# Pesquisa Operacional / Programação Matemática

Método Simplex: Partições e soluções básicas e nãobásicas.



### Forma padrão

■ Consideramos sempre o problema na forma padrão:

Minimizar 
$$f(\mathbf{x}) = \mathbf{c}^{\mathrm{T}}\mathbf{x}$$
  
 $A\mathbf{x} = \mathbf{b}$   
 $\mathbf{x} \ge \mathbf{0}$ .

### Dimensões:

A 
$$(m \times n)$$
  
b  $(m \times 1)$ 

# ķΑ

### Soluções básicas

■ Considere a seguinte região factível no R<sup>2</sup>

$$\begin{array}{cccc} x_1 & + & x_2 \leq 6 \\ x_1 & - & x_2 \leq 4 \\ 3x_1 & + & x_2 \geq 3 \\ x_1 \geq 0, & x_2 \geq 0. \end{array}$$

$$\begin{aligned} x_3 &= 6 - (x_1 + x_2) &\geq 0 \\ x_4 &= 4 - (x_1 - x_2) &\geq 0 \\ x_5 &= (3x_1 + x_2) - 3 &\geq 0, \end{aligned}$$

variáveis de folga

$$\begin{array}{lll} x_1 + x_2 + & x_3 & = 6 \\ x_1 - x_2 & + x_4 & = 4 \\ 3x_1 + x_2 & -x_5 & = 3 \\ x_1 \ge 0, \, x_2 \ge 0, \, x_3 \ge 0, \, x_4 \ge 0, \, x_5 \ge 0. \end{array}$$

Forma padrão

# Soluções básicas

$$\begin{array}{lll} x_1 + x_2 + & x_3 & = 6 \\ x_1 - x_2 & + x_4 & = 4 \\ 3x_1 + x_2 & -x_5 & = 3 \\ x_1 \ge 0, \, x_2 \ge 0, \, x_3 \ge 0, \, x_4 \ge 0, \, x_5 \ge 0. \end{array}$$





### Alguns pontos

#### Ponto **A**:

$$x_1 = 3$$

$$x_9 = 2$$

$$x_3 = 6 - (3 + 2) = 1$$

$$x_4 = 4 - (3 - 2) = 3$$

$$x_5 = (3 \times 3 + 2) - 3 = 8$$



#### Ponto **B**:

$$x_{1} = 1$$

$$x_{9} = 3$$

$$x_{3} = 6 - (1 + 3) = 2$$

$$x_4 = 4 - (1 - 3) = 6$$

$$x_5 = (3 \times 1 + 2) - 3 = 3$$

#### Ponto **C**:

$$x_1 = 2$$

$$x_2 = 4$$

$$x_3 = 6 - (2 + 4) = 0$$

$$x_4 = 4 - (2 - 4) = 6$$

$$x_5 = (3 \times 2 + 2) - 3 = 7$$

#### Ponto **D**:

$$x_1 = 5$$

$$x_9 = 1$$

$$x_3 = 6 - (5 + 1) = 0$$

$$x_4 = 4 - (5 - 1) = 0$$

$$x_5 = (3 \times 1 + 2) - 3 = 3$$
  $x_5 = (3 \times 2 + 2) - 3 = 7$   $x_5 = (3 \times 5 + 1) - 3 = 13.$ 

Factíveis (Por quê?) (construção e não-negatividade)



### Alguns pontos

#### Ponto **A**:

$$x_1 = 3$$
 $x_2 = 2$ 
 $x_3 = 6 - (3 + 2) = 3$ 

$$x_5 = (3 \times 3 + 2) - 3 = 8$$
  $x_5 = (3 \times 1 + 2) - 3 = 3$ 

#### Ponto **B**:

$$x_1 = 3$$
  $x_1 = 1$   $x_2 = 2$   $x_2 = 3$   $x_3 = 6 - (3 + 2) = 1$   $x_3 = 6 - (1 + 3) = 2$   $x_4 = 4 - (3 - 2) = 3$   $x_4 = 4 - (1 - 3) = 6$ 



No interior da região factível (todas as variáveis de folga são positivas).



### Alguns pontos

#### Ponto **C**:

$$x_1 = 2$$

$$x_9 = 4$$

$$x_3 = 6 - (2 + 4) = 0$$

$$x_4 = 4 - (2 - 4) = 6$$

$$x_5 = (3 \times 2 + 2) - 3 = 7$$

#### Ponto D:

$$x_1 = 5$$

$$x_9 = 1$$

$$x_3 = 6 - (5 + 1) = 0$$

$$x_4 = 4 - (2 - 4) = 6$$
  $x_4 = 4 - (5 - 1) = 0$ 

$$x_5 = (3 \times 5 + 1) - 3 = 13.$$



Na fronteira (alguma variável se anula)!

### Variáveis nulas indicam restrições ativas.

Mais de uma variável se anula: vértice (no caso de duas variáveis) - mais de uma restrição ativa.



