Aula 05 - Análise multivariada

Estatística Descritiva

Stefano Mozart 12/02/2025

Sumário

- Análise paramétrica univariada
- Análise multivariada com gráficos
- Medidas de associação

Análise univariada

Uma breve introdução às Funções de Distribuição de Probabilidade

- A distribuição de probabilidade é uma função que descreve todos os resultados possíveis de um experimento aleatório e atribui a cada um deles uma probabilidade, obedecendo aos axiomas da probabilidade.
 - Por exemplo, a soma das probabilidades para variáveis discretas ou a integral da densidade para variáveis contínuas é igual a 1.
- Para variáveis discretas, temos a função de massa de probabilidade (PMF), que atribui a cada valor: f(x) = P(X = x)
- Para as contínuas, temos a função densidade de probabilidade (PDF) f(x), que deve satisfazer: $\int_{-\infty}^{\infty} f(x) \, dx = 1$
- \Box A probabilidade de X estar em um intervalo [a,b] é dada por:

$$P(a \le X \le b) = \int_a^b f(x) dx$$

Exemplos de distribuições conhecidas:

□ **Distribuição normal**: muita utilizada para representar eventos naturais.

$$f(x) = rac{1}{\sigma\sqrt{2\pi}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight), \quad x \in \mathbb{R},$$

- □ **Distribuição Gamma:** utilizada para modelar o tempo até um evento de referência (vida útil, sobrevivência, etc).
- \Box Utiliza um parâmetro de forma α , e um parâmetro de escala θ .

$$f(x;k, heta)=rac{x^{k-1}e^{-x/ heta}}{ heta^k\Gamma(k)},\quad x\geq 0$$

- Distribuição Beta: definida no intervalo [0,1] utilizada para modelar variáveis limitadas.
- $f \Box$ Bastante flexível, utiliza o parâmetros lpha e m eta para definir a forma da distribuição.

$$f(x;lpha,eta)=rac{x^{lpha-1}(1-x)^{eta-1}}{B(lpha,eta)},\quad 0\leq x\leq 1$$

- **Log-Normal:** curva positivamente assimétrica, modela eventos de valor estritamente monotonicamente positivos.
- Utiliza os mesmo parâmetros da distribuição normal.

$$f(x;\mu,\sigma) = rac{1}{x\sigma\sqrt{2\pi}} \exp\!\left(-rac{(\ln x - \mu)^2}{2\sigma^2}
ight), \quad x>0.$$

Distribuição Exponencial: utilizada para modelar o tempo entre eventos em um processo de Poisson, com taxa λ:

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$

Tukey criteria for anomalies. Exponential probability distribution function.

A escolha da função de distribuição que melhor se ajusta a uma amostra é fundamental para a modelagem estatística e envolve diversas etapas e técnicas:

Visualização dos Dados:

- Histograma: Permite comparar a forma empírica da distribuição dos dados com as curvas teóricas das distribuições candidatas.
- Gráficos Q-Q (Quantile-Quantile): Confrontam os quantis da amostra com os quantis teóricos de uma distribuição proposta. Se os pontos se alinharem aproximadamente em uma reta, isso indica uma boa aderência.
- P-P (Probability-Probability) Plot: Compara as probabilidades acumuladas empíricas com as teóricas.

Estimação dos Parâmetros:

- Máxima Verossimilhança (MLE): Método que busca os valores dos parâmetros que maximizam a probabilidade (ou verossimilhança) de observar os dados amostrais.
- Método dos Momentos: Utiliza os momentos amostrais para estimar os parâmetros da distribuição.
- Outros métodos podem incluir técnicas bayesianas, especialmente quando se incorpora conhecimento prévio.

Testes de Aderência (Goodness-of-Fit):

- Teste de Kolmogorov-Smirnov (K-S): Compara a função de distribuição acumulada empírica com a teórica para avaliar se as diferenças são estatisticamente significativas.
- ☐ Teste de Anderson-Darling: Uma variação do K-S que dá mais peso às caudas da distribuição.
- Teste Qui-Quadrado: Compara as frequências observadas e as esperadas em classes definidas; útil quando se trabalha com dados categorizados ou quando o tamanho da amostra é grande.

Critérios de Informação:

Akaike Information Criterion (AIC) e Bayesian Information Criterion (BIC): comparam diferentes modelos de distribuição, considerando o ajuste aos dados e a complexidade do modelo. O modelo com menor AIC ou BIC é geralmente preferido. Análise multivariada com Gráficos

Gráfico de dispersão

Exibe gráficos de dispersão para cada par de variáveis em um conjunto de dados, permitindo a inspeção visual de correlações e relações bivariadas.

- Comumente associado à criação de matrizes de dispersão (onde vários recortes são comparados ao mesmo tempo);
- Ideal para uma análise exploratória inicial:

Gráfico de frequência

Auxilia a visualização da contribuição de cada recorte (dado por uma variável categórica) da amostra na contagem da frequência.

- \Box Ajuda na identificação de possíveis diferenças internas nos parâmetros associados a cada classe (e.g. μ e σ);
- Pode ser utilizado tanto para variáveis qualitativas quanto quantitativas:

Parallel Coordinates Plot

Exibe cada observação como uma linha que cruza vários eixos paralelos, onde cada eixo representa uma variável. Isso facilita a visualização dos padrões e a comparação de perfis entre os dados.

- Análise de dados de alta dimensionalidade.
- Comparação de padrões entre diferentes grupos.

Biplot (PCA)

Integra os resultados da Análise de Componentes Principais (PCA) para visualizar, em um espaço de menor dimensão, tanto as observações quanto as variáveis (através dos vetores de loadings).

Heatmap

Exibe uma matriz de correlação utilizando uma escala de cores para representar a intensidade e a direção das relações entre variáveis.

- Análise exploratória para identificar fortes associações entre variáveis.
- Auxílio na seleção de variáveis para modelagem.

Boxplot e violin plot

Utilizado como ferramenta de estudo da estrutura da amostra, em termos de suas partições.

- Pode informar diferentes estruturas internas, quando subdividido por uma ou mais variáveis categóricas;
- Apresenta tanto informações de posição (quartis) quando de dispersão;

MDS

Projeta dados de alta dimensão em um espaço 2D ou 3D, preservando a distância ou dissimilaridade entre as observações o máximo possível.

Visualização de agrupamentos e padrões espaciais com base em medidas de similaridade ou distância.

Radar

Exibe dados multivariados em formato circular, onde cada eixo representa uma variável. As observações são conectadas formando um polígono, facilitando a comparação de perfis..

Radar Chart - Média Res levitures por Espécie (Iris)

- Comparação de atributos ou perfis entre diferentes grupos.
- Análises de desempenho ou benchmarking.

Scatter plot 3D

Geralmente associado a séries temporais, também pode ser utilizado com ferramenta de análise de correlação e dependência entre variáveis.

3D Scatter Plot - Dataset Iris

- Análise de relações entre três variáveis principais
- Visualização exploratória quando os dados não estão muito sobrepostos.

Prática

Exercícios:

- Exiba um gráfico de dispersão, do tipo KDE, da sua variável contínua, particionado por alguma variável qualitativa.
- 2. Exiba o gráfico de dispersão do tipo scatter plot de duas variáveis, preferencialmente contínuas, da sua amostra;
- 3. Exiba gráficos do tipo violin e estude a diferença de dispersão entre subclasses da sua amostra.

Refere-se a um conjunto de métodos estatísticos que torna possível a análise simultânea de múltiplas medidas associadas a cada elemento da amostra, com múltiplos objetivos, entre os quais:

- □ Sintetizar ou simplificar o entendimento da estrutura dos dados, no que tange às
- Classificar ou agrupar elementos de acordo com a multiplicidade de características registradas na amostra;
- Inferir a probabilidade condicional de observar certo valor em uma variável, dados os valores de outras variáveis, a partir do conhecimento das interações e padrões de associação e dependência internas à amostra;

Normalização: processo de transformação dos dados que visa padronizar diferentes variáveis para melhorar sua interpretabilidade e comparação.

Normalização Min-Max:

$$x_{i-norm} = rac{x_i - x_0}{x_n - x_0}$$

- Quando se deseja manter a forma original da distribuição dos dados, apenas alterando sua escala.
- ☐ Útil em algoritmos que dependem da distância entre os dados (como k-NN ou algoritmos baseados em gradiente), onde as variáveis em escalas muito diferentes podem influenciar indevidamente o modelo.
- Atenção: É sensível a outliers, pois estes definem os valores mínimo e máximo.

