EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 09

Scan Design for Testability

Boundary Scan

Board-Level Testing

- Each chip used in a PCB is pretested by the chip's vendor and declared fault-free
- Testing at board level focuses on
 - —Inter-chip interconnect faults
 - Opens
 - + Caused when chip pins do not bond properly to board
 - That occur in PCB traces due to defects during PCB manufacturing
 - Shorts caused when extra solder flows between pins or PCB traces

Board-Level Testing (cont.)

- Testing at board level focuses on
 - Faults internal to chips
 - Faults induced due to improper handling, e.g., excessive heat or shock during PCB assembly
 - Faulty behaviors that become apparent only when a chip is integrated into a PCB, e.g., the ability to drive a large load
 - These defects
 - + More likely to occur in <u>pad drivers</u> and <u>pad receivers</u>
 - + However, may also occur in <u>system logic</u>, i.e., on-chip logic circuit
- Since repair possible, diagnosis also important
- Board-level DFT supports
 - Testing and diagnosis of faults in inter-chip interconnects (including pad drivers and receivers)
 - In-situ re-testing of system logic
 - Debugging of system design

Board-Level Testing (cont.)

- Possible approaches for board testing
 - Consider the entire board as one circuit and generate tests: Not possible because
 - The circuit too large for ATPG tools
 - Net-list of most chips unavailable
 - —In-circuit testing
 - Probes were used to access input/output pins of chips
 - Care had to be taken to ensure probes driving values did not damage output pins
 - No longer used because
 - + Pins are too small and too close to be reliably probed
 - + Pins at bottoms of chips cannot be probed in multi-layered PCBs
 - —Boundary scan

Boundary Scan

- Boundary scan used to test
 - —Chips-on-board (COB) systems, where chips are mounted on a printed circuit board (PCB)
 - —Multi-chip modules (MCM), where bare-die are integrated on a silicon or a PCB-like substrate
- A COB system is obtained by
 - —Using a PCB that contains traces, i.e., metal connectors that constitute inter-chip interconnects
 - —Bonding (e.g., soldering) chips on the PCB

Boundary Scan Structure

- Boundary scan incorporates DFT circuitry that allows direct access to chip input and output pins via scan chains
- A board contains chips from multiple manufacturers
- Boundary scan circuits must interoperate to achieve above objectives
- Hence, a standard, namely IEEE Std 1149.1, defined

Example: A Board Without Boundary Scan

- Consider an example board. Especially note
 - Bi-directional driver/receiver Pin 3 of Chip 1
 - Tri-state driver Pin 2 of Chip 2

Example: Testing Without Boundary Scan (cont.)

- Assume that
 - A receiver disconnected from its drivers due to opens interprets the input as a value 1
 - A control value 1 enables a tri-state/bi-directional driver
- To test for an open at net b1
 - Use a probe to apply 0 at Pin 2 of Chip 2
 - Use another probe to observe the value at Pin 3 of Chip 1 and Pin 1 of Chip 2
- To test for an short between b1 and b2
 - Probe above pins and Pin 1 of Chip 1 and Pin 3 of Chip 2

Example: A Board With Boundary Scan

- Boundary scan register (BSR)
 - —Formed using boundary scan cells (BSCs)
 - At each input and output pin
 - As well as at control cells of tri-state and bi-directional pins

Example: Testing With Boundary Scan (cont.)

- Probing no longer necessary
 - E.g., an open at the simple receiver of net b1 tested by
 - Scanning in (x, x, x, x, 0, 1, x, 0, x, x, x, x) into BSCs
 - Applying the values scanned in BSCs to corresponding pins
 - Capturing the response from the input pins into corresponding BSCs

Key Issues & History

Key Issues on Boundary Scan

- Basic Concept & Structure
- Digital Boundary Scan (1149.1)
- Boundary Scan for Advanced Networks (1149.6)
- Embedded Core Test Standard (1500)
- Comparison between 1149.1 and 1500

