Geofísica de la Tierra Sólida

Notación de Einstein

Valentina Ortiz B.

28 de Mayo de 2014

1.- Definición

Se denomina notación de Einstein o notación indexada a la convención utilizada para abreviar la escritura de las sumatorias, donde se suprime el termino de la sumatoria (Σ). Este convenio fue introducido por Albert Einstein en 1916.

Dada una expresión lineal en \mathbb{R}^n en la que se escriben todos sus términos en forma explicita:

$$u = u_1 + u_2 + \dots + u_n$$

Se puede escribir de la forma:

$$u = \sum_{i=1}^{n} u_i x_i$$

La notación de Einstein obtiene una expresión aun mas condensada eliminando el signo de la sumatoria y entendiendo que en la expresión resultante un índice indica la suma sobre todos los posibles valores del mismo.

$$u = u_i x_i$$

Índices mudos: corresponden a los índices que se repiten dos veces en el mismo término de una ecuación, por ejemplo:

$$A = A_i x_i$$

Y se denominan así debido a que la expresión resultante (es decir, la suma efectiva) no depende de ellos.

Índices libres: corresponde al índice que se repite en cada uno de los términos de una expresión, a excepción de los términos constantes.

$$S_r = a_r x_i + b_r x_i + c_r - 1$$

Los índices libres no se expanden en forma de sumatoria si no que representan un sistema de ecuaciones independientes:

$$S_1 = a_1 x_i + b_1 x_i + c_1 - 1$$

$$S_2 = a_2 x_i + b_2 x_j + c_2 - 1$$

$$S_3 = a_3 x_i + b_3 x_i + c_3 - 1$$

2.- El operador nabla en términos de notación de Einstein

Sabemos que

$$\nabla V = \left(\frac{\partial V}{\partial x_1}, \frac{\partial V}{\partial x_2}, \frac{\partial V}{\partial x_3}\right)$$

Y puede ser escrito utilizando la notación de Einstein de la forma:

$$\nabla V = \frac{\partial V}{\partial x_i}$$

E introducimos una notación abreviada de la forma:

$$\partial_i = \frac{\partial}{\partial x_i}$$

Entonces el gradiente de V, puede ser escrito:

$$(\nabla V)_i = \partial_i V$$

Y la divergencia del campo vectorial F_i

$$\frac{\partial F_i}{\partial x_1} + \frac{\partial F_i}{\partial x_2} + \frac{\partial F_i}{\partial x_3}$$

Se puede escribir:

$$\nabla F = \frac{\partial F_i}{\partial x_i} = \partial_i F_i$$

Se debe notar que $\frac{\partial x_j}{\partial x_i} = \partial_i x_j$, si i=j, esto es igual a 1, y si i \neq j esto será igual a 0. Podemos introducir una nueva notación para escribir esto δ_{ij}

3.- Delta de Kronecker

Se define como:

$$\delta_{ij} = \begin{cases} 1, & \text{si } i = j \\ 0, & \text{si } i \neq j \end{cases}$$

Al escribirla como una matriz la delta de Kronecker corresponde a la matriz identidad. De la definición se tiene:

$$\delta_{ij}a_j = \sum_{i=1}^3 \delta_{ij}a_j = a_i$$

Y se debe notar que:

$$\delta_{ii} = \sum_{i=1}^{3} \delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33} = 1 + 1 + 1 = 3$$

4.- Epsilon de Levi-Civita

Es definido por:

$$\varepsilon_{ijk} = \begin{cases} 1, & si\ (i,j,k)es\ una\ permutacion\ ciclica\\ -1, & si\ (i,j,k)es\ una\ permutacion\ anticiclica\\ 0, & en\ otro\ caso \end{cases}$$

Es decir:

$$\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$$

$$\varepsilon_{132} = \varepsilon_{321} = \varepsilon_{213} = -1$$

Considerando que:

$$\varepsilon_{1ik}a_ib_k = \varepsilon_{123}a_2b_3 + \varepsilon_{132}a_3b_2 = a_2b_3 - a_3b_2$$

Y que:

$$\varepsilon_{2jk}a_jb_k = a_3b_1 - a_1b_3 \qquad \varepsilon_{3jk}a_jb_k = a_1b_2 - a_2b_1$$

Se tiene

$$\varepsilon_{ijk}a_ib_k=(a\times b)_i$$

Corresponde al producto cruz entre a y b. Y $\nabla \times F$, el rotor de F, puede ser escrito:

$$\varepsilon_{ijk} \frac{\partial F_k}{\partial x_i} = \varepsilon_{ijk} \partial_j F_k$$

5.- Ejercicios

a) Expanda $(a \times b) \cdot (c \times d)$ usando la notación de Einstein

$$(a \times b) \cdot (c \times d) = \varepsilon_{ijk} a_i b_j \varepsilon_{ilm} c_l d_m$$

$$= (\delta_{il}\delta_{km} - \delta_{jm}\delta_{kl})a_jb_kc_ld_m$$

$$= a_lc_lb_md_m - a_md_mb_kc_k$$

$$= (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c)$$

b) expanda $\nabla \times (F \times G)$ usando la notación de Einstein

$$\nabla \times (F \times G)_{i} = \varepsilon_{ijk} \partial_{j} (\varepsilon_{klm} F_{l} G_{m})$$

$$= (\delta_{il} \delta_{im} - \delta_{im} \delta_{il}) \partial_{j} (F_{l} G_{m})$$

$$= \partial_{m} (F_{i} G_{m}) - \partial_{l} (F_{l} G_{i})$$

$$= F_{i} (\partial_{m} G_{m}) + G_{m} \partial_{m} F_{i} - G_{i} (\partial_{m} F_{m}) - F_{m} \partial_{m} G_{i}$$

$$= F(\nabla \cdot G) - (G\nabla) F - G(\nabla F) - (F\nabla) G$$