

TARGET: JEE (ADVANCED) 2015

Course: VIJETA & VIJAY (JPAD & JRAD) Date: 21-04-2015

TEST INFORMATION

DATE: 22.04.2015 PART TEST (PT) - 02

Syllabus: Organic: Organic Nomenclature, Isomerism, Stereoisomerism, GOC, POC, Tautomerism, Acids & Bases. Physical: Gaseous State, Solid State, Surface Chemistry, Thermodynamics & Thermochemistry.

		DPP No. # 05 (J	EE-ADVANC	ED)		
Total Marks : 170				Max. Time : 137 min.		
Single choice Objective (-1 negative marking) Q.1 to Q.14 Multiple choice objective (-1 negative marking) Q.15 to Q.19 Assertion and Reason ('-1' negative marking) Q.20 to Q.22 Comprehension (-1 negative marking) Q.23 to Q.31 Single Digit Subjective Questions (no negative marking) Q.32 to Double Digits Subjective Questions (no negative marking) Q.40 Match the column (4 vs 4) (no negative marking) Q.42 to Q.				(4 mark (3 mark (3 mark (4 mark (4 mark	ss 2½ min.) ss, 3 min.) ss 2½ min.) ss 2½ min.) ss 2½ min.) ss 2½ min.) ss, 8 min.)	[42, 35] [20, 15] [09, 7½] [27, 22½] [32, 20] [08, 05] [32, 32]
1	F_2 + dil NaOH \longrightarrow A A and B respectively are (A) OF_2 and O_2	_	-		$H \longrightarrow B + I$ (D) Both OF ₂	NaF + H ₂ O
2		a solution of mineral acid Z". When Red litmus is k (B) No change in colour	ept in contact wi	th Z, it ch		
3.	By which of the following (A) Addition of ice cold F (C) Aerial oxidation of 2-	g methods, H ₂ O ₂ can't be H ₂ SO ₄ on BaO ₂ ethyl anthraquinol	e synthesised ? (B) Addition of i (D) Electrolysis	ce cold H of (NH ₄) ₂	l₂SO₄ on PbO₂ SO₄ at a high	current density
4		und A, two acids P and Q in estimation of carbon (B) IF ₅		in etchino	g of glass, Q o	n strongly heating
5.	may be :	lour of flowers by reduction $(B) H_2S$ and Br_2				
6.	SbF ₅ reacts with XeF ₄ to (A) square planar, trigona (C) square pyramidal, on		apes of cation and (B) T-shaped, od (D) square plans	ctahedral		re respectively :
7.	Consider the following tra	ansformations :				
	(I) $XeF_6 + NaF \longrightarrow Na$	[xeF ₇]-	(II) 2PCI ₅ (s) —	→ [PCl ₄]	$_{\mid}^{\oplus}$ [PCI $_{\scriptscriptstyle 6}$]	
	(III) $[AI(H_2O)_e]^{3+} + H_2O -$ Possible transformation: (A) I, II, III	$\longrightarrow [AI(H_2O)_5OH]^{2+} + H_3$ s are : (B) I, III	O⁺ (C) I, II		(D) II, III	
8. Which of the following statements are correct about the reaction between the co					copper metal	and concentrated
	HNO ₃ ? (I) The principal reducing (II) Cu metal is oxidised (III) All HNO ₃ used act as (A) I, II, III	to Cu2+ (aq.) ion which is	blue in colour. (IV) The princip (C) II, IV	al reducii	ng product is N	IO ₂ gas. ove

PAGE NO.- 1

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555| CIN: U80302RJ2007PTC024029

