КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Фізичний факультет (назва факультету, інституту)

Кафедра ядерної фізики та високих енергій

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЙ

Перехідні процеси в ядерних реакторах

(повна назва навчальної дисципліни)

для студентів

галузь знань

спеціальність

освітній рівень

освітня програма

вид дисципліни

10 Природничі науки (шифр і назва)

104 - "Фізика та астрономія"

(шифр і назва спеціальності)

магістр (молодший бакалавр, бакалавр, магістр)

Ядерна енергетика

вибіркова

Форма навчання

Навчальний рік Семестр

Кількість кредитів ЕСТЅ

Мова викладання, навчання

та оцінювання

Форма заключного контролю

денна

2022/2023 3

українська

екзамен

Викладач: докт. техн. наук, В.І.Борисенко

(Науково-педагогічні працівники, які забезпечують викладання даної дисципліни у відповідному навчальному році)

Пролонговано: на 20_/20_ н.р. ____ на 20__/20__ н.р. ____ на 20__/20__ н.р. _____(підпис, ПІБ, дата)

КИЇВ - 2022

Розробник: Борисенко Володимир Іванович, доктор технічних наук

Схвалено науково - методичною комісією факультету фізичного факультету	
Протокол від « <u>10</u> » <u>червня</u> 20 <u>22</u> року № <u>11</u>	
Голова науково-методичної комісії	Олег Оліх)
(підпис)	(прізвище та ініціали)
«»20 року	

ЗАТВЕРДЖЕНО

Зав. кафедри ядерної фізики та високих енергій

Протокол № <u>14</u> від «<u>03</u>» <u>червня</u> 2022 р.

Кенфен (Ігор Каденко) (рідрис) (прізвище та ініціали)

ВСТУП

1. Мета дисципліни — надання студентам базових знань, щодо перехідних процесів в ядерних реакторах

2. Попередні вимоги до опанування або вибору навчальної дисципліни:

- 1. Успішне опанування загальних курсів "Математичний аналіз", "Аналітична геометрія", "Теорія ймовірностей", "Диференціальні рівняння", а також наступних спеціальних курсів: "Обладнання ядерних енергетичних установок" та "Ядерна безпека АЕС".
- 2. Вміти розв'язувати задачі в рамках загальних математичних курсів, а також курсів фізики та спеціальних курсів.
- 3. Володіти навичками роботи на комп'ютері щодо інформаційного пошуку в мережі Інтернет, а також числового вирішення математичних задач..

3. Анотація навчальної дисципліни:

Навчальна дисципліна "Перехідні процеси в ядерних реакторах" є складовою циклу професійної підготовки фахівців освітньо-кваліфікаційного рівня "магістр".

Курс "Перехідні процеси в ядерних реакторах " дозволить значно покращити професійну підготовку студентів кафедри ядерної фізики, що пов'язано з набуттям нових навичок студентами для розрахунку параметрів ядерних реакторів та систем ядерних енергетичних установок для убезпечення використання ядерної енергії в енергетиці, медицині, прикладних та фундаментальних дослідженнях.

Структура курсу: робота з вивчення програмного матеріалу поділяється на два змістові модулі. У першому змістовному модулі вивчається матеріал за темою «Динаміка ядерного реактора нульової потужності», у другому — «Динаміка ядерного реактора зі зворотними зв'язками».

4. Завдання (навчальні цілі) — Сформувати у студенів уявлення про сучасні галузі застосування ядерної енергії.

