Computer Networks

Overview of the Physical Layer

Where we are in the Course

 Beginning to work our way up starting with the Physical layer

Scope of the Physical Layer

- Concerns how signals are used to transfer message bits over a link
 - Wires etc. carry <u>analog signals</u>
 - We want to send <u>digital bits</u>

Computer Networks

3

Topics

- 1. Properties of media
 - Wires, fiber optics, wireless
- 2. Simple signal propagation
 - Bandwidth, attenuation, noise
- Modulation schemes
 - Representing bits, noise
 Fundamental limits
- - Nyquist, Shannon

Simple Link Model

- We'll end with an abstraction of a physical channel
 Rate (or bandwidth, capacity, speed) in bits/second
 - Delay in seconds, related to length

- Other important properties:
 - Whether the channel is broadcast, and its error rate

Computer Networks

5

Message Latency

- Latency is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"

Propagation delay: time for bits to propagate across the wire

- Combining the two terms we have: L = M/R + T

Message Latency (2)

- Latency is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"

```
T-delay = M (bits) / Rate (bits/sec) = M/R seconds
```

- Propagation delay: time for bits to propagate across the wire
 - P-delay = Length / speed of signals = Length / \(\frac{1}{2} c = D \) seconds
- Combining the two terms we have: L = M/R + D

Metric Units

The main prefixes we use:

Prefix	Exp.	prefix	exp.
K(ilo)	10 ³	m(illi)	10-3
M(ega)	10 ⁶	μ(micro)	10-6
G(iga)	10 ⁹	n(ano)	10 ⁻⁹

Use powers of 10 for rates, 2 for storage

- 1 Mbps = 1,000,000 bps, 1 KB = 2^{10} bytes "B" is for bytes, "b" is for bits

Latency Examples

"Dialup" with a telephone modem:

$$-D = 5 \text{ ms}, R = 56 \text{ kbps}, M = 1250 \text{ bytes}$$

Broadband cross-country link:

- D = 50 ms, R
$$\neq$$
 10 Mbps, M = 1250 bytes

Latency Examples (2)

"Dialup" with a telephone modem:

D = 5 ms, R = 56 kbps, M = 1250 bytes
L = 5 ms +
$$(1250x8)/(56 \times 10^3)$$
 sec = 184 ms!

Broadband cross-country link:

$$D = 50 \text{ ms}, R = 10 \text{ Mbps}, M = 1250 \text{ bytes}$$

$$L = 50 \text{ ms} + (1250x8) / (10 x 10^6) \text{ sec} = 51 \text{ ms}$$

- A long link or a slow rate means high latency
 - Often, one delay component dominates

Bandwidth-Delay Product

Messages take space on the wire!

 The amount of data in flight is the bandwidth-delay (BD) product

$$BD = R \times D$$

Measure in bits, or in messages
 Small for LANs, big for "long fat" pipes

Bandwidth-Delay Example

Fiber at home, cross-country

R=40 Mbps, D=50 ms

$$BJ = 40.10^4 .50.16^{-3}$$

= 10000×10^3
= 250 KB

Bandwidth-Delay Example (2)

Fiber at home, cross-country

R=40 Mbps, D=50 ms

BD = $40 \times 10^6 \times 50 \times 10^{-3}$ bits

- = 2000 Kbit
- = 250 KB

 That's quite a lot of data "in the network"!

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey