שיעור 4 רציפות בקטע והגדרת הנגזרת

גבולות מיוחדים

4.1 משפט. (גבולות מיוחדים)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 (x

$$\lim_{x \to 0} (1+x)^{1/x} = e$$
 (2

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$
 (3

הוכחה.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\begin{split} S_{\Delta OAB} &< S_{\Delta OAD} < S_{\Delta OCD} \\ S_{\Delta OAB} &= \frac{OB \cdot OA}{2} = \frac{\sin x \cdot \cos x}{2} \;, \\ S_{\Delta OAD} &= \frac{AD \cdot OA}{2} = \frac{1 \cdot 1 \cdot x}{2} = \frac{x}{2} \;, \\ S_{\Delta OCD} &= \frac{CD \cdot OA}{2} = \frac{1 \cdot \tan x}{2} = \frac{\tan x}{2} \;, \\ \frac{\sin x \cdot \cos x}{2} &< \frac{x}{2} < \frac{\tan x}{2} \end{split}$$

$$\sin x$$
 -בישוויון ב. $\tan x = \frac{\sin x}{\cos x}$ שימו לב

$$\frac{\cos x}{2} < \frac{x}{2\sin x} < \frac{1}{2\cos x}$$

:2 -ביל את האי-שוויון ב-

$$\cos x < \frac{x}{\sin x} < \frac{1}{\cos x}$$

 $:x \to 0$ נקח אצ הגבול

$$\lim_{x \to 0} \cos x < \lim_{x \to 0} \frac{x}{\sin x} < \lim_{x \to 0} \frac{1}{\cos x} \qquad \Rightarrow \qquad 1 < \lim_{x \to 0} \frac{x}{\sin x} < 1$$

לכן לפי כלל הסנדוויץ'

$$\lim_{x \to 0} \frac{x}{\sin x} = 1 .$$

דוגמאות

דוגמאות.

$$\lim_{x \to 0} \frac{\sin 3x}{2x} = \lim_{x \to 0} \frac{3}{2} \cdot \frac{\sin 3x}{3x} = \frac{3}{2} .$$

.1

.2

 $\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1$

.3

$$\lim_{x\to 0}\frac{\arcsin x}{x}$$

 $t = \arcsin x$ \Leftrightarrow $x = \sin t$ נרשום

$$\lim_{x\to 0}\frac{\arcsin x}{x}=\lim_{t\to 0}\frac{t}{\sin t}=1$$

.4

$$\lim_{x\to 0}\frac{\arctan x}{x}$$

 $t = \arctan x \qquad \Leftrightarrow \qquad x = \tan t$ נרשום

$$\lim_{x\to 0}\frac{\arctan x}{x}=\lim_{t\to 0}\frac{t}{\tan t}=\lim_{t\to 0}\frac{t}{\sin t}\cdot\cos t=\lim_{t\to 0}\frac{t}{\sin t}\cdot\lim_{t\to 0}\cos t=1$$

$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} = \lim_{x \to 0} \frac{\sin 2x}{2x} \cdot \frac{3x}{\sin 3x} \cdot \frac{2}{3} = \frac{2}{3} \ .$$

.5

.7

$$\lim_{x \to 0} \left(\frac{\sin 4x - \sin 2x}{\sin x + \sin 3x} \right) = \lim_{x \to 0} \left(\frac{\frac{\sin 4x}{x} - \frac{\sin 2x}{x}}{\frac{\sin x}{x} + \frac{\sin 3x}{x}} \right)$$

$$= \lim_{x \to 0} \left(\frac{4 \cdot \frac{\sin 4x}{4x} - 2 \cdot \frac{\sin 2x}{2x}}{\frac{\sin x}{x} + 3 \cdot \frac{\sin 3x}{3x}} \right)$$

$$= \frac{4 - 2}{1 + 3}$$

 $(3x+7x^2)$ (x) (x^2)

 $=\frac{1}{2}$.

$$\lim_{x \to 0} \left(\frac{3x + 7x^2}{\sin 2x} \right) = 3 \cdot \lim_{x \to 0} \left(\frac{x}{\sin 2x} \right) + 7 \cdot \lim_{x \to 0} \left(\frac{x^2}{\sin 2x} \right)$$

$$= 3 \cdot \lim_{x \to 0} \left(\frac{2x}{2\sin 2x} \right) + 7 \cdot \lim_{x \to 0} \left(\frac{x \cdot 2x}{2\sin 2x} \right)$$

$$= \frac{3}{2}.$$

 $\lim_{x \to \infty} \frac{\sin x}{x} = 0 \ .$

$$\lim_{x o\infty}\left(1+rac{2}{x}
ight)^x=[1^\infty]$$
 אוגדר
$$=\lim_{x o\infty}\left(1+rac{2}{x}
ight)^{rac{x}{2}\cdot 2}$$

$$=e^2\;.$$

$$\lim_{x \to 0} (1 + 2x)^{5/x}$$

.12

לא מוגדר

$$\lim_{x\to 0} \left(1+2x\right)^{5/x} = [1^\infty]$$
לא מוגדר

$$=\lim_{x\to 0} \left(1+2x\right)^{\frac{1}{2x}\cdot 10}$$

$$=e^{10}$$
.

$$\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^x$$

$$\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^x = [1^\infty]$$
 לא מוגדר

$$= \lim_{x \to \infty} \left(\frac{(x+1) - 1}{1+x} \right)^x$$

$$=\lim_{x\to\infty}\left[\left(1+\left(\frac{-1}{1+x}\right)\right)^{-(x+1)}\right]^{\frac{x}{-(x+1)}}$$

$$= \lim_{x \to \infty} \left[e \right]_{x \to \infty}^{\lim \frac{x}{-(x+1)}}$$

$$=e^{-1}$$
.

 $\lim_{x\to 0} (\cos 2x)^{\frac{1}{x^2}} = [1^\infty]$

$$1 \qquad \cos 2x - 1$$

$$=\lim_{x\to 0}\left(1+(\cos 2x-1)\right)\overline{\cos 2x-1}\cdot\frac{\cos 2x-1}{x^2}$$

$$= \left[\lim_{x \to 0} (1 + (\cos 2x - 1)) \frac{1}{\cos 2x - 1} \right]^{\lim_{x \to 0} \frac{\cos 2x - 1}{x^2}}$$

$$= \left[e\right]^{\lim_{x \to 0}} \frac{\cos 2x - 1}{x^2} \quad .$$

$$\begin{split} \lim_{x \to 0} \frac{\cos 2x - 1}{x^2} &= \lim_{x \to 0} \frac{\cos^2 - \sin^2 x - (\cos^2 x + \sin^2 x)}{x^2} \\ &= \lim_{x \to 0} \frac{-2 \sin^2 x}{x^2} \\ &= -2 \cdot \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^2 \\ &= -2 \ . \end{split}$$

$$\lim_{x \to 0} (\cos 2x)^{\frac{1}{x^2}} = e^{-2} \ . \end{split}$$

.13

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x$$

 $\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = [1^{-\infty}]$ לא מוגדר

.t=-x נגדיר

$$\begin{split} \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x &= \lim_{t \to \infty} \left(1 + \left(\frac{-1}{t} \right) \right)^{-t} \\ &= \lim_{t \to \infty} \left(\frac{t-1}{t} \right)^{-t} \\ &= \lim_{t \to \infty} \left(\frac{t}{t-1} \right)^t \end{split}$$

$$= \lim_{t \to \infty} \left(\frac{(t-1)+1}{t-1} \right)^t$$

$$= \lim_{t \to \infty} \left(1 + \frac{1}{t-1}\right)^{(t-1) \cdot \frac{t}{t-1}}$$

=e .

.14

$$\lim_{x\to\infty}\left(\frac{x^2+3x-1}{2x^2+5x}\right)^x=\left[\frac{1}{2}\right]^\infty=0$$

.15

$$\begin{split} \lim_{x \to \infty} \left(\frac{x^2 + 3x - 1}{x^2 + 5x} \right)^x = & [1^{\infty}] \\ = & \lim_{x \to \infty} \left(1 + \frac{-2x - 1}{x^2 + 5x} \right)^{\frac{x^2 + 5x}{-2x - 1} \cdot \frac{(-2x - 1)}{x^2 + 5x} \cdot x} \\ = & e^{-2} \end{split}$$

רציפות בנקודה

4.2 הגדרה: (רציפות בנקודה)

 $\lim_{x \to a} f(x)$ המוגדרת בנקודה a ובסביבה מסוימת של a נקרא רציפה בנקודה a אם קיים הגבול a והוא שווה לערך a של הפונקציה בנקודה a בנקודה a

4.3 הגדרה: (אי-רציפות בנקודה)

תהי a פונקציה המוגדרת בסביבה של נקודה a אבל אב בהכרח בנקודה a עצמה.

