BFilt

1.0

Generated by Doxygen 1.5.7

Wed Feb 25 14:57:28 2009

Contents

1	Mai	in Page	1
	1.1	Description	1
	1.2	Dependances	1
	1.3	Installation	1
	1.4	Auteur	2
2	An A	AR process	3
	2.1	Define the AR model	4
	2.2	The main program	5
	2.3	The CMakeList.txt	6
3	An	Ornstien-Uhlenbeck process	7
	3.1	The main program	9
	3.2	The CMakeList.txt	10
4	Van	Der Pol oscillator	13
5	Teri	rain navigation	17
6	Clas	ss Index	23
	6.1	Class Hierarchy	23
7	Clas	ss Index	25
	7.1	Class List	25
8	Clas	ss Documentation	27
	8.1	Bootstrap_Filter Class Reference	27
		8.1.1 Constructor & Destructor Documentation	28
		8.1.1.1 Bootstrap_Filter	28
		8.1.1.2 ~Bootstrap_Filter	28
		8.1.1.3 Bootstrap_Filter	28

ii CONTENTS

		8.1.1.4 Bootstrap_Filter	28
	8.1.2	Member Data Documentation	28
		8.1.2.1 sim	28
8.2	Bootst	rap_Sampler Class Reference	29
	8.2.1	Detailed Description	29
	8.2.2	Constructor & Destructor Documentation	29
		8.2.2.1 Bootstrap_Sampler	29
		8.2.2.2 Bootstrap_Sampler	29
	8.2.3	Member Function Documentation	29
		8.2.3.1 Draw	29
		8.2.3.2 DrawInitCloud	30
		8.2.3.3 Weight	30
8.3	CD_B	ootstrap_Filter Class Reference	31
	8.3.1	Constructor & Destructor Documentation	31
		8.3.1.1 CD_Bootstrap_Filter	31
		8.3.1.2 ~CD_Bootstrap_Filter	31
		8.3.1.3 CD_Bootstrap_Filter	31
		8.3.1.4 CD_Bootstrap_Filter	31
		8.3.1.5 CD_Bootstrap_Filter	31
	8.3.2	Member Function Documentation	31
		8.3.2.1 Save_X	31
	8.3.3	Member Data Documentation	32
		8.3.3.1 sim	32
8.4	CD_E	ctended_Kalman_Filter Class Reference	33
	8.4.1	Constructor & Destructor Documentation	34
		8.4.1.1 CD_Extended_Kalman_Filter	34
		8.4.1.2 CD_Extended_Kalman_Filter	34
	8.4.2	Member Function Documentation	34
		8.4.2.1 _euler_prediction	34
		8.4.2.2 _heunprediction	34
		8.4.2.3 <u>rk4</u> <u>prediction</u>	34
		8.4.2.4 _rk4prediction_FM	34
		8.4.2.5 _thglprediction	34
		8.4.2.6 _update	34
	8.4.3	Member Data Documentation	34
		8.4.3.1 Scheme	34

CONTENTS

8.5	CD_Fi	ilter Class Reference
	8.5.1	Detailed Description
	8.5.2	Constructor & Destructor Documentation
		8.5.2.1 CD_Filter
		8.5.2.2 CD_Filter
	8.5.3	Member Function Documentation
		8.5.3.1 _init
		8.5.3.2 Expected_Get
		8.5.3.3 Save_X
	8.5.4	Member Data Documentation
		8.5.4.1 M
		8.5.4.2 R
		8.5.4.3 Rp
		8.5.4.4 Xp
8.6	CD_K	alman Class Reference
	8.6.1	Detailed Description
	8.6.2	Constructor & Destructor Documentation
		8.6.2.1 CD_Kalman
		8.6.2.2 CD_Kalman
	8.6.3	Member Function Documentation
		8.6.3.1 _update
8.7	CD_Si	imulator Class Reference
	8.7.1	Constructor & Destructor Documentation
		8.7.1.1 CD_Simulator
		8.7.1.2 CD_Simulator
	8.7.2	Member Function Documentation
		8.7.2.1 _update
		8.7.2.2 Draw_Init
		8.7.2.3 Draw_Observation
		8.7.2.4 draw_state
		8.7.2.5 Draw_Transition
		8.7.2.6 Observation_Density
		8.7.2.7 Save_X
		8.7.2.8 Save_Y
		8.7.2.9 Set_Alpha
		8.7.2.10 Simulate

iv CONTENTS

	8.7.3	Member I	Data Documentation	43
	0.7.5	8.7.3.1	a	
			Dx	
		8.7.3.3	Dy	
0.0	CD C:	8.7.3.4	scheme	
8.8			VT Class Reference	
	8.8.1		tor & Destructor Documentation	
		8.8.1.1	CD_Simulator_WT	
		8.8.1.2	CD_Simulator_WT	44
	8.8.2	Member I	Function Documentation	44
		8.8.2.1	Draw_Init	44
	8.8.3	Member I	Data Documentation	45
		8.8.3.1	$T \ldots \ldots \ldots \ldots \ldots \ldots$	45
		8.8.3.2	TB	45
		8.8.3.3	Xt	45
8.9	Contin	uous_Disc	rete_Model Class Reference	46
	8.9.1	Detailed I	Description	46
	8.9.2	Construct	tor & Destructor Documentation	47
		8.9.2.1	Continuous_Discrete_Model	47
		8.9.2.2	~Continuous_Discrete_Model	47
	8.9.3	Member I	Function Documentation	47
		8.9.3.1	Diffusion_Function	
			Drift Function	
		8.9.3.3	Init	
		8.9.3.4	J_Drift_Function	
	8.9.4		Data Documentation	
	0.7.4	8.9.4.1	Ts	
9 10	DD V			
8.10			ss Reference	
			Description	
	8.10.2		tor & Destructor Documentation	
			DD_Kalman	49
			DD_Kalman	
	8.10.3	Member I	Function Documentation	49
		8.10.3.1	_update	49
8.11	Discret	e_Approxi	imation_CD_Model Class Reference	51
	8.11.1	Detailed I	Description	52

CONTENTS

	8.11.2	Construct	tor & Destructor Documentation	52
		8.11.2.1	Discrete_Approximation_CD_Model	52
		8.11.2.2	~Discrete_Approximation_CD_Model	52
		8.11.2.3	Discrete_Approximation_CD_Model	52
		8.11.2.4	Discrete_Approximation_CD_Model	52
	8.11.3	Member 1	Function Documentation	53
		8.11.3.1	Get_Alpha	53
		8.11.3.2	Get_Linear_Parameters	53
		8.11.3.3	Get_Linear_Scheme	53
		8.11.3.4	Init	53
		8.11.3.5	J_Observation_Function	53
		8.11.3.6	Jw_Scheme	54
		8.11.3.7	Jw_State_Function	54
		8.11.3.8	Jx_Scheme	54
		8.11.3.9	Jx_State_Function	54
		8.11.3.10	Observation_Function	55
		8.11.3.11	Scheme	55
		8.11.3.12	Set_Alpha	55
		8.11.3.13	State_Function	55
	8.11.4	Member 1	Data Documentation	55
		8.11.4.1	alpha	55
		8.11.4.2	cd_model	55
8.12	Discret	e_Observe	ed_Model Class Reference	56
	8.12.1	Detailed l	Description	57
	8.12.2	Construct	tor & Destructor Documentation	57
		8.12.2.1	Discrete_Observed_Model	57
		8.12.2.2	~Discrete_Observed_Model	57
	8.12.3	Member 1	Function Documentation	57
		8.12.3.1	Get_Init_Parameters	57
		8.12.3.2	J_Observation_Function	58
		8.12.3.3	Observation_Function	58
	8.12.4	Member 1	Data Documentation	58
		8.12.4.1	$Qv \ \dots $	58
		8.12.4.2	Qw	58
		8.12.4.3	R0	58
		8.12.4.4	X0	58

vi CONTENTS

8.13 Euler_CD_Model Class Reference	59
8.13.1 Detailed Description	. 59
8.13.2 Constructor & Destructor Documentation	. 59
8.13.2.1 Euler_CD_Model	. 59
8.13.2.2 Euler_CD_Model	. 59
8.13.3 Member Function Documentation	. 59
8.13.3.1 Get_Linear_Scheme	. 59
8.13.3.2 Jw_Scheme	60
8.13.3.3 Jx_Scheme	60
8.13.3.4 Scheme	60
8.14 Extended_Kalman_Filter Class Reference	61
8.14.1 Constructor & Destructor Documentation	61
8.14.1.1 Extended_Kalman_Filter	61
8.14.1.2 Extended_Kalman_Filter	61
8.14.2 Member Function Documentation	61
8.14.2.1 _update	61
8.15 Filter Class Reference	62
8.15.1 Detailed Description	63
8.15.2 Constructor & Destructor Documentation	63
8.15.2.1 Filter	63
8.15.2.2 ~Filter	63
8.15.3 Member Function Documentation	63
8.15.3.1 _init	63
8.15.3.2 _update	64
8.15.3.3 Expected_Get	64
8.15.3.4 Filtering	64
8.15.3.5 Init	64
8.15.3.6 Likelihood_Get	65
8.15.3.7 Save_X	65
8.15.3.8 Update	65
8.15.4 Member Data Documentation	65
8.15.4.1 Likelihood	65
8.15.4.2 model	65
8.15.4.3 X	65
8.16 G_Simulator Class Reference	66
8.16.1 Constructor & Destructor Documentation	67

CONTENTS vii

	8.16.1.1 G_Simulator	67
	8.16.1.2 G_Simulator	67
8.16.2	Member Function Documentation	67
	8.16.2.1 Draw_Init	67
	8.16.2.2 Draw_Observation	67
	8.16.2.3 Draw_Optimal	67
	8.16.2.4 Draw_Transition	68
	8.16.2.5 Obs_Optimal_Density	68
	8.16.2.6 Observation_Density	68
8.17 G_Sim	ulator_WT Class Reference	69
8.17.1	Constructor & Destructor Documentation	69
	8.17.1.1 G_Simulator_WT	69
	8.17.1.2 G_Simulator_WT	69
8.17.2	Member Function Documentation	69
	8.17.2.1 Draw_Init	69
8.17.3	Member Data Documentation	70
	8.17.3.1 N	70
	8.17.3.2 NB	70
	8.17.3.3 Xt	70
8.18 GA_Fi	Iter Class Reference	71
8.18.1	Detailed Description	72
8.18.2	Constructor & Destructor Documentation	72
	8.18.2.1 GA_Filter	72
	8.18.2.2 GA_Filter	72
8.18.3	Member Function Documentation	72
	8.18.3.1 _init	72
	8.18.3.2 Expected_Get	72
8.18.4	Member Data Documentation	73
	8.18.4.1 M	73
	8.18.4.2 R	73
	8.18.4.3 Rp	73
	8.18.4.4 Xp	73
8.19 Gaussia	an_Linear_Model Class Reference	74
8.19.1	Detailed Description	75
8.19.2	Constructor & Destructor Documentation	75
	8.19.2.1 Gaussian_Linear_Model	75

viii CONTENTS

	8.19.3	Member Function	Documentation .		 	 	75
		8.19.3.1 Get_Co	v_Prediction		 	 	75
		8.19.3.2 Get_Me	an_Prediction		 	 	75
		8.19.3.3 J_Obser	vation_Function .		 	 	75
		8.19.3.4 Jw_State	e_Function		 	 	75
		8.19.3.5 Jx_State	e_Function		 	 	75
		8.19.3.6 Observa	tion_Function		 	 	76
		8.19.3.7 State_Fu	unction		 	 	76
	8.19.4	Member Data Doc	rumentation		 	 	76
		8.19.4.1 f			 	 	76
		8.19.4.2 F			 	 	76
		8.19.4.3 G			 	 	76
		8.19.4.4 H			 	 	76
		8.19.4.5 h			 	 	76
8.20	Gaussi	n_Nonlinear_Mod	el Class Reference		 	 	77
	8.20.1	Detailed Descripti	on		 	 	77
	8.20.2	Constructor & Des	structor Documenta	ition	 	 	78
		8.20.2.1 Gaussia:	n_Nonlinear_Mode	el	 	 	78
		8.20.2.2 ∼Gauss	ian_Nonlinear_Mo	del	 	 	78
	8.20.3	Member Function	Documentation .		 	 	78
		8.20.3.1 Get_Lin	ear_Parameters .		 	 	78
		8.20.3.2 Init			 	 	78
		8.20.3.3 Jw_State	e_Function		 	 	78
		8.20.3.4 Jx_State	e_Function		 	 	78
		8.20.3.5 State_Fu	unction		 	 	79
8.21	Heun_	CD_Model Class R	eference		 	 	80
	8.21.1	Detailed Descripti	on		 	 	80
	8.21.2	Constructor & Des	structor Documenta	ition	 	 	80
		8.21.2.1 Heun_C	D_Model		 	 	80
		8.21.2.2 Heun_C	D_Model		 	 	80
	8.21.3	Member Function	Documentation .		 	 	80
		8.21.3.1 Get_Lin	ear_Scheme		 	 	80
		8.21.3.2 Jw_Scho	eme		 	 	81
		8.21.3.3 Jx_Sche	eme		 	 	81
		8.21.3.4 Scheme			 	 	81
8.22	Linear_	CD_Model Class I	Reference		 	 	82

CONTENTS

	0.00.4		
		Detailed Description	83
	8.22.2	Constructor & Destructor Documentation	83
		8.22.2.1 Linear_CD_Model	83
	8.22.3	Member Function Documentation	83
		8.22.3.1 Diffusion_Function	83
		8.22.3.2 Drift_Function	83
		8.22.3.3 Get_Cov_Prediction	83
		8.22.3.4 Get_Mean_Prediction	83
		8.22.3.5 Init	83
		8.22.3.6 J_Drift_Function	83
		8.22.3.7 J_Observation_Function	84
		8.22.3.8 Observation_Function	84
	8.22.4	Member Data Documentation	84
		8.22.4.1 A	84
		8.22.4.2 B	84
		8.22.4.3 C	84
		8.22.4.4 H	84
		8.22.4.5 h	84
8.23	LL Fil	ter Class Reference	85
			85
		8.23.1.1 LL_Filter	85
		8.23.1.2 LL_Filter	85
	8.23.2	Member Function Documentation	85
		8.23.2.1 _update	85
8 24	LTI CI	D_Simulator Class Reference	86
0.21		Constructor & Destructor Documentation	86
	0.2	8.24.1.1 LTI_CD_Simulator	86
		8.24.1.2 LTI_CD_Simulator	86
	8 24 2	Member Function Documentation	86
	0.24.2	8.24.2.1 draw_state	86
0.25	ITI CI	D_Simulator_WT Class Reference	87
6.23			87
	8.23.1	Constructor & Destructor Documentation	
		8.25.1.1 LTI_CD_Simulator_WT	87
	0.07.0	8.25.1.2 LTI_CD_Simulator_WT	87
	8.25.2		87
		8.25.2.1 Draw_Init	87

CONTENTS

	8.25.3	Member Data Documentation	88
		8.25.3.1 T	88
		8.25.3.2 TB	88
		8.25.3.3 Xt	88
8.26	Model	Class Reference	89
	8.26.1	Detailed Description	90
	8.26.2	Constructor & Destructor Documentation	90
		8.26.2.1 Model	90
		8.26.2.2 ~Model	90
	8.26.3	Member Function Documentation	90
		8.26.3.1 Clear	90
		8.26.3.2 Get_Time	90
		8.26.3.3 Update	90
	8.26.4	Member Data Documentation	90
		8.26.4.1 _k	90
8.27	Opt_Si	imulator Class Reference	91
	8.27.1	Constructor & Destructor Documentation	91
		8.27.1.1 Opt_Simulator	91
	8.27.2	Member Function Documentation	91
		8.27.2.1 Draw_Optimal	91
		8.27.2.2 Obs_Optimal_Density	92
8.28	Optima	al_Sampler Class Reference	93
	8.28.1	Detailed Description	93
	8.28.2	Constructor & Destructor Documentation	93
		8.28.2.1 Optimal_Sampler	93
		8.28.2.2 Optimal_Sampler	93
	8.28.3	Member Function Documentation	93
		8.28.3.1 Draw	93
		8.28.3.2 DrawInitCloud	94
		8.28.3.3 Weight	94
8.29	OptSIS	SR_Filter Class Reference	95
	8.29.1	Constructor & Destructor Documentation	95
		8.29.1.1 OptSISR_Filter	95
		8.29.1.2 ~OptSISR_Filter	95
		8.29.1.3 OptSISR_Filter	95
		8.29.1.4 OptSISR_Filter	95

