

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής

ΗΛΕΚΤΡΟΝΙΚΗ Ι 4ο Εξάμηνο

Ασκήσεις 2020-2021

Νικόλαος Βουδούκης

Θεώρημα Thevenin – Διαιρέτης τάσης

Στο διπλανό κύκλωμα δίνονται R1=20ΚΩ, $R_2=10K\Omega$, $R_3=1K\Omega$, R₄=2KΩ και β =50. Χρησιμοποιώντας το θεώρημα Thevenin για τις αντιστάσεις R1 και R₂, βρείτε την τιμή της τάσης στα άκρα της αντίστασης R4.

Θα βρούμε το ισοδύνωμο Therenin για το ενόνημη α

σρι67ερά των επρείων Α, Β. (αντιστάσεις Α, Ας).

Παρατοπρούμε ότι η πηγή γάσης νο είναι μετωβύ των μόμθων

Γ και Β. Μπορούμε να "διασπάσωμε" το επρείο Γ στα επρεία

Γι και ε εφαρμόβοντας σε καθένα απώ αντά τάσα νε το

σρχικό μας κύκλωμα (κ)

ΕΜΠ - Ασκήσεις Η Ι - Ν. Βουδούκης

$$R_{Th} = R_{AB} = R_{1} || R_{2} = \frac{R_{1} R_{2}}{R_{1} + R_{2}} \Rightarrow$$

$$R_{Th} = \frac{20.10}{20+10} || R_{2} \Rightarrow || R_{Th} = \frac{20}{3} || R_{2} \Rightarrow$$

Έτσι το κύκλωμα γίνεται:

Exapposor NTK (KVL) 600 Rpaxo AEBA opifortas

$$V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_{Th} + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_1 + I_3 \cdot R_3$
 $V_{Th} - V_1 = I \cdot R_1 + I_3 \cdot R_$

Onore: (1)
$$\stackrel{(2)}{\Longrightarrow} V_{Th} - V_1 = I \cdot R_{Th} + (B+1) I R_3$$

$$\Rightarrow V_{Th} - V_1 = \left[R_{Th} + (B+1) R_3 \right] I$$

$$\Rightarrow I = \frac{V_{Th} - V_1}{R_{Th} + (B+1) R_3}$$

$$I = \frac{4-9,7}{\frac{99}{3} + (50+1) \cdot 1} = \frac{3,3}{\frac{29}{3} + 51} \implies I = 57,2 \text{ MA}$$

$$V_4 = 8.1.P_4 \implies V_4 = 50.57,2.10^6.2.10^3 V \implies V_4 = 5,72V$$

BJT - Θεώρημα Thevenin – Διαιρέτης τάσης

Sindavoi exiliatos Sivovian: Va=12V
8 = 100 VBE=0,7V
$\frac{R_2}{R_1 + R_2} = \frac{1}{2}$
R, // R2 = 430 KQ Re=3 KQ RE=1 KQ, Znrojv7x1: IB rum VE

Λύση

Da Etaphosome Dewpope Therenin (dexina)

you va avanardstissome to kirtupa apisaspà

The apposentur B, N pe so 160 Sivapo

The venin.

Jan suvexsia Da Epaphosome NTK, NPK

eto Kirtupa nou topokintel.

Epopojoupe NTK GOV BPOXO FIGOSOV (Babn-Exnopris) VBB - VBE = IB. RB + IE. RE Enions one NRK por to that it top Eivan: IB + Ic = IE γροδέτοντας βειτοιργία του ΒΙΤ σενν oplis ενεργοί Λεριοχώ, θα ισχύοι I(=8. IB /3) Luxenus (2) = IE = (8+1) IB

Drive
$$|I| \stackrel{[4)}{\longrightarrow} V_{BB} - V_{BE} = [R_B + (P+1)R_E] I_B$$

$$I_B = \frac{V_{BB} - V_{BE}}{R_B + (P+1)R_E}$$

$$I_B = \frac{(6-9+)V}{(430+101\cdot1)K_D} \implies I_B \simeq 10 \text{ pA}$$

Drive $I_C = 100 \cdot 10 \text{ pA} \implies I_C = 1 \text{ mA}$.

