A Proof System for Communicating Sequential Processes

Outline

- 1. Introduction and preliminaries
- 2. The proof system
- 3. Case studies
- 4. Deadlock freedom
- 5. Conclusion and comparison with related work

1. Introduction and preliminaries

Introduction

1. Main Work

This system deals with proofs of partial correctness and of deadlock freedom.

2. CSP's properties

- > Simultaneity.
- > Input and output commands (as a guard in guarded choices and repetitions).
- CSP focuses on terminating concurrent computations.
- 3. A (meta) rule to establish joint cooperation between isolated proofs for CSP's sequential components.

Preliminaries

- The basic command of CSP is $[P_1 || \cdots || P_n]$ expressing concurrent execution of processes $P_1, \ldots, P_n, n \geq 2$.
- Every P_i refers to a statement S_i , as indicated by $P_i :: S_i$. No S_i contains variables subject to change in S_j $(i \neq j)$.
- 3 Communication:

Input:

Output:

 $Var(s_i) \cap change(s_j) = \emptyset (disjoint)$

 $Pi :: Si Si=P_j? x$

Pj:: Sj Sj=Pi! v

Preliminaries

4.

```
Guarded selection: [B_1 \to S_1 \square B_2 \to S_2] fails for B_1 \vee B_2 =  false, and leads to (possibly nondeterministic) selection of S_i for execution if B_i =  true. Guarded iteration: [B_1 \to S_1 \square B_2 \to S_2] terminates for B_1 \vee B_2 =  false, and otherwise executes [B_1 \to S_1 \square B_2 \to S_2]; [B_1 \to S_1 \square B_2 \to S_2].
```

Example:

```
[P_1 :: [P_2?x \to \text{skip} \square P_2!x \to \text{skip}] || P_2 :: \text{skip}] \quad \text{failure}
[P_1 :: *[P_2?x \to \text{skip} \square P_2!x \to \text{skip}] || P_2 :: \text{skip}] \quad \text{terminate}
[P_1 :: [P_2?x \to \text{skip} \square P_2!x \to \text{skip}] || P_2 :: [P_1?y \to \text{skip} \square P_1!y \to \text{skip}]] \quad \text{X} := \text{y or y} := \text{X}
[P_1 :: *[P_2?x \to \text{skip}] || P_2 :: *[P_1!0 \to \text{skip}]] \quad \text{X} := \text{0 (infinite chattering)}
```

As an expression P_j?x (respectively, P_i!y) evaluates to false in case P_j (respectively, P_i) has terminated.

2. The Proof System

Chapter Structure

1. The axioms and proof rules for isolated processes

- Isolated CSP process : {p} P_i {q}, where P_i is a process
- Axioms and proof rules: A1, A2, R1, R2, A3, A4, R3, R4, R5, R6, R7

2. Cooperating

- Concurrent :[P₁ ||... || P_n]
- Method:cooperation test
- Axioms and proof rules: meta rule \ A5 \ A6 \ R8
- Example 1 \rightarrow The above axioms and proof rules are used for a complete proof process.
- Example 2 → A2->A2'
- Example 3 → a problem : Semantically unmatched pairs of I/O instructions do not fail the cooperation test → global invariant I and bracket ⟨⟩
- After introducing global invariant I and square bracket < >, the axioms and proof rules are supplemented: R9 R10 R11 R12
- Example 4 → Solve the problem in Example 3

Axioms and proof rules

A1. Input

$$\{p\}P_i?x\{q\}.$$

A2. Output

$$\{p\}P_i!y\{p\}.$$

R1. I/O Guarded Selection

$$\frac{\{p \wedge b_i\}\alpha_i}{\{p\}[\Box (i=1,\ldots,m) \ b_i; \alpha_i \to S_i]\{q\}}.$$

R2. I/O Guarded Repetition

$$\frac{\{p \wedge b_i\}\alpha_i\{r_i\}, \{r_i\}S_i\{p\}, i = 1, \ldots, m}{\{p\}^*[\Box(i = 1, \ldots, m) \ b_i; \alpha_i \to S_i]\{p\}}.$$

α_i stand for I/O commands

Axioms and proof rules

A3. Assignment

$${p[t/x]}x := t{p}.$$

A4. Skip

$$\{p\}$$
skip $\{p\}$.

R3. Alternative Command

$$\frac{\{p \wedge b_i\}S_i\{q\}, i=1,\ldots,m}{\{p\}[\square(i=1,\ldots,m)\ b_i \rightarrow S_i]\{q\}}.$$

R4. Repetitive Command

$$\frac{\{p \wedge b_i\}S_i\{p\}, i=1,\ldots,m}{\{p\}^*[\Box(i=1,\ldots,m)\ b_i \to S_i]\{p \wedge \neg(b_1 \vee \cdots \vee b_m)\}}.$$

Axioms and proof rules

R5. Composition

$$\frac{\{p\}S_1\{q\},\,\{q\}S_2\{r\}}{\{p\}S_1;\,S_2\{r\}}.$$

R6. Consequence

$$\frac{p\to p_1,\,\{p_1\}S\{q_1\},\,q_1\to q}{\{p\}S\{q\}}.$$

R7. Conjunction

$$\frac{\{p\}S\{q\},\{p\}S\{r\}}{\{p\}S\{q\wedge r\}}.$$

Meta rule and cooperate

$$\frac{\text{proofs of } \{p_i\}P_i\{q_i\}, i=1,\ldots,n, \text{ cooperate}}{\{p_1 \wedge \cdots \wedge p_n\}[P_1 \| \cdots \| P_n]\{q_1 \wedge \cdots \wedge q_n\}}.$$

Intuitively, proofs cooperate if they help each other to validate the postassertions of the I/O statements mentioned in those proofs.

Example:

```
P1:: P2? x P2:: P1! 2

Proof outline: {true} P2?x {x=2}, {true} P1!2 {true} {true ^ true} P2?x || P1!2 {x=2 ^ true}
```

Meta rule and cooperate

$$\frac{\text{proofs of } \{p_i\}P_i\{q_i\}, i=1,\ldots,n, \text{ cooperate}}{\{p_1 \wedge \cdots \wedge p_n\}[P_1 \| \cdots \| P_n]\{q_1 \wedge \cdots \wedge q_n\}}.$$

this property is expressed as follows: The proofs of $\{p_i\}P_i\{q_i\}, i=1,\ldots,n$, cooperate if

- (i) the assertions used in the proof of $\{p_i\}P_i\{q_i\}$ contain no variables subject to change in P_j for $i \neq j$;
- (ii) $\{\text{pre}_1 \land \text{pre}_2\} P_j?x \parallel P_i!y \{\text{post}_1 \land \text{post}_2\} \text{ holds whenever } \{\text{pre}_1\} P_j?x \{\text{post}_1\}$ and $\{\text{pre}_2\} P_i!y \{\text{post}_2\}$ are taken from the proofs of $\{p_i\} P_i \{q_i\}$ and $\{p_j\} P_j \{q_j\}$, respectively.¹

Cooperation Rule

A5. Communication

$$\{ \mathbf{true} \} P_i ? x \parallel P_j ! y \{ x = y \}$$

provided P_i ?x and P_j !y are taken from P_j and P_i , respectively.

A6. Preservation

$$\{p\}S\{p\}$$

 $\forall x \in A \text{ or } \exists x \in A$

provided no free variable of p is subject to change in S.

R8. Substitution

$$\frac{\{p\}S\{q\}}{\{p[t/z]\}S\{q\}}$$

provided z does not appear free in S and q.

Example 1. Using the system above we can prove

$$\{\mathbf{true}\}[P_1 || P_2 || P_3]\{x = u\},$$

where $P_1 :: P_2!x$, $P_2 :: P_1?y$; $P_3!y$, and $P_3 :: P_2?u$.

