Восстановление и реконструкция изображений

Удаление периодического шума

Режекторные фильтры

Рис. 5.15. Трехмерные изображения режекторных фильтров: (a) идеальный фильтр; (б) фильтр Баттерворта порядка 1; (в) гауссов фильтр

Полосовые фильтры

$$H_p(u,v) = 1 - H_r(u,v)$$

Узкополосные фильтры

$$H(u,v) = \begin{bmatrix} 0, & D_1(u,v) \le D_0, D_2(u,v) \le D_0 \\ 1, & \text{otherwise} \end{bmatrix}$$

Деконволюция

Линейно-инвариантные искажения

$$g(x,y) = f(x,y) * h(x,y) + \eta(x,y)$$
$$G(u,v) = F(u,v)H(u,v) + N(u,v)$$

Линейный фильтр

- 1. Аддитивный
- 2. Однородный
- 3. Пространственно-инвариантный

Оценка искажающего оператора

Оценка искажающего оператора

- 1. Визуальный анализ
- 2. Эксперимент
- 3. Математическая модель

Визуальный анализ

$$H_{\mathcal{S}}(u,v) = \frac{G_{\mathcal{S}}(u,v)}{F_{\mathcal{S}}(u,v)}$$

Оценка на основе эксперимента

$$H(u,v) = \frac{G(u,v)}{A}$$

Оценка на основе моделирования

Искажение - турбулентность

$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$

Оценка на основе моделирования

Искажение - линейный смаз

$$H(u,v) = \int_{-\infty}^{+\infty} e^{?}$$

Методы восстановления

Инверсная фильтрация

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$$

$$\hat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

Инверсная фильтрация

Фильтр Винера

$$\hat{F}(u,v) = \left(\frac{H^*(u,v)S_f(u,v)}{S_f(u,v)|H(u,v)|^2 + S_{\eta}(u,v)}\right)G(u,v)$$

Оценка шума

Фильтр Винера

Регуляризация по Тихонову

$$\hat{F}(u,v) = \frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2} G(u,v)$$

Регуляризация по Тихонову

Метод Люси-Ричардсона

$$\hat{f}_{k+1}(x,y) = \hat{f}_k(x,y) \left(h(-x,-y) \bigotimes \frac{g(x,y)}{h(x,y) \bigotimes \hat{f}_k(x,y)} \right)$$

$$\hat{f}_0(x,y) = g(x,y)$$

Метод Люси-Ричардсона

Слепая деконволюция

Преобразование изображений

Аффинное преобразование

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Перспективное преобразование

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ i & g & h \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Source Surface

Destination Surface