1: 必要なモジュールのインストール

1.1 WEB ブラウザを用いて操作する為に必要なライブラリのインストール

Raspberry Pi を使ってモータを制御するために必要な Python パッケージをインストールします。コマンドプロンプトを開き、次のコマンドを実行します。

sudo apt instll pigpio python3-pigpio

sudo apt install python3-flask

pigpio は、Raspberry Pi の GPIO ピンを PWM 制御するために使用します。Flask は Web サーバーを構築するために使用します。

1.2 JoyCon を用いて操作する為に必要なライブラリのインストール

JoyCon を使ってモータを制御するために必要な Python パッケージをインストールします。 コマンドプロンプトを開き、次のコマンドを実行します。

sudo pip3 install evdev

evdev は、Linux デバイス(特に入力デバイス)のイベントを読み取るためのライブラリです。

2: モータとモータドライバの接続

2.1 配線図

docs フォルダ内の connection_v1-0.jpeg(下図)を参照して、Raspberry Pi、モータドライバ、モータ、コンデンサ、および電源を接続します。バッテリーは 5V のものを使用してください。

3: 配線後のモータ回転方向テスト

モータの回転方向をテストします。src フォルダ内の $test_motor.py$ を実行します。うまく配線できていれば、1 秒間前進した後 1 秒間後進してモータが停止します。

モータの動きが前後逆の場合は、モータの配線を入れかえます(例:モータの線1をBO1、モータの線2をBO2に接続していた場合、線1をBO2に、線2をBO1に接続し直す。)

4: Web ブラウザからの操作

4.1 セットアップ

RaspberryPi の IP アドレスを確認します。先ず RaspberryPi を WiFi に接続し、コマンドプロンプトで以下のコマンドを実行します。

ping -4 raspberrypi.local

以下の画面の様に出力されるので、ラズパイの IP アドレス (赤枠内の数字) をメモします。

```
ping -4 raspberrypi.local

Microsoft Windows [Version 10.0.19044.2130]

(c) Microsoft Corporation. All rights reserved.

C:\Users\Administrator\ping -4 raspberrypi.local

Pinging raspberrypi.local [192.168.1.147] with 32 bytes of data:
Reply from 192.168.1.147: bytes=32 time=10ms TTL=64
Reply from 192.168.1.147: bytes=32 time=4ms TTL=64
Reply from 192.168.1.147: bytes=32 time=124ms TTL=64
Reply from 192.168.1.147 bytes=32 time=7ms TTL=64
Ping statistics for 192.168.1.147:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 4ms, Maximum = 124ms, Average = 36ms
```

更にコマンドプロンプト上で以下のコマンドを実行し、pigpio を起動します。

sudo pigpiod

4.2 Web サーバーの起動

src フォルダに保存されている apps_web-ctl.py を実行します。これにより、raspberry pi が web サーバとして機能するようになります。ラズパイと同じ WiFi に接続したスマホやパソコンの web ブラウザで http://[Raspberry Pi の IP アドレス]:5000 にアクセスすると、下図のような画面が表示されます。

青色の△の上にマウスを乗せる or タッチすると前進し、赤色の▽の上にマウスを乗せる or タッチすると前進することを確認します。また、画面下の箱内では、マウスやタッチの位置によって動きを制御することができます。

2WD Radicon Car Controller

Control radicon car by mouse or touch position

Move your mouse inside the box!

5: JoyCon からの操作

5.1 Bluetooth 設定

bluetooth を有効化します。コマンドプロンプトを開き、以下のコマンドを実行します。

sudo apt update

sudo apt install bluetooth bluez

更に以下のコマンドを実行し、bluetooth が有効であることを確認します。

sudo systemctl enable Bluetooth

sudo systemctl start Bluetooth

sudo bluetoothctl

scan on

機器の検索が始まれば OK です。

*) Raspberry PI の最新 OS では、デフォルトのままでは機器の検索が出来ず""のエラーが 生じる場合があります。この時は以下の記事を参考に修正します。

5.2. JoyCon のペアリング

JoyCon とラズパイをペアリングします。ラズパイで bluetooth マークをクリックし、"Add Device"をクリックします。機器の検索が始まります。

接続したい JoyCon のシンクロボタンを長押しします。これにより、JoyCon が bluetooth 接続待ち状態になります。ラズパイ上に JoyCon が表示されたら、クリックして JoyCon と接続します。

シンクロボタンの位置(Joy-Con側面)

5.3 JoyCon からのモータ制御

JoyCon でモータを制御します。src フォルダの apps_joycon-ctl.py を実行します。

先ず JoyCon の各ボタンを押し、python 側の出力(XXX が押されました、と print 出力されます)確認します。ボタンのマッピングはラズパイや JoyCon の環境に依存します。押したボタンと出力が一致するように、ソースコードの 64~78 行目のマッピングを修正してください。

次に JoyCon のスティックを東西南北に倒し、python 側での出力を確認します。こちらも環境に依存します。デフォルトのソースコードでは東西の出力は event code=3、南北の出力は event code=4 としてプログラムを記述していますが、環境に合わせて 104 行目、107行目の値を変更して下さい。また、最大までスティックを倒した場合の値を確認します。東西南北と event code のマッピングが完了したら、111~116 行目のコメントアウトを解除します。111 行目、113 行目、115 行目の値は、最大までスティックを倒した場合の値/2 を目安に設定してください。

スティックの入力に応じてモータが動きます。