

(ONFIZ1-0401) Elemi lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Úrfizikai és Űrtechnikai Ösztály, 1121 Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttk.pte.hu

2024. szeptember 19.

Vektoriális szorzat I

▶ <u>Definíció:</u> Az {a, b, c} nemnulla vektorokból álló vektorrendszert jobbrendszernek nevezzük, ha a harmadik végpontja felől nézve az első vektor 180°-nál kisebb szögben forgatható a második vektor irányába az óramutató járásával ellentétes irányba. (Az ilyen rendszert nevezzük még jobbsodrású vagy jobbkézszabályt teljesítő rendszernek.)

Definíció: Az **a** és **b** nemnulla térbeli vektorok vektoriális szorzata az az **a** × **b**-vel jelölt vektor, amelynek hossza $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$, ahol $\theta = (\mathbf{a}, \mathbf{b}) \angle$. Az **a** × **b** vektor merőleges **a** és a **b** vektorokra, továbbá a $\{\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}\}$ jobbrendszert alkot.

Legyen továbbá $\mathbf{0} \times \mathbf{a} = \mathbf{0}$, ahol $(\mathbf{a} \in V^3)$.

Vektoriális szorzat II

- A vektoriális szorzat tulajdonságai
 - 1. <u>Állítás:</u> A vektoriális szorzás antiszimmetrikus, azaz $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$, ahol $(\mathbf{a}, \mathbf{b} \in V^3)$.
 - 2. <u>Állítás:</u> A vektoriális szorzás homogén, azaz $(\lambda \mathbf{a}) \times \mathbf{b} = \lambda (\mathbf{a} \times \mathbf{b})$, ahol $\mathbf{a}, \mathbf{b} \in V^3$ és $\lambda \in \mathbb{R}$.
 - 3. <u>Állítás:</u> A vektoriális szorzás disszociatív, azaz $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$, ahol $(\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3)$.
- ▶ <u>Definíció:</u> Az **a** és **b** nemnulla vektorokat párhuzamosaknak nevezzük, ha $\exists \lambda \in \mathbb{R}$ úgy, hogy $\mathbf{a} = \lambda \mathbf{b}$. Jele: $\mathbf{a} \parallel \mathbf{b}$.

Vektoriális szorzat III

- ▶ Bármely vektor önmagával vett vektoriális szorzata a zérusvektorral egyenlő, azaz $\mathbf{a} \times \mathbf{a} = \mathbf{0} \ \forall \mathbf{a} \in V^3$ -re. esetén.
- ▶ Ezen felül $\mathbf{a} \times \mathbf{b} = \mathbf{0} \Leftrightarrow \mathbf{a} \parallel \mathbf{b}$, vagy \mathbf{a} és \mathbf{b} közül legalább az egyik nullvektor.
- Könnyen belátható, hogy

$$\begin{array}{rcl} \mathbf{e}_1 \times \mathbf{e}_2 & = & \mathbf{e}_3 \\ \\ \mathbf{e}_2 \times \mathbf{e}_3 & = & \mathbf{e}_1 \\ \\ \mathbf{e}_3 \times \mathbf{e}_1 & = & \mathbf{e}_2. \end{array}$$

- ► Komponensekkel $\mathbf{a} \times \mathbf{b} = (a_2b_3 a_3b_2)\mathbf{e}_1 + (a_3b_1 a_1b_3)\mathbf{e}_2 + (a_1b_2 a_2b_1)\mathbf{e}_3$.
- ▶ $|\mathbf{a} \times \mathbf{b}|$ egyenlő az \mathbf{a} és \mathbf{b} által meghatározott paralelogramma területével, mivel $|\mathbf{a}|$ a paralelogramma alapja és $|\mathbf{b}|$ $|\sin \theta|$ a magassága, ahol $\theta = (\mathbf{a}, \mathbf{b}) \angle$.

Vegyes szorzat

▶ Definíció: Az $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3$ vektorok vegyes szorzata:

$$(\mathbf{a},\mathbf{b},\mathbf{c})=(\mathbf{a}\times\mathbf{b})\,\mathbf{c}.$$

- ► Ha a, b, c jobbrendszert alkot, akkor (a, b, c) megegyezik az a, b, c vektorok által kifeszített paralelepipedon térfogatával. Ellenkező esetben a térfogat (-1)-szeresét kapjuk.
- Könnyen igazolható, hogy

$$(a, b, c) = (b, c, a) = (c, a, b) = -(a, c, b) = -(c, b, a) = -(b, a, c).$$

Operátorok I

- <u>Definíció:</u> Operátornak a lineáris vektor-vektor függvényeket nevezzük.
- ▶ <u>Definíció:</u> Az operátorok reprezentációt nevezzük mátrixnak. Azaz, legyen $\alpha_{ij} \in \mathbb{R}$ minden $i \in \{1, 2, ..., m\}$ és $j \in \{1, 2, ..., n\}$ estén, ahol $m, n \in \mathbb{N}^+$. Az

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

számtáblázatot $m \times n$ típusú mátrixnak nevezzük. Jelölje az $m \times n$ típusú mátrixok halmazát $M_{m \times n}$.

Vége

Köszönöm a figyelmüket!