5. Результати навчання за дисципліною:

_ · ·	3. 1 слупитати навтания за дисциплиною.					
Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)		Методи викладання і	Методи	Відсоток у підсумковій оцінці з		
Код	Результат навчання	навчання	оцінювання	дисципліни д		
1.1	Знати особливості розрахунку різних типів реакторів та підходи до динаміки ядерних реакторів	лекція	Контрольні завдання	50		
2.1	Вміти розв'язувати основні типи задач з ядерної енергетики.	лекція	Контрольні завдання	50		

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін)

Результати навчання дисципліни Програмні результати навчання	1.1	2.1
РН02. Проводити експериментальні та теоретичні дослідження з	+	
фізики та астрономії, аналізувати отримані результати в		
контексті існуючих теорій, робити аргументовані висновки		
(включаючи оцінювання ступеня невизначеності) та пропозиції		
щодо подальших досліджень.		
РН03. Застосовувати сучасні теорії наукового менеджменту та		+
ділового адміністрування для організації наукових та		
прикладних досліджень в області фізики та астрономії.		
РН05. Здійснювати феноменологічний та теоретичний опис		+
досліджуваних фізичних та астрономічних явищ, об'єктів та		
процесів.		
РН06. Обирати ефективні математичні методи та інформаційні	+	+
технології та застосовувати їх для здійснення досліджень та/або		
інновацій в області фізики та астрономії		
РН07. Оцінювати новизну та достовірність наукових результатів	+	
з обраного напряму фізики та астрономії, оприлюднених у		
формі публікацій чи усної доповіді.		
РН13. Створювати фізичні, математичні і комп'ютерні моделі		+
природних об'єктів та явищ, перевіряти їх адекватність,		
досліджувати їх для отримання нових висновків та поглиблення		
розуміння природи, аналізувати обмеження.		
РН14. Розробляти та викладати фізичні навчальні дисципліни у	+	+
закладах вищої, фахової передвищої, професійної (професійно-		
технічної), загальної середньої та позашкільної освіти,		
застосовувати сучасні освітні технології та методики,		
здійснювати необхідну консультативну та методичну підтримку		
здобувачів освіти.		
РН17. Володіти сучасними комп'ютерними технологіями у	+	+
фізиці ядра та елементарних частинок		
РН18. Володіти основами фізики реакторів, ядерної безпеки	+	+
АЕС, експлуатації ядерних енергоблоків		
РН24. Знати основи теорії теплопровідності, конвективного	+	+
теплообміну в однофазних та двофазних потоках, основні		
моделі та методи дослідження теплогідравлічних процесів.		

Контроль знань і розподіл балів, які отримують студенти.

Контроль здійснюється за модульно-рейтинговою системою.

У змістовий модуль 1 (ЗМ1) входять теми 1 - 2, а у змістовий модуль 2 (ЗМ2) — теми 3 — 4. Обов'язковим для іспиту/заліку є виконання i захист домашних

самостійних завдань, та позитивна оцінка за кожну з модульних контрольних робіт.

Оиінювання за формами контролю:

2)	1/1	73.		
3M1		3/	1 2	
Min. — 15балів	<i>Max.</i> – 30 бали	Min. – 15 бали	<i>Max.</i> – 30 балів	
5	10	5	10	
10	20	10	20	
	5	5 10	5 10 5	

[&]quot;3" – мінімальна/максимальна оцінку, яку може отримати студент.

1 – мінімальна/максимальна залікова кількість робіт чи завдань.

Для студентів, які набрали сумарно меншу кількість балів ніж критичнорозрахунковий мінімум — 30 балів для одержання іспиту/заліку обов'язково: vвипадку отримання незадовільної контрольної модульної рейтингової оцінки студент повинен повторно пройти модульний контроль в установленому порядку. При повторному проходженні модульного контролю або його допуску до модульної контрольної роботи за клопотанням деканату максимальна величина контрольної модульної рейтингової оцінки зменшується на один бал у порівнянні з наведеною више.

У випадку відсутності студента з поважних причин відпрацювання та перездачі МКР здійснюються у відповідності до "Положення про порядок оцінювання знань студентів при кредитно-модульній системі організації навчального процесу" від 1 жовтня 2010 року.

