Resumen de teoremas para el final de Lenguajes Formales y Computabilidad

Agustín Curto, agucurto95@gmail.com Francisco Nievas, frannievas@gmail.com

2017

Contents

1	Notación y conceptos básicos	2
2	Procedimientos efectivos	4
3	Funciones Σ -recursivas	6
4	El lenguaje S^{Σ}	16
5	Máquinas de Turing	25

1 Notación y conceptos básicos

Lemma 1. Sea $S \subseteq \omega \times \Sigma^*$, entonces S es rectangular si y solo si se cumple la siguiente propiedad:

$$Si(x,\alpha), (y,\beta) \in S \Rightarrow (x,\beta) \in S$$

Lemma 2. La relación < es un orden total estricto sobre Σ^* .

Lemma 3. La función $s^{<}: \Sigma^{*} \to \Sigma^{*}$, definida recursivamente de la siguiente manera:

$$s^{<}(\varepsilon) = a_1$$

 $s^{<}(\alpha a_i) = \alpha a_{i+1}$ para $i < n$
 $s^{<}(\alpha a_n) = s^{<}(\alpha)a_1$

tiene la siguiente propiedad:

$$s^{<}(\alpha) = \min\{\beta \in \Sigma^* : \alpha < \beta\}$$

Corollary 4. $s^{<}$ es inyectiva.

Lemma 5. Se tiene que:

- 1. $s^{<}(\alpha) \neq \varepsilon$, para cada $\alpha \in \Sigma^*$.
- 2. Si $\alpha \neq \varepsilon$, entonces $\alpha = s^{<}(\beta)$ para algún β .
- 3. Si $S \subseteq \Sigma^* \neq \emptyset$, entonces $\exists \alpha \in S \text{ tal que } \alpha < \beta$, para cada $\beta \in S \{\alpha\}$.

Lemma 6. Tenemos que:

$$\Sigma^* = \{ * < (0), * < (1), \dots \}$$

Mas aún la función * ← es biyectiva.

Lemma 7. Sea $n \ge 1$ fijo, entonces cada $x \ge 1$ se escribe en forma única de la siguiente manera:

$$x = i_0 n^0 + \ldots + i_{k-1} n^{k-1} + i_k n^k$$

 $con \ k \ge 0 \ y \ 1 \le i_0, \dots, i_{k-1}, i_k \le n.$

Lemma 8. La función #< es biyectiva.

Lemma 9. Las funciones $\#^{<} y *^{<} son una inversa de la otra.$

Lemma 10. Si p, p_1, \ldots, p_n son números primos y p divide a $p_1 \ldots p_n$, entonces $p = p_i$, para algún i.

Theorem 11. Para cada $x \in \mathbb{N}$, hay una única sucesión $(s_1, s_2, \dots) \in \omega^{[\mathbb{N}]}$ tal que:

$$x = \prod_{i=1}^{\infty} pr(i)^{s_i}$$

Notar que $\prod_{i=1}^{\infty} pr(i)^{s_i}$ tiene sentido ya que es un producto que solo tiene una cantidad finita de factores no iguales a 1.

Lemma 12. Las funciones:

$$\mathbb{N} \to \omega^{[\mathbb{N}]}$$

$$x \to ((x)_1, (x)_2, \dots)$$

$$\omega^{[\mathbb{N}]} \to \mathbb{N}$$

$$(s_1, s_2, \dots) \to \langle s_1, s_2, \dots \rangle$$

son biyecciones una inversa de la otra.

Lemma 13. Para cada $x \in \mathbb{N}$:

1.
$$Lt(x) = 0 \Leftrightarrow x = 1$$

2.
$$x = \prod_{i=1}^{Lt(x)} pr(i)^{(x)_i}$$

Cabe destacar entonces que la función $\lambda ix[(x)_i]$ tiene dominio igual a \mathbb{N}^2 y la función $\lambda ix[Lt(x)]$ tiene dominio igual a \mathbb{N} .

2 Procedimientos efectivos

Lemma 14. Sean $S_1, S_2 \subseteq \omega^n \times \Sigma^*$ conjuntos Σ -efectivamente enumerables, entonces:

- a) $S_1 \cup S_2$ es Σ -efectivamente enumerable.
- b) $S_1 \cap S_2$ es Σ -efectivamente enumerable.

Proof. El caso en el que alguno de los conjuntos es vacío es trivial. Supongamos que $S_1, S_2 \neq \emptyset$ y sean \mathbb{P}_1 y \mathbb{P}_2 procedimientos que enumeran a S_1 y S_2 .

a) El siguiente procedimiento enumera al conjunto $S_1 \cup S_2$:

Si x es par: realizar \mathbb{P}_1 partiendo de x/2 y dar el elemento de S_1 obtenido como salida. Si x es impar: realizar \mathbb{P}_2 partiendo de (x-1)/2 y dar el elemento de S_2 obtenido como salida.

b) Veamos ahora que $S_1 \cap S_2$ es Σ -efectivamente enumerable:

Si $S_1 \cap S_2 = \emptyset$: entonces no hay nada que probar.

Si $S_1 \cap S_2 \neq \emptyset$: sea z_0 un elemento fijo de $S_1 \cap S_2$. Sea \mathbb{P} un procedimiento efectivo el cual enumere a $\omega \times \omega$.

El siguiente procedimiento enumera al conjunto $S_1 \cap S_2$:

Etapa 1: Realizar \mathbb{P} con dato de entrada x, para obtener un par $(x_1, x_2) \in \omega \times \omega$.

Etapa 2: Realizar \mathbb{P}_1 con dato de entrada x_1 para obtener un elemento $z_1 \in S_1$.

Etapa 3: Realizar \mathbb{P}_2 con dato de entrada x_2 para obtener un elemento $z_2 \in S_2$.

Etapa 4: Si $z_1 = z_2$, entonces dar como dato de salida z_1 . En caso contrario dar como dato de salida z_0 .

Lemma 15. Si $S \subseteq \omega^n \times \Sigma^*$ es Σ -efectivamente computable entonces S es Σ -efectivamente enumerable.

Proof. El caso en el que S es vacío es trivial. Supongamos $S \neq \emptyset$. Sea $(\vec{z}, \gamma) \in S$, fijo. Recordemos que $\omega^n \times \Sigma^{*m}$ es Σ -efectivamente enumerable. Sean:

- \mathbb{P}_1 un procedimiento efectivo que enumere a $\omega^n \times \Sigma^{*m}$
- \mathbb{P}_2 un procedimiento efectivo que compute a χ_S .

El siguiente procedimiento enumera a S:

Etapa 1: Realizar \mathbb{P}_1 con x de entrada para obtener $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$.

Etapa 2: Realizar \mathbb{P}_2 con $(\vec{x}, \vec{\alpha})$ de entrada para obtener el valor *Booleano e* de salida.

Etapa 3: Si e = 1: dar como dato de salida $(\vec{x}, \vec{\alpha})$.

Si e = 0: dar como dato de salida (\vec{z}, γ) .

Theorem 16. Sea $S \subseteq \omega^n \times \Sigma^*$. Son equivalentes:

- a) S es Σ -efectivamente computable.
- b) $S y (\omega^n \times \Sigma^*) S son \Sigma$ -efectivamente enumerables.

Proof. $(a) \Rightarrow (b)$ Si S es Σ-efectivamente computable, por el **Lemma 15** tenemos que S es Σ-efectivamente enumerable. Notese además que, dado que S es Σ-efectivamente computable, $(\omega^n \times \Sigma^{*m}) - S$ también lo es, es decir, que aplicando nuevamente el **Lemma 15** tenemos que $(\omega^n \times \Sigma^{*m}) - S$ es Σ-efectivamente enumerable.

 $(b) \Rightarrow (a)$ Sean:

- \mathbb{P}_1 un procedimiento efectivo que enumere a S.
- \mathbb{P}_2 un procedimiento efectivo que enumere a $(\omega^n \times \Sigma^{*m}) S$.

El siguiente procedimiento computa el predicado χ_S :

- **Etapa 1:** Darle a la variable T el valor 0.
- **Etapa 2:** Realizar \mathbb{P}_1 con el valor de T como entrada para obtener de salida la upla $(\vec{y}, \vec{\beta})$.
- **Etapa 3:** Realizar \mathbb{P}_2 con el valor de T como entrada para obtener de salida la upla $(\vec{z}, \vec{\gamma})$.
- Etapa 4: Si $(\vec{y}, \vec{\beta}) = (\vec{x}, \vec{\alpha})$: entonces detenerse y dar como dato de salida el valor 1. Si $(\vec{z}, \vec{\gamma}) = (\vec{x}, \vec{\alpha})$: entonces detenerse y dar como dato de salida el valor 0. Si no sucede ninguna de las dos posibilidades: aumentar en 1 el valor de la variable T y dirijirse a la Etapa 2.

Theorem 17. Dado $S \subseteq \omega^n \times \Sigma^*$, son equivalentes:

- 1. S es Σ -efectivamente enumerable.
- 2. $S = \emptyset$ ó $S = I_F$, para alguna $F : \omega \to \omega^n \times \Sigma^*$ tal que cada F_i es Σ -efectivamente computable.
- 3. $S = I_F$, para alguna $F : D_F \subseteq \omega^k \times \Sigma^{*l} \to \omega^n \times \Sigma^*$ tal que cada F_i es Σ -efectivamente computable.
- 4. $S = D_f$, para alguna función f la cual es Σ -efectivamente computable.

3 Funciones Σ -recursivas

Lemma 18. Si f, f_1, \ldots, f_{n+m} son Σ -efectivamente computables, entonces $f \circ (f_1, \ldots, f_{n+m})$ lo es.

Proof. Sean $\mathbb{P}, \mathbb{P}_1, \dots, \mathbb{P}_{n+m}$ procedimientos efectivos los cuales computen las funciones f, f_1, \dots, f_{n+m} , respectivamente. Usando estos procedimientos es fácil definir un procedimiento efectivo el cual compute a $f \circ (f_1, \dots, f_{n+m})$.

Lemma 19. Si f g son Σ -efectivamente computables, entonces R(f,g) lo es.

Proof. HACER!!!!!!

Lemma 20. Si f y cada \mathcal{G}_a son Σ -efectivamente computables, entonces $R(f,\mathcal{G})$ lo es.

Theorem 21. Si $f \in PR^{\Sigma}$, entonces f es Σ -efectivamente computable.

Proof. Dejamos al lector la prueba por inducción en k de que si $f \in PR_k^{\Sigma}$, entonces f es Σ efectivamente computable, la cual sale en forma directa usando los lemas anteriores que garantizan que los constructores de composición y recursión primitiva preservan la computabilidad
efectiva.

Lemma 22. $1. \emptyset \in PR^{\emptyset}$.

- 2. $\lambda xy [x+y] \in PR^{\emptyset}$.
- 3. $\lambda xy [x.y] \in PR^{\emptyset}$.
- 4. $\lambda x [x!] \in PR^{\emptyset}$.

Proof. 1. Notese que $\emptyset = Pred \circ C_0^{0,0} \in PR_1^{\emptyset}$

2. Notar que:

$$\lambda xy [x + y] (0, x_1) = x_1 = p_1^{1,0}(x_1)$$

$$\lambda xy [x + y] (t + 1, x_1) = \lambda xy [x + y] (t, x_1) + 1$$

$$= (Suc \circ p_1^{3,0})(\lambda xy [x + y] (t, x_1), t, x_1)$$

lo cual implica que $\lambda xy\,[x+y]=R(p_1^{1,0},Suc\circ p_1^{3,0})\in\mathbf{PR}_2^\emptyset.$

3. Primero note que:

$$C_0^{1,0}(0) = C_0^{0,0}(\lozenge)$$

 $C_0^{1,0}(t+1) = C_0^{1,0}(t)$

lo cual implica que $C_0^{1,0}=R(C_0^{0,0},p_1^{2,0})\in\operatorname{PR}_1^\emptyset$. También note que $\lambda tx\,[t.x]=R(C_0^{1,0},\lambda xy\,[x+y]\circ(p_1^{3,0},p_3^{3,0}))$, lo cual por (1) implica que $\lambda tx\,[t.x]\in\operatorname{PR}_3^\emptyset$.

4. Note que:

$$\lambda x [x!] (0) = 1 = C_1^{0,0}(\lozenge)$$

 $\lambda x [x!] (t+1) = \lambda x [x!] (t).(t+1)$

lo cual implica que: $\lambda x\left[x!\right]=R(C_1^{0,0},\lambda xy\left[x.y\right]\circ(p_1^{2,0},Suc\circ p_2^{2,0})).$

Ya que $C_1^{0,0} = Suc \circ C_0^{0,0}$, tenemos que $C_1^{0,0} \in \operatorname{PR}_1^{\emptyset}$. Por (2), tenemos que $\lambda xy[x.y] \circ (p_1^{2,0}, Suc \circ p_2^{2,0}) \in \operatorname{PR}_4^{\emptyset}$, obteniendo que $\lambda x[x!] \in \operatorname{PR}_5^{\emptyset}$.

Lemma 23. Supongamos $\Sigma \neq \emptyset$.

- a) $\lambda \alpha \beta [\alpha \beta] \in PR^{\Sigma}$.
- b) $\lambda \alpha [|\alpha|] \in PR^{\Sigma}$.

Proof. a) Ya que:

$$\lambda \alpha \beta \left[\alpha \beta \right] (\alpha_1, \varepsilon) = \alpha_1 = p_1^{0,1}(\alpha_1)$$
$$\lambda \alpha \beta \left[\alpha \beta \right] (\alpha_1, \alpha a) = d_a(\lambda \alpha \beta \left[\alpha \beta \right] (\alpha_1, \alpha), a \in \Sigma$$

tenemos que $\lambda \alpha \beta [\alpha \beta] = R(p_1^{0,1}, \mathcal{G})$, donde $\mathcal{G}_a = d_a \circ p_3^{0,3}$, para cada $a \in \Sigma$.

b) Ya que:

$$\lambda \alpha [|\alpha|] (\varepsilon) = 0 = C_0^{0,0}(\lozenge)$$
$$\lambda \alpha [|\alpha|] (\alpha a) = \lambda \alpha [|\alpha|] (\alpha) + 1$$

tenemos que $\lambda \alpha \left[|\alpha| \right] = R(C_0^{0,0}, \mathcal{G})$, donde $\mathcal{G}_a = Suc \circ p_1^{1,1}$, para cada $a \in \Sigma$.

Lemma 24. a) $C_k^{n,m}, C_\alpha^{n,m} \in PR^\Sigma$, para $n, m, k \ge 0, \alpha \in \Sigma^*$.

b) $C_k^{n,0} \in PR^{\emptyset}$, para $n, k \ge 0$.

Lemma 25. 1. $\lambda xy [x^y] \in PR^{\emptyset}$.

