SE formulas

Chriss Jordan Oboa

4/19/2021

Packages

We use the tidyverse package, as always. We also use

- the infer package to generate sampling distributions.
- the scales package for a nicer axis with dollar values or percentages.

```
library(tidyverse)
## -- Attaching packages -----
                                       ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                    v purrr
                              0.3.4
                              1.0.7
## v tibble 3.1.6
                     v dplyr
## v tidyr
           1.1.4
                     v stringr 1.4.0
## v readr
           2.1.1
                     v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(infer)
library(ggdist)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
##
      discard
## The following object is masked from 'package:readr':
##
##
      col_factor
```

Populations

We load the hypothetical population of \$5 bills:

```
bills <- read_csv("data/bills_population.csv")

## Rows: 100000 Columns: 1

## -- Column specification ------

## Delimiter: ","

## dbl (1): age
```

```
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

We create a population to match the results of the 2020 election: 145,615 people cast a vote for President, and 77,675 of those people voted for Biden. The following chunk includes all the official results from the Frederick County Board of Elections.

Sampling distributions

The following chunk takes 10,000 random samples of size 500 from the population of \$5 bills and records the mean age in each sample. It may take half a minute to do its work.

```
sample_means <- bills %>%
  rep_slice_sample(n = 500, reps = 10000) %>%
  summarize(x_bar = mean(age))
```

The following chunk takes 10,000 random samples of size 500 from the population of voters and records the proportion of Biden votes in each sample. It may take half a minute to do its work.

```
sample_props <- votes %>%
  rep_slice_sample(n = 500, reps = 10000) %>%
  count(vote) %>%
  mutate(p_hat = n /sum(n)) %>%
  filter(vote == "Biden") %>% ungroup
```

Checking your guesses

Sample means

Make a histogram of the sample means for samples of 500~\$5 bills.

```
ggplot(data = sample_means, mapping = aes(x = x_bar))+
  geom_histogram(binwidth = 0.01)+
  labs(x = "x_bars ",
    title = "Sampling distribution of x_bar")
```


Calculate the center (mean) of the sampling distribution and the standard error.

```
sample_means %>%
  summarize(x_bar_mean= mean (x_bar), std_x_bar= sd(x_bar))

## # A tibble: 1 x 2

## x_bar_mean std_x_bar

## <dbl> <dbl>
## 1 5.55 0.255
```

Sample proportions

Make a historgram of teh sample proportions of Biden votes for samples of 500 voters.

```
ggplot(data = sample_props, mapping = aes(x = p_hat))+
geom_histogram(binwidth = 0.01)+
labs(x = "p_hat ",
   title = "Sampling distribution of p_hat")
```

Sampling distribution of p_hat

Calculate the center (mean) of the sampling distribution and the standard error.

```
sample_props %>%
summarize(p_hat_mean= mean (p_hat), std_p_hat= sd(p_hat))
```