Двоично-десятичные коды

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «информатика» (19 мая 2016 г.)

Содержание

- Четырехбитные коды
 - Код "8421"
 - Код "8421+3"
 - Код "2421"
- Пятибитные коды
 - Код "За+2"

Введение

Двоично-десятичные коды могут быть использваны для выполнения высокоточных вычислений в десятичной системе счисления с помощью двоичной вычислительной техники.

Обратный код в десятичной системе счисления

$$\mathsf{OK}(X) = egin{cases} \overline{|X|}, & \mathsf{если} \ X < 0, \ |X|, & \mathsf{если} \ X \geq 0, \end{cases}$$

где $\overline{|X|}$ — порязрядное дополнение цифр десятичного числа X до 9, то есть разряд x_i числа находится как $(9-x_i)$.

$$X = egin{cases} -(\overline{\mathsf{OK}(X)}), & \mathsf{если} \ \mathit{msb}(\mathsf{OK}(X)) = 9, \ \mathsf{OK}(X), & \mathsf{если} \ \mathit{msb}(\mathsf{OK}(X)) = 0, \end{cases}$$

где msb(x) — функция, возвращающая старший значащий бит последовательности x.

При сложении, как в двоичной системе счисления, единицу переноса из старшего разрядя следует прибавить к младшему разряду.

Примеры сложения в обратном коде в 10СС 4-х разрядная сетка

Признаками ПРС являются значения в знаковом разряде, отличные от 0 или 9:1 — положительное переполнение, 8 — отрицательное.

Инверсия разрядов тетрады

Арифметически, инверсия разрядов двоичной тетрады соответствует дополнению до 15:

$$\overline{(\mathtt{xxxx})}_2 \Leftrightarrow (\mathtt{1111})_2 - (\mathtt{xxxx})_2.$$

Hапример $(1001)_2 = 9$:

$$\overline{(1001)}_2 = (0110)_2 = 6 = (15 - 9).$$

Код с естественными весами: "8421"(a)=a

<i>а</i> в 10СС	"8421"(<i>a</i>)	"8421"(9 – <i>a</i>)
0	0000	1001
1	0001	1000
2	0010	0111
3	0011	0110
4	0100	0101
5	0101	0100
6	0110	0011
7	0111	0010
8	1000	0001
9	1001	0000

$$"8421"(9-a) = 9-a = (15-a)-6 = "8421"(a)-6 = "8421"(a)+1010.$$

Код "8421"

Сложение S=A+B, где $A=(a_{n-1}\cdots a_0)$ и $B=(b_{n-1}\cdots b_0)$

$$s_k = a_k + b_k + c_k,$$

где c_k — перенос в k-й разряд, а s_k, a_k, b_k — десятичные цифры.

- $oldsymbol{0}$ $(a_k+b_k+c_k)<10$; $c_{k+1}=0$. Код $(a_k+b_k+c_k)$ корректен.
- ② $10 \le (a_k + b_k + c_k) \le 15$; $c_{k+1} = 0$. Неверно! Перенос в 10СС должен быть, но в 16СС его не случилось. Правильная 10СС цифра $(a_k + b_k + c_k 10)$, и перенос: $(a_k + b_k + c_k 10) + 16 = (a_k + b_k + c_k + 6)$. Поправка: +6 = 0110.
- $oldsymbol{0}$ $(a_k+b_k+c_k)\geq 16$; $c_{k+1}=1$. Неверно! Перенос корректен, а полученная цифра $(a_k+b_k+c_k-16)$ неправильна. Правильный код $(a_k+b_k+c_k-10)$. Поправка: +6=0110. При такой поправке переноса не будет.

$$s_k = a_k + b_k + c_k,$$

Из предыдущего слайда ясно, что:

- ullet Если $0 \leq (a_k + b_k + c_k) \leq 9$, то поправок не надо.
- \bigcirc Если $10 \le (a_k + b_k + c_k) \le 19$, то нужна поправка (+6) = 0110. Переносы из тетрады в тетраду при этом возникают автоматически.

Поэтому поправку (+6) = 0110 можно прибавить к обратному коду одного из операндов заранее. И тогда, если переноса из тетрады не будет (только в случае условия из п. 1) поправку нужно вычесть из тетрады.

Алгоритм сложения в коде "8421"

- Перевести слагаемые в обратный "8421"-код. Каждая тетрада модуля отрицательного слагаемого инвертируются и к результату прибавляется код (-6) = 1010. Переносы между тетрадами не распространяются.
- $oldsymbol{eta}$ К каждой тетраде одного из слагаемых прибавляется поправка (+6)=0110. Переносов между тетрадами при этом не возникает 1 .
- Выполняется сложение по правилам двоичной арифметики.
 Переносы распространяются.
- Корректируются тетрады, из которых не было переносов. К каждой такой тетраде прибавляется —6, т.е. тетрада 1010.
 Переносы не распространяются.
- Результат получен в обратном "8421"-коде.

