A) Explain, with reference to hybridisation of bonding orbitals, why carbon can form 4 single covalent bonds

 $4 \times sp^3$ hybridised orbitals are formed by the hybridisation of the orbital 2s with three 2p orbitals. This gives space for four other electrons to bond with the atom C.

B) Draw the structure of 3-ethyl-3-methylpentane

2. Name the following alkanes

2,3-dimethylpentane

3-ethyl-5,5-dimethyloctane

4-ethyl-2,2-dimethylpentane

3. Draw and name 5 isomers of C₇H₁₆

A) Heptane

B) 2, 4 - direthyl pentare

c) 3-methylhexane

D) 3 - ethylpentane

E) 2 - methylhexane

State the classification of each carbon atom in the following
 a) 2,2,3-trimethylpentane

1 - Bonded to one other Catom. Primary

2-Bonded to Jour other catoms. Quaternary

3 - Bonded to three other catoms. Tertiory

4 - Bonded to two other Catoms . secondary

5 - Bonded to one other Caton. Primary

All the radicals are bonded to one other C atom. Their C atom is primary.

b) 2,3,4-trimethylpentane

1,5-Bonded to one other Catom. Primary 2,3,4-Bondad to three other Catoms. Tertiary All the radicals are bonded to one other C atom. Their C atom is primary.

5. For 2-methylpentane, how many mono-chlorinated isomers are possible? Draw them all. Hint: look for symmetry when deciding how many there are.

There are 5 isomers possible:

6. Explain, with reference to hybridisation of bonding orbitals, why a carbon to carbon double bond does not rotate

When two carbons form a doble bond, $3x \text{ sp}^2$ hybrids orbitals are formed by combining three atomic orbitals (2s, 2x 2p) on each carbon. This forms one sigma bond and a pi bond. This π bond is not free to rotate.

$$C(z=6) \frac{15^2 25^2 2p^2}{H}$$

$$\xrightarrow{\text{Tr}} \qquad \xrightarrow{\text{Tr}} \qquad \xrightarrow$$

- A) What is the expected product formed from the reaction between 2-butene and Cl_2 ?
- (c) 2,3-dichlorobutane

B) Draw the structure of 3-bromo-4,4-dimethylpent-1-ene

- 8. 2-butene, C_4H_8 exists as a cis/trans isomeric pair. There are two other alkenes with the formula C_4H_8 . Draw their structures and state whether they too can exist in cis and trans forms.
- 1-butene does not have cis and trans forms because there are 3 out of 4 substituents are the same atom, H.

$$H$$
, CH_2-CH_3
 $C=C$
 H

2-methylprop-1-ene does not have cis and trans forms either, the substituents bonded to the C atom are the same in both sides.

$$C = C$$

9. Name the following compounds, with cis/trans nomenclature.

$$A$$
 Br
 Br

- A) Tans-4-methylhex-2-ene
- B) Cis-1,5-dibromo-2-methylhex-3-ene
- 10. Draw the structure of 1-ethyl-2-methyl-1,3-dipropylcyclopentane