Amateur Pulsar Detection

Using the RTL2832U DVB-T

and a 3m Dish

Peter East, with assistance from Guillermo Gancio, Michiel Klaassen and Steve Olney

Introduction

- Background
- Why RTL SDR?
- RTL Radio Telescope
- Detecting Pulsars
- Challenges
- Improving Chances
- Conclusions

Amateur pulsar detection?

The Plan

Beg real Data from Experts
Write some software, check SNR
Understand Radio Telescope Performance
Scale the System Parameters
Try it out

RTL2832U USB Dongle

- The RTL2832U is a 'high-performance' DVB-T (Digital Video Broadcasting Terrestrial) demodulator with a USB 2.0 interface.
- It outputs 8-bit I/Q-samples at bandwidths up to 2.4MHz and tunes over 25-1800MHz

RTL Pulsar Radio Telescope

Available Software

Testing: SDR# + Zadig Driver

from: sdrsharp.com

Data: Osmocom rtl tools rtl sdr.exe

from: sdr.osmocom.org

Folding: rapulsar2.exe

from: y1pwe.co.uk/RAProgs

Display: Excel/MathCad

Professional: Tempo, Presto, Sigproc

from: pulsarastronomy.net

Digital SDR Features

- RTL SDR is cheap, but can be better
- Data recording + post-processing
- Radiometer Equation:

$$\Delta T = Tsys/\sqrt{(BT/N)}$$

Comparison of H-Line and Pulsar Detection

H-Line	Pulsar			
100°K cloud 5° x 5° say	4°K	Point Source 25Jy Peak	4°K	
25° BW Yagi	0.5m 100sec	Large Dish	30m 100sec	
100°K Tsys	0.16 °K	100°K Tsys	0.071 °K	
512pt FFT	400,000	100bin Fold	140	
2MHz RF RTL	SNR 25	2MHz RF RTL	SNR 56	

RTL Detected Pulsar Data

Detection Process

Within the pulsar pulse:

```
The receiver noise = k(Tpul + Tsys)B
```

and outside = k(Tsys)B

Tpul and Tsys are the pulsar and system noise temperatures.

k is Boltzsmann's Constant, B the RF bandwidth Squaring the I and Q components (square-law detection) results in both AC (α BBv) and DC (α B²) components.

Folding

- * Pulse adds linearly
- * Noise adds as square root
- * SNR improves as $\sqrt{\text{No. Folds}}$

$$SNR = \sqrt{(BT/N)} \times Tp/Tsys$$

- * Optimum No. bins = Period/Pwidth
- * Highly tuned period filter

Data Processing – DOS cmd.exe

OsmoCom rtlsdr library & capture tool: 'rtl_sdr.exe'.
The capture tool generates files containing raw IQ ADC data from the dongle in hex form (viewing software: 'hexdump.exe').

rtl_sdr ./data.bin -f 1420e6 -g 42 -n 1e9

rapulsar2.exe processes this to carry out folding.

- It breaks data into blocks equal in time to the pulsar period
- Sums the blocks.
- Outputs a text file that can be viewed in Excel or Math CAD.

rapulsar2 data.bin data.txt 100 89.39

Vela Pulsar B0833-45

Amateur Pulsar Detection Systems

Pulsar	30m	3.0m	3.0m	3.0m
25Jy Peak	2MHz RF 4°K	2MHz RF 0.04°K	10Mhz RF 0.04°K	
30m Dish	500sec	10800sec	3600sec	1800sec 50°K Tsys
110°K Tsys	0.035 °K	0.0075 °K	0.0058 °K	0.0037 °K
100bin Fold	SNR 114	SNR 5.3	SNR 7	SNR 11

Quad RTL Rx

Homemade Software www.y1pwe.co.uk

- Rapulsar2.exe period folding
- Pdetect2.exe square-law video detection
- Rafft2.exe RF spectrum analysis
- Pafft2.exe video spectrum analysis
- Amp_sts2.exe ADC utilisation
- Filetrim2.exe file trimming
- RFImit.exe RFI spectral line blanking
- Pdetfilt2.exe Video spectrum blanking
- De-dispers2Co.exe de-dispersion

Digital De-dispersion

PSR B0329+24

Challenges

- RF Interference RF and Video
- Weak Signals Folding process can find peaks in noise
- Validating Real Detections

Vela Video Spectrum

pafft2 500.bin 500.txt 2 1 8192

Data Source (30m): Guillermo Gancio

Vela Individual Pulses

Data Source (30m): Guillermo Gancio

RFI – 400MHz (Sydney)

RF Spectrum

Video Spectrum

Video Timebase

Data Source (3m): Steve Olney

False Vela

Folding period = $2 \times 89.39 \text{ms}$ Arrowed period = 89.39 msSNR ~ 7

Data Source (3m): Steve Olney

Improvements

- Lower Tsys direct SNR improvement
- RFI Mitigation
- Quad RTL \(\sqrt{4} \) improvement
- Longer Data Records
- Rubidium/GPS locking multiple sessions

Conclusion

- Amateur Pulsar Detection with a 3m Dish is possible but not easy
- Inexpensive Receiver
- Freely Available Acquisition and Processing Software
- Find a friend with a BIG DISH