

Compression

16 March 2020

Sebastian Wild

Outline

7 Compression

- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Run-Length Encoding
- 7.5 Lempel-Ziv-Welch
- 7.6 Move-to-Front Transformation
- 7.7 Burrows-Wheeler Transform

7.1 Context

Overview

- ► Unit 4–6: How to *work* with strings
 - finding substrings
 - finding approximate matches
 - ► finding repeated parts
 - ▶ ...
- ▶ Unit 7–8: How to *store* strings
 - ► computer memory: must be binary
 - ▶ how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ coded text: encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts $S \rightarrow C$
- **decoding:** algorithm mapping coded texts back to original source text $C \rightarrow S$

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ► resilience to errors/noise in transmission
 - ► security (encryption)

 In integrity (detect modifications made by third parties)
 - ► size
- ► Focus in this unit: <u>size</u> of coded text | C |
 Encoding schemes that (try to) minimize the size of coded texts perform *data compression*.
- ► We will measure the *compression ratio*: $\frac{|C| \cdot \lg |\Sigma_C|}{|S| \cdot \lg |\Sigma_S|} \stackrel{\Sigma_C = \{0,1\}}{=} \frac{|C|}{|S| \cdot \lg |\Sigma_S|}$
 - < 1 means successful compression
 - = 1 means no compression
 - > 1 means "compression" made it bigger!? (yes, that happens ...)

Types of Data Compression

- ► Logical vs. Physical
 - Logical Compression uses meaning of data
 only applies to a certain domain, e.g., sound recordings
 - Physical Compression only knows the (physical) bits in the data, not the meaning behind them
- Lossy vs. Lossless
 - ▶ **lossy compression** can only decode **approximately**; the exact source text *S* is lost
 - ▶ **lossless compression** always decodes *S* exactly
- ► For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- ► We will concentrate on *physical*, *lossless* compression algorithms. These techniques can be used for any application.

What makes data compressible?

- <u>Physical, lossless</u> compression methods mainly exploit two types of redundancies in source texts:
 - uneven character frequencies some characters occur more often than others → Part I
 - 2. repetitive texts
 different parts in the text are (almost) identical → Part II

What makes data compressible?

- Physical, lossless compression methods mainly exploit two types of redundancies in source texts:
 - uneven character frequencies some characters occur more often than others → Part I
 - 2. repetitive texts different parts in the text are (almost) identical \rightarrow Part II

There is no such thing as a free lunch!

Not *everything* is compressible (\rightarrow tutorials)

→ focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ► Simplest form of encoding: Encode each source character individually
- \rightsquigarrow encoding function $\underline{E}: \Sigma_S \to \Sigma_C^*$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- ▶ fixed-length code: |E(c)| is the same for all $c \in \Sigma$
- ▶ variable-length code: not all codewords of same length

Fixed-length codes

- fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

```
0000000 NUL
               0010000 DLE
                              0100000
                                            0110000 0
                                                          1000000 a
                                                                       1010000 P
                                                                                     1100000 '
                                                                                                  1110000 p
0000001 SOH
               0010001 DC1
                              0100001 !
                                            0110001 1
                                                          1000001 A
                                                                       1010001 0
                                                                                     1100001 a
                                                                                                  1110001 a
0000010 STX
               0010010 DC2
                              0100010 "
                                            0110010 2
                                                          1000010 B
                                                                       1010010 R
                                                                                     1100010 b
                                                                                                  1110010 r
0000011 ETX
               0010011 DC3
                              0100011 #
                                            0110011 3
                                                         1000011 C
                                                                       1010011 S
                                                                                    1100011 c
                                                                                                  1110011 s
0000100 FOT
               0010100 DC4
                              0100100 $
                                            0110100 4
                                                          1000100 D
                                                                       1010100 T
                                                                                     1100100 d
                                                                                                  1110100 t
0000101 ENO
               0010101 NAK
                              0100101 %
                                            0110101 5
                                                          1000101 E)
                                                                       1010101 U
                                                                                     1100101 e
                                                                                                  1110101 u
0000110 (ACK)
               0010110 SYN
                              0100110 &
                                            0110110 6
                                                          1000110 F
                                                                       1010110 V
                                                                                     1100110 f
                                                                                                  1110110 v
0000111 BEL
               0010111 ETB
                              0100111 '
                                            0110111 7
                                                          1000111 G
                                                                       1010111 W
                                                                                     1100111 q
                                                                                                  1110111 w
0001000 BS
                                            0111000 8
                                                          1001000 H
                                                                       1011000 X
                                                                                     1101000 h
                                                                                                  1111000 x
               0011000 CAN
                              0101000 (
0001001 HT
               0011001 EM
                              0101001 )
                                            0111001 9
                                                         1001001 I
                                                                       1011001 Y
                                                                                    1101001 i
                                                                                                  1111001 v
0001010 LF
               0011010 SUB
                                            0111010 :
                                                          1001010 J
                                                                       1011010 Z
                                                                                     1101010 i
                                                                                                  1111010 z
                              0101010 *
0001011 VT
               0011011 ESC
                              0101011 +
                                            0111011 :
                                                          1001011 K
                                                                       1011011 [
                                                                                     1101011 k
                                                                                                  1111011 {
0001100 FF
               0011100 FS
                              0101100 .
                                            0111100 <
                                                         1001100 L
                                                                       1011100 \
                                                                                    1101100 l
                                                                                                  1111100
0001101 CR
               0011101 GS
                              0101101 -
                                            0111101 =
                                                          1001101 M
                                                                       1011101 1
                                                                                    1101101 m
                                                                                                  1111101 }
0001110 SO
                                                                       1011110 ^
               0011110 RS
                              0101110 .
                                            0111110 >
                                                          1001110 N
                                                                                     1101110 n
                                                                                                  1111110 ~
0001111 SI
               0011111 US
                              0101111 /
                                            0111111 ?
                                                          1001111 0
                                                                       1011111
                                                                                     1101111 o
                                                                                                  1111111 DEL
```

- ▶ 7 bit per character
- ▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

Encoding & Decoding as fast as it gets

Unless all characters equally likely, it wastes a lot of space

inflexible (how to support adding a new character?)