Boundary Scan

- Original objective: <u>board-level</u> <u>digital</u> <u>testing</u>
- Now also apply to:
 - —MCM and FPGA
 - —Analog circuits and high-speed networks
 - Verification, debugging, clock control, power management, chip reconfiguration, etc.
- History:
 - —Mid-1980: JETAG
 - —1988: JTAG
 - —1990: First boundary scan standard 1149.1

Boundary Scan Family

No.	Main target	Status	
1149.1	Digital chips and interconnects among chips	Std. 1149.1-2001	
1149.2	Extended digital serial interface	Discontinue	
1149.3	Direct access testability interface	Discontinue	
1149.4	Mixed-signal test bus	Std. 1149.4-1999	
1149.5	Standard module test and maintenance (MTM) bus	Std. 1149.5-1995 (not endorsed by IEEE since 2003)	
1149.6	High-speed network interface	Std. 1149.6-2003	

Core-Based SOC Design

Digital Boundary Scan – IEEE 1149.1

Digital Boundary Scan – 1149.1

- Basic concepts
- Overall test architecture & operations
- Hardware components
- Instruction register & instruction set
- Boundary scan description language
- On-chip test support
- Board/system-level control architectures

Basic Idea of Boundary Scan

Boundary-scan cell

A Board Containing 4 IC's with Boundary Scan

1149.1 Boundary-Scan Architecture

Hardware Components of 1149.1

- A test access port (TAP) consisting of :
 - —4 mandatory pins: Test data in (TDI), Test data out (TDO), Test mode select (TMS), Test clock (TCK), and
 - —1 optional pin: Test reset (TRST*)
- A test access port controller (TAPC)
- An instruction register (IR)
- Several test data registers
 - A boundary scan register (BSR) consisting of boundary scan cells (BSCs)
 - —A bypass register (BR)
 - —Some optional registers (Device-ID register, designspecified registers such as scan registers, LFSRs for BIST, etc.)

Basic Operations

- 1. Instruction sent (serially) through TDI into instruction register.
- Selected test circuitry configured to respond to the instruction.
- 3. Test pattern shifted into selected data register and applied to logic to be tested
- 4. Test response captured into some data register
- 5. Captured response shifted out; new test pattern shifted in simultaneously
- 6. Steps 3-5 repeated until all test patterns are applied.

Boundary-Scan Circuitry in a Chip

Data Registers

- Boundary scan register: consists of boundary scan cells
- Bypass register: a one-bit register used to pass test signal from a chip when it is not involved in current test operation
- Device-ID register: for the loading of product information (manufacturer, part number, version number, etc.)

MSB 31	28	27	12	11	1	LSB 0
Version		Part		Manufacturer		'1'
		Nun	nber	Ide	ntity	
(4 b	its)	(16	bits)	(11	bits)	(1 bit)

 Other user-specified data registers (scan chains, LFSR for BIST, etc.)

A Typical Boundary-Scan Cell (BSC)

- Four main operation modes
 - 1. Normal: IN \rightarrow OUT (Mode = 0)
 - 2. Shift: TDI $\rightarrow ... \rightarrow$ SI \rightarrow SO $\rightarrow ... \rightarrow$ TDO (ShiftDR = 1, ClockDR)
 - 3. Capture: IN \rightarrow R1, OUT driven by IN or R2 (ShiftDR = 0, ClockDR)
 - 4. Update: $R1 \rightarrow R2 \rightarrow OUT$ (Mode = 1, UpdateDR)

TAP Controller

- Interprets the control inputs applied serially at TMS input (sampled at each rising edge of TCK)
- A finite state machine with 16 states
- Input: TCK, TMS
- Output: 9 or 10 signals, i.e. ClockDR, UpdateDR, ShiftDR, ClockIR, UpdateIR, ShiftIR, Select, Enable, TCK and TRST* (optional).

