36710-36752, Fall 2020 Homework 4

Due Nov 11, by 5pm.

- 1. Consider the space $(\mathbb{R}^{\infty}, \mathcal{F}^{\infty})$ of all infinite sequences of real numbers endowed with the Borel product σ -field. For any real number μ , let P_{μ} denote the distribution of an infinite sequence of i.i.d. random variables with the $N(\mu, 1)$ distribution. Show that, for any $\mu \neq \mu'$, P_{μ} and $P_{\mu'}$ are mutually singular: there exist sets A_{μ} and $A_{\mu'}$ in \mathcal{F}^{∞} such that $A_{\mu} \cap A_{\mu'} = \emptyset$ and $P_{\mu}(A_{\mu}^{c}) = P_{\mu'}(A_{\mu'}^{c}) = 0$. This is a feature of infinite i.i.d. Gaussian sequences. In fact, when considering the distributions of finite i.i.d. Gaussian sequence, P_{μ} and $P_{\mu'}$ are always equivalent¹, for any $\mu \neq \mu'$ (no need to show this). Hint: by the SLLN, the set $A_{\mu} = \{(x_1, x_2, \ldots) \in \mathbb{R}^{\infty} : \lim_{n} \frac{1}{n} \sum_{i=1}^{n} x_i = \mu \}$ has P_{μ} -probability 1...
- 2. Show that $X_n \stackrel{a.s.}{\to} 0$ if and only if $\sup_{k \ge n} |X_k| \stackrel{p}{\to} 0$.
- 3. (WLLN under dependence.) Let X_1, X_2, \ldots be a sequence of random variables with mean zero and such that $\mathbb{E}[X_n X_m] = \rho(|m-n|)$, where $\lim_{x\to\infty} \rho(x) = 0$ (notice that $\operatorname{Var}[X_n] = \rho(0)$ for all n). Show that

$$\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{P}{\to} 0.$$

- 4. Let $\{X_n\}$ and $\{Y_n\}$ be two sequences of mean-zero, unit-variance random variables such that $\rho_n := \operatorname{Corr}(X_n, Y_n) \to 1$ as $n \to \infty$. Show that $X_n Y_n \stackrel{P}{\to} 0$.
- 5. For a vector $x \in \mathbb{R}^d$, let x(j) denote its jth coordinate. Let $\{X_n\}$ be a sequence of random vectors and X a random vector in \mathbb{R}^d . Show that $X_n \stackrel{P}{\to} X$ if and only if $X_n(j) \stackrel{P}{\to} X(j)$ for all $j = 1, \ldots, d$.
- 6. In \mathbb{R}^n most of the volume of the unit cube in \mathbb{R}^n comes from the boundary of a ball of radius $\sqrt{n/3}$, when n is large. Let $X = (X_1, X_2, \dots, X_n)$ be vector in \mathbb{R}^n comprised of independent random variables uniformly distributed on [-1, 1]. Then, for each $A \subset [-1, 1]^n$, $\Pr(X \in A)$ is the fraction of the volume of the unit cube $[-1, 1]^n$ occupied by A. (Notice that the volume of $[-1, 1]^n$ is 2^n .)

(a) Show that, as
$$n \to \infty$$
,
$$\frac{\|X\|^2}{n} \xrightarrow{P} \frac{1}{3}.$$
(Recall that for $x = (x_1, \dots, x) \in \mathbb{R}^n$, $\|x\|^2 = \sum_{i=1}^n x_i^2$).

¹Recall that this means that P_{μ} and $P_{\mu'}$ are mutually absolutely continuous

(b) For any $\epsilon \in (0,1)$, consider the annulus

$$A_{\epsilon,n} = \left\{ x \in [-1,1]^n : (1-\epsilon)\sqrt{n/3} \le ||x|| \le \sqrt{n/3}(1+\epsilon) \right\}.$$

Use (1) to show that, for large n, almost all of the volume of $[-1,1]^n$ lies in $A_{\epsilon,n}$. This result should be surprising: when ϵ is minuscule and n is large, it says that most of the volume of $[-1,1]^n$ concentrates around a very thin annulus. This may seem wrong (draw the picture for the case of n=2): how can a uniform distribution concentrate?!? In fact, this is a common, yet striking, features of probability distributions in high-dimensions.