erit ergo proxime $z = \frac{1681.45}{2408.60} = \frac{1681.3}{2408.4} = \frac{5043}{9632} = 0,52356$: XVII

At ex proportione Peripheriæ ad Diametrum cognita debebat

esse z = 0,523598, ita ut radix inventa tantum parte $\frac{3}{100000}$ a vero discrepet. Hoc autem in hac æquatione commode usu

venit, quod ejus omnes radices sint reales, atque a minima

reliquæ satis notabiliter discrepent. Quæ conditio cum rarissime in æquationibus infinitis locum habeat, huic methodo ad

eas resolvendas parum usus relinquitur.

C A P U T X VIII.

De fractionibus continuis.

Joniam in præcedentibus Capitibus plura, cum de Seriebus infinitis, tum de productis ex infinitis Factoribus conflatis disserui, non incongruum fore visum est, si etiam nonnulla de tertio quodam expressionum infinitarum genere addidero, quod continuis fractionibus vel divisionibus continetur. Quanquam enim hoc genus parum adhuc est excultum, tamen non dubitamus, quin ex eo amplissimus usus in analysin infinitorum aliquando sit redundaturus. Exhibui enim jam aliquoties ejusmodi specimina, quibus hæc expectatio non parum probabilis redditur. Imprimis vero ad ipsam Arithmeticam & Algebram communem non contemnenda subsidia affert ista speculatio, quæ hoc Capite breviter indicare atque exponere constitui.

357. Fractionem autem continuam voco ejusmodi fractionem, cujus denominator constat ex numero integro cum fractione, cujus denominator denuo est aggregatum ex integro & fractione, quæ porro simili modo sit comparata, sive ista affectio in infinitum progrediatur sive alicubi sistatur. Hujusmodi ergo fractio continua erit sequens expressio

LIB. I.
$$a + \frac{1}{b+} \frac{1}{c+} \frac{1}{d+} \frac{1}{e+} \frac{1}{f+} & \text{vel } a + \frac{\alpha}{b+} \frac{c}{c+} \frac{\gamma}{d+} \frac{\sigma}{e+} \frac{\varepsilon}{f+} & \text{c.},$$

in quarum forma priori omnes fractionum numeratores sunt unitates, quam potissimum hie contemplabor, in altera vero for-

ma sunt numeratores numeri quicunque.

358. Exposita ergo fractionum harum continuarum forma, primum videndum est, quemadmodum earum significatio consueto more expressa inveniri queat. Quæ ut facilius inveniri possit, progrediamur per gradus, abrumpendo illas fractiones primo in prima, tum in secunda, post in tertia & ita porro fractione; quo sacto patebit fore

$$a + \frac{\mathbf{I}}{b} = \frac{ab + \mathbf{I}}{b}$$

$$a + \frac{\mathbf{I}}{b + \frac{\mathbf{I}}{c}} = \frac{abc + a + c}{bc + \mathbf{I}}$$

$$a + \frac{\mathbf{I}}{b + \frac{\mathbf{I}}{c + \frac{\mathbf{I}}{d}}} = \frac{abcd + ab + ad + cd + \mathbf{I}}{bcd + b + d}$$

$$a + \frac{\mathbf{I}}{b + \frac{\mathbf{I}}{c + \frac{\mathbf{I}}{d}}} = \frac{abcde + abe + ade + cde + abc + a + c + e}{bcde + be + de + bc + \mathbf{I}}$$
&c.

359. Etsi in his fractionibus ordinariis non facile lex, secundum quam numerator ac denominator ex litteris a, b, c, d, &c., componantur, perspicitur, tamen attendenti statim patebit, quemadmodum quælibet fractio ex præcedentibus formari queat. Quilibet enim numerator est aggregatum ex numeratore ultimo per novam litteram multiplicato, & ex numeratore

meratore penultimo simplici: eademque lex in denominatori- CAP. bus observatur. Scriptis ergo ordine litteris a, b, c, d, &c., XVIII. ex iis fractiones inventæ facile formabuntur hoc modo

ubi quilibet numerator invenitur, si præcedentium ultimus per indicem supra scriptum multiplicetur atque ad productum antepenultimus addatur; quæ eadem lex pro denominatoribus valet. Quo autem hac lege ab ipso initio uti liceat, præsixi fractionem $\frac{1}{0}$ quæ, etiamsi e fractione continua non oriatur, tamen progressionis legem clariorem essicit. Quælibet autem fractio exhibet valorem fractionis continuæ usque ad eam litteram, quæ antecedenti imminet, inclusive continuata.

360. Simili modo altera fractionum continuarum forma

$$a + \frac{\alpha}{b + \frac{c}{c + \gamma}} + \frac{\beta}{d + \frac{c}{c + \frac{c}{f + \&c.}}}$$

dabit, prout aliis aliisque locis abrumpitur, sequentes valores

$$a + \frac{\alpha}{b} = \frac{ab + \alpha}{b}$$

$$a + \frac{\alpha}{b + \frac{6}{c}} = \frac{abc + 6a + \alpha c}{bc + 6}$$

$$a + \frac{\alpha}{b + \frac{6}{c + \frac{\gamma}{d}}} = \frac{abcd + 6ad + \alpha cd + \gamma ab + \alpha \gamma}{bcd + 6d + \gamma b}$$
&c.,

Euleri Introduct. in Anal. infin. parv.

