Scattering Coefficient and Kirchhoff Approximation

Figure 1.

1. Introdution

we introduce the concept of the scattering coefficient for incident plane waves.

Definition 1.1 For any unit vector $\eta \in \mathbb{R}^2$, let $v^i = e^{\mathbf{i}kx\cdot\eta}$ be the incident wave and $v^s = v^s(x,\eta)$ be the radiation solution of the Helmholtz equation:

$$\Delta v^s + k^2 v^s = 0$$
 in $\mathbb{R}^2 \backslash \bar{D}$, $v^s = -e^{\mathbf{i}kx \cdot \eta}$ on Γ_D .

The scattering coefficient $R(x,\eta)$ for $x \in \Gamma_D$ is defined by the relation

$$\frac{\partial (v^s + v^i)}{\partial \nu} = \mathbf{i}kR(x, \eta)e^{\mathbf{i}kx \cdot \eta} \quad \text{on } \Gamma_D.$$

In the case of Kirchhoff high frequency approximation and the mathematical justification for strictly convex obstacles, the scattering coefficient can be approximated by

$$R(x,\eta) = \begin{cases} 2\nu(x) \cdot \eta & \text{If } x \in \partial D_{\eta}^{-} := \{x \in \Gamma_{D} : \nu(x) \cdot \eta < 0\}, \\ 0 & \text{If } x \in \partial D_{\eta}^{+} := \{x \in \Gamma_{D} : \nu(x) \cdot \eta > 0\}. \end{cases}$$

Here ∂D_{η}^- and ∂D_{η}^+ are respectively the illuminating and shadow region for the incident wave $e^{ikx\cdot\eta}$.

2. Numerical Tests

Figure 2.

Figure 3.

Figure 4.

Figure 5.