p-adická čísla

Jakub Löwit

ABSTRAKT. Celá čísla jsou ve skutečnosti pěkně zamotaný objekt a mnoho drsných nástrojů algebry a analýzy se na ně přímočaře použít nedá. V běžném životě si je často představujeme jako podmnožinu racionálních, resp. reálných čísel, čímž se otevírají nové možnosti jejich zkoumání. Nejde je ale vnořit do něčeho exotičtějšího, co by nám o nich prozradilo další věci? Jde!

Značení

N přirozená čísla

 \mathbb{N}_0 přirozená čísla s 0

 \mathbb{Z} celá čísla

O racionální čísla

 \mathbb{Z}_n zbytky modulo n

 \mathcal{O}_p celá p-adická čísla

 \mathbb{Q}_p p-adická čísla

Lepší modulení

Když se člověk dívá na přirozená čísla modulo prvočíslo p, často mu to něco prozradí. Hodně informací se tím ale ztrácí. Možným řešením je modulit vyššími a vyššími mocninami p... ale na rozlišení všech přirozených čísel to nikdy stačit nemůže. Pokud bychom však uměli přirozené číslo vymodulit všemi mocninami p najednou, už by to stačilo...

Definice. Mějme dáno pevné prvočíslo p. Dále mějme nekonečnou posloupnost $(a_i)_{i=1}^{\infty}$, kde $a_i \in \mathbb{Z}_{p^i}$. Tuto posloupnost nazveme *konzistentní*, jestliže pro každé i platí $a_i \equiv a_{i+1} \pmod{p^i}$.

Konzistence tedy znamená, že číslo a_{i+1} dává postupně zbytky a_1, \ldots, a_{i+1} po dělení čísly p, \ldots, p^{i+1} .

Definice. Pro prvočíslo p označme \mathcal{O}_p množinu všech konzistentních posloupností vzhledem k p. Na nich definujme sčítání a násobení po složkách, tj.

$$(a_i)_{i=1}^{\infty} + (b_i)_{i=1}^{\infty} = (a_i + b_i)_{i=1}^{\infty},$$

$$(a_i)_{i=1}^{\infty} \cdot (b_i)_{i=1}^{\infty} = (a_i \cdot b_i)_{i=1}^{\infty}.$$

Množinu \mathcal{O}_p s těmito operacemi nazýváme *celými p-adickými čísly*.

Cvičení 1. Rozmyslete si, že součet i součin konzistentních posloupností je opět konzistentní posloupnost, tedy definice \mathcal{O}_p skutečně dává smysl.

Všimněme si, že \mathcal{O}_p v sobě ukrývá celá čísla \mathbb{Z} . Každému celému číslu totiž můžeme přiřadit posloupnost jeho zbytků modulo p,p^2,p^3,\ldots , což samozřejmě dává konzistentní posloupnost. Sčítání a násobení takových posloupností skutečně odpovídá sčítání a násobení přirozených čísel.

Tvrzení. (Obor integrity) Součin libovolných dvou nenulových prvků \mathcal{O}_p je opět nenulový.

Důkaz. Mějme dvě taková nenulová $a,b \in \mathcal{O}_p$. To znamená, že pro nějaká $i,j \in \mathbb{N}_0$ platí $a_i \neq 0, b_j \neq 0$. Z konzistence vyplývá, že každý vyšší člen posloupnosti $(a_i)_{i=1}^\infty$ je dělitelný p^i , ale již nemůže být dělitelný p^{i+1} . Podobně každý vyšší člen posloupnosti $(b_i)_{i=1}^\infty$ je dělitelný p^j , ale nemůže být dělitelný p^{j+1} . Součin členů $a_{i+j+1} \cdot b_{i+j+1}$ proto není dělitelný p^{i+j+1} , tedy číslo a+b má na této pozici nenulový koeficient a proto je nenulové.

Prvky \mathcal{O}_p si ale můžeme představit i jiným způsobem jako mocninné řady, tj. jako "nekonečné" zápisy čísel v soustavě o základu p. Sčítání a násobení takových řad pak ale nestačí provést "po členech", je potřeba "převádět přes desítky" a roznásobovat "nekonečné závorky" (tj. provádět ho jako sčítání a násobení "pod sebou jako ve škole").

Tvrzení. (Mocninné řady) Prvky \mathcal{O}_p si lze představit jako mocninné řady $\sum_{i=0}^{\infty} d_i p^i$, pro $d_i \in \mathbb{Z}_p$, které se sčítají a násobí "jako ve škole".

