APPENDIX

The following information may be used where applicable:

Elementary charge	q	$= 1.602 \times 10^{-19} \text{ C}$
Permittivity of free space	ε_0	$= 8.854 \times 10^{-14} \mathrm{F cm^{-1}}$
Room temperature		= 300 K
Thermal voltage at 300 K	V_T	= kT/q = 0.025 V = 25 mV
Intrinsic carrier concentration of silicon at 300 K	n_i	$= 1.5 \times 10^{10} \text{ cm}^{-3}$
Relative permittivity of silicon	$\varepsilon_{r_i}(\mathrm{Si})$	= 11.7
Relative permittivity of silicon dioxide	ε_r (SiO ₂)	= 3.9

Summary of Equations

I. Semiconductor Physics

Quantity	Equation	Remarks
Law of mass action	$p_0 n_0 = n_i^2$	$n_i = 1.5 \times 10^{10} \mathrm{cm}^{-3}$ for Si at
		T = 300 K
Charge neutrality	$p + N_D = n + N_A$	
Carrier concentrations	$p_{p0} = N_A$	T = 300 K
in <i>p</i> -type semi- conductor at thermal equilibrium (cm ⁻³)	$n_{p0} = \frac{n_i^2}{N_A}$	N_A = net p -type doping concentration
Carrier concentrations	$n_{n0} = N_D$	T = 300 K
in <i>n</i> -type semiconductor at thermal equilibrium (cm ⁻³)	$p_{n0} = \frac{n_i^2}{N_D}$	N_D = net <i>n</i> -type doping concentration
Drift current density	$J_{drift} = J_{p,drift} + J_{n,drift}$	σ is conductivity, E is electric field
(A cm ⁻²)	$J_{p,drift} = qp\mu_p E$	
	$J_{n,drift} = qn\mu_n E$	
	$J_{drift} = q(p\mu_p + n\mu_n)E = \sigma E$	
Conductivity (Ω cm) ⁻¹	$\sigma = q(p\mu_p + n\mu_n) = \frac{1}{\rho}$	ρ is resistivity
Diffusion current density	$J_{diff} = J_{p,diff} + J_{n,diff}$	
(A cm ⁻²)	$J_{p,diff} = -qD_p \frac{dp}{dx}$	
	$J_{n,diff} = qD_n \frac{dn}{dx}$	
	$J_{diff} = -qD_p \frac{dp}{dx} + qD_n \frac{dn}{dx}$	
Einstein Relation	$\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = \frac{kT}{q} = V_T$	$k = 1.381 \times 10^{-23} \text{ J/K}$
	$\mu_p \mu_n q$	$= 8.62 \times 10^{-5} \text{ eV/K}$
		$q = 1.602 \times 10^{-19} \text{ C}$
		$V_T \approx 0.025 \text{ V at } T = 300 \text{ K}.$

