受験番号 氏 名 カラス 出席番号

試験開始の合図があるまで、この問題冊子の中を見てはいけません。

2012年度 第 2 回 全 統 マーク模 試 問 題

数 学 ② (100点 60分)

〔数学Ⅱ,数学Ⅱ·数学B〕

2012年8月実施

この問題冊子には、「数学 Π 」「数学 Π ・数学B」の 2 科目を掲載しています。解答する科目を間違えないよう選択しなさい。

I 注 意 事 項

- 1 解答用紙は,第1面(表面)及び第2面(裏面)の両面を使用しなさい。 解答用紙には解答欄以外に次の記入欄があるので,監督者の指示に従って,それ ぞれ正しく記入し,マークしなさい。必要事項欄及びマーク欄に正しく記入・マー クされていない場合は、採点できないことがあります。
 - ① **受験番号欄** 受験票が発行されている場合のみ、必ず**受験番号**(数字及び英字)を**記入**し、さらにその下のマーク欄に**マーク**しなさい。
 - ② 氏名欄,高校名欄,クラス・出席番号欄 氏名・フリガナ,高校名・フリガナ及びクラス・出席番号を記入しなさい。
 - ③ 解答科目欄 解答する科目を一つ選び、マーク欄にマークしなさい。 マークされていない場合又は複数の科目にマークされている場合は、0点となることがあります。

解答科目については、間違いのないよう十分に注意し、マークしなさい。

2 出題科目、ページ及び選択方法は、下表のとおりです。

出題科目	ページ	選択方法
数 学 II	2~12	左の2科目のうちから1科目を選択し,解答しなさ
数学 II·数学 B	13~31	V2 ₀

- 3 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に気付いた場合は、手を挙げて監督者に知らせなさい。
- 4 選択問題については、解答する問題を決めたあと、その問題番号の解答欄に解答しなさい。ただし、**指定された問題数をこえて解答してはいけません**。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 6 この注意事項は、問題冊子の裏表紙にも続きます。問題冊子を裏返して必ず読みなさい。

河合塾

数 学 Ⅱ

(全 問 必 答)

第1問 (配点 30)

[1] x の関数 f(x) を

$$f(x) = \sin x + 2\cos 2x + 3$$

とする。

(1)
$$f(0) = \boxed{\mathcal{P}}, \quad f\left(\frac{\pi}{2}\right) = \boxed{1}$$

である。

(2)
$$\cos 2x = \boxed{7} - \boxed{1} \sin^2 x \qquad \cdots (*)$$

を用いて f(x) は

$$f(x) =$$
 オカ $\sin^2 x + \sin x +$ キ

と変形できる。

(数学Ⅱ 第1問 は次ページに続く。)

- (3) $0 \le x < 6\pi$ において、x の方程式 $f(x) = f\left(\frac{\pi}{2}\right)$ を満たす x の値は全部で **ク** 個ある。
- (4) $0 < x < \pi$ において,x の方程式 f(x) = f(0) を満たす x の値は 2 個ある。 そのうちの小さい方を α ,大きい方を β とする。

シ に当てはまるものを,次の**⑩~②**のうちから一つ選べ。

0 < 0 = 2 >

また、 $n\beta > 5\pi$ を満たす最小の自然数 n は \Box である。

(数学Ⅱ 第1問 は次ページに続く。)

数学Ⅱ

〔2〕 二つの不等式

$$\log_2(x-1) \le 3\log_8(7-x)$$
 ① $4^x + 4^{-x} - 5 \cdot 2^x - 5 \cdot 2^{-x} + 8 \le 0$ ②

を考える。

(1) ① において真数は正であるから、セ < x < \lor が成り立つ。

よって、① を満たすxの値の範囲は $\boxed{\mathbf{9}}$ $< x \le \boxed{\mathbf{F}}$ である。

(数学Ⅱ第1問は次ページに続く。)

