1			_		_	_	 	 	 		
1	Reg. No			-							
-											1 1

B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, DECEMBER 2023

Fifth Semester

21MAB302T - DISCRETE MATHEMATICS

(For the candidates admitted during the academic year 2022-2023 onwards)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
ii. Part - B and Part - C should be answered in answer booklet.

Tin	e: 3 Hours	a	Max	. Mark	s: 75
	PART - A (20 × 1 Answer all Q		Mar	rks BL	со
1.	If $A=\{2,4,6\}$ then nof subsets of A is (A) 2^3 (C) 2^5	(B) $2^6 - 1$ (D) $2^5 - 1$	1	1	1
2.	Let A={1,2,3,4,5,6,7,8,9,10}. Then three elements is (A) 150 (C) 120	n of subsets of A containing exactly (B) 250 (D) 45	1	2	1
3.	The relation R in the set Z on integers given R={(a,b): a-b is divible by 3} is (A) Reflexive only (C) symmetric and Transitive only	• /	1	= 2	1
4.	If f is a function from A to B and n(A)=2 of functions is (A) 35 (C) 8	(B) 53 (D) 16	1	3	1
5.	If $n(A) = 24$, $n(B) = 15$ and $n(A \cap B)$ (A) 34 (C) 31) = 3, then $n(A \cup B)$ is (B) 36 (D) 30	1	2	2
6.	Number of different 2-digit numbers can (A) 99 (C) 100	be made from digits 0,1,2,3,4,5,6,7,8,9 is (B) 101 (D) 95	1	1	2 _
7.	Number of permutations of the letters A, is (A) 140 (C) 110	B, C, D, E, F, G containing the string BCD (B) 120 (D) 100	1	3	2
8.	In a course, a professor gives five grade number of students required so that for grade (A) 18 (C) 16	es $\{A, B, C, D, F\}$. What is the minimum ur of them are guaranteed to get the same (B) 14 (D) 26	1	3	2
9.	$p \lor p =$ (A) p (C) T	(B) q (D) F	1	3	3
10.	$p \lor T =$ (A) T (C) p	(B) F (D) ¬p	1	3	3
ge 1 of 3				05DF5-21	MAB302

05DF5-21MAB302T

1.1	- > ((- , A - +)		1	3	3
	$p \lor (q \land r) =$ (A) $(p \land q) \lor (p \land r)$ (C) T	(B) $(p \lor q) \land (p \lor r)$ (D) F			
	"If Rama works hard, he will get success" where p-Rama works hard, q-he will get su Then the logical statement of the above state	access. The sement is $(B) p \rightarrow q$	1	4	3
	(A) $p \land q$ (C) $p \lor \neg q$	(D) $p \land \neg q$	4	2	A
13.	Let $G = \{1, -1, i, -i\}$ be a group under at Then the inverse of -i is (A) i	(B) -i	1	3	4
	(C) 1	(D) -1		•	
14.	In a group $(G, *)$, if $a * a^{-1} = a^{-1} * a =$ called	e, where e is the identity element, a^{-1} is	1	2	4
	(A) identity element (C) additive element	(B) idempotent element(D) inverse element			
15.	If $(z, +)$ is an abelian group where $Z = \{z \mid a \in Z \text{ is } z \in Z \}$	$\pm 1, \pm 2, \pm 3, \ldots$ }, then the inverse of	1	4	4
	(A) 2a (C) -a	(B) 3a (D) a			
16.	A group $(G, *)$ is said to be commutative	if	1	2	4
	(A) $a * e = e * a = a$ (C) $a*b=0$	(B) $a * b = b * a$ (D) $a*b=1$			
17.	If the origin and terminus of a walk are san (A) open (C) path	ne, the the walk is known as (B) closed (D) semi open	1	3	5
18.	A graph with no edges is known as empty at (A) Trivial graph (C) Bipartite graph	graph. Empty graph is also known as (B) regular graph (D) closed graph	1	3	5
19.	A graph with no circuits is called		1	2	5
	(A) closed graph (C) Tree	(B) open graph (D) closed path			
20.	For a graph with n vertices and e edges, \sum	$\sum_{v_i} degv$	1	4	5
	(A) 2e (C) 5e	(B) 4e (D) e			
	$PART - B (4 \times 10 =$	40 Marks)	Mari	ks BL	CO
	Answer any 4 Q				
21	If $Z \to N$ is defined by $f(x) = 2x - 1 \text{ if } x > 0$ $f(x) = -2x, \text{ if } x \le 0$		10	3	1
	(a) Prove that the function is 1-1 and (b) Determine f^{-1}	onto			e.
22	Find the integers m and n such th	nat 512m + 320n = 64 and state	10	3	2
	Euclid algorithm.				
23	. Let G be a set of permutations defined on Then prove that G is a group under compo		10	3	4
					~

24. Show that t ∧ s can be derived from the following statements p → q, q → ¬r, r, 10 1 3 p ∨ (t ∧ s)
25. State and prove the necessary and sufficient condition for a subset to be a subgroup 10 4 of a group
26. (a) State and prove and shaking theorem and also verify the theorem for the following 10 3 5

(b) Define Eulerian graph and give one example

PART - $C(1 \times 15 = 15 \text{ Marks})$
Answer any 1 Questions

Marks BL CO

27. Find the minimum spanning tree for the following weighted graph using Kruskal's 15 3 5 algorithm

28. Show that the following set of statements is inconsistent If Rama gets his degree, he will go for a job. If he goes for a job, he will get married. If he goes for higher studies, he will not get married. Rama gets his degree and goes for higher study.

15 3 3