### Rapport CYS

02 février, 2020

#### Contents

#### Etude des données W1 version1

#### Les données

```
CYS = read.csv("W1_version1.csv")
head(CYS)
##
                   Semestre Filière snapshot.1 snapshot.2 Snapshot.2...4m CYS.S3
## 1
         YASSIR S3 2018-19
                                 EEA
                                           4.75
                                                       5.00
                                                                                 non
## 2
         CHEIMA S3 2018-19
                                 EEA
                                           3.00
                                                       3.00
                                                                                 non
## 3 RAZA AKRAM S3 2018-19
                                 EEA
                                           3.50
                                                       3.75
                                                                                 non
## 4 ANGELIQUE S3 2018-19
                                 EEA
                                           8.50
                                                      10.50
                                                                                 non
## 5
          DIANA S3 2018-19
                                 EEA
                                           3.50
                                                       9.50
                                                                                 non
## 6
           AXEL S3 2018-19
                                 EEA
                                           6.75
                                                                                 non
     CYS.S4 TP.S3 TP.S4 CMI Groupe.S3 Groupe.S4 Prof.TP
## 1
               FR
                         non
                                   Alba
## 2
                                 Siuban
               FR
                         non
## 3
               FR
                                  Akane
                         non
## 4
               FR
                                  Akane
                         non
## 5
               FR
                         non
                                   Alba
## 6
                                  Akane
                         non
str(CYS)
```

```
## 'data.frame':
                    181 obs. of 14 variables:
##
                     : Factor w/ 160 levels "ABDELLAH", "Abdou", ...: 154 34 128 22 45 28 113 53 131 86 ...
   $ prénom
  $ Semestre
                     : Factor w/ 2 levels "S3 2017-18", "S3 2018-19": 2 2 2 2 2 2 2 2 2 2 ...
  $ Filière
                     : Factor w/ 1 level "EEA": 1 1 1 1 1 1 1 1 1 1 ...
   $ snapshot.1
                     : num 4.75 3 3.5 8.5 3.5 6.75 3.5 6 5 7.5 ...
   $ snapshot.2
                     : num 5 3 3.75 10.5 9.5 ...
  $ Snapshot.2...4m: Factor w/ 30 levels "","-","10","10.75",...: 1 1 1 1 1 1 1 1 1 1 ...
                     : Factor w/ 2 levels "non", "oui": 1 1 1 1 1 1 1 2 1 1 ...
## $ CYS.S3
```

```
## $ CYS.S4
                     : Factor w/ 3 levels "", "non", "oui": 1 1 1 1 1 1 1 1 1 ...
                    : Factor w/ 2 levels "FR", "GB": 1 1 1 1 1 1 1 2 1 1 ...
## $ TP.S3
## $ TP.S4
                    : Factor w/ 3 levels "", "FR", "GB": 1 1 1 1 1 1 1 1 1 1 ...
## $ CMI
                    : Factor w/ 2 levels "non", "oui": 1 1 1 1 1 1 1 1 1 1 ...
                    : Factor w/ 8 levels "", "Akane", "Alba", ...: 3 6 2 2 3 2 3 2 3 6 ...
   $ Groupe.S3
## $ Groupe.S4
                     : Factor w/ 3 levels "", "Nadia", "Virginia": 1 1 1 1 1 1 1 1 1 1 ...
   $ Prof.TP
                     : Factor w/ 3 levels "", "Didier", "Pierre": 1 1 1 1 1 1 1 1 1 1 ...
summary(CYS)
##
         prénom
                          Semestre
                                    Filière
                                                snapshot.1
                                                                 snapshot.2
##
   ALEXANDRE: 3
                   S3 2017-18: 38
                                    EEA:181
                                              Min. : 1.000
                                                               Min. : 1.75
  ALEXIS
           : 3
                   S3 2018-19:143
                                              1st Qu.: 4.500
                                                               1st Qu.: 7.00
## HUGO
               3
                                              Median : 6.750
                                                               Median : 8.75
## LUCAS
               3
                                              Mean : 6.442
                                                               Mean : 8.82
## NICOLAS : 3
                                              3rd Qu.: 8.000
                                                               3rd Qu.:10.50
## VINCENT : 3
                                              Max.
                                                    :13.000
                                                               Max.
                                                                      :15.75
##
   (Other) :163
   Snapshot.2...4m CYS.S3
                             CYS.S4
                                       TP.S3
                                                TP.S4
                                                          CMI
                                                                     Groupe.S3
                                                 :143
##
                                       FR:132
                                                         non:150
          :127
                   non:120
                                :137
                                                                   Siuban:49
##
           : 15
                   oui: 61
                             non: 21
                                       GB: 49
                                                FR: 15
                                                         oui: 31
                                                                   Akane:34
           : 3
                             oui: 23
                                                GB: 23
                                                                   Alba
##
   11
                                                                          :29
##
   11.75
          : 3
                                                                   Nadia :24
##
  14.5
                                                                   Steven:23
  6.75
                                                                   Yolanda:15
          : 3
   (Other): 27
                                                                   (Other): 7
##
##
       Groupe.S4
                    Prof.TP
##
           :154
                         :168
  Nadia : 15
                  Didier: 6
##
##
   Virginia: 12
                  Pierre: 7
##
##
##
##
# Stat. descriptives à completer
boxplot(CYS$snapshot.1,CYS$snapshot.2,names=c("Snapshot1","Snapshot2"), ylab="Résultat",
       main="Résultats au Snapshot1 et au Snapshot2")
```

