1. (30 pts - 35 mins) Suppose we have two discrete-time sequences x[n] and h[n] as follows:

$$x[n] = \cos\left(\frac{\pi n}{2}\right)$$
 , $n = 0, 1, 2, 3$
 $h[n] = 2e^{j\frac{\pi}{2}n}$, $n = 0, 1, 2, 3$

- a. (8 pts) Calculate y[n]=x[n] (4) h[n] by doing the circular convolution directly. (4): four-point circular convolution)
- b. (8 pts) Calculate the four-point DFTs X[k] and H[k].
- c. (7 pts) Calculate Y[k] by multiplying X[k] and H[k], then calculate y[n] by performing an inverse DFT.
- d. (7 pts) Consider $w[n] = \{0, 7, 0, 5\}$. Determine if a sequence that satisfies x[n] 4 v[n] = w[n] can be found. If so, find v[n]. If not, prove it does not exist.

DFT Definition :
$$X[k] \triangleq \sum_{n=0}^{N-1} x[n]W_N^{kn}, \quad 0 \le k \le N-1$$

Inverse DFT Definition :
$$x[n] \triangleq \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}, \quad 0 \leq n \leq N-1$$

Circular Convolution :
$$x_3[n] = x_1[n]$$
 $\widehat{\mathbb{N}}$ $x_2[n] = \sum_{m=0}^{N-1} x_1[m] x_2[((n-m))_N]$, $0 \le n \le N-1$

2. **(30 pts - 35 mins)** For the causal discrete-time LTI system implemented using the difference equation

$$y[n] = -0.25y[n-1] + 0.125y[n-2] + 4x[n] + 0.25x[n-1]$$

where x[n] is the input signal, and y[n] is the output signal.

- a. (7 pts) Draw the direct form-II block diagram of the system.
- b. (7 pts) Find the transfer function of the system, H(z).
- c. (8 pts) Sketch the pole-zero diagram and indicate the ROC. Determine if the Fourier transform of the system $H(e^{j\omega})$ exists. If the Fourier transform exists, write $H(e^{j\omega})$.
- d. (8 pts) Find the z-transform of the output, Y(z), when the input is x[n] = u[-n-1]. Specify the ROC for Y(z).

Z-Transform Definition :
$$X(z) \triangleq \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

3. (20 pts - 30 mins) Consider the system given in the figure below.

Suppose that the Fourier transform of $x_c(t)$ is shown in the figure below.

- a. (10 pts) Find the largest value of T such that $y(t)=x_c^2(t)$. Sketch $V(j\Omega),\ V(e^{j\omega}),\$ and $Y(j\Omega)$ that are the Fourier transform of $v(t),\ v[n]$ and $y(t),\$ respectively.
- b. (10 pts) For the sampling period $T=\frac{1}{3000}$ second, sketch $V(e^{j\omega})$, and $Y(j\Omega)$.

4. **(20 pts - 30 mins)** Let x[n] be the random process that is generated by filtering white noise $w[n] \sim \mathcal{N}(0,2)$ with a discrete-time filter that is designed by applying the bilinear transform to a continuous-time filter. The system function of the continuous-time filter is given as

$$H(s) = \frac{2(s+1)}{3s+1}$$

- a. (6 pts) For the sampling period $T_d=2$, find the transfer function of the system H(z).
- b. (6 pts) Find the power spectrum $P_W(z)$ of w[n] and $P_X(z)$ of x[n].
- c. (8 pts) Find the autocorrelation sequence $r_x(k)$ of x[n].

Bilinear Transform Definiton : $H(z) = H(s) \bigg|_{s=} \frac{2}{T_d} \frac{1-z^{-1}}{1+z^{-1}} \bigg|$