Machine, Data and Learning

Decision Theory

(How to make decisions)

Decision Theory

= Probability theory + Utility Theory (deals with chance) + (deals with outcomes)

Fundamental idea:

- The **MEU** (Maximum expected utility) principle
- Agent is rational if and only if it chooses the action that yields the highest expected utility, averaged over all possible outcomes of the action
- Weigh the utility of each outcome by the probability that it occurs

Revisiting Romania example

- If plan1 and plan2 are the two plans:
 - Plan 1 uses route 1
 - P(home-early|plan1) = .8, while P(stuck1|plan1) = .2
 - Route 1 will be quick if flowing, but stuck for 1 hour if slow
 - \triangleright U(home-early) = 100, U(stuck1) = -1000
 - ➤ Assigned numerical values to outcomes!
 - Plan 2 uses route 2
 - P(home-somewhat-early|plan2) = .7, P(stuck2|plan2) = .3
 - Route 2 will be somewhat quick if flowing, but not bad even if slow
 - \triangleright U(home-somewhat-early) = 50, U(stuck2) = -10

Application of MEU Principle

- EU(Plan1) = P(home-early | plan1) *U(home-early)
 + P(stuck1 | plan1) * U(stuck1)
 = 0.8 * 100 + 0.2 * -1000 = -120
- EU(Plan2) = P(home-somewhat-early | plan2) *U(home-somewhat-early)

EU (plan2) is higher, so choose plan2

Lottery Example

- Suppose an agent gives you a choice:
 - Choice 1: You will get \$1,000,000
 - Choice 2: The agent will toss a coin
 - If heads, then you win \$3,000,000
 - If tails, then you get nothing
- Simple expected utility calculations give:
 - EU(Choice1) = \$1,000,000
 - EU(Choice2) = \$1,500,000
- So why did we prefer the first choice?

Risk Aversion

- We are risk averse
- Our utility functions for money are as follows (!!):
 - Our first million means a lot U(\$1M) = 10
 - Second million not so much U(\$2M) = 15 (NOT 20)
 - Third million even less so U(\$3M) = 18 (NOT 30)
 - **–**
- Additional money is not buying us as much utility
- If we plot amount of money on the x-axis and utility on the y-axis,
 we get a concave curve

Answer: Risk Aversion

- EU(choice1) = U(\$1M) = 10
- EU(choice2) = 0.5*U(0) + 0.5*U(\$3M = 18) = 9
- That is why we prefer the sure \$1M

More Risk Aversion

- Key: Slope of utility function is continuously decreasing
 - We will refuse to play a monetarily fair bet
- Suppose we start with x dollars
 - We are offered a game:
 - 0.5 chance to win 1000 dollars (c = 1000)
 - 0.5 chance to lose 1000 dollars (c = 1000)
 - Expected monetary gain or loss is zero (hence monetarily fair)
 - Should be neutral to it, but seems we are not! Why?
 - U(x + c) U(x) < U(x) U(x c)
 - U(x + c) + U(x c) < 2 U(x)
 - [U(x + c) + U(x c) / 2] < U(x)
 - EU (playing the game) < EU (not playing the game)

Risk Averse, Risk Neutral Risk Seeking

RISK NEUTRAL

RISK SEEKER

Multiattribute Utility Theory

- Can we capture desirability of outcomes in a single utility function?
- Suppose renting an apartment
 - House1: closer-to-university, newer, costs 100 units
 - House2: Farther-from-university, older, costs 85 units
 - (Assume, you can afford up to 100 units)
- Outcomes characterized by two or more attributes
 - Attributes: X1, X2, ...XN, e.g., <distance-to-univ, old/new, cost>
 - Values: x1,x2...xN,
 - Closer-to-univ = 1, farther-from-univ = 0; new = 1, old = 0
 - Apartment1: <1,1,-100> Apartment2: <0,0, -85>
 - Which is a better apartment? (Pairwise comparison fails)

Multiattribute Utility Theory

- Don't get a single number, but vector of values as outcomes,
 <x,y>
- How do you compare values now?
 - Compare <1,1,-100> with <0,0, -85>
 - Compare <3,3,5> with <5,3,3>
- One approach is dominance (strict, stochastic...):
 - If you are lucky, find <3,3,3> and <3,3,5>
 - Values in one vector dominate values in the other vector

Markov Decision Process (MDP) Chapter 17: Making Complex Decisions

- Defined as a tuple: <S, A, P, R>
 - S: State
 - A: Action
 - P: Transition function
 - Table P(s' | s, a), prob of s' given action "a" in state "s"
 - R: Reward
 - R(s, a) = cost or reward of taking action a in state s
- Choose a sequence of actions (not just one action)
 - Utility based on a sequence of actions
 - Model Sequential Decision Problems

Example: What SEQUENCE of actions should our agent take?

- Agent can take action N, E, S, W
- Each action costs −1/25

MDP Tuple: <S, A, P, R>

- **S:** State of the agent on the grid
 - Ex: state (4,3)
- A: Actions of the agent, i.e., N, E, S, W
- P: Transition function
 - Table P(s' | s, a), prob of s' given action "a" in state "s"
 - E.g., P((4,3) | (3,3), N) = 0.1
 - E.g., P((3, 2) | (3,3), N) = 0.8
 - (Robot movement, uncertainty of another agent's actions,...)
- R: Reward
 - R((3,3), N) = -1/25
 - R (4,1) = +1

How Would you Solve this Problem?

- Simple search algorithm? Not deterministic
- Apply MEU to an entire sequence of actions?
 - Create multiple plans, e.g., Red plan vs. Yellow plan below
 - Choose a plan that leads to MEU

How Would you Solve this Problem?

