1. 介面說明

開發平台: matlab

Joint move: Joint move.m , 點擊 run 鍵即可產生結果

Cartesian move: Cartesian move.m , 點擊 run 鍵即可產生結果

2. 程式架構說明

Joint move:

先將 A,B,C 三點帶入 inverse kinemics 獲得各個點對應的 joint variables, 再將這些 joint variables 進行直線與 transition 的路徑規劃, 透過 forward kinemics 得到卡氏座標之路徑,最後輸出結果

Cartesian move:

先將 A,B,C 三個 transformation matrix 轉換成卡氏座標的 x, y, z, φ, θ, ψ,將這些 variables 進行直線與 transition 的路徑規劃,最後輸出結果

3. 數學運算說明

set
$$t_B = 0$$
, $h(t) = \frac{t_1 t_{au}}{t_1 t_{au}}$, $-t_{au} < t < t_{au}$

$$\begin{cases} g(h) = a_4 h^4 + a_3 h^3 + a_2 h^2 + a_1 h + a_0 \\ g(h) = 4a_4 h^3 + 3a_3 h^2 + 2a_1 h + a_1 \end{cases}$$

$$\ddot{g}(h) = 12 a_4 h^2 + 6a_3 h + 1a_1$$

$$\ddot{g}(0) = a_0 = A \longrightarrow a_0 = B + \Delta B$$

$$\ddot{g}(0) = a_1 = -\frac{\Delta B}{1} = -1 \Delta B \longrightarrow a_1 = -2\Delta B$$

$$\ddot{g}(0) = 2a_1 = 0 \longrightarrow a_1 = 0$$

$$\Rightarrow a_1 = -\Delta B \longrightarrow a_1 =$$

position:
$$g(t) = g(k|t|) = \int \left(Ac \cdot \frac{tac}{T} + AB\right)(1-k)k^2 - 2AB \right]k + B + AB$$

velocity: $\dot{g}(t) = \dot{g}(k|t|) \cdot \frac{dk}{dt} = \int \left(Ac \cdot \frac{tac}{T} + AB\right)(1.5-k) \cdot 2k^2 - AB \right] \cdot \frac{1}{tac}$

acceleration: $\ddot{g}(t) = \ddot{g}(k|t|) \cdot \left(\frac{dk}{dt}\right)^2 + \dot{g}(t) \frac{dk^2}{dt}$

$$= \int \left(Ac \cdot \frac{tac}{T} + AB\right)(1-k) \cdot \frac{3k}{tac}$$

4. 軌跡規劃結果

■ Joint_move:

3D Cartesian path

Joint position

Joint velocity

Joint acceleration

Cartesian move:

3D Cartesian path

Cartesian position

Cartesian velocity

Cartesian acceleration

5. 優缺點

Joint_move:

優點:不用 inverse 所以計算效率高,不會有碰到 singular point 的問題

缺點:卡氏座標的路徑可能很複雜

Cartesian move:

優點: 路徑之間的定義較為明確

缺點:較高的計算量,可能碰上 singular point