HEURISTIC ANALYSIS AIND PLANNING

Ambadipudi, Vidya

ARITIFICIAL INTELLIGENCE NANODEGREE Udacity

Table of Contents

Α	ir Cargo Problem Heuristic Analysis	1
	Uninformed planning search results	1
	A* search with heuristics	1

Air Cargo Problem Heuristic Analysis

Following tables show all the results obtained by run_search.py on each of the problems and the analysis for each of the problems. The goal is to find an optimal solution for each of the problems.

Uninformed planning search results

After running the uninformed searches for each of the problems, here are the results.

- 1. All searches return results within 10 mins.
- 2. From the following table we see that **DFGS** can find the solution in shortest time but it has a **larger plan length** which also increases with problem complexity.
- 3. Even though **BFS** takes longer time, it always finds the shortest possible plan length. Hence it seems to be an **optimal solution**.

Problem	Search	Expansions	Goal Tests	New Nodes	Time elapsed	Plan length
P1	breadth_first_search	43	56	180	0.02927613532056832	6
P1	depth_first_graph_search	21	22	84	0.020789620444058136	20
P1	uniform_cost_search	55	57	224	0.03278008878444154	6
P2	breadth_first_search	3401	4672	31049	7.923552268753231	9
P2	depth_first_graph_search	1192	1193	10606	8.026055367750866	1138
P2	uniform_cost_search	4761	4763	43206	11.078699247896022	9
Р3	breadth_first_search	3401	4672	31049	7.923552268753231	9
Р3	depth_first_graph_search	1192	1193	10606	8.026055367750866	1138
Р3	uniform_cost_search	4761	4763	43206	11.078699247896022	9

A* search with heuristics

After running the A* search for each problem with heuristics we see that

- 1. Search with heuristic ignore_preconditions always returns results within 10 minutes but for pg_levelsum it takes more than 10 minutes for Problem 2 and 3.
- 2. Looking at node expansions and goal test for pg_levelsum it is a good heuristic and performs better for a more complex problem P3, but overall it is very slow due to complex calculations involved.
- 3. Ignore_preconditions performance is optimal as it is considerably faster than levelsum even with large node expansions and goal tests.

Problem	Search	Expan sions	Goal Tests	New Nodes	Time elapsed	Plan length
P1	astar_search h_ignore_preconditions	41	43	170	0.03652682695491718	6
P1	astar_search h_pg_levelsum	11	13	50	0.8604882804461651	6
P2	astar_search h_ignore_preconditions	1450	1452	13303	4.071257500178407	9
P2	astar_search h_pg_levelsum	86	88	841	161.20797474132857	9
Р3	astar_search h_ignore_preconditions	5003	5005	44586	15.181570110974887	12
Р3	astar_search h_pg_levelsum	311	313	2863	800.3601679028045	12