Tema 4: Espacios vectoriales

1. La estructura de espacio vectorial

Definición 4.1. Un conjunto V se dice que es un *espacio vectorial sobre el cuerpo* \mathbb{K} (o un abreviadamente un \mathbb{K} -espacio vectorial) si existen en él las siguientes operaciones: una operación interna (suma):

$$\begin{array}{cccc} +: & V \times V & \longrightarrow & V \\ & (\mathbf{x}, \mathbf{y}) & \longrightarrow & \mathbf{x} + \mathbf{y} \end{array}$$

y una operación externa (producto por escalar):

$$\begin{array}{cccc} \cdot : & \mathbb{K} \times V & \longrightarrow & V \\ & (\alpha, \mathbf{x}) & \longrightarrow & \alpha \cdot \mathbf{x} \end{array}$$

verificando:

(I)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(II)
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

(III)
$$u + 0 = 0 + u = u$$

(IV)
$$u + (-u) = 0$$

(v)
$$1 \cdot \mathbf{u} = \mathbf{u}$$

(VI)
$$\alpha \cdot (\beta \cdot \mathbf{u}) = (\alpha \beta) \cdot \mathbf{u}$$

(VII)
$$(\alpha + \beta) \cdot \mathbf{u} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{u}$$

(VIII)
$$\alpha \cdot (\mathbf{u} + \mathbf{v}) = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{v}$$

Proposición 4.1. Sea V un e.v. Se verifican las siguientes propiedades:

- (I) El elemento neutro de un e.v. es único.
- (II) El elemento opuesto de un e.v. es único.
- (III) $0 \cdot \mathbf{u} = \mathbf{0}, \forall \mathbf{u} \in V$.
- (IV) El elemento opuesto de \mathbf{u} es $(-1) \cdot \mathbf{u}$.
- (v) $\alpha \cdot \mathbf{0} = \mathbf{0}, \forall \alpha \in \mathbb{K}.$

2. Independencia lineal

Definición 4.2. Sea V un e.v. y sean $\mathbf{v}, \mathbf{v}_1, \dots, \mathbf{v}_n$ vectores de V. Se dice que \mathbf{v} es combinación lineal (o que depende linealmente) de $\mathbf{v}_1, \dots, \mathbf{v}_n$, si existen $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ tales que

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

Se dirá combinación lineal no nula si algún $\alpha_i \neq 0$.

Proposición 4.2.

- (I) El vector nulo es combinación lineal de cualquier conjunto de vectores.
- (II) Un vector cualquiera \mathbf{v} siempre es combinación lineal de cualquier conjunto de vectores que contenga al propio \mathbf{v} .

Definición 4.3. Se dice que los vectores $\mathbf{v}_1, \dots, \mathbf{v}_n$ son *linealmente dependientes* (l.d.) si podemos escribir el vector $\mathbf{0}$ como combinación lineal no nula de ellos. Dicho de otro modo, si existen escalares $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ no todos nulos tales que

$$\mathbf{0} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

En caso contrario se dirá que los vectores son linealmente independientes (l.i.), lo que ocurrirá si cualquier combinación lineal de los vectores \mathbf{v}_i igualada al vector nulo, implica que todos los escalares deben ser nulos, es decir,

$$\mathbf{0} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n \Longrightarrow \alpha_1 = \dots = \alpha_n = 0$$

Proposición 4.3.

- (I) Si $\mathbf{v}_1, \dots, \mathbf{v}_n$ son vectores linealmente dependientes, existe algún \mathbf{v}_j que es combinación lineal de los demás.
 - (II) Todo conjunto finito de vectores entre los cuales se encuentre el vector **0** es linealmente dependiente.
- (III) Todo conjunto finito de vectores linealmente independientes no puede contener un subconjunto propio linealmente dependiente.

Teorema 4.1. Sea $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ con rango(A) = r. Entonces existen r filas (o columnas) de A linealmente independientes, esto es, hay r vectores de \mathbb{K}^n correspondientes a sus filas (o de \mathbb{K}^m correspondientes a sus columnas) linealmente independientes, de manera que el resto se expresa como combinación lineal de éstas.

