Heat Conduction in a Cylinder

Introduction

The following example illustrates how to build and solve a conductive heat transfer problem using the Heat Transfer interface. The model, taken from a NAFEMS benchmark collection, shows an axisymmetric steady-state thermal analysis. As opposed to the NAFEMS benchmark model, we use the temperature unit kelvin instead of degrees Celsius for this model.

Model Definition

The modeling domain describes the cross section of a 3D solid as shown in Figure 1.

Figure 1: Model geometry and boundary conditions.

You set three types of boundary conditions:

- · Prescribed heat flux
- Insulation/Symmetry
- · Prescribed temperature

The governing equation for this problem is the steady-state heat equation for conduction with the volumetric heat source set to zero:

$$\nabla \cdot (-k\nabla T) = 0$$

The thermal conductivity k is 52 W/(m·K).

Results

The plot in Figure 2 shows the temperature distribution. Surface: Temperature (K)

Figure 2: Temperature distribution.

The benchmark result for the target location (r = 0.04 m and z = 0.04 m) is a temperature of $59.82 \,^{\circ}$ C, or $(59.82 + 273.15) \,^{\circ}$ K = $332.97 \,^{\circ}$ K. The COMSOL Multiphysics model, using a default mesh with about 540 elements, gives a temperature of 332.957 K at the same location.

Reference

1. A.D. Cameron, J.A. Casey, and G.B. Simpson, NAFEMS Benchmark Tests for Thermal Analysis (Summary), NAFEMS Ltd., 1986.

Model Library path: Heat_Transfer_Module/Tutorial_Models/ cylinder_conduction

Modeling Instructions

MODEL WIZARD

- I Go to the Model Wizard window.
- 2 Click the 2D axisymmetric button.
- 3 Click Next
- 4 In the Add physics tree, select Heat Transfer>Heat Transfer in Solids (ht).
- 5 Click Add Selected.
- 6 Click Next.
- 7 Find the Studies subsection. In the tree, select Preset Studies>Stationary.
- 8 Click Finish.

GEOMETRY I

Rectangle I

- I In the Model Builder window, under Model I right-click Geometry I and choose Rectangle.
- 2 In the Rectangle settings window, locate the Size section.
- **3** In the **Width** edit field, type **0.08**.
- 4 In the Height edit field, type 0.14.
- **5** Locate the **Position** section. In the **r** edit field, type **0.02**.

Point I

- I In the Model Builder window, right-click Geometry I and choose Point.
- 2 In the Point settings window, locate the Point section.
- 3 In the r edit field, type 0.02.
- 4 In the z edit field, type 0.04.

Point 2

- I Right-click **Geometry I** and choose **Point**.
- 2 In the **Point** settings window, locate the **Point** section.
- 3 In the \mathbf{r} edit field, type 0.02.
- 4 In the z edit field, type 0.1.

Form Union

In the Model Builder window, under Model I>Geometry I right-click Form Union and choose Build Selected.

HEAT TRANSFER IN SOLIDS

Heat Transfer in Solids 1

- I In the Model Builder window, under Model I>Heat Transfer in Solids click Heat Transfer in Solids 1.
- 2 In the Heat Transfer in Solids settings window, locate the Heat Conduction section.
- **3** From the k list, choose **User defined**. In the associated edit field, type 52.
- **4** Locate the **Thermodynamics** section. From the C_p list, choose **User defined**. From the ρ list, choose User defined.

Temperature I

- I In the Model Builder window, right-click Heat Transfer in Solids and choose Temperature.
- **2** In the **Temperature** settings window, locate the **Temperature** section.
- **3** In the T_0 edit field, type 273.15[K].
- **4** Select Boundaries 2, 5, and 6 only.

Heat Flux 1

- I Right-click Heat Transfer in Solids and choose Heat Flux.
- 2 In the Heat Flux settings window, locate the Heat Flux section.
- **3** In the q_0 edit field, type 5e5.
- **4** Select Boundary 3 only.

MESH I

In the Model Builder window, under Model I right-click Mesh I and choose Build All.

STUDY I

In the Model Builder window, right-click Study I and choose Compute.

RESULTS

Temperature, 3D

The first default plot is a revolved 3D plot visualizing the temperature field on the surface; compare with Figure 2.

- I Click the **Zoom Extents** button on the Graphics toolbar.
- 2 In the Model Builder window, expand the Results>Temperature, 3D node.

Isothermal contours

- I In the Model Builder window, expand the Results>Isothermal contours node.
- 2 Right-click Isothermal contours and choose Plot.
- **3** Click the **Zoom Extents** button on the Graphics toolbar.

The second default plot is a combined contour and arrow plot of the temperature field and the total heat flux.

Contour: Temperature (K) Arrow Surface: Total heat flux

To obtain the temperature value at any point, just click at that point in the Graphics window; The result appears in the Results window at the bottom of the COMSOL Desktop.

Alternatively, you can create a Cut Point data set and Point Evalutation feature as follows.

Data Sets

- In the Model Builder window, under Results right-click Data Sets and choose Cut Point2D.
- 2 In the Cut Point 2D settings window, locate the Point Data section.

- 3 In the \mathbf{r} edit field, type 0.04.
- 4 In the z edit field, type 0.04.

Derived Values

- I In the Model Builder window, under Results right-click Derived Values and choose Point Evaluation.
- 2 In the Point Evaluation settings window, locate the Data section.
- 3 From the Data set list, choose Cut Point 2D 1.
- 4 Click the **Evaluate** button.

The result is approximately 333 K.