SICO7A SISTEMAS INTELIGENTES 1

Aula 04 C

Aprendizado Baeysiano

Prof. Rafael G. Mantovani

Roteiro

- 1 Introdução
- **2** Teorema de Bayes
- 3 Naive Bayes
- 4 Exercícios
- 5 Referências

Roteiro

- 1 Introdução
- 2 Teorema de Bayes
- 3 Naive Bayes
- 4 Exercícios
- 5 Referências

- Aprendizado Bayesiano
 - Probabilidade Condicional

- Aprendizado Bayesiano
 - Probabilidade Condicional
- Dados dois eventos A e B:
 - P(A | B)
 - $P(A/B) = P(B \cap A) / P(B)$

- Aprendizado Bayesiano
 - Probabilidade Condicional
- Dados dois eventos A e B:
 - P(A | B)
 - $P(A/B) = P(B \cap A) / P(B)$
 - ou $P(B \cap A) = P(A | B) * P(B)$

- □ Probabilidade Condicional → Quando há dependência:
 - Em Aprendizado Bayesiano assumimos que um valor de atributo ocorre em função de outro

Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

B

Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

			В		A
Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

			В		A
Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

- Dois possíveis valores para A:
 - Jogar = Sim

$$P(Jogar = Sim | Umidade = Alta) = ?$$

Jogar = Não

P(Jogar = Nao | Umidade = Alta) = ?

- Dois possíveis valores para A:
 - Jogar = Sim

$$P(Jogar = Sim \mid Umidade = Alta) = \frac{P(Jogar = Sim \cap Umidade = Alta)}{P(Umidade = Alta)}$$

Jogar = Não

$$P(Jogar = Nao \mid Umidade = Alta) = \frac{P(Jogar = Nao \cap Umidade = Alta)}{P(Umidade = Alta)}$$

Umidade	Jogar?
Alta	Não
Alta	Não
Alta	Sim
Alta	Sim
Normal	Sim
Normal	Não
Normal	Sim
Alta	Não
Normal	Sim
Normal	Sim
Normal	Sim
Alta	Sim
Normal	Sim
Alta	Não

P(Umidade = Alta)

 $P(Jogar = Sim \cap Umidade = Alta)$

P(Jogar = Não ∩ Umidade = Alta)

Umidade	Jogar?
Alta	Não
Alta	Não
Alta	Sim
Alta	Sim
Normal	Sim
Normal	Não
Normal	Sim
Alta	Não
Normal	Sim
Normal	Sim
Normal	Sim
Alta	Sim
Normal	Sim
Alta	Não

P(Umidade = Alta) = 7/14 = 0.5

 $P(Jogar = Sim \cap Umidade = Alta)$

P(Jogar = Não ∩ Umidade = Alta)

Umidade	Jogar?
Alta	Não
Alta	Não
Alta	Sim
Alta	Sim
Normal	Sim
Normal	Não
Normal	Sim
Alta	Não
Normal	Sim
Normal	Sim
Normal	Sim
Alta	Sim
Normal	Sim
Alta	Não

P(Umidade = Alta) = 7/14 = 0.5

P(Jogar = Sim \cap Umidade = Alta) = 3/14 = 0.214

P(Jogar = Não ∩ Umidade = Alta)

Umidade	Jogar?
Alta	Não
Alta	Não
Alta	Sim
Alta	Sim
Normal	Sim
Normal	Não
Normal	Sim
Alta	Não
Normal	Sim
Normal	Sim
Normal	Sim
Alta	Sim
Normal	Sim
Alta	Não

P(Umidade = Alta) = 7/14 = 0.5

P(Jogar = Sim \cap Umidade = Alta) = 3/14 = 0.214

P(Jogar = Não \cap Umidade = Alta)= 4/14 = 0.286

P(Umidade = Alta) =
$$7/14 = 0.5$$

P(Jogar = Sim
$$\cap$$
 Umidade = Alta) = $3/14 = 0.214$

P(Jogar = Não
$$\cap$$
 Umidade = Alta) = $4/14 = 0.286$

$$P(Jogar = Sim \mid Umidade = Alta) = \frac{P(Jogar = Sim \cap Umidade = Alta)}{P(Umidade = Alta)}$$

$$P(Jogar = Nao \mid Umidade = Alta) = \frac{P(Jogar = Nao \cap Umidade = Alta)}{P(Umidade = Alta)}$$

$$P(Umidade = Alta) = 7/14 = 0.5$$

P(Jogar = Sim
$$\cap$$
 Umidade = Alta) = $3/14 = 0.214$

$$P(Jogar = Sim \mid Umidade = Alta) = \frac{P(Jogar = Sim \cap Umidade = Alta)}{P(Umidade = Alta)}$$

$$=\frac{\frac{3}{14}}{\frac{7}{14}}=\frac{3}{7}=0.428$$

$$P(Jogar = Nao \mid Umidade = Alta) = \frac{P(Jogar = Nao \cap Umidade = Alta)}{P(Umidade = Alta)}$$

P(Umidade = Alta) =
$$7/14 = 0.5$$

P(Jogar = Sim
$$\cap$$
 Umidade = Alta) = $3/14 = 0.214$

$$P(Jogar = Sim \mid Umidade = Alta) = \frac{P(Jogar = Sim \cap Umidade = Alta)}{P(Umidade = Alta)}$$

$$=\frac{\frac{3}{14}}{\frac{7}{14}}=\frac{3}{7}=0.428$$

$$P(Jogar = Nao \mid Umidade = Alta) = \frac{P(Jogar = Nao \cap Umidade = Alta)}{P(Umidade = Alta)}$$

$$=\frac{\frac{4}{14}}{\frac{7}{14}} = \frac{4}{7} = 0.572$$

Conclusão

 Tendo certeza sobre a condição de Umidade Alta, podemos inferir que a probabilidade de:

Conclusão

- Tendo certeza sobre a condição de Umidade Alta, podemos inferir que a probabilidade de:
 - Jogar = Sim é de 42,8%
 - Jogar = Não é de *57,*2%

Conclusão

- Tendo certeza sobre a condição de Umidade Alta, podemos inferir que a probabilidade de:
 - Jogar = Sim é de 42,8%
 - Jogar = Não é de *57,*2%

Roteiro

- 1 Introdução
- 2 Teorema de Bayes
- 3 Naive Bayes
- 4 Exercícios
- 5 Referências

- $P(A/B) = P(B \cap A) / P(B)$
- Assim: $P(B \cap A) = P(A \mid B) * P(B)$

- $P(A/B) = P(B \cap A) / P(B)$
- Assim: $P(B \cap A) = P(A \mid B) * P(B)$
- Como: $P(B \cap A) = P(A \cap B)$, logo:

- $P(A/B) = P(B \cap A) / P(B)$
- Assim: $P(B \cap A) = P(A \mid B) * P(B)$
- Como: $P(B \cap A) = P(A \cap B)$, logo:
- Assim: P(A | B) * P(B) = P(B | A) * P(A) e ...

- $P(A/B) = P(B \cap A) / P(B)$
- Assim: $P(B \cap A) = P(A \mid B) * P(B)$
- Como: $P(B \cap A) = P(A \cap B)$, logo:
- Assim: P(A|B) * P(B) = P(B|A) * P(A) e ...
- **TEORMA de BAYES:**

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

TEORMA de BAYES:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

TEORMA de BAYES:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Em AM queremos:

 A melhor h de um espaço H dado que observamos um conjunto de treinamento D

$$P(h \mid D) = \frac{P(D \mid h) * P(h)}{P(D)}$$

Como temos várias classes h em H, queremos a hipótese (classe)
 de maior probabilidade:

$$h^* = \underset{h \in H}{\operatorname{argmax}} P(h \mid D)$$

Como temos várias classes h em H, queremos a hipótese (classe)
 de maior probabilidade:

$$h^* = \underset{h \in H}{\operatorname{argmax}} P(h \mid D)$$

- Considerando 3 classes (hipóteses de H): h1, h2, h3
 - P(h1 | D) = 0.4
 - P(h2 | D) = 0.3
 - P(h3 | D) = 0.3

Como temos várias classes h em H, queremos a hipótese (classe)
 de maior probabilidade:

$$h^* = \underset{h \in H}{\operatorname{argmax}} P(h \mid D)$$

- Considerando 3 classes (hipóteses de H): h1, h2, h3
 - P(h1 | D) = 0.4
 - P(h2 | D) = 0.3
 - P(h3 | D) = 0.3

 $h^* = h1$

Classe que apresenta a maior probabilidade

Roteiro

- 1 Introdução
- **2** Teorema de Bayes
- 3 Naive Bayes
- 4 Exercícios
- 5 Referências

Naive = assume independência dos atributos

- Naive = assume independência dos atributos
- Aplicável quando:
 - Temos um conjunto de atributos que representa cada exemplo
 - Cada um esses exemplos tem uma classe
 - Esse classificador é solicitado para produzir a classe de um exemplo nunca visto com base em exemplos de treinamento

- Naive = assume independência dos atributos
- Aplicável quando:
 - Temos um conjunto de atributos que representa cada exemplo
 - Cada um esses exemplos tem uma classe
 - Esse classificador é solicitado para produzir a classe de um exemplo nunca visto com base em exemplos de treinamento

Buscamos classificar o novo exemplo segundo sua classe mais provável, dado seu conjunto de atributos:

Segundo TEOREMA DE BAYES:

 buscamos classificar o novo exemplo segundo sua classe mais provável, dado seu conjunto de atributos

Segundo TEOREMA DE BAYES:

 buscamos classificar o novo exemplo segundo sua classe mais provável, dado seu conjunto de atributos

$$h * = \underset{h \in H}{\operatorname{argmax}} \frac{P(a_1, a_2, ..., a_n | h) * P(h)}{P(a_1, a_2, ..., a_n)}$$

Segundo TEOREMA DE BAYES:

 buscamos classificar o novo exemplo segundo sua classe mais provável, dado seu conjunto de atributos

$$h * = \underset{h \in H}{\operatorname{argmax}} P(a_1, a_2, ..., a_n | h) * P(h)$$

A probabilidade de observar a1,a2,...,an é justamente, o produto das probabilidades de cada atributo individual:

$$h^* = \underset{h \in H}{\operatorname{argmax}} \frac{P(a_1, a_2, ..., a_n | h) * P(h)}{P(a_1, a_2, ..., a_n)}$$

$$P(a_1, a_2, ..., a_n | h) = \prod_{i} P(a_i | h)$$

NAIVE BAYES:

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) * \prod P(a_i | h)$$

NAIVE BAYES:

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) * \prod P(a_i | h)$$

- Não há busca explícita por uma hipótese
- Hipótese é formada simplesmente pela contagem de frequências

NAIVE BAYES:

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) * \prod P(a_i | h)$$

- Não há busca explícita por uma hipótese
- Hipótese é formada simplesmente pela contagem de frequências

Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

<Panorama=Ensolarado, Temperatura=Fria,Umidade=Alta, Vento = Forte> ...?

Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

<Panorama=Ensolarado, Temperatura=Fria,Umidade=Alta, Vento = Forte> ... ?

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) * \prod P(a_i | h)$$

Logo:

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) *$$

$$*P(Panorama = Ensolarado | h)$$

$$*P(Temperatura = Fria | h)$$

$$*P(Umidade = Alta | h)$$

$$*P(Vento = Forte | h)$$

<Panorama=Ensolarado, Temperatura=Fria,Umidade=Alta, Vento = Forte> ... ?

