日 OFFICE JAPAN PATENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年10月13日

願 号 出 Application Number: 特願2004-298501

[ST. 10/C]:

[JP2004-298501]

REC'D 0 4 JAN 2005 MIPO

人 出

キヤノン株式会社

Applicant(s):

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月17日

BEST AVAILABLE COPY

出証特2004-3115806 出証番号

特許願 【書類名】 0007982-01 【整理番号】 平成16年10月13日 【提出日】 【あて先】 特許庁長官殿 H05B 33/00 【国際特許分類】 【発明者】 東京都大田区下丸子3丁目30番2号 キャノン株式会社内 【住所又は居所】 坪山 明 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 鎌谷 淳 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 古郡 学 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 岡田 伸二郎 【氏名】 【発明者】 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内 【住所又は居所】 滝口 隆雄 【氏名】 【特許出願人】 000001007 【識別番号】 キヤノン株式会社 【氏名又は名称】 【代理人】 100096828 【識別番号】 【弁理士】 渡辺 敬介 【氏名又は名称】 03-3501-2138 【電話番号】 【選任した代理人】 【識別番号】 100110870 【弁理士】 山口 芳広 【氏名又は名称】 03-3501-2138 【電話番号】 担当 【連絡先】 【先の出願に基づく優先権主張】 特願2003-401821 【出願番号】 平成15年12月 1日 【出願日】 【手数料の表示】 【予納台帳番号】 004938 16.000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】

0101029

【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

下記一般式 (1) で示される部分構造式を有する2核の銅配位化合物を発光材料として 用いることを特徴とする発光素子。

【化1】

[式中、Cuは銅イオンであり、 $A_1 \sim A_3$ と A_1 ' $\sim A_3$ は窒素、炭素、りん原子か ら選ばれる。〕

【請求項2】

前記銅配位化合物が、下記一般式 (2) で示されることを特徴とする請求項1に記載の 発光素子。

【化2】

$$\begin{array}{c|c}
R_1 \\
N & C & R_2 \\
Cu & Cu \\
R_2 & N \\
R_1 & N
\end{array}$$
(2)

[式中、 R_1 , R_2 、 R_1 '、 R_2 'は、水素原子がハロゲンに置換されても良い炭素数10以下の分岐または直鎖状のアルキル基、置換基を有しても良い芳香環基、トリメチルシリ ル基、置換されても良いジアルキルアミノ基またはジアリールアミノ基であり、同じでも 異なっていても良い。Nは、複素芳香環中のイミン基であり、該複素芳香環は、置換基を 有しても良いピリジン環、ピリダジン環、ピラジン環、ピリミジン環、キノリン環、イソ キノリン環、ピラゾール環、アザキノリン環、アザイソキノリン環から選ばれる。]

【請求項3】

前記銅配位化合物が、下記一般式(3)で示されることを特徴とする請求項1に記載の 発光素子。

【化3】

$$\begin{array}{c|c}
 & R_3 \\
 & N & N \\
 & Cu & Cu \\
 & N & N \\
 & R_3
\end{array}$$
(3)

[式中、R₃、R₃'は、水素原子がハロゲンに置換されても良い炭素数10以下の分岐または直鎖状のアルキル基、置換基を有しても良い芳香環基またはトリメチルシリル基であり、同じでも異なっていても良い。Nは、複素芳香環中のイミン基であり、該複素芳香環は、置換基を有しても良いピリジン環、ピリダジン環、ピラジン環、ピリミジン環、キノリン環、イソキノリン環、ピラゾール環、アザキノリン環、アザイソキノリン環から選ばれる。]

【讀求項4】

下記一般式 (4) で示される部分構造式を有する 3 核の銅配位化合物を発光材料として 用いることを特徴とする発光素子。

【化4】

「式中、Cuは銅イオンであり、A'は3座配位子である。]

【請求項5】

前記銅配位化合物が、下記一般式 (5) で示される部分構造式を有することを特徴とする請求項4に記載の発光素子。

【化5】

[式中、B'は3座配位子であり、A'と同じでも異なっていても良い。]

【請求項6】

前記銅配位化合物が、下記一般式 (6) で示される部分構造式を有することを特徴とする請求項 1~5のいずれかに記載の発光素子。

【化6】

【請求項7】

前記銅配位化合物の銅原子間隔が3. 2 オングストローム以下であることを特徴とする請求項 $1\sim6$ のいずれかに記載の発光素子。

【請求項8】

前記銅配位化合物の銅が一価のイオンであることを特徴とする請求項1~7のいずれか に記載の発光素子。

【請求項9】

発光層が前記銅配位化合物 100%の部分を含むことを特徴とする請求項 1~8のいずれかに記載の発光素子。

【書類名】明細書

【発明の名称】発光素子

【技術分野】

[0001]

本発明は、有機化合物を用いた発光素子に関するものであり、さらに詳しくは、金属配 位化合物を発光材料として用いることで安定した効率の高い発光素子に関するものである

【背景技術】

[0002]

有機EL素子は、高速応答性や高効率の発光素子として、応用研究が精力的に行われて いる(非特許文献1)。

[0003]

銅配位化合物は、原料が安価なため、比較的安価に製造することが可能であり、銅配位 化合物の性能を十分に引き出せば低コスト高性能な有機EL素子が可能になる。

[0004]

特許文献1、非特許文献2には、銅配位化合物を用いた有機EL素子が開示されている 。しかしながら、これらのEL素子は、発光効率が著しく低く、素子の効率の記載が不十 分であり、銅配位化合物の特性が十分引き出せているとは考えにくく、ディスプレイや照 明などに用いるには十分な性能のものではない。

[0005]

また、非特許文献 2 に用いられている銅配位化合物の発光材料の分子量が 1 6 0 0 以上 あり、分子量が大きすぎて昇華性が悪く、真空蒸着には、不向きである。

[0006]

また、非特許文献3~5には、本発明の一部の化合物と同じ構造を有する銅配位化合物 が開示されているが、発光に関しては記載が全くない。

非特許文献6には、本発明の銅配位化合物とは異なる3核の銅配位化合物に関する記載 があり、それは発光性を有し、有機LEDへの応用が示唆されている。この銅原子は、分 子内の銅原子間距離が3.22A程度であり銅原子間の相互作用が強くない。この3核銅 配位化合物は、蒸着は可能であるが、素子の発光特性(効率)や安定性は悪い。

[0008]

【特許文献1】特許第2940514号公報

【非特許文献1】Macromol. Symp. 125, 1~48 (1997)

【非特許文献 2】 Advanced materials 1999 0 p852 Y. Ma et al.

