18420CS 111 1. 20 Pipeline ' 立' B (GV Assignment J MC construct world Convert world coordinates to co-ordinate Using viewing Modeling coordinate Transformations coordinates Map Normalized Transform viewing Cocordinates (porclinates) NC to Normalized Denval Coordinates. coopdinates . We could set up a seperate 2-0, viewing coordinates reference frame for specifying clipping windows Systems use normalized coordinates in the range from o 61, others used a range from -1 to1,

· Clipping is usually performed in the normalized

co-ordinates

CGO U Assignment.

Mithil Menon

- 2. Phony lighting Model.
 - => Ambient lighting referred as the natural lighting.
- => Diffusion The Brificial light.
- => Specular lighting Refers to the shingness of the Object.

Ka = ambient of reflectivity

Ia = intensity of ambient light

Similarly

. The phony Model gives us the equation of all combined

Total intensity I - Ka Ia + Kd Ip COSO + Ks I (cos^ p)

3. Homogeneous co-ordinates

$$P' = P + T$$

I Translation $P' = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} tx \\ ty \end{bmatrix}$

Rotation $P' \Rightarrow \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos 0 - -\sin 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Scaling $P' \Rightarrow \begin{bmatrix} \sin 0 \\ \cos 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Greneric Eq => S.P

$$P' = M_i * P + M_2$$

But
$$x = \frac{xh}{n}$$
, $y = \frac{yh}{n}$
Translation. $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t & x \\ 0 & 1 & t & y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$
Rotation $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 5x & 0 & 0 \\ 0 & 5y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Scaling
$$\begin{bmatrix} x' \\ yy' \end{bmatrix} = \begin{bmatrix} \cos 0 & -\sin 0 & 0 \\ \sin 0 & \cos 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

4.		
Rater Scan	Random Scan	
1) Produces jagged lines that are plotted as a discrete point set.	1) handom System products smooth lines drawing	
2) Less expensive	2) More expensive	
3) Modification difficult 4) Resolution la	3) Modification easy. 4) Resolution high 5) solid pattern is difficult to fill	
5. Open GL functions.		
· glut Create Window - Used to create a new windows · glut Create SubWindow - Used to create another window within		
- gut Set Window - Used to set a particular 1d for the		

window.

· glut Get Window - Used to get the Window ID

· ght Destroy Lindow - To delete the Window that was created.

- · glut Post Redisplay To display the window again a again, till forcibly closed.
- · glud Full Screen To represent Window as a full screen mode
- · glut Pophindow / glut Push Window- Worlds just like a matrix in Window.
- · glut Display Func To display
- · glut Main Loop.
- · init ()
- 6. Open GL visibility detection functions.
- (a). Polygon functions.

 gl Cull Face (mode);

 gl Enable (GL_CULL_FACE);

 gl Disable (GL_CULL_FACE);
- D. Depth Buffer.

 glut Init Display Mode (Crlut_SINGLE | Corlut_RGB + GI UT_DEPTH);

glClear (GL_DERTH_BOFFER BIT);

/This works as initiliariation for depth buffer.

gl Depth Range (rear Norm Depth, face Narm Depth);
gl Clear (GrL DEPTH_ BUFFER_ BIT);
gl Clear Depth (Max Depth);
gl trable (GL_DEPTH_TEST);
gl Pisable (GL_DEPTH_TEST);

© Openal Wireframe methods.

Of Polygon Mode (GLFRONT_AND_BACK, GL_LINE);

Visible and hidden edges displayed.

@ OpenGL Depth using Functions.

glFogi(GLB_FOG-MODE, GL-LINEAR);

glEnable (GL-FOG);

7. Special cases w. r.t. Perpendive Projections.

Consider,

$$x' = x - (x - x pap) M$$

 $y' = y - (y - y pap) M$
 $3' = 3 = (3 - 3pap) M$

- 9. Bezier curve.
 - · Bezier curves are parametric curves that are generated with the help of control points.

It is widely used in graphics and other related industry.

· It is named of after French engineer, Pierre Bezics.

Bezier curves are represented as.

Bin (+) is Bernstein Polynomial.

$$B_{i}^{n}(t) = \left[\prod_{i=1}^{n} (1-t)^{n-t} t^{i} \right]$$

n = polynomial degree

t = Jarvable

i = index

Bezier aures com he of 2-control point (linear),

3 - pontrol point (cubic), 4 control point (quadratic)

we use, n (x * (1-t)^n-t t i for every point.

10. Cohan- Sutherland line clipping.

. This algorithm works on Region Code. (TBRL) - Top, Button, Right, Left.

1001	1000	1010
0001	Clipping wishow	0010
0101	0100	0110

For a line - (Yor Yo) to (Yend, Yend)

(xend, yend)

There are four formulae that can be used.

$$y = y_0 + \frac{1}{m} \left(x_{min} - \lambda_0 \right)$$