Multiple Compounding Periods in a Year

 Not all interest rates are stipulated as annual compounding rates – often rates are compounded more frequently

\$1 000 Loan – 8% Interest Compounded Quarterly => 2% per 3-month period for 4 interest periods

$$F = P (F|P 2,4)$$

$$= $1 000 (1.0824)$$

$$= $1 082.40$$

Equivalent to

$$F = P (F|P 8.24,1)$$
= \$1 000 (1.0824)
= \$1 082.40

Nominal Interest Rate = 8%

Per Period Interest Rate = 2%

Effective Annual Rate = 8.24%

Q 1	1 000.00	20.00	1 020.00
Q 2	1 020.00	20.40	1 040.40
Q 3	1 040.40	20.81	1 061.21
Q 4	1 061.21	21.22	1 082.43

Effective Interest Rates

r = nominal annual interest rate

m = number of compounding periods per year

 i_{eff} = effective interest rate per year

$$i_{eff} = \left(1 + \frac{r}{m}\right)^{m} - 1$$
$$= \left(F | P \frac{r}{m}, m \right) - 1$$

e.g. 8% Interest Compounded Quarterly

$$r = .08 r/m = .02$$

$$m = 4$$

$$i_{eff} = (F|P 2,4) - 1$$

$$= 1.0824 - 1 = 8.24\%$$

UofT Tuition "Service Charge" 1.5% per month $i_{eff} = (1+0.015)^{12} - 1$ = (F|P 1.5,12) - 1 $\rightarrow i_{eff} = 19.56\%$ vs. 18% nominal rate

- Discrete compounding is normally used in finance
- In the limit $(m \to \infty)$ implies continuous compounding
 - optional topic (Section 3.6)
 - use the discrete compounding tables in Appendix A for business purposes

Bank Account Compounding

Consider two different types of bank accounts:

- **1. Savings Account:** Interest paid on minimum quarterly balance (annual rate of 3% paid on balances > \$5 000)
- **2. Daily Interest Account:** Interest earned from time of deposit (annual rate of 1% paid on balances > \$1 000)

Each account states that the nominal rate is compounded quarterly.

Consider a customer with three monthly deposits of \$10 000.

Let i_S and i_D be the monthly rates; then,

$$i_{eff} = (1+i)^{12} - 1$$

$$= \left(1 + \frac{0.03}{4}\right)^4 - 1$$

$$\Rightarrow (1+i_s)^{12} = (1.0075)^4$$

$$(1+i_s)^3 = 1.0075$$

$$\therefore i_s = (1.0075)^{1/3} - 1 = 0.00249378$$

$$i_S = 0.249378\%$$

 $i_D = 0.083264\%$

Interest Earned: Three Monthly Deposits of \$10 000

Minimum balance = 10000

$$I = 75$$

$$\therefore F = $30 075.00$$

F=?

2. Daily Interest Account

Use monthly rate of 0.083264%

January deposit $10\ 000\ (1+.00083)^3 = 10\ 025.00$

February deposit $10\ 000\ (1+.00083)^2 = 10\ 016.66$

March deposit $10\ 000\ (1+.00083)\ = 10\ 008.33$

$$\therefore$$
 F = \$30 049.99

<u>OR</u>

$$F = 10\ 000\ (F|A\ 0.083\%,3)\ (F|P\ 0.083\%,1)$$
$$= 30\ 049.99$$

Interest Earned: Three Monthly Deposits of \$10,000

Savings Account

Quarterly Interest Rate:			0.7500%		
	Deposit	End-of-Quarter		er	End-of-Day
			Interest		Balance
January 1	10,000.00				10,000.00
January 31					10,000.00
February 1	10,000.00				20,000.00
February 28					20,000.00
March 1	10,000.00				30,000.00
March 31			75.00		30,075.00
Note minimum balance for the quarter is \$10 000.					

Daily Interest Account

Monthly Interest Rate:			0.08326%		
	Deposit	Е	End-of-Month		End-of-Day
			Interest		Balance
January 1	10,000.00				10,000.00
January 31			8.33		10,008.33
February 1	10,000.00				20,008.33
February 28			16.66		20,024.99
March 1	10,000.00				30,024.99
March 31			25.00		30,049.99

Best strategy? – Two Accounts!

Relationship Between the Present Value Factor, Inflation Rates and Time

Present Value (P|F i,n)

"Discount Factor" < 1.00

• present value factors listed are for 10 years at the stated interest rate

Series of Cash Flows - Special Cases

Three Special Cases Used Frequently in Finance

- each has a closed-form solution
- 1. Uniform series of cash flows (annuity)

$$A_k = A$$

$$k = 1,...,n$$

2. Gradient series of cash flows

$$\mathbf{A}_{k} = \begin{cases} 0 & k = 1 \\ \mathbf{A}_{k-1} + \mathbf{G} & k = 2, ..., n \end{cases}$$

$$k = 1$$
$$k = 2....n$$

Geometric series of cash flows

$$A_{k} = \begin{cases} A & k = 1 \\ A_{k-1}(1+j) & k = 2,...,n \end{cases}$$

$$k = 1$$

$$k = 2,...,n$$

Gradient Series of Cash Flows

- Each successive cash flow increases by a fixed amount equal to G
- Note that there is <u>no</u> cash flow at end of period 1

$$A_{k} = (k-1)G k = 1,..., n$$

$$P = \sum_{k=1}^{n} A_{k} (1+i)^{-k}$$

$$= G \sum_{k=1}^{n} (k-1)(1+i)^{-k}$$

$$P = G \left[\frac{1 - (1+ni)(1+i)^{-n}}{i^{2}} \right]$$

Gradient Series, Present Value Factor

$$P = G(P|Gi,n)$$

Gradient Series of Cash Flows

Computer Maintenance Service Agreement (five years) \$5 000 per year service fee \$600 annual escalation factor

What is the Present Value Cost at a 6% Interest Rate?

$$i = 6\%$$

 $n = 5$

Geometric Series of Cash Flows

Each successive cash flow increases by a percentage equal to j

$$A_k = A_{k-1}(1+j)$$
 $k = 2,...,n$
 $A_k = A_1(1+j)^{k-1}$ $k = 1,...,n$

$$P = \sum_{k=1}^{n} A_{1} (1+j)^{k-1} (1+i)^{-k}$$

$$P = \begin{cases} A_{1} \left[\frac{1 - (1+j)^{n} (1+i)^{-n}}{i-j} \right] & i \neq j \\ \frac{nA_{1}}{1+i} & i = j \end{cases}$$

Geometric Series, Present Value Factor

Corporate Dividend Valuation

$$P = A_1 (P|A_1 i,j,n)$$

A shareholder owns 1 000 shares of XYZ Company and intends to own these shares for 10 years.

The shareholder expects next year's dividend on a share to be \$2.50. The expected annual growth in dividends is 4%.

What is the present value of the future dividend stream if money has a time value of 5%?

$$P = A_1 (P|A_1 5\%, 4\%, 10)$$
= 1 000 (2.50) (9.1258)
= \$22 814.50

Geometric Series - Stock Purchase Evaluation

Present Value of Dividends per Share

$$P = A_1 (P|A_1 i,j,n)$$
= 2.50 (P|A_1 5,4,10)
= 2.50 (9.1258) = \$22.81

i = 5%: Investor requires at least this rate of return.

Total Return: 1. from dividends

2. from value of share sold at EOY 10

Investor <u>forecasts</u> price of share to be \$50.00 at the End of Year 10.

$$$22.81 $30.70$$

$$PV_{Future Returns} = PV_{DIV} + 50 (P|F 5,10) = $53.51 per share$$

$$Overvalued? => Sell (or "short")$$

$$Under Valued? => Buy$$

Stock Market Transactions

Long Position

- Shareholder believes that the share is fairly valued and intends on owning the share for a long period of time
- Return to shareholder via dividends and share price appreciation
- Usual way of making money in the stock market "Buy Low and Sell High"

Short Position

- Requires two investors with divergent views of a company's future
- Investor A has a long position but is willing to lend shares for a fixed period of time and receive a fee
- Investor B believes the share is over-valued and is willing to borrow shares and pay a fee
- Investor B borrows the shares, pays Investor A the fee and then sells the shares immediately
- Investor B buys back the shares before the expiry date of the short contract and returns them to Investor A
- If Investor B is correct the repurchase price will be lower than the selling price resulting in a profit on the short contract
- What are the risks to Investor A and Investor B?

Equivalence

• Two cash-flow profiles are <u>equivalent</u> at some specified interest rate, i %, if their present values are equal using that interest rate of i.

Are these two very different cash flows equivalent?

A:
$$P = 100(P|F 6,1) + 200(P|F 6,3) + 100(P|F 6,4) + 300(P|F 6,5)$$

= \$565.65

Therefore, A and B are equivalent at an interest rate of 6%.

Equivalence

Web Server System

Purchase Price of server system	\$120 000
Estimated economic life of the system	5 years
Annual maintenance and Internet charges	\$ 10 000
Staff salaries	\$ 40 000
Annual estimated cash flow benefits	\$100 000
Salvage value (EOY 5)	\$ 10 000

What single sum of money at time 0 is equivalent to these cash flows using an interest rate of 10%?

Calculate the present value of the cash flows.

- 1. If PV = 0, then the rate of return is exactly 10%.
- 2. If PV > 0, then the rate of return > 10%.
- 3. If the PV > 0, then the FV > 0.
- 4. If the FV > 0, the rate of return is greater than the opportunity cost investment (10%).

Web Server System Cash Flow Profile

Present Value of Cash Flow Profile

$$\begin{array}{ll} \mathrm{PV}| & = -120\ 000 + 50\ 000\ (\mathrm{P|A}\ 10{,}5) + 10\ 000\ (\mathrm{P|F}\ 10{,}5) \\ & = -120\ 000 + 50\ 000(3.7908) + 10\ 000(0.6209) \\ & = \$75\ 749 \end{array}$$

Web Server System Net Cash Flow Approach

Net Cash Flow	50 000 (P A 10,5)	189 540
Salvage	10 000 (P F 10,5)	6 209
Total PV of Futur	\$195 749	
Less: Investment		<u>120 000</u>
PV of Cash Flow		\$ 75 749

Web Server System - Future Value

The \$120 000 can be invested in the server or at 10% (the company's time value of money & its investors' opportunity cost). What is the value of each alternative at the EOY 5?

Opportunity Cost Investment			Web Server System		
EOY	Returns	EOY Value	CF	Returns	EOY Value
0	-	120 000	-	-	0
1	12 000	132 000	50 000	-	50 000
2	13 200	145 200	50 000	5 000	105 000
3	14 520	159 720	50 000	10 500	165 500
4	15 972	175 692	50 000	16 550	232 050
5	17 569	193 261	60 000	23 205	315 255
			→ \$12	01 QQ/I ←	
\$121 994					

The Web Server Project results in being \$121 994 better off than the opportunity cost investment at the EOY 5.

How does this relate to the present value?
$$\$121\ 994\ (P|F\ 10,5) = \boxed{\$75\ 749}$$

- interest on money borrowed for business purposes is tax deductible (personal use borrowing is not tax deductible)
- repayment of principal is not tax deductible
- for each payment, need to know:
 - how much is interest
 - how much is repayment of principal

Principal Amount

initial amount of money borrowed

Amortization Period

period of time over which the indebtedness will be repaid

Mortgage Period

period of time of the current mortgage contract

Blended Payment

each payment contains both interest and a partial repayment of the principal

Equity Payment

portion of each payment reducing the principal amount

Mortgage

loan secured by physical assets

Debenture

- loan not secured by any physical assets
- guaranteed only by the financial strength of the issuing firm

"Bank View"

4 Year Loan

Principal Amount

\$10 000

Interest

10% compounded annually

Payment Size

$$A = P (A|P 10,4)$$

$$= 10 000 (0.315471)$$

$$= $3 154.71$$

Future Value of Principal Plus Payments

$$F = P (F|P 10,4) + A (F|A 10,4)$$

$$= -10 000 (1.4641) + 3 154.71 (4.6410)$$

$$= 0$$

	<u>Interest</u>	<u>Interest</u>	Equity	<u>Total</u>	
EOY	Calculation	<u>Payment</u>	<u>Payment</u>	<u>Payment</u>	Balance
0					10 000.00
1	10 000.00	1 000.00	2 154.71	3 154.71	7 845.29
2	7 845.29	784.53	2 370.18	3 154.71	5 475.11
3	5 475.11	547.51	2 607.20	3 154.71	2 867.91
4	2 867.91	286.79	2 867.91	3 154.70	0.00
Total		2 618.83	10 000.00		

Only the interest payment portion is a tax deductible expense.

