Physics Notes

Matthew Stringer

Contents

1	AP Physics C				
1	Kin	Kinematics			
	1.1	Descri	ibing Motion 1	,	
		1.1.1	Average Speed		
		1.1.2	Average Velocity	•	
		1.1.3	Average Velocity		
		1.1.4	Displacement	,	
	1.2	Descri	ibing Motion 2	4	
		1.2.1	Kinematic Equations	4	
		1.2.2	Acceleration Due to Gravity	4	
		1.2.3	Objects Falling From Rest	4	
		1.2.4	Objects Launched Upward	4	
	1.3	Projec	etile Motion	ļ	
		1.3.1	Independence of Motion	1	
		1.3.2	Steps for any Projectile Motion Problem	!	
		1.3.3	Graphing Projectile Motion	!	
	1.4	Circul	ar And Relative Motion	(
		1.4.1	Converting Linear to Angular Velocity	(
2	Dyı	vnamics			
	2.1		on's First Law and Free Body diagrams	(
		2.1.1	Force	(
		2.1.2	Net Force	,	
		2.1.3	Equilibrium	,	
		2.1.4	Free Body Diagram	,	
	2.2	Newto	on's 2nd and 3rd Laws of Motion	,	
		2.2.1	Newton's 2nd Law of Motion	,	
		2.2.2	Mass vs. Weight	,	

Part I

AP Physics C

1 Kinematics

1.1 Describing Motion 1

1.1.1 Average Speed

- Average speed is the distance traveled over change in time
- It is a scaler
- Measured in meters/second.
- Magnitude of Velocity Vector

1.1.2 Average Velocity

- Average velocity is a vector.
- Measured in meters/second.

$$v_{avg} = \frac{\delta x}{\delta t} = \frac{x_f - x_i}{t_f - t_i}$$

1.1.3 Average Velocity

- Rate that velocity changes
- Is a vector
- Units are meters/second/second

$$a = \frac{\delta v}{\delta t} = \frac{dv}{dt}$$

1.1.4 Displacement

The displacement from t_0 to t_1 of a position function x(t) with velocity function v(t) is

$$\int_{t_0}^{t_1} v(t)dt$$

1.2 Describing Motion 2

1.2.1 Kinematic Equations

Variables				
v_0	Initial velocity			
v	Final velocity			
δx	Displacement			
a	Acceleration			
t	Time			

- $\bullet \ v = v_0 + at$
- $x = x_0 + v_0 t + \frac{1}{2} a t^2$
- $\bullet v^2 = v_0^2 + 2a\delta x$

1.2.2 Acceleration Due to Gravity

- Near the surface of Earth, objects accelerate at a rate of $9.8\frac{m}{s^2}$
- This is acceleration due to gravity (g)
- This can be approximated to $10\frac{m}{s^2}$
- As you move from Earth, acceleration decreases.

1.2.3 Objects Falling From Rest

- Objects starting from rest have $v_0 = 0$
- \bullet Typically down is the positive direction
- Acceleration is +g.

1.2.4 Objects Launched Upward

- \bullet Must examine the motion of object going up and down.
- Since object is going up, that is the positive direction.
- Acceleration is -g.
- At the highest point, v = 0.

1.3 Projectile Motion

A **projectile** is an object that is acted upon only gravity.

1.3.1 Independence of Motion

- Projectiles launched at an angle have motion in 2 dimensions.
 - Vertical acceleration is gravity
 - Horizontal 0 acceleration
- Vertical and Horizontal motion are treated separately

Note: An object will travel the maximum horizontal distance with a launch angle of 45°

1.3.2 Steps for any Projectile Motion Problem

1. First, know that

$$a = \begin{bmatrix} 0 \\ -g \end{bmatrix}$$

- 2. Then find your v_0 as a vector
- 3. Find your x_0 as a vector
- 4. Substitute your vectors into the following formula

$$x(t) = -\frac{1}{2}at^2 + v_0t + x_0$$

1.3.3 Graphing Projectile Motion

In order to graph a path, solve for y = f(x). Do this by solving for t in relation to x and then substitute into the y component. For example:

$$x = f(t)$$

$$y = g(t)$$
Find $y = h(x)$

$$t = f^{-1}(x)$$

$$y = g(f^{-1}(x)) = h(x)$$
so $h(x) = g(f^{-1}(x))$

1.4 Circular And Relative Motion

1.4.1 Converting Linear to Angular Velocity

If we have an object moving counter clockwise around a point, let $\omega = \frac{d\theta}{dt}$. If we know that the object has velocity v and position s, we know that $s = r\theta$ where r is the radius of the circular path. By taking the derivative of both sides, $\dot{s} = r\dot{\theta}$. Now we can substitute to find the angular velocity.

$$\dot{s} = r\omega$$

2 Dynamics

2.1 Newton's First Law and Free Body diagrams

Newton's First Law

An object at rest will remain at rest, and an object in motion will remain in motion, at constant velocity and in a straight line, unless acted upon by a net force.

2.1.1 Force

- A force is a push or pull on an object.
- Units of force are in Newtons (N).
- A newton is roughly the weight of an apple

$$1N = 1\frac{kg * m}{s^2}$$

Contract Force

A force that arises that from direct contact between objects.

- Tension
- Applied Force
- Friction

Field Force

Forces that act at a distance.

- Gravity
- Electrical
- Magnetic

2.1.2 Net Force

A net force is the vector sum of all the forces acting on an object.

$$F_{net} = \sum F$$

2.1.3 Equilibrium

- Static Equilibrium
 - Net force is 0
 - Net torque is 0
 - Object is at rest
- Mechanical Equilibrium
 - Net force is 0
 - Net torque is 0
- Translational Equilibrium
 - Net force is 0

2.1.4 Free Body Diagram

A Free Body Diagram (FBD) is a diagram that maps all of the forces that are applied to a single object.

2.2 Newton's 2nd and 3rd Laws of Motion

2.2.1 Newton's 2nd Law of Motion

- The acceleration of an object is in the direction of and directly proportional to the net force applied, and inversely proportional to the object's mass.
- Valid only in *inertial reference frames*.

$$F_{net} = \sum F = ma$$

2.2.2 Mass vs. Weight

- Mass is the amount of stuff that something is made up of (independent of gravity)
- Weight is the force of gravity on an object. (dependent on gravity)

LEFT OFF ON EXAMPLE X: BANKED CURVES (23:00)