(19) 自本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-40937

(43)公開日 平成11年(1999)2月12日

(51) Int.Cl.⁶

H05K 3/34

識別記号

505

PΙ

H05K 3/34

505D

審査請求 未請求 請求項の数20 OL (全 11 頁)

(21)出願番号

(22)出顧日

特願平9-197342

平成9年(1997)7月23日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 桑原 公仁

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 石本 一美

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 松村 博

(54) 【発明の名称】 半田供給方法および半田供給装置

(57)【要約】

【課題】 生産能率が高く所定の導体パターン上に対す る微小な予備半田供給、あるいは半田ボール、半田バン プの形成を安定して行うことを可能にする。

【解決手段】 回路基板1上の導体パターン2に対応し た開口部6を形成したマスク5を回路基板1上に密着さ せ、マスク5の開口部6内に溶融した半田7を充填し、 回路基板1の導体パターン2への溶融半田7の濡れ力に より、半田の導体パターン2への転写供給を可能にす る。

10

【特許請求の範囲】

【請求項1】 回路基板上に配置された導体パターンに 対応させて半田を供給する半田供給方法において、前記 回路基板の導体パターンに対応した開口部が形成されて いるマスクを前記回路基板上に密着させて設置した後、 前記マスクの開口部内に溶融した半田を充填させて、前 記導体パターンに半田を供給することを特徴とする半田 供給方法。

1

【請求項2】 回路基板上に配置された導体パターンに 対応させて半田を供給する半田供給方法において、前記 回路基板の導体パターンに対応した開口部が形成されて いるマスクを前記回路基板上に密着させて設置し、細長 いスリット状の開口を持つスリットノズルを先端に備え た半田ポットの内で半田を加熱溶融し、その後、前記ス リットノズルを前記マスクの上面に押し当てた後、前記 半田ポット内の溶融半田に圧力を加え、前記スリットノ ズルの開口から溶融半田を押し出しながら、スリットノ ズルを前記マスク上における水平方向に移動させ、前記 マスクの開口部内に溶融半田を充填させることにより、 前記回路基板上における導体パターンに対して半田を供 20 給することを特徴とする半田供給方法。

【請求項3】 回路基板上に配置された導体パターンに 対応させて半田を供給する半田供給方法において、前記 回路基板の導体パターンに対応した開口部が形成されて いるマスクを前記回路基板上に密着させて設置し、圧力 が加わらなければ溶融半田が漏下しない大きさの微小開 口を有するメッシュによって底面を構成した半田ポット により半田を加熱溶融し、その後、前記半田ポットの底 面を前記マスクに近接させた後、前記半田ポット内の溶 融半田に圧力を加え、前記半田ポットのメッシュから溶 30 融半田を射出させ、前記マスクの開口部内に溶融半田を 充填させることにより、前記回路基板上における導体パ ターンに対して半田を供給することを特徴とする半田供 給方法。

【請求項4】 前記回路基板上における導体パターンに 対して溶融半田を供給する際、前記マスクと前記半田ポ ットにおける溶融半田供給部分との間に、不活性ガスあ るいは還元ガスを供給することを特徴とする請求項1な いし請求項3のいずれか1項に記載の半田供給方法。

【請求項5】 前記マスクに前記半田ポットにおける溶 40 融半田供給部分を接触させたまま、前記マスクと前記半 田ポットとを前記回路基板に対して位置決めして一体化 させて、この一体化した状態で前記回路基板上における 導体パターンに対して溶融半田を供給して塗布した後、 前記半田ポットを前記マスクから離し、さらに前記マス クを回路基板から離することを特徴とする請求項1ない し請求項3のいずれか1項に記載の半田供給方法。

【請求項6】 前記回路基板上における導体パターンに 対して溶融半田を供給する際、前記半田ボット内の溶融 半田に対して超音波振動を加えることを特徴とする請求 50

2 項1ないし請求項5のいずれか1項に記載の半田供給方

【請求項7】 回路基板上に配置された導体パターンに 対応させて半田を供給するための半田供給装置におい て、前記回路基板の導体パターンに対応した開口部が形 成されているマスクを前記回路基板上に密着させて設置 する手段と、内部において半田を加熱溶融するポット部 および前記マスクの上面に接触してマスクの開口部内に 溶融半田を充填する溶融半田供給部を有する手段と、前 記半田ポット内の溶融半田に押出圧力を加える手段とを 備えたことを特徴とする半田供給装置。