- What is the equity payment made in Period k?
- What is the interest payment made in Period k?

Let: P = amount borrowed (principal amount)

n = number of time periods (amortization period)

i = interest rate compounded per time period

A = payment per time period (blended payment)

Also let: E_k = equity payment in Period k I_k = interest payment in Period k

$$A = E_k + I_k$$
 (Blended Payment)

Per Period Payment: A = P(A|Pi,n)

$$\Rightarrow P = A \sum_{j=1}^{n} (1+i)^{-j}$$

What is the <u>unpaid principal</u> remaining after making payment (k-1)?

Number of payments left:

$$n - (k - 1) = n - k + 1$$

Let U_{k-1} = unpaid principal after making payment (k-1) then

$$U_{k-1} = A (P|A i,n-k+1)$$

$$= A \sum_{i=1}^{n-k+1} (1+i)^{-i}$$

How much does payment k reduce the unpaid principal?

$$U_{k-1} - U_k = E_k$$

$$\therefore E_k = A \sum_{j=1}^{n-k+1} (1+i)^{-j} - A \sum_{j=1}^{n-k} (1+i)^{-j}$$

$$= A \left[\sum_{j=1}^{n-k} (1+i)^{-j} + (1+i)^{-(n-k+1)} \right] - A \sum_{j=1}^{n-k} (1+i)^{-j}$$

$$= A(1+i)^{-(n-k+1)}$$

Equity Payment in Period k

$$E_k = A (P|F i, n - k + 1)$$

$$E_k = A (P|F i,n - k + 1)$$

 $A = P (A|P i,n)$

$$E_k = P (A|P i,n)(P|F i,n-k+1)$$

Also:

$$A = E_k + I_k$$

$$\Rightarrow I_k = A - E_k$$

$$= A - A (P|F i, n - k + 1)$$

$$I_k = A(1 - (P|F i, n - k + 1))$$

Condo Mortgage

Purchase price \$200 000

Down payment \$ 25 000 (12.5% "down")

Amount to finance \$175 000

Purchaser selects a 25-year amortization period.

Five-year term of initial mortgage at 7% interest compounded monthly. (Note that current 5-year rates are around 3-4%.)

1. What is the split between interest and principal in the last payment?

Monthly Payment: $A = \$175\ 000\ (A|P\ 7/12,\ 300)$

 $= $175\ 000\ (0.0071)$

= \$1 236.86

Equity Payment: $E_k = A (P|F i, n - k + 1)$

 $E_{60} = A (P|F 7/12, 241)$

= 1237 (0.2462)

= \$304.47

Interest Payment: $I_k = A - E_k$

= \$932.39

k=60 at the end of the five-year term

Condo Mortgage

2. At the end of the initial five-year term, how much of the \$175 000 mortgage remains?

$$P|_{EOP_{60}} = A (P|A 7/12, 240)$$

= 1 237 (128.93)
= \$159 533.30

This amount has to be refinanced by the next mortgage.

Over the first five-year term of the mortgage:

Total payments (60 * \$1 237)	\$74 220
Mortgage reduction (\$175 000 – \$159 533)	<u>\$15 467</u>
Interest payments!!!!	<u>\$58 753</u>

The owner's equity in the condo after five years is \$40 467.

The owner has invested \$99 220 in the condo over the initial five-year period.

Condo Mortgage

What are the risks to the financial institution in lending money for a residential mortgage?

- 1. Disaster risk
 - A fire may destroy the building
- 2. Default risk
 - Borrower loses job and cannot afford payments
- 3. Housing price risk
 - Housing prices may go down
 - "mortgage under water"
- 4. Interest rate risk
 - Five-year term guarantees the mortgage interest rate for five years
 - Interest rates may increase requiring the bank to pay depositors a rate higher than the mortgage rate

How does the financial institution protect itself against these mortgage risks?

- Who should assume these risks?
- Who pays?