* Layer 2 devices:

* Switching operation.

* Switching Modes.

* LAN switch functions: { Learning Removing L2 Loops (Listening)

* Switch Operation:

1 Learning:

- Forming MAC address table by checking Source MAC in an incoming frames.

	Z B
	$\begin{array}{c c} & 2 \\ \hline & 3 \\ \hline & \rightarrow \end{array}$
<u>©</u>	4
	(D)

MAC	Table	(RAM	()
-----	-------	------	----

MAC	Port
A	1
В	2
С	3
D	4

- Switch will flush inactive entries after 5 min of inactive by default.
- Switch can learn many devices on Same Switch port.
- Switch Can never Learn Same Levice on different ports.

MACTable		
MAC	port	
H	1	
A	3	
B	3	
С	3	
D	500	
E	500	
G	500	

	~		
	MAC	port	
	D	2	
	E	3	_]
L	G	4	
\int	А	1	
	В	1	
	C	1	
	H	1	
			4

- * Note (1): Switch will flush inactive entries after 5 mins of inactivity by default.
- * Note B: Switch Can learn many devices on Same switch

 Port
- * Note ©: Switch Can never learn Same device on different ports.
- * Note D: Switch understands MAC address, but does not have it.
- * Note (E: Hub doesnot have ASIC & Table (because it doesnot understand MAC address).
- * Note (F): Switch Can never learn Same MAC on two different parts

* Note G: the Switch will never Learn the devices (even they are linked to it) if they do not Connect to each other.

*Note (H): once the devices Connect to each other, the Switch will learn the devices (MAC addresses) and their link to its ports.

2 Forwarding :

- Switching frames to next hop (hop to hop; DTE to DTE) by checking destination MAC in frames.

	MACTable (RAM)		
	MAC	port	
	Α	1	
	B	2	
_		1	

- The Switch will fload if the dest. MAC Unknown (not in table) or multicast or broad Cast.

"BUH"

- ; if the dest. MAC is unknown (not in MAC Table), The Switch will fload the data to all devices.
- All devices on a switch (& Hub) are in the Same broad Gast domain = LAN

- if dest. MAC is BroadCast (FF....F), the switch will flood.

(Seftware)
- if dest. MAC is Multicast (01005e)(xxxxxxx), The
Switch will flood.

- forwarding is done using micro segmentation switch's interior wires

- All devices on switch Can operate in full duplex.

Can both Tx & Rx at the Same time

- All devices on switch are in Separate Collision domains

(No Collision/Interface)

&
(logical Topology = Mesh)

· No. of Cables (microsegmentation) = n (n-1) n: 10. of devices

· No Collisions;

- Micro Segmentation: (separate Collision domains).
- Buffering: Area of memory where the switch stores the data (RAM).
- when all devices send data to WAN (Congestion),
 Bufferes will be used to prevent Collision by
 Passing data through Queues -> FIFO.

Half duplex: CSMA/CD Carrier Sense Multiple Access/Collision Detection.

- All devices on all hub Can operate in half duplex.

(Can either Tx or Rx at Sametime)

- All devices on all hub are in Same Collision domain

(Collision/Interface)

&
(Logical Topology = Bus)

CSMA/CD:

- it defines how network devices respond when two devices use a data channel Simultaneously and en Counter data Collision.

* Remove layer 2 loops:
Using STP (Spanning Tree protocol)

Ocut through:

- Switch wait 14-bytes (& bytes pre-amble + 6 bytes dest MAC, of frame Then forward (open microsegmentation).

(microsegment of frame)

Disadv.

- it forwards the frames without checking errors.

2) Store & forward:

- Switch wait full frame then forward

Store frame error check forward.

on buffer by ASIC Drop.

Disadv: it takes time to check error, then forward.

3) Adaptive - Cut through: By Cisco - Mix between cut through & store and forward Combined

- Start for 1 min. as Cut through, then check error.

if error "< 10%" Still the Same " Cut through" if error ">10%" > run as store & forward

- Monitoring ASIC "up to 60 Tbps".

* * Internet Layer / Network Layer & PDU = Frame

* Logical Address.

* Routing operation.

- Internet layer/Network layer is responsible for end-to-end data delivery.; PDU packet.

* Logical Address s

- it is software address giving by Configration used to send data from end-to-end.

N	Н	Service
Network Part	Host F	Service Provider
10	• 1	California, v.S.
10	. 2	California, U.S.
1000	ż	

- Ex: IPV4, IPV6 (TCP/IP),
Apple Talk, IPx (Not for internet access);

- Service provider: Internet Assigned Number Authority
IANA

- It divide to I Network part N augrée une l'Host part H augrée une

MAC Address	IP Address
- physical Add ress	- Logical Address
- Burnt on RoM of NIC	- Given by Configuration.
- Hardware Address	- Software Address
- Hop-to-Hop "IEEE"	- End-to-End "IANA"

Layer 2 Technology	Layer 2 Address
- Ethernet, Wifi - x.25	- MAC 48-bits - X.25 8-bits
- Frame Relay	- DLCI 10-bits "Data Link Circuit ID"
- ATM, DSL	- VPI/VCI 16-bits "Virtual path ID/Virtual Circuit ID"

Function	Router	Switch
Tonchon	200101	3
Learning	- forming IP address Table (Routing table) Using Software (routing protoGls) (RIP-OSPF)	- forming MAC table address by checking Src. MAC.
forwarding	routing table; if dest IP: - Known -> Router will forward.	- Compare dest. MAC to the MAC table. if dest MAC: Know -> Switch will forward UNKNOW -> " Flood BroadCast -> " flood BRUM -> Flood

* Routing:

"Finding the best path to final end Using Routing Protocol"

Page 16-