Table of Contents

- 1. MT Part II: OLS
 - 1. 2 1 OLS
 - 2. 2 2 Partialling Out
 - 3. N 2 4 Finite Sample Inference
 - 4. N 2 5 Finite Sample Inference
 - 1. Derive Finite-sample Distribution of OLS Estimator
 - 2. Testing Linear Restrictions
 - 5. N 2 6 Large Sample Properties
 - 6. N 2 7 Large Sample Inference
 - 7. N 2 8 Heteroskedasticity
 - 8. N 2 9 Cluster Robust Inference

TABLE of FLASHCARDS

Section (31)	Flashcard
Core Econometrics - OLS#	// If the line contains #flashcard , find the top line of the block
2 1 OLS	OLS Estimator #flashcard
2 1 OLS	Perfect Multicollinearity #flashcard
21 OLS	Classical Linear Regression Model with Stochastic Regresso
21 OLS	(Conditional) Gauss-Markov Theorem #flashcard
<u>21 OLS</u>	Projection Matrix #flashcard
<u>21 OLS</u>	Annihilator Matrix #flashcard
<u>21 OLS</u>	Normal Equations #flashcard
<u>21 OLS</u>	Estimator of Standard Error #flashcard
2 2 Partialling Out	General Partialling Out Algorithm (Frisch-Waugh-Lovell Theo
2 2 Partialling Out	Partial R^2 #flashcard
N 2 4 Finite Sample Inference	Properties of OLS under CRM Assumptions #flashcard
N 2 5 Finite Sample Inference	Inference in CRM with Normal Errors (#flashcard)
Derive Finite-sample Distribution of OLS Estimator	Summing up Standard Normal Variables Yields χ^2 (#flashcard
Derive Finite-sample Distribution of OLS Estimator	Combine 2 χ^2 RVs $\leadsto F$ (#flashcard)
Derive Finite-sample Distribution of OLS Estimator	Combine N and $\chi^2 \leadsto$ Student t-distribution <code>#flashcard</code>
Derive Finite-sample Distribution of OLS Estimator	2 Ways to Convert a Normal Vector into a χ^2 Scalar $\mbox{\#flashcard}$
Testing Linear Restrictions	3 Elements of a Hypothesis Test #flashcard
Testing Linear Restrictions	Simple Significance Test for CRM with Normal Errors #flashca
Testing Linear Restrictions	General Linear Hypothesis Test of CRM with Normal Errors (
Testing Linear Restrictions	General Linear Hypothesis Test of CRM with Normal Errors (
N 2 6 Large Sample Properties	Consistency and Asymptotic Normality Requirement on OLS
N 2 6 Large Sample Properties	Proof of Consistency and Normality of OLS #flashcard
N 2 7 Large Sample Inference	OLS Large Sample Inference Under Homoskedasticity #flashc
N 2 7 Large Sample Inference	Simple Significance Test Large-sample #flashcard
N 2 7 Large Sample Inference	Asymptotic General Linear Hypothesis Test #flashcard
N 2 8 Heteroskedasticity	Inference Under Heteroskedasticity #flashcard
N 2 8 Heteroskedasticity	White Test for Heteroskedasticity #flashcard
N 2 8 Heteroskedasticity	Generalised Least Squares (GLS) #flashcard

N 2 8 Heteroskedasticity

Feasible Generalised Least Squares (FGLS) #flashcard

N 2 9 Cluster Robust Inference

Cluster Robust Inference #flashcard

MT Part II: OLS

2 1 OLS

OLS Estimator #flashcard

$$\hat{eta}_{OLS} = \underbrace{(X^TX)^{-1}X^T}_{A_{k imes n}} y$$

where $A_{k \times n}$ is known as the pseudoinverse of X

Perfect Multicollinearity #flashcard

$$rank(X) < k \implies (X^TX)^{-1}$$
 does not exist

Classical Linear Regression Model with Stochastic Regressors #flashcard

(Conditional) Gauss-Markov Theorem #flashcard

In classical linear regression model:

$$Var[\hat{\beta}_{OLS}|X] \leq Var[\tilde{\beta}|X]$$

for any other unbiased estimator $\tilde{\beta}$ that is a linear function of the random vector y conditional on X (BLUE).

Projection Matrix #flashcard

The $n \times n$ matrix:

$$\hat{y} = \underbrace{X(X^TX)^{-1}X^T}_{P_{n imes n}} y$$

with property:

$$PX = X$$

and symetric and indopotent:

$$P^{T} = P, P^{2} = P$$

Annihilator Matrix #flashcard

The $n \times n$ matrix:

$$\hat{u} = (I - X(X^T X)^{-1} X^T) y$$
$$= \underbrace{(I - P) y}$$

with the property:

$$X = 0$$

$$X^T\hat{\mu} = 0$$

Estimator of Standard Error #flashcard

$$\hat{\sigma}_{OLS}^2 = rac{\hat{u}^T\hat{u}}{n-K} = rac{\sum_{i=1}^n \hat{u}_i^2}{n-K}$$

2 2 Partialling Out

General Partialling Out Algorithm (Frisch-Waugh-Lovell Theorem) #flashcard

- 1. Regress y on all regressors except x_k
- 2. Regress x_k on all regressors except x_k
- 3. Regress the residual from 1 on 2

Partial R^2 #flashcard

The R^2 in the final step of partialling out is an estimator for the partial correlation between y and x_k $(Y_i, X_k | \{X_i\}_{i \in \mathcal{A}})$

N 2 4 Finite Sample Inference

Properties of OLS under CRM Assumptions #flashcard

Given the 4 assumptions of CRM, we have the following theorems:

• Conditional/Unconditional Unbiasedness + Consistency:

$$\mathbb{E}\left[\hat{eta}|X
ight]=eta,\mathbb{E}\left[\hat{eta}
ight]=eta$$

Gauss-Markov Theorem:

$$Var[\tilde{\beta}|X] - Var[\hat{\beta}|X]$$
 is P $\forall \tilde{\beta}$ that is unbiased

N 2 5 Finite Sample Inference

Inference in CRM with Normal Errors #flashcard

Assumptions:

$$\begin{cases} y &= X\beta + u \\ u|X &\sim N(0,\sigma^2I) \\ X & \text{has full rank with probability 1} \end{cases}$$

Result:

$$egin{cases} \hat{eta}|X & \sim N(eta,\sigma^2(X^TX)^{-1}) \ t_k = rac{\hat{eta}_k - eta_k}{se_t} & \sim t_{n-K} \end{cases}$$

where se_k is the (k, k) entry of $\hat{\sigma}^2 I = \frac{\hat{u}^T \hat{u}}{n-K} I$

Derive Finite-sample Distribution of OLS Estimator

Summing up Standard Normal Variables Yields χ^2 #flashcard

Let $z \sim N(0, I)$ be a standard normal vector with independent elements, then:

$$w=z^Tz=\sum_{i=1}^n z_i^2\sim \chi_n^2$$

Combine 2 χ^2 RVs $\leadsto F$ #flashcard

Let 2 random scalar RVs: $w_1 \sim \chi_n^2, w_2 \sim \chi_m^2$ be independent of each other, then:

$$=rac{rac{w_1}{n}}{rac{w_2}{m}}\sim F_{n,m}$$

Combine N and $\chi^2 \leadsto$ Student t-distribution #flashcard

Let 2 scalar random variables $z \sim N(0,1)$ and $w \sim \chi^2_n$ to be independent. Then:

$$rac{z}{\sqrt{rac{w}{n}}} \sim t_n$$

2 Ways to Convert a Normal Vector into a χ^2 Scalar #flashcard

- Both ways convert a Normal vector into a χ^2 scalar:
 - If $y \sim N(\mu, \Sigma)$ is an $n \times 1$ vector, then the scalar:

$$w=(y-\mu)^T\Sigma^{-1}(y-\mu)\sim\chi_n^2$$

- If $z \sim N(0,1)$ is an $n \times 1$ vector and is an $n \times n$ non-stochastic, symmetric, and idempotent matrix with rank() = r < n, then the scalar:

$$w=z^Tz\sim\chi_r^2$$

Show $\hat{\beta}$ Follows a t-Distribution (I typed this throughout only for fun -- probably not the most important derivation)

