};\vartheta\right) & \text{diskret} \\ f_{\vec{x}}\left(x_{1},\ldots,x_{n};\vartheta\right) & \text{stetig} \end{cases}$$

Die Funktion $\log L(x_1,\ldots,x_n;\vartheta)$ heisst log-Likelihood-Funktion und hat im i.i.d.-Fall den Vorteil durch eine Summe gegeben zu sein. Def 7.10. (ML-Schätzer): Der Maximum-Likelihood-Schätzer T_{ML} für ϑ wird dadurch definiert, dass er die Funktion

$$\vartheta \mapsto L(X_1, \ldots, X_n; \vartheta)$$

über alle ϑ maximiert, d.h.

$$T_{\mathrm{ML}} = t_{\mathrm{TM}}\left(X_{1}, \ldots, X_{n}\right) \in \operatorname*{arg\,max}_{\vartheta \in \Theta} L\left(X_{1}, \ldots, X_{n}; \vartheta\right)$$

RC Log-MLE:

Gegeben seien $X_1 \dots X_n$ unter P_{θ} i.i.d. Für ein fixes n gilt: (falls n bekannt, gleich einsetzen)

- 1. Gemeinsame Dichte finden $g(x_1, \ldots, x_n;) =$ $\prod_{i=1}^{n} \mathbb{P}\left[X_i = x_i\right]$
- **2.** Bestimme $f(\theta) = \log(L(x_1, \dots, x_n; \theta))$ (θ einsetzen für respective Variable in allen Verteilungen)
- 3. Maximum von $f(\theta)$ finden $(f(\theta)' = 0 \text{ und})$ $f(\theta)^{\prime\prime} < 0$, Ränder Überprüfen)

RC Erwartungstreue eines Schätzers: Berechne $\mathbb{E}_{\lambda}[T] - \lambda$. Falls 0, dann ist Schätzer Erwartungstreu. Da X_i i.i.d sind kann man Linearität des Erwargungswertes anwenden.

RC Konsistenz eines Schätzers: Benutze Chebyshev

$$\mathbb{P}_p\left[|T_n - \lambda| > \varepsilon\right] \le \frac{\operatorname{Var}\left(T_n\right)}{\varepsilon^2}$$

Varianz des Schätzers durch Proposition 4.46 ausrechenbar, da i.i.d.

Falls $\lim n \to \infty$ $\frac{\operatorname{Var}(T_n)}{\varepsilon^2} = 0$ dann konsistent

Note MLE-Schätzer:

- $X_1, ..., X_n \sim \text{Ber}(\theta)$ iid.: $T = \frac{1}{n} \sum_{i=1}^n X_i$
- $X_1, \ldots, X_n \sim \operatorname{Exp}(\theta)$ iid.: $T = \frac{\sum_{i=1}^n X_i}{n} = \bar{X}_n$ $X_1, \ldots, X_n \sim \operatorname{Geo}(\theta)$ iid.: $T = \frac{n}{\sum_{i=1}^n X_i} = \frac{1}{\bar{X}_n}$
- $X_1, \ldots, X_n \sim \text{Bin}(N, \theta)$ iid.: $T = \frac{1}{N} \frac{\sum_{i=1}^n X_i}{x_i}$
- $X_1, \ldots, X_n \sim Poi(\theta)$ iid.: $T = \frac{\sum_{i=1}^n X_i}{n} = \bar{X}_n$
- $X_1, \ldots, X_n \sim \mathcal{U}([\theta_1, \theta_2])$ iid.:

- $T_{\theta_1} = \max(X_i), T_{\theta_2} = \min(X_i)$ $X_1, \dots, X_n \sim \mathcal{N}(\theta_1, \theta_2)$ iid. : $T_{\theta_1} = \bar{X}_n, T_{\theta_2} = S^2$

Def 7.18. (Studentsche t-Verteilung): Eine stetige Zufallsvariable X heisst t-verteilt mit mFreiheitsgraden falls ihre Dichte für $x \in \mathbb{R}$ gegeben ist durch

$$f_X(x) = \frac{\Gamma\left(\frac{m+1}{2}\right)}{\sqrt{m\pi}\Gamma\left(\frac{m}{2}\right)} \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}}$$

Wir schreiben dann $X \sim t_m$.

