

概述

TM1651 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集成 有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优良,质量可靠。 主要应用于电磁炉、微波炉及小家电产品的显示屏驱动。采用SOP16/DIP16的封装形式。

特性说明

- · 采用功率CMOS 工艺
- 显示模式(7字段×4 位),支持共阳数码管输出
- 键扫描(7×1bit),增强型抗干扰按键识别电路
- 辉度调节电路(占空比 8 级可调)
- 串行接口(CLK, DIO)
- 振荡方式: 内置RC 振荡(450KHz+5%)
- 内置上电复位电路
- 内置自动消隐电路
- 封装形式: DIP16/SOP16

三、管脚定义:

图1 管脚定义

- 2 -

四、管脚功能定义:

符号	管脚名称	管脚号	说明			
DIO	数据输入/ 输出	14	串行数据输入/输出,输入数据在 CLK 的低电平变化,在 CLK 的高电平被传输,每传输一个字节芯片内部都将在第九个时钟产生一个 ACK			
CLK	时钟输入	15	在上升沿输入/输出数据			
K1	键扫数据输入	16	输入该脚的数据在显示周期结束后被锁存			
SEG1~SEG7	输出(段)	2-8	段输出(也用作键扫描), N 管开漏输出			
GRIG4~GRIG1	输出(位)	9-12	位输出,P管开漏输出			
VDD	逻辑电源	13	5V±10%			
VSS	逻辑地	1	接系统地			

五、显示寄存器地址和显示模式

该寄存器存储通过串行接口从外部器件传送到TM1651 的数据,地址00H-03H共4个字节单元,分别与芯片SGE 和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

	X	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
)	高四位	xHU(清	Х	()	氐四位	HL(们	XX
	B4 B5 B6 B7				В3	B2	B1	В0
GRID1		HU	00		00HL			
GRID2		HU	01		01HL			
GRID3	·	HU	02		02HL			
GRID4		HU	03		03HL			

六、键扫描和键扫数据寄存器

键扫矩阵为7×1bit,如下所示:

在有按键按下时,读键数据如下:

	SG1	SG2	SG3	SG4	SG5	SG6	SG7
K1	1110_11	0110_11	1010_11	0010_11	1100_11	0100_11	1000_11
	11	11	11	11	11	11	11

注意: 在无按键按下时,读键数据为: 1111_1111,低位在前,高位在后。

七、指令说明

指令用来设置显示模式和LED 驱动器的状态。

在CLK下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同的 指令。

В7	В6	指令
0	0	显示模式设置
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

7.1 数据命令设置:

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

MSB		LSB
-----	--	-----

В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
0	1					0	0	数据读写模式	写数据到显示寄存器
0	1	无关项, 填 0				1	0	设置	读键扫数据
0	1				0			地址增加模式	自动地址增加
0	1				1			设置	固定地址
0	1			0				测试模式设置	普通模式

TM1651

	0	1		1				(内部使用)	测试模式
--	---	---	--	---	--	--	--	--------	------

7.2 地址命令设设置:

MSE	3						LSB	
В7	В6	B5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	00H
1	1	无关	无关项,		0	0	1	01H
1	1	填	0	0	0	1	0	02H
1	1			0	0	1	1	03H

该指令用来设置显示寄存器的地址;如果地址设为0C4H 或更高,数据被忽略,直到有效 地址被设定;上电时,地址默认设为00H。

7.3 显示控制:

MSB						I	LSB		
В7	В6	B5	B4	В3	B2	B1	В0	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0				0	1	0	灰度设置	设置脉冲宽度为 4/16
1	0				0	1	1		设置脉冲宽度为 10/16
1	0	无关	项,		1	0	0	<u> </u>	设置脉冲宽度为 11/16
1	0	填	0		1	0	1		设置脉冲宽度为 12/16
1	0				1	1	0		设置脉冲宽度为 13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小月大以且	显示开

八、串行数据传输格式

微处理器的数据通过两线总线接口和 TM1651 通信, 在输入数据时当 CLK 是高电平时, DIO 上 的信号必须保持不变;只有CLK上的时钟信号为低电平时,DIO上的信号才能改变。数据输入的 开始条件是 CLK 为高电平时, DIO 由高变低;结束条件是 CLK 为高时, DIO 由低电平变为高电平。

TM1651 的数据传输带有应答信号 ACK, 当传输数据正确时, 会在第八个时钟的下降沿, 芯片 内部会产生一个应答信号 ACK 将 DIO 管脚拉低,在第九个时钟的上升沿释放 DIO 口线。

指令数据传输过程如下图(读按键数据时序):

Command: 读按键指令.

S0、S1、S2、K1 组成按键信息编码, S0、S1、S2 为 SG 的编码, K1、K2 为 K1 键的编码。读按键时, CLK 时钟频率应小于 250K, 先读低位, 后读高位。

写 SRAM 数据地址自动加 1 模式

Command1:设置数据 Command2:设置地址 Data1~N:传输显示数据 Command3:控制显示

写 SRAM 数据固定地址模式:

Command1:设置数据 Command2:设置地址 Data1~N: 传输显示数据 Command3:控制显示

九、程序流程图

采用地址自动加一模式的程序流程图:

采用固定地址的程序设计流程图:

十 、参考程序

```
/*
*版权信息: 深圳天微电子
*文件名:
          TM1651
*当前版本:
          1.0
*单片机型号: AT89S52
*开发环境: Keil uVision3
*晶震频率: 11.0592M
*程序功能: 把 TM1651 所有显示寄存器地址全部写满数据 0xff,并开显示,然后再读按键值。
*/
#include<reg52.h>
#include<intrins.h>
//定义端口
sbit clk = P1^2;
sbit dio = P1^1;
void Delay_us(unsigned int i) //nus 延时
   for (; i>0; i--)
   _nop_();
void I2CStart(void) // 1651 开始
    c1k = 1;
    dio = 1;
    Delay_us(2);
    dio = 0;
void I2Cask(void)
                       //1651 应答
    c1k = 0;
                      //在第八个时钟下降沿之后延时 5us, 开始判断 ACK 信号
    Delay_us(5);
    while(dio);
    clk = 1;
    Delay_us(2);
    c1k=0;
void I2CStop(void)
                      // 1651 停止
    clk = 1;
    dio = 0;
    Delay_us(2);
    dio = 1;
```

```
void I2CWrByte (unsigned char oneByte) //写一个字节
        unsigned char i;
        for (i=0; i<8; i++)
        \{ c1k = 0;
                             //低位在前
            if(oneByte&0x01)
                 dio = 1;
             else
                 dio = 0;
             Delay_us(3);
            oneByte=oneByte>>1;
            c1k=1;
            Delay_us(3);
   unsigned char ScanKey(void)
                                            //读按键
         unsigned char rekey, rkey, i;
         I2CStart();
         I2CWrByte(0x46);
                                           //读按键命令
         I2Cask();
         dio=1;
                                            // 在读按键前拉高数据线
         for (i=0; i<8; i++)
                                            //从低位开始读
             c1k=0;
              rekey=rekey>>1;
              Delay_us(30);
              c1k=1;
              if (dio)
              {
                   rekey=rekey | 0x80;
              }
              else
                  rekey=rekey 0x00;
              Delay_us(30);
         I2Cask();
         I2CStop();
         return (rekey);
                                         //写显示寄存器
   void SmgDisplay(void)
       unsigned char i;
       I2CStart();
       I2CWrByte(0x40);
                                         // 40H 地址自加 44H 固定地址模式
©Titan Micro Electronics
```



```
I2Cask();
  I2CStop();
  I2CStart();
  I2CWrByte(0xc0); //设置首地址,
  I2Cask();
  for (i=0; i<4; i++)
                           //地址自加,不必每次都写地址
       I2CWrByte(Oxff); //送数据
       I2Cask();
   I2CStop();
   I2CStart();
   I2CWrByte(0x8f); //开显示,最大亮度
   I2Cask();
   I2CStop();
void init()
                         //初始化子程序
  //初始化略
void main(void)
   unsigned char keydate;
                           //初始化
   init();
   SmgDisplay();
                           //写寄存器并开显示
   while(1)
      keydate=Scankey(); //读按键值 ,读出的按键值不作处理。
//=====end=======
```

