NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-147604) RESULTS OF TEST MA22 IN THE NASA/LARC 31-INCH CERT ON AN 0.010-SCALE MODEL (32-0) OF THE SEACE SHUTTLE CONFIGURATION 3 TO DETERMINE BCS JET FICH FIELD INTERACTION, VOLUME 1 (Chrysler N76-27329 H¢ \$21.25

UL::125 03/18 41863

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JÓHNSÓN SPACE CENTER

HOUSTON, TEXAS

DATA MANagement services

DMS-DR-2267 NASA CR-147,604 VÖLUMÉ 1 ÖF 4

RESULTS OF TEST MAZZ IN THE NASA/LaRC 31-INCH CFHT

ON AN 0.010-SCALE MODEL (32-0) OF THE

SPACE SHUTTLE CONFIGURATION 3 TO DETERMINE

RCS JET FLOW FIELD INTERACTION

bу

D. B. Kanipe Engineering Analysis Division Johnson Space Center

Prepared under NASA Contract Number NAS9-13247

Ьy

Data Mañagement Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

Larc CFHT 118

NASA Series Number:

MA22

Model Number:

32-0

Test Dates:

May 6, 1975 through June 3, 1975

Occupancy Hours:

168

FACILITY COORDINATOR:

Bernard Spencer, Jr. Mail Stop 411 Langley Research Center Langley Station Hampton, Va. 23665

Phone: (804) 827-3911

PROJECT ENGINEER:

Tom Blackstock Mail Stop 408 Langley Research Center Langley Station Hampton, Vá. 23665

Phone: (804) 827-3984

AERODYNAMICS ANALYSIS ENGINEER:

] .₹

D. B. Kanipé Mail Code EX32

Engineering Analysis Division

Johnson Späce Center Houston, Texas 77058

Phone: (713) 483-4701

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--J. W. Ball

Óperations--G. W. Klug

Reviewed by:

D. É. Poucher

Approved:

Månager

Data Operations

Concurrence:

N. D. Kemp, Manager

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

RESULTS OF TEST MAZZ IN THE NASA/Larc 31-INCH CFHT
ON AN 0.010-SCALE MODEL (32-0) OF THE
SPACE SHUTTLE CONFIGURATION 3 TO DETERMINE
RCS JET FLOW FIELD INTERACTION

5

by

D. B. Kanipe Engineering Analysis Division Johnson Space Center

ABSTRACT

Test MA22 was conducted in the Langley Research Genter 31-inch Continuous flow Hypersonic Wind Tunnel from May 6, 1975 through June 3, 1975. The primary objectives of this test were the following: 1) to study the ability of the wind tunnel to repeat, on a run-to-run basis, data taken for identical configurations to determine if errors in repeatability could have a significant effect on jet interaction data, 2) to determine the effect of model heating on jet interaction, 3) to investigate the effects of elevon and body flap deflections on RCS jet interaction, 4) to determine if the effects from jets fired separately along different axes can be added to equal the effects of the jets fired simultaneously (super position effects), 5) to study multiple jet effects, and 6) to investigate area ratio effects, i.e., the effect on jet interaction measurements of using nozzles with different area ratios in the same location. The model used in the test was a .010-scale model of the Space Shuttle Orbiter Configu-

ABSTRACT (Concluded)

ration 3. The test was conducted at Mach 10.3 and a dynamic pressure of 150 psf. RCS chamber pressure was varied to simulate free flight dynamic pressures of 5, 7.5, 10, and 20 psf.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	· 2
INDEX OF DATA FIGURES	3
NOMENCLATURE	· 12
REMARKS	18
CONFIGURATIONS INVESTIGATED	19
INSTRUMENTATION	20
TEST FACILITY DESCRIPTION	21
DATA REDUCTION	22
REFERENCES	25
TABLES	
1. TEST CONDITIONS	26
II. DATA SET/RUN NUMBER COLLATION SUMMARY	27
III. MODEL DIMENSIONAL DATA	47
IV. SUMMARY OF NOZZLE NOMENCLATURE	78
V. SIMULATION PARAMÉTERS	80
VI. THRUST COEFFICIENT FACTORS	18
VII. WING TEMPERATURES	82
FIGURÉS	_
MODEL	84
DATÄ VÕLUMÉ 1 (Figures 4–43) VÕLUME 2 (Figures 44–77) VÕLUME 3 (Figures 78–95)	91
APPENDIX	
TABULATED SOURCE DATA (VOLUME 4)	•

INDEX OF MODEL FIGURES

igurē	Title					
1.	Axis systems.	84				
Ż.	Model sketches.					
	a. Orbiter Configuration.	85				
	b. RCS Plenum Nożzle Block installation.	86				
	c. RCS Nozžle Adapter.	87				
	d. Módél Nozzle Block Configurations.	88				
3.	Model photographs.					
	a. Orbiter Installation Side View.	89				
	b. Side View of Nozzle Assembly Installed Tunnel.	d in 90				

	INDEX OF DATA FEEDEN	7		
F TGURE NIMBER	TITLE	SCHEDBLE OF COEFFICIENTS PLOTTED	CONDITIONS '/ARYING	PAGES
VOLUME				
, 4	JET OFF MERO, ELEVON = 0, BDFLAP = 0, BETA = 0	₹	CONFIG.	9-1
ι'n	JET OFF AERO, ELEVON = 0, POFLAP = 0, BETA = 0	¥	CONFIG.	7-12
.	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = 0	4	CONFIG.	13-18
7	JET OFF AERO, ELEVON = 6 , $BDFLAP = 6, BETA = 0$	๎๕	CONFIG.	19-24
	JET OFF AERO, ELEVON = -30, BDFLAP = 0, BETA=0	*	CONFIG.	25-30
Ó	JET OFF AERO, ELEVON = 10, BDFLAP = -14.25, BETA = 0.	ď	CONFIG.	31-36
10	JET OFF AERO, ELEVON = 10, BDFLAP = 13.75, BETA = 0	æ	CONFIG.	37-42
=	JET OFF AERO, ELEVON = 10, BDFLAP = 0, BETA = 0	¥	CONFIG.	43-48
21	JET OFF AERO, ELEVON: $= 0$, BDFLAP $= -14.25$, BETA $= 0$	*	CONFIG.	49-54
13	JET OFF AERO, ELEVON = 0, BDFLAP = 13.75, BETA = 0	*	CONFIG.	55-60
14	JET OFF AERO, ELEVON = -30, BDFLAP = -14.25, BETA = 0	≪:	CONFIG.	99-19
15	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = 3	A	CONFIG.	67-72
91	JET OFF AERO, ELEVON = 0, BDFLAP = 0, BETA = -3	#	CONFIG.	73-78
		٠		•

(Continue	
FIGURES	
DATA	
8	
INDEX	

FT GURE NUMBER		CARCETOTENTS	CANDITIONS	
	FIEE	PLOTTED	VARYING	PAGES
71	MEAN AND STANDARD DEVIATION FOR VARIATION WITH ALPHA	රා	1	79-80
82	MEAN AND STANDARD DEVIATION FOR VARIATION. WITH BETA.	ပ		81-82
61	MEAN, MAXIMUM, AND MINIMUM FOR VARIATION WITH ALPHA	æ	t	83-84
20	MEAN, MAXIMUM, AND MINIMUM FOR VARIATION WITH BETA:	U	ı	85-86
77	EFFECT OF MOBEL TEMPERATURE ON JET-ON AERO CHARACTERISTICS	a	ALPHA	87-92
22	EFFECT OF NODEL TEMPERATIONE ON JET-OFF AERO CHARACTERISTICS	۵	ALPHA	93-98
23	EFFECT OF MODEL TEMPERATURE ON JET ON-JET OFF AERO CHARACTERISTICS	ய	ALPHA	99-104
24	COMPARISON OF ON/OFF VS ON-OFF RUNS	<u>L</u> L.	t	105-110
25	EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N49, N83	Ø	COLFIG., NO. JET, ALPHA	111-200
26	EFFECT OF MULTIPLE JET RCS FIRINGS, NSP, N85	Ö	CONFIG., NO. JET, ALPHA	201-290
27	EFFECT OF MULTIPLE JET RCS FIRINGS, N78, N52, N82	[.] ජ	CONFIG., NO. JET, ALPHA	291-380
82	AMPLIFICATION FACTORS FOR JETS, N79N78	Ó	ALPHA	381-470

ľ

_	_	٠	i
٦		ı	•
ì	ï	ŧ	1
3	=	5	١
•	ř	۶	Ì
- 1	c	:	1
•			
			ı
-	1	:	
- 1		ř	١
7	C)	i
	7	ì	ı
		_	1
•	_		
•			
Ł	1	١	
ĩ		'n	
-	c	ž	
TAILING	_	۰	•
Ξ		,	
Č	ð	3	
- i		i	
	ĸ	•	
Ŀ		٠	
•	d	Ľ	
i.			
- 2	ū	6	
-	4	ï	
-	-	1	ļ
£	1		
7	Ξ	i	į
É		•	•
1	×	ξ	,
1	d	J	١
7	÷	٩	
:	۲	Ľ	
•	К		۰
٠	-	۰	ı

U Lie	KABES	471-500	501-590	591-596	597-602	603-668	649-614	615-620	929-129	627-632	633-638	639-644	645-650
CONDITIONS	VARYING	ALPHA	ALPHA	T/QA-1	T/QA-1	T/QA-1	1/QA-1	1/04-1	T/QA-1.	1/QA-1	T/QA-1	T/0A-T	1/QA-1
SCHEDULE OF COEFFICIENTS	PLOTTED	G	ය	±	±	Ŧ	±	±	±	±	I	æ	Ŧ
INDEX UF DATA FIGURES (CONTINUED) SCHEDULE COEFFICIE	TITLE	AMPLIFICATION FACTORS FOR JETS NEON85	AMPLIFICATION FACTORS FOR JETS N&4	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N79	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N49	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N83	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET NSP	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHAFOR JET N85	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N78	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N52	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N82	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JETS N79N78	AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N50N85
FIGURE	NUMBER	62	36	₩ .	32	æ	34	35	98	37	88	Š.	9

(Continue
FIGURES
DATA
INDEX OF

	PAGES	921-656	657-686	.37-716		717-746	747-776	908-24	807-836	337 -866	96] 298	397-525
1	CONDIFIES VARYEGE	T/QA-1	ALPHA, CONFIG., NO. JET, 3DFLAP	ALPHA, BOFLAP		Alpha, Boflap	ALPHA, BBELAP, 10. Jet, config.	ALPHA, BDFLAP	ALPHA, BDFLAP	ALPHA, CONFIG., NO. JET, ELEVON	ALPHA, CONFIG.,	NPHA, TLEVOR
(Continued)	SCHEDURE OF COEPFICIENTS PLOTTED	±	೮	G		u	Œ	Q	G	ය	ල	ប
INDEX OF DATA FIGURES (Continued)	TITLE	AMPLIFICATION FAC	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, U-3, N83	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR. JETS N79N78	2	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS NSON85	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78	EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS NSON85	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N79, N49, N83	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS NST, N85	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N79N78
	FEGURE	.	42	43:	VOEUME	44	2	46	47	48	\$	20

	ı.
ъ	ľ
7.	ľ
a)	ı
=	ľ
nued)	ľ
-	ľ
•	ı
	ľ
	ſ
•	ı
-	ı
- T	ı
_	ı
=	ı
_	ı
	ı
(3	ı
_	í
$\overline{}$	۱
	١
	ı
S	ı
V)	ı
	ı
_	1
\sim	1
_	ı
	ŧ
_	ľ
477	ı
IGURES	ı
-	I
7.7	ŀ
11	1
_	ı
	1
مشدو	4
	ı
_	1
_	1
**	1
	1
- 22	ł
\Box	ı
	ł
	ı
DATA F	1
4	1
OF.	
\boldsymbol{c}	ı
_	1
	ı
45.0	ı
-><	ı
	ł
1.1.1	ı
_	١
-	ı
	ı
INDEX	1
-	١
-	ı
	1

	TIMEN OF DATE TOWER			
FIGURE MUMBER	TITLE	SCHEDULE OF COEFFICIENTS PLOTTED	CONDITIONS VARYING	PAGES
51.	EFFECT OF ELEVON ON AMPLIFICATION F. ST , JETS N50N85	ట	ALPHA, ELEVON	951-956
52	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JET N84	ហ	ALPHA, ELEWON	957-986
53	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N79, N49, N83	Ġ	ALPHA, CONFIG., NO. JET, ELEVON	987-1016
5,4	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N51, N85	æ	ALPHA, CONFIG., NO. JET, ELEVON	1017-1046
55	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS N79N78	ය	alpha, elevon	1047-1076
Ś	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JETS NSON85	ಚ	ALPHA, ELEVON	1077-1106
21	EFFECT OF ELEVON ON AMPLIFICATION FACTOR, JET N84	Ğ	ALPHA, ELEVON	1107-1136
58	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N79 JETS	н	ELEVON, T/QA-1	1137-1142
66	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N49 JETS	ы	EL EVON , 1/QA-1	1143-1148
09	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND: -30, N83 JETS	ы	elevon, t/QA-1	1149-1154
6	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, NSI JETS	П	ELEVON, F/QA- 1	1155-1760
			-	

77
7.
\mathbf{z}
⊋
Œ
-
فسف
(Continued
_
.0
C
ت
71
ш
œ
Ξ
FIGURES
\equiv
щ
42
DATA
-
\rightarrow
8
$\overline{}$
_
INDEX
ш
7

	PAGES	1161-1166	1167-1172	3-1178	1179-1184	135-1190	9611-1611	1197-1202	1203-1208	1207-1214	1215-1244	1245-1_14
	COGOLT ONS VARYI 'S	ELEVON, T/QA-1	ELEVON, T. JA-1	ELEVOR, 1/QA-1	ELEVON, T/QA-1	BDFLAP, T/QA-1	BOFLAP, 1/QA-1	80FLAP, •T /QA-1	BOFLAP, 1/QA-1	80FLAP, T/QA-1	ELEVON, BOFLAP ALPHA	ELEVON, BOFLAP ALPHA
SCHEDULE OF	COEFFICIENTS PLOTTED	H		-	hud	ы	ы	pol .	1 -4	ы	9	ď
THEY OF WALL	TITLE	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N85 JETS	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N79N78 JETS	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AMD -30, N5ON85 JETS	DELTA AMPLIFICATION FACTOR, ELEVON = 10, AND -30, N84 JETS	DEETA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N79 JET	DELIA AMPLIFICATION FACTOR, BOOYFLAP = 13.75, AND -14.25, N49 JETS	DELTA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N83 JETS	DELTA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N79N78 JETS	DELTA AMPLIFICATION FACTOR, BODYFLAP = 13.75, AND -14.25, N5ON85 JETS	EFFECT OF ELEWON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JEFS NA9
	FI GURE NUMBER	29	æ	49	65	99	<i>L</i> 9	89	69	70.	7.1	72

(Continued
FIGURES
DATA
B
INDEX

F

73 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G ELEVON, BDB FACTOR, JETS N83 74 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G ELEVON, BDB FACTOR, JETS N79 75 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G ELEVON, BDB FACTOR, JETS NA9 76 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G ELEVON, BDI FACTOR, JETS N83 77 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G ELEVON, BDI FACTOR, JETS N83 78 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G ELEVON, BDF FACTOR, JETS NSONSS 80 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G ELEVON, BDF FACTOR, JETS NSONSS 81 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G ELEVON, BBF FACTOR, JETS NSONSS 82 AMPLIFICATION FACTOR IN YAW, N78 JETS 83 AMPLIFICATION FACTOR IN YAW, N49 JETS 84 AMPLIFICATION FACTOR IN YAW, N49 JETS 95 TYGA-1, ALP	FIGURE	TITLE TITLE PLOTTED	SCHEDULE OF COEFFICIENTS PLOTTED	CONDITIONS	PAGES
EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79W/8 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N83 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N83 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N50NS FACTOR, JETS N50NS EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N50NS EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N50NS FACTOR, JETS N50NS FACTOR, JETS N50NS FACTOR, JETS N79NZ8 AMPLIFICATION FACTOR IN YAW, N79 JETS AMPLIFICATION FACTOR IN YAW, N49 JETS J AMPLIFICATION FACTOR IN YAW, N49 JETS	73	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N83	. .	ELEVON, BBFLAP ALPHA	1275-1304
EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N79 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N83 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N83 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N79N78 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N50N85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N50N85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GFACTOR, JETS N50N85 FACTOR, JETS N50N85 FACTOR, JETS N50N85 FACTOR, JETS N79N78. AMPLIFICATION FACTOR IN YAW, N79 JETS J AMPLIFICATION FACTOR IN YAW, N49 JETS J	Ħ		Ġ	ELEVON, BOFLAP ALPHA	1305-1334
EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N83 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N50N85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N50N85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N50N85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N79N78 AMPLIFICATION FACTOR IN YAW, N79 JETS J AMPLIFICATION FACTOR IN YAW, N49 JETS J	75	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N79		ELEVON, BOFLAP Alpha	1335-1364
EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N79NZB EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N50N85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N50N85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION G FACTOR, JETS N50N85 AMPLIFICATION FACTOR IN YAW, NZ9 JETS AMPLIFICATION FACTOR IN YAW, NA9 JETS J AMPLIFICATION FACTOR IN YAW, NA9 JETS J	76	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS NA9	ម	ELEVON, BOFLAP ALPHA	1365-1394
EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GARCTOR, JETS N50N85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GARCTOR, JETS N79N78 AMPLIFICATION FACTOR IN YAW, N79 JETS J AMPLIFICATION FACTOR IN YAW, N49 JETS J	11	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS: NB3	G	ELEVÓN, BOLFAP ALPHA	1395-1424
EFFECT OF ELEVON/BORY FLAP ON AMPLIFICATION GENERATION FACTOR IN YAW, N79 JETS AMPLIFICATION FACTOR IN YAW, N49 JETS J	1	Ċή			
EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GARCTOR, JETS NSON85 EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION GARCTOR, JETS N79N78 AMPLIFICATION FACTOR IN YAW, N79 JETS J AMPLIFICATION FACTOR IN YAW, N49 JETS J	78		ဖ	ELEVON, BOFLAP ALPHA	1425-1454
EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS N50N85 EFFECT OF ELEVON/BOBY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 AMPLIFICATION FACTOR IN YAW, N79 JETS J AMPLIFICATION FACTOR IN YAW, N49 JETS J	79	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS NEON85	Œ	elevon, Boflap Alpha	1455-1484
EFFECT OF ELEVON/BOBY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 AMPLIFICATION FACTOR IN YAW, N79 JETS J AMPLIFICATION FACTOR IN YAW, N49 JETS	80	EFFECT OF ELEVON/BODY FLAP ON AMPLIFICATION FACTOR, JETS NSON85	ம்	ELEVON, BOFLAP Alpha	1485-1514
AMPLIFICATION FACTOR IN YAW, N79 JETS AMPLIFICATION FACTOR IN YAW, N49 JETS J	81	EFFECT OF ELEVON/BOBY FLAP ON AMPLIFICATION FACTOR, JETS N79N78.		ELEVON, BOFLAP ALPHA	1515-1544
AMPLIFICATION FACTOR IN YAW, NAG JETS	8	AMPLIFICATION FACTOR IN YAW, NZ9 JETS	7	T/QA-1. ALPHA	1545-1574
	83	AMPLIFICATION FACTOR IN YAW, N49 JETS		T/GA-1, ALPHA	1575-1604

تزر	Ł
+	7
7	ñ
4	š
ŧ	×
÷	3
でではない。サイン・・・	ذ
Š	3
•	د
C	ڊ
٠.	ŕ
,	_
Ų	7
ŭ	ų
ē	Ę
7	2
C	9
-	_
CTOMOTO	۲,
_	
	•
_	<u> </u>
7	١,
•	-
۵.	
5	-
Ė	-
4	
ĩ	Y STORY
7	5
- 5	5
:	
•	

FIGURE		SCHEDOLE, OF COEFFICIENTS PLOTIED	CONDITIONS	PAGES
48	AMPLIFICATION EACTOR IN YAW, N83 JETS	n	T/JA-1, ALPHA	1605-1634
8	AMPLIFICATION FACTOR IN YAM, N78 JETS	· 🙃	T/QA-1, ALPHA	1635-1664
88 89	AMPLIFICATION FACTOR IN YAM, N52 JETS	G	T/QA-1, ALPHA	1665-1694
. 48	AMPLIFICATION FACTOR IN YAW, NB2 JETS	ņ	T/QA-1, ALPHA	1695-1724
88	AMPLIFICATION FACTOR IN YAM, NS1 JETS	۳	T/QA-1, ALPHA	1725-1754
8	AMPLIFICATION FACTOR IN YAW, N85 JETS	C.	T/QA-1, ALPHA.	1755-1784
06	AMPLIFICATION FACTOR IN YAW, N79N78 JETS	Ħ	T/QA-1, ALPHA	1785-1814
16	AMPLIFICATION FACTOR IN YAW, N50N85 JETS	, ,	T/QA-1, ALPHA	1815-1844
35	AMPLIFICATION FACTOR IN YAM, NS4 JETS	ب	T/QA-1, ALPHA	1845-1874
Ş	AREA RATIO EFFECTS, L/H, DOWN FIRING JETS	ď	ALPHA, CONFIG.	1875-1958
94	AREA RATIO EFFECTS, RAH UP FIRING JETS	ig i	ALPHA, CONFIG.	1959-2048
95	AREA RATIO EFFECTS, LIM SIDE FIRING JETS	G	ALPHA, CONFIG.	2049-2138

INDEX OF DATA FIGURES (Concluded)

SCHEDULE OF COEFFICIENTS PLOTTED:

- (A) CN, CLM, CAU, CBL, CYN, CY versus ALPHA
- (B) CLM, CN versus ALPHA
- (C) CBL, CYN versus BETA
- (D) CN, CLM, CAU, CBL, CYN, CY versus TEMP
- (E) DLTCN, DLTCLM, DLTCAU, DLTCBL, DLTCYN, DLTCY versus TEMP
- (F) DLTCN, DLTCLM, DLTCAU, DLTCBL, DLTCYN, DLTCY versus ALPHA
- (G) N(NF), N(PM), N(AF), N(RM), N(YM), N(SF) versus QA/T
- (H) N(PM), N(RM), N(YM), N(NF), N(AF), N(SF) versus ALPHA
- (I) DN(NF), DN(PM), DN(AF), DN(RM), DN(YM), DN(SF) versus ALPHA
- (J) N(PM), N(RM), N(YM), N(NF), N(AF), N(SF) versus BETA

NOMÉNCLATÜRE Genéral

SIMBOL	sadšać Symbol	DEFINITION
•,		speed of sound; m/sec, ft/sec
c _p	СР	pressure coefficient; $(p_1 - p_{\infty})/q$
M	MACH	Mach humber; V/a
p	-	pressure; N/m ² , psf
q	q(nsm) q(psf)	dynamic pressure; 1/2000, N/m2, psf
rn/l	rn/l	unit Reynolds number; per m, per ft
v ,		velocity; m/sec, it/sec
α	ALPĦA	angle of attack, degrees
β	BETA	angle of sideslip, dégrees
$oldsymbol{\psi}$	PSI	angle of yaw, degrees
$oldsymbol{\phi}$	PHI	angle of roll, degrees
ρ		mass density; kg/m3, slugs/ft3
	Ř	eference & C.G. Definitions
Ab .		base area; m ² , ft ²
b `	BREF	wing span or reference span; m, ft
c.g.		center of gravity
REF	iref	reference length or wing mean serodynamic chord; m, ft
. S	Śref	wing area or reference area; m², ft?
	MRP	moment reference point
	XMRP	moment reference point on X axis
	YMRP	moment reference point on Y sxis
	ZMŘP	moment reference point on Z axis
<u>subscrift</u> b 1 s t	<u>8</u>	base local static conditions total conditions free stream

Nomeinci .s (Continuca)

Body-Axia System

<u> SYMBÖL</u>	SADOAG SYMBUL	DEFINITION
$\mathbf{c}^{\mathbf{N}}$	cn	normal-force coefficient; normal force
c _A	ĊAÚ	axial-force coefficient; axial force (uncorrected)
СĀ	CY	side-force coefficient; side force qC
c _{Åb}	CAB	buse-force coefficient; buse force QS -Ap(pb - po)/QE
$c_{A_{\mathbf{f}}}$	CAF	forebody axial force coefficient, c_A - c_{A_b}
c_{m}	CIM	pitching-moment coefficient; pitching moment
C _n	cyn	ydwing-moment coefficient; <u>Ynwing moment</u> qSb
c _l	CBL	rolling-moment coefficient: rolling moment
		Stability-Axia System
c _Ĺ	ćΓ	lift coefficient; lift
c_{D}	CD	drag coefficient; drag
c_{D_b}	CDB	base-drug coefficient; base drug
$c_{D_{\mathbf{f}}}$	- CDF	forebody drug coefficient; CD - CD6
$\mathbf{c}_{\mathbf{Y}}$	CY	side-rorce coefficient; side force
C _m	CŢM	pitching-moment coefficient; pitching moment
^C n	CLN	yaving-moment coefficient; yaving moment
C.	COL	rolling-moment ecefficient: rolling moment
r/u	r/p	lift-to-drug rutio; C _L /C _D
${\tt L/D_f}$	I/DF	lift to forebody drag ratio; c _L /c _{fr}

ORIGINAL PAGE IS OF POOR QUALITY

NÖMENCLATURE (Continued)

Symbol	Plot Symbol	Definition
Ae		nozzle exit area, in ²
c _{ij}		RCS jet rolling moment coefficient, $(I_{\ell_R})/(qSb)$
∂mj		RCS jet pitching moment coefficient, $(T_{\ell_m})/(qS\bar{c})$
c _{nj}		RCS jet yawing moment coefficient, $(T_{\ell_n})/(qSb)$
$c_{\mathbf{A_j}}$		RCS jet axial force coefficient, (T)/(qS)
$c_{\mathbf{N_{j}}}$		RCS jet normal force coefficient, (T)/(qS)
c _{Nj}		RCS jet side force coefficient, (T)/(qS)
ë		nozzle expansion ratio
h ´		altitude, feet
Ki		model nozzle thrust calibration factor, 1bs/psia
e _e		RCS nozzle rolling moment arm, in
£ _m		RCS nozzle pitching moment arm, in
^k n		RCS nozzle yawing moment arm, in
^l orb		Orbiter body length, in
LH		left hand side
mj		RCS jet mass flow rate, 1bm/sec
Mj		RCS jet exit Mach number
Ne	N(RM)	RCS roll jet amplification factor, $(\Delta C_R)/(C_{R_j})$

NOMENCLATURE (Continued)

Symbol	Plot Symból	Definition
N _m	N(PM)	RCS pitch jet amplification factor, $(\Delta C_m)/(C_{mj})$
N _{ri}	N(YM)	RCS yaw jet amplification factor, $(\Delta C_n)/(C_{nj})$
NA	N(AF)	RCS axial force jet amplification factor, $(\Delta C_{A_j})/(C_{A_j})$
N _N	N(NF)	RCS normal force jet amplification factor, $(\Delta C_N)/(C_{N_j})$
Ny	N(SF)	RCS side force jet amplification factor, $(\Delta \bar{C} \gamma)/(C \gamma_j)$
Р _с	PCRCS	model RCS nozzle plenum chamber pressure, psia
Ρj		RCS jet exit pressure, psia
RC\$		reaction control system
RH		right hand side
ŔT		product of RCS nozzle gas constant and temperature, (ft-1b)/1b
T		RCS thrust, 165
T _c	TCRCS	ŘČS chámber tempēraturē, °R
U		velocity, ft/sec
Иj		RCS jet velocity, ft/sec
Xo		Orbiter longitudinal station, in
Yo		Orbiter lateral station, in
Zo		Orbiter vertical station, in
ΔĊŁ	DLTÖBL	incremental rolling moment coefficient due to RCS jet intéraction

NOMENCLATURE (Continued)

	Plot	
Symbol	<u>Symbol</u>	Definition
ΔCm	DLTCLM	incremental pitching moment coefficient due to RCS jet interaction
ΔĊn	DLTCYN	incremental yawing moment coefficient due to RCS jet interaction
ΔCN	DLTCN	incremental normal force coefficient due to RCS jet interaction
ΔCγ	DLTCY	incremental side force coefficient due to RCS jet interaction
ΔCAu	DLTCAU	incremental axial force coefficient due to RCS jet interaction (uncorrected for base pressure)
Ý		jet gas specific heat ratio
Σkį		sum of model nożzie thruśt calibration factors for all nozzieś installed on model during a given test rum, lbs/psia
Θ		RCS nuzzle angl. deg.
T/qA	T/QA	RCS thrust divided ' frééstream dynamic pressure times unit a
	T/QA-1	one jet RCS thrust divide by freestream dynamic pressure times unit area
ΔNģ	DN(RM)	incremental RCS jet amplification factor - rolling moment
ΔN _m	DN (PM)	incremental RCS jet amplification factor - pitching rement
ΔNn	DN (YM)	incremental RCS jet amplification factor - yawing moment
ΔNN	DN(NF)	incremental RCS jet amplification factor - normal force

NOMENCLATURE (Concluded)

Symböl .	Plot <u>Symbol</u>	Definition
ΔΝγ	DN(SF)	incremental RCS jet amplification factor - side force
ΔN _A	DN(AF)	incremental RCS jet amplification factor - axial force
ö .		one standard deviation from the mean
X		computed mean
δBF	BOFLAP	Orbiter body flap surface deflection angle, positive deflection trailing edge down, degrees
δ _e	ELEVON	Orbiter elevon surface deflection angle, positive deflection trailing edge down, degrees
	NO. JET	number of RCS jets firing
	TEMP	wing temperature, degrees Fahrenheit

REMARKS

After being subjected to Mach 10 airflow at a dynamic pressure of 150 psf for a period of time, wind tunnel models tend to heat up to temperatures as high as 500°F. Therefore, in an effort to determine whether or not model heating could affect jet interaction measurements, the model was inserted into the tunnel and data was taken as the model heated up. At each data point the temperature of the model wing was recorded by hand. These temperatures can be found in Table VII. Both RCS jets-on and RCS jets-off data were taken as a function of wing temperature. Little effect was observed.

