CARTESIAN LOGIC *

Raju Renjit. G, rajurenjitgrover@yahoo.com, Grover house, Tripunithura, Eranakulam, Kerala, India.

Abstract

In this endeavor, we first give a logical explanation for all quantum phenomena. Then using it as a basis, we proceed to give a logical explanation for gravity; and then for dark matter and energy. So the aim this presentation not to make things precise, but to give a logical reason why things are the way they are.

^{*}Not by might, nor by power, but by my SPIRIT, saith the LORD of hosts.

Contents

1	Introduction	3
2	Quantum mechanics	7
	2.1 Particle shape	7
	2.2 Orbitals	16
	2.3 First exclusion principle	25
	2.4 Space	28
	2.5 Second exclusion principle	113
	2.6 Velocity	126
	2.7 Uncertainty principle	136
	2.8 Superposition	151
	2.9 Particle copies	157
	2.10 Speed of light	169
	2.11 Entanglement	186
	2.12 Localdynamics	223
	2.13 Lineardynamics	
	2.14 Neutraldynamics	243
3	Gravity	243
4	Dark matter	338
5	Dark energy	395
6	Axiomatizability	422

1 Introduction

Consider

- A finite
 - o System.

Then we see that,

- Since
 - \circ It
 - ▶ Is:
 - Finite,

it

- Can
 - o Be
 - - On paper.
- But
 - \circ In
 - ⊳ Some
 - Way,

if

- If we
 - o Embed:
 - ▶ An inductive process
 - Into it,

then

• It

o Will
▶ Become:
 An infinite system.
• And
o Also:
⊳ Changes
will
• Take
o Place
by
• Some:
o Precise
⊳ Rules.
• But
o If
⊳ We:
- Remove
that
• Inductive
o Process
▶ Which
we
• Embedded

o Into:

▶ It,

we see that,

- The system
 - o Will:
 - ⊳ Return
 - Back

into

- Its
 - o Original:
 - ⊳ Finite
 - State.

So we see that,

- If:
 - o A system
 - ▶ Does
 - Not

have

- An induction
 - o In:
 - ▶ It,

then

- It
 - o Will
 - ▶ Be:
 - Finite.
- And so

Using:	
▶ This	
- As a basis,	
we	
• Proceed	
∘ To:	
⊳ Give	
a	
• Logical	
 Explanation 	
⊳ For	
– All:	
"quantum phenomena	ı,'
• And	
o Then	
▶ Using	
- That:	
"quantum basis"	
we	
 Proceed 	
o То	
Explain:	
- Gravity,	
 Dark matter, 	
 And dark energy. 	

2 Quantum mechanics

2.1 Particle shape

Consider

- The
 - o Set:

$$S = \{ a, b, c, d, e \},$$

- And
 - o Let
 - ⊳ The
 - Rules

in

• The system

be:

- At anytime,
 - o We can
 - - An element of: S.
- But
 - o Even though,
 - - An element,

we

- Do not
 - o Remove

\triangleright	It		
	-	From:	S.

- And
 - o There are
 - ⊳ No other
 - Rules.
- Then we see that,
 - o This
 - ▷ Is:
 - An infinite process.
- But since
 - o No rules
 - ⊳ Are:
 - Used

to

- Define:
 - That
 - ▶ Process

of

- Choosing:
 - o An element
 - ⊳ Of: *S*,

we see that,

- Those choices
 - o Will be

. 1	M	_	A	_	
>	ΙVΙ	а	а	e.	•

- Randomly.

• But

o If we

▷ Define:

- Some rules

for

• Making

o Those:

▷ Choices,

then

• They

o Will

▶ Always

be

• Chosen

o In:

> A predetermined

- Way.

• And

o So

▶ If:

- A part

of

• A system:

o Has:

⊳ No

- Rules,

then

• That

Part

will

• Randomly

o Be

▶ In:

- One

of

• The

o Possible

⊳ States.

• But if

o There

⊳ Are:

- Some rules,

then

• That part

o Will:

⊳ Follow

- Those rules.

• And so

⊳ We:

- Consider

the

• Equation

 \circ Of

⊳ A line:

$$y = x + 1$$

we

• See

 \circ It

▶ As:

- A straight line,

only

• Because

o Some rules

⊳ Are:

- Used

to

• Define

o That:

⊳ Shape.

