```
1 !pip install -r rec.txt
→ Collecting numpy==1.19.5 (from -r rec.txt (line 1))
      Using cached numpy-1.19.5.zip (7.3 MB)
      Installing build dependencies ... done
      Getting requirements to build wheel ... done
      Preparing metadata (pyproject.toml) ... done
    Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from -r rec.txt (line 2)) (2.2.
    Collecting matplotlib==3.3.4 (from -r rec.txt (line 3))
      Using cached matplotlib-3.3.4.tar.gz (37.9 MB)
      Preparing metadata (setup.py) ... done
    Collecting seaborn==0.11.1 (from -r rec.txt (line 4))
      Using cached seaborn-0.11.1-py3-none-any.whl.metadata (2.3 kB)
    Collecting scikit-learn==0.24.1 (from -r rec.txt (line 5))
      Using cached scikit-learn-0.24.1.tar.gz (7.4 MB)
      Installing build dependencies ... done
      Getting requirements to build wheel ... done
      Preparing metadata (pyproject.toml) ... done
    Collecting scipy==1.5.4 (from -r rec.txt (line 6))
      Using cached scipy-1.5.4.tar.gz (25.2 MB)
      error: subprocess-exited-with-error
      x pip subprocess to install build dependencies did not run successfully.
       exit code: 1
        See above for output.
      note: This error originates from a subprocess, and is likely not a problem with pip.
      Installing build dependencies ... error
    error: subprocess-exited-with-error
    x pip subprocess to install build dependencies did not run successfully.
     exit code: 1
      See above for output.
    note: This error originates from a subprocess, and is likely not a problem with pip.
1 !pip install catboost
→ Collecting cathoost
      Downloading catboost-1.2.7-cp310-cp310-manylinux2014_x86_64.whl.metadata (1.2 kB)
    Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-packages (from catboost) (0.20.3)
    Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from catboost) (3.7.1)
    Requirement already satisfied: numpy<2.0,>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from catboost) (1.2
    Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.10/dist-packages (from catboost) (2.2.2)
    Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from catboost) (1.13.1)
    Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (from catboost) (5.24.1)
    Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from catboost) (1.16.0)
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboo
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catb
    Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catb
    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost
    Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->cat
    Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->cat
    Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catbo
    Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboos
    Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catb
    Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly->catboost)
    Downloading catboost-1.2.7-cp310-cp310-manylinux2014_x86_64.whl (98.7 MB)
                                               = 98.7/98.7 MB 7.4 MB/s eta 0:00:00
    Installing collected packages: catboost
    Successfully installed catboost-1.2.7
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn import preprocessing
6 import scipy.stats as stats
7 from sklearn.model_selection import train_test_split
8 from collections import Counter
9 from imblearn.over_sampling import SMOTE
```

```
10 from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
```

- 11 from sklearn import metrics
- 12 from sklearn.ensemble import RandomForestClassifier
- 13 from catboost import CatBoostClassifier
- 14 from xgboost import XGBClassifier
- 15 from sklearn.svm import SVC
- 16 from sklearn.linear_model import LogisticRegression
- 17 from sklearn.naive_bayes import GaussianNB
- 18 from sklearn.neighbors import KNeighborsClassifier
- 19 import joblib
- 1 df = pd.read_csv("processed_weather_data.csv")
- 2 pd.set_option("display.max_columns", None)
- 3 df

3	Date	Location	Temp	WindSpeed	Humidity	RainToday	RainTomorrow
0	2008-12-01	A l bury	18.15	22.0	46.5	No	No
1	2008-12-02	A l bury	16.25	13.0	34.5	No	No
2	2008-12-03	A l bury	19.30	22.5	34.0	No	No
3	2008-12-04	A l bury	18.60	10.0	30.5	No	No
4	2008-12-05	A l bury	24.90	13.5	57.5	No	No
145455	2017-06-21	U l uru	13.10	12.0	37.5	No	No
145456	2017-06-22	U l uru	14.45	11.0	38.5	No	No
145457	2017-06-23	U l uru	16.15	9.0	38.5	No	No
145458	2017-06-24	U l uru	17.40	10.0	37.5	No	No
145459	2017-06-25	U l uru	14.90	17.0	49.0	No	NaN

145460 rows × 7 columns

```
1 numerical_feature = [feature for feature in df.columns if df[feature].dtypes != '0']
```

