Data Structures

Andrew Rosen

Contents

Ι	\mathbf{Pr}	reliminaries	9
1	Inti	roduction	11
	1.1	What is a Data Structures Course	11
	1.2	Why This Book?	11
		1.2.1 Where Does This Book Fit Into a Computer Science Cur-	
		riculum	11
		1.2.2 What Are My Base Assumptions about the Reader?	11
	1.3	To The Instructor	12
		1.3.1 How to Use	12
	1.4	To The Student	12
		1.4.1 How to use	12
2	Fun	actions and How They Work	13
_	2.1	The Runtime Stack	13
	2.2	Argument vs Parameter	13
		2.2.1 Does anyone actually care?	13
	2.3	Passing Arguments	13
		2.3.1 How it Works in Java	14
		2.3.2 How it works in Python	14
3	The	e Array	15
•	3.1	Why Arrays	15
	3.2	Java and Arrays	15
	3.3	Python and Arrays	16
	3.4	How an Array Works	16
	0.1	3.4.1 Operations	16
		3.4.2 Array Internals and the Memory Formula	17
	3.5	Common Array Algorithms	17
		3.5.1 Finding Values in an Array	17
		3.5.2 Limitations	17
4	And	alyzing Algorithms	19
4	4.1	Cost	19
	4.1	4.1.1 Time	19
		4.1.1 Time	20
		4.1.2 Space	20
	4.2	Big O Notation	20
	4.4	4.2.1 Space Complexity	20
		4.4.1 DDBCC VUIIIDIEXIIV	Z.1.1

	4.3	Examp 4.3.1 4.3.2 4.3.3	Selection Sort	20 20 20
		4.3.4	Other Sorting Algorithms	20
	4.4	The Fo	ormal Mathematics of Big O Notation	20
	4.5	Other	Notations	20
	4.6	When	To Ignore Costs	20
II	Li	${f sts}$	2	1
5	Δrr	ay List	s 2	3
J	5.1	-		23
	0.1	5.1.1		24
	5.2			24
	5.2	5.2.1		
		0	v	24
		5.2.2	Ü	24
	5.3	-	•	25
		5.3.1		25
		5.3.2		25
		5.3.3		25
		5.3.4		25
		5.3.5		25
	5.4			25
	5.5	Examp	ble Algorithms	26
	5.6	Buildir	ng an ArrayList	27
		5.6.1	Caveats	27
		5.6.2	Instance Variables	27
		5.6.3	Constructor	28
		5.6.4	Size	29
		5.6.5	The Add Method	80
		5.6.6		35
		5.6.7		6
		5.6.8		37
	5.7			37
	•••	5.7.1		8
		5.7.2	,	8
		5.7.3		88
	5.8		~	88
	0.0	5.8.1		88
		5.8.2		88
		5.8.3		88
	5.9	Exercis	-	
	5.9			ا 10
	F 10	5.9.1		10
	5.10			1
				1
		a 10 2	Python	15

C	ONTENTS	S	1

6	Link	ked Lists	49
	6.1	Connecting Nodes into a list	50
	6.2	Building a Singly LinkedList	50
		6.2.1 The Node	50
		6.2.2 Instance Variables and Constructor	51
		6.2.3 Adding	51
	6.3	Get and Set	55
		6.3.1 Get	55
		6.3.2 Set	55
	6.4	Remove	56
	6.5	Analysis	56
		6.5.1 Some Algorithms Play Better	56
	6.6	$Potential\ Project/Practice/Labs .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	56
	6.7	Source Code	56
7	Stac		59
	7.1	Stack Operations	59
	7.2	Building a Stack	59
	7.3	Built-in Stacks	59
	7.4	Solving Problems with A Stack	59
	7.5	Mazes - Stacks and Backtracking	59
8	Que	NIOC .	61
0	8.1	Linked Based Implementation	61
	8.2	Array Based Implementation	61
	0.2	Array Dased Implementation	01
II	I F	Recursion	63
9	Rec	ursion	65
•	9.1	Introduction	65
	9.2	Recursive Mathematics	65
		9.2.1 Fibonacci	65
	9.3	Printing Recursively	65
	9.4	Recursive Linear Search	65
	9.5	Binary Search	65
		9.5.1 Runtime Analysis	65
	9.6	Recursive Backtracking	66
		9.6.1 Mazes Again	66
		9.6.2 The Eight Queens Puzzle	66
		9.6.3 Additional Problems left to the Reader	67
	9.7	Recursive Combinations	67
	9.8	Recursion and Puzzles	67
	9.9	Recursion and Art	67
	9.10	Recursion and Nature	67

10	Tree	es 69
	10.1	The Parts of a Tree
		10.1.1 Where the Recursion comes in
	10.2	Binary Search Trees
		Building a Binary Search Tree
		10.3.1 The Code Outline
		10.3.2 Add
		10.3.3 Contains
		10.3.4 Delete
11	Hea	ps 73
		Priority Queues
		Removing From other locations
		Ŭ
12	Sort	ing 75
	12.1	Quadratic-Time Algorithms
		12.1.1 Bubble Sort
		12.1.2 Selection Sort
		12.1.3 Insertion Sort
	12.2	Log-Linear Sorting Algorithms
		12.2.1 Tree Sort
		12.2.2 Heap Sort
		12.2.3 Heapify
		12.2.4 Quick Sort
		12.2.5 Merge Sort
	12.3	Unique Sorting Algorithms
	12.0	12.3.1 Shell Sort
		12.3.2 Radix Sort
	19 4	State of the Art Sorting Algorithms
	12.1	12.4.1 Tim Sort
		12.4.2 Quick Sort
	19 5	But What if We Add More Computers: Parallelization and Dis-
	12.0	tributed Algorithms
	12.6	Further Reading
	12.0	12.6.1 Pedagogical Sorting Algorithms
		12.0.1 Tedagogical Softing Algorithms
IV	7 E	Iashing 79
13	Sets	83
	13.1	Operations
		13.1.1 Adding an item to a Set
		13.1.2 Removing an item to a Set 82
		13.1.3 Union
		13.1.4 Intersection
		13.1.5 Set Difference
		13.1.6 Subset
	13 2	Operation Analysis
	10.2	13.2.1 TreeSet Vs HashSet Vs Linked Hash Set
	12 2	Sate and Problem Solving

		13.3.1 Checking for Uniqueness or Finding Duplicates	82
14	Mar	os 8	83
	-		83
		1	83
			83
	14.0		83
			83
		14.5.2 Hash Table Map	30
15			35
	15.1	Creating a Hash Function	85
16	Mar	o Reduce	87
			87
			•
\mathbf{V}	\mathbf{R}	elationships 8	39
•			,0
17	Gra		91
		· · · · · · · · · · · · · · · · · · ·	91
	17.2	-V	91
			91
		17.2.2 Edges	91
	17.3	Special Graphs and Graph Properties	91
		17.3.1 Planar Graphs	91
		17.3.2 Bipartite Graphs	92
		17.3.3 Directed Acyclic Graphs	92
	17.4		92
			92
			92
	17.5	· · · · · · · · · · · · · · · · · · ·	92
			92
			92
	17.6		92
	11.0		92
			$\frac{92}{92}$
	17.7		$\frac{32}{92}$
10	C	1. 41 241	20
18		. 0	93
	18.1	8 4 4 8	93
			93
		i	93
	18.2		93
		, and an an orange of the contract of the cont	93
			93
	18.3	1 0	93
			93
	18.4	1 0	93
		18.4.1 Kruskal's Algorithm	93
		18.4.2 Prim's Algorithm	93

Part I Preliminaries

Chapter 1

Introduction

1.1 What is a Data Structures Course

Data Structures is all about defining the different ways we can organize data.

1.2 Why This Book?

This textbook is free.

It is both Java and Python.

1.2.1 Where Does This Book Fit Into a Computer Science Curriculum

Education in Computer Science is based around three core topics: translating the steps of solving a problem into a language a computer can understand, organizing data for solving problems, and techniques that can be used to solve problems. These courses typically covered in a university's introductory course, data structures course, and algorithms course respectively, although different universities decide exactly what content fits in which course. Of course, there is are lot more concepts in computer science, from operating systems and low level programming, to networks and how computers talk to each other. However, all these concepts rely on the knowledge gained in the core courses of programming, data structures, and algorithms.

This textbook is all about Data Structures, the middle section between learning how to program and the more advanced problem solving concepts we learn in Computer Science. Here, we focus on mastering the different ways to organize data, recognize the internal and performative differences between each structure, and learn to recognize the best (if there is one) for a given situation.

1.2.2 What Are My Base Assumptions about the Reader?

This textbook assumes that the student has taken a programming course that has covered the basics. Namely: data types such as ints, doubles, booleans, and strings; if statements, for and while loops; and object orient programming. This

book is also suitable for the self taught programmer who has not learned much theoretical programming

1.3 To The Instructor

You'll note that this textbook lacks some of the features found in commercially available textbooks. The biggest of these is slides.

For the most part, slides are too static to help students understand how to code.

Does the lack of varied exercises make cheating on assignments easier as semesters go on? Yes, but that bridge was burned long ago. The cheating student can plagiarize from various websites or anonymously hire another to do their work for them. However, the student who cheats isn't exactly clever and certainly hasn't been exposed to much game theory. They will often cheat from the same source.

In addition, during the writing of this text, technologies such as GPTChat were released. This hasn't so much burned the bridge as dropped napalm on the entire surrounding forest. Newer technologies will then salt that earth. I recommend an open and honest dialogue with your students and at least 50% of their grade being the result of evaluations and assessments you do in class. This can range from proctored exams to flipping the classroom and giving students the chance to work on homework in class, where they are much more likely to turn to you or their peers for help.

1.3.1 How to Use

1.4 To The Student

1.4.1 How to use

Chapter 2

Functions and How They Work

This will be an extremely short chapter, but an important one.

2.1 The Runtime Stack

2.2 Argument vs Parameter

An argument is the actual value you pass in, the parameter is the variable that accepts it.

<Programming example?>

2.2.1 Does anyone actually care?

I cared enough to look it up, but I also had to look it up to double check that I'm correct. In a casual situation or talking with another programmer, I don't actually think anyone would care, but I would take care to get it correct for your assignments and exams, much like you would take care to avoid using "ain't" in a formal essay.

2.3 Passing Arguments

The vast majority of programming languages are pass by copy with a huge honking asterisk.

- Pass by copy means that when something is input as the argument to a function, the function gets a copy of the thing you are passing to it.
- The huge honking asterisk is that you are almost always passing a reference or pointer to an object, not the object itself. The reason for this is that if we had a super mega huge object, copying it would take up a super mega huge amount of time and memory.

2.3.1 How it Works in Java

In Java, we have two broad categories of data types: primitives and objects. When you pass a primitive, such as an int or double, the value gets copied from where it is stored in memory and copied into the argument.

2.3.2 How it works in Python

Chapter 3

The Array

3.1 Why Arrays

because new language: Since this is a data structures course, I assumed
that students have had exposure to arrays or array like objects. This
chapter goes into a bit of a deeper detail that may have been glossed over
and Introduces the topic in the appropriate language if need be.

In other words, I assume you know what an array is , but not necessarily how to use it in Java or Python¹.

- because internal memory lookup
- Because we need to make sure internal knowledge is cohesive (eg arrays of objects are arrays of pointers/references)

3.2 Java and Arrays

The Array is a built in class in Java, but the syntax is a bit unique 2 To create an array in Java we do:

Here, every item in the array is of whatever Type we want, which could be a Class or primitive. Arrays can be whatever integer size we desire, but once set it cannot be changed. This is because to create an array, the computer allocates a contiguous block of memory. If we wanted to resize it, there is no guarantee that this chunk of memory won't have things directly before or after it, preventing us from safely extending its range.

¹Although we use lists in python

²Enough so that I constantly had to look up how to do it my first two years of undergraduate studies, so don't feel too bad if you have to do the same.

3.3 Python and Arrays

Python doesn't really do arrays in the same way. It instead uses Lists, as we'll see in Chapter 5. myNotArray = []³ does not actually make an array like you assume it would in some other language. Instead it makes A list (specifically an array list) to contain these items. This works exactly like an array in other languages, but you get access to some nifty operations in Python, like slicing, concatination, and builtu in methods. In addition, Python dynamically resizes this array if we need it bigger or smaller.⁴

However, if you really want or need to use an array in python, you can. There are two ways to accomplish this. The first way is the built in array package. This builds a wrapper for the more primitive but efficient c-based array. The python package numpy contains yet *another* type of array, this time much more focused on mathematical operations. In short, if you're working in python, use a list unless you know you should use something more specialized.

3.4 How an Array Works

Here, arr does not contain the array; it hold the memory location, the reference, the pointer to the array. The correct term varies on the language you are using, but the point is that arr tells you the location of the array rather than holding the array itself.

3.4.1 Operations

To review, arrays have two operations and one attribute: storing a value at an index, retrieving a value from an index, and obtaining the size.

For an array arr, retrieving a value from an array is and storing it in some variable is done with:

```
myVar = arr[index]
```

and to store something in arr, you use:

```
myVar = arr[index]
```

Interestingly enough, this is one of the few consistent across multiple programming languages.

Figuring out the length of an array in Java⁵ is done with

```
int len = arr.length;
```

and in python, a simple len(arr) works.

³On styles: Java convention is to use camel case for variable types (myVariableName), while python convention is to use underscores (my_variable_name). I will be using the Java style camel-casing for variables throughout the book for consistency and because it is my preference.

⁴We cover the specifics in Chapter ??

⁵This is one of the little things in Java that can be a source of frustration. Strings use .length(), arrays use .length, and Collections like Lists and Sets use .size().

3.4.2 Array Internals and the Memory Formula

So how does an array actually work? How do you actually retrieve a value from an index? The most crucial thing to keep in mind in this textbook is when you see something like the code below:

variable = expression;

The left side is always a variable. The expression on the right side always⁶ yields some memory location. This means you should repeat to yourself "the memory location on the right gets stored in the variable on the left."

This means that

```
int[] numbers = new int[10];
```

stores a memory location in numbers. It does not store 10 integers in numbers. It only tells you where to find them. Specifically, it stores the memory location of index 0 of the array. This is true for not only Java, but C as well, and almost every programming language⁷.

This means that

What if we aren't dealing with primitives, but with objects like Strings instead? In this case, each slot in the array doesn't hold the object itself but instead a reference to that object. Thus, each slot needs to be big enough to hold a memory address, ie 32 bits or 64 bits depending on the machine.

3.5 Common Array Algorithms

3.5.1 Finding Values in an Array

Finding the Minimum

Finding the Average

3.5.2 Limitations

Arrays are awesome solutions for many problems, but they are lacking in ability for some problems. Consider the following exercise:

Given a string of text, determine what the most common character of text is.

Unless you've seen this problem before, there is no obvious solution. Considerable thought eventually lands on an idea: characters are just integers, so we could assign each one of the characters an index and increment the index each time we see the character.

 $^{^6\}mathrm{except}$ for primitives, like \mathtt{int} in Java

 $^{^7\}mathrm{Python}$ and other interpreted languages are slightly more complicated because we are dealing with array lists, thus one additional level of abstraction, so this storage just happens a layer deeper. Esoteric languages like ook and Malbolge prevent me from making a statement like "all languages."

```
public static char mostFrequent(String text) {
    int[] tally = new int[128];
    for(char c : text.toCharArray()) {
        tally[(int) c] += 1;
    }

    indexWithHighest = 0;
    for(int index = 0; index<128; index++) {
        if( tally[index] > tally[indexWithHighest]){
            indexWithHighest = index;
        }
    }
    return (char) indexWithHighest;
}
```

However, this has some serious limitations. For one, this breaks if we are not using ascii. What if the text is " $\exists \lambda \exists \exists \exists$ " or other non-english text? You could create a larger array for all 100000+ unicode characters, but this begins to become less and less feasible. And now what if we change the problem to:

Given a string of text, determine what the most common word is.

This suddenly becomes an extremely annoying problem to solve with just arrays⁸. We will solve this problem when we visit Maps in Chapter 14, which are much better suited for this job than arrays.

The other limitation of arrays that their size is immutable. Once an array has been declared, we cannot change its size. This is rather inconvenient for a number of applications where we may not know how many items to store. This will be the focus of our first new data structure: The List.

 $^{^8{\}rm Those}$ of you coming from Python can stop shouting "use dictionaries!" at the top of your lungs.

Chapter 4

Analyzing Algorithms

4.1 Cost

Every function, operation, algorithm, or what have you that a computer performs has a *cost*. In fact, there are always multiples costs; we often just focus on the most important one or two costs.

What is most important depends on context. However, in the vast majority of cases, the most important cost to focus on is **time**. When our program is eating away at our storage resources like a hungry child slurping up spaghetti, we can always go out and buy more memory/storage/RAM. If our program requires a large amount of energy consumption, energy is readily available from a variety of sources: batteries, power plugs, internal combustion engines, the giant fusion reactor in the sky.

Time is different. We cannot got out and buy another weeks worth of time. Yes, processors get faster as technology marches on, but they get faster slowly and Moore's law ostensibly has its limits. The only way to make our programs realistically run faster is to make them more efficient.

Measuring Cost

When we measure cost, we need to do abstractly. When we measure the amount of time that an algorithm takes, we look at the number of operations that will be executed, not the overall elapsed time.

4.1.1 Time

A time cost is a measure of not just how long it takes a program to finish executing, bit also how the length of execution is affected by adding additional item.

Time is almost always the most important cost.

4.1.2 Space

4.1.3 Energy

4.2 Big O Notation

- What is big O
- how to read it
- Aside about big omega and theta
- How wrong usage annoys mathematician
- refers to cost in general, but used for time usually
- space complexity
- Common runtimes
- runtimes we'll focus on now
- runtimes we focus on later

4.2.1 Space Complexity

4.3 Examples with Arrays

- Retrieval refer back to earlier chapter for address lookup
- Replacement
- Linear Search
- Binary Search
- 4.3.1 Selection Sort
- 4.3.2 Bubble Sort
- 4.3.3 Insertion Sort
- 4.3.4 Other Sorting Algorithms
- 4.4 The Formal Mathematics of Big O Notation
- 4.5 Other Notations
- 4.6 When To Ignore Costs

Part II

Lists

Chapter 5

Array Lists

The first data structure we will be studying is the list. The list is by far the most relatable data structure, as humans deal with lists on a regular basis.