2. $\lambda t \alpha \left[\alpha^t \right] \in PR^{\Sigma}$.

Proof. a) Note que: $\lambda tx [x^t] = R(C_1^{1,0}, \lambda xy [x.y] \circ (p_1^{3,0}, p_3^{3,0})) \in PR^{\emptyset}$. Osea que $\lambda xy [x^y] = \lambda tx [x^t] \circ (p_2^{2,0}, p_1^{2,0}) \in PR^{\emptyset}$.

b) Note que: $\lambda t \alpha \left[\alpha^{t}\right] = R(C_{\varepsilon}^{0,1}, \lambda \alpha \beta \left[\alpha \beta\right] \circ (p_{3}^{1,2}, p_{2}^{1,2})) \in \mathrm{PR}^{\Sigma}.$

Lemma 26. Si < es un orden total estricto sobre un alfabeto no vacío Σ , entonces $s^{<}, \#^{<} y$ * pertenecen a PR^{Σ} .

Proof. Supongamos $\Sigma = \{a_1, \ldots, a_k\}$ y < dado por $a_1 < \ldots < a_k$. Ya que:

$$s^{<}(\varepsilon) = a_1$$

 $s^{<}(\alpha a_i) = \alpha a_{i+1}$, para $i < k$
 $s^{<}(\alpha a_k) = s^{<}(\alpha)a_1$

tenemos que $s^{<}=R(C_{a_1}^{0,0},\mathcal{G})$, donde $\mathcal{G}_{a_i}=d_{a_{i+1}}\circ p_1^{0,2}$, para $i=1,\ldots,k-1$ y $\mathcal{G}_{a_k}=d_{a_1}\circ p_2^{0,2}$. Osea que $s^{<}\in\mathrm{PR}^{\Sigma}$. Ya que:

$$*(0) = \varepsilon$$

 $*(t+1) = s(*(t))$

podemos ver que $*^< \in \operatorname{PR}^\Sigma.$ Ya que:

$$\#^{<}(\varepsilon) = 0$$

 $\#^{<}(\alpha a_i) = \#^{<}(\alpha).k + i, \text{ para } i = 1, ..., k$

tenemos que $\#^{<} = R(C_0^{0,0}, \mathcal{G})$, donde $\mathcal{G}_{a_i} = \lambda xy [x+y] \circ (\lambda xy [x.y] \circ (p_1^{1,1}, C_k^{1,1}), C_i^{1,1})$, para $i = 1, \ldots, k$.

Osea que
$$\#^{<} \in PR^{\Sigma}$$
.

Lemma 27. $a) \lambda xy [\dot{x-y}] \in PR^{\emptyset}$.

- b) $\lambda xy [\max(x, y)] \in PR^{\emptyset}$.
- c) $\lambda xy [x = y] \in PR^{\emptyset}$.
- $d) \lambda xy [x \le y] \in PR^{\emptyset}.$
- e) $Si \Sigma \neq \emptyset \Rightarrow \lambda \alpha \beta [\alpha = \beta] \in PR^{\Sigma}$.

Proof. a) Primero notar que $\lambda x [x-1] = R(C_0^{0,0}, p_2^{2,0}) \in PR^{\emptyset}$. También note que $\lambda tx [x-t] = R(p_1^{1,0}, \lambda x [x-1] \circ p_1^{3,0}) \in PR^{\emptyset}$.

Osea que $\lambda xy \left[\dot{x-y}\right] = \lambda tx \left[\dot{x-t}\right] \circ \left(p_2^{2,0}, p_1^{2,0}\right) \in PR^{\emptyset}$.

- b) Note que $\lambda xy \left[\max(x, y) \right] = \lambda xy \left[(x + (y x)) \right].$
- c) Note que $\lambda xy [x = y] = \lambda xy [1 \dot{-} ((\dot{x-y}) + (\dot{y-x}))].$
- d) Note que $\lambda xy [x \le y] = \lambda xy [1 \dot{-} (x \dot{-} y)].$
- e) Sea < un orden total estricto sobre Σ . Ya que $\alpha = \beta$ sii $\#^{<}(\alpha) = \#^{<}(\beta)$, tenemos que $\lambda \alpha \beta [\alpha = \beta] = \lambda xy [x = y] \circ (\#^{<} \circ p_1^{0,2}, \#^{<} \circ p_2^{0,2})$.

Osea que podemos aplicar (c) y **Lema 28** implica que χ_S es Σ -PR.

Lemma 28. Si $P: S \subseteq \omega^n \times \Sigma^{*m} \to \omega$ y $Q: S \subseteq \omega^n \times \Sigma^{*m} \to \omega$ son predicados Σ -PR, entonces $(P \vee Q), (P \wedge Q)$ y notP lo son también.

Proof. Note que:

$$\neg P = \lambda xy [x - y] \circ (C_1^{n,m}, P)
(P \wedge Q) = \lambda xt [x.y] \circ (P, Q)
(P \vee Q) = \neg (\neg P \wedge \neg Q)$$

Lemma 29. Si $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son Σ -PR, entonces $S_1 \cup S_2$, $S_1 \cap S_2$ y $S_1 - S_2$ lo son.

Proof. Note que:

$$\chi_{S_1 \cup S_2} = (\chi_{S_1} \vee \chi_{S_2})$$

$$\chi_{S_1 \cap S_2} = (\chi_{S_1} \wedge \chi_{S_2})$$

$$\chi_{S_1 - S_2} = \lambda [x - y] \circ (\chi_{S_1}, \chi_{S_2})$$

Corollary 30. Si $S \subseteq \omega^n \times \Sigma^{*m}$ es finito, entonces S es Σ -PR.

Proof. Por el lema anterior, podemos suponer que:

$$S = \{(z_1, \dots, z_n, \gamma_1, \dots, \gamma_m)\}\$$

Noque χ_S es el siguiente predicado:

$$(\chi_{z_1} \circ p_1^{n,m} \wedge \ldots \wedge \chi_{z_n} \circ p_n^{n,m} \wedge \chi_{z_1} \circ p_{n+1}^{n,m} \wedge \ldots \wedge \chi_{\gamma_m} \circ p_{n+m}^{n,m})$$

Ya que los predicados:

$$\chi_{z_i} = \lambda xy \left[x = y \right] \circ \left(p_1^{1,0}, C_{z_i}^{1,0} \right) \chi_{\gamma_i} = \lambda \alpha \beta \left[\alpha = \beta \right] \circ \left(p_1^{0,1}, C_{\gamma_i}^{0,1} \right)$$

son Σ -PR, el **Lema 28** implica que χ_S es Σ -PR.

Lemma 31. Supongamos $S_1, \ldots, S_n \subseteq \omega, L_1, \ldots, L_m \subseteq \Sigma^*$ son conjuntos no vacíos, entonces $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ es Σ -PR sii $S_1, \ldots, S_n, L_1, \ldots, L_m$ son Σ -PR.

Proof. ⇒ Veremos por ejemplo que L_1 es Σ-PR. Sea $(z_1, \ldots, z_n, z_1, \ldots, z_m)$ un elemento fijo de $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$. Note que: $\alpha \in L_1$ sii $(z_1, \ldots, z_n, \alpha, z_2, \ldots, z_m) \in S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$, lo cual implica que $\chi_{L_1} = \chi_{S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m} \circ (C_{z_1}^{0,1}, \ldots, C_{z_n}^{0,1}, p_1^{0,1}, C_{z_2}^{0,1}, \ldots, C_{z_m}^{0,1})$. \leftarrow Note que $\chi_{S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m}$ es el predicado $(\chi_{S_1} \circ p_1^{n,m} \wedge \ldots \wedge \chi_{S_n} \circ p_n^{n,m} \wedge \chi_{L_1} \circ p_{n+1}^{n,m} \wedge \ldots \wedge \chi_{L_m} \circ p_{n+m}^{n,m})$. □

Lemma 32. Supongamos $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -PR, donde $O \in \{\omega, \Sigma^*\}$. Si $S \subseteq D_f$ es Σ -PR, entonces $f|_S$ es Σ -PR.

Proof. Supongamos $O = \Sigma^*$, entonces $f|_{S} = \lambda x \alpha \left[\alpha^x\right] \circ \left(Suc \circ Pred \circ \chi_S, f\right)$ es Σ -PR. El caso $O = \omega$ es similar usando $\lambda xy \left[x^y\right]$ en lugar de $\lambda x\alpha \left[\alpha^x\right]$.

Lemma 33. Si $f: D_f \subseteq \omega^n \times \Sigma^* \to O$ es Σ -PR, entonces existe una función Σ PR. $\bar{f}: \omega^n \times \Sigma^{*m} \to O$, tal que $f = \bar{f} \mid_{D_f}$.

Proof. Es fácil ver por inducción en k que el enunciado se cumple para cada $f \in PR_k^{\Sigma}$.

Proposition 34. Un conjunto S es Σ -PR sii S es el dominio de una función Σ -PR.

Proof. \Longrightarrow Note que $S = D_{Pred \circ \chi_S}$.

1.
$$F = R(f,g)$$

$$f : S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$$

$$g : \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* \to \Sigma^*$$

con $S_1, \ldots, S_n \subseteq \omega$ y $L_1, \ldots, L_m \subseteq \Sigma^*$ conjuntos no vacíos y $f, g \in \mathrm{PR}_k^{\Sigma}$. Notese que por definición de R(f, g), tenemos que $D_F = \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$.

Por HI tenemos que $D_f = S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ es Σ -PR, lo cual por el **Lema 31** nos dice que los conjuntos $S_1, ..., S_n, L_1, ..., L_m$ son Σ -PR. Ya que ω es Σ -PR, el **Lema 31** nos dice que D_F es Σ -PR.

Los otros casos de recursión primitiva son dejados al lector.

$$2. \quad F = g \circ (g_1, \dots, g_{n+m})$$

 $g: D_g \subseteq \omega^n \times \Sigma^{*m} \to O$

 $g_i: D_{g_i} \subseteq \omega^k \times \Sigma^{*l} \to \omega, i = 1, \dots, n$

 $g_i: D_{g_i} \subseteq \omega^k \times \Sigma^{*l} \to \Sigma^*, i = n+1, \dots, n+m$

están en $\operatorname{PR}_k^{\Sigma}$. Por **Lema 33**, hay funciones Σ -PR $\bar{g}_1, \ldots, \bar{g}_{n+m}$ las cuales son Σ -totales y cumplen $g_i = \bar{g}_i \mid_{D_{g_i}}$, para $i = 1, \ldots, n+m$.

Por HI los conjuntos D_g , D_{g_i} , $i=1,\ldots,n+m$, son Σ -PR y por lo tanto $S=\bigcap_{i=1}^{n+m}D_{g_i}$ lo es. Notese que $\chi_{D_F}=(\chi_{D_g}\circ(\bar{g}_1,\ldots,\bar{g}_{n+m})\wedge\chi_S)$ lo cual nos dice que D_F es Σ -PR.

Lemma 35. Supongamos $f_i: D_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O, i = 1, ..., k$, son funciones Σ -PR tales que $D_{f_i} \cap D_{f_j} = \emptyset$ para $i \neq j$, entonces $f_1 \cup ... \cup f_k$ es Σ -PR.

Proof. Supongamos $O = \Sigma^*$ y k = 2. Sean:

$$\bar{f}_i:\omega^n\times\Sigma^{*m}\to\Sigma^*\ i=1,2$$

funciones Σ -PR tales que $\bar{f}_i \mid_{D_{f_i}} = f_i, i = 1, 2$ (por **Lemma 33**).

Por Lemma 34 los conjuntos D_{f_1} y D_{f_2} son Σ -PR y por lo tanto lo es $D_{f_1} \cup D_{f_2}$. Ya que:

$$f_1 \cup f_2 = \left(\lambda \alpha \beta \left[\alpha \beta\right] \circ \left(\lambda x \alpha \left[\alpha^x\right] \circ \left(\chi_{D_{f_1}}, \bar{f}_1\right), \lambda x \alpha \left[\alpha^x\right] \circ \left(\chi_{D_{f_2}}, \bar{f}_2\right)\right)\right) \Big|_{D_{f_1} \cup D_{f_2}}$$

tenemos que $f_1 \cup f_2$ es Σ -PR.

El caso k > 2 puede probarse por inducción ya que:

$$f_1 \cup \ldots \cup f_k = (f_1 \cup \ldots \cup f_{k-1}) \cup f_k$$

Corollary 36. Supongamos f es una función Σ -mixta cuyo dominio es finito, entonces f es Σ -PR.

Lemma 37. $\lambda i\alpha [[\alpha]_i]$ es Σ -PR.

Lemma 38. Sean $n, m \geq 0$.

- a) Si $f: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$ es Σ -PR, con $S_1, \ldots, S_n \subseteq \omega$ y $L_1, \ldots, L_m \subseteq \Sigma^*$ no vacíos, entonces lo son las funciones $\lambda xy\vec{x}\vec{\alpha} \left[\sum_{t=x}^{t=y} f(t, \vec{x}, \vec{\alpha})\right]$ y $\lambda xy\vec{x}\vec{\alpha} \left[\prod_{t=x}^{t=y} f(t, \vec{x}, \vec{\alpha})\right]$.
- b) Si $f: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \Sigma^*$ es Σ -PR, con $S_1, \ldots, S_n \subseteq \omega$ y $L_1, \ldots, L_m \subseteq \Sigma^*$ no vacíos, entonces lo es la función $\lambda xy\vec{x}\vec{\alpha} \left[\subset_{t=x}^{t=y} f(t, \vec{x}, \vec{\alpha}) \right]$.

