Recurrent neural nets.

Victor Kitov

v.v.kitov@yandex.ru

Intro

- Sequences
 - words: sequences of symbols
 - sentences: sequences of words
 - documents: sequences of words
- Need fixed vector representation for prediction!
- Bag-of-words allows to do that:
 - one-hot encoding: indicator, TF, TF-IDF models
 - embeddings: get average embedding for sentence/document.

Problem of bag-of-words approach

- Problem: bag-of-words completely ignores word order.
 - information loss!
- Recurrent neural nets account for positions of all elements in sequence!
 - output fixed size sequence representation
 - this feature representation is feature extraction for later model.
 - e.g. MLP.

Recurrent neural net (RNN)

- Consider input sequence $x_{i:j} := x_i, ... x_j, x_i \in \mathbb{R}^{d_{in}}$.
- RNN outputs single vector $\widehat{\mathbf{y}}_{\mathbf{n}} \in \mathbb{R}^{d_{out}}$:

$$\widehat{\mathbf{y}}_{\mathbf{n}} = RNN(\mathbf{x}_{1:\mathbf{n}})$$

This implicitly defines RNN* with sequential output:

$$\begin{split} \widehat{y}_{1:n} &= \textit{RNN}^*\left(x_{1:n}\right) \\ \widehat{y}_{i} &= \textit{RNN}\left(x_{1:i}\right) \end{split}$$

- Comments:
 - RNN shrinks history $\mathbf{x}_{1:n}$ to fixed size vector \mathbf{y}_n .
 - No Markov assumption: all info is aggregated!

Technical details of RNN

$$\begin{split} \textit{RNN*}(\mathsf{x}_{1:n}, \mathsf{s}_0) &= \mathsf{y}_{1:n} \\ \widehat{\mathsf{y}_i} &= \textit{O}(\mathsf{s}_i) \\ \mathsf{s}_i &= \textit{R}(\mathsf{s}_{i-1}, \mathsf{x}_i) \\ \\ \mathsf{x}_i &\in \mathbb{R}^{d_{in}}, \mathsf{y}_i \in \mathbb{R}^{d_{out}}, \mathsf{s}_i \in \mathbb{R}^{d_{state}} \end{split}$$

Typical usage: $O(s) \equiv s$, $d_{state} = d_{out}$, $s_0 = 0$.

Unrolled RNN

$$\begin{aligned} s_4 &= R(s_3, x_4) = R(R(s_2, x_3), x_4) \\ &= R(R(R(s_1, x_2), x_3), x_4) = R(R(R(R(s_0, x_1), x_2), x_3), x_4) \end{aligned}$$

Training

Training: unroll RNN and use parameter sharing.

- called backpropagation through time (BPTT)
- Variant: unroll RNN for all non-intersecting subsequences of given sequence of given length.

```
init s_0 for i in 0,1,...n/k-1:  \mathbf{\hat{y}_{ki+1:ki+k}} = RNN^*(\mathbf{x_{ki+1:ki+k}},\mathbf{s_{ki}})  calculate loss \sum_{j=ki+1}^{ki+k} L(\mathbf{\hat{y}_j},\mathbf{y_j})  backpropagate gradients, update weights
```

Common use-cases of RNN

- Acceptor: output prediction in \hat{y}_n .
 - e.g. read sentence and output its polarity probabilities.
- Transducer: tag sequence $x_1, ... x_n$ with RNN outputs $y_1, ... y_n$. Loss function:

$$\mathcal{L}\left(\widehat{\mathbf{y}}_{1:n},\mathbf{y}_{1:n}\right) = \sum_{i=1}^{n} L\left(\widehat{\mathbf{y}}_{i},\mathbf{y}_{i}\right)$$

- e.g. POS tagging, language modelling.
- summarization: for each sentence classify whether to include it into summary or not.
- Encoder: encode input sequence representation as \hat{y}_n , e.g.:
 - machine translation: translation generation done with another "decoding" RNN decode starting from $\mathbf{s_0} = \widehat{\mathbf{y}_n}$.

