Estatística experimental

Davi Vitti

2023-09-10

Contents

1	Inti	rodução	5
2	Rel	embrando a Estatística geral	7
	2.1	Medidas de posição	7
	2.2	Medidas de dispersão	7
	2.3	Exercicíos	7
3	Pla	nejamento e princípios básicos	9
	3.1	Aplicação no R studio	9
	3.2	Exercicíos	9
4	Del	ineamento inteiramente casualizado	11
	4.1	Aplicação no R studio	13
	4.2	Exercicíos	20
5	Cor	nparação de médias	23
	5.1	Teste de Tukey	24
	5.2	Teste de Duncan	24
	5.3	Teste de Dunnett	24
	5.4	Teste de Scheffé	24
	5.5	Contrastes ortogonais	24

4 CONTENTS

6	Reg	ressão polinomial	25
	6.1	Anova	25
	6.2	Aplicação no R studio	25
	6.3	Exercicíos	25
7	Del	ineamento em blocos casualizados	27
	7.1	Anova	27
	7.2	Aplicação no R studio	27
	7.3	Exercicíos	27
8	Del	ineamento quadrado latino	29
	8.1	Anova	29
	8.2	Aplicação no R studio	29
	8.3	Exercicíos	29
9	Exp	perimento fatorial	31
	9.1	Anova	31
	9.2	Aplicação no R studio	31
	9.3	Exercicíos	31
10	Exp	perimento em parcelas subdivididas e em faixas	33
	10.1	Anova	33
	10.2	Aplicação no R studio	33
	10.3	Exercicíos	33

Introdução

Relembrando a Estatística geral

- 2.1 Medidas de posição
- 2.2 Medidas de dispersão

Média

Variância

Desvio-padrão

Coeficiente de Variação

- 2.2.1 Aplicação no R studio
- 2.3 Exercicios

Planejamento e princípios básicos

- 3.1 Aplicação no R studio
- 3.2 Exercicios

```
knitr::opts_chunk$set(comment = "", prompt = TRUE)
```

Delineamento inteiramente casualizado

O delineamento inteiramente casualizado (DIC) é o mais simples dos delineamentos, pois considera apenas dois dos princípios básicos da experimentação: a repetição e a casualização. Neste, os tratamentos são aleatoriamente atribuídos ao material experimental, sem o esforço de se restringir os tratamentos a alguma porção de área, material ou espaço. Ainda como característica, como não há uso do controle local o número de repetições por tratamento pode variar. É geralmente utilizado quando a variação do material experimental é relativamente pequena, o que geralmente ocorre em laboratórios e casas de vegetação. Como vantagens de sua utilização temos que é um experimento de fácil planejamento e que permite o número máximo de graus de liberdade do Resíduo. Em termos de análise é a mais simples quando comparado aos demais delineamentos experimentais e não apresentará confundimento caso os tratamentos tenham números diferentes de repetições. Entretanto, como desvantagens temos que o delineamento inteiramente casualizado é adequado aos experimentos com baixo número de tratamentos e material experimental homogêneo, o que nem sempre se consegue. Quando um grande número de tratamentos é utilizado, há um crescimento no material experimental, que pode inflacionar a variação experimental. Nesses casos o Delineamento Inteiramente Casualizado não é indicado.

Obtendo um croqui para um DIC

Para obtermos um croqui para um experimento com I tratamentos em um DIC, sendo o iésimo tratamento repetido ni vezes e o número total de parcelas $n = \sum_{i=1}^{I} n_i$

- (i) Enumerar as parcelas $1, 2, \ldots, n$
- (ii) Criar o delineamento sistemático, ou seja, alocar o tratamento 1 às parcelas $1, 2, \ldots, n1$ alocar o tratamento 2 às parcelas $n1 + 1, n1 + 2, \ldots$

, n1 + n2 e assim até as repetições do tratamento I.

(iii) Escolha uma permutação de 1, 2, . . . , n e aplique ao delineamento.

Exemplo

Suponha que desejamos comparar a produtividade de três variedades de soja, com três, quatro e três repetições respectivamente. O plano de casualização para o delineamento sistemático é dado por:

Ordem Padrão	1	2	3	4	5	6	7	8	9	10
Variedade	A	A	A	В	В	В	В	С	С	С

Uma permutação:

Parcelas	7	1	8	10	3	2	4	6	9	5
Ordem Padrão	1	2	3	4	5	6	7	8	9	10

E o plano de casualização é dado por:

Parcela	1	2	3	4	5	6	7	8	9	10
Variedade	В	A	С	С	A	A	В	В	С	A

Análise dos dados

Entende-se como objetivo inicial de um experimento a verificação dos efeitos de tratamentos. Aqui será utilizada a Análise de Variância (ANOVA) para tal verificação. A ANOVA é utilizada na comparação de médias de dois ou mais tratamentos ou teste para a variância dos tratamentos, por meio do teste F (Fisher). Trata-se de uma extensão do teste t de Student, permitindo que o pesquisador compare qualquer número de médias, quando o efeito de tratamentos é fixo.

Modelo estatistico

O modelo estatístico para a análise dos dados oriundos de um DIC com um único fator de tratamentos é dado pela Equação 1.

$$y_{ij} = \mu + \tau_i + e_{ij} = \mu_i + e_{ij}$$

em que:

• y_{ij} é o valor observado na jésima repetição do iésimo tratamento, com:

$$-i = 1, ..., I e$$

$$-j=1,\ldots,ni$$

- μ é uma constante inerente a todas as observações, geralmente a média geral,
- τ_i é o efeito do iésimo tratamento,
- eij é o erro experimental, tal que $Eijiid \sim N(0, \sigma^2)$.

Realizando-se a ANOVA, testamos as hipóteses:

$$H0: \tau 1 = \tau 2 = \dots = \tau I = 0$$

H1=Ha : $\tau i6=0$ para algum i.

Havendo uma reparametrização do modelo apresentado na Equação 1, tal que $\mu + \tau_i = \alpha i$ em que αi é a média do iésimo tratamento, e:

$$yij = \alpha i + eij$$
, (2)

as hipóteses de interesse passam a ser

$$H0: \alpha 1 = \alpha 2 = ... = \alpha I = \mu$$

H1 = Ha: pelo um contraste de médias difere de zero.

Neste momento assumiremos que as pressuposições de normalidade e independência dos erros, bem a homogeneidade de suas variâncias garantidas. Assim, assumimos que eij corresponde a uma realização da variável Eij , tal que $Eijiid \sim N(0,\sigma^2)$ e os demais termos no modelo 1 são fixos. Cabe sailentar que o modelo citado é o modelo maximal, ou seja, aquele modelo mais complicado a ser considerado na análise. Desse modo, a esperança da variável aleatória Yij será

$$E(Yij) = E(\mu + \tau_i + Eij) = \mu + \tau_i + 0 = \mu + \tau_i$$

4.1 Aplicação no R studio

Planejamento e Croqui

```
> #' # Planejamento de um experimento
> set.seed(1234)
> sample(rep(c("A", "B", "C", "D"), 5))
```

```
[1] "D" "A" "D" "C" "A" "C" "B" "D" "B" "C" "B" "B" "C" "D" "A" "D" "A" "A" "B" [20] "C"
```

dependencies = TRUE)

r = 5, serie = 0)

```
> #' ## Usando a biblioteca agricolae
> # Instalando
> # install.packages("agricolae",
> # Habilitando as funções
> library(agricolae)
```

> trt = LETTERS[1:4]

> delineamento

\$parameters\$design

\$parameters\$trt [1] "A" "B" "C" "D"

\$parameters\$r [1] 5 5 5 5

[1] 0

\$parameters\$serie

\$parameters\$seed [1] 1407173775

\$parameters\$kinds [1] "Super-Duper"

\$parameters[[7]]

plots r trt

1 1

2 1

3 1 D 4 2 D

5 2 B 6 2 C

7 3

C

В

В

[1] TRUE

\$book

1

2

3

4 5

6

7

\$parameters

[1] "crd"

> delineamento <- design.crd(trt,</pre>

```
8
      8 3
            D
9
      9 4
            В
           D
10
     10 4
     11 5 B
11
     12 1 A
12
13
     13 2
           Α
14
     14 3 C
     15 3 A
15
     16 4 A
16
           D
17
     17 5
18
     18 4 C
19
     19 5 A
20
     20 5 C
> # Graficamente
> # install.packages("agricolaeplotr",
                    dependencies = TRUE)
> library(agricolaeplotr)
The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
which was just loaded, will retire in October 2023.
Please refer to R-spatial evolution reports for details, especially
https://r-spatial.org/r/2023/05/15/evolution4.html.
It may be desirable to make the sf package available;
package maintainers should consider adding sf to Suggests:.
The sp package is now running under evolution status 2
     (status 2 uses the sf package in place of rgdal)
Attaching package: 'agricolaeplotr'
The following object is masked from 'package:base':
   summary
> plot_design_crd(delineamento,
                ncols = 4,
```

nrows = 5)


```
> # Para montar um croqui precisamos de um gride, definido por linhas e colunas
> delineamento$book$Linha <- rep(1:5, each = 4)
> delineamento$book$Coluna <- rep(1:4, times = 5)</pre>
> delineamento$book
```

	plots	r	trt	Linha	Coluna
1	1	1	C	1	1
2	2	1	В	1	2
3	3	1	D	1	3
4	4	2	D	1	4
5	5	2	В	2	1
6	6	2	C	2	2
7	7	3	В	2	3
8	8	3	D	2	4
9	9	4	В	3	1
10	10	4	D	3	2
11	11	5	В	3	3
12	12	1	Α	3	4
13	13	2	Α	4	1
14	14	3	C	4	2
15	15	3	Α	4	3
16	16	4	Α	4	4
17	17	5	D	5	1

```
18 18 4 C 5 2
19 19 5 A 5 3
20 20 5 C 5 4
```

Importando dados de excel .xlsx

```
> #Deve-se importar os arquivos .xlsx para o Rstudio
> library(readxl)
> dados1 <- read_xlsx("dados/aula2.2.xlsx")
> knitr::kable(dados1)
```

trat	У
A	25
A	25 26
A	20
A A A A B B	23
A	21 31
В	31
В	25
ВВ	28
В	27
В	24
С	22 26
С	26
С	28
С	25
С	29
D	33
B C C C C C D D D D	29
D	31
D	34
D	28

Análise descritiva dos dados

```
x = dados1$trat,
         y = 26.75,
         colour = "blue") +
xlab("tratamentos") +
ylab("produtividade")
```



```
> ggplot(dados1,
         aes(x = trat,
            y = y)) +
    geom_boxplot()
```



```
> #' ## Estatísticas descritivas
> n <- with(dados1, tapply(y,trat, length))
> soma <- with(dados1, tapply(y,trat,sum))
> media <- with(dados1, tapply(y,trat,mean))
> variancia <- with(dados1, tapply(y,trat,var))
> desv.padr <- with(dados1, tapply(y,trat,sd))
> dist.int <- with(dados1, tapply(y,trat,IQR))</pre>
```

```
> #' Criando uma função que calcula a amplitude
> f1 <- function(x) max(x)-min(x)
> amplitude <- with(dados1, tapply(y,trat,f1))
>
> resumo <- rbind(n, soma, media, variancia,
+ desv.padr, amplitude,dist.int)
> rownames(resumo) <- c("n", "Soma", "Média",
+ "Variância", "Desvio-padrão",
+ "Amplitude", "Amplitude Interquartílica")
> round(resumo,3)
```

	Α	В	C	D
n	5.00	5.000	5.000	5.00
Soma	115.00	135.000	130.000	155.00
Média	23.00	27.000	26.000	31.00
Variância	6.50	7.500	7.500	6.50

```
Desvio-padrão 2.55 2.739 2.739 2.55
Amplitude 6.00 7.000 7.000 6.00
Amplitude Interquartílica 4.00 3.000 3.000 4.00
```

Análise da variância (ANOVA)

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

4.2 Exercicíos

1) Os dados apresentados na Tabela 1 são referentes ao peso de espigas de milho, em kg/10m², em cada parcela (10 m²). São apresentados os dados de 5 genótipos avaliados em um delineamento inteiramente casualizado (DIC) com 4 repetições.

Genótipos	Ι	II	III	IV
A	5,95	6,21	5,40	5,18
В	5,07	6,71	5,46	4,98
\mathbf{C}	$4,\!82$	5,11	4,68	4,52
D	3,87	4,16	4,11	4,84
E	$5,\!53$	5,82	4,29	4,70

Considere os dados apresentados na Tabela. a) Faça um possível croqui de instalação para um novo experimento com o mesmo número de tratamentos (genótipos) e de repetições; b) Faça a análise exploratória dos dados de peso de espigas; c) Faça a análise de variância e interprete o resultado do teste F considerando o nível de significância 5%;

2) Em um experimento de competição de dez cultivares de arroz para avaliar a produtividade, instalado em um delineamento inteiramente casualizado, os resultados (parciais) para a ANOVA foram os seguintes:

Fonte	GL	SQ	QM	F Cal	F Tab
cultivar	X	17564523	X	9.31	2.39
Resíduo	\mathbf{x}	X	x	X	X
Total	29	X	X	X	X

- a) Complete o quadro da ANOVA
- b) Com base no resultado da ANOVA escreva as hipóteses e a conclusão

Comparação de médias

- 5.1 Teste de Tukey
- 5.1.1 Aplicação no R studio
- 5.1.2 Exercicíos
- 5.2 Teste de Duncan
- 5.2.1 Aplicação no R studio
- 5.2.2 Exercicíos
- 5.3 Teste de Dunnett
- 5.3.1 Aplicação no R studio
- 5.3.2 Exercicíos
- 5.4 Teste de Scheffé
- 5.4.1 Aplicação no R studio
- 5.4.2 Exercicíos
- 5.5 Contrastes ortogonais
- 5.5.1 Aplicação no R studio
- 5.5.2 Exercicíos

Regressão polinomial

- 6.1 Anova
- 6.2 Aplicação no R studio
- 6.3 Exercicíos

Delineamento em blocos casualizados

- 7.1 Anova
- 7.2 Aplicação no R studio
- 7.3 Exercicíos

Delineamento quadrado latino

- 8.1 Anova
- 8.2 Aplicação no R studio
- 8.3 Exercicíos

Experimento fatorial

- 9.1 Anova
- 9.2 Aplicação no R studio
- 9.3 Exercicíos

Experimento em parcelas subdivididas e em faixas

- 10.1 Anova
- 10.2 Aplicação no R studio
- 10.3 Exercicíos