Unsupervised Learning

Topic: Supervised Learning vs Unsupervised Learning

Core Concepts

Aspect	Supervised Learning	Unsupervised Learning
Data Labels	Requires labeled data (input \Rightarrow output)	No labels; only raw input data
Goal	Learn mapping from input to output	Discover hidden structure or patterns
Examples	Classification, Regression	Clustering, Dimensionality Reduction
Key Algorithms	Linear Regression, Decision Trees, SVM	K-Means, DBSCAN, PCA, Autoencoders

Intuition

Supervised Learning

Imagine teaching a child using flashcards:

- One side: picture of an animal
- Other side: label ("Dog")

After enough examples, they can guess correctly for unseen cards.

Unsupervised Learning

Now imagine handing the child a pile of animal photos with no labels. You ask them to group similar ones. They'll make piles of "things with fur", "things with feathers", etc. — discovering structure without labels.

Mathematical View

Unsupervised Learning

Supervised Learning

You want to approximate a function:

$$f:X \rightarrow Yf: X \rightarrow Y$$

Where:

- XX: Feature space (e.g., image pixels, customer features)
- YY: Target (e.g., "dog", price, yes/no)

Objective:

• Minimize a **loss function**, e.g., Mean Squared Error for regression or Cross-Entropy for classification.

Unsupervised Learning

No YY. The goal is often to **optimize an internal structure**, like:

- Clustering: Minimize distance within clusters and maximize between clusters.
- **Dimensionality reduction**: Maximize variance explained (PCA), or minimize reconstruction loss (Autoencoders).

Real-World Examples

Application	Supervised Learning	Unsupervised Learning
Email Filtering	Spam vs Not Spam	Grouping emails by topic
Finance	Predicting credit default (0/1)	Segmenting customers based on behavior
Medical	Diagnosing based on symptoms (disease label)	Grouping patients into risk categories
E-commerce	Predict next product to buy	Finding user clusters for recommendations

Common Misconceptions

• "Unsupervised learning is worse than supervised" – Not true. It's different. For unknown labels or exploratory analysis, it's crucial.

Unsupervised Learning 2

- "Unsupervised learning gives you labels" No, it groups data. You may need to interpret/label those clusters later.
- "Supervised needs a lot of data" Yes, especially deep learning. But not all supervised models need massive data.

Discussion Questions

1. In your current domain, what problems could be modeled as supervised or unsupervised?

K-Means

Unsupervised Learning 3