Lógica para Computação

COMPUTAÇÃO - UEPB - 2021.1 Prof. Me. Paulo César O. Brito

Tabela verdade

Н	G	¬H	H V G	ΗΛG	$H \rightarrow G$	H ↔ G
Т	Т	F	Т	Т	Т	Т
Т	F	F	Т	F	F	F
F	Т	Т	Т	F	Т	F
F	F	Т	F	F	Т	Т

Propriedades semânticas da Lógica Proposicional

Propriedades semânticas

As propriedades semânticas relacionam os resultados das interpretações das fórmulas. São relações obtidas no mundo semântico, mas a partir de fórmulas do mundo sintático.

Tautologia

substantivo feminino

- GRAMÁTICA uso de palavras diferentes para expressar uma mesma ideia; redundância.
- LÓGICA
 proposição analítica que permanece sempre verdadeira, uma vez que o atributo é uma repetição do
 sujeito (p.ex. o sal é salgado).

Definição inicial de um conjunto de propriedades semânticas

- Uma fórmula H é uma tautologia ou é válida se e somente se para toda interpretação I, I[H] = T.
- Uma fórmula H é factível ou satisfatível se e somente se existe pelo menos uma interpretação I, tal que I[H] = T.
- Uma fórmula H é contraditória se e somente se para toda interpretação I,
 I[H] = F.

Definição inicial de um conjunto de propriedades semânticas

- Dadas duas fórmulas H e G, H implica G se e somente se para toda interpretação I, se I[H] = T então I[G] = T.
- Dadas duas fórmulas H e G, H equivale a G se e somente se para toda interpretação I, I[H] = I[G].
- Dada uma fórmula H e uma interpretação I, então I satisfaz H se I[H] = T.

Exemplo(tautologia)

A fórmula $H = P \lor \neg P$ é uma tautologia. Observe que para toda interpretação I, I[H] = T pois

$$I[H] = T \Leftrightarrow I[P \lor \neg P] = T$$

 $\Leftrightarrow I[P] = T \text{ ou } I[\neg P] = T$
 $\Leftrightarrow I[P] = T \text{ ou } I[P] = F$

Como I é uma função binária tal que I[P] pertence a {T,F}, então I[P] = T ou I[P] = F. Portanto, a afirmação I[P] = T e/ou I[P] = F é verdadeira. Logo, I[H] = T.

Exemplo(satisfatibilidade)

A fórmula H = (P V Q) é satisfatível. Neste caso, há interpretações que interpretam H como verdadeira e interpretações que interpretam H como falsa. Considere I e J duas interpretações tais que:

$$I[P] = T, I[Q] = F, ===> H = T$$

$$J[P] = F, J[Q] = F. ===> H = F$$

Logo,
$$I[H] = T e J[H] = F$$

Exemplo(contradição)

A fórmula H = (P $\land \neg$ P) é contraditória. Suponha que exista uma interpretação I tal que I[H] = T. Mas,

$$I[H] = T$$
 $\Leftrightarrow I[P \land \neg P] = T$
 $\Leftrightarrow I[P] = T e I[\neg P] = T$
 $\Leftrightarrow I[P] = T e I[P] = F$ ==> F

Como a interpretação I é uma função binária, para a conjunção ocorre apenas uma das possibilidades: I[P] = T ou I[P] = F.

Logo a afirmação I[P] = T e I[P] = F é uma informação falsa. Portanto, é falso que I[H] = T. Logo, I[H] = F.

Relações entre as Propriedades Semânticas

Relações entre as propriedades semânticas

As propriedades semânticas das fórmulas estão relacionadas entre si. Já foi dito, por exemplo, que a validade é o oposto da contradição. Vamos demonstrar um conjunto de resultados sobre estas relações.

Proposição(validade e contradição)

Dada uma fórmula H, então H é válida ⇔ ¬H é contraditória.

H é válida ⇔ para toda interpretação I, I[H] = T

⇔ para toda interpretação I, I[¬H] = F

⇔ ¬H é contraditória.

Portanto, H é válida ⇔ ¬H é contraditória.

Proposição(validade e factibilidade)

Dada uma fórmula H, H é uma tautologia ⇒ H é satisfatível.

H é uma tautologia ⇔ para toda interpretação I, I[H] = T

⇒ existe interpretação I, I[H] = T

Devido a esse fato, H é uma tautologia ⇒ H é satisfatível.

Proposição(validade e contradição)

Dada uma fórmula H, então:

- a) H é uma tautologia ⇔ ¬H é contraditória
- b) ¬H não é satisfatível ⇔ ¬H é contraditória

Demonstração

item a) H é uma tautologia ⇔ para toda interpretação I, I[H] = T

⇔ para toda interpretação I, I[¬H] = F

⇔ ¬H é contraditória

Demonstração

item b) ¬H não é satisfatível ⇔ ¬H é contraditória

Já foi demonstrado que H é uma tautologia ⇔ ¬H não é satisfatível

Conforme o item a), H é uma tautologia ⇔ ¬H é contraditória

Logo, a partir das equivalências acima, é possível concluir que

¬H não é satisfatível ⇔ ¬H é contraditória