Lecture 2 Complexity Analysis

EECS 281: Data Structures & Algorithms

Assignments

- First reading assignment (now)
 - CLRS chapter 1 (short)
 - Link to textbook available on CTools

What Affects Runtime?

- The algorithm
- Implementation details
 - Skills of the programmer
- CPU Speed / Memory Speed
- Compiler (Options used)

```
g++ -g (for debugging)
g++ -03 (Optimization level 3 for speed)
```

- Other programs running in parallel
- Amount of data processed (Input size)

Input Size versus Runtime

- Rate of growth independent of most factors
 - CPU speed, compiler, etc.
- Does doubling input size mean doubling runtime?
- Will a "fast" algorithm still be "fast" on large inputs?

How do we measure input size?

Measuring & Using Input Size

- Number of bits
 - In an int, a double? (32? 64?)
- Number of items: what counts as an item?
 - Array of integers? One integer? One digit? ...
 - One string? Several strings? A char?
- Notation and terminology
 - -n = input Size
 - f(n) = max number of steps taken by an algorithm when input has length n
 - O(f(n)) or "Big-O of f(n)"
 - upper bounds up to constants (a whole topic in itself)

Input Size Example

Graph $G = \langle V, E \rangle$:

V = 5 Vertices

E = 6 Edges

What should we measure?

- Vertices?
- Edges?
- Vertices and Edges?

When in doubt, measure input size in bits

$$n = V + E$$

Using V and E tells which contributes more to the total number of steps Examples: E log V, EV, V² log E

Examples of f(n) Runtime

Q: What counts as one step in a program?

- A: Primitive operations
- a) Variable assignment
- b) Arithmetic operation
- · c) Comparison
- d) Array indexing or pointer reference
- e) Function call (not counting the data)
- f) Function return (not counting the data)

Runtime of 1 step is independent on input

Counting Steps

```
int func1(int n) {
  int sum = 0;
  for (int i = 0; i < n; i++) {
     sum += i;
  }
  return sum;
}</pre>
```

```
int func2(int n) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++)
            sum++;
    for (int k = 0; k < n; k++) {
        sum--;
    return sum;
11 }
```

```
1 step
    1 + 1 + n * (2 steps)
     1 step
5
    1 step
    Total steps: 4 + 3n
2 1 step
3 1 + 1 + n * (2 steps)
    1 + 1 + n * (2 steps)
5 1 step
   1 + 1 + n * (2 steps)
    1 step
10 1 step
11
```

Total steps: $3n^2 + 7n + 6$

Counting Steps: for Loop

- Remember the basic form of the loop:
 - for (initialization; test; update)
- The initialization is performed once (1)
- The test is performed every time the body of the loop runs, plus once for when the loop ends (n + 1)
- The update is performed every time the body of the loop runs (n)

Algorithm Exercise

How many multiplications, if size = n?

```
//REQUIRES: in and out are arrays with size elements
//MODIFIES: out
//EFFECTS: out[i] = in[0] *...* in[i-1] *
// * in[i+1] *...* in[size-1]
void f(int *out, const int *in, int size) {
  for (int i = 0; i < size; ++i) {
   out[i] = 1;
    for (int j = 0; j < size; ++j) {
      if (i != j)
       out[i] *= in[j];
```

Algorithm Exercise

How many multiplications and divisions, if size = n?

```
void f(int *out, const int *in, int size) {
  int product = 1;
  for (int i = 0; i < size; ++i)
    product *= in[i];

  for(int i = 0; i < size; ++i)
    out[i] = product / in[i];
}</pre>
```

Big-O - Definition 1

f(n) = O(g(n)) if and only if there are constants

$$\begin{pmatrix} c > 0 \\ n_0 \ge 0 \end{pmatrix}$$
 such that $f(n) \le c g(n)$ whenever $n \ge n_0$

Is
$$n = O(n^2)$$
?

