Lambda Calculus

FOCS, Fall 2020

Computation as algebra

Turing machines and production grammars are fundamentally computer science models — they can be used to define computation as decision problems over strings of symbols

This week - a model of computation originally due to logicians (Church 1936) to capture computability for natural number functions $N^k \to N$

Intuition: to compute is to simplify an algebraic expression until you get a result

Expressions of the λ calculus

λ calculus expressions (also called terms) are one of the following:

- identifiers (x, y, z, ...)
- abstractions $\langle x \rightarrow M \rangle$ where x is an identifier and M is a term
- applications (M N) where M, N are terms

We assume that application associates to the left, so that we can drop parentheses around applications in some situations, so that M N P = (M N) P

Simplification rule

A single simplification rule captures how abstraction interacts with application

$$(\langle x \rightarrow M \rangle N) = M\{^N/x\}$$

where M{N/x} is M in which every free occurrence of x is replaced by N

- A free occurrence of x is a use of x that is not in the body of any $\langle x \rightarrow N \rangle$
- Need to make sure free occurrences of identifiers in N are not *captured*:
 - rename non-free occurrences in M to new identifiers if needed

We are allowed to simplify anywhere in an expression

Simplification rule

A single simplification rule captures

$$(\langle x \to M \rangle N) = M\{^N/x\}$$

where $M{^N/x}$ is M in which every from

- A free occurrence of x is a use
- Need to make sure free occurr
 - rename non-free occurrences in

We are allowed to simplify anywher

One x is free in $\langle y \rightarrow x y \rangle$

One x is free in $y \rightarrow x x \rightarrow y > x$

Two x's are free in

$$y \rightarrow z \rightarrow x < x \rightarrow x > y > y$$

Two x's and one y are free in

$$<$$
y \rightarrow $<$ z \rightarrow x $<$ x \rightarrow x x> x>> y

No identifier is free in:

$$<$$
X \rightarrow $<$ Y \rightarrow $<$ Z \rightarrow X X Y>>>

$$< x \rightarrow x > < y \rightarrow y > = < y \rightarrow y >$$

$$\langle x \rightarrow x \rangle \langle y \rightarrow y \rangle = \langle y \rightarrow y \rangle$$

 $(\langle x \rightarrow \langle y \rightarrow x y \rangle \rangle z_1) z_2 = \langle y \rightarrow z_1 y \rangle z_2$

$$\langle x \rightarrow x \rangle \langle y \rightarrow y \rangle = \langle y \rightarrow y \rangle$$

 $(\langle x \rightarrow \langle y \rightarrow x y \rangle \rangle z_1) z_2 = \langle y \rightarrow z_1 y \rangle z_2$
 $= z_1 z_2$

$$<\mathsf{x} \to \mathsf{x}> <\mathsf{y} \to \mathsf{y}> = <\mathsf{y} \to \mathsf{y}>$$

$$(<\mathsf{x} \to <\mathsf{y} \to \mathsf{x} \; \mathsf{y}>> \mathsf{z}_1) \; \mathsf{z}_2 = <\mathsf{y} \to \mathsf{z}_1 \; \mathsf{y}> \; \mathsf{z}_2$$

$$= \mathsf{z}_1 \; \mathsf{z}_2$$

$$(<\mathsf{x} \to <\mathsf{y} \to \mathsf{x} \; \mathsf{y}>> <\mathsf{z} \to \mathsf{z}>) <\mathsf{x} \to <\mathsf{y} \to \mathsf{x}>> = <\mathsf{y} \to <\mathsf{z} \to \mathsf{z}> \mathsf{y}> <\mathsf{x} \to <\mathsf{y} \to \mathsf{x}>>$$

$$\langle x \rightarrow x \rangle \langle y \rightarrow y \rangle = \langle y \rightarrow y \rangle$$

 $(\langle x \rightarrow \langle y \rightarrow x \ y \rangle \rangle z_1) z_2 = \langle y \rightarrow z_1 \ y \rangle z_2$
 $= z_1 z_2$
 $(\langle x \rightarrow \langle y \rightarrow x \ y \rangle \rangle \langle z \rightarrow z \rangle) \langle x \rightarrow \langle y \rightarrow x \rangle \rangle = \langle y \rightarrow \langle z \rightarrow z \rangle y \rangle \langle x \rightarrow \langle y \rightarrow x \rangle \rangle$
 $= \langle z \rightarrow z \rangle \langle x \rightarrow \langle y \rightarrow x \rangle \rangle$

$$\langle \mathsf{x} \to \mathsf{x} \rangle \langle \mathsf{y} \to \mathsf{y} \rangle = \langle \mathsf{y} \to \mathsf{y} \rangle$$

$$(\langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle \rangle \langle \mathsf{z}_1) \langle \mathsf{z}_2 \rangle = \langle \mathsf{y} \to \mathsf{z}_1 \rangle \langle \mathsf{z}_2 \rangle$$

$$= \langle \mathsf{z}_1 \rangle \langle \mathsf{z}_2 \rangle = \langle \mathsf{y} \to \mathsf{z}_2 \rangle \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle$$

$$(\langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle \rangle \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle \rangle = \langle \mathsf{y} \to \mathsf{z} \rangle \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle \rangle$$

$$= \langle \mathsf{z} \to \mathsf{z} \rangle \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle \rangle$$

$$= \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle \rangle$$

$$= \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle \rangle$$

$$\begin{array}{lll} <\mathsf{x} \to \mathsf{x} > <\mathsf{y} \to \mathsf{y} > & = & <\mathsf{y} \to \mathsf{y} > \\ & (<\mathsf{x} \to <\mathsf{y} \to \mathsf{x} \; \mathsf{y} >> \; \mathsf{z}_1) \; \mathsf{z}_2 & = & <\mathsf{y} \to \mathsf{z}_1 \; \mathsf{y} > \; \mathsf{z}_2 \\ & = & \mathsf{z}_1 \; \mathsf{z}_2 \\ & (<\mathsf{x} \to <\mathsf{y} \to \mathsf{x} \; \mathsf{y} >> \; <\mathsf{z} \to \mathsf{z} >) \; <\mathsf{x} \to <\mathsf{y} \to \mathsf{x} >> \; = & <\mathsf{y} \to <\mathsf{z} \to \mathsf{z} > \; \mathsf{y} > \; <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \\ & = & <\mathsf{z} \to \; \mathsf{z} > \; <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \\ & = & <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \\ & (<\mathsf{x} \to <\mathsf{y} \to \mathsf{y} \; \mathsf{x} >> \; <\mathsf{z} \to \mathsf{z} >) \; <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \; = & <\mathsf{y} \to \mathsf{y} \; <\mathsf{z} \to \; \mathsf{z} >> <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \\ & (<\mathsf{x} \to <\mathsf{y} \to \mathsf{y} \; \mathsf{x} >> \; <\mathsf{z} \to \; \mathsf{z} >) \; <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \; = & <\mathsf{y} \to \; \mathsf{y} \; <\mathsf{z} \to \; \mathsf{z} >> <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \\ & (<\mathsf{x} \to <\mathsf{y} \to \mathsf{y} \; \mathsf{x} >> \; <\mathsf{z} \to \; \mathsf{z} >) \; <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \; = & <\mathsf{y} \to \; \mathsf{y} \; <\mathsf{z} \to \; \mathsf{z} >> <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \\ & (<\mathsf{x} \to <\mathsf{y} \to \mathsf{y} \; \mathsf{x} \to <\mathsf{y} \to \mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >>) \; <\mathsf{x} \to <\mathsf{y} \to \; \mathsf{x} >> \\ & (<\mathsf{x} \to <\mathsf{y} \to \mathsf{y} \; \mathsf{x} \to <\mathsf{y} \to \mathsf{y} \to \mathsf{y} \to \mathsf{x} >>) \; <\mathsf{x} \to <\mathsf{y} \to \mathsf{x} >>) \; <\mathsf{x} \to <\mathsf{y} \to \mathsf{x} >> \\ & (<\mathsf{x} \to <\mathsf{y} \to \mathsf{y} \to \mathsf{y}$$

$$\langle \mathsf{X} \to \mathsf{X} \rangle \langle \mathsf{y} \to \mathsf{y} \rangle = \langle \mathsf{y} \to \mathsf{y} \rangle$$

$$(\langle \mathsf{X} \to \mathsf{y} \to \mathsf{x} \mathsf{y} \rangle z_1) z_2 = \langle \mathsf{y} \to \mathsf{z}_1 \mathsf{y} \rangle z_2$$

$$= z_1 z_2$$

$$(\langle \mathsf{X} \to \mathsf{y} \to \mathsf{x} \mathsf{y} \rangle \langle \mathsf{y} \to \mathsf{y} \rangle \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle) \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle = \langle \mathsf{y} \to \mathsf{z} \to \mathsf{z} \rangle \langle \mathsf{y} \to \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle$$

$$= \langle \mathsf{z} \to \mathsf{z} \rangle \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle$$

$$= \langle \mathsf{x} \to \mathsf{y} \to \mathsf{y} \rangle \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle$$

$$= \langle \mathsf{x} \to \mathsf{y} \to \mathsf{y} \rangle \langle \mathsf{x} \to \mathsf{y} \to \mathsf{x} \rangle$$

$$= \langle \mathsf{x} \to \mathsf{y} \to \mathsf{y} \rangle \langle \mathsf{x} \to \mathsf{y}$$

Normal forms

An expression is in *normal form* if no simplification is possible

- it has no subexpression of the form $\langle x \rightarrow M \rangle N$

An expression has a normal form if you can simplify it to a normal form

You can think of an expression in normal form as a result

$$\langle X \rightarrow X X \rangle \langle X \rightarrow X X \rangle$$

$$<$$
X \rightarrow X X> $<$ X \rightarrow X X> $=$ $<$ X \rightarrow X X> $<$ X \rightarrow X X>

$$< x \rightarrow x \ x > < x \rightarrow x \ x > = < x \rightarrow x \ x > < x \rightarrow x \ x >$$

$$<$$
X \rightarrow X X> $<$ X \rightarrow X X> $=$ $<$ X \rightarrow X X> $<$ X \rightarrow X X> $=$ $<$ X \rightarrow X X> $<$ X \rightarrow X X> $=$ $<$ X \rightarrow X X> $<$ X \rightarrow X X>

Not every expression has a normal form

$$< x \rightarrow x \ x > < x \rightarrow x \ x > = < x \rightarrow x \ x > < x \rightarrow x \ x >$$

$$= < x \rightarrow x \ x > < x \rightarrow x \ x >$$

$$= < x \rightarrow x \ x > < x \rightarrow x \ x >$$

$$= < x \rightarrow x \ x > < x \rightarrow x \ x >$$

$$= \dots$$

Church-Rosser Theorem: If an expression has a normal form, every simplification that yields a normal form yields the same normal form

In English: order of simplification is irrelevant, but some orders may not terminate

Abbreviations

I'm generally going to write:

$$< x y \rightarrow M >$$
 for $< x \rightarrow < y \rightarrow M > >$ $< x y z \rightarrow M >$ for $< x \rightarrow < y \rightarrow < z \rightarrow M >>>$...

So that for example:

$$< x y \rightarrow M > N$$

$$= < x \rightarrow < y \rightarrow M > N$$

$$= < y \rightarrow M {N/x} >$$

$$< x y z \rightarrow M > N$$

$$= < x \rightarrow < y \rightarrow < z \rightarrow M > > N$$

$$= < y \rightarrow < z \rightarrow M {N/x} > >$$

$$= < y z \rightarrow M {N/x} > >$$

The lambda calculus only has identifiers and functions - no other "types" of values

The lambda calculus only has identifiers and functions - no other "types" of values

true =
$$\langle x y \rightarrow x \rangle$$
 (= $\langle x \rightarrow \langle y \rightarrow x \rangle \rangle$)

false =
$$\langle x y \rightarrow y \rangle$$
 (= $\langle x \rightarrow \langle y \rightarrow y \rangle \rangle$)

The lambda calculus only has identifiers and functions - no other "types" of values

true =
$$\langle x \ y \rightarrow x \rangle$$
 (= $\langle x \rightarrow \langle y \rightarrow x \rangle \rangle$)
false = $\langle x \ y \rightarrow y \rangle$ (= $\langle x \rightarrow \langle y \rightarrow y \rangle \rangle$)
if = $\langle c \ t \ e \rightarrow (c \ t) \ e \rangle$ (= $\langle c \rightarrow \langle t \rightarrow \langle e \rightarrow (c \ t) \ e \rangle \rangle$)

The lambda calculus only has identifiers and functions - no other "types" of values

true =
$$\langle x \ y \rightarrow x \rangle$$
 (= $\langle x \rightarrow \langle y \rightarrow x \rangle \rangle$)
false = $\langle x \ y \rightarrow y \rangle$ (= $\langle x \rightarrow \langle y \rightarrow y \rangle \rangle$)
if = $\langle c \ t \ e \rightarrow (c \ t) \ e \rangle$ (= $\langle c \rightarrow \langle t \rightarrow \langle e \rightarrow (c \ t) \ e \rangle \rangle$)
Properties desired: if true $z_1 \ z_2 = z_1$
if false $z_1 \ z_2 = z_2$

The lambda calculus only has identifiers a

We can encode other types of values - if i

true =
$$\langle x y \rightarrow x \rangle$$
 (= $\langle x \rightarrow \langle y \rightarrow x \rangle \rangle$

false =
$$\langle x y \rightarrow y \rangle$$
 (= $\langle x \rightarrow \langle y \rightarrow y \rangle \rangle$

if =
$$\langle c \ t \ e \rightarrow (c \ t) \ e \rangle$$
 (= $\langle c \rightarrow \langle t \rightarrow \langle e \rightarrow \langle$

Properties desired: **if true** $z_1 z_2 = z_1$ **if false** $z_1 z_2 = z_2$

if true
$$z_1 z_2$$

= $< c t e \rightarrow (c t) e > true z_1 z_2$
= $< t e \rightarrow (true t) e > z_1 z_2$
= $< e \rightarrow (true z_1) e > z_2$
= $(true z_1) z_2$
= $(< x y \rightarrow x > z_1) z_2$
= $< y \rightarrow z_1 > z_2$
= z_1

The lambda calculus only has identifiers a

We can encode other types of values - if i

true =
$$\langle x y \rightarrow x \rangle$$
 (= $\langle x \rightarrow \langle y \rightarrow x \rangle \rangle$

false =
$$\langle x y \rightarrow y \rangle$$
 (= $\langle x \rightarrow \langle y \rightarrow y \rangle \rangle$

if =
$$\langle c t e \rightarrow (c t) e \rangle$$
 (= $\langle c \rightarrow \langle t \rightarrow \langle e \rightarrow \rangle$

Properties desired: if true $z_1 z_2 = z_1$ if false $z_1 z_2 = z_2$

```
if false z_1 z_2

= \langle c t e \rightarrow (c t) e \rangle false z_1 z_2

= \langle t e \rightarrow (false t) e \rangle z_1 z_2

= \langle e \rightarrow (false z_1) e \rangle z_2

= (false z_1) z_2

= (\langle x y \rightarrow y \rangle z_1) z_2

= \langle y \rightarrow y \rangle z_2

= z_2
```

A pair is a data structure holding two values, from which you can extract out either

A pair is a data structure holding two values, from which you can extract out either

pair =
$$\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

A pair is a data structure holding two values, from which you can extract out either

$$\begin{array}{ll} \textbf{pair} & = <\mathbf{x} \; \mathbf{y} \rightarrow <\mathbf{s} \rightarrow (\mathbf{s} \; \mathbf{x}) \; \mathbf{y}>> \\ \\ \textbf{fst} & = <\mathbf{p} \rightarrow \mathbf{p} <\mathbf{x} \; \mathbf{y} \rightarrow \mathbf{x}>> \\ \\ \textbf{snd} & = <\mathbf{p} \rightarrow \mathbf{p} <\mathbf{x} \; \mathbf{y} \rightarrow \mathbf{y}>> \\ \end{array}$$

A pair is a data structure holding two values, from which you can extract out either

pair =
$$\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst = $\langle p \rightarrow p \langle x y \rightarrow x \rangle \rangle$
snd = $\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$

Properties desired: **fst** (**pair** $z_1 z_2$) = z_1 **snd** (**pair** $z_1 z_2$) = z_2

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: **fst** (**pair** $z_1 z_2$) = z_1

snd (pair
$$z_1 z_2$$
) =

fst (pair $z_1 z_2$)

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: **fst** (**pair** $z_1 z_2$) = $z_1 z_2$

snd (pair
$$z_1 z_2$$
) =

fst (pair
$$z_1 z_2$$
)
= fst ($\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2$)

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: **fst** (**pair** $z_1 z_2$) = $z_1 z_2$

snd (pair
$$z_1 z_2$$
) =

```
fst (pair z_1 z_2)
= fst (\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2)
= fst (\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle \rangle z_2)
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

$$fst = \langle p \rightarrow p \langle x y \rightarrow x \rangle \rangle$$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: **fst** (**pair** $z_1 z_2$) = z_2

snd (pair
$$z_1 z_2$$
) =

```
fst (pair z_1 z_2)

= fst (\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2)

= fst (\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle \rangle z_2)

= fst \langle s \rightarrow (s z_1) z_2 \rangle
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

$$fst = \langle p \rightarrow p \langle x y \rightarrow x \rangle \rangle$$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: **fst** (**pair** $z_1 z_2$) = z_2 **snd** (**pair** $z_1 z_2$) =

```
fst (pair z_1 z_2)

= fst (<x y \rightarrow <s \rightarrow (s x) y>> z_1 z_2)

= fst (<y \rightarrow <s \rightarrow (s z_1) y>> z_2)

= fst <s \rightarrow (s z_1) z_2>

= > <s \rightarrow (s z_1) z_2>
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

fst (pair
$$z_1 z_2$$
)
= fst ($\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2$)
= fst ($\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle \rangle z_2$)
= fst $\langle s \rightarrow (s z_1) z_2 \rangle$
= $\langle p \rightarrow p \langle x y \rightarrow x \rangle \rangle \langle s \rightarrow (s z_1) z_2 \rangle$
= $\langle s \rightarrow (s z_1) z_2 \rangle \langle x y \rightarrow x \rangle$

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

```
fst (pair z_1 z_2)

= fst (\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2)

= fst (\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle \rangle z_2)

= fst \langle s \rightarrow (s z_1) z_2 \rangle

= \langle p \rightarrow p \langle x y \rightarrow x \rangle \rangle \langle s \rightarrow (s z_1) z_2 \rangle

= \langle s \rightarrow (s z_1) z_2 \rangle \langle x y \rightarrow x \rangle

= (\langle x y \rightarrow x \rangle z_1) z_2
```

A pair is a data structure holding two val

pair =
$$\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

```
fst (pair z_1 z_2)
          = fst (\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle Z_1 Z_2)
          = fst (\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle z_2)
          = fst \langle s \rightarrow (s z_1) z_2 \rangle
           = \langle p \rightarrow p \langle x y \rightarrow x \rangle \langle s \rightarrow (s z_1) z_2 \rangle
          = \langle S \rightarrow (S Z_1) Z_2 \rangle \langle X Y \rightarrow X \rangle
          = (\langle x y \rightarrow x \rangle z_1) z_2
          = \langle y \rightarrow Z_1 \rangle Z_2
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

fst (pair
$$z_1 z_2$$
)
= fst ($\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2$)
= fst ($\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle \rangle z_2$)
= fst $\langle s \rightarrow (s z_1) z_2 \rangle$
= $\langle p \rightarrow p \langle x y \rightarrow x \rangle \rangle \langle s \rightarrow (s z_1) z_2 \rangle$
= $\langle s \rightarrow (s z_1) z_2 \rangle \langle x y \rightarrow x \rangle$
= ($\langle x y \rightarrow x \rangle z_1 \rangle z_2$
= $\langle y \rightarrow z_1 \rangle z_2$
= z_1

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: **fst** (**pair** $z_1 z_2$) = z_1

snd (pair
$$z_1 z_2$$
) =

snd (pair $z_1 z_2$)

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: **fst** (**pair** $z_1 z_2$) = $z_1 z_2$

snd (pair
$$z_1 z_2$$
) =

```
snd (pair z_1 z_2)
= snd (\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2)
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: $fst (pair z_1 z_2) = z_2$

```
snd (pair z_1 z_2) =
```

```
snd (pair z_1 z_2)
          = snd (\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2)
          = snd (\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle \langle z_2 \rangle
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

Properties desired: **fst** (**pair** $z_1 z_2$) = $z_1 z_2$

snd (pair
$$z_1 z_2$$
) =

```
snd (pair z_1 z_2)
= snd (\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2)
= snd (\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle \rangle z_2)
= snd \langle s \rightarrow (s z_1) z_2 \rangle
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

```
snd (pair z_1 z_2)

= snd (\langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle z_1 z_2)

= snd (\langle y \rightarrow \langle s \rightarrow (s z_1) y \rangle \rangle z_2)

= snd \langle s \rightarrow (s z_1) z_2 \rangle

= \langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle \langle s \rightarrow (s z_1) z_2 \rangle
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

snd (pair
$$z_1 z_2$$
)
= snd (> $z_1 z_2$)
= snd (z_1) y>> z_2)
= snd ~~z_1) z_2 >
= > ~~z_1) z_2 >
= ~~z_1) z_2 >~~~~~~

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

```
snd (pair z_1 z_2)

= snd (<x y → <s → (s x) y>> z_1 z_2)

= snd (<y → <s → (s z_1) y>> z_2)

= snd <s → (s z_1) z_2>

= > <s → (s z_1) z_2>

= <s → (s z_1) z_2> <x y → y>

= (<x y → y> z_1) z_2
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

```
snd (pair z_1 z_2)

= snd (<x y → <s → (s x) y>> z_1 z_2)

= snd (<y → <s → (s z_1) y>> z_2)

= snd <s → (s z_1) z_2>

= > <s → (s z_1) z_2>

= <s → (s z_1) z_2> <x y → y>

= (<x y → y> z_1) z_2

= <y → y> z_2
```

A pair is a data structure holding two val

$$pair = \langle x y \rightarrow \langle s \rightarrow (s x) y \rangle \rangle$$

fst =
$$<$$
p \rightarrow p $<$ x y \rightarrow x $>>$

snd =
$$\langle p \rightarrow p \langle x y \rightarrow y \rangle \rangle$$

snd (pair
$$z_1 z_2$$
)
= snd (> $z_1 z_2$)
= snd (z_1) y>> z_2)
= snd ~~z_1) z_2 >
= > ~~z_1) z_2 >
= ~~z_1) z_2 >
= (z_1) z_2
= z_2
= z_2~~~~~~

Church numerals : the encoding of *n* takes a function and applies it *n* times

Church numerals : the encoding of *n* takes a function and applies it *n* times

```
0 = \langle f x \to x \rangle

1 = \langle f x \to f x \rangle

2 = \langle f x \to f (f x) \rangle

3 = \langle f x \to f (f (f x)) \rangle

...

n = \langle f x \to f (f (... f (f x) ...)) \rangle (n times)
```

Church numerals : the encoding of *n* takes a function and applies it *n* times

```
= < f x \rightarrow x >
   1 = \langle f x \rightarrow f x \rangle
2 = \{f \times f \text{ } f \text
                                                          = < f x \rightarrow f (f (f x)) >
                                                            = \langle f x \rightarrow f (f (... f (f x) ...)) \rangle  (n times)
succ = \langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle
 zero? = \langle n \rangle (n \langle x \rangle \text{ false}) \text{ true}
```

Church numerals: the encoding of

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$
...

n = $\langle f x \to f (f (... f (f x) ...)) \rangle$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

Church numerals: the encoding of

$$\mathbf{0} = \langle f \times X \to X \rangle$$

1 =
$$\langle f x \rightarrow f x \rangle$$

$$2 = \langle f X \rightarrow f (f X) \rangle$$

$$3 = \langle f \times f (f (f \times)) \rangle$$

. . .

$$\mathbf{n} = \langle f \times f (f (... f (f \times) ...)) \rangle$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

$$= < n \rightarrow < f x \rightarrow (n f) (f x) >> 2$$

Church numerals: the encoding of

0 =
$$< f x \rightarrow x >$$

1 = $< f x \rightarrow f x >$

2 =
$$< f x \rightarrow f (f x) >$$

. . .

$$\mathbf{n} = \langle f \times f (f (... f (f \times) ...)) \rangle$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

=
$$<$$
n \rightarrow $<$ f x \rightarrow (n f) (f x)>> 2
= $<$ f x \rightarrow (2 f) (f x)>

Church numerals: the encoding o

0 =
$$< f x \to x >$$

1 = $< f x \to f x >$

2 =
$$< f x \rightarrow f (f x) >$$

3 =
$$\{f(x) \to f(f(f(x))) \}$$

. . .

$$\mathbf{n} = \langle f \times f (f (... f (f \times) ...)) \rangle$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

=
$$< n \rightarrow < f x \rightarrow (n f) (f x) >> 2$$

= $< f x \rightarrow (2 f) (f x) >$
= $< f x \rightarrow (< f x \rightarrow f (f x) > f) (f x) >$

Church numerals: the encoding of

0 =
$$< f x \rightarrow x >$$

1 = $< f x \rightarrow f x >$
2 = $< f x \rightarrow f (f x) >$
3 = $< f x \rightarrow f (f (f x)) >$

• • •

$$\mathbf{n} = \langle f \times f (f (... f (f \times) ...)) \rangle$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

=
$$< n \rightarrow < f x \rightarrow (n f) (f x) >> 2$$

= $< f x \rightarrow (2 f) (f x) >$
= $< f x \rightarrow (< f x \rightarrow f (f x) > f) (f x) >$
= $< f x \rightarrow < x \rightarrow f (f x) > (f x) >$

Church numerals: the encoding of

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$

$$n = \{f : X \to f (f (... f (f : X) ...))\}$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

=
$$< n \rightarrow < f x \rightarrow (n f) (f x) >> 2$$

= $< f x \rightarrow (2 f) (f x) >$
= $< f x \rightarrow (< f x \rightarrow f (f x) > f) (f x) >$
= $< f x \rightarrow < x \rightarrow f (f x) > (f x) >$
= $< f x \rightarrow f (f (f x)) >$

Church numerals: the encoding of

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$
...

$$n = \{f : X \to f (f (... f (f : X) ...))\}$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

=
$$< n \rightarrow < f x \rightarrow (n f) (f x) >> 2$$

= $< f x \rightarrow (2 f) (f x) >$
= $< f x \rightarrow (< f x \rightarrow f (f x) > f) (f x) >$
= $< f x \rightarrow < x \rightarrow f (f x) > (f x) >$
= $< f x \rightarrow f (f (f x)) >$
= 3

Church numerals: the encoding of

$$\mathbf{0} = \langle f \times X \to X \rangle$$

1 =
$$\langle f x \rightarrow f x \rangle$$

2 =
$$<$$
f x \rightarrow f (f x) $>$

$$3 = \langle f \times f (f (f \times)) \rangle$$

. . .

$$\mathbf{n} = \langle f \times f (f (... f (f \times) ...)) \rangle$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

zero? 0

Church numerals: the encoding of

0 =
$$< f x \rightarrow x >$$

1 = $< f x \rightarrow f x >$

2 =
$$<$$
f x \rightarrow f (f x) $>$

. . .

$$n = \{ f : X \to f : (f : (f : X) : ...) \}$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

zero? 0 = <n \rightarrow (n <x \rightarrow false>) true> 0

Church numerals: the encoding of

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$
...

n = $\langle f x \to f (f (... f (f x) ...)) \rangle$
succ = $\langle f x \to f (f (... f (f x) ...)) \rangle$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

zero? 0 = <n \rightarrow (n <x \rightarrow false>) true> 0 = (0 <x \rightarrow false>) true

Church numerals: the encoding of

0 =
$$< f x \rightarrow x >$$

1 = $< f x \rightarrow f x >$
2 = $< f x \rightarrow f (f x) >$
3 = $< f x \rightarrow f (f (f x)) >$
...
n = $< f x \rightarrow f (f (... f (f x) ...)) >$
succ = $< n \rightarrow < f x \rightarrow (n f) (f x) >>$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

zero? 0 = <n \rightarrow (n <x \rightarrow false>) true> 0 = (0 <x \rightarrow false>) true = (<f x \rightarrow x> <x \rightarrow false>) true

Church numerals: the encoding o

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$
...
n = $\langle f x \to f (f (... f (f x) ...)) \rangle$

succ = $\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

zero? 0 $= \langle n \rightarrow (n \langle x \rightarrow false \rangle) \text{ true} \rangle 0$ $= (0 \langle x \rightarrow false \rangle) \text{ true}$ $= (\langle f x \rightarrow x \rangle \langle x \rightarrow false \rangle) \text{ true}$ $= \langle x \rightarrow x \rangle \text{ true}$

Church numerals: the encoding of

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$
...
n = $\langle f x \to f (f (... f (f x) ...)) \rangle$

succ = $\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

zero? 0 = <n \rightarrow (n <x \rightarrow false>) true> 0 = $(0 < x \rightarrow false>)$ true = $(<f x \rightarrow x> < x \rightarrow false>)$ true $= \langle x \rightarrow x \rangle$ true = true

Church numerals: the encoding of

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$
...

n = $\langle f x \to f (f (... f (f x) ...)) \rangle$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$$

zero? 2

Church numerals: the encoding of

0 =
$$< f x \rightarrow x >$$

1 = $< f x \rightarrow f x >$

$$2 = \langle f X \rightarrow f (f X) \rangle$$

$$3 = \langle f \times f (f (f \times)) \rangle$$

. . .

$$\mathbf{n} = \langle f \times f (f (... f (f \times) ...)) \rangle$$

succ =
$$\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$$

zero? =
$$\langle n \rangle (n \langle x \rangle \text{ false}) \text{ true}$$

zero? 2 = <n \rightarrow (n <x \rightarrow false>) true> 2

Church numerals: the encoding of

0 =
$$< f x \rightarrow x >$$

1 = $< f x \rightarrow f x >$
2 = $< f x \rightarrow f (f x) >$
3 = $< f x \rightarrow f (f (f x)) >$
...

n = $< f x \rightarrow f (f (... f (f x) ...)) >$
succ = $< n \rightarrow < f x \rightarrow (n f) (f x) >>$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

zero? 2 = <n → (n <x → false>) true> 2 = (2 <x → false>) true

Church numerals: the encoding of

0 =
$$< f x \rightarrow x >$$

1 = $< f x \rightarrow f x >$
2 = $< f x \rightarrow f (f x) >$
3 = $< f x \rightarrow f (f (f x)) >$
...

n = $< f x \rightarrow f (f (... f (f x) ...)) >$
succ = $< n \rightarrow < f x \rightarrow (n f) (f x) >>$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

zero? 2 = <n \rightarrow (n <x \rightarrow false>) true> 2 = (2 <x \rightarrow false>) true = (<f x \rightarrow f (f x)> <x \rightarrow false>) true

Church numerals: the encoding of

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$
...

n = $\langle f x \to f (f (... f (f x) ...)) \rangle$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

succ = $\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$

zero? 2

Church numerals: the encoding of

0 =
$$\langle f x \to x \rangle$$

1 = $\langle f x \to f x \rangle$
2 = $\langle f x \to f (f x) \rangle$
3 = $\langle f x \to f (f (f x)) \rangle$

 $n = \{f x \to f (f (... f (f x) ...))\}$

succ = $\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

zero? 2

=
$$<$$
n \rightarrow (n $<$ x \rightarrow false $>$) true $>$ 2
= (2 $<$ x \rightarrow false $>$) true
= ($<$ f x \rightarrow f (f x) $>$ $<$ x \rightarrow false $>$) true
= $<$ x \rightarrow $<$ x \rightarrow false $>$ ($<$ x \rightarrow false $>$ true)
= $<$ x \rightarrow false $>$ ($<$ x \rightarrow false $>$ true)

Church numerals: the encoding of

0 =
$$< f x \rightarrow x >$$

1 = $< f x \rightarrow f x >$
2 = $< f x \rightarrow f (f x) >$
3 = $< f x \rightarrow f (f (f x)) >$

 $n = \{f x \to f (f (... f (f x) ...))\}$

succ = $\langle n \rightarrow \langle f x \rightarrow (n f) (f x) \rangle \rangle$

zero? = $\langle n \rightarrow (n \langle x \rightarrow false \rangle) tru$

zero? 2

= false

= <n \rightarrow (n <x \rightarrow false>) true> 2 = (2 <x \rightarrow false>) true = (<f x \rightarrow f (f x)> <x \rightarrow false>) true = <x \rightarrow <x \rightarrow false> (<x \rightarrow false> x)> true = <x \rightarrow false> (<x \rightarrow false> true)

```
plus = <m n \rightarrow (m succ) n>
times = <m n \rightarrow (m (plus n)) 0>
```

plus = <m n \rightarrow (m succ) n>

times = <m n \rightarrow (m (plus n)) 0

plus = $< m n \rightarrow (m succ) n >$

times = <m n \rightarrow (m (plus n)) 0

```
plus 2 3 = < m n \rightarrow (m succ) n > 2 3
```

plus = <m n \rightarrow (m succ) n>

times = <m n \rightarrow (m (plus n)) 0

plus 2 3 = $< m n \rightarrow (m succ) n > 2 3$ = $< n \rightarrow (2 succ) n > 3$

```
plus = <m n \rightarrow (m succ) n>
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

- = <m n \rightarrow (m succ) n> 2 3
- = <n \rightarrow (2 succ) n> 3
- = (2 succ) 3

```
plus = <m n \rightarrow (m succ) n>
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

- = <m n \rightarrow (m succ) n> 2 3
- = <n \rightarrow (2 succ) n> 3
- = (2 succ) 3
- $= (< f x \rightarrow f (f x) > succ) 3$

```
plus = < m n \rightarrow (m succ) n >
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

$$=$$
 \rightarrow (m succ) n> 2 3

$$=$$
 \rightarrow (2 succ) n> 3

$$= (2 succ) 3$$

= (
$$\langle f x \rightarrow f (f x) \rangle$$
 succ) 3

$$= \langle x \rightarrow succ (succ x) \rangle 3$$

```
plus = <m n \rightarrow (m succ) n>
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

- = <m n \rightarrow (m succ) n> 2 3
- = <n \rightarrow (2 succ) n> 3
- = (2 succ) 3
- $= (< f x \rightarrow f (f x) > succ) 3$
- $= \langle x \rightarrow succ (succ x) \rangle 3$
- **= succ (succ 3)**

```
plus = < m n \rightarrow (m succ) n >
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

```
plus 2 3

= <m n \rightarrow (m succ) n> 2 3

= <n \rightarrow (2 succ) n> 3

= (2 succ) 3

= (<f x \rightarrow f (f x)> succ) 3

= <x \rightarrow succ (succ x)> 3

= succ (succ 3)

= ...
```

= 5

plus = <m n \rightarrow (m succ) n>

times = <m n \rightarrow (m (plus n)) 0

plus = <m n \rightarrow (m succ) n>

times = <m n \rightarrow (m (plus n)) 0

times 2 3 = $< m \ n \rightarrow (m \ (plus \ n)) \ 0 > 2 \ 3$

plus = <m n \rightarrow (m succ) n>

times = <m n \rightarrow (m (plus n)) 0

times 2 3 = $< m \ n \rightarrow (m \ (plus \ n)) \ 0 > 2 \ 3$ = $< n \rightarrow (2 \ (plus \ n)) \ 0 > 3$

```
plus = < m n \rightarrow (m succ) n >
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

$$= < m n \rightarrow (m (plus n)) 0 > 2 3$$

$$= < n \rightarrow (2 (plus n)) 0 > 3$$

$$= (2 (plus 3)) 0$$

plus = $< m n \rightarrow (m succ) n >$

times = <m n \rightarrow (m (plus n)) 0

times 23

 $= < m n \rightarrow (m (plus n)) 0 > 2 3$

 $= < n \rightarrow (2 (plus n)) 0 > 3$

= (2 (plus 3)) 0

= $(< f x \rightarrow f (f x) > (plus 3)) 0$

```
plus = <m n \rightarrow (m succ) n>|
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

$$=$$
 \rightarrow (m (plus n)) 0> 2 3

$$= < n \rightarrow (2 \text{ (plus n)}) 0 > 3$$

$$= (2 (plus 3)) 0$$

=
$$(< f x \rightarrow f (f x) > (plus 3)) 0$$

$$= 0$$

```
plus = < m n \rightarrow (m succ) n >
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

$$= < m n \rightarrow (m (plus n)) 0 > 2 3$$

$$= < n \rightarrow (2 \text{ (plus n)}) 0 > 3$$

$$= (2 (plus 3)) 0$$

$$= (< f x \rightarrow f (f x) > (plus 3)) 0$$

$$= 0$$

$$= (plus 3) ((plus 3) 0)$$

```
plus = <m n \rightarrow (m succ) n>
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

$$= < m n \rightarrow (m (plus n)) 0 > 2 3$$

$$= < n \rightarrow (2 \text{ (plus n)}) 0 > 3$$

$$= (2 (plus 3)) 0$$

=
$$(< f x \rightarrow f (f x) > (plus 3)) 0$$

$$= 0$$

$$= (plus 3) ((plus 3) 0)$$

```
plus = < m n \rightarrow (m succ) n >
```

times =
$$<$$
m n \rightarrow (m (plus n)) 0

```
times 23
     = < m n \rightarrow (m (plus n)) 0 > 2 3
     = < n \rightarrow (2 \text{ (plus n)}) 0 > 3
     = (2 (plus 3)) 0
     = (< f x \rightarrow f (f x) > (plus 3)) 0
     = <x \rightarrow (plus 3) ((plus 3) x) > 0
     = (plus 3) ((plus 3) 0)
     = plus 3 (plus 3 0)
     = 6
```

```
plus = <m n \rightarrow (m succ) n>

times = <m n \rightarrow (m (plus n)) 0>

pred = <n \rightarrow ??? >
```

```
plus = <m n \rightarrow (m succ) n>
times = <m n \rightarrow (m (plus n)) 0>
pred = \langle n \rightarrow snd (n F (pair 0 0)) \rangle
           where F = \langle p \rightarrow pair (succ (fst p)) (fst p) \rangle
Key property: \mathbf{F} (pair ij) = pair (i + 1, i)
     So
                n F (pair 0 0) = F (F (... F (pair 0 0) ...)) = pair (n, n - 1)
                (snd (n F (pair 0 0)) = n - 1)
     and
```

Recursion

What about computing the sum of all numbers between 0 and *n*?

Tempting:

sumto = $\langle n \rightarrow if (zero? n) 0 (plus n (sumto (pred n))) \rangle$

Recursion

What about computing the sum of all numbers between 0 and *n*?

Tempting:

sumto =
$$\langle n \rightarrow if (zero? n) 0 (plus n (sumto (pred n))) \rangle$$

That's not a mathematical definition!

The right-hand side of a definition cannot contain the term you're defining

But we've written stuff like that before, in OCaml.

So what gives? If it's not a valid definition, what is it?

Arithmetical example

If I write:

$$x = 3x + 1$$

how do you read this in mathematics?

Arithmetical example

If I write:

$$x = 3x + 1$$

how do you read this in mathematics?

It's an equation. It tells you that whatever x is, it has the property that it's equal to one more than its own tripled value

How can you find an x with that property? You solve the equation:

$$x = 3x + 1 \Rightarrow x = -1/2$$

Lambda calculus equations

Similarly, we're going to interpret

sumto =
$$\langle n \rightarrow if (zero? n) 0 (plus n (sumto (pred n))) \rangle$$

as an **equation**

$$g = \langle n \rightarrow if (zero? n) 0 (plus n (g (pred n))) \rangle$$

We're looking for a term in the lambda calculus that satisfies the above equation

Solving equations = finding fixed points!

Consider again the arithmetic equation

$$x = 3x + 1$$

Define function F as:

$$F(x) = 3x + 1$$

Every solution x_0 of x = 3x + 1 has the property that $F(x_0) = x_0$

Conversely, if $F(x_0) = x_0$, then x_0 is a solution of x = 3x + 1

Solutions of x = 3x + 1 are *fixed points* of the function F(x) = 3x + 1

Solving lambda calculus equations

Back to

$$g = \langle n \rightarrow if (zero? n) 0 (plus n (g (pred n))) \rangle$$

Solving this equation means finding a fixed point of the function:

$$F_{sumto}(g) = \langle n \rightarrow if (zero? n) 0 (plus n (g (pred n))) \rangle$$

or equivalently:

$$F_{sumto} = \langle g \rightarrow \langle n \rightarrow if (zero? n) 0 (plus n (g (pred n))) \rangle$$

Theorem: Every function in the lambda calculus has a fixed point

$$\Theta$$
 = $\langle y \rightarrow y ((\Theta_0 \Theta_0) y) \rangle$ where $\Theta_0 = \langle x y \rightarrow y ((x x) y) \rangle$

$$\Theta F = ?$$

$$\Theta$$
 = $\langle y \rightarrow y ((\Theta_0 \Theta_0) y) \rangle$ where $\Theta_0 = \langle x y \rightarrow y ((x x) y) \rangle$

$$\Theta F = \langle y \rightarrow y ((\Theta_0 \Theta_0) y \rangle F$$

$$\Theta$$
 = $\langle y \rightarrow y ((\Theta_0 \Theta_0) y) \rangle$ where $\Theta_0 = \langle x y \rightarrow y ((x x) y) \rangle$

$$\Theta F = \langle y \rightarrow y ((\Theta_0 \Theta_0) y \rangle F$$
$$= F ((\Theta_0 \Theta_0) F)$$

$$\Theta$$
 = $\langle y \rightarrow y ((\Theta_0 \Theta_0) y) \rangle$ where $\Theta_0 = \langle x y \rightarrow y ((x x) y) \rangle$

$$\Theta F = \langle y \to y ((\Theta_0 \Theta_0) y \rangle F
= F ((\Theta_0 \Theta_0) F)
= F ((\langle x y \to y ((x x) y) \rangle \Theta_0) F)$$

$$\Theta$$
 = $\langle y \rightarrow y ((\Theta_0 \Theta_0) y) \rangle$ where $\Theta_0 = \langle x y \rightarrow y ((x x) y) \rangle$

$$\Theta F = \langle y \rightarrow y ((\Theta_0 \Theta_0) y \rangle F
= F ((\Theta_0 \Theta_0) F)
= F ((\langle x y \rightarrow y ((x x) y) \rangle \Theta_0) F)
= F ((\langle y \rightarrow y ((\Theta_0 \Theta_0) y) F))$$

```
Define
```

$$\Theta = \langle y \rightarrow y ((\Theta_0 \Theta_0) y) \rangle$$
 where $\Theta_0 = \langle x y \rightarrow y ((x x) y) \rangle$

$$\Theta F = \langle y \rightarrow y ((\Theta_0 \Theta_0) y \rangle F
= F ((\Theta_0 \Theta_0) F)
= F ((\langle x y \rightarrow y ((x x) y) \rangle \Theta_0) F)
= F ((\langle y \rightarrow y ((\Theta_0 \Theta_0) y) F)
= F (\Theta F)$$

Define

$$\Theta$$
 = $\langle y \rightarrow y ((\Theta_0 \Theta_0) y) \rangle$ where $\Theta_0 = \langle x y \rightarrow y ((x x) y) \rangle$

$$\Theta F = \langle y \rightarrow y ((\Theta_0 \Theta_0) y \rangle F
= F ((\Theta_0 \Theta_0) F)
= F ((\langle x y \rightarrow y ((x x) y) \rangle \Theta_0) F)
= F ((\langle y \rightarrow y ((\Theta_0 \Theta_0) y) F)
= F (\Theta F)$$

 $\Rightarrow \Theta$ F is a fixed point of F!

Define

$$\Theta = \langle y \rightarrow y ((\Theta_0 \Theta_0) y) \rangle$$
 where

$$\Theta F = \langle y \rightarrow y ((\Theta_0 \Theta_0) y \rangle F
= F ((\Theta_0 \Theta_0) F)
= F ((\langle x y \rightarrow y ((x x) y) \rangle \Theta_0) F)
= F ((\langle y \rightarrow y ((\Theta_0 \Theta_0) y) F)
= F (\Theta F)$$

 $\Rightarrow \Theta$ F is a fixed point of F!

Another famous fixed point combinator you might have heard of:

$$Y = \langle f \rightarrow (\langle x \rightarrow f(x x) \rangle \langle x \rightarrow f(x x) \rangle) \rangle$$

and you can derive:

$$YF = F(YF)$$

Defining **sumto**

Given:

$$F_{sumto} = \langle g \rightarrow \langle n \rightarrow if (zero? n) 0 (plus n (g (pred n))) \rangle$$

You can define:

sumto =
$$\Theta$$
 F_{sumto}
= Θ \rightarrow \rightarrow if (zero? n) 0 (plus n (g (pred n)))>>

Claim: **sumto** *n* simplifies to the sum of all first *n* natural numbers

```
sumto 3 = (\Theta F_{\text{sumto}}) 3
               = \dots = (F_{\text{sumto}} (\Theta F_{\text{sumto}})) 3
               = (\langle h \rightarrow \langle n \rightarrow if (zero? n) 0 (plus n (h (pred n))) \rangle (\Theta F_{sumto})) 3
               = \langle n \rightarrow if (zero? n) \ 0 \ (plus \ n \ ((\Theta \ F_{sumto}) \ (pred \ n))) > 3
               = if (zero? 3) 0 (plus 3 ((\Theta F_{\text{sumto}}) (pred 3)))
               = ... = plus 3 ((\Theta F_{sumto}) (pred 3))
               = \dots =  plus 3 ((\Theta F_{sumto}) 2)
               = ... = plus 3 ((F_{sumto} (\Theta F_{sumto})) 2)
               = plus 3 ((\langle h \rightarrow \langle n \rightarrow if (zero? n) 0 (plus n (h (pred n))) \rangle (\Theta F_{sumto})) 2)
               = plus 3 (\langle n \rightarrow if (zero? n) 0 (plus n ((<math>\Theta F_{sumto}) (pred n))) \rangle 2)
               = plus 3 (if (zero? 2) 0 (plus 2 ((Θ F<sub>sumto</sub>) (pred 2)))
               = ... = plus 3 (plus 2 ((\Theta F_{sumto}) (pred 2)))
               = \dots = plus 3 (plus 2 ((\Theta F_{sumto}) 1))
```

```
= plus 3 (plus 2 ((Θ F<sub>sumto</sub>) 1))
= ... = plus 3 (plus 2 ((F_{sumto} (\Theta F_{sumto})) 1))
= plus 3 (plus 2 ((<h \rightarrow <n \rightarrow if (zero? n) 0 (plus n (h (pred n)))>> (\Theta F<sub>sumto</sub>)) 1))
= plus 3 (plus 2 (\langle n \rightarrow if (zero? n) 0 (plus n ((<math>\Theta F_{sumto}) (pred n))) \rangle 1))
= plus 3 (plus 2 (if (zero? 1) 0 (plus 1 ((\Theta F_{sumto}) (pred 1)))))
= ... = plus 3 (plus 2 (plus 1 (\Theta F_{sumto}) (pred 1))))
= ... = plus 3 (plus 2 (plus 1 ((\Theta F_{sumto}) 0)))
= ... = plus 3 (plus 2 (plus 1 ((F_{sumto} (\Theta F_{sumto})) 0)))
= plus 3 (plus 2 (plus 1 ((<h \rightarrow <n \rightarrow if (zero? n) 0 (plus n (h (pred n)))>> (\Theta F_{sumto})) 0)))
= plus 3 (plus 2 (plus 1 (<n \rightarrow if (zero? n) 0 (plus n ((\Theta F_{sumto}) (pred n)))> 0)))
= plus 3 (plus 2 (plus 1 (if (zero? 0) 0 (plus 0 ((Θ F<sub>sumto</sub>) (pred 0))))))
```

= ... = plus 3 (plus 2 (plus 1 0)) = ... = 6