【非特許文献3】Journal of Chemical Society D a lton Transaction 1991 p2859

【非特許文献4】Journal of Chemical Da Society

lton Transaction 1983 p1419

Society Da 【非特許文献 5】 Journal of Chemical

lton Transaction 2001 р 3 0 6 9

Chemical S 【非特許文献 6】 Journal of American ociety, 2003 125 (40) p12072

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明は、高発光効率・高安定性・低コストである発光材料を用いた発光素子を提供す ることを目的とする。

【課題を解決するための手段】

[0010]

すなわち、本発明の一の発光素子は、下記一般式 (1) で示される部分構造式を有する 2核の銅配位化合物を発光材料として用いることを特徴とし、前記銅配位化合物が、下記 一般式 (2)、 (3) で示される部分構造式を有することが好ましい。

【0011】 【化1】

$$A_{1}$$
 A_{3}
 A_{1}
 A_{2}
 A_{3}
 A_{2}
 A_{1}
 A_{2}
 A_{2}
 A_{3}
 A_{2}
 A_{3}
 A_{4}
 A_{5}
 A_{5}
 A_{5}
 A_{5}
 A_{5}

【0012】 [式中、Cuは銅イオンであり、 $A_1 \sim A_3$ と A_1 ' $\sim A_3$ 'は窒素、炭素、りん原子から選ばれる。]

【0013】

$$\begin{array}{c|c}
R_1 \\
R_2 \\
Cu & Cu \\
R_2 \\
R_1 \\
\end{array} (2)$$

[0014]

[式中、R1, R2、R1'、R2'は、水素原子がハロゲンに置換されても良い炭素数10以下の分岐または直鎖状のアルキル基、置換基を有しても良い芳香環基、トリメチルシリル基、置換されても良いジアルキルアミノ基またはジアリールアミノ基であり、同じでも異なっていても良い。Nは、複素芳香環中のイミン基であり、その複素芳香環は、置換基を有しても良いピリジン環、ピリダジン環、ピラジン環、ピリミジン環、キノリン環、イソキノリン環、ピラゾール環、アザキノリン環、アザイソキノリン環から選ばれる。]

【0015】

【0016】 [式中、R₃、R₃'は、水素原子がハロゲンに置換されても良い炭素数10以下の分岐ま 出証特2004-3115806 たは直鎖状のアルキル基、置換基を有しても良い芳香環基またはトリメチルシリル基であり、同じでも異なっていても良い。Nは、複素芳香環中のイミン基であり、該複素芳香環は、置換基を有しても良いピリジン環、ピリダジン環、ピラジン環、ピリミジン環、キノリン環、イソキノリン環、ピラゾール環、アザキノリン環、アザイソキノリン環から選ばれる。]

[0017]

本発明の他の発光素子は、下記一般式 (4) で示される部分構造式を有する3核の銅配位化合物を発光材料として用いることを特徴とし、前記銅配位化合物が、下記一般式 (5) で示される部分構造式を有することが好ましい。

[0018]

【化4】

[0019]

[式中、Cuは銅イオンであり、A'は3座配位子である。]

[0020]

【化5】

[0021]

[式中、B'は3座配位子であり、A'と同じでも異なっていても良い。]

[0022]

上記本発明の発光素子においては、前記銅配位化合物が、下記一般式(6)で示される 部分構造式を有することが好ましい。

[0023]

【化6】

[0024]

また、前記銅配位化合物の銅原子間隔が3.2オングストローム以下であることが好ましい。

[0025]

また、前記銅配位化合物の銅が一価のイオンであることが好ましい。

[0026]

また、発光層が前記銅配位化合物100%の部分を含むことが好ましい。

【発明の効果】

[0027]

本発明で用いる銅配位化合物は、高い発光効率を有するのみならず、真空蒸着プロセスや溶液にして塗布するスピンコートプロセスや、インクジェットノズルを用いた塗布方式にも適するし、素子作成工程における分解などのダメージがなく安定した素子作成が可能になる。そのため、本発明の発光素子は、高発光効率・高安定性を示すと共に、低コストで製造可能である。

【発明を実施するための最良の形態】

[0028]

以下、本発明について詳細に説明する。

[0029]

まず、本発明の発光材料である銅配位化合物の特徴から説明する。

[0030]

本発明に用いる銅配位化合物は、上記一般式(1)または(4)で示される部分構造式を有する銅配位化合物、即ち複数の2座配位子に2個の銅原子が結合した2核の銅配位化合物、或いは1つまたは複数の3座配位子に3個の銅原子が結合した3核の銅配位化合物であるが、これらの範疇に含まれる銅配位化合物は、熱的に安定で、高い発光効率を示し発光材料に適している。特に固体粉末状態において他の化合物と比べ強い発光を示すことが特徴である。

[0031]

一般には希薄溶液で強く発光する化合物でも固体粉末状態においては、発光が極端に弱くなる物が多い。これらは、発光材料分子間の相互作用によって、基底状態において会合体を形成する、あるいは、励起会合体を形成し、本来の発光特性が得られなくなる現象であり、これは「濃度消光」現象として知られている。

[0032]

本発明におけるCu配位化合物は、濃度消光を受けにくい発光材料といえる。従って、発光素子中の発光層を考えるとき、一般には、ホスト材料中に発光材料を少量ゲスト材料として加えることで濃度消光を回避するのであるが、本発明の銅配位化合物は濃度消光の制約がないため、濃度を濃くする、あるいは、100%の発光層を形成することができ、その結果、高い発光効率を有し、かつ、生産性のよい発光素子を製造することができる。また発光特性の濃度依存性が小さいため、生産ばらつきなどが抑えられ、この観点からも生産性の高い発光素子を作成することが可能である。

[0033]

ここで、中心金属の銅イオンはプラス1価のものを用いることが好ましい。銅原子の電子配置から考えると、プラス1価の銅は、d電子が10個含まれる。一般に、遷移金属で偶数個のd電子の場合には、良好な発光特性を示す場合が多い。

[0034]

また、真空蒸着法は、安定で膜質の良い薄膜を作成できるため、有機LED素子の作成 方法として一般によく用いられるが、我々の実験から、分子量が大きくなると、昇華性が 落ち、この蒸着法を用いることができない。そこで、真空蒸着を可能にするために、本発 明の銅配位化合物の分子量は1500以下が好ましく、1200以下がより好ましい。

[0035]

本発明に用いることのできる配位子の化学構造式を以下に示す [但し、下記基本構造は、縮合環基または置換基を有しても良い。該置換基は、ハロゲン原子、直鎖状、分岐状または環状のアルキル基、または、置換基を有しても良い芳香環基である。前記アルキル基のCH2基は、-O-または-NR-(Rはアルキル基または、置換されても良い芳香環基) に置換されても良く、また、H原子は芳香環基またはハロゲン原子に置換されても良い。]。

[0036] 【化7】

A05

80A

A09

A11

A16

A20

[0037]

A19

B20

[0038]

B19

B21

CO3

CO6

CO9

C12

C17

C16

[0039]

C15

8/

【化10】

D17

[0040]

D16

D18

【化11】

E01

E04

E06

E09

E13

E02

N C Si(CH₃):

Si(CH3)3

E07

E11

E14

E03

E03

Si(CH₃)₃
Si(CH₃)₃

E12

E15

E16

[0041]

Fûî

FUŽ

F03

F04

F05

F06

F07

F08

F09

F10

F12

F13

F11

F14

F15

F16

F17

F18

F19

[0042]

[0043]

[0044]

Ю6

[0045]

【化16】

J10

[0046]

化7~化15に示した配位子は、構造式中に示した「CH」または「NH」の水素原子 が引き抜かれ、マイナス1価の2座配位子となり、水素原子が引き抜かれた窒素原子また は炭素原子が銅原子に対する配位原子となる。また、化16に示した配位子は0価なので 配位化合物全体ではプラス2価の配位化合物であり、これらイオン性の配位化合物の場合 、カウンターアニオンとして、PF6¯、C1О4¯、BF4¯、ハロゲンイオンなどを用いる ことができる。なお、例えば化7~化16に示した2つの2座配位子を共有結合で結んだ 4座配位子も本発明の配位子として用いることができる。

[0047]

次に、本発明の銅配位化合物の具体例を表1~表7及び化17に示す。表1~表7にお いて、Aは一方の配位子(一般式(1)の $-A_1-A_2-A_3-$)を、Bは他方の配位子(一般式 (1) の $-A_1$ ' $-A_2$ ' $-A_3$ ' -)を表し、表中の符号は、上記配位子を表す。 表1、表2については配位子A、Bの構造が同じ配位化合物、表3~表7については配位 子A, Bの構造が異なる配位化合物、化17については3核の配位化合物を示す。

[0048]

化合物番号	A and B
1001	A01
1002	A02
1003	A03
1004	A04
1005	A05
1006	A06
1007	A07
1008	A08
1009	A09
1010	A10
	A10
1011 1012	A11 A12 A13
	A12
1013	AIA
1014	A14 A15
1015	A15
1016	A16
1017	A17 A18 A19 A20
1018	A18
1019	A19
1020	A20
1021	A21
1022	B01
1023	B02
1024	B03
1025	B04
1026	B05
1027	B06
1028	B07
1029	B08
1030	B09
1031	B10
1032	B11
1033	B12
1034	B13
1035	B14
1036	B15
1037	B16
1038	B17
1039	B18
1040	B19
1041	B20
1041	B21
1042	G01
1043	C02
1045	G03
1045	C04
	C05
1047	
1048	C06 C07
1049	C07
1050	<u> </u>

# A # = # E	151
10 11 11 1	A and B
1051	C09
1052	C10
1053	C11
1054	C12
1055	C13
1056	C14
1057	C15
1058	C16
1059	C17
1060	D01
1061	D02
1062	D03
1063	D04
1064	D05
1065	D06
1066	D07
1067	D08
1068	D09
1069	D10
	D11
1070	D12
1071	D13
1072 1073	D13
	D15
1074	D16
1075	D17
1076 1077	D18
1077	E01
1079	E02
1080	E03
1080	E04
1082	E05
1083	E06
1084	E07
1085	E08
1086	E09
1087	E10
1088	E11
1089	E12
1090	E13
1091	E14
1092	E15
1093	E16
1094	F01
1095	F02
1096	F03
1097	F04
1098	F05
1099	F06
1100	F07

と合物番号	A and B
1101	F08
1102	F09
1103	F10
1104	F11
1105	F12
1106	F13
1107	F13
1107	F15
	F16
1109	F17
1111	G01
1112	G02
1113	G02
1114	G03
1115	G05
1116	G05 G06
1117	G07
1118 1119	G08
	G09 G10
1120	G10
1121	G12
1122 1123	G13
	G14
1124	
1125	G15
1126	G16 G17
1127	G18
1128	
1129	G19
1130	G20 G21
1131 1132	G22
	G23
1133 1134	
	H01
1135	H02 H03
1136 1137	H04
	H05
	H06
1110	H07
1140 1141	H08
1142	H09
1143	H10
1143	H11
1145	H12
1145	H13
1147	H14
1148	H15
1149	H16
1150	H17
1130	1 1317

[0049]

【表2】.

化合物番号	A and B
1151	11
1152	12
1153	13
1154	14
1155	15
1156	16
1157	17
1158	18
1159	19
1160	I10
1161	111
1162	I12
1163	I13
1164	114
1165	115
1166	116
1167	117
1168	[18
1169	I19
1170	J01
1171	J02
1172	J03
1173	J04
1174	J05
1175	J06
1176	J07
1177	J08
1178	J09
1179	J10
1180	F18
1181	F19
1182	120

[0050]

【表3】

化合物番号	Α_	В
2001	A01	A02
2002	A01	A04
2003	A01	A05
2004	A01	A06
2005	A01	A07
2006	A01	A00
2007	A01	A11
2008	A01	A12
2009	A01	A13
2010	A01	A14
2011	A01	A15
2012	A01	A21
2013	A01	B01
2014	A01	B02
2015	A01	B06
2016	A01	B11
2017	A01	B12
2018	A01	B20
2019	A01	C01
2020	A01	C02
2021	A01	C04
2022	A01	C05
2023	A01	C05
2024	A01	C07
2025	A01	C10
2026	A01	C11
2027	A01	C12
2028	A01	C13
2029	A01	C14
2030	A01	C14 C16
2031	A01	C07
2032	A01	D01
2033	A01	D04
2034	A01	D06
2035	A01	D07
2036	A01	D08
2037	A01	D09
2038	A01	D15
2039	A01	D16
2040	A01	D17
2041	A01	D18
2042	A01	
2043	A01	E08
2044	A01	
2045	A01	
2046	A01	E13
2047	A01	
2048	A01	E15
2049	A01	E16
2050	A01	F01

ルム伽来口	<u> </u>	В
化合物番号	A	
2051	A01	F03
2052	A01	F04
2053	A01	F05
2054	A01	F11
2055	A01	F14
2056	A01	F17
2057	A01	G01
2058	A01	G02
2059	A01	G03_
2060	A01	G06
2061	A01	G12
2062	A01	G13
2063	A01	G15
2064	A01	G20
2065	A01	G21
2066	A01	G23
2067	A01	H01
2068	A01	H04
2069	A01	H10
2070	A01	H12
2071	A01	H14
2072	A01	H17
2073	A01	IO1
2074	A01	103
2075	A01	114
2076	A01	I15
2077	A01	J01
2078	A01	J07
2079	A01	J10
2080	A02	A04
2081	A02	A05
2082	A02	A06
2083	A02	A07
2084	A02	A09
2085	A02	A11
2086	A02	A12
2087	A02	A13
2088	A02	A14
2089	A02	A15
2090	A02	
2091	A02	B01
2092	A02	B02
2093	A02	
2094	A02	
2095	A02	
2096	A02	
2097	A02	
2098	A02	
2099	A02	
2100	A02	
2100	1,102	1 000

七合物番号	Α	В
2101	A02	C06
2102	A02	C07
2103	A02	C10
2104	A02	C11
2105	A02	C12
2106	A02	C13
2107	A02	C14
2107	A02	C16
2109	A02	C07
2110	A02	D01
2111	A02	D04
2112	A02	D04
		D07
2113	A02	D08
2114	A02	
2115	A02	D09
2116	A02	D15
2117	A02	
2118	A02	D17
2119	A02	D18
2120	A02	E03
2121	A02	E08
2122	A02	E11
2123	A02	E12
2124	A02	E13
2125	A02	E14
2126	A02	E15
2127	A02	E16
2128	A02	F01
2129	A02	F03
2130	A02	F04
2131	A02	F05
2132	A02	F11
2133	A02	F14
2134	A02	
2135	A02	
2136	A02	G02
2137	A02	G03
2138	A02	G06
2139	A02	G12
2140	A02	G13
2141	A02	
2142	A02	
2143	A02	
2144	A02	G23
2145	A02	
2146	A02	
2147	A02	
2148	A02	H12
2149	A02	
2150	A02	

[0051]

【表4】

化合物番号	Α	В
2151	A02	101
2152	A02	103
2153	A02	114
2154	A02	I15
2155	A02	J01_
2156	A.02	J <u>0</u> 7
2157	A02	J10
2158	A03	A09
2159	A03	A13
2160	A03	A18
2161	A03	A20
2162	A03	B01
2163	A03	B02
2164	A03	B10
2165	A03	B13
2166	A03	B19
2167	A03	C01
2168	A03	C06
2169	A03	C10
2170	A03	C14
2171	A03	C16
2172	A03	D04
2173	A03	D08
2174	A03	D09
2175	A03	D15
2176	A03	D16
2177	A03	D18
2178	A03	E02
2179	A03	E12
2180	A03	F03
2181	A03	F04
2182	A03	F14
2183	A03	F17
2184	A03	G01
2185	A03	G18
2186	A03	H01
2187	A03	H10
2188	A03	H14
2189	A03	11
2190	A03	I15
2191	A03	J07
2192	A04	
2193	A04	
2194	A04	
2195	A04	
2196 2197	A04	
2198	A04	
2199	A04	
2200	A04	
	1 /704	1 /113

