

q0: Start state

q1: Last input read was a 1. Can read more 1s, or 2.

q2: Last input read was a 0. Can read more 0s, 1, or 2.

q3: Last input read was a 2. Can only read more 2s.

q5: Infinite loop to keep reading invalid strings of 100000....

q_{acc}: Tape is empty. Accept and halt.

q0: Start state

q1: Last input read was a 1. Can read more 1s, or 2.

q2: Last input read was a 0. Can read more 0s, 1, or 2.

q3: Last input read was a 2. Can only read more 2s.

q_{acc}: Tape is empty. Accept and halt.

c) Yes. It can be described by the following high-level description:

Ignore input.

Have a list L, such that it is ordered in standard string order of all possible strings in $\{0, 1, 2\}^*$; i.e. L₁ comes before L₂ comes before L₃ in standard string order and is within $\{0, 1, 2\}^*$.

- 1. For i = 1, 2, ...
 - 2. Run ND on L_i for (at most) i steps.
 - 3. If Li is recognized in step 2, print Li

- b) No, as the construction of the transition functions do not allow for it. Our new start state, r0, only has transitions that read an a or a b. The empty string is rejected.
- c) Yes. If M does not have any possible path to q_acc, M does not accept any strings. Then M_{new} will not accept any strings either. For example, from applying M_{new} to M_{sample} above, if M_{sample} 's q0 did not have a transion to q_acc, the machine would not accept any strings.

•	٦	
-	2	

- a) Yes, every possible combinations of substrings x and y are considered for all possible inputs w such that their concatenation is xy, if M_1 accepts x and M_2 accepts y. The machine isn't a decider but is a recognizer, and we only need it to recognize when both machines accept their substrings.
- b) Yes, as this construction has an enumerator recognizing all possible concatenations of strings from $L(E_1)$ and $L(E_2)$. All enumerators recognize TM recognizable languages. Also, every string in the language is printed out in finite time.
- c) Yes, as all possible substring concatenations are considered for each possible input w. M_1 and M_2 are also limited to a finite amount of steps.