CONTENTS xi

8.29.2 Member Data Documentation	95
8.29.2.1 sim	95
8.30 Ozaki_CD_Model Class Reference	96
8.30.1 Detailed Description	96
8.30.2 Constructor & Destructor Documentation	96
8.30.2.1 Ozaki_CD_Model	96
8.30.2.2 Ozaki_CD_Model	96
8.30.3 Member Function Documentation	96
8.30.3.1 Get_Linear_Scheme	96
8.30.3.2 Jw_Scheme	97
8.30.3.3 Jx_Scheme	97
8.30.3.4 Scheme	97
8.31 SI_Sampler Class Reference	98
8.31.1 Detailed Description	98
8.31.2 Constructor & Destructor Documentation	98
8.31.2.1 SI_Sampler	98
8.31.2.2 SI_Sampler	99
8.31.3 Member Function Documentation	99
8.31.3.1 Draw	99
8.31.3.2 DrawInitCloud	99
8.31.3.3 Weight	99
8.31.4 Member Data Documentation	00
8.31.4.1 model	00
8.32 Simulator Class Reference	01
8.32.1 Constructor & Destructor Documentation	02
8.32.1.1 Simulator	02
8.32.1.2 ~Simulator	02
8.32.2 Member Function Documentation	02
8.32.2.1 _update	02
8.32.2.2 Clear	02
8.32.2.3 Draw_Init	02
8.32.2.4 Draw_Observation	02
8.32.2.5 Draw_Transition	03
8.32.2.6 Observation_Density	03
8.32.2.7 Save_X	03
8.32.2.8 Save_Y	04

xii CONTENTS

	8.32.2.9 Set	t_Seed	104
	8.32.2.10 Sin	mulate	104
	8.32.2.11 Up	odate	104
8.32	.3 Member Data	a Documentation	104
	8.32.3.1 b		104
	8.32.3.2 mo	odel	104
	8.32.3.3 r		104
	8.32.3.4 X		104
	8.32.3.5 Y		104
8.33 SISI	R_Filter Class Re	eference	105
8.33	.1 Constructor &	& Destructor Documentation	106
	8.33.1.1 SIS	SR_Filter	106
	8.33.1.2 ∼S	SISR_Filter	106
	8.33.1.3 SIS	SR_Filter	106
	8.33.1.4 SIS	SR_Filter	107
8.33	.2 Member Fund	action Documentation	107
	8.33.2.1 _in	nit	107
	8.33.2.2 _uj	pdate	107
	8.33.2.3 Clo	oudGet	107
	8.33.2.4 Exp	pected_Get	107
	8.33.2.5 Res	sampling	108
	8.33.2.6 Set	tRc	108
	8.33.2.7 Set	tSeed	108
8.33	.3 Member Data	a Documentation	108
	8.33.3.1 clo	oud	108
	8.33.3.2 clo	oud_km1	108
	8.33.3.3 Nb	Sample	108
	8.33.3.4 r		108
	8.33.3.5 Rc		108
	8.33.3.6 see	ed	108
	8.33.3.7 Sys	8	108
8.34 SRK	4_CD_Model Cl	lass Reference	109
8.34	.1 Detailed Des	cription	109
8.34	.2 Constructor &	& Destructor Documentation	109
	8.34.2.1 SR	RK4_CD_Model	109
	8.34.2.2 SR	RK4_CD_Model	109

CONTENTS xiii

	8.34.3	Member Function Documentation
		8.34.3.1 Get_Linear_Scheme
		8.34.3.2 Jw_Scheme
		8.34.3.3 Jx_Scheme
		8.34.3.4 Scheme
8.35	THGL	_Filter Class Reference
	8.35.1	Constructor & Destructor Documentation
		8.35.1.1 THGL_Filter
		8.35.1.2 THGL_Filter
	8.35.2	Member Function Documentation
		8.35.2.1 _update
8.36	Unscen	tted_Kalman_Filter Class Reference
	8.36.1	Detailed Description
	8.36.2	Constructor & Destructor Documentation
		8.36.2.1 Unscented_Kalman_Filter
		8.36.2.2 Unscented_Kalman_Filter
	8.36.3	Member Function Documentation
		8.36.3.1 _init
		8.36.3.2 _update
		8.36.3.3 SP_Init
		8.36.3.4 U_Cov
		8.36.3.5 U_Mean
	8.36.4	Member Data Documentation
		8.36.4.1 lambda
		8.36.4.2 sqrt_Qv
		8.36.4.3 sqrt_Qw
		8.36.4.4 sW
		8.36.4.5 sX
		8.36.4.6 sY
		8.36.4.7 w
		8.36.4.8 w_0
		8.36.4.9 w_0c
8.37	Weight	ed_Sample Class Reference
	8.37.1	Member Data Documentation
		8.37.1.1 Value
		8.37.1.2 Weight

Chapter 1

Main Page

1.1 Description

BFilt is a multi-platform and open-source C++ bayesian filtering library. It contains useful and classical algorithms in state estimation of hidden markov models. So you can easily construct discrete-disrete (DD) and continuous-discrete (CD) models (linear or nonlinear) for filtering (Kalman, EKF, UKF, particle filters, ...) and simulation methods. Indeed, markovian model simulators can be used for particle filters. Libraries such as BFL and Bayes++ consider only discrete-discrete filtering. With BFilt, you can easily construct your own CD or DD models for filtering. For CD models stochastic discretization methods (Euler, Runge Kutta, Local linearization, Heun) are implemented in simulation and filtering.

1.2 Dependances

LAPACK and CPPLAPACK libraries are used for linear algebra operations. For best performances it is recommended to compile yourself the LAPPACK libraries with ATLAS. The Gnu Scientific Library (GSL) achieves random drawing in simulators. These open-source and multi-platform libraries must be installed before install BFilt.

1.3 Installation

Go to the bin directory

cd BFilt/bin

Run Cmake (>2.6)

cmake ../src

Compile Bfilt

make

Install BFilt in /usr/local/lib or /usr/local/inlcude

2 Main Page

```
make install
```

If you want to change the default install directory you can type

ccmake

and change CMAKE_INSTALL_PREFIX

1.4 Auteur

Author:

```
paul <paul.frogerais@univ-rennes1.fr>
```

Date:

Fri Sep 12 18:34:36 2008

Chapter 2

An AR process

An AR process

This is an example on the following auto regressive (AR) process:

$$X_k = 0.8X_{k-1} + Wk$$

where, $X_k \in \mathcal{R}$, $W_k \sim \mathcal{N}(0, 0.1)$

This state is then observed by the output $Y_k \in \mathcal{R}$:

$$Y_k = X_k + V_k$$

where $V_k \sim \mathcal{N}(0,1)$

2.1 Define the AR model

First the ar process must be define as a sister class of Gaussian_Linear_Model.

#endif

The Gaussian Linear Model are implemented in the following form :

$$X_k = FX_{k-1} + f + GW_k$$

$$Y_k = HX_{k-1} + h + V_k$$

The constructor of AR_Process is then:

```
#include "ar_process.h"

AR_Process::AR_Process(void)
{
    // State Equation
    F.resize(1,1);
    F(0,0) = 0.8;

    f.resize(1);
    f(0) = 0.;

    G.resize(1,1);
    G.identity();

    Qw.resize(1);
    Qw(0,0) = 0.1;

    // Observation noise
    H.resize(1,1);
```

```
H(0,0) = 1;
h.resize(1);
h(0) = 0.;

Qv.resize(1);
Qv(0,0)=1;

// Init state
X0.resize(1);
X0(0) = 10.;

R0.resize(1);
R0.zero();
}
```

2.2 The main program

In the main program, the model will be first simulated with a specific simulator for gaussian model (G_Simulator). Then the simulated output sequence $y_{0:N}$ is given to the input of a discrete-discrete kalman filter (DD_Filter) to estimate the state $\hat{X}_{0:k}$. First, all this objects are declared:

Then 100 samples are simulated:

```
sim.Simulate(100);
```

The kalman filter is apply on the output sequence:

You can save the simulated sequences:

```
sim.Save_Y("output.dat");
sim.Save_X("state.dat");
```

and the estimated state:

```
filter.Save_X("estimation.dat");
```

After compileing and execution, with Gnuplot you can plot:

```
plot 'state.dat' w l, 'estimation.dat' w l, 'output.dat'
```

6 An AR process

To obtain the following graph:

2.3 The CMakeList.txt

Chapter 3

An Ornstien-Uhlenbeck process

This example illustrate how to use BFilt for continuous-discrete filtering. Here the state is described by the following linear stochastic differential equation:

$$d\left(\begin{array}{c} x\\ \dot{x} \end{array}\right) = \left(\begin{array}{cc} 0 & 1\\ -w_0^2 & -\gamma \end{array}\right) \left(\begin{array}{c} x\\ \dot{x} \end{array}\right) dt + \left(\begin{array}{c} 0\\ b \end{array}\right) dt + \left(\begin{array}{c} 0\\ g \end{array}\right) dW(t)$$

Where W(t) is a Wiener process,

 $w_0^2 = 16, \gamma = 2, b = 8, g = 2$ and the initials conditions $X_0 = (0, 0)$ and $R_0 = diag[0, 3]$.

The state $X(t) = (x, \dot{x})(t)$ is then observed by the output $Y_k \in \mathcal{R}$:

$$Y_k = x(t_k) + V_k$$

at discrete time t_k . The sampling period $T_s = t_{k-1} - t_k = 0.2s$ and $V_k \sim \mathcal{N}(0, 0.001)$. In fact only the position is observed. First this model must be define as a sister class of linear time invariant continuous discrete models (Linear_CD_Model).

The Linear_CD_Model are implemented in the following form:

$$dX(t) = AX(t)dt + Bdt + CdW(t)$$
$$Y_k = HX(t_k) + h + V_k$$

The constructor of Ornstein_Uhlenbeck_Model is then:

```
#include "ornstein_uhlenbeck.h"

Ornstein_Uhlenbeck_Model::Ornstein_Uhlenbeck_Model(void)
{
    // parameters
    w = 4.;
    gamma = 2.;
    b = 8.;
    g = 2.;

    // Matrices of the state equation
    A.resize(2,2);
    A(0,0) = 0.;
    A(0,1) = 1.;
    A(1,0) = - (w*w);
    A(1,1) = -gamma;
```

```
B.resize(2);
      B(0) = 0;
      B(1) = b;
      C.resize(2,1);
      C(0,0)=0.;
      C(1,0)=g;
      // Matrices of the Observation equation
      H.resize(1,2);
     H(0,0) = 1.;

H(0,1) = 0.;
      h.resize(2);
      h.zero();
      Qw.resize(1);
      Qw.identity();
      Qw*=0.01;
      Qv.resize(1);
      Qv(0,0) = 0.001;
      // Sampling period
      Ts = 0.2;
      // Initial conditions
      R0.resize(2);
      R0.zero();
      R0(0,0)=0.;
      R0(1,1)=3.;
      X0.resize(2);
      X0.zero();
}
```

3.1 The main program

In the main program, the model will be first simulted with a specific simulator for Linear_CD_Model (LTI_CD_Simulator). The simulated output sequence $y_{0:N}$ is given to the input of the continuous-discrete kalman filter (CD_Filter) to estimate the state trajectory $\hat{X}_{0:k}$. First, all this objects are declared:

```
int main(int argc, char **argv)
{
    Ornstein_Uhlenbeck_Model model; // The model
    LTI_CD_Simulator sim(&model); // The simulator
    CD_Kalman filter(&model); // The Kalman filter
```

Then 10 second are simulated:

```
sim.Simulate(10.);
```

The kalman filter is apply on the output sequence:

You can save the simulated sequences:

```
sim.Save_Y("output.dat");
sim.Save_X("state.dat");
```

and the estimated state:

```
filter.Save_X("estimation.dat");
```

After compileing and execution, with Gnuplot you can plot:

```
plot 'state.dat' w l, 'estimation.dat' w l, 'output.dat'
```


To obtain the following graph:

3.2 The CMakeList.txt

3.2 The CMakeList.txt

```
# Linkage
TARGET_LINK_LIBRARIES(Van_Der_Pol
${BFILT_LIB}
)
```

An Ornstien-Uhlenbeck proce

Chapter 4

Van Der Pol oscillator

14 Van Der Pol oscillator

This example on the Van der Pol oscillator shows how to use BFilt for non-linear continuous-discrete model. Here the van_der_pol class :

```
van_der_pol.h
#ifndef ___VAN_DER_POL
#define ___VAN_DER_POL
#include <bfilt/gaussian_model.h>
class Van_Der_Pol : public Continuous_Discrete_Model
public :
      double lambda;
      Van_Der_Pol(void);
      dcovector Drift_Function(const dcovector & X);
      dgematrix J_Drift_Function(const dcovector & X);
      dcovector Observation_Function(const dcovector& X);
      dgematrix J_Observation_Function(const dcovector & X);
      dgematrix Diffusion_Function(void);
};
#endif
van_der_pol.cpp
#include "van_der_pol.h"
Van_Der_Pol::Van_Der_Pol(void)
      lambda = 3.;
      Qw.resize(1);
      Qw(0,0) = 1.;
      Qv.resize(1);
      Qv(0,0)=0.1;
      X0.resize(2);
      X0(0) = 0.5;
      X0(1) = 0.5;
      R0.resize(2);
      R0.zero();
      R0(0,0)=0.;
      R0(1,1)=.1;
      Ts=.1;
}
dcovector Van_Der_Pol::Drift_Function(const dcovector & X)
      dcovector dX(X.1);
      dX(0) = X(1);
      dX(1) = lambda * (1. - X(0) * X(0)) * X(1) - X(0);
      return dX;
}
dgematrix Van_Der_Pol::J_Drift_Function(const dcovector & X)
      dgematrix F(X.1, X.1);
```

```
F(0,0) = 0.;
     F(0,1) = 1.;
      F(1,0) = -2. * lambda * X(0) * X(1);
     F(1,1) = - lambda * X(0) * X(0);
     return F;
}
dcovector Van_Der_Pol::Observation_Function(const dcovector& X)
      dcovector Y(1);
      Y(0) = X(0);
      return Y;
}
dgematrix Van_Der_Pol::J_Observation_Function(const dcovector & X)
      dgematrix H(1,2);
     H(0,0) = 0.;
     H(0,1) = 1.;
     return H;
dgematrix Van_Der_Pol::Diffusion_Function(void)
      dgematrix G(2,1);
     G(0,0) = 0.;
     G(1,0) = 1.;
     return G;
```

The main program:

```
#include <bfilt/simulator.h>
#include <bfilt/extended_kalman_filter.h>
#include "van_der_pol.h"
int main(int argc, char **argv)
      Van_Der_Pol model;
                                       // The model
      CD_Simulator sim(&model);  // The simulator
                                                            // The filter
      CD_Extended_Kalman_Filter filter(&model,THGL);
      // Simulation 40 seconds
      sim.Simulate(40.);
      // Filtering from the simulated output {\tt sim.Y}
      filter.Filtering(sim.Y);
      // Output Files for simulation
      sim.Save_Y("output.dat");
      sim.Save_X("state.dat");
      // Output File for filtering
      filter.Save_X("estimation.dat");
      return 0;
}
```

16 Van Der Pol oscillator

Results can be plotted (here with gnuplot):

Chapter 5

Terrain navigation

Terrain navigation

This example illustrate performances of particle filter to highly non-linear filter. The promblem here involves a plane whose the trajectory is a brownian motion. This aircraft measure the elevation. The measure of this elevation and an elevation map are then used to estimate the position of the plane.

plane.h

```
#ifndef ___PLANE
#define ___PLANE
#include <bfilt/gaussian_model.h>
class Plane : public Gaussian_Nonlinear_Model
{
      vector<double> Map;
      double xmin;
      double xmax;
      double ymin;
      double ymax;
      double sigv;
      double sigc;
public :
      Plane(const char *filename);
      dcovector State_Function(const dcovector &X, const dcovector &W);
      dcovector Observation_Function(const dcovector & X);
};
#endif
plane.cpp
#include "plane.h"
Plane::Plane(const char * filename)
```

```
int x,y,z;
       ifstream file(filename);
       if(file)
             {
                                  file>>xmax;
                                  file>>ymin;
                                  file>>z;
                                  Map.push_back(z);
                    while(!file.eof())
                          {
                                  file>>x;
                                  file>>y;
                                  file>>z;
                                  Map.push_back(z);
                                  if(x>xmax)
                                        xmax=x;
                                  if(x<xmin)
                                        xmin=x;
                                  if(y>ymax)
                                        ymax=y;
                                  if(y<ymin)
                                        ymin=y;
                    file.close();
       else
                    cout<<"Plane :: error file"<<endl;</pre>
             }
      Qw.resize(2);
      Qw.identity();
       Qv.resize(1);
       Qv.identity();
      Qv*=5.;
      R0.resize(4);
      R0.zero();
      R0(0,0)=10.;
      R0(1,1)=10.;
      R0(2,2) = .001;

R0(3,3) = 0.0001;
      X0.resize(4);
      X0(0) = 120.;
      X0(1) = 20.;
      X0(2)=1.5;
      X0(3) = 2.35;
      sigv = .001;
sigc = 0.03;
dcovector Plane::State_Function(const dcovector &X, const dcovector &W)
      dcovector U(4);
      U(0) = X(0) + X(2) * cos(X(3));
      U(1) = X(1) + X(2) * \sin(X(3));

U(2) = X(2) + \text{sigv} * W(0);
       U(3) = X(3) + sigc * W(1);
       if (U(0)>xmax)
             {
```

}

20 Terrain navigation

```
U(0) = xmax;
                  U(3) = 3.14 - U(3);
      if (U(1)>ymax)
           {
                  U(1) = ymax;
                  U(3) = -U(3);
            }
      if (U(0) < xmin)
            {
                  U(0) = xmin;
                  U(3) = 3.14 - U(3);
            }
      if (U(1) < ymin)
            {
                  U(1) = ymin;
                  U(3) = -U(3);
      return U;
dcovector Plane::Observation_Function(const dcovector & X)
{
      int x = (int)(X(0));
      int y = (int)(X(1));
      int j = (xmax+1)*y + x;
      dcovector Y(1);
      Y(0)=Map[j];
      return Y;
}
The main program:
#include <bfilt/simulator.h>
#include <bfilt/sisr_filter.h>
#include "plane.h"
// This example illustrate performances of particle filter to highly non-linear
// filter. The promblem here involves a plane whose the trajectory is a brownian
// motion. This aircraft measure the elevation. The measure of this elevation and
// an elevation map are then used to estimate the position of the plane.
int main(int argc, char **argv)
      int k;
      int i;
      int j;
      vector<Weighted_Sample> cloud;
      ofstream file_c("../data/cloud.dat"); // To save the cloud
      ofstream file_s("../data/state.dat"); // To save the state
                  plane("../data/map_2.dat");
                                                     // The plane model
      G_Simulator sim(&plane);
                                                    // To simulate a this model
      Bootstrap_Filter filter(100000, &plane);
                                                      \ensuremath{//} A bootstrap filter to estimate the position
      sim.Simulate(150);
                                              // simulation of 250 samples
      sim.Save_Y("../data/output.dat");
                                             // save the output
      // Here Init() and Update methods are used
      // for filtering because we want to get the cloud
      // at each step and save it in cloud.dat
      filter.Init();
                                           // Initialization of the boostrap filter
```

```
for (k=0; k<sim.Y.size(); k++)</pre>
    {
          cloud=filter.CloudGet();
                                          // The current cloud is return
          for(i=0; i<cloud.size(); i++)</pre>
                                           // and here it is saved
                    for(j=0; j<cloud[i].Value.1; j++)</pre>
                          file_c<<cloud[i].Value(j)<<" ";
                    file_c<<endl;
          for (j=0; j<sim.X[k].l; j++) // The state is also saved file_s<<sim.X[k](j)<<" ";
          file_s<<endl<<endl;</pre>
          file_c<<endl<<endl;</pre>
          filter.Init();
    }
file_c.close();
file_s.close();
return 0;
```