 $D\mathring{u}kaz$. K jednoznačnému zakódovaní konzistentní posloupnosti nám stačí nekonečná posloupnost $(d_i)_{i=1}^\infty$, kde $d_i \in \mathbb{Z}_p$. Pokud totiž známe prvních i členů, máme přesně p možností na volbu členu a_{i+1} , při kterých bude výsledná posloupnost konzistentní $-a_{i+1}$ je zbytek modulo p^{i+1} , přitom už známe jeho zbytek modulo p^i . Mocninné řadě $\sum_{i=0}^\infty d_i p^i$ naopak v této korespondenci odpovídá konzistentní posloupnost jejích částečných součtů. Že sčítání a násobení funguje správně, je dost jasné.

Pro $a \in \mathbb{Z} \subset \mathcal{O}_p$ jsou koeficienty d_i od nějakého členu dál všechny nulové a daná řada odpovídá dobře známému zápisu přirozených čísel v soustavě o základu p. Každé celé p-adické číslo má také jednoznačně určený zápis a každý zápis definuje nějaké celé p-adické číslo.

Cvičení 2. Pokud by p nebylo prvočíslo, musel by být pořád součin dvou nenulových prvků \mathcal{O}_p nenulový?

Henselovo lemma

Dostáváme se k tvrzení, které z velké části motivovalo zkoumání p-adických čísel. Rádi bychom totiž uměli řešit polynomiální rovnice modulo mocnina prvočísla p. Pokud se nám povede vyřešit takovou rovnici nad \mathcal{O}_p , vyřešíme ji tím vlastně modulo

všechny mocniny prvočísla p najednou. Henselovo lemma (a jeho různé varianty) mluví právě o takovém řešení.

Definice. Mějme polynom $f=\sum_{i=0}^n a_i x^i$ v proměnné x. Jeho derivaci rozumíme polynom $f'=\sum_{i=0}^n i\cdot a_i x^{i-1}$.

Pro reálné polynomy naše definice odpovídá skutečnému derivování, to nám ale může být jedno. Derivace je pro nás prostě operace, která z jednoho polynomu vyrobí jiný. Pojďme si nyní formulovat základní verzi Henselova lemmatu.

Tvrzení. (Henselovo lemma) Ať f je celočíselný polynom, $m \in \mathbb{Z}$. Je-li $f(m) \equiv 0 \pmod{p}$ a zároveň $f'(m) \not\equiv 0 \pmod{p}$, potom existuje jednoznačně určené $a \in \mathcal{O}_p$ splňující f(a) = 0 takové, že $a \equiv m \pmod{p}$.

 $D\mathring{u}kaz$. Důkaz provedeme indukcí, tj. postupně zkonstruujeme členy konzistentní posloupnosti odpovídající číslu a. Budeme chtít, aby pro každé i platilo $f(a_i) \equiv 0 \pmod{p}$, $f'(a_i) \not\equiv 0 \pmod{p}$. Volme $a_1 = m$.

Máme-li už a_i , uvažme čísla $a_i, a_i + p^i, a_i + 2p^i, \ldots, a_i + (p-1)p^i$. Vezměme dvě sousední z nich a označme je x < y. Protože $y-x=p^i$, platí kongruence $f(y)-f(x) \equiv f'(a_i) \cdot p^i \pmod{p^{i+1}}$. Díky podmínce $f'(a_i) \not\equiv 0 \pmod{p}$ pak kongruenci $f(z) \equiv 0 \pmod{p^{i+1}}$ splňuje právě jedno z uvažovaných p čísel. Toto číslo označme a_{i+1} . Z jeho tvaru vidíme, že $a_i \equiv a_{i+1} \pmod{p^i}$. Potom také $f'(a_{i+1}) \equiv f'(a_1) \not\equiv 0 \pmod{p}$. Tím je indukční krok dokončen. Zároveň je z postupu jasné, že číslo a_{i+1} bylo určené jednoznačně.

- Cvičení 3. Rozhodněte, zda v \mathcal{O}_7 existuje $\sqrt{3}$.
- Cvičení 4. Rozhodněte, zda v \mathcal{O}_7 existuje $\sqrt{-3}$.

Cvičení 5. Existuje přirozené číslo, jehož třetí mocnina dává po dělení 5^{2018} zbytek 2?

Cvičení 6. Existuje přirozené číslo, jehož sedmá mocnina dává po dělení 30²⁰¹⁸ zbytek 31?

Cvičení 7. Ať $p \geq 3$ je prvočíslo a přirozené číslo n dává náhodný nenulový zbytek po dělení p. Jaká je šance, že v \mathcal{O}_p existuje \sqrt{n} ?

"Olympiádní" úlohy

Pojďme se nyní podívat na několik celkem těžkých olympiádních úloh, kde lze výhodně použít některé, právě nabyté, znalosti. Z teorie p-adických čísel pro nás bude stěžejní Henselovo lemma. Z elementární teorie čísel je dobré znát Čínskou zbytkovou větu a Bezoutovu větu. K duhu nám také přijde následující Schurovo lemma:

Lemma 8. (Schurovo) At'f je celočíselný nekonstantní polynom. Potom existuje nekonečně mnoho prvočísel p, která dělí nějaké nenulové číslo z množiny $\{f(1), f(2), f(3), \ldots\}$.