¹Если одно из слагаемых отрицательно, то поправки перевода в ОК (-6) и поправка данного шага (+6) друг друга компенсируют! → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □

Перевод в ОК (добавлены два знаковых двоичных разряда МОК):

$$-57 \Rightarrow -0000 \text{ o}101 \text{ o}111 \Rightarrow$$

$$\Rightarrow + \frac{1111 \text{ 1010 1010}}{1010 \text{ 1010 0}100}$$

$$OK(-57) = 11 \text{ 1001 0}100 \text{ o}010$$

$$OK(894) = 00 \text{ 1000 1001 0}100$$

Код "8421" ||

Пример сложения —57 и 894.

 $oldsymbol{eta}$ K каждой тетраде $\mathsf{OK}(-57)$ прибавлена тетрда 0110.

Выполняется сложение полученного числа с ОК(894).

Коррекция переносом из знакового разряда:

Корректируются тетрады из которых не было переносов.
 Переносы между тетрадами не распространяются.

ПРС не возникло, OK(S) = 00 1000 0011 0111, S = 837

Код "8421" Код "8421+3" Код "2421"

Код "8421+3" Код с избытком 3: "8421+3"(

Код с избытком 3: "8421+3"(a) = (a+3)

<i>а</i> в 10СС	"8421+3"(<i>a</i>)	"8421+3"(9 – a)
0	0011	1100
1	0100	1011
2	0101	1010
3	0110	1001
4	0111	1000
5	1000	0111
6	1001	0110
7	1010	0101
8	1011	0100
9	1100	0011

$$\overline{(8421+3''(a))} = 15 - (a+3) = 12 - a = (9-a) + 3 = (8421+3''(9-a)).$$

Код "8421+3"

Сложение S=A+B, где $A=(a_{n-1}\cdots a_0)$ и $B=(b_{n-1}\cdots b_0)$

$$s_k=a_k+b_k+c_k.$$

 $oldsymbol{0}$ $s_k < 10$; При сложении кодов:

$$(a_k+3)+(b_k+3)+c_k=(a_k+b_k+c_k)+6=(s_k+6).$$

Так как $(s_k+6)\leq 15$, то переноса не возникает. Правильная тетрада должна быть (s_k+3) , следовательно, нужна поправка -3=1101. Перенос игнорируется.

@ $s_k \geq 10$; При сложении кодов возникнет перенос:

$$(a_k + 3) + (b_k + 3) + c_k - 16 = (a_k + b_k + c_k) - 10 = s_k - 10.$$

Для получения правильного: $(s_k-10)+3$, нужна поправка +3=0011. Перенос игнорируется.

- Перевести слагаемые в обратном "8421+3"-коде. Каждая тетрада модуля отрицательного числа инвертируется.
- Выполняется сложение полученных операднов по правилам двоичной арифметики.
- К тетрадам, из которых не было переноса, прибавляется 1101, а к остальным прибавляется 0011. Переносы игноритуются.
- Результат получен в обратном "8421+3"-коде.

Код "8421+3" | Пример сложения —894 и 57.

Перевод в ОК (добавлены два знаковых двоичных разряда МОК):

$$-894 \Rightarrow -1011 \ 1100 \ 0111$$
OK(-894) = 11 0100 0011 1000
OK(57) = 00 0011 1000 1010

Выполняется сложение обратных кодов.

Код "8421+3" || Пример сложения —894 и 57.

 Выполняется коррекция. Переносы между тетрадами не распространяются.

ПРС не возникло,

$$OK(S) = 11 \ 0100 \ 1001 \ 0101, \overline{OK(S)} = 00 \ 1011 \ 0110 \ 1010,$$

$$S = -837$$
.

Код Айкена: "
$$2421$$
" $(a) \equiv t_3t_2t_1t_0$, $a=2t_3+4t_2+2t_1+1t_0$

<i>а</i> в 10CC	"2421"(a)	"2421"(9 – <i>a</i>)
0	0000	1111
1	0001	1110
2	0010 ↔ 1000	1101 \leftrightarrow 0111
3	0011 ↔ 1001	1100 \leftrightarrow 0110
4	0100 ↔ 1010	1011 \leftrightarrow 0101
5	0101 ↔ 1011	1010 \leftrightarrow 0100
6	0110 ↔ 1100	1001 ↔ 0011
7	$0111 \leftrightarrow 1101$	1000 ↔ 0010
8	1110	0001
9	1111	0000

$$\overline{T} = \overline{t_3 t_2 t_1 t_0} = (2 - 2t_3) + (4 - 4t_3) + (2 - 2t_2) + (1 - 1t_0) = 9 - T,$$

"2421"(a) = "2421"(9 - a).

