CISC 2210 Discrete Structures - Noson S. Yanofsky

Student: Ruslan Pantaev

March 9, 2018

2.1

1.

Let p, q and r be the following propositions: p = "it is raining," q = "the sun is shining," r = "there are clouds in the sky."

Translate the following into logical notation, using p, q, r, and logical connectives.

(a)

It is raining and the sun is shining.

 $p \wedge q$

(b)

If It is raining, then there are clouds in the sky.

 $p \rightarrow r$

(c)

If It is not raining, then the sun is not shining and there are clouds in the sky.

$$\neg p \to (\neg q \land r)$$

(d)

The sun is shining if and only if it is not raining.

$$q \longleftrightarrow \neg p$$

(e)
If there are no clouds in the sky, then the sun is shining.
$\neg r o q$
2.
(d)
(e)
3.
(a)
Give truth values of the propositions in parts (a) to (e) of Example 1:
(a) Julius Caesar was president of the United States: False (b) $2+2=4$: True (c) $2+3=7$: False (d) The number 4 is positive and the number 3 is negative: False (e) If a set has n elements, then it has 2^n subsets: True (Bonus) (f) 2^n+n is a prime number for infinitely many n : don't know (g) Every even integer greater than 2 is the sum of two prime numbers: no one knows see "Goldbach's conjecture"
(b)
Do the same for parts (a) and (b) of Example 2:
(a) $x+y=y+x$ for all $x,y\in\mathbb{R}$: True commutative property (b) $2^n=n^2$ for some $n\in\mathbb{N}$: True for $\{2,4\}$
9.
(a)
Show that $n=3$ provides one possible counterexample to the assertion " $n^3 < 3^n \forall n \in \mathbb{N}$ "
(b)

Can you find any other counterexamples?