Setup:

$$egin{cases} y &= X eta + u \ u | X &\sim {\color{red} N}(0, \sigma^2 I) \ X & ext{has full rank} \end{cases}$$

- beware of the additional Normality assumption (required for inference in finite samples)
- Objective (want to show that):

$$\underbrace{t_k}_{ ext{our test stat}} \sim t_{n-k} \; ext{(t distribution with o)=nk}$$

Main idea: manipulate our expression so that we can use the definition of t-distribution:

Combine N and $\chi^2 \leadsto$ Student t-distribution #flashcard

Let 2 scalar random variables $z \sim N(0,1)$ and $w \sim \chi^2_n$ to be independent. Then:

$$rac{z}{\sqrt{rac{w}{n}}} \sim t_n$$

Step 1: Derive an basic expression for test statistic:

$$t_{k} = \frac{\hat{\beta}_{k} - \beta_{k}}{\sqrt{kk}}$$

$$= \frac{\hat{\beta}_{k} - \beta_{k}}{\sqrt{kk}} \frac{\sqrt{kk}}{\sqrt{kk}}$$

$$= \frac{\frac{\hat{\beta}_{k} - \beta_{k}}{\sqrt{kk}}}{\frac{\sqrt{kk}}{\sqrt{kk}}}$$

- $_{kk}$ is the variance of \hat{eta} and $_{\gamma_{kk}}$ is its estimator. They are the (k,k) element of the var-cov matrix σ^2I and $\hat{\sigma}^2I$
- Step 2: Derive the distribution of numerator $z_k=rac{\hat{eta}_k-eta_k}{\sqrt{kk}}\sim N(0,1)$:
 - Show $\hat{eta}_k \sim N(eta_k,{}_{kk})$

$$egin{aligned} \hat{eta}_k &= eta + (X^TX)^{-1}X^Tu ext{ and } u \sim N(0,\sigma^2I) \ \Longrightarrow & \hat{eta}_k \sim N\Big(eta, (X^TX)^{-1}X^T\sigma^2((X^TX)^{-1}X^T)^T\Big) \ & \sim N\Big(eta, \sigma^2(X^TX)^{-1}X^T((X^TX)^{-1}X^T)^T\Big) \ & \sim N\Big(eta, \sigma^2(X^TX)^{-1}X^TX(X^TX)^{-1}\Big) \ & \sim N\Big(eta, \sigma^2(X^TX)^{-1}X^TX(X^TX)^{-1}\Big) \ & \sim N\Big(eta, \sigma^2(X^TX)^{-1}X^TX(X^TX)^{-1}\Big) \ & \sim N\Big(eta, \sigma^2(X^TX)^{-1}\Big) \end{aligned}$$

- Derive the distribution for z_k :

$$k_k = Var(\hat{\beta}_k) = (k,k)$$
 element of $\sigma^2(X^TX)^{-1}$

$$\implies z_k = \frac{\hat{\beta}_k - \beta_k}{\sqrt{kk}} \sim N(0,1)$$
 (tandardisation)

- Step 3: Derive the distribution of the denominator $\frac{\sqrt{kk}}{\sqrt{kk}}$:
- Get a more comfortable expression:
- As we defined before: k and k are the (k,k) element of var-cov matrix $\sigma^2 I$ and $\hat{\sigma}^2 I$ corresponding
- \implies Only difference between those 2 matrices is: $\sigma^2 I$ has σ^2 as its diagonal elements while $\hat{\sigma}^2 I$ has $\hat{\sigma}^2$ as its diagonal elements
- **-** ⇒

$$\frac{\sqrt{kk}}{\sqrt{kk}} = \sqrt{\frac{kk}{kk}}$$

$$= \sqrt{\frac{\hat{\sigma}^2}{\sigma^2}}$$

$$= \sqrt{\frac{(n-K)\frac{\hat{\sigma}^2}{\sigma^2}}{n-K}}$$
(arued aboe)