Pр

quatum

LIB. I. quarum fractionum quæque ex binis præcedentibus sequentem in modum invenietur

$$\frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{d} \quad \frac{d}{d} \quad \frac{e}{bc}$$

$$\frac{1}{c}; \quad \frac{a}{b}; \quad \frac{ab + \alpha}{b}; \quad \frac{abc + 6a + \alpha c}{bc + 6}; \quad \frac{abcd + 6ad + \alpha cd + \gamma ab + \alpha \gamma}{bc + 6d + \gamma b}$$

$$\alpha \quad 6 \quad \gamma \quad \delta$$

361. Fractionibus scilicet formandis supra inscribantur indices a, b, c, d, &c., instra autem subscribantur indices α , δ , γ , &c.. Prima fractio iterum constituatur $\frac{1}{0}$. secunda

numerator per indicem supra scriptum, penultimæ vero numerator per indicem infra scriptum multiplicetur & ambo producta addantur, aggregatum erit numerator fractionis sequentis: simili modo ejus denominator erit aggregatum ex ultimo denominatore per indicem supra scriptum, & ex penultimo denominatore per indicem supra scriptum, aggregatum ex ultimo denominatore per indicem supra scriptum multiplicatis. Quælibet vero fractio hoc modo inventa præbebit valorem fractionis continuæ ad eum usque denominatorem, qui fractioni antecedenti est inscriptus, continuatæ inclusive.

quoad fractio continua indices suppeditet, tum ultima fractio verum dabit valorem fractionis continua. Præcedentes fractiones vero continuo propius ad hunc valorem accedent, ideoque perquam idoneam appropinquationem suggerent. Ponamus enim verum valorem fractionis continuæ

$$a + \frac{\alpha}{b + \frac{c}{c + 2}} + \frac{e}{e + 8cc.}, \text{ effe} = x$$

atque manisestum est fractionem primam - esse majorem quam

quam x; secunda vero $\frac{a}{1}$ minor erit quam x; tertia $a + \frac{\alpha}{b} \frac{C_{AP}}{XVIII}$. iterum vero valore erit major; quarta denuo minor, atque ita porro hæ fractiones alternatim erunt majores & minores quam x. Porro autem perspicuum est quamlibet fractionem propius accedere ad verum valorem x quam ulla præcedentium; unde hoc pacto citissime & commodissime valor ipsius x proxime obtinetur; etiamsi fractio continua in infinitum progrediatur, dummodo numeratores α , β , γ , δ , &c., non nimis crescant; sin autem omnes isti numeratores suerint unitates, tum appropinquatio nulli incommodo est obnoxia.

363. Quo ratio hujus appropinquationis ad verum fractionis continuæ valorem melius percipiatur, consideremus fractionum inventarum differentias. Ac, prima quidem $\frac{1}{0}$ prætermissa, differentia inter secundam ac tertiam est $=\frac{\alpha}{b}$; quarta a tertia subtracta relinquit $\frac{\alpha c}{b(bc+c)}$; quarta a quinta subtracta relinquit $\frac{\alpha c}{(bc+c)(bcd+cd+\gamma)}$, &c.. Hinc exprimetur valor fractionis continuæ per Seriem terminorum consuetam hoc modo, ut sit

$$x = a + \frac{\alpha}{b} - \frac{\alpha c}{b(bc+c)} + \frac{ac\gamma}{(bc+c)(bcd+cd+\gamma b)} - &c.,$$

quæ Series toties abrumpitur quoties fractio continua non in infinitum progreditur.

364. Modum ergo invenimus fractionem continuam quamcunque in Seriem terminorum, quorum signa alternantur, convertendi, si quidem prima littera a evanescat. Si enim suerit 300

LIB. I.

$$x = \frac{\alpha}{b + \frac{\varepsilon}{c + \frac{\gamma}{d + \frac{\varepsilon}{c + \frac{\varepsilon}{f + &c.}}}}$$

erit per ea, quæ modo invenimus,

$$x = \frac{\alpha}{b} - \frac{\alpha G}{b(bc+G)} + \frac{\alpha G\gamma}{(bc+G)(bcd+Gd+\gamma b)} - \frac{\alpha G\gamma \delta}{(bcd+Gd+\gamma b)(bcde+Gde+\gamma be+\delta bc+G\delta)} + &c...$$

Unde, si a, 6, γ , δ , &c. fuerint numeri non crescentes, uti omnes unitates, denominatores vero a, b, c, d, &c. numeri integri quicunque affirmativi, valor fractionis continuæ exprimetur per Seriem terminorum maxime convergentem.

365. His probe consideratis, poterit vicissim Series quæcunque terminorum alternantium in fractionem continuam converti, seu fractio continua inveniri cujus valor æqualis sit summæ Seriei propositæ. Sit enim proposita hæc Series

$$x = A - B + C - D + E - F + &c.$$

erit, singulis terminis cum Serie ex fractione continua orta comparandis

$$A = \frac{\alpha}{b}; \quad \text{hincque } \alpha = Ab,$$

$$\frac{B}{A} = \frac{6}{bc + 6}; \quad \text{unde fit } 6 = \frac{Bbc}{A - B}$$

$$\frac{C}{B} = \frac{\gamma b}{bcd + 6d + \gamma b}; \quad \gamma = \frac{Cd(bc + 6)}{b(B - C)}$$

$$\frac{D}{C} = \frac{\delta(bc + 6)}{bcd + 6de + \gamma be + \delta bc + 6\delta}; \quad \delta = \frac{De(bcd + 6d + \gamma b)}{(bc + 6)(C - D)}$$
&c..

