Actividad no recuperable de evaluación: servicio para computación

Puntuación: 20 puntos sobre 100.

Plazo de entrega: hasta las 14:00h. del miércoles 13 de enero de 2021.

Procedimiento para entrega: proyecto ComputingService a entregar se presenta limpio de clases compiladas (directorio build eliminado y directorio dist solo con el script de compilación/embalado que el autor haya preparado.); se entrega comprimido en formato zip por medio del sistema de tareas de MiAulario; solo se permite una entrega.

Objetivo de la actividad

- Proteger un prototipo muy básico de servicio de cálculo intensivo con los diferentes medios técnicos que proporciona la plataforma *Java SE* para mejorar la seguridad de las aplicaciones:
 - Autenticación de usuarios
 - Control de acceso mediante políticas de permisos
 - Ejecución privilegiada
 - Transmisión protegida mediante protocolo SSL/TLS.
- El prototipo adjunto es plenamente operativo.

Planteamiento

- El número de usuarios en algunos sistemas de información es tan elevado que resulta impracticable definir políticas que asignen permisos específicos a cada principal.
- En esa situación se clasifica a los usuarios en categorías con diferentes privilegios y se recurre a técnicas que por diseño prevengan del acceso a funcionalidades no autorizadas en cada categoría.
- Esta actividad sirve como prueba de concepto de la implementación de esa idea en la plataforma Java SE.

1. Contexto

- PEAK Engineering and Knowledge, Inc. es una empresa que realiza servicios de ingeniería para diversos contratistas.
 - La sede de la empresa se encuentra en la ciudad de Rochester, en el estado norteamericano de New York.
- Esta empresa se ha ganado una valiosa reputación de fiabilidad y confidencialidad en el desarrollo de los proyectos contratados.
- Los campos de actividad con mayor importancia dentro de la empresa son la simulación mediante modelos matemáticos y la minería de datos.
- Para sus cálculos de ingeniería dispone de una plataforma hardware de alto rendimiento a la que únicamente pueden acceder los ingenieros de computación autorizados.

- Asimismo dispone de un eficaz sistema de almacenamiento masivo al servicio de los proyectos relacionados con la minería de datos.
- Entre los ingenieros de computación se han distinguido dos categorías dependiendo del campo en el que desarrollen su actividad:
 - Ingenieros de simulación (categoría A)
 - Ingenieros de datos (categoría B)
- La experiencia y conocimiento acumulados en el campo de las simulaciones ha quedado plasmada en una serie de herramientas *software* para construcción de modelos que no requieren el almacenamiento de grandes volúmenes de datos.
- Por esa razón, sólo los ingenieros de datos tienen acceso autorizado al sistema de almacenamiento masivo.

Identificación interna

- La empresa aplica un doble sistema de identificación para acceder a la plataforma de computación de alto rendimiento:
 - Emplea *Kerberos* como infraestructura de autenticación por contraseña.
 - Cada ingeniero de computación dispone además de una *smart card* personal proporcionada por la empresa que contiene un certificado expedido al ingeniero para su identificación¹. Ese certificado está almacenado en un *keystore* cuyo alias es igual al nombre del principal *Kerberos* del ingeniero.
- Es requisito superar ambos sistemas de autenticación para conseguir una identificación positiva.
- El reino COMPUTINGSERVICE.PEAK.COM incluye a todos los ingenieros de computación con acceso al sistema de computación.

Distinción de categoría

- El acceso al servicio de computación emplea además una sencilla base de datos para conocer en qué categoría (simulación o datos) está encuadrado cada ingeniero de computación perteneciente al reino.
- La base de datos consta de una única tabla denominada ENGINEERS formada por tres columnas:
 - idCode: BINARY de longitud 16; actúa como clave primaria; se obtiene como resumen MD5 del nombre del principal en el reino COMPUTINGSERVICE. PEAK. COM.
 - kerberosPrincipalName: VARCHAR de hasta 60 elementos.
 - cathegory: de tipo *CHAR*; indica si el principal es ingeniero de simulación (valor *A*) o es ingeniero de datos (valor *B*).

