

Electron-Informed Coarse-Graining Molecular Representation Learning for Real-World Molecular Physics

: Decomposition-Based Molecular Representation Learning for Predicting Molecular Properties in Real-World Chemical Experiments^{1,2}

Gyoung S. Na^a and **Chanyoung Park**^b

^aKorea Research Institute of Chemical Technology (KRICT)

^bKorea Advanced Institute of Science and Technology (KAIST) ngs0@krict.re.kr, cy.park@kaist.ac.kr

Paper and source code:

¹https://doi.org/10.1145/3690624.3709270

²https://github.com/ngs00/hedmol

Three Common Molecular Descriptors for Machine Learning

Characteristics of Three Essential Molecular Descriptors in Electron- and Atom-Level Information

Commonly Used Molecular Descriptors used in Machine Learning for Chemistry

Time complexity of standard quantum mechanical calculation methods

Limitations of Existing Methods

Basic Assumptions on Molecular Representation Learning and Its Limitations

| Pros and Cons of Existing Methods

- (Atom-level) 2D GNNs with 2D atom-level molecular structure [1, 2]
 - Pros: Low cost, Practicality, Generality
 - Cons: Low accuracy, Interpretability
- (Atom-level) 3D GNNs with public quantum mechanical datasets [3, 4, 5]
 - Pros: High accuracy
 - Cons: High cost
- (Electron-level) Domain-specific neural networks with quantum mechanical calculations [6, 7]
 - Pros: High accuracy, Interpretability
 - Cons: High cost, Generality

Basic Assumptions on Atom-level Methods (1 & 2)

- Assumption: Atom-level molecular structure is sufficient to embed the electron-level information
- However, electrons have uncertainty → Describing electron-level information using only atom-level descriptors is not accurate and chemically valid

Molecular Representation Learning for Real-World Applications

Molecular Representation Learning Methods for Complex and Large-Scale Molecules in Real-World Chemical Applications

Our work: Molecular representation learning method that can estimate electron-level information from atom-level 2D molecular structures
without expensive quantum mechanical calculations

We reformulated the molecular property prediction problem based on decomposed substructures.

$$y = g(G)$$
Original problem

Problem reformulation

$$y = (g \circ h)(\varepsilon_1, \varepsilon_2 \dots, \varepsilon_K)$$

Reformulated problem

- G: Atom-level 2D molecular structure (e.g., SMILES)
- ε_k : Electron-level information of the k-th substructure
- h: Learnable embedding function for ε_k

Electron-Informed Coarse-Graining Molecular Representation Learning for Predicting Experimentally-Measured Molecular Properties

The Overall Representation Learning and Prediction Processes of HEDMoL

- The input atom-level 2D molecular structure is decomposed into atom-level substructures $S_1, S_2, ..., S_K$.
- Electron-level information in readily accessible public databases (e.g., QM9) [8] is assigned to $S_1, S_2, ..., S_K$.
- Joint representation learning is conducted on the input molecular graph G_a and electron-informed subgraphs $G_1, G_2, ..., G_K$.

Electron-Informed Coarse-Graining Molecular Representation Learning for Predicting Experimentally-Measured Molecular Properties

The Overall Representation Learning and Prediction Processes of HEDMoL

Step 1: Substructure Decomposition

1 The input atom-level 2D molecular structure is decomposed into atom-level substructures S_1, S_2, \dots, S_K .

Electron-Informed Coarse-Graining Molecular Representation Learning for Predicting Experimentally-Measured Molecular Properties

The Overall Representation Learning and Prediction Processes of HEDMoL

- 1 The input atom-level 2D molecular structure is decomposed into atom-level substructures $S_1, S_2, ..., S_K$.
- Electron-level information in readily accessible public databases (e.g., QM9) [8] is assigned to $S_1, S_2, ..., S_K$.

Electron-Informed Coarse-Graining Molecular Representation Learning for Predicting Experimentally-Measured Molecular Properties

The Overall Representation Learning and Prediction Processes of HEDMoL

- The input atom-level 2D molecular structure is decomposed into atom-level substructures $S_1, S_2, ..., S_K$.
- Electron-level information in readily accessible public databases (e.g., QM9) [8] is assigned to $S_1, S_2, ..., S_K$.
- Joint representation learning is conducted on the input molecular graph G_a and electron-informed subgraphs $G_1, G_2, ..., G_K$.

