Variável Aleatória

Rodrigo R. Pescim

Universidade Estadual de Londrina

25 de maio 2020

Introdução

Pergunta: Suponha que uma moeda honesta é lançada cinco vezes.

Qual é o número de caras?

• Esta quantidade é o que tem sido chamada de variável aleatória.

Introdução

Pergunta: Suponha que uma moeda honesta é lançada cinco vezes. Qual é o número de caras?

- Esta quantidade é o que tem sido chamada de variável aleatória.
- Intuitivamente, é uma variável pois seus valores variam e, é aleatória para enfatizar que o seu valor é de certo modo incerto.

Introdução

Pergunta: Suponha que uma moeda honesta é lançada cinco vezes. Qual é o número de caras?

- Esta quantidade é o que tem sido chamada de variável aleatória.
- Intuitivamente, é uma variável pois seus valores variam e, é aleatória para enfatizar que o seu valor é de certo modo incerto.
- Formalmente, uma variável aleatória não é nem aleatória nem é uma variável.

Definição 1. Seja (Ω, \mathcal{A}, P) um espaço de probabilidade. A função $X:\Omega\to\mathbb{R}$ é chamada de variável aleatória se para todo evento Boreliano $B, X(B)^{-1}\in\mathcal{A}$.

• Por definição, temos que $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$ é o conjunto de elementos de Ω cuja a imagem de X está em B.

- Por definição, temos que $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$ é o conjunto de elementos de Ω cuja a imagem de X está em B.
- Observa-se que um evento Boreliano é qualquer evento pertencente a σ -álgebra de Borel, isto é, a menor σ -álgebra contendo todos os intervalos da reta.

- Por definição, temos que $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$ é o conjunto de elementos de Ω cuja a imagem de X está em B.
- Observa-se que um evento Boreliano é qualquer evento pertencente a σ -álgebra de Borel, isto é, a menor σ -álgebra contendo todos os intervalos da reta.

• Assim, se uma dada função X de Ω para os reais é uma variável aleatória usando a definição, precisa-se mostrar se para todo Boreliano B, a imagem inversa de B de acordo com X faz parte da σ -álgebra.

- Por definição, temos que $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$ é o conjunto de elementos de Ω cuja a imagem de X está em B.
- Observa-se que um evento Boreliano é qualquer evento pertencente a σ -álgebra de Borel, isto é, a menor σ -álgebra contendo todos os intervalos da reta.

 Assim, se uma dada função X de Ω para os reais é uma variável aleatória usando a definição, precisa-se mostrar se para todo Boreliano B, a imagem inversa de B de acordo com X faz parte da σ-álgebra.

• O próximo resultado mostra que só é necessário checar que a imagem inversa de intervalos da forma $(-\infty, x]$ pertence à σ -álgebra.

Teorema 1. Seja (Ω, \mathcal{A}) um espaço mensurável. Uma função real $X:\Omega\to\mathbb{R}$ é uma variável aleatória se e somente se

$$X^{-1}((-\infty,\lambda]) = \{\omega \in \Omega : X(\omega) \le \lambda\} \in \mathcal{A}, \ \forall \lambda \in \mathbb{R}.$$

- Assim, dada uma variável aleatória X, pode-se construir uma probabilidade induzida P_X no espaço mensurável $(\mathbb{R}, \mathcal{B})$, isto é, $\forall A \in \mathcal{B} \ P_X(A) = P(X^{-1}(A)) = P(X \in A)$.
- Por definição de variável aleatória, tem-se que que $X^{-1}(A) \in \mathcal{B}$, então P_X está bem definida.
- Dessa forma, P_X é uma medida de probabilidade se satisfaz os axiomas de Kolmogorov.

1. Lançar uma moeda n vezes e observar a sequência de caras (c) ou coroas (k) obtidas. Assim,

$$\Omega = \{\omega_1, \ldots, \omega_n\}.$$

De fato, ao definir X = número de caras observadas, temos que ode X depende do resultado do experimento, e então

$$X = X(\omega) = \{i : \omega_i = c, 1 \le i \le n\}.$$

2. Selecionar um ponto ao acaso em [0,1]. Seja X o quadrado do valor obtido. Então, temos que

$$\Omega = [0,1]$$
 e $X(\omega) = \omega^2$.