Ar, cum sit
$$\xi = \frac{Bbc}{A-B}$$
, erit $bc + \xi = \frac{Abc}{A-B}$; unde

$$\gamma = \frac{ACcd}{(A-B)(B-C)}. \text{ Porro fit } bcd + 6d + \gamma b = \frac{C \text{ A P.}}{X \text{ VIII.}}$$

$$(bc+6)d+\gamma b = \frac{Abcd}{A-B} + \frac{ACbcd}{(A-B)(B-C)} = \frac{ABbcd}{(A-B)(B-C)},$$

$$\text{unde erit } \frac{bcd+6d+\gamma b}{bc+6} = \frac{Bd}{B-C} & \delta = \frac{BDde}{(B-C)(C-D)};$$

$$\text{fimili modo reperietur } \epsilon = \frac{CEef}{(C-D)(D-E)} & \text{ ita porro.}$$

$$366. \text{ Quo ifta lex .clarius appareat, ponamus esse}$$

$$P = b$$

$$Q = bc + 6$$

$$R = bcd + 6d + \gamma b$$

$$S = bcde + 6de + \gamma be + \delta bc + 6\delta$$

$$T = bcdef + &c.$$

$$V = bcdefg + &c.,$$

erit ex lege harum expressionum

$$Q = Pc + 6$$

$$R = Qd + \gamma P$$

$$S = Re + \delta Q$$

$$T = Sf + \epsilon R$$

$$V = Tg + \xi S$$

Cum igitur his adhibendis litteris sit

$$x = \frac{\alpha}{P} - \frac{\alpha C}{PQ} + \frac{\alpha C \gamma}{QR} - \frac{\alpha C \gamma \delta}{RS} + \frac{\alpha C \gamma \delta \varepsilon}{ST} - \&c.,$$
367. Quoniam ergo ponimus esse
$$x = A - B + C - D + E - F + \&c.,$$
erit

$$A=\frac{\alpha}{P}$$
; $\alpha==AP$

$$P p 3 \frac{B}{A}$$

DE FRACTIONIBUS

LIB. I.

$$\frac{B}{A} = \frac{G}{Q}; \quad G = \frac{BQ}{A}$$

$$\frac{C}{B} = \frac{\gamma^{P}}{R}; \quad \gamma = \frac{CR}{BP}$$

$$\frac{D}{C} = \frac{\partial Q}{S}; \quad \delta = \frac{DS}{CQ}$$

$$\frac{E}{D} = \frac{\varepsilon R}{T}; \quad \varepsilon = \frac{ET}{DR}$$
&c.

Porro vero differentiis sumendis habebitur

$$A - B = \frac{\alpha(Q - G)}{PQ} = \frac{\alpha C}{Q} = \frac{APC}{Q}$$

$$B - C = \frac{\alpha G(R - \gamma P)}{PQR} = \frac{\alpha Gd}{PR} = \frac{BQdo}{R}$$

$$C - D = \frac{\alpha G\gamma(S - JQ)}{QRS} = \frac{\alpha G\gamma^e}{QS} = \frac{CRe}{S}$$

$$D - E = \frac{\alpha G\gamma J(T - \epsilon R)}{RST} = \frac{\alpha G\gamma Jf}{RT} = \frac{DSf}{T},$$
&c. &c. &c.

Si bini igitur in se invicem ducantur, siet

$$(A-B)(B-C) = ABcd. \frac{P}{R}; & \frac{R}{P} = \frac{ABcd}{(A-B)(B-C)}$$

$$(B-C)(C-D) = BCde. \frac{Q}{S}; & \frac{S}{Q} = \frac{BCed}{(B-C)(C-D)}$$

$$(C-D)(D-E) = CDef. \frac{R}{T}; & \frac{T}{R} = \frac{CDef}{(C-D)(D-E)}$$

$$& & & & \\$$

$$\delta = \frac{BDde}{(B-C)(C-D)}$$

$$\varepsilon = \frac{CEef}{(C-D)(D-E)}$$
&c..

CAP. XVIII.

368. Inventis ergo valoribus numeratorum α , 6, γ , δ , &c., denominatores b, c, d, e, &c., arbitrio nostro relinquuntur: ita autem eos assumi convenit, ut, cum ipsi sint numeri integri, tum valores integros pro α , 6, γ , δ , &c., exhibeant. Hoc vero pendet quoque a natura numerorum A, B, C, &c., utrum sint integri an fracti. Ponamus esse numeros integros, atque quæsito satisfiet statuendo

$$b = 1$$
 $c = A - B$
 $d = B - C$ unde fit
 $c = C - D$
 $c = C - D$

x = A - B + C - D + E - F + &c.

idem ipsius x valor per fractionem continuam ita exprimi poterit, ut sit

$$x = \frac{A}{1 + \frac{B}{A - B + \frac{AC}{B - C + \frac{BD}{C - D + \frac{CE}{D - E + &c}}}}$$

369. Sin autem omnes termini Seriei sint numeri fracti, ita ut suerit

$$x = \frac{1}{A} - \frac{1}{B} + \frac{1}{C} - \frac{1}{D} + \frac{1}{E} - \&c.,$$

habebuntur pro a, 6, y, I, &c., sequentes valores

LIB. I.
$$\alpha = \frac{b}{A}$$
; $c = \frac{Abc}{B-A}$; $\gamma = \frac{B^2cd}{(B-A)(C-B)}$; $\delta = \frac{C^2de}{(C-B)(D-C)}$; $\epsilon = \frac{D^2ef}{(D-C)(E-D)}$; &c...

