Math 175 - Homework 4

1. The $n \times n$ determinant a_n is defined for $n \ge 1$ by

$$a_n = \begin{vmatrix} p & p-q & 0 & 0 & \cdots & 0 & 0 \\ q & p & p-q & 0 & \cdots & 0 & 0 \\ 0 & q & p & p-q & \cdots & 0 & 0 \\ 0 & 0 & q & p & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & p & p-q \\ 0 & 0 & 0 & 0 & \cdots & q & p \end{vmatrix},$$

where p and q are distinct nonzero constants. Find a recurrence relation for a_n .

- 2. Find the number of ways to seat n penguin couples around a table in each of the following cases.
 - (a) Male and female penguins alternate.
 - (b) Every female penguin is next to her mate.
- 3. Let d_n be the number of bijections $f:[n] \to [n]$ so that $f(k) \neq k$ for all $k \in [n]$. Find a recurrence relation for d_n .
- 4. Let $1 \le r \le n$ and consider all r-element subsets of the set $\{1, 2, ..., n\}$. Each of these subsets has a largest element. Find the arithmetic mean of these largest elements.
- 5. A triangulation of an n-gon P_n , $n \ge 3$, is a subdivision of P_n into triangles by means of nonintersecting diagonals of P_n . Let $a_0 = 1$ and for $n \ge 1$, let t_n be the number of different triangulations of an (n+2)-gon. Find a recurrence relation for t_n .