Задача 1. Шестая строчка треугольника Паскаля выглядит следующим образом:

Решение. По определению, шестая строчка треугольника Паскаля получается из пятой 1 5 10 10 5 1 суммированием чисел стоящих слева сверху и справа сверху. Получаем следующую строчку: 1 6 15 20 15 6 1.

Задача 2. На дереве висит 10 разных яблок. Сколькими способами можно сорвать нечётное количество яблок?

Решение. Из задачи **Наборы из чётного числа символов** мы знаем, что чётное количество яблок можно сорвать $$$2^{10-1} = 2^9 = 512$$ способами. Так как общее количество способов сорвать яблоки равно $$$2^{10}$$, то нечётное количество яблок можно сорвать также \$\$512\$ способами.

Задача 3. Сумма \$\$C_{10}^1+C_{10}^2+\\dots+C_{10}^{10}\$\$ равна

Задача 4. Коэффициент при \$\$x^7\$\$ в разложении \$\$(1+x)^{11}\$\$ равен

Решение. По формуле бинома Ньютона коэффициент при $$x^7$ \$ равен $C_{11}^7 = C_{11}^4$ \$.

Задача 5. В наборе из 12 сосудов имеется 5 неразличимых стаканов и 7 различных чашек. Сколькими способами можно выбрать 6 сосудов из 12?

Решение. Для каждого фиксированного \$\$k\$\$ существует только один способ выбрать \$\$k\$\$ неразличимых стаканов. Отсюда искомое количество способов равно количеству способов выбрать от 1 до 6 чашек. Искомая сумма равна \$\$C_{7}^1+ \ldots + C_{7}^6 = C_{7}^0+ C_{7}^1+ \ldots + C_{7}^6 + C_{7}^7 - (C_{7}^0+C_{7}^7) = 2^{7} - 2 = 128-2=126\$\$.

Задача 6. Сумма \$\$C_{n+m-1}^m+C_{n+m-2}^m+\ldots + C_{m}^m\$\$ при всех \$\$m \ge 1\$\$, \$\$n \ge 1\$\$ равна:

Решение. Эта в сумма в точности равна сумме чисел в треугольнике Паскаля, расположенных на одной диагонали, начиная с числа C_{n+m-1}^m и выше. Эта задача разобрана на видео, и ответ Q_n число, стоящее под C_{n+m-1}^m справа, то есть C_{n+m}^m = C_{n+m}^n .

Задача 7. Отметьте тождества, выполненные при всех \$\$n \ge k \ge 0\$\$.

Решение.

 $$$2^n = C_{n}^0+\cdot + C_{n}^{n}$$ \$\$-\$\$ верно;

 $SC_{n-k}^k = C_{n-k}^{n-k}$ \$\$-\$\$ неверно для \$\$n=3\$\$, \$\$k=1\$\$;

 $$$C_{n}^k = C_{n-1}^k + C_{n-1}^{k+1}$ \$\$ \$\$-\$\$ неверно для \$n=4\$\$, \$k=1\$\$ (\$\$4=C_4^1 $neq C_3^1 + C_3^2 = 3 + 3 = 6$ \$.

Mark as completed

