Modelación en Ciencia de datos

Matching

Prof. Manuel Lecuanda

3.1. Propensity Score Matching

Objetivo

Aplicar la técnica cuasiexperimental de *matching* mediante el cálculo del *propensity score* y analizar e interpretar sus resultados en la estimación del efecto de tratamiento sobre una variable resultado.

En particular se estima el efecto en el rendimiento de los estudiantes de haber acudido a una escuela privada (católica) versus una escuela pública, utilizando la estimación de *propensity score* a partir de las covariables disponibles en la ECLS.

La variable de resultado es el rendimiento académico del alumno. El grupo tratado serán los alumnos que acudieron a una escuela católica, el grupo de control los de la escuela pública.

Referencia:

ECLS: Early Childhood Longitudinal Study [United States], (ICPSR 4075)

Instrucciones

- Obtenga la diferencia entre medias para la variable de resultado para el grupo de tratamiento y control.
- Evalúe las diferencia entre medias para las covariables entre grupos de tratamiento y control previas al matching.
- Estime el propensity score como la probabilidad de recibir tratamiento dado un conjunto de covariables previas al tratamiento.
- Analizar la región de commun support
- Utilice el procedimiento de matching mediante el criterio de la vecindad más cercana
- Evalúe el equilibrio de covariables después del matching
- Estime los efectos del tratamiento sobre la variable de resultado.

Lectura de datos

Iniciamos por activar las librerías:

```
library(haven)
library(stargazer)
library(magrittr)
library(tidyverse)
library(knitr)
library(kableExtra)
library(MatchIt)
library(dplyr)
library(ggplot2)
```

y ahora leemos los datos que puede revisar con View(ecls):

```
archivo<-"/Users/manuellecuanda/Desktop/Pantalla/Taller/ecls.cels <- read.csv(archivo)</pre>
```

Lectura de datos

La descripción de la base de datos aparece en: ecls-codebook.txt

•	childid [‡]	catholic [‡]	race	race_white	race_black [‡]	race_hispanic +	race_asian ÷	p5numpla ÷	p5hmage ⁻
1	0001002C	0	WHITE, NON-HISPANIC	1	0	0	0	1	47
2	0001004C	0	WHITE, NON-HISPANIC	1	0	0	0	1	41
3	0001005C	0	WHITE, NON-HISPANIC	1	0	0	0	NA	N/A
4	0001010C	0	WHITE, NON-HISPANIC	1	0	0	0	1	43
5	0001011C	1	WHITE, NON-HISPANIC	1	0	0	0	1	38
6	0001012C	0	WHITE, NON-HISPANIC	1	0	0	0	1	47
7	0002003C	0	WHITE, NON-HISPANIC	1	0	0	0	1	30
8	0002004C	0	WHITE, NON-HISPANIC	1	0	0	0	1	41
9	0002005C	0	HISPANIC, RACE SPECIFIED	0	0	1	0	1	38
10	0002006C	0	WHITE, NON-HISPANIC	1	0	0	0	1	28
11	0002008C	0	WHITE, NON-HISPANIC	1	0	0	0	1	31
12	0002010C	0	WHITE, NON-HISPANIC	1	0	0	0	1	38
13	0002011C	0	WHITE, NON-HISPANIC	1	0	0	0	1	26
14	0002012C	0	MORE THAN ONE RACE, NON HISPANIC	0	0	0	0	2	36
15	0002018C	0	WHITE, NON-HISPANIC	1	0	0	0	1	38
16	0002019C	0	WHITE, NON-HISPANIC	1	0	0	0	1	36
17	0002022C	0	WHITE, NON-HISPANIC	1	0	0	0	1	27

Showing 1 to 16 of 11,078 entries, 22 total columns

1. Diferencia en medias para el resultado

La variable de resultado es la puntuación en matemáticas estandarizada c5r2mtsc_std.

catholic	n_students	mean_math	std_error		
0	9568	-0.0305958	0.0103854		
1	1510	0.1938682	0.0223528		

El puntaje promedio de matemáticas de los estudiantes de escuelas católicas es más del 20% de una desviación estándar más alta que la de los estudiantes de escuelas públicas.

