Exercise 3.1. Explain why a linear functional is either surjective or 0.

Proof. Cause dim F = 1.

Exercise 3.6. Let $\varphi, \beta \in V'$, show that $\text{null } \varphi \subseteq \text{null } \beta \iff \exists c \in F, \beta = c\varphi$. Proof.

• (\Rightarrow) For any $v \notin \text{null } \beta$, we have $\beta(v) = \beta(v)(\varphi(v))^{-1}\varphi(v)$ we claim that $\beta = \beta(v)(\varphi(v))^{-1}\varphi$. We may denote $\beta(v)(\varphi(v))^{-1}$ by c. For any $v, w \notin \text{null } \beta$, we have $\beta(v) = a\varphi(v)$ and $\beta(w) = b\varphi(w)$, we want to show that a = b, which can be proven by:

$$a = b$$

$$\frac{\beta(v)}{\varphi(v)} = \frac{\beta(w)}{\varphi(w)}$$

$$\beta(v)\varphi(w) = \beta(w)\varphi(v)$$

$$\beta(\varphi(w)v) = \beta(\varphi(v)w)$$

which is equivalent to $\varphi(w)v - \varphi(v)w \in \text{null }\beta$, then:

$$\varphi(\varphi(w)v - \varphi(v)w)$$

$$= \varphi(\varphi(w)v) - \varphi(\varphi(v)w)$$

$$= \varphi(w)\varphi(v) - \varphi(v)\varphi(w)$$

$$= 0$$

therefore $\varphi(w)v - \varphi(v)w \in \text{null } \varphi \subseteq \text{null } \beta$, thus a = b. The case $v \in \text{null } \beta$ is trivial.

• (\Leftarrow) For any $v \in \text{null } \varphi$, $\beta(v) = c\varphi(v) = 0$, therefore $v \in \text{null } \beta$, thus $\text{null } \varphi \subseteq \text{null } \beta$.

Exercise 3.7. Let V_0, \dots, V_{m-1} are vector spaces, show that $V'_0 \times \dots \times V'_{m-1}$ and $(V_0 \times \dots \times V_{m-1})'$ are isomorphic.

Proof. Define $\psi(\varphi) = v_0 \mapsto \varphi(v_0, 0, \cdots), \cdots, v_{m-1} \mapsto \varphi(\cdots, 0, v_{m-1})$ and $\psi^{-1}(\varphi_0, \cdots, \varphi_{m-1}) = (v_0, \cdots, v_{m-1}) \mapsto \varphi_0(v_0) + \cdots + \varphi_{m-1}(v_{m-1}).$ For any $\alpha, \beta \in (V_0 \times \cdots \times V_{m-1})'$ and $\lambda \in F$, we have

$$\psi(\alpha + \beta)_{i}$$

$$=v_{i} \mapsto (\alpha + \beta)(\cdots, v_{i}, \cdots)$$

$$=v_{i} \mapsto \alpha(\cdots, v_{i}, \cdots) + \beta(\cdots, v_{i}, \cdots)$$

$$=(v_{i} \mapsto \alpha(\cdots, v_{i}, \cdots)) + (v_{i} \mapsto \beta(\cdots, v_{i}, \cdots))$$

$$=\psi(\alpha)_{i} + \psi(\beta)_{i}$$

and $(\lambda \psi(\alpha))_i = \lambda(v_i \mapsto \alpha(v_i)) = v_i \mapsto \lambda \alpha(v_i) = \psi(\lambda \alpha)_i$ Therefore ψ is a linear map.

