ALGEBRA LINEAL - Práctica N°2 - Primer cuatrimestre de 2022 Matrices y coordenadas

Ejercicio 1.

- i) Probar que los siguientes conjuntos son subespacios de $K^{n\times n}$ y calcular su dimensión.
 - a) $S_1 = \{A \in K^{n \times n} : A = A^t\}$ (matrices simétricas)
 - b) $S_2 = \{A \in K^{n \times n} : A = -A^t\}$ (matrices antisimétricas)
 - c) $S_3 = \{A \in K^{n \times n} : A_{ij} = 0 \text{ si } i > j\}$ (matrices triangulares superiores)
 - d) $S_4 = \{A \in K^{n \times n} : A_{ij} = 0 \text{ si } i \neq j\}$ (matrices diagonales)
 - e) $S_5 = \{A \in K^{n \times n} : A_{ij} = 0 \text{ si } i \neq j \text{ y } A_{11} = A_{22} = \ldots = A_{nn} \}$ (matrices escalares)
 - f) $S_6 = \{A \in K^{n \times n} : tr(A) = 0\}$
- ii) Probar que
 - a) $S_1 \oplus S_2 = K^{n \times n}$ si $2 \neq 0$ en K.
 - b) $S_5 \oplus S_6 = K^{n \times n}$ si $K = \mathbb{Q}, \mathbb{R}$ o \mathbb{C} .

Ejercicio 2.

- i) Probar que el producto de matrices en $K^{n\times n}$ no es conmutativo para cada $n\geq 2$.
- ii) Dar condiciones necesarias y suficientes sobre A y $B \in K^{n \times n}$ para que

a)
$$(A+B)^2 = A^2 + 2AB + B^2$$

a)
$$(A+B)^2 = A^2 + 2AB + B^2$$
 b) $A^2 - B^2 = (A-B) \cdot (A+B)$

- iii) Caracterizar el conjunto $\{A \in K^{n \times n} : A \cdot B = B \cdot A \ \forall B \in K^{n \times n}\}.$
- iv) Sea $A \in K^{n \times n}$. Probar que el conjunto S de todas las matrices que conmutan con A es un subespacio de $K^{n \times n}$. Probar que $I_n \in S$ y que $A^j \in S$ para cada $j \in \mathbb{N}$.
- v) Sea $A \in K^{n \times n}$ con $n \ge 2$. Probar que el conjunto $\{I_n, A, A^2, A^3, \dots, A^{n^2-1}\}$ es linealmente dependiente.

Ejercicio 3. Sean $A, B \ y \ C \in K^{n \times n} \ (n \ge 2)$. Mostrar la falsedad de las siguientes afirmaciones:

i) $A \cdot B = 0 \Rightarrow A = 0 \circ B = 0$

- iv) $A^j = 0 \Rightarrow A = 0$
- ii) $A \cdot B = A \cdot C$ y $A \neq 0 \Rightarrow B = C$
- v) $A^2 = A \Rightarrow A = 0 \text{ ó } A = I_n$

iii) $A \cdot B = 0 \Rightarrow B \cdot A = 0$

Ejercicio 4. Sea $A \in K^{n \times n}$. Probar que el conjunto $T = \{B \in K^{n \times n} : A \cdot B = 0\}$ es un subespacio de $K^{n\times n}$. Si $S\subset K^n$ es el subespacio de soluciones del sistema homogéneo cuya matriz asociada es A, probar que dim T = n. dim S.

Ejercicio 5. Sean $A \in K^{m \times n}$, $B \in K^{n \times r}$, $D, D' \in K^{n \times n}$. Probar:

- i) $(A \cdot B)^t = B^t \cdot A^t$
- ii) $tr(D \cdot D') = tr(D' \cdot D)$

Ejercicio 6. Sean $A y B \in K^{n \times n}$.

- i) Probar que si A y B son triangulares superiores, $A \cdot B$ es triangular superior.
- ii) Probar que si A es estrictamente triangular superior (es decir, $A_{ij} = 0$ si $i \ge j$), $A^n = 0$.

Ejercicio 7. Sea $A \in K^{n \times n}$.

- i) Probar que $A \cdot A^t$ y $A^t \cdot A$ son simétricas. Encontrar un ejemplo donde $A \cdot A^t \neq A^t \cdot A$.
- ii) El producto de dos matrices simétricas, ¿es una matriz simétrica?
- iii) Si $K = \mathbb{R}$, probar que $A = 0 \iff A \cdot A^t = 0 \iff tr(A \cdot A^t) = 0$.

Ejercicio 8. Decidir si cada una de las siguientes afirmaciones es verdadera o falsa.

- i) $A, B \in GL(n, K) \Rightarrow A + B \in GL(n, K)$
- ii) $A \in GL(n, K) \iff A^t \in GL(n, K)$
- iii) $tr(A) = 0 \Rightarrow A \notin GL(n, K)$
- iv) A nilpotente (es decir, existe $j \in \mathbb{N}$ tal que $A^j = 0$) $\Rightarrow A \notin GL(n, K)$

Ejercicio 9. Sea $A \in K^{m \times n}$ y sea $b \in K^m$. Sea $H = \{x \in K^n : A \cdot x = b\}$. Probar:

- i) Si $C \in GL(m, K)$, entonces $H = \{x \in K^n : (C \cdot A) \cdot x = C \cdot b\}$.
- ii) Si m = n y $A \in GL(n, K)$, entonces H tiene un solo elemento. ¿Cuál es? (Notar que esto significa que si A es inversible, cualquier sistema lineal cuya matriz asociada sea A tiene solución única).

Ejercicio 10.

i) Para cada $i, j \ (1 \le i, j \le n)$, sea $E^{ij} \in K^{n \times n}$ la matriz:

$$(E^{ij})_{kl} = \left\{ \begin{matrix} 1 & \text{si } i = k \text{ y } j = l \\ 0 & \text{si no} \end{matrix} \right.$$

Las matrices E^{ij} se llaman matrices canónicas de $K^{n\times n}$.

a) Si $a \in K - \{0\}$ y $1 \le i \le n$, se define $M_i(a) \in K^{n \times n}$ como

$$M_i(a) = E^{11} + E^{22} + \dots + a \cdot E^{ii} + E^{(i+1)(i+1)} + \dots + E^{nn} = I_n + (a-1) \cdot E^{ii}.$$

Escribir todas las posibles $M_i(a)$ para n = 2, 3, 4 $(a \in K)$.

b) Sean $1 \le i, j \le n$, con $i \ne j$. Se define la matriz $P^{ij} \in K^{n \times n}$ como la matriz que se obtiene permutando la fila i con la fila j de la matriz identidad. Comprobar que

$$P^{ij} = I_n - E^{ii} - E^{jj} + E^{ij} + E^{ji}.$$

Escribir todas las posibles P^{ij} para n = 2, 3, 4.

c) Sean $1 \leq i, j \leq n$, con $i \neq j$ y $a \in K$. Se define la matriz $T^{ij}(a) \in K^{n \times n}$ como

$$T^{ij}(a) = I_n + a.E^{ij}.$$

Escribir todas las posibles $T^{ij}(a)$ para n=2,3,4 $(a \in K)$.

Las matrices $M_i(a)$, P^{ij} y $T^{ij}(a)$ se llaman matrices elementales de $K^{n\times n}$.

- ii) Probar que:
 - a) $M_i(a) \in GL(n, K)$ con $(M_i(a))^{-1} = M_i(a^{-1})$
 - b) $P^{ij} \in GL(n, K) \text{ con } (P^{ij})^{-1} = P^{ij}$
 - c) $T^{ij} \in GL(n, K) \text{ con } (T^{ij}(a))^{-1} = T^{ij}(-a)$
- iii) Sea $A \in K^{n \times m}$, $A = (a_{ij})$, y sea F_i $(1 \le i \le n)$ la i-ésima fila de A, es decir, $F_i = (a_{i1}, \dots, a_{im})$ y $A = \begin{pmatrix} F_1 \\ \vdots \\ F \end{pmatrix}$. Probar que:

a)
$$E^{ij}.A = \begin{pmatrix} F'_1 \\ \vdots \\ F'_n \end{pmatrix}$$
 con $F'_k = (0, \dots, 0)$ si $k \neq i$ y $F'_i = F_j$.

b)
$$M_i(a).A = \begin{pmatrix} F_1' \\ \vdots \\ F_n' \end{pmatrix}$$
 con $F_k' = F_k$ si $k \neq i$ y $F_i' = a.F_i$.

c)
$$P^{ij}.A = \begin{pmatrix} F'_1 \\ \vdots \\ F'_n \end{pmatrix}$$
 con $F'_k = F_k \text{ si } k \neq i, j ; F'_i = F_j \text{ y } F'_j = F_i.$

d)
$$T^{ij}(a).A = \begin{pmatrix} F'_1 \\ \vdots \\ F'_r \end{pmatrix} \operatorname{con} F'_k = F_k \operatorname{si} k \neq i \operatorname{y} F'_i = F_i + a.F_j.$$

Notar como conclusión que triangular por filas una matriz es multiplicar a izquierda por varias matrices elementales.

¿Cómo se pueden obtener las matrices elementales a partir de la matriz identidad?

Ejercicio 11.

- i) Sea $A = T^{12}(1) \in \mathbb{R}^{2 \times 2}$. Calcular A^{20} y 20.A.
- ii) Calcular $(P^{ij})^{15}$ y $(P^{ij})^{16}$.
- iii) Sea $B=M_3(2)\in\mathbb{R}^{4\times 4}$. Calcular B^{20} y 20.B.

Ejercicio 12. Determinar si las siguientes matrices son inversibles y en caso afirmativo exhibir sus inversas. Escribir las que sean inversibles como producto de matrices elementales.

i)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 ii) $A = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$ iii) $A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & -2 & 3 \\ 3 & 1 & -1 & 3 \end{pmatrix}$

iv)
$$A = \begin{pmatrix} 2 & 1 & 3 & 1 & 2 \\ 0 & 5 & -1 & 8 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$
 v) $A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$

Ejercicio 13. Calcular el rango de las siguientes matrices:

i)
$$A = \begin{pmatrix} 2 & 0 & 3 & -1 \\ 1 & -2 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix}$$
 ii) $A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$

Ejercicio 14. Calcular el rango de $A \in \mathbb{R}^{3\times 3}$ para cada $k \in \mathbb{R}$, siendo

$$A = \begin{pmatrix} 1 & -k & -1 \\ -1 & 1 & k^2 \\ 1 & k & k-2 \end{pmatrix}.$$

Ejercicio 15. Encontrar las coordenadas de $v \in V$ respecto de la base B en los siguientes casos:

i)
$$V = \mathbb{R}^3$$
; $v = (1, -1, 2)$ y $B = \{(1, 2, -1), (2, 1, 3), (1, 3, 2)\}$

ii)
$$V = \mathbb{R}_3[X]$$
; $v = 2X^2 - X^3$ y $B = \{3, 1 + X, X^2 + 5, X^3 + X^2\}$

iii)
$$V = \mathbb{R}^{2 \times 2}$$
; $v = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ y $B = \left\{ \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix} \right\}$

Ejercicio 16. Calcular C(B, B') en los siguientes casos:

i)
$$V = \mathbb{R}^3$$
, $B = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$, $B' = \{(-1, 1, 1), (2, 0, 1), (1, -1, 3)\}$

ii)
$$V = \mathbb{R}_2[X], B = \{3, 1 + X, X^2\}, B' = \{1, X + 3, X^2 + X\}$$

iii)
$$V = \mathbb{R}^4$$
, $B = \{v_1, v_2, v_3, v_4\}$, $B' = \{v_3, v_1, v_4, v_2\}$

Ejercicio 17. Dado $v \in V$ y las bases B y B', hallar las coordenadas de v respecto de B y, utilizando la matriz de cambio de base, las coordenadas de v respecto de B'.

- i) v = (-1, 5, 6) y B, B' como en el Ejercicio 16. i)
- ii) $v = 3 + X^2$ y B, B' como en el Ejercicio 16. ii)

Ejercicio 18. Dadas la matriz $M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ y la base $B = \{v_1, v_2, v_3\}$ de K^3 , hallar:

- i) una base B_1 de K^3 tal que $M = C(B_1, B)$.
- ii) una base B_2 de K^3 tal que $M = C(B, B_2)$.