

GEOENGINE Master Thesis

Temperature Dependency of a Low-cost IMU

Supervisor: Msc Clemens Sonnleitner

Examiner: Prof. Dr. techn. Thomas Hobiger

Candidate: Yongxu Duan

Table of Contents

□ Introduction

Background

- Navigation plays very important role from past to now on for people.
- Inertial Navigation System is an important modern navigation method.
- MEMS (Micro-Electro-Mechanical-Systems) technology enables
 IMUs to be manufactured smaller, lighter and cheaper.
- MEMS IMUs have become very widely used.
- MEMS IMUs are still far less accurate than some traditional high accuracy IMUs at present.
- Temperature influences the performance of MEMS IMUs differently from device to device.

Objectives

Temperature dependency of MPU-9250

Inertial Navigation

□ Inertial Navigation

Types of Gyroscope

Types of Accelerometer

MEMS Inertial Sensor

Advantages

- Small size
- Low weight
- Rugged construction
- Low power consumption
- Short start-up time
- Inexpensive to produce
- High reliability
- Low maintenance

Disadvantage

Less accurate than some conventional high accuracy IMUs at present.

Growing Market for MEMS Inertial Sensor

2006

controller

2007

Apple

iPhone

1993 1994 1998 ADIADXL Bosch Bosch gryo Nintendo Wii for ESC accelerometer DRIE for airbags process

Source:[6]

☐ Allan Variance

Allan Variance

- Allan Variance was proposed by David W. Allan in 1996.
- An important method of analyzing a sequence of data in the time domain.
- One of the most popular methods for identifying and quantifying the different noise terms that exist in inertial sensor data.
- The Allan Variance analysis consists of computing its Allan Deviation and then analyzing the characteristic regions and log-log scale slopes of Allan Deviation curves to identify the different noise terms.

Allan Variance

Averaging Factor, m = 3

Non-Overlapping Samples

Source:[7]

Non-Overlapped Allan Variance: Stride = τ = averaging period = $m \cdot \tau_0$

Overlapped Allan Variance: Stride =
$$\tau_0$$
 = sample period

 $\sigma_{y}^{2}(\tau) = \frac{1}{2(M-1)} \sum_{i=1}^{M-1} (y_{i+1} - y_{i})^{2}$ ith of *M* fractional frequency values averaged over τ

Noise Characterization

- ARW/VRW (Angle/Velocity Random Walk) describes the average deviation or error that will occur when integrating the signal.
- **BI** (Bias Instability) can be defined as how much deviation or drift the sensor has from its mean value of the output rate.

□ Hardware Implementation

MEMS IMU

Source: [9]

Block Diagram

Source: [10]

Single Board Computer

- Raspberry Pi 3 Model B+
- ✓ Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- √ 5V/2.5A DC power input
- ✓ 1GB LPDDR2 SDRAM
- Raspbian OS (Linux core)
- Extended 40-pin GPIO header
- ✓ Support I²C and SPI communication
- Cost: ≤40€

Source: [11]

Software Design

mpu accel 1[m/^2], mpu accel 2[m/^2], mpu accel 3[m/^2], mpu gyro 1[rad/s], mpu gyro 2[rad/s], mpu gyro 3[rad/s], temp[degC] 0.8786720092773437, 0.19632453613281248, 9.344569079589844, -0.03677179134860051, 0.022649291772688717, 0.01891882018659881, 4.062269745709408 $0.8810662109374999,\ 0.22026655273437498,\ 9.363722692871093,\ -0.036238866836301946,\ 0.023182216284987275,\ 0.01945174469889737,\ 4.074250456764609$ $0.8810662109374999,\ 0.22505495605468748,\ 9.425971936035156,\ -0.037038253604749785,\ 0.023448678541136553,\ 0.02078405597964376,\ 4.053284212418006$ 0.9169792358398436, 0.2346317626953125, 9.397241516113281, -0.03543948006785411, 0.02424806530958439, 0.019984669211195925, 4.071255279000809 0.8810662109374999, 0.22266075439453123, 9.349357482910156, -0.034640093299406274, 0.02424806530958439, 0.019984669211195925, 4.0682601012370085 $0.8930372192382812,\ 0.20350714111328125,\ 9.37808790283203,\ -0.03543948006785411,\ 0.02184990500424088,\ 0.01865235793044953,\ 4.0682601012370085$ 0.8834604125976562, 0.20013427734375, 9.392453112792968, -0.03677179134860051, 0.02371514079728584, 0.01918528244274809, 4.05627939010.912190 3363 4580152 23886683630154 55273437498, 9.55 0.01998466921113 0.8786720092773437, 0.21 6974609375, 9.279925634765624, -0.03 7/179134860051, 0.023981603053435115 0.019718206955046648, 4.07724563452 44 $0.8930372192382812,\ 0.20829554443359374,\ 9.344569079589844,\ -0.03490655555555555,\ 0.021050518235793042,\ 0.020251131467345206,\ 4.083235990056011$ 0.8212111694335937, 0.2537853759765625, 9.373299499511718, -0.035705942324003384, 0.02424806530958439, 0.01865235793044953, 4.0592745679456070.852335791015625, 0.20350714111328125, 9.370905297851563, -0.03650532909245122, 0.022915754028837994, 0.018385895674300254, 4.086231167819811 $0.926\underline{5}560424804687, \underline{0}.19\underline{8}71873779296872, 9.390058911132812, -0.03677179134860051, 0.023715140797285834, 0.020517593723494487, 4.065264923473208$ **.**87**∤88√6∮∮₹∕0⅓12,1,**19**1**53613281249998, 9.373299499511718, -0.035173017811704836, 0.022382829516539436, 0.020517593723494487, 4.065264923473208 0.8882488159179687, 0.21068974609375, 9.342174877929686, -0.03650532909245122, 0.02451452756573367, 0.02078405597964376, 4.059274567945607 $0.8906430175781249,\ 0.22744915771484372,\ 9.313444458007812,\ -0.035173017811704836,\ 0.022915754028837994,\ 0.02078405597964376,\ 4.074250456764609$ 0.8814404121376562, 0.22026655273437498, 9.361328491210937, -0.03597240458015267, 0.022382829516539436, 0.01945174469889737, 4.071255279000809 $0.8930372192382812,\ 0.2346317626953125,\ 9.361328491210937,\ -0.035173017811704836,\ 0.022915754028837994,\ 0.01918528244274809,\ 4.071255279000809$ $0.8858546142578124,\ 0.23702596435546874,\ 9.370905297851563,\ -0.03597240458015267,\ 0.02211636726039016,\ 0.017586508905852418,\ 4.071255279000809$ 0.9097966308593749, 0.21068974609375, 9.363722692871093, -0.03650532909245122, 0.023448678541136553, 0.019718206955046648, 4.0622697457094080.8738836059570312, 0.2537853759765625, 9.34696328125, -0.03597240458015267, 0.023182216284987275, 0.020251131467345206, 4.06826010123700850.8571241943359375, 0.22744915771484372, 9.34696328125, -0.036238866836301946, 0.023448678541136553, 0.020517593723494487, 4.074250456764609 0.8978256225585937, 0.201112939453125, 9.442731347656249, -0.037038253604749785, 0.022649291772688717, 0.02078405597964376, 4.07724563452841 $0.8858546142578124,\ 0.22026655273437498,\ 9.373299499511718,\ -0.03650532909245122,\ 0.02424806530958439,\ 0.019984669211195925,\ 4.062269745709408$ 0.9074024291992187, 0.22266075439453123, 9.363722692871093, -0.03650532909245122, 0.023448678541136553, 0.01865235793044953, 4.065264923473208

