Feuille de travaux pratiques nº 2 Julia/JuMP – Utilisation d'une matrice creuse

Buts de la séance :

- Comprendre l'utilisation d'une structure de matrice creuse avec Julia/JuMP;
- Être capable d'utiliser efficacement une structure de matrice creuse avec Julia/JuMP;
- Être capable de déterminer si le choix d'une matrice creuse est pertinent ou pas.

1 Compréhension et observation

On consultera l'archive scp. zip disponible sur madoc. Trois fichiers se trouvent dans cette archive:

- scp. jl contient plusieurs fonctions pour lire des données dans un fichier (format de l'OR Lib, une biliothèque d'instances numériques), modéliser implicitement un problème, et le résoudre.
- scpe5.txt et scpclr13.txt sont des instances numériques pour ce problème.

Quel type de problème est considéré dans le fichier scp. jl?. Tester la capacité de GLPK à résoudre les instances de ce problème. Que conclure?

2 Exercices

- Résoudre le problème modélisé dans l'exercice 2.6 des TDs, en utilisant JuMP. Est-il utile d'avoir recours à une matrice creuse ici?
- Résoudre le problème modélisé dans l'exercice 2.8 des TDs, en utilisant JuMP. Pour cet exercice, le modèle suivant a été posé en TD.

$$\max z = \sum_{j=A}^{M} p_{j}x_{j}$$

$$x_{A} \leq y_{A} + y_{B} + y_{C} + y_{D}$$

$$x_{B} \leq y_{A} + y_{B} + y_{C} + y_{D} + y_{E} + y_{F} + y_{G}$$

$$x_{C} \leq y_{A} + y_{B} + y_{C} + y_{D}$$

$$x_{D} \leq y_{A} + y_{B} + y_{C} + y_{D} + y_{E} + y_{F} + y_{G} + y_{J} + y_{K}$$

$$x_{E} \leq y_{B} + y_{D} + y_{E} + y_{F} + y_{G} + y_{I} + y_{J} + y_{K}$$

$$x_{F} \leq y_{B} + y_{D} + y_{E} + y_{F} + y_{G} + y_{I} + y_{J} + y_{K}$$

$$x_{G} \leq y_{B} + y_{D} + y_{E} + y_{F} + y_{G} + y_{H} + y_{I} + y_{J} + y_{K}$$

$$x_{H} \leq y_{G} + y_{H} + y_{I} + y_{J} + y_{K} + y_{L} + y_{M}$$

$$x_{I} \leq y_{E} + y_{F} + y_{G} + y_{H} + y_{I} + y_{J} + y_{K} + y_{L}$$

$$x_{J} \leq y_{D} + y_{E} + y_{F} + y_{G} + y_{H} + y_{I} + y_{J} + y_{K} + y_{L}$$

$$x_{K} \leq y_{D} + y_{E} + y_{F} + y_{G} + y_{H} + y_{I} + y_{J} + y_{K} + y_{L}$$

$$x_{L} \leq y_{H} + y_{I} + y_{J} + y_{K} + y_{L} + y_{M}$$

$$x_{M} \leq y_{H} + y_{I} + y_{J} + y_{K} + y_{L} + y_{M}$$

$$\sum_{j=A}^{M} y_{j} = 2$$

$$x_{j}, y_{j} \in \{0, 1\} \quad j \in \{A, \dots, M\}$$

où p_j indique la population de la ville j ($j \in \{A, \dots, M\}$).

Les fichiers (.jl seront à déposer sur madoc dans l'espace correspondant à votre groupe, au plus tard à la date limite fixée par votre enseignant de TP. Dans le cas d'un travail en binôme, il sera important de préciser les deux noms en commentaire au début des fichiers.	
X321030 Recherche Onérationnelle — Université de Nantes Feuille de travaux pratiques n° 2 — Inlia/InMP — Utilisation d'une matrice creuse 2/22	