

Markscheme

November 2018

Chemistry

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

C	Question	Answers	Notes	Total
1.	а	NO₂/NO/NO _x /HNO₃/gas is poisonous/toxic/irritant √	Accept formula or name. Accept "HNO ₃ is corrosive" OR "poisonous/toxic gases produced". Accept "reaction is harmful/hazardous".	1
1.	b	Slope (gradient): 40 Equation: absorbance = 40 × concentration OR y = 40x ✓	Accept any correct relationship for slope such as $\frac{1.00}{0.025}$. Award [2] if equation in M2 is correct.	2
1.	С	orange is opposite blue «in the colour wheel» OR the complementary colour «blue» is seen/transmitted ✓ 585–647 «nm would be absorbed» ✓	Accept any value or range within 550–680 «nm» for M2.	2

Question		on	Answers	Notes	Total
1.	d		dilute 1.00 cm ³ «of the standard solution with water» to 100 cm ³	Accept any 1:100 ratio for M1.	
			OR dilute sample of standard solution «with water» 100 times ✓	Accept "mix 1 cm ³ of the standard solution with 99 cm ³ of water" for M1.	
			dide sample of standard solution with water, 100 times \$	Do not accept "add 100 cm ³ of water to 1.00 cm ³ of standard solution" for M1.	3
			«graduated/volumetric» pipette/pipet ✓	Accept "burette/buret" for M2.	
			volumetric flask ✓	Accept "graduated/measuring flask" for M3 but not "graduated/measuring cylinder", "conical/Erlenmeyer flask".	
1.	е	i	concentration of copper = 0.0080 «mol dm ⁻³ » ✓	Accept any value in range 0.0075–0.0085 «mol dm ⁻³ » for M1.	
			mass of copper in 250.0 cm³ =	Accept annotation on graph for M1.	
			OR		
			mass of brass in $1 \text{dm}^3 = \text{w4} \times 0.200 \text{g} = \text{w} 0.800 \text{g}$ AND [Cu ²⁺] = $\text{w} 0.0080 \text{mol} \text{dm}^{-3} \times 63.55 \text{g} \text{mol}^{-1} = \text{w} 0.5084 \text{g} \text{dm}^{-3}$ \checkmark		3
			«% copper in this sample of brass = $\frac{0.127}{0.200} \times 100 =$ » 64 «%»	Award [3] for correct final answer. Accept "65 «%»".	
			OR	Accept 00 %/6%.	
			«% copper in this sample of brass = $\frac{0.5084}{0.800}$ × 100 =» 64 «%» ✓		
1.	е	ii	two √	Do not apply ECF from 1(e)(i).	1

C	Question		Answers	Notes	Total
1.	f	i	«since it is greater than 60 %» it will reduce the presence of bacteria «on door handles» ✓		1
1.	f	ii	resistant to corrosion/oxidation/rusting OR low friction surface «so ideal for connected moving components» ✓	Accept "hard/durable", "«high tensile» strength", "unreactive", "malleable" or any reference to the appearance/colour of brass (eg "gold-like", "looks nice" etc.). Do not accept irrelevant properties, such as "high melting/boiling point", "non-magnetic", "good heat/electrical conductor", "low volatility", etc. Do not accept "ductile".	1
1.	g		precipitate/copper(I) iodide/CuI makes colour change difficult to see $\begin{tabular}{c} \textbf{\textit{OR}} \\ \textbf{\textit{release of I_2/iodine from starch-I_2 complex is slow so titration must be done slowly \checkmark} \end{tabular}$		1

Section B

Option A — Materials

C	uestic	n Answers	Notes	Total
2.	а	$\Delta \chi = 0.7$ AND average $\chi = 1.7$ \checkmark	Accept "EN" for " χ ".	
		bonding between metallic and ionic OR more than one type of bonding present OR bond type difficult to determine as close to several regions/several types/named bonding types «eg ionic and covalent etc.» OR bond is mostly covalent «based on % covalent scale on diagram»	Accept "bond is ionic but close to several regions/several types/other named bonding type(s) (eg covalent, metallic and covalent etc.)". Do not accept just "bond is ionic".	2
		<i>OR</i> bond has « $\frac{0.7}{3.2}$ × 100 =» 22% ionic character ✓	Accept any value for % ionic character in range 15–24% or % covalent character in range 76–85%.	

