

First and Last name.

Exercise 1 (value 12)

The town of Xu in an emerging country wants to plan the extension of the city to a neighbouring area. The new settlement has been divided into n small areas. Let V denote the set of all areas. For each pair of areas $i, j \in V$ which are considered in "proximity" by the city planners there is a link (i, j) in the link set E. The settlement must host private buildings and public facilities. There are m potential private buildings, each described by a volume requirement w_j and by a profit (for the municipality) of p_{ij} euro, if building j is built on area $i \in V$. The public facilities are of two kinds. The construction of a facility of kind one (resp. two) on area $i \in V$ cost c_i^I euros (resp. c_i^{II}) euros. Each private building must be in proximity with a facility of kind one, while only 50% of the private building must be in proximity with a facility of kind two. In each area we can build a single private building or a single public facility. The total volume of the private buildings cannot exceed the quantity Q. The cost for the public facilities cannot exceed the budget B.

Write a linear program to help the public administration to define an optimal plan while maximizing their profit.

Exercise 2 (value 9)

Consider the following PLC problem. Solve it with the simplex method. Write the dual problem and solve it using a graphical method. Using the primal and dual solution found, check their optimality using the complementary slackness conditions.

min
$$x_1 + 2x_2 + 6x_3$$
$$3x_1 + 3x_2 + 2x_3 \le 8$$
$$x_1 - 2x_2 + 4x_3 \ge 10$$
$$x_1, x_2, x_3 \ge 0$$

Exercise 3 (value 7)

Consider the dual problem of exercise 2. Impose that the dual variable must be integral and solve it using the branch-and-bound standard by selecting for the first branch the variable u_2 .

First and Last name

Exercise 1

Data: let $\delta(i) = \{h \in V : (i,h) \in E\}$

 $x_{ij} = 1$ if building i is built on area j, 0 otherwise

 $y_i^I = 1$ if a facility of kind one is built on area j, 0 otherwise

 $y_i^{II} = 1$ if a facility of kind two is built on area j, 0 otherwise

 $\alpha_i = 1$ if there is a private building in area j and there is at least a facilities of kind two in proximity 0 otherwise

$$\max z = \sum_{i \in V} (\sum_{i=1}^{m} p_{ij} x_{ij} - c_j^I y_j^I - c_j^{II} y_j^{II})$$

$$\sum_{i=1}^{m} x_{ij} + y_j^I + y_j^{II} \le 1 \quad \forall j \in V;$$
 (23)

$$\sum_{h \in \delta(j)} y_h^I \ge \sum_{i=1}^m x_{ij} \quad \forall j \in V; \tag{24}$$

$$\alpha_j \le \sum_{i=1}^m x_{ij} \quad \forall j \in V;$$
 (25)

$$\alpha_j \le \sum_{h \in \delta(j)} y_h^{II} \quad \forall j \in V;$$
 (26)

$$\sum_{j \in V} \alpha_j \le 0.5 \sum_{j \in V} \sum_{i=1}^m x_{ij}; \tag{27}$$

$$\sum_{i \in V} \sum_{i=1}^{m} w_i x_{ij} \le Q; \tag{28}$$

$$\sum_{j \in V} (c_j^I y_j^I + c_j^{II} y_j^{II}) \le B; \tag{29}$$

$$x_{ij} \in \{0,1\} \quad \forall j \in V, i = 1, \dots, m;$$
 (30)

$$y_j^I \in \{0, 1\} \quad \forall j \in V; \tag{31}$$

$$y_j^{II} \in \{0, 1\} \quad \forall j \in V; \tag{32}$$

$$\alpha_i \in \{0, 1\} \quad \forall j \in V; \tag{33}$$

Exercise 2

$$\begin{aligned} \min & & x_1 + 2x_2 + 6x_3 \\ & & 3x_1 + 3x_2 + 2x_3 \leq 8 \\ & & x_1 - 2x_2 + 4x_3 \geq 10 \\ & & x_1, x_2, x_3 \geq 0 \end{aligned}$$

x_1	x_2	x_3	x_4	x_5		
1	2	6	0	0	0	-z
3	3	2	1	0	8	x_4
(-1)	2	-4	0	1	-10	x_5

x_1	x_2	x_3	x_4	x_5		
0	4	2	0	1	-10	-z
0	9	(-10)	1	3	-22	x_4
1	-2	4	0	-1	10	x_1

x_1	x_2	x_3	x_4	x_5		
0	<u>29</u> 5	0	$\frac{1}{5}$	<u>8</u> 5	$-\frac{72}{5}$	-z
0	$-\frac{9}{10}$	1	$-\frac{1}{10}$	$-\frac{3}{10}$	<u>11</u>	x_3
1	$\frac{-8}{5}$	0	$\frac{-2}{5}$	$\frac{1}{5}$	<u>6</u> 5	x_1

$$x = (\frac{6}{5}, 0, \frac{11}{5}, 0, 0), z_P = \frac{72}{5}$$

6.0 5.5 5.0 4.5 4.0 3.5

3.0

min
$$x_1 + 2x_2 + 6x_3$$

 $3x_1 + 3x_2 + 2x_3 \le 8$
 $x_1 - 2x_2 + 4x_3 \ge 10$
 $x_1, x_2, x_3 \ge 0$

III

 $\max -8u_1 + 10u_2$

 $-3u_1 + u_2 \le 1$

 $-3u_1 - 2u_2 \le 2$

$$\begin{cases} (3x_1 + 3x_2 + 2x_3 - 8)u_1 = 0 & x_2 = 0 \\ (x_1 - 2x_2 + 4x_3 - 10)u_2 = 0 & u_1, u_2 > 0 \end{cases} \Rightarrow \begin{cases} 3x_1 + 2x_3 = 8 \\ x_1 + 4x_3 = 10 \end{cases} \begin{cases} x_1 = \frac{6}{5} \\ x_3 = \frac{11}{5} \end{cases}$$

$$\begin{cases} (-3u_1 + u_2 - 1)x_1 = 0 \\ (-3u_1 - 2u_2 - 2)x_2 = 0 \\ (-2u_1 + 4u_2 - 6)x_3 = 0 \end{cases} \quad x_1, x_3 > 0 \quad \Rightarrow \quad \begin{cases} -3u_1 + u_2 = 1 \\ -2u_1 + 4u_2 = 6 \end{cases} \quad \begin{cases} u_1 = \frac{1}{5} \\ u_2 = \frac{1}{5} \end{cases}$$

Exercise 3

Optimal integer solution $u = (1, 2), z_D = 12$