Markov Decision Process

Markov Property

$$\mathbb{P}[S_{t+1}|S_t, A_t] = \mathbb{P}[S_{t+1}|S_1, A_1, S_2, A_2, \dots, S_t, A_t]$$
$$\mathbb{P}[R_t|S_t, A_t] = \mathbb{P}[R_t|S_1, A_1, S_2, A_2, \dots, S_t, A_t] = 1$$

Markov Decision Process $\langle \mathcal{S}, \mathcal{S}_F, \mathcal{A}, \mathcal{P}, \mathcal{P}_0, \mathcal{R}, \gamma \rangle$

- \bullet \mathcal{S} is an infinite state space
- S_F is a set of final states
- A is a infinite (finite) action space
- \bullet \mathcal{P} is an uknown transition probability function

$$\mathcal{P}(s'|s, a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

- \mathcal{P}_0 is an uknown initial state probability function
- \bullet \mathcal{R} is an uknown reward function

$$\mathcal{R}(s,a) = R_t \quad \Leftrightarrow \quad \mathbb{P}[R_t | S_t = s, A_t = a] = 1$$

• $\gamma \in [0,1]$ is a discount coefficient

Example: Pendulum

- State space: \mathbb{R}^2 or screen pixels
- Action space: [-2, 2]
- Rewards: $-\psi^2 0.1\dot{\psi}^2 0.001a^2$

Example: Humanoid

 \bullet State Space: \mathbb{R}^{26}

• Action Space: \mathbb{R}^6

• Final states: fall

RL as an Finite-Dimensional Optimization Problem

Policy Approximation

$$\pi^{\eta}(a|s) \approx \pi_*(a|s),$$

where $\eta \in \mathbb{R}^N$ — parameter vector and $\exists \nabla_{\eta} \pi^{\eta}$ and, for example,

- $\pi^{\eta}(a|s) = \text{Softmax}(F^{\eta}(s))$ in finite actions space
- $\pi^{\eta}(a|s) = \mathcal{N}(a|\nu^{\eta}(s), \sigma)$ in infinite actions space

Finite-dimensional optimization problem

$$J(\eta) = \mathbb{E}_{\pi^{\eta}}[G] \to \max_{\eta},$$

where

$$G = \sum_{t=0}^{\infty} \gamma^t \mathcal{R}(S_t, A_t)$$

Gradient Descent

$$\nabla_n J(\eta) = ?$$

Continuous Bandit Example

•
$$S = \{0, 1\}$$

•
$$S_0 = 0$$

•
$$S_F = \{1\}$$

•
$$A = [-1, 1]$$

•
$$\mathcal{R}(0,a) = \mathcal{R}(a)$$

Continuous Bandit Example: Gradient Calculation

$$\pi^{\eta}(a) = \pi^{\eta}(a|0), \quad J(\eta) = \mathbb{E}_{\pi^{\eta}}[G] = \int_{a \in \mathcal{A}} \pi^{\eta}(a)\mathcal{R}(a)da$$

Monte-Carlo Gradient Calculation

$$\nabla_{\eta_i} J(\eta) \approx \frac{J(\eta + \delta e^i) - J(\eta)}{\delta}, \quad \delta > 0, \quad i \in \overline{1, N},$$

where $e_i \in \mathbb{R}^N$: $e_j^i = 1$, if j = i and $e_j^i = 0$, otherwise,

$$J(\eta) \approx \frac{1}{n} \sum_{k=1}^{n} \mathcal{R}(a_k), \quad a_k \sim \pi^{\eta}(\cdot)$$

Continuous Bandit Example: Gradient Calculation

$$\pi^{\eta}(a) = \pi^{\eta}(a|0), \quad J(\eta) = \mathbb{E}_{\pi^{\eta}}[G] = \int_{a \in \mathcal{A}} \pi^{\eta}(a)\mathcal{R}(a)da$$

Gradient Calculation via Log Derivative Trick

$$\nabla_{\eta} J(\eta) = \int_{a \in \mathcal{A}} \nabla_{\eta} \pi^{\eta}(a) \mathcal{R}(a) da$$

$$\approx \frac{1}{n} \sum_{k=1}^{n} \mathcal{R}(a_k), \quad a_k \sim \nabla_{\eta} \pi^{\eta}(\cdot)$$
?

Continuous Bandit Example: Gradient Calculation

$$\pi^{\eta}(a) = \pi^{\eta}(a|0), \quad J(\eta) = \mathbb{E}_{\pi^{\eta}}[G] = \int_{a \in A} \pi^{\eta}(a)\mathcal{R}(a)da$$

Gradient Calculation via Log Derivative Trick

$$\nabla_{\eta} J(\eta) = \int_{a \in \mathcal{A}} \nabla_{\eta} \pi^{\eta}(a) \mathcal{R}(a) da = \int_{a \in \mathcal{A}} \pi^{\eta}(a) \frac{\nabla_{\eta} \pi^{\eta}(a)}{\pi^{\eta}(a)} \mathcal{R}(a) da$$

$$= \int_{a \in \mathcal{A}} \pi^{\eta}(a) \nabla_{\eta} \ln \pi^{\eta}(a) \mathcal{R}(a) da = \mathbb{E}_{\pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a) \mathcal{R}(a)]$$

$$\approx \frac{1}{n} \sum_{k=1}^{n} \nabla_{\eta} \ln \pi^{\eta}(a_{k}) \mathcal{R}(a_{k}), \quad a_{k} \sim \pi^{\eta}(\cdot)$$

Continuous Bandit Example: Two Remarks

Gradient Calculation via Log Derivative Trick

$$\nabla_{\eta} J(\eta) \approx \frac{1}{n} \sum_{k=1}^{n} \nabla_{\eta} \ln \pi^{\eta}(a_k) \mathcal{R}(a_k), \quad a_k \sim \pi^{\eta}(\cdot)$$

Remark 1: Constant Independence

If
$$\mathcal{R}(a) = \mathcal{R}_*(a) + c$$
 $(c = const)$, then

$$\nabla_{\eta} J(\eta) \approx \frac{1}{n} \sum_{k=1}^{n} \nabla_{\eta} \ln \pi^{\eta}(a_k) \mathcal{R}_*(a_k), \quad a_k \sim \pi^{\eta}(\cdot)$$

Remark 2: Off-policy case

If $\beta(a)$ is a policy, then

$$\nabla_{\eta} J(\eta) \approx \frac{1}{n} \sum_{k=1}^{n} \frac{\nabla_{\eta} \pi^{\eta}(a_k)}{\beta(a_k)} \mathcal{R}_*(a_k), \quad a_k \sim \beta(\cdot)$$

Policy Gradient Theorem

Discounted State Distribution

$$\rho_{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}[S_{t} = s | \pi]$$

On-Policy Gradient Theorem

Let $\exists \nabla_{\eta} \pi^{\eta}(a|s)$ and $\pi^{\eta}(a|s) \neq 0$ for any $s \in \mathcal{S}$, $a \in \mathcal{A}$. Then

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} \left[\nabla_{\eta} \ln \pi^{\eta}(a|s) \left(q_{\pi^{\eta}}(s, a) - c(s) \right) \right]$$

Off-Policy Gradient Theorem

Let $\exists \nabla_{\eta} \pi^{\eta}(a|s)$ and $\beta(a|s) \neq 0$ for any $s \in \mathcal{S}$, $a \in \mathcal{A}$. Then

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\beta}, a \sim \beta} \left[\frac{\nabla_{\eta} \pi^{\eta}(a|s)}{\beta(a|s)} \left(q_{\pi^{\eta}}(s, a) - c(s) \right) \right]$$

Reinforce: Main Points

Policy Approximation

$$\pi^{\eta}(a|s) \approx \pi_*(a|s),$$

Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} [\nabla_{\eta} \ln \pi^{\eta}(a|s) q_{\pi^{\eta}}(s, a)]$$

Monte-Carlo Estimate

$$q_{\pi^{\eta}}(s, a) = \mathbb{E}_{\pi^{\eta}}[G_t | S_t = s, A_t = a] \approx G_t = \sum_{i=t}^{T-1} \gamma^{i-t} R_i$$

Reinforce

Initialize an approximation $\pi^{\eta}(a|s)$.

For each episode, do

• According to π^{η} , get trajectory $\tau = (S_0, A_0, \dots, S_T)$ and rewards (R_0, \dots, R_{T-1}) . Define (G_0, \dots, G_{T-1}) :

$$G_t = \sum_{i=t}^{T-1} \gamma^{i-t} R_i$$

• For each $t \in \overline{0, T-1}$, update η :

$$\eta \leftarrow \eta - \alpha \nabla_{\eta} \ln \pi^{\eta} (A_t | S_t) G_t$$

Advantage Actor-Critic (A2C): Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi_*(a|s), \quad V^{\theta}(s,a) \approx v_{\pi^{\eta}}(s,a)$$

On-Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\pi^{\eta}}, a \sim \pi^{\eta}} \Big[\nabla_{\eta} \ln \pi^{\eta}(a|s) a_{\pi^{\eta}}(s, a) \Big],$$

where $a_{\pi^{\eta}}(s, a) = q_{\pi^{\eta}}(s, a) - v_{\pi^{\eta}}(s)$ or

$$a_{\pi^{\eta}}(s, a) = \mathbb{E}[R_t + \gamma v_{\pi^{\eta}}(S_{t+1}) - v_{\pi^{\eta}}(s)|S_t = s, A_t = a]$$

Approximation at Each Step

If $V^{\theta} \approx v_{\pi^{\eta}}$, then

$$\nabla_{\eta} J(\eta) \approx \nabla_{\eta} \ln \pi^{\eta} (A_t | S_t) (R_t + \gamma V^{\theta} (S_{t+1}) - V^{\theta} (S_t))$$