Proof. (a): Sea $G = \lambda t x \vec{x} \vec{\alpha} \left[\sum_{i=x}^{i=t} f(i, \vec{x}, \vec{\alpha}) \right]$. Ya que:

$$\lambda x y \vec{x} \vec{\alpha} \left[\sum_{i=x}^{i=y} f(i, \vec{x}, \vec{\alpha}) \right] = G \circ \left(p_2^{n+2, m}, p_1^{n+2, m}, p_3^{n+2, m}, \dots, p_{n+m+2}^{n+2, m} \right)$$

solo tenemos que probar que G es Σ -PR. Primero note que:

$$G(0, x, \vec{x}, \vec{\alpha}) = \begin{cases} 0 & \text{si } x > 0 \\ f(0, \vec{x}, \vec{\alpha}) & \text{si } x = 0 \end{cases}$$

$$G(t+1, x, \vec{x}, \vec{\alpha}) = \begin{cases} 0 & \text{si } x > t+1 \\ G(t, x, \vec{x}, \vec{\alpha}) + f(t+1, \vec{x}, \vec{\alpha}) & \text{si } x \le t+1 \end{cases}$$

Sean:

$$D_{1} = \{(x, \vec{x}, \vec{\alpha}) \in \omega \times S_{1} \times \ldots \times S_{n} \times L_{1} \times \ldots \times L_{m} : x > 0\}$$

$$D_{2} = \{(x, \vec{x}, \vec{\alpha}) \in \omega \times S_{1} \times \ldots \times S_{n} \times L_{1} \times \ldots \times L_{m} : x = 0\}$$

$$H_{1} = \{(z, t, x, \vec{x}, \vec{\alpha}) \in \omega^{3} \times S_{1} \times \ldots \times S_{n} \times L_{1} \times \ldots \times L_{m} : x > t + 1\}$$

$$H_{2} = \{(z, t, x, \vec{x}, \vec{\alpha}) \in \omega^{3} \times S_{1} \times \ldots \times S_{n} \times L_{1} \times \ldots \times L_{m} : x \leq t + 1\}$$

Es fácil de chequear que estos conjuntos son Σ -PR. Veamos que por ejemplo H_1 lo es. Es decir debemos ver que χ_{H_1} es Σ -PR. Ya que f es Σ -PR tenemos que $D_f = \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ es Σ -PR, lo cual por el **Lemma 31** nos dice que los conjuntos $S_1, \ldots, S_n, L_1, \ldots, L_m$ son Σ -PR. Ya que ω es Σ -PR, el **Lemma 31** nos dice que $R = \omega^3 \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ es Σ -PR. Notese que $\chi_{H_1} = (\chi_R \wedge \lambda z t x \vec{x} \vec{\alpha} [x > t + 1])$ por cual χ_{H_1} es Σ -PR ya que es la conjunción de dos predicados Σ -PR.

Además note que G = R(h, g), donde:

$$h = C_0^{n+1,m} |_{D_1} \cup \lambda x \vec{x} \vec{\alpha} [f(0, \vec{x}, \vec{\alpha})] |_{D_2}$$

$$g = C_0^{n+3,m} |_{H_1} \cup \lambda z t x \vec{x} \vec{\alpha} [z + f(t+1, \vec{x}, \vec{\alpha})]) |_{H_2}$$

O sea que el Lemma 35 y el Lemma 32 garantizan que G es Σ -PR.

Lemma 39. Sean $n, m \geq 0$.

- a) Sea $P: S \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$ un predicado Σ -PR y supongamos $\bar{S} \subseteq S$ es Σ -PR, entonces $\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \right] y \lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \bar{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \right]$ son predicados Σ -PR. (Notar que el dominio de estos predicados es $\omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$).
- b) Sea $P: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times L \to \omega$ un predicado Σ -PR y supongamos $\bar{L} \subseteq L$ es Σ -PR, entonces $\lambda x \vec{x} \vec{\alpha} \left[(\forall \alpha \in \bar{L})_{|\alpha| \leq x} P(\vec{x}, \vec{\alpha}, \alpha) \right]$ y $\lambda x \vec{x} \vec{\alpha} \left[(\exists \alpha \in \bar{L})_{|\alpha| \leq x} P(\vec{x}, \vec{\alpha}, \alpha) \right]$ son predicados Σ -PR.

Proof. Se probará solamente el inciso (a). Sea:

$$\bar{P} = P \mid_{\bar{S} \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m} \cup C_1^{1+n,m} \mid_{(\omega - \bar{S}) \times S_1 \times \dots \times S_n \times L_1 \times \dots \times L_m}$$

Notese que \bar{P} es Σ -PR. Ya que:

$$\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \right] = \lambda x \vec{x} \vec{\alpha} \left[\prod_{t=0}^{t=x} \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$$

$$= \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{t=y} \bar{P}(t, \vec{x}, \vec{\alpha}) \right] \circ \left(C_0^{1+n,m}, p_1^{1+n,m}, \dots, p_{1+n+m}^{1+n,m} \right)$$

el **Lemma 38** implica que $\lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \right]$ es Σ -PR. Finalmente note que:

$$\lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \bar{S})_{t \leq x} \ P(t, \vec{x}, \vec{\alpha}) \right] = \neg \lambda x \vec{x} \vec{\alpha} \left[(\forall t \in \bar{S})_{t \leq x} \ \neg P(t, \vec{x}, \vec{\alpha}) \right]$$
es Σ -PR.

Lemma 40. a) El predicado $\lambda xy [x \ divide \ y]$ es \emptyset -PR.

- b) El predicado $\lambda x [x \ es \ primo] \ es \ \emptyset -PR$.
- c) El predicado $\lambda \alpha \beta [\alpha \text{ inicial } \beta]$ es Σ -PR.

Proof. a) Si tomamos $P = \lambda t x_1 x_2 [x_2 = t.x_1] \in PR^{\emptyset}$, tenemos que:

$$\lambda x_1 x_2 [x_1 \text{ divide } x_2] = \lambda x_1 x_2 [(\exists t \in \omega)_{t \le x_2} P(t, x_1, x_2)]$$

$$= \lambda x x_1 x_2 [(\exists t \in \omega)_{t \le x} P(t, x_1, x_2)] \circ (p_2^{2,0}, p_1^{2,0}, p_2^{2,0})$$

por lo que podemos aplicar el Lemma 39 anterior.

b) Ya que:

$$x$$
 es primo sii $x > 1 \land ((\forall t \in \omega)_{t \le x} \ t = 1 \lor t = x \lor \neg (t \text{ divide } x))$

podemos usar un argumento similar al de la prueba de (a).

c) es dejado al lector.

Lemma 41. Si $P: D_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \omega$ es un predicado Σ -EC y D_P es Σ -EC, entonces la función M(P) es Σ -EC.

Theorem 42. Si $f \in \mathbb{R}^{\Sigma}$, entonces f es Σ -EC.

Proof. Dejamos al lector la prueba por inducción en k de que si $f \in \mathbb{R}^{\Sigma}_k$, entonces f es Σ -EC. \square

Lemma 43. Sean $n, m \geq 0$. Sea $P: D_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \omega$ un predicado Σ -PR, ntonces:

- a) M(P) es Σ -R.
- b) Si hay una función Σ -PR $f:\omega^n\times\Sigma^{*m}\to\omega$ tal que:

$$M(P)(\vec{x}, \vec{\alpha}) = \min_{t} P(t, \vec{x}, \vec{\alpha}) \le f(\vec{x}, \vec{\alpha}), \text{ para cada } (\vec{x}, \vec{\alpha}) \in D_{M(P)}$$

entonces M(P) es Σ -PR.

- Proof. a) Sea $\bar{P} = P \mid_{D_P} \cup C_0^{n+1,m} \mid_{(\omega^{n+1} \times \Sigma^{*m}) D_P}$. Dejamos al lector verificar cuidadosamente que $M(P) = M(\bar{P})$. Veremos entonces que $M(\bar{P})$ es Σ -R. Note que \bar{P} es Σ -PR. Sea k tal que $\bar{P} \in \mathrm{PR}_k^{\Sigma}$. Ya que \bar{P} es Σ -total y $\bar{P} \in \mathrm{PR}_k^{\Sigma} \subseteq \mathrm{R}_k^{\Sigma}$, tenemos que $M(\bar{P}) \in \mathrm{R}_{k+1}^{\Sigma}$ y por lo tanto $M(\bar{P}) \in \mathrm{R}^{\Sigma}$.
- b) Primero veremos que $D_{M(\bar{P})}$ es un conjunto Σ-PR. Notese que:

$$\chi_{D_{M(\bar{P})}} = \lambda \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \le f(\vec{x}, \vec{\alpha})} \ \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$$

lo cual nos dice que:

$$\chi_{D_{M(\bar{P})}} = \lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \le x} \ \bar{P}(t, \vec{x}, \vec{\alpha}) \right] \circ (f, p_1^{n,m}, \dots, p_{n+m}^{n,m})$$

Pero el **Lemma 39** nos dice que $\lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \leq x} \ \bar{P}(t, \vec{x}, \vec{\alpha}) \right]$ es Σ-PR por lo cual tenemos que $\chi_{D_{M(\bar{P})}}$ lo es.

Sea:

$$P_1 = \lambda t \vec{x} \vec{\alpha} \left[\bar{P}(t, \vec{x}, \vec{\alpha}) \land (\forall j \in \omega)_{j \le t} \ j = t \lor \neg \bar{P}(j, \vec{x}, \vec{\alpha}) \right]$$

Note que P_1 es Σ -total. Dejamos al lector usando Lemmas anteriores probar que P_1 es Σ -PR. Además notese que para cada $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$ tenemos que:

$$P_1(t,\vec{x},\vec{\alpha})=1$$
si y solo si $t=M(\bar{P})(\vec{x},\vec{\alpha})$

Esto nos dice que:

$$M(\bar{P}) = \left(\lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x}, \vec{\alpha})} t^{P_1(t, \vec{x}, \vec{\alpha})} \right] \right) |_{D_{M(\bar{P})}}$$

por lo cual para probar que $M(\bar{P})$ es Σ-PR solo nos resta probar que:

$$F = \lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x}, \vec{\alpha})} t^{P_1(t, \vec{x}, \vec{\alpha})} \right]$$

lo es. Pero:

$$F = \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{y} t^{P_1(t, \vec{x}, \vec{\alpha})} \right] \circ (C_0^{n, m}, f, p_1^{n, m}, \dots, p_{n+m}^{n, m})$$

y por lo tanto el **Lemma 38** nos dice que F es Σ -PR. De esta manera hemos probado que $M(\bar{P})$ es Σ -PR y por lo tanto M(P) lo es.

Lemma 44. Las siguientes funciones son \emptyset -PR:

b) $R: \omega \times \mathbf{N} \to \omega$ $(x,y) \to resto de la division de x por y$

 $c) \quad \begin{array}{ccc} pr: \mathbf{N} & \rightarrow & \omega \\ & n & \rightarrow & n\text{-}esimo \ numero \ primo \end{array}$

Proof. a) Veamos primero veamos que Q=M(P), donde $P=\lambda txy\,[(t+1).y>x].$ Notar que:

$$D_{M(P)} = \{(x,y) : (\exists t \in \omega) \ P(t,x,y) = 1\}$$
$$= \{(x,y) : (\exists t \in \omega) \ (t+1).y > x\}$$
$$= \omega \times \mathbf{N}$$
$$= D_{Q}$$

Dejamos al lector la fácil verificación de que para cada $(x, y) \in \omega \times \mathbf{N}$, se tiene que:

$$Q(x,y) = M(P)(x,y) = \min_{t} (t+1).y > x$$

Esto prueba que Q = M(P). Ya que P es \emptyset -PR y además:

$$Q(x,y) \leq p_1^{2,0}(x,y),$$
para cada $(x,y) \in \omega \times \mathbf{N}$

el inciso (b) del **Lemma 43** implica que $Q \in PR^{\emptyset}$.

b) Notese que:

$$R = \lambda xy \left[\dot{x-Q}(x,y).y \right]$$

y por lo tanto $R \in PR^{\emptyset}$.

c) Para ver que pr es \emptyset -PR, veremos que la extensión $h:\omega\to\omega$, dada por h(0)=0 y $h(n)=pr(n),\,n\geq 1$, es \emptyset -PR. Primero note que:

$$h(0) = 0$$

 $h(x+1) = \min_{t} (t \text{ es primo } \land t > h(x))$

Osea que $h = R\left(C_0^{0,0}, M(P)\right)$, donde:

$$P = \lambda tzx [t \text{ es primo } \wedge t > z]$$

Es decir que solo nos resta ver que M(P) es \emptyset -PR.

Claramente P es \emptyset -PR. Veamos que para cada $(z,x) \in \omega^2$, tenemos que:

$$M(P)(z,x) = \min_t (t \text{ es primo } \land t > z) \le z! + 1$$

Sea p primo tal que p divide a z! + 1. Es fácil ver que entonces p > z. Pero esto claramente nos dice que:

$$\min_{t} (t \text{ es primo } \land t > z) \leq p \leq z! + 1$$

Osea que el inciso (b) del **Lemma 43** implica que M(P) es \emptyset -PR ya que podemos tomar $f = \lambda zx [z! + 1]$.

Lemma 45. Las funciones $\lambda xi[(x)_i]$ y $\lambda x[Lt(x)]$ son \emptyset -PR.

Lemma 46. Este lemma no se evalua.

Lemma 47. Supongamos que $\Sigma \neq \emptyset$. Sea < un orden total estricto sobre Σ , sean $n, m \geq 0$ y sea $P: D_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^* \to \omega$ un predicado Σ -PR, entonces:

- a) $M^{<}(P)$ es Σ -R.
- b) Si existe una función Σ -PR $f:\omega^n\times\Sigma^{*m}\to\omega$ tal que:

$$|M^<(P)(\vec{x},\vec{\alpha})| = |\min_{\alpha}^< P(\vec{x},\vec{\alpha},\alpha)| \le f(\vec{x},\vec{\alpha}), \ para \ cada \ (\vec{x},\vec{\alpha}) \in D_{M^<(P)}$$

entonces $M^{<}(P)$ es Σ -PR.

Lemma 48. Este lemma no se evalua.

Lemma 49. Este lemma no se evalua.

Lemma 50. Este lemma no se evalua.

Theorem 51. Sean Σ y Γ alfabetos cualesquiera.

- a) Supongamos una función f es Σ -mixta y Γ -mixta, entonces f es Σ -R (respectivamente Σ -PR) sii f es Γ -R (respectivamente Γ -PR).
- b) Supongamos un conjunto S es Σ -mixto y Γ -mixto, entonces S es Σ -PR sii S es Γ -PR.

4 El lenguaje S^{Σ}

<u>Lemma 52:</u> Se tiene que: (a) Si $I_1...I_n = J_1...J_m$, con $I_1,...,I_n,J_1,...,J_m \in \operatorname{Ins}^{\Sigma}$, entonces n=m y $I_j=J_j$ para cada $j\geq 1$. (b) Si $\mathcal{P}\in\operatorname{Pro}^{\Sigma}$, entonces existe una unica sucesion de instrucciones $I_1,...,I_n$ tal que $\mathcal{P}=I_1...I_n$

<u>Proof:</u>(a) Supongamos I_n es un tramo final propio de J_m . Notar que entonces n > 1. Es facil ver que entonces ya sea $J_m = L\bar{u}I_n$ para algun $u \in \mathbb{N}$, o I_n es de la forma GOTO $L\bar{n}$ y J_m es de la forma wIF $P\bar{k}$ BEGINS a GOTO $L\bar{n}$ donde $w \in \{L\bar{n} : n \in \mathbb{N}\} \cup \{\varepsilon\}$. El segundo caso no puede darse porque entonces el anteultimo simbolo de I_{n-1} deberia ser S lo cual no sucede para ninguna instruccion. O sea que

$$I_1...I_n = J_1...J_{m-1} \mathbf{L}\bar{u}I_n$$

lo cual dice que (*) $I_1...I_{n-1} = J_1...J_{m-1}L\bar{u}$. Es decir que $L\bar{u}$ es tramo final de I_{n-1} y por lo tanto GOTO $L\bar{u}$ es tramo final de I_{n-1} . Por (*), GOTO es tramo final de $J_1...J_{m-1}$, lo cual es impossible. Hemos llegado a una contradiccion lo cual nos dice que I_n no es un tramo final propio de J_m . Por simetria tenemos que $I_n = J_m$, lo cual usando un razonamiento inductivo nos dice que n = m y $I_j = J_j$ para cada $j \geq 1$.