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) * \prod P(a_i | h)$$

Logo:

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) *$$

- *P(Panorama = Ensolarado | h)
- *P(Temperatura = Fria | h)
- *P(Umidade = Alta | h)
- *P(Vento = Forte | h)

<Panorama=Ensolarado, Temperatura=Fria,Umidade=Alta, Vento = Forte> ... ?

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) * \prod P(a_i | h)$$

Logo:

$$h_{NB} = \underset{h \in H}{\operatorname{argmax}} P(h) *$$

- *P(Panorama = Ensolarado | h)
- *P(Temperatura = Fria | h)
- *P(Umidade = Alta | h)
- *P(Vento = Forte | h)

h são os valores da classe

Pseudocódigo

Naive Bayes (dataset, sample):				

Pseudocódigo

6

Naive Bayes (dataset, sample):

- 1 Encontrar/Definir todos os possíveis valores da classe (h_i)
- 2 Para cada hi possível entre os valores da classe (hipótese), faça:
- Computar a probabilidade da classe no dataset todo
- 4 Selecionar as linhas do dataset correspondentes a esta classe (subset)
- Calcular o probatório das probabilidades dos atributos do exemplo de consulta, usando o subset filtrado
 - Multiplicar a probabilidade da classe pelo valor do produtório
- 7 Normalizar o vetor de probabilidades das classes
- 8 Retornar a classe com maior probabilidade

Roteiro

- 1 Introdução
- 2 Teorema de Bayes
- **3** Naive Bayes
- 4 Exercícios
- 5 Referências

Dia	Panorama	Temperatura	Umidade	Vento	Jogar?
D1	Ensolarado	Quente	Alta	Fraco	Não
D2	Ensolarado	Quente	Alta	Forte	Não
D3	Nublado	Quente	Alta	Fraco	Sim
D4	Chuvoso	Intermediária	Alta	Fraco	Sim
D5	Chuvoso	Fria	Normal	Fraco	Sim
D6	Chuvoso	Fria	Normal	Fraco	Não
D7	Nublado	Fria	Normal	Forte	Sim
D8	Ensolarado	Intermediária	Alta	Forte	Não
D9	Ensolarado	Fria	Normal	Fraco	Sim
D10	Chuvoso	Intermediária	Normal	Fraco	Sim
D11	Ensolarado	Intermediária	Normal	Fraco	Sim
D12	Nublado	Intermediária	Alta	Forte	Sim
D13	Nublado	Quente	Normal	Fraco	Sim
D14	Chuvoso	Intermediária	Alta	Forte	Não

Computar:

- P(Vento = Forte | Jogar = Sim)
- P(Umidade = Alta | Jogar = Sim)
- P(Temperatura = Fria | Jogar = Sim)
- P(Panorama = Ensolarado | jogar = Sim)

Computar:

- P(Vento = Forte | Jogar = Não)
- P(Umidade = Alta | Jogar = Não)
- P(Temperatura = Fria | Jogar = Não)
- P(Panorama = Ensolarado | jogar = Não)

- Computar:
 - P(Não)
 - P(Sim)

Computar:

- P(Não | <Panorama=Ensolarado,
 Temperatura=Fria,Umidade=Alta, Vento = Forte>)
- P(Sim | <Panorama=Ensolarado,
 Temperatura=Fria,Umidade=Alta, Vento = Forte>)
- Normalizar os valores e indicar qual é a classe predita

- Implemente o algoritmo Naive Bayes, por meio de uma função que receba apenas dois parâmetros:
 - dataset: conjunto de treinamento
 - query: conjunto de teste

Roteiro

- 1 Introdução
- 2 Teorema de Bayes
- **3** Naive Bayes
- 4 Exercícios
- 5 Referências

Referências

[Aggarwal, 2015]

[Marsland, 2014]

Referências

[Russel & Norvig, 2021]

[Luger, 2013]

Perguntas?

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br