Ponatur ergo ut sequitur

$$b = A;$$
 $c = B - A;$
 $d = C - B;$
 $c = D - C;$
 $a = 1$
 $c = AA$
 $c = AA$
 $c = BB$
 $c = CC$

eritque per fractionem continuam

$$x = \frac{\mathbf{I}}{A + \frac{AA}{B - A + \frac{BB}{C - B + \frac{CC}{D - C + &c.}}}$$

EXEMPLUM I.

Transformetur hac Series infinita

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \&c.$$

in fractionem continuam.

Erit ergo A = 1, B = 2, C = 3, D = 4, &c., atque, cum Seriei propositz valor sit $= l_2$, erit

$$l_2 = \frac{1}{1 + \frac{1}{1 + \frac{4}{1 + \frac{16}{1 + \frac{25}{1 + &c}}}}$$

EXEMPLUM II.

Transformetur hac Series infinita

305

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \&c.,$$

C A P. XVIII.

ubi a denotat peripheriam circuli, cujus diameter == 1, in fra-Etionem continuam.

Substitutis loco A, B, C, D, &c., numeris 1, 3, 5, 7, &c., orietur

$$\frac{\pi}{4} = \frac{1}{1 + \frac{1}{2 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + 8c.}}}}$$

hincque, invertendo fractionem, erit

$$\frac{4}{\pi} = 1 + \frac{1}{2 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + &c.}}}}$$

quæ est expressio, quam BROUNCKERUs primum pro quadratura circuli protulit.

EXEMPLUM III.

Sit proposita ista Series infinita

$$x = \frac{1}{m} - \frac{1}{m+n} + \frac{1}{m+2n} - \frac{1}{m+3n} + &c.$$

quæ, ob A = m; B = m + n; C = m + 2n; &c., in hanc fractionem continuam mutatur

$$x = \frac{1}{m + \frac{mm}{n + (m + n)^2} (m + 2n)^2} \frac{(m + 3n)^2}{n + \frac{m + 3n}{n + &c}}$$

ex qua fit, invertendo,

Euleri Introduct. in Anal. infin. parv. Q

LIB.I.
$$\frac{1}{x} - m = \frac{mm}{n + \frac{(m+n)^2}{n + \frac{(m+2n)^2}{n + &c}}} \frac{(m+2n)^2}{n + &c}$$

EXEMPLUM IV.

Quoniam, supra §. 178., invenimus esse

$$\frac{\pi \cos\left(\frac{m\pi}{n}\right)}{n \sin\left(\frac{m\pi}{n}\right)} = \frac{1}{m} - \frac{1}{n-m} + \frac{1}{n+m} - \frac{1}{2n-m} + \frac{1}{2n+m}$$
&c.,

erit, pro fractione continuanda, A = m; B = n - m; C = n + m; D = 2n - m; &c., unde fiet

$$\frac{\pi \ cof. \frac{m \pi}{n}}{n} = \frac{1}{m + \frac{m m}{n - 2m + \frac{(n - m)^2}{n} - 2m + \frac{(2n - m)^2}{n - 2m + \frac{(2n + m)^2}{n}}}$$

370. Si Series proposita per continuos Factores progrediatur, ut sit

$$x = \frac{1}{A} - \frac{1}{AB} + \frac{1}{ABC} - \frac{1}{ABCD} + \frac{1}{ABCDE} - &c.,$$

tum prodibunt sequentes determinationes

$$a = \frac{b}{A}; 6 = \frac{bc}{B-1}; \gamma = \frac{Bcd}{(B-1)(C-1)};$$

$$d = \frac{Cde}{(C-1)(D-1)}; \epsilon = \frac{Def}{(D-1)(E-1)}; &c.$$

fiat ergo ut sequitur,

$$b = A;$$
 $c = B - 1;$
 $d = C - 1;$
 $e = D - 1;$
 $d = C$
 $f = E - 1;$
 $a = 1$
 $c = A$
 $c = A$

unde consequenter siet

$$x = \frac{1}{A + \frac{A}{B - 1 + \frac{B}{C - 1 + \frac{C}{D - 1 + \frac{B}{E - 1 + &c}}}} \frac{C}{D - 1 + \frac{D}{E - 1 + &c}}$$

EXEMPLUM I.

Quoniam, posito e numero cujus Logarithmus est = 1, supra invenimus esse

$$\frac{1}{e} = 1 - \frac{1}{1} + \frac{1}{1 \cdot 2} - \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} - \&c.,$$
feu
$$1 - \frac{1}{e} = \frac{1}{1} - \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \&c.,$$

hæc Series in fractionem continuam convertetur ponendo A = 1, B = 2, C = 3, D = 4, &c.: quo ergo facto habebitur

habebitur
$$1 - \frac{1}{c} = \frac{1}{1 + \frac{1}{1 + 2}} + \frac{3}{3 + \frac{4}{4 + \frac{5}{5 + 2c}}},$$

unde, asymmetria initio rejecta, erit

$$\frac{1}{1 - 1} = \frac{1}{1 + \frac{2}{2 + \frac{3}{3 + \frac{4}{4 + \frac{5}{5 + &c.}}}}$$

$$Q q 2 \qquad EXEM-$$

LIB. I.