Big-O: Sufficient (but not necessary) Condition

If
$$\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = d < \infty$$
 then $f(n)$ is $O(g(n))$

$$\log_2 n = O(2n)?$$

$$f(n) = log_2 n$$

$$g(n) = 2n$$

$$\underline{\lim}_{n\to\infty} \left(\frac{\log n}{2n} \right)$$

$$\lim_{n\to\infty} \left(\frac{1}{2n}\right)$$

$$0 = d < \infty$$

$$:\infty/\infty$$

$$\log_2 n = O(2n)$$

$$\sin\left(\frac{n}{100}\right) = O(100)?$$

$$f(n) = \sin\left(\frac{n}{100}\right)$$

$$g(n) = 100$$

$$\lim_{n \to \infty} \left(\frac{\sin\left(\frac{n}{100}\right)}{100} \right)$$

 $\lim_{n \to \infty} \left| \frac{\sin\left(\frac{n}{100}\right)}{100} \right| \cdot \text{ Condition does not hold but it is true that } f(n) = O(g(n))$

Big-O: Can We Drop Constants?

$$3n^2 + 7n + 42 = O(n^2)$$
?

$$f(n) = 3n^2 + 7n + 42$$

 $g(n) = n^2$

Definition

c > 0, n_0 3 0 such that $f(n) \pm c \times g(n)$ whenever n 3 n_0

Sufficient Condition

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=d<\infty$$

$$\lim_{n\to\infty} \left(\frac{3n^2 + 7n + 42}{n^2} \right)$$

$$\lim_{n\to\infty}\left(\frac{6n+7}{2n}\right)$$

$$\lim_{n\to\infty} \left(\frac{6}{2}\right)$$

Common Orders of Functions

Notation	Name	
O(1)	Constant	
O(log n)	Logarithmic	
O(n)	Linear	
O(n log n)	Loglinear, Linearithmic	
O(n ²)	Quadratic	
O(n3), O(n4),	Polynomial	
O(c ⁿ)	Exponential	
O(n!)	Factorial	
O(2 ^{2ⁿ})	Doubly Exponential	

Rules of Thumb

- 1. Lower-order terms can be ignored
 - $n^2 + n + 1 = O(n^2)$
 - $n^2 + \log(n) + 1 = O(n^2)$

- Coefficient of the highest-order term can be ignored
 - $-3n^2 + 7n + 42 = O(n^2)$

Log Identities

Identity	Example	
$\log_{a}(xy) = \log_{a}x + \log_{a}y$	$\log_2(12) =$	
$\log_{a}(x/y) = \log_{a}x - \log_{a}y$	$\log_2(4/3) =$	
$\log_{a}(x^{r}) = r \log_{a}x$	log ₂ 8 =	
$\log_{a}(1/x) = -\log_{a}x$	$\log_2 1/3 =$	
$\log_{a} x = \frac{\log x}{\log a} = \frac{\ln x}{\ln a}$	log ₇ 9 =	
log _a a = ?		
$log_a 1 = ?$		

Power Identities

Identity	Example
$a^{(n+m)} = a^n a^m$	2 ⁵ =
$a^{(n-m)} = a^n/a^m$	2 ³⁻² =
$(a^{(n)})^m = a^{nm}$	$(2^2)^3 =$
$a^{-n} = \frac{1}{a^n}$	2-4 =
a ⁻¹ = ?	
$a^0 = ?$	
$a^1 = ?$	

Exercise

```
True or false?
10^{100} = O(1)
3n^4 + 45n^3 = O(n^4)
3^n = O(2^n)
2^{n} = O(3^{n})
45 \log(n) + 45n =
   O(log(n))
\log(n^2) = O(\log(n))
[\log(n)]^2 = O(\log(n))
```

Find f(n) and g(n), such that $f(n)\neq O(g(n))$ and $g(n)\neq O(f(n))$

Big-O, Big-Theta, and Big-Omega

	Big-O (O)	Big-Theta (Q)	Big-Omega (Ω)
Defines	Asymptotic upper bound	Asymptotic tight bound	Asymptotic lower bound
Definition	f(n) = O(g(n)) if and only if there exists an integer n_0 and a real number c such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$	$f(n) = \Theta(g(n))$ if and only if there exists an integer n_0 and real constants c1 and c2 such that for all $n \ge n_0$: $c1 \cdot g(n) \le f(n) \le c2 \cdot g(n)$	$f(n) = \Omega(g(n))$ if and only if there exists an integer n_0 and a real number c such that for all $n \ge n_0$, $f(n) \ge c \cdot g(n)$
Mathematical Definition	$n_0 \hat{I} Z, \hat{R} :$ " n 3 n ₀ , f(n) £ c×g(n)	$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$	$n_0 \hat{I} Z, \hat{R} :$ " n 3 n ₀ , f(n) 3 c×g(n)
$f_1(n)=2n+1$	$O(n)$ or $O(n^2)$ or $O(n^3)$	Q(n)	$\Omega(n)$ or $\Omega(1)$
$f_2(n)=n^2+n+5$	$O(n^2)$ or $O(n^3)$	$Q(n^2)$	$\Omega(n^2)$ or $\Omega(n)$ or $\Omega(1)$