Код Айкена: "
$$2421$$
" $(a) \equiv t_3t_2t_1t_0$, $a=2t_3+4t_2+2t_1+1t_0$

Обобщая таблицу с предыдущего слайда:

- ullet если $0 \le a \le 1$, то "2421"(a) = a;
- $oldsymbol{2}$ если $2 \leq a \leq 7$, то "2421"(a) = a или "2421"(a) = (a+6);
- \bullet если $8 \le a \le 9$, то "2421"(a) = (a+6).

Преследуя цель «пусть будет»: «однозначность», «перенос» и «самодополняемость», формулируются новые правила:

lacktriangle если $0 \le a \le 4$, то "2421"(a) = a:

$$\overline{"2421"(a)} = (15 - a) = \underbrace{(9 - a) + 6}_{\text{CM. \Pi.2}} = "2421"(9 - a);$$

 $oldsymbol{2}$ если $5 \leq a \leq 9$, то "2421"(a) = (a+6):

$$\overline{"2421"(a)} = 15 - (a+6) = \underbrace{(9-a)}_{\text{CM. II.1}} = "2421"(9-a).$$

<i>а</i> в 10СС	"2421"(<i>a</i>)	"2421"(9 — <i>a</i>)
0	0000	1111
1	0001	1110
2	0010	1101
3	0011	1100
4	0100	1011
5	1011	0100
6	1100	0011
7	1101	0010
8	1110	0001
9	1111	0000

$$\overline{"2421"(a)} = "2421"(9-a).$$

$$s_k=a_k+b_k+c_k.$$

- $m{0}$ Если $0 \leq a_k, b_k \leq 4$, то сложение кодов $(a_k + b_k + c_k)$:
 - $oldsymbol{0}$ если $0 \leq (a_k + b_k + c_k) \leq 4$, то поправок не нужно;
 - $m{\Theta}$ если $5 \leq (a_k + b_k + c_k) \leq 9$, то неверно! Должно быть: $(a_k + b_k + c_k) + 6$. Поправка: +6 = 0110.
- ② Если $0 \le a_k \le 4$ и $5 \le b_k \le 9$, то код $(a_k + b_k + c_k + 6)$:
 - ullet если $5 \leq (a_k + b_k + c_k) \leq 9$, то код верен;
 - \mathbf{Q} если $10 \leq (a_k + b_k + c_k) \leq 14$, то формируется перенос и $(a_k + b_k + c_k + 6) 16$. Код $(a_k + b_k + c_k 10)$ верен.
- ullet Если $5 \leq a_k \leq 9$ и $0 \leq b_k \leq 4$ код верен (аналогично п.2).
- ullet Если $5 \leq a_k, b_k \leq 9$, то код $ig(a_k + b_k + c_k 10ig) + 6$:
 - **1** если $0 \le (a_k + b_k + c_k 10) \le 4$, то неверно! Должно быть: $(a_k + b_k + c_k 10)$. Поправка: -6 = 1010.
 - $oldsymbol{0}$ если $5 \leq (a_k + b_k + c_k 10) \leq 9$, то код верен!

Когда нужны поправки?

$$s_k=a_k+b_k+c_k.$$

Запрещенные комбинации кода:

$$"2421" \notin \{0101,0110,0111,1000,1001,1010\}.$$

Правила коррекции:

- **1** Если $0 \le a_k, b_k \le 4$ и $5 \le (a_k + b_k + c_k) \le 9$, то поправка: +6 = 0110. При этом $msb("2421"(a_k)) = msb("2421"(b_k)) = 0$ и в результате получается одна из запрещенных комбинаций.
- igoplus Если $5 \le a_k, b_k \le 9$ и $0 \le (a_k + b_k + c_k 10) \le 4$, то поправка: -6 = 1010. При этом $msb("2421"(a_k)) = msb("2421"(b_k)) = 1$ и в результате получается одна из запрещенных комбинаций.

- Перевести слагаемые в обратный "2421"-код. Каждая тетрада модуля отрицательного числа инвертируется.
- Выполняется сложение полученных операднов по правилам двоичной арифметики.
- В соответствии с изложенными выше правилами, выполняется коррекция результата. Переносы при коррекциях не распространяются.
- 💿 Результат получен в обратном "2421"-коде.