化合物番号	Α	В
2201	A04	A21
2202	A04	B01
2203	A04	B02
2204	A04	B10
2205	A04	B11
2206	Δ.Ω.4	B12
2207	A04	B20
2208	A04	C01
2209	A04	C02
2210	A04	C04
2211	A04	C05
2212	A04	· C06
2213	A04	C07
2214	A04	C10
2215	A04	C11
2216	A04	C12 C13
2217	A04	C13
2218	A04	C14
2219	A04	C16
2220	A04	C07
2221	A04	D01
2222	A04	D04
2223	A04	D06
2224	A04	D07
2225	A04	D08
2226	A04	D09
2227	A04	D15
2228	A04	D16
2229	A04	D17
2230	A04	D18_
2231	A04	E03
2232	A04	E08
2233	A04	E11
2234	A04	E12
2235	A04	E13
2236	A04	E14
2237	A04	E15
2238	A04	E16
2239	A04	
2240	A04	F03
2241	A04	
2242	A04	
2243	A04	
2244	A04	F14
2245	A04	
2246	A04	
2247	A04	
2248	A04	
2249	A04	
2250	A04	G12

化合物番号	Α	В
2251	A04	G13
2252	A04	G15
2253	A04	G20
2254	A04	G21
2255	A04	G23
2256	An4	H01
2257	A04	H04
2258	A04	H10
2259	A04	H12
2260	A04	H14
2261	A04	H17
2262	A04	101
2263	A04	103
2264	A04	114
2265_	A04	I15
2266	A04	J01
2267	A04	J07
2268	A04	J10
2269	A05	A09
2270	A05	A13
2271	A05	A18
2272	A05	A20
2273	A05	B01
2274	A05	B02
2275	A05	B10
2276	A05	B13
2277	A05	B19
2278	A05	C01
2279	A05	C06
2280	A05	C10
2281	A05	C14
2282	A05	C16
2283	A05	D04
2284	A05	D08
2285	A05	D09
2286	A05	D15
2287	A05	D16
2288	A05	D18
2289	A05	E02
2290	A05	E12
2291	A05	F03
2292	A05	F04_
2293	A05	
2294	A05	F14
2295	A05	
2296	A05	
2297	A05	
2298	A05	
2299	A05	
2300	A05	

[0052]

【表 5】

化合物番号	Α	В	
2301	A05	I15	
2302	A05	J07	
2303	A06	A09	
2304	A06	A13	l
2305	A06	A18	1
2306	A06	A20	ļ
2307	A06	B01]
2308	A06	B02]
2309	A06	B10	}
2310	A06	B13]
2311	A06	B19]
2312	A06	C01]
2313	A06	C06]
2314	A06	C10]
2315	A06	C10 C14 C16	
2316	A06	C16	
2317	A06	D04	1
2318	A06	D08	1
2319	A06	D09	_
2320	A06	D15	1
2321	A06	D16	4
2322	A06	D18	4
2323	A06	E02	4
2324	A06	E12	4
2325	A06		_
2326	A06		
2327	A06	F14	4
2328	A06		4
2329	A06	GUT	-
2330	A06		
2331	A06		
2332	A06		
2333	A06		4
2334	A06		┥
2335	A06		
2336	A06		
2337	A07		_
2338	A07		_
	A07		-
2340 2341	A0		_
	A0		
2342 2343	A0		
2344	AO		
2345	A0		_
2346	A0		_
2347	AO		
2348	AO		4
2349	AO	7 G2	1
2350	AO		
2000	, , ,,		_

化合物番号		A	_	В	
	_		-	109	
2351		108		412	
2352	_	80/	_		l
2353	_	108	_	301	
2354		108		305 300	
2355		\08		320 014	1
2356	_	7.Û8		C16	i
2357	_	<u>808</u>			ł
2358	_	<u>408</u>	_	D04	1
2359	-	<u>408</u>	-	D09 D15	┨
2360	_	<u>808</u>	_	E03	1
2361	-	A08_			┨
2362	-	<u> 408</u>		F04	┨
2363	+	<u>808</u>	┝	G21	┨
2364	+-	<u>808</u>	╀	115	-
2365	-	A09	╀╌	A11	┨
2366	╄	A09	╀	A12	1
2367	╀	A09	╀	A13	┨
2368	╀	A09	╀	A14 A15	┨
2369	╀	A09	╄	A13 A21	4
2370	╀	A09	╀	B01	┨
2371	╀	A09 A09	╀	B02	┨
2372	╀		╀	B10	┨
2373	╀	A09	╀		\dashv
2374	╀	A09	╁	B11	\dashv
2375	┿	A09	╁	B12 B20	┥
2376	+	A09	+	C01	┥
2377	+	A09	╁	C02	┥
2378	┿	A09	+	C04	_
2379	╬	A09	╁	C05	_
2380	╁	A09	+	C06	_
2381	+	A09 A09	_	C07	_
2382	+	A09	_	C10	_
2383	╅	A09	-	C11	
2384	+	A09	_	C12	
2385 2386	+	A09	-	C13	
2387	╅	A09	-	C14	
2388	┪	A09	-	C16	_
2389	+	A09	_	CO	
2390	1	AOS		D0	
2391	┪	A09		D04	
2392	┪	AOS		D0	
2393	-	A09		D0	_
2394	-	A09		DO	_
2395	\dashv	A09		DO	_
2396	\dashv	A0:		D1	
2397	\dashv	AO		D1	
2398		AO		Di	
2399	_	AO		D1	
2400	_	AO		EO	
2700	_	,,,,,,	_		-

A 45 TT CO		
合物番号	A	В
2401	A09	E08
2402	A09	E11
2403	A09	E12
2404	A09	E13
2405	A09	E14
2406	A09	E15
2407	A09	E16
2408	A09	F01
2409	A09	F03
2410	A09	F04
	A09	F05
2411		
2412	A09	F11
2413	A09	F14
2414	A09	F17
2415	A09	G01
2416	A09	G02
2417	A09	G03
2418	A09	G06
2419	A09	G12
2420	A09	G13
2421	A09	G15
2422	A09	G20
2423	A09	
2424	A09	
2425	A09	
2426	A09	
	A09	
2427		
2428	A09	
2429	A09	
2430	A09	
2431	A09	
2432	A09	
2433	A09	
2434	A09	
2435	A09	
2436	A09	
2437	A09	J10
2438	A13	3 B01
2439	A13	3 B05
2440	A1:	3 B20
2441	A1:	
2442	A1	3 C16
2443	A1:	3 D04
2444	A1	3 D09
2445	A1	3 D15
2446	AI	
2447	A1	2 021
2448	A1 A1	3 G21
2449	1 A1	3 I15
2450	A1	3 J07

[0053]

