1ère S : Dérivation - Cours 2 : Utiliser les dérivées

www.cours-futes.com

Sébastien Harinck

Fonction Dérivée :

Fonction Dérivée :

a) Le tableau de signe de la dérivée permet de déduire le tableau de variations de la fonction

Fonction Dérivée :

- a) Le tableau de signe de la dérivée permet de déduire le tableau de variations de la fonction
- b) La dérivée sert aussi à déterminer l'extremum local d'une fonction

Définition :			

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur I,

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur I,

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur l, alors f est croissante sur l.

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur l, alors f est croissante sur l.

Si f' est négative sur l,

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur l, alors f est croissante sur l.

Si f' est négative sur l,

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur I, alors f est croissante sur I.

Si f' est négative sur l, alors f est décroissante sur l.

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur I, alors f est croissante sur I.

Si f' est négative sur l, alors f est décroissante sur l.

Si f' est nulle sur I,

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur I, alors f est croissante sur I.

Si f' est négative sur l, alors f est décroissante sur l.

Si f' est nulle sur I,

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur l, alors f est croissante sur l.

Si f' est négative sur l, alors f est décroissante sur l.

Si f' est nulle sur I, alors f est constante sur I.

Définition :

Soit f une fonction définie et dérivable sur un intervalle I.

Si f' est positive sur l, alors f est croissante sur l.

Si f' est négative sur l, alors f est décroissante sur l.

Si f' est nulle sur I, alors f est constante sur I.

b) Exemple

Exemples:

Dresser le tableau de variations de la fonction de :

$$f(x) = 4^2 - 6x + 3.$$

Solutions

f est une fonction polynôme, elle est donc dérivable sur \mathbb{R} .

$$f'(x) = 2 \times 4x - 6 + 0 = 8x - 6.$$

b) Exemple

Exemples:

Dresser le tableau de variations de la fonction de :

$$f(x) = 4^2 - 6x + 3.$$

Solutions

f est une fonction polynôme, elle est donc dérivable sur $\mathbb{R}.$

$$f'(x) = 2 \times 4x - 6 + 0 = 8x - 6.$$

Il suffit de trouver le signe de f' pour en déduire les variations de f. On cherche lorsque 8x - 6sup0 par exemple.

 $8x - 6sup0consequence8xsup6consequencexsup\frac{8}{6}consequence\frac{4}{3}$ Donc f'(x) sera positive lorsque x sup à 4/3. On en déduit donc

que f sera croissante lorsque x sup à 4/3. On en deduit donc

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

$$f(x) = x^2 + x$$
.

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

$$f(x) = x^2 + x$$
.

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

①
$$f(x) = x^2 + x$$
. Comme $(x^2)' = 2x$

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

1
$$f(x) = x^2 + x$$
. Comme $(x^2)' = 2x$ et $(x)' = 1$.

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

•
$$f(x) = x^2 + x$$
. Comme $(x^2)' = 2x$ et $(x)' = 1$. On en déduit que $f'(x) = 2x + 1$.

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$.

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$.

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$.

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' =$

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$,

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$, on en déduit que $g'(x) = \sqrt{x}$

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$, on en déduit que g'(x) = 42

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$, on en déduit que $g'(x) = 42 \times$

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$, on en déduit que $g'(x) = 42 \times \frac{1}{2\sqrt{x}}$

c) Les 5 règles de dérivation

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

Exemple:

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$, on en déduit que $g'(x) = 42 \times \frac{1}{2\sqrt{x}} = \frac{42}{2\sqrt{x}}$

c) Les 5 règles de dérivation

Soit u et v deux fonctions.

forme de f(x)	f'(x)
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + v'u
<u>u</u> v	$\frac{u'v-v'u}{v^2}$
u ⁿ	$n \times u'u^{(n-1)}$

Exemple:

- ① $f(x) = x^2 + x$. Comme $(x^2)' = 2x$ et (x)' = 1. On en déduit que f'(x) = 2x + 1.
- ② $g(x) = 42\sqrt{x}$. Dans notre cas on remarque que g(x) est de la forme λu où $\lambda = 42$ et $u = \sqrt{x}$. Comme $u' = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$, on en déduit que $g'(x) = 42 \times \frac{1}{2\sqrt{x}} = \frac{42}{2\sqrt{x}}$

Dériver h(x)

$$h(x) = x^3 \sqrt{x}.$$

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x) = x^3$

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x) = x^3$ et $v(x) = \sqrt{x}$.

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x) = x^3$ et $v(x) = \sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u.

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

Dériver h(x)

 $h(x) = x^3 \sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x) = x^3$ et $v(x) = \sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u =$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u =$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^3$$

Dériver h(x)

 $h(x)=x^3\sqrt{x}$. Il s'agit d'une fonction de la forme uv où u et v sont deux fonctions telles que $u(x)=x^3$ et $v(x)=\sqrt{x}$. Nous allons utiliser la formule (uv)' = u'v + v'u. Calculons :

$$u'(x) = 3 \times x^{(3-1)} = 3x^2$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$g'(x) = u'v + v'u = 3x^2 \times \sqrt{x} + \frac{1}{2\sqrt{x}} \times x^3$$

$$g'(x) = 3x^2\sqrt{x} + \frac{x^3}{2\sqrt{x}}$$

Dériver i(x)

$$i(x) = \frac{x^2 + x}{3x}.$$

Dériver i(x)

$$i(x) = \frac{x^2 + x}{3x}$$
. Il s'agit d'une fonction de la forme $\frac{u}{v}$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x.

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$.

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

$$u'(x) = 2x + 1$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- u'(x) = 2x + 1
- v'(x) = 3

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

- u'(x) = 2x + 1
- v'(x) = 3

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

$$u'(x) = 2x + 1$$

$$v'(x) = 3$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

$$u'(x) = 2x + 1$$

$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1)\times 3x - 3\times (x^2+1)}{(3x)^2}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

$$u'(x) = 2x + 1$$

$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1)\times 3x - 3\times (x^2+1)}{(3x)^2}$$

Dériver i(x)

 $i(x) = \frac{x^2 + x}{3x}$. Il s'agit d'une fonction de la forme $\frac{u}{v}$ où u et v sont deux fonctions telles que $u(x) = x^2 + x$ et v(x) = 3x. Nous allons utiliser la formule $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$. Calculons :

$$u'(x) = 2x + 1$$

$$v'(x) = 3$$

$$i'(x) = \frac{u'v - v'u}{v^2} = \frac{(2x+1)\times 3x - 3\times (x^2+1)}{(3x)^2}$$

$$i'(x) = 3x^2\sqrt{x} + \frac{x^3}{2\sqrt{x}}$$