3. Selecionar um ponto ao acaso no círculo unitário. Seja X a distância entre o ponto selecionado e a origem. Então,

$$\Omega = \{(x, y) : x^2 + y^2 \le 1\}$$

e, com $\omega = (x, y)$,

$$X(\omega)=\sqrt{x^2+y^2}.$$

4. Selecionar um ponto ao acaso no círculo unitário, e sejam X e Y as coordenadas do resultado. Então

$$\Omega = \{(x, y) : x^2 + y^2 \le 1\}$$

e, com
$$\omega = (x, y)$$
, temos que $X(\omega) = x \ Y(\omega) = y$, e $(X(\omega), Y(\omega)) = (x, y) = \omega$.

Exercício

Sejam (Ω, \mathcal{F}, P) um espaço de probabilidade e X uma variável aleatória. Mostre que X^2 também é uma variável aleatória.

Função de Distribuição Acumulada (fda)

Para uma variável aleatória X, uma maneira de descrever a probabilidade induzida P_X é utilizando sua **função de distribuição acumulada**.

Função de Distribuição Acumulada (fda)

Para uma variável aleatória X, uma maneira de descrever a probabilidade induzida P_X é utilizando sua **função de distribuição acumulada**.

Definição 2. A função de distribuição acumulada de uma variável aleatória X, representada por F_X , é definida por

$$F_X(x) = P_X((-\infty, x]), \ \forall x \in \mathbb{R}.$$

A fda F_X satisfaz as seguintes propriedades:

- F1. Se $x \le y$ então $F_X(x) \le F_X(y)$.
- F2. Se $x_n \downarrow x$, então $F_X(x_n) \downarrow F_X(x)$.
- F3. Se $x_n \downarrow -\infty$, então $F_X(x_n) \downarrow 0$, e se $x_n \uparrow +\infty$, então $F_X(x_n) \uparrow 1$.

Resultado: Uma função real F satisfaz F1–F3 se e somente se F é uma distribuição de probabilidade acumulada.

Observações.

$$F_X(x) = P_X((-\infty, x]) = P[X^{-1}((-\infty, x])] = P(\{\omega : X(\omega) \le x\}) = P[X \le x].$$

Resultado: Seja F_X um fda. Então, existe um espaço de probabilidade (Ω, \mathcal{F}, P) e uma variável aleatória X definida sobre os reais tal que X possui como fda a função F_X .

Tipos de Variáveis Aleatórias

Definição 3. As variáveis aleatórias podem ser classificadas em:

• **Discreta.** Uma variável aleatória X é **discreta** se assume um número enumerável de valores, ou seja, se existe um conjunto enumerável $\{x_1, x_2, \ldots\} \subseteq \mathbb{R}$ tal que $X(\Omega) \in \{x_1, x_2, \ldots\}$, $\forall \omega \in \Omega$.

A função $p(x_i)$ definida por $p(x_i) = P_X(\{x_i\})$, i = 1, 2, ... e p(x) = 0 para $x \notin \{x_1, x_2, ...\}$, é chamada de **função de probabilidade** (fp) de X. Neste caso, a fda é dada por

$$F_X(x) = P[X \le x] = \sum_{i:x_i \le x} p(x_i).$$

• Contínua. Uma variável aleatória X é (absolutamente) contínua se assume valores num conjunto não enumerável e se existe uma função $f_X(x) \ge 0$ tal que

$$F_X(x) = P[X \le x] = \int_{-\infty}^x f_X(t)dt, \forall x \in \mathbb{R}.$$

Neste caso, a função f_X é chamada de **função densidade de probabilidade** de X.

