Instituto Tecnológico de Costa Rica

Engineering School Computer Engineering CE-3104 -Análisis Númerico para Ingeniería I Semestre 2020

Tarea 1 Método BFGS - Octave

Kenneth Jeanpol Alvarado Mendez, 2015095715 Yennira Chacon Molina, 2015075331 Jonnathan Guzman Araya, 2013041216 Dario Rodríguez Obando , 2017117105 Grupo 01

Professor: Juan Pablo Soto Quiros

Índice

1.	Pseudocódigo del Método BFGS	3
2.	Análisis de los Resultados	3
3	Problema Planteado : Styblinski-Tank Function	4

1. Pseudocódigo del Método BFGS

- Definir los valores : B_o (matriz inicial), $\lambda_k=1$ y las variables sigma dadas por $0<\sigma_1<\sigma_2<1$
- Encontrar el gradiente de de la funcion $f, g_x = \nabla f(..., ..., ...)$
- Mientras el error
 - Definir g_{xk} como el gradiente evaluado en el vector x_k , $g_{xk} = g(x_k)$
 - Encontrar el valor de p_k como $p_k = -g_{xk} * B_0^{-1}$
 - Ahora se debe encontrar el valor de λ_k como sigue:

○ Mientras sea falso
$$f(x_k + \lambda_k * p_k) \le f(x_k) + \sigma_1 * g(x_K)^T * p_k$$
 y $g(x_k + \lambda_k * p_k)^T * p_k$ $\sigma_2 * g(x_K)^T * p_k$ $\delta \lambda_k = \lambda_k/2$ $\delta \text{Si } \lambda_k \le 10^{-10}$

- ♦ Salir del Loop While
- Se define el nuevo vector de variables como $x_{k+1} = x_k + \lambda_k * p_k$
- Se define s_k como $s_k = x_{k+1} x_k$
- Se define y_k como $y_k = g_{k+1} g_k$
- Se encuentra la nueva matriz B_{k+1} como, $B_{k+1} = B_k \frac{B_k s_k s_k^T B_k}{s_k^T B_k S_k} + \frac{y_k y_K^T}{y_k^T s_k}$
- Se define el error como, $error = \|\nabla f(x_k)\|$
- \blacksquare Devolver el valor de xk

2. Análisis de los Resultados

A la hora de obtener los valores de la función, se es notable que en varias ocasiones el numero de iteraciones es 1, por lo que se va a asumir como el valor mas promediado, debido a que se hicieron varias pruebas y siempre retorno uno, además se adjunta una gráfica que caracteriza el comportamiento

3. Problema Planteado: Styblinski-Tank Function

Esta función es característica debido a que es continua, no convexa, es multimodal y tiene N parámetros para su aplicación, por lo general se utiliza para estudiar las funciones de optimización y tiene un valor mínimo global de f(x)= - 39.16599D, donde D es el numero de Dimensiones utilizadas, en el caso de nuestra aplicación, puede que este dando un error mas grande debido a lo complejo de la función con 6 variables que utilizamos, sin embargo, los valores comunes están entre [-5,5], y nuestros valores si se encuentran en dicho dominio. Es utilizado en Benchmarks para la evaluación del rendimiento de algoritmos de optimización en la ingeniería

Referencias

- [1] Dong-Hui LI Masao Fukushima, 2001] On the Global Convergence of the BFGS Method For Nonconvex Unconstrained Optimization Problems
- [2] Global Optimization Test Functions Index. Retrieved June 2013, from http://infinity77.net/global_optimization/test_functions.htmltest functions index