ÁLGEBRA I. 2015/16

RELACIÓN 5

Ejercicio 1: En $\mathbb{Z}[\sqrt{3}]$, factoriza $3 + \sqrt{3}$ en irreducibles y calcula, usando esas factorizaciones, $mcd(3 + \sqrt{3}, 2)$ y $mcm(3 + \sqrt{3}, 2)$.

Ejercicio 2: En el anillo $\mathbb{Z}[\sqrt{5}]$, comprobar que $4 = 2 \cdot 2$ y $4 = (1 + \sqrt{5})(-1 + \sqrt{5})$ son dos factorizaciones en irreducibles no equivalentes, ¿es $(1 + \sqrt{5})$ primo?.

Ejercicio 3: En el anillo $\mathbb{Z}[\sqrt{10}]$, prueba que 3 divide al producto $(4+\sqrt{10})(4-\sqrt{10})$, pero no divide ni a $4+\sqrt{10}$ ni a $4+\sqrt{10}$. ¿Es 3 primo en $\mathbb{Z}[\sqrt{10}]$?, ¿es irreducible?.

Ejercicio 4: Factorizar en irreducibles los siguientes elementos:

- (1) 66 + 12i en $\mathbb{Z}[i]$,
- (2) $4 + 7\sqrt{2}$ en $\mathbb{Z}[\sqrt{2}]$.

Ejercicio 5: Calcular las unidades de $\mathbb{Z}[\sqrt{-3}]$ y demostrar que en este anillo

$$4 = 2.2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$$

son dos factorizaciones en irreducibles, y no equivalentes, del número 4. Razonar que los irreducibles en esas factorizaciones no son primos.

Ejercicio 6: Factorizar 300 como producto de irreducibles en $\mathbb{Z}[i]$.

Ejercicio 7: Demostrar que los elementos 2, 7, $1 + \sqrt{13}i$ y $1 - \sqrt{13}i$ son irreducibles no asociados en $\mathbb{Z}[\sqrt{13}i]$. Encontrar dos factorizaciones distintas en irreducibles de 14 y a partir de ella concluir que en $\mathbb{Z}[\sqrt{13}i]$ hay elementos irreducibles que no son primos.

Ejercicio 8: Demuestra que los elementos $2, 1 + \sqrt{-7}, 1 - \sqrt{-7}$ de $\mathbb{Z}[\sqrt{-7}]$ son irreducibles. Prueba que el número 8 puede ser factorizado en términos de esos irreducibles de dos formas no equivalentes. ¿Es 2 primo en $\mathbb{Z}[\sqrt{-7}]$?.

Ejercicio 9: Calcular, si existe, el inverso de la clase del elemento [2+3i] en el anillo cociente $A = \mathbb{Z}[i]/(2+2i)\mathbb{Z}[i]$. Encontrar, si existe, un divisor de cero no nulo en A. ¿Es A un cuerpo?

Ejercicio 10: Estudiar la irreducibilidad de los siguientes polinomios de $\mathbb{Z}[x]$:

Ejercicio 11: Probar que los siguientes polinomios de $\mathbb{Z}[x,y]$ son irreducibles:

$$x^4y^3 + 15y^2 + 7$$
, $y^5 + x^2y^2 + x^3$, $x^3y + (x+1)^2y^2 + x + 1$.