Advantage Actor-Critic (A2C): Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi_*(a|s), \quad V^{\theta}(s,a) \approx v_{\pi^{\eta}}(s,a)$$

Bellman Expectation Equation for v_{π}

$$v_{\pi^{\eta}}(s) = \mathbb{E}_{\pi^{\eta}}[R_t + \gamma v_{\pi^{\eta}}(S_{t+1})|S_t = s]$$

Approximation at Each Step

If

$$V^{\theta}(S_t) \approx R_t + \gamma V^{\theta}(S_{t+1}), \quad S_{t+1} \sim \mathcal{P}(\cdot|S_t, A_t), \quad A_t \sim \pi^{\eta}(\cdot|S_t)$$

then $V^{\theta} \approx v_{\pi^{\eta}}$

Advantage Actor-Critic (A2C)

Initialize $\pi^{\eta}(a|s)$ and $V^{\theta}(s)$ For each episode, do

- During the episode, do
- Being in a state S_t , Agent acts $A_t \sim \pi^{\eta}(\cdot|S_t)$, gets a reward R_t , and goes to the next state S_{t+1} .
- By (S_t, A_t, R_t, S_{t+1}) , define the Loss functions

$$Loss_1(\theta) = \left(R_t + \gamma V^{\theta}(S_{t+1}) - V^{\theta}(S_t)\right)^2$$

$$Loss_2(\eta) = \ln \pi^{\eta} (A_t | S_t) \left(R_t + \gamma V^{\theta} (S_{t+1}) - V^{\theta} (S_t) \right)$$

and update parameters

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} Loss_1(\theta), \quad \eta \leftarrow \eta + \beta \nabla_{\eta} Loss_2(\eta)$$

Asynchronous Advantage Actor-Critic (A3C)

Proximal Policy Optimization (PPO): Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi_*(a|s), \quad V^{\theta}(s,a) \approx v_{\pi^{\eta}}(s,a)$$

Off-Policy Gradient Theorem

$$\nabla_{\eta} J(\eta) = \mathbb{E}_{s \sim \rho_{\beta}, a \sim \beta} \left[\frac{\nabla_{\eta} \pi^{\eta}(a|s)}{\beta(a|s)} a_{\pi^{\eta}}(s, a) \right]$$

After Each Trajectory

$$\min \left\{ \frac{\pi^{\eta}(A_t|S_t)}{\pi^{\eta_{old}}(A_t|S_t)} A^{\theta}(S_t, A_t), g_{\varepsilon}(A^{\theta}(S_t, A_t)) \right\} \to \max_{\eta},$$

where $A^{\theta}(S_t, A_t) = R_t + \gamma V^{\theta}(S_{t+1}) - V^{\theta}(S_t)$ and

$$g_{\varepsilon}(A^{\theta}(S_t, A_t)) = \begin{cases} 1 + \varepsilon, & A^{\theta}(S_t, A_t) \ge 0\\ 1 - \varepsilon, & A^{\theta}(S_t, A_t) < 0 \end{cases}$$

Proximal Policy Optimization (PPO): Main Points

Policy and Value Function Approximations

$$\pi^{\eta}(a|s) \approx \pi_*(a|s), \quad V^{\theta}(s,a) \approx v_{\pi^{\eta}}(s,a)$$

Definition

$$v_{\pi^{\eta}}(s) = \mathbb{E}_{\pi^{\eta}}[G_t|S_t = s]$$

Approximation

$$V^{\theta}(s) \approx G_t$$

Proximal Policy Optimization (PPO)

Define the policy $\pi^{\eta}(a|s)$ and value $V^{\theta}(s)$ neural network structure. Initialize parameters η_0 and θ_0 For k in $\overline{1,K}$

- According to π^{η} , get trajectory $\tau = (S_0, A_0, \dots, S_T)$ and rewards (R_0, \dots, R_{T-1}) . Define (G_0, \dots, G_{T-1}) .
- By τ , define the Loss functions

$$Loss_{1}(\eta) = -\frac{1}{T} \sum_{t=0}^{T-1} \min \left\{ \frac{\pi^{\eta}(A_{t}|S_{t})}{\pi^{\eta_{k}}(A_{t}|S_{t})} A^{\theta_{k}}(S_{t}, A_{t}), g_{\varepsilon}(A^{\theta_{k}}(S_{t}, A_{t})) \right\}$$

$$Loss_2(\theta) = \frac{1}{T} \sum_{t=0}^{T-1} (V^{\theta}(S_t) - G_t)^2$$

where $A^{\theta}(S_t, A_t) = R_t + \gamma V^{\theta}(S_{t+1}) - V^{\theta}(S_t)$, and update parameters

$$\eta_{k+1} \leftarrow \eta_k - \alpha_1 \nabla_{\eta} Loss_1(\eta_k), \quad \theta_{k+1} \leftarrow \theta_k - \alpha_2 \nabla_{\theta} Loss_1(\theta)$$

PPO Results

InstructGPT

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Explain the moon

landing to a 6 year old

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model

0 · 0 · A = 0

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy usina PPO.