Terrain navigation

Chapter 6

Class Index

6.1 Class Hierarchy

CD_Filter		 		3:
CD_Extended_Kalman_Filter				3.
CD_Kalman				3
LL_Filter				8
THGL_Filter				11
GA_Filter				7
DD_Kalman				4
Extended_Kalman_Filter				6
Unscented_Kalman_Filter				113
SISR_Filter		 		10
Bootstrap_Filter		 		2
CD_Bootstrap_Filter				3
OptSISR_Filter				9.
Model				8
Discrete_Observed_Model		 		5
Continuous_Discrete_Model		 		4
Linear_CD_Model				8
Gaussian_Nonlinear_Model				7
Discrete_Approximation_CD_Model				5
Euler_CD_Model	 			. 5
Heun_CD_Model				
Ozaki_CD_Model				
SRK4_CD_Model	 			. 10
Gaussian_Linear_Model				7
SI_Sampler				9
Bootstrap_Sampler				2
Optimal_Sampler				9
Simulator				10
CD_Simulator				4
CD Similar WT				

24 Class Index

LTI_CD_Simulator	86
LTI_CD_Simulator_WT	87
Opt_Simulator	91
G_Simulator	66
G_Simulator_WT	69
Weighted_Sample	116

Chapter 7

Class Index

7.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Bootstrap_Filter	27
Bootstrap_Sampler (This sampler use the transition as importance density)	29
CD_Bootstrap_Filter	31
CD_Extended_Kalman_Filter	33
CD_Filter (Abstract class of continuous-discrete filters)	35
CD_Kalman (The continuous-discrete kalman filter)	38
CD_Simulator	40
CD_Simulator_WT	44
Continuous_Discrete_Model (Continuous Discrete Model: The continuous state : $dX(t) =$	
$F(X)dt + G() * d\beta$ The discrete Observation $Yk = H(X(tk)) + Vk$)	46
DD_Kalman (The discrete-discrete kalman filter)	49
Discrete_Approximation_CD_Model (Continuous state equation is discretly approximate by	
$X(tk) = f'(X(tk-1),Wk)) \dots $	51
Discrete_Observed_Model (Class of discretely observed model)	56
Euler_CD_Model (Continuous discret model: the state SDE is discretly approximate by an Euler method)	59
Extended_Kalman_Filter	61
Filter (Abstract class of all filters)	62
G Simulator	66
G_Simulator_WT	69
GA_Filter (Abstract class of Gaussian Approximation filters)	71
Gaussian_Linear_Model (Gaussian Linear Model:)	74
Gaussian_Nonlinear_Model (Gaussian Nonlinear Model The state : X(k) = F (Xk-1, Wk) The	/-
Observation $Y(k) = H(X(k)) + V$)	77
Heun_CD_Model (Continuous discret model: the state SDE is discretly approximate by an	,,
Sstochastic Heun method)	80
Linear_CD_Model (Linear continuous discrete model class of the form dx = AX dt + Bdt + CdW	O.C.
$Y_k = HX(t_k) + h + V_k$)	82
LL_Filter	85
LTI CD Simulator	86
LTI_CD_Simulator_WT	87
Model (The class of time varying-models)	89
Opt Simulator	91

26 Class Index

Optimal_Sampler (This sampler use the optimal importance density)	93
OptSISR_Filter	95
Ozaki_CD_Model (Continuous discret model: the state SDE is discretly approximate by Ozaki	
method)	96
SI_Sampler (Sequential importance sampler used for sisr filter (bootstrap,optimal))	98
Simulator	101
SISR_Filter	105
SRK4_CD_Model (Continuous discret model: the state SDE is discretly approximate by an	
Sstochastic runge kutta method)	109
THGL_Filter	111
Unscented_Kalman_Filter (The Discrete Unscented Kalman Filter (UKF))	112
Weighted Sample	116

Chapter 8

Class Documentation

8.1 Bootstrap_Filter Class Reference

#include <sisr_filter.h>

Inheritance diagram for Bootstrap_Filter:

Public Member Functions

- Bootstrap_Filter (void)
- ~Bootstrap_Filter (void)
- Bootstrap_Filter (const int &Ns, Simulator *s)
- Bootstrap_Filter (const int &Ns, Gaussian_Nonlinear_Model *m)

Private Attributes

• Simulator * sim

8.1.1 Constructor & Destructor Documentation

- 8.1.1.1 Bootstrap_Filter::Bootstrap_Filter (void)
- $\textbf{8.1.1.2} \quad Bootstrap_Filter:: \sim Bootstrap_Filter \ (void)$
- **8.1.1.3** Bootstrap_Filter::Bootstrap_Filter (const int & Ns, Simulator * s)
- 8.1.1.4 Bootstrap_Filter::Bootstrap_Filter (const int & Ns, Gaussian_Nonlinear_Model * m)
- 8.1.2 Member Data Documentation
- **8.1.2.1 Simulator*** **Bootstrap_Filter::sim** [private]

8.2 Bootstrap_Sampler Class Reference

This sampler use the transition as importance density.

```
#include <sisr_filter.h>
```

Inheritance diagram for Bootstrap_Sampler:

Public Member Functions

- Bootstrap_Sampler (void)
- Bootstrap_Sampler (Simulator *m)
- vector< Weighted_Sample > DrawInitCloud (const int &NbSample)
 draw a set of possible init state
- vector< Weighted_Sample > Draw (const dcovector &Y_k, const vector< Weighted_Sample > &X_km1)

Draw a set of samples from the importance density Xk given Y0:k X0:k-1.

• long double Weight (vector< Weighted_Sample > &cloud, const dcovector &Y_k, const vector< Weighted_Sample > &X_k)

Modify the weights of cloud for the weighting step in the sisr.

8.2.1 Detailed Description

This sampler use the transition as importance density.

8.2.2 Constructor & Destructor Documentation

- 8.2.2.1 Bootstrap Sampler::Bootstrap Sampler (void)
- **8.2.2.2** Bootstrap_Sampler::Bootstrap_Sampler (Simulator * m)

8.2.3 Member Function Documentation

8.2.3.1 vector<Weighted_Sample > Bootstrap_Sampler::Draw (const dcovector & Y_k, const vector< Weighted_Sample > & X_km1) [virtual]

Draw a set of samples from the importance density Xk given Y0:k X0:k-1.

Parameters:

 Y_k The observation from 0 to k

 X_km1 The cloud from 0 to km1

Returns:

A cloud representing the importance density q(Xk|Y0:k,X0:k-1)

Implements SI_Sampler.

8.2.3.2 vector<**Weighted_Sample** > **Bootstrap_Sampler::DrawInitCloud** (const int & *NbSample*) [virtual]

draw a set of possible init state

Parameters:

NbSample Number of sample

Returns:

A set of weighted samples

Implements SI_Sampler.

8.2.3.3 long double Bootstrap_Sampler::Weight (vector < Weighted_Sample > & cloud, const dcovector & Y_k , const vector < Weighted_Sample > & X_km1) [virtual]

Modify the weights of cloud for the weighting step in the sisr.

Parameters:

cloud The curent coud at k

Y k The observation at k

 X_km1 the cloud from at km1

Returns:

The sum of the weights

Implements SI_Sampler.

8.3 CD_Bootstrap_Filter Class Reference

#include <sisr_filter.h>

Inheritance diagram for CD_Bootstrap_Filter:

Public Member Functions

- CD_Bootstrap_Filter (void)
- ~CD_Bootstrap_Filter (void)
- CD_Bootstrap_Filter (const int &Ns, CD_Simulator *s)
- CD_Bootstrap_Filter (const int &Ns, Continuous_Discrete_Model *m)
- CD_Bootstrap_Filter (const int &Ns, Linear_CD_Model *m)
- virtual int Save_X (const char *filename)

Private Attributes

• CD_Simulator * sim

8.3.1 Constructor & Destructor Documentation

- 8.3.1.1 CD Bootstrap Filter::CD Bootstrap Filter (void)
- 8.3.1.2 CD_Bootstrap_Filter::~CD_Bootstrap_Filter (void)
- 8.3.1.3 CD_Bootstrap_Filter::CD_Bootstrap_Filter (const int & Ns, CD_Simulator * s)
- 8.3.1.4 CD_Bootstrap_Filter::CD_Bootstrap_Filter (const int & Ns, Continuous_Discrete_Model * m)
- 8.3.1.5 CD_Bootstrap_Filter::CD_Bootstrap_Filter (const int & Ns, Linear_CD_Model * m)

8.3.2 Member Function Documentation

8.3.2.1 virtual int CD_Bootstrap_Filter::Save_X (const char * filename) [virtual]

Save the estimation $\{\hat{X}_{k|k}, k = 0, ...N\}$

Parameters:

filename

Returns:

0 if everything is ok

Reimplemented from Filter.

8.3.3 Member Data Documentation

8.3.3.1 CD_Simulator* CD_Bootstrap_Filter::sim [private]

8.4 CD_Extended_Kalman_Filter Class Reference

#include <extended_kalman_filter.h>

Inheritance diagram for CD_Extended_Kalman_Filter:

Public Member Functions

- CD_Extended_Kalman_Filter (void)
- CD_Extended_Kalman_Filter (Continuous_Discrete_Model *m, const int &sh=RK4)

Public Attributes

• int Scheme

Protected Member Functions

- int <u>update</u> (const dcovector &Y)
- void <u>thgl_prediction</u> (dcovector &M, dgematrix &P)
- void _euler_prediction (dcovector &M, dgematrix &P)
- void _rk4___prediction (dcovector &M, dgematrix &P)
- void _heun__prediction (dcovector &M, dgematrix &P)
- void <u>rk4</u> <u>prediction_FM</u> (dcovector &M, dgematrix &P)

8.4.1 Constructor & Destructor Documentation

- 8.4.1.1 CD_Extended_Kalman_Filter::CD_Extended_Kalman_Filter (void)
- **8.4.1.2** CD_Extended_Kalman_Filter::CD_Extended_Kalman_Filter (Continuous_Discrete_Model * m, const int & sh = RK4)
- **8.4.2** Member Function Documentation
- **8.4.2.1 void CD_Extended_Kalman_Filter::_euler_prediction** (**dcovector** & *M*, **dgematrix** & *P*) [protected]
- **8.4.2.2 void CD_Extended_Kalman_Filter::_heun__prediction** (**dcovector** & *M*, **dgematrix** & *P*) [protected]
- **8.4.2.3 void CD_Extended_Kalman_Filter::_rk4___prediction** (**dcovector** & *M*, **dgematrix** & *P*) [protected]
- **8.4.2.4** void CD_Extended_Kalman_Filter::_rk4___prediction_FM (dcovector & M, dgematrix & P) [protected]
- **8.4.2.5 void CD_Extended_Kalman_Filter::_thgl__prediction** (**dcovector** & *M*, **dgematrix** & *P*) [protected]
- **8.4.2.6 int CD_Extended_Kalman_Filter::_update (const dcovector & Y)** [protected, virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.4.3 Member Data Documentation

8.4.3.1 int CD_Extended_Kalman_Filter::Scheme

8.5 CD_Filter Class Reference

Abstract class of continuous-discrete filters.

#include <filter.h>

Inheritance diagram for CD_Filter:

Public Member Functions

• CD_Filter (void)

A constructor.

- CD_Filter (Continuous_Discrete_Model *m)
- int Save_X (const char *filename)
- dcovector Expected_Get (void)

Public Attributes

• dcovector M

The current mean $\hat{X}_{k|k} = E[X_k|Y_{0:k}].$

• dgematrix R

The current covariance $\hat{P}_{k|k} = E[(X_k - \hat{X}_{k|k})(X_k - \hat{X}_{k|k})].$

• dcovector Xp

The prediction $\hat{X}_{k-1|k} = E[X_{k-1}|Y_{0:k}].$

• dgematrix Rp

The prediction covariance $\hat{P}_{k-1|k} = E[(X_k - \hat{X}_{k-1|k})(X_k - \hat{X}_{k-1|k})].$

Protected Member Functions

• int _init (void)

8.5.1 Detailed Description

Abstract class of continuous-discrete filters.

For continuous-discrete models (Continuous_Discrete_Model), these filters approximate the probability density of the state transition $p_{X(t_k)|X(t_{k-1})}$ and the probability of the observation $p_{Y_k|X(t_k)}$ by gaussian densities. The approximation is exact in the case of linear continuous-discrete models (Linear_CD_Model) and lead to the continuous-discrete Kalman Filter (CD_Kalman). For other non-linear models (Continuous_Discrete_Model) Local linearization filter (LL_Filter) or continuous-discrete Filter EKF (CD_Extended_Kalman_Filter) can be used.

8.5.2 Constructor & Destructor Documentation

8.5.2.1 CD_Filter::CD_Filter (void)

A constructor.

8.5.2.2 CD_Filter::CD_Filter (Continuous_Discrete_Model * *m*)

A constructor

Parameters:

m A discrete-discrete gaussian non-linear model

8.5.3 Member Function Documentation

8.5.3.1 int CD_Filter::_init (void) [protected, virtual]

Specific init for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.5.3.2 dcovector CD_Filter::Expected_Get (void) [virtual]

Get the current estimation $\hat{X}_{k|k}$

Returns:

 $\hat{X}_{k|k}$

Implements Filter.

8.5.3.3 int CD_Filter::Save_X (const char * filename) [virtual]

Save the estimation $\{\hat{X}_{k|k}, k=0,...N\}$

Parameters:

filename

Returns:

0 if everything is ok

Reimplemented from Filter.

8.5.4 Member Data Documentation

8.5.4.1 dcovector CD_Filter::M

The current mean $\hat{X}_{k|k} = E[X_k|Y_{0:k}].$

8.5.4.2 dgematrix CD_Filter::R

The current covariance $\hat{P}_{k|k} = E[(X_k - \hat{X}_{k|k})(X_k - \hat{X}_{k|k})].$

8.5.4.3 dgematrix CD_Filter::Rp

The prediction covariance $\hat{P}_{k-1|k} = E[(X_k - \hat{X}_{k-1|k})(X_k - \hat{X}_{k-1|k})].$

8.5.4.4 dcovector CD_Filter::Xp

The prediction $\hat{X}_{k-1|k} = E[X_{k-1}|Y_{0:k}].$

8.6 CD_Kalman Class Reference

The continuous-discrete kalman filter.

#include <filter.h>

Inheritance diagram for CD_Kalman:

Public Member Functions

- CD_Kalman (void)
- CD_Kalman (Linear_CD_Model *m)

Protected Member Functions

• int <u>update</u> (const dcovector &Y)

8.6.1 Detailed Description

The continuous-discrete kalman filter.

Give an exact solution of $\hat{X}_{k|k}$ and $\hat{P}_{k|k}$ for continuous-discrete linear models (Linear_CD_Model).

8.6.2 Constructor & Destructor Documentation

8.6.2.1 CD_Kalman::CD_Kalman (void)

8.6.2.2 CD_Kalman::CD_Kalman (Linear_CD_Model * m)

A constructor

Parameters:

m The continuous discrete model

8.6.3 Member Function Documentation

8.6.3.1 int CD_Kalman::_update (const dcovector & Y) [protected, virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.7 CD_Simulator Class Reference

#include <simulator.h>

Inheritance diagram for CD_Simulator:

Public Member Functions

- CD Simulator (void)
- CD_Simulator (Continuous_Discrete_Model *cd_m, const int &scheme=SRK4, const int &apha=10)
- virtual dcovector Draw_Init (void)

Draw a sample from p(X0).

• dcovector Draw_Transition (const dcovector &Xkm1)

Draw a sample from the transition densisty p(Xk|Xk-1).

• dcovector Draw_Observation (const dcovector &Xk)

Calculate the value of the density of probability of Y given X: p(Y|X).

- long double Observation_Density (const dcovector &Y, const dcovector &X) calculate the value of the density of probability of Y given X: p(Y|X)
- int Save_X (const char *filename)

 Save the simulated state trajectory in filename.
- int Save_Y (const char *filename)

Save the simulated observation trajectory in filename.

- int Simulate (const double &T)
- void Set_Alpha (const int &al)

Public Attributes

- double Dy
- double Dx

Protected Member Functions

- virtual dcovector draw_state (const dcovector &X)
- void <u>update</u> (void)

Protected Attributes

- int scheme
- int <u>a</u>

8.7.1 Constructor & Destructor Documentation

- 8.7.1.1 CD_Simulator::CD_Simulator (void)
- **8.7.1.2 CD_Simulator::CD_Simulator (Continuous_Discrete_Model** * *cd_m*, **const int &** *scheme* = SRK4, **const int &** *apha* = 10)

8.7.2 Member Function Documentation

8.7.2.1 void CD_Simulator::_update(void) [protected, virtual]

Reimplemented from Simulator.

8.7.2.2 virtual dcovector CD_Simulator::Draw_Init (void) [virtual]

Draw a sample from p(X0).

Returns:

A sample from p(X0)

Implements Simulator.

Reimplemented in CD_Simulator_WT, and LTI_CD_Simulator_WT.

8.7.2.3 dcovector CD_Simulator::Draw_Observation (const dcovector & Xk) [virtual]

Calculate the value of the density of probability of Y given X : p(Y|X).

Parameters:

Xk The state at k

Returns:

The simulated observation

Implements Simulator.

8.7.2.4 virtual dcovector CD_Simulator::draw_state (const dcovector & *X***)** [protected, virtual]

Reimplemented in LTI_CD_Simulator.

8.7.2.5 dcovector CD_Simulator::Draw_Transition (const dcovector & Xkm1) [virtual]

Draw a sample from the transition densisty p(Xk|Xk-1).