Energy-Based Physical Consistency Regularization

Training Objective of HEDMoL With Energy-Based Physical Consistency Regularization for Robust Molecular Representation Learning

| Energy-Based Physical Consistency

$$E_{p,k} + \epsilon_k = \widehat{E}_{a,k} = \widehat{E}_{e,k}, \forall k = 1, 2, ..., |\mathcal{R}|$$

 $E_{p,k}$: Ground-truth physical energy of S_k with uncertainty ϵ_k (Retrieved from DB)

 $\hat{E}_{a,k}$: Predicted energy from atom-level graph embedding of S_k

 $\hat{E}_{e,k}$: Predicted energy from electron-informed embedding of S_k

This constraint enforces the graph embeddings of G_a and G_e to represent the same potential energy, which is essential information in describing molecules.

Loss Function of the Training Process

| Loss Function of the Training Process |
$$\widehat{E}_{a,k}$$
 | $\widehat{E}_{a,k}$ | \widehat{E}_{a

 f_e : Learnable energy function

 g_e : GNN encoder

 $g_e(S_k)$: Atom-level graph embedding of S_k

 $\mathbf{H}_{e,k}$: Electron-informed embedding of S_k

 α : Margin

Experiment Settings

Experimental Evaluations on Real-World Benchmark Molecular Datasets

Benchmark Molecular Datasets for Experimental Evaluations

- We conduct experimental evaluations on eight benchmark molecular 1
 datasets.
- We focus on experimentally-collected data in real-world chemical experiments.

Application Category	Dataset	# of Instances	
Physicochemistry	Lipop [32]	Lipophilicity	4,200
	ESOL [12]	Aqueous solubility	1,128
	ADMET [61]	Aqueous solubility	4,801
Toxicity	IGC50 [59]	Tetrahymena pyriformis toxicity	1,791
	LC50 [59]	Fathead minnow toxicity	822
	LD50 [59]	Oral rat toxicity	7,412
Pharmacokinetics	LMC-H [32]	Microsomal clearance in human	5,347
	LMC-R [32]	Microsomal clearance in rat	2,165

Competitor Methods in Three Different Approaches

- Tree-based methods: XGB-Mor, XGB-FC, XGB-MK¹
- 2 3D GNNs: SchNet, DimeNet, PhysChem, M3GNet, FAENet²
- 3 2D GNNs: GATv2, GIN, EGC, MPNN, UniMP, FiLM, MEGNet, DMPNN, AttFP

| Implementation Notes

- GNN for G_a : Efficient graph convolution (EGC) [9] or SchNet [10]
- GNN for *G_e*: Graph isomorphism network (GIN) [11]
- Graph decomposition: Junction tree algorithm [12]

100	
ψ_a	ψ_e
EGC	GIN
SchNet	GIN
	EGC EGC EGC EGC SchNet SchNet

Source code: https://github.com/ngs00/hedmol

¹We used Morgan, functional-class, and MACCS Key fingerprints.

²We employed force-field-based semi-empirical method to generate 3D structures in feasible time.

Prediction Accuracy on Experimental Molecular Datasets

Characteristics of Three Essential Molecular Descriptors in Electron- and Atom-Level Information

- HEDMoL achieves state-of-the-art accuracy in predicting molecular properties on the eight benchmark molecular datasets (Metric: R²).
- Although AttFP was designed for drug-like molecules, HEDMoL outperforms AttFP in the physicochemistry datasets (Lipop, ESOL, ADMET).
- Accuracy improvements are remarkable on the LC50, LD50, LMC-H, and LMC-R datasets (Large molecules).

Input Type	Method	Lipop	ESOL	ADMET	IGC50	LC50	LD50	LMC-H	LMC-R
Molecular	XGB-Mor [42]	0.531 (0.024)	0.659 (0.045)	0.717 (0.021)	0.621 (0.040)	0.390 (0.133)	0.497 (0.016)	0.505 (0.018)	0.617 (0.058)
Fingerprint	XGB-FC [42]	0.578 (0.018)	0.686 (0.052)	0.720 (0.009)	0.628 (0.023)	0.501 (0.052)	0.519 (0.025)	0.503 (0.007)	0.612 (0.015)
ringerprint	XGB-MK [49]	0.542 (0.041)	0.764 (0.047)	0.761 (0.020)	0.680 (0.037)	0.486 (0.112)	0.526 (0.021)	0.471 (0.019)	0.591 (0.033)
	SchNet [45]	0.667 (0.021)	0.881 (0.026)	0.834 (0.012)	0.765 (0.034)	0.467 (0.025)	0.527 (0.062)	0.456 (0.024)	0.573 (0.043)
	DimeNet [17]	N/R	0.878 (0.025)	N/R	0.779 (0.019)	N/A	0.541 (0.045)	0.352 (0.101)	N/A
3D Graph	PhysChem [67]	0.694 (0.024)	0.848 (0.032)	N/A	0.814 (0.017)	N/A	0.511 (0.053)	N/A	N/A
	M3GNet [6]	N/A	0.857 (0.025)	N/A	0.697 (0.029)	N/A	0.531 (0.034)	N/A	N/A
	FAENet [14]	0.670 (0.036)	0.869 (0.013)	0.788 (0.020)	0.708 (0.015)	0.528 (0.094)	0.474 (0.020)	0.437 (0.025)	0.528 (0.035)
	GATv2 [3]	0.677 (0.053)	0.891 (0.020)	0.828 (0.014)	0.795 (0.013)	0.502 (0.063)	0.498 (0.030)	0.424 (0.027)	0.560 (0.036)
	GIN [64]	0.702 (0.031)	0.897 (0.022)	0.833 (0.017)	0.799 (0.021)	0.543 (0.080)	0.515 (0.044)	0.443 (0.027)	0.568 (0.020)
	EGC [52]	0.708 (0.043)	0.896 (0.017)	0.838 (0.012)	0.808 (0.029)	0.575 (0.045)	0.497 (0.034)	0.441 (0.023)	0.566 (0.017)
	MPNN [19]	0.711 (0.022)	0.894 (0.023)	0.830 (0.014)	0.797 (0.018)	0.532 (0.064)	0.469 (0.040)	0.449 (0.057)	0.564 (0.031)
2D Graph	UniMP [47]	0.702 (0.030)	0.886 (0.025)	0.833 (0.014)	0.793 (0.027)	0.504 (0.031)	0.470 (0.025)	0.422 (0.061)	0.579 (0.036)
2D Graph	FiLM [2]	0.703 (0.048)	0.894 (0.031)	0.836 (0.014)	0.783 (0.046)	0.526 (0.042)	0.475 (0.032)	0.421 (0.050)	0.568 (0.032)
	MEGNet [7]	0.604 (0.023)	0.889 (0.027)	0.826 (0.038)	0.754 (0.026)	0.574 (0.122)	0.505 (0.027)	0.422 (0.032)	0.607 (0.041)
	DMPNN [66]	0.716 (0.037)	0.879 (0.013)	0.820 (0.018)	0.787 (0.008)	0.566 (0.098)	0.521 (0.011)	0.494 (0.011)	0.605 (0.043)
	AttFP [62]	0.710 (0.021)	0.909 (0.018)	0.841 (0.017)	0.807 (0.013)	0.642 (0.079)	0.513 (0.016)	0.456 (0.031)	0.588 (0.032)
	HEDMoL	0.759 (0.043)	0.914 (0.016)	0.865 (0.014)	0.840 (0.010)	0.663 (0.053)	0.572 (0.035)	0.551 (0.008)	0.639 (0.035)

Large molecules

Prediction Accuracy on Small Training Datasets

Prediction Accuracy of HEDMoL for Different Volumes of Training Datasets

- Lack of training data is one of the main challenges of machine learning in chemical applications [13].
- We measure the prediction accuracy for different training data sizes on the benchmark molecular datasets.
- HEDMoL is relatively robust to the size of the training data and achieves state-of-the-art accuracy for most settings.

Prediction Accuracy for Different External Calculation Databases

Experimental Evaluations on Prediction Accuracy of HEDMoL for Different Volumes and Diversities of External Calculation Databases

- The quality of the external calculation database in the knowledge extension step is a crucial factor in the prediction accuracy of HEDMoL.
- We construct the external database from the QM9 dataset by extracting small molecules composed of six or fewer atoms.
- HEDMoL is robust to the size of the external database.

