Mathematical Objects

Mathematical assertions can be regarded as statements about objects in some abstract "mathematical universe"; e.g.:

Sets: Represent (unordered) collections of objects (perhaps other sets).

Functions: Abstract the idea of a "black box" that takes an object as input and produces an object as output.

Relations: Abstract the idea of a property that can be true or false of an object or sequence of objects.

Ordered pairs and tuples: Represent sequences (ordered collections) of objects.

Natural numbers: 0, 1, 2, 3, Usually considered together with operations such as + *.

Sets

Sets can be considered "the data structures of mathematics".

- All normal mathematical objects can be constructed from "pure sets."
- The logic of sets can be formalized as a relatively small set of axioms and inference rules.
- The standard version of set theory is called *ZFC* (Zermelo-Fraenkel set theory with Choice).
- Most working mathematicians assume ZFC as their foundation.
- Mostly, we can work "naively" with sets, without having to worry about axiomatics.

Properties of Sets

Set theory can be formulated as a "first-order" logic with predicates = (equality) and \in (element of). Basic properties are:

Extensionality: Two sets are equal if and only if they have the same elements:

$$\forall A \ B. \ A = B \leftrightarrow (\forall X. \ X \in A \leftrightarrow X \in B).$$

Def: $A \subseteq B \equiv \forall X. \ X \in A \rightarrow X \in B.$

Comprehension: Given a set A and a predicate P, there is a set B whose elements are precisely those elements of A that satisfy P:

$$\forall A. \ \exists B. \ (\forall X. \ X \in B \leftrightarrow X \in A \land P(X)).$$

Def: $\{X \in A. P(X)\}$ \equiv the set asserted to exist.

Note that it will be unique, due to extensionality.

Empty set: There exists a set with no elements:

$$\exists A. \ \forall X. \ X \not\in A.$$

Def: ϕ or $\{\}$ \equiv the set asserted to exist.

Pairing: Given sets A and B, there exists a set having A and B as its only members:

$$\forall A \ B. \ \exists C. \ \forall X. \ X \in C \leftrightarrow (X = A \lor X = B).$$

Given A B, the set C is the *unordered pair* $\{A, B\}$.

Union: Given sets A and B, there exists a set having as members exactly those sets that are either a member of A or a member of B:

$$\forall A \ B. \ \exists C. \ \forall X. \ X \in C \leftrightarrow (X \in A \lor X \in B).$$

Def: $A \cup B \equiv the set asserted to exist.$

Intersection: Given sets A and B, there exists a set having as members exactly those sets that are a member of both A and B:

$$\forall A \ B. \ \exists C. \ \forall X. \ X \in C \leftrightarrow (X \in A \land X \in B).$$

Def: $A \cap B \equiv \text{the set asserted to exist.}$

"Big- \bigcup ": Given A, there is a set having as its elements precisely those sets that are elements of *some* element of A:

$$\forall A. \ \exists B. \ \forall X. \ X \in B \leftrightarrow (\exists Y. \ Y \in A \land X \in Y).$$

Def: $\bigcup A \equiv the set asserted to exist.$

"Big- \cap ": Given A, there is a set having as its elements precisely those sets that are elements of *all* elements of A:

$$\forall A. \ \exists B. \ \forall X. \ X \in B \leftrightarrow (\forall Y. \ Y \in A \rightarrow X \in Y).$$

Def: $\cap A \equiv \text{the set asserted to exist.}$

Powerset: Given A, there is a set having as its elements precisely those sets that are subsets of A:

$$\forall A. \ \exists B. \ \forall X. \ X \in B \leftrightarrow X \subseteq A.$$

Def: $\mathcal{P}(A) \equiv \text{the set asserted to exist.}$

From the empty set and powerset axioms, we can prove the existence of *lots* of sets:

$$\mathcal{P}(\phi) = \{\phi\}$$

$$\mathcal{P}(\mathcal{P}(\phi)) = \{\phi, \{\phi\}\}$$

$$\mathcal{P}(\mathcal{P}(\mathcal{P}(\phi))) = \{\phi, \{\phi\}, \{\{\phi\}\}, \{\phi, \{\phi\}\}\}\}$$

Derived Constructions

Various "encoding tricks" can be used to define standard mathematical constructions in terms of sets; e.g.:

Ordered Pair: Given A, there is a set having $\{A\}$ and $\{A,B\}$ as its only members:

$$\forall A \ B. \ \exists C. \ \forall X. \ X \in C \leftrightarrow X = \{A\} \lor X = \{A, B\}.$$

Def: $(A, B) \equiv the set asserted to exist.$

Sets A and B are uniquely determined by (A, B) (i.e. the property we want an ordered pair to satisfy holds).

Cartesian Product: Given A and B, there is a set having as its members precisely the ordered pairs (X,Y) where $X \in A$ and $Y \in B$:

$$\forall A \ B. \ \exists C. \ \forall Z. \ Z \in C \leftrightarrow (\exists X \ Y. \ X \in A \land Y \in B \land Z = (X, Y)).$$

Def: $A \times B \equiv the set asserted to exist.$

We can iterate this construction to define:

$$A_1 \times (A_2 \times A_3)$$

 $A_1 \times (A_2 \times (A_3 \times A_4)))$
 $A_1 \times (A_2 \times (A_3 \times (A_4 \times A_5))))$

The elements of these sets are *lists*: (X_1, X_2, X_3) , (X_1, X_2, X_3, X_4) , $(X_1, X_2, X_3, X_4, X_5)$, etc.

The Natural Numbers

Another encoding trick can be used to define the natural numbers as sets:

$$\begin{array}{lll}
0 & = \phi & = \{\} \\
1 & = \{\phi\} & = \{0\} \\
2 & = \{\phi, \{\phi\}\} & = \{0, 1\} \\
3 & = \{\phi, \{\phi\}, \{\phi, \{\phi\}\}\}\} & = \{0, 1, 2\}
\end{array}$$

The *successor* of a number is defined to be the set whose elements are that number and all of its elements:

Def: $S(X) \equiv X \cup \{X\}$

Infinity: There exists a set X such that ϕ in X and such that whenever Y in X, then also $S(Y) \in X$:

$$\exists X. \ \phi \in X \land (\forall Y. \ Y \in X \rightarrow S(Y) \in X).$$

Def: $\mathcal{N} \equiv \text{the smallest such set } (w.r.t. \subseteq).$

Don't assign too much importance to these particular encoding tricks – other versions are possible.

The point is that the properties of sets are given by a few axioms, which means we don't need additional axioms for other concepts (such as ordered pairs, numbers, lists, etc.) if we can define them in terms of sets.

Set Theory: Some History

Set theory was invented by Georg Cantor and Richard Dedekind in the late 1800's:

- The theory was originally used in a "naive" (non-axiomatic) form.
- Cantor was able to formulate many mathematical notions in terms of sets.

- The need for a formal axiomatic theory became evident with the discovery of paradoxes in "Cantor's Paradise";
 e.g.
 - Russell's Paradox: "Let A be the set of all sets. Let P(X) be the property of sets which holds of a set X exactly when X is not an element of X. Form the set $B = \{X \in A. P(X)\}$. Then B contains all sets that are not members of themselves. Is B a member of itself?"
- The resolution of the paradoxes involved specifying careful restrictions on what could be considered to be a set. These rule out the existence of: "the set of all sets."

The point here is: set theory is far from trivial, even though "high school presentations" make it seem to be.

Functions

The intuitive idea of a function is that of a "black box", which takes an input from some *domain* and produces an output in some *codomain*.

For each input, there is one and only one possible output.

- The concept of function is much older than that of a set.
- In set theory, functions are defined in terms of sets, rather than taken as primitive.
- Mathematics can also be based upon a theory of "pure functions", as opposed to sets (e.g. Church's λ -calculus).

