10 20 30 40 50	60 10 20 30 40 50	99
CAGGTCCAGCTGCAGCAGTCTGGGTCTGAGATGGCGAGGCCTGGAGCTTCAGTGAAGCTG		AGCCTCC
QVQLQQSGSEMARPGASVKL	L DILMIQSPLSLPVSLGDQAS	A S
70 80 90 100 CDR1 110 120	120 70 80 CDR1 90 100 110 120	120
OCCTGCAAGGCTTCTGGCCACACTTCACAGTTACTGGATGCACIGGGTGAAGCAGAGG		AGAAITOG
PCKASGDTFTSYWMHWVKQR	IS	E E
130 140 150 160 170 CDR2180)R2 180
CATGCACATGGCCCTGAGTCGGAAATATTTATCCAGGTAGTGGTGGTACTACTACTAC	TACCTGCAAAGGCCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCGACCGA	CGATTT
H G H G P E W I G N I Y P G S G G T N		85 FF
190 200 210 220 230 240		240
GCTGAGAAGTTCAAGAAGGTCACTCTGACTGTAGACAGGTCCTCCCGCACAGTCTAC	ı	AAGATC
AEKFKNIKVTLTVDRSSRTVY		K I
250 260 270 280 290 CDR3300	•	R3 300
ATGCACCTCAGCAGCTGACATCTGAGGACTCTGCGGTCTATTATTGTACAAGAJCGGGG		ATTCCT
MHLSRLTSEDSAVYCTRSG	ı	I P
310 320 330 340 350	310 320 330 340	
GCTCCCTACTTCTTTGACTACTGCGCCCAAGGCACCACTCTCACAGTCTCCTCC	COCACOPTCGGAGGGGGGCCCAAGCTGGAAATCAAACGTGCG	
GPYFFDYWGQGTTLTVSS	PTFGGGTKLEIKRA	

FIG. 2

Western blotting

FIG. 4

FIG. 5

FIG. 7

FIG.

 $(E/T=5, 18 \text{ hr}, Ex3 (1 \mu g/ml))$

parental IgG (1 µg/ml)

528 (anti-EGFR)

OKT3 (anti-CD3)

OKT8 (anti-CD8)

irrelevant IgG (1 µg/ml)

MUSE 11 (anti-MUC1

not inhibited

FIG. 11

FIG. 13

FIG. 14

Ex3 1 µg/ml

**, *p*<0.0001

 $^*, p < 0.001$

FIG: 17

1 µg/ml

OKT3 IgG 1 µg/ml

FIG. IS

FIG. 20

10 20 30 40 50 60 GATATCCAGATGACCCAGAGCCTCTCTGAGCGCGAGCGTGGCGTGACC D I Q M T Q S P S S L S A S V G D R V T 70 80 CDR 190 100 110	CCCA I P	AAAGOGCOGAAACGCTGGATTTATDATACCAGCAAACTGGOGAGCGGGCGGCCGC K A P K R W I Y D T S K L A S G V P S R 190 200 210 220 230 240	TTTAGCGGCTCTGGTAGCGCACCGATTATACGTTTACCATTAGCTCTCTGCAGCCGGAA FSGSGTDYTFTISSLQPE 250 260 270 280 CDR3290 300	GATATTGCGACCATTGCAGCAATGGAGCTCTAACCGTTTACCTTTGCCAGGGT D I A T Y V C Q Q W S S N P F T F G Q G 310 320 ACCAAACTGCAGATTACCCGGGG T K L Q I T R A
10 20 30 40 50 60 CAGGTGCAACTGGTGCAGGGGGGGGGGCGCGCGCGCGTG Q V Q L V Q S G G G V V Q P G R S L R L 70 80 90 100 CDR1110 120	TCTTGCAAAGCGAGGCTATACCTTTACGCGCTATACCATGCGTTGGGTGCGCCAGGCG S C K A S G Y T F T R Y T M H W V R Q A 130 140 150 160 170 CDR2180	CCGCGCAAAGGTCTGGATTGGCTATATTAACCCGTCTCGCGGCTATACCAACTAT P G K G L E W I G Y I N P S R G Y T N Y 190 200 210 220 240	AATCAGAAAGTGGAAAGATCGCTTTACCATTAGCCGCGATAACTCTAAAAACACCGCGTTT N Q K V K D R F T I S R D N S K N T A F 250 260 270 280 290 CDR3 300	CTGCAGATGCATACCTGCGCCGCAGTATTTTTGCGCGCGTACTAT L Q M D S L R P E D T G V Y F C A R Y Y 310 320 330 340 350 GATGACCATTATAGCGCCCAGGGCACCCCGGTGACTCC D D H Y S L D Y W G Q G T P V T V S S

