Linear Probing: h(k, i) = (h(k) + i) mod m		
Numbers to insert [41, 30, 74, 55, 68, 39, 64, 72]		
Table capacity	8	
Hash function	$h(k) = (3k + 4) \mod 8$	

Insert 41: $h(41) = 7 \rightarrow insert to index 7$

Insert 30: h(30) = 6 -> insert to index 6

Insert 74: $h(74) = 2 \rightarrow insert to index 2$

Insert 55: $h(55) = 1 \rightarrow insert$ to index 1

Insert 68: $h(68) = 0 \rightarrow insert to index 0$

Insert 39: h(39) = 1 (occupied)

+1 (collision) = 2 (occupied)

+1 (collision) = 3 -> insert to index 3

Insert 64: h(64) = 4 -> insert to index 4

Insert 72: h(72) = 4 (occupied)

+1 (collision) = 5 -> insert to index 5

Index	Element
0	68
1	55
2	74
3	39
4	64
5	72
6	30
7	41

Quadratic Probing: h(k, i) = (h(k) + i^2) mod m		
Numbers to insert [19, 29, 16, 26, 14, 24, 13, 23]		
Table capacity	8	
Hash function	$h(k) = (3k) \mod 8$	

Insert 19: $h(19) = 1 \rightarrow insert$ to index 1

Insert 29: $h(29) = 7 \rightarrow insert$ to index 7

Insert 16: $h(16) = 0 \rightarrow insert to index 0$

Insert 26: h(26) = 6 -> insert to index 6

Insert 14: $h(14) = 2 \rightarrow insert$ to index 2

Insert 24: h(24) = 0 (occupied)

+1 (collision) = 1 (occupied)

+3 (collision) = 4 -> insert to index 4

Insert 13: h(13) = 7 (occupied)

+1 (collision) = 0 (occupied)

+3 (collision) = 3 -> insert to index 3

Insert 23: h(23) = 5 (occupied)

Index	Element
0	16
1	19
2	14
3	13
4	24
5	23
6	26
7	29

Double Hashing: $h(k, i) = (h1(k) + i * h2(k)) \mod m$

Numbers to insert

[22, 14, 39, 23, 80, 53, 49, 50]

Table capacity	8
Hash functions	$h1(k) = (k) \mod 8, h2(k) = ((5k + 3) \mod 7) + 1$

Insert 22: $h(22) = 6 \rightarrow \text{insert to index } 6$

Insert 14: h(14) = 6 (occupied)

(+ 1 * 4) % 8 = 2 -> insert to index 2

Insert 39: h(39) = 7 -> insert to index 7

Insert 23: h(23) = 7 (occupied)

(7 + 1 * 7) % 8 = 6(occupied)

(7 + 2 * 7) % 8 = 5 -> insert to index 5

Insert 80: $h(80) = 0 \rightarrow insert$ to index 0

Insert 53: h(53) = 5 (occupied)

(5 + 1 * 3) % 8 = 0 (occupied)

 $(5 + 2 * 3) \% 8 = 3 \rightarrow insert to index 3$

Insert 49: $h(49) = 1 \rightarrow insert$ to index 1

Insert 50: h(50) = 2 (occupied)

(2 + 1 * 2) % 8 = 4 -> insert to index 4

Index	Element
0	80
1	49
2	14
3	53
4	50
5	23
6	22
7	39

Cuckoo Hashing: h1(k) for table 1, h2(k) for table 2

Numbers to insert

[9, 23, 24, 15, 87, 20, 12, 47]

Table capacity	14 (7 for each sub-table)	
Hash functions	$h1(k) = (3k + 1) \mod 7$, $h2(k) = (floor(5k / 2) + 3) \mod 7$	

Insert 9: h1(9) = 0 -> insert to table 1 index 0

Insert 23: h1(23) = 0 -> insert to table 1 index 0

h2(9) = 25 % 7 = 4 -> insert to table 2 index 4

Insert 24: h1(24) = 3 -> insert to table 1 index 3

Insert 15: h1(15) = 4 -> insert to table 1 index 4

Insert 87: h1(87) = 3 -> insert to table 1 index 3

 $h2(24) = 63 \% 7 = 0 \rightarrow \text{insert to table 2 index 0}$

Insert 20: h1(20) = 5 -> insert to table 1 index 5

Insert 12: h1(12) = 2 -> insert to table 1 index 2

Insert 47: h1(47) = 2 -> insert to table 1 index 2

 $h2(12) = 33 \% 7 = 5 \rightarrow insert to table 2 index 5$

Table 1 Table 2

Index	Element	Index	Element
0	23	0	24
1		1	
2	47	2	
3	87	3	
4	15	4	9
5	20	5	12
6		6	
7		7	