Analysis 2

Jil Zernt, Lucien Perret May 2024

Nützliche Resourcen

Integraltabelle

Funktion $\mid f(x)$	Ableitung f'(x)	Integral F(x)
1	0	x + C
x	1	$\frac{1}{2}x^2 + C$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\ln x + C$
$x^a \text{ with } a \in \mathbb{R}$	ax^{a-1}	$\frac{x^{a+1}}{a+1} + C$
$\sin(x)$	$\cos(x)$	$-\cos(x) + C$
$\cos(x)$	$-\sin(x)$	$\sin(x) + C$
tan(x)	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$-\ln \cos(x) + C$
$\cot(x)$	$-1 - \cot^2(x) = -\frac{1}{\sin^2(x)}$	$\ln(\sin(x)) + C$
e^x	e^x	$e^x + C$
a^x	$\ln(a) \cdot a^x$	$\frac{a^x}{\ln(a)} + C$
ln(x)	$\frac{1}{x}$	$x \ln(x) - x + C$
$\log_a(x)$	$\frac{1}{x \ln(a)}$	$x \log_a(x) - \frac{x}{\ln(a)} + C$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$	$x\arcsin(x) + \sqrt{1 - x^2} + C$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$	$x \arccos(x) - \sqrt{1 - x^2} + C$
$\arctan(x)$	$\frac{1}{1+x^2}$	$x \arctan(x) - \frac{1}{2}\ln(1+x^2) + C$

Spezielle Grenzwerte

$$n \to \infty$$

$\frac{1}{n} \to 0$	$e^n \to \infty$	$\frac{1}{n^k} \to 0 \forall k \in \mathbb{R}^+$
$\frac{1}{c + \frac{1}{n} \to c}$	$e^{-n} \to 0$	$(1+n)^{\frac{1}{n}} \to 1$
$\frac{c \cdot n}{c^n} \to 0$	$\frac{e^n}{n^c} o \infty$	$\left(1 + \frac{1}{n}\right)^c \to 1$
$\sqrt[n]{n} = n^{\frac{1}{n}} \to 1$	$\frac{\sin n}{n} \to 0$	$\left(1+\frac{1}{n}\right)^n \to e$
$\frac{\sqrt[n]{n!} \to \infty}{}$	$\arctan n \to \frac{\pi}{2}$	$\left(1+\frac{c}{n}\right)^n \to e^c$
$\frac{\frac{1}{n} \sqrt[n]{n!} \to \frac{1}{e}}$	$\ln n \to \infty$	$\left(1 - \frac{1}{n}\right)^n \to \frac{1}{e}$
$\frac{c^n}{n!} \to 0$	$\frac{\ln n}{n} \to 0$	$\left(\frac{n}{n+c}\right)^n \to e^{-c}$
$\frac{n^n}{n!} \to \infty$	$\frac{\log n}{n-1} \to 1$	

$$n^c \cdot q^n \to 0 \quad \forall c \in \mathbb{Z}, 0 \le q \le 1$$

 $n(\sqrt[n]{c} - 1) \to \ln c \quad \forall c > 0$

$$n \to 0$$

$\ln n \to -\infty$	$\frac{\sin n}{n} \to 1$	$\frac{1}{\arctan n} \to 1$
$n \log n \to 0$	$\frac{\cos\left(n\right)-1}{n}\to0$	$\frac{e^n-1}{n} \to 1$
$\frac{\log 1 - n}{n} \to -1$	$\frac{1}{\cos n} \to 1$	$\frac{e^c n - 1}{n} \to c$
$\frac{c^n - 1}{n} \to \ln c, \forall c > 0$	$\frac{1-\cos n}{n^2} \to \frac{1}{2}$	$(1+n)^{\frac{1}{n}} \to e$

Ableitungsregeln

Summenregel

$$f(x) = g(x) + h(x) \to f'(x) = g'(x) + h'(x)$$

• Differenzregel

$$f(x) = g(x) - h(x) \to f'(x) = g'(x) - h'(x)$$

Faktorregel

$$f(x) = a \cdot g(x) \to f'(x) = a \cdot g'(x)$$

Produktregel

$$f(x) = g(x) \cdot h(x) \to f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

Quotientenregel

$$f(x) = \frac{g(x)}{h(x)} \to f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h^2(x)}$$

