압력 레이크의 각 프로브를 위치별로 P1(벽면근처 프로브)에서 P7(덕트 중심부 측정용 프로브)으로 구분하면, PLA 변화에 따라 프로브에서의 전압력값은 표 3.1.1.1과 같다.

PLA	9.8V	8V	6V	4V	2V	0V
P1 [psi]	18.429	18.499	18.760	18.865	18.917	19.041
P2 [psi]	18.845	18.899	19.033	19.084	19.185	19.186
P3 [psi]	19.052	19.010	19.170	19.193	19.185	19.258
P4 [psi]	19.052	19.010	19.170	19.193	19.185	19.258
P5 [psi]	19.052	19.010	19.170	19.193	19.185	19.258
P6 [psi]	19.052	19.010	19.170	19.193	19.185	19.186
P7 [psi]	19.052	19.010	19.170	19.193	19.185	19.186

Table 3.1.1.1 각 프로브에서의 전압력

벽면과 가까운 P1과 P2는 경계층의 영향으로 전압력은 중심부에 비해 약 3%정도 낮음을 알 수 있다. PLA 0V에서는 다른 PLA 조건과는 달리 중심부의 전압력이 낮아짐을 알 수 있다. 이는 입구덕트 내 유동이 균일하지 않음을 의미하며 전 PLA에서 입구덕트 내 전압력은 벽면부터 중심부까지 모두 측정되어야 한다.

Mn 0.7, 고도 18,000ft 및 표준대기조건에서 전압력 오차에 대한 평가를 수행하였다. 그 결과 기존 전압력 레이크의 공기유량 변화에 따른 전압력 오차는 표 3.1.1.2와 같이 평균 0.031로 평가되었다.

PLA setting	9.8V	8V	6V	4V	2V	0V
레이크 전압력 $P_{t,ind}$ [psi]	9.373	9.410	9.436	9.469	9.498	9.531
덕트 전압력 P_t [psi]	9.402	9.434	9.455	9.484	9.511	9.541
덕트 정압력 P_s [psi]	8.447	8.652	8.827	8.981	9.103	9.21
전압력 오차	0.031	0.031	0.031	0.031	0.033	0.03

Table 3.1.1.2. 엔진 추력에 따른 전압력 오차 평가결과

(2) 측정체계 고도화를 위한 Tare Load 시스템 기초연구

(가) 기존 추력측정시스템 및 Tare Load 시스템 점검

항우연에서 운용 중인 추력측정시스템은 밀폐된 엔진 시험부(test cell)와, 시험부 상부에 장착되어 엔진과 체결되는 직결형 추력대(thrust bed), 엔진입구로 공기를 공급하는 덕트로 구성되어 있다. 이 중 엔진입구로 공기를 공급하는 덕트는 엔진에 부착된 연료라인 및 다양한측정기기 라인에 대한 영향을 최소화하기 위하여 엔진의 전후 방향으로 자유롭게 움직일 수 있도록 teflon inlet seal과 슬라이딩 덕트로 구성되어 있다. 추력을 측정하는 센서는 로드셀을 이용하고 있으며, 로드셀로 가해지는 분력을 최소화하기 위하여 universal flexure가 장착되어 있다.