Suites numériques

Terminale S

Définition

Une suite (u_n) peut-être définie :

 \Rightarrow de manière explicite : $u_n = f(n)$

 \Rightarrow de manière récurrente : $\begin{cases} u_0 \\ u_{n+1} = f(u_n) \end{cases}$

Variations

- \Rightarrow Si pour tout $n, u_{n+1} u_n > 0$ ou $\frac{u_{n+1}}{n} > 1$, alors la suite (u_n) est strictement croissante
- \Rightarrow Si pour tout $n, u_{n+1} u_n < 0$ ou $\frac{u_{n+1}}{u_n} < 1$, alors la suite (u_n) est strictement décroissante

Suites arithmétiques

Récurrence : $u_{n+1} = u_n + r$ (de raison r)

Explicite: $u_n = u_0 + nr$ ou $u_n = u_p + (n-p)r$

Somme : nbre termes $\times \frac{\text{premier terme} + \text{dernier terme}}{}$

 $S_n = u_0 + \dots + u_n = (n+1) \times \frac{u_0 + u_n}{2}$

Suites géométriques

Récurrence : $u_{n+1} = q \times u_n$ (de raison q)

Explicite: $u_n = u_0 \times q^n$ ou $u_n = u_p \times q^{(n-p)}$

Somme : premier terme $\times \frac{1-q^{\text{nbre termes}}}{1}$

 $S_n = 1 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$

Raisonnement par récurrence

But : montrer qu'une propriété $\mathcal{P}(n)$ est vraie pour tout $n \geq n_0$

 \Rightarrow Initialisation : on vérifie que la propriété est vraie au rang n_0

 \Rightarrow Hérédité : on montre que si la propriété est vraie au rang n, alors elle est encore vraie au rang n+1

Conclusion : la propriété est vraie pour tout $n \geq n_0$

Limite finie (convergence)

Théorèmes de comparaison

 $(u_n), (v_n), (w_n)$ sont trois suites. Si à partir d'un rang :

$$\ \, \Leftrightarrow \ \, u_n \leq v_n \text{, alors} \lim_{n \to +\infty} u_n = +\infty \Longrightarrow \lim_{n \to +\infty} v_n = +\infty$$

$$\diamondsuit \ u_n \leq v_n \text{, alors } \lim_{n \to +\infty} v_n = -\infty \Longrightarrow \lim_{n \to +\infty} u_n = -\infty$$

 $\Leftrightarrow u_n \leq v_n \leq w_n$, alors

 $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell \Longrightarrow \lim_{n \to +\infty} v_n = \ell$

Limites d'une suite géométrique

 \Rightarrow Si $q \leq -1$, alors $\lim_{n \to +\infty} q^n$ n'existe pas

 \Rightarrow Si -1 < q < 1, alors $\lim_{n \to \infty} q^n = 0$

 \Rightarrow Si q=1, alors $\lim_{n\to+\infty}q^n=1$

 $\ \diamondsuit \ \ \mathrm{Si} \ q \geq 1$, alors $\lim_{n \rightarrow +\infty} q^n = +\infty$

Convergence d'une suite monotone

Une suite (u_n) est majorée [resp. minorée] si, et seulement si, il existe un réel M [resp. m] tel que pour tout $n \in \mathbb{N}, u_n \leq M$ [resp. $u_n \ge m$]. Si la suite est à la fois minorée et majorée, on dit qu'elle est bornée

- ♦ Toute suite croissante et majorée converge, toute suite décroissante et minorée converge
- \diamond Une suite croissante de limite ℓ est majorée par ℓ