NEC

PNP SILICON TRANSISTOR 2SA916

DESCRIPTION

The 2SA916 is designed for use in driver stages of audio frequency amplifiers.

FEATURES

- High Total Power Dissipation and High Breakdown Voltage:
 1.0 W at 25 °C Ambient Temperature /VCEO = -160 V
- Complementary to the NEC 2SC1941 NPN Transistor.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures
Storage Temperature $\dots -55$ to $+150^{\circ}\!\mathrm{C}$
Junction Temperature +150 ℃ Maximum
Maximum Power Dissipation (Ta=25 °C)
Total Power Dissipation
Thermal Resistance(Junction to Ambient) 125 °C/W
Maximum Voltages and Currents (Ta=25 °C)
V _{CBO} Collector to Base Voltage160 V
V _{CEO} Collector to Emitter Voltage160 V
V _{EBO} Emitter to Base Voltage5.0 V
I _C Collector Current50 mA
I _B Base Current10 mA

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1	DC Current Gain	90	200	400	_	V _{CE} = -10 V, I _C = -10 mA
hFE2	DC Current Gain	50	200		_	$V_{CE} = -10 \text{ V, I}_{C} = -1.0 \text{ mA}$
f⊤	Gain Bandwidth Product	50	80		MHz	$V_{CE} = -10 \text{ V, } I_{E} = 10 \text{ mA}$
Cob	Output Capacitance		2.5	3.5	pF	$V_{CB} = -10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
ICBO	Collector Cutoff Current			-100	nA	$V_{CB} = -160 \text{ V, I}_{E} = 0$
IEBO	Emitter Cutoff Current			-100	nA	$V_{EB} = -5.0 \text{ V, } 1_{C} = 0$
∨ _{BE}	Base to Emitter Voltage	-650	- 695	-750	mV	$V_{CE} = -10 \text{ V, } I_{C} = -10 \text{ mA}$
V _{CE(sat)}	Collector Saturation Voltage		- 0.18	-0.6	V	$I_C = -20 \text{ mA}$, $I_B = -2.0 \text{ mA}$
V _{BE(sat)}	Base Saturation Voltage		- 0.79	-1.0	v .	$I_C = -20 \text{ mA}$, $I_B = -2.0 \text{ mA}$

Classification of hFE1

Rank	М	L	K
Range	90 – 180	135 — 270	200 – 400

hFE1 Test Conditions: $V_{CE} = -10 \text{ V}$, $I_{C} = -10 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta=25 °C unless otherwise noted)

INPUT AND OUTPUT CAPACITANCE vs. REVERSE VOLTAGE

V_{CB} - Collector to Base Voltage - V V_{EB} - Emitter to Base Voltage - V