Nizanje stopnje Bézierjevih krivulj z metodo najmanjših kvadratov

Luka Polanič, Justin Raišp

Ljubljana, 2024

Uvod

- Obdelujemo problem zniževanja stopnje Bézierjevih krivulj iz n na m, kjer m < n.
- ullet Cilj je minimizacija L_2 -norme med originalno in aproksimirano krivuljo.
- V nalogi uporabimo znanje o višanju stopnje Bézierjevih krivulj za razvoj postopka zniževanja.

Motivacija

- Bézierjeve krivulje se pogosto uporabljajo v računalniški grafiki in CAD sistemih.
- Nižja stopnja krivulje omogoča:
 - Optimizacijo shranjevanja podatkov.
 - Učinkovitejšo obdelavo in izris.
- Problem formuliramo kot minimizacijo *L*₂-norme:

$$d_2(p_n,q_m) = \sqrt{\int_0^1 \|p_n(t)-q_m(t)\|^2 dt}.$$

Definicije

Bézierjeva krivulja stopnje n:

$$p_n(t) = \sum_{i=0}^n b_i B_i^n(t), \quad t \in [0,1],$$

kjer so b_i kontrolne točke, $B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$ pa Bernsteinovi bazni polinomi.

• Bézierjeva krivulja stopnje m < n:

$$q_m(t) = \sum_{i=0}^m c_i B_i^m(t), \quad t \in [0,1].$$

• Cilj: Določiti c_i , da je L_2 -razdalja minimalna.

Osnovni izrek

Izrek 3.2

Naj bo p_n Bézierjeva krivulja stopnje n z $\Delta^n b_0 \neq 0$ in $2\alpha \leq n$. Faktorji λ_i so podani kot:

$$\lambda_i = \left(\frac{2n}{n+2\alpha}\right)^{-1} \sum_{j=0}^i \binom{n}{j-\alpha} \binom{n}{j+\alpha},$$

kontrolne točke c_i pa izračunamo z:

$$c_i = (1 - \lambda_i)c_i^{(I)} + \lambda_i c_i^{(II)}.$$

Tukaj $c_i^{(I)}$ in $c_i^{(II)}$ določimo z enačbama (5) in (6).

Algoritem

- Začetni podatki: kontrolne točke b_0, \ldots, b_n in ciljna stopnja m.
- Postopek:
 - 1 Izračun $c_i^{(I)}$ in $c_i^{(II)}$ za stopnjo n do n-1.
 - 2 Izračun kombinacije c_i z utežmi λ_i .
 - O Ponavljanje postopka za nižanje stopnje do m.
- Lastnosti algoritma:
 - Ohranja zveznost do reda $\alpha-1$ v robnih točkah.
 - L₂-norma ostaja minimalna.