Dataset	C = 3	C = 4	<i>C</i> = 5	<i>C</i> = 6	C = 7	C = 8
Lipop	0.732 (0.037)	0.723 (0.053)	0.735 (0.047)	0.736 (0.030)	0.738 (0.040)	0.736 (0.037)
ESOL	0.914 (0.018)	0.911 (0.016)	0.915 (0.015)	0.915 (0.016)	0.916 (0.015)	0.914 (0.019)
ADMET	0.867 (0.007)	0.862 (0.015)	0.868 (0.012)	0.861 (0.010)	0.867 (0.012)	0.865 (0.014)
IGC50	0.829 (0.017)	0.833 (0.012)	0.828 (0.016)	0.835 (0.017)	0.825 (0.018)	0.831 (0.016)

- EGC and GIN: Baseline 2D GNNs that predict y from G_a .
- EGC and GIN show significantly low prediction accuracy because they are solely based on the atom-level 2D structures.

Dataset	EGC	GIN	KE	KE+HRL	KE+PCR	HEDMoL
Lipop	0.708	0.702	0.722	0.726	0.731	0.759
ырор	(0.043)	(0.031)	(0.051)	(0.049)	(0.044)	(0.043)
ESOL	0.896	0.897	0.913	0.913	0.915	0.914
LSOL	(0.017)	(0.022)	(0.015)	(0.015)	(0.017)	(0.016)
ADMET	0.838	0.833	0.862	0.864	0.860	0.865
ADMLI	(0.012)	(0.017)	(0.014)	(0.015)	(0.013)	(0.014)
IGC50	0.808	0.799	0.827	0.833	0.826	0.840
16030	(0.029)	(0.021)	(0.018)	(0.017)	(0.014)	(0.010)
LC50	0.575	0.543	0.631	0.640	0.603	0.663
LC30	(0.045)	(0.080)	(0.091)	(0.084)	(0.061)	(0.053)

- KE: Predicts *y* from the molecular embeddings of both branches (atom-level and electron-level)
- KE shows consistent accuracy improvements for all benchmark datasets.

Dataset	EGC	GIN	KE	KE+HRL	KE+PCR	HEDMoL
Linon	0.708	0.702	0.722	0.726	0.731	0.759
Lipop	(0.043)	(0.031)	(0.051)	(0.049)	(0.044)	(0.043)
ESOL	0.896	0.897	0.913	0.913	0.915	0.914
ESOL	(0.017)	(0.022)	(0.015)	(0.015)	(0.017)	(0.016)
ADMET	0.838	0.833	0.862	0.864	0.860	0.865
ADMET	MET 0.838 0.833 0.8 (0.012) (0.017) (0.0	(0.014)	(0.015)	(0.013)	(0.014)	
ICCEO	0.808	0.799	0.827	0.833	0.826	0.840
IGC50	(0.029)	(0.021)	(0.018)	(0.017)	(0.014)	(0.010)
LCFO	0.575	0.543	0.631	0.640	0.603	0.663
LC50	(0.045)	(0.080)	(0.051) (0.049) (0.044) 0.913 0.913 0.915 (0.015) (0.015) (0.017) 0.862 0.864 0.860 (0.014) (0.015) (0.013) 0.827 0.833 0.826 (0.018) (0.017) (0.014)	(0.061)	(0.053)	

- KE+HRL: Employs KE and HRL in molecular representation learning.
- KE+HRL shows marginal accuracy improvements over KE.

Dataset	EGC	GIN	KE	KE+HRL	KE+PCR	HEDMoL
Lipop	0.708	0.702	0.722	0.726	0.731	0.759
Прор	(0.043)	(0.031)	(0.051)	(0.049)	(0.044)	(0.043)
ESOL	0.896	0.897	0.913	0.913	0.915	0.914
LSOL	(0.017)	(0.022)	(0.015)	(0.015)	(0.017)	(0.016)
ADMET	0.838	0.833	0.862	0.864	0.860	0.865
ADMET	(0.012)	(0.017)	(0.014)	(0.015)	(0.013)	(0.014)
IGC50	0.808	0.799	0.827	0.833	0.826	0.840
16050	(0.029)	(0.021)	(0.018)	(0.017)	(0.014)	(0.010)
LC50	0.575	0.543	0.631	0.640	0.603	0.663
LC30	(0.045)	(0.080)	(0.091)	(0.084)	(0.061)	(0.053)

- KE+PCR: Utilizes PCR in molecular representation learning processes of individual EGC and GIN.
- The performance turns out to be similar to that of KE+HRL.

