# INTRODUCTION TO



**Bobby Iliev** 

# **Table of Contents**

| About 1 | the book                                | 10 |
|---------|-----------------------------------------|----|
| Abo     | out the author                          | 11 |
| Spo     | onsors                                  | 12 |
| Ebo     | ook PDF Generation Tool                 | 14 |
| Вос     | ok Cover                                | 15 |
| Lice    | ense                                    | 16 |
| Chapte  | r 1: Introduction to Docker             | 17 |
|         | at is Docker?                           |    |
|         | y Use Docker?                           |    |
| Doo     | cker Architecture                       | 20 |
| Con     | ntainers vs. Virtual Machines           | 21 |
| Bas     | ic Docker Workflow                      | 22 |
| Doc     | cker Components                         | 23 |
| Use     | Cases for Docker                        | 24 |
| Con     | nclusion                                | 25 |
| Chapte  | r 2: Installing Docker                  | 26 |
| Doo     | cker Editions                           | 27 |
| Inst    | alling Docker on Linux                  | 28 |
| Inst    | calling Docker on macOS                 | 32 |
| Inst    | calling Docker on Windows               | 33 |
| Pos     | t-Installation Steps                    | 34 |
| Doc     | cker Desktop vs Docker Engine           | 35 |
| Tro     | ubleshooting Common Installation Issues | 36 |
| Upc     | dating Docker                           | 37 |

|     | Uninstalling Docker                            | 38 |
|-----|------------------------------------------------|----|
|     | Conclusion                                     | 39 |
|     |                                                |    |
| Cha | apter 3: Working with Docker Containers        | 40 |
|     | Running Your First Container                   | 41 |
|     | Basic Docker Commands                          | 42 |
|     | Running Containers in Different Modes          | 44 |
|     | Port Mapping                                   | 45 |
|     | Working with Container Logs                    | 46 |
|     | Executing Commands in Running Containers       | 47 |
|     | Practical Example: Running an Apache Container | 48 |
|     | Container Resource Management                  | 49 |
|     | Container Networking                           | 50 |
|     | Data Persistence with Volumes                  | 51 |
|     | Container Health Checks                        | 52 |
|     | Cleaning Up                                    | 53 |
|     | Conclusion                                     | 54 |
| Cha | apter 4: What are Docker Images                | 55 |
|     | Key Concepts                                   | 56 |
|     | Working with Docker Images                     |    |
|     | Building Custom Images                         | 59 |
|     | Image Tagging                                  | 60 |
|     | Pushing Images to Docker Hub                   | 61 |
|     | Image Layers and Caching                       | 62 |
|     | Multi-stage Builds                             | 63 |
|     | Image Scanning and Security                    | 64 |
|     | Best Practices for Working with Images         | 65 |
|     | Image Management and Cleanup                   | 66 |
|     | Conclusion                                     | 67 |

|     | pter 5: What is a Dockerfile                                                                                                                                                                                                               | 68                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|     | Anatomy of a Dockerfile                                                                                                                                                                                                                    | 69                                             |
|     | Dockerfile Instructions                                                                                                                                                                                                                    | 70                                             |
|     | Best Practices for Writing Dockerfiles                                                                                                                                                                                                     | 74                                             |
|     | Advanced Dockerfile Concepts                                                                                                                                                                                                               | 76                                             |
|     | Conclusion                                                                                                                                                                                                                                 | 77                                             |
| Cha | pter 6: Docker Networking                                                                                                                                                                                                                  | 78                                             |
|     | Docker Network Drivers                                                                                                                                                                                                                     |                                                |
|     | Working with Docker Networks                                                                                                                                                                                                               |                                                |
|     | Deep Dive into Network Drivers                                                                                                                                                                                                             |                                                |
|     | Network Troubleshooting                                                                                                                                                                                                                    | 86                                             |
|     | Best Practices                                                                                                                                                                                                                             | 87                                             |
|     | Advanced Topics                                                                                                                                                                                                                            | 88                                             |
|     | Conclusion                                                                                                                                                                                                                                 | 89                                             |
|     |                                                                                                                                                                                                                                            |                                                |
| Cha | pter 7: Docker Volumes                                                                                                                                                                                                                     |                                                |
| Cha | Why Use Docker Volumes?                                                                                                                                                                                                                    | 91                                             |
| Cha | Why Use Docker Volumes?                                                                                                                                                                                                                    | 91<br>92                                       |
| Cha | Why Use Docker Volumes?                                                                                                                                                                                                                    | 91<br>92                                       |
| Cha | Why Use Docker Volumes?                                                                                                                                                                                                                    | 91<br>92<br>94                                 |
| Cha | Why Use Docker Volumes?  Types of Docker Volumes  Working with Docker Volumes                                                                                                                                                              | 91<br>92<br>94<br>96                           |
| Cha | Why Use Docker Volumes?  Types of Docker Volumes  Working with Docker Volumes  Volume Drivers                                                                                                                                              | 91<br>92<br>94<br>96<br>97                     |
| Cha | Why Use Docker Volumes?  Types of Docker Volumes  Working with Docker Volumes  Volume Drivers  Best Practices for Using Docker Volumes                                                                                                     | 91<br>92<br>94<br>96<br>97<br>98               |
| Cha | Why Use Docker Volumes?  Types of Docker Volumes  Working with Docker Volumes  Volume Drivers  Best Practices for Using Docker Volumes  Advanced Volume Concepts                                                                           | 91<br>94<br>96<br>97<br>98                     |
|     | Why Use Docker Volumes?  Types of Docker Volumes  Working with Docker Volumes  Volume Drivers  Best Practices for Using Docker Volumes  Advanced Volume Concepts  Troubleshooting Volume Issues                                            | 91<br>92<br>94<br>96<br>97<br>98<br>100        |
|     | Why Use Docker Volumes?  Types of Docker Volumes  Working with Docker Volumes  Volume Drivers  Best Practices for Using Docker Volumes  Advanced Volume Concepts  Troubleshooting Volume Issues  1  Conclusion  1                          | 91<br>92<br>94<br>96<br>97<br>98<br>100        |
|     | Why Use Docker Volumes?  Types of Docker Volumes  Working with Docker Volumes  Volume Drivers  Best Practices for Using Docker Volumes  Advanced Volume Concepts  Troubleshooting Volume Issues  Conclusion  1  Apter 8: Docker Compose  1 | 91<br>92<br>94<br>96<br>97<br>98<br>100<br>101 |

|     | Key Concepts in Docker Compose                        | 105 |
|-----|-------------------------------------------------------|-----|
|     | Basic Docker Compose Commands                         | 106 |
|     | Advanced Docker Compose Features                      | 107 |
|     | Practical Examples                                    | 109 |
|     | Best Practices for Docker Compose                     | 115 |
|     | Scaling Services                                      | 116 |
|     | Networking in Docker Compose                          | 117 |
|     | Volumes in Docker Compose                             | 118 |
|     | Conclusion                                            | 119 |
| Cha | pter 9: Docker Security Best Practices                | 120 |
|     | 1. Keep Docker Updated                                | 121 |
|     | 2. Use Official Images                                | 122 |
|     | 3. Scan Images for Vulnerabilities                    | 123 |
|     | 4. Limit Container Resources                          | 124 |
|     | 5. Use Non-Root Users                                 | 125 |
|     | 6. Use Secret Management                              | 126 |
|     | 7. Enable Content Trust                               |     |
|     | 8. Use Read-Only Containers                           | 128 |
|     | 9. Implement Network Segmentation                     | 129 |
|     | 10. Regular Security Audits                           | 130 |
|     | 11. Use Security-Enhanced Linux (SELinux) or AppArmor | 131 |
|     | 12. Implement Logging and Monitoring                  | 132 |
|     | Conclusion                                            | 133 |
| Cha | pter 10: Docker in Production: Orchestration with     |     |
| Kub | pernetes                                              | 134 |
|     | Key Kubernetes Concepts                               | 135 |
|     | Setting Up a Kubernetes Cluster                       | 136 |
|     | Deploying a Docker Container to Kubernetes            | 137 |

|     | Scaling in Kubernetes                         | 139 |
|-----|-----------------------------------------------|-----|
|     | Rolling Updates                               | 140 |
|     | Monitoring and Logging                        | 141 |
|     | Kubernetes Dashboard                          | 142 |
|     | Persistent Storage in Kubernetes              | 143 |
|     | Kubernetes Networking                         | 144 |
|     | Kubernetes Secrets                            | 145 |
|     | Helm: The Kubernetes Package Manager          | 146 |
|     | Best Practices for Kubernetes in Production   | 147 |
|     | Conclusion                                    | 148 |
|     |                                               |     |
| Cha | pter 11: Docker Performance Optimization      | 149 |
|     | 1. Optimizing Docker Images                   | 150 |
|     | 2. Container Resource Management              | 152 |
|     | 3. Networking Optimization                    | 153 |
|     | 4. Storage Optimization                       | 154 |
|     | 5. Logging and Monitoring                     | 155 |
|     | 6. Docker Daemon Optimization                 | 156 |
|     | 7. Application-Level Optimization             | 157 |
|     | 8. Benchmarking and Profiling                 | 158 |
|     | 9. Orchestration-Level Optimization           | 159 |
|     | Conclusion                                    | 160 |
|     |                                               |     |
| Cha | pter 12: Docker Troubleshooting and Debugging | 161 |
|     | 1. Container Lifecycle Issues                 | 162 |
|     | 2. Networking Issues                          | 163 |
|     | 3. Storage and Volume Issues                  | 164 |
|     | 4. Resource Constraints                       | 165 |
|     | 5. Image-related Issues                       | 166 |
|     | 6. Docker Daemon Issues                       | 167 |

| 7. Debugging Techniques                           | 168   |
|---------------------------------------------------|-------|
| 8. Performance Debugging                          | 169   |
| 9. Docker Compose Troubleshooting                 | 170   |
| Conclusion                                        | 171   |
|                                                   |       |
| Chapter 13: Advanced Docker Concepts and Features | . 172 |
| 1. Multi-stage Builds                             | 173   |
| 2. Docker BuildKit                                | 174   |
| 3. Custom Bridge Networks                         | 175   |
| 4. Docker Contexts                                | 176   |
| 5. Docker Content Trust (DCT)                     | 177   |
| 6. Docker Secrets                                 | 178   |
| 7. Docker Health Checks                           | 179   |
| 8. Docker Plugins                                 | 180   |
| 9. Docker Experimental Features                   | 181   |
| 10. Container Escape Protection                   | 182   |
| 11. Custom Dockerfile Instructions                | 183   |
| 12. Docker Manifest                               | 184   |
| 13. Docker Buildx                                 | 185   |
| 14. Docker Compose Profiles                       | 186   |
| Conclusion                                        | 187   |
|                                                   |       |
| Chapter 14: Docker in CI/CD Pipelines             | . 188 |
| 1. Docker in Continuous Integration               | 189   |
| 2. Docker in Continuous Deployment                | 190   |
| 3. Docker Compose in CI/CD                        | 192   |
| 4. Security Scanning                              | 193   |
| 5. Performance Testing                            | 194   |
| 6. Environment-Specific Configurations            | 195   |
| 7. Caching in CI/CD                               | 196   |

|     | 8. Blue-Green Deployments with Docker                  | 197 |
|-----|--------------------------------------------------------|-----|
|     | 9. Monitoring and Logging in CI/CD                     | 198 |
|     | Conclusion                                             | 199 |
|     |                                                        |     |
| Cha | apter 15: Docker and Microservices Architecture        | 200 |
|     | 1. Principles of Microservices                         | 201 |
|     | 2. Dockerizing Microservices                           | 202 |
|     | 3. Inter-service Communication                         | 203 |
|     | 4. Service Discovery                                   | 205 |
|     | 5. API Gateway                                         | 206 |
|     | 6. Data Management                                     | 207 |
|     | 7. Monitoring Microservices                            | 208 |
|     | 8. Scaling Microservices                               | 209 |
|     | 9. Testing Microservices                               | 210 |
|     | 10. Deployment Strategies                              | 211 |
|     | Conclusion                                             | 212 |
|     |                                                        |     |
| Cha | apter 16: Docker for Data Science and Machine Learning |     |
| 213 | 3                                                      |     |
|     | 1. Setting Up a Data Science Environment               | 214 |
|     | 2. Managing Dependencies with Docker                   |     |
|     | 3. GPU Support for Machine Learning                    | 216 |
|     | 4. Distributed Training with Docker Swarm              | 217 |
|     | 5. MLOps with Docker                                   | 218 |
|     | 6. Data Pipeline with Apache Airflow                   | 219 |
|     | 7. Reproducible Research with Docker                   | 220 |
|     | 8. Big Data Processing with Docker                     | 221 |
|     | 9. Automated Machine Learning (AutoML) with Docker     | 222 |
|     | 10. Hyperparameter Tuning at Scale                     | 223 |
|     | Conclusion                                             |     |

| What is Docker Swarm mode    |     |
|------------------------------|-----|
| Docker Services              |     |
| Building a Swarm             | 227 |
| Managing the cluster         | 230 |
| Promote a worker to manager  | 232 |
| Using Services               | 233 |
| Scaling a service            | 235 |
| Deleting a service           | 237 |
| Docker Swarm Knowledge Check | 238 |
| Conclusion                   | 239 |
| Other eBooks                 | 240 |

# About the book

#### This version was published on October 27 2021

This is an open-source introduction to Docker guide that will help you learn the basics of Docker and how to start using containers for your SysOps, DevOps, and Dev projects. No matter if you are a DevOps/SysOps engineer, developer, or just a Linux enthusiast, you will most likely have to use Docker at some point in your career.

