Réseaux de Neurones

Luong Phat NGUYEN

École Polytechnique de l'université de Tours

2020

Plan

- Introduction
- 2 Descente de Gradient
- 3 Perceptron
- 4 MLP
- 6 Règles d'Apprentissage
- 6 Régularisation

Introduction

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

FIGURE – La relation entre Intélligence Artificielle, Machine Learning et Deep Learning. Source : What's the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning?

Histoire

FIGURE – L'histoire générale de Deep Learning. Source : Deep Learning 101 - Part 1: History and Background

FIGURE – Réseau de neurones est équivalent à une conception des neurones artificiels du cerveau qui reçoivent des entrées (images, sons, etc.) et produisent des sorties correspondantes. Source : Artificial neural network

Apprentissage

En général, on présente des exemples et on modifie les poids en fonction des sorties obtenues.

- Supervisé : minimise écart entre sortie obtenue et sortie désirée
- Renforcé : pénalité/récompense
- Non supervisé : regroupement des exemples en fonction de ressemblance que le RN doit extraire

Notation

Un scalaire α Un vecteur a. \boldsymbol{A} Une matrice A Un tenseur Α Un ensemble Un ensemble de réels $\{0, 1, ..., n\}$ Un ensemble d'intègre entre 0 et n[a,b]L'intervalle réel comprenant a et b[a,b)L'intervalle réel comprenant a et sauf b i^e élément de vecteur a, l'indexation commence à 1 a_i $A_{i,j}$ Elément i, j de matrice A $oldsymbol{A}_{i,:}$ i^e ligne de matrice A $oldsymbol{A}_{:.i}$ i^e colonne de matrice A

Notation

 $\begin{array}{lll} \boldsymbol{A}^T & \text{Transpos\'e de matrice } \boldsymbol{A} \\ \boldsymbol{A} \odot \boldsymbol{B} & \text{produit matriciel de Hadamard des 2 matrices} \\ \det(\boldsymbol{A}) & \text{D\'eterminant de matrice } \boldsymbol{A} \\ \frac{dy}{dx} & \text{D\'eriv\'e\'e de } y \text{ par rapport à } x \\ \frac{\partial y}{\partial x} & \text{D\'eriv\'e\'e partielle de } y \text{ par rapport à } x \\ \nabla_{\boldsymbol{X}} y & \text{Gradient de } y \text{ par rapport à } \boldsymbol{X} \\ \nabla_{\boldsymbol{X}} y & \text{Gradient matricielle de } y \text{ par rapport à } \boldsymbol{X} \\ \nabla_{\boldsymbol{X}} y & \text{Tenseur comprenant gradient de } y \text{ par rapport à } \boldsymbol{X} \\ \end{array}$

- On a une fonction $f(\theta)$ où θ est un vecteur de coordonnées.
- Objectif : Trouver un minimum global pour la fonction $f(\theta)$, idéalement :

$$\frac{\partial f(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$$

• Règle de mise à jour pour trouver θ^* le minimum global : l'algorithme commence avec une initialization θ_0 aléatoire et après t itérations, nous avons

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}_t)$$

Ou en forme courte : $\theta = \theta - \eta \nabla_{\theta} f(\theta)$

Exemple:

$$f(x) = x^2 + 5\sin(x)$$

 $x_0 = -5, \ \eta = 0.1$

Calcul l'extrème de f(x) en 2 manières :

- $\bullet \ \frac{\partial f}{\partial x} = 0.$
- Utilier l'algorithme de descente de gradient.

FIGURE – Exemple de l'algorithme de gradient en 1D

FIGURE – Exemple de l'algorithme de gradient en 1D

FIGURE – Exemple de l'algorithme de gradient en 2D

Algorithme de Perceptron

Réseau de neurones à une seule couche de poids (pas de couche cachée)

FIGURE – Illustration de l'algorithme de perceptron

$$y_i = sgn(\mathbf{w}^T \boldsymbol{x_i})$$

Avec $\mathbf{x} \in \mathbb{R}^d$ et $\mathbf{w} \in \mathbb{R}^d$. Fonction de coût : $J = -y_i \mathbf{w} \mathbf{x}_i$. $\longrightarrow \nabla_{\mathbf{w}} J = -y_i \mathbf{x}_i$

→ La mise à jour des paramètres :

$$\mathbf{w} = \mathbf{w} + \eta y_i \mathbf{x}_i$$

Algorithme de Perceptron - Problème de XOR

FIGURE – Problème avec XOR. Source : Solving XOR with a single Perceptron

Perceptron Multicouche (MLP)

FIGURE – Exemple de réseaux de neurones de 2 couches.

