

Rechnernetze Kapitel 5: Network Layer – Routing und IPv6

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2019/2020

Slides are based on:

A. Tanenbaum, D. Wetherall: Computer Networks

Inhalt

- Forwarding
- Funktionsweise eines Routers
- Internet Protocol IPv4
- Hilfsprotokolle: ARP, ICMP, DHCP

Forwarding vs. Routing

- Routing (dt. Wegewahl):
 - Berechnung der Routingtabelle für jeden Router
 - Dazu tauschen Router untereinander Kontrollnachrichten aus (= Routingprotokolle)
- Forwarding: Weiterleitung von Paketen zur Zieladresse mit Longest Prefix Matching

Abstraktion des Internets als Graph

- Beispiel-Graph: G = (V,E)
 - $V = \text{Menge der Router} = \{ u, v, w, x, y, z \}$
 - $\mathbf{E} = \text{Menge der Links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$
 - c(x,x') = Kosten des Links (x,x'), z.B. c(w,z) = 5
 - Kosten des Pfads $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

Ziel: Berechne Pfad mit den minimalen Kosten zwischen 2 Routern

Klassifikation: Routing

Zentral oder dezentral?

- Link State
 - Topologie-Informationen werden geflutet. Jeder Router kennt komplette Topologie.
 - Berechnung der kürzesten Wege: Algorithmus von Dijkstra
 - Beispiel: Open Shortest Path First
- Distance Vector
 - Jeder Router kennt nur direkte Nachbarn.
 - Die Nachbarn teilen mit, welche Knoten sie mit welchen Gesamtkosten erreichen können aber nicht wie.
 - Berechnung der kürzesten Wege: Asynchroner Bellman-Ford
 - Beispiel: Routing Information Protocol

Statisch oder dynamisch?

- Statisch: Manuelle Konfiguration der Forwardingtabelle (Übung07)
- Dynamisch: Periodischer Austausch von Routinginformation, Änderungen werden automatisch erkannt (Übung08)

Publikums-Joker: Routing

Sie verwenden in Ihrem LAN zuhause einen Laptop, der über einen Home-Router (FritzBox, Speedport) mit dem Internet verbunden ist. Welche der folgenden Aussagen ist *falsch*?

- A. Ihr Laptop hat eine (statische) Route zum Home Router. Die nötige Information erhält man durch DHCP.
- B. Der Home Router hat eine (statische) Route zum Provider. Die nötige Information wird über die Punkt-zu-Punkt Verbindung ausgetauscht (PPP bei DSL oder Kabel).
- c. In Ihrem LAN wird kein dynamisches Routing eingesetzt.
- D. Normalerweise lautet die Standardroute: 0.0.0.0/32

Link State (LS) vs. Distance Vector (DV)

Routingnachrichten

- LS: Jeder Router flutet Infos über seine Links im ganzen Netz.
- DV: Jeder Router informiert Nachbarn welche Ziele er mit welchen Kosten erreichen kann.

Konvergenz

- LS: Berechnung auf jedem Router hat Komplexität O(|E|*|V|) falls binäre Heaps verwendet werden.
- DV: Konvergenzgeschwindigkeit abhängig von der Reihenfolge des Nachrichtenaustausches
 - Count-to-Infinity Problem

- Robustheit: Was passiert, wenn ein einziger Router "bösartig" ist.
 - LS: Fehler begrenzt, da jeder Router seine eigene Tabelle berechnet. t
 - DV: Fehler pflanzen sich fort, da Tabelle eines Routers Einfluss auf andere Router hat.

Hierarchisches Routing

Warum kennt nicht jeder Router die alle Ziele?

Internet == Netz von Netzen

- Administrative Unabhängigkeit der einzelnen Netze
 - Jedes Netz möchte Routing für sein Netz selbst kontrollieren.
- Skalierbarkeit
 - Nicht jeder Router muss alle Subnetze kennen.
 - Nicht jeder Router sieht alle Änderungen / Linkausfälle.

Lösung: Hierarchisches Routing

- Gruppiere Router in "Autonome Systeme" (AS) (aka "domains")
 - Beispiel: Deutsche Telekom, Deutsches Forschungsnetz, ...
- Intradomain Routing: Routing für Ziele im gleichen AS.
- Interdomain Routing: Routing für Ziele in anderen ASen.