(b) Es consecuencia directa de (a). \square

Theorem 53: Si f es Σ -computable, entonces f es Σ -efectivamente computable.

Proof: Supongamos por ejemplo que $f: S \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es computada por $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$. Es claro que el procedimiento que consiste en realizar las sucesivas instrucciones de \mathcal{P} (partiendo de $((x_1, ..., x_n, 0, 0, ...), (\alpha_1, ..., \alpha_m, \varepsilon, \varepsilon, ...)))$ y eventualmente terminar en caso de que nos toque realizar la instruccion $n(\mathcal{P}) + 1$, y dar como salida el contenido de la variable N1, es un procedimiento efectivo que computa a f. \square

Proposition 54:

(a) Sea $f:S\subseteq \omega^n\times \Sigma^{*m}\to \omega$ una funcion Σ -computable. Entonces hay un macro $[\nabla\overline{n+1}\leftarrow f(\mathrm{V1},...,\mathrm{V}\bar{n},\mathrm{W1},...,\mathrm{W}\bar{m})]$ (b) Sea $f:S\subseteq \omega^n\times \Sigma^{*m}\to \Sigma^*$ una funcion Σ -computable. Entonces hay un macro $[\mathrm{W}\overline{m+1}\leftarrow f(\mathrm{V1},...,\mathrm{V}\bar{n},\mathrm{W1},...,\mathrm{W}\bar{m})]$

Proof:(b) Sea \mathcal{P} un programa que compute a f. Tomemos un k tal que $k \geq n, m$ y tal que todas las variables y labels de \mathcal{P} estan en el conjunto

$$\{N1, ..., N\bar{k}, P1, ..., P\bar{k}, L1, ..., L\bar{k}\}.$$

Sea \mathcal{P}' la palabra que resulta de reemplazar en \mathcal{P} : - la variable $N\overline{j}$ por $V\overline{n+j}$, para cada j=1,...,k - la variable $P\overline{j}$ por $W\overline{m+j}$, para cada j=1,...,k - el label $L\overline{j}$ por $A\overline{j}$, para cada j=1,...,k Notese que

$$\begin{array}{c}
\nabla \overline{n+1} \leftarrow \nabla 1 \\
\vdots \\
\nabla \overline{n+n} \leftarrow \nabla \overline{n} \\
\nabla \overline{n+n+1} \leftarrow 0 \\
\vdots \\
\nabla \overline{n+k} \leftarrow 0 \\
\nabla \overline{m+k} \leftarrow 0 \\
\nabla \overline{m+k} \leftarrow W1 \\
\vdots \\
\nabla \overline{m+m} \leftarrow W\overline{m} \\
\nabla \overline{m+m} \leftarrow \nabla \overline{m} \\
\nabla \overline{m} \rightarrow \nabla \overline{m} \\
\nabla \overline{m} \leftarrow \nabla \overline{m} \\
\nabla \overline{m} \rightarrow \nabla \overline{m}$$

es el macro buscado, el cual tendra sus variables auxiliares y labels en la lista $\sqrt{n+1},...,\sqrt{n+k},\sqrt{m+2}$

Proposition 55: Sea $P:S\subseteq\omega^n\times\Sigma^{*m}\to\omega$ un predicado Σ -computable. Entonces hay un macro [IF $P(V1, ..., V\bar{n}, W1, ..., W\bar{m})$ GOTO A1]

Theorem 56: Si h es Σ -recursiva, entonces h es Σ -computable.

Proof:Probaremos por induccion en k que

(*) Si $h \in \mathbb{R}^{\Sigma}_k$, entonces h es Σ -computable. El caso k = 0 es dejado al lector. Supongamos

(*) vale para k, veremos que vale para k+1. Sea $h \in \mathbb{R}_{k+1}^{\Sigma} - \mathbb{R}_{k}^{\Sigma}$. Hay varios casos Caso 1. Supongamos h = M(P), con $P : \omega \times \omega^{n} \times \Sigma^{*m} \to \omega$, un predicado perteneciente a

 R_k^{Σ} . Por hipotesis inductiva, P es Σ - computable y por lo tanto tenemos un macro

[IF $P(V1, ..., V\overline{n+1}, W1, ..., W\overline{m})$ GOTO A1]

L2 IF $P(N\overline{n+1}, N1, ..., N\overline{n}, P1, ..., P\overline{m})$ GOTO L1 $N\overline{n+1} \leftarrow N\overline{n+1} + 1$

lo cual nos permite realizar el siguiente programa

GOTO L2
L1
$$N1 \leftarrow N\overline{n+1}$$

Es facil chequear que este programa computa h. Caso 2. Supongamos $h = R(f, \mathcal{G})$, con

$$f: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \Sigma^*$$

$$\mathcal{G}_a$$
: $S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \times \Sigma^* \to \Sigma^*, a \in \Sigma$

elementos de R_k^{Σ} . Sea $\Sigma = \{a_1, ..., a_r\}$. Por hipotesis inductiva, las funciones $f, \mathcal{G}_a, a \in \Sigma$, son Σ -computables y por lo tanto podemos hacer el siguiente programa via el uso de macros

 $[P\overline{m+3} \leftarrow f(N1, ..., N\overline{n}, P1, ..., P\overline{m})]$

 $L\overline{r+1}$ IF $P\overline{m+1}$ BEGINS a_1 GOTO L1

IF $P\overline{m+1}$ BEGINS a_r GOTO $L\overline{r}$

GOTO L $\overline{r+2}$

L1 $P\overline{m+1} \leftarrow {}^{\frown}P\overline{m+1}$

 $[P\overline{m+3} \leftarrow \mathcal{G}_{a_1}(N1,...,N\overline{n},P1,...,P\overline{m},P\overline{m+2},P\overline{m+3})]$

 $P\overline{m+2} \leftarrow P\overline{m+2}a_1$

GOTO L $\overline{r+1}$

 $L\bar{r} P\overline{m+1} \leftarrow {}^{\smallfrown}P\overline{m+1}$

 $P\overline{m+3} \leftarrow \mathcal{G}_{a_r}(N1,...,N\overline{n},P1,...,P\overline{m},P\overline{m+2},P\overline{m+3})$

 $P\overline{m+2} \leftarrow P\overline{m+2}a_r$

GOTO L $\overline{r+1}$

 $L\overline{r+2}$ P1 \leftarrow P $\overline{m+3}$

Es facil chequear que este programa computa h. El resto de los casos son dejados al lector.

Lemma 57: Sea Σ un alfabeto cualquiera. Las funciones S y = son $(\Sigma \cup \Sigma_p)$ -p.r..

Proof: Use el Teorema 51. \square

Lemma 58: Para cada $n, x \in \omega$, tenemos que $|\bar{n}| \le x$ si y solo si $n \le 10^x - 1$

Lemma 59: $\operatorname{Ins}^{\Sigma}$ es un conjunto $(\Sigma \cup \Sigma_p)$ -p.r..

<u>Proof:</u> Para simplificar la Proof asumiremos que $\Sigma = \{@, \&\}$. Ya que Ins^{Σ} es union de los siguientes conjuntos

```
L_{1} = \left\{ N\bar{k} \leftarrow N\bar{k} + 1 : k \in \mathbf{N} \right\}
L_{2} = \left\{ N\bar{k} \leftarrow N\bar{k} - 1 : k \in \mathbf{N} \right\}
L_{3} = \left\{ N\bar{k} \leftarrow N\bar{n} : k, n \in \mathbf{N} \right\}
L_{4} = \left\{ N\bar{k} \leftarrow 0 : k \in \mathbf{N} \right\}
L_{5} = \left\{ \text{IF } N\bar{k} \neq 0 \text{ GOTO } L\bar{m} : k, m \in \mathbf{N} \right\}
L_{7} = \left\{ P\bar{k} \leftarrow P\bar{k} \otimes k \in \mathbf{N} \right\}
           L_6 = \left\{ P\bar{k} \leftarrow P\bar{k}.@: k \in \mathbf{N} \right\}
           L_7 = \left\{ P\bar{k} \leftarrow P\bar{k}.\& : k \in \mathbb{N} \right\}
           L_8 = \left\{ P\bar{k} \leftarrow {}^{\smallfrown} P\bar{k} : k \in \mathbf{N} \right\}
         L_{9} = \left\{ P\bar{k} \leftarrow P\bar{n} : k, n \in \mathbf{N} \right\}
L_{9} = \left\{ P\bar{k} \leftarrow \varepsilon : k \in \mathbf{N} \right\}
L_{10} = \left\{ IF \ P\bar{k} \ BEGINS @ GOTO \ L\bar{m} : k, m \in \mathbf{N} \right\}
         L_{11} = \{ \text{IF P}\bar{k} \text{ BEGINS \& GOTO L}\bar{m} : k, m \in \mathbf{N} \}
          L_{12} = \{ GOTO L\bar{m} : m \in \mathbb{N} \}
          L_{13} = \{SKIP\}
         L_{14} = \left\{ L\bar{k}\alpha : k \in \mathbf{N} \text{ y } \alpha \in L_1 \cup ... \cup L_{13} \right\}
       solo debemos probar que L_1,...,L_{14} son (\Sigma \cup \Sigma_p) -p.r.. Veremos primero por ejemplo que
L_{10} = \left\{ \text{IFP}\bar{k} \text{BEGINS@GOTOL}\bar{m} : k, m \in \mathbf{N} \right\}
       es (\Sigma \cup \Sigma_p)-p.r.. Primero notese que \alpha \in L_{10} si y solo si existen k, m \in \mathbb{N} tales que
\alpha = IFPkBEGINS@GOTOL\bar{m}
       Mas formalmente tenemos que \alpha \in L_{10} si y solo si (\exists k \in \mathbf{N})(\exists m \in \mathbf{N}) \alpha = \text{IFP}k\text{BEGINS@GOTOL}\bar{m}
       Ya que cuando existen tales k, m tenemos que k y \bar{m} son subpalabras de \alpha, el lema anterior
nos dice que \alpha \in L_{10} si y solo si (\exists k \in \mathbf{N})_{k \le 10^{|\alpha|}} (\exists m \in \mathbf{N})_{m \le 10^{|\alpha|}} \alpha = \mathrm{IFP}\bar{k}\mathrm{BEGINS@GOTOL}\bar{m}
       Sea P = \lambda m k \alpha | \alpha = IFP \bar{k} BEGINS@GOTOL \bar{m} |
       Ya que D_{\lambda k[\bar{k}]} = \omega, tenemos que D_P = \omega \times (\Sigma \cup \Sigma_p)^* \times (\Sigma \cup \Sigma_p)^*. Notese que P = \omega
\lambda \alpha \beta \left[ \alpha = \beta \right] \circ \left( p_3^{2,1}, f \right)
       donde f = \lambda \alpha_1 \alpha_2 \alpha_3 \alpha_4 \left[ \alpha_1 \alpha_2 \alpha_3 \alpha_4 \right] \circ \left( C_{\text{IFP}}^{2,1}, \lambda k \left[ \bar{k} \right] \circ p_2^{2,1}, C_{\text{BEGINS@GOTOL}}^{2,1}, \lambda k \left[ \bar{k} \right] \circ p_1^{2,1} \right)
       lo cual nos dice que P es (\Sigma \cup \Sigma_p)-p.r.. Notese que
       \chi_{L_{10}} = \lambda \alpha \left| (\exists k \in \mathbf{N})_{k \le 10^{|\alpha|}} (\exists m \in \mathbf{N})_{m \le 10^{|\alpha|}} P(m, k, \alpha) \right|
       Esto nos dice que podemos usar dos veces el Lema 39 para ver que \chi_{L_{10}} es (\Sigma \cup \Sigma_p)-p.r..
```

Veamos como. Sea $Q = \lambda k \alpha | (\exists m \in \mathbf{N})_{m < 10^{|\alpha|}} P(m, k, \alpha) |$

Por el Lema 39 tenemos que $\lambda x k \alpha \left[(\exists m \in \mathbf{N})_{m \leq x} P(m, k, \alpha) \right]$

es $(\Sigma \cup \Sigma_p)$ -p.r. lo cual nos dice que $Q = \lambda x k \alpha \left[(\exists m \in \mathbf{N})_{m \le x} P(m, k, \alpha) \right] \circ (\lambda \alpha |10^{|\alpha|})$ $p_2^{1,1}, p_1^{1,1}, p_2^{1,1})$

lo es. Ya que $\chi_{L_{10}} = \lambda \alpha \left| (\exists k \in \mathbf{N})_{k \leq 10^{|\alpha|}} Q(k, \alpha) \right|$

podemos en forma similar aplicar el Lema 39 y obtener finalmente que $\chi_{L_{10}}$ es $(\Sigma \cup \Sigma_p)$ p.r.. En forma similar podemos probar que $L_1, ..., L_{13}$ son $(\Sigma \cup \Sigma_p)$ -p.r.. Esto nos dice que $L_1 \cup ... \cup L_{13}$ es $(\Sigma \cup \Sigma_p)$ -p.r.. Notese que $L_1 \cup ... \cup L_{13}$ es el conjunto de las instrucciones basicas de \mathcal{S}^{Σ} . Llamemos Ins Bas^{Σ} a dicho conjunto. Para ver que L_{14} es $(\Sigma \cup \Sigma_p)$ -p.r. notemos que

$$\chi_{L_{14}} = \lambda \alpha \left[(\exists k \in \mathbf{N})_{k \le 10^{|\alpha|}} (\exists \beta \in \operatorname{InsBas}^{\Sigma})_{|\beta| \le |\alpha|} \alpha = L\bar{k}\beta \right]$$

lo cual nos dice que aplicando dos veces el Lema 39 obtenemos que $\chi_{L_{14}}$ es $(\Sigma \cup \Sigma_p)$ -p.r.. Ya que $\operatorname{Ins}^{\Sigma} = \operatorname{InsBas}^{\Sigma} \cup L_{14}$ tenemos que $\operatorname{Ins}^{\Sigma}$ es $(\Sigma \cup \Sigma_p)$ -p.r.. \square

<u>Lemma 60:</u> Bas y Lab son functiones $(\Sigma \cup \Sigma_p)$ -p.r.