The guide is suitable for anyone working as a developer, system administrator, or a DevOps engineer and wants to learn the basics of Docker.

#### About the author

My name is Bobby Iliev, and I have been working as a Linux DevOps Engineer since 2014. I am an avid Linux lover and supporter of the open-source movement philosophy. I am always doing that which I cannot do in order that I may learn how to do it, and I believe in sharing knowledge.

I think it's essential always to keep professional and surround yourself with good people, work hard, and be nice to everyone. You have to perform at a consistently higher level than others. That's the mark of a true professional.

For more information, please visit my blog at <a href="https://bobbyiliev.com">https://bobbyiliev.com</a>, follow me on Twitter <a href="mailto:obbbyiliev">obbbyiliev</a> and <a href="mailto:YouTube">YouTube</a>.

## **Sponsors**

This book is made possible thanks to these fantastic companies!

#### **Materialize**

The Streaming Database for Real-time Analytics.

<u>Materialize</u> is a reactive database that delivers incremental view updates. Materialize helps developers easily build with streaming data using standard SQL.

#### **DigitalOcean**

DigitalOcean is a cloud services platform delivering the simplicity developers love and businesses trust to run production applications at scale.

It provides highly available, secure, and scalable compute, storage, and networking solutions that help developers build great software faster.

Founded in 2012 with offices in New York and Cambridge, MA, DigitalOcean offers transparent and affordable pricing, an elegant user interface, and one of the largest libraries of open source resources available.

For more information, please visit <a href="https://www.digitalocean.com">https://www.digitalocean.com</a> or follow <a href="mailto:@digitalocean">@digitalocean</a> on Twitter.

If you are new to DigitalOcean, you can get a free \$100 credit and spin up your own servers via this referral link here:

Free \$100 Credit For DigitalOcean

# DevDojo

The DevDojo is a resource to learn all things web development and web design. Learn on your lunch break or wake up and enjoy a cup of coffee with us to learn something new.

Join this developer community, and we can all learn together, build together, and grow together.

## <u>Join DevDojo</u>

For more information, please visit <a href="https://www.devdojo.com">https://www.devdojo.com</a> or follow <a href="mailto:@thedevdojo.com">@thedevdojo</a> on Twitter.

# **Ebook PDF Generation Tool**

This ebook was generated by <u>Ibis</u> developed by <u>Mohamed Said</u>.

Ibis is a PHP tool that helps you write eBooks in markdown.

# **Book Cover**

The cover for this ebook was created with <u>Canva.com</u>.

If you ever need to create a graphic, poster, invitation, logo, presentation – or anything that looks good — give Canva a go.

#### License

MIT License

Copyright (c) 2020 Bobby Iliev

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

# Chapter 1: Introduction to Docker

#### What is Docker?

Docker is an open-source platform that automates the deployment, scaling, and management of applications using containerization technology. It allows developers to package applications and their dependencies into standardized units called containers, which can run consistently across different environments.

#### **Key Concepts:**

- 1. **Containerization**: A lightweight form of virtualization that packages applications and their dependencies together.
- 2. **Docker Engine**: The runtime that allows you to build and run containers.
- 3. **Docker Image**: A read-only template used to create containers.
- 4. **Docker Container**: A runnable instance of a Docker image.
- 5. **Docker Hub**: A cloud-based registry for storing and sharing Docker images.

# Why Use Docker?

Docker offers numerous advantages for developers and operations teams:

- 1. **Consistency**: Ensures applications run the same way in development, testing, and production environments.
- 2. **Isolation**: Containers are isolated from each other and the host system, improving security and reducing conflicts.
- 3. **Portability**: Containers can run on any system that supports Docker, regardless of the underlying infrastructure.
- 4. **Efficiency**: Containers share the host system's OS kernel, making them more lightweight than traditional virtual machines.
- 5. **Scalability**: Easy to scale applications horizontally by running multiple containers.
- 6. **Version Control**: Docker images can be versioned, allowing for easy rollbacks and updates.

## **Docker Architecture**

Docker uses a client-server architecture:

- 1. **Docker Client**: The primary way users interact with Docker through the command line interface (CLI).
- 2. **Docker Host**: The machine running the Docker daemon (dockerd).
- 3. **Docker Daemon**: Manages Docker objects like images, containers, networks, and volumes.
- 4. **Docker Registry**: Stores Docker images (e.g., Docker Hub).

Here's a simplified diagram of the Docker architecture:



# **Containers vs. Virtual Machines**

While both containers and virtual machines (VMs) are used for isolating applications, they differ in several key aspects:

| Aspect         | Containers                            | <b>Virtual Machines</b>         |
|----------------|---------------------------------------|---------------------------------|
| OS             | Share host OS kernel                  | Run full OS and kernel          |
| Resource Usage | Lightweight, minimal overhead         | Higher resource usage           |
| Boot Time      | Seconds                               | Minutes                         |
| Isolation      | Process-level isolation               | Full isolation                  |
| Portability    | Highly portable across different OSes | Less portable, OS-<br>dependent |
| Performance    | Near-native performance               | Slight performance overhead     |
| Storage        | Typically smaller (MBs)               | Larger (GBs)                    |

## **Basic Docker Workflow**

- 1. **Build**: Create a Dockerfile that defines your application and its dependencies.
- 2. **Ship**: Push your Docker image to a registry like Docker Hub.
- 3. **Run**: Pull the image and run it as a container on any Docker-enabled host.

Here's a simple example of this workflow:

```
# Build an image
docker build -t myapp:v1 .

# Ship the image to Docker Hub
docker push username/myapp:v1

# Run the container
docker run -d -p 8080:80 username/myapp:v1
```

# **Docker Components**

- 1. **Dockerfile**: A text file containing instructions to build a Docker image.
- 2. **Docker Compose**: A tool for defining and running multi-container Docker applications.
- 3. **Docker Swarm**: Docker's native clustering and orchestration solution.
- 4. **Docker Network**: Facilitates communication between Docker containers.
- 5. **Docker Volume**: Provides persistent storage for container data.

## **Use Cases for Docker**

- 1. **Microservices Architecture**: Deploy and scale individual services independently.
- 2. Continuous Integration/Continuous Deployment (CI/CD): Streamline development and deployment processes.
- 3. **Development Environments**: Create consistent development environments across teams.
- 4. **Application Isolation**: Run multiple versions of an application on the same host.
- 5. **Legacy Application Migration**: Containerize legacy applications for easier management and deployment.

# **Conclusion**

Docker has revolutionized how applications are developed, shipped, and run. By providing a standardized way to package and deploy applications, Docker addresses many of the challenges faced in modern software development and operations. As we progress through this book, we'll dive deeper into each aspect of Docker, providing you with the knowledge and skills to leverage this powerful technology effectively.

# **Chapter 2: Installing Docker**

Installing Docker is the first step in your journey with containerization. This chapter will guide you through the process of installing Docker on various operating systems, troubleshooting common issues, and verifying your installation.

#### **Docker Editions**

Before we begin, it's important to understand the different Docker editions available:

- 1. **Docker Engine Community**: Free, open-source Docker platform suitable for developers and small teams.
- 2. **Docker Engine Enterprise**: Designed for enterprise development and IT teams building, running, and operating business-critical applications at scale.
- 3. **Docker Desktop**: An easy-to-install application for Mac or Windows environments that includes Docker Engine, Docker CLI client, Docker Compose, Docker Content Trust, Kubernetes, and Credential Helper.

For most users, Docker Engine - Community or Docker Desktop will be sufficient.

# **Installing Docker on Linux**

Docker runs natively on Linux, making it the ideal platform for Docker containers. There are two main methods to install Docker on Linux: using the convenience script or manual installation for specific distributions.

# Method 1: Using the Docker Installation Script (Recommended for Quick Setup)

Docker provides a convenient script that automatically detects your Linux distribution and installs Docker for you. This method is quick and works across many Linux distributions:

1. Run the following command to download and execute the Docker installation script:

```
wget -q0- https://get.docker.com | sh
```

2. Once the installation is complete, start the Docker service:

```
sudo systemctl start docker
```

3. Enable Docker to start on boot:

```
sudo systemctl enable docker
```

This method is ideal for quick setups and testing environments. However, for production environments, you might want to consider the manual installation method for more control over the process.

#### **Method 2: Manual Installation for Specific Distributions**

For more control over the installation process or if you prefer to follow distribution-specific steps, you can manually install Docker. Here are instructions for popular Linux distributions:

Docker runs natively on Linux, making it the ideal platform for Docker containers. Here's how to install Docker on popular Linux distributions:

#### **Ubuntu**

1. Update your package index:

```
sudo apt-get update
```

2. Install prerequisites:

```
sudo apt-get install apt-transport-https ca-certificates
curl software-properties-common
```

3. Add Docker's official GPG key:

```
curl -fsSL https://download.docker.com/linux/ubuntu/gpg |
sudo apt-key add -
```

4. Set up the stable repository:

```
sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb_release -
cs) stable"
```

5. Update the package index again:

```
sudo apt-get update
```

6. Install Docker:

```
sudo apt-get install docker-ce docker-ce-cli containerd.io
```

#### **CentOS**

1. Install required packages:

```
sudo yum install -y yum-utils device-mapper-persistent-
data lvm2
```

2. Add Docker repository:

```
sudo yum-config-manager --add-repo
https://download.docker.com/linux/centos/docker-ce.repo
```

#### 3. Install Docker:

sudo yum install docker-ce docker-ce-cli containerd.io

#### 4. Start and enable Docker:

sudo systemctl start docker
sudo systemctl enable docker

## **Other Linux Distributions**

For other Linux distributions, refer to the official Docker documentation: https://docs.docker.com/engine/install/

# **Installing Docker on macOS**

For macOS, the easiest way to install Docker is by using Docker Desktop:

- 1. Download Docker Desktop for Mac from the official Docker website: https://www.docker.com/products/docker-desktop
- 2. Double-click the downloaded .dmg file and drag the Docker icon to your Applications folder.
- 3. Open Docker from your Applications folder.
- 4. Follow the on-screen instructions to complete the installation.

# **Installing Docker on Windows**

For Windows 10 Pro, Enterprise, or Education editions, you can install Docker Desktop:

- 1. Download Docker Desktop for Windows from the official Docker website: https://www.docker.com/products/docker-desktop
- 2. Double-click the installer to run it.
- 3. Follow the installation wizard to complete the installation.
- 4. Once installed, Docker Desktop will start automatically.

For Windows 10 Home or older versions of Windows, you can use Docker Toolbox, which uses Oracle VirtualBox to run Docker:

- Download Docker Toolbox from: https://github.com/docker/toolbox/releases
- 2. Run the installer and follow the installation wizard.
- 3. Once installed, use the Docker Quickstart Terminal to interact with Docker.

# **Post-Installation Steps**

After installing Docker, there are a few steps you should take:

1. Verify the installation:

```
docker version docker run hello-world
```

2. Configure Docker to start on boot (Linux only):

```
sudo systemctl enable docker
```

3. Add your user to the docker group to run Docker commands without sudo (Linux only):

```
sudo usermod -aG docker $USER
```

Note: You'll need to log out and back in for this change to take effect.

# **Docker Desktop vs Docker Engine**

It's important to understand the difference between Docker Desktop and Docker Engine:

- Docker Desktop is a user-friendly application that includes
   Docker Engine, Docker CLI client, Docker Compose, Docker
   Content Trust, Kubernetes, and Credential Helper. It's designed for easy installation and use on Mac and Windows.
- **Docker Engine** is the core Docker runtime available for Linux systems. It doesn't come with the additional tools included in Docker Desktop but can be installed alongside them separately.

# **Troubleshooting Common Installation Issues**

- 1. **Permission denied**: If you encounter "permission denied" errors, ensure you've added your user to the docker group or are using sudo.
- 2. **Docker daemon not running**: On Linux, try starting the Docker service: sudo systemctl start docker
- 3. **Conflict with VirtualBox (Windows)**: Ensure Hyper-V is enabled for Docker Desktop, or use Docker Toolbox if you need to keep using VirtualBox.
- 4. **Insufficient system resources**: Docker Desktop requires at least 4GB of RAM. Increase your system's or virtual machine's allocated RAM if needed.

# **Updating Docker**

#### To update Docker:

- On Linux, use your package manager (e.g., apt-get upgrade docker-ce on Ubuntu)
- On Mac and Windows, Docker Desktop will notify you of updates automatically

# **Uninstalling Docker**

If you need to uninstall Docker:

- On Linux, use your package manager (e.g., sudo apt-get purge docker-ce docker-ce-cli containerd.io on Ubuntu)
- On Mac, remove Docker Desktop from the Applications folder
- On Windows, uninstall Docker Desktop from the Control Panel

## **Conclusion**

Installing Docker is generally a straightforward process, but it can vary depending on your operating system. Always refer to the official Docker documentation for the most up-to-date installation instructions for your specific system. With Docker successfully installed, you're now ready to start exploring the world of containerization!

# Chapter 3: Working with Docker Containers

Docker containers are lightweight, standalone, and executable packages that include everything needed to run a piece of software, including the code, runtime, system tools, libraries, and settings. In this chapter, we'll explore how to work with Docker containers effectively.

# **Running Your First Container**

Let's start by running a simple container:

docker run hello-world

#### This command does the following:

- 1. Checks for the hello-world image locally
- 2. If not found, pulls the image from Docker Hub
- 3. Creates a container from the image
- 4. Runs the container, which prints a hello message
- 5. Exits the container

#### **Basic Docker Commands**

Here are some essential Docker commands for working with containers:

#### **Listing Containers**

To see all running containers:

```
docker ps
```

To see all containers (including stopped ones):

```
docker ps -a
```

#### **Starting and Stopping Containers**

To stop a running container:

```
docker stop <container_id_or_name>
```

To start a stopped container:

```
docker start <container_id_or_name>
```

To restart a container:

```
docker restart <container_id_or_name>
```

# **Removing Containers**

To remove a stopped container:

```
docker rm <container_id_or_name>
```

To force remove a running container:

```
docker rm -f <container_id_or_name>
```

# **Running Containers in Different Modes**

#### **Detached Mode**

Run a container in the background:

```
docker run -d <image_name>
```

#### **Interactive Mode**

Run a container and interact with it:

docker run -it <image\_name> /bin/bash

# **Port Mapping**

To map a container's port to the host:

```
docker run -p <host_port>:<container_port> <image_name>
```

## Example:

docker run -d -p 80:80 nginx

# **Working with Container Logs**

View container logs:

```
docker logs <container_id_or_name>
```

Follow container logs in real-time:

```
docker logs -f <container_id_or_name>
```

# **Executing Commands in Running Containers**

To execute a command in a running container:

```
docker exec -it <container_id_or_name> <command>
```

## Example:

docker exec -it my\_container /bin/bash

## Practical Example: Running an Apache Container

Let's run an Apache web server container:

1. Pull the image:

```
docker pull httpd
```

2. Run the container:

```
docker run -d --name my-apache -p 8080:80 httpd
```

3. Verify it's running:

```
docker ps
```

- 4. Access the default page by opening a web browser and navigating to http://localhost:8080
- 5. Modify the default page:

```
docker exec -it my-apache /bin/bash
echo "<h1>Hello from my Apache container!</h1>" >
/usr/local/apache2/htdocs/index.html
exit
```

6. Refresh your browser to see the changes

# **Container Resource Management**

# **Limiting Memory**

Run a container with a memory limit:

```
docker run -d --memory=512m <image_name>
```

# **Limiting CPU**

Run a container with CPU limit:

```
docker run -d --cpus=0.5 <image_name>
```

# **Container Networking**

# **Listing Networks**

docker network ls

# **Creating a Network**

docker network create my\_network

# **Connecting a Container to a Network**

docker run -d --network my\_network --name my\_container
<image\_name>

# **Data Persistence with Volumes**

# **Creating a Volume**

docker volume create my\_volume

# **Running a Container with a Volume**

docker run -d -v my\_volume:/path/in/container <image\_name>

## **Container Health Checks**

Docker provides built-in health checking capabilities. You can define a health check in your Dockerfile:

```
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --
retries=3 \
  CMD curl -f http://localhost/ || exit 1
```

# **Cleaning Up**

Remove all stopped containers:

docker container prune

Remove all unused resources (containers, networks, images):

docker system prune

## **Conclusion**

Working with Docker containers involves a range of operations from basic running and stopping to more advanced topics like resource management and networking. As you become more comfortable with these operations, you'll be able to leverage Docker's full potential in your development and deployment workflows.

Remember, containers are designed to be ephemeral. Always store important data in volumes or use appropriate persistence mechanisms for your applications.

# Chapter 4: What are Docker Images

A Docker image is a lightweight, standalone, and executable package that includes everything needed to run a piece of software, including the code, runtime, system tools, libraries, and settings. Images are the building blocks of Docker containers.

# **Key Concepts**

- 1. **Layers**: Images are composed of multiple layers, each representing a set of changes to the filesystem.
- 2. **Base Image**: The foundation of an image, typically a minimal operating system.
- 3. **Parent Image**: An image that your image is built upon.
- 4. **Image Tags**: Labels used to version and identify images.
- 5. **Image ID**: A unique identifier for each image.

# **Working with Docker Images**

## **Listing Images**

To see all images on your local system:

```
docker images
```

Or use the more verbose command:

```
docker image ls
```

## **Pulling Images from Docker Hub**

To download an image from Docker Hub:

```
docker pull <image_name>:<tag>
```

Example:

```
docker pull ubuntu:20.04
```

If no tag is specified, Docker will pull the latest tag by default.

## **Running Containers from Images**

To run a container from an image:

```
docker run <image_name>:<tag>
```

#### Example:

```
docker run -it ubuntu:20.04 /bin/bash
```

## **Image Information**

To get detailed information about an image:

```
docker inspect <image_name>:<tag>
```

## **Removing Images**

To remove an image:

```
docker rmi <image_name>:<tag>
```

or

```
docker image rm <image_name>:<tag>
```

To remove all unused images:

```
docker image prune
```

## **Building Custom Images**

#### **Using a Dockerfile**

- 1. Create a file named Dockerfile with no extension.
- 2. Define the instructions to build your image.

#### Example Dockerfile:

```
FROM ubuntu:20.04
RUN apt-get update && apt-get install -y nginx
COPY ./my-nginx.conf /etc/nginx/nginx.conf
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]
```

3. Build the image:

```
docker build -t my-nginx:v1 .
```

#### **Building from a Running Container**

- 1. Make changes to a running container.
- 2. Create a new image from the container:

```
docker commit <container_id> my-new-image:tag
```

# **Image Tagging**

To tag an existing image:

```
docker tag <source_image>:<tag> <target_image>:<tag>
```

## Example:

docker tag my-nginx:v1 my-dockerhub-username/my-nginx:v1

# **Pushing Images to Docker Hub**

1. Log in to Docker Hub:

docker login

2. Push the image:

docker push my-dockerhub-username/my-nginx:v1

# **Image Layers and Caching**

Understanding layers is crucial for optimizing image builds:

- 1. Each instruction in a Dockerfile creates a new layer.
- 2. Layers are cached and reused in subsequent builds.
- 3. Ordering instructions from least to most frequently changing can speed up builds.

Example of leveraging caching:

```
FROM ubuntu:20.04
RUN apt-get update && apt-get install -y nginx
COPY ./static-files /var/www/html
COPY ./config-files /etc/nginx
```

# **Multi-stage Builds**

Multi-stage builds allow you to use multiple FROM statements in your Dockerfile. This is useful for creating smaller production images.

## Example:

```
# Build stage
FROM golang:1.16 AS build
WORKDIR /app
COPY . .
RUN go build -o myapp

# Production stage
FROM alpine:3.14
COPY --from=build /app/myapp /usr/local/bin/myapp
CMD ["myapp"]
```

# **Image Scanning and Security**

Docker provides built-in image scanning capabilities:

```
docker scan <image_name>:<tag>
```

This helps identify vulnerabilities in your images.

# **Best Practices for Working with Images**

- 1. Use specific tags instead of latest for reproducibility.
- 2. Keep images small by using minimal base images and multi-stage builds.
- 3. Use .dockerignore to exclude unnecessary files from the build context.
- 4. Leverage build cache by ordering Dockerfile instructions effectively.
- 5. Regularly update base images to get security patches.
- 6. Scan images for vulnerabilities before deployment.

# **Image Management and Cleanup**

To manage disk space, regularly clean up unused images:

docker system prune -a

This removes all unused images, not just dangling ones.

# Conclusion

Docker images are a fundamental concept in containerization. They provide a consistent and portable way to package applications and their dependencies. By mastering image creation, optimization, and management, you can significantly improve your Docker workflows and application deployments.

# Chapter 5: What is a Dockerfile

A Dockerfile is a text document that contains a series of instructions and arguments. These instructions are used to create a Docker image automatically. It's essentially a script of successive commands Docker will run to assemble an image, automating the image creation process.

# Anatomy of a Dockerfile

A Dockerfile typically consists of the following components:

- 1. Base image declaration
- 2. Metadata and label information
- 3. Environment setup
- 4. File and directory operations
- 5. Dependency installation
- 6. Application code copying
- 7. Execution command specification

Let's dive deep into each of these components and the instructions used to implement them.

#### **Dockerfile Instructions**

#### **FROM**

The FROM instruction initializes a new build stage and sets the base image for subsequent instructions.

```
FROM ubuntu:20.04
```

This instruction is typically the first one in a Dockerfile. It's possible to have multiple FROM instructions in a single Dockerfile for multi-stage builds.

#### LABEL

LABEL adds metadata to an image in key-value pair format.

```
LABEL version="1.0" maintainer="john@example.com" description="This is a sample Docker image"
```

Labels are useful for image organization, licensing information, annotations, and other metadata.

#### **ENV**

ENV sets environment variables in the image.

```
ENV APP_HOME=/app NODE_ENV=production
```

These variables persist when a container is run from the resulting

image.

#### **WORKDIR**

WORKDIR sets the working directory for any subsequent RUN, CMD, ENTRYPOINT, COPY, and ADD instructions.

```
WORKDIR /app
```

If the directory doesn't exist, it will be created.

#### **COPY and ADD**

Both COPY and ADD instructions copy files from the host into the image.

```
COPY package.json .
ADD https://example.com/big.tar.xz /usr/src/things/
```

COPY is generally preferred for its simplicity. ADD has some extra features like tar extraction and remote URL support, but these can make build behavior less predictable.

#### **RUN**

RUN executes commands in a new layer on top of the current image and commits the results.

```
RUN apt-get update && apt-get install -y nodejs
```

It's a best practice to chain commands with && and clean up in the same RUN instruction to keep layers small.

#### **CMD**

CMD provides defaults for an executing container. There can only be one CMD instruction in a Dockerfile.

```
CMD ["node", "app.js"]
```

CMD can be overridden at runtime.

#### **ENTRYPOINT**

ENTRYPOINT configures a container that will run as an executable.

```
ENTRYPOINT ["nginx", "-g", "daemon off;"]
```

ENTRYPOINT is often used in combination with CMD, where ENTRYPOINT defines the executable and CMD supplies default arguments.

#### **EXPOSE**

**EXPOSE** informs Docker that the container listens on specified network ports at runtime.

```
EXPOSE 80 443
```

This doesn't actually publish the port; it functions as documentation between the person who builds the image and the person who runs the container.

#### **VOLUME**

**VOLUME** creates a mount point and marks it as holding externally mounted volumes from native host or other containers.

**VOLUME** /data

This is useful for any mutable and/or user-serviceable parts of your image.

#### **ARG**

ARG defines a variable that users can pass at build-time to the builder with the docker build command.

ARG VERSION=latest

This allows for more flexible image builds.

# **Best Practices for Writing Dockerfiles**

1. **Use multi-stage builds**: This helps create smaller final images by separating build-time dependencies from runtime dependencies.

```
FROM node:14 AS build
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
RUN npm run build

FROM nginx:alpine
COPY --from=build /app/dist /usr/share/nginx/html
```

- 2. **Minimize the number of layers**: Combine commands where possible to reduce the number of layers and image size.
- 3. **Leverage build cache**: Order instructions from least to most frequently changing to maximize build cache usage.
- 4. **Use** .dockerignore: Exclude files not relevant to the build, similar to .gitignore.
- 5. **Don't install unnecessary packages**: Keep the image lean and secure by only installing what's needed.
- 6. **Use specific tags**: Avoid latest tag for base images to ensure reproducible builds.
- 7. **Set the WORKDIR**: Always use WORKDIR instead of proliferating

instructions like RUN cd ... && do-something.

