

↑ Машинное обучение

Машинное обучение

Виктор Владимирович Китов

Навигация по темам учебника доступна слева вверху

(три палочки на мобильных устройствах).

Почта для обратной связи: deepmachinelearning@yandex.ru.

Условные обозначения учебника.

Лицензия на использование материалов.

Вы можете помочь:

- Напишите, если учебник помог вам разобраться в какой-то теме, живой отклик всегда ценен!
- Расскажите об учебнике своим друзьям и коллегам по работе.
- Напишите обратную связь по материалам учебника.
- Напишите, если заметите опечатки и ошибки (даже незначительные) в тексте или работе сайта.

Следующая страница Введение »

↑ Глубокое обучение

Глубокое обучение

Виктор Владимирович Китов

Навигация по темам учебника доступна слева вверху

(три палочки на мобильных устройствах).

Почта для обратной связи: deepmachinelearning@yandex.ru.

Условные обозначения учебника.

Лицензия на использование материалов.

Вы можете помочь:

- Напишите, если учебник помог вам разобраться в какой-то теме, живой отклик всегда ценен!
- Расскажите об учебнике своим друзьям и коллегам по работе.
- Напишите обратную связь по материалам учебника.
- Напишите, если заметите опечатки и ошибки (даже незначительные) в тексте или работе сайта.

Следующая страница Введение »

♠ Введение

Содержание этой страницы

Посвящается моей жене Ирине.

Машинное и глубокое обучение

Машинное обучение (machine learning) решает задачу построения прогноза по входному описанию исследуемого **объекта** (object), при этом параметры **прогнозирующей функции** или **модели** не задаются явно, а определяются автоматически в результате <u>процедуры обучения</u> (model training) на так называемой **обучающей выборке** (training set) - размеченном (в <u>задаче с учителем</u>) или не размеченном (в <u>задаче без учителя</u>) наборе объектов.

Автоматическая настройка параметров позволяет существенно упростить и ускорить построение прогнозирующих моделей. Также это позволяет использовать более сложные модели, содержащие большое количество автоматически настраиваемых параметров, что повышает точность прогнозов.

Глубокое обучение (deep learning) представляет собой подобласть машинного обучения и решает те же самые задачи, используя более сложные многоуровневые вычисления, <u>автоматически извлекающие более информативные признаки</u> из первоначальных данных.

Перед изучением глубокого обучения убедитесь, что вы разобрались в базовых темах машинного обучения:

- Основы машинного обучения
- Подготовка данных
- Классификаторы в общем виде
- Оценка качества регрессии
- Оценка качества классификации
- Переобучение и недообучение

В дальнейшем будет предполагаться знакомство читателя с этими разделами.

Не обязательной, но полезной для интерпретации работы моделей глубокого обучения будет глава про <u>интерпретацию сложных</u> моделей.

Принцип глубокого обучения

Объекты представляются в виде исходного низкоуровневого представления объектов (raw representation).

Например, в обработке изображений низкоуровневым представлением изображения будет:

- матрица интенсивностей пикселей $I \in \mathbb{R}^{H imes W}$ (в случае черно-белого изображения H imes W);
- тензор интенсивностей $I \in \mathbb{R}^{3 \times H \times W}$, представляющего объединение 3-х матриц для красного, зелёного и синего каналов (в случае цветного изображения $H \times W$).

При обработке звуков низкоуровневым представлением будет последовательность амплитуд (силы звуковой волны) в каждый момент времени.

Применять прогнозирующую модель к низкоуровневому представлению непрактично - слишком велика размерность признакового пространства, поэтому модель необходимо настраивать <u>на небольшом числе</u> высокоуровневых и информативных признаков (high level representation).

Традиционный подход в машинном обучении, называемый неглубоким обучением (shallow learning), полагается на человека при

генерации высокоуровневых признаков для прогнозирующей модели:

Для изображений, например, можно в качестве признаков построить распределение цветов по красному, зелёному и синему каналам, посчитать их средние и стандартные отклонения. Для звуков - среднюю силу звуковой волны, её стандартное отклонение, количество и длительность пауз и т.д.

Сразу понятны ограничения этого подхода:

- необходимо тратить ограниченные человеческие ресурсы на разработку признаков и создание процедуры их извлечения (медленно и долго);
- это в любом случае окажутся несложные преобразования (недостаточно эффективно для конечной задачи).

В глубоком обучении настраивается не только модель, но и <u>последовательность преобразований, генерирующих признаки</u>, которые будет использовать конечная модель для прогнозов:

Каждое преобразование генерирует **промежуточное представление признаков** (intermediate representation), которое с каждым последующим преобразованием получается всё более сложным и информативным.

Например, в случае изображений, сначала будут извлекаться границы, потом - углы, потом - геометрические фигуры, а начиная с некоторого этапа станут извлекаться уже сложные объекты, такие как глаз человека, колесо машины, окно дома, и т.д., на основе которых уже несложно будет решить итоговую задачу (например, классифицировать, что именно показано на изображении).

Преимущества подхода:

- извлечение информативных признаков происходит автоматически по данным точно так же, как в машинном обучении производилась настройка прогнозирующей модели; не нужно расходовать человеческие ресурсы на извлечение признаков вручную.
- признаки подбираются быстрее, причём это будут более сложные и более подходящие признаки для конечной задачи, полученные в результате многомерной оптимизации.

Для применения глубокого обучения требуется гораздо больше обучающих данных, поскольку теперь настраиваются не только параметры модели, но и параметры промежуточных преобразований признаков!

Применительно к изображениям необходимы уже как минимум десятки тысяч размеченных примеров. Более сложные модели требуют обучающих выборок (называемых датасетами от англ. dataset), содержащих несколько миллионов обучающих примеров, таких как ImageNet [1], [2].

О СИЛА ГЛУБОКОГО ОБУЧЕНИЯ

Глубокое обучение устраняет разрыв между исходным высокоразмерным низкоуровневым описанием объекта и конечной моделью, способной обрабатывать лишь маломерное компактное описание объекта из высокоуровневых признаков.

Принцип глубокого обучения успешно применяется и в других областях, таких как обработка текста, речи и графов.

Какой ранее изученный подход классического машинного обучения идеологически похож на глубокое обучение?

Для реализации принципа глубокого обучения используются **нейросети** (neural networks), поскольку нейросеть представляет собой последовательность нелинейных преобразований, которые как раз и описывают последовательное преобразование признаков и построение прогноза по ним.

Нейросети показывают отличные результаты и зачастую способны решать широкий класс задач быстрее и лучше среднестатистического человека не только там, где нужно предсказать число (регрессия) или категорию (классификация), но и в более творческих задачах, где нужно сгенерировать изображение, текст, звук (например генерация вокала по словам песни) или граф (описывающий химическое соединение вещества или лекарства).

Сильный и слабый искусственный интеллект

Решение частных формализованных задач методами машинного обучения называется **слабым искусственным интеллектом** (или прикладным ИИ, narrow AI).

Также в научном сообществе существует гипотеза общего искусственного интеллекта (artificial general intelligence, AGI [3]), способного решать любую задачу путём самообучения и развития. Большим шагом к созданию общего искусственного интеллекта стало развитие больших языковых моделей (large language models), таких как ChatGPT, способных поддерживать разговор и отвечать на вопросы общего вида.

Также существует гипотеза сильного искусственного интеллекта (strong AI), способного мыслить и осознавать себя как отдельную личность (artificial consciousness). Насколько искусственно созданная система теоретически способна к этому - большой философский вопрос.

Автор книги эту гипотезу не разделяет. Скорее всего, будет создан общий искусственный интеллект, способный качественно имитировать самосознание живых людей.

Детальнее о видах искуственного интеллекта по уровню решаемых задач можно прочитать в [4].

Развитие глубокого обучения

Глубокое обучение получило импульс к развитию в 2010-х годах с появлением

- доступных вычислительных мощностей, способных выполнять большие объёмы вычислений (графические ускорители, FPGA-чипы);
- больших обучающих выборок, содержащих миллионы размеченных наблюдений.

