A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 5EP

Bookmark

Show all steps: ON

ON

Problem

Let G be an abelian group of order $p^k m$, where p^k and m are relatively prime (that is, p^k and m have no common factors except ± 1). (REMARK: If two integers j and k are relatively prime, then there are integers s and t such that sj + tk = 1. This is proved on page 220.)

Let G_pk be the subgroup of G consisting of all elements whose order divides p^k . Let Gm be the subgroup of G consisting of all elements whose order divides ra. Prove:

Suppose |G| has the following factorization into primes: $|G| = p_1^{k_1} p_2^{k_2} \cdots p_n^{k_n}$. Then $G \cong G_1 \times G_2 \times \cdots \times G_n$ where for each i = 1, ..., n, G_i is a p_i -group.

Step-by-step solution

Step 1 of 4

Assume that G is an abelian group of order $p^k m$, where p^k and m are relatively prime. Suppose that the order of G has the following prime factorization:

$$|G| = p_1^{k_1} p_2^{k_2} \qquad p_n^{k_n}$$

Objective is to prove that $G \cong G_1 \times G_2 \times \cdots \times G_n$ where for each $i=1,2,\cdots,n$, G_i is a p_i group.

Consider the following result:

if G is an internal direct product of H_1 , H_k , then $G \cong H_1 \times H_k$.

Comment

Step 2 of 4

To show the required result, prove that G is an internal direct product of its p_i group. Since G is an abelian group, so all subgroups of G will be normal. Next show that

$$G = G_1 G_2 \qquad G_n$$

By the internal direct product property, G_1G_2 $G_n \subseteq G$ and the order of such product is defined as:

$$|G_1G_2 G_n| = |G_1||G_2| |G_n|$$

= $p_1^{k_1} p_2^{k_2} p_n^{k_n}$
= $|G|$.

Hence, $G = G_1 G_2 G_n$.

Comment

Step 3 of 4

Now, the remaining work is to prove that all p_i group are distinct, that is,

$$G_i$$
 $(G_1, G_{i-1}, G_{i+1}, G_n) = \{e\},\$

for all $i \in \{1, 2, ..., k\}$. For some fix i, the order of G will be:

$$|G| = p_i^{k_i} a$$

where p_i and a are relatively prime. Also by internal direct product property,

$$|G_1, G_{i-1}, G_{i+1}, G_n| = a$$

And thus $|G_i| = p^{k_i}$. Then

$$(|G_1, G_{i-1}, G_{i+1}, G_n|, |G_i|) = 1$$

and thus

$$G_i$$
 $(G_1, G_{i-1}, G_{i+1}, G_n) = \{e\}.$

It shows that G is an internal direct product of G_1, G_2, \dots, G_n .

Comment

Step 4 of 4

Hence, $G \cong G_1 \times G_2 \times \times G_n$.

Comment