Genome Assembly

Michael Schatz

Sept 9, 2019

Lecture 3: Computational Biomedical Research

Assignment I: Chromosome Structures Due Wed Sept II @ II:59pm

Part I: Recap

Second Generation Sequencing

Illumina NovaSeq 6000 Sequencing by Synthesis

>3Tbp / day

1. Attach

2. Amplify

3. Image

Metzker (2010) Nature Reviews Genetics 11:31-46 https://www.youtube.com/watch?v=fCd6B5HRaZ8

Typical sequencing coverage

Imagine raindrops on a sidewalk
We want to cover the entire sidewalk but each drop costs \$1

If the genome is 10 Mbp, should we sequence 100k 100bp reads?

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key properties:

- The standard deviation is the square root of the mean.
- For mean > 5, well approximated by a normal distribution

$$P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Normal Approximation

Can estimate Poisson distribution as a normal distribution when $\lambda > 10$

I want to sequence a 10Mbp genome to 24x coverage. How many 120bp reads do I need?

I need I0Mbp x 24x = 240Mbp of data 240Mbp / 120bp / read = 2M reads

I want to sequence a 10Mbp genome to 24x coverage. How many 120bp reads do I need?

I need I0Mbp x 24x = 240Mbp of data 240Mbp / 120bp / read = 2M reads

I want to sequence a 10Mbp genome so that >97.5% of the genome has at least 24x coverage. How many 120bp reads do I need?

Find X such that X-2*sqrt(X) = 24

36-2*sqrt(36) = 24

I need I0Mbp x 36x = 360Mbp of data 360Mbp / I20bp / read = 3M reads

Illumina Sequencing Summary

Advantages:

- Best throughput, accuracy and read length for any 2nd gen. sequencer
- Fast & robust library preparation

Disadvantages:

- Inherent limits to read length (practically, 150bp)
- Some runs are error prone
- Requires amplification, sequences a population of molecules

Illumina HiSeq

~3 billion paired 100bp reads ~600Gb, \$10K, 8 days (or "rapid run" ~90Gb in 1-2 days)

Illumina X Ten

~6 billion paired 150bp reads 1.8Tb, <3 days, ~1000 / genome(\$\$) (or "rapid run" ~90Gb in 1-2 days)

Illumina NextSeq

One human genome in <30 hours

Market Summary > Illumina, Inc. NASDAQ: ILMN

→ Financial news, comparisons and more

270.46 USD -10.89 (3.87%) +

Sep 3, 2:37 PM EDT - Disclaimer

Part 2: De novo genome assembly

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 - Text printed on 5 long spools

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

It was the best of age of wisdom, it was best of times, it was it was the age of it was the age of it was the worst of of times, it was the of times, it was the of wisdom, it was the the age of wisdom, it the best of times, it the worst of times, it times, it was the age times, it was the worst was the age of wisdom, was the age of foolishness, was the best of times. was the worst of times, wisdom, it was the age