- - ② を t を用いて表すと

$$t^2 - \boxed{\overline{\tau}} t + \boxed{\rule{0mm}{3mm}} \le 0$$

となる。

(3) ① かつ ② を満たす x の値の範囲は

$$\boxed{ + \sqrt{3}} < x \le \log_2 \frac{1}{3} + \sqrt{3}$$

である。

数学Ⅱ

第2間 (配点 30)

a, b を実数とし, x の関数 f(x), g(x) を

$$f(x) = x^3 - 4x^2 + 5x - 1$$

$$q(x) = x^3 - ax^2 + bx + 1$$

とする。

関数 f(x) の導関数 f'(x) は

$$f'(x) = \boxed{\mathcal{P}} x^2 - \boxed{1} x + \boxed{\dot{\mathcal{P}}}$$

であるから、関数 f(x) は

をとる。

また, 関数 g(x) の導関数 g'(x) は

である。

曲線 y = f(x) および y = g(x) をそれぞれ C_1 , C_2 とする。曲線 C_2 が

$$b = a - \Box$$

である。さらに、点 A における曲線 C_2 の接線の傾きが -1 であるとき

$$a = \boxed{}, \quad b = \boxed{}$$

である。

(数学Ⅱ第2問は次ページに続く。)

- (1) 曲線 C_1 と C_2 の交点の x 座標は エ と ス であり、曲線 C_1 と である。
- (2) k を正の実数とし,放物線 $y = -kx^2 + 2k^3x + 2$ を D とする。 放物線 D と直線 ℓ の交点の x 座標は

$$g$$
 ξ f $k^2 + \frac{y}{k}$

であり,
$$\int f k^2 + \frac{y}{k} > 1$$
 が成り立つ。

放物線 D, 直線 ℓ と直線 x=1 の三つで囲まれた二つの部分のうち, $x \le 1$ の部分の面積を S(k) とすると

$$S(k) = k^3 - \frac{\boxed{\tau}}{\boxed{\ \ }}k + \frac{\boxed{\ \ }}{\boxed{\ \ }}$$

であり、k が k>0 の範囲を動くとき、S(k) は $k=\frac{\boxed{\hspace{1cm} extbf{y}}}{\boxed{\hspace{1cm} extbf{x}}}$ において最小値

<u>| ノハ </u>をとる。

数学Ⅱ

第3間 (配点 20)

座標平面上で,連立不等式

$$\begin{cases} y \ge x^2 - 4x + 5 \\ y \le x + 1 \end{cases}$$

で表される領域を D とする。また,a を実数として,直線 ax-y+2a+1=0 を ℓ とする。

- (1) 領域 D 内の点 (x, y) のうち、x 座標と y 座標がともに整数である点は \red{P} 個ある。

である。点 (x, y) が領域 D 内を動くとき, $\frac{y-1}{x+2}$ の最大値は $\boxed{\begin{array}{c} \underline{\hspace{1cm}} \\ \hline \end{array}}$ であり,

最小値は コ である。

また、点(x,y)が領域D内を動くとき、 x^2-4x+y^2 の最大値は $\boxed{$ サシ であり、最小値は $\boxed{ スセ }$ である。

(数学Ⅱ 第 3 問 は次ページに続く。)

(3) 領域 D 内に中心をもち、x 軸と y 軸のいずれにも接する円のうち、その半径が最小である円を C_1 、最大である円を C_2 とする。円 C_1 の中心と半径をそれぞれ K_1 、 r_1 、円 r_2 の中心と半径をそれぞれ r_2 、 r_2 とすると

$$r_1 = \frac{\boxed{\mathcal{Y} - \sqrt{\boxed{\mathcal{Y}}}}}{\boxed{\mathcal{F}}}, \quad r_2 = \frac{\boxed{\mathcal{Y} + \sqrt{\boxed{\mathcal{Y}}}}}{\boxed{\mathcal{F}}}$$

であり、中心間の距離 K_1K_2 は $\sqrt{$ である。

数学Ⅱ

第4間 (配点 20)

a, b, c を実数とする。x の整式 P(x) を

$$P(x) = x^3 + (a-4)x^2 + cx - a^2$$

とし、P(x) は x-a で割り切れ、その商は $x^2+2bx+a$ であるとする。このとき、b と c は a を用いて

$$b=a-$$
ア, $c=$ イウ a^2+ エ a

と表される。

(1) 3次方程式 P(x) = 0 が異なる三つの実数解をもつような a の値の範囲は

$$a < \boxed{1}$$
, $\boxed{1}$, $\boxed{2}$

である。

(数学Ⅱ 第4問は次ページに続く。)

