PSALTer results panel

$$S = \iiint \left(\frac{1}{6} \left(6 t_{1} \cdot \mathcal{A}^{\alpha_{1}}_{\alpha} \cdot \mathcal{A}^{\theta}_{\beta} + 6 \cdot \mathcal{A}^{\alpha \beta \chi} \cdot \sigma_{\alpha \beta \chi} + 6 \cdot f^{\alpha \beta}_{\alpha} \cdot \tau(\Delta + \mathcal{K})_{\alpha \beta} - 12 t_{1} \cdot \mathcal{A}^{\theta}_{\alpha} \cdot \partial_{\beta} f^{\alpha_{1}} - 12 r_{1} \cdot \partial_{\beta} \mathcal{A}^{\theta}_{\beta} \cdot \partial^{\beta} \mathcal{A}^{\alpha \beta}_{\alpha} + 12 r_{1} \cdot \partial_{\beta} \mathcal{A}^{\theta}_{\beta} \cdot \partial^{\beta} \mathcal{A}^{\alpha \beta}_{\alpha} + 12 r_{1} \cdot \partial_{\alpha} \mathcal{A}^{\alpha \beta 1} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\beta} \cdot \partial_{\beta} \mathcal{A}^{\beta}_{\beta} - 24 r_{1} \cdot \partial^{\beta} \mathcal{A}^{\alpha \beta}_{\alpha} \cdot \partial_{\delta} \mathcal{A}^{\beta}_{\beta} - 12 r_{1} \cdot \partial_{\alpha} \mathcal{A}^{\alpha \beta 1} \cdot \partial_{\beta} \mathcal{A}^{\beta}_{\beta} + 24 r_{1} \cdot \partial^{\beta} \mathcal{A}^{\alpha \beta}_{\alpha} \cdot \partial_{\delta} \mathcal{A}^{\beta}_{\beta} - 6 t_{1} \cdot \partial_{\beta} f^{\alpha_{1}} \cdot \partial_{\delta} f^{\alpha_{1}}_{\alpha} \cdot \partial_{\delta} f^{\alpha_{1}}_{\beta} - 8 r_{1} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\beta} + 8 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\beta} + 4 r_{1} \cdot \partial_{\beta} \mathcal{A}_{\alpha \theta_{1}} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} - 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\beta} - 2 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} - 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}_{\alpha_{1} \theta} \cdot \partial^{\theta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 2 r_{2} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 2 r_{2} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 2 r_{2} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 4 r_{2} \cdot \partial_{\beta} \mathcal{A}^{\alpha \beta 1}_{\alpha} + 2 r_{2} \cdot \partial_{\beta} \mathcal$$

