

FCC TEST REPORT (PART 27)

Product: smartphone

Model Name: Ilium L1120

FCC ID: ZC4L1120

Applicant: Corporativo Lanix S.A. de C.V.

Address: Carretera Internacional Hermosillo-Nogales Km 8.5, Hermosillo

Sonora, Mexico

Manufacturer: Shenzhen Tinno Mobile Technology Corp.

Address: 4/F., H-3 Building, OCT Eastern Industrial Park. NO.1 XiangShan

East Road., Nan Shan District, Shenzhen, P.R.China.

Prepared by: Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

Lab Location: No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan

City, Guangdong 523942, China

TEL: +86 769 8593 5656

FAX: +86 769 8593 1080

E-MAIL: customerservice.dg@cn.bureauveritas.com

Report No.: RF170324W002-6

Received Date: Mar. 24, 2017

Test Date: Mar. 25, 2017 ~ Apr. 13, 2017

Issued Date: Apr. 14, 2017

This report should not be used by the client to claim product certification, approval, or endorsement by A2LA or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

TABLE OF CONTENTS

R	ELEASE CONTROL RECORD	. 4
1	CERTIFICATION	. 5
2	SUMMARY OF TEST RESULTS	6
	2.1 MEASUREMENT UNCERTAINTY	. 6
3	GENERAL INFORMATION	. 8
	3.1 GENERAL DESCRIPTION OF FUT	8
	3.2 CONFIGURATION OF SYSTEM UNDER TEST	10
	3.4 TEST ITEM AND TEST CONFIGURATION	11
4		
	4.1 OUTPUT POWER MEASUREMENT	14
	4.4 PEAK TO AVERAGE RATIO	29
	4.5.2 TEST SETUP	32
	4.7 RADIATED EMISSION MEASUREMENT	40
		_
	SUMMARY OF TEST RESULTS 6 2.1 MEASUREMENT UNCERTAINTY 6 GENERAL INFORMATION 8 3.1 GENERAL DESCRIPTION OF EUT 8 3.2 CONFIGURATION OF SYSTEM UNDER TEST 10 3.3 DESCRIPTION OF SUPPORT UNITS 11 3.4 TEST ITEM AND TEST CONFIGURATION 11 3.5 GENERAL DESCRIPTION OF APPLIED STANDARDS 13 TEST TYPES AND RESULTS 14 4.1 OUTPUT POWER MEASUREMENT 14 4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT 14 4.1.2 TEST PROCEDURES 14 4.1.3 TEST SETUP 15 4.1.4 TEST RESULTS 16 4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT 21 4.2.2 TEST PROCEDURE 21 4.2.3 TEST SETUP 21 4.2.4 TEST RESULTS 26 4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT 26 4.3.2 TEST SETUP 26 4.3.3 TEST PROCEDURES 26 4.3.4 TEST RESULTS 26 4.3.2 TEST SETUP 26 4.3.3 TEST PROCEDURES 29 4.4.1 LIMITS OF PEAK TO AV	
		10
Rı	No. 34, Chenwulu Section, Guantai Rd., Tel: +86 769 8593 5656	

	4.7.4 TEST SETUP4.7.5 TEST RESULTS	
5	INFORMATION ON THE TESTING LABORATORIES	
•	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EU	-

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF170324W002-6	Original release	Apr. 14, 2017

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

1 CERTIFICATION

PRODUCT: smartphone

BRAND NAME: LANIX

MODEL NAME: Ilium L1120

APPLICANT: Corporativo Lanix S.A. de C.V.

TESTED: Mar. 25, 2017 ~ Apr. 13, 2017

TEST SAMPLE: Identical Prototype

STANDARDS: FCC Part 27, Subpart C, M

FCC Part 2

ANSI /TIA/EIA-603-D

The above equipment has been tested by **Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY :	Mourry	, DATE:	Apr. 14, 2017	
	(Harry Li/ Engineer)			

APPROVED BY: _____, DATE: _____, Apr. 14, 2017

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 27 & Part 2					
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK		
2.1046 27.50(h)(2)	Equivalent Isotropically Radiated Power	PASS	Meet the requirement of limit.		
2.1055 27.54 Frequency Stability		PASS	Meet the requirement of limit.		
2.1049 27.53(m)(6) Occupied Bandwidth		PASS	Meet the requirement of limit.		
27.50(d)(5)	Peak to average ratio	PASS	Meet the requirement of limit.		
2.1051 27.53(m)(4)(6)	Band Edge Measurements		Meet the requirement of limit.		
2.1051 27.53(m)(4)(6)	Conducted Spurious Emissions	PASS	Meet the requirement of limit.		
2.1053 27.53(m)(4)(6)	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -3.02dB at 38.73MHz.		

