ПРАКТИЧЕСКАЯ РАБОТА

Образец выполнения работы

I. Пусть $y = \sqrt{x}$ (x > 0). Тогда значение квадратного корня приближенно можно найти по формуле

$$y_{n+1} = \frac{1}{2} \left(y_n + \frac{x}{y_n} \right) \quad (n = 0, 1, 2, \dots).$$

а). Найти значение функции $y = \sqrt{3}$, если $y_0 = 1.7$.

Решение. Отсюда по вышеприведенной формуле, получаем

$$y_1 = \frac{1}{2} \left(1.7 + \frac{3}{1.7} \right) \approx 0.5 \cdot 3.4647 = 1.7324.$$

Еще раз повторяя этот процесс, будем иметь

$$y_2 = \frac{1}{2} \left(1.7324 + \frac{3}{1.7324} \right) \approx 0.5 \cdot 3.4641 = 1.7321.$$

$$y_3 = \frac{1}{2} \left(y_2 + \frac{x}{y_2} \right) = \frac{1}{2} \left(1.7321 + \frac{3}{1.7321} \right) = 1.73205$$

Следовательно, можно принять $\sqrt{3} \approx 1.7321$.

Ответ: $\sqrt{3} \approx 1.7321$.

II. Если $y = \sqrt[3]{x}$ (x > 0), то значение этого кубического корня приближенно можно определить по формуле

$$y_{n+1} = \frac{1}{3} \left(2y_n + \frac{x}{y_n^2} \right).$$

б). Найти значение функции $y = \sqrt[3]{7}$, если $y_0 = 1.9$.

Решение. По формуле нахождения кубов имеем

$$y_1 = \frac{1}{3} \left(2y_0 + \frac{x}{y_0^2} \right) =$$

$$= \frac{1}{3} \left(2 \cdot 1.9 + \frac{7}{1.9^2} \right) \approx \frac{1}{3} (3.8 + 1.9391) = 1.913.$$

$$y_2 = \frac{1}{3} \left(2 \cdot 1.913 + \frac{7}{1.913^2} \right) \approx \frac{1}{3} (3.826 + 1.9128) = 1.9129.$$

$$y_3 = \frac{1}{3} \left(2y_2 + \frac{x}{y_2^2} \right) = \frac{1}{3} \left(2 \cdot 1.9129 + \frac{7}{1.9129^2} \right) = 1.91292.$$

Значит, можно принять $\sqrt[3]{7} \approx 1.9129$.

Ответ: $\sqrt[3]{7} \approx 1.9129$.

Варианты индивидуальных заданий

Задание. Найти значения функций $y = \sqrt{x}$ и $z = \sqrt[3]{x}$, если известны y_0 и z_0 .

1. a)
$$y = \sqrt{5}$$
, $y_0 \approx 2.2$. 6) $z = \sqrt[3]{13}$, $z_0 = 2.3$;

2. a)
$$y = \sqrt{6}$$
, $y_0 \approx 2.4$. 6) $z = \sqrt[3]{93}$, $z_0 = 4.5$;

3. a)
$$y = \sqrt{7}$$
, $y_0 \approx 2.6$. 6) $z = \sqrt[3]{99}$, $z_0 = 4.6$;

4. a)
$$y = \sqrt{8}$$
, $y_0 \approx 2.8$. 6) $z = \sqrt[3]{5}$, $z_0 = 1.7$;

5. a)
$$y = \sqrt{10}$$
, $y_0 \approx 3.1$. 6) $z = \sqrt[3]{6}$, $z_0 = 1.8$;

6. a)
$$y = \sqrt{11}$$
, $y_0 \approx 3.3$. 6) $z = \sqrt[3]{9}$, $z_0 = 2.1$;

7. a)
$$y = \sqrt{12}$$
, $y_0 \approx 3.4$. 6) $z = \sqrt[3]{83}$, $z_0 = 4.3$;