Wave operator

Saturated propagator

_	${}^{0^+}\sigma^{\parallel}$	Θ ⁺ _τ	${\overset{0^+}{\scriptstyle{\bullet}}} au^\perp$	°-σ"										
^{0⁺} σ [∥] †	$-\frac{1}{\left(1+2k^2\right)^2t_{\underline{1}}}$	$\frac{i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	0	0										
[⊙] ⁺τ [∥] †	$-\frac{i\sqrt{2}k}{\left(1+2k^2\right)^2t}$	$-\frac{2 k^2}{(1+2 k^2)^2 t}.$	0	0										
${\stackrel{\Theta^+}{\scriptstyle{\scriptstyle\bullet}}} au^\perp +$	0	0	Θ	0										
⁰⁻ σ †	0	0	0	$\frac{1}{k^2 r \cdot +t \cdot}$	${\stackrel{1^+}{\cdot}}\sigma^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}\sigma^{\perp}{}_{lphaeta}$	$\left. \stackrel{1^{+}}{\cdot}_{\tau} \right _{\alpha\beta}$	$^{1}_{ullet}^{-}\sigma^{\parallel}{}_{lpha}$	1 $^{-}$ $^{-}$ $^{\alpha}$	$\left. \begin{smallmatrix} 1^- & 1 \end{smallmatrix} \right _{\alpha}$	$\frac{1}{r}^{\perp}r^{\perp}\alpha$			
				$\dot{\cdot}^{\sigma^{\parallel}} \dot{\sigma}^{\alpha\beta}$	$\frac{2\left(t_{1}+t_{2}\right)}{3t_{1}t_{2}}$	$\frac{\sqrt{2} \left(t_{1}-2 t_{2}\right)}{3 \left(1+k^{2}\right) t_{1} t_{2}}$	$\frac{i \sqrt{2} k \left(t_1 - 2 t_2\right)}{3 (1 + k^2) t_1 t_2}$	0	0	Θ	0			
				$^{1^{+}}_{\bullet}\sigma^{\perp}$ † $^{\alpha\beta}$	$\frac{\sqrt{2} \left(t_{1}^{-2} t_{2}^{+}\right)}{3 \left(1+k^{2}\right) t_{1}^{+} t_{2}^{+}}$	$\frac{t_{1}+4t_{2}}{3(1+k^{2})^{2}t_{1}t_{2}}$	$\frac{i k \left(t_{1} + 4 t_{2}\right)}{3 \left(1 + k^{2}\right)^{2} t_{1} t_{2}}$	0	0	0	0			
				$1^{+}_{\bullet} 1^{\parallel} 1^{\alpha \beta}$	$ \frac{2\left(t_{1}+t_{2}\right)}{3t_{1}t_{2}} $ $ \frac{\sqrt{2}\left(t_{1}-2t_{2}\right)}{3\left(1+k^{2}\right)t_{1}t_{2}} $ $ -\frac{i\sqrt{2}k\left(t_{1}-2t_{2}\right)}{3\left(1+k^{2}\right)t_{1}t_{2}} $ $ \frac{3\left(1+k^{2}\right)t_{1}t_{2}}{3\left(1+k^{2}\right)t_{1}t_{2}} $	$-\frac{i k \left(t_{1}+4 t_{2}\right)}{3 \left(1+k^{2}\right)^{2} t_{1} t_{2}}$	$\frac{k^2 \left(t_1 + 4 t_2\right)}{3 \left(1 + k^2\right)^2 t_1 t_2}$	0	0	0	0			
				1 $^{-}\sigma^{\parallel}$ $^{\alpha}$		0	Θ	0	$\frac{\sqrt{2}}{t_1+2 k^2 t_1}$	0	$\frac{2 i k}{t_1 + 2 k^2 t_1}$			
				$\frac{1}{\cdot}\sigma^{\perp}\uparrow^{\alpha}$		0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{2 k^2 r_1 + t_1}{\left(t_1 + 2 k^2 t_1\right)^2}$	0	$\frac{i \sqrt{2} k \left(2 k^2 r_1 + t_1\right)}{\left(t_1 + 2 k^2 t_1\right)^2}$			
				$^{1^{-}}\tau^{\parallel}$ $^{\alpha}$	0	0	0	0	Θ	Θ	0			
				$^{1^{-}}\tau^{\perp}\uparrow^{\alpha}$		Θ	0	$-\frac{2ik}{t_1+2k^2t_1}$	$-\frac{i \sqrt{2} k \left(2 k^2 r_{1} + t_{1}\right)}{\left(t_{1} + 2 k^2 t_{1}\right)^2}$	0	$\frac{2 k^2 \left(2 k^2 r_1 + t_1\right)}{\left(t_1 + 2 k^2 t_1\right)^2}$	2 ⁺ σ αβ	$2^{+}_{\bullet} \tau^{\parallel}_{\alpha\beta}$	$2^{-}_{\bullet}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{\left(1+2k^2\right)^2t_{\underline{1}}}$	$-\frac{2i\sqrt{2}k}{\left(1+2k^2\right)^2t}$	0
											$2^{+}_{\bullet} \tau^{\parallel} + {}^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	$\frac{4 k^2}{\left(1+2 k^2\right)^2 t_1}$	Θ
														2

Source constraints

Spin-parity form	Covariant form	Multiplicities
⁰⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} == 0$	1
$-2 i k \cdot \sigma^{\parallel} + \cdot \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
$2 i k \cdot 1^{-} \sigma^{\perp}^{\alpha} + \cdot 1^{-} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- _t ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k \cdot 1^+ \sigma^{\perp}^{\alpha\beta} + \cdot 1^+ \tau^{\parallel}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k^{2^{+}} \sigma^{\parallel \alpha \beta} + 2^{+} \tau^{\parallel \alpha \beta} =$	$0 = i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \beta} - 0 \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} _{\tau} \left(\Delta + \mathcal{K} \right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} _{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} _{\tau} \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} _{\tau} \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + \\$	
	$4 i k^{X} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta}{}^{\epsilon} - 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} - 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta\alpha\epsilon} + 6 i k^{X} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} +$	
	$ 6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \ \eta^{\alpha \beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\chi \delta} - 2 \ \eta^{\alpha \beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau \left(\Delta + \mathcal{K} \right)^{\chi} - 4 \ \emph{i} \ \eta^{\alpha \beta} \ \emph{k}^{\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\ \delta} = 0 $	
Total expected gaug	16	

 $2^{-}\sigma^{\parallel} + \alpha^{\beta}\chi$

Massive spectrum

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 && t. > 0 && r. < 0 && t. > 0