21.	Statement-2: Lead, tir (A) Statement-1 is True (B) Statement-1 is True	and bismuth are purified by liquation method. and bismuth have low m.p. as compared to impurities. , Statement-2 is True; Statement-2 is a correct explanation for Statement-1. , Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. e, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.					
22.	Statement-1: $2PbO_2 + H_2SO_4 \longrightarrow 2PbSO_4 + 2H_2O + O_2$ In this reaction H_2SO_4 acts as reducing agent. Statement-2: If PbO_2 is considered as lead peroxide then the above reaction is an example of disproportionation.						
	(A) Statement-1 is True(B) Statement-1 is True	, Statement-2 is True; St	atement-2 is NOT a cor	explanation for Statement-1. rect explanation for Statement-1. alse, Statement-2 is True.			
Comp	orehension # 1	H ₂ O	on				
23.	A white solid having ga A is : (A) P (White)	rlic smell (A) \xrightarrow{cold} (B) P (Red)	v	ing rotten fish smell + acid (D) (D) (COOH)			
24.			2 0	following products in which correct			
	sequence? (A) Pyro acid , meta ac (C) Meta acid , anhydri	id , anhydride	(B) Meta acid , Pyro acid , anhydride (D) Pyro acid , anhydride , meta acid				
Comp	orehension # 2			,			
•	In SF_6 , sulphur is octahedrally hybridized (sp^3d^2). Hence, it is still having some vacant 3d-orbitals to accommodate the nucleophilic attack through the sp^3d^3 (pentagonal bipyramid) hybridization. But the size o sulphur is too small to tolerate the seven co-ordination number.						
25.		oroduct is formed when E	-				
	(A) $Be(OH)_2$	(B) $[Be(OH)_4]^{2-}$	(C) $[Be(OH)_2]_n$	(D) None of these			
26.	The product of hydrolys (A) H_2SO_3 and H_2TeO_4 (C) H_2SO_3 and $Te(OH)_6$	sis of SF_4 and TeF_6 are	and responsible A_2 and A_2 responsible A_2 and A_3 and A_4 and A_5 and A_6 and A_6	ectively.) ₄ d) ₆			
Comp	rehension # 3						
27.	A pungent smelling gas 'X' is produced when a salt 'P' is treated with concentrated H_2SO_4 . The gas 'X' is colorless and also give dense white fumes with NH_3 . The solution of salt P gives white precipitate with $AgNO_3$. The white precipitate dissolves in dilute NH_3 . Gas X gets oxidised by oxygen in the presence of $CuCl_2$ to produce gas 'Y' and liquid 'Z' at room temperature Which of the following is incorrect about gas X?						
	(A) X react readily with (C) X produces acidic s			(B) X is an oxidising agent.(D) X is not oxidised by ferric chloride.			
28.	Gas Y reacts with hypo (A) Na ₂ S	solution to produce gas (B) Na ₂ SO ₃	S X and species W. W is (C) NaHSO ₄	s : (D) S			
Comp	When (Z) reacts with direduction with Mg production	il. H ₂ SO ₄ gives a compo uced (D) and non metal (ound (A) which on strong (X). Treatment of chloric	Z) is obtained along with white ppt g heating gives an oxide (C). (C) or ne on a mixture of (C) and carbon a) along with a gas (F). (E) is a Lewis			
29.	acid. (Z) may be :	, ,					
00	(A) H ₃ BO ₃	(B) BaCO ₃	(C) borax	(D) Na ₃ BO ₃			
30.	(A) and (C) may be : (A) B ₂ H ₆ , B	(B) B ₂ H ₆ , B ₂ O ₃	(C) H ₃ BO ₃ , B	(D) H ₃ BO ₃ , B ₂ O ₃			
31.	(E) and (F) will be : (A) BCl ₃ , CO	(B) Cl ₂ O, CCl ₄	(C) BOCI, CO	(D) BCl ₃ , CCl ₄			
32.		e number of compounds, that can act as dehydrating agent is aCl $_{\rm 2}$, Conc. HNO $_{\rm 3}$, CaO , CuSO $_{\rm 4.5H_{\rm 2}O$, P $_{\rm 2}O_{\rm 5}$					
Λ	00000000			Mall, Jhalawar Road, Kota (Raj.)-324005			
	Educating for better tomorrow	Website: www.resonance.ac.i	n E-mail : contact@resonance				

Toll Free: 1800 200 2244 | 1800 258 5555| CIN: U80302RJ2007PTC024029

21.