• But

o The things

⊳ That:

- Pertains

to

- The
 - o Thickness

⊳ Of

- The line:

y = x + 1

will

- Be:
 - Fuzzy,

since

- There
 - o Are:

⊳ No

- Rules

to

- Define
 - o That:
- And
 - o So
 - ⊳ The:
 - Shape

of

- A point
 - o In:
 - ⊳ Space

cannot

- Be:
 - o A square,
 - ⊳ Or
 - A circle,

since

- There
 - o Are:
 - ⊳ No
 - Rules

to

- Define:
 - o A square
 - o Or a circle
 - ⊳ Over
 - There.
- And so
 - o A point
 - ▶ In:
 - Space

will

• Not

- o Have:
 - ⊳ Any
 - Shape.
- And
 - o So
 - ⊳ A point
 - Will

be

- A shapeless
 - o Something
 - ⊳ That:
 - Exists,

since

- It:
 - o Exists.
- And so
 - o The shape
 - > Of:
 - A point

will

- Be like
 - o That
 - ⊳ Of:
 - A particle.
- Also

- o Since

are

- No rules
 - o Or induction
 - ▶ In:
 - A point
- And
 - o Since
 - ⊳ Something:
 - Cannot exist,

when

- Its
 - o Size
 - ▶ Is:
 - Zero,

we see that,

- A point
 - o Will be
 - ⊳ Of:
 - A finite size.
- And
 - o So
 - ⊳ All:
 - Particles

will

- Be
 - o Of:
 - A finite
 - Size.

2.2 Orbitals

Consider

- The
 - o Inductive
 - ⊳ Sequence:

$$i_1, \qquad i_2 = f(i_1), \qquad i_3 = f(i_2), \qquad i_4 = f(i_3), \qquad \dots$$
 (1)

- In
 - o The above
 - ⊳ Sequence 1:
 - i_1 is the basis,
 - i_2 was generated from i_1 by f,
 - $-i_3$ from i_2 by f,

Then we see that,

- There
 - o Is:
 - ▶ Nothing

in

- Between
 - o All
 - \triangleright These

• And so if:
• The sequence 1,
▶ Is:
- The <i>x-axis</i>
then
• The points
o On:
 The x-axis Will be:
$(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), \dots$
• And also:
\circ $(0, 0)$ is the basis,
\circ $(1, 0)$ was generated from $(0, 0)$,
\circ (2, 0) from (1, 0),
\circ (3, 0) from (2, 0),
▶ Using
- A function: f.
• And
o Also
▶ The <i>x-axis</i>
will
• Not
o Have

- Elements.

- PointsLike: (1.5, 0), (1.7, 0),
- And so
 - o When
 - ⊳ We
 - Are

in

- The process
 - $\circ \ Of$
 - ▶ Generating:
 - -(3, 0) from (2, 0),

we see that,

- Only: (3, 0)
 - o Will be
 - ▶ Generated
 - After: (2, 0),
- But
 - \circ When: (3, 0)
 - ▷ Is: generated
 - After: (2, 0),

we see that,

- It does
 - \circ Not
 - ⊳ Say
 - That:

"(3, 0)"

is

- Generated
 - o Immediately
 - ⊳ After:
 - **-** (2, 0),
- But
 - o Just
 - ⊳ Say:

"after (2, 0)."

Then we see that,

- There
 - o Is no
 - ▷ An inner
 - Cartesian plane.
- And so
 - o There
 - ⊳ Will be:
 - No rules

to

- Precisely
 - o Define
 - - Of: (3, 0)

"after (2, 0)."

• And

o So:

"(3, 0)"

will

- Be generated
 - o In:
 - ▶ A finite space
 - After: (2, 0),

such that

- That
 - o Finite
 - ⊳ Space

will

- Be

 - o Larger
 - -(2, 0).

⊳ Than:

- And so: (2, 0)
 - o Will
 - ⊳ Not
 - Have

a

- Position
 - o In that
 - ⊳ Finite space
 - After: (2, 0).

- And
 - o So
 - ⊳ The exact
 - Position

of

- All
 - o Points
 - ▶ In:
 - A Cartesian plane

will

- Not
 - o Be
 - ▷ Defined:
 - Precisely.
- And
 - o So
 - It can
 - Only be

said that,

- They
 - o Are present
 - ▶ In:
 - A finite space,
- And
 - o They
 - ⊳ Do not

- Have

a

- Precise
 - o Location
 - ▶ In that:
 - Finite space.
- And so
 - o They will
 - ▶ Be present:
 - Anywhere

in

- That
 - o Finite
 - ⊳ Space.
- And
 - o So
 - ⊳ The exact
 - Position

of

- All
 - o Points
 - ▶ In:
 - A Cartesian plane

can

• Only be

- o Defined:
 - ▶ Using:
 - Probability.
- And so
 - The exact
 - ▶ Position of:
 - A particle

in

- An orbital
 - o Will
 - ▶ Be:
 - Undefined.
- In
 - o Sub section 2.1,

we saw that,

- The size
 - o Of a particle
 - ▶ Is:
 - Not zero,
- And
 - \circ In
 - ▶ This
 - Sub section,

we saw that,

• Particles

0	Resides
---	---------

▶ In:

Orbitals,

- And
 - o Also
 - ▷ Orbitals
 - Do not have:

"A metric in it."