【請求項8】 回路基板上に配置された導体パターンに 対応させて半田を供給する半田供給装置において、前記 回路基板の導体パターンに対応した開口部が形成されて いるマスクを前記回路基板上に密着させて設置する手段 と、内部において半田を加熱溶融するポット部および前 記マスクの上面に押し当てられる細長いスリット状の開 口部を持つスリットノズルを有する半田ポットと、前記 スリットノズルの開口部からマスクの開口部内に溶融半 田を押し出すために前記半田ポット内の溶融半田に圧力 を加える手段と、前記スリットノズルを前記マスク上に おける水平方向に移動させる手段とを備えたことを特徴 とする半田供給装置。

【請求項9】 回路基板上に配置された導体パターンに 対応させて半田を供給する半田供給装置において、前記 回路基板の導体パターンに対応した開口部が形成されて いるマスクを前記回路基板上に密着させて設置する手段 と、内部において半田を加熱溶融するポット部および底 面に対して外力を加えなければ溶融半田が漏下しない大 きさの微小開口を有するメッシュ状の底面を有する半田 ポットと、前記半田ポットのメッシュ状の底面からマス クの開口部内に溶融半田を射出させるために前記半田ポ ット内の溶融半田に圧力を加える手段とを備えたことを 特徴とする半田供給装置。

【請求項10】 前記半田ポットの底面を、溶融半田が 漏下しない大きさの微小な複数の孔を有するパンチング プレートにより構成したことを特徴とする請求項9記載 の半田供給装置。

【請求項11】 前記半田ポットの溶融半田供給部にお ける開口を、前記回路基板上における導体パターンに対 応した前記マスクの開口部と同一位置のみに溶融半田を 供給することができるように形成したことを特徴とする 請求項7ないし請求項10のいずれか1項に記載の半田供 給装置。

【請求項12】 前記回路基板上における導体パターン に対して溶融半田を供給する際、前記マスクと前記半田 ポットにおける溶融半田供給部分との間に、不活性ガス あるいは還元ガスを供給する手段を備えたことを特徴と する請求項7ないし請求項11のいずれか1項に記載の半 田供給装置。

【請求項13】 回路基板上に配置された導体パターンに対応させて半田を供給するための半田供給装置において、前記回路基板の導体パターンに対応した開口部の形成されているマスクを内部において半田を加熱溶融する半田ボットに位置決めして一体化し、さらにこの一体化した状態で前記回路基板上における導体パターンに対して前記マスクの開口部から溶融半田を供給する溶融半田供給部を有する手段と、前記ボット部内の溶融半田に押出圧力を加える手段とを備えたことを特徴とする半田供給装置。

【請求項14】 前記マスクを前記半田ポットに固定したことを特徴とする請求項13記載の半田供給装置。

【請求項15】 前記マスクの開口部を段付きの貫通孔とし、その断面形状を、前記開口部における溶融半田側は外圧を加えなければ溶融半田が漏下しない微小径にし、かつ開口部における回路基板側は前記微小径の開口より大きな径にしたことを特徴とする請求項7ないし請求項14のいずれか1項に記載の半田供給装置。

【請求項16】 前記マスクの開口部をテーパー付きの 貫通孔とし、その断面形状を、前記開口部における溶融 20 半田側は外圧を加えなければ溶融半田が漏下しない微小 径をなす三角形状としたことを特徴とする請求項7ない し請求項14のいずれか1項に記載の半田供給装置。

【請求項17】 前記マスクを熱膨張の少ない合金材によって形成したことを特徴とする請求項7ないし請求項16のいずれか1項に記載の半田供給装置。

【請求項18】 前記半田ポットに溶融半田を加圧する ためのピストンを上下可能に設けたことを特徴とする請 求項7ないし請求項14のいずれか1項に記載の半田供給 装置。

【請求項19】 前記半田ポット内の溶融半田に超音波振動を加えて、半田の導体パターンへの濡れ性を向上させるための加振部材を備えたことを特徴とする請求項7ないし請求項14のいずれか1項に記載の半田供給装置。

