UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ

DEPARTAMENTO DE MATEMÁTICAS FUNDAMENTOS DE MATEMÁTICAS Taller 2

1. Ponga la mínima cantidad de paréntesis necesarios para que la expresión:

$$\neg q \land r \longrightarrow s \lor t$$

simbolice:

a) Un condicional

b) Una disyunción

c) La negación de una disyunción

d) Una conjunción

e) Un condicional con antecedente la negación de una conjunción.

2. Si la proposición $(\neg q \land r) \longrightarrow (s \lor p)$ es falsa, dé, si es posible, el valor de verdad de las siguientes proposiciones:

c) $(q \lor s) \longrightarrow p$

 $\begin{array}{ll} \mathbf{a}) \ (q \vee r) \wedge p & \quad \mathbf{b}) \ (q \wedge s) \longrightarrow p \\ \mathbf{d}) \ (\neg p \wedge q) \longrightarrow (r \wedge s) & \quad \mathbf{e}) \ \neg (r \longrightarrow s) \wedge (p \wedge q) \\ \mathbf{f}) \ (p \vee s) \wedge r & \quad \mathbf{g}) \ \neg ((r \wedge p) \vee q) \longrightarrow (s \vee p) \end{array}$

3. Si la proposición $(p \land q) \longrightarrow r$ es falsa, dé, si es posible, el valor de verdad de las siguientes proposiciones:

a) $(q \vee r) \wedge p$

b) $(q \wedge s) \longrightarrow p$

c) $(q \lor s) \longrightarrow p$

d) $(\neg p \land q) \longrightarrow (r \land s)$ e) $\neg (r \longrightarrow s) \land (p \land q)$ f) $(p \lor s) \land r$ g) $\neg ((r \land p) \lor q) \longrightarrow (s \lor p)$

4. Considere las siguientes proposiciones:

i. Si practica algún deporte, tiene buen estado físico.

ii. Combinar adecuadamente los condimentos es suficiente para tener una buena comida.

a) Simbolícelas.

b) Encuentre su recíproca, su contraria y su contrarrecíproca.

c) Escriba en correcto español las proposiciones encontradas en b).

5. Considere las siguientes afirmaciones:

1) La contrarrecíproca de la proposición "Si a es primo entonces a no es par" es: "Si a es par entonces a no es primo".

2) La negación de la proposición "Si pasas el semestre y obtienes un buen promedio, entonces ganas un premio" es: "Pasas el semestre, obtienes un buen promedio y no ganas un premio".

De las afirmaciones anteriores es correcto decir que:

- a) 1) y 2) son verdaderas.
- b) 1) y 2) son falsas.
- c) 1) es verdadera y 2) es falsa.
- d) 1) es falsa y 2) es verdadera.
- 6. Determine si las siguientes proposiciones son negaciones, conjunciones, disyunciones, condicionales o bicondicionales. Además clasifíquelas en tautologías, contradicciones y contingencias.
 - (a) $(p \longrightarrow q) \longleftrightarrow (\neg p \land q)$
 - (b) $p \longrightarrow (p \lor q)$
 - (c) $((p \land q) \land r) \longleftrightarrow (p \land (q \land r))$
 - (d) $(\neg p \longrightarrow \neg q) \land \neg (q \longrightarrow p)$
 - (e) $(p \to q) \longleftrightarrow (\neg p \lor q)$
 - (f) $\neg (((p \lor q) \land \neg p) \longrightarrow q)$
 - (g) $(p \longrightarrow (q \longrightarrow r)) \longleftrightarrow ((p \land q) \longrightarrow r)$
 - (h) $(p \to q) \longleftrightarrow (\neg q \to \neg p)$
 - (i) $((p \lor q) \land \neg q) \longrightarrow p$
 - (j) $\neg (p \land (p \longrightarrow q) \longrightarrow q)$
 - (k) $(p \leftrightarrow q) \longleftrightarrow ((p \to q) \land (q \to p))$
 - (1) $((p \longrightarrow q) \land p) \longleftrightarrow (p \land q)$
 - (m) $(p \leftrightarrow q) \longrightarrow (p \to q)$
 - (n) $\neg (p \lor q) \longleftrightarrow (\neg p \land \neg q)$
 - (o) $\neg((p \leftrightarrow q) \longrightarrow (q \to p))$
 - (p) $\neg (p \land q) \longleftrightarrow (\neg p \lor \neg q)$
 - (q) $((p \to q) \land (q \to p)) \longrightarrow (p \leftrightarrow q)$
 - (r) $\neg (p \leftrightarrow q) \longleftrightarrow ((p \land \neg q) \lor (q \land \neg p))$
 - (s) $((p \to q) \land (q \to r)) \longrightarrow (p \to r)$
 - (t) $((p \to q) \land ((r \to s) \land (p \lor r))) \longrightarrow (q \lor s)$
- 7. Liste las implicaciones y equivalencias lógicas determinadas por el punto anterior.
- 8. En cada caso, encuentre una proposición equivalente a la dada que no utilice el conectivo \longrightarrow .
 - a) $(p \longrightarrow q) \longrightarrow r$ b) $p \longrightarrow (q \longrightarrow r)$

9. En cada una de las siguientes proposiciones, encuentre una proposición lógicamente equivalente que use únicamente los conectivos \neg y \land . (Escriba su razonamiento)

i.
$$p \to p$$
 ii. $p \to \neg q$ iii. $(p \land q) \to p$ iv. $p \lor (q \lor r)$ v. $\neg p \to \neg q$ vi. $\neg (p \lor (q \to r))$ vii. $\neg (\neg p \lor \neg q)$ viii. $p \to (q \to r)$

- 10. Demuestre las siguientes implicaciones lógicas.
 - a) $p \Longrightarrow p \lor q$ (adición)
 - b) $q \Longrightarrow p \lor q$ (adición)
 - c) $(p \lor q) \land \neg p \Longrightarrow q$ (Modus Tollendo Ponens)
 - d) $(p \lor q) \land \neg q \Longrightarrow p$ (Modus Tollendo Ponens)
 - e) $p \leftrightarrow q \Longrightarrow p \to q$ (bicondicional-condicional)
 - f) $p \leftrightarrow q \Longrightarrow q \to p$ (bicondicional-condicional)
 - g) $(p \to q) \land (q \to p) \Longrightarrow p \leftrightarrow q$ (condicional-bicondicional)
 - h) $(p \to q) \land (q \to r) \Longrightarrow p \to r$ (silogismo hipotético)
 - i) $(p \to q) \land (r \to s) \land (p \lor r) \Longrightarrow q \lor s$ (dilema constructivo).