Глубокое обучение без преувеличения осуществляет революцию в экономике, политике и социальной сфере. Глубокие нейросети позволяют быстрее и эффективнее осуществлять торговлю на бирже (см. algorithmic trading [5]), управлять технологическими процессами, распознавать людей в системах видеонаблюдения, отслеживать и предугадывать поведение клиентов по их поведению в сети, перемещениям и финансовым транзакциям, генерировать реалистичные тексты, изображения, звуки и видео, практически неотличимые от настоящих, а также компилируемый программный код по запросу. Нейросети постепенно вытесняют людей даже из таких творческих профессий, как написание рассказов, рисование графических сюжетов и создание музыки.

Этические вопросы

Стремительное развитие технологий искусственного интеллекта несёт в себе не только возможности, но и вызовы, которые широко обсуждаются не только в экспертном сообществе, но и в среде обычных пользователей.

Риски глубокого обучения заключаются в том, что его технологии

- приводят к вытеснению людей из многих профессий;
- позволяют создавать фейковые новости, практически неотличимые от настоящих;
- способствуют тому, что погружённость и вовлечённость людей смещаются из реального мира в виртуальный;
- дают очень большую власть над обществом, причём технологии концентрируются в узком круге больших компаний, обладающих данными и оборудованием для внедрения и развития этой науки.

Изучающим глубокое обучение необходимо задаться вопросами, насколько их деятельность приводит к положительным изменениям в обществе? Делает ли она общество более свободным, расширяя его возможности или, наоборот, делает его заложником технологий и контролирующих их компаний?

Технологии существуют для человека, а не человек для технологий.

Однозначных и простых ответов, как справиться с вызовами новых технологий так, чтобы общество воспользовалось их преимуществами, не став при этом их заложником, пока нет. Это сложная этическая проблема, которая должна решаться сообща государствами, технологическими компаниями и общественными движениями. Заинтересованные читатели могут детальнее ознакомиться с проблемой в книге со-основателя DeepMind и Inflection AI Мустафы Сулеймана "The coming wave: AI, power, and our future." [6].

Литература

- 1. Wikipedia: ImageNet.
- 2. Официальный сайт датасета ImageNet.
- 3. Wikipedia: Artificial general intelligence.

- 4. ibm.com What is artificial general intelligence (AGI)?
- 5. Wikipedia: Algorithmic trading.
- 6. Suleyman M. The coming wave: AI, power, and our future. Random House, 2025.

Предыдущая страница «Глубокое обучение

Следующая страница Обзор задач глубокого обучения »

© 2023-25 <u>Виктор Китов.</u> <u>Новости проекта.</u>

↑ Обзор задач глубокого обучения

Обзор задач глубокого обучения

В этом разделе вы познакомитесь с основными задачами, решаемыми с помощью глубоких нейронных сетей, для различных типо данных. Подробно будут разобраны задачи, решаемые с помощью нейросетей для изображений, видеоданных, текстов, звуков и графов.
□ Обработка изображений
Задачи нейронных сетей при обработке изображений.
□ Обработка видео
Задачи нейронных сетей для обработки и генерации видеоданных. Нейросетевая обработка видео данных.
□ Обработка текста Задачи нейронных сетей для обработки текстов.
□ Обработка звука Задачи нейронных сетей для обработки и генерации звуков. Способы представления звука.
□ Обработка графов Задачи нейронных сетей для обработки графов. Данные, представимые в виде графов.
□ Другие области применения Применения нейронных сетей для разных типов данных.

Предыдущая страница «Введение

□ Симметрия в пространстве весов

Неоднозначность между прогностическими функциями и весами нейросети, множественность эквивалентных решений,

□ Моделирующие способности нейросети

Минимальное число слоёв нейронной сети для решения задачи классификации и регрессии. Мотивация использования глубоких нейронных сетей с большим ...

□ Обучение представлений

Задача обучения промежуточных представлений (representation learning) в нейросетях. Геометрический смысл таких представлений, переводящих объекты мн...

