

Universidade do Minho

Escola de Engenharia

S istemas de
A prendizagem e
E xtração de
C onhecimento

José Machado

Diana Ferreira

BASE DE DADOS

X.	А	В	С	D
1	3989.408	3989.408	140.4029	2654.278
2	140.4029	4125.044	4125.044	1335.467
3	2654.278	1335.467	2789.76	2789.76
4	5777.168	1788.068	5912.553	3123.153
5	2050.529	6039.689	1915.155	4704.363
6	1435.265	2554.287	1571.295	1219.56
7	4006.104	7994.156	3872.258	6659.535
8	671.2763	3318.277	807.9208	1983.314
9	2622.699	1367.091	2758.56	43.64889
10	8364.031	12353.06	8229.223	11018.06

ROWS

DATA BASES: tuples or records

DATA WAREHOUSES + DATA SETS: observations,

examples or cases

COLUMNS

DATA BASES: fields

DATA WAREHOUSES + DATA SETS: variables or attributes

BASE DE DADOS

Owner	ID	Owner Name
	1	Jim
	2	Joan

Pet_ID	Pet_Name (Owner_ID
τ-	Fifi	2
2	Butch	1
3	Clover	2
4	Animal	1
5	Tank	1

BASE DE DADOS

BASES DE DADOS

RELACIONAIS

↑ nº de leituras (selects) e gravações (insert, update, delete)

OLTP
(online transaction processing)

- Eficientes para actividades de alto volume;
- Pouco eficientes para actividades de análise de dados.

BASE DE DADOS vs. DATA WAREHOUSE

Owner ID	Owner Name
	Jim
2	Joan

Pet_ID	Pet_Name (Owner_ID
1	Fifi	2
2	Butch	1
3	Clover	2
4	Animal	1
5	Tank	1

Pet_ID	Pet_Name	Owner_Name
	Fifi	Joan
2	Butch	Jim
3	Clover	Joan
4	Animal	Jim
5	Tank	Jim

OLTP

(Online Transaction Processing)

OLAP

(Online Analytical Processing)

DATA WAREHOUSE

DATA WAREHOUSE – dados arquivados – copiados de uma base de dados transacional

DESNORMALIZAÇÃO

ocorre no momento em que os dados são copiados para fora do sistema transacional

As técnicas de Data Mining são geralmente mais eficaz em data sets, extraídos de OLAP, em vez de sistemas OLTP

DATA SET

Subset de uma database ou data warehouse

- Criar um data set inclui:
 - Anexar, combinar e simplificar algumas expressões de dados
 - ✓ Por exemplo mudar o formato de datas

TIPOS DE DADOS

• DADOS OPERACIONAIS: tipo mais elementar de dados, usados nos sistemas transacionais que registam atividades quotidianas.

• DADOS ORGANIZACIONAIS: ajudam a proteger a privacidade das pessoas, ao mesmo tempo que são úteis para os data miners que procurem tendências numa determinada população.

DATA MART

É um sub-conjunto de dados de um Data Warehouse que possui dados organizacionais e é orientado aos requisitos específicos de um grupo/departamento, de uma linha ou equipa de negócios.

Data Marts extraem e ajustam dados de um Data Warehouse, desnormalizando e indexando os dados para suportar pesquisas intensas.

SEGURANÇA E PRIVACIDADE

- Devemos estar cientes de que, quando reunimos, organizamos e analisamos dados, há pessoas reais por trás.
- As pessoas têm certos direitos relativamente à privacidade e proteção contra crimes como roubo de identidade.

DATA MINING

"BASE LINE"

ZeroR

Determina a classe dominante (mais comum) e classifica todas as instâncias com esse valor.