Magnetisation: The term magnetisation may defined as The process and a non magnetic bar into a magnetic bar. term is almost analogous to The polarisa dielectric materials. The flux density,	bedate /_/_
defined as The process any	converling
a non magnetic bar into a magnetic bar.	The
term is almost analogous to The polaris	ation in
dielectric materials. The flux density,	
B= MH M	° II,
B= MoNcH No= abbility in	vacuum.
$\mu = \frac{\pi}{10}$, rel	abul permeebili
$\mathcal{K} = \mathcal{L}_0 \mathcal{H} + \mathcal{L}_0 \mathcal{H} (\mathcal{M}_{C^{-1}})$	O
He magnetic	dield strength
B= Uo[H+M] H= magnetic U= absolute	permeability.
Where M = H(Ur-1) known as Magnetisat	
The magnetic enduction Bo inside a law which have a core of vacuum of air It The wre is replaced by any other is experimentally measured, one of the cresults is obtained for any material.	ong solenoid
which have a core of vacuum of air	is lons
It The wre is replaced by any other i	nagnetic
material and the value of B in the	nialenal
is experimentally measured, one of the	following
results is obtained for any material.	, 0
V	
$\mathcal{B} \subset \mathcal{B}_{o}$	
$\mathcal{B} > \mathcal{B}_{\diamond}$	
B>>B	
On the basis of these of observations,	marriohe
on our busis of trust of the both of the business	W -

malenal can be classified into Three codegories:
Diamagnetic, parmagnetic and ferromagnetic respectively
▲
Othe classes of materials which in structure close to demonagnetic material but posses different magnetic effects are antiferromagnetic and derrimagnetic
magnetic effects are antiferromagnetic and ferrimagnetic
Orgin of Magnetic Momement: 1M
•
The moment of particle is associated with its circular
or robational motion. In the e
case of an atom, an electron
posses an inharent spin motion
motion about the nucleus. around the nucleus.
These motion together constitute
The magnetic moment.
Curace on oterin mus lives assend the molecul
having charge e and radial is or, of the orbit.
The revolving election is making a loop to The current
Suppose an eterois ronolving around The nucleus having charge e and radios is or, of The orbit. The revolving election is making a loop to The current Thus current can be define as
I= charge = e _ 0
time T
Where T is the time period, it is no is The linear velocity Then we can write
webcing when we can write
$T = \frac{2\kappa r}{V} - 2$
1.4

The area enclosed by the orbit Date_1_1_
$\Lambda = \pi x^2$
The magnetic moment M associated with current
The magnetic moment M associated with current us given by M=IA
$M = \frac{e}{T} \cdot \pi r^2 \Rightarrow \frac{e \sigma}{2\pi r} \cdot \pi r^2$
M- eur
The magnetic dipole moment of a revolving electron is Thus half The product disk charge, linear nelocity, and The radius of its orbit.
=> In terms of magnetic succeptability Xm, M is given by as follows:
$M = \chi_m H$
1
=) cifor free space M=0
(ii) $B = M_0 H = B/M_0$
Diamagnetism: Diamagnetism is very small and very weak effect in many materials aused by the reaction of orbiting electrons to an applied magnetic field in accordance with Lenz's low, so that the magnetis atom and hence
To

1 0 h 0
Antimony, Bismush, mercury, gold, and copper one
Antimony, Bismush, mercury, gold, and copper one
Antimony, Bismush, mercury, gold, and copper and some examples
If a magnetic material
'u placed in magnetic
dield, it can increase
or decrease The flux density.
dlux densiby.
(0)
Diamagnetic materials
reduce she time
density of lines of
density of lines of forces as shown in
digial, while para
a materals
increase the flux density (b)
as shown in fig(b).
La magnetic substance 1, 4nd 21
independent of temperature.
T.

Classical Theory of Diamagnessin: Date_1_1	
Classical Theory of Diamagnehism: Date_/_/_ (Langevin Theory of Diamagnehism):-	
which an electron revolves with any lac value it	
Consider a circular legge orbit of radius or in which an electron revolves with angular velocity wo around the nucleus of charge Ze. Then	
$f_0 = \frac{m \omega^2}{r} = \frac{m r^2 \omega_0^2}{r} = m r \omega_0^2 - 0$	
and also $f_0 = \frac{1(2e) \cdot e}{u\pi \epsilon_0 r^2} = \frac{2e^2}{u\pi \epsilon_0 r^2} - (2)$)
from equation () 2 D, we get	
$W_0^2 = \frac{Z_0^2}{4\pi M G_0 Y^3}$	
$\omega_0 = \sqrt{\frac{Ze^2}{4\pi m \epsilon_0 r^3}} - 3$	_
The magnetic moment of the etectron is	
$M = 1A = \frac{e}{T} \pi r^2 = \frac{e \omega_0 r^2}{2} / M = \frac{e}{2}$.12
	,
The Lorentz force aching on The electron is	J.
fi=-Bev=-Berw	
	-
Now The equation for metron is	
fm = fo - fr = Ze2 Bewr Ze fo fr> fr	
	· _

$$\frac{m v^{2}}{y} = \frac{Ze^{2}}{u \pi \epsilon_{0} r^{2}} - e B \omega r$$

$$m r \omega^{2} = \frac{Ze^{2}}{u \pi \epsilon_{0} r^{2}} - e B \omega r$$

$$\omega^{2} + \frac{e B \omega}{m} = \frac{Ze^{2}}{u \pi n \pi \epsilon_{0} r^{2}}$$

$$\omega^{2} + \frac{e^{2} B^{2}}{m} + \frac{u Ze^{2}}{u \pi \epsilon_{0} m r^{2}} + \frac{e^{2} B^{2}}{m^{2}}$$

$$\omega^{2} = \frac{e B}{2m} \pm \frac{1}{2} \left[\frac{Ze^{2}}{\pi m \epsilon_{0} r^{2}} + \frac{e^{2} B^{2}}{m^{2}} \right]$$

$$\omega^{2} = \frac{e B}{2m} \pm \frac{1}{2} \left[\frac{Ze^{2}}{\pi m \epsilon_{0} r^{2}} + \frac{e^{2} B^{2}}{m^{2}} \right]$$

$$\omega^{2} = \frac{e B}{2m} \pm \frac{1}{2} \left[\frac{Ze^{2}}{\pi m \epsilon_{0} r^{2}} + \frac{e^{2} B^{2}}{u m^{2}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{u \epsilon_{0}^{2}}{u m^{2}} + \frac{e^{2} B^{2}}{u m^{2}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{2m} + \frac{1}{2} \left[\frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} \right]$$

$$\omega^{2} = \frac{e B}{u \epsilon_{0}} + \frac{e B}{u \epsilon_{0}} +$$