- 2 discrete_feature=[feature for feature in numerical_feature if len(df[feature].unique())<25]
- 3 continuous_feature = [feature for feature in numerical_feature if feature not in discrete_feature]
- 4 categorical_feature = [feature for feature in df.columns if feature not in numerical_feature]
- 5 print("Numerical Features Count {}".format(len(numerical_feature)))
- 6 print("Discrete feature Count {}".format(len(discrete_feature)))
- 7 print("Continuous feature Count {}".format(len(continuous_feature)))
- 8 print("Categorical feature Count {}".format(len(categorical_feature)))

Numerical Features Count 3
Discrete feature Count 0
Continuous feature Count 3
Categorical feature Count 4

1 # Handle Missing Values

2 df.isnull().sum()*100/len(df)

₹		0
	Date	0.000000
	Location	0.000000
	Temp	0.594665
	WindSpeed	0.833906
	Humidity	1.297264
	RainToday	2.241853
	RainTomorrow	2.245978

dtype: float64

1 print(numerical_feature)

→ ['Temp', 'WindSpeed', 'Humidity']

1 def randomsampleimputation(df, variable):

- 2 df[variable]=df[variable]
- 3 random_sample=df[variable].dropna().sample(df[variable].isnull().sum(),random_state=0)
- 4 random_sample.index=df[df[variable].isnull()].index
- 5 df.loc[df[variable].isnull(),variable]=random_sample

1 df

₹		Date	Location	Temp	WindSpeed	Humidity	RainToday	RainTomorrow	
	0	2008-12-01	A l bury	18.15	22.0	46.5	No	No	
	1	2008-12-02	A l bury	16.25	13.0	34.5	No	No	
	2	2008-12-03	A l bury	19.30	22.5	34.0	No	No	
	3	2008-12-04	A l bury	18.60	10.0	30.5	No	No	
	4	2008-12-05	A l bury	24.90	13.5	57.5	No	No	
	145455	2017-06-21	Uluru	13.10	12.0	37.5	No	No	
	145456	2017-06-22	Uluru	14.45	11.0	38.5	No	No	
	145457	2017-06-23	U l uru	16.15	9.0	38.5	No	No	
	145458	2017-06-24	U l uru	17.40	10.0	37.5	No	No	
	145459	2017-06-25	Uluru	14.90	17.0	49.0	No	NaN	

145460 rows × 7 columns

- 1 for feature in continuous_feature:
- 2 data=df.copy()
- 3 sns.distplot(df[feature])
- 4 plt.xlabel(feature)
- 5 plt.ylabel("Count")
- 6 plt.title(feature)
- 7 plt.figure(figsize=(15,15))
- 8 plt.show()

<ipython-input-12-f3f36df57cc9>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[feature])

<Figure size 1500x1500 with 0 Axes>
<ipython-input-12-f3f36df57cc9>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[feature])

<Figure size 1500x1500 with 0 Axes>
<ipython-input-12-f3f36df57cc9>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df[feature])

<Figure size 1500x1500 with 0 Axes>

1 #A for loop is used to plot a boxplot for all the continuous features to see the outliers 2 for feature in continuous_feature:

- 3 data=df.copy()
- 4 sns.boxplot(data[feature])
- 5 plt.title(feature)
- 6 plt.figure(figsize=(15,15))