EXEMPLUM II.

Invenimus quoque arcus, qui radio æqualis sumitur, cosinum esse = $1 - \frac{1}{2} + \frac{1}{2 \cdot 12} - \frac{1}{2 \cdot 12 \cdot 30} + \frac{1}{2 \cdot 12 \cdot 30 \cdot 56}$ &c.. Si ergo fiat A = 1, B = 2, C = 12, D = 30, E = 56, &c., atque Cosinus arcus qui radio æquatur, ponatur = x; erit

$$x = \frac{1}{1+\frac{1}{1+\frac{2}{11+\frac{12}{29+\frac{30}{55+&c.}}}}$$
feu

$$\frac{1}{\kappa} - 1 = \frac{1}{1 + \frac{2}{11 + \frac{12}{29 + \frac{30}{55 + &c}}}$$

371. Sit Series insuper cum geometrica conjuncta, scilicet

$$x = A - Bz + Cz^2 - Dz^3 + Ez^4 - Fz^5 + &c.$$

erit

$$a = Ab; \ \epsilon = \frac{Bbcz}{A - Bz}; \ \gamma = \frac{ACcdz}{(A - Bz)(B - Cz)};$$

$$d = \frac{BDdez}{(B - Cz)(C - Dz)}; \ \epsilon = \frac{CEefz}{(C - Dz)(D - Ez)}; \ \&c..$$

Ponatur nunc

$$b = 1;$$
 $\alpha = A$
 $c = A - Bz;$ $6 = Bz$
 $d = B - Cz;$ $\gamma = ACz$
 $e = C - Dz;$ $\delta = BDz,$

unde fiet

$$N = \frac{A}{1 + \frac{Bz}{A - Bz + \frac{ACz}{B - Cz + \frac{BDz}{C - Dz + &c}}}$$

CAP. XVIII.

372. Quo autem hoc negotium generalius absolvamus, po-

$$x = \frac{A}{L} - \frac{By}{Mz} + \frac{Cy^2}{Nz^3} + \frac{Dy^3}{Oz^4} - \frac{Ey^4}{Pz^4} + &c.,$$

fietque, comparatione instituta,

$$\delta = \frac{Ab}{L}; C = \frac{B L b c y}{AMz - BLy}; \gamma = \frac{A C M^2 c d y z}{(AMz - BLy)(BNz - CMy)};$$

$$\delta = \frac{B D N^2 d e y z}{(BNz - CMy)(COz - DNy)}; &c.,$$

statuantur valores b, c, d, &c., sequenti modo

$$b = L;$$
 erit $\alpha = A$
 $c = AMz - BLy;$ $G = BLLy$
 $d = BNz - CMy;$ $\gamma = ACM^2yz$
 $e = COz - DNy;$ $\beta = BDN^2yz$
 $f = DPz - EOy;$ $\varepsilon = CEO^2yz$
&c.

unde Series proposita per sequentem fractionem continuam exprimetur

$$x = \frac{A}{L + \frac{BLLy}{AMz - BLy + \frac{ACMMyz}{BNz - CMy + \frac{BDNNyz}{COz - DNy + &c.}}}$$

373. Habeat denique Series proposita hujusmodi formam

$$x = \frac{A}{L} - \frac{ABy}{LMz} + \frac{ABCy^2}{LMNz^2} - \frac{ABCDy^3}{LMNOz^3} + &c.,$$

atque sequentes valores prodibunt

LIB. I.
$$\alpha = \frac{Ab}{L}$$
; $6 = \frac{Bbcy}{Mz - By}$; $\gamma = \frac{CMcdyz}{(Mz - By)(Nz - Cy)}$;
$$\delta = \frac{DNdeyz}{(Nz - Cy)(Oz - Dy)}$$
; $\epsilon = \frac{EOefyz}{(Oz - Dy)(Pz - Ey)}$;

ad valores ergo integros inveniendos fiat

$$b = Lz;$$
 erit $\alpha = Az$
 $c = Mz - By;$ $c = BLyz$
 $d = Nz - Cy;$ $\gamma = CMyz$
 $e = Oz - Dy;$ $\delta = DNyz$
 $f = Pz - Ey;$ $\varepsilon = EOyz$
&c.

Unde valor Seriei propositæ ita exprimetur, ut sit

$$x = \frac{Az}{Lz + \frac{BLyz}{Mz - By + \frac{CMyz}{Nz - Cy + \frac{DNyz}{Oz - Dy + &c.}}}$$

Vel, ut lex progressionis statim a principio siat manifesta, erit

$$\frac{Az}{x} - Ay = Lz - Ay + \frac{B L y z}{Mz - By + \frac{C M y z}{Nz - Cy + \frac{D N y z}{Oz - Dy + &c}}$$

374. Hoc modo innumerabiles inveniri poterunt fractiones continuæ in infinitum progredientes, quarum valor verus exhiberi queat. Cum enim, ex supra traditis, infinitæ Series, quarum summæ constent, ad hoc negotium accommodari queant, unaquæque transformari poterit in fractionem continuam, cujus adeo valor summæ illius Seriei est æqualis. Exempla, quæ jam hic sunt allata, sufficiunt ad hunc usum ostendendum: verumtamen optandum esset, ut methodus detegeretur, cujus benesicio, si proposita suerit fractio continua quæcunque, ejus valor immediate inveniri posset. Quanquam enim fractio continua

methodos cognitas investigari queat, tamen plerumque ista Series tantopere siunt intricata, ut earum summa, etiamsi sit satis timplex, vix ac ne vix quidem obtineri possit.