# Résultats au Snapshot1 et au Snapshot2



Au regard de boxplot, on constate que le Snapshot2 prend souvent les valeurs plus grandes que le Snapshot1 d'où la progresson obtenue en résultat.

### Résultat Snapshot2 en S3 selon l'utilisation de CYS en S3



## Différence de résultat entre Snapshot1 et Snapshot2 en S3 selon l'utilisation de CYS en S3



```
boxplot(ratio_snap~CYS$CYS.S3, ylab="Ratio de résultat entre Snapshot1 et Snapshot2
    en S3",
    main=" Ratio de résultat entre Snapshot1 et Snapshot2
    en S3 selon l'utilisation de CYS en S3")
```

# Ratio de résultat entre Snapshot1 et Snapshot2 en S3 selon l'utilisation de CYS en S3





# Stat. descriptives à completer boxplot(ratio\_snap~CYS\$CMI, ylab="Ratio de résultat entre Snapshot1 et Snapshot2 en S3", main=" Ratio de résultat entre Snapshot1 et Snapshot2 en S3 selon CMI en S3")



## Test d'un modèle ANOVA de 3 facteurs(CYS S3, CMI, TP S3)

mod1=lm(dif\_snap~(CYS\$CYS.S3+CYS\$TP.S3+ CYS\$CMI)^2,data=CYS)