Úloha 9. Ať f je nekonstantní celočíselný polynom. Ukažte, že pro libovolné $k \in \mathbb{N}$ existuje nekonečně mnoho prvočísel p takových, že p^k dělí nějaké nenulové číslo z množiny $\{f(1), f(2), f(3), \dots\}$.

Úloha 10. Najděte všechny celočíselné polynomy f, které pro všechna $m, n \in \mathbb{N}$ splňují implikaci $f(m)|f(n) \Longrightarrow m|n$.

(Irán TST)

Úloha 11. Existuje celočíselný polynom, který nemá žádný racionální kořen, ale má kořen modulo libovolné přirozené číslo?

(Kömal)

Valuace

Mějme přirozené číslo n. Jeho p-valuací myslíme nejvyšší mocninu prvočísla p, která ho dělí. Pro celá p-adická čísla lze tento koncept rozumně dodefinovat, což se vyplatí.

Definice. Prvek $u \in O_p$ nazveme jednotkou, jestliže existuje nějaké $v \in O_p$ splňující uv = 1.

Všimněme si, že součin jednotek je vždy jednotka.

Tvrzení. (Popis jednotek) Prvek $a = (a_i)_{i=1}^{\infty} \in O_p$ je jednotka právě tehdy, když $a_1 \neq 0$ v \mathbb{Z}_p .

 $D\mathring{u}kaz$. Pokud je a_1 rovno nule, žádným přenásobením z něj 1 vyrobit nelze. Pokud je naopak a_1 nenulové, žádné a_i není dělitelné p, tedy má inverz modulo p^i . Seřazení těchto inverzů do posloupnosti dá konzistentní posloupnost, čímž jsme hotovi.

Tvrzení. (Rozklad na mocninu a jednotku) Každý nenulový prvek $a \in \mathcal{O}_p$ lze jednoznačně zapsat ve tvaru $a = p^k u$, pro $k \in \mathbb{N}_0$ a jednotku $u \in \mathcal{O}_p$.

 $D\mathring{u}kaz$. Pro $a\in\mathcal{O}_p$ označme k+1 index prvního nenulového prvku příslušné konzistentní posloupnosti. Potom platí $a=\sum_{i=0}^\infty d_i p^i=p^k\cdot\sum_{i=k}^\infty d_i p^{i-k}$, což je hledaný rozklad.

Tento rozklad je navíc skutečně jednoznačný – jsou-li p^ku , p^lv dva takové rozklady, pro přirozená $k \geq l$, můžeme upravovat $p^ku = p^lv$ na $p^l \cdot (p^{k-l}u - v) = 0$. Přitom $p^l \neq 0$ a součin dvou nenulových prvků je vždy nenulový – dostáváme tedy $p^{k-l}u = v$. Protože jsou u,v jednotky, lze rovnost přepsat na $p^{k-l}w = 1$ pro nějakou jednotku w. Tím pádem je ale p^{k-l} také jednotka, takže dle předešlého tvrzení dostáváme k = l; dosazením do rovnosti $p^{k-l}u = v$ pak dostáváme také u = v.

Předchozí tvrzení nám umožňuje definovat p-adickou valuaci, která rozšiřuje běžnou valuaci na celých číslech.

Definice. Pro $0 \neq a \in \mathcal{O}_p$ definujeme p-adickou valuaci $v_p(a)$ jako to jednoznačně určené $k \in \mathbb{N}_0$, pro které lze psát $a = p^k u$ pro nějakou jednotku u. Navíc bereme $v_p(0) = \infty$.

Je vidět, že na celých číslech se tato valuace chová jako běžná prvočíselná valuace, tj. $v_p(a)$ odpovídá nejvyššímu exponentu k, pro který ještě p^k dělí a. Hned si

všimněme dvou základních vlastností valuace, které platí pro libovolná celá p-adická čísla.

Tvrzení. (Vlastnosti valuace) Pro libovolná $a, b \in \mathcal{O}_p$ platí

- (1) $v_p(a \cdot b) = v_p(a) + v_p(b)$,
- (2) $v_p(a+b) \ge \min(v_p(a), v_p(b))$, přičemž pokud $v_p(a) \ne v_p(b)$, tak už nutně nastává rovnost.

Důkaz. První vlastnost je jasná, $p^ku \cdot p^lv = p^{k+l}uv$, kde uv je jednotka. Nerovnost z druhé vlastnosti je také jednoduchá: pokud jsou konzistentní posloupnosti příslušné číslům a,b na nějaké pozici obě nulové, je na této pozici nulová i posloupnost příslušející jejich součtu. Pokud je navíc jedna ze sčítaných posloupností na nějaké pozici nulová a druhá nenulová, jejich součet je na této pozici opět nenulový.