Relations and Functions as Sets

Given sets A and B, a binary relation on A and B is defined to be a subset R of the cartesian product $A \times B$; e.g.

$$A = \{1,2,3\}$$

$$B = \{4,5\}$$

$$A \times B = \{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$$

$$R = \{(1,5),(3,5),(2,4)\} \subseteq A \times B$$

A *function* from A to B is a binary relation $F \subseteq A \times B$ such that:

$$\forall a. \ a \in A \rightarrow \exists! b. \ b \in B \land (a,b) \in F.$$

Here $\exists !$ means "there exists unique" and $\exists !x. \ P(x)$ abbreviates:

$$(\exists x. \ P(x)) \land (\forall x \ y. \ P(x) \land P(y) \rightarrow x = y).$$

Special Classes of Functions

A function F from A to B is:

• One-to-one, or injective, if

$$\forall a \ a' \ b. \ (a,b) \in F \land (a',b) \in F \rightarrow a = a'.$$

• Onto, or surjective, if

$$\forall b.\ b \in B \to (\exists a.\ (a,b) \in F).$$

• A *one-to-one correspondence*, or *bijective*, if it is both injective and surjective; or equivalently:

$$\forall b. \ b \in B \rightarrow (\exists! a. \ (a,b) \in F).$$

Using Functions to Compare Sets

- Sets A and B are equinumerous |A| = |B| if there exists a bijection from A to B.
- Set A has *smaller cardinality* than B ($|A| \le |B|$) if there exists an injection from A to B.
 - Cantor-Schröder-Bernstein Theorem: $|A| \le |B|$ and $|B| \le |A|$ implies |A| = |B|. (Not as trivial as it looks!)
 - Pigeonhole Principle: If |A| < |B| (i.e. $|A| \le |B|$ but not |A| = |B|), then there is no injection from B to A. ("If m < n and you put n pigeons in m holes, then some hole contains more than one pigeon.")

Finite and Infinite Sets

Characteristic properties of finite versus infinite sets:

- No finite set can be placed into one-to-one correspondence with a proper subset of itself.
- Every infinite set can be placed into one-to-one correspondence with some proper subset of itself. (e.g. $n \mapsto 2n$ on natural numbers)

Actually, in set theory these are used as the *definitions* of finite and infinite:

Def: A set A is *finite* if every injection $f: A \rightarrow A$ is also a surjection. A set that is not finite is called *infinite*.

Theorem: A set is finite if and only if it is equinumerous with some proper initial segment of the natural numbers. *e.g.*

 $\{\texttt{red}, \texttt{blue}, \texttt{green}\} \leftrightarrow \{0, 1, 2\}$

Countable and Uncountable Sets

Def: A set is *countably infinite* if it is equinumerous with the set \mathcal{N} of *all* natural numbers. A set is *countable* if it is finite or countably infinite. A set is *uncountable* if it is not countable.

The bijection $n \mapsto 2n$, called an *enumeration* of the set of even numbers, shows that the set of even numbers is countably infinite.

Theorem: A set A is countable if and only if there is a surjection $f: \mathcal{N} \to A$.

The surjection f is called an *enumeration with repetition*.

Countability of the Rational Numbers

Theorem: The set of rational numbers is countable.

Proof: Every rational number can be represented as a fraction p/q (not unique), where p and q are natural numbers, and q is not 0. We can construct an enumeration with repetition of all the fractions:

0/1, 1/1, 0/2, 2/1, 1/2, 0/3, 3/1, 2/2, 1/3, 0/4, ...

p/q	1	2	3	• • •
0	0/1	0/2	0/3	
1	1/1	1/2	1/3	
2	2/1	2/2	2/3	
3	3/1	3/2	3/3	

Existence of Uncountable Sets

Theorem: The set B of all functions $f: \mathcal{N} \to \{0,1\}$ is uncountable.

Proof (using Cantor's diagonal argument):

Assume (justification?) that B is countable. Choose (justification?) enumeration f_0, f_1, f_2, \ldots of the elements of B. Consider the following table:

$$f_i(j)$$
 0 1 2 3 ...
 f_0 $f_0(0)$ $f_0(1)$ $f_0(2)$ $f_0(3)$...
 f_1 $f_1(0)$ $f_1(1)$ $f_1(2)$ $f_1(3)$...
 f_2 $f_2(0)$ $f_2(1)$ $f_2(2)$ $f_2(2)$...
 f_3 $f_3(0)$ $f_3(1)$ $f_3(2)$ $f_3(3)$...

Define $f: \mathcal{N} \to \{0,1\}$ so that $f(k) = 1 - f_k(k)$. Then f cannot be one of the f_i , so not all functions $f: \mathcal{N} \to \{0,1\}$ are included among the f_i ; contradicting our assumption. We conclude B is uncountable.

