MONASH University Information Technology

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of Monash University pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

FIT5047 – Intelligent Systems

Introduction to Artificial Intelligence Chapter 1

What is Intelligence?

An entity is intelligent if

- It can communicate
- It has internal knowledge
- It has world knowledge
- It has intentions and plans to fulfill these intentions
- It has creativity

FIT5047 Intelligent Systems

This unit introduces the main problems and approaches to <u>designing intelligent software</u> systems including

- automated search methods
- knowledge representation and reasoning
- reasoning under uncertainty
- machine learning paradigms
- (recommender systems)

What is Artificial Intelligence (AI)?

- Al is the study of mental faculties through the use of computational models

 Charniak and McDermott, 1985
- Al is the study of how to make computers do things that (at the moment) humans do (better) Rich and Knight, 1991
- Al is the science of making computers act like the ones in the movies

Anonymous

Al is 20 years away

Goals of Al Practitioners

- Find out about the nature of intelligence
- Build an intelligent machine

Build systems that

Think like humans Think rationally Act like humans Act rationally

Acting Humanly: The Turing Test (I)

Acting Humanly: The Turing Test (II)

Turing (1950)

- Operational test for intelligent behaviour: the Imitation Game
- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- © Suggested major components of Al: knowledge, reasoning, language understanding, learning
- **⊗** Not reproducible, constructive, or amenable to mathematical analysis

Acting Rationally

- Rational behaviour: doing the right thing
 - The right thing: that which is expected to maximize goal achievement, given the available information
- Aristotle (Nicomachean Ethics):
 Every art and every inquiry, and similarly every action and pursuit, is thought to aim at some good

Rational Agents

- An agent is an entity that perceives and acts
- Abstractly, an agent is a function from percept histories to actions:

$$f: \mathcal{P}^* \to \mathcal{A}$$

- For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance
- Caveat: computational limitations make <u>perfect</u> <u>rationality</u> unachievable → <u>bounded rationality</u>
 - design the best program for a given machine's resources

Autonomous Agency

Autonomy

Ability to operate independently

Agency

 Having internal goal structure and external behaviour which generally serves to satisfy a goal structure

Requirements of autonomous agency

- Pragmatics
- Generalization and specialization
- Incremental learning
- Goal-driven learning
- Defeasibility (ability to change its mind)
- Ability to deal with uncertainty

Problems Attacked in Al

```
(all aspects)
  Representation
 Decoding
                                          (all aspects)
  Inference
                 (gen/spec, defeasibility, uncertainty)

    Controlling combinatorial explosion (all aspects)

    Planning

                             (pragmatics, defeasibility)
                  (pragmatics, gen/spec, defeasibility)
 Indexing

    Prediction and recovery (learning, defeasibility)

  Dynamic modification
                                (learning, defeasibility)
 Generalization
 Curiosity
                                           (all aspects)
                                          (all aspects)
 Creativity
```


Subfields of Al

Methods

- Knowledge Representation (Logic, Bayes Nets, Semantic nets)
- Reasoning (Logic, Bayes Nets, Spreading activation)
- Planning / decision making (Goal-based planning, Markov decision processes)
- Search (A*, simulated annealing, genetic algorithms)
- Machine Learning (Artificial neural networks, decision trees,
 Naïve Bayes, Reinforcement learning)

Applications

- Natural Language Processing (NL Understanding, NL Generation, machine translation, sentiment analysis)
- Decision support systems
- Data mining
- Game playing
- Robotics, Vision

History of AI (I)

- 1943 Perceptrons/Neural nets/Connectionism (McCulloch and Pitts 1943, Rosenblatt 1957)
- 1950s Machine translation
- 1950 Turing initiated AI as a research area
- 1956 Dartmouth conference: Birth of Al
 - Origin of Artificial Intelligence as a name
- 1963 Checkers playing (Samuel 1963)
- 1963 Theorem Prover (Newell 1963)
 - GPS General Problem Solver (Newell, Shaw & Simon)
 Basic technique: Means-ends analysis
- 1964 Bayesian inference applied to authorship attribution (Mosteller and Wallace 1964)
- 1965 Robinson's complete algorithm for logical reasoning

History of AI (II)

- 1966-74 AI has a reality check: no world knowledge and computational complexity
- 1974 Neural networks research almost disappears
- 1969-79 Knowledge-based systems
- 1980-88-now AI becomes an industry: Expert systems, vision systems, robots
- 1988-93 "Al Winter" failure to deliver
- 1986–now Neural networks return to popularity
- 1987–now Resurgence of probability; general increase in technical depth
 - "Nouvelle AI": ALife, Genetic Algorithms, soft computing
- 1995–now Intelligent agents
- 2001–now Big data, Deep learning

State of the Art (I)

- Autonomous agents
 - Smart spaces/ambient intelligence
 - Smart personal assistants
- Data mining (business intelligence)
- Machine learning applications
 - e.g., spam fighting, disease diagnosis (probabilistic expert systems)
- Google's search engine (page ranking)
- Recommender systems (directed advertising)

Ambient Intelligence

- A world where people are surrounded by intelligent and intuitive interfaces embedded in the everyday objects around them. These interfaces recognize and respond to the presence and behavior of an individual in a personalized and relevant way.

 Pattie Maes, MIT
- Ambient intelligence is the vision that technology will become invisible, embedded in our natural surroundings, present whenever we need it, enabled by simple and effortless interactions, attuned to all of our senses . . .

Weber et al. (2007)

Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke

State of the Art (II)

- Autonomous planning and scheduling (1991, 1999, 2004, 2008)
- Robotic vehicles autonomous driving (1995, 2006, 2007, now)
- Robotics Roomba (2002), packBot (2002)
- Game playing Deep Blue defeated the world chess champion Garry Kasparov (1997), AlphaGo defeated the world Go champion Lee Sedol (2016)
- Statistical machine translation (2007)
- Winning Jeopardy Watson (2011)
- Speech recognition in restricted domains

What we will do in this subject

- Learn what some of the key problems in Al are
- Learn some of the key strategies for solving them
- Learn about typical applications

Reading

- Russell, S. and Norvig, P. (2010), Artificial Intelligence A Modern Approach (3rd ed), Prentice Hall, Chapter 1
- Other references
 - W.S. McCulloch and W. Pitts (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophysics, 5, 115-137
 - Alan Turing (1950) Computing machinery and intelligence. *Mind*, 59, 433-460. Reprinted many times (e.g., M. Boden (ed) *Philosophy of AI*, Oxford, 1990)
 - F. Rosenblatt (1957) The Perceptron. Report 85-460-1 Cornell Aeronautical Lab
 - M. Minsky and S. Papert (1969) Perceptrons. MIT
 - A. Newell & H.A. Simon (1976) Computer science as empirical inquiry.
 Communications of the ACM, 19. Reprinted in Boden
 - M. Boden (1977), Artificial Intelligence and Natural Man. Basic Books Inc.

Next Lecture Topic

- Lecture Topic 2
 - Intelligent Agents

