Call Forecasting for Inbound Call Center, Sep. 2016

loadData

```
In [2]:
pwd
Out[2]:
u'c:\\users\\crucker\\desktop\\python'
In [19]:
import pandas as pd
xls_file = pd.ExcelFile('call.xls')
xls_file
Out[19]:
<pandas.io.excel.ExcelFile at 0x7ecf160>
In [20]:
xls_file.sheet_names
Out[20]:
[u'call']
In [21]:
df = xls_file.parse('call')
df.head()
Out[21]:
```

		date	calls handled
	0	1	93063
	1	2	83982
	2	3	81342
	3	4	82143
	4	5	77217

cleanData

```
In [22]:
```

```
df_clean = df.dropna()
df_clean.head(1)
df_clean.ix[:,1:2].head(2)
df_clean[['date', 'calls handled']].corr().ix[:,1:2].head(2)
```

Out[22]:

	calls handled
date	-0.942662
calls handled	1.000000

buildModel

In [23]: import statsmodels.api as sm X = df_clean[['date']] y = df_clean[['calls handled']] X1 = sm.add_constant(X)

```
est = sm.OLS(y, X1).fit()
est.summary()
```

Out[23]:

OLS Regression Results

Dep. Variable:	calls handled	R-squared:	0.889
Model:	OLS	Adj. R-squared:	0.883
Method:	Least Squares	F-statistic:	167.5
Date:	Fri, 23 Sep 2016	Prob (F-statistic):	1.78e-11
Time:	09:00:40	Log-Likelihood:	-223.98
No. Observations:	23	AIC:	452.0
Df Residuals:	21	BIC:	454.2
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	8.861e+04	1850.243	47.891	0.000	8.48e+04 9.25e+04
date	-1746.6028	134.943	-12.943	0.000	-2027.232 -1465.974

Omnibus:	1.017	Durbin-Watson:	1.501
Prob(Omnibus):	0.602	Jarque-Bera (JB):	0.873
Skew:	-0.226	Prob(JB):	0.646
Kurtosis:	2.159	Cond. No.	28.5

show Regressors

In [24]:

```
import matplotlib.pyplot as plt
import statsmodels.api as sm
%matplotlib inline

with plt.style.context('ggplot'):
    fig = plt.figure(figsize=(17,12))
    fig = sm.graphics.plot_partregress_grid(est, fig=fig)

plt.show()
```


writeUp

This is an Ordinary Least Squares (OLS) regression model that results in predicted values close to the observed data.

The R-squared value in the OLS Regression Results is a relative measure of fit, and improvement in the regression model results in proportional increases in R-squared as predictors are added to the regression model.

R-squared value for this model is 0.889 or 88.9%, with an adjusted R-squared value of 0.883 or 88.3%. The reliability of this regression model is reinforced by the extreme correlation coefficient $R \approx -0.94$. For a sample of size 23, a correlation of -1.0 $\leq R \leq$ -0.5 is considered to be a strong negative correlation.

The data clearly suggests that the number of inbound calls is strongly dependent on time and decreasing at a steady pace of around 1,746 calls per month.

journalCitation

- Vinje, Peter (2009) "Call Forecasting for Inbound Call Center," Undergraduate Journal of Mathematical Modeling: One + Two: Vol. 2: lss. 1, Article 7.
- DOI: http://dx.doi.org/10.5038/2326-3652.2.1.7
- Available at: http://scholarcommons.usf.edu/ujmm/vol2/iss1/7