Variáveis Aleatórias Discretas

• Note que toda função de probabilidade é uma função dos reais $\mathbb R$ e assume valores entre 0 e 1, sendo positiva para um número enumerável de pontos e satisfaz a seguinte propriedade

$$\sum_{i} p(x_i) = 1.$$

 Além disso, pode-se mostrar que para uma função P definida nos eventos Borelianos de modo que

$$P(A) = \sum_{x \in A} p(x_i), \forall A \in \mathcal{B}$$

é uma medida de probabilidade em (\mathbb{R},\mathcal{B}) .

 Assim, a distribuição de uma variável aleatória discreta pode ser determinada pela sua fda ou pela sua função de probabilidade.

Variáveis Aleatórias Contínuas

- Uma variável aleatória é (absolutamente) contínua, então existe uma função $f_X(x) \geq 0$ tal que $F_X(x) = \int_{-\infty}^x f_X(t) dt$.
- Deste modo, F_X é contínua e $f_X(x) = F_X'(x)$, exceto num conjunto de **medida de Lebesgue nula**.
- Uma função $f_X(x) \ge 0$ é densidade de alguma variável aleatória se e somente se,

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

 Uma variável aleatória X tem função densidade se F_X é a integral (de Lebesgue) de sua derivada, isto é, a primeira derivada em relação a x de F_X é uma função densidade para X.

Observações

1. Observa-se que para obter a probabilidade da variável aleatória estar num certo intervalo [a, b], calcula-se a integral da função densidade nesse intervalo (área sob a curva), isto é

$$P(a \leq X \leq B) = \int_a^b f_X(x) dx = F_X(b) - F_X(a).$$

- 2. Note que essa integral não se altera com a inclusão ou não dos extremos a e b, ou seja, o valor seria o mesmo para (a, b), (a, b], [a, b). Dessa forma, para as variáveis contínuas, a probabilidade da variável ser igual a um particular valor é zero.
- 3. Uma função é dita ser **indicadora de um conjunto** A, isto é, $I: X \to \{0,1\}$ se

$$I_A(x) = \left\{ egin{array}{ll} 1, & {
m se} & x \in A \ \\ 0, & {
m se} & x
otin A \end{array}
ight.$$

Exercícios

1. A duração, em anos, de certa lâmpada especial é uma variável aleatória contínua com densidade dada por:

$$f_X(x) = 2e^{-2x} I_{(0,\infty)}(x).$$

- Qual é a probabilidade da lâmpada durar até 2 anos ?
- 2. O tempo de validade, em meses, de um óleo lubrificante num certo equipamento está sendo estudado. Sendo $\Omega = (6, 8]$, podemos considerar \mathcal{F} como a σ -álgebra de Borel em (6,8]. Uma função de interesse é o próprio tempo de validade, e nesse caso, define-se $X(\omega) = \omega$, $\forall \omega \in \Omega$. A função X é variável aleatória e sua fda é dada por

$$F_X(x) = \begin{cases} 0, & \text{se} \quad x < 6 \\ (x - 6)/2, & \text{se} \quad 6 \le x < 8 \\ 1, & \text{se} \quad x \ge 8 \end{cases}$$

Verifique se as propriedades da fda acima estão satisfeitas.

3. A variável X tem função de distribuição dada por:

$$F_X(x) = \begin{cases} 0, & \text{se } x < 1 \\ \frac{1}{c} (1 - e^{-(x-1)}), & \text{se } 1 \le x < 2 \\ \frac{1}{c} (1 - e^{-1} + e^2 - e^{-2(x-1)}), & \text{se } x \ge 2 \end{cases}$$

- a) Obtenha o valor de c.
- b) Classifique a variável e obtenha a correspondente função densidade (ou de probabilidade).
- c) Determine $P(X \ge 3/2|X < 4)$.

Vetores Aleatórios

Em geral, um fenômeno aleatório pode envolver várias variáveis de interesse. Assim, para a formalização do tratamento probabilístico de conjuntos de variáveis aleatórias, define-se o conceito de vetor aleatório.