### Outros pontos

#### Ponto E:

$$x_1 = 4$$

$$x_9 = 5$$

$$x_3 = 6 - (4 + 5) = -3$$
  $x_3 = 6 - (6 + 0) = 0$   
 $x_4 = 4 - (4 - 5) = 5$   $x_4 = 4 - (6 - 0) = -2$ 

$$x_4 = 4 - (4 - 5) = 5$$

$$x_5 = (3 \times 4 + 5) - 3 = 14$$

#### Ponto F:

$$x_1 = 6$$

$$x_9 = 0$$

$$x_3 = 6 - (6 + 0) = 0$$

$$x_4 = 4 - (6 - 0) = -2$$

$$x_5 = (3 \times 4 + 5) - 3 = 14$$
  $x_5 = (3 \times 6 + 0) - 3 = 15$ 



### Infactiveis:

Respeitam o sistema Ax = bmas não respeitam as restrições de não-negatividade!

# Ŋė.

# Pontos Extremos (P.E.)

 $\square$  Teorema 1: A região definida por Ax=b, x\ge 0 é convexa.



Alysson M. Costa – ICMC/USP



# Pontos Extremos (P.E.)

- Vimos que sempre que existe uma solução ótima, existe um ponto extremo ótimo.
- Também intuímos que uma maneira de achar a solução ótima seria visitar os pontos extremos sucessivamente
- Como determinar pontos extremos sem o auxílio do gráfico?



Alysson M. Costa – ICMC/USP

# Ŋ.

## Pontos Extremos (P.E.)

Duas restrições ativas\*:
 duas variáveis nulas!



Ponto **D**: 
$$\begin{cases} x_3 = 0 \\ x_4 = 0 \end{cases}$$

3 equações, 3 incógnitas!

 $<sup>\</sup>begin{cases} x_1 = 5 \\ x_2 = 1 \\ x_5 = 13 \end{cases}.$ 

<sup>\*</sup> Caso geral: n-m variáveis nulas.



# Pontos Extremos (P.E.)

#### Resumo:

- □ Resultam do encontro de restrições.
- □ Uma restrição equivale a uma variável (do problema na forma padrão) igual a zero.
- $\square$  No exemplo anterior:
- 3 equações
- 5 variáveis

(duas variáveis independentes)



## Pontos Extremos (P.E.)



#### ■ Factiveis:

 $\square$  Ao fixar (n-m) variáveis em zero, a resolução do sistema resulta em valores positivos para as variáveis restantes. (Ex. ponto D)

#### Infactíveis

□ Ao fixar (n-m) variáveis em zero, a resolução do sistema resulta em **ao** menos um valor negativo para as variáveis restantes. (Ex. ponto F)



### Escrevendo o sistema

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff \begin{bmatrix} x_1 + x_2 + x_3 \\ x_1 - x_2 + x_4 \\ 3x_1 + x_2 - x_5 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

Apesar de fixarmos (n-m) variaveis em zero (no exemplo,  $x_3$  e  $x_4$ ), continuamos as escrevendo (embora de maneira isolada):

$$\begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 3x_1 + x_2 - x_5 \end{bmatrix} + \begin{bmatrix} x_3 \\ x_4 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$
variáveis restantes
variáveis a serem fixadas



### Escrevendo o sistema

$$\begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 3x_1 + x_2 - x_5 \end{bmatrix} + \begin{bmatrix} x_3 \\ x_4 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$
variáveis restantes
variáveis a serem fixadas

$$\begin{bmatrix}
1 & 1 & 0 \\
1 & -1 & 0 \\
3 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_5
\end{bmatrix}
+
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
6 \\
4 \\
3
\end{bmatrix}$$

$$\mathbf{B}$$

$$\mathbf{X}_{\mathbf{R}}$$

$$\mathbf{N}$$

$$B = (B_1 \, B_2 \, B_3) \colon$$
 
$$N = (N_1 \, N_2) \colon$$
 
$$B_1 = 1, \ B_2 = 2, \ B_3 = 5,$$
 
$$N_1 = 3, \ N_2 = 4,$$



### Referenciando

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

$$\mathbf{B}$$

$$\mathbf{X}_{\mathbf{R}}$$

$$\mathbf{N}$$

# Índices:

$$B = (B_1 B_2 B_3)$$
:  
 $N = (N_1 N_2)$ :

$$B_1 = 1, \ B_2 = 2, \ B_3 = 5,$$
  
 $N_1 = 3, \ N_2 = 4,$ 

### colunas associadas



$$\mathbf{x}_{B} = \begin{bmatrix} x_{B_{1}} \\ x_{B_{2}} \\ x_{B_{3}} \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{5} \end{bmatrix}$$

$$\mathbf{x}_{N} = \begin{bmatrix} x_{N_{1}} \\ x_{N_{2}} \end{bmatrix} = \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix}.$$
ta - ICMC/USP



### Resumindo

■ Temos um problema de otimização e o escrevemos na forma padrão.