C	Question		Answers	Notes	Total
2.	b		Thermoplastic polymer: PMA AND «weak» intermolecular forces/IMFs/London/dispersion/van der Waals/vdW/dipole-dipole forces «between layers/chains» OR	Do not accept "hydrogen bonding" for M1.	
			PMA <i>AND</i> no/few cross-links «between layers/chains» ✓		2
			Thermosetting polymer: Bakelite® AND «strong» covalent bonds «between layers/chains» OR	Award [1 max] for correct reasons for both polymer classes even if named polymers are incorrectly classified.	
			Bakelite [®] AND extensive cross-links «between layers/chains» ✓		
2.	С		pores/cavities/channels/holes/cage-like structures «in zeolites» have specific shape/size ✓ only reactants «with appropriate size/geometry» fit inside/go through/are activated/can react ✓		2
2.	d	i	amino <i>AND</i> carboxyl ✓	Do not accept "carbonyl", "hydroxyl".	1

(continued...)

(Question 2d continued)

C	uesti	on	Answers	Notes	Total
2.	d	ii	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Continuation bonds at NH and CO are required for mark. Ignore any brackets and n.	_
			H N		1
2.	d	iii	Name and reason: PET/PETE AND peak for C=O «at 1700–1750 cm ⁻¹ » ✓	Accept "PET/PETE AND peak for C-O «at 1050–1410 cm ⁻¹ »" for M1.	
			RIC:	Accept "PET/PETE AND peak(s) for COO" for M1.	2
				Accept name or abbreviation for polymer.	
			1 🗸	No ECF for M2.	

3.	а	positive ions/cations/Pb ²⁺	Accept "ions" OR "charged species/particle".	
		OR		1
		free electrons √		

(Question		Answers	Notes	Total
3.	b	i	$[Pb^{2+}] = 0.50 \times 10^{-6}/5.0 \times 10^{-7} \text{ eg dm}^{-3} \text{ s}$		
			[Pb ²⁺] «= $\frac{0.50 \times 10^{-6} \text{ g dm}^{-3}}{207.20 \text{ g mol}^{-1}}$ » = 2.4 × 10 ⁻⁹ «mol dm ⁻³ » \checkmark	Award [2] for correct final answer.	2
3.	b	ii			
			ALTERNATIVE 1:		
			«Q = [Pb2+] [OH-]2 = 2.4 × 10-9 × (1.0 × 10-2)2» = 2.4 × 10-13 ✓		
			$Q > K_{sp}$ AND precipitate will form		
			OR		
			2.4 × 10 ⁻¹³ > 1.43 × 10 ⁻²⁰ AND precipitate will form ✓		
			ALTERNATIVE 2:		
			critical [Pb ²⁺] for hydroxide solution $=\frac{K_{sp}}{[OH^-]^2} = \frac{1.43 \times 10^{-20}}{(1.0 \times 10^{-2})^2} = 1.4 \times 10^{-16} $		2
			initial concentration > critical concentration AND precipitate will form		
			OR		
			2.4×10^{-9} > 1.4 × 10 ⁻¹⁶ AND precipitate will form √		
			If value given is used:		
			ALTERNATIVE 3:		
			$Q > K_{sp}$ AND precipitate will form		
			OR		
			2.4 × 10 ⁻⁸ > 1.43 × 10 ⁻²⁰ AND precipitate will form √		

(Question		Answers	Notes	Total
3.	С		«Faraday's constant, $F = 9.65 \times 10^4 \mathrm{C} \;\mathrm{mol^{-1}}$ and $1 \mathrm{A} = 1 \mathrm{C} \;\mathrm{s^{-1}}$ » $Q \mathrm{w} = 0.0500 \mathrm{mol} \times 2 \times 96500 \mathrm{C} \;\mathrm{mol^{-1}}$ » = $9650 \mathrm{wC}$ » \checkmark $t \mathrm{w} = \frac{Q}{I} = \frac{9650 \mathrm{C}}{1.34 \mathrm{C} \;\mathrm{s^{-1}}} \approx 7200 \mathrm{s} \;\mathrm{so} \; \frac{7200 \mathrm{s}}{60 \times 60 \;\mathrm{s} \;\mathrm{h^{-1}}}$ » = $2.00 \mathrm{whours}$ » \checkmark	Award [2] for correct final answer.	2
3.	d	i	Any one of: two «or more» lone/non-bonding pairs on different atoms OR two «or more» atoms/centres that act as Lewis bases ✓ form «at least» two coordination/coordinate bonds OR «at least» two atoms can form coordination/coordinate bonds ✓	Reference to "on DIFFERENT atoms" required. Accept "dative «covalent» bond" for "coordination/coordinate bond".	1 max
3.	d	ii	increase in entropy OR $\Delta S > 0/\Delta S$ positive \checkmark	Accept " $\Delta G < 0$ " but not " $\Delta H < 0$ ".	1

