МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный политехнический университет»

КАФЕДРА инфокогнитивных технологий

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ по дисциплине:

ПРОЕКТНАЯ ДЕЯТЕЛЬНОСТЬ

по теме:

«Autodesk Maya для инженерных задач»

Руководитель НИР	Толстиков А.В.

ОГЛАВЛЕНИЕ

РЕГИЧИТАТИ В В В В В В В В В В В В В В В В В В В	2
1. ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТЕ	3
1.1. Цели проекта	3
1.2. Список исполнителей	3
1.3. Список используемых технологий	3
2. ПЛАН И ОРГАНИЗАЦИЯ РАБОТЫ	4
2.3. Предоставление курсов студентам и их прохождение	4
2.4. Работа над визуализацией	4
2.5. Разработка методических материалов	5
2.6. Разработка проектной документации	5
3. УЧАСТНИКИ ИХ ВКЛАД В РАЗВИТИЕ ПРОЕКТА	5
4. РЕЗУЛЬТАТЫ	7
ЗАКЛЮЧЕНИЕ	10
СПИСОК ПИТЕРАТУРЫ	11

АННОТАЦИЯ

В данном отчете представлены описание проекта, основные цели и задачи, участники проекта и их роли и планы в этом семестре, рассмотрены основные этапы проекта и подведены итоги деятельности команды в текущем семестре.

Проект направлен на решение инженерных задач визуализации работы систем.ю в которых требуется расчет движения частиц (потока). Основная цель проекта - представление работающего устройства с анимацией движения жидкости, газа, огня или сыпучих сред в дополненной и виртуальной реальностях, осуществление полного обзора работы устройства визуальными методами.

1. ОБЩИЕ СВЕДЕНИЯ О ПРОЕКТЕ

1.1. Цели проекта

3D-моделирование сборки аппарата, текстурирование и анимация текучих сред. Создание видео по работе аппаратов (центробежного насоса) и разработка учебных пособий.

1.2. Список исполнителей

Всего количество участников проекта в данном семестре насчитывает 6 человек. Коллектив состоит из студентов первого, второго и третьего курсов.

- Баранова А.Ю. капитан команды, планирование, создание документации;
- Фролов А.М. –капитан команды,планирование проекта, создание визуализаций написание методических материалов;
- Миронов А.Ю. консультация в организации рабочего процесса.
- Гусева А.Е. создание визуализации, написание методических материалов, поиск материалов;
- Жерздев Т.А. создание визуализации, написание методических материалов, поиск материалов;
- Язев И.Е. создание документации, поиск материалов;
- Иванов А.А. создание документации, поиск материалов

1.3. Список используемых технологий

В проекте использовались следующие технологии:

- Autodesk Maya 2020;
- Bitfrost for Maya.

2. ПЛАН И ОРГАНИЗАЦИЯ РАБОТЫ

2.1. Полный список этапов проекта

- 1. Поиск учебно-методических материалов.
- 2. Предоставление курсов студентам и их прохождение.
- 3. Работа над визуализацией.
- 4. Разработка методических материалов.
- 5. Разработка проектной документации.

2.2. Поиск учебно-методических материалов

На первом этапе всем студентам предстоял поиск обучающих материалов для изучения и подготовки к работе над проектом. В силу того, что русскоязычных исчерпывающих материалов по Autodesk Maya и плагину Bifrost в открытом доступе не было найдено, принято решение взять курсы на английском языке.

2.3. Предоставление курсов студентам и их прохождение

За основу брались циклы обучающих видеороликов по 3Dмоделированию в Autodesk Maya и работе с плагином Bifrost и видео-уроки на платформе Youtube. Курсы ориентированы на практику и будут полезны для освоения их начинающими.

2.4. Работа над визуализацией

На данном этапе была создана 3D-модель центробежного насоса. Для симуляции движения частиц в аппарате был использован плагин Bifrost для Autodesk Maya. Сложность состояла в том, что Maya и Bifrost очень требовательны к аппаратной части компьютера, из-за этого процесс расчета движения частиц и рендера кадров для видео был очень длительным.

2.5. Разработка методических материалов

На этом этапе участники составили 3 подробных и доступных учебнометодических пособий по работе с визуализацией в Autodesk Maya и Bifrost. Первые два пособия объяснят читателю основы анимации в Мауа. Третье покажет, как смоделировать симуляцию жидкости в Bifrost.

2.6. Разработка проектной документации

На данном этапе создавалась различная документация по проекту: отчет, индивидуальные планы каждого участника, презентация, создание плаката.

3. УЧАСТНИКИ ИХ ВКЛАД В РАЗВИТИЕ ПРОЕКТА

Индивидуальные вклады участников представлены в табл.1.

Таблица 1

участников

Индивидуальные планы

Участник	Индивидуальный план работ
	1. Поиск моделей для проекта.
	2. Поиск курсов и материалов.
	3. Ведение доски на Trello и Google диск.
Голоморо А Ю	4. Организация работы команды, распределение
Баранова А.Ю.	задач.
	5. Участие в создании отчётности, видео и
	презентации.
Фролов А.М.	1. Поиск обучающих курсов по Autodesk Maya.
	2. Организация работы команды, распределение
	задач.
	3. Организация файловой системы проекта Мауа.

	4. Создание симуляции потоков жидкости.
	5. Создание финальных кадров визуализации
	насоса для финального видео.
Миронов А.Ю.	1. Консультация в организации рабочего
	процесса.
	1. Поиск подходящей сборки инженерного
	устройства.
	2. Поиск и изучение обучающих материалов по
	созданию анимации и работе в Мауа.
Evene A E	3. Знакомство с базовым интерфейсом Autodesk
Гусева А.Е.	Maya.
	4. Создание роликов с анимацией облета модели.
	5. Заполнение облака и Trello результатами
	работы.
	6. Разработка методического материала.
	1. Собрания с командой
Жерздев Т.А.	2. Поиск подходящих сборок для анимации
	3. Поиск и изучение обучающих материалов по созданию анимации и работе в Мауа
	4. Заполнение облака и Trello результатами работы
	5. Знакомство с базовым интерфейсом Мауа
	6. Создание различных сцен и рендеров
	7. Разработка методического материала
	8. Подготовка презентации проекта
Язев И.Е.	1. Поиск инженерных устройств и их моделей.
	2. Поиск обучающих материалов по созданию
	анимаций в Мауа.
<u> </u>	

	3. Создание плаката проекта.
	1. Поиск методических материалов по
Иванов А.А.	проектированию макросов в AutoDesk Maya
	2. Поиск инженерных устройств и их моделей.
	3. Поиск обучающих материалов по созданию
	анимаций в Мауа.
	4. Создание финального видео.

4. РЕЗУЛЬТАТЫ

Результатами проекта являются: методические указания по созданию анимированной сцены — создание сцены облета модели (рис.1а), создание сборки и разборки модели (рис.1б), создание симуляции жидкости (рис.1в) модель насоса (рис.2), анимированная сцена работы насоса (рис.3).

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский политехнический университет» «Московский политехнический университет» «Создание анимации сборки и разборки модели в Autodesk Maya» 1 Методическое пособие «Создание сцены облета модели в Autodesk Maya» Выполнили: Фролов А.М. Гусева А.Е. Выполнили: Фролов А.М. Гусева А.Е. Москва, 2020 Москва, 2021 б а МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский политехнический университет»

Москва, 2020

«Создание симуляции жидкости в Autodesk Maya»

Выполнили: Фролов А.М. Гусева А.Е.

в

Рис. 1 Методические указания проекта

Puc. 2 3D-модель центробежного насоса

Рис. 3 Анимированная сцена работы центробежного насоса

ЗАКЛЮЧЕНИЕ

В итоге поставленные в начале семестра задачи были полностью выполнены командой проекта. Работа закончена вовремя, и сроки окончания отдельных этапов были соблюдены. Результаты данного семестра будут использоваться в дальнейшей работе, для достижения общей цели проекта.

СПИСОК ЛИТЕРАТУРЫ

- 1. 3D модель центробежного насоса URL: https://grabcad.com/library/centrifugal-pump-70.
- 2. Видео визуализации течения воды из крана в Autodesk Maya URL: https://www.youtube.com/watch?v=YsNErX93qbY&t=176s&ab_channel=MikeHermes.
- 3. Документация Autodesk Maya: официальный сайт URL: https://knowledge.autodesk.com/support/maya/getting-started/caas/simplecontent/content/maya-documentation.html.
- 4. Обучающее видео по анимации камеры в Autodesk Maya URL: https://www.youtube.com/watch?v=O-ib69Mkdus&ab_channel=Uhr.
- 5. Обучающее видео по созданию жидкости в Autodesk Maya URL: https://www.youtube.com/watch?v=mF6YhnTOykY&ab_channel=SARKAMARI.
- 6. Обучающее видео по анимации жидкости в Autodesk Maya URL: https://www.youtube.com/watch?v=7fbSTsRiG20&ab_channel=SangSang.
- 7. Обучающее видео по Autodesk Maya URL: https://www.youtube.com/watch?v=tZieJcA5vf0&ab_channel=GameDevAcademy.
- 8. Сборник видео по обучению технологии Bifrost в Autodesk Maya URL: https://drive.google.com/drive/folders/1mjKhAIEeWRV6L0Oz81h5D2LV_Ie-qRWO.