Discrete Optimization

Quentin Louveaux

ULg - Institut Montefiore

2016

Dealing with a (NP-)hard problem

Bounding the solution

- Need of a primal bound (upper bound in the case of a minimization problem)
- Need of a dual bound (lower bound in the case of a minimization problem)

When the two bounds meet, we have a proof of optimality.

The primal bound

A primal bound is a lower bound to the value of the optimal solution for a maximization.

A primal bound is an upper bound to the value of the optimal solution for a minimization.

How to find a primal bound?

By finding a feasible solution to the problem.

The best possible primal bound is given by the optimal solution.

The dual bound

A dual bound is an upper bound to the value of the optimal solution for a maximization.A dual bound is a lower bound to the value of the optimal solution for a minimization.

How to find a dual bound?

There are several ways.

We will cover two ways: through relaxations, through Lagrangian duality.

Relaxations

Consider an optimization problem :

min
$$c(x)$$

s.t. $x \in X$.

A relaxation is an (easier) optimization problem for which the value of the optimal solution is guaranteed to be lower than that of the initial problem.

Ways to obtain a relaxation

• Enlarge the feasible set $Y \supseteq X$ and solve

min
$$c(x)$$

s.t. $x \in Y$.

• Replace the objective function c(x) by a lower value d(x) for every feasible x, i.e. $d(x) \le c(x)$ for all $x \in X$.

min
$$d(x)$$

s.t. $x \in X$.

Or combine the two.

Note : if we replace the feasible set by a smaller set $Y \subseteq X$, we talk about a restriction which may be useful to find primal bounds.

The linear programming relaxation

For a mixed-integer optimization problem of the form

min
$$c^T x + d^T y$$

s.t. $Ax + Gy \le b$
 $x \in \mathbb{Z}_+^n, y \in \mathbb{R}_+^m$

the linear programming relaxation consists in replacing the integrality constraints by simple nonnegativity constraints:

min
$$c^T x + d^T y$$

s.t. $Ax + Gy \le b$
 $x \in \mathbb{R}^n_+, y \in \mathbb{R}^m_+$

The set of feasible solutions is now larger than before.

The linear programming relaxation

For a mixed-integer optimization problem of the form

min
$$c^T x + d^T y$$

s.t. $Ax + Gy \le b$
 $x \in \{0, 1\}^n, y \in \mathbb{R}_+^m$

the linear programming relaxation consists in replacing the integrality constraints by simple nonnegativity constraints :

min
$$c^T x + d^T y$$

s.t. $Ax + Gy \le b$
 $x \in [0, 1], y \in \mathbb{R}_+^m$

The set of feasible solutions is now larger than before.

When the linear programming relaxation tells you everything

Two lucky cases allow us to solve a problem just with the linear programming relaxation.

Proposition

- If the linear programming relaxation of a mixed-integer optimization problem is infeasible, then the mixed-integer optimization problem is infeasible as well.
- If an optimal solution of the linear programming relaxation of a mixed-integer optimization problem is integral then it is also optimal for the mixed-integer optimization problem.

Idea: enumerate but using the information of the linear relaxation.

LP Solution :
$$x^{1*} = (\frac{265}{79}, \frac{160}{79})$$
 with optimal cost 12.79

Idea: enumerate but using the information of the linear relaxation.

LP Solution : $x^{1*}=(\frac{265}{79},\frac{160}{79})$ with optimal cost 12.79

Idea: enumerate but using the information of the linear relaxation.

LP Solution : $x^{1*} = (\frac{265}{79}, \frac{160}{79})$ with optimal cost 12.79

2 branches are created : either $x_1 \ge 4$ or $x_1 \le 3$

Branch 1 : $x_1 \ge 4$: $x^{2*} = (4, \frac{1}{4})$ with optimal cost 8.75

Prune by bound if we suppose x = (0,3) with cost 9 is known.

Idea: enumerate but using the information of the linear relaxation.

LP Solution : $x^{1*} = (\frac{265}{79}, \frac{160}{79})$ with optimal cost 12.79

2 branches are created : either $x_1 \ge 4$ or $x_1 \le 3$

Branch 1: $x_1 \ge 4$: $x^{2*} = (4, \frac{1}{4})$ with optimal cost 8.75

Prune by bound if we suppose x = (0,3) with cost 9 is known.

Branch 2: $x_1 \le 3: x^{3*} = (3, \frac{20}{9})$ with optimal cost 12.67

Idea: enumerate but using the information of the linear relaxation.

LP Solution : $x^{1*}=\left(\frac{265}{79},\frac{160}{79}\right)$ with optimal cost 12.79 2 further branches are created : either $x_2\leq 2$ or $x_2\geq 3$ Branch $2.1:x_2\leq 2:x^{4*}=(3,2)$ with optimal cost 12 Prune by optimality

Idea: enumerate but using the information of the linear relaxation.

LP Solution : $x^{1*} = (\frac{265}{79}, \frac{160}{79})$ with optimal cost 12.79

2 further branches are created : either $\textit{x}_2 \leq 2$ or $\textit{x}_2 \geq 3$

Branch 2.1 : $x_2 \le 2$: $x^{4*} = (3,2)$ with optimal cost 12 Prune by optimality

Branch 2.2 : $x_2 \ge 3$: $x^{5*} = (\frac{8}{5}, 3)$ with optimal cost 12.2

2 further branches : $x_1 \le 1$ which gives (1,3) (prune by optimality and bound) and $x_1 > 2$ (prune by infeasibility)

Summary of the branch-and-bound tree

Remarks

- Opportunities to prune the search:
 By bound, By optimality, By infeasibility
- Need of a good primal bound in the beginning
- Different strategies for the node selection:
 depth-first-search (good to find quickly primal solutions)
 breadth-first-search (good to increase the dual bound)
 best node (optimal for the dual bound)
- Different strategies for variable selection:
 Most fractional variable or least fractional variable
 Look ahead for best improvement in the bound: strong branching Take advantage of the history of branching: reliability branching