Definição 4. Seja (Ω, \mathcal{F}, P) um espaço de probabilidade. Define-se como vetor aleatório uma função $\mathbf{X}(\omega) = (X_1(\omega), \ldots, X_n(\omega))$ de Ω em \mathbb{R} tal que para todo $i = 1, 2, \ldots, n$ e todo $B_i \subset \mathbb{R}$ tem-se que $X_i^{-1}(B_i) \in \mathcal{F}$.

Em outras palavras, as variáveis (X_1,\ldots,X_n) são variáveis aleatórias no mesmo espaço de probabilidade (Ω,\mathcal{F},P) , e consequentemente, a imagem inversa de cada um dos X_i' está em \mathcal{F} , ou seja todo Boreliano $B_i\subset\mathbb{R}$ tem-se que $X_i^{-1}(B_i)$ é um evento. Assim,

$$\{\omega: X_1(\omega) \leq x_1, \ldots, X_n(\omega) \leq x_n\} = \bigcap_{i=1}^n \{\omega: X_i(\omega) \leq x_i\}$$

também é um evento, pois a intersecção pertence à \mathcal{F} .

Definição 5. Função de Distribuição Conjunta

A função de distribuição conjunta de X é definida por

$$F_{\mathsf{X}}(\mathsf{x}) = F_{\mathsf{X}}(x_1,\dots,x_n) = P(X_1 \le x_1,X_2 \le x_2,\dots,X_n \le x_n),$$
 em que $\mathbf{x} = (x_1,\dots,x_n) \in \mathbb{R}^n.$

Em outras palavras, as variáveis (X_1,\ldots,X_n) são variáveis aleatórias no mesmo espaço de probabilidade (Ω,\mathcal{F},P) , e consequentemente, a imagem inversa de cada um dos X_i' está em \mathcal{F} , ou seja todo Boreliano $B_i \subset \mathbb{R}$ tem-se que $X_i^{-1}(B_i)$ é um evento. Assim,

$$\{\omega: X_1(\omega) \leq x_1, \ldots, X_n(\omega) \leq x_n\} = \bigcap_{i=1}^n \{\omega: X_i(\omega) \leq x_i\}$$

também é um evento, pois a intersecção pertence à \mathcal{F} .

Função de Probabilidade Conjunta e Marginal - Caso Discreto

Definição 6. Se as variáveis do vetor aleatório são discretas, temos uma vetor aleatório discreto. Sua **função de probabilidade conjunta** é definida por

$$p(x) = p(x_1, x_2, ..., x_n) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n).$$

A função de distribuição marginal de X_k , $k=1,2,\ldots,n$ é representada por

$$p(x_k) = P(X_k = x_k) = \sum_{x_i} P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n), \ \forall i \neq k.$$

Ou seja, a marginal vem da soma em todas as coordenadas, exceto k.

Função de Probabilidade Conjunta e Marginal - Caso Discreto

Proposição 1. Seja **X**um vetor aleatório discreto em (Ω, \mathcal{F}, P) . Então a função de probabilidade conjunta para **X**satisfaz as seguintes propriedades:

P1.
$$p(\mathbf{x}) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$$
.

P2.
$$\sum_{x_1,x_2,...,x_n} P(X_1 = x_1, X_2 = x_2,..., X_n = x_n) = 1.$$

Observação.

No caso particular de duas variáveis discretas, é conveniente a representação da função de probabilidade por meio da **tabela de dupla entrada**.

Suponha a situação em que duas variáveis aleatórias discretas estão relacionadas, sendo C e T as variáveis que representam o clima e a temperatura, respectivamente. Assim, temos que $\Omega_C = \{ \text{sol}, \text{chuva}, \text{neve} \}$, $\Omega_T = \{ \text{Quente}, \text{Frio} \}$ e suas respectivas probabilidades estão apresentadas na tabela abaixo.

T/C	Quente	Frio	
Sol	0,3	0,2	
Chuva	0,0333	0,1334	
Neve	Neve 0		

Determine as distribuições marginais de T e C?