【請求項20】 前記マスクの開口部あるいは前記半田 ポットの溶融半田供給部における開口に挽水性加工を施 したことを特徴とする請求項7ないし請求項19のいずれ か1項に記載の半田供給装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、回路基板への予備 半田供給および電子部品の半田ボールならびにバンプを 形成するために適用される半田供給方法および半田供給 装置に関するものである。

[0002]

【従来の技術】従来、プリント基板への予備半田供給方法の第1の方法として、図31(a)~(c)に示すように、まず、プリント基板1上に形成された導体パターン2にフラックス3を塗布し(図31(a))、その後に半田ゴテ20によって糸半田21を溶かして(図31(b))、プリント基板1

4 上の導体パターン2上に半田23を供給する(図31(c))よ うな方法がある。

【0003】また第2の方法として、溶融した半田を噴流させ、電子部品とプリント基板とを半田接合する噴流半田装置にプリント基板のみを通し、プリント基板の導体パターン部に半田を濡れ付着させた後、スリットから圧縮エアーを吹き付けて不要な半田を飛ばすようにし、狭ピッチパターン部における半田ブリッジを解消する方法もある。

10 【0004】さらに第3の方法として、粉体状の半田粒子とフラックスなどを混練してペースト状にしたクリーム半田を用いて孔版印刷方法によって印刷する予備半田供給方法も一般的である。

【0005】すなわち、図32(a)~(e)に示すように、ま ず、プリント基板上の導体パターンに対応した開口部5 aが形成された厚み150mm程度のステンレスもしくはニッ ケル製のメタルマスク5(図32(a))を、プリント基板1 上に開口部5aとプリント基板1の導体パターン2とを 合わせるように密着させる(図32(b))。その後、前記の ように粉体状の半田粒子とフラックスなどからなるクリ ーム半田22をスキージ25によってメタルマスク5の開口 部5a内に押し込み、同時にメタルマスク5上の余分な クリーム半田22を掻き取る(図32(c))。この後、プリン ト基板1からメタルマスク5を版離させることにより、 プリント基板1上の導体パターン2に対応してクリーム 半田22が供給される(図32(d))。そして、このプリント 基板1をリフロー炉などに入れて加熱し、クリーム半田 22を溶融させることによって、金属半田12の予備半田供 給が行われる(図32(e))。

30 [0006]

【発明が解決しようとする課題】しかし、上述した従来 の半田供給方法においては、次のような問題がある。

【0007】すなわち、第1の方法では、個別の導体パターンごとに同様の作業を行う必要があるために作業能率が悪く、また導体パターンの1つ1つのパッドごとの半田にバラツキが生じてしまうという問題がある。

【0008】また、第2の方法のように、フロー半田付け装置による噴流半田を用いて基板に一括して溶融半田のコーティングをする方法では、生産効率は良いが、微40小な導体パターンへの半田供給が難しいという問題がある。そして圧縮エアーによるエアーナイフ効果だけでは、特にピッチ0.5mm以下のパターンにおいて半田ブリッジ不良、半田量のバラツキが大きいなどの問題もあった。

【0009】さらに、第3の方法のように、クリーム半田をメタルマスクを使って所定の位置に半田を供給する場合、メタルマスクの開口部にクリーム半田を充填した後、メタルマスクを良好に版離れさせるためには、導体パターン幅に対してあまり厚いメタルマスクでは抜けが50悪くなるため、クリーム半田層の厚みは導体パターンの

20

パッド幅との比が0.8程度が限界となり、ピッチ0.2m以 下のファインパターン部の半田印刷、あるいは半田ボー ルの形成を目的とした場合のサイズの微小化に制限があ る。

【0010】また、クリーム半田に含まれる半田粒子が 完全に凝集し切れず、半田ボールとして基板の導体パタ ーン付近に残ることがあり、これによって、回路上の電 気的なショートを引き起こすおそれがあった。

【0011】また、微小なサイズの半田バンプ形成にお いても、クリーム半田に含まれる半田粒子の径が20~40 10 μπであるため、このままではピッチ200μπ以下のパッ ドについてはメタルマスクの版離れが円滑に行えない か、あるいはメタルマスクの開口部に充填される半田量 にバラツキが生じるという問題を有している。