- And
 - o So
 - ⊳ From
 - This,

we see that,

- The size
 - o Of:
 - ⊳ A particle

will

- Not
 - o Be
 - ▶ Measurable,
- And
 - o So
 - > Particles

will

- Act
 - o Like
 - ▶ A point
 - In space.

2.3 First exclusion principle

In

• Sub section 2.2,

we saw that,

• A Cartesian plane

is

- An ordered
 - o Collection
 - ⊳ Of:
 - Probabilistic spaces.
- Or an ordered
 - o Collection
 - ▷ Of:
 - Orbitals.
- Also we see that,
 - o Each
 - ⊳ Of those:
 - Orbitals:

will

- Be
 - Associated
 - ⊳ With:
 - A tuple.
- For
 - o Example,

▶ The tuple: **-** (10, 20) will • Be o Associated ⊳ With - The orbital at: (10, 20). • And o So ⊳ All - Orbitals will • Have o A co-ordinate ▶ Associated - With it. • And so o Let us, ⊳ Consider - The orbitals at: (0, 0)and (1, 0). Then we see that, • If:

Everything

▶ That

- Pertains

to

• The orbitals

as

• That

then

• The orbital

to

• Be

• Or

the

```
o As
            ⊳ The
                - One at: (1, 0).
   • And
        o So
            \triangleright At
                - A time,
all
   • The states
        o Of:
            ⊳ Two
                - Orbitals
will
   • Never
        o Be
            ⊳ The
                - Same.
2.4 Space
In
   • Sub section 2.2,
we saw that,
                            "a Cartesian space"
```

• Same

is

• Actually

▷ Collection	
- Of:	
	"orbitals."
 And also 	
o All	
- Orbitals	
will	
• Have:	
	"a position."
so that	
• There	
o Will	
▶ Be:	
- A metric	
in:	
• The:	
	"space."
• And	
o So	
▶ Let:	
– Us	
see.	

o An ordered

• Why do
3
o They
⊳ Have:
- A position?
• It
o Is:
▷ Because,

there

- Is
 - o An attractive
 - ⊳ Force:
 - Between them.
- Or
 - We see that,
 - ▶ If:
 - There

is

- No
 - o Attractive force
 - ⊳ Between:
 - Them,

then

- They
 - o Will
 - ⊳ Change:
 - Their position.

•	An	d so					
	(o If:					
		D	space Has:				
					"a 1	metric,	,,
then							
•	It						

an

- Attractive
 - o Force

o Will:

▶ Have

▶ In:

– It,

so that

- The points
 - o (Orbitals in this case),

▶ In:

– It

will

- Be
 - o Glued:

▶ Together.

• But

o If

▶ There– Is:

"an attractive force,"

then

• All

o The:

▶ Points

will

• Collapse

o Into:

⊳ One.

• But

o That

⊳ Should *not*:

- Happen

because

• Of

o The:

⊳ First exclusion principle

• And so

o There

 \triangleright Will

- Be:

"a repulsive force,"

SO	th	าลt

- The space
 - o Will
 - *▶ Not*:
 - Implode.

So we see that,

- If
 - o There
 - ▶ Is:
 - An attractive force,

then

- There
 - o Will
 - ▶ Be:
 - A repulsive force,

so that

- All
 - o Points
 - ▶ In:
 - It

will

- Remain
 - o Where
 - ⊳ They:
 - Ought to be.

o If	
⊳ Two:	
Something	
does	
• Not	
o Have:	
▷ Anything	
to	
• Do	
o With:	
⊳ Each	
- Other,	
then	
• A force	
Cannot be	
▷ Established:	
 Between them 	
• And	
o So	
> There:	
- Will	
be:	
•	'something"
between	

• But

• All	
o Orbitals	
▶ In:	
- Space,	
• Or	
o There:	
⊳ Will	
be	
• Some	
o transfer	
▷ Of:	
- Something	
between	
• All:	
	"orbitals."
• And	
o So	
⊳ There:	
– Will	
be	
• Some	

• And

Force carriers

⊳ Among:

- Orbitals.

o We: ⊳ Call those • Force o Carriers ▶ Among - Orbitals: "space-Bosons." Also we see that, • From: o The \triangleright Point: (0, 0), - We can • Move o To: ⊳ The right; - And reach: (1, 0), • Or move o To: - And reach: (-1, 0),

• Or move

o Upwards;

 \triangleright And

- Reach: (0, 1),
- Or move
 - o Downwards;
 - \triangleright And
 - Reach: (0, -1).