NN & RNN architectures

NN & RNN architectures:

Examples, where these architectures arise:

- one to one: classical classification, image classification.
- one to many: image captioning, story generation based on topic.
- many to one: text classification, sentiment analysis.
- many to many: machine translation, summarization.
- synced many to many: POS tagging, activity detection on video.

Table of Contents

- RNN extensions
- 2 Concrete RNN Architectures
- 3 LSTM model

Bidirectional RNN

- Bidirectional RNN consists of 2 RNNs.
 - forward RNN (R^f, O^f) with state $\mathbf{s}_i^f, i = \overline{1, n}$
 - backward RNN (R^b, O^b) with state \mathbf{s}_i^b , $i = \overline{1, n}$
- Forward RNN goes in forward direction $x_1, x_2...x_n$.
- Backward RNN goes in backward direction $x_n, x_{n-1}...x_1$.
- At each moment i we have 2 states:
 - **1** $\mathbf{s}_{i}^{f} = F_{1}(\mathbf{x}_{1}, \mathbf{x}_{2}...\mathbf{x}_{i})$ **2** $\mathbf{s}_{i}^{b} = F_{2}(\mathbf{x}_{i}, \mathbf{x}_{i+1}, ...\mathbf{x}_{n})$

Bidirectional RNN

So we can output

$$\begin{aligned} \textit{biRNN}(\mathbf{x}_{1:n}, i) &= \widehat{\mathbf{y}_i} = [\widehat{\mathbf{y}_i^f}; \widehat{\mathbf{y}_i^b}] = [\textit{RNN}^f(\mathbf{x}_{1:i}); \; \textit{RNN}^b(\mathbf{x}_{n:i})] \\ \textit{biRNN}^*(\mathbf{x}_{1:n}) &= \mathbf{y}_{1:n} = [\textit{biRNN}(\mathbf{x}_{1:n}, 1); ...; \textit{biRNN}(\mathbf{x}_{1:n}, n)] \end{aligned}$$

- encoding takes into account past and future!
- biRNN is very effective for tagging sequences (e.g. POS tagging).

biRNN illustration

Stacked RNN

- Output of previous layer RNN is input to next layer.
- Empirically stacked RNNs work better than single layer RNNs.
- biRNNs can also be stacked.

Table of Contents

- RNN extensions
- Concrete RNN Architectures
- 3 LSTM model

Bag-of-words RNN

Bag-of-words RNN:

$$\begin{aligned} s_i &= s_{i-1} + x_i \\ y_i &= s_i \end{aligned}$$

- xi: input vector
- s_i: hidden layer
- yi: output vector

Order of words does not matter, not very informative.

Simple RNN (S-RNN)

Simple RNN (S-RNN)¹:

$$\begin{aligned} \mathbf{s_i} &= g_s \left(W_s \mathbf{s_{i-1}} + V_s \mathbf{x_i} + \mathbf{b_s} \right) \\ \mathbf{y_i} &= g_y (W_y \mathbf{s_i} + \mathbf{b_y}) \end{aligned}$$

- xi: input vector
- s_i: hidden layer
- yi: output vector
- W_s , V_s , W_v : parameter matrices
- \bullet b_s, b_v : parameter vectors
- $g_s(\cdot), g_v(\cdot)$: activation functions

¹also called Elman network

Properties of S-RNN

- S-RNN is sensitive to the order of the inputs.
- Due to recurrent multiplications by W_s is subject to:
 - exploding gradient problem
 - solved by gradient clipping
 - vanishing gradient problem
 - solved by gated models and memory models

Exploding gradient problem

Exploding gradient problem:

Exploding gradient problem

Solutions:

- add regularization
- gradient clipping: clip norm of gradient by threshold.

