Lista 1

Dawid Żywczak

24 marca 2020

Zadanie 1

Mamy dla każdego adresu w formacie CIDR znaleźć adres sieci, adres rozgłoszeniowy oraz inny adres w sieci.

- \bullet 10.1.2.3/8 Adres sieci: 10.0.0.0, adres rozgłoszeniowy: 10.255.255.255, jakiś adres: 10.1.2.4
- 156.17.0.0/16 Adres sieci: 156.17.0.0, adres rozgłoszeniowy:156.17.255.255, jakiś adres: 156.17.10.10
- 99.99.99/27 Adres sieci: 99.99.99.96, adres rozgłoszeniowy: 99.99.99.127, jakiś adres: 99.99.99.100
- 156.17.64.4/30 Adres sieci: 156.17.64.4, adres rozgłoszeniowy: 156.17.64.7, jakiś adres: 156.17.64.5
- 123.123.123.123 Sieć z jednym ip, to jedno jest wszystkim

Zadanie 2

Mamy podzielić sieć 10.10.0.0/16 na 5 podsieci tak, aby każdy adres był w jednej z podsieci.

Adres sieci: 00001010.00001010.0.0, maska: 255.255.0.0. Dzielimy sieć na podsieci:

- Adres sieci: 00001010.00001010.10000000.0, maska: 255.255.11000000.0 tzn 10.10.128.0/18 Zakres 10.10.128.0 \rightarrow 10.10.191.255

Co robiny?

Bierzemy adres naszej sieci i dzielimy go na dwie podsieci. Jedną z nich zostawiamy, drugą znowu dzielimy na dwie podsieci itd.

Straciliśmy 10 adresów na adresy sieci oraz rozgłoszeniowe, ale na początku mieliśmy ich 2, więc ostatecznie straciliśmy 8 adresów.

Najmniejsza wielkość sieci tym sposobem to 2^{12} , ponieważ zawsze dzielimy jedną z naszych podsieci na pół.

Zadanie 3

Mamy następującą tablicę routingu:

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/23 \rightarrow do routera B$
- $10.0.2.0/24 \rightarrow do routera B$
- $10.0.3.0/24 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.0.128/25 \rightarrow do routera B$
- $10.0.1.8/29 \rightarrow do routera B$
- $10.0.1.16/29 \rightarrow do routera B$
- $10.0.1.24/29 \rightarrow do routera B$

Skorzystajmy z faktu, że zawsze wybierana jest najkonkretniejsza reguła dla danego adresu.

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/22 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.1.0/27 \rightarrow do routera B$
- $10.0.1.0/29 \rightarrow do routera C$

Zadanie 4

Mamy wykonać to co wyżej tylko dla innej tablicy routingu

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.0/24 \rightarrow do routera C$
- $10.3.0.32/27 \rightarrow do routera B$
- $10.3.0.64/27 \rightarrow do routera B$
- $10.3.0.96/27 \rightarrow do routera B$

Zauważmy, że możemy zrobić dziurę w dość szczegółowej regule kierującej pakiety do routera C. Tym sposobem otrzymujemy:

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.0/27 \rightarrow do routera C$
- $10.3.0.192/25 \rightarrow do routera C$

Zadanie 5

Powinniśmy uporządkować adresy w porządku malejącym względem długości prefixa tzn. adres o najdłuższym prefixie powinien znajdować się jako pierwszy w tablicy routingu. Dlaczego? Z wykładu wiemy, że adres najlepiej pasujący, to ten który jest dopasowany oraz posiada najdłuższy prefiks (jest najbardziej doprecyzowany). Zatem układając adresy zgodnie z powyższą kolejnością, pierwszy dopasowany adres, będzie również najlepiej pasującym, ponieważ zawiera najdłuższy prefix.

Zadanie 6

Krok 0							
	A	В	С	D	E	F	
do A	-	1					
do B	1	-	1				
do C		1	-		1	1	
do D				-	1		
do E			1	1	-	1	
do F			1		1	-	

Krok 1							
	A	В	С	D	E	F	
do A	-	1	2 (Via B)				
do B	1	-	1		2 (Via C)	2 (Via C)	
do C	2 (Via B)	1	-	2 (Via E)	1	1	
do D			2 (Via E)	-	1	2 (Via E)	
do E		2 (Via C)	1	1	-	1	
do F		2 (Via C)	1	2 (Via E)	1	-	
			Krok 2				

KIOK Z							
	A	В	С	D	E	F	
do A	-	1	2 (Via B)		3 (Via C)	3 (Via C)	
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)	
do C	2 (Via B)	1	-	2 (Via E)	1	1	
do D		3 (Via C)	2 (Via E)	-	1	2 (Via E)	
do E	3 (Via B)	2 (Via C)	1	1	-	1	
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	_	
T/ 1.0							

			Krok 3			
	A	В	С	D	${ m E}$	F
do A	-	1	2 (Via B)	4 (Via E)	3 (Via C)	3 (Via C)
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D	4 (Via B)	3 (Via C)	2 (Via E)	-	1	2 (Via E)
do E	3 (Via B)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-

Zadanie 7
Dołóżmy połączenie między routerem A oraz D. Jak zmieni się tablica routingu?

			Krok 0				
	A	В	С	D	Е	F	
do A	-	1	2 (Via B)	1	3 (Via C)	3 (Via C)	
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)	
do C	2 (Via B)	1	-	2 (Via E)	1	1	
do D	1	3 (Via C)	2 (Via E)	-	1	2 (Via E)	
do E	3 (Via B)	2 (Via C)	1	1	-	1	
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-	
	Krok 1						
	A	В	С	D	Е	F	
do A	-	1	2 (Via B)	1	2 (Via D)	3 (Via C)	
do B	1	-	1	2 (Via A)	2 (Via C)	2 (Via C)	
do C	2 (Via B)	1	-	2 (Via E)	1	1	

Zadanie 8

do D

do E

do F

Rozważmy dwie sytuacje:

2 (Via D)

3 (Via B)

2 (Via A)

2 (Via C)

2 (Via C)

1. Zostaje uszkodzone połączenie między D i E. D wysyła informację o tym zdarzeniu do B i C, one aktualizują swoją tablicę routingu i wysyłają wiadomość do A. Wszystko działa, odległości do E ustawione są na nieskończoność. Co się stanie, kiedy to A wyśle najpierw komunikat do B i C (zakładając, że zaszła awaria łącza D i E)?

2 (Via E)

1

1

1

1

1

2 (Via E)

2 (Via E)

1

2. A wyśle do B i C informację, że ma do E ścieżkę długości 3. One mając ustawione niekończone ścieżki do E, pomyślą, że przez A jest szybciej. Zaktualizują więc swoją tablicę routingu i wyślą do sąsiadów: potrafię dojść do E ścieżką długości 4. W kolejnym kroku tą informację otrzyma C, dla którego ścieżka ta jest krótsza od nieskończoności. Ustawi więc u siebie, że ścieżka do E ma długość 5. Teraz A musi zaktualizować swoją tablicę, bo ścieżka (w B i C) wydłużyła się, więc ustawia u siebie, że ścieżka do E ma długość 4 oraz rozsyła ten komunikat do B i C i tak w kółko. Mamy więc cykl (zliczanie do nieskończoności).