- Show $(n-K)rac{\sigma^2}{\hat{\sigma}^2}\sim \chi^2_{n-K}$:
- Start from the expression of \hat{u} :

$$\hat{u} = y - X(X^TX)^{-1}X^Ty$$

$$= \underbrace{\left(I - X(X^TX)^{-1}X^T\right)}_{= (X\beta + u)} y$$

$$= \left(X\beta + u\right)$$

$$= \left(X\beta + \sigma \frac{u}{\sigma}\right)$$

$$= X^0\beta + \sigma \frac{u}{\sigma}$$

$$= \sigma \underbrace{\frac{u}{\sigma}}_{z \sim N(0,1)}$$

$$= \sigma z$$

- Then, we can derive a more comfortable expression for $(n-K)\frac{\hat{\sigma}^2}{\sigma^2}$:

$$(n-K)rac{\hat{\sigma}^2}{\sigma^2} = (n-K)rac{\left(rac{\hat{u}^T\hat{u}}{n-K}
ight)^2}{\sigma^2} \ = (n-K)rac{(\sigma z)^T(\sigma z)}{(n-K)^2\sigma^2} \ = rac{z^T \ T \ z\sigma^2}{(n-K)\sigma^2} \ = rac{z^T z}{n-K}$$

- Recall our method to convert normal variables to χ^2 variables:
 - Both ways convert a Normal vector into a χ^2 scalar:
 - If $y \sim N(\mu, \Sigma)$ is an $n \times 1$ vector, then the scalar:

$$w = (y-\mu)^T \Sigma^{-1} (y-\mu) \sim \chi_n^2$$

- If $z \sim N(0,1)$ is an $n \times 1$ vector and is an $n \times n$ non-stochastic, symmetric, and idempotent matrix with rank() = r < n, then the scalar:

$$w = z^T z \sim \chi_r^2$$

- Apply the above theorem:

$$(n-K)rac{\hat{\sigma}^2}{\sigma^2}=rac{z^Tz}{n-K}\sim\chi_{n-K}^2$$

- Show the numerator and denominator are independent:
- Combine our results to get the final conclusion:

Testing Linear Restrictions

- 3 Elements of a Hypothesis Test #flashcard
- 1. Null and alternative hypothesis
- 2. Test statistic and its distribution under the null
- 3. Decision rule at a significant level

Simple Significance Test for CRM with Normal Errors #flashcard

1. Null and alternative hypothesis:

$$0 : \beta_k = 0
1 : \beta_k \neq 0$$

2. Test statistic and its distribution under the null

$$t_k = rac{\hat{eta}_k}{se_k} \sim t_{n-K}$$

3. Decision rule at a significant level : reject $_0$ if $|t_k|>c_{\overline{\tau}}(n-K)$ where $c_{\overline{\tau}}(n-K)$ is the corresponding critical value

General Linear Hypothesis Test of CRM with Normal Errors (Standard) #flashcard

1. Null and alternative hypothesis:

$$_{0}:\beta = \theta$$
 $_{1}:\beta \neq \theta$

where $p \times K$ is the restriction matrix

2. Test statistic and its distribution under the null

$$=rac{1}{p}w=rac{1}{p}(\hat{eta}- heta)^Tiggl[\widehat{Var}(\hat{eta}|X)iggr]^{-1}(\hat{eta}- heta)\sim F_{p,n-K}$$

3. Decision rule at a significant level:

Reect 0 if
$$> c(n-K)$$

where c(n-K) is the corresponding critical value (There is a **proof** of distribution in slides)

General Linear Hypothesis Test of CRM with Normal Errors (Using R-Squared) #flashcard

1. Null and alternative hypothesis:

$$_{0}:\beta = \theta$$
 $_{1}:\beta \neq \theta$

where $p \times K$ is the restriction matrix

2. Test statistic and its distribution under the null

$$=rac{n-K}{p} imesrac{R_{ ext{nrestricted}}^2-R_{ ext{Restricted}}^2}{1-R_{ ext{nrestricted}}^2}\sim F_{p,n-K}$$

3. Decision rule at a significant level :

Reect
$$_0$$
 if $> c(n-K)$

where c(n-K) is the corresponding critical value

Note that Global Significance Test is a special case:

$$egin{array}{l} -_0: eta_2 = eta_3 = \dots eta_K = 0 \ - = rac{n-K}{p} imes rac{R^2}{1-R^2} \sim F_{K-1,n-K} \end{array}$$

