<u>Tutorials (Practice Problems) – Part 2</u>

Problem-01:

If transmission delay and propagation delay in a sliding window protocol are 1 msec. and 49.5 msec. respectively, then:

- 1- What should be the sender window size to get the maximum efficiency?
- 2- What is the minimum number of bits required in the sequence number field?
- 3- If only 6 bits are reserved for sequence numbers, then what will be the efficiency?

Solution:

Given-

Transmission delay = 1 msec.

Propagation delay = 49.5 msec.

Calculating sender window size to get the maximum efficiency:

To get the maximum efficiency, sender window size

```
= 1 + 2a
```

$$= 1 + 2 x (Tp / Tt)$$

$$= 1 + 2 \times (49.5 \text{ msec} / 1 \text{ msec})$$

$$= 1 + 2 \times 49.5$$

= 100

Thus,

For maximum efficiency, sender window size = 100.

Calculating the minimum number of bits required in the sequence number field:

Minimum number of bits required in the sequence number field

```
= [\log_2(1+2a)]
```

$$= [\log_2(100)]$$

= [6.8]

= 7

Thus,

Minimum number of bits required in the sequence number field = 7.

Calculating the efficiency according to sequence numbers:

If only 6 bits are reserved in the sequence number field, then-

Maximum sequence numbers possible = $2^6 = 64$

Efficiency = Sender window size in the protocol / Optimal sender window size

```
= 64 / 100
= 0.64
= 64%
```

Problem-02:

If transmission delay and propagation delay in a sliding window protocol are 1 msec. and 99.5 msec. respectively, then:

- 1- What should be the sender window size to get the maximum efficiency?
- 2- What is the minimum number of bits required in the sequence number field?
- 3- If only 7 bits are reserved for sequence numbers, then what will be the efficiency?

Solution-

Given-

Transmission delay = 1 msec.

Propagation delay = 99.5 msec.

Calculating the sender window size to get the maximum efficiency:

To get the maximum efficiency, sender window size

```
= 1 + 2a

= 1 + 2 x (Tp / Tt)

= 1 + 2 x (99.5 msec / 1 msec)

= 1 + 2 x 99.5

= 200

Thus,
```

For maximum efficiency, sender window size = 200.

Calculating the minimum number of bits required in the sequence number field

```
= \lceil \log_2(1+2a) \rceil
= \lceil \log_2(200) \rceil
= \lceil 7.64 \rceil
= 8
Thus,
```

Minimum number of bits required in the sequence number field = 8.

Calculating the efficiency according to sequence numbers:

If only 7 bits are reserved in the sequence number field, then-Maximum sequence numbers possible = $2^7 = 128$ Efficiency = Sender window size in the protocol / Optimal sender window size

```
= 128 / 200
```

= 0.64

= 64 %.

Problem-03:

A 20 Kbps satellite link has a propagation delay of 400 msec., the transmitter employs the "Go back N" ARQ" scheme with N set to 10.

Assuming that each frame is 100 bytes long, what is the maximum data rate possible?

Solution-

Given:

Bandwidth = 20 Kbps

Propagation delay (Tp) = 400 msec.

Frame size = 100 bytes

Go back N is used where N = 10.

Calculating Transmission Delay:

Transmission delay (Tt)

- = Frame size / Bandwidth
- = 100 bytes / 20 Kbps
- $= (100 \times 8 \text{ bits}) / (20 \times 10^3 \text{ bits per sec})$
- = 0.04 sec
- = 40 msec.

Calculating Value of 'a':

```
a = Tp / Tt
```

a = 400 msec. / 40 msec.

a = 10

Calculating Efficiency:

Efficiency $(\eta) = N / (1+2a)$

- $= 10 / (1 + 2 \times 10)$
- = 10 / 21
- = 0.476
- =47.6 %.

Calculating Maximum Data Rate Possible:

Maximum data rate possible or Throughput = Efficiency x Bandwidth

- $= 0.476 \times 20 \text{ Kbps}$
- $= 9.52 \text{ Kbps} \cong 10 \text{ Kbps}$

Problem-04:

A 1 Mbps satellite link connects two ground stations. The altitude of the satellite is 36504 km and speed of the signal is 3 x 10⁸ m/sec. What should be the packet size for a channel utilization of 25% for a satellite link using go back 127 sliding window protocol?

Solution-

Given-

Bandwidth = 1 Mbps Distance = $2 \times 36504 \text{ km} = 73008 \text{ km}$ Propagation speed = $3 \times 10^8 \text{ m/sec}$ Efficiency = 25% = 1/4Go back N is used where N = 127Let the packet size be L bits.