II. pn Junction

Quantity	Equation	Remarks
Junction built-in (or barrier) voltage (V)	$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$	$V_0 \cong 0.6$ - 0.8 V for Si at $T = 300$ K. N_D is the doping concentration of the <i>n</i> -region. N_A is the doping concentration of the <i>p</i> -region.
Width of depletion region (cm or μm)	$W_{dep} = x_p + x_n$ $= \sqrt{\frac{2\varepsilon_s}{q} \left[\frac{1}{N_A} + \frac{1}{N_D} \right]} (V_0 - V)$ $x_p = \frac{N_D}{N_D + N_A} W_{dep}, \ x_n = \frac{N_A}{N_D + N_A} W_{dep}$	V is positive for forward bias and negative for reverse bias $\varepsilon_s = 11.7 \times \varepsilon_0$ for Si $\varepsilon_0 = 8.854 \times 10^{-14} \text{ F cm}^{-1}$. ε_p is the depletion width in the p -region.
Minority carrier concentration at the edge of depletion region (cm ⁻³)	$p - N_D + N_A$ $aep^{V} - N_D + N_A$ aep^{V} p -side: $n_p(-x_p) = n_{p0} e^{V/V_T}$ n -side: $p_n(x_n) = p_{n0} e^{V/V_T}$	x_n is the depletion width in the <i>n</i> -region. = thermal equilibrium minority carrier concentration $\times e^{V/V_T}$
Minority carrier concentration distributions in the neutral n- and pregions (cm ⁻³)	n-side: $p_n(x) = p_{n0} + [p_n(x_n) - p_{n0}] e^{-(x-x_n)/L_p}$	L_p , L_n are the diffusion lengths of the minority carriers in the n -side and p -side respectively.
regions (cm)	p-side: $n_p(x) = n_{p0} + [n_p(-x_p) - n_{p0}] e^{(x+x_p)/L_n}$	In the equations, $x > x_n$ on the n - side, and $x < -x_p$ on the p -side.
Current (A)	$I = I_p + I_n = I_s \left(e^{V/nV_T} - 1 \right)$	<i>n</i> is a value between 1 and 2.
	$I_p = Aqn_i^2 \frac{D_p}{L_p N_D} \left(e^{V/nV_T} - 1 \right)$	I_P is the hole current injected into the neutral n -region.
	$I_n = Aqn_i^2 \frac{D_n}{L_n N_A} \left(e^{V/nV_T} - 1 \right)$	I_n is the electron current injected into the neutral p -region.
Saturation current (A)	$I_S = Aqn_i^2 \left(\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A} \right)$	
Amount of charge stored in (one side) of the depletion region (C)	$q_{j} = qx_{p}N_{A}A = qx_{n}N_{D}A$ $= q\left(\frac{N_{A}N_{D}}{N_{A} + N_{D}}\right)W_{dep}A$	

Depletion or junction capacitance (F)	$C_j = \frac{\varepsilon_s A}{W_{dep}}$	m is a value that ranges between $1/3$ to $1/2$.
	$C_{j} = A \left[\frac{q \varepsilon_{s}}{2} \left(\frac{N_{A} N_{D}}{N_{A} + N_{D}} \right) \frac{1}{(V_{0} - V)} \right]^{m}$	$\varepsilon_s = 11.7 \times \varepsilon_0 \text{ for Si}$ $\varepsilon_0 = 8.854 \times 10^{-14} \text{ F cm}^{-1}.$
	$C_{j} = A \times C_{j\theta} / \left(1 - \frac{V}{V_{\theta}}\right)^{m}$	
	$C_{j\theta} = \left[\frac{q\varepsilon_s}{2} \left(\frac{N_A N_D}{N_A + N_D} \right) \frac{1}{V_{\theta}} \right]^m$	
Small signal (or incremental) resistance of the pn junction diode (Ω)	$r_d = \frac{nV_T}{I_D}$	I_D is the (d.c.) diode current at the operating point, n is a value between 1 and 2.

III. Bipolar Junction Transistor (BJT)

Quantity	Equation	Remarks
Magnitude of the diffusion current of the minority carriers (electrons) in the base of an npn BJT (A)	$\left i_{En}\right = \left qAD_n \frac{n_p(0) - n_p(w_B)}{0 - w_B}\right $	D_n is the diffusivity of the electrons in the base, w_B is the width of the neutral part of the base, $n_p(0)$ and $n_p(w_B)$ are the concentrations of the electrons on the base side of the edges of the E-B and C-B space charge regions respectively.
Collector current of an npn BJT (A)	$i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right)$	
Collector saturation current of an npn BJT (A)	$I_S = qA \frac{D_n}{w_B} \frac{n_i^2}{N_{AB}}$	Note that the symbol I_S is also the symbol for the saturation current of a p-n junction diode, but the expression is different.
Base current of an npn BJT (A)	$i_{B} = \frac{I_{S}}{\beta} \exp\left(\frac{v_{BE}}{V_{T}}\right)$ $D = L_{D} N_{DE}$	The expression for β here is for an npn BJT with a long emitter.
	where $\beta = \frac{D_n}{D_p} \frac{L_p}{w_B} \frac{N_{DE}}{N_{AB}}$	
Common emitter current gain of a BJT (general definition)	$\beta = \frac{i_C}{i_B}$	
Common base current gain of a BJT (general definition)	$\alpha = \frac{i_C}{i_E}$	
Relationship between α and β	$\beta = \frac{\alpha}{1 - \alpha}$	

Collector current of an npn BJT, with Early effect taken into account (A)	$i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right) \left(1 + \frac{v_{CE}}{V_A}\right)$	V_A is the Early voltage.
Transconductance in the small signal equivalent circuit of a BJT (Ω^{-1})	$g_m = \frac{I_C}{V_T} \bigg _{\text{at bias point}}$	I_C is the value of the collector current at the d.c. operating (bias) point.
Input resistance in the small signal equivalent circuit of a BJT (Ω)	$r_{\pi} = \frac{\beta}{g_m}$	
Output resistance in the small signal equivalent circuit of a BJT (Ω)	$r_o \approx \frac{V_A}{I_C}$	I_C is the value of the collector current at the d.c. operating (bias) point.

