MATH 7410 Homework 2

James Harbour

September 19, 2022

Problem 1

Let X, Y, Z be normed linear spaces with $Y \leq X$ and $T: X \to Z$ a bounded linear operator such that $T|_Y = 0$. Then there is a unique $\bar{T}: X/Y \to Z$ so that $\bar{T} \circ Q = T$ where $Q: X \to X/Y$ is the quotient map. Show that $||\bar{T}|| = ||T||$.

Proof. On one hand, we know that $||T|| = ||\bar{T} \circ Q|| \le ||\bar{T}|| ||Q|| \le ||\bar{T}||$. Note that $\operatorname{ran}(\bar{T}) \subseteq \operatorname{ran}(T)$. We claim that Q

Note that, for $y \in Y$, $||Tx|| = ||T(x+y)|| \le ||T|| ||x+y||$. Thus, by taking the infimum over $y \in Y$, we obtain that $||\bar{T}(x+Y)|| ||Tx|| \le ||T|| ||x+Y||$. Thus, $||\bar{T}|| \le ||T||$.

Problem 2

(a): Given $Y \leq X$ normed linear spaces with $Y \neq X$, prove that for all $\varepsilon > 0$ there is an $x \in X$ with ||x|| = 1 so that the distance from x to Y is at least $1 - \varepsilon$.

Proof. Let $Q: X \to X/Y$ be the corresponding quotient map. We claim that $\|Q\| = 1$. We have already shown that $\|Q\| \le 1$. Pick $x_0 \in X \setminus Y$ and let $d = dist(x_0, Y)$. By Hahn Banach, there exists a linear functional $\phi \in X^*$ such that $\|\phi\| = d > 0$, $\phi(x_0) = 1$, $\phi|_Y = 0$. Now, by problem 1, we have $\widetilde{\phi}: X/Y \to \mathbb{F}$ such that $\widetilde{\phi} \circ Q = \phi$ and $\|\phi\| = \|\widetilde{\phi}\|$. Then $\|\phi\| \le \|\widetilde{\phi}\| \|Q\| = \|\phi\| \|Q\|$, whence $\|Q\| \ge 1$.

So $\|Q\|=1$, whence $1=\sup_{\|x\|\leq 1}\|Qx\|=\sup_{\|x\|=1}d(x,Y)$, where the second equality follows from the fact that $X/Y\neq 0$. As $1-\varepsilon<1$, there exists an $x\in X$ with $\|x\|=1$ such that $d(x,Y)\geq 1-\varepsilon$.

(b): Prove that if X is a normed linear space so that $Ball(X) = \{x \in X : ||x|| \le 1\}$ is compact, then X is finite dimensional.

Proof. By compactness, there exist $x_1, \ldots, x_n \in Ball(X)$ such that $Ball(X) \subseteq \bigcup_{1 \le i \le n} B_{1/2}(x_i) = \bigcup_{1 \le i \le n} x_i + \frac{1}{2} \cdot Ball(X)$. Let $Y = \text{Span}\{x_1, \ldots, x_n\}$, so

$$Ball(X) \subseteq Y + \frac{1}{2} \cdot Ball(X) \subseteq Y + \frac{1}{2} \left(Y + \frac{1}{2} Ball(X) \right) \subseteq \cdots \subseteq Y + \frac{1}{2^n} Ball(X).$$

Now let $x \in Ball(X)$. Then there exist $y \in Y$ and $z_n \in Ball(X)$ such that for all $n \in \mathbb{N}$, $x = y + \frac{1}{2^n}$. Then

$$||x - y|| = \frac{1}{2^n} ||z^n|| \le \frac{1}{2^n} \xrightarrow{n \to \infty} 0,$$

so $Ball(X) \subseteq Y$, whence by linearity of Y, X = Y.

Problem 3

(a): Let X, Y be Banach spaces and $A \in B(X, Y)$. Show that there is a c > 0 such that $||Ax|| \ge c||x||$ for all $x \in X$ if and only if $\ker(A) = 0$ and $\operatorname{ran}(A)$ is closed.

