Tutorial 4

Monsoon 2024, PHY-101

Q1: A block is placed at rest on horizontal surface. The coefficient of friction between the block and the surface is μ_s . It is pulled with a force F at an angle θ with the horizontal plane as shown. Find the value of θ at which minimum force is required to move the block.

Q2: Consider an automobile moving along a straight horizontal road with a speed v_0 . If the coefficient of static friction between the tires and the road is μ_s , what is the shortest distance in which the automobile can be stopped?

Q3: A 200 kg mass rests on a surface which has a coefficient of friction of 0.25. It is connected to a 100 kg mass over a pulley as shown in the diagram below. When the masses are released what is the resulting tension in the rope?

Q4: Figure shows two blocks in contact sliding down an inclined surface of inclination 30°. The friction coefficient between the block of mass 2.0 kg and the incline is μ_1 and that between the block of mass 4.0 kg and the incline is μ_2 . Calculate the acceleration of the 2.0 kg block if,

(a)
$$\mu_1$$
 = 0.20 and μ_2 = 0.30,

(b)
$$\mu_1 = 0.30$$
 and $\mu_2 = 0.20$. Take g = 10 ms⁻²

Q5: A device consists of mass of equal magnitude m tethered to a central shaft as shown in the figure. At a constant rotational speed of the central shaft the masses will be at a constant angle θ_x wrt to the central shaft. Considering length of the tethers are l and acceleration due to gravity g.

- (a) Rate of spinning of the shaft is $\omega = \dot{\theta} = \sqrt{\frac{g}{l \cos \theta_x}}$
- (b) If we want to spin it exactly at 60 rpm, what will be the angle θ_x if m=0.5kg and l=1m

Q6: 2. In the arrangement of Fig. 1 the masses m_0 , m_1 and m_2 of bodies are equal, the masses of the pulley and the threads are negligible, and there is no friction in the pulley. Find the acceleration a with which the body m_0 comes down, and the tension of the thread binding together the bodies m_1 and m_2 , if the coefficient of friction between these bodies and the horizontal surface is equal to k.

