## Week 5: EGB120 lecture notes

By Pilote Muhoza

August 27, 2023

## 1 Non-Ideal Source

- Real sources often have many limitation in the term of voltage and current delivery.
- The most commonly modelled, and most useful for a lenear circuit theory, is some form of resistance associated with the source

## 2 Thévenin Equivalent

- The Thé venin equivalent circuit is a voltage source with series resistance.
- characterised by the three related parameters:  $v_{Th}$ ,  $R_{Th}$ , and  $i_{sc}$ .

### 2.1 Formula

$$i_{scc} = \frac{v_{Th}}{R_{Th}} \tag{1}$$

Figure 1: Thévenin formula

## Measuring the Thévenin Parameters

• Find  $v_{\mathit{Th}}$  and  $R_{\mathit{Th}}$  from these two measurements.



Figure 2: They calculations

## 3 Norton Equivalent

- You can equally use a current source with a resistor in parallel to get exactly the same properties.
- This is called equivalent circuit.



Figure 3: Nortorn equivalent

# 4 Thévenin Equivalent<=> Nortorn Equivalent

- You can substitute a Thévenin Equivalentcircuit for a Norton equivalent circuit and vice versa
- Calculating equivalent component values required no extra info:



Figure 4: Thévenin Equivalentand Norton relationship

### Superposition 5

- 1. Superposition is a principal of linear systems.
- 2. We can use it to simplify circuit analysis by noting that we can treat each source independently.
- 3. Circuits can be simplified by having only one source active at a time, changing all the other sources to zero.
- 4. Net effect on the coltage or current can be found by the summing components due to individual sources.

#### **Conditions** 5.1

- 1. For a **current source**, changing to zero means replacing it with an open circuit (zero current, whatever voltage).
- 2. For a voltage source changing to zero means replacing it with a short circuit (zero voltage, whatever current).
- 3. Work out total voltage or current from the sum of the individual contributions.

### 5.2Example calculations

- Lets find voltage at node *a* by superposition.
- First find contribution from voltage source (open circuit curl Find  $R_{Th}$  from the resistance with all sources set to 0 (often easier) source).



Figure 5: Step (1)

- Contribution from voltage source  $v_a' = 10/3 \text{ V}$
- · Now find contribution from current source (short circuit voltage source).



Figure 6: Step (2)

- Contribution from voltage source  $v_a' = 10/3 \text{ V}$
- · Now find contribution from current source (short circuit voltage source).



Figure 7: Step (3)

- Contribution from voltage source.  $v_a' = 10/3 \text{ V}$
- Contribution from current source.  $v_a'' = 4/3 \text{ V}$
- Therefore  $v_a = v_{a'} + v_{a''} = 14/3 \text{ V}$



### Thévenin's Theorem 6

- · Any linear circuit can be replaced by a voltage source and a resistance.
- Find  $v_{\mathit{Th}}$  from the open circuit voltage.
- Find the short circuit current  $i_{sc}$  and then  $R_{\mathit{Th}}$  =  $v_{\mathit{Th}}$  /  $i_{sc}$  or ...



Figure 8: Step (1)

- We know  $v_{Th}$  = 14/3 V from our previous working on this circuit.
- Now set all sources to 0 and find  $R_{Th}$ .



Figure 9: Step(2)

- Replace voltage source with short circuit, and current source with open circuit.
- $R_{Th} = 2 \Omega \parallel 4 \Omega = 4/3 \Omega$
- So what is the Norton equivalent? ( $v_{Th} = 14/3 \text{ V}$ )



Figure 10: Step (3)

# 7 Northon Theoren



Figure 11: Sample calculations of Notorn Theorem