Отчет по лабораторной работе №1

Операционные системы

Бельчуг Александр Константинович

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы 3.1 Создание виртуальной машины	8 12 16 21
4	Выводы	22
5	Ответы на контрольные вопросы	23
6	Выполнение дополнительного задания	25

Список иллюстраций

3.1	Окно Virtualbox	8
3.2	Создание виртуальной машины	9
3.3	Указание объема памяти	9
3.4	Жесткий диск	10
3.5	Тип жесткого диска	10
3.6	Размер жесткого диска	11
3.7	Формат хранения жесткого диска	11
3.8	Выбор образа оптического диска	12
3.9	Выбранный образ оптического диска	12
3.10	Окно загрузчика	13
3.11	Интерфейс начальной конфигурации	13
3.12	Запуск терминала	14
3.13	Выбор языка интерфейса	14
3.14	Выбор раскладки клавиатуры	15
3.15	Выбор места установки	15
3.16	Создание аккаунта администратора	16
	Запуск терминала	16
3.18	Обновления	17
3.19	Установка tmux и mc	17
3.20	Установка программного обеспечения для автоматического обнов-	
	ления	17
	Запуск таймера	18
3.22	Поиск файла	18
	Изменение файла	18
	Перезагрузка виртуальной машины	19
	Запуск терминального мультиплексора	19
	Переключение на роль супер-пользователя	19
3.27	Создание крнфигурационный файл	19
	Отредактируйте конфигурационный файл	20
3.29	Поиск файла, вход в тс	20
	Редактирование файла	20
3.31	Перезагрузка виртуальной машины	20
	Переключение на роль супер-пользователя	21
	Установка pandoc	21
	Установка расширения pandoc-crossref	21
3 35	Vctauorva teylive	21

6.1	Анализ последовательности загрузки системы	25
6.2	Поиск версии ядра	25
6.3	Поиск частоты процессора	25
6.4	Поиск модели процессора	26
6.5	Поиск объема доступной оперативной памяти	26
6.6	Поиск типа обнаруженного гипервизора	26
6.7	Поиск типа файловой системы корневого раздела	27
6.8	Последовательность монтирования файловых систем	27

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

Virtualbox я устанавливала и настраивала при выполнении лабораторной работы в курсе "Архитектура компьютера и Операционные системы (раздел"Архитектура компьютера")", поэтому сразу открываю окно приложения (рис. fig. 3.1).

Рис. 3.1: Окно Virtualbox

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию (рис. fig. 3.2).

Рис. 3.2: Создание виртуальной машины

Указываю объем основной памяти виртуальной машины размером 4096MБ (рис. fig. 3.3).

Рис. 3.3: Указание объема памяти

Выбираю создание нового виртуального жесткого диска (рис. fig. 3.4).

Рис. 3.4: Жесткий диск

Задаю конфигурацию жесткого диска: загрузочеый VDI (рис. fig. 3.5).

Рис. 3.5: Тип жесткого диска

Задаю размер диска - 80 ГБ, оставляю расположение жесткого диска по умол-

чанию, т. к. работаю на собственной технике и значение по умолчанию меня устраивает (рис. fig. 3.6).

Рис. 3.6: Размер жесткого диска

Выбираю динамический виртуальный жесткого диска при указании формата хранения (рис. fig. 3.7).

Рис. 3.7: Формат хранения жесткого диска

Выбираю в Virtualbox настройку своей виртуальной машины. Перехожу в "Носители", добавляю новый привод привод оптических дисков и выбираю скачанный образ операционной системы Fedora (рис. fig. 3.8).

Рис. 3.8: Выбор образа оптического диска

Скачанный образ ОС был успешно выбран (рис. fig. 3.9).

Рис. 3.9: Выбранный образ оптического диска

3.2 Установка операционной системы

Запускаю созданную виртуальную машину для установки (рис. fig. 3.10).

```
Start Fedora-i3-Live 37
Test this media & start Fedora-i3-Live 37
Troubleshooting -->

Use the † and ↓ keys to select which entry is highlighted.
Press enter to boot the selected OS, `e' to edit the commands before booting or `c' for a command-line.
```

Рис. 3.10: Окно загрузчика

Вижу интерфейс начальной конфигурации. Нажимаю Enter для создания конфигурации по умолчанию, далее нажимаю Enter, чтобы выбрать в качестве модификатора кливишу Win (рис. fig. 3.11).

Рис. 3.11: Интерфейс начальной конфигурации

Нажимаю Win+Enter для запуска терминала. В терминале запускаю liveinst (рис. fig. 3.12).

Рис. 3.12: Запуск терминала

Чтобы перейти к раскладке окон с табами, нажимаю Win+w. Выбираю язык для использования в процессе установки русски (рис. fig. 3.13).