- Apply **MEU** to an entire sequence of actions?
- Does not work because uncertainty at every step
 - E.g., After first step of Red plan, may move east not North!
 - No action specified there (I.e., in cell (2,1))
- Solution is a *Policy*
 - Complete mapping from states to actions

MDP Basics and Terminology

- Markov Assumption: Transition probabilities (and rewards) from any given state depend only on the state and not on previous history
- An agent must make a decision or control a probabilistic system
 - Goal is to choose a sequence of actions for optimality
 - Decision Epoch: Points at which decisions are made
 - Finite horizon MDPs: # of decision epochs is finite i.e. fixed time after which game ends: Time dependent policy
 - Infinite horizon MDPs: # of decision epochs is infinite i.e. Time independent policy
 - Transition model: Table of probabilities P
 - In our example, 0.8, 0.1, 0.1 transition probabilities
 - P(J | S, A): Probability of state J, given action A in State S
 - Absorbing state: Goal state

Reward Function

- Reward is assumed associated with state, action i.e. R(S, A)
 - If all actions have the same reward can use R(S)
 - We could also assume a mix of R(S,A) and R(S)
 - Will use R(S,A) as the notation
- Sometimes, reward associated with state, action, destinationstate
 - -R(S,A,J)
 - $R(S,A) = \sum R(S,A,J) * P(J \mid S,A)$

MDP Policy

- Decision Rule: Procedure to choose action in each state for a given decision epoch
 - E.g., MDP has states, S1 and S2, with actions A1, A2 in both states
 - Decision rules Di for each decision epoch "i" as shown in table below
 - Four decision rules shown, D1, D2, D3, D4, one for each epoch
 - Numbers in (..) are probabilities, e.g., 0.7, 0.3, 1.0
- Policy: Decision rule to be used at all decision epochs
 - Policy = $\{D1, D2, D3, D4\}$ (assuming finite horizon T = 4)

D1	D2	D3	D4
$S1 \rightarrow A1 (0.7)$	$S1 \rightarrow A1 (1.0)$	$S1 \rightarrow A2 (1.0)$	• • • •
\rightarrow A2 (0.3)	$S2 \rightarrow A1 (0.3)$	$S2 \rightarrow A2 (1.0)$	
$S2 \rightarrow A2 (1.0)$	→A2 (0.7)		

Stationary and Deterministic Policies

- Stationary policy implies same decision rule in every epoch
 - Stationary policy: {D, D, D, D...}
 - Non-stationary policy changes with time (e.g., D1,D2, D3...Dn)
- Deterministic policy implies choosing an action with certainty
 - **Deterministic policy:** Si \rightarrow Ai (probability 1.0)
 - Randomized policy: Probability distribution on the set of actions
- What type of a policy is the following?

D	D	D	D
$S1 \rightarrow A1 (1.0)$	S1 → A1 (1.0)	S1 → A1 (1.0)	$S1 \rightarrow A1(1.0)$
$S2 \rightarrow A2 (1.0)$	$S2 \rightarrow A2 (1.0)$	$S2 \rightarrow A2 (1.0)$	$S2 \rightarrow A2(1.0)$

Stationary and Deterministic Policies

- **Optimal** MDP policy for infinite horizon is Stationary & Deterministic policies (aka pure policy)
- Policy denoted by symbol π
- Stationary & deterministic policies denoted $\pi^{ ext{SD}}$
- Is a policy π^{SR} possible? (SR = Stationary & randomized)

Note:

- When nothing is specified regarding time horizon, assume infinite horizon
- When asked to find the policy at time horizon = 4, it means find the decision rule D4. It can also be stated as find decision rule for T = 4 or D4.
- When asked to find policy for a time horizon of 4, means find all decision rules D1, D2, D3 and D4

Pure Policies: π^{SD}

• Deterministic, non-changing mapping from states to actions $\pi((1,3)) \rightarrow \text{North}$ (non-changing, non-random) $\pi((1,2)) \rightarrow \text{North}$ $\pi((4,3)) \rightarrow \text{West.....}$

Policy

- Policy is like a plan, but not quite
 - Certainly, generated ahead of time, like a plan
- Unlike traditional plans, it is not a sequence of actions that an agent must execute
 - If there are failures in execution, agent can continue to execute a policy
- Prescribes an action for all the states
- Maximizes expected reward, rather than just reaching a goal state

Value Iteration

- Basic algorithm is very simple!
- Initialize: $U_0(I) = 0$
- Iterate:

$$U_{t+1}(I) = \max [R(I,A) + \sum_{t=1}^{\infty} P(J|I,A)^* U_{t}(J)]$$
A

-Until close-enough (U $_{t+1}$, U $_{t}$)

Dr. Richard Bellman

- •Iteration step called "Bellman update"
- Inventor of dynamic programming (1957)

Iteration #1: Cell (3,1)

• East: -1/25 + [0.8 * 1 + 0.1 * 0 + 0.1 * 0] = 0.76

• North/South: -1/25 + [0.8 * 0 + 0.1 * 1 + 0.1 * 0] = 0.06

• West: ??

• So, State (3,1) has value of 0.76

Markov Chain

Discounting

Value Iteration: Modify

- Initialize: $U_0(I) = 0$
- Iterate:

$$U_{t+1}(I) = \max [R(I,A) + \gamma \sum_{t=1}^{\infty} P(J|I,A) * U_{t}(J)]$$

- Until close-enough (U $_{t+1}$, U $_{t}$)
- At the end of iteration, calculate optimal policy:

Policy(I) = argmax [
$$R(I,A) + \gamma \sum_{t+1} P(J|I,A)* U_{t+1}(J)$$
]