- 8. **Use COPY instead of ADD**: Unless you explicitly need the extra functionality of ADD, use COPY for transparency.
- 9. **Use environment variables**: Especially for version numbers and paths, making the Dockerfile more flexible.

# **Advanced Dockerfile Concepts**

#### **Health Checks**

You can use the HEALTHCHECK instruction to tell Docker how to test a container to check that it's still working.

```
HEALTHCHECK --interval=30s --timeout=10s CMD curl -f
http://localhost/ || exit 1
```

#### **Shell and Exec Forms**

Many Dockerfile instructions can be specified in shell form or exec form:

```
Shell form: RUN apt-get install python3Exec form: RUN ["apt-get", "install", "python3"]
```

The exec form is preferred as it's more explicit and avoids issues with shell string munging.

#### **BuildKit**

BuildKit is a new backend for Docker builds that offers better performance, storage management, and features. You can enable it by setting an environment variable:

```
export DOCKER_BUILDKIT=1
```

# **Conclusion**

Dockerfiles are a powerful tool for creating reproducible, version-controlled Docker images. By mastering Dockerfile instructions and best practices, you can create efficient, secure, and portable applications. Remember that writing good Dockerfiles is an iterative process – continually refine your Dockerfiles as you learn more about your application's needs and Docker's capabilities.

# **Chapter 6: Docker Networking**

Docker networking allows containers to communicate with each other and with the outside world. It's a crucial aspect of Docker that enables the creation of complex, multi-container applications and microservices architectures.

#### **Docker Network Drivers**

Docker uses a pluggable architecture for networking, offering several built-in network drivers:

- 1. **Bridge**: The default network driver. It's suitable for standalone containers that need to communicate.
- 2. **Host**: Removes network isolation between the container and the Docker host.
- 3. **Overlay**: Enables communication between containers across multiple Docker daemon hosts.
- 4. **MacVLAN**: Assigns a MAC address to a container, making it appear as a physical device on the network.
- 5. **None**: Disables all networking for a container.
- 6. **Network plugins**: Allow you to use third-party network drivers.

# **Working with Docker Networks**

### **Listing Networks**

To list all networks:

docker network ls

This command shows the network ID, name, driver, and scope for each network.

### **Inspecting Networks**

To get detailed information about a network:

docker network inspect <network\_name>

This provides information such as the network's subnet, gateway, connected containers, and configuration options.

### **Creating a Network**

To create a new network:

docker network create --driver <driver> <network\_name>

Example:

```
docker network create --driver bridge my_custom_network
```

You can specify additional options like subnet, gateway, IP range, etc.:

```
docker network create --driver bridge --subnet 172.18.0.0/16 -
-gateway 172.18.0.1 my_custom_network
```

# **Connecting Containers to Networks**

When running a container, you can specify which network it should connect to:

```
docker run --network <network_name> <image>
```

#### Example:

```
docker run --network my_custom_network --name container1 -d
nginx
```

You can also connect a running container to a network:

```
docker network connect <network_name> <container_name>
```

### **Disconnecting Containers from Networks**

To disconnect a container from a network:

```
docker network disconnect <network_name> <container_name>
```

# **Removing Networks**

To remove a network:

docker network rm <network\_name>

### **Deep Dive into Network Drivers**

### **Bridge Networks**

Bridge networks are the most commonly used network type in Docker. They are suitable for containers running on the same Docker daemon host.

Key points about bridge networks:

- Each container connected to a bridge network is allocated a unique IP address.
- Containers on the same bridge network can communicate with each other using IP addresses.
- The default bridge network has some limitations, so it's often better to create custom bridge networks.

Example of creating and using a custom bridge network:

```
docker network create my_bridge
docker run --network my_bridge --name container1 -d nginx
docker run --network my_bridge --name container2 -d nginx
```

Now container1 and container2 can communicate with each other using their container names as hostnames.

#### **Host Networks**

Host networking adds a container on the host's network stack. This offers the best networking performance but sacrifices network isolation.

Example:

```
docker run --network host -d nginx
```

In this case, if the container exposes port 80, it will be accessible on port 80 of the host machine directly.

### **Overlay Networks**

Overlay networks are used in Docker Swarm mode to enable communication between containers across multiple Docker daemon hosts.

To create an overlay network:

```
docker network create --driver overlay
```

Then, when creating a service in swarm mode, you can attach it to this network:

```
docker service create --network my_overlay --name my_service
nginx
```

#### **MacVLAN Networks**

MacVLAN networks allow you to assign a MAC address to a container, making it appear as a physical device on your network.

Example:

```
docker network create -d macvlan \
--subnet=192.168.0.0/24 \
--gateway=192.168.0.1 \
-o parent=eth0 my_macvlan_net
```

Then run a container on this network:

```
docker run --network my_macvlan_net -d nginx
```

### **Network Troubleshooting**

- Container-to-Container Communication: Use the docker exec command to get into a container and use tools like ping, curl, or wget to test connectivity.
- 2. **Network Inspection**: Use docker network inspect to view detailed information about a network.
- 3. **Port Mapping**: Use docker port <container> to see the port mappings for a container.
- 4. **DNS Issues**: Check the /etc/resolv.conf file inside the container to verify DNS settings.
- 5. **Network Namespace**: For advanced troubleshooting, you can enter the network namespace of a container:

```
pid=$(docker inspect -f '{{.State.Pid}}' <container_name>)
nsenter -t $pid -n ip addr
```

### **Best Practices**

- 1. Use custom bridge networks instead of the default bridge network for better isolation and built-in DNS resolution.
- 2. Use overlay networks for multi-host communication in swarm mode.
- 3. Use host networking sparingly and only when high performance is required.
- 4. Be cautious with exposing ports, only expose what's necessary.
- 5. Use Docker Compose for managing multi-container applications and their networks.

# **Advanced Topics**

### **Network Encryption**

For overlay networks, you can enable encryption to secure container-tocontainer traffic:

docker network create --opt encrypted --driver overlay
my secure network

### **Network Plugins**

Docker supports third-party network plugins. Popular options include Weave Net, Calico, and Flannel. These can provide additional features like advanced routing, network policies, and encryption.

### **Service Discovery**

Docker provides built-in service discovery for containers on the same network. Containers can reach each other using container names as hostnames. In swarm mode, there's also built-in load balancing for services.

# **Conclusion**

Networking is a critical component of Docker that enables complex, distributed applications. By understanding and effectively using Docker's networking capabilities, you can create secure, efficient, and scalable containerized applications. Always consider your specific use case when choosing network drivers and configurations.

# **Chapter 7: Docker Volumes**

Docker volumes are the preferred mechanism for persisting data generated by and used by Docker containers. While containers can create, update, and delete files, those changes are lost when the container is removed and all changes are isolated to that container. Volumes provide the ability to connect specific filesystem paths of the container back to the host machine. If a directory in the container is mounted, changes in that directory are also seen on the host machine. If we mount that same directory across container restarts, we'd see the same files.

# Why Use Docker Volumes?

- 1. **Data Persistence**: Volumes allow you to persist data even when containers are stopped or removed.
- 2. **Data Sharing**: Volumes can be shared and reused among multiple containers.
- 3. **Performance**: Volumes are stored on the host filesystem, which generally provides better I/O performance, especially for databases.
- 4. **Data Management**: Volumes make it easier to backup, restore, and migrate data.
- 5. **Decoupling**: Volumes decouple the configuration of the Docker host from the container runtime.

### **Types of Docker Volumes**

#### 1. Named Volumes

Named volumes are the recommended way to persist data in Docker. They are explicitly created and given a name.

Creating a named volume:

```
docker volume create my_volume
```

Using a named volume:

```
docker run -d --name devtest -v my_volume:/app nginx:latest
```

### 2. Anonymous Volumes

Anonymous volumes are automatically created by Docker and given a random name. They're useful for temporary data that you don't need to persist beyond the life of the container.

Using an anonymous volume:

```
docker run -d --name devtest -v /app nginx:latest
```

#### 3. Bind Mounts

Bind mounts map a specific path of the host machine to a path in the container. They're useful for development environments.

# Using a bind mount:

```
docker run -d --name devtest -v /path/on/host:/app
nginx:latest
```

# **Working with Docker Volumes**

# **Listing Volumes**

To list all volumes:

docker volume ls

### **Inspecting Volumes**

To get detailed information about a volume:

docker volume inspect my\_volume

### **Removing Volumes**

To remove a specific volume:

docker volume rm my\_volume

To remove all unused volumes:

docker volume prune

### **Backing Up Volumes**

To backup a volume:

```
docker run --rm -v my_volume:/source -v /path/on/host:/backup
ubuntu tar cvf /backup/backup.tar /source
```

# **Restoring Volumes**

To restore a volume from a backup:

```
docker run --rm -v my_volume:/target -v /path/on/host:/backup
ubuntu tar xvf /backup/backup.tar -C /target --strip 1
```

# **Volume Drivers**

Docker supports volume drivers, which allow you to store volumes on remote hosts or cloud providers, among other options.

Some popular volume drivers include:

- Local (default)
- NFS
- AWS EBS
- Azure File Storage

To use a specific volume driver:

docker volume create --driver <driver\_name> my\_volume

# **Best Practices for Using Docker Volumes**

- 1. **Use named volumes**: They're easier to manage and track than anonymous volumes.
- 2. **Don't use bind mounts in production**: They're less portable and can pose security risks.
- 3. **Use volumes for databases**: Databases require persistent storage and benefit from the performance of volumes.
- 4. **Be cautious with permissions**: Ensure the processes in your containers have the necessary permissions to read/write to volumes.
- 5. **Clean up unused volumes**: Regularly use docker volume prune to remove unused volumes and free up space.
- 6. **Use volume labels**: Labels can help you organize and manage your volumes.

docker volume create --label project=myapp my volume

7. **Consider using Docker Compose**: Docker Compose makes it easier to manage volumes across multiple containers.

# **Advanced Volume Concepts**

### 1. Read-Only Volumes

You can mount volumes as read-only to prevent containers from modifying the data:

```
docker run -d --name devtest -v my_volume:/app:ro nginx:latest
```

### 2. Tmpfs Mounts

Tmpfs mounts are stored in the host system's memory only, which can be useful for storing sensitive information:

```
docker run -d --name tmptest --tmpfs /app nginx:latest
```

### 3. Sharing Volumes Between Containers

You can share a volume between multiple containers:

```
docker run -d --name container1 -v my_volume:/app nginx:latest
docker run -d --name container2 -v my_volume:/app nginx:latest
```

### 4. Volume Plugins

Docker supports third-party volume plugins that can provide additional functionality:

docker plugin install <plugin\_name>
docker volume create -d <plugin\_name> my\_volume

# **Troubleshooting Volume Issues**

- 1. **Volume not persisting data**: Ensure you're using the correct volume name and mount path.
- 2. **Permission issues**: Check the permissions of the mounted directory both on the host and in the container.
- 3. **Volume not removing**: Make sure no containers are using the volume before trying to remove it.
- 4. **Performance issues**: If you're experiencing slow I/O, consider using a volume driver optimized for your use case.

### **Conclusion**

Docker volumes are a crucial component for managing data in Docker environments. They provide a flexible and efficient way to persist and share data between containers and the host system. By understanding how to create, manage, and use volumes effectively, you can build more robust and maintainable containerized applications.

Remember that the choice between different types of volumes (named volumes, bind mounts, or tmpfs mounts) depends on your specific use case. Always consider factors like persistence needs, performance requirements, and security implications when working with Docker volumes.

# **Chapter 8: Docker Compose**

Docker Compose is a powerful tool for defining and running multicontainer Docker applications. With Compose, you use a YAML file to configure your application's services, networks, and volumes. Then, with a single command, you create and start all the services from your configuration.

**Note**: Docker Compose is now integrated into Docker CLI. The new command is docker compose instead of docker-compose. We'll use the new command throughout this chapter.

# **Key Benefits of Docker Compose**

- 1. **Simplicity**: Define your entire application stack in a single file.
- 2. **Reproducibility**: Easily share and version control your application configuration.
- 3. **Scalability**: Simple commands to scale services up or down.
- 4. **Environment Consistency**: Ensure development, staging, and production environments are identical.
- 5. **Workflow Improvement**: Compose can be used throughout the development cycle for testing, staging, and production.

# The docker-compose.yml File

The docker-compose.yml file is the core of Docker Compose. It defines all the components and configurations of your application. Here's a basic example:

Let's break down this example:

- version: Specifies the Compose file format version.
- services: Defines the containers that make up your app.
- web: A service based on an image built from the Dockerfile in the current directory.
- redis: A service using the public Redis image.

# **Key Concepts in Docker Compose**

- 1. **Services**: Containers that make up your application.
- 2. **Networks**: How your services communicate with each other.
- 3. **Volumes**: Where your services store and access data.

# **Basic Docker Compose Commands**

docker compose up: Create and start containers

```
docker compose up -d # Run in detached mode
```

 docker compose down: Stop and remove containers, networks, images, and volumes

```
docker compose down --volumes # Also remove volumes
```

- docker compose ps: List containers
- docker compose logs: View output from containers

```
docker compose logs -f web # Follow logs for the web
service
```

# **Advanced Docker Compose Features**

#### 1. Environment Variables

You can use .env files or set them directly in the compose file:

```
version: '3.8'
services:
  web:
  image: "webapp:${TAG}"
  environment:
    - DEBUG=1
```

### 2. Extending Services

Use extends to share common configurations:

```
version: '3.8'
services:
  web:
    extends:
    file: common-services.yml
    service: webapp
```

### 3. Healthchecks

Ensure services are ready before starting dependent services:

```
version: '3.8'
services:
    web:
    image: "webapp:latest"
    healthcheck:
        test: ["CMD", "curl", "-f", "http://localhost"]
        interval: 1m30s
        timeout: 10s
        retries: 3
        start_period: 40s
```

#### **Practical Examples**

#### **Example 1: WordPress with MySQL**

```
version: '3.8'
services:
 db:
    image: mysql:5.7
    volumes:
      - db data:/var/lib/mysql
    restart: always
    environment:
      MYSQL ROOT PASSWORD: somewordpress
      MYSQL_DATABASE: wordpress
      MYSQL USER: wordpress
      MYSQL PASSWORD: wordpress
 wordpress:
    depends on:
    image: wordpress:latest
    ports:
      - "8000:80"
    restart: always
    environment:
      WORDPRESS DB HOST: db:3306
      WORDPRESS DB USER: wordpress
      WORDPRESS DB PASSWORD: wordpress
      WORDPRESS DB NAME: wordpress
volumes:
  db data: {}
```

Let's break this down in detail:

1. **Version**: '3.8' specifies the version of the Compose file format. Version 3.8 is compatible with Docker Engine 19.03.0+.

2. **Services**: We define two services: db and wordpress.

#### a. db service:

- image: mysql:5.7: Uses the official MySQL 5.7 image.
- volumes: Creates a named volume db\_data and mounts it to /var/lib/mysql in the container. This ensures that the database data persists even if the container is removed.
- restart: always: Ensures that the container always restarts if it stops.
- environment: Sets up the MySQL environment variables:
  - MYSQL\_ROOT\_PASSWORD: Sets the root password for MySQL.
  - MYSQL\_DATABASE: Creates a database named "wordpress".
  - MYSQL\_USER and MYSQL\_PASSWORD: Creates a new user with the specified password.

#### b. wordpress service:

- depends\_on: Ensures that the db service is started before the wordpress service.
- image: wordpress:latest: Uses the latest official WordPress image.
- ports: Maps port 8000 on the host to port 80 in the container,
   where WordPress runs.
- restart: always: Ensures the container always restarts if it stops.
- environment: Sets up WordPress environment variables:
  - WORDPRESS\_DB\_HOST: Specifies the database host. Note the use of db:3306, where db is the service name of our MySQL container.
  - WORDPRESS\_DB\_USER, WORDPRESS\_DB\_PASSWORD,
     WORDPRESS\_DB\_NAME: These match the MySQL settings we defined in the db service.

3. **Volumes**: db\_data: {}: This creates a named volume that Docker manages. It's used to persist the MySQL data.

#### To run this setup:

- 1. Save the above YAML in a file named docker-compose.yml.
- 2. In the same directory, run docker compose up -d.
- 3. Once the containers are running, you can access WordPress by navigating to http://localhost:8000 in your web browser.

This setup provides a complete WordPress environment with a MySQL database, all configured and ready to use. The use of environment variables and volumes ensures that the setup is both flexible and persistent.

#### **Example 2: Flask App with Redis and Nginx**

```
version: '3.8'
services:
 flask:
    build: ./flask
    environment:
      - FLASK_ENV=development
    volumes:
      - ./flask:/code
  redis:
    image: "redis:alpine"
 nginx:
    image: "nginx:alpine"
    volumes:
      - ./nginx.conf:/etc/nginx/nginx.conf:ro
    ports:
      - "80:80"
    depends_on:
      - flask
networks:
 frontend:
  backend:
volumes:
  db-data:
```

#### Let's break this down:

- 1. **Version**: As before, we're using version 3.8 of the Compose file format.
- 2. **Services**: We define three services: flask, redis, and nginx.
  - a. flask service:
    - build: ./flask: This tells Docker to build an image using the Dockerfile in the ./flask directory.

- environment: Sets FLASK\_ENV=development, which enables debug mode in Flask.
- volumes: Mounts the local ./flask directory to /code in the container. This is useful for development as it allows you to make changes to your code without rebuilding the container.

#### b. redis service:

 image: "redis:alpine": Uses the official Redis image based on Alpine Linux, which is lightweight.

#### c. nginx service:

- image: "nginx:alpine": Uses the official Nginx image based on Alpine Linux.
- volumes: Mounts a local nginx.conf file to /etc/nginx/nginx.conf in the container. The :ro flag makes it read-only.
- ports: Maps port 80 on the host to port 80 in the container.
- depends\_on: Ensures that the flask service is started before Nginx.
- 3. **Networks**: We define two networks: frontend and backend. This allows us to isolate our services. For example, we could put Nginx and Flask on the frontend network, and Flask and Redis on the backend network.
- 4. **Volumes**: db-data: This creates a named volume. Although it's not used in this configuration, it's available if we need persistent storage, perhaps for a database service we might add later.

#### To use this setup:

1. You need a Flask application in a directory named flask, with a

Dockerfile to build it.

- You need an nginx.conf file in the same directory as your dockercompose.yml.
- 3. Run docker compose up -d to start the services.

This configuration sets up a Flask application server, with Redis available for caching or as a message broker, and Nginx as a reverse proxy. The Flask code is mounted as a volume, allowing for easy development. Nginx handles incoming requests and forwards them to the Flask application.

The use of Alpine-based images for Redis and Nginx helps to keep the overall image size small, which is beneficial for deployment and scaling.

This setup is particularly useful for developing and testing a Flask application in an environment that closely mimics production, with a proper web server (Nginx) in front of the application server (Flask) and a caching/messaging system (Redis) available.

#### **Best Practices for Docker Compose**

- 1. Use version control for your docker-compose.yml file.
- 2. Keep development, staging, and production environments as similar as possible.
- 3. Use build arguments and environment variables for flexibility.
- 4. Leverage healthchecks to ensure service dependencies are met.
- 5. Use .env files for environment-specific variables.
- 6. Optimize your images to keep them small and efficient.
- 7. Use docker-compose.override.yml for local development settings.

#### **Scaling Services**

Docker Compose can scale services with a single command:

```
docker compose up -d --scale web=3
```

This command would start 3 instances of the web service.

#### **Networking in Docker Compose**

By default, Compose sets up a single network for your app. Each container for a service joins the default network and is both reachable by other containers on that network, and discoverable by them at a hostname identical to the container name.

You can also specify custom networks:

```
version: '3.8'
services:
    web:
    networks:
        - frontend
        - backend

    db:
        networks:
        - backend

networks:
    frontend:
    backend:
```

#### **Volumes in Docker Compose**

Compose also lets you create named volumes that can be reused across multiple services:

```
version: '3.8'
services:
    db:
    image: postgres
    volumes:
        - data:/var/lib/postgresql/data

volumes:
    data:
```

#### **Conclusion**

Docker Compose simplifies the process of managing multi-container applications, making it an essential tool for developers working with Docker. By mastering Docker Compose, you can streamline your development workflow, ensure consistency across different environments, and easily manage complex applications with multiple interconnected services.

Remember to always use the latest docker compose command instead of the older docker-compose, as it's now integrated directly into Docker CLI and offers improved functionality and performance.

## Chapter 9: Docker Security Best Practices

Security is a critical aspect of working with Docker, especially in production environments. This chapter will cover essential security practices to help you build and maintain secure Docker environments.

#### 1. Keep Docker Updated

Always use the latest version of Docker to benefit from the most recent security patches.

```
sudo apt-get update
sudo apt-get upgrade docker-ce
```

#### 2. Use Official Images

Whenever possible, use official images from Docker Hub or trusted sources. These images are regularly updated and scanned for vulnerabilities.

```
version: '3.8'
services:
  web:
  image: nginx:latest # Official Nginx image
```

#### 3. Scan Images for Vulnerabilities

Use tools like Docker Scout or Trivy to scan your images for known vulnerabilities.

docker scout cve <image\_name>

#### 4. Limit Container Resources

Prevent Denial of Service attacks by limiting container resources:

```
version: '3.8'
services:
    web:
    image: nginx:latest
    deploy:
        resources:
        limits:
        cpus: '0.50'
        memory: 50M
```

#### 5. Use Non-Root Users

Run containers as non-root users to limit the potential impact of a container breach:

```
FROM node:14
RUN groupadd -r myapp && useradd -r -g myapp myuser
USER myuser
```

#### 6. Use Secret Management

For sensitive data like passwords and API keys, use Docker secrets:

```
echo "mysecretpassword" | docker secret create db_password -
```

Then in your docker-compose.yml:

```
version: '3.8'
services:
    db:
        image: mysql
        secrets:
        - db_password
secrets:
    db_password:
    external: true
```

#### 7. Enable Content Trust

Sign and verify image tags:

export DOCKER\_CONTENT\_TRUST=1
docker push myrepo/myimage:latest

#### 8. Use Read-Only Containers

When possible, run containers in read-only mode:

```
version: '3.8'
services:
    web:
    image: nginx
    read_only: true
    tmpfs:
        - /tmp
        - /var/cache/nginx
```

#### 9. Implement Network Segmentation

Use Docker networks to isolate containers:

```
version: '3.8'
services:
    frontend:
    networks:
        - frontend
    backend:
        networks:
        - backend
networks:
    frontend:
    backend:
```

#### 10. Regular Security Audits

Regularly audit your Docker environment using tools like Docker Bench for Security:

```
docker run -it --net host --pid host --userns host --cap-add
audit_control \
    -e DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST \
    -v /var/lib:/var/lib \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -v /usr/lib/systemd:/usr/lib/systemd \
    -v /etc:/etc --label docker_bench_security \
    docker/docker-bench-security
```

### 11. Use Security-Enhanced Linux (SELinux) or AppArmor

These provide an additional layer of security. Ensure they're enabled and properly configured on your host system.

#### 12. Implement Logging and Monitoring

Use Docker's logging capabilities and consider integrating with external monitoring tools:

```
version: '3.8'
services:
    web:
    image: nginx
    logging:
        driver: "json-file"
        options:
        max-size: "200k"
        max-file: "10"
```

#### Conclusion

Implementing these security best practices will significantly improve the security posture of your Docker environments. Remember, security is an ongoing process, and it's important to stay informed about the latest security threats and Docker security features.

# Chapter 10: Docker in Production: Orchestration with Kubernetes

Kubernetes (K8s) is an open-source container orchestration platform that automates the deployment, scaling, and management of containerized applications. It works well with Docker and provides a robust set of features for running containers in production.

Kubernetes is a topic of its own, but here are some key concepts and best practices for using Kubernetes with Docker in production environments.

#### **Key Kubernetes Concepts**

- 1. **Pods**: The smallest deployable units in Kubernetes, containing one or more containers.
- 2. **Services**: An abstract way to expose an application running on a set of Pods.
- 3. **Deployments**: Describe the desired state for Pods and ReplicaSets.
- 4. **Namespaces**: Virtual clusters within a physical cluster.

#### **Setting Up a Kubernetes Cluster**

You can set up a local Kubernetes cluster using Minikube:

minikube start

For production, consider managed Kubernetes services like Google Kubernetes Engine (GKE), Amazon EKS, or Azure AKS.

