Assignment No 2

Problem Statement -

Perform the following operations using Python on the Air quality data sets

- a. Data cleaning
- b. Data integration
- c. Data transformation
- d. Error correcting
- e. Data model building

Importing required libraries

```
In [58]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
```

Reading dataset

In [59]: data = pd.read_csv("airquality2.csv")
 data

Out[59]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	1	41.0	190.0	7.4	67	5	1	High
1	2	36.0	118.0	8.0	72	5	2	High
2	3	12.0	149.0	12.6	74	5	3	NaN
3	4	18.0	313.0	11.5	62	5	4	Medium
4	5	NaN	NaN	14.3	56	5	5	Low
		•••						
148	149	30.0	193.0	6.9	70	9	26	Low
149	150	NaN	145.0	13.2	77	9	27	Low
150	151	14.0	191.0	14.3	75	9	28	High
151	152	18.0	131.0	8.0	76	9	29	High
152	153	20.0	223.0	11.5	68	9	30	Medium

153 rows × 8 columns

In [60]: data.drop(data.iloc[:,[0]], axis=1, inplace=True)
 data

Out[60]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	41.0	190.0	7.4	67	5	1	High
1	36.0	118.0	8.0	72	5	2	High
2	12.0	149.0	12.6	74	5	3	NaN
3	18.0	313.0	11.5	62	5	4	Medium
4	NaN	NaN	14.3	56	5	5	Low
148	30.0	193.0	6.9	70	9	26	Low
149	NaN	145.0	13.2	77	9	27	Low
150	14.0	191.0	14.3	75	9	28	High
151	18.0	131.0	8.0	76	9	29	High
152	20.0	223.0	11.5	68	9	30	Medium

153 rows × 7 columns

```
In [61]: data.isnull().sum()
Out[61]: Ozone
                        37
                         7
          Solar.R
          Wind
                         0
          Temp
                         0
          Month
                         0
          Day
                         0
          Humidity
          dtype: int64
In [62]:
          data["Ozone"].fillna(data["Ozone"].mean(), inplace=True)
          data["Solar.R"].fillna(data["Solar.R"].mean(), inplace=True)
          data
Out[62]:
                  Ozone
                            Solar.R Wind Temp Month Day Humidity
             0 41.00000 190.000000
                                      7.4
                                             67
                                                     5
                                                                High
             1 36.00000 118.000000
                                      8.0
                                            72
                                                     5
                                                          2
                                                                High
             2 12.00000 149.000000
                                                                NaN
                                     12.6
                                             74
                                                     5
                                                          3
               18.00000 313.000000
                                     11.5
                                             62
                                                     5
                                                          4
                                                             Medium
               42.12931 185.931507
                                     14.3
                                             56
                                                     5
                                                          5
                                                                 Low
                                      ...
                                                                  ...
           148 30.00000 193.000000
                                             70
                                      6.9
                                                    9
                                                         26
                                                                 Low
           149 42.12931 145.000000
                                     13.2
                                             77
                                                    9
                                                         27
                                                                 Low
           150 14.00000 191.000000
                                     14.3
                                             75
                                                    9
                                                         28
                                                                High
           151 18.00000 131.000000
                                      8.0
                                             76
                                                    9
                                                        29
                                                                High
           152 20.00000 223.000000
                                                     9
                                                         30
                                     11.5
                                             68
                                                             Medium
          153 rows × 7 columns
In [63]: data["Humidity"].fillna("Medium", inplace=True)
In [64]: data.isnull().sum()
Out[64]: Ozone
                        0
          Solar.R
                        0
          Wind
                        0
          Temp
                        0
          Month
                        0
          Day
                        0
          Humidity
          dtype: int64
```

Performing Label Encoding

```
In [65]: from sklearn.preprocessing import LabelEncoder
          le = LabelEncoder()
In [66]:
In [67]: | data["Humidity"] = le.fit transform(data["Humidity"])
In [68]: data
Out[68]:
                  Ozone
                             Solar.R Wind Temp Month Day Humidity
             0 41.00000 190.000000
                                      7.4
                                                     5
                                                                    0
                                             67
             1 36.00000 118.000000
                                      8.0
                                             72
                                                     5
                                                          2
             2 12.00000 149.000000
                                                     5
                                     12.6
                                             74
                                                          3
                                                                    2
                                                                    2
               18.00000 313.000000
                                     11.5
                                                     5
                                                          4
               42.12931 185.931507
                                     14.3
                                             56
                                                     5
                                                          5
                30.00000 193.000000
                                      6.9
                                             70
                                                     9
                                                          26
            148
            149 42.12931 145.000000
                                     13.2
                                             77
                                                     9
                                                         27
           150 14.00000 191.000000
                                     14.3
                                             75
                                                         28
           151 18.00000 131.000000
                                      8.0
                                             76
                                                         29
                                                                    0
           152 20.00000 223.000000
                                                                    2
                                     11.5
                                             68
                                                     9
                                                         30
```

153 rows × 7 columns

Assigning dependent and independent variables

```
In [69]: x = data.iloc[:, [0,1,2,3]]
y = data["Humidity"]
```

Importing the required function and splitting the data into training and testing data

```
In [70]: from sklearn.model_selection import train_test_split
```

```
In [71]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
```

Printing size of training and testing data

```
In [72]: print(len(x_train))
    print(len(x_test))
    print(len(y_train))
    print(len(y_test))
122
31
122
31
122
31
```

Importing and creating a linear regression model

```
In [73]: from sklearn import linear_model
In [74]: regr = linear_model.LinearRegression()
```

Fitting the model and display the regression coefficients

```
In [75]: model = regr.fit(x_train, y_train)
print(model.intercept_)
print(model.coef_)

0.2596553365337608
[-0.00196037 -0.00092793  0.02911026  0.01001252]
```

Predicting the values

```
In [76]: y_predict = model.predict(x_test)
```

Importing and calculating the performance metrics

```
In [78]: from sklearn.metrics import mean_squared_error
```

Mean Squared Error (MSE)

Root Mean Squared Error (RMSE)

Plotting the data

```
In [83]: plt.scatter(y_test,y_predict);
    plt.xlabel('Actual');
    plt.ylabel('Predicted');
```


In [85]: sns.regplot(x=y_test,y=y_predict,ci=None,color ='red');

