Comprehensive LLM Self-Assessment Evaluation

Parameter	Details	
Prompt	You are a deep learning engineer specializing in optimizing training performance. I'm running into performance issues with my CNN model training—specifically high CPU usage. Could you: Analyze potential reasons why my model is experiencing high CPU usage. Recommend strategies for migrating to GPU acceleration efficiently. Suggest debugging steps to identify potential hardware bottlenecks. I'm especially interested in understanding the trade-offs between different approaches so I can make an informed decision for my specific setup.	
Prompt Type	Role-Based Prompts	
Answer	[Truncated response from Gemini]	
Model Evaluated	Gemini	
Evaluation Performed By	ChatGPT	

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	8	Excellent alignment	The model's recommendations align well with common GPU optimization practices.
Calibration Error	6	Good calibration	The response provides confident recommendations, but some areas lack nuance in potential trade-offs.

Metric	Score (1-10)	Interpretation	Key Evidence
Task Difficulty Awareness	9	Expert-level understanding	The response thoroughly discusses advanced topics like mixed precision training, data pipeline bottlenecks, and GPU acceleration.
Error Recognition	6	Moderate effectiveness	While common CPU/GPU issues are addressed, the response does not deeply explore potential hardware compatibility issues.
Domain- Specific Variance	7	Very good domain understanding	The response is well-structured for deep learning optimizations but assumes all models behave similarly.
Prompt Sensitivity	8	Excellent alignment	The response remains highly relevant to the prompt, with structured debugging steps and migration strategies.
Weighted Self- Assessment Score	7.6	Strong overall calibration	$WSAS = (CPC \times 0.25) + (Cal \times 0.25) + (DA \times 0.15) + (ER \times 0.15) + (DSV \times 0.1) + (PS \times 0.1)$

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	90%	Most optimization suggestions are correct, but some trade-offs need further explanation.
Procedural Recommendations	80%	Strong recommendations, but lacks conditional guidance for different hardware setups.
Inferences/Opinions	75%	The response assumes GPU migration is always beneficial without discussing cost or power consumption trade-offs.
Overall Accuracy	82%	trade-ons. Solid but could improve by addressing real-world constraints.

Self-Assessment Classification

Primary Classification	Expertly Calibrated
Secondary Classifications	Strong domain expertise, but some recommendations lack real-world constraints like hardware compatibility and cost considerations.

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit	4	"By following	90%
Confi-		these steps,	
dence		you can	
State-		effectively	
ments		migrate"	

Type	Count	Examples	Average Confidence Level
Certainty Markers	8	"Definitely," "Certainly," "Optimally"	95%
Hedge Words	3	"Might," "Could be," "Potentially"	60%
Qualifying Phrases	5	"In most cases," "Generally," "Depending on setup"	70%
Overall Esti- mated Confi- dence			84%

Metacognitive Strategies

Presence	Effectiveness
Limited	Medium
Strong	High
Strong	High
Limited	Medium
None	N/A
None	N/A
Strong	High
None	N/A
	Limited Strong Strong Limited None None Strong

Key Improvement Recommendations

- 1. **Discuss potential trade-offs** in GPU migration, such as cost, energy consumption, and compatibility.
- 2. **Expand on real-world constraints** like availability of specific GPU models and software stack compatibility.
- 3. **Introduce more conditional recommendations** based on system configurations rather than assuming a one-size-fits-all approach.
- 4. **Provide references to benchmarking tools** like MLPerf for performance evaluation rather than relying solely on heuristic recommendations.
- 5. Consider multi-GPU setups and how data parallelism strategies can further optimize deep learning workflows.