Math 395

Homework 8

Due: 4/30/2024

Name: Avinash Iyer

Collaborators:

Problem 1

Let K/F be a Galois extension with Gal(K/F) abelian of order 10. We will compute the intermediate fields between F and K, and their dimensions over F.

Since Gal(K/F) is abelian and of order 10, it must be the case that $Gal(K/F) \cong \mathbb{Z}/10\mathbb{Z}$.

The subgroups of Gal(K/F) are isomorphic to the subgroups of $\mathbb{Z}/10\mathbb{Z}$; since $10 = 2 \cdot 5$, it must be the case that $\langle 2 \rangle$, with order 5 and $\langle 5 \rangle$, with order 2, are the two proper subgroups of $\mathbb{Z}/10\mathbb{Z}$ (by Lagrange's Theorem). We will let $H_1 \leq Gal(K/F)$ be isomorphic to $\langle 2 \rangle$, and $H_2 \leq Gal(K/F)$ be isomorphic to $\langle 5 \rangle$.

Let $A = K^{H_1}$. Then, since $[\mathbb{Z}/10\mathbb{Z} : \langle 2 \rangle] = 2$, it is the case that [A : F] = 2. Similarly, for $B = K^{H_2}$, it is the case that $[\mathbb{Z}/10\mathbb{Z} : \langle 5 \rangle] = 5$, so [B : F] = 5.

Problem 3

We will find $Gal(x^4 - 5x^2 + 6)$ over \mathbb{Q} .

To start, factoring $x^4 - 5x^2 + 6$, we find it is equal to $(x^2 - 3)(x^2 - 2) = (x - \sqrt{3})(x + \sqrt{3})(x - \sqrt{2})(x + \sqrt{2})$ in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Since $x^4 - 5x^2 + 6$ is separable in $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathrm{Spl}(x^4 - 5x^2 + 6)$, it must be the case that $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension.

We know that the basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$ is $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$, meaning that for $\sigma\in \mathrm{Gal}(K/F)$, we have $\sigma(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6})+a+b\sigma(\sqrt{2})+c\sigma(\sqrt{3})+d\sigma(\sqrt{2})\sigma(\sqrt{6})$. Thus, the possible elements of $\mathrm{Gal}(K/F)$ are

$$\sigma_0 := \mathrm{id}$$

$$\sigma_1 := \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto \sqrt{3} \end{cases}$$

$$\sigma_2 := \begin{cases} \sqrt{2} \mapsto \sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases}$$

$$\sigma_3 := \begin{cases} \sqrt{2} \mapsto -\sqrt{2} \\ \sqrt{3} \mapsto -\sqrt{3} \end{cases}$$

1

Notice that $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_0$, meaning we have $Gal(K/F) \cong \mathbb{Z}/2\mathbb{Z}$.

Problem 6

We will prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of $\mathbb{Q}(\zeta_n)$ for any $n \geq 1$.

It is known that $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.