Digital microsystems design

Marius Marcu

Outline

- Subject
 - Prerequisites
 - Overview
 - Goal
 - Specific objectives
- Introduction
 - Terms
 - History
 - Technology
- Administrative
 - Evaluation
 - Contact

Subject

- Design, build, usage and program a digital system
 - Microprocessors (single, multiple)
 - Mainboard
 - Buses
 - Memories
 - I/O interfaces

Prerequisites

- Programming languages
- Computer architecture
- Digital logic
- Digital circuits and signals

Prerequisites

- C programming language
- Logic gates
- Registers, buffers, memories, decoders, multiplexers, buses
- Pipelines, caches

- Three classes this year will fill the gap
 - Digital microsystems design
 - Microprocessors and microprocessor-based systems
 - Intel IA32 processors architectures (x86,x64)
 - Embedded systems
 - Microcontrollers and microcontroller-based systems
 - Microprocessor systems
 - ARM processors architectures
 - Applications oriented (IoT, SmartCity, SmartHouse)

- Complementary with Large Scale Integrated Circuits
 - Digital Microsystem Design targets mainly usage and programming of Digital Systems
 - Large Scale Integrated Circuit low level design of Digital Systems

- How a computer program is executed by hardware?
 - How a C program is executed by a desktop computer or a mobile device?
 - How a Java program is executed by a server or by a mobile device?
 - **—** ...
 - Is there any difference between them?

 What is the interface between software code and hardware components?

Applications

Physical System

 What is the interface between software code and hardware components?

 What is the glue (interface) between software code and hardware components?

- How a computer program is executed by the processor?
 - Where exactly the application is stored before execution?
 - Where exactly the application is executed from?
 - What exactly contains an application file (EXE file)?

- Microprocessor <- Main memory <- Storage
 - Machine cycles
 - Machine code
 - Memory hierarchies


```
High Level Language
                                   temp = v[k];
   Program
                                   v[k] = v[k+1];
                                   v(k+1) = temp;
            Compiler
                                             ax, [bx+si]
                                   mov
Assembly Language
                                             dx, [bx+si+4]
                                   mov
   Program
                                             [bx+si], dx
                                   mov
                                             [bx+si+4], ax
                                   mov
            Assembler
                                   1000: 8B 4F
Machine Language
                                   1002: 8B 57 04
   Program
                                   1005: 89 8F
                         ISA
                                   1007: 89 87 04
            Machine Interpretation 100A:...
Control Signal Spec
                               ALUOP[0:3] <= InstReg[9:11] & MASK
```

• How would you describe to a friend, the role of the microprocessor in a computer system?

- How would you describe to a friend, the role of the microprocessor in a computer system?
 - The processor is similar to the human brain of a person, being able to take decisions or control the behavior of the system (HW)

Goal

 The discipline aims at providing students with knowledge needed to design a microprocessor based system (both HW and low-level SW) and to understand how different systems' components are interconnected and application software are implemented and executed

Objectives

Specific objectives

- Acquiring the overview over the microprocessor internal components and their behavior and their external interfaces to the system
- Acquiring the capacity to analyze and design microprocessor based systems
- Acquiring the ability to implement and test low level applications for x86 ISA and how they will impact the efficiency of high level algorithms

Objectives

- x86, IA32, AMD64 processor architectures
- Specialized circuits
- Buses
- Memories
- Assembly language
- C language constraints and optimization

Terms

- Microprocessor architecture, microarchitecture
 - Internal structure of a microprocessor
- Instruction set architecture
 - Programming interface of a microprocessor

- Microprocessors and microcontrollers are part of every type of modern electronic and computing devices: computers, mobile devices, TV sets, multimedia, automotive, etc.
 - Microprocessors general purpose
 - Microcontrollers application specific, application oriented,
 embedded

• What are the main requirements of modern computer systems?