- 33._ The by product of solvay process reacts with Na₂CO₃ to form a compound x, which on heating decomposes to give y. y is absorbed by KO₂. The number of atoms per molecule of y is
- **34.** The number of compounds/elements oxidised by XeF₂ among following is: HF, HBr, HCl, HI, NH₃, CrF₂, Pt, S₈
- **35.**_ How many of the following will turn moist red litmus blue and finally white? Li₂O, KO₃, RbO₂, Cs₂O₂, BeO, MgO, BaO₂, SrO
- 36. Among the following, the number of compounds that would require electrolysis process to get their respective metal from their metal compound is _____. NaCl , Cr_2O_3 , $MgCl_2$, Al_2O_3 , $CaCl_2$, Fe_2O_3
 - How many of the following acids may undergo disproportionation reaction on heating?

 H₂C₂O₄, H₃PO₂, H₃PO₃, HCIO, HNO₂, H₂SO₃, H₂SO₄, HCIO₃
- 39._ SOCl₂ can react with how many of the following species to liberate SO₂? H_2O , HCl, C_2H_5OH , HBr, CH_3COOH , HCN, H_2SO_4 , H_3PO_4 , D_2O , HI, HF
- **40.** H–F is a weak acid but on addition of AsF₅, it becomes a very strong acid. The number of 90° angles in the anionic part of the product is_____.
- 41._ NaOH + PbO $\xrightarrow{\Delta}$ x + H₂O

NaOH + SnO₂ $\xrightarrow{\Delta}$ y + H₂O

NaOH + H_2O + AI $\stackrel{\triangle}{\longrightarrow}$ z + H_2

Sum of the number of atoms present in one molecule each of x, y, z is..........

42. Match the following:

Column-I

38.

- (A) Borax $\stackrel{\Delta}{\longrightarrow}$
- (B) $B_2H_6 + H_2O \longrightarrow$
- (C) $B_2H_6 + NH_3$ (excess) $\stackrel{\triangle}{\longrightarrow}$
- (D) $BCI_3 + LiAIH_4 \longrightarrow$
- **43.** Match the following:

Column-I (Reaction)

- (A) NaNO₃ $\xrightarrow{\Delta}$ 500° C
- (B) K + O_2 (excess) \longrightarrow (Major)
- (C) Na + O_2 (excess) \longrightarrow (Major)
- (D) K (dissolved in liquid NH₂) Blue solution
- Column-II (Product's character)
- (p) Diamagnetic.

(s) NaBO₂ + B_2O_3

Column-II

(p) BN

 $(q) B_{2}H_{g}$

(r) H₃BO₃

- (q) Paramagnetic.
- (r) Bond order 1
- (s) Bond order 1.5
- **44.** Match the compound with effect of heating it.

Column-I

- (A) NH₄CIO₄
- (B) $(NH_{d})_{2}CO_{3}$
- $(C) (NH_{\Delta})_{2}Cr_{2}O_{7}$
- (D) Mg (NH₄)PO₄
- 45. Column-I (Gas)
 - (A) BF₃
 - (B) HCI
 - (C) SO₂
 - $(D) F_{2}$

- Column-II
- (p) Leaves no residue on heating
- (q) Reaction occurring is a redox reaction.
- (r) Produces N₂ on heating.
- (s) Produces NH, on heating.

Column-II (Properties of gas)

- (p) Gets oxidised by acidic KMnO₄
- (q) Dissolves significantly in aqueous KOH
- (r) Changes color of litmus solution
- (s) Colorless gas

Solution of DPP #5

TARGET: JEE (ADVANCED) 2015

Course: VIJETA & VIJAY (ADP & ADR)

CHEMISTRY

2. $F_2 + HCI \longrightarrow HF + CI_2$; CI_2 is greenish yellow gas.

$$2Cl_2 + 3(a(OH)_2 \longrightarrow Ca(OCl)_2 \cdot Ca(OH)_2 \cdot CaCl_2 \cdot 2H_2O$$
_(Y)

Z is bleaching powder it turns red litmus paper to white.

3. (B) $H_2SO_4 + PbO_2 \longrightarrow PbSO_4 \downarrow + \frac{1}{2}O_2 + H_2O$ (PbO₂ is not peroxy compound) (PbO₂ परॉक्सी यौगिक नहीं है) $H_2SO_4 + BaO_2 \longrightarrow BaSO_4 \downarrow + H_2O_2$

 $(NH_4)_2SO_4 \Longrightarrow 2NH_4^+ + SO_4^{2-}$;

At anode : $2SO_4^{2-} \xrightarrow{Electrolysis} S_2O_8^{2-} + 2e^{-}$

Peroxo sulphate on hydrolysis, produces H₂O₂.

