

APS 3: Análise de treliças planas

OBJETIVO GERAL

O objetivo da atividade é desenvolver um software para análise de treliças planas.

CRONOGRAMA

- 11/05 Apresentação e introdução a análise matricial de estruturas.
- 18/05 Liberação da estrutura para análise. Cada grupo receberá uma estrutura específica, que deverá ser analisada usando o código elaborado. Os resultados devem ser colocados no "Poster Final".
- 25/05 Validação final do software e relatório.
- 28/05 Prova 4 Será necessário usar o programa desenvolvido na APS 3.

RUBRICA PARA DESENVOLVIMENTO DO SOFTWARE - APS 3

Com base nos conceitos e temas discutidos na disciplina, os alunos deverão:

- 1. Desenvolver um software para análise de tração/compressão em treliças planas. O código deverá ser desenvolvido em *Python* de modo que os dados de entrada possam ser facilmente alterados a partir de uma planilha como descrito no "Exemplo de validação", disponibilizado em anexo.
- 2. Aplicar técnicas numéricas para solução de sistemas de equações (Método de Jacobi e Gauss-Seidel).
- 3. Utilizar as ferramentas do pacote *Numpy* quando possível.
- 4. Reduzir ao máximo o uso de laços de repetição ou recursão.
- 5. O software deverá gerar um arquivo de saída com o pós-processamento dos dados de acordo com modelo descrito no "Exemplo de validação", disponibilizado em anexo.
- 6. O grupo deverá validar os dados de saída para análise de treliças planas de modo que o software desenvolvido tenha a confiabilidade de análise reconhecida para aplicação em problemas reais de engenharia, considerando as limitações de aplicação do software.

IMPORTANTE: As funções para leitura do arquivo .xlsx, criação do gráfico para visualização da treliça e do arquivo de saída serão fornecidas. Todos os grupos deverão utilizar o mesmo modelo padrão fornecido.

RUBRICA DE AVALIAÇÃO FINAL DA APS 3

Cada grupo deverá preparar e enviar um poster com o tema "Desenvolvimento de software e aplicações na análise de treliças planas", até às 23hs59 do dia 28/05 no formato "PDF" via blackboard. Entregas atrasadas serão aceitas até o último dia da semana de Avaliações Finais com a penalidade de 2 pontos descontados da nota final da APS 3.

1. Título do trabalho: Deve ser diferente do tema.

Engenharia Transferência de calor e Mecânica dos Sólidos

2

- 2. Introdução: Faça uma pesquisa e apresente uma breve revisão bibliográfica sobre o tema proposto (Use artigos e livros como referência).
- 3. Estrutura do software: Apresente uma descrição da arquitetura do software.
- 4. Validação dos resultados: Apresente resultados de simulação (gráficos, tabelas, imagens...) para validar os resultados obtidos com o software desenvolvido pelo grupo. Compare os resultados usando um outro software (Exemplo: Lisa). Justifique e comente os resultados.
- 5. Conclusão: Apresente uma conclusão objetiva indicando os principais resultados do trabalho. Indique possibilidade futuras de melhorias.
- 6. Referências bibliográficas: Apresente as referências utilizadas no trabalho.

Critério avaliado				
(20%) Objetividade e simplificações.				
• Itens 1 a 3.				
(60%) Resultados e discussão.				
• Itens 4				
(20%) Conclusão				
• Itens 5 e 6				

3

EXEMPLO PARA VALIDAÇÃO

A seguir apresentamos um modelo de arquivo de entrada para análise da treliça ilustrada na figura 1.

Figura 2 – Treliça com três elementos de barra.

Nesse exemplo, cada barra possui uma área de seção transversal $A=2\cdot 10^{-4} m^2$, E=210 GPa, a carga pontual aplicada ao nó três na direção y é $P_y=-100 N$. Na direção x a carga pontual aplicada é igual a $P_x=150 N$. A tensão última a tração e compressão são iguais a $\sigma_{tração}=\sigma_{compressão}=1570\cdot 10^6 Pa$.

Arquivo de entrada:

Coordenadas dos nós:					
1	Α	В	С	D	
1	x [m]	y [m]		Número de nós	
2	0	0		3	
3	0	0.4			
4	0.3	0.4			

Incidência e materiais:

4	Α	В	С	D	Е	F
1	nó 1	nó 2	E [Pa]	A [m²]		Número de membros
2	1	2	2.10E+11	2.00E-04		3
3	2	3	2.10E+11	2.00E-04		
4	3	1	2.10E+11	2.00E-04		
5						

Engenharia Transferência de calor e Mecânica dos Sólidos

Insper

4

Carregamento:

4	А	В	С	D	E
1	nó	1 = x 2 = y	Carga [N]		Número de cargas
2	3	1	150		2
3	3	2	-100		

Restrições:

4	Α	В	С	D
1	nó	1 = x 2 = y		Número de apoios
2	1	1		3
3	2	1		
4	2	2		

5

Arquivo de saída:

Após a análise, o programa deverá escrever um arquivo de saída como o indicado abaixo para o exemplo da treliça ilustrada na Figura 2.

```
Reacoes de apoio [N]
[[ 75.]
[-225.]
[ 100.]]
Deslocamentos [m]
[[ 0.0000000e+00]
[ -9.52380952e-07]
 [ 0.0000000e+00]
 [ 0.0000000e+00]
 [ 1.60714286e-06]
 [ -4.01785714e-06]]
Deformacoes []
[[ 2.38095238e-06]
[ 5.35723254e-06]
[ -2.97617094e-06]]
Forcas internas [N]
[[ 100.
[ 225.00376672]
[-124.99917969]]
Tensoes internas [Pa]
[[ 499999.99999911]
 [ 1125018.83359206]
 [ -624995.89843168]]
```


Figura 3 - A figura ilustra o pós-processamento para a análise da treliça plana com três elementos.

BIBLIOGRAFIA:

- ✓ BITTENCOURT, M.L. COMPUTATIONAL SOLID MECHANICS: VARIATIONAL FORMULATION AND HIGH ORDER APPROXIMATION, 6A EDIÇÃO, CRC PRESS, 2014.
- ✓ CHAPRA, STEVEN C.; CANALE, RAYMOND P. NUMERICAL METHODS FOR ENGINEERS. 6TH ED. NEW YORK: MCGRAW-HILL HIGHER EDUCATION, C2010. 968 P. ISBN 9780073401065 (ENC.)
- ✓ NOTAS DE AULA E TEXTOS FORNECIDOS AO LONGO DO SEMESTRE.