Seien X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$, und

$$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k, \quad S^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2$$

Es gelten folgende Aussagen:

- 1. $\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{1}{n}\sigma^2\right)$, also $\frac{\bar{X}_n \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$.
- 2. $\frac{n-1}{\sigma^2}S^2 = \frac{1}{\sigma^2}\sum_{k=1}^n (X_k \bar{X}_n)^2 \sim \chi_{n-1}^2$.
- 3. \bar{X}_n und S^2 sind unabhängig.

4.
$$\frac{\bar{X}_n - \mu}{\frac{S}{\sqrt{n}}} = \frac{\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}}{\frac{S}{\sigma}} = \frac{\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{1}{n-1}\frac{n-1}{\sigma^2}S^2}} \sim t_{n-1}.$$

Testing

Def Entscheidungsregel: Die Hypothese H_0 wird verworfen, wenn $T(\omega) \in K$. Die Hypothese H₀ wird nicht verworfen bzw. angenommen, wenn $T(\omega) \notin K$

Def Signifikanzniveau: Für einen Test wählt zuerst ein Signifikanzniveau $\alpha \in (0,1)$ und verlangt

$$\sup_{\vartheta \in \Theta_0} \mathbb{P}_{\vartheta}[T \in K] \le \alpha.$$

Man kontrolliert also die Wahrscheinlichkeit für einen Fehler 1. Art durch α . Für $\alpha \downarrow gilt$

- Prob für Fehler 1. Art wird kleiner • Verwerfungsbereich muss kleiner gewählt werden
- Prob für Fehler 2. Art wird grösser
- Macht des Tests wird kleiner

Def 8.7. (Likelihood-Quotient): Für $\vartheta_0 \in \Theta_0, \vartheta_A \in \Theta_A \text{ und } x_1, \dots, x_n \in \mathbb{R} \text{ definieren}$ wir den Likelihood-Quotienten durch

$$R(x_1, \dots, x_n; \vartheta_0, \vartheta_A) = \frac{L(x_1, \dots, x_n; \vartheta_A)}{L(x_1, \dots, x_n; \vartheta_0)}.$$

Als Konvention setzen wir $R(x_1,\ldots,x_n;\vartheta_0,\vartheta_A)=+\infty$, wenn $L(x_1,\ldots,x_n;\vartheta_0)=0$ Def 8.8. (Likelihood-Quotienten-Test): $c \geq 0$. Der Likelihood-Quotienten-Test mit Parameter c ist ein Test (T, K) mit Teststatistik $T = R(X_1, \ldots, X_n; \vartheta_0, \vartheta_A)$ und Verwerfungsbereich $K = (c, \infty]$. Lem 8.9. (Neyman-Pearson-Lemma): $\Theta_0 = \{\vartheta_0\}$ und $\Theta_A = \{\vartheta_A\}$. Sei (T, K) ein Likelihood-Quotienten-Test mit Parameter cund Signifikanzniveau $\alpha^* := \mathbb{P}_{\vartheta_0}[T \in K]$. Ist (T', K') ein anderer Test mit Signifikanzniveau $\mathbb{P}_{\vartheta_0}\left[T'\in K'\right]=:\alpha\leq\alpha^*$, so gilt auch

$$\mathbb{P}_{\vartheta_A} \left[T' \in K' \right] \le \mathbb{P}_{\vartheta_A} \left[T \in K \right].$$

Das bedeutet, jeder andere Test mit kleinerem Signifikanzniveau hat auch kleinere Macht bzw. grössere Wahrscheinlichkeit für einen Fehler 2. Art.

Def 8.10. (Verallgemeinerung des Likelihood-Quotient): Der verallgemeinerte Likelihood-Quotient ist gegeben durch

$$R(x_1, \dots, x_n) = \frac{\sup_{\vartheta \in \Theta_A} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}$$

oder auch

$$\tilde{R}(x_1, \dots, x_n) = \frac{\sup_{\vartheta \in \Theta_A \cup \Theta_0} L(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_0} L(x_1, \dots, x_n; \vartheta)}.$$

RC Z-Test: Gegeben:

• Daten: x_i und $\bar{x} = \frac{\sum_{i=1}^{i=1} nx_i}{n}$

- Nullhypothese : μ_0
- Alternativhypothese :
- $-\mu > \mu_0$ (rechtsseitig)
- $-\mu < \mu_0$ (linksseitig)
- $-\mu \neq \mu_0$ (beidseitig)
- Signifikanzniveau : α
- 1. Berechne Z-Score

$$Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{\sigma}}}$$

- 2. Berechne z
 - $z = z_{1-\alpha} = \Phi^{-1}(1-\alpha)$ (rechtsseitig)
- $z = z_{\alpha} = \Phi^{-1}(\alpha)$ (linksseitig)
- $z_{+,-} = \pm z_{\frac{\alpha}{2}} = \pm \Phi^{-1}(\frac{\alpha}{2})$ (beidseitig)
- 3. Entscheide:
 - $Z > z \Longrightarrow$ verwerfe μ_0 (rechtsseitig)
 - $Z < z \Longrightarrow$ verwerfe μ_0 (linksseitig)
- $Z > z_+ \vee Z < z_- \Longrightarrow \text{ verwerfe } \mu_0$ (beid-

Aufgaben

Ex: Die Zufallsvariable X habe eine Verteilungsfunktion F_X mit zugehöriger Dichte f_X . Sei Y=aX+b, mit a>0 und $b\in\mathbb{R}$. Dann gilt für die Dichte f_Y von Y

Für die Verteilungsfunktion F_Y von Y gilt, dass $F_Y(y) = P[Y \leq y] = P[aX + b \leq y] = P\left[X \leq \frac{y-b}{a}\right] = F_X\left(\frac{y-b}{a}\right)$.

Somit folgt mit der Kettenregel

 $f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X\left(\frac{y-b}{a}\right) = f_X\left(\frac{y-b}{a}\right) \frac{1}{a}$.

Analysis

Note Gamma Funktion: Die Funktion Γ nennt man (Eulersche) Gammafunktion und sie ist für $x \geq 0$ definiert durch

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t$$

 Γ hat eine grundlegende Verbindung zur Fakultätsfunktion, denn

$$\Gamma(n+1)=n$$
! für $n\in\mathbb{N}_0$.

Note Partielle Integration:

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

oder

$$\int_{a}^{b} f'(x)g(x) \, dx = |f(x)g(x)|_{a}^{b} - \int_{a}^{b} f(x)g'(x) \, dx$$

Note Substitution: Um $\int_a^b f(g(x)) dx$ zu berechnen: Ersetze g(x) durch u und integriere $\int_{a(a)}^{g(b)} f(u) \frac{\mathrm{d}u}{a^f(x)}$.

- g'(x) muss sich herauskürzen, sonst nutzlos.
- Grenzen substituieren nicht vergessen.
- Alternativ: unbestimmtes Integral berechnet werden und dann u wieder durch x substituieren.
- Man kann auch das Theorem in die andere Richtung anwenden:

$$\int_{a}^{b} f(u) du = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(x))g'(x)$$

• Sei , Y kompakt, $f: Y \subset^n \to \text{stetig.}$ Sei $\gamma: \to Y$ mit $=_0 \cup B, Y = Y_0 \cup C$ (B, C Rand von , Y). Wenn $\gamma:_0 \to Y_0$ bijektiv und C^1 mit $\det(J_{\gamma}(x)) \neq 0, \forall x \in_0$, dann gilt

$$\int_{Y} f(y) \, dy = \int f(\gamma(x)) |\mathbf{det}(J_{\gamma}(x))|$$

Note Binomialsatz:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$
 mit: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Des weiteren gilt:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Note Trigo-Werte:

\mathbf{deg}	0	30	45	60	90	180
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$+\infty$	0

Note Log/Exp Regeln:

Exponential	Logarithm		
$a^{0} = 1$	$\log_a 1 = 0$		
$a^1 = a$	$\log_a a = 1$		
$a^{m+n} = a^m \cdot a^n$	$\log_a(xy) = \log_a x + \log_a y$		
$a^{m-n} = \frac{a^m}{a^n}$	$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$		
$(a^m)^n = a^{mn}$	$\log_a(x^r) = r \log_a x$		
$(ab)^m = a^m \cdot b^m$	$\log_a x = \frac{\log_b x}{\log_b a}$		
$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ $e^{\ln x} = x$	$\log_a(a^x) = x$		
$e^{\ln x} = x$	$\ln(e^x) = x$		
	$e^{\ln x} = x (\mathbf{for} \ x > 0)$		

