Intégration

William Hergès ¹

11 octobre 2024

Table des matières

Définitions et théorèmes fondamentaux		nitions et théorèmes fondamentaux	2	
2	Calculs			
	2.1	Propriétés	3	
	2.2	Intégration par partie	3	
	2.3	Changement de variable	4	

1. Définitions et théorèmes fondamentaux

Définition 1

L'intégration de la fonction $f:[a,b]\to\mathbb{R}$ est l'aire de la région sous la courbe de f et l'axe des absisses. On note ce nombre

$$\int_{a}^{b} f(x) \mathrm{d}x$$

L'aire sous la courbe est

$$\lim_{n \to \infty} \sum_{i=1}^{n-1} f\left(\frac{b-a}{i}\right) \frac{b-a}{n}$$

Ce calcul est apparenté au calcul des dérivés.

Définition 2

Soit $f:I\to\mathbb{R}$ avec I un intervalle, on dit que $F:I\to\mathbb{R}$ est une primitive de f i.e.

$$F' = f$$

 ${\cal F}$ est toujours déterminée à une constante près.

Théorème 2.1

Soit f une fonction continue de [a,b] dans $\mathbb{R}.$

Il existe toujours une primitive F de f sur [a,b].

On a alors:

$$\int_{a}^{b} f(t)dt = F(b) - F(a) = [F(x)]_{a}^{b}$$

☐ Démonstration. Admis.

Ce calcul ne dépend pas de la constance de F.

Calculs

2.1. Propriétés

Proposition 2.2

La propriété de Chasles est vraie pour les intégrales

☐ Démonstration. AQT

Proposition 2.3 L'intégrale est linéaire

☐ Démonstration. AQT

Proposition 2.4 Si $f\geqslant 0$, alors $\int f\geqslant 0$. Si $f\geqslant g$, alors $\int f\geqslant \int g$.

☐ Démonstration. AQT

2.2. Intégration par partie

Théorème 2.5 **IPP**

Soient f,g deux fonctions intégrables sur $\left[a,b\right]$.

$$\int_{a}^{b} f'(x)g(x)dx = [(fg)(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

☐ Démonstration. Admis.

Exemple 1

On a:

$$\int_{a}^{b} t e^{-t} dt = [-te^{-t}]_{a}^{b} - \int_{b}^{a} e^{-t} dt$$

(en posant $f'(t) = e^{-t}$ et g(t) = t)

Changement de variable 2.3.

Théorème 2.6 Soit $f:[a,b] \to \mathbb{R}$ continue. Pour toute fonction $\varphi:J\to [a;b]$ de classe \mathcal{C}^1 et tous $\alpha,\beta\in J$ tels que $\varphi(\alpha)=a$ et $\varphi(\beta)=b$ (sous réserve d'existence), on a :

$$\int_{a}^{b} f(t)dt = \int_{\alpha}^{\beta} f(\varphi(u))\varphi'(u)du$$

Quand on a une intégrale trop compliqué, on fait un changement de variable.

Méthode

On cherche à transformer

$$\int_{a}^{b} f(t) \mathrm{d}t$$

en

$$\int_{\alpha}^{\beta} g(u) \mathrm{d}u$$

- 1. On exprime t en fonction de u (i.e. il existe φ tel que $t = \varphi(u)$).
- 2. On cherche α, β tel que $\varphi(\alpha) = a$ et $\varphi(\beta) = b$.
- 3. On vérifie que φ est de classe \mathcal{C}^1 sur $[\alpha, \beta]$ et l'on calcule $\mathrm{d}t = \varphi'(u)\mathrm{d}u$, ce qui donne l'ancienne différentielle dt en fonction de la nouvelle du.
- 4. On transforme l'intégrant f(t)dt en remplaçant dt par $\varphi'(u)du$ et t par d(u). On obtient ainsi un nouvel intégrant de la forme g(u)du.
- 5. On écrit la nouvelle intégrale et on obtient bien celle qu'on cherchait.