N 2 6 Large Sample Properties

Consistency and Asymptotic Normality Requirement on OLS #flashcard

•
$$y = X + u$$

•
$$(u_i, x_i^T)$$
 are iid with $\mathbb{E}\left[x_i u_i\right] = 0 \ orall \ i = 1, \dots, n$

ullet The K imes K matrix $_{XX}=\mathbb{E}\left[x_{i}x_{i}^{T}
ight]$ exists and is non-singular

•
$$\Longrightarrow$$
 Consistency: $\hat{\beta} \rightarrow^p \beta$

• The K imes K matrix $_{XX} = \mathbb{E}\left[u^2 x_i x_i^T
ight]$ exists and is non-singular

-
$$\Longrightarrow$$
 Normality: $\sqrt{n}(\hat{eta}-eta) o N\left(0, \frac{-1}{XXXXXX}\right)$

Proof of Consistency and Normality of OLS #flashcard

Requirements:

•
$$y = X + u$$

- ullet (u_i, x_i^T) are iid with $\mathbb{E}\left[x_i u_i
 ight] = 0 \ orall \ i = 1, \dots, n$
- The K imes K matrix $_{XX} = \mathbb{E}\left[x_i x_i^T\right]$ exists and is non-singular (for consistency)
- The K imes K matrix $_{XX} = \mathbb{E}\left[u^2x_ix_i^T
 ight]$ exists and is non-singular (for noramlity)
- Proof of consistency:
 - Decompose y in the expression of $\hat{\beta}$:

$$\hat{\beta} = \beta + (X^T X)^{-1} X^T u$$

- Manipulate formula:

$$\hat{\beta} = \beta + \left(\frac{X^TX}{n}\right)^{-1} \left(\frac{X^Tu}{n}\right)$$

- Then, apply LLN and then continuous mapping theorem:

$$\hat{eta} = eta + \underbrace{\left(rac{X^TX}{n}
ight)^{-1}}_{
ightarrow^p X^TX} \underbrace{\left(rac{X^Tu}{n}
ight)}_{
ightarrow^p 0} \
ightarrow^p eta + rac{-1}{X^1X} imes 0 \
ightarrow^p eta$$

- · Proof of normality:
 - Decompose y in the expression of $\hat{\beta}$:

$$\hat{\beta} = \beta + (X^T X)^{-1} X^T u$$

- Manipulate formula:

$$\hat{eta} = eta + \left(rac{X^TX}{n}
ight)^{-1} \left(rac{X^Tu}{n}
ight)$$

- Then apply LLN, CLT, and then Slutsky Theorem:

$$\hat{eta} = eta + \underbrace{\left(rac{X^TX}{n}
ight)^{-1}}_{ o P_{XX}^{-1}} \underbrace{\left(rac{X^Tu}{n}
ight)}_{ o N(0,_{XX})} \ o N\left(eta,_{XX}^{-1}X_{XX}^{-1}
ight)$$

N 2 7 Large Sample Inference

OLS Large Sample Inference Under Homoskedasticity #flashcard

- Assumptions
 - y = X + u
 - (u_i, x_i^T) are iid with $\mathbb{E}\left[x_i u_i\right] = 0 \ \forall \ i = 1, \dots, n$
 - The K imes K matrix $_{XX} = \mathbb{E}\left[x_i x_i^T\right]$ exists and is non-singular
 - The K imes K matrix $_{XX} = \mathbb{E}\left[u^2x_ix_i^T
 ight]$ exists and is non-singular
 - \Longrightarrow Normality: $\sqrt{n}(\hat{\beta}-\beta) \to N\left(0, \frac{1}{XXXXXX}\right)$
 - Homoskedasticity:

$$lack \Longrightarrow XX = \mathbb{E}\left[u^2 x_i x_i^T
ight] = \sigma^2 \mathbb{E}\left[x_i x_i^T
ight] = \sigma^2 XX$$