Experimental Setup

Allan Deviation Plot

Noise Parameters

Accelerometer Noise Parameters

Velocity Random Walk ($m/s^2/\sqrt{s}$)								
	34°C	43°C	62°C	82°C				
Accel X	0.0046	0.0049	0.0049	0.0051				
Accel Y	0.0045	0.0049	0.0049	0.0050				
Accel Z	0.0072	0.0076	0.0078	0.0083				

Accel Bias Instability (m/s²)								
	34°C	43°C	62°C	82°C				
Accel X	0.0016 (<u>at 46.1s</u>)	0.0018 (at 37.4s)	0.0020 (at 24.6s)	0.0017 (at 30.3s)				
Accel Y	0.0015 (at 37.4s)	0.0018 (at 30.3s)	0.0018 (at 41.6s)	0.0017 (at 46.1s)				
Accel Z	0.0016 (at 86.6s)	0.0017 (<u>at 96.2s</u>)	0.0024 (at 33.7s)	0.0023 (at 41.6s)				

Gyroscope Noise Parameters

Angle Random Walk (°/ \sqrt{s})								
		34°C	43°C	62°C	82°C			
Gyro X		0.0084	0.0086	0.0092	0.0097			
Gyro Y		0.0087	0.0087	0.0090	0.0096			
Gyro Z		0.0088	0.0094	0.0096	0.0100			
Bias Instability (°/s)								
			nas metasinty (i	3)				
		34°C	43°C	62°C	82°C			
Gyro X	0.0		43°C	<u> </u>	82°C 0.0043 (at 19.9s)			
Gyro X Gyro Y		34°C	43°C 0.0048 (at 14.6s)	62°C				

Cooling Down Process Temperature Change

Cooling Down Process Raw Data

Accelerometer Cooling Down Raw Data

Gyroscope Cooling Down Raw Data

Cooling Down Process 3D ADEV Plot

Cooling Down Process 3D ADEV Analysis

Temperature Compensation Test

Temperature Compensation 3D ADEV Analysis

Temperature Compensated Accelerometer Y-axis 3D Allan Deviation

□ Conclusion

Conclusion and Further Study

Conclusion

- Temperature influences the performance of MPU-9250.
- ➤ Among four 1h temperature datasets, the performance at 34°C is the best.
- In the cooling down process, 3D ADEV plots show that the noises decrease as the temperature goes down from 100°C to 20°C.
- Polynomial temperature compensation model can reduce the noises for the high temperature part.

Further study

- Try out better temperature controller and evaluate at lower temperature.
- > Find out better temperature compensation model for MPU-9250.

References

- [1] https://www.prc68.com/I/Gyroscopes.html
- [2] https://nedaero.com/fog/
- [3] https://www.invensense.com/products/motion-tracking/3-axis/
- [4] https://www.geosig.com/AC-7x-Accelerometer--id12539.aspx
- [5] https://www.hbm.com/en/8124/newlight-fs65-optical-accelerometer/
- [6] https://www.coventor.com/blog/the-future-of-mems-sensor-design-and-manufacturing/
- [7] Riley, W. J. (2008). Handbook of frequency stability analysis. pp 15.
- [8] IEEE Std 952-1997(R2003)
- [9] https://learn.sparkfun.com/tutorials/mpu-9250-hookup-guide/all
- [10] InvenSense Inc. "MPU-9250 Product Specification Revision 1.1," R. 2016.
- [11] https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

Thank you!

Any Questions?

