## ПСМО ФКН ВШЭ, 3 курс, 2 модуль

Задание 3. Дисперсионный анализ.

Прикладная статистика в машинном обучении, осень 2019

Время выдачи задания: 18 ноября.

Срок сдачи: 2 декабря (понедельник), 23:59.

Среда для выполнения практического задания – PYTHON 2.x/PYTHON 3.x.

# Правила сдачи

### Инструкция по отправке:

1. Решения задач следует присылать единым файлом формата pdf, набранным в LATEX, либо в составе ipython-тетрадки в форматах ipynb и html (присылайте оба формата, т.к. AnyTask из-за высокой загрузки иногда не рендерит тетрадки в формате ipynb — а если мы не увидим ваши задачи, мы их не проверим). Отправляйте практические задачи в виде отдельных файлов (ipython-тетрадок или исходных файлов с кодом на языке python).

## Оценивание и штрафы:

- 1. Максимально допустимая оценка за работу над основными задачами – 10 баллов.
- 2. Бонусные баллы (см. конец домашнего задания) и влияют на освобождение от задач на экзамене.

- 3. Дедлайн жесткий. Сдавать задание после указанного срока сдачи нельзя.
- 4. Задание выполняется каждым студентом индивидуально и независимо от других студентов. «Похожие» решения считаются плагиатом и все студенты (в том числе те, у кого списали) не могут получить за него больше 0 баллов, причем обнуляются и бонусные баллы. Если вы нашли решение какого-то из заданий (или его часть) в открытом источнике, необходимо указать ссылку на этот источник в отдельном блоке в конце вашей работы (скорее всего вы будете не единственным, кто это нашел, поэтому чтобы исключить подозрение в плагиате, необходима ссылка на источник).

## Основные задачи

- 1. (2 балла) Найдите максимум статистики Краскелла-Уоллеса.
- 2. (2 балла) Получите данные из файла figure\_skating.csv, это результаты женского фигурного катания Олимпиады-2014 года в Сочи. Сравните перцентильное и квантильное гауссовы преобразования, а также преобразование Бокса-Кокса. Для этого проведите на полученных данных тест Шапиро-Вилкса и постройте для каждого преобразования график изначальных оценок против преобразованных (QQ график). Сделайте вывод: какое преобразование вы бы предпочли для дальнейшего анализа?
- 3. (3 балла) Существуют две основные альтернативы классическому параметрическому дисперсионному анализу Фишера:
  - анализ Уэлча;
  - анализ Брауна-Форсайта (Brown-Forsythe).

Для построения теста Уэлча при выборочной дисперсии  $s_i^2$  в группе i с  $n_i$  событиями, при общем количестве групп r, вводятся веса  $w_i = \frac{n_i}{s_i^2}$ . После чего производится подсчёт следующей характеристики:

$$SSTR = \sum_{i=1}^{r} w_i (\bar{Y}_{i.} - \bar{Y}_{w})^2,$$

где  $\bar{Y}_w$  - взвешенное с  $w_i$  среднее средних в группе  $i; \bar{Y}_i$  - среднее в группе i. Кроме того вводится

$$\Lambda = \frac{3\sum_{i=1}^{r} \frac{\left(1 - \frac{w_i}{r}\right)^2}{\sum\limits_{i=1}^{r} w_i}}{r^2 - 1}.$$

В этом случае, F-статистика строится:

$$F_w = \frac{SSTR/(r-1)}{1-2\Lambda(r-2)/3} \sim F(r-1;1/\Lambda).$$

### Сравните:

- Классический дисперсионный анализ (ANOVA).
- Дисперсионный анализ с использованием метода Уэлча.
- Дисперсионный анализ с использованием теста Краскела-Уоллиса.

Рассмотрите случай трёх выборок. Сделайте выводы о регионах применимости F-теста, теста Уэлча, теста Краскела-Уоллиса для однофакторного анализа.

#### Подсказка:

Возможные эксперименты для рассмотрения:

- (a) Сбалансированные выборки, набранные из  $\mathcal{N}(0;1)$ , для n=5,10,20,100.
- (b) Сбалансированные выборки, набранных из  $\mathcal{N}(0;\sigma)$ , для n=5,10,20,100. При этом  $\sigma$  для выборок случайная тройка из элементов 1,2,3,4.
- (c) Несбалансированные выборки, набранных из  $\mathcal{N}(0;1)$ , для n из набора 5,10,20,100.
- (d) Сбалансированные выборки, со смещённым средним нормального распределения (средние могут принимать значения 0, 1, 2)
- (е) Эксперименты 1-4 для логнормального распределения.

Возможные переменные для вывода (критическое значение  $\alpha = 0.05$ ):

- Эмпиричесткая ошибка 1-го рода.
- Мощность теста.
- 4. (З балла) Исследовательская лаборатория исследует новое лекарство для лечения сенной лихорадки. В эксперименте участвует 36 волонтёров. В тесте варьировалась доза двух(2) ингредиентов (А и В), каждый из которых давался в одной из возможных доз: маленькая, средняя и большая доза. 4 волонтёра для каждой из 9 возможных концентраций подбирались случайно. Результаты эксперимента находятся в файле fever.table.
  - (а) Используя двухфакторную модель оцените среднее, когда фактор A равен 3, а фактор B равен 2.
  - (b) Используя QQ график, проверьте нормальность полученных данных. Сделайте вывод.
  - (с) Проверьте наличие взаимодействия факторов А и В, используя графический способ. Сделайте вывод.
  - (d) Проверьте наличие взаимодействия факторов A и B, используя F-тест с критическим значением  $\alpha=0.05$ .
  - (е) Проверьте наличие эффекта для каждого из факторов.