Propagation avant

Fonctions d'activation

Fonctions d'activation

Pour la classification multi-classes, la fonction d'activation de softmax est souvent utilisé *one-hot encoding* pour la dernière couche du réseaux de neurones.

softmax : la sortie est un vecteur d'une somme des éléments égale à $\mathbf 1$

$$\operatorname{softmax}(\boldsymbol{x}) = \frac{exp(\boldsymbol{x})}{\sum_{i=1}^{N} \boldsymbol{x}}$$
 (1)

Avec N le nombre d'éléments.

Base de Données

3 bases pour l'apprentissage supervisé :

- Base d'apprentissage :
 - Utilisée pour ajuster des paramètres du modèle.
 - Éviter sur-apprentissage.
- ② Base de validation :
 - Pas toujours utilisée.
 - Utilisée pour ajuster des hyperparamètres dans le modèle (poids ou biais).
 - Utilisée pour la régularisation.
- Base de test :
 - Utilisée pour fournir une évaluation non biaisée du modèle final adapté à la base d'apprentissage.
 - Suit la même distribution de probabilité que la base d'apprentissage
 - Évaluer la capacité de généralisation du modèle entraîné.

Fonctions de coût

 $J(\hat{\boldsymbol{y}}, \boldsymbol{y})$: une fonction de coût ou une fonction de perte est une fonction qui mesure la différence entre la sortie d'un modèle $\hat{\boldsymbol{y}} \in \mathbb{R}^M$ et la vérité terrain $\boldsymbol{y} \in \mathbb{R}^M$ Quelques fonctions de coût pratiques :

• Erreur quadratique moyenne :

$$J(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{1}{M} \|\hat{\boldsymbol{y}} - \boldsymbol{y}\|^2$$

• Erreur absolue moyenne :

$$J(\hat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{1}{M} \sum_{i=1}^{M} |\hat{y}_i - y_i|$$

• Entropie croisée (cross-entropy) :

$$J(\boldsymbol{\hat{y}}, \boldsymbol{y}) = -\sum_{i=1}^{M} y_i \log \hat{y}_i \quad avec \ y_i, \hat{y}_i \in [0, 1]$$

Propagation arrière

- One-hot encoding : $\hat{\mathbf{y}} \in \mathbb{R}^{M \times 1} \to \hat{\mathbf{Y}} \in \mathbb{R}^{M \times C}$, $\mathbf{y} \in \mathbb{R}^{M \times 1} \to \mathbf{Y} \in \mathbb{R}^{M \times C}$.
- La fonction de coût :

$$J(\hat{\mathbf{Y}}, \mathbf{Y}) = -\frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{C} y_{ji} \log \hat{y}_{ji}$$

Où M est le nombre d'instances; C est le nombre de classes (labels); \mathbf{X}, \mathbf{Y} sont les données et les labels de la base d'apprentissage; \mathbf{W}, \mathbf{b} sont les ensembles de poids et de biais du réseau.

• Pour appliquer les méthodes basées des algorithmes de gradients, il faut calculer : $\frac{\partial J}{\partial \mathbf{W}^l}$, $\frac{\partial J}{\partial \mathbf{h}^l}$, l=1,2,...,L

Propagation arrière (1)

lacktriangle Calcul d'erreur de la couche sortie (e^L) :

$$oldsymbol{e}^L = rac{\partial J}{\partial oldsymbol{z}^L}$$

② Calcul le gradient de l'erreur selon \mathbf{W}^L et \boldsymbol{b}^L :

$$\frac{\partial J}{\partial \mathbf{W}^{L}} = \frac{\partial J}{\partial \boldsymbol{z}^{L}} \frac{\partial \boldsymbol{z}^{L}}{\partial \mathbf{W}^{L}} = \boldsymbol{e}^{L} (\boldsymbol{a}^{L-1})^{T}$$
$$\frac{\partial J}{\partial \boldsymbol{b}^{L}} = \frac{\partial J}{\partial \boldsymbol{z}^{L}} \frac{\partial \boldsymbol{z}^{L}}{\partial \boldsymbol{b}^{L}} = \boldsymbol{e}^{L}$$

Propagation arrière (2)

6 Pour chaque l = L - 1, L - 2, ... 2, 1, calcul d'erreur de sortie de la couche l:

$$\boldsymbol{e}^l = (\mathbf{W}^{l+1}\boldsymbol{e}^{l+1}) \odot f'(\boldsymbol{z}^l)$$

Où \odot est la multiplication par élément entre 2 tenseurs de dimension égale.

