Измерение коэффициента поверхностного натяжения жидкости (2.5.1)

Павлушкин Вячеслав

17 апреля 2022 г.

1 Аннотация

В данной работе мы находим коэффициент поверхностного натяжения, с помощью иглы, колб с жидкостями и аспиратора, создающего разность давления.

2 Введение

Цель работы: 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

В работе используются: прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы; микроскоп.

3 Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление дается формулой Лапласа:

$$\Delta P = P_{int} - P_{ext} = \frac{2\sigma}{r},\tag{1}$$

где σ – коэффициент поверхностного натяжения, P_{int} и P_{ext} – давление внутри пузырька и снаружи, r – радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

4 Экспериментальная установка

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) B (рис. (1)). Тестовая жидкость (этиловый спирт) наливается в сосуд E. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла . Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP (1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора A. Кран K_2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K_2 заполняется водой. Затем кран K_2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K_1 , когда вода вытекает из неё по каплям. В колбах и , соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром.

Для стабилизации температуры исследуемой жидкости через рубашку D колбы непрерывно прогоняется вода из термостата.

Обычно кончик иглы лишь касается поверхности жидкости, чтобы исключить влияние гидростатического давления столба жидкости. Однако при измерении температурной зависимости коэффи-

Рис. 1: Рисунок экспериментальной установки

циента поверхностного натяжения возникает ряд сложностей. Во-первых, большая теплопроводность металлической трубки приводит к тому, что температура на конце трубки заметно ниже, чем в глубине жидкости. Во-вторых, тепловое расширение поднимает уровень жидкости при увеличении температуры.

Обе погрешности можно устранить, погрузив кончик трубки до самого дна. Полное давление, измеренное при этом микроманометром, равно

$$P = \Delta P + \rho q h$$
.

Заметим, что ρgh от температуры практически не зависит, так как подъём уровня жидкости компенсируется уменьшением её плотности (произведение ρg определяется массой всей жидкости и поэтому постоянно). Величину ρgh следует измерить двумя способами.

Во-первых, замерить величину $P_1=\Delta P'$, когда кончик трубки только касается поверхности жидкости. Затем при этой же температуре опустить иглу до дна и замерить $P_2=\rho gh+\Delta P''$ ($\Delta P'$, $\Delta P''$ – давление Лапласа). Из-за несжимаемости жидкости можно положить $\Delta P'=\Delta P''$ и тогда

$$\rho qh = P_2 - P_1$$
.

Во-вторых, при измерениях P_1 и P_2 замерить линейкой глубину погружения иглы h. Это можно сделать, замеряя расстояние между верхним концом иглы и любой неподвижной частью прибора при положении иглы на поверхности и в глубине колбы.

5 Ход работы

5.1 Измерение диаметра иглы

Измерим максимальное давление при пробулькивании пузырьков воздуха через спирт:

Р', дел.	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43	43
Р, Па	82.4						84.4									
$P_{ ext{makc}}$		83.4														
σ_P , Π a		$\sqrt{(\sigma_P^{\text{cuct}})^2 + (\sigma_P^{\text{случ}})^2} = \sqrt{2^2 + 0.25^2} \approx 2$														

Таблица 1: Результаты измерений в спирте

По формуле (1) найдем диаметр иглы:

$$d = rac{4\sigma_{
m c}}{P_{
m makc}} = (1.09 \pm 0.03)$$
 mm.

Результат полученный под микроскопом: $D = (1{,}00\pm0.05)$ мм, это означает, что диаметр найденный экспериментально достаточно точен.

