T951-09: Sistemas Inteligentes

Prof. Bruno Lopes bruno.lopes@unifor.br

Trabalho Prático - Perceptron de Múltiplas Camadas - Classificação de Padrões

No processamento de bebidas, a aplicação de um determinado conservante é feita em função da combinação de quatro variáveis por \mathbf{x}_1 (teor de água), \mathbf{x}_2 (grau de acidez), \mathbf{x}_3 (temperatura), \mathbf{x}_4 (tensão interfacial). Sabe-se que existem apenas três tipos de conservantes que podem ser aplicados, os quais são definidos por A, B e C. Em seguida realizam-se ensaios em laboratório a fim de especificar qual tipo deve ser aplicado em uma bebida específica.

A partir de 148 ensaios executados em laboratório, a equipe de engenheiros e cientistas resolveu aplicar uma rede *Perceptron de Múltiplas Camadas (PMC)* como classificadora de padrões, visando identificar qual tipo de conservantes seria introduzido em determinado lote de bebidas. Por questões operacionais da própria linha de produção, utiliza-se-á aqui uma rede Perceptron com três saídas, conforme configuração apresentada na Figura 1.

Figura 1 - Topologia da PMC

A padronização para a saída, a qual representa o conservante a ser aplicado, ficou definida de acordo com a Tabela 1.

Tipo de Conservante	\mathbf{y}_1	\mathbf{y}_2	y_3	
Tipo A	1	0	0	
Тіро В	0	1	0	
Tipo C	0	0	1	

Tabela 1 - Padronização das saídas da rede *PMC*

Utilizando os dados de treinamento em anexo a este documento, execute então o treinamento de uma rede PMC (quatro entradas e três saídas) que possa classificar, em função apenas dos valores medidos de x_1 , x_2 , x_3 e x_4 , qual tipo de conservante que pode ser aplicado em determinada bebida. Para tanto faça as seguintes atividades:

- Execute o treinamento da rede *PMC*, por meio do algoritmo de aprendizado backpropagation, inicializando-se às matrizes de pesos com valores aleatórios apropriados. Utilize a função de ativação logística (sigmóide) para todos os neurônios, com a taxa de aprendizado {η} de 0.1 e precisão {ϵ} de 10-6.
- 2. Trace o gráfico dos valores de erro quadrático médio $\{E_{M}\}$ em função de cada época de treinamento.

3. Dado que o problema se configura como um típico processo de classificação de padrões, implemente então a rotina que faz o pós-processamento das saídas fornecidas pela rede (valores reais) para números inteiros. Como sugestão, adote o critério de arredondamento simétrico, isto é:

$$y_i^{pos} = \begin{cases} 1, & se \ y_i \ge 0.5 \\ 0, & se \ y_i < 0.5 \end{cases}$$

4. Faça a validação aplicando o conjunto de teste em anexo. Forneça a taxa de acertos (%) entre os valores desejados frente àquelas respostas fornecidas pela rede (após o pós-processamento) em relação a todos os padrões de teste.

Amostra	x ₁	x ₂	x ₃	X ₄	\mathbf{d}_1	\mathbf{d}_2	\mathbf{d}_3	y ₁ ^{pos}	y ₂ ^{pos}	y ₃ ^{pos}
1	0,8622	0,7101	0,6236	0,7894	0	0	1			
2	0,2741	0,1552	0,1333	0,1516	1	0	0			
3	0,6772	0,8516	0,6543	0,7573	0	0	1			
4	0,2178	0,5039	0,6415	0,5039	0	1	0			
5	0,726	0,75	0,7007	0,4953	0	0	1			
6	0,2473	0,2941	0,4248	0,3087	1	0	0			
7	0,5682	0,5683	0,5054	0,4426	0	1	0			
8	0,6566	0,6715	0,4952	0,3951	0	1	0			
9	0,0705	0,4717	0,2921	0,2954	1	0	0			
10	0,1187	0,2568	0,314	0,3037	1	0	0			
11	0,5673	0,7011	0,4083	0,5552	0	1	0			
12	0,3164	0,2251	0,3526	0,256	1	0	0			
13	0,7884	0,9568	0,6825	0,6398	0	0	1			
14	0,9633	0,785	0,6777	0,6059	0	0	1			
15	0,7739	0,8505	0,7934	0,6626	0	0	1			
16	0,4219	0,4136	0,1408	0,094	1	0	0			
17	0,6616	0,4365	0,6597	0,8129	0	0	1			
18	0,7325	0,4761	0,3888	0,5683	0	1	0			
Total de acertos(%)										