- Using consistent estimators:
 - $\hat{\sigma}^2 = \frac{1}{n-K} \sum_{i=1}^n \hat{u}_i^2$

$$ullet$$
 $XX = rac{1}{n} \sum_{i=1}^n x_i x_i^T = rac{X^T X}{n}$

· We can get the final result for large-sample inference:

$$\hat{eta} \sim^a N \Big(eta, \hat{\sigma}^2 (X^T X)^{-1}\Big)$$

Simple Significance Test Large-sample #flashcard

1. Null and alternative hypothesis:

$$_{0}^{0}:\beta _{k}=0$$

$$_{1}:\beta _{k}\neq 0$$

2. Test statistic and its distribution under the null

$$t_k = rac{\hat{eta}_k}{se_k} \sim N(0,1)$$

where se_k is the (k, k) element of $\hat{\sigma}^2(X^TX)^{-1}$

3. Decision rule at a significant level : reject $_0$ if $|t_k|>c_{\frac{\pi}{2}}(n-K)$ where $c_{\frac{\pi}{2}}(n-K)$ is the corresponding critical value

Asymptotic General Linear Hypothesis Test #flashcard

1. Null and alternative hypothesis:

$$_{0}:\beta = \theta$$
 $_{1}:\beta \neq \theta$

where $p \times K$ is the restriction matrix

2. Test statistic and its distribution under the null

$$w = (\hat{eta} - heta)^T \left[\widehat{Var}(\hat{eta}|X)^T
ight]^{-1} (\hat{eta} - heta) \sim^a \chi_p^2$$

where
$$\widehat{Var}(\hat{eta}|X)=\hat{\sigma}^2(X^TX)^{-1}$$

3. Decision rule at a significant level :

Reect
$$_0$$
 if $> c(n-K)$

where c(n-K) is the corresponding critical value

Proof of distribution

More precisely, recall the asymptotic approximation

$$\hat{\beta} \sim_a \mathsf{N}\{\beta, \hat{\sigma}^2(X'X)^{-1}\}$$

Then,

$$H\hat{\beta} \sim_a \mathsf{N}\{H\beta, H\hat{\sigma}^2(X'X)^{-1}H'\}$$

Property 1 of quadratic forms (slide 15 of Topic 3)

$$w = (H\hat{\beta} - \theta)' \{ H\hat{\sigma}^2 (X'X)^{-1} H' \}^{-1} (H\hat{\beta} - \theta) \sim_a \chi_p^2$$

$$\xrightarrow{\text{Donound Vet}} \rightarrow \overline{\Sigma}^{-1} (\text{const.}) \quad \text{Donound Vec}$$

$$\xrightarrow{\text{--}} \chi_p^2 \qquad \text{Att. other χ}^2 \text{ from $\tilde{\sigma}^2$, so we will not oned up rith a $\tilde{\pi}$-district.}$$

N 2 8 Heteroskedasticity

Inference Under Heteroskedasticity #flashcard

· We keep all the same assumptions except homoskedasticity

- y = X + u
- (u_i, x_i^T) are iid with $\mathbb{E}\left[x_i u_i\right] = 0 \ \forall \ i = 1, \dots, n$
- The K imes K matrix $_{XX} = \mathbb{E}\left[x_i x_i^T\right]$ exists and is non-singular
- The K imes K matrix $_{XX} = \mathbb{E}\left[u^2 x_i x_i^T
 ight]$ exists and is non-singular
 - ullet Normality: $\sqrt{n}(\hat{eta}-eta) o N\left(0,rac{-1}{XXXXXX}
 ight)$
- However, now $\frac{-1}{XX} \frac{-1}{XX} \frac{-1}{XX}$ does not simplify to $\sigma^2(X^TX)^{-1}$, we need to estimate it directly using the White/Eicker-Huber-White Estimator:

$$egin{aligned} ig(X^TXig)^{-1} \left(\sum_{i=1}^n \hat{u}_i^2 x_i x_i^T
ight) ig(X^TXig)^{-1} \ &= rac{1}{n} igg(rac{X^TX}{n}igg)^{-1} igg(rac{1}{n} \sum_{i=1}^n \hat{u}_i^2 x_i x_i^Tigg) igg(rac{X^TX}{n}igg)^{-1} \ & o^p rac{1}{n} rac{1}{n^{TX} X X_X^T} \end{aligned}$$

