Decision Trees

Decision trees are classifiers on a target attribute (or class) in the form of a tree structure. The observations (or items) to classify are composed of attributes and their target value. The nodes of the tree can be:

- decision nodes, in these nodes a single attribute-value is tested to determine to which branch of the subtree applies. Or
- leaf nodes which indicate the value of the target attribute.

Algorithms

Hunts (TDIDT) algorithm

In Hunt's algorithm which is also named as Top-Down Induction of Decision Tree, a decision tree is grown in a recursive fashion by partitioning the training records into successively purer subsets. Let D_t be the set of training records that are associated with node t and $y = \{y_1, y_2, \dots, y_c\}$ be the class labels.

- 1. If all records in D_t belong to the same class y_t , then t is a leaf node labeled as y_t which has exactly one incoming edge and no outgoing edges.
- 2. If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
- 3. If D_t contains records that belong to more than one class, an attribute test condition is selected to partition the records into smaller subsets recursively.

Test conditions

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - 2-way split

Node Impurity

Nodes with homogeneous class distribution are preferred

- Gini Index
- Entropy
- Misclassification error