Normalização por z-score:

$$z_i = rac{x_i - ar{x}}{S}$$

- Indicada para centralizar os dados e garantir que as diversas variáveis possam ser representadas conjuntamente, numa mesma escala;
- Muito útil em métodos estatísticos que assumem normalidade ou que são sensíveis à escala, como regressões, análise de componentes principais (PCA) e métodos baseados em distância;
- Aplicável apenas quando há forte aderência da amostra à distribuição normal;
- Sensível a outliers;

Normalização Robusta:

$$x_{ ext{robust}} = rac{x - ext{mediana}(x)}{ ext{IQR}}$$

- Indicado quando os dados contêm outliers ou apresentam uma distribuição fortemente assimétrica.
- Essa abordagem diminui a influência dos valores extremos, proporcionando uma escala mais representativa da "parte central" dos dados.

Indicam a existência de uma relação estatisticamente significativa entre duas variáveis, sem, contudo, quantificar a intensidade ou direção dessa relação.

Coeficiente Phi:

- ☐ Utilizado para avaliar a associação entre duas variáveis dicotômicas (2x2).;
- □ Tendo como base o endereçamento na tabela de contingência ao lado, o coeficiente é dado por:

	Y=1	Y=2
X=1	A	В
X=o	С	D

$$\phi = \frac{AD - BC}{\sqrt{(A+B)(C+D(A+C)(B+D))}}$$

 Por ser dependente das unidades de medida das variáveis, sua interpretação direta pode ser limitada;

V de Cramer:

- Uma extensão do Phi para tabelas de contingência maiores que 2x2, que fornece uma medida da força da associação entre variáveis categóricas.;
- $f \Box$ É dado pela expressão abaixo, onde k é o mínimo entre o número de linhas e colunas da tabela:

$$V = \sqrt{\frac{\chi^2}{n(k-1)}}$$

Teste Qui-Quadrado:

Avalia a independência entre duas variáveis categóricas, comparando as frequências observadas com as frequências esperadas sob a hipótese nula de independência. A estatística é dada por:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{i=1}^{c} rac{(O_{ij} - E_{ij})^{2}}{E_{ij}}.$$

- Onde:
 - $oldsymbol{\Box}$ O_{ii} é a frequência observada na célula correspondente à linha i e coluna j;
 - $oxedsymbol{\square}$ E_{ii} é a frequência esperada para aquela célula

$$E_{ij} = \frac{(\sum_{i=1}^{r} O_i)(\sum_{i=1}^{c} O_j)}{n}$$

r e c são, respectivamente, o número de linhas e colunas da tabela de contingência

Teste Qui-Quadrado:

Considere o exemplo:

	Doença presente	Doença ausente	Total
Fumante	30	20	50
Não fumante	10	40	50
Total	40	60	100

Cálculo:

- □ A fórmula dá o valor de 16,6;
- \Box Consultando esse valor na tabela do Qui-Quadrado, para grade de liberdade 1, obtemos uma probabilidade p=4,9e-5
- Isso significa que o p-valor é aproximadamente 0,000049, indicando uma evidência estatística extremamente significativa para rejeitar a hipótese nula de independência em um teste de qui-quadrado com 1 grau de liberdade.

Coeficiente de Contingência:

Avalia significância estatística da associação com um ajuste ao Qui-Quadrado;

$$C=\sqrt{rac{\chi^2}{\chi^2+n}}$$

□ Seguindo o exemplo anterior, com \Box^2 = 16,6 e 100 observações, teremos:

$$C = \sqrt{rac{16,6}{16,6+100}} pprox \sqrt{0,143} pprox 0,378$$

□ O valor de *C* varia entre 0 (sem associação) e um máximo que depende da dimensão da tabela (em uma tabela 2x2, esse máximo é inferior a 1). Nesse exemplo, um coeficiente de aproximadamente 0,378 sugere uma associação moderada entre o hábito de fumar e a presença de doença pulmonar.

Covariância

Covariância: Mede a direção de associação entre duas variáveis.

 \Box A covariância entre duas variáveis X e Y é dada por:

$$Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- Um valor positivo indica que ambas variam na mesma direção;
- Por ser dependente das unidades de medida das variáveis, sua interpretação direta pode ser limitada;

Correlação

As medidas de correlação têm como objetivo quantificar a associação entre duas ou mais variáveis, permitindo identificar tanto a direção quanto a intensidade dessa relação.

