

United States Patent and Trademark Office

1

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.			
10/724,806	12/01/2003	Randy D. Blakely	VBLT:008USD1	3686			
75	90 08/09/2006		EXAM	INER			
Steven L. High		BUNNER, BRIDGET E					
Suite 2400	t JAWORSKI L.L.P.		ART UNIT	PAPER NUMBER			
600 Congress A			1647				
Austin, TX 78	3/01		DATE MAILED: 08/09/2006	5			

Please find below and/or attached an Office communication concerning this application or proceeding.

35 3		Application No.	Applicant(s)						
1:5			BLAKELY ET AL.						
	Office Action Summary	10/724,806							
	The same of the sa								
	The MAILING DATE of this communication app	Bridget E. Bunner							
Period fo		ears on the cover sheet with the c	onespondence address						
WHIC - Exte after - If NC - Failu Any	ORTENED STATUTORY PERIOD FOR REPLY CHEVER IS LONGER, FROM THE MAILING DANSIONS of time may be available under the provisions of 37 CFR 1.13 SIX (6) MONTHS from the mailing date of this communication. Operiod for reply is specified above, the maximum statutory period we tree to reply within the set or extended period for reply will, by statute, reply received by the Office later than three months after the mailing ed patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tim vilt apply and will expire SIX (6) MONTHS from cause the application to become ABANDONEI	I. lely filed the mailing date of this communication. O (35 U.S.C. § 133).						
Status									
1)⊠	Responsive to communication(s) filed on <u>09 Ju</u>	<u>ıne 2004</u> .							
,—	,—	action is non-final.							
3)□	Since this application is in condition for allowar								
	closed in accordance with the practice under E	x рапе Quayle, 1935 С.D. 11, 45	03 O.G. 213.						
Disposit	ion of Claims								
5)□ 6)⊠ 7)□	4) ☐ Claim(s) 29-36 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 29-36 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or election requirement.								
Applicat	ion Papers								
10)⊠	The specification is objected to by the Examine The drawing(s) filed on <u>09 June 2004</u> is/are: a) Applicant may not request that any objection to the Replacement drawing sheet(s) including the correct The oath or declaration is objected to by the Ex	☑ accepted or b)☐ objected to drawing(s) be held in abeyance. See ion is required if the drawing(s) is obj	e 37 CFR 1.85(a). lected to. See 37 CFR 1.121(d).						
Priority (under 35 U.S.C. § 119								
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 									
2) Notice 3) Infor	at(s) ce of References Cited (PTO-892) ce of Draftsperson's Patent Drawing Review (PTO-948) mation Disclosure Statement(s) (PTO-1449 or PTO/SB/08) er No(s)/Mail Date 3/5/04.	4) Interview Summary Paper No(s)/Mail Do 5) Notice of Informal F 6) Other: Appendices	ate Patent Application (PTO-152)						

Application/Control Number: 10/724,806 Page 2

Art Unit: 1647

DETAILED ACTION

Status of Application, Amendments and/or Claims

The amendment of 01 December 2003 has been entered in full. Claims 1-28 and 37-105 are cancelled.

Claims 29-36 are under consideration in the instant application.

Information Disclosure Statement

The information disclosure statement filed 05 March 2004 fails to comply with 37 CFR 1.98(a)(3) because it does not include a concise explanation of the relevance, as it is presently understood by the individual designated in 37 CFR 1.56(c) most knowledgeable about the content of the information, of each patent listed that is not in the English language (document DE 10009055). It has been placed in the application file, but the information referred to therein has not been considered.

Sequence Compliance

1. This application contains sequence disclosures that are encompassed by the definitions for nucleotide and/or amino acid sequences set forth in 37 CFR 1.821(a)(1) and (a)(2). Specifically, the sequences disclosed in Figure 2 and Figure 4 are not accompanied by the required reference to the relevant sequence identifiers. This application fails to comply with the requirements of 37 CFR 1.821 through 1.825. Applicant must comply with the requirements of the sequence rules (37 CFR 1.821 - 1.825).

Claim Objections

2. Claim 29 is objected to because of the following informalities:

Application/Control Number: 10/724,806 Page 3

Art Unit: 1647

2a. In claim 29, line 1 is missing the term "acid" after "amino". Appropriate correction is required.

Specification

- 3. The disclosure is objected to because of the following informalities:
- 3a. Patent applications are referenced throughout the disclosure (for example, pg 136, line
- 22). The status of the applications must be updated.
- 3b. The disclosure is objected to because it contains an embedded hyperlink and/or other form of browser-executable code (See for example, pg 20, line 20; pg 25, line 17; pg 46, line 24). Applicant is required to delete the embedded hyperlink and/or other form of browser-executable code. See MPEP § 608.01.
- 3c. The Brief Description of Drawings for Figure 11 at pg 10-11 of the specification does not refer to Figures 11C or 11D.
- 3d. The Brief Description of Drawings for Figure 14 at pg 11 of the specification does not refer to Figures 14A and 14B.
- 3e. The reference cited at pg 3, line 10 (Apparsundaram 2001) needs to updated as it is still listed as "in press".
- 3f. The title of the invention is not descriptive. A new title is required that is clearly indicative of the invention to which the claims are directed.

The following title is suggested: "POLYNUCLEOTIDE ENCODING A MURINE CHOLINE TRANSPORTER".

Appropriate correction is required.

Art Unit: 1647

Claim Rejections - 35 USC § 112

The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

4. Claims 29-36 are rejected under 35 U.S.C. 112, first paragraph, because the specification, while being enabling for an isolated polynucleotide encoding a polypeptide comprising the amino acid sequence as set forth in SEQ ID NO: 4 and for an isolated polynucleotide comprising the nucleic acid sequence as set forth in SEQ ID NO: 3, does not reasonably provide enablement for an isolated polynucleotide encoding a polypeptide comprising the amino acid sequence essentially as set forth in SEQ ID NO: 4 or for an isolated polynucleotide comprising the nucleic acid sequence essentially as set forth in SEQ ID NO: 3. The specification is also not enabling for a purified and isolated polynucleotide comprising a sequence identical or complementary to between 10 and 100 contiguous nucleotides of SEQ ID NO: 3. The specification is also not enabling for a recombinant vector or recombinant host cell comprising a DNA segment encoding any isolated murine choline transporter. The specification does not enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the invention commensurate in scope with these claims.

It is noted that the phrases "comprising/having ... essentially as set forth in SEQ ID NO:", "an isolated choline transporter" (for example, claim 34), and "(c)DNA segment" as recited in the claims, are broadly interpreted by the Examiner as reading upon: (i) nucleic acid variants of SEQ ID NO: 3 with any number of deletions, substitutions, or additions and (ii) protein variants of SEQ ID NO: 4 with any number of deletions, substitutions, or additions.

Art Unit: 1647

Specifically, the claims are directed to an isolated polynucleotide encoding a polypeptide comprising the amino acid sequence essentially as set forth in SEQ ID NO: 4 and an isolated polynucleotide comprising the nucleic acid sequence essentially as set forth in SEQ ID NO: 3. The claims also recite a purified and isolated polynucleotide comprising a sequence identical or complementary to between 10 and 100 contiguous nucleotides of SEQ ID NO: 3. The claims recite that the polynucleotide is comprising in a vector. The claims also recite a recombinant vector comprising a DNA segment encoding a mouse choline transporter polypeptide under the control of a promoter.

The specification of the instant application teaches that nucleic acid variants may be any length and that "a DNA segment encoding CHT refers to a DNA segment that contains wild-type, polymorphic or mutant CHT coding sequences yet is isolated away from, or purified free from, total mammalian genomic DNA. Included within the term "DNA segment," are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phage, viruses, and the like" (pg 23, lines 7-12; pg 30; pg 42). The specification teaches only teaches a murine CHT polynucleotide and polypeptide of SEQ ID NO: 3 and SEQ ID NO: 4, respectively. The specification does not teach any variants, fragments, or derivatives of the nucleic acid sequence of SEQ ID NO: 3. The specification does not teach any variants, fragments, or derivatives of a polynucleotide that encodes the polypeptide of SEQ ID NO: 4. The specification also does not teach all possible DNA segments that encode an isolated murine choline transporter. Further, the specification does not teach functional or structural characteristics of the polynucleotide variants, fragments, or derivatives in the context of a cell or organism.

