Math 131B: Homework 6

Owen Jones

5/19/2023

Problem 1. Exercise 3.6.1

We want to show $\int_a^b \sum_{n=1}^\infty f^{(n)} = \sum_{n=1}^\infty \int_a^b f^{(n)}$. Let $(s^{(n)})_{n=1}^\infty$ be the sequence of partial sums for the sequence $(f^{(n)})_{n=1}^\infty$ Given the series $\sum_{n=1}^\infty f^{(n)}$ converges uniformly, it follows $(s^{(n)})_{n=1}^\infty$ converges to f. By theorem 3.6.1, $\int_a^b \lim_{n\to\infty} s^{(n)} = \lim_{n\to\infty} \int_a^b s^{(n)}$. We use the linearity of the integral to switch the order of integration and summation for finitely many terms: $\lim_{n\to\infty} \int_a^b s^{(n)} = \lim_{n\to\infty} \sum_{i=1}^n \int_a^b f^{(i)}$. It follows $\lim_{n\to\infty} \sum_{i=1}^n \int_a^b f^{(i)}$ is equivalent to $\sum_{n=1}^\infty \int_a^b f^{(n)}$, so we obtain our desired result.

Problem 2. Exercise 3.7.1

We use the beginning of the proof given in the textbook. It remains to show the sequence of functions $(f_n)_{n=1}^{\infty}$ converges uniformly to the function $f:[a,b]\to\mathbb{R}$ $f(x):=L-\int_a^{x_0}g+\int_a^xg$ for all $x\in[a,b]$ and that f is differentiable with derivative g. Let $\epsilon>0$. By the uniform convergence of f'_n to g, we can use theorem 3.6.1 to choose an N large enough s.t $d(\int_a^{x_0}f'_n,\int_a^{x_0}g)<\frac{\epsilon}{3},$ $d(\int_a^xf'_n,\int_a^xg)<\frac{\epsilon}{3},$ and $d(f_n(x_0),L)<\frac{\epsilon}{3}$ whenever n>N and $x\in[a,b]$. It follows $d(f(x),f_n(x_0)-\int_a^{x_0}f'_n+\int_a^xf'_n)<\epsilon$ by the triangle innequality. The fundamental theorem of calculus gives us $f_n(x_0)-\int_a^xf'_n+\int_a^xf'_n=f_n(x_0)-(f_n(x_0)-f_n(a))+(f_n(x)-f_n(a))=f_n(x),$ so $d(f(x),f_n(x))<\epsilon$ for any arbitrary $x\in[a,b]$. Hence, $(f_n)_{n=1}^{\infty}$ converges uniformly to f. $\int_a^xg-\int_a^xg=\int_{x_0}^xg=f(x)-f(x_0) \text{ by algebra and because }f'_n(x_0) \text{ converges to }f(x_0).$ g is integrable on [a,b], so by the fundamental theorem of calculus, g must be the derivative of f because f is the antiderivative of g. Hence, f is differentiable with derivative g. $f'_n(x)=\frac{x}{\sqrt{\frac{1}{n^2}+x^2}}$ diverges at x=0, so $f'_n(x)$ does not converge uniformly. Hence, theorem 3.7.1 doesn't apply.

Problem 3. Exercise 3.7.3

Let $(s^{(n)})_{n=1}^{\infty}$ be the sequence of partial sums for the sequence $(f^{(n)})_{n=1}^{\infty}$. Because there exists $x_0 \in [a,b]$ s.t $s^{(n)}(x_0)$ is convergent and $s'^{(n)} = \sum_{i=1}^n f'_i$ is uniformly convergent by the Weierstrass M-test, we can use Theorem 3.7.1 to exchange the order of limits and differentiation. It follows $\frac{d}{dx} \lim_{n \to \infty} s^{(n)} = \lim_{n \to \infty} \frac{d}{dx} s^{(n)}$. Since each $f^{(n)}$ is differentiable, we can exchange the order of summation and differentiation for finitely many n to obtain $\frac{d}{dx} \lim_{n \to \infty} s^{(n)} = \lim_{n \to \infty} \frac{d}{dx} s^{(n)} = \lim_{n \to \infty} \frac{d}{dx} \sum_{i=1}^n f^{(i)} = \lim_{n \to \infty} \frac{d}{dx} s^{(n)} = \lim_{n \to \infty} \frac{d}{dx} s^{(n)}$

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{d}{dx}f^{(i)}=\sum_{n=1}^\infty\frac{d}{dx}f^{(n)} \text{ which is our desired result.}$$

