等比数列

王崇宁

西南大学

2015年3月29日

1 / 1

王崇宁 (西大) 等比数列 2015 年 3 月 29 日

◆□▶◆圖▶◆團▶◆團▶○團

引入

第一个数列

 $1, 2, 4, 8, 16, 32, \cdots$

引入

第一个数列

 $1, 2, 4, 8, 16, 32, \cdots$

第二个数列

 $1, \ \frac{1}{2}, \ \frac{1}{4}, \ \frac{1}{8}, \ \frac{1}{16}, \ \frac{1}{32} \cdots$

你会类比吗

等差数列

如果一个数列 $\{a_n\}$ 从第 2 项起,每一项与它前一项的差都等于同一个常数,

$$a_n - a_{n-1} = d \ (n \geqslant 2)$$

这样的数列叫做等差数列,这个常数 d 叫做等差数列的公差.

< □ > < 圖 > < 필 > < 필 > < 필 > ○ ○ ○

你会类比吗

等差数列

如果一个数列 $\{a_n\}$ 从第 2 项起,每一项与它前一项的**差**都等于同一个常数,

$$a_n - a_{n-1} = d \ (n \geqslant 2)$$

这样的数列叫做等差数列, 这个 常数 d 叫做等差数列的公差.

等比数列

如果一个数列 $\{a_n\}$ 从第 2 项起,每一项与它前一项的**此**都等于同一个常数,即

$$\frac{a_n}{a_{n-1}} = q \ (n \geqslant 2)$$

这样的数列叫做等比数列, 这个 常数 q 叫做等比数列的公比.

王崇宁 (西大) 等比数列

例 1: 下列数列是不是等比数列, 若是, 说出公比

1 2, 2, 2, 2, 2;

例 1: 下列数列是不是等比数列, 若是, 说出公比

1 2, 2, 2, 2, 2;

q = 1

例 1: 下列数列是不是等比数列, 若是, 说出公比

1 2, 2, 2, 2, 2;

q = 1

 2^{-1} , 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

例 1: 下列数列是不是等比数列, 若是, 说出公比

1 2, 2, 2, 2, 2;

q = 1

 2^{-1} , 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

q = 4

例 1: 下列数列是不是等比数列, 若是, 说出公比

1 2, 2, 2, 2, 2;

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$\bullet$$
 -1, 10, -10², 10³, -10⁴, 10⁵;

例 1: 下列数列是不是等比数列, 若是, 说出公比

1 2, 2, 2, 2, 2;

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$\bullet$$
 -1, 10, -10², 10³, -10⁴, 10⁵;

$$q = -10$$

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$\bullet$$
 -1, 10, -10², 10³, -10⁴, 10⁵;

$$q = -10$$

$$\bullet$$
 0, -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

王崇宁 (西大) 等比数列

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^1 , 2^3 , 2^5 , 2^7 , 2^9 ;

$$q = 4$$

$$3 -1, 10, -10^2, 10^3, -10^4, 10^5;$$

$$q = -10$$

$$\bullet$$
 -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

王崇宁 (西大) 等比数列

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$3 -1, 10, -10^2, 10^3, -10^4, 10^5;$$

$$q = -10$$

$$\bullet$$
 -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

$$q = \frac{1}{2}$$

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$q = -10$$

$$\bullet$$
 -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

$$q = \frac{1}{2}$$

6
$$a^1, a^2, a^3, \cdots, a^n, \cdots;$$

王崇宁 (西大) 等比数列

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^1 , 2^3 , 2^5 , 2^7 , 2^9 ;

$$q = 4$$

$$\bullet$$
 -1, 10, -10², 10³, -10⁴, 10⁵;

$$q = -10$$

$$\bullet$$
 -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

$$q = \frac{1}{2}$$

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$\bullet$$
 -1, 10, -10², 10³, -10⁴, 10⁵;

