Dr. Christian Aßmann

Methodenlehre der Statistik III

Übungsblatt 6

- 1. (Summe poissonverteilter ZV) Seien $\{X_i, i: 1 \to n\}$ unabhängig mit Parameter λ_i poissonverteilte Zufallsvariablen. Bestimmen Sie die Verteilung von $\sum_{i=1}^{n} X_i$.
- 2. (Quadratische Form normalverteilter ZV) Seien X_1 und X_2 zwei unabhängig standardnormalverteilte Zufallsvariablen. Bestimmen Sie die Verteilung von $Y = (X_1 + X_2)^2/2$.
- 3. (Summe und Differenz von ZV) Seien X_1 und X_2 zwei unabhängige Zufallsvariablen und $Y_1 = g_1(x_1, x_2) = X_1 + X_2$ und $Y_2 = g_2(x_1, x_2) = X_2 X_1$.
 - (a) Gehen Sie davon aus, dass X_1 und X_2 jeweils standardnormalverteilt sind und bestimmen Sie die gemeinsame Verteilung von Y_1 und Y_2 .
 - (b) Gehen Sie nun davon aus, dass X_1 und X_2 jeweils auf dem Interval (0,1) gleichverteilt sind und bestimmen Sie die gemeinsame Verteilung von Y_1 und Y_2 .
- 4. (Cauchy-Verteilung) Seien X_1 und X_2 zwei unabhängig standardnormalverteilte Zufallsvariablen. Betrachten Sie die Funktionen $Y_1 = X_1 + X_2$ und $Y_2 = X_1/X_2$.
 - (a) Bestimmen Sie die gemeinsame Verteilung von Y_1 und Y_2 .
 - (b) Geben Sie die Randverteilung von Y_2 an.
- 5. (Linearkombinationen normalverteilter ZV) Seien $\{X_i, i: 1 \to 3\}$ unabhängig standardnormalverteilte Zufallsvariablen. Betrachen Sie die folgenden Linearkombinationen $Y_1 = X_1$, $Y_2 = (X_1 + X_2)/2$ und $Y_3 = (X_1 + X_2 + X_3)/3$ und ermitteln Sie ihre gemeinsame Verteilung.
- 6. (Invertierte Gammaverteilung) Sei X gammaverteilt mit einer Wahrscheinlichkeitsdichtefunktion

1

$$f(x) = \frac{1}{(n-1)!\beta^n} x^{n-1} e^{-x/\beta} I_{(0,\infty)}(x) \quad \text{mit } n \in \mathbb{N} \quad \text{und } \beta > 0 \ .$$

Ermitteln Sie die Wahrscheinlichkeitsdichtefunktion von Y = 1/X.