

Probability and Statistics: Outline

- Probability
 - Basic concepts of probability
 - Conditional probability and Independence
 - Common probability distributions
 - Bayes' Rule
- Statistical Inference
 - Statistical learning
 - Maximum likelihood estimation (MLE)
 - Maximum a posterior (MAP) estimation
- Introduction to optimization

Basic Concepts in Probability

- Event: a subset of possible outcomes (whole space) - A={TT} (all tails); B={HT,TH} (1 head and 1 tail)
- Probability of an event: a number indicates how likely the event is
 - Axiom 1: Nonnegativity: Pr(A) ≥ 0 for all A belong to S
 - Axiom 2: Normalization: Pr(S) = 1
 - Axiom 3: Additivity: for every sequence of disjoint events $\Pr(\bigcup_{i} A_i) = \sum_{i} \Pr(A_i)$
 - Example: Pr(A) = n(A)/N; n(A) size of A, N size of S

Conditional Probability

$$\Pr(B \mid A) = \frac{\Pr(A, B)}{\Pr(A)}$$

➤ What is the probability of B happens if we already know A happens

Example

Calculate the probabilities

	Male		Female	
Department	Admitted	Not admitted	Admitted	Not admitted
Deptl	40	360	10	90
Dept2	20	80	40	160

Pr(Admitted | Dept1) Pr(Admitted | Dept2) Pr(Admitted | Dept1, Female) Pr(Admitted | Dept1, Male)

Independence

- · Two events A and B are independent iff
- Pr(A, B) = Pr(A)Pr(B)
 - The probability of both A and B happens is: probability of A happens times probability of B happens
 - Two events do not have influence on each other
- Example:

	Male		Female	
Department	Admitted	Not admitted	Admitted	Not admitted
Deptl	40	360	10	90
Dept2	20	80	40	160

- − Pr(admitted, male)=60/800=7.5%Not independent
- Pr(admitted)*Pr(male)=110/800*500/800=8.5%

Independence

This is equal to

- Two events A and B are independent iff Pr(A|B)=Pr(A)
- Example

	Male		Female	
Department	Admitted	Not admitted	Admitted	Not admitted
Deptl	40	360	10	90
Dept2	20	80	40	160

Pr(admitted | male) = 60/500 = 12% Not independent
Pr(admitted) = 110/800 = 13.75%

Conditional Independence

Events A and B are conditionally independent given C

Pr(A,B|C)=Pr(A|C)Pr(B|C)

- If we know the outcome of event C, then outcomes of event A and B are independent
- Example

	Male		Female	
Department	Admitted	Not admitted	Admitted	Not admitted
Deptl	40	360	10	90
Dept2	20	80	40	160

Pr(Male, Admitted | Dept1)=40/500=8%

Conditionally independent

Pr(Admitted|Dept1)*Pr(male|Dept1)=50/500*400/500=8%

Common Probability Distribution

- Different types of probability distributions associate uncertain outcomes for different physical phenomena
 - > Flip a coin: Bernoulli/Binominal
 - > Flip a dice (Write a document with several words): Multinomial
 - Random select a point close to a specific point: Gaussian
- Probability mass/density distribution
 - ➤ Define how probable the random outcome is a specific event?

P(X=x) for x in S

Random outcome/variable (e.g., side of a coin)

Specific data point (e.g, head or tail)

Common Probability Distribution

- Some properties of probability mass/density distribution
 - Expectation: the average value of outcomes

$$E(X) = \int x * P(X = x) dx$$

Example: the average outcome of a dice 1/6*1+1/6*2+1/6*3+1/6*4+1/6*5+1/6*6=21/6=3.5

Variance: how diverse are the outcomes (deviation from expectation)

$$V(X) = \int (x - E(X))^2 * P(X = x) dx$$

Example: the average outcome of a coin (1 for head, 0 for tail)

$$1/2*(0-1/2)^2+1/2*(1-1/2)^2=1/4$$

Common Probability Distributions Bernoulli/Binomial

- •Model binary outcomes: side of a coin, whether a term appears in a document, whether an email is a spam...
 - ➤ Bernoulli: binary outcome (i.e., 0 or 1), with probability p to be 1

$$Pr(X = x \mid p) = p^{x} (1-p)^{1-x}; x = 0,1; 0 \le p \le 1$$

Expectation: p Variance: p(1-p)