$$q = -10$$

$$\bullet$$
 -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

$$q = \frac{1}{2}$$

$$a^1, \ a^2, \ a^3, \cdots, \ a^n, \cdots (a \neq 0);$$

$$q = a$$

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$\bullet$$
 -1, 10, -10², 10³, -10⁴, 10⁵;

$$q = -10$$

$$\bullet$$
 -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

$$q = \frac{1}{2}$$

5
$$a^1, a^2, a^3, \dots, a^n, \dots (a \neq 0);$$

$$q = a$$

注意

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$\bullet$$
 -1, 10, -10², 10³, -10⁴, 10⁵;

$$q = -10$$

$$\bullet$$
 -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

$$q = \frac{1}{2}$$

$$q = a$$

注意

• 等比数列 $\{a_n\}$ 中,每一项 a_n 与公比 q 都不等于0;

| ←□ → ←圖 → ← 圖 → | 圖 |

例 1: 下列数列是不是等比数列, 若是, 说出公比

$$q = 1$$

$$2^{-1}$$
, 2^{1} , 2^{3} , 2^{5} , 2^{7} , 2^{9} ;

$$q = 4$$

$$\bullet$$
 -1, 10, -10², 10³, -10⁴, 10⁵;

$$q = -10$$

$$\bullet$$
 -1, $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{8}$, $-\frac{1}{16}$;

$$q = \frac{1}{2}$$

$$q = a$$

注意

- 等比数列 $\{a_n\}$ 中,每一项 a_n 与公比 q 都不等于0;
- 等比数列的奇数项同号, 偶数项也同号.

例 2

已知数列 $\{a_n\}$ 的前 n 项和 $S_n=3a_n+1$, 求证: $\{a_n\}$ 是等比数列.

例 2

已知数列 $\{a_n\}$ 的前 n 项和 $S_n = 3a_n + 1$, 求证: $\{a_n\}$ 是等比数 列.

解:

例 2

已知数列 $\{a_n\}$ 的前 n 项和 $S_n=3a_n+1$, 求证: $\{a_n\}$ 是等比数列.

解:

由
$$a_1 = S_1 = 3a_1 + 1$$
, 得 $a_1 = -\frac{1}{2} \neq 0$,

例 2

已知数列 $\{a_n\}$ 的前 n 项和 $S_n = 3a_n + 1$, 求证: $\{a_n\}$ 是等比数 列.

解:

曲
$$a_1 = S_1 = 3a_1 + 1$$
, 得 $a_1 = -\frac{1}{2} \neq 0$,
当 $n \geq 2$ 时, $a_n = S_n - S_{n-1} = 3a_n + 1 - (3a_{n-1} + 1)$
= $3a_n - 3a_{n-1}$;

例 2

已知数列 $\{a_n\}$ 的前 n 项和 $S_n = 3a_n + 1$, 求证: $\{a_n\}$ 是等比数 列.

解:

曲
$$a_1 = S_1 = 3a_1 + 1$$
, 得 $a_1 = -\frac{1}{2} \neq 0$,
当 $n \geq 2$ 时, $a_n = S_n - S_{n-1} = 3a_n + 1 - (3a_{n-1} + 1)$
 $= 3a_n - 3a_{n-1}$;

所以
$$a_n = \frac{3}{2}a_{n-1}$$
,

例 2

已知数列 $\{a_n\}$ 的前 n 项和 $S_n = 3a_n + 1$, 求证: $\{a_n\}$ 是等比数 列.

解:

曲
$$a_1 = S_1 = 3a_1 + 1$$
, 得 $a_1 = -\frac{1}{2} \neq 0$,
当 $n \geq 2$ 时, $a_n = S_n - S_{n-1} = 3a_n + 1 - (3a_{n-1} + 1)$
 $= 3a_n - 3a_{n-1}$;

所以
$$a_n = \frac{3}{2}a_{n-1}$$
,

又因为 $a_1 \neq 0$, 所以 $\{a_n\}$ 是等比数列.

王崇宁 (西大)

定义

与等差中项的概念类似, 如果数列 a,b,c 成等比数列, 那么 b叫做 a 与 c 的等比中项.

