6c. Lineare Programmierung Das Simplex-Verfahren II

Optimierung SoSe 2020

Dr. Alexey Agaltsov

Plan

- Erinnerung: Gaußsches Eliminationsverfahren
- Simplex-Tableaus
- Initialisierung des Simplex-Verfahrens

Tableaus

$$2x_1 + 2x_2 - 2x_3 = 2$$

$$x_1 - x_2 + 2x_3 = -3$$

$$2x_1 + x_2 + x_3 = 0$$

Tableau

	x_1	x_2	x_3	RS
E_1	2	2	-2	2
E_2	1	-1	2	-3
E_3	2	1	1	0

Pivotisierung

- Wir wählen ein von Null verschiedenes Pivotelement (i,j) der Koeffizientenmatrix
- Durch Elementare Zeilenumformungen transformieren wir die Spalte *j* der Pivotelements zur Form:

$$e_i = [0 \dots 0 \underline{1} 0 \dots 0]^T$$

- Erlaubte Umformungen:
 - 1. Normiere die Zeile *i*
 - 2. Ein Vielfaches der Zeile i zu anderen Zeilen addieren

Pivotisierung: Schritt 1

Pivotelement

	x_1	x_2	x_3	RS
E_1	2	2	-2	2
E_2	1	-1	2	-3
E_3	2	1	1	0

	x_1	x_2	x_3	RS
$E_4 = \frac{1}{2}E_1$	1	1	-1	1
$E_5 = E_2 - \frac{1}{2}E_1$	0	-2	3	-4
$E_6 = E_3 - E_1$	0	-1	3	-2

Pivotisierung: Schritt 2

Pivotelement

	x_1	x_2	x_3	RS
E_4	1	1	-1	1
E_5	0	-2	3	-4
E_6	0	-1	3	-2

	x_1	x_2	x_3	RS
$E_7 = E_4 + \frac{1}{2}E_5$	1	0	$\frac{1}{2}$	-1
$E_8 = -\frac{1}{2}E_5$	0	1	$-\frac{3}{2}$	2
$E_9 = E_5 - \frac{1}{2}E_5$	0	0	$\frac{3}{2}$	0

Pivotisierung: Schritt 3

Pivotelement

	x_1	x_2	x_3	RS
E_7	1	0	$\frac{1}{2}$	_1
E_8	0	1	$-\frac{3}{2}$	2
E_9	0	0	$\frac{3}{2}$	0

Pivotisierui	าg

	x_1	x_2	x_3	RS
$E_{10} = E_7 - 3E_9$	1	0	0	-1
$E_{11} = E_8 + E_9$	0	1	0	2
$E_{12} = \frac{2}{3}E_9$	0	0	1	0

Lösung

	x_1	x_2	x_3	RS
$E_{10} = E_7 - 3E_9$	1	0	0	-1
$E_{11} = E_8 + E_9$	0	1	0	2
$E_{12} = \frac{2}{3}E_9$	0	0	1	0

$$x_1 = -1$$

$$x_2 = 2$$

$$x_3 = 0$$

Plan

- Erinnerung: Gaußsches Eliminationsverfahren
- Simplex-Tableaus
- Initialisierung des Simplex-Verfahrens

Simplex-Tableau

Simplex-Tableau

Minimiere
$$z = 4x_1 + 2x_2 + x_3 + x_5 - 1$$

u.d.N.
$$x_1 - 2x_2 + x_3 + x_4 - x_5 = 5$$

$$2x_1 - 4x_2 - x_3 + 2x_5 + x_6 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

-z	x_1	x_2	x_3	x_4	x_5	x_6	RS
1	4	2	1	0	1	0	1
0	1	-2	1	1	-1	0	5
0	2	-4	-1	0	2	1	1

Kanonische Form

-z	x_1	x_2	x_3	x_4	x_5	x_6	RS	
1	4	2	1	0	1	0	1	
0	1	-2	1	1	-1	0	5	≥ 0
0	2	-4	-1	0	2	1	1	≥ 0

Das lineare Programm ist in kanonischer Form mit Basisvariablen x_4, x_6 :

- Die Zielfunktion enthält x_4 und x_6 nicht
- Die Koeffizientenmatrix für x_4 , x_6 ist die Einheitsmatrix
- Die rechten Seiten der Nebenbedingungen sind nicht-negativ

Basislösung

-z	x_1	x_2	x_3	x_4	x_5	x_6	RS
1	4	2	1	0	1	0	1
0	1	-2	1	1	-1	0	5
0	2	-4	-1	0	2	1	1

Die Basislösung für die gegebene kanonische Form ist gegeben durch:

Setze die Nichtbasisvariablen gleich Null

$$x_1 = x_2 = x_3 = x_5 = 0$$

Setze die Basisvariablen gleich die zugehörigen rechten Seiten

$$x_4 = 5, x_6 = 1$$

Der zugehörige Zielfunktionswert ist gleich der freie Term

$$z = -1$$
 Vorzeichen!

Optimalitätsbedingung

-z	x_1	x_2	x_3	x_4	x_5	x_6	RS
1	4	2	1	0	1	0	1
0	1	-2	1	1	-1	0	5
0	2	-4	-1	0	2	1	1

- Das Problem ist in kanonischer Form und alle Zielfunktionskoeffizienten sind nichtnegativ
 - ⇒ Die aktuelle Basislösung ist optimal nach Lemma 6.8

Beispiel

Minimiere
$$z = -3x_1 + 4x_2 + 3x_3 - x_5$$

u.d.N.
$$x_1 - 4x_2 + x_3 + x_4 - 2x_5 = 6$$

Simplex-Tableau

$$2x_1 - 4x_2 - 2x_3 + 2x_5 + x_6 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

-z	x_1	x_2	x_3	x_4	x_5	x_6	RS
1	-3	4	3	0	-1	0	0
0	1	-4	1	1	-2	0	6
0	2	-4	-2	0	2	1	1

Kanonische Form

-z	x_1	x_2	x_3	x_4	x_5	x_6	RS	
1	-3	4	3	0	-1	0	0	
0	1	-4	1	1	-2	0	6	≥ 0
0	2	-4	-2	0	2	1	1	≥ 0

Das lineare Program ist in kanonischer Form mit Basisvariablen x_4, x_6 :

- Die Zielfunktion enthält x_4 , x_6 nicht
- Die Koeffizientenmatrix für x_4 , x_6 ist die Einheitsmatrix
- Die rechten Seiten der Nebenbedingungen sind nichtnegativ

Basislösung:
$$x_1 = x_2 = x_3 = x_5 = 0$$
, $x_4 = 6$, $x_6 = 1$, $z = 0$

In die Basis eintretende Variable

Die erste Variable mit negativem Zielfunktionskoeffizienten

-z	x_1	x_2	x_3	x_4	x_5	x_6	RS
1	-3	4	3	0	-1	0	0
0	1	-4	1	1	-2	0	6
0	2	-4	-2	0	2	1	1

- Es gibt negative Zielfunktionskoeffizienten
 - ⇒ Die Optimalitätsbedingung von Lemma 6.8 ist nicht erfüllt
- x_1 ist die Nichtbasisvariable mit negativem Zielfunktionskoeffizient und mit möglichst kleinem Index (Bland-Regel)
- $\Rightarrow x_1$ ist in die Basis eintretende Variable

Aus der Basis austretende Variable

-z	x_1	x_2	x_3	x_4	x_5	x_6	RS
1	-3	4	3	0	-1	0	0
0	1	-4	1	1	-2	0	6
0	2	-4	-2	0	2	1	1

$$6/1 = 6$$
 $1/2 = 0$

Minimaler Koeffizient

- Die zweite und die dritte Zeile der x_1 -Spalte sind strikt positiv
- Berechne die Verhältnisse der rechten Seiten zu diesen Koeffizienten
- Die Spalte mit minimalem Quotienten und möglichst kleinem Index entspricht der aus der Basis austretenden Variable (Bland-Regel)
- $\Rightarrow x_6$ ist aus der Basis austretende Variable