Proof.

 \implies : If $x \in \ker(A)$, then $||x|| \leq \frac{1}{c}||Ax|| = 0$, so $\ker(A) = 0$. Suppose that $y_n = Ax_n$ is a sequence in $\operatorname{ran}(A)$ such that $y_n \to y \in Y$. Then $||x_n - x_m|| \leq \frac{1}{c}||y_n - y_m||$, so $(x_n)_n$ is Cauchy, whence by completeness there is some $x \in X$ such that $x_n \to x$. Since A is bounded, it follows that

$$||y_n - Ax|| = ||Ax_n - Ax|| \le ||A|| \cdot ||x_n - x|| \xrightarrow{n \to \infty} 0,$$

so since X is Hausdorff y = Ax is in ran(A).

 \leq : Since ran(A) is a closed subspace of Y, ran(A) is also Banach. Thus, by the inverse mapping theorem, $A^{-1} \in B(\operatorname{ran}(A), X)$. Then, for $x \in X$ and $c = (\|A^{-1}\| + 1)^{-1} > 0$,

$$||x|| = ||A^{-1}Ax|| \le ||A^{-1}|| ||Ax|| \le \frac{1}{c} ||Ax|| \implies ||Ax|| \ge c||x||.$$

(b): Let X, Y, A be as in the previous part. Let V be the l^{∞} -direct sum of X so $V = \{(x_n)_{n=1}^{\infty} \in X^{\mathbb{N}} : \sup_n \|x_n\| < +\infty\}$. Define

 $approxker(A) = \frac{\{(x_n)_n \in V : ||Ax_n|| \to 0\}}{\{(x_n)_n \in V : ||x_n|| \to 0\}}$

Show that A is injective with closed image if and only if $approxker(A) = \{0\}$. (*Hint*: For one of the implications, if the previous item fails, then for every $\varepsilon > 0$ there is an $x \in X$ with ||x|| = 1 and $||Ax|| < \varepsilon$.)

Proof.

 \Longrightarrow : Suppose that A is injective with closed image, and let $(x_n)_n \in V$ such that $||Ax_n|| \to 0$. Then by part (a),

$$||x_n|| \le \frac{1}{c} ||Ax_n|| \xrightarrow{n \to \infty} 0,$$

so approxker(A) = 0.

 $\underline{\longleftarrow}$: We proceed by contraposition. Suppose that A fails to be injective with closed image. Then by part (a), for all $n \in \mathbb{N}$ there is some $x_n \in X$ such that $||x_n|| = 1$ and $||Ax_n|| < \frac{1}{n}$. So, $(x_n)_n \in V$ and $||Ax_n|| \to 0$, but $||x_n|| \neq 0$, so $approxker(A) \neq \{0\}$.

Problem 4

Let $1 \le p \le \infty$ and suppose (α_{ij}) is a matrix such that $(Af)(i) = \sum_{j=1}^{\infty} \alpha_{ij} f(j)$ defines an element Af of l^p for every f in l^p . Show that $A \in B(l^p)$.

Proof. We first claim that for each fixed $i \in \mathbb{N}$, $(\alpha_{ij})_j \in l^q$. So fix $i \in \mathbb{N}$

Suppose that $(f_n)_n$ is a sequence in $l^p(\mu)$ such that $f_n \xrightarrow{l^p} 0$ and $g \in l^p(\mu)$ is such that $Af_n \xrightarrow{l^p} g$. We show that g = 0. Since the measure is counting measure, it suffices to show that $(Af_n)(i) \xrightarrow{n \to \infty} 0$ for all $k \in \mathbb{N}$.