Art Unit: 1647

The problem of predicting protein structure from sequence data and in turn utilizing predicted structural determinations to ascertain functional aspects of the protein is extremely complex. While it is known that many amino acid substitutions are generally possible in any given protein the positions within the protein's sequence where such amino acid substitutions can be made with a reasonable expectation of success are limited. Certain positions in the DNA and amino acid sequence are critical to the protein's structure/function relationship, e.g. such as various sites or regions directly involved in binding, activity and in providing the correct threedimensional spatial orientation of binding and active sites. These or other regions may also be critical determinants of antigenicity. These regions can tolerate only relatively conservative substitutions or no substitutions (see Wells, 1990, Biochemistry 29:8509-8517; Ngo et al., 1994, The Protein Folding Problem and Tertiary Structure Prediction, pp. 492-495). For example, Okuda et al. (J Biol Chem 277(47): 45315-45322, 2002) teach that a single amino acid change from an isoleucine to a valine at amino acid position 89 in the human choline transporter causes a 40-50% decrease in choline uptake as compared with wild-type (pg 45317, col 2, ¶ 2; pg 45319, col 1-2; Figure 3, Table II, Figure 6B, C). Okuda et al. also demonstrate that introduction of an isoleucine in place of valine at corresponding amino acid position 90 in the C. elgans ortholog (CHO-1) also causes a 40% decrease in choline uptake with unaltered affinity for choline (pg 45319, col 2 through pg 45320, col 1; Figure 6D, E).

However, Applicant has provided little or no guidance beyond the mere presentation of sequence data to enable one of ordinary skill in the art to determine, without undue experimentation, the positions in the DNA and protein which are tolerant to change (e.g. such as by amino acid substitutions or deletions), and the nature and extent of changes that can be made

Art Unit: 1647

in these positions. Although the specification outlines art-recognized procedures for producing and screening for active muteins, this is not adequate guidance as to the nature of active derivatives that may be constructed, but is merely an invitation to the artisan to use the current invention as a starting point for further experimentation. Even if an active or binding site were identified in the specification, they may not be sufficient, as the ordinary artisan would immediately recognize that an active or binding site must assume the proper three-dimensional configuration to be active, which conformation is dependent upon surrounding residues; therefore substitution of non-essential residues can often destroy activity. The art recognizes that function cannot be predicted from structure alone (Bork, 2000, Genome Research 10:398-400; Skolnick et al., 2000, Trends in Biotech. 18(1):34-39, especially p. 36 at Box 2; Doerks et al., 1998, Trends in Genetics 14:248-250; Smith et al., 1997, Nature Biotechnology 15:1222-1223; Brenner, 1999, Trends in Genetics 15:132-133; Bork et al., 1996, Trends in Genetics 12:425-427).

Additionally, the Examiner has interpreted claims 89-91 as reading on isolated host cells, as well as host cells in the context of a multicellular, transgenic organism and host cells intended for gene therapy. The specification of the instant application teaches that CHT gene product can be expressed in transgenic animals (for example pg 7, lines 28-29; pg 8, lines 1-8). However, there are no methods or working examples disclosed in the instant application whereby a multicellular animal with the incorporated mCHT gene of SEQ ID NO: 3 is demonstrated to express the mCHT polypeptide. The unpredictability of the art is *very high* with regards to making transgenic animals. For example, Wang et al. (Nuc. Acids Res. 27: 4609-4618, 1999; pg 4617) surveyed gene expression in transgenic animals and found in each experimental animal

Art Unit: 1647

with a single "knock-in" gene, multiple changes in genes and protein products, often many of which were unrelated to the original gene. Likewise, Kaufman et al (Blood 94: 3178-3184, 1999) found transgene expression levels in their transfected animals varied from "full" (9 %) to "intermediate" to "none" due to factors such as "vector poisoning" and spontaneous structural rearrangements (pg 3180, col 1, 2nd full paragraph; pg 3182-3183). Therefore, , it would have required undue experimentation for the skilled artisan to have made any and all transgenic non-human animals according to the instant invention.

The specification also discloses that nucleic acids encoding the mCHT polypeptide can be used for gene therapy (pg 3, line 22). However, the specification does not teach any methods or working examples that indicate a mCHT nucleic acid is introduced and expressed in a cell for therapeutic purposes. The disclosure in the specification is merely an invitation to the artisan to use the current invention as a starting point for further experimentation. For example, the specification does not teach what type of vector would introduce the mCHT nucleic acid into the cell or in what quantity and duration. Relevant literature teaches that since 1990, about 3500 patients have been treated via gene therapy and although some evidence of gene transfer has been seen, it has generally been inadequate for a meaningful clinical response (Phillips, A., J Pharm Pharmacology 53: 1169-1174, 2001; abstract). Additionally, the major challenge to gene therapy is to deliver DNA to the target tissues and to transport it to the cell nucleus to enable the required protein to be expressed (Phillips, A.; pg 1170, ¶ 1). Phillips also states that the problem with gene therapy is two-fold: 1) a system must designed to deliver DNA to a specific target and to prevent degradation within the body, and 2) an expression system must be built into the DNA construct to allow the target cell to express the protein at therapeutic levels for the desired length

Art Unit: 1647

of time (pg 1170, ¶ 1). Therefore, undue experimentation would be required of the skilled artisan to introduce and express a mCHT nucleic acid into the cell of an organism. Additionally, gene therapy is unpredictable and complex wherein one skilled in the art may not necessarily be able to introduce and express a mCHT nucleic acid in the cell of an organism or be able to produce a mCHT protein in that cell. (Please note that this issue could be overcome by amending the claims to recite, for example, "An isolated host cell...").

Due to the large quantity of experimentation necessary to generate the infinite number of derivatives recited in the claims and possibly screen the same for activity, and to generate a transgenic animal expressing the mCHT protein and to introduce and express a mCHT nucleic acid in a cell of an organism for therapy; the lack of direction/guidance presented in the specification regarding which structural features are required in order to provide activity and how to introduce a mCHT nucleic acid in the cell of an organism to be able produce that mCHT; the absence of working examples directed to same; the complex nature of the invention; the state of the prior art which establishes the unpredictability of the effects of mutation on protein structure and function and the unpredictability of making transgenic animals and of transferring genes into an organism's cells; and the breadth of the claims which fail to recite any structural or functional limitations, undue experimentation would be required of the skilled artisan to make and/or use the claimed invention in its full scope.

5. Claims 29-36 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant

Art Unit: 1647

art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

Specifically, the claims are directed to an isolated polynucleotide encoding a polypeptide comprising the amino acid sequence essentially as set forth in SEQ ID NO: 4 and an isolated polynucleotide comprising the nucleic acid sequence essentially as set forth in SEQ ID NO: 3. The claims also recite a purified and isolated polynucleotide comprising a sequence identical or complementary to between 10 and 100 contiguous nucleotides of SEQ ID NO: 3. The claims recite that the polynucleotide is comprising in a vector. The claims also recite a recombinant vector comprising a DNA segment encoding a mouse choline transporter polypeptide under the control of a promoter.

It is noted that the phrases "comprising/having ... essentially as set forth in SEQ ID NO:", "an isolated choline transporter" (for example, claim 34), and "(c)DNA segment" as recited in the claims, are broadly interpreted by the Examiner as reading upon: (i) nucleic acid variants of SEQ ID NO: 3 with any number of deletions, substitutions, or additions and (ii) protein variants of SEQ ID NO: 4 with any number of deletions, substitutions, or additions.

The specification of the instant application teaches that nucleic acid variants may be any length and that "a DNA segment encoding CHT refers to a DNA segment that contains wild-type, polymorphic or mutant CHT coding sequences yet is isolated away from, or purified free from, total mammalian genomic DNA. Included within the term "DNA segment," are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phage, viruses, and the like" (pg 23, lines 7-12; pg 30; pg 42). However, the claims do not require that the nucleic acid or polypeptide possess any particular

Art Unit: 1647

biological activity, nor any particular conserved structure, or other disclosed distinguishing feature. Thus, the claims are drawn to a genus of nucleic acid molecules.

To provide adequate written description and evidence of possession of a claimed genus, the specification must provide sufficient distinguishing identifying characteristics of the genus. The factors to be considered include disclosure of compete or partial structure, physical and/or chemical properties, functional characteristics, structure/function correlation, methods of making the claimed product, or any combination thereof. In this case, there is not even identification of any particular portion of the nucleic acid structure that must be conserved. Accordingly, in the absence of sufficient recitation of distinguishing identifying characteristics, the specification does not provide adequate written description of the claimed genus. Additionally, the description of one mCHT polynucleotide species (SEQ ID NO: 3) and one mCHT polypeptide species (SEQ ID NO: 4) is not adequate written description of an entire genus of functionally equivalent polynucleotides and polypeptides which incorporate all variants, fragments, and derivatives of SEQ ID NO: 3 and SEQ ID NO: 4.

Vas-Cath Inc. v. Mahurkar, 19USPQ2d 1111, clearly states that "applicant must convey with reasonable clarity to those skilled in the art that, as of the filing date sought, he or she was in possession of the invention. The invention is, for purposes of the 'written description' inquiry, whatever is now claimed" (See page 1117). The specification does not "clearly allow persons of ordinary skill in the art to recognize that [he or she] invented what is claimed" (See Vas-Cath at page 1116).

