DEPARTMENT OF INFORMATION TECHNOLOGY:: VRSEC 20IT3304 COMPUTER ORGANIZATION ASSIGNMENT I QUESTION BANK A.Y 2021-2022

_	estio No.	Question	Course Outcome	BTL	
1.	a	Design a combinational circuit that performs the addition and subtraction micro operation of two 4 bit binary numbers	CO1	Understand	
	b	A digital computer has a common bus system for 16 registers of 32 bits each. The bus is constructed with multiplexers. i) How many selection inputs are there in each multiplexer? ii) What sizes of multiplexers are needed? iii) How many multiplexers are there in the bus? Draw a diagram of a bus system for four registers and each register consisting of four bits using multiplexers.	CO1	Analyze	
2	a	Design a circuit diagram for performing the addition of two 4 bit binary numbers	CO1	Understand	
	b	Draw the block diagram for the hardware that implements the following statements: $x + yz$: $AR \leftarrow AR + BR$ Where AR and BR are two n bit registers and x, y and z are control variables. Include the logic gates for the control function (symbol + designates an OR operation in a control or a Boolean function but that it represents an arithmetic plus in a microoperation).	CO1	Apply	
3	a b	Design a circuit diagram for 4 bit arithmetic circuit. Design an arithmetic circuit with one selection variable S and two n bit data inputs A and B. The circuit generates the following four arithmetic operations in conjunction with the input carry $C_{\rm in}$. Draw the logic diagram for the first two stages.	CO1 CO1	Understand Analyze	

		$C_{in} = 0$ $C_{in} = 1$									
		0 D = A + B(add)			D = A + 1(increment)						
		1 D=A-1			D = A + B	3'+1(subtra	act)				
		(d	ecrem	ent)							
4	a	Briefly necessar				control uni	t of a basic	computer	with	CO2	Understand
	b	The foll	lowing	cont	rol inp	outs are act	ive in the	bus systen	n (ref	CO2	Analyze
		fig 6.4).	For e	ach c	ase spe	ecify the re	gister trans	sfer that w	ill be		
		execute	d durii	ng the	e next o	clock transi	ition.				
		S.No	S_2	S_1	S_0	LD of	Memor	Adder			
						Register	у				
		1	1	1	1	IR	Read	-			
		2	1	1	0	PC	-	-			
		3	1	0	0	DR	Write	-			
		4	0	0	0	AC	-	Add			
5	a	Explain Memory reference instructions with Register transfer						nsfer	CO2	Understand	
		statements Assume that the first six memory reference instructions in the									
	b									CO2	Apply
		basic computer are specified in the following table. EA is the effective address that resides in AR during time T ₄ . Assume							sume		
		that the adder and logic circuit in the bus system can perform XOR operation. AC \leftarrow AC \oplus DR. Assume further that the									
		adder and logic circuit cannot perform subtraction directly.									
		The subtraction must be done using the 2's complement of									
		subtrahend by complementing and incrementing AC. Give the sequence of register transfer statements needed to execute									
		each of the listed instructions starting from timing T ₄ . Note									
		that the value in AC should not change unless the instruction									
		specifies a change in its content. You can use TR to store the content of AC temporary or you can exchange DR and AC									
		Symb Opcod Symbolic Description in words									
		ol e Designation									
		XOR 000 AC←AC ⊕ Exclusive OR to AC									

				NACE A 3	T	1	
				M[EA]			
		ADM	001	M[EA] ←	Add AC to Memory		
				M[EA] + AC	-		
				2 3			
		SUB	010	AC ← AC -	Subtract Memory from AC		
				M[EA]			
		XCH	011	$AC \leftarrow M[EA],$	Exchange AC and Memory		
				M[EA] ←AC			
		SEQ	100	If (M[EA]	Skip on equal		
				==AC) then PC			
				Í			
				← PC + 1			
		BPA	101	If $(AC > 0)$ then	Branch if AC is positive		
				(PC←EA)	and non zero		
				(I C \ LII)	and non zero		
6.	a	Illustrat	e the a	pplications of 1	ogic microperations with	CO1	Understand
0.	u		example	* *	ogic interoperations with	001	Chacistana
	b	Derive a	a combin	national circuit tha	t selects and generates any	CO1	Analyze
		one of the	he 16 log	gic functions listed	in the table below		, and the second
			an function	Microoperation	Name		
		Boole	an function	Microoperation	Name		
		F ₀ =			Clear		
		•	= xy = xy'	$F \leftarrow A \land B$ $F \leftarrow A \land \overline{B}$	AND		
		F ₃ :	= x	<i>F</i> ← <i>A</i> T	Transfer A		
		-	= x'y = y	$F \leftarrow \overline{A} \wedge B$ $F \leftarrow B$	Fransfer B		
			- y = x ⊕y		Exclusive-OR		
			= x + y		OR VOR		
			$= (x + y)'$ $= (x \oplus y)'$		NOR Exclusive-NOR		
		F_{10} :	= y'	$F \leftarrow \overline{B}$	Complement B		
			= x + y' $= x'$	$F \leftarrow \underline{A} \vee \overline{B}$ $F \leftarrow \overline{A} \qquad 0$	Complement A		
		F ₁₃ :	=x'+y	$F \leftarrow \overline{A} \lor B$	-		
		$F_{14} = F_{15}$	= (xy)'		NAND Set to all 1's		
1		I'15	- 1	r —an 1 s			

Designation	Name in Capitals	Signature with Date
Course Coordinators	Dr.K.SITA KUMARI	
	JANGAM EBENEZER	
Program Coordinator	Dr.G.KALYANI	
Head of the	Dr. M.SUNEETHA	
Department		