Arquitectura de Computadoras para Ingeniería

(Cód. 7526) 1° Cuatrimestre 2018

Dra. Dana K. Urribarri DCIC - UNS

- Clasificación de 1966
- En función del flujo de instrucciones y datos en un solo procesador:

{instrucción única, múltiples instrucciones} x {dato único, múltiples datos}

	Single Data	Multiple Data
Single Instruction	SISD	SIMD
Multiple Instruction	MISD	MIMD

Flujo de instrucciones	Flujo de datos	Nombre	Ejemplos
1	1	SISD	Máquina Von Neumann Clásica
1	muchos	SIMD	Supercomputadora vectorial. Arreglo de procesadores.
muchos	1	MISD	?
muchos	muchos	MIMD	Multiprocesadores, multicomputadoras

Está basada en 2 conceptos:

- Flujo de instrucciones: Se corresponde con el program counter. Un sistema con n CPUs tiene n program counters y por lo tanto n flujos de instrucciones.
- Flujo de datos: Se corresponde con el conjunto de operandos.

SISD

- Un único procesador Von Neumann clásico.
- Hay un único flujo de instrucciones y un único flujo de datos.
- Realiza una única operación a la vez.
 - Ejecución concurrente en pipeline
 - Procesadores superescalar con múltiples unidades funcionales.

SIMD

- Tienen una única unidad de control que procesa una única instrucción a la vez.
- Tienen múltiples ALUs para operar sobre múltiples conjuntos de datos en simultáneo.
- Extensiones multimedia:
 - MMX (enteros, 1997 Pentium)
 - 3DNow! (pf, 1998 K6-2), SSE (1999, Pentium III),
 SSE2,3,4.x..., AVX (2010)
- GPU

SIMD: GPU

GPU Core

Proyección

Dana K. Urribarri **ACI 2018**

MIMD

- Varios procesadores operan en paralelo de manera asincrónica.
- Se distinguen en:
 - Cómo se comunican los procesadores
 - Memoria compartida
 - Pasaje de mensajes
 - El acceso a memoria principal
 - Uniforme
 - Distribuido entre los procesadores
 - Número de procesadores, homogeneidad, interconexión procesador-procesador y procesador-memoria, coherencia de caché, sincronización, etc...

- Los procesadores paralelos comparten un mismo espacio de direcciones de memoria.
- La comunicación es a través de instrucciones *load-store*.

SISD SIMD MISD MIMD (Von Neumann) Vector Arrav Multi-Multiprocessor computers processor processors COMA MPP **UMA** NUMA COW Hyper-CC-NUMA NC-NUMA Switched Grid cube Shared memory Message passing

Parallel computer architectures

Acceso uniforme a memoria (UMA):

- Todos los procesadores tienen el mismo tiempo de acceso a cualquier módulo de memoria.
- Todas las palabras de memoria se acceden el mismo tiempo.
- Si técnicamente no se puede, se demora la referencia más rápida.
- Hace que el rendimiento sea predecible.

Acceso no uniforme a memoria (NUMA):

- Memoria compartida distribuida.
- Hay un módulo de memoria cercano a cada procesador (al cual es más rápido acceder).
- La ubicación del código y datos afecta el rendimiento.

 Las multicomputadoras no tienen memoria compartida a nivel arquitectura (el SO en una CPU no puede acceder con load/store a memoria asociada a otra CPU).

- La comunicación es a través de mensajes.
- No tienen acceso directo a memoria remota.

Massively Parallel Processors (MPP)

 Supercomputadoras fuertemente acopladas por una red de interconexión rápida y propietaria.

Cluster, Cluster of Workstations (COW)

- PC regulares, workstations, servidores conectados en una LAN.
- Nodos más económicos.

Interconexión memoria/procesador (y procesador/procesador)

Interconexiones Memoria-Procesador

- Principales esquemas de conexionado:
 - Shared bus
 - Crossbar
 - Redes directas
 - Meshes

Shared bus

- ✔ Forma más simple de conexión
- ✔ Bajo costo
- ✔ Facilidad de uso
- Capacidad de hacer broadcast
- Restricciones físicas (longitud, carga eléctrica) que limitan el número de dispositivos que pueden conectarse.
- A mayor cantidad de dispositivos se incrementa la pelea por el bus.

