21-484 Notes JD Nir jnir@andrew.cmu.edu March 5, 2012

<u>Recall:</u> <u>Menger's Theorem:</u> If G is a graph and $x, y \in V(G)$, $xy \notin E(G)$ then the size of a minimal x-y separating set equals the maximum number of internally disjoint x-y paths.

Theorem (Dircac): Let G be a k-connected graph (with $k \geq 2$). Then for every set $S \subseteq V(G)$, |S| = k, there is a cycle $C \in G$ such that $S \subseteq V(C)$.

<u>Def:</u> Let G be a graph, $X \in V(G)$, $U \subseteq V(G) \setminus \{x\}$. An x, U-fan is a set of paths from x to vertices of U such that for every pair of paths the only common vertex is x.

<u>Lemma:</u> (Fan Lemma): A graph is k-connected iff it has at least k+1 vertices and for every vertex x and every set $U \subseteq V \setminus \{x\}$, $|U| \ge k$, there is an x, U-of size k.

<u>Proof:</u> Assume that G is k-connected. Let x be a vertex. Let U be a set of at least k other vertices in G.

Define G' by adding another vertex y and all the edges of the form uy for $u \in U$. G' is also k-connected since removing at most k-1 vertices leaves y connected to at least one vertex from U and also leaves G connected.

- \rightarrow A minimal x-y separating set is of size at least k.
- \rightarrow By Menger's Theorem there exists a set of k internally disjoint x-y paths in G'.
- \rightarrow We get an x, U-fan of size $\geq k$.

Assume that G satisfies the fan condition.

- $\delta(G) \ge k$
- let x and y be two non-adjacent vertices in G.
- let U = N(y)
 - $|U| \ge k$
 - $-x \notin U$
- \rightarrow By the assumption, there is an x, U-fan of size k.
- \rightarrow assing the edges between U and y we get a set of $\geq k$ internally disjoint x-y paths.
 - \Rightarrow (Menger's) the size of any x-y separating set $\geq k$.
- \Rightarrow G is k-connected

Proof: Induction on k.

k=2. Let x,y be two vertices of a 2-connected graph G.

- \rightarrow If $xy \in E(G)$ consider a third vertex z.
 - \rightarrow By 2-connectivity, $G \{x\}$ contains a y-z path p.
 - \rightarrow By 2-connectivity, $G-\{y\}$ contains a x–z path p'.

- \rightarrow There is an x-y path (in the x-y walk pp') not using the edge xy.
- \rightarrow together with xy we get a cycle.
- If $x,y \notin E(G)$, then by 2-connectivity and Menger's theorem, we get two internally disjoint x-y paths. \checkmark

 $\rightarrow k > 2$.

- \rightarrow \rightarrow G is k connected, $S \subseteq V(G)$ of size k.
- \rightarrow let $x \in S$.
- \rightarrow Since G is also k-1 connected, there is a cycle C containing all the vertices in $S \setminus \{x\}$. (Induction hypothesis)
- \rightarrow If |C| = k 1
- \rightarrow By the Fan lemma, there is an x, C-fan of size k-1.

- \rightarrow So there are internally disjoint paths from x to every vertex of C.
- \rightarrow taking two consecutive vertices y, x in X we get a new cycle x(path from x to y) (path of C from y to z) (path from z to x).
- \rightarrow Assume that $|C| \ge k$.

- \rightarrow Let $v_1, v_2, \ldots, v_{k-1}$ be the vertices of $S \setminus \{x\}$ ordered according to appearance on C.
- \rightarrow Let V_i be the v_i-v_{i+1} path on C. $(V_{k-1}$ is the $v_{k-1}-v_1$ path on C).
- \rightarrow By the fan lemma, k-connectivity og $G, |C| \ge k$, we gave j "disjoint" paths from x to C.
- \rightarrow The paths have k endpoints in C, so there is a set V_i containing two such endpoints y, z. (Pigeon-hole principle)
- \rightarrow The cycle (the x-y path) (the y-z segment on C out of V_i) (the z-x path) is the required cycle.