2对2说,我们的等比中项是±2

2对一2说,我们的等比中项是幽灵

定义

与等差中项的概念类似, 如果数列 a, b, c 成等比数列, 那么 b 叫做 a = c 的等比中项.

2对2说,我们的等比中项是±2

2对一2说,我们的等比中级是幽灵

定义

与等差中项的概念类似, 如果数列 a, b, c 成等比数列, 那么 b 叫做 a 与 c 的等比中项.

• $b \neq a, c$ 的等比中项的等价于 $b^2 = ac \perp b \neq 0$

2对2说,我们的等比中项是±2

2对一2说,我们的等比中级是幽灵

定义

与等差中项的概念类似, 如果数列 a, b, c 成等比数列, 那么 b 叫做 a 与 c 的等比中项.

- $b \to a$, c 的等比中项的等价于 $b^2 = ac \to b \neq 0$
- 在数列 $\{a_n\}$ 中,若 $a_{n-1}a_{n+1} = a_n^2$ 且 $a_n \neq 0 \ (n \geqslant 2)$ 则 $\{a_n\}$ 是等比数列.

6 / 1

王崇宁 (西大) 2015 年 3 月 29 日

例 3

若等比数列 $\{a_n\}$ 中, $a_3=3$, $a_5=5$, 求 a_4 .

王崇宁 (西大) 等比数列 2015 年 3 月 29 日 7 / 1

例 3

若等比数列 $\{a_n\}$ 中, $a_3=3$, $a_5=5$, 求 a_4 .

解:

由 a_4 为 a_3 , a_5 的等比中项, 得

$$a_4^2 = a_3 a_5 = 15.$$

7 / 1

王崇宁 (西大) 等比数列 2015 年 3 月 29 日

例 3

若等比数列 $\{a_n\}$ 中, $a_3=3$, $a_5=5$, 求 a_4 .

解:

由 a_4 为 a_3 , a_5 的等比中项, 得

$$a_4^2 = a_3 a_5 = 15.$$

所以 $a_4 = \pm \sqrt{15}$.

7 / 1

王崇宁 (西大) 等比数列 2015 年 3 月 29 日

易错点

例 4

若等比数列 $\{a_n\}$ 中, $a_1=3$, $a_5=12$, 求 a_3 .

易错点

例 4

若等比数列 $\{a_n\}$ 中, $a_1=3$, $a_5=12$, 求 a_3 .

解:

因为 a_1, a_3, a_5 成等比数列, 所以 $a_3^2 = a_1 a_5 = 36$,

因此 $a_3 = \pm 6$.

王崇宁 (西大)

易错点

例 4

若等比数列 $\{a_n\}$ 中, $a_1=3$, $a_5=12$, 求 a_3 .

解:

因为 a_1, a_3, a_5 成等比数列, 所以 $a_3^2 = a_1 a_5 = 36$,

因此 $a_3 = \pm 6$.

又因为 $a_1 > 0$, 所以 $a_3 = 6$.

易错点

例 4

若等比数列 $\{a_n\}$ 中, $a_1=3$, $a_5=12$, 求 a_3 .

解:

因为 a_1, a_3, a_5 成等比数列, 所以 $a_3^2 = a_1 a_5 = 36$,

因此 $a_3 = \pm 6$.

又因为 $a_1 > 0$, 所以 $a_3 = 6$.

注意

等比数列奇数 (或偶数) 位上的符号总相同.

例 5

已知等比数列 $\{a_n\}$ 的前 3 项分别为 $\sqrt{2},\ \sqrt[3]{2},\ \sqrt[6]{2}$ 则该数列的

第 4 项为_____

例 5

已知等比数列 $\{a_n\}$ 的前 3 项分别为 $\sqrt{2}$, $\sqrt[3]{2}$, $\sqrt[6]{2}$ 则该数列的 第 4 项为 1

例 5

已知等比数列 $\{a_n\}$ 的前 3 项分别为 $\sqrt{2}$, $\sqrt[3]{2}$, $\sqrt[6]{2}$ 则该数列的 第 4 项为 1

解

法 1 (等比中项): $a_4 \cdot \sqrt[3]{2} = (\sqrt[6]{2})^2 = \sqrt[3]{2}$, $\therefore a_4 = 1$.