Следующая страница Модель нейрона »

↑ Обучение нейросетей
Обучение нейросетей
В этом разделе вы познакомитесь с методами настройки параметров нейросетевых моделей.
□ Оптимизаторы с постоянным шагом
Базовые градиентные методы настройки нейросетей - метод градиентного спуска, стохастического градиентного спуска, использование инерции и инерции Н
□ Выбор шага обучения
Методы уменьшения шага обучения (learning rate scheduling) по ходу обучения нейросети.
□ Оптимизаторы с переменным шагом
Методы оптимизации для нейросетей - AdaGrad, RMSprop, Adam. Их идея - адаптивное изменение шага обучения вдоль каждой оси.
□ Классы точек стационарности Точен по
Типы точек стационарности у нелинейной функции - точки минимума, точки максимума и точки перегиба. Их объяснение через разложение Тейлора 2-го по
□ Автоматическое дифференцирование Метод обратного распространения ошибки (backpropagation, backprop), пример использования и его альтернативы для вычисления градиентов функции поте
■ Инициализация Методы инициализации весов нейросети перед её настройкой. Свйоства сохранения диспресии активаций и градиентов по слоям сети.
Прои упушия строиция
Предыдущия страница «Обучение представлений

↑ Упрощение настройки

Упрощение настройки

В этом разделе вы изучите популярные приемы, упрощающие и ускоряющие настройку нейронных сетей.
□ Остаточный блок
Остаточный блок (residual block) и остаточная сеть (residual net, Res Net) для более быстрой и эффективной настройки нейросети.
□ Батч-нормализация Батч-нормализация нейронной сети - определение, объяснение, логика работы в режиме обучения и применения сети.
□ Нормализация слоя
Нормализация слоя (layer normalization, layer norm) в нейронных сетях - определение, мотивация, преимущества, сравнение с батч-нормализацией.
□ Обрезка градиента
Обрезка градиента (gradient clipping) и адаптивная обрезка градиента (adaptive gradient clipping) в нейронных сетях.
Предыдущая страница
<u>«Вопросы</u>

Следующая страница Остаточный блок »

□ Прореживание сети	
Методы прореживания нейронных сетей (neural network pruning).	
□ Дополнительная литература	
<u> Вопросы</u>	
Предыдущая страница	
«Обрезка градиента	Chamband attacking
	Следующая страница Регуляризация »

↑ Специальные архитектуры

Специальные архитектуры

В этом разделе вы изучите популярные нейросетевые архитектуры, решающие специальные виды задач.
□ Сеть радиально-базисных функций
□ Гиперсеть
<u>Архитектура гиперсети (hypernetwork) - описание, схема, достоинства, мотивация применения.</u>
□ Автокодировщик
<u>Архитектура автокодировщика в нейронных сетях, для чего используются автокодировщики, виды автокодировщиков.</u>
□ Контрастное обучение
Контрастное обучение с помощью сиамских нейронных сетей - определение, решаемые задачи, функции потерь, преимущества архитектуры.
<u> Вопросы</u>
<u>Предыдуция страница</u> « <u>Вопросы</u>
Следующия страница Сеть радиально-базисных функций х
© 2023-25 Виктор Китов, Новости проекта.

↑ Локальная обработка последовательностей

Локальная обработка последовательностей

ликальная обработка последовательностей	
В этом разделе вы изучите операции свёртки и пулинга для обработки последовательностей.	
 ☐ Обработка структурированных данных Структурированные данные и алгоритмы их обработки, используя операции свёртки и пулинга. 	
Структурированные данные и алгоризмы ихоораоотки, используя операции свертки и пулинга.	
□ Операция свёртки	
Обработка последовательностей и временных рядов с помощью одномерной свёртки для последовательности.	
<u>□ Гиперпараметры свёртки</u>	
Параметры и гиперпараметры свёрток - ядро, смещение, размер ядра, padding, stride, dilation.	
<u> Пулинг</u>	
Операция пулинга (pooling) для обработки последовательностей (sequence data) нейронными сетями.	
□ Свёрточные сети для последовательностей	
Свёрточные сети для обработки текстов и других последовательностей, пример архитектуры.	
<u>Предыдущая страница</u> «Вопросы	
Следующая страни	ца
Обработка структурированных данных	<u>())</u>

© 2023-25 <u>Виктор Китов.</u> <u>Новости проекта.</u>

Свёрточные нейронные сети для обработки изображений.