375. Quo autem clarius perspiciatur, dari ejusmodi fractiones continuas, quarum valor aliunde facile assignari queat, etiamsi ex Seriebus infinitis, in quas convertuntur, nihil admodum colligere liceat, consideremus hanc fractionem continuam

$$x = \frac{1}{2 + \frac{1}{2$$

cujus omnes denominatores sunt inter se æquales; si enim hinc modo supra exposito, fractiones formemus

$$\frac{1}{0}$$
, $\frac{0}{1}$, $\frac{1}{2}$, $\frac{2}{5}$, $\frac{12}{12}$, $\frac{29}{70}$, &c.:

Hinc autem porro oritur hæc Series

$$x = 0 + \frac{1}{2} - \frac{1}{2.5} + \frac{1}{5.12} - \frac{1}{12.29} + \frac{1}{29.70} - &c.,$$

vel, si bini tennini conjungantur, erit

$$x = \frac{2}{1.5} + \frac{2}{5.29} + \frac{2}{29.159} + &c.,$$

$$x = \frac{1}{2} - \frac{2}{2.12} - \frac{2}{12.70} - &c.$$

Quin etiam, cum sit

$$x = \frac{1}{4} - \frac{1}{2.2.5} + \frac{1}{2.5.12} - \frac{1}{2.12.29} + &c.$$

LIB. I.
$$+\frac{1}{4} - \frac{1}{2.2.5} + \frac{1}{2.5.12} - \frac{1}{2.12.29} + &c.,$$
erit
$$x = \frac{1}{4} + \frac{1}{1.5} - \frac{1}{2.12} + \frac{1}{5.29} - \frac{1}{12.70} &c.,$$

quæ Series etiamsi vehementer convergant, tamen vera earum summa ex earum forma colligi nequit.

376. Pro hujusmodi autem fractionibus continuis, in quibus denominatores omnes vel sunt æquales, vel iidem revertuntur; ita ut ea fractio, si ab initio aliquot terminis truncetur, toti adhuc sit æqualis, facilis habetur modus earum summas explorandi. In exemplo enim proposito, cum sit

$$x = \frac{1}{2 + \frac{1}{2$$

erit $x = \frac{1}{2+x}$, ideoque $xx + 2x = 1 & x + 1 = \sqrt{2}$; ita ut valor hujus fractionis continuæ sit $= \sqrt{2} - 1$. Fractiones vero ex fractione continua ante erutæ, continuo propius ad hunc valorem accedunt, idque tam cito, ut vix promptior modus ad valorem hunc irrationalem per numeros rationales proxime exprimendum, inveniri queat. Est enim $\sqrt{2} - 1$ tam prope $= \frac{29}{70}$, ut error sit insensibilis: namque, radicem extrahendo, erit

$$\sqrt{2-1} = 0,41421356236,$$
atque
$$\frac{29}{70} = 0,41428571428,$$

ita ut error tantum in partibus centesimis millesimis consistat.

377. Quemadmodum ergo fractiones continuæ commodissimum suppeditant modum ad valorem / 2 appropinquandi, ita indidem

indidem facillima via aperitur ad radices aliorum numerorum C A P. proxime investigandas. Ponamus hunc in finem XVIII.

$$x = \frac{1}{a + \frac{1}{a$$

erit $x = \frac{1}{a+x}$ & xx + ax = 1, unde fit $x = -\frac{1}{2}a + \sqrt{(1+\frac{1}{4}aa)} = \frac{\sqrt{(aa+4)-a}}{2}$. Hæc ergo fractio continua inferviet valori radicis quadratæ ex numero aa + 4 inveniendo. Hincque adeo substituendo loco a successive numeros 1, 2, 3, 4, &c., reperientur $\sqrt{5}$; $\sqrt{2}$; $\sqrt{13}$; $\sqrt{5}$; $\sqrt{29}$; $\sqrt{10}$; $\sqrt{53}$; &c., perductis scilicet his radicibus ad formam simplicissimam: erit ergo

I, I, I, I, I, I, I, I,
$$\frac{1}{1}$$
, $\frac{1}{1}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{5}$, $\frac{5}{8}$, &c. $=\frac{\sqrt{5-1}}{2}$

2, 2, 2, 2, 2, 2, 2

 $\frac{0}{1}$, $\frac{1}{2}$, $\frac{2}{5}$, $\frac{5}{12}$, $\frac{12}{29}$, $\frac{29}{70}$, &c. $=\sqrt{2-1}$

3, 3, 3, 3, 3, 3, 3

 $\frac{0}{1}$, $\frac{1}{3}$, $\frac{3}{10}$, $\frac{10}{33}$, $\frac{33}{109}$, $\frac{109}{360}$, &c. $=\frac{\sqrt{13-3}}{2}$

4, 4, 4, 4, 4, 4, 4

 $\frac{0}{1}$, $\frac{1}{4}$, $\frac{4}{17}$, $\frac{17}{72}$, $\frac{72}{305}$, $\frac{305}{1292}$, &c. $=\sqrt{5-2}$

notandum autem eo promptiorem esse approximationem, quo major fuerit numerus a: sic in ultimo exemplo erit $\sqrt{5} = 2$ $\frac{305}{1292}$, ut error minor sit quam $\frac{1}{1292.5473}$, ubi 5473 est denominator sequentis fractionis $\frac{1292}{5473}$.