(2) 3次方程式 P(x) = 0 の三つの解を α , β , γ とする。 α , β , γ が

$$25\left(\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}\right) + 7\left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}\right) = 6$$

を満たすとき、aの値と方程式 P(x) = 0 の三つの解を求めると

$$a=$$
 ケコ のとき $x=$ ケコ , サ \pm シ $\sqrt{$ ス

$$a = \begin{array}{|c|c|c|c|c|} \hline \textbf{z} \\ \hline \textbf{y} \\ \hline \end{array} \mathcal{O} \, \& \, \& \, x = \begin{array}{|c|c|c|c|} \hline \textbf{z} \\ \hline \end{matrix} \, , \quad \begin{array}{|c|c|c|c|} \hline \textbf{gf} & \pm & \textbf{y} & i \\ \hline \hline \end{matrix} \, .$$

$$P\left(\frac{\boxed{\cancel{\cancel{9}}} + \boxed{\cancel{\cancel{9}}} i}{\boxed{\cancel{\cancel{7}}}}\right) = \frac{\boxed{\cancel{\cancel{5}}}}{\boxed{\boxed{\cancel{\cancel{5}}}}} \left(\boxed{\cancel{\cancel{\cancel{5}}}} - i\right)$$

である。

(下書き用紙)

数学Ⅱ·数学B

問題	選択方法
第1問	必答
第2問	必答
第3問	
第4問	いずれか2問を選択し,
第5問	解答しなさい。
第6問	

数学 \mathbf{II} ・数学 \mathbf{B} (注) この科目には、選択問題があります。(13ページ参照。)

第 1 問 (必答問題) (配点 30)

[1] x の関数 f(x) を

$$f(x) = \sin x + 2\cos 2x + 3$$

とする。

(1)
$$f(0) = \boxed{\mathcal{P}}, \quad f\left(\frac{\pi}{2}\right) = \boxed{1}$$

である。

(2)
$$\cos 2x = \boxed{7} - \boxed{1} \sin^2 x \qquad \cdots (*)$$

を用いて f(x) は

と変形できる。

(数学Ⅱ・数学B 第1問 は次ページに続く。)

- (3) $0 \le x < 6\pi$ において,x の方程式 $f(x) = f\left(\frac{\pi}{2}\right)$ を満たす x の値は全部で **ク** 個ある。
- (4) $0 < x < \pi$ において,x の方程式 f(x) = f(0) を満たす x の値は 2 個ある。 そのうちの小さい方を α ,大きい方を β とする。

シ に当てはまるものを,次の**⑩~②**のうちから一つ選べ。

0 < 0 = 2 >

また、 $n\beta > 5\pi$ を満たす最小の自然数 n は \Box である。

(数学Ⅱ・数学B 第1問は次ページに続く。)

数学Ⅱ・数学B

〔2〕 二つの不等式

$$\log_2(x-1) \le 3\log_8(7-x)$$
 ① $4^x + 4^{-x} - 5 \cdot 2^x - 5 \cdot 2^{-x} + 8 \le 0$ ②

を考える。

(1) ① において真数は正であるから、 $\boxed{\mathbf{t}} < x < \boxed{\mathbf{y}}$ が成り立つ。

よって、① を満たすxの値の範囲は $\boxed{\mathbf{9}}$ $< x \le \boxed{\mathbf{f}}$ である。

(数学Ⅱ・数学B 第1問 は次ページに続く。)

- - ② を t を用いて表すと

$$t^2 - \boxed{\overline{\tau}} t + \boxed{\rule{0mm}{3mm}} \le 0$$

となる。

(3) ① かつ ② を満たす x の値の範囲は

$$\boxed{ + \sqrt{3}} < x \le \log_2 \frac{\boxed{1} + \sqrt{3}}{\boxed{3}}$$

である。

数学Ⅱ·数学B

第 2 問 (必答問題) (配点 30)

a, b を実数とし, x の関数 f(x), g(x) を

$$f(x) = x^3 - 4x^2 + 5x - 1$$

$$q(x) = x^3 - ax^2 + bx + 1$$

とする。

関数 f(x) の導関数 f'(x) は

$$f'(x) = \boxed{P} x^2 - \boxed{1} x + \boxed{\dot{7}}$$

であるから、関数 f(x) は

$$x = \begin{bmatrix} \mathbf{T} \\ \end{bmatrix}$$
 のとき、極大値 $\begin{bmatrix} \mathbf{J} \\ \end{bmatrix}$