S pomocí valuace není problém mluvit o kongruenci modulo p^i na celých p-adických číslech. Dvě čísla budou kongruentní, pokud má jejich rozdíl dostatečně velkou valuaci. Na celých číslech se definice opět shoduje s tou dobře známou.

Definice. Pro $a,b\in\mathcal{O}_p$ budeme psát $a\equiv b\pmod{p^i}$ právě když $v_p(a-b)\geq i.$ Zlomky

Racionální čísla vzniknou z celých tak, že si dovolíme dělit nenulovými prvky. Podobně můžeme z celých p-adických čísel \mathcal{O}_p vyrobit "racionální" p-adická čísla \mathbb{Q}_p . Těm se pro jednoduchost říká prostě p-adická čísla.

Definice. Pro prvočíslo p definujeme p-adická čísla \mathbb{Q}_p jako všechny zlomky tvaru $\frac{a}{b}$ pro $a, b \in \mathcal{O}_p$, kde navíc $b \neq 0$. Dva takové zlomky $\frac{a}{b}$, $\frac{c}{d}$ považujeme ze stejné právě když ad = cb.

S trochou práce není těžké ukázat, že tato definice \mathbb{Q}_p skutečně dává smysl a že pro počítání s p-adickými čísly platí v zásadě stejná "pravidla" jako pro počítání s racionálními. Důležitou ingrediencí je (nám už dobře známý) fakt, že dva nenulové prvky $a,b\in\mathcal{O}_p$ se opět vynásobí na nenulový prvek. Pojďme si ale nyní právě vzniklé \mathbb{Q}_p prohlédnout podrobněji.

Tvrzení. (Mocninné řady v \mathbb{Q}_p) Každé $a \in \mathbb{Q}_p$ lze jednoznačně vyjádřit ve tvaru $p^k u$, pro $k \in \mathbb{Z}$ a jednotku $u \in \mathcal{O}_p$.

 $D\mathring{u}kaz$. Číslo $\frac{a}{b}$ lze přepsat do tvaru $\frac{p^k u}{p^l v}$ pro $k,l\in\mathbb{N},\,u,v$ jednotky. Pronásobením čitatele i jmenovatele číslem inverzním k v s označením w=uv dostáváme $\frac{p^k w}{p^l}=p^{k-l}w$.

Celkem tedy můžeme popsat \mathbb{Q}_p jako všechny mocninné řady od $-\infty$ do ∞ s koeficienty ze \mathbb{Z}_p , které mají od nějakého indexu níže všechny koeficienty nulové. Naše p-adická čísla si tedy lze představovat jako "čísla s nekonečným zápisem doleva". (Na rozdíl od běžných racionálních čísel \mathbb{Q} , která umíme zapisovat v soustavě o základu

p, až na znaménko, jako ty řady od $-\infty$ do ∞ s koeficienty ze \mathbb{Z}_p , které mají od nějakého indexu výše všechny koeficienty nulové.)

Definice. Pro $a, b \in \mathcal{O}_p$ definujme $v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b)$.

Přitom je zřejmé, že tato definice nezáleží na konkrétním zlomku, kterým dané p-adické číslo reprezentujeme. Na celých (a tedy i na racionálních) číslech se právě definovaná valuace shoduje s tou běžnou. Valuace na \mathbb{Q}_p navíc stále splňuje vlastnosti (1) a (2), které má na \mathcal{O}_p . Stejně jako dříve můžeme definovat kongruenci modulo p:

Definice. Pro $a, b \in \mathbb{Q}_p$ budeme psát $a \equiv b \pmod{p^i}$ právě když $v_p(a-b) \geq i$.

Raději si nyní pojďme na vlastní kůži vyzkoušet, jak se p-adická čísla chovají. Mocninnou řadu příslušnou některému p-adickému číslu si přitom skutečně chceme představovat jako jakýsi jeho "zápis v soustavě o základu p". Ten se často pro přehlednost zapisuje zleva doprava, tedy naopak, než jsme zvyklí – číslu $6=2+2^2$ bychom tak přiřadili zápis 011, číslu $\frac{13}{2}=6+\frac{1}{2}$ zápis 1,011 atd.

Cvičení 12. Rozhodněte, zda rovnice $x^2 = p$ má řešení v \mathbb{Q}_p .

Cvičení 13. Je-li $a=d_jp^j+d_{j+1}p^{j+1}+d_{j+2}p^{j+2}+\dots$ mocninná řada příslušná číslu $a\in\mathbb{Q}_p$, potom číslo -a odpovídá mocninné řadě:

$$(p-d_j)p^j + (p-1-d_{j+1})p^{j+1} + (p-1-d_{j+2})p^{j+2} + \dots$$

Cvičení 14. Upravte číslo $1+2+2^2+2^3+\ldots$ v \mathbb{Q}_2 na co nejhezčí tvar.