Example: O(log n) Time

```
int func3(int n) {
  int sum = 0;
  for (int i = n; i > 1; i = i / 2) {
    sum += i;
  }
  return sum;
}
```

```
1
2 1 step
3 1 + 1 + ~log n * (2 steps)
4 1 step
5
6 1 step
7
```

Total: $4 + 3 \log n = O(\log n)$

Additional Examples of O(log n) Time

```
unsigned ctz(unsigned n) {
  // count trailing zero bits
  if (n == 0) return 0;
  unsigned r = 0;
  while (n % 2 == 0) {
    n /= 2,
    r++;
  }
  return r;
}
```

```
unsigned logB(unsigned n) {
  // find binary log, round up
  unsigned r = 0;
  while (n > 1) {
    n /= 2
    r++;
  }
  return r;
}
```

```
unsigned onecount(unsigned n) {
  // count nonzero bits
  unsigned r = 0;
  for(; n; n &= (n - 1))
    r++;
  return r;
}
```

```
int* bsearch(int* lo, int* hi, int val) {
    // find position of val between lo,hi
    while (hi >= lo) {
        int* mid = lo + (hi - lo) / 2;
        if (*mid < val) lo = mid + 1;
        else if (*mid > val) hi = mid - 1;
        else return mid;
    }
    return NULL;
}
// Q: how can this code be optimized ?
```

Complexity Analysis

- · What is it?
 - Each step should take O(1) time
 - Given an algorithm and input size n, how many steps are needed?
 - As input size grows, how does number of steps change?
 - Focus is on TREND
- How do we measure it?
 - Express the rate of growth as a function f(n)
 - Use the big-O notation
- Why do we care?
 - Tells us how well an algorithm scales to larger inputs
 - Given two algorithms, we can compare performance before implementation

Metrics of Algorithm Complexity

Using a linear search over n items, how many steps will it take to find item x?

Best-Case: 1 step

Worst-Case: n steps

Average-Case: n/2 steps

- Best-Case
 - Least number of steps required, given ideal input
 - Analysis performed over inputs of a given size
 - Example: Data is found in the first place you look
- Worst-Case
 - Most number of steps required, given hard input
 - Analysis performed over inputs of a given size
 - Example: Data is found in the last place you could possibly look
- Average-Case
 - Average number of steps required, given any input
 - Average performed over all possible inputs of a given size

Amortized Complexity

- A type of worst-case complexity
- Analysis performed over a sequence of inputs of a given size
 - The sequence is selected to be a worst case
- Considers the average cost of one step over a sequence of operations
 - Best/Worst/Average-case only consider a single operation
 - Different from average-case complexity!
- Key to understanding expandable arrays and STL's vector class, STL's implementations of stacks, queues, priority queues, hash tables

- Example: pre-paid telephone cards
 - Pay \$20 upfront and call many times, until \$20 is exhausted
 - Amortizes to, say, 10c per minute (then recharge with another \$20)
 - Better than paying for each call at international rates
 - Worst-case sequences of calls: any sequence that exhausts \$20
 - Sequences that do not require recharge are not worst-case sequences

From Analysis to Application

- Algorithm comparisons are independent of hardware, compilers and implementation tweaks
- Predict which algorithms will eventually be faster
 - For large enough inputs
 - $O(n^2)$ time algorithms will take longer than O(n) algorithms
- Constants can often be ignored because they do not affect asymptotic comparisons

Algorithm with 20n steps runs faster than algorithm with 10ⁿ steps. Why?

Exercise

- You have n balls. All have equal weight, except for one which is heavier. Find the heavy ball using only a balance.
- Describe an O(n²) algorithm
- Describe an O(n) algorithm
- Describe an O(log n) algorithm
- Describe another O(log n) algorithm

Two O(log n) solutions

- True or false? Why?
- $\log_3(n) = O(\log_2 n)$
- $\log_2(n) = O(\log_3 n)$

Job Interview Question

Implement this function

```
//returns x^y
int power(int x, unsigned int y);
```

- The obvious solution uses y 1 multiplications
 - $-2^8 = 2^*2^* \dots *2$
- Less obvious: O(log n) multiplications
 - Hint: $2^8 = ((2^2)^2)^2$
 - Does it work for 2⁷?
- Write two solutions