א) אם קיימים הגבולות החד-צדדים הסופיים ו-

$$\lim_{x\to a^-}f(x)=\lim_{x\to a^+}f(x)\neq f(a)$$

f(x) או ש ליקה סליקה אי-רציפות היא נקודת אי-רציפות של f(a) או ש

אבל $\lim_{x \to a^+} f(x)$ -ו , $\lim_{x \to a^-} f(x)$ אבל החד-צדדים הסופיים אבל החד-צדדים הגבולות אבל אם קיימים הגבולות החד-צדדים הסופיים

$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$$

f(x) אומרים כי a היא נקודת אי-רציפות מסוג ראשון

f(x) אם לפחות אחד מן הגבולות החד-צדדים לא קיים, אומרים כי a היא נקודת אי-רציפות מסוג שני (ג

4.4 הגדרה: (אי-רציפות בקטע)

אומרים כי פונקציה x בפנים הקטע, אומרים אם היא רציפה בקטע בקטע רציפה בקטע אומרים לווא בפנים הקטע, אומרים כי פונקציה f(x)רציפה בקטע היא בכל געf(x)רציפה בקטע הקטע, אומרים בי

דוגמא.

נתונה פונקציה

$$f(x) = \begin{cases} 2^{-x} & x \le 1\\ ax^2 & -1 < x \le 1\\ \sqrt{x+b} & x > 1 \end{cases}$$

פיתרון.

x=-1 רציפות בנקודה

$$\lim_{x \to -1^-} f = 2^{-(-1)} = 2$$
 ,
$$\lim_{x \to -1^+} f = a(-1)^2 = a$$
 .
$$a = 2$$
 אם $x = -1$ -ביפה ב- f רציפה ב- f רציפה ב- f

x=1 רציפות בנקודה

$$\lim_{x o 1^-}f=a1^2=a(=2)\;,\qquad \lim_{x o 1^+}f=\sqrt{1+b}\;.$$
לכן f רציפה ב- f אם $x=1$ אם $x=1$ אם $x=1$ אם $x=1$ אם

דוגמא. לכל x לכל תהיה $f(x) = \frac{x}{a + \sin x}$ הפונקציה a רציפה לכל לאילו ערכי פרמטר

פיתרון.

עבור $a+\sin x \neq 0$ לכן $a+\sin x \leq 1$ שים לב $a+\sin x \neq 0$ עבור $a+\sin x \neq 0$ רציפה לכל $a+\sin x \neq 0$ \blacksquare .a < -1 -1 a > 1

דוגמא.

נתונה פונקציה

$$f(x) = \begin{cases} \frac{\sin^2(\sqrt{a^2 + 1} \cdot x)}{2x^2} & x < 0\\ b & x = 0\\ x + 5 & x > 0 \end{cases}$$

- f(x) = 0 -ציפה ב- f(x) = a, b א. עבור אילו ערכי
- ב. עבור אילו ערכי a,b הנקודה x=0 הנקודה f(x) ממין ראשון?
 - x=0 גיפות אי-רציפות סליקה f(x) אי-רציפות סליקה?

פיתרון.

.N

$$\begin{split} \lim_{x \to 0^{-}} f(x) &= \lim_{x \to 0^{-}} \frac{\sin^{2} \left(\sqrt{a^{2} + 1} \cdot x \right)}{2x^{2}} \\ &= \lim_{x \to 0^{-}} \frac{a^{2} + 1}{2} \frac{\sin^{2} \left(\sqrt{a^{2} + 1} \cdot x \right)}{\left(\sqrt{a^{2} + 1} \cdot x \right)^{2}} \\ &= \lim_{x \to 0^{-}} \frac{a^{2} + 1}{2} \ , \end{split}$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+5)$$
= 5.