#### **Deploying a Docker Container to Kubernetes**

1. Create a Deployment YAML file (deployment.yaml):

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
spec:
  replicas: 3
  selector:
    matchLabels:
     app: nginx
  template:
    metadata:
     labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:1.14.2
       ports:
        - containerPort: 80
```

2. Apply the Deployment:

```
kubectl apply -f deployment.yaml
```

3. Create a Service to expose the Deployment (service.yaml):

```
apiVersion: v1
kind: Service
metadata:
   name: nginx-service
spec:
   selector:
    app: nginx
   ports:
    - protocol: TCP
        port: 80
        targetPort: 80
type: LoadBalancer
```

#### 4. Apply the Service:

```
kubectl apply -f service.yaml
```

#### **Scaling in Kubernetes**

Scale your deployment easily:

kubectl scale deployment nginx-deployment --replicas=5

#### **Rolling Updates**

Update your application without downtime:

```
kubectl set image deployment/nginx-deployment
nginx=nginx:1.16.1
```

#### **Monitoring and Logging**

1. View Pod logs:

```
kubectl logs <pod-name>
```

2. Use Prometheus and Grafana for monitoring:

```
helm install prometheus stable/prometheus helm install grafana stable/grafana
```

#### **Kubernetes Dashboard**

Enable the Kubernetes Dashboard for a GUI:

minikube addons enable dashboard
minikube dashboard

#### **Persistent Storage in Kubernetes**

Use Persistent Volumes (PV) and Persistent Volume Claims (PVC):

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
   name: mysql-pv-claim
spec:
   accessModes:
   - ReadWriteOnce
   resources:
     requests:
        storage: 1Gi
```

#### **Kubernetes Networking**

- 1. **ClusterIP**: Exposes the Service on a cluster-internal IP.
- 2. **NodePort**: Exposes the Service on each Node's IP at a static port.
- 3. **LoadBalancer**: Exposes the Service externally using a cloud provider's load balancer.

# **Kubernetes Secrets**

Manage sensitive information:

```
kubectl create secret generic my-secret --from-
literal=password=mysecretpassword
```

Use in a Pod:

```
spec:
  containers:
    name: myapp
    image: myapp
    env:
    name: SECRET_PASSWORD
    valueFrom:
       secretKeyRef:
       name: my-secret
       key: password
```

# **Helm: The Kubernetes Package Manager**

Helm simplifies deploying complex applications:

helm repo add bitnami https://charts.bitnami.com/bitnami helm install my-release bitnami/wordpress

#### **Best Practices for Kubernetes in Production**

- 1. Use namespaces to organize resources.
- 2. Implement resource requests and limits.
- 3. Use liveness and readiness probes.
- 4. Implement proper logging and monitoring.
- 5. Regularly update Kubernetes and your applications.
- 6. Use Network Policies for fine-grained network control.
- 7. Implement proper RBAC (Role-Based Access Control).

# **Conclusion**

Kubernetes provides a powerful platform for orchestrating Docker containers in production environments. It offers robust features for scaling, updating, and managing containerized applications. While there's a learning curve, the benefits of using Kubernetes for production Docker deployments are significant, especially for large, complex applications.

# Chapter 11: Docker Performance Optimization

Optimizing Docker performance is crucial for efficient resource utilization and improved application responsiveness. This chapter covers various techniques and best practices to enhance the performance of your Docker containers and overall Docker environment.

# 1. Optimizing Docker Images

#### **Use Multi-Stage Builds**

Multi-stage builds can significantly reduce the size of your final Docker image:

```
# Build stage
FROM golang:1.16 AS builder
WORKDIR /app
COPY . .
RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o
main .

# Final stage
FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=builder /app/main .
CMD ["./main"]
```

#### **Minimize Layer Count**

Combine commands to reduce the number of layers:

```
RUN apt-get update && apt-get install -y \
    package1 \
    package2 \
    package3 \
    && rm -rf /var/lib/apt/lists/*
```

# **Use** .dockerignore

Create a .dockerignore file to exclude unnecessary files from the build

# context:

.git \*.md \*.log

# 2. Container Resource Management

# **Set Memory and CPU Limits**

```
version: '3'
services:
    app:
    image: myapp
    deploy:
       resources:
       limits:
          cpus: '0.5'
          memory: 512M
```

# **Use --cpuset-cpus for CPU Pinning**

```
docker run --cpuset-cpus="0,1" myapp
```

# 3. Networking Optimization

# **Use Host Networking Mode**

For high-performance scenarios, consider using host networking:

docker run --network host myapp

# **Optimize DNS Resolution**

If you're experiencing slow DNS resolution, you can use the --dns option:

docker run --dns 8.8.8.8 myapp

# 4. Storage Optimization

#### **Use Volumes Instead of Bind Mounts**

Volumes generally offer better performance than bind mounts:

```
version: '3'
services:
    db:
    image: postgres
    volumes:
        - postgres_data:/var/lib/postgresql/data

volumes:
    postgres_data:
```

# **Consider Using tmpfs Mounts**

For ephemeral data, tmpfs mounts can improve I/O performance:

```
docker run --tmpfs /tmp myapp
```

# 5. Logging and Monitoring

# Use the JSON-file Logging Driver with Limits

```
version: '3'
services:
    app:
    image: myapp
    logging:
        driver: "json-file"
        options:
        max-size: "10m"
        max-file: "3"
```

# **Implement Proper Monitoring**

Use tools like Prometheus and Grafana for comprehensive monitoring:

```
version: '3'
services:
   prometheus:
   image: prom/prometheus
   volumes:
        - ./prometheus.yml:/etc/prometheus/prometheus.yml
   grafana:
   image: grafana/grafana
   ports:
        - "3000:3000"
```

# 6. Docker Daemon Optimization

# **Adjust the Storage Driver**

Consider using overlay2 for better performance:

```
{
    "storage-driver": "overlay2"
}
```

#### **Enable Live Restore**

This allows containers to keep running even if the Docker daemon is unavailable:

```
{
    "live-restore": true
}
```

# 7. Application-Level Optimization

# **Use Alpine-Based Images**

Alpine-based images are typically smaller and faster to pull:

```
FROM alpine:3.14
RUN apk add --no-cache python3
```

# **Optimize Your Application Code**

Ensure your application is optimized for containerized environments:

- Implement proper caching mechanisms
- Optimize database queries
- Use asynchronous processing where appropriate

# 8. Benchmarking and Profiling

#### **Use Docker's Built-in Stats Command**

docker stats

# **Benchmark with Tools Like Apache Bench**

ab -n 1000 -c 100 http://localhost/

# 9. Orchestration-Level Optimization

When using orchestration tools like Kubernetes:

#### **Use Horizontal Pod Autoscaler**

```
apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
 name: myapp-hpa
spec:
 scaleTargetRef:
   apiVersion: apps/v1
   kind: Deployment
   name: myapp
 minReplicas: 2
 maxReplicas: 10
 metrics:
  - type: Resource
   resource:
     name: cpu
     targetAverageUtilization: 50
```

### **Implement Proper Liveness and Readiness Probes**

```
livenessProbe:
  httpGet:
    path: /healthz
    port: 8080
  initialDelaySeconds: 3
  periodSeconds: 3
```

# **Conclusion**

Optimizing Docker performance is an ongoing process that involves various aspects of your Docker setup, from image building to runtime configuration and application-level optimizations. By implementing these best practices and continuously monitoring your Docker environment, you can significantly improve the performance and efficiency of your containerized applications.

# Chapter 12: Docker Troubleshooting and Debugging

Even with careful planning and best practices, issues can arise when working with Docker. This chapter covers common problems you might encounter and provides strategies for effective troubleshooting and debugging.

# 1. Container Lifecycle Issues

#### **Container Won't Start**

If a container fails to start, use these commands:

```
# View container logs
docker logs <container_id>

# Inspect container details
docker inspect <container_id>

# Check container status
docker ps -a
```

#### **Container Exits Immediately**

For containers that exit right after starting:

```
# Run the container in interactive mode
docker run -it --entrypoint /bin/sh <image_name>

# Check the ENTRYPOINT and CMD in the Dockerfile
docker inspect --format='{{.Config.Entrypoint}}' <image_name>
docker inspect --format='{{.Config.Cmd}}' <image_name>
```

# 2. Networking Issues

#### **Container Can't Connect to Network**

To troubleshoot network connectivity:

```
# Inspect network settings
docker network inspect <network_name>

# Check container's network settings
docker inspect --format='{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}'
<container_id>

# Use a network debugging container
docker run --net container:<container_id> nicolaka/netshoot
```

#### **Port Mapping Issues**

If you can't access a container's exposed port:

```
# Check port mappings
docker port <container_id>

# Verify host machine's firewall settings
sudo ufw status

# Test the port directly on the container
docker exec <container_id> nc -zv localhost <port>
```

# 3. Storage and Volume Issues

#### **Data Persistence Problems**

For issues with data not persisting:

```
# List volumes
docker volume ls

# Inspect a volume
docker volume inspect <volume_name>

# Check volume mounts in a container
docker inspect --format='{{range .Mounts}}{{.Source}} ->
{{.Destination}}{{"\n"}}{{end}}' <container_id>
```

#### **Disk Space Issues**

If you're running out of disk space:

```
# Check Docker disk usage
docker system df

# Remove unused data
docker system prune -a

# Identify large images
docker images --format "{{.Size}}\t{{.Repository}}:{{.Tag}}" |
sort -h
```

# **4. Resource Constraints**

# **Container Using Too Much CPU or Memory**

To identify and address resource usage issues:

```
# Monitor resource usage
docker stats

# Set resource limits
docker run --memory=512m --cpus=0.5 <image_name>

# Update limits for a running container
docker update --cpus=0.75 <container_id>
```

# 5. Image-related Issues

# **Image Pull Failures**

If you can't pull an image:

```
# Check Docker Hub status
curl -Is https://registry.hub.docker.com/v2/ | head -n 1

# Verify your Docker login
docker login

# Try pulling with verbose output
docker pull --verbose <image_name>
```

#### **Image Build Failures**

For issues during image builds:

```
# Build with verbose output
docker build --progress=plain -t <image_name> .

# Check for issues in the Dockerfile
docker build --no-cache -t <image_name> .
```

# 6. Docker Daemon Issues

#### **Docker Daemon Won't Start**

If the Docker daemon fails to start:

```
# Check Docker daemon status
sudo systemctl status docker

# View Docker daemon logs
sudo journalctl -u docker.service

# Restart Docker daemon
sudo systemctl restart docker
```

# 7. Debugging Techniques

#### **Interactive Debugging**

To debug a running container interactively:

```
# Start an interactive shell in a running container
docker exec -it <container_id> /bin/bash

# Run a new container with a shell for debugging
docker run -it --entrypoint /bin/bash <image_name>
```

# **Using Docker Events**

Monitor Docker events for troubleshooting:

```
docker events
```

# Logging

Configure and view container logs:

```
# View container logs
docker logs <container_id>

# Follow log output
docker logs -f <container_id>

# Adjust logging driver
docker run --log-driver json-file --log-opt max-size=10m
<image_name>
```

# 8. Performance Debugging

# **Identifying Performance Bottlenecks**

Use these commands to identify performance issues:

```
# Monitor container resource usage
docker stats

# Profile container processes
docker top <container_id>

# Use cAdvisor for more detailed metrics
docker run \
    --volume=/:/rootfs:ro \
    --volume=/var/run:/var/run:ro \
    --volume=/sys:/sys:ro \
    --volume=/var/lib/docker/:/var/lib/docker:ro \
    --volume=/dev/disk/:/dev/disk:ro \
    --publish=8080:8080 \
    --detach=true \
    --name=cadvisor \
    google/cadvisor:latest
```

# 9. Docker Compose Troubleshooting

For issues with Docker Compose:

```
# View logs for all services
docker-compose logs

# Rebuild and recreate containers
docker-compose up -d --build

# Check the configuration
docker-compose config
```

# **Conclusion**

Effective troubleshooting and debugging are essential skills for working with Docker. By understanding these techniques and tools, you can quickly identify and resolve issues in your Docker environment. Remember to always check the official Docker documentation and community forums for the most up-to-date information and solutions to common problems.

# Chapter 13: Advanced Docker Concepts and Features

As you become more proficient with Docker, you'll encounter more advanced concepts and features. This chapter explores some of these topics to help you take your Docker skills to the next level even though this is beyond the scope of this introductory ebook.

# 1. Multi-stage Builds

Multi-stage builds allow you to create more efficient Dockerfiles by using multiple FROM statements in your Dockerfile.

```
# Build stage
FROM golang:1.16 AS builder
WORKDIR /app
COPY . .
RUN go build -o main .

# Final stage
FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=builder /app/main .
CMD ["./main"]
```

This approach reduces the final image size by only including necessary artifacts from the build stage.

# 2. Docker BuildKit

BuildKit is a next-generation build engine for Docker. Enable it by setting an environment variable:

export DOCKER\_BUILDKIT=1

BuildKit offers faster builds, better cache management, and advanced features like:

- Concurrent dependency resolution
- Efficient instruction caching
- Automatic garbage collection

# 3. Custom Bridge Networks

Create isolated network environments for your containers:

```
docker network create --driver bridge isolated_network
docker run --network=isolated_network --name container1 -d
nginx
docker run --network=isolated_network --name container2 -d
nginx
```

Containers on this network can communicate using their names as hostnames.

