Apuntes de Investigación Operativa I

Leonardo H. Añez Vladimirovna¹

Universidad Autónoma Gabriél René Moreno, Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones, Santa Cruz de la Sierra, Bolivia

9 de marzo de 2019

 $^{^{1}}$ Correo Electrónico: toborochi98@outlook.com

Notas del Autor

Estos apuntes fueron realizados durante mis clases en la materia MAT329 (Investigación Operativa I), acompañados de referencias de libros, fuentes y código que use a lo largo del curso, en el período I-2019 en la Facultad de Ingeniería en Ciencias de la Computación y Telecomunicaciones.

Para cualquier cambio, observación y/o sugerencia pueden enviarme un mensaje al siguiente correo:

toborochi98@outlook.com

Índice general

	Programación Lineal			
		Model	lo Matemático	
		1.1.1.	Métodos de Solución	١
		1.1.2.	Soluciones	ŀ

ÍNDICE GENERAL

Capítulo 1

Programación Lineal

En Investigación Operativa se sigue el siguiente cuadro a la hora de trabajar:

1.1. Modelo Matemático

Compuesto por:

- Variables: x_1, x_2, \ldots, x_n .
- Función Objetivo: Es aquella que buscamos maximizar o minimizar¹.

$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

■ Restricciones:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \ge o \le A$$

 $b_1x_1 + b_2x_2 + \dots + b_nx_n \ge o \le B$

1.1.1. Métodos de Solución

Método Gráfico

Es mas didáctico, solo lo usamos con dos variables y cuando ambos valores son positivos solo usamos el primer cuadrante del plano cartesiano.

Método SIMPLEX

1.1.2. Soluciones

- Solución Básica:
- Solución Factible:
- Solución Básica Factible:
- Solución Optima:

 $^{^{1}}c_{ij} = \cos\cos\left(\sin\min(\cos\cos\phi\right)$ ó ganancias (si maximizamos)