Binomial: n outcomes of a binary variable, the probability p to be 1, what is the probability of outcome 1 appearing x times

$$\Pr(X = x \mid n, p) = \binom{n}{x} p^{x} (1-p)^{n-x}; x = 0, ..., n; 0 \le p \le 1$$

Expectation: np

Variance: np(1-p)

Common Probability Distribution Multinomial

- Model multiple outcomes: side of a dice; topic of documents;
 occurrences of terms appear within a document;
 - Multinomial: n outcomes of a variable with multiple values (v₁..v_n), with probability p₁ to be v₁,..., probability p_k to be v_k, what is probability of v₁ appearing x₁ times,... v_k appearing x_k times

$$\begin{split} &P(X_1 = x_1, ..., X_K = x_K \mid n, p_1, ..., p_k) \\ &= \frac{n!}{x_1! x_k!} p_1^{x_1} p_K^{x_K}; \sum_{l=1}^K x_l = n; 0 \le p_k \le 1; \sum_{l=1}^K p_l = 1 \end{split}$$

Expectation: $E(X_i)=np_i$ Variance: $Var(X_i)=np_i(1-p_i)$

Common Probability Distribution Multinomial

- Examples:
- Three words in vocabulary (sport, basketball, finance), a multinomial model generate the words by probabilities as (p_s =0.5, p_b =0.4, p_i =0.1) (represented by the first character of each word)

A document generated by this model contains 10 words Question:

What is the expectation of occurrences of word "sport"?

What is the probability of generating 5 "sport", 3 "basketball" and 2 "finance

$$\frac{10!}{5!3!2!}0.5^{5}0.4^{3}0.1^{0.2}$$

Does the word order matter here? Bag of words representation...

Common Probability Distribution Gaussian

- Model continuous distribution: draw data points close to a specific point
 - Gaussian (Normal) distribution: select data points close (measured by σ) to a specific point μ .

$$\Pr(X = x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x - \mu)^2}{2\sigma^2}\right) , \sigma > 0$$

Expectation:
$$E(X_i) = \mu$$
 Variance: $Var(X_i) = \sigma^2$

 μ , σ^2 can be vectors: multivariate Gaussian

Common Probability Distribution Gaussian

- Example
 - Saussian (Normal) distribution with μ =[0 0], σ^2 =[1 0;0 1]; 100 data points '+'randomly generated by the model

Bayes's Rule

Bayes' Rule

Suppose that $B_1, B_2, \dots B_n$ form a partition of sample space S:

$$B_i \cap B_j = \emptyset; \bigcup_i B_i = S$$

Reverse of Conditional Probability Definition

Assume Pr(A) > 0. Then

$$\begin{array}{c} \Pr(B_i \mid A) = \frac{\Pr(A, B_i)}{\Pr(A)} = \frac{\Pr(A \mid B_i) \Pr(B_i)}{\Pr(A)} \\ \text{Definition of Conditional Probability} \\ \end{array} = \frac{\Pr(A \mid B_i) \Pr(B_i)}{\sum_{i=1}^n \Pr(A, B_i)}$$

 $= \frac{\Pr(A \mid B_i) \Pr(B_i)}{\sum_{i=1}^{n} \Pr(A \mid B_i) \Pr(B_i)}$ Normalization term

Bayes's Rule

Interpretation of Bayes' Rule

Hypothesis space: $H=\{H_1, ..., H_n\}$

Observed Data: D

$$P(H_i \mid D) = \frac{P(D \mid H_i)P(H_i)}{P(D)}$$
 constant with respect to hypothesis

To pick the most likely hypothesis H^* , p(D) can be dropped

Posterior probability of $\mathsf{H_i}$ Prior probability of $\mathsf{H_i}$ $\downarrow \qquad \qquad \downarrow \\ P(H_i \mid D) \propto P(D \mid H_i) P(H_i) \\ \uparrow \\ \text{Likelihood of data} \\ \text{if } \mathsf{H_i} \text{ is true}$

Common Probability Distribution Multinomial

Examples:

Five words in vocabulary (sport, basketball, ticket, finance, stock)

Two topics as follows:

Sport: $(p_{sp}=0.4, p_b=0.25, p_i=0.25, p_i=0.1, p_{st}=0)$

Business: $(p_{sp}=0.1, p_b=0.1, p_i=0.1, p_i=0.3, p_{st}=0.4)$

Prior Probability: Pr(Sport)=0.5; Pr(Business)=0.5

Given document $\vec{d} = (\text{sport}, \text{basketball}, \text{ticket}, \text{finance})$

- ightharpoonup What is the probability of $Pr(\vec{d}|Sport)$, $Pr(Sport|\vec{d})$ and $Pr(Business|\vec{d})$?
- If we already know Pr(Sport)=0.1; Pr(Business)=0.9, then what about Pr(Sport|d) and Pr(Business|d)?

Probability and Statistics: Outline

Probability

- Basic concepts of probability
- Conditional probability and Independence
- Common probability distributions
- Bayes' Rule
- Statistical Inference
 - Statistical learning
 - Maximum likelihood estimation (MLE)
 - Maximum posterior (MAP) estimation
- Introduction to optimization

Statistical Inference

• Examples:

Five words in vocabulary (sport, basketball, ticket, finance, stock)

Two topics "Sport" and "Business", a set of documents from each topic. How can we estimate the multinomial distribution for two topics: e.g., Pr("sport"|Business), Pr("stock"|Sport)...

- Probability theory: Model → Data
- Statistical Inference: Data → Model/Parameters
 - > Especially with a small amount of observed data
 - In general, statistics has to do with drawing conclusions on whole population based on observations of a sample (data)

Parameter Estimation

- Parameter Estimation:
 - Given a probabilistic model that generates the data in an experiment,
 the model gives a probability of any data p(D|θ) that depends on the parameter θ
 - We observe some sample data $X=\{x1,...,xn\}$, what can we say about the value of θ ?

Intuitively, take your best guess of θ -- "best" means "best explaining/fitting the data"

Generally an optimization problem

Parameter Estimation

 Given a document topic model, which is a multinomial distribution

Five words in vocabulary (sport, basketball, ticket, finance, stock)

Observe two documents

 \vec{d}_1 : (sport basketball ticket) \vec{d}_2 : (sport basketball sport)

Estimate the parameters of multinomial distribution

 $(p_{sp}, p_b, p_t, p_f, p_{st})$

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation:

Find model parameters that make generation likelihood reach maximum:

 $M*=argmax_MPr(D|M)$

There are K words in vocabulary, w₁...w_K (e.g., 5)

Data: documents $\vec{d}_1,...,\vec{d}_I$

For \vec{d}_i with counts $c_i(w_1), ..., c_i(w_K)$, and length $|\vec{d}_i|$

Model: multinomial M with parameters $\{p(w_k)\}$

Likelihood: $Pr(\vec{d}_1,...,\vec{d}_l|M)$

 $M^*=argmax_MPr(\vec{d}_1,...,\vec{d}_I|M)$

Maximum Likelihood Estimation (MLE)

$$p(\vec{d}_{1},...,\vec{d}_{I} \mid M) = \prod_{i=1}^{I} \left\{ \begin{pmatrix} |\vec{d}_{i}| \\ c_{i}(w_{1})...c_{i}(w_{K}) \end{pmatrix} \prod_{k=1}^{K} p_{k}^{c_{i}(w_{k})} \right\} \propto \prod_{i=1}^{I} \prod_{k} p_{k}^{c_{i}(w_{k})}$$

$$l(\vec{d}_{1},...,\vec{d}_{I} \mid M) = \log p(\vec{d}_{1},...,\vec{d}_{I} \mid M) = \sum_{i=1}^{I} \sum_{k} c_{i}(w_{k}) \log p_{k}$$

$$l'(\vec{d}_1,...,\vec{d}_I \mid M) = \sum_{i=1}^{I} \sum_{k} c_i(w_k) \log p_k + \lambda(\sum_{k} p_k - 1)$$

$$\begin{split} \vec{l} \cdot (\vec{d}_1, ..., \vec{d}_I \mid M) &= \sum_{i=1}^I \sum_k c_i(w_k) \log \ p_k + \lambda (\sum_k p_k - 1) \\ &\text{Use Lagrange multiplier approach Set partial derivatives to zero} \\ \frac{\partial \vec{l}}{\partial p_k} &= \frac{\sum_{i=1}^I c_i(w_k)}{p_k} + \lambda = 0 \quad \Rightarrow \quad p_k = -\frac{\sum_{i=1}^I c_i(w_k)}{\lambda} \\ \end{split}$$

Since
$$\sum_{k} p_{k} = 1$$
, $\lambda = -\sum_{k} \sum_{i=1}^{I} c_{i}(w_{k}) = -\sum_{i=1}^{I} |\vec{d}_{i}|$ So, $p_{k} = p(w_{k}) = \frac{\sum_{i=1}^{L} c_{i}(w_{k})}{\sum_{i=1}^{I} |\vec{d}_{i}|}$

Maximum Likelihood **Estimation (MLE)**

Given a document topic model, what is the multinomial distribution

Five words in vocabulary (sport, basketball, ticket, finance, stock)

Observe two documents

 \vec{d}_1 : (sport basketball ticket) d₂: (sport basketball sport)

Maximum likelihood parameters of multinomial distribution

 $(p_{sp}, p_b, p_f, p_f, p_{st}) = (3/6, 2/6, 1/6, 0/6, 0/6)$

so $(p_{sp}=0.5, p_b=0.33, p_i=0.17, p_f=0, p_{st}=0)$

Maximum A Posterior (MAP) Estimation

- Zero probabilities with small sample (e.g., 0 for finance)
- Purely data driven, cannot incorporate prior belief/knowledge

Maximum A Posterior Estimation:

Select a model that maximizes the probability of model given observed data

$$M^*=argmax_MPr(M|D)=argmax_MPr(D|M)Pr(M)$$

- Pr(M): Prior belief/knowledge
- Use prior Pr(M) to avoid zero probabilities

Maximum A Posterior (MAP) Estimation

There are K words in vocabulary, $w_1...w_K$ (e.g., 5)

Data: documents $\vec{d}_1,...,\vec{d}_I$

For \vec{d}_i with counts $c_i(w_1), ..., c_i(w_k)$, and length $|\vec{d}_i|$

Model: multinomial M with parameters $\{p(w_k)\}$

Posterior: $Pr(M|\vec{d}_1,...,\vec{d}_l)$

 $M^*=argmax_M Pr(M|\vec{d}_1,...,\vec{d}_I) = argmax_M Pr(\vec{d}_1,...,\vec{d}_I|M) Pr(M)$

Prior Pr(M) is $Pr(p_1,...p_K)$: Dirichlet Prior

$$Dir(\overrightarrow{p} \mid \alpha_1, \dots, \alpha_K) = \frac{\Gamma(\alpha_1 + \dots + \alpha_K)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_K)} \prod_k p_k^{\alpha_k - 1}$$

Hyper-parameters

Maximum A Posterior (MAP) Estimation

- Dirichlet Prior is the conjugate prior for multinomial distribution
- For the topic model estimation example, MAP estimator is:

$$p_{k} = \frac{\sum_{i=1}^{I} c_{i}(w_{k}) + (\alpha_{k} - 1)}{\sum_{i=1}^{I} |\vec{d}_{i}| + \sum_{k} (\alpha_{k} - 1)}$$

 \dot{d}_{1} : (sport basketball ticket)

 \vec{d}_2 : (sport basketball sport)

 $\alpha_{k} = 2$ Maximum a posterior parameters of multinomial distribution

 $(p_{\text{sp}},\,p_{\text{b}},\,p_{\text{t}},\,p_{\text{f}},\,p_{\text{st}}) = ((3+1)/(6+5),\,(2+1)/(6+5),\,(1+1)/(6+5),\,1/(6+5),\,1/(6+5)$

so $(p_{sp}=0.364, p_b=0.27, p_i=0.18, p_f=0.091, p_{st}=0.091)$

Introduction to Optimization

Optimization

 The mathematical discipline which is concerned with finding the maxima and minima of functions, possibly subject to constraints.

Example we have seen:

$$\vec{p}^* = \arg\max_{\vec{p}} p(\vec{d}_1, ..., \vec{d}_I \mid M) = \prod_{i=1}^{I} \binom{|\vec{d}_i|}{c_i(w_1) ... c_i(w_K)} \prod_{k=1}^{K} p_k^{c_i(w_k)}$$

- Calculate analytic solution
 - > Calculate the first derivative (with Lagrange multiplier when subjected to constraints)
 - > Set the above equation to 0 and try to solve the solution
 - ➤ Check whether second derivative is positive (minimum) or negative (maximum)

Example:

$$x^* = \underset{x}{\operatorname{arg \, min}} f(x) = \underset{x}{\operatorname{arg \, min}} (x^2 - 2x + 5)$$
$$f(x)' = 2x - 2 = 0 \quad \Rightarrow \quad x^* = 1$$
$$f(x^*)'' = 2 > 0 \quad \Rightarrow \quad \text{It is minimum}$$

Introduction to Optimization

- Approximate solution with iterative method
 - Many equations by setting derivative to zeros do not have analytic solution
 - > Iterative method refines solution step by step
- Newton method uses information of first derivative and second derivative to refine solution

solution

- Newton method does not guarantee improvement of new solution over old one
- **Expectation Maximization method**
 - Lower bound method, always make improvement
 - More elegant, often has good probabilistic interpretation

Introduction to Optimization

Examples:

- Given two biased dice A and B with known $(P_A(1),...,P_A(6))$ and $(P_B(1),...,P_B(6))$. Each time, with probability λ draw A, and with probability $1-\lambda$ draw B.
- We observe a sequence $X = \{x_1, ..., x_n\}$ and want to estimate:

$$\lambda^* = \arg \max_{\lambda} l(X, \lambda)$$

$$\lambda^* = \arg \max_{\lambda} \sum_{i=1}^{n} \left(\log \left(\lambda p_A(x_i) + (1 - \lambda) \log(p_B(x_i)) \right) \right)$$

Previous solution:

$$\begin{split} \lambda^* &= \arg\max_{\lambda} l(X,\lambda) = \arg\max_{\lambda} \left[l(X,\lambda) - l(X,\lambda^{(t)}) \right] \\ &= \arg\max_{\lambda} \sum_{i=1}^n \left[\log \left[\frac{\lambda p_A(x_i) + (1-\lambda) p_B(x_i)}{\lambda^{(t)} p_A(x_i) + (1-\lambda^{(t)}) p_B(x_i)} \right] \right] \\ &= \arg\max_{\lambda} \sum_{i=1}^n \left[\log \left[\frac{\frac{\lambda^{(t)} p_A(x_i)}{\lambda^{(t)} p_A(x_i)} \lambda p_A(x_i) + \frac{(1-\lambda^{(t)}) p_B(x_i)}{(1-\lambda^{(t)}) p_B(x_i)} (1-\lambda) p_B(x_i)}{\lambda^{(t)} p_A(x_i) + (1-\lambda^{(t)}) p_B(x_i)} \right] \right] \\ &= \arg\max_{\lambda} \sum_{i=1}^n \left[\log \left[\frac{\lambda^{(t)} p_A(x_i)}{\lambda^{(t)} p_A(x_i) + (1-\lambda^{(t)}) p_B(x_i)} F_{Bi} = \frac{(1-\lambda^{(t)}) p_B(x_i)}{\lambda^{(t)} p_A(x_i) + (1-\lambda^{(t)}) p_B(x_i)} \right] \right] \\ &= 2\sum_{i=1}^n \left(F_{Ai} \log \left[\lambda p_A(x_i) \right] + F_{Bi} \log \left[(1-\lambda) p_B(x_i) \right] \right) + Const \end{split}$$

Introduction to Optimization

$$g(\lambda)' = \sum_{i=1}^{n} \left(\frac{F_{Ai}}{\lambda} - \frac{F_{Bi}}{(1-\lambda)} \right) = 0 \implies \lambda^{(t+1)} = \frac{\sum_{i=1}^{n} F_{Ai}}{n}$$

Probability and Statistics: Outline

- Basic concepts of probability
- Conditional probability and Independence
- Common probability distributions
- Bayes' Rule
- Statistical Inference
 - Statistical learning
 - Maximum likelihood estimation (MLE)
 - Maximum posterior (MAP) estimation
- Introduction to optimization

Probability and Statistics: Outline

• References:

Section 2.1, Foundation of Natural Language Processing http://cognet.mit.edu/library/books/mitpress/0262133601/cache/chap2.pdf (pp. 39-59)

Online notes of probability and Statistics for computer science: http://www.utdallas.edu/~mbaron/3341/Fall06/ (Chaps 2,3,4,12)

Probability and Statistics MH. DeGroot, MJ. Schervish 2001. Addison-Wesley

Optimization (online): "Convex Optimization", S. Boyd and L. Vandenberghe, http://www.stanford.edu/~boyd/cvxbook/