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.70dB
	9KHz ~ 30MHz	2.90dB
Radiated emissions	30MHz ~ 1GMHz	4.06dB
Nadiated emissions	1GHz ~ 18GHz	4.58dB
	18GHz ~ 40GHz	1.94dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

TEST SITE AND INSTRUMENTS 2.2

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR7	101494	Mar. 05,17	Mar. 04,18
Signal and Spectrum Analyzer	Rohde&Schwarz	FSV7	102331	Nov. 04,16	Nov. 03,17
Signal and Spectrum Analyzer	Rohde&Schwarz	FSV40	101094	Mar. 05,17	Mar. 04,18
Bilog Antenna 1	Teseq	CBL 6111D	30643	Jul. 14, 16	Jul. 13, 17
Bilog Antenna 2	Teseq	CBL 6111D	27089	Jul. 14, 16	Jul. 13, 17
Loop antenna	Daze	ZN30900A	0708	Nov. 28, 16	Nov. 27, 17
Horn Antenna (1GHz -18GHz)	ETS -Lindgren	3117	00062558	May 18,16	May 17,17
Horn Antenna (1GHz -18GHz)	ETS -Lindgren	3117	00062557	May 18,16	May 17,17
10m Semi-anechoic Chamber	CHANGLING	21.4m*12.1m*8 .8m	NSEMC006	Mar. 12,16	Mar. 11,18
Test Software	E3	V 9.160323	N/A	N/A	N/A
Test Software	ADT	ADT_Radiated _V7.6.15.9.2	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SM A	1505	Jul. 27, 16	Jul. 26, 17
Horn Antenna (15GHz-40GHz)	SCHWARZBECK	BBHA 9170	BBHA9170147	Mar. 02,17	Mar. 01,18
Horn Antenna (15GHz-40GHz)	SCHWARZBECK	BBHA 9170	BBHA9170242	Mar. 02,17	Mar. 01,18
Amplifier	Burgeon	BPA-530	100220	Mar. 05,17	Mar. 04,18
Amplifier (9kHz-1GHz)	SONOMA	310D	186955	Feb. 10,17	Feb. 09,18
Pre-Amplifier(1-18G)	HP	8449B	3008A00409	Apr. 25,16	Apr. 24,17
Pre-Amplifier (18GHz-40GHz)	EMCI	EMC 184045	980102	Nov. 04,16	Nov. 03,17
Humid & Temp Programmable Tester	Haida	HD-2257	110807201	Sep.05,16	Sep. 04,17
Signal Generator	Agilent	N5183A	MY50140980	Nov. 04,16	Nov. 03,17

- NOTE: 1. The calibration interval of the above test instruments is 12 months or 24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
 - 2. The test was performed in 10m Semi-anechoic Chamber and RF Oven Room.
 - 3. The horn antenna is used only for the measurement of emission frequency above 1GHz if tested.
 - 4. The FCC Site Registration No. is 502831.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	smartphone			
MODEL NAME	Ilium L1120			
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.85Vdc (Li-ion, battery)			
MODULATION TECHNOLOGY	LTE Band 7 QPSK, 16QAM			
	LTE Band 7 Channel Bandwidth: 5MHz	2502.5MHz ~ 2567.5MHz		
FREQUENCY RANGE	LTE Band 7 Channel Bandwidth: 10MHz	2505MHz ~ 2565MHz		
TREGOLIGITIANOL	LTE Band 7 Channel Bandwidth: 15MHz	2507.5MHz ~ 2562.5MHz		
	LTE Band 7 Channel Bandwidth: 20MHz	2510MHz ~ 2560MHz		
	LTE Band 7	QPSK: 4M49G7D		
	Channel Bandwidth: 5MHz	16QAM: 4M48W7D		
	LTE Band 7	QPSK: 8M95G7D		
EMISSION DESIGNATOR	Channel Bandwidth: 10MHz	16QAM: 8M95W7D		
	LTE Band 7 Channel Bandwidth: 15MHz LTE Band 7 Channel Bandwidth: 20MHz	QPSK: 13M4G7D		
		16QAM: 13M4W7D		
		QPSK: 17M9G7D		
		16QAM: 17M9W7D		
	LTE Band 7 Channel Bandwidth: 5MHz	263mW		
MAX. EIRP POWER	LTE Band 7 Channel Bandwidth: 10MHz	284mW		
III/O. LIICI I OVILIC	LTE Band 7 Channel Bandwidth: 15MHz	272mW		
	LTE Band 7 Channel Bandwidth: 20MHz	236mW		
ANTENNA TYPE	Fixed Internal Antenna with 1.1dBi			
HW VERSION	V1			
SW VERSION Ilium L1120_TELCEL_SW_01				
I/O PORTS	Refer to user's manual			
DATA CABLE	USB cable: non-shielded, detachable, 1.0m Earphone cable: non-shielded, detachable, 1.0m			
NOTE:				

NOTE

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

2. The EUT was powered by the following adapter:

ADAPTER	
BRAND:	Lanix
MODEL:	Ilium L1120-C
INPUT:	AC 100-240V, 250mA
OUTPUT:	DC 5V, 1550mA

3. The EUT matched the following USB cable and Earphone:

	 	
USB CABLE		
BRAND:	LANIX	
MODEL:	Ilium L1120	
SIGNAL LINE:	1.0 METER	

EARPHONE	
BRAND:	LANIX
MODEL:	llium L1120
SIGNAL LINE:	1.0 METER

4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

3.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

FOR CONDUCTED & E.I.R.P TEST

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	DC source	LONG WEI	PS-6403D	010934269	N/A
2	PC	HP	A6608CN	3CR83825X3	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	DC Line: Unshielded, Detachable 1.0m
2	AC Line: Unshielded, Detachable 1.5m

NOTE: All power cords of the above support units are non shielded (1.8m).