Definición 4.4. Se denomina rango de un conjunto de vectores al mayor número de ellos que son linealmente independientes.

Teorema 4.2. En \mathbb{K}^n , todo conjunto de vectores formado por n+1 vectores es linealmente dependiente.

3. Bases y dimensión de un espacio vectorial

Definición 4.5. Sea V un e.v. Un conjunto de vectores $\mathbf{v}_1, \dots, \mathbf{v}_n$ se dice sistema generador (o conjunto generador) de V si cualquier vector $\mathbf{u} \in V$ se puede poner como combinación lineal de ellos.

Lema 4.4. Sea V un e.v. con dim V = n. Sea S un sistema generador de V. Si $S = S_1 \cup S_2$, con S_1 y S_2 conjuntos disjuntos¹ tales que los elementos de S_2 se escriben como combinación lineal de los elementos de S_1 , entonces S_1 es sistema generador.

Definición 4.6. Sea V un e.v. Un conjunto finito de vectores $\{\mathbf{e}_1, \dots \mathbf{e}_n\}$ es una base de V si es un conjunto linealmente independiente y sistema generador.

Teorema 4.3. Sea $\mathcal{B} = \{\mathbf{u}_1, \dots \mathbf{u}_n\}$ una base de un e.v. V. Entonces $\forall \mathbf{u} \in V$ existen unos únicos $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ tales que

$$\mathbf{u} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_n \mathbf{u}_n \tag{1}$$

Definición 4.7. A los escalares $\alpha_1, \ldots, \alpha_n$ de (1) se les denominan coordenadas de \mathbf{u} en la base \mathcal{B} , y se notará por

$$\mathbf{u}_{\mathcal{B}} = (\alpha_1, \dots, \alpha_n)_{\mathcal{B}}$$

Proposición 4.5. Supongamos que el e.v. V posee una base formada por n elementos. Entonces, todo conjunto de m vectores, con m > n es l.d.

Teorema 4.4. Todas las bases de un e.v. poseen el mismo número de elementos.

¹Esto es, $S_1 \cap S_2 = \emptyset$.

Definición 4.8. Se llama dimensión de un espacio vectorial V al número de elementos de cualquiera de sus bases, y se notará por $\dim(V)$.

Proposición 4.6. Sea V es un e.v. de dimensión n. Todo conjunto de n vectores l.i. forma una base de V.

Proposición 4.7 (Ampliación de bases). Sea V un espacio vectorial de dim V = n. Si $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ con k < n, es un conjunto l.i. entonces existen n - k vectores, $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n$, tales que el conjunto $\{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_n\}$ es una base de V.

Proposición 4.8. Si \mathcal{S} es un sistema generador de un e.v. V de dimensión n, entonces existe \mathcal{S}_1 un subconjunto de \mathcal{S} que es base de V.

Corolario 4.5. Si V es un e.v. con dim V = n, se tiene:

- (I) Todo conjunto de n vectores l.i. es una base.
- (II) Todo conjunto con más de n vectores es l.d.
- (III) Todo sistema generador tiene al menos n elementos.
- (IV) Todo sistema generador de n elementos es una base.

Definición 4.9. Un conjunto infinito de vectores de un e.v. V es l.i. si cualquier subconjunto suyo es l.i. Si existe un tal conjunto se dirá que V es de dimensión infinita.

4. Cambios de base

Teorema 4.6. La matriz del cambio de base de \mathcal{B}' a \mathcal{B} es invertible y su inversa es la matriz del cambio de base de \mathcal{B} a \mathcal{B}' .

5. Subespacios vectoriales

Definición 4.10. Sea V un e.v. sobre un cuerpo \mathbb{K} y $W \subset V$ un subconjunto suyo. Se dice que W es un *subespacio* vectorial (o variedad lineal) de V si W es un espacio vectorial sobre \mathbb{K} con las operaciones definidas en V.

Proposición 4.9. W es un subespacio vectorial si y sólo si $\alpha \mathbf{u} + \beta \mathbf{v} \in W$, $\forall \mathbf{u}, \mathbf{v} \in W$, $\alpha, \beta \in \mathbb{K}$.

Definición 4.11. Sean $\mathbf{u}_1, \ldots, \mathbf{u}_k$ vectores de un e.v. V. Se define el conjunto

$$W = L(\mathbf{u}_1, \dots, \mathbf{u}_k) = \left\{ \sum_{i=1}^k \alpha_i \mathbf{u}_i : \alpha_i \in \mathbb{K} \right\}$$

es decir, el conjunto de todas las posibles combinaciones lineales que se pueden hacer con los vectores dados. Este conjunto se denomina subespacio engendrado por $\mathbf{u}_1, \ldots, \mathbf{u}_k$ y a tales vectores se les denomina sistema generador de W.

Proposición 4.10. $W = L(\mathbf{u}_1, \dots, \mathbf{u}_k)$ es un subespacio vectorial de V.

Teorema 4.7. Sea $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, con rango(A) = r. El conjunto de soluciones del sistema homogéneo $A\mathbf{x} = \mathbf{0}$ es un subespacio vectorial generado por cualesquiera k = n - r soluciones linealmente independientes.

Teorema 4.8. Recíprocamente, todo subespacio vectorial de \mathbb{K}^n de dimensión k puede determinarse a través de las soluciones de un sistema lineal homogéneo.

5.1. Operaciones con subespacios

Teorema 4.9. Sean L_1 y L_2 dos subespacios vectoriales de V. Si $L_1 \subset L_2$ y $\dim(L_1) = \dim(L_2)$ entonces $L_1 = L_2$.

Definición 4.12. Dados dos subespacios L_1 , L_2 de un e.v. V se define la suma de L_1 y L_2 por

$$L_1 + L_2 = {\mathbf{u}_1 + \mathbf{u}_2 : \mathbf{u}_1 \in L_1, \ \mathbf{u}_2 \in L_2}$$

Igualmente definimos la intersección de L_1 y L_2 por

$$L_1 \cap L_2 = \{ \mathbf{u} : \mathbf{u} \in L_1, \ \mathbf{u} \in L_2 \}$$

Teorema 4.10. Si L_1 y L_2 son subespacios vectoriales, entonces $L_1 + L_2$ y $L_1 \cap L_2$ también son subespacios vectoriales.

Teorema 4.11. Sean L_1 y L_2 dos subespacios de un e.v. V. Se verifica:

- (I) Si \mathcal{B}_1 es una base de L_1 y \mathcal{B}_2 es una base de L_2 , entonces $L_1 + L_2 = L(\mathcal{B}_1 \cup \mathcal{B}_2)$, esto es, $\mathcal{B}_1 \cup \mathcal{B}_2$ es un sistema generador de $L_1 + L_2$.
- (II) Si $A\mathbf{x} = \mathbf{0}$ es un sistema de ecuaciones implícitas de L_1 y $B\mathbf{x} = \mathbf{0}$ es un sistema de ecuaciones implícitas de L_2 , entonces,

$$\left. \begin{array}{l} A\mathbf{x} = \mathbf{0} \\ B\mathbf{x} = \mathbf{0} \end{array} \right\}$$

es un sistema de ecuaciones implícitas de $L_1 \cap L_2$.

Teorema 4.12 (Fórmula de la dimensión). Si L_1 y L_2 son subespacios de un e.v. V se verifica:

$$\dim(L_1) + \dim(L_2) = \dim(L_1 + L_2) + \dim(L_1 \cap L_2)$$

Definición 4.13. Un e.v. V es suma directa de dos subespacios L_1 y L_2 si y sólo si

$$L_1 + L_2 = V$$
 y $L_1 \cap L_2 = \{\mathbf{0}\}$

Se notará $V = L_1 \oplus L_2$.

Teorema 4.13. Son equivalentes:

- (I) $V = L_1 \oplus L_2$.
- (II) $\forall v \in V$, $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$, con $\mathbf{v}_1 \in L_1$, $\mathbf{v}_2 \in L_2$, únicos.