$$I_E = 101 \cdot 10 \text{ pA} \implies I_E \simeq I_C = 1 \text{ mA}$$
.

$$V_E = I_E \cdot R_E \implies V_E = 1 \text{ mA} \cdot I_E \simeq I_C$$

$$\Longrightarrow V_E \simeq 1 V$$

BJT - Θεώρημα Thevenin – Διαιρέτης τάσης (αντίστροφο πρόβλημα)

Direta to mylwfo
um or zifiés:
8=100 VBE=0,7V
VBB=5V VC=12V
R8 = 430 KD
Rc=3K0
IB = 10 MA
No Predoir arzionaGEIS
R, R2 ME R, 11 R2 = 430KD
work va Exorpe provo pia
Day's Tpopososias 620
xix July

Λύση

Da npéner va "priajoupé" pet us R, um R2 évar Simpérm 70'6ms, wore peraju Boins (B) um jns (N) va exoupe SV, 72 onois Da 72 Siver n Vec=12V. Dujosin npéner

$$V_{BN} = \frac{f_2}{P_1 + P_2} \cdot V_{CC} = 5V \iff$$

$$\frac{f_2}{P_1 + P_2} = \frac{5}{12} \qquad (1)$$

Το τρανζίστορ έχει β=100. Να βρεθούν οι τιμές των τάσεων σε όλους τους κόμβους (V_B, V_C, V_E) καθώς και οι τιμές των ρευμάτων σε όλους τους κλάδους (I_B, I_C, I_E). Υποθέστε λειτουργία του BJT στην ορθή ενεργό περιοχή.

Λύση

Engli BE of a notytum (you Boy)
$$E \rightarrow \text{prime}$$

Easy $V_{\text{BE}} = 0,7 \times .$

(2) $V_{\text{E}} = V_{\text{BE}} - V_{\text{BE}} = u - 0,7 = 3.3 \times .$

(3) $0.99 \times 1 = 0.99 \text{ mA}$

(4) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(5) $1.00 - 0.99 = 0.01 \text{ mA}$

(6) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(6) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(7) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(8) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(9) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(10) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(11) $V_{\text{NOD}} = 0.99 \times 4.7 \times 5.3 \times .$

(21) $V_{\text{NOD}} = 0.99 \times 4.7 \times .$

(22) $V_{\text{NOD}} = 0.99 \times 4.7 \times .$

(33) $V_{\text{NOD}} = 0.99 \times 4.7 \times .$

(44) $V_{\text{NOD}} = 0.99 \times .$

(54) $V_{\text{NOD}} = 0.99 \times .$

(c)

$$I_{E} = \frac{V_{EE} - V_{BE}}{R_{E} + R_{B}/(\beta + 1)}$$

$$V_{CC} = I_E R_C + I_B R_B + V_{BE}$$
$$= I_E R_C + \frac{I_E}{\beta + 1} R_B + V_{BE}$$

$$I_E = \frac{V_{CC} - V_{BE}}{R_C + R_B/(\beta + 1)}$$

$$V_{CB} = I_B R_B = I_E \frac{R_B}{\beta + 1}$$

ΒΙΤ στην ορθή ενεργό περιοχή

$$i_{C} = I_{S}e^{v_{BE}/V_{T}}$$

$$i_{B} = \frac{i_{C}}{\beta} = \left(\frac{I_{S}}{\beta}\right)e^{v_{BE}/V_{T}}$$

$$i_{E} = \frac{i_{C}}{\alpha} = \left(\frac{I_{S}}{\alpha}\right)e^{v_{BE}/V_{T}}$$

Note: For the *pnp* transistor, replace v_{BE} with v_{EB} .

$$i_C = \alpha i_E$$

$$i_B = (1 - \alpha)i_E = \frac{i_E}{\beta + 1}$$

$$i_C = \beta i_B$$

$$i_E = (\beta + 1)i_B$$

$$\alpha = \frac{\alpha}{1 - \alpha}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$V_T = \text{thermal voltage} = \frac{kT}{q} \simeq 25 \text{ mV at room temperature}$$

Το ΒΙΤ ως δίοδος

Το ΒΙΤ ως δίοδος

ΕΜΠ - Ασκήσεις Η Ι - Ν. Βουδούκης

