RAPPORT DU PROJET CIRCUIT LOGIQUE

Nom: Diallo Alpha Oumar Binta Groupe: 1.2 L2 info

SYNTHÈSE DU COMPTEUR:

- 1. À l'aide de la table de transition de la bascule D, on dresse le tableau de toutes les valeurs logiques que prendront les entrées de la bascule pour donner les changements d'états imposés par le code de comptage sachant qu'il y a enchaînement du dernier avec le premier car le code se répète cycliquement. On tiendra compte du comptage de 0 à 9.
- 2. Puis nous simplifierons les équations par la méthode de Karnaugh.
- 3. Réalisation du circuit.

TABLE DE TRANSITION DU COMPTEUR

ETAT INITIAL

N°	Q3	Q2	Q1	Q0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

ETAT SUIVANT

N°	Q3	Q2	Q1	Q0
0	0	0	0	1
1	0	0	1	0
2	0	0	1	1
3	0	1	0	0
4	0	1	0	1
5	0	1	1	0
6	0	1	1	1
7	1	0	0	0
8	1	0	0	1
9	0	0	0	0
10	Х	Х	Х	Х
11	Х	Х	х	Х
12	Х	Х	Х	Х
13	Х	Х	х	Х
14	Х	Х	х	Х
15	Х	х	х	Х

ENTREES

N°	V3	V2	V1	V0	S
0	0	0	0	1	1
1	0	0	1	0	0
2	0	0	1	1	0
3	0	1	0	0	0
4	0	1	0	1	0
5	0	1	1	0	0
6	0	1	1	1	0
7	1	0	0	0	0
8	1	0	0	1	0
9	0	0	0	0	0
10	Х	Х	Х	Х	Х
11	Х	Х	Х	Х	Х
12	Х	Х	Х	Х	Х
13	Х	Х	Х	Х	Х
14	Х	Х	Х	Х	Х
15	Х	Х	Х	Х	Х

TABLE DE KARNAUGH

V3

Q3Q2\Q1Q0	0 0	0 1	11	10
0 0	0	0	0	0
0 1	0	0	1	0
11	X	Х	Х	Х
1 0	1	0	Х	Х

V3 = Q2Q1Q0 + Q3Q0

V2

Q3Q2\Q1Q0	0 0	0 1	11	1 0
0 0	0	0	1	0
0 1	1	1	0	1
11	X	X	Х	X
1 0	0	0	X	X

V2 = Q2Q1 + Q2Q0 + Q2Q1Q0

 $V2 = Q2(Q1\ + Q0\) + Q2\Q1Q0$

V2 = Q2((Q1Q0)) + Q2Q1Q0

V2 = Q2(+)Q1Q0

V1

Q3Q2\Q1Q0	0 0	0 1	11	10
0 0	0	1	0	1
0 1	0	1	0	1
11	Х	Х	Х	Х
1 0	0	0	х	Х

V1 = Q3|Q1|Q0 + Q1Q0|

V0

Q3Q2\Q1Q0	0 0	0 1	11	10
0 0	1	0	0	1
0 1	1	0	0	1
11	X	Х	Х	X
1 0	1	0	Х	Х

V0 = Q0

V3d	V2d	V1d	V0d	V3u	V2u	V1u	V0u	L3u	L2u	L1u	L0u
0	0	0	0	0	0	0	1	1	0	0	1
0	0	0	0	0	0	1	0	1	0	0	1
0	0	0	0	0	0	1	1	1	0	0	1
0	0	0	0	0	1	0	0	1	0	0	1
0	0	0	0	0	1	0	1	1	0	0	1
0	0	0	0	0	1	1	0	1	0	0	1
0	0	0	0	0	1	1	1	1	0	0	1
0	0	0	0	1	0	0	0	1	0	0	1
0	0	0	0	1	0	0	1	1	0	0	1
0	0	0	1	0	0	0	0	1	0	0	1
0	0	0	1	0	0	0	1	1	0	0	1
0	0	0	1	0	0	1	0	1	0	0	1
0	0	0	1	0	0	1	1	1	0	0	1
0	0	0	1	0	1	0	0	1	0	0	1
0	0	0	1	0	1	0	1	1	0	0	1
0	0	0	1	0	1	1	0	1	0	0	1
0	0	0	1	0	1	1	1	1	0	0	1
0	0	0	1	1	0	0	0	1	0	0	1
0	0	0	1	1	0	0	1	1	0	0	1
0	0	1	0	0	0	0	0	0	0	1	1
0	0	1	0	0	0	0	1	0	0	1	1
0	0	1	0	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	1	1

Ce tableau de valeurs permet de définir les entrées L3u, L2u, L1u et L0u pour les heures.

V(3, ... 0)d représente la valeur des dizaines des heures.

V(3, ... 0)u représente la valeur des unités des heures.

L(3, ... 0)u représente la valeur limite pour les unités des heures.

Pour Vd = 0 ou 1, Lu = 9.

Pour Vd = 2, Lu = 3.

On remarque que c'est la valeur de V1d qui change lors de cette transition, on obtient donc ce nouveau tableau :

L3u	L2u	L1u	L0u	V1d
1	0	0	1	0
0	0	1	1	1
/V1d	0	V1d	1	: total

On obtient donc: L3u = /V1d, L2u = 0, L1u = V1d et L0u = 1.