With the exception of the sequences referred to above, the skilled artisan cannot envision the detailed chemical structure of the encompassed polynucleotides, and therefore conception is

Art Unit: 1647

not achieved until reduction to practice has occurred, regardless of the complexity or simplicity of the method of isolation. Adequate written description requires more than a mere statement that it is part of the invention and reference to a potential method of isolating it. The nucleic acid itself is required. See *Fiers v. Revel*, 25 USPQ2d 1601 at 1606 (CAFC 1993) and *Amgen Inc. v. Chugai Pharmaceutical Co. Ltd.*, 18 USPQ2d 1016.

One cannot describe what one has not conceived. See *Fiddes v. Baird*, 30 USPQ2d 1481 at 1483. In *Fiddes*, claims directed to mammalian FGF's were found to be unpatentable due to lack of written description for that broad class. The specification provided only the bovine sequence.

Therefore, only an isolated nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:3 and a nucleic acid molecule which encodes a polypeptide consisting of the amino acid sequence of SEQ ID NO:4, but not the full breadth of the claim meets the written description provision of 35 U.S.C. §112, first paragraph. Applicant is reminded that *Vas-Cath* makes clear that the written description provision of 35 U.S.C. §112 is severable from its enablement provision (see page 1115).

35 USC § 112, second paragraph

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

6. Claims 29-34 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Application/Control Number: 10/724,806 Page 13

Art Unit: 1647

7. Claims 29-34 are rejected as being indefinite because the claims fail to define the metes and bounds of the phrase "comprising/having... essentially as set forth in SEQ ID NO:". For example, it is not clear if this language is open or closed or what polynucleotides/polypeptides are encompassed.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.
- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- 8. Claims 29-34 and 36 are rejected under 35 U.S.C. 102(b) as being anticipated by Okuda et al. (Nat Neurosci 3(2): 120-125, 2000; Genbank Accession No. AB030947). It is noted that the phrase "comprising/having ... essentially as set forth in SEQ ID NO:", as recited in the claims, is broadly interpreted by the Examiner as reading upon: (i) nucleic acid variants of SEQ ID NO: 3 with any number of deletions, substitutions, or additions and (ii) protein variants of SEQ ID NO: 4 with any number of deletions, substitutions, or additions.

Okuda et al. teach an isolated "CHT1" polynucleotide that is 92.7% identical to the nucleic acid sequence of SEQ ID NO: 3 of the instant application (see sequence alignment attached to the instant Office Action as Appendix A). The CHT1 polynucleotide of Okuda et al. comprises a nucleic acid sequence that is identical to at least 134 contiguous nucleotides of SEQ ID NO: 3 of the instant application (see nucleic acids 1418-1551 of Okuda et al. and nucleic

Art Unit: 1647

acids 1195-1328 of SEQ ID NO:3 of the instant application). Okuda et al. also disclose that the CHT1 polynucleotide encodes a choline transporter polypeptide (see sequence alignment attached to the instant Office Action as Appendix B; see Figure 2a of Okuda et al.) Okuda et al. teach that the CHT1 cDNA is isolated and subcloned into the pcDNA3.1+ vector, which contains a cytomegalovirus immediate early (CMV) promoter/enhancer (pg 124, 2nd full paragraph). Okuda et al. disclose transfecting COS7 cells with the CHT1/pcDNA3.1+ vector (pg 124, Figure 5).

9. Claims 29-36 are rejected under 35 U.S.C. 102(a) as being anticipated by Haga et al. (WO 0116315; 08 March 2001; see also pg 24-25 of CA 2382464 (Canadian translation of WO 0116315)).

Haga et al. teach an isolated murine polynucleotide that is 99.3% identical to the nucleic acid sequence of SEQ ID NO: 3 of the instant application (see sequence alignment attached to the instant Office Action as Appendix C; see also SEQ ID NO: 7 of Haga et al.). The CHT1 polynucleotide of Haga et al. comprises a nucleic acid sequence that is identical to over 100 contiguous nucleotides of SEQ ID NO: 3 of the instant application (see nucleic acids 356-1733 of Haga et al. and nucleic acids 356-1733 of SEQ ID NO:3 of the instant application). Haga et al. also disclose that the CHT1 polynucleotide encodes a choline transporter polypeptide (see sequence alignment attached to the instant Office Action as Appendix D; see SEQ ID NO: 8 of Haga et al.) Haga et al. teach that the gene encoding the mCHT protein may be introduced into a host cell by a number of different methods (pg 22, lines 13-26). Haga et al. teach that vectors

Application/Control Number: 10/724,806 Page 15

Art Unit: 1647

may used as an expression system to express the protein in a host cell and that the vectors may contain a regulatory sequence that acts as a promoter (pg 23, lines 7-17).

Art Unit: 1647

Conclusion

No claims are allowable.

The art made of record and not relied upon is considered pertinent to applicant's disclosure:

Wu et al. (U.S. Patent 6,500,643) (SEQ ID NO: 1 of Wu et al. is 79.1% identical to SEQ ID NO: 3 of the instant application)

Invitrogen 2001 catalog, pg 155 (pcDNA vectors)

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Bridget E. Bunner whose telephone number is (571) 272-0881. The examiner can normally be reached on 8:30-4:30 M-F.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Brenda Brumback can be reached on (571) 272-0961. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

BEB Art Unit 1647 04 August 2006

BRIDGET BUNNER

BATENT EXAMINER

Appendix A

AAGG 1560 AAGG 1560 AAGG 1560 AAGT 1620 AAAT 1620 AAAT 1620 TAAG 1680 TAAA 1740 ACAA 1740 FEB-2000 er CHT1, boline Sura,I. boline ACAA 1740 **Faculty hkyo-ku 841-3560, SLIGGLFF STIGGLFF STIGGLFF STIGGLFF STIGGLFF STATULOUD BERSEBAIIV STIGGLFF STATULOUD BATTSIGGLFF STAT	TAMALLTKTVYGLWYLSSDLVYIIIFPQLLCVLFIKGTNTYGAVAGYIFGLFLRITGG EPYLYLQPLIFYPGYYPDKNGIYNQRFPFKTLSMVTSFFTNICVSYLAKSLFESGTLP PKLDIFDAVVSRHSEENMDKTILVRNENIKLNELAPVKPRQSLTLSSTFTNKEALLDV DSSPEGSGTEDNLQ"	Ouery Match Best Local S Matches 1664 Qy	Db 224 ATGCCTTTCCATGTAGAAGGACTAGTAGCGATTATCCTGTTCTATATTTTTG 283 Qy 61 GTTGGAATATGGGTGCAAAAACCAAAAAAAGGGGGGAAAAAGGAGGGGGAAAAAA	. 284	344 GCCATCATAGTTGGGGGCCGAGACATTGGTTGTTGGTGGTGGTGTTTACCATGACAGCC	ACCTGGGTTGGAGGAGGCTACATGGGACAGCAGAAGCAGTGTATGGGCCAGGTTGT 	QY 241 GGTCTAGCTTGGGCTCATGCACCATTGGATATTCTCTGAGTCTAATTTTAGGTGGTCTG 300	OY 301 TITITIGGAAACCTANGCGTICCAAGGATANGTGACTATGTIAGACCCATICAAACAG 360	Qy 361 AICTAIGGAAAGGGATGGGTGGGCTGCTCTTCATCCCTGCACTGATGGGAGATGTTC 420 Db 584 AICTAIGGAAAGGGCATGGGTGGCTGCTGTTCATCCCTGCACTGATGGGGAGAGATGTTC 643	Qy 421 TGGGCTGCAGCAATTTCTCTGCATTAGGGGCCACCATCAGCGTGATCATTGATGATGTGGAT 480	Qy 481 GTGAACATATCGCTCATGTCTCTCATTGCCATTCTTTATACCCTAGTGGGTGG	Oy 541 CTCTACTCTGGGCATATACTGATGTTGTCCAGCTATTCTGCATTTTTATAGGACTGTGG 600	OY 601 ATCAGTGTCCCTTTTGCCCTGTCACTCCAGACACGACATTCACAGCTGTG 660	Qy 661 CATGCTAAATACCAGAGTCCCTGGGAACCATTGAATCAGTTGAAGTCTACACCTGG 720 [Oy 721 CTTGATAATTTCTGTTATTGATGCTGGGAATCCCATGGCAAGCCTACTTCCAGAGG 780	OY 781 GTCCTCTTCATCCTCAGCCACCTATGCTCAGGTACTGTCCTTCTGGCAGCTTTTGGG 840	Oy 841 IGCCIGGIGATGGCICTACCCGCCATAIGCATAGAGCTATTGGAGCTTCCACAGACTGG 900	Qy 901 AACCAGACTGCCTACGGGTATCCCAGATCCCAAGACTAAGGAGGAAGCAGACATGATTCTC 960
Db 1441 A	ACTCTCTCCAIGGTAACCTCATTCTTTAACCAACATTTGTTCCTATCTAACCAAGGTAT 15 CTATTTGAAAGTGGAACCTTGCCTCCAAAATTAGATGTATTTGATGCTGTTGTCGCAAGG 15 CTATTTGAAAGTGGAACCTTGCCTCCAAAATTAGATGTATTTGATGCTGTTGTCGCAAGG 15	CACAGTGAAGAGAACATGACCATTCTAGTGAAATGAAAT	GAACTIGCACCIGIGAAACCIGGGAGAGCCIAACCCICAGTICAACTITCACCAATAAG 	GAGGCCTCCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAATTTACAA 1740 	5 — 5 — 5	\ .	AB030947 AB030947 AB030947 NN Rattus norvegicus mRNA for high-affinity choline transporter CHT complete cds.	AB030947. AB030947.1 GI:6863033 choline transporter; high-affinity choline transporter CHT Rattus norvegicus (Norway rat)	Bukaryota, Metazoa, Chordata, Craniata, Vertebrata, Buteleos Mammalia, Butheria, Euarchontoglires, Glires, Rodentia, Sciurognathi, Muroidea, Muridae, Murinae, Rattus.	Okuda,T., Haga,T., Kanai,Y., Endou,H., Ishihara,T. and Katsura, Identification and characterization of the high-affinity cholin transporter		99) Takashi Okuda, University of Tokyo, ent of Neurochemistry; Hongo 7-3-1, Bunk ail:okuda@m.u-tokyo.ac.jp, Tel:+81-3-584	Sequence u	<pre>/ Organism="Rattus norvegicus" / mol_type="mRnN" / strain="Wistar" / db_xref="taxon:10116"</pre>	/clone="cart spinal cord" /tissue type="spinal cord cDNA library" /dev stage="adult"	-1500 nn start=1 NuCt="high-affinity choline transporter lein id="BhAkog841"	/ LTAINS LATE = "ALT ONE OF ALT O	VNLSVLVSALLALITIVGGGISVAXIDVVQLFCLFIGLALSVFFALSHFAVIDLGFT AVHAKYQSPWLGTIESVEVYTWLDNFLLLMLGGIPWQAYFQRVLSSSSATYAQVLSFL AAFGCLVWALPAICIGAIGASTDWNQTAYGFPDPKTKEEADMILPIVLQYLCPVXISF FGLGAVSAAVMSSADSSILSASSMFARNIYQLSFRQNASDKEIVWMRITVFVFGASA