So we see that,

- A direction
 - \circ Is
 - ▷ Defined:
 - At each point.
- And
 - o So:
 - ▶ An inductive
 - Structure

can

- Be defined
 - o Using
 - ⊳ Some:
 - Adjacent points.

But we see that,

- A definition
 - o Cannot
 - ▶ Be:
 - Given

unless

• That
 Definition:
> Exists.
• Or a definition
o Cannot
▶ Be:
- Written down,
unless
• And until
o That:
▶ Definition
- Exists.
Therefore
• Since
 An inductive
⊳ Structure:
– Can
be
• Defined
o Using
⊳ Some:
 Adjacent points,

we see that,

• There

o Will:

⊳ Exist
 A definition
for
• That:
 Inductive
> Structure.
• And
o So
⊳ From:
– This,
• And
Since
– Is:
"a closed system,"
we see that,
• All
 Definitions
⊳ For
– All:
"inductive structures,
should
• Be
- DC

o Present

▶ In:

 The universe.
• And
o So
– Will
be
Something
 Equivalent
▶ To:
– All
those
• Structures
o In
⊳ The:
- Universe.
• And
o So
⊳ All
- Those:
"equivalent things"
can
• Be
 Transformed
⊳ Into
- Those:

"structures."

• And

o So:

⊳ All

those

• Structures

o Will

▶ Be:

- Creatable.

• And

o So

▶ It:

- Should

be

• Possible

o For:

 $\triangleright Us$

to

• Distinguish

o Between

⊳ All

- Points of:

"a structure."

• Exemplifying,

- o When
 - ▶ We draw
 - The structure:

$$y = x + 1$$
,

we

- See
 - \circ It
 - ▶ As:
 - A straight line,

only

- Because
 - o All:
 - ▷ Orbitals

on

- It
- o Are:
 - ▶ Marked
 - As: on.
- And
 - \circ So
 - ⊳ We need:
 - Something

to

- Mark
 - o Point

As:On,

so that

- We
 - o Can
 - ▷ Create:
 - Structures.
- And
 - o So
 - ⊳ Let:
 - Us

call,

- Those
 - o Markers:
 - > Fermions.
- Also
 - o Since:
 - ▶ Fermions

are

- Just
 - o Used
 - ⊳ To
 - Define:

"induction,"

we see that,

 Fermions
• remnons
o Are
⊳ Some:
- Constructs,
such that
• There
o Will:
⊳ Be
a
• Symmetry
o Between:
⊳ It
 And its opposite.
 Also since
Fermions
⊳ Are:
- Used
to
• Construct
o All:
⊳ Structures,
• And
o Since
– Is:

"a closed system,"

we see that,

- The universe
 - \circ Should
 - ⊳ Provide:
 - For

the:

"fermions,"

used

- To
 - o Create
 - - In it.
- Or we see that,
 - o If
 - ⊳ We:
 - Have

a

- Pen
 - \circ And
 - ⊳ A paper,

then

- We can draw
 - o Two:
 - > Perpendicular

- Lines, • And o We ⊳ Will: - Have an: "xy-plane," • And then o We ⊳ Can - Draw: "a straight line," • And o Say that, ⊳ Its: - Equation is: = x + 1.y• But • We see that, ⊳ The - Universe

does

• Not

⊳ Any	
 Such means. 	
• And so	
o It	
⊳ Should:	
- Provide	
for:	
	"itself"
the	
 Means 	
 To create 	
> Structures:	
– In it.	
• And so	
o From:	
- Moment	
	"the universe"
is	
• Termed	
o As:	
- Space,	
it	

o Have:

Should	
--------------------------	--

- Have
 - ⊳ Some:
 - Means

to

- Construct
 - Structures
 - ▶ In:
 - It.
- And
 - o So
 - ⊳ Let:
 - Us

see,

- How
 - o It:
 - ▶ Provides
 - For: itself

"the means."

to

- Construct
 - o Structures
 - ▶ In:
 - It.
- And

o So

▷ Consider:

- A Cartesian space,

such that

• None

o Of

▶ The orbitals:

- Have

a

• Fermion

o In:

▶ It.

• And

o Also

⊳ Consider:

- The orbitals

at

• The

o Points:

(0, 0), (1, 0), (2, 0).

• In

• Sub section 2.7,

we

• Will

o Show:

⊳ That,

the

• Orbital

 \circ At: (1, 0)

⊳ Can:

- Move

to

• The

o One

At:- (2, 0).