Интерпретация прогнозов
нтерпретация прогнозов свёрточных нейронных сетей и интерпретация отдельных свёрток.
Вопросы
редыдущая страница
Свёрточные сети для последовательностей
Следующая страница
Представление изображений х

Развитие и улучшения нейросети Res Net.

□ DenseNet	
Архитектура нейросети DenseNet.	
□ Мобильные архитектуры	
Виды экономичных мобильных архитектур (mobile architectures) свёрточных нейронных сетей.	
□ Дополнительная литература	
<u> Вопросы</u>	
т.	
<u>Предыдущая страница</u> «Вопросы	
-	Следующая страница
	Соревнование на ImageNet »

□ Вопросы

<u>Предыдущая страница</u> <u>« Вопросы</u>

Следующая страница Семантическая сегментация »

Детекция объектов Детекция объектов В этом разделе ны познакомитесь с задачей детекции объектов (object detection) на изображениях - выделении всех объектов интересурнальтили рямомующимыми рамами с пометной, объект каких тита выделен в какком случае. Также будут рассмотрены основные нейросетевые архитектуры для решения задачи детекции. Детекция объектов Завел детекция объектов Завел детекция объектов Завел детекция объектов на изображения и простой полозани сё решения. Опенка качества детекции Метома оценов детесны детекции помежения объектов на изображениях. Потавление немаксимумов Детекция объектов на изображениях простой полозани сё решения. УОТО Потавление немаксимумов (пов-пажітили вироськіов, NMS) в задите детекции объектов. Вариант митеот подважния помаксимумов (соб-NMS). УОТО Можев УОТО для детекции объектов на изображения. Безаците ругатий петмогк	-
Алгоритм подавления немаксимумов (non-maximum supression, NMS) в задаче детекции объектов. Вариант мяткого подавления немаксимумов (soft-NMS). — YOLO Модель YOLO для детекции объектов на изображении. — SSD Метод SSD для детекции объектов на изображении. — Feature pyramid network	
В этом разделе ны познавомитесь с задвей детекции объектов (object detection) на изображениях - ныделении всех объектов интересуемых типов прямортольными рамками с пометной, объект какого типа выделен в каждом случае. Также будут рассмотрены основные нейросетевые архитектуры для решения задвии детекции. Детекции объектов Задва детекции объектов на изображении и простой подел для её решения. Оценка качества детекции Метода оценов высства детекции объектов на изображениях. Подавление немаксимумов Адгорим подавления немаксимумов (пол-пахітит зиреськов, NMS) в задвес детекции объектов. Вършант милого подавления немаксимумов (кой-NMS). УОБО УОБО для детекции объектов на изображения. Екаture ругатий пеtwork	↑ Детекция объектов
нитересуемых типов прамодуюльными рампами с пометкой, объект какого типа выделен в каждом случае. Также будуг рассмотрены основные нейросстевые архитектуры для решения задачи детекции. Детекции объектов Заажа детекции объектов на пображении и простой полост для её решения. Опешка качества детекции Методы оценки влячества детекции объектов на пображениях. Подавление немаксимумов Алгорити подважния вемяксимумов (пол-такжительреськов), NMS) в задяче детекции объектов. Вариант мятного подважния немаксимумов (коff-NMS). YOLO Модель УОLО для детекции объектов на пображении. SSD Метод SSD для детекции объектов на пображении.	Детекция объектов
Завена детекции объектов на изображении и простой полол для её решения. Опенка качества детекции Метоля оценов кетества детекции объектов на изображениях Подавление немаксимумов Алгоритм подвидения немаксимумов (пол-тахітит в пртехвіот. NMS) в задаче детекции объектов. Вариант мятюго подвидения немаксимумов (коїї-NMS). УОІО Модель УОІО для детекции объектов на изображения. SSD Метол SSD для детекции объектов на изображении.	интересуемых типов прямоугольными рамками с пометкой, объект какого типа выделен в каждом случае. Также будуг рассмотрены
□ Опенка качества детекции Методы оценки качества детекции объектов на изображениях □ Подавление немаксимумов Алгоритм подавления немаксимумов (поп-пахіпыть supression, NMS) в задяче детехнин объектов. Вернант мяткого подавжения немаксимумов (соft-NMS). □ YOLO Модель YOLO для детекции объектов на изображении. □ SSD Метод SSD для детекции объектов на изображении. □ Feature pyramid network	□ Детекция объектов
Методы оценки качества детекции объектов на изображениях □ Подавление немаксимумов Алгоритм подавления немаксимумов (non-maximum supression, NMS) в задаче детекции объектов. Вариант мяткого подавления немаксимумов (soft-NMS). □ YOLO Модель УОІО для детекции объектов на изображении. □ SSD Метод SSD для детекции объектов на изображении. □ Feature pyramid network	Задача детекции объектов на изображении и простой подход для её решения.
□ Подавление немаксимумов (поп-пахіпит supression, NMS) в задаче детекции объектов. Вариант мяткого подавления немаксимумов (soft-NMS), □ YOLO Модель УОLО для детекции объектов на изображении. □ SSD Метод SSD для детекции объектов на изображении.	□ Оценка качества детекции
Алгоритм подавления немаксимумов (non-maximum supression, NMS) в задаче детекции объектов. Вариант мяткого подавления немаксимумов (soft-NMS). — YOLO Модель YOLO для детекции объектов на изображении. — SSD Метод SSD для детекции объектов на изображении. — Feature pyramid network	
 ☐ YOLO Модель YOLO для детекции объектов на изображении. ☐ SSD Метол SSD для детекции объектов на изображении. ☐ Feature pyramid network 	
Модель YOLO для детекции объектов на изображении. □ SSD Метод SSD для детекции объектов на изображении. □ Feature pyramid network	Алгоритм подавления немаксимумов (non-maximum supression, NMS) в задаче детекции объектов. Вариант мягкого подавления немаксимумов (soft-NMS).
□ SSD Метод SSD для детекции объектов на изображении. □ Feature pyramid network	□ YOLO
Метод SSD для детекции объектов на изображении. — Feature pyramid network	Модель YOLO для детекции объектов на изображении.
□ Feature pyramid network	\square SSD
	Метод SSD для детекции объектов на изображении.
Метод feature pyramid network (FPN) для эффективного извлечения признаков изображения и детекции объектов.	□ Feature pyramid network
	Метод feature pyramid network (FPN) для эффективного извлечения признаков изображения и детекции объектов.
□ RetinaNet	□ RetinaNet
Модель RetinaNet для детекции объектов - архитектура, настрока, функции потерь, focal loss.	Модель RetinaNet для детекции объектов - архитектура, настрока, функции потерь, focal loss.