	Question	Answers	Notes	Total
4.	а	Any two of: cloudy/foggy/hazy phase «at first melting point» ✓ clear liquid phase «at second melting point/higher temperature» ✓		2 max
		two «different» melting points OR new phase observed over a wide temperature range ✓	Accept "exhibit both liquid and solid properties at the same time" for M3.	
4.	b	ALTERNATIVE 1: «bulky/long» C₅H₁₁/R/alkyl «group/chain» AND prevents molecules from packing closer together «to form solid state» ✓ ALTERNATIVE 2: biphenyl «fragment»/two benzene rings/two aromatic rings AND «makes molecule» rigid/rod-shaped ✓	Accept "rigid/rod-shaped molecule, so aligns with other molecules" for ALTERNATIVE 2.	1
4.	С	<pre>«average» oxidation state of C in C₆H₁₂/cyclohexane = −2 AND in CNTs = 0 OR oxidation state of C in CNTs is higher than in C₆H₁₂/cyclohexane OR loss of H's/hydrogens ✓</pre> «oxidation at» positive/+ «electrode»/anode ✓	Accept "oxidation number" for "oxidation state".	2

C	uesti	on	Answers	Notes	Total
5.	а	i	face-centred cube/fcc OR cubic close packed/ccp ✓		1
5.	а	ii	$\frac{1}{2}$ «atom per face» × 6 «faces per cube» = 3 «atoms» AND $\frac{1}{8}$ «atom per corner» × 8 «corners per cube» = 1 «atom» ✓ «atoms per unit cell = 3 + 1 =» 4 ✓	Award [1 max] for "4" without working shown.	2
5.	b		«4 atoms per unit cell» mass of 4 atoms «= $4 \times \frac{196.97 \text{ g mol}^{-1}}{6.02 \times 10^{23} \text{ mol}^{-1}}$ =» $1.31 \times 10^{-21} \text{ «g» }$ ✓ volume of unit cell «= $(4.08 \times 10^{-8})^3 \text{ cm}^3$ » = $6.79 \times 10^{-23} \text{ «cm}^3$ » ✓ density = « $\frac{1.31 \times 10^{-21} \text{ g}}{6.79 \times 10^{-23} \text{ cm}^3}$ » = $1.93 \times 10^1/19.3 \text{ «g cm}^{-3}$ » ✓	Award [3] for correct final answer.	3

Option B — Biochemistry

C	uestion	Answers	Notes	Total
6.	а	catabolism «of food/nutrients» OR «cellular» respiration ✓	Accept "ATP" but not "burning of food/nutrients".	1
6.	b	not enough sunlight/UV light «for synthesis of vitamin D in the skin» ✓		1
6.	С	cannot be metabolized/broken down OR not biodegradable OR accumulates in lipid/fat tissues ✓ increased concentration as one species feeds on another «in the food chain» ✓		2

C	Questic	n Answers	Notes	Total
7.	а	«triplet» sequence/«specific» order of «nitrogenous» bases OR codon ✓		1
7.	b	Any one of: long-term «health» effects unknown ✓ can cause allergic reactions ✓ possible transfer of genetic material to other/wild species ✓ concern that power over farming is concentrated in hands of multinationals OR dependent on multinationals ✓ labelling differences between countries «means informed choice not possible» ✓	Accept "outcrossing".	1 max

	Question	Answers	Notes	Total
8.	а	hydrogen bonding ✓ between C=O and H–N «groups» ✓	Accept a diagram which shows hydrogen bonding for M1 and shows the interaction between O of C=O and H of NH for M2. Accept "between amido/amide/carboxamide" but not "between amino/amine" for M2.	2
8.	b	Enzyme action: Any two of: substrate binds to active site ✓ weakens bonds in substrate ✓ lowers activation energy OR provides alternate pathway ✓ increases rate of reaction OR acts as catalyst ✓ substrate specific ✓ Limitation: Any one of: temperature dependent ✓ pH dependent ✓ can be sensitive to heavy metal ions ✓ sensitive to denaturation ✓ can be inhibited ✓ substrate specific ✓	Accept "favourable orientation/conformation of the substrate «enforced by enzyme»" for M1. Do not accept "substrate specific" as both an enzyme action and a limitation.	3 max