Parameters:

Xkm1 X(k-1) the preceding state

Returns:

Implements Simulator.

8.7.2.6 long double CD_Simulator::Observation_Density (const dcovector & Y, const dcovector & X) [virtual]

calculate the value of the density of probability of Y given X : p(Y|X)

Parameters:

Y The osbervation

X The state

Returns:

The value of the density

Implements Simulator.

8.7.2.7 int CD_Simulator::Save_X (const char * filename) [virtual]

Save the simulated state trajectory in filename.

Parameters:

filename The file

Returns:

0 if it's ok

Reimplemented from Simulator.

8.7.2.8 int CD_Simulator::Save_Y (const char * filename) [virtual]

Save the simulated observation trajectory in filename.

Parameters:

filename The file

Returns:

0 if it's ok

Reimplemented from Simulator.

- 8.7.2.9 void CD_Simulator::Set_Alpha (const int & al)
- 8.7.2.10 int CD_Simulator::Simulate (const double & T)
- **8.7.3** Member Data Documentation
- **8.7.3.1** int CD_Simulator::_a [protected]
- 8.7.3.2 double CD_Simulator::Dx
- 8.7.3.3 double CD_Simulator::Dy
- **8.7.3.4** int CD_Simulator::scheme [protected]

8.8 CD_Simulator_WT Class Reference

#include <simulator.h>

Inheritance diagram for CD_Simulator_WT:

Public Member Functions

- CD_Simulator_WT (void)
- CD_Simulator_WT (Continuous_Discrete_Model *cd_m, const int &scheme, const int &apha, const double &tb, const double &t)
- dcovector Draw_Init (void)

Draw a sample from p(X0).

Private Attributes

- vector< dcovector > Xt
- double TB
- double T

8.8.1 Constructor & Destructor Documentation

- 8.8.1.1 CD_Simulator_WT::CD_Simulator_WT (void)
- 8.8.1.2 CD_Simulator_WT::CD_Simulator_WT (Continuous_Discrete_Model * cd_m, const int & scheme, const int & apha, const double & tb, const double & t)

8.8.2 Member Function Documentation

8.8.2.1 dcovector CD_Simulator_WT::Draw_Init (void) [virtual]

Draw a sample from p(X0).

Returns:

A sample from p(X0)

Reimplemented from CD_Simulator.

8.8.3 Member Data Documentation

- **8.8.3.1 double CD_Simulator_WT::T** [private]
- **8.8.3.2 double CD_Simulator_WT::TB** [private]
- **8.8.3.3 vector**<**dcovector**> **CD_Simulator_WT::Xt** [private]

8.9 Continuous_Discrete_Model Class Reference

Continuous Discrete Model: The continuous state : $dX(t) = F(X)dt + G()*d\beta$ The discrete Observation Yk = H(X(tk)) + Vk.

#include <gaussian_model.h>

Inheritance diagram for Continuous_Discrete_Model:

Public Member Functions

- Continuous Discrete Model (void)
- virtual ~Continuous_Discrete_Model (void)
- virtual dcovector Drift_Function (const dcovector &X)=0

 the drift function of dX(t) = F(X)dt + G(X)*dW
- virtual dgematrix J_Drift_Function (const dcovector &X)
 the jacobian of the drift function evaluate at X
- virtual dgematrix Diffusion_Function (void)=0

 the diffusion function
- virtual void Init (void)

Public Attributes

• double Ts

The sampling periode Ts=tk - tk-1.

8.9.1 Detailed Description

Continuous Discrete Model: The continuous state : $dX(t) = F(X)dt + G()*d\beta$ The discrete Observation Yk = H(X(tk)) + Vk.

8.9.2 Constructor & Destructor Documentation

8.9.2.1 Continuous_Discrete_Model::Continuous_Discrete_Model (void)

The constructor

8.9.2.2 virtual Continuous_Discrete_Model::~Continuous_Discrete_Model (void) [virtual]

The destructor

8.9.3 Member Function Documentation

8.9.3.1 virtual dgematrix Continuous_Discrete_Model::Diffusion_Function (void) [pure virtual]

the diffusion function

Parameters:

X the state

Returns:

G(X).

Implemented in Linear_CD_Model.

8.9.3.2 virtual dcovector Continuous_Discrete_Model::Drift_Function (const dcovector & *X***)** [pure virtual]

the drift function of dX(t) = F(X)dt + G(X)*dW

Parameters:

X the state.

Returns:

f(X)

Implemented in Linear_CD_Model.

8.9.3.3 virtual void Continuous_Discrete_Model::Init (void) [inline, virtual]

Initialized CD model

Reimplemented in Linear_CD_Model.

8.9.3.4 virtual dgematrix Continuous_Discrete_Model::J_Drift_Function (const dcovector & X)[virtual]

the jacobian of the drift function evaluate at X

Parameters:

X

Returns:

the jacobian matrix

Reimplemented in Linear_CD_Model.

8.9.4 Member Data Documentation

${\bf 8.9.4.1 \quad double\ Continuous_Discrete_Model::} Ts$

The sampling periode Ts=tk - tk-1.

8.10 DD_Kalman Class Reference

The discrete-discrete kalman filter.

#include <filter.h>

Inheritance diagram for DD_Kalman:

Public Member Functions

- DD_Kalman (void)
- DD_Kalman (Gaussian_Linear_Model *m)

Protected Member Functions

• int <u>update</u> (const dcovector &Y)

8.10.1 Detailed Description

The discrete-discrete kalman filter.

Give an exact solution of $\hat{X}_{k|k}$ and $\hat{P}_{k|k}$ for discrete-discrete linear models (Gaussian_Linear_Model).

8.10.2 Constructor & Destructor Documentation

8.10.2.1 DD_Kalman::DD_Kalman (void)

8.10.2.2 DD_Kalman::DD_Kalman (Gaussian_Linear_Model * m)

A constructor

Parameters:

m The discrete-discrete model

8.10.3 Member Function Documentation

8.10.3.1 int DD_Kalman::_update (const dcovector & Y) [protected, virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.11 Discrete_Approximation_CD_Model Class Reference

the continuous state equation is discretly approximate by X(tk) = f'(X(tk-1),Wk)

#include <gaussian_model.h>

Inheritance diagram for Discrete_Approximation_CD_Model:

Public Member Functions

- Discrete_Approximation_CD_Model (void)
- virtual ~Discrete_Approximation_CD_Model (void)
- Discrete_Approximation_CD_Model (Continuous_Discrete_Model *m)
- Discrete_Approximation_CD_Model (Continuous_Discrete_Model *m, const int &a)

the constructor

- dcovector State_Function (const dcovector &X, const dcovector &W)

 The state Xk=F(Xk-1,Wk).
- dgematrix Jx_State_Function (const dcovector &X, const dcovector &W)
 the X jacobian of the State function evaluate at X,W
- void Get_Linear_Parameters (const dcovector &X, const dcovector &W, dgematrix &F, dgematrix &G, dcovector &Xp)

computed linearized parameter for EKF in X,W

• virtual void Get_Linear_Scheme (const dcovector &X, const dcovector &W, dgematrix &F, dgematrix &J, dcovector &Xp)=0

Get the Linearized parameters Scheme in X, W.

• dgematrix Jw_State_Function (const dcovector &X, const dcovector &W)

the W jacobian of the State function evaluate at X,W

• dcovector Observation_Function (const dcovector &X)

The observation Yk=H(Xk)+Vk.

• virtual dgematrix J_Observation_Function (const dcovector &X)

the jacobian of the observation function evaluate at X

- virtual dcovector Scheme (const dcovector &X, const dcovector &W)=0
- virtual dgematrix Jx_Scheme (const dcovector &X, const dcovector &W)=0
- virtual dgematrix Jw_Scheme (const dcovector &X, const dcovector &W)=0
- virtual void Init (void)

Init The model if needed.

- void Set_Alpha (const int &a)
- int Get_Alpha (void)

Protected Attributes

• Continuous_Discrete_Model * cd_model

the continuous discrete model

• int alpha

the resolution of the discrete step Td = Ts * a (Ts = sample duration of discrete observation)

8.11.1 Detailed Description

the continuous state equation is discretly approximate by X(tk) = f'(X(tk-1),Wk)

8.11.2 Constructor & Destructor Documentation

- $\textbf{8.11.2.1} \quad Discrete_Approximation_CD_Model::Discrete_Approximation_CD_Model (void)$
- 8.11.2.2 virtual Discrete_Approximation_CD_Model::~Discrete_Approximation_CD_Model (void) [virtual]
- 8.11.2.3 Discrete_Approximation_CD_Model::Discrete_Approximation_CD_Model (Continuous_Discrete_Model * m)
- 8.11.2.4 Discrete_Approximation_CD_Model::Discrete_Approximation_CD_Model (Continuous_Discrete_Model * m, const int & a)

the constructor

Parameters:

m the CD model

a the resolution of the discrete step Td = Ts * a (Ts = sample duration of discrete observation)

8.11.3 Member Function Documentation

- 8.11.3.1 int Discrete_Approximation_CD_Model::Get_Alpha (void)
- 8.11.3.2 void Discrete_Approximation_CD_Model::Get_Linear_Parameters (const dcovector & X, const dcovector & W, dgematrix & F, dgematrix & G, dcovector & Xp) [virtual]

computed linearized parameter for EKF in X,W

Parameters:

- X The state value
- W The noise value
- F The jacobian of f(X,W) in X
- G The jacobian in f(X,W) in W
- Xp The prediction Xp = f(X,W)

Reimplemented from Gaussian_Nonlinear_Model.

8.11.3.3 virtual void Discrete_Approximation_CD_Model::Get_Linear_Scheme (const dcovector & X, const dcovector & W, dgematrix & F, dgematrix & J, dcovector & Xp) [pure virtual]

Get the Linearized parameters Scheme in X,W.

Parameters:

- X The state value
- W The noise value
- F The jacobian of f(X,W) in X
- G The jacobian in f(X,W) in W
- Xp The prediction Xp = f(X,W)

Implemented in Euler_CD_Model, SRK4_CD_Model, Heun_CD_Model, and Ozaki_CD_Model.

8.11.3.4 virtual void Discrete Approximation CD Model::Init (void) [virtual]

Init The model if needed.

Reimplemented from Gaussian_Nonlinear_Model.

8.11.3.5 virtual dgematrix Discrete_Approximation_CD_Model::J_Observation_Function (const dcovector & X) [virtual]

the jacobian of the observation function evaluate at X

Parameters:

X

Returns:

The jacobian matrix

Reimplemented from Discrete_Observed_Model.

8.11.3.6 virtual dgematrix Discrete_Approximation_CD_Model::Jw_Scheme (const dcovector & X, const dcovector & W) [pure virtual]

Implemented in Euler_CD_Model, SRK4_CD_Model, Heun_CD_Model, and Ozaki_CD_Model.

8.11.3.7 dgematrix Discrete_Approximation_CD_Model::Jw_State_Function (const dcovector & X, const dcovector & W) [virtual]

the W jacobian of the State function evaluate at X,W

Parameters:

X evaluate at X

W evalate at W

Returns:

The jacobian matrix

Reimplemented from Gaussian_Nonlinear_Model.

8.11.3.8 virtual dgematrix Discrete_Approximation_CD_Model::Jx_Scheme (const dcovector & X, const dcovector & W) [pure virtual]

Implemented in Euler_CD_Model, SRK4_CD_Model, Heun_CD_Model, and Ozaki_CD_Model.

8.11.3.9 dgematrix Discrete_Approximation_CD_Model::Jx_State_Function (const dcovector & *X***, const dcovector &** *W***)** [virtual]

the X jacobian of the State function evaluate at X,W

Parameters:

X evaluate at X

W evalate at W

Returns:

The jacobian matrix

Reimplemented from Gaussian_Nonlinear_Model.

8.11.3.10 dcovector Discrete_Approximation_CD_Model::Observation_Function (const dcovector & X) [virtual]

The observation Yk=H(Xk) + Vk.

Parameters:

X The state at k

Returns:

The observation at k

Implements Discrete_Observed_Model.

8.11.3.11 virtual dcovector Discrete_Approximation_CD_Model::Scheme (const dcovector & X, const dcovector & W) [pure virtual]

Implemented in Euler_CD_Model, SRK4_CD_Model, Heun_CD_Model, and Ozaki_CD_Model.

8.11.3.12 void Discrete_Approximation_CD_Model::Set_Alpha (const int & a)

8.11.3.13 dcovector Discrete_Approximation_CD_Model::State_Function (const dcovector & X, const dcovector & W) [virtual]

The state Xk=F(Xk-1,Wk).

Parameters:

X The state at k-1

W The Noise

Returns:

The state at k

 $Implements\ Gaussian_Nonlinear_Model.$

8.11.4 Member Data Documentation

8.11.4.1 int Discrete_Approximation_CD_Model::alpha [protected]

the resolution of the discrete step Td = Ts * a (Ts = sample duration of discrete observation)

8.11.4.2 Continuous_Discrete_Model* Discrete_Approximation_CD_Model::cd_model [protected]

the continuous discrete model

8.12 Discrete_Observed_Model Class Reference

Class of discretely observed model.

#include <gaussian_model.h>

Inheritance diagram for Discrete_Observed_Model:

Public Member Functions

- Discrete_Observed_Model (void)

 The Constructor.
- virtual ~Discrete_Observed_Model (void)

 The Destructor.
- virtual dcovector Observation_Function (const dcovector &X)=0

 The observation Yk=H(Xk) + Vk.
- virtual dgematrix J_Observation_Function (const dcovector &X) the jacobian of the observation function evaluate at X
- virtual void Get_Init_Parameters (dcovector &mean, dsymatrix &Cov)

 Return the first an second moment of the initial law p(X0).

Public Attributes

- dsymatrix Qw

 The covariance matrix of state noise.
- dsymatrix Qv

The covariance matrix of observation noise.

Protected Attributes

• dsymatrix R0

The covariance matrix of p(X0).

• dcovector X0

The mean of p(X0).

8.12.1 Detailed Description

Class of discretely observed model.

The output Y_k is a discrete form of the hidden state. The init state is gaussian $\sim \mathcal{N}(X0,R0)$. The state and observation noises Wk,V_k are zero-mean gaussians processes. Their respective covariances are Q_w and Q_v .

8.12.2 Constructor & Destructor Documentation

8.12.2.1 Discrete_Observed_Model::Discrete_Observed_Model (void)

The Constructor.

8.12.2.2 virtual Discrete_Observed_Model::~Discrete_Observed_Model (void) [virtual]

The Destructor.

Returns:

8.12.3 Member Function Documentation

8.12.3.1 virtual void Discrete_Observed_Model::Get_Init_Parameters (dcovector & mean, dsymatrix & Cov) [virtual]

Return the first an second moment of the initial law p(X0).

Parameters:

mean The mean X0

Cov The Covariance R0

8.12.3.2 virtual dgematrix Discrete_Observed_Model::J_Observation_Function (const dcovector & X) [virtual]

the jacobian of the observation function evaluate at X

Parameters:

X

Returns:

The jacobian matrix

Reimplemented in Gaussian_Linear_Model, Linear_CD_Model, and Discrete_Approximation_CD_-Model.

8.12.3.3 virtual dcovector Discrete_Observed_Model::Observation_Function (const dcovector & *X*) [pure virtual]

The observation Yk=H(Xk) + Vk.

Parameters:

X The state at k

Returns:

The observation at k

Implemented in Gaussian_Linear_Model, Linear_CD_Model, and Discrete_Approximation_CD_Model.

8.12.4 Member Data Documentation

8.12.4.1 dsymatrix Discrete_Observed_Model::Qv

The covariance matrix of observation noise.

8.12.4.2 dsymatrix Discrete_Observed_Model::Qw

The covariance matrix of state noise.

8.12.4.3 dsymatrix Discrete_Observed_Model::R0 [protected]

The covariance matrix of p(X0).

8.12.4.4 dcovector Discrete_Observed_Model::X0 [protected]

The mean of p(X0).

8.13 Euler_CD_Model Class Reference

continuous discret model: the state SDE is discretly approximate by an Euler method

#include <gaussian_model.h>

Inheritance diagram for Euler_CD_Model:

Public Member Functions

- Euler_CD_Model (void)
- Euler_CD_Model (Continuous_Discrete_Model *m, const int &a)
- dcovector Scheme (const dcovector &X, const dcovector &W)
- void Get_Linear_Scheme (const dcovector &X, const dcovector &W, dgematrix &F, dgematrix &J, dcovector &Xp)

Get the Linearized parameters Scheme in X, W.

- dgematrix Jx_Scheme (const dcovector &X, const dcovector &W)
- dgematrix Jw Scheme (const dcovector &X, const dcovector &W)

8.13.1 Detailed Description

continuous discret model: the state SDE is discretly approximate by an Euler method

8.13.2 Constructor & Destructor Documentation

- 8.13.2.1 Euler_CD_Model::Euler_CD_Model (void)
- 8.13.2.2 Euler_CD_Model::Euler_CD_Model (Continuous_Discrete_Model * m, const int & a)

8.13.3 Member Function Documentation

8.13.3.1 void Euler_CD_Model::Get_Linear_Scheme (const dcovector & X, const dcovector & W, dgematrix & F, dgematrix & J, dcovector & Xp) [virtual]

Get the Linearized parameters Scheme in X,W.

Parameters:

- X The state value
- \boldsymbol{W} The noise value
- F The jacobian of f(X,W) in X
- G The jacobian in f(X,W) in W
- Xp The prediction Xp = f(X,W)

Implements Discrete_Approximation_CD_Model.

8.13.3.2 dgematrix Euler_CD_Model::Jw_Scheme (**const dcovector** & *X*, **const dcovector** & *W*) [virtual]

Implements Discrete_Approximation_CD_Model.

8.13.3.3 dgematrix Euler_CD_Model::Jx_Scheme (**const dcovector** & *X*, **const dcovector** & *W*) [virtual]

Implements Discrete_Approximation_CD_Model.

