北京交通大学考试试题(A卷)

课程名称: <u>算法设计与分析</u> 学年学期: <u>2021—2022 学年第 1 学期</u> 课程编号: <u>M210004B</u> 开课学院: <u>软件学院</u> 出题教师: <u>刘铎, 童浩楠, 吴睿智</u> 第一部分、单项选择题。请选择最适合的答案, 并填涂到答题卡上。 (共 16 分)

1.	2.	3.	4.	5.	6.	7.	8.
С	C	A	В	A	A	C	D

考察知识点	要求
算法的数学基础	掌握
典型的分治算法	掌握
可选择性地介绍典型的贪婪算法 0-1 背包问题	掌握

第二部分、计算题。(共34分)

9. (共12分)解:

(1)

Running time of (a)	T(n)=5T(n/2)+O(n)	\Rightarrow T(n)=O($n^{\log}2^5$)
Running time of (b)	T(n)=2T(n-1)+O(1)	\Rightarrow T(n)=O(2 ⁿ)
Running time of (c)	$T(n)=9T(n/3)+O(n^2)$	\Rightarrow T(n)=O(n ² logn)

(2) 按照阶从低到高的顺序,对以上 3 个算法的时间复杂度进行排序为: $O(n^2 \log n)$, $O(n^{\log} 2^5)$, $O(2^n)$ 。

为了更快地解决问题,应选择算法 C。

考察知识点	要求
分治算法的分析方法	理解
主定理	掌握

10. (共12分)解:

(1)

表 1 目标函数 m[i,j]

m[i,j]	j = 1	j = 2	j=3	j = 4	<i>j</i> = 5	j = 6
i = 1	0	42	168	258	270	286
i=2		0	189	324	258	282
i=3			0	315	216	272
i=4				0	90	162
i=5					0	40
i=6						0

表 2 标记函数 s[i,j]

s[i,j]	j = 1	j = 2	j=3	j = 4	j = 5	<i>j</i> = 6
i = 1	/	1	2	3	1	5
i=2		/	2	3	2	5
i = 3			/	3	3	5
i=4				/	4	5
i=5					/	5
i = 6						/

(2) $((A_1(A_2(A_3(A_4A_5))))A_6)$ 或者 $(A_1(A_2(A_3(A_4A_5))))A_6$

考察知识点	要求
算法的数学基础	掌握
典型的分治算法	掌握
典型的贪婪算法 0-1 背包问题	掌握

11. (共10分)解:

(1) 请给出目标函数和标记函数的定义/表示、递推关系和初值。

令目标函数 d(i)表示凑出总和 i 所需的最少硬币数量。则 d(i)的初始值为:

$$\begin{cases} d(0) = 0 \\ d(i) = +\infty \quad i < 0 \end{cases}$$

递推式为 $d(i)=\min_{1\leq k\leq 4} \{d(i-v_k)\}+1$ 。

令标记函数 s(i)表示计算 d(i)时取得的 k 值,即 $arg min_{1 \le k \le 4} \{d(i-v_k)\}$,含义是取得 d(i)

时所选取的最后一枚硬币。

则 s(i)的初始值为 s(0)=0,s(i)的递推式为 $s(i)=\arg\min_{1\leq k\leq 4}\{d(i-v_k)\}$ 。

(2) 如表 3 所示。

表 3

i	- 7	7 -6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
d(i	$)$ \propto	∞	8	8	8	8	8	О	1	2	ω	1	2	1	2	1	2	2	3	2	3	2	3	2	З	Ю	4
s(i	/	7	/	/	/	/	/	/	1	1	1	4	4	6	6	8	8	6	6	8	8	8	8	8	8	8	8

(3)付款的最优方案是使用一枚面值为8的硬币、一枚面值为6的硬币、一枚面值为4的硬币、一枚面值为1的硬币;或者三枚面值为6的硬币、一枚面值为1的硬币; 共使用4枚硬币。

考察知识点	要求
典型的动态规划算法——矩阵链乘积	掌握

第三部分、综合分析题。(共50分)

12. (共12分)解:

(1) 贪心策略:按币值从大到小排列零钱,从币值大的开始,每种钱尽量多用。如果剩余钱数小于该币值,再考虑用下一种钱币。

即:

 $remainder \leftarrow y$

for i = n downto 0

 $x_i \leftarrow \lfloor remainder / p^i \rfloor$

 $remainder \leftarrow remainder - x_i \times p^i$

解方案是:对所有 $0 \le i \le n$,取 x_i 个币值为 p^i 的硬币。

(2) 对 n 做归纳,证明: 当只有面值为 $\{p^0, \dots, p^n\}$ 的硬币可用时,贪婪解和最优解相同。

 $\bigcirc n=0$ 时,贪婪解和最优解相同。

②假设 n=k 时,贪婪解和最优解相同。现在考虑 n=k+1 时的情况。

假设贪婪解是对所有 $0 \le i \le k+1$,取 x_i 个币值为 p^i 的硬币。假设最优解是对所有 $0 \le i \le k+1$,取 z_i 个币值为 p^i 的硬币。

则有 $\sum_{i=0}^{k+1} x_i p^i = \sum_{i=0}^{k+1} z_i p^i = y$ 。

考虑到贪婪算法的流程,必定对于所有 $0 \le i \le k$,都有 $x_i \le p$ 。否则,如果有某个 $z_j \ge p$, $0 \le j \le k$,则贪婪算法会先选择 1 枚面值为 p^{j+1} 的硬币,而不是 p 枚面值为 p^{j} 的硬币。 且由贪婪算法可知 $\sum_{k=0}^{k} x_i p^k \le p^{k+1} - 1$

①断言:对于所有 $0 \le i \le k$,都有 $z_i < p$ 。否则,如果有某个 $z_j \ge p$, $0 \le j \le k$,则用 1 枚面值为 p^{j+1} 的硬币替换 p 枚面值为 p^j 的硬币,硬币总币值不变,而硬币总个数减少 p-1。

②于是
$$\sum_{i=0}^{k} z_i p^i \leq (p-1) \times \sum_{i=0}^{k} p^i = p^{k+1} - 1$$
。

3考虑到贪婪算法的流程,所以必定有 $x_{k+1} \ge z_{k+1}$ 。

4于是,若 $x_{k+1} > z_{k+1}$,则

$$\begin{split} p^{k+1} & \leq (x_{k+1}p^{k+1} - z_{k+1}p^{k+1}) = \left(y - \sum_{i=0}^k x_i p^i\right) - \left(y - \sum_{i=0}^k z_i p^i\right) = \sum_{i=0}^k z_i p^i - \sum_{i=0}^k x_i p^i \\ & \leq \sum_{i=0}^k z_i p^i \leq p^{k+1} - 1 < p^{k+1} \end{split}$$

产生矛盾,因此必然有 $x_{k+1}=z_{k+1}$ 。

⑤ $y - x_{k+1}p^{k+1} = \sum_{i=0}^{k+1} x_i p^i \le p^{k+1} - 1$ 且 $\sum_{i=0}^{k+1} x_i p^i = y - x_{k+1}p^{k+1} = y - x_{k+1}p^{k+1} = \sum_{i=0}^{k+1} z_i p^i$ 。因此只能使用面值为 $\{p^0, \dots, p^k\}$ 的硬币,由归纳假设可知对于所有 $0 \le i \le k$,都有 $z_i = x_i$ 。

综上可得对于所有 0≤i≤k+1,都有 z_i = x_i ,即贪婪解和最优解相同。

(3) 在(1) 中设计的贪心策略在此时不能确保得到最优解。

例如,m=n=1,p=4,q=5 时,要凑得总面值为 8。如果是使用(1)中设计的贪心算法的基本策略,则需要 1 枚面值为 5 的硬币、3 枚面值为 1 的硬币,共使用 4 枚硬币;而事实上最优方案是使用两枚面值为 4 的硬币。

考察知识点	要求
贪婪策略的基本思想	了解
贪婪算法的基本框架	掌握
贪婪算法最优性的分析与证明	理解

13. (共12分)解:

(1)(参考解答。程序伪代码不唯一。)

Initial Call j ← Find(1, n) If j > 0 then output j else output "None" Find (start, end) if start > end then return -1 else j ← (start + end) / 2 if A[j] = j then return j else if A[j] < j then return Find[j+1, end] else return Find[start, j-1]</pre>

(2) 算法的时间复杂度的递推关系式和初值为:

$$\begin{cases} T(n) \le T(n/2) + O(1) & n > 1 \\ T(1) = 1 \end{cases}$$

由主定理可知 $T(n)=O(\log n)$ 。

考察知识点	要求
分治策略的基本思想	了解
分治算法的基本框架	掌握
分治算法的分析方法	理解
主定理	掌握

14. (共13分)解:

(1) 将各个点进行坐标标号,并增加一些额外顶点,如图1所示。

令v(i,j)表示点(i,j)的值,M(i,j)表示从点(1,1)到点(i,j)的道路最小数值和,则有:

$$M(1, 1) = v(1, 1);$$

 $M(i, j) = \infty,$ if $j=0$ or $i=0;$

 $M(i, j) = \min(M(i-1, j), M(i, j-1)) + v(i, j),$ otherwise.

标记函数 s(i, j)=1 表示到点(i, j)的最小数值和道路的最后一条边是从左侧来,即从(i, j-1)到(i, j); s(i, j)=0 表示到点(i, j)的最小数值和道路的最后一条边是从上方来,即从(i-1, j)到(i, j)的点(i, j)的值; s(1, 1)=-1 表示初始值或到点(i, j)的最小数值和道路的最后一条边是从上方来,即从(i-1, j)到(i, j)的点(i, j)的值。则有:

$$s(1, 1) = -1;$$

 $s(i, j) = 0,$ if $(j > 1 \text{ or } i > 1)$ and $M(i - 1, j) < M(i, j - 1)$
 $s(i, j) = 1,$ if $(j > 1 \text{ or } i > 1)$ and $M(i - 1, j) \ge M(i, j - 1)$

- (2) 各个点的 M(i,j)值如图 2 所示,各个点的 s(i,j)值如图 3 所示。
- (3) 道路选择如图 4 所示, 总数值和为 12。

图 1 题目 14 解答用图 1

图 3 题目 14 解答用图 3

图 2 题目 14 解答用图 2

图 4 题目 14 解答用图 3

考察知识点	要求
动态规划的基本思想	掌握
动态规划的基本框架	理解
动态规划的实现方法	掌握

15. (共13分)解:

(1) 将各个点进行坐标标号,如图 5 所示。令 v(i,j)表示点(i,j)的值。

选择一条明显的道路(如图 6 所示),以其数值和(15)作为初始的界,即 $current\ best \leftarrow 15$ 。

如图 7 所示斜线方式考察 $m(k) = \min\{v(i,j)|i+j=k\}, 2 \le k \le 8$ 。

维护"到目前为止的最优值" current best。

令 $C_a(i,j)$ 为从(1,1)到当前点(i,j)的道路的数值和,估值函数为 $C_e(i,j)=\sum_{k=i+j+1}^8 m(k)$,即估计还要发生的开销的下界。则估界函数为 $C_a(i,j)+C_e(i,j)$ 。

若(i,j)为点(4,4)且 $C_a(4,4)$ <*current_best*,则更新 *current_best* 为 $C_a(4,4)$ 。若(i,j)不是点(4,4)且 $C_a(i,j)$ + $C_e(i,j)$ \geq *current_best*,则进行剪枝。

- (2) 剪枝后的(部分)搜索树如图 8 所示。
- (3) 道路选择如图 9 所示, 总数值和为 12。

图 5 题目 15 解答用图 1

图 6 题目 15 解答用图 2

图 7 题目 15 解答用图 3

图 9 题目 15 解答用图 5

考察知识点	要求
回溯法的基本思想	了解
回溯法的基本框架	掌握
"剪枝"的概念	理解
对"界"的正确估算	掌握