

An Overview of Coding Tools in AV1

Debargha Mukherjee Google

Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Conclusion

Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Conclusion

Alliance for Open Media and AV1 Projections

Video Is Changing How Internet Tech Is Evolving

Fast advances in video compression technology is essential to cope with the ongoing explosion in Internet video

Alliance for Open Media and AV1 Founding Members

- Many companies began to see the value of a royalty-free codec ecosystem after Google's success with VP9
- AOM: Industry consortium to build royalty-free codecs formed in 2015

FOUNDING MEMBERS

Alliance for Open Media and AV1

Promoter Members

PROMOTER MEMBERS

Alliance for Open Media and AV1

- AV1 the first video codec from Alliance for Open Media
 - Goal to achieve about 30% bitrate reduction over VP9 with royalty-free technologies
- Starting point was VP9+
- Tools proposed from:
 - VP10 (Google)
 - Daala (Mozilla)
 - Thor (Cisco)
 - New tools ...

Alliance for Open Media and AV1 Workgroups

Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Conclusion

Coding tools Prediction Framework

Coding tools Partition Structure

 10-way recursive partition

Coding Tools Intra Prediction

- DC Mode
- Directional Modes
- Paeth Mode
- Smooth/Smooth_h/Smooth_v Modes
- Chroma from Luma
- Recursive Intra Filter
- Intra block copy Mode
- Palette Mode

Coding Tools Intra Prediction - Directional Modes

- 8 main extrapolation directions
- [-3, 3] x 3° angle delta is enabled
- Extended modes are realized by bi-linear interpolation of spatial references

Coding Tools

Intra Prediction - Paeth/Smooth modes

Quadratic interpolation:

SMOOTH_H: $P_{SMOOTH H} = w(x) F + (1-w(x)) D$

SMOOTH_V: $P_{SMOOTH_V} = w(y) B + (1-w(y)) H$

SMOOTH: $P_{SMOOTH} = \frac{1}{2} (P_{SMOOTH_H} + P_{SMOOTH_V})$

Paeth Mode:

 $P_{Paeth} = argmin | x - B+F-I |, over x \in \{B, F, I\}$

Coding Tools

Intra Prediction - Recursive Intra Prediction

Recursive Intra Prediction

- Predict in batches of 4x2 pixels blocks
- Apply eight 7-tap filters to get prediction for each of the 8 pixels
 - 5 sets of filters for5 modes
- Apply recursively using the predicted pixels as neighbors for adjacent blocks.

Coding Tools Intra Prediction - Chroma from Luma

- Mechanism for INTRA chroma prediction
 - Use reconstructed luma to predict chroma components

 α_{Cb} , α_{Cr} signaled in bit-stream

^{1.} Luma average computed over the luma transform block

^{2.} Chroma DC_PRED computed over prediction block

Coding Tools Intra Prediction - Intra Block Copy

- Screen content tool
- Referencing reconstructed pixels in same frame
- Wavefront reference area

Coding Tools

Intra Prediction - Palette mode

Screen content tool

Wavefront Order

0	1	3	6
2	4	7	10
5	8	11	13
9	12	14	15

Encoding process proceeds in wavefront order

Coding Tools Inter Prediction

- Expand reference frames (up to 7 / frame) used for prediction
- Dynamic Motion Vector Referencing
 - Spatial neighborhood and Temporal neighborhood candidates
- Subpel filtering
 - Dual Switchable Subpel filters
 - High intermediate precision for filtering and compounding
- Scaled Inter Prediction
- Compound Inter-Inter prediction
- Compound Inter-Intra prediction
- Overlapped Block Motion Compensation
- Affine warp
 - Global warp and Local warp

Coding Tools Inter Prediction - Dynamic MV Referencing

- MV coding
- Create an ordered list of reference motion vectors from:
 - Spatial neighbors
 - Temporal neighbors
- Separate lists for single reference and compound references

Coding Tools Inter Prediction - Coding modes (Single-ref)

- Create ranked candidate list of 4 MVs for each reference
- 4 Single-ref modes signaled

Single Reference Modes (4)

Coding Tools Inter Prediction - Coding modes (Compound-ref)

- Create ranked candidate list of 4 MVs for each reference-pair
- 8 Compound-ref modes signaled

Compound Reference Modes (8)

NEW_NEWMV (Delta sent for both first and second)