1. Proof outlines:

$$\{x = z\}P_2!x\{x = z\},\$$

 $\{\text{true}\}P_1?y\{y = z\}; P_3!y\{y = z\},\$
 $\{\text{true}\}P_2?u\{u = z\}.$

A1. Input

 $\{p\}P_i?x\{q\}.$

A2. Output

 $\{p\}P_i!y\{p\}.$

2. Verify whether the matched I/O pairs in the proof outline are cooperated.

3. Meta rule

Example 1. Using the system above we can prove

$$\{\mathbf{true}\}[P_1 \parallel P_2 \parallel P_3]\{x = u\}$$

where $P_1 :: P_2!x$, $P_2 :: P_1?y$; $P_3!y$, and $P_3 :: P_2?u$.

 $\{x=z\} P_2!x || P_1?y \{x=z \land y=z\}$

Prove:

- 1. {true} P2!x ||P1?y {x=y} (A5)
- 2. $x=z \rightarrow true (R6) => \{x=z\} P2!x ||P1?y \{x=y\}$
- 3. $\{x=z\}$ P2!x ||P1?y $\{x=z\}$ (A6)
- 4. $\{x=z\}$ P2!x ||P1?y $\{x=y \land x=z\}$ (R7)
- 5. $x=y \land x=z \rightarrow x=z \land y=z \ (R6) => \{x=z\} \ P2!x || P1?y \{x=z \land y=z\}$
- 6. $\{x=z\}$ P2!x || P1?y $\{x=z \land y=z\}$ holds. $\{y=z\}$ P3!y || P2?u $\{y=z \land u=z\}$ holds.

A5. Communication

$$\{\mathbf{true}\}P_{i}?x \parallel P_{j}!y\{x=y\}$$

provided P_i ?x and P_j !y are taken from P_j and P_i , respectively.

A6. Preservation

$$\{p\}S\{p\}$$

provided no free variable of p is subject to change in S.

R6. Consequence

$$\frac{p \to p_1, \{p_1\}S\{q_1\}, q_1 \to q}{\{p\}S\{q\}}.$$

R7. Conjunction

$$\frac{\{p\}S\{q\},\{p\}S\{r\}}{\{p\}S\{q\land r\}}$$

Example 1. Using the system above we can prove

$$\{\mathbf{true}\}[P_1 || P_2 || P_3]\{x = u\},\$$

where $P_1 :: P_2!x$, $P_2 :: P_1?y$; $P_3!y$, and $P_3 :: P_2?u$.

7. $\{x=z\}$ [P1 || P2 || P3] $\{x=z \land y=z \land u=z\}$

8. $x=z \land y=z \land u=z \Rightarrow x=u (R6) \Rightarrow \{x=z\} [P1 ||P2 ||P3] \{x=u\}$

9. {true} [P1 || P2 || P3] {x=u}(R8)

Meta rule:

$$\frac{\text{proofs of } \{p_i\}P_i\{q_i\}, i=1,\ldots,n, \text{ cooperate}}{\{p_1 \wedge \cdots \wedge p_n\}[P_1 \| \cdots \| P_n]\{q_1 \wedge \cdots \wedge q_n\}}$$

Proof outline:

$$\{x = z\} P_2! x \{x = z\},\$$

 $\{\text{true}\} P_1? y \{y = z\}; P_3! y \{y = z\},\$
 $\{\text{true}\} P_2? u \{u = z\}.$

R6. Consequence

$$\frac{p \to p_1, \{p_1\}S\{q_1\}, q_1 \to q}{\{p\}S\{q\}}$$

R8. Substitution

$$\frac{\{p\}S\{q\}}{\{p[t/z]\}S\{q\}}$$

provided z does not appear free in S and q.

A1. Input

 $\{p\}P_i?x\{q\}.$

A2. Output

 $\{p\}P_i!y\{p\}.$

```
Example 2. Let
```

```
P_1 :: P_2!0,
P_2 :: [P_1?x \to \text{skip} \square P_3!y \to \text{skip} \square P_3?y \to \text{skip}],
P_3 :: \text{skip}.
```

Clearly, $\{true\}[P1 || P2 || P3]\{x = 0\}$ holds. However, this cannot be proved in the above system.

```
Reasons: \{ true \} [P_1 || P_2 || P_3 ] \{ x = 0 \} \text{ holds .}
requires \{ true \} P_3!y \{ x = 0 \} \{ ??? \text{how to get?} \} and \{ true \} P_3?y \{ x = 0 \} \{ \text{by using A1} \}.
```

By using A2, we can get { true } $P_3!y$ { true }, which does not imply { true } $P_3!y$ { x = 0 }.

A2'. Output

$$\{p\}P_i!y\{q\}.$$

Syntactic match and Semantic match

Example 3. Let

$$P_1 :: [P_2?x \rightarrow \text{skip} \square P_2!0 \rightarrow P_2?x; x:= x + 1],$$

 $P_2 :: [P_1!2 \rightarrow \text{skip} \square P_1?z \rightarrow P_1!1].$

Syntactic match:

The P₂?X and P₁!1 matches syntactically.

Semantic match:

This communication will take place.

So we find that P2?X and P1!1 are syntactic matching.

But they are not semantic matching.

 $\{\mathbf{true}\}P_i?x \parallel P_j!y\{x=y\}$

provided P_i ?x and P_j !y are taken from P_j and P_i , respectively.

Example 3. Let

$$P_1 :: [P_2?x \to \text{skip} \square P_2!0 \to P_2?x; x:= x + 1],$$

 $P_2 :: [P_1!2 \to \text{skip} \square P_1?z \to P_1!1].$

Clearly, { true } $[P_1 | P_2]$ { x = 2 } holds. However, this cannot be proved in the above system.

Reasons:

The P₂?X and P₁!1 are syntactic matching but not semantic matching.

$$\{ \text{ true } \} [P_1 || P_2] \{ x = 2 \} \text{ holds }$$

- requires $\{true\} P_2?X \{x = 2\}$ and $\{z = 0\} P_1!1 \{true\}$ can pass cooperation test.
- ightharpoonup requires $\{z = 0\} P_2?X \mid P_1!1 \{x = 2\}$ is true.
- ightharpoonup But we obtain { true } P_2 ?x || P_1 !1 { x = 1 } (by using A5).
- ➤ We find that $x = 1 \Rightarrow x = 2$. ($\{z = 0\} P_2?X \mid P_1!1 \{x = 2\}$ is false)
- P₂?X and P₁!1 fail the cooperation test.

Conclusion:

This cannot be proved in the above system. So we should guarantee that semantically unmatched pairs of I/O instructions do not fail the cooperation test.

Global Invariant I and <>

In order to take care that semantically unmatched pairs of **I/O** instructions do not fail the cooperation test as above, we introduce a global invariant **I**.

$$\cdots P_2?x; i := i + 1 \cdots \| \cdots P_1!y; j := j + 1 \cdots$$

I: i=j is not a global invariant.

Definition. A process P_i is bracketed if the brackets " \langle " and " \rangle " are interspersed in its text, so that for each program section $\langle S \rangle$ (to be called a bracketed section), S is of one of the following forms:

$$S_1$$
; α ; S_2 or $\alpha \rightarrow S_1$,

and S_1 and S_2 do not contain any I/O statements. \square

Regarding the program sections just considered, the bracketing is

$$\cdots \langle P_2?x; i := i+1 \rangle \cdots \| \cdots \langle P_1!y; j := j+1 \rangle \cdots,$$

so that i = j holds outside the brackets.

New Meta Rule

R9. Parallel Composition

proofs of
$$\{p_i\}P_i\{q_i\}$$
, $i = 1, ..., n$, cooperate
$$\frac{\{p_1 \wedge \cdots \wedge p_n \wedge I\}[P_1 \| \cdots \| P_n]\{q_1 \wedge \cdots \wedge q_n \wedge I\}}{\{p_1 | \cdots | P_n\}\{q_1 \wedge \cdots \wedge q_n \wedge I\}}$$

provided no variable free in I is subject to change outside a bracketed section.