【0012】そこで、本発明の目的は、前記従来の問題 を解決することにあって、生産能率が高く所定の導体パ ターン上に対する微小な予備半田供給、あるいは半田ボ ール、半田バンプの形成を安定して行うことを可能にし た半田供給方法および半田供給装置を提供することにあ る。

[0013]

【課題を解決するための手段】前記目的を達成するた め、本発明は、回路基板あるいは部品上の導体パターン に対応した開口部を形成したマスクを前記回路基板上に 密着させ、その後、マスクの開口部内に溶融した半田を 圧力を加えて充填する半田供給方法、およびその方法を 実施するための装置であって、溶融した半田を導体パタ ーンに対応したマスクを介して半田を塗布することによ り、所望量の半田を採取することが可能になり、半田量 のバラッキの少ない半田供給が実現される。また使用す 30 る溶融半田は、クリーム半田に比べて粘度が低く、微小 孔からの吐出が可能であって、ファインピッチパターン への半田供給が可能になる。

[0014]

【発明の実施の形態】以下、本発明の好適な実施形態を 図面に基づいて説明する。

【0015】図1~図6は本発明の第1実施形態を説明 するための半田供給装置の構成および半田供給の工程の 説明図である。回路基板1は表面に導体パターン2が形 成されている構成である(図1)。次に半田供給工程であ 40 るが、回路基板1上にフラックス3をフラックスディス ペンサー4により塗布する(図2)。その後、導体パター ン2に対応した開口部6が形成されているマスクラを、 マスク移動手段30によって回路基板1上に導電パターン 2と開口部6との位置合わせをして密着させる(図3)。 ただし、フラックス塗布はマスク5を回路基板1上に位 置合わせし、密着させた後で行ってもよい。この場合、 フラックスはマスク5の開口部6の部分にのみ供給され るようにする。

によって加熱し、溶融半田7の状態として内部に蓄えて おく、半田ポット8の下方には、溶融半田7を射出する スリット開口が形成された溶融半田供給部であるスリッ トノズル10が設けてある。この半田ポット8のスリット ノズル10部を、回路基板1上に密着して設置されている マスク5に接触する。その後、半田ポット7の中へ圧縮 ガス供給手段31から圧縮ガス15、例えばN2ガス,Arガ スなどの不活性ガスあるいはNzガスなどの還元ガスあ るいは空気を注入する。Nzガスを用いれば半田の酸化 を防止し、目詰まりなどを少なくすることができる。そ して半田ポット8内の溶融半田7は、スリットノズル10 から射出されてマスク5の開口部6の中へ注入される。 【0017】半田ポット8は、開口部6に射出された半 田11が冷却凝固しないようにするため、ヒータ9によっ て加熱される。その加熱温度は、共晶半田で融点183 ℃、ポットからの射出時に250℃以上とする。射出され た半田11はフラックスを介し、回路基板1の導体パター ン2に濡れ付着する。次に、半田ポット8ならびにスリ ットノズル10を、N2ガス供給手段32からマスク5上に N2ガス24を吹き付けながら、ポット移動手段33によっ て水平に連続的に移動させる(図4)。

6

【0018】凝固していない半田11は表面張力のため、 スリットノズル10側とマスク5の開口部6内に充填され る側に分かれ、回路基板1上の導体パターン2のすべて に半田11が塗布されることになる。導体パターン2以外 の部分は、マスク5の開口がなくて、マスク5によって・ 覆われているため半田が付くことはない。

【0019】また導体パターン2に濡れ付着する半田11 の量は、導体パターン2上に設置されたマスク5の開口。 部6の容量によって決まるため、安定した半田量の供給

【0020】この後、マスク移動手段30によって半田ポー ット8をマスク5から離す。 すると回路基板1上に塗布 された半田11は凝固して金属半田12となり、マスク5を 基板より引き離すことによって(図5)、回路基板1の導 体パターン2への半田供給が完了する(図6)。なお、B GAやCSPパッケージの半田ボールのグリッド形成に おいては、さらにもう一度、リフロー炉に通してボール 形状を整える処理を行う。

【0021】マスク5を介して、その開口部6へ溶融半 田7を供給する方法に関しては、図1~図6に基づいて 説明したような、溶融半田を射出するスリットノズル10 を水平方向に移動して、連続的に溶融半田を充填付着さ せる方法、構成でなく、後述するような半田塗布対象の 面積以上の底面を有する半田ポット8~を使用して、一 括して同時にすべてのマスク5の開口部6へ半田を供給 する方法もある。

