- **Q.9** A function F(A, B, C) defined by three Boolean variables A, B and C when expressed as sum of products is given by
- $F = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (\overline{A} \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C})$ where, $\overline{A}, \overline{B}$ and \overline{C} are the complements of the respective variables. The product of sums (POS) form of the function F is
- (A) $(A + B + C) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + C)$
- (B) $(\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (A + \overline{B} + \overline{C})$
- (C) $(A+B+\overline{C})\cdot (A+\overline{B}+\overline{C})\cdot (\overline{A}+B+\overline{C})\cdot (\overline{A}+\overline{B}+C)\cdot (\overline{A}+\overline{B}+C)$
- (D) $(\overline{A} + \overline{B} + C) \cdot (\overline{A} + B + C) \cdot (A + \overline{B} + C) \cdot (A + B + \overline{C}) \cdot (A + B + C)$