 $^{^1{\}rm Si}$ no se dispone del *hardware* para operar con *smart cards*, esa carencia se puede solventar empleando el directorio ./etc/x500 para simular la función de almacenamiento de la *smart card*.

Modo de operación

Parte del cliente

- Tras su autenticación, una sesión de cliente del servicio de computación consta de dos etapas:
 - Envío al servicio del fichero con el código de la aplicación a ejecutar y del fichero con los argumentos para ejecución; el servicio está preparado para ejecutar aplicaciones Java embaladas en ficheros jar.
 - 2. Espera hasta la recepción de los resultados de ejecución.

Parte del servicio

- Solo el administrador de la aplicación está autorizado a ponerla en marcha.
 - Eso significa que la política de permisos de la parte de servicio solo concede los permisos necesarios al principal que actúa como administrador.
- Tras la autenticación, la aplicación entra en un bucle de escucha de peticiones; esas peticiones se espera que lleguen por el puerto 2050.
- Ante cada petición se crea un objeto de servicio que se ejecuta en hebra independiente.

2. Diseño

2.1 Clases del lado del cliente

Clase pública final client.ClientLogin

- Incluye el método main() a ejecutar del lado del cliente.
 - No lanza excepciones capturables al exterior.
- Su responsabilidad es autenticar al cliente para ejecutar la acción privilegiada que permite ponerse en contacto con el servicio de computación.

- Crea un contexto de *login* a partir de la configuración etiquetada como CLIENT en el fichero ./etc/client.conf.
- Crea un objeto de clase *ClientComputingTask* para arrancar una tarea de computación en la parte de servicio.

Clase confinada final client.ClientComputingTask

■ Ofrece el constructor

```
ClientComputingTask (final Subject client,
final String jarFileName,
final String argsFileName,
final String resultsFileName)
```

- Su método compute() comienza por enviar al servicio el objeto *client* (se puede emplear un *ObjectOutputStream*), y seguidamente transfiere el contenido del fichero *jar* y el contenido del fichero con los argumentos apara ejecución.
- La ejecución del método termina cuando se reciben los resultados de ejecución por parte del servicio.

2.2 Clases del lado del servicio

Clase pública final frontend.ComputingServiceLogin

- Su responsabilidad es autenticar al principal (administrador de la aplicación) que tiene permiso para arrancar el servicio.
 - No lanza excepciones capturables al exterior.
- Crea un contexto de *login* a partir de la configuración etiquetada como SERVICE en el fichero ./etc/service.login.conf.
- Emplea el sujeto autenticado para arrancar y detener la maquinaria del servicio de computación.

Clase pública final service. Computing Service

- Ofrece los métodos de arranque y parada del servicio.
- El código operativo de esos métodos se debe ejecutar en modo privilegiado con los permisos asignados por la política al administrador de la aplicación.

Clase confinada final service. Computing Task

- Implementa la interfaz Runnable.
- Se encarga de poner en marcha la tarea de ejecución solicitada por un cliente.
- Al código operativo proporcionado se debe añadir lo siguiente:
 - Recepción (por medio de un objeto de clase *ObjectInputStream*) del objeto que representa al cliente autenticado.
 - Extrae el principal *Kerberos* del sujeto recibido.
 - Consulta a la base de datos la categoría asignada a ese sujeto.
 - Instanciación del objeto ejecutor de código jar (jarrunner) que corresponda a esa categoría.

Clase confinada final service. Cathegory Query

- Se encarga de la consulta de la categoría asignada al ingeniero cuyo principal *Kerberos* se proporciona como argumento al contructor.
- No requiere modificaciones.

Clase pública jarrunner.JarRunner

■ Se encarga de ejecutar en modo privilegiado el fichero jar cuya URL recibe como argumento con los permisos asignados por la política de permisos al administrador de la aplicación.

Clase pública final jarrunner.JarClassLoader

- El constructor recibe la ubicación de un fichero jar y un array de argumentos de invocación.
- Su método run() se encarga de invocar el método main() de la clase de arranque embalada en el fichero jar.
- No requiere modificaciones.

