

The Effect of Efficacy and Side Effects on Vaccine Acceptance

Ruijie Huang, Shining Tu, Cheng Xu, & Lucinda Yu

University of California, San Diego

Introduction

- News has reported on COVID 19 vaccine efficacy and side effect severity a lot
- Studies have shown side effect severity and efficacy impact vaccine acceptance 1,2,3,4
- No studies we read looked at the interaction between these factors

Hypothesis

- Efficacy impacts vaccine acceptance
- Side effect severity impacts vaccine acceptance
- There is an interaction between side effects and vaccine efficacy

Does efficacy and the severity of side effects impact vaccine acceptance?

Methods

Participants

- 107 participants
- 22.4% US, 75.7% China

Design

Conditions

	60%	90%	
mild	Condition 1	Condition 3	
severe	Condition 2	Condition 4	

- Dependent variable
- Acceptance
 - Likert scale of 1-10
 - "On a scale of 1-10, how likely are you to accept the vaccine?"
- All conditions were within-subject
 - Randomized 4 versions
 - Inside each version, we match 4 conditions with 4 diseases using latin square and present them randomly

Methods

	Condition 1	Condition 2	Condition 3	Condition 4
Version A	Disease 1	Disease 2	Disease 3	Disease 4
Version B	Disease 3	Disease 1	Disease 4	Disease 2
Version C	Disease 2	Disease 4	Disease 1	Disease 3
Version D	Disease 4	Disease 3	Disease 2	Disease 1

Example

"There is a new parasitic disease called Linguinosis. Common symptoms include fever, itchiness, headaches and joint pain followed by confusion, poor coordination, numbness and trouble sleeping."

"Imagine a new vaccine has been developed to combat this infectious disease, Its clinical trial suggests that it is 90% effective at preventing the disease in people after 14 days of receiving the vaccine. A rare side effect of flu-like symptoms that persist for no longer than 48 hrs after injection was discovered."

Results

 Linear Mixed Model was conducted on effect of efficacy and side effect severity on acceptance of vaccines

Main Effect

Main effect for side effect severity (F(1, 114))
 = 35.07, p < 0.0001) and efficacy(F(1,114)) = 37.54, p < 0.0001)

Interaction

No interaction (F(1,114) = 0.079, p = 0.779)

Exploratory Analysis

The Interaction Effect of Efficacy and Severity
Between Country on Vaccine Acceptance

Country

- Analyzed country using emmeans
- On average people from China (sd = 2.47, Mean = 7.42) were less accepting of vaccines than people from USA (sd = 1.95, Mean = 8.66)
- For both countries, there are main effects in both efficacy and severity.
- No interaction in China (F(1,103) = 1.927, p
 > 0.05), interaction for USA(F(1,103) = 4.720, p < 0.05)

Knowledge

- Knowledge predicted acceptance, more knowledge had more acceptance (F(1,104) = 5.215, p < 0.05))
- No three way interaction (F(1,104) = 0.017, p
 = 0.896)

Discussion

Main Effect

- There is significant main effect of side effect severity and vaccine efficacy on people's willingness to get vaccinated
- Severity and efficacy do effect vaccine acceptance
- On average, USA had higher acceptability compared to China
- People in China see it as trust in the government
- People is the US see it as herd immunity
- COVID is worse in USA

Interaction

- No interaction between the two factors
- The effect of efficacy on acceptance is not dependent on the effect of side effect severity
- In China, the effect of side effect severity on vaccine acceptance does not vary across different levels of vaccine efficacy
- In USA, there is a larger effect of side effect severity on vaccine acceptance when the efficacy is low
- Most people want the vaccine
- Acceptance drops only under the condition of low efficacy and severe side effects that

<u>Limitations</u>

- Observed a **ceiling effect** in the samples from US, acceptance accumulated around 9/10.
- Imbalance of sample size
- 81 participants from China, and 24 were from USA; did not collect information about current location
- Convenient sampling
 - Might not be representative of the population

References

- 1. Chapman, G. B., & Coups, E. J. (1999). Predictors of Influenza Vaccine Acceptance among Healthy Adults

 Proventive Medicine, 29(4), 249-262, doi:10.1006/pmed.1999.0535
- 2. Renner, B., & Reuter, T. (2012). Predicting vaccination using numerical and affective risk perceptions: The case of
- A/H1N1 influenza. Vaccine, 30(49), 7019-7026. doi:10.1016/j.vaccine.2012.09.064 Chapman, G. B., & Coups, E. J. (1999). Predictors of Influenza Vaccine Acceptance among Healthy Adults.
- Preventive Medicine, 29(4), 249-262. doi:10.1006/pmed.1999.0535

 4. Robertson, E., Reeve, K. S., Niedzwiedz, C. L., Moore, J., Blake, M., Green, M., . . . Benzeval, M. J. (2021). Predictors of COVID-19 vaccine hesitancy in the UK Household Longitudinal Study. doi:10.1101/2020.12.27.20248899