BT4110: Computational Biology Laboratory

Constraint-Based Modeling - Assignment

Note: Present your results in the form of a spreadsheet and document. Submit your Script and Result files in Moodle before 1st October, 2:00 pm.

Section A

 Referring to scientific literature summarize the principle and scope of Genome-Scale Metabolic Modelling (Less than 300 words).

Section B

2.

R1: \rightarrow Glucose

V1: Glucose + 2 ADP + 2 NAD \rightarrow 2 Pyruvate + 2 ATP + 2 NADH + 2 H₂O

V2: Pyruvate + NADH \leftrightarrow Lactate + NAD

V3: Pyruvate + CoA + NAD \rightarrow Acetyl CoA + CO₂ + NADH

V4: Pyruvate + CoA \rightarrow Formate + Acetyl CoA

V5: Acetyl CoA + ADP \rightarrow Acetate + CoA + ATP

V6: Acetyl CoA + 2 NADH \rightarrow Ethanol + CoA + 2 NAD

V7: ATP \rightarrow ADP

R2: Lactate \rightarrow

R3: Ethanol \rightarrow

R4: Acetate \rightarrow

Constructing a Stoichiometric Matrix and write down the Bounds for each reaction

Section C

3. Download the Oryza sativa model. Refer to the research article by Lakshmanan et al., 2013 (PMID: 23753178). Perform FBA simulation following the methodology described in the paper for the following conditions. Present your results in a spreadsheet and add your interpretation in comparison with the discussions in the paper.

- a. Seed-derived cells in Aerobic and Anaerobic conditions (at an oxygen uptake rate of 1, 2, 3, 3.35, and 4 mmol/gDCW.d).
- b. Seed-derived cells in Sucrose and Glucose batch culture at Aerobic (Oxygen uptake rate of 3.35 mmol/gDCW . d) and Anaerobic Conditions.

Note: Use the following formula to calculate sucrose, glucose, and fructose rates for the shaded time interval in the Concentration profile (Fig 1)

Rate of reaction =
$$\frac{\Delta sugar conc. (mmol/L)}{\Delta Biomass conc. (gDCW/L) \times \Delta time (d)}$$

Where,

 Δ sugar conc. = Final sugar concentration - Initial sugar concentration

 Δ Biomass conc. = Final biomass concentration - Initial biomass concentration

 Δ time = Final time - Initial time

c. Photorespiring Rice Leaf Cells for the below 7 conditions.

O2 Uptake	0	1	1	1	1	1	1
CO ₂ Uptake	1	1	2	4	6	8	10

4. For the following Conditions and growth rates perform FVA. Present your results in the form of a spreadsheet.

Condition	Growth Rate		
Seed Derived cells at Aerobic Condition	0.3750		
Seed Derived cells at Anaerobic Condition	0.1133		
Leaf Derived cells at Aerobic Condition	0.174		