Wildfire Footprints: Cloud-Based Forecasting with NASA MODIS Data

- Leveraging EC2, RDS, and Jupyter on AWS (2003, 2013, 2023)
 - Team Members: Ritu Patel & Dhwanil Mori

Project Scope & Motivation

- Analyze wildfire trends across two decades (brightness and FRP).
- Build predictive models for both intensity (**FRP**) and heat (**Brightness**).
- Motivation: Improve wildfire preparedness and risk assessment.

Cloud Architecture

1	Upload CSVs to EC2	AWS	Jupyter Notebook Server	
2	Create RDS MySQL DB	AWS	Stores wildfire data	
3	Load Data into RDS	AWS (via Jupyter)	Python Scripts	
4	Analyze and Model	AWS (Jupyter)	VAR + LSTM	
5	Cloud-Native Workflow		No local machine needed	

Data Sources & Key Features

- Data Source: NASA MODIS (Terra and Aqua Satellites)
- Key Variables:
- Fire Radiative Power (FRP)
- Brightness
- Confidence Score
- Latitude/Longitude
- **Years**: 2003, 2013, 2023
- Volume: ~100,000 records per year

Feature Engineering

Data Processing Pipeline

- Upload raw CSVs to EC2.
- Store structured data in RDS MySQL.
- Connect Jupyter to RDS for EDA and preprocessing.
- Feature Engineering:
- Temporal Features (Month, Year)
- Categorized Fire Intensity
- Brightness Normalization
- Prepare input sequences for LSTM and VAR modeling.

Forecasting Approaches: VAR and LSTM)

VAR (Vector AutoRegression):

- Classical time-series model assuming linear relationships.
- Captures multivariable dependencies.
- LSTM (Long Short-Term Memory):
 - Deep learning model for sequential data.
 - Captures complex, nonlinear patterns and long-term dependencies.

Model	Variable	RMSE	MAE	MAPE	R²
VAR	Brightness	7.02	5.47	11.72%	0.96
	FRP	30.12	24.86	21.10%	0.89
LSTM	Brightness	7.13	5.72	13.49%	0.94
<u> </u>	FRP	38.43	29.53	25.61%	0.86

Model Results & Metrics

- VAR outperformed LSTM in both FRP and Brightness forecasting
- LSTM showed higher error and lower R² due to FRP overfitting
- Brightness predictions were more stable across both models

COMPARATIVE FORECAST ANALYSIS

- VAR:
- Performs well on smoother signals like Brightness
- Generates consistent forecasts with low volatility
- LSTM:
- Captures complex seasonal patterns
- Overfits to FRP peaks, producing exaggerated forecasts
- While LSTM captures deeper temporal dependencies, VAR provides more reliable and interpretable outputs for operational use cases.

Challenges Faced

- Data Quality:
 Handling missing values and low-confidence wildfire detections.
- Cloud Setup: Configuring secure connections between EC2, RDS, and Jupyter.
- Forecasting Volatility: Fire Radiative Power (FRP) was highly unstable, making predictions difficult.

Future Work

- Migrate workflows to Amazon SageMaker for scalable model training and deployment.
- Automate real-time data ingestion using AWS Lambda and Amazon Kinesis.
- Optimize storage by archiving older wildfire data to Amazon S3 Glacier.
- **Deploy forecasting models** as APIs using AWS Elastic Beanstalk or API Gateway.
- **Enhance security and monitoring** with IAM roles, Secrets Manager, and CloudWatch.