MFQO - Métodos Fi			
Data: 18/09/2025	Questões: 2	Pontos totais: 3,0	
Matrícula:	Nome:		

Questão	1	2
Pontuação		

Instruções para a realização da prova:

- 1. Justifique **todas** as suas respostas e entregue essa folha com a folha de respostas anexa;
- 2. Equações e relações relevantes:
 - Índice de deficiência de hidrogênio (IDH): IDH = C (H/2) + (5A/2) (7A/2) + 1
 - Regra dos treze: $(M/13) = n + (r/13) \Rightarrow C_n H_{n+r}$
- 3. Tabela de abundâncias isotópicas de elementos comuns:

Z	Nome	Símbolo	Massa atômica (uma)	Abundância (%)		
1	Hidrogênio	¹H	1,007825	99,9885		
1	Deutério	^{2}H	2,014102	0,0115		
6	Carbono	¹² C	12,000000	98,93		
		¹³ C	13,003355	1,07		
17	Cloro	³⁵ Cl	34,968853	75,78		
17		³⁷ Cl	36,965903	24,22		
25	Bromo	$^{79}\mathrm{Br}$	78,918338	50,69		
35		$^{81}\mathrm{Br}$	80,916291	49,31		

- 4. É permitido o uso de calculadora científica;
- 5. Há uma tabela periódica dos elementos ao final da prova.
- 1. (1,5 pontos) Ao reagir o (1-hidroxietil)benzeno com ácido clorídrico (HCl) à temperatura ambiente (25 °C) durante 3 h, planejou-se obter o (1-cloroetil)benzeno, conforme mostra a **Figura 1**.

Figura 1. Esquema geral da reação entre o (1-hidroxietil) benzeno e HCl à $25\,^{\circ}\mathrm{C}$ durante 3 h para formar o (1-cloroetil) benzeno.

a) Ao realizar a análise de espectrometria de massas do produto majoritário, obteve-se o espectro mostrado na **Figura 2**. Considerando o resultado da análise, o produto esperado foi obtido com sucesso?

Figura 2. Espectro de massas do produto bruto majoritário pela reação entre o (1-hidroxietil)benzeno e HCl à 25 °C por 3 h. A análise foi feita com ionização por impacto de elétrons (70 eV).

Resposta: Na letra a), o espectro de massas revela que o produto foi obtido com sucesso, pois o pico do íon molecular (M^+) possui m/z = 140, correspondente à massa molar do produto de fórmula molecular C_8H_9Cl (M = 140). Além disso, pode-se observar picos relativos às fragmentações com perda de Cl (-35) e com perda de CH_3 (-15) a partir do íon molecular.

b) Ao repetir a reação com uma temperatura de 100 °C e um tempo de reação de 6 h, a reação gerou um produto majoritário cujo espectro de massas é mostrado na **Figura 3**. Qual é esse produto? Justifique sua formação preferencial nessas condições reacionais.

Figura 3. Espectro de massas do produto bruto obtido pela reação entre o (1-hidroxietil)benzeno e HCl à 100 °C por 6 h. A análise foi feita com ionização por impacto de elétrons (70 eV).

Resposta: Na letra b), o enunciado informa que o aquecimento aumentou de 25 °C para 100 °C, enquanto o tempo de reação dobrou. Logo, considerando que o substrato é propenso a formar um carbocátion benzílico, o aquecimento fornecido caracteriza condições para reações de eliminação – especificamente, E₁. O produto de eliminação a partir do (1-hidroxietil)benzeno é o vinilbenzeno, mais conhecido como estireno, cuja fórmula molecular é C₈H₈.

Analisando apenas o espectro de massas, pode-se ver que o pico do íon molecular é relativo a um valor de m/z = 104. Aplicando a regra dos 13, a fórmula molecular base gerada é C_8H_8 . Esse composto possui IDH igual a 5 e, considerando a reação mostrada, corresponde ao anel aromático e mais uma insaturação ou ciclo.