4. IF_5 + H_2O \longrightarrow HF \longrightarrow + HIO_3

HF is used in etching of glass

$$\frac{\text{HIO}_3}{\text{(Q)}} \xrightarrow{\text{on strong}} \quad I_2 O_5$$

$$I_2O_5 + CO \longrightarrow I_2 + CO_2$$

5. (D) Aqueous solution of SO₂ acts as a reducing agent

$$SO_2 + 2H_2O \longrightarrow H_2SO_4 + 2H_2O \longrightarrow H_2SO_5 + 2H_$$

nascent hydrogen

Thus, SO_2 in presence of moisture is used as bleaching agent. This is due to the reducing nature of SO_2 . For delicate articles

Coloured matter + H → Colourless matter

Similarly, Cl₂ acts as bleaching agent in presence of moisture

$$CI_2 + H_2O \longrightarrow 2HCI + [O]$$

 $Coloured\ matter\ \textbf{+}\ [O] {\longrightarrow}\ Colourless\ matter$

6. (b)
$$XeF_4 + SbF_5 \longrightarrow [XeF_3]^+[SbF_6]^- \longrightarrow [XeF_3]^+ + [SbF_6]^-$$

 $sp^3 d$ $sp^3 d^2$
bent T -shape octahedral

9. (B)
$$6\text{CI}_2 + 2\text{Ba}(\text{OH})_2 \longrightarrow \text{Ba}(\text{CIO}_3)_2 + 5\text{Ba}\text{CI}_2 + 6\text{H}_2\text{O}$$
(X)
$$\text{Ba}(\text{CIO}_3)_2 + \text{H}_2\text{SO}_4 \longrightarrow 2\text{HCIO}_3 + \text{BaSO}_4 \downarrow$$
(Y)
$$2\text{HCIO}_3 \xrightarrow{\Delta} 2\text{CIO}_2 + \text{H}_2\text{O} + \frac{1}{2} \text{O}_2$$

11. (I) Ni + 4CO
$$\xrightarrow{50^{\circ}\text{C}}$$
 [Ni(CO)₄] $\xrightarrow{230^{\circ}\text{C}}$ Ni + 4CO \uparrow (impure) (volatile) (pure)

(II)
$$Cu_2S + \frac{3}{2}O_2 \xrightarrow{\Delta} Cu_2O + SO_2$$

$$Cu_2S + 2Cu_2O \xrightarrow{high} 6Cu + SO_2$$

$$\begin{split} \text{(III)} & \quad \text{MgCl}_2\left(\text{s}\right) \xrightarrow{\quad \text{electrolysis} \quad} \quad \text{Mg}^{2+}\left(\ell\right) + 2\text{CI}^-\left(\ell\right) \\ & \quad \text{At Cathode}: \text{Mg}^{2+} + 2\text{e}^- \longrightarrow \quad \text{Mg} \qquad ; \qquad \quad \text{At anode}: 2\text{CI}^-\left(\ell\right) \longrightarrow \quad \text{CI}_2\left(\text{g}\right) + 2\text{e}^- \\ & \quad \text{Mg} : \quad \text{At anode}: 2\text{CI}^-\left(\ell\right) \longrightarrow \quad \text{CI}_2\left(\text{g}\right) + 2\text{e}^- \\ & \quad \text{Mg} : \quad \text{At anode}: 2\text{CI}^-\left(\ell\right) \longrightarrow \quad \text{CI}_2\left(\text{g}\right) + 2\text{e}^- \\ & \quad \text{Mg} : \quad \text{Mg$$

- $Cr_2O_3 + 2AI (R.A.) \xrightarrow{\Delta} AI_2O_3 + 2Cr$; $\Delta H = -ve$ 12. (i)
 - (ii) Mg is extracted by electrolysis of fused MgCl₂ and NaCl.