Note Quadratic Form: Für $a^2 + bx + c = 0$ gilt:

$$x = \frac{-b \pm \sqrt{b^2 - 4a}}{2a}$$

Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f}'(\mathbf{x})$
$\frac{\frac{x-a+1}{-a+1}}{\frac{x^{a+1}}{a+1}}$	$x^{a} (a \neq$	$arac{a}{x^{a+1}} \ a\cdot x^{a-1}$
$\frac{1}{k \ln(a)} a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$ \ln x $ $ \frac{2}{3}x^{3/2} $	$\frac{\frac{1}{x}}{\sqrt{x}}$	$ \begin{array}{r} -\frac{1}{x^2} \\ \frac{1}{2\sqrt{x}} \\ \frac{1}{n}x^{\frac{1}{n}-1} \end{array} $
$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\sqrt[n]{x}$	
$-\cos(x)$ $\sin(x)$	$ \frac{\sin(x)}{\cos(x)} $	cos(x) $ -sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$ $\frac{1}{2}(x + \frac{1}{2}\sin(2x))$	$\sin^2(x) \\ \cos^2(x)$	$2\sin(x)\cos(x)$ $-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x) = \frac{\sin}{\cos}$	$\frac{\frac{1}{\cos^2(x)}}{1 + \tan^2(x)}$
$ \cosh(x) \\ \log(\cosh(x)) $	$\sinh(x)$ $\tanh(x)$	$\cosh(x)$
$\ln \sin(x) $	$\cot(x)$	$-\frac{\frac{1}{\cosh^2(x)}}{\frac{1}{\sin^2(x)}}$
$\frac{\frac{1}{c} \cdot e^{cx}}{x(\ln x - 1)}$	e^{cx} $\ln x $	$c \cdot e^{cx}$
$\frac{\frac{1}{2}(\ln(x))^2}{\frac{x}{\ln(a)}(\ln x -1)}$	$\frac{\frac{\ln(x)}{x}}{\log_a x }$	$ \begin{array}{c} c \cdot e \\ \frac{1}{x} \\ \frac{1-\ln(x)}{x^2} \\ \frac{1}{\ln(a)x} \end{array} $

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\frac{1}{a\cdot(n+1)}(ax+b)^{n+1}$	$(ax+b)^n$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{\sqrt{\frac{1}{1+x^2}}}{1+x^2}$
$\mathbf{arcsinh}(x)$	$\frac{1}{\sqrt{1+x^2}}$
$\mathbf{arccosh}(x)$	$\frac{\sqrt{1}}{\sqrt{x^2-1}}$
$\mathbf{arctanh}(x)$	$\frac{1}{1-x^2}$
$x^{x} (x > 0)$	$x^x \cdot (1 + \ln x)$
$\log_a x $	$\frac{1}{x \ln a} = \log_a(e) \frac{1}{x}$

 $\mathbf{F}(\mathbf{x})$

Integrale

f(x)