例 5

已知等比数列 $\{a_n\}$ 的前 3 项分别为 $\sqrt{2}, \sqrt[3]{2}, \sqrt[6]{2}$ 则该数列的 第 4 项为 1

解

法 1 (等比中项):
$$a_4 \cdot \sqrt[3]{2} = (\sqrt[6]{2})^2 = \sqrt[3]{2}$$
, $\therefore a_4 = 1$.

法 2 (求公比):
$$q = \frac{2^{1/3}}{2^{1/2}} = 2^{-1/6}$$
,

$$\therefore a_4 = a_3 q = 2^{1/6} 2^{-1/6} = 1.$$

王崇宁 (西大)

通项公式

问题

设等比数列 $\{a_n\}$ 的首项为 a_1 , 公比为 q, 求 $\{a_n\}$ 的通项公式.

通项公式

问题

设等比数列 $\{a_n\}$ 的首项为 a_1 , 公比为 q, 求 $\{a_n\}$ 的通项公式.

推导

因为
$$a_n = \frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1} a_1 = a_1 q^{n-1}$$

通项公式

问题

设等比数列 $\{a_n\}$ 的首项为 a_1 , 公比为 q, 求 $\{a_n\}$ 的通项公式.

推导

因为
$$a_n = \frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_2}{a_1} a_1 = a_1 q^{n-1}$$

结论

所以 $\{a_n\}$ 的通项公式为

$$a_n = a_1 q^{n-1}$$

例 6

已知等比数列 $\{a_n\}$ 中,

(1)
$$a_4 = 2$$
, $a_7 = 8$, $\Re a_n$;

$$(2)a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, \mathbf{x} n .

王崇宁 (西大) 2015 年 3 月 29 日 11 / 1

例 6

已知等比数列 $\{a_n\}$ 中,

(1)
$$a_4 = 2$$
, $a_7 = 8$, $\Re a_n$;

(2)
$$a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, \mathbf{x} n .

解:

例 6

已知等比数列 $\{a_n\}$ 中,

(2)
$$a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, $\Re n$.

解:

(1) 设 $\{a_n\}$ 的公比为 q, 则

$$\begin{cases} a_1 q^3 = 2 \\ a_1 q^6 = 8 \end{cases}$$

例 6

已知等比数列 $\{a_n\}$ 中,

(2)
$$a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, \mathbf{x} n .

解:

(1) 设 $\{a_n\}$ 的公比为 q, 则

$$\begin{cases} a_1 q^3 = 2 \\ a_1 q^6 = 8 \end{cases}$$

解出 $q = \sqrt[3]{4}$, $a_1 = \frac{1}{2}$.

例 6

已知等比数列 $\{a_n\}$ 中,

(1)
$$a_4 = 2$$
, $a_7 = 8$, $\Re a_n$;

(2)
$$a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, \mathbf{x} n .

解:

(1) 设 $\{a_n\}$ 的公比为 q, 则

$$\begin{cases} a_1 q^3 = 2 \\ a_1 q^6 = 8 \end{cases}$$

解出
$$q = \sqrt[3]{4}, a_1 = \frac{1}{2}$$
.

解出
$$q = \sqrt[3]{4}$$
, $a_1 = \frac{1}{2}$.
所以 $a_n = a_1 q^{n-1} = 2^{\frac{2n-5}{3}}$.

例 6

已知等比数列 $\{a_n\}$ 中,

(1)
$$a_4 = 2$$
, $a_7 = 8$, $\Re a_n$;

(2)
$$a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, \mathbf{x} n .