FIG. 2

10 20 30 40 50 60 GATATTGTGATGACCCAGGCCGCTGACCCCAGGCGAACCGGCGTCG D I V M T Q S P L S L P V T P G E P A S 70 80 CDR190 100 110 120	ATTACCTCCCACACCACCACCATCCTCCTAATAACCCCATTACCTATCTCCAATCCAATCCAATACCTATCTCCCAATCCAATCCAATACCTATCTCCCAATCCAATCCAATACCTATCTCCCAATCCAATCCAATACCTATCTCCCAATCCAATCCAATACCTATCTCCAATACCCCAATACCTATCTCCAATACCTAATACCTAATCTCCAATACCTAATCTCCAATACCTAATCTCCAATACCTAATACCTAATCTCAATACCTAATAC	TATCTGCAGAAACCGGGCCAAAGCCCGCAGCTTTATTAAAGTGAGCGATCGCTTT Y L Q K P G Q S P Q L L I Y K V S D R F 190 200 210 220 230 240	AGCEGCGTCCCGCATTTTCCGCCACCGCTAGTCGCTCGAAAATT S G V P D R F S G S G T D F T L K I 250 260 270 280 290 CDR3300	AGCCGCGTGGAAGCGGAGGATGTTGCGGTGTTTCAGGGCAGCCATATCCCC S R V E A E D V G V Y V C F Q G S H I P 310 320 330 340 CCAACCTTTGCCCAAGGCACCAAATTAAACGCGCG
2 × 3 60 20 × 3 60	ე 8	l= le	T 0	la I
60 FTAAAGTG / K V 120	CCAGG	CAACTA	XGCCTA A Y DR330	Acres S S
SOCCTTAAAC	Treccrecccaeccc	CGTCGCACCACTA G G T N Y 230 24	CATTTCGACGCCTA I S T A Y 290 CDR330	CTGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG
SOCCTTAAAC	ACTGGATGCATTGGGTGCGCCAGG Y W M H W V R Q 170 CDR21	ATCCGGGCAGCGGTGGCACCAACTA Y P G S G G T N Y 220 230 24	GTGATACCAGCATTTCGACGGCCTA R D T S I S T A Y 280 290 CDR330	CCCTGTATTACTGCCCGCGCGGAGTCGCA V V V C A R S G 340 350 CGCTGGTTACCGTGAGCTCG
SOCCTTAAAC	FT S Y W M H W V R Q 150 160 170 CDR21	G N J Y P G S G G T N Y Z G S 230 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ACCATGACGOGTGATACCAGCATTTCGACGGCCTA T M T R D T S I S T A Y 270 280 290 CDR330	D D T A V Y C A R S G 330 340 350 COCAGGGTACTGCCGCCCCCGCAGTCGC
50 FCGGTTAAAC S V K 10	AGCTGCAAAGCCTCAGGCTATTACCAGCTACTGGATGCGTGCG	CCGCGTCAGGGCCTGGAATGGATGGGTGACATTTATCCGGGCAGCGGTGGCACCAACTAT P G Q G L E W M G N J Y P G S G G T N Y 190 200 210 220 230 240	GCGCAAAAATTTAAGAACCGCGGACCTATACAACGCCTATAAAAATTTAAGAACCGTGACCCTATAAAAATTTAAGAACCGTGACCCTATAAAAAATTTAAGAACCCTATAAAAAAAA	ATGGAACTGAGCCGCTAGCGATGACACCGCCGTGTATTACTGCGCGCGGGTGGC M E L S R L R S D D T A V Y C A R S G 310 320 330 340 350 GGTCCGTATTTTTCGATTACTGGGGCCCAGGGTACGCTGGTTACCGTCAGCTCG G P Y F F D Y W G Q G T L V T V S S

FIG. 23

FIG, 24

FIG. 25

NIYPGSGGTNYAEKFKN NIYPGSGGTNYAEKFKN	
FRZ WVKQRHGHGPEW1G WVRQAPGGGLEWMG	FR4 WGQGTLVTVSS WGQGTLVTVSS
SYWME WVK SYWME WVK SYWME WVR	SGGPYFFDY SGGPYFFDY
PR1 QVQLQQSGSEMARPGASVKLPCKASGDTFT QVQL VQSGAEVKKPGASVK VSCKASGYTFTD	FR3 KVTLTVDRSSRTVYMHLSRLTSEDSAVYYCTR RVTMTRDTSISTAYMELSRLRSDDTAVYYCAR KV
5H h5H h5H-m01 h5H-m02 h5H-m04 h5H-m05 h5H-m06 h5H-m06 h5H-m08 h5H-m09 h5H-m09	5H h5H h5H-m01 h5H-m02 h5H-m03 h5H-m05 h5H-m06 h5H-m07 h5H-m09 h5H-m09

