Class05: Data Visualization with ggplot

Alexander Liu (PID: 69026918)

Using GGPLOT

To use ggplot2 we first need to install it on our computers. To do this we will used the function 'install.packages()'.

library(ggplot2)
ggplot(cars)

cars

	speed	dist
1	4	2
2	4	10
3	7	4
4	7	22
5	8	16
6	9	10
7	10	18
8	10	26
9	10	34
10	11	17
11	11	28
12	12	14
13	12	20
14	12	24
15	12	28
16	13	26
17	13	34
18	13	34
19	13	46
20	14	26
21	14	36
22	14	60
23	14	80
24	15	20
25	15	26
26	15	54
27	16	32
28	16	40
29	17	32
30	17	40
31	17	50
32	18	42
33	18	56
34	18	76
35	18	84
36	19	36
37	19	46
38	19	68
39	20	32
40	20	48
41	20	52
42	20	56

```
43
       20
            64
44
       22
            66
45
       23
            54
46
       24
            70
47
       24
            92
       24
            93
48
49
       24
           120
       25
50
            85
```

```
plot(cars)
```


Spell out three things: - data - aesthetics - geoms

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth(method="lm")
```

[`]geom_smooth()` using formula 'y ~ x'

url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

nrow(genes)

[1] 5196

colnames(genes)

[1] "Gene" "Condition1" "Condition2" "State"

ncol(genes)

[1] 4

table(genes\$State)

down unchanging up 72 4997 127

genes\$State == "up"

```
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE
                                                                                                                TRUE
                                                                                                                           TRUE FALSE
  [13] FALSE FALSE
  [25] FALSE FALSE
  [37] FALSE FALSE
  [49] FALSE FALSE
  [61] FALSE FALSE
  [73] FALSE FALSE
  [85] FALSE FALSE
 [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[109] FALSE FALSE
[121] FALSE FALSE
[133] FALSE FALSE
[145] FALSE FALSE
[157] FALSE FALSE
[169] FALSE FALSE
[181] FALSE FALSE
[193] FALSE FALSE
[205] FALSE FALSE
[217] FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] FALSE FALSE
[253] FALSE FALSE
[265] FALSE 
[277] FALSE FALSE
[289] FALSE FALSE
[301] FALSE FALSE
[313] FALSE FALSE
```

```
[325] FALSE FALSE
[337] FALSE FALSE
[349] FALSE FALSE
[361] FALSE FALSE
[373] FALSE FALSE
[385] FALSE FALSE
[397] FALSE FALSE
[409] FALSE 
[421] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[433] FALSE FALSE
[445] FALSE FALSE
[457] FALSE FALSE
[469] FALSE FALSE
[481] FALSE FALSE
[493] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
[505] FALSE FALSE
[517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[529] FALSE FALSE
[541] FALSE FALSE
[553] FALSE FALSE
[565] FALSE FALSE
[577] FALSE FALSE
[589] FALSE FALSE
[601] FALSE FALSE
[613] FALSE FALSE
[625] FALSE FALSE
[637] FALSE FALSE
[649] FALSE FALSE
[661] FALSE FALSE
[673] FALSE FALSE
[685] FALSE FALSE
[697] FALSE FALSE
[709] FALSE FALSE
[721] FALSE FALSE
[733] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[745] FALSE FALSE
[757] FALSE FALSE
[769] FALSE FALSE
[781] FALSE FALSE
[793] FALSE FALSE
[805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[817] FALSE FALSE
[829] FALSE FALSE
```