Suponha a situação em que duas variáveis aleatórias discretas estão relacionadas, sendo C e T as variáveis que representam o clima e a temperatura, respectivamente. Assim, temos que $\Omega_C = \{ \text{sol}, \text{chuva}, \text{neve} \}$, $\Omega_T = \{ \text{Quente}, \text{Frio} \}$ e suas respectivas probabilidades estão apresentadas na tabela abaixo.

T/C	Quente	Frio	
Sol	0,3	0,2	
Chuva	0,0333	0,1334	
Neve	0	0,3333	

Determine as distribuições marginais de T e C?

Observa-se que

$$P(T = t) = \sum_{c} P(T = t, C = c)$$
 e $P(C = c) = \sum_{c} P(T = t, C = c)$

Suponha a situação em que duas variáveis aleatórias discretas estão relacionadas, sendo C e T as variáveis que representam o clima e a temperatura, respectivamente. Assim, temos que $\Omega_C = \{ \text{sol}, \text{chuva}, \text{neve} \}$, $\Omega_T = \{ \text{Quente}, \text{Frio} \}$ e suas respectivas probabilidades estão apresentadas na tabela abaixo.

T/C	Quente	Frio	
Sol	0,3	0,2	0,5
Chuva	0,0333	0,1334	0,1667
Neve	0	0,3333	0,333
	0,3333	0,6667	1

Suponha a situação em que duas variáveis aleatórias discretas estão relacionadas, sendo C e T as variáveis que representam o clima e a temperatura, respectivamente. Assim, temos que $\Omega_C = \{ \text{sol}, \text{chuva}, \text{neve} \}$, $\Omega_T = \{ \text{Quente}, \text{Frio} \}$ e suas respectivas probabilidades estão apresentadas na tabela abaixo.

T/C	Quente	Frio	
Sol	0,3	0,2	0,5
Chuva	0,0333	0,1334	0,1667
Neve	0	0,3333	0,333
	0,3333	0,6667	1

Portanto,

$$\begin{array}{c|c|c|c} T & \text{Quente} & \text{Frio} \\ \hline P(T=t) & 0.3333 & 0.6667 \\ \hline \end{array}$$

Suponha que estamos interessados em estudar a composição de lotes de três peças quanto ao número de peças defeituosas. Sabe-se que na linha de produção 10% das peças são defeituosas. Sejam as seguintes variáveis aleatórias:

X = número de peças defeituosas entre as três selecionadas;

$$Y = \left\{ egin{array}{ll} 0, & ext{se a } 1^a ext{ peça \'e defeituosa (D)} \\ 1, & ext{se a } 1^a ext{ peça \'e perfeita (P)} \end{array}
ight.$$

Z= número de vezes em que houve variação de qualidade, isto é, mudanças de D para P ou de P para D, entre as peças selecionadas dentro de um lote.

- a) Quais são os valores observados das variáveis X, Y e Z?
- b) Construa a tabela de probabilidade conjunta para XY, XZ e YZ?
- c) Determinar as distribuições marginais de X, Y e Z?

Função densidade Conjunta e Marginal - Caso Contínuo

Definição 7. Seja $\mathbf{X} = (X_1, \dots, X_n)$ um vetor aleatório contínuo em (Ω, \mathcal{F}, P) . Então dada a função de distribuição $F_{\mathbf{X}}$, existe uma função $f: \mathbb{R}^n \to \mathbb{R}^+$, denotada por **função densidade conjunta**, tal que

$$F_{X_1,...,X_n}(x_1,...,x_n) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_n} f_{X_1,...,X_n}(y_1,...,y_n) dy_1 ... dy_n.$$

A função densidade marginal de X_k , $k=1,2,\ldots,n$ é representada por

$$f_{X_k}(x_k) = \int_{x_1} \ldots \int_{x_n} f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) dx_1 \ldots dx_n, \ \forall i \neq k.$$

Observa-se que a função densidade conjunta $f_{X_1,...,X_n}(x_1,...,x_n)$ é obtida a partir da função de distribuição conjunta por sucessivas derivadas parciais, generalizando, assim, o caso univariado.