CONFIGURATIONS INVESTIGATED

1

Three kinds of model changes were required for this test: 1) body flap, 2) elevons, and 3) non-metric RCS nozzle blocks. Twenty two nozzle blocks were used in this test. Nozzles N43, N44, N47, N48, N49, N50, N51, N52, and N61 were used in tests OA85 and OA105. Nozzles N31, N32, N33, N34, N36, and N37 were used in test LA25. Nozzles N78, N79, N81, N82, N83, N84, and N85 were used in test OA82. Nozzle configurations are summarized in Table IV.

Two body flap configurations, in addition to the zero degree setting, were tested. The body flap deflections tested were 13.75° and -14.25° . Similarly, elevon deflections tested were 10° and -30° .

INSTRUMENTATION

The LaRC 0.75-inch six-component 2019A internal balance was used for this test program.

No model base or balance chamber pressures were measured during the test. The RCS supply pressure was set and monitored at the plenum chamber between the left hand and right hand RCS nozzle blocks.

TEST FACILITY DESCRIPTION

The Math 10 nozzle of the Langley Continuous Flow Hypersonic Tunnel is designed to operate at stagnation pressures of 15 to 150 atmospheres at temperatures up to 1960° R. Air is preheated electrically by passing through a multi-tube heater. The nozzle has a 31-inch square test section which incorporates a moveable second minimum. Continuous operation is achieved by passing the air through a series of compressors. Additional information on this facility is given in NASA TM X-1130 entitled, "Characteristics of Major Active Wind Tunnels at the Langley Research Center", by William T. Schaefer, Jr.

DATA REDUCTION

Aerodynamic forces and moments were reduced to coefficient form using the following reference dimensions:

Reference Area:

$$S = 0.269 \text{ ft}^2 (38.736 \text{ in}^2), \text{ model scale}$$

= 2690.0 ft², full scale

Reference Lengths:

c = 4.748 in.model scale = 474.8 in.full scale b = 9.367 in.model scale = 936.7 in.full scale

The moments were reduced about a moment reference center located at:

Orbiter station 10.767 at Y_0 = 0.00 and Z_0 = 3.75 model scale X_0 = 1076.7, Y_0 = 0.0, and Z_0 = 375.0 full scale

Standard LRC data reduction techniques were employed for reducing the data to coefficient form.

Reduced coefficient data were used to determine RCS jet interaction amplication factors. Incremental coefficient data (ΔC_m , ΔC_u , ΔC_u , ΔC_u , ΔC_u , and ΔCA_u) were computed to provide effects of RCS jets. Amplification factors were computed for each plane of action:

$$N_{m} = \frac{\Delta C_{m}}{C_{m_{j}}} = \frac{\Delta C_{m}}{(T \ell_{m})} = \frac{q S \bar{C}}{P_{c} \ell_{m}} \Sigma k_{j} \Delta C_{m}$$

$$N_{\ell} = \frac{\Delta C_{\ell}}{C_{\ell}_{j}} = \frac{\Delta C_{\ell}}{(T_{\ell}^{\ell})} = \frac{\dot{q}S\dot{b}}{P_{c}\ell_{\ell}\Sigma}k_{j} \Delta C_{\ell}$$

DATA REDUCTION (Continued)

$$N_{n} = \frac{\Delta C_{n}}{C_{nj}} = \frac{\Delta C_{n}}{(\frac{T \hat{L}_{n}}{qSb})} = \frac{qSb}{P_{c}\hat{L}_{n}\Sigma k_{1}} \Delta C_{n}$$

$$N_N = \frac{\Delta C_N}{C_{Nj}} = \frac{\Delta C_N}{(\frac{T}{C_N})} = \frac{\dot{q}S}{P_C^{\Sigma k_1}} \Delta C_N$$

$$N_{\gamma} = \frac{\Delta C_{\gamma}}{C_{\gamma_{j}}} = \frac{\Delta C_{\gamma}}{(\frac{T}{C_{\gamma}})} = \frac{qS}{P_{c}\Sigma k_{1}} \Delta C_{\gamma}$$

$$N_{A} = \frac{\Delta C_{A_{U}}}{C_{A_{j}}} = \frac{\Delta C_{A_{U}}}{(\frac{T}{dS})} = \frac{dS}{P_{C}\Sigma k_{j}} \Delta C_{A_{U}}$$

where

em = RCS pitch jet moment arm

^{2m} = 4.523 in model scale

 $g_{\sigma} = RCS \text{ roll jet moment arm}$

 2 = 1.110 in model scale

 ℓ_n = RCS yaw jet moment arm = 4.588 in model scale

 Σk_1 = sum of k_1 's for all nozzles firing in the same thrust plane, k_1 given in Table VI

. S,c,b = as given above

The resulting factors (N's) represent amplification of Orbiter aerodynamic forces caused by RCS jet interaction with the Orbiter flow field. They are normalized by RCS jet thrusts to allow easy use in control analysis.

The incremental RCS jet amplification factors due to a control surface deflection of amount "a" were computed as follows:

DATA REDUCTION (Concluded)

$$\Delta N_{m} = N_{m_{\delta=a}} - N_{m_{\delta=0}}$$

$$\Delta N_{\ell} = N_{\ell \delta=a} - N_{\ell \delta=0}$$

$$\Delta N_{n} = N_{n_{\delta=a}} - N_{n_{\delta=0}}$$

$$\Delta N_{N} = N_{N_{\delta=a}} - N_{N_{\delta=0}}$$

$$\Delta N_{V} = N_{V_{\delta=a}} - N_{V_{\delta=0}}$$

$$\Delta N_{A} = N_{A_{\delta=a}} - N_{A_{\delta=0}}$$

These factors (ΔN 's) represent the incremental effect of control surface deflections on RCS jet interaction.

The incremental coefficient data do not include thrust forces since the model nozzles were non-metric. Increments and amplification factors were computed for each force and moment plane using data from each nozzle that was tested. This provides both direct (e.g. ΔC_m due to pitch jet) and cross-coupling (e.g. ΔC_m due to yaw jet) effects. Resulting data are presented in the data figures.

REFERENCES

DMS-DR-2195 (NASA-CR-134,442) "Results of Test 0A82 in the NASA/LRC 31-Inch CFHT on an 0.010-Scale Model (32-0) of the Space Shuttle Configuration 3 to Determine RCS Jet Flow Field Interaction and to Investigate RT Real Gas Effects" by D. E. Thornton, January 1975.

ST: MAZZ			DATE : July. 1975
	TÉST CÖN	NĎITIONS	
MACH NUMBER	REYNOLDS NUMBER (per unit length)	DYNAMIC PRESSURE (pounds/sq.ft.)	STAGNATION TEMPERATUI
10.3	1,0 x 10 ⁶	150.0	1350
	,		
		,	
•			,
			<u> </u>
	<u>, </u>	<u> </u>	<u> </u>
		,	
			
BALANGE UTILIZÉD:	LaRC 2019A		
	CAPACITY:	accuracy:	COEFFICIENT Tolerance:
NĚ	70 1bs	0.35 lbs	
SF	25 1bs	0.125 lbs	
AÉ	15_1bs	0.075 165	
РМ		<u>0.35 in-1</u> bs	•
RM	15 in-1bs	0.075 in-165	•
YM	<u>25 1n-16</u> s	125 in-1bs	
COMMENTS:			

	TEST: CI	CFHT 118 (MA-22)			DAT/	- س	/RUN	NUME	ER CO	LLATIO	SET/RUN NUMBER COLLATION SUMMARY	ARY .		DATE:	27/11/7	27			
-	DATA SET	MONERGIE	Ž	SCHD.				Ā	RAMETE	PARAMETERS/VALUES	ES			Öi Z	MA	Mach rumaers	BERS		
<u>-</u>	IDENTIFIER			8	B Jets	1	8 1-80	Se	SRE					RUNS	10.3				
*	, RJA003	Ø1:N49		_ဝ ဓ	2 2	٥١		00	o o	_					3				·
	RJ4403			_			0.0						•		403				
	R.JA005						0.0						J		5		-		
<u></u>	RJA:036				,	9)	95.0								9				
<u></u>	RJA011					9)	95.0							·	11				
	RJA41.1	≯	·	→			0.0								411				TI
	RJA012	BINZi		A			0.0			-					21				EST
·	1 13					4	47.5								13		-		RUN
	41				.,		0.0								141				hill
	15		-			9	95.0		,						15				HE
	16.	*				19	90.0								16				15
	17	Ø1n34				4	47.5								17				
لــــا	j 18					6	.0.56								18	,		-	
	19.	→				12	27.7								19				
	23	gen47				4	47.5								92				
لن	. 2.1					6	95.0				·				1.2				
	22	→				12	127.7								22				,
	₹ 23	माराष्ट्र		》 누	>	7	47.5 🔖	>							23				
-	7	13	19.		25	ď	3.5	37		6 3	49		S, S	9	19	67		1	35. 25
<u>~</u> *	BEITIM , ICAM .	. IChir .	I KILM I ICBLE	4	ICBL	4	LICKAL	751	<u> </u>	CALL	100	1	T./68		MARCH.	√	ALPHA		
	6 40 P	B A CA	-8° to	000	100 2	200	012	FIGIE	COEFFICIENTS (= 15 to 35 , AX=	AK= 5°					RANCI	a	DVAR :		ğ
ئــ	SCHEDULES			200	F		111				1								
Ř	S" DATASETS	CONTRIN	STATE KKES, VICE, I'D	χ Σ	i i	R.F. I		dep	roden	as dependent variables	roles.					•			

#1 = B19 C, E23F9 Me RS VT WIOT

27 ...

						···		Ť	KST	Run	NU	BEN	PS								9. 19.	ļ	ģ	
	Ì																			·		-]	1
	NUMBERS		٠		1.							,			 					-			OVAR IZ	
75	きえょう								-			-			-	-		-		-	6.7	-	=	ł
27/11/75	MACH	10.3	24	25	52	27	2.5	52	33	3.	32	33	120	3	18	3	R	<u></u>	127	-			DVA.9	
'	Ö	RUNS 1			<u> </u>	<u> </u>			-	<u> </u>		<u>'</u>			<u> </u> 		_				3	-	VC.	
SATE	2	0€			,				-		_											-		-
				~	1	-	-	_	_	_	_										55	-		
MARY					_			_		_	_											-		
N SUM	Ş		-																		49			
ATIO	PARAMETERS/VALUES																				<i>.</i>	7	, r	•
COLL	TERS												-								63	111	, A.K	
*BER	A.R.A.M.	345	o _o		-	_													<u>.</u>	-14.25	37	1.1.1	COEFFICIENTS (= 15 ta 35°, AX=	
N NE	"	Se	°၀				,		→	-30			→	+100						<u>'</u> }		1 1 1	FFIC 75.	
A SETARUN NUMBER COLLATION SUMMARY		(Q.K-1	0	α.α	95.0	127.7	47.5	95.0	190.0	0.0	47.5	95.0	190.0	α.α	47.5	95.0	190.0	190,0	190.0	0.0	34		[OD 8	5.5
		늬				1			1				_					-	16			=	20	6
DAT	ä	8 Let	دم 0														>	-	2	<u> </u>	25	=======================================	ta 10°; 4%=	100
_,	SCHO.	8	A																	ネタ		1	00 1	č
	,										٠										20	22/22	-8° to	5
-22)	CONFIGURATION															,						1	ھ= ھ	7
X.	אפופגוו		~				8/Nf	,													Ę	1	A	
CFHT 118 (MA-22)	8	3	Ø11143	H		÷	\$7N27N18	H	-						-		>	Ø1178	Ø1,1185	*		}		
	SET	.E.B.	47	22	26.	27	28	. 62	30	31	32	33	34	35	36	37	38	39	100	17	*	1	80 80	
1531	DA.TA SET	DENTIFIER	RJA024	H	\dashv				-	.,							-		-	- 7 →		1111	8	
	<u> </u>	<u>ō</u>						.											,		_	3		

E	EST: C	CFHF 118' (MA-22)		DATA	SET/RUN N	UMBER	COLLATIO	SET/RUN NUMBER COLLATION SUMMARY	·	DATE:	7/11/75		
.]	CATA SET		SCHD.			PARAME	PARAMETERS/VALUES	ES		Óź.		MACH NUMBERS	ł
Ö	IDENTIF ER	CONFIGURATION	a B	le ts	7/0A-115	e SBE	•			RACINS	10.3		1
<u>L</u>	RJAC42	Ø11185	A OC	2	190.0-1-1	+100-14.	25				24		
	£43	g1n78		-		,					43	-	
<u>. </u>	7,4	Ø11479N78		2	*				لت		44		
<u></u>	45			H	0.0	+13.	.75				122		
<u> </u>	45	>-		~	190.091						746		
<u> </u>	47	g PN78	-	-	→						47		-
<u>L</u>	847	£1185		2	0.0						<u>a</u>		
<u></u>	46	-			190.0	<u>}</u>					647		TON
	50				0.0	-14,25	25		,		50		NUN
<u></u>	- 51	>		\rightarrow	47.5						5.1		អ្នក
	52	Ø11178		-							52		*
	53	Ø1N79N78		7	→	· / /	·				53		
	54	81N78		-	6-0.0	30c 0c	·	_			χ.		
	55	->		₽	190.0						33		
	56	ptn85		2	->						56		
	57	Ø1N32		H	0.0	00	·				57.		
	: 58				47.5				·		28		
	ķ 59	λ	<u>٠</u>	>	\$ 0.3€	→ >		-	_		25		
[بر		7 13 19		25	31	37	63	49.	3		61	6.7	78.75
_{	11111	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Line	=======================================	11111	1111	1111	11111	4111	Latital	****	1	\neg
	9	A, d=	-8° to 10°; Ad=		80	COEFFICIENTS = 15 to 3	50; AK=	50			IDVAR 13	ICVAR CT	12 NOV
<u>.</u>	SCHEDULES		, 0, 10 ⁰ ,	o, 20 ⁰	0 & 35°.		1					•	
			·										

CONFIGURATION SCHOOL GIN32 A C 2 190.0 0 0 0 GIN35 FINAS FIN	CFHT 118 (MA-22)	DATA SET/RUN NUMBER COLLATION SUMMARY	DATE	31/11/:		
A 0 2 190.0 0 0 0 0 0 0 0 0 0	FIGURATION	SCHO.	02		VUMBERS	
		6 8 Jets 1/04-15e	RENS	0.		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2	0° 2 190.0 0°		જ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	136.	47.5		19		T
127.7 63 64 64 64 64 64 64 64	•	0.56	J	62		1
13 13 24 35 40 64 65 65 64 65 65 65 65 65 65 65 65 65 65 65 65 65		127.7		63		T
13 13 25 34 47 5 67 66 65 67 66 67 67 67 67 67 67 67 67 67 67 67	N48	47.5		750	-	T
13 13 22 34 47 5 66 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68		95.0		65	_	
	·	127.7		99		EST
	N 44	47.5		7.59		RU
		95.0		. 68		אאנ
13 18 25 31 31 49.5 6 61 67 72 72 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75		127.7	,	3		IMITE
13 13 25 34 35 4X = 50 14 190.0 15 19 26 10 10 11 11 11 11 11 11 11 11 11 11 11	Ø1N78	47.5		20		:RE
13 18 25 34 35 0.0 1 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	-	6 7 95.0		7		7
13 19 25 34 37 42 50 1 77 77 75 75 75 75 75 75 75 75 75 75 75	- >	190.0		72.		ή-
13 19 25 34 37 49 50 11 14	gin85			73 :		+
13 18 25 31 37 43 49 55 61 67 75 A, \$\infty = -8^2 \text{to } 10^2 \text{Ac} = \frac{15}{15} \text{to } \frac{35}{15} \text{Ac} = \frac{15}{15} \text{To } 15		190.0		14/		
13 19 25 4 4 7.7 77 77 77 75 67 67 67 75 75 75 75 75 75 75 75 75 75 75 75 75	- }	95.0	İ	75		
147.5 \\ \frac{4}{4} \\ \frac{4}{4} \\ \frac{1}{2}	GEN33	σ.0		76		1
20 COEFFICIENTS 20 Coefficients 20 Coefficients 20 Coefficients 20 Coefficients 20 Coefficients 35 Coefficients 36 Coefficients 37 TS 38 TEAT TEAT TEAT TEAT TEAT TEAT TEAT TEA		* 4. 4. 47.5 *		77		T
2° E C'EPFICIENTS 2° E C'= 15' to 35', AK = 5°		25 34 37 43			67	75.76
-6 to 10° and -20° to 35° ; $4K = 5^{\circ}$	4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	COEFFICIENTS OF	111111	1	11111	
	2, 2, 2	2 50 = 15 to 35 ; AK=		- 1		

	TEST: C	CFHT 118 (MA-22)	DATA SET/RUN NUMBER COLLATION SUMMARY	DATE	: 7/11/75	75	
	DATA SET	CONFIGURATION	Ö				
	2014		Jets 1/04-1 Se	T	2	MACH NUMBERS	-
	R_1A078	Ø FIN3 3	95.0	-		1	T
	. 79	->-	0.061		\$	+	
	80.	ging.		-	5/8	+	<u> </u>
				-	8		
	82	->	127.7		E (+	
	83	gingi	5.24		82		
	78		05.0		83		TF
		->			48		73
	86	Ø I'N84			85		ÀUN
	87				8		reu'
3	70		47.5		87		мнт
17	Ġ		95.0		88		. 126
•	. 68	٠	127.7		3 8		
•	. 90		0.0 0.0		3 5		
	91.			1	96		_
	.26		\$30		16		₁
	93				. 26		
	ま -				93		
	36 A	>	<u> </u>		8		
	۲ ۶	13 19.	35		95		
	11111			61		67	9: 5:
	8 60 B	A, C/ = -80	0°; Ad= 2° 8	1	ICVAR 11	ICVAR EZI	- lõ
!	SCHEDULES	0.04 = -100					
					:		

			1	T	_	_	T-		i ('s i	r nc	n n	UMG	I RS	<u> </u>		———		<u> </u>	<u> </u>				30
	NUMBERS	_	<u> </u>	_			-		-	+	-	-	- -	-			_		-		-		E) are
27111/2	\$3.2 Y . KX	1							-						!		1.		· ···•	-	- - 		=
	-	0	9	3	63	8	10.	101	103	101) [105	106-1	107	2	1 00	5 5		2 :	1 12	61	1 4	30 V B Q
DATE	10.			<u> </u>	, U	1					-		 					!				1 7 7 7	
RY			 	i	<u> </u>				!	-		+	i 	-	<u> </u>	<u> </u>	 -		1	<u> </u>	25		****
SET/RUM NUMBER COLLATION SUMMARY		-	-			-					-	-		+	<u> </u>	 	<u> </u>	 		+	67	1	
LATION	STWALUE											<u>'</u>		 -	\dagger			-		-	43	1 1 1	¢= 5°
ER COL	PARAMETERS/VALUE	3.5	0	_	<u> </u>	-			_												4	TST	35° , 4K=
WUMB	1	350	00 00				-	-												<i>→</i>	16	COEFFICIENTS	15° to
ET/RU		1-40/	95.0		>	127.7	-	→	0.0		† 	47.5		├ →	95.0	 	-	127.7		>	31	1 1 COE	E 35 a
DATA		JetsT					<u>'</u>				-	_	-	<u> </u> 		<u> </u>		-		~		4	92
		æ.	.D 0a	-30	- 330	o o	-30	1 +30	0	-30	#30	0	300	130	8	-30	2.7	0.	-30	¥ +30	25	1	to 10'; A.K=
	NO.																	-	· = r		£	4	20 2
(NA-22	COMPIGERATION				-				150												13,	4	A, Q. = 0. Q. =
CFHT 118 (NA-22)	ŝ		Ø1.N84.					*	Ø17185450	<u> </u>			-		<u></u>				-	>		1	·
11	CATA SET	I DEISTIFBER	RIAOSS	097	860	.660	100	151	102	103	104	105	106	107	108	109	1 70	=	112	173	7	4	G OR B
TEST:	Ω	- C	α.	'														-	=	>		1	Š

118 (MA-22)
(MA-22) FIGURATION 50

The state of the s

571:17	,	-	199	123	100	100	135				77	77.1		71,1	144		91.1	177!		011	3		10 10 10 10 10 10 10 10 10 10 10 10 10 1
DATA SET/RUN NUMBER CO'LATION SUMMARY	SCHO.	0 B Lets 1/0/4-11-5e	4. 95.0 0°	127.7	-	130	0.0	_	4:30	A 0° 47.5	95.0	127.7	0.0	-	1-30	> D & +	1 G° 47.5	-3.0	+30	↑ ↑ ° 65.0 ↑ ° 00 ↑	19 25 31 37 43 43 55		to 10°; Ad= 2° & x = 15° to 35°; AK= 5°
CEHT 118 (MA-22)	T A GALLON GUACO	1	gins1										· *	. ØEN78		•				*	6) 6	1	B. A= -80
TEST:	DATA SET	FOGNTI FIER	RJA 132	133	134	135	981	137	138	139	140	141	241	143	441 /	145	941	147	74.9	641	7	111111	6

:

i ,:

190.0 190.	1 0
1 1 1 1 1 1 1 1 1 1	(27-41
150.0 150.	COL TIGURATION SCHO.
190.0 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°	0
190.0 151 152 153 154 154 154 155 15	O.T.
190.0 15	130
153 154 155	00
154	13,0
17.5 1 155	+30
95.0 159 159 150	00 2
95.0 159 159 150.0 150.0 160	- CF
95.0 159 160	35
150.0 160 161 162 163 16	CO
190.0 160 161 162 163 164 164 165 164 165 164 165	3c
150.0 160 160 160 160 160 160 160 160 160 16	G. #
47.5 162 163 164 165	00
47.5 163 164 164 164 165	-30
95.0 164 90.0 165 90.0 165 47.5 4 165 31 37 43 55 61 67 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	+ 130
95.0 165 165 190.0 1 47.5 47.5 48 55 61 67 11.1 11	A .00
190.0 165 165 147.5 1	
31 37 43 49 55 61 67 11 (11) (OBFFICIENTS) 2 6 6 = 15 to 35 0 AK = 50	>
20 COEFFICIENTS. 20 COEFFICIENTS. 20 COEFFICIENTS. 37 43 55 61 67 41 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	~ \$ \$
20 COEFFICIENTS 0 25 : 4K = 50 (2.18.18.18.18.18.18.18.18.18.18.18.18.18.	19. 25
20 EQ = 15 to 350; AK = 50	
	α= -8° to 10° Δα= -

					-					TEST	ាវប	N NI	JMHI	115			******			·	-	-			
	1	1					1	1	·	T				7	T		-	T	1	+	_			1	
,		DE 35		4- may		1	 		+	+	-	-				_							1 4 2		
i :		1		-		_	_	-					!					-	!	-		7	. 77		
1	3771172	FOR												-		" ;" -	·- ,				+	1 3			
i	12	\$	0.3	103	69	170	171	17.7	173	尼	17.	1,6	17.	178	+-	में क	-	-			<u> </u>		1 - 7		
					•				<u> </u>	-			-	1=	-	188	181	182	183	281	185	5	i Dvá		
. !		ž	21			_ }			 -													S	7		
	_		•	-											-	!	_		-				1		
.	≿	İ	+	-	十	<u>'</u>	-															55	7		,
DATA SET/RIM NIMBED CO. 1	MAR	-	_		4	\downarrow																	4		
	3	5																	-	-	-	9	1		
	2	iii l		Ť	+		+		<u>;</u> i		-			-			-	_		_		ľ	7		
	L	C. C. C. C. C. C. C. C. C. C. C. C. C. C	╀	+	4	4		_															- 5°	1	
].	1									1	- 1		\exists		7	+	\exists	63	יא אַ אַאַ	•	
			100	- I	T		丰		士		1	+	+	+	+	\dashv	+	+	+	-	4		구동씨	1	
		ن	_	, _	1	丁	士	士	1	-	+	+	+	+	7	7	#	1	1	1	<u>></u>	6	COEFFICIENTS = 15° to 35°; 4K=	\parallel	
1 8		11-40	c	7	6	, ,	; -	+	+	,	7	1	1	#	#		+	1	-		*				
F.		10	8 6	190	٥	100	: -	+	>	3	 	+	- -		> 1	· -		ر ا	5 -	\int		* .	18.2		
Į ₹		100		_	+	+	 	4-	+	_	ļ.,	\downarrow						16			7	- -] ~[.	ا(د	
à	0	A jest	0.0		1	+		+	1		1-	-				1	1	I	丁	\	1	\$2	-8° to 10°; & <= 2° - 10° 0 10° 20° - 10° 0 10° 20° - 10° 0 10° 20° - 10° - 10° 20° - 10°	3	
.	SCHD.	.0	A 10			1	0,	1	(C	104	0,	او	, 0,	\ े	10	, 0,	10,	00	Pri	9	7		0. V.		
					->	0	╁		7-	+	片	+	#	+	+	-				- 4	1		0 0		
	2						;				İ										٥		-8° tr		
(MA-22)	CONFIGURATION			İ													Ì				'				
13	N FIG			.										.							2		A, Q,		
	8		Ø-11182		_			·													•	🖯	4 10	1	,
CFHT 118	1. (+	6		_				. ,					_					-	÷]	v	١.	
1 1	DATA SET		RJA 168	2	2	171	172	173	174	175	176	177	178	179	180	181	2	<u>~</u>	4		~		34 /9 341.E	2	
TEST:	041		Ž	+	-	-			-	1					75	2	182	183	184	185		21.11.14	a on B		
	-				نات															>	2	_======================================	. ,		
												36												•	

1 ,

		-	-	7	1			' 	EST	RUF	} 	MAG	1/5	-	-						\$ 78	Γ.	20 S	
																						<u> </u> -]	
	BERS				T					1	1	1-	\dagger	-	†	十	1	\vdash	┝	-			DVAR 129	
	MACH NUMBERS	-	_	-	╂	╁	┼	╁	 .	 	┼	-	┼-	+	┥—	-	-	<u> </u>	_	_	25	<u>:</u>	ā	
7/11/75	MACH			_			_	_				1.				ŀ						:	3	
		10.3	186	187	188	189	196	<u>5</u>	왕	193	194	195	196	197	188	199	2002	201	20.2	203		:	IDVAR	
DATE:	NO.	RONS STONS											 	-	\dagger	 			-		5	-		
			_	_	-	+	_	\vdash	-	-	-	-	-	1	 	-	<u> </u>	_		_				
					_	_	_	<u> </u>	<u> </u>			_			_						\$3	1 1,1		
ARY					'																	1		
TA SET/RUN NUMBER COLLATION SUMMARY												 	 			-	-				49	4	•	
8	UES		-	_	-		<u>'</u>	-	-	-		-	-	_	-	-				_		•]	0,	
LAT	SYVAL	٠.,															,			Ì	3	4	1	
Ö	ETER									·												4	P. 54	
IBER	PARAMETERS/VALUES	SAE	00																	~	,	1	COBFFICIENTS AK=	
NUN	۵	Se	o Ö								-, -										37	7	55.	
'RUN		(GA-1)	5		l ,	O,			0			0	- v	0	Ö	5	0	0	Ó	今		=		Ç
SET/		9	147		->	95.		->	190.0	_	→	0.0	47.5	95.0	190.0	47.5	95.0	190.0	0.0	47.5	31	4	. 3	•
DATA		lets]												- ≯			-					+	77	Ś
۵	ġ	8	C C	n°	+30	00	30	430	ိဗ	-30	-30	o _o o			_	2				*	23	=	-8° to 10°;Ad=	
	SCHD.	Ö	0 0		-			*			>	A							*	-		11111	100	4
																					ě	4	3	90-
(22)	1 C																			•		7	1	-
2,1	CONFIGURATION					ĺ										Ì						1	8	1
= 1	Z		5	,												55	,				=	4	¥	c
	U		£1N79		-		_	4		-	-	-		-	→	Ø11149	$\mid \downarrow \mid$	4	_	>		1		,
CFHT	133	EB	ور	7	9	6	0		2	~	<u>_</u>		<u></u>	_	<u></u>	-	<u>'-</u>	_		\dashv		7	2A A2	
	CATASET	こうしょし こうしゅ	RJA186	187	183	183	190	191	192	193	194	195	196	197	198	:39	200	20.	202	× 203		1	g OB	(
=		7	٠.								.											7		

•

	Ti								Γŧ	57 /	หมง	พบพ	भहा	15	-							·		****
75	MA CHANGE CO.	N WANTERS		1	,																-	a carrent	100 48 (21 VO	
TE: 7/11/75	:	RUNS IN 2	- }	704	. 205	206	207	208.	209	210	211	212	213	2.14	215	216	217	21.0	0.0	220	331		IDVAS 13	•
DATA SET/RUN NUMBER COLL ATION SUMMARY	HD. PARAMETERS/VALUES	Jets 1/0A-1 Se Sar	77 5 00 00	100	ð	-	\$ C C C C C C C C C C C C C C C C C C C	0.061 0.00		000	000 , 4.7 €	7	0,0	1	0.0		+3	O	-3	+3	0°0 ψ φ φ φ φ φ φ φ φ φ	25 31 37 43 49 55	30; Ad= 2° & COBFFICIENTS 100 200 6 250	\$ 07 °
TEST: CFHT 1:18 (MA-22)	DATA SET CONFIGURATION		RJA204 ginas		206	207	208	209	210	21:1 4	212 Ø1n83	213	214	21.5	7.6		717	218	219	220	V 221 V	7 13 19	SCHEDHLES D. of = -160 0.	

	I i		_							หมห									<u> </u>	_ !	3.76	-	S C C	
																					7.8			
	RS																-					~	10VAR (2)	
	UMBE		_														,,				23	-	ğ	
175	MACH NUMBERS				•										-							-	=	
2/11/75	Σ	10.3	222	223	724	522	226	227	228	229	230	231	232	233	234	235	95.7	23.7	238	239		-	10VAR	
]E:	Ģ.	PON S			-												,				36			
DATE		ੂੰ ਵ	_																			1		
																					. 55	1 1 1		
ARY							.															1 1 1		
UMA																					\$	ı i ı		
§ S	UES			,					- ,	-								_				1 1	50	1 1
A SET/RUN NUMBER COLLATION SUMMARY	PARAMETERS/VALUES		_									-			-				,		43	J 1. 1	COEFFICIENTS o, AX = 5°	
g	ETER	·																				1.1.1	35°; 4	1
WBER	ARAN	SAE	°o																	->	37	1 1 1	LENT	
N N		Se	O																	->		1	EFE 15	
/RU		1-50	95.0	÷	90.0		- ≯	0.0	90.06	95.0	7.5				95.0			190.0			31	1	K	350.
SET					19				19	6	47				g,			96			•	1	, 2° &	ડ 0
DAT/		Jets	ري.								*	₩-	-	-	-				<u>-</u>			1	to 10°; Ad=	, 20
	SCHD.	6	.30	+30	00	-30	+30	0.0				->	-30	+30	00	⁵ ٣	3	°	250	÷30	25	111	0; 0	100
\vdash	5	8			•		->	A			*	6							-	جد.		-	ţ	Ö,
		2																			19	1	80	-16°,
(MA-22)		CONFIGURATION												٠								1	A "	= 70
3		שונים		•								N78									13		₹,	0
113		วิ บ	@1183						· =		→	81N79N78			·		-		<u></u>	>		1		
CFAT	1	T.				-					_	<u> </u>		1	٠.		-				^	1.1	ą.	
1:12	DATA SET	IDENTIFIER	R 14222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239		-	8	SCHE
rest	lå	IDE	rc¹						<u></u>	=:							.سر به		,	->	. :	-		

FEST: CFHT 118 (MA-22)	DATA SETZRUN NU	1/1	
DATA SET COMFIGURATION	SCHO	NO. ACH	H NESSER'S
RJA240 91N79N78	00 2 0.0 00		And the same and t
	47.5	241	
242	05.0	242	
243 . 4	0.061 👌	243	
244 Brn79:	0.0	2/4/2	
242 <u> </u>	1 t2.5	245	
246	95.0	246	
24.7	190.0	247	
248 gin85n50	2 47.5	248	
549	0.56	249	MHF
250 J	127.7	250	
25 li gen49.	47.5	251	
252	0.56	252	
253	196.0	253	
254 gin83	3 47.5	452	
255.	95.0	255	
256	↑ 190.0	256	
¥257 4	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	257	
7 13	1 9: 22 5 31 37: 43 49, 55	19	75. 35.
Lee en el en en el e			1
8	to 10° : Ad= 2° !	IDVAR - 19	CVAR.21 NO.
CAFOUR ES 0. 0. H	-100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Scholarion Sch	CFHT 118 (MA-22)	DATA SETZRUN NUMBER COLLATION SUMMARY	DATE: 7/11/75	
47.5 6 14.25 6 14.25 6 14.25 6 14.25 6 14.25 6 14.25 6 14.25 6 190.0 190.0 6 190.0 190.		но.		
190.0 14.25 258 259 10.0 10.0 259 250	-	B Jets 7/0A-11 Se	Ö	
95.0		0 3 47.5 00	. 852	
95.0 190.0 261 261 262 262 263 264			259	
190.0 190.0 261 262 262 263 264 264 265 264 264 264 264 264 264 265 264 265 272	. 1	35.0	260	
95.0° 262 263 264 264 264 264 264 264 264 264 265		0.061 小 190.0	261	Ţ
95.0° 264 264 265 266			. 262	<u> </u>
190.0 264 265 2		1 95.0° T	263	1
47.5 47.5 265 266 127.7 267 267 267 17.7 269 269 269 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 190.0 270 270 270 110.0 270 270 270 110.0 270 270 270 110.0 270 270 270 110.0 270 270 270 110.0 270 270 270 110.0 <		190.0	797	EST
95.0 266 127.7 267 47.5 268 190.0 269 47.5 270 190.0 271 190.0 272 190.0 272 0.0 273 190.0 274 0.0 274 11 274 12 274 13 43 20 40 11 11 20 40 20 40 20 40 20 40 20 40 31 33 32 48 35 48 35 48 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10 40 10		47.5	265	RUN
127.7 47.5 267 47.5 268 190.0 269 190.0 272 190.0 272 0.0 273 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 274 0.0 111111111111111111111111111111111111	•	0.56	266	טא ו
95.0 268 269 270 190.0 270 1 271 1 272 1 272 1 272 1 272 272 272 272 273 274			267	MHE
95.0 269		47.5	268	RS
190.0 270 1 95.0 272 272 1 190.0 273 274		0.5e T	269	
95.0 272 ; 278 279 27			270	
95.0 272 273 279 279 279 270			271	
190.0 274		7 95.0	272	ĺ
0.0 ↓	_	0.061	273	<u> </u>
31 37 43 49 58 61 67 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	_		274	<u> </u>
31 37 43 49 55 61 67 1.1.		→		ï
2° COEFFICIENTS 2° CoC = 15 to 35°; AK = 5°	- 1	31 37 43 49-	Ġ1	75.74
2° ε α = 15° το 35°; 4K = 5°	4	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
10°, 20° E	21	2° & COEFFICIENTS o, AK=	£	NEW
		10°, 20° E		1

	·		<u> </u>	T	1	7	7	7	usr I	וטיק	, N1	-M1916	:R\$		 			1			25.25	1) (4 2
75	MACH NUMBERS		·																		57	1111	i) icvar (2)
DATE: 1/11/75	NO.	AUTS 10.3	276	77.	278	279	283	281	282	283	784	282	286	287	288	289	290	165	262	293	59	1 '	Read
<u>.</u>		u.			j		·														5.5,	1	
ON SUMMARY	JES																				49	*****	
A SET/RUN NUMBER COLLATION SUMMARY	FARAMETERS/VALUES	SAF	-14.25																	>	43	SAN	$\zeta = 15^{\circ}$ to 35°; $\Delta K = 5^{\circ}$
NON XO	Ĭ.	Se	-30°											-						デ	37	FFFTCTF	15° t
& SET/R		1-AQ/1	47.5	0.0	95.0	196.0	47.5	95.0	190.0	47.5	95.0	127.7	47.5	95.0	190.0	O,Q	Q.0	47.5	95.a	190.0	31	7	2 c & =
DAT	Ŧ.L	a B Jets	2 00			>		- -	->	2	1-	->	7	1-		→	. 3	7		シサ	2\$	_1	100 20
	<u>l</u>	7	A								•			<u> </u>						- >	91		φ 1
CFRI 118 (MA-22)	CONFIGURATION		Ø11779478			->	Ø1N79.		->	ØN85N50		\$*	91 N49				Ø11183				13:].	A .
	DATA SET	E CONTRACTOR OF THE CONTRACTOR	RJA276 @	7.12	278	579	280 91	281	282	283 ØN	284.	285	286 91	287	. 288	289		162	1	× 293 .	,		a ca B

	,				<u> </u>				T	SY	RUN	NUN	ABE	15	·							5 78	,	202	
																						,		8	
		MACH NUMBERS																				67	1	IDVAR	
	775	DY HU																	·			8	-	.₩.	
	32/11/2	MA	10.3	294	295	295	297	298	£62	300	301	302	303	304	305	306	307	308	309	310	311.		1 1 1	DVA.R	
	DATE:	G,	RUNS			.8.4.	1	, ,										3	3	. 3	3	9	1 1		
	YQ.		- E				لد														·	19	. 1 1		
																					·	5.5	1 1 1		
	MAR																			_		OT	1 1: 1		ŀ
	SET/RUN NUMBER COLLATION SUMMARY	ES		-14-70-00-0																		67	1 1	ć	
	ATIC	PARAMETERS/VALUES																,				. 43	1.1.1	AK= 50	
	200	ETERS																	•				1 1 1	5°.4	ſ
	MBER	PARAM	SBE	00								,			. `		_				≯·	37	1 1 1	COEFFICIENTS of 15 to 350	
	N N		50	-30°																-	>		111	EFFI	
	T/RU		GA-	0.0	47.5	95.0	190.0	47.5	95.0	0.061	47.5	95.0	0.061	47.5	95.0	27.7	0.0	0.0	47.5	95.0	47.5	31 .	1	ک ن	1,
			Jets 7								• • • • • • • • • • • • • • • • • • •												1 1 1	= 20	
	DATA	.c.	_	003			->	2	-	→			-	2	T	·	→	.23	<i>F</i>	>	2 2	25		to 10°; Ad=	000
		SCHO.	0	ধ																	へ		1	to 10	6
																						61	1		00.
	1-22)		מסיים בייים בייים בייים																				11111	"	
	116 (BA-22)			fr:				•			•			+							N50	13	1111	A.) c
	CFHT 11	i) 	Ø1133			^	Ø1149		->	@1N79	_	->	£ 1884			÷	gri N85		->	A:1 N85N50		1 1 1	ā	a
		1.52.7	F - 3	i	295	295	163	298	_	300	301	302	303	304	305	306	307	308	309	310	3.11	7		0	
•	TEST	34.45	F - BIEKSOI	RJA294	1 2	2		2	2	3	3	3		3		3	3	13		3	¥ 3		1	•	
•								~.~		-	Andreas		4	3		`\	·	<u>:</u>	<u> </u>				لبيب		

	TEST	1	CFHT 118 (MA-22)		ā	NTA	DATA SET/RUN MUMBER COLLATION SUMMARY	N N	IMBE!	2 COLI	LATIO	N SUM	MARY		DATE:		2/11/75			
	DAT	DATA SET	CONFIGURATION	1 - L					PARA	PARAMETERS/VALUES	VALU	ES			NS.	-	MACH	MACH MINEREDS	ğ	
		Y LEEK		B	킈	Jets	160A-	50	Sar			L	L		P.S.S.	2	167	-	-	
	R.	RJA312	PE1N851150	A 00		~	95.0	-300	00						_			+	+	
		313	\		→		127.7						-	-		315	4	+	-	
		3.14	g1145.1		4	-	47.5						_	-	1	31.5	× -	- -	+	
		315			1	1	95.0	1						1	_	31.4	# 1	1	+	
		316				-	127.7							1		25.5	K C	-	-	
		317				╀	0.0	1>	E							2,50	<u>a</u>	4	+	1
	,	318				-		Poi								2			+	
		319		Ė		╀			-							<u> </u>	<u> </u>	4	-	
<u> </u>		320			<u> </u>	+) 6	-		1						3.9	67	-		NIN
1	+	321		+	土	-	2.6	T	+	1						330			•	
<u></u>	+		>		<u>></u>	_	127.7	-								K				Ī
	+	322	Ø1185		7		47.5					-				2			-	
1	-	323	•		-	<u>_</u>	95.0	<u> </u>								1	<u> </u>	_	_	1
!	7	324	>		 	_	0.0	-	-	1						323		_	-	1
	3	325	Ø1N85N50		~	_	0.0	-	十	-		T				476	-4-			
	3	326			1-	_	47.5	1	-	\dagger						325				1
	<u>~</u>	327			+	_	80	1	-	\dagger	-					346			_	T
<u> </u>		328	*	-	-		127.7		+	+	1-					775				T
!	7	329	ब्रा मक्ष्य	≯	>		47.5	>	>	+	+	1	T			270				T
*:		7	13.	25			3.	1	- 8	1 5		1				222				
1	4	1111	1 - , , , , , , , , , , , , , , , , , ,		1	1		-	-			-				<i>L</i> _		(o) _		-
	8	G. C.P. 19	A. C/= -8°	2	4	~	2	FFIG	to 35	COEFFICIENTS = 15 to 35°; AK=	4		1	1	1	1 2	- :	E VOI		46,
	SC	SCHEDBLES	u, or = -10°,) (41	707	£ 35°.			٠,	•									f
																				1

			 	-je.				1	EST	RU	N NI	HHILL	· PS			_		_		· • • • • • • • • • • • • • • • • • • •	12	Γ.	6	
										T						,				T	1 × ×	-	2	1
	BERS				1			†	1	1	1	+-	1	+	-	-	┢	+	 	+	i		ICVAR LZ	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MACH NUMBERS	上		十	╫	╁	1-	+	╁	╁	╀	-	╀	 -	-		<u>. </u>	-	<u> </u>	_	b	<u>-</u>	1] .
27/11/75	MACH	- M	9	1	2	~	3	LA	40	1	. 6											-	# H	
1		10.3	330	32.	332	333	334	335	336	33.7	3.28	330	340	八茶	24.2	343	344	Z.Y.	346	347	63	1	IDVAR	
DATE	ģ	R C NS S NS																-		1		111		
						1				╁			-	-				_	\vdash	-		1 1 1		
			-	-	-	-	-	-	<u> </u>	├-	+	-	╀╌	-	-	_				_	\$\$	111	,	
TA SET/RUM NUMBER COLLATION SUMMARY		_	_	_	_	-	-	_		L	_	<u> </u>	_	_								1		
Z SC	ES																				69	4		
AT10	PARAMETERS/VALUES	·																				4	11 57	
Jo	TERS/									-											43	7	AK.	
SER (RA:1E	SAF	o		-	\vdash	-			-	-		<u> </u>	-	13.75					->		4	C= 15 to 35°, AK=	
NEW	Ą	Se 15	+100								-	-	-				<u>. </u>				37	1	TICIES 2015	
35		2-11-5	95.0+	.7	2	0.	0	5.	8	0	7	6	ъ	ō	0	2	Ö	0	0	→		4	OBET	,
SET/		160A-1	35	127.7	47.5	95.0	196.0	47.5	95.¢	190.0	47.5	95.0	196.0	0.0	0.0	47.5	0	95.0	190.0	47.5	3,	4	3	£ 35°
DATA		Jets	2	>	-	-	- →	2	1	>	175	_								2		7	200	2
	SCHD.	9	°0							-		<u> </u>								*	22	3	- 78	
<u></u>	35	Ö	4									-	-							->		7	0 10	- 11
	Z																			-	6	4	89	-10g
22)	CONFIGURATION																					estace estaces		ù 📗
CFHT 118 (MA-22)	FIGUE																			İ	5	上	A, 0 =	8
1.18	Ö		g11184	K	Ø.11179		->	Ø1:49		→	Ø1.NB3	_	-	•					-×	g in49.		=		
CFHT	į.	ě	- 	<u> </u>			_	[_	6	~	1	8	ILES
 !=	DATA SET	DENTIFIER	RJA338	33:1	, 332	333	334	335	336	337	338	339	340:	至	342	343	344	345	346	进		7	ę O O	SCHEDULES
TEST	OA	ũ C	œ												* -	+	+		-	>		1		×
													45					\					<u>'</u>	لنن

	rest: CF	CFHT 118 (MA-22)		DAL	TA SET	/RUN N	UMBER CO	A SET/RUN NUMBER COLLATION SUMMARY	SUMMARY	10 A TE	E: 1/11/15		
L.L.							DARBERETE	DARRIFTERS/WALUES		2	NOW HOUSE	IUNBERS	
	OATA SET	CONFIGURATION	8	C B let	E	10A-115e	- B . i			œ J	5.0.3		
-	RJA348	g1n49	¥	_		95.0 +10					9,69		
1	349	 			1	190.061					3.9		
<u> </u>	350	ØLN85N50			7	47.5					350		
<u> </u>	. 351					95.0					553		
<u> </u>	352	->		→		137.1					3.3		
1	353	Ø1N79		•		47.5					353		τd:
<u> </u>	354		**			95.0	ĭ			-	2. (A)		ST 18
<u> </u>	355	→		<u>ት</u>	31	190.0					1500		UN I
1	356	Ø1N79N78	-	2	7	47.5			-		356		NUM
L.	¥ 357	-	*>	7		95.0					357		લા છે
*	RJA007	ALN49 Wing Temp		00		95.0' 00	00 0				1		5
1	1047		13	<u> </u>		0.0					407		-
1	800		00-	-		95.0					య		·
<u> </u>	408	***	全			0.0					408		
<u>. </u>	600		202	-11 %		95.0					6		***
ــــــــــــــــــــــــــــــــــــــ	403		<u>-</u>	a		0.0					604		
	0110		35			95.0					o <u>i</u>		-
ـــنـا	¥ 410	À	->	≯		0.0	>	— 			70:0	-	
· -	,	49. 19.		25		31.	£.	£3	49	55	61	67	75.75
世 *	ALLPIRIA ICALL	ALL ICN ICL	4	COL	1 1 4	ICKIN .	LICKELL	164.1	(D)	1.13A	F. C. H.	Living.	7
		A. 06.	2	-8° to 10°; a.k.=	, 2 <u>o</u>	COEF	COEFFECTENTS ON STATE OF STATE	; AX= 50			JOVAR 11	157 AR 121	ó,
	SCHEDULES	D & =	ó	00	1201	35°.							
3					1		1			om lability /	711.15		

and the same can be presented as the same can be same as the same can be same as the same can be same as the same can be same as the same can be same as the same can be same

BETR, Q(PSF), PERCS, T/GA, L/D AS DEPENDENT VARIBELES. # S" CATA SETS COUTAIN

TABLE III. - MODEL DIMENSIONAL DATA

MODEL COMPONENT : BODY - BIG	••	
GENERAL DESCRIPTION :Fuselage. C	onfiguration 3. per	Rockvell .
Lines V170-000139B		/
NOTE: Identical to Big except fore	body.	
MODEL SCALE: 0.010	•	,
DRAWING NUMBER:VI.20=0001398		•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length, In.	1290.3	12.903
Māx Width; In.	267.6	2.676
Max Depth , in.	244.5	2.445
Fineness Ratio	4.82175	4.82175
Ares Ft ₂		***************************************
Mäx. Cross=Sectional	386.67	0.0387
Planform		
Wetted		
Base		_

WODEL COMPONENT : RODY FLAP -	_F ₅	
GENERAL DESCRIPTION : Configura	tion 3 per Rockwell	Lines VI70-COOL
MODEL SOALE: 0.010		
DRAWING NUMBER:VL70-000139		***************************************
DIMENSIONS :	だけ し もたみ! 色	MODE! SCALE
United States	FULL SCALE	WODE! SCALE
Length, In.	84.70	0.847
Max Width, In.	267.6	2.676
Max Depth		
Fineness Ratio	·	
Area - Ft ³	***	•
Max. Cross-Sectional		
Planform	142.5	0.0143
Wetted		***
Base	38,0958	0.0038

MODEL COMPONENT : CANOPY - 57	···	
GENERAL DESCRIPTION:Gonfiguration.	3 për Rockwell	Lines VL70-00013
MODEL SGALE: Ö.Oló		
DRAWING NUMBER: V170-000139		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length ($X_0=433$ to $X_0=578$), In.	145.0	1.450
Max Width		
Max Depth		
Fineness Ratio		*
Áfēa		
Mäx. Cross=Sectional		
Planfórm		-
Wettéd		
Ráse		

MODEL COMPONENT: ELEVON - E-3	, ,	
GENERAL DESCRIPTION: Configuration 3 per Way	gg Rockwoll Line	eu Dráwing
AT THE PARTY OF TH		·
MODEL SCALE: 0.010		.,
DRAWING NUMBER: VL70-000139R		
<u>DIMENSIONS</u> :	Full-scale	MODEL SCALE
Area - Ft ²	205.52	0.0206
Spān (équivalent), In.	353.34	3,533
Inb'd equivalent chord, in.	114.78	1.148
Outb'd equivalent chord, In.	55.00	0.550
Ratio movable surface chord/ total surface chord		•
At Inb'd equiv. chord	0.208	0.208
At Outb'd equiv. chord	0.400	0.400.
Sweep Back Angles, degrees		
Leading Edge	0.00	0.00
Tailing Edge	- 10.24	-10,24
Hingeline	<u>- ŭ.ôo</u>	0.00
Area Moment (Normal to hinge line)-Ft3 (Product of Area and c)	1548.07	<u> 5.00155</u>

MUDEL COMPONENT: MPS NOZZLI	ES - N 39			
CENTRAL DESCRIPTION: Con	figuration 3A MPS	nozzles		
				<u> </u>
MODEL SCALE: 0.010	_			
DRUVINO NUMBER:				
dimenations:		FU	LL SCALE	MODEL SCALE
MACH NO.				
Length - In. Gimbal Point to Exi Throat to Exit Plan	t Plane ne			
Diameter - In. Exit Throat Inlet		 	94.000	0.940
Arëa - ft ² Exit Throat			48.193	0.00482
Gimbal Point (Station) Upper Nozzle	In.			
Х Ў 2	not used	-		
Lōwer Nozzles X Y Z		± -	1468.2 .53.0 .342.7	14.682 + 0.530 3.427.
Null Position - Deg. Upper Nozzle Pitch Yaw	n ōt Used	-		
Lower Nozzle Pitch Yww		•		

MODEL COMPONENT: NOZZLE - N31

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-down control.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	.0990
Throat	.0921
Area - In. ²	
Exit	.007698
Throat	.006662
Area ratio	1.15
No. of nozzles	Ž

MODEL COMPONENT: NOZZLE - N3Z

GENERAL DESCRIPTION: RCS nozzle providing right-hand pitch-up control.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Åft	Ø
Óutboard	0
Diameter - In.	•
Exit	.0990
Throat	.0921
Åreå - In. ²	
Éxit	.007698
Throat	.006662
Area ratio	1.15
No. of nozzleš	2

MODEL COMPONENT: NOZZLE - N33

GENERAL DESCRIPTION: RCS nozzle to provide left-hand yaw control.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	Ö
Outboard	Ò
Diameter - In.	
Exit	.0990
Thróát	.0921
Area - In. ²	
Exit	.007698
Throat	.006662
Area ratio	1.15
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N34

GENERAL DESCRIPTION: RCS nozzle to provide left-hand pitch-down control.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	.0878
Throat	.0520
Area - In. ²	
Exit	.006055
Throat	.002124
Area ratio	2.85
No. of nozzles	2

MÖDEL COMPONENT: NOZZLE - N36

GENERAL DESCRIPTION: RCS nozzle to provide left-hand pitch-up control

MODEL SCALE: .010

DRAWING NO .:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	
Cánt àngle - değ.	
Aft	0
Öutboard	0
Diameter - In.	
Exit	.0878
Throat	.0520
Area - In. ²	
Ėxit	.006055
Throat	.002124
Area ratio	2.85
No. of nozzles	Ź

MÖDEL COMPONENT: NOZZLE - N37

GENERAL DESCRIPTION: RCS nozzle to provide left-hand yaw control.

MODEL SCALE: .010

DRAWING NO .:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	•
Cant angle - deg.	
Aft	Ŏ
Outboard	ø
Diameter - In.	
Exit	.0878
Throat	.0520
Area - In. ²	
Exit	.006055
Threat	.002124
Area ratio	2.85
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N43

GENERAL DESCRIPTION: RCS mozzle to provide left-hand pitch-down control

to simulate entry.

MODEL SCALE: .010

DRAWING NO .:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	5
Cant angle - dég.	
Aft	12
Outboard	20
Diameter - In.	
Exit	.129
Throat	.0465
Area - In. ²	
Exit	.013070
Throat	.001698
Area ratio	7.70
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N44

GENERAL DESCRIPTION: RCS nozzle to provide right-hand pitch-up control

to simulate entry.

MODEL SCALE: .010

DRAWING NO .:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	5
Cant angle - deg.	
Áft	σ
Outboard	0
Diameter = In.	
Exit	.129
Throat	.0465
Aréa - In. ²	
Éxit	.013070
Throat	.001698
Area ratio	7.7
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N47

GENERAL DESCRIPTION: RCS nozzle to provide left-hand pitch-down control

to simulate entry.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
Flight dynamic pressure simulation = PSF	20
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	.117
Throat	.0465
Area - In. ²	
Exit	.010751
Throat	.001698
Area ratio	6.33
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N48

GENERAL DESCRIPTION: RCS nozzle to provide right-hand pitch-up control

to simulate entry.

MODEL SCALE: .010

DRAWING NO.:

	MODEL SCALE
flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	σ
Outboard	0
Diameter - In.	
Exit	.117
Throat	.0465
Area - In. ²	
Exit	.010751
Throat	.001698
Area ratio	6.33
No. of mozzies	2

MODEL COMPONENT: NOZZLE - N49

CENERAL DESCRIPTION: RCS Nozzle providing left-hand pitch-down control

to simulate return to launch site (RTLS)

MODEL SCALE: 0.010

DRAWING NO.: SS-A01160-19

dīmensions:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant Angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area Ratio	4.430
No. of nozzles	2

MODEL COMPONENT: NOZZLE - NOZ

CENERAL DESCRIPTION: RCS nozzle providing righthand pitch-down control to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO.: 35-A01160-20

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	0.141
Excit	0.151
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Areā rātio	4.430
No. of nožžles	2

MODEL domponent: NOZZLE - N51

CENERAL DESCRIPTION: ROS nonzie providing jeft-hand provident to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO.: SS-A01160-11

DIMENTIONS:	MODEL SCALE
Wlight dynamic pressure simulation - FSF	20
Cant angle - Deg.	
Aft	b
Outboard	0
Diameter - In.	
Ēxit	0.141
Throat	0.0670
Area - In. ²	2022,0
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzleš	<u>l</u> i.

MODEL COMPONENT: NOZZLE - N52

CENERAL DESCRIPTION: RCS nozzle providing right-hand pitch-up control to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO.: 33-A01160-12

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	0
Outboard	Ö
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exi t	0.015 61 4
Throat	0.003525
Aréa ratio	4.430
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N61

GENERAL DESCRIPTION: RCS nozzle to provide left-hand yaw control to

simulate entry.

MODEL SCALE: .010

DRAWING NO .:

	MODEL SCALE
Flight dynamic pressure simulation - PSF	5
Cant angle - deg.	
Aft	0
Outboard	0
Diameter - In.	
Exit	.129
Throat	.0465
Area - In. ²	
Exit	.013070
Throat	.001698
Area ratio	7.70
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N78

GENERAL DESCRIPTION: RCS nozzle providing right-hand up-firing

control to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO.: SS-AO1160

DIMENSIONS:	MODEL SCALE:
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	0
Outboard	Ò
Diameter - In.	
Exit	ö.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Área rátio	4.430
No. of nozzles	1

MODEL COMPONENT: NOZZLE - N79

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-down control to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO .:

Dimension3:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	12
Outboard	20
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015615
Throat	0.003525
Area ratio	4.430
No. of nozzles	1

MODEL COMPONENT: NOZZLE - Nal

GENERAL DESCRIPTION: RCS nozzle providing left-hand pitch-up control

to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DRAWING NO .:

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - Deg.	
Aft	Ò
Outboard	0
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.0035 25
Arēa rātio	4.430
No. of nozzles	2

MODEL COMPONENT: NOZZLE - N82

MODEL DESCRIPTION: RC3 nozzle providing right-hand pith-up control

to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

DIMENSIONS:	MODEL SCALE
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
.Aft	٥
Outboard	ø
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In.2	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	3

MODEL COMPONENT: NOZZLE - N83

CENERAL DESCRIPTION: RC3 nozzle providing left-hand pitch-down control to simulate return to launch site (RTL3).

MODEL SCALE: 0.010

DRAWING NO.:

dimensions:	MODEL SCALE
Flight dynamic pressure simulation - PSF	2 0
Cant angle - deg.	
A ft	12
Outboard	20
Diameter - İn.	
Exit	0.141
Throat	0.0570
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzleš	3

MÖDEL COMPONENT: NOZZLE - N84

TENERAL DESCRIPTION: RCS nozzle providing right-hand pitch-up control to simulate return to launch site (RTLS).

MODEL JCALE: 0.010

DRAWING NO.:

Dimēnāions:	MÖDEL SCAJ &.
Flight dynamic pressure simulation - PSF	20
Cant angle - deg.	
Aft	Ŏ
Outboard	o
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - Iň. ²	
Exit	0.015614
Throat	0.003525
Area ratiō	4.430
No. of nozzles	2

TAPLE III (CONT:D)

MODEL COMPONENT: NOZELE - NB5

CENERAL DESCRIPTION: RCS nozzle providing left-hand side-firing to simulate return to launch site (RTLS).

MODEL SCALE: 0.010

The market of the control of the con

dimensions:	MODEL SCALE
Flight dynamic pressure simulation - FSF	20
Cant angle - deg.	
Aft	Ó
Outboard	0
Diameter - In.	
Exit	0.141
Throat	0.0670
Area - In. ²	
Exit	0.015614
Throat	0.003525
Area ratio	4.430
No. of nozzles	2

RLE III (CONT'D)

MODEL COMPONENT : OKS POD - MG		
GENERAL DESCRIPTION : Basic configu	ration 3A DMJ po	de with here
metric RCS engine housing and noveloc.	Shme gedmetry	na My
MODEL SCALE: O.010		
DRAWING NUMBER: V170-000139B		
DIMENSIONS :	FULL SCALE	MODEL SCALĒ
Léngth	346.0	3.460
Max Width	108.0	1.080
Max Depth	113.0	1.130
Fineness Ratio		
Area		•
Max. Cross-Sectional	-	
Planform		
Wetted		
Base		The state of the s
Station of aft end of RCS nozz	ale 1560	15.60

MÖDEL COMPONENT: RUDDER - RE	, ,	
GENERAL DESCRIPTION: Configuration 1400 configuration 140A/B rudder)	orbiter rudder (i	dentical to
MODEL SCALE: 0.010		
DRAWING NUMBER: V170-000146B, -000095		
DIMENSIONS:	FULL-SCALE	MÖDEL SCALE
Area - Ft ²	100.15	_0.0100
Span (equivalent), In.	201.00	2.010
Inb'd equivalent chord , In.	91.585	0.916
Outb'd equivalent chord, In.	50.833	0.508
Ratio movable surface chord/ total surface chord		,
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees		
Leading Edge		
Tailing Edge	26.25	26.25
Hingeline (Product of Area & C)	34.83	34.83
Area Moment (Normal-to-hinge-line)Ft3	610.92	0.000616
Mean Aerodynamic Chord, In.	73.2	0.732

MODEL COMPONENT: VERTICAL - V7		
CENERAL DESCRIPTION: Genterline vertical	tail doublewedge	strfoil
with rounded leading edge.		
"OTE: Same as Vz. but with manipulator hou	sing removed.	
MODEL SCALE: 0.010		
DRAWING NUMBER: VI.70-000139	and the second s	, amed-4 america-a aptenti
encientation:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge Trailing Edge 0.25 Element Line	425.92 315.72 1.675 0.507 0.404 45.00 26.249 41.130	0.0426 3.157 1.675 0.507 0.404 45.000 26.249 41.130
Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	268.50 108.47 .199.81 1463.50 635.522 0.00	2.685 1.085 1.998 14.635 6.355 0.00
Airfeil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius		10.00 14.920 0.020 0.0013
Void Area Blanketed Area	0.00	0.0015
DIRUKE OEG VILGR	- 0.00	

*REV. 11/9/74
TABLE III. - MODEL DIMENSIONAL DATA - Concluded.

MODEL COMPONENT: WING-WIND	1.90	
2515RA DESCRIPTION: Confiburation Loss Rockwell L		
NOTE: Same as Ways except outf gireril and i	ncidende angle	
THE MO.	ÓWĠ. NOVL?	0-0001398
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA APER (. red.) Ft2 CONAL PAGE IS		
Planform OF POOR OTIAT Priva	2690.00 936-68	26,900
Aspect Ratio	2.265	2.265
Rate of Taper Taper Ratio	0.200	0.200
Dihedral Angle, degrées Incidence Angle, degrées	3,900 0,500	3.500 0.500
Aerodynamic Twist, degrees Sweep Back Angles, degrees	+3.000.	+ 3.000
Leading Edge	45.000	10.24
Trailing Edge 0.25 Element Line	35, 209	35,209
Chords: Root (Theo) B.P.D.O. Tib, (Theo) B.P.	689.24	6.892
MΔC	137.85	4,748
Fus. Sta. of .25 MAC (2,)* W.P. of .25 MAC	290.857	11,369 2,909
(Yo) * B.L. OT .25 MAC	182.13	1,821
Area (Theo) Ft2	1752.29. .720.68.	17.523
Span. (Theo) In. BP108 Aspect Ratio	2.058	2.058
Taper Ratio Chords	0.245	5.624
Root BP108 Tip 1.00 <u>b</u>	137.85	1.379
MAC	393.03	3.930
Fus. Sta. of .25 MAG *W.P. of .25 MAC	1185.31 293.653	2.937 .
B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)	251.76	2.518 _
XXXX-64 Root b 4	0.100.	.0.100
7	0.120	<u>0.120</u>
Tip b = 2		
Data for (1) of (2) Sides Leading Edge Cuff Planform Area 52	118.333	1183
i pading Edda Intersects Fus M. L. 9 588	500.00	5.000 10.834
Leading Edge Intersects Wing & Sta	1083.4	201037

TABLE IV. - SUMMARY OF NOZZLE NOMENCLATURE

Nozzle	Throat Dia.	Exit Dia.	Lip Angle	Type	No. of Jets	Cant
N31	0.0921	0.0990	స్తి	LH down firing	2	20°00180.12°AFT
N32	0.0921	0.6990	ર્જ	RH up firing	7	None
N33	0.0921	0.099a	చి	LH side firing	2	None
N34	0.0520	0.0878	တ်	LH down firing	2	20°001180, 12°4FT
N36	0.0520	0.0878	ტ	RH up firing	~	Tone
N37	0.0520	0.0878	ô	LH side firing	5	None
1743	0.0465	0.129	31°45'	EH down firing	હ્ય	20°0018D,12°AFT
N44.	0.0465	0.129	31°45*	RH up firing	2	Mane
N4.7	0.0465	0.117	34°30°	LH down firing	ξú	26°OUTED,12°AFT
NAS	0.0465	0.117	34°30'	RH up firing	~	สัญเล
6\$N	0.0670	0.1413	34°15"	LH down firing	č.	20°00TBD,12°AFT
N50	0.0670	0.1413	34~15.	RH down firing	8	20°CUTBD.12°AFT
NST	0.0670	0.1413	34°15'	LH side firing	©'	None
152	0.0670	0.1413	34° 15'	RH up firing	. 2	Nave
N61	0.0465	0.129	31°45'	LH side firing	2	ាំបរាខ
N78.	0.0670	0.1413	34.15	RH up firing	-	Nane

콨

TABLE IV. - Concluded

Cant	20°0UTBD,12°AFT	Nane	None	20°001180,12°AFT	None	None
No. of Jets	p-em	۲3	ന	რ	2 up	2
Туре	LH down firing	LK up firing	RH up firing	LH dowa firing	Combination-RH up firing & side firing	LH side firing
Lip Angle	34°15'	34°15'	34°15'	34°15'	34°15'	34°15'
Exit. Dia.	0.1413	0.1413	0.1413	0.1413	0.1413	0.1413
Throat Dia.	0.0670	0.0670	0.0670	0.0670	0.0670	0.0670
Nazzle	6ZN	181	1182	N83	N84	N86,

TABLE V. - SIMULATION PARAMETERS

q_{∞} = 20 PSF RTLS abort separation simulation

Α.	Free Stream Condit	ions	Free Flight	Wind Tunnel
	Dynamic Pressure Mach number *Reynolds No. Altitude	q M RN/L h	20 psf 7 1.23x10 ⁶ 200,000ft	150 psf 10.3 1x10 ⁶
В.	RCS Jet Characteri	<u>stics</u>	<u>Prototype</u>	Model
	Chamber Pressure Chamber Temp. Specific Heat Ratio Recipion Ratio Nozzle Angle Exit Area Exit Mach No. Exit Pressure Mass Flow Rate Momentum Thrust	PCC TCC O AE Mjj mjUj MjUj	150 psia 5450 °R 1.232 20 9° 72.382 in ² 3.93 0.643 psi 3.287 lbm/sec 903.46 lbF	140 psi 520 °R 1.4 4.792 34°15' 0.01567 in ² 3.13 3.136 psi 0.01067 lbm/sec 0.675 lbs.
c.	Jet to Free Stream Parameters (Sref =		full Scale Free Flight	Simulation
	Thrust Ratio	T q Sréf	47.5	47.5 (Matched)
	Mass Flow Ratio	mj ρ U Sref	26.4	50.6
	Mớmentum Ratio	M, U, q Sref	45.17	45 (Matched)
	Pressure Ratio	Pj	224	224 (Matched)
	Plume Shape		Boundary up to Impact station	(Roughly Matched)

^{*} Reynolds Number based on Orbiter length Lorb = 107.5 ft.

TABLE VI. - THRUST COEFFICIENT FACTORS

<u>Jet</u>	<u> Gas</u>	k _i = T/P _C 1bs/psia
N31	Air	0.00692
N32	Air	0.00738
N33	Air	C.00792
N34	Air	0.00266
N36	Air	0.00261
N37	Äir	0.00300
N43	Air	0.00250
N44	Air	0.00245
N47	Air	0.00237
N48	Air	0.00237
N49	Air	Ö. 0Ó920
N50	Air	0.00824
N51	Air	0.01620
N52	· Air	0.00920
N61	Air	0.00221
N78	Air	0.00450
N79	Air	0.00460
N81	Áir	0.00900
N 5 2	Air	0.01356
N83	Áir	0.01356
N84	Air	0.00886
N85	Air	0.00904

TABLE VII. - WING TEMPERATURES *

Jet	NO	0FF	NO	OFF	NO	OFF	ON	OFF	Š	OFF	7 6	OFF	26	0FF	NO	OFF	
$\alpha = 35$	189	219	246	273	291	314	333	353	369	386	406	417	429	442	451	463	
α = 20	181	208	235	264	289	अउ	329	343	359	374	387	397	405	414	423	431	
υ - 10	295	326	344	362	375	388	398	408	417	425	434	443	450	459	465	472	
Ö	221	290	308	327	342	356	368	375	386	396	404	412	418	425	432	438	
Data Point	· -	83	· m	· 4	S.	9	2	&	6	10	Ť	12	13	14	15	91	

* degrees Fahrenheit

≯

<u>ڳ</u> س

Figure 1. - Axis systems.

a. Orbiter Configuration

Figure 2. - Model sketches.

b. RCS Plenum Mozzłe 5lock InstallationFigure 2. - Continued.

c. PCS Nozzłe Adapter

Figure 2.- Continued.

d. Model Nozzle Block Configurations

Figure 2. - Concluded.

a. Orbiter Installation Side View

Figure 3. - Model photographs.

b. Side View Of Nozzle Assembly Instabled In Tunnel

Figure 3. - Concluded.

DATA FIGURES

REFERENCE INCHANTIC REF 2594,0010 SOI VEF 474,9000 IN VEF 916,6000 IN VEF 1075,0000 IN VEF 375,0000 IN VEF 375,0000 IN PAGE SAEF LAEF LAEF LARP ZHAP ZHAP ZHAP ₹ 666666 6386666 OF 0 10 20 30 ANGLE OF ATTACK, ALPHA, DEGREES 8 \$ \$5\$\$\$\$ \$ \$4\$\$\$ \$**688**8888 4. JET OFF AERO, ELEVON=0, BDFLAP=0, BETA=0 = 10.33 22-22-22 68-22-22 88-LARC CFHT LARC CFHT LARC CFHT LARC CFHT LARC CFHT ij CONTRACTOR OF INSTRUCTION OF INSTRUC Ŗ .005 .005 010. -.020 -.035 -.045 -.030 .040 -.050 -.015 -.025 å CD≫\Q -.055 -.060-FIGURE (A)MACH (R.MOGS) (R.MOGS) (R.MOGS) (R.MOGS) (R.MOGS)

PITCHING MOMENT COEFFICIENT, CLM

.

548

UNCORRECTED AXIAL FORCE COEFFICIENT, CAU

ROFFING MOMENT EGEEFICIENT. CBL (BOOK AXIS)

AVMING MOMENI COEFFICIĒNI. CYN (BODY AXIS)

. المناها

CA JMACH

PAGE

MORMAL FORCE COEFFICIENT, CM

PITCHING MOMENT COEFFICIENT, CLM

W.

ರಾ ^{'_ಯಜ್}

(A)MACH

FIGURE

, 3

(SIXY ADDS) AVMING MOMENT COEFFICIENT. CYN

SIDE FORCE COEFFICIENT, CY

1 7/2

MORWYT FORCE COEFFICIENT, CH

PITCHING MOMENT COEFFICIENT, CLM

	بنعن	-					42.								بيج	ر دور دورو	٠			خوا		70.7		· ·			+	بجع	ŧ		
N. N. N. S. S. S. S. S. S. S. S. S. S. S. S. S.				**	\$ 3		7);			Ų.		1, 1	1.8		14.4	+	711		314				7.7	- 74	У-1	:: * *		.4		(ių ·
S						,	1.	+6"	÷			. 137	÷ř!		Ħ.		11.1.	11.16		1	7					?			;	•	
18-68-84-10-68-64-10-68-68-68-68-68-68-68-68-68-68-68-68-68-	* 4	N.	, 4,44			1		•	***		4.5	., ::	. ; ; ;	111		1	2					15	**	- 4			X	**	o .		
2690 0000 474.8000 1076.8000 1076.7000 275.0000 275.0000 275.0000	.::î	-1		-it		77	٠,;	2				25.		3.7		147	1,0	74.7		7.5			7	-	2.2		3	3 70	TÚ)	į	ù
A 92.22 K	* * *		: : :		7	111		14:				· - :		14	1.		:::					.:-		ं		* 70	- 1			(P.YGE
A 1000 1000 1000 1000 1000 1000 1000 10				. !	1			11.11		71				1::		::::	. i	, 1 - 1							.;;;	1	:1,1			(ä
British		• • • •		(1)	.::	•	.::	::::		::::	::::	::::	:::::		1.			:::	. 3 *		:					:::			0		
SEEF SEEF SEEF SEEF SEEF SEEF SEEF SEEF		::				5 ::	1	·:::		::;;	::::				::::			-::	::•,		:	::::	:::	***	22.5			:::	4		
	1	74 :	÷;;;	1	7,1	:	1			::::		::::	::::		*:::					::	• •	::		Ö		• • •	:::				
# \$2555 \$2555 \$2555 \$355 \$355		. 11	11:3		:		1			::;	::;;				*:::				::-				7			: (· ,)					
					. ; : ;,		1.									:::	;		:::	:::	• • •		#			:44:				,	
4 00000	:::	·	 	1.						111	1						• • • •			•			H	111	•			: <u>:</u> : ; , .	ကိုလ	•	
8 7.559559 4.55959		1111			<u> </u>				1				ļ	::	1.3	::::				•			Ħ	\dashv	• • •		<u> </u>		W W		
8	:::	,									::::	3: .		÷			<u> </u>				_		H			.: .		:	85	,	
99999				·	:::.		-	:		-		111	::		:::					::			H		11	14		::::	DEGREES	Ö	
\$ 8 6888		∺		H	1		-		-			1111		1.11			-			-			1	R		:		1		BETA=0	
2	-	-	-		1	-				-	-		1111	-	-			-	:::	1111	-	\vdash	\dashv	III)				-	ALPHA.		
2 60000	-	::::	1::	-	-				111	111		1111			1	-			::	111				-\		111			正	œ	•
편 95 66 66 66 66 66 66 66 66 66 66 66 66 66	-	-	1111	├		-		1	1		1 1 1	1111				::::	-			-	<u> </u>		:::		1/10	::::	 	1::	₹	ó	
ជ	-		1	-		::::	;···:					::::			-	-	<u> </u>						:::				1		100))	
	-	ļ::: <u>'</u>		ļ			!::	1			11.	11.			-	-	::-			:::		::::				-	! : :	111	10 ATTACK.	BOFLAP=0.	
	-	1				*::		1	: ::	1.7	1111	_		-	::::				: ':								1	<u> </u>	1 6	害	
		<u> </u>	<u> </u>	1	1	77.1			***	1 1 1	<u>'</u> …	111	****	1	.:••	: * ; :	,: •		<u>''</u>		ينيا						:	1	~	8	
				<u> </u>	::		_	1	•	:::	<u>:.:</u>	1: 1:		<u> </u>			11.7		-	4				,					oñ		
		<u> </u>	::::	ļ.,	<u> </u>	1:::		<u> </u>		<u> :</u>	1.	<u> </u>		:	ļ	_	تثنيه				<u> </u>		•:			$\ddot{\cdot}$	<u></u>		-0	<u>I</u>	
				上	•••			111.	<u> </u>		!;;; <u>,</u>	:::							1.	<u> </u>	::-	.::		11:	::::	*::	1		-10 ANGLE	ELEVON=0,	
ನನನನನ						<u> </u>				س									::-			<i>.</i> ::	.:	.::::	**	3	11111	<u> </u>	일	Ti.	
FON CRA-221 CRA-221 CRA-221 CRA-221 CRA-221												::.:		: ;.:	::::		i : :	• • • • •		.:::	: ::			:::::	::::		:::	:::	04	ద	
K SEEEE			'		Ľ				111		::::		. : ::	::::	::::			: : :	::-	: .				;;;;	,;;•		:		1		
بتناكب ساجه بتناجه	:: ::	1	:::;				.:			:::		::::					:,:,	:	:::			::;		:::	:::::		.:::]	AERO.	
2000 FHT 11 FHT 11		:						::::	,	:::	::					.::			.:-	111	:		:,	:::	1,1			; v : :		Æ	
_ 00000	:::				1			;;:		::::					:::		:.:							::	·:::	::	:::.	1.:	2	世	
77.7.7. 27.7.7.7.7 27.7.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8				:::	Π		, .	1111						1: .	1.11	:;	1				:::		::::	:	; ;·:	,	.;;	vi.	1,7	P.	Ċ
CONFIGURATION NAS LA NA	:::														: :::		1111	• : : :	::::		::		.:.			:	111	: : :	1	<u> </u>	10.33
<u> </u>			1 : : .			1	.;:.	11.	::	,		-	1:::						11.		:::			:		:::				JE JE	Ö
2 588 258 2 588 258			1		1	1		1				11			11		1;	1::	111	:		1	:					-	g		•
CCNF 1GM OIN49 OIN85N36 OIN51 OIN78		,	1	1.				-	·::-	1									1				-			-	1	١	ا ث	ف	11
ę .	0	<u></u> L	1		بنب ة ح	U	,			ı L	h -	<u>ئىد</u>	5	<u> </u>		<u></u> (5				5	انا کا	لنن		5	<u> </u>	 	Ċ	3	4 . 4	.
gar∞47	120	•	-	•	<u> </u>	Ē		Ċ	5	Ş	C D D	Š	ב ב ב	Š	, 0 0	Š		į	й Э	۱ ۲	ב ב	ָ ה)	Č	ָ ס	į	Č C	ักรัก)	FIGURE	CA JMACH
'	•		•		•		•		•		•		•	•	•	•	•		-		•		ė	•	•		•	7	•	ਛ	Σ,
74.14 SET RUMCOS J RUMOSOS J RUMISS J RUMISS J																				•										Ë	2
A													,						•												ب
a 555 55				nii	~	ă s		110	÷ 4		<u> </u>	-	~ .	~ .		12.5 +		. 44				ירחו									

UNCORRECTED AXIAL FORCE COEFFICIENT, CAU

-W. 666

(BODA VXIZ)

CBF

ROLLING MOMENT COEFFICIENT.

<u>=</u>

Ç

CAM

SIDE FORCE COEFFICIENT.

7 : 5.

NORMAL FORCE COFFECTENT. CN

PITCHING MOMENT COEFFICIENT,

BUFLAP=0, BETA=0

7. JET OFF AERO, ELEWON-O, = 10.33

FI.GURE CA JMACH

THICOBRECIED VXIVE FORCE COEFFICIENT, CAU

SAFE 2530,0000 SOLFT.

SAFE 774,8000 INCLES

BOEF 975,5800 INCLES

SAFE 975,6000 INC. 20

ZHARP 375,0000 INC. 20

SCALE 375,0000 INC. 20 X PAGE ٠, 71.000 0000 0000 0000 -10 0 10 20 30 30 ANGLE OF ATTACK, ALPHA, DEGREES # 50000 # 50000 # 60000 BDFLAP-0, BETA-0 **§** 90000 편 6999 8099 8099 8099 ELEVON-0, : 4 + 4 N. DESCRIPTION CFHT 118 CMA-22) CFHT 118 CMA-22) CFHT 118 CMA-22) CFHT 118 CMA-22) 7. JET OFF AERO. = 10.33 -20 CONFIGURATION I
OUNB2 LARC CC
OINB3 LARC CC
OINB3 LARC CC
OINB3 LARC CC .0025+ .0015 -00100--.0035 .0020 .0005+ .304G. FIGURE -.00100 -.0005 -.0015 -.0020--.0025 -.00030-CAJMACH § CO≪ DAJA SET ((RJA174) (RJA215-) (RJA218-) (RJAZ18-) אסרר ומפ שמשבמו כסברדוכובמו. כפר (BODA VXIZ)

رق المستمم (ا

1.

-- [5]-- [5]-

SIDE FORCE COEFFICIENT, CY

10.33

CAJMACH

<u>ئىن ب</u>

MORMAL FORCE COEFFICIENT, CM

ئى تىنى

† ;

FIICHING WOWENT COEFFICIENT, CLM

(#14031) (#14031) (#14007) (#14007)

UNCORRECTED AXIAL FORCE COEFFICIENT, CAU

i . War

(BIXY ADDB)

CBL

YAWING MOMENT COEFFICIENT. (SIXY ADDB) CAN

-.0010

-,0008-

.0012

.00164

-.0014

.0018

.0020-

.0008

-.0004

.0002

Ö

.0004

CD\$120

CATA SET (CALADOM) (CALADO

.3002

-30

FIGURE

SIDE FORCE COEFFICIENT. CY

10.33

CA JYNACH

NOBWYF ŁOBĆE COELEICIENI, CH

7. · ·\$

PITCHING MOMENT COEFFICIENT, CLM

UNCORRECTED AXIAL FORCE COEFFICIENT, CAU

×]

= 10.33

CA.)MACH

ROLLING MOMENT COEFFICIENT. CBL (800Y AXIS)

(BIXV ADDB)

CAN

YAMING MOMENT COEFFICIENT,

≅ 866 986

14.256 14.256

900 13 13

CRADALLY ON ONUS LARC CFHT ITS CHA-22).

(RANGSOT ONUSS LARC CFHT ITS CHA-22).

SIDE FORCE COEFFICIENT.

FIGURE 10. JET OFF AERO, ELEVON=10, BOFLAP= 13.75, BETA=0

(A)MACH

: :

1.

NORMAL FORCE COEFFICIENT, CN

i |

UNCORRECTED AXIAL FORCE COEFFICIENT,

10.33

(A) MACH

AVMING WOWENT COEFFICIENT. CYN (BODY AXIS)

5 5 5 5 E

13.75 13.75 14.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75 16.75

PE 60.000 0.

CONFIGURATION DESCRIPTION
OINTONTO LARC CFHT 118 (MA-22)
OINS LARC CFHT 118 (MA-22)
OINS LARC CFHT 118 (MA-22)
OINS LARC CFHT 118 (MA-22)

DATA SET (
RANGAS)
(RANGAS)
(RANGAS)
(RANGAS)
(RANGAS)

NOBWAL FORCE COEFFICIENT,

,,

UNCORRECTED AXIAL FORCE COEFFICIENT, CAU

ROLLING MOMENT COFFFICIENT.

38888

≨§§§§§

56668

60000 60000 60000

##-22 ##-22 ##-22 ##-22

(SIXV ADDB)

CBF

|-

-

ANNING MOMENT COEFFICIENT, CYN

(BODA VXIZ)

. .

SIDE FORCE COEFFICIENT.

7

5

O 10 20 30 ANGLE OF ATTACK. ALPHA. DEGREES

-10

-20

-.015|--

10.

-0.13+

FIGURE 11. JET OFF AERO: ELEVON-10, BDFLAP=0, BETA=0 ATMACH = 10.33

「あいかれいれ」

 $\{\prod_{i=1}^{n}$

NORMAL FORCE COEFFICIENT, CN

PITCHING MOMENT COEFFICIENT, CLM

10.33

(A)MACH

UNGGRRECTED AXIAL FORCE COEFFICIENT, CAU

ROLLING MOMENT CORFFICIENT, CBL (BODY AXIS)

[:

j

MÜBHYF EGBCE CÖELEICIENI' CM

S

2007

CA JMACH

.050

.055

. 970÷

.085

060

SO. F. INCHES. IN. YOURS

8ETA .000.

13.730 13.730

ELEYEN.

CONFIGURATION DESCRIPTION: 01N79N78 LARC CFHT 118 (HA-22) 01N79 LARC CFHT 118 (HA-22)

CRANZACI SYMBOL (RUAZACI)

115

1011

105

8

095

UNCORRECTED AXIAL FORCE COEFFICIENT, CAU

-085+

080

075

080

(BODA VXIZ)

CAM

AVMING WOWENT COEFFICIENT,

SIDE FORCE COEFFICIENT.

NORMAL FORCE COEFFICIENT, CN

PITCHING MOMENT COEFFICIENT, CLM

UNCORRECTED AXIAL FORCE COEFFICIENT.

NCEGS. 64 SREF 2690.0000 LREF 474.8000 BREF 978.6800 YMRP 1076.7000 ZMRP 375.0000 SCALE. 0000 , , ; . . . i. 40 = 60000 = 60000 = 60000 . . FIGURE 14. JET OFF AERO, ELEVON=-30, BDFLAP=-14.25, BETA=O O 10 20 30 ANGLE OF ATTACK, ALPHA, DEGREES 14.75 25.75 ٠.; ₹ 6666 6666 66666 CONTRACTOR CENTRY CONTRACTOR CONTRACTOR CARE CENT 118 CMA-221 CMASS LARE CENT 118 CMA-2221 CM83 LARE CENT 118 CMA-2231 CM83 LARE CENT 118 CMA-2231 0. -20 10.33 .;: .:1 .0014 ONTA SET SYMBOL CRIAZZYS CRIAZZYS CRIAZZOS CRIAZ -8000· -.0004 8000. .0012+ -9000--0004 2000--.0012 -0100 -.0010 -.0002 -.0006 CA JIMACH

(SIXV AUDE)

CBF

ROLLING MOMENT COEFFICIENT,

CA.)MACH

AVMING NOWENT COEFFICIENT. (BODA VXIZ) CAM

SIDE FORCE COEFFICIENT.

PITCHING MOMENT COEFFICIENT, CLM

ţ,

10.33

(A 1MACH

1

1

UNCGRRECTED AXIAL FORCE COEFFICIENT, CAU

t.

(SIXV ADDB) ROLLING MOMENT COEFFICIENT, CBL

1

الله المنظور في من الم

10.33

CA JMACH

مختب برائي

MORMAL FORCE COEFFICIENT, CN

PAGE

FIGURE 16. JET OFF AERO, ELEVON=O, BOFLAP=O, BETA=-3 A)MACH = 10.33

(A)MACH

 $\hat{\varphi_i} = \hat{\tilde{f}}$

PITCHING MOMENT COEFFICIENT.

-.025

-.030

-.035

-.040-

-.045

-.055

-.050

-.060-

下10.-

-.010-

-.020+

CINEA, CINEST CINEST CINEST CINEST CINEST

.005

.005

PAR SET STATES

. / J.F

1 / 1

NACORRECTED AXIAL FORCE COEFFICIENT,

BOTTING WOWENT COEFFICIENT, CBL (BODY AXIS)

1.

ROLLING MOMENT COEFFICIENT, CBL

(SIXV ADDS)

1 ...

AVMING NOWENT COEFFICIENT. (BIXY AGDS) CAN

!

NOBWYT EDBCE COEFFICIENT. CN

NOBMYE FORCE COEFFICIENT.

Ξ.

NOR NEXE

336.6800 1076.7800 375.000 375.0000 0100

SCALE SCALE

20:000 35:000

88

95.000 90.000

- 88 - 88

ULULI ELIU (LI-CUILUI, LIII) ULU IIU UIU KER OINAS VING TEMPERATURE LARC CFHT 118 (MA-22) OINAS VING TEMPERATURE LARC CFHT 118 (MA-22)

PITCHING MOMENT COEFFICIENT, CLM

(A)MACH

UNCORRECTED AXIAL FORCE COEFFICIENT, CAU

BOTTINO WOWENT COEFFICIENT. CBL (BODY AXIS)

둺

YAWING MOMENT COEFFICIENT. (SIXV ADDE) CAN

!