Variable-length codes

▶ to gain more flexibility, have to allow different lengths for codewords

Variable-length codes – UTF-8

► Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- ► Encodes any Unicode character (137 994 as of May 2019, and counting)
- ▶ uses 1–4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- ▶ Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- Non-ASCII charactters start with 1–4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence				
(hexadecimal)	(binary)				
0000 0000-0000 007F	(1)				
0000 0080-0000 07FF	110xxxxx 10xxxxxx				
0000 0800-0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx				
0001 0000-0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx				

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

- ► Happily encode text $S = \underline{\text{banana}}$ with the coded text $C = \underline{1100} \underline{100} \underline{0100}$

Pitfall in variable-length codes

- $7 C = 1100100100 \text{ decodes both to banana and to bass: } \frac{1100100100}{\text{b a s s}} \frac{1000100}{\text{s}}$
- but how should we have known?

Pitfall in variable-length codes

- ► Happily encode text S = banana with the coded text $C = \underbrace{1100}_{\text{b}} \underbrace{0100}_{\text{a n a n a}} \underbrace{0100}_{\text{a n n a n a}}$
- $rac{1}{7}$ C = 1100100100 decodes **both** to banana and to bass: $\frac{110}{b} \frac{0100100}{a} \frac{100}{s} \frac{100}{s}$
- → not a valid code . . . (cannot tolerate ambiguity)
 but how should we have known?
- E(n) = 10 is a (proper) **prefix** of E(s) = 100
 - Leaves decoding wondering whether to stop after reading 10 or continue
 - Require a *prefix-free* code: No codeword is a prefix of another.

 prefix-free \implies instantaneously decodable

Code tries

► From now on only consider <u>prefix-free</u> codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

standard trie

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)

- ► Encode AN, ANT 01001000...
- ▶ Decode 111000001010111 TO

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)

- ► Encode AN_ANT → 010010000100111
- ► Decode 111000001010111 → T0_EAT

Who decodes the decoder?

- ▶ Depending on the application, we have to **store/transmit** the **used code**!
- ▶ We distinguish:
 - ▶ fixed coding: code agreed upon in advance, not transmitted (e.g., Morse, UTF-8)
- static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - adaptive coding: code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW → below)

7.3 Huffman Codes

Character frequencies

- ▶ Goal: Find character encoding that produces short coded text
- ► Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- ▶ **Observation:** Some letters occur more often than others.

Typical English prose:

e	12.70%		d	4.25%	p	1.93%	
t	9.06%		1	4.03%	b	1.49%	-
a	8.17%		c	2.78%	\mathbf{v}	0.98%	
О	7.51%		u	2.76%	\mathbf{k}	0.77%	
i	6.97%		m	2.41%	j	0.15%	1
n	6.75%		w	2.36%	x	0.15%	1
s	6.33%		f	2.23%	q	0.10%	1
h	6.09%		g	2.02%	\mathbf{z}	0.07%	1
r	5.99%	_	y	1.97%			
$\overline{}$							$-\!-\!-$

→ Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

- ▶ If we use w(c) = #occurrences of c in S, this is the character encoding with smallest possible |C|
 - → best possible character-wise encoding

▶ Quite ambitious! *Is this efficiently possible?*

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- 2. (Conceptually) replace a and b by a single character "ab" \Rightarrow 5 degrees by 1 with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines $u = E(\Box b)$.

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - We will encode them with the same prefix, plus one distinguishing bit, (i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with $w(\mathbf{ab}) = w(\mathbf{a}) + w(\mathbf{b})$.
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).
- efficient implementation using a (min-oriented) priority queue
 - start by inserting all characters with their weight as key
 - ▶ step 1 uses two deleteMin calls
 - ▶ step 2 inserts a new character with the sum of old weights as key

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

2

L

4

S

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

$$\text{LOSSLESS} \rightarrow \underbrace{\textbf{01001110100011}} \qquad \qquad \text{compression ratio: } \quad \frac{14}{8 \cdot \log 4} = \frac{14}{16} \approx 88\%$$

Huffman tree – tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - ▶ which subtree goes left, which goes right?
- ► For COMP 526: always use the following rule:
 - To break ties when selecting the two characters, first use the smallest letter according to the alphabetical order, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a 0-bit).
 - When combining trees of equal value, place the one containing the smallest letter to the left.

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\underline{\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|}$, among all prefix-free codes for Σ .

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$, among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma|$

- ▶ Given any optimal prefix-free code E^* (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves x, y at largest depth D
- ▶ swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- ▶ any optimal code for $\Sigma' = \Sigma \setminus \{a, b\} \cup \{ab\}$ yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
- \leadsto recursive call yields optimal code for Σ' by inductive hypothesis, so Huffman's algorithm finds optimal code for Σ .

Entropy

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

Entropy

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ► more precisely: the expected number of bits (Yes/No questions) required to nail down the random value
- \rightarrow would ideally encode value *i* using $g(1/p_i)$ bits that is not always possible; cannot use 1.5 bits . . . but:

fair die

(12...6

$$\frac{1}{6}$$
 ... $\frac{1}{6}$
 $\mathcal{H}(\frac{1}{6}, \dots, \frac{1}{6}) = 6 \cdot \frac{1}{6} \cdot l_3(6)$
 $= l_3(6) \approx 2.$

$$\frac{2}{3}$$
. $3 + \frac{1}{2}$. $2 = 2.6$

Entropy

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right) \leqslant \ell_{\mathfrak{G}}(n)$$

- entropy is a **measure** of **information** content of a distribution
 - more precisely: the expected number of bits (Yes/No questions) required to nail down the random value
- would ideally encode value i using $lg(1/p_i)$ bits that is not always possible; cannot use 1.5 bits . . . but:

Theorem 7.3 (Entropy bounds for Huffman codes)

For any $\Sigma = \{a_1, \dots, a_\sigma\}$ and $w : \Sigma \to \mathbb{R}_{\geq 0}$ and its Huffman code E, we have

$$\mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_\sigma)}{W}\right) \leq \underline{\ell(E)} \leq \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_\sigma)}{W}\right) + 1$$

where
$$W = w(a_1) + \cdots + w(a_{\sigma})$$
.

Clicker Question

When is Huffman coding more efficient than a fixed-length encoding? $\mathcal{H} = e^{-\frac{1}{2}\sqrt{2}y}$

 $r = |\Sigma|$

- A always
- **B** when $\mathcal{H} \approx \underline{\lg(\sigma)}$
- **C** when $\mathcal{H} < \lg(\sigma)$
- **D** when $\mathcal{H} < \lg(\sigma) 1$
- \blacksquare when $\mathcal{H} \approx 1$

pingo.upb.de/622222

Clicker Question

When is Huffman coding more efficient than a fixed-length encoding?

