Variants of Vision Transformer

Vision Transformers Series

Recap of ViT

Generate a sequence of image tokens (patches) and apply standard transformer

Minimal inductive bias →
Learn everything from scratch

Pre-training on very large labeled dataset (JFT300M)

ViT Variants

- 1. DeiT
- 2. T2T-ViT
- 3. BEIT
- 4. CaiT
- 5. SWIN
- 6. DINO
- 7. CLIP

• • •

This video

Vanilla ViT shows inferior performance to CNNs when trained from scratch on a mid-size image datasets

Part 1: DeiT

Data Efficient Image Transformers

Training data-efficient image transformers & distillation through attention, Touvron et al., 2021, https://arxiv.org/pdf/2012.12877.pdf

DeiT overview

- Original ViT requires hundred-million images for pre-training
 - → Inferior performance if trained on mid-size image datasets

• DeiT objective → training on ImageNet1k (mid-size dataset)

Main idea:

> Teacher-Student Distillation

Knowledge Distillation

- Two networks:
 - Teacher model
 - Student model
- Teacher guides the training of student

Modes of training

- Pre-trained teacher:
 Teacher is pre-trained and frozen during the training of the student model
- Simultaneous training:

 Training student and teacher models at the same time

Knowledge Distillation

Transferring targets from teacher to student:

- Soft distillation
 Student's targets are derived from teacher's output probabilities
- 2. Hard distillation
 Student's targets are based on hard decision applied to teacher's output

Soft Distillation

Soft targets from teacher network

Minimizing KL-divergence between softmax output of teacher and softmax output of student network

$$\mathcal{L}_{\text{student}} = (1 - \lambda)\mathcal{L}_{CE}(\sigma(Z_s), y) + \lambda \tau^2 \text{ KL}\left(\sigma\left(\frac{Z_s}{\tau}\right), \sigma\left(\frac{Z_t}{\tau}\right)\right)$$

 Z_t : Teacher logits

 Z_s : Student logits

y: Ground truth label

 λ : Balancing factor

τ: Temperature

Hard Distillation

Taking hard labels from teacher output as true label (y_t)

$$y_t = \operatorname{argmax}_{c} Z_t(c)$$

$$\mathcal{L}_{\text{student}} = \frac{1}{2} \mathcal{L}_{CE}(\sigma(Z_s), y) + \frac{1}{2} \mathcal{L}_{CE}(\sigma(Z_s), y_t)$$

- → Further enhance teacher hard labels with label-smoothing
 - (1ϵ) : true label
 - ϵ spread over others

DeiT Student Architecture

Distillation token: A special learnable token (like class token) added to the end of input sequence

→ Allows the model to learn from the output of teacher network

Test (inference)

Input to the classifier head:

- 1. Just the class embedding
- 2. Just the distillation embedding
- 3. Fusing both class and distillation embedding (late fusion)

DeiT Model Variants

Model	ViT model	embedding dimension	#heads	#layers	#params	training resolution	throughput (im/sec)
DeiT-Ti	N/A	192	3	12	5M	224	2536
DeiT-S	N/A	384	6	12	22M	224	940
DeiT-B	ViT-B	768	12	12	86M	224	292

Performance as a Function of the Teacher Network

Teacher	acc.	Student: I	DeiT-B 7 .
Models		pretrain	↑384
DeiT-B	81.8	81.9	83.1
RegNetY-4GF	80.0	82.7	83.6
RegNetY-8GF	81.7	82.7	83.8
RegNetY-12GF	82.4	83.1	84.1
RegNetY-16GF	82.9	83.1	84.2

Student learns better from a ConvNet teacher than a transformer teacher

Comparing distillation methods

method↓	Supervision label teacher		ImageNet top-1 Ti 224 S 224 B 224			%) B↑384
DeiT– no distillation DeiT– usual distillation DeiT– hard distillation	X X	x soft hard	72.2 72.2 74.3	79.8 79.8 80.9	81.8 81.8 83.0	83.1 83.2 84.0
DeiT: class embedding DeiT: distil. embedding DeiT: class+distillation	\ \frac{1}{2}	hard hard hard	73.9 74.6 74.5	80.9 81.1 81.2	83.0 83.1 83.4	84.2 84.4 84.5

Part 2: T2T – ViT

Tokens-to-Token

T2T-ViT overview

 Original ViT has inferior performance when trained from scratch on a mid-size dataset

- Hypothesized Reasons:
 - Tokenization process fails to model local structures inherence in images
 - Redundant attention backbone in ViT, which leads to limited feature richness

Proposed solution:

- ➤ Recursive (layer-wise) tokenization
- ➤ A deep-narrow backbone structure motivated by CNN architectures

CNN vs. ViT Features

https://arxiv.org/pdf/2101.11986.pdf

Tokens-to-Token

Steps:

(1) Reconstruction

The output token embeddings from each transformer layer is restructured to an image format

(2) Soft split

Split the reconstructed image into tokens with overlaps

$$k: patch size$$
 $s: overlap$ $\Rightarrow stride = k - s$

Tokens-to-Token

Steps:

- (1) **Restructurization** (or reconstruction)
- The output token embeddings from each transformer layer is restructured to an image format

(2) Soft split

- Split the reconstructed image into tokens with overlaps
- Aggregate neighboring tokens into one token

Benefits of T2T

- Local structure is embedded into tokens
- Aggregation reduces the sequence lengths (# tokens)
- Enabling more efficient backbone architectures like CNNs

https://arxiv.org/pdf/2101.11986.pdf

T2T Module

Depth: n = 2

Composed of

- Two T2T Transformers
- Three soft-splits (n + 1)
- Patch sizes: [7, 3, 3]
- Overlap: [3, 1, 1]

>

- Input: 224×224
- Output: 14×14

Architecture Details

	Tokens-to-Token module				T2T-ViT backbone			Model size	
Models	T2T transformer	Depth	Hidden dim	MLP size	Depth	Hidden dim	MLP size	Params (M)	MACs (G)
ViT-S/16 [12]	-	-	-	-	8	786	2358	48.6	10.1
ViT-B/16 [12]	-	-	-	-	12	786	3072	86.8	17.6
ViT-L/16 [12]	-	-	-	-	24	1024	4096	304.3	63.6
T2T-ViT-14	Performer	2	64	64	14	384	1152	21.5	4.8
T2T-ViT-19	Performer	2	64	64	19	448	1344	39.2	8.5
T2T-ViT-24	Performer	2	64	64	24	512	1536	64.1	13.8
$T2T-ViT_t-14$	Transformer	2	64	64	14	384	1152	21.5	6.1
T2T-ViT-7	Performer	2	64	64	8	256	512	4.2	1.1
T2T-ViT-12	Performer	2	64	64	12	256	512	6.8	1.8

Results

Models	Top1-Acc (%)	Params (M)	MACs (G)
ViT-S/16 [12]	78.1	48.6	10.1
DeiT-small [36]	79.9	22.1	4.6
DeiT-small-Distilled [36]	81.2	22.1	4.7
T2T-ViT-14	81.5	21.5	4.8
T2T-ViT-14 ↑384	83.3	21.5	17.1
ViT-B/16 [12]	79.8	86.4	17.6
ViT-L/16 [12]	81.1	304.3	63.6
T2T-ViT-24	82.3	64.1	13.8

All models trained from scratch on ImageNet1k

- Vanilla ViT
- DeiT
- T2T-ViT

Summary

- Vanilla ViT requires very large dataset for pre-training
- DeiT and T2T-ViT: Two ViT variants that can be pre-trained on a mid-size dataset and still outperforming CNNs

Thanks for watching