$\int f'(x)f(x)$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)}$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2}$	$\sqrt{\pi}$
$\int_{0}^{\infty} (ax+b)^n$	$\frac{1}{a(a+b)}(ax+b)^{n+1}$
$\int x(ax+b)^n$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} -$
$\int x(ux+b)$	$\frac{(n+2)a^2}{(n+2)a^2}$
	$\frac{b(ax+b)^{n+1}}{(n+1)a^{2}}$ $\frac{(ax^{p}+b)^{n+1}}{ap(n+1)}$
$\int (ax^p + b)^n x^{p-1}$	$(ax^p+b)^{n+1}$
$\int (ax^p + b)^{-1} x^{p-1}$	$\frac{1}{ap} \ln ax^p + b $
	$\frac{ax}{a} - \frac{ad-bc}{2} \ln cx+d $
$\int \frac{ax+b}{cx+d} \int \frac{1}{x^2+a^2}$	$\frac{ax}{c} - \frac{ad - bc}{\frac{1}{a} \arctan \frac{x}{a}} \ln cx + d $
$\int \frac{1}{x^2 - a^2}$	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $
	$\frac{2a}{2} x+a $ $\frac{x}{2} f(x) + \frac{a^2}{2} \ln(x+f(x))$
$\int\limits_{\int} \frac{\sqrt{a^2 + x^2}}{\int\limits_{(x+a)^2} dx} dx$	$\frac{1}{2}J(x) + \frac{1}{2}\ln(x+J(x)) - \frac{1}{a+x}$
$\int \frac{(x+a)^2}{1} dx$	
$\int \frac{\frac{1}{(x+a)^3} dx}{\int \frac{1}{(x+a)^t} dx}$	$\frac{2(a+x)^2}{1}$
$\int \frac{(x+a)^t}{x} dx$	$\frac{-\frac{1}{2(a+x)^2}}{\frac{(1-t)(x+a)^{t+1}}{a+x} + \log a+x }$
$\int \frac{(x+a)^2}{\int \frac{x}{(x+a)^3} dx}$	
$\int \frac{1}{(x+a)^3} dx$	$-\frac{a+2x}{2(a+x)^2}$
C 1 1	$\frac{2\arctan\left(\frac{2ax+b}{\sqrt{4ac-b^2}}\right)}{-\frac{1}{4k}\cos(2kx)} =$
$\int \frac{1}{ax^2 + bx + c} dx$	$\sqrt{4ac-b^2}$
$\int \sin(kx) \cdot \cos(kx) dx$	$-\frac{1}{4k}\cos(2kx) =$
	$\frac{\frac{-(\cos(x))^2}{-(\cos^2(x))^2}}{\frac{n-1}{n}\int \cos^{n-2}(x)dx + \frac{1}{n}}$
$\int \cos^n(x) dx$	
_	$\frac{\cos^{n-1}(x)\sin(x)}{n}$
$\int \sin^n(x) dx$	$\frac{n-1}{n} \int \sin^{n-2}(x) dx -$
_	$\frac{\cos(x)\sin^{n}(x)}{\frac{-1}{2}\cos^{2}}$
$\int \sin \cos dx$	$\frac{-1}{2}\cos^2$
$\int \frac{\cos}{\sin} dx$	$\log(\cos(x))$

Aufgabe 1

Seien U_1, U_2, U_3 i.i.d. Uni([0,1]) Zufallsvariablen. Wir definieren $L = \min(U_1, U_2, U_3)$ und $M = \max(U_1, U_2, U_3)$.

Berechne die Wahrscheinlichkeitsdichte von ${\cal M}.$

$$F_M(m) = \mathbb{P}[U_1 \le m, U_2 \le m, U_3 \le m] = \prod_{i=1}^{3} \mathbb{P}[U_i \le m]$$

Berechne die gemeinsame Wahrscheinlichkeitsdichte von L und M.

$$\begin{split} &P[M < m, L \leq l] \\ &= P[M < m] - P[M < m, L > l] \\ &= m^3 - P\left[l < U_1 < m, l < U_2 < m, l < U_3 < m\right] \\ &= m^3 - \left(P\left[l < U_1 < m\right]\right)^3 = m^3 - \left(m - l\right)^3 \\ &\text{für } 0 \leq l \leq m \leq 1 \\ &\text{So } f_{M,L}(m,L) = 6(m-l) \mathbb{M}_{\{0 \leq l \leq m \leq 1\}}. \end{split}$$

Generell gilt:

$$F_{\mathrm{Max}(X,Y)}(z) = P(X \le z) \cdot P(Y \le z) = F_X(z) \cdot F_Y(z)$$

Oder

$$F_{\mathrm{Min}(X,Y)}(z) = P(X \leq z) + P(Y \leq z) - P(X \leq z, Y \leq z)$$

und dann

$$f_{\text{Max}(X,Y)}(z) = \frac{d}{dz} F_{\text{Max}(X,Y)}(z)$$

Verteilung	Parameter	$\mathbb{E}[X]$	$\mathbb{V}(X)$	$p_X(t)$	$F_X(t) = \mathbb{P}[X \le t]$
Bernoulli $\sim \text{Ber}(p)$	p: ErfolgsWK	p	$p \cdot (1-p)$	$p^t(1-p)^{1-t}$	$1 - p \text{ für } 0 \le t < 1$
Binomial $\sim Bin(n, p)$	n: Anzahl Versuche,	np	np(1-p)	$\binom{n}{t}p^t(1-p)^{n-t}$	$\sum_{k=0}^{t} \binom{n}{k} p^k (1-p)^{n-k}$
	p: ErfolgsWK				
Geometrisch $\sim \text{Geo}(p)$	p: ErfolgsWK,	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$p(1-p)^{t-1}$	$1 - (1-p)^t$
	t: Anzahl Versuche	•	•		
Negativ binomial $\sim \text{NegBin}(r, p)$	r: Anzahl der Erfolge,	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	${t+r-1 \choose t} p^t (1-p)^r$	$I_{1-p}(r,t+1)$
	p: Erfolgswahrscheinlichke	it			
Hypergeometrisch $\sim H(N, M, n)$	N: Gesamtzahl,	$n\frac{M}{N}$	$n\frac{M}{N}\frac{N-M}{N}\frac{N-n}{N-1}$	$\frac{\binom{M}{t}\binom{N-M}{n-t}}{\binom{N}{n}}$	$\frac{\sum_{k=0}^{t} \binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$
	M: Anzahl der Erfolge,			(n)	(n)
	n: Zufalsstichprobe				
$Poisson \sim Poi(\lambda)$	λ: Erwartungswert	λ	λ	$\frac{\lambda^t}{t!}e^{-\lambda}$	$e^{-\lambda} \sum_{k=0}^{t} \frac{\lambda^k}{k!}$
	λ: Varianz				
Gleichverteilung $\sim \mathcal{U}([a,b])$	n: Anzahl Ereignisse	$\frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} - \frac{1}{n^{2}}\left(\sum_{i=1}^{n}x_{i}\right)^{2}}$	$\frac{1}{n}$	$\frac{ \{k:x_k \le t\} }{n}$
	x_i : Ereignisse		$\frac{1}{n^2} \left(\sum_{i=1}^n x_i \right)^2$		
		7	1	$\int \frac{1}{a} < x < b$	$\int_{a}^{b} 0 \qquad x \leq a$
Gleichverteilung $\sim \mathcal{U}([a,b])$ (Intervall)	[a,b]: Intervall	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$	$\begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{sonst} \end{cases}$	$\begin{cases} \frac{t-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$
	1	1	1	$\int \lambda e^{-\lambda t} t \ge 0$	$ \begin{array}{ c c } \hline 1 & x \ge b \\ \hline 1 - e^{-\lambda t} & t > 0 \end{array} $
Exponential verteilung $\sim \text{Exp}(\lambda)$	$\lambda:rac{1}{\mathbb{E}[X]}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\begin{cases} 1 & t \leq 0 \\ 0 & t < 0 \end{cases}$	$\begin{cases} 1 & 0 & t \leq 0 \\ 0 & t \leq 0 \end{cases}$
Cauchyverteilung \sim Cauchy (x_0, γ)	x_0 : Lageparameter,	Undefiniert	Undefiniert	$\frac{1}{\pi\gamma\left[1+\left(\frac{t-x_0}{\gamma}\right)^2\right]}$	$\frac{1}{\pi}\arctan\left(\frac{t-x_0}{\gamma}\right) + \frac{1}{2}$
	γ : Skalenparameter				
Normalverteilung $\sim \mathcal{N}(\mu, \sigma^2)$	σ^2 : Varianz,	μ	σ^2	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$	$\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{t-\mu}{\sigma\sqrt{2}}\right)\right]$
	$\mu: \mathbb{E}[X]$			V 2110	[(0,2/)
χ^2 -Verteilung $\sim \chi_n^2$	n: Freiheitsgrad	n	2n	$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}t^{\frac{n}{2}-1}e^{-\frac{t}{2}}$ für	$\operatorname{Poi}\left(\frac{n}{2},\frac{t}{2}\right)$
				t > 0	
77 1 21	D :1 :4	$\int 0 \qquad n > 1$	$\int \frac{n}{n-2} \qquad n > 2$	$\Gamma\left(\frac{n+1}{2}\right)$ (t^2 $\left(\frac{n+1}{2}\right)$	
t-Verteilung $\sim t_n$	n: Freiheitsgrad	undef. sonst	$\begin{cases} \infty & 1 < n \le 2 \\ \text{undef. sonst} \end{cases}$	$\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\cdot\Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^2}{n}\right)^{-\frac{n+1}{2}}$	Undefiniert