Esercizio 1

Dato il circuito amplificatore in figura di cui sono noti:

I valori delle resistenze: $R_i = 5k\Omega$, $R_L = 20k\Omega$ La tensione di alimentazione: $V_{DD} = 10V$

I parametri dei MOSFET:

 \circ M₁: k₁ = 0.5mA/V², $V_{T1} = -2V$, $\lambda_1 = 0V^{-1}$ \circ M₂: k₂ = 0.5mA/V², $V_{T2} = -3V$, $\lambda_2 = 0V^{-1}$ $\begin{array}{lll} \odot & M_3\colon k_3 = 5mA/V^2, & V_{T3} = -3V, & \lambda_3 = 0.00125V^{-1} \\ \odot & M_4\colon k_4 = 5mA/V^2, & V_{T3} = 4V, & \lambda_4 = 0V^{-1} \end{array}$

Calcolare:

- 1) Il valore della resistenza R₄ e punto di polarizzazione di tutti i MOSFET sapendo che in condizioni DC la corrente sul carico R_L è I_L = 0A. (trascurare l'effetto della modulazione della lunghezza di canale nell'analisi del punto operativo del circuito in condizioni DC)
- Disegnare il modello ai piccoli segnali.
- 3) Calcolare le resistenze di ingresso (R_{IN} e di uscita R_{OUT}) come evidenziate nel circuito.
- 4) Calcolare il guadagno di tensione A_v=v_o/v_i

1)
$$V_0 = 0$$
 => $I_L = 0$
 $V_{CS1} = 0V$ => $I_{D1} = \frac{|X_1|}{2} (V_{uS1} - V_{TM1})^2 = 1 \text{ mA}$
 $I_{D2} = I_{D31} = 1 \text{ mA}$
 $V_{uS2} = V_{uS2} - \sqrt{\frac{2I_02}{|X_2|}} = -SV \quad V_{uS2} = -SV$
 $V_{uS3} = V_{uS2} - V_{uS2} - V_{uS1} = 0 + V_{uS2} + V_{uS2}$
 $V_{uS3} = V_{uS1} - V_{uS1} = 0 + V_{uS2} + V_{uS2}$
 $V_{uS3} = V_{uS1} - V_{uS2} - V_{uS2} = -SV + 3V = -2V + 0V$

$$V_{CS3} = V_{CS2} = \sum I_{D3} = K_{2} I_{D2} = 10 \text{ mA}$$

$$C_{BN} I_{C=0} \Rightarrow I_{V} = I_{T3} = I_{D} \text{ mA}$$

$$V_{DS3} = 0V - V_{D0} = -V_{D0} = -C_{D0} V_{D3} < V_{CS3} - V_{T3} = -S_{U} + 3_{U}$$

$$V_{CS4} = V_{T4} + \sqrt{\frac{2I_{U}}{K_{4}}} = 6_{U} V_{DS4} = 0 - (-6_{U}) = 6_{U} V_{DS4}$$

$$V_{CS4} = -V_{CS4} = -6_{U} V_{DS4} = 0_{14} K_{2} = 4_{10} C_{2} V_{CS4}$$

$$V_{R_{U}} = -6_{U} - (-10_{U}) = 4_{U} V_{DS4} = 0_{14} K_{2} = 4_{10} C_{2} V_{CS4}$$

$$V_{R_{U}} = -6_{U} - (-10_{U}) = 4_{U} V_{DS4} = 0_{14} K_{2} = 4_{10} C_{2} V_{CS4}$$

$$V_{CS4} = V_{CS4} V_{CS4} V_{CS4} V_{CS4} = 0_{14} K_{2} = 0_{14} K_{2}$$

Esercizio 2

Sia dato il circuito in figura nella pagina seguente, realizzato con un amplificatore operazionale ideale.

- 1) Calcolare la tensione di uscita con $v_s = 0V$.
- 2) Calcolare la funzione di trasferimento $W(\omega) = v_0/v_s$
- 3) Tracciare il diagramma di Bode asintotico di modulo e fase
- 4) Sapendo che il segnale di ingresso è: $v_s(t) = V_s \sin(\omega_o t + \pi)$, $V_s = 1V$ e $\omega_o = 100$ rad/s calcolare ampiezza e fase del segnale di uscita usando il diagramma asintotico.

DATI:

$$R_1 = 1kΩ$$
,
 $R_2 = 4kΩ$,
 $R_3 = 1kΩ$,
 $R_4 = 99kΩ$, $C_4 = 10.1nF$
 $R_5 = 10kΩ$, $C_5 = 10μF$
 $V_B = 1V$

Esercizio Q1

L'amplificatore in figura è realizzato usando un amplificatore operazionale ideale, un diodo ideali (V_{ON} = 0) e un diodo zener ideale (V_{ON} = 0 e V_Z = 6V) e R = 1k Ω

Calcolare

1)
$$v_0$$
 per $v_S = -10V$

2)
$$v_0$$
 per $v_S = +10V$

Facoltativo: Tracciare la transcaratteristica del circuito (v_O in funzione di v_S) indicando i punti di spezzamento della curva e i valori delle pendenze delle semirette.

Dz Sempe OFF

$$N_S = -10V$$
 Hp $D_d = 0N$
 $CR || 3R = 2R$
 $CR || 3R = 2R$

Esercizio Q2

L'amplificatore in figura è realizzato usando un amplificatore operazionale reale con, $I_{BIAS}=500 nA$ (con verso entrante negli ingressi dell'amplificatore), $V_{OS}=0.1 mV$.

Sapendo che $R_2 = 100k\Omega$ e $R_1 = 20k\Omega$.

Calcolare la tensione di uscita con $v_S = -3V$,

PROBLEMA Q3

Data la seguente mappa di Karnaugh

- 1) Trovare una F minimizzata
- 2) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

		1 1	1	1	1 1
AB	CD	00	01	11	10
00		0	1	1	0
01	L	0	1	x	0
11	L	1	0	x	1
10)	X	x	1	x