For any $\alpha, \beta \in V'_0 \times \cdots \times V'_{m-1}$ and $\lambda \in F$, we have:

$$\psi^{-1}(\alpha + \beta)
= (v_0, \dots, v_{m-1}) \mapsto (\alpha + \beta)(v_0) + \dots + (\alpha + \beta)(v_{m-1})
= (v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \beta(v_0) + \dots
= ((v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \dots) + ((v_0, \dots, v_{m-1}) \mapsto \beta(v_0) + \dots)
= \psi^{-1}(\alpha) + \psi^{-1}(\beta)$$

and

$$\lambda \psi^{-1}(\alpha)$$

$$= \lambda((v_0, \dots, v_{m-1}) \mapsto \alpha(v_0) + \dots)$$

$$= (v_0, \dots, v_{m-1}) \mapsto \lambda(\alpha(v_0) + \dots)$$

$$= (v_0, \dots, v_{m-1}) \mapsto (\lambda \alpha(v_0)) + \dots$$

$$= \psi^{-1}(\lambda \alpha)$$

thus ψ^{-1} is a linear map.

We will show that ψ^{-1} is the inverse of ψ then ψ is an isomorphism. For any $\varphi \in (V_0 \times \cdots \times V_{m-1})'$,

$$\psi^{-1}(\psi(\varphi))$$

$$=v_0, \dots, v_{m-1} \mapsto \psi(\varphi)_0(v_0) + \dots$$

$$=v_0, \dots, v_{m-1} \mapsto \varphi(v_0, 0, \dots) + \dots + \varphi(\dots, 0, v_{m-1})$$

$$=v_0, \dots, v_{m-1} \mapsto \varphi(v_0, \dots, v_{m-1})$$

$$=\varphi$$

and for any $\varphi \in V'_0 \times \cdots \times V'_{m-1}$,

$$\psi(\psi^{-1}(\varphi))$$

$$=v_0 \mapsto \psi^{-1}(\varphi)(v_0, 0, \cdots), \cdots$$

$$=v_0 \mapsto \varphi_0(v_0), \cdots$$

$$=\varphi_0, \cdots, \varphi_{m-1}$$

$$=\varphi$$

Exercise 3.16. Let W a finite vector space, $T \in \mathcal{L}(V, W)$, show that

$$T' = 0 \iff T = 0$$

Proof.

- (\Rightarrow) Suppose $T \neq 0$, then we can always find $\varphi \in \mathcal{L}(W, F)$ which $\varphi(\operatorname{range} T) \neq 0$, then $\varphi \circ T \neq 0$.
- (⇐) Trivial.

Exercise 3.17. Let V, W are finite vector spaces, $T \in \mathcal{L}(V, W)$. Show that T is invertible $\iff T'$ is invertible.

Proof. Since T is invertible, then T is injective, therefore T' is surjective. Similarly, T' is injective since T is surjective. Therefore T' is invertible.

Exercise 3.18. Let V, W are finite vector spaces, show that the mapping $\varphi(T) = T'$ is an isomorphism between $\mathcal{L}(V, W)$ and $\mathcal{L}(W', V')$.

Proof. Since V and W are finite, we only need to show that φ is injective or surjective. We will show that φ is injective.

For any $\varphi(T) = T' \in \mathcal{L}(W', V')$, we know $T = 0 \iff T' = 0$, therefore null $\varphi = \{0\}$, thus φ is injective.

I was wonder if I can prove this by $\varphi(S)(\mathrm{id}) = \varphi(T)(\mathrm{id}) \implies S = T$. This may work if the codomain restriction doesn't lose information, i.e. only restrict to a superset of its range, therefore the restriction is one-to-one.

Exercise 3.21. Let V finite and $U, W \subseteq V$ are subspaces.

- 1. Show that $W^0 \subseteq U^0 \iff U \subseteq W$
- 2. Show that $W^0 = U^0 \iff U = W$

Proof. The second statement can be easy proved by the first one.

- (\Rightarrow) We can always find a $f \in \mathcal{L}(W, F)$ such that null f = W, then $f(U) = \{0\}$ since $f \in W^0 \subseteq U^0$, therefore $U \subseteq \text{null } f = W$.
- (\Leftarrow) For any $\varphi \in W^0$, we know $W \subseteq \text{null } \varphi$, then $U \subseteq W \subseteq \text{null } \varphi$, therefore φinU^0 , thus $W^0 \subseteq U^0$.