- A always √
- B when $\mathcal{H} \sim \lg(\sigma)$
- C when $\Re < \lg(\sigma)$ $\ell(E) \le \ell_5 \sigma + \ell$
- E when ⅓ ~ 1

pingo.upb.de/622222

Encoding with Huffman code

- ► The overall encoding procedure is as follows:
 - Pass 1: Count character frequencies in S
 - ► Construct Huffman code *E* (as above)
 - ► Store the Huffman code in *C* (details omitted)
 - ▶ Pass 2: Encode each character in *S* using *E* and append result to *C*
- Decoding works as follows:
 - ▶ Decode the Huffman code *E* from *C*. (details omitted)
 - ightharpoonup Decode S character by character from C using the code trie.
- ► Note: Decoding is much simpler/faster!

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - ightharpoonup can do $\Theta(\sigma)$ time when characters already sorted by weight
 - ▶ time for encoding: O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, . . .)

Huffman coding – Discussion

- running time complexity: $O(\sigma \log \sigma)$ to construct code
 - build PO + σ · (2 deleteMins and 1 insert)
 - \triangleright can do $\Theta(\sigma)$ time when characters already sorted by weight
 - \blacktriangleright time for encoding: O(n + |C|)
- many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)
- optimal prefix-free character encoding
- very fast decoding

flipped bits

robust encoding local errors only affect 1–2 symbols

- needs 2 passes over source text for encoding
 - one-pass variants possible, but more complicated
- have to store code alongside with coded text -> inflation

Part II

Compressing repetitive texts

Beyond Character Encoding

Many "natural" texts show repetitive redundancy

All work and no <u>play</u> makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will not capture such repetitions
 - → Huffman won't compression this very much

Beyond Character Encoding

Many "natural" texts show repetitive redundancy

(All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- ▶ character-by-character encoding will **not** capture such repetitions
 - → Huffman won't compression this very much
- \rightarrow Have to encode whole *phrases* of S by a single codeword

7.4 Run-Length Encoding

▶ simplest form of repetition: *runs* of characters

same character repeated

- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

▶ simplest form of repetition: *runs* of characters

```
00010110010000011111110000000000111111000
00111111111000111111111100000011111111000
0011000000000000000111000111000000000
0011000000000000000001100111000000000
001101100000000000000111001100111110000
00111111110000000000001110011111111111000
0011101111110000000001110001111100111100
000000000111000000011100001110000001110
000000000111000000011000001110000001100
00000000011000000110000000110000001110
0000000000110000001110000001110000001100
0000000011100011100000000110000001110
000000000110000111000000000111000011100
00110111111000111101110100001111111111000
```

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

```
use runs as phrases: S = 00000 111 0000
```

▶ simplest form of repetition: *runs* of characters

00010110010000011111110000000000111111000 00111111111000111111111100000011111111000 0011000000000000000001100111000000000 001101100000000000000111001100111110000 00111111110000000000001110011111111111000 0011101111110000000001110001111100111100 000000000111000000011100001110000001110 00000000111000000011000001110000001100 00000000011000000110000000110000001110 00000000011000001110000001110000001100 000000000111000111000000000110000001110 00000000011000011100000000111000011100

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

run-length encoding (RLE): use runs as phrases: S = 00000 111

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- \triangleright Example becomes: 0, 5, 3, 4

▶ simplest form of repetition: *runs* of characters

```
00010110010000011111110000000000111111000
00111111111000111111111100000011111111000
001101100000000000000111001100111110000
00111111110000000000001110011111111111000
0011101111110000000001110001111100111100
000000000111000000011100001110000001110
000000000111000000011000001110000001100
00000000011000000110000000110000001110
00000000011000001110000001110000001100
000000000111000111000000000110000001110
00000000011000011100000000111000011100
```

same character repeated

- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

 \rightsquigarrow run-length encoding (RLE):

```
use runs as phrases: S = 00000 111 0000
```

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0,5,3,4
- **Question**: How to encode a run length k in binary? (k can be arbitrarily large!)

Clicker Question

pingo.upb.de/622222

- ▶ Need a prefix-free encoding for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - ► must allow arbitrarily large integers
 - must know when to stop reading

- ▶ Need a prefix-free encoding for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use <u>unary</u> encoding!

- ▶ Need a prefix-free encoding for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

Much too long

► (wasn't the whole point of RLE to get rid of long runs??)

- ▶ Need a prefix-free encoding for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - ► must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - ▶ (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - ► Followed by the binary digits themselves

- ▶ Need a prefix-free encoding for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
- ▶ (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ightharpoonup Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves
 - ▶ little tricks:
 - ▶ always $\ell \ge 1$, so store $\ell 1$ instead
 - lacktriangledown binary representation always starts with 1 $\begin{subarray}{c} \longleftrightarrow \end{subarray}$ don't need terminating 1 in unary
 - \leadsto Elias gamma code = $\ell-1$ zeros, followed by binary representation

Examples: $1 \mapsto \underline{1}$, $3 \mapsto \underline{0}11$, $5 \mapsto 00101$, $30 \mapsto 000011110$

Clicker Ouestion

Decode the **first** number in Elias gamma code (at the beginning) of the following bitstream:

pingo.upb.de/622222

► Encoding:

C = 1

► Decoding:

C = 00001101001001010

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

► Decoding:

```
C = 00001101001001010
```

► Encoding:

C = 1001110101000010100

► Decoding:

C = 00001101001001010

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

C = 00001101001001010

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

$$C = 00001101001001010$$

$$b = 0$$

$$S =$$

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010
```

b = 0

 $\ell = 3 + 1$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010
```

b = 0

 $\ell = 3 + 1$

k = 13

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010
```

b = 1

 $\ell = 2 + 1$

k =

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 4
```

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 0000110100100100
```

b = 0

 $\ell = 0 + 1$

k =

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 0000110100100100
```

b = 0

 $\ell = 0 + 1$

k = 1

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010
```

b = 1

 $\ell = 1 + 1$

k =

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010
```

b = 1

 $\ell = 1 + 1$

k = 2

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e. g. TIFF)

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)
- fairly simple and fast
- can compress n bits to $\Theta(\log n)$! for extreme case of constant number of runs
- negligible compression for many common types of data
 - ▶ No compression until run lengths $k \ge 6$
 - **expansion** when run lengths k = 2 or 6

7.5 Lempel-Ziv-Welch

Warmup

https://www.flickr.com/photos/quintanaroo/2742726346

https://classic.csunplugged.org/text-compression/

Clicker Question

Write down the second-to-last line of the above poem!

pingo.upb.de/622222

Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
" \times \wedge \bot

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
>"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► Idea: store repeated parts by reference!
 - → each codeword refers to
 - ightharpoonup either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► Idea: store repeated parts by reference!
 - → each codeword refers to
 - ightharpoonup either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).
 - Variants of Lempel-Ziv compression
 - "LZ77" Original version ("sliding window")
 Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ...
 DEFLATE used in (pk)zip, gzip, PNG
 - "LZ78" Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, . . . LZW used in compress, GIF

Lempel-Ziv-Welch

- ▶ here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- ► variable-to-fixed encoding

Hufferan fired-to-var-

- ▶ all codewords have k bits (typical: k = 12) \longrightarrow fixed-length
- but they represent a variable portion of the source text!