Рис. 3.13: Выбор языка интерфейса

Раскладку клавиатуры выбираю и русскую, и английскую (рис. fig. 3.14).

Рис. 3.14: Выбор раскладки клавиатуры

Проверяю место установки и сохраняю значение по умолчанию (рис. fig. 3.16).

Рис. 3.15: Выбор места установки

Создаю аккаунт администратора и создаю пароль для супер-пользователя (рис. fig. 3.18).

Рис. 3.16: Создание аккаунта администратора

3.3 Работа с операционной системой после установки

Нажимаю Win+Enter для запуска терминала и переключаюсь на роль суперпользователя(рис. fig. 3.24).

Рис. 3.17: Запуск терминала

Обновляю все пакеты (рис. fig. 3.25).

```
foot
[akbeljchug@vbox ~]$
```

Рис. 3.18: Обновления

Устанавливаю программы для удобства работы в концсоли: tmux для открытия нескольких "вкладок" в одном терминале, mc в качестве файлового менеджера в терминале (рис. fig. 3.26).

```
Foot
[akbeljchug@vbox ~]$ sudo -i
[sudo] пароль для akbeljchug:
[root@vbox ~]#
```

Рис. 3.19: Установка tmux и mc

Устанавливаю программы для автоматического обновления (рис. fig. 3.27).

Рис. 3.20: Установка программного обеспечения для автоматического обновления

Запускаю таймер (рис. fig. 3.28).

Рис. 3.21: Запуск таймера

Перемещаюсь в директорию /etc/selinux, открываю md, ищу нужный файл (рис. fig. 3.29).

```
[zoot@vbox -]# systemctl enable --now dnf-automatic.timez
Created symlink '/etc/systemd/system/timers.target.wants/dnf5-automatic.timer' - '/usz/lib/systemd/system/dnf5-automatic.timer'.
```

Рис. 3.22: Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive (рис. fig. 3.30).

Рис. 3.23: Изменение файла

Перезагружаю виртуальную машину (рис. fig. 3.31).

```
Inc [root@vbox]:/etc/selinux

config [----] 18 Li [-21 227 30] *(929 /1880) Wolf excon

I his file controls the state of Stlinux on the system.

SELINUS can take own of these three values:

enforcing - Stlinus security policy is enforced.

permissive - Stlinus points wantings instand of enforcing.

disabled - No Stlinux policy is looked.

See also:
http://docs.feooraproject.org/en-U5/qqick-docs/getting-started-with-selinux/Egetting-started-with-selinux-selinux-selinux-states.and.modes

NOTE. In earlier Feoora kernel builds, SELINUS-disabled wantd also
Anily disabled Stlinux during boot. If you need a system with Stlinux
Anily disabled instead of Stlinux nowing with no policy looked, you
need to pass selinus*0 to the kernel command line. You can use grabby

to persistently set the bootlander to boot with selinus*0.

gnabby --update-kernel Ali --remove-args selinux*0

grabby --update-kernel Ali --remove-args selinux*0

SELINUS-permissive

SELINUS-permissive

SELINUS-vermissive

MilhaltVM- can take one of these three values:

a language - Targeted processes are protected,

aninam - Modification of Largeted policy. Only selected processes are protected.

st. Note: Largeted - Targeted processes are protected.

SELINUS-VFF-Largeted
```

Рис. 3.24: Перезагрузка виртуальной машины

Снова вхожу в ОС, снова запускаю терминал, запускю терминальный мультиплексор (рис. fig. 3.32).

```
[root@vbox ~]# reboot
```

Рис. 3.25: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. fig. 3.33).

```
[akbeljchug@vbox ~]$ tmux
```

Рис. 3.26: Переключение на роль супер-пользователя

Создание крнфигурационный файл (рис. fig. 3.34).

```
Foot
[akbeljchug@vbox ~]$ sudo -i
[sudo] пароль для akbeljchug:
[root@vbox ~]#
```

Рис. 3.27: Создание крнфигурационный файл

Отредактируйте конфигурационный файл (рис. fig. ??).

```
akbeljchug@vbox:-$ mkdir -p -/.config/sway
akbeljchug@vbox:-$ mkdir -p -/.config/sway/config.d
akbeljchug@vbox:-$ mkdir -p -/.config/sway/config.d/95-system-keyboard-config.conf
akbeljchug@vbox:-$ touch -/.config/sway/config.d/95-system-keyboard-config.conf
akbeljchug@vbox:-$ touch -/.config/sway/config.d/95-system-keyboard-config.conf
akbeljchug@vbox:-$ exec_always /usr/libexec/sway-systemd/localel-xkb-config --oneshot
```

