Лабораторная работа №7

Эффективность рекламы

Левкович Константин Анатольевич

Содержание

1	Цель	ь работі	ы	4													
2	Вып	олнени	е лабораторной работы	5													
	2.1	Teope	тическое введение	5													
	2.2	2.2 Задание															
	2.3	Графи	фики														
	2.4	Вопро	сы к лабораторной	9													
			1. Записать модель Мальтуса (дать пояснение, где использу-														
			ется данная модель)	9													
		2.4.2	2. Записать уравнение логистической кривой (дать поясне-														
			ние, что описывает данное уравнение)	9													
		2.4.3	3. На что влияет коэффициент $lpha_1(t)$ и $lpha_2(t)$ в модели рас-														
			пространения рекламы	10													
		2.4.4	4. Как ведет себя рассматриваемая модель при $lpha_1(t)\gglpha_2(t)$	10													
		2.4.5		10													
3	Выв	оды		11													

Список иллюстраций

2.1	Первый случай															7
	Второй случай															
2.3	Третий случай															8
2.4	Все случаи															9

1 Цель работы

- 1. Познакомиться с моделью Мальтуса, а также с уравнением логистической кривой.
- 2. Рассмотреть модель эффективности рекламы в разных случаях.
- 3. Построить график распространения рекламы.

2 Выполнение лабораторной работы

2.1 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытится, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что

 $\frac{\partial n}{\partial t}$ — скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить;

t — время, прошедшее с начала рекламной кампании;

n(t) — число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем. Это описывается следующим образом:

$$\alpha_1(t)(N-n(t))$$

N- общее число потенциальных платежеспособных покупателей

 $\alpha_1(t)>0$ — характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени).

Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной

$$\alpha_2(t)n(t)(N-n(t))$$

эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{\partial n}{\partial t} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

2.2 Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{\partial n}{\partial t} = (0.64 + 0.00004n(t))(N-n(t))$$

2.
$$\frac{\partial n}{\partial t} = (0.00007 + 0.7 n(t))(N - n(t))$$

3.
$$\frac{\partial n}{\partial t} = (0.4 + 0.3 sin(2t)n(t))(N-n(t))$$

При этом объем аудитории N = 1403, в начальный момент о товаре знает 9 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

2.3 Графики

Первый случай: $\alpha_1(t) = 0.64$, $\alpha_2(t) = 0.00004$.

$$\alpha_1(t)>\alpha_2(t).$$
 (рис. -@fig:001)

Рис. 2.1: Первый случай

Второй случай: $\alpha_1(t)=0.00007$, $\alpha_2(t)=0.7$. Скорость распространения рекламы будет иметь максимальное значение в момент 0.01.

$$\alpha_1(t)<\alpha_2(t)$$
. (рис. -@fig:002)

Рис. 2.2: Второй случай

Третий случай: $\alpha_1(t)=0.4$, $\alpha_2(t)=0.3sin(2t)$. (рис. -@fig:003)

Рис. 2.3: Третий случай

Все случаи вместе (рис. -@fig:004):

Рис. 2.4: Все случаи

2.4 Вопросы к лабораторной

2.4.1 1. Записать модель Мальтуса (дать пояснение, где используется данная модель)

Демографическая модель

Скорость роста пропорциональна текущему размеру популяции

$$\frac{\partial x}{\partial t} = \alpha x$$

где x — исходная численность населения, α — некоторый параметр, определяемый разностью между рождаемостью и смертностью. t — время.

2.4.2 2. Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение)

$$\frac{\partial x}{\partial t} = \alpha (1 - \frac{x}{x_s}) x$$

где x_s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x_s , причем такое поведение структурно устойчиво. Данное уравнение описывает рождаемость и смертность с учетом роста численности.

2.4.3 3. На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы

 $lpha_1(t)$ — интенсивность рекламной кампании, зависящая от затрат $lpha_2(t)$ — интенсивность рекламной кампании, зависящая от сарафанного радио.

2.4.4 4. Как ведет себя рассматриваемая модель при $\alpha_1(t)\gg \alpha_2(t)$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса.

$$\frac{\partial x}{\partial t} = \alpha x$$

2.4.5 5. Как ведет себя рассматриваемая модель при $\alpha_1(t) \ll \alpha_2(t)$

При $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой:

$$\frac{\partial x}{\partial t} = \alpha (1 - \frac{x}{x_s}) x$$

3 Выводы

- 1. Познакомился с моделью Мальтуса, а также с уравнением логистической кривой.
- 2. Рассмотрел модель эффективности рекламы в разных случаях.
- 3. Построил график распространения рекламы.