Статистические модели для анализа категоризированных финансовых последовательностей

Самарин Игорь Александрович, группа 23.М03-мм

Санкт-Петербургский государственный университет Математическое моделирование, программирование и искусственный интеллект

Научный руководитель: к.ф.-м.н., доцент Алексеева Н.П. Рецензент: к.ф.-м.н., доцент Аль Джубури Ф.С.

Санкт-Петербург 2025 г.

Введение

Постановка задачи:

Оценить качество параметрических и непараметрических методов в анализе категоризованных финансовых последовательностей.

Используемые подходы:

- Параметрический подход: выделение признаков через параметры отрицательного биномиального распределения;
- Непараметрический подход: обучение представлений моделью Word2Vec, архитектурами Continuous Bag Of Words и Skip-Gram.

Качество подходов было оценено на задачах кластеризации и классификации.

Экспериментальные данные

Исходные данные:

Дневные котировки популярных инструментов фондового рынка Московской биржи с 15.04.2013 по 03.09.2024.

Экспериментальные данные. Первичная обработка

Преобразование данных:

Переход от численных значений к категориальным осуществлен по отношению текущего значения к предыдущему.

- $\; {
 m x}_{
 m k}$: изменение от $\; x_{k-1} \; {
 m до} \; \; 2 \cdot x_{k-1} \; {
 m процентов}, \; {
 m где} \; k \geq 2;$
- x_1 : изменение от 0.25 до 0.50 процентов;
- $-\ n_0$: изменение от -0.25 до 0.25 процентов;
- $-\ y_1$: изменение от -0.50 до -0.25 процентов;
- $\mathbf{y}_{\mathbf{k}}$: изменение от $2\cdot y_{k-1}$ до y_{k-1} процентов, где $k\geq 2$;

где x_k — правая граница $\mathbf{x}_{\mathbf{k}}$, а y_k — левая граница $\mathbf{y}_{\mathbf{k}}$ интервала.

Пример преобразованных данных:

Последовательность t_1 представима последовательностью букв t_2 и последовательностью n-грамм t_3 при n=3.

$$t_1: (10.5 \ 10.6 \ 10.6 \ 10.4) \mapsto t_2: (n_0 \ x_2 \ n_0 \ y_3) \mapsto t_3: ([n_0 \ x_2 \ n_0] \ [x_2 \ n_0 \ y_3]).$$

Параметрический подход

Предположение:

Наиболее информативные категориальные подпоследовательности подчиняются отрицательному биномиальному распределению.

$$X \sim NB(r, p), \quad \mathbb{P}(X = k) = \frac{\Gamma(r+k)}{k!\Gamma(r)}p^r(1-p)^k.$$

Значения параметров в лингвистике [Alexeyeva et al., 2013]:

- r количество неупотребления, контекстных замен слова;
- p вероятность неупотребления слова.

Параметрический подход. Вторичная обработка

Разделим последовательность на m временных интервалов. Найдем для всех n-грамм значения $X_1^{(j)},\dots,X_m^{(j)}$, где $X_i^{(j)}$ — количество вхождений j-ой n-граммы в i-ый интервал.

Оценка параметров:

Параметры по методу максимального правдоподобия:

$$\hat{p} = \frac{\hat{r}}{\hat{r} + \bar{x}}, \quad \hat{r} : m \ln(\hat{p}) - m\psi(\hat{r}) + \sum_{i=1}^{m} \psi(\hat{r} + X_i) = 0,$$

где $\psi(x) = (\ln \Gamma(x))'$, m — количество интервалов.

Соответствие распределений:

Гипотеза соответствия эмпирического закона распределения с теоретическим по критерию хи-квадрат.

Параметрический подход. Параметры распределения

Точечные диграммы значений параметров n-грамм.

Поведение параметров категоризированных последовательностей похоже на поведение параметров слов в текстах [Samarin I., 2023].

Параметрический подход. Кластеризация

Последовательности были кластеризированы по агрегированным векторам параметров распределений.

Результаты:

Последовательности делятся на три кластера.

В зеленом кластере электроэнергетические последовательности, в красном — нефтегазовые, в оранжевом — банковского сектора и торговли.

Параметрический подход. Классификация

Последовательности были классифицированы по двум секторам экономики — электроэнергетической и нефтегазовой отрасли.

Результаты:

В таблице представлены значения критерия f1-score.

	2-gram	3-gram	4-gram
Decision Tree	0.5142	0.5428	0.5714
Random Forest	0.5714	0.7428	0.7456
Logistic Regression	0.6285	0.7714	0.7804

Увеличение длины n-граммы приводит к росту значений качества классификации.

Непараметрический подход

Предположение:

Категориальные подпоследовательности представимы численными последовательностями, сохраняющими семантическую связь.

$$X_i \equiv X_j \Leftrightarrow \rho(\mathcal{F}(X_i), \mathcal{F}(X_j)) \approx 0,$$

где $\mathcal{F}(\cdot)$ — полносвязная или рекуррентная нейронная сеть, а $\rho(\cdot)$ — произвольная функция расстояния (например, евклидова).

Непараметрический подход. Вторичная обработка

Сопоставим контекстно близким по значению n-граммам близко расположенные векторные представления.

Обучение представлений:

Назовем контекстом окно ширины 2k+1, а слово на k+1 позиции центральным. Будем перемещать окно слева направо и обучать для каждой n-граммы векторы v_u и v_w .

Варианты архитектур:

- Continuous Bag of Words: центральное слово по контексту;
- Skip-Gram: слова из контекста по центральному слову.

Вектором последовательности является Mean Pooling вектор представлений n-грамм, входящих в последовательность.

Непараметрический подход. Классификация

Последовательности были классифицированы по двум секторам экономики — электроэнергетической и нефтегазовой отрасли.

Результаты:

В таблице представлены значения критерия f1-score.

	25-dim	
Continuous Bag of Words	0.7351	0.7351
Skip-Gram	0.7559	0.7559

Увеличение размерности не приводит к улучшению классификации.

Итоги

- Описаны параметрические и непараметрические методы анализа категоризированных финансовых последовательностей;
- Показана схожесть поведения параметров отрицательного биномиального распределения в данных разного происхождения;
- Показана целесообразность использования параметрического метода для экспериментальных данных малого объема.

Полученные результаты могут быть использованы в анализе категориальных переменных.