Cvičení 15. Vyjádřete $\frac{1}{5}$ v \mathbb{Q}_2 jako mocninnou řadu.

Cvičení 16. Vyjádřete $\frac{1}{6}$ v \mathbb{Q}_3 jako mocninnou řadu.

Cvičení 17. Dokažte, že v \mathbb{Q}_p platí vzorec pro součet geometrické řady:

$$\frac{1}{1 - p^k} = 1 + p^k + p^{2k} + \dots$$

Všimněme si, jak pěkně předchozích pár cvičení vyšlo. To není náhoda – existuje totiž elegantní charakterizace skutečných racionálních čísel v rámci těch p-adických. K obecnému hledání rozvojů p-adických čísel nám velmi pomůže znalost Malé Fermatovy věty a vzorec pro součet geometrické řady.

Tvrzení. (\mathbb{Q} uvnitř \mathbb{Q}_p) Mějme číslo $a \in \mathbb{Q}_p$. Potom $a \in \mathbb{Q}$ právě tehdy, když je jemu příslušná mocninná řada od jistého členu periodická.

Dále umíme rozumně popsat ta racionální čísla s nulovou valuací, jejichž řada je periodická hned od začátku (tj. od prvního nenulového členu, který se nachází na pozici jednotek).

Tvrzení. (Čistě periodické řady) Ať $a \in \mathbb{Q}$ splňuje $v_p(a) = 0$. Potom je řada $a = d_0 + d_1p + d_2p^2 + \ldots$ čistě periodická právě když $-1 \le a < 0$.

Nakonec této části si ukážeme jednu úlohu ilustrující použití počítání v \mathbb{Q}_p na běžnou úlohu o dělitelnosti.

Úloha 18. Ať p > 5 je prvočíslo. Ukažte, že p^4 dělí čitatel čísla

$$2\sum_{k=1}^{p-1}\frac{1}{k}+p\sum_{k=1}^{p-1}\frac{1}{k^2}.$$

Vzdálenost

Abychom na problémy z teorie čísel uměli efektivně vypustit monstra matematické analýzy, potřebujeme jenom jediné – definovat vzdálenost mezi prvky \mathbb{Q}_p . K tomu nám poslouží dříve definovaná valuace.

Definice. Normou p-adického čísla $0 \neq a \in \mathbb{Q}_p$ myslíme číslo $|a|_p = p^{-v_p(a)}$. Speciálně klademe $|0|_p = 0$.

Z vlastností valuace hned vyplývají analogické vlastnosti normy.

Tvrzení. (Vlastnosti normy)

- (1) $|a|_p \ge 0$, přičemž rovnost nastává pouze pro a = 0,
- (2) $|(a \cdot b)|_p = |a|_p \cdot |b|_p$,
- (3) $|(a+b)|_p \leq \max(|a|_p,|b|_p)$, přičemž pro $|a|_p \neq |b|_p$ už nutně nastává rovnost.

Definice. Vzdálenost dvou p-adických čísel $a, b \in \mathbb{Q}_p$ definujeme jako normu jejich rozdílu, tedy jako číslo $|a - b|_p$.

Speciálně si všimněme, že vzdálenost každých dvou různých čísel je kladná. Navíc je díky třetímu bodu předchozího tvrzení pro libovolná $a,b,c\in\mathbb{Q}_p$ splněna trojúhelníková nerovnost $|a-c|_p\leq |a-b|_p+|b-c|_p$.

Tato vzdálenost funguje na první pohled trochu neintuitivně. Dvě čísla jsou k sobě tím blíže, čím větší mocnina prvočísla p dělí jejich rozdíl. Třeba čísla 1000 a 2000 jsou v 2-adické vzdálenosti mnohem blíž, než čísla 1 a 2.

Dovolme si nyní krátkou analýznickou odbočku. Definujme si dva základní pojmy, které lze zavést s použitím pojmu vzdálenosti – limitu posloupnosti a součet řady. Následně se můžeme chvíli kochat, jak hezky se tyto pojmy na p-adických číslech chovají.

Definice. Nekonečná posloupnost čísel $(q_i)_{i=0}^{\infty} \in \mathbb{Q}_p$ konverguje k číslu $q \in \mathbb{Q}_p$, jestliže pro libovolně malé $\varepsilon > 0$ už od nějakého indexu dál platí $|q - q_i| < \varepsilon$. Číslo q nazýváme limitou této posloupnosti.

Definice. Nekonečná řada čísel $\sum_{i=1}^{\infty} r_i$, kde $r_i \in \mathbb{Q}_p$, konverguje k číslu $r \in \mathbb{Q}_p$, jestliže k tomuto číslu konverguje nekonečná posloupnost $q_m = \sum_{i=0}^m$. Číslo r nazýváme součtem této řady.

Vzdálenost na p-adických číslech má následující hezké vlastnosti, které vzdálenost na běžných reálných číslech obecně nemá.

