Plan

- Basic Feasible Solution (BFS)
- Non degenerate BFS
- Degenerate BFS
- Simplex Algorithm

• Consider LPP(P) Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \mathbf{x} \ge \mathbf{0},$ (*) where rank(A) = m. $Fea(P) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}, \mathbf{x} > \mathbf{0}\}.$

• If (P) is of the form:

Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{m \times n} \mathbf{x} \leq \mathbf{b}_{m \times 1}$, $\mathbf{x} \geq \mathbf{0}$, we add some variables and we can transform the set of

constraints to get,

$$A_{m\times n}\mathbf{x}+\mathbf{s}_{m\times 1}=[A:I]\left[egin{array}{c}\mathbf{x}\\\mathbf{s}\end{array}
ight]=\mathbf{b}_{m\times 1},\,\mathbf{x}\geq\mathbf{0},\,\mathbf{s}\geq\mathbf{0}.$$

So it is now of the form of problem (*).

• If suppose we are given a problem of the type: Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{k \times n} \mathbf{x} = \mathbf{b}_{k \times 1}$, $\mathbf{x} \ge \mathbf{0}$, where k > rank(A) = m.

Basic Feasible Solution

- If $A_{k \times n} \mathbf{x} = \mathbf{b}_{m \times 1}$, $\mathbf{x} \ge \mathbf{0}$ is consistent then throw away k m rows of A and the corresponding components of \mathbf{b} to get an equivalent (having the same set of solutions) system of equations of the form (*).
- An x ∈ Fea(P) is called a basic feasible solution (BFS)
 of the LPP if the columns of the matrix A corresponding to
 the nonzero components of x are LI.
- An x satisfying the system Ax = b, and the condition that the columns corresponding to the nonzero components are LI, is called a basic solution of the LPP.
- So a basic solution may not be a nonnegative vector, hence need not be a feasible solution of the LPP.
- A basic feasible solution of a LPP of the form (1), can have at most m strictly positive components (since rank(A) = m).

- Example 1: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \geq \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- Clearly rank(A) = 2.
- x = [1,1,0]^T is a BFS of (P) since it satisfies the conditions A_{2×3}x = b_{2×1}, x ≥ 0 and the columns of A corresponding to the positive components of x are [1,1]^T, [2,1]^T, is LI.
- The basis matrix has columns $[1, 1]^T$, $[2, 1]^T$, basic variables are x_1, x_2 .

• $\mathbf{x} = [2, 1, 1]^T$ is a **feasible** solution of (P) since it satisfies the conditions

$$A_{2\times3}\mathbf{x} = \mathbf{b}_{2\times1}, \ \mathbf{x} \geq \mathbf{0}$$
 but the columns of A corresponding to the positive components of \mathbf{x} are $[1,1]^T$, $[2,1]^T$, $[-1,-1]^T$ is **LD**,hence x is **not** a BFS.

• $\mathbf{x} = [0, 1, -1]^T$ is a **basic solution** of (P) since it satisfies the conditions

$$A_{2\times3}\mathbf{x} = \mathbf{b}_{2\times1}$$
 and the columns of A corresponding to the nonzero components of \mathbf{x} are $[2,1]^T,[-1,-1]^T$, is **LI**. But \mathbf{x} is **not** a feasible solution of (P).

Non degenerate BFS

- A basic feasible solution is called a non degenerate BFS
 if it has exactly m positive components, otherwise it is said
 to be a degenerate BFS.
- If **x** is a **non degenerate BFS**, then the columns of A corresponding the **nonzero** (positive) components of **x** form a basis of \mathbb{R}^m .
- If the positive components of \mathbf{x} are x_1, \ldots, x_m , then $\tilde{\mathbf{a}}_i, i = 1, \ldots, m$, forms a basis of \mathbb{R}^m , where $\tilde{\mathbf{a}}_i$ is the *i*th column of A.
- The $m \times m$ matrix, $B_{m \times m} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$ formed with columns $\tilde{\mathbf{a}}_i, i = 1, \dots, m$, of A is called the basis matrix corresponding to \mathbf{x} .
- The variables x_1, \ldots, x_m are called the **basic variables**, and $x_{m+1} = x_{m+2} = \ldots = x_n = 0$, are called the **non basic variables** of the **BFS** \mathbf{x} .