Dataset	EGC	GIN	KE	KE+HRL	KE+PCR	HEDMoL
Lipop	0.708	0.702	0.722	0.726	0.731	0.759
Прор	(0.043)	(0.031)	(0.051)	(0.049)	(0.044)	(0.043)
ESOL	0.896	0.897	0.913	0.913	0.915	0.914
ESOL	(0.017)	(0.022)	(0.015)	(0.015)	(0.017)	(0.016)
ADMET	0.838	0.833	0.862	0.864	0.860	0.865
ADMET	(0.012)	(0.017)	(0.014)	(0.015)	(0.013)	(0.014)
IGC50	0.808	0.799	0.827	0.833	0.826	0.840
IGC50	(0.029)	(0.021)	(0.018)	(0.017)	(0.014)	(0.010)
LCEO	0.575	0.543	0.631	0.640	0.603	0.663
LC50	(0.045)	(0.080)	(0.091)	(0.084)	(0.061)	(0.053)

- HEDMoL, which implements all modules, outperformed the baseline methods and ablation models.
- The evaluations results of the ablation study empirically demonstrated the effectiveness of each module in HEDMoL.

Dataset	EGC	GIN	KE	KE+HRL	KE+PCR	HEDMoL
Lipop	0.708	0.702	0.722	0.726	0.731	0.759
ырор	(0.043)	(0.031)	(0.051)	(0.049)	(0.044)	(0.043)
ESOL	0.896	0.897	0.913	0.913	0.915	0.914
ESOL	(0.017)	(0.022)	(0.015)	(0.015)	(0.017)	(0.016)
ADMET	0.838	0.833	0.862	0.864	0.860	0.865
ADMET	(0.012)	(0.017)	(0.014)	(0.015)	(0.013)	(0.014)
IGC50	0.808	0.799	0.827	0.833	0.826	0.840
IGC50	(0.029)	(0.021)	(0.018)	(0.017)	(0.014)	(0.010)
LC50	0.575	0.543	0.631	0.640	0.603	0.663
LC30	(0.045)	(0.080)	(0.091)	(0.084)	(0.061)	(0.053)

Conclusion

- We propose HEDMoL for learning electron-derived molecular representations of real-world molecules.
- We develop a decomposition-based information retrieval process to generate electron-informed molecular graphs without quantum mechanical calculations.
- HEDMoL replaces an expensive and labor-intensive quantum mechanical calculations with an efficient and data-driven algorithm.

Conclusion

- Contact: <u>cy.park@kaist.ac.kr</u>
- Lab homepage: https://dsail.kaist.ac.kr/

Thanks for your attention!

Reference

- [1] Chen, C., Ye, W., Zuo, Y., Zheng, C., & Ong, S. P. (2019). Graph networks as a universal machine learning framework for molecules and crystals. *Chemistry of Materials*, *31*(9), 3564-3572.
- [2] Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X., ... & Zheng, M. (2019). Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. *Journal of medicinal chemistry*, 63(16), 8749-8760.
- [3] Chen, C., & Ong, S. P. (2022). A universal graph deep learning interatomic potential for the periodic table. *Nature Computational Science*, *2*(11), 718-728.
- [4] Yang, S., Li, Z., Song, G., & Cai, L. (2021). Deep molecular representation learning via fusing physical and chemical information. *Advances in neural information processing systems*, *34*, 16346-16357.
- [5] Duval, A. A., Schmidt, V., Hernández-Garcia, A., Miret, S., Malliaros, F. D., Bengio, Y., & Rolnick, D. (2023, July). Faenet: Frame averaging equivariant gnn for materials modeling. ICML (pp. 9013-9033). PMLR.
- [6] Lee, Y. L., Lee, H., Kim, T., Byun, S., Lee, Y. K., Jang, S., ... & Im, J. (2022). Data-driven enhancement of ZT in SnSe-based thermoelectric systems. *Journal of the American Chemical Society*, *144*(30), 13748-13763.
- [7] Roy, D. D., Roy, P., & De, D. (2023). Machine learning and DFT-based combined framework for predicting transmission spectra of quantum-confined bio-molecular nanotube. *Journal of Molecular Modeling*, 29(11), 338.