Algoritmi e Strutture Dati

Capitolo 2 Modelli di calcolo e metodologie di analisi

Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano

Notazione asintotica

Notazione asintotica

- f(n) = tempo di esecuzione / occupazione di memoria di un algoritmo su input di dimensione n
- La notazione asintotica è un'astrazione utile per descrivere l'ordine di grandezza di f(n) ignorando i dettagli non influenti, come costanti moltiplicative e termini di ordine inferiore

Notazione asintotica O

f(n) = O(g(n)) se \exists due costanti c>0 e $n_0 \ge 0$ tali che $f(n) \le c g(n)$ per ogni $n \ge n_0$

Notazione asintotica Ω

 $f(n) = \Omega(g(n))$ se \exists due costanti c>0 e $n_0 \ge 0$ tali che $f(n) \ge c g(n)$ per ogni $n \ge n_0$

Notazione asintotica Θ

 $f(n) = \Theta(g(n))$ se \exists tre costanti $c_1, c_2 > 0$ e $n_0 \ge 0$ tali che $c_1 g(n) \le f(n) \le c_2 g(n)$ per ogni $n \ge n_0$

Notazione asintotica: esempi

- $-Sia g(n)=3n^2+10$
- $-g(n)=O(n^2)$: scegliere c=4 e $n_0=10$
- $-g(n)=\Omega(n^2)$: scegliere c=1 e $n_0=0$
- $-g(n)=\Theta(n^2)$: infatti $g(n)=\Theta(f(n))$ se e solo se g(n)=O(f(n)) e $g(n)=\Omega(f(n))$
- $-g(n)=O(n^3)$ ma $g(n)\neq\Theta(n^3)$

Funzioni polinomiali

Se
$$g(n)=a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$$
, allora $g(n)=O(n^k)$

Dim:

$$g(n) \le |g(n)| = |a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0| \le$$

$$\leq |a_k|n^k + |a_{k-1}|n^{k-1} + \dots + |a_1|n + |a_0| =$$

$$= n^k (|a_k| + |a_{k-1}|/n + ... + |a_1|/n^{k-1} + |a_0|/n^k) \le cn^k$$

Delimitazioni inferiori e superiori

La notazione asintotica introdotta ci permette di esprimere delimitazioni inferiori e superiori alla complessità di un problema rispetto a una data risorsa di calcolo.

La notazione asintotica O è adatta ad esprimere delimitazioni superiori, mentre la notazione Ω permette di esprimere le delimitazioni inferiori

Upper bound

Un algoritmo A ha costo di esecuzione
 O(f(n)) su un'istanza di dimensione n,
 rispetto a una certa risorsa di calcolo, se la
 quantità r di risorsa sufficiente per eseguire
 A su una qualunque istanza di dimensione n
 verifica la relazione r(n)=O(f(n))

Upper bound di un problema

Un problema P ha una complessità O(f(n))
rispetto a una data risorsa di calcolo se
esiste un algoritmo che risolve P il cui costo
di esecuzione rispetto a quella risorsa è
O(f(n))

Lower bound

Un algoritmo A ha costo di esecuzione
 Ω(f(n)) su un'istanza di ingresso di
 dimensione n, rispetto a una certa risorsa di
 calcolo, se la quantità r di risorsa necessaria
 per eseguire A su una qualunque istanza di
 dimensione n verifica la relazione r(n)=
 Ω(f(n))

Lower bound per un problema

Un problema P ha una complessità Ω (f(n)) rispetto a una data risorsa di calcolo se ogni algoritmo che risolve P ha costo di esecuzione Ω (f(n)) rispetto a quella risorsa.

Dato un problema P con complessità Ω (f(n)) rispetto a una data risorsa di calcolo, un algoritmo che risolve P è ottimo se ha costo di esecuzione O(f(n)) rispetto a quella risorsa

Metodi di analisi

Caso peggiore, migliore e medio

- Misureremo le risorse di calcolo usate da un algoritmo (tempo di esecuzione / occupazione di memoria) in funzione della dimensione n delle istanze
- Istanze diverse, a parità di dimensione, potrebbero però richiedere risorse diverse
- Distinguiamo quindi ulteriormente tra analisi nel caso peggiore, migliore e medio

Caso peggiore

- Sia tempo(I) il tempo di esecuzione di un algoritmo sull'istanza I
- $T_{worst}(n) = \max_{istanze\ I\ di\ dimensione\ n} \{tempo(I)\}$
- Intuitivamente, T_{worst}(n) è il tempo di esecuzione sulle istanze di ingresso che comportano più lavoro per l'algoritmo

Caso migliore

- Sia tempo(I) il tempo di esecuzione di un algoritmo sull'istanza I
- $T_{best}(n) = min_{istanze\ I\ di\ dimensione\ n} \{tempo(I)\}$
- Intuitivamente, T_{best}(n) è il tempo di esecuzione sulle istanze di ingresso che comportano meno lavoro per l'algoritmo

Caso medio

- Sia $\mathcal{P}(I)$ la probabilità di avere in ingresso un'istanza I
- $T_{avg}(n) = \sum_{istanze\ I\ di\ dimensione\ n} \{P(I)\ tempo(I)\}$
- Intuitivamente, $T_{avg}(n)$ è il tempo di esecuzione nel caso medio, ovvero sulle istanze di ingresso "tipiche" per il problema
- Richiede conoscenza di una distribuzione di probabilità sulle istanze

Esempio 1

Ricerca di un elemento x in una lista \mathcal{L} non ordinata

algoritmo ricercaSequenziale $(lista\ L,\ elem\ x) \rightarrow\ booleano$

- 1. for each $(y \in L)$ do
- 2. **if** (y = x) **then return** trovato
- 3. **return** non trovato

$$T_{\text{best}}(n) = 1$$

$$T_{worst}(n) = n$$

$$T_{avg}(n) = (n+1)/2$$

x è in prima posizione

 $x \notin \mathcal{L}$ oppure è in ultima posizione

assumendo che le istanze siano equidistribuite

Esempio 2 (1/2)

Ricerca di un elemento x in un array \mathcal{L} ordinato

```
algoritmo ricercaBinariaIter(array\ L,\ elem\ x) \to booleano
1. a \leftarrow 1
2. b \leftarrow \text{lunghezza di } L
3. while (L[(a+b)/2] \neq x) do
4. m \leftarrow (a+b)/2
5. if (L[i] > x) then b \leftarrow m-1
6. else a \leftarrow m+1
7. if (a > b) then return non trovato
8. return trovato
```

Confronta x con l'elemento centrale di \mathcal{L} e prosegue nella metà sinistra o destra in base all'esito del confronto

Esempio 2 (2/2)

$$T_{\text{best}}(n) = 1$$

7

l'elemento centrale è uguale a x

 $T_{worst}(n) = log n$

 $x \notin \mathcal{L}$ oppure viene trovato all'ultimo confronto

Poiché la dimensione del sotto-array su cui si procede si dimezza dopo ogni confronto, dopo l'i-esimo confronto il sottoarray di interesse ha dimensione $n/2^i$ Risulta $n/2^i = 1$ per $i=log_2n$

 $T_{avg}(n) = log n - 1 + 1/n$ as equidistribuite

assumendo che le istanze siano

Analisi di algoritmi ricorsivi

Esempio

L'algoritmo di ricerca binaria può essere riscritto ricorsivamente come:

```
algoritmo ricercaBinariaRic(array\ L,\ elemento\ x) \to booleano
1. n \leftarrow \text{lunghezza di } L
2. if (n=0) then return non trovato
3. i \leftarrow \lceil n/2 \rceil
4. else if (L[i]=x) then return trovato
5. else if (L[i]>x) then return ricercaBinariaRic(x,L[1;i-1])
```

else return ricercaBinariaRic(x,L[i+1;n])

Come analizzarlo?

6.