• Then

o When

▶ It:

- Happens

we see that:

"a local induction"

will

• Get

o Created

▶ In:

- That direction,

• And:

"the opposite"

٠	
1	n

- The
 - o Other:
 - Direction.
- And so
 - o In:
 - ▶ The forward
 - Direction,

a

- Fermion
 - o Will
 - ⊳ Get:
 - Created,
- And
 - \circ An
 - ▶ Anti-fermion

in

- The
 - o Other:
 - ▷ Direction,

since

- Fermions
 - o Corresponds
 - ▶ To:
 - Induction,

o Since:
▶ Fermions,
 And anti-fermions
are:
" " " " " " " "
"symmetrically opposite."
• But
o Since
- Forces
we
• Described
o Earlier
⊳ Will:
- Bring
it
• Back to
o Its
⊳ Old:
- Position,
we see that,
• That
o Pair:
▷ Created,
will

• And

o Annihilate:	
⊳ Each	
- Other.	
• And	
• And	
o So:	
– Total	
will	
• Be: zero	
o Number	
⊳ Of:	
- Fermions.	
• And	
• And	
o So:	
⊳ No	
Structure	
will	
• Be:	
	"creatable."
• And so	
∘ From:	
▶ The– Moment	
- Woment	
when:	
	~ ~

• Immediately

"the universe"

is

- Termed
 - o As:
 - ⊳ A metric
 - Space

there

- Should
 - o Be
 - ⊳ Enough:
 - Fermions

in

- It
- To
 - ▷ Construct:
 - Structures.
- And
 - o So
 - ⊳ Let:
 - Us

see,

- How
 - \circ It
 - - Fermions in it.

- Then
 - We see that,
 - ▷ A metric
 - Space

can

- Be
 - o Defined
 - - Induction.
- And
 - o So:
 - - Space

can

- Be:
 - o Constructed
 - □ Using:
 - Induction.
- Also
 - o Since:
 - ⊳ A metric
 - Space

is

- An ordered
 - o Collection
 - ⊳ Of:

- Orbitals,

we see that,

- When
 - o It

then

- Orbitals
 - o Will be
 - ▷ Created:
 - Inductively.
- But
 - o Since
 - - Should

be

- Enough
 - o Fermions
 - ▶ In:
 - The universe

from

- The moment
 - o It
 - ▶ Is:
 - Termed

"a metric space,"

we see that,

- Enough
 - o Fermions
 - ▶ To:
 - Construct

all

- Structures
 - o Should
 - ⊳ Also be:
 - Created

just

- Before
 - o It
 - ⊳ Will be:
 - Termed

as:

"a metric space."

- And so
 - o It is
 - *⊳ Not*:
 - Enough

that

• We create

		71	
0	1	n	\mathbf{ose}

▷ Orbitals

- For:

"the space,"

- But
 - o Enough
 - > Fermions:
 - Should

also

- Be
 - o Created
 - ⊳ Along with:
 - Orbitals.
- And so
 - o We
 - ▷ Introduce:
 - Movons.
- The:
 - o Two

of

- Movons
 - o Are:
 - ▶ Tions
 - And nions.

• Tion	
Causes	
⊳ The:	
- Next	
in:	
"or	industiva process?
an	inductive process,"
• To	
o Be:	
	"created,"
• And	
Nions	
⊳ Causes:	
- The construc	ction
of:	
A metric	
o Between	
⊳ Two:	
- Something.	
• Then since	
o Every	
▷ Induction	
– Has:	
	"a basis,"
assume that,	

- We
 - o Have:
 - ⊳ A seed

which

- Will
 - o Act
 - ▶ As:
 - The basis

for

- Creating:
 - o The
 - ⊳ Space.
- And
 - o So
 - ⊳ When:
 - Tions

act

- On
 - o That:
 - ⊳ Seed,

we see that,

- Orbitals
 - o Will
 - ⊳ Be
 - Created:

"inductively."

• But	
o When	
- Creates	
.1	
the	
• Next	
o In:	
> A sequence,	
_	
we see that,	
• Only	
o The next	
⊳ Will	
– Be:	
	"created,"
• And	
o No metric	
⊳ Will	
– Be:	
	"created,"
	created,
• And	
o It	

⊳ Will:

– Ве

+	h	\mathbf{a}	+
ı.	H	а	ι.,

- Two
 - o Something:
 - ⊳ Exists,

without

- Any
 - o Definition
 - ⊳ For:
 - A metric.
- And
 - o So
 - ⊳ For:
 - The sake

of

- The
 - Elements:
 - ▶ Generated

by

- Tions
 - o To
 - ⊳ Form:
 - A metric space,

we see that,

- We
 - o Need:

	3 1	•			
N	N	10	\cap 1	n	C

- And
 - o So:
 - ▶ Nions

will

- Act
 - o Along
 - ⊳ With:
 - Tions,

so that

- Those
 - o Things:
 - ⊳ Created

will

- Form:
 - o A metric
 - ⊳ Space.
- Then
 - o When:
 - ▶ Nions

acts

- Along
 - o With:

As

To

▷ Create:

- A metric space,

we see that,

• The

o First

- Principle

will

• Be:

"applicable"

for

• Those

o Things:

⊳ Created.