State Diagram of TAP Controller

Main Functions of TAP Controller

- Providing control signals to
 - —Reset BS circuitry
 - —Load instructions into instruction register
 - —Perform test capture operation
 - —Perform test update operation
 - —Shift test data in and out

States of TAP Controller

- Test-Logic-Reset: normal mode
- Run-Test/Idle: wait for internal test such as BIST
- Select-DR-Scan: initiate a data-scan sequence
- Capture-DR: load test data in parallel
- Shift-DR: load test data in series
- Exit1-DR: finish phase-1 shifting of data
- Pause-DR: temporarily hold the scan operation (e.g., allow the bus master to reload data)
- Exit2-DR: finish phase-2 shifting of data
- Update-DR: parallel load from associated shift registers

More on TAP Controller States

- Test-Logic-Reset state
 - Entered when
 - A chip is powered up, or
 - Five or more consecutive 1s applied at TMS, or
 - 0 applied at TRST* input
 - Disables test logic by initializing IR to the BYPASS instruction
 - Allows system logic to operate normally
- Run-Test/Idle state
 - For most instructions, test logic become idle and system logic operates normally
 - For some instructions, e.g., RUNBIST, self-test is performed on the system logic for a specified number of clocks by applying an appropriate number of 0s at TMS

Operation of Instruction Register

- Instruction register
 - —If instructions n_{IR} -bits long, then register has n_{IR} bits
 - —The bit close to TDO is considered LSB
 - —The multiplexers and D_1 FFs form the shift-register within IR
 - —The D₂ FFs constitute the output stage
 - The contents of the shiftregister can be changed without changing the output

Operation of Instruction Register (cont.)

- In the Shift-IR state of TAP controller
 - ShIR held high and gated clock ClkIR generated to shift in bits from TDI into the shift register
- In the *Capture-IR* state
 - ShIR held low and ClkIR generated to clock 10...0 into the shift register
- In above cases, the instruction at outputs remains unchanged
 - Holds current instruction in place
 - Prevents application of intermediate values in the shift-register as an instruction
- In *Update-IR* state of the TAP controller
 - Clock *UpIR* generated to load the contents of shift-register into the output stage to update the instruction

Operation of Bypass Register

- Bypass register
 - —Mandated by the standard
 - —Used to connect TDI to TDO via a 1-bit connection
 - —Used when
 - This chip is not being tested
 - But other chips or their interconnects might be
 - —When BYPASS instruction at the outputs of IR, in the Shift-DR state of the TAP controller
 - ShBypR is high and ClkBypR generated to shift value from TDI to TDO

Operation of Boundary Scan Register

- Boundary scan register (BSR)
 - Inserted between the on-chip system logic and pad logic at chip pins
 - Used to support the mandatory EXTEST and SAMPLE/PRELOAD instructions and many other optional instructions
 - In this design, the main components are
 - R₁ FFs connected to form a shift register
 - M_1 multiplexers control whether normal or scan data loaded into R_1 FFs
 - R_2 FFs hold the test data applied by the register (similar to the output stage of IR)
 - Hence the shift register within can capture response and/or scanout/scan-in data without changing the values at the output stage
 - M_2 multiplexers control whether the normal values or values at the output stage of BSR applied $_{
 m SO}$

Examples of Mode of Operations

Example Configuration

- Input: x1
- Output: z1 and z2
- Number of boundary scan cells: 3

Cell 1

Normal Mode

- 0 applied at ModeBSR
 - The value at *NormalIn* appears at *NormalOut*
 - That is, the system logic operates in normal mode
- Gated clocks ClkBSR and UpBSR disabled
- The value at ShBSR does not affect operation

Normal-Sample Mode

- 0 applied at ModeBSR
 - The value at NormalIn appears at NormalOut
 - That is, the system logic operates in normal mode
- Gated clock *UpBSR* disabled
- 0 applied at ShBSR
- One clock pulse applied to ClkBSR to capture the values at NormalIn into the corresponding D₁ FFs
 - This clock synchronized with system clock that controls data at *NormalIn* inputs
 - This occurs only when TAP controller in Capture-DR state

