

Question 4

Given:
$$cot\theta = \frac{AB}{BC} = \frac{2}{1}$$

Let AB = 2k and AC = 1k,

Where k is positive

Let us draw a $\triangle ABC$ in which $\angle B = 90^{\circ}$ and $\angle BAC = \theta$

By Pythagoras theorem, we have

$$AC^2 = AB^2 + BC^2$$

$$(AC)^2 = (AB)^2 + (BC)^2 = [(2k)^2 + (1k)^2]$$

= $(4k^2 + 1k^2) = 5k^2$

$$AC = \sqrt{5}k^2 = \sqrt{5}k$$

$$\therefore \sin \theta = \frac{BC}{AC} = \frac{1k}{\sqrt{5k}} = \frac{1}{\sqrt{5}}$$

$$\therefore \sin \theta = \frac{BC}{AC} = \frac{1k}{\sqrt{5}k} = \frac{1}{\sqrt{5}}$$
$$\cos \theta = \frac{AB}{AC} = \frac{2k}{\sqrt{5}k} = \frac{2}{\sqrt{5}}$$

$$\tan \theta = \frac{1}{\cot \theta} = \frac{1}{2}$$
; $\cot \theta = 2$ (given)

$$\csc\theta = \frac{1}{\sin\theta} = \sqrt{5}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{\sqrt{5}}{2}$$

******* END ******