Proof: Sea < un orden total estricto sobre $\Sigma \cup \Sigma_p$. Sea $L = \{L\bar{k} : k \in \mathbb{N}\} \cup \{\varepsilon\}$. Dejamos al lector probar que L es un conjunto $(\Sigma \cup \Sigma_p)$ -p.r.. Sea

$$P = \lambda I \alpha \left[\alpha \in \operatorname{Ins}^{\Sigma} \wedge I \in \operatorname{Ins}^{\Sigma} \wedge [\alpha]_{1} \neq L \wedge (\exists \beta \in L) \ I = \beta \alpha \right]$$

Note que $D_P = (\Sigma \cup \Sigma_p)^{*2}$. Dejamos al lector probar que P es $(\Sigma \cup \Sigma_p)$ -p.r.. Notese ademas que cuando $I \in \text{Ins}^{\Sigma}$ tenemos que $P(I, \alpha) = 1$ sii $\alpha = Bas(I)$. Dejamos al lector probar que $Bas = M^{<}(P)$ por lo que para ver que Bas es $(\Sigma \cup \Sigma_p)$ -p.r., solo nos falta ver que la funcion Bas es acotada por alguna funcion $(\Sigma \cup \Sigma_p)$ -p.r. y $(\Sigma \cup \Sigma_p)$ -total. Pero esto es trivial ya que $|Bas(I)| \leq |I| = p_1^{0,1}(I)$ para cada $I \in Ins^{\Sigma}$. Finalmente note que

$$Lab = M^{<}(\lambda I\alpha [\alpha Bas(I) = I])$$

lo cual nos dice que Lab es $(\Sigma \cup \Sigma_p)$ -p.r.. \square Recordemos que dado un programa \mathcal{P} habiamos definido $I_i^{\mathcal{P}} = \varepsilon$, para i = 0 o $i > n(\mathcal{P})$. O sea que la funcion $(\Sigma \cup \Sigma_p)$ -mixta $\lambda i \mathcal{P} \left[I_i^{\mathcal{P}} \right]$ tiene dominio igual a $\omega \times \text{Pro}^{\Sigma}$.

<u>Lemma 61:</u> (a) $\operatorname{Pro}^{\Sigma}$ es un conjunto $(\Sigma \cup \Sigma_p)$ -p.r. (b) $\lambda \mathcal{P}[n(\mathcal{P})]$ y $\lambda i \mathcal{P}[I_i^{\mathcal{P}}]$ son funciones $(\Sigma \cup \Sigma_p)$ -p.r..

Proof: Ya que $\operatorname{Pro}^{\Sigma} = D_{\lambda \mathcal{P}[n(\mathcal{P})]}$ tenemos que (b) implica (a). Para probar (b) sea < un orden total estricto sobre $\Sigma \cup \Sigma_p$. Sea P el siguiente predicado

$$\lambda x \left[Lt(x) > 0 \land (\forall t \in \mathbf{N})_{t \le Lt(x)} \right] *^{<} ((x)_t) \in \operatorname{Ins}^{\Sigma} \land \qquad (\forall t \in \mathbf{N})_{t \le Lt(x)} (\forall m \in \mathbf{N})_{t \le Lt(x)})$$

$$\mathbf{N}) \neg (\bar{\mathbf{L}}\bar{m} \text{ t-final } *^{<}((x)_t)) \lor \qquad (\exists j \in \mathbf{N})_{j \leq Lt(x)} (\exists \alpha \in (\Sigma \cup \Sigma_p) - Num) \; \bar{\mathbf{L}}\bar{m}\alpha \text{ t-}$$

Notese que $D_P = \mathbf{N}$ y que P(x) = 1 sii Lt(x) > 0, * $((x)_t) \in \operatorname{Ins}^{\Sigma}$, para cada t = 1, ..., Lt(x)y ademas $\subset_{t=1}^{t=Lt(x)} *((x)_t) \in \operatorname{Pro}^{\Sigma}$. Para ver que P es $(\Sigma \cup \Sigma_p)$ -p.r. solo nos falta acotar el cuantificador $(\forall m \in \mathbb{N})$ de la expresion lambda que define a P. Ya que nos interesan los valores de m para los cuales \bar{m} es posiblemente una subpalabra de alguna de las palabras $*((x)_i)$, el Lema 58 nos dice que una cota posible es $10^{\max\{|*|((x)_j)|:1\leq j\leq Lt(x)\}}-1$. Dejamos al lector los detalles de la Proof de que P es $(\Sigma \cup \Sigma_p)$ -p.r.. Sea $Q = \lambda x \alpha \left[P(x) \wedge \alpha = \subset_{t=1}^{t=Lt(x)} *^{<}((x)_t) \right].$

$$Q = \lambda x \alpha \left[P(x) \wedge \alpha = \subset_{t=1}^{t=Lt(x)} *^{<}((x)_{t}) \right].$$

Note que $D_Q = \mathbf{N} \times (\Sigma \cup \Sigma_p)^*$. Claramente Q es $(\Sigma \cup \Sigma_p)$ -p.r.. Ademas note que $D_{M(Q)} = \mathbb{N}$ $\operatorname{Pro}^{\Sigma}$. Notese que para $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$, tenemos que $M(Q)(\mathcal{P})$ es aquel numero tal que pensado como infinitupla (via mirar su secuencia de exponentes) codifica la secuencia de instrucciones que forman a \mathcal{P} . Es decir $M(Q)(\mathcal{P}) = \left\langle \#^{<}(I_1^{\mathcal{P}}), \#^{<}(I_2^{\mathcal{P}}), ..., \#^{<}(I_{n(\mathcal{P})}^{\mathcal{P}}), 0, 0, ... \right\rangle$

Por (b) del Lema 43, M(Q) es $(\Sigma \cup \Sigma_p)$ -p.r. ya que para cada $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ tenemos que $M(Q)(\mathcal{P}) = \left\langle \#^{<}(I_{1}^{\mathcal{P}}), \#^{<}(I_{2}^{\mathcal{P}}), ..., \#^{<}(I_{n(\mathcal{P})}^{\mathcal{P}}), 0, 0, ... \right\rangle$ $= \prod_{i=1}^{n(\mathcal{P})} pr(i)^{\#^{<}(I_{1}^{\mathcal{P}})}$ $\leq \prod_{i=1}^{|\mathcal{P}|} pr(i)^{\#^{<}(\mathcal{P})}$

Ademas tenemos que
$$\begin{array}{ll} \lambda \mathcal{P}\left[n(\mathcal{P})\right] &=& \lambda x \left[Lt(x)\right] \circ M(Q) \\ \lambda i \mathcal{P}\left[I_i^{\mathcal{P}}\right] &=& *^{<} \circ g \circ \left(p_1^{1,1}, M(Q) \circ p_2^{1,1}\right) \\ \text{donde } g &=& C_0^{1,1} \mid_{\{0\} \times \omega} \; \cup \lambda i x \left[(x)_i\right], \; \text{lo cual dice que } \lambda \mathcal{P}\left[n(\mathcal{P})\right] \; \text{y} \; \lambda i \mathcal{P}\left[I_i^{\mathcal{P}}\right] \; \text{son funciones} \\ \end{array}$$

 $(\Sigma \cup \Sigma_p)$ -p.r.. \square

<u>Lemma 62:</u> Dado un orden total estricto < sobre $\Sigma \cup \Sigma_p$, las funciones $s, S_\#$ y S_* son $(\Sigma \cup \Sigma_p)$ -p.r..

<u>Proof:</u> Necesitaremos algunas funciones $(\Sigma \cup \Sigma_p)$ -p.r.. Dada una instruccion I en la cual al menos ocurre una variable, usaremos #Var1(I) para denotar el numero de la primer variable que ocurre en I. Por ejemplo

$$\#Var1\left(\bar{\operatorname{L}}\bar{n} \text{ IF } N\bar{k} \neq 0 \text{ GOTO } \bar{\operatorname{L}}\bar{m}\right) = k$$

Notese que $\lambda I[\#Var1(I)]$ tiene dominio igual a $\operatorname{Ins}^{\Sigma}-L$, donde L es la union de los siguientes conjuntos

$$\{\operatorname{GOTOL}\bar{m}: m \in \mathbf{N}\} \cup \{\operatorname{L}\bar{k}\operatorname{GOTOL}\bar{m}: k, m \in \mathbf{N}\} \{\operatorname{SKIP}\} \cup \{\operatorname{L}\bar{k}\operatorname{SKIP}: k \in \mathbf{N}\}$$

```
Dada una instruccion I en la cual ocurren dos variables, usaremos \#Var2(I) para denotar el
numero de la segunda variable que ocurre en I. Por ejemplo \#Var2 (Nk \leftarrow N\bar{m}) = m
```

Notese que el dominio de $\lambda I[\#Var2(I)]$ es igual a la union de los siguientes conjuntos $\{Nk \leftarrow N\bar{m}: k, m \in \mathbf{N}\} \cup \{L\bar{j} N\bar{k} \leftarrow N\bar{m}: j, k, m \in \mathbf{N}\}$

$$\{P\bar{k} \leftarrow P\bar{m}: k, m \in \mathbf{N}\} \cup \{L\bar{j} P\bar{k} \leftarrow P\bar{m}: j, k, m \in \mathbf{N}\}$$

 $\#Var1(I) = \min_{k} (N\bar{k} \leftarrow \text{ocu } I \lor N\bar{k} \neq \text{ocu } I$ Ademas notese que para una instruccion ${\cal I}$ tenemos que $\#Var2(I) = \min_{k}(N\bar{k} \text{ t-final } I \vee N\bar{k} + \text{ ocu } I$

Esto nos dice que si llamamos P al predicado $\lambda k\alpha$ $\alpha \in \operatorname{Ins}^{\Sigma} \wedge (N\bar{k} \leftarrow \operatorname{ocu} \alpha \vee N\bar{k} \neq \operatorname{ocu} \alpha \vee P\bar{k} \leftarrow \operatorname{ocu} \alpha)$ entonces $\lambda I[\#Var1(I)] = M(P)$ por lo cual $\lambda I[\#Var1(I)]$ es $(\Sigma \cup \Sigma_p)$ -p.r. Similarmente se

puede ver que
$$\lambda I[\#Var2(I)]$$
 es $(\Sigma \cup \Sigma_p)$ -p.r.. Sea $F_{\dot{-}}: \mathbf{N} \times \mathbf{N} \to \omega$

$$(x,j) \to \langle (x)_1, ..., (x)_{j-1}, (x)_{j+1}, ... \rangle$$

Ya que
$$F_{\dot{-}}(x,j) = \begin{cases} Q(x,pr(j)) & \text{si } pr(j) \text{ divide } x \\ x & \text{caso contrario} \end{cases}$$

tenemos que
$$F_{-}$$
 es $(\Sigma \cup \Sigma_{p})$ -p.r.. Sea $F_{+}: \mathbf{N} \times \mathbf{N} \to \omega$

$$(x, j) \to \langle (x)_{1}, ..., (x)_{j-1}, (x)_{j} + 1, (x)_{j+1}, ... \rangle$$

$$\text{Ya que } F_{+}(x,j) = x.pr(j) \text{ tenemos que } F_{+} \text{ es } (\Sigma \cup \Sigma_{p}) \text{-p.r.. Sea}$$

$$F_{\leftarrow} : \mathbf{N} \times \mathbf{N} \times \mathbf{N} \to \omega$$

$$(x,j,k) \to \langle (x)_{1},...,(x)_{j-1},(x)_{j+1},... \rangle$$

Ya que
$$F_{\leftarrow}(x,j,k) = Q(x,pr(j)^{(x)_j}).pr(j)^{(x)_k}$$
 tenemos que F_{\leftarrow} es $(\Sigma \cup \Sigma_p)$ -p.r.. Sea $F_0: \mathbf{N} \times \mathbf{N} \to \omega$ $(x,j) \to \langle (x,j) \rangle$

Es facil ver que
$$F_0$$
 es $(\Sigma \cup \Sigma_p)$ -p.r.. Para cada $a \in \Sigma$, sea
$$F_a : \mathbf{N} \times \mathbf{N} \to \omega$$
 $(x,j) \to \langle (x)_1, ..., (x)_{j-1}, \#^{<}(*^{<}((x)_j)_j)$
Es facil ver que F_a es $(\Sigma \cup \Sigma_p)$ -p.r.. En forma similar puede ser probado que
$$F_{\circ} : \mathbf{N} \times \mathbf{N} \to \omega$$
 $(x,j) \to \langle (x)_1, ..., (x)_{j-1}, \#^{<}(*^{<}((x)_j)_j)$

es $(\Sigma \cup \Sigma_p)$ -p.r. Dado $(i, x, y, \mathcal{P}) \in \omega \times \mathbf{N} \times \mathbf{N} \times \mathrm{Pro}^{\Sigma}$, tenemos varios casos en los cuales los valores $s(i, x, y, \mathcal{P}), S_{\#}(i, x, y, \mathcal{P})$ y $S_{*}(i, x, y, \mathcal{P})$ pueden ser obtenidos usando las funciones antes definidas:

$$s(i,x,y,\mathcal{P}) = i$$

(1) CASO
$$i = 0 \lor i > n(\mathcal{P})$$
. Entonces $S_{\#}(i, x, y, \mathcal{P}) = x$
 $S_{*}(i, x, y, \mathcal{P}) = y$

$$S_*(i, x, y, \mathcal{P}) = y$$

$$s(i, x, y, \mathcal{P}) = i + 1$$
(2) CASO $(\exists j \in \omega) \ Bas(I_i^{\mathcal{P}}) = N\bar{j} \leftarrow N\bar{j} + 1$. Entonces $S_{\#}(i, x, y, \mathcal{P}) = F_{+}(x, \#Var1(I_i^{\mathcal{P}}))$

$$S_*(i, x, y, \mathcal{P}) = y$$

$$s(i,x,y,\mathcal{P}) = i+1$$
(3) CASO $(\exists j \in \omega) \ Bas(I_i^{\mathcal{P}}) = N\bar{j} \leftarrow N\bar{j} - 1$. Entonces $S_{\#}(i,x,y,\mathcal{P}) = F_{\dot{-}}(x, \#Var1(I_i^{\mathcal{P}}))$

$$S_*(i, x, y, \mathcal{P}) = y$$

$$s(i, x, y, \mathcal{P}) = i + 1$$

$$(4) \text{ CASO } (\exists j, k \in \omega) \text{ } Bas(I_i^{\mathcal{P}}) = N\bar{j} \leftarrow N\bar{k}. \text{ Entonces } S_{\#}(i, x, y, \mathcal{P}) = F_{\leftarrow}(x, \#Var1(I_i^{\mathcal{P}}), \#Var2(I_i^{\mathcal{P}})) = S_{*}(i, x, y, \mathcal{P}) = S_{*}(i$$

