

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ

3η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ

ΘΟΔΩΡΗΣ ΑΡΑΠΗΣ – ΕL18028

16 MAIOY, 2023

Προσομοίωση συστήματος Μ/Μ/1/10

(1)

Παρακάτω παρουσιάζονται τα αναλυτικά trace των πρώτων 10 από τις 30 (για εξοικονόμηση χώρου) μεταβάσεις για κάθε τιμή του λ:

```
****** LAMBDA = 1 ARRIVAL PER MINUTE *******
                                                     |******* LAMBDA = 5 ARRIVAL PER MINUTE *******
***** TRANSITION 1 *****
                                                     ****** TRANSITION 1 ******
Current state: 0
                                                     Current state: 0
The next transition is an arrival.
                                                     The next transition is an arrival.
The total number of arrivals until now is: 1
                                                     The total number of arrivals until now is: 1
****** TRANSITION 2 ******
                                                     ****** TRANSITION 2 ******
Current state: 0
                                                     Current state: 0
The next transition is an arrival.
                                                     The next transition is an arrival.
The total number of arrivals until now is: 2
                                                     The total number of arrivals until now is: 2
****** TRANSITION 3 ******
                                                     ****** TRANSITION 3 ******
Current state: 0
                                                     Current state: 0
The next transition is an arrival.
                                                     The next transition is an arrival.
The total number of arrivals until now is: 3
                                                     The total number of arrivals until now is: 3
****** TRANSITION 4 ******
                                                     ***** TRANSITION 4 *****
Current state: 2
                                                     Current state: 2
The next transition is an arrival.
                                                     The next transition is an arrival.
The total number of arrivals until now is: 4
                                                     The total number of arrivals until now is: 4
***** TRANSITION 5 *****
                                                     ****** TRANSITION 5 ******
Current state: 4
                                                     Current state: 4
The next transition is a departure.
                                                     The next transition is a departure.
The total number of arrivals until now is: 4
                                                     The total number of arrivals until now is: 4
****** TRANSITION 6 *****
                                                     ****** TRANSITION 6 *****
Current state: 2
                                                     Current state: 2
The next transition is a departure.
                                                     The next transition is a departure.
The total number of arrivals until now is: 4
                                                     The total number of arrivals until now is: 4
****** TRANSITION 7 ******
                                                     ****** TRANSITION 7 ******
Current state: 0
                                                     Current state: 0
The next transition is an arrival.
                                                     The next transition is an arrival.
The total number of arrivals until now is: 5
                                                     The total number of arrivals until now is: 5
****** TRANSITION 8 ******
                                                     ***** TRANSITION 8 ******
Current state: 0
                                                     Current state: 0
The next transition is an arrival.
                                                     The next transition is an arrival.
The total number of arrivals until now is: 6
                                                     The total number of arrivals until now is: 6
***** TRANSITION 9 *****
                                                     ***** TRANSITION 9 *****
Current state: 2
                                                     Current state: 2
The next transition is a departure.
                                                     The next transition is a departure.
The total number of arrivals until now is: 6
                                                     The total number of arrivals until now is: 6
****** TRANSITION 10 ******
                                                     ****** TRANSITION 10 ******
Current state: 0
                                                     Current state: 0
The next transition is an arrival.
                                                     The next transition is an arrival.
The total number of arrivals until now is: 7
                                                     The total number of arrivals until now is: 7
```

```
****** LAMBDA = 10 ARRIVAL PER MINUTE *******
****** TRANSITION 1 ******
Current state: 0
The next transition is an arrival.
The total number of arrivals until now is: 1
****** TRANSITION 2 *****
Current state: 0
The next transition is an arrival.
The total number of arrivals until now is: 2
****** TRANSITION 3 *****
Current state: 0
The next transition is an arrival.
The total number of arrivals until now is: 3
****** TRANSITION 4 ******
Current state: 2
The next transition is an arrival.
The total number of arrivals until now is: 4
****** TRANSITION 5 ******
Current state: 4
The next transition is a departure.
The total number of arrivals until now is: 4
****** TRANSITION 6 *****
Current state: 2
The next transition is a departure.
The total number of arrivals until now is: 4
***** TRANSITION 7 ******
Current state: 0
The next transition is an arrival.
The total number of arrivals until now is: 5
****** TRANSITION 8 ******
Current state: 0
The next transition is an arrival.
The total number of arrivals until now is: 6
****** TRANSITION 9 ******
Current state: 2
The next transition is a departure.
The total number of arrivals until now is: 6
****** TRANSITION 10 ******
Current state: 0
The next transition is an arrival.
The total number of arrivals until now is: 7
```

