Contents

Statistics 159/259 Course Summary	1
Concepts	1
Terms related to reproducibility	1
Obstacles to reproducibility	1
Obstacles to replicability	2
Obstacles to good science and applied Statistics	2
Key ideas/tools from software engineering that can help improve	
science	3
Testing, statistical models, sensitivity/stability	3

Statistics 159/259 Course Summary

This version: November 28, 2018

Concepts

Terms related to reproducibility

- reproducibility
- replicability
- repeatability
- computational reproducibility
- "preproducibility"
- the role of replication in science
- "virtual witnessing" and the role(s) of scientific publishing

Obstacles to reproducibility

- data availability
 - data
 - data format
 - data dictionary
 - data cleaning and munging
 - data pre-processing
- reliance on proprietary software
- analysis

- breadcrumbs / description
- actual code
- description and what was done are often different
- scripting is key, but not enough
- software versions, libraries, environments can matter

Obstacles to replicability

- lack of preproducibility: what was done?
- "researcher degrees of freedom"
 - what was considered but not tried, or tried and discarded?
 - choice of hypotheses, P-hacking
 - choice of data subsets
 - choice of transformations
 - choice of models
 - choice of estimators
 - * if Bayesian, choice of prior
 - * if frequentist, what method and why?
 - * constraints?
 - choice of measures of uncertainty
 - * nonparametric / model-based / parametric / asymptotic
 - * local / global
 - * selective inference
 - * hypothesis tests: what is the full null? What does it have to do with reality?
- \bullet "file-drawer effect"
 - small n studies
- ignoring multiplicity & multiple testing
- intrinsic variability
- sensitivity to "influential" observations
- appropriate level of abstraction

Obstacles to good science and applied Statistics

- confirmation bias
- Foundational issues; misinterpretations of probability and uncertainty
 - Interpretation of probability
 - * prior probabilities
 - Types of uncertainty

- * Epistemic and aleatory uncertainty
- * constraints versus priors
- Bayesian and frequentist measures of uncertainty
- Duality between minimax and Bayes estimation
- models versus response schedules
- model mania
 - correlation is not causation
 - fit does not imply correctness
 - statistics and superstition
- ritualization of Statistics, cargo-cult science
- bad incentive structure in academia

Key ideas/tools from software engineering that can help improve science

- revision/version control
- documentation, documentation
- modularity and abstraction
- scripted analyses and automation
- unit tests, regression tests, coverage tests, continuous integration
- code review
- pair programming
- consistency: APIs, calling signatures, object-oriented code
- $\bullet\,$ separating data, computation, presentation

Testing, statistical models, sensitivity/stability

- It's all about the null hypothesis
 - null has to let you find sampling distribution of the test
 - if the null is not appropriate, the test is not appropriate
 - * examples: t-test in Karp et al.
- P-values: $\Pr\{P \leq p | |H_0\} \leq p$.
- Multiple testing, multiplicity, multiplicity adjustments
 - Bonferroni's inequality
 - Independence
 - False discovery rate (not covered)

- The Neyman model for causal inference
 - potential outcomes
 - strong null and weak null
 - non-interference
 - responses can be distributions
 - honor the randomization!
- Permutation tests
 - nulls that imply invariance of the probability distribution under a group
 - has to match the real world
 - generating random permutations
 - $\ast\,$ comparison of PRNGs, algorithms for generating random integers, sampling algorithms
 - simulation to estimate $P\mbox{-}{\rm values};$ randomized tests to find conservative $P\mbox{-}{\rm values}$
 - permutation tests for regression, two-sample test, etc.
- Goodness of fit tests
 - Kolmogorov-Smirnov
 - Chi-square statistic
 - * asymptotic tests versus exact tests versus conservative tests
 - other tests
- Intersection-union tests and stratified tests
 - combining information from different tests
 - combining functions, including Fisher's combining function
- \bullet Fixed-n tests versus sequential tests
 - Wald's sequential probability ratio test
- Models versus response schedules
 - Response schedules and "physics."
 - common models
 - * regression
 - · assumptions required to perform OLS
 - · assumptions required for OLS to be unbiased
 - · assumptions required to compute SE
 - · assumptions required for $\hat{\beta}/SE$ to have a t-distribution
 - * Linear probability models
 - * Logit and probit models
 - * Poisson regression
 - · MLE for Poisson regression
- Sensitivity analysis and sensitivity auditing

- Sensitivity analysis:
 - * General technique for assessing qualitative sensitivity to
 - \cdot data pre-processing
 - · influential observations / outliers
 - · model parametrization
 - · values of external parameters
 - \cdot estimation method
 - \cdot etc.
- Sensitivity auditing
 - * circumspect consideration / cataloging of sources of uncertainty
 - * consideration of how the scientific question is framed; built-in assumptions
 - * data quality
 - * data and model provenance
 - * NUSAP
- Post-Normal Science
 - * "facts uncertain, values in dispute, stakes high, decisions urgent"
 - * distinction between theorists' tools and policy tools
 - * importance of asking the right question
 - · examples: neonicotinoids & bees, nanoparticles, nuclear waste disposal, climate change, etc.