• Kettenregel

$$f(x) = g(h(x)) \to f'(x) = g'(h(x)) \cdot h'$$

Mitternachtsformel

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Integralrechnen

Stammfunktionen

Integrale von Linearkombinationen

Gegeben:

$$\int f(x)dx = F(x) + C, \quad \int g(x)dx = G(x) + C$$

Das unbestimmte Integral der Linearkombination $\lambda_1 f(x) + \lambda_2 g(x)$ ist:

$$\int (\lambda_1 f(x) + \lambda_2 g(x)) = \lambda_2 F(x) + \lambda_2 G(x) + C \quad (\lambda_1, \lambda_2 \in \mathbb{R})$$

Integral von verschobenen Funktionene

Gegeben:

$$\int f(x)\mathrm{d}x = F(x) + C$$

Das unbestimte integral um Betrag k in x-Richtung verschoben ist:

$$\int f(x-k)dx = F(x-k) + C \quad (k \in \mathbb{R})$$

Integrale von gestreckten Funktionen Gegeben:

$$\int f(x)\mathrm{d}x = F(x) + C$$

Das unbestimmte Integral um Faktor k in x-Richtung gestreckt ist:

$$\int f(k \cdot x) dx = \frac{1}{k} F(k \cdot x) + C \quad (k \neq 0)$$

Integrationsmethoden -

Partielle Integration

$$\int u'(x)v(x)dx = u(x) \cdot v(x) - \int u(x), v'(x)dx$$

Partialbruchzerlegung

• Bestimmung der Nullstellen x_1, x_2, \dots, x_n des Nennerpolynoms q(x) mit Vielfachheiten (einfache Nullstelle, doppelte usw)

Beispiel Integral :
$$\int \frac{1}{x^2 - 1} dx$$

• Zuordnen der Nullstellen x_k vom q(x) zu einem Partialbruch mit unbekannten Koeffizienten $A, B_1, B_2, \ldots, 1 \le k \le n$:

$$f(x) = \underbrace{\frac{A}{x - x_1}}_{einfache \ Null stelle \ x_1} + \underbrace{\frac{B_1}{x - x_2} + \frac{B_2}{(x - x_2)^2}}_{doppelte \ Null stelle \ x_2} + \dots$$

Beispiel:
$$\frac{1}{x^2-1} = \frac{A}{x-1} + \frac{B}{x+1}$$

Bestimmung der Koeffizienten: alles auf den Hauptnenner bringen, geignete x-Werte einsetzen

Beispiel:
$$\frac{1}{x^2 - 1} = \frac{A(x+1) + B(x-1)}{x^2 - 1}$$

$$Beispiel: 1 = A(x+1) + B(x-1)$$
 $x = 1 bzw. x = -1$

$$B = -\frac{1}{2} \quad A = \frac{1}{2}$$

• Werte in Partialbruch einsetzen

$$\frac{1}{2} \cdot \frac{1}{x-1} - \frac{1}{2} \cdot \frac{1}{x+1}$$

• Integral der Partialbrüche berechnen

$$\int \frac{1}{x^2 - 1} dx = \frac{1}{2} \cdot \int \frac{1}{x - 1} dx - \frac{1}{2} \cdot \int \frac{1}{x + 1} dx$$

$$\int \frac{1}{x^2-1} \mathrm{d}x = \frac{1}{2} \cdot \ln |x-1| - \frac{1}{2} \cdot \ln |x+1| + C = \frac{1}{2} \cdot \ln \left| \frac{x-1}{x+1} \right| + C$$

Remerkung

Falls die rationale Funktion $f(x) = \frac{r(x)}{s(x)}$ unecht gebrochen-rational ist, d.h. $\rightarrow deg(r(x)) \ge deg(s(x))$ gilt: Zuerst f(x) in der Form:

$$f(x) = n(x) + r(x)$$

wobei n(x) ein Polynom und $r(x)=\frac{\tilde{s}(x)}{\tilde{t}(x)}$ eine echt gebrochene-rationale Funktion ist, d.h. $deg(\tilde{s}(x))< deg(\tilde{t}(x))$

