

Metodos de Punto Fijos

Bautista Marelli

February 25, 2021

- Introducción
 - Definición de punto fijo
 - Ejemplo
 - Ejemplo de punto fijo: Representación gráfica
 - Formula General
- 2 Lemas y Teoremas relacionados a los Puntos Fijos
 - Existencia de un Punto Fijo
 - Condición suficiente de convergencia
- 3 Métodos de Puntos Fijos
 - Método de Newton
 - Método de la Secante
- 4 Ejemplo
 - Demostración de la convergencia
 - Método de Newton
 - Método de la Secante

Definición de punto fijo

Vamos a recordar la definición de punto fijo

Definición

Introducción

Sea $f: \mathbb{R} \to \mathbb{R}$ continua. Decimos que α es un punto fijo si:

$$f(\alpha) = \alpha$$

Definición de punto fijo

Vamos a recordar la definición de punto fijo

Definición

Introducción

Sea $f: \mathbb{R} \to \mathbb{R}$ continua. Decimos que α es un punto fijo si:

$$f(\alpha) = \alpha$$

Ejemplo

Sea $f(x) = \frac{x^3}{9}$. Es continua en \mathbb{R} .

$$f(\alpha) = \frac{\alpha^3}{9}$$

$$f(-3) = \frac{(-3)^3}{9} = \frac{-27}{9} = -3, \ f(0) = \frac{0^3}{9} = \frac{0}{9} = 0, \ f(3) = \frac{3^3}{9} = \frac{27}{9} = 3$$

Estos valores, -3, 0, 3, son a lo que llamamos **puntos fijos**

Introducción

Introducción Ejemplo

Universidad Nacional de Rosario

Sea $f(x) = \frac{x^3}{9}$. Es continua en \mathbb{R} . Queremos buscar $\alpha / f(\alpha) = \alpha$

$$f(\alpha) = \frac{\alpha^3}{9}$$

Podemos ver para esta ecuación encontramos distintas soluciones:

$$f(-3) = \frac{(-3)^3}{9} = \frac{-27}{9} = -3, \ f(0) = \frac{0^3}{9} = \frac{0}{9} = 0, \ f(3) = \frac{3^3}{9} = \frac{27}{9} = 3$$

Estos valores, -3, 0, 3, son a lo que llamamos puntos fijos

Ejemplo

Sea $f(x) = \frac{x^3}{9}$. Es continua en \mathbb{R} . Queremos buscar $\alpha / f(\alpha) = \alpha$

$$f(\alpha) = \frac{\alpha^3}{9}$$

Podemos ver para esta ecuación encontramos distintas soluciones:

$$f(-3) = \frac{(-3)^3}{9} = \frac{-27}{9} = -3, \ f(0) = \frac{0^3}{9} = \frac{0}{9} = 0, \ f(3) = \frac{3^3}{9} = \frac{27}{9} = 3$$

Estos valores, -3, 0, 3, son a lo que llamamos **puntos fijos**

Introducción

Representación gráfica

Introducción Ejemplo de punto fijo: Representación gráfica

Universidad Nacional de Rosario

Introducción Formula General

Universidad Nacional de Rosario

Formula General

Generamos una sucesión $\{x_{n+1}\}$ con una g(x) apropiada.

$$x_{n+1}=g(x_n)$$

Dada una función f de la forma f(x) = x - g(x). Queremos buscar $\alpha / f(\alpha) = 0$

Existencia de un Punto Fijo

Lemas y Teoremas relacionados a los Puntos Fijos Existencia de un Punto Fijo

Universidad Nacional de Rosario

Lema

Sea $f: \mathbb{R} \to \mathbb{R}$ continua en un intervalo [a; b]. Supongamos que satisface: $a \le x \le b \implies a \le f(x) \le b$. Luego podemos concluir que f(x) tiene al menos 1 un punto fijo $\alpha \in [a; b]$ (α es solución de x = f(x))

Existencia de un Punto Fijo

Lemas y Teoremas relacionados a los Puntos Fijos Existencia de un Punto Fijo

Universidad Nacional de Rosario

Lema

Sea $f : \mathbb{R} \to \mathbb{R}$ continua en un intervalo [a; b].

Supongamos que satisface: $a \le x \le b \implies a \le f(x) \le b$. Luego

podemos concluir que f(x) tiene al menos 1 un punto fijo $\alpha \in [a;b]$ $(\alpha$ es solución de x = f(x)

Existencia de un Punto Fijo

Lemas y Teoremas relacionados a los Puntos Fijos Existencia de un Punto Fijo

Universidad Nacional de Rosario

Lema

Sea $f: \mathbb{R} \to \mathbb{R}$ continua en un intervalo [a;b]. Supongamos que satisface: $a \le x \le b \implies a \le f(x) \le b$. Luego podemos concluir que f(x) tiene al menos 1 un punto fijo $\alpha \in [a;b]$ (α es solución de x = f(x))

Universidad Nacional de Rosario

Demostración

Definimos la función g(x) / g(x) = x - f(x). Vemos que g(x) es continua en [a;b].

Notemos que si evaluamos g(x) en a y b tenemos:

$$g(a) = a - f(a) \le 0$$

$$g(b) = b - f(b) > 0$$

Vemos que g(x) cumple con las condiciones del Teorema de Bolzano

$$\therefore \exists \alpha \in [a; b] / g(\alpha) = 0 \implies 0 = g(\alpha) = \alpha - f(\alpha) \implies f(\alpha) = \alpha$$

Demostración

Definimos la función g(x) / g(x) = x - f(x). Vemos que g(x) es continua en [a;b].

Notemos que si evaluamos g(x) en a y b tenemos:

$$g(a) = a - f(a) \le 0$$

 $g(b) = b - f(b) \ge 0$

Vemos que g(x) cumple con las condiciones del Teorema de Bolzano

$$\therefore \exists \alpha \in [a;b] / g(\alpha) = 0 \implies 0 = g(\alpha) = \alpha - f(\alpha) \implies f(\alpha) = \alpha$$

Demostración

Definimos la función g(x) / g(x) = x - f(x). Vemos que g(x) es continua en [a; b].

Notemos que si evaluamos g(x) en a y b tenemos:

$$g(a) = a - f(a) \le 0$$

 $g(b) = b - f(b) \ge 0$

$$\therefore \exists \alpha \in [a;b] / g(\alpha) = 0 \implies 0 = g(\alpha) = \alpha - f(\alpha) \implies f(\alpha) = \alpha$$

Demostración

Definimos la función g(x) / g(x) = x - f(x). Vemos que g(x) es continua en [a;b].

Notemos que si evaluamos g(x) en a y b tenemos:

$$g(a) = a - f(a) \le 0$$

 $g(b) = b - f(b) > 0$

Vemos que g(x) cumple con las condiciones del Teorema de Bolzano

$$\therefore \exists \alpha \in [a;b] / g(\alpha) = 0 \implies 0 = g(\alpha) = \alpha - f(\alpha) \implies f(\alpha) = \alpha$$

Universidad Nacional de Rosario

Demostración

Definimos la función g(x) / g(x) = x - f(x). Vemos que g(x) es continua en [a; b].

Notemos que si evaluamos g(x) en a y b tenemos:

$$g(a) = a - f(a) \le 0$$

$$g(b) = b - f(b) \ge 0$$

Vemos que g(x) cumple con las condiciones del Teorema de Bolzano

$$\therefore \ \exists \alpha \in [a;b] \ / \ g(\alpha) = 0 \implies 0 = g(\alpha) = \alpha - f(\alpha) \implies f(\alpha) = \alpha \quad \Box$$

Lemas y Teoremas relacionados a los Puntos Fijos Condición suficiente de convergencia

Universidad Nacional de Rosario

Teorema

Lemas y Teoremas relacionados a los Puntos Fijos Condición suficiente de convergencia

Universidad Nacional de Rosario

Teorema

Sea $f: \mathbb{R} \to \mathbb{R}$ talque f(x) y su derivada sea continua en [a; b].

Supongamos $a \le x \le b \implies a \le f(x) \le b$.

Luego si $\lambda := \sup_{x \in [a;b]} |f'(x)| < 1$

- 1 $\exists ! \alpha$ solución de f(x) = x en [a; b]
- 2 $\forall x_0 \in [a; b], x_{n+1} = f(x_n)$ converge a α
- $|\mathbf{3}| |\alpha x_n| \leq \frac{\lambda^n}{1 \lambda} |x_0 x_1|$
- 4 $\lim_{x\to\infty} \frac{\alpha-x_{n+1}}{\alpha-x_n} = f'(\alpha)$

Lemas y Teoremas relacionados a los Puntos Fijos Condición suficiente de convergencia

Universidad Nacional de Rosario

Teorema

Sea $f: \mathbb{R} \to \mathbb{R}$ talque f(x) y su derivada sea continua en [a; b].

Supongamos $a \le x \le b \implies a \le f(x) \le b$.

Luego si $\lambda := \sup_{x \in [a;b]} |f'(x)| < 1$

- 1 $\exists ! \alpha$ solución de f(x) = x en [a; b]

Lemas y Teoremas relacionados a los Puntos Fijos Condición suficiente de convergencia

Teorema

Sea $f: \mathbb{R} \to \mathbb{R}$ talque f(x) y su derivada sea continua en [a; b].

Supongamos $a \le x \le b \implies a \le f(x) \le b$.

Luego si $\lambda := \sup_{x \in [a;b]} |f'(x)| < 1$

- 1 $\exists ! \alpha$ solución de f(x) = x en [a; b]
- 2 $\forall x_0 \in [a; b], x_{n+1} = f(x_n)$ converge a α

Lemas y Teoremas relacionados a los Puntos Fijos Condición suficiente de convergencia

Universidad Nacional de Rosario

Teorema

Sea $f: \mathbb{R} \to \mathbb{R}$ talque f(x) y su derivada sea continua en [a; b].

Supongamos $a \le x \le b \implies a \le f(x) \le b$.

Luego si
$$\lambda := \sup_{x \in [a;b]} |f'(x)| < 1$$

- 1 $\exists ! \alpha$ solución de f(x) = x en [a; b]
- 2 $\forall x_0 \in [a; b], x_{n+1} = f(x_n)$ converge a α
- $|\alpha x_n| \leq \frac{\lambda^n}{1-\lambda} |x_0 x_1|$
- 4 $\lim_{x\to\infty} \frac{\alpha x_{n+1}}{\alpha x_n} = f'(\alpha)$

Lemas y Teoremas relacionados a los Puntos Fijos Condición suficiente de convergencia

Universidad Nacional de Rosario

Teorema

Sea $f: \mathbb{R} \to \mathbb{R}$ talque f(x) y su derivada sea continua en [a; b].

Supongamos $a \le x \le b \implies a \le f(x) \le b$.

Luego si
$$\lambda := \sup_{x \in [a;b]} |f'(x)| < 1$$

- 1 $\exists ! \alpha$ solución de f(x) = x en [a; b]
- 2 $\forall x_0 \in [a; b], x_{n+1} = f(x_n)$ converge a α
- $|\alpha x_n| \le \frac{\lambda^n}{1-\lambda} |x_0 x_1|$
- 4 $\lim_{x\to\infty} \frac{\alpha-x_{n+1}}{\alpha-x_n} = f'(\alpha)$

Utilizamos el TVM

Por el Teorema del Valor Medio utilizando $w, z \in [a; b]$ podemos obtener:

$$f(w) - f(z) = f'(c)(w - z)$$
, p.a c entre w, z

$$f(w) - f(z)| = |f'(c)||(w - z)|$$

$$|f(w) - f(z)| \le \lambda |(w - z)|, \text{ a } \le w, \text{ z } \le b$$
 (1)

Bautista Marelli Metodos de Punto Fijos 10

Utilizamos el TVM

Por el Teorema del Valor Medio utilizando $w, z \in [a; b]$ podemos obtener:

$$f(w) - f(z) = f'(c)(w - z)$$
, p.a c entre w, z

$$|f(w) - f(z)| = |f'(c)||(w - z)|$$

$$|f(w) - f(z)| \le \lambda |(w - z)|, \text{ a } \le w, \text{ z } \le b$$
 (1)

Bautista Marelli Metodos de Punto Fijos 10

Utilizamos el TVM

Por el Teorema del Valor Medio utilizando $w, z \in [a; b]$ podemos obtener:

$$f(w) - f(z) = f'(c)(w - z)$$
, p.a c entre w, z

$$|f(w) - f(z)| = |f'(c)||(w - z)|$$

 $|f'(c)| \leq \lambda$ por hipótesis

$$|f(w) - f(z)| \le \lambda |(w - z)|, \text{ a } \le w, \text{ z } \le b \tag{1}$$

Bautista Marelli Metodos de Punto Fiios 10

Utilizamos el TVM

Por el Teorema del Valor Medio utilizando $w, z \in [a; b]$ podemos obtener:

$$f(w) - f(z) = f'(c)(w - z)$$
, p.a c entre w, z

$$|f(w) - f(z)| = |f'(c)||(w - z)|$$

 $|f'(c)| \le \lambda$ por hipótesis

$$|f(w) - f(z)| \le \lambda |(w - z)|, a \le w, z \le b$$
 (1)

Proof.

Por el Lema, sabemos $\exists \alpha \ / \ f(\alpha) = \alpha$. Supongamos que hay 2 soluciones. Sean α, β soluciones $(f(\alpha) = \alpha \text{ y } f(\beta) = \beta)$:

$$\alpha - \beta = f(\alpha) - f(\beta)$$

$$|\alpha - \beta| \le \lambda |\alpha - \beta|$$
$$(1 - \lambda)|\alpha - \beta| \le 0$$

4 □ > 4 ⓓ > 4 ≧ > 4 ≧ >

Proof.

Por el Lema, sabemos $\exists \alpha \ / \ f(\alpha) = \alpha$. Supongamos que hay 2 soluciones. Sean α, β soluciones $(f(\alpha) = \alpha \text{ y } f(\beta) = \beta)$:

$$\alpha - \beta = f(\alpha) - f(\beta)$$

$$|\alpha - \beta| \le \lambda |\alpha - \beta|$$
$$(1 - \lambda)|\alpha - \beta| \le 0$$

Lemas y Teoremas relacionados a los Puntos Fijos

Proof.

Por el Lema, sabemos $\exists \alpha \ / \ f(\alpha) = \alpha$. Supongamos que hay 2 soluciones. Sean α , β solutiones $(f(\alpha) = \alpha \lor f(\beta) = \beta)$:

$$\alpha - \beta = f(\alpha) - f(\beta)$$

 $\langle TVM : (1) \rangle$

$$|\alpha - \beta| \le \lambda |\alpha - \beta|$$

 $(1 - \lambda)|\alpha - \beta| \le 0$

4 D b 4 A b b 4 B b

Lemas y Teoremas relacionados a los Puntos Fijos

Proof.

Por el Lema, sabemos $\exists \alpha \ / \ f(\alpha) = \alpha$. Supongamos que hay 2 soluciones. Sean α , β solutiones $(f(\alpha) = \alpha \lor f(\beta) = \beta)$:

$$\alpha - \beta = f(\alpha) - f(\beta)$$

 $\langle TVM : (1) \rangle$

$$|\alpha - \beta| \le \lambda |\alpha - \beta|$$
$$(1 - \lambda)|\alpha - \beta| \le 0$$

Como $\lambda < 1 \implies (1 - \lambda) > 0$, entonces debemos tener que $\alpha = \beta$.

Bautista Marelli Metodos de Punto Fiios Lemas y Teoremas relacionados a los Puntos Fijos

Proof.

Por el Lema, sabemos $\exists \alpha \ / \ f(\alpha) = \alpha$. Supongamos que hay 2 soluciones. Sean α, β soluciones $(f(\alpha) = \alpha \ y \ f(\beta) = \beta)$:

$$\alpha - \beta = f(\alpha) - f(\beta)$$

 $\langle TVM : (1) \rangle$

$$|\alpha - \beta| \le \lambda |\alpha - \beta|$$
$$(1 - \lambda)|\alpha - \beta| \le 0$$

Como $\lambda < 1 \Longrightarrow (1 - \lambda) > 0$, entonces debemos tener que $\alpha = \beta$. Y de esta forma demostramos que f(x) = x tiene solución única.

