Part 1j: Transformation of random variables

Textbook: pp. 30-33

							c			r							
inti	odu	ICTIC	on t	o tr	ie tr	ans	TOrr	nat	ion	ot r	and	om	vec	ctor	S		
	A ge												_		_		
•	Des														dom		
_	vect	1	Τ														
	If th														tion		
	tran Req																_
	tran																
	part					.jee		4110	G 1111	J. J.	ICIGA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0011		O GIS	

				mat		П	$\mathbf{D} d$	TD.	d 1.	J:C	Farre	ati - 1	1-	Th a	41.		201.	OLE T	
				5 L atrix															
				$)_{ij} =$				OI .	circ j		ui u				γ,	101	·, j	_ 1	, _,
J	٦	ı																	
	_	<u>. </u>																	
Ч	=	Q	(X)		(<u> </u>			W	(W)	=	L								
d		d		(,	^				J										
7	7 (5	=		<u>0</u>	W	W)	\											
	W	0			dy		Ű.	,											
d	<u> </u>	2																	
	31	>	3,	(x,	כ,ו	(2)					W	14	V	1,)	τ	x ,			
	U		-	1		_	, <		>			0	'' () [·			
•	72	=	gr	(3	١,	Z)				Wz	(y	17	4)	Ξ	5	V		
														00					_
			1					<u>D</u>	W,	(8,	/ Y2		,		W	,(9	۱ ا	y.)	1
•	5		ار ا	ركر		<u>~</u>		D'		1,				U Ŋ.	V				
		W	O O				1) .		/		\		9	u	./1	A	/A `	
							· ~		N T	ιy	Jy	v)		OV.	\v^	218	91/	کار)
								ð١						0					

Transformation of random variables

Theorem 1.34 (transformation of random variables) Let $A, B \subseteq \mathbb{R}^d$ be open sets, $\varphi : A \to B$ be bijective and differentiable with continuous partial derivatives, and

let X be a random variable with values in A. Furthermore let $g: B \to [0, \infty)$ be a probability density and define $f: \mathbb{R}^d \to \mathbb{R}$ by

$$f(x) = \begin{cases} g(\varphi(x)) \cdot |\det D\varphi(x)| & \text{if } x \in A \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$
 (1.6)

Then f is a probability density and the random variable X has density f if and only if $\varphi(X)$ has density g.

$$\frac{d=1}{X} \sim f_{X}e^{i}, \quad g: R \rightarrow R$$

$$Y = g(X) \sim ?$$

$$f_{Y}(y) = f_{X}(w(y)) \cdot |w_{D}|$$

$$\frac{d=2}{X} \sim f_{X}(x), \quad g: R^{2} \rightarrow R^{2}$$

$$\vec{y} = g(\vec{X}) \sim ?$$

$$f_{Y}(y) = f_{X}(w,(y)), \quad |dd = f_{X}(y)|$$

$$det f_{X}(y) = dd \left(f_{X}(y), f_{X}(y), f_{X}(y) \right)$$

$$f_{X}(y) = f_{X}(w,(y)), \quad |dd = f_{X}(y)|$$

$$f_{X}(y) = f_{X}(y), \quad |dd = f_{X}(y)|$$

		1 1	2.0														
Exa	mp	le 1	.38														
<i>X</i> ~	Un	ifor	m(C),1)	and	<i>Y</i> =	$=X^2$	2/3 _. v	Wha	it is	the	der	isity	of :	<i>Y</i> ?		
5,	(65)) =	\	1		0	5 2	LZ	1								
F,	x)	E	ンし	/3	۲-	=>	(wlj	,) -	= ()	3/7 })					
					1/2												
							Va										
3	Y	(9)	こ	1	¥	42	y''	پ		とり	y	י		05	9 4	1	

Example: Box-Muller transform

- (a) Generate $\Theta \sim \mathcal{U}[0, 2\pi]$ and $U \sim \mathcal{U}[0, 1]$ independently.
- (b) Let $R = \sqrt{-2\log(U)}$.
- (c) Let $(X, Y) = \varphi(R, \Theta) = (R \cos(\Theta), R \sin(\Theta))$.

Then (X,Y) are standard normal and independent.

$$\vec{X} = (X, X_2), X, \sim U(0, 2\pi), X_2 \sim U(0, 1)$$

in dependent

$$g(x_1, x_2) = \sqrt{-2byx_2} \cdot cos(x_1) = y$$

$$y_1^2 + y_2^2 = -2 \log x_1 (\cos^2 x_1 + \sin^2 x_1) = -2 \log x_2$$

$$\frac{y_2}{y_1} = \frac{\sin(x_1)}{\cos(x_1)} = \tan(x_1)$$

$$x_1 = W_2(y_1, y_2) = e^{-\frac{1}{2}(y_1^2 + y_2^2)}$$

-1142 - 42)

|dt (Ju(y,y,)) = = = = [(y, + y,) $f_{2}(x_{1}, x_{2}) = \frac{1}{2\pi}$, $0 \leq x_{1} \leq 2\pi$, $0 \leq x_{2} \leq 1$ $f_{3}(y_{1},y_{2}) = \frac{1}{2\pi} e^{-\frac{1}{2}(y_{1}^{2} + y_{2}^{2})} (y_{1},y_{2}) \in \mathbb{R}^{2}$ => Y, Y2 ~ N(O,1), independent