Substitution unbestimmtes Integral

• Aufstellen und Ableiten der Substitutionsglichungen:

$$u = g(x),$$
 $\frac{\mathrm{d}u}{\mathrm{d}x} = g'(x),$ $\mathrm{d}x = \frac{\mathrm{d}u}{g'(x)}$

• Durchführen der Substitution u=g(x) und $\mathrm{d} x=\frac{\mathrm{d} u}{g'(x)}$ in das integral $\int f(x)\mathrm{d} x$:

$$\int f(x) \mathrm{d}x = \int r(u) \mathrm{d}u$$

• Berechnen des Integrals mit Variable u:

$$\int r(u)\mathrm{d}u = R(u) + C$$

• Rücksubstitution:

$$R(u) + C = R(q(x)) + C$$

Substitution bestimmtes Integral

• Aufstellen und Ableiten der Substitutionsglichungen:

$$u = g(x),$$
 $\frac{\mathrm{d}u}{\mathrm{d}x} = g'(x),$ $\mathrm{d}x = \frac{\mathrm{d}u}{g'(x)}$

• Durchführen der Substitution u=g(x) und $\mathrm{d}x=\frac{\mathrm{d}u}{g'(x)}$ in das integral $\int f(x)\mathrm{d}x$:

$$\int_{a}^{b} f(x) dx = \int_{g(a)}^{g(b)} r(u) du$$

• Berechnen des Integrals mit Variable u:

$$\int_{g(a)}^{g(b)} r(u) du = R(u) + C \Big|_{g(a)}^{g(b)}$$

• Rücksubstitution:

$$R(u) + C \Big|_{g(a)}^{g(b)} = R(g(x)) + C \Big|_{g(a)}^{g(b)}$$

Mittelwert einer Funktion

Definition des Mittelwert μ der Funktion f(x) auf [a,b]: Höhe des Rechtecks, das

- eine Grundlinie der Länge b-a hat
- der Flächeninhalt des Rechteks der Fläche unter der Kurve f(x) im Intervall [a,b] entspricht

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x$$

Rotationsvolumen

$$V = \pi \int_{a}^{b} (f(x))^{2} \mathrm{d}x$$

Bogenlänge

$$L = \int_a^b \sqrt{1 + (f'(x))^2} \mathrm{d}x$$

Mantelfläche

$$M = 2\pi \int_{a}^{b} f(x) \cdot \sqrt{1 + (f'(x))^2} dx$$

Schwerpunkt ebener Fläche

Schwerpunkt $S=(x_s;y_s)$ einer ebenen Fläche mit Flächeninhalt A, eingegrenzt von Kurven y=f(x) und y=g(x) sowie den Geraden x=a und x=b:

$$xs = \frac{1}{A} \int_{a}^{b} x \cdot (f(x) - g(x)) dx$$

$$ys = \frac{1}{2A} \int_a^b x \cdot (f(x)^2 - g(x)^2) dx$$

Berechnen von A ebenfalls durch ein Integral:

$$A = \int_{a}^{b} f(x) - g(x) dx$$

Schwerpunkt Rotationskörper

Die x-Koordinate des Schwerpunkts $S=(x_s;0;0)$ eines Rotationskörpers mit Volumen V, geformt durch Rotation von y=f(x) zwischen [a,b] um x-Achse mit a < b und $f(x) \ge 0$ für alle $a \le x \le b$:

$$x_s = \frac{\pi}{V} \int_a^b x \cdot f(x)^2 \mathrm{d}x$$

Uneigentliche Integrale

Definition Uneigentlich Integral Ein uneigentliches Integral ist ein Integral vom Type:

$$\int_{a}^{\infty} f(x) dx, \quad \int_{-\infty}^{b} f(x) dx, \quad \int_{-\infty}^{\infty} f(x) dx \quad (f(x) \text{ ist stetig})$$

oder vom Typ:

$$\int_{a}^{b} f(x) dx \quad (f(x) \text{ hat einen Pol im Intervall } [a, b])$$

Uneigentliche Integrale erster Art -

Definition

Uneigentliche Integrale mit unendlichem Integrationsinvervall, vom Typ:

$$I = \int_{a}^{\infty} f(x) \mathrm{d}x$$

Graphische Darstellung:

Berechnung

• Rechnen mit endlichem Intervall $[a,\lambda]$ mit $\lambda\geq a$ anstelle von unendlichem Integral $[a,\infty)$

$$I(\lambda) = \int_{a}^{\lambda} f(x) \mathrm{d}x$$

• Das unendliche Intervall $[a, \infty)$ ergit sich aus $\lim_{\lambda \to \infty} I(\lambda)$:

$$I = \int_{a}^{\infty} f(x) dx = \lim_{\lambda \to \infty} I(\lambda) = \lim_{\lambda \to \infty} \left(\int_{a}^{\lambda} f(x) dx \right)$$

• Falls Grenzwert $\lim_{\lambda\to\infty}$ existiert, heisst das uneigentliche Integral $\int_a^\infty f(x)\mathrm{d}x \ \mathbf{konvergent}, \ \mathrm{andernfalls} \ \mathbf{divergent}$

Variante 1:

• Uneigentliche Integrale mit unendlichem Integrationsinvervall:

$$I = \int_{-\infty}^{b} f(x) \mathrm{d}x$$

• Rechnen mit endlichem Invervall $[\lambda,b]$ mit $\lambda \leq b$ anstelle von unendlichem Integral $(-\infty,b]$

$$I(\lambda) = \int_{\lambda}^{b} f(x) \mathrm{d}x$$

• Das unendliche Intervall $(-\infty, b]$ ergit sich aus $\lim_{\lambda \to -\infty} I(\lambda)$:

$$I = \int_{-\infty}^{b} f(x) dx = \lim_{\lambda \to -\infty} I(\lambda) = \lim_{\lambda \to -\infty} \left(\int_{\lambda}^{b} f(x) dx \right)$$

- Falls Grenzwert $\lim_{\lambda \to -\infty}$ existiert, heisst das uneigentliche Integral

$$\int_{-\infty}^b f(x) \mathrm{d}x$$
konvergent, andernfalls divergent

Variante 2:

 Uneigentliche Integrale mit beidseitig unendlichen Integrationsinvervall:

$$I = \int_{-\infty}^{\infty} f(x) \mathrm{d}x$$

• Einfügen einer künslichen Zwischengrenze $c \in \mathbb{R}$ typischerweise c = 0

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

- Beide Teilintegrale wie oben berechnen
- Das integral heisst konvergent falls beide Teilintegrale konvergent sind.

Uneigentliche Integrale zweiter Art

Definition

Uneigentlich Integrale auf Interval [a,b] mit einem Pol von f(x) bei x=a heisst, $f(a)\to\infty$, und Stetigkeit auf (a,b] Graphische Darstellung:

Berechnung

• Statt über [a,b] integrieren, integrieren über $a+\epsilon,b$ für beliebige $\epsilon>0$:

$$I(\epsilon) = \int_{a+\epsilon}^{b} f(x) \mathrm{d}x$$

• Das Integral über [a, b] ergibt sich aus $\lim_{\epsilon \to 0} I(\epsilon)$:

$$I = \int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0} I(\epsilon) = \lim_{\epsilon \to 0} \left(\int_{a+\epsilon}^{b} f(x) dx \right)$$

- Das Integral heisst konvergent, falls der Limes $\lim_{\epsilon \to 0} I(\epsilon)$ existiert
- Diese spezielle Variante ist nötig, weil beim Integralrechnen der Integral auf dem ganzen Intervall stetig sein muss. Dies ist nicht der Fall wen ein Pol existiert.

Taylorrreihen

Definition Potenzreihen

• Eine Potenzreihe ist eine undendliche Reihe vom Typ:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{k=0}^{\infty} a_k x^k$$

Die reellen Zahlen a_0,a_1,\cdots sind die Koeffizientend der Potenzreihe

• Allgemein können Potenzreihen mit einer verschiebung von x_0 beschrieben werden, somit ist es eine Potenzreihe mit Zentrum x_0 :

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots = \sum_{k=0}^{\infty} a_k(x - x_0)^k$$

Definition Taylorreihe

• Die Taylorreihe oder Taylorentwicklung einer Funktion y = f(x) and der Stelle x_0 ist die Potenzreihe:

$$t_f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

welche die gleiche Ableitung an der Stelle x_0 für alle $k \in \mathbb{N}$ hat wie die Funktion f(x)