· Therefore:

$$\hat{eta} \sim^a N\left(eta, \left(X^TX
ight)^{-1}\left(\sum_{i=1}^n \hat{u}_i^2 x_i x_i^T
ight) \left(X^TX
ight)^{-1}
ight)$$

White Test for Heteroskedasticity #flashcard

- 1. Estimate the model using OLS and compute residuals \hat{u}_i
- 2. Run auxiliary regression of squared residual \hat{u}_i^2 on all regressors and cross terms
- 3. Run a global significance test for the auxiliary regression (0: all coefficient = 0)

Generalised Least Squares (GLS) #flashcard

- GLS Assumptions
 - $y = X\beta + u$
 - $\mathbb{E}[u|X] = 0$
 - Var[u|X] =is a known positive semi-definite matrix

•
$$\Longrightarrow \exists s.t. ^{-1} = {}^{T}$$
 and ${}^{T} = I$

- X has full rank
- · We can implement GLS as following:
 - Let y = y, X = X, u = u
 - Then:
 - $y = X\beta + u$
 - $\mathbb{E}\left[u|X\right]=0$
 - $Var[u|X] = Var[u|X] = Var[u|X]^T = I$ is positive definite
 - This satisfies all assumptions of Gauss-Markov Theorem o $\hat{\beta}$ is BLUE (Aitken's Theorem) with specific formula:

$$\hat{eta} = \hat{eta}_{LS} = (X^T X)^{-1} (X^T y) \\ = (X^{TT} X)^{-1} (X^{TT} y) \\ = (X^{T-1} X)^{-1} (X^{T-1} y) \\ ext{euialently} = arg \min_{eta} (y - X eta)^{T-1} (y - X eta)$$

· We can show that:

-
$$\mathbb{E}\left[\hat{eta}_{LS}|X
ight] = eta$$

- $Var\left[\hat{eta}_{LS}|X
ight] = (X^TX)^{-1}$

Feasible Generalised Least Squares (FGLS) #flashcard

- The cov-var matrix is impossible to be estimated:
 - Completely unrestricted $\implies \frac{n(N+1)}{2}$ variables
 - Assume no autocorrel
 - ullet ation $\Longrightarrow n$ variables
- A feasible method is to impose a parametric form
- Example:
 - Assume $Var[u_i|X] = \sigma^2 x_{iK}^2$
 - Estimate the model: $y_i=x_i^T\beta+u_i$ where $y_i=rac{y_i}{x_{iK}}, x_i=rac{x_i}{x_{iK}}, u_i=rac{u_i}{x_{iK}}$
- Another flexible example: $Var[u|X] = \sigma^2 \exp(\delta_0) + \delta_1 x_{1i} + \delta_K x_{iK}$

N 2 9 Cluster Robust Inference

Cluster Robust Inference #flashcard

Assuptions:

- Key assumption: $\mathbb{E}\left[u_{ic}|x_{ic}
 ight]=0$
- The var-cov matrix is:

$$\mathbb{E}\left[uu^T|X
ight] = egin{array}{ccccc} & & 1 & 0 & \dots & 0 \ & 0 & _2 & \dots & 0 \ & \dots & \dots & \dots & \dots \ & 0 & 0 & \end{array}$$

where each $_c$ is a symmetric, but otherwise unrestricted, $n_c \times n_c$ matrix

• Cluster-robust Inference: As the number of clusters $\to \infty$:

$$\surd(\hat{eta}-eta)
ightarrow N(0,V)$$

where the asymptotic variance V can be consistently estimated by:

$$\hat{V} = (X^T X)^{-1} \left(\sum_{c=1} X_c^T \hat{u}_c \hat{u}_c^T X_c
ight) (X^T X)^{-1}$$

or

$$\hat{eta} \sim^a N\left(eta, (X^TX)^{-1}\left(\sum_{c=1}X_c^T\hat{u}_c\hat{u}_c^TX_c
ight)(X^TX)^{-1}
ight)$$

and $\hat{u}_c = y_c - X_c \hat{eta}$ is the OLS residual for the n_c observations in cluster c