【0022】図7~図15は、前記のように一括して同時 にすべてのマスクの開口部へ半田を供給する、本発明の 【0016】一方、半田ポット8には、半田をヒータ9 50 第2実施形態を説明するための半田供給装置の構成およ

び半田供給の工程の説明図である。なお、既に説明した 部材に対応する部材には同一符号を付して詳しい説明は 省略する。

【0023】まず、第1実施形態において説明したのと 同様に、回路基板1上の導体パターン2へフラックス3 を塗布し(図7、図8)、マスクラを開口部6が導体パタ ーン2に対応するように密着させる(図9)。その後、半 田ポット8 を垂直にマスク5上面に押し付ける。半田 ポット8 内にはヒーダラによって半田が溶融半田7と ニュノズル13となっている(図10)。

【0024】半田ポット8 の底面は、図16(a)に示す ように、微小な開口を持つメッシュノズル13であって、 上方からの圧縮空気などによる圧力が加わらなければ、 溶融半田7が表面張力により自重での落下(漏下)をしな いような構成になっている。このメッシュノズル13に、 化学メッキあるいは電気メッキによってテフロン(商品 名)などの揺水メッキを施せば、メッシュノズル13に対 する溶融半田の漏れが少なくなり、前記自重落下をより 効果的に防止することができる。

【0025】次に図16(b)および図11に示すように、溶 融半田7の上面から圧力Pを加えると溶融半田7はメッ シュノズル13の各微小開口部から射出され、マスク5の 開口部6内に充填される。開口部6への充填は導体パタ ーン2のすべてに一括同時に行なわれる。 充填された溶 融半田7は導体パターン2に濡れ付着し、この後、圧力 * を無くすと(図16(c), 図12)、溶融半田7は、自身の表 面張力によりメッシュノズル13の上面側と導体パターン 2とに濡れて、マスクラの開口部6内において球面形状 となって分離されることになり、半田11の一括塗布が行 30 われる。

【0026】この後、図13~図15に示すように、N2ガ スをマスク5上に吹き付けながら半田ポット8 および メッシュノズル13をマスク5から引き離し、次にマスク 5を引き離すことによって、金属半田の回路基板1にお ける導体パターン2上への供給が完了する。

【0027】なお、半田ポット8.の底面を構成するメ ッシュノズル13の構成としては、図17(a)に示す金網上 のメッシュ、あるいは図17(b)に示す開口のあるパンチ ングメタルのようなものであってもよい。メッシュノズ 40 ル13の材質としては、ステンレスあるいはインバーなど - の熱膨張の少ない合金であり、かつ微小加工が可能な材 質であり、しかも半田に漏れない表面処理を施すとよ い。また250℃以上の高温環境においても耐熱性のある 、ポリイミド樹脂なども採用することができる。

【0028】この第2実施形態における方法、構成によ る半田塗布によれば、第1実施形態における方法、構成 による半田塗布に比べて処理の速くなる一括塗布を行う ことが可能であって、生産効率の高い半田供給を実現す ることができる。

【0029】図18~図26は本発明の第3実施形態を説明 するための半田供給装置の構成および半田供給の工程の 説明図である。

8

【0030】この第3実施形態は第2実施形態における 半田ポットの構造とそれによる半田供給が異なってお り、その他については第2実施形態と基本的には同様で ある。図18~図20に示すように、回路基板1にフラック ス3を塗布してマスク5を密着させた後、図21に示すよ うに、回路基板1の導体パターン2およびマスク5の開 なって蓄えられている。半田ポット8~の底面はメッシ 10 口部6と同一箇所に溶融半田7が自重落下しない程度の 微小なサイズの貫通孔14aを形成したマスクノズル14を 底面に構成した半田ポット8~~により、一括して溶融 半田7をマスク5の開口部6内に充填供給する(図22. 図23)。

> 【0031】この後、図24~図26に示すように、半田ポ ット8~~をマスク5から引き離し、次にマスク5を引 き離すことによって、金属半田の回路基板1における導 体パターン2上への供給が完了する。