Normal-Scan Mode

- 0 applied at ModeBSR
 - The value at NormalIn appears at NormalOut
 - That is, the system logic operates in normal mode
- Gated clock *UpBSR* disabled
- 1 applied at *ShBSR*
- A sequence of clock pulses applied to ClkBSR to
 - Scan out any response previously captured in D_1 FFs
 - Scan in appropriate values into D₁ FFs from TDI
 - This occurs only when TAP controller in Shift-DR state

Normal-Preload Mode

- 0 applied at ModeBSR
 - The value at *NormalIn* appears at *NormalOut*
 - That is, the system logic operates in normal mode
- ClkBSR held inactive, ShBSR unimportant
- One clock pulse applied at *UpBSR*
 - To load the data currently held in D_1 FFs into corresponding D_2 FFs
 - This occurs only when
 TAP controller in *Update-DR* state

Test-Capture Mode

- 1 applied at ModeBSR
 - Values at D₂ FFs appear
 at NormalOut
 - That is, the system logic operates in test mode
- Gated clock *UpBSR* disabled
- 0 applied at ShBSR
- One clock pulse applied to ClkBSR to capture the values at NormalIn into the corresponding D₁
 FFs
 - This occurs only when
 TAP controller in Capture-DR state

Cell 1

Test-Scan Mode

- 1 applied at ModeBSR
 - Values at D₂ FFs appear at NormalOut
 - That is, the system logic operates in test mode
- UpBSR held inactive
- 1 applied at ShBSR
- A sequence of clock pulses applied to ClkBSR to
 - Scan out any response previously captured in D₁
 - Scan in appropriate values into D₁ FFs from TDI
 - This occurs only when TAP controller in Shift-DR state

Test-Update Mode

- 1 applied at ModeBSR
 - Values at D₂ FFs appear
 at NormalOut
 - That is, the system logic operates in test mode
- ClkBSR held inactive, ShBSR unimportant
- One clock pulse applied at *UpBSR*
 - To load the data currently held in D_1 FFs into corresponding D_2 FFs
 - This occurs only when
 TAP controller in *Update-DR* state

Instruction Set - IEEE 1149.1

Instruction Set

- BYPASS
 - Bypass data through a chip
- SAMPLE
 - Sample (<u>capture</u>) test data into BSR
- PRELOAD
 - Shift-in test data and update BSR
- EXTEST
 - Test interconnection between chips of board
- Optional
 - INTEST, RUNBIST, CLAMP, IDCODE, USERCODE, HIGH-Z, etc.

SAMPLE/PRELOAD (internal logic remains in its functional mode

About Optional Instructions

- INTEST: Selects the boundary scan registers preparatory to applying tests to the internal logic of device.
- RUNBIST: Targets a self-test result register between TDI and TDO which holds the pass/fail result in BIST test.
- **IDCODE**: Selects ID registers between TDI and TDO, preparatory to loading the internally-held 32-bit identification code and reading it out through TDO.
- **USERCODE**: Selects the same 32-bit ID register but allows an alternative 32-bits of identity data to be loaded and serially shifted out. This is used for dual-personality devices (e.g. code indicates the way a device like PLD/FPGAs programmed).
- CLAMP: Works like a preload that is followed by bypass. It is used to set up safe guarding values on the outputs of certain devices in order to avoid bus contention problems.
- **HIGH-Z**: Similar to Clamp, but it leaves the device output pins in a high-Z state rather than drive fixed logic 1 or 0 values. Similar to Clamp, it also selects the bypass register.

Execution of BYPASS Instruction

Execution of EXTEST Instruction (1/3)

Shift-DR (Chip1)

Execution of EXTEST Instruction (2/3)

- Update-DR (Chip1)
- Capture-DR (Chip2)

Execution of EXTEST Instruction (3/3)

Shift-DR (Chip2)

Execution of INTEST Instruction (1/4)

Shift-DR

Execution of INTEST Instruction (2/4)

Update-DR

Execution of INTEST Instruction (3/4)

Capture-DR

Execution of INTEST Instruction (4/4)

Shift-DR