 $\frac{a^2+1}{2}=5=b$ כדי ש- $f=\lim_{x o 0^+}f=\lim_{x o 0^+}f=f(0)$ כדי ש- f=0 תהיה רציפה נדרש כי כי f=0

$$b = 5$$
, $a = \pm 3$.

תהיה x=0 לכן $b\in\mathbb{R}$ קיים לכל $\lim_{x\to 0^-}f(x)=\frac{a^2+1}{2}$ והגבול $b\in\mathbb{R}$ הגבול לכן $\lim_{x\to 0^+}f(x)=5$ לכן לכן פון תהיה נקודת אי-רציפות ממין ראשון אם

$$\frac{a^2+1}{2} \neq 5 \qquad \Rightarrow \qquad a \neq \pm 3$$

 $.b \in \mathbb{R}$ לכל

-ו $a=\pm 3$ זהים אם ווא $\displaystyle \lim_{x \to 0^\pm} f$ הגבולות .

$$\lim_{x\to 0^\pm}f\neq f(0)=b$$

 $.b \neq 5$ אם

רציפות פונקציה בקטע

4.1 הגדרה: (רציפות בקטע פתוח)

פונקציה $c \in (a,b)$ נקראת רציפה בקטע פתוח (a,b) אם (a,b) בקטע. ז"א נקראת רציפה בקטע

$$\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = f(c)$$

a < c < b לכל

4.2 הגדרה: (רציפות בקטע סגור)

פונקציה בכל נקודה פנימית הקטע אם [a,b]אם בקטע רציפה בקטע נקודה נקראת פונקציה פונקציה לוגו

$$\lim_{x \to a^{+}} f(x) = f(a) , \qquad \lim_{x \to b^{-}} f(x) = f(b) .$$

דוגמא.

f(x) המספר העלם הרצפה על x (ז"א אומרת המספר השלם הקרוב ביותר ל- x ופחות מ- x). קבע אם $f(x)=\lfloor x \rfloor$ רציפה בקטע [1,2]

בקטע הפתוח - $f(x)=1 \; (1,2)$ רציפה.

$$\lim_{x \to 1^{+}} [x] = 1 \ , \quad f(1) = 1$$

$$\lim_{x \to 2^{-}} [x] = 1 \ , \quad f(2) = 2$$

לכן f(x) אז f(x) אז f(x) אז הפסע סגור בנקודה f(x) רציפה משמאל בנקודה f(x) אז f(x) לא רציפה בקטע סגור f(x) . \blacksquare

משפטים היסודיים של רציפות פונקציה בקטע סגור

(משפט ויירשטראס - ערך גדול ביותר וקטן ביותר של פונקציה) 4.3

תהי הקטן ביותר הגדול ביותר הערך הקטן מקבלת האז מקבלת האז (a,b]. אז הערך הגדול פונקציה רציפה בקטע סגור האז (a,b] אז האז היים מספרים a,b ביותר עבור קטע זו. ז"א קיים מספרים a,b ביותר עבור קטע דו.

$$f(d) \le f(x) \le f(c) \qquad \forall x \in [a, b] .$$

דוגמאות.

$$.[3,7]$$
 קטע רציפה $f(x) = -(x-2)(x-10)$ ב

f(3)	מינימום	
f(6)	מקסימום	

 $f(x) = x^2 - 10x + 30$ ציפה קטע f $(x) = x^2 - 10x + 30$

f(5)	מינימום
f(2)	מקסימום

 $f(x) = x^3 - 10x^2 + 6x + 150$ 3 גיפה קטע

f(0.31)	מינימום
f(6.35)	מקסימום

. בקטע ערך מינימום אל ולכן לא f .I=[1,4] בקטע $f(x)=\dfrac{1}{(x-3)^2}$ לא רציפה בקטע לא f

4.4 תורת. (משפט חסימות של פוקציה של ויירשטראס)

פונקציה רציפה בקטע סגור [a,b], חסומה שם. ז"א קיימים מספרים m ו- M כך ש

$$m \le f(x) \le M \qquad \forall x \in [a, b] .$$

(משפט ערך הביניים) 4.5

תהי פונקציה הקטע ערכים שונים, המקבלת הקטע סגור [a,b]רציפה בקטע דישה פונקציה הקטע רציפה פונקציה ווא סגור

$$f(a) = A$$
, $f(b) = B$, $A \neq B$.