5.2 Измерение температурной зависимости коэффициента поверхностного натяжения

Снимать будем двумя способами: при касании поверхности воды и при полном погружении иглы. Глубина погружения измеренная линейкой: $\Delta h = (1.30 \pm 0.07)$ см. Глубина погружения по разнице давлений из первого опыта: $\Delta P = (174 - 111) * 0.2 * 9.81 = 63 \pm 0.7, \ \Delta h = \frac{\Delta P}{\rho q} = (1.26 \pm 0.02).$

Пара таблиц данных (включать все, на мой взгляд, не целесообразно):

$T = 23^{\circ}\mathrm{C}$						
Вве	pxy	Внизу				
Р', Па	Р, Па	<i>P</i> ′, Па	Р, Па			
111.0	217.7	174.0	341.4			
111.0	217.7	174.0	341.4			
111.0	217.7	174.0	341.4			
111.0	217.7	174.0	341.4			
111.0	217.7	174.0	341.4			
111.0	217.7	174.0	341.4			

$T = 65.3^{\circ}{\rm C}$						
Вве	рху	Внизу				
<i>P</i> ′, Па	Р, Па	<i>P</i> ′, Па	Р, Па			
98.0	192.3	165.0	323.7			
98.0	192.3	165.0	323.7			
98.0	192.3	165.0	323.7			
99.0	194.2	165.0	323.7			
99.0	194.2	165.0	323.7			
99.0	194.2	165.0	323.7			

Таблица 2: Результаты измерений для воды

Рассчитывать коэффициент поверхностного натяжения будем по формуле:

$$\sigma = \frac{\Delta Pd}{4}.$$

Для измерений при опущенной игле учитываем глубину погружения, то есть $\Delta P = P - \rho g h$. Получаем таблицы:

Внизу						
<i>P</i> ′, Па	σ , $\frac{MH}{M}$	T, °C				
173	54.0 ± 0.5	25				
172	53.5 ± 0.5	30.5				
171	53.0 ± 0.5	35.5				
170	52.5 ± 0.5	40.5				
169	52.0 ± 0.5	45.5				
168	51.5 ± 0.5	50.2				
167	51.0 ± 0.5	55.2				
166	50.5 ± 0.5	60.3				
165	50.0 ± 0.5	65.3				

Вверху						
<i>P</i> ′, Па	$\sigma, \frac{MH}{M}$	T, °C				
111	54.5	23				
107	52.5	35.5				
105.75	51.9	40.6				
104	51.1	45.5				
100	49.1	50.2				
100	49.1	55.2				
100	49.1	60.3				
98.6	48.4	65.3				

Строим по ним графики зависимости $\sigma(T)$:

Рис. 2: График зависимости $\sigma(T)$, для погруженной иглы

Рис. 3: График зависимости $\sigma(T)$, для поднятой иглы

Температурные коэффициенты $\left(\frac{d\sigma}{dT}\right)$:

1. Погруженная игла:
$$k = (-9.8 \pm 0.5) \cdot 10^{-2} \; \frac{\mathrm{MH}}{\mathrm{M} \cdot \mathrm{K}}, \; \varepsilon \approx 5.1\%.$$

2. Поднятая игла:
$$k = (-15.0 \pm 1.5) \cdot 10^{-2} \; \frac{\mathrm{MH}}{\mathrm{M} \cdot \mathrm{K}}, \, \varepsilon \approx 10.2\%.$$

5.3 Графики других величин

Окончательно, с помощью полученных данных построим графики теплоты образования единицы поверхности жидкости: $q = -T \cdot \frac{d\sigma}{dT}$ и поверхностной энергии U единицы площади F: $\frac{U}{F} = \left(\sigma - T \cdot \frac{d\sigma}{dT}\right)$.

Графики построены используя данные погруженной иглы:

Рис. 4: График $\frac{U}{F}$

Рис. 5: График q

6 Вывод

В ходе работы:

- 1. Был экспериментально измерен диаметр иглы при помощи коэффициента поверхностного натяжения спирта. Полученный результат $d=(1.09\pm0.03)$ мм с достаточной точность совпадает с диаметром измеренным с помощью микроскопа.
- 2. Было измерено давление, создаваемое столбом жидкости при опускании иглы на $\Delta h = (1.3 \pm 0.1)$ см.
- 3. Получены коэффициенты поверхностного натяжения воды при различных ее температурах, например $\sigma=(54.0\pm0.5)\frac{\rm MH}{\rm M}$ при температуре 25 °C.
- 4. Так же было проведено сравнение воздействия различного положения иглы на результаты. Как мы можем увидеть, намного лучше эксперимент получается, при погруженной нити, так как, я думаю, что она хорошо прогревается вместе с водой, чего не происходит с иглой при касании границы воды.