Definition Taylorpolynom

• Ein Taylorpolynom ist eine Taylorreihe $t_f(x)$ welche nach n-ter Ordnung abgebrochen wird. Somit erhällt man das Taylorpolynom n-ter Ordnung von f(x) an der Stelle x_0 :

$$p_n(x) = \sum_{k=0}^{n} a_k (x - x_0)^k$$

• Bemerkung: Die Tangente der Funktionskurve y=f(x) an der Stelle x_0 ist exakt das Taylorpolynom 1. Ordnung von f(x) an der Stelle x_0

Vorgehen Berechnen Taylorreihe

• Die Taylorreihe einer beliebig oft differenzierbaren Funktion t(x) an der Stelle x_0 ist:

$$t_f(x) = \sum_{k=0}^{\infty} \frac{f^k(x_0)}{k!} \cdot (x - x_0)^k$$

Formel für Taylorkoeffizienten

• Formel für k-ten Taylorkoeffizientn der Taylorreihe $t_f(x)$ von f(x) an der Stelle $x_0 \in \mathbb{R}$:

$$a_k = \frac{f^{(k)}(x_0)}{k!} \quad (k \in \mathbb{N})$$

Symetrie von Potenzreihen und Taylorreihen

Symetrie von Funktionen Repetition

- Gerade Funktion: Funktion für die gilt: f(-x) = f(x) für alle $x \in \mathbb{R} \to \text{Funktion}$ ist achsensymetrisch bzgl. y-Achse
- Ungerade Funktion: Funktion für die gilt: f(-x) = -f(x) für alle $x \in \mathbb{R} \to \text{Funktion}$ ist punktsymetrisch bzgl. des Ursprungs

Symetrie von Potenzreihen

• Eine Potenzreihe

$$y = \sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \cdots$$

ist eine gerade bzw. ungerade Funktion, falls sie nur gerade bzw. nur ungerade Potenzen enthält.

Symetrie von Taylorreihen

- Falls die Funktion eine gerade Funktion ist, enthällt die Taylorreihe von f(x) an der Stelle $x_0=0$ nur Potenzen mit geraden Exponenten,d.h. se gilt $a_{2k+1}=0$ für alle $k\in\mathbb{N}$
- Falls die Funktion eine ungerade Funktion ist, enthällt die Taylorreihe von f(x) an der Stelle $x_0=0$ nur Potenzen mit ungeraden Exponenten, d.h. se gilt $a_{2k}=0$ für alle $k\in\mathbb{N}$

Bernuolli- de l'Hospital -

Regel von Bernoulli- de l'Hospital

• Wenn die Funktionen f(x) und g(x) an der Stelle x_0 stetig differenzierbar sind aber der Grenzwert auf die Form $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ führt, kann der Limes der Ableitung beider Funktionen ausgewerted werden:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

 Dies kann beliebig oft Wiederholt werden, es gibt jedoch Fälle wo die Regel versagt, dann müssen andere Methoden verwendet werden.

Varianten von l'Hospital

• Wenn ein Grenzwert $\lim_{x \to x_0} f(x) \cdot g(x)$ von der Form $0 \cdot \infty$ ist, schreiben wir:

$$f(x) \cdot g(x) = \frac{f(x)}{\frac{1}{g(x)}}$$

und wenden die Regel an.

• Wenn ein Grenzwert $\lim_{x\to x_0} (f(x)-g(x))$ von der Form $\infty-\infty$ ist, schreiben wir:

$$f(x) - g(x) = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x) \cdot g(x)}}$$

und wenden die Regel an.

Genauigkeit von Approximationen -

Genauigkeit der Approximation

Nicht prüfungsrelevant

- Die Approximation ist im allgemeinen nicht Perfekt, d.h. $p_n(x) \neq f(x)$ für $x \neq x_0$. Für die Abschätzung des Fehlers bzw. Restglieds $R_n(x) = f(x) p_n(x)$ gilt:
- Ist die Funtion $f: \mathbb{R} \to \mathbb{R}$ mindestens (n+1)-mal stetig differenzierbar, und ist $p_n(x)$ das Taylorpolynom n-ten Grades von f(x) an der Stelle x_0 . Dann gibt es ein ξ zwischen x_0 und x so dass für das Restglied $R_n(x)$ gilt:

$$|R_n(x)| \le \left| \frac{f^{n+1}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right|$$

