Deadlock Practice Questions

1. Considering a system with five processes P₀ through P₄ and three resources types A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time t₀ following snapshot of the system has been taken:

Process	Maximum Need			Allocation		
	A	В	\mathbf{C}	A	В	C
P0	7	5	3	0	1	0
P1	3	2	2	2	0	0
P2	9	0	2	3	0	2
P3	2	2	2	2	1	1
P4	4	3	3	0	0	2

- a. Find the Need Matrix?
- b. Find whether system is in Deadlock or not? Write the safe sate (if Possible)
- c. What will happen if process P_1 requests one additional instance of resource type A and two instances of resource type C? Is additional request by process P1 granted?
- 2. Consider the snapshot of the system and solve the following using Banker's Algorithm.

	Allocation	Max	Available
	ABCD	ABCD	ABCD
P0	0 0 1 2	0 0 1 2	1 5 2 0
P1	1 0 0 0	1 7 5 0	
P2	1 3 5 4	2 3 5 6	
Р3	0 6 3 2	0 6 5 2	
P4	0 0 1 4	0 6 5 6	

- i. Obtain the array 'Need'.
- ii. Is the system in a safe state?
- iii. If a request from process p1 arrives for (0,4,2,0) can the request be immediately granted?
- 3. A computer system has 6 tape drives, with n processes competing for them. Each process may need 3 tape drives. What is the maximum value of n for which the system is guaranteed to be deadlock? Justify your answer.
- 4. Write the possible protocols to prevent "Hold and Wait" and "Circular Wait" condition for Deadlock Prevention? Clearly Explain!
- 5. Draw the resource allocation graph and determine deadlock or deadlock free state.

$$\begin{split} P &= \{P_1, P_2, P_3\} \\ R &= \{R_1, R_2, R_3, R_4\} \\ E &= \{P_1 \rightarrow R1, P2 \rightarrow R3, R1 \rightarrow P2, R2 \rightarrow P2, R2 \rightarrow P1, R3 \rightarrow P3, P3 \rightarrow R2\} \end{split}$$

There are ONE, TWO, ONE and THREE instances of R₁, R₂, R₃ and R₄ type resources

6. An OS contains 3 resource classes. The number of resource units in these classes is 7,7,10 respectively. The Current resource allocation is shown below:

	Allocated Resource			Maximum Requirement			
	R1	R2	R3	R1	R2	R3	
P1	2	2	3	3	6	8	
P2	2	0	3	4	3	3	
P3	1	2	4	3	4	4	

- a) Is the current allocation state safe?
- b) Would the following request be granted in current state
 - i) Process P1 request (1,1,0)
 - ii) Process P2 request (0,1,0)
 - iii) Process P1 request (0,1,0)
- 7. Draw the resource allocation graph and determine deadlock or deadlock free state.

$$P = \{P_1, P_2, P_3\}$$

$$R = \{R_1, R_2, R_3, R_4\}$$

$$E = \{ P_1 \rightarrow R1, P2 \rightarrow R3, R1 \rightarrow P2, R2 \rightarrow P2, R2 \rightarrow P1, R3 \rightarrow P3, P3 \rightarrow R2 \}$$

There are ONE, TWO, ONE and THREE instances of R₁, R₂, R₃ and R₄ type resources

8. Consider the snapshot of the system and solve the following using Banker's Algorithm

	Allocation	Max	Available
	ABCD	ABCD	ABCD
P0	6 0 1 2	4 0 0 1	3 2 1 1
P1	2 7 5 0	1 1 0 0	
P2	2 3 5 6	1 2 5 4	
Р3	1653	0 6 3 3	
P4	1656	0 2 1 2	

Using Banker's algorithm, answer the following questions:-

- i. How many resources of type A, B, C, D are there?
- ii. What are the contents of need matrix?
- iii. Find if the system is in safe state? If it is, find the safe sequence.