Degenerate BFS

- If \mathbf{x} is a degenerate BFS, then consider the columns of A corresponding to the nonzero components of \mathbf{x} . Let them be $\tilde{\mathbf{a_1}}, \ldots, \tilde{\mathbf{a_k}}, \ k < m$. Then consider (m-k) LI columns of A, such that these (m-k) columns of A together with $\tilde{\mathbf{a_1}}, \ldots, \tilde{\mathbf{a_k}}$, form a basis of \mathbb{R}^m .
- The matrix $B_{m \times m}$ formed with these m columns, (let $B_{m \times m} = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_m]$) is called \mathbf{a} basis matrix corresponding to \mathbf{x} .
- The components x_1, \ldots, x_m of **x** are called **basic variables** corresponding to **x** and the basis matrix *B*. The components $x_{m+1} = \ldots = x_n = 0$ are the **nonbasic** variables.

- Example 2: Consider the LPP (P)

 Max or Min $\mathbf{c}^T \mathbf{x}$ subject to $A_{2\times 3}\mathbf{x} = \mathbf{b}_{2\times 1}, \mathbf{x} \geq \mathbf{0}$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Clearly rank(A) = 2.
- $\mathbf{x} = [0, 1, 1]^T$ is a non degenerate **BFS** of (P) since it satisfies the conditions

$$A_{m \times n} \mathbf{x} = \mathbf{b}_{m \times 1}, \ \mathbf{x} \geq \mathbf{0}$$
 and the columns of A corresponding to the positive components of \mathbf{x} are $[2,1]^T, [-1,0]^T$, is LI.

Also the number of positive components of **x** is equal to 2 = rank(A).

 The basis matrix is unique upto a permutation of the columns.

The basic variables are given by x_2, x_3 .

Example 2 (continued)

• $\mathbf{x} = [1, 0, 0]^T$ is also a BFS of (P) since it satisfies the conditions

$$A_{2\times3}\mathbf{x} = \mathbf{b}_{3\times1}, \ \mathbf{x} \geq \mathbf{0},$$
 the columns of A corresponding to the positive components of \mathbf{x} is $[1,1]^T$, is **LI**.

But is a degenerate BFS since the number of positive components of **x** is strictly less 2.

- There are two different basis matrices B for x.
 - (i) B with columns $[1, 1]^T$, $[2, 1]^T$, basic variables x_1, x_2 .
 - (ii) B' with columns $[1,1]^T$, $[-1,0]^T$, basic variables x_1, x_3 .

- Depending on the choice of the rest of the (m k) columns which are added, the same degenerate BFS x will correspond to different basis matrices B, and hence will have different basic and nonbasic variables.
- If **x** is a **BFS** then $\mathbf{x}_B = B^{-1}\mathbf{b}$, where \mathbf{x}_B are the components of **x** corresponding to the basic variables.
- BFS x is of the form, $\mathbf{x} = \begin{bmatrix} B^{-1}\mathbf{b}_{m\times 1} \\ \mathbf{0}_{(n-m)\times 1} \end{bmatrix}$.
- Corresponding to **BFS** \mathbf{x} $\mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T \mathbf{x}_B = \mathbf{c}_B^T B^{-1} \mathbf{b}$, where, \mathbf{c}_B^T are the components of \mathbf{c}^T corresponding to the basic variables.
- If LPP (P) is the diet problem, (with ≥ inequalities changed to equalities in the original problem),
 then x gives the quantities of the food products F_j,
 j = 1,..., n in the diet.

- The food products F_1, \ldots, F_m , which correspond to the basic variables x_1, x_2, \dots, x_m of **x**, are the ones which are included in the diet in the quantities x_i .
- The other food products corresponding to the nonbasic variables of **x** (they have zero values) are **not** consumed.
- Let us assume that (P*) has atleast one feasible solution and let x be a BFS (degenerate or non degenerate) of the LPP (P*).
- Let $B = [\tilde{\mathbf{a}_1} \dots \tilde{\mathbf{a}_m}]$ be **a** (or **the**) basis matrix corresponding to x.

• For all
$$k = 1, 2, ..., n$$
, let
$$\tilde{\mathbf{a}}_k = \sum_{i=1}^m u_{ik} \tilde{\mathbf{a}}_i = [\tilde{\mathbf{a}}_1 ... \tilde{\mathbf{a}}_m] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix}$$
 (*)

for some real u_{ik} 's, $i = 1, \ldots, m$, $k = 1, \ldots, n$,

• Then
$$\begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix} = B^{-1}\tilde{\mathbf{a}}_k \text{ for all } k = 1, 2, \dots, n.$$

