- Final exam format
 - 20 multiple choice
 - o 4 long answer
 - Probability tables are copied from the textbook: Poisson, Normal (+ve and -ve), t-distⁿ
- Final course marks will be the highest marks obtained
 - When the final exam weight is 75%, or
 - When the midterm is 25% and the final exam is 50%
- Measures of centre
 - \circ Mean = $1/n sum(x_i)$
 - Median: Order from lowest to highest and find the middle position 0.5(n+1)th item
 - Mode: The value that occurs the most frequently in the data
- Measures of variability
 - Range (highest lowest)
 - Variance: Sample (s^2) or population (sigma^2).
 - Use normal formula if given info about data
 - Compiuutation formula if data is given
 - Standard deviation: s = sqrt(s) sigma = sqrt(sigma)
- Tchebysheff's Theorum
 - \circ At least ¾ of measurements will lie in the interval (mean 2SD, mean + 2SD) (Can use either population values or sample).
 - At least 8/9 of measurements will lie in the interval (mean 3SD, mean + 3SD)
 - General rule is $1 1/k^2$
- Empirical rule (assumption: Mound-shaped)
 - o mean +- 1SD contains ~ 68% of measurements
 - o mean +- 2SD contains ~95% of measurements
 - o mean +- 3SD contains ~99% of measurements
 - Can use either population parameters of sample estimates
- Five-number summary
 - Min, Q1, Q2, Q3, max
- IQR
 - \circ IQR = Q3 Q1
- Lower/upper fence
 - \circ Lower = Q1 1.5IQR
 - \circ Upper = Q3 + 1.5IQR
- Scatter plots/correlation coefficient
 - Less than 0 is a negative correlation
 - Greater than zero is a positive
 - The symbol for correlation is "r"
 - If it is approximately 0, there is no correlation.
- Above ends chapter 3
- Mutually exclusive events
 - If one event occurs, then the other cannot occur
 - This is a relationship of mutual exclusion
- Relationships
 - Union = or, intersect = and

- Addition rule
 - \circ P(A union B) = P(A) + P(B) P(A intersect B)
 - If A and B are mutually exclusive: P(A union B) = P(A) + P(B)
 - If A and B are independent: P(A union B) = P(A)P(B)
- Conditional probability:
 - \circ P(A|B) = P(A intersect B)/P(B)
 - \circ P(B|A) = P(A intersect B)/P(A)
 - If independent:
 - P(A|B) = P(A)
 - If mutually exclusive:
 - P(A|B) = 0
- If two events are mutually exclusive
 - They cannot be independent
 - Also, if they are independent then they cannot be mutually exclusive
- Baye's rule
 - Exaustive subsets of the sample space
 - \circ P(S1 | A) = (P(A|S1)P(S1))/(P(A/S1)P(S)+P(A|S2)P(S2) + ...P(A|Sn)P(Sn))
- Binomial distribution
 - Poisson distn (lambda)
 - Expectation, Variance, probabilities
 - Hypergeometric
 - Mean, variance, probabilities (pg 21, ch 5 notes)
- Normal distribution
 - Normal approximation to binomial (with continuity correction) page 22-29, ch 6-2 notes
- Properties of probabilities
 - Characteristics of normal distance
- Confidence interval (large sample)
 - Quantitative mean (mu)
 - binomial proportion (p)
 - Difference in quantitative mean (mu1 mu2)
 - Difference in binomial proportion
 - See picture on phone for equations
- $1.96(s/sqrt(n)) \le B$
- Identify the null and alternative hypothesis
 - Estimate test statistic
 - Quantitative mean
 - Binomial proportion
 - Difference in quantitative means
 - Difference in binomial proportion
 - Hypothesis testing confidence level
 - (1-alpha)100% confidence interval
 - Test of hypothesis significance level = alpha
 - Interpreting the confidence interval
 - Sampling distance of point estimate for all above four cases
 - All of the above for small sample quantitative mean, difference in quantitative mean

- Definitions of type I error, type II error, and power
 Type 1 error = alpha
 type 2 error = beta

 - Power = 1-beta