```
[841] FALSE FALSE
   [853] FALSE FALSE
   [865] FALSE FALSE
   [877] FALSE FALSE
   [889] FALSE FALSE
   [901] FALSE FALSE
   [913] FALSE FALSE
   [925] FALSE FALSE
   [937] FALSE FALSE
                     TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
   [973] FALSE FALSE
   [985] FALSE FALSE
   [997] FALSE FALSE
[1009] FALSE FALSE
[1021] FALSE FALSE
[1033] FALSE FALSE
[1045] FALSE FALSE
[1057] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
[1069] FALSE FALSE
[1081] FALSE FALSE
[1093] FALSE FALSE
[1105] FALSE FALSE
[1117] FALSE FALSE
[1129] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[1141] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[1153] FALSE FALSE
[1165] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1177] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[1189] FALSE FALSE
[1201] FALSE FALSE
[1213] FALSE FALSE
[1225] FALSE FALSE
[1237] FALSE FALSE
[1249] FALSE FALSE
[1261] FALSE FALSE
[1273] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1285] FALSE FALSE
[1297] FALSE FALSE
[1309] FALSE FALSE
[1321] FALSE FALSE
[1333] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1345] FALSE FALSE
```

[1357] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE [1369] FALSE [1381] FALSE [1393] FALSE [1405] FALSE [1417] FALSE [1429] FALSE [1441] FALSE [1453] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE [1465] FALSE [1477] FALSE [1489] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [1501] FALSE [1513] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [1525] FALSE [1537] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [1549] FALSE [1561] FALSE [1573] FALSE [1585] FALSE [1597] FALSE [1609] FALSE [1621] FALSE [1633] FALSE [1645] FALSE [1657] FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [1669] FALSE [1681] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [1693] FALSE [1705] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [1717] FALSE [1729] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [1741] FALSE [1753] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [1765] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [1777] FALSE [1789] FALSE [1801] FALSE [1813] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE [1825] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [1837] FALSE [1849] FALSE [1861] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

[1873] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [1885] FALSE [1897] FALSE [1909] FALSE [1921] FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [1933] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [1945] FALSE [1957] FALSE [1969] FALSE [1981] TRUE FALSE [1993] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [2005] FALSE [2017] FALSE [2029] FALSE [2041] FALSE [2053] FALSE [2065] FALSE [2077] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [2089] FALSE [2101] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE [2113] FALSE [2125] FALSE [2137] FALSE [2149] FALSE [2161] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE [2173] FALSE [2185] FALSE [2197] FALSE [2209] FALSE [2221] FALSE [2233] FALSE [2245] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE [2257] FALSE [2269] FALSE [2281] FALSE [2293] FALSE [2305] FALSE [2317] FALSE [2329] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE [2341] FALSE [2353] FALSE [2365] FALSE [2377] FALSE FALSE

```
[2389] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[2401] FALSE FALSE
[2413] FALSE FALSE
[2425] FALSE FALSE
[2437] FALSE FALSE
[2449] FALSE FALSE
[2461] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[2473] FALSE FALSE TRUE FALSE 
[2485] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[2497] FALSE FALSE
[2509] FALSE FALSE
[2521] FALSE FALSE
[2533] FALSE FALSE
[2545] FALSE FALSE
[2557] FALSE FALSE
[2569] FALSE FALSE
[2581] FALSE FALSE
[2593] FALSE FALSE
[2605] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[2617] FALSE TRUE FALSE 
[2629] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[2641] FALSE FALSE
[2653] FALSE FALSE
[2665] FALSE FALSE
[2677] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[2689] FALSE FALSE
[2701] FALSE FALSE
[2713] FALSE FALSE
[2725] FALSE FALSE
[2737] FALSE FALSE
[2749] FALSE FALSE
[2761] FALSE FALSE
[2773] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[2785] FALSE FALSE
[2797] FALSE FALSE
[2809] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[2821] FALSE FALSE
[2833] FALSE FALSE
[2845] FALSE FALSE
[2857] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[2869] FALSE FALSE
[2881] FALSE FALSE
[2893] FALSE FALSE
```

```
[2905] FALSE FALSE
[2917] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[2929] FALSE FALSE
[2941] FALSE FALSE
[2953] FALSE FALSE
[2965] FALSE FALSE
[2977] FALSE FALSE
[2989] FALSE FALSE
[3001] FALSE FALSE
[3013] FALSE FALSE
[3025] FALSE FALSE
[3037] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[3049] FALSE FALSE
[3061] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[3073] FALSE FALSE
[3085] FALSE FALSE
[3097] FALSE FALSE
[3109] TRUE FALSE 
[3121] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[3133] FALSE FALSE
[3145] FALSE FALSE
[3157] FALSE FALSE
[3169] FALSE FALSE
[3181] FALSE FALSE
[3193] FALSE FALSE
[3205] FALSE FALSE
[3217] FALSE FALSE
[3229] FALSE FALSE
[3241] FALSE FALSE
[3253] FALSE FALSE
[3265] FALSE FALSE
[3277] FALSE FALSE
[3289] FALSE FALSE
[3301] FALSE FALSE
[3313] FALSE FALSE
[3325] FALSE FALSE
[3337] FALSE FALSE
[3349] FALSE FALSE
[3361] FALSE FALSE
[3373] FALSE FALSE
[3385] FALSE FALSE
[3397] FALSE FALSE
[3409] FALSE FALSE
```

```
[3421] FALSE FALSE
[3433] FALSE FALSE
[3445] FALSE FALSE
[3457] FALSE FALSE
[3469] FALSE FALSE
[3481] FALSE FALSE
[3493] FALSE FALSE
[3505] FALSE FALSE
[3517] FALSE FALSE
[3529] FALSE FALSE
[3541] FALSE FALSE
[3553] FALSE FALSE
[3565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[3577] FALSE FALSE
[3589] FALSE FALSE
[3601] FALSE FALSE
[3613] FALSE FALSE
[3625] FALSE FALSE
[3637] FALSE FALSE
[3649] FALSE FALSE
[3661] FALSE FALSE
[3673] FALSE FALSE
[3685] FALSE FALSE
[3697] FALSE FALSE
[3709] FALSE FALSE
[3721] FALSE FALSE
[3733] FALSE FALSE
[3745] FALSE FALSE
[3757] FALSE FALSE
[3769] FALSE FALSE
[3781] FALSE FALSE
[3793] FALSE FALSE
[3805] FALSE FALSE
[3817] FALSE FALSE
[3829] FALSE FALSE
[3841] FALSE FALSE
[3853] FALSE FALSE
[3865] FALSE FALSE
[3877] FALSE FALSE
[3889] FALSE FALSE
[3901] FALSE FALSE
[3913] FALSE FALSE
[3925] FALSE FALSE
```

```
[3937] FALSE FALSE
[3949] FALSE FALSE
[3961] FALSE FALSE
[3973] FALSE FALSE
[3985] FALSE FALSE
[3997] FALSE FALSE
[4009] FALSE FALSE
[4021] FALSE FALSE
[4033] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[4045] FALSE FALSE
[4057] FALSE FALSE
[4069] FALSE FALSE
[4081] FALSE FALSE
[4093] FALSE FALSE
[4105] FALSE FALSE
[4117] FALSE FALSE
[4129] FALSE FALSE
[4141] FALSE FALSE
[4153] FALSE FALSE
[4165] FALSE FALSE
[4177] FALSE FALSE
[4189] FALSE FALSE
[4201] FALSE FALSE
[4213] FALSE FALSE
[4225] FALSE FALSE
[4237] FALSE FALSE
[4249] FALSE FALSE
[4261] FALSE FALSE
[4273] FALSE FALSE
[4285] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[4297] FALSE FALSE
[4309] FALSE FALSE
[4321] FALSE FALSE
[4333] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
[4345] FALSE FALSE
[4357] FALSE FALSE
[4369] FALSE FALSE
[4381] FALSE FALSE
[4393] FALSE FALSE
[4405] FALSE FALSE
[4417] FALSE FALSE
[4429] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[4441] FALSE FALSE
```