8. a)
$$y = \sqrt{13}$$
, $y_0 \approx 3.6$. 6) $z = \sqrt[3]{11}$, $z_0 = 2.2$;

9. a)
$$y = \sqrt{14}$$
, $y_0 \approx 3.7$. 6) $z = \sqrt[3]{77}$, $z_0 = 4.2$;

10. a)
$$y = \sqrt{15}$$
, $y_0 \approx 3.8$. 6) $z = \sqrt[3]{13}$, $z_0 = 2.3$;

11. a)
$$y = \sqrt{17}$$
, $y_0 \approx 4.1$. 6) $z = \sqrt[3]{14}$, $z_0 = 2.4$;

12. a)
$$y = \sqrt{18}$$
, $y_0 \approx 4.2$. 6) $z = \sqrt[3]{69}$, $z_0 = 4.1$;

13. a)
$$y = \sqrt{19}$$
, $y_0 \approx 4.3$. 6) $z = \sqrt[3]{17}$, $z_0 = 2.5$;

14. a)
$$y = \sqrt{20}$$
, $y_0 \approx 4.4$. 6) $z = \sqrt[3]{18}$, $z_0 = 2.6$;

15. a)
$$y = \sqrt{21}$$
, $y_0 \approx 4.5$. 6) $z = \sqrt[3]{89}$, $z_0 = 4.4$;

16. a)
$$y = \sqrt{22}$$
, $y_0 \approx 4.6$. 6) $z = \sqrt[3]{20}$, $z_0 = 2.7$;

17. a)
$$y = \sqrt{23}$$
, $y_0 \approx 4.7$. 6) $z = \sqrt[3]{96}$, $z_0 = 4.5$;

18. a)
$$y = \sqrt{24}$$
, $y_0 \approx 4.8$. 6) $z = \sqrt[3]{22}$, $z_0 = 2.8$;

19. a)
$$y = \sqrt{45}$$
, $y_0 \approx 6.7$. 6) $z = \sqrt[3]{55}$, $z_0 = 3.8$;

20. a)
$$y = \sqrt{27}$$
, $y_0 \approx 5.1$. 6) $z = \sqrt[3]{61}$, $z_0 = 3.9$;

21. a)
$$y = \sqrt{28}$$
, $y_0 \approx 5.2$. 6) $z = \sqrt[3]{25}$, $z_0 = 2.9$;

22. a)
$$y = \sqrt{29}$$
, $y_0 \approx 5.3$. 6) $z = \sqrt[3]{46}$, $z_0 = 3.5$;

23. a)
$$y = \sqrt{30}$$
, $y_0 \approx 5.4$. 6) $z = \sqrt[3]{59}$, $z_0 = 3.8$;

24. a)
$$y = \sqrt{31}$$
, $y_0 \approx 5.5$. 6) $z = \sqrt[3]{75}$, $z_0 = 4.2$;

25. a)
$$y = \sqrt{32}$$
, $y_0 \approx 5.6$. 6) $z = \sqrt[3]{30}$, $z_0 = 3.1$;

26. a)
$$y = \sqrt{33}$$
, $y_0 \approx 5.7$. 6) $z = \sqrt[3]{48}$, $z_0 = 3.6$;

27. a)
$$y = \sqrt{34}$$
, $y_0 \approx 5.8$. 6) $z = \sqrt[3]{53}$, $z_0 = 3.7$;

28. a) $y = \sqrt{35}$, $y_0 \approx 5.9$. 6) $z = \sqrt[3]{33}$, $z_0 = 3.2$;

29. a) $y = \sqrt{38}$, $y_0 \approx 6.1$. 6) $z = \sqrt[3]{37}$, $z_0 = 3.3$;

30. a) $y = \sqrt{41}$, $y_0 \approx 6.4$. 6) $z = \sqrt[3]{43}$, $z_0 = 3.5$;