- In order to obtain the same amount of nutrient as unit amount of F_k , k = 1, ..., n, one needs to consume $(u_{1k} \text{ amount of } F_1) + (u_{2k} \text{ amount of } F_2) + ... + (u_{mk} \text{ amount of } F_m)$.
- Let z_k be the value of unit amount of F_k , if we include **only** F_i , i = 1, ..., m in the diet.
- Then $z_k = u_{1k}c_1 + u_{2k}c_2 + \ldots + u_{mk}c_m = \sum_{i=1}^m u_{ik}c_i$ $= [c_1, \ldots, c_m] \begin{bmatrix} u_{1k} \\ \vdots \\ u_{mk} \end{bmatrix} = \mathbf{c}_B^T B^{-1} \tilde{\mathbf{a}}_k.$
- For all k = 1, ..., m, note that $z_k = c_k$.
- If $z_k > c_k$ then look for a better solution.

ullet the simplex table corresponding to BFS ${f x}$ is given by

	0						$c_k - z_k$		
	$B^{-1}\tilde{\mathbf{a}_1}$	••	$B^{-1}\tilde{\mathbf{a}_m}$		$B^{-1}\widetilde{\boldsymbol{a}_{\mathcal{S}}}$	••	$B^{-1}\tilde{\mathbf{a}_k}$	••	$B^{-1}\mathbf{b}$
$\tilde{\mathbf{a}}_1$	1	••	0		U _{1s}			••	<i>X</i> ₁
$\tilde{\mathbf{a}_2}$	0	• •	0	••	u_{2s}	••	u_{2k}	••	<i>X</i> ₂
•	0	••	0		:	••	:	••	:
$\tilde{\mathbf{a}_r}$:	• •	:		U _{rs}	••	U _{rk}	••	X _r
•	:	••	:				:		:
$\tilde{\mathbf{a}_m}$	0	• •	1	••	u_{ms}	••	u_{mk}		X _m

- Case 1: $c_k z_k < 0$ for atleast one k, k = m + 1, ..., n. Let $c_s - z_s = min\{c_k - z_k : c_k - z_k < 0, k = m + 1, ..., n\}$. Simplex algorithm says that, include x_s in the diet or make x_s a basic variable so the column $\tilde{\mathbf{a}}_s$ will be included in the basis matrix.
- If there exists, s, I, such that for both s, I, $c_s z_s = c_l z_l = \min\{c_k z_k : c_k z_k < 0, k = m + 1, ..., n\},$ then include any **one** of these food products in the diet(as a basic variable).
- Let \mathbf{x}' be the new solution to be obtained. The components of \mathbf{x}' are given by $x'_i = x_i - u_{is}x'_s$ for i = 1, ..., m, $x'_s \ge 0$ and $x'_i = 0$ for i = m + 1, ..., n, $i \ne s$.

- If \mathbf{x}' is feasible for the LPP, then $x'_s \geq 0$ is such that $x'_i \geq 0$ for all i = 1, ..., m.
- If $u_{is} \le 0$, for some i = 1, ..., m, then for all $x'_{s} \ge 0$, $x'_{i} \ge 0$ for that i.
- Hence $x'_s \ge 0$, should be such that $x'_s \le \frac{x_i}{u_{is}}$, $u_{is} > 0$ (if at all there is one such i).
- Case 1a: For some (atleast one) $i = 1, ..., m, u_{is} > 0$ (where s is as defined in Case 1). Let $\frac{X_r}{U_{ls}} = min\{\frac{X_i}{U_{ls}} : u_{is} > 0\}$.
- $\frac{x_r}{u_{rs}}$ is called the **minimum ratio**.
- $\bullet \ \mathbf{X}' \geq \mathbf{0} \Rightarrow \mathbf{X}'_{S} \leq \frac{\mathbf{X}_{r}}{\mathbf{U}_{rs}}.$
- Also $A\mathbf{x}' = \mathbf{b}$ which implies $\mathbf{x}' \in Fea(LPP)$.

- $\bullet \mathbf{c}^T \mathbf{x}' = \sum_{i=1}^m c_i x_i' + c_s x_s'$ $= \mathbf{c}^T \mathbf{x} + x_s' (c_s - z_s),$ $\Rightarrow \mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}.$
- $\mathbf{c}^T \mathbf{x}' < \mathbf{c}^T \mathbf{x}$ if $x_s' > 0$, which is when the **minimum ratio** $\frac{x_r}{u_{rs}} > 0$.
- Let $x_s' = \frac{x_r}{u_{rs}}$.
- Then $x'_r = x_r u_{rs} \frac{x_r}{u_{rs}} = 0$
- x_s is called the **entering variable**, and x_r is called a **leaving variable**.
- If there exists $r, t \in \{m+1, ..., n\}$ $\frac{x_r}{u_{rs}} = \frac{x_t}{u_{ts}} = min\{\frac{x_i}{u_{is}} : u_{is} > 0\},$ then take any **one** of r, t as the **leaving variable**.