Binomialkoeffizienten

Binomialkoeffizienten

- Zeil: Taylorreihe von Potenzen mit beliebigen (nicht-natürlichen) Exponenten bestimmen, d.h. Funktionen vom Typ $f(x=x^{\alpha})$ mit $\alpha \in \mathbb{R}$
- Untersuchen der Funktion bei $f(x) = (1+x)^{\alpha}$ an der Stelle $x_0 = 0$
- Falls $\alpha \in \mathbb{N}$ ist $f(x) = (1+x)^{\alpha}$ ein Polynom (binomische Formel):

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k, \quad \binom{n}{k} = \frac{n!}{k!(n-k)!} \quad (0 \le k \le n)$$

• In diesem fall ist die binomische Formel auch die Taylorreihe, es gilt:

$$a_k = \frac{f^{(k)}(0)}{k!} = \binom{n}{k}$$

• Falls $\alpha \in \mathbb{R}$:

Taylorkoeffizienten:

$$\frac{f^{(k)}(0)}{k!} = \frac{\alpha \cdot (\alpha - 1) \cdot \dots \cdot (\alpha - k + 1)}{k!} = \begin{pmatrix} \alpha \\ k \end{pmatrix} \quad (\alpha \in \mathbb{R}, k \in \mathbb{N})$$

Taylorreihe:

$$t_f(x) = 1 + {\alpha \choose 1} x + {\alpha \choose 2} x^2 + {\alpha \choose 3} x^3 + \dots = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

Auch bekannt als Binomialreihe

Konvergenz von Potenzreihen -

Konvergenzradius

- Der Konvergenzradius ρ einer Potenzreih $p(x)=\sum_{k=0}^\infty a_k(x-x_0)^k$ ist eine Zahl mit Folgenden Eigenschaften:
 - Für alle $x \in \mathbb{R}$ mit $|x x_0| < \rho$ konvergiert die Reihe p(x)
 - Für alle $x \in \mathbb{R}$ mit $|x-x_0| > \rho$ divergiert die Reihe p(x)
- Es existieren folgende Extremfälle:
 - Konvergenzradius $\rho=0$: Dann konvergiert die Reihe p(x)nur für $x=x_0.$
- Konvergenzradius $\rho=\infty$: Dann konvergiert die Reihe p(x) für alle $x\in\mathbb{R}.$

Konvergenzradius Formel

Für die Potenzreihe $p(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ ist der Konvergenzradi-

us:

$$\rho = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| \quad \text{oder} \quad \rho = \lim_{k \to \infty} \frac{1}{\sqrt[k]{|a_k|}}$$

Konvergenzbereich Formel

Der Konvergenzbereich in dem die Approximation der Funktion gilt ist definiert durch:

$$(x_0 - \rho, x_0 + \rho)$$

Differentialgleichungen

Differentialgleichungen

Definition Differentialgleichung

 Eine Differentialgleichung n-ter Ordnung ist ein Gleichung von der Form:

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

für eine gesuchet Funktion y=y(x), in der Ableitungen von y(x) bis zur n-ten Ordnung auftreten.

 Falls die DGL nach y⁽ⁿ⁾ aufgelöst ist, nennt man sie explizit, ansonsten implizit. Oft können implizite DGL durch einfaches Umformen in explizite DGL umgewandelt werden.

Arten von DGL

• Eine DGL heisst seperierbar, falls F(x, y) als Produkt eines x- und eines y-Anteils geschrieben werden kann, d.h. es hat die Form:

$$y' = g(x) \cdot h(y)$$

für irgendwelche Funktionen g(x) und h(y)

• Eine DGL heisst autonom, falls F(x, y) nur von y abhängt, d.h. es hat die Form:

$$y' = f(y)$$

 Eine DGL heisst linear, falls die Variabel welche abgeleitet wird nur in der ersten Potenz vorkommt und nicht multipliziert miteinander oder mit der unabhängigen Variabel wird.

