§11.1 Sequences

In-class Activity 11.1

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1:

List the first 5 terms of the sequence:

(a)
$$\{a_n\}_{n=1}^{\infty}$$
 where $a_n = \frac{1}{n}$.

(b)
$$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$

(c)
$$\left\{ (-1)^n \frac{n}{2^n} \right\}_{n=1}^{\infty}$$

Activity 2:

Find the general term of the sequence determined by the terms of the sums:

(a) Leibniz:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

(b) Euler:
$$\frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$$

(c) Euler:
$$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \cdots$$

Use Sage to visualize the graph of the sequences by plotting the points: (n, a_n)

Activity 3:

Determine whether the sequences converge or diverge. If they converge, determine their limit.

- (a) $\left\{\frac{(-1)^n}{2n}\right\}_{n=1}^{\infty}$
- (b) $\{(-1)^n\}_{n=0}^{\infty}$
- (c) $\left\{\cos\left(\pi n\right)\right\}_{n=0}^{\infty}$
- (d) $\left\{\cos\left(\frac{\pi}{2} + \pi n\right)\right\}_{n=0}^{\infty}$

Activity 4:

Evaluate the limits of sequences:

(a)
$$\lim_{n \to \infty} \left(\frac{2n^2 + n + 1}{n^2 + 1} \right)$$

(b)
$$\lim_{n \to \infty} \left(\frac{2n+1}{e^n - 11} \right)$$

Activity 5:

Let $a_1 = 2$ and $a_{n+1} = \frac{1}{2}(a_n + 6)$ for $n \ge 2$. Sequences defined in this way are called recourrence relations.

- (a) Compute the first 8 terms of the sequence
- (b) Based on part (a) value do you predict that $\{a_n\}_{n=1}^{\infty}$ converges to?
- (c) How can you prove your prediction correct?

Activity 6:

- (a) Show $\left\{\frac{2}{n+3}\right\}_{n=1}^{\infty}$ is decreasing.
- (b) Use the ID test to show that $\left\{\frac{2n}{n^2+1}\right\}_{n=1}^{\infty}$ is decreasing.

Activity 7:

Verify that $a_n=\sqrt{n+1}-\sqrt{n}$ is decreasing and bounded below. Does $\lim_{n\to\infty}a_n$ exist?