For $k \in \mathbb{N}$, define $T_k \in (l^p)^*$ by $T_k(f) = \sum_{j=1}^k \alpha_{ij} f(j)$. Note that each T_k is bounded. Now, for fixed $f \in l^p$ and all $k \in \mathbb{N}$,

$$|T_k(f)| \le \sum_{j=k}^k |\alpha_{ij}f(j)| \le \sum_{j=1}^\infty |\alpha_{ij}f(j)| < +\infty,$$

so by the uniform boundedness principle $M := \sup_{k \in \mathbb{N}} ||T_k|| < +\infty$. Thus, for $f \in l^p$, we have that $|\sum_{j=1}^{\infty} \alpha_{ij} f(j)| \le \liminf_{k \to \infty} |T_k f| \le M ||f||_p$, so by the Riesz representation theorem $(\alpha_{ij})_j \in l^q$. Now, by Holder's inequality,

$$|(Af_n)(i)| = \left| \sum_{j=1}^{\infty} \alpha_{ij} f_n(j) \right| \le ||(\alpha_{ij})_j||_q ||f_n||_p \xrightarrow{n \to \infty} 0.$$

So, by the closed graph theorem, A is bounded.

Problem 5

Let (X, Σ, μ) be a σ -finite measure space, $1 \leq p < \infty$, and suppose that $k : X \times X \to \mathbb{F}$ is a $\Sigma \times \Sigma$ measurable function such that for $f \in L^p(\mu)$ and a.e. $x, k(x, \cdot)f(\cdot) \in L^1(\mu)$ and $(Kf)(x) = \int k(x, y)f(y) d\mu(y)$ defines an element Kf of $L^p(\mu)$. Show that $K : L^p(\mu) \to L^p(\mu)$ is a bounded operator.

Proof. For $x \in X$ such that $k(x,\cdot)f(\cdot) \in L^1(\mu)$, consider the map $K_x : L^p(\mu) \to L^1(\mu)$ given by $K_x f = k(x,\cdot)f(\cdot)$. This map is well defined by assumption. Suppose that $(f_n)_n$ is a sequence in $L^p(\mu)$ such that $f_n \xrightarrow{L^p} 0$ and $g \in L^p(\mu)$ is such that $Kf_n \xrightarrow{L^p} g$. We show that g = 0. By passing to a subsequence, it suffices to assume $f_n \to 0$ pointwise a.e., and passing to a further subsequence we can assume that $Kf_n \to g$ pointwise a.e. as well. We shall now justify an application of DCT.

Since $(f_n)_n$ converges in L^p -norm, there is a subsequence $(f_{n_k})_k$ such that $||f_m - f_{n_k}||_p < \frac{1}{2^k}$ for all $m \ge n_k$. Let $F' = \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|$. Each partial sum for F' has L^p -norm less than 1 by the above estimate and Minkowski's inequality, whence Fatou's lemma implies that $||F'||_p \le 1$. Letting $F = f_{n_1} + \sum_{k=1}^{\infty} f_{n_{k+1}} - f_{n_k}$. By the previous estimate, $F \in L^p$. Thus, $|F| + F' \in L^p(\mu)$, and for all $k \in \mathbb{N}$, we have that $|f_{n_k}| \le |F| + F'$ pointwise a.e.

Now, without loss of generality, assume that $n_k = k$ for all $k \in \mathbb{N}$. Let h = |F| + F'. Then by assumption, for a.e. $x \in X$ we have $k(x, \cdot)h(\cdot) \in L^1(\mu)$. Now, for a.e. $x \in X$, $|K_x(f_n)| \leq |K_x h|$ pointwise almost everywhere with $K_x h \in L^1(\mu)$. So, by the dominated convergence theorem,

$$\lim_{n\to\infty} \|K_x f_n\|_1 = 0.$$

Thus $|Kf_n(x)| \leq ||K_x f_n||_1 \to 0$. Now, by an identical argument to above, we can find an $h \in L^p(\mu)$ such that $|Kf_n| \leq h$ pointwise a.e. So, by the dominated convergence theorem, $||Kf_n||_p \to 0$, whence g = 0 a.e. So the closed graph theorem implies that K is bounded.