Definition. Let (S_1) and (S_2) denote two bracketed sections from P_i and P_j $(i \neq j)$. We say that (S_1) and (S_2) match if S_1 and S_2 contain matching I/O commands. \square

Definition. The proofs of the $\{p_i\}P_i\{q_i\}, i = 1, ..., n$, cooperate if

- (i) the assertions used in the proof of $\{p_i\}P_i\{q_i\}$ have no free variables subject to change in P_j $(i \neq j)$;
- (ii) $\{\operatorname{pre}(S_1) \wedge \operatorname{pre}(S_2) \wedge I\} S_1 \| S_2 \{\operatorname{post}(S_1) \wedge \operatorname{post}(S_2) \wedge I\} \text{ holds for all matching pairs of bracketed sections } \langle S_1 \rangle \text{ and } \langle S_2 \rangle. \square$

Proof rules concerning parallel composition

R10. Formation

$$\frac{\{p\}S_1; S_3\{p_1\}, \{p_1\}\alpha \parallel \bar{\alpha}\{p_2\}, \{p_2\}S_2; S_4\{q\}\}}{\{p\}(S_1; \alpha; S_2) \parallel (S_3; \bar{\alpha}; S_4)\{q\}}$$

provided α and $\bar{\alpha}$ match and S_1 , S_2 , S_3 , and S_4 do not contain any I/O commands.

R11. Arrow

$$\frac{\{p\}(\alpha;S) \| S_1\{q\}}{\{p\}(\alpha \to S) \| S_1\{q\}}.$$

R12. Auxiliary Variables. Let AV be a set of variables such that $x \in AV \Rightarrow x$ appears in S' only in assignments y := t, where $y \in AV$. Then if q does not contain free any variables from AV, and S is obtained from S' by deleting all assignments to variables in AV,

$$\frac{\{p\}S'\{q\}}{\{p\}S\{q\}}.$$

Definition 7.5. Let A be a set of simple variables in a program S. We call A a set of auxiliary variables of S if each variable from A occurs in S only in assignments of the form z := t with $z \in A$.

I/O pair cannot pass the cooperation test.

Example 4. We now show how to verify the program from Example 3. Two auxiliary variables i and j are needed. We give proof outlines for the already bracketed program S'.

```
P_1 :: [P_2?x] \rightarrow \text{skip} \square P_2!0 \rightarrow P_2?x; x := x + 1],

P_2 :: [P_1!2 \rightarrow \text{skip} \square P_1?z \rightarrow P_1!1].
 \{i=0 \land i=0\}
\{i = 0\} 
\{P_2?x | \{x = 2\} \to i := 1\} \{x = 2 \land i = 1\}; \text{skip}\{x = 2\}
      \langle P_2 | 0 \{ \text{true} \} \rightarrow i := 1 \rangle \{ i = 1 \};
          (P_2?x \{x=1\}; i:=2)\{x=1 \land i=2\}; x:=x+1 \{x=2\}
 ]{x = 2}
 \{i=0\}
      \langle P_1!2\{\mathbf{true}\} \rightarrow j := 1 \rangle \{j = 1\} \text{ skip}\{\mathbf{true}\}
     \langle P_1?z\{z=0\} \to j := 1 \rangle \{z=0 \land j=1\}; \ \langle P_1!1\{true\}; j := 2 \rangle \{j=2\}
  ]{true}
      \{x=2\}
```

```
    p = { p<sub>1</sub> ∧ ... ∧ p<sub>n</sub> ∧ I }
    = { (i = 0) ∧ (z = 0 ∧ j = 1) ∧ (i = j) }
    = false (by using Theorem 1)
```

◆ We obtain { false } S { q } is true in partial correctness.

 $I \equiv (i = j)$

♦ We gain { i = 0 } $\langle P_2?x \rightarrow I := 1 \rangle$ { $x = 2 \land i = 1$ } and { $z = 0 \land j = 1$ } $\langle P_1!1; j := 2 \rangle$ { j = 2 } pass the cooperation test trivially.

Brief Summary

- Isolated proof rules.
- The concept of cooperation is introduced and meta rule is given.
- The meta rule is supplemented by the introduction of global invariant I and square brackets < >. (Semantically unmatched pairs of I/O instructions do not fail the cooperation test)

Thank you!