Tvrzení. (Konvergence řad) Řada $\sum_{i=0}^{\infty} r_i$, kde $r_i \in \mathbb{Q}_p$, konverguje k nějakému $r \in \mathbb{Q}_p$ právě tehdy, když posloupnost čísel r_i konverguje k 0.

Tvrzení. (Přerovnávání řad) Součet konvergentní řady čísel $r_i \in \mathbb{Q}_p$ nezávisí na jejich pořadí.

Tvrzení. (Kompaktnost \mathcal{O}_p) Každá posloupnost $(q_i)_{i=0}^{\infty}$ prvků \mathcal{O}_p obsahuje podposloupnost, která konverguje k nějakému $q \in \mathcal{O}_p$.

Z předchozího tvrzení mimo jiné vyplývá, že pokud posloupnost prvků \mathcal{O}_p konverguje v rámci \mathbb{Q}_p , konverguje k nějakému prvku \mathcal{O}_p .

Tvrzení. (Návrat mocninných řad) Pro každé $r \in \mathcal{O}_p$ existují jednoznačně určená čísla $r_i \in \{0,1,\ldots,p-1\}$ taková, že $\sum_{i=0}^{\infty} r_i p^i$ konverguje k r.

To už jsme tu jednou měli – hned na začátku jsme si uvědomili, že celá p-adická čísla odpovídají takovýmto řadám. Tenkrát jsme ale vůbec nepřemýšleli o nějaké konvergenci – prostě se nám tak jednotlivá čísla hodilo zapisovat. Oba přístupy naštěstí splývají.

Analogický výsledek platí obecněji pro čísla $r \in \mathbb{Q}_p$. Pro každé takové r existuje jednoznačně určené číslo $m \in \mathbb{Z}$ a čísla $r_i \in \{0,1,\ldots,p-1\}$ taková, že $r_m \neq 0$ a $\sum_{i=m}^{\infty} r_i p^i$ konverguje k r.

Nyní si ale raději pojďme procvičit, jak se pracuje s vzdálenostmi mezi p-adickými čísly. Tato vzdálenost je totiž na první pohled celkem divná.

Cvičení 19. Každá trojice různých čísel $a,b,c\in\mathbb{Q}_p$ určuje rovnoramenný trojúhelník.

Cvičení 20. Každý kruh v \mathbb{Q}_p má střed v libovolném svém vnitřním bodě.

Cvičení 21. Spočtěte součet řady $1-2+2^2-2^3+\dots$ v \mathbb{Q}_2 .

Dovolme si ještě předvést jeden zdánlivě nesouvisející problém, který několik vysokoškolských triků společně se znalostí p-adických čísel snadno vyřeší.

Definice. Pro $r \in \mathbb{Q}$, $k \in \mathbb{N}$ definujeme binomický koeficient

$$\binom{r}{k} = \frac{r \cdot (r-1) \cdots (r-k+1)}{1 \cdot 2 \cdots k}.$$

Úloha 22. Ukažte, že každé prvočíslo, které dělí jmenovatel čísla $\binom{r}{k}$, musí dělit i jmenovatel čísla r.

Úloha 23. Každé prvočíslo, které dělí jmenovatel čísla r, dělí i jmenovatel čísla $\binom{r}{k}$.

Drsnější verze Henselova lemmatu

Zformulujeme si nyní Henselovo lemma v mírně silnější podobě a jinými slovy. Oproti předchozímu zde dovolujeme, aby koeficienty zadaného polynomu byla libovolná čísla z \mathcal{O}_p , jinak je tvrzení do puntíku stejné.

Tvrzení. (Henselovo lemma) Ať f je polynom nad \mathcal{O}_p , $a \in \mathcal{O}_p$ splňující $f(a) \equiv 0 \pmod{p}$, $f'(a) \not\equiv 0 \pmod{p}$. Potom existuje právě jedno $b \in \mathcal{O}_p$ splňující f(b) = 0, $a - b \equiv 0 \pmod{p}$.

Poznamenejme ještě, že z definice kongruence a normy lze lemma ekvivalentně zformulovat takto: "Ať f je polynom nad \mathcal{O}_p , $a \in \mathcal{O}_p$ splňující $|f(a)|_p < 1$, $|f'(a)|_p = 1$. Potom existuje právě jedno $b \in \mathcal{O}_p$ splňující f(b) = 0, $|a - b|_p < 1$." Dříve než půjdeme dál zobecňovat toto tvrzení, podíváme se, co umí už teď.

Cvičení 24. Ať $n \in \mathbb{N}$ a p je prvočíslo, které nedělí n. Dále ať $u \in \mathcal{O}_p$ splňuje $u \equiv 1 \pmod{p}$. Ukažte, že u je n-tá mocnina nějakého prvku z \mathcal{O}_p .

