

Image Processing

Image Attributes

(NOTE: in this lecture I'll use the term "sensor" collectively to imply a camera & telescope apparatus)

- In Module 3, we discussed some basic optics:
 - Focal length
 - Image plane → pixel dimensions
- We talked about how, once an object is identified in an image by its pixel coordinates, we can calculate LOS
 - Camera frame → TH frame → ECEF frame → ECI frame
- Image processing is the precursor to orbit determination
 - Identifying objects of interest in an image & calculating LOS measurements to input to the IOD/POD process

Image Attributes

- There are 2 fundamental facets to image processing for obtaining LOS of an object from image data:
 - Identification: determining which objects in the image are of interest for SSA (i.e. "non-stars")
 - Registration: determining the orientation of the image relative to inertial space
- One crucial element of the identification step is observation assignment
 - It's not enough just to ID a non-star in an image, but need to ID a non-star in several images AND attribute all of these observations to the same object
 - Difference between obtaining one LOS vs several LOS's
- We'll explore Identification & Registration one at a time

 Consider the following (real) space image from an optical sensor

- Each illuminated object is represented by a collection (or "blob") of pixels
- The vast majority of these (if not all) are likely stars
- Are there are Earth-orbiting objects in the image, & if so, how can we tell?

- First, we must be mindful of 2 attributes of our imaging campaign:
 - Imaging mode: is our sensor terrestrial or space/based? Is it fixed in a particular frame or moving?
 - Exposure time (or integration time): how long does our sensor capture photons of the scene?
- There are 3 common imaging modes for ground sensors
 - TH mode: sensor remains fixed in its TH frame, pointed at the same orientation (Az & El) for the entire image (e.g. zenith → directly upward)
 - Inertial mode: sensor slews (rotates) so as to point in the same direction in inertial space for the entire image (e.g. keeping the boresight fixed on a particular star)
 - Tracking mode: sensor slews so as to follow a particular object (normally a satellite as it passes over)
- Typically, spaced-based sensors can support inertial or tracking mode

- Because imaging involves a finite integration time, objects in the scene will move to varying extents while photons are collected
- For each mode, let's think about which objects in the image should move during the course of the image & which should not

Inertial mode:

- If perfect inertial pointing by the sensor is achieved, any objects
 distant enough to appear fixed in inertial space (e.g. outside the solar
 system: stars & other deep-space celestial bodies) will not move
- For closer-range objects (e.g. inside the solar system: planets and Earth-orbiting objects), their apparent movement depends on their proximity to the sensor vs length of integration time → Earth-orbiting objects more likely to show movement than, say, planets
- Keep in mind that because no sensor is fixed in inertial space, perfect inertial pointing is impossible
 - The more accurately we know a sensor's inertial motion, the more accurately we can account for it to keep the sensor inertially "aimed" → more difficult for space-based than terrestrial sensors
 - "Jitter" in the motor device (e.g. drive mount) that slews the sensor
 - Result is that everything in the image will move to some slight extent (but inertially fixed objects still move the least)

Tracking mode:

- Normally the goal of tracking mode is to point directly at a specific object, i.e. keep it on the boresight
- To do this, the operator must determine the path of the object in the camera frame & move the sensor along this path during the integration time
 - For an Earth-orbiting object, this would entail knowing the object's orbit & slewing the sensor to follow that (again, in the camera frame)
- If this is done perfectly, the object being tracked will (obviously) not move, but everything else in the image likely will move
 - An exception is an object that may be co-orbital with the object being tracked → since both objects will move at the same rate, the sensor will effectively track both objects
- As with inertial pointing, errors will cause everything to move slightly
 - In addition to pointing error, also error due to imperfect knowledge of the tracked object's orbit

TH mode:

- Here the sensor remains pointed at the same direction (Az/El) in the sky
- In this case, everything should be moving in the image, with one exception:
 - GEO objects (for sensors powerful enough to see them) will not move, because they always remain at the same place in a viewer's local sky

- For a long enough integration time, any object not stationary in an image will appear to streak across the image
- Here is an example of an image taken in inertial mode
- Majority of objects are stars, which remain stationary
- Earth-orbiting object can be seen streaking near bottom of image (shown in red for clarity)

 Here is an example of an image taken in object tracking mode

- Object being tracked remains stationary (& near the boresight)
- Stars streak (& all at the same rate, i.e. streaks are the same length)

- Here is an example of an image taken in TH mode, looking toward GEO
- GEO objects are stationary
- Stars streak (again all at the same rate)

- The goal of object identification, from an SSA perspective, is to determine the stars from the non-stars (i.e. Earth-orbiting objects)
- Note how streaking can be quite helpful to this goal
- But how much integration time is required to achieve streaking?
- This varies depending on the sensor's location & the object(s)' orbit(s); this determines both:
 - How much a particular object will streak in a given time while in inertial mode
 - How much the stars will streak in a given time while following a particular object in tracking mode
- For short integration times, no streaking will be evident

- For some scenarios, the integration times required to generate noticeable streaking (even by an automated routine) may be more than the sensor can support
- A viable option may be to instead take a series (or set) of images
- The goal is then to look for frame-to-frame movement among the objects in the images → de facto streaking

- Here is an example of an image set taken in inertial mode
- Majority of objects are stars, which remain stationary from frame to frame
- An earth-orbiting object can be seen "streaking" (in the frame to frame sense) across the field of view

- Here is an example of an image set taken in tracking mode
- Stars are moving from frame to frame
- Earth-orbiting object can be seen stationary on the boresight (shown in red for clarity)