.B -ו Aוים בין הערכים את זו בקטע אז אז fאז אז f

4.6 משפט. (משפט בולזנו)

תהי פונקציה ערכים מסימנים ובקצוות הקטע ובקצוות הקטע סגור [a,b]רציפה בקטע רבים פונקציה ובקצוות הקטע האור $f(a)\cdot f(b)<0$.

-ו a < c < b אז קיימת לפחות נקודה אחד c, כך ש

$$f(c) = 0.$$

דוגמא.

הוכח כי למשוואה

$$e^{2x+1} + x^2 - 5 = 0$$

יש שורש ממשי אחת ומצא אותו עם דיוק של שתי ספרות.

פיתרון.

נגדיר פונקציה

$$f(x) = e^{2x+1} + x^2 - 5 .$$

שים לב

$$f(0) = -5 + e < 0$$
, $f(1) = -4 + e^3 > 0$.

לכן לפי f(1) > 0 ו- f(0) < 0 וו. רציפה בקטע או. f(x) = f(1) ווון ש- f(x) = f(1) איז אלמנטרית ומוגדרת בקטע f(x) = f(1) משפט בולזנו (משפט 4.6) קיים f(x) = f(1) בתחום f(x) = f(1) כך ש- f(x) = f(1)

לכן f אז f עולה ממש). לכן או פנוסף f חח"ע בקטע וומכיין או וורדת ממש או יורדת ממש וולכן I=[0,1] אז אז f עולה ממש). לכן הנקודה שבה f

-2.281 < 0	f(0)
-1.669 < 0	f(0.1)
-0.904 < 0	f(0.2)
0.043 > 0	f(0.3)

 $.c \approx 0.2 \Leftarrow 0.2 < c < 0.3$ לכן

-0.06 < 0	f(0.29)
0.043 > 0	f(0.3)

 $c \approx 0.29 \iff 0.29 < c < 0.3$

משמעות הפיזית של נגזרת

נניח שגוף הנמצא בנקודה x(t) בזמן התחלתי t, נע לנקודה x(t) ומסתיים שם בזמן סופי x(t) המהירות המצעת היא

$$\bar{\mathbf{v}} = \frac{x(t + \Delta t) - x(t)}{\Delta t} \ .$$

מכאן המהירות הרגעית בנקודה A היא

$$\mathbf{v} = \lim_{\Delta t \to 0} \bar{\mathbf{v}} = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = x'(t) .$$

ז"א המשמעות הפיזית של הנגזרת היא מהירות.

4.7 הגדרה: (הנגזרת)

הנגזרת של פונקציה f(x) בנקודה x תסומן הוגדר

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
.

דוגמאות.

$$f(x) = c$$
 .1

$$c' = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0 .$$

$$f(x) = x$$
 .2

$$x' = \lim_{\Delta x \to 0} \frac{(x + \Delta x) - x}{\Delta x} = 1.$$

$\underline{f(x) = x^2}$.3

$$(x^{2})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{2} - x^{2}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^{2} + 2\Delta x \cdot x + \Delta x^{2} - x^{2}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2\Delta x \cdot x + \Delta x^{2}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (2 \cdot x + \Delta x)$$

$$= 2x.$$

 $\underline{f(x) = x^n}$.4

$$(x^{n})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{n} - x^{n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^{n} + nx^{n-1}\Delta x + \frac{n(n-1)}{2}x^{n-2}\Delta x^{2} + \dots + \frac{n(n-1)\dots(n-k+1)}{k!}x^{n-k}\Delta x^{k} + \dots + \Delta x^{n} - x^{n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{nx^{n-1}\Delta x + \frac{n(n-1)}{2}x^{n-2}\Delta x^{2} + \dots + \frac{n(n-1)\dots(n-k+1)}{k!}x^{n-k}\Delta x^{k} + \dots + \Delta x^{n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}\Delta x + \dots + \frac{n(n-1)\dots(n-k+1)}{k!}x^{n-k}\Delta x^{k-1} + \dots + \Delta x^{n-1}\right)$$

