

EFB109 - Cálculo Diferencial e Integral II

Nome: Igor Eiki Ferreira Kubota		RA: 19.02466-5
Tarefa: TP2	Período: Diurno ou Noturno	Data: 15/06/2020

Instruções:

- A tarefa consta de duas questões: Q1; Q2: itens a) e b).
- Resolva as questões nos locais indicados ou tire fotos da resolução e a anexe nos locais indicados.
- Todas as respostas devem ser justificadas.
- Crie um arquivo pdf e anexe na tarefa (moodlerooms).
- Lembre-se: o que não pode ser lido, não pode ser corrigido.

Q1: (5.0) Determine os pontos de máximos e mínimos absolutos da função $f(x,y) = \sqrt{x^2 + y^2 + 3}$ no conjunto $x^2 + 5y^2 \le 1$.

$$F(x,y) = \sqrt{x^{2}} + y^{2} + 3$$

$$F(x,y) = \sqrt{x^{2}} + (\sqrt{1-x^{2}})^{2} + 3 = \sqrt{x^{2}} + 1 - x^{2} + 3$$

$$F(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 15 = \sqrt{-4x^{2}} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt{x^{2}} + 1 - x^{2} + 16$$

$$G(x,y) = \sqrt$$

A
$$(0,0) = \sqrt{3} - D$$
 Pento de minimo absoldo
B $(1,0) = Z$ Pontas de Movimo
C $(-1,0) = Z$ obsoluto
D $(0,\sqrt{3}) \cong 1,79$
E $(0,-\sqrt{3}) \cong 1,79$

Conclusão:

Ponto	Valor da função no ponto	Classificação (Máximo ou Mínimo)
A(0,0)	$F = \sqrt{3}$	Ponto Mínimo Absoluto
B(1,0)	F = 2	Ponto Máximo Absoluto
C(-1,0)	F = 2	Ponto Máximo Absoluto

Q2: (5.0) Seja S o sólido limitado pela superfície cilíndrica $z = 9 - y^2$ e pelos planos x = 0, x = 3 e z = y + 3.

a) (2.5) Represente a região de integração.

b) (2.5) Escreva uma integral dupla que representa o volume do sólido *S*.

