ANA2 Differential Gleichungen

LATEX

Definition

Gleichung, die Funktion f und Ableitungen von f enthält. Lösung von DGL ist differenzierbare Funktion, welche die Gleichung erfüllt.

- DGL aufgelöst nach y^n heisst explizit sonst implizit.

Beispiel:

$$y' = -\frac{x}{y} \quad \rightarrow \quad y = \pm \sqrt{c - x^2}$$

Lösung überprüfen

$$y' = x + y$$

$$y_1 = e^x - 1, \quad y_2 = -x - 1$$

Test:
$$y_1 = e^x - 1$$
 $y_1' = e^x$: $e^x = x + e^x - 1$ \rightarrow $x = 1$

→ keine Lösung

 \rightarrow Lösung

Test:
$$y_2 = -x - 1$$
 $y_2' = -1$: $-1 = x - x - 1$ \rightarrow $-1 = -1$

Anfangswert Problem

$$y' = x - 4$$
 $y(2) = 9$

$$\rightarrow y = \frac{1}{2}x^2 - 4x + C$$

Einsetzen von y(2) = 9:

$$9 = \frac{1}{2} \cdot 2^2 - 4 \cdot 2 + C \rightarrow C = 15$$

Lösung: $y = \frac{1}{2}x^2 - 4x + 15$

Geometrische Betrachtung

Funktionswerte geben Steigungen an (2D)

Richtungsfelder

Vorgehen:

Nullstellen bilden konstante Lösungen

kleiner Funktionswert links von Nullstelle:

- → instabil (geht von Nullstelle weg) → stabil (geht auf Nullstelle zu)
- kleiner Funktionswert rechts von Nullstelle:
- y' negativ: → stabil (geht auf Nullstelle zu) y' positiv: → instabil (geht von Nullstelle weg)

Semistabil: wenn eine Seite stabil und andere instabil

Steigung:

$$m = \frac{y}{x}$$

$$=\frac{y_2-y_1}{x_2-x_1}$$

\rightarrow v auf x Wert

Definition DGL Art

Separierbare DGL wenn umformbar zu:

$$\frac{dy}{dx} = g(x) \cdot h(y) \quad \to \quad \int \frac{1}{h(y)} \cdot dy = \int g(x) \cdot dx$$

- g(x) Funktion von x
- h(y) Funktion von y

Lineare DGL 1. Ordnung wenn umformbar zu:

$$y' + f(x) \cdot y = g(x)$$
 \rightarrow $y = e^{-F(x)} \cdot \int g(x) \cdot e^{F(x)} dx$

- f(x) Faktor von y
- g(x) Funktion von x

Separierbare DGL

$$y' = g(x) \cdot h(y)$$

separierbar: $y' = g(x) \cdot h(y)$ autonom: y' = h(y)

Vorgehen:

$$\frac{dy}{dx} = g(x) \cdot h(y) \quad \to \quad \frac{1}{h(y)} \cdot dy = g(x) \cdot dx$$

 $\int \frac{1}{h(y)} dy = \int g(x) dx \quad \to \quad \text{nach } y \text{ auflösen und } +c$

Falls noch y(0) = 1:

x=0 einsetzen und c berechnen.

Lineare DGL 1. Ordnung

$$y' + f(x) \cdot y = g(x)$$

homogen: y' + f(x)y = 0inhomogen: y' + f(x)y = g(x)

Sehr oft Partielle Integration nötig.

Wahl von u(x) / Reihenfolge für Ableiten $u \to u'$:

- 1. ln und log
- 2. Polynome

$$y = e^{-F(x)} \cdot \int g(x) \cdot e^{F(x)} dx$$

Numerisches Verfahren Eulerverfahren

- Für Anfangswert Probleme 1. Ordnung
- Möglichst kleiner Fehler (nahe Approximieren)

Approximations Schrittweite: Approximations Wert:

 $t_k = t_0 + k \cdot h$ $x_{k+1} = x_k + h \cdot f(t_k, x_k)$

Note: x_{k+1} Formel kürzen wenn möglich

Beispiel 1:

Verringerung des Fehlers:

- Schrittweite h verkleinern
- Fehler proportional zu h