- x' is a **BFS** of the LPP.
- The basis matrix corresponding to \mathbf{x}' is $B' = [\tilde{\mathbf{a}}_1 \dots \tilde{\mathbf{a}}_{r-1} \tilde{\mathbf{a}}_{r+1} \dots \tilde{\mathbf{a}}_m \tilde{\mathbf{a}}_s].$
- $\bullet \ \tilde{\mathbf{a}_{k}} = \sum_{i=1, i \neq r}^{m} (u_{ik} \frac{u_{is}}{u_{rs}} u_{rk}) \tilde{\mathbf{a}_{i}} + \tilde{\mathbf{a}_{s}} \frac{u_{rk}}{u_{rs}}.$
- For all $k=1,\ldots,n$ the new u_{ik} 's are given by, $u'_{ik}=u_{ik}-\frac{u_{is}}{u_{rs}}u_{rk}$ for $i=1,\ldots,r-1,r+1,m$ and $u'_{sk}=\frac{u_{rk}}{u_{rs}}$.
- $\bullet \mathbf{b} = \sum_{i=1, i \neq r}^{m} (x_i \frac{u_{is}}{u_{rs}} x_r) \tilde{\mathbf{a}}_i + \tilde{\mathbf{a}}_s (\frac{x_r}{u_{rs}})$
- If z'_k denotes the new values of z_k then $z'_k = z_k + \frac{(c_s z_s)}{u_{rk}} u_{rk}$

and
$$c_k - z'_k = (c_k - z_k) - \frac{(c_s - z_s)}{u_{rs}} u_{rk}$$
.

 The simplex table corresponding to the new BFS x' is given by

 The entry u_{rs} of the previous table which is made 1 (by dividing) in this table is called the pivot element.

- Case 1b: For all i = 1, ..., m, $u_{is} \le 0$ (where s is as defined in Case 1).
- Then $\mathbf{x}' \geq \mathbf{0}$, for all $\mathbf{x}'_s \geq \mathbf{0}$, hence $\mathbf{x}' \in Fea(LPP)$ for all $\mathbf{x}'_s \geq \mathbf{0}$.
- Since c^Tx' = c^Tx + x'_s(c_s z_s), (c_s z_s) < 0.
 So given any M∈ ℝ, by taking x'_s sufficiently large we can make c^Tx' smaller than M.
 So the LPP does not have an optimal solution.

• The set of all directions of $S = Fea(LPP) = \{ \mathbf{x} \in \mathbb{R}^n :$

• The set of all directions of
$$S = Fea(LPP) = \{x \in \mathbb{R}^n | x \in \mathbb{R}^n \}$$

 $A_{m \times n} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, rank(A) = m$, is given by $D = \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq 0, A_{m \times n} \mathbf{d} = \mathbf{0}, \mathbf{d} \geq \mathbf{0} \}$

• If for some basis matrix B and a column $\tilde{\mathbf{a}}_s$ of A, $B^{-1}\tilde{\mathbf{a}}_s \leq \mathbf{0}$

then
$$\mathbf{d} = \begin{bmatrix} -B^{-1}\tilde{\mathbf{a}_s} \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is an extreme direction of S, where the entry 1 in the above vector is at the s th position.

- If d is as defined above then $\mathbf{c}^T \mathbf{d} < \mathbf{0}$.
- Case 2:(Optimality Condition) (sufficient condition) If $c_k - z_k \ge 0$ for all $k = 1, \ldots, n$.

 If instead the LPP would have been a maximization problem as given below:

Max $\mathbf{c}^T \mathbf{x}$ subject to $A_{m \times n} \mathbf{x} = \mathbf{b}$, $\mathbf{x} \ge \mathbf{0}$, rank(A) = m

- Case 1': $c_k z_k > 0$ for at least one k, k = m + 1, ..., n. s th variable will be the entering variable if $c_s z_s = \max\{c_k z_k : c_k z_k > 0, k = m + 1, ..., n\}$.
- Case 1a: remains unchanged.
- Case 2': (Optimality condition (sufficient condition)) If $c_k z_k \le 0$ for all k = 1, ..., n.
- The above optimality conditions (for max and min problems) are sufficient but not necessary for an optimal solution.