$$s(i, x, y, \mathcal{P}) = i + 1$$

(5) CASO
$$(\exists j, k \in \omega)$$
 $Bas(I_i^{\mathcal{P}}) = N\bar{j} \leftarrow 0$. Entonces $S_{\#}(i, x, y, \mathcal{P}) = F_0(x, \#Var1(I_i^{\mathcal{P}}))$
 $S_*(i, x, y, \mathcal{P}) = y$

$$s(i, x, y, \mathcal{P}) = i - (6) \text{ CASO } (\exists j, m \in \omega) \ \left(Bas(I_i^{\mathcal{P}}) = \text{IF N} \overline{j} \neq 0 \text{ GOTO } L \overline{m} \wedge (x)_j = 0 \right). \text{ Entonces } S_{\#}(i, x, y, \mathcal{P}) = x$$

$$s(i, x, y, \mathcal{P}) = \mathbf{m}$$

(7) CASO
$$(\exists j, m \in \omega)$$
 $(Bas(I_i^{\mathcal{P}}) = \text{IF N}\bar{j} \neq 0 \text{ GOTO L}\bar{m} \land (x)_j \neq 0)$. Entonces $S_{\#}(i, x, y, \mathcal{P}) = x$
 $S_*(i, x, y, \mathcal{P}) = y$

```
(8) CASO (\exists j \in \omega) \; Bas(I_i^{\mathcal{P}}) = P\bar{j} \leftarrow P\bar{j}.a. \; \text{Entonces} \; S_{\#}(i, x, y, \mathcal{P}) = x
                                                                                                      S_*(i, x, y, \mathcal{P}) = F_a(y, \#Var1(I_i^{\mathcal{P}}))
                                                                                                       s(i, x, y, \mathcal{P}) = i + 1
     (9) CASO (\exists j \in \omega) \ Bas(I_i^{\mathcal{P}}) = P\bar{j} \leftarrow {}^{\smallfrown} P\bar{j}. Entonces S_{\#}(i, x, y, \mathcal{P}) = x
                                                                                                     S_*(i, x, y, \mathcal{P}) = F_{\curvearrowright}(y, \#Var1(I_i^{\mathcal{P}}))
                                                                                                           s(i, x, y, \mathcal{P}) = i + 1
     (10) CASO (\exists j, k \in \omega) \ Bas(I_i^{\mathcal{P}}) = P\bar{j} \leftarrow P\bar{k}. Entonces S_{\#}(i, x, y, \mathcal{P}) = x
                                                                                                        S_*(i, x, y, \mathcal{P}) = F_{\leftarrow}(y, \#Var1(I_i^{\mathcal{P}}), \#Var2(I_i^{\mathcal{P}}))
                                                                                                      s(i, x, y, \mathcal{P}) = i + 1
     (11) CASO (\exists j \in \omega) \ Bas(I_i^{\mathcal{P}}) = P_j^{\bar{j}} \leftarrow \varepsilon. Entonces S_{\#}(i, x, y, \mathcal{P}) = x
                                                                                                   S_*(i, x, y, \mathcal{P}) = F_0(y, \#Var1(I_i^{\mathcal{P}}))
     (12) CASO (\exists j, m \in \omega)(\exists a \in \Sigma) (Bas(I_i^{\mathcal{P}}) = \text{IF P}\bar{j} \text{ BEGINS } a \text{ GOTO } L\bar{m} \wedge [*(y)_j]_1 \neq a).
                      s(i, x, y, \mathcal{P}) = i + 1
Entonces S_{\#}(i, x, y, \mathcal{P}) = x
                   S_*(i, x, y, \mathcal{P}) = y
     (13) CASO (\exists j, m \in \omega)(\exists a \in \Sigma) (Bas(I_i^{\mathcal{P}}) = \text{IF P}\bar{j} \text{ BEGINS } a \text{ GOTO } L\bar{m} \wedge [*(y)_j]_1 = a).
                     s(i, x, y, \mathcal{P}) = \min_{l} \left( Lab(I_l^{\mathcal{P}}) \neq \varepsilon \wedge Lab(I_l^{\mathcal{P}}) \text{ t -final } I_i^{\mathcal{P}} \right)
Entonces S_{\#}(i, x, y, \mathcal{P}) = x
                   S_*(i, x, y, \mathcal{P}) = y
                                                                                                         s(i, x, y, \mathcal{P}) = \min_{l} \left( Lab(I_l^{\mathcal{P}}) \neq \varepsilon \wedge Lab(I_l^{\mathcal{P}}) \right)
     (14) CASO (\exists j \in \omega) \; Bas(I_i^{\mathcal{P}}) = \text{GOTO L}\bar{j}. \; \text{Entonces} \; \; S_{\#}(i, x, y, \mathcal{P}) = x
                                                                                                       S_*(i, x, y, \mathcal{P}) = y
                                                                                  s(i, x, y, \mathcal{P}) = k+1
     (15) CASO Bas(I_i^{\mathcal{P}}) = SKIP. Entonces S_{\#}(i, x, y, \mathcal{P}) =
                                                                                S_*(i, x, y, \mathcal{P}) = y
     O sea que los casos anteriores nos permiten definir conjuntos S_1, ..., S_{15}, los cuales son
```

 $s(i, x, y, \mathcal{P}) = i + 1$

O sea que los casos anteriores nos permiten definir conjuntos $S_1, ..., S_{15}$, los cuales son disjuntos de a pares y cuya union da el conjunto $\omega \times \mathbf{N} \times \mathbf{N} \times \operatorname{Pro}^{\Sigma}$, de manera que cada una de las funciones $s, S_{\#}$ y S_{*} pueden escribirse como union disjunta de funciones $(\Sigma \cup \Sigma_{p})$ -p.r. restrinjidas respectivamente a los conjuntos $S_1, ..., S_{15}$. Ya que los conjuntos $S_1, ..., S_{15}$ son $(\Sigma \cup \Sigma_{p})$ -p.r. el Lema 35 nos dice que $s, S_{\#}$ y S_{*} lo son. \square

Lemma 63: Sean: ... hacer!!

Proof:Hacer

Proposition 64: Sean $n, m \leq 0$, las funciones $i^{n,m}, E_{\#j}^{n,m}, j = 1, 2, ...$ son $\Sigma \cup \Sigma_p$ -PR.

Proof: Sea < un orden total estricto sobre $\Sigma \cup \Sigma_p$ y sean $s, S_\#, S$ las funciones previamente definidas en el Lemma 62, definamos:

$$C_{\#}^{n,m} = \lambda t \vec{x} \vec{\alpha} \mathcal{P} \left[\left\langle E_{\#1}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}), E_{\#2}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}), \ldots \right\rangle \right]$$

$$C_{*}^{n,m} = \lambda t \vec{x} \vec{\alpha} \mathcal{P} \left[\left\langle \#^{<}(E_{*1}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P})), \#^{<}(E_{*2}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P})), \ldots \right\rangle \right]$$

$$i^{n,m}(0, \vec{x}, \vec{\alpha}, \mathcal{P}) = 1$$

$$C_{\#}^{n,m}(0, \vec{x}, \vec{\alpha}, \mathcal{P}) = \left\langle x_{1}, \ldots, x_{n} \right\rangle$$

$$C_{*}^{n,m}(0, \vec{x}, \vec{\alpha}, \mathcal{P}) = \left\langle \#^{<}(\alpha_{1}), \ldots, \#^{<}(\alpha_{m}) \right\rangle$$

$$i^{n,m}(t+1, \vec{x}, \vec{\alpha}, \mathcal{P}) = s(i^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}), C_{\#}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}), C_{*}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}))$$

$$C_{\#}^{n,m}(t+1, \vec{x}, \vec{\alpha}, \mathcal{P}) = S_{\#}(i^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}), C_{\#}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}), C_{*}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}))$$

$$C_{*}^{n,m}(t+1, \vec{x}, \vec{\alpha}, \mathcal{P}) = S_{*}(i^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}), C_{\#}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}), C_{*}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}))$$
Por el Lema 63 tenemos que $i^{n,m}$, $C_{\#}^{n,m}$ y $C_{*}^{n,m}$ son $(\Sigma \cup \Sigma_{p})$ -p.r.. Ademas notese que
$$E_{\#j}^{n,m} = \lambda t \vec{x} \vec{\alpha} \mathcal{P} \left[(C_{\#}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}))_{j} \right]$$

$$E_{*,i}^{n,m} = \lambda t \vec{x} \vec{\alpha} \mathcal{P} \left[*(C_{*}^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}))_{j} \right]$$

por lo cual las funciones $E_{\#j}^{n,m}$, $E_{*j}^{n,m}$, j=1,2,..., son $(\Sigma \cup \Sigma_p)$ -p.r. \square **Theorem 65:** Las funciones $\Phi_{\#}^{n,m}$ y $\Phi_{*}^{n,m}$ son $(\Sigma \cup \Sigma_p)$ -recursivas.

<u>Proof:</u> Veremos que $\Phi_{\#}^{n,m}$ es $(\Sigma \cup \Sigma_p)$ -recursiva. Sea H el predicado $(\Sigma \cup \Sigma_p)$ -mixto

 $\lambda t \vec{x} \vec{\alpha} \mathcal{P} [i^{n,m}(t, x_1, ..., x_n, \alpha_1, ..., \alpha_m, \mathcal{P}) = n(\mathcal{P}) + 1].$ Note que $D_H = \omega^{n+1} \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma}$. Ya que the functiones $i^{n,m}$ y $\lambda \mathcal{P} [n(\mathcal{P})]$ son $(\Sigma \cup \Sigma_p)$ p.r., H lo es. Notar que $D_{M(H)} = D_{\Phi_{\#}^{n,m}}$. Ademas para $(\vec{x}, \vec{\alpha}, \mathcal{P}) \in D_{M(H)}$, tenemos que $M(H)(\vec{x}, \vec{\alpha}, \mathcal{P})$ es la menor cantidad de pasos necesarios para que \mathcal{P} termine partiendo del estado $((x_1,...,x_n,0,0,...),(\alpha_1,...,\alpha_m,\varepsilon,\varepsilon,...))$. Ya que H es $(\Sigma \cup \Sigma_p)$ -p.r., tenemos que M(H)es $(\Sigma \cup \Sigma_p)$ -r.. Notese que para $(\vec{x}, \vec{\alpha}, \mathcal{P}) \in D_{M(H)} = D_{\Phi_{\mu}^{n,m}}$ tenemos que $\Phi_{\#}^{n,m}(\vec{x}, \vec{\alpha}, \mathcal{P}) =$ $E_{\#1}^{n,m}\left(M(H)(\vec{x},\vec{\alpha},\mathcal{P}),\vec{x},\vec{\alpha},\mathcal{P}\right)$

lo cual con un poco mas de trabajo nos permite probar que $\Phi^{n,m}_\# = E^{n,m}_{\#1} \circ \left(M(H), p_1^{n,m+1}, ..., p_{n+m+1}^{n,m+1}\right)$ Ya que la funcion $E_{\#1}^{n,m}$ es $(\Sigma \cup \Sigma_p)$ -r., lo es $\Phi_{\#}^{n,m}$. \square

Corollary 66: Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -computable, entonces f es Σ -recursiva.

Proof: Haremos el caso $O = \Sigma^*$. Sea \mathcal{P}_0 un programa que compute a f. Primero veremos que f es $(\Sigma \cup \Sigma_p)$ -recursiva. Note que

$$f = \Phi^{n,m}_* \circ \left(p_1^{n,m}, ..., p_{n+m}^{n,m}, C_{\mathcal{P}_0}^{n,m} \right)$$

donde cabe destacar que $p_1^{n,m},...,p_{n+m}^{n,m}$ son las proyecciones respecto del alfabeto $\Sigma \cup \Sigma_p$, es decir que tienen dominio $\omega^n \times (\Sigma \cup \Sigma_p)^{*m}$. Ya que $\Phi^{n,m}_*$ es $(\Sigma \cup \Sigma_p)$ -recursiva tenemos que f lo es. O sea que el Teorema 51 nos dice que f es Σ -recursiva. \square

<u>Tesis de Church</u>: Toda funcion Σ -efectivamente computable es Σ -recursiva.

Corollary 67: Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -recursiva, entonces existe un predicado Σ -p.r. $P: \mathbb{N} \times \omega^n \times \Sigma^{*m} \to \omega$ y una funcion Σ -p.r. $g: \mathbb{N} \to O$ tales que $f = g \circ M(P)$.

Proof: Supongamos que $O = \Sigma^*$. Sea \mathcal{P}_0 un programa el cual compute a f. Sea < un orden total estricto sobre Σ . Note que podemos tomar

$$P = \lambda t \vec{x} \vec{\alpha} [i^{n,m} ((t)_1, \vec{x}, \vec{\alpha}, \mathcal{P}_0) = n(\mathcal{P}_0) + 1 \wedge (t)_2 = \#^{<}(E_{*1}^{n,m} ((t)_1, \vec{x}, \vec{\alpha}, \mathcal{P}_0))]$$

 $g = \lambda t [*^{<}((t)_2)].$
(Justifique por que P es Σ-p.r..) \square

<u>Lemma 68:</u> Supongamos $f_i: D_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O, i = 1, ..., k$, son funciones Σ -recursivas tales que $D_{f_i} \cap D_{f_i} = \emptyset$ para $i \neq j$. Entonces la funcion $f_1 \cup ... \cup f_k$ es Σ -recursiva.

<u>Proof:</u> Probaremos el caso k=2 y $O=\Sigma^*$. Sean \mathcal{P}_1 y \mathcal{P}_2 programas que computen las funciones f_1 y f_2 , respectivamente. Sean

$$P_{1} = \lambda t \vec{x} \vec{\alpha} \left[i^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}_{1}) = n(\mathcal{P}_{1}) + 1 \right]$$

$$P_{2} = \lambda t \vec{x} \vec{\alpha} \left[i^{n,m}(t, \vec{x}, \vec{\alpha}, \mathcal{P}_{2}) = n(\mathcal{P}_{2}) + 1 \right]$$

Notese que $D_{P_1} = D_{P_2} = \omega \times \omega^n \times \Sigma^{*m}$ y que P_1 y P_2 son $(\Sigma \cup \Sigma_p)$ -p.r.. Ya que son Σ -mixtos, el Teorema 51 nos dice que son Σ -p.r.. Tambien notese que $D_{M((P_1 \vee P_2))} = D_{f_1} \cup D_{f_2}$.