Пример сложения -365 и 783.

Перевод в ОК (добавлены два знаковых двоичных разряда МОК):

$$-365 \Rightarrow -0011 \ 1100 \ 1011$$
 OK $(-365) = 11 \ 1100 \ 0011 \ 0100$ OK $(783) = 00 \ 1101 \ 1110 \ 0011$

Выполняется сложение обратных кодов.

Коррекция переносом:

Код "2421" III

Пример сложения —365 и 783.

 Выполняется коррекция. Переносы между тетрадами не распространяются.

$$OK(-365) = 11 1100 0011 0100$$
 $OK(783) = 00 1101 1110 0011$
 $+ 00 1010 0001 1000$
 $- 00 0100 0001 1110$

ПРС не возникло,

$$OK(S) = 00 0100 0001 1110,$$

$$S = 418$$

Код "
$$3a+2$$
" Пентадный код: " $3a+2$ "(a) = ($3 \cdot a + 2$)

<i>а</i> в 10СС	"3a+2"(a)	"3a+2"(9 - a)
0	00010	11101
1	00101	11010
2	01000	10111
3	01011	10100
4	01110	10001
5	10001	01110
6	10100	01011
7	10111	01000
8	11010	00101
9	11101	00010

$$\overline{\text{"3a+2"}(a)} = 31 - (3a+2) = 3(9-a) + 2 = \text{"3a+2"}(9-a)$$

Код "За+2"

Сложение
$$S=A+B$$
, где $A=(a_{n-1}\cdots a_0)$ и $B=(b_{n-1}\cdots b_0)$

$$s_k=a_k+b_k+c_k.$$

- **①** Если $0 \le a_k + b_k + c_k \le 9$:
 - $oldsymbol{0}$ если $c_k=0$, то код $3(a_k+b_k)+4$. Верный код: $3(a_k+b_k)+2$. Поправка: -2=11110:
 - $oldsymbol{e}$ если $c_k=1$, то код $(3a_k+2)+(3b_k+2)+1=3(a_k+b_k+1)+2$. Код верен!
- **2** Если $a_k + b_k + c_k \ge 10$:
 - $oldsymbol{0}$ если $c_k=0$, то код $(3a_k+2)+(3b_k+2)-32=3(a_k+b_k-10)+2$. Код верен!
 - $oldsymbol{0}$ если $c_k=1$, то код $(3a_k+2)+(3b_k+2)+1-32$, т.е. $3((a_k+b_k+1)-10)$. Верный код: $3((a_k+b_k+1)-10)+2$. Поправка: +2=00010.

Код "За+2" Алгоритм сложения

- Перевести слагаемые в обратный "За+2"-код. Каждая тетрада модуля отрицательного числа инвертируется.
- Выполняется сложение полученных операднов по правилам двоичной арифметики.
- Выполняется коррекция. Прибавляется код 11110₂ к пентадам, в которые и из которых не формировались единицы переноса. Прибавляется код 00010₂ к пентадам, в которые и из которых формировались единицы переноса. В процессе коррекции переносы из пентады в пентаду не распространяются.
- Результат получен в обратном "За+2"-коде.

Код "3a+2" | Пример сложения —6425 и 4985

Перевод в ОК (добавлены два знаковых двоичных разряда МОК):

$$-6425 \Rightarrow -10100$$
 01110 01000 10001 OK $(-6425) = 11$ 01011 10001 10111 01110 OK $(4985) = 00$ 01110 11101 11010 10001

Выполняется сложение обратных кодов.

+ 11 01011 10001 10111 01110 + 00 01110 11101 11010 10001 11 11010*01111*10001 11111

Код "За+2" || Пример сложения —6425 и 4985

 Выполняется коррекция. Переносы между тетрадами не распространяются.

ПРС не возникло,

$$OK(S) = 11$$
 11010 10001 10001 11101,
 $\overline{OK(S)} = 00$ 00101 01110 01110 00010,
 $S = -1440$.

Всеми рассмотренными способами решить «универсальные» примеры:

Советы самоучке

Двоично-десятичные коды обсуждаются, например, в [1, 2].

Библиография I

В.Зубчук. Справочник по цифровой схемотехнике / В.Зубчук, В.Сигорский, А.Шкуро. — К.: Выш. школа, 1990. — 448 с.

 ${\it Б.Г.Лысиков.}$ Арифметические и логические основы цифровых автоматов / ${\it Б.Г.Лысиков.}$ — 2 изд. — Мн.: Выш. школа, 1980. — 336 с.