8.13.3.4 dcovector Euler_CD_Model::Scheme (const dcovector & X, const dcovector & W) [virtual]

Implements Discrete_Approximation_CD_Model.

8.14 Extended_Kalman_Filter Class Reference

#include <extended_kalman_filter.h>

Inheritance diagram for Extended_Kalman_Filter:

Public Member Functions

- Extended_Kalman_Filter (void)
- Extended_Kalman_Filter (Gaussian_Nonlinear_Model *m)

Protected Member Functions

• int _update (const dcovector &Y)

8.14.1 Constructor & Destructor Documentation

- $8.14.1.1 \quad Extended_Kalman_Filter:: Extended_Kalman_Filter \ (void)$
- 8.14.1.2 Extended_Kalman_Filter::Extended_Kalman_Filter (Gaussian_Nonlinear_Model * m)

8.14.2 Member Function Documentation

8.14.2.1 int Extended_Kalman_Filter::_update (const dcovector & Y) [protected, virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.15 Filter Class Reference

Abstract class of all filters.

#include <filter.h>

Inheritance diagram for Filter:

Public Member Functions

- Filter (void)
- virtual ~Filter (void)
- int Update (const dcovector &Y)
- int Filtering (const vector < dcovector > &Y)
- virtual dcovector Expected_Get (void)=0
- int Init (void)
- double Likelihood_Get (void)
- virtual int Save_X (const char *filename)

Public Attributes

• Model * model

The hidden markov model.

• vector< dcovector > \mathbf{X} $\{\hat{X}_{k|k}, k = 0, ...N\}$

Protected Member Functions

- virtual int <u>update</u> (const dcovector &Y)=0
- virtual int _init (void)=0

Protected Attributes

• double Likelihood

The likelihood $p_{Y_{0:N}}(y_{0:N})$.

8.15.1 Detailed Description

Abstract class of all filters.

Filters calculate recursively an estimation $\hat{X}_{k|k}$ of the STATE X_k of a hidden markov model (Model) given observations $Y_{0:k}$.

They compute also recursively the likelihood $p_{Y_{0:N}}(y_{0:N})$.

8.15.2 Constructor & Destructor Documentation

8.15.2.1 Filter::Filter (void)

A constructor

8.15.2.2 virtual Filter::~**Filter (void)** [virtual]

The destructor

8.15.3 Member Function Documentation

8.15.3.1 virtual int Filter::_init (void) [protected, pure virtual]

Specific init for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implemented in GA_Filter, CD_Filter, SISR_Filter, and Unscented_Kalman_Filter.

8.15.3.2 virtual int Filter::_update (const dcovector & Y) [protected, pure virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implemented in Extended_Kalman_Filter, CD_Extended_Kalman_Filter, CD_Kalman, DD_Kalman, LL_Filter, SISR_Filter, THGL_Filter, and Unscented_Kalman_Filter.

8.15.3.3 virtual dcovector Filter::Expected_Get (void) [pure virtual]

Evaluate the current estimation of the state

Returns:

 $\hat{X}_{k|k}$

Implemented in GA_Filter, CD_Filter, and SISR_Filter.

8.15.3.4 int Filter::Filtering (const vector < dcovector > & Y)

Perform a trajectory state estimation given a sequence $y_{0:N}$

Parameters:

Y The sequence

Returns:

0 if everything is ok

8.15.3.5 int Filter::Init (void)

To init the filter at k=0

65

8.15.3.6 double Filter::Likelihood_Get (void)

Return the current likelihood $p_{Y_{0:k}}(y_{0:k})$

Returns:

$$p_{Y_{0:N}}(y_{0:N})$$

8.15.3.7 virtual int Filter::Save_X (const char * *filename*) [virtual]

Save the estimation $\{\hat{X}_{k|k}, k = 0, ...N\}$

Parameters:

filename

Returns:

0 if everything is ok

Reimplemented in CD_Filter, and CD_Bootstrap_Filter.

8.15.3.8 int Filter::Update (const dcovector & Y)

Perform an estimation step with a new observation

Parameters:

Y The new observed sample

Returns:

0 if everything is ok

8.15.4 Member Data Documentation

8.15.4.1 double Filter::Likelihood [protected]

The likelihood $p_{Y_{0:N}}(y_{0:N})$.

8.15.4.2 Model* Filter::model

The hidden markov model.

8.15.4.3 vector<dcovector> Filter::X

$$\{\hat{X}_{k|k}, k = 0, ...N\}$$

The estimated trajectory of the state

8.16 G_Simulator Class Reference

#include <simulator.h>

Inheritance diagram for G_Simulator:

Public Member Functions

- G_Simulator (void)
- G_Simulator (Gaussian_Nonlinear_Model *m)
- dcovector Draw_Init (void)

Draw a sample from p(X0).

• dcovector Draw_Transition (const dcovector &Xkm1)

Draw a sample from the transition densisty p(Xk|Xk-1).

• dcovector Draw_Observation (const dcovector &Xk)

Calculate the value of the density of probability of Y given X : p(Y|X).

- long double Observation_Density (const dcovector &Y, const dcovector &X)
 - calculate the value of the density of probability of Y given X:p(Y|X)

• dcovector Draw_Optimal (const dcovector &Yk, const dcovector &Xkm1)

Draw a sample from the optimal densisty p(Xk|Yk,Xk-1).

• long double Obs_Optimal_Density (const dcovector &Yk, const dcovector &Xkm1)

calculate the value of the density of probability of Yk given Xk-1: p(Yk|Xk-1)

8.16.1 Constructor & Destructor Documentation

```
8.16.1.1 G_Simulator::G_Simulator (void)
```

8.16.1.2 G_Simulator::G_Simulator (Gaussian_Nonlinear_Model * *m*)

8.16.2 Member Function Documentation

8.16.2.1 dcovector G_Simulator::Draw_Init (void) [virtual]

Draw a sample from p(X0).

Returns:

A sample from p(X0)

Implements Simulator.

Reimplemented in G_Simulator_WT.

8.16.2.2 dcovector G_Simulator::Draw_Observation (const dcovector & Xk) [virtual]

Calculate the value of the density of probability of Y given X : p(Y|X).

Parameters:

Xk The state at k

Returns:

The simulated observation

Implements Simulator.

8.16.2.3 dcovector G_Simulator::Draw_Optimal (const dcovector & Yk, const dcovector & Xkm1) [virtual]

Draw a sample from the optimal densisty p(Xk|Yk,Xk-1).

Parameters:

Yk The obseration at k

Xkm1 X(k-1) the state value at k-1

Returns:

A sample from the optimal importance density

Implements Opt_Simulator.

8.16.2.4 dcovector G_Simulator::Draw_Transition (const dcovector & Xkm1) [virtual]

Draw a sample from the transition densisty p(Xk|Xk-1).

Parameters:

Xkm1 X(k-1) the preceding state

Returns:

Implements Simulator.

8.16.2.5 long double G_Simulator::Obs_Optimal_Density (const dcovector & Yk, const dcovector & Xkm1) [virtual]

calculate the value of the density of probability of Yk given Xk-1: p(Yk|Xk-1)

Parameters:

Yk the osbervation at k

Xkm1 The state at k-1

Returns:

The value of the density p(Yk|Xk-1)

Implements Opt_Simulator.

8.16.2.6 long double G_Simulator::Observation_Density (const dcovector & Y, const dcovector & X) [virtual]

calculate the value of the density of probability of Y given X : p(Y|X)

Parameters:

Y The osbervation

X The state

Returns:

The value of the density

Implements Simulator.

8.17 G_Simulator_WT Class Reference

#include <simulator.h>

Inheritance diagram for G_Simulator_WT:

Public Member Functions

- G Simulator WT (void)
- G_Simulator_WT (Gaussian_Nonlinear_Model *m, const int &NB, const int &N)
- dcovector Draw_Init (void)

Draw a sample from p(X0).

Private Attributes

- vector< dcovector > Xt
- int NB
- int N

8.17.1 Constructor & Destructor Documentation

- 8.17.1.1 G_Simulator_WT::G_Simulator_WT (void)
- 8.17.1.2 G_Simulator_WT::G_Simulator_WT (Gaussian_Nonlinear_Model * m, const int & NB, const int & N)

8.17.2 Member Function Documentation

8.17.2.1 dcovector G_Simulator_WT::Draw_Init (void) [virtual]

Draw a sample from p(X0).

Returns:

A sample from p(X0)

Reimplemented from G_Simulator.

8.17.3 Member Data Documentation

- **8.17.3.1** int G_Simulator_WT::N [private]
- $\textbf{8.17.3.2} \quad \textbf{int G_Simulator_WT::NB} \quad \texttt{[private]}$
- **8.17.3.3 vector**<**dcovector**> **G_Simulator_WT::Xt** [private]

8.18 GA_Filter Class Reference

Abstract class of Gaussian Approximation filters.

#include <filter.h>

Inheritance diagram for GA_Filter:

Public Member Functions

• GA_Filter (void)

A constructor.

- GA_Filter (Gaussian_Nonlinear_Model *m)
- dcovector Expected_Get (void)

Public Attributes

• dcovector M

The current mean $\hat{X}_{k|k} = E[X_k|Y_{0:k}].$

• dgematrix R

The current covariance $\hat{P}_{k|k} = E[(X_k - \hat{X}_{k|k})(X_k - \hat{X}_{k|k})].$

• dcovector Xp

The prediction $\hat{X}_{k-1|k} = E[X_{k-1}|Y_{0:k}].$

• dgematrix Rp

The prediction covariance $\hat{P}_{k-1|k} = E[(X_k - \hat{X}_{k-1|k})(X_k - \hat{X}_{k-1|k})].$

Protected Member Functions

• virtual int _init (void)

8.18.1 Detailed Description

Abstract class of Gaussian Approximation filters.

For discrete-discrete models (Gaussian_Nonlinear_Model), these filters approximate the probability density of the state transition $p_{X_k|X_{k-1}}$ and the probability of the observation $p_{Y_k|X_k}$ by gaussian densities. The approximation is exact in the case of linear model (Gaussian_Linear_Model) and lead to the discrete-discrete Kalman Filter (DD_Kalman). For other non-linear models (Gaussian_Nonlinear_Model) UKF (Unscented_Kalman_Filter) or EKF (Extended_Kalman_Filter) can be used.

8.18.2 Constructor & Destructor Documentation

8.18.2.1 GA_Filter::GA_Filter (void)

A constructor.

8.18.2.2 GA_Filter::GA_Filter (Gaussian_Nonlinear_Model * *m*)

A constructor

Parameters:

m A discrete-discrete gaussian non-linear model

8.18.3 Member Function Documentation

8.18.3.1 virtual int GA_Filter::_init (void) [protected, virtual]

Specific init for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

Reimplemented in Unscented_Kalman_Filter.

8.18.3.2 dcovector GA Filter::Expected Get (void) [virtual]

Get the current estimation $\hat{X}_{k|k}$

Returns:

 $\hat{X}_{k|k}$

Implements Filter.

8.18.4 Member Data Documentation

8.18.4.1 dcovector GA_Filter::M

The current mean $\hat{X}_{k|k} = E[X_k|Y_{0:k}].$

8.18.4.2 dgematrix GA_Filter::R

The current covariance $\hat{P}_{k|k} = E[(X_k - \hat{X}_{k|k})(X_k - \hat{X}_{k|k})].$

8.18.4.3 dgematrix GA_Filter::Rp

The prediction covariance $\hat{P}_{k-1|k} = E[(X_k - \hat{X}_{k-1|k})(X_k - \hat{X}_{k-1|k})].$

8.18.4.4 dcovector GA_Filter::Xp

The prediction $\hat{X}_{k-1|k} = E[X_{k-1}|Y_{0:k}].$

8.19 Gaussian_Linear_Model Class Reference

Gaussian Linear Model:.

#include <gaussian_model.h>

Inheritance diagram for Gaussian_Linear_Model:

Public Member Functions

- Gaussian_Linear_Model (void)
- dcovector State_Function (const dcovector &X, const dcovector &W)

 The state Xk=F(Xk-1,Wk).
- dgematrix Jx_State_Function (const dcovector &X, const dcovector &W)
 the X jacobian of the State function evaluate at X,W
- dgematrix Jw_State_Function (const dcovector &X, const dcovector &W)

 the W jacobian of the State function evaluate at X,W
- dcovector Get_Mean_Prediction (const dcovector &M)
- dgematrix Get_Cov_Prediction (const dgematrix &P)
- dcovector Observation_Function (const dcovector &X)

The observation Yk=H(Xk)+Vk.

 $\bullet \ dgematrix \ J_Observation_Function \ (const \ dcovector \ \&X) \\$

the jacobian of the observation function evaluate at X

Public Attributes

- dgematrix F
- dgematrix G
- dcovector f
- dcovector h
- · dgematrix H

8.19.1 Detailed Description

Gaussian Linear Model:.

The state : X(k) = F X(k-1) + f + G * Wk The Observation Y(k) = H X(k) + h + V

8.19.2 Constructor & Destructor Documentation

8.19.2.1 Gaussian_Linear_Model::Gaussian_Linear_Model (void)

8.19.3 Member Function Documentation

- 8.19.3.1 dgematrix Gaussian_Linear_Model::Get_Cov_Prediction (const dgematrix & P)
- 8.19.3.2 dcovector Gaussian_Linear_Model::Get_Mean_Prediction (const dcovector & M)
- **8.19.3.3 dgematrix Gaussian_Linear_Model::J_Observation_Function** (const dcovector & *X*) [virtual]

the jacobian of the observation function evaluate at X

Parameters:

X

Returns:

The jacobian matrix

Reimplemented from Discrete_Observed_Model.

8.19.3.4 dgematrix Gaussian_Linear_Model::Jw_State_Function (const dcovector & X, const dcovector & W) [virtual]

the W jacobian of the State function evaluate at X,W

Parameters:

X evaluate at X

W evalate at W

Returns:

The jacobian matrix

Reimplemented from Gaussian_Nonlinear_Model.

8.19.3.5 dgematrix Gaussian_Linear_Model::Jx_State_Function (const dcovector & X, const dcovector & W) [virtual]

the X jacobian of the State function evaluate at X,W

Parameters:

X evaluate at X

W evalate at W

Returns:

The jacobian matrix

Reimplemented from Gaussian_Nonlinear_Model.

8.19.3.6 dcovector Gaussian_Linear_Model::Observation_Function (const dcovector & X) [virtual]

The observation Yk=H(Xk) + Vk.

Parameters:

X The state at k

Returns:

The observation at k

Implements Discrete_Observed_Model.

8.19.3.7 dcovector Gaussian_Linear_Model::State_Function (const dcovector & X, const dcovector & W) [virtual]

The state Xk=F(Xk-1,Wk).

Parameters:

X The state at k-1

W The Noise

Returns:

The state at k

Implements Gaussian_Nonlinear_Model.

8.19.4 Member Data Documentation

8.19.4.1 dcovector Gaussian_Linear_Model::f

8.19.4.2 dgematrix Gaussian_Linear_Model::F

8.19.4.3 dgematrix Gaussian_Linear_Model::G

8.19.4.4 dgematrix Gaussian_Linear_Model::H

8.19.4.5 dcovector Gaussian_Linear_Model::h

8.20 Gaussian_Nonlinear_Model Class Reference

Gaussian Nonlinear Model The state : X(k) = F(Xk-1, Wk) The Observation Y(k) = H(X(k)) + V. #include <gaussian_model.h>

Inheritance diagram for Gaussian_Nonlinear_Model:

Public Member Functions

- Gaussian_Nonlinear_Model (void)
- virtual ~Gaussian_Nonlinear_Model (void)
- virtual void Init (void)

 Init The model if needed.
- virtual dcovector State_Function (const dcovector &X, const dcovector &W)=0

 The state Xk=F(Xk-1,Wk).
- virtual dgematrix Jx_State_Function (const dcovector &X, const dcovector &W)
 the X jacobian of the State function evaluate at X,W
- virtual dgematrix Jw_State_Function (const dcovector &X, const dcovector &W) the W jacobian of the State function evaluate at X,W
- virtual void Get_Linear_Parameters (const dcovector &X, const dcovector &W, dgematrix &F, dgematrix &G, dcovector &Xp)

computed linearized parameter for EKF in X,W

8.20.1 Detailed Description

Gaussian Nonlinear Model The state: X(k) = F(Xk-1, Wk) The Observation Y(k) = H(X(k)) + V.

8.20.2 Constructor & Destructor Documentation

- 8.20.2.1 Gaussian_Nonlinear_Model::Gaussian_Nonlinear_Model (void)
- **8.20.2.2 virtual Gaussian_Nonlinear_Model:** ~Gaussian_Nonlinear_Model (void) [virtual]

8.20.3 Member Function Documentation

8.20.3.1 virtual void Gaussian_Nonlinear_Model::Get_Linear_Parameters (const dcovector & X, const dcovector & W, dgematrix & F, dgematrix & G, dcovector & Xp) [virtual]

computed linearized parameter for EKF in X,W

Parameters:

X The state value

W The noise value

F The jacobian of f(X,W) in X

G The jacobian in f(X,W) in W

Xp The prediction Xp = f(X,W)

Reimplemented in Discrete_Approximation_CD_Model.

8.20.3.2 virtual void Gaussian_Nonlinear_Model::Init (void) [virtual]

Init The model if needed.

Reimplemented in Discrete_Approximation_CD_Model.

8.20.3.3 virtual dgematrix Gaussian_Nonlinear_Model::Jw_State_Function (const dcovector & X, const dcovector & W) [virtual]

the W jacobian of the State function evaluate at X,W

Parameters:

X evaluate at X

W evalate at W

Returns:

The jacobian matrix

Reimplemented in Gaussian_Linear_Model, and Discrete_Approximation_CD_Model.

8.20.3.4 virtual dgematrix Gaussian_Nonlinear_Model::Jx_State_Function (const dcovector & X, const dcovector & W) [virtual]

the X jacobian of the State function evaluate at X,W

Parameters:

X evaluate at X

W evalate at W

Returns:

The jacobian matrix

 $Reimplemented \ in \ Gaussian_Linear_Model, \ and \ Discrete_Approximation_CD_Model.$

8.20.3.5 virtual dcovector Gaussian_Nonlinear_Model::State_Function (const dcovector & X, const dcovector & W) [pure virtual]

The state Xk=F(Xk-1,Wk).

Parameters:

X The state at k-1

W The Noise

Returns:

The state at k

Implemented in Gaussian_Linear_Model, and Discrete_Approximation_CD_Model.

8.21 Heun_CD_Model Class Reference

continuous discret model: the state SDE is discretly approximate by an Sstochastic Heun method #include <gaussian_model.h>

Inheritance diagram for Heun_CD_Model:

Public Member Functions

- Heun_CD_Model (void)
- Heun_CD_Model (Continuous_Discrete_Model *m, const int &a)
- dcovector Scheme (const dcovector &X, const dcovector &W)
- dgematrix Jx_Scheme (const dcovector &X, const dcovector &W)
- dgematrix Jw_Scheme (const dcovector &X, const dcovector &W)
- void Get_Linear_Scheme (const dcovector &X, const dcovector &W, dgematrix &F, dgematrix &J, dcovector &Xp)

Get the Linearized parameters Scheme in X, W.

8.21.1 Detailed Description

continuous discret model: the state SDE is discretly approximate by an Sstochastic Heun method

8.21.2 Constructor & Destructor Documentation

- 8.21.2.1 Heun_CD_Model::Heun_CD_Model (void)
- 8.21.2.2 Heun_CD_Model::Heun_CD_Model (Continuous_Discrete_Model * m, const int & a)

8.21.3 Member Function Documentation

8.21.3.1 void Heun_CD_Model::Get_Linear_Scheme (const dcovector & X, const dcovector & W, dgematrix & F, dgematrix & J, dcovector & Xp) [virtual]

Get the Linearized parameters Scheme in X,W.

Parameters:

- X The state value
- \boldsymbol{W} The noise value
- F The jacobian of f(X,W) in X
- G The jacobian in f(X,W) in W
- Xp The prediction Xp = f(X,W)

Implements Discrete_Approximation_CD_Model.

8.21.3.2 dgematrix Heun_CD_Model::Jw_Scheme (const dcovector & *X*, const dcovector & *W*) [virtual]

Implements Discrete_Approximation_CD_Model.

8.21.3.3 dgematrix Heun_CD_Model::Jx_Scheme (const dcovector & *X*, const dcovector & *W*) [virtual]

Implements Discrete_Approximation_CD_Model.

8.21.3.4 dcovector Heun_CD_Model::Scheme (const dcovector & X, const dcovector & W) [virtual]

Implements Discrete_Approximation_CD_Model.

8.22 Linear_CD_Model Class Reference

Linear continuous discrete model class of the form $dx = AX dt + Bdt + CdW Y_k = HX(t_k) + h + V_k$.

#include <gaussian_model.h>

Inheritance diagram for Linear_CD_Model:

Public Member Functions

- Linear_CD_Model (void)
- dcovector Drift_Function (const dcovector &X) the drift function of dX(t) = F(X)dt + G(X)*dW
- dgematrix J_Drift_Function (const dcovector &X) the jacobian of the drift function evaluate at X
- dgematrix Diffusion_Function (void)

 the diffusion function
- dcovector Observation_Function (const dcovector &X)

 The observation Yk=H(Xk) + Vk.
- dgematrix J_Observation_Function (const dcovector &X) the jacobian of the observation function evaluate at X
- dcovector Get_Mean_Prediction (const dcovector &M)
- dgematrix Get_Cov_Prediction (const dgematrix &P)
- virtual void Init (void)

Public Attributes

- dgematrix A
- dcovector B
- dgematrix C
- dcovector h
- · dgematrix H

8.22.1 Detailed Description

Linear continuous discrete model class of the form $dx = AX dt + Bdt + CdW Y_k = HX(t_k) + h + V_k$.

8.22.2 Constructor & Destructor Documentation

8.22.2.1 Linear_CD_Model::Linear_CD_Model (void)

8.22.3 Member Function Documentation

8.22.3.1 dgematrix Linear_CD_Model::Diffusion_Function (void) [virtual]

the diffusion function

Parameters:

X the state

Returns:

G(X).

Implements Continuous_Discrete_Model.

8.22.3.2 dcovector Linear_CD_Model::Drift_Function (const dcovector & X) [virtual]

the drift function of dX(t) = F(X)dt + G(X)*dW

Parameters:

X the state.

Returns:

f(X)

Implements Continuous_Discrete_Model.

- 8.22.3.3 dgematrix Linear_CD_Model::Get_Cov_Prediction (const dgematrix & P)
- 8.22.3.4 dcovector Linear_CD_Model::Get_Mean_Prediction (const dcovector & M)
- **8.22.3.5 virtual void Linear_CD_Model::Init (void)** [inline, virtual]

Initialized CD model

Reimplemented from Continuous_Discrete_Model.

8.22.3.6 dgematrix Linear_CD_Model::J_Drift_Function (const dcovector & X) [virtual]

the jacobian of the drift function evaluate at X

Parameters:

 \boldsymbol{X}

Returns:

the jacobian matrix

Reimplemented from Continuous_Discrete_Model.

8.22.3.7 dgematrix Linear_CD_Model::J_Observation_Function (const dcovector & *X*) [virtual]

the jacobian of the observation function evaluate at X

Parameters:

X

Returns:

The jacobian matrix

Reimplemented from Discrete_Observed_Model.

8.22.3.8 dcovector Linear_CD_Model::Observation_Function (const dcovector & X) [virtual]

The observation Yk=H(Xk) + Vk.

Parameters:

X The state at k

Returns:

The observation at k

Implements Discrete_Observed_Model.

8.22.4 Member Data Documentation

- 8.22.4.1 dgematrix Linear_CD_Model::A
- 8.22.4.2 dcovector Linear_CD_Model::B
- 8.22.4.3 dgematrix Linear_CD_Model::C
- 8.22.4.4 dgematrix Linear_CD_Model::H
- 8.22.4.5 dcovector Linear_CD_Model::h

8.23 LL_Filter Class Reference

#include <local_linearization_filter.h>
Inheritance diagram for LL_Filter:

Public Member Functions

- LL_Filter (void)
- LL_Filter (Continuous_Discrete_Model *m)

Protected Member Functions

• int <u>update</u> (const dcovector &Y)

8.23.1 Constructor & Destructor Documentation

8.23.1.1 LL_Filter::LL_Filter (void)

8.23.1.2 LL_Filter::LL_Filter (Continuous_Discrete_Model * m)

8.23.2 Member Function Documentation

8.23.2.1 int LL_Filter::_update (const dcovector & Y) [protected, virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.24 LTI_CD_Simulator Class Reference

#include <simulator.h>

Inheritance diagram for LTI_CD_Simulator:

Public Member Functions

- LTI_CD_Simulator (void)
- LTI_CD_Simulator (Linear_CD_Model *cd_m, const int &apha=1)

Protected Member Functions

• dcovector draw_state (const dcovector &X)

8.24.1 Constructor & Destructor Documentation

- 8.24.1.1 LTI_CD_Simulator::LTI_CD_Simulator (void)
- **8.24.1.2** LTI_CD_Simulator::LTI_CD_Simulator (Linear_CD_Model * cd_m, const int & apha = 1)

8.24.2 Member Function Documentation

8.24.2.1 dcovector LTI_CD_Simulator::draw_state (const dcovector & *X***)** [protected, virtual]

Reimplemented from CD_Simulator.

8.25 LTI_CD_Simulator_WT Class Reference

#include <simulator.h>

Inheritance diagram for LTI_CD_Simulator_WT:

Public Member Functions

- LTI CD Simulator WT (void)
- LTI_CD_Simulator_WT (Linear_CD_Model *cd_m, const int &apha, const double &tb, const double &t)
- dcovector Draw_Init (void)

Draw a sample from p(X0).

Private Attributes

- vector< dcovector > Xt
- double TB
- double T

8.25.1 Constructor & Destructor Documentation

- 8.25.1.1 LTI_CD_Simulator_WT::LTI_CD_Simulator_WT (void)
- 8.25.1.2 LTI_CD_Simulator_WT::LTI_CD_Simulator_WT (Linear_CD_Model * cd_m, const int & apha, const double & tb, const double & t)

8.25.2 Member Function Documentation

 $\textbf{8.25.2.1} \quad \textbf{dcovector LTI_CD_Simulator_WT::Draw_Init (void)} \quad \texttt{[virtual]}$

Draw a sample from p(X0).

Returns:

A sample from p(X0)

Reimplemented from CD_Simulator.

8.25.3 Member Data Documentation

- $\textbf{8.25.3.1} \quad \textbf{double LTI_CD_Simulator_WT::T} \quad \texttt{[private]}$
- $\textbf{8.25.3.2} \quad \textbf{double LTI_CD_Simulator_WT::TB} \quad \texttt{[private]}$
- **8.25.3.3 vector**<**dcovector**>**LTI_CD_Simulator_WT::Xt** [private]

8.26 Model Class Reference

The class of time varying-models.

#include <gaussian_model.h>

Inheritance diagram for Model:

Public Member Functions

- Model (void)
- virtual ~Model (void)

The Destructor.

• int Update (void)

Update the time.

• int Clear (void)

Set the time to 0.

• int Get_Time (void)

Get The current time.

Protected Attributes

• int _k

The time.

8.26.1 Detailed Description

The class of time varying-models.

8.26.2 Constructor & Destructor Documentation

8.26.2.1 Model::Model (void)

8.26.2.2 virtual Model::~Model (void) [virtual]

The Destructor.

Returns:

8.26.3 Member Function Documentation

8.26.3.1 int Model::Clear (void)

Set the time to 0.

Returns:

0 if it's Ok;

8.26.3.2 int Model::Get_Time (void)

Get The current time.

Returns:

8.26.3.3 int Model::Update (void)

Update the time.

Returns:

0 if it's Ok;

8.26.4 Member Data Documentation

8.26.4.1 int Model::_k [protected]

The time.

8.27 Opt_Simulator Class Reference

#include <simulator.h>

Inheritance diagram for Opt_Simulator:

Public Member Functions

- Opt_Simulator (void)
- virtual dcovector Draw_Optimal (const dcovector &Yk, const dcovector &Xkm1)=0

 Draw a sample from the optimal densisty p(Xk|Yk,Xk-1).
- virtual long double Obs_Optimal_Density (const dcovector &Yk, const dcovector &Xkm1)=0 calculate the value of the density of probability of Yk given Xk-1: p(Yk|Xk-1)

8.27.1 Constructor & Destructor Documentation

8.27.1.1 Opt_Simulator::Opt_Simulator (void)

8.27.2 Member Function Documentation

8.27.2.1 virtual dcovector Opt_Simulator::Draw_Optimal (const dcovector & Yk, const dcovector & Xkm1) [pure virtual]

Draw a sample from the optimal densisty p(Xk|Yk,Xk-1).

Parameters:

Yk The obseration at k

Xkm1 X(k-1) the state value at k-1

Returns:

A sample from the optimal importance density

Implemented in G_Simulator.

8.27.2.2 virtual long double Opt_Simulator::Obs_Optimal_Density (const dcovector & Yk, const dcovector & Xkm1) [pure virtual]

calculate the value of the density of probability of Yk given Xk-1 : p(Yk|Xk-1)

Parameters:

Yk the osbervation at kXkm1 The state at k-1

Returns:

The value of the density p(Yk|Xk-1)

Implemented in G_Simulator.

8.28 Optimal_Sampler Class Reference

This sampler use the optimal importance density.

```
#include <sisr_filter.h>
```

Inheritance diagram for Optimal_Sampler:

Public Member Functions

- Optimal_Sampler (void)
- Optimal_Sampler (Opt_Simulator *m)
- vector< Weighted_Sample > DrawInitCloud (const int &NbSample)

 draw a set of possible init state
- vector< Weighted_Sample > Draw (const dcovector &Y_k, const vector< Weighted_Sample > &X km1)

Draw a set of samples from the importance density Xk given Y0:k X0:k-1.

long double Weight (vector< Weighted_Sample > &cloud, const dcovector &Y_k, const vector< Weighted_Sample > &X_km1)

Modify the weights of cloud for the weighting step in the sisr.

8.28.1 Detailed Description

This sampler use the optimal importance density.

8.28.2 Constructor & Destructor Documentation

- 8.28.2.1 Optimal_Sampler::Optimal_Sampler (void)
- **8.28.2.2** Optimal_Sampler::Optimal_Sampler (Opt_Simulator * *m*)

8.28.3 Member Function Documentation

8.28.3.1 vector<Weighted_Sample > Optimal_Sampler::Draw (const dcovector & *Y_k*, const vector< Weighted_Sample > & *X_km1*) [virtual]

Draw a set of samples from the importance density Xk given Y0:k X0:k-1.

Parameters:

 Y_k The observation from 0 to k

 X_km1 The cloud from 0 to km1

Returns:

A cloud representing the importance density q(Xk|Y0:k,X0:k-1)

Implements SI_Sampler.

$8.28.3.2 \quad vector < Weighted_Sample > Optimal_Sampler::DrawInitCloud \ (const \ int \ \& \ NbSample) \\ \quad \text{[virtual]}$

draw a set of possible init state

Parameters:

NbSample Number of sample

Returns:

A set of weighted samples

Implements SI_Sampler.

8.28.3.3 long double Optimal_Sampler::Weight (vector< Weighted_Sample > & cloud, const dcovector & Y_k , const vector< Weighted_Sample > & X_km1) [virtual]

Modify the weights of cloud for the weighting step in the sisr.

Parameters:

cloud The curent coud at k

Y k The observation at k

 X_km1 the cloud from at km1

Returns:

The sum of the weights

Implements SI_Sampler.

8.29 OptSISR_Filter Class Reference

#include <sisr_filter.h>

Inheritance diagram for OptSISR_Filter:

Public Member Functions

- OptSISR_Filter (void)
- ~OptSISR_Filter (void)
- OptSISR_Filter (const int &Ns, Opt_Simulator *m)
- OptSISR_Filter (const int &Ns, Gaussian_Nonlinear_Model *m)

Private Attributes

• Opt_Simulator * sim

8.29.1 Constructor & Destructor Documentation

- 8.29.1.1 OptSISR_Filter::OptSISR_Filter (void)
- 8.29.1.2 OptSISR_Filter::~OptSISR_Filter (void)
- 8.29.1.3 OptSISR_Filter::OptSISR_Filter (const int & Ns, Opt_Simulator * m)
- 8.29.1.4 OptSISR_Filter::OptSISR_Filter (const int & Ns, Gaussian_Nonlinear_Model * m)

8.29.2 Member Data Documentation

8.29.2.1 Opt_Simulator* OptSISR_Filter::sim [private]

8.30 Ozaki_CD_Model Class Reference

continuous discret model: the state SDE is discretly approximate by Ozaki method

#include <gaussian_model.h>

Inheritance diagram for Ozaki_CD_Model:

Public Member Functions

- Ozaki_CD_Model (void)
- Ozaki_CD_Model (Continuous_Discrete_Model *m, const int &a)
- dcovector Scheme (const dcovector &X, const dcovector &W)
- dgematrix Jx_Scheme (const dcovector &X, const dcovector &W)
- dgematrix Jw_Scheme (const dcovector &X, const dcovector &W)
- void Get_Linear_Scheme (const dcovector &X, const dcovector &W, dgematrix &F, dgematrix &J, dcovector &Xp)

Get the Linearized parameters Scheme in X, W.

8.30.1 Detailed Description

continuous discret model: the state SDE is discretly approximate by Ozaki method

8.30.2 Constructor & Destructor Documentation

- 8.30.2.1 Ozaki_CD_Model::Ozaki_CD_Model (void)
- 8.30.2.2 Ozaki_CD_Model::Ozaki_CD_Model (Continuous_Discrete_Model * m, const int & a)

8.30.3 Member Function Documentation

8.30.3.1 void Ozaki_CD_Model::Get_Linear_Scheme (const dcovector & X, const dcovector & W, dgematrix & F, dgematrix & J, dcovector & Xp) [virtual]

Get the Linearized parameters Scheme in X,W.

Parameters:

- *X* The state value
- \boldsymbol{W} The noise value
- F The jacobian of f(X,W) in X
- G The jacobian in f(X,W) in W
- Xp The prediction Xp = f(X,W)

Implements Discrete_Approximation_CD_Model.

8.30.3.2 dgematrix Ozaki_CD_Model::Jw_Scheme (const dcovector & *X***, const dcovector &** *W***)** [virtual]

Implements Discrete_Approximation_CD_Model.

8.30.3.3 dgematrix Ozaki_CD_Model::Jx_Scheme (const dcovector & *X***, const dcovector &** *W***)** [virtual]

Implements Discrete_Approximation_CD_Model.

8.30.3.4 dcovector Ozaki_CD_Model::Scheme (const dcovector & X, const dcovector & W) [virtual]

Implements Discrete_Approximation_CD_Model.

8.31 SI_Sampler Class Reference

the sequential importance sampler used for sisr filter (bootstrap,optimal ...)

```
#include <sisr_filter.h>
```

Inheritance diagram for SI_Sampler:

Public Member Functions

• SI_Sampler (void)

The constructor.

• SI_Sampler (Simulator *m)

constructor

- virtual vector< Weighted_Sample > DrawInitCloud (const int &NbSample)=0
 draw a set of possible init state
- virtual vector< Weighted_Sample > Draw (const dcovector & Y_k, const vector< Weighted_Sample > &X_km1)=0

Draw a set of samples from the importance density Xk given Y0:k X0:k-1.

• virtual long double Weight (vector< Weighted_Sample > &cloud, const dcovector &Y_k, const vector< Weighted_Sample > &X_km1)=0

Modify the weights of cloud for the weighting step in the sisr.

Public Attributes

• Simulator * model

8.31.1 Detailed Description

the sequential importance sampler used for sisr filter (bootstrap,optimal ...)

8.31.2 Constructor & Destructor Documentation

8.31.2.1 SI_Sampler::SI_Sampler (void)

The constructor.