5.1 What is a List?

When you get right down to it, lists are defined by order. We don't have to take advantage of this order, but its there. Populated lists have a first item and they have a last item.

Take a look at this quest below from a hypothetical fantasy game:

Quest: Slay the Dragon of Doom

- Get Sword of Dragonslaying
- Locate the map to Dragon Lair of Doom
- Travel to the Dragon Lair of Doom
- Slay the Dragon of Doom
- Return to the Castle

Here, the order is implied by the contents of the list - you can't beat the dragon without the macguffin and you certainly can't fight it without being able to find it. Generally speaking, going up against a dragon without any preparation is foolhardy in the extreme, but I digress.

Thus, you must get the special sword¹ first, and you must get the map to find the lair before you can physically travel there.

shopping list example

While lists are defined by order, we don't necessarily ascribe any meaning to the order. Take a look at the shopping list below:

¹What if its possible to get the map before the sword? We'll see much later this kind of quest and it's requirements are much better handled by a directed acyclic graph in Chapter 17, but this example is fine for teaching lists.

<Shopping List>

While bread is the first item on this list, being the first item in the shopping list in this case has no special meaning. It's not the most important item on the list², nor is it necessarily the item I'm going to pick up first.

Where arrays and lists differ is that lists can grow to an arbitrary size, whereas arrays are static. Arrays can't get bigger, lists can.

A note on terminology

An **array list** is a type of list. These are sometimes called dynamic arrays.

As mentioned in Section 3.3, Python doesn't have arrays. If you've been programming in Python, you've been using an array list the entire time you've declared []. They are usually just called lists rather than array lists for simplicity's sake.

I will be using the Java nomenclature for the majority of the book as this allows me to be clear about the types and implementations of data structures.

5.1.1 Lists in Java

Α

An Aside about interfaces

This textbook assumes that you have already taken your requisite object oriented programming course, but in case you haven't or it's been a while, I'll review briefly here.

An interface is about as abstract as a class can get and ties deeply to how Java deals with polymorphism. In fact, an interface contains only abstract methods, which must be implemented by the inheriting class.

What about python? Python deals with polymorphism using duck typing, originating from the idiom "If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck"

Here is the source code

5.2 Generics

You may have noticed that when we create the arraylist

5.2.1 What are they?

Before we get to deep into lists, we need to have a discussion about generics. Generics are a way of restricting and specifying what types can go into a collection.

5.2.2 But Why?

Using generics has two big purposes: strong typing and the lack of need for casting.

²obviously, that's the cookies

title

5.3 List Operations

5.3.1 Size

We need some easy way of knowing how big our lists are, if for no other reason than to make sure our add and remove methods can figure our their valid indices.

5.3.2 Add

By default, we add items to the end of the list, but we can also add items to any index we want.

When we add an item at some specific index i, the item at i and all indices to the right shift over one. In other words, what was at i is now at i + 1, what was at i + 1 is at i + 2, and so on.

This also an understandable restriction to adding items to a list - we cannot an item to any index greater than myList.size() +1. Anything greater wouldn't be at the end of the list; it would be beyond it. The same goes for negative indices³.

<possible picture showing a legal an illegal add>

We will cover this operation in more detail when we implement the add method for the arraylist

5.3.3 Remove

We can remove items from a list much in the same way we can add them. When removing an item at index i, the

For example, in the image below, we are removing the item at index 3, the word "cookie," from the list.

<image before>

C is for cookie that's good enough for me

<image after>

C is for that's good enough for me

5.3.4 Get

Get is how we retrieve our items from the list. Given an index, get will give us the value that has been stored at that index.

5.3.5 Set

5.4 ArrayLists

An array list, as you might have guessed, are lists built using arrays.⁴ They work by growing or shrinking the array⁵ automatically as items are added or

³Python does allow negative indexes, but we will ignore that for now

⁴Shockingly, many of the names we give things at this point actually make sense.

⁵A lie. As you'll see we don't actually change the size of an array; we create a new array of the appropriate size and copy everything over

removed from the list, giving the illusion that the data structure can hold an arbitrary amount of data.

We'll go into the specifics of how this works in Section 5.6.

Java's ArrayLists

Java's arrayList

Python's Lists

Python's lists, such as below:

```
l = [1,2,3] # this is a list, not an array!
```

are actually array lists!

Python uses a different vocabulary for some of the methods we'll be implementing below. For example, take the action of adding an item to a list. Python uses the append method to add an item to end of the list and insert to put an item into the middle of the list. Java (who's vocabulary we'll be following), uses add for both these contexts.

5.5 Example Algorithms

```
public static <E> boolean isPermutation(List<E> listA,

    List<E> listB) {
                if(listA.size() != listB.size()) {
                        return false;
                for(int i = 0; i < listA.size(); i++){</pre>
                        E item = listA.get(i);
                        int countA = 0;
                        int countB = 0;
                        for (E element : listA) {
                                if(item.equals(element)){
                                         countA++;
                                }
                        for (E element : listB) {
                                if(item.equals(element)){
                                         countB++;
                                }
                        if(countA != countB) {
                                return false;
                        }
                return true;
       }
```

5.6 Building an ArrayList

To truly understand how a data structure works we need to implement it ourselves. We will be making simpler versions of what's actually implemented in the language of your choice, but the logic and obstacles we need to overcome are the same.

5.6.1 Caveats

MyArrayList.java

We will not be implementing the List interface. We don't need to implement all the functions to get an understanding of how the fundamentals of an arraylist work. Implementing the list interface would take up a hideous amount of paper and get in the way of actually understanding the code.

myArrayList.py

For python, this will require some suspension of disbelief, as our array list will require using an array, and as previously discussed, arrays are shirked in favor of arraylists in python. We'll be using a list and pretending it's an array. Silly? Yes. But it will keep our code compact and easier to understand.

5.6.2 Instance Variables

Believe it or not, we only need to keep track of three instance variables to get our arraylist working.

theData We need an array to actually store the items. This is it.

size Size here refers to the total number of items we have stored in the array.

capacity This is the number of items the underlying array in our list can hold. It is the maximum size of the list before we have increase the capacity and move everything theData to a new array of length capacity. This is not strictly necessary as we can get it by querying theData's length. However, making it it's own variable will help with the readability.

It is very easy to confuse size and capacity since they both deal with counting how many elements. When I talk about size, I am talking about the number of items we have stored in the list we are making. Capacity, on the other hand, depends on the length of the built-in array.

Java

First, note the <E> after MyArrayList. This means that we're saying:

- MyArrayList is designed to hold a specific type of object.
- Every E we see is a placeholder for some type, which will be that same across the entire lifespan of the object.

Python

In python, we will be creating our instance variables in the constructor below. We will end up with this at the end of Section 5.6.3.

```
class MyArrayList(object):
    def __init__(self):
        self.size = 0
        self.capacity = 10
        self.theData = [None]*self.capacity
```

5.6.3 Constructor

We need to set the variables to their initial values upon creating the arraylist. The size will be 0, since we won't have any objects stored in it yet. We will set the initial capacity to 10, as this is the default behavior of Java's ArrayList class. It's a small number and thus won't create much wasted space if we don't fill up theData. theData will be an empty array of capacity length. If theData becomes full, we will create a bigger array to hold our items using the reallocate() method (Section 5.6.5)

Java

With our constructor, we have one line of weird black magic in order to create an Array of E[]'s.

```
public MyArrayList(){
    size = 0;
    capacity = 10;
    theData = (E[]) new Object[10]; // this generates a
    warning
}
```

So what's going on with the last line? Typically, when creating an array, we would just say:

```
//doing this in the constructor gives us an error.
TYPE[] myArray = new Type[desired_size];
```

However, Java won't let you create new E objects since there's no telling what the constructors will be. This rule extends to arrays of E, like so:

```
theData = new E[10];
```

However, when creating a new empty array of objects of any type, we're just making an array of nulls which will eventually be replaced by references to objects. Thus, even though the Java compiler will yell at us about Type safety, we can instead create an array of <code>Object</code> and then tell , since all references to any types are the same size.

```
// creating one array of nulls and telling Java
// its another type of array of nulls.
theData = (E[]) new Object[10];
```

Remember how Java and most modern programming languages deal with objects; if you're assigning an object to a variable, like in Object o = new Object(), we are storing a reference to that object. Thus, when we add an item to a list, what really happens is we'll be adding a reference to it - the instructions on how to find it in memory.

Python

Python is fairly straightforward, with the caveat that we are pretending the Data is an array, and not a list.

```
class MyArrayList(object):
    def __init__(self):
        self.size = 0
        self.capacity = 10
        self.theData = [None]*self.capacity
```

Since built-in lists in Python grow and shrink like we would expect a list to, we initialize theData with 10 None objects⁶ to mimic the way an array would be initialized.

5.6.4 Size

Now, we will add a size method to our list; fairly straightforward in Java.

```
public int size() {
          return size;
}
```

In Python, we can go ahead and use the built in __len__ method, which can then be invoked with len(myList).

```
def __len__(self):
          return self.size
```

Retrieving the size of our list is always O(1), as we are just accessing a variable and returning its value.

⁶This is the Python equivalent to the Java null.

5.6.5 The Add Method

Now it's time to dig into the bulk of our code: adding items to our list. To do this, I'll be creating two methods: one for adding to the end of the list (an extremely common operation) and one for adding at any index in the list.

In Java, we will overload these two methods and call them both add. We will have an add(E item) for adding to the end and an add(int index, E item) for every other case. In Python, these two add methods are called append and insert respectively, as Python does not support method overloading.

We will be looking at the case of adding to a specific index first.

Cases

The add method has 5 basic parts, only three of which involve actual thinking about how to code:

- 1. Check index to see if our index in bounds
 - If it is, crash the program.
- 2. Check to see if our array list has room to add a new item.
 - If there is no room, make some!
 - How we do this is covered in Section 5.6.5.
- 3. Shift all the existing items from index to the end of the list over one index to the right. This moves all the items already in the list to their new locations.
- 4. Store the item.
- 5. Increment the size.

Those last two steps are important but not complicated. We will go ahead and handle them now and put in comments for the other parts.

```
public void add(int index, E item) {
    // Check the index

    // do we have room?

    //shift over existing items

    theData[index] = item;
    size++;
}
def insert(self, index: int, item):
    # Check the index

# do we have room?

# shift over existing items
```

```
self.theData[index] = item
self.size += 1
```

Checking The Index

An optional step for pedagogy, but good practice. If the index is less than, we reject it. If the index > size, we reject it. The case of index == size is perfectly fine, but it feels weird, since you should have the rule "valid indexes are 0...array_size" carved into your soul by this point. This is because the index size would be the next empty slot for use to put an item. Once we insert the item, we increment the size at the step of the method. After that, our rule about valid indexes becomes true again.

Deciding to Reallocate

Our array is only so big; if our current size and capacity are the same, we don't have any more room. In this situation, we call reallocate, which dou-

 bles^7 our capacity. We will solve this issue in Section 5.6.5 and handwave the implementation for now.

```
public void add(int index, E item) {
        // Check the index
        if(index < 0 || index > size) {
                throw new IndexOutOfBoundsException("Index "
   +index+ " is out of bounds.");
        }
        // do we have room?
        if(size == capacity) {
                this.reallocate();
        //shift over existing items
        theData[index] = item;
        size++;
}
```

In python, we take the additional step of checking if the index is an int.

```
def insert(self, index: int, item):
       # Check the index
       if not isinstance(index, int):
               raise IndexError(index + " is not an integer.")
       if index < 0 or index > self.size:
              raise IndexError("Index " + str(index) +
               # do we have room?
       if self.size == self.capacity:
               self.__reallocate()
       # shift over existing items
       self.theData[index] = item
       self.size += 1
```

Shifting the Items

As mentioned previously, if index == size, we will be inserting the item we want to add into the next unused slot.

Reallocation Implementation

When we need to grow our arraylist, can't actually physically change the size of the array theData; you can't change the size of an array. So we cheat. We

 $^{^{7}}$ As we will see later, doubling is what we chose for our implementation, but other options

create a new array twice ⁸ the capacity of theData. We then copy everything over to the new array and then store the reference to that new array in theData, making it our new underlying array.

```
private void reallocate() {
    //doubles or 1.5x capacity
    //don't do +1 capacity
    capacity = 2 * capacity;
    E[] newData = (E[]) new Object[capacity];
    for(int i = 0; i < theData.length; i++) {
        newData[i] = theData[i];
    }
    theData = newData;
}</pre>
```

We want to double our capacity or at least increase it by 50%, rather than increasing it by a static number. Consider if we increase the capacity by one each time we reallocated. If we did that, we would have to reallocate every time we added a new item to the list. This would mean that every time we add an item to list, add becomes a linear time - O(n) - operation.

Having empty slots might seem wasteful, but the advantage is that it takes constant time to add to the end of the arraylist. This is because we don't have to shift any existing elements around. It is a classic time/space trade-off.

Because reallocation is a *relatively* rare event compared to adding, we don't typically take that cost into account when analyzing an algorithm with a large number of add commands. This is because if we do have some capacity n, in order to trigger reallocation with a runtime of O(n), we have to do n add operations first. We can then "spread out" the cost of the reallocate operation over our add operations.

Finished Code

```
public void add(int index, E item) {
        if(index < 0 || index > size) {
            throw new IndexOutOfBoundsException("Index " +
        index + " out of bounds.");
        }
        if(size == capacity) {
            this.reallocate(); // O(n) time...sometimes.
        Amortized over the cost of adding
        }
        for(int i = size - 1; i >= index; i--) { //If adding to
        the end... constant
        E temp = theData[i]; // Store the item from
            theData[i+1] = temp; // Move the item from
```

⁸The one thing worth noting is that the real implementation of a list in python, listobject.c, uses a completely different pattern than doubling the capacity. This is more complicated than we need for this book; doubling is much simpler and accomplishes what we need.

```
}
       theData[index] = item;
       size++;
private void reallocate(){
       //doubles or 1.5x capacity
       //don't do +1 capacity
       capacity = 2 * capacity;
       E[] newData = (E[]) new Object[capacity];
       for(int i = 0; i < theData.length; i++) {</pre>
               newData[i] = theData[i];
       }
       theData = newData;
}
def insert(self, index: int, item):
       if not isinstance(index, int):
               raise IndexError(index + " is not an integer.")
       if index < 0 or index > self.size:
               raise IndexError("Index " + str(index) +
                if self.size == self.capacity:
               self.__reallocate()
       for i in range(self.size -1, index -1, -1):
               temp = self.theData[i]
               self.theData[i+1] = temp
       self.theData[index] = item
       self.size += 1
def __reallocate(self):
       self.capacity = self.capacity * 2
       newData = [None] * self.capacity
       for index, item in enumerate(self.theData):
       newData[index] = item
       self.theData = newData
```

Adding to the End

As previously mentioned, adding to the end is an extremely common operation, so we will overload our add method. If our list is provided with only an item, as opposed to an item and an index, we will just add that item to the end. Since we already wrote a perfectly good add method already that we know works, we'll just have our new method call that one.

```
public boolean add(E item) {
        this.add(size, item); // size is the last valid index
        return true; // What?
}
```

Why are we returning true here? The short answer is practice and consistency with future data structures. The long answer is any Collection in Java has must have an add method and a List is type of Collection⁹.

Collection specifies that add must take in an item and return a boolean. A true signals the add is successful. A false signals that we could not add the item. For example, this might happen with a Set (Chapter 13)

On the other hand, our Adding at a specific index is unique to lists, and not part of collections, and will always work. Therefore, there's no need to return a boolean.

5.6.6 toString and str

Now that we supposedly have a method for adding items into the list, the next step is to test it. The easiest way to test it is by printing out the contents of the list. We'll do this in the laziest way possible.

In java, that would be invoking the Arrays.toString method, since directly turning an array into a string gives you representation of the memory location:

That said, implementing it ourselves gives us good practice handling a common fence-posting problem, i.e. we need to print n items separated by n-1 commas.

```
public String toString(){
    String output = "["+theData[0];
    for (int i = 1; i < size; i++) {
        output+= ", " + theData[i];
    }

    return output + "]";
}

def __str__(self): # second attempt
    output = "["
    #only include indexes from 0 to size-1
    for item in self.theData[:self.size]:
        output += str(item) +","
    output = output[:-1] # remove the last comma
    return output + "]"</pre>
```

 $^{^9\}mathrm{Our}$ MyArrayList isn't technically a Collection since we did not implement the List interface, but I digress.

5.6.7 Get and Set

The get and set methods are fairly straightforward:

get - Given an index, retrieve the item stored at that index.

set - Given an index, replace the old item stored at that index with the provided item.

set has one additional quirk, we also want to return the old item we're replacing, just in case the programmer wants to doing something with the old item. This would obviate the need for pairing a get and set call with each other if we want to replace the old item, but do something else with it.

For both get and set, we want to throw some kind of error if the provided index is out of bounds.

Java

Our get is fairly straightforward, but feel free to give more information with the error.

```
public E get(int index) {
        if(index < 0 \mid \mid index >= size) {
                throw new IndexOutOfBoundsException("Index " +
    index + " out of bounds.");
        }
        return theData[index];
}
   The same goes for our set method.
public E set(int index, E item) {
        if(index < 0 \mid | index >= size) {
                throw new IndexOutOfBoundsException("Index " +
    index + " out of bounds.");
        }
        E oldItem = theData[index];
        theData[index] = item;
        return oldItem;
}
```

Python

Python supports negative indices.

We can take advantage of some of the method calls built into python to make our myarraylist support indexing.

```
def __getitem__(self, index):
  if index < 0:
  index = index % self.size # yes!
# If you're confused, test modulo on
# negative numbers in python.</pre>
```

5.7. ANALYSIS 37

This method, as written, will return None if the user tries to access an index that is within in the bounds of the capacity but above the size. The same thing will happen if we use negative indices.

While this is fine for our pedagogical programming purposes, prudence posits proactive protection. That is to say, we should ask "how do we prevent out users from accidentally getting the wrong data when they should be getting an error."

Below, we will add two index checks.

5.6.8 Remove

The code for remove is almost identical in structure to add, but without a case for checking if there's room. Since we are removing, we don't have to worry about running out of room. We also make sure we save the item we are removing and return it, for the same reason we do for the set method.

- Check if index is valid.
- Save the item at index for later.
- Shift each item to the right of index over (indices greater than index) one to the left. This will overwrite what's stored at index, which is why we saved it.
- Decrement the size.
- Return the saved item.

A word of warning with remove operations on "real" implementations. Removing items from a list while you are iterating over it has the potential to get messy. Languages can sometimes even throw runtime exceptions to *prevent* you from doing it. See the problem in Section 5.9.1

5.7 Analysis

When reading through our analysis, please keep in mind that we made a number of pedagogical choices when writing our Array List.

We did this to make our code readable and to help gain an understanding of the mechanisms .

The Array List implementation in your language of choice probably has a huge number of optimizations, at the cost of readability and complexity. For example, at the time of writing, listobject.c, the source code for the Python list, is almost 3500 lines long [1].

Those caveats aside, lets talk about the four primary operations for Lists that have a cost: add, remove, get, and set.

5.7.1 Add/Remove

The runtime for adda dnd

5.7.2 Get/Set

Arraylists use the same memory formula discussed in Section 3.4.2 to find a specific index. This calculation, which is an addition and multiplication operation, takes the same amount of time no matter how big the ArrayList is. Thus the runtime is $\Theta(1)$

5.7.3 A Note on Storage

5.8 A Few More Useful Methods

5.8.1 Constructors

Java's ArrayList can optionally take in an integer as an argument. This will start the underlying array's length at that value, rather than the default of 10. This is useful if you know exactly how big your List will be. However, if you aren't removing any items when populating your list, consider using an array instead.

5.8.2 Manually Adjusting the Capacity

Java provides two methods for manually adjusting the ArrayList capacity. The method <code>ensureCapacity(n)</code> forces the ArrayList to grow to a capacity of <code>n</code> items, if it can't already. Conversely The <code>trimToSize()</code> shrinks the capacity to be equal to the current size. This is useful if we know the ArrayList won't get any larger than it currently is and want to eliminate the wasting memory with empty array slots.

Python will automatically optimize lists for you. Python will automatically resize the list to shrink it if necessary [1].

5.8.3 Adding Multiple Items in One Invocation

One common operation is to move or copy all the items from one list to another. In Java, we can use the addAll() method, which takes any Java collection as a parameter and all the items in that collection to the object.

```
List<Integer> a = new ArrayList<>();
List<Integer> b = new ArrayList<>();
for(int i = 0; i <3; i++) {
         a.add(i);
}
for(int i = 3; i <6; i++) {
         b.add(i);
}
a.addAll(b);
System.out.println(a); // 0 to 5 inclusive
System.out.println(b); // [3, 4, 5]</pre>
```

In Python, we can use the <code>extend()</code> method on anything that is iterable or use some clever slicing. However, I would always recommend using the method call over the slice, since a method invocation is always more readable.

```
a = [0, 1, 2]
b = [3, 4, 5]
c = a + b # creates a new list, which is not extend
a.extend(b) # adds all of b's items to a
a[len(a):] = b # does the same thing but unreadble.
```

A common beginner mistake in Python is to try to extend a list by calling append on the list like so.

```
a = [0, 1, 2]
b = [3, 4, 5]
a.append(b) # a is now [0, 1, 2, [3, 4, 5]]
```

This adds the entire list a single item in the list.

5.9 Exercises

5.9.1 Remove All Instances

Write a method called removeAllInstances() which takes in a List and item¹⁰. The method then proceeds to remove each item in the list that matches the given item. For example, if the method is passed the List<Integer> [1, 4, 5, 6, 5, 2] and the Integer 5, the method removes all 5's from the List. The List then becomes [1, 4, 6, 2]. It should return nothing, since the changes the List it was provided. ¹¹

¹⁰In other words, the first parameter is a list of generics and the other input is a single item of the same type the list holds.

¹¹This one is extremely tricky, since removing an item shifts the indexes.

5.10 Source Code

5.10.1 Java

```
package arraylists;
// Change this up to be distinct from KW; been teaching so many
\rightarrow years using their text that this is extremely close to what
\hookrightarrow they do.
public class MyArrayList<E> {
    private int size; // how many items are in the list
    private int capacity; // how many items the underlying array
\hookrightarrow can hold
    private E[] theData;
    public MyArrayList(){
        size = 0;
        capacity = 10;
        theData = (E[]) new Object[10];
    }
    public int size() { // O(1)
        return size;
    }
    public boolean isEmpty() {
        return (size == 0);
    public boolean add(E item) {
        this.add(size, item);
        return true;
    }
    public void add(int index, E item) {
        if(index < 0 || index > size) {
            throw new IndexOutOfBoundsException("Index " +index+
    " is out of bounds.");
        if(size == capacity) { // O(n) time...sometimes.
   Amortized over the cost of adding
            this.reallocate();
```

```
for(int i = size - 1; i >= index; i--) { //If adding to
  the end... constant
           E temp = theData[i];
           theData[i+1] = temp;
       theData[index] = item;
       size++;
   }
   private void reallocate(){
       //doubles or 1.5x capacity
       //don't do +1 capacity
       capacity = 2 * capacity;
       E[] newData = (E[]) new Object[capacity];
       for(int i = 0; i < theData.length; i++) {</pre>
           newData[i] = theData[i];
       theData = newData;
   }
   public E remove(int index) {
       if(index < 0 \mid \mid index >= size) {
           throw new
   IndexOutOfBoundsException("WE ALREADY WENT OVER THIS! IT'S OUT OF BOUNDS!!!");
       E item = theData[index];
       for(int i = index + 1; i < size; i++) { //0(n), unless
  we remove last item in the list
           theData[i-1] = theData[i];
       }
       size--;
       return item;
   public E get(int index) {
       if(index < 0 \mid \mid index >= size) {
→ IndexOutOfBoundsException("WE ALREADY WENT OVER THIS! IT'S OUT OF BOUNDS!!!");
       return theData[index];
   }
```

```
public E set(int index, E item) {
    if(index < 0 \mid \mid index >= size) {
        throw new
IndexOutOfBoundsException("WE ALREADY DID THIS JOKE!");
    }
    E oldItem = theData[index];
    theData[index] = item;
    return oldItem;
}
public int indexOf(E item) {
    for (int i = 0; i < size; i++) {
        if(item.equals(theData[i])){
            return i;
        }
    }
    return -1;
}
public boolean contains(E item) {
    for (int i = 0; i < size; i++) {
        if(item.equals(theData[i])){
            return true;
    }
    return false;
}
public String toString(){
    String output = "["+theData[0];
    for (int i = 1; i < size; i++) {
        output+= ", " + theData[i];
    }
   return output + "]";
}
public static void main(String[] args) {
    MyArrayList<Integer> list = new MyArrayList<Integer>();
    for(int i = 0; i < 5; i++){
        list.add(i);
        System.out.println(list);
    }
```

```
list.remove(1);
    System.out.println(list);
    list.add(5);
    System.out.println(list);
}
```

5.10.2 Python

```
from doctest import OutputChecker
class MyArrayList(object):
   def __init__(self) -> None:
       self.size = 0
       self.capacity = 10
       self.theData = [None]*self.capacity
   def __len__(self):
       return self.size
   def insert(self, index: int, item):
       if not isinstance(index, int):
           raise IndexError(index + " is not an integer.")
       if index < 0 or index > self.size:
           raise IndexError("Index " + str(index) +
           if self.size == self.capacity:
           self.__reallocate()
       for i in range(self.size -1, index -1, -1):
           temp = self.theData[i]
           self.theData[i+1] = temp
       self.theData[index] = item
       self.size += 1
   def append(self, item):
       self.insert(self.size,item)
   def __reallocate(self):
       self.capacity = self.capacity * 2
       newData = [None] * self.capacity
       for index, item in enumerate(self.theData):
           newData[index] = item
       self.theData = newData
   def remove(self, index: int):
       if index < 0 or index >= self.size:
           raise IndexError("Index " + str(index) +
            item = self.theData[index]
       for index in range(index+1,self.size):
           self.theData[index -1] = self.theData[index]
```

```
self.size = self.size - 1
   return item
def __str__(self): # first attempt
   output = "["
   for item in self.theData:
      output += str(item) +","
   output = output[:-1] # remove the last comma
   return output + "]"
def __str__(self): # second attempt
   output = "["
   #only include indexes from 0 to size-1
   for item in self.theData[:self.size]:
       output += str(item) +","
   output = output[:-1] # remove the last comma
   return output + "]"
# obviated by dunder method
def get(self, index):
   if index < 0 or index >= self.size:
       raise IndexError("Index " + str(index) +
        return self.theData[index]
# obviated by dunder method
def set(self, index, item):
   if index < 0 or index >= self.size:
       raise IndexError("Index " + str(index) +
        oldItem = self.theData[index]
   self.theData[index] = item
   return oldItem
def __getitem__(self, index):
   if index < 0:</pre>
       index = index % self.size # yes!
       # If you're confused, test modulo on
       # negative numbers in python.
    if index >= self.size:
       raise IndexError("Index " + str(index) +
        return self.theData[index]
def __setitem__(self, index, item):
   if index < 0:
       index = index % self.size
   if index >= self.size:
```

Linked Lists

Linked lists, also referred to as reference based lists, are the second type of lists typically seen in applications. To be clear a linked list is a list. That means it could be used anywhere an array list can. So Why do we have two objects that are functionally equivalent, two collections that hold things in order, using indexes? The answer is will see, is because each list is good at the thing the other list is less efficient at.

Array based lists use contiguous blocks of memory, allocated all at once and when then capacity of the list is filled up. Utilizing an array makes these types of lists extremely efficient at retrieving an item from a specific index, but adding items anywhere but the end of the list incurs a O(n) runtime.

Linked Lists can do all the things an Array List can, but the underlying structure is completely different. Each item in the list is stored in an Object called a *Node*. Nodes are created as items are added to list, rather than in advance. This means that are not contiguous, but Rather they are scattered throughout the computer's memory . So how in the world do we keep track of where we've stored all these items? The solution resembles the scavenger hunt through the computer's memory. Each node Not only the memory location of the item that is being stored, but the memory location of the next node in the list . An example of this code can be found below¹:

¹Why is this class private in Java private? An inner class (or private class) is a class that lives within another class. We use this for two reasons: Our nodes only exist to build the linked list, so they don't need to have their own class. The Second reason is What about static class? This means that we can create nodes without having to make a Linked List first!

Upon first glance, this code may be very confusing. Each node class contains a reference to a node inside of it. This may give the impression that nodes situated one inside another, like one of those Russian nesting matryoshka dolls. However, keep in mind what the node is actually storing is not other objects, but instead memory locations of where to find them. This means that our linked list is more akin to a scavenger hunt where each objective in the hunt contains the instructions on how to find the next objective.

In other words, the item Is the data that is being stored (well actually the memory location, don't forget that), and next refers to the memory location of the next index in the list. Crash course is an excellent video demonstrating this which you can find here:

6.1 Connecting Nodes into a list.

we keep track of only the first and last item in the list, referred to as the head and the tail .

I will be presenting the directions to building a fully functional singly-linked list and doubly-linked list. These directions will differ from the mechanics of how your programming language of choice implements them, but have the same time complexity for their operations. My implementation is constructed with the goal of making the code easy to understand and the decisions that need to be for adding and removing reflect each other. Finally, my code aims to minimize the number of null-pointer exceptions and their ilk a programmer would make.

The full implementations can be found at the end of the Chapter.

6.2 Building a Singly LinkedList

We open up our linked list with a class declaration. If our language uses generics, we specify it there. I'll be choosing not to inherit from the built-in list so we can focus solely on our own code and no external distractions.

In Java, our code begins like this.

```
public class LinkedList<E> { }
In Python
    class LinkedList(object):
    pass
```

6.2.1 The Node

We want the Node class to be a private/internal class, so that the Node we write for a singly linked list and doubly linked list won't get mixed up in our coding environments. This also applies for other data structures that will be using nodes.

```
public class LinkedList<E> {
    private static class Node<E>{
        E item;
```

In the Node private/internal/inner class (and only there), the this or self refers to the **node** rather than the linked list.

6.2.2 Instance Variables and Constructor

Our linked list Linkedlist only needs a few Instance variables in order to Function. We need to keep track of the size; Without it we would have no idea what the valid indices are in the list. We need to keep track of the head so we know where to start our scavenger hunt for any particular index or item we're looking for. Finally we'll keep track of the tail . While keeping track of the tail isn't strictly necessary , keeping track of it means that will be able to add an item to the end of the linked list very efficiently (0(1)).

The only job of the constructor is to initialize everything to either zero or null.

Finally, it's probably a good idea to go ahead and write getter method for the size of the list.

```
public class LinkedList<E> {
    private Node<E> head;
    private Node<E> tail;
    private int size;

public int size() {
        return this.size;
}
```

6.2.3 Adding

Our Linked list has two add methods, just like the array list. The first only takes in an item and adds that item to the end of the linked list . It will do this

by calling our second method which takes in an index and an item and inserts that item at that index.²

Let's take a look at our first add³ method:

```
public boolean add(E item){
         this.add(this.size, item);
        return true;
}
def add(self, item):
        self.add(self.size, item)
        return True
```

Simple enough! But what about that second add method? When we do any kind of operation on a linked list, we need to think about how instance variables in a linked list will be altered. Fortunately, we only have three instance variables: size, head, and tail. When adding to a linked list, the size will always be altered as long as the index is valid. Our list's head will only be altered when we add an item to the beginning of the list and our tail will only be altered when we add to the end of the list. If the list is empty, then the node for that added item becomes both the head and the tail.

We can simplify our job by breaking the add method into five separate cases:

- 1. The index that we want to add to is out of bounds.
- 2. We are adding an item to a list that is completely empty. This is going to change the head and tail the list from nolta something.
- 3. We are adding an item to index 0, which is going to change the head of the list.
- 4. We are going to add an item to the end of the list, which means that we are going to change what the tail is.
- 5. We are adding to some other index in the list, which means that we don't have to bother changing the head or the tail.

Let's start with the first case.

Checking the index is in or out of bounds

Since we passed the check above , we should take a moment before we add an item to address things that need to happen no matter what for Every add condition . Specifically, we need to have a node to hold the item we are adding , and we want to go ahead and increment the size of the list At the end of the method so we don't forget about it.

I will be calling the node that holds the item we are inserting into the list adding, As calling it node would be extremely confusing, since we are dealing with so many nodes and other variables like next that are also four letters long.

Here's what our changes look like.

²If this sounds familiar, it's because this is precisely what the add method in the arraylist does. Shocking, right?

 $^{^3}$ As with the arraylist , the add method returns a boolean to signify that we were successfully able to add it to the list . This will always be true, but we do this because Java expects this for collections, as explained in arraylists

Adding to an Empty List

Now let's consider Adding to an empty list. An empty list means the size is 0. If that's the case, we are going to make Adding the new head of the list, As well as the new tail. Just like if you are the only person in line at checkout you are both the first person and the last person in line, this node will also be the first node and the last node in the list, which is why it Will be both the head and tail of the list (at least until we add another item).

```
// Scenario 2: adding to an initially empty list
if(size == 0) {
    head = adding;
    tail = adding;
}
```

Adding an item to the beginning of the list

Adding an item to the beginning of the list means that the node containing it becomes the new head of the list. We do this by attaching Adding to the list, Then informing the list adding is the new head .We do this by setting adding's .next Two point to the current head of the list, then setting The list had to be the node we added.

```
// Scenario 3: adding a new head
else if(index == 0) {//(1)
        adding.next = head;
        head = adding;
}
```

Here, we introduce one of the most important rules we need to follow when working with a linked list: when we are adding an item to the linked list attached the list first, then update the rest of the list to accommodate the new reality.

Failing to do this can have catastrophic results. Consider below Where we set Adding as new head first

```
// Mistakes were made
else if(index == 0) {
    head = adding; // oops
    adding.next = head;
}
```

Note that the number of operations we do here Is always the same no matter how big the list is! This means that adding to the head is a constant time operation.

Adding an item to the end of the list

```
// Scenario 4: adding a new tail
else if(index == size ){
        tail.next = adding;
        tail = adding;
}
Sidebar: Getting a Node at a Specific Index
private Node<E> getNode(int index){ //O(n)
        Node<E> current = head;
        for (int i = 0; i < index; i++) {
                current = current.next;
        }
        return current;
}
Inserting an item into a specific index
// Scenario 5: everything else
else {
        Node<E> before = getNode(index -1); //O(n)
        adding.next = before.next;
        before.next = adding;
}
The end result
public void add(int index, E item) {
        // Scenario 1: index is out of bound
        if(index < 0 || index > size ) { //0(1)
                throw new
   IndexOutOfBoundsException("Not a valid index :(");
        Node<E> adding = new Node<E>(item);
        // Scenario 2: adding to an initially empty list
        if(size == 0) {
                head = adding;
                tail = adding;
        }
        // Scenario 3: adding a new head
        else if(index == 0) { //
                                     0(1)
                adding.next = head;
```

head = adding;

```
}
// Scenario 4: adding a new tail
else if(index == size ){
                tail.next = adding;
                tail = adding;
}
// Scenario 5: everything else
else {
                Node<E> before = getNode(index -1); //O(n)
                      adding.next = before.next;
                      before.next = adding;
}
size++;
```

6.3 Get and Set

Before we got onto our remove method, let's take a look at get and set very briefly.

6.3.1 Get

Just like with an ArrayList, the get method returns the item and the specified index. However, since we can't go directly to a specific index like we can with an array or ArrayList, we need to iterate thru the <code>.next</code> links until we get to the appropriate node. Fortunately, we can just use our <code>getNode</code> function that we created when we were writing <code>add</code>.

6.3.2 Set

Set operates very similar to get. Remember, set also returns the item that is already at the specified index, essentially replacing it.

```
node.item = item;
return toReturn;
}
```

6.4 Remove

6.5 Analysis

Array lists and linked lists are both extremely powerful objects that fulfill the same purpose, but in radically different ways.

6.5.1 Some Algorithms Play Better

Linked Lists are more efficient for algorithms that require a list to be split, such as Merge sort, or when items are constantly being moved from the front to the back. Linked Lists are also extremely efficient with certain card-like operations, like cutting a deck (eg moving a contiguous group of items starting at index zero of a list to the rear of the list)

However, if your algorithm constantly needs to seek the midpoints between two indices in the list, Arraylists are extremely efficient whilst linked lists suffer with their operations.

6.6 Potential Project/Practice/Labs

6.7 Source Code

```
from typing import Generic, TypeVar

E = TypeVar('E')

class LinkedList(Generic[E]):
    class Node(Generic[E]):
        def __init__(self, item: E) -> None:
            self.item = item
            self.next = None

def __init__(self) -> None:
        self.head = None
        self.tail = None
        self.size = 0

def __len__(self) -> int:
        return self.size

def getNode(self, index: int) -> Node:
```

```
current = self.head
    for i in range(index):
        current = current.next
    return current
def add(self, item: E) -> bool:
    self.add(self.size,item)
    return True
def add(self, index: int, item: E) -> None:
    if(index < 0 or index > self.size):
        raise IndexError("Invalid add at index " + str(index)
        adding = self.Node(item)
    if(self.size == 0):
       self.head = adding
       self.tail = adding
    elif(index == 0):
        adding.next = self.head
        self.head = adding
    elif(index == self.size):
       self.tail.next = adding
       self.tail = adding
    else:
        before = self.getNode(index - 1)
        adding.next = before.next
        before.next = adding
    self.size += 1
def remove(self, index: int) -> E:
    if(index < 0 or index >= self.size):
        raise Exception("Invalid remove at index " +

    str(index) +".")

    toReturn = None
    if self.size == 1:
       toReturn = self.head.item
       self.head = None
       self.tail = None
    elif index == 0:
        toReturn = self.head.item
        self.head = self.head.next
    elif index == self.size -1:
        toReturn = self.tail.item
        self.tail = self.getNode(index - 1)
       self.tail.next = None
    else:
        before = self.getNode(index - 1)
```

```
toReturn = before.next.item
            before.next = before.next.next
        self.size -= 1
        return toReturn
    def get(self, index: int) -> E:
        return self.getNode(index).item
    def set(self, index: int, item: E) -> E:
        node = self.getNode(index)
        oldItem = node.item
        node.item = item
        return oldItem
    def __str__(self) -> str:
       output = ""
        current = self.head
        while current != None:
            output += str(current.item) + "->"
            current = current.next
        return output[:-2]
1 = LinkedList()
1.add(3)
1.add(5)
1.add(142)
```

Stacks

Our next data structure is the Stack. The stack may seem unnecessary as a data structure after we introduce its features. After all, can't a list do all the things that a stack can do and more?

Working with the limited operations of a allows us to approach problems with a different mindset.

- 7.1 Stack Operations
- 7.2 Building a Stack
- 7.3 Built-in Stacks
- 7.4 Solving Problems with A Stack
- 7.5 Mazes Stacks and Backtracking

Queues

A Queue (pronounced by saying the first letter and ignoring all the others) is a data structure which emulates the real word functionality of standing in a line (or queue, for those from Commonwealth nations). In a Queue, items are processed in the order they are inserted into the Queue. So if Alice enters the Queue, followed by Bob, followed by Carla, Alice would be the first to leave the Queue, then Bob, and then Carla.

The use cases for Queues are fairly obvious

8.1 Linked Based Implementation

8.2 Array Based Implementation

We could use

Part III

Recursion

Recursion

9.1 Introduction

9.2 Recursive Mathematics

9.2.1 Fibonacci

As it turns out, while this technically works...it's pretty terrible. In short, using recursion, I managed to accidentally write an $O(2^n)$, or exponential time, algorithm. This is very bad. This means increasing n by one doubles the runtime of out algorithm!

This is because to solving the current

9.3 Printing Recursively

Some of the upcoming examples of the things we are about to see should not be actually used and serve only as examples, like our printThis function.

9.4 Recursive Linear Search

9.5 Binary Search

9.5.1 Runtime Analysis

How to not be scared of logarithms

You may have learned that logarithms are the inverse operation to exponentiation. This is an utterly useless definition when programming.

A more way of thinking about logarithms is "how many times can I recursively split something?" For example, $\log_b x$ asks "how many times can I recursively split my x items into b seperate piles?"

A more concrete example: $\log_2 16 = 4$, not because $2^4 = 16$, but because a pile of 16 items can be split in half into two piles of 8, each pile of 8 can be split

¹All right, I did this totally on purpose.

in half into two piles of 4, the 4's can be split into 2's, the 2's into 1's — four splits total:

```
<picture>
```

In algorithm analysis, logn in the time complexity is used to indicate that the search space gets split in half. In the Binary Search algorithm above, we split the our search space in half each step of the way. We start out looking at the middle item and then decide to look at all the items below or all the items above. This reduces the number of items to search among from n to $\frac{n}{2}$. From there we perform the same choices and reduce that $\frac{n}{2}$ to $\frac{n}{4}$, then from $\frac{n}{4}$ to $\frac{n}{8}$ and so on.

Back to it.

9.6 Recursive Backtracking

Recursion really comes in handy when we are trying to solve complex puzzles. One of the most famous examples of this is using

The Recursive Backtracking Algorithm

```
boolean solve(board, pos){
    if( pos is such that there is nothing left to solve){
        return true;
}

for each possible choice {
    if(valid(choice)){
        mark board at pos with choice;
        if(solve(board, pos + 1) == true){
            return true;
        }
        unmark board at pos if needed, as choice
    was invalid
        }
}

clear any choices entered at pos on board;

return false; // backtrack
}
```

9.6.1 Mazes Again

9.6.2 The Eight Queens Puzzle

Brute Force Solution

A brute force algorithm means we will be checking every single possible state to find a solution. In this case, a brute force solution for the Eight Queens Puzzle would every possible placement of eight queens on a chessboard, such as these two:

<Chess notation here>

There are a total of ${64 \choose 8}=4426165368$ possible ways to place 8 queens on a chessboard with 64 spaces.

Recursive Solution Outline

A Place Holder For Validity

Performing the Recursion

Checking just One condition

Checking all the Conditions

9.6.3 Additional Problems left to the Reader

Knight's Tour

Sudoku

- 9.7 Recursive Combinations
- 9.8 Recursion and Puzzles
- 9.9 Recursion and Art
- 9.10 Recursion and Nature

Trees

Our next major data structure is trees. Specifically, we will be looking at binary search trees.

Trees are an excellent data structure for storing things since they implement all the operations we care about for collections in logarhythmic time¹

However, trees are not without limitations. Trees will only work with data that can be stored hierarchically or in an order.

10.1 The Parts of a Tree

The first thing we need to do when introducing trees is define a vocabulary.

Much like the linked list, a tree is made of nodes. However, unlike a linked list, nodes in a tree are not arranged in a line, Instead, they are arranged in a heirachy.

Each node sit above multiple other nodes , with the nodes below it being referred to as their children or child nodes. The node connecting all these children is called the parent.

<A picture of one node, Represented by a circle with four arrows coming out below it. Each arrow points to yet another node. The Node with the arrows coming out of it is the parent, and the nodes below it are the children >

This relationship can be extended Ad infinitum as we can see with the picture below

<Picture with nodes labeled>

However anything above grandchild and grandparent just becomes tedious , so we tend to Generalize this relationship to ancestors and descendants. A key point here is to remember that while we are borrowing terms from the family tree , nodes will only have one parent . Each node can have multiple children, however .

We refer to the links connect each of the nodes as branches or links or edges. This tends to be a matter of personal preference.

 $^{^1\}mathrm{Specifically}$, Trees implement everything in average case log rhythmic time and worst case linear time , but if we do a bit of extra work and make it a self balancing binary tree (which will seem much later in this chapter) we can make this tree worst case log arhythmic for all operations

Finally , we have one special node that sits above all the other nodes . This note is the root and it is analogous to the head of a linked list . All of our operations will start at the root of the node 2 .

Remember , programmers are stereotypically outdoors of averse, So they May have forgotten what a real tree looks like. Thus, we'll see that the root of the tree is at the top of the tree and our leaves are at the bottom 4

10.1.1 Where the Recursion comes in

There is a reason we learned recursion before we introduce trees. Trees are the exemplar recursive data structure

Each tree has a root and That route has children . If we view each of those children as the root of their own subtree , this can make our algorithms for adding removing and searching extremely easy to write.

```
<picture Of tree, the recursive subtrees are dash circled.>
```

<Picture of the left subtree, with it's trees circled>

10.2 Binary Search Trees

A diagram of a binary search tree. It is made up of nodes, represented by circles, and edges (also called links or branches), represented by arrows.