Euleri Indroduct. in Anal. infin. parv. Rr 378. Hoc

378. Hoc vero modo aliorum numerorum radices exhiberi nequeunt, nisi qui sint summa duorum quadratorum. Ut igitur hæc approximatio ad alios numeros extendatur, ponamus esse

$$x = \frac{1}{a + \frac{1}{b + \frac{1}{a + \frac{1}{a + \frac{1}{b + \frac{1}{a + \frac{1}{a$$

$$\frac{2}{1}$$
, $\frac{7}{2}$, $\frac{2}{15}$, $\frac{7}{32}$, $\frac{2}{239}$, $\frac{7}{510}$, &c.,

Erit ergo proxime $\frac{-7+3\sqrt{7}}{2} = \frac{239}{510} & \sqrt{7} = \frac{2024}{765} =$ 2, 6457516; at revera est $\sqrt{7} = 2.64575131$; ita ut error minor lit quam $\frac{3}{10000000}$.

379. Progrediamur autem ulterius ponendo

Progrediamur autem ulterius ponendo
$$x = \frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{a+c}$$
erit

 $x = \frac{1}{a+b+1} = \frac{1}{a+b+b+1} = \frac{bx+bc+1}{(ab+1)x+abc+a+c}$ unde (ab+1)xx+(abc+a-b+c)x=bc+1 atque

$$x = \frac{C \circ N T \mid N \cup I \mid S.}{abc - a + b - c + \sqrt{(abc + a + b + c)^2 + 4}}, C_{AP}.$$

$$x = \frac{2(ab + 1)}{2(ab + 1)}, XVIII.$$

ubi quantitas post signum radicale posita iterum est summa duorum quadratorum, neque ergo hæc forma radicibus ex aliis numeris extrahendis inservit, nisi ad quos prima forma jam susfecerat. Simili modo si quatuor litteræ a, b, c, d, continuo repetitæ denominatores fractionis continuæ constituant, tum ea plus non inserviet quam secunda, quæ duas tantum litteras continebat, & ita porro.

380. Cum igitur fractiones continuæ tam utiliter ad extractionem radicis quadratæ adhiberi queant, simul inservient æquationibus quadratis resolvendis; quod quidem ex ipso calculo est manifestum, dum x per æquationem quadraticam affectam determinatur. Potest autem vicissim facile cujusque æquationis quadratæ radix per fractionem continuam hoc modo exprimi. Sit proposita ista æquatio

$$xx = ax + b$$
,

ex qua, cum sit $x = a + \frac{b}{x}$, substituatur in ultimo termino loco x valor idem jam inventus, eritque

$$x = a + \frac{b}{a + \frac{b}{x}},$$

simili ergo modo procedendo, erit per fractionem continuam infinitam

$$x = a + \frac{b}{a + \frac{b}{a + \frac{b}{a + &c.}}}$$

quæ autem, cum numeratores b non sint unitates, non tam commode adhiberi potest.

381. Ut autem usus in arithmetica ostendatur, primum notandum est omnem fractionem ordinariam in fractionem con-R r 2 tinuam LIB. I. tinuam converti posse. Sit enim proposita fractio $x = \frac{A}{R}$; in qua sit A > B; dividatur A per B, sitque quotus = 2 & 8residuum C; tum per hoc residuum C dividatur præcedens divisor B, prodeatque quotus b & relinquatur residuum D, per quod denuo præcedens divisor C dividatur; sicque hæc operatio, quæ vulgo ad maximum communem divisorem numerorum A & B investigandum usurpari solet, continuetur, donec ipsa finiatur; sequenti modo

c ipla finiatur; fequenti

$$\begin{array}{c}
B) A (a) \\
\hline
C) B (b) \\
\hline
D) C (c) \\
\hline
E) D (d) \\
\hline
F &c.,
\end{aligned}$$
eritque per nat

eritque per naturam divisionis

$$A = aB + C; \text{ unde } \frac{A}{B} = a + \frac{C}{B};$$

$$B = bC + D; \qquad \frac{B}{C} = b + \frac{D}{C}; \qquad \frac{C}{B} = \frac{I}{b + \frac{D}{C}};$$

$$C = cD + E; \qquad \frac{C}{D} = c + \frac{E}{D}; \qquad \frac{D}{C} = \frac{I}{c + \frac{E}{D}};$$

$$D = dE + F; \qquad \frac{D}{E} = d + \frac{F}{E}; \qquad \frac{E}{D} = \frac{I}{d + \frac{F}{E}};$$
&c. &c. &c.

hinc, sequentes valores in præcedentibus substituendo, erit

$$x = \frac{A}{B} = a + \frac{C}{B} = a + \frac{1}{b + \frac{D}{C}} = a + \frac{1}{b + \frac{D}{c + \frac{D}{D}}}$$

unde tandem x per meros quotos inventos a, b, e, d, &c., sequentem in modum exprimetur, ut sit

$$x = a + \frac{1}{b + \frac{1}{c + \frac{1}{d + \frac{1}{e + \frac{1}{f + \frac{1}{2}}}}} \underbrace{\begin{array}{c} C_{AP.} \\ XVIII. \end{array}}_{XVIII.}$$

$$E \times E \times P L \cup M I.$$

Sit proposita ista fractio 1461 , quæ sequenti modo in fractionem continuam transmutabitur, cujus omnes numeratores erunt unitates. Instituatur scilicet eadem operatio, qua maximus communis divisor numerorum 59 & 1461 quæri solet.