Appendix A (cont,)

U)	61 CCGATCCTTCTGCAGTACTTGCCCTGTGTACATCTCCTTCTTTGGGCTTGGTGCTTGTT 1020		FEATURES	Location/(
	84 ccdaireilciacaglaccrcrgcccrgrgracarrrccrrcrrgggcrrggrcrgrr 1243			/organism= /mol_type=
	1021 TCAGCTGTCATGTCCTCAGCTGACTCGTCCATCCTGTGGGGAGTTCTATGTTTGCT 1080		ORIGIN Query Match	75 FI. 97.
	CGGAATATCTACCAGCTTTCCTTCAGACAAAATGCATCAGACAAGGAAATTGTGTGGGTC		Best Local Similarity Matches 1515; Conser	vat
			Oy 1 ATG	ATGCCTTTCCATGTGG
	ATGAGGATCACTGTGCTTGTGTTCGGAGCATCTGCAACAGCCATGGCTTTGCTGAAG	_	Db 1 ATG	ATGGCTTTCCATGTGGA
	ATGAGGATCACTGTGTTTGTGTTTGGAGCATCTGCAACACGCATGGCCTTGCTCACGAAG		Qy 61 GTTC	GTTGGAATATGGGCTGC
	01 ACTGIGIATGGGCTCTGGTACCTGAGCTCTGCTCACATCATCATCATCTCCCACAG 1260		61	GTTGGAATATGGGCTGC
	24 ACTGIGIAIGGGCICIGGIACCIGAGCICIGACCITGICIACAICAICAICAICCICCACAG 1483		121	GCCATCATAGTCGGGGG
	TIGCTCTGTGTACTCTTCATCAAAGGAACCAACACTTATGGGGCAGTTGCTGGTTATATTTTTTTT		Db 121 GCCP Qy 181 ACCT	ĠĊĊĂŤĊĂŤĂĠŤŦĠĠŦĠĠ ACCTGGGTTGGAGGAGG
	TTGGACTATTCCTGAGAATTACTGGAGAGAGCCATATCTATATATA	<u>н</u>	Db 181 ACCT	ACCTGGGTCGGAGGAGG
<₩	4 TITGGACTTTTCCTGAGAATTACCGGAGGAGAGCCATAICTATACTTGCAGCCTTATTC 1603	0	Qy 241 GGTC	GGTCTAGCTTGGGCTCA
m	1 TICTACCCTGGTTATTACTCTGACAAGAATGGTATATACAATCAGAGGTTCCCATTTAAA 1440		Db 241 GGCC	GGCCTAGCTTGGGCTCA
7	TCTACCCTGGTTATTACCCTGACAAGAATGGTATATACAATCAGAGGTTCCCATTTAAA	o 	Qy 301 TTTT	TTTTTGCGAAACCTAT
=	ACTOTOTOCATGGTTACCTOATTOTTTACCAACATTTGTGTTTCTTATCTAGCCAAGTAT 1500	Δ	Db 301 TrcT	Trcttrgcaaacctar
4.	ACTUTION	λ ₀	361	ATCTATGGAAAGCGCAT
7	CTATTTGAAAGTGGAACCTTGCCTCCAAAATTAGATGTATTTGATGCTGTTGTCGCAGG 1560	ପ୍	361	ATCTATGGAAAACGCATC
4	CTATTIGADAGTGGAACCTTGCCTCCADAATTAGATATATTTGATGCTGTTGTCTCAAGG 1783	λ ₀	421	TGGGCTGCAGCAATTTT
7	CACAGTGAAGAGAAAATGGACAAGACCATTCTAGTCAGAAATGAAAATATCAAATTAAAT 1620	qa	421 T	GGGCTGCAGCAATTTT
4	CACAGTGAAGAACATGGACAAGACCATTCTAGTCAGAAATGAAAACATCAAATTAAAT 1843	λο	481	GTGAACATATCGGTCATT
	GAACTTGCACCTGTGAAACCTCGGCAGAGCCTAAACCCTTCAGTTTCACCAATAAG 1680	q _Q	481	ATGCACATTTCTGTCATC
4	GAACTIGCACCIGIAAAGCTCGACAGAGCCTAACCCTCAGTTCAACTTCACCAATAAA 1903	0y	541	CTCTACTCTGTGCATAT
- 22	GAGGCCCTCCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAATTTACAA 1740	ପ୍ର	541	crerarrergyescerae
3.	GAGGCTCTCCTTGATGTTGATTCCAGTGCGATCTGGGACTGAGATAACTTACAA 1963	δ	601	ATCAGTGT OCTTTTGC
_	TGA 1743	q _Q	601	Arcagestecentrgea
4	 TGA 1966	<i>\</i> 0	. 661	CATGCTAAATACCAGAGT
		_	-	-

AR268949

AR268949

DEFINITION Sequence 1 from patent US 6500643

AR268949. GI:29699686

VERYNORDS

VERYNORDS

SOURCE

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

AUTHORS

Wu, D.-H., Ox, Y., Millard, W.J. and He, Y.-J.

TITLE

Human high affinity choline transporter

University of Florida; Gainesville, FL

PAT 10-APR-2003

RESULT 10

ö CATGGAAAACCCAAAACAGCGGCAAAGAGCGCGCAGTGAA 120 GGTGGTTTTACCATGACAGCC 180 240 240 300 recerrecay geararereacrarerragaccarreaacae 360 9 9 420 099 420 540 540 600 900 780 720 661 CATGECAAATACCAAAAGCCGTGGCTGGGAACTGTTGACTCATCTGAAGTCTACTCTTGG 720 840 840 941 IGCCIGGIGAIGGCICIACCCGCCAIAIGCAIAGGACTAITGGAGCIICCACAGACTGG 900 AACCAGACTGCCTACGGGTATCCAGATCCCAAGACTAAGGAGGAAGCAGACATGATTCTC 960 900 CCTTATATTTCTG AAAGAATGATAACTATCATGATTCT&CCTTCTAATTTTGCTG GCTACATCAATGGGACAGAAGCAGTGTATGGGCCAGGTTGT ATGCACCCATTGGAZATTCTCTGAGTCTAATTTTAGGTGGTCTG 0; Gaps resercy6crecrercerscerses reseases retre regegeactectetttattectecacteatgegaaatgtte MACTGATGTTGTCCAGCTATTCTGCATTTTTATAGGACTGTGG CCTGTCACATCCTGCAGTCACCGACATCGGATTCACAGCTGTG GATAATTTTCTGTTATTGGTGGTGGAATCCCATGGCAAGCCTACTTCCAGAGG TCCCTGGCTGGGAACCATTGAATCAGTTGAAGTCTACACCTGG GICCICITCATCATCAGCCACCIAIGCICAGGIACTGICCITCCTGGCAGCTITTGGG DB 2; Length 1%; Score 1378.2; DB 2; Lengt! 9%; Pred. No. 0; 0; Mismatches 228; Indels, **3AAGGACTGGTAGCTATTATCCTCTTTTAC** GCCGTGACATTGGTTTGTTGGT m="unknown" e≈"genomic DNA" Qualifiers 721 CTT 901 901 à В ò qq à q ò 셤

Zue Jul 11 13:42:51 2006

Appendux B

qq	1021	1021 TCTGCTGCTGTCATGTCCTGGCTGACTCATCCTATCAGCAAGTTCCATGTTJACT 1080
È	361	ArgasılleTyrGlnLeuSerPheArgGlnAsnAlaSerAspLysGlulleValArpVal 380
QQ	1081	
ò	381	MetargileThrValLeuValPheGlyAlaSerAlaThrAlaMetAlaLeuLeuThrLys 400
đ	1141	1141 ATGAGGATCACTGTGTTTGTGTTTGGAGCATCTGCAACAGCCATGGCTTGCTCACGAAG 1200
ò	401	ThrValTyrGlyLeuTrpTyrLeuSerSerAspLeuValTyrIleIleIlePheProGln 420
qq	1201	ACTGTGTATGGGGTCTGGGTACCTGAGCTCTGGGTACATCATCATCTTCCCACAG 1260
ò	421	LeuLeuCysValLeuPheIleLysGlyThrAsnThrTyrGlyAlaValAlaGlyTyrIle 440
qa	1261	
ò	441	PheGlyLeuPheLeuArgIleThrGlyGlyGluProTyrLeuTyrLeuGlnProLeulle 460
QQ	1321	
ò	461	PheTyrProGlyTyrTyrSerAspLysAsnGly1leTyrAsnGlnArgPheProPheLys 480
qq	1381	
<i>λ</i> ο	481	ThrLeuSerMetValThpSerPhePheThrAsnIleCysValSerTyrLeuAlalysTyr 500
Dþ	1441	
ò	501	LeuPheGluSerdIyThrLeuProProLySLeuAspValPheAspAlaValValAlaArg 520
qq	1501	CTATTIGAAA GIGGAACCTIGCCTCCAAATTAGATATTIGATGCTGTTGTCTCAAGG 1560
ò	521	521 HisSerGMGludsnMetAspLysThrIleLeuValdrgAsnGludsnIleLysLeudsn 540
qq	1561	CACAGTGAAGAACATGGACAAGACCATTCTAGTCAGAAATGAAAACATCAAATTAAAT 1620
à	541 (GlykeualaproValLysProArgGlnSerLeuThrLeuSerSerThrPheThrAsnLys 560
Db	1621	MACTIGCACCIGIAAAGCCICGACAGAGCCIAACCCICAGIICAACITICACCAATAAA 1680
ò	58	561 GlublaLeuLeubspValAspSerSerProGluGlySerGlyThrGlubspAsnLeuGln 580
qa	1681	GAGGCTCTCCTTGATGTTGATTCCAGTCCTGAGGATCTGGGACTGAAGATAACTTACAA 1740

ORIGIN

Submitted (09-AUG-1999) Takashi Okuda, University of Tokyo, Faculty of Medicine, Department of Neurochemistry; Hongo 7-3-1, Bunkyo-ku 113-0033, Japan (E-mail:okuda@m.u-tokyo.ac.jp, Tel:+81-3-5841-3560, Fax:+81-3-3814-8154)
Sequence updated (11-Jan-2000). AB030947 4904 bp mRNA linear ROD 03-FEB-2000 Rattus norvegicus mRNA for high-affinity choline transporter CHT1, Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; Rattus. 1 (sites)
Okuda,T., Haga,T., Kanai,Y., Endou,H., Ishihara,T. and Katsura,I.
Identification and characterization of the high-affinity choline AB030947.1 GI:6863033 Choline transporter; high-affinity choline transporter CHT1. Rattus norvegicus (Norway rat) Rattus norvegicus Nat. Neurosci. 3 (2), 120-125 (2000) 10649566 2 (bases 1 to 4904) Okuda, T. Direct Submission complete cds. transporter VERSION KEYWORDS SOURCE ORGANISM DEFINITION REFERENCE AUTHORS TITLE JOURNAL PUBMED REFERENCE AUTHORS TITLE JOURNAL ACCESSION RESULT 9 AB030947 LOCUS

ò q

6: 4 4 90 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0		LeuPheTyrLeuLeullePheLeu 20	CTGTTCTACCTTCTTATTTTCTG 283	ValGlyIleTrpAlaAlaTrpLysThrLysAsnSerGlyAsnProGluGluArgSerGlu 40	GTTGGAATATGGGCTGCATGGAAAACCAGCGGTAATGCAGAAGAACGCAGCAA 343	41 AlaileileValGlyGlyArgAspileGlyLeuLeuValGlyGlyPheThrMetThrAla '60	GCCATCATAGTTGGGGGCCGAGACATTGGTTGTTGTTGGTTG	GluAlaValTyrGlyProGlyCys 80	GAAGCAGTTTATGGGCCAGGTTGT 463
Dength: 2956.00 Marches: 99.3\$ Conservative: 98.6\$ Mismatches: 98.8\$ Indels: 6 Gaps:	US-10-724-806-4 (1-580) x AB030947 (1-4904)	1 MetProPheHisValGluGlyLeuValAlaileIleLeuPheTyrLeuLeullePheLeu		pAlaAlaTrpLysThrLysAsnSer	GGCTGCATGGAAAACCAAAAACAGC	GlyGlyArgAspileGlyLeuLeu	TGGGGGCCGAGACATTGGTTGTTG	ThrTrpValGlyGlyGlyTyrIleAsnGlyThrAlaGluAlaValTyrGlyProGlyCys	ACCTGGGTTTGGAGGTTACATCAACGGGACAGCTGAAGCAGTTTATGGGCCAGGTTGT
ty:	6-4 (1-580) x	1 MetProPheHi	4 ATGCCTTTCCA	21 ValGlyIleTr		1 AlaileileVa		61 ThrTrpValGl	4 ACCTGGGTTGG
Alignment Scores: Pred. No.: Score: Percent Similarity: Best Local Similarity: Query Match:	US-10-724-80	λō	Db 224	Oy 2:	Db 284	Oy 4:	Db 344	, ov	Db 404

> 셤 ò 셤 ò

ð

셤 ò

COMMENT

Appendix B (cort.)

8

ò Q ò

ద

ò

ò

1111 AT 1111 A	41 GluleuklaProvallySProkragolnSerLeurntreuSerSerThrPherthranlyS 54 Glull
oy Bb oy Bb	61 ThrTrpValGlyGlyGlyTyrIleAsnGlyThrAlaGluAlaValTyrGlyEroGlyCys 80 18) ACCTGGGTCGGAGGGGTATATCAATGGCACAGCTGAAGCAGTTTATGTACCAGGTTAT 240 81 GlyLeuAlaTrpAlaHisAlaProlleGlyTyrSerLeuSerLeuIleLeuGlyGlyLeu 100 241 GGCCTAGCTTGGGCTCAGGCACCAATTGGATATTTTAGGTGGCCTG 300