1. Diferencia en medias para el resultado

Esta diferencia en medias es estadísticamente significativa

```
with(ecls, t.test(c5r2mtsc_std ~ catholic))
```

Se han seleccionado cinco covariables de la base de datos como variables explicativas, que se definen como el conjunto de covariables: ecls_cov

catholic	race_white	p5hmage	w3income	p5numpla	w3momed_hsb
0	0.5561246	37.56097	54889.16	1.132669	0.4640918
1	0.7251656	39.57516	82074.30	1.092701	0.2272069

Se pueden comprobar si estas diferencias por grupo son significativas mediante la prueba de hipótesis t apropiada.

Para no repetir el procedimiento varias veces, se puede utilizar la función lapply que permite aplicar la misma instrucción a una lista, por ejemplo, para nuestro conjunto de covariables:

```
lapply(ecls_cov,
  function(v) {t.test(ecls[, v] ~ ecls[, 'catholic'])})
```

```
## [[1]]
##
## Welch Two Sample t-test
##
## data: ecls[, v] by ecls[, "catholic"]
## t = -13.453, df = 2143.3, p-value < 2.2e-16
# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1936817 -0.1444003
## sample estimates:
## mean in group 0 mean in group 1
## 0.5561246 0.7251656</pre>
```

```
## [[2]]
##
## Welch Two Sample t-test
##
## data: ecls[, v] by ecls[, "catholic"]
## t = -12.665, df = 2186.9, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.326071 -1.702317
## sample estimates:
## mean in group 0 mean in group 1
##
         37.56097 39.57516
##
##
## [[3]]
## Welch Two Sample t-test
##
## data: ecls[, v] by ecls[, "catholic"]
## t = -20.25, df = 1825.1, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -29818.10 -24552.18
## sample estimates:
## mean in group 0 mean in group 1
##
          54889.16
                          82074.30
##
```

```
## [[41]
##
## Welch Two Sample t-test
##
## data: ecls[, v] by ecls[, "catholic"]
## t = 4.2458, df = 2233.7, p-value = 2.267e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.02150833 0.05842896
## sample estimates:
## mean in group 0 mean in group 1
        1.132669
                   1.092701
##
##
## [[5]]
##
## Welch Two Sample t-test
##
## data: ecls[, v] by ecls[, "catholic"]
## t = 18.855, df = 2107.3, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2122471 0.2615226
## sample estimates:
## mean in group 0 mean in group 1
##
        0.4640918 0.2272069
```

3. Estimación del propensity score

Estimaremos el *propensity score* mediante un modelo logit, donde la variable dependiente es la dicotómica del tratamiento y como independientes las covariables seleccionadas.

Utilizamos la función de un modelo lineal generalizado para la estimación del modelo logit: glm. La variable del ingreso se convierte a una varible en miles.

3. Estimación del propensity score

```
##
## Call:
## glm(formula = catholic ~ race white + w3income 1k + p5hmage +
      p5numpla + w3momed hsb. family = binomial(), data = ecls)
## Deviance Residuals:
      Min
                10 Median
                                         Max
## -1.1883 -0.6140 -0.4508 -0.3336
                                      2.5659
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.2125519 0.2379826 -13.499 < 2e-16 ***
## race white 0.3145014 0.0700895 4.487 7.22e-06 ***
## w3income 1k 0.0073038 0.0006495 11.245 < 2e-16 ***
## p5hmage 0.0292168 0.0050771 5.755 8.69e-09 ***
## p5numpla -0.1439392 0.0912255 -1.578
                                              0.115
## w3momed hsb -0.6935868 0.0743207 -9.332 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 7701.3 on 9266 degrees of freedom
## Residual deviance: 7168.8 on 9261 degrees of freedom
     (1811 observations deleted due to missingness)
## ATC: 7180.8
##
## Number of Fisher Scoring iterations: 5
```

3. Estimación del propensity score

Usando este modelo, ahora calculamos el *propensity score* para cada estudiante, es decir, la probabilidad predicha para cada estudiante de ser tratado dadas las estimaciones del modelo logit.

```
## pr_score catholic

## 1 0.2292928 0

## 2 0.1801360 0

## 4 0.2092957 0

## 5 0.2154022 1

## 6 0.3604931 0

## 7 0.1080608 0
```