Coeficiente de Correlação de Pearson:

- Avalia a força e a direção de uma relação linear entre duas variáveis quantitativas;
- Pressupõe relação de linearidade entre as variáveis;
- □ Definido no intervalo [-1, 1], onde:
 - □ 1 indica correlação linear positiva perfeita,
 - □ -1 indica correlação linear negativa perfeita,
 - 0 indica ausência de correlação linear.;

$$r = \frac{\text{Cov}(X, Y)}{S_x S_y}$$

Correlação

Coeficiente de Correlação de Spearman:

- Medida não paramétrica que utiliza os rankings dos dados para avaliar a relação monotônica entre duas variáveis;
- □ É útil quando os dados não atendem aos pressupostos de normalidade ou quando a relação não é estritamente linear;
- \square Se $R(x_i)$ e $R(y_i)$ representam os postos de x_i e y_i :

$$\rho = \frac{\sum_{i=1}^{n} (R(x_i) - R(\bar{x}))(R(y_i) - R(\bar{y}))}{\sqrt{\sum_{i=1}^{n} (R(x_i) - R(\bar{x}))^2} \sqrt{\sum_{i=1}^{n} (R(y_i) - R(\bar{y}))^2}}$$

Se não houver repetições na amostra, também é possível utilizar a forma simplificada $6\sum_{i=1}^n (R(x_i)-R(y_i))^2$

$$ho = 1 - rac{6\sum_{i=1}^{n}(R(x_i) - R(y_i))^2}{n(n^2 - 1)}$$

Medidas de associação: variáveis contínuas

Coeficiente de Correlação de Kendall (Tau de Kendall):

- Outra medida não paramétrica baseada na comparação dos rankings dos dados;
- Especialmente indicada para amostras pequenas ou quando há muitos empates nos dados;
- Dado pela expressão: $au = rac{2(n_c n_d)}{n(n-1)}$
- Onde:
 - \mathbf{n}_c é o número de pares concordantes;
 - \mathbf{n}_d o número de discordantes;

Medidas de associação: variáveis contínuas

Coeficiente de Correlação de Kendall (Tau de Kendall):

Em casos onde haja repetições na amostra, faz-se necessário utilizar a versão modificada do coeficiente de Kendall, dada por:

$$au_B = rac{n_c - n_d}{\sqrt{(n_t - n_x)(n_t - n_y)}}$$

- Onde:
 - \mathbf{n}_{c} é o número de pares concordantes
 - \mathbf{n}_d o número de discordantes
 - $lacksquare n_t$ é o total de possíveis pares: $n_t = \frac{n(n-1)}{2}$
 - $oldsymbol{n}_{\chi}$ é o ajuste para empates na variável X $n_{x}=\sum_{i}^{n}rac{e_{x,i}(e_{x,i}-1)}{2}$
 - \blacksquare n_y é o ajuste para empates na variável Y $n_y = \sum_{i}^{n} \frac{e_{y,i}(e_{y,i}-1)}{2}$

Correlação

Spearman vs Pearson:

- Aplicabilidade
 - Pearson é limitado a variáveis contínuas;
 - Spearman é mais versátil, podendo ser usado tanto para variáveis contínuas quanto para variáveis discretas e ordinais;
 - Spearman é mais robusto contra outliers, pois substitui a magnitude pelo posto.
- Interpretação dos Resultados
 - Quando os coeficientes apresentam valores semelhantes, a relação entre as variáveis é provavelmente linear;
 - Quando Spearman for maior que Pearson, indica provável relação não linear monotônica;
 - Pearson maior que Spearman: pode indicar presença de outliers;

Determinação

Em regressão linear, é possível avaliar o poder de explicação do modelo

Coeficiente de Determinação (R2):

- Indica a proporção da variação na variável dependente que pode ser explicada pelas variáveis independentes;
- É uma medida da qualidade do ajuste do modelo;

$$R^{\scriptscriptstyle 2} = rac{\sum_{i=1}^n (y_i - \hat{y})^{\scriptscriptstyle 2}}{\sum_{i=1}^n (y_i - ar{y})^{\scriptscriptstyle 2}}$$

Prática

Exercícios:

- 1. Selecione duas variáveis categóricas e calcule as medidas de associação.
- 2. Selecione duas variáveis contínuas e calcule as medidas de covariância e correlação;

Obrigado

Stefano Mozart

linkedin.com/in/stefano-mozart/ github.com/stefanomozart

