Vanishing results

Alexander R. Miller

Part 1. Character vanishing

Burnside Nonlinear irreducible characters have zeros.

Question What is the chance that $\chi(g)$ equals 0?

Two natural ways to pick a random character value $\chi(g)$

<i>S</i> ₄		$_{ m id}^{1}$	6 (12)	3 (12)(34)	8 (123)	6 (1234)
	<u>χ</u> 1	1	1	1	1	1
	χ2	3	1	-1	0	-1
	χ_3	2	0	2	-1	0
	χ_4	3	-1	-1	0	1
	χ ₅	1	-1	1	1	-1

1. Choose $\chi \in Irr(G)$ and $g \in G$, and then evaluate $\chi(g)$.

$$\text{Prob}(\chi(g) = 0) = \frac{|\{(\chi, g) \in \text{Irr}(G) \times G : \chi(g) = 0\}|}{|\text{Irr}(G) \times G|} = \frac{28}{120} \approx 0.194$$

2. Choose $\chi \in Irr(G)$ and $K \in Cl(G)$, and then evaluate $\chi(K)$.

$$\operatorname{Prob}(\chi(K) = 0) = \frac{|\{(\chi, K) \in \operatorname{Irr}(G) \times \operatorname{Cl}(G) : \chi(K) = 0\}|}{|\operatorname{Irr}(G) \times \operatorname{Cl}(G)|} = \frac{4}{5^2} = 0.16$$

$$\operatorname{Prob}(\chi(g)=0)$$
 for S_n

Theorem (M.) If $\chi \in \operatorname{Irr}(S_n)$ and $g \in S_n$ are chosen uniformly at random, then $\chi(g) = 0$ with probability $\to 1$ as $n \to \infty$.

One reason A vanishingly small proportion of classes covers almost all of S_n .

Lemma (M.) For any $\mathcal{K} \subseteq \mathrm{Cl}(\mathcal{G})$,

$$\operatorname{Prob}(\chi(g) = 0) \geq \frac{|\{g \in G : g^G \in \mathcal{K}\}|}{|G|} - \frac{|\mathcal{K}|}{|\operatorname{Cl}(G)|}.$$

 $\operatorname{Prob}(\chi(g)=0)$ and $\operatorname{Prob}(\chi(K)=0)$ for some other groups

Lemma (Gallagher–Larsen–M.) For each finite group G and $\epsilon > 0$,

$$\operatorname{Prob}(\chi(g) \neq 0) \leq \frac{\left|\left\{(\chi,g) : \gcd(\chi(1),|g^G|) \geq \epsilon \chi(1)\right\}\right|}{\left|\operatorname{Irr}(G) \times G\right|} + \epsilon^2.$$

Theorem (Gallagher–Larsen–M.) For G = GL(n,q), the proportion $P_{n,q}$ of pairs $(\chi,g) \in Irr(G) \times G$ with $\chi(g) = 0$ satisfies

$$\inf_q P_{n,q} \to 1 \text{ as } n \to \infty.$$

So for any sequence of prime powers q_1, q_2, \ldots , we have $P_{n,q_n} \to 1$ as $n \to \infty$.

Theorem (Larsen–M.) If G_n is any sequence of finite simple groups of Lie type with rank tending to ∞ , then almost every entry in the character table of G_n is zero as n tends to ∞ .

$$\operatorname{Prob}(\chi(K)=0)$$
 for S_n

Question What can be said about the limiting behavior of $Prob(\chi_{\lambda}(\mu) = 0)$?

		5. —							
n	$\operatorname{Prob}(\chi_{\lambda}(\mu)=0)$								
2	0.0000	4.			٠.٠.	• . • • •	• • • • •	٠	
3	0.1111	2 -			•				
4	0.1600	°							
5	0.2041	29	•						
			•						
37	0.3642	- F	•						
38	0.3659								
		3 L	5	10	15	20	25	30	35

Best known bound $\operatorname{Prob}(\chi_{\lambda}(\mu) = 0) \geq C/\log n$

Part 2. Modular vanishing for S_n

n	4	5	6	7	8	9	10	 76
$\operatorname{Prob}(\chi_{\lambda}(\mu) = 0 \mod 2)$.24	.33	.36	.40	.55	.56	.55	.87

- The character table of S_{76} has about 86 trillion entries.
- Several months of computations on super computers used for earth science.
- Similar computations for other primes and prime powers.

Conjecture (M.)

Almost every entry in the character table of S_n is divisible by any fixed prime p as $n \to \infty$. In other words, $\operatorname{Prob}(\chi_{\lambda}(\mu) = 0 \mod p) \to 1$ as $n \to \infty$.

Conjecture (M.)

Almost every entry in the character table of S_n is divisible by any fixed m as $n \to \infty$.

Part 2. Modular zeros for S_n

Conjecture (M.)

Almost every entry in the character table of S_n is divisible by any fixed prime.

Conjecture (M.)

Almost every entry in the character table of S_n is divisible by any fixed integer.

Lemma $\chi_{\lambda}(\mu) \equiv \chi_{\lambda}(\nu) \mod p$ if ν is obtained by joining p equal parts in μ .

Example For p=2, $\chi_{\lambda}(42111) \equiv \chi_{\lambda}(4221) \equiv \chi_{\lambda}(441) \equiv \chi_{\lambda}(81) \mod 2$.

Corollary $\chi_{\lambda}(\mu) \equiv 0 \mod p$ if λ is a $l_p(\mu)$ -core.

n	30	40	50	60	70	80	90	100	110	120
$\operatorname{Prob}(\lambda \text{ is an } \mathfrak{l}_2(\mu)\text{-core})$.45	.44	.45	.47	.48	.48	.48	.47	.47	.46

Partial results M., Gluck, Morotti, Ono, McSpirit, Harman, Peluse, Soundararajan,...

Lemma (Morotti) $\#\{\text{partitions of } n \text{ that are not } t\text{-cores}\} \leq (t+1)p(n-t).$

Theorem (Peluse-Soundararajan)

Almost every entry in the character table of S_n is divisible by any fixed prime.

Part 3. Two variations

Let P(G) be either $Prob(\chi(g) = 0)$ or $Prob(\chi(K) = 0)$.

1. Treat P(G) as a random variable itself.

Theorem (M.) The expected value of $P(S_{\lambda})$ tends to 1 as $n \to \infty$.

Theorem (M.) If $a_1, a_2, \ldots \in [0, 1]$ and $\epsilon_1, \epsilon_2, \ldots \in (0, \infty)$, then for each prime p there exists a chain of p-groups $G_1 < G_2 < \ldots$ such that, for each i,

$$|P(G_i)-a_i|<\epsilon_i.$$

In particular, the set $\{P(G): |G| < \infty\}$ is dense in [0,1].

Part 4. Zeros and roots of unity

	1	6	3	8	6	-
	id	(12)	(12)(34)	(123)	(1234)	
χ_1	1	1	1	1	1	24/24
χ2	3	1	-1	0	-1	23/24
χз	2	0	2	-1	0	20/24
χ4	3	-1	-1	0	1	23/24
χ_5	1	-1	1	1	-1	24/24
		5/5		5/5	5/5	-

Definition

$$\begin{split} \theta(G) &= \min_{\chi \in \mathrm{Irr}(G)} \frac{\#\{g \in G : \chi(g) \text{ is 0 or a root of unity}\}}{|G|} \\ \theta'(G) &= \min_{\mathsf{L.T.A.}\ K} \frac{\#\{\chi \in \mathrm{Irr}(G) : \chi(K) \text{ is 0 or a root of unity}\}}{|\mathrm{Cl}(G)|} \end{split}$$

Example $\theta(S_4) = 20/24$ and $\theta'(S_4) = 1$.

Theorem (J.G. Thompson) $\theta(G) > 1/3$.

Theorem (P.X. Gallagher) $\theta'(G) > 1/3$.

Theorem (C.L. Siegel) For totally positive $\alpha \neq 0, 1$, $\text{Tr}(\alpha) \geq 3/2$. (Siegel gets applied to $\alpha = |\chi(g)|^2$. Burnside used $\text{Tr}(\alpha) \geq 1$ for $\alpha \neq 0$.)

Theorem (Thompson) $\theta(G) > 1/3$.

Theorem (Gallagher) $\theta'(G) > 1/3$.

Question What are the greatest lower bounds: $\inf_{G} \theta(G)$, $\inf_{G} \theta'(G)$?

Conjecture (M.) inf $\theta(G)$, inf $\theta'(G) = 1/2$.

Proposition (M.) For $G_n = Suz(2^{2n+1})$, we have $\theta(G_n), \theta'(G_n) \to 1/2$.

Theorem (M.) The conjecture holds for:

- Finite groups of order < 2⁹.
- Simple groups of order $\leq 10^9$.
- All sporadic groups.
- A_n , $L_2(q)$, $Suz(2^{2n+1})$, $Ree(3^{2n+1})$.
- All finite nilpotent groups.

Theorem (M.) Each nonlinear irreducible character of a finite nilpotent group is zero on more than half the group.

Theorem (M.) More than half the irreducible characters of a finite nilpotent group are zero on any given larger-than-average class.

Theorem (M.) Let G be finite nilpotent, let $\chi \in \mathrm{Irr}(G)$, and let $g \in G$. Then

$$\chi(g) = 0 \quad \text{or} \quad ilde{\operatorname{Tr}} \left(\left| \chi(g) \right|^2 \right) \geq 2^{\# \{ \text{primes dividing } \chi(1) \}}$$