- The preceding development shows how streaking &/or frame to frame motion can facilitate manual (human-in-the-loop) object identification
- But it is preferable to automate this process
- There are instances where the sensor is not in inertial or tracking mode → difficult for a human to properly discern such images
- Even in inertial or tracking mode scenarios, automation will process the images more quickly & accurately

- First step in automating the process is centroiding, i.e.
 replacing each raw image with a set of object locations in
 the camera frame → how to do this?
- To answer this, consider some fundamental aspects of imagery:
 - An image consists of the set of intensity values in each pixel
 - Arranged as a matrix whose dimensions are determined by the image plane width & height (# of pixels)
 - For example, if a sensor's image plane is 1500 pixels long by 1000 pixels high, the image data is stored in a 1000 x 1500 matrix
 - What values do these intensities take, & at what granularity? → determined by "bit depth" e.g. from 0 to 255 (discussed briefly in Module 3)

Centroiding process essentially consists of the following steps:

- Thresholding: zeroing out all intensities below a chosen threshold value (to eliminate noise)
- Edge detection: determining each collection of illuminated pixels that constitutes an "object"
 - Do these edges represent the physical boundaries of each object? → NO, due to point spread function (PSF) → results in blurring or "blooming" of an object beyond its actual size
- Centroid calculation: calculating the geometric centroid of each object
 - Note that if an object moves/streaks in an image, in a curved path, the centroid location may not lie along the path at all!

- Next step after centroiding is observation assignment ->
 correlating each object across each image
- Which centroid (or "dot") in Frame 1, Frame 2, etc, belong to Object 1? And which collection of dots across each frame belong to Object 2? Etc...
- Ability to successfully associate depends heavily on frameto-frame motion
 - Generally, the less change in centroid locations from one frame to the next, the easier association will be
 - Inertial mode image sets are normally simple to associate →
 each centroid representing a star changes its location little
 (or none) from frame to frame → any centroid that changes
 by "x" amount or more must be an Earth-orbiting object
 - Most image sets require some kind of data association filter technique to properly associate centroids

- The result of centroiding & data association (if successful) is a tracklet for each Earth-orbiting object found in the image set
- Each data point in the tracklet corresponds to an (x, y) location in the camera frame \rightarrow goal is to transform these (x, y) coordinates to ECI coordinates to feed into the orbit determination process
- For a ground sensor, this is done through the series of frame rotations (DCMs) discussed in Module 3 & reviewed on Slide 2
 - Camera frame → TH frame → ECEF frame → ECI frame
- For a space-based sensor, the TH & ECEF frames are not involved & the transformation is performed via attitude determination: determining the DCM from the vehicle's body frame to the ECI frame
 - Often the sensor is fixed on the vehicle, so that either the camera
 & body frames are identical or their DCM is a known constant
 - Series of DCMs is then Camera frame → Body frame → ECI frame

- But what if the Camera-to-ECI transformation is not accurately known?
 - For space-based sensors, attitude determination error pervades the Body-to-ECI transformation, while the Camera-to-Body transformation can be affected by misalignment of the sensor on the vehicle bus
 - For ground-based sensors, their pointing direction (Az & El) may not be accurately known (Camera-to-TH transformation)
- In such instances, a viable option is the process known as registration: determining the orientation of a sensor (i.e. which direction it is pointing) at the time it takes an image, based on features in the image
- For space images, the features analyzed are stars → pattern recognition algorithm known as star matching

- What registration software packages exist?
- Some spacecraft perform attitude determination via registration, using a star tracker to take images → generally proprietary
- Astrometry is an open-source package developed by astronomers (available on astrometry.net)
 - Matches star patterns in an image with patterns in its internal database, based on a star catalog (RA/Dec/magnitude for millions of stars)
 - Output is inertial pointing direction (RA/Dec) of the boresight & rotation angle of the image plane θ (relative to celestial North)

• RA/Dec/ θ represents the relationship between the camera frame orientation ("right-down-forward" as discussed in Module 3) & ECI frame orientation; can be converted to a DCM

• Consider a sensor whose frame (x_c, y_c, z_c) corresponds to a particular

ZECI

RA/Dec/ θ :

Followed by a rotation about y' through (90° - Dec)

Begin with a rotation about z_c through $(-\theta)$

Then a rotation about z_{ECI} through (180° - RA)

- So, given the coordinates (x, y) of an object in the sensor frame, we know from Module 3 that the sensor-to-object position vector is proportional to $\bar{r}|_{CAM} = [x \ y \ f]^T$ (where f is focal length)
- Then $\bar{r}|_{ECI} = Q_{CAM}^{ECI} \bar{r}|_{CAM}$ where

$$Q_{CAM}^{ECI} = R_3(180 - RA)R_2(90 - Dec)R_3(-\theta)$$

 (R_2, R_3) are Euler rotation matrices discussed in Module 2)

And the RA & Dec of the sensor-to-object position vector are

$$RA = tan^{-1} \left(\frac{y_{ECI}}{x_{ECI}} \right) \qquad Dec = sin^{-1} \left(\frac{z_{ECI}}{L} \right)$$

These values should be fairly close to the RA & Dec values returned by Astrometry (which are the RA & Dec of the boresight)

$$L = \sqrt{x^2 + y^2 + f^2}$$

End-to-End SSA Process

- In this course, we've learned many critical components of the SSA Process
 - Coordinate systems
 - Sensing
 - Image processing
 - Orbit determination
- Putting it all together in an end-to-end diagram, optical SSA would look something like this:

Epilogue

- This is the last official lecture of the course
- Next week will mainly be time to prepare for (& take) the Final Exam
- I will provide some material on the topic of Orbital Debris