Developing a Lean Web-Based Visual Field Test

TM007

Shrimay Bikash Saikia

Chan Soong-Lin Keith

Tian Xiang Cheng

Introduction

Glaucoma is the 2nd leading cause of blindness worldwide

- Chronic incurable disease

 management is only option
- Glaucoma likely to become a major healthcare issue soon
 - 111.8 million Glaucoma patients by 2040 worldwide
 - Risk factors in Singapore
 - Aging Population
 - Diabetes
 - Hypertension
 - Early-age myopia

Possible Surge in cases in near future

- Disease onset is mild and gradual → often diagnosed too late
 - Earlier diagnosis → Better patient outcomes

Visual Field Testing

- Assess quality of patient's vision regularly
 - Monitor disease progression
 - Ascertain patient's response to treatment
- Humphrey Visual Field Test (VFT) is used in clinical practice
 - 1. Points are placed at various positions in field of view
 - 2. Lights at these points are flashed at different brightness values
 - 3. Determine minimum brightness for patient to see a light at particular point
 - 4. Repeat for many points → map of visual field quality

Visual Field Test Shortcomings

Inefficient

- Machine is costly and test is expensive
- Patients spend time and money travelling to and from hospital
- They have to return regularly as Glaucoma is chronic

Errors

Туре	Explanation science and e	ngineering Indication
Fixation Loss	Patient responds to stimulus projected onto their blind spot.	Loss of attention
False Positives	Patient is "trigger-happy"; presses button even when there is no stimulus presented at that point in time.	Anxiety, Concern about getting a result indicating vision loss
False Negatives	Patient has responded to dimmer stimulus but fails to respond to brighter stimulus.	Fatigue, Inattentiveness, Malingering, Extreme vision loss

Engineering Goal

Design supplement to clinical Humphrey VFT that is

Cheap

- Low equipment purchase cost
- Low operating cost
- Low cost per test

Convenient

- Test equipment is light and portable
- Reduce number of retakes required to get reliable results
- Reduce time taken per test

Reliable

Results do not diverge significantly from clinical results

Engineering Roadmap

Phase 1: Minimum Viable Product (Completed)

Digitise Humphrey VFT in Unity environment as proof-of-concept

Phase 2: Web-Based Minimum Viable Product (Current WIP)

- Physically realistic VR on the web using THREE.js library
- User authentication, Results persistence and management

Phase 3: Web-Based Feature Implementation (Future)

Higher-order functionality ("Novel Product Features" & "Future Work")

Phase 4: User Testing and Verification (Proposed)

• If/when COVID-19 restrictions allow, product is tested

Product Overview

- Homepage
 - Shows information on test, instructions and links to other pages
- About
 - Shows rationale and explanation of test
- Physician
 - Shows dashboard with their patients' data
- Patient
 - Shows patient's past results in graphical form
 - Link to test page

Product Flowchart

Proposed Product Testing

Performance of Product vs Clinical Humphrey VFT

- Randomly sampled 20 persons >65 years old
 - 10 diagnosed with Glaucoma
 - 10 diagnosed without Glaucoma

50% Male, 50% Female

- Take test on product and then Humphrey VFT
 - (or vice versa, randomly decided) science and engineering
- 1. Number of retakes required
- 2. Testing time each person took
- 3. Correlation between Product results and VFT results
 - Evaluated for statistical significance

Novel Product Features

- Real-time unreliability detection
 - Patient does not see stimulus at certain brightness → reports seeing when stimulus at a dimmer brightness (or vice versa)
 - 2. Patient sees stimulus in natural blind spot (scotoma)
 - This flags results at that point as unreliable
- Fixation Loss Detection
 - Dead reckoning using phone accelerometer and gyroscope
- Overpressing Detection
 - Running average of presses/time → alert if significant change
- Real-Time Feedback
 - Provide audio-visual warnings in real-time if unreliability detected
 - Terminate test and restart if significant number of unreliable results

Future Work

- Physicians can customise testing points
 - Finer points distribution in smaller region of view
 - Personalised to each patient's disease progression
- Data Processing Algorithm
 - Compare patient's test results over time → indicate glaucoma progression severity
- Diagnostic Algorithm
 - Neural network trained on corpus of data → indicate probability of patient having Glaucoma as a cross-check for physicians
- Eye Health Portal
 - More tests can be consolidated into an eye health portal

References

• Carl Zeiss Meditec Incorporated. (2012). Humphrey Field Analyzer II-i series User Manual. Dublin, CA: Carl Zeiss Meditec Incorporated.

- Cook, C., & Foster, P. (2012). Epidemiology of glaucoma: what's new?. Canadian Journal of Ophthalmology, 47(3), 223-226.
- Google VR. (n.d.). Google Cardboard. Retrieved January, from https://arvr.google.com/cardboard/
- Heijl, A., Leske, M. C., Bengtsson, B., Hyman, L., Bengtsson, B., & Hussein, M. (2002). Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. *Archives of ophthalmology*, 120(10), 1268-1279.
- Khoury, J. M., Donahue, S. P., Lavin, P. J., & Tsai, J. C. (1999). Comparison of 24-2 and 30-2 perimetry in glaucomatous and nonglaucomatous optic neuropathies. *Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society*, 19(2), 100–108.
- Landers, J., Sharma, A., Goldberg, I., & Graham, S. L. (2010). Comparison of visual field sensitivities between the Medmont automated perimeter and the Humphrey field analyser. Clinical & experimental ophthalmology, 38(3), 273-276.
- Phu, J., Khuu, S. K., Yapp, M., Assaad, N., Hennessy, M. P., & Kalloniatis, M. (2017). The value of visual field testing in the era of advanced imaging: clinical and psychophysical perspectives. *Clinical and Experimental Optometry, 100*(4), 313-332.
- Regan, D., & Neima, D. (1984). Low-contrast letter charts in early diabetic retinopathy, ocular hypertension, glaucoma, and Parkinson's disease. British journal of ophthalmology, 68(12), 885-889.
- Seet, B. (2001). Myopia in Singapore: Taking a public health approach. *British Journal of Ophthalmology, 85*(5), 521-526. doi:10.1136/bjo.85.5.521
- Shazali, N. A., Habidin, N. F., Ali, N., Khaidir, N. A., & Jamaludin, N. H. (2013). Lean healthcare practice and healthcare performance in Malaysian healthcare industry. *International Journal of Scientific and Research Publications*, 3(1), 1-5.
- Spillmann, L., Otte, T., Hamburger, K., & Magnussen, S. (2006). Perceptual filling-in from the edge of the blind spot. *Vision Research*, 46(25), 4252-4257. doi:10.1016/j.visres.2006.08.033
- Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C. Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. *Ophthalmology*, 121(11), 2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013