【表 6】

	_		_
化合物番号	Α	В]
2451	B01	B05	1
2452	B01	B09	1
2453	B01	C14	1
2454	B01	C16	1
2455	B01	D04	1
2456	B01	D09	1
2457	B01	D15	1
2458	B01	E03	1
2459	B01	F04	1
2460	B01	G21	1
2461	B01	115	1
	B01	J07	┪
2462	B06	B09	┨
2463		C14	
2464	B06	C16	
2465	B06		_
2466	B06	D04	
2467	B06	D09	
2468	B06	D15	
2469	B06		
2470	B06		\dashv
2471	B06		
2472	B06		
2473	B06		
2474	B13		_
2475	B13		
2476	B13	D04	Ц
2477	B13	D09	IJ
2478	B13		5
2479	B13		_
2480	B13		
2481	B13		
2482	B13	3 115	<u></u>
2483	B13		
2484	C01	C0	2
2485	C0.	<u>C0</u>	
2486	CO		6
2487	C0		
2488	CO		9
2489	CO	1 D1	5
2490	C0	_	3
2491	CO		
2492	C0		
2493	CO		
2494	CO		
2495	CO		
2496	CO		
2497			
2498	C0	7 EC	
2499	1 60	7 FC	
2500	CO		_
2000		<u>, u</u>	

化合物番号	Α_	В
2501	C14	C16
2502	C14	D04
2503	C14	D06
2504	C14	D09
2505	C14	D16
2506	C14	E03
2507	C14	F04
2508	C14	G21
2509	C16	C17
2510	C16	D04
2511	C16	D06
2512	C16	D09
2513	C16	D16
2514	C16	E03
2515	C16	F04
2516	C17	D01
2517	C17	D04
2518	C17	D15
2519	D04	D07
2520	D04	D09
2521	D04	
2522	D04	
2523	D04	E03
2524	D04	
2525	D04	
2526	D04	
2527	D04	
2528	D04	
2529	D04	
2530	D04	
2531	D04	
2532	D02	
2533	D04	
2534	D04	
2535	D04	
2536	D09	
2537	D09	
2538	D0:	
2539	D0:	
2540	D0	
2541	D0	9 E11
2542	D0	
2543	D0 D0	
2544		
2545	D0	
2546	D0	9 G07
2547	B0	
2548	- DO	
2549	DC	
2550	1 00	פטח ן פו

七合物番号		Α		В	
2551	Ī	009	ŀ	117	
2552	_	009		114	
2553	_	016	ī	016	
2554	_	016		E03	
2555		016		=11	
2556		016	Ti	E11	
2557		016	Ì	F03	
2558		016		F05	l
2559		D16	_	F14	
2560		D16	-	F17_	
2561	-	D16	-	G07	
2562	-	D16		G11	1
2563		D16		G21	1
2564		D16		H05	1
2565	_	D16		H17	1
2566		D16	_	I14	1
2567	-	E01	十	E03	1
2568	╁	E01	+	A01	1
2569	╁	E01	+	A02	1
2570	+	E01	+	A09	1
2571	+	E01	+	E11	1
2572	十	E01	╁	E12	1
2573	╁	E01	╅	F03	1
2574	╁	E01	+	F05	1
2575	╁	E01	+	F14	┨
2576	+	E01	+	F17	┪
2577	+	E01	+	G07	1
2578	╁	E01	+	G11	┪
2579	╅	E01		G21	┪
2580	+	E01		H05	1
2581	+	E01		H17	
2582	+	E01		114	┨
2583	╅	E02	7	A01	┪
2584	┪	E02		A02	┪
2585	+	E02	_	A09	
2586	┪	E03		E11	
2587	7	E0:	_	E12	_
2588	1	E03	_	F03	_
2589	-	E0:		F05	_
2590	┪	E0:	~	F14	
2591	\dashv	E0:	3	F17	7
2592	\neg	E0		G0	
2593	-	E0		G1	
2594	_	E0	_	G2	
2595		E0		HO	
2596	_	E0	3	H1	
2597	_	EO	3	I12	Ì
2598	_	EO		AO	
2599		EO		AO	
2600		EO	_	AO	
2000	_		_		_

[0054]

【表7】

化合物番号	Α	В
2601	E12	F03
2602	E12	F05
2603	E12	F14
2604	E12	F17
2605	E12	GD7
2606	E12	G11
2607	E12	G21
2608	E12	H05
2609	E12	H17
2610	E12	114
	E15	E01
2611	E15	E02
2612 2613	E15	
	E15 E15	E03 E08
2614 2615		F03
2616	E15	F05
	E15	F14
2617	E15	F17
2618 2619	E15	F05
	F03	F14
2620	F03	F17
2621	F03	G07
2622	F03	G11
2623		G21
2624	F03	H05
2625	F03	H17
2626 2627	F03	[14
	F03	F05
2628 2629	F04	F14
2630	F04	F17
2631	F04	G07
2632	F04	G11
2633	F04	G21
2634	F04	H05
2635	F04	H17
2636	F04	114
2637	F05	A01
2638	F05	A02
2639	F05	A09
2640	F05	F14
2641	F05	F14 F17
2642	F05	G07
2643	F05	G11
2644	F05	G21
2645	F17	G07
2646	G21	H12
2647	108	114
2648	110	114
2649	110	115
2650	I14	115
	1 114	1 410

化合物番号	Α	В
2651	J01	J02
2652	J01	J03
2653	J01	J07
2654	J02	J07
2655	าใบวั	J04
2656	J07	J08
2657	J07	J10

[0055]

【化17】

例示化合物 3001

【0056】 上記具体例のうち、好ましい銅配位化合物の構造式を以下に示す。 【0057】

【化18】

例示化合物 1007

例示化合物 1063

例示化合物 1078

1079 例示化合物

例示化合物 1094

1096 例示化合物

[0058]

【化19】

例示化合物 2568

例示化合物 2004

例示化合物 2033

例示化合物 2051

例示化合物 2347

例示化合物 2037

[0059]

【化20】

例示化合物 1151

例示化合物 1160

例示化合物 1172

例示化合物 1176

例示化合物 3001

[0060]

これらの銅配位化合物の銅ー銅原子間は、多くのものが3.2 A以下になり、銅原子間に相互作用が存在し銅原子間に結合を有している。上記一般式(1)で示される部分構造式を有する銅配位化合物は、2つの銅原子の両側に2つの銅原子を囲むように2つの2座配位子がある。例えば例示化合物1001を例にとって説明すると、この配位子は、配位子A01を2つ用いたものであり、配位原子はピリジン中の窒素原子とピリジンの隣にある炭素原子である。この配位子が配位化合物中では、2つの銅原子を囲むように回転対称的に配位している。配位子中にある非常に嵩高いトリメチルシリル基は、銅と配位子間の結合を安定化している効果があると考えられる。配位子中に立体的にかさ高い置換基を有することで、熱的な安定性が高くなり、発光材料としてより望ましい。例示化合物1001の分子内の銅原子間距離は、2.41点で、強い相互作用をしている。銅原子間距離が3.2点以下のものは、銅原子間相互作用が比較的強く、熱安定性や発光特性が優れている。

[0061]

化8に示した芳香族系の置換基を有する配位子を用いた銅配位化合物は、発光材料として発光する機能だけではなく、その芳香環の置換基によって、電荷輸送能も有するようになり、例えば、発光層中にこれらの配位化合物を高濃度で用いる場合には、電荷輸送が可能になるため、より有利になる。また、いくつかの安定なコンフォメーショを持つため、アモルファス性が向上し、結晶化が抑制されるため有機LED素子の耐久性向上のためより望ましい。他の例として、例示化合物2051のように、一方の配位子にはトリメチルシリル基を有し、他方の配位子にはトリメチルシリル基の無い構成も可能である。構造上

対称性を大きく崩して、結晶性を下げ、アモルファス性を向上させることが可能になる。 また、例示化合物2054のように、トリメチルシリル基の有無に加えて、共役長の差を 設けて励起状態を局在化することで素子の安定性を向上させることも可能である。理由は 明らかではないが、発光材料の励起状態を局在化することで、素子の安定性を向上させる ことができる可能性がある。

[0062]

本発明の発光材料は、前述のように、固体中で良く発光するため、発光層中で、高濃度 で用いることができる。しかしながら、配位化合物を同じ配位子で構成する場合、その配 位化合物は比較的結晶化しやすく、発光素子として用いる場合、劣化しやすいなど問題が 起こる可能性がある。そのため、分子の対称性を落として結晶化を抑制することができる 。その例を表3~表7に示した。例えば、例示化合物2033は、一方の配位子にカルバ ゾール基を配し、もう一方の配位子にはそれがない。このような分子構造を有するものは 、アモルファス性が高く、結晶性が低いため有機LED素子の発光材料には、より望まし

[0063]

本発明の銅配位化合物の非常に強い発光特性は本発明者らが初めて観測し、その発光素 子への応用を開示したものであるので、その発光メカニズムはこれまで明らかにされては いない。これ以下に示す発光に関する記述に関しては、我々の発光メカニズムに関する一 つのモデルである。

[0064]

本発明の銅配位化合物の発光性の最低励起状態は、以下の3種類が考えられ、または、 その混合状態と考えられる。

- (1) MLCT (metal-to-ligand-charge-transfer) 励起状態
 - (2) 金属中心励起状態
 - (3) 配位子中心 (ππ*) 励起状態

[0065]

励起状態はその寿命が短く、その状態は複雑なので、実験的に各々の配位化合物につい て詳しく特定するのは難しい。

[0066]

前に述べたように、本発明の多くの銅配位化合物は、分子内銅原子間隔は短く、3.2 A以下である。銅原子のファンデルワースル半径の2倍は、2.8Aであり、銅原子間は 相互作用をして新たな分子軌道を形成していると考えられる。この銅原子間の相互作用に より生成された軌道は、単独のCu原子の被占軌道よりエネルギー的に高くなり、HOM 〇軌道 (最高被占軌道) になりうる。

[0067]

また、本発明の配位化合物の多くは、例えば、上記一般式 (2) で示されるように、電 子欠乏性の複素環であるピリジン、ピラジン、ピリミジン、ピリダジン、キノリン、イソ キノリン、ピラゾール、アザキノリン、アザイソキノリン環などがN原子を介して直接銅 原子に配位している。励起状態になるとき、基底状態から、電子が上位の軌道に遷移する が、上記複素環は、電子欠乏性のため、電子を受け入れやすい。そのため、銅原子から励 起遷移時に複素環が電子を受け入れる場合が多い。これら、複素環を有する配位子が励起 遷移時に銅原子から電子を受け入れる。励起遷移時に、金属から配位子に電子が電荷移動 する場合に、その励起状態をMLCT励起状態と呼ぶ。本発明のCu配位化合物における MLCT励起状態は以下のように考えられる。すなわち、2つの銅原子の相互作用によっ てできる軌道が分子のHOMO軌道となり、そのHOMO軌道から配位子への電荷移動す るMLCT励起状態である。

[0068]

また、本発明の配位化合物の中で複素環がない分子や、複素環があっても励起遷移時に 電子を受け入れない場合には、 (2) 金属中心励起状態となる。また、他に (3) 配位子 中心 $(\pi \pi^*)$ 励起状態も考えられる。

[0069]

発光は、一般に最低励起状態から発光する。最低励起状態は、いろいろな励起状態が「混合」されいるため、最低励起状態がどの励起状態が主たるものであるかで、その発光特性が決定される。

[0070]

MLCT励起状態の場合、配位子を変更することで発光エネルギーが変化すればこれらが主たる励起状態であると判断できる。分子内銅原子間距離が3.2 A程度以下であれば、金属間相互作用による結合軌道ができているので、その軌道をからのMLCT遷移と考えることができる。銅原子間距離など分子構造は、X線結晶構造解析により決定することができる。

[0071]

本発明の銅配位化合物の発光波長は、配位子を変化させることで調整可能である。例えば、化7に示す配位子のように、ピリジン環に電子供与または吸引基を用いることで波長が調整できる。また、化8,9に示すように複素環中のN原子数や、複素環の環構造を変化させることもできる。さらに、化10,11に示すように芳香環の共役長を変化させて、発光波長を調整することも可能である。

[0072]

本発明の銅配位化合物の発光寿命は、固体状態で0.1 μ s ~ 100 μ s であり、3 重 項励起状態を経由した発光であり、遅延蛍光または燐光である。フォトルミネッセンスの 発光収率は1~60%程度で、強い発光を示す。

[0073]

高発光効率のためには、基底状態と励起状態の構造変化を抑制するような配位子構造にすることが重要である。本発明の銅配位化合物は、溶液に比べ固体中では上記構造変化が抑制されるため、強い発光が得られると考えられる。これが銅配位化合物が、固体でよく発光する一つの理由である。これまで用いられてきたアルミキノリノール誘導体、クマリン誘導体、キナクリドン誘導体などは、溶液中で非常に強い発光が得られ、その強発光特性がそのまま固体分散中でも保持され、この特性が有機EL素子においても有効に働き、素子の高発光効率が得られていたが、本発明のCu配位化合物では溶液中の発光に比べて固体中の発光は非常に強い。本発明者らはこの特性に着眼し有機EL素子の高効率で安定発光に有用であることを見出した。

[0074]

本発明のCu配位化合物は有機EL素子の発光材料に有用である。高い発光効率を有することは言うまでもなく、真空蒸着プロセスや溶液にして塗布するスピンコートプロセスや、インクジェットノズルを用いた塗布方式にも適する。素子作成工程における分解などのダメージがなく安定した素子作成が可能になる。

[0.075]

次に、本発明の発光素子について説明する。本発明の発光素子は、上記発光材料が発光 層に含まれることが好ましい。

[0076]

本発明の有機EL素子の基本的な構成を図1 (a)~(e)に示した。

[0077]

図1に示したように、一般に有機EL素子は、透明基板15上の透明電極14と金属電極11とに挟持された単層または複数層の有機膜層から構成される。

[0078]

図1(a)は、最も単純な構成で、有機層が発光層12のみからなるものである。

[0079]

図1 (b) と (c) は、有機層が2層からなり、それぞれ発光層12とホール輸送層13と、発光層12と電子輸送層16からなる。

[0080]

図1 (d) は、有機層が3層からなりホール輸送層13、発光層12および電子輸送層16からなるものである。

[0081]

図1 (e) は、有機層が4層からなりホール輸送層13、発光層12、励起子拡散防止層17および電子輸送層16からなるものである。

[0082]

発光層12には、電子輸送性と発光特性を有するアルミキノリノール錯体など(代表例は、以下に示すAlq)が用いられる。

[0083]

発光層には、キャリア輸送材料中に本発明の発光性銅配位化合物を混入するゲストホストタイプや、その発光性銅配位化合物のみを100%で用いる方法や、その発光性銅配位化合物が主成分で、少量の添加剤(キャリア輸送材料や結晶化防止材料など)を加えることもできる。さらに、ゲストホストタイプの中でも、ゲストに電子輸送性とホール輸送性の2つのキャリア輸送材料を用い、その中に発光性銅配位化合物を添加することもできる。従って、本発明の発光層は、性能の向上や生産性を考慮して、1成分または2成分以上の材料から構成することができる。

[0084]

また、ホール輸送層 13 には、例えばトリフェニルアミン誘導体(代表例は、以下に示す α N P D)が主に用いられる。また高分子の場合、 P V K が用いられる。 P V K は、主にホール輸送性であり、 P V K 自体が青色の E L 発光を示す。

[0085]

電子輸送層16としては、例えば、オキサジアゾール誘導体など、または、以下に示すAlq、BphenやBCPを用いることができる。

[0086]

$$AI \begin{bmatrix} O & \\ N & \\ N & \\ \end{bmatrix}_3$$

Alq

$$\alpha$$
 -NPD

CBP

BCP.

BPhen

PVK

【実施例】

[0087]

<製造例1(例示化合物1001)の製造>

[0088]

【化22】

[0089]

1000mlフラスコにTMEDA32. 6g (281mmol) をシクロヘキサン1 50mlに投入し、-30度に冷却した。この溶液にn-プチルリチウム345ml(2 . 4 Mへキサン溶液)をキャニラーを用いて滴下し、生成した懸濁液に2-メチルピリジ ン26.1g(281mmol)を滴下漏斗にて滴下した。その後、反応液を昇温し、室 温で10分撹拌を行った。その後、再び-30度まで冷却した後、塩化トリメチルシリル 91.5g(843mmol)を滴下漏斗にて滴下した。15分撹拌後、室温まで昇温し 、2時間撹拌を行った。反応後、水にて処理を行い、ヘキサン(1 L×3)で抽出を行っ た。有機層を飽和食塩水で洗浄、硫酸マグネシウムにて乾燥後、溶媒を留去し、粗精製物 を得た。これをカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/10)にて精製 し、減圧蒸留にて化合物A01を13.0g(収率19%)得た。

[0090] 【化23】

[0091]

100mlの2つ口フラスコに2-(ビスートリメチルシラニルーメチル) -ピリジン (化合物A01) 952mg(4mmol), 完全に脱気された脱水テトラヒドロフラン 20m1を入れ、窒素気流下-20度で撹拌しながらノルマルプチルリチウム2.5m1 (4 mm o l 、1. 6 Mへキサン溶液)を滴下した。

[0092]

その後、室温まで徐々に昇温し、室温にした後、塩化銅(I)496mg(4mmol) を加えた後、15分撹拌した。反応終了後、溶媒を窒素下にて留去を行い、反応物に脱 水、脱気したヘキサンを50ml加えて撹拌した後、窒素下にて不溶物の濾過を行った。 濾液を窒素下にて濃縮を行った後、得られた固形物を昇華精製にて精製を行い、例示化合 物1001を350mg(収率29%)を得た。

[0093]

<製造例2(例示化合物1002)の製造>

[0094]

[0095]

100mlの2つ口フラスコに2-(ビスートリメチルシラニルーメチル)-6-メチ ルーピリジン(化合物 A O 2) 1 O O 6 m g (4 m m o 1), 完全に脱気された脱水テト ラヒドロフラン20m1を入れ、窒素気流下-20度で撹拌しながらノルマルブチルリチ ウム 2. 5 m l (4 m m o l 、1. 6 M へキサン溶液)を滴下した。

[0096]

その後、室温まで徐々に昇温し、室温にした後、塩化銅(I)496mg(4mmol) を加えた後、15分撹拌した。反応終了後、溶媒を窒素下にて留去を行い、反応物に脱 水、脱気したヘキサンを50ml加えて撹拌した後、窒素下にて不溶物の濾過を行った。 濾液を窒素下にて濃縮を行った後、得られた固形物を昇華精製にて精製を行い、例示化合 物1002を390mg(収率31%)を得た。

[0097]

<製造例3(例示化合物1176)の製造>

[0098] 【化25】

1176

[0099]

100mlの2つ口フラスコにテトラキス (アセトニトリル) 銅 (I) ヘキサフルオロ リン酸塩186mg(0.5mmol), 脱水トルエン20mlを入れ、窒素気流下2-ジフェニルフォスファニルーピリジン (化合物 J 0 7) 1 3 2 mg (0.5 mm o 1) を 投入した。その後、1時間、撹拌した。反応終了後、溶媒留去を行い、クロロホルム/メ タノールにて再結晶を行い、例示化合物1176を159mg(収率50%)を得た。

[0100]

<化合物の発光特性>

製造例1~3で製造した化合物の粉末状態での発光特性の測定を行った。結果を表8に示す。また、代表例として例示化合物1001の発光スペクトルを図2に示す。

【0101】 【表8】

例示化合物	発光波長(nm)	半値幅(nm)
1001	519	67
1002	525	70
1176	514	91

[0102]

<製造例4(例示化合物1078)の製造>

[0103]

【化26】

[0104]

製造例1に示した方法と同様の合成法を用い、例示化合物1078を合成した(収率10%)。化合物の同定には、元素分析及びX線結晶解析を用いた。図3に、本化合物の固体状態での発光スペクトルを示す。発光ピーク波長は577nm・半値幅91nmの強い橙色発光が観測された。

[0105]

<製造例 5 (例示化合物 1 0 0 7)の製造>

【0106】 【化27】

[0107]

 $300 \, \mathrm{ml} \, \mathrm{反応器}$ にジイソプロピルアミン($14 \, \mathrm{ml}$, $99 \, \mathrm{mmol}$)、ジエチルエーテル($100 \, \mathrm{ml}$)を加えー $40 \, \mathrm{C}$ に冷却した。この溶液に n ープチルリチウム $2.44 \, \mathrm{M}$ へキサン溶液($41 \, \mathrm{ml}$, $99 \, \mathrm{mmol}$)を滴下した。この溶液を攪拌しながら $0 \, \mathrm{C}$ まで昇温後、 $-78 \, \mathrm{C}$ に冷却した後、 $2- \mathrm{J}$ ルオロー $6- \mathrm{J}$ メチルピリジン($5.0 \, \mathrm{g}$ 、 $45 \, \mathrm{G}$

mmo1)を加えた。15分攪拌後、トリメチルシリルクロリド(<math>12.6ml,99mmo1)をゆっくり滴下した後、昇温して室温で18時間攪拌した。この混合液に市水を加え、さらにヘキサン(<math>150ml)を加えて有機層と水層を分けた後、水層をヘキサンで抽出し有機層を集め、飽和食塩水で洗浄し $MgSO_4$ で乾燥後、この溶液を濃縮し淡褐色の液体である配位子を得た。

[0108] [428]

[0109]

その後、製造例1と同様にして例示化合物1007を得た(収率20%)。化合物の同定には、元素分析及びX線結晶解析を用いた。図4に、本化合物の固体状態での発光スペクトルを示す。発光ピーク波長は504nm・半値幅55nmの強い緑色発光が観測された。

[0110]

<製造例6(例示化合物1182)の製造>

[0111]

【化29】

[0112]

ベンゼン溶媒中でトリメチルシリルジフェニルホスフィンと1-ヨードー2ーブロモベンゼンをパラジウム触媒存在下で反応させることにより配位子を得た。

【0113】 【化30】

[0114]

その後、製造例1と同様にして例示化合物1182を得た(収率12%)。化合物の同 定には、元素分析及びX線結晶解析を用いた。図5に、本化合物の固体状態での発光スペ クトルを示す。発光ピーク波長は705nmの赤色発光が観測された。

[0115]

<実施例1,2>

本実施例では、素子構成として、図1 (d) に示す有機層が3層の素子を使用した。

[0116]

ガラス基板(透明基板15)上に100nmのITO(透明電極14)をパターニング して、対向する電極面積が3mm²になるようにした。そのITO基板上に、以下の有機 層と電極層を10⁻⁴Paの真空チャンバー内で抵抗加熱による真空蒸着し、連続製膜した 。発光層12は40nm(実施例1)、20nm(実施例2)の2種類を作製した。 ホール輸送層13 (40 nm) : 化合物FL1

発光層 1 2 (4 0 nm, 2 0 nm): CBP/例示化合物 1 0 0 1 (重量比 1 0 重量%) 電子輸送層16(50nm):BPhen

金属電極層1 (1 n m): KF

金属電極層 2 (100nm):Al

[0117]

尚、化合物FL1の構造式を以下に示す。

[0118]

【化31】

[0119]

<実施例3>

本実施例では、素子構成として、図1 (d) に示す有機層が3層の素子を使用した。

[0120]

実施例1と同様にして作製したITO基板上に、ホール輸送層13として、バイエル社 製のPEDOT (有機EL用) を40nmの膜厚に1000rpm (20秒) でスピンコ ートで塗布し、120℃の真空チャンバーで1時間乾燥した。

[0121]

その上に、以下の溶液を用いて、窒素雰囲気下で2000rpm、20秒間でスピンコ ートすることで、50 nmの膜厚の発光層12を形成し、ホール輸送層13製膜時と同じ 条件で乾燥した。

脱水クロロベンゼン: 10g

ポリビニルカルバゾール (平均分子量9600):92mg

例示化合物 1 0 0 1 : 8 m g

[0122]

この基板を真空蒸着チャンパーに装着して、電子輸送層16として、Bphenを40 nmの膜厚に真空蒸着製膜した。

[0123]

次に、以下のような構成の陰極(金属電極11)を形成した。

金属電極層1 (15 n m) : A l L i 合金 (L i 含有量1. 8 重量%)

金属電極層 2 (100 nm): Al

[0124]

<素子の特性>

金属電極11をマイナス、透明電極14をプラスにしてDC電圧を印加して素子特性を 評価した。

[0125]

電圧電流特性は、良好な整流性を示した。発光スペクトルと発光強度は、トプコン社製、スペクトル測定機SR1及びBM7で測定した。電圧印加時の電流値は、ヒューレッドパッカード社製の4140Bd測定した。発光輝度と電流測定値から、発光効率cd/Aを計算した。結果を表9に示す。

[0126]

【表9】

		300cd 600cd		0cd	
実施例	発光波長(nm)	cd/A	lm/w	cd/A	Lm/W
1	535	20.7	10.1	18.1	9.2
	535	24.9	17.8	21.4	14.5
	540	11.5	5.2	10.1	4.3

[0127]

EL発光は、300、600cd/cm²で発光させた時、良好な発光を示した。

[0128]

実施例1において、外部量子効率は7.5%であり、三重項励起状態を経由した発光の利点を生かした高効率発光素子を得ることができた。また、実施例1及び2の素子を100時間通電してEL発光をさせた時、安定な発光が得られることを確認した。

[0129]

<実施例4.5>

発光層の例示化合物 1001 の濃度を 50 重量%(実施例 4)、 100 重量%、つまり例示化合物 1001 のみ(実施例 5)とした以外は、実施例 2 と同様にして素子を作成した。 600 c d 2 の輝度のときの効率を表 10 に示す。

[0130]

【表10】

	発光波長(nm)	cd/A	lm/W
実施例4	540	19.3	13.2
実施例5	550	19.0	12.0

[0131]

実施例 2 (発光層の例示化合物 1 0 0 1 の濃度が 1 0 重量%のもの) と比較して同等の効率が得られていることから、例示化合物 1 0 0 1 は濃度を高くしても効率が落ちることがない濃度消光が抑制された発光材料であることが判る。

[0132]

尚、発光は300cd/m²で連続発光させても安定な発光を示した。

[0133]

<実施例6~8>

例示化合物1001に替えて例示化合物1007を用いた以外は実施例1、2、5と同様にして素子を作成した。600cd/m²の輝度のときの効率を表11に示す。

[0134]

【表11】

	発光波長(nm)	cd/A	lm/₩
実施例6	505	10.2	6.8
実施例7	505	15.0	11.0
実施例8	515	12.0	8.2

[0135]

実施例 6, 7の素子は高効率発光を示し、例示化合物 1007が優れた発光ドーパントであることが判る。また、例示化合物 1007の100%膜の発光層を用いた実施例 8の素子でも良好な効率が得られていることから、例示化合物 1007は濃度消光が抑制された発光材料であることが判る。

[0136]

尚、発光は300cd/m²で連続発光させても安定な発光を示した。

[0137]

<実施例9>

例示化合物 1 0 0 1 を例示化合物 1 1 7 6 に変更した以外は実施例 3 と同様にして素子を作成した。 6 0 0 c d / m 2 の輝度のときの効率を表 1 2 に示す。

[0138]

【表12】

	発光波長(nm)	cd/A	lm/₩
実施例9	520	4.3	2.0

[0139]

高効率発光が確認され、また300cd/m²で連続発光させても安定な発光を示した

【図面の簡単な説明】

[0140]

- 【図1】本発明の発光素子の一例を示す断面図である。
- 【図2】例示化合物1001の発光スペクトルを示す図である。
- 【図3】例示化合物1078の発光スペクトルを示す図である。
- 【図4】例示化合物1007の発光スペクトルを示す図である。
- 【図5】例示化合物1182の発光スペクトルを示す図である。

【符号の説明】

[0141]

- 11 金属電極
- 12 発光層
- 13 ホール輸送層
- 14 透明電極
- 15 透明基板
- 16 電子輸送層
- 17 励起子拡散防止層

【書類名】図面【図1】

【図2】

【図3】

【図4】

【図5】

【要約】

【課題】 高発光効率・高安定性・低コストである発光材料を用いた発光素子を提供する

【解決手段】 下記一般式 (1) で示される部分構造式を有する 2 核の銅配位化合物を発 光材料として用いる発光素子。

【化1】

[式中、Cu は銅イオンであり、 $A_1 \sim A_3$ と A_1 ' $\sim A_3$ ' は窒素、炭素、りん原子から選ばれる。]

【選択図】 図1

認定・付加情報

特許出願の番号 特願2004-298501

受付番号 50401743360

書類名特許願

担当官 第四担当上席 0.093

作成日 平成16年10月18日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000001007

【住所又は居所】 東京都大田区下丸子3丁目30番2号

【氏名又は名称】 キヤノン株式会社

【代理人】 申請人

【識別番号】 100096828

【住所又は居所】 東京都千代田区有楽町1丁目4番1号 三信ビル

229号室

【氏名又は名称】 渡辺 敬介

【選任した代理人】

【識別番号】 100110870

【住所又は居所】 東京都千代田区有楽町1丁目4番1号 三信ビル

229号室

【氏名又は名称】 山口 芳広

特願2004-298501

出願人履歴情報

識別番号

[000001007]

1. 変更年月日 [変更理由]

1990年 8月30日

住 所

新規登録 東京都大田区下丸子 3 丁目 3 0 番 2 号

氏 名 キヤノン株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked.

2 crossom the mages metade out are not immed to the nems checked.
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.