をとる。

また, 関数 g(x) の導関数 g'(x) は

である。

曲線 y = f(x) および y = g(x) をそれぞれ C_1 , C_2 とする。曲線 C_2 が

$$b = a - \Box$$

である。さらに、点 A における曲線 C_2 の接線の傾きが -1 であるとき

$$a = \boxed{}, \quad b = \boxed{}$$

である。

以下、a= $\boxed{}$ サ 、b= $\boxed{}$ とし、このときの点 A における曲線 C_2 の接線を ℓ とする。

(数学Ⅱ・数学B 第 2 問 は次ページに続く。)

- (2) k を正の実数とし、放物線 $y=-kx^2+2k^3x+2$ を D とする。 放物線 D と直線 ℓ の交点の x 座標は

タ と チ
$$k^2 + \frac{y}{k}$$

であり、
$$\int k^2 + \frac{y}{k} > 1$$
 が成り立つ。

放物線 D, 直線 ℓ と直線 x=1 の三つで囲まれた二つの部分のうち, $x \le 1$ の部分の面積を S(k) とすると

$$S(k) = k^3 - \frac{\boxed{\tau}}{\boxed{\ \ }}k + \frac{\boxed{\ \ }}{\boxed{\ \ }}$$

であり、k が k>0 の範囲を動くとき、S(k) は $k=\frac{\boxed{\hspace{1cm} extbf{y}}}{\boxed{\hspace{1cm} extbf{x}}}$ において最小値

| <u>|</u> ノハ | をとる。

数学 Π ・数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

(1) 数列 {a_n} は

$$a_1 = 1$$

$$a_{n+1} - a_n = 3$$
 $(n = 1, 2, 3, \cdots)$

を満たすとする。数列 $\{a_n\}$ の一般項は

$$a_n = \boxed{7} n - \boxed{1} (n = 1, 2, 3, \cdots)$$

である。また

である。

 $\sum_{k=1}^{n} a_k \le 1000$ を満たす最大の自然数 n は **キク** である。

(数学Ⅱ・数学B 第 3 問 は次ページに続く。)

(2) 数列 $\{b_n\}$ の初項から第 n 項までの和を S_n とするとき

$$S_n = 2^n \quad (n = 1, 2, 3, \cdots)$$

であるとする。 $b_1 = \boxed{\mathbf{f}}$ であり、 $n \ge 2$ のとき

$$b_n = \Box$$

である。また

$$\sum_{k=1}^{n} \frac{1}{b_k} = \frac{\boxed{\flat}}{\boxed{\gimel}} - \left(\frac{\boxed{t}}{\boxed{\jmath}}\right) \boxed{\cancel{\flat}} \quad (n = 1, 2, 3, \cdots)$$

うちから一つずつ選べ。同じものを繰り返し選んでもよい。

- $(0) \quad n-2 \qquad (1) \quad n-1 \qquad (2) \quad n \qquad (3) \quad n+1 \qquad (4) \quad n+2$

(3) 数列 $\{a_n\}$, $\{b_n\}$ はそれぞれ (1), (2) で定めたものとする。

数列 $\{a_n\}$ から,数列 $\{b_n\}$ に現れる項を除き,小さいものから順に並べてでき る数列を $\{c_n\}$ とする。

である。

 $\sum_{k=1}^{n} c_k \leq 1000$ を満たす最大の自然数 n を m とすると $m = \boxed{ 1 }$ のあり

である。

数学 Π ・数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 4 間 (選択問題) (配点 20)

平面上に三角形 OAB があり

$$|\overrightarrow{OA}| = 2$$
, $|\overrightarrow{OB}| = 3$, $\cos \angle AOB = \frac{1}{3}$

であるとする。

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \boxed{7}, |\overrightarrow{AB}| = \boxed{1}$$