Hinc ergo ex quotis fiet

$$\frac{1461}{59} = 24 + \frac{1}{1 + \frac{1}{3 + \frac{1}{4 + \frac{1}{1 + \frac{1}{2}}}}$$
EXEMPLUM II.

Fractiones quoque decimales eodem modo transmutari poterunt; sit enim proposita

$$\sqrt{2} = 1,41421356 = \frac{141421356}{100000000},$$

unde hæc operatio instituatur

Rr

100000000

LIB. I.

141421356	I
100000000	2
41421356	2
34314576	2
7106780	Ž
5887456	2
1219324	2
1010160	2
209364	
	100000000 41421356 34314576 7106780 5887456 1219324 1010160

Ex qua operatione jam patet omnes denominatores esse 2, atque adeo esse $\sqrt{z} = 1 + \frac{1}{2 +$

cujus expressionis ratio jam ex superioribus patet.

EXEMPLUM III.

Imprimis vero etiam hic attentione dignus est numerus e, cujus logarithmus est = 1, qui est e = 2,718281828459, unde oritur $\frac{e-1}{2}$ = 0,8591409142295, quæ fractio decimalis, si superiori modo tractetur, dabit quotos sequentes

8591409142295	1000000000000	1
8451545146224	8591409142295	6
139863996071	1408590857704	IO
139312557916	1398639960710	14
551438155	9950896994	18
550224488	9925886790	22
1213667	25010204	
	&c.	

si iste calculus exactius adhuc, assumto valore ipsius e, ulterius continuetur, tum prodibunt isti quoti

1, 6, 10, 14, 18, 22, 26, 30, 34, &c., qui, demto primo, progressionem arithmeticam constituunt, unde patet fore e-1

$$\frac{e-1}{2} = \frac{1}{1+\frac{1}{6+\frac{1}{10+\frac{1}{14+\frac{1}{18+\frac{1}{22+\frac{1}{8c.}}}}}}{\frac{CAP.}{XVIII.}}$$

cujus fractionis ratio ex calculo infinitesimali dari potest.

382. Cum igitur ex hujusmodi expressionibus fractiones erui queant, quæ quam citissime ad verum valorem expressionis deducant, hæc methodus adhiberi poterit ad fractiones decimales per ordinarias fractiones, quæ ad ipsas proxime accedant, exprimendas. Quin etiam, si fractio suerit proposita cujus numerator & denominator sint numeri valde magni, fractiones ex minoribus numeris constantes inveniri poterunt quæ, etiamsi propositæ non sint penitus æquales, tamen ab ea quam minime discrepent. Hincque problema a WALLISIO olim tractatum facile resolvi potest, quo quæruntur fractiones minoribus numeris expresse, quæ tam prope exhauriant valorem fractionis cujuspiam in numeris majoribus propositæ, quantum sieri poterit numeris non majoribus. Fractiones autem nostra hac methodo ortæ tam prope ad valorem fractionis continuæ, ex qua eliciuntur, accedunt, ut nullæ numeris non majoribus constantes dentur quæ propius accedant.

EXEMPLUM I.

Exprimatur ratio diametri ad peripheriam numeris tam exiguis, ut accuratior exhiberi nequeat, nisi numeri majores adhibeantur. Si fractio decimalis cognita

3, 1415926535 &c., modo exposito per divisionem continuam evolvatur, reperientur sequentes quoti

3, 7, 15, 1, 292, 1, 1, &c., ex quibus sequentes fractiones formabuntur,

 $\frac{1}{0}$, $\frac{3}{1}$, $\frac{22}{7}$, $\frac{333}{106}$, $\frac{355}{113}$, $\frac{103993}{33102}$, &c.,

secunda fractio jam ostendit esse diametrum ad peripheriam ute

terit. Tertia fractio dat rationem Archimedeam 7: 22, at quinta Metianam quæ ad verum tam prope accedit, ut error minor sit parte

1 13.33102. Ceterum hæ fractiones alternatim vero sunt majores minoresque.

EXEMPLUM II.

Exprimatur ratio diei ad annum folarem medium in numeris minimis proxime. Cum annus iste sit 365d, 5^b , 48', 55^b , continebit in fractione annus unus $365\frac{20935}{86400}$ dies. Tantum ergo opus est ut hæc fractio evolvatur, quæ dabit sequentes quotos

4, 7, 1, 6, 1, 2, 2, 4 unde istæ eliciuntur fractiones

 $\frac{0}{1}$, $\frac{1}{4}$, $\frac{7}{29}$, $\frac{8}{33}$, $\frac{55}{227}$, $\frac{63}{260}$, $\frac{181}{747}$, &c...

Horæ ergo cum minutis primis & secundis, quæ supra 365 dies adsunt, quatuor annis unum diem circiter faciunt, unde calendarium Julianum originem habet. Exactius autem 33 annis 8 dies implentur, vel 747 annis 181 dies; unde sequitur quadringentis annis abundare 97 dies. Quare, cum hoc intervallo calendarium Julianum inserat 100 dies, Gregorianus quaternis seculis tres annos bissextiles in communes convertit.

FINIS TOMI PRIMI.