解:

(1) 设 $\{a_n\}$ 的公比为 q, 则

$$\begin{cases} a_1 q^3 = 2 \\ a_1 q^6 = 8 \end{cases}$$

解出
$$q = \sqrt[3]{4}, a_1 = \frac{1}{2}.$$

所以 $a_n = a_1 q^{n-1} = 2^{\frac{2n-5}{3}}.$

(2) 设 $\{a_n\}$ 的公比为 q, 则

$$\begin{cases} a_1 q + a_1 q^4 &= 18 \\ a_1 q^2 + a_1 q^5 &= 9 \end{cases}$$

例 6

已知等比数列 $\{a_n\}$ 中,

(1)
$$a_4 = 2$$
, $a_7 = 8$, $\Re a_n$;

(2)
$$a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, \mathbf{x} n .

解:

(1) 设
$$\{a_n\}$$
 的公比为 q , 则

$$\begin{cases} a_1 q^3 = 2 \\ a_1 q^6 = 8 \end{cases}$$

解出
$$q = \sqrt[3]{4}, a_1 = \frac{1}{2}.$$

解出
$$q = \sqrt[3]{4}$$
, $a_1 = \frac{1}{2}$.
所以 $a_n = a_1 q^{n-1} = 2^{\frac{2n-5}{3}}$.

(2) 设 $\{a_n\}$ 的公比为 q, 则

$$\begin{cases} a_1 q + a_1 q^4 &= 18 \\ a_1 q^2 + a_1 q^5 &= 9 \end{cases}$$

解出
$$q=1/2, a_1=32.$$

2015年3月29日 王崇宁 (西大) 等比数列

例 6

已知等比数列 $\{a_n\}$ 中,

$$(2)a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, 求 n .

解:

(1) 设{
$$a_n$$
} 的公比为 q , 则
$$\begin{cases} a_1 q^3 = 2 \\ a_1 q^6 = 8 \end{cases}$$

解出
$$q = \sqrt[3]{4}$$
, $a_1 = \frac{1}{2}$.
所以 $a_n = a_1 q^{n-1} = 2^{\frac{2n-5}{3}}$.

(2) 设
$$\{a_n\}$$
 的公比为 q , 则
$$\begin{cases} a_1q + a_1q^4 &= 18 \\ a_1q^2 + a_1q^5 &= 9 \end{cases}$$

解出
$$q = 1/2, a_1 = 32$$
.
所以 $a_n = a_1 q^{n-1} = 2^{6-n}$.

例 6

已知等比数列 $\{a_n\}$ 中,

(2)
$$a_2 + a_5 = 18$$
, $a_3 + a_6 = 9$, $a_n = 1$, \mathbf{x} n .

解:

(1) 设{
$$a_n$$
} 的公比为 q , 则
$$\begin{cases} a_1 q^3 = 2 \\ a_1 q^6 = 8 \end{cases}$$

解出
$$q = \sqrt[3]{4}$$
, $a_1 = \frac{1}{2}$.

解出
$$q = \sqrt[3]{4}, a_1 = \frac{1}{2}.$$

所以 $a_n = a_1 q^{n-1} = 2^{\frac{2n-5}{3}}.$

(2) 设 $\{a_n\}$ 的公比为 q, 则

$$\begin{cases} a_1 q + a_1 q^4 &= 18 \\ a_1 q^2 + a_1 q^5 &= 9 \end{cases}$$

解出
$$q=1/2, a_1=32.$$

所以
$$a_n = a_1 q^{n-1} = 2^{6-n}$$
.

王崇宁 (西大) 等比数列 2015年3月29日

性质 $1: a_n = a_m \cdot q^{n-m} \quad (m, n \in \mathbf{N}^*)$

性质 2: 若 m+n=l+k $(m,n,l,k\in \mathbf{N}^*)$, 则 $a_m\cdot a_n=a_l\cdot a_k$.

性质 $1:a_n=a_m\cdot q^{n-m}\quad (m,n\in\mathbf{N}^*)$

性质 2: 若 m+n=l+k $(m,n,l,k\in \mathbf{N}^*)$, 则 $a_m\cdot a_n=a_l\cdot a_k$.