Problem 4. Exercise 4.1.1

- (a) Suppose $x \in \mathbb{R}$ s.t |x-a| > R. The Root test states $\sum_{n=1}^{\infty} c_n (x-a)^n$ diverges if $\limsup |c_n (x-a)^n|^{\frac{1}{n}} > 1$. $\limsup |c_n (x-a)^n|^{\frac{1}{n}} > \limsup |c_n \cdot R^n|^{\frac{1}{n}} = \limsup |c_n|^{\frac{1}{n}} |R| = 1$, so $\sum_{n=1}^{\infty} c_n (x-a)^n$ diverges if |x-a| > R.
- (b) Suppose $x \in \mathbb{R}$ s.t |x-a| < R. The Root test states $\sum_{n=1}^{\infty} c_n (x-a)^n$ converges if $\limsup |c_n (x-a)^n|^{\frac{1}{n}} < 1$. $\limsup |c_n (x-a)^n|^{\frac{1}{n}} < \limsup |c_n \cdot R^n|^{\frac{1}{n}} = \limsup |c_n|^{\frac{1}{n}} |R| = 1$, so $\sum_{n=1}^{\infty} c_n (x-a)^n$ converges if |x-a| < R.
- (c) $\sum_{n=1}^{\infty} c_n(x-a)^n$ converges uniformly on [a-r,a+r] for 0 < r < R if $\sum_{n=1}^{\infty} ||c_n(x-a)^n||_{\infty}$ is convergent by Weierstrass M-test. It follows $\limsup |c_n(r)^n|^{\frac{1}{n}} = \frac{r}{R} < \frac{R}{R} = 1$, so $\sum_{n=1}^{\infty} c_n(r)^n$ converges by the Root test. Thus, $\sum_{n=1}^{\infty} c_n(x-a)^n$ converges uniformly on [a-r,a+r] for 0 < r < R. Let $x_0 \in (a-R,a+R)$. It follows there exists r_1 between 0 and R s.t $x_0 \in [a-r_1,a+r_1]$. Since $\sum_{n=1}^{\infty} c_n(x-a)^n$ converges uniformly on $[a-r_1,a+r_1]$ and $c_n(x-a)^n$ is continuous at x_0 for each n, the limiting function f must also be continuous at x_0 . Hence, f is continuous for $x \in (a-R,a+R)$
- (d) For any 0 < r < R, $\limsup |nc_n(r)^{n-1}|^{\frac{1}{n}} < \limsup |n|^{\frac{1}{n}}|c_n|^{\frac{1}{n}}|(R)^{\frac{n-1}{n}}| = 1$, so $\sum_{n=1}^{\infty} ||nc_n(x-a)^{n-1}||_{\infty}$ converges. By the Weierstrass M-test, $nc_n(x-a)^{n-1}$ converges uniformly to some function f' on [a-r,a+r]. Pick $x_0 \in (a-R,a+R)$. It follows there exists $0 < r_x < R$ s.t $x_0 \in [a-r_x,a+x]$. Because each $c_n(x-a)^n$ is differentiable, $\sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$ converges uniformly to some function f' on [a-r,a+r], and $\sum_{n=1}^{\infty} c_n(x_0-a)^n$ converges to some value L, Theorem 3.7.1 states $\sum_{n=1}^{\infty} c_n(x-a)^n$ converges uniformly to some differentiable function f whose derivative is f'. Because this holds for any $x_0 \in (a-R,a+R)$, f is differentiable over (a-R,a+R).
- (e) $\sum_{n=1}^{\infty} c_n(x-a)^n$ converges uniformly on [y,z] to f by (c) because [y,z] is a compact set. Each $c_n(x-a)^n$ is integrable on [y,z], so by Corollary 3.6.2, we can switch the order of summation and integration. Thus, by the fundamental theorem of calculus, $\int_y^z f = \sum_{n=1}^{\infty} c_n \frac{(z-a)^{n+1} (y-a)^{n+1}}{n+1}$.

Problem 5. Exercise 4.1.2

(a)
$$\sum_{n=1}^{\infty} x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n} x^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} x^n$$

(e)
$$\sum_{n=1}^{\infty} x^n$$

Problem 6. Additional Problem

Let $x_0 \in (-1,1)$. The power series $\sum_{k=1}^{\infty} (-1)^k (x)^{2k}$ can be rewritten as $\sum_{k=1}^{\infty} (-1 \cdot x^2)^k$. If $x_0 \in (-1,1)$, then $-x_0^2 \in (-1,0)$. Because we know the series $\sum_{k=0}^{\infty} x^k$ converges pointwise to $\frac{1}{1-x}$ for $x \in (-1,1)$, $\sum_{k=0}^{\infty} (-1 \cdot x^2)^k$ converges to $\frac{1}{1-(-x_0^2)} = \frac{1}{1+x_0^2}$. Hence $\sum_{k=0}^{\infty} (-1)^k (x)^{2k}$ converges pointwise to $\frac{1}{1+x^2}$. Moreover, we can use the Weierstrass M-test to show $\sum_{k=0}^{\infty} (-1 \cdot x_0^2)^k$ converges uniformly for any subinterval [-r, r]. $\sum_{k=0}^{\infty} ||(-1 \cdot x^2)^k||_{\infty} = \sup\{\frac{1}{1+x^2} : x \in [-r, r]\} = 1, \text{ so } \sum_{k=1}^{\infty} (-1)^k (x)^{2k} \text{ converges uniformly on } [-r, r].$ For any $x \in (-1, 1)$ there exists 0 < r < 1 s.t $x \in [-r, r]$. Since $\sum_{k=0}^{\infty} (-1)^k (t)^{2k}$ converges uniformly on [-r, r] and each $\int_0^x (-1)^k (t)^{2k} dt = \frac{(-1)^k}{2k+1} x^{2k+1}$ we can use Corollary 3.6.2 to show $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = \sum_{k=0}^{\infty} \int_0^x (-1)^k (t)^{2k} = \int_0^x \sum_{k=0}^{\infty} (-1)^k (t)^{2k} = \int_0^x \frac{1}{t^2+1} = \arctan(x) - \arctan(0) = \arctan(x)$ Hence, we obtain our desired result.