Crossbar

- Provee máxima concurrencia
 - Entre *n* procesadores
 y *m* memorias (UMA)
 - Entre *n* procesadores (NUMA)
- X El costo crece con
 - $-n \times m$
 - $-n^2$

Direct interconnection networks

- Se basan en el crossbar de 2x2.
- Múltiples etapas de interconexión.
- Cada procesador está a la misma distancia de cada memoria o de los demás procesadores.

Butterfly Network

Omega Network

Meshes

- Interconexión indirecta entre todos los nodos.
- Cada nodo está conectado con un enlace de longitud 1 con un subconjunto de nodos vecinos (dimensión).
- La distancia entre procesadores y memorias/procesadores varía.

Anillo

Cada nodo tiene conexión directa con 2 vecinos. Conexión unidimensional.

Mesh 2D

Cada nodo interior tiene conexión directa con sus 4 vecinos.

Dana K. Urribarri ACI 2018

Meshes

Torus 2D

Todos los nodos están conectado con un enlace de longitud 1 con 4 vecinos.

Hipercubo de *m* dimensiones Cada nodo está conectado con un enlace de longitud 1 con *m* vecinos.

Multiprocesadores y la coherencia de caché

Memoria caché en multiprocesadores

- Varios procesadores.
- Cada procesador con su propia memoria caché.
- Todos acceden al mismo espacio de direcciones.
- Se comunican por loads y store.
- Pueden tener compartir niveles de memoria caché.

Cómo se sabe el estado de un bloque

- Fuertemente dependiente del tipo de interconexión
- Snooping
 - Cada caché mantiene el estado del bloque compartido.
 - Shared bus (fácil hacer broadcast).
 - Los controladores de caché controlan (o espían) el bus por si hay un requerimiento sobre un bloque que tengan.
- Basados en directorios
 - Se almacena un directorio con información del estado de cada bloque compartido de memoria física.
 - UMA: centralizado en algún punto común (por ej. último nivel de caché)
 - NUMA: directorios distribuidos.

Complejidad del protocolo

Write-invalidate protocol

- Cuando un procesador escribe en un bloque se invalidan todas las demás copias.
 - MSI: Un bloque tiene 3 estados posibles: Modified, Shared, Invalid
 - MESI (MSI + Exclusive)
 - MESIF (MESI + Forward), MOESI (MESI + Owned)

Write-update protocol

 Cuando un procesador escribe en un bloque se actualizan las demás copias.

MSI

Estados

- Invalid (I): La línea estuvo en la caché pero fue invalidada.
- Shared (S): En el sistema hay varias copias de la línea y son todas iguales.
- Modified (M): La línea es la única copia en el sistema.

MSI + Snooping

Estado de una línea en la caché local

Según acciones del procesador

Según señales externas

Ejemplo

MSI + Directorio

Estado de una línea en la caché local

Según acciones del procesador local

Según señales externas

Read/Write hit

Estados de una línea en el directorio

Hay tres posibles estados:

- *Uncached*: ninguna caché tiene la línea
- Shared: la línea está en varias caché como sólo lectura
- Exclusive: hay una caché que tiene la única copia válida de la línea.
- Pueden ocurrir cuatro eventos:
 - Read/write miss: un procesador quiere leer/escribir una línea que no tiene en caché.
 - Upgrade miss: un procesador quiere escribir una línea que tiene en caché pero como sólo lectura.
 - Write-back: un procesador escribe una línea en el nivel inferior antes de reemplazarla.
- ¿En qué estados puede ocurrir cada evento?

Estados de una línea en el directorio

Ejemplo

Dana K. Urribarri

Tipos de fallos en caché

- Capacitivos
- Compulsivos
- Conflictivos
- De coherencia (Coherence miss)

Fallos de coherencia

- Resultado de la comunicación entre procesadores.
- Motivos:
 - Real existencia de datos compartidos.
 - Falsos datos compartidos.
 - Distintos procesadores acceden a distintos datos pero que están en el mismo bloque.
 - Dependientes del tamaño del bloque.

Bibliografía

- <u>Capítulo 7</u>. Multiprocessor Architecture. From simple pipelines to chip multiprocessor. Jean-Loup Baer. Cambridge University Press. 2010.
- <u>Capítulo 5</u>. Computer Architecture. A Quantitative Approach. John L. Hennessy & David A. Patterson. Elsevier Inc. 2012, 5ta Ed.

Suplementaria

<u>Capítulo 6</u>. Computer Organization and Design.
 The Hardware/Software Interface. David A.
 Patterson & John L. Hennessy. Elsevier Inc. 2014,
 5ta Ed.