IV. Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Quantity	Equation	Remarks
Drain current of an n-MOSFET operating in the linear region	$i_{D} = \mu_{n} \frac{W}{L} C_{ox} \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$ $= 2K_{n} \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$	Valid for $v_{DS} \le v_{GS} - V_{TH}$
Drain current of an n-MOSFET operating in the saturation region	$i_D = i_{Dsat} = \frac{1}{2} \mu_n \frac{W}{L} C_{ox} (v_{GS} - V_{TH})^2$ = $K_n (v_{GS} - V_{TH})^2$	Valid for $v_{DS} \ge v_{GS} - V_{TH}$
Transconductance parameter of an n- MOSFET	$K_n = \frac{1}{2} \mu_n \frac{W}{L} C_{ox}$	
Drain current of a p- MOSFET operating in the linear region	$\begin{aligned} i_{D} &= \mu_{p} \frac{W}{L} C_{ox} \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS} ^{2} \right] \\ &= 2K_{p} \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS} ^{2} \right] \end{aligned}$	Valid for $ v_{DS} \le v_{GS} - V_{TH} $
Drain current of a p- MOSFET operating in the saturation region	$ i_D = i_{Dsat} = \frac{1}{2} \mu_p \frac{W}{L} C_{ox} (v_{GS} - V_{TH})^2$ $= K_p (v_{GS} - V_{TH})^2$	Valid for $ v_{DS} \ge v_{GS} - V_{TH} $
Transconductance parameter of a p-MOSFET	$K_p = \frac{1}{2} \mu_p \frac{W}{L} C_{ox}$	
Gate oxide capacitance (per unit gate area) of a MOSFET	$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$	

Drain-to-source resistance in the large signal model of the n- MOSFET operating in the linear region	$R_{DS} = \frac{1}{2K_n(V_{GS} - V_{TH})}$	V_{GS} is the magnitude of the gate- to-source voltage, at the d.c. operating point.
Drain-to-source resistance in the large signal model of the p-MOSFET operating in the linear region	$R_{DS} = \frac{1}{2K_p \left(\left V_{GS} \right - \left V_{TH} \right \right)}$	V_{GS} is the magnitude of the gate- to-source voltage, at the d.c. operating point.
Transconductance in the small signal equivalent circuit of an n-MOSFET operating in the saturation region	$g_m = 2K_n(V_{GS} - V_{TH}) = 2\sqrt{K_n I_D}$	I_D and V_{GS} are the magnitudes of the drain current and gate-to-source voltage, respectively, at the d.c. operating point.
Transconductance in the small signal equivalent circuit of a p-MOSFET operating in the saturation region	$g_m = 2K_p (V_{GS} - V_{TH}) = 2\sqrt{K_p I_D }$	I_D and V_{GS} are the magnitudes of the drain current and gate-to-source voltage, respectively, at the d.c. operating point.
Output resistance in the small signal equivalent circuit of a MOSFET operating in the saturation region	$r_o \approx \frac{V_A}{I_D} = \frac{1}{\lambda I_D}$	I_D is the magnitude of the drain current at the d.c. operating point.
Drain current of an n-MOSFET operating in the saturation region, including channel length modulation effect	$i_D = K_n (v_{GS} - V_{TH})^2 (1 + \lambda v_{DS})$	Valid for $v_{DS} \geq v_{GS} - V_{TH}$ λ is the channel length modulation factor.
Drain current of an p-MOSFET operating in the saturation region, including channel length modulation effect	$ i_D = K_p(v_{GS} - V_{TH})^2 (1 + \lambda v_{DS})$	Valid for $ v_{DS} \ge v_{GS} - V_{TH} $ λ is the channel length modulation factor.