Calculating Transmission Delay-

Transmission delay (Tt)

- = Packet size / Bandwidth
- = L bits / 1 Mbps
- = $L \mu sec.$

Calculating Propagation Delay:

Propagation delay (Tp)

- = Distance / Speed
- $= (73008 \times 10^3) / (3 \times 10^8)$
- $= 24336 \times 10^{\circ} 5 \text{ sec}$
- $= 243360 \mu sec.$

Calculating Value of 'a':

```
a = Tp / Tt
```

 $a = 243360 \mu sec / L \mu sec$

a = 243360 / L

Calculating Packet Size:

Efficiency (η) = N / (1+2a) Substituting the values, we get-1/4 = 127 / (1 + 2 x 243360 / L) 1/4 = 127 x L / (L + 486720) L + 486720 = 508 x L

```
507 \times L = 486720
L = 960 bits.
From here, packet size = 960 bits or 120 bytes.
```

Problem-05:

Consider a network connecting two systems located 8000 km apart. The bandwidth of the network is 500 x 10⁶ bits per second. The propagation speed of the media is 4 x 10⁶ meters per second. It is needed to design a Go back N sliding window protocol for this network. The average packet size is 10⁷ bits. The network is to be used to its full capacity.

Assume that processing delays at nodes are negligible. What is the minimum size in bits of the sequence number field?

Solution-

Given-

```
Distance = 8000 \text{ km}
Bandwidth = 500 \times 10^6 \text{ bps}
Propagation speed = 4 \times 10^6 m/sec
Packet size = 10^7 bits
Now, for using the network to its full capacity, Efficiency (\eta) = 1
Efficiency (\eta) = 1 when sender window size = 1+2a.
```

Calculating Transmission Delay:

```
Transmission delay (Tt)
= Packet size / Bandwidth
= 10^7 \text{ bits } / (500 \times 10^6 \text{ bits per sec})
= 1 / 50 sec
= 0.02 \text{ sec.}
```

Calculating Propagation Delay:

```
Propagation delay (Tp)
= Distance / Speed
= 8000 \text{ km} / (4 \times 10^6 \text{ m/sec})
= 2 \text{ sec.}
Calculating Value of 'a':
a = Tp / Tt
a = 2 \sec / 0.02 \sec
a = 100.
```

Calculating Sender Window Size:

```
Sender window size
```

```
= 1 + 2a
```

 $= 1 + 2 \times 100$

= 201.

Calculating Minimum Size of Sequence Number Field:

Minimum number of bits required in the sequence number field

```
= [\log_2(1+2a)]
```

 $= [\log_2(201)]$

= [7.65]

=8

Thus, Minimum size of sequence number field = 8 bits.

Problem-06:

Consider a 128 x 10³ bits/sec satellited communication link with one-way propagation delay of 150 msec. Selective Retransmission (repeat) protocol is used on this link to send data with a frame size of 1 KB. Neglect the transmission time of acknowledgement. What is the minimum number of bits required for the sequence number field to achieve 100% utilization?

Solution-

Given-

Bandwidth = $128 \times 10^3 \text{ bits/sec}$

Propagation delay (Tp) = 150 msec.

Frame size = 1 KB

Now, to achieve 100% utilization, efficiency must be 100%.

Efficiency is 100% when sender window size is optimal (i.e. 1+2a).

Calculating Transmission Delay:

Transmission delay (Tt)

- = Frame size / Bandwidth
- $= 1 \text{ KB} / (128 \times 10^{3} \text{ bits per sec})$
- $= (1 \times 2^{10} \times 8 \text{ bits}) / (128 \times 10^{3} \text{ bits per sec})$
- = 64 msec.

Calculating Value of 'a':

```
a = Tp / Tt
```

a = 150 msec. / 64 msec.

a = 2.34.

Calculating Optimal Sender Window Size:

Optimal sender window size

```
= 1 + 2a
```

$$= 1 + 2 \times 2.34$$

$$= [5.68]$$

= 6

Calculating Number Of Sequence Numbers Required:

In SR Protocol, sender window size and receiver window size are same.

So, sender window size = receiver window size = 6

Now, for any sliding window protocol, minimum number of sequence numbers required

```
= Sender window size + Receiver window size
```

```
= 6 + 6
```

= 12.

Calculating Bits Required in Sequence Number Field:

To have 12 sequence numbers,

Minimum number of bits required in sequence number field

$$= [\log_2(12)]$$

=4

Thus.

- Minimum number of bits required in sequence number field = 4
- With 4 bits, number of sequence numbers possible = 16
- We use only 12 sequence numbers and rest 4 remains unused.