□ CornerNet	
Модель CornerNet для детекции объектов на изображении, corner pooling.	
□ CenterNet	
Модель CenterNet для детекции объектов на изображениях.	
□ Двухстадийные детекторы	
Описание двухстадийных методов детекции объектов - faster R-CNN, fast R-CNN, R-CNN,	
<u> Деформируемые архитектуры</u>	
<u>Деформируемая свёртка и деформируемый ROI пулинг для более локализованного извлечения признаков распознаваемого объекта</u>	в задачах сегментации и
<u>□ Вопросы</u>	
Предыдущая страница	
<u>«Вопросы</u>	Следующая страница
	<u>Детекция объектов »</u>

↑ Сегментация объектов

Сегментация объектов

В этом разделе вы познакомитесь с задачей сегментацией объектов (instance segmentation), в которой нужно каждый пискель изображения классифицировать по типу, причём необходимо разделять объекты одного типа. Также вы узнаете базовые нейросетевые архитектуры для решения этой задачи.

□ Сегментация объектов

Задача сегментации объектов (инстанс сегментация, instance segmentation). Двухстадийные и одностадийные методы сегментации.

□ Mask R-CNN

Нейросеть Mask R-CNN для задачи инстанс сегментации (сегментации объектов на изображении).

VOLACT

Нейросеть Mask R-CNN для задачи инстанс сегментации (сегментации объектов на изображении).