(iii)
$$PbS + \frac{3}{2}O_2 \longrightarrow PbO + SO_2$$
 ; $PbO + C \longrightarrow Pb + CO$

- Red Bauxite is purified by Baeyer's process. (iv)
- MgCl₂ + Na₂CO₃ → MgCO₃ + NaCl 13._ Ca(HCO₃)₂ + Na₂CO₃ \rightarrow CaCO₃ + 2NaHCO₃ $H_2SO_4 + Na_2CO_3 \rightarrow Na_2SO_4 + H_2O + CO_2$ $Na_{2}CO_{3} + H_{2}O + CO_{2} \rightarrow 2NaHCO_{3}$

14. For
$$2C(s) + O_{s}(g) \rightarrow 2CO(g)$$
 $\Delta S = +ve$, slope is $-ve$

15.
$$Na_2B_4O_7.10H_2O + aq \rightleftharpoons 4H_3BO_3 + 2NaOH;$$
 $H_3BO_3 + OH^- \rightleftharpoons B(OH)_4^-$

$$\begin{array}{c|c} COOH & HO \\ + B(OH)_4^- + \\ OH & HOOC \end{array} \longrightarrow \begin{array}{c|c} O & O \\ \hline C-O & B & O-C \\ \hline O & B & O-C \\ \hline \end{array} \longrightarrow \begin{array}{c|c} + 2H_2O \\ \hline \end{array}$$

→ Optically resolvable due to asymmetric structure

16.
$$NH_3(excess) + Cl_2 \longrightarrow NH_4Cl + N_2$$

 $NH_3 + Cl_2(excess) \longrightarrow NCl_3 + HCl_4$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

17.
$$SO_2 + PCI_5 \longrightarrow SOCI_2 + POCI_3$$

No change in oxidation number of any element. So, not a redox reaction.

SOCI₂ is thionylchloride; SO₂CI₂ is sulphuryl chloride.

$$POCl_3 + H_2O \longrightarrow H_3PO_4 + HCI$$
 strongly acidic solutions $SOCl_2 + H_2O \longrightarrow H_2SO_3 + HCI$

Both the products have sp³ hybridisation of central atom.

20.
$$2AI + 2NaOH + 2H_2O \longrightarrow 2NaAIO_2 + 3H_2 \uparrow$$
 $Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2 \uparrow$
 $sod. zincate$
 $4S + 6NaOH \longrightarrow 2Na_2S + Na_2S_2O_3 + 3H_2O$
 $P_4 + 3NaOH + 3H_2O \longrightarrow 3NaH_2PO_2 + PH_3 \uparrow$
 $sod. hypophosphite$
 $CI_2 + 2NaOH \longrightarrow NaCIO + H_2O$

25. BeCl₂ + 2H₂O
$$\longrightarrow$$
 Be (OH)₂ + 2HCl

Be(OH)₂ + 2H₂O $\xrightarrow{\text{alkaline medium}}$ [Be(OH)₄]²⁻ + 2H⁺

BeCl₂ + 4H₂O $\xrightarrow{\text{alkaline medium}}$ [Be(OH)₄]²⁻ + 2HCl + 2H⁺

26.
$$SF_4 + H_2O \longrightarrow H_2SO_3 + HF$$
 ; $TeF_6 + H_2O \longrightarrow Te(OH)_6 + HF$

$$\begin{array}{lll} \textbf{28.} & \textbf{P} + \text{conc.} \ \textbf{H}_2 \textbf{SO}_4 \longrightarrow \textbf{HCI}(\textbf{g}) \uparrow (\textbf{X}) \\ & (\text{some chloride}) \\ & \textbf{HCI} \ (\textbf{g}) + \textbf{NH}_3 \ (\textbf{g}) \longrightarrow \textbf{NH}_4 \textbf{CI} \ (\textbf{s}) \ (\text{white fumes}) & ; & \textbf{P} + \textbf{AgNO}_3 \longrightarrow \textbf{AgCI} \downarrow (\text{white}) \\ & \textbf{AgCI}^- + \textbf{NH}_3 \ (\textbf{aq}) \longrightarrow [\textbf{Ag}(\textbf{NH}_3)_2] \textbf{CI}(\textbf{aq}) \\ & \textbf{HCI} + \textbf{O}_2 & \xrightarrow{\textbf{CuCl}_2} & \textbf{CI}_2 + \textbf{H}_2 \textbf{O}(\ell) & ; & \textbf{H}_2 \textbf{O} + \textbf{CI}_2 + \textbf{Na}_2 \textbf{S}_2 \textbf{O}_3 \longrightarrow \textbf{NaHSO}_4 + \textbf{NaCI} \\ \end{array}$$