- 11 -

十一、应用电路

电路图中所接数码管为共阳数码管:

十二、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
LED SEG 驱动灌电流	IO1	50	mA
LED GRID 驱动拉电流	IO2	200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ∼ +85	$^{\circ}$
储存温度	Tstg	-65 ∼+150	$^{\circ}$

正常工作范围(Ta = -40~+85℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试 条件
逻辑电源电压	VDD		5		V	-
高电平输入电压	VIH	0.7 VDD	-	VDD	V	,
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性 ($Ta = -40 \sim +85$ °C, $VDD = 4.5 \sim 5.5 \text{ V}$, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
GRID驱动拉电流	loh1	80	120	180	mA	GRID1~GRID4, Vo=vdd-2V
	loh2	80	140	200	mA	GRID1~GRID4, Vo=vdd-3V
SEG驱动灌电流	IOL1	20	30	50	mA	SEG1~SEG7 Vo=0.3V
DOUT脚输出低电平电流	Idout	4	-	-	mA	VO = 0.4V, dout
高电平输出电流容许量	Itolsg	-	-	5	%	VO=VDD - 3V, GRID1∼GRID4
输出下拉电阻	RL		10		ΚΩ	K1~K2
输入电流	II	-	-	±1	μΑ	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		٧	CLK, DIN
低电平输入电压	VIL	-	-	0.3 VDD	V	CLK, DIN
滞后电压	VH	-	0.35	-	V	CLK, DIN
动态电流损耗	IDDdyn	-	-	5	mA	无负载,显示关

©Titan Micro Electronics www.titanmec.com

V1.1

参数	符号	最小	典型	最大	单位	测	试条件
振荡频率	fosc	-	450	-	KHz		
	tPLZ	-	-	300	ns	CLF	$X \to DIO$
传输延迟时间	tPZL	1	-	100	ns	$CL = 15pF, RL = 10K \Omega$	
I The Live	TTZH 1	-	-	2	μs	CL = 300p F	Seg1~ Seg7
上升时间	TTZH 2	-	-	0.5	μs		DIG1∼ DIG4
下降时间	TTHZ	-	-	120	μs	CL = 300pF, Segn, Gridn	
最大时钟频率	Fmax	-	-	500	KHz	占空比50%	
输入电容	CI	-	-	15	pF		-

● 时序特性 (Ta = -40 \sim +85°C, VDD = 4.5 \sim 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	-	ns	-
数据建立时间	tSETUP	100	-	-	ns	-
数据保持时间	tHOLD	100	-	-	ns	-
等待时间	tWAIT	1	-	-	μs	CLK↑→CLK↓

十三、IC 封装示意图:

SOP16:

0	Dimensions In	n Millimeters	Dimensions In Inches		
Symbol	Nin	Max	Min	Max	
A	1.350	1. 750	0. 053	0.069	
A1	0.100	0. 250	0. 004	0.010	
A2	1.350	1. 550	0. 053	0.061	
b	0.330	0. 510	0. 013	0.020	
С	0.170	0. 250	0. 007	0.010	
D	9.800	10. 200	0. 386	0.402	
E	3.800	4. 000	0. 150	0.157	
E1	5.800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0.400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	

DIP16:

DETAIL A

• All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

©Titan Micro Electronics www.titanmec.com

- 15 -

TM1651

修订历史

版本	发行日期	修订简介
V1.0	2012-01-04	改版发行
V1.1	2014-06-04	修改管脚驱动电流描述

©Titan Micro Electronics www.titanmec.com

V1.1

- 16 -