トランスデューサまとめスライド

電極

導出法

• 単極導出法: 信号が及ばない部分に基準電位をとる

・ 双極導出法: 2つの電極間の相対電位の計測

求められる性能

- 生体との間に安定した状態で良好な接触が保たれること。(保たれないと基準線の変動(ドリフト=低周波ノイズ)の原因となる)
- 接触インピーダンスが小さいこと
- 分極電圧が小さいこと

接触インピーダンス

皮膚と電極との間の接触部に 発生するインピーダンス

抑制方法

- 皮膚を清潔にする
- 電極と皮膚との接触面積を大きくする。
- 食塩を主成分とした電極ペーストを用いて皮膚イン ピーダンスを低下させる。

分極電圧

電極に外部から電流を流した結果, 発生した電極と生体との電位差

抑制方法

- 銀一塩化銀電極のような不分極電極を用いる
- 同じ材質の電極を用いる
- 新しい電極を使用する場合は、エージングを行う

変換器(トランスデューサ)

電気信号以外の物理信号、化学的信号、状態信号を電気信号諸量(電圧、電流、抵抗など)に変換する装置

物理量トランスデューサ

変換器	変換様式	変換器	変換様式
圧電素子	振動·力→起電力	フォトダイオード	
ストレインゲージ	力·変位→電気抵抗	フォトトランジスタ	
差動トランス	変位→相互インダクタン ス	光電管	光→電流
可動極板コンデンサ	変位→電気容量	光電子増倍管	
熱電対	温度→起電力	光導電素子 (CdS·CdSe)	光→電気抵抗
サーミスタ	温度→電気抵抗	ホール素子	磁場→起電力
光電池	光→起電力	SQUID磁束計	磁場→電流

化学量トランスデューサ

- pHガラス電極水素イオン濃度(pH)の差を電圧として計測
- P₀₂電極(クラーク電極など)
 酸素分圧(体積あたりの酸素量)を還元電流として計測
- P_{co2}電極(セバリングハウス電極など)
 - 二酸化炭素分圧を電圧として計測
- IS-FET(イオン電極FET)FETのゲート部にイオン感受性をもたせたセンサ
- バイオセンサ

PO2、PCO2などの電極センサに酵素、微生物などを固定化することで種々の物質を検出できるセンサ