Lempel-Ziv-Welch

- ► here: *Lempel-Ziv-Welch* (*LZW*) (arguably the "cleanest" variant of Lempel-Ziv)
- ► variable-to-fixed encoding
 - ▶ all codewords have *k* bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!
- ▶ maintain a **dictionary** D with 2^k entries \longrightarrow codewords = indices in dictionary
 - ightharpoonup initially, first $|\Sigma_S|$ entries encode single characters (rest is empty)
 - **add** a new entry to *D* after each step:
 - **Encoding:** after encoding a substring x of S, add xc to D where c is the character that follows x in S.

- → new codeword in D
- D actually stores codewords for x and c, not the expanded string

Input: Y0! \ Y0U! \ Y0UR \ Y0Y0!

 Σ_S = ASCII character set (0–127)

C =

Ct :								
String								
!								
0								
R								
U								
Υ								

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

$$C = 89$$

$$D =$$

								<i>ç</i>	_	en	cod	ex	= b	an				
S	h	а	n	n	а	h	b	а	n	S	b	а	n	а	n	а	s	
		already encoded										x		c				
		add $xc = bana$ to dictionary																

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C = 89

Code	String							
32	П							
33	!							
79	0							
82	R							
85	U							
89	Υ							

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input:
$$Y_0^{c}$$
 | YOU! YOUR YOYO!

$$\Sigma_S$$
 = ASCII character set (0–127)

$$Y = 0$$

 $C = 89 = 79$

$$x = 0$$

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

 $\textbf{Input: Y0}! _ Y0U! _ Y0UR _ Y0Y0!$

 Σ_S = ASCII character set (0–127)

		Υ	0
C	=	89	79

	encode $x = ban$																	
S	h	а		n alre			_		n	S	b	a x	n	a <i>c</i>	n	а	S]
									ado	d xc	= t	oana	to	dict	ion	ary		

Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

nput:
$$Y0I_{L}Y00!_{L}Y00R_{L}Y0Y0$$

 $Y 0 !$
 $C = 89 79 33$

$$c = i$$

$\Sigma_S = AS$	CII character	set (0-127)
-----------------	---------------	-------------

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Υ		

String
Y0
0!

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	!
C =	89	79	33

Code	String			
32	П			
33	!			
79	0			
82	R			
85	U			
89	Υ			

Code	String
128	Y0
129	0!
130	!"
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

Code	String			
32	Ш			
33	!			
79	0			
82	R			
85	U			
89	Υ			

Code	String
128	Y0
129	0!
130	!
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

String			
ш			
!			
0			
R			
U			
Υ			

Code	String
128	Y0
129	0!
130	!
131	υY
132	
133	
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

_					
	Υ	0	!	ш	Y0
C -	89	79	33	32	128

$$D =$$

								6	_	en	cod	e x	= b	an				
S	h	а	n	n	а	h	b	а	n	S	b	а	n	а	n	а	S	
				alre	ady	ence	oded					х		c				
									ado	d xc	= 1	oana	to	dic	, tion	ary		

Code	String			
32	П			
33	!			
79	0			
82	R			
85	U			
89	Υ			

Code	String
128	(YO)
129	0!
130	!
131	цY
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0
C = 89	79	33	32	128

Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	
134	
135	
136	
137	
138	·
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y	′ 0	!	u	Y0	U
C = 89	9 79	33	32	128	85

Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	u	Y0	U
C = 89	79	33	32	128	85

Code	String			
32	П			
33	!			
79	0			
82	R			
85	U			
89	Υ			

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	1,5
C = 89	79	33	32	128	85	130

D	=	

Code	String	
32	П	
33	!	
79	0	
82	R	
85	U	
89	Υ	

Code	String
128	Y0
129	0!
130	(!])
131	Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!
C = 89	79	33	32	128	85	130

D	=

ıg		

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	! _L Y
135	
136	
137	
138	
139	

Input: Y0! _Y0U! _\(\forall Y0U\text{R}_ Y0Y0!

 Σ_S = ASCII character set (0–127)

D =

Code

String

0

R

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! <u>.</u> Y
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C = 89 C

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!⊔Y
135	YOUR
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!_Y
135	YOUR
136	
137	
138	
139	

 Σ_S = ASCII character set (0–127)

$$\times =$$

Code	String	
32		
33	!	
79	0	
82	R	
85	U	
89	Υ	

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! _L Y
135	YOUR
136	R
137	
138	·
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

D =

32		
33	!	
79	0	
82	R	
85	U	
89	Υ	

Code

String

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

$$Y = 0$$
 ! ... $Y0 = U$! ... $Y0U = R$... Y $C = 89 = 79 = 33 = 32 = 128 = 85 = 130 = 132 = 82 = 131$

D =

32		П
33		!
79		0
82		R
85		U
89		Υ

Code String

Code	String
128	Y0
129	0!
130	!
131	пA
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 ا
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

D =

• • •							
32							
33	!						
79	0						
82	R						
85	U						
89	Υ						

Code

String

Code	String
128	Y0
129	0!
130	!
131	٦
132	YOU
133	U!
134	! _L Y
135	YOUR
136	R⊔
137	۷0 ا
138	
139	

								<i>ç</i>	_	er	cod	$\frac{\log x}{2}$	= b	an			
S	h	а	n	n	а	h	b	а	n	S	b	а	n	a	n	а	s
		already encoded									x		С				
		add $xc = bana to dictionary$															

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

D =

Code	String					
32	П					
33	!					
79	0					
82	R					
85	U					
89	Υ					

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۲0 ا
138	0Y
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

D =

Code	String					
32	П					
33	!					
79	0					
82	R					
85	U					
89	Υ					

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	

Input: You | You | You | You |

 Σ_S = ASCII character set (0–127)

$$Y = 0$$
 ! ... $Y0 = U$!... $Y0U = R$... $Y = 0$ $Y0 = C = 89$ 79 33 32 128 85 130 132 82 131 79 128

:			

D =

Code	String						
32	П						
33	!						
79	0						
82	R						
85	U						
89	Υ						

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!⊔Y
135	YOUR
136	R⊔
137	۷0_
138	0Y
139	Y0!

D =

Code

String

0

R

U

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! Y
135	YOUR
136	R⊔
137	۲0 ا
138	0Y
139	Y0!

LZW encoding – Code

```
1 procedure LZWencode(S[0..n))
      x := \varepsilon // previous phrase, initially empty
      C := \varepsilon // output, initially empty
      D := dictionary, initialized with codes for c \in \Sigma_S // stored as trie
      k := |\Sigma_S| // next free codeword
      for i := 0, ..., n-1 do
                      can fallow an edge in trie
          c := S[i]
           if D.containsKey(xc) then
               x := xc
           else
10
               C := C \cdot D.get(x) // append codeword for x
11
               D.put(xc, k) // add xc to D, assigning next free codeword
12
               k := k + 1; x := c
13
      end for
14
      C := C \cdot D.get(x)
15
      return C
16
```

LZW decoding

▶ Decoder has to replay the process of growing the dictionary!

→ Decoding:

after decoding a substring y of S, add xc to D, where x is previously encoded/decoded substring of S, and c = y[0] (first character of y)

 \leadsto Note: only start adding to *D* after *second* substring of *S* is decoded

► Same idea: build dictionary while reading string.

	Code #	String	
	32	П	
	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)

► Same idea: build dictionary while reading string.

	Code #	String	
	32		
	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	С			

► Same idea: build dictionary while reading string.

Example: 67 65 78 32 66 129 133 0.1.11.0.1

$$\times = C$$

	Code #	String
	32	П
	65	Α
D =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A

► Same idea: build dictionary while reading string.

	Code #	String
	32	П
	65	Α
D =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	∧ = A	128	CA	67, A
78	γ= N	129	AN	65, N

► Same idea: build dictionary while reading string.

	Code #	String
	32	
	65	Α
D =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	ш	130	N	78, ⊔

► Same idea: build dictionary while reading string.

	Code #	String
	32	
	65	Α
D =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	п	130	N	78, ⊔
66	В	131	uВ	32, B

► Same idea: build dictionary while reading string.

	Code #	String	
	32	П	
	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	u u	130	N	78, ⊔
66	× = B	131	⊔В	32, B
129	y= AN	132	BA	66, A

► Same idea: build dictionary while reading string.

	Code #	String	
	32	П	
	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	А	128	CA	67, A
78	N	129	AN	65, N
32	_	130	N	78, ⊔
66	В	131	⊔B	32, B
129	AN	132	BA	66, A
133	???	133		

► Same idea: build dictionary while reading string.

	Code #	String	
	32		
	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	Str (hur		
67	С				
65	Α	128	CA	67, A]
78	N	129	AN	65, N]
32		130	N	78, ⊔]
66	В	131	⊔В	32, B]
129	AN	132	BA	66, A]
133	???	133			1

LZW decoding – Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

LZW decoding – Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

→ problem occurs if *we want to use a code* that we are *just about to build*.

LZW decoding – Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

- → problem occurs if *we want to use a code* that we are *just about to build*.
- ▶ But then we actually know what is going on:
 - ightharpoonup Situation: decode using k in the step that will define k.
 - decoder knows last phrase x, needs phrase $y = D[k] = \underline{xc}$.

- **1.** en/decode x.
- **2.** store D[k] := xc
- **3.** next phrase y equals D[k]

$$\rightarrow$$
 $D[k] = xc = x \cdot x[0]$ (all known)

LZW decoding - Code

```
1 procedure LZWdecode(C[0..m))
       D := \text{dictionary } [0..2^d) \to \Sigma_c^+, \text{ initialized with codes for } c \in \Sigma_S \text{ // stored as array}
       k := |\Sigma_S| // next unused codeword
       q := C[0] // first codeword
       y := D[q] // lookup meaning of q in D
       S := y // output, initially first phrase
       for i := 1, ..., m-1 do
            x := y // remember last decoded phrase
            q := C[j] // next codeword
           if q == k then
10
                 y := x \cdot x[0] // bootstrap case
11
            else
12
                 y := D[a]
13
            S := S \cdot y // append decoded phrase
14
            D[k] := x \cdot y[0] // store new phrase
15
            k := k + 1
16
       end for
17
       return S
18
```

LZW decoding – Example continued

	Code #	String	
	32	П	
	65	Α	
D =	66	В	
	67	С	
	78	N	-
			7
	83	S	

		decodes		String	String
	input	to	Code #	(human)	(computer)
ĺ	67	С			
	65	Α	128	CA	67, A
	78	N	129	AN	65, N
	32		130	N	78, ⊔
	66	В	131	uВ	32, B
	129	×=AN	132	BA	66, A
-	133	ANA	133	ANA	129, A
	83	S	134	ANAS	133, S

- 1. en/decode x.
- **2.** store D[k] := xc
- 3. next phrase y equals D[k] $D[k] = xc = x \cdot x[0]$ (all known)

Clicker Question

How many <u>phrases</u> will LZW create on $S = a^n$, a run of n copies of as?

- $igathbox{A} \sim n$
 -) .../0
- $\Theta(n/\log n)$
- \mathbf{E} $\Theta(\sqrt{n})$

- lacksquare $\Theta(\log n)$
- **G** $\Theta(\log\log n)$
- **H**) 2
- **I**) 1

pingo.upb.de/622222

Clicker Question

$$1 + 2 + 3 + 4 + 5 + \cdots \stackrel{!}{=} n$$
 $\frac{p(p+1)}{2} = n \approx p \approx \sqrt{2}n$

How many phrases will LZW create on $S = a^n$, a run of n copies of as?

F Q(log n

 $\mathbf{B} = \frac{n/2}{2}$

1

 \bullet $\Theta(\sqrt{n})$

pingo.upb.de/622222

LZW - Discussion

2=12

- ▶ As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d]$.
 - $\rightsquigarrow \text{ use another encoding for } \text{ code numbers} \mapsto \text{binary,} \qquad \text{e. g., Huffman}$
- ▶ need a rule when dictionary is full; different options:
 - ▶ increment $d \rightsquigarrow$ longer codewords
 - ► "flush" dictionary and start from scratch ~ limits extra space usage in plementehous
 - ▶ often: reserve a codeword to trigger flush at any time ∡
- encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)

D tric array

LZW – Discussion

- ▶ As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.
 - $\rightsquigarrow \text{ use another encoding for } \text{ code numbers} \mapsto \text{binary,} \qquad \text{e. g., Huffman}$
- ▶ need a rule when dictionary is full; different options:
 - ▶ increment $d \rightsquigarrow$ longer codewords
 - \blacktriangleright "flush" dictionary and start from scratch $\ \leadsto$ $\$ limits extra space usage
 - ▶ often: reserve a codeword to trigger flush at any time
- $lackbox{ encoding and decoding both run in linear time } (assuming <math>|\Sigma_S|$ constant)
- fast encoding & decoding
- works in streaming model (no random access, no backtrack on input needed)
- significant compression for many types of data
- captures only local repetitions (with bounded dictionary)

Compression summary

Huffman codes	Run-length encoding	Lempel-Ziv-Welch
fixed-to-variable	variable-to-variable	variable-to-fixed
2-pass	1-pass	1-pass
must send dictionary	can be worse than ASCII	can be worse than ASCII
60% compression on English text	bad on text	45% compression on English text
optimal binary character encopding	good on long runs (e.g., pictures)	good on English text
rarely used directly	rarely used directly	frequently used
part of pkzip, JPEG, MP3	fax machines, old picture-formats	GIF, part of PDF, Unix compress

Part III

Text Transforms

Text transformations

- ▶ compression is effective is we have one the following:
 - ▶ long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (local) repeated substrings → LZW

Text transformations

- compression is effective is we have one the following:
 - ▶ long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (local) repeated substrings → LZW
- ▶ but methods can be frustratingly "blind" to other "obvious" redundancies
 - ► LZW: repetition too distant 1 dictionary already flushed genomic data bases
 - ► Huffman: changing probabilities (local clusters) 🕇 averaged out globally
 - ▶ RLE: run of alternating pairs of characters 🦅 not a run

Text transformations

- compression is effective is we have one the following:
 - ▶ long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (local) repeated substrings → LZW
- ▶ but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant 7 dictionary already flushed
 - ► Huffman: changing probabilities (local clusters) 🕇 averaged out globally
 - ▶ RLE: run of alternating pairs of characters 🦅 not a run
- ► Enter: text transformations
 - ► invertible functions of text)
 - do not by themselves reduce the space usage
 - ▶ but help compressors "see" existing redundancy
 - where use as pre-/postprocessing in compression pipeline

7.6 Move-to-Front Transformation

Move to Front

- ▶ *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects

- whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
- list "learns" probabilities of access to objects makes access to frequently requested ones cheaper

Move to Front

- ▶ *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - ist "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- ▶ Here: use such a list for storing source alphabet Σ_S
 - ▶ to encode *c*, access it in list
 - ightharpoonup encode c using its (old) position in list
 - ▶ then apply MTF to the list
 - \leadsto codewords are integers, i. e., $\Sigma_C = [0..\sigma)$

Move to Front

- ▶ *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - ist "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- ▶ Here: use such a list for storing source alphabet Σ_S
 - ightharpoonup to encode c, access it in list
 - encode *c* using its (old) position in list
 - ▶ then apply MTF to the list
 - \rightsquigarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$
- → clusters of few characters → many small numbers

Clicker Question

Assume a MTF list currently contains the items XYZABC, and we now access A. What is the list content after the MTF rule has been applied?

AXY2 BC

pingo.upb.de/622222

MTF - Code

► Transform (encode):

```
procedure MTF-encode(S[0..n))

L := \text{list containing } \Sigma_C \text{ (sorted order)}

C := \varepsilon

for i := 0, ..., n-1 do

c := S[i]

p := \text{position of } c \text{ in } L

C := C \cdot p

Move c to front of L

end for

return C
```

► Inverse transform (decode):

```
procedure MTF—encode(C[0..m))

L := \text{list containing } \Sigma_C \text{ (sorted order)}

S := \varepsilon

for j := 0, ..., m-1 do

p := C[j]

c := \text{character at position } p \text{ in } L

S := S \cdot c

Move c to front of L

end for

return S
```

▶ Important: encoding and decoding produce same accesses to list

$$S = INEFFICIENCIES$$

$$C =$$

$$C = 8$$

$$S = INEFFICIENCIES$$

$$C = 813$$

$$S = INEFFICIENCIES$$

$$C = 8136$$

$$S = INEFFICIENCIES$$

$$C = 81367$$

$$S = INEFFICIENCIES$$

$$C = 813670$$

$$S = INEFFICIENCIES$$

$$C = 8136703$$

S = INEFFICIENCIES

$$C = 81367036$$

$$S = INEFFICIENCIES$$

$$C = 813670361$$

- ▶ What does a run in *S* encode to in *C*? 20000
- ▶ What does a run in C mean about the source S? repetition

MTF - Discussion

- ► MTF itself does not compress text (if we store codewords with fixed length)
- → prime use as part of longer pipeline
- ▶ two simple ideas for encoding codewords:
 - ✓ Elias gamma code → smaller numbers gets shorter codewords works well for text with small "local effective" alphabet
 - ► Huffman code (better compression, but need 2 passes)
- ▶ but: most effective after BWT (\rightarrow next)

7.7 Burrows-Wheeler Transform

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - ▶ coded text has same letters as source, just in a different order
 - ▶ But: The coded text (typically) more compressible with MTF(!)

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: The coded text (typically) more compressible with MTF(!)
- ► Encoding algorithm needs **all** of *S* (no streaming possible).
 - \leadsto BWT is a block compression method.