Função densidade Conjunta e Marginal - Caso Contínuo

Proposição 2. Seja **X**um vetor aleatório contínuo em (Ω, \mathcal{F}, P) . Então a função densidade conjunta para **X**satisfaz as seguintes propriedades:

P1.
$$f_{X_1,...,X_n}(x_1,...,x_n) \ge 0$$
, para todo $(x_1,...,x_n) \in \mathbb{R}^n$.

P2.
$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{X_1,\dots,X_n}(x_1,\dots,x_n) dx_1 \dots dx_n = 1.$$

Cálculo de Probabilidades.

Sejam X e Y duas variáveis aleatórias contínuas. Considere $a,b,c,d\in\mathbb{R}$ constantes tais que $a\leq b$ e $c\leq d$. Então, a probabilidade

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y), dx dy.$$

Função densidade Condicional

Definição 8. Sem perda de generalidade, seja (X,Y) um vetor aleatório contínuo em (Ω,\mathcal{F},P) . Então a **função densidade condicional de** X **dado** Y é definido por:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)},$$

isto é, a função densidade conjunta dividida pela marginal.

Generalizando para $\mathbf{X} = (X_1, \dots, X_n, Y)$ vetor aleatório em (Ω, \mathcal{F}, P) , temse que

$$f_{X_1,...,X_n|Y}(x_1,...,x_n|y) = \frac{f_{X_1,...,X_n,Y}(x_1,...,x_n,y)}{f_{Y}(y)},$$

é a função densidade condicional X_1, \ldots, X_n dado Y.

Independência entre Variáveis Aleatórias

Sejam X_1,\ldots,X_n definidas no mesmo espaço de probabilidade (Ω,\mathcal{F},P) , tal que $\mathbf{X}=(X_1,\ldots,X_n)$ é um vetor aleatório em (Ω,\mathcal{F},P) . Informalmente, as X_i' s são independentes se, e somente se, quaisquer eventos determinados por qualquer grupo de variáveis aleatórias distintas são independentes.

Definição 9. As variáveis aleatórias X_1, \ldots, X_n são (estocasticamente) independentes se

$$P(X_1 \in B_1, X_2 \in B_2, ..., X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i),$$

 $\forall B_i \in \mathcal{B}$, $i = 1, \dots, n$ em que \mathcal{B} é um Boreliano.

Observação.

Note que pelo definição 9, temos que as variáveis aleatórias X_1, \ldots, X_n são independentes se sua função de distribuição conjunta pode ser escrita como o produto das funções de distribuição individuais.

Proposição 3. (Critério para Independência)

P1. Se X_1, \ldots, X_n são independentes então

$$F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\prod_{i=1}^n F_{X_i}(x_i), \ \forall (x_1,\ldots,x_n)\in\mathbb{R}^n.$$

P2. Se X_1, \ldots, X_n são independentes e possuem densidades f_{X_1}, \ldots, f_{X_n} então

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\prod_{i=1}^n f_{X_i}(x_i), \ \forall (x_1,\ldots,x_n)\in\mathbb{R}^n.$$

Observação.

Note que se as variáveis aleatórias X_1, \ldots, X_n são independentes, então a função densidade conjunta pode ser escrita como o produto das marginais.

Seja (X, Y) um vetor aleatório contínuo com função densidade conjunta dada pore:

$$f_{X,Y}(x,y) = \left\{ egin{array}{ll} 8\,x\,y, & 0 < x < y < 1 \ \\ 0, & {\sf caso \, contrário} \end{array}
ight.$$

- (a) Mostre que de fato $f_{X,Y}(x,y)$ é uma função densidade conjunta.
- (b) Determine as funções densidades marginais de X e Y. É possível afirmar que X e Y são independentes? Justifique.
- (c) Para 0 < y < 1, determina a função densidade condicional X dado Y = y, isto é, $f_{X|Y}(x|y)$.