• But

o When

 \triangleright It

- Is:

"applicable"

we see that,

• Even though,

 \circ All

▷ Those:

- Things

which

• Where:

"created,"

now

• Resides

 \circ At

⊳ The same:

- Place

where

• That

o Seed:

 \triangleright Is,

we see that,

- Those things
 - o Created
 - ⊳ Cannot:
 - Stay there,
- And
 - o So:

⊳ They

will

• Move

o To ⊳ Form: - A metric. • And o So: "a local induction" • Will o Be: ▷ Created. • And So: ▶ A fermion will • Appear \circ In ⊳ All - Those: "orbitals." • And o So:

will

• Be

▷ Initially,

- There

- o One
 - - Lump.
- Then we see that,
 - o If
 - ⊳ We:
 - Have

a

- Pen
 - o And
 - ▷ A paper,

we

- Can
 - o Draw:
 - A figure,
- And
 - Then
 - ⊳ Rub:
 - It,
- And
 - Draw
 - ▷ Another,
- And
 - Say
 - ⊳ That,

th

the
 Old figure
o Has
⊳ Been:
- Transformed
into
• The
o New:
⊳ One.
So we see that,
• This
o Concept

in

- All
 - Metric:

▶ Is:

- Definable

- ⊳ Spaces.
- And
 - o So
 - ⊳ Should
 - Be:

"possible"

for

• Us

\cap	n	•

- ⊳ Reshaped,
- ⊳ Or break down,
- ▷ Or extended,
- ⊳ Or move
 - All structures

in:

"the universe."

But we see that,

- Since
 - o The universe
 - ▶ Is:
 - A closed system,

if

- It
- o Is:
 - ⊳ To

have

- Such
 - o A concept
 - ▶ In:
 - It,

then

- It
- \circ Should
 - ⊳ Provide

– For: <i>i</i>	tself
	"the means"
to	
• Establish	
o This	
▷ Concept:	
– In it.	
So we see that,	
• There	
Should	
▶ Be:	
– Many s	structures
in:	
	"the universe,"
	the universe,
• And	
o They	
⊳ Should:	
- Interac	t
with:	
	"each other,"
so that	
• The	
Above	

⊳ Mentioned:

- Concept

could

• Be:

"established."

• And

o So

⊳ We

- Need:

"gravity."

• But

o We

⊳ Will:

- Talk

more

• On

o It:

We saw that,

• Initially,

o The:

▶ Universe

was

• One

o Massive:

⊳ Lump,

o All:	
▷ Orbitals	
– In it	
had	
• A fermion	
o In	
⊳ It.	
• Then we see that,	
o It	
⊳ Will:	
 Impossible 	
to	
Distinguish	
The points	
▷ Of:	
- A structure.	
• And	
o So	
⊳ It	
- Will be:	
	"impossible"
• To	
o Construct:	
	"structures."
	72

• And so

• And so	
We see that,	
▷ Some:	
Orbitals	
Olohuis	
with	
• <i>N</i> o	
Fermions	
⊳ In:	
– It	
should	
• Be:	
	"created."
	Clealed
	createu.
so that	created.
	created.
so that	created.
so that • It	created.
so that • It • Will	created.
so that • It • Will • Be:	created.
so that • It • Will • Be: - Possible	created.
so that • It • Will • Be: - Possible for	created.
so that • It • Will • Be: - Possible for • Us	created.
so that • It • Will • Be: - Possible for • Us • To:	created.

o Of

⊳ All:

- Structures.	
• Also	
o Since	
> Those:	
Fermions	
were	
• Created	
o To:	
> Realize	
all	
• Possible	
o Definitions,	
▶ That	
- Can be:	
	// 11 111
	"realized"
we see that,	"realized"
we see that, • Fermions	"realized"
	"realized"
• Fermions	"realized"
FermionsShould	"realized"
FermionsShouldBe:	"realized"
Fermions○ Should▷ Be:- Scattered	"realized"
 Fermions Should Be: Scattered evenly 	"realized"
 Fermions Should Be: Scattered evenly In 	"realized"
 Fermions Should Be: Scattered evenly In The 	"realized"

	"	٠,		
1	1	-1	_	1
а	1		٠.	

- Empty
 - o Orbitals
 - ▶ Have
 - Been:

"created."