10.3 Building a Binary Search Tree

10.3.1 The Code Outline

We use the Comparable class in Java to require that all objects stored in the tree has a total ordering⁶. In practice, this means that anything Comparable can be sorted

Python, of course, doesn't need these restrictions.

```
public class BinaryTree<E extends Comparable<E>>> {
}
```

Much like our Linked List, we don't need much in the way of instance variables. We'll create a root to keep track of the starting place for our tree and size to keep track of how many items we have stored.

Finally, we will also create our inner Node class for the Tree. It needs to hold the item and the locations of the left and right children. We'll also go ahead and add a The constructor and a method for printing out the item in the node (toString in Java and __str__ in Python)

 $^{^2}$ Remember , programmers are stereotypically outdoors of averse, So they May have forgotten what a real tree looks like. Thus, we'll see that the root of the tree is at the top of the tree and our leaves are at the bottom³

⁴Or maybe it's some weird hydroponic zero-G kind of thing.

⁵An aside about array based implementations.

⁶The formal definition is as follows

```
public class BinaryTree<E extends Comparable<E>>> {
             private Node<E> root;
             private int size;
             public BinaryTree() {
                     this.root = null;
             }
             /* Other code will go here.*/
             private static class Node \le E extends
Comparable<E>>> {
                     private E item;
                     private Node<E> left; // left child
                     private Node<E> right; // right child
                     public Node(E item) {
                             this.item = item;
                     public String toString() {
                             return item.toString();
                     }
             }
     }
```

10.3.2 Add

All of our operations in out BinaryTree will be implemented recursively.

10.3.3 Contains

10.3.4 Delete

Heaps

- 11.1 Priority Queues
- 11.2 Removing From other locations

Sorting

Now that we have a handle on sorting =,

12.1 Quadratic-Time Algorithms

12.1.1 Bubble Sort

12.1.2 Selection Sort

Unlike Bubble Sort, Selection Sort has an actual use case. While the number of comparisons is always $O(n^2)$, the number of exchanges is O(n). That means that we are doing only a single swap for every item we have to sort.

In other words, sorting on a computer assumes that comparisons are more expensive operation, but if that actual exchange of items is what is expensive, you should definitely consider Selection Sort. This could be the case if we are moving

12.1.3 Insertion Sort

12.2 Log-Linear Sorting Algorithms

The most commonly used sorting algorithms take $O(n \lg(n))$ time. This is the hard limit on runtime

12.2.1 Tree Sort

The tree sort is the simplest algorithm to we will cover. Performing Tree sort is a matter of three simple steps

- 1. Create a tree.
- 2. Load the items you want to sort into the tree.
- 3. Perform an inorder traversal of the tree.

The performance of this algorithm depends completely on the type of tree we create for this algorithm. Using a self-balancing binary search tree, adding

n items to the tree takes $O(n \lg(n))$ and an in order traversal takes O(n) steps, for a grand total of O(n) runtime. Using a binary search tree that does not self balance means that there is a worst case scenario of $O(n^2)$ for adding all the n items.

Using a tree also means we use extra space since all the data has to be moved into a tree, using O(n) space.

12.2.2 Heap Sort

You might expect that heapsort deserves the same treatment as treesort. After all, a heap has the same structure as a tree and both are constructed to perform operations in logn time.

- 12.2.3 Heapify
- 12.2.4 Quick Sort
- 12.2.5 Merge Sort

12.3 Unique Sorting Algorithms

12.3.1 Shell Sort

The time complexity of Shell Sort is still an open problem.

12.3.2 Radix Sort

all of our prior algorithms relied on sorting items by comparing them with each other; Radix sort is unique in that no comparisons occur.

12.4 State of the Art Sorting Algorithms

- 12.4.1 Tim Sort
- 12.4.2 Quick Sort

12.5 But What if We Add More Computers: Parallelization and Distributed Algorithms

Parallel sorting algorithms are designed to be executed on a single computer with multiple processors or cores, while distributed sorting algorithms are designed to be executed on a network of computers working together. Both types of algorithms can be used to significantly improve the performance of sorting for large data sets, especially when the data does not fit in the memory of a single computer.

There are many different parallel and distributed sorting algorithms, each with its own characteristics and trade-offs. Some common techniques used in these algorithms include:

Data partitioning: Splitting the data into smaller chunks that can be sorted independently and then merged back together. Load balancing: Ensuring that

the work is distributed evenly among the available processors or computers. Communication: Allowing the processors or computers to communicate and exchange data during the sorting process.

Some examples of parallel and distributed sorting algorithms include:

Parallel merge sort: A parallel version of the merge sort algorithm that divides the data into smaller chunks and sorts them in parallel, then merges the sorted chunks back together. MapReduce: A programming model for distributed computing that is often used for sorting large data sets in a distributed environment, such as on a cluster of computers. Bitonic sort: A parallel sorting algorithm that uses a recursive divide-and-conquer approach to sort the data using a network of processors.

There are many other parallel and distributed sorting algorithms as well, each with their own specific characteristics and trade-offs. If you are interested in learning more about these algorithms, you may want to consider reading more about parallel and distributed computing, as well as specific techniques such as data partitioning, load balancing, and communication.

Parallel VS Distributed

12.6 Further Reading

12.6.1 Pedagogical Sorting Algorithms

Bogo Sort

Sleep Sort

Stooge Sort

This is primarily used as a means of testing students on using the **Master Theorem** for calculating the time complexity for algorithms.

Part IV

Hashing

Sets

Sets programmed implementations of mathematical sets

13.1 Operations

We will use Venn diagrams to graphically demonstrate operates with two sets

13.1.1 Adding an item to a Set

Adding items to a set is fairly straightforward.

As we will see, adding to a set can be either O(1) or $O(\log n)$ time, depending on the implementation

13.1.2 Removing an item to a Set

13.1.3 Union

In Java, this is the addAll() method.

- 13.1.4 Intersection
- 13.1.5 Set Difference
- 13.1.6 Subset

13.2 Operation Analysis

Most sets are implemented using a Hash Table.

13.2.1 TreeSet Vs HashSet Vs Linked Hash Set

13.3 Sets and Problem Solving

Sets are super efficient checklists.

13.3.1 Checking for Uniqueness or Finding Duplicates

Maps

- 14.1 What is a Map
- 14.2 Functions
- 14.3 Costs
- 14.3.1 Tree-Based Map
- 14.3.2 Hash Table Map

Hash Tables

15.1 Creating a Hash Function

Map Reduce

16.1 Map

The map() operation¹ is a powerful function that may require us to think differently about the way we have approached programming so far.

The map operation takes in 2 arguments, a collection and a function to apply to every item in the collection

When we are writing functions , we are creating new verbs for our programming language to use . These verbs take in arguments, nouns that we may have declared or defined ourselves. But one thing that we May not have done yet is passing a function as an argument to another function.

This is not an uncommon operation in mathematics Example listed below. The semantics of this in every programming language is different , but the concept is the same $\frac{1}{2}$

Why introduces here? Because a lot of common operations that can be done with map reduce involve using hash tables

¹It is mildly confusing that there is a map data structure and a map() operation, so I will be marking the map() operation with a function invocation.

Part V Relationships

Graphs

In some ways, Graphs are the most important data structure. Graphs represent and model relationships, and humans are defined by relationships. The archetypical examples of graphs used to be maps and the distances between landmarks or looking for the shortest path.

With the advent of social media, we can talk about graphs with a few examples that might be easier to intuit.

17.1 Introduction and History

17.2 Qualities of a Graph

The physical layout of a graph doesn't actually matter¹

17.2.1 Vertices

• Vertices must be unique.

17.2.2 Edges

Undirected Edges

Directed Edges

Weighted Edges

17.3 Special Graphs and Graph Properties

17.3.1 Planar Graphs

Graphs that are planar can have their vertices and edges laid out in such a way that no two edges will cross.

 $^{^1}$ Some properies, such as whether a graph is planar or bipartite effectively care if a graph can be physically laid out in a certain way.

Figure 17.1: The wings of a dragonfly. Credit: Joi Ito (CC BY 2.0)

- 17.3.2 Bipartite Graphs
- 17.3.3 Directed Acyclic Graphs
- 17.4 Building a Graph
- 17.4.1 Adjacency List
- 17.4.2 Adjacency Matrix

Matrix multiplication and GPU Abuse

- 17.5 Graph Libraries
- 17.5.1 Java JUNG
- 17.5.2 Python networkx

There is only one realistic choiceforusing graphs in Python. The package networks is extremely powerful, extremely versatile, and actively maintained.

17.6 Graphs, Humans, and Networks

17.6.1 The Small World

The Milgram Experiment

The Less-Known Milgram Experiment

- 17.6.2 Scale Free Graphs
- 17.7 Graphs in Art and Nature Voronoi Tessellation

Graph Algorithms

18.1	Searching	and	Traversing

- 18.1.1 Breadth First Search
- 18.1.2 Depth First Search
- 18.2 Shortest Path
- 18.2.1 Djikstra's Algorthim

Improving The Algorithm

Failure Cases

- 18.2.2 Bellman-Ford
- 18.3 Topological Sorting
- 18.3.1 Khan's Algorithm
- 18.4 Minimum Spanning Trees
- 18.4.1 Kruskal's Algorithm
- 18.4.2 Prim's Algorithm

End of book.

Bibliography

[1] Devs, P. listobject.c.