Theorem (the spectral theorem for real self-adjoint operators): Let V be a real inner product space and let TELLV) be self-adjoint. Then there exists an arthmorphia basis B of V such that MBB(T) is diagonal.

Proof: We argue by induction and dim (V). If dim(W)=1, the result is obviously true, so suppose it holds in every real inner product space of dimension n-1, where $n\geq 2$. Let V be a real inner product space of dimension n and let $T\in L(V)$ be self-adjoint: By the preceding terms, T has an eigmpair $\lambda_{U}V_{i}$ ($\lambda_{i}\in\mathbb{R}$). Assume, when that I=1, and define $U=spen(V_{i})$. Then $V=U\oplus U^{\perp}$. We know that U=1 is invariant under $T^{*}=1$. It is straightforward to show that $S=T|_{U^{\perp}}$ is a self-adjoint element of $L(U^{\perp})$. Hence, by the induction hypothesis, there exists an orthogonal basis $S_{V_{2i}V_{2i}...,V_{in}}$ of U^{\perp} and S_{Calars} $\lambda_{2i}\lambda_{3i}...,\lambda_{n}\in\mathbb{R}$ such that

 $S(v_j) = \lambda_j v_j$ for j = 2,3,...,n.

But then This = Shyl = Livi for j=2,3,-, " and hence This,-, " }

is an arthonormal basis for V with $T(v_j|=\lambda_j v_j,\ j=1,2,\dots,n.$ This completes the proof by industrin.

Recall that the goal of the course is understand the "structure" of a linear operator on a finite-dimensional vector space. In proeting this means answering the following question: How can we choose a basis B for V so that the matrix for Ted(V) (w.r.t. B) is as Simple as possible? We have several results

- If V is complex, we can choose B so that 9MB,B(T) is upper triangular. Moreover, it is possible to choose B to be orthonormal. (Schur's theorem)
 - If V is complex and T is normal, then there exists an arthurnal matrix B for V such that $\mathcal{M}_{8,8}(T)$ is diagonal. We can then write

$$T(v) = \sum_{j=1}^{n} \lambda_{j} \langle v_{i} v_{j} \rangle v_{j} \quad \forall v \in V \quad (\beta = \{v_{v_{i-1}}, v_{i}\})$$

If T is not only normal but self-adjoint, then every it is real loven though V is complex).

an arthonormal basis B for V such that MBB(T) is diagonal.

Again, we have

$$Tlvl = \sum_{j=1}^{n} \lambda_j \langle v, v_j \rangle v_j,$$

where now the hi's and vis are real.

. Otherwise, we only know that it dim(V)=n and there exist n linearly independent eigenvectors v₁,v₂,...,v_n∈V of T, the M_B, (T) is diagonal (B={v₁,v₂,...,v_n}), and

This is the case, in particular, if I has n district eigenvaluer. This is true for any field F.

We now investigate the situation for a general linear operator TED(V), where V is a finite-dimensional vector space over F (usually \mathbb{R} or \mathbb{C} ; we get the most complete results when $F=\mathbb{C}$).

To look ahead: Let V be a complex vector space, let TedW), and let λ_{13} .—, λ_{14} be the distinct eigenvalues of T. It is not always true that

$$V = E(\lambda_{\mu}, T) \oplus --- \oplus E(\lambda_{\mu}, T)$$
.

However, recalling that $E(\lambda_j,T)=\mathfrak{N}(T-\lambda_j I)$, it is always true that

$$V = \mathcal{N}((T-\lambda_{i}I)^{n_{i}}) \Theta - -- \Theta \mathcal{N}((T-\lambda_{k})^{m_{k}})$$

for some integers my -- , Mu, and that

is invariant under T for each j. This is the basis of the Jordan cananical form of T.

We begin with some technical results. We express the first lemma in terms of a general operator T, but we will eventually apply it to $T-\lambda_j T$.

<u>Lemma</u>: Let V be a finite-dimensional vector space over a field F and let TE 2/1V. Then

- 1. $\{o\} = \mathcal{N}(\mathcal{T}^0) \subseteq \mathcal{N}(\mathcal{T}) \subseteq \mathcal{N}(\mathcal{T}^2) \subseteq \cdots$
- 2. There exists m satisfying $0 \le m \le n = \dim(V)$ such that $\mathfrak{N}(T_i) \ne \mathfrak{N}(T_i^{i+1}) \ \forall \ 0 \le j \le m$ (if $m \ge 0$) (where \ne means "is a proper subset of") and $\mathfrak{N}(T_i) = \mathfrak{N}(T_i^{i+1}) \ \forall \ j \ge m$.