• if
$$\|\nabla_{\theta} L(\widehat{y}_i, y_i)\| < t$$

$$heta o heta - arepsilon
abla_{ heta} L(\widehat{\mathbf{y}}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}})$$

else

$$heta o heta - arepsilon rac{t}{\|
abla_{ heta} L(\widehat{\mathbf{y_i}}, \mathbf{y_i})\|}
abla_{ heta} L(\widehat{\mathbf{y_i}}, \mathbf{y_i})$$

Vanishing gradients

- Repetitive multiplication of state by the same matrix W_s and saturating non-linearities also cause net to forget past quickly due to vanishing gradients.
- Ways to combat this:
- Initialize $W_s = I, b_s = 0, g_s = ReLu$.
 - so initially network sums information
 - will change behavior after training if needed
- 2 Better solution: use LSTM model.

Table of Contents

- 1 RNN extensions
- Concrete RNN Architectures
- 3 LSTM model

Gates

- Consider n dimensional vectors:
 - old state \mathbf{s} , update \mathbf{x} and new state \mathbf{s}' .
- Gate $g \in \{0,1\} \in \mathbb{R}^n$ controls state positions where change is applied.
- Example (⊙ defines point-wise multiplication):

- Problems:
 - gates need to be learned
 - piece-wise constant gates cannot be optimized.
- Solution: use sigmoid gate $\mathbf{g} = \sigma(f(\mathbf{x}, \mathbf{s}, \theta))$
 - θ : learned parameters
 - f: any differentiable function

Long short-term memory (LSTM) model

$$\begin{split} & \mathbf{f_t} = \sigma\left(W_f \mathbf{x_t} + U_f \mathbf{h_{t-1}} + \mathbf{b_f}\right) & \text{forget gate} \\ & \mathbf{i_t} = \sigma\left(W_i \mathbf{x_t} + U_i \mathbf{h_{t-1}} + \mathbf{b_i}\right) & \text{input gate} \\ & \mathbf{o_t} = \sigma\left(W_o \mathbf{x_t} + U_o \mathbf{h_{t-1}} + \mathbf{b_0}\right) & \text{output gate} \\ & \mathbf{c_t} = \mathbf{f_t} \odot \mathbf{c_{t-1}} + \mathbf{i_t} \odot \tanh\left(W_c \mathbf{x_t} + U_c \mathbf{h_{t-1}} + \mathbf{b_c}\right) & \text{inner state} \\ & \mathbf{h_t} = \mathbf{o_t} \odot \tanh\left(\mathbf{c_t}\right) & \text{observed output} \end{split}$$

x_t-input, parameters:

- matrices: W_f , U_f , W_i , U_i , W_o , U_o , W_c , U_c
- vectors: b_f, b_i, b_o, b_c
- initialization: c_0, h_0

Illustration²

Input from below, output above, memory (yellow) in the middle.

²Illustration by Lobacheva Julia.

Gated recurrent unit (GRU)

$$\begin{split} \mathbf{z_t} &= \sigma \left(W_z \mathbf{x_t} + U_z \mathbf{h_{t-1}} + \mathbf{b_z} \right) \\ \mathbf{r_t} &= \sigma \left(W_r \mathbf{x_t} + U_r \mathbf{h_{t-1}} + \mathbf{b_r} \right) \\ \mathbf{h_t} &= \left(1 - z_t \right) \odot \mathbf{h_{t-1}} + \mathbf{z_t} \odot \tanh \left(W_h \mathbf{x_t} + U_h \left(\mathbf{r_t} \odot \mathbf{h_{t-1}} \right) + \mathbf{b_h} \right) \end{split}$$

 x_t - input, z_t - forget gate, r_t - input gate, h_t - observed output. Parameters:

- matrices: W_z , U_z , W_r , U_r , W_h , U_h
- ullet vectors: b_z, b_r, b_h
- initialization: h₀

Comments

- Architecture excluded repetitive multiplication of state by the same matrix W_s (which cause vanishing and exploding gradients)
- Gating mechanisms allow for gradients related to c_t to stay high across long time ranges.
- ullet It's recommended to initialize $b_f=1$
 - so initially neural net tries to remember everything