# 4. Docker Contexts

Manage multiple Docker environments with contexts:

```
# Create a new context
docker context create my-remote --docker
"host=ssh://user@remote-host"

# List contexts
docker context ls

# Switch context
docker context use my-remote
```

# **5. Docker Content Trust (DCT)**

DCT provides a way to verify the integrity and publisher of images:

```
# Enable DCT
export DOCKER_CONTENT_TRUST=1

# Push a signed image
docker push myrepo/myimage:latest
```

# 6. Docker Secrets

Manage sensitive data with Docker secrets:

```
# Create a secret
echo "mypassword" | docker secret create my_secret -
# Use the secret in a service
docker service create --name myservice --secret my_secret
myimage
```

# 7. Docker Health Checks

Implement custom health checks in your Dockerfile:

```
HEALTHCHECK --interval=30s --timeout=10s CMD curl -f
http://localhost/ || exit 1
```

# 8. Docker Plugins

Extend Docker's functionality with plugins:

```
# Install a plugin
docker plugin install vieux/sshfs

# Use the plugin
docker volume create -d vieux/sshfs -o sshcmd=user@host:/path
sshvolume
```

## 9. Docker Experimental Features

Enable experimental features in your Docker daemon config (/etc/docker/daemon.json):

```
{
    "experimental": true
}
```

This unlocks features like:

- Checkpoint and restore
- Rootless mode

## 10. Container Escape Protection

Use security options to prevent container escapes:

```
docker run --security-opt="no-new-privileges:true" --cap-
drop=ALL myimage
```

## 11. Custom Dockerfile Instructions

Create custom Dockerfile instructions using ONBUILD:

```
ONBUILD ADD . /app/src
ONBUILD RUN /usr/local/bin/python-build --dir /app/src
```

## 12. Docker Manifest

Create and push multi-architecture images:

docker manifest create myrepo/myimage myrepo/myimage:amd64
myrepo/myimage:arm64
docker manifest push myrepo/myimage

## 13. Docker Buildx

Buildx is a CLI plugin that extends the docker build command with the full support of the features provided by BuildKit:

```
# Create a new builder instance
docker buildx create --name mybuilder

# Build and push multi-platform images
docker buildx build --platform linux/amd64,linux/arm64 -t
myrepo/myimage:latest --push .
```

## 14. Docker Compose Profiles

Use profiles in Docker Compose to selectively start services:

```
services:
   frontend:
    image: frontend
    profiles: ["frontend"]
   backend:
    image: backend
   profiles: ["backend"]
```

Start specific profiles:

```
docker-compose --profile frontend up -d
```

## Conclusion

These advanced Docker concepts and features provide powerful tools for optimizing your Docker workflows, improving security, and extending Docker's capabilities. As you incorporate these techniques into your projects, you'll be able to create more efficient, secure, and flexible Docker environments.

# Chapter 14: Docker in CI/CD Pipelines

Integrating Docker into Continuous Integration and Continuous Deployment (CI/CD) pipelines can significantly streamline the development, testing, and deployment processes. This chapter explores how to effectively use Docker in CI/CD workflows.

## 1. Docker in Continuous Integration

#### **Automated Building and Testing**

Use Docker to create consistent environments for building and testing your application:

```
# .gitlab-ci.yml example
build_and_test:
   image: docker:latest
   services:
    - docker:dind
   script:
    - docker build -t myapp:${CI_COMMIT_SHA} .
    - docker run myapp:${CI_COMMIT_SHA} npm test
```

#### **Parallel Testing**

Leverage Docker to run tests in parallel:

```
# GitHub Actions example
jobs:
    test:
    runs-on: ubuntu-latest
    strategy:
    matrix:
        node-version: [12.x, 14.x, 16.x]
    steps:
    - uses: actions/checkout@v2
    - name: Test with Node.js ${{ matrix.node-version }}
    run: |
        docker build -t myapp:${{ matrix.node-version }} --
build-arg NODE_VERSION=${{ matrix.node-version }} .
        docker run myapp:${{ matrix.node-version }} npm test
```

#### 2. Docker in Continuous Deployment

#### **Pushing to Docker Registry**

After successful tests, push your Docker image to a registry:

```
# Jenkins pipeline example
pipeline {
    agent any
    stages {
        stage('Build and Push') {
            steps {
                script {
docker.withRegistry('https://registry.example.com',
'credentials-id') {
                        def customImage = docker.build("my-
image:${env.BUILD_ID}")
                        customImage.push()
                    }
                }
            }
        }
    }
```

#### **Deploying with Docker Swarm or Kubernetes**

Use Docker Swarm or Kubernetes for orchestrating deployments:

```
# Docker Swarm deployment in GitLab CI
deploy:
    stage: deploy
    script:
    - docker stack deploy -c docker-compose.yml myapp
```

For Kubernetes:

```
# Kubernetes deployment in CircleCI
deployment:
    kubectl:
    command: |
        kubectl set image deployment/myapp
myapp=myrepo/myapp:${CIRCLE_SHA1}
```

## 3. Docker Compose in CI/CD

Use Docker Compose to manage multi-container applications in your CI/CD pipeline:

```
# Travis CI example
services:
    - docker

before_install:
    - docker-compose up -d
    - docker-compose exec -T app npm install

script:
    - docker-compose exec -T app npm test

after_success:
    - docker-compose down
```

## 4. Security Scanning

Integrate security scanning into your pipeline:

```
# GitLab CI with Trivy scanner
scan:
  image: aquasec/trivy:latest
  script:
    - trivy image myapp:${CI_COMMIT_SHA}
```

## 5. Performance Testing

Incorporate performance testing using Docker:

## 6. Environment-Specific Configurations

Use Docker's environment variables and build arguments for environment-specific configurations:

```
ARG CONFIG_FILE=default.conf
COPY config/${CONFIG_FILE} /app/config.conf
```

In your CI/CD pipeline:

```
build:
    script:
        - docker build --build-arg CONFIG_FILE=${ENV}.conf -t
myapp:${CI_COMMIT_SHA} .
```

## 7. Caching in CI/CD

Optimize build times by caching Docker layers:

```
# GitHub Actions example with caching
jobs:
 build:
    runs-on: ubuntu-latest
    - uses: actions/checkout@v2
    - name: Cache Docker layers
     uses: actions/cache@v2
      with:
        path: /tmp/.buildx-cache
        key: ${{ runner.os }}-buildx-${{ github.sha }}
        restore-keys:
          ${{ runner.os }}-buildx-
    - name: Build and push
      uses: docker/build-push-action@v2
      with:
        push: true
        tags: user/app:latest
        cache-from: type=local,src=/tmp/.buildx-cache
        cache-to: type=local,dest=/tmp/.buildx-cache
```

## 8. Blue-Green Deployments with Docker

Implement blue-green deployments using Docker:

```
# Script for blue-green deployment
#!/bin/bash
docker service update --image myrepo/myapp:${NEW_VERSION}
myapp_blue
docker service scale myapp_blue=2 myapp_green=0
```

## 9. Monitoring and Logging in CI/CD

Integrate monitoring and logging solutions:

```
# Docker Compose with ELK stack
version: '3'
services:
  app:
   image: myapp:latest
    logging:
      driver: "json-file"
      options:
        max-size: "200k"
        max-file: "10"
  elasticsearch:
    image:
docker.elastic.co/elasticsearch/elasticsearch:7.10.0
    image: docker.elastic.co/logstash/logstash:7.10.0
  kibana:
    image: docker.elastic.co/kibana/kibana:7.10.0
```

## **Conclusion**

Integrating Docker into your CI/CD pipeline can greatly enhance your development and deployment processes. It provides consistency across environments, improves testing efficiency, and streamlines deployments. By leveraging Docker in your CI/CD workflows, you can achieve faster, more reliable software delivery.

## Chapter 15: Docker and Microservices Architecture

Microservices architecture is an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms. Docker's containerization technology is an excellent fit for microservices, providing isolation, portability, and scalability.

## 1. Principles of Microservices

- Single Responsibility Principle
- Decentralized Data Management
- Failure Isolation
- Scalability
- Technology Diversity

## 2. Dockerizing Microservices

## **Sample Microservice Dockerfile**

```
FROM node:14-alpine
WORKDIR /usr/src/app
COPY package*.json ./
RUN npm install
COPY . .
EXPOSE 3000
CMD ["node", "server.js"]
```

## **Building and Running**

```
docker build -t my-microservice .
docker run -d -p 3000:3000 my-microservice
```

#### 3. Inter-service Communication

#### **REST API**

```
// Express.js example
const express = require('express');
const app = express();

app.get('/api/data', (req, res) => {
  res.json({ message: 'Data from Microservice A' });
});

app.listen(3000, () => console.log('Microservice A listening on port 3000'));
```

#### **Message Queues**

Using RabbitMQ:

```
# Dockerfile
FROM node:14-alpine
RUN npm install amqplib
COPY . .
CMD ["node", "consumer.js"]
```

```
// consumer.js
const amqp = require('amqplib');

async function consume() {
  const connection = await amqp.connect('amqp://rabbitmq');
  const channel = await connection.createChannel();
  await channel.assertQueue('task_queue');
  channel.consume('task_queue', (msg) => {
    console.log("Received:", msg.content.toString());
    channel.ack(msg);
  });
}

consume();
```

## 4. Service Discovery

#### Using Consul:

```
version: '3'
services:
    consul:
    image: consul:latest
    ports:
        - "8500:8500"
service-a:
    build: ./service-a
    environment:
        - CONSUL_HTTP_ADDR=consul:8500

service-b:
    build: ./service-b
    environment:
        - CONSUL_HTTP_ADDR=consul:8500
```

## 5. API Gateway

Using NGINX as an API Gateway:

```
http {
   upstream service_a {
       server service-a:3000;
    upstream service_b {
        server service-b:3000;
    }
    server {
        listen 80;
        location /api/service-a {
            proxy_pass http://service_a;
        }
        location /api/service-b {
            proxy_pass http://service_b;
        }
    }
}
```

## 6. Data Management

## **Database per Service**

```
version: '3'
services:
  service-a:
    build: ./service-a
    depends_on:
      - db-a
  db-a:
    image: postgres:13
    environment:
      POSTGRES_DB: service_a_db
      POSTGRES_PASSWORD: password
  service-b:
    build: ./service-b
    depends on:
     - db-b
  db-b:
    image: mysql:8
    environment:
      MYSQL_DATABASE: service_b_db
      MYSQL_ROOT_PASSWORD: password
```

## 7. Monitoring Microservices

Using Prometheus and Grafana:

```
version: '3'
services:
    prometheus:
    image: prom/prometheus
    volumes:
        - ./prometheus.yml:/etc/prometheus/prometheus.yml
    ports:
        - "9090:9090"

grafana:
    image: grafana/grafana
    ports:
        - "3000:3000"
    depends_on:
        - prometheus
```

## 8. Scaling Microservices

#### Using Docker Swarm:

```
# Initialize swarm
docker swarm init

# Deploy stack
docker stack deploy -c docker-compose.yml myapp

# Scale a service
docker service scale myapp_service-a=3
```

## 9. Testing Microservices

#### **Unit Testing**

```
// Jest example
test('API returns correct data', async () => {
  const response = await request(app).get('/api/data');
  expect(response.statusCode).toBe(200);
  expect(response.body).toHaveProperty('message');
});
```

#### **Integration Testing**

```
version: '3'
services:
 app:
    build: .
    depends_on:
      - test-db
  test-db:
    image: postgres:13
    environment:
      POSTGRES_DB: test_db
      POSTGRES PASSWORD: test password
  test:
    build:
      context: .
      dockerfile: Dockerfile.test
    depends_on:
      - app
      - test-db
    command: ["npm", "run", "test"]
```

## 10. Deployment Strategies

#### **Blue-Green Deployment**

```
# Deploy new version (green)
docker service create --name myapp-green --replicas 2
myrepo/myapp:v2

# Switch traffic to green
docker service update --network-add proxy-network myapp-green
docker service update --network-rm proxy-network myapp-blue

# Remove old version (blue)
docker service rm myapp-blue
```

## **Conclusion**

Docker provides an excellent platform for developing, deploying, and managing microservices. It offers the necessary isolation, portability, and scalability that microservices architecture demands. By leveraging Docker's features along with complementary tools and services, you can build robust, scalable, and maintainable microservices-based applications.

## Chapter 16: Docker for Data Science and Machine Learning

Docker has become an essential tool in the data science and machine learning ecosystem, providing reproducibility, portability, and scalability for complex data processing and model training workflows.