Sea f(x) función talque f(x) y f'(x) sea continua en [a;b]. Queremos buscar $\alpha / f(\alpha) = 0$.

Definimos $g(x) = x + h(x) \cdot f(x)$. Vamos a buscar h(x) talque $g'(\alpha) = 0$.

$$g'(\alpha) = 1 + h'(\alpha) \cdot f(\alpha) + h(\alpha) \cdot f'(\alpha) = 1 + h(\alpha) \cdot f'(\alpha)$$

$$h(\alpha) = \frac{-1}{f'(\alpha)}$$

Como podemos tomar h(x) cualquiera que cumpla lo anterior

$$h(x) = \frac{-1}{f'(x)}$$

De esta forma nos queda: $g(x) = x + f(x) \cdot \frac{-1}{f'(x)}$

Sea f(x) función talque f(x) y f'(x) sea continua en [a;b]. Queremos buscar $\alpha / f(\alpha) = 0$.

Definimos $g(x) = x + h(x) \cdot f(x)$. Vamos a buscar h(x) talque $g'(\alpha) = 0$.

$$g'(\alpha) = 1 + h'(\alpha) \cdot f(\alpha) + h(\alpha) \cdot f'(\alpha) = 1 + h(\alpha) \cdot f'(\alpha)$$

$$h(\alpha) = \frac{-1}{f'(\alpha)}$$

$$h(x) = \frac{-1}{f'(x)}$$

Sea f(x) función talque f(x) y f'(x) sea continua en [a;b]. Queremos buscar $\alpha / f(\alpha) = 0$.

Definimos $g(x) = x + h(x) \cdot f(x)$. Vamos a buscar h(x) talque $g'(\alpha) = 0$.

$$g'(\alpha) = 1 + h'(\alpha) \cdot f(\alpha) + h(\alpha) \cdot f'(\alpha) = 1 + h(\alpha) \cdot f'(\alpha)$$

$$-1$$

$$h(\alpha) = \frac{-1}{f'(\alpha)}$$

$$h(x) = \frac{-1}{f'(x)}$$

Sea f(x) función talque f(x) y f'(x) sea continua en [a;b]. Queremos buscar $\alpha / f(\alpha) = 0$.

Definimos $g(x) = x + h(x) \cdot f(x)$. Vamos a buscar h(x) talque $g'(\alpha) = 0$.

$$g'(\alpha) = 1 + h'(\alpha) \cdot f(\alpha) + h(\alpha) \cdot f'(\alpha) = 1 + h(\alpha) \cdot f'(\alpha)$$

$$h(\alpha) = \frac{-1}{f'(\alpha)}$$

Como podemos tomar h(x) cualquiera que cumpla lo anterior:

$$h(x) = \frac{-1}{f'(x)}$$

De esta forma nos queda: $g(x) = x + f(x) \cdot \frac{-1}{f'(x)}$

Métodos de Puntos Fijos Método de Newton

Formula General de Iteración

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Método de Newton Multivariable

Métodos de Puntos Fijos Método de Newton

Universidad Nacional de Rosario

Sean $\mathbf{f} = [f_1, ..., f_p]^T$ ecuaciones, $\mathbf{z} = [z_1, ..., z_p]^T$ incógnitas y $\mathbf{0} = [0, ..., 0]^T$. El sistema de ecuaciones: $\mathbf{f}(\mathbf{z}) = \mathbf{0}$

Formula General

$$x_{n+1} = x_n - [J(x_n)]^{-1} \cdot f(x_n)$$
, si $J(x_n)$ es no singular

Métodos de Puntos Fijos Método de la Secante

Sea f(x) y dos puntos (x_0, y_0) , (x_1, y_1) tales que f pase por los mismos.

$$f'(x) \approx \frac{\triangle y}{\triangle x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Utilizamos la ecuación del Método de Newton para calcular x_2 :

$$x_2 = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

Métodos de Puntos Fijos Método de la Secante

Métodos de Puntos Fijos Método de la Secante

Formula General de Iteración

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Ejemplo

Sea $f(x) = \cos(x) - x$. Vemos que f(x) es continua en R Vamos a resolver la ecuación f(x) = 0 utilizando los métodos dados. Solución: $\alpha = 0.7390851$

19

Ejemplo Demostración de la convergencia

Universidad Nacional de Rosario

Tomemos el intervalo [-1;1]. Definimos una nueva función $g(x) = \cos(x)$. Notemos que g(x) y g'(x) son continuas en [-1,1]. Si graficamos g(x) y g'(x) podemos ver:

- $\forall x \in [-1; 1], \ g(x) \in [-1, 1]$
- $\forall x \in [-1; 1], |g'(x)| < 1$

Ejemplo Demostración de la convergencia

Universidad Nacional de Rosario

Tomemos el intervalo [-1;1]. Definimos una nueva función $g(x) = \cos(x)$. Notemos que g(x) y g'(x) son continuas en [-1,1]. Si graficamos g(x) y g'(x) podemos ver:

- $\forall x \in [-1; 1], \ g(x) \in [-1, 1]$
- $\forall x \in [-1; 1], |g'(x)| < 1$

Ejemplo Demostración de la convergencia

Universidad Nacional de Rosario

Tomemos el intervalo [-1;1]. Definimos una nueva función $g(x) = \cos(x)$. Notemos que g(x) y g'(x) son continuas en [-1,1]. Si graficamos g(x) y g'(x) podemos ver:

- $\forall x \in [-1; 1], \ g(x) \in [-1, 1]$
- $\forall x \in [-1; 1], |g'(x)| < 1$

Ejemplo Demostración de la convergencia

Universidad Nacional de Rosario

Tomemos el intervalo [-1;1]. Definimos una nueva función $g(x) = \cos(x)$. Notemos que g(x) y g'(x) son continuas en [-1,1]. Si graficamos g(x) y g'(x) podemos ver:

- $\forall x \in [-1; 1], \ g(x) \in [-1, 1]$
- $\forall x \in [-1; 1], |g'(x)| < 1$

Ejemplo Demostración de la convergencia

Universidad Nacional de Rosario

Sea $x_0 = -1 \in [-1; 1]$.

Calculamos $f'(x) = -\sin(x) - 1$. Realizamos las iteraciones:

$$x_1$$
) $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = (-1) - \frac{\cos(-1)+1}{-\sin(-1)-1} \approx 8.716217$

$$(x_2)$$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx 2.9760607$

$$x_3$$
) $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \approx -0.4257847$

$$x_4$$
) $x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} \approx 1.8511838$

$$x_5$$
) $x_5 = x_4 - \frac{f(x_4)}{f'(x_4)} \approx 0.7660395$

$$x_6$$
) $x_6 = x_5 - \frac{f(x_5)}{f'(x_5)} \approx 0.7392411$

$$x_7$$
) $x_7 = x_6 - \frac{f(x_6)}{f'(x_6)} \approx 0.7390851$

Podemos ver que converge a un valor ≈ 0.7390851

Ejemplo Método de Newton

Ejemplo Método de Newton

Ejemplo Método de Newton

Ejemplo Método de Newton

Ejemplo Método de Newton

Ejemplo Método de la Secante

Universidad Nacional de Rosario

Sea A = (-0.5, 1.3775826) y B = (0.5, 0.3775826).

Luego realizamos las iteraciones:

- C) $x_2 = x_1 f(x_1) \frac{x_1 x_0}{f(x_1) f(x_0)} \approx 0.8775826$ Calculamos $f(x_2) = -0.2385701 \implies C = (0.8775826, -0.2385701)$
- D) $x_3 = x_2 f(x_2) \frac{x_2 x_1}{f(x_2) f(x_1)} \approx 0.7313852$ Calculamos $f(x_3) = 0.0128647 \implies D = (0.7313852, 0.0128647)$
- E) $x_4 = x_3 f(x_3) \frac{x_3 x_2}{f(x_3) f(x_2)} \approx 0.7388654$ Calculamos $f(x_4) = 0.0003677 \implies E = (0.7388654, 0.0003677)$

Si seguimos con este procedimiento vemos que el método converge a un valor ≈ 0.7390851

Ejemplo: Método de la Secante

Ejemplo Método de la Secante

Ejemplo: Método de la Secante

Ejemplo Método de la Secante