Рис. 3.28: Отредактируйте конфигурационный файл

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf (рис. fig. ??).

```
[root@vbox ~]# exec_always /usr/libexec/sway-system/locale1-xkb-config --oneshot
```

Рис. 3.29: Поиск файла, вход в тс

Редактирую конфигурационный файл (рис. fig. 6.2).

```
}oot
[akbeljchug@vbox ~]$ sudo -i
[sudo] пароль для akbeljchug:
[root@vbox ~]#
```

Рис. 3.30: Редактирование файла

Перезагружаю виртуальную машину (рис. fig. 6.3).

```
mc [root@vbox]:/etc/selinux

config [----] IS Li[ 1=21 227 38] *[929 /11880) 8010 2000A

# This file controls the state of SELinux on the system

# SELINEX controls the state of these three values:

# enforcing - SELinux security policy is enforced

# persister - SELinux policy is enforced

# persister - SELinux policy is loaded.

# disabled - No SELinux policy is loaded.

# disabled - No SELinux policy is loaded.

# Entps://docs.fedoraproject.org/en-US/guick-docs/getting-started-with-selinux/#getting-started-with-selinux-selinux-states-and-modes

# HOTE: In earlier fedora worse builds, SELINEX posterior send also

# AULD disable SELinux during boot if you need a system with SELinux

# FULLY disabled instead of SELinux running with no policy loaded, you

# recei to pass selinuxed to the kernel command line you can use gradby

# to persistently set the bootloader to boot with selinuxeD.

# gradby --spdate-kernel ALL --args selinuxeD

# SELINEXTYPE-car taic one of these three values;

# SELINEXTYPE-car taic one of these three values;

# starpeted - Targeted processes are protected,

# starpeted - Targeted processes are protected.

# SELINEXTYPE-targeted
```

Рис. 3.31: Перезагрузка виртуальной машины

3.4 Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя (рис. fig. 6.4).

```
Section "InputClass"

Identifier "system-keyboard"

MatchIsKeyboard "on"

Option "XkbLayout" "us.ru"

Option "XkbVariant" ",winkeys"

Option "XkbOptions" "grp:rctrl_toggle,compose:ralt,terminate:ctrl_alt_bksp
```

Рис. 3.32: Переключение на роль супер-пользователя

Устанавливаю pandoc с помощью утилиты dnf и флага -у, который автоматически на все вопросы системы отчевает "yes" (рис. fig. 6.5).

```
[root@vbox ~]# reboot
```

Рис. 3.33: Установка pandoc

Устанавливаю pandoc-crossref (рис. fig. 6.6).

```
Soot
[akbeljchug@vbox ~]$ sudo -i
[sudo] пароль для akbeljchug:
[root@vbox ~]#
```

Рис. 3.34: Установка расширения pandoc-crossref

Устанавливаю дистрибутив texlive (рис. fig. 6.7).

Рис. 3.35: Установка texlive

4 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выполнение дополнительного задания

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы (рис. fig. 6.8).

```
root@vbox ~]# dnf -y install texlive-scheme-full
Юновление и загрузка репозиториев:
епозитории загружены.
акет "texlive-scheme-full-11:svn54074-73.fc41.noarch" уже установлен.
```

Рис. 6.1: Анализ последовательности загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию ядра Linux: 6.1.10-200.fc37.x86_64 (рис. fig. ??).

Рис. 6.2: Поиск версии ядра

К сожалению, если вводить "Detected Mhz processor" там, где нужно указывать, что я ищу, то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него (я проверяла, будет ли работать он с маской - не будет). В таком случае я оставила одно из ключевых слов (могла оставить два: "Mhz processor") и получила результат: 1992 Mhz (рис. fig. ??).

```
[root@vbox ~]# dmesg | grep -i "processor"
[   0.000009] tsc: Detected 1689.602 MHz processor
[   0.652299] smpboot: Total of 4 processors activated (13516.81 BogoMIPS)
[   0.683360] ACPI: Added _OSI(Processor Device)
[   0.683362] ACPI: Added _OSI(Processor Aggregator Device)
[root@vbox ~]#
```

Рис. 6.3: Поиск частоты процессора

Аналогично ищу модель процессора (рис. fig. ??).

```
[root@vbox ~]# dmesg | grep -i "CPU0"
[ 0.644253] smpboot: CPU0: Intel(R) N95 (family: 0x6, model: 0xbe, stepping: 0x0)
```