<u>Предыдущая страница</u> <u>« Вопросы</u>

<u>Следующая страница</u> <u>Сегментация объектов »</u>

□ Вопросы

↑ Эмбеддинги слов и параграфов

Эмбеддинги слов и параграфов

В этом разделе вы изучите классические способы представления слов текста в виде вещественных векторов фиксированной длины (эмбеддингов). Это важно для нейросетевой обработки текста, поскольку нейросетевые модели не умеют работать с

категориальными объектами (такими, как слова), зато отлично справляются с обработкой вещественных векторов. Изученные методы применимы не только для представления слов в тексте, но и для представления любых дискретных объектов в последовательностях (нуклеотидов в последовательности ДНК, действий пользователя на сайте, товаров, купленных в интернетмагазине и т.д.)
□ Эмбеддинги слов
Введение, что такое эмбеддинг слов, символов и любых дискретных объектов простыми словами.
□ Совстречаемость слов
Обучение эмбеддингов слов с помощью счётчиков совстречаемости слов и используя меру РРМІ.
□ Латентный семантический анализ
Снижение размерности эмбеддингов слов и документов с помощью метода Latent Semantic Analysis (LSA).
□ Word2vec
Модели Word2vec (CBOW и SkipGram) и модель fastText для построения эмбеддингов слов текста.
□ Оптимизация Skip-Gram
Вычислительно эффективные способы настройки модели Word2Vec на примере SkipCram, используя Hierarchical SoftMax и негативное сэмплирование (negati.
<u>□ Эмбеддинги параграфов</u>
<u>Базовые методы для построения эмбеддингов предложений, параграфов и документов целиком.</u>

Предыдущая страница «YOLACT

Следующая страница Эмбеддинги слов »

Рекуррентные нейросети LSTM и GRU - описание, сравнение, преимущества, примеры работы. Использование гейтов (вентилей) в рекуррентных нейронных ...

□ Механизм внимания	
Механизм внимания в рекуррентных нейронных сетях - описание механизма внимания, примеры использования механизма вним	ания в задачах машинного п
□ <u>Дополнительная литература</u>	
□ Вопросы	
Предыдущая страница	
« Вопросы	Следующая страница Рекуррентная сеть »

♠ Обработка графов
Обработка графов
В этом разделе вы узнаете основные задачи, решаемые на данных, представимых с помощью графа, а также нейросетевые методы решения этих задач.
 ☐ Типы графов Основные виды графов, обобщения графов. Примеры. Матрица смежности и матрица степеней вершин графа.
☐ Изоморфизм графов Изоморфизм графов-определение, примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение примеры и правила преобразования матрицы смежности и матрицы стпеней при изоморфизме. Ответствение при изоморфизме. Ответстве
□ Задачи на графах Виды задач, решаемых на графах нейронными сетями. Примеры прикладных задач из разных предметных областей.
□ Решение задач на графах Решение задач на графах с помощью нейронных сетей. Задачи регрессии и классификации графов целиком, а также регрессия и классификация отдельных вер
□ Свёрточные графовые сети Графовые нейронные сети-принцип работы, алгоритм передачи сообщений, свёртки на графах.
 ☐ Обучение графовых нейросетей Обучение графовых нейросетей-формирование минибатчей, способы регуляризации.
□ Геометрические эмбеддинги Методы Deep Walk и Node2vec и использование автокодировщика для построения эмбеддингов вершин графа (node embeddings).
The state of the s

□ Дополнительная литература

Предыдущая страница « Дополнительная литература

Следующая страница
Типы графов »

↑ Заключение

Заключение

О УЧЕБНИК ДОРАБАТЫВАЕТСЯ...

Учебник дорабатывается, периодически могут появляться новые темы и улучшаться описания существующих. Обновления учебника вы можете отслеживать в телеграм-канале проекта.

Для дальнейшего погружения в увлекательный мир нейросетей рекомендуем установить нейросетевую библиотеку <u>PyTorch</u>, изучить её документацию и github-реализации изученных архитектур, чтобы понимать не только заложенные в них принципы, но и знать, как они реализуются.

Задачей учебника было познакомить вас с основными понятиями и задачами глубокого обучения, рассказать про базовые блоки, из которых строятся современные нейросетевые архитектуры. Чтобы узнать самые свежие инновации в области нейросетей, рекомендуем использовать сайт paperswithcode.com, на котором регулярно обновляются рейтинги лучших методов глубокого обучения для различных приложений.

Желаем успехов!

Предыдущая страница «Дополнительная литература