SIDE LOBCË COËLLICIËNI' CA

4 :

CA SMACH

NORMAL FORCE COEFFICIENT, CN

1.000 de 1																																
SS. SS. ST. SS. ST. SS. ST. SS. ST. SS. ST. SS. SS	, , ,		7.2	:::;	:::[3.5	:::.	:::::]		\$ 1				111								11 -							94	1
\$		• • •	. j.,			.10	ī, ;		• • • • • •	٠. ,	7	:						.]											520		on .	٦
114-000-1100 6000-1140 6000-1140 7000-1140 7000-1140 6000-1140	٠,			-1-	• 1	: 1.3	::÷;			÷	. i / :				.	.,,	•-;,					 	•••		-		[,	in			
2882886	÷.	., ,			' ' 3	47	# 14			١.,	.44		111	•••		٠,,	1,12	. :		. 1					27			1 :			w	
A 55.00 W	1		. 17	12			171			-	<u>.::</u> :	:;''		, 1		•	; : ;		4			أنستا			*	,,,,	/#;			زئ	PAGE	
			***			۶۰.,	i				1					· ;	::		:			, t	P				•:::		440 480 FAHRENHEIT	CHARACTER ISTICS	Q,	
REFERENCE 115 DW SPEF 2530.0000 LREF 474.8000 BREF 935.6300 RAP 1076.7000 YARP 175.0000 SCALE 175.0000				*	::	÷.,	*:-												7		<u>, ; .</u>	:	4						4 ₹	S		
			***	:		÷	P	:			77	•		1	۲.				d										E	∞		*
ALPHA .000 .000 35.800 35.800	:::,						Ø	::	:::			: ; :		;	۲.	::,	, , , ,				٠,		9						Ž	连		
	***	: i •	11,		. 14 9	;; •	Ŷ	1,3		,	; ;;				Ĭ		¥: ,						d	,			,		유	\approx		
=		•;;;		ii j	•	:.,		· :.			: :				9		: .	•									;	·	A H			
4 888 8			111		: ::	:::		11.	<u>:</u>		, ,,	::	•		O)	: ; ;					,	D.			·	Ţ		L	ひ		
25.000 0000 0000 0000 0000			::				0		<u>.</u>		· : :		;		٤	١.,		:	9	·	• ; .	Ŀ							<i>(</i>)	<u>.</u>		
					-:	• ;	Ц		Į::		;:: <u>"</u>			·		L.	11.				• ; :	<u> </u>	Y						100 100 100 100 100 100 100 100 100 100	AEDG		
4-8 66 66 66 66		;:	: : : :		L		9	: : :		::.	•	1447	: ;		9)					<u> </u>								# (1)			
		1		::	Ŀ		11.	··:		<u> </u>		• ::.		. :		_		1	19	<u> · . </u>	. (P	Ŀ					l	UFF		
	1	1:0		<u>.:::</u>		<u> </u>	Ø.				: ; .	::.:			: '	2		_			:	1:	<u></u>						360 TEMP.	•		
2000. 0000. 0000. 0000.		1		<u>;;</u>		L	11	_		L		-						_	<u>L</u>			L.							G E	JET		
<u>a</u>				<u> </u>		1	<u> </u>	:	_	<u> </u>	• •		-	1	_(P			4	Ш	::.	.:	Ц	<u> </u>	<u> </u>				ĕ⊢			
			:::			::.	4			<u> </u>		1111	111	-	; 11		1		Ц			-	Ш	ļ	1;	:			u u	8		
						:::	11		::::		:::				٠.,	_			11	1.	:::	1:::	\sqcup					<u> </u>	32C TEMPERATURE.	پیر	•	
6H22) 6HA-22) 6HA-225 (HA-22)					,,:			ļ:::j			;:+:		::::		:: \	P :	L	1:::	Ц		·			<u> </u>	_	Ŀ	_	<u> </u>	32C	\geq		
<u> </u>		1:::	1	114		1::	0		-	-		1:::		_	_	-	1::::	<u>' ,</u>	\$	1		_	ļ	ļ	ļ			<u> </u>	W.T.	*		
	1		1:::	1	1:1:	-	11.	-		1:::	11.	1111	_	**		<u> </u>	-	1	1	<u> · · </u>	, . è		<u> </u>	<u> </u>	4.	·	1	<u> </u>	도	E C		
2222 0000		11.	-	1		-	11-	*		<u> </u>	-	<u> ::</u>	111		:	-			₩.	-			ļ	<u> </u>			-			TEMPERATURE		
2222 2222		111	<u> </u>	!	1:::		11			-	:::;	1			-	-	1:::	1		احما	•	-	_	<u> </u>	_	-	-	Ŀ	280 V ING	=		
വധവ ജ് വലവ		╨	-		::::		11	 	-	- ا		.:::	<u> </u>	-	<u> </u>	-		ļ	4		÷	 	<u> </u>	_		<u> </u>		ļ	122	급		
Matow description. Temperature large Temperature large Temperature large Temperature large	1	4	1			-	Q	-	-	_	11:			_		-	-	*	╢.	-	-		_	ļ	-	ļ	<u>'</u>		_	MODEL		
ያ	111	1	-	.:: [:]	_	-	#	-	-	-	-	1:::	١	ļ.,			-		-	-	_		-	<u> </u>	-	_				Ξ		,
MATCH A		-	-		-	-	-	-	1	┼		-	-	-	-	-	-	-	₩.	-	-	ļ	-	-	-	ŀ			64	R		
X 6 6 6 6	-	+-	-		-	-	₩.	-	-	-	-	-	-		111.1	-	-		╁	4	-	_	ļ	-	ļ.,		_	<u> </u>	2			
Configuration Nas ving tempe Nas ving tempe Nas ving tempe Nas ving tempe	-	+	+		-	-	11	ļ	-	╁	-		-	-	-	-	-	-	4	4		 	 	ļ	 	 	-		İ	Σ	10.33	
TIGURA MING WING WING	-	-	-	_	-		19	-	-	-	-	-	-	-	-	-	-		ļ	-	-	-	-	-		 		_			0	
2 0 0 0 0 0	-	+	+-	-	 -	-	+-	-	┼-	-	-	-	 -		-	-	-		-	-	_	.	 	 	 	-	-		28	Ü	 -	•
CONTRACTOR CONTRACTOR	-	+-	 	-	├-	1	+	-	-	-			-	-	<u> </u>	-	-	-	-		-	-	ļ	-	-		<u> </u>			?	£1	
		4:-	1_	ļ	ليا		١.,	<u> </u>	ل	<u> </u>		<u></u>	L.,	<u> </u>	Щ	<u></u>	L.,	_	L_	<u> </u>	L.,	╁		<u>_</u>		_	۱.,	<u>_</u>	j	7		
£ C□≫	1	.006						010		710	. }	ָרַגַּט.	Š	הְאָלָ מלא	. }	5 5	Š	<u>7</u>		9. 19.	3	р. У	j	À S	٠ إ	ים האחי	į			띮	E ·	
	,	٠			,	٠,		ب ا	,			ب ا		ر ا	•	ب ا	,	١)) 		ے. ا		<u>۔</u> ا		ر ا		3	₹ .	
MIA407) WIA407) WIA409) WIA4103)						•		•		,		•		•		•		•		•		•		•		•		•		FIGURE 22. EFFECT	CA MAREH	
													•															,)	
a 2235							M-	า	4 1	N:	١f٠	11 -	14-	ימו	í	NŦ	aLJĊ) LÍ	O.	u i M	ורו	ì.										

PITCHING MOMENT CORFFICIENT, CLM

- 11

CAUMACH

UNCORRECTED AXIAL FORCE COEFFICIENT. CAU

36 2680.0000 474.8000 936.6840 1076.7000 375.0000 39Vd OFF AETO CHARACTERISTICS 360 400 440 440 440 TEMP, DEGREES FAHRETHEIT Ų SAEF L'REF BREF XISRP YISRP SCALE D 7 D ø 9 P FIGURE 22. EFFECT OF MODEL TEMPERATURE ON JET \mathfrak{P} .280 320 WING TEMPERATURE. 1 Ŷ 240 10.33 200 18000 -,001-2 . cooch -000° ,000G - .0008 .0018 -.0020 -.0014 -.0016--.0002 -.0004 -,00010-.0002-Ò (A)MACH

ROFFINE WOWENT COEFFICIENT, CAL

1

HOTEL IN DUM

3 3 5 K

₹ 8888

之 58888 58888

₹ \$6688

CONFIGURATION DESCRIPTION

OINGS MING TEMPERATURE LARC CFWT 118 (MA-22)

OINGS WING TEMPERATURE LARC CFWT 118 (MA-22)

OINGS WING TEMPERATURE LARC CFWT 118 (MA-22)

OINGS WING TEMPERATURE LARC CFWT 118 (MA-22)

DATA SET SYNBOL
(WANTOT)
(WANTOT)
(WANTOT)
(WANTOT)

(SIXY ADDB)

97

PAGE

fo.33

11

エロマ語でをし

z .:

a : ' '5

YAWING MOMENT COEFFICIENT. (BĞD) CAN

SIDE FORCE COEFFICIENT, CY

نز

INCREMENTAL NORMAL FORCE COEFFICIENT. DLTCN

CAUMACH

INCPEMENTAL PITCHING MOMENT COEFFICIENT. DLTCLM

· |·.

sarahing dia ka

101

PAGE

TEMPERATURE ON

FIGURE 23. EFFECT OF MODEL

10.33

(A)MACH

INCBEMENTAL UNCORRECTED AXIAL FORCE COEFFICIENT, DLTCAU

5888 8888 8888

8888

2888 2888

8888

OINAS VING OINAS VING OINAS VING

] Jilliffe ### ## Jilliffe ### ### Jilliffe ### ### Jilliffe

INCREMENTAL ROLLING MOMENT COEFFICIENT, DLTCBL

INCREMENTAL YAWING MOMENT COEFFICIENT, DLTCYN

** X X X X X X						, ,				. <u></u>					<u> </u>			•					-	· •\$==1	7. T	72 4		327	_	يشوا	e New York
NO NO NO NO NO NO NO NO NO NO NO NO NO N	17.		12 .4				313		1:1			7.4			4	×	- 2	**	- 1	17.	~1		1				1		**	70	ည္သင္မ
	27	:/ 1	₹.		. 4		. 44		7.7	77.				*				V.	"			7		1	<u> </u>	4	y	-	A	in .	<u>දි</u> ල
B 112444	- :,	ı.	777		٧,	111		1	4.1	,			*	1	:] :					*13	**	. **	***		**			7	3	"	S
2 88 8 88 8		73	- 3	1.54		*	.27		7.8	***			3				24	-3		1.5		3.4	П	*	3 P	***	4		17	ine i	₩
2650 .000 2650 .000 274.600 936.6600 1076.7000 375.0000		: , ;	11.7	74		7,7	3.	. (5)	***			. 17	1	1, 1			119			.37			ζ [\$3	77	3	7.51	494	Y.;;	480	TERISI PAGE
7 % seg .	37.		7.7	3	l:::	12		-		133,		(4.5)	۴	Ψ.	.,						,	1	5		72.	9.			7.	4	ي س
REFERENCE: 114.00 EF 474.800 EF 936.6000 RP 1076.7000 RP 375.0000 ALE 375.0000						1	-		-	ř			9	8			12			1		1			, ,;			•••• [-	₹
REFERENCE SCALE					1		 	5					19	7	1	,	: 1			711		- 1	7.1			•••		1.7.		EI	王
		, : :	· :	7		 	1	\ \{\{\}}	٠		٠	.::.	H		7	_				.:	::::	1	5	14.					, I	440 ENH	<u>.</u>
ALPHA. .000 23.000 33.000 35.000	1:::	\vdash	-	-	-		-	1-3	-	-	-		Ħ	黃	+	7	一	.:::		; : _.	: .		5	: : :		•				440 FAHRENHEIT	AERO CHARACTERISI Pabe
A 8.9.8.8			-	-	1	1	-	-	8	-	-	 -	1	8	\dashv			1					51			• :	·		:::	三	쒿
•	****		1		-	1	-	+	4-	-					+	-			12				5				÷:		11	L.	
7 9999			-	-	+-	1	+-	15		-		-	+7	9	\dashv	\dashv			.			-		::1						00	OFF
86. 900. 900. 900.		1	1	-	╂	117	+	13	•	-	1	1	К		+	_			+	- ::	-	-4	7					111	•	台湾	
	::::	1:::	1	<u> ''</u>	1::	1		+	}_	1	1	1	+		+			-	-	1	1	-	7	:				1.1	-	5	نيا
7/24/24/24/24/24/24/24/24/24/24/24/24/24/			1::	116	4.	12	4.	-	?	1	-	-	15				• • • •	<u>:::</u>	╁	-	-		-	121			٠,			400 DEGREES	ON-JET
5 00006 00007 00008 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 00009 0000<l< td=""><td>_</td><td>╚</td><td>4</td><td><u> </u></td><td></td><td>4</td><td>4</td><td>15</td><td>٦</td><td>1</td><td> -</td><td>1</td><td>4-</td><td>$\frac{1}{2}$</td><td>5</td><td></td><td>-</td><td></td><td>1</td><td>-</td><td>-</td><td></td><td>7</td><td>::::</td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td>5</td></l<>	_	╚	4	<u> </u>		4	4	15	٦	1	-	1	4-	$\frac{1}{2}$	5		-		1	-	-		7	::::	-			-	-		5
			1::			1:	1	4	4	4	-	1	4	74	싀	:		-	-	1	-	-	Þ	-			-	1.		一份是	1
49 99 99 99 99 99 99 99						1	1	11	1	1	1		4	4	21		1111	-	╁	1	-	-	Ц.	::::	 	-	-	-	-	360 TEMP.	到
, 13 8		<u> </u>						14	\	1	1::	1	1	4	5-	<u>-</u>	-	-	-	 	-		H-	***		1.3			-	4 .	Z
		1							X.				1	4			1	-	-	1	1 ::	 	Ц.				11.	1	-	280 320 320 3 TEMPERA TURE	
•								يا	1	1	1	نا	4	41	Ō	:::		1::	1:15	1	1	 ::-			-			1 111	-	╀껋달	22
ನನನನ	:::				<u> </u>	: -;		1	Ŷ			ij.	1	91	· ·		1:::	123		4::-	1	1 :::	***		1	! ::		4::-		- \	TEMPERATURE
CHA-22) CMA-22) CHA-22) (HA-22)	11:						11 11		1		: 1			Ы	, .		1	1:1	1 1	1	-	1	<u> </u>	1::	-		-	1:::		<u> </u>	&
					: :		, ,		1									1::	1.	-	1	1:		11	1	-	1	111		1 5	띪
88888						: ::			7			1				:: -		L			1	1	١	-	1_	1	-	1::	1	18 E	五
무무도										: ::				1			. :::				: :	1::-	1:::	L	14	ــــــــــــــــــــــــــــــــــــــ	-		-	MING A	
5555						;		ं		.: :::					::		1:::	Ŀ			1	1_	1::	1::	1	↓_	1:	1:::			岀
LLANG CLANG															i::;			<u>li</u>	1			1_	1:::	1	1:	1.	ا ــــــــــــــــــــــــــــــــــــ	4	4-		MODEL
ب ما ما ما ما ما ما ما ما												: ·		4	.::		1:	╽.				1:	1		1	-	1	1	1	240	Σ
DESCRIPT RATURE L RATURE L RATURE L RATURE L			1			. [Ŷ					:.		" ::			1.	1		1				1_	1-	1:	1-	+	10	8
								\prod		,									. :	1.				L	4	1	1		-		
CONFIGURATION DESCRIPTING BANG TEMPERATURE LINGS WING TEMPERATURE IN THE SATURE IN THE									\prod		: •			7									1:	1			4	1	-	4	EFFEC 10.33
& HOUSE	-	1			:			- 13	ा	1	T			-:-	.,.				: :			ــــــــــــــــــــــــــــــــــــــ	1.		1		1	1	_	200	EFFE(103;
TIGURA WING WING WING	-										1	Ţ								: [1_	\perp	1		14	日記
2 00000				_	1								\Box		11					10	::	<u>. </u>	<u>]::</u>	Ŀ	Ŀ		1	1	_	١.	~ ·
GGGG Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		+	+					1								T				, ,	,		<u>. .</u>		نك	1	1.			<u> </u>	23 "
	7705	ينا)	占		ال م		b		ψ	٠	ğ		ñ	7	1	946		ហ៊ួ		50		Ϊ́̈́		.00060		.0065		.0070	1	.007%	FIGURE 23.
å œ×	Ċ)	0100.		.0015) 	0020		.0025		.0030-		0035	ž	1	ģ		.0045		.0050		.0055		ğ		ğ		9	i	8	F.IGURE
	C	•			0	•			0					٠	,	۰		۲	,	٠		1		1		-		-		- 	F. F. C.
SE 2009 1	1		t		ŀ		1		ı		ŧ		1	•		ŀ		1	,	•		•		•		•				-	<u> </u>
DATA SET CLANDON CCLANDON CCLANDON																	,									_					_
a 2222					N	۱Ĉ۱	ÄC	j i	16	ΙĒΙ	ŤĊ	ታ:	Et	O:) .	LN	WE	Ø۲	1 5	İN	MV	¥	٦̈٧	ΤŅ	WĖI	ВĖ	AC	ii			•

-

Ħ

(A)MACH

INCREMENTAL SIDE FORCE COEFFICIENT. DLTCY

(A JMACH

1

r#A

OFFICE OF

INCREMENTAL NORMAL FORCE COEFFICIENT, DLICA

INGREMENTAL PITCHING MOMENT COEFFICIENT, DLTCLM

ON-OFF RUNS KS FIGURE 24. COMPARISON OF ON/OFF CA JMÄCH.

106: PAGE

<u>ئ</u>ر بىر

INÇREMENTAL UNCORRECTED AXIAL FORCE COEFFICIENT. DLTCAU

INCREMENTAL ROLLING MOMENT CORFFICIENT, DLTCBL

CA JMACH

(A)MACH

: • <u>: ه</u>

INCREMENTAL YAMING MOMENT COEFFICIENT, DLTCYN

A P

÷ ;

(A)MACH

INCHEMENTAL SIDE FORCE COEFFICIENT, DLTCY

-8.00

CAJALPHA =

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NUMF)

BES JET AMPLIFICATION FACTOR - NORMAL FORCE. NINF)

PAGE

FIGURE 25. EFFECT OF MULTIPLE JET RES FIRINGS, N79, N49, N83

-6.00

(B)ALPHA =

ਨੂੰ ਹੁਣ =

[:

10

BCS 1E1 VMPLIFICATION FACTOR - NORMAL FORCE, NINF)

REFERENCE INEORISES SEEF 2890.,0000 LIKEF 474.8000 BRTEF 936.6800 XHRP 1076.7000 ZHRP 375.0000 SCALE .0000 024 47. 600. 600. 600. 020 FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83 80000 47.0000 60000 60000 016 .012 0A/T 교 8 666 8 666 008 .00.4 4 CONFIGURATION DESCRIPTION: 01N79. LARC CFHT 118 (FM-22) 01N49. LARC CFHT 118 (FA-22) 01N83. LARC CFHT 118 (FA-22) \Box 10 -.004 -1.6<u>5</u>mb .2E''' 바. 1-- 2- -1.2 -1.4 <u>.</u> <u>.</u> œ, 9. ž CDV 7 ဖ် Ö CSJADOLY CSJADOLY CSJADOZ CSJADOZ

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NINF)

(E)ALPHA

NÉME3

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE.

· (±,7

بمبترة

(G) ALPHA =

· -

RCS JET AMPLIETCATION FACTOR - NORMAL FORCE, NCHE)

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, N(NF)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83 (H)ALPHA = 6.00

PAGE: 118

entropies

(*

8,00

(I)ALPHA =

·*<u>:</u>:.

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. N(NF)

1

 $k \cdot f$

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. N(NF)

(K)ALPHA =

,: ‡

EST III

;

RES JET AMPLIFICATION FACTOR - NORMAL FORCE, NINF)

122 , F. 2. SREF 7590,0000 LREF 774,8000 RREF 976,5800 RRMP 1076,7000 YMMP 375,0000 ZHRP 375,0000 SCALE 0100 PAGE .024 .020 FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRTNGS, 1779, N.49, N.83 **8 6 6 6 6 6 6 6** 7. JET 2.000 3.000 0.000 0.000 .012 04/T 早 .008 .004 CONFIGURATION DESCRIPTION OUNTS LARC CFHT 118 (MA-22) GINGS LARC CFHT 118 (MA-22) GINGS LARC CFHT 118 (MA-22) 20.00 -.004 - ք.6 երոխորհ (L)ALPHA = -1.2 -1.4柱 -1.04 9. , The £ 0000 CSJAGGZ) (SJAGGZ) (SJAGGZ)

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NUMP)

(M)ALPHA =

/2:: =

1.

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NUMP.

AMPLIFICATION FACTOR - NORMAL FORCE, NUMP.

F ...

- |

(C)ALPHA =

RÇŞ JET AMPLIFICATION FACTOR - NORMAL FORCE.

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

-

SO.FT. REFERENCE INFORMATION 2690 .0000 4774.8000 938.8600 1076.7000 375.0000 SAER STARP SCALE SCALE 8£7.4 000 000 020 FIGURE 25. EFFECT OF MULTIFLE JET RCS FIRINGS, N79,N49,N83 80.000 80.000 80.000 .016 .012 04/T 2000. 2000. 2000. 2000. ď 008 .004 COMFIGURATION DESCRIPTION
QUN79 LARC CFHT 118 (MA-22)
GIN49 LARC CFHT 118 (MA-22)
GIN83 LARC CFHT 118 (MA-22) Ö -.004 .75 部2. CATA SET STABLE (SANO2) CSTABLE (SANO2) CSTABLE (SENO3) . 1909. SOF -201 .55F .45£ .65<u>F</u> 151 404 K. R .25

127

PAGE

-6.00

IÍ

CB JAL PHA

RÇS JET AMPLIFICATION FACTOR - PITCH, NÇPM)

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM3

-2.00

(D)ALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

130 PAGE

(E)ALPHA =

=

... F

?

2.00

(F)ALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, MCPM)

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS. N79.N49.N83 4.00 (G) ALPHA =

PAGE . 132

(H)ALPHA =

? **;**≡

AMPLIFICATION FACTOR - PLICH, N(PM)

RCS JET AMPLIFICATION FACTOR - PITCH, NEPRI

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N49, N83 CETALPHA =

13. 13. PAGE

15

020

.016

012 0A/T

D

.506

454

404

RES JET AMPLIFICATION FACTOR - PITCH, NCPM)

809

70/

55

55

O

.25

20

8

35

8 - 74 - 44 - 600 - 15 - 600 - 15 - 600 - 15 - 600 - 15 - 600 - 15 - 600 - 15 - 600 - 15 - 600 -₽ 8 8 8 8 8 8 8 8 8

REFERENCE INCORNATION
SSEE 2690,0000 54,57
LASE 474,8000 INCORNATION
BACK 335,6800 INCORNATION
RASP 1076,7000 INC.
ARR 375,0000 INC.
SEALE 0100

ğ Cip

CSTADD: 3: (STADD: 3: (STADD: 3: (STADD: 3: (STADD: 3:))

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N49, N83 CJIALPHA =

35

PAGE

ICE TEL VWBTIEICVIION EVCIOB - BIICH' N(BW)

136 PAGE =

15.00

(K)ALPHA =

(L.) ALPHA =

and the said of the

BCS TEL VWBF ILICVITON LYCLOB - BITCH' NCBW)

RCS JET AMPLIFICATION FACTOR - PITCH, MCPM)

35 PAISE

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83

25.00

CMJALPHA =

(N)ALPHA =

RCS JET AMPLIFIÇATION FACTOR - PITÇH, N(PM)

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

140 PAGE

į

(O) ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, N(AF)

: [*

REFERENCE IN CONATION

SREF 2590,0000- SO,FT

LREF 474,8000 INCOE

BREF 935,5800 INCOE

YHRP 1076,7000 IN. N

ZHRP 775,0000 IN. 2

SCALE .0490 142 PAGE 024 8ETA 000. 000. 000. .020 FIGURE 25. EFFEET OF MULTIPLE JET RCS FIRINGS, N79, N49, N83 .016 86.15. 22.000 20.000 20.000 0.12 0.4/T 2000. 0000. 0000. .008 PP .004 CONFIGURATION DESCRIPTION
ONNS LARE CFHT 118 (MA-22)
ONNS LARE CFHT 118 (MA-22) 6.00 -.064 -.45.5ահա (B):ALPHA = - 15年 -.30£ .25E 1.10H - 33 8 . 101 뿡 -.05<u>F</u> - 20th -.25 -.40 . 10. GATA SET SYNBOL (SLANDI) (SLAND2) (SLAND3) 15

£ 7

RCG JET AMPLIFICATION FACTOR - AXIAL FORCE.

-4.00

(C)ALPHA =

À

÷

李 ア

į

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NCAF)

BCS JET AMPLIFICATION FACTOR - AXIAL FORCE, N(AF)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79.N49.N83 -2.00 (C) ALPHA =

PAGE: 144

(E)ALPHA

RCS TEL VWBFIETCYTIGN EVCLOB - VXIVE EGBCE' NCVE)

John Shares, Strate Strate Strate on the second of a companie of contrasts.

BCS TEI VWBFIEICVIION EVCIOR - VXIVE EGBCE' NCVE)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N49, N83 2.00 (F)ALPHA =

146 PAGE

RCG JET AMPLIFICATION FACTOR - AXIAL FORCE, NEAF)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83 = WHOTV(5)

1.4.7 PAGE

RCS JET AMPLIFICATION FACTOR VXIVE EDECE! N(VE)

(I)ALPHA =

BCS TEL VWBFIETCVIIGN EVCIGE - VXIVE EGBCE' NOVE)

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

CK JALPHA =

- 4

į

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, MLAF)

805. 000. 000. 000. 7.000 2.000 2.000 2.000 E.E.V. 0.000. CONTIGRATION DESCRIPTION
GINGS LARC CFW 118 (MA-22)
GINGS LARC CFW 118 (MA-22)
GINGS LARC CFW 118 (MA-22) ОПО WATER SET ST CSTAGGE 1 CSTAGGE 1 CSTAGGE 2 CSTAGGE 3

47. 900. 900. 1000.

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS. N79, N49, N83 20.00 (L)ALPHA =

1 PAGE i

(MINLPHA =

BCE TEL VWBLIFICATION FACTOR - AXIAL FORCE, MIAFT

(C) ALPHA =

۶١,

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. N(AF)

HCS JET AMPLIFICATION FACTOR - ROLL. N(RM)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83

-6.00

(B)ALPHA =

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

פּכּפ זבּד האפרודוכתוופט דמכופפ - פפרי, מנפא

-2.00

(D) ALPHA

BCE TEL VWBFILLICVIION EVCLOB - BOFF' NIBM)

AT 30000 8 8 8 8 8 8 8 32.000 32.000 30.000 30.000 ELEVON. RATION DESCRIPTION LARC CENT 118 EMA-22) LARC CENT 119 (MA-22) LARC CENT 118 (MA-22) CONFIGURA GINTS GINTS GINSS

RCE JET AMPLIFICATION FACTOR - ROLL.

::3≣

**;<u>*</u>

(F)ALPHA =

بنه بخ

. J

RCS JET AMPLIFICATION FACTOR - ROLL. NCRM)

‡.

نې ج.

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

(H)ALPHA =

The state of the s

<u>;</u> =:

RCS JET AMPLIFICATION FACTOR - ROLL, NIRM)

RCS JET AMPLIFICATION FACTOR - ROLL. NIRM)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS. N79.N49.N83 8.00 CIJALPHA =

164 PAGE

د ا د

BCS 1ET AMPLIFICATION FACTOR - ROLL, N(RM)

(J)ALPHA =

RCS JET AMPLIFICATION FACTOR - ROLL, N(RM)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS. N79.N49.N83

20.00

(L)ALPHA =

RCS JET AMPLIFICATION FACTOR - ROLL, N(RM)

RCS JET AMPLIFICATION FACTOR - ROLL. NCRM)

(N) ALPHA =

نج

BCS TEL VWBFILLICVIION EVCLOB - BOFF' N(B.1)

BCZ TEL VWBTIEICYLIGN EVCLOB - BOFF' NÍBW)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N48, N83 35.00 COJALPHA =

PASE 170

٤

-8.63

(A)ALPHA =

7 .4

; =

F

*MVA -RCS JET AMPLIFICATION FACTOR

BCC TEL PHBEILICVIION EVCLOB - AVA" NEANI

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83 -6.00 (B) ALPHA =

172 PAGE

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79.N49.N83

-4.00

(C)ALPHA =

...≅

7

.

BČZ 1EI VWBČIEIČVIION EVČIČB - AVŘ' N(AM)

BCS TEL VHBFIEICVIION EVCLOB

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83

8

CEIALPHA =

, į

RCS JET AMPLIFICATION FACTOR

* ;

BCS JET AMPLIFICATION FACTOR *MVA MCAMÍ

ļ.,,

(G) ALPHA =

Section of Little Control

· <u>:</u>

RCS JET AMPLIFICATION FACTOR - YAW, NYYM)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N49, N83 6.00 (H)ALPHA =

PAGE 17

=

RCS JET AMPLIFICATION FACTOR - YAW, N(YM)

-.24

-.12

REFERENCE IN CORREST TO SECURITY SECURI SCALE SECTION # 6550 5050 98 98 98 98 98 98 98 98 8 -44 F 888 CONFIGURATION DESCRIPTION
OINTO LARC CFHT 118 CMA-223
OXIMS LARC CFHT 118 CMA-223
OXIMS LARC CFHT 118 (MA-223) Ū -.04年 -,02 -.08£ -.10 PATA SET SYNEGE. -.06

180 .028 PAGE 024 .020. FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS. N79.N49.N83 .016 .012 04/T .008 .004 0 (3)ALPHA = 10.00-.004 -.28程 --14年 -,26 -.12 -.16 -. 18 -.20 24 -.22

BCS TEL VMBFIETCYLION EVELOB - AVM* NCAM)

ا باز

RCS JET AMPLIFICATION FACTOR - YAW, NCYM)

-54 181

PASE

CKYALPHA =

2000

1 8888

美 8888

6000 0000 0000

CONTIGURATION DESCRIPTION: GIN79 LARC CFHT 118 (MA-22) GIN49: LARC CFHT 118 (MA-22) GIN83: LARC CFHT 118 (MA-22)

CSTAGE STAGE CST

BCS TEL VWB-TETCVITON EVOLOB - AVM' NIAW)

محر ليح

The state of the

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83

25,00

CMINALPHA =

; ;;

NEAW RCS JET AMPLIFICATION FACTOR = YAW,

BCS TEL VWBFIELCYLION EVELOB - AVM" NCAWI

≓ 6666 ≅ 6666

⊒ 2 888 2 888

LINE ILITATI FUN LISTATIVI PHINE CHARGE CFHT 118 (MA-22) QINGS LARC CFHT 118 (MA-22) QINGS LARC CFHT 118 (MA-22)

SEANOR OF SEANOR

į

(0)ALPHA =

BČZ TEL VWBETELCVIION EVČIOB - AVM: NEAW)

BCS TEL VWBFIELCVIION EVCLOB - BIDE EDBCE' N(BE)

186 OVE

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79,N49,N83

-8.00

(A)ALPHA =

.36F 34E .26<u>F</u> .24 .22 8 .16 .14-304 28 32 BCS SEI VWBETETGATION FACTOR - SIDE FORCE. NUSF.)

187

PAGE

-6.00

(B) ALPHA =

188

PAGE

(C)ALPHA =

BCS TEL VWBFIELCYLION EVCLOB - SIDE EGBCE' N(SE)

-2.00

(D) ALPHA =

ļ

þ

RCS JET AMPLIFICATION FACTOR - SIDE FORCE.

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NUSFI

ر] يو

(F) ALPHA

1

. 1

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

SEZESE FOOTSE SREF 1890.7000 SOFT 1890.7000 SOFT 1890.7000 INC. TWO INC 8ETA 000: 000: 7.000 3.000 3.000 3.000 # 0000 0000 0000 COMFIGURATION DESCRIPTION
OLNYS
LARC CFHT 118 (MA-22)
GINSS
LARC CFHT 118 (MA-22)
GINSS
LARC CFHT 118 (MA-22) 385 36 .34 ğ Ç DATA SET (SLAODE) (SLAODE) (SLAODE)

.

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NISF)

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N49, N83 4.00 (G) ALPHA =

192 PAGE

]=

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS. N79.N49.N83

(H)ALPHA =

RCS JET AMPLIFICATION FACTOR - SIDE FORCE. NISF)

STATES AND THE STATES 857% 0000 0000 8 8 8 8 8 8 A. 161 2.000 3.000 3.000 CONFIGURATION DESCRIPTION

OINTS LARC CENT 118 (14-22)

OINTS LARC CENT 118 (14-22)

OINTS LARC CENT 118 (14-22)

3 . . •

RES JET AMPLIFICATION FACTOR - SIDE FORCE, NUSF)

194

PASE

8.00

(I IALPHA =

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NESF)

(J)ALPHA =

(g)

PAGE

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79, N49, N83

15.00

CKJALPHA =

BES JET AMPLIFICATION FACTOR - SIDE FORCE, NIGED

6.4

PAGE

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

The Control of the Co

F:

198

PAGE

25.00

(M)ALPHA =

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NISF)

THE SECTION

BCS TET AMPLIFICATION FACTOR - SIDE FORCE, NISF1

,

The second of the second of the second of

FIGURE 25. EFFECT OF MULTIPLE JET RCS FIRINGS, N79.N49,N83 35.00 (O)ALPHA =

PAGE

CO. A-

(A) AF PHA =

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE,

The second secon

201

PAGE

-6,00

(B.JALPHA =

%

The second the second of the s

A STATE OF THE PROPERTY OF THE

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE.

CF. LE DUA

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE.

少祖 我們 我一一個一一一個一個

10 m 3 1 m 1/2 T

PAGE

-2.00

(D)ALPHA =

The second of th

The state of the s

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE.

(FIALPHA =

Hand the control of t

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NINES

.010 REFERENCE 19 COUNTY
REF 2550.0000
REF 255.0000
REF 1076.7000
REF 375.0000
REF 375.0000 ... 600 857 600 600 900 805. 800. 800. .007 .002 COME REJEATION DESCRIPTION GINS! LARC CENT 118 (MA-22) GINSS LARC CENT 118 (MA-22) g .003 Q Ö .002 -.15年 1.10 101.1 -.20 .05E £ an -.05 -.25 -.30 -.33 -.40 DATA SET S (\$4A0051) f \$4A0051)

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NINES

And the supplier of the suppli

FIGURE 26. EFFECT OF MULIPLE JET RCS FIRINGS, NSI.NBS

PASE

6.00

CHJALPHA =

The second secon

RES JET AMPLIFICATION FACTOR - NORMAL FORCE, MENE)

BCS JEL VMBFILLÍCYLIGN EVCLÖB - NOBNYF EÖBCE' NÍNEJ

COMMITTEE OF

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS. NSI.NBS

The second of th

A STATE OF THE PART OF THE PAR

BCÉ 1E1 VWPLIFICATION FACTOR - NORMAL FORCE.

FIGURE 26. EFFECT OF MULTIPLE JET RES FIRINGS, NSI,NBS 10.00 EJJALPHA =

210 PAGE

ر ت-

BCS TEL VWBFIELGVIION EVCLOB - NOBWYF EGREE: NINEI

The second of th

The second secon

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51, N85

(K) ALPHA = 15.00

(LIALPHA =

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51, N85

TO BE BUILDING TO THE RESERVE OF THE PROPERTY

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NUMF.

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI, NBS 30.00 CNJALPHA =

PYAGE

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51, N85

CG 1A PHA = 35,00

下了一個人一個人一個人一個人一個人一個人一個人一個人一個人一個人

The state of the s

IN THE TAXABLE DESCRIPTION OF THE PARTY OF T

MOBWYT LOBCE'

N(NE)

- ADION - NOITADIFICATION FACTOR -

the property of the answer of their

The second secon

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NS1,N85 -8.00 (A.) ALPHA =

PAGE

216

ā

· 755. . . .

BCS TEL VWBFIEICVIION EVÖLOB - BILČH' NCBW)

FIGURE 25. EFFECT OF MULTIPLE JET RCS. FIRINGS. N51.N85

טט שַ

FR. TAI PHA =

RES JET AMPLIFICATION FACTOR - BILCH'

The second secon

CCJALPHA =

218

35 7;

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

Section of the control of the contro

「原理を関する。このであるとのではない。 これできました。 ましまな 後っきび

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI,N8S

and the second s

] ,

DACE

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

way got grown in a part over part to

RCS JET AMPLIFICATION FACTOR - PITCH.

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI, NBS 4.00 (G)ALPHA =

ŀ

CHJALPHA =

A COLUMN TO THE WASHINGTON TO BE AND THE WASHINGTON TO SEE THE WAS

RCS JET AMPLIFIÇATION FACTOR - PITCH, MCPM)

C I JALPHA =

The state of the s

RCG JET AMPLIFICATION FACTOR - PITCH, NCPM3

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

' 1

CKJALPHA =

The second secon

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

OU OC = AHOTAL IN

RCS JET AMPLIFICATION FACTOR - PITCH, NUPM)

: 1

CMINIPHY =

-

はなり、大から大きなないではなったいないでは、これではない。 はないないないでは、これではないでは、これではないでは、これではない。

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

30.00

(N)ALPHA =

The state of the s

The second secon

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

CONFIGURATION BESCRIPTION CRNS. LARC CFHT 118 (MA-22) GINSS LARC CFHT 118 (MA-22) CSANDET SYMBOL

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

بيل

PAGE

35.00

(C) ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

The first the second of the se

-6.00

(B)ALPHA =

- Marie M

BCS TET VWBT TETCV110M EVC10B = VXIVE EOBCE' M(VE)

RÉS JET AMPLIFICATION FACTOR - AXIAL FORCE.

N(VE)

A CHARLET THE THE FAIR AND AND AND AND THE PROPERTY OF THE PRO

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NST.N85

-2.00

COTALPHA =

The second secon

And the second s

the semigraph of the contracting to the contracting to be the contracting to the contraction of the contract

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NIAF)

BCZ TEL VWBTIEICVIION EVCLOB - VXIVF EOBCE' NÍVEJ

يميد طيهو، 11 أي

.

الأرادة إخراصه إلارات فسرد إلايار داسوا

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NIAF

4.00

(GYALPHA =

The second section of the second section of the second section of the second section of the second section sec

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NCAF)

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE.

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51, N85 6.00 CHJALPHA =

238 PAGE

Description of the second second second second second second second

The second of th

9617 900. 865-LAP 000-2.000 2.000 2.000 COMFIGURATION DESCRIPTION OINST LARC CFHT 118 (MA-22) DINSS LARC CFHT 118 (MA-22) CSJAGOT STREET.

The state of the s

The state of the s

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51.N85 10.00 (JINLPHA =

240 PAGE. =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

こうことには、それのないというできないのでは、一般のでは、一般のでは、ないないできないのでは、ないできないできないできないできないできないできないできないできないできないがっています。

- VXÍVE EĞBCE' NÇVE)

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS. N51.NB5 20:00 CL) ALPHA =

PAGE

010

600.

800

.007

.005 .006 0A/T

004

.003

- 094

- ,08e

BCS TEL

AMPLIFICATION FACTOR

242

2

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE.

(M)ALPHA =

25.00

N(VE)

The state of the s

30.00

(N.) ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NCAF)

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51.N85

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE.

The form of the contract of th

and the second s

*

RCS JĘT AMPLIFICATION FACTOR - ROLL. N(RM)

The second of th

PAGE 246

-8.00

CALALPHA =

The second of th

. Ž.

BCS JET AMPLIETCATION FACTOR - ROLL. NCBWI

RCS JET AMPLIFICATION FACTOR - ROLL, NERN

1 3

301

-4.00

CCJALPHA =

The state of the s

Will be taken by the property of the property

/

RES JET /MPLIFICATION FACTOR - ROLL, NIRM)

関いているとのが、では、Manager Andrews

...

.....

Chiti PHA

CONFIGURATION DESCRIPTION OINS! LARE CFHT 118 (#A-22) GINSS LARE CFMT 118 (#A-22) CSTACO SET SYNEGE.

8ETA .000.

here or give

00;

(F)ALPHA =

から、大きないというのでは、これのは、これのでは、これのでき、これのできないというできない。これのできないでは、これのでは、これのできないが、これのできないできないできないが、これのできないできないが、

אכפ זבן אאפרורוניווטא בעכוסא - אסררי אנאאן

4.00

(G) ALPHA =

The same of the sa

.

RÇS JET AMPLIFICATION FACTOR - ROLL, NERN)

6.00

(H)ALPHA =

the first the first the state of the state o

SCS TEL VMBETELICYTION EACTOR - ROLL.

=

254

PAGE

8,00

CI JALPHA =

BCS TEL VMBFIETCYLION EVELOB - BOFF. NCBW)

RES JET AMPLIFICATION FACTOR - ROLL, NCRM)

いからいかいかい はくか かいしょう ないけい 大きなない 大きな 一直ではない しょうかい しゅうしょう しゅうかん しゅうしゅう しゅうしゅう しゅうかん ないない はないない かましかい

255

(J)ALPHA = 10.00

PAGE

528

PAGE

15.00

(K)ALPHA =

RCS JET AMPLIFICATION FACTOR - ROLL, N(RM)

20.00

(L)ALPHA =

· Maria Command Comma

SOR REL MARITHTONY TON ENGLOS - MOUNT NEWS

. 4

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

FIGURE 26. EFFECT OF MULTIPLE JET RES FIRINGS, N51, N33 25.00 CMTALPHA =

.008

.007

.003

.003

.002

-1.1-

253 PACE

1. 7

; = .

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

RCS TEL VHETTEICVITON EVCIOR - BOFF. NCRM)

A. v. James

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI, NBS 35.00 (G) ALPHA =

1.=

-

PAGE : 260 *

"我们,我从我是想了!"

sacional as now director was from the

1

(B)ALPHA =

.

RCS JET AMPLIFIÇATION FAÇTOR - YAW.

A ... S. 1 4. 40.5

The first of the second of the

RUS JET AMPLIFICATION FACTOR NCKW) *MYX

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NOT, NEES

COUNTRY =

The same production and the same and the same production of the same

(E)ALPHA =

BCS JĒL VWBĒIEICVLION EVCLOB - AVM.

The property of the property o

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI, NBS

2.00

(F)ALPHA =

A CENTRAL PROPERTY AND A CONTRACT OF THE PROPERTY OF THE PROPE

The second secon

F;

RCS JET AMPLIFICATION FACTOR - YAW, NYYMI

4.00

(G)ALPHA =

To the second se

- The Country Country (A) 4、 II DE Sea Mark Country

RCS JET AMPLIFICATION FACTOR - YAW. N(YM)

6.00

CHINCPHA =

Ē

RCS JET AMPLIFICATION FACTOR - YAW. N(YM)

269

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51,N85

(I)ALPHA =

DATA, SET SYMBOL.
(\$14004)

CONFIGURATION DESCRIPTION OINST LARC CFHF 119 (FA-22) GINDS LARC CFHF 118 (FA-22)

. 120.

E 600

REFERENCE INFORMATION
SPEF 2590.0000 150.FE
LREF 474.8000 INCIENTE
RREF 935.6800 INCIENTE
XYRP 1076.7000 INCIENTE
ZYRP 375.0000 INCIENTE
SCALE 0100

-.06<u>F</u>C

-,08£

一.10品

-.12程

RCS JET AMPLIFICATION FACTOR

-.16E

-.14

-.02

-.04年

Ö

7. Je. 980.7.

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI, N85

10.00

(J)AEPHA =

.=

270

PAGE

010.

900

.007

.006 QA/T

200.

.004

.003

.002

- .22专

-.20£

A PROCESS OF THE PR

And the special section of the secti

1

RCS JET AMPLIFICATION FACTOR - YAW, NCYM)

BCS TEL VWBFIEICVIION EVELOB - AVM.

272

93KG

20.00

CL JALPHA =

25.00

(M) ALPHA =

•

! '

The state of the second

The state of the s

, s

PASE .. 274:

30.00

(N)ALPHA =

BCZ 1EL AMPLIFICATION FACTOR -AVA. NCAW

The property of the contraction of the contraction of the property of the property of the contraction of the

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51, N85

שט שצ CCIAL PHA =

.008

.003

.004

.003

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51.NR3

-8.00

CAJALPHA =

AEF 2690,0000 50.FT.

REF 477.8000 INCES

NREF 935.6800 IN. 10

INCES

TOTAL 1000 IN. 10

INCRES

TOTAL 10000 IN. 20

INCRES

TOTAL 10000 IN. 20

INCRES

TOTAL 10000 IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20

IN. 20 STATE BEEN .000 .000 . 구 9 9 A.000 2.000 2.000 .007 -006 04/1 ELEVEN. CONFIGURATION DESCRIPTION
CINSI LARC CFHT 118 (MA-22)
CINSS LARC CFHT 118 (MA-22) Ф 151. 109 **公** 45 33 .20年 CSLANDA.)
CSLANDA.)
CSLANDS. 555 . 8 50 45 100 -.05 8

with a street of the first the second of the

the second secon

BCE NEI VWBETETEVITON EVĒTOB - 21DE EDBCE' MEED

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51,N85

-5.00

(B)ALPHA =

The state of the s

A STATE OF THE STATE OF STATE

-4.00

CCIALPHA =

-2.00

(0)ALPHA =

the contract of the contract of the property of the property of the contract of the contract of the contract of

The state of the s

RCS JEI AMPLIFICATION PACTOR - SIDE FORCE.

REFERENCE INFORMATION SREF 2690.0000 SQLFT LARF 174.0000 INCHE BREF 916.6800 INCHE MARP 1076.7000 IN. X ZYREP 375.00000 IN. Z SCALE .01000 .003 87.74 000. 008 80.00 800.00 800.00 FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI, NBS .000. 75.76 2.000 2.000 2.000 .006 0AZT ELEVON. .005 CONFIGURATION: DESCRIPTION GLASS. LARC CFHT 118: (MA-22): GLASS. LARC CFHT 118: (MA-22): .004 .003 Ò Q .002 --105 .60E **6** 15 -.05 20 454 -20£ CSJANGES SYNBOL .30E .55. 35 .25 10 0. Ö

280

PARE

00.

(E)ALPHA =

The second secon

the territory of the second of

BÉC TEL VWBFIEICVIION EVELOB - SIDE EDBCE. NISE)

SCS DEL VMBETETCYTIĞM EVCIOB - SIDE EOBCE' M(SE)

*

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI,NBS 2.00 (F) ALPHA :

281 PAGE

The state of the s

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51, N65 4.00 (G)ALP玩。

282 PAGE F

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

The second of th

THE COURT OF THE PROPERTY OF T

Hereby Company with the part of the

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, N51,N85 (H)ALPHA =

283 PAGE

BÜŞ TEL VABFIETCYLIĞN EVÇLÜB - ZIDE EDBÜE' MÜZE)

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

FIGURE 26. EFFECT OF MULTIPLE JET RES FIRINGS, N51,N85 10.d0 (J)ALPHA =

285

PAGE

1

15.00

CK JALPHA =

Service Ministrate of the service of

,如果是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也不是一个人,我们也不是一个人,我们也不是一个人,我们也会会会会说,我们也是 一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也是

BCS 1E1 VWBFIEICVIIGN EVCIGB - SIDE EDBCE' N(SE)

the state of the s

KCZ TEL VWBTIETCVITON EVCTOR - ETDE EDRCE, NGSF)

FIGURE 26. EFFECT OF MULTIPLE JET RES FIRINGS, N51.N85

SREF BREF WHRP WHRP STALE SCALE # # 669 600 80FLAP 000 FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NS1, NS5 7.000.7 7.000.7 .007 .006 0A/T 2000 2000 2000 CONFIGURATION DESCRIPTION
01/051
01/051
01/051
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/052
01/0 .003 фΩ 203 1010 EMJALPHA = CSANDED CONTROL CSANDOS C .55 500 35 **说** 2 404 BCS TEL VWBTIEICVIION EVCIOB - SIDE EOBCE' NIĈEJ

THE REPORT OF THE PROPERTY OF

30.00

CNJALPHA =

* N.

THE RESIDENCE OF THE WORLD STATE OF THE STAT

AMPLIFICATION FACTOR - SIDE FORCE. N(SF) LEC SON

The second of th

BCS TEL VWBFIEICVIION EVČIOB - SIDE EOBCE' N(SE)

FIGURE 26. EFFECT OF MULTIPLE JET RCS FIRINGS, NSI-NBS 35.00 COJALPHA =

082 30 a

(A.)ALPHA =

A DE COMPANIA DE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE MENTE SE ME

and the state of the state of

which the second of the second

RCS JEI AMPLIFICATION FACTOR - NORMAL FORCE.

BCZ JĒL VWBLIFICATIÇN FACTOR - NORMAL FORCĒ, N(NF)

Market of the control

PAGE

-4.00

(C)ALPHA =

BCS NEL VW6F1E1CV11GN EVČLON - NOBWYF E0BCE: N(NE)

6,5

War to the State

>.

T. I. H. J. W. M. J. S.

BCS JET AMPLIFICATION FACTOR - NORMAL FORCE.

1.-

PAGE

(E)ALPHA

BCS TEL VWBFILICVIION EVCLOB - NOBWYF EGECE' N

L.

j,

1

296

PAGE

FIGURE 27. EFFECT OF MULTIFLE JET RCS FIRTNGS. N78.N52.N82

CF JALPHA =

The second of th

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NINES

SREF 2590.0000 SD.FT
LREF 474.8000 INCEE
BREF 936.8800 INCEE
VARIA 1876.2000 INC. 20000
ZHRP 375.0000 INC. 20000
SCALE 0100 **₩** \$889 \$689 020 80FLAP 000 000 000 000 ર્કે ન્યમ્ તું કું મું ફુંફું મું ફુંફુંફું મું ફુંફુંફુંફું મું 012 0A/T 2000. 2000. 2000. 2000. Ô Ф .008 .004 CONFIGURATION DESCRIPTION.

CONFIGURATION DESCRIPTION.

CONFIGURATION (MA-22)

CINSZ LARE CFHF 118 (MA-22)

CINSZ LARE CFHF 118 (MA-22) Y Ö -.004 -1.0-1щ. Н 1.2 - 8- DATA: SET SYNBOL CSINOOFI CSINOOFI C 뺭 . . 7 j

BCS TEL VHETTELCVIION EVCTOR - NOBHYF EOBCE' NENEJ

(G) ALPHA =

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 4.00

- | -

** 298

6,00

CHTALPHA =

The second of th

「 The Company of t

The state of the s

The first that we have the first that the first tha

RC\$ TEL VWBFIETCVITON EVCLOB - MOBWYF EDBCE. MCNES

PAGE

! !

8.00

CETALPHA =

RCS JET AMPLIEICATION FACTOR - NORMAL EGRCE, NUMF)

<u>|</u>:

300

PAGE

10.00

CJIALPHA =

RÇŞ JET AMPLIFIÇATION FAÇTOR - NORMAL FORÇE. NINF)

(K)ACPHA =

The second second

THE MINORAL SOUND SOUNDS AND SOUNDS OF THE SOUNDS OF THE

BES TEL VMBETELEVITON EVETOR - NOBMAL FORCE. NEWER

(LIALPHA =

いっこんかいち はっちょうけい 日本の本語のなどになるというとうかっているとう いちょうこう 人名ではなることがいいかい はっちゃん しゅうしょう 人名はいき

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE,

A STATE OF THE STATE OF

119 askullalifation 11 and 12

海巴人 明明人 医外部

THE THE PROPERTY OF THE PARTY O

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NUFT

1

f ;

1.4

Ö

ιά π

щ. •

BCS TEL VWBFILLICATION FACTOR - NORMAL FORCE.

品。.

CONFIGURATION DESCRIPTION
GINZ LARC CFHT 118 (MA-22)
GINSZ LARC CFHT 118 (MA-22)
GUNSZ LARC CFHT 118 (MA-22)

ğ ODŞ

CSJAGGS 1 (SJAGGS) (SJAGGS) (SJAGGS)

は こうしょう あるか できる ないかん

302

PAGE

024

.020

.016

.012 QA/T

900

.004

35.00

- . . . B

-.8

9

.004

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS. N78.N52.N82

(C) ALPHA =

-

7

RCS JET AMPLIETCATION FACTOR - PITCH. N(PM)

307

PAGE

-6.00

(B) ALPHA =

J :--

...

. م

Ť

RCS JET AMPLIFICATION FACTOR - PITCH. N(PM)

AMPLIFICATION FACTOR - FITCH. BCS TEL

PAGE

-2.00

(D)ALPHA =

CAR COMPONENT OF COMPLETE CONTROL OF CONTROL

· 関連を持ている。 は、一般のできることは

the control of the co

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

(FJALPHA =

undraftik (

The company of the second seco

RCS JET AMPLIEICATION FACTOR - PITCH, NCPM)

PAGE ::

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82

4.00

(G) ALPHA =

1. 1. 1. 1. 1.

THE THE TOTAL PROPERTY OF SALES OF SALE

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

CHJALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH. N(PM)

SEE 2594.000 57,FL SEE 2594.000 57,FL LIPE 474.3000 INCHE MARK 1076.7000 INCHE MARK 1076.7000 INCHE MARK 375.0000 INCHE SCALE .0100 1 මු දී ල්ලේ දී ල්ලේ .016 8 - 4.6 666 666 666 .012 QA/T FLEVO: 000: 000: Φ Q .05 4 CONFIGURATION DESCRIPTION OLIVER (MA-22) OLIVE LARC CFHE 118 (MA-22) OLIVEZ LARC CFHE 118 (MA-22) 1 1 2 ď -.004 -.16Em -.02年 DATA SET SYMBOL.
CS.MOOS.)
CS.MOOS.)
CS.MOOS.) ±80:-李01、-5 -081 -.04F -.06 -.14 .06<u>F</u> - PAE 8 -.12程

RCS JET AMPLIFICATION FACTOR - PLTCH, NEPA)

Ę

314

PAGE

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78.N52, N82

8.00

(I)ALPHA =

AND THE PROPERTY OF THE PROPER

(J)ALPHA =

7.

The second control of the second control of

The server the first of the server of the se

AMPLIFICATION FACTOR RES JET N(BM) PITCH,

(K)ALPHA =

f A

And the state of t

The state of the s

≡.

RCS JET AMPLIFICATION FACTOR - PLICH. NEPMS

(L)ALPHA =

And good good good and and the

The second secon

のでは、これでは、1965年のでは、1965年のでは、1965年の日本の

RCS JET AMPLIFICATION FACTOR - PITCH, MCPM)

SZZZZZ FONSEK SRE 7-76 INC. 3447 IBN SRE 759. CDO 50.FT LIFE 174. BCD INC. SRE 535. SRED INC. 36. TRN, X XMB 1076. 7000 IN. 2 ZHE 375.0000 IN. 2 SCALE .0100 318 PAGE 024 96.14 000 000 .020 MULTIPLE JET RCS FIRINGS, NZB, N52, N82 .O.16 5.00°. 2.00°. 2.00°. 2.00°. \$ 9.05.2 7.20 ELEVCN .000 .000 .000 1 Ŕ 808 .004 IGHRATICN DESCRIPTION
LARE CFHT 118 CM-223
LARE CFHT 118 CM-223
LARE CFHT 119 EM-223 O FIGURE 27. EFFECT 25.00 - , 16 Enluntum - , 004 CONFID OLN78 OHNS2 OHN82 CMJALPHA = 书01.-년 연 -.02 -.04年 -.06年 -.08 88 .06<u>F</u> -04- 20. E COS 0 -.12 CSUADOE)

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

The second state of the second

ſ

THE REPORT OF THE PARTY OF THE

A .

では、「「「「「「」」」というできない。 「「」」というできない。 「「」」というできない。 「「」」というできない。 「「」」というできない。 「」」というできない。 「」」というできない。 「」

PAGE := ;= _=

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78.N52.N82

30.00

CNJALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

J.

PAGE . 320

35.00

The same of the sa

-8.00

(A)ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

BCO SET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF,

REFERENCE INFORMATIC SREF 2690,0900 SQ LREF 474,8970 IN BREF 935,5800 IN BREF 1676,7080 IN YHRP 375,0000 IN ZHRP 375,0000 IN PAGE 024 ₹7. 8000. 6000. 020 FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78.N52.N82 8 9 9 9 9 9 9 9 9 9 9 9 9 .016 7.000 to 0.0 012 012 ELEVEN. a 900 .004 CONFIGURATION DESCRIPTION OINTS LARC CFHT 118 (MA-22) GINSZ LARC CFMT 118 6MA-221 OINSZ LARC CFHT 118 (MA-22) -.004 (C)ALPHA = -.14E -.16 -.0x -.02 -.06E -.08£ -08g -. 10£ -.12 .0S .02E 0.

AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

1.24.

「「一」」」「「一」」「「一」「「一」「「一」「「一」「「「「「「「」」」「「「」」「「「」」「「「」」「「「」」「「」」「「「」」「「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「」」「「」」「」」「「」」「」」「「」」「「」」「」」「「」」「」」「「」」「」」「「」」「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」

(E)ALPHA =

t

and the state of the same of the second control of the second of the sec

を はないはないないないとうないできない

REFERENCE INFERNATION SAEF 2690-0500 50.FT LREF 474-3000 INCHE BREF 936-6500 INCHE YHRP 375-9000 IN. 2 SCALE 0100 0 4 1.000 600.000 32.000 2.000 3.000 3.000 巾 CONFIGURATION BESCRIPTION
GLAZB
LARE CEHT 118 (MA-22)
GLARE CFHT 118 (MA-22)
GLARE CFHT 118 (MA-22) -.02 -08 --08-·0. - .08E .02 -,04 <u> - .06</u>₽ DATA SET SYNGA. CSLAGGEL CSLAGGEL CSLAGGEL CSLAGGEL Ö

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 ,008 × .012 2.00 CF JALPHA =

PAGE 326 ---

.024

920

016

.00.

-.004

-.14年

-.12程

-, 16E

-, 10 fe

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE.

ļ.,

the state of the state of

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, MCAF

327 -

PAGE

4.00

(G) ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NCAF)

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRTINGS, N78,N52,N82 8.00 (I JALPHA

,7

330

PASE

OF MULTIPLE JET RCS FIRINGS, N78,N52,N82

FIGURE 27. EFFECT

10.00

(J) ALPHA

The Care

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

The state of the s

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, N(AF)

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS. N78.N52.N82

15.00

CKJALPHA =

PAGE 331

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, N(AF)

-

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78.N52,N82 20.00 (L)ALPHA =

PASE 332

.020

.016

012 0A/F

.008

0

.004

--14春

-.12

-, 16

ļ.

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78.N52.N82

25.00

CMTALPHA =

Table 1 Tabl

The second

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, N(AF)

PAGE 334

(N) ALPHA = 30.00

RCS JET AMPLIFICATION FACTOR - אואר בפשכבי

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NIAF)

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 35.00 (G) ALPHA =

.

" <u>I</u>.

ſ.

(B) ALPHA =

RCS JET AMPLIFICATION FACTOR - ROLL. NIRM)

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 CJALPHA = -4.00

(C)ALPHA =

The Market of the Control of the Con

The second of th

RCS JET AMPLIFICATION FACTOR - BOLL, NÇRMI

-2.00

COTALPHY =

BCS TEL VWBFILLICVIIGN EVCION - BOFF' N(BM)

CONTRACTOR STATES OF THE PROPERTY OF THE PROPE

*1

CELALPHA =

BCS NEI VWBFIEICVIIGN EVCLOB - BOFF.

