- 1. One sentence for each of the four major theories of computation:
 - Language Theory describes, classifies, and manipulates sets of strings
 (languages), syntax, and semantics using grammars, automata, and algebraic structures.
 - b. **Automata Theory** looks at what problems can be solved by machines like finite automata or Turing machines.
 - c. Computability Theory tries to determine which problems can be solved algorithmically, regardless of efficiency.
 - d. Complexity Theory classifies what makes certain problems computationally hard or easy in terms of time, space, or other resources.
- 2. Given $L1=\{0,011,10\}$ and $L2=\{10,1\}$. What are:

a.
$$L_1 \cup L_2 = \{0, 011, 10, 1\}$$

b.
$$L_1 \cap L_2 = \{10\}$$

c.
$$L_1L_2 = \{010, 01, 01110, 0111, 1010, 101\}$$

d.
$$L_2^* = \{\epsilon, 10, 1, 1010, 101, 110, 11, ...\}$$

- 3. Generative grammars for the following languages:
 - a. Empty Language

$$\blacksquare$$
 S $\rightarrow \epsilon$

b.
$$\{0^i 1^j 2^k \mid i=j \ \forall j=k\}$$

$$\blacksquare$$
 S \rightarrow A 2* | 0* B | ϵ

■
$$A \rightarrow 0 A 1 | \epsilon$$

■
$$B \rightarrow 1 B 2 | \epsilon$$

c. $\{w \in \{0,1\}^* \mid w \text{ does not contain the substring } 000\}$

■
$$S \rightarrow A \mid \epsilon$$

■
$$A \rightarrow 1 A | 0 B | \epsilon$$

■
$$B \rightarrow 1 A | 0 C | \epsilon$$

$$\blacksquare \quad C \to 1 \ A \mid \varepsilon$$

- d. $\{w \in \{a,b\}^* \mid w \text{ has twice as many } a \text{'s as } b \text{'s}\}$
 - $\quad \blacksquare \quad S \to X \mid \varepsilon$
 - \blacksquare $X \rightarrow X a X a X b X | X a X b X a X | X b X a X | <math>X b X a X a X | \epsilon$
- e. $\{a^n b^n a^n b^n \mid n \ge 0\}$
 - \blacksquare S \rightarrow a X b Y a Z b | ϵ
 - $\blacksquare \quad X \to X \ A \ | \ A \ | \ \varepsilon$
 - \blacksquare A a \rightarrow a A
 - $\blacksquare \quad A \ b \rightarrow a \ b \ B$
 - \blacksquare AZ \rightarrow aZb
 - \blacksquare B b \rightarrow b B
 - \blacksquare BY \rightarrow bYA
 - $\quad \blacksquare \quad Y \to \varepsilon$
 - \blacksquare $Z \rightarrow \epsilon$
- 4. The grammar for floating-point numerals:

$$n \rightarrow d+f?e$$
?

$$f \rightarrow$$
 "." $d+$

$$e \rightarrow ("E"|"e")("+"|"-")?d+$$

$$d \rightarrow$$
 "0".."9"

 (V,Σ,R,S) -Definition of this grammar:

$$\blacksquare \quad \Sigma \to \{0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,.,\,+,\,\text{-},\,E,\,e\}$$

- \blacksquare R \rightarrow { I spent too much time trying to figure this out, I give up }
- $\quad \blacksquare \quad S \to n$
- 5. See other pdf
- 6. See other pdf

- 7. For the JavaScript/Python expression 5 * 3 1 ** 3,
 - a. Show a 3AC machine program to evaluate this expression, leaving the result in r_0
 - MUL 5, 3, r₁
 - POW 1, 3, r₂
 - SUB r₁, r₂, r₀
 - b. Show a Stack machine program to evaluate this expression, leaving the result on the top of the stack.
 - Push 5
 - Push 3
 - MUL
 - Push 1
 - Push 3
 - Pow
 - Sub
- 8. Characterize each of the following languages as either (a) regular, (b) context-free but not regular, (c) recursive but not context-free, (d) recursively enumerable but not recursive, or (e) not even recursively enumerable.
 - a. $\{a^i b^j c^k \mid i > j > k\}$
 - (c) recursive but not context-free
 - b. $\{a^ib^jc^k \mid i>j \land k\leq i-j\}$
 - (b) context-free but not regular
 - c. $\{\langle M \rangle \cdot w \mid M \text{ accepts } w\}$
 - (d) recursively enumerable but not recursive
 - d. $\{G \mid G \text{ is context-free } \land L(G) = \emptyset\}$
 - (d) recursively enumerable but not recursive
 - e. $\{a,b\}*\{b\}+$

- (a) regular
- f. $\{\langle M \rangle \mid M \text{ does not halt}\}$
 - not even recursively enumerable
- g. $\{w \mid w \text{ is a decimal numeral divisible by 7}\}$
 - (a) regular
- h. {www | w is a string over the Unicode alphabet}
 - (c) recursive but not context-free