CST 370 Design and Analysis of Algorithms SP'20 – Quiz 6

Name:	Adam Ayala
Four-digits ID:	2020
"On my honor, I ha in doing this assign	e neither given nor received unauthorized aid nent."
Signature	Adam Ayala

- Do not start until told to do so.
- Look over all the questions and observe their point values before you start.
- Use your time wisely—make sure to answer the questions you know first.
- Read the questions carefully.

1. (3 points) Assume that you conduct the **linear probing** with the hash function $h(K) = K \mod 5$. This is the initial hash table for the problem. Note that the status 'E' indicates "Empty".

Index	Content	Status
0		Е
1		Е
2		Е
3		Е
4		Е

Assume that you will conduct the following four operations

- 1) insert 49
- 2) insert 14
- 3) **delete 14**
- 4) insert 29

Update the hash table below after the four operations. For the status, use "E" for "Empty", "A" for "Active", and "D" for "Deleted".

Index	Content	Status
0	29	A
1		Е
2		Е
3		Е
4	49	A

2. (3 points) Assume that you construct a hash table using the **separate chaining** for the following 7 keys:

Assume also that the hash function is $h(K) = K \mod 5$. For the problem, do not consider the rehashing.

(a) After constructing the hash table with the keys, **present all indexes** in the table which **do not have any collisions**, if they exist. If there's no index without collision, write it clearly.

_____0, 1, 3 all have to collisions_____

(b) For the hash table constructed, assume that you want to insert a new key 17. Is there any collision for the key "17"? (Yes / No).

Yes

(c) For the hash table after inserting "17" in the problem (b), assume that you want to insert a new key 18. Is there any collision for the key "18"? (Yes / No).

No

Index 0	20			
Index 1	31			
Index 2	72	2	32	17
Index 3	18			
Index 4	14	9		

3. (3 points) Apply the dynamic programming technique to solve the **coin-row problem** with the coins **2**, **7**, **1**, **6**, **5**, **3**.

(a) Fill out the table as you learned in the class.

index	0	1	2	3	4	5	6
Ci	2	7	7	13	13	16	
F(i)	0	2	3	7	12	13	

(b) **Present which coin(s) you will pick** based on the result.

7 ()	
/ n 1	
7, 0, 5	