KU LEUVEN

Performance of candlestick patterns on intraday market data

Seminar

Wout Notermans

Faculty of Science
Department of Mathematics
Section of Statistics and Risk

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Stock price [1]

Berkshire Hathaway stock price

Stock price [1]

Berkshire Hathaway stock price

Candlestick construction

Candlestick pattern examples

History

- Developed in the 1700s in Japan.
- Remained exclusive to the East until 1991.
- This is reflected in the literature.
- Quite well-known technical analysis technique.

Literature

- Literature split between machine learning and rule based approach.
- Results are very split.
- Very few publications about intraday market data.

Introduction

Research question

Do candlestick patterns possess any predictive power on intraday market data?

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Methodology

Overview

- Selection of data sets.
- Preprocessing of the data.
- Trends and technical indicators.
- Pattern detection.
- Pattern evaluation.

Data sets

- BND: Bonds.
- · GLD: Gold.
- · QQQ: Stocks.
- SPY: Stocks.
- · Wiener: Generated.

Preprocessing

- Filter pre/after-market and economic news.
- Missing data → interpolation.
- Aggregation.
- Splitting of the data set for calibration.

Preprocessing: calibration

	Doji	Short	Normal	Tall	Extremely tall
Real body	[0 - 10)	[10 - 30)	[30 - 70)	[70 - 100]	
Shadow	[0 - 10)	[10 – 30)	[30 – 70)	[70 – 90)	[90 – 100]

Percentiles of real bodies and shadows [3].

Matching low

Preprocessing: calibration

- Assumes length and color candle independent.
- Has to be checked → Kolmogorov-Smirnov test.

$$H_0: W = B$$
 $H_1: W \neq B$.

Reject at 5% significance.

Methodology

Trend

- Many patterns are only valid when the correct trend is present.
- Multiple ways of defining the trend in the literature.
- Example: count in/decreases in the moving average.

Technical indicators

- Values calculated from asset prices and volume.
- Some publications only find significant patterns when combining them with technical indicators.
- Quite a number found in the literature.
- Example: triple exponential (TRIX).

Pattern detection

- Patterns are vaguely defined at best: a rigid classification is necessary.
- The paper "A formal approach to candlestick pattern classification in financial time series" does exactly this [4].
- Define 103 candlestick patterns with strict conditions.

Pattern detection: example

Doji star, bearish

Pattern detection: prediction

- Typically classified as buy/sell signal.
- Look at the results themselves instead of the predictions.

Pattern evaluation

- Buy/sell after pattern is detected.
- Make use of stop loss/take profit margins.
- This gives us a winning rate.
- Test significance with binomial test.

$$H_0: \pi = 0.5$$
 $H_1: \pi > 0.5$

Pattern evaluation: stop loss/take profit [1]

Berkshire Hathaway stock price

Pattern evaluation: profitability score

Quantify profitability score with three factors:

1. The number of detected patterns.

$$\max \left(\frac{200}{1 + \exp\left(-\frac{n - 100}{100}\right)} - 100, 0 \right)$$

- 2. The win rate (deviation from 50%).
- 3. The significance.

Results

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Detection results

- Not many "gapping" patterns.
- Some patterns are rare due to stringent conditions.

Evaluation results: significance

- Significant patterns are found.
- Many more significant buy than sell signals.
- A lot of variance between data sets/asset types.
- Aggregation decreases significance but not profitability.

Evaluation results: effect of data set

Evaluation results: effect of time interval

Evaluation results: effect of news

Evaluation results: no effect

- Different start and end times.
- Filtering based on technical indicators.
- Averaging methods: SMA, WMA, EMA.
- Trend defining methods.

Evaluation results: MVP

Table of contents

Introduction

Methodology

Results

Conclusion and further research

Conclusion and further research

Research question

Do candlestick patterns possess any predictive power on intraday market data?

Conclusion

- Some patterns do appear to possess (consistent) significant predictive power.
- This mainly holds true for buy signals.
- There is a lot of variance to these results.

Further research

- Machine learning-based approach to detection.
- Fuzzy rules for detection.
- "Evolving margins" evaluation.

Bibliography

[1] <u>finance.yahoo.com</u>.

```
https://finance.yahoo.com/quote/BRK-A/. [Accessed 10-05-2025].
```

- [2] Jun-Hao Chen and Yun-Cheng Tsai. "Encoding candlesticks as images for pattern classification using convolutional neural networks". In: Financial Innovation 6.1 (June 4, 2020). DOI: 10.1186/s40854-020-00187-0. URL: http://dx.doi.org/10.1186/s40854-020-00187-0.
- [3] Stefan Etschberger et al. "The classification of candlestick charts: laying the foundation for further empirical research". In:

From Data and Information Analysis to Knowledge Engineering: Springer. 2006, pp. 526–533.

Bibliography

[4] Weilong Hu et al. "A formal approach to candlestick pattern classification in financial time series". In:

Applied Soft Computing 84 (Nov. 2019), p. 105700. DOI: 10.1016/j.asoc.2019.105700. URL: http://dx.doi.org/10.1016/j.asoc.2019.105700.

Questions?