Radio Frequency Exposure Report

On Behalf of

PANODIC ELECTRIC (HONG KONG) LIMITED

FCC ID: ZU5-MC300

Product Description: Home Digital Media Center

Model No.: MC300
Supplementary Model: N/A

Prepared for: PANODIC ELECTRIC (HONG KONG) LIMITED

Unit 1703A,17/F,Nanyang Plaza,57 Hung To Road,Kwun Tong,

Kowloon, Hong Kong

Prepared by: Bontek Compliance Testing Laboratory Ltd

1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East

Road, Nanshan, Shenzhen, China

Tel: 86-755-86337020 Fax: 86-755-86337028

Report No.: BCT13CR084E-2 Issue Date: June 26, 2013

Test Date: March 27~June 26, 2013

Tested by:

Reviewed by:

Kendy Wang

Approved by:

Tơny Wu

TABLE OF CONTENTS

1 - GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 OBJECTIVE	
1.3 GENERAL DESCRIPTION OF TEST	4
1.4 HUMAN EXPOSURE ASSESSMENT RESULTS	

Report No.: BCT13CR084E-2 Page 2 of 6

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Applicant:	PANODIC ELECTRIC (HONG KONG) LIMITED	
Address of Applicant:	Unit 1703A,17/F,Nanyang Plaza,57 Hung To Road,Kwun Tong, Kowloon,Hong Kong	
Manufacturer :	PANODIC ELECTRIC(SHENZHEN) LIMITED	
Address of Manufacturer:	C.&D/bl.Zhengchangda Ind.Park,Jian'an Road, Tangwei, FuYong, Baoan Dist.,Shenzhen, China	

General Description of E.U.T

Items	Description	
EUT Description:	Home Digital Media Center	
Trade Name:	CIK	
Model No.:	MC300	
Supplementary Model:	N/A	
Frequency Band:	IEEE 802.11b/g,	
	IEEE 802.11n HT20 (ISM Band) : 2412MHz∼2462MHz,	
	IEEE 802.11n HT40 (ISM Band) : 2422MHz~2452MHz	
Channel Spacing:	IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz	
Number of Channels:	IEEE 802.11b/g, 802.11n HT20:11 Channels	
	IEEE 802.11n HT40 :7 Channels	
Transmit Data Rate:	maximum of 150Mbps	
Type of Modulation:	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)	
	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)	
	IEEE 802.11n HT20/40: OFDM (64QAM, 16QAM, QPSK, BPSK)	
Antenna Type:	Built-in Antenna	
Antenna Gain:	2.0dBi	
Power Supply:	DC12V 1.5A From Adapter	
Adapter Information:	Model:SUN-1200150	
	Input:100-240V 50/60Hz 0.6A Max	
	Output: 12VDC 1500mA	

Remark: * The test data gathered are from the production sample provided by the manufacturer.

Report No.: BCT13CR084E-2 Page 3 of 6

1.2 Objective

The objective of the following report is used to demonstrate that EUT operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the relative provisions of FCC 47CFR Part 1.1307

1.3 General Description of Test

Items	Description
EUT Frequency band	☐ FHSS: 2.400GHz ~ 2.483GHz ☐ WLAN: 2.400GHz ~ 2.483GHz ☐ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz ☐ WLAN: 5.745GHz ~ 5825GHz ☐ Others:
Device category	□Portable (<20cm separation) ☑Mobile (>20cm separation) □Others
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm2) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) ☐ Others:
Antenna diversity	Single antenna ☐Multiple antennas: ☐Tx diversity ☐Rx diversity ☐Tx/Rx diversity
Max. output power	15.38dBm (0.00345W)
Antenna gain (Max)	2dBi (Numeric gain:1.58)
Evaluation applied	

Note:

Report No.: BCT13CR084E-2 Page 4 of 6

^{1.} The maximum output power is 15.38dBm (0.00345W) at 2462MHz (with 1.58numeric antenna gain.)

^{2.} For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm, even if the calculations indicate that the MPE distance would be lesser.

1.4 Human Exposure Assessment Results

Calculation

Given
$$E = \frac{\sqrt{30 \times P \times G}}{d}$$
 & $S = \frac{E^2}{3770}$

Where E = Field Strength in Volts / meter

P = Power in Watts

G=Numeric antenna gain

d=Distance in meters

S=Power Density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = 100 * d(m)$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

EUT parameter (data from the separate report)	
Given $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$	Where G: numerical gain of transmitting antenna; TP: Transmitted power in watt; d: distance from the transmitting antenna in meter
Max average output power in Watt (TP)	15.38dBm (<i>0.00345</i> W)
Antenna gain (G)	2.0 dBi (Numeric gain: 1.58)
Exposure classification	S=1mW/cm ²
Minimum distance in meter (d) (from transmitting structure to the human body)	20cm (0.2m)

$$S = \frac{30xPxG}{3770d^2}$$
, P=0.00345W, G=1.58, d=0.2

S=0.00108mW/cm²

Or

$$d = \sqrt{\frac{30xPxG}{3770S}}$$
, S=1, P=0.00345W, G=1.58

d=0.0065m

Conclusion:

S=0.00108mW/cm² is significant lower than the General Population Exposure Power Density Limit 1mW/cm² or except the distance when human body proximity to the antenna is less than 0.65cm then will reach the General Population Exposure Power Density Limit

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW / cm² even if the calculation indicates that the power density would be larger.)

Report No.: BCT13CR084E-2 Page 6 of 6