NEAR_NEARMV

GLOBAL_GLOBALMV

NEAREST_NEARESTMV

Compound Ref 1/Ref 2

[MV1, MV2] {
[MV1, MV2]

NEW_NEARESTMV, NEAREST_NEWMV

(Delta sent for either first or second)

NEAR_NEWMV, NEW_NEARMV

(Delta sent for either first or second)

Coding Tools Inter Prediction - Subpel filtering

- Dual Switchable Subpel filters
 - {SMOOTH, REGULAR, SHARP} x {SMOOTH, REGULAR, SHARP} in hor/vert directions

Coding Tools Scaled INTER Prediction

- AV1 can predict from references at different resolution (limit: ½ to 2)
- Relative pixel positions hor (vert) are the same in each row (col)
 - Implies scaling can be implemented as separable filtering where stepsizes between pixels in hor (vert) directions are same
 - Need higher precision for starting offset and steps, but the same 1/16th pel filters as in unscaled prediction can be used.

Coding Tools Compound Inter Prediction

- Compound = combine two INTER predictors
 - Average weighted
 - Distance weighted
 - Uniform weight based on distance of ref frame from current frame
 - Difference weighted
 - Weight depends on difference of two prediction values per pixel
 - Average when pixel values are close, prefer one when they are different.
 - Wedge weighted
 - Wedge codebook index provides the weights

Coding Tools

Inter Prediction - Wedge Compound Prediction

Wedge codebook:

Inter-Inter

4-bit shape

1-bit sign

5 bits total

Used for 8x8 up to 32x32 sizes

Coding Tools Inter Prediction - Wedge Weighted Compound

Coding Tools Inter-Intra Prediction tools

Coding Tools Variable block-size OBMC

- Create predictions from neighbors' MVs
- Mitigate the effect of discontinued motion field
- 2-sided causal overlapped predictor (top/left halves)
- Blend with 1-D smooth filters

Coding Tools Affine warps

- True motion is never translational
- More complex motion models have not traditionally been used in video codecs
 - Parameter cost
 - Computation complexity
- AV1
 - Introduces an efficient affine motion compensation technique

Coding Tools Affine Warps - Global and Local

- Global warp mode
 - Estimate and send affine parameters for every frame per reference
 - Invoke Global warp with GLOBALMV mode

Local warp mode

 Estimate affine parameters from neighborhood of current block

Blocks 1, 3, 4 have same reference as current block

Coding Tools Switchable Transforms

Expanded transforms

- 16 possible transform kernels
- Separable kernels where in each direction one of {DCT, ADST, FlipADST, IDTX} can be selected
- Larger transforms reduce the number of possible transforms

Coding Tools Transform Partitions

AV1 64x64, 64x32, 32x64, 64x16, 16x64 32x32, 32x16, 16x32, 32x8, 8x32 16x16, 16x8, 8x16, 16x4, 4x16 8x8, 8x4, 4x8 4x4

Coding Tools Transform Summary

Coding Tools Coeff Coding

zig-zag scan

0 1 5 6 2 4 7 12 3 8 11 13 9 10 14 15

TX coeffs

Reverse zigzag scan with moving spatial context

Encoding process

4

-1

0

aolomb code 2

(17-15) & code (-)

using context left and above dc signs

1

0

2 0

code 1 usina

context from

values in yellow

1

skip because its a 0

code 0 using context from values in yellow

code (+)

...

444

code 15+ using context from values in yellow

code (-)

Coding Tools In-loop filtering and postfilter

- AV1 pushes the envelope in in-loop filtering
 - Deblocking
 - CDEF (Constrained Directional Enhancement Filter)
 - Upscaling
 - Loop-restoration
- Also adds an out-of-loop filter
 - Film Grain Synthesis

CDEF

Frame upscaling

Loop restoration filter

Film grain synthesis

Coding Tools - CDEF In-loop filtering / postfilter - CDEF

CDEF:

- Combination of Daala Deringing filter and Cisco's Constrained Low Pass Filter
- Adapts filtering to direction of edges and patterns in an image
- Direction estimation:
 - Conducted at 8x8 level by minimizing variances along predefined lines
- Use a nonlinear directional filter
 - 5x5 support region
 - Combined Primary + Secondary filter

Coding Tools

In-loop filtering / postfilter - Loop Restoration

 Switchable restoration filter in blocks referred to as Loop-restoration unit (LRU)

Filter type and corresponding parameters

Type A: Wiener filter

Separable (horz + vert filter) 7-tap, symmetric, normalized

[~6 bits]

[~4 bits]

Coding Tools

In-loop filtering / postfilter - Loop Restoration - Wiener

- Separable Symmetric Normalized Wiener filter:
 - 7-tap horizontal and 7-tap vertical separable
 - Symmetric, Normalized
 - Decoder complexity is kept small
- Encoder:
 - Design filters s.t. when applied to a deblocked frame produces an output closer to source
 - Design:
 - Classical non-separable LMMSE design: $H = R_{xx}^{-1} R_{xy}$ not possible
 - Impose separability, symmetry, normalization
 - Iterative design for hor/vert filters

Coding Tools

In-loop filtering / postfilter - Loop Restoration - Guided

- Guided image filtering [2010]
 - Fit a local linear model considering a guide image
 - Self-guided: Guide image = Input Image
 - Can be used as an edge-preserving smoother
- Steps with parameters (*r*, *e*) in AV1:
 - Obtain mean μ and variance σ^2 of pixels in a $(2r + 1) \times (2r + 1)$ window around every pixel.
 - Compute: $f = \sigma^2/(\sigma^2 + e)$; $g = (1 f)\mu$
 - Compute F, G as average of f, g in a 3x3 area around a pixel.
 - Filter pixel value using: y = x. F + G
 - Efficient implementation: readily integerized / vectorized

Coding Tools In-loop filtering / postfilter - Loop Restoration - Guided

- Dual Self-guided filter with subspace projection in AV1:
 - \circ Filter twice: Once with (r_1, e_1) yielding X_1 , and once again with (r_2, e_2) yielding X_2
 - \circ Use weighted combination w/ weights $\{\alpha, \beta\}$ of X_1, X_2 , to get final output
 - \circ (r_1, e_1, r_2, e_2) taken from a small 4-bit codebook $(r_1 = 1; r_2 = 2);$
 - \circ { α , β } uses 7-bits each
 - ~18 total bits per RU

 X_1 and X_2 are cheap restored versions, and by themselves may not be very good; but subspace projection can yield a much better final restoration X_r . X_1 (r_1, e_1) $X_r = X + \alpha(X_1 - X) + \beta(X_2 - X)$ [Final output]

Coding Tools In-loop filtering / postfilter - Frame superresolution

- AV1 supports predicting blocks from references at different resolutions
- Loop-restoration filter can super-resolve
- Frame-superresolution depends on the above two properties
 - Only horizontal upscaling supported to control line-buffer

Coding Tools In-loop filtering / postfilter - Film Grain Synthesis

- Film-grain is hard to compress, but present in most commercial content.
 - Need to be preserved as part of creative intent
- AV1 supports film grain synthesis via a normative post-processing outside the coding loop.

Coding Tools In-loop filtering / postfilter - Film Grain Synthesis

- Generate WGN sequence
 - Generated by taking random samples from a 2048-ary predefined Gaussian noise sequence
- Generate Film-grain template
 - Filter AWGN sequence with autoregressive parameters sent in the bitstream
- For each 32x32 block:
 - Take pseudo random offsets from the Film-grain template
 - Scale based on intensity of reconstruction using piecewise Lut specified in the bitstream
 - Add scaled grain to reconstruction and clip
 - 2-line overlapped grain addition to prevent sudden changes in grain

WGN

Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Conclusion

Latest Coding Results AWCY

- www.arewecompressedyet.com
 - Official test infrastructure for AV1
 - Test set Objective-1-fast, constant quality encoding, 60 frames, resolutions 360p-1080p
- Compare VP9 vs. HEVC vs. AV1
 - VP9 tip-of-tree Oct 6, 2018, hash 4a47ef814b57d16787e6331e4ac1bd9dc093459e
 - AV1 tip-of-tree Oct 6, 2018, hash 9b21428c86af1c081ae87cc546a360eaefa8ba8a
 - HEVC X.265 hash e293b13373b72dfd88a91e196fbb595b027da3a3; HM 16.17

Latest Coding Results Constant Quality BDRATE - AWCY Objective-1-Fast

- VP9 vs. X.265 vs. AV1
 - Testset: Objective-1-Fast on <u>www.arewecompressedyet.com</u>;
 - 60 frames, single keyframe, constant quality
 - o Baseline: VP9 (libvpx); Tests: X.265 (--preset placebo --no-wpp --tune psnr), AV1 (libaom)