【0032】この第3実施形態では、半田ボット8 20 の汎用性は失われるが、必要部分にのみ溶融半田の流出 用の開口が設けられるため、開口における半田の酸化を 防ぐことができ、また精度よく半田の充填量を規制する ことができて、安定した半田供給が可能となる。

【0033】半田の酸化に関しては、既述したように、 N2ガス24をマスク5と半田ポット8,8⁻,8⁻の 間に供給、充満させることにより、酸化を防止すること ができる。

【0034】なお、マスク5と半田ポット8,8,8,8 を同時に回路基板1に密着させ、溶融半田7の塗布 処理の後、マスク5と半田ポット8、8、8、を同 時に回路基板1から引き離すことも考えられる。

【0035】図27は本発明の第4実施形態を説明するた めの半田ポット8 の要部を示す断面図であり、こ の半田ポット8 ^ ^ ~ は、マスク5にマスクノズル14を 形成し、そのマスク5を半田ポット8 への底部に一 体化したものである。図27の例におけるマスクノズル14 は、マスク5の上側が小径であり、下側が大径になって いる段付の複数の孔20から構成されている。図28は半田 ポット8 の変形例を示し、図27の例とはマスクノ ズル14を構成する孔21の断面形状がテーパ状になってい る点が異なっている。両例ともに半田ポット8~~~ を、フラックスを塗布した後の回路基板1の導体パター ン2に対して直接位置決めし、押し当てて溶融半田7を

【0036】第4実施形態の半田ポット8~~~におい て、マスク5は常に高温であり、回路基板1を加熱して しまうため、回路基板1に熱膨張が生じて反りなどの不 具合を発生しやすいので、あまり大きなサイズは難し い。しかし簡便な構造にて半田の供給を行うことが可能 50 となる。

【0037】なお、溶融半田7をマスク5の開口部6に押し込むための圧力は、半田ポットポット内に圧縮ガスを加える他に、半田ポット8 内において図29に示すようなシリンダ17によりピストン16を上下動させることによって、溶融半田7を押下するような構成によっても得ることができる。

【0038】さらに、図30に示すようにシリング17に超音波発振子18とT型のホーン19を付設し、半田ボット8 内の溶融半田に超音波振動を加えてキャビテーションを発生させる構成にして、半田ボット8 およびマ 10 スク5を回路基板1にセットした後、溶融半田7に圧力をかけてマスク5の開口部6内に半田11を充填させ、しかも、このとき溶融半田7が固まらないように、半田ボット8 の温度をヒータ9によって加熱して上げておきながら、超音波26を溶融半田7に加えることにより、導体パターン2の表面の酸化膜が破壊され、半田が良好に濡れることになる。

【0039】このようにすることによって、事前のフラックスが全く必要なしに、あるいは非常に少量で済む半 田供給を行うことが可能になる。

【0040】前記各実施形態によって説明したように、本半田供給方法とその装置は、回路基板上の所定の位置へ半田を所望量供給する方法において、基本的には、回路基板上の導体パターンに対応した開口部を形成したマスクを回路基板上に密着させ、マスクの開口部内に溶融した半田を充填し、回路基板の導体パターンへの溶融半田の濡れ力により、半田を導体パターンへ転写供給するものである。

【0041】このため、マスクの開口部に充填された溶融半田は導体パターンのパッドに漏れ広がり、ファンピ 30 ッチな導体パターンに対してマスクの開口部がブリッジ不良を抑止する作用がある。次いで溶融半田に加えていた圧力をなくすと、導体パターンに濡れ付着した溶融半田とマスク上の溶融半田は、互いに表面張力により分裂して、導体パターン上に溶融半田が転写されることになる。

【0042】さらに、マスクの開口部から微小な孔を底面に有する半田ボットを通じて、マスクの開口部に溶融半田を射入する手段を採用することによって、溶融半田と導体パターンに漏れたマスクの開口部内の溶融半田は、半田ボットの底面の微小な孔において分離するため、供給される半田の量は、マスクの開口部における容積に比例して一層安定化することになる。

[0043]

【発明の効果】以上説明したように、本発明の半田供給 方法および半田供給装置によれば、溶融した半田を導体 パターンに対応したマスクを介して半田を塗布すること によって、所望量の半田を採取することができ、半田量 のバラツキの少ない半田供給が実現される。また溶融半 田はクリーム半田に比べて粘度も1/1000以上も低いた 50 10 が可能であるため、ファインピ