Equazioni di ricorrenza

Il tempo di esecuzione può essere descritto tramite una equazione di ricorrenza:

$$T(n) = \begin{cases} c + T(\lceil n-1 \rceil/2) & \text{se } n > 1 \\ 1 & \text{se } n = 1 \end{cases}$$

Vari metodi per risolvere equazioni di ricorrenza: iterazione, sostituzione, teorema Master...

Metodo dell'iterazione

Idea: "srotolare" la ricorsione, ottenendo una sommatoria dipendente solo dalla dimensione n del problema iniziale

Esempio:
$$T(n) = c + T(n/2)$$

 $T(n/2) = c + T(n/4)$...

T(n) = c + T(n/2) = 2c + T(n/4) =
=
$$(\sum_{i=1...i} c) + T(n/2^i) = ic + T(n/2^i)$$

Per $i = log_2 n$: T(n) = c log n + T(1) = O(log n)

Metodo della sostituzione

Idea: "indovinare" una soluzione, ed usare induzione matematica per provare che la soluzione dell'equazione di ricorrenza è effettivamente quella intuita

Esempio: T(n) = n + T(n/2), T(1)=1

Assumiamo che la soluzione sia T(n)≤cn per una costante c opportuna

Passo base: $T(1)=1 \le c 1$ per ogni c

Passo induttivo: $T(n)=n+T(n/2) \le n+c(n/2)=(c/2+1)n$ Quindi $T(n) \le c$ n per $c \ge 2$

Teorema Master

Permette di analizzare algoritmi basati sulla tecnica del *divide et impera*:

- dividi il problema (di dimensione n) in a sottoproblemi di dimensione n/b
- risolvi i sottoproblemi ricorsivamente
- ricombina le soluzioni

Sia f(n) il tempo per dividere e ricombinare istanze di dimensione n. La relazione di ricorrenza è data da:

$$T(n) = \begin{cases} a T(n/b) + f(n) & \text{se } n > 1 \\ 1 & \text{se } n = 1 \end{cases}$$

Teorema Master

La relazione di ricorrenza:

$$T(n) = \begin{cases} a T(n/b) + f(n) & \text{se } n > 1 \\ 1 & \text{se } n = 1 \end{cases}$$

ha soluzione:

1.
$$T(n) = \Theta(n \log_b s)$$
 se $f(n) = O(n \log_b s)$ per $\epsilon > 0$

2.
$$T(n) = \Theta(n \log_b a \log n)$$
 se $f(n) = \Theta(n \log_b a)$

3.
$$T(n) = \Theta(f(n))$$
 se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ per $\varepsilon > 0$ e a $f(n/b) \le c f(n)$ per $c < 1$ e n sufficientemente grande

Esempi

- 1) T(n) = n + 2T(n/2) $a=2, b=2, f(n)=n=\Theta(n^{\log_2 2}) \Rightarrow T(n)=\Theta(n \log n)$ (caso 2 del teorema master)
- 2) T(n) = c + 3T(n/9) $a=3, b=9, f(n)=c=O(n^{\log_9 3} - \epsilon) \rightarrow T(n)=\Theta(\sqrt{n})$ (caso 1 del teorema master)
- 3) T(n) = n + 3T(n/9) $a=3, b=9, f(n)=n=\Omega(n\log_9 3 + \epsilon)$ $3(n/9) \le c \text{ n per c}=1/3$ (caso 3 del teorema master) $T(n)=\Theta(n)$

Riepilogo

- Esprimiamo la quantità di una certa risorsa di calcolo (tempo, spazio) usata da un algoritmo in funzione della dimensione n dell'istanza di ingresso
- La notazione asintotica permette di esprimere la quantità di risorsa usata dall'algoritmo in modo sintetico, ignorando dettagli non influenti
- A parità di dimensione n, la quantità di risorsa usata può essere diversa, da cui la necessità di analizzare il caso peggiore o, se possibile, il caso medio
- La quantità di risorsa usata da algoritmi ricorsivi può essere espressa tramite relazioni di ricorrenza, risolvibili tramite vari metodi generali