Basisaustausch

$-\mathbf{z}$	x_1	x_2	x_3	x_4	x_5	x_6	RS
1	-3	4	3	0	-1	0	0
		-4					
0	2	-4	-2	0	2	1	1

Das Pivotelement befindet sich in der Spalte der eingehenden Variable und in der Zeile der ausgehenden Variable

-z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
1	0	-2	0	0	2	1.5	1.5
0	0	-2	2	1	-3	-0.5	5.5
0	1	-2	-1	0	1	0.5	0.5

Unbeschränktheit

Die erste Variable mit negativem Zielfunktionskoeffizienten

-z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
1	0	-2	0	0	2	1.5	1.5
0	0	-2	2	1	-3	-0.5	5.5
0	1	-2	-1	0	1	0.5	0.5

Alle Koeffizienten sind negativ

Basislösung:
$$x_1 = 0.5$$
, $x_4 = 5.5$, $x_2 = x_3 = x_5 = x_6 = 0$, $z = -1.5$

- x_2 tritt in die Basis ein als die Nichtbasisvariable mit negativem Zielfunktionskoeffizienten und mit möglichst kleinem Index
- Alle Koeffizienten in der Spalte von x_2 sind negativ
 - ⇒ Das Problem ist nicht nach unten beschränkt nach Lemma 6.9

Plan

- Erinnerung: Gaußsches Eliminationsverfahren
- Simplex-Tableaus
- Initialisierung des Simplex-Verfahrens

Die Zwei-Phasen-Methode

Minimiere
$$c^T x$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b$, wobei $b \ge 0$ $x \ge 0$

Die Zwei-Phasen-Methode

Phase-I

Wahl der anfänglichen Basislösung

Phase-II

Das Simplex-Verfahren

Phase-I: Hilfsproblem

- Lemma 6.13. $(\bar{x}, 0)$ ist eine optimale Lösung des HP $\Leftrightarrow \bar{x} \in \mathcal{F}$, wobei $\mathcal{F} = \{x \geq 0 : Ax = b\}$
- Löse das Hilfsproblem um eine anfängliche Basislösung des ursprünglichen Problems zu bestimmen

Phase-I: Hilfsproblem

Minimiere
$$\mathbf{1}^T y$$
 über $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$

u.d.N.
$$Ax + y = b$$

 $x, y \ge 0$

subtrahiere $\mathbf{1}^{T}(Ax + y - b) = 0$ von der Zielfunktion

Minimiere
$$-\mathbf{1}^T A x + \mathbf{1}^T b$$
 über $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$

u.d.N.
$$Ax + y = b$$

 $x, y \ge 0$

Kanonische Form

Das Simplex-Verfahren ist direkt anwendbar

Beispiel

Minimiere
$$2x_1 + 2x_2 + 4x_3$$
 u.d.N. $x_1 - x_2 + x_3 - x_4 = 2$ | + künstliche Variable y_1 | + künstliche Variable y_2 | Hilfsproblem | Minimiere $y_1 + y_2$ u.d.N. $x_1 - x_2 + x_3 - x_4 + y_1 = 2$ | $-x_1 + 3x_2 + x_3 + y_2 = 1$ | $x_1, x_2, x_3, x_4, y_1, y_2 \ge 0$

Phase-I

Minimiere $y_1 + y_2$

u.d.N.
$$x_1 - x_2 + x_3 - x_4 + y_1 = 2$$

$$-x_1 + 3x_2 + x_3 + y_2 = 1$$

$$x_1, x_2, x_3, x_4, y_1, y_2 \ge 0$$

Simplex-Tableau

Eliminiere y_1, y_2 aus der Zielfunktion

-z	x_1	x_2	x_3	x_4	y_1	y_2	RS
1	0	0	0	0	1	1	0
0	1	-1	1	-1	1	0	2
0	-1	3	1	0	0	1	1

	-z	x_1	x_2	x_3	x_4	y_1	y_2	RS
•	1	0	-2	-2	1	0	0	-3
	0	1	-1	1	-1	1	0	2
	0	-1	3	1	0	0	1	1

kanonische Form

Pivotisierung

-z	x_1	x_2	x_3	x_4	y_1	y_2	RS
1	0	-2	-2	1	0	0	-3
0	1	-1	1	-1	1	0	2
0	-1	3	1	0	0	1	1

-z	x_1	x_2	x_3	x_4	y_1	y_2	RS
1	-0.(6)	0	-1.(3)	1	0	0.(6)	-2.(3)
0	0.(6)	0	1. (3)	-1	1	0.(3)	2.(3)
0	-0.(3)	1	0.(3)	0	0	0.(3)	0.(3)

-z	x_1	x_2	x_3	x_4	y_1	y_2	RS
1	0	0	0	0	1	1	0
0	1	0	2	-1.5	1.5	0.5	3.5
0	0	1	1	-0.5	0.5	0.5	1.5

STOP

Anfängliche Basislösung

-z	x_1	x_2	x_3	x_4	y_1	y_2	RS
1	0	0	0	0	1	1	0
0	1	0	2	-1.5	1.5	0.5	3.5
0	0	1	1	-0.5	0.5	0.5	1.5

Optimale Basislösung des Hilfsproblems:

$$x_1 = 3.5, x_2 = 1.5$$
 $x_3 = x_4 = y_1 = y_2 = 0$

• x_1, x_2, x_3, x_4 liefern eine anfängliche Basislösung des ursprünglichen Problems, weil $y_1 = y_2 = 0$ nach Lemma 6.13

Start der Phase-II

							,
-z	x_1	x_2	x_3	x_4	y_1	y_2	RS
1	0	0	0	0	1/	1	0
0	1	0	2	-1.5	1.5	0,5	3.5
0	0	1	1	-0.5	0.5	Ø .5	1.5
						/	

- Entferne die Spalten von y_1 und y_2
- Ersetze die Zielfunktion durch die ursprüngliche Zielfunktion

$$z = 2x_1 + 2x_2 + 4x_3$$

	-z	x_1	x_2	x_3	x_4	RS
	1	2	2	4	0	0
\Rightarrow	0	1	0	2	-1.5	3.5
	0	0	1	1	-0.5	1.5

Phase-II

Eliminiere x_1, x_2 aus der Zielfunktion

Pivotisierung

$-\mathbf{z}$	x_1	x_2	x_3	x_4	RS
1	2	2	4	0	0
0	1	0	2	-1.5	3.5
0	0	1	1	-0.5	1.5

-z	x_1	x_2	x_3	x_4	RS
1	0	0	-2	4	-10
0	1	0	2	-1.5	3.5
0	0	1	1	-0.5	1.5

-z	x_1	x_2	x_3	x_4	RS
1	0	2	0	3	- 7
0	1	-2	0	-0.5	0.5
0	0	1	1	-0.5	1.5

kanonische Form

$$3.5/2 = 1.75$$

$$1.5/1 = 1.5$$

optimale Lösung $x_1 = 0.5, x_2 = 1.5$ $x_2 = x_4 = 0$ z = 7

Bemerkung

- Schlupfvariablen und k\u00fcnstliche Variablen: Was ist der Unterschied?
- Man fügt Schlupfvariablen hinzu, um ein lineares Program mit Ungleichungsnebenbedingungen in Standardform zu bringen
- Man fügt künstliche Variablen hinzu, um ein Hilfsproblem zu formulieren

Zusammenfassung

- Erinnerung: Gaußsches Eliminationsverfahren
- Simplex-Tableaus
- Initialisierung des Simplex-Verfahrens

Nächstes Video

• 6d. Lineare Programmierung: Sensitivitätsanalyse