4. Analizar la región de commun support

Luego de estimar el *propensity score*, graficamos su histograma para el grupo de tratamiento y control:

4. Analizar la región de commun support

Para realizarlo, es necesario omitir las observaciones incompletas:

```
ecls_nomiss <- ecls %>%
  select(c5r2mtsc_std, catholic, one_of(ecls_cov)) %>%
  na.omit()
```

Y utilizamos las funciones propias del paquete MatchIt:

Se puede generar un nuevo dataframe con el resultado:

```
dta_m <- match.data(mod_match)
dim(dta_m)</pre>
```

head(dta_m)

```
c5r2mtsc_std catholic race_white p5hmage w3income p5numpla w3momed_hsb
        0.9817533
                                               62500.5
       0.5943775
                                               45000.5
                                           41
                                                                           0
     0.4906106
                                               62500.5
     1.4512779
                                               87500.5
     2.5956991
                                              150000.5
       0.3851966
                                               62500.5
## 8
                                           41
     distance weights subclass
##
    0.2292928
                            912
    0.1801360
                             56
  4 0.2092957
                           1344
  5 0.2154022
                            671
  6 0.3604931
                            881
  8 0.1997897
                            128
```

summary(mod_match)

```
Call:
matchit(formula = catholic ~ race_white + w3income + p5hmage +
    p5numpla + w3momed_hsb, data = ecls_nomiss, method = "nearest")
```

Summary of Balance for All Data:

-	Means Treated	Means Control	Std. Mean Diff.	Var. Ratio	eCDF Mean	eCDF Max
distance	0.1927	0.1379	0.6486	1.0007	0.2086	0.3109
race_white	0.7411	0.5914	0.3418		0.1497	0.1497
w3income	82568.9357	55485.0210	0.5777	1.1373	0.1565	0.3062
p5hmage	39.5932	37.5658	0.3874	0.6383	0.0408	0.1893
p5numpla	1.0917	1.1298	-0.1242	0.6132	0.0076	0.0277
w3momed_hsb	0.2234	0.4609	-0.5703		0.2375	0.2375

Summary of Balance for Matched Data:

Means Treated	Means Control S	Std. Mean Diff.	Var. Ratio	eCDF Mean	eCDF Max Std.	Pair Dist.
0.1927	0.1927	0.0000	1.0000	0.0000	0.0030	0.0002
0.7411	0.7470	-0.0135		0.0059	0.0059	0.0811
82568.9357	81403.9926	0.0248	1.0114	0.0059	0.0118	0.0536
39.5932	39.5503	0.0082	1.0036	0.0016	0.0059	0.1416
1.0917	1.0762	0.0507	1.0627	0.0040	0.0163	0.1184
0.2234	0.2152	0.0195		0.0081	0.0081	0.0728
	0.1927 0.7411 82568.9357 39.5932 1.0917	0.1927 0.1927 0.7411 0.7470 82568.9357 81403.9926 39.5932 39.5503 1.0917 1.0762	0.1927 0.1927 0.0000 0.7411 0.7470 -0.0135 82568.9357 81403.9926 0.0248 39.5932 39.5503 0.0082 1.0917 1.0762 0.0507	0.1927 0.1927 0.0000 1.0000 0.7411 0.7470 -0.0135 . 82568.9357 81403.9926 0.0248 1.0114 39.5932 39.5503 0.0082 1.0036 1.0917 1.0762 0.0507 1.0627	0.1927 0.1927 0.0000 1.0000 0.0000 0.7411 0.7470 -0.0135 . 0.0059 82568.9357 81403.9926 0.0248 1.0114 0.0059 39.5932 39.5503 0.0082 1.0036 0.0016 1.0917 1.0762 0.0507 1.0627 0.0040	0.7411 0.7470 -0.0135 . 0.0059 0.0059 82568.9357 81403.9926 0.0248 1.0114 0.0059 0.0118 39.5932 39.5503 0.0082 1.0036 0.0016 0.0059 1.0917 1.0762 0.0507 1.0627 0.0040 0.0163

summary(mod_match)

Percent Balance Improvement:

	Std.	Mean Di	ff.	Var.	Ratio	eCDF Mean	eCDF Max
distance		10	0.0		94.7	100.0	99.0
race_white		9	6.0			96.0	96.0
w3income		9	5.7		91.2	96.2	96.1
p5hmage		9	7.9		99.2	96.1	96.9
p5numpla		5	9.2		87.6	47.5	41.2
w3momed_hsb		9	6.6			96.6	96.6

Sample Sizes:

	Control	Treated
All	7915	1352
Matched	1352	1352
Unmatched	6563	0
Discarded	0	0

plot(mod_match)

plot(mod_match)

Control Units

```
dta_m %>%
  group_by(catholic) %>%
  select(one_of(ecls_cov)) %>%
  summarise_all(funs(mean)) %>%
  kable()
```

catholic	race_white	p5hmage	w3income	p5numpla	w3momed_hsb
0	0.7470414	39.5503	81403.99	1.076183	0.2152367
1	0.7411243	39.5932	82568.94	1.091716	0.2233728

Como antes, se puede hacer la prueba estadística apropiada, no debe rechazarse ninguna de las hipótesis nulas ahora:

```
lapply(ecls_cov,
    function(v) { t.test(dta_m[, v] ~ dta_m$catholic)})
```

[[1]] Welch Two Sample t-test data: dta_m[, v] by dta_m\$catholic t = 0.35243, df = 2701.8, p-value = 0.7245 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.02700440 0.03883872 sample estimates: mean in group 0 mean in group 1 **ГГ277** Welch Two Sample t-test data: dta_m[, v] by dta_m\$catholic t = -0.21331, df = 2702, p-value = 0.8311 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.4372485 0.3514496 sample estimates: mean in group 0 mean in group 1 39.5503 39.5932

[[3]] Welch Two Sample t-test data: dta_mſ, v] by dta_m\$catholic t = -0.64787, df = 2701.9, p-value = 0.5171 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -4690.731 2360.845 sample estimates: mean in group 0 mean in group 1 81403.99 82568.94 [[4]] Welch Two Sample t-test data: dta mΓ, vl bv dta m\$catholic t = -1.339, df = 2699.5, p-value = 0.1807 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.038278301 0.007213213 sample estimates: mean in aroup 0 mean in aroup 1

1 076183 1 091716

```
Welch Two Sample t-test

data: dta_m[, v] by dta_m$catholic
t = -0.51108, df = 2701.5, p-value = 0.6093
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.03935185 0.02307966
sample estimates:
mean in group 0 mean in group 1
0.2152367 0.2233728
```

ГГ577

7. Estimación del efecto de tratamiento

Para la estimación del efecto del tratamiento simplemente se puede realizar una prueba de comparación de medias en el grupo posterior al *matching*:

```
with(dta_m, t.test(c5r2mtsc_std ~ catholic))
```

```
##
## Welch Two Sample t-test
##
## data: c5r2mtsc_std by catholic
## t = 4.2645, df = 2676.3, p-value = 2.073e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.08086619 0.21853174
## sample estimates:
## mean in group 0 mean in group 1
## 0.3593668 0.2096679
```

7. Estimación del efecto de tratamiento

O bien, mediante la estimación de la recta de regresión por MCO con o sin covariantes:

```
lm_treat1 <- lm(c5r2mtsc_std ~ catholic, data = dta_m)
summary(lm_treat1)</pre>
```

7. Estimación del efecto de tratamiento

```
## Call:
## lm(formula = c5r2mtsc std ~ catholic + race white + p5hmage +
      I(w3income/10^3) + p5numpla + w3momed_hsb, data = dta_m)
##
##
## Residuals:
      Min
               1Q Median
                                     Max
## -3.5663 -0.5439 0.0439 0.5990 2.7409
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 -0.4822479 0.1482211 -3.254 0.001154 **
## catholic
                 -0.1485468 0.0331477 -4.481 7.73e-06 ***
## race_white
                 0.3097157 0.0385640 8.031 1.43e-15 ***
## p5hmage
                  0.0119232 0.0032307 3.691 0.000228 ***
## I(w3income/10^3) 0.0031910 0.0003752 8.504 < 2e-16 ***
## p5numpla -0.0409054 0.0552001 -0.741 0.458734
## w3momed hsb -0.3580381 0.0413037 -8.668 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8613 on 2697 degrees of freedom
## Multiple R-squared: 0.1169, Adjusted R-squared: 0.115
```