3.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on Y-plane for EIRP and X-axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	DESCRIPTION
Α	EUT + Adapter + USB Cable with LTE link
В	EUT + Battery with LTE link

Tel: +86 769 8593 5656

Bureau Veritas Shenzhen Co., Ltd.

LTE BAND 7

EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	CHANNEL BANDWIDTH	MODULATION	MODE
		20775 to 21425	20775, 21100, 21425	5MHz	QPSK, 16QAM	1 RB / 0 RB Offset
В	EIRP	20800 to 21400	20800, 21100, 21400	10MHz	QPSK, 16QAM	1 RB / 0 RB Offset
ь	EIRP	20825 to 21375	20825, 21100, 21375	15MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		20850 to 21350	20850, 21100, 21350	20MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		20775 to 21425	20775, 21425	5MHz	QPSK	1 RB / 0 RB Offset
В	FREQUENCY	20800 to 21400	20800, 21400	10MHz	QPSK	1 RB / 0 RB Offset
В	STABILITY	20825 to 21375	20825, 21375	15MHz	QPSK	1 RB / 0 RB Offset
		20850 to 21350	20850, 21350	20MHz	QPSK	1 RB / 0 RB Offset
		20775 to 21425	20775, 21100, 21425	5MHz	QPSK, 16QAM	25 RB / 0 RB Offset
В	OCCUPIED	20800 to 21400	20800, 21100, 21400	10MHz	QPSK, 16QAM	50 RB / 0 RB Offset
Ь	BANDWIDTH	20825 to 21375	20825, 21100, 21375	15MHz	QPSK, 16QAM	75 RB / 0 RB Offset
		20850 to 21350	20850, 21100, 21350	20MHz	QPSK, 16QAM	100 RB / 0 RB Offset
		20775 to 21425	20775, 21100, 21425	5MHz	QPSK, 16QAM	1 RB / 0 RB Offset
В	PEAK TO	20800 to 21400	20800, 21100, 21400	10MHz	QPSK, 16QAM	1 RB / 0RB Offset
В	AVERAGE RATIO	20825 to 21375	20825, 21100, 21375	15MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		20850 to 21350	20850, 21100, 21350	20MHz	QPSK, 16QAM	1 RB / 0 RB Offset
			20775	5MHz	QPSK	1 RB / 0 RB Offset
		20775 to 21425	20113	SIVILIZ	या अर	25 RB / 0 RB Offset
			21425	5MHz	QPSK	1 RB / 24 RB Offset
						25 RB / 0 RB Offset
			20800	10MHz	QPSK	1 RB / 0 RB Offset
		20800 to 21400				50 RB / 0 RB Offset
			21400	10MHz	QPSK	1 RB / 49 RB Offset
	DANID ED 0E					50 RB / 0 RB Offset
В	BAND EDGE		20825	15MHz	QPSK	1 RB / 0 RB Offset
		20825 to 21375				75 RB / 0 RB Offset
			21375	15MHz	QPSK	1 RB / 74 RB Offset
			2.0.0		Q. 5.1	75 RB / 0 RB Offset
			20050	2011	ODCK	1 RB / 0 RB Offset
		20050 to 21250	20850	20MHz	QPSK	100 RB / 0 RB Offset
		20850 to 21350	04050	001411	OPOL	1 RB / 99 RB Offset
			21350	20MHz	QPSK	100 RB / 0 RB Offset
		20775 to 21425	21100	5MHz	QPSK	1 RB / 0 RB Offset
	CONDCUDETED	20800 to 21400	21100	10MHz	QPSK	1 RB / 0RB Offset
В	EMISSION	20825 to 21375	21100	15MHz	QPSK	1 RB / 0 RB Offset
		20850 to 21350	21100	20MHz	QPSK	1 RB / 0 RB Offset
		20775 to 21425	20775, 21100, 21425	5MHz	QPSK	1 RB / 0 RB Offset
^	RADIATED	20800 to 21400	21100	10MHz	QPSK	1 RB / 0RB Offset
Α	EMISSION	20825 to 21375	21100	15MHz	QPSK	1 RB / 0 RB Offset
		20850 to 21350	21100	20MHz	QPSK	1 RB / 0 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
EIRP	24deg. C, 60%RH	3.85Vdc from Battery	Wenliang Wu
FREQUENCY STABILITY	24deg. C, 61%RH	3.85Vdc from Battery	Wenliang Wu
OCCUPIED BANDWIDTH	24deg. C, 61%RH	3.85Vdc from Battery	Wenliang Wu
PEAK TO AVERAGE RATIO	24deg. C, 61%RH	3.85Vdc from Battery	Moon Xiong
BAND EDGE	24deg. C, 61%RH	3.85Vdc from Battery	Moon Xiong
CONDCUDETED EMISSION	24deg. C, 61%RH	3.85Vdc from Battery	Moon Xiong
RADIATED EMISSION	23deg. C, 60%RH	5Vdc from adapter	Tony Zou

3.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2

FCC 47 CFR Part 27

KDB 971168 D01 Power Meas License Digital Systems v02r02

ANSI/TIA/EIA-603-D

NOTE: All test items have been performed and recorded as per the above standards.