Interdomain und Intradomain Routing

- Router 1d in AS1 empfängt Paket, das für anderes AS bestimmt ist.
- 1d muss Paket zu einem Gateway Router weiterleiten. Zu welchem?
 - 3a (in AS3)?
 - 2a (in AS2)?

Interdomain Routing

- Bestimmt über welches "Transfer-AS" das externe Ziel erreichbar ist.
- Hier AS3 (mit 3a) oder AS2 (mit 2a)

Intradomain Routing

- Bestimmt, wie die Gateways zu den Nachbarnetzen aus dem lokalen Netz erreichbar sind.
- Beispiel: Router 1c informiert 1a, 1b und 1d, wie man Gateway 3a erreicht.

Routing in der Praxis

- Intradomain (aka Interior Gateway Protocols)
 - RIP: Routing Information Protocol (RFC 2453)
 - OSPF Open Shortest Path First (RFC 2328, etc.)
 - IGRP: Interior Gateway Routing Protocol (Cisco-proprietar)
- Interdomain (aka <u>Exterior Gateway Protocols</u>)
 - De-facto Standard: BGP: Border Gateway Protocol (RFC 4271, etc.)
 - Wichtig sind Routing Policies
 - Jeder Router kann lokal bestimmen, was er bevorzugt und welche Routingnachrichten er weiterleitet.
 - Erlaubt es wirtschaftliche Aspekte zu berücksichtigen.

Open Shortest Path First (OSPF)

Link State

- Infos über Nachbarrouter und –links werden durchs Netz geflutet.
- Jeder Router lernt so die komplette Topologie.
- Dann: Routenberechnung mit Dijkstra.
- Router fluten Link State Advertisement Nachrichten an alle anderen Router im gesamten AS
 - OSPF Advertisements werden direkt über IP (kein TCP oder UDP) gesendet.
 - Enthalten "Link State" für jeden benachbarten Link.

Weitere Merkmale

- Authentifizierung der OSPF Nachbarn.
- Linkgewichte sind konfigurierbar (nicht zwingend 1!)
- Lastverteilung möglich falls mehrere Pfade mit gleichen Kosten
- Hierarchisches OSPF für große Netze

BGP: Border Gateway Protocol

Teile dem Rest der Welt (=Internet) die Existenz eines IP Präfix mit.

BGP Session

- TCP Session zwischen 2 BGP Router (die miteinander sprechen wollen).
- Router teilt Nachbarn mit, welche Ziele (= IP Präfixe) er kennt.
- Beispiel: AS 3 kündigt gegenüber AS 1 an, dass es weiß wie man ein Ziel Präfix (100.200.300.0/24) erreicht. Es garantiert damit implizit, dass es Pakete zu diesem IP-Präfix auch weiterleitet.

2 Varianten:

- **eBGP**: Zwischen Routern benachbarter ASe.
- o iBGP: Zwischen Routern, die zum gleichen AS, gehören.
- Bestimme gute Wege basierend auf Erreichbarkeit und Routing-Policies, die jedes AS selbst festlegen kann.

eBGP und iBGP Verbindungen

AS 3 kündigt AS 2 einen IP Präfix an.

AS 3 verspricht damit, dass es Datagramme zu diesem Präfix weiterleitet

Gateway Router sprechen sowohl eBGP als auch iBGP

BGP Grundlagen

BGP Session

- Austausch von Erreichbarkeitsinformation (== IP Präfix)
- BGP ist ein "Pfad Vector Protocol"!

Beispiel

- Gateway 3a von AS 3 kündigt AS-Pfad "AS 3" zum IP-Präfix X dem Gateway 2c von AS 2 an.
- AS 3 verspricht damit implizit an AS 2, dass es IP Pakete zum IP-Präfix X weiterleiten wird.

Pfadattribute und BGP Routen

BGP Route

Besteht aus IP Präfix UND BGP Attribute

2 wichtige BGP Attribute

- AS-PATH: Liste von ASen, durch die das Prefix Advertisement gelaufen ist.
- NEXT-HOP: IP Adresse des Gateway Routers.

Policy-based Routing

- BGP Router verwendet Import-Policies um einen Pfad zu akzeptieren oder abzulehnen.
- Beispiel 1: "Ignoriere Pfade durch AS Y".
- Beispiel 2: "Gib Routinginfo nicht an Nachbarn AS X weiter".

Ankündigung von BGP Pfaden

Router 2c empfängt Advertisement AS3,X über eBGP

Import

 Policies von AS 2 erlauben, dass Router 2c diesen Pfad akzeptiert und ihn (über iBGP) an alle anderen Router im AS 2 weitergibt.

Export

Policies von AS 2 erlauben, dass Router 2a (über eBGP) Pfad AS2, AS3, X an das Gateway
 1c von AS1 weitergibt.

Ankündigung von BGP Pfaden: Mehrere Pfade

- Ein Gateway Router kann mehrere Pfade zum gleichen Ziel IP Präfix X lernen.
- Beispiel: Gateway Router 1c lernt
 - Pfad AS2, AS3, X von 2a
 - Pfad AS3, X von 3a
- Aufgrund der konfigurierten Policy (Annahme hier: "wähle immer kürzeren AS-Pfad") entscheidet sich Router 1c für Pfad AS3, X und kündigt nur diesen Pfad über iBGP intern im AS an.

BGP, OSPF, Einträge in Routingtabellen

Wie kommt ein Eintrag für den entfernten IP Präfix X in die Routingtabelle von Routner 1d?

BGP, OSPF, Einträge in Routingtabellen

Wie kommt ein Eintrag für den entfernten IP Präfix X in die Routingtabelle von Boutingt 4.22

Auswahl der besten BGP Route

Ein Router kann mehrere alternative Routen für einen Ziel-Präfix lernen.

- Die beste BGP Route wird nach folgenden Kriterien gewählt (Reihenfolge spielt eine Rolle)
 - 1) Local Preference
 - Bsp: Jeder AS-Administrator kann Routen, die er von einem bestimmten Nachbar-AS lernt bevorzugen → Zuweisung von Prioritäten bei Import!
 - 2) Kürzester AS Pfad
 - Route, bei der man am wenigsten ASen durchqueren muss.
 - 3) Route mit dem am schnellsten erreichbaren Next-Hop (=Gateway)
 - Hot-Potato Routing
 - siehe nächste Folie
 - 4) Weitere Kriterien

Hot Potato Routing

2d lernt über iBGP dass es X über 2a oder 2c erreichen kann.

Hot-Potato Routing

- "Jedes Netz möchte Pakete so schnell wie möglich aus eigenem AS/Netz loswerden."
- Wähle lokales Gateway mit den geringsten Intradomain-Kosten
- Hier: 2d wählt 2a, obwohl dann der AS-Pfad länger ist.

Inter-AS Routing: Policies

Legende

- Provider (großes Netz)
 - Kunde (kleines Netz)

- A, B, C sind Provider und X, W, Y sind Kunden der Provider
 - Provider verlangen Geld abhängig von der Datenmenge zu den Kunden.
- Dual-Homing:
 - Kunde kann mit 2 Providern verbunden sein (z.B. X)
- Soll X per Routingprotokoll B sagen, dass es C erreichen kann?
 - Nein $\rightarrow X$ möchte keinen Transitverkehr von B zu C weiterleiten

Inhalt

- Forwarding
- Funktionsweise eines Routers
- Internet Protocol IPv4
- Hilfsprotokolle: ARP, ICMP, DHCP
- RoutingTeil 2

IPv4 Adressen sind knapp!

- So gut wie keine freien IPv4 Adressen mehr!
- Es gibt jedoch Adressbereiche, die vergeben wurde, aber (noch) nicht in öffentlichen Routingtabellen angekündigt werden.

Ziele bei der Entwicklung von IPv6

- Unterstützung sehr, sehr vieler Hosts!
- Kleine, kompakte Routingtabellen
- Vereinfachung des Protokolls, z.B. schnelle Verarbeitung
- Flexibilität: Erlaube zukünftige Erweiterungen.
- Migration und Koexistenz von IPv4 und IPv6 während des Übergangs.
- Bessere Unterstützung von Multicasting, Mobilität, Quality of Service (QoS)

IPv6 Header Format

Diff.Server

 "Priorität" des Pakets oder Flows

Flow Label

- Pakete mit gleichem Label bilden eine Gruppe (= Flow)
- Sollten gleich behandelt werden.
- Selten verwendet.