C	Question			Answers			Notes	Total
8.	С		Non-competitive	Action of inhibitor allosteric site occupied OR active site shape changed ✓	lower AN	nie Gilledt V	Award [1] for each action. Award [1] for any two effects stated correctly. Award [2 max] if both actions and effects are switched to incorrect inhibitor types.	4
			Competitive	active site occupied 🗸	no effect A	ND greater √		

C	Question	Answers	Notes	Total
9.	b	Any two of: «structural» components of cell membranes ✓ energy storage/utilization ✓ «thermal/electrical» insulation ✓ transport «of lipid-soluble molecules» ✓ hormones/chemical messengers ✓	Accept other specific functions, such as "prostaglandin/cytokine/bile acid synthesis", "cell differentiation/growth", "myelination", "storage of vitamins/biomolecules", "signal transmission", "protection/padding of organs", "precursors/starting materials for the biosynthesis of other lipid".	2 max
9.	С	Any one of: atherosclerosis/cholesterol deposition «in artery walls» ✓ heart/cardiovascular disease ✓ stroke ✓	Accept "arteries become blocked/ walls become thicker".	1 max

C	uesti	on	Answers	Notes	Total
10.	а		«1,4-»glycosidic ✓	Do not accept "glucosidic".	1
10.	b		H and OH are reversed/in different positions on C-4 ✔	C-4 must be specified. Do not penalize if reference is made to H and OH above and below ring/in alpha and beta positions on C-4 incorrectly.	1
10.	С	i	Starch: α«-glucose/links» AND Cellulose: β«-glucose/links» ✓	Accept "Starch: coiled/spiral structure OR cross-links AND Cellulose: uncoiled OR straight chains/linear polymer OR no/few cross-links".	1
10.	С	ii	Any two of: helps food pass through intestine OR adds bulk/dietary fibre ✓ reduces appetite OR helps prevent obesity ✓ prevents constipation OR reduces risk of hemorrhoids/diverticulosis/Crohn's disease/irritable bowel syndrome/bowel cancer ✓		2 max

C	uestion	Answers	Notes	Total
11.	а	binding of oxygen/O₂ «to one active site» affects shape of Hb/other active sites OR binding of one oxygen/O₂ «molecule» affects binding of other oxygen/O₂ «molecules» ✓ increasing affinity of Hb to oxygen/O₂ OR enhanced binding of «further» oxygen/O₂ «molecules» OR cooperative binding ✓		2
11.	b	Toxicity: carboxyhemoglobin/Hb–CO does not readily dissociate OR CO + Hb ⇌ Hb–CO AND forward reaction favoured OR affinity of carbon monoxide/CO for hemoglobin is «200 times/much» higher than that of oxygen/O₂ OR competitive inhibitor of oxygen/O₂ binding ✓ Treatment: moving patient to fresh air	Accept "move away from carbon monoxide/CO source" OR "remove	2
		OR «in severe cases» inhaling pure oxygen/O₂ OR high pressure oxygen/O₂ chamber ✓	carbon monoxide/CO source".	

Option C — Energy

C	Question		Answers	Notes	Total
12.	а		small/lighter <u>nuclei</u> combine to form larger/heavier <u>nuclei</u> ✓ product has higher binding energy «per nucleon» ✓	Accept binding energy curve with explanation.	2
12.	b	i	converts non-fissile « ²³⁸ U» material into fissile « ²³⁹ Pu» material <i>OR</i> produces more fissile material than it consumes ✓		1
12.	b	ii	239 Pu + 1 n \rightarrow 133 Xe + 103 Zr + 41 n \checkmark	Accept equation with correct atomic numbers included. Accept notation for neutrons of "n". Accept a correctly described equation in words.	1
12.	С		ALTERNATIVE 1: « $\frac{240}{30}$ =» 8 $t_{\frac{1}{2}}$ /8 half-lives «required» ✓ % remaining = «0.50 ⁸ × 100 =» 0.39 «%» ✓ ALTERNATIVE 2: $\lambda = \frac{0.693}{30}$ =» 0.023 ✓ % remaining = «100 × e ^{-0.023 × 240} =» 0.39 «%» ✓	Award [2] for correct final answer.	2