例 7: 小题轰炸

- (1)若 $a_5 = 27$, q = 3,则 $a_1 =$ _____
- (2)若 $a_4a_8=16$,则 $a_5a_6a_7=$ ______
- (3)若 $a_3a_5=4$,则 $a_2a_4a_6=$
- (4)若 $a_1 + a_5 = 5$, $a_2 a_4 = 6$,则 $a_9 =$

性质 $1: a_n = a_m \cdot q^{n-m} \quad (m, n \in \mathbf{N}^*)$

性质 2: 若 m+n=l+k $(m,n,l,k\in \mathbf{N}^*)$, 则 $a_m\cdot a_n=a_l\cdot a_k$.

例 7: 小题轰炸

$$(1)$$
若 $a_5 = 27$, $q = 3$,则 $a_1 = 3^{-1}$

(2)若
$$a_4a_8 = 16$$
,则 $a_5a_6a_7 =$ _____

(3)若
$$a_3a_5=4$$
,则 $a_2a_4a_6=$ ______

(4)若
$$a_1 + a_5 = 5$$
, $a_2 a_4 = 6$,则 $a_9 =$

性质 $1: a_n = a_m \cdot q^{n-m} \quad (m, n \in \mathbf{N}^*)$

性质 2: 若 m+n=l+k $(m,n,l,k\in \mathbf{N}^*)$, 则 $a_m\cdot a_n=a_l\cdot a_k$.

例 7: 小题轰炸

$$(1)$$
若 $a_5 = 27$, $q = 3$,则 $a_1 = 3^{-1}$

(2)若
$$a_4a_8 = 16$$
,则 $a_5a_6a_7 = \pm 64$

(3)若
$$a_3a_5=4$$
,则 $a_2a_4a_6=$ ______

(4)若
$$a_1 + a_5 = 5$$
, $a_2 a_4 = 6$,则 $a_9 =$

性质 $1: a_n = a_m \cdot q^{n-m} \quad (m, n \in \mathbf{N}^*)$

性质 2: 若 m+n=l+k $(m,n,l,k\in \mathbf{N}^*)$, 则 $a_m\cdot a_n=a_l\cdot a_k$.

例 7: 小题轰炸

- (1)若 $a_5 = 27$, q = 3,则 $a_1 = 3^{-1}$
- (2)若 $a_4a_8 = 16$,则 $a_5a_6a_7 = \pm 64$
- (3)若 $a_3a_5=4$,则 $a_2a_4a_6=\pm 8$
- (4)若 $a_1 + a_5 = 5$, $a_2 a_4 = 6$,则 $a_9 =$

性质 $1: a_n = a_m \cdot q^{n-m} \quad (m, n \in \mathbf{N}^*)$

性质 2: 若 m+n=l+k $(m,n,l,k\in \mathbf{N}^*)$, 则 $a_m\cdot a_n=a_l\cdot a_k$.

例 7: 小题轰炸

在等比数列 $\{a_n\}$ 中,

- (1)若 $a_5 = 27$, q = 3,则 $a_1 = 3^{-1}$
- (2)若 $a_4a_8 = 16$,则 $a_5a_6a_7 = \pm 64$
- (3)若 $a_3a_5=4$,则 $a_2a_4a_6=$ __±8__
- (4)若 $a_1 + a_5 = 5$, $a_2 a_4 = 6$,则 $a_9 = \frac{9}{2}$ 或 $\frac{4}{3}$

2015年3月29日

12 / 1

王崇宁 (西大) 等比数列

- 数列 $\{a_n\}$ 为等比数列的定义是 $\frac{a_n}{a_{n-1}}=q\ (n\geqslant 2)$, 或者 $a_n=a_{n-1}q, (n\geqslant 2,a_1,q\neq 0)$.
- 等比数列的各项非零, 而且奇 (偶) 数项的符号相同
- a, b, c 成等比数列 $\Leftrightarrow b \neq a, c$ 的等比中项 $\Leftrightarrow b^2 = ac, b \neq 0$
- 等比数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 q^{n-1}$.
- $a_n = a_m q^{n-m} \ (m, n \in \mathbb{N}^*);$ 若 m+n = l+k,则 $a_m a_n = a_l a_k \ (m, n, l, k \in \mathbb{N}^*).$