Next Header

- Gibt an ob Extension
 Header folgt oder
 welches Transport Layer
 Protocol (TCP/UDP)
- Mehrere Extension
 Header möglich; jeder
 Header verweist auf den
 nächsten ("Kette")
- Hop Limit = TTL

Publikums-Joker: IPv6

Welche der folgenden Aussagen ist *falsch*?

- A. Ein IPv6 Paket hat weniger Header Felder als ein IPv4 Paket.
- B. Ein IPv6 Paket mit gleicher Payload ist immer größer als ein IPv4 Paket.
- c. Der IPv6 Header sieht die Fragmentierung eines IPv6 Pakets vor.
- D. Der IPv6 Header enthält im Gegensatz zum IPv4 Header keine Checksumme.

IPv6 Adressen: Notation

Volle Schreibweise

- 128 Bit werden in 8 Blöcke zu je 16 Bit (4 Hexadezimalstellen) unterteilt
- Blöcke werden durch ":" getrennt
- Beispiel
 - 2001:0db8:85a3:08d3:1319:8a2e:0370:7344

Abgekürzte Schreibweise

- Führende Nullen können weggelassen werden
 - 2001:db8:85a3:8d3:1319:8a2e:370:7344
- Nur einmal (!) dürfen ein oder mehr aufeinanderfolgende Blöcke mit dem Wert 0000 ausgelassen werden und durch :: ersetzt werden
 - 2001:0db8:0:0:0:1428:57ab wird zu 2001:db8::1428:57ab
- IPv4 Adressen können wie folgt geschrieben werden:
 - ::192.31.20.46

URL Notation von IPv6 Adressen mit eckigen Klammern

http://[2001:0db8:85a3:08d3:1319:8a2e:0370:7344]:8080/

Adressbereiche

- ::1/128 Loopback
- 2000::/3 Global Unicast: Global erreichbare Adressen
- FE80::/10 Link-Local: Nur im lokalen Subnetz gültig

IPv6 Adressen

- Longest Prefix Matching wie bei IPv4!
- Netz- und Host-Anteil
 - Host-ID: Praktisch immer genau 64 Bit (rechter Teil)
 - Es gibt also praktisch keine /80 Subnetze
- Praxis:
 - Site-ID: ISP weist Privatkunden z.B. /48 or /56 IP Präfix zu.
 - Subnet-ID: Jeder hat 8 or 16 Bits (subnet-ID) um sein eigenes Netz in weitere Subnetze zu unterteilen.
 - Host-ID: 64 Bit.

			128 (Bit			
64 Bit, Netz-Anteil Net ID				64 Bit, Host-Anteil			
ISP-Adressraum Site ID 48 Bit			Teilnehmer-Adressraum 16 Bit Subnet-ID Host-ID				
2001:	db8:	1234:	0000:	0260:	caff:	feee:	1234

Wie viele Subnetze kann man hier bilden?

Weitere Unterschiede zu IPv4

- Keine Fragmentierung
 - Router informiert Sender per ICMPv6, dass Nachricht zu groß.
- Jeder IPv6 Host verfügt automatisch über eine Link-Local IPv6 Adresse
 - Z.B. abgeleitet von der MAC Adresse
 - Nur im lokalen LAN gültig.
- Kein ARP
 - Wird über anderes Protokoll ("Neighbor Discovery") implementiert
- Stateless Autoconfiguration
 - Stateless DHCP Server Teil des IPv6 Standards
 - Es gibt aber auch DHCPv6

Details: siehe "Vertiefung Rechnernetze" (Master)

Migration: Tunneling

- Tunnel: IPv6 Datagramm wird in den Nutzdaten eines IPv4 Paketes transportiert, falls IPv4-Legacy Leitung passiert werden muss.
- Dual-Homed: Die Geräte an den Tunnelenden müssen sowohl IPv4 als auch IPv6 sprechen

Inhalt

- Forwarding
- Funktionsweise eines Routers
- Internet Protocol IPv4
- Hilfsprotokolle: ARP, ICMP, DHCP
- RoutingTeil 2IPv6