- Requirements of modern computer systems:
 - Computing power and speed
 - Memory and storage capacity
 - Communication bandwidth and response time
 - Reliability and availability
 - Low power

- Reliability The likelihood that the system has no defect / error
- Availability the likelihood that the system will be available and respond correctly to input when used

- Characteristics of high performance applications:
 - Large number of computations
 - Big data large volume of data
 - Fine granularity high accuracy of data processing

Applications:

- Automotive (collisions, combustion efficiency)
- Aeronautics (engine efficiency, air flow analysis, mechanical structures, electromagnetism)
- Weather prediction
- Pharmaceutics (molecular modeling)
- Mining industry (natural deposits analysis)
- Financial analysis (currency exchange rates)
- Multimedia (image and voice processing and recognition, gaming, movies)
- Military

- Computer generations
 - First generation: mechanical and electromechanical
 - Second generation: vacuum tubes
 - Third generation: transistors and integrated circuits (SSI, MSI, LSI)
 - Fourth generation: microprocessors and VLSI
 - Fifth generation: experimental (quantum, chemical, DNA, optical)

Source: http://en.wikipedia.org/wiki/Computer/

• Computer eras

	Early	Mainframes	Minicomputers	Personal computers	Network	Mobile	Smart
Decade	-1960	1960-1970	1970-1980	1980-1990	1990-2000	2000-2010	2010-
Location	few	computer centers	terminal rooms	desktop	nomadic	mobile	ubiquitous
End users	researchers	experts	specialists	individuals	groups	anyone	everyone
Data	physical	binary	text	graphical	multimedia	intelligent	big
User interfaces	switches	punched cards	keyboard, screen	mouse	voice	sensors	context and IoT
Connectivity	-	-	input / output	LAN	Internet	wireless	cloud
Technology	relays and vacuum tubes	transistors	integrated circuits	microprocessors	chipsets and controllers	accelerators	Multi- and many cores

- Each era put its mark on today computer systems:
 - supercomputers

- The number of laptops sold worldwide in 2008 overtook the number of desktop computers
- The number of smartphones sales in 2011 exceeded the number of personal computers
- The number of smartphone sales in 2013 surpassed the number of featured phones

- Technological advances
 - Servers / nano-servers
 - Cloud
 - Tablets
 - Smartphones
 - IoT
- Multi-core/Many-core/Heterogeneous
- Virtualization

- Intel company
- 1971: Intel 4004 the first programmable circuit
 - Microprocessor
 - -4 bits
- 1972: Intel 8008 the first 8 bits microprocessor

- Moore's law
 - The number of transistors on a given piece of silicon would double every 18 months (1965)
 - 24 months (1975)

CPU Transistor Counts 1971-2008 & Moore's Law

Moore's Law – The number of transistors on integrated circuit chips (1971-2016) Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are strongly linked to Moore's law.

• What is the main factor that supported microprocessor advances?

Processor	Year	Transistors count	Pins count	Technology [μm]	V _{DD} [V]	F _{max} [MHz]	P _{max} [W]
4004	1971	2250	16	10	12	0.1	
8080	1974	4500	40	6	5	3	
8086	1978	29000	40	2	5	12	
80286	1982	134000	68	1.5	5	20	
80386	1985	275000	132	1	5	33	1.9
80486	1989	1200000	168	0.8	5 - 3.3	66	6
Pentium	1994	3100000	320	0.6 - 0.35	5 - 3.3	200	15
Pentium Pro	1997	5500000	387	0.35	3.3 - 2.9	300	47
Pentium 2	1998	7500000	242	0.25	3.3 - 2.1	500	27
Pentium 3	1999	9500000	242	0.18	3.3 - 1.3	1200	37
Pentium 4	2000	55000000	478	0.13	1.75 - 1.5	1500	57
Pentium 4	2001	55000000	478	0.13	1.75 - 1.5	2000	75
Itanium	2001	25000000		0.18	3.3	800	116
Pentium 4	2002	55000000	478	0.13	1.75 - 1.5	3000	81
Itanium 2	2002	220000000		0.18	3.3	1000	130

• Processor description on emag.ro

PROCESOR

Producator procesor	Intel®
Tip procesor	i5
Model procesor	7400
Numar nuclee	4
Numar thread-uri	4
Arhitectura	Kaby Lake
Frecventa nominala	3000 MHz
Frecventa Turbo Boost	3500 MHz
Cache	6144 KB
Tehnologie procesor	14 nm

 What is the smallest physical component used to design a circuit?