- 数列 $\{a_n\}$ 为等比数列的定义是 $\frac{a_n}{a_{n-1}}=q\ (n\geqslant 2)$, 或者 $a_n=a_{n-1}q, (n\geqslant 2,a_1,q\neq 0)$.
- 等比数列的各项非零, 而且奇 (偶) 数项的符号相同.
- a, b, c 成等比数列 $\Leftrightarrow b \stackrel{\cdot}{=} a, c$ 的等比中项 $\Leftrightarrow b^2 = ac, b \neq 0$
- 等比数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 q^{n-1}$.

- 数列 $\{a_n\}$ 为等比数列的定义是 $\frac{a_n}{n}=q\ (n\geqslant 2)$, 或者 $a_n = a_{n-1} q, (n \ge 2, a_1, q \ne 0).$
- 等比数列的各项非零,而且奇(偶)数项的符号相同。
- a, b, c 成等比数列 $\Leftrightarrow b \neq a, c$ 的等比中项
- 等比数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 q^{n-1}$.
- $a_n = a_m q^{n-m} \ (m, n \in \mathbb{N}^*);$

- 数列 $\{a_n\}$ 为等比数列的定义是 $\frac{a_n}{a_{n-1}}=q\ (n\geqslant 2)$, 或者 $a_n=a_{n-1}q, (n\geqslant 2,a_1,q\neq 0)$.
- 等比数列的各项非零, 而且奇 (偶) 数项的符号相同.
- a, b, c 成等比数列 $\Leftrightarrow b \neq a, c$ 的等比中项 $\Leftrightarrow b^2 = ac, b \neq 0$
- 等比数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 q^{n-1}$.
- $a_n = a_m q^{n-m} \ (m, n \in \mathbf{N}^*);$ 若 m+n=l+k,则 $a_m a_n = a_l a_k \ (m, n, l, k \in \mathbf{N}^*)$

王崇宁 (西大) 等比数列 2015 年 3 月 29 日 13 / 1

- 数列 $\{a_n\}$ 为等比数列的定义是 $\frac{a_n}{a_{n-1}}=q\ (n\geqslant 2)$, 或者 $a_n=a_{n-1}q, (n\geqslant 2,a_1,q\neq 0)$.
- 等比数列的各项非零, 而且奇 (偶) 数项的符号相同.
- a, b, c 成等比数列 $\Leftrightarrow b \neq a, c$ 的等比中项 $\Leftrightarrow b^2 = ac, b \neq 0$
- 等比数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 q^{n-1}$.
- $a_n = a_m q^{n-m} \ (m, n \in \mathbf{N}^*);$ 若 m + n = l + k,则 $a_m a_n = a_l a_k \ (m, n, l, k \in \mathbf{N}^*).$

13 / 1

王崇宁 (西大) 等比数列 2015 年 3 月 29 日

- 数列 $\{a_n\}$ 为等比数列的定义是 $\frac{a_n}{a_{n-1}}=q\ (n\geqslant 2)$, 或者 $a_n=a_{n-1}q, (n\geqslant 2,a_1,q\neq 0)$.
- 等比数列的各项非零, 而且奇 (偶) 数项的符号相同.
- a, b, c 成等比数列 $\Leftrightarrow b \neq a, c$ 的等比中项 $\Leftrightarrow b^2 = ac, b \neq 0$
- 等比数列 $\{a_n\}$ 的通项公式为 $a_n = a_1 q^{n-1}$.
- $a_n = a_m q^{n-m} \ (m, n \in \mathbf{N}^*);$ 若 m+n=l+k,则 $a_m a_n = a_l a_k \ (m, n, l, k \in \mathbf{N}^*).$

王崇宁 (西大) 2015 年 3 月 29 日 13 / 1