OPERATING SYSTEMS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – VI

Subject Code	15CS64	IA Marks	20
Number of Lecture Hours/Week	4	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS – 04

Course objectives: This course will enable students to

- Introduce concepts and terminology used in OS
- Explain threading and multithreaded systems
- Illustrate process synchronization and concept of Deadlock
- Introduce Memory and Virtual memory management, File system and storage techniques

techniques		
	Module – 1	Teaching
		Hours
	Introduction to operating systems, System structures: What operating systems	10 Hours
	do; Computer System organization; Computer System architecture; Operating	
	System structure; Operating System operations; Process management; Memory	
	management; Storage management; Protection and Security; Distributed system;	
	Special-purpose systems; Computing environments. Operating System Services;	
	User - Operating System interface; System calls; Types of system calls; System	
	programs; Operating system design and implementation; Operating System	
	structure; Virtual machines; Operating System generation; System boot. Process	
	Management Process concept; Process scheduling; Operations on processes;	
	Inter process communication	
	Module – 2	
	Multi-threaded Programming: Overview; Multithreading models; Thread	10 Hours
	Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling	
	Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread	
	scheduling. Process Synchronization: Synchronization: The critical section	
	problem; Peterson's solution; Synchronization hardware; Semaphores; Classical	
	problems of synchronization; Monitors.	
	Module – 3	
	Deadlocks: Deadlocks; System model; Deadlock characterization; Methods for	10 Hours
	handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock	
	detection and recovery from deadlock. Memory Management: Memory	
	management strategies: Background; Swapping; Contiguous memory allocation;	
	Paging; Structure of page table; Segmentation.	
	Module – 4	
	Virtual Memory Management: Background; Demand paging; Copy-on-write;	10 Hours
	Page replacement; Allocation of frames; Thrashing. File System,	
	Implementation of File System: File system: File concept; Access methods;	
	Directory structure; File system mounting; File sharing; Protection:	
	1	i

Implementing File system: File system structure; File system implementation;

Secondary Storage Structures, Protection: Mass storage structures; Disk 10 Hours

Directory implementation; Allocation methods; Free space management.

Module – 5

structure; Disk attachment; Disk scheduling; Disk management; Swap space management. Protection: Goals of protection, Principles of protection, Domain of protection, Access matrix, Implementation of access matrix, Access control, Revocation of access rights, Capability- Based systems. Case Study: The Linux Operating System: Linux history; Design principles; Kernel modules; Process management; Scheduling; Memory Management; File systems, Input and output; Inter-process communication.

Course outcomes: The students should be able to:

- Demonstrate need for OS and different types of OS
- Apply suitable techniques for management of different resources
- Use processor, memory, storage and file system commands
- Realize the different concepts of OS in platform of usage through case studies

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 7th edition, Wiley-India, 2006.

Reference Books

- 1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th Edition
- 2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013.
- 3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI(EEE), 2014.
- 4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson.