Report

Code Explanation

首先修改的是 select_users,因為 num_users 需要小於等於 len(self.user),所以我在一開頭增加了 assert 避免錯誤,隨後使用 np.random.choise 隨機取出 user 的 index,再透過 selected indices 取出被選到的 user。

```
def aggregate parameters(self):
    ## TODO
    Weighted sum all the selected users' model parameters by number of samples
    Args: None
    Return: None
    Hints:

    Use self.selected_users, user.train_samples.

        2. Replace the global model (self.model) with the aggregated model.
    now_params = list(self.model.parameters())
    total_samples = 0
    new_params = [torch.zeros_like(param) for param in now_params]
    for user in self.selected_users:
        user_params = list(user.model.parameters())
        total_samples += user.train_samples
        for user_param, new_param in zip(user_params, new_params):
            new_param.data += user_param.data * user.train_samples
    for now_param, new_param in zip(now_params, new_params):
        now_param.data.copy_(new_param.data / total_samples)
```

隨後修改的是 aggregate_parameters,因為需要計算個別 user 所擁有的 data 的比例,所以在迴圈過程中順便累加 total_samples,在最後將 new_param 的數值再去除以 total_samples 就可以得到正確的比例。在此處需要注意的

是,需要使用.copy 才可以正確的將值修改進模型參數內。

最後修改的就是 set_parameters,該 function 的思路和 aggregate_parameters 很像,而且還簡單上一些,基本上就是根據所給出的公式,取出對應的 parameters 與 beta 做相乘再相加,即可得到新的 parameters,此處同樣要注意是否有將值修改進模型參數內,所以我對 data 直接使用運算函式將值修改進去。

Data Distribution

■ alpha 0.1:

TRAIN #sample by user: [7517, 5817, 4245, 2533, 4726, 5121, 5122, 1664, 8721, 4534] 從圖中可以看得出來,10個 user 的 samples 分佈很不平均,最多的有8721,而最少得只有1664。這導致擁有比較少 samples 的 user model 會很難增進,並且因為data可能沒有分佈均勻,讓模型只能更新局部,也會很難對 global model 有所貢獻,那麼在 global model 的最終表現就會比較不符合預期。以下是最終的模型表現:

```
Average Global Accurancy = 0.4122, Loss = 1.60.
Best Global Accurancy = 0.4270, Loss = 1.56, Iter = 147.
Finished training.
```

■ alpha 50:

TRAIN #sample by user: [4901, 5481, 4907, 4629, 5449, 4889, 4770, 4601, 5073, 5300] 相比 0.1 , alpha=50 的情况下,各個 user 所擁有的 data 就比較平均,這將讓每一個 user model 都可以較為相等的對 global 進行更新,而這種類似於ensemble 的概念也可以增進模型的 robustness,使得最終表現會比較好。以下是最終的模型表現:

```
Average Global Accurancy = 0.7988, Loss = 0.78.
Best Global Accurancy = 0.7988, Loss = 0.78, Iter = 149.
Finished training.
```

Number of users in a round

■ user 10

Average Global Accurancy = 0.7901, Loss = 0.82. Best Global Accurancy = 0.7931, Loss = 0.83, Iter = 146. Excution time: 23m11s Finished training.

當 user=10 的時候,相當於每次更新都會將全部 user 進行更新,這種更新的方式讓每個 user 在每次 global iter 結束後都能跟上 global model 的腳步,讓其在訓練的過程中呈現一個比較平穩的下降,並且最終收斂的效果也會比較好。

user 2

Average Global Accurancy = 0.6172, Loss = 1.16. Best Global Accurancy = 0.6848, Loss = 0.92, Iter = 139. Excution time: 16m20s Finished training.

每一次 global iter 只更新兩個 user 的時候,整體的執行速度上僅有 16m20s,比起 user=10 也就是全部更新的情況快上很多,但在訓練的過程中,因為每次只有更新兩個 user 並且再對 global 做更新,使得模型的學習過程比較震蕩,這是因為 global model 的更新比較容易受到某些 user model 的影響,在 los 的下降過程中會走向比較 local minimum 的方向,那麼在最後收斂的效果就沒有 user10 來得好。

Conclusion

從上課的影片中,我對於 federated learning 有了基本的觀念,並且老師也有進階為我們介紹 paper 的實作方法,讓我在這個主題上也有著更深刻的領悟。而在這次作業中,我們實作的比較基礎的 horizontal 版本,透過每個user 更新後的參數, global model 根據比例去更新自身的參數, 再將更新後的參數回傳給各個 user,讓 user可以進行 moving average 的更新。這樣的過程可以將每個 user model 所學到的融入到 global,並且透過 global 的回傳,各個 user 也可以學到其他 user 所學到的。