Face Mask Detector

Capstone Project 2

Residual Networks

- An effective way to overcome the vanishing/exploding gradients problem to build deeper networks
- Uses skip connections in residual blocks in order to ensure the preformance is not negatively affected in deeper neural networks

Transfer learning

- Freezing the pre-trained weights, so the new data does not change the weights (or lowering the learning rate so the weights do not change drastically)
- Customize the model by building fully connected layers on top of the model and use an output according to the problem

Classification results

Accuracy and loss on the training and test set after 10 epochs

Face Detection

- Several different face detection models can be used in OpenCV, like Haar feature or SSD models
- This project is built using SSD model, which can detect several objects in the image using one sigle shot, therefore is a fast algorithm and can be used in real time

TensorFlow Object Detection API

- Preparing and labeling the data set
- Generating tensorflow records
- Training the model

Preparing and labeling the data set

- A data set of almost 165 images of people with or without face mask
- Annotate the images using labelimg software

Training the model

- Selecting a model from numerous model existing in TensorFlow Model Zoo
- Change the config file to match the specifics of the situation
- Training the model
- Export the model before it can be used

Thank you!