Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 22. Februar 2019

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	Themenbereich
1	3	20	Modelle Regulärer Sprachen
2	4	15	Untermengen-Konstruktion
3	5	22	MINIMIERUNG EINES DFA
4	6	17	Grenzen Regulärer Sprachen
5	7	10	Modelle Kontextfreier Sprachen I
6	8	16	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	20	15	22	17	10	16	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(20 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\},\$ die reguläre Sprache $A_1 \triangleq \{ a^n b x a \mid n \in \mathbb{N} \land x \in \{ b, aa \}^* \},$ die reguläre Grammatik $G_2 \triangleq (\{S, T, U, W\}, \Sigma, P_2, S)$ und der NFA $M_3 \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \Delta_3, \{q_0\}, \{q_3\})$ mit:

a. (**, 5 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 4 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

- c. (*, 3 Punkte) Gib die Ableitung des Wortes bbbaa in G_2 an.
- d. (**, 3 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- e. (**, 3 Punkte) Gib eine Ableitung von ababa in M_3 an, die zeigt, dass $ababa \in L(M_3)$.
- f. (***, 2 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(15 Punkte)

Gegeben sei der NFA $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5\ \},\ \Sigma,\ \Delta,\ \{\ q_0,\ q_2\ \},\ \{\ q_4\ \})$ mit $\Sigma \stackrel{\triangle}{=} \{ a, b \} \text{ und } \Delta$:

a. (**, 13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M^\prime zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (graphisch) anzugeben.

b. (***, 2 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \Sigma, \delta, q_0, \{q_4\})$ mit $\Sigma \triangleq \{a, b\}$ und δ :

- a. (*, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 9 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.*

c. (**, 4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = {\ldots}$, angegeben werden.

d. (**, 5 Punkte) *Gib* den minimierten DFA *M'* an.

e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Matrikelnummer:	Name:
Manikemummer.	I valite

Aufgabe 4: Grenzen Regulärer Sprachen

(17 Punkte)

Gegeben sei das Alphabet $\Sigma \triangleq \{a, b, c, d\}$.

a. (***, 11 Punkte) Beweise nur mit Hilfe des Pumping Lemma, dass die Sprache $A_1 \triangleq \{ xy \mid x \in \{ a, b \}^* \land |x|_a \mod 2 = 0 = |x|_b \mod 2 \land y \in \{ c, d \}^* \land |y|_c > |y|_d \}$ nicht regulär ist.

b. **(***, 6 Punkte)** Gib alle Myhill-Nerode Äquivalenzklassen für die Sprache $A_2 \triangleq \{ axd \mid x \in \{ b, c \}^* \land |x|_b = |x|_c \}$ an.

Hinweis: Die Namen der Klassen in der Form $[\dots]_{\equiv_{A_2}}$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[\dots]_{\equiv_{A_2}} = \dots$, angegeben werden.

Aufgabe 5: Modelle Kontextfreier Sprachen I

(10 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache:

$$A \triangleq \left\{ a^n b^m c^k c \mid n \in \mathbb{N}^+ \land k \in \mathbb{N} \land m \in \{ 0, 1 \} \land m \cdot n = k \right\}$$

a. (**, 5 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

b. (**, 5 Punkte) Gib einen PDA M mit $\mathcal{L}_{\mathrm{End}}(M) = \mathcal{L}_{\mathrm{Kel}}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(16 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und der PDA $M \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \{\Box, \bullet, +\}, \Box, \Delta, q_0, \{q_2\})$ mit Δ :

- a. (*, 1 Punkt) *Gib* eine Begründung dafür *an*, dass *M* kein DPDA ist.
- b. (*, 3.5 Punkte) Gib eine Ableitung von cbabc in M an, die zeigt, dass $cbabc \in L_{Kel}(M)$.
- c. (***, 3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- d. (*, 2.5 Punkte) Gib eine Ableitung von abbb in M an, die zeigt, dass $abbb \in L_{End}(M)$.
- e. (***, 2 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- f. (**, 4 Punkte) Beweise nur mit Hilfe von Abschlusseigenschaften, dass die Sprache $A \triangleq \{ a^n b^m \mid n, m \in \mathbb{N} \land n < m \}$ nicht regulär ist. Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e

regulär und $B \triangleq \{ a^n b^m \mid n, m \in \mathbb{N} \land n > m \}$ nicht regulär aber kontextfrei ist. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

Matrikelnummer:	Name:	
Auf dieser Seite löse ic	n einen Teil der Aufgabe <u> </u> :	
Teilaufgabe:		

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe — :	
	se ich enten der Aufgabe	
Teilaufgabe:		