## **ARJUNA (NEET)**

## STRUCTURE OF ATOM

DPP-4

- 1. What is the work function ( $W_0$ ) of the metal whose threshold frequency ( $v_0$ ) is  $5.2 \times 10^{14}$  s<sup>-1</sup>?
  - (A)  $3.44 \times 10^{-19} \text{ J}$
- (B)  $4.98 \times 10^{-19} \,\mathrm{J}$
- (C)  $5.67 \times 10^{14} \,\mathrm{J}$
- (D)  $9.96 \times 10^{19} \,\mathrm{J}$
- 2. A 100 watt bulb emits monochromatic light of wavelength 400 nm. Calculate the number of photons emitted per second by the bulb.
  - (A)  $1.6 \times 10^{19}$
- (B)  $2.9 \times 10^{16}$
- (C)  $2.012 \times 10^{20}$
- (D)  $4.42 \times 10^{19}$
- 3. Calculate the maximum kinetic energy of photoelectrons emitted when a light the frequency  $2 \times 10^{16}$  Hz irradiated on a metal surface with threshold frequency ( $v_0$ ) equal to  $8.68 \times 10^{15}$  Hz.
  - (A)  $7.5 \times 10^{-18} \,\mathrm{J}$
- (B)  $4.2 \times 10^{19} \,\mathrm{J}$
- (C)  $2.9 \times 10^{14} \,\mathrm{J}$
- (D)  $10.6 \times 10^4 \text{ J}$
- 4. The threshold frequency  $v_0$  for a metal is  $8 \times 10^{14} \, \text{s}^{-1}$ . What is the kinetic energy of an electron emitted having frequency  $v = 1.0 \times 10^{15} \, \text{s}^{-1}$ .
- 5. A hot metal emits photons of light with energy  $3.0 \times 10^{-19}$  J. Calculate the frequency and wavelength of the photon?

- 6. Calculate the energy of photon of light having frequency of  $2.7 \times 10^{13}$  s<sup>-1</sup>.
- 7. Calculate the energy of one mole of photons of radiation whose frequency is  $5 \times 10^{14}$  Hz.
- 8. Photoelectrons are removed with kinetic energy  $1.8664 \times 10^{-21}$  J, when photons of light with energy  $4.23 \times 10^{-19}$  J fall on the metal. What is the minimum energy required per mole to remove an electron from potassium metal?
- 9. The correct sequence of frequency of the electromagnetic radiations in electromagnetic spectrum is
  - (A) X-rays > UV rays > Microwaves > Radio waves
  - (B) Radio waves > Microwaves > UV rays > X-rays
  - (C) UV rays > X-rays > Radio waves > Microwaves
  - (D) Radio waves > Microwaves > X-rays UV rays
- 10. The kinetic energy of the photoelectrons depends upon the
  - (A) Intensity of striking light
  - (B) Number of photons striking
  - (C) Frequency of striking light
  - (D) Number of photoelectrons ejected

## **ANSWERS KEY**

**1.** (A)

Work function (W<sub>0</sub>) =  $3.44 \times 10^{-19} \text{ J}$ 

**2.** (C)

Number of photons emitted  $= 2.012 \times 10^{20}$  photons per second

**3.** (A)

 $7.5 \times 10^{-18} \,\mathrm{J}$ 

**4.**  $1.3252 \times 10^{-19} \text{ J}$ 

5.  $v = 4.52 \times 10^{14} \text{ s}^{-1}$ 

 $\lambda = 6.637 \times 10^{-7} \text{ m}$ 



7.  $E = 199 \text{ kJ mol}^{-1}$ 

**8.** 253.6 kJ mol<sup>-1</sup>

**9.** (A)

**10.** (C)





\*Note\* - If you have any query/issue

Mail us a