Για την παραγωγή των παραπάνω αποτελεσμάτων χρησιμοποιήθηκε το ακόλουθο κομμάτι κώδικα:

```
# Debugging (1)
 if transitions <= 30</pre>
   printf("\n****** TRANSITION %d ******\n", transitions);
   printf("Current state: %d\n", current_state);
   if (current_state == final_state) && (random_number < threshold)</pre>
     printf("Either a client was declined or the system reached the final state!\n");
   elseif (current_state == 0) || ((random_number < threshold) && (current_state != final_state))</pre>
     current state = current state + 1;
     arrival counter = arrival counter + 1;
     printf("The next transition is an arrival. \n");
     printf("The total number of arrivals until now is: %d\n", arrival_counter);
   else
     current state = current state - 1;
      printf("The next transition is a departure.\n");
     printf("The total number of arrivals until now is: %d\n", arrival counter);
   endif
 endif
```

Απενεργοποιούμε τώρα το προηγούμενο τμήμα κώδικα και εκτελούμε την προσομοίωση για τις τιμές του $\lambda = \{1, 5, 10\}$. Ο κώδικας τις προσομοίωσης είναι ο ακόλουθος:

```
1 # Simulation of a M/M/1/10 system
 3 clc;
 4 clear all;
 5 close all;
 7 \text{ lambdas} = [1, 5, 10];
 8 \text{ mu} = 5;
 9 final state = 10;
10 \text{ states} = 0 : 1 : 10;
12 	ext{ for } 1 = 1 : length(lambdas)
    rand("seed", 1);
printf("******** LAMBDA = %d ARRIVALS PER MINUTE *******\n", lambdas(1));
14
1.5
     arrivals = zeros(1, final_state + 1);
16
     total_arrivals = 0;
17
     index = 0;
     transitions = 0;
18
19
     current_state = 0;
20
     previous_mean_clients = 0;
21
     threshold = lambdas(1)/(lambdas(1) + mu);
22
     arrival_counter = 0;
23
24
     while transitions >= 0
25
       transitions = transitions + 1;
26
27
       if mod(transitions, 1000) == 0
28
         index = index + 1;
         for i=1:length(arrivals)
29
30
             P(i) = arrivals(i)/total_arrivals;
31
         endfor
32
33
         mean_clients = 0;
34
35 🛱
         for i=1:1:length(arrivals)
36
           mean_clients = mean_clients + (i-1).*P(i);
37
38
39
         to_plot(index) = mean_clients;
40
41
         if abs(mean_clients - previous_mean_clients) < 0.00001 || (transitions > 1000000)
42
43
44
45
         previous_mean_clients = mean_clients;
46
47
48
49
        random_number = rand(1);
50
51
        # Debugging (1)
52
          if transitions <= 30
             printf("\n****** TRANSITION %d ******\n", transitions);
53
54
             printf("Current state: %d\n", current_state);
55
           if (current_state == final_state) && (random_number < threshold)</pre>
              printf("Either a client was declined or the system reached the final state!\n");
57
             elseif (current state == 0) || ((random number < threshold) && (current state != final state))
             current_state = current_state + 1;
59
              arrival counter = arrival counter + 1;
60
              printf("The next transition is an arrival. \n");
              printf("The total number of arrivals until now is: %d\n", arrival_counter);
61
62
            else
63
              current_state = current_state - 1;
64
              printf("The next transition is a departure.\n");
65
              printf("The total number of arrivals until now is: %d\n", arrival_counter);
66
67
          endif
68
69
```

```
71
          total arrivals = total arrivals + 1;
 72
          arrivals(current state + 1) = arrivals(current state + 1) + 1;
 73
          current_state = current_state + 1;
 74
        elseif (current state == final state) && (random number < threshold) # Final state
 75
         total_arrivals = total_arrivals + 1;
 76
          arrivals(current_state + 1) = arrivals(current_state + 1) + 1;
        elseif random_number >= threshold
 77
                                                     # Departure case
 78
          current state = current state - 1;
 79
 80
 81
      endwhile
 82
 83
      for i = 1 : length(arrivals)
 84
        P \text{ percent(i)} = P(i) * 100;
 85
        printf("The ergodic probability of the state %d is: %g%% \n", (i - 1), P_percent(i))
 86
 87
      printf("The chance of rejecting a client is: %f%%\n", P_percent(final_state + 1))
 88
 89
      printf("The mean number of clients in the system is: %f
                                                                 \n", mean_clients);
      mean delay = mean clients/(lambdas(1)*(1 - P(final state + 1)));
 90
      printf("The mean delay time of a client in the system (Little Law) is: %f minutes \n", mean_delay);
 92
 93
 94
      plot(to_plot,"b","linewidth",1.3);
 95
      title("Average number of clients in the M/M/1/10 queue ");
xlabel("Transitions in thousands");
 96
 97
      vlabel("Average number of clients");
 98
      figure (1 + 3);
100
      bar(states, P, 'g', 0.4);
      title("Ergodic probabilities of each state");
102
      xlabel("State");
103
      ylabel("Probabilities");
104
      for i = 1 : index
105世
         to_plot(i) = 0;
106
107
      endfor
108
```

if ((current state == 0) || ((random number < threshold) && (current state != final state))) # Arrival

