

planetmath.org

Math for the people, by the people.

example of enough injectives

Canonical name ExampleOfEnoughInjectives

Date of creation 2013-03-22 17:43:38

Last modified on 2013-03-22 17:43:38

Owner Glotzfrosch (19314)

Last modified by Glotzfrosch (19314)

Numerical id 5

Author Glotzfrosch (19314)

Entry type Example Classification msc 18E99 The category of Abelian groups has enough injectives.

Proof. First, note that \mathbb{Q}/\mathbb{Z} is an injective Abelian group, since it is divisible. For any Abelian group A, let $A^* = \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$.

We define

$$f: A \to \operatorname{Hom}(A^*, \mathbb{Q}/\mathbb{Z}), a \mapsto f_a,$$

where f_a ist defined as

$$f_a: A^* \to \mathbb{Q}/\mathbb{Z}, \varphi \mapsto \varphi(a).$$

f is one-to-one, for if $f_a=0$, i.e. $\varphi(a)=0$ for all $\varphi\in A^*$, it follows a=0. Indeed, if $a\neq 0$, let the order of a be denoted by n, and for any $q\in \mathbb{Q}/\mathbb{Z}$ with order n, the homomorphism defined by $a\mapsto q$ is well-defined on the subgroup generated by a, and since \mathbb{Q}/\mathbb{Z} is injective, it induces a homomorphism $A\to \mathbb{Q}/\mathbb{Z}$ which is different from zero.

Now, if we chose a presentation $\bigoplus_{i\in I} \mathbb{Z} \to A^*$, we get an embedding $\operatorname{Hom}(A^*,\mathbb{Q}/\mathbb{Z}) \hookrightarrow \operatorname{Hom}(\bigoplus_{i\in I} \mathbb{Z},\mathbb{Q}/\mathbb{Z})$, where the latter is clearly isomorphic to the direct product $\prod_{i\in I} \mathbb{Q}/\mathbb{Z}$. This last group is injective as a direct product of injectives.