

Chemistry ATAR 3+4

Acids & Bases Test

TOTAL = 54 Marks

DO NOT MARK THIS PAPER

Please use the Multiple answer sheet for part 1 and the answer booklet for part 2.

PART 1: Multiple Choice (10 Marks)

- Q1. Which of the following volumes of a 0.040 mol L⁻¹ potassium hydroxide solution is required to react exactly with 20.0 mL of a 0.010 mol L⁻¹ diprotic acid?
 - A. 1.0 mL
 - B. 5.0 mL
 - C. 10.0 mL
 - D. 20.0 mL
- Q2. Which of these salts will give a basic solution when added to water?
 - A. NH₄NO₃
 - B. NH₄CH₃COO
 - C. $Ca(NO_3)_2$
 - D. CaS
- Q3. Which of the following is most **UNLIKELY** to act as both a Brönsted Lowry acid or base?
 - A. OH
 - B. HPO₄²⁻
 - C. HS⁻
 - D. NH_4^+

- Q4. Which statement best describes the equivalence point in a titration between a strong acid and a strong base?
 - A. The point at which the first sign of a colour change occurs
 - B. The point at which equal moles of acid and base have been added together
 - C. The point at which equal moles of H⁺ ions and OH⁻ ions have been added together
 - D. The point at which the rate of the forward reaction equals the rate of the reverse reaction
- Q5. All the following are amphoteric except:
 - A. HSO₄¹-
 - B. HPO_4^{2-}
 - C. $H_2PO_4^{1-}$
 - D. PO₄³-
- Q6. Sulfuric acid (H_2SO_4) and nitric acid (HNO_3) are both strong acids. Ethanoic acid (CH_3COOH) is a weak acid.

20.00 mL solutions of 0.10 M concentration of each of these three acids were separately titrated with a 0.10 M solution of sodium hydroxide (NaOH),

In order to reach a pH 7 neutralisation reading.

- A. all three acids would require the same amount of NaOH.
- B. HNO_3 would require more NaOH than CH_3COOH but less than H_2SO_4 .
- C. H₂SO₄ and HNO₃ would require the same amount of NaOH but CH₃COOH would require less.
- D. CH_3COOH and HNO_3 would require the same amount of NaOH but H_2SO_4 would require more.
- Q7. Which of the following examples represents an acid-base reaction?

A.
$$NH_{4 (aq)}^{+} + OH_{(aq)}^{-}$$
 $\rightarrow NH_{3 (aq)} + H_{2}O_{(l)}$

B.
$$2NO_{3(aq)}^{-} + 2H_{(aq)}^{+} + 3H_{2}O_{2(aq)} \rightarrow 2NO_{(q)} + 3O_{2(q)} + 4H_{2}O_{(l)}$$

C.
$$2K_{(s)} + 2H_2O_{(l)}$$
 $\rightarrow 2K^+_{(aq)} + 2OH^-_{aq)} + H_{2(g)}$

C.
$$2K_{(s)} + 2H_2O_{(l)}$$
 $\rightarrow 2K^+_{(aq)} +$
D. $Ca^{2+}_{(aq)} + CO_3^{2-}_{(aq)}$ $\rightarrow CaCO_{3(s)}$

Q8. Methanoic acid and azoic acid are both weak acids with the following acidity constants (equilibrium constants).

Ka in M at 25°C

methanoic acid (HCOOH)
$$1.82 \times 10^{-4}$$
 azoic acid (HN₃) 1.91×10^{-5}

Two separate solutions were prepared, one of 0.1 M methanoic acid and the other of 0.1 M azoic acid.

Which one of the following would be present in the highest concentration at 25°C?

- HN₃ in the azoic acid solution A.
- N₃⁻ in the azoic acid solution B.
- HCOOH in the methanoic acid solution C.
- HCOO⁻ in the methanoic acid solution D.
- Acid X is 0.1 mol L^{-1} hydrochloric acid. Acid Y is 1.0 mol L^{-1} ethanoic acid. Q9. How does acid *X* compare with acid *Y*?
 - X is weaker and more dilute than Y. A.
 - B. X is stronger and more dilute than Y.
 - C. X is weaker and more concentrated than Y.
 - *X* is stronger and more concentrated than *Y*.
- Q10. Pure water undergoes self-ionisation. The equilibrium constant for the reaction at 95° C is 4.8×10^{-13} . This corresponds to a pH of 6.2. Which of the following statements is true?
 - A. At 95°C the water is acidic.
 - B. At 95°C the water is neutral.
 - C. At 95°C the water is basic.
 - The pH has been worked out incorrectly. D.

PART 2: Short Answers (44 Marks)

1. Write **net IONIC** equations for any reaction that occurs in the following making sure to **include phases** in your answer: Also write **full observations**.

NB: If no reaction occurs you must state this.

- a) Calcium hydroxide solid and sulphuric acid.
- b) Strontium oxide powder and phosphoric acid.
- c) Nitric acid and copper carbonate solution.
- d) Acetic acid solution and magnesium metal.

[12 marks]

- 2. Rewrite the following equations labelling the acids and bases with either an "A" or a "B" and show proton donation and acceptance with **an arrow** for both the forward and reverse reaction. State the conjugate acid/base pair and conjugate base/acid pair for each reaction:
 - a) $CN^{-1} + H_2O \rightleftharpoons HCN + OH^{-1}$
 - b) $CH_3COOH + S^{2-} \rightleftharpoons CH_3COO^{-1} + HS^{-1}$

[4 marks]

3.	Is a lithium oxalate solution acid, basic or neutral? Explain w	ith the aid	lof
	a hydrolysis equation.		

[2 marks]

4. The K_a values for two acids are given in the table below:

Acid	K _a @ 25°C
$H_2C_2O_4$	5.4 x 10 ⁻⁵
H₃PO₄	7.1 x 10 ⁻³

NB: These are the K values for the 1^{st} ionisation only! i.e. K_{a1}

- a) Of the two acids which is the strongest? Justify your answer using the $K_{\rm a}$ values.
- b) Write equations to represent the first ionisation of each acid.

[4 marks]

- 5. Calculate the pH of (assume 25°C):
 - a) A solution of 0.320 grams of HCl in 250mL of water.

[3 marks]

b) 75ml of 0.15M NaOH is mixed with 2.5g of powdered Ba(OH)₂ [6 marks]

6. A 4.65g sample of pure NaOH_(s) is dissolved in 200mL of distilled water and then added to 626mL of 0.15 mol.L⁻¹ $H_2SO_{4(aq)}$. Determine the pH of the mixture when the reaction is complete. Also state the limiting reagent.

[7 marks]

- 7. Titrations are a very important analytical technique in Chemistry. Unfortunately, acids, bases and salts are generally all clear and colourless in solution, so the end point of a titration cannot be signified by a colour change as in a redox titration. We need to select an indicator which changes colour for us. However, the selection of the correct indicator is based on a few factors.
 - a) On your answer sheet, write down the missing entries a to f from the table below.

[3 marks]

	Strong Base	Weak Base
Strong Acid	1. pH at end point = a	3. pH at end point = e
	Indicator = <i>b</i>	Indicator = f
Weak Acid	2. pH at end point = c	
	Indicator = d	

b) The following titration curves are drawn for titrations 1,2 and 3 above. Match the titration to the correct curve. Write your answer in the form "1A" or "1B"etc.

[3 marks]

END of PAPER