- But we see that,
 - \circ If
 - ⊳ New orbitals
 - Are:

"constructed inductively,"

then

- The same
 - o Process
 - ⊳ Will:
 - Continue,
- And
 - \circ That
 - - Lump

will

- Grow
 - \circ Yet
 - ⊳ Bigger.
- And so that

▶ P:	rocess	
	- Should:	
		"halt,"
Ç.		
after		
• Enough		
o Fermi	ons	
⊳ H	lave	
	- Been:	
		"created,"
• And		
 Orbita 	ıls	
> S ²	hould be:	
	- Created:	
		"non-inductively,"
• And		
o All		
⊳ T	he fermions:	
	Should	
be		
 Scattered 		
o In:		
	he ensuing	
	- Space.	
Also		

o Inductive

o This:
> Non-inductive
Creation
of
Orbitals
o Is:
▷ Definable,
since
 Orbitals
o Are:
Creatable,
• And
o Since
⊳ It
– Is:
"a finite process,"
• Also since
o Fermions
⊳ Where:
- Created
when
Orbitals
o Where

⊳ Created:

- Inductively,

we see that,	
• When	
o orbitals	
⊳ Are	
- Created:	
"non-induct	tively,"
then	
• <i>No</i>	
Fermion	
⊳ Will	
– Be:	
"create	<i>a</i> "
Cleate	u.
Also since	
o Nions	
⊳ Creates:	
- A metric,	
we see that,	
• They	
o Can	
⊳ Change:	
 The distance 	
between	

• Fermions

 \circ In

⊳ That:

	• And	
	o So	
	▶ It:	
	– Will	
be		
	• Possible	
	o For:	
	> Nions	
to		
	• Create	
	o A finite	
	Number of	
	- Orbitals:	
	- Orbitals.	
	- Orbitais.	"non-inductively."
	• And	"non-inductively."
		"non-inductively."
	• And	"non-inductively."
	• And o So	"non-inductively."
be	AndSo▷ It:	"non-inductively."
be	AndSo▷ It:	"non-inductively."
be	 And So ▷ It: ─ Will 	"non-inductively."
be	 And So ▷ It: ─ Will • Possible	"non-inductively."
	 And So It: Will Possible For: 	"non-inductively."
be	 And So It: Will Possible For: Nions 	"non-inductively."
	 And So It: Will Possible For: 	"non-inductively."

- Massive lump.

o On
⊳ That:
 Massive lump.
• And
• And
When it
⊳ Does:
– So,
we see that,
• New
 Orbitals
⊳ Will be
- Created:
<i>"</i>
"non-inductively,"
"non-inductively," • And
·
• And
• And o So
AndSo▷ All:
AndSo▷ All:Fermions
AndSo▷ All:Fermions will
 And So All: Fermions will Be:
 And So All: Fermions will Be: Separated

NumberOf:

"orbitals."

- And
 - o So
 - ▶ By:

- That,

we see that,

- In
 - o The:
 - ▶ Beginning,

there

- Will
 - ∘ Be:
 - ▷ A big
 - Explosion.
- And then
 - o After
 - ⊳ That:
 - Explosion,

there

- Will be
 - o No structures
 - ▶ In:
 - The universe.
- And
 - o Then:

⊳ We

can

- Bring
 - o Those
 - ▶ Fermions:
 - Together,
- And
 - o It:
 - ▶ Would

be

- Possible
 - o To
 - ▷ Construct:
 - Structures.

Also we see that,

- If
 - \circ All
 - ⊳ The:
 - Points

in

- The space
 - o Are:
 - ▶ Marked
 - As: on,

then

- It
 - o Will:
 - ⊳ Be

like

- No point
 - o Is:
 - ▶ Marked
 - As: on.
- And
 - o So
 - - Will

be

- An
 - o Upper
 - ⊳ Bound:
 - For

the

- Number
 - Of structures
 - ▶ In:
 - The universe,

which

- Will
 - ∘ Be:

Proportional	
to	
• The	
 Volume 	
⊳ Of:	
 The universe. 	
• And	
 Similarly, 	
– Will	
be	
• A lower	
o Bound	
⊳ For:	
 The number 	
of:	
	structures.
	structures.
• And	
o So	
⊳ The:	
- Number	
of	
• Fermions	
o In	

⊳ The:

- Universe
will
• Be
o Proportional:
⊳ To
the
• Volume
o Of
▷ The:
- Universe.
• In
o Section 5,
we
• Will
o Give
▶ The:– Number
of
• Structures
o That
⊳ Are: – There

"the universe."