Τρέχουμε λοιπόν την παραπάνω προσομοίωση, λαμβάνουμε τα εξής αποτελέσματα και δημιουργούμε τις ζητούμενες γραφικές για τις διάφορες τιμές του λ :

```
****** LAMBDA = 1 ARRIVALS PER MINUTE *****
The ergodic probability of the state 0 is: 80.0216%
The ergodic probability of the state 1 is: 15.9568%
The ergodic probability of the state 2 is: 3.22162%
The ergodic probability of the state 3 is: 0.6216228
The ergodic probability of the state 4 is: 0.12973%
The ergodic probability of the state 5 is: 0.0432432\% The ergodic probability of the state 6 is: 0.00540541\%
The ergodic probability of the state 7 is: 0%
The ergodic probability of the state 8 is: 0%
The ergodic probability of the state 9 is: 0%
The ergodic probability of the state 10 is: 0%
The chance of rejecting a client is: 0.000000%
The mean number of clients in the system is: 0.250324
The mean delay time of a client in the system (Little Law) is: 0.250324 minutes
***** PER MINUTE ****
The ergodic probability of the state 0 is: 8.94921%
The ergodic probability of the state 1 is: 8.78239%
The ergodic probability of the state 2 is: 8.75543%
The ergodic probability of the state 3 is: 8.50268% The ergodic probability of the state 4 is: 8.82452%
The ergodic probability of the state 5 is: 9.24241% The ergodic probability of the state 6 is: 9.32161%
The ergodic probability of the state 7 is: 9.25083%
The ergodic probability of the state 8 is: 9.39238%
The ergodic probability of the state 9 is: 9.38732%
The ergodic probability of the state 10 is: 9.59121%
The chance of rejecting a client is: 9.591211%
The mean number of clients in the system is: 5.095339
The mean delay time of a client in the system (Little Law) is: 1.127178 minutes
****** LAMBDA = 10 ARRIVALS PER MINUTE *******
The ergodic probability of the state 0 is: 0.0479279%
The ergodic probability of the state 1 is: 0.0853715%
The ergodic probability of the state 2 is: 0.174487%
The ergodic probability of the state 3 is: 0.38567% The ergodic probability of the state 4 is: 0.772837%
The ergodic probability of the state 5 is: 1.54455%
The ergodic probability of the state 6 is: 3.08311%
The ergodic probability of the state 7 is: 6.19393%
The ergodic probability of the state 8 is: 12.4785%
The ergodic probability of the state 9 is: 25.0112%
The ergodic probability of the state 10 is: 50.2224%
The chance of rejecting a client is: 50.222415%
The mean number of clients in the system is: 9.014146
The mean delay time of a client in the system (Little Law) is: 1.810885 minutes
```

(a) Εργοδικές πιθανότητες που υπολογίζει η προσομοίωση

 $\lambda = 1$

 $\lambda = 5$

(a) Εξέλιξη του μέσου αριθμού πελατών στο σύστημα για κάθε κατάσταση

 $\lambda = 10$

(3)

Από τις παραπάνω γραφικές παραστάσεις, εύκολα συμπεραίνουμε ότι με την αύξηση του λ αυξάνεται αντίστοιχα και ο απαιτούμενος αριθμός μεταβάσεων προκειμένου να ικανοποιηθεί το κριτήριο σύγκλισης. Πιο ειδικά, παρατηρούμε ότι για λ=1, 5, 10 τα μεταβατικά φαινόμενα εξασθενούν ύστερα από περίπου 10, 60, 100 χιλιάδες μεταβάσεις αντίστοιχα. Συνεπώς, θα μπορούσαμε να αγνοήσουμε τα παραπάνω πλήθη αρχικών μεταβάσεων με σκοπό την επίτευξη ταχύτερης σύγκλισης.

(4)

Αρκούν δύο μικρές αλλαγές στην προσομοίωση ώστε το σύστημά μας να υποστηρίζει μεταβλητούς ρυθμούς εξυπηρέτησης. Αρχικά, προκειμένου να αναπαραστήσουμε τις διάφορες τιμές του $\mu_i = \mu(i+1)$, θα δημιουργούσαμε έναν πίνακα με τις εξής τιμές:

$$m = [2\mu, 3\mu, 4\mu, 5\mu, 6\mu, 7\mu, 8\mu, 9\mu, 10\mu, 11\mu]$$

Όπου $\mu=1$ πελάτης/sec και $i=\{1,2,...,10\}$.

Έπειτα, θα πρέπει να ορίσουμε το threshold ως πίνακα που θα λαμβάνει μία τιμή για κάθε μία από τις 10 καταστάσεις.