При простому розрахунку отримаємо:

	Змістовий модуль1	Змістовий модуль2	іспит / залік	Підсумкова оцінка
Мінімум	15	15	30/	60
Максимум	30	30	40/	100

При цьому, кількість балів:

- 1-34 відповідає оцінці «незадовільно» з обов'язковим повторним вивченням дисципліни;
- 35-59 відповідає оцінці «незадовільно» з можливістю повторного складання;
- 60-64 відповідає оцінці «задовільно» («достатньо»);
- 65-74 відповідає оцінці «задовільно»;
- 75 84 відповідає оцінці «добре»;
- 85 89 відповідає оцінці «добре» («дуже добре»);
- **90 100** відповідає оцінці «відмінно».

Шкала відповідності (за умови іспиту)

заліку)

За 100 – бальною шкалою	За національною шкалою					
90 – 100	5 відмінно					
85 – 89		,				_
75 – 84	1 4	добре				
65 – 74	3					
60 – 64		задовільно				

Шкала відповідності (за умови

35 – 59	2	не задовільно
1 – 34		

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ І ПРАКТИЧНИХ ЗАНЯТЬ

N₂		Кількість годин				
п/п	Назва лекції		Лабораторні роботи	C/P		
	Змістовий модуль 1 Динаміка ядерного реактора нульової потужності					
1	Тема 1. Кінетика нейтронів в ядерному реакторі: Миттєві нейтрони; Характеристики продуктів поділу	4	3	20		
2	Тема 2. Нейтрони, що запізнюються, та їх ядра — попередники: Нейтрони, що запізнюються; Запізніле гамма-випромінення та фотонейтрони	3	20			
3	Тема 3. Рівняння обернених годин: Зв'язок між реактивністю та періодом реактора; Зв'язок між реактивністю та періодом реактора для складних систем.	6	-	20		
	Модульна контрольна робота 1		2			
	Змістовий модуль 2 . Динаміка ядерного реактора зі звороп	пними з	в'язками			
4	Тема 4. Визначення кінетичних параметрів ядерного реактора: Статистичні методі визначення реактивності; Динамічні методі визначення реактивності.	4	3	20		
5	Тема 5. Кінетика реактора зі зворотними зв'язками: Ефекти реактивності; Кінетика реактора зі зворотними зв'язками.	6	3	20		
6	Тема 6. Теорія стійкості ядерного реактора: Питання нелінійної динаміки; Просторова стійкість ядерного реактора		3	20		
	Підсумкова модульна контрольна робота		2			
	ВСЬОГО	45	15	120		

Загальний обсяг *180 год.*, в тому числі: Лекцій – *45 год*. Лабораторні роботи – *15 год*. Самостійна робота - *120 год*.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна: (Базова)

- 1. Физические основы кинетики ядерных реакторов./ Кипин Дж. Р. М.: Атомиздат, 1967. 428 с
- 2. Динамика ядерных реакторов. / В.Ф.Колесов, П.А. Леппик, С.П.Павлов и др.-М.: Энергоатомиздат, 1990. 518 с.

- 3. Основы теории и методы расчета ядерных энергетических реакторов. Бартоломей Г.Г. и др.-М. Энергоатомиздат. 1989. 512 с.
- 4. Физика ядерных реакторов. С.В.Широков, 1998. 288 с.
- 5. ВВЭР-1000: физические основы эксплуатации, ядерное топливо, безопасность /А.М.Афров, С.А.Андрушечко, В.Ф.Украинцев и др.- М.: Университетская книга, Логос, 2006.-488 с.

Додаткова:

- 6. Ядерные энергетические реакторы. С.В.Широков, 1997. 280 с.
- 7. Теория ядерных реакторов. Фейнберг С.М. и др.М.: Атомиздат, 1978. -400 с.

В тому числі й інтернет ресурси

- 1. http://www.icjt.org/nukestat/index.html
- 2. www.worldnuclearorg/education/whyu.htm
- 3. http://nuclphys.sinp.msu.ru/