

A Level · OCR · Computer Science

49 mins

Exam Questions

8.1 Algorithms

Suitability of Algorithms / Big O Notation / Binary Search / Linear Search / Bubble Sort / Insertion Sort / Merge Sort / Quick Sort / Dijkstra's Shortest Path Algorithm / A* Algorithm

17

Total Marks	/49
Hard (4 questions)	/29
Medium (4 questions)	/13
Lasy (4 questions)	

Scan here to return to the course or visit savemyexams.com

Facy (A questions)

Easy Questions

1	A computer program stores data in an array named words.
	The data in the array needs to be searched for a value that the user inputs.
	One example of a searching algorithm is a binary search.
	Identify the precondition for a binary search.
	(1 mark)
2	A second example of a searching algorithm is a linear search.
	Describe how a linear search works.
	(4 marks)
3	The pseudocode function binarySearch() performs a binary search on the array
	dataArray that is passed as a parameter. The function returns the array index of searchValue within the array, and -1 if it is not in the array.
	Identify one situation where a linear search is more appropriate than a binary search.
	(1 mark)

4 Hugh has written a recursive function called thisFunction() using pseudocode.

```
01 function thisFunction(theArray, num1, num2, num3)
02 result = num1 + ((num2 - num1) DIV 2)
03 if num2 < num1 then
04 return -1
05 else
06 if theArray[result] < num3 then
07 return thisFunction(theArray, result + 1, num2, num3)
08 elseif theArray[result] > num3 then
09 return thisFunction(theArray, num1, result - 1, num3)
10 else
11 return result
12 endif
13 endif
14 endfunction
The function DIV calculates integer division, e.g. 5 DIV 3 = 1
State the name of the standard algorithm thisFunction() performs.
```

(1 mark)

Medium Questions

	(2 marks)
2	Explain why a quicksort is known as a divide and conquer algorithm.
	(2 marks)
	bubble sort.
	Give one benefit and one drawback of the programmer using a merge sort instead of a
1	The programmer needs to use a merge sort in one part of the problem to sort items in ascending order.

3	Th	ne following pseudocode procedure performs an insertion sort on the array	oarameter.
	01	procedure insertionSort(dataArray:byRef)	
	02	for i = 1 to dataArray.Length - 1	
	03	s temp = dataArray[i]	
	04	tempPos = i – 1	
	05	exit = false	
	06	while tempPos >= 0 and exit == false	
	07	if dataArray[tempPos] < temp then	
	08	dataArray[tempPos + 1] = dataArray[tempPos]	
	09	tempPos = tempPos - 1	
	10	else	
	11	exit = true	
	12	endif	
	13	B endwhile	
	14	dataArray[tempPos + 1] = temp	
	15	i next i	
	Sta	endprocedure cate whether the procedure insertionSort sorts the data into ascending or deserder and explain your choice.	cending
	•••••		(3 marks)
4	A f	fourth sorting algorithm is a bubble sort.	
	De	escribe how a bubble sort will sort an array of 10 elements.	

(6 marks)

Hard Questions

1	The programmer needs to use a merge sort in one part of the problem to sort	items in
	ascending order.	

escribe how a merge sort works.		
(5)	narks)	

2 A program designer needs to decide on an algorithm to use from a choice of three. The table shows the worst-case Big O complexities for each algorithm.

Algorithm	Time Complexity	Space Complexity
1	Linear	Exponential
2	Exponential	Constant
3	Logarithmic	Logarithmic

The program will be used to analyse data that can range from 2 items to 2 billion items.

Compare the use of all three algorithms and suggest which the programmer should use.

You should include the following in your answer:

	• the meaning of constant, logarithmic, linear and exponential complexity	
	how well each algorithm scales as the amount of data increases	
	which algorithm is the most suitable for the given task.	
	(9 ma	rks)
3	A tree is one example of a data structure.	
	A graph is another type of data structure.	

An example graph is shown in Fig. 1.

Show how Dijkstra's algorithm can be used on the graph shown in **Fig. 1** to find the shortest path from start node A to end node G.

You **must** state the nodes on the final path and the distance of this path. Show your working.

You **may** use the table below to give your answer.

Node	Distance travelled	Previous node

Final path:	
Distance:	

	(6 marks)
4	Compare the use of merge sort, quick sort and insertion sort on an array with a small number of elements, and on an array with a very large number of elements.
	You should make reference to the time complexities of each algorithm using the Big O notation in your answer.
	(9 marks)