• Also

in:

⊳ All:

- Structures

are

- Defined
 - o Using:

in

- All:
 - o Structures,

we see that,

- There
 - o Will:
 - \triangleright Be

a

- Relation
 - o Between
 - ⊳ Adjacent:
 - Fermions.
- And so
 - \circ If: L
 - ▷ Is:
 - A structure.

then

• There

0	Will be:
	⊳ Some
	- Rules

in

- The definition
 - o Of:
 - ⊳ That:
 - Structure.
- Then
 - Since
 - > That definition:
 - Exists

only

- Because
 - o Of:
 - ▷ Those
 - Rules,

we see that,

- Those
 - o Rules
 - ⊳ Will:
 - Enforce

the

- Stability
 - \circ Of
 - ⊳ That:

		- Definition	n
•	And		
	o Sc)	
		⊳ From:	
		- This,	
•	And		
	o Si	nce	
		▶ The structure:	:
		- Exists	
only			
•	Because	e	

we see that,

- Structures
 - Will

o Of

⊳ That:

- ▶ Be:
 - Stable

- Definition,

because

- Of
 - Those:
 - ⊳ Rules.
- And so
 - Fermions

▷ Of:

- A structure

will

- Stick
 - o Together
 - ⊳ To form:
 - That structure.
- And
 - o So
 - ⊳ Let:
 - Us

see,

- Why do
 - o They
 - ⊳ Stick
 - Together?
- It
- \circ Is
 - ⊳ Because,

there

- Is
- o An attractive
 - ⊳ Force:
 - Between them,

since

• If

o Not,

then

- They
 - o Will
 - ⊳ Fly

- Away.

- But
 - o If
 - - **–** Is

only

- An attractive
 - o Force
 - ▶ In:
 - A structure,

then

- It will
 - o Collapse
 - ⊳ Into:
 - A single point.
- And
 - o So
 - ▶ In:
 - Order

to

- Counter
 - o Act:
 - - Force,

there

- Will
 - ∘ Be:
 - ▶ A repulsive
 - Force

in

- The inside
 - o Of:
 - ⊳ The
 - Structure,

so that

- It
- o Will
 - *⊳ Not*:
 - Implode.
- And
 - o So
 - ▶ In:
 - Order

to

 Establish
o Forces
⊳ Inside:
- A structure,
we see that,
 Fermions
o In:
will
• Send
o Force
▶ Mediating:
- Particles
to
• Other:
o Fermions,
• And
o Those
⊳ Force mediating
 Particles sent
will
• Get
 Absorbed

▶ By:

- Other fermions,

		at	
SO			

50 that
• These
o Forces
Could be:Established.
• Or we see that,
o If
Those:Mediating particles
are
• <i>Not</i> :
o Absorbed,
then
• Those
o Forces

"established,"
• And
• The structure
⊳ Will:
– Be unstable.
• And
o So
⊳ Let:

- Us

call,

- Those
 - o Force
 - ▶ Mediating
 - Particles:

"bosons."

- And
 - o So
 - ▶ Fermions:
 - By nature

will

- Send
 - o Bosons
 - ▶ To:
 - Other fermions,

so that

- Structures
 - \circ Will
 - ▶ Be:
 - Stable.

Then we see that,

- Since
 - o Fermions can
 - ⊳ Emit:

• Fermions
o Can be
▷ Converted
- Into:
"bosons."
 Also since
o Bosons
⊳ Sent:
 By a fermion
can
• Be
o Absorbed
▶ By:
 Other fermions,
we see that,
• Bosons
o Can be
▷ Converted
- Into:
"fermions."
Termions.
• And
o So
▶ We see that:
95
75

- Bosons,

we see that,

"mass and energy

are

mutually convertible."

So assume that,

- A fermion
 - o Has
 - Absorbed:
 - A boson.
- Then
 - We see that,
 - - Will be:

"a change."

- Or
 - o If
 - - Is:

"no change,"

- We
 - o Say:

"nothing happened."

Or we see that,

- If
 - o A fermion,

▶ After

- Absorbing:

"a boson,"

is

• The

o Same

▶ As:

- Before,

then

• We say that,

o Nothing

⊳ Has

- Happened.

• And

o So

⊳ We:

- Will

say,

No

o Boson:

⊳ Was

- Absorbed.

• And

o So:

▶ A fermion

	٠	1	1
XX/	1	ı	ı

- Be different
 - o After:
 - ▶ Absorbing
 - A boson.
- Also if:
 - o A fermion
 - ▶ After
 - Absorbing:

"a boson,"

is

- Not
 - o In some way
 - - Before,

then

- There
 - o Will
 - \triangleright Be
 - No point

in

- Saying
 - o That:

"a fermion"

after

 Absorbing
o A boson
⊳ Has:
More things.
• And so
o There
⊳ Will
– Be:
"more things,"

in

- A fermion
 - o After:
 - > Absorbing
 - A boson.
- But
 - o Even

there

- Are more
 - Things
 - \triangleright In
 - It,

we see that,

- The
 - o Area

▶ In:

- Which

all

• These

o Things:

⊳ Resides,

will

• Still

o Be:

⊳ The

- Same.

• And

o So

- Will be:

"an upper bound,"

for

• The

o Mass

▷ Of:

- A particle.

• And

 \circ Also

▷ That:

- Upper bound

	٠	•	•
XX/	1	ı	ı

• