

Prosition de rata cros. La onda trans por la energia -o drans porla momendam. Si la onda es absorbida e restejada por una superficie, su momendam cambria. El cambrio de momendam está asociado a una presa y esta a una presión de rac. Si la intensidad de la onda es I, ha presión de radición que procusa es P = I (100% absorbida) P = 2I (100% reglegada) C (Inda espérica la amplitud de la onda deace con la distancia E = Ea sen (K·r·ut) B = Ea sen (K·r·ut) Pada que la Intensidad a cuadra la de la amplitud de la conda, se observa que cac con di cistancia	energia -o prensporto momentum da e reslejada por una. superficie, su momentum cambia. m está asociado a una puersa y ésta a una presión de radiaden enda es I, la presión de radiación que prouva es a chsorbida) P = 2 I (100% reflejada) devae con la distancia (1)																																
Si la onda es absorbida o reglejada por una supergicie, su momentum cambia. El cambio de momentum está asociado a una puerea y éstu a una presión de race Si la intensidad de la onda es I, la presión de radiación que prouveu es P = I (100% absorbida) P = 2 I (100% veglejada) C Modo esjérica a amplitud de la onda desae con la distancia E = Ea sen (K·r-ut) T B = Bo sen (K·r-ut)	da e reslejada por una supercicie, su inomendom cambia. m esla asociado a una que sa y ésla a una presión de radiaden onda es I, la presión de radiaden que prouves es almorbida) P = 2I (100% reslejada) devae con la distancia ++)	Pn	csi	бn	d.	8 Y	na	So	Col	တာ်																							
Si la onda es absorbida e reslejada por una superficie, su momentum cambia. El cambio de momentum está asociado a una preser y ésta a una presión de ración la intensidad de la onda es I, la presión de radiación que prouseu es P = I (100% absorbida) P = 2I (100% reslegada) C amplifud de la onda desae con la distancia E = Eo sen (K·r-ut) B = Bo sen (K·r-ut)	da e reslejada por una supergicie, su momentum cambia. m esta asociado a una sucrea y ésta a una presión de radiaden onda es I, la presión de radiación que prouseu es almorbida) P = 2I (100% reslejada) desac con la distancia ++)	L	2	en C	b	to	uns	po	r de	2 6	?n 8.	rgic	2 -	0	tra	nsp	ord	b ,	נטח	00C 11	ku	,											
El cambio de momentan está asociado a una pressa y ésta a una presión de ración la intensidad de la anda es I, la presión de radiación que provocu es P = I (100% absorbida) P = 2I (100% veglegada) cla esférica amplitud de la anda deace con la distancia E = Ea sen (K·r-w+) T B = Bo son (K·r-w+)	onda es I, la presion de radiación que provoca es almorbida) P = 2 I (100% vegle jada) deme con la distancia																						su	אחס	ore,	kn	,	001	nh	<i>ia</i> .			
is la intensidad de la onda es I, la presión de radiación que prouves es P = I (100% absorbida) P = 2 I (100% reglegada) c amplitud de la onda devae con la distancia E = Ea sen (K·r-ut) B = Bo sen (K·r-ut)	onda es I, la presión de radiación que prouse es o) o) nsor hi da) P = 2 I (100% vegle jada) desac con la distancia (+)																															l'a a	1-1
P= I (100% a)nsorbida) P= 2I (100% vegleyada) ndo esgérica amplifud de la anda dease con la distancia E=Ea sen (K·r-wt) B=Bo sen (K·r-wt)	deae con la distancia 1)																													DC	7020	7020	(42)
amplitud de la conda decre con la distancia E = Eo sen (K·r-wt) B = Bo sen (k·r-wt)	deae con la distancia (+)	'n	la	int	in s	da	d	de	la	. (md	bo	25	I, ,	la	pre	sio	100	de	na	De	20'0	900	que	pm	Cor	zu .	es					
amplitud de la conda decre con la distancia E = Eo sen (K·r-wt) B = Bo sen (k·r-wt)	dece con la distancia (+)			2	-	I	•	(10	202	10	ما		l:	(a)		C) -	2.	T.	1	10	0%	6	ve cl	e des	1.							
ampliful de la Onda dease con la distancia E = Eo sen (K·r-wt) B = Bo sen (K·r-wt)	·+)			'		C					0,17	sor	<i>13</i> 1 (<i>(</i>				0		(4.1	Ju	Ca)							
ampliful de la Onda dease con la distancia E = Eo sen (K·r-wt) B = Bo sen (K·r-wt)	·+)																																
$E = Eo sen(k \cdot r - \omega t)$ $B = Bo sen(k \cdot r - \omega t)$	·+)	d	0_	ect	én	ce	2																										
$E = Eo sen(k \cdot r - \omega t)$ $B = Bo sen(k \cdot r - \omega t)$	·+)	a	mp	eli fi	d	de .	la	9	do		lea	20	Co	n d	6	dis	tar	cic	2														
B=Bo son (k·r-wt)	.4)			-																													
				7																													
Les que la Intensidad et wadra de le la amplibed de la conda, se chiserva qui cac con el cuadra de de la distência	d cuadrado de la amplika de la conda, se observa que I o de la distancia		ß :	Be	5	Cn	k	. 7	- 6	u t)																						
Lo que la intensidad de cua dra do de la amplitud de la conda, se observa que cara do de la distancia	d wadra to te la amplibed de la conda, se observa que I o de la listància																																
		co	9 0	we	la	l'in	ten	si e	la d	10	1	ve	dr	a	را ا:دا	ce	de	a	an	npi	של נ'	d	de	la	9m	da	, Se	: 6	shæ	rua	9	, I	
															, 61		Ju																