Convex Optimization and Optimal Control

Maximilien Bohm

April 20, 2022

Contents

1	Rer	ninder	s on Real Analysis	5
	1.1	Norme	ed vector spaces and inner product spaces	5
		1.1.1	Norms and balls	5
		1.1.2	Open sets, closed sets	5
		1.1.3	Closure, interior	5
2	Cor	ivex Se	ets	7
	2.1	Definit	ion and first properties	7
		2.1.1	Definition and first algebraic properties	7
		2.1.2	First topological properties	7
	2.2	Conve	x combinations and convex hull	7
		2.2.1	Convex combinations	7
		2.2.2	Convex hull	8
	2.3	Projec	tion and separation	8
		2.3.1	Projection of a point onto a closed convex set	8
		2.3.2	Representation of linear functionals and applications: gra-	
				9
		2.3.3	· · · · · ·	0
	2.4	Cones	-	1
		2.4.1	Definitions	1
		2.4.2		1
		2.4.3		2
3	Cor	ıvex fu	nctions 1	3
	3.1	Definit	tions and first properties	3
		3.1.1		3
		3.1.2		3
		3.1.3		4
	3.2	Partic		4
		3.2.1		4
		3.2.2		5
		3.2.3		5
	3.3		11	5
		3.3.1		5
		3.3.2	v	5
	3.4		v	6
		3 4 1		6

	3.4.2	Closed convex hull	16
3.5	Legene	dre-Fenchel transform	17
	3.5.1	Definition	17
	3.5.2	Fenchel-Moreau-Rockafellar theorem	17

CONTENTS

Chapter 1

Reminders on Real Analysis

Lecture 0: Reminders on Real Analysis

Tue 19 Apr 2022 16:06

- 1.1 Normed vector spaces and inner product spaces
- 1.1.1 Norms and balls
- 1.1.2 Open sets, closed sets
- 1.1.3 Closure, interior

Chapter 2

Convex Sets

Lecture 1: Convex sets

Tue 19 Apr 2022 16:19

2.1 Definition and first properties

2.1.1 Definition and first algebraic properties

Definition 1. Let X be a (real) vector space. A set $A \subset X$ is said to be convex if

$$\forall (x,y) \in A^2, \forall \theta \in [0,1], qq\theta x + (1-\theta)y \in A...$$

Proposition 1. An (arbitrary) intersection of convex subsets of X is convex.

Proposition 2. The sum of two convex sets is convex.

2.1.2 First topological properties

Proposition 3. If X is a normed vector space then all balls (open or closed) of X are convex.

Proof.

Proposition 4. If A is convex subset of a normed vector space then \overline{A} and $\int A$ are also convex.

Proof.

2.2 Convex combinations and convex hull

2.2.1 Convex combinations

Definition 2. Let X be a vector space. A convex combination of m elements $x_1, \ldots, x_m \in X$ is an element $y \in X$ that can be decomposed as

$$y = \sum_{i=1}^{m} \theta_i x_i$$
 with $(\theta_1, \dots, \theta_m) \in (\mathbb{R}_+)^m$, $\sum_{i=1}^{m} \theta_i = 1$.

Proposition 5. If A is convex then any convex combination of elements of A belong to A.

Proof.

Theorem 1 (Carathéodory). In a vector space of dimension n, all convex combination of m elements, m > n + 1, can be written as a convex combination of at most n + 1 of these elements.

Proof.

2.2.2 Convex hull

Definition 3. Let X be a vector space and A be a subset of X. The convex hull of A, denoted by conv A is the smallest (inclusion) convex subset of X containing A. It is the intersection of all convex sets containing A.

Proposition 6. The convex hull of A is the set of all convex combinations of elements of A.

Proposition 7. Let X, Y be two vector spaces, $A \subset X, B \subset Y$. We have $conv(A \times B) = conv A \times conv B$.

Proof.

2.3 Projection and separation

2.3.1 Projection of a point onto a closed convex set

Theorem 2. Let X be a Hilbert space and A be a nonempty closed convex subset of X. For all $x \in X$ there exists a unique $y \in A$ such that

$$||x - y|| = \min_{z \in A} ||x - z||.$$

This element is characterized by the variational inequality (see in ??)

$$\langle x - y, z - y \rangle \le 0 \quad \forall z \in A.$$

It is called the projection of x onto A, denoted by $y = P_A(x)$.

Figure 2.9: Projection onto a convex set

Proof.

Proposition 8. Under the assumptions of the above theorem, we have

$$||P_A(x) - P_A(y)|| \le ||x - y|| \quad \forall x, y \in X,.$$

i.e. the projection operator is 1-Lipschitz continuous.

Proof.

Proposition 9. Let X be a Hilbert space and M be a closed linear subspace of X. The projection $y = P_M(x) \in M$ is characterized by

$$\langle x - y, v \rangle = 0 \quad \forall v \in M..$$

Moreover P_M is a linear map. It is called orthogonal projection.

Proof.

2.3.2 Representation of linear functionals and applications: gradient, adjoint

Theorem 3 (Riesz). Let X be a Hilbert space and φ be a continuous linear functional on X. There exists a unique $w \in X$ such that

$$\langle w, x \rangle = \varphi(x) \quad \forall x \in X.$$

The vector w is called the Riesz representation of φ .

Proof.

Definition 4. Let X be a Hilbert space and $f: X \to \mathbb{R}$ be a function. Let $x \in X$ be such that d is Fréchet differentiable at x. The gradient of f at x, denoted by $\nabla f(x)$ is the Riesz representation of the linear functional df(x).

Theorem 4. Let X, Y be two Hilbert spaces and $L \in \mathcal{L}(X, Y)$. There exists a unique map $L^* \in \mathcal{L}(Y, X)$, called the adjoint of L such that

$$\langle Lx, y \rangle = \langle x, L^*y \rangle \quad \forall (x, y) \in X \times Y...$$

2.3.3 Separation of convex sets

Theorem 5. Lat A be a closed convex subset of a Hilbert space X and let $X \in X \setminus A$. There exists $r \in X \setminus \{0\}$ such that

$$\sup_{z\in A}\langle r,z\rangle<\langle r,x\rangle.$$

Proof.

Corollary 1. For all subset A of a Hilbert space, $\overline{\operatorname{conv} A}$ is equal to the intersection of all affine half-spaces containing A. It is called the closed convex hull of A.

Proof.

Theorem 6. Let A and B be two disjoint convex subsets of a Hilbert space X with A closed and B compact. There exists $r \in X \setminus \{0\}$ such that

$$\sup_{x\in A}\langle r,x\rangle < \inf_{y\in B}\langle r,y\rangle.$$

Proof. \Box

Theorem 7. Let A be a nonempty open convex subset of a finite dimensional Hilbert space X and let $x \in X \setminus A$. There exists $r \in X \setminus \{0\}$ such that

$$\langle r,z\rangle \leq \langle r,x\rangle \quad \forall z\in A..$$

Proof.

2.4 Cones

2.4.1 Definitions

Figure 2.15: Non-convex cone (left) and convex cone (right)

Definition 5. A subset C of a vector space X is said to be a cone if

$$\forall (\alpha, x) \in \mathbb{R}_+ \times C, \alpha x \in C.$$

Cones can be convex or not as we can see in ??.

Proposition 10. If C is a cone of a normed vector space X then \overline{C} is also a cone.

Proof.

2.4.2 Polar cones

Figure 2.16: Positive and negative polar cones

Definition 6. Let C be a cone of a Hilbert space X. The positive and negative polar (or dual) cones of C are respectively defined by (see $\ref{eq:condition}$)

$$\begin{split} C^+ &= \{x \in X \ s.t \ \langle x,y \rangle \geq 0, \forall y \in C \} \\ C^- &= \{x \in X \ s.t \ \langle x,y \rangle \leq 0, \quad \forall y \in C \}. \end{split}$$

Example 1. For the positive orthant it is easily checked that

$$(\mathbb{R}^n_+)^+ = \mathbb{R}^n_+, \qquad (\mathbb{R}^n_+)^- = \mathbb{R}^n_-..$$

Indeed, the negative polar cone is

$$(\mathbb{R}^n_+)^- = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \text{ s.t } \sum_{i=1}^n x_i y_i \le 0 \quad \forall (y_1, \dots, y_n) \in \mathbb{R}^n_+ \right\}.$$

Theorem 8. If C is a convex cone of a Hilbert space X then

$$C^{--} = \overline{C}.$$

Proof.

2.4.3 Normal cone and tangent cone of a convex set

Definition 7. Let A be a convex set of a Hilbert space X and let $a \in A$. The normal cone of A at point a is the set

$$N_A(a) = \{ x \in X \text{ s.t } \langle x, y - a \rangle \le 0 \quad \forall y \in A \}.$$

Definition 8. Let A be a convex set of a Hilbert space X and let $a \in A$. The tangent cone of A at point a is the smallest (inclusion) closed convex cone containing A - a. It is the intersection of all closed convex cones containing A - a. It is denoted by $T_A(x)$.

Lemma 1. The tangent cone $T_A(a)$ is the closure of the convex convex (called radial cone)

$$T_A^{\circ}(a) = \{ \alpha(x-a), \quad \alpha \ge 0, \quad x \in A \}.$$

Proof.

Theorem 9. Let A be a convex set of a Hilbert space X and let $a \in A$. We have

$$N_A(a) = (T_A(a))^-.$$

Proof. \Box

Chapter 3

Convex functions

Lecture 3: Convex functions

Tue 19 Apr 2022 18:32

3.1 Definitions and first properties

3.1.1 Extended real valued functions

3.1.2 Convex functions

Definition 9. Let X be a vector space and $f: X \to \overline{\mathbb{R}}$. The epigraph of f is the set

epi
$$f = \{(x, \zeta) \in X \times \mathbb{R} \text{ s.t. } \zeta \geq f(x)\}..$$

Proposition 11. Let X be a vector space and $f, g: X \to \overline{\mathbb{R}}$ be two functions. Then

$$f = q \Leftrightarrow \operatorname{epi} f = \operatorname{epi} q$$
..

Definition 10. Let X be a vector space and $f: X \to \overline{\mathbb{R}}$. The function f is said to be convex if its epigraph is convex.

Proposition 12. A function $f: X \to \overline{\mathbb{R}}$ is convex iff

$$\forall x, y \in \text{dom } f, \forall \theta \in (0, 1), \qquad f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

Proof.

Proposition 13. If $f: X \to \overline{\mathbb{R}}$ is convex then we have that for all $(x_1, \ldots, x_m) \in$

dom f and all $(\theta_1, \dots, \theta_m) \in (0, 1)^m$ with $\sum_{i=1}^m \theta_i = 1$,

$$f\left(\sum_{i=1}^{m} \theta_i x_i\right) \le \sum_{i=1}^{m} \theta_i f(x_i).$$

Proof.

Definition 11. A function $f: X \to \overline{\mathbb{R}}$ is strictly convex iff

$$\forall x, y \in \text{dom } f, x \neq y, \forall \theta \in (0, 1), \qquad f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y).$$

A function $f: X \to \overline{\mathbb{R}}$ is said to be (strictly) concave if -f is (strictly) convex.

3.1.3 Level sets

Definition 12. Let X be a vector space, $f: X \to \overline{\mathbb{R}}$ and $\gamma \in \overline{\mathbb{R}}$. The γ -level set of f is the set

$$\operatorname{lev}_{\gamma} f = \{ x \in X \text{ s.t. } f(x) \leq \gamma \}.$$

Proposition 14. Let X be a vector space, $f: X \to \overline{\mathbb{R}}$ and $\gamma \in \overline{\mathbb{R}}$. If f is convex then $\text{lev}_{\gamma}f$ is convex.

3.2 Particular cases

3.2.1 Marginal functions

Definition 13. Let X be a vector space, I be an arbitrary set and $(f_i)_{i \in I}$ be a family of functions $f_i : X \to \overline{\mathbb{R}}$. We define the upper marginal function

$$\sup_{i \in I} f_i : X \to \overline{\mathbb{R}}$$
$$x \mapsto \sup_{i \in I} f_i(x).$$

Lemma 2. Let X be a vector space, I be a set and $(f_i)_{i \in I}$ be a family of functions $f_i: X \to \overline{\mathbb{R}}$. We have

$$\operatorname{epi} \sup_{i \in I} f_i = \bigcap_{i \in I} \operatorname{epi} f_i..$$

Corollary 2. Let X be a vector space, I be an arbitrary set and $(f_i)_{i\in I}$ be a family of convex functions $f_i: X \to \overline{\mathbb{R}}$. Then, $\sup_{i\in I} f_i$ is convex.

Proposition 15. Let X, Y be vector spaces and $f: X \times Y \to \overline{\mathbb{R}}$ be a convex function. The function $g: X \to \overline{\mathbb{R}}$ defined by

$$g(x) = \inf_{y \in Y} f(x, y).$$

is convex.

3.2.2 Indication function

Definition 14. Let A be a subset of a vector space X. The indicator function of A is the function $I_A: X \to \mathbb{R} \cup \{+\infty\}$ defined by

$$I_A(x) = \begin{cases} 0 & \text{if } x \in A \\ +\infty & \text{if } x \neq A \end{cases}.$$

Proposition 16. A subset A of a vector space X is convex iff its indicator function I_A is convex.

3.2.3 Support function

Definition 15. Let A be a nonempty subset of a Hilbert space X. The support function of A is the function $\sigma_A: X \to \mathbb{R} \cup \{+\infty\}$ defined by

$$\sigma_A(p) = \sup_{x \in A} \langle p, x \rangle.$$

Theorem 10. Let A be a nonempty subset of a Hilbert space X. Then

$$\overline{\operatorname{conv} A} = \{ x \in X \text{ s.t. } \langle p, x \rangle \leq \sigma_A(p), \quad \forall p \in X \}.$$

3.3 Continuity and lower semicontinuity

3.3.1 Continuity

Proposition 17. Let X be a normed vector space and $f: X \to \overline{\mathbb{R}}$ be a convex function. If $f(x_0) \in \mathbb{R}$ and f is bounded from above in a neighborhood of x_0 , then f is Lipschitz continuous in a (possibly smaller) neighborhood of x_0 .

Proposition 18. Let $f: X \to \overline{\mathbb{R}}$ be a convex function, where X is a normed vector space of finite dimension. Then f is continuous at each $x_0 \in \int \operatorname{dom} f$ such that $f(x_0) \in \mathbb{R}$.

3.3.2 Lower semicontinuity

Definition 16. Let X be a normed vector space and $f: X \to \overline{\mathbb{R}}$. We say that f is lower semicontinuous (or closed) if its epigraph is a closed subset of $X \times \mathbb{R}$.

Proposition 19. Let X be a normed vector space and $f: X \to \overline{\mathbb{R}}$. The following assertions are equivalent.

- *f is lower semicontinuous*;
- all level sets $lev_{\gamma} f$, $\gamma \in \mathbb{R}$ are closed;
- for all sequence (x_n) of elements of X such that

$$\lim_{n \to +\infty} x_n = x \in X \quad and \quad \lim_{n \to +\infty} f(x_n) = y \in \overline{\mathbb{R}}.$$

it holds $f(x) \leq y$.

Proposition 20. Let X be a normed vector space, \underline{I} be a set and $(f_i)_{i\in I}$ be a family of lower semicontinuous functions $f_i: X \to \overline{\mathbb{R}}$. Then $\sup_{i\in I} f_i$ is lower semicontinuous.

3.4 Closed convex hull of an extended real valued function

3.4.1 Affine minorant

Definition 17. Let X be a Hilbert space and $f: X \to \overline{\mathbb{R}}$. We say that f admits an affine minorant if there exists $(a,) \in X \times \mathbb{R}$ such that

$$f(x) \ge \langle a, x \rangle + \alpha \quad \forall x \in X..$$

Proposition 21. Let X be a Hilbert space and $f: X \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinous convex function. Then f admits an affine minorant.

3.4.2 Closed convex hull

Proposition 22. Let X be a Hilbert space and $f: X \to \overline{\mathbb{R}}$ be a function with affine minorant. Let G be the set of convex lower semicontinuous functions $g: X \to \mathbb{R} \cup \{+\infty\}$ such that $g(x) \leq f(x)$ for all $x \in X$. Then

- $G \neq \emptyset$;
- \bullet test
- $\cap_{g \in G} \text{epi } g$ is the epigraph of a convex lower semicontinuous function called the closed convex hull of f, denoted by $\overline{\text{conv}} f$; $\overline{\text{conv}} f$ is the greatest convex lower semicontinuous function minorizing f.

3.5 Legendre-Fenchel transform

3.5.1 Definition

Definition 18. Let X be a Hilbert space and $f: X \to \overline{\mathbb{R}}$ be an arbitrary function. The Legendre-Fenchel transform of f (or conjuguate of f) is the function $f^*: X \to \overline{\mathbb{R}}$ defined by

$$f^*(p) = \sigma_{\text{epi } f}(p, -1) = \sup_{x \in X} \langle p, x \rangle - f(x).$$

Remark. The definition immediately shows, if A is an arbitrary nonempty subset of X, then

$$I_A^* = \sigma_A$$
.

Lemma 3. Let $f: X \to \overline{\mathbb{R}}$ be proper. If f admits an affine minorant then f^* is proper.

3.5.2 Fenchel-Moreau-Rockafellar theorem

Theorem 11 (Fenchel-Moreau-Rockafellar). Let X be a Hilbert space and $f: X \to \overline{\mathbb{R}}$ be a proper function with affine minorant. Then

$$f^{**} = \sup\{g, g \text{ affine minorant of } f\} = \overline{\text{conv}} f.$$

Remark. We have shown in the proof the equality

$$epi\overline{conv} f = \overline{convepi f},.$$

i.e. the epigraph of the closed convex hull of a proper function with affine minorant is the closed convex hull of its epigraph.

Corollary 3. If f is convex, proper and lower semicontinuous then $f^{**} = f$.