Codec	PSNR-Y	PSNR-HVS	SSIM	CIEDE2000	PSNR-Cb	PSNR-Cr
<u>X.265</u>	-4.04	-1.35	+7.34	+10.76	+20.51	+19.70
AV1 (cpu- used=0)	-30.16	-29.70	-30.46	-31.85	-33.01	-34.67
AV1 (cpu- used=1)	-28.75	-28.40	-29.21	-30.94	-32.76	-34.16
AV1 (cpu- used=2)	-26.10	-25.68	-26.67	-28.54	-30.61	-31.77

Latest Coding Results Constant Quality BDRATE - AWCY Objective-1-Fast

- After recent VP9 improvements with pyramid structure
- Baseline VP9* (--auto-alt-ref=5); Tests: X.265, AV1

Codec	PSNR-Y	PSNR-HVS	SSIM	CIEDE2000	PSNR-Cb	PSNR-Cr
<u>X.265</u>	-1.60	+1.92	+7.74	+10.12	+18.20	+17.21
AV1 (cpu- used=0)	-27.74	-26.88	-29.28	-31.68	-33.58	-35.25
AV1 (cpu- used=1)	-26.31	-25.55	-28.03	-30.78	-33.28	-34.76
AV1 (cpu- used=2)	-23.55	-22.69	-25.41	-28.33	-31.11	-32.31

Latest Coding Results Constant Quality BDRATE - Google testsets

- HM16.17 vs. VP9 vs. AV1
 - Testset Google's internal (Lowres, Midres, Hdres), 120 frames
 - Single keyframe, constant quality mode
 - o Baseline: HM16.17 (-ip -1 --ConformanceWindowMode=1); Tests: VP9 (libvpx), AV1 (libaom)

	Av. PSNR	SSIM		
Lowres (120 frames), VP9	+10.448%	+5.437%		
Lowres (120 frames), AV1	-19.578%	-22.703%		
Midres (120 frames), VP9	+12.215%	+7.477%		
Midres (120 frames), AV1	-19.840%	-23.015%		
Hdres (120 frames), VP9	+7.637%	+5.240%		
Hdres (120 frames), AV1	-23.979%	-26.152%		

Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Conclusion

AV1 Deployment Phases

- Codec Deployment Phases
 - o Bit-stream freeze is simply the first phase

AV1 Deployment Rollout plans in Google

AV1 Rollout plans in Google

AV1 Deployment Software speed-ups

- Early deployment of AV1 to depend on SW decode and encode
- SW Encoder speed-up
 - Encoder was very slow 6 months ago 1000x of VP9 cpu-used=0
 - Substantially faster today
 - AV1 cpu-used=0 (libaom): 40x of VP9 encode time at cpu-used=0 (libvpx)
 - AV1 cpu-used=1 (libaom): 16x of VP9 encode time at cpu-used=0 (libvpx) +1.5% PSNR
 - AV1 cpu-used=2 (libaom): 10x of VP9 encode time at cpu-used=0 (libvpx) +4.0% PSNR
 - Extensive use of machine learning based mode/partition decisions, early terminations, etc.
- SW Decoder speed-up
 - SIMD optimizations
 - Today 3.4x of VP9 decoder (single-threaded)
- Ongoing work ... more speed-ups expected by end of the year.

AV1 Deployment Quality Improvements

- Improvement in frame management
 - Better hierarchical arrangement and quality control
 - 2+% gain beyond the bit-stream freeze.
- Adaptive quantization
 - Perceptual quality improvement validated with perceptual tests
- Forward reference keyframe implementation
 - Substantial improvement in short key-frame interval scenarios for trick-play
 - 4+% improvement for 30-frame key frame interval.
- Coming:
 - o Intelligent use of superresolution mode
 - Already shows gains at low bitrate for key-frames.

Outline

- Alliance for Open Media and AV1
- Coding Tools
- Latest Coding Results
- AV1 Deployment
- Conclusion

Conclusion

- AV1 is undoubtedly the most advanced video codec in the world today
 - ~30% better than VP9, and no slower than ~3x of VP9 decoding
 - ~20% better than HEVC
- May not remain the best in a couple of years with VVC coming
 - A 2-horse race?
- Advancement in codec technology will continue
 - o AV2

Questions

Questions?