31.
$$Ca_2B_6O_{11} + 2Na_2CO_3 \longrightarrow 2CaCO_3 \downarrow + Na_2B_4O_7 + 2NaBO_2$$

(Calemanite) (Z)
 $Na_2B_4O_7 + H_2SO_4 \longrightarrow H_3BO_3 + Na_2SO_4$
 $H_3BO_3 \stackrel{\triangle}{\longrightarrow} B_2O_3 + H_2O$
(C)
 $B_2O_3 + Mg \longrightarrow MgO + B$
 $CI_2 + B_2O_3 + C \longrightarrow BCI_3 + CO$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

- 32. Conc.H₂SO₄, anhyd. CaCl₂, CaO and P₂O₅
- By product is $CaCl_2$, $x = CaCO_3$, $y = CO_2$. 33. CaCl₂ + Na₂CO₃ _____ CaCO₃ + 2NaCl
- 34. XeF_2 is a strong oxidising agent with SRP = +2.64.

$$XeF_2 + CI^- \longrightarrow CI_2 + Xe$$

$$Br^- \longrightarrow Br_2$$

$$I^- \longrightarrow I_2$$

$$XeF_2 + NH_3 \longrightarrow N_2 + NH_4F + Xe$$

$$XeF_2 + CrF_2 \longrightarrow CrF_3 + Xe$$

$$Pt + XeF_2 \xrightarrow{2} PtF_6 + Xe$$

$$S_{s} + XeF_{s} \longrightarrow SF_{s} + Xe$$

KO₃, RbO₂, Cs₂O₂, BaO₂ 35.

38.
$$H_2C_2O_4 \xrightarrow{\Delta} H_2O + CO + CO_2$$

$$H_3PO_2 \xrightarrow{\Delta} H_3PO_4 + PH3$$

$$H_3PO_3 \xrightarrow{\Delta} H_3PO_4 + PH3$$

$$HCIO \xrightarrow{\Delta} HCIO_3 + HCI$$

$$HNO_2 \xrightarrow{\Delta} HNO_3 + NO + H_2O$$

$$H_2SO_3 \xrightarrow{\Delta} H_2O + SO_2\uparrow$$

$$H_2SO_4 \xrightarrow{\Delta} No reaction$$

$$HCIO_3 \xrightarrow{\Delta} HCIO_4 + CI_2 \uparrow$$

- 39. Except HCI, HBr, HI, HCN, HF it will react with all other compounds, replacing OH-group by CI-group.
- $x = Na_2PbO_2$ $y = Na_2SnO_3$ $z = NaAlO_2$ 41.
- $NaNO_3 \xrightarrow{\Delta} NaNO_2 + \frac{1}{2}O_2$ 43. (A)
 - $K + O_2$ (excess) $\longrightarrow KO_2$ (B)
 - (C) $2Na + O_2 (excess) \longrightarrow Na_2O_2$
 - (D) K (dissolved in liquid NH₃) → paramagnetic solution

44.
$$NH_4CIO_4 \xrightarrow{\Delta} N_2 + CI_2 + O_2 + H_2O$$

$$(NH_4)_2CO_3 \xrightarrow{\Delta} NH_3 + CO_2 + H_2O$$

$$(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_7(s) + H_2O$$

$$Mg (NH_4)PO_4 \xrightarrow{\Delta} Mg_2P_2O_7 + NH_3 + H_2O$$

- 45. (A) BF₃ can not get oxidised, but being acidic dissolves in KOH, changes color of litmus and is colourless
 - (B) HCl gets oxidised to Cl₂ by KMnO₄ and being acidic, dissolves in aqueous KOH and change color of litmus from blue to red. It is colorless gas.
 - (C) SO₂ gets oxidised to SO₄²⁻ by KMnO₄, and being acidic dissolves significantly in aqueous KOH. It changes color of litmus from blue to red and it is colorless gas.
 - (D) F₂ does not get oxidised by KMnO₄ and dissolves in KOH, to form O₂ and KF. It bleaches litmus solution. It is yellow colour gas.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005