Characterizing the Nonlinear Loads

- Rectifiers: Nonlinear Loads
 - Power Factor (PF)
 - Displacement Power Factor (DPF)
 - Total Harmonic Distortion (THD)
- Harmonic Guideline IEEE-519

S VICTORIA

SOLIVERSHIP OF WELLINGTON

3

-3

Why do harmonics occur?

- When a sine wave is applied to magnetic components (Transformers, Motors, Inductors, Capacitors), The current draw from the them is nonlinear to maintain the EM.
- The magnitude of harmonic current is different for order of Harmonic.
- The lower the harmonic, the higher the current (relative)

SVICTORIA

SUNIVERSITY OF SULLINGTON

Why Harmonics

- If we have a drive that has the fundamental current of 100A at 50 Hz,
- Then current at second harmonic is 50A
- Fifth is 20A (100/5)
- 7th is 14.28
- Combining these values 84.28
- This is the extra apparent power that the supply has to provide.
- But who uses it?

Obtaining Harmonic Components by Fourier Analysis

Link

$$g(t) = G_0 + \sum_{h=1}^{\infty} g_h(t) = G_0 + \sum_{h=1}^{\infty} \left\{ a_h \cos(h\omega t) + b_h \sin(h\omega t) \right\}$$

$$G_0 = \frac{1}{2\pi} \int_0^{2\pi} g(t) \cdot d(\omega t)$$

$$a_h = \frac{1}{\pi} \int_0^{2\pi} g(t) \cos(h\omega t) d(\omega t) \quad h = 1, 2, ..., \infty$$

$$b_h = \frac{1}{\pi} \int_0^{2\pi} g(t) \sin(h\omega t) d(\omega t) \quad h = 1, 2, ..., \infty$$

$$\bar{G}_h = G_h \angle \phi_h \qquad G_h = \frac{\sqrt{a_h^2 + b_h^2}}{\sqrt{2}} \qquad \tan \phi_h = \frac{-b_h}{a_h}$$

$$G = \sqrt{G_0^2 + \sum_{h=1}^{\infty} G_h^2}$$

Harmonic Guidelines: IEEE - 519

Odd Harmonic Order h					Total Harmonic	
I_{SC} / I_1	h < 11	$11 \le h \le 17$	$17 \le h \le 23$	$23 \le h \le 35$	$35 \le h$	Distortion(%)
< 20	4.0	2.0	1.5	0.6	0.3	5.0
20-50	7.0	3.5	2.5	1.0	0.5	8.0
50-100	10.0	4.5	4.0	1.5	0.7	12.0
100 – 1000	12.0	5.5	5.0	2.0	1.0	15.0
> 1000	15.0	7.0	6.0	2.5	1.4	20.0

☐ Limits on allowable harmonic currents drawn by loads of various relative n
☐ Relative magnitude of load currents is based on Short Circuit Ratio (SCR) Limits on allowable harmonic currents drawn by loads of various relative magnitudes

AS/NZS 61000.3.2 (2009)

Table 3 - Limits mainly for Class D equipment

NOTE - Refer to Clause 7.3b) for limits for Class C equipment

Harmonic order	Maximum permissible harmonic current per watt	Maximum permissible harmonic current
n	mA/W	A
3	3,4	2,30
5	1,9	1,14
7	1,0	0,77
9	0,5	0,40
11	0,35	0,33
$13 \le n \le 39$ (odd harmonics only)	3,85 n	See Table 1

34 35

Summary

Characterizing the Nonlinear Loads

- Diode Rectifiers as Nonlinear Loads
 - Power Factor (PF)
 - Displacement Power Factor (DPF)
 - Total Harmonic Distortion (THD)
- Harmonic Guideline IEEE-519

6

Concept Quiz

For a given Power P drawn by a load at a given voltage level, the current drawn by that load is larger in magnitude if the power factor is smaller.

A. True (correct)

B. False

37

Clicker Quiz

A power-electronic load is supplied by a sinusoidal utilitysource with the rms voltage of 120 V. The rms value of the current drawn is 10 A. The fundamental-frequency component of the current drawn has the rms value of 8 A, and it lags the utility voltage waveform by 15 degrees.

Calculate the power factor of operation for this load.

- A. 0.966
- B. 0.773
- C. 0.8
- D. None of the above