3. Tareas a realizar

3.1. Ejecución privilegiada

- En la parte de servicio, se debe adaptar el código para que las operaciones que requieran permisos se ejecuten con los privilegios asignados al administrador por la política de permisos.
- En la parte cliente, no hace falta realizar adaptación ninguna.
- Los *scripts* de ejecución proporcionados muestran la distribución en paquetes que ha de tener cada parte de la aplicación.
- Para la parte de servicio, esa distribución determina las cláusulas que deben incluirse en la política de permisos a definir.

3.2. Modificaciones y clases a definir

Cambios en clase jarrunner.JarRunner

- Convertir la clase pública en confinada al paquete.
- Confinar su constructor.
- Convertir su método run() en protegido.

Clase pública final jarrunner.JarRunnerA

- Sirve para ejecutar el código de los clientes de categoría A.
- Es una extensión de la clase confinada JarRunner.
- Su constructor

recibe el sujeto con cuyos permisos se debe ejecutar el método run().

■ Exporta un método run() que ejecuta el método run() de la clase JarRunner (super.run()) con los permisos asignados por la política de permisos al sujeto recibido por el constructor.

Clase pública final jarrunner.JarRunnerB

• Es una adaptación a los clientes de categoría B de lo que se ha especificado para la clase JarRunnerA.

Embalado por separado

- Cada clase pública del paquete jarrunner se ofrece embalada junto con las clase confinadas en un fichero jar propio.
- La política de permisos asigna a ese fichero *jar* los permisos adecuados a las operaciones que se autorizan a los usuarios de la correspondiente categoría del servicio de computación.

3.3. Identidades X.500 expedidas por autoridad de certificación local

- La empresa dispone de una autoridad de certificación que expide credenciales X.500 para los empleados y servicios de la empresa.
- Los principales

ligeti@COMPUTINGSERVICE.PEAK.COM geyer@COMPUTINGSERVICE.PEAK.COM

son dos ingenieros de la empresa que emplean el sistema de computación.

- ligeti pertenece a la unidad organizativa Simulation Department.
- geyer pertenece a la unidad organizativa Data Department
- A ambos la autoridad de certificación de la empresa les ha proporcionado un certificado de clave pública que emplean para su autenticación en el sistema.
- Ambos poseen un keystore personal (ligeti.keystore y geyer.keystore) que contiene el certificado propio expedido por la autoridad local y el certificado que contiene la clave pública del servicio de computación.
- El servicio de computación guarda en service.keystore el certificado que para su identificación ha expedido la autoridad de certificacicación; los certificados de clave pública de los ingenieros autorizados a emplear el servicio se guardan en el depósito service.truststore.
- La constraseña de acceso a todos los depósitos de claves debe ser PS2021.

3.4. Comunicación protegida

- La comunicación entre clientes y servicio de computación se debe proteger incorporando el protocolo TLS/SSI.
- El departamento de seguridad de la empresa ha establecido que ambas partes (cliente y servicio de computación) deben identificarse una frenta a la otra.

4. Rúbrica de evaluación

- En revisión se van a considerar los siguientes apartados de puntuación
 - Ficheros de configuración de login: hasta 0,75 puntos
 - Ficheros con las políticas de permisos: hasta 2 puntos
 - Contenido de keystores: hasta 2 puntos.
 - Modificación de código entregado e inserción con criterio de acciones privilegiadas: hasta 3 puntos
 - Definición de nuevas clases ejecutoras: hasta 0,75 puntos.
 - \bullet Modificaciones necesarias en código y scripts de ejecución para operar con protocolo TLS/SSL: hasta 1 punto
 - Construcción y embalado mediante *script* de componentes de la aplicación: hasta 1,5 puntos
 - Operatividad completa de la aplicación al ser ejecutada desde línea de órdenes: hasta 9 puntos.
 - Proyecto con código compilado: -2 puntos
- Se va a poner atención a la calidad y buena terminación de lo entregado.