- Manufacturing technology of VLSI circuits
 - Packaging
 - IHS integrated heat spreader
 - TIM thermal interface material
 - Socket connector for placing the processor on the main system board

Manufacturing technology of VLSI

- Manufacturing technology of VLSI circuits
 - Cross section of a MOS transistor

Fabrication process

- Manufacturing technology of VLSI circuits
 - 3D view of a MOS transistor

nMOS Transistor drain gate ___ gate (poly) drain source source gate oxide (diffusion) polysilicon metal N diffusion contact P substrate insulator (oxide)

Semiconductor manufacturing processes 10 µm - 1971 $6 \mu m - 1974$ $\frac{3}{\mu}$ µm - 19771.5 µm – 1982 1 µm - 1985 800 nm - 1989 600 nm - 1994 350 nm - 1995 250 nm - 1997 180 nm - 1999 130 nm - 2001 90 nm - 2004 65 nm - 2006 45 nm - 2008 32 nm - 2010 22 nm - 2012 14 nm - 2014 10 nm - 2017 7 nm - 2018 5 nm - ~2020

- Manufacturing technology of VLSI circuits
 - Top-down view over a MOS transistor

Semiconductor manufacturing processes $10 \, \mu m - 1971$ $6 \mu m - 1974$ $\frac{3}{\mu}$ um -19771.5 µm – 1982 1 μm – 1985 800 nm - 1989 600 nm - 1994 350 nm - 1995 250 nm - 1997 180 nm - 1999 130 nm - 2001 90 nm - 2004 65 nm - 2006 45 nm - 2008 32 nm - 2010 22 nm - 2012 14 nm - 2014 10 nm - 2017 7 nm - 2018 5 nm - ~2020

- Moore's law was a prediction of VLSI circuits development using the semiconductor scaling process
- Scaling is the process of shrinking the physical basic units of an integrated circuit – the transistors

- Scaling objectives
 - Decrease the sizes of the transistors
 - Increase the frequency
 - Increase the number of transistors
- Consequence of increasing the number of transistors
 - Increase the power consumption
- As a solution to increasing power consumption
 - Decrease the circuit voltages
 - Decrease the threshold voltages

- Scaling benefits
 - Increase the number of transistors on the same area of the die
 - Decrease the power consumption of the circuit
 - Increase the operation frequency
- Technology scaling has been the means by which Moore's Law was possible

- Scaling benefits:
 - The same features at lower power consumption

- Scaling benefits:
 - Increasing processing speed at the same power consumption

Scaling process

nMOS Transistor

• Scaling factor α :

- Alternation of processor development steps
 - Scaling/technology changing (~1year)
 - Architectural advances (~1year)

- Moore's law limits
 - Prolongation of development cycle
 - Process
 - Architecture
 - Optimization

- Moore's law limits
 - 2010 frequency
 - -2025 size
 - Single atom transistor (University of New South Wales)
 - Validation of theoretical models

- Moore's law risks
 - Companies took the prediction as a law to be competitive on the market
 - Push innovation in one direction increase the performance
 - Intel Israel Centrino technology optimize for low power

Exam subjects

- Technology scaling
- Moore's Law
- Terms
 - Microarchitecture
 - -ISA
- Definition of microprocessor

Administrative

- Evaluation
- Laboratories
 - -B414
- Students counseling
 - B412
- cv.upt.ro

Evaluation

- Minimal performance standards
 - Overall microprocessor architecture and behavior;
 - Memory decoding, I/O decoding
 - Data types and memory variables
 - ISA

Digital microsystem design fundaments	Written exam	25%
Digital microsystem design applications	Written exam	25%
Solving the topics proposed during the laboratory	Laboratory deliverables presentation and questions	25%
Semester project development and presentation	Project deliverables presentation and questions	25%

Contact

- Prof. Marius Marcu
- B412/B414/B413

• marius.marcu@cs.upt.ro