EE 779 Advanced Topics in Signal Processing Assignment 2

Assigned: 24/08/16, Due: 1/09/16 Indian Institute of Technology Bombay

Note

- Submit the starred (*) problems and all simulations.
- For the simulation problems, you can use the Matlab functions provided by S & M [1] or Hayes [2]. A copy of the files is in moodle.

Problems

1. [*] The estimated autocorrelation sequence of a random process x(n) is

$$r_x(k) = 2, 1, 1, 0.5, 0$$
; for lags $k = 0, 1, 2, 3, 4$;

Estimate the power spectrum of x(n) for each of the following cases.

- (a) x(n) is an AR(2) process.
- (b) x(n) is an MA(2) process.
- (c) x(n) is an ARMA(1,1) process.

Note: Take a look at a short reference from Hayes in moodle (or) refer to page number 191 in Hayes book, for one way to solve the ARMA process.

2. Given the autocorrelation sequence

$$r_x(k) = 1, 0.8, 0.5, 0.1$$
; for lags $k = 0, 1, 2, 3$;

find the reflection coefficients, Γ_j , the model parameters, $a_j(k)$ and the modeling errors, ϵ_j , for j = 1, 2, 3. Use Levinson Durbin's algorithm.

- 3. [*] Determine whether the following statements are True or False. Justify.
 - (a) If $r_x(k)$ is an autocorrelation sequence with $r_x(k) = 0$ for |k| > p, then $\Gamma_k = 0$ for |k| > p.
 - (b) Given an autocorrelation sequence, $r_x(k)$ for $k = 0, \dots, p$, if the $(p+1) \times (p+1)$ Toeplitz matrix

$$\mathbf{R}_{p} = Toep\{r_{x}(0), r_{x}(1), \dots, r_{p}(p)\}\$$

is positive definite, then

$$\mathbf{r}_x = [r_x(0), r_x(1), \dots, r_x(p), 0, 0, \dots]^T$$

will always be a valid autocorrelation sequence, i.e., extending $r_x(k)$ with zeros is a valid autocorrelation extension. Note: A Toeplitz matrix is described by one of its column or row.

- (c) If $r_x(k)$ is periodic, then Γ_i will be periodic with the same period.
- 4. A random process may be classified in terms of the properties of the prediction error sequence ϵ_k that is produced when fitting an all-pole model to the process. Listed below are different classifications for the error sequence:
 - (a) $\epsilon_k = c > 0$ for all $k \ge 0$.
 - (b) $\epsilon_k = c > 0$ for all $k \ge k_0$ for some $k_0 > 0$.
 - (c) $\epsilon_k \to c$ as $k \to \infty$ where c > 0.
 - (d) $\epsilon_k \to 0 \text{ as } k \to \infty$

(e) $\epsilon = 0$ for all $k \ge k_0$ for some $k_0 > 0$.

For each of these classifications, describe as completely as possible the characteristics that may be attributed to the process and its power spectrum.

5. [*] Estimates are made of the correlation function of a particular signal and the values obtained are: $r_x(0) = 7.24, r_x(1) = 3.6$. Determine the parameters of the MA(1) model:

$$H(z) = b_0 + b_1 z^{-1},$$

which matches these correlation values using:

- (a) Direct solution of the Yule-Walker MA equations.
- (b) By spectral factorization.

Sketch the power spectral estimate obtained using this MA model. Fit a AR(1) model for the given correlation data and sketch the resulting spectral estimate. Is this estimate better than that obtained using the MA model?

Reference

- 1. Petre Stoica and Randolph Moses, "Spectral analysis of signals", Prentice Hall, 2005. (Indian edition available)
- 2. Monson H. Hayes, "Statistical signal processing and modeling", Wiley India Pvt. Ltd., 2002. (Indian edition available)
- 3. Charles W. Therrien, "Discrete random signals and statistical signal processing", Charles W. Therrien, 2004.