

MATHAGO

Schularbeit

Vektoren

Die Mathago Schularbeit besteht aus 6 kurzen Aufgaben (Ankreuzaufgaben, Grundkompetenzen, etc.) und 2 bis 3 längeren Textaufgaben. Diese stammen aus dem Aufgabenpool und den Kompensationsprüfungen des BMBWF. Die Punkteverteilung sieht wie folgt aus:

22 – 24 Punkte	Sehr Gut
19 – 21 Punkte	Gut
16 – 18 Punkte	Befriedigend
12 – 15 Punkte	Genügend
0 – 11 Punkte	Nicht Genügend

Aufgabe 1 (2 Punkte)

An einem Massenpunkt M greifen drei Kräfte an. Diese sind durch die Vektoren \vec{a} , \vec{b} und \vec{c} gegeben.

Zeichnen Sie in der nachstehenden Abbildung einen Kraftvektor \vec{d} so ein, dass die Summe aller vier Kräfte (in jeder Komponente) gleich null ist!

Aufgabe 2 (2 Punkte)

In der nachstehenden Abbildung sind die vier Punkte P, Q, R und S sowie die zwei Vektoren \overrightarrow{u} und \overrightarrow{v} dargestellt.

Ordnen Sie den vier Vektoren jeweils den entsprechenden Ausdruck (aus A bis F) zu.

\overrightarrow{PQ}	
PR	
QR	
PS	

А	$2 \cdot \overrightarrow{u} - \overrightarrow{v}$
В	$2 \cdot \overrightarrow{V} - \overrightarrow{U}$
С	$\overrightarrow{-V}$
D	$2 \cdot \overrightarrow{V} + \overrightarrow{U}$
Е	$2 \cdot \vec{u}$
F	$2 \cdot \vec{u} + 2 \cdot \vec{v}$

Aufgabe 3 (2 Punkte)

Gegeben sind die nachstehend angeführten Vektoren:

$$\vec{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} x \\ 0 \end{pmatrix}, x \in \mathbb{R}$$

$$\overrightarrow{c} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$\vec{d} = \vec{a} - \vec{b}$$

Berechnen Sie x so, dass die Vektoren \overrightarrow{c} und \overrightarrow{d} aufeinander normal stehen!

Aufgabe 4 (2 Punkte)

In der unten stehenden Abbildung ist die Position eines Spielers mit \mathbf{x} markiert. Ausgehend von dieser Position soll ein Spielzug eingezeichnet werden, der sich aus dem Vektor $\vec{s}_1 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ und daran anschließend dem Vektor $\vec{s}_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ zusammensetzt.

1) Zeichnen Sie in der obigen Abbildung diesen Spielzug mithilfe von Pfeilen ein.

Aufgabe 5 (2 Punkte)

Im Rahmen einer Testinstallation werden in der Fabrikshalle ein Access-Point, ein Repeater und 2 Laptops auf gleich hohe Tische gestellt (siehe nachstehende schematische Abbildung, Ansicht von oben).

Im Punkt $A=(30\,|\,0)$ befindet sich der Access-Point. Die Laptops in den Punkten $P_1=(20\,|\,2)$ und $P_2=(45\,|\,20)$ sollen diesen Access-Point nützen können.

1) Zeigen Sie mithilfe der Vektorrechnung, dass der Winkel α kleiner als 120° ist.

Aufgabe 6 (2 Punkte)

Von einem Quadrat mit den Eckpunkten A, B, C und D sind der Eckpunkt $C = (5 \mid -3)$ und der Schnittpunkt der Diagonalen $M = (3 \mid 1)$ gegeben. Die Eckpunkte A, B, C und D des Quadrats sind dabei gegen den Uhrzeigersinn angeordnet.

A =			
B=			

Ermitteln Sie die Koordinaten der Eckpunkte A und B.

Aufgabe 7 (8 Punkte)

c) Im Schlosspark gibt es ein Labyrinth aus Hecken. Der Weg durch das Labyrinth wird durch Aneinanderreihen der Vektoren $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, ..., \overrightarrow{h}$ (in alphabetischer Reihenfolge) beschrieben. Dabei beginnt jeder Vektor an der Spitze des vorherigen Vektors.

Es gilt:
$$\overrightarrow{e} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
, $\overrightarrow{f} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$, $\overrightarrow{g} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\overrightarrow{h} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ (Maße in m)

In der nachstehenden Abbildung ist die quadratische Grundfläche des Labyrinths dargestellt. Der Startpunkt *A* des Weges durch das Labyrinth, die ersten vier Vektoren und der Punkt *P* sind bereits eingezeichnet.

1) Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.

$$\vec{b} = \begin{pmatrix} \\ \\ \\ \end{pmatrix}$$

- Ermitteln Sie die L\u00e4nge des Weges durch das Labyrinth vom Startpunkt A zum Punkt P.
- 3) Vervollständigen Sie ausgehend vom Punkt P den Weg durch das Labyrinth durch Einzeichnen der Vektoren \vec{e} , \vec{f} , \vec{g} und \vec{h} .
- 4) Kreuzen Sie die auf die gegebenen Vektoren nicht zutreffende Aussage an. [1 aus 5]

Die Vektoren \overrightarrow{a} und \overrightarrow{c} sind Gegenvektoren.	
Die Vektoren \overrightarrow{f} und \overrightarrow{g} haben den gleichen Betrag.	
Die Vektoren \vec{f} und \vec{h} sind parallel.	
Die Vektoren \overrightarrow{d} und \overrightarrow{e} haben den gleichen Betrag.	
Die Vektoren \overrightarrow{d} und \overrightarrow{e} stehen normal aufeinander.	

Aufgabe 8 (4 Punkte)

Für eine genauere Analyse eines Boule-Spiels wird mithilfe einer Drohne ein Luftbild aufgenommen.

A = (2|10) ... Auflagepunkt der ersten Kugel B = (17|6) ... Auflagepunkt der zweiten Kugel Z = (4|1) ... Auflagepunkt der Zielkugel

1) Berechnen Sie die Länge der Strecke BZ.

Während des Spiels bewegt sich die erste Kugel entlang der Strecke AB 3 cm in Richtung B.

Berechnen Sie die Koordinaten der neuen Position des Auflagepunkts der ersten Kugel.