Q	uesti	on	Answers	Notes	Total
12.	d	i	$\begin{bmatrix} : \dot{\bigcirc} : \ddot{\bigcirc} : \end{bmatrix}^{-}$ OR $\begin{bmatrix} : \ddot{\bigcirc} - \cdots \ddot{\bigcirc} : \end{bmatrix}^{-}$	Accept any combination of dots, crosses and lines to represent electrons. Do not penalize missing brackets. Penalize missing negative charge.	1
12.	d	ii	highly reactive OR start redox reactions ✓ damage/mutate DNA OR cause cancer OR damage enzymes ✓		2

C	uestion	Answers	Notes	Total
13.	а	ALTERNATIVE 1: $2C(s) + 2H_2O(g) \rightarrow CH_4(g) + CO_2(g) \checkmark$	Accept "3C (s) + $2H_2O(g) \rightarrow CH_4(g) + 2CO(g)$ ".	1
		<i>ALTERNATIVE 2:</i> C (s) + H ₂ O (g) → CO (g) + H ₂ (g) <i>AND</i> 3H ₂ (g) + CO (g) → CH ₄ (g) + H ₂ O (g) \checkmark		
13.	b	« 141.6 / 55.5 » hydrogen/H₂ produces 2.6 times/more than twice the energy of methane/CH₄ «per mass/g» OR less mass of hydrogen/H₂ required «to produce same amount of energy» OR hydrogen/H₂ more energy efficient ✓	Accept "hydrogen/H ₂ produces «nearly» three times more energy than methane/CH ₄ «per mass/g»".	1
13.	С	$m_{\text{octane}} \ll 72.0 \text{dm}^3 \times 703 \text{g dm}^{-3} = 5.06 \times 10^4 \text{wg}/50.6 \text{wkg} \text{\checkmark}$ $m_{\text{carbon dioxide}} \ll \frac{8 \times 44.01}{114.26} \times 50.6 = 156 \text{wkg} \text{\checkmark}$	Award [2] for correct final answer.	2

C	Question	Answers	Notes	Total
14.		Advantage: renewable «energy source» OR does not produce greenhouse gases OR can be installed «almost» anywhere OR low maintenance costs ✓ Disadvantage: widely dispersed/not concentrated «form of energy» OR geography/weather/seasonal dependent OR	Accept "can be used for passive/active heating", "can be converted to electric energy". Accept any specific greenhouse gas name or formula for "greenhouse gases". Accept "solar cells require large areas", "solar cell manufacture produces pollution/greenhouse gases", "higher cost of solar cells «compared with traditional sources such as fossil fuels or hydroelectric»".	Total 2
		not available at night OR energy storage is difficult/expensive OR toxic/hazardous materials used in production OR concerns about space/aesthetics/environment where installed OR need to be «constantly» cleaned ✓	ny di concounción.	

C	Question		Answers	Notes	Total
14.	b	i	high viscosity ✓	Accept "low volatility", just "viscous/viscosity" OR "does not flow easily".	1
14.	b	ii	convert to esters of monoatomic alcohols OR	Accept "convert to shorter «carbon chain» esters" OR "transesterification".	_
			react with short-chain alcohols «in the presence of acid or base» ✓	Accept specific alcohols, such as methanol or ethanol.	1
14.	С		carbon dioxide/CO₂ more/most abundant «GHG than methane/CH₄» OR carbon dioxide/CO₂ has «much» longer atmospheric life «than methane/CH₄» ✓	Accept "carbon dioxide/CO ₂ contributes more to global warming «than methane/CH ₄ »".	
			methane/CH ₄ «much» better/more effective at absorbing IR radiation «than carbon dioxide/CO ₂ »		2
			methane/CH ₄ has a greater greenhouse factor «than carbon dioxide/CO ₂ » OR methane/CH ₄ has a greater global warming notantial/CWD others		
			methane/CH₄ has a greater global warming potential/GWP «than carbon dioxide/CO₂» ✓		
14.	d		$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$	Accept " H_2CO_3 (aq)" for " CO_2 (aq) + H_2O (l)".	
			OR	Equilibrium arrows required for M1.	
			$CO_2(g) \rightleftharpoons CO_2(aq)$ AND $CO_2(aq) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$ \checkmark	State symbols required for $CO_2(g) \rightleftharpoons CO_2(aq)$ equation only for M1.	2
			«increasing [CO₂ (g)]» shifts equilibrium/reaction to right <i>AND</i> pH decreases ✓	Accept "concentration of H ⁺ /[H ⁺] increases AND pH decreases" for M2.	

