Question	Score:	Out of:	Comments:
1	5	5	The reaction equation is correctly identified and
			displayed, the code is well organized
2	4	5	The ODE function created allows the computation of
			analytical solutions into the parameters and the
			analytical solution is correctly found. Use theory to
3	6	10	explain the code's functioning.
٥	0	10	You could include the ODE code in the report as the question asks for coding style, solving of ODE45.
			The code does not solve the ode using ode45.
			Should be:
			#Using solver to solve ODE
			sol=solve_ivp(dAdt,[0,1000],[c0], 'RK45',
			t_eval=t)
			#Concentrations over time
			Numerical_t_conc=sol.y
			Visuals have all correct elements and are easy to
			interpret. The report analysis is also well done and
			draws plausible conclusions using qualitative and quantitative data.
4	10	10	Correct code for Euler's 1st order algorithm, well
'		10	organized code and efficient. The function is
			programmed in a general way as expected from the
			rubric. Visualization with all correct elements and is well
			presented. Good use of graph data in the report
	0	40	analysis.
5	9	10	Very good explanation of error analysis in report and detailed explanation of the theory. Could include a graph
			to show the convergence rate.
			Example:
			a8[1].plot([0,1,2,3,4,5],np.ones(6), c='k',
			linewidth=2, alpha=0.7)
			a8[1].plot([1,2,3,4],rate, 'x', c=TUeRed,
			markersize=10)
			a8[1].set_ylim(0,1.5)
			a8[1].set_xlim(0.5,4.5)
			a8[1].set_xticks([1,2,3,4])
			a8[1].set_xticklabels(['40','80','160', '320'])
			a8[1].set_title('(b) Rate of Convergence at
			different Step Numbers')
			a8[1].set_xlabel('Step Number')
			a8[1].set_ylabel('Rate of Convergence')
			a8[1].grid()
6	6	10	Great explanation of the steps for the ODE, however the
			analysis graphical is very limited. Code is simple,
			efficient and well structured. Visuals are insightful and all elements are present. Explain also how the python
			functions you use are relevant to answer the question
			with your code. The analysis should include an
			explanation for the trends such as that since the reaction

		is exothermic, as A reacts into B, it releases heat and thus the greatest increase in temperature correlates with
		the decrease in concentration.
9	10	Good comparison between question 6 and 7. Code is correct, pretty and efficient. Visuals are well done. The code works for an arbitrary number of equations as required. Explain also how the Python solver used are relevant for answering question.
6	10	code works for an arbitrary number of equations as required. Explain also how the Python solver used are
		k4 = fun(t[i] + dt, y[i,:] + dt*k3) y[i+1,:] = y[i] + dt*((1/6)*k1 + (1/3)*(k2+k3) + (1/6)*k4)
		<pre>else: return 'Unknown method specified. Check documentation for supported methods' # In case an unknown method is specified</pre>

			return t, y Good testing of the RK2 method. Code for RK2 is correct and well organized.
9	8	10	Correct error analysis visuals, good report analysis and great addition of table and graph to use as numerical quantitative data. Could explain the code as well in the report. Comparing with other higher order methods allow a deeper error analysis.
10	7	10	ODE function is solved with own solver, well organized code and very nice visuals. Could explain the chaos theory mentioned and include as well the conversion method for x and y in the report. Very little report analysis, should explain the graph with numerical and qualitative data.
11	7	10	The code does not compute the energy budget for different solvers and different amounts of steps. It however does compute the energy budget correctly for the RK2 method only for 50 steps. The theory of energy conservation is well explained. Great visuals with all elements included. Graphical analysis could draw more conclusions and educated recommendations. Further exploration is missing.

TIPS:

- 1. Split each task in a separate python file to allow an easier running.
- 2. Explain more the functions used in the code during the report explanation.
- 3. Try to implement more graphs and visuals whenever possible to support arguments made in the analysis;

TOPS:

- 1. very organized code with comments guiding through
- 2. great understanding of course theory
- 3. Visuals are insightful and include all the required elements. Very easy to understand.