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: The coded text (typically) more compressible with MTF(!)
- ► Encoding algorithm needs **all** of *S* (no streaming possible).
 - *→* BWT is a *block compression method*.
- ▶ BWT followed by MTF, RLE, and Huffman is the algorithm used by the bzip2 program. achieves best compression on English text of any algorithm we have seen:

```
4047392 bible.txt

1191071 bible.txt.gz GNU zip

888604 bible.txt.7z 7 zip

845635 bible.txt.bz2 5252
```

BWT transform

• *cyclic shift* of a string:

$$T = time_{\square}flies_{\square}quickly_{\square}$$

flies_quickly_time_

BWT transform

- ► *cyclic shift* of a string:
- ► add *end-of-word character* \$ to *S* (as in Unit 6)
- can recover original string

 $T = time_uflies_uquickly_u$

flies_quickly_time_

e i t

BWT transform

- *cyclic shift* of a string:
- ► add *end-of-word character* \$ to *S*(as in Unit 6)
- can recover original string

 $T = time_uflies_uquickly_u$

flies_quickly_time_

- ► The Burrows-Wheeler Transform proceeds in three steps:
 - **1.** Place all cyclic shifts of S in a list L
 - **2.** Sort the strings in L lexicographically
 - 3. B is the *list of trailing characters* (last column, top-down) of each string in L

BWT transform – Example

S = alf..eats..alfalfa\$

1. Write all cyclic shifts

alf_eats_alfalfa# lf_eats_alfalfa#a/ f_eats_alfalfa#a/ _eats_alfalfa#a/f eats, alfalfa\$alf. ats alfalfa\$alf e ts.alfalfa\$alf.ea ~~> s_alfalfa\$alf_eat _alfalfa\$alf_eats alfalfa\$a/lf_eats_ lfalfa\$a\f_eats_a falfa\$a\f_eats_al alfa\$alf_eats_alf lfa\$alf_eats_alfa fa\$alf_eats_alfal a\$alf_eats_alfalf \$alf_eats_alfalfa

sort

BWT transform – Example

 $S = alf_ueats_ualfalfa$ \$

- 1. Write all cyclic shifts
- 2. Sort cyclic shifts

alf.,eats,,alfalfa\$ lf..eats..alfalfa\$a f, eats, alfalfa\$al _eats_alfalfa\$alf eats, alfalfa\$alf... ats, alfalfa\$alf, e ts..alfalfa\$alf..ea s..alfalfa\$alf..eat "alfalfa\$alf"eats alfalfa\$alf_eats_ lfalfa\$alf..eats..a falfa\$alf,.eats,.al alfa\$alf,.eats,.alf lfa\$alf.eats.alfa fa\$alf..eats..alfal a\$alf,.eats,.alfalf \$alf.eats.alfalfa

\$alf,.eats,.alfalfa "alfälfa\$älf"eats _eats_alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf..eats.. ats_alfalfa\$alf_e eats_alfalfa\$alf_ f_eats_alfalfa\$al fa\$alf..eats..alfal falfa\$alf_eats_al lf_eats_alfalfa\$a lfa\$alf_eats_alfa lfalfa\$alf.eats.a s.,alfalfa\$alf.,eat ts..alfalfa\$alf..ea

BWT transform – Example

 $S = alf_{\perp}eats_{\perp}alfalfa$ \$

- 1. Write all cyclic shifts
- 2. Sort cyclic shifts
- 3. Extract last column

 $B = asff f_e_lllaaata$

alf.,eats,,alfalfa\$ lf..eats..alfalfa\$a f, eats, alfalfa\$al _eats_alfalfa\$alf eats, alfalfa\$alf... ats, alfalfa\$alf, e ts..alfalfa\$alf..ea s. alfalfa\$alf.eat .alfalfa\$alf.eats alfalfa\$alf_eats_ lfalfa\$alf..eats..a falfa\$alf_eats_al alfa\$alf_eats_alf lfa\$alf.eats.alfa fa\$alf_eats_alfal a\$alf,.eats,.alfalf \$alf_eats_alfalfa

\$alf,.eats,.alfalfa .alfalfa\$alf,eats _eats_alfalfa\$alf a\$alf,eats,alfalf alf_eats_alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf.eats.. ats_alfalfa\$alf_e eats..alfalfa\$alf. f_eats_alfalfa\$al fa\$alf..eats..alfal falfa\$alf,,eats,,al lf_eats_alfalfa\$a lfa\$alf_eats_alfa lfalfa\$alf.eats.a s.,alfalfa\$alf.,eat ts..alfalfa\$alf..ea

BWT

~→ sort

BWT – Implementation & Properties

Compute BWT efficiently:

- ightharpoonup cyclic shifts S = suffixes of S
- ► BWT is essentially suffix sorting!
 - $B[i] = S[L[i] 1] \qquad (L = \text{suffix array!})$ (if L[i] = 0, B[i] = \$)
 - \rightsquigarrow Can compute *B* in O(n) time

```
B[1] = 's'
             L[1] = 8 = S8
                                              \perp L[r]
  alf_eats_alfalfa$
                             $alf, eats, alfalfa
  lf.eats.alfalfa$a
                             _alfalfa$alf_eat$
  f.eats.alfalfa$al
                             _eats_alfalfa$alf
  ..eats..alfalfa$alf
                             a$alf, eats, alfalf
                                                 15
  eats, alfalfa$alf...
                             alf_eats_alfalfa$
                             alfa$alf_eats_alf
  ats, alfalfa$alf, e
  ts.alfalfa$alf.ea
                             alfalfa$alf..eats...
  s..alfalfa$alf,.eat
                             ats.alfalfa$alf.e
-alfalfa$alf.eats
                             eats.alfalfa$alf...
                             f.eats.alfalfa$al
  alfalfa$alf,.eats...
  lfalfa$alf,.eats,.a
                             fa$alf_eats_alfal
  falfa$alf,.eats,.al
                             falfa$alf,.eats,.al
                                                 11
  alfa$alf_eats_alf
                             lf_eats_alfalfa$a
  lfa$alf,.eats,.alfa
                             lfa$alf..eats..alfa
  fa$alf_eats_alfal
                             lfalfa$alf_eats_a
                                                 10
  a$alf,.eats,.alfalf
                             s,,alfalfa$alf,,eat
  $alf, eats, alfalfa
                             ts.,alfalfa$alf.,ea
```

BWT – Implementation & Properties

Compute BWT efficiently:

- ightharpoonup cyclic shifts S = suffixes of S
- ► BWT is essentially suffix sorting!
 - ► B[i] = S[L[i] 1] (L = suffix array!) (if L[i] = 0, B[i] = \$)
 - \rightsquigarrow Can compute *B* in O(n) time

Why does BWT help?

