Problems from textbook:

- 1.8 What is a communication protocol? Conceptually, what two aspects of communication does a protocol specify?
- 1.12 Explain how headers are added and removed as data passes through a layered protocol stack.
- 6.20 If the maximum frequency audible to a human ear is 20,000 Hz, at what rate must the analog signal from a microphone be sampled when converting it to digital?
- 6.22 Describe the difference between lossy and lossless compression. Tell when each might be used.
- 7.4 What three types of wiring are used to reduce interference form noise?
- 7.14 Can laser communication be used from a moving vehicle? Explain.
- 8.9 How does one compute the minimum number of bit changes that can transform a valid codeword into another valid codeword?
- 9.4 What is the chief characteristic of asynchronous transmission?
- 9.7 When using a synchronous transmission scheme, what happens when a sender does not have data to send?
- 10.5 In phase shift keying, is it possible to have a phase shift of 90°? of 270°? of 360°?
- 11.6 Explain how a range of frequencies can be used to increase data rate.
- 12.6 What type of multiplexing does ADSL use?

Answers:

- 1.8 Protocols specify the details of network communication. A protocol specifies the format (syntax) and meaning (semantics) of messages i.e., specify fields in the protocol header and the message exchanges that occur.
- 1.12 Each layer adds/removes its header to/from the packet and passes the resulting packet to the layer below/above.
- 6.20 The sampling rate = $2 \times f_{max}$, so 2x20,000 = 40,000 Hz (i.e. 40,000 samples/sec)
- 6.22 Lossy compression: some data is lost when compressing (for loss-tolerant streams e.g. video/audio). Lossless compression: original data is preserved and recovered on decompression (for loss-intolerant streams e.g. data files).
- 7.4 Coax, unshielded/shielded twisted pair (UTP/STP), optical fiber (carries light waves; is immune to electrical noise).
- 7.14 Difficult since line-of-sight and precise alignment is needed.
- 8.9 Hamming distance=# of bits in which two codewords differ. Compute dmin=min Hamming distance among all pairs of codewords=min # of errors that can change a valid codeword into another. Can detect at most (dmin-1) errors.
- 9. 4 Data can arrive at any time with an arbitrary gap between data items.
- 9.7 Start frame with a special sequence of bits for synchronization and transmit an idle byte when there is no data.
- 10.5 When modulating data, any phase shift can be used; 360-degree and 0-degree shifts are the same (see slides).
- 11.6 Divide the frequency range into K carriers and send 1/K of the data on each carrier.
- 12.6 ADSL combines FDM with inverse multiplexing in a scheme known as DMT (Discrete Multi Tone).

Additional questions (answers are in bold):

1. True or False? Circle ONE of T (true) or F (false) to indicate your answer.

•	In the OSI 7-layer model, layer 3 is the network layer	T	F	T
•	UDP is a connection-oriented protocol	T	F	F
•	Voice packets in typical VoIP traffic use TCP instead of UDP	T	F	F
•	TCP provides many-to-many communication	T	F	F
•	A UDP message (=UDP header+UDP data) over IP cannot have more than 64 Kbytes	T	F	T
•	The destination IP address in packets sent by a client to a server is the client's IP	T	F	F
•	Concurrent servers use a separate thread of control for each client	T	F	T
•	The server port number identifies an application running on the server	T	F	T
•	A DNS request from a browser asks for a web server's MAC address	T	F	F
•	The TCP checksum in a received packet computed using the Internet checksum has 32 bits	T	F	F
•	For the CRC polynomial $x^{16}+x^{12}+x^5+1$, the total number of bits in the CRC is 16	T	F	T
•	The CRC used in Ethernet or 802.11 frames can correct most burst errors	T	F	F
•	If the maximum number of detectable errors is 6, the minimum Hamming distance d _{min} =6	T	F	F
•	For a (10, 5) encoding scheme, the number of data bits is 10	T	F	F
•	For a (10, 5) encoding scheme, the code rate is 1/2	T	F	T
•	The Hamming distance for the strings 1001 and 0011 is 2	T	F	T
•	If $11000101 \rightarrow 10001101$, the length of the burst error is 4	T	F	T
•	A RAC matrix can <u>correct</u> any single bit error	T	F	T
•	ADSL selects frequencies and modulation techniques to adapt to line quality:	T	F	T
_				

- 2. For each packet, show the relevant protocol headers in the correct order:
- a) HTTP/2 request packet sent on an Ethernet by a browser to a Web server Ethernet|IP|TCP|HTTP
- b) DNS response packet sent on an 802.11 networks and received by a client 802.11 IP|UDP|DNS
- c) ICMP ping packet sent on a wired link to an Ethernet switch by an 802.11 AP Ethernet|IP|ICMP|
- d) ARP request sent by an 802.11 home router to a mobile device 802.11 | ARP
- 3. The TCP/IP model layers are Internet (I), Transport (T), Application (A), Physical (P), Network Interface (N I)
- Name the layer that contains each protocol: TCP
 IP
 FTP
 transport Internet application
- Name the layer that specifies low-level details such as modulation, frequencies and voltages ____ physical

