Math 246A Lecture 17 Notes

Daniel Raban

November 17, 2018

1 Simply Connected Domains and Cauchy's theorem

1.1 Simply connected domains

Definition 1.1. A cycle $\gamma \subseteq \Omega$ is homologous to 0 if $n(\gamma, z) = 0$ for all $z \notin \Omega$.

We write $\gamma \sim 0$. We also say that $\gamma \sim \gamma_2$ if $\gamma_1 - \gamma_2 \sim 0$, which is iff $n(\gamma_1, z) = n(\gamma_2, z)$ for al $z \notin \Omega$.

Theorem 1.1 (Cauchy's theorem, general form). Let Ω be a domain and $\gamma \subseteq \Omega$ be a C^1 cycle. If $\gamma \sim 0$, then

$$\int_{\gamma} f(z) \, dz = 0$$

for all $g \in H(\Omega)$.

We can also restate this with 1-forms.

Definition 1.2. A 1-form P dx + Q dy is **closed** if $P, Q \in C^1$, $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$, $\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}$.

Theorem 1.2. Let Ω be a domain and $\gamma \subseteq \Omega$ be a C^1 cycle. If $\gamma \sim 0$, then

$$\int_{\gamma} P \, dx + Q \, dy = 0$$

for all closed 1-forms P dx + Q dy.

Remark 1.1. We don't necessarily need γ to be C^1 . It can, for example, be polygonal.

Corollary 1.1. Let Ω be a domain. The following are equivalent:

- 1. Ω is simply connected.
- 2. If $f \in H(\Omega)$ satisfies $f(z) \neq 0$ for all $z \in \Omega$, then there exists $g \in H(\Omega)$ such that $f = e^g$.

Proof. (\Longrightarrow): Note that

$$\int_{\gamma} \frac{f'}{f} \, dz = 0.$$

So we can set

$$g(z) = \int_{z_0}^{z} \frac{f'(w)}{f(w)} dw.$$

(\iff) If |Omeag is not simply connected, let f=z-a with $a\notin\Omega$. Then

$$\int_{\gamma} \frac{1}{z - a} \, dz \neq 0$$

for some γ . So there is no such g.

Corollary 1.2. Let Ω be a domain. The following are equivalent:

- 1. Ω is simply connected
- 2. For all harmonic $u:\Omega\to\mathbb{R}$ there exists a harmonic v such that $u+iv\in H(\Omega)$.

Proof. Assume Ω is imply connected. Then let $du = u_x dx + u_y dy$ and $*du = -u_y dx + u_x dy$. Condition 2 is equivalent to the existence of a harmonic v such that $u_x = v_y$ and $u_y = -v_x$. Observe that u is harmonic iff *du is closed. So

$$\int_{\gamma} -u_y \, dx + u_x \, dy = 0$$

for all closed γ . Then let

$$v(z) = \int_{z_0}^z -u_y \, dx + u_x \, dy$$

this is well defined, and makes v harmonic.

Example 1.1. Let $a \notin \Omega$. Then

$$\int_{\gamma} \frac{1}{z - a} \neq 0$$

for some γ . If we set $u = \log |z - a|$, then $*du = \frac{1}{z - a} dz$.

1.2 Proofs of general Cauchy's theorem

Let's prove Cauchy's theorem.

Proof. There exists R > 0 such that $\gamma \subseteq \Omega_R = \Omega \cap \{z : |x| < R, |y| < R\}$. Let $\delta \le \operatorname{dist}(\gamma, \partial \Omega_R)/\sqrt{2}$. In particular, we can take $\delta = R/n$ for some $n \in \mathbb{N}$. We can pave the square $\{z : x \le R, y \le R\}$ by squares S_j of side length δ with sides parallel to the axes. Now let $\Omega_{\delta} = (\bigcup_{s_j \subseteq \Omega_R} S_j)^o$, and let $\Gamma_{\delta} = \sum_{S_j \subseteq \Omega_R} \partial S_j$, after cancelling opposing arcs.

If $\zeta \in \Gamma_{\delta}$, there exists some $a \notin \Gamma_R$ such that $[a, \zeta], \cap \Omega_{\delta} = \emptyset$. Also, $\gamma \subseteq \Omega_{\delta}$. So for $z \in \gamma$,

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_{\delta}} \frac{f(z)}{z - -\zeta} d\zeta$$

because we can cancel all the boundaries of the squares to get the integral over Γ_{δ} . Then, using Fubini's theorem,

$$\int_{\gamma} f(z) dz = \int_{\gamma} \frac{1}{2\pi i} \int_{\gamma_{\delta}} \frac{f}{\zeta} \zeta - z \, d\zeta \, dz$$
$$= \int_{\Gamma_{\delta}} f(\zeta) \underbrace{\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - z} \, dz}_{=0} d\zeta$$

where this term equals zero because the winding number is zero.

Theorem 1.3 (Runge). Let $K \subseteq \mathbb{C}$ be compact, and let $K \subseteq U$, where U is open. Let $f \in H(U)$. Then there exists a sequence $(R_n(z))_{n \in \mathbb{N}}$ of rational functions with poles outside U such that

$$\sup_{K} |f(z) - R_n(z)| \xrightarrow{n \to \infty} 0.$$

Runge's theorem implies the Cauchy integral formula. Here is a proof.

Proof. By polynomial division, we can write

$$R_n = P_n(z) + \sum_{k=1}^{M} \frac{c_k}{(z - z_k)^{n_k}},$$

so since $z_k \notin U$, we get that

$$\int_{\gamma} R_n(z) \, dz = 0.$$

By uniform convergence,

$$\int_{\gamma} f(z) dz = \int_{\gamma} R_n(z) dz = 0.$$

How do you prove Runge's theorem? Use the same square method we used for the proof of Cauchy's theorem.¹

¹There is also a really interesting proof of Runge's theorem in my Functional Analysis (Math 255A) lecture notes. Although it seems to rely on Cauchy's theorem.