## The Embedded Experts



| $p(x) = a \cdot x^3 + b \cdot x^2 + c$ | · x + d                                 |                             |
|----------------------------------------|-----------------------------------------|-----------------------------|
| 1. p(0) = -3,375                       |                                         |                             |
| 2. P(3)=0                              |                                         |                             |
| 3. P'(-1,5) = -22,5                    | Steigung von Tangente, ke               | in Hoch-oder Tiefpunkt      |
| 4. P"(4) = 1 9,5                       | kein Wendepunkt                         |                             |
| p(0)=-3,375, denn a                    | $0^{3} + 6 \cdot 0^{2} + c \cdot 0 + 0$ | d = -3,375, also d = -3,375 |
| $P(x) = a x^{3} + 6 x^{2} + c x + c$   |                                         |                             |
| $P'(x) = 3 \ a \ x^2 + 2 \ b \ x + c$  |                                         |                             |
| P''(x) = 6 a x + 2 b                   |                                         |                             |
| $P(3) = a \cdot 3^3 + 6 \cdot 3^2 + c$ | . 3 - 3,3 75 = 0   -                    | H3,375                      |
| P'(-1,5)=3a.(-1,5)2+                   |                                         |                             |
| P"(9) = 6 a · 4 + 2 6 = 1              |                                         |                             |
| 279+96+3c=3,3                          | 7.5                                     |                             |
| 6,759-36+1c=-                          | 2 2 ,5                                  |                             |
| 299+26+0c=19,                          | 5                                       |                             |
| 2 7 9 3 3 3,375 1: 3                   | 9 3 1 1,125                             | -69,75a = -34,875 :69,75    |
| 6,75 -3 1 -22,5                        | 2,25 6 0 23,6257                        | 9 = 0,5                     |
| 24 2 0 19,5                            | 72 6 0 58,5 4                           | 2,25.0,5 + 66=23,625        |
| 9 3 1 1 1 1 2 5 7                      | 9 3 1 1,125                             | 1,125+66 = 23,625 11,125    |
| 675 -3 1 -22,5 4                       | 2,25 6 0 23,625                         | 66 = 22,5  :6               |
| 29 2 0 19,51.3                         | -69,75 0 0 -34,875                      | 6 = 3,75                    |
|                                        |                                         | 9.0,5+3.3,75+c=1,125        |
| Antwort: $p(x) = 0.5x^3 + 3.7$         | 5x-14,625x-3,375                        | 15,75 + c = 1,1 251-15,8    |
|                                        |                                         | c=14,625                    |

## The Embedded Experts



$$\begin{split} \rho(x) &= 0, 5 x^{3} + 3, 75 x^{2} - 14, 625 \times -3, 375 \\ P'(x) &= 1, 5 x^{2} + 7, 5 x - 14, 625 \\ P''(x) &= 3 x + 7, 5 \\ P''(x) &= 3 \\ 0, 5 x^{3} + 3, 75 x^{2} - 14, 625 x - 3, 375 : (x - 3) = 0, 5 x^{2} + 5, 25 x + 1, 125 \\ -(0, 5 x^{2} - 1, 50 x^{2}) \\ 0 + 5, 25 x^{2} - 14, 625 x \\ -(5, 25 x^{2} - 15, 750 x) \\ 0 + 1, 125 x - 3, 375 \\ 0 + 0 \\ 0, 5 x^{2} + 5, 25 x + 1, 125 = 0 \text{ is} \\ x^{2} + 10, 5 x + 2, 25 = 0 \text{ ipq} \\ x_{10} - 5, 25 x^{2} + 5, 03 \\ x_{10} - 5, 25 x^{2} + 5, 03 \\ x_{10} - 10, 28 \\ x_{2} - 0, 22 \\ \text{HP } f'(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP } f''(x) &= 0 + 1, 5 x^{2} + 7, 5 x - 14, 625 = 0 \text{ i:} 1, 5 \\ \text{TP$$

## The Embedded Experts

