Dijkstra's Algorithm

Relaxation

- For each vertex v in the graph, we maintain v.d(), the estimate
 of the shortest path from s, initialized to ∞ at the start
 Relaxing an edge (u, v) means testing whether we can improve
 the shortest path to v found so far by going through u

2

5

Relax (u, v, G) if v.d() > u.d()+G.w(u, v) then v.setd(u.d()+G.w(u,v))
v.setparent(u)

1

Dijkstra's Algorithm

3

- Non-negative edge weights Greedy, similar to Prim's algorithm for MST
- MST

 Like breadth-first search (if all weights = 1, one can simply use BFS)

 Use Q, a priority queue ADT keyed by xd() (BFS used FIFO queue, here we use a PQ, which is re-organized whenever some d decreases)

 Basic idea
- - maintain a set S of solved vertices
 at each step select "closest" vertex
 u, add it to S, and relax all edges
 from u

Dijkstra's ALgorithm

Solution to Single-source (multiple-destination).

```
Dijkstra(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
S = \emptyset
3 \quad Q = G.V
   while Q \neq \emptyset
        u = \text{EXTRACT-MIN}(Q)
        S = S \cup \{u\}
        for each vertex v \in G. Adj[u]
             Relax(u, v, w)
```

Dijkstra's Example

Dijkstra's Example

6 7

Dijkstra's Example

Running time?

9

11

Running time? Depends on the heap implementation				DHKSTRA(G, w, s) 1 INITIALIZE-SINGLE-SOURCE (G, s) 2 $S = \emptyset$ 3 $Q = G, V$ 4 white $Q \neq \emptyset$ 5 $u = \text{EXTRACT-MIN}(Q)$ 6 $S = S \cup V \mid u \mid s$ 7 for each vertex $v \in G, Adf[u]$ 8 RELAX($u, v, u \mid s$)
	1 MakeHeap	V ExtractMin	E DecreaseKey	Total
Array	O(V)	O(V ²)	O(E)	O(V ²)
Bin heap	O(V)	O(V log V)	O(E log V)	O((V + E) log V) O(E log V)
Fib heap	O(V)	O(V log V)	O(E)	O(V log V + E)

8

10

12

Bellman Ford's Algorithm

Negative cycles

What is the shortest path from a to e?

Bellman-Ford Algorithm

2

Analysis

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

14