$$= nx^{n-1}.$$

$$f(x) = \ln x$$
 .5

$$(\ln x)' = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\ln\left(\frac{x + \Delta x}{x}\right)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \ln\left(\frac{x + \Delta x}{x}\right)$$

$$= \lim_{\Delta x \to 0} \ln\left[\left(\frac{x + \Delta x}{x}\right)^{\frac{1}{\Delta x} \cdot \frac{1}{x}}\right]$$

$$= \lim_{\Delta x \to 0} \ln\left[\left(1 + \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x} \cdot \frac{1}{x}}\right]$$

$$= \lim_{\Delta x \to 0} \frac{1}{x} \ln\left[\left(1 + \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]$$

$$= \frac{1}{x} \cdot \lim_{\Delta x \to 0} \ln\left[\left(1 + \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]$$

$$= \frac{1}{x} \cdot \ln\left(\lim_{\Delta x \to 0} \left[\left(1 + \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]\right)$$

$$= \frac{1}{x} \cdot \ln\left(e\right)$$

$$= \frac{1}{x} \cdot \ln\left(e\right)$$

 $f(x) = \frac{1}{x}$.6

$$\left(\frac{1}{x}\right)' = \lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-\Delta x}{x \cdot (x + \Delta x) \cdot \Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-1}{x \cdot (x + \Delta x)}$$

$$= \frac{-1}{x^2}.$$

 \sqrt{x} .7

$$\begin{split} \left(\sqrt{x}\right)' &= \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{x + \Delta x - x}{\Delta x (\sqrt{x + \Delta x} + \sqrt{x})} \\ &= \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x (\sqrt{x + \Delta x} + \sqrt{x})} \\ &= \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}} \\ &= \frac{1}{2\sqrt{x}} \ . \end{split}$$

משמעות הגאומטרית של נגזרת

השיפוע של הגרף בנגודה A מוגדרת להיות השיפוע של המשיק לגרף בנקודה A - ז"א השיפוע של הישר AD. יהי השיפוע של הנקודה AB מתלכד עם המשיק AB בגבול כאשר הנקודה B הנקודה B הנקודה B המשיק ע"י השיפוע של הישר מתקרב לנקודה A, וזה מתרחש כאשר A באבול ניתן לחשב השיפוע של המשיק ע"י השיפוע של הישר B בגבול שAB בגבול שAB

$$\lim_{\Delta x o 0} rac{BC}{AC} = \lim_{\Delta x o 0} rac{f(x+\Delta x) - f(x)}{\Delta x}$$
 שיפוע של המשיק

-בנוקה f(x) בנוקא הימין הוא דווקא הנגזרת של בנקודה f(x) בנקודה לכן מצאנו כי השיפוע של גרף הפונקציה f(x) בנוקה אבל אגף הימין הוא דווקא הנגזרת של f(x) בנוקודה או.

ממשוואת משיק ונורמל

4.8 כלל: (משיק ונורמל של גרף)

משוואת הישר המשיק לקו y=f(x) משוואת הישר המשיק היא

$$y - y_0 = f'(x_0)(x - x_0)$$

משוואת הישר הנורמל לקו y=f(x) משוואת הישר הנורמל

$$y - y_0 = \frac{-1}{f'(x_0)}(x - x_0)$$

דוגמא.

 $\Delta x=2$ מצא את משוואת המשיק ומשוואת משוואת משוואת . $f(x)=x^2$

פיתרון.

משוואת המשיק:

$$y - 2^2 = 2 \cdot 2(x - 2)$$
 \Rightarrow $y - 4 = 4(x - 2)$.

ומשוואת הנורמל:

$$y - 2^2 = \frac{-1}{2 \cdot 2}(x - 2)$$
 \Rightarrow $y - 4 = -\frac{1}{4}(x - 2)$.

גזירות

(קשר בין גזירות ורציפות) 4.9

. פונקציה f(x) שהיא גזירה בנקודה x_0 רציפה בנקודה זו

 x_0 -שים לב, f(x) רציפה בנקודה x_0 לא בהכרח גזירה ב

דוגמאות.