Definamos
$$g_{1} = \lambda \vec{x} \vec{\alpha} \begin{bmatrix} E_{*1}^{n,m}(M((P_{1} \vee P_{2}))(\vec{x}, \vec{\alpha}), \vec{x}, \vec{\alpha}, \mathcal{P}_{1})^{P_{i}(M((P_{1} \vee P_{2}))(\vec{x}, \vec{\alpha}), \vec{x}, \vec{\alpha})} \\ g_{2} = \lambda \vec{x} \vec{\alpha} \begin{bmatrix} E_{*1}^{n,m}(M((P_{1} \vee P_{2}))(\vec{x}, \vec{\alpha}), \vec{x}, \vec{\alpha}, \mathcal{P}_{2})^{P_{i}(M((P_{1} \vee P_{2}))(\vec{x}, \vec{\alpha}), \vec{x}, \vec{\alpha})} \end{bmatrix}$$
Notese que g_{1} y g_{2} son Σ -recursivas y que $D_{g_{1}} = D_{g_{2}} = D_{f_{1}} \cup D_{f_{2}}$, Ademas notese que

 $g_1(\vec{x}, \vec{\alpha}) = \begin{cases} f_1(\vec{x}, \vec{\alpha}) & \text{si } (\vec{x}, \vec{\alpha}) \in D_{f_1} \\ \varepsilon & \text{caso contrario} \end{cases}$ $g_2(\vec{x}, \vec{\alpha}) = \begin{cases} f_2(\vec{x}, \vec{\alpha}) & \text{si } (\vec{x}, \vec{\alpha}) \in D_{f_2} \\ \varepsilon & \text{caso contrario} \end{cases}$

$$g_2(\vec{x}, \vec{\alpha}) = \begin{cases} f_2(\vec{x}, \vec{\alpha}) & \text{si } (\vec{x}, \vec{\alpha}) \in D_{f_2} \\ \varepsilon & \text{caso contrario} \end{cases}$$

O sea que $\hat{f}_1 \cup f_2 = \lambda \alpha \beta [\alpha \beta] \circ (g_1, g_2)$ es Σ-recursiva. \square **Lemma 69:** Supongamos $\Sigma \supseteq \Sigma_p$. Entonces $Halt^{\Sigma}$ es no Σ-recursivo.

Proof:Supongamos $Halt^{\Sigma}$ es Σ -recursivo y por lo tanto Σ -computable. Por la proposicion de existencia de macros tenemos que hay un macro

 $\left[\text{IF } Halt^{\Sigma}(\text{W1}) \text{ GOTO A1}\right]$

Sea \mathcal{P}_0 el siguiente programa de \mathcal{S}^{Σ} L1 [IF $Halt^{\Sigma}(P1)$ GOTO L1]

Note que - \mathcal{P}_0 termina partiendo desde $((0,0,...),(\mathcal{P}_0,\varepsilon,\varepsilon,...))$ sii $Halt^{\Sigma}(\mathcal{P}_0)=0$, lo cual produce una contradiccion si tomamos en (*) $\mathcal{P}=\mathcal{P}_0$. \square

<u>Theorem 70:</u> Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Entonces S es Σ -efectivamente enumerable sii S es Σ -recursivamente enumerable

Proof:(\Rightarrow) Use la Tesis de Church.

 (\Leftarrow) Use el Theorem 42. □

<u>Theorem 71:</u> Dado $S \subseteq \omega^n \times \Sigma^{*m}$, son equivalentes (1) S es Σ -recursivamente enumerable (2) $S = I_F$, para alguna $F : D_F \subseteq \omega^k \times \Sigma^{*l} \to \omega^n \times \Sigma^{*m}$ tal que cada F_i es Σ -recursiva. (3) $S = D_f$, para alguna funcion Σ -recursiva f (4) $S = \emptyset$ o $S = I_F$, para alguna $F : \omega \to \omega^n \times \Sigma^{*m}$ tal que cada F_i es Σ -p.r.

<u>**Proof:**</u>(2) \Rightarrow (3). Para i=1,...,n+m, sea \mathcal{P}_i un programa el cual computa a F_i y sea < un orden total estricto sobre Σ . Sea $P: \mathbf{N} \times \omega^n \times \Sigma^{*m} \to \omega$ dado por $P(t, \vec{x}, \vec{\alpha}) = 1$ sii se cumplen las siguientes condiciones

$$i^{k,l}(((t)_{k+l+1},(t)_{1},...,(t)_{k},*^{<}((t)_{k+1}),...,*^{<}((t)_{k+l})),\mathcal{P}_{1}) = n(\mathcal{P}_{1}) + 1$$

$$\vdots$$

$$i((t)_{k+l+1},(t)_{1}...(t)_{k},*^{<}((t)_{k+1})...,*^{<}((t)_{k+l})),\mathcal{P}_{n+m}) = n(\mathcal{P}_{n+m}) + 1$$

$$E^{k,l}_{\#1}((t)_{k+l+1},(t)_{1},...,(t)_{k},*^{<}((t)_{k+1}),...,*^{<}((t)_{k+l})),\mathcal{P}_{1}) = x_{1}$$

$$\vdots$$

$$E^{k,l}_{\#1}((t)_{k+l+1},(t)_{1},...,(t)_{k},*^{<}((t)_{k+1}),...,*^{<}((t)_{k+l})),\mathcal{P}_{n}) = x_{n}$$

$$E^{k,l}_{*1}((t)_{k+l+1},(t)_{1},...,(t)_{k},*^{<}((t)_{k+1}),...,*^{<}((t)_{k+l})),\mathcal{P}_{n+1}) = \alpha_{1}$$

$$\vdots$$

$$E_{*1}^{k,l}((t)_{k+l+1},(t)_1,...,(t)_k,*^<((t)_{k+1}),...,*^<((t)_{k+l})),\mathcal{P}_{n+m}) \ = \ \alpha_m$$

Note que P es $(\Sigma \cup \Sigma_p)$ -p.r. y por lo tanto P es Σ -p.r.. Pero entonces M(P) es Σ -r. lo cual nos dice que se cumple (3) ya que $D_{M(P)} = I_F = S$. (3) \Rightarrow (4). Supongamos $S \neq \emptyset$. Sea $(z_1, ..., z_n, \gamma_1, ..., \gamma_m) \in S$ fijo. Sea \mathcal{P} un programa el cual compute a f y sea < un orden total estricto sobre Σ . Sea $P: \mathbb{N} \to \omega$ dado por P(x) = 1 sii

$$i^{n,m}((x)_{n+m+1},(x)_1,...,(x)_n,*<((x)_{n+1}),...,*<((x)_{n+m})),\mathcal{P}) = n(\mathcal{P})+1$$

Es facil ver que P es $(\Sigma \cup \Sigma_p)$ -p.r. por lo cual es Σ -p.r.. Sea $P = P \cup C_0^{1,0} \mid_{\{0\}}$. Para i = 1, ..., n, definamos $F_i : \omega \to \omega$ de la siguiente manera $F_i(x) = \begin{cases} (x)_i & \text{si } \bar{P}(x) = 1 \\ z_i & \text{si } \bar{P}(x) \neq 1 \end{cases}$

Para i=n+1,...,n+m, definamos $F_i:\omega\to\Sigma^*$ de la siguiente manera $F_i(x)=\{s<((x)_i)\ \text{si}\ \bar{P}(x)=1\ \gamma_{i-n}\ \text{si}\ \bar{P}(x)\neq 1$

Por el lema de division por casos, cada F_i es Σ -p.r.. Es facil ver que $F = (F_1, ..., F_{n+m})$ cumple (4). \square

Corollary 72: Supongamos $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -recursiva y $S \subseteq D_f$ es Σ -re., entonces $f|_S$ es Σ -recursiva.

<u>Proof:</u>Supongamos $O = \Sigma^*$. Por el Theorem anterior $S = D_g$, para alguna funcion Σ recursiva g. Notese que componiendo adecuadamente podemos suponer que $I_g = \{\varepsilon\}$. O sea que tenemos $f|_{S} = \lambda \alpha \beta [\alpha \beta] \circ (f, g)$. \square

<u>Corollary 73:</u> Supongamos $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -recursiva y $S \subseteq I_f$ es Σ -r.e., entonces $f^{-1}(S) = \{(\vec{x}, \vec{\alpha}) : f(\vec{x}, \vec{\alpha}) \in S\}$ es Σ -r.e..

<u>Proof:</u>Por el Theorem anterior $S=D_g$, para alguna funcion Σ -recursiva g. O sea que $f^{-1}(S)=D_{g\circ f}$ es Σ -r.e.. \square

Corollary 74: Supongamos $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son conjuntos Σ -r.e.. Entonces $S_1 \cap S_2$ es Σ -r.e..

<u>Proof:</u> Por el Theorem anterior $S_i = D_{g_i}$, con g_1, g_2 funciones Σ -recursivas. Notese que podemos suponer que $I_{g_1}, I_{g_2} \subseteq \omega$ por lo que $S_1 \cap S_2 = D_{\lambda xy[xy] \circ (g_1, g_2)}$ es Σ -r.e.. \square Corollary 75: Supongamos $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son conjuntos Σ -r.e.. Entonces $S_1 \cup S_2$ es

 Σ -r.e.

Proof:Supongamos $S_1 \neq \emptyset \neq S_2$. Sean $F,G:\omega \to \omega^n \times \Sigma^{*m}$ tales que $I_F = S_1,\ I_G = S_2$ y las funciones F_i 's y G_i 's son Σ -recursivas. Sean $f = \lambda x [Q(x,2)]$ y $g = \lambda x [Q(x-1,2)]$. Sea $H: \omega \to \omega^n \times \Sigma^{*m}$ dada por

 $H_i = (F_i \circ f)|_{\{x:x \text{ es par}\}} \cup (G_i \circ g)|_{\{x:x \text{ es impar}\}}$ Por el Corollary 72 y el Lema 68, cada H_i es Σ -recursiva. Ya que $I_H = S_1 \cup S_2$.tenemos que $S_1 \cup S_2$ es Σ -r.e. \square

<u>Theorem 76:</u> Sea $S\subseteq \omega^n\times \Sigma^{*m}$. Entonces S es Σ -efectivamente computable sii S es Σ -recursivo **Proof:**(\Rightarrow) Use la Tesis de Church.

 (\Leftarrow) Use el Teorema 42. \square

Theorem 77: Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes (a) S es Σ -recursivo (b) S y $(\omega^n \times \Sigma^{*m}) - S$ son Σ -recursivamente enumerables

 $\begin{array}{l} \underline{\textbf{Proof:}}(\mathbf{a}) \Rightarrow (\mathbf{b}). \text{ Note que } S = D_{Pred \circ \chi_S}. \\ (\mathbf{b}) \Rightarrow (\mathbf{a}). \text{ Note que } \chi_S = C_1^{n,m}|_S \cup C_0^{n,m}|_{\omega^n \times \Sigma^{*m} - S}. \end{array} \ \Box$

<u>Lemma 78:</u> Supongamos que $\Sigma \supseteq \Sigma_p$. Entonces $A = \{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : Halt^{\Sigma}(\mathcal{P}) \}$

es Σ -r.e. y no es Σ -recursivo. Mas aun el conjunto $N = \{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : \neg Halt^{\Sigma}(\mathcal{P}) \}$ no es Σ -r.e.

Proof: Sea $P = \lambda t \mathcal{P}[i^{0,1}(t,\mathcal{P},\mathcal{P}) = n(\mathcal{P}) + 1]$. Note que P es Σ -p.r. por lo que M(P) es Σ -r.. Ademas note que $D_{M(P)} = A$, lo cual implica que A es Σ -r.e.. Ya que $Halt^{\Sigma}$ es no $\Sigma\text{-recursivo}$ (Lema 69) y $Halt^{\Sigma} = C_1^{0,1}\mid_A \cup C_0^{0,1}\mid_N$

el Lema 68 nos dice que N no es Σ -r.e.. Finalmente supongamos A es Σ -recursivo. Entonces el conjunto $N = (\Sigma^* - A) \cap \text{Pro}^{\Sigma}$

deberia serlo, lo cual es absurdo. \square

5 Máquinas de Turing

Lemma 52. El predicado $\lambda ndd' [d \vdash d']$ es $(\Gamma \cup Q)$ -PR.

Proof. Note que $D_{\lambda dd'[d\vdash d']} = Des \times Des$. También nótese que los predicados

$$\lambda p \sigma q \gamma [(p, \sigma, L) \in \delta(q, \gamma)]$$
$$\lambda p \sigma q \gamma [(p, \sigma, R) \in \delta(q, \gamma)]$$
$$\lambda p \sigma q \gamma [(p, \sigma, K) \in \delta(q, \gamma)]$$

son $(\Gamma \cup Q)$ -p.r. ya que los tres tienen dominio igual a $Q \times \Gamma \times Q \times \Gamma$ el cual es finito (Corolario 36). Sea $P_R : Des \times Des \times \Gamma \times \Gamma^* \times \Gamma^* \times Q \times Q \to \omega$ definido por $P_R(d, d', \sigma, \alpha, \beta, p, q) = 1$ sii

$$d = \alpha p \beta \wedge (q, \sigma, R) \in \delta(p, [\beta B]_1) \wedge d' = \alpha \sigma q^{\smallfrown} \beta$$

Sea $P_L: Des \times Des \times \Gamma \times \Gamma^* \times \Gamma^* \times Q \times Q \to \omega$ definido por $P_L(d,d',\sigma,\alpha,\beta,p,q)=1$ sii

$$d = \alpha p \beta \wedge (q, \sigma, L) \in \delta \left(p, [\beta B]_1 \right) \wedge \alpha \neq \varepsilon \wedge d' = \left| \alpha^{\smallfrown} q \left[\alpha \right]_{|\alpha|} \sigma^{\smallfrown} \beta \right|$$

Sea $P_K: Des \times Des \times \Gamma \times \Gamma^* \times \Gamma^* \times Q \times Q \to \omega$ definido por $P_K(d,d',\sigma,\alpha,\beta,p,q)=1$ sii

$$d = \alpha p \beta \wedge (q, \sigma, K) \in \delta(p, [\beta B]_1) \wedge d' = |\alpha q \sigma^{\wedge} \beta|$$

Se deja al lector la verificación de que estos predicados son $(\Gamma \cup Q)$ -p.r. Nótese que $\lambda dd' [d \vdash d']$ es igual al predicado

$$\lambda dd' \left[(\exists \sigma \in \Gamma)(\exists \alpha, \beta \in \Gamma^*)(\exists p, q \in Q)(P_R \vee P_L \vee P_K)(d, d', \sigma, \alpha, \beta, p, q) \right]$$

lo cual por el Lema 39 nos dice que $\lambda dd' [d \vdash d']$ es $(\Gamma \cup Q)$ -p.r.

Proposition 53. $\lambda ndd' \left[d \stackrel{n}{\vdash} d' \right] es (\Gamma \cup Q) \text{-} p.r..$

Theorem 54. Sea $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ una máquina de Turing. Entonces L(M) es Σ -recursivamente enumerable.

