Course Code	Course Title	L	Т	Р	С
PMCA501L	Data Structures and Algorithms	3	0	0	3
Pre-requisite	NIL	Syllabus version			
		1.0			

Course Objectives:

- 1. To provide basic techniques of algorithm analysis and exhibit the capacity to implement various linked data structures.
- 2. To become familiar with several sorting algorithms and demonstrate the applications of graph algorithms.
- 3. To practice the various algorithm design techniques.

Course Outcomes:

- 1. Analyze and apply the time and space complexities of various algorithms
- 2. Choose appropriate data structure for the specified problem
- 3. Handle operations like searching, insertion, deletion and traversing mechanisms on various data structures
- 4. Comprehend and apply linear and non-linear data structures to design algorithms
- 5. Solve problems using different algorithm design techniques

Module:1 Foundations on Algorithmic Analysis 7 hours The Role of Algorithms in Computing - Analyzing and Designing Algorithms - Characterizing Running Time - Asymptotic Notations - Formal Definition, Standard Notations and Common Functions - Solving Recurrence - Substitution Method - Recurrence Tree Method - Master Method

Module:2 Elementary Data Structure - Stack, Queue and List 5 hours

Stack and its Applications - Expression Conversion - Expression Evaluation Balancing Parenthesis in Expression - Processing Functions Calls - Simple Queue
- Circular, Priority Queue and its Applications - Singly Linked List - Circular Linked
List - Doubly Linked List - Doubly Circular Linked List Operations and its Applications
- Polynomial Representation and its Operations

Module:3 Sorting and Order Statistics 6 hours

Sorting - Insertion Sort, Shell Sort, Merge Sort, Radix Sort, Heap Sort - Searching - Linear Search, Binary Search - Time Complexity Analysis of Sorting and Searching Algorithms - Hashing - Hash Functions, Closed Addressing, Separate Chaining, Open Addressing, Linear Probing, Quadratic Probing, Double Hashing, Rehashing

Module:4Advanced Data Structure - Tree6 hoursPreliminaries - Binary Trees - Expression Tree - Binary Search Tree - AVL Tree -
Splay Tree - B - Tree

Module:5 Graph Algorithms 6 hours Representation of Graphs - Graph Traversals - Depth First Search - Breadth First

Search - Minimum Spanning Trees - The Algorithms of Kruskal and Prim - Single Source Shortest Path - Bellman-Ford Algorithm - Dijkstra's Algorithm

Module:6	Advanced Design Analysis Techniques - Greedy and	6 hours
	Divide & Conquer	

Greedy Algorithms - Huffman Code - Bin Packing - Divide and Conquer - Quicksort							
- Strassen's Matrix Multiplication							
Module:7	Advanced Design Anal	lysis Techniques - Backtracking 7 hours					
	and Dynamic Program	ming					
	Backtracking - N-Queens Problem, Longest Common Subsequence, Dynan						
Programming - Knapsack Problem - Ordering Matrix Multiplication - All Pairs							
Shortest P	ath Problem - Floyd-Warsh	all Algorith	m				
Module:8	Contemporary Issues				2 hours		
Guest Lecture from Industry and R & D Organizations							
			Total L	ecture hours:	45 hours		
Text Book(s)							
1. Thoma	s H. Cormen, Charles E. L	eiserson, I	Ronald L	. Rivest and Clif	ford Stein,		
"Introduction to Algorithms", 2022, 4 th Edition, MIT Press, USA.							
Reference Books							
1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", 2019, 4th							
	Edition, Pearson Education, Delhi.						
2. Michae							
structures and Algorithms in Python", 2013, John Wiley and Sons, Inc., United							
States of America.							
Mode of Evaluation: CAT, Written Assignment, Quiz, FAT and Seminar							
Recommended by Board of Studies 04-05-2023							
Approved by Academic Council No. 70 Date 24-06-2023							