Control Architectures for Distributed Control of Mobile Robots

Adwait Datar

Institute of Control Systems Technical University of Hamburg

CPN Workshop, Dec-2020

This work was funded by the German Research Foundation (DFG) within their priority programme SPP 1914 Cyber-Physical Networking.

Motivating Scenarios

. Schooling in fish

Deep Water Horizon (2010)

7 93 Sann

EADS Astrium

Vehicle Platoons

Physical Agent Dynamics

Figure 1: Crazyflie

Figure 2: Hippocampus

Figure 3: Zooids

- Single/double integrator dynamics
- Linear Time Invariant (LTI)/Linear Parameter Varying (LPV) dynamics
- with/ without non-holonomic constraints

Core Idea

- Control of a single non-linear (possibly non-holonomic) agent: Well-studied problem and various techniques are known
 - ► LPV
 - Dynamic-inversion
 - Flatness-based control
- ► About 3 decades of work on studying interconnections of "simple" agent dynamics where simple could mean
 - single/ double integrator dynamics
 - positive systems

Core Idea

- Control of a single non-linear (possibly non-holonomic) agent: Well-studied problem and various techniques are known
 - LPV
 - Dynamic-inversion
 - Flatness-based control
- About 3 decades of work on studying interconnections of "simple" agent dynamics where simple could mean
 - single/ double integrator dynamics
 - positive systems

Key questions:

- Can we maintain this separation in the controller design? i.e design local agent controllers and study the interconnections of these closed loop "simplified" systems
- Can we give some stability and performance guarantees with such a strategy?
- What kind of control architectures are possible?

Different Control Architectures

Coupled architecture

- Relative distances important
- Small inter-agent distances
- High disturbances

Decoupled architecture

- Absolute COM position important
- Large inter-agent distances
- Low disturbances

Coupled architecture: Consensus/ Formation control

- Some related work
 - ► Fixed Laplacian and LTI agents ¹ -> Modal decomposition
 - ► Fixed and uncertain Laplacian and LPV agents ² -> Modal decomposition
 - ► Flocking with a fixed Laplacian ³
 - ▶ Interconnections of dissipative systems ⁴

¹Fax and Murray, 2004

²Popov, 2009, Eichler and Hoffmann, 2014

³B.Francis, 2016

⁴M. Spong, 2006

Coupled architecture: Flocking

- ► Flocking of double integraor agents ⁵
- Stability analysis via LaSalle

⁵Olfati Saber,2006

Coupled architecture: Flocking

- ► Flocking of quadrotors agents ⁶ but with fixed Laplacians
- Our experiments show that Quadrotors can be made to act like double integrators by well-tuned velocity controllers

⁶Francis, 2016

Coupled architecture: Flocking and source-seeking ⁷

- Forcing dynamics due to a scalar field
- Convergence analysis(Asymptotic stability) for double integrator agents
- Experiments by designing good local velocity controllers

⁷Datar, Paulsen, Werner, 2020

Coupled architecture: Flocking and source-seeking with non-linear agents 8

- ► From double integrators -> non-linear (LPV) agents
- Stability isL(not asymptotic)

⁸Atallah, Datar, Werner, 2020

Coupled architecture: Some speculative ideas and open questions

▶ Use IQCs to obtain exponential convergence rates⁹ of local closed loops and use singular perturbation argument such as in ¹⁰

⁹Boczr, Recht, Lessard, Packard, 2017

¹⁰Mesbahi and others,2018

Decoupled architecture: Consensus/ Formation control

- Some related work
 - Idea of wrapping local controllers around first order dynamics 11
 - Combine a cooperation module with consensus moduke ¹²
 - ▶ Discrete-time Information flow filter ¹³

¹¹Egerstedt and Cortes,2017

¹²Chen and Ren, 2019

¹³Fax and Murray, 2004

Decoupled architecture: Formation forming

- ► Gen H2 norm¹⁴
- Positive systems theory in the network loop¹⁵
- ► Crazyflie experiments ¹⁶

¹⁴Hespe, 2020

¹⁵Datar, 2020 (Submitted)

¹⁶M. Thesis, Paulsen, 2019

Decoupled architecture: Non-ideal networks

- Model the Information flow dynamics as a Markovian Jump Linear System(MJLS)
- r2 or w2 measures (Daniel will talk more about this)
- ▶ IQC analysis of consensus Dynamics ¹⁷ -> Scalable condition

¹⁷Rantzer, 2016

Thank you