.1

.2

$$f(x) = |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}.$$

x=0 רציפה בנקודה f(x) נבדוק אם

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0 \ , \qquad \lim_{x \to 0^-} |x| = \lim_{x \to 0^-} (-x) = 0 \ .$$

x=0 רציפה בנקודה f(x)

 $\mathbf{x}=0$ נבדוק אם גזירה גירה אס גזירה נבדוק

$$f'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{|0 + \Delta x| - |0|}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{-\Delta x}{\Delta x} = -1 ,$$

$$f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{|0 + \Delta x| - |0|}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x}{\Delta x} = 1 .$$

 $f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}.$

נבדוק אם $\sin(\frac{1}{x})$ חסומה בנקודה x=0 בנקודה רציפה בנקודה f(x)

$$\lim_{x o 0} x \sin\left(rac{1}{x}
ight) = 0$$
 .
$$x = 0 -$$
ולכן ולכן $f(x)$ רציפה ב- $f(x)$ ולכן

x=0 גזירה בנקודה f(x) אם

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(0 + \Delta x)\sin\left(\frac{1}{0 + \Delta x}\right) - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x \cdot \sin\left(\frac{1}{\Delta x}\right)}{\Delta x}.$$

x=0 - אינה גזירה ב- f(x) אינה לא קיים ולכן

כללי הנגזרת

4.10 משפט. (כללים יסודיים של נגזרות)

- 1. סכום של פונקציות
- (f(x) + g(x))' = f'(x) + g'(x).
- 2. מכפלת פונקציה בסקלר
- $(\alpha f(x))' = \alpha f'(x) .$

- נ. כלל הכפל
- $(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$.

4. כלל המנה

- $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} .$
- 5. כלל השרשרת

$$[f(g(x))]' = f(g)'_{g} \cdot g(x)'_{x}$$
.

דוגמאות

$$\left[\ln\left(x^4 - 2x^2 + 6\right)\right]' = \frac{1}{x^4 - 2x^2 + 6} \cdot (4x^3 - 4x)$$

$$\left[7^{x^2 - 4x} \right]' = 7^{x^2 - 4x} \cdot \ln 7 \cdot (2x - 4) .$$

דוגמא.

 $A(\pi/2,2)$ בנקודה $f(x)=4\cos^2\left(rac{x}{2}
ight)$ בנקודה לגרף הפונקציה מצא את משוואת המשיק ב

פיתרון.

$$f'(x) = 8\cos\left(\frac{x}{2}\right) \cdot \left(-\sin\left(\frac{x}{2}\right)\right) \cdot \frac{1}{2} .$$

$$f'\left(\frac{\pi}{2}\right) = -8\cos\left(\frac{\pi}{4}\right) \cdot \sin\left(\frac{\pi}{4}\right) \cdot \frac{1}{2} = -8 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = -2 .$$

משוואת המשיק:

$$y - 2 = -2\left(x - \frac{\pi}{2}\right)$$

משוואת הנורמל:

$$y - 2 = \frac{1}{2} \left(x - \frac{\pi}{2} \right)$$

זווית ביו קווים עקומים

דוגמא.

מצא את הזווית בין הקווים $y=rac{1}{1+x}$ ו- $y=rac{1}{1+x}$ בנקודת החיתוך שלהם שבה x>0. צייר את הסקיצה המתאימה.

פיתרון.

נקודת חיתוך:

$$\frac{x}{2} = \frac{1}{x+1} \qquad \Rightarrow \qquad x(x+1) = 2 \qquad \Rightarrow \qquad x^2 + x - 2 = 0 \qquad \Rightarrow \qquad x = 1 \ .$$

(1,0.5) נקודת חיתוך:

 $\underline{y_1}$ שיפוע של

$$y_1 = \frac{x}{2}$$
, $y'_1 = \frac{1}{2}$, $y'_1(1) = \frac{1}{2} = m_1$.

 y_2 שיפוע של

$$y_2 = \frac{1}{x+1}$$
, $y_2' = \frac{-1}{(x+1)^2}$, $y_1'(1) = \frac{-1}{4} = m_2$.

 y_2 -ו וית בין אווית הישוב חישוב הזווית