4 Répéter la procédure de la couche l à l-1:

$$egin{aligned} rac{\partial J}{\partial \mathbf{W}^l} &= rac{\partial J}{\partial oldsymbol{z}^l} rac{\partial oldsymbol{z}^l}{\partial \mathbf{W}^l} = oldsymbol{e}^l (oldsymbol{a}^{l-1})^T \ &rac{\partial J}{\partial oldsymbol{b}^l} &= rac{\partial J}{\partial oldsymbol{z}^l} rac{\partial oldsymbol{z}^l}{\partial oldsymbol{b}^l} = oldsymbol{e}^l \end{aligned}$$

Perceptron Multicouche

Propagation avant : fournir le réseau un échantillon des entrées, calculer l'activation et la sortie pour chaque neurone dans l'ordre croissant.

Propagation arrière : évaluer la dérivée de la fonction de pertes pour les paramètres et les mettre à jour pour chaque neurones dans l'ordre décroissant.

Propagation avant

Propagation arrière

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}$$

$$\frac{\partial L}{\partial y} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial y}$$

Perceptron Multicouche

 $\label{eq:Figure} Figure - Processus d'apprentissage général. Source : Deep \ Learning \\ with \ Pytorch$

Batch – Descente de Gradient Stochastique

• Apprentissage par batch : toutes les données dans la base d'apprentissage \mathbf{X} sont fournies dans le réseau pour l'entrainement. Le moyenne du gradient de la "loss" $J(\mathbf{X}, \mathbf{Y})$ est utilisé pour update les paramètres θ_j .

$$\theta_j^{t+1} = \theta_j^t - \frac{\eta}{M} \frac{\partial J(\mathbf{X}, \mathbf{Y})}{\partial \theta_j}$$

Risque d'exploser la mémoire si les données sont lourdes!

• Apprentissage par descente gradient stochastique : un exemple quelconque de la base d'apprentissage x_i est utilisé et update les paramètres θ_i .

$$\theta_j^{t+1} = \theta_j^t - \eta \frac{\partial J(\boldsymbol{x}_i, \boldsymbol{y}_i)}{\partial \theta_i}$$

Mini-batch Descente de Gradient Stochastique

• Apprentissage par mini-batch : des sous-ensemble quelconques \mathbf{X}_k de la base d'apprentissage \mathbf{X} est utilisé et update les paramètres θ_j .

$$\theta_j^{t+1} = \theta_j^t - \frac{\eta}{K} \frac{\partial J(\mathbf{X}_k, \mathbf{Y}_k)}{\partial \theta_j}$$

 ${\cal K}$: nombre de sous-ensembles dans la base d'apprentissage

Remarques

- La fonction de coût est non-convexe beaucoup de locaux minimums.
- Descente de gradient converge vers l'un des locaux minimums.

Régularisation

- Régularisation est une méthode qui aide le modèle à éviter le sur-apprentissage en gardant la généralisation du modèle.
- Des méthodes de régularisation pratiques :
 - Ajouter un terme de régularisation à la fonction de coût
 - Augmentation de nombre de données
 - Dropout
 - Early stopping

Régularisation

Ajouter un terme de régularisation à la fonction de coût

$$J_{reg}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta})$$

Où λ est paramètre de régularisation et $\lambda R(\theta)$ s'appelle terme de régularisation.

Les termes de régularisation souvant utilisés :

• Régularisation de L2 :

$$R(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_2^2 = \sum_{i=0}^M \theta_i^2$$

• Régularisation de L1 :

$$R(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_2^2 = \sum_{i=0}^M \theta_i$$

Régularisation

Dropout : quelques neurones quelconques dans le réseau sont mis à 0. La probabilité d'enlever des neurones est un hyperparamètre à régler.

FIGURE - Sans Dropout.

FIGURE – Avec Dropout de probabilité de 0,44.

Regularisation

FIGURE – L'augmentation des données par : ajouter de bruit, ajuster de contraste, rotation, etc. Source : Data Augmentation for Deep Learning.