Рис. 6.4: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. fig. 6.4).

```
[root@vbox -]N dmesg | grep -1 "Memory:"
[ 0.273336] PN: hibernation: Registered mosave memory: [mem 0x00000000-0x20000fff]
[ 0.273340] PN: hibernation: Registered mosave memory: [mem 0x00000000-0x2000fffff]
[ 0.273340] PN: hibernation: Registered mosave memory: [mem 0xdd619000-0xdd638fff]
[ 0.273341] PN: hibernation: Registered mosave memory: [mem 0xdd619000-0xdd6464fff]
[ 0.273342] PN: hibernation: Registered mosave memory: [mem 0xdd64000-0xdd646fff]
[ 0.273344] PN: hibernation: Registered mosave memory: [mem 0xdd64000-0xdd646fff]
[ 0.273344] PN: hibernation: Registered mosave memory: [mem 0xdd64000-0xdd64ffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddf66000-0xddffffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xdff6000-0xdfffffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xdff6000-0xdfffffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xdff6000-0xdfffffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xdff6000-0xdfffffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xdfff0000-0xdfffffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xdfff0000-0xddffffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xddffffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xdddfffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xdddfffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xdddfffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xdddfffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xdddfffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xdddfffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xddfffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xddfffff]
[ 0.273345] PN: hibernation: Registered mosave memory: [mem 0xddff0000-0xddfffff]
[ 0.273345] PN: hiber
```

Рис. 6.5: Поиск объема доступной оперативной памяти

Нахожу тип обнаруженного гипервизора (рис. fig. 6.4).

```
[root@vbox ~]# dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 6.6: Поиск типа обнаруженного гипервизора

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты fdisk (рис. fig. 6.5).

```
[root@vbox ~]# sudo fdisk -l
Disk /dev/sda: 80 GiB, 85899345920 bytes, 167772160 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: BBF6BA2E-1191-429A-A133-9222FEE0C945
Device
             Start
                          End
                                 Sectors Size Type
/dev/sda1
             2048
                     1230847
                                 1228800 600M EFI System
/dev/sda2 1230848 3327999 2097152 1G Linux extended bo
/dev/sda3 3328000 167770111 164442112 78,4G Linux filesystem
                                           1G Linux extended boot
Disk /dev/zram0: 8 GiB, 8589934592 bytes, 2097152 sectors
Units: sectors of 1 * 4096 = 4096 bytes
Sector size (logical/physical): 4096 bytes / 4096 bytes
I/O size (minimum/optimal): 4096 bytes / 4096 bytes
```

Рис. 6.7: Поиск типа файловой системы корневого раздела

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount (рис. fig. 6.6).

```
[recete/box -]# sheeg | grep -1 "mount"

0.539164] Nount-cache hash table entries: 32768 (order: 6, 262144 bytes, linear)

1.539169] Nount-cache hash table entries: 32768 (order: 6, 262144 bytes, linear)

2.539169] Nountpoint-cache hash table entries: 32768 (order: 6, 262144 bytes, linear)

3.854508) STRFS info (device saba) fedora devid 1 transid 449 /dev/sda3 (81.3) scanned by mount of filesystem eb2d38c9-b2a5-4073-ae61-5

5.864508) STRFS info (device sda3): first mount of filesystem eb2d38c9-b2a5-4073-ae61-5

5.862176] systemd[1]: run-credentlels-systemd/x2djouzneld.service, munt: Deactivated sw.

ccessfully.

7.818217] systemd[1]: Set up automount proc-sys-fs-binfnt_misc.automount - Arbitrary Executable File Formats File System Automount Point.

ccessfully.

7.818218] systemd[1]: Listening on systemd-mountf-fsd-socket - DOI File System Mounter Socket.

7.844228] systemd[1]: Mounting dev-mapeages.mount - Huge Pages File System...

7.854509] systemd[1]: Mounting dev-mapeages.mount - POSIX Message Queue File System...

7.854509] systemd[1]: Mounting sys-herrel-debug.mount - Kernel Debug File System...

7.2546381] systemd[1]: Starting systems-temmin-fs-service - Remnunt Root and Kernel File System.

7.2286381 systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.

7.2295081 systemd[1]: Mounted dev-hugepages.mount - Kernel Debug File System.

7.2295081 systemd[1]: Mounted Sev-Repeace.mount - POSIX Message Queue File System.

7.2295081 systemd[1]: Mounted Sev-Repeace.mount - FOSIX Message Queue File System.

7.2295081 systemd[1]: Mounted Systemd-training.mount - Kernel Trace File System.

7.2295081 systemd[1]: Mounted Systemd-training.mount - Kernel Trace File System.

7.2295081 systemd[1]: Mounted Systemd-temmin-fs-service - Remount Root and Kernel File System.

7.2295081 systemd[1]: Mounted Systemd-temmin-fs-service - Remount Root and Kernel File System.

8 Systemd[1]: Mounted Systemd-temmin-fs-service - Remount Root and Kernel File System.

8 Systemd[1]: Mounted Systemd-training.mount - Kernel Trace
```

Рис. 6.8: Последовательность монтирования файловых систем

:::