Sprawozdanie

Lab. 6

Zadanie 1

Zaprojektować komparator (układ porównujący) dwóch k-bitowych liczb naturalnych zapisanych w kodzie NKB; układ ma dodatkowo przesyłać na wyjście większą z tych liczb.

Lp	а	b	q1 IN	q2 IN	q1 OUT	q2 OUT	у
0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0
3	0	0	1	1	0	0	0
4	0	1	0	0	0	1	1
5	0	1	0	1	0	1	1
6	0	1	1	0	1	0	0
7	0	1	1	1	0	1	1
8	1	0	0	0	1	0	1
9	1	0	0	1	0	1	0
10	1	0	1	0	1	0	1
11	1	0	1	1	1	0	1
12	1	1	0	0	0	0	1
13	1	1	0	1	0	1	1
14	1	1	1	0	1	0	1
15	1	1	1	1	0	0	1

ab\q1q2	00	01	11	10	
00	0	0	0	1	
01	0	0	0	1	
11	0	0	0	1	
10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	1	1	
A*!b*!q2 + q1*!q2 + a*!b*q1					

ab\q1q2	00	01	11	10	
00	0	1	0	0	
01	1	1	1	0	
11	0	1	0	0	
10	0	1	0	0	
!q1*q2 + !A*B*q2 + !A*B*!q1					

ab\q1q2	00	01	11	10	
00	0	0	0	0	
01	<mark>1</mark>	1	1	0	
11	<u>1</u>	1	1	1	
10	1	0	1	1	
B*!q1 + B*q2 + A*q1 + A*!q2					

Zadanie 2

Zaprojektować układ, który w k-bitowym ciągu wejściowym wykrywa grupy sąsiadujących ze sobą jedynek (co najmniej trzech) i na wyjściu zastępuje je zerami. Na pozostałych pozycjach mają być jedynki. Układy tego typu mogą być stosowane do sterowania wielostanowiskowymi systemami obsługi. Wykrywają nadmierne zagęszczenie zgłoszeń w pewnych rejonach i zamykają chwilowo dostęp do tych stanowisk.

Lp	a	q IN	p1 IN	p2 IN	у	q OUT	p1 OUT	p2 OUT
0	0	0	0	0	1	0	0	0
1	0	0	0	1	1	0	0	0
2	0	0	1	0	1	0	0	0
3	0	0	1	1	1	1	0	0
4	0	1	0	0	-	-	-	-
5	0	1	0	1	-	-	-	-
6	0	1	1	0	-	-	-	-
7	0	1	1	1	-	-	-	-
8	1	0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
10	1	0	1	0	0	1	1	1
11	1	0	1	1	0	1	1	1
12	1	1	0	0	0	0	0	1
13	1	1	0	1	0	1	1	0
14	1	1	1	0	0	1	1	1
15	1	1	1	1	0	1	1	1

ab\q1q2	00	01	11	10
00	1	1	1	1
01	-	-	-	-
11	0	0	0	0
10	1	1	0	0
!A + !q*!p1				

ab\q1q2	00	01	11	10	
00	0	0	1	0	
01	-	<mark>-</mark>	<u>-</u>	-	
11	0	<mark>1</mark>	1	1	
10	0	0	1	1	
p1*p2 + q*p + A*p1					

ab\q1q2	00	01	11	10	
00	0	0	0	0	
01	-	-	-	-	
11	1	0	1	1	
10	1	0	1	1	
A*p1 + A*!p2					

ab\q1q2	00	01	11	10	
00	0	0	0	0	
01	-	-	-	-	
11	1	0	1	1	
10	1	0	1	1	
A*p1 + A*!p2					