Question		Answers	Notes	Total
15.	а	 «redox» reaction in rechargeable battery is reversible «but not in a primary ce OR secondary cells need to be charged before use OR secondary cells have greater rate of self-discharge ✓ 	Accept "primary cells cannot be recharged/reused", "primary cells can be used only once" OR "lithium batteries may explode".	1
15.	b	Anode (negative electrode): Li (graphite) \rightarrow Li ⁺ (electrolyte) + e ⁻ OR LiC ₆ (s) \rightarrow 6C (s) + Li ⁺ (electrolyte) + e ⁻ Cathode (positive electrode): Li ⁺ (electrolyte) + e ⁻ + MnO ₂ (s) \rightarrow LiMnO ₂ (s) OR Li ⁺ (electrolyte) + e ⁻ + NiO ₂ (s) \rightarrow LiNiO ₂ (s) OR Li ⁺ (electrolyte) + e ⁻ + CoO ₂ (s) \rightarrow LiCoO ₂ (s) OR 2Li ⁺ (electrolyte) + 2e ⁻ + 2CoO ₂ (s) \rightarrow Co ₂ O ₃ (s) + Li ₂ O (s) \checkmark	Accept "polymer" for "electrolyte". Award [1 max] if electrodes are reversed. Do not accept "CO" for "Co".	2

Q	uesti	on	Answers	Notes	Total
15.	С		« $E = E^{\oplus} - \left(\frac{RT}{nF}\right) InQ$ » 0.19 = 0.14 - $\left(\frac{8.31 \times 298}{2 \times 96500}\right) In\left(\frac{[Cd^{2+}]}{[1]}\right)$ OR 0.05 = -0.01283 In [Cd ²⁺] OR In[Cd ²⁺] = -3.897 ✓		2
			$[Cd^{2+}] = 0.020 \text{ (mol dm}^{-3}) \checkmark$	Award [2] for correct final answer.	
15.	d	i	«extensive» conjugationOR«extensive» alternate single and double bonds ✓	Accept "delocalization".	1
15.	d	ii	electrons excited/released «from dye» ✓	Accept "photooxidation/oxidizes dye".	1
15.	d	iii	transfers e⁻ to external circuit ✓	Accept "provides large surface area".	1
15.	d	iv	$I_3^-(aq) + 2e^- \rightarrow 3I^-(aq) \checkmark$	Accept " $3I_2(aq) + 2e^- \rightarrow 2I_3^-(aq)$ ".	1

Option D — Medicinal chemistry

C	Question			Answers	Notes	Total
16.	а	β-lactam ring sp ² sp ³	Bond angle 90° ✓ 120° AND 109.5° ✓	A	Accept "109°".	2
16.	b	OR inhibits enzyme/	transpeptidase «	n bacteria» that produces cell walls cell walls ✓	Accept "reacts with" for "bonds to" for M1. Do not accept "cell membrane" for "cell wall" for M1. For M1. Accept "cells burst due to osmotic pressure"	2
16.	С	OR cells cannot rep «modify» side-c		fo Ad	For M2. Accept "bacteria" for "cells" for M2. Accept "«modify» R".	1
16.	d	no cell walls	have transpeptid		· ,	1

Question		on	Answers	Notes	Total
17.	а		blood-brain barrier is hydrophobic/non-polar/made of lipids ✓ morphine has hydroxyl/OH «groups»/is more polar <i>AND</i> diamorphine has ester/ethanoate/OCOCH₃/acetate «groups»/is less polar/is lipid soluble ✓	Accept "fats" for "lipid(s)". Accept "alcohol/hydroxy" for "hydroxyl" but not "hydroxide". Accept "non-polar" for "less polar" in M2.	2
17.	b		fraction/proportion/percentage of «administered dosage» that enters blood/plasma/circulation ✓	Accept "fraction/proportion/percentage of «administered dosage» that reaches target «part of human body»".	1

18.	а	ALTERNATIVE 1:			
		Using: $pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$			
		pK _a = 10.32 √			
		$pH = «10.32 + log \left(\frac{0.0200}{0.0100}\right) = » 10.62 \checkmark$	Award [2] for correct final answer.	2	
		ALTERNATIVE 2:			
		$[H^+] \ll K_a \times \left(\frac{0.0100}{0.0200}\right) = 2.4 \times 10^{-11} \checkmark$	Accept answers for M2 between 10.6 and 10.7.		
		pH = 10.62 ✓	Award [1 max] for pH = 10.02.		

Q	Question		Answers	Notes	Total
18.	b		$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$ OR		1
			$CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + H_2O(l) + CO_2(g)$		·
18.	С		«back» titration OR thermal decomposition OR atomic absorption/AA ✓	Accept "gravimetric analysis". Do not accept description of a technique without proper term given for the technique.	1

19.	Any two of:		
	prevents virus attaching to host cell ✓	Accept "prevents synthesis of virus by host cell".	
	alters cell's genetic material/DNA «so that virus cannot use it to multiply» ✓		
	blocks enzyme activity in the host cell «so that virus cannot use it to multiply» ✓	Accept "alters RNA/DNA/genetic material of virus".	2 max
	prevents removal of protein coat/capsid √	Do not accept just "mimics nucleotides".	
	prevents injection of viral DNA/RNA into cell ✓		
	prevents release of «replicated» viruses from host cell ✓		

Q	uestion	Answers	Notes	Total
20.		Any two of:		
		«weak» C–Cl bonds break/produce radicals ✓		
		contribute to ozone depletion √		
		contribute to «photochemical» smog ✓		
		cause cancers √		2 max
		damage respiratory system √		
		cause organ failure √		
		produce toxic chemicals/phosgene/dioxins √	Accept "chlorinated solvents are toxic".	

21.	а		Do not penalize any other notation (eg *) used for a circle.	1	

C	Question	Answers	Notes	Total
21.	b	chiral auxiliary creates stereochemical condition necessary to follow a certain pathway OR stereochemical induction OR existing chiral centre affects configuration of new chiral centres ✓ chiral molecule/auxiliary/optically active species is used/added/connected to the starting molecule «to force reaction to follow a certain path» OR «after new chiral centre created» chiral auxiliary removed «to obtain desired product» ✓		2
21.	С	Any two of: immiscible solvents ✓ partitioning of Taxol between the two solvents ✓ Taxol more soluble in one solvent ✓ extraction carried out multiple times «to improve extraction» ✓ shaking/stirring the mixture ✓ separating the two layers ✓ evaporation of the solvent from the final solution «to obtain pure Taxol» ✓		2 max

Q	uestic	on	Answers	Notes	Total
22.	а		«alpha emitter» carried to/selectively absorbed by cancer cells «by antibody, carrier drug, protein» ✓	Do not accept just "targets cancer cells and does not affect healthy cells".	
			low penetrating power		2
			OR		
			short range √		
22.	b	i	ALTERNATIVE 1:		
			$\frac{48}{6.0} = 8 t_{\frac{1}{2}}/8 \text{ half-lives «required» } \checkmark$		
			% remaining = « (0.5) ⁸ × 100 = » 0.39 « % » √	Award [2] for correct final answer.	2
			ALTERNATIVE 2:		
			$\lambda = \ll \frac{0.693}{6.0} = 0.1155 \checkmark$		
			% remaining = « 100 × e ^{-0.1155 × 48} = » 0.39 « % » √	Accept "0.32 «%»" in ALTERNATIVE 2.	
22.	b	ii	removed by excretion ✓	Accept any method of excretion.	1

C	Question	Answers	Notes	Total
23.	а	gas chromatography/GC OR high performance liquid chromatography/HPLC ✓	Accept "chromatography", "TLC/thin-layer chromatography", "paper chromatography" OR "extraction". Do not accept just "mass spectrometry/MS" but do not penalize any reference to MS with HPLC or GC (eg GC-MS).	1
23.	b	ALTERNATIVE 1: Any two of: «blow through tube of» acidified «orange» potassium dichromate(VI)/K₂Cr₂O ₇ /dichromate/Cr₂O ₇ ²- ✓ Cr(VI)/Cr ⁶⁺ /Cr₂O ₇ ²- reduced to Cr(III)/Cr³+ ✓ colour changes «from orange» to green OR colour change is monitored ✓		2 max
		ALTERNATIVE 2: oxygen reduced to water OR ethanol oxidized to ethanoic/acetic acid ✓ current measured ✓	Accept "ethanol oxidized to ethanal/acetaldehyde".	