Definition Anfangswertproblem

- Eine DGL mit Anfangsbedingun ist ein Anfangswertproblem.
- Ein Anfangswertproblem n-ter Ordnung ist:

$$\begin{cases}
F(x, y, y', y'', \dots, y^{(n)}) &= 0, (x, y, \dots, y^{(n)}) \in \Omega \\
y(x_0) &= y_0 \\
y'(x_0) &= y_1 \\
\vdots \\
y^{n-1}(x_0) &= y_{n-1}
\end{cases}$$

• Anfangswertproblem für explizite DGL 1. Ordnung:

$$\begin{cases} y' = G(x,y), & (x,y,y') \in \Omega \subseteq \mathbb{R} \times \mathbb{R}^2 \\ y(x_0) = y_0 \end{cases}$$

- Die Menge aller Lösungen einer DGL nennt man die allgemeine Lösung der DGL.
- Die Lösung einse Anfangswertproblems nennt man eine spezielle bzw. partikuläre Lösung der DGL.

Richtungsfeder -

Definition Richtungsfeld

• Ein Richtungsfeld ist ein geometrisches Verständnis von expliziten DGL 1. Ordnung, d.h. DGL der Form:

$$y' = f(x, y)$$

- f(x,y) gibt also die Steigung der Lösungskurve am Punkt (x,y)

 Jeder Punkt ist somit die Tangente einer spezifischen Lösungskurve

Richtungsfelder von Speziellen DGL

• Unbestimmtes Integral: y' = f(x), das Richtungsfeld ist unabhängig von y die verschiedenen Lösungen unterscheiden sich nur durch eine verschiebung in y-Richtung durch die Konstante C.

• Autonome $\mathrm{DGL}:y'=f(y)$, das Richtungsfeld ist unabhängig von x die Verschiedenen Lösungen gehen durch Verschiebung in x-Richtung in einander über.

Lösen von Seperierbaren Differentialgleichungen

• DGL:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(x) \cdot h(y)$$

- Falls $h(y_0) = 0$, ist $y = y_0$ eine Lösung der DGL.
- Trennung aller x- und y-Terme:

$$\frac{1}{h(y)} \cdot \mathrm{d}y = g(x) \cdot \mathrm{d}x$$

• Integration auf beiden Seiten:

$$\int \frac{1}{h(y)} \mathrm{d}y = \int g(x) \mathrm{d}x$$

• Auflösen nach y, Anfangsbedingungen einsetzen:

$$\int_{y_0}^{y} \frac{1}{h(s)} ds = \int_{x_0}^{x} g(t) dt$$

Formel für inhomogene Differentialgleichungen

• Die allgemeine Lösung der inhomogenen Differentialgleichung:

$$y' + f(x)y = g(x)$$

ist gegeben durch:

$$y = e^{-F(x)} \cdot \int g(x)e^{F(x)} dx$$

wobei F(x) eine Stammfunktion von f(x) ist.

Lösung von Anfangswertproblemen mit seperiarbaren DGL

• Sind g(x) und h(y) stetige Funktionen und $(x_0, y_0) \in \mathbb{R}^2$ mit $h(y_0) \neq 0$, hat das Anfangswertproblem:

$$\begin{cases} y' = g(x)h(y) \\ y(x_0) = y_0 \end{cases}$$

genau eine Lösung. Sie kann gefunden werden, indem beide Seiten von

$$\int_{y_0}^{y} \frac{1}{h(s)} ds = \int_{x_0}^{x} g(t) dt$$

berechnet werden und nach y aufgelöst werden.

Numerische Verfahren ----

Eulerverfahren

• Gleichung einer beliebigen Geraden mit Steigung m am Punkt (x_k, y_k) :

$$y = y_k + m \cdot (x - x_k)$$

Graphisch:

DGL am Punkt (x_k, y_k) :

$$y = y_k + f(x_k, y_k) \cdot (x - x_k)$$

• Für k = 0 und $x = x_0$:

$$\underbrace{y_1}_{\approx y(x_1)} = y_0 + f(x_0, y_0) \cdot \underbrace{(x_1 - x_0)}_{=h}$$

• Algorythmus für beliebige k:

$$\begin{cases} x_k &= x_0 + k \cdot h \\ y_{k+1} &= y_k + h \cdot f(x_k, y_k) \end{cases}$$

- Problem: Die steigung wird nur am linken Ende des Intervalls berücksichtigt!
- Lösung: Verbesserte numerische Verfahren!