2.00

(F)ALPHA =

The second secon

RCS JET AMPLIFICATION FACTOR - ROLL. NIRM)

342

PAGE

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78, N52, N82

(G) ALPHA =

RCS JET AMPLIFICATION FACTOR - ROLL, N(RM)

6.00

(H)ALPHA

,

BCZ TEL VWBFIEICVIION EVCLOB - BOFF' NCBW)

RCS JET AMPLIFICATION FACTOR - ROLL, NÇRMJ

PAGE

RCS JET AMPLIFICATION FACTOR

י דוסט -

N(BH)

j

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78.N52.N82

10.00

(J)ALPHA =

CENFIGURATION DESCRIPTION
CUNTS LARC CFHF 118 FHA-22)
GINSZ LARC CFHF 118 FHA-221
GINSZ LARC CFHF 118 (HA-221) CS. AGOS. ST. SYMBOL CS. AGOS.) CS. AGOS.) .6 8. 0.1 -1.2 -1.4毛 BCS TET AMPLIFICATION FACTOR - ROLL. NERNI

And the second of the second o

8£7A .000 .000

E EVON OCCO

PAGE

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82

15.00

(K)ALPHA =

(L)ALPHA = 20.00

the second of the second secon

A CONTRACT OF THE PARTY OF THE

who have beginned by the graph of the spirit have and the second

ŀ

BCS TEL VWBFIETCVIION EVOLOB - BOFF' NCBW)

BCS TEL VWBFIEICVIION EVELOB - BOFF. NIBM)

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 25.00 (M)ALPHA =

PAGE

30.00

(N.) ALPHA =

RCG JET AMPLIFICATION FACTOR - ROLL, NIRM!

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 35.00 EQJALPHA =

359 PAGE [.,

. 1144° J. .

351

-8.00

(A)ALPHA =

RCS JET AMPLIFICATION FACTOR - YAW, NLYMS

the second property with the second of the second of the

1=

352

PAGE

-6.00

(B) ALPHA =

RCS JET AMPLIFICATION FACTOR - YAW, NCYMS

-4.00

(C)ALPHA

7;;

RCS JET AMPLIFICATION FACTOR - YAW.

FIGURE 27. EFFECT OF COJALPHA = -2.00

PAGE 334

(E)ALPHA =

.≒. ,=.,,

THE THE REPORT OF THE PROPERTY

BCE TEL VWBFIETCVITGN EVCLOB - AVM. NCAW)

BCS TEL VWBFILLICVIION EVCLOB - AVM. NCAWI

4.00

(G)ALPHA =

SACTURE BUILDING BUILDING STREET SERVICE BUILDING BUILDING STREET

The second of th

BCS TEL VHETTETCYTION EVCTOR - AVM. NCAM)

The second of th

BCS NET VMBFIETCYTION EVCTOR - AVM NCARD

1

PAGE

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82

6.00

(H)ALPHA =

RCS JET AMPLIFICATION FACTOR AVM! NEARS

99

PAGE

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82

10.00

(J)ALPHA =

PAGA --

15.00

(K)ALPHA =

THE PART OF THE PA

P. K.

RCS JET AMPLIFICATION FACTOR - YAW, NOYM)

PAGE

20.00

CLJALPHA =

;=<u>;</u>

RCS JET AMPLIFICATION FACTOR - YAM.

(MJALPHA = 25.00

The state of the s

*

RCS JET AMPLIFICATION FACTOR - YAW. NLYM)

-

364

PAGE

30.00

(N)ALPHA =

RCS JET AMPLIFICATION FACTOR - YAW. NEYMI

(0)ALPHA =

≙

366

PAGE

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82

(A)ALPHA

一一三月年に持ちなかったところと

The first second at the first second for the figure of a second s

BCS TEL VNBFIEICVIION EVCLOB - BIDE EGBCE" N(BE)

PÅGE

(B)ALPHA =

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NCSF)

BCS TEL VWBFIEICVIION EVCIOB - SIDE EGBCE' NCEE)

-4,00

CCJALPHA =

,-Fi

7

1.

BCS TEL VHBFILLTCVIIGN EVCIOR - SIDE EGECE.

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 -2.00 COJALPHA =

369 PAGE

二。; 於::::::

BCS 1E1 VWBF1E1CV110N EVCTOB - 21DE EDBCE' N(ZE)

・ A COMPANY AND A COMPANY A

÷

2.00

(F)ALPHA =

The second secon

The second section of the second seco

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

- 1 - · · ·

The state of the s

The second secon

**

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS. N78.N52.N82 4.00 (G)ALPHA =

PAGE 372

(H)ALPHA =

the control of the second control of the second second second second second

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

And the second s

The second secon

BCZ TEL VWBFILLICVIION EVCLOB - 210E EGBCE. NIGEJ

374

PAGE

8.00

(I)ALPHA =

1:

-.70

-.65-

856.95 866.95 866.95

TEFERET INCOMATION

SOLF 2890.0000 50.FS.

LGE 474.8000 INCOME.

BRE 936.6800 INCOME.

YESP 10F6.7000 INC.

ZHOP 373.0000 IN. ZI

SCALE .0160

O

ø

-.20€.

C1 1Ο π'm

- .40年

1.00 i

()

一.45中

BCS NET AMPLIFICATION FACTOR - SIDE FORCE, NUSFI

-.50

-.55

-.60

и¦ш ()

SCACO CONTRACT STANDS

and the second s

10.00

375

PAGE

.024

.020

.016

0.2 0A/T

(J)ALPHA =

BCP JET AMPLIFICATION FACTOR - SIDE FORCE. NUSF)

1 清清的 1000 多是,多是是

RCS JET AMPLIFIÇATIQN FACTOR - SIDE FORCE, NCSF)

The Property of the Party of th

بي

· —

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 LIALPHA = 20.00

(L)ALPHA =

PAGE

, **ż**

The street of the state of the state of the state of

378

PAGE

25.00

(M) ALPHA =

, j

RCS JET AMPLIFICATION FACTOR - SIDE FORCE. N(SF)

(N) ALPHA = 30.00

جَ جُر

And the second of the second o

BCE TEL VWBFILLICVITON EVCLOB - SIDE LOBCE: M(SE)

,

12. UU.

落 蒙

FIGURE 27. EFFECT OF MULTIPLE JET RCS FIRINGS, N78,N52,N82 35.00 (0)."LPHA =

380 PAGE

دو

. الم

-8.00

CAJALPHA =

BCE 1ET AMPLIFICATION FACTOR - NORMAL FORCE, NCNF)

The second of the second of the second of the second of

-4.00

(C) ALPHA =

ļ

þ

BES JET, AMPLIFICATION, FACTOR - NORMAL FORCE, NORF)

17 JIME Ration of Company to Commence of the sound of the commence of the comm

The second secon

N(NE)

RCS LET AMPLIFICATION FACTOR - NORMAL FORCE.

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 -2.00 CDJALPHA =

38 PAGE

ľ

. خ

(E)ALPHA =

A self on a following a comment

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NONE)

N(NE)

FORCE.

BCS TEL VWBFIEICVIION EVCLOB - NOBWYF

1 .

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 2.00 (F)ALPHA

386 PAGE Γ

[,

ŗ

ļ .

.. 4

The second secon

BCZ TEL VHBETELCVIIGN EVOLDB - NOBHVE EOBOE! NINE)

!

388

PAGE

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

6.00

= \$HA \$(1)

!

1

The second of th

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NUMP.

(I)ALPHA =

389

1

こうの 当の言うない 一般を見出している かっこうぎょうしょ

Sandy has represented a subject of the control of t

The state of the s

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NUMBER

111011111

C. 6

BÉS TÉL VWELTEICVITÖN EVELOB = NOBHYL EGBÉE N(NE)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 CKIALPHA =

391 PAGE

THE THE PARTY OF T

392

PAGE

20,00

CL JALPHA =

BCS TEL VMBFIETCYLIGN EVCLOB - NOBMYF EOBCE' NINE)

25.00

(M) ALPHA =

The state of the s

PAGE

30.00

CNJALPHA. =

The grant was the first of the second of the

35.00

(C):ALPHA =

RCS JĘT AMPLIFICATION FACTOR - NORMAL FORÇE:

5.0 (1) (2) (3)

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 -8.00 CAJALPHA =

396 PAGE

<u>|</u>-

RCS JET CHPLIFICATION FACTOR - PITCH. NIPM)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 (B)ALPHA =

PAGE

REFERENCE IN GRANTIGE SREF 255-000-178 IN 1976-178 IN BETA. .000 BOFLAP NO.JET 2.000 DATA SET SYNBOL CONFIGURATION DESCRIPTION.
(SJADOS) O DINTONTO LARC OFHT 118: CMA-22) .24年 .34E 325 300 -28- .26<u>E</u> 18. . 16th .22 8 .14

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 -4.00 CCTALPHA =

338 PAGE

15.

010

600

007 04/T

.005

. 64.

.003

.10H

The second of th

66 TA .090. BDFLAP NO.JET 2.096 ELEVEN. CENTIGURATION DESCRIPTION 36 胺 -26年 34 32F . 28. .24 .22 DATA SET SYNBOL (SJAGOS) O RCS JET AMPLIFICATION FACTOR - PITCH. NIPM)

FIGURE 28, AMPLIFICATION FACTORS FOR JETS N79N78 8 CETALPHA =

400

.010

.003

.008

04/T

.006

000

.004

.003

.08

.20[

18

16

14

-- ·· · · ·

\[\(\tilde{\pi} \)

2.00

(FJALPHA =

TO LEGISLAND TO THE TOTAL THE THE TOTAL THE

RCS JET AMPLIFICATION FACTOR - PLICH, NCPM)

DATA SET SMEDE.

(G)ALPHA =

402

-

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

DATA SET SYMBOU (SJADOB.)

- A CONTROL OF A CONTROL OF THE AND

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 6.00 (H)ALPHA =

ż

PAGE

-281

.26<u>+</u>

光

325

34

20年

RCS JET AMPLIFICATION FACTOR - PITCH.

87

.24年

.22年

The state of the s

 $\int_{\mathbb{R}^d} \tilde{f}$

404

PAGE .

010

008

.007 T/V0

.005

.004

.003

10.

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

8.00

CENALPHA =

(J) ALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, MCPM)

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 15.00 CKIALPHA =

406 PAGE

The HIPPING THE TAXABLE PROPERTY OF THE PROPER

RES JET AMPLIFICATION FACTOR - PITCH, NCPM)

CLJALPHA =

サーストラングランス 一般など こうしゅうしゃ ちゅうしているとう シャスス かいかんしんかん ころんの

REG JET AMPLIFICATION FACTOR - PITCH, NCPM)

(M)ALPHA =

TO THE SAID

PAGE - 408

(N)ALPHA =

The state of the s

RCS JET AMPLIFICATION FACTOR - PLICH. NOPM

RCS JET AMPLIFICATION FACTOR - PITCH.

N(PM)

FIGURE 28, AMPLIFICATION FACTORS FOR JETS N79N78 35.00 COINTPHA =

|

PAGE

BCS JET AMPLIFICATION FACTOR - AXIAL FORCE. N(VE)

PAGE

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

-8°00

(A)ALPHA =

ÿ

-.06部

-.10

- ,08

-.12

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE.

-.04

-.02

.02

NÉVE)

-. 16th

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

.005

.004

-.22

CBIALPHA =

412

-4.00

(CJALPHA =

3

7

≓', , <u>≐</u>

THE WINDS IN A CONTROL OF THE WASHINGTON TO SEE WASHINGTON TO SEE THE SECOND OF THE PARTY OF THE

RCS JET AMPLIFICATION FACTOR VXIVE FORCE,

BETA .000 8051.AP. 2.000 ELEVEN. CONFIGURATION DESCRIPTION OINTONDE LARC CFHT 118 (KA-22) CSTAGGS O

A CONTRACT OF THE PROPERTY OF

A ...

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NOF

4.

-2.00

(D)ALPHA =

É.

PAGE

FIGURE 28. AMPLIFICATION FACTORS FOR JETS NOONTB

90.

CETALPHA =

ني نيمور

A TO SERVE THE PROPERTY OF THE

RCS TET AMPLIFICATION FACTOR - AXIAL FURCE, NCAP,

867% .000

NO.JET 2.000

ELEVON.

RCG JET AMPLIFICATION FACTOR - AXIAL FORCE, N(AF)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 2.00 (F)ALPHA =

the second of th

Ŀ

₹,

PAGE

(GIALPHA =

BCS TEL VWBLIFICATION FACTOR - AXIAL FORCE. NUAF

REFERENCE INFORMATION SREF 2690,0000 SD.FT. LREF 474,8600 'INCHES BREF 936,6800 INCHES RMP 1076,2000 IN RD	ZHRP 375.0000 IN. 20
8£1% .000	
80FLAP .000.	
NO.JET 2.000	
ELEVON.	

***		l''''	''''	,,,,,	,,,,,		ļ,,,,,,	,,,,,	7111		ļ,,,,,	****	1	سنا	,,,,,	լա	,,,,,	111111	****	m	****	****	1111	1111	1511	7111	قيبيا	هنته
	· · ·	-		-	 		-	-		<u> </u>		-	 	÷	├-	+	+				<u> </u>	-	-	. "		<u> </u>	_3	110
-	-	╫	<u> </u>	}	 	-	-			 	-	-]. , ,	<u>-</u>	┼	-	-		-	Ľ,				<u> </u>		_ }	•
	<u>-</u>	 -			 	 _	_	_	-	<u>-</u>	 	-	_	Ė	 _	 -	<u> </u>	<u> </u>	<u> </u>			., '					-	
		<u> </u>			<u> </u>	<u> </u>	_		<u> </u>	<u>.</u>	<u></u>		_	Ц	丄	<u> </u>	<u> </u>				L						1	_
		<u></u>		<u></u>	<u> </u>	<u> </u>	_		_							1		<u></u>		_			<u> </u>				1444	2
		<u> </u>									<u> </u>								-		7		-		\Box			010
													-		٨	Γ	П			1			Г					
		1	. '					1			Π	Γ		Π	1		Т			1				-		: !	-	
					Г						Π	Г	T		Π		╁	 				1					į	စ္တ
	Г		1				\vdash						1	1	H	1-		 	Ι-	 	 				-	 		
_	Г	1	1	1	1	1				1	 		 	 	\sqcap	+	1	╆-	╁─	-	╫	-	 	<u> </u>	-	 	77	•
	1	-	1	t	 	 	<u> </u>	-	-	 	╁	-	\vdash	-	-	╟-	├	┿-	├	-	-	-	-	-		⊢		1
_	-	-	┢	-	\vdash	┢	-	\vdash		 	├	├-	-	-	\vdash	!	╀	-	┝─	-	├	-	-	 -		-	-	ČÁ
	┢	-	 	-	-	-	-	-	-	├-	 	-	╂	-	┡	╁	╀	╁			-	-	-	-		_		800
	┝	┝	 	—	├-	├-	_	-	-		 	 	├-	-	┞	\ -	╀	 	١	_	 			-	<u> </u>		-3	•
	┝	-	-	<u> </u>	├	_	_	-	-		 	<u> </u>	 _	 	 	H-		╄-		<u> _</u>	_		-					
	-	-	┡	-	-	<u> </u>	-			_	<u> </u>	-	 	<u> </u>	Ļ	4		<u> </u>	_	<u> </u>	_	_			·			.007
	_	<u> </u>	!	L.	ļ	<u> </u>		_		<u> </u>		<u> </u>	<u> </u>	<u> </u>	L	11	L	<u> </u>										6
_	<u> </u>	<u> </u>	_	_	<u> </u>	_				L	<u>. </u>		<u> </u>	_	L	Ш		L							L		,	O
		_		L	<u>. </u>	<u> </u>									<u> </u>	Ш	<u>l. </u>	L.						,			. *	
	_						<u>. </u>									П	Ι.	Γ.				Ι.					. 9	
			, .					,						1		П		1				,			_			.006
															Γ									<u> </u>	_		1	Ö
														1	Τ	П		1		_		┢	 	-	<u> </u>			, -
				Г	Г										—	11	1	 			7	_			-	-	궼	i
									\vdash	ļ -		1	1		 	 Ç	1	┢	<u> </u>	-	-	-		-	_		4	K)
				\vdash	_	 			_	┝	' -	 	1	\vdash	-	††	1	 	<u> </u>		-	•				H		.005
	_	<u> </u>	-	-	 	\vdash	-	-	-	 	-	-	 	-	-	++	╌	├	-	-	-					H		٠
-	\vdash	<u> </u>	-	┝	┢	-	-	-	-	├─	-	-	-	-	-	₩	-	 	-	-	-	-		-		\vdash		
÷	-	<u> </u>	<u></u>	┝	├	-	-		-		-	-	├	 	ŀ	₩	├	├ ─	_	 -	-		-					4
_	-	-		-	 -	-	-		-	-	ŀ	-	<u> - </u>	-	 —	₩	-	 	<u> </u>	ļ.,		_	-	-				8.
_		<u> </u>	-	 	<u> </u>	-		-	<u> </u>	-	-	_	-	 -	<u> </u>	₩	<u> </u>	-	_	 			-					•
_	<u> </u>	-		-	_	_	_		<u> </u>	<u> </u>		<u> </u>	 _	_	_	₩.	<u> </u>	 									_	
	-	<u> </u>			ļ.	ļ					_		_		_	!	_	<u>. </u>									- 3	
	<u> </u>	<u>. </u>	<u>. </u>		<u> </u>					<u> _</u>			_		L	1	_						لنا				=	S
_	<u>. </u>	_	_	_	<u> </u>		·			L					<u>_</u>												. #	.003
12		L.														Þ						,_						
ш	أعنة	ш	יועי	ш.	سنا	-itt	ښنا	шi	,,,,,	ııı	1111	ıı.	تبنئا	1111						بينيا	LILL.			Mai	uli.	1213	24 Eurlaulau	
5	Ć	2.	C	5	Ç	70.	4	֖֖֭֭֭֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	٢	0	00	ģ	Ç	μω. 3 •	(-171-	4	1. 4.	10	5	Ó	9	Š	2.		-44	74	
•	•	٠			1	ī. I		•		i	,	6	,	•			•		-	•	-	•		•	•	:	7	
						-	,	•	•	•	,	•	,	•		٠		•	,	•			1	,	•	•	ı	

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF,

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 6.00 CHJALPHA =

PAGE

ľ

÷,

=

the second secon

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NGAF)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 8.00 (1)/_PHA =

PAGE

ř

The second secon

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NIAF)

FIGURE 28, AMPLIFICATION FACTORS FOR JETS N79N78 10.00 (J) ALPHA =

420 PAGE

15.00

CKJALPHA =

THE TOTAL OF THE PROPERTY OF T

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 20.00 CLIALPHA =

422

F.,

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NIAF)

A STATE OF THE STA

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

25.00

(M')ALPHA =

DATA SET SYMBOL CONFIGURATION DESCRIPTION CSJAGOS). O BIN79NZB LARC CFHI 118 (MA-22) .04E -.02 - 10 -.14年 -.12年 . 120. 0 - .06 - 08 -.04年 RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF,

「Manager Manager ording to the control of the cont

SREF 2530-0000 50.FT LREF 474-8000 IND-C-BREF 935,6800 IND-C-WHIP 1076-7000 IN R WHIP 175-0000 IN R ZHIP 175-0000 IN R SCALE 0100

BETA .000

80FLAP .000

NG.JET 2.000

424

PAGE

FIGURE 28. AMPLIFICATION FACTORS FOR JETS NZ9W78

30.00

(N.) ALPHA. =

35.00

(G)ALPHA =

こうから 一日日日 中の日 こうしょう おもまないがっている しゅうとう

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, MIAF)

The second of the attention of the second

1

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

426

PASE

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

(K) ALPHA =

the second of th

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 (B)ALPHA =

427 PAGE

The Property of the Control of the C

RCS JET AMPLIFICATION FACTOR - ROLL, NCRMS

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 -4.00 (C)ALPHA =

428 PAGE

1-

PCS JET AMPLIFICATION FACTOR - ROLL, NIRM)

浮汽

429 PAGE

.01

RCS JET AMPLIFICATION FACTOR - ROLL.

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 90. (E)ALPHA =

430 PAGE

2.00

(F)ALPHA =

:*:*

The Distribution of the Contract of the Contra

RCS JET AMPLIFICATION FACTOR - ROLL, NIRM

RCS JET AMPLIFICATION FACTOR - ROLL.

NCBW

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 4.00 (G) ALPHA =

432 PAGE .

j,

8.8

CHYALPHA -

TARREST TO THE TOTAL PROPERTY OF THE PROPERTY

פּכפ זבּד אַמָּבוֹבּוֹכֹּאָזוֹמָּא בּאָכוֹמָצּ - פּפררי אַנְפָּאוֹ

SECOND CONTRACTOR OF THE PROPERTY OF THE PROPE

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 8.00 (I)ALPHA =

434 PAGE .

<u>=</u>

RCS JET AMPLIFICATION FACTOR - ROLL, NERNI

TO THE REPORT OF THE PARTY OF T

RÇŞ JET AMPLIFICATION FACTOR - שמררי מנשש)

20.00

(LIALPHA =

|;

BCS TEL VWBFIETCYTTON EVCTOR -NCBM) אפררי

RCS JET AMPLIFICATION FACTOR - ROLL, NIRM)

438

PAGE

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

25.00

CMINLPHA =

30.00

(N)ALPHA =

; ;

弄污

<u>ف</u> ب-

BCS TEL VMB-LEICVIION EVCTOR - BOLL, NGRMI

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

A CONTRACTOR OF THE PROPERTY O

The second of th

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 35.00 (O) ALPHA =

PAGE

and the second second second and the second

William to the Bull of the state of the stat

RCS JET AMPLIFICATION FACTOR - YAW, MLYMI

RCS JET AMPLIFICATION FACTOR - YAW.

PAGE

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

-6.00

(B) ALPHA =

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

-4.00

CCJALPHA =

RCS JET AMPLIFICATION FACTOR - YAW, NCYM)

THE REPORT OF THE PROPERTY OF The state of the s

RCS TET AMPLIFICATION FACTOR - YAW. NCAN)

(E) ALPHA =

Transfer Market Contract of the Contract of th

THE RELEASE AND THE PROPERTY OF THE PROPERTY O

RCS JET AMPLIFICATION FACTOR - YAW. NCYM)

The second of th

RCS JET AMPLIFICATION FACTOR - YAM, NEYN)

#O!!

8

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 2.00 CF JALPHA =

PAGE 446

010

.003

administration

.007 **0A/T**

- 006

.005

.004

.00 83

- 15

-,104

-.05

(G) ALPHA =

i ezer den e

THE RELEASE OF THE STATE OF THE

BCS TEL VMPLIFICATION FACTOR - XVM MCXW)

THE PARTY OF THE P

RCS JET AMPLIFICATION FACTOR - YAW.

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 6.00 CHINTEPHE =

448 PAGE

BCZ TEL VWBFILICYLIBN EVCLOB - AVM. NCAW)

A CONTRACTOR OF THE PROPERTY O

449

PAGE

8.00

(I)ALPHA =

BCS TEL VWBFIEICVIIGN EVCLOB

- AVM" NCAM)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 10.00 CJJALPHA =

i .

450 PAGE

=

PAGE

į,

15.00

(K)ALPHA =

THE THE PARTY OF T

RCS JET AMPLIFICATION FACTOR - YAW. (WX)N

KCS TET AMPLIFICATION FACTOR - YAW. **NCAW)**

PAGE

20.00

(L) ALPHA =

]

THE HALD HAMPEN COMPANY OF THE PARTY OF THE

THE STATE OF THE S

453

PAGE <u>.;</u>

=

25.00

(M) ALPHA =

.003

-.20年

- 15年

--10年

-.05E

PCS JET AMPLIFICATION FACTOR -**KVM** NCAW)

151

.10程

335

.40h

454

DATA SET SYMBOL (SJA009) O. 1

.25年

. 30k.

.20£

ō

.05£

(N)ALPHA =

RCS JET AMPLIFICATION FACTOR - YAW, N(YM)

RCS JET AMPLIFICATION FACTOR

NEAW

"MVA -

いた 教育を持ちなる こうこうしん かんしゅう かんしん はっちゅう ママン・ステート かんしょう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう しゅうしゅう しゅうしゅう しゅうしゅう

The second section of the second seco

By Taylor Bandar to a collect a management of a recommendation of the collection of

FIGURE 28. AMPLIFICATION FACTORS FOR JETS NYON'78 35.00 (C)ALPHA =

23 =

PAGE

A CONTRACT OF THE CONTRACT OF

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NUSF)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 -8.00 (A)ALPHA =

456 PAGE ∫. →

RES JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

457=

PAGE

· 4.

458

PAGE

-4.00

(C)ALPHA =

the figure of the first of the second of the

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NCSF)

¥..

ŗ

RCS TEL MABFIETCYTION ENCTOR - SIDE EGRCE, NUSED

A STATE OF THE PROPERTY OF THE

The second of th

BCS 1EL VWBFIEIGVIION EVCIOB - SIDE EOBCE' N(SE)

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78 8 (E) ALPHA =

460 PAGE

The state of the s

PAGE

Ę

(F)ALPHA =

RCS JET AMPLIFICATION PACTOR - SIDE FORCE, NUSF)

RES JET AMPLIFICATION FACTOR - SIDE FORCE. NUSF)

.

RCS JET AMPLIFICATION PACTOR - SIDE FORCE,

9.00

CHJALPHM =

THE RESERVED THE PROPERTY OF T

RES JET AMPLIFICATION FACTOR -SIDE FORCE.

AMPLIFICATION FACTOR - SIDE FORCE, BCS TEL

RCS JET AMPLIFICATION FACTOR - SIDE FORCE. NUSF)

\$

;

CL JALPHA =

J. C. Spilled St.

BÉS TEL VWBFIETCVITON EVELOB - SIDE EGBCE' N'OBE)

(M)ALPHA =

1

The second second of the second secon

BCE 1E1 VWBF1E1CV11UN EVCLOB - 21DE EOBCE! N(2E)

PAGE <u>=</u>

RCS JET AMPLIFICATION FACTOR - SIDE FORCE.

THE RESERVE OF SHIPT SECOND OF SAME WAS TO SECOND STATES OF SAME

>

FIGURE 28. AMPLIFICATION FACTORS FOR JETS N79N78

35,00

(G) ALPHA =

1 .

,

である。 日本の 1000 Minus Mi

The second secon

RCS JET AMPLIFICATION FACTOR - 610E FORCE. NIGF)

-8.00

CAJALPHA =

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NUMP)

The second terms of the second

SCS TET AMPLIFICATION FACTOR - NORMAL FORCE. NUMP.

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSON85 80. (B)ALPHA =

472 PASE

ļ. .†

BES 1ET AMPLIFICATION FACTOR - NORMAL FORCE, NUMBE

þ

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSONBS

COJALPHA =

-

The control of the co

RES JET AMPLIFICATION FACTOR - NORMAL FORCE. NOWED

CELALPHA =

RCS JET AMPLIFIEATION FACTOR - NORMAL FORCE, NINF)

PAGE

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSON85

-8.00

(A) ALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

PASE 477

9

(B)ALPHA =

The state of the s

RES JET AMPLIFICATION FACTOR - PITCH.

(CIALPHA =

!

es.

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

(D)ALPHA =

Ì

と これの •

THE PARTY OF THE P

RES JET AMPLIFICATION FACTOR - PITCH. N(BM)

(E) ALPHA =

AMPLIFICATION FACTOR - PITCH, N(PM) FCS JET

(A)ALPHA =

e. .

The state of the s

RCS JET AMPLIFIÇATION FACTOR - AXIAL FORCE. NIAF)

Ţ

The state of the s

Sales and the sales of the sale

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSON85

99

(BJALPHA =

(C) ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. N(VE)

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSON95

20.02

(C)ALPHA =

!

・10 というでは、大きないでは、「「「「「「「「「」」」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」 ・10 というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「」

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, N AFT

BCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF.

FIGURE 29. AMPLIFICATION FACTORS: FOR JETS NSON85

-8.00

CAJALPHA =

and the second of the second o

これでは、大きないのではないというできますがあるというないというということ

RCS JET AMPLIFICATION FACTOR - ROLL, NIRMI

RCS JET AMPLIFICATII I FACTOR - ROLL. N(RM)

.20年

404

.45E

. 마

33

35

.25年

뺭

·15年

.03.E

O min

c.7

8

(B)ALPHA =

-.14

<u>-,05</u>

- 15時

RCS JET AMPLIFICATION FACTOR -

פפררי

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSONBS f0.00 (C)ALPHA =

488 PAGE

1

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSON85

20.00

COJALPHA =

F

RCS JET AMPLIFICATION FACTOR - ROLL. MERM)

AMPLIFICATION FACTOR

שמררי

FIGURE 29. AMPLIFICATION FACTORS FOR JETS N50N85 35.00 (E)ALPHA =

ร็วช

490 PAGE

4 %

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSON85

-8.8g

CAJALPHA =

= =

RCS JET AMPLIFICATION FACTOR NCKWI

٠,

RCS JET AMPLIFICATION FACTOR

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSONBS 8 (B) ALPHA =

492 PAGE

(C)ALPHA =

BCS 1ET AMPLIFICATION FACTOR - YAW, N(YM

REFERENCE INFORMATION

494

PAGE

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSONBS

20.00

COJALPHA =

RCS JET AMPLIFICATION FACTOR

(E)ALPHA =

RCS JET AMPLIFICATION FACTOR - YAW,

With the second of the second

RCS JET AMPLIFICATION FACTOR - SIDE FORCE. NUSF)

-8.00

(A) ALPHA =

PAGE

1

8

(B)ALPHA =

1

1

A ... A.

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NUSF)

(C)ALPHA =

BCS 1ET AMPLIFICATION FACTOR - SIDE FORCE, NISF)

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSON85 (D)ALPHA = 20.00

499 PAGE

. .

;:::≰≓

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NUSF)

FIGURE 29. AMPLIFICATION FACTORS FOR JETS NSON85 35.00 (E)ALPHA =

PAGE

200

[.,

Ē

-9.00

(A)ALPHA =

بر ت ب

3

è

RES JET AMPLIFICATION FACTOR - NORMAL FORCE, NUMPI

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, N(NF)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 -6.00 CBIALPHA =

502

PAGE

RES JET AMPLIFICATION FACTOR - NORMAL FORCE.

7. P.

RES JET AMPLIFICATION FACTOR - NORMAL FORCE. N(NF)

COTALPHA =

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

504 PAGE

ġ.

(E)ALPHA =

505

-;

ř

4.00

(G)ALPHA =

,= j

1 1

RCS JET AMPLIFICATION FACTOR - NOBNYT EDECE' N(NE)

, ,

.. 0.

9

4.

7

-.2

BÉS TÉL VMBÉTIETCYTTON EVCLOB - NOBNYE EGBÉE' NCNE)

-.4E

Ó

ι Ω

8

-1.0

-1.2

00.7 0A/T FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 (H) ALPHA =

6.00

Ī

508

PAGE

110.

600

808

900.

.005

.004

-1.6km

/ ⊘≘≅

(I)ALPHA = .

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NCNF)

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NINE)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 10.00 (JIALPHA =

.005

.004

.003

210

= 2

(K)ALPHA =

RCS JET AMPLIFICATION PACTOR - NORMAL FORCE, N(NF)

BCS 1E1 VMBFIEICVIION EVCIOB - NOBMYF EOBCE: N(NE)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

20.00 CL JALPHA =

(M)ALPHA =

42.44.77.2

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, N(NF)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS NB4

(N)ALPHA =

514

PAGE

|. ≠

BCS TEL VWBLIFICATION FACTOR - NORMAL FORCE, NUMP,

(C) ALPHA =

BCS TET AMPLIFICATION FACTOR - NORMAL FORCE, N(NF)

/

- 1

=

/⁵.3

RCS JET AMPLIFICATION FACTOR - PITCH.

-6.00

(B)ALPHA =

518 PAGE

RCS JET AMPLIFICATION FACTOR - PITCH,

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

-4.00 (C) ALPHA =

REFERENCE INFORMATION .01 I 2590.0000 474.8060 938.88060 1026.7800 373.8080 373.8080 0190 010 SACT WARP STALE STALE 861A .090 903 80FLAP .000 800 NO.4E1 ELEVEN. COMFIGURATION DESCRIPTION GINS# LARC CFHT 118 (PA-22) -. 30 Emilia -.20年 -.15程 .25年 -.10 40E 15年 ·05年 -.25 Ö -.03 306 35 .20[DATA SET SYMBOL

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 -2.00 (D)ALPHA =

.006

.005

.004

.003

PAGE

519 **

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

520 PASE

.011

010

.009

900

.006

.005

.004

.003

-. 30£

-.25

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

(E)ALPHA =

CF JALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, WCPM)

.

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 4.00 (G)ALPHA =

522 PAGE

RCS JET AMPLIFICATION FACTOR - PLICH, MEM)

, 'D | II,

6.00

(H)ALPHA

PAGE

PAGE

8.00

(FIRLPHA =

; ; ;

RCS JET AMPLIFICATION FACTOR - PITCH. N(PM)

(J)ALPHA =

,=

RCS JET AMPLIFICATION FACTOR - PITCH, M(PM)

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

15.00

CK JALPHA =

526

PAGE

(L)ALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH. NCPM)

PAGE

25.08

(M) ALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM3

CNJALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

.40E"T

光光

8

.25£

B€1.4 .008

N. XGS

·20年

·10世

8

라.

O Mir

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

-.05

.004

.003

-.20是

-.25

-.15年

- 10長

35.00

(C) ALPHA =

1 = F

PAGE

011

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE.

500

PAGE

-8.00

(A)ALPHA =

=

.004

.003

-.241

-.22

-.20是

-6.00

(B)ALPHA =

O

- 16E

- . 18E

.04 E

.02

-.02

Ö

-.06<u>F</u>

-.04年

-.08<u>F</u>

-.12季

-.14

- 100

BCS TEL VWPLIFICATION FACTOR - AXIAL FORCE, N(AF)

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

j÷ į

-1

-4.00

(C) ALPHA =

3

1:

534

PAGE

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

-2.00

(D) ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL EGRCE. N(AF)

(E)ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, MCAF)

| .-

536

PAGE

(F)ALPHA =

BCS TEL VWBTILICVIIGN EVELOB - VXIVE EGBCE. N(VE)

(G) ALPHA =

BCZ TEL VWBTIETCYLION EVCLOB - VXIVE EOBCE* NIVE)

I the second second

PCS JET AMPLIFICATION FACTOR - AXIAL FORCE. N(AF)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 8.8 (H)ALPHA =

PAGE

CIJALPHA =

į

RCS JET AMPLIFICATION FACTOR - AXIAL FORÇE, N(AF)

;

!

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NCAFJ

(M)ALPHA =

Ī

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

PAGE

(L)ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAFJ

(M)ALPHA =

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NCAF

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE.

CNIALPHA =

PASE

<u>.</u> براجع

Ì

•

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE,

545

PAGE

35.00

(O)ALPHA =

· ••

PAGE

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

-8.00

(A)ALPHA =

7. 4

BCS TEL VMBFIEICVIION EVCLOB - BOFF.

PAGE

-6.00

(B) ALPHA =

قع ؛ تتم

-1.2

-1.4

-1.8

号。1-

8.

ij.

RCS JET AMPLIFICATION FACTOR - ROLL, N

-.2

-.6

-.4

... 哈

ф.

ىبنى 0)

.2.

Ö

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 (CIALPHA = -4.00

PAGE 548

-2.00

(C) ALPHA =

ž

Ì

-

RCS JET AMPLIFICATION FACTOR - ROLL, MCRM)

550

PASE

ŝ

(E) ALPHA =

1 .

BCS TET AMPLIFICATION FACTOR = ROLL, N(RM)

₹.00

(F)ALPHA =

ş

!

1

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

のか かってい コンコカラ マニー

RCS JET AMPLIFICATION FACTOR - ROLL. NIRM)

(H)ALPHA =

.

7

ì

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

8.00

([]ALPHA =

!

BCS TEL VWBFIETCYTTON EVCTOR - BOFF' NEBWI

10.00

E VHATALP)

ř

ŧ

RCS JET AMPLIFICATION FACTOR - ROLL, MIPH)

3,

,=

RCS JET AMPLIFICATION FACTOR - ROLL, NERN

(L) ALPHA =

RCS JET AMPLIFICATION FACTOR - ROLL, NURM)

i

RCS JET AMPLIFICATION FACTOR - ROLL. NURM)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 25.00

(M) ALPHA =

558 PAGE

13

30.00

(N)ALPHA =

ŧ

BCS NEI VWBFIEICVIION EVCIOB - BOFF' NCBW)

260

PAGE

35.00

CO JALPHA =

RCS JET AMPLIFICATION FACTOR - ROLL,

795 Ţ,

PAGE

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

-8.00

(A)ALPHA =

7

التي أحيار

RCS JET AMPLIFICATION FACTOR - YAW, N(KH)

HILL MAN.

RCS JET AMPLIFICATION FACTOR - YAW. NCYM,

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 -6.0d (B)ALPHA =

562 PAGE

j

1

PAGE

-4.00

(C)ALPHA =

RCS JET AMPLIFICATION FACTOR - YAW, N(YM)

PAGE 564

þ

BCS JET AMPLIFICATION FACTOR - YAW, NLYM)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

(E)ALPHA =

محجن تر

the contract of the bolishes from the bolishes portion

, | *

RCS JET AMPLIFICATION FACTOR - YAW. NCYMI

8ETA .000

80FLAP .000

NB.JET 2.080.

ELEVON

DATA SET SYMBOL. CONFIGURATION DESCRIPTION (SLADIL) O GINBA LARC CENT 118 (MA-22)

ï

(FIALPHA =

RCS JET AMPLIFICATION FACTOR - YAW.

RCS JET AMPLIFICATION FACTOR - YAW, MCYM)

567

PAGE

(G)ALPHA =

Company of the animal females

RCS JET AMPLIFICATION FACTOR - YAW. NCYM)

8.00

(1)ALPHA =

Š.

BES TEL VMBFILLICVIIGN EVCLOB - AVM N(AM)

Acres of the second second .

RCS JET AMPLIFICATION FACTOR -

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 10.00 (J)ALPHA =

PASE

570

(K) ALPHA = 15.00

RCS JET AMPLIFICATION FACTOR - YAW, NOYM)

BCS TEL VMBFIETCYLION EVCLOB

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 20.00 (L)ALPHA =

572 PAGE

RES JET AMPLIFICATION FACTOR

... O

NCAW

<u>ئ</u> شابب

. Ми

., ., ., .,

ιή.

in.

RCS JET AMPLIFICATION FACTOR - YAW.

1

,±

574

PAGE

110.

010

.009

900

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

30.00

(N)ALPHA =

.005

.004

.003

Ö

9

#

....

35.00

(C) ALPHA, =

1

. |

j

1.

BCZ TET AMPLIFICATION FACTOR - YAW. N(YM)

1. → .

٠ رم سابد

÷.

BCS TEL VWBFIEICVIION EVCLOB - SIDE EOBCE' NIZEJ

こうこと、「その間の大きでもない」というということ、これにはいることになっているとのできるとなった。その間を関するとなっていることできます。

The state of the state of the state of

.008 .007 0A/T FIGURE 30. AMPLIFICATION FACTORS FOR JETS NB4 .006 .005 .004 O -8.00 .003 (A)ALPHA = -. 品 - .7 -1.2 1.1. i Qi 7. 8 -1.0

576 PASE

.011

010

600.

1 /

Ą

(B)ALPHA =

BCG 1E1 VMBLIFICATION FACTOR - SIDE FORCE, N(SF)

ì

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 -4.00 (C)ALPHA =

578 PAGE

-0.00

(D)ALPHA =

BCS NET AMPLIFICATION FACTOR - SIDE FORCE, NISF)

*

REFERENCE 114 OSTA 11 ON SREET 26 30 10.00 580 10. 010 BETA .000 600 BEFLAP. .008 00. FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 900. DATA SET SYMBOL. CONFIGURATION DESCRIPTION (SUACIL) O CINBA LARC CFHT 118 (MA-22) .005 .004 .003 (E) 4[PH4 = 44 -1.0H α, 67. -.2 - 4 į, 9 1.1 .

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NUSF.)

GCS OFT AMPLIFICATION FACTOR - SIDE FORCE, NUSFI

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NISF)

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NUSF)

H WITH TWO TO

0,8

نز

584

PAGE

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84

8.00

(I)ALPHA =

RCS JET AMPLIFICAT IN FACTOR - SIDE FORCE, N(SF)

(JJALPHA = 10.00

المينية . "مينية المينية . "مينية

BES JET AMPLIFICATION FACTOR - SIDE FORCE, MISF)

RCS JET AMPLIFICATION FACTOR - GIDE FORCE, N(SF)

FIGURE 30. AMPLIFICATION FACTORS FOR JETS N84 15.00 (K)ALPHA =

PAGE 586

20.00

(L)ALPHA =

Ż

1.

RCS JET AMPLIFICATION FACTOR - SIBE FORCE, NUSF)

588

PAGE

25.00

(M)ALPHA =

,-. . .

BCE TEL VWBF1E1CVIION EVELOB - BIDE EDBCE' NIEE)

(N)ALPHA =

BCS NET VMPLIFICATION FACTOR - SIDE FORCE, NUSED

BCZ TEI VWBFILIGVION EVCIOR - ZIDE EOBCE' NCZE)

PAGE 590

35.00

(O)ALPHA =

1,

F

BCS TEL VWBCIETCYLTON EYCLOB - BOCC' NCBW)

BCS JET AMPLIFICATION FACTOR - YAW, NCYM)

FIGURE 31. AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N79 O 0 10 20 30 ANDLE OF ATTACK, ALPHA, DEGREES 10.33 11 (A)MACH

-10

-20

- . 4 Em

<u>ب</u>

500 5000

PAGE

40

≣ٍ.

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NINF)

: f.

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

10.33

正して 見つかし

التراي المراجع

VMPLIFICATION FACTOR - SIDE FORCE, NUSF) RCS JET

RCS JET AMPLIFICATION FACTOR - PITCH, MCPM)

199.008 35.000 47.500

7.000 v. 000 v. 000 v. 0000 v.

FLEV 60000

, S.

BCS TEL VWB-ILICVITON EVCLOB - BOFF' NCBW)

RCS JET AMPLIFICATION FACTOR - YAW.

599

PAGE

10.33

CAUMACH

-

; ;

م مير بسو

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE,

ż

*

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

بني

BCS 1E1 VWBF1E1CVIION EVCLOB - NOBWYF EGBCE' NINE)

REFERENCE LY-COUNTIDATES - 2650,0000 50,FT.

REF 474,8000 INCES.

REF 935,6300 INCES.

RRF 935,6300 IN. 70

RRF 375,0000 IN. 20

KARE 975,0000 IN. 20 SCALE STATE 1797-1 190.980 47.580 CONFIGURATION DESCRIPTION
CINES LARC CENT 119 (MA-22)
GINB3 LARC CENT 118 (MA-22)
GINB3 LARC CFHT 118 (MA-22) .25E" · · · - 10年 -.05h - 15 平15 ... C) CUA2290 COUNTY C .20<u>F</u> ö - Sc. -.25 -.30 -,35

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

FIGURE 33. AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N83

10.33

ħ

CAUMACH

- 10

-20

-30

- 45

-.40

607 PAGE

3

7

ANGLE OF ATTACK. ALPHA. DEGREES

1

The second second

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SP)

FIGURE 33. AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET NB3 10.33 CA)MACH

809 PAGE

._-

RUS JET AMPLIFICATION FACTOR - PITCH, NOPM)

(A)MACH

.

RCS JET AMPLIFICATION FACTOR - ROLL, NGR')

REFERENCE INFORMATION 2690,0000 474,8000 938,6800 1076,7000 375,0000 40 A FUNCTION OF ALPHA FOR JET NSI 1707-1 122-726 126-126 156-126 -10 0 10 20 30 ANGLE OF ATTACK, ALPHA, DEGREES 80 000 000 000 000 A ... 46.000 4.0 ELEVON. .000. .000. FIGURE 34. AMPLIFICATION FACTOR AS CONFIGURATION DESCRIPTION

OINSI LARE CEHT 118 (MA-22)

OINSI LARE CEHT 118 (MA-22)

OINSI LARE CEHT 118 (MA-22) -2<u>0</u> ų. Tir . ••• ••• " U U 7. ά οj.

PAGE

10.33

(A)MACH

RCS JET AMPLIFICATION FACTOR - YAW.

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NUNF)

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, N(AF)

2636.48094 238.6899 1076.7090 225.0000 225.0000 SREF LREF XMRP XMRP XMRP ZMRP SCALE 52.73 80.03 80.03 80.03 **3** ≅ 888 ≅ 888 ⊒ 2666 3666 CONTINUENTIAN LEGACIFICATION CON-223 CINST LARG CFHT 118 CM-223 CINST LARG CFHT 118 CM-223 CHNS1 LARG CFHT 118 CM-223 CONTACTOR OF STATE OF

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

ترسر چستر

RCS JET AMPLIFICATION FACTOR - ROLL.

RCS JET AMPLIFICATION FACTOR - YAW.

BCS 1E1 VWbF1E1CV110N EVCLOB - NOBWVF EOBCE' N(NE)

-

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF,

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NUSFI

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

i

621

PAGE

ź.

zije.

بنز

j: ‡

RCS JET AMPLIFICATION FACTOR - ROLL.

j.

ŧ

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NIMF)

10.33

CACMACH

BCS NET AMPLIFICATION FACTOR - AXIAL FORGE, NIAF

1.40.4-1 195.000 195.000 17.500

3 9888

A ----

ELEVGN .000 .000 .000

CONFIGURATION DESCRIPKION
GINZO LARC CEHT 118 (MA-22)
GINZO LARC CEHT 118 (MA-22)
GINZO LARC CEHT 118 (MA-22)

ig and

DATA. SET S (CJAG72) (CJAG71) (CJAG70)

-

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NUSF)

÷

BCS JET AMPLIFICATION FACTOR - PITCH, MIPM)

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

PRE JET AMPLIFICATION FACTOR - YAW, NCMM)

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, N(NF)

63. 12.

PAGE

10.33

(A)MACH

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

. .

BCS TEL VWBFIETCVITON EVCLOB - SIDE EOBCE' N(SE)

j

7.7

RCG JET AMPLIFICATION FACTOR - ROLL. NCRM)

635 į

PAGE

FIGURE 38. AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET NBZ

10.33

CA JYACH

....

RCS JET AMPLIFICATION FACTOR - YAW, NYM)

PAGE

10.33

CA.)MACH

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NUNE)

637 PAGE

FIGURE 38. AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N82

10.33

(A) MACH

Ŕ

REFERENCE, INFORMATION
REF. 2690, CEDO SO, CT.
REF. 274, CEDO INCICES
REF. 935, CEDO INCICES
REF. 1076, TADO IN. 20
RAPE 375, CEDO IN. 20
CALE .0100 SCALE SCALE 8 8 8 8 8 8 8 CONFIGURATION DESCRIPTION.

GINB2 LARE CFMF 118 (MA-22)

GINB2 LARE CFMF 118 (MA-22)

GINB2 LARE CFWF 118 (MA-22) 빵 ю щ ₩. CLASS STABLE COLASS COLOR COLO 4. N Ö RES JET AMPLIFICATION FACTOR - SIDE FORCE, NUSF)

Ø

.

-1.0

-1.25

.6

7.

AS A FUNCTION OF ALPHA FOR JEF 1883 -10 0 10 30 30 30 ANGLE OF ATTACK. ALPHA. DEGREES 38. AMPLIFICATION FACTOR 10.33 FIGURE (A)MACH

-20

-30

-1.6

-1.4

638

RCS JET AMPLIFICATION FACTOR - PITCH. N(PM)

₹ %%% ₹ 666.

⊒ \$688 \$688

UNITY OF LIMITED THE TOTAL TO THE TIME TO THE TIME CHA-22 (CLASSE) CHASSAYE LARC CENT IIE CHA-22 (CLASSE) CHASSAYE LARC CENT IIE CHA-22 (CLASSE) CHASSAYE LARC CENT IIE CHA-22 (CLASSE)

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

A.

640

PAGE

10.33

CA JMACH

-(

RCS JET AMPLIFICATION FACTOR - YAW, NCYM

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NINF)

{ =

BCS TEL VWBFIETCVIICH EVCLOB - VXIVF EGBCE' NIVEJ

47.000 6000 6000

E.E. 6000.

CONFIGURATION DESCRIPTION
DINJOYDB. LARE CENT 118 (MA-22)
DINJON78 LARE CENT 118 (MA-22)
DINJON78 LARE CENT 118. (MA-22)

į

RCS JET AMPLIFICATION FACTOR - SIDE FORCE.

RCG JET AMPLIFICATION FACTOR - PITCH, N(PM)

,

RCS JET AMPLIFICATION FACTOR - ROLL, NIRM)

BCS 1E1 VMBFIETCYTION EVCTOR - XAW.

1

. 1

¥

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. N(NE)

SEEF 2590,0000
LREF 774,8000
LREF 174,8000
RREF 935,6800
VARRE 1076,7000
VARRE 185,0000
274E 785,0000 1704-1 127-700 95-900 47-500 8 2000 8 0000 8.27.900.5 900.5 900.5 900.5 ELEVGN. CONFIGURATION DESCRIPTION 01:85NSQ LARC CFWT FLB (MA-22) 01:85NSQ LARC CFHT 118 (MA-22) GP:35NSQ LARC CFH: 118 (MA-22) .25E -20-

BCZ NEI VWBribiCVIION EVCIOB - VXIVE EOBCE' N(VE)

1

.

, **3**

في

7

649

PAGE

FIGURE 40. AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET NSONBS

10.33

(A)MACH

•

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NGF)

RCS TET AMPLIFICATION FACTOR - PITCH, NCPM)

BCS DET AMPLIFICATION FACTOR - ROLL, NERNI

10.33 (A)MACH

-3.5F

-2.0年

-2.5

-3.0

-10

FIGURE 41. AMPLIFICATION FACTOR AS A FUNCTION OF ALPHA FOR JET N84 0 0 30 30 ANGLE OF ATTACK, ALPHA, DEGREES

654

PAGE

40

(A)MACH

ï

l

į

3

10.33

11

CA JMACH

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAFT

,

656

PAGE

10.33

(A)MACH

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NIGF)

PAGE

-8.00

CATALPHA =

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NCNF)

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, NUMF3

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NCNF)

į

,, 1

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE. NCNF)

FIGURE 42. EFFECT OF BOOY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83 -8.00 CAJALPHA =

1

663

(BIALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

664 FIGURE 42. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79,N49,N83 PAGE 10.00 (C)ALPHA =

: آج الآسي

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

Ì.

RCS JET AMPLIFICATION FACTOR - PITCH. N(PM)

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

į.

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. NCAF)

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE. MCAF)

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, N(AF)

FIGURE 42, EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83 PAGE 20.00 CDJALPHA =

 P_{μ}^{\prime}

į,

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

İ

RCS JET AMPLIFICATION FACTOR - ROLL, N(RM)

ł

RCS JET AMPLIFICATION FACTOR - ROLL. NORM)

BCZ NEI VWBEIŁIGVIIGN ŁYCIGB - BGEE' NCBWI

876 BOBY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83 PAGE FIGURE 42. EFFECT OF 35.00 (E)ALPHA =

RCS JET AMPLIFICATION FACTOR - YAW, N(YM)

1

BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83 FIGURE 42. EFFECT OF

677

-8.00

and the same of th

RCS JET AMPLIFICATION FACTOR - YAW, N(YM)

Č.

FIGURE 42. EFFEET OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83 35.00 CETALPHA =

681

PAGE

RCS JET AMPLIFICATION FACTOR - SIDE FORCE. N(SF)

FIGURE 42. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83

-8.00

CABALPHA =

682 PAGE

The state of the s

BCS TEL VMBFIEICVIION EVELOB - SIDE EDBCE' N(SE)

FIGURE 42. EFFECT OF BODY FLAP ON AMPLIFICATION FAC. UR. JETS N79, N49, N83 CCJALPHA =

PAGE

BCS TEL VWBFIEICVIIGN EVCLOB - SIDE EOBČE' N(ČE)

PAGE FIGURE 42. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83 COJALPHA =

ŧ,

BODY FLAP ON AMPLIFICATION FACTOR, JETS N79, N49, N83 FIGURE 42. EFFECT OF (E) ALPHA = 35,00

the state of the second of the

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE,

687

PAGE

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

-8.00

(A)ALPHA =

CONFIGURATION DESCRIPTION GINTSNYB. LARC CFHT 118 (HA-22) GHWSHYB. LARC CFHT 118 (HA-22) ESTACLES CHECK.

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE, N(NF)

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JEIS N79N78 (B) ALPHA

PAGE

BCS TEL VHAFTELCYLIGH EVĒLOB - HOBHVF EGBÜE' NIMEJ

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 (C)ALPHA =

PAGE 689

CONFIGURATION DESCRIPTION CHAPSATAB LARE CEHE 118 CHA-221 CHAPSATAB LARE CEHE 118 CHA-225 The state of the s CS.VAGES)

*> ≓

REFERENCE INFORMATION

VMBETETCYTTON EVETOR - NORMAL FORCE. NINE)

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR. JETS N79N78 20.00 (D) ALPHA =

BCZ TEL

.069 PAGE

-

RCS JET AMPLIFICATION FACTOR - NORMAL FORCE,

N(NE)

The second secon

- THE 14 YEAR

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 (E)ALPHA =

į

......

PAGE FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 -8.00 (A)ALPHA =

RCS JET AMPLIFICATION FACTOR = PITCH, MCPM)

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR. JETS N79N78 (B)ALPHA =

PAGE

RCS JET AMPLIFIÇATION FACTOR - PITCH, N(PM)

PAGE FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 10.00 (C)ALPHA =

RCS JET AMPLIFICATION FACTOR - PITCH, N(PM)

695

PAGE

20.00

CD3ALPHA =

A.___

RCS JET AMPLIFICATION FACTOR - PITCH, NCPM)

PAGE FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 35.00 (E) ALPHA =

ż.

**

THE LEWIS THE

, |:

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NCAF)

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR. JETS N79N78 -8.00

(A)ALPHA =

697 P-AGE

RCS JET AMPLIFICATION FACTOR - AXIAL FORCE, NIAF

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 (BJALPHA =

698 PAGE

... ,- ≓

RCS TEL VWBLIFICATION FACTOR - AXIAL FORCE, NGAFI

699

PAGE

10.00

(C)ALPHA =

BCS TEL VMBLIFICATION FACTOR - AXIAL FORCE, NIAF)

=

PAGE FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR. JETS N79N78 (D) ALPHA =

2002

RCS JET AMPLIFICATION FACTOR - AXIAL FORÇE, NCAF)

PAGE

35.0d

(E)ALPHA =

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR. JETS N79N78 900. .005 .004 .003 (A) ALPHA =

PAGE

RCS JET AMPLIFICATION FACTOR - ROLL, NCRM)

RCS JET AMPLIFICATION FACTOR - ROLL, N(RM)

The state of the s

703

00.

(B)ALPHA =

BCS TEL VHBETELGVLIGH EVCLOB - BOFF: NEBN)

10.00

CJALPHA =

PAGE

20.00

(C) ALPHA =

and the same of the state of the state of the same of

The second secon

BCS TEL VWBFILLCVIION EVCIOR - BOFF'

35.00

(E)ALPHA =

THE TOTAL TOTAL STATE OF THE PROPERTY OF THE P

· [

BCS 1ET AMPLIFICATION FACTOR - YAW, N(YM)

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR. JETS N79N.8 -8.00 CASALPHA #

707

DAGE

RCS JET AMPLIFICATION FACTOR - YAW, N(YM)

INCHES INCHES INCHES INCHES INCHES

£€. 000.

86FLAP 13.750

2.000 2.000

11.EVON.

CONFIGURATION DESCRIPTION
OINTONOB LARE CFMT 118 (MA-22)
OINTONOB LARE CFMT 118 (MA-22)

CSJA0151 C CXJA0093

· 11 4 1.7 1.14 1.16

. J. Mar. 14 15. A. .

708

PAGE

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

(B) ALPHK =

RCS JET AMPLIFICATION FACTOR - YAW. NYYMS

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 (D)ALPHA =

PAGE

SENTE POSTE SENTE .01i REFERENCE INFORMATION 2690.000 474.8900 938.5800 1076.7000 375.0000 010 SAEF YARP YARP SCALE .009 8ETA 000. 13.750 13.750 900. 007 .006 .005 CONFIGURATION DESCRIPTION QIN79N78 LARE CFWT 118 (MA-22) GIN29N78 LARE CFWT 118 (MA-22) 904 .003 曲 30 CSJAGIS) 45年 20年 .10年 -.05£ - . 10程 - 15 -.20長 40± S. 35 25. 15 ဝ

PAGE

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

35.00

(E)ALPHA =

نع

RCS JET AMPLIFICATION FACTOR - YAW, N(YM)

PAGE

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78

-8.00

(A)ALPHA =

CSTABLES SYNEGE. RCS JET AMPLIFICATION FACTOR - SIDE FORCE, M(SF)

Ā,

-.05

-.10年

RCS JET AMPLIFICATION FACTOR - SIDE FORCE.

- 15年

-.20是

-.25

-.30[

- 35

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 04/1 (B)ALPHA =

0.10

010

.009

.008

713

PAGE

#£7. 600. 1.000. 80FLAP 13.756 2.000 2.000 2.000 ELEYGN. CONFIGURATION DESCRIPTION GIN79N79 LARC CEHT 118 (HA-22) GIN79N78 LARC CEHT 118 (MA-22)

CSTABLES SPARGE.
CSTABLES OF C

.25年

·15h

HO: ·

.05E

以 行

REFERENCE INFORMATION.
REF 474.8800 INCHE
REF 936.5800 INCHE
FRRP 1076.7000 INCHE
FRRP 375.0000 IN. 71
FRRP 375.0000 IN. 71
FRRP 375.0000 IN. 71
FRRP 375.0000 IN. 71 SCALE SCALE SCALE

-.40長

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N79N78 10.00 (C) ALPHA =

ŽŽ.

PAGE

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, NCSF)

7.72

20,00

CD3ALPHA =

のできる せき 一番のこと しんしょう

The management of the Holland

RCS JET AMPLIFICATION FACTOR - SIDE FORGE, N(SF)

CONFIGURATION DESCRIPTION CHAPTON CHAPTON LARC CFHT 118 (MA-22) CHAPTON LARE CFHT 118 (MA-22) CSVALLED OF BE CXMODS D

٠.

?

REFERENCE INFORMATION

80FLAP 13.750

A. 200.4

ELEVO.

RCS JET AMPLIFICATION FACTOR - SIDE FORCE, N(SF)

FIGURE 43. EFFECT OF BODY FLAP ON AMPLIFICATION FACTOR, JETS N7SN78 35.00 (E)ALPHA =