MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 5th February 2018 D1 - Lecture 14

Random Attendance

1	170050004	Yash Ajitbhai Parmar
2	170050014	Ansh Verma
3	170050015	Akhilesh Vinay Ganeshkar
4	170050017	Nikhil Rangnath Chavanke
5	170050037	Anurag Kumar
6	170050038	Shubham Atri
7	170050058	Kalpit Veerwal
8	170050081	Doddi Sailendra Bathi Babu
9	170050083	Bonela Mahith
10	170070024	Saksham Khandelwal
1	170070028	Navneet Prabhat
12	170070060	Vishwas Bharti
13	17D070012	Naman Rajesh Narang Absent
14	17D070028	Tavish Mina
15	17D070055	Agulla Surya Bharath
16	17D070060	Malladi Sree Aditya
17	17D070051	Botcha Ritesh Sadwik
18	17D070052	Etcherla Harshavardhan

Summary: Linear transformations

Let $T: V \to W$ be linear.

- The nullspace of T, N(T), is a subspace of V. Its range, C(T) is a subspace of W.
- T is one-one $\Leftrightarrow N(T) = 0$, and T is onto $\Leftrightarrow C(T) = W$. In particular, T is an isomorphism $\Leftrightarrow N(T) = 0$ and C(T) = W.
- If $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis of V, and $v = a_1v_1 + \cdots + a_nv_n$, then $T(v) = a_1 T(v_1) + \cdots + a_n T(v_n)$. Thus,

T is determined by its action on a basis.

In particular, $T: V \to \mathbb{R}^n$ defined by $T(v_i) = e_i$, i.e., $T(v) = [v]_{\mathcal{B}}$, is an isomorphism. Thus, if dim (V) = n, then $V \simeq \mathbb{R}^n$.

•. Given $A \in \mathcal{M}_{m \times n}$, and T(x) = Ax defines a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$. Conversely, if $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then T(x) = Ax, where $A = (T(e_1) \cdots T(e_n)) \in \mathcal{M}_{m \times n}$, the standard matrix of T.

Matrix Associated to a Linear Map: Example

 $S: \mathcal{P}_2 \to \mathcal{P}_1$ given by $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$ is linear.

Question: Is there a matrix associated to S?

Expected size: 2×3 . Why?

IDEA: Construct an associated linear map $\mathbb{R}^3 \to \mathbb{R}^2$.

Use coordinate vectors! Fix bases $\mathcal{B} = \{1, x, x^2\}$ of \mathcal{P}_2 , and $\mathcal{C} = \{1, x\}$ of \mathcal{P}_1 to do this.

Identify $f = a_0 + a_1 x + a_2 x^2 \in \mathcal{P}_2$ with $[f]_{\mathcal{B}} = (a_0, a_1, a_2)^T \in \mathbb{R}^3$, and $S(f) \in \mathcal{P}_1$ with $[S(f)]_{\mathcal{C}} = (a_1, 4a_2)^T \in \mathbb{R}^2$.

The associated linear map $\mathcal{S}':\mathbb{R}^3\to\mathbb{R}^2$ is defined by

$$S'(a_0, a_1, a_2)^T = (a_1, 4a_2)^T$$
, i.e., $S'([f]_B) = [S(f)]_C$, i.e., $S'(a_1, a_2)^T = (a_1, 4a_2)^T$, $S'(a_1, a_2)^T = (a_1, 4a_2)^T$, $S'(a_1, a_2)^T = (a_1, 4a_2)^T$, i.e., $S'(a_1, a_2)^T = (a_1$

S' is defined by
$$S'(e_1) = (0,0)^T$$
, $S'(e_2) = (1,0)^T$, $S'(e_3) = (0,4)^T \Rightarrow (0,1,0)^T$

the standard matrix of S' is $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

Q: How is A related to S?

Observe:
$$A_{*1} = [S(1)]_{\mathcal{C}}, A_{*2} = [S(x)]_{\mathcal{C}}, A_{*3} = [S(x^2)]_{\mathcal{C}}.$$

Matrix Associated to a Linear Map

Example: The matrix of $S(a_0 + a_1x + a_2x^2) = a_1 + 4a_2x$, w.r.t. the bases $\mathcal{B} = \{1, x, x^2\}$ of \mathcal{P}_2 and $\mathcal{C} = \{1, x\}$ of \mathcal{P}_1 is A =

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \text{ and } \boxed{A_{*1} = [S(1)]_{\mathcal{C}}, A_{*2} = [S(x)]_{\mathcal{C}}, A_{*3} = [S(x^2)]_{\mathcal{C}}.}$$

General Case: If $T: V \to W$ is linear, then the matrix of T w.r.t. the ordered bases $\mathcal{B} = \{v_1, \dots, v_n\}$ of V, and $\mathcal{C} = \{w_1, \dots, w_m\}$ of W, denoted $[T]_{\mathcal{C}}^{\mathcal{B}}$, is

$$A = \big([T(v_1)]_{\mathcal{C}} \ \cdots \ [T(v_n)]_{\mathcal{C}}\big) \in \mathcal{M}_{m \times n}.$$

Example: Projection onto the line $x_1 = x_2$

$$P\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{x_1 + x_2}{2} \\ \frac{x_1 + x_2}{2} \end{pmatrix}$$
 has standard matrix $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$.

This is the matrix of P w.r.t. the standard basis.

Q: What is $[P]_{\mathcal{B}}^{\mathcal{B}}$ where $\mathcal{B} = \{(1,1)^T, (-1,1)^T\}$?

Conclusion: The matrix of a transformation depends on the chosen basis. Some are better than others!

Determinant: Introduction

Invertible. Very often we are interested in knowing when a matrix is invertible. Consider a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then A is invertible if and only if A has full rank.

If a, c both are zero then clearly rank(A) $< 2 \Rightarrow A$ is not invertible. Assume $a \neq 0$, else, interchange rows.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{R_2 - c/aR_1} \begin{bmatrix} a & b \\ 0 & d - cb/a \end{bmatrix}$$

A is invertible if and only if $d - cb/a \neq 0$, i.e., $ad - bc \neq 0$.

AREA: The area of the parallelogram with sides as vectors v = (a, b) and w = (c, d) is equal to ad - bc.

Thus, a 2×2 matrix A is singular \Leftrightarrow its columns are on the same line \Leftrightarrow the area is zero.

Determinant: Introduction

- Test for invertibility: An $n \times n$ matrix A is invertible $\Leftrightarrow \det(A) \neq 0$.
- *n*-dimensional volume: If *A* is $n \times n$, then $|\det(A)| =$ the volume of the box (in *n*-dimensional space \mathbb{R}^n) with edges as rows of *A*.

Examples: (1) The volume (area) of a line in $\mathbb{R}^2 = 0$.

- (2) The determinant of the matrix $A = \begin{pmatrix} 1 & 2 \\ 1 & -2 \end{pmatrix}$ is $\boxed{-4}$.
- (3) Let's compute the volume of the box (parallelogram) with edges as rows of A or columns of A.

= 4

Determinants: Defining Properties

The determinant function

$$\det: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$$

can be defined (uniquely) by its three basic properties.

- **1** \mathbf{O} $\det(I) = 1$.
- The sign of determinant is reversed by a row exchange. Thus, if $B = P_{ii}A$, i.e., B is obtained from A by exchanging two rows, then det(B) = -det(A). In particular, $det(I) = 1 \Rightarrow det(P_{ii}) = -1$.
- det is linear in each row separately, i.e., we fix n-1 row vectors, say v_2, \dots, v_n , then $\det \begin{pmatrix} -v_2 & \cdots & v_n \end{pmatrix}^T : \mathbb{R}^n \to \mathbb{R}$ is a linear function. i.e., for c, d in \mathbb{R} , and vectors u and v, if $A_{1*} = cu + dv$, we have $\det (cu + dv \quad A_{2*} \quad \cdots \quad A_{n*})^T$ $= c \det (u A_{2*} \cdots A_{n*})^T + d \det (v A_{2*} \cdots A_{n*})^T.$ There are *n* such equations (for *n* choices of rows).

Determinants: Induced Properties

• If B and C are $n \times n$, then det(B + C) = det(B) + det(C). False. Find examples.

Exercise: In the 2 \times 2 case, det(B+C)

$$=\det(B)+\det\begin{pmatrix}B_{1*}\\C_{2*}\end{pmatrix}+\det\begin{pmatrix}C_{1*}\\B_{2*}\end{pmatrix}+\det(C).$$

- ② For a real number c, det(cB) = c det(B) (False)
 - **Exercise:** If *B* is $n \times n$, then $det(cB) = c^n det(B)$.
- ③ If two rows of A are equal, then det(A) = 0. Proof. Suppose i-th and j-th rows of A are equal, i.e., $A_{i*} = A_{j*}$, then $A = P_{ij}A$.
 - Hence $\det(A) = \det(P_{ij}A) = -\det(A) \Rightarrow \boxed{\det(A) = 0}$.

Determinants and Row Operations

4. If *B* is obtained from *A* by $R_i \mapsto R_i + aR_j$, then det(B) = det(A).

Proof: Note that
$$B=E_{ij}(a)A=\begin{pmatrix} \vdots \\ A_{j*}+aA_{j*} \\ \vdots \\ A_{j*} \\ \vdots \end{pmatrix}$$
 ith row
$$\vdots$$
 Then
$$jth \ row$$

$$\vdots$$

$$det(B)=\det\begin{pmatrix} \vdots \\ A_{i*}+aA_{j*} \\ \vdots \\ A_{j*} \\ \vdots \\ \vdots \end{pmatrix} =\det(A)+\det\begin{pmatrix} \vdots \\ aA_{j*} \\ \vdots \\ A_{j*} \\ \vdots \\ \vdots \end{pmatrix} =\det(A).$$

In particular, $\det(E_{ii}(a)) = 1$. Why?

Determinants and Row Operations

5. If A is $n \times n$, and its row echelon form U is obtained without row exchanges, then det(U) = det(A).

Q: What happens if there are row exchanges? Exercise!

6. If A has a zero row, then det(A) = 0.

Proof: Let the *i*th row of *A* be zero, i.e., $A_{i*} = 0$.

Let *B* be obtained from *A* by $R_i = R_i + R_j$, i.e., $B = E_{ij}(1)A$.

Then $B_{i*} = B_{j*}$.

Exercise: Complete the proof.

Determinants of Special Matrices

- 7. If $A = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix}$ is diagonal, then $\det(A) = a_1 \cdots a_n$. (Use linearity).
- 8. If $A = (a_{ij})$ is triangular, then $det(A) = a_{11} \dots a_{nn}$.

 Proof. If all a_{ii} are non-zero, then by elementary row operations, A reduces to the diagonal matrix $\begin{pmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{pmatrix}$ whose

determinant is $a_{11} \cdots a_{nn}$.

If at least one diagonal entry is zero, then elimination will produce a zero row \Rightarrow det(A) = 0.

Determinants and Products

9. If A and B are $n \times n$, then $\det(AB) = \det(A) \det(B)$.

Example 1: If *B* is obtained from *A* by interchanging the *i*th and *j*th row, then det(B) = -det(A).

In this case, $B = P_{ij}A$. Since $det(P_{ij}) = -1$, observe that $det(P_{ij}A) = det(P_{ij})det(A)$.

Example 2: If *B* is obtained from *A* by the row operation $R_i \mapsto R_i + aR_j$, then det(B) = det(A).

In this case, $B = E_{ij}(a)A$. Since $det(E_{ij}(a)) = 1$, we see that $det(E_{ij}(a)A) = det(E_{ij}(a))det(A)$.

Extra Reading: det(AB) = det(A) det(B)

$$det(AB) = det(A) det(B)$$

We may assume that *B* are invertible. Else, $rank(AB) \le rankB \ne n$ $\implies rank(AB) \ne n \implies AB$ is not invertible.

Hint: For fixed B, show that the function d defined by

$$d(A) = \det(AB)/\det(B)$$

satisfies the following properties

- 0 d(I) = 1.
- If we interchange two rows of A, then d changes its sign.
- 3 d is a linear function in each row of A.

Then d is the unique determinant function det and

$$det(AB) = det(A) det(B)$$