である。

k を実数とし、直線 MB 上に点 P を $\overrightarrow{MP} = k\overrightarrow{MB}$ となるようにとる。

$$\overrightarrow{OP} = \frac{\boxed{\cancel{T} - k}}{\boxed{\cancel{D}}} \overrightarrow{OA} + k \overrightarrow{OB}$$

であり

$$|\overrightarrow{\mathrm{OP}}|^2 = \boxed{ + } k^2 + \boxed{ } \mathcal{D}$$

となる。

また,
$$|\overrightarrow{\mathrm{OP}}| = |\overrightarrow{\mathrm{BP}}|$$
 のとき $k = \frac{\mathsf{f}}{\boxed{\mathtt{J}}}$ である。

(数学Ⅱ・数学B第4問は次ページに続く。)

- (1) 直線 AP と直線 OB の交点を C とすると $\overrightarrow{OC} = \frac{\overrightarrow{\triangleright A}}{\boxed{\forall 2}} \overrightarrow{OB}$ となる。

数学 Π ・数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。」

第5間 (選択問題) (配点 20)

次の表は、K高校のあるクラスの 10 人について、テスト X, Y, Z, W の得点をまとめたものである。X と Y のテストは全員が受け、Z と W のテストはどちらか一方を選択して受けた。X, Y, Z, W の得点をそれぞれ変量 x, y, z, w で表す。ただし、得点は整数値をとるものとする。

番号	X	у	Z	w
1	70	71	63	
2	50	69	75	
3	62	66	56	
4	72	53	62	
5	65	60		64
6	80	В		81
7	55	74		61
8	75	С		72
9	59	64		57
10	62	64		49
平均值	А	64.0	64.0	64.0
分散	77.8	D	47.5	106.0

以下,小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入し,解答せよ。途中で割り切れた場合,指定された桁まで①にマークすること。

(数学Ⅱ・数学B 第5問 は次ページに続く。)

- (1) 変量 *x* の平均値 A は **アイ**. **ウ** 点であり、変量 *x* の中央値は **エオ**. **カ** 点である。
- (2) 表中のBとCの値について

である。さらに、 $\mathbf{B} - \mathbf{C} = 3$ となるとき、 \mathbf{B} の値は コサ 点であり、このとき の変量 y の分散 \mathbf{D} の値は $\boxed{\mathbf{>}\mathbf{Z}}$. $\boxed{\mathbf{t}}$ である。

以下では**,** B = コサ とする。

(数学Ⅱ・数学B 第 5 問 は次ページに続く。)

数学Ⅱ·数学B

(3) 変量 x, 変量 y の平均値をそれぞれ \overline{x} , \overline{y} で表し, $s = x - \overline{x}$, $t = y - \overline{y}$ とおく。変量 s と変量 t の相関図(散布図)として適切なものは \boxed{y} であり,変量 s と変量 t の相関係数の値はおよそ \boxed{g} である。

ソ に当てはまるものを,次の**∅~③**のうちから一つ選べ。

(数学Ⅱ・数学B 第5問 は次ページに続く。)

タ	に当てはまるものを,	次の0~5のうちから一つ選べ。
---	------------	-----------------

- $\bigcirc 0 \quad -1.2 \quad \bigcirc 0 \quad -0.62 \quad \bigcirc 2 \quad -0.12 \quad \bigcirc 0.12 \quad \bigcirc 0.62 \quad \bigcirc 0.62 \quad \bigcirc 0.12$
- (4) 後日,番号 5 の生徒が選択して受けていたテストはW ではなくZ であることが判明し,得点表の修正を行った。修正後の変量z の平均値は $\boxed{$ チツ. $\boxed{$ テ 点であり,分散は $\boxed{$ トナ. $\boxed{ }$ こ である。

数学 $II \cdot$ 数学B 第3問~第6問は、いずれか2問を選択し、解答しなさい。

第6間 (選択問題) (配点 20)

次の規則で定まる数の列を考える。

$$a(1)=1$$
, $a(2)=2$, $a(n+2)=a(n)+a(n+1)$ $(n=1,2,3,\cdots)$ はじめのいくつかを書き並べると次のようになる。