A more general version of this argument shows:

Theorem: For all sets A, we have $|A| < |\mathcal{P}(A)|$.

i.e. no set A is equinumerous with its own powerset $\mathcal{P}(A)$.

More about Binary Relations

A binary relation $R \subseteq A \times A$ is called:

- reflexive if $\forall a. \ a \in A \rightarrow (a, a) \in R$.
- symmetric if $\forall a \ b. \ (a,b) \in R \rightarrow (b,a) \in R$.
- antisymmetric if $\forall a \ b. \ (a,b) \land (b,a) \in R \rightarrow a = b.$
- transitive if $\forall a \ b \ c. \ (a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R.$
- an equivalence if it is reflexive, symmetric, and transitive.
- a partial order if it is reflexive, transitive, and antisymmetric.
- a total (or linear) order if it is a partial order, and in addition satisfies dichotomy: $\forall a \ b. \ (a,b) \in R \lor (b,a) \in R$.

Examples:

Example: $R = \{(m, n) \in \mathcal{N} \times \mathcal{N}. \text{ m} = n \pmod{3}\}$ is an equivalence relation.

Example: $R = \{(m, n) \in \mathcal{N} \times \mathcal{N}. \ m \leq n\}$ is a total order.

Example: $R = \{(m, n) \in \mathcal{N} \times \mathcal{N}. \ m \text{ evenly divides } n\}$ is a partial order.

Alphabets and Strings

Def: An *alphabet* is a *nonempty* finite set. (we call the elements "symbols")

Def: Let Σ be an alphabet. A *string "over"* Σ is a finite sequence $w = w_1 w_2 \dots w_n$, where each $w_i \in \Sigma$.

- The number n is called the *length* |w| of string w.
- The *empty string* (n = 0) is denoted by ϵ .
- ullet The set of all strings over Σ is denoted by Σ^* .

If we wanted to, we could *define* $\Sigma^* = \bigcup \{\Sigma^n : n \in \mathcal{N}\}$, but such details are not so important for us.

String Notation

- The *i*th symbol in string w $(1 \le i \le |w|)$ is w(i).
- The *concatenation* of strings u and v is the string uv such that:
 - 1. |uv| = |u| + |v|
 - 2. uv(i) = u(i), for $1 \le i \le |u|$
 - 3. uv(i) = v(i |u|), for $|u| + 1 \le i \le |u| + |v|$.
- Concatenation of strings is *associative*: and it has the empty string as an *identity*:

$$\forall u \ v \ w. \ (uv)w = u(vw) \qquad \forall u. \ u\epsilon = u = \epsilon u.$$

(Algebraically, $(\Sigma^*, \cdot, \epsilon)$ is a *monoid*)

Cardinality of Σ^*

Theorem: If Σ is an alphabet, then Σ^* is countably infinite.

Proof: We can enumerate Σ^* in *lexicographic order*:

- Choose an enumeration $\{x_1, x_2, \dots, x_n\}$ of Σ . (justification?)
- Extend to an enumeration of Σ^* , by the following rules:
 - For each k, all strings of length k are enumerated before strings of length k+1.
 - The n^k strings of length exactly k are enumerated so that $v_1 \ldots v_k$ precedes $w_1 \ldots w_k$ provided that for some i with $0 \le i < k$, we have $v_j = w_j$ for all j < i and $v_{i+1} < w_{i+1}$ (order based on "first mismatch").

Languages

Def: If Σ is an alphabet, then a subset of Σ^* is called a *language "over"* Σ . Important examples of languages:

- \bullet ϕ the *empty language*.
- Σ^* the language containing every string.
- $\{w\}$ the *singleton language* containing w.
- Σ the language consisting of all single-symbol strings. (We are "punning" here, regarding $\Sigma \subseteq \Sigma^*$.)

As they are sets, we can form unions, intersections, and complements (with respect to Σ^*) of languages.

The Set of All Languages (over Σ)

The set of all languages over alphabet Σ is just $\mathcal{P}(\Sigma^*)$, the powerset of Σ^* .

Theorem: If Σ is an alphabet, then $\mathcal{P}(\Sigma^*)$ is uncountable.

Proof: We have already noted (by Cantor's Diagonal Argument) that |A| < |P(A)| for any set A.