Proof: By definition, T' = I, so $\mathfrak{P}(I') = \{0\}$. If $V \in \mathfrak{P}(T^{j})$, then $T^{j}[v] = 0$ and $T^{j+1}(v) = T(T^{j}(v)) = T(0) = 0$ $\longrightarrow V \in \mathfrak{P}(T^{j+1}).$

Thus

Nau,

MrijeV Vj

=> dim (n(Ti)) = dim(V) \f

and

 $\mathcal{I}(\mathcal{I}^{j}) \subsetneq \mathcal{I}(\mathcal{I}^{j+1}) \Rightarrow \dim(\mathcal{I}(\mathcal{I}^{j+1})) \geq \dim(\mathcal{I}(\mathcal{I}^{j+1})) + 1.$

It follows that

 $\mathcal{N}(T^{j}) \leq \mathcal{N}(T^{j+1}) \forall j \geq 0$

is in-possible (otherwise, dim (91(7))>n=dm(V) for j sufficially large). Let $m \ge 0$ be the smallest integer such that $\mathfrak{N}(\mathfrak{J}^{m+1}) = \mathfrak{N}(\mathfrak{I}^m)$.

Note that m < n Cotherwise, dim (91(Tn+1)) > n).

It remains only to show that $\mathfrak{N}(T^{j+1}) = \mathfrak{N}(T^{j}) \quad \forall j \geq m.$ So let $j \geq m$ and let $v \in \mathfrak{N}(T^{j+1})$. Then $T^{j+1}(v) = 0 \Rightarrow T^{m+1}(T^{j-m}(v)) = 0$ $\Rightarrow T^{j-m}(v) \in \mathfrak{N}(T^{m+1})$ $\Rightarrow T^{j-m}(v) \in \mathfrak{N}(T^{m+1})$ $\Rightarrow T^{j-m}(v) = 0$ $\Rightarrow T^{j}(v) = 0$

⇒ rentri).

Thus $\mathfrak{N}(T^{j+1}) \subseteq \mathfrak{N}(T^{j})$. Since we already know that $\mathfrak{N}(T^{j+1}) \subseteq \mathfrak{N}(T^{j+1})$, we see that $\mathfrak{N}(T^{j+1}) = \mathfrak{N}(T^{j})$, as desired.

Lemma: Let V be a finite-dimensional vector space over a field F and let TEL(V). Suppose 91(Tm)=97(Tm+1). Then

V= 91(7m) + R/7m).

Proof: By the fundamental theorem of linear algebra, dim (V) = dhm (Mtm)) + dim (R(Tm)).

Thus it suffices to prome that $\mathcal{N}(J^m) \wedge \mathcal{R}(J^m) = 50$

Suppose $V \in \mathfrak{N}(T^n) \wedge \mathcal{R}(T^n)$. Then there exists up $V = T^m(u)$ and hence

 $V \in \mathfrak{N}(T^{m}) \implies T^{m}(T^{m}(u)) = 0$ $\implies T^{2m}(u) = 0$ $\implies T^{m}(u) = 0 \quad (Since \mathfrak{N}(T^{2m}) = \mathfrak{N}(T^{2m}))$ $\implies V = 0.$

This completes the proof.

Definition: Let V be a vector space over a field F, let TEL(V), and let $\lambda \in F$ be an eigenvalue of T. We say that $V \in V \bowtie G$ generalized eigenvector of T corresponding to λ iff $v \neq 0$ and then exists $j \geq l \sin k$ that $(T - \lambda I)^{j}(v) = 0$.

We define the generalized eigenspace (GiT) of T corresponding to λ to be the set of all generalized eigenvectors of T corresponding to λ , together with the zero vector. Thus $G(\lambda,T) = \mathfrak{N}((T-\lambda I)^m)$, where $\mathfrak{N}((T-\lambda I)^{m+1}) = \mathfrak{N}((T-\lambda I)^m)$.

Note that every eigenvector of T is a generalized eigenvector of T, and $E(\lambda,T) \subseteq G(\lambda,T)$ for every eigenvalue λ .

In some cases, E(x,T)=G(x,T); in fact, as we will see, if T is diagonalizable, then E(x,T)=G(x,T) for every eigenvalue λ of T.

Theorem: Let V be a finite-dimensional vector space over a field F, let TEL(V), let I be an eigenvalue of T, and let m 20 satisfy $\mathcal{N}((T-\lambda I)^{m+1}) = \mathcal{N}((T-\lambda I)^n)$. Then

 $V = \mathcal{N}((T-XIM) \oplus R((T-XIM))$ $= G(X,T) \oplus R((T-XIM))$

and both G(ATI, R((T-D)) are invariant under T.

Proof: We already know that

V= 91((T-XI)) A R((T-XI))

Suppose ve gl ((T-211m). The

(T-AI)"(T(v)) = T((T-AI)"(v)) = T(0) = U

(Since polynomials in T commute) and hence T(v) & M((T-AI)").

This shows that M((T-AI)") is invariant under T.

Now suppose $u \in \mathcal{R}((T-\lambda I)^n)$; then there exists $v \in V$ such that $u = (T-\lambda I)^m(v)$. But the

T(u) = T((T-XI)~(v)) = (T-XI)~(T/v)) & &((T-XI)~),

and hence R((TXII) is also invariant under T.//