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated peak output power shall be according to the specific rule Part 27.50(h)(2) that "User stations are limited to 2 watts" and 27.50(i) specific that "Peak transmit power must be measure over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage."

4.1.2 TEST PROCEDURES

EIRP MEASUREMENT:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 10MHz for LTE mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G.
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.

CONDUCTED POWER MEASUREMENT:

- a. The EUT was set up for the maximum power with LTE link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 TEST SETUP

EIRP MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.4 TEST RESULTS

AVERAGE CONDUCTED OUTPUT POWER (dBm)

				LTE Band 7			
BW	Modulation	RB	RB	Low CH 20775	Mid CH 21100	High CH 21425	MPR
DIV	Woddiation	Size	Offset	Frequency 2502.5 MHz	Frequency 2535 MHz	Frequency 2567.5 MHz	IVIFIX
		1	0	22.58	22.61	22.39	0
		1	12	22.53	22.56	22.34	0
		1	24	22.45	22.48	22.26	0
	QPSK	12	0	21.52	21.55	21.33	1
		12	6	21.42	21.45	21.23	1
		12	13	21.35	21.38	21.16	1
5 MHz		25	0	21.43	21.46	21.24	1
3 IVITIZ		1	0	21.79	21.82	21.60	1
		1	12	21.58	21.61	21.39	1
		1	24	21.45	21.48	21.26	1
	16QAM	12	0	20.50	20.53	20.31	2
		12	6	20.41	20.44	20.22	2
		12	13	20.35	20.38	20.16	2
		25	0	20.42	20.45	20.23	2
BW	Modulation	RB Size	RB Offset	Low CH 20800	Mid CH 21100	High CH 21400	MPR
DVV				Frequency 2505 MHz	Frequency 2535 MHz	Frequency 2565 MHz	WIFIX
		1	0	22.62	22.65	22.43	0
		1	24	22.57	22.60	22.38	0
		1	49	22.49	22.52	22.30	0
	QPSK	25	0	21.56	21.59	21.37	1
		25	12	21.46	21.49	21.27	1
		25	25	21.39	21.42	21.20	1
40 MH-		50	0	21.47	21.50	21.28	1
10 MHz		1	0	21.83	21.86	21.64	1
		1	24	21.62	21.65	21.43	1
		1	49	21.49	21.52	21.30	1
	16QAM	25	0	20.54	20.57	20.35	2
		25	12	20.45	20.48	20.26	2
		25	25	20.39	20.42	20.20	2
		50	0	20.46	20.49	20.27	2

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

No. 34, Chenwulu Section, Guantai Rd., Houjie Town, Dongguan City, Guangdong 523942, China Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

				LTE Band 7			
BW	Modulation	RB	RB	Low CH 20825	Mid CH 21100	High CH 21375	MDD
BW	Wodulation	Size	Offset	Frequency 2507.5 MHz	Frequency 2535 MHz	Frequency 2562.5 MHz	MPR
		1	0	22.68	22.71	22.49	0
		1	37	22.63	22.66	22.44	0
		1	74	22.55	22.58	22.36	0
	QPSK	36	0	21.62	21.65	21.43	1
		36	19	21.52	21.55	21.33	1
		36	39	21.45	21.48	21.26	1
45 MU-		75	0	21.53	21.56	21.34	1
15 MHz		1	0	21.89	21.92	21.70	1
		1	37	21.68	21.71	21.49	1
	16QAM	1	74	21.55	21.58	21.36	1
		36	0	20.60	20.63	20.41	2
		36	19	20.51	20.54	20.32	2
		36	39	20.45	20.48	20.26	2
		75	0	20.52	20.55	20.33	2
BW	Modulation	RB	RB	Low CH 20850	Mid CH 21100	High CH 21350	MDD
DW		Size	Offset	Frequency 2510 MHz	Frequency 2535 MHz	Frequency 2560 MHz	MPR
		1	0	22.71	22.74	22.52	0
		1	50	22.66	22.69	22.47	0
		1	99	22.58	22.61	22.39	0
	QPSK	50	0	21.65	21.68	21.46	1
		50	25	21.55	21.58	21.36	1
		50	50	21.48	21.51	21.29	1
00 8411		100	0	21.56	21.59	21.37	1
20 MHz		1	0	21.92	21.95	21.73	1
		1	50	21.71	21.74	21.52	1
		1	99	21.58	21.61	21.39	1
	16QAM	50	0	20.63	20.66	20.44	2
		50	25	20.54	20.57	20.35	2
		50	50	20.48	20.51	20.29	2
		100	0	20.55	20.58	20.36	2

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

EIRP

LTE BAND 7

CHANNEL BANDWIDTH: 5MHz QPSK

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)	Limit (W)
20775	2502.5	-21.85	45.65	23.80	239.77	Н	2
21100	2535.0	-21.85	46.04	24.19	262.12	Н	2
21425	2567.5	-21.66	45.87	24.21	263.39	Н	2
20775	2502.5	-23.63	47.03	23.40	218.68	V	2
21100	2535.0	-23.56	46.57	23.01	199.99	V	2
21425	2567.5	-24.39	46.98	22.59	181.55	V	2

CHANNEL BANDWIDTH: 5MHz 16QAM

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)	Limit (W)
20775	2502.5	-22.68	45.65	22.97	198.06	Н	2
21100	2535.0	-22.87	46.04	23.17	207.25	Н	2
21425	2567.5	-22.76	45.87	23.11	204.46	Н	2
20775	2502.5	-24.46	47.03	22.57	180.63	V	2
21100	2535.0	-24.58	46.57	21.99	158.12	V	2
21425	2567.5	-25.49	46.98	21.49	140.93	V	2

CHANNEL BANDWIDTH: 10MHz QPSK

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)	Limit (W)
20800	2505.0	-21.66	45.65	23.99	250.55	Н	2
21100	2535.0	-21.79	46.04	24.25	265.77	Н	2
21400	2565.0	-21.53	46.07	24.54	284.12	Н	2
20800	2505.0	-23.44	47.18	23.74	236.37	V	2
21100	2535.0	-23.50	46.57	23.07	202.77	V	2
21400	2565.0	-24.26	47.06	22.80	190.72	V	2

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

CHANNEL BANDWIDTH: 10MHz 16QAM

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)	Limit (W)
20800	2505.0	-22.81	45.65	22.84	192.26	Н	2
21100	2535.0	-22.89	46.04	23.15	206.30	Н	2
21400	2565.0	-22.69	46.07	23.38	217.52	Н	2
20800	2505.0	-24.59	47.18	22.59	181.38	V	2
21100	2535.0	-24.60	46.57	21.97	157.40	V	2
21400	2565.0	-25.42	47.06	21.64	146.02	V	2

CHANNEL BANDWIDTH: 15MHz QPSK

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)	Limit (W)
20825	2507.5	-21.67	45.63	23.96	249.06	Н	2
21100	2535.0	-21.86	46.04	24.18	261.52	Н	2
21375	2562.5	-21.60	45.94	24.34	271.52	Н	2
20825	2507.5	-23.45	47.39	23.94	247.69	V	2
21100	2535.0	-23.57	46.57	23.00	199.53	V	2
21375	2562.5	-24.33	47.00	22.67	184.88	V	2

CHANNEL BANDWIDTH: 15MHz 16QAM

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)	Limit (W)
20825	2507.5	-22.53	45.63	23.10	204.31	Н	2
21100	2535.0	-22.73	46.04	23.31	214.04	Н	2
21375	2562.5	-22.45	45.94	23.49	223.25	Н	2
20825	2507.5	-24.31	47.39	23.08	203.19	V	2
21100	2535.0	-24.44	46.57	22.13	163.31	V	2
21375	2562.5	-25.18	47.00	21.82	152.02	V	2

CHANNEL BANDWIDTH: 20MHz QPSK

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)	Limit (W)
20850	2510.0	-22.25	45.80	23.55	226.41	Н	2
21100	2535.0	-22.31	46.04	23.73	235.78	Н	2
21350	2560.0	-22.18	45.83	23.65	231.90	Н	2
20850	2510.0	-24.03	47.21	23.18	207.97	V	2
21100	2535.0	-24.02	46.57	22.55	179.72	V	2
21350	2560.0	-24.91	47.07	22.16	164.40	V	2

CHANNEL BANDWIDTH: 20MHz 16QAM

Channel	Frequency (MHz)	SPA LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)	Limit (W)
20850	2510.0	-23.18	45.80	22.62	182.77	Н	2
21100	2535.0	-23.38	46.04	22.66	184.29	Н	2
21350	2560.0	-23.01	45.83	22.82	191.56	Н	2
20850	2510.0	-24.96	47.21	22.25	167.88	V	2
21100	2535.0	-25.09	46.57	21.48	140.48	V	2
21350	2560.0	-25.74	47.07	21.33	135.80	V	2

REMARKS: 1. EIRP Output Power (dBm) = SPA LVL (dBm) + Correction Factor (dB). 2. Correction factor (dB) = Free Space Loss + Antenna Factor + Cable Loss

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

4.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5\,^{\circ}\mathrm{C}$ during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.3 TEST SETUP

Report Version 1

4.2.4 TEST RESULTS

LTE BAND 7

FREQUENCY ERROR VS. VOLTAGE

	5M		
VOLTAGE (Volts)	FREQUENCY	LIMIT (ppm)	
	Low Channel	High Channel	
3.85	0.0012	0.0009	2.5
3.44	0.0009	0.0008	2.5
4.4	0.0008	0.0008	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.44Vdc to 4.4Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

	5N		
TEMP. (℃)	FREQUENCY	LIMIT (ppm)	
	Low Channel	High Channel	
-30	-0.0044	-0.0044	2.5
-20	-0.0041	-0.0042	2.5
-10	-0.0037	-0.0037	2.5
0	-0.0034	-0.0034	2.5
10	-0.0032	-0.0033	2.5
20	-0.0027	-0.0027	2.5
30	-0.0024	-0.0024	2.5
40	-0.0020	-0.0021	2.5
50	-0.0015	-0.0016	2.5
60	-0.0009	-0.0009	2.5

FREQUENCY ERROR VS. VOLTAGE

	100		
VOLTAGE (Volts)	FREQUENCY	LIMIT (ppm)	
	Low Channel	High Channel	
3.85	0.0009	0.0011	2.5
3.44	0.0009	0.0009	2.5
4.4	0.0007	0.0008	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.44Vdc to 4.4Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

	101	10MHz			
TEMP. (℃)	FREQUENCY	LIMIT (ppm)			
	Low Channel High Channel				
-30	-0.0044	-0.0041	2.5		
-20	-0.0041	-0.0038	2.5		
-10	-0.0036	-0.0033	2.5		
0	-0.0034	-0.0031	2.5		
10	-0.0032	-0.0030	2.5		
20	-0.0029	-0.0027	2.5		
30	-0.0023	-0.0021	2.5		
40	-0.0021	-0.0019	2.5		
50	-0.0017	-0.0015	2.5		
60	-0.0013	-0.0012	2.5		

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

FREQUENCY ERROR VS. VOLTAGE

	150		
VOLTAGE (Volts)	FREQUENCY	LIMIT (ppm)	
	Low Channel	High Channel	
3.85	0.0010	0.0011	2.5
3.44	0.0008	0.0009	2.5
4.4	0.0007	0.0007	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.44Vdc to 4.4Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

	150		
TEMP. (°C)	FREQUENCY	LIMIT (ppm)	
	Low Channel	High Channel	
-30	-0.0042	-0.0041	2.5
-20	-0.0039	-0.0038	2.5
-10	-0.0037	-0.0036	2.5
0	-0.0033	-0.0031	2.5
10	-0.0029	-0.0027	2.5
20	-0.0027	-0.0025	2.5
30	-0.0023	-0.0020	2.5
40	-0.0017	-0.0014	2.5
50	-0.0015	-0.0012	2.5
60	-0.0011	-0.0008	2.5

FREQUENCY ERROR VS. VOLTAGE

	201		
VOLTAGE (Volts)	FREQUENCY	LIMIT (ppm)	
	Low Channel	High Channel	
3.85	0.0011	0.0010	2.5
3.44	0.0009	0.0008	2.5
4.4	0.0008	0.0005	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.44Vdc to 4.4Vdc.

FREQUENCY ERROR vs. TEMPERATURE.

	201	20MHz			
TEMP. (°C)	FREQUENCY	LIMIT (ppm)			
	Low Channel				
-30	-0.0040	-0.0043	2.5		
-20	-0.0038	-0.0037	2.5		
-10	-0.0034	-0.0032	2.5		
0	-0.0029	-0.0029	2.5		
10	-0.0026	-0.0025	2.5		
20	-0.0023	-0.0019	2.5		
30	-0.0017	-0.0013	2.5		
40	-0.0015	-0.0009	2.5		
50	-0.0012	-0.0004	2.5		
60	-0.0005	-0.0002	2.5		

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.3.2 TEST SETUP

4.3.3 TEST PROCEDURES

- a. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.4 TEST RESULTS

LTE BAND 7							
CHANNEL BANDWIDTH: 5MHz CHANNEL BANDWIDTH: 10MHz							
CHANNEL	99% OCCUPIED BANDWIDTH (MHz) CHANNEL		FREQUENCY 99% OCCUP				
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM
20775	2502.5	4.48	4.48	20800	2505	8.94	8.93
21100	2535	4.49	4.48	21100	2535	8.95	8.95
21425	2567.5	4.49	4.48	21400	2565	8.93	8.95

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

LTE BAND 7							
CHANNEL BANDWIDTH: 15MHz CHANNEL BANDWIDTH: 20MHz							
CHANNEL	FREQUENCY		CUPIED OTH (MHz)	CHANNEL	FREQUENCY	99% OCCUPIED BANDWIDTH (MHz	
	(MHz)	QPSK	16QAM		(MHz)	(MHz) QPSK 1	16QAM
20825	2507.5	13.43	13.41	20850	2510	17.90	17.88
21100	2535	13.41	13.42	21100	2535	17.92	17.87
21375	2562.5	13.41	13.42	21350	2560	17.91	17.89

4.4 PEAK TO AVERAGE RATIO

4.4.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.4.2 TEST SETUP

4.4.3 TEST PROCEDURES

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

Tel: +86 769 8593 5656

Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

4.4.4 TEST RESULTS

LTE BAND 7

CH	ANNEL BANDV	VIDTH: 5MI	-lz	CHANNEL BANDWIDTH: 10MHz								
CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)		CHANNEL	FREQUENCY	PEAK TO AVERAGE RATIO (dB)						
		QPSK	16QAM		(MHz)	QPSK	16QAM					
20775	2502.5	5.78	6.38	20800	2505	5.64	6.33					
21100	2535	5.78	6.45	21100	2535	5.76	6.38					
21425	2567.5	5.71	6.36	21400	2565	5.69	6.37					

CHA	NNEL BANDW	IDTH: 15M	Hz	CHANNEL BANDWIDTH: 20MHz				
CHANNEL	FREQUENCY (MHz)	PEAK TO AVERAGE RATIO (dB)		CHANNEL	FREQUENCY	PEAK TO AVERAGE RATIO (dB)		
		QPSK	16QAM		(MHz)	QPSK	16QAM	
20825	2507.5	5.59	6.34	20850	2510	5.67	6.36	
21100	2535	5.71	6.41	21100	2535	5.73	6.45	
21375	2562.5	5.73	6.36	21350	2560	5.68	6.41	

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

4.5 BAND EDGE MEASUREMENT

4.5.1 LIMITS OF BAND EDGE MEASUREMENT

According to FCC 27.53(m)(4) specified that For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. For mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed.

4.5.2 TEST SETUP

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

4.5.3 TEST PROCEDURES

- a. The EUT was set up for the maximum peak power with LTE link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels (low and high operational frequency range.).
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. The center frequency of spectrum is the band edge frequency and span is 35MHz. RBW of the spectrum is 100kHz and VBW of the spectrum is 300kHz (Channel bandwidth 5MHz).
- d. The center frequency of spectrum is the band edge frequency and span is 50MHz. RBW of the spectrum is 200kHz and VBW of the spectrum is 1MHz (Channel bandwidth 10MHz).
- e. The center frequency of spectrum is the band edge frequency and span is 60MHz. RBW of the spectrum is 300kHz and VBW of the spectrum is 1MHz (Channel bandwidth 15MHz).
- f. The center frequency of spectrum is the band edge frequency and span is 80MHz. RBW of the spectrum is 500kHz and VBW of the spectrum is 2MHz (Channel bandwidth 20MHz).
- g. Record the max trace plot into the test report.

4.5.4 TEST RESULTS

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

4.6 CONDUCTED SPURIOUS EMISSIONS

4.6.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 55 +10 log10(P) dB. The limit of emission is equal to -25dBm.

4.6.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 30MHz to 26GHz for LTE Band 7. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz are used for conducted emission measurement.

4.6.3 TEST SETUP

4.6.4 TEST RESULTS

LTE BAND 7

4.7 RADIATED EMISSION MEASUREMENT

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 55 +10 log10(P) dB. The limit of emission is equal to -25dBm.

4.7.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G.
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.

NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.7.3 DEVIATION FROM TEST STANDARD

No deviation

Page 40 of 57

4.7.4 TEST SETUP

<Below 30MHz>

<Above 30MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.5 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

9 KHz - 30 KHz data: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

30 MHz - 1GHz data:

LTE Band 7:

MODE	TX channel 21100	FREQUENCY RANGE	Below 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Tony Zou					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

	Freq	Level	Read Level	Limit Line	Over Limit	Factor	Remark	Pol/Phase
-	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1 PP	38.730	-28.02	-40.18	-25.00	-3.02	12.16	Peak	Horizontal
2	102.750	-40.45	-28.72	-25.00	-15.45	-11.73	Peak	Horizontal
3	130.880	-49.40	-32.85	-25.00	-24.40	-16.55	Peak	Horizontal
4	159.010	-50.24	-31.71	-25.00	-25.24	-18.53	Peak	Horizontal
5	195.870	-50.64	-33.30	-25.00	-25.64	-17.34	Peak	Horizontal
6	345.250	-67.12	-54.83	-25.00	-42.12	-12.29	Peak	Horizontal

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

MODE	TX channel 21100	FREQUENCY RANGE	Below 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Tony Zou					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

	Freq	Level	Read Level			Factor	Remark	Pol/Phase
_	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1 PP	42.610	-30.19	-27.92	-25.00	-5.19	-2.27	Peak	Vertical
2	102.750	-39.89	-28.85	-25.00	-14.89	-11.04	Peak	Vertical
3	130.880	-42.36	-30.80	-25.00	-17.36	-11.56	Peak	Vertical
4	195.870	-45.86	-34.70	-25.00	-20.86	-11.16	Peak	Vertical
5	265.710	-69.81	-58.36	-25.00	-44.81	-11.45	Peak	Vertical
6	348.160	-66.04	-54.92	-25.00	-41.04	-11.12	Peak	Vertical

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

ABOVE 1GHz

Note: For higher frequency, the emission is too low to be detected.