$$Minimizar f(\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x}$$

Escrevemos

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

$$x \ge 0$$
,

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff \mathbf{B}\mathbf{x}_{\mathbf{B}} + \mathbf{N}\mathbf{x}_{\mathbf{N}} = \mathbf{b}$$



### Resumindo

 $\blacksquare$  Escolhendo (n-m) variáveis para  $\mathbf{x}_{\mathrm{N}}$ e o restante para  $\mathbf{X}_{\mathrm{B}},$  temos os diversos pontos extremos.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \iff \mathbf{B}\mathbf{x}_{\mathbf{B}} + \mathbf{N}\mathbf{x}_{\mathbf{N}} = \mathbf{b}$$

■  $BX_B = b$  é um sistema com o mesmo número de equações e incógnitas (m). Se as variáveis solução desse sistema são  $\geq 0$ , P.E. Factível. Caso contrário, P.E. Infactível.



### Resolvendo o sistema

■ E se B não for invertível?

Sempre escolhemos para B, m variáveis cujas colunas constituem uma matriz inversível.

# W

# Partição básica (Matriz básica)

$$A = [B \ N]$$

- $\blacksquare$   $B_{m\times m}$  matriz básica formada por m colunas linearmente independentes de A.
- B pode ser escrita como:

Onde  $B_1, B_2, ..., B_m$  são os índices das colunas escolhidas da matriz A (índices básicos)  $\mathbf{B} = [\mathbf{a}_{B_1} \ \mathbf{a}_{B_2} \cdots \ \mathbf{a}_{B_m}]$ 

### Partição básica (Matriz não-básica) A = [B N]

- $\blacksquare$   $N_{m\times (n-m)}$  matriz não-básica formada pelas  $\mathit{n-m}$  colunas restantes de A.
- N pode ser escrita como:

Onde  $N_1, N_2,..., N_m$  são os índices das colunas da matriz A que pertencem a N (índic $N = [\mathbf{a}_{N_1} \ \mathbf{a}_{N_2} \cdots \ \mathbf{a}_{Nn-m}]$ 

## Partição básica (partição das variáveis)

■ Consequentemente, a partição de A em [B N] cria uma partição das variáveis:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{B_1} \\ \mathbf{x}_{N} \end{bmatrix} \qquad \text{variáveis básicas}$$

$$\mathbf{x}_{N} = \begin{bmatrix} x_{N_1} \\ \vdots \\ x_{N_{n-m}} \end{bmatrix} \qquad \text{variáveis não básicas}$$



### Solução geral do sistema

$$\mathbf{A}\mathbf{X} = \mathbf{b} \iff \begin{bmatrix} \mathbf{B}\mathbf{N} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{\mathbf{B}} \\ \mathbf{X}_{\mathbf{N}} \end{bmatrix} = \mathbf{b}$$

$$Bx_B + Nx_N = b.$$

$$\mathbf{x}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{\mathbf{N}}$$

 $\blacksquare$  A última expressão de  $x_B$  é conhecida como solução geral do sistema.



# Solução básica

Uma solução é dita básica quando:

$$\begin{cases} \hat{\mathbf{x}}_{\mathbf{B}} = \mathbf{B}^{-1}\mathbf{b} \\ \hat{\mathbf{x}}_{\mathbf{N}} = \mathbf{0}. \end{cases}$$

■ Se todas as componentes de  $x_B$  são não-negativas, então temos uma solução básica factível. Caso contrário, temos uma solução básica não-factível.

# þΑ

### Voltando ao exemplo

#### ■ Ponto D:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

$$\mathbf{B}$$

$$\mathbf{X}_{\mathbf{B}}$$

$$\mathbf{N}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix} \Leftrightarrow \mathbf{B}\hat{\mathbf{x}}_{\mathbf{B}} = \mathbf{b}$$

$$\hat{\mathbf{x}}_{\mathrm{B}} = \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 13 \end{bmatrix}$$



Solução básica factível.

# M

### Voltando ao exemplo

■ Ponto F:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_N \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 3 \end{bmatrix}$$



$$\hat{\mathbf{x}}_{\mathrm{B}} = \begin{bmatrix} x_1 \\ x_4 \\ x \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \\ 15 \end{bmatrix}$$

Solução básica *não*-factível.



# Propriedade básica I

Considere região factível  $S = \{x \in R^n \mid Ax = b, x \ge 0\}.$ 



Um ponto  $x \in S$  é um vértice de S se e somente se x for uma solução básica factível.

Teorema 2.



## Propriedade básica II



Se um problema de otimização linear tem uma solução ótima, então existe um vértice ótimo



## Método possível

■ Enumerar todas as soluções básicas (vértices)

$$x_1, x_2, \dots x_K$$

- Escolher aquela com melhor função objetivo.
- Problema:

K pode ser muito grande!



# Simplex

Idéia:

- ■Partir de uma solução básica factível
- ■Visitar apenas as soluções básicas factíveis melhores que ela.

Método Simplex