Honey Encryption: Security Beyond the Brute-force Bound

Ari Juels
Cornell Tech

Thomas Ristenpart
University of Wisconsin

Encryption for which decrypting a ciphertext with any number of *wrong* keys yields fake, but plausible, plaintexts

Password-based encryption

secret *password* user remembers

PKCS#5 is dominant standard

Password-based encryption

Cryptographic hash function H (H = SHA-256, SHA-512, etc.)

Common choice is c = 10,000

Why hash chains and salts?

Slow down *brute-force attacks*

Internet users ditch "password" password, upgrade to "123456"

Contest for most commonly used terrible password has a new champion.

by Jon Brodkin - Jan 20 2014, 4:00pm GMT

[Bonneau 2012] studied 69 million Yahoo! Passwords 1.1% of users pick same password

People choose weak passwords

Brute-force attacks

pw likely to fall in short sequence of guesses pw₁,pw₂,pw₃, ...

Step 1: Trial decryptions

M₁ <- Decrypt(pw₁,salt,C)

M₂ <- Decrypt(pw₂,salt,C)

M₃ <- Decrypt(pw₃,salt,C)

• • •

Brute-force attacks

pw likely to fall in short sequence of guesses pw₁,pw₂,pw₃, ...

Say M is unknown ASCII text encoded in binary

Many bytes won't be valid ASCII characters, let alone "look" like English text.

Step 1: Trial decryptions

 $M_1 \leftarrow H^c(pw_1 \mid | salt) \oplus C$

 $M_2 \leftarrow H^c(pw_2 \mid | salt) \oplus C$

 $M_3 \leftarrow H^c(pw_3 \mid \mid salt) \oplus C$

Step 2: Find true plaintext

 $M_1 = $8.00 ff1 31f$

 $M_2 = hgjk!alc&cwj$

 M_3 = copenhagen

• • •

Brute-force attacks

pw likely to fall in short sequence of guesses pw₁,pw₂,pw₃, ...

Analyses ignore Step 2, conservatively assuming it is trivial for attacker

Say M is unknown prime number encoded as integer

- Hash chain slows attack by factor of c
- Salt prevents rainbow tables, provide separation between users

Primality tests will eliminate majority of candidate plaintexts

Step 1: Trial decryptions

$$M_1 \leftarrow H^c(pw_1 \mid | salt) \oplus C$$

$$M_2 \leftarrow H^c(pw_2 \mid | salt) \oplus C$$

$$M_3 \leftarrow H^c(pw_3 \mid \mid salt) \oplus C$$

Step 2: Find true plaintext

$$M_1 = 6123410$$

$$M_2 = 1299827$$

$$M_3 = 7321162$$

• • •

The Brute-force Bound

Say pw has min-entropy m (most likely password has probability 1/2^m)

Corollary [BRT12]: Encrypt is such that for all IND-CPA adversaries A

$$\frac{t}{c2^m} \le Adv(Encrypt,A) \le \frac{t}{c2^m}$$

where t = cq for some q is the number of queries to H modeled as a RO, and ignoring small constants and negligible terms

[B12]: most likely password has prob. 1.1% meaning m ≈ 6.5

So t > 1,000,000 makes the above bound close to 1 for c = 10,000

- (A) Existing countermeasures help slow down attacks but only ensure security for high-entropy pw
- (B) Best we can do when targeting IND-CPA

Beyond the brute-force bound?

Key intuition:

Step 2 may be hard for attacker for some message distributions

Say M is uniformly distributed bit string

Seems impossible to distinguish!

Step 1: Trial decryptions

$$M_1 \leftarrow H^c(pw_1 \mid | salt) \oplus C$$

$$M_2 \leftarrow H^c(pw_2 \mid | salt) \oplus C$$

$$M_3 \leftarrow H^c(pw_3 \mid \mid salt) \oplus C$$

$$M_1 = 101010101$$

$$M_2 = 100111010$$

$$M_3 = 010101011$$

••

Application: compromise resilience for credentials

Decrypt only when user wants to authenticate

If attacker just obtains C, best strategy is online attack using M_1 , M_2 , Significantly harder to mount than offline attack

Step 1: Trial decryptions

$$M_1 \leftarrow H^c(pw_1 \mid \mid salt) \oplus C$$

 $M_2 \leftarrow H^c(pw_2 \mid \mid salt) \oplus C$
 $M_3 \leftarrow H^c(pw_3 \mid \mid salt) \oplus C$

••

Step 2: Find true plaintext

$$M_1 = 101010101$$
 $M_2 = 100111010$
 $M_3 = 010101011$

Decoys in computer security

- In computer security, we have "honey objects":
 - Honeypots, honeytokens, honey accounts
 - Decoy documents [BHKS09]
 - Kamoflauge system [BBBB10]
 - Honeywords for password hashing [JR13]
- Cryptographic camouflage [Hoover, Kausik 99]

We introduce Honey Encryption (HE)

Encryption schemes tailored to specific message distributions

Secure in [BRT12] sense (use hash chains and salting)

Provable message-recovery security **beyond brute-force bound.** We will show **optimal security** in some cases:

Intuition:

- (1) Decoder is sampler using input as string of randomness
- (2) Decryption under different keys yields uniform bits

Let M be a message distribution $M \leftarrow M$ Distribution-transforming decoder $M \leftarrow M$ $M \leftarrow M$

DTE = (**encode**, **decode**) designed for particular M **encode** randomized **decode** deterministic

Toy example M

Message	Probability
eurocrypt	1/4
tivoligarden	1/2
Copenhagen	1/4

encode(M)

If M = tivoligarden then b \leftarrow {0,1}; Return 0b

If M = eurocrypt then Return 11

If M = Copenhagen then Return 10

decode via look-up table

Huffman coding without compression

DTE = (**encode**, **decode**) designed for particular M **encode** randomized **decode** deterministic

DTE for M being uniform n-bit prime numbers

Encode(M)Decode(S) $X_1,...,X_t \leftarrow \$$ (Z_n)t $X_1,...,X_t \leftarrow \$$ Find 1^{st} i with X_i primeFind 1st i with X_i prime $X_i \leftarrow M$ $M \leftarrow X_i$ Return $S = X_1,...,X_t$ Return M

DTE = (**encode**, **decode**) designed for particular M **encode** randomized **decode** deterministic

Many DTEs only approximate correct distribution. Secure if:

$$M \leftarrow M$$

 $S \leftarrow $ encode(M)$
 $Return (M,S)$
 $S \leftarrow $ \{0,1\}^s$
 $M \leftarrow decode(S)$
 $Return (M,S)$

Honey encryption so far

- Intuition: decryption with wrong password gives plausible plaintext
- Applications in resilience to compromise of encrypted credentials
- Framework:
 - (1) Distribution-transforming encoders (DTEs)(More examples in paper!)
 - (2) Conventional password-based encryption

Security for honey encryption

Never worse than existing password-based encryption Inherit provable security in sense of [BRT12]

We analyze message recovery (MR) security

```
MR game:

M ←$ M

pw ←$ P

salt,C ←$ HEnc(pw,M)

M' ←$ A(salt,C)

Ret (M=M')
```

M is message distribution
P is password distribution

Example: HE for uniform primes

M is uniform n-bit primes

P has min-entropy m

HE scheme as described before

Thm (informal). For any MR attacker A Pr[wins MR game] < 1/2^m (ignoring smaller terms)

Intuition for proofs

Allow information-theoretic adversaries (also unbounded RO queries)
Adversary outputs most probable message
After applying DTE security, can bound advantage via *balls-and-bins game*

Balls are passwords of size equal to their probability

Decryption of challenge ciphertext with each password is independent ball throw into bins (when H is RO)

Adversary's advantage maximized by picking heaviest bin at end of game

Bins are messages of size equal to their probability under decode

Expected maximum load E[L] is expected weight of heaviest bin

Well-studied for some settings

Intuition for proofs

Allow information-theoretic adversaries (also unbounded RO queries)
Adversary outputs most probable message
After applying DTE security, can bound advantage via *balls-and-bins game*

Balls are passwords of size equal to their probability

(Equal weight 1/2^m for uniform distribution)

Decryption of challenge ciphertext with each password is independent ball throw into bins (when H is RO)

Adversary's advantage maximized by picking heaviest bin at end of game

Expected maximum load E[L] is expected weight of heaviest bin

Well-studied for some settings

Bins are messages of size equal to their probability under decode (Equal weight 1/2ⁿ for uniform distribution)

For prime number HE:

$$k = 2^n$$
 and $k^2 << 2^m$

 $Pr[wins MR game] < E[L] = 1/2^m + negl$

In the paper...

- More DTEs, more HE constructions
- More general balls-and-bins analyses
- Discussion of extensions
 - dealing with password typos
 - detecting online brute-force attacks
- Discussion of limitations of HE

Summary

Def. Honey Encryption

Encryption for which decrypting a ciphertext with any number of *wrong* keys yields fake, but plausible, plaintexts

A framework for building and analyzing HE schemes using *Distribution-Transforming Encoders*

Moving forward: <

DTEs for more complex distributions

Password vaults

Further analyses, constructions

- Standard model
- Sharpened balls-and-bins bounds