LTE Band 7

CHANNEL BANDWIDTH: 5MHz / QPSK

CH 20775

MODE	TX channel 20775	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Tony Zou					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

MODE	TX channel 20775	FREQUENCY RANGE	Above 1000MHz						
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER DC 5V from adapter							
TESTED BY	ED BY Tony Zou								
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									

	Freq	Level		Limit Line		Factor	Remark	Pol/Phase
-	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
	5004.000 7515.000							Vertical Vertical

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

CH 21100

MODE	TX channel 21100	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Tony Zou					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

		Read	Limit	0ver			
Freq	Level	Level	Line	Limit	Factor	Remark	Pol/Phase
MHz	dBm/m	dBm	dBm/m	dB	dB/m		
	abiii, iii	a Dill	abiii, iii	40	u0/		
1 DD 5070 000	20.46	47.00	25 00	11 10	0.46	DI-	
1 PP 5070.000	-39.46	-47.92	-25.00	-14.46	8.46	reak	Horizontal
2 7605.000	-41.16	-54.64	-25.00	-16.16	13.48	Peak	Horizontal

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

Test Report No.: RF170324W002-6

MODE TX channel 21100		FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Tony Zou					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

	Freq	Level		Limit Line		Factor	Remark	Pol/Phase
-	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1 PP	5070.000	-31.58	-39.57	-25.00	-6.58	7.99	Peak	Vertical
2	7605.000	-42.71	-55.70	-25.00	-17.71	12.99	Peak	Vertical

Report Version 1

CH 21425

MODE	TX channel 21425	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Tony Zou					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

Pol/Phase	Remark	Factor		Limit Line		Level	Freq	
-		dB/m	dB	dBm/m	dBm	dBm/m	MHz	
Horizontal Horizontal							5134.000 7702.000	1 2 PP

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

MODE	TX channel 21425	FREQUENCY RANGE	Above 1000MHz					
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter					
TESTED BY	TESTED BY Tony Zou							
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								

	Enga	Level		Limit		Factor	Remark	Pol/Phase	
	MHz	dBm/m	dBm	dBm/m	dB	dB/m			
1	5134.000	-44.40	-52.39	-25.00	-19.40	7.99	Peak	Vertical	
2 PP	7702.500	-42.60	-55.76	-25.00	-17.60	13.16	Peak	Vertical	

Report Version 1

CHANNEL BANDWIDTH: 10MHz/QPSK

MODE	TX channel 21100	FREQUENCY RANGE	Above 1000MHz						
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter						
TESTED BY	Tony Zou	Tony Zou							
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									

		Freq	Level		Limit Line		Factor	Remark	Pol/Phase
	-	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1		5070.000 7605.000							Horizontal Horizontal

MODE	TX channel 21100	FREQUENCY RANGE	Above 1000MHz					
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter					
TESTED BY	Tony Zou							
ANTEN	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							

	Freq	Level		Limit Line		Factor	Remark	Pol/Phase
-	MHz	dBm/m	dBm	dBm/m	dB	dB/m		-
	5070.000 7605.000							Vertical Vertical

CHANNEL BANDWIDTH: 15MHz/QPSK

MODE	TX channel 21100	FREQUENCY RANGE	Above 1000MHz						
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter						
TESTED BY	Tony Zou	Tony Zou							
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									

	Freq	Level		Limit Line		Factor	Remark	Pol/Phase
	MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1 P 2	P 5070.000 7605.000							Horizontal Horizontal

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

MODE	TX channel 21100	FREQUENCY RANGE	Above 1000MHz					
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter					
TESTED BY	Tony Zou							
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								

		Read	Limit	0ver			
Freq	Level	Level	Line	Limit	Factor	Remark	Pol/Phase
-							
MHz	dBm/m	dBm	dBm/m	dB	dB/m		
	,		,		,		
1 PP 5070.000	-32 50	-40 49	-25 00	-7 50	7 99	Poak	Vertical
1 11 3070.000	52.50	40.45	23.00	7.50	7.55	I Cuk	ver cicui
2 7605.000	-43.39	-56.38	-25.00	-18.39	12.99	Peak	Vertical

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

CHANNEL BANDWIDTH: 20MHz / QPSK

MODE	TX channel 21100	FREQUENCY RANGE	Above 1000MHz					
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter					
TESTED BY	TESTED BY Tony Zou							
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								

		Гпол	Lovel		Limit		Fastan	Pomonle	Dol /Dhasa
		Freq	revei	revei	Line	LIMIC	Factor	Remark	Pol/Phase
		MHz	dBm/m	dBm	dBm/m	dB	dB/m		
1	PP	5070.000	-40.32	-48.78	-25.00	-15.32	8.46	Peak	Horizontal
2		7605.000	-43.19	-56.67	-25.00	-18.19	13.48	Peak	Horizontal

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

MODE	TX channel 21100	FREQUENCY RANGE	Above 1000MHz			
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH	INPUT POWER	DC 5V from adapter			
TESTED BY	Tony Zou					
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						

Freq	Level		Limit Line		Factor	Remark	Pol/Phase
MHz	dBm/m	dBm	dBm/m	dB	dB/m		
5070.000 7605.000							Vertical Vertical

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

5 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, were founded in 2002 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Dongguan EMC/RF Lab:

Tel: +86-769-85935656 Fax: +86-769-85931080

Email: customerservice.dg@cn.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

6 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---

Tel: +86 769 8593 5656 Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com