<Figure size 1500x1500 with 0 Axes>

0

```
1 for feature in continuous_feature:
      if(df[feature].isnull().sum()*100/len(df))>0:
           df[feature] = df[feature].fillna(df[feature].median())
1 df.isnull().sum()*100/len(df)
\overline{2}
                           0
                    0.000000
          Date
        Location
                    0.000000
                    0.000000
         Temp
       WindSpeed
                    0.000000
        Humidity
                    0.000000
       RainToday
                    2.241853
     RainTomorrow
                    2.245978
     dtype: float64
1 discrete_feature
∃* []
1 def mode_nan(df,variable):
      mode=df[variable].value_counts().index[0]
3
       df[variable].fillna(mode,inplace=True)
4
1 df["RainToday"] = pd.get_dummies(df["RainToday"], drop_first = True)
2 df["RainTomorrow"] = pd.get_dummies(df["RainTomorrow"], drop_first = True)
₹
                                                                                             \blacksquare
                   Date Location
                                    Temp WindSpeed Humidity RainToday RainTomorrow
                             Albury
        0
              2008-12-01
                                   18.15
                                                 22.0
                                                            46.5
                                                                      False
                                                                                     False
        1
              2008-12-02
                             Albury 16.25
                                                 13.0
                                                            34.5
                                                                      False
                                                                                     False
        2
              2008-12-03
                             Albury
                                    19.30
                                                 22.5
                                                            34.0
                                                                      False
                                                                                     False
                             Albury 18.60
        3
              2008-12-04
                                                 10.0
                                                            30.5
                                                                      False
                                                                                     False
              2008-12-05
                             Albury
                                    24.90
                                                 13.5
                                                            57.5
                                                                      False
                                                                                     False
     145455 2017-06-21
                              Uluru 13.10
                                                 12.0
                                                            37.5
                                                                      False
                                                                                     False
     145456 2017-06-22
                              Uluru 14.45
                                                 11.0
                                                            38.5
                                                                      False
                                                                                     False
     145457 2017-06-23
                              Uluru 16.15
                                                  9.0
                                                            38.5
                                                                      False
                                                                                     False
     145458 2017-06-24
                              Uluru 17 40
                                                 10.0
                                                            37.5
                                                                      False
                                                                                     False
     145459 2017-06-25
                              Uluru 14.90
                                                 17.0
                                                            49.0
                                                                      False
                                                                                     False
     145460 rows × 7 columns
1 for feature in categorical_feature:
      print(feature, (df.groupby([feature])["RainTomorrow"].mean().sort_values(ascending = False)).index)
    Date Index(['2007-11-01', '2007-12-15', '2008-02-03', '2008-01-31', '2008-01-30',
            '2008-01-19', '2008-01-18', '2008-01-16', '2008-01-12', '2007-11-30',
            '2008-05-08', '2008-05-09', '2008-01-03', '2008-01-02', '2008-05-10'
            '2008-05-11', '2008-05-12', '2008-05-13', '2008-05-14', '2007-12-25'],
           dtype='object', name='Date', length=3436)
     Location Index(['Portland', 'Walpole', 'Cairns', 'Dartmoor', 'NorfolkIsland',
```

 \blacksquare

ılı

RainTomorrow	False	True
Location		
Adelaide	2505	688
Albany	2138	902
Albury	2422	618
AliceSprings	2796	244
BadgerysCreek	2426	583
Ballarat	2259	781
Bendigo	2478	562
Brisbane	2484	709
Cairns	2090	950
Canberra	2807	629
Cobar	2623	386
CoffsHarbour	2140	869
Dartmoor	2087	922
Darwin	2341	852
GoldCoast	2265	775
Hobart	2432	761
Katherine	1313	265
Launceston	2341	699
Melbourne	2557	636
MelbourneAirport	2356	653
Mildura	2682	327
Moree	2615	394
MountGambier	2120	920
MountGinini	2221	819
Newcastle	2308	731
Nhil	1336	242
NorahHead	2196	808
NorfolkIsland	2090	919
Nuriootpa	2417	592
PearceRAAF	2504	505
Penrith	2444	595
Perth	2548	645
PerthAirport	2442	567
Portland	1914	1095
Richmond	2449	560
Sale	2366	643
SalmonGums	2529	472
Sydney	2479	865
SydneyAirport	2235	774
Townsville	2521	519
Tuggeranong	2471	568

New interactive sheet

Next steps:

```
Uluru
                 1462
                         116
WaggaWagga
                 2473
                         536
  Walpole
                 2057
                         949
  Watsonia
                 2271
                         738
 Williamtown
                         700
                 2309
 Witchcliffe
                 2130
                         879
 Wollongong
                 2327
                         713
  Woomera
                 2807
                         202
```

Generate code with df1

```
1 location = {'Portland':1, 'Cairns':2, 'Walpole':3, 'Dartmoor':4, 'MountGambier':5,
          'NorfolkIsland':6, 'Albany':7, 'Witchcliffe':8, 'CoffsHarbour':9, 'Sydney':10, 'Darwin':11, 'MountGinini':12, 'NorahHead':13, 'Ballarat':14, 'GoldCoast':15,
3
           'SydneyAirport':16, 'Hobart':17, 'Watsonia':18, 'Newcastle':19, 'Wollongong':20,
4
          'Brisbane':21, 'Williamtown':22, 'Launceston':23, 'Adelaide':24, 'MelbourneAirport':25,
5
          'Perth':26, 'Sale':27, 'Melbourne':28, 'Canberra':29, 'Albury':30, 'Penrith':31,
6
          'Nuriootpa':32, 'BadgerysCreek':33, 'Tuggeranong':34, 'PerthAirport':35, 'Bendigo':36,
7
          'Richmond':37, 'WaggaWagga':38, 'Townsville':39, 'PearceRAAF':40, 'SalmonGums':41,
8
9
          'Moree':42, 'Cobar':43, 'Mildura':44, 'Katherine':45, 'AliceSprings':46, 'Nhil':47,
10
          'Woomera':48, 'Uluru':49}
11 df["Location"] = df["Location"].map(location)
1 df['Date'] = pd.to_datetime(df['Date'])
2 df['Month'] = df['Date'].dt.month
3 df['Day'] = df['Date'].dt.day
4 df
```

View recommended plots

₹		Date	Location	Temp	WindSpeed	Humidity	RainToday	RainTomorrow	Month	Day	
	0	2008-12-01	30	18.15	22.0	46.5	False	False	12	1	11.
	1	2008-12-02	30	16.25	13.0	34.5	False	False	12	2	+/
	2	2008-12-03	30	19.30	22.5	34.0	False	False	12	3	-
	3	2008-12-04	30	18.60	10.0	30.5	False	False	12	4	
	4	2008-12-05	30	24.90	13.5	57.5	False	False	12	5	
	•••										
	145455	2017-06-21	49	13.10	12.0	37.5	False	False	6	21	
	145456	2017-06-22	49	14.45	11.0	38.5	False	False	6	22	
	145457	2017-06-23	49	16.15	9.0	38.5	False	False	6	23	
	145458	2017-06-24	49	17.40	10.0	37.5	False	False	6	24	
	145459	2017-06-25	49	14.90	17.0	49.0	False	False	6	25	

145460 rows × 9 columns

¹ corrmat = df.corr()

² plt.figure(figsize=(20,20))

^{3 #}plot heat map

⁴ g=sns.heatmap(corrmat,annot=True)

1 df

49.0

False

False

6 25

145459 2017-06-25 145460 rows × 9 columns 49 14.90

¹ for feature in continuous_feature:

² data=df.copy()

³ sns.boxplot(data[feature])

⁴ plt.title(feature)

plt.figure(figsize=(15,15))

<Figure size 1500x1500 with 0 Axes>

0

```
1 for feature in continuous_feature:
    print(feature)
<del>∑</del>₹
   Temp
    WindSpeed
    Humidity
1 IQR=df.Temp.quantile(0.75)-df.Temp.quantile(0.25)
2 lower_bridge=df.Temp.quantile(0.25)-(IQR*1.5)
3 upper_bridge=df.Temp.quantile(0.75)+(IQR*1.5)
4 print(lower_bridge, upper_bridge)
-0.9500000000000011 36.25
1 df.loc[df['Temp']>=36.975,'Temp']=36.975
2 df.loc[df['Temp']<=2.7,'Temp']=2.7</pre>
1 IQR=df.WindSpeed.quantile(0.75)-df.WindSpeed.quantile(0.25)
2 lower bridge=df.WindSpeed.quantile(0.25)-(IQR*1.5)
3 upper bridge=df.WindSpeed.quantile(0.75)+(IQR*1.5)
4 print(lower_bridge, upper_bridge)
-3.25 34.75
1 df.loc[df['WindSpeed']>=38.75,'WindSpeed']=38.75
2 df.loc[df['WindSpeed']<=-7.25,'WindSpeed']=-7.25</pre>
1 IQR=df.Humidity.quantile(0.75)-df.Humidity.quantile(0.25)
2 lower bridge=df.Humidity.quantile(0.25)-(IQR*1.5)
3 upper_bridge=df.Humidity.quantile(0.75)+(IQR*1.5)
4 print(lower_bridge, upper_bridge)
→ 13.0 109.0
1 df.loc[df['Humidity']>=122,'Humidity']=122
2 df.loc[df['Humidity']<=18,'Humidity']=18</pre>
1 '''df.loc[df['Temp3pm']>=40.45,'Temp3pm']=40.45
2 df.loc[df['Temp3pm']<=2.45,'Temp3pm']=2.45'''</pre>
'df.loc[df['Temp3pm']>=40.45,'Temp3pm']=40.45\ndf.loc[df['Temp3pm']<=2.45,'Temp3pm']=2.45'</pre>
1 for feature in continuous_feature:
2
     data=df.copy()
3
      sns.boxplot(data[feature])
4
      plt.title(feature)
      plt.figure(figsize=(15,15))
```


<Figure size 1500x1500 with 0 Axes>

```
1 def qq_plots(df, variable):
plt.figure(figsize=(15,6))
   plt.subplot(1, 2, 1)
3
4
   df[variable].hist()
5
   plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
6
     plt.show()
1 for feature in continuous_feature:
   print(feature)
3
     plt.figure(figsize=(15,6))
    plt.subplot(1, 2, 1)
4
    df[feature].hist()
    plt.subplot(1, 2, 2)
     stats.probplot(df[feature], dist="norm", plot=plt)
     plt.show()
```