Зміст

•	Син	нтаксичний аналіз в мовних процесорах		
,	7.1	Синтаксичний аналіз		
		7.1.1	Стратегії виведення	
		7.1.2	Синтаксичні дерева	
		7.1.3	Власне аналіз	
		7.1.4	Синтез дерева за аналізом	
		7.1.5	Проблеми стратегії "зверху донизу"	
	7.2	Контт	оольні запитання	

7 Синтаксичний аналіз в мовних процесорах

7.1 Синтаксичний аналіз

Для визначення синтаксичної компоненти мови програмування використовують контекстно-вільні граматики (КС-граматики). На відміну від скінченно-автоматних граматик потужність класу КС-граматик достатня, щоб визначити майже всі так звані синтаксичні властивості мов програмування. Якщо цього недостатньо, то розглядають деякі спрощення у граматиках типу 2 або параметричні КС-граматики.

Звичайно, із синтаксичною компонентою мови програмування пов'язана семантична компонента. Тоді, якщо ми говоримо про семантику мови програмування, ми вимагаємо семантичної однозначності для кожної вірно написаної програми. За аналогією з семантикою, при описі синтаксичної компоненти мови програмування необхідно користуватися однозначними граматиками.

Граматика G називається heodhoзначною, якщо існує декілька варіантів виводу ω в G ($\omega \in L(G)$).

Приклад. Розглянемо таку граматику $G = \langle N, \Sigma, P, S \rangle$ з двома правилами у схемі $P: S \Rightarrow S + S$, і $S \Rightarrow a$. Покажемо, що для ланцюжка $\omega = a + a + a$ існує щонайменше два варіанти виводу:

1.
$$S \Rightarrow S + S \Rightarrow S + S + S \Rightarrow a + S + S \Rightarrow a + a + S \Rightarrow a + a + a$$
.

2.
$$S \Rightarrow S + S \Rightarrow a + S \Rightarrow a + S + S \Rightarrow a + a + S \Rightarrow a + a + a$$
.

7.1.1 Стратегії виведення

В теорії граматик розглядається декілька стратегій виведення ланцюжка ω в G. Визначимо дві стратегії які будуть використані в подальшому.

Правостороння стратегія виводу ω в G протилежна лівосторонній стратегії.

З виводом ω в G пов'язане синтаксичне дерево, яке визначає синтаксичну структуру програми.

7.1.2 Синтаксичні дерева

Синтаксичне дерево виведення ω в G — це впорядковане дерево, корінь котрого позначено аксіомою, в проміжних вершинах знаходяться нетермінали, а на кроні — елементи з $\Sigma \cup \{\varepsilon\}$. Побудова синтаксичного дерева виведення ω в G виконується покроково з урахуванням стратегії виводу ω в G.

Алгоритм [побудови синтаксичного дерева ланцюжка ω в граматиці G урахуванням лівосторонньої стратегії виводу].

- 1. Будуємо корінь дерева та позначимо його аксіомою S.
- 2. В схемі P граматики G візьмемо правило виду $S \Rightarrow \alpha_1 \alpha_2 \dots \alpha_p$, де $\alpha_i \in N \cup \Sigma \cup \{\varepsilon\}$ і побудуємо дерево висоти 1:

3. На кроні дерева, побудованого на попередньому кроці, візьмемо перший зліва направо нетермінал. Нехай це буде α_i . Тоді в схемі P виберемо правило виду $\alpha_i \Rightarrow \beta_1\beta_2\dots\beta_l$, де $\beta_i \in N \cup \Sigma \cup \{\varepsilon\}$ і побудуємо наступне дерево:

Цей крок виконується доки на кроні дерева ϵ елементи з N.

Зауважимо очевидні факти, що випливають з побудови синтаксичного дерева:

• крона дерева, зображеного на попередньому малюнку наступна:

$$\alpha_1\alpha_2\ldots\alpha_{i-1}\beta_1\beta_2\ldots\beta_l\alpha_{i+1}\ldots\alpha_p;$$

- ланцюжок $\alpha_1 \alpha_2 \dots \alpha_{i-1} \in \Sigma^*$ з крони термінальний ланцюжок;
- \bullet для однозначної граматики Gіснує лише одне синтаксичне дерево виводу ω в G.

7.1.3 Власне аналіз

Будемо говорити, що ланцюжок $\omega \in \Sigma^*$, побудований на основі граматики $G(\omega \in L(G))$ проаналізований, якщо відоме одне з його дерев виводу.

Зафіксуємо послідовність номерів правил, які були використані під час побудови синтаксичного дерева виводу ω в G з урахуванням стратегії виводу.

Приклад: Для граматики $G = \langle N, \Sigma, P, S \rangle$ зі схемою P:

$$S \Rightarrow S + T \tag{1}$$

$$S \Rightarrow T$$
 (2)

$$T \Rightarrow T \times F \tag{3}$$

$$T \Rightarrow F$$
 (4)

$$F \Rightarrow (S) \tag{5}$$

$$F \Rightarrow a$$
 (6)

і для ланцюжка $\omega = a \times (a+a)$ побудуємо лівосторонній аналіз π :

Виведення має вигляд:

$$S \Rightarrow T \Rightarrow T \times F \Rightarrow F \times F \Rightarrow a \times F \Rightarrow a \times (S) \Rightarrow a \times (S+T) \Rightarrow a \times (T+T) \Rightarrow a \times (F+T) \Rightarrow a \times (a+T) \Rightarrow a \times (a+F) \Rightarrow a \times (a+a).$$

З наведеного вище виводу ланцюжка $\omega \in L(G)$ лівосторонній аналіз π буде: $\pi = (2,3,4,6,5,1,2,4,6,4,6)$, а синтаксичне дерево виводу $\omega = a \times (a+a)$ наступне:

7.1.4 Синтез дерева за аналізом

Нехай π — лівосторонній аналіз ланцюжка $\omega \in L(G)$. Знаючи π досить легко побудувати (відтворити) синтаксичне дерево. Відтворення (синтез) синтаксичного дерева можна виконати, скориставшись однією з стратегій синтаксичного аналізу:

- стратегія "зверху донизу";
- стратегія "знизу догори".

Стратегія синтаксичного аналізу *"зверху донизу"* — це побудова синтаксичного дерева крок за кроком починаючи від кореня до крони.

Алгоритм [синтезу синтаксичного дерева на основі лівостороннього аналізу π ланцюжка $\omega \in L(G)$].

- 1. Побудуємо корінь дерева та позначимо його аксіомою S. Тоді, якщо $\pi = (p_1, p_2, \dots, p_m)$, то
- 2. Побудуємо дерево висоти один, взявши зі схеми P правило з номером p_1 виду $S \Rightarrow \alpha_1 \alpha_2 \dots \alpha_p$:

3. На кроні дерева, отриманого на попередньому кроку, візьмемо перший зліва направо нетермінал (нехай це буде нетермінал α_i) та правило з номером p_j вигляду: $\alpha_i \Rightarrow \beta_1 \beta_2 \dots \beta_l$ та побудуємо нове дерево:

Даний пункт виконувати доти, доки не переглянемо всі елементи з π .

7.1.5 Проблеми стратегії "зверху донизу"

Сформулюємо декілька проблему для стратегії аналізу "зверху донизу":

У загальному випадку у класі КС-граматик існує проблема неоднозначності (недетермінізму) виводу $\omega \in L(G)$. Як приклад можемо розглянути граматику з "циклами". Це така граматика, у якої в схемі P існує така послідовність правил за участю нетермінала A_i , що: $A_i \Rightarrow A_j$ і $A_j \Rightarrow A_i$, де A_j — будь-який нетермінал граматики G.

Як наслідок, граматики з ліворекурсивним нетерміналом для стратегії аналізу "зверху донизу" недопустимі.

Зауважимо, що існують підкласи класу КС-граматик, які природно забезпечують стратегію аналізу "зверху донизу". Один з таких підкласів — це LL(k)-граматики, які забезпечують синтаксичний аналіз ланцюжка $\omega \in L(G)$ за час O(n), де $n = |\omega|$, та при цьому аналіз є однозначним.

7.2 Контрольні запитання

- 1. Які граматики називаються однозначними?
- 2. Які дві стратегії виведення ви знаєте?
- 3. Що таке синтаксичне дерево виведення?
- 4. Що таке лівосторонній аналіз ланцюжка?
- 5. Що таке синтез дерева за аналізом?
- 6. Які дві стратегії синтезу дерева за аналізом ви знаєте?
- 7. Що таке граматика з циклами і які проблеми вона створює для стратегії "згори донизу"?
- 8. Який підклас КС-граматик забезпечує стратегію аналізу "зверху донизу"?