MODUL PRAKTIKUM

Model Regresi Linier Sederhana

- **Linier** dalam parameter.
- **Sederhana**: hanya memiliki satu peubah penjelas/peubah bebas.
- Hubungan antara X dan Y dinyatakan dalam fungsi linier atau fungsi berordo/berderajat satu, yaitu fungsi yang mempunyai satu peubah penjelas/peubah bebas dan peubah penjelas/peubah bebas tersebut paling tinggi memiliki pangkat sama dengan satu.

Model Regresi:

Intersep Kemiringan garis/slope
$$Y = \beta_0 + \beta_1 X + \varepsilon$$
Komponen Komponen acak tetap Kemiringan garis/slope

- $\beta_0 \operatorname{dan} \beta_1$: **parameter regresi** yang bersifat **tetap**.
- β_1 : koefisien regresi yang menunjukkan kemiringan garis regresi.
- ε : sisaan/galat yang merupakan **peubah acak**.
- X : peubah penjelas/peubah bebas yang nilainya diketahui (bukan peubah acak).
- Y: peubah respon/peubah tak bebas yang merupakan **peubah acak** dengan **pusat/nilai harapan** di $\beta_0 + \beta_1 X$ dan **ragam** σ^2 .

Pendugaan Parameter Regresi

Parameter regresi dapat diduga menggunakan beberapa metode, salah satunya adalah dengan **Metode Kuadrat Terkecil (MKT)** atau *Ordinary Least Square* (OLS). Konsep metode kuadrat terkecil dalam menduga parameter regresi adalah dengan **meminimumkan Jumlah Kuadrat Galat (JKG)**.

Dugaan Persamaan Garis Regresi:

$$\widehat{Y}_i = b_0 + b_1 X_i$$

Galat/sisaan : $y_i - \widehat{y}_i$, maka $JKG = \sum [y_i - (b_0 + b_1 X_i)]^2$

Jumlah Kuadrat Galat (JKG) minimum diperoleh dengan menggunakan turunan parsial terhadap b_0 dan b_1 sedemikian sehingga solusi dari turunan pertama disamadengankan 0 (nol).

- Penduga bagi parameter β_1 :
- Penduga bagi parameter β_0 :

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \, \bar{x}$$

$$b_1 = \frac{JK_{xy}}{JK_{xx}} = \frac{\sum XY - \frac{\sum X\sum Y}{n}}{\sum X^2 - \frac{(\sum X)^2}{n}}$$

Sifat-sifat Penduga Metode Kuadrat Terkecil

Metode Kuadrat Terkecil memiliki asumsi yang harus dipenuhi agar penduga parameter yang didapatkan merupakan penduga yang baik. **Galat pada model harus memenuhi kondisi Gauss-Markov** sebagai berikut:

• Nilai harapan/rataan galat sama dengan nol. $E(\varepsilon_i) = 0$

Menghasilkan penduga parameter yang tidak bias.

• Ragam galat homogen untuk setiap nilai x. $E(\varepsilon_i^2) = var(\varepsilon_i) = \sigma^2$

Menghasilkan nilai ragam yang minimum.

• Galat saling behas. $E(\varepsilon_i \varepsilon_j) = \mathbf{0}$, $i \neq j$

Tidak ada autokorelasi atau hubungan antar amatan.

Jika kondisi di atas terpenuhi, penduga metode kuadrat terkecil memiliki sifat **BLUE** (*Best Linear Unbiased Estimators*), yaitu:

- Linier: fungsi linier dari variabel acak di dalam model.
- Tak Bias: nilai harapan penduga sama dengan nilai dari parameter.
- Mempunyai ragam terkecil dari semua penduga linier yang tak bias.

Interpretasi Parameter Model Regresi

 b_0 adalah nilai dugaan rataan atau dugaan nilai harapan y yang tidak dipengaruhi oleh peubah penjelas/peubah bebas atau ketika nilai x bernilai nol, jika x=0 berada dalam selang amatan.

 $\boldsymbol{b_1}$ adalah nilai dugaan peubahan rataan y atau nilai harapan y jika x berubah satu satuan.

Misalkan: Diketahui dugaan persamaan garis regresi antara jumlah emisi HC (ppm) dan total jarak tempuh (seribu km) suatu mobil adalah $\hat{y}_i = 38.2 + 5.39x_i$, maka interpretasinya

- Rata-rata emisi HC pada mobil baru adalah sebesar 38.2 ppm.
- Kenaikan jarak 1 (ribu) km akan meningkatkan rata-rata emisi HC sebesar 5.39 ppm.

ILUSTRASI KASUS

Diketahui waktu seorang karyawan toko grosir untuk mengisi rak produk minuman ringan serta jumlah produk minuman ringan yang berhasil disusun, ditunjukkan dengan data sebagai berikut.

No.	Waktu (menit)	Stok Produk	No.	Waktu (menit)	Stok Produk
1	10.15	25	9	11.69	28
2	2.96	6	10	6.04	14
3	3.00	8	11	7.57	19
4	6.88	17	12	1.74	4
5	0.28	2	13	9.38	24
6	5.06	13	14	0.16	1
7	9.14	23	15	1.84	5
8	11.86	30			

Dugaan bagi nilai parameter β_0 dan β_1 adalah......

No.	Y	X	X^2	XY
1	10.15	25	625	253.75
2	2.96	6	36	17.76
3	3	8	64	24
4	6.88	17	289	116.96
5	0.28	2	4	0.56
6	5.06	13	169	65.78
7	9.14	23	529	210.22
8	11.86	30	900	355.8
9	11.69	28	784	327.32

No.	Y	X	X^2	XY
10	6.04	14	196	84.56
11	7.57	19	361	143.83
12	1.74	4	16	6.96
13	9.38	24	576	225.12
14	0.16	1	1	0.16
15	1.84	5	25	9.2
Total	87.75	219	4575	1841.98
Rataan	5.85	14.6		

$$b_{1} = \frac{JK_{xy}}{JK_{xx}} = \frac{\sum XY - \frac{\sum X\sum Y}{n}}{\sum X^{2} - \frac{(\sum X)^{2}}{n}} =$$

$$b_{1} = \frac{1841.98 - \left(\frac{219 \times 87.75}{15}\right)}{4575 - \left(\frac{14.6^{2}}{15}\right)} = \frac{560.83}{1377.6} = \mathbf{0.407107}$$

$$b_{0} = \bar{y} - b_{1} \bar{x}$$

$$b_{0} = 5.85 - (0.407107 \times 14.6) = -\mathbf{0.09376}$$

Maka dugaan persamaan garis regresi adalah $\,\widehat{y}=\,-0.09376+0.407107x\,$

Interpretasi:

- Rata-rata waktu yang diperlukan seorang karyawan untuk menyusun rak minuman ringan jika tidak ada produk minuman ringan yang disusun adalah sebesar -0.09376 menit.
- Peningkatan satu produk minuman ringan yang disusun pada rak akan meningkatkan rata-rata waktu yang diperlukan sebesar 0.407107 menit.