Universidad Andrés Bello Facultad: Ciencias Exactas

Escuela:

SYLLABUS DE LA ASIGNATURA

1. Identificación de la Asignatura

CURSO: Programación para la Física y Astronomía

CÓDIGO: PCFI161

PERÍODO: 1er Semestre año 2022.

COORDINADOR DEL CURSO: Joaquín Peralta.

PROFESOR(ES): Claudia Loyola, Alejandro Llanquihuen, Joaquín Peralta

2. Descripción General

Tipo de Actividad ¹	Teórica	Ayudantía	Laboratorio	Taller	Terreno	Clínica	Total	Horas Personales
N° horas			4				4	•
semanales ²			4				4	ŏ

Tipo de Actividad	Horas por semana	Sesiones por semana	Semanas por semestre
Laboratorio	4	1	15

¹ Teórica, ayudantía, laboratorio, taller, terreno, clínica y trabajo personal.

² Considerar horas pedagógicas (Horas UNAB)

Escuela:

3. Aprendizajes Esperados y Unidades de Contenido.

l. Aprendizajes Esperados	II. Contenidos
1 Comprender los elementos fundamentales	UNIDAD I: ELEMENTOS BÁSICOS
de la programación haciendo consideraciones sobre los alcances numéricos de las CPU 2 Desarrollar programas elementales	 Diseño de Programas Computacionales Elementos básicos de GNU/Linux Shell, Editores y Ejecución
utilizando Python.	El intérprete PythonRepresentación numérica & IEEE
3Utilizar controladores en el diseño de programas haciendo consideraciones de uso de memoria y almacenamiento de datos en	Floating Point Numbers, Machine Precision.
Python.	UNIDAD II: PROGRAMACIÓN EN PYTHON
4Construir ciclos sobre elementos de memoria, y su uso en el diseño de algoritmos y gráficas de datos y simulaciones mediante el uso de la librería MatPlotLib	 Tipos de variables y asignación Elementos I/O y manejo de ficheros Aritmética Funciones, paquetes, y módulos.
5Aplicar el paradigma de programación orientada a objetos al manejo elemental de datos y estadísticas.	UNIDAD III: CONTROLADORES Y ARREGLOS
6 Diseñar algoritmos complejos, orientados a la resolución de problemas específicos tomando ventaja de las nuevas arquitecturas de hardware, a partir de cálculos de multiprocesamiento.	 El statement if & while Break and continue Listas y arreglos Aritmética de arreglos Slicing
	UNIDAD IV: EL CICLO FOR, GRÁFICAS
	 Ciclos indefinidos Loop interactivos Matplotlib y Gráficos Simples Gráficos tipo Scatter, Densidad, y 3D
	UNIDAD V: CLASES & ANALISIS DE DATOS
	 Estructuras Encapsulamiento Listas y Diccionarios Estadística Simple con listas Elementos Avanzados de NUMPY

Universidad Andrés Bello Facultad: Ciencias Exactas

Escuela:

UNIDAD VI: ALGORITMOS, & PERFORMANCE - Algoritmos de Búsquedas - Recursividad - Sorting Elementos básicos de cálculo en paralelo en Python. - Utilización de hilos para problemas complejos. - Una visita a LaTEX.

4. Clase a clase (Calendario)³

N° de sesión	Tipo de actividad	Descripción de la actividad (didáctica o	A.E.
		evaluativa)	Relacionado
Sesión 1	Laboratorio	1era Parte: Se presentará a los alumnos	AE 1
Semana10		elementos fundamentales de	
		computación y GNU/Linux.	
		2da Parte: Se realizará una actividad	
		grupal, en donde los grupos deberán responder y practicar elementos	
		básicos de computación.	
Sesión 2	Laboratorio	1era Parte: Se presentará el intérprete	AE1
Semana 11		de Python y representaciones	
		numéricas en computación.	
		2da Parte: Se realizará una actividad	
		grupal, en donde los grupos deberán	
		responder y practicar las temáticas	
		vistas en la primera parte.	
Sesión 3	Laboratorio	1era Parte: Se presentará: variables,	AE2
Semana 12		elementos I/O, aritmética y funciones	
		en Python.	
		2da Parte: Se realizará una actividad	
2 1/		grupal.	
Sesión 4	Laboratorio	Actividad grupal donde se practicarán	AE1-AE2
Semana 13		los contenidos previos.	
Sesión 5	Solemne I	Unidades I y II	
Semana 14			

Universidad Andrés Bello Facultad: Ciencias Exactas

Escuela:

Sesión 6 Semana 15	Laboratorio	1era Parte: Se presentará el uso de controladores y arreglos en Python 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE3
Sesión 7 Semana 16	Laboratorio	1era Parte: Se presentará ciclos y su uso en Python. 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE4
Sesión 8 Semana 17	Laboratorio	1era Parte: Se presentará gráficas mediante la librería Matplotlib 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE4
Sesión 9 Semana 18	Laboratorio	Actividad grupal donde se practicarán los contenidos previos	AE3-AE4
Sesión 10 Semana 19	Solemne II	Unidades III y IV	
Sesión 11 Semana 20	Laboratorio	1era Parte: Se presentará el uso de clases en Python. 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE5
Sesión 12 Semana 21	Laboratorio	1era Parte: Se presentará manejo de datos en Python 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE5
Sesión 13 Semana 22	Laboratorio	1era Parte: Se presentarán algoritmos clásicos y performance mediante el uso de sistemas multi-core y Python. 2da Parte: Se realizará una actividad grupal, en donde los grupos deberán responder y practicar las temáticas vistas en la primera parte.	AE6
Sesión 14 Semana 23	Laboratorio	Actividad grupal donde se practicarán los contenidos previos.	AE5-AE6
Sesión 15	Solemne III	Unidades V y VI	

Universidad Andrés Bello Facultad: Ciencias Exactas

Escuela:

Semana 24			
Sesión 17 Semana 25	Examen	Unidades I, II, III, IV, V y VI	AE1- AE2- AE3- AE4- AE5- AE6

5. Evaluación

Aprendizaje esperado Indicador (es) de logro Tipo de Grupo Ponderación N° de evaluación4 (indicar de la (lo que se espera que "SI" o el estudiante 33% 5 1.- Comprender los 1 Solemne NO elementos fundamentales de la programación haciendo consideraciones sobre los alcances numéricos de las CPU 2.- Desarrollar programas elementales utilizando Python. 2 10 NO 33% 1.-Utilizar Solemne controladores en el diseño de programas haciendo consideraciones de uso de memoria y almacenamiento de datos en Python. 2.-Construir ciclos sobre elementos de memoria, y su uso en el diseño de

⁴ Tipo de evaluación, (solemnes, seminarios, controles, ensayos, presentaciones, análisis de un caso, etc.)

Universidad Andrés Bello Facultad: Ciencias Exactas

Escuela:

					algoritmos y gráficas de datos y simulaciones mediante el uso de la librería MatPlotLib.	
3	Solemne	NO	34%	15	3Aplicar el paradigma de programación orientada a objetos al manejo elemental de datos y estadísticas. 4 Diseñar algoritmos complejos, orientados a la resolución de problemas específicos tomando ventaja de las nuevas arquitecturas de hardware, a partir de cálculos de multiprocesamiento.	

6. Condiciones de Aprobación

- A. La asistencia a las clases prácticas de laboratorio es de un 100%. No obstante, podrá faltar al 20% DEBIDAMENTE JUSTIFICADO, en caso de inasistencias de no cumplir con lo explicitado el estudiante reprobará la asignatura de manera automática.
- B. La nota para eximirse del examen final es 5.0, sin evaluaciones parciales o promedios de controles bajo 4.0
- C. En caso de ausentarse a una de las solemnes, de forma justificada, el/la alumno/a deberá rendir el examen como reemplazo de esa nota.
- D. Si el/la alumno/a se ausente a dos o más solemnes, de forma justificada una nota deberá ser reemplazada por el examen, y las otras por pruebas adicionales a definir en el semestre.
- E. Si el/la alumno/a se ausenta alguna solemne, sin una justificación válida, su nota en la evaluación será calificada con la nota mínima de 1.0
- C. El curso está regulado, además, por el Reglamento del Alumno de Pregrado vigente.

Escuela:

7. Bibliografía

7.1 Obligatoria

1.- Computational Physics, Mark Newman, Ed 2013, University of Michigan.

ISBN 978-148014551-1

2.- Computational Physics, Problem Solving with Python, Third Edition. Landau R H, Páez J, and Bordeianu C. Wiley-VCH Physics Textbook.

ISBN 978-3-527-41315-7

3.- Python Programming: An introduction to computer science, Zelle J. Second Edition 2010. Franklin, Beedle & Associates Inc.

ISBN 978-1-59028-241-0

7.2 Complementaria

1.- Programming in Python 3. A complete introduction to the Python Language. Summerfield M. Second Edition.

ISBN 978-0-321-68056-3

2.- Python Pocket Reference. Lutz M, 5th Edición. O'reilly. ISBN 978-1-449-35701-6

Nota: Este documento está sujeto a modificaciones en función de la contingencia semestral.