Cvičení 25. Je dáno prvočíslo $p \geq 3$ a jednotka $u \in \mathcal{O}_p$. Dokažte, že u je čtverec právě tehdy, když je první složka jeho konzistentní posloupnosti u_1 čtverec modulo p.

Cvičení 26. Mějme prvočíslo p. Ukažte, že se polynom $x^p - x$ rozkládá na lineární činitele v \mathbb{Q}_p .

Definice. Číslo $a \in \mathcal{O}_p$ nazveme odmocninou z jedné, jestliže existuje $n \in \mathbb{N}$, pro které je $a^n = 1$.

V racionálních číslech jsou tedy odmocniny z jedné dvě, 1 a -1. Naproti tomu v komplexních číslech už jich je nekonečně. Kolik jich bude v našem \mathbb{Q}_p ?

Tvrzení. (Odmocniny z jedné) Pro prvočíslo $p \geq 3$ existuje v \mathbb{Q}_p právě p-1 různých odmocnin z jedné. V \mathbb{Q}_2 existují právě dvě odmocniny z jedné.

Nyní si zformulujeme slíbenou drsnější verzi Henselova lemmatu. Podmínka na f'(a) je v ní mnohem slabší – i když má polynom f v nějakém čísle "násobný kořen", pořád se něco dovíme.

Tvrzení. (drsnější Henselovo lemma) Ať f je polynom nad \mathcal{O}_p , $a \in \mathcal{O}_p$ splňující

$$|f(a)|p < |f'(a)|_p^2$$

Potom existuje jednoznačně určené $b\in\mathcal{O}_p$ splňující $|a-b|_p<|f'(a)|_p$. Dokonce platí

(1)
$$|a-b|_p = \left| \frac{f(a)}{f'(a)} \right|_p < |f'(a)|_p$$

(2)
$$|f(a)|_p = |f'(a)|_p$$
.

Něco na závěr

Teorie p-adických čísel je samozřejmě mnohem hlubší a bohatší, my jsme do ní jen rychle nahlédli. Důležitým výsledkem je například známá Ostrowského věta, která říká, že běžná vzdálenost a p-adické vzdálenosti jsou v podstatě jediné rozumné vzdálenosti na racionálních číslech.

Pojem p-adické vzdálenosti jde jednoznačně rozšiřovat dokonce ještě dál. Krásným důsledkem související teorie je například velmi překvapivá Monskyho věta: "Čtverec

nelze rozřezat na lichý počet trojúhelníků se stejným obsahem." Pro sudé počty trojúhelníků je konstrukce jednoduchá, pro liché ale neexistuje – a není znám žádný elementárnější důkaz!

Návody

- Přímočaré.
- **2.** Ne, stačí rozložit p na netriviální součin dvou nesoudělných čísel a z nich induktivně vyrobit dvě nenulové řady s nulovým součinem.
- 3. Ne, tato rovnice nemá řešení ani modulo 7.
- 4. Ano, rovnice $x^2+3=0$ má modulo 7 řešení například x=2, které splňuje předpoklady Henselova lemmatu.
- **5.** Ano, polynom $f = x^3 2$ splňuje $f(3) \equiv 0 \pmod{5}$ a $f'(3) \equiv 2 \not\equiv 0 \pmod{5}$.
- **6.** Ano, použijte Henselovo lemma zvlášť pro p=2,3,5 a zakončete Čínskou zbytkovou větou.
- 7. Přesně $\frac{1}{2}$. Jde jen o to, zda je n kvadratický zbytek modulo p.
- 8. Pro f(0)=1 to není těžké, případ f(0)=0 se dá zvesela ignorovat. Je-li $f(0)=m\neq 0$, uvažte polynom $g(x)=\frac{f(0)\cdot x}{f(0)}$.
- 9. Na Schurovo lemma použijte Henselovo lemma. Aby šlo použít, je potřeba vzít f ireducibilní nad $\mathbb Z$ a dostatečně velká prvočísla p.
- **10.** Fungují právě polynomy tvaru ax^k pro $a \in \mathbb{Z}, k \in \mathbb{N}_0$. Použijte předchozí úlohu.
- 11. Volte $f = (x^2 + 3)(x^2 13)(x^2 + 39)$. Z Čínské zbytkové věty stačí tvrzení dokazovat pro mocniny prvočísel, z Henselova lemmatu v podstatě jen pro prvočísla.
- 12. Nemá. Levá strana má sudou valuaci, zatímco valuace pravé strany je 1.
- 13. Koeficienty výsledné řady jsou čísla ze \mathbb{Z}_p a obě řady se sečtou na 0.
- **14.** Vyjde −1.
- **15.** Začněte zápisem čísla 5 a postupně hledejte inverz; nakonec vyjde $1+2^2+2^3+2^6+2^7+\ldots$, tj. číslo s periodickým zápisem $1\overline{1100}$.
- **16.** Násobení mocninou trojky jenom posouvá řády, vyjde $2 \cdot 3^{-1} + 1 + 3 + 3^2 + \dots$, tj. číslo s periodickým zápisem $2, \overline{1}$.
- 17. Součin závorek $(1+(p-1)p^k+(p-1)p^{2k}+\dots)\cdot(1+p^k+p^{2k}+\dots)$ je 1.
- **18.** Upravujte, využijte *p*-adické identity $\frac{1}{k(p-k)} = -\frac{1}{k^2} \left(1 + \frac{p}{k} + \frac{p}{k^2} + \dots\right)$.
- **19.** Zkoumejte čísla (a-b), (b-c), (c-a). Mohou se tři čísla s různými normami sečíst na 0?
- **20.** K číslu $a \in \mathbb{Q}_p$ jsou blízko ta čísla, jejichž mocninné řady mají od jisté pozice ty samé koeficienty.
- **21.** Součty geometrických řad, vyjde $\frac{1}{3}$.
- **22.** Chceme ukázat, že $|r|_p \leq 1$ implikuje $\left|\binom{r}{k}\right|_p \leq 1$. K číslu r jde dokonvergovat čísly z \mathcal{O}_p , funkce $\binom{x}{k}$ je spojitá funkce $\mathbb{Q}_p \to \mathbb{Q}_p$.

- **23.** Dokazujte, že $|r|_p > 1$ implikuje $\left| {r \choose k} \right|_p > 1$.
- **24.** Henselovo lemma na polynom $f = x^n u$ s počáteční hodnotou 1.
- **25.** Vezměte polynom $f = x^2 u$, začněte dosazením u_1 . Druhá implikace je jasná.
- 26. Použijte Malou Fermatovu větu.

Zdroje

- [1] Titu Andreescu, Gabriel Dospinescu: Problems from the Book
- [2] Titu Andreescu, Gabriel Dospinescu: Straight from the Book
- [3] Keith Conrad: Hensel's Lemma
- [4] Keith Conrad: The p-adic expansion of Rational Numbers
- [5] Keith Conrad: Binomial Coefficients and p-adic Limits
- [6] Jakub Opršal: Celá čísla p-naruby, PraSe
- [7] Radovan Švarc: Monskyho věta, PraSe

Náboj

Úloha. Může být hodnota polynomu $f(x) = x^{11} + x^2 + 11x + 3$ v nějakém přirozeném čísle dělitelná 11^{2018} ?

Řešení. S pomocí Malé Fermatovy věty máme $f(5) \equiv 0 \pmod{11}$, přitom $f'(5) \not\equiv 0 \pmod{11}$. Z Henselova lemmatu tedy takové číslo existuje.

Úloha. Může být hodnota polynomu $f(x) = x^{11} + x^2 + 11x + 1$ v nějakém přirozeném čísle dělitelná 11^{2018} ?

Řešení. Ne, tento polynom nemá kořen dokonce ani modulo 11 (neboť polynom $x^{11} + x^2 + 11x \equiv x(x+1) \pmod{11}$ dává pouze zbytky 0, 1 2, 6, 8, 9).

Úloha. Kolik existuje přirozených čísel n menších než 100^{100} , že $10^{10} \mid n^5 + n^2 + 4$?

Řešení. Označme $f(n)=n^5+n^2+4$. Platí $f(1)\equiv 0\pmod 2$ a $f'(1)\equiv 1\pmod 2$, z Henselova lemmatu proto existuje právě jeden (nutně nenlový) kořen f modulo 2^{10} . Obdobně $f(2)\equiv 0\pmod 5$ a $f'(1)\equiv 4\pmod 5$, tedy existuje právě jeden (nenulový) kořen modulo 5^{10} . Z čínské zbytkové věty pak existuje jednoznačný kořen modulo 10^{10} . Vyjde proto $\frac{100^{100}}{10^{10}}=10^{190}$.

Úloha. Rozepište $\frac{1}{5}$ v \mathcal{O}_3 jako mocninnou řadu. (Zlomkem $\frac{1}{5}$ myslíme takový prvek, který splňuje rovnost $\frac{1}{5} \cdot 5 = 1$)

 $\check{R}e\check{s}en\acute{i}$. V soustavě o základu 3 rozepíšeme 5=2+3. Postupně dopočítáme

$$\frac{1}{5} = 2 + 2 \cdot 3 + 0 \cdot 3^2 + 1 \cdot 3^3 + 2 \cdot 3^4 + 0 \cdot 3^5 + 1 \cdot 3^3 + 2 \cdot 3^4 + 0 \cdot 3^5 + \dots,$$

tj. koeficienty tvoří periodickou posloupnost 2 $\overline{201}$. (Obecněji na to jde trikově přijít pomocí Malé Fermatovy věty a sčítání geometrických řad v \mathcal{O}_p .)