Proof. Sea P el siguiente predicado $(\Gamma \cup Q)$ -mixto

$$\lambda n\alpha \left[(\exists d \in Des) \ \lfloor q_0 B\alpha \rfloor \stackrel{n}{\vdash} d \wedge St(d) \in F \right]$$

Nótese que $D_P = \omega \times \Gamma^*$. Dejamos al lector probar que P es $(\Gamma \cup Q)$ -p.r.. Sea $P' = P \mid_{\omega \times \Sigma^*}$. Nótese que $P'(n,\alpha) = 1$ sii $\alpha \in L(M)$ atestiguado por una computación de longitud n. Ya que P' es $(\Gamma \cup Q)$ -p.r. (por que?) y ademas es Σ -mixto, el Teorema 51 nos dice que P' es Σ -p.r.. Ya que $L(M) = D_{M(P')}$, el Teorema 71 nos dice que L(M) es Σ -r.e.

Theorem 55. Supongamos $f: S \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -Turing computable. Entonces f es Σ -recursiva.

Proof. Supongamos $O = \Sigma^*$ y sea $M = (Q, \Sigma, \Gamma, \delta, q_0, B, I, F)$ una máquina de Turing determinística con unit la cual compute a f. Sea < un orden total estricto sobre $\Gamma \cup Q$. Sea $P : \mathbf{N} \times \omega^n \times \Sigma^{*m} \to \omega$ dado por $P(x, \vec{x}, \vec{\alpha}) = 1$ sii

$$(\exists q \in Q) \ \lfloor q_0 B \mid^{x_1} \dots B \mid^{x_n} B \alpha_1 \dots B \alpha_m \rfloor \stackrel{(x)_1}{\vdash} \ \lfloor q B *^{<} ((x)_2) \rfloor \land (\forall d \in Des)_{|d| < |*^{<} ((x)_2)| + 2} \ \lfloor q B *^{<} ((x)_2) \rfloor \not\vdash d$$

Es fácil ver que P es $(\Gamma \cup Q)$ -p.r. por lo que P es Σ -p.r. ya que es Σ -mixto. Nótese que

$$f = \lambda \vec{x} \vec{\alpha} \left[\left(\min_{x} P(x, \vec{x}, \vec{\alpha}) \right)_{2} \right],$$

lo cual nos dice que f es Σ -recursiva.

Lemma 56. Sea $\mathcal{P} \in \operatorname{Pro}^{\Sigma} y$ sea k tal que las variables que ocurren en \mathcal{P} están todas en la lista N1, ..., N \bar{k} , P1, ..., P \bar{k} . Para cada $a \in \Sigma \cup \{i\}$, sea \tilde{a} un nuevo símbolo. Sea $\Gamma = \Sigma \cup \{B, i\} \cup \{\tilde{a} : a \in \Sigma \cup \{i\}\}$. Entonces hay una máquina de Turing determinística con unit $M = (Q, \Gamma, \Sigma, \delta, q_0, B, I, \{q_f\})$ la cual satisface

- (1) $\delta(q_f, \sigma) = \emptyset$, para cada $\sigma \in \Gamma$.
- (2) Cualesquiera sean $x_1, ..., x_k \in \omega$ y $\alpha_1, ..., \alpha_k \in \Sigma^*$, el programa \mathcal{P} se detiene partiendo del estado

$$((x_1,...,x_k,0,...),(\alpha_1,...,\alpha_k,\varepsilon,...))$$

sii M se detiene partiendo de la descripción instantánea

$$|q_0B|^{x_1} B...B|^{x_k} B\alpha_1B...B\alpha_kB|$$

(3) Si $x_1, ..., x_k \in \omega$ y $\alpha_1, ..., \alpha_k \in \Sigma^*$ son tales que \mathcal{P} se detiene partiendo del estado

$$((x_1,...,x_k,0,...),(\alpha_1,...,\alpha_k,\varepsilon,...))$$

y llega al estado

$$((y_1,...,y_k,0,...),(\beta_1,...,\beta_k,\varepsilon,...))$$

entonces

$$|q_0B|^{x_1}B...B|^{x_k}B\alpha_1B...B\alpha_kB| \stackrel{*}{\vdash} |q_fB|^{y_1}B...B|^{y_k}B\beta_1B...B\beta_kB|$$

Proof. Dado un estado $((x_1,...,x_k,0,...),(\alpha_1,...,\alpha_k,\varepsilon,...))$ lo representaremos en la cinta de la siguiente manera

$$B \mid^{x_1} \dots B \mid^{x_k} B\alpha_1 \dots B\alpha_k BBBB \dots$$

A continuación describiremos una serie de maquinas las cuales simularan, vía la representación anterior, las distintas clases de instrucciones que pueden ocurrir en \mathcal{P} . Todas las maquinas definidas tendrán a Γ como unit y a Γ como blanco, tendrán a Γ como su alfabeto terminal y su alfabeto mayor sera $\Gamma = \Gamma \cup \{B, I\} \cup \{\tilde{a} : a \in \Gamma \cup \{I\}\}\}$. Ademas tendrán uno o dos estados finales con la propiedad de que si Γ es un estado final, entonces Γ 0, para cada Γ 1. Esta propiedad es importante ya que nos permitirá concatenar pares de dichas maquinas identificando algún estado final de la primera con el inicial de la segunda.

Para $1 \le i \le k$, sea M_i^+ una máquina tal que

Es claro que la máquina M_i^+ simula la instrucción $N\bar{\imath} \leftarrow N\bar{\imath} + 1$.

Para $1 \le i \le k$, sea M_i^- una máquina tal que

Para $1 \leq i \leq k$ y $a \in \Sigma$, sea M_i^a una máquina tal que

Para $1 \leq i \leq k,$ sea M_i^{\curvearrowright} una máquina tal que

Para j=1,...,k, y $a\in \Sigma,$ sea IF^a_j una máquina con dos estados finales q_{si} y q_{no} tal que si α_j comienza con a , entonces

y en caso contrario

Análogamente para j = 1, ..., k, sea IF_j una máquina tal que si $x_j \neq 0$, entonces

y si $x_i = 0$, entonces

$$B \mid^{x_1} \dots B \mid^{x_k} B\alpha_1 \dots B\alpha_k \stackrel{*}{\vdash} B \mid^{x_1} \dots B \mid^{x_k} B\alpha_1 \dots B\alpha_k$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$q_{no}$$

Para $1 \leq i, j \leq k$, sea $M^*_{i \leftarrow j}$ una máquina tal que

$$B \mid^{x_1} \dots B \mid^{x_k} B\alpha_1 \dots B\alpha_k \stackrel{*}{\vdash} B \mid^{x_1} \dots B \mid^{x_k} B\alpha_1 \dots B\alpha_{i-1} B\alpha_j B\alpha_{i+1} \dots B\alpha_k$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad q_f$$

Para $1 \leq i, j \leq k$, sea $M^{\#}_{i \leftarrow j}$ una máquina tal que

Para $1 \le i \le k$, sea $M_{i \leftarrow 0}$ una máquina tal que

Para $1 \leq i \leq k$, sea $M_{i \leftarrow \varepsilon}$ una máquina tal que

Sea

$$M_{\text{SKIP}} = (\{q_0, q_f\}, \Gamma, \Sigma, \delta, q_0, B, I, \{q_f\}),$$
 con $\delta(q_0, B) = \{(q_f, B, K)\}$ y $\delta = \emptyset$ en cualquier otro caso.

Finalmente sea

$$M_{\text{GOTO}} = (\{q_0, q_{si}, q_{no}\}, \Gamma, \Sigma, \delta, q_0, B, I, \{q_{si}, q_{no}\}),$$

con $\delta(q_0, B) = \{(q_{si}, B, K)\}$ y $\delta = \emptyset$ en cualquier otro caso.

Para poder hacer concretamente las maquinas recién descriptas deberemos diseñar antes algunas máquinas auxiliares. Para cada $j \geq 1$, sea D_j la máquina descripta en la Figura 1. Notese que

$$\alpha B \beta_1 B \beta_2 B \dots B \beta_j B \gamma \stackrel{*}{\vdash} \alpha B \beta_1 B \beta_2 B \dots B \beta_j B \gamma$$

$$\uparrow \qquad \qquad \uparrow$$

$$q_0 \qquad \qquad q_f$$

siempre que $\alpha, \gamma \in \Gamma^*$, $\beta_1, ..., \beta_j \in (\Gamma - \{B\})^*$. Analogamente tenemos definidas las maquinas I_j .

Para $j \geq 1$, sea TD_j una máquina con un solo estado final q_f y tal que

$$\begin{array}{ccc}
\alpha B \gamma & \stackrel{*}{\vdash} & \alpha B B \gamma \\
\uparrow & & \uparrow \\
q_0 & & q_f
\end{array}$$

cada vez que $\alpha, \gamma \in \Gamma^*$ y γ tiene exactamente j ocurrencias de B. Es decir la máquina TD_j corre un espacio a la derecha todo el bloque γ y agrega un blanco en el espacio que se genera a la izquierda de dicho bloque. Por ejemplo, para el caso de $\Sigma = \{\&\}$ podemos tomar TD_3 igual a la máquina de la Figura 3.

Análogamente, para $j \geq 1$, sea TI_j una máquina tal que

$$\begin{array}{cccc}
\alpha B \sigma \gamma & \stackrel{*}{\vdash} & \alpha B \gamma \\
\uparrow & & \uparrow \\
q_0 & & q_f
\end{array}$$

cada vez que $\alpha \in \Gamma^*$, $\sigma \in \Gamma$ y γ tiene exactamente j ocurrencias de B. Es decir la máquina TI_j corre un espacio a la izquierda todo el bloque γ (por lo cual en el lugar de σ queda el primer símbolo de γ). Teniendo las maquinas auxiliares antes definidas podemos combinarlas para obtener las maquinas simuladoras de instrucciones. Por ejemplo M_i^a puede ser la máquina descripta en la Figura 4. En la Figura 2 tenemos una posible forma de diseñar la máquina IF_i^a . En la Figura 7 tenemos una posible forma de diseñar la máquina $M_{i \leftarrow j}^*$ para el caso $\Sigma = \{a, b\}$ y i < j.

Supongamos ahora que $\mathcal{P} = I_1...I_n$. Para cada i = 1,...,n, definiremos una máquina M_i que simulara la instrucción I_i . Luego uniremos adecuadamente estas maquinas para formar la máquina que simulara a \mathcal{P}

- Si $Bas(I_i) = N\bar{j} \leftarrow N\bar{j} + 1$ tomaremos $M_i = M_j^+$
- Si $Bas(I_i) = N\bar{j} \leftarrow N\bar{j} 1$ tomaremos $M_i = M_i$
- Si $Bas(I_i) = N\bar{j} \leftarrow 0$ tomaremos $M_i = M_{j \leftarrow 0}$.
- Si $Bas(I_i) = N\bar{j} \leftarrow N\bar{m}$ tomaremos $M_i = M_{j \leftarrow m}^{\#}$.
- Si $Bas(I_i) = \text{IF N}\bar{j} \neq 0 \text{ GOTO L}\bar{m} \text{ tomaremos } M_i = IF_i.$
- Si $Bas(I_i) = P\bar{j} \leftarrow P\bar{j}.a$ tomaremos $M_i = M_i^a$.
- Si $Bas(I_i) = P\bar{j} \leftarrow {}^{\frown}P\bar{j}$ tomaremos $M_i = M_i^{\frown}$.
- $Bas(I_i) = P\bar{j} \leftarrow \varepsilon \text{ tomaremos } M_i = M_{j \leftarrow \varepsilon}.$
- $Bas(I_i) = P\bar{j} \leftarrow P\bar{m} \text{ tomaremos } M_i = M_{i \leftarrow m}^*$.
- $Bas(I_i) = \text{IF P}\bar{j} \text{ BEGINS } a \text{ GOTO L}\bar{m} \text{ tomaremos } M_i = IF_i^a$.
- $Bas(I_i) = SKIP \text{ tomaremos } M_i = M_{SKIP}.$
- $Bas(I_i) = GOTO L\bar{m} \text{ tomaremos } M_i = M_{GOTO}.$

Ya que la máquina M_i puede tener uno o dos estados finales, la representaremos como se muestra en la Figura 5, entendiendo que en el caso en que M_i tiene un solo estado final, este esta representado por el circulo de abajo a la izquierda y en el caso en que M_i tiene dos estados finales, el estado final representado con lineas punteadas corresponde al estado q_{si} y el otro al estado q_{no} .

Para armar la máquina que simulara a \mathcal{P} hacemos lo siguiente. Primero unimos las maquinas $M_1, ..., M_n$ como lo muestra la Figura 6. Luego para cada i tal que $Bas(I_i)$ es de la forma α GOTO $L\bar{m}$, ligamos con una flecha de la forma

$$\xrightarrow{B,B,K}$$

el estado final q_{si} de la M_i con el estado inicial de la M_h , donde h es tal que I_h es la primer instrucción que tiene label $L\bar{m}$. Es intuitivamente claro que la máquina así obtenida cumple con lo requerido aunque una Proof formal de esto puede resultar extremadamente tediosa. \square

Theorem 57. Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -recursiva, entonces f es Σ -Turing computable.

Proof. Supongamos $O = \Sigma^*$. Ya que f es Σ -computable, existe $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ el cual computa f. Note que podemos suponer que \mathcal{P} tiene la propiedad de que cuando \mathcal{P} termina, en el estado alcanzado las variables numéricas tienen todas el valor 0 y las alfabéticas distintas de P1 todas el valor ε . Sea M la máquina de Turing con unit dada por el lema anterior, donde elegimos el numero k con la propiedad adicional de ser mayor que n y m. Sea M_1 una máquina tal que para cada $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$,

$$\left\lfloor q_0 B \mid^{x_1} B...B \mid^{x_n} B \alpha_1 B...B \alpha_n B \right\rfloor \stackrel{*}{\vdash} \left| q B \mid^{x_1} B...B \mid^{x_n} B^{k-n} B \alpha_1 B...B \alpha_m B \right|$$

donde q_0 es el estado inicial de M_1 y q es un estado tal que $\delta(q, \sigma) = \emptyset$, para cada σ . Sea M_2 una máquina tal que para cada $\alpha \in \Sigma^*$,

$$\left\lfloor q_0 B^{k+1} \alpha \right\rfloor \stackrel{*}{\vdash} \left\lfloor q B \alpha \right\rfloor$$

donde q_0 es el estado inicial de M_2 y q es un estado tal que $\delta(q, \sigma) = \emptyset$, para cada σ . Note que la concatenación de M_1 , M y M_2 (en ese orden) produce una máquina de Turing la cual computa f.

References

- [1] DIEGO VAGGIONE, «Apunte de Clase, 2017», FaMAF, UNC.
- [2] AGUSTÍN CURTO, «Carpeta de Clase, 2017», FaMAF, UNC.

Por favor, mejorá este documento en github \(\mathbf{O}\) https://github.com/acurto714/resumenLengForm