- sorting groups characters by what follows
- \rightarrow B has local clusters of characters
 - that makes MTF effective

- (a) f ... eats . (a) fa) fa\$ lf,eats,alfalfa\$a f.eats_alfalfa\$al ..eats..alfalfa\$alf eats, alfalfa\$alf... ats, alfalfa\$alf, e ts..alfalfa\$alf..ea s.alfalfa\$alf.eat ..alfalfa\$alf..eats alfalfa\$alf..eats.. lfalfa\$alf,.eats,.a falfa\$alf,.eats,.al alfa\$alf_eats_alf lfa\$alf,.eats,.alfa fa\$alf..eats..alfal a\$alf,.eats,.alfalf \$alf_eats_alfalfa
- $\downarrow L[r]$ \$alf,,eats,,alfalfa ..alfalfa\$alf,.eats ..eats_alfalfa\$alf a\$alf, eats, alfalf 15 alf_eats_alfalfa\$ alfa\$alf,eats,alf alfalfa\$alf..eats... ats.alfalfa\$alf.e eats alfalfa\$alf f.eats.alfalfa\$att fa\$alf,,eats,,alfal falfa\$alf,.eats,.al 11 (If eats alfalfasa) lfa\$alf,eats,alfa Ifalfa\$alf..eats..a 10 s.,alfalfa\$alf,.eat ts.,alfalfa\$alf.,ea

- ▶ repeated substring in $S \rightsquigarrow runs$ of characters in B
 - picked up by RLE

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that it is at all invertible!

► "Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- **2.** Sort *D* stably with respect to first entry.
- **3.** Use *D* as linked list with (char, next entry)

► Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that it is at all invertible!

► "Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to first entry.
- **3.** Use *D* as linked list with (char, next entry)

Example:

- B = ard rcaaaabb
- S =

o (a, 0)

D

- ı (r, 1)
- 2 (d, 2)
- з (\$, 3)
- 4 (r, 4)
- s (c, 5)
- 6 (a, 6)
- 7 (a, 7)
- 8 (a, 8)
- 9 (a, 9)
- 10 (b, 10)
- 11 (b, 11)

► Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that D sorted D it is at all invertible! char next ► "Magic" solution: 0 (\$, 3) o (a, 0) **1.** Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with з (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) Soit 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) 6 (b, 10) 7 (a, 7) 7 (b, 11) Example: 8 (c, 5) 8 (a, 8) B = ard raaaabb9 (d, 2) 9 (a, 9) S =10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

► Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) (\$, 3)**1.** Create array D[0..n] of pairs: 1 (r, 1) (a, A D[r] = (B[r], r).2 (d, 2) 2. Sort D stably with з (\$, 3) 3 (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) 6 (b, 10) 7 (a, 7) 7 (b.11) Example: 8 (c, 5) 8 (a, 8) B = ard\$rcaaaabb9 (d, 2) 9 (a, 9) $S = \mathbf{a}$ 10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

► Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) 0 (\$, 3) **1.** Create array D[0..n] of pairs: 1 (a, 0) 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with з (\$, 3) (a, 7)respect to first entry. 4 (r, 4) (a, 8)3. Use D as linked list with 5 (c, 5) (char, next entry) (b, 10)6 (a, 6) 7 (a, 7) (b, 11)Example: 8 (c, 5) 8 (a, 8) B = ard\$rcaaaabb9 (d, 2) 9 (a, 9) S = ab10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

► Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) 0 (\$, 3) **1.** Create array D[0..n] of pairs: 1 (a, 0) 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with з (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) 6 (b, 10) 7 (a, 7) (b, 11) -Example: (c, 5)8 (a, 8) B = ard rcaaaabb9 (a, 9) S = abr10 (b, 10) 11 (b, 11)

► Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) 0 (\$, 3) **1.** Create array D[0..n] of pairs: 1 (a, 0) 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with **3** (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) (a, 8)3. Use D as linked list with 5 (c, 5) (a, 9)(char, next entry) 6 (a, 6) (b, 10)(a, 7)(b, 11)Example: (a, 8)B = ard\$rcaaaabb(d, 2)(a, 9)S = abra10 (b, 10) (r, 1)11 (b, 11) (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

	D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	1 (r, 1) 2 (d, 2)	1 (a, 0) 2 (a, 6)	
Sort D stably with respect to first entry.	3 (\$, 3) 4 (r, 4)	3 (a, 7) 4 (a, 8)	
3. Use <i>D</i> as linked list with (char, next entry)	5 (c, 5) 6 (a, 6)	5 (a, 9) 6 (b, 10)	
Example:	7 (a, 7) 8 (a, 8)	(b, 11) 8 (c, 5)	
B = ard\$rcaaaabb S = abrac	9 (a, 9)	9 (d, 2)	
	10 (b, 10) 11 (b, 11)	10 (r, 1)	

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) 0 (\$, 3) **1.** Create array D[0..n] of pairs: 1 (a, 0) 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with з (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) (a, 9)(char, next entry) 6 (a, 6) (b, 10)7 (a, 7) Example: (c, 5)8 (a, 8) B = ard\$rcaaaabb9 (d, 2) 9 (a, 9) S = abraca10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

► Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) 0 (\$, 3) **1.** Create array D[0..n] of pairs: 1 (a, 0) 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with з (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) (a, 9)-(char, next entry) 6 (a, 6) (b, 10)7 (a, 7) Example: (a, 8)B = ard\$rcaaaabb(d, 2)9 (a, 9) S = abracad10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

► Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) 0 (\$, 3) **1.** Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0) D[r] = (B[r], r).2 (d, 2) 2 (a, 6)-2. Sort D stably with з (\$, 3) (a, 7)respect to first entry. 4 (r, 4) 3. Use D as linked list with (a, 9)5 (c, 5) (char, next entry) (b, 10)6 (a, 6) 7 (a, 7) 7 (b, 11) Example: 8 (c, 5) 8 (a, 8) B = ard\$rcaaaabb9 (d, 2) (a, 9)S = abracadab10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

► Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) 0 (\$, 3) **1.** Create array D[0..n] of pairs: 1 (a, 0) 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with з (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) (b, 10) -7 (a, 7) (b, 11)Example: (a, 8)B = ard\$rcaaaabb(a, 9)S = abracadabr(r, 1)10 (b, 10) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

► Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

D it is at all invertible! sorted D char next ► "Magic" solution: o (a, 0) $\rightleftharpoons 0 (\$, 3)$ **1.** Create array D[0..n] of pairs: 1 (a, 0)1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with з (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) 6 (b, 10) 7 (a, 7) 7 (b.11) Example: 8 (c, 5) 8 (a, 8) B = ard raaaabb9 (d, 2) 9 (a, 9) S = abracadabra10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

not even obvious that