```
[4453] FALSE FALSE
[4465] FALSE FALSE
[4477] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[4489] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[4501] FALSE FALSE
[4513] FALSE FALSE
[4525] FALSE FALSE
[4537] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[4549] FALSE FALSE
[4561] FALSE FALSE
[4573] FALSE FALSE
[4585] FALSE FALSE
[4597] FALSE FALSE
[4609] FALSE FALSE
[4621] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[4633] FALSE FALSE
[4645] FALSE FALSE
[4657] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[4669] FALSE FALSE
[4681] FALSE FALSE
[4693] FALSE FALSE
[4705] FALSE FALSE
[4717] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[4729] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[4741] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[4753] FALSE FALSE
[4765] FALSE FALSE
[4777] FALSE FALSE
[4789] FALSE FALSE
[4801] TRUE FALSE FALSE
[4813] FALSE FALSE
[4825] FALSE FALSE
[4837] FALSE FALSE
[4849] FALSE FALSE
[4861] FALSE FALSE
[4873] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[4885] FALSE FALSE
[4897] FALSE FALSE
[4909] FALSE FALSE
[4921] FALSE FALSE
[4933] FALSE FALSE
[4945] FALSE FALSE
[4957] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
```

```
[4969] FALSE FALSE
[4981] FALSE FALSE
[4993] FALSE FALSE
[5005] FALSE FALSE
[5017] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[5029] FALSE FALSE
[5041] FALSE FALSE
[5053] FALSE FALSE
[5065] FALSE FALSE
[5077] FALSE FALSE
[5089] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[5101] FALSE FALSE
[5113] FALSE FALSE
[5125] FALSE FALSE
[5137] FALSE FALSE
[5149] FALSE FALSE
[5161] FALSE FALSE
[5173] FALSE FALSE
[5185] FALSE FALSE
```

```
ggplot(genes) +
   aes(x=Condition1, y=Condition2) +
   geom_point()
```



```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p</pre>
```


p + scale_colour_manual(values=c("blue","gray","red"))


```
p +
    scale_colour_manual( values=c("blue","gray","red") ) +
    labs(title="Gene Expression Changes Upon Drug Treatment", x="Control (no drug)", y="Drug")
```

Gene Expression Changes Upon Drug Treatment


```
# File location online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.
gapminder <- read.delim(url)

# install.packages("dplyr") ## un-comment to install if needed
library(dplyr)

: 'dplyr'</pre>
```

'package:stats'

'package:base'

filter, lag

intersect, setdiff, setequal, union

```
gapminder_2007 <- gapminder %>% filter(year==2007)

ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point()
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.5)
```



```
gapminder_1957 <- gapminder %>% filter(year==1957 | year==2007)
ggplot(gapminder_1957) +
  geom_point(aes(x = gdpPercap, y = lifeExp, color=continent, size=pop), alpha=0.7) +
  scale_size_area(max_size = 10) +
  facet_wrap(~year)
```



```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
pop gdpPercap
       country continent year lifeExp
1
         China
                    Asia 2007 72.961 1318683096 4959.115
2
         India
                    Asia 2007 64.698 1110396331
                                                  2452.210
3 United States Americas 2007 78.242 301139947 42951.653
4
     Indonesia
                    Asia 2007
                              70.650
                                       223547000
                                                  3540.652
5
                Americas 2007 72.390
                                                  9065.801
        Brazil
                                       190010647
```

```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = continent))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = lifeExp))
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


head(USArrests)

	Murder	${\tt Assault}$	${\tt UrbanPop}$	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```



```
library(gapminder)
library(gganimate)
# Setup nice regular ggplot of the gapminder data
ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
  geom_point(alpha = 0.7, show.legend = FALSE) +
  scale_colour_manual(values = country_colors) +
  scale_size(range = c(2, 12)) +
  scale_x_log10() +
  # Facet by continent
  facet_wrap(~continent) +
  # Here comes the gganimate specific bits
  labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') +
  transition_time(year) +
  shadow_wake(wake_length = 0.1, alpha = FALSE)
library(patchwork)
# Setup some example plots
p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))</pre>
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))</pre>
```

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula 'y ~ x'$