8.31.2.2 SI_Sampler::SI_Sampler (Simulator * m)

constructor

The constructor

Parameters:

m A discrete model

8.31.3 Member Function Documentation

8.31.3.1 virtual vector<Weighted_Sample > SI_Sampler::Draw (const dcovector & Y_k, const vector< Weighted_Sample > & X_km1) [pure virtual]

Draw a set of samples from the importance density Xk given Y0:k X0:k-1.

Parameters:

 Y_k The observation from 0 to k

X_km1 The cloud from 0 to km1

Returns:

A cloud representing the importance density q(Xk|Y0:k,X0:k-1)

Implemented in Bootstrap_Sampler, and Optimal_Sampler.

8.31.3.2 virtual vector<**Weighted_Sample**> **SI_Sampler::DrawInitCloud (const int &** *NbSample*) [pure virtual]

draw a set of possible init state

Parameters:

NbSample Number of sample

Returns:

A set of weighted samples

Implemented in Bootstrap_Sampler, and Optimal_Sampler.

8.31.3.3 virtual long double SI_Sampler::Weight (vector< Weighted_Sample > & cloud, const dcovector & Y_k, const vector< Weighted_Sample > & X_km1) [pure virtual]

Modify the weights of cloud for the weighting step in the sisr.

Parameters:

cloud The curent coud at k

 Y_k The observation at k

X km1 the cloud from at km1

Returns:

The sum of the weights

Implemented in Bootstrap_Sampler, and Optimal_Sampler.

8.31.4 Member Data Documentation

$\textbf{8.31.4.1} \quad Simulator* \ SI_Sampler::model$

8.32 Simulator Class Reference

#include <simulator.h>

Inheritance diagram for Simulator:

Public Member Functions

- Simulator (void)
- ~Simulator (void)
- void Set_Seed (const int &s)
- virtual dcovector Draw_Init (void)=0
 Draw a sample from p(X0).
- virtual dcovector Draw_Transition (const dcovector &Xkm1)=0

 Draw a sample from the transition densisty p(Xk|Xk-1).
- virtual dcovector Draw_Observation (const dcovector &Xk)=0

 Calculate the value of the density of probability of Y given X: p(Y|X).
- virtual long double Observation_Density (const dcovector &Y, const dcovector &X)=0 calculate the value of the density of probability of Y given X: p(Y|X)
- virtual void Simulate (const int &N) simulate the markovian model
- virtual void Update (void)
 Update the simulation of the markovian model.
- virtual int Save_X (const char *filename)

 Save the simulated state trajectory in filename.
- virtual int Save_Y (const char *filename)

 Save the simulated observation trajectory in filename.
- void Clear (void)

 Clear the simulated trajectory X and Y.

Public Attributes

```
• Model * model
```

- vector< dcovector> X
- vector< dcovector> Y
- dcovector(* b)(void *p, gsl_rng *rng)

A pointer for stochastic input.

Protected Member Functions

• virtual void <u>update</u> (void)

Protected Attributes

• $gsl_rng * r$

8.32.1 Constructor & Destructor Documentation

- 8.32.1.1 Simulator::Simulator (void)
- 8.32.1.2 Simulator::~Simulator (void)

8.32.2 Member Function Documentation

8.32.2.1 virtual void Simulator::_update (void) [protected, virtual]

Reimplemented in CD_Simulator.

8.32.2.2 void Simulator::Clear (void)

Clear the simulated trajectory X and Y.

8.32.2.3 virtual dcovector Simulator::Draw_Init (void) [pure virtual]

Draw a sample from p(X0).

Returns:

A sample from p(X0)

Implemented in G_Simulator, G_Simulator_WT, CD_Simulator, CD_Simulator_WT, and LTI_CD_Simulator_WT.

8.32.2.4 virtual dcovector Simulator::Draw_Observation (const dcovector & *Xk***)** [pure virtual]

Calculate the value of the density of probability of Y given X : p(Y|X).

Parameters:

Xk The state at k

Returns:

The simulated observation

Implemented in G_Simulator, and CD_Simulator.

8.32.2.5 virtual dcovector Simulator::Draw_Transition (const dcovector & *Xkm1***)** [pure virtual]

Draw a sample from the transition densisty p(Xk|Xk-1).

Parameters:

Xkm1 X(k-1) the preceding state

Returns:

Implemented in G_Simulator, and CD_Simulator.

8.32.2.6 virtual long double Simulator::Observation_Density (const dcovector & Y, const dcovector & X) [pure virtual]

calculate the value of the density of probability of Y given X : p(Y|X)

Parameters:

Y The osbervation

X The state

Returns:

The value of the density

Implemented in G_Simulator, and CD_Simulator.

8.32.2.7 virtual int Simulator::Save_X (const char * *filename*) [virtual]

Save the simulated state trajectory in filename.

Parameters:

filename The file

Returns:

0 if it's ok

Reimplemented in CD_Simulator.

8.32.2.8 virtual int Simulator::Save_Y (const char * *filename*) [virtual]

Save the simulated observation trajectory in filename.

Parameters:

filename The file

Returns:

0 if it's ok

Reimplemented in CD_Simulator.

8.32.2.9 void Simulator::Set Seed (const int & s)

8.32.2.10 virtual void Simulator::Simulate (const int & N) [virtual]

simulate the markovian model

Parameters:

- N The duration
- X The state trajectory
- Y The output

8.32.2.11 virtual void Simulator::Update (void) [virtual]

Update the simulation of the markovian model.

Parameters:

- N The duration
- X The state trajectory
- Y The output

8.32.3 Member Data Documentation

8.32.3.1 dcovector(* Simulator::b)(void *p, gsl_rng *rng)

A pointer for stochastic input.

- 8.32.3.2 Model* Simulator::model
- **8.32.3.3** gsl_rng* Simulator::r [protected]
- 8.32.3.4 vector<dcovector> Simulator::X
- 8.32.3.5 vector<dcovector> Simulator::Y

8.33 SISR_Filter Class Reference

#include <sisr_filter.h>

Inheritance diagram for SISR_Filter:

Public Member Functions

• SISR_Filter (void)

A constructor.

• ~SISR_Filter (void)

The destructor.

• SISR_Filter (const int &Ns, SI_Sampler *s)

A constructor.

- SISR_Filter (const int &Ns, const double &rc, const int &seed, SI_Sampler *s)
 A constructor.
- void SetSeed (const int &s)

Set the seed of the random number generator of the discret pdf.

• void Resampling (const int &Ns)

The resampling step.

• vector< Weighted_Sample > CloudGet (void)

get The current cloud

- void SetRc (const float &rc)
- dcovector Expected_Get (void)

Public Attributes

- vector< Weighted_Sample > cloud_km1

 The particle clouds at km1.
- vector< Weighted_Sample > cloud

 The curent particle cloud.
- int NbSample

Number of particle.

• float Rc

the resampling criterion

• SI_Sampler * Sys

the sampler

Protected Member Functions

```
• int <u>update</u> (const dcovector &Yk)
```

• int _init (void)

to initialized the first particle cloud of p(X0)

Protected Attributes

- $gsl_rng * r$
- int seed

8.33.1 Constructor & Destructor Documentation

8.33.1.1 SISR_Filter::SISR_Filter (void)

A constructor.

8.33.1.2 SISR_Filter::~SISR_Filter (void)

The destructor.

8.33.1.3 SISR_Filter::SISR_Filter (const int & Ns, SI_Sampler * s)

A constructor.

Parameters:

Ns number of sample

s a sampler

Returns:

8.33.1.4 SISR_Filter::SISR_Filter (const int & Ns, const double & rc, const int & seed, SI_Sampler * s)

A constructor.

Parameters:

Ns number of samplerc The resampling criterionseed The seeds a sampler

Returns:

8.33.2 Member Function Documentation

```
\textbf{8.33.2.1} \quad \textbf{int SISR\_Filter::\_init (void)} \quad \texttt{[protected, virtual]}
```

to initialized the first particle cloud of p(X0)

Implements Filter.

8.33.2.2 int SISR_Filter::_update (const dcovector & Y) [protected, virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.33.2.3 vector<Weighted_Sample > SISR_Filter::CloudGet (void)

get The current cloud

8.33.2.4 dcovector SISR_Filter::Expected_Get (void) [virtual]

Evaluate the current estimation of the state

Returns:

 $\hat{X}_{k|k}$

Implements Filter.

8.33.2.5 void SISR_Filter::Resampling (const int & Ns)

The resampling step.

Parameters:

Ns

8.33.2.6 void SISR_Filter::SetRc (const float & rc)

Set the Resampling Criterion

Parameters:

rc The resampling Criterion

8.33.2.7 void SISR_Filter::SetSeed (const int & s)

Set the seed of the random number generator of the discret pdf.

Parameters:

s The seed

8.33.3 Member Data Documentation

$8.33.3.1 \quad vector < Weighted_Sample > SISR_Filter::cloud$

The curent particle cloud.

$8.33.3.2 \quad vector < Weighted_Sample > SISR_Filter::cloud_km1$

The particle clouds at km1.

8.33.3.3 int SISR_Filter::NbSample

Number of particle.

8.33.3.4 gsl_rng* SISR_Filter::r [protected]

8.33.3.5 float SISR_Filter::Rc

the resampling criterion

8.33.3.6 int SISR_Filter::seed [protected]

8.33.3.7 SI_Sampler* SISR_Filter::Sys

the sampler

8.34 SRK4_CD_Model Class Reference

continuous discret model: the state SDE is discretly approximate by an Sstochastic runge kutta method #include <gaussian_model.h>

Inheritance diagram for SRK4_CD_Model:

Public Member Functions

- SRK4_CD_Model (void)
- SRK4_CD_Model (Continuous_Discrete_Model *m, const int &a)
- dcovector Scheme (const dcovector &X, const dcovector &W)
- void Get_Linear_Scheme (const dcovector &X, const dcovector &W, dgematrix &F, dgematrix &J, dcovector &Xp)

Get the Linearized parameters Scheme in X, W.

- dgematrix Jx_Scheme (const dcovector &X, const dcovector &W)
- dgematrix Jw Scheme (const dcovector &X, const dcovector &W)

8.34.1 Detailed Description

continuous discret model: the state SDE is discretly approximate by an Sstochastic runge kutta method

8.34.2 Constructor & Destructor Documentation

- 8.34.2.1 SRK4_CD_Model::SRK4_CD_Model (void)
- 8.34.2.2 SRK4_CD_Model::SRK4_CD_Model (Continuous_Discrete_Model * m, const int & a)

8.34.3 Member Function Documentation

8.34.3.1 void SRK4_CD_Model::Get_Linear_Scheme (const dcovector & X, const dcovector & W, dgematrix & F, dgematrix & J, dcovector & Xp) [virtual]

Get the Linearized parameters Scheme in X,W.

Parameters:

- X The state value
- \boldsymbol{W} The noise value
- F The jacobian of f(X,W) in X
- G The jacobian in f(X,W) in W
- Xp The prediction Xp = f(X,W)

Implements Discrete_Approximation_CD_Model.

8.34.3.2 dgematrix SRK4_CD_Model::Jw_Scheme (const dcovector & X, const dcovector & W) [virtual]

Implements Discrete_Approximation_CD_Model.

8.34.3.3 dgematrix SRK4_CD_Model::Jx_Scheme (const dcovector & *X*, const dcovector & *W*) [virtual]

Implements Discrete_Approximation_CD_Model.

8.34.3.4 dcovector SRK4_CD_Model::Scheme (const dcovector & X, const dcovector & W) [virtual]

Implements Discrete_Approximation_CD_Model.

8.35 THGL_Filter Class Reference

#include <thgl_filter.h>

Inheritance diagram for THGL_Filter:

Public Member Functions

- THGL_Filter (void)
- THGL_Filter (Continuous_Discrete_Model *m)

Protected Member Functions

• int <u>update</u> (const dcovector &Y)

8.35.1 Constructor & Destructor Documentation

- 8.35.1.1 THGL_Filter::THGL_Filter (void)
- **8.35.1.2** THGL_Filter::THGL_Filter (Continuous_Discrete_Model * *m*)

8.35.2 Member Function Documentation

8.35.2.1 int THGL_Filter::_update (const dcovector & Y) [protected, virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.36 Unscented_Kalman_Filter Class Reference

The Discrete Unscented Kalman Filter (UKF).

#include <unscented_kalman_filter.h>

Inheritance diagram for Unscented_Kalman_Filter:

Public Member Functions

• Unscented_Kalman_Filter (void)

A constructor.

• Unscented_Kalman_Filter (Gaussian_Nonlinear_Model *model)

The constructor.

Public Attributes

• float lambda

A scaled parameter.

Protected Member Functions

• int SP_Init (void)

Initialize the sigma points at each update step.

• int U_Cov (const vector< dcovector > &sP1, const dcovector &m1, const vector< dcovector > &sP2, const dcovector &m2, dgematrix &cov)

Calculate the covaraince between two sets of sigma points.

 $\bullet \ \ \text{int U_Mean (const vector} < \text{dcovector} > \&sP, \ \text{dcovector \&mean)} \\$

Calculate the mean of a set of sigma points.

- int <u>update</u> (const dcovector &Y)
- int _init (void)

Itialization of the UKF.

Private Attributes

dgematrix sqrt_Qw
 The square root matrix (cholesky) of Qw.

• dgematrix sqrt_Qv

The square root matrix (cholesky) of Qv.

• vector< dcovector > sX

The sigma points for the state X.

• vector< dcovector> sW

The sigma points for the state noise W.

• vector< dcovector > sY

The sigma points for the observation.

• double w_0

The first weight to compute the mean.

• double w_0c

The first weight to compute the covariance.

• double w

Other weights.

8.36.1 Detailed Description

The Discrete Unscented Kalman Filter (UKF).

8.36.2 Constructor & Destructor Documentation

8.36.2.1 Unscented_Kalman_Filter::Unscented_Kalman_Filter (void)

A constructor.

8.36.2.2 Unscented_Kalman_Filter::Unscented_Kalman_Filter (Gaussian_Nonlinear_Model * model)

The constructor.

Parameters:

model A gaussian non linear model

8.36.3 Member Function Documentation

8.36.3.1 int Unscented_Kalman_Filter::_init (void) [protected, virtual]

Itialization of the UKF.

Reimplemented from GA_Filter.

8.36.3.2 int Unscented_Kalman_Filter::_update (const dcovector & Y) [protected, virtual]

Specific update for each filter

Parameters:

Y The observed sample

Returns:

0 if no problem

Implements Filter.

8.36.3.3 int Unscented_Kalman_Filter::SP_Init (void) [protected]

Initialize the sigma points at each update step.

8.36.3.4 int Unscented_Kalman_Filter::U_Cov (const vector < dcovector > & sP1, const dcovector & m1, const vector < dcovector > & sP2, const dcovector & m2, dgematrix & cov) [protected]

Calculate the covaraince between two sets of sigma points.

Parameters:

- sP1 The first set of sigma point
- m1 The mean of the sigma point
- sP2 The second set of sigma point
- m2 The mean of the second set of sigma point
- cov Return the empirical covariance matrix between two sets

Returns:

0 if dimensions are ok

8.36.3.5 int Unscented_Kalman_Filter::U_Mean (const vector < dcovector > & sP, dcovector & mean) [protected]

Calculate the mean of a set of sigma points.

Parameters:

sP a set of sigma point mean Return the mean

Returns:

0 if dimensions are ok

8.36.4 Member Data Documentation

8.36.4.1 float Unscented_Kalman_Filter::lambda

A scaled parameter.

8.36.4.2 dgematrix Unscented_Kalman_Filter::sqrt_Qv [private]

The square root matrix (cholesky) of Qv.

8.36.4.3 dgematrix Unscented_Kalman_Filter::sqrt_Qw [private]

The square root matrix (cholesky) of Qw.

8.36.4.4 vector<**dcovector**> **Unscented_Kalman_Filter::sW** [private]

The sigma points for the state noise W.

8.36.4.5 vector<**dcovector**> **Unscented_Kalman_Filter::sX** [private]

The sigma points for the state X.

8.36.4.6 vector<**dcovector**> **Unscented_Kalman_Filter::sY** [private]

The sigma points for the observation.

8.36.4.7 double Unscented_Kalman_Filter::w [private]

Other weights.

8.36.4.8 double Unscented_Kalman_Filter::w_0 [private]

The first weight to compute the mean.

8.36.4.9 double Unscented_Kalman_Filter::w_0c [private]

The first weight to compute the covariance.

8.37 Weighted_Sample Class Reference

```
#include <sisr_filter.h>
```

Public Attributes

- dcovector Value
 - The position.
- long double Weight

The weight of the sample.

8.37.1 Member Data Documentation

8.37.1.1 dcovector Weighted_Sample::Value

The position.

8.37.1.2 long double Weighted_Sample::Weight

The weight of the sample.