# A completer

##

```
summary(mod1)
##
## Call:
  lm(formula = dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2,
##
       data = CYS)
##
## Residuals:
              1Q Median
                            3Q
                                5.005
##
  -4.875 -1.739 0.000
                        1.255
## Coefficients: (1 not defined because of singularities)
                             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                1.9954
                                           0.2063
                                                    9.675
                                                            <2e-16 ***
## CYS$CYS.S3oui
                                           0.4941
                               0.7437
                                                    1.505
                                                             0.134
## CYS$TP.S3GB
                              -0.9954
                                           2.1632
                                                   -0.460
                                                             0.646
## CYS$CMIoui
                               3.1250
                                           2.2584
                                                    1.384
                                                             0.168
## CYS$CYS.S3oui:CYS$TP.S3GB
                                           2.2702
                                                    1.072
                                                             0.285
                               2.4328
## CYS$CYS.S3oui:CYS$CMIoui
                              -5.5515
                                           2.3652
                                                   -2.347
                                                             0.020 *
## CYS$TP.S3GB:CYS$CMIoui
                                    NA
                                               NA
                                                       NA
                                                                NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## Residual standard error: 2.153 on 175 degrees of freedom
## Multiple R-squared: 0.1238, Adjusted R-squared: 0.09876
## F-statistic: 4.945 on 5 and 175 DF, p-value: 0.0002929
# A completer - fonction lm
step.backward = step(mod1)
## Start: AIC=283.56
## dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
##
##
## Step: AIC=283.56
## dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$TP.S3 +
                CYS$CYS.S3:CYS$CMI
##
##
                                                           Df Sum of Sq
                                                                                                RSS
                                                                                                                AIC
                                                                        5.3247 816.76 282.74
## - CYS$CYS.S3:CYS$TP.S3 1
## <none>
                                                                                         811.43 283.56
## - CYS$CYS.S3:CYS$CMI
                                                             1
                                                                      25.5452 836.98 287.17
##
## Step: AIC=282.74
## dif snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
##
                                                      Df Sum of Sq
                                                                                           RSS
                                                                                                           AIC
## <none>
                                                                                    816.76 282.74
## - CYS$TP.S3
                                                                    15.852 832.61 284.22
                                                         1
## - CYS$CYS.S3:CYS$CMI 1
                                                                    52.880 869.64 292.09
Selon le test d'AIC, on trouve le meilleur modèle modAIC1:
                 dif\_snap \sim CYS\$CYS.S3 + CYS\$TP.S3 + CYS\$CMI + CYS\$CYS.S3 : CYS\$CMI + CYS$CYS.S3 : CYS$CMI + CYS$CYS.S3 : CYS$CYS$CYS.S3 : CYS$CYS$CYS.S3 : CYS$CYS.S3 : CYS$CYS$
# A completer
modAIC1=lm(dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI,data=CYS)
summary(modAIC1)
##
## Call:
## lm(formula = dif snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI,
##
               data = CYS)
##
## Residuals:
             Min
                               1Q Median
                                                                ЗQ
## -4.875 -1.725 0.000 1.275 5.025
## Coefficients:
                                                               Estimate Std. Error t value Pr(>|t|)
                                                                                             0.2055
                                                                                                                9.613 < 2e-16 ***
## (Intercept)
                                                                    1.9753
## CYS$CYS.S3oui
                                                                    0.8590
                                                                                             0.4825
                                                                                                                1.780 0.076740 .
## CYS$TP.S3GB
                                                                   1.2134
                                                                                             0.6565
                                                                                                               1.848 0.066252 .
## CYS$CMIoui
                                                                   0.9362
                                                                                          0.9641 0.971 0.332834
## CYS$CYS.S3oui:CYS$CMIoui -3.2340
                                                                                          0.9580 -3.376 0.000906 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 2.154 on 176 degrees of freedom
## Multiple R-squared: 0.118, Adjusted R-squared: 0.098
## F-statistic: 5.889 on 4 and 176 DF, p-value: 0.0001802
anova(modAIC1,mod1)
## Analysis of Variance Table
##
## Model 1: dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
## Model 2: dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
               RSS Df Sum of Sq
    Res.Df
                                     F Pr(>F)
## 1
       176 816.76
## 2
        175 811.43 1
                        5.3247 1.1484 0.2854
La p_valeur de Test Fisher est 0,2854 supérieure que 0,05 donc on accepte le modèle modAIC1.
step.backward = step(mod1,direction="backward",k=log(nrow(CYS)))
## Start: AIC=302.75
## dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
##
##
## Step: AIC=302.75
## dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$TP.S3 +
       CYS$CYS.S3:CYS$CMI
##
##
##
                          Df Sum of Sq
                                          RSS
                                                  ATC
