

BITS F464 Machine Learning

Assignment 1

Date: 15th March, 2020

Team Members

Durba Satpathi 2019A7PS0972H R Adarsh 2019A7PS0230H Navdeep Singh Narsinghia 2017B5A71675H

Problem 1C Linear Perceptron

3.1. Model Description and implementation

The Perceptron is a linear machine learning algorithm for binary classification tasks. The perceptron algorithm can be used to implement linearly separable functions. It learns a decision boundary that separates two classes using a line (called a hyperplane) in the feature space.

Given

Two datasets are given. Dataset examples are of the form : $(x_{n1}, x_{n2}, x_{nD_i}, t_n)$ where

- x_n is a *D* dimensional unit vector for $n \in \{1,2,\ldots,N\}$
- t_n is the target attribute (In the given examples $t_n = 0$ if $x_n \in C1$ and $t_n = 1$ if $x_n \in C2$) for $n \in \{1, 2, ..., N\}$

Both the datasets are divided into 70:30 ratio as training and testing sets respectively.

Procedure

In this algorithm, the D input features are transformed to M mature features $\Phi(x)$.

$$\Phi_M(x_n) = \Phi_M(x_{n1}, x_{n2}, \dots, x_{nD})$$

For the given datasets we assume that the features are already mature i.e we take the feature vector $\Phi(x)$ as x itself.

The feature vector $\Phi(x)$ is then used to construct a generalized linear model of the form

$$y(x) = f(w^T \Phi(x))$$

where f() is a step function.

The target attribute values are chosen as t = 1 and t = -1.

To determine w, we use the perceptron criterion. It follows that,

$$w^T \Phi(x) t_n \ge 0$$
 for correctly classified examples $w^T \Phi(x) t_n < 0$ for misclassified examples

Therefore, for a misclassified example, the algorithm tries to minimize the quantity $-w^T \Phi(x) t_n$. The perceptron criterion is therefore given by

$$E_p = \sum_{n \in M} w^T \Phi(x) t_n$$

where M denotes the set of all misclassified patterns.

By applying the stochastic gradient descent algorithm, the change in the weight vector w is given by

$$w^{(\tau+1)} = w^{(\tau)} + \eta \Phi_n t_n$$

where η is the learning rate parameter and τ is an integer that indexes the steps of the algorithm.

We cycle through the training patterns in turn, and for each pattern x_n we evaluate the perceptron function. If the pattern is correctly classified, then the weight vector remains unchanged, whereas if it is incorrectly classified, then for class t=1 we add the vector $\Phi(x_n)$ onto the current estimate of weight vector w while for class t=-1 we subtract the vector $\Phi(x_n)$ from w. By performing 10^6 iterations on the training set, we get the parameter w.

3.2. Accuracy of your model on both the datasets

After performing 10⁶ iterations on the training set, we get the following results.

```
Dataset1
Accuracy in training data = 0.9854318418314256
Accuracy in testing data 0.975669099756691
Not converged after 1000000 iterations
```

Dataset2
Accuracy in training data = 1.0
Accuracy in testing data 1.0
Converged after 47 iterations

3.3. Dataset which was more linearly separable

Since the perceptron algorithm converged much before for Dataset 2 (within 10⁶ iterations) as compared to dataset 1 therefore Dataset 2 is more linearly separable. Hence the obtained accuracy of Dataset 2 is greater than that of Dataset 1.

3.4. Major limitations of the Perceptron classifier.

Below are the limitations of perceptron algorithm:

- 1. The output values of a perceptron can take on only one of two values (e.g. -1 or 1). So this algorithm can only be used for binary classification.
- 2. The Perceptron algorithm can only classify linearly separable data.

- 3. For data sets that are not linearly separable, the perceptron learning algorithm will never converge.
- 4. There is no specific time limit within which the algorithm will provide the result.