Layout Tool

Design Flow Chart

Begin of Cadence Virtuoso

- How to implement physical devices?
 - Transistors, Resistors, Capacitors, Inductors.
 - The layout structure for different technologies are usually different.
- Get the files
 - Layer name for Metal, Poly, Diffusion, Contact, Via.
 - Technology file cic18.tf (defined by foundry)
 - Display layers display.drf (can be modified)

Using Cadence Virtuoso

- Preparing required information
 - Design Rules
 - Spacing, Pitch, Width, Area
 - Design rule document

Start Virtuoso

Start Virtuoso

Create a New Library

Create a New Library

Create a New Library

產生cell

產生Layout視窗

Grid設定

Virtuoso 快捷鍵

快捷鍵	功能	快捷鍵	功能
c	複製	f	顯示全圖
m	移動	i	呼叫元件
k	尺規	p	劃線長短(path)
u	還原上一步	r	劃長方形
e	改變色彩與解析度設定	q	元件內部屬性
S	圖形延伸或縮小	1	標籤工具,標籤要加在特定的text層 ,打I/O與vdd,gnd腳位名
左鍵拖曳	選擇下一功能方塊	右鍵拖曳	所選方塊全部放大
Shift+k	消除所有尺規	Ctrl+z	放大
Shift+z	縮小	Shift+c	裁切(Chop)
Esc	清除剛键入的命令	Delete	删除元件
shift+m	合并工具(Merge)	F2	儲存

Virtuoso 快捷鍵

▼ Virtuoso?Layout Editing: lecture 123 layout X: 0.763 Y: 8.375 (F) Select: 0 DRD: OFF dX: dY: Dist: Cmd: Sort Edit 11 Help Tools Design Window Create Edit Verify Connectivity Options Routing Migrate Calibre Help drw DIFF lec ure Show biects 回 ■ Inst. ■ P AS NS Zoom in "Ctrl+z" DIFF drw Zoom out "Shift+z" NW drw DNW drw PWBLK drw PIMP drw NIMP drw VTPL drw "Delete" VTPHL drw VTNL drw VTNI drw VINHL drw // SAB drw 0D2 drw HRP drw CONT drw NWR drw P01 drw 邊形 "Shift+p" VARACT drw ME1 drw [abcd] VIA1 drw ME2 drw WIA2 drw R: schHiCheckAndSave() mouse L: mouseSir PopUp() 14

材質

材質

,	
DIFF	drw
NW	drw
DNW	drw
PWBLK	drw
PIMP	drw
NIMP	drw
VTPL	drw
VTPHL	drw
VTNL	drw
VINI	drw
VTNHL	drw
SAB	drw
₩ 0D2	drw
## HRP	drw
CONT	drw
NWR	drw
P01	drw
VARACT	drw
ME1	drw
WIA1	drw
ME2	drw
VIA2	drw
<u>∠</u> ME3	drw

材質名	LSW名	
Nwell	NW	
N+	NIMP	
P+	PIMP	
Poly	PO1	
Active	DIFF	
Contact	CONT	
Metal1	ME1	
Via1	VIA1	
Text	M1_TEXT	

各層中連接貫孔的用法

Example of inverter

inverter

inverter

畫Contact

畫Contact

繪製NMOS

- 1. 用尺規來量測距離,將 會加速布局的速度,按「 快速鍵k」後,再拉至所需 範圍。
- 2. 如要把尺規量測距離給刪除,按快速鍵Shift+k。

繪製NMOS

- 1. POLY and Active >0.2um
- 2. POLY and Contact >0.14um
- 3. Metal1 and Contact >0.1um
- 4. Contact and Contact >0.25um
- 5. Active and Contact > 0.12um

繪製NMOS

- 1. Metal1 and Contact >0.1um
- 2. Contact and Contact >0.25um
- 3. Active and Contact >0.12um
- 4. Nimp and Active >0.2um
- 5. Pimp and Active >0.1um

PMOS

- 1. Pimp and Active >0.2um
- 2. Nimp and Active >0.1um
- 3. Nwell and Nimp >0.15um
- 4. Nwell and Active >0.5um

Label

Layout of inverter

VDD VDD NDD VDD Out Out Out VDD In-0 100 Out Out Out Out Out 1 FINGER 2 FINGERS 3 FINGERS

Transistor layout example

Sharing Source and Drain

Power Sharing

Power and GND

Routing direction

DRC \ LVS \ PEX

- 畫完IC layout 需要檢查是否符合製程規格和電路匹配
 - □ 製成規格檢查: 執行Design Rule Check (DRC)
 - □ 電路匹配: 執行Layout Versus Schematic (LVS)
- 如果都符合DRC和LVS,可以把電容效應加入電路
 - 電路中有寄生電容效應稱為Post-simulation (沒有稱為pre-simulation)
 - □ 產生寄生電容: 執行Parasitic Extraction (PEX)

執行DRC

呼叫DRC

Design Rule Check (DRC)

Design Rule Check (DRC)

Design Rule Check (DRC)

Design Rule Check (DRC) Result - I

Design Rule Check (DRC) Result - II

Design Rule Check (DRC) Result - III

DRC 除錯方法

執行LVS

產生HSPICE電路檔案

取名文字檔案和產生檔案

需要HSPICE電路檔案

LVS-錯誤發生-I

哪裡錯??

修改Layout

注意: HSPICE code永遠是對的,當發生 LVS error,只能修改layout

執行PEX

Parasitic Extraction / Extract RC

- Extraction Methods:
 - □ C+CC Lumped C model
 - Parasitic capacitors between ground and couple
 - R+C Distributed RC model
 - Net is broken into a resistor network, associated with capacitance between ground.
 - □ R+C+CC Distributed RC + Couple C
 - Distributed RC network with the coupling capacitance.
 - R Distributed R
 - Only resistor in extraction

Post-Simulation

Post-Simulation

```
1 Inverter
                     3 .PROT
                     4 .LIB
                              'cic018.l' TT
                     5 .UNPROT
                     6 .TEMP
                     8 .GLOBAL VDD VSS
                     9 VDD VDD GND 1.8V
                    10 VSS VSS GND 0V
                    11
                     12 .INC
                               'INV.spi'
                    13 .INC
                               'INV.pex.netlist'
Pre-Simulation
                                                              Post-Simulation
                    14
                                               INV
                                      T='1/F' TR='T/20'
                    18 .PARAM F=1G
                                                           PW='T/2-TR'
                    19 V1 I
                               VSS 0
                                              1.8 0.3n
                                                         TR TR PW T)
                                       PUL(0
```

Post-Simulation

CAP layout

Gate Capacitor

$$C = \frac{\mathcal{E}_{ox}}{t_{ox}} W \cdot L = C_{ox} \cdot W \cdot L$$

$$C_{in} = C_{1}$$

$$C_{1}$$

$$C_{1}$$

MIM Capacitor

Example of MIM Capacitor

感謝

鄭翔及李欣芸