## 1. Setting Up a Data Science Environment

#### **Jupyter Notebook with Docker**

```
FROM python:3.8

RUN pip install jupyter pandas numpy matplotlib scikit-learn

WORKDIR /notebooks

EXPOSE 8888

CMD ["jupyter", "notebook", "--ip='*'", "--port=8888", "--no-browser", "--allow-root"]
```

#### Running the container:

```
docker run -p 8888:8888 -v $(pwd):/notebooks my-datascience-
notebook
```

## 2. Managing Dependencies with Docker

## **Using conda in Docker**

```
FROM continuumio/miniconda3
COPY environment.yml .
RUN conda env create -f environment.yml
SHELL ["conda", "run", "-n", "myenv", "/bin/bash", "-c"]
```

## 3. GPU Support for Machine Learning

## **Using NVIDIA Docker**

```
FROM nvidia/cuda:11.0-base
RUN pip install tensorflow-gpu
COPY train.py .
CMD ["python", "train.py"]
```

Running with GPU support:

```
docker run --gpus all my-gpu-ml-container
```

# 4. Distributed Training with Docker Swarm

```
version: '3'
services:
    trainer:
    image: my-ml-image
    deploy:
        replicas: 4
    command: ["python", "distributed_train.py"]
```

### 5. MLOps with Docker

#### **Model Serving with Flask**

```
from flask import Flask, request, jsonify
import pickle

app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    prediction = model.predict([data['features']])
    return jsonify({'prediction': prediction.tolist()})

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000)
```

#### Dockerfile for serving:

```
FROM python:3.8

COPY requirements.txt .

RUN pip install -r requirements.txt

COPY app.py .

COPY model.pkl .

EXPOSE 5000

CMD ["python", "app.py"]
```

# 6. Data Pipeline with Apache Airflow

```
version: '3'
services:
    webserver:
    image: apache/airflow
    ports:
        - "8080:8080"
    volumes:
        - ./dags:/opt/airflow/dags
    command: webserver
scheduler:
    image: apache/airflow
    volumes:
        - ./dags:/opt/airflow/dags
    command: scheduler
```

# 7. Reproducible Research with Docker

```
FROM rocker/rstudio
RUN R -e "install.packages(c('ggplot2', 'dplyr'))"
COPY analysis.R .
CMD ["R", "-e", "source('analysis.R')"]
```

# 8. Big Data Processing with Docker

### **Spark Cluster**

```
version: '3'
services:
    spark-master:
    image: bitnami/spark:3
    environment:
        - SPARK_MODE=master
    ports:
            - "8080:8080"
    spark-worker:
        image: bitnami/spark:3
        environment:
            - SPARK_MODE=worker
            - SPARK_MODE=worker
            - SPARK_MASTER_URL=spark://spark-master:7077
            depends_on:
            - spark-master
```

# 9. Automated Machine Learning (AutoML) with Docker

```
FROM python:3.8
RUN pip install auto-sklearn
COPY automl_script.py .
CMD ["python", "automl_script.py"]
```

# 10. Hyperparameter Tuning at Scale

Using Optuna with Docker Swarm:

```
version: '3'
services:
    optuna-worker:
    image: my-optuna-image
    deploy:
        replicas: 10
        command: ["python", "optimize.py"]
    optuna-dashboard:
    image: optuna/optuna-dashboard
    ports:
        - "8080:8080"
```

# Conclusion

Docker provides powerful tools for creating reproducible, scalable, and portable environments for data science and machine learning workflows. By leveraging Docker's capabilities, data scientists and ML engineers can focus on their core tasks while ensuring their work is easily shareable and deployable.

# What is Docker Swarm mode

According to the official **Docker** docs, a swarm is a group of machines that are running **Docker** and joined into a cluster. If you are running a **Docker swarm** your commands would be executed on a cluster by a swarm manager. The machines in a swarm can be physical or virtual. After joining a swarm, they are referred to as nodes. I would do a quick demo shortly on my **DigitalOcean** account!

The **Docker Swarm** consists of **manager nodes** and **worker nodes**.

The manager nodes dispatch tasks to the worker nodes and on the other side Worker nodes just execute those tasks. For High Availability, it is recommended to have **3** or **5** manager nodes.

#### **Docker Services**

To deploy an application image when Docker Engine is in swarm mode, you have create a service. A service is a group of containers of the same image:tag. Services make it simple to scale your application.

In order to have **Docker services**, you must first have your **Docker swarm** and nodes ready.



### **Building a Swarm**

I'll do a really quick demo on how to build a **Docker swarm with 3** managers and 3 workers.

For that I'm going to deploy 6 droplets on DigitalOcean:



Then once you've got that ready, **install docker** just as we did in the **Introduction to Docker Part 1** and then just follow the steps here:

#### Step 1

Initialize the docker swarm on your first manager node:

```
docker swarm init --advertise-addr your_dorplet_ip_here
```

#### Step 2

Then to get the command that you need to join the rest of the managers simply run this:

```
docker swarm join-token manager
```

Note: This would provide you with the exact command that you need to run on the rest of the swarm manager nodes. Example:

#### Step 3

To get the command that you need for joining workers just run:

```
docker swarm join-token worker
```

The command for workers would be pretty similar to the command for join managers but the token would be a bit different.

The output that you would get when joining a manager would look like this:

```
[root@manager-02:~# docker swarm join --token SWMTKN-1-4qipia
ukwsuijutf9 206.189.49.51:2377
This node joined a swarm as a manager.
root@manager-02:~#
```

# Step 4

Then once you have your join commands, **ssh to the rest of your nodes and join them** as workers and managers accordingly.

# Managing the cluster

After you've run the join commands on all of your workers and managers, in order to get some information for your cluster status you could use these commands:

• To list all of the available nodes run:

```
docker node ls
```

Note: This command can only be run from a **swarm manager**!Output:



• To get information for the current state run:

```
docker info
```

Output:

```
root@manager-01:~# docker info
Client:
 Debug Mode: false
Server:
Containers: 0
  Running: 0
  Paused: 0
  Stopped: 0
 Images: 0
 Server Version: 19.03.1
 Storage Driver: overlay2
  Backing Filesystem: extfs
  Supports d_type: true
  Native Overlay Diff: true
Logging Driver: json-file
 Cgroup Driver: cgroupfs
 Plugins:
 Volume: local
  Network: bridge host ipvlan macvlan null overlay
  Log: awslogs fluentd gcplogs gelf journald json-file local
 Swarm: active
  NodeID: wsamdq5o009mucm9blud2zubc
  Is Manager: true
 ClusterID: 2sj7v47f4izkhztyzdmvoc30i
 Managers: 3
 Nodes: 6
 Detault Address Pool: 10.0.0.0/8
  SubnetSize: 24
  Data Path Port: 4789
  Orchestration:
   Task History Retention Limit: 5
  Raft:
```

# Promote a worker to manager

To promote a worker to a manager run the following from **one** of your manager nodes:

docker node promote node\_id\_here

Also note that each manager also acts as a worker, so from your docker info output you should see 6 workers and 3 manager nodes.

### **Using Services**

In order to create a service you need to use the following command:

```
docker service create --name bobby-web -p 80:80 --replicas 5 bobbyiliev/php-apache
```

Note that I already have my bobbyiliev/php-apache image pushed to the Docker hub as described in the previous blog posts.

To get a list of your services run:

```
docker service ls
```

#### Output:

```
ot@manager-01:~# docker service create --name bobby-web -p 80:80 --replicas 5 bobbyiliev/php-apache
t1emg1xqo0l62cskipuwln31s
overall progress: 5 out of 5 tasks
1/5: running
2/5: running3/5: running4/5: running
5/5: running
verify: Service converged
root@manager-01:~# docker service ls
                     NAME
                                          MODE
                                                                REPLICAS
t1emg1xqo0l6
                                          replicated
                                                                                     bobbyiliev/php-apache:latest
                                                                                                                       *:80->80/tcp
root@manager-01:~#
```

Then in order to get a list of the running containers you need to use the following command:

```
docker services ps name_of_your_service_here
```

Output:

| ID                    | # docker service ps b<br>NAME | obby-web<br>IMAGE            | NODE       | DESIRED STATE | CURRENT STATE              |
|-----------------------|-------------------------------|------------------------------|------------|---------------|----------------------------|
| OR<br>ivlg5dnrtti4    | PORTS<br>bobby-web.1          | bobbyiliev/php-apache:latest | manager-03 | Running       | Running 2 minutes ago      |
| i@jmepncpd <b>z</b> 5 | bobby-web.2                   | bobbyiliev/php-apache:latest | worker-02  | Running       | Running about a minute ago |
| 7rvnlx7lkefn          | bobby-web.3                   | bobbyiliev/php-apache:latest | worker-03  | Running       | Running about a minute ago |
| loha42ahdtfj          | bobby-web.4                   | bobbyiliev/php-apache:latest | manager-01 | Running       | Running about a minute ago |
| oowdp9glb7iz          | bobby-web.5                   | bobbyiliev/php-apache:latest | manager-02 | Running       | Running about a minute ago |
| root@manager-01:~#    |                               |                              |            |               |                            |

Then you can visit the IP address of any of your nodes and you should be able to see the service! We can basically visit any node from the swarm and we will still get the to service.

#### Scaling a service

We could try shutting down one of the nodes and see how the swarm would automatically spin up a new process on another node so that it matches the desired state of 5 replicas.

To do that go to your **DigitalOcean** control panel and hit the power off button for one of your Droplets. Then head back to your terminal and run:

```
docker services ps name_of_your_service_here
```

#### Output:



In the screenshot above, you can see how I've shutdown the droplet called worker-2 and how the replica bobby-web.2 was instantly started again on another node called worker-01 to match the desired state of 5 replicas.

To add more replicas run:

```
docker service scale name_of_your_service_here=7
```

#### Output:

```
oot@manager-01:~# docker service scale bobby-web=7
 obby-web scaled to
   running
running
      running
      runnina
      running
//: ruming _
verify: Service converged
∘oot@manager-01:~# docker service ps bobby-web
NAME IMAGE
                                                                                                                                             DESIRED STATE
                                                                                                                                                                             CURRENT STATE
                                                                                                              NODE
ivlg5dnrtti4
                                                              bobbyiliev/php-apache:latest
                                                                                                              manager-03
                                                                                                                                                                             Running 10 minutes ago
                              bobby-web.1
                                                             bobbyllev/php-apache:latest
bobbyllev/php-apache:latest
bobbyllev/php-apache:latest
bobbyllev/php-apache:latest
bobbyllev/php-apache:latest
bobbyllev/php-apache:latest
bobbyllev/php-apache:latest
                              bobby-web.2
\_ bobby-web.2
bobby-web.3
bobby-web.4
bobby-web.5
vhpl4cq3s5f4
i0jmepncpdz5
                                                                                                                                                                             Running 4 minutes ago
Running 5 minutes ago
Running 10 minutes ago
                                                                                                              worker-01
                                                                                                                                             Running
Shutdown
                                                                                                              worker-02
                                                                                                              worker-03
loha42ahdtfj
oowdp9glb7iz
                                                                                                              manager-01
                                                                                                                                              Running
                                                                                                                                                                             Running 10 minutes ago
                                                                                                              manager-02
                                                                                                                                              Running
                                                                                                                                                                             Running 8 seconds ago
Running 8 seconds ago
                                                                                                                                             Running
Running
  2ot9ufjx2e
                              bobby-web.6
                                                                                                              manager-02
 jlsgsccn8́e5s
                              bobby-web.7
                                                              bobbyiliev/php-apache:latest
     t@manager-01:~#
```

This would automatically spin up 2 more containers, you can check this with the docker service ps command:

```
docker service ps name_of_your_service_here
```

Then as a test try starting the node that we've shutdown and check if it picked up any tasks?

**Tip**: Bringing new nodes to the cluster does not automatically distribute running tasks.

# Deleting a service

In order to delete a service, all you need to do is to run the following command:

```
docker service rm name_of_your_service
```

#### Output:

```
[root@manager-01:~# docker service rm bobby-web
bobby-web
[root@manager-01:~# docker service ps bobby-web
no such service: bobby-web
root@manager-01:~# ■
```

Now you know how to initialize and scale a docker swarm cluster! For more information make sure to go through the official Docker documentation <u>here</u>.

# **Docker Swarm Knowledge Check**

Once you've read this post, make sure to test your knowledge with this **Docker Swarm Quiz**:

https://quizapi.io/predefined-quizzes/common-docker-swarm-interview-questions

# Conclusion

Congratulations! You have just completed the Docker basics eBook! I hope that it was helpful and you've managed to learn some cool new things about Docker!

If you found this helpful, be sure to star the project on GitHub!

If you have any suggestions for improvements, make sure to contribute pull requests or open issues.

In this introduction to Docker eBook, we just covered the basics, but you still have enough under your belt to start working with Docker containers and images!

As a next step make sure to spin up a few servers, install Docker and play around with all of the commands that you've learnt from this eBook!

In case that this eBook inspired you to contribute to some fantastic open-source project, make sure to tweet about it and tag <a href="mailto:obbyiliev">obbyiliev</a> so that we could check it out!

Congrats again on completing this eBook!

# Other eBooks

Some other opensource eBooks that you might find helpful are:

- Introduction to Git and GitHub
- Introduction to Bash Scripting
- Introduction to SQL