Appendix C

& - d	721 CITGATAATITICTGITAITGATGCTGGGTGGAATCCCATGGCAAGCCTACTTCCAGAGG 780 	RESULT 3 BD012720 LOCUS DEFINITION	BD012720 High-affinity cholin
è q	781 GICCICITICATCCICAGCCACCTAIGCTCAGGIACTGICCTICCTGGCAGCTTTTGGG 840 	ACCESSION VERSION KEYWORDS SOURCE	BD012720 BD012720.1 GI:22092 WO 0116315-A/4. Mus musculus (house
č q	841 TGCCTGGTGATGGCTCTACCCGCCATATGCATAGGAGCTATTGGAGCTTCCACAGACTGG 900 	ORGANISM	
& g	901 AACCAGACTGCCTACGGGTATCCAGATCCCAAGACTAAGGAGGAAGCACATGATTCTC 960 	REFERENCE AUTHORS TITLE JOURNAL	1 (bases 1 to 1743) Haga, T. and Okuda, T. High-affinity cholin Patent: WO 0116315-A
දු අ	961 CCGATCGTTCTGCAGTACCTCTGCCCTGTGTACATCTCCTTCTTTGGGCTTGGTGCTGT 1020 	COMMENT	JAPAN SCIENCE AND TE OS Mus musculus (m PN WO 0116315-A/4 PD 08-MAR-2001
දු අ	1021 TCAGCTGCTGTCATGTCCTCAGGTGACTCGTCCGTCGGCGGGTTCTATGTTTGCT 1080 		PF 18-AUG-2000 WO PR 27-AUG-1999 JP TATSUYA HAGA, TAKASHI PC C12N15/12.C07K1
& a	1081 CGGAATATCTACCAGCTTTCCTTCAGACAAAATGCATCAGACAAGGAAATTGTGTGGGTC 1140 	<u> </u>	A61K38/17, PC A61K45/00,A61P2 CC CC FH KeV
දු යු	1141 ATGAGGATCACTGTGCTTGTGTTCGGAGCATCTGCAACAGCCATGGCTTTGCTGACGAAG 1200 	FEATURES source	FT CDS Location/Qu ie 1.1743 /ordanism='
<i>장</i>	1201 ACTGTGTATGGGCTCTGGTACCTGAGCTCTGACCTTGTCTACATCATCATCTCCCACAG 1260 	ORIGIN	/mol_type=' /db_xref="
& 8	1261 CTGCTCTGTGTACTCTTCATCAAAGGAACCAACACTTATGGGGCAGTTGCTGGTGTTATTT 1320 	Query Ma Best Loc Matches	Query Match Best Local Similarity 99.5% Matches 1735; Conservative
දු පු	1321 TTTGGACTATTCCTGAGAATTACTGGAGGAGGCCATATCTATACTTGCAGCCCTTAATC 1380 	y da	1 ATGCTTTCCATGTGGA 1 ATGTCTTTCCACGTAGA
දු දු		. ag	61 GTTGGAATATGGGCTGC.
<u>ک</u> ج	A	ඊ යි	121 GCCATCATAGTCGGGGG
8 8	1501 CTATTTGAAAGTGGAACCTTGCCTCCAAATTAGATGTATTTGATGCTGTTGTCGCAAGG 1560 	<i>≿</i> 8	181 ACCTGGGTTGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
ò £	1561 CACAGTGAAGAGAAACATGGACAAGACCATTCTAGTCAGAAATGAAAATATCAAATTAAAT 1620 	& a	241 GGTCTAGCTTGGGCTCA
1 & 1	8=8	SS SS	301 TTTTTGCGAAACCTAT
8 8	SECCICCTIGATUTICATUTICACIOCCEAGGGGTCTGGGACTGAAGATAATTTACAA 17	ò	
ą		g ,	ATCIAIC
8	1741 TGA 1743 1767 TGA 1769	රු අ	421 TGGGCTGCAGCAATTTT
	į	-	•

ö ATGCACCCATTGGATATTCTCTGAGTCTAATTTTAGGTGGTCTG 300

AGGCACCCATTGGATATTCTCTGAGTCTAATTTTAGGTGGTCTG 300 TGGGTGGGTGCTCTTCATCCCTGCACTGATGGGAGAGATGTTC 420 TCTCTGCATTAGGGGCCACCATCAGCGTGATCATTGATGTGGAT 480 PAT 02-AUG-2002 GCTACATCAATGGGACAGCAGAAGCAGTGTATGGGCCAGGTTGT 240 TGCGTTCCAAGGGATATGTGACTATGTTAGACCCATTCAAACAG 360 CATGGAAAACCAAAAAACAGCGGCAACCCCAGAAGAGCGCCAGTGAA 120 GCCGTGACATTGGTTGGTTGGTGGTTTTTACCATGACAGCC 180 R Chordata; Craniata; Vertebrata; Buteleostomi; Buarchontoglires; Glires; Rodentia; Gea; Muridae; Murinae; Mus. 9 HI OKUDA K14/47,C12Q1/68,C07K19/00,C07K16/18,C12N5/10, 368991 PI AAGGACTGGTAGCTATTATCCTCTTCTACCTCCTTATATTTCTG 0; Gaps ine transporter -A 4 08-MAR-2001; TECHNOLOGY CORP,TATSUYA HAGA,TAKASHI OKUDA (mouse) %; Score 1730.2; DB 2; Length 1743; %; Pred. No. 0; 0; Mismatches 8; Indels 0; O 2000JP005545 P 99P 240642,27-DEC-1999 JP 99P HI OKUDA linear P25/28, G01N33/53, A01K67/027 Location/Qualifiers (1). .(1743). Qualifiers DNA m="Mus musculus"
e="genomic DNA"
="taxon:10090" 1743 bp ne transporter. e monse) 2909

į

Appendix C(Wort.)

	RESULT 4 E49872 LOCUGS DEFINITION High-affinity choline transporter. ACCESSION E49872 VERSION E49872 VERSION E49872 VERSION E49872 VERSION E49872 JP 2001136976-A/4. Mus sp. ORGANISM EDWARYCLS, Mus sp. ORGANISM EDWARYCLS, Mus reazoa; Chordata; Craniata; Vertebrara; Euteleostomi; Mus sp. Sciurognathi; Murcidea; Murinae; Mus sp. Sciurognathi; Murcidea; Murinae; Mus sp. Sciurognathi; Murcidea; Murinae; Mus sp. Sciurognathi; Chases 1 to 1743) Sciurognathi; Chases 1 to 1743) SCIUROGNISM High-affinity choline transporter JOURNAL SCIENCE & TECH AGENCY COWMENT OS' Mus sp. (mouse) PN JP 2001136976-A/4 PD 22-MAY-2001 PN JP 2001136976-A/4 PD 22-MAY-2001 PN JP 2001136976-A/4 PD 22-MAY-2001 PN JP 200136976-A/4 PD 22-MAY-2001 PN JP 200136970-A/4	PC C12NS/10, PC C12NS/10, PC C12P21/02,C12P21/08,C12N1S/00,A61K37/02,C12NS/00 CC FH Key	
	CTTGATAATTTTCTGTTATTGATGCTGGGTGGAATCCCATGGCAAGCCTACTTCCAGAGG 780 [CTGCTCTGTACTCTCATCAAAGGAACCACCTTAININININININININININININININININININI

쉽

à

쉽 &

6 8 6 8 6 8 6, 8

셤

Appendu'x D

Aspvalasp Sargregar Valglybly Siggrege Siggrege	626 Qy 5 220 Db 17 686 RESULT 3 240 LOCUS DEFINITION	260 VERSION VERSION KEYWOEDS 806 SOURCE 280 ORGANISM 866	ThrAspTrp 300	340 1046 360 1106	380 FEATURES source 1166	CKIGANG 1226	440 Query Match: 1346 DB: US-10-724-806-4 (1-580) 460 Qy 1 MetProPhe	1406 Db 1 ATGTCTTCCA 480 Oy 21 ValGlylleTr 1466 Db 21 ValGlylleTr	500
	201 IleServalProbheAlaLeuSerHisProcAgCTATTCTGCATTTTTATAGGGACTGTGG 201 IleServalProbheAlaLeuSerHisProAlaValThrAepilleGlypheThrAlaVal	241 LeukspasnPheLeuLeuLeumetLeuGlyGly1leProTzGlnAlaTyrPheGlnArd	281 CysLeuValMetAlaLeuProAlaIleCysIleElyAlaIleGlyAlaSerThrAspTrp	321 ProilevalLeuGlnTyrLeuCysPyGvalTyrIleSerPheGlyLeuGlyAlaval	361 ArgAsnIleTyrGlnLeugerPheArgGlnAsnAlaSerAspLysGluIleValTrpVal	1167 ATGAGGATCACTGTGCTTGTGTTCGGGGCATCTGCACAGCCATGCTTTGCTGALGIGGAAG 401 ThrValTyrGJ/LeuTrpTyrLeuSerSerAspLeuValTyrIleIleIlePheProGln 1227 ACTGTGTATAGGGCTCTGGTACCTGAGCTCTGACCTTGTCTACATCATCATCATCACAGG	421 Leuleuc/svalleuPheIleLysGlyThrAsnThrTyrGlyAlavalAlaGlyTyrIle	1347 TTTFGACTATTCCTGAGAATTACTGGAGGAGAGCCATATCTATACTTGCAGCCCTTAATC 461 Ph&TYrProGlyTyrTyrSerAspLysAsnGlylleTyrAsnGlnArgPheProPheLys	481 / ThrLeuSerMetValThrSerPhePheThrAsnIleCysValSerTyrLeuAlalysTyr

a

ઠે

셤

	No.	501 LeuPheGluSerGlyThrLeuProProLysLeuAspValPheAspAlaValVælAlaArg 520
	qq	
	ò	521 HisSerGluGluAsnMetAspLysThrIleLeuValApgAsnGluAsnIleLysLeuAsn 540
	qq	1587 CACAGTGAAGAACATGGACAAGACCATTCAAGTCAGAAATGAAATATCAAATTAAAT 1646
	ò	541 GluLeuAlaProVallysProArgGl#SerLeuThrLeuSerSerThrPheThrAsnLys 560
	qq	1647 GAACTIGCACCIGIGAAACCIGGGGGGGCCIAACCCICAGITCAACITICACCAITAAG 1706
	yo da	561 GlualaLeuLeuAspyzZaspSerSerProGluGlySerGlyThrGluAspAsnLeuGln 580
-	RESULT 3	
	BD012720 LOCUS	BD012720 1743 bp
	DEFINITION ACCESSION VERSION KEYWORDS	High-affinity choline transporter. BD012720 BD012720.1 GI:22092909 WD 0116316.b/4
		Mus musculus (house mouse) Mus musculus
		Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
	REFERENCE	Sclurognathi, Muroldea; Muridae; Murinae; Mus. 1 (bases I to 1743) Haga.T. and Okuda.T.
	TITLE JOURNAL	High-affinity choline transporter Patent: WO 0116315-A 4 08-MAR-2001;
	COMMENT	JAPAN SCIENCE AND TECHNOLOGY CORP, TATSUYA HAGA, TAKASHI OKUDA OS Mis misculus (mouse) DA 10.0.11.21.2 / mouse)
		PD 08-MAR-2001
		PF 18-AUG-2000 WO 2000JP005545 PR 27-AUG-1999 JP 99P 240642,27-DEC-1999 JP 99P 368991 PI TATSUTA HAGA, TAKASHI OKUDA
		PC C12N15/12, C07K14/47, C12Q1/68, C07K19/00, C07K16/18, C12N5/10, PC A61K38/17,
		PC A61K45/00, A61P25/28, G01N33/53, A01K67/027
		FH Key Location/Qualifiers FT CDS (1). (1743).
	FEATURES SOURCE	
	ORIGIN	
	Alignment Pred. No.:	Scores: 0 Length: 17
	Score:	2968.00 Matches: 576
	Best Local S Query Match:	imilarity: 99.2% Mismatches 199.2% Indels:
		s caps:
	US-10-724-806	•
	ò	1 MetProPheHisValGluGlyLeuValAlallelleLeuPheTyrLeuLeuIlePheLeu 20
_	qq	1 ATGICITICCACGIAGAAGGACIGGIAGCIAITAICCICITCIACCICCITAIAITIIÇIG 60
	કે ત	21 ValGlylleTrpAlaAlaTrpLysThrLysAsnSerGlyAsnProGluGluArgSerGlu 40
	g	61 GTIGGAATATGGGCTGCATGGAAAACCAAAAACAGCGGCAACCCAGAAGAGCACAGAATTAT
_	ò	41 AlaflelleValGlyGlyArgAspileGlyLeuLeuValGlyGlyPheThrMlan,60 7.33

Appendix D (cont.) Page 5

	240 Oy 441	100 Db 1	300 Qy 461	120 Db 1381 360 Db 1381		140 Db 1441		180 Db 1501	130 0y	540 Db	Oy 541 GluLeuAlaProVe 	009	220	00	240 E49872 LOCUS 720 DEFINITION	260 VERSION KEYWORDS	780 SOURCE ORGANISM	280	300 REFERENCE AUTHORS TITLE	900 JOURNAL	320 COMMENT	096	340 PT PC PC	DA OVICE	350 FT 1080	source	380 1140	B 400 N1 imment Correct	1200 Pred. No.: Score:	420 P	1133
ACCTGGGTTGGAGGGCTACATGGGACAGCAGAAGCAGTGTATGGGCCAGGTTGGAGGCTACATGTGGGCTACATGGGACAGCAGGAGCAGGAGGCAGGTTGGGGCCAGGTTGTGGGCTAGGGGGGGG	yLeualatrpalaHisalaProileGlyTyrSerLeuSerLeuileLeuGlyGlyLeu TCHG[richáscridáscrichascácácchritáshratricrichásricharritrásaratria ephealalysprometargserlysslytyvalthrmetleudspprophelysslu 	ePheAlaLysProMetArgSerLysGlyTyrValThrMetLeuAspProPheLysGln	FILIGOGAMACCINICCINCCINCCINCTINICIONINI CONTRA CONT	elyrciylysargmediyysybencenrafierierioa. 	TATIONEN CONTROLL CONTROL CONT	parantantantation in the contraction of the contrac			VALABILIESEIVALLIEVALSEIAIGLEULEALTELEELE LA TELEUR (VIIILIEVALU) (VIIIL	LeuryrservalAlaryrThrAspValvalGlnLeuPheCysIlePheIleGlyLeuTrp	CTACTCTGTGGCATATACTGATGTTGTCCAGCTATTCTGCATTTTTATAGGACTGTG	IleSerValProPheAlaLeuSerHisProAlaValThrAspIleGlyPheThrAlaVal	CAGTGTCCCTTTTTGCCCTGTCACATCTGCAGTCACCGACATCGGATTCACAGTTGTG	Hisalalystyrginserprotrpleuglythrilegluservalgluvaltyrthrtrp 	LeuaspasnPheLeuLeuLeuMetLeuGlyGlyIleProTrpGlnAlaTyrPheGlnArg	rtgataattitictgitatigatgcigggiggaatcccaiggcaagcciacticcagagg	ValleuserserserseralathrtyralaginvalleuserPheleuAlaAlaPheGly	SLeuValMetAlaLeuProAlaIleCysIleGlyAlaIleGlyAlaSerThrAspTrr		AsnGlnThralaTyrGlyTyrProAspProLysThrLysGluGluAlaAspMetIleLeu	accagactigectacgggtatecagateceaagactaaggaggaagcagacatgattete	ProllevalLeuGlnTyrLeuCysProValTyrIleSerPhePheGlyLeuGlyAlaVal 	CGAI'CGITCI'CCAGIACTICIGCCCIGIGIACAICTCCCIICIIIGGGGCIIGGGGGGGG	SerAlaAlaValMetSerSerAlaAspSerSerIIeLeuserAlaSerSeFMetPhRAla	CAGCTGTCATGTCCTCAGCTGACTCGTCCAGCTGGTCGGCGAGTTCAATGTTTGCC	ArgasnilefyrGlnLeuSerPheArgGlnAshAlaSerAsplysGlnLevalitpval 	etArgIleThrValLeuValPheGlyAlaSerAlaThrAlaMetAlaLeuLeuThrLV		ThrvalTyrGiyLeuTrpTyrLeuSerSerAspLeuValTyrIleIleIlePheProGln	CTGTGTGTATGGGCTCTGGTACCTGACCTTGTCTACATCATCATCTTCCCACAC
Db 181 7 7 7 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1	81 C C C C C C C C C C C C C C C C C C C	241 C 101 1 101 1 1 1 1 1 1 1 1 1 1 1 1 1	101 301 121 361 3	361 7	361 7	141	1.1	, 104	124	161	181	541	201	601	221	241	721	261	281	841	301	901	321	961	341	1021				;	٠.

