Design a low-voltage cascode current mirror with a 1:2 input current to output current ratio. The low frequency output impedance should be greater than 2 $M\Omega$. Assume a 50 μA input current and Vout is 0.5 VDD.

1. Design (Using gmoverid charts)

As large Rout is required
$$\rightarrow$$
 Assume $L_1=1um$ and bias it in SI $\left(\frac{g_m}{I_D}=10\right)$ $W_1=16.6~um \rightarrow r_{o1}=40.99~k\Omega$ $R_{out}=g_{m2}r_{o2}r_{o1}=2~M\Omega$ $g_{m2}r_{o2}=\frac{2~M\Omega}{40.99~k\Omega}=48.8$

For cascode transistor bias it in MI
$$\left(\frac{g_m}{I_D} = 15\right)$$

 $L_2 \ge 500 \ nm \rightarrow W_2 = 24.8 \ um$

For the VB device
$$M3: V_{GS3} \ge V_{GS2} + V_1^*$$

$$assume \ V_{th1} = V_{th2}$$

$$V_3^* \ge V_1^* + V_2^* \to V_3^* \ge 0.334 \to V_3^* = 0.4 \to \left(\frac{g_m}{I_D}\right)_3 = 5$$

$$L_3 = L_2 \to W_3 = 0.95 \ um$$

2. Simulations

- <u>DC OP</u>

- <u>AC Output Impedance</u>