1, 2, 3, 5, 8, 13, 21, 34, ···

(1) 自然数 N を与えたときに、この数の列に現れる N を超えない最大の整数を求めるために、次のような[プログラム]を作成した。

[プログラム]

- 100 INPUT PROMPT "N=": N
- 110 LET A=1
- 120 LET B=2
- 130 IF N=1 THEN
- 140 PRINT N
- 150 GOTO ア
- 160 END IF
- 170 LET C=A+B
- 180 IF 1 THEN
- 190 PRINT ウ
- 200 GOTO 250
- 210 END IF
- 220 LET A=B
- 230 LET B=C
- 240 GOTO 170
- 250 END

(数学Ⅱ・数学B 第 6 問 は次ページに続く。)

C>=N

① 170 ① 180 ② 220 ③ 250	
(a) 110 (b) 100 (c) 120 (d) 1200	
イ に当てはまるものを、次の ◎~④ のうちから一つ選べ	0
(i) C<=N (2) C=N (3) C>N	4

 $rac{7}{7}$ に当てはまるものを、次の $rac{1}{9}$ のうちから一つ選べ。

ウ に当てはまるものを**,**次の**⑩~③**のうちから一つ選べ。

① A ① B ② C-1 ③ C

[プログラム] を実行し、変数 N に 100 を入力したとき、170 行は **エ** 回実行され、190 行で出力される値は **オカ** である。

(数学Ⅱ・数学B第6問は次ページに続く。)

数学Ⅱ·数学B

- (2) 自然数 N に対して,この数の列に現れる N を超えない最大の整数を L とする。 以下の (r) ~ (r) の作業を行う。
 - (r) N に対して、L を求める。
 - (H) N > L ならば、L を出力し、N L を改めて N とし、(R) に戻る。
 - (ウ) N = L ならば、L を出力して作業を終了する。

上の作業により出力された数の和は、最初に与えられた N と等しくなる。 自然数 N を入力し、上の作業を実現するプログラムを作成するためには、〔プログラム〕の 190 行と 200 行の間に、次の 191 行~195 行を追加すればよい。

191 LET R= キ
192 IF R ク 0 THEN
193 LET N=R
194 GOTO ケ
195 END IF

(数学Ⅱ・数学B 第 6 問 は次ページに続く。)

L	キ	に当て	はま	るもの)を,	次の	/) (() ~	- (3) ())	うち	から	一つ	選べ	0			
0	N-A	(1) N	-В	2)	N-C		3	N-1						
	ク	に当て	はま	るもの)を,	次の	D () ~	4 0	うち	から	一つ	選べ	. o			
0	<	(1) <:	=	2)	=		3	>		(4	>=		
	ケ	に当て	はま	るもの)を,	次の	D () ~	3 の	うち	から	一つ	選べ	c _o			
0	110	(1) 13	30	2)	170		3	180						
巭	変更後6	の 〔プロ	グラ	ム〕を	実行	し,	変数	女Nに	200	を入	力した	たと	き,	170 行は	コサ	
回美	≷行さ∤	1, 出力	りは順	頁に												
		シスセ]													
		ソタ														
		チ														

となる。

II 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例 \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} と答えたいとき

なお,同一の問題文中に \mathbb{P} , \mathbb{C} などが 2 度以上現れる場合, 2 度目以降は, \mathbb{C} ア , \mathbb{C} のように細字で表記します。

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

また, それ以上約分できない形で答えなさい。

例えば, $\frac{3}{4}$, $\frac{2a+1}{3}$ と答えるところを, $\frac{6}{8}$, $\frac{4a+2}{6}$ のように答えてはいけませ

4 根号を含む形で解答する場合は、根号の中に現れる自然数が最小となる形で答えなさい。

例えば、 $4\sqrt{2}$ 、 $\frac{\sqrt{13}}{2}$ 、 $6\sqrt{2a}$ と答えるところを、 $2\sqrt{8}$ 、 $\frac{\sqrt{52}}{4}$ 、 $3\sqrt{8a}$ のように答えてはいけません。

問題を解く際には、「問題」冊子にも必ず自分の解答を記録し、試験終了後に配付される「学習の手引き」にそって自己採点し、再確認しなさい。