PC C12N5/10, PC C12P21/02,C12P21/08,C12Q1/00,C12N15/00,A61K37/02,C12N5/00 CC FH Key Location/Qualifiers FT CDS Location/Qualifiers Location/Qualifiers 1. 1743 Source /organism="Mus sp." //db xref="genomic DNA" //db xref="laxon:10095"	Table 10.
441 PheclyLeuPheLeuArgileThicityClyClyClubroTytleuTrackTrackTrackTrackTrackTrackTrackTrack	11
### PRETYTE COLITY TYTES CRADELY SANGLY ITERIA SANGLANGE SET CONTROLLAND STATES CONTROLLAND STATES CRADELY STATES STATES CRADELY STATES STATES CRADELY STATES STATES STATES CRADELY STATES STATES STATES STATES CRADELY STATES STAT	61. Phe'TyrErcollyTyrTyrSerAsplaysandlyTieTyrSerGinArgPheProphetys 406 81. TYCTACCOCTACTACTACAACAACAACAACAACAACAACAACAACAAC
1 ThrieuserMetValThrSerPhePheThrAsnileCysValSerTyrleuAlaLysTyr 500 41 ACTCITCCATGGTTACCTCATTCTTACCAACATTGTTATCTAGCCAAGTAT 1500 41 ACTCITCCATGGTTACCTCATTCTTACCAACATTGTTCTTATCTAGCCAAGTAT 1500 61 CAACTCGAAGGTTACCTCATTCTTACCAACATTGTTCTTATCTAGCCCAAGGG 1560 61 CAATTGAAAGTGGAACCTTGCCTCCAAAATTAGATGTTATTCGATGTTGTCGCAAGGG 1560 62 CAATTGAAAGTGGAACCTTGCCTCCAAAATTAGATGTATTTGATGTTGTTGTCGCAAGG 1560 63 CACAGTGAAGAGACATTGCTCAAAATTAGATGTATTTGATGTTGTTCAAATTAAAT 1621 64 CACAGTGAAGAGACATTGCACACACATTCAATTAGATTACAAATTAAAT 1621 65 CACAGTGAAGAGACATTGCACATTCAAATTAGATTACAAATTAAAT 1621 66 CACAGTGAAGACATGGAAACTGGAGACCATTCAACTTCAACATTAAAT 1621 67 CACAGTGAAGAGAAAAAATTAGAAATTACAATTACAATTAAAT 1621 68 CACATTGCAACCTGGAAACCTCGGAGAGCCATACCCTCAGTTCAACTTTCAAATTAAAT 1621 68 CACATTGCAACCTGGAAACCTCGGAGAGCCTAACCCTCAGTTCAACTTTCAAATTAAAT 1621 69 CACATTGCAACCTGGAAACCTCGGAGAGCCTTAACCTTCAACTTTCAAATTAAAT 1621 61 CACAGTGAAAAAAATTAAAACTTCAAACTTCAACTTTCAACTTTCAAATTAAAT 1621 62 CACAGTGAAAACTTGATTCCAAGTCCGAAGGGGTTGGGAATAACTTACAA 174 64 CACATTGCAACTTGATGTTCAATTCCAATCCGAAGGGGTTCGGAACTGAAGATAACTTACAA 174 65 CACATTGCAACTTCAATGTTCAATTCCAATTACAATTACAA 174 66 CACATTGCAACTTGAAATTCCAATTACAATTACAATTACAA 174 67 CACAGTGAAATTAAAATTACAATTACAATTACAATTACAA 174 68 CACATTGCAACATTCCAAAATTACAATT	### STANDARD CONTRIBETOR OF THE PAGE OF TH
1 LeubheGluSerGlyThrLeuProProLysLeukspValPheAspAlavalvalAlaArg 520 1 CTATTTGAAAGTTGGAACCTTGCCTCCAAAATTAGATGTATTTGATGTGTTGTCGCAAGG 156(21 HisserGluGluAsnMetAspLysThrIleLeuValArgAsnGluAsnIleLysLeuAsn 540 61 CAGATGAAGAGACATGGACAAGACATTTTGATGTCGAAAATGAAATTAAAA	11
1 HisSerGluGluAsnMetAspLysThrIleLeuValArgAsnGluAsnIleLysLeuAsn 540 61 CACAGTGAAGACATGACAAGACCATTCTAGTCAGAAATGAAATTCAAATTAAAT 162 62 CACAGTGAAGACATGGACAAGACCATTCTAGTCAGAAATGAAATTCAAATTAAAT 162 63 CACAGTGAAACATGGACAAGACCATCTTCAGTCAGAAATGAAATTCAAATTAAAT 162 64 GluAlaLeuLeuAspValLysProArgGlnSerLeuThrLeuSerSerThrPheThrAsnLys 560 65 GluAlaLeuLeuAspValAspSerSerProGluGlySerGlyThrGluAspAsnLeuGln 580 66 GluAlaLeuLeuAspValAspSerSerProGluGlySerGlyThrGluAspAsnLeuGln 580 67 GluAlaLeuLeuAspValAspSerSerProGluGlySerGlyThrGluAspAsnLeuGln 580 68 GluAlaLeuLeuAspValAspSerSerProGluGlySerGlyThrGluAspAsnLeuGln 580 69 GAGCCCTCTTGATGTTGATTCCAGTCCGGAGGGGTCTGAGATAACTTACAA 174 61 GAGGCCCTCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGAGATAACTTACAA 174 64 SP2 64 SP372 65 GAGCCCTCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGAGTAACTTACAA 174 65 GAGCCCTCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGAGTAACTTACAA 174 66 GAGCCCTCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGAGTAACTTACAA 174 67 GAGCCCTCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGAGTAACTTACAA 174 68 SP2 69 Mus Sp. 60 Mus Sp. 60 Mus Sp. 60 Mus Sp. 61 Loacea 1 to 1743 62 Loachata, Taxacha 1 counse) 63 Mus Sp. 64 Mus Sp. 65 Mus Sp. 66 Mus Sp. 67 Mus Sp. 68 Mus Sp. 69 Mus Sp. 60 Mus Sp. 60 Mus Sp. 60 Mus Sp. 61 TATSUYA HGGA, TAXACH 1 COUNAS 1 62 CLINIS(04) 64 PT TATSUYA HGGA, TAXACH 1 COUNAS 1 65 CLINIS(04) 66 CLINIS(04) 67 CLINIS(04) 68 CLINIS(04) 69 CLINIS(04) 69 CLINIS(04) 60 CLINIS(04) 61 CLINIS(04) 61 CLINIS(04) 61 CLINIS(04) 61 CLIN	1 HisserGluGluasnWetAspLysThrileLeuvalArgAsnGluAsnIleLysLeuMan 540
41 GluLeuAlaProValLysProArgGlnSerLeuThrLeuSerSerThrPheThrAsnLys 560 21 GAACTTGCACCTGTGAAACCTCGGCAGAGCCTAACCCTCAGTTCAACTTTCACCAATAAG 168 61 GluAlaLeuLeuAspValAspSerSerProGluGlySerGlyThrGluAspAsnLeuGln 580 62 GGCCCTCCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGAAGATAACTTACAA 174 63 GAGGCCCTCCTTGATGTTGATTCCAGTCCGGAGGGGTCTGGAAGATAACTTACAA 174 649872 649872 649872 649872 649872 65 Mus sp. 669876 679876 679876 679876 679876 679876 679876 679876 679876 679876 679876 679876 679876 679876 679876 679876 679876 679876 670876	11 GluceualaprovalLysProArgGlnSerLeuThrLeuSerSerThrPheThrAsnLys 560 21 GAACTTCCACCTGTGAAACCTCGCAGAGCCTAACCTCAGTTCAACTTCACCAATAG 168 61 GluchlaleuaspylalAspSerSerTacCAGTCCTCAGTTCAACTTCACCAATAAG 168 62 GluchlaleuaspylalAspSerSerTacCAGTCCGGAGGGGTCTGGGACTGAAGATTACAA 174 81 GAGGCCCTCCTTGATTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAACTTACAA 174 82 GAGCCCTCCTTGATTGATTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAACTTACAA 174 82 GAGCCCTCCTTGATTGATTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAACTTACAA 174 82 GAGCCCTCCTTGATTGATTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAACTTACAA 174 82 GAGCCTCCTTGATTGATTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAACTTACAA 174 82 GAGCCCTCCTTGATTGATTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAACTACAA 174 82 GAGCCCTCCTTGATTGATTGATTCCAGTCCGGAGGGGTCTGGGACTGAAGATAACTACAA 174 82 CAGTAATAACTACTACTACTACTACTACTACTACTACTACTAC
61 GladaleeuleeulaspvallasperserProGluGlySerGlyThrGludaspasnLeuGln 580 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	GlubaleuleunspyValkspSerSerProGluGlySerGlyThrGlukspAsnleuGln 580 [
High-affinity choline transporter. B49872 B47	High-affinity choline transporter. E49872 E49872 E49872 B49872 Mus sp. Mus sp. Bukaryota, Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mus sp. Bukaryota, Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Sciurognathi; Muroidea; Murinae; Mus. 1 (bases 1 to 1143) Haga, T. and Okuda, T. High-affinity choline transporter Patent: JP 2001136976-A 4 22-MAY-2001; SCIENCE & TECH AGENCY SCIENCE & TECH AGENCY OR Mus sp. (mouse) PP 22-MAY-2001 PF 27-DEC-1999 JP 1999368991 PF 27-DEC-1999 JP 1999 JP 1999889891 PF 27-DEC-1999 JP 1999889891 PF 27-DEC-1999 JP 1999889891 PF 27-DEC-1999 JP 1999889891 PF 27-DEC-1999 JP 199988989891 PF 27-DEC-1999 JP 1999889891 PF 27-DEC-1
	Ns/10, P21/02,C12P21/08,C12O1/00,C12N15/00,A61K37/02,C12N5/00 CC Location/Qualifiers (1) . (1743) . Location/Qualifiers 1 . 1743 /organism="Mus sp." /mol_type="genomic DNA" /db_xref="taxon:10095" /db_xref="taxon:10095" 2968.00
/UD VICIT - CRACILL FOOL	