## - CYS$CYS.S3:CYS$TP.S3 1 5.3247 816.76 298.73
## <none>
                                       811.43 302.75
## - CYS$CYS.S3:CYS$CMI
                               25.5452 836.98 303.16
##
## Step: AIC=298.73
## dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
##
                        Df Sum of Sq
                                        RSS
                                                AIC
## - CYS$TP.S3
                              15.852 832.61 297.01
                                     816.76 298.73
## <none>
## - CYS$CYS.S3:CYS$CMI 1
                              52.880 869.64 304.89
##
## Step: AIC=297.01
## dif_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
##
                        Df Sum of Sq
                                        RSS
                                                AIC
## <none>
                                     832.61 297.01
## - CYS$CYS.S3:CYS$CMI 1
                              76.921 909.53 307.81
Selon le test d'BIC, on trouve le meilleur modèle:
dif\_snap \sim CYS\$CYS.S3 + CYS\$CMI + CYS\$CYS.S3 : CYS\$CMI
# A completer
modBIC1=lm(dif_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI,data=CYS)
anova(modBIC1,mod1)
## Analysis of Variance Table
## Model 1: dif_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
## Model 2: dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
```

```
Res.Df
              RSS Df Sum of Sq
                                     F Pr(>F)
## 1
       177 832.61
## 2
        175 811.43 2
                         21.177 2.2835 0.105
La p_valeur de Test Fisher est 0,105 supérieure que 0,05 donc on accepte le modèle modèle 1.
# A completer
anova(modBIC1,modAIC1)
## Analysis of Variance Table
##
## Model 1: dif_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
## Model 2: dif_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
    Res.Df
              RSS Df Sum of Sq
                                     F Pr(>F)
## 1
       177 832.61
        176 816.76 1
                         15.852 3.4158 0.06625 .
## 2
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
La p_valeur de Test Fisher est 0,105 supérieure que 0,05 donc on accepte le modèle modèle 1.
# A completer
mod2=lm(ratio_snap~(CYS$CYS.S3+CYS$TP.S3+ CYS$CMI)^2,data=CYS)
summary(mod1)
##
## Call:
## lm(formula = dif_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2,
##
       data = CYS)
##
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
## -4.875 -1.739 0.000 1.255 5.005
## Coefficients: (1 not defined because of singularities)
##
                             Estimate Std. Error t value Pr(>|t|)
                                         0.2063 9.675
## (Intercept)
                               1.9954
                                                          <2e-16 ***
## CYS$CYS.S3oui
                               0.7437
                                          0.4941 1.505
                                                            0.134
## CYS$TP.S3GB
                              -0.9954
                                          2.1632 -0.460
                                                            0.646
## CYS$CMIoui
                               3.1250
                                          2.2584 1.384
                                                            0.168
## CYS$CYS.S3oui:CYS$TP.S3GB 2.4328
                                          2.2702
                                                 1.072
                                                            0.285
## CYS$CYS.S3oui:CYS$CMIoui -5.5515
                                          2.3652 -2.347
                                                            0.020 *
## CYS$TP.S3GB:CYS$CMIoui
                                   NA
                                              NA
                                                      NA
                                                               NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.153 on 175 degrees of freedom
## Multiple R-squared: 0.1238, Adjusted R-squared: 0.09876
## F-statistic: 4.945 on 5 and 175 DF, p-value: 0.0002929
step.backward = step(mod2,direction="backward",k=log(nrow(CYS)))
## Start: AIC=-101.45
## ratio_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
##
##
## Step: AIC=-101.45
```

```
## ratio_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$TP.S3 +
##
       CYS$CYS.S3:CYS$CMI
##
##
                          Df Sum of Sq
                                          RSS
## - CYS$CYS.S3:CYS$TP.S3 1
                               0.05397 87.032 -106.54
## - CYS$CYS.S3:CYS$CMI
                               0.52871 87.507 -105.56
                           1
                                       86.978 -101.45
## <none>
##
## Step: AIC=-106.54
## ratio_snap ~ CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
                        Df Sum of Sq
                                        RSS
                                                AIC
## - CYS$TP.S3
                         1 0.18258 87.214 -111.36
## - CYS$CYS.S3:CYS$CMI 1 1.61594 88.648 -108.41
                                     87.032 -106.54
## <none>
##
## Step: AIC=-111.36
## ratio_snap ~ CYS$CYS.S3 + CYS$CMI + CYS$CYS.S3:CYS$CMI
##
##
                        Df Sum of Sq
                                        RSS
## - CYS$CYS.S3:CYS$CMI 1
                               1.438 88.652 -113.60
## <none>
                                     87.214 -111.36
##
## Step: AIC=-113.6
## ratio_snap ~ CYS$CYS.S3 + CYS$CMI
##
                Df Sum of Sq
                                RSS
                                        AIC
## - CYS$CYS.S3 1
                   0.72326 89.376 -117.33
## - CYS$CMI
                   1.57982 90.232 -115.60
               1
## <none>
                             88.652 -113.60
##
## Step: AIC=-117.33
## ratio_snap ~ CYS$CMI
##
            Df Sum of Sq
                             RSS
## - CYS$CMI 1 1.0724 90.448 -120.36
## <none>
                          89.376 -117.33
##
## Step: AIC=-120.37
## ratio_snap ~ 1
Selon le test d'BIC, on trouve le meilleur modèle modBIC2:
ratio snap \sim CYS\$CMI
De même façon, on trouve le meilleur modèle pour modéliser le ratio_snap:
# A completer
modBIC2=lm(ratio_snap ~ CYS$CMI,data=CYS)
anova(modBIC2,mod2)
## Analysis of Variance Table
##
## Model 1: ratio_snap ~ CYS$CMI
## Model 2: ratio_snap ~ (CYS$CYS.S3 + CYS$TP.S3 + CYS$CMI)^2
   Res.Df
              RSS Df Sum of Sq
                                     F Pr(>F)
```

## 1 179 89.376 ## 2 175 86.978 4 2.3978 1.2061 0.31

La p\_valeur de Test Fisher est 0,31 supérieure que 0,05 donc on accepte le modèle modBIC1.

Conclusion: Grâce au test ANOVA on trouve que:

• Si on considère la différence entre les deux snapshots on obtient le modèle

 $dif\_snap \sim CYS\$CYS.S3 + CYS\$CMI + CYS\$CYS.S3 : CYS\$CMI$ 

Cela montre l'impact de CMI et CYS S3 sur l'évolution de résultat.

• SI on considère la ratio entre les deux snapshots on obtient le modèle

 $ratio\_snap \sim CYS\$CMI$ 

Cela montre l'impact de CMI S3 sur l'évolution de résultat.

Dans ces deux cas on ne trouve pas l'effet de la variable TP S3.