worst of times, it was

Greedy Reconstruction

```
It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

times, it was the worst

times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

How long will it take to compute the overlaps?

de Bruijn Graph Construction

- $G_k = (V,E)$
 - V = Length-k sub-fragments
 - E = Directed edges between consecutive sub-fragments
 - Sub-fragments overlap by k-I words

Overlaps between fragments are implicitly computed

de Bruijn Graph Assembly

It was the best

was the best of

the best of times,

best of times, it

of times, it was

times, it was the worst of

the worst of times,

worst of times, it

After graph construction, try to simplify the graph as much as possible

it was the age of foolishness

was the age of the age of wisdom,

age of wisdom, it

of wisdom, it was

wisdom, it was the

de Bruijn Graph Assembly

The full tale

- ... it was the best of times it was the worst of times ...
- ... it was the age of wisdom it was the age of foolishness ...
- ... it was the epoch of belief it was the epoch of incredulity ...
 - ... it was the season of light it was the season of darkness ...
 - ... it was the spring of hope it was the winder of despair ...

Reducing assembly complexity of microbial genomes with single-molecule sequencing Koren et al (2013) Genome Biology. **14**:R101 https://doi.org/10.1186/gb-2013-14-9-r101

Counting Eulerian Cycles

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$\mathcal{W}(G,t) = (\det L) \left\{ \prod_{u \in V} (r_u - 1)! \right\} \left\{ \prod_{(u,v) \in E} a_{uv}! \right\}^{-1}$$

L = $n \times n$ matrix with r_u - a_{uu} along the diagonal and $-a_{uv}$ in entry uv $r_u = d^+(u) + l$ if u = t, or $d^+(u)$ otherwise $a_{uv} = \text{multiplicity of edge from } u \text{ to } v$

Assembly Complexity of Prokaryotic Genomes using Short Reads.

Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

- Finding possible assemblies is easy!
- However, there is an astronomical genomical number of possible paths!
- Hopeless to figure out the whole genome/chromosome, figure out the parts that you can

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Contig N50

Def: 50% of the genome is in contigs as large as the N50 value

Contig N50

Def: 50% of the genome is in contigs as large as the N50 value

Better N50s improves the analysis in every dimension

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization
- Better sequence for all downstream analysis

Just be careful of N50 inflation!

- A very very very bad assembler in 1 line of bash:
- cat *.reads.fa > genome.fa

N50 size = 3 kbp

Pop Quiz I

Assemble these reads using a de Bruijn graph approach (k=3):

ATTA

GATT

TACA

TTAC

Pop Quiz I

Assemble these reads using a de Bruijn graph approach (k=3):

ATTA: ATT -> TTA

GATT: GAT -> ATT

TACA: TAC -> ACA

TTAC: TTA -> TAC

Pop Quiz I

Assemble these reads using a de Bruijn graph approach (k=3):

ATTA: ATT -> TTA

GATT: GAT -> ATT

TACA: TAC -> ACA

TTAC: TTA -> TAC

GAT
ATT
TTA
TAC
ACA

GATTACA

Assemble these reads using a de Bruijn graph approach (k=3):

ACGA

ACGT

ATAC

CGAC

CGTA

GACG

GTAT

Assemble these reads using a de Bruijn graph approach (k=3):

ACGA

ACGT

ATAC

CGAC

CGTA

GACG

GTAT

Assemble these reads using a de Bruijn graph approach (k=3):

ACGA

ACGT

ATAC

CGAC

CGTA

GACG

GTAT

Assemble these reads using a de Bruijn graph approach (k=3):

ACGA

ACGT

ATAC

CGAC

CGTA

GACG

GTAT

Assemble these reads using a de Bruijn graph approach (k=3):

ACGA

ACGT

ATAC

-CGAC

CGTA

GACG

GTAT

Assemble these reads using a de Bruijn graph approach (k=3):

ACGA

ACGT

ATAC

CGAC

CGTA

GACG

GTAT

Assemble these reads using a de Bruijn graph approach (k=3):

ACGA

ACGT

ATAC

CGAC

CGTA

GACG

GTAT

Assemble these reads using a de Bruijn graph approach (k=3):

ACGA

ACGT

ATAC

CGAC

CGTA

GACG

GTAT

Assemble these reads using a de Bruijn graph approach (k=3):

Assemble these reads using a de Bruijn graph approach (k=3):

ATACGACGTAT

Assemble these reads using a de Bruijn graph approach (k=3):

ATACGACGTAT

Wow, this could double as life philosophy, too!

Michael Schatz @mike_schatz

Replying to @Zaminlqbal @nomad421 and 4 others

Yep, very easy to find *a* path, very hard to find *the* path

11:40 AM - 22 Jan 2018

4 Retweets 17 Likes

Next Steps

- I. Reflect on the magic and power of DNA ©
- 2. Check out the course webpage
- 3. Register on Piazza & GradeScope
- 4. Work on Assignment I
 - I. Set up Dropbox for yourself!
 - 2. Get comfortable on the command line