め、微小孔からの吐出が可能であるため、ファインピッ チパターンへの半田供給が可能になる。

【図面の簡単な説明】

【図1】本発明の第1実施形態を説明するための半田供 給装置の構成および半田供給の第1工程の説明図であ る。

【図2】本発明の第1実施形態における半田供給装置の 構成および半田供給の第2工程の説明図である。

【図3】本発明の第1実施形態における半田供給装置の 構成および半田供給の第3工程の説明図である。

【図4】本発明の第1実施形態における半田供給装置の 構成および半田供給の第4工程の説明図である。

【図5】本発明の第1実施形態における半田供給装置の 構成および半田供給の第5工程の説明図である。

【図6】本発明の第1実施形態における半田供給装置の 構成および半田供給の第6工程の説明図である。

【図7】本発明の第2実施形態を説明するための半田供 給装置の構成および半田供給の第1工程の説明図であ る。

20 【図8】本発明の第2実施形態における半田供給装置の 構成および半田供給の第2工程の説明図である。

【図9】本発明の第2実施形態における半田供給装置の 構成および半田供給の第3工程の説明図である。

【図10】本発明の第2実施形態における半田供給装置の構成および半田供給の第4工程の説明図である。

【図11】本発明の第2実施形態における半田供給装置の構成および半田供給の第5工程の説明図である。

【図12】本発明の第2実施形態における半田供給装置 の構成および半田供給の第6工程の説明図である。

【図13】本発明の第2実施形態における半田供給装置の構成および半田供給の第7工程の説明図である。

【図14】本発明の第2実施形態における半田供給装置の構成および半田供給の第8工程の説明図である。

【図15】本発明の第2実施形態における半田供給装置の構成および半田供給の第9工程の説明図である。

【図16】本発明の第2実施形態における半田供給装置 におけるメッシュノズル部分での溶融半田の動きを示す 説明図である。

【図17】メッシュノズルの構成例を示す斜視図である。

【図18】本発明の第3実施形態を説明するための半田供給装置の構成および半田供給の第1工程の説明図である。

【図19】本発明の第3実施形態における半田供給装置 の構成および半田供給の第2工程の説明図である。

【図20】本発明の第3実施形態における半田供給装置の構成および半田供給の第3工程の説明図である。

【図21】本発明の第3実施形態における半田供給装置 の構成および半田供給の第4工程の説明図である。

50 【図22】本発明の第3実施形態における半田供給装置

11

の構成および半田供給の第5工程の説明図である。

【図23】本発明の第3実施形態における半田供給装置 の構成および半田供給の第6工程の説明図である。

【図24】本発明の第3実施形態における半田供給装置 の構成および半田供給の第7工程の説明図である。

【図25】本発明の第3実施形態における半田供給装置 の構成および半田供給の第8工程の説明図である。

【図26】本発明の第3実施形態における半田供給装置 の構成および半田供給の第9工程の説明図である。

ポットの要部を示す断面図である。

【図28】図27の半田ポットの変形例を示す断面図であ

【図29】本実施形態における溶融半田への加圧構成の 説明図である。

【図30】本実施形態における溶融半田への加振構成の

説明図である。

【図31】従来のプリント基板への予備半田供給方法の 説明図である。

12.

【図32】従来のプリント基板への予備半田供給方法の 説明図である。

【符号の説明】

2…導体パターン、 3…フラック 1…回路基板、 ス、 4…フラックスディスペンサー、 5…マスク、 6…マスクの開口部、 7…溶融半田、 8,8 , 【図27】本発明の第4実施形態を説明するための半田 10 8 - 1,8 - 1 …半田ポット、 9…ヒータ、 10… スリットノズル、11…半田、 12…金属半田、 13…メ ッシュノズル、 14…マスクノズル、16…ピストン、 17…シリンダ、 18…超音波発振子、 19…ホーン、 30…マスク移動手段、 31…圧縮ガス供給手段、 32… N2ガス供給手段、 33…ポット移動手段。

【図1】

【図2】

【図3】

【図5】

【図15】

【図4】

【図6】

【図31】

