Respostas Prova 1 CPA

Pedro Cobianchi Borges Paiva

Fevereiro 2021

1 Melhor caso

Melhor caso: O melhor caso desse algoritmo ocorre quando a entrada está em ordem crescente, pois o algoritmo ordena os elementos nessa ordem. Logo entraremos na linha 4 e 5 apenas 1 vez. Executaremos a linha 6 n vezes e consequentemente a linha 7 será executada n-1 vezes. Como o vetor já está na ordem correta, então a condicional nunca será satisfeita, logo as linhas 8 e 9 nunca serão executadas. A linha 12 será executada apenas 1 vez e não entrará neste bloco, pois o vetor já está ordenado, logo as linhas 13, 14, 15, 16 e 17 serão executadas 0 vezes e a linha 21 será executada apenas 1 vez. Com isso, considerando-se que o custo da linha i e c_i , temos $t(n) = an + b = <math>\Omega(n)$ sendo $a = c_6 + c_7$, $b = c_4 + c_5 + c_{12} + c_{21} - c_7$.

Tabela 1:		
$_{ m Linha}$	Número de vezes executada	
4	1	
5	1	
6	n	
7	n-1	
8 e 9	-	
12	1	
13	-	
14	_	
15	-	
$16 \ \mathrm{e} \ 17$	_	
21	1	

2 Pior caso

Pior caso: O pior caso se torna mais interessante para análise por ter que lidar com mais questões. Então, o pior caso desse algoritmo ocorre quando a entrada está em ordem decrescente, pois o algoritmo ordena os elementos de forma crescente. De modo geral e dada a entrada citada, o algoritmo irá percorrer todo o

vetor e levar o primeiro elemento para a última posição, e em seguida irá levar o penúltimo elemento até a primeira posição.

Ex: vetor de 4 posições [4, 3, 2, 1]

No primeiro laço de repetição para (linha 6). Vetor resultante: [3, 2, 1, 4] No segundo laço de repetição para (linha 14). Vetor resultante: [1, 3, 2, 4] Podemos perceber que a cada passagem pelo laço repita (linha 3), o algoritmo consegue colocar 2 elementos na posição certa dado o pior caso. Dado o panorama do algoritmo, vamos à análise. A linha 2 será executada apenas 1 vez, linhas 4 e 5 irão executar $\frac{n}{2}$ para n par e $\frac{n+1}{2}$ para n ímpar, ou utilizando a notação $\left\lceil \frac{n}{2} \right\rceil$. A linha 6 será executada n vezes na primeira iteração, n-1 vezes na segunda iteração e assim por diante, vemos que ela segue o padrão n+1-j, e sabemos que j está limitado por $\lceil \frac{n}{2} \rceil$, temos que o primeiro termo é $(n - \frac{n}{2}) = \frac{n}{2}$ para n par e $(n - \frac{n+1}{2}) = \frac{n-1}{2}$ para n ímpar, ou $(n - \lceil \frac{n}{2} \rceil)$. Para n par temos então a seguinte progressão: $n + (n-1) + (n-2) + \dots + (\frac{n}{2})$, esse somatório resulta em: $\frac{3n^2-2n}{8}+\frac{n}{2}$. Para n ímpar, temos a seguinte progressão n + (n-1) + (n-2) $+\ldots+(\frac{n-1}{2})$, esse somatório resulta em: $\frac{3(n^2-1)}{8}+\frac{n+1}{2}$. A linha 7, para cada j ela executa n-1 vezes, com isso temos j = 1, n-1, j = 2, n-2 e assim por diante, então temos o n - j como padrão para a progressão e como já dito, temos que j é limitado por $\lceil \frac{n}{2} \rceil$. Logo temos o resultado para n par sendo $\frac{3n^2-2n}{8}$ e para n ímpar sendo $\frac{3(n^2-1)}{8}$. As linhas 8 e 9 são satisfeitas para j = 1, n - 1 vezes, j = 2 n - 3, para j = 3 n - 5 e assim por diante, com n - i sendo i ímpar. Este laço de repetição está limitado por j, temos então para n par que o primeiro termo é 1, ficando com o seguinte resultado: $(n-1+1)*\frac{n}{2}\frac{1}{2}.$ Para n ímpar temos que o primeiro termo é 0, ficando com o seguinte resultado: $(n-1+0)*\frac{n+1}{2}\frac{1}{2}$ podemos utilizar $\lfloor \frac{n^2}{2} \rfloor$. A linha 12 será executada $\lceil \frac{n}{2} \rceil$. Linha 13 $\lfloor \frac{n}{2} \rfloor$, apenas para n ímpar em um único momento esta linha não será executada. Linha 14 será executada o mesmo número de vezes que a linha 6 para n par, e para n ímpar será executada o mesmo número de vezes que a linha 7. A linha 15 será executada o mesmo número de vezes que a linha 7, para n par e para n ímpar executa o mesmo número de vezes que a linha 7 - $\lfloor \frac{n}{2} \rfloor$, (seria j vezes). As linhas 16e 17 seguirão o mesmo o raciocínio das linhas 8e 9, para n $\,$ par será executada $\frac{(n^2-2n)}{4}$ e para n ímpar $\frac{(n-1)^2}{4}$. Por último a linha 21 executa $\lceil\frac{n}{2}\rceil$ vezes. Com isso temos $t(n)=an^2+bn+c=\mathrm{O}(\mathrm{n}^2)$

Para todas os resultados obtidos, será anexado um rascunho de suas provas. Foram utulizados os conceitos de somatória de PA, sendo $S_n = \frac{n(a_0 + a_n)}{2}$:

Tabela 2:		
Linha	Número de vezes executada	
2	1	
4	$\lceil \frac{n}{2} \rceil$	
	$\left\lceil rac{ar{n}}{2} ight ceil$	
	$\frac{3n^2-2n}{8}+\frac{n}{2}$ para n par e $\frac{3(n^2-1)}{8}+\frac{n+1}{2}$ para n impar	
7	$\frac{3n^2-2n}{8}$ para n par e $\frac{3(n^2-1)}{8}$ para n ímpar	
8 e 9	$\frac{n^2}{4}$ para n par e $\frac{(n^2-1)}{4}$ para n ímpar	
12	$\left\lceil \frac{\tilde{n}}{2} \right\rceil$	
	$\left\lfloor rac{ar{n}}{2} ight floor$	
14	$\frac{3n^2-2n}{8}+\frac{n}{2}$ para n par $\frac{3(n^2-1)}{8}$ para n impar	
15	$\frac{3n^2-2n}{8}$ para n par e $\frac{3(n^2-1)}{8}$ - $\frac{n-1}{2}$ para n ímpar	
	$\frac{n^2-2n}{4}$ para n par e $\frac{(n-1)^2}{4}$ para n ímpar	
21	$\left\lceil \frac{n}{2} \right\rceil$	