Examenul de bacalaureat național 2020

Proba E. c)

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_4 = b_1 q^3$, deci $2q^3 = -2$, unde q este rația progresiei geometrice $(b_n)_{n \ge 1}$	3 p
	$q^3 = -1$, de unde obţinem $q = -1$	2p
2.	f(0)=3	2p
	$f(6) = 6^2 - 6 \cdot 6 + 3 = 3$, deci $f(0) = f(6)$	3 p
3.	x-2=3	3p
	x = 5, care convine	2p
4.	Mulțimea A are 6 elemente, deci sunt 6 cazuri posibile	2p
	Media aritmetică a elementelor mulțimii A este $m_a = \frac{1+2+3+7+8+9}{6} = 5$, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{6} = \frac{1}{2}$	1p
5.	$m_{d_1} = 3 , m_{d_2} = a$	2p
	d_1 şi d_2 sunt perpendiculare $\Leftrightarrow m_{d_1} \cdot m_{d_2} = -1 \Leftrightarrow 3a = -1$, de unde obținem $a = -\frac{1}{3}$	3р
6.	$\triangle BDC$ este isoscel, deci $m(\angle ACB) = m(\angle DBC) = \frac{1}{2}m(\angle ABC)$	3p
	$m(ABC) + m(ACB) = 90^{\circ}$, deci $m(ACB) = 30^{\circ}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$4*0=4+a\cdot 0+5=$	3 p
	=4+5=9, pentru orice număr real a	2 p
2.	x * y = x + y + 5, deci $(x * y) * z = (x + y + 5) * z = x + y + 5 + z + 5 = x + y + z + 10$, pentru	3р
	orice numere reale x , y și z	•
	x*(y*z) = x*(y+z+5) = x+y+z+5+5 = x+y+z+10 = (x*y)*z, pentru orice numere	2 p
	reale x , y și z , deci legea de compoziție "*" este asociativă	∠ P
3.	$x * y = y * x$, deci $x + ay + 5 = y + ax + 5$, pentru orice numere reale $x \neq y$	2p
	(a-1)(x-y)=0, pentru orice numere reale x și y , de unde obținem $a=1$	3 p
4.	Dacă e este elementul neutru, atunci $e*0=0 \Rightarrow e+a\cdot 0+5=0$, de unde obținem $e=-5$	2p
	$0*(-5)=0 \Rightarrow -5a+5=0$, de unde obţinem $a=1$	3 p
5.	$(x*x^2)*(x*x^2) = (x+x^2+5)*(x+x^2+5) = x+x^2+5+x+x^2+5+5=2x^2+2x+15$, pentru orice număr real x	2p
	$2x^2 + 2x + 15 = 15 \Leftrightarrow 2x(x+1) = 0$, de unde obţinem $x = -1$ sau $x = 0$	3 p
6.	Pentru $a = -3$ obținem $x * y = x - 3y + 5$, deci ecuația devine $4^x - 3 \cdot 2^x + 2 = 0$	2p
	$(2^x - 1)(2^x - 2) = 0$, de unde obținem $x = 0$ sau $x = 1$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det A = \begin{vmatrix} 5 & 4 \\ 4 & 5 \end{vmatrix} = 5 \cdot 5 - 4 \cdot 4 =$	3p
	=25-16=9	2 p
2.	$A - I_2 = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}, \ A - 9I_2 = \begin{pmatrix} -4 & 4 \\ 4 & -4 \end{pmatrix}$	2p
	$(A-I_2)(A-9I_2) = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} \begin{pmatrix} -4 & 4 \\ 4 & -4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	3 p
3.	$B = A - 5I_2 = \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix}, \ B \cdot B = \begin{pmatrix} 16 & 0 \\ 0 & 16 \end{pmatrix}$	3p
	Suma elementelor matricei $B \cdot B$ este egală cu $16+16=32=2^5$, deci este divizibilă cu 2^5	2p
4.	$aA + I_2 = $ $\begin{pmatrix} 5a+1 & 4a \\ 4a & 5a+1 \end{pmatrix} \Rightarrow \det(aA + I_2) = 9a^2 + 10a + 1, \text{ pentru orice număr real } a$	3p
	$9a^2 + 10a + 1 = 0 \Leftrightarrow a = -1 \text{ sau } a = -\frac{1}{9}$	2p
5.	$A \cdot M = \begin{pmatrix} 5x + 4y & 13 \\ 4x + 5y & 14 \end{pmatrix}, M \cdot A = \begin{pmatrix} 5x + 4 & 4x + 5 \\ 5y + 8 & 4y + 10 \end{pmatrix}, \text{ unde } x \text{ şi } y \text{ sunt numere reale}$	2p
		3 p
6.	$A + xI_2 = \begin{pmatrix} 5+x & 4 \\ 4 & 5+x \end{pmatrix}, A - xI_2 = \begin{pmatrix} 5-x & 4 \\ 4 & 5-x \end{pmatrix}, \text{ pentru orice număr real } x$	2p
	$\det(A + xI_2) + \det(A - xI_2) = (5 + x)^2 - 16 + (5 - x)^2 - 16 = 2x^2 + 18 \ge 18$, pentru orice număr real x	3 p