4. Fill in each blank with ONE choice from the following list that is the BPSK, QPSK, FDMA, CDMA, TDM, QAM, amplitude, statistical									
 modulation method used in 802.11 that achieves a low data rate 			hit 0 or 1		BPSK				
 modulation method used in 802.11 and LTE/5G networks to acl 		QAM							
 multiplexing method where sources take turns and a slot is unfil 		TDM							
 multiplexing method where light waves are sent across optical f 			WDM (w	ave_div	vision)				
 multiplexing methods used in 4G/LTE and 5G networks are bas 	sed on			_	FDMA				
5. For each property below, CIRCLE ONE transmission medium tha									
TP=twisted pair, CC=coaxial cable, MM=multimode fiber, SM=sing									
Uses a single wire and a metal shield:	TP	CC	MM	SM	CC				
 Cat 6 is a category of this wire type 	TP	CC	MM	SM	TP				
• Used to achieve higher data rates over very long distances 6. For each of the following, CIRCLE the ONE item that matches.	TP	CC	MM	SM	SM				
■ In HFC, fiber is used in the: feeder circuit trunk		home		trunk					
A set of modems used at the cable provider's side: CMTS	tail-end		DOCSIS						
Access technology that uses fiber from the provider to the custo	mer: HFC	C FITC FI	TH	FTTH					
• Optical technology that can provide 100G and 400G data rates OTN									
7. Circle ONE choice to indicate the correct answer:	han af ahid	An in		1 2	1 0 1				
In phase shift modulation, to send 2 bits per shift, the total number of shifts is: 1 2 4 8 4 If may and min frequencies of analog signal are 4 KHz and 1 KHz its handwidth in KHz is: 1 2 4 8 4									
 If max and min frequencies of analog signal are 4 KHz and 1 KHz, its bandwidth in KHz is: If a system operates at 3000 band and uses 4 signal levels, the bit rate in Kbps is: 3 4 5 3 6 12 48 6 									
 The number of signal levels in a 1000-baud system that sends at 					4 8 8				
 An 8-PSK mechanism has x times the data rate of a 2-PSK mechanism. 					3 4 3				
8. Given the two bytes 10000000 (MSByte) and 10000001 (LSByte), assume the leftmost bit in each byte is MSbit and									
the rightmost bit in each byte is LSbit. Circle ONE of the 4 orders that is bit big endian and byte little endian, assuming									
the bits below are transmitted from left to right (i.e., leftmost bit first and rightmost bit last).									
1. 10000001 10000000 2. 10000001 00000001 3. 10000000 100									
9. Generate a RAC parity matrix for a (12, 6) coding of the dataword	1110001 (arrange da	itaword in	2 rows).					
Assuming even parity: 1100									
0011									
1 1 1 1 10. a) What two characteristics of a signal are varied in QAM? ampl	itude and	l nhase							
b) In 256QAM,	ituuc anc	i piiasc							
how many points are in the constellation diagram? 256									
how many bits does a single point represent? 8 since 28 = 256									
11. Show the steps of each calculation below. (Exact answers shown within parenthesis are not needed).									
a) If a transmission system has bandwidth B=8000 Hz and uses 4 values of voltage, find the maximum data rate in bits									
per second using the Nyquist formula D=2B log ₂ K, where D is the maximum data rate in bits per second and K is the									
number of values of voltage. D=2x8000xlog ₂ 4 (=32,000 bits/sec)									
b) If a transmission system has bandwidth B=5000 Hz and an S/N ratio equivalent to 20 dB, find the maximum data									
rate in bits per second using the Shannon formula C=B log ₂ (1+S/N),	, where th	e S/N ratio	o is 10 log ₁	$_0$ S/N in	dB.				
$10x\log_{10}S/N=20 \rightarrow \log_{10}S/N=2 \rightarrow S/N=100$	daaa ahar	.4 22201 h	:ta/aaa)						
C=5000xlog ₂ (1+100)=5000xlog ₂ 101 (which is less than 35,000 bits c) How many milliseconds does it take to send a 10 Megabyte file at			its/sec)						
$((10x10^6x8)/(100x10^6))x10^3$ (800 ms; using 1 MB= 2^{20} bytes gives 8									
			for a signa	l to trave	el from the				
d) A satellite is 1500 km above the earth's surface. How many <u>milliseconds</u> does it take for a signal to travel from the satellite to the user? The speed of light is $3x10^8$ meters/s. $((1500x10^3)/(3x10^8))x10^3$ (=5 ms)									
e) The PCM voice standard uses 8000 samples/s. If 16 bits per sample are used, into how many levels is the range of									
the signal divided, and at what rate is data generated for a call? 16 bits have 2 ¹⁶ possible values, which is the number									
of levels. The data rate is: 8000 samples/s * 16 bits/sample (= 128, 000 bits/s = 128 kbps).									
12. Fill in the missing Java socket code. Choices: ServerSocket, 11111, 22222, Socket, "localhost", DatagramSocket,									
DatagramPacket, length, InetAddress,									
y = new()//TCP server listens on port 11111 for TCP client connections ServerSocket, ServerSocket, 11111									
x = y(); //TCP server connects to TCP client Socket , accept									
a = new (,); //TCP client connects to localhost TCP server on port 11111									
Socket, Socket, "localhost", 11111									
p = new(); //UDP client defines a socket to connect to a				atagram	Socket				
q =getByName(); //UDP client gets IP add InetAddress, InetAddress, "localhost"	mess q of I	ocamost jav	a server						
s = new(r, r, q,); //UDP client sends packet	byte[] r to l	localhost se	rver at IP ad	dress q p	ort 22222				
DatagramPacket, DatagramPacket, length, 22222				.1					