Index

~Bootstrap_Filter	CD_Simulator, 41
Bootstrap_Filter, 28	DD_Kalman, 49
~CD_Bootstrap_Filter	Extended_Kalman_Filter, 61
CD_Bootstrap_Filter, 31	Filter, 64
~Continuous_Discrete_Model	LL_Filter, 85
Continuous_Discrete_Model, 47	Simulator, 102
~Discrete_Approximation_CD_Model	SISR_Filter, 107
Discrete_Approximation_CD_Model, 52	THGL_Filter, 111
~Discrete_Observed_Model	Unscented_Kalman_Filter, 114
Discrete_Observed_Model, 57	
~Filter	A
Filter, 63	Linear_CD_Model, 84
~Gaussian_Nonlinear_Model	alpha
Gaussian_Nonlinear_Model, 78	Discrete_Approximation_CD_Model, 55
~Model	rr margaret
Model, 90	В
~OptSISR_Filter	Linear_CD_Model, 84
OptSISR_Filter, 95	b
~SISR_Filter	Simulator, 104
SISR_Filter, 106	Bootstrap_Filter, 27
~Simulator	~Bootstrap_Filter, 28
Simulator, 102	Bootstrap_Filter, 28
_a	Bootstrap_Filter, 28
CD_Simulator, 43	sim, 28
_euler_prediction	Bootstrap_Sampler, 29
CD_Extended_Kalman_Filter, 34	Bootstrap_Sampler, 29
_heunprediction	Bootstrap_Sampler, 29
CD_Extended_Kalman_Filter, 34	Draw, 29
_init	DrawInitCloud, 30
CD_Filter, 36	Weight, 30
Filter, 63	
GA_Filter, 72	C
SISR_Filter, 107	Linear_CD_Model, 84
Unscented_Kalman_Filter, 114	CD_Bootstrap_Filter, 31
_k	~CD_Bootstrap_Filter, 31
Model, 90	CD_Bootstrap_Filter, 31
_rk4prediction	CD_Bootstrap_Filter, 31
CD_Extended_Kalman_Filter, 34	Save_X, 31
_rk4prediction_FM	sim, 32
CD_Extended_Kalman_Filter, 34	CD_Extended_Kalman_Filter, 33
_thglprediction	_euler_prediction, 34
CD_Extended_Kalman_Filter, 34	_heunprediction, 34
_update	_rk4prediction, 34
CD_Extended_Kalman_Filter, 34	_rk4prediction_FM, 34
CD_Kalman, 38	_thglprediction, 34

_update, 34	~Continuous_Discrete_Model, 47
CD_Extended_Kalman_Filter, 34	Continuous_Discrete_Model, 47
CD_Extended_Kalman_Filter, 34	Continuous_Discrete_Model, 47
Scheme, 34	Diffusion_Function, 47
CD_Filter, 35	Drift_Function, 47
_init, 36	Init, 47
CD_Filter, 36	J_Drift_Function, 47
CD_Filter, 36	Ts, 48
Expected_Get, 36	15, 40
M, 37	DD_Kalman, 49
R, 37	_update, 49
*	DD_Kalman, 49
Rp, 37	DD_Kalman, 49
Save_X, 36	
Xp, 37	Diffusion_Function
CD_Kalman, 38	Continuous_Discrete_Model, 47
_update, 38	Linear_CD_Model, 83
CD_Kalman, 38	Discrete_Approximation_CD_Model, 51
CD_Kalman, 38	~Discrete_Approximation_CD_Model, 52
cd_model	alpha, 55
Discrete_Approximation_CD_Model, 55	cd_model, 55
CD_Simulator, 40	Discrete_Approximation_CD_Model, 52
_a, 43	Discrete_Approximation_CD_Model, 52
_update, 41	Get_Alpha, 53
CD_Simulator, 41	Get_Linear_Parameters, 53
CD_Simulator, 41	Get_Linear_Scheme, 53
Draw_Init, 41	Init, 53
Draw_Observation, 41	J_Observation_Function, 53
draw_state, 41	Jw_Scheme, 54
Draw_Transition, 41	Jw_State_Function, 54
Dx, 43	Jx_Scheme, 54
Dy, 43	Jx_State_Function, 54
Observation_Density, 42	Observation_Function, 54
· · · · · · · · · · · · · · · · · · ·	Scheme, 55
Save_X, 42	
Save_Y, 42	Set_Alpha, 55
scheme, 43	State_Function, 55
Set_Alpha, 42	Discrete_Observed_Model, 56
Simulate, 43	~Discrete_Observed_Model, 57
CD_Simulator_WT, 44	Discrete_Observed_Model, 57
CD_Simulator_WT, 44	Discrete_Observed_Model, 57
CD_Simulator_WT, 44	Get_Init_Parameters, 57
Draw_Init, 44	J_Observation_Function, 57
T, 45	Observation_Function, 58
TB, 45	Qv, 58
Xt, 45	Qw, 58
Clear	R0, 58
Model, 90	X0, 58
Simulator, 102	Draw
cloud	Bootstrap_Sampler, 29
SISR_Filter, 108	Optimal_Sampler, 93
cloud_km1	SI_Sampler, 99
SISR_Filter, 108	Draw_Init
CloudGet	CD_Simulator, 41
SISR_Filter, 107	CD_Simulator_WT, 44
Continuous_Discrete_Model, 46	G_Simulator, 67

	G_Simulator_WT, 69	Expected_Get, 64
	LTI_CD_Simulator_WT, 87	Filter, 63
	Simulator, 102	Filtering, 64
Dray	w Observation	Init, 64
Dia	CD_Simulator, 41	Likelihood, 65
		Likelihood_Get, 64
	G_Simulator, 67	
ъ	Simulator, 102	model, 65
Drav	w_Optimal	Save_X, 65
	G_Simulator, 67	Update, 65
	Opt_Simulator, 91	X, 65
drav	v_state	Filtering
	CD_Simulator, 41	Filter, 64
	LTI_CD_Simulator, 86	
Drav	w_Transition	G
	CD_Simulator, 41	Gaussian_Linear_Model, 76
	G_Simulator, 67	G_Simulator, 66
	Simulator, 103	Draw_Init, 67
Drav	wInitCloud	Draw_Observation, 67
Dia		Draw_Optimal, 67
	Bootstrap_Sampler, 30	Draw_Transition, 67
	Optimal_Sampler, 94	
	SI_Sampler, 99	G_Simulator, 67
Drif	t_Function	G_Simulator, 67
	Continuous_Discrete_Model, 47	Obs_Optimal_Density, 68
	Linear_CD_Model, 83	Observation_Density, 68
Dx		G_Simulator_WT, 69
	CD_Simulator, 43	Draw_Init, 69
Dy		G_Simulator_WT, 69
,	CD_Simulator, 43	G_Simulator_WT, 69
	ob_ominater, to	N, 70
Fule	er_CD_Model, 59	NB, 70
Luic	Euler_CD_Model, 59	Xt, 70
	Euler_CD_Model, 59	GA_Filter, 71
		_init, 72
	Get_Linear_Scheme, 59	
	Jw_Scheme, 60	Expected_Get, 72
	Jx_Scheme, 60	GA_Filter, 72
	Scheme, 60	GA_Filter, 72
Exp	ected_Get	M, 73
	CD_Filter, 36	R, 73
	Filter, 64	Rp, 73
	GA_Filter, 72	Xp, 73
	SISR_Filter, 107	Gaussian_Linear_Model, 74
Exte	ended_Kalman_Filter, 61	F, 76
	_update, 61	f, 76
	Extended_Kalman_Filter, 61	G, 76
	Extended_Kalman_Filter, 61	Gaussian_Linear_Model, 75
	Extended_Rannan_Pitter, 01	Gaussian_Linear_Model, 75
E		
F	Coussian Linear Model 76	Get_Cov_Prediction, 75
c	Gaussian_Linear_Model, 76	Get_Mean_Prediction, 75
f		H, 76
	Gaussian_Linear_Model, 76	h, 76
Filte	er, 62	J_Observation_Function, 75
	∼Filter, 63	Jw_State_Function, 75
	_init, 63	Jx_State_Function, 75
	_update, 64	Observation_Function, 76

State_Function, 76	Continuous_Discrete_Model, 47
Gaussian_Nonlinear_Model, 77	Linear_CD_Model, 83
~Gaussian_Nonlinear_Model, 78	J_Observation_Function
Gaussian_Nonlinear_Model, 78	Discrete_Approximation_CD_Model, 53
Gaussian_Nonlinear_Model, 78	Discrete_Observed_Model, 57
Get_Linear_Parameters, 78	Gaussian_Linear_Model, 75
Init, 78	Linear_CD_Model, 84
Jw_State_Function, 78	Jw_Scheme
Jx_State_Function, 78	Discrete_Approximation_CD_Model, 54
State_Function, 79	Euler_CD_Model, 60
Get_Alpha	Heun_CD_Model, 81
Discrete_Approximation_CD_Model, 53	Ozaki_CD_Model, 97
Get_Cov_Prediction	SRK4_CD_Model, 110
Gaussian_Linear_Model, 75	Jw_State_Function
Linear_CD_Model, 83	Discrete_Approximation_CD_Model, 54
Get_Init_Parameters	Gaussian_Linear_Model, 75
Discrete_Observed_Model, 57	Gaussian_Nonlinear_Model, 78
Get_Linear_Parameters	Jx_Scheme
	Discrete_Approximation_CD_Model, 54
Discrete_Approximation_CD_Model, 53 Gaussian_Nonlinear_Model, 78	Euler_CD_Model, 60
Get_Linear_Scheme	Heun_CD_Model, 81
Discrete_Approximation_CD_Model, 53	Ozaki_CD_Model, 97
- 11 ·	SRK4_CD_Model, 110
Euler_CD_Model, 59	Jx_State_Function
Heun_CD_Model, 80	Discrete_Approximation_CD_Model, 54
Ozaki_CD_Model, 96 SRK4_CD_Model, 109	Gaussian_Linear_Model, 75
Get_Mean_Prediction	Gaussian_Nonlinear_Model, 78
Get Mean Flediction	Gaussian_Nonlinear_Wodel, 76
Gaussian_Linear_Model, 75	
Gaussian_Linear_Model, 75 Linear_CD_Model, 83	lambda
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time	lambda Unscented_Kalman_Filter, 115
Gaussian_Linear_Model, 75 Linear_CD_Model, 83	lambda Unscented_Kalman_Filter, 115 Likelihood
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Heun_CD_Model, 80	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81 Scheme, 81	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83 J_Drift_Function, 83
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81 Scheme, 81	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83 J_Drift_Function, 83 J_Observation_Function, 84
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81 Scheme, 81 Init Continuous_Discrete_Model, 47	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83 J_Drift_Function, 83 J_Drift_Function, 83 Linear_CD_Model, 83
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81 Scheme, 81 Init Continuous_Discrete_Model, 47 Discrete_Approximation_CD_Model, 53	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83 J_Drift_Function, 83 J_Drift_Function, 83 Linear_CD_Model, 83 Linear_CD_Model, 83
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81 Scheme, 81 Init Continuous_Discrete_Model, 47 Discrete_Approximation_CD_Model, 53 Filter, 64	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83 J_Drift_Function, 83 J_Observation_Function, 84 Linear_CD_Model, 83 Checked Linear_CD_Model, 84 Checked Li
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81 Scheme, 81 Init Continuous_Discrete_Model, 47 Discrete_Approximation_CD_Model, 53 Filter, 64 Gaussian_Nonlinear_Model, 78	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83 J_Drift_Function, 83 J_Observation_Function, 84 Linear_CD_Model, 83 Observation_Function, 84 LL_Filter, 85
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81 Scheme, 81 Init Continuous_Discrete_Model, 47 Discrete_Approximation_CD_Model, 53 Filter, 64	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83 J_Drift_Function, 83 J_Observation_Function, 84 Linear_CD_Model, 83 Linear_CD_Model, 83 Observation_Function, 84 LL_Filter, 85 _update, 85
Gaussian_Linear_Model, 75 Linear_CD_Model, 83 Get_Time Model, 90 H Gaussian_Linear_Model, 76 Linear_CD_Model, 84 h Gaussian_Linear_Model, 76 Linear_CD_Model, 84 Heun_CD_Model, 80 Get_Linear_Scheme, 80 Heun_CD_Model, 80 Heun_CD_Model, 80 Jw_Scheme, 81 Jx_Scheme, 81 Scheme, 81 Init Continuous_Discrete_Model, 47 Discrete_Approximation_CD_Model, 53 Filter, 64 Gaussian_Nonlinear_Model, 78	lambda Unscented_Kalman_Filter, 115 Likelihood Filter, 65 Likelihood_Get Filter, 64 Linear_CD_Model, 82 A, 84 B, 84 C, 84 Diffusion_Function, 83 Drift_Function, 83 Get_Cov_Prediction, 83 Get_Mean_Prediction, 83 H, 84 h, 84 Init, 83 J_Drift_Function, 83 J_Observation_Function, 84 Linear_CD_Model, 83 Observation_Function, 84 LL_Filter, 85

LTI_CD_Simulator, 86	Optimal_Sampler, 93
draw_state, 86	Optimal_Sampler, 93
LTI_CD_Simulator, 86	Weight, 94
LTI_CD_Simulator, 86	OptSISR_Filter, 95
LTI_CD_Simulator_WT, 87	~OptSISR_Filter, 95
Draw_Init, 87	OptSISR_Filter, 95
LTI_CD_Simulator_WT, 87	OptSISR_Filter, 95
LTI_CD_Simulator_WT, 87	sim, 95
T, 88	Ozaki_CD_Model, 96
TB, 88	Get_Linear_Scheme, 96
Xt, 88	Jw_Scheme, 97
	Jx_Scheme, 97
M	Ozaki_CD_Model, 96
CD_Filter, 37	Ozaki_CD_Model, 96
GA_Filter, 73	Scheme, 97
Model, 89	
\sim Model, 90	Qv
_k, 90	Discrete_Observed_Model, 58
Clear, 90	Qw
Get_Time, 90	Discrete_Observed_Model, 58
Model, 90	
Update, 90	R
model	CD_Filter, 37
Filter, 65	GA_Filter, 73
SI_Sampler, 100	r
Simulator, 104	Simulator, 104
	SISR_Filter, 108
N	R0
G_Simulator_WT, 70	Discrete_Observed_Model, 58
NB	Rc
G_Simulator_WT, 70	SISR_Filter, 108
NbSample	Resampling
SISR_Filter, 108	SISR_Filter, 107
	Rp
Obs_Optimal_Density	CD_Filter, 37
G_Simulator, 68	GA_Filter, 73
Opt_Simulator, 91	
Observation_Density	Save_X
CD_Simulator, 42	CD_Bootstrap_Filter, 31
G_Simulator, 68	CD_Filter, 36
Simulator, 103	CD_Simulator, 42
Observation_Function	Filter, 65
Discrete_Approximation_CD_Model, 54	Simulator, 103
Discrete_Observed_Model, 58	Save_Y
Gaussian_Linear_Model, 76	CD_Simulator, 42
Linear_CD_Model, 84	Simulator, 103
Opt_Simulator, 91	Scheme
Draw_Optimal, 91	CD_Extended_Kalman_Filter, 34
Obs_Optimal_Density, 91	Discrete_Approximation_CD_Model, 55
Opt_Simulator, 91	Euler_CD_Model, 60
Opt_Simulator, 91	Heun_CD_Model, 81
Optimal_Sampler, 93	Ozaki_CD_Model, 97
Draw, 93	SRK4_CD_Model, 110
DrawInitCloud, 94	scheme

GD, GL, L, LA	400
CD_Simulator, 43	r, 108
seed	Rc, 108
SISR_Filter, 108	Resampling, 107
Set_Alpha	seed, 108
CD_Simulator, 42	SetRc, 108
Discrete_Approximation_CD_Model, 55	SetSeed, 108
Set_Seed	SISR_Filter, 106
Simulator, 104	SISR_Filter, 106
SetRc	Sys, 108
SISR_Filter, 108	SP_Init
SetSeed	Unscented_Kalman_Filter, 114
SISR_Filter, 108	sqrt_Qv
SI_Sampler, 98	Unscented_Kalman_Filter, 115
Draw, 99	sqrt_Qw
DrawInitCloud, 99	Unscented_Kalman_Filter, 115
model, 100	SRK4_CD_Model, 109
SI_Sampler, 98	Get_Linear_Scheme, 109
SI_Sampler, 98	Jw_Scheme, 110
Weight, 99	Jx_Scheme, 110
sim	Scheme, 110
Bootstrap_Filter, 28	SRK4_CD_Model, 109
CD_Bootstrap_Filter, 32	SRK4_CD_Model, 109
OptSISR_Filter, 95	State_Function
Simulate	Discrete_Approximation_CD_Model, 55
CD_Simulator, 43	Gaussian_Linear_Model, 76
Simulator, 104	Gaussian_Nonlinear_Model, 79
Simulator, 101	sW
~Simulator, 102	Unscented_Kalman_Filter, 115
_update, 102	sX
b, 104	
Clear, 102	Unscented_Kalman_Filter, 115
Draw_Init, 102	SY
Draw_Observation, 102	Unscented_Kalman_Filter, 115
	Sys
Draw_Transition, 103	SISR_Filter, 108
model, 104	T
Observation_Density, 103	T
r, 104	CD_Simulator_WT, 45
Save_X, 103	LTI_CD_Simulator_WT, 88
Save_Y, 103	TB
Set_Seed, 104	CD_Simulator_WT, 45
Simulate, 104	LTI_CD_Simulator_WT, 88
Simulator, 102	THGL_Filter, 111
Update, 104	_update, 111
X, 104	THGL_Filter, 111
Y, 104	THGL_Filter, 111
SISR_Filter, 105	Ts
\sim SISR_Filter, 106	Continuous_Discrete_Model, 48
_init, 107	
_update, 107	U_Cov
cloud, 108	Unscented_Kalman_Filter, 114
cloud_km1, 108	U_Mean
CloudGet, 107	Unscented_Kalman_Filter, 114
Expected_Get, 107	Unscented_Kalman_Filter, 112
NbSample, 108	_init, 114
*	

```
_update, 114
    lambda, 115
    SP_Init, 114
    sqrt_Qv, 115
    sqrt_Qw, 115
    sW, 115
    sX, 115
    sY, 115
    U Cov, 114
    U Mean, 114
    Unscented_Kalman_Filter, 113
    Unscented_Kalman_Filter, 113
    w, 115
    w_0, 115
    w_0c, 115
Update
    Filter, 65
    Model, 90
    Simulator, 104
Value
    Weighted_Sample, 116
    Unscented_Kalman_Filter, 115
w_0
    Unscented_Kalman_Filter, 115
w_0c
    Unscented_Kalman_Filter, 115
Weight
    Bootstrap_Sampler, 30
    Optimal_Sampler, 94
    SI_Sampler, 99
    Weighted_Sample, 116
Weighted_Sample, 116
    Value, 116
    Weight, 116
\mathbf{X}
    Filter, 65
    Simulator, 104
X0
    Discrete_Observed_Model, 58
Xp
    CD_Filter, 37
    GA_Filter, 73
Xt
    CD Simulator WT, 45
    G_Simulator_WT, 70
    LTI_CD_Simulator_WT, 88
Y
    Simulator, 104
```