Considerando todos os argumentos, percebe-se que o espectro obtido é correspondente ao estireno e, de fato, as condições usadas na reação favoreceram a formação do produto de desidro-alogenação por E₁.

2. (1,5 pontos) Ao reagir o benzaldeído com metilamina (H₃CNH₂) na presença de quantidades catalíticas de ácido sulfúrico (H₂SO₄) em diclorometano (CH₂Cl₂) durante 2 h, esperava-se obter um produto cuja fórmula molecular é C₈H₉N. A reação de redução do composto C₈H₉N com boroidreto de sódio (NaBH₄) em metanol (MeOH) à 0 °C durante 90 min produz, teoricamente, um composto cuja fórmula molecular é C₈H₁₁N, conforme mostra a **Figura 4**.

O
$$H_3CNH_{2,}$$

 $H_2SO_4 \text{ (cat.)}$ C_8H_9N $\xrightarrow{\text{NaBH}_4}$ $C_8H_{11}N$
 CH_2CI_2 C_8H_9N $\xrightarrow{\text{MeOH}}$ $C_8H_{11}N$

Figura 4. Esquema geral da reação entre o benzaldeído e H₃CNH₂ na presença de H₂SO₄ (cat.) em CH₂Cl₂ por 2 h, seguida da reação com NaBH₄ em MeOH à 0 °C durante 90 min, gerando o C₈H₁₁N.

a) Ao realizar a análise de espectrometria de massas do produto majoritário da segunda etapa de reação, obteve-se o espectro mostrado na **Figura 5**. Considerando o resultado da análise, o produto foi obtido com sucesso? Considere que os picos em m/z = 134 e m/z = 135 são artefatos da análise.

Resposta: Na letra a), considerando que o pico do íon molecular é correspondente a um valor de m/z = 121 e que a massa molar do produto $C_8H_{11}N$ é igual a 121 g mol⁻¹, tem-se que a reação gerou o produto com sucesso. Outras evidências de que a reação gerou o produto esperado com sucesso envolvem os picos oriundos da perda de um H (-1) e da subsequente perda da unidade $HN=CH_2$ (-29), gerando o cátion tropílio (C_7H_7), cujo m/z é igual a 91.

Figura 5. Espectro de massas do produto bruto obtido pela reação entre o C₈H₉N e NaBH₄ em metanol à 0 °C durante 90 min. A análise foi feita com ionização por impacto de elétrons (70 eV).

b) Se as condições da reação de redução fossem trocadas para hidreto de lítio e alumínio (LiAlH₄) na presença de éter etílico (H₃COCH₃) e à $-78\,^{\circ}$ C, o espectro do produto obtido seria diferente do mostrado no item anterior? Discuta a respeito das semelhanças e diferenças entre os produtos e seus respectivos espectros.

Resposta: Na letra b), como o hidreto de lítio e alumínio, LiAlH₄, é um redutor mais forte que o boroidreto de sódio, NaBH₄, e que a função imina é, evidentemente, reduzida pelo segundo, o produto da reação e seu respectivo espectro seriam os mesmos.

57 138,91	1 58 140,12	59 140,91	60 144,24	61 [145]	62 150,36(2)	63 151,96	64 157,25	65 158,93	66 162,50	67 164,93	68 167,26	69 168,93	70 173,05(2)	71 174,97
La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
lantânio	cério	praseodímio	neodímio	promécio	samário	európio	gadolínio	térbio	disprósio	hólmio	érbio	túlio	itérbio	lutécio
89 [227]	90 232,04	91 231,04	92 238,03	93 [237]	94 [244]	95 [243]	96 [247]	97 [247]	98 [251]	99 [252]	100 [257]	101 [258]	102 [259]	103 [262]
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lp
actínio	tório	protactínio	urânio	neptúnio	plutônio	amerício	cúrio	berkélio	califórnio	einstênio	férmio	mendelévio	nobélio	laurêncio