

The rules – tough

- Totally autonomous. No radio communication.
 - DARPA controls remote emergency stop.
- Route announced 2 hours before race.
 - DARPA distributes CD-ROM at 0430 hrs
 - Start at 0630 hrs.
- Route is 2000 GPS waypoints.
 - Width of route varies from 10 feet to 200+ feet.
- Drivable in a 4x4 pickup truck.
- Every year until somebody finishes in 10 hours.

The terrain – hard

The competitors - disappointing

- 65 entrants applied, 20 showed up.
- Only a few have a clue.
 - Caltech student project with JPL advisors.
 - CMU 50 students, \$350K cash expenditure.
 - Overbot not ready in time, skipped this year.
- MIT, Stanford no entry
- No big company entries.
- Little real innovation.

The 2004 results - disastrous

What went wrong?

- **Red Team** (CMU) At mile 7.4, plowed through sheet metal fence. On switchbacks in a mountainous section, vehicle went off course, got caught on a berm.
 - Analysis botched tight turn control at speed.
- SciAutonics II At mile 6, vehicle went into an embankment and became stuck.
 - Analysis off course. Reason unknown.
- Team DAD At mile 6, hung up on rock
 - Analysis off course. Used GPS guidance only.

All others failed near the start

- Golem Group throttle problem at mile 5
- Caltech off course at mile 1.3
- SciAutonics I off course at mile 1.5
- **TerraMax** went into reverse at mile 1.5
- Virginia Tech,
 Axion Racing,
 CajunBot, Ensco,
 Palos Verdes HS,
 Cimar, Blue Team –
 failed within sight of
 the starting line.

Why nobody won

- Rush job inadequate testing
- Poor sensor technology
 - Stereo vision doesn't work well on dirt.
 - Stereo from motion doesn't work yet.
 - Image understanding doesn't work at all.
 - Fixed line-scan LIDAR has too small a field of view.
 - Movable line-scan LIDAR is a mechanical nightmare.

- A Silicon Valley project
- All volunteers
- Many Stanford alumni
- Privately funded (about \$400K)
- Startup space in Redwood City
- About 20 people over the last year.
- Four people now, starting on 2005.

Base vehicle

- Polaris Ranger 6x6.
- Most rugged platform available stock.
- Top speed 40MPH.
- Continuously-variable auto transmission.
- 2 wheel steer, 4 or 6 wheel drive.
- No computers.

Rear view

- Electronics in back bed of vehicle.
- Filtered air, but no air conditioning
- Engine generator

Computer box

- Nova 8660 singleboard Pentium 4 industrial computers (2)
- Crossbow INS unit
- Industrial Ethernet hubs.
- VORAD radar interface.

Vehicle actuators

- Transmission
- Steering
- Throttle
- Brake

Distributed control

- Five Galil motor controllers.
- On Ethernet
- M680xx ColdFire CPU.
- Some programmability.
- Power amp.

External sensors

- Scanning laser rangefinder (terrain)
- Phased array radar (anti-collision)
- Digital camera (road following)
- Inertial guidance (attitude, heading)
- GPS with corrections (location)
- Radar speedometer (odometry, slip)
- Sonars (backup, tight spots)
- Water detectors (fording)

Phased-array radar

Radar speedometer

Visual road follower

- Images from camera atop vehicle
- Images projected onto ground plane
- Looks for linear/curved uniformity
- Statistical, not neural net

Internal sensors

- Driveshaft speed
- Engine RPM
- Brake pressure
- Encoders on motors

Misc. systems

- Emergency stop
 - Engine to idle, brakes
 on
 - 100ms watchdog timer
 - Radio link
 - Emergency stop buttons
- 40 gallon fuel tank
 - NASCAR-qualified

- Aux generator
 - Polaris generator far too small
- LED sign
 - Only output device
- Flashing lights
- Horn

Sensing the terrain ahead

- Stereo vision
 - Dirt doesn't have enough edges for stereo lock.
 - Sizing potholes and ditches is tough.
- Submillimeter radar
 - Technology not here yet, although promising
- Image understanding
 - Very hard problem. Long history of failure.
- Laser rangefinders
 - Good range and data quality, but have limitations.

The key to success: better laser rangefinders

- Existing devices are big, heavy, slow, expensive, and have too many big moving parts.
- This is an electronics problem Silicon Valley can and should solve.
- Much R&D has been done with DoD funding, but few if any products have resulted.
- There's an opportunity here. The true 3D camera is within reach.

What we have now Laser line scanner on tilt mount

- Spinning prism scan
- Custom tilt head

What CMU has: Laser line scanner on 3D gimbal

- REIGL spinning prism line scanner
- Big, heavy 3 axis stabilized gimbal.
- Expensive (>\$100K).
- CMU unit damaged in crash, backup unit performed badly.
- Technical dead end

Streak tube 2D flash LIDAR receiver

Arete Industries (Tucson, AZ)

Flash line scan

Works in sunlight.

Claimed cost \$20K per tube.

In prototype.

ADLR 3D Flash LIDAR prototype

- Advanced Scientific Concepts, Inc. (Santa Barbara)
- 128x128 pixels
- True 3D depth images
- Sunlight tolerant
- > 50m range.
- Cost: \$20K to \$70K

ADLR detector principles

- 1. Photons hit intensifier photocathode. Electrons emitted. 1KV+ electric field accelerates electrons.
- 2. Accelerated electrons hit silicon detector array.
- 3. Timing/readout chip bonded to detector array times incoming events for each pixel.

Other no-moving parts LIDAR R&D

- CSEM (Switzerland)
 - Low cost, short range, CW (not flash)
 - Not sunlight tolerant
- Raytheon missile seeker
 - > 1KM range, not eye safe
- MIT Lincoln Labs (?)
- General Dynamics Robotics
 - One mechanically scanned axis, 16 lasers

True 3D camera technology is almost ready for the real world

2003 sales, US\$ BN

- It's time to commercialize this technology. But not primarily for robots.
- Computer vision is a viable industry.
 Robotics is tiny.
- General 3D camera applications as image quality improves.

Automatic Driving

- With all this data from sensors, how do we drive?
- We have 1000+ waypoints and a really good GPS.
- Now what?

Approach #1 – Preplan in detail

- Get available high resolution imagery and elevation data
- Make plan
- Follow plan using GPS.
- Classic "Stanford approach" (Latoumbe)

Available imagery

- Off-the-shelf imagery
 - Resolution high in major US urban areas, low in Mojave Desert.
 - Elevation data very low res (20m)
- Overflight with LIDAR-equipped aircraft
 - 20cm resolution.
 - \$0.50/acre, minimum \$5000
 - Area of race is 20,000 square miles.
 - CMU did this. Didn't help

Why preplanning won't work

- Available imagery resolution too low.
- Need to see anything the vehicle can't roll over.
- DARPA may place obstacles on route.
- · CMU tried and failed.

Approach #2 - reactive behaviors

- React to sensor data
 - "MIT approach"(Brooks)
 - No maps, no models.
 - Deals well with unstructured environments.

Limits of reactive behaviors

- Slow, bumbling movement.
- Maxes out at insect-level AI.
- Insects work best when viscosity dominates inertia.
- Work on purely reactive systems peaked a decade ago.

Approach #3 – game Al

- Games have good vehicle control.
- Game AIs don't cheat as much as they used to.
- Game AI R&D efforts sizable – real applications.

Field-based control

- First seen in Reynolds' "boids" (1985)
- Attracted to goal (constant)
- Repelled by obstacle (1/x, exp)
- Improved versions widely used in games

Our architecture

- Reactive survival behaviors at the bottom.
- Field based map in the middle
- "Back seat driver" adds subgoals when stuck.

Low-level – reactive behaviors

- Self-protection reactions
- Anti-collision, anti-tip, etc.
- Has veto power over higher levels.

Mid-level – field map

- Does most of the work.
- Map centered on vehicle.
- Sensors put data into map. GPS/INS data used to scroll map.
- Borrowed from game technology

OpenSteer as a starting point

- Starting from OpenSteer (Reynolds, SourceForge)
- Changes to model
 - Obstacles as certainty grids
 - Vehicle path as snake
 - World map scrolls

High-level - "backseat driver"

- Limited authority, hence the name.
- Can change goal direction; can't directly control vehicle.
- Classic A* planner.
- Used only when field map stuck in local minima.

Map updating

- All sensors feed into map.
- Map is centered on vehicle.
- Map moves with vehicle.
- Map is a certainty grid (Moravec)

Rejected approaches

- "Learning" (a.k.a. hill-climbing)
 - Terrain too varied
 - Poor-performing systems hard to improve.
- More vision processing
 - We have a good road-follower. That's do-able.
 - General image understanding still doesn't work.
 - Stanford vision group eliminated last year.
- Logic-based AI
 - Hard to map to real world.

Underlying OS – QNX

- Hard real-time microkernel message passing OS
- Guaranteed response times for external events
- True microkernel
 - Very stable. Seldom changed.
 - Kernel: message passing, clocking, memory management
 - File systems, networking, etc. are user programs.
- POSIX compatible, but not UNIX-based.
- GCC toolchain

Software architecture

- Many small processes, rather than a few big ones.
- Intercommunication via message passing.
- Asynchronous organization.

Restart

- Main reliability feature is ability to restart everything.
- Watchdog process monitors all others.
- Hardware watchdog monitors watchdog process.
- Fault trips emergency stop hardware.
 - Brakes lock, engine drops to idle, everything restarts.
- Programmers are told that it's OK to abort, but not OK to fail to start.

Team Overbot

Summary

- A good problem there's no faking it.
- Hard, but solvable
- We need volunteers
 - Two senior software leads.
 - Electronics techs.
 - Control engineer.
 - No pay, some risk, share the \$2,000,000 prize.
- Web site: www.overbot.com
- Questions?

Beyond Overbot - Applications

- 3D cameras
 - Effects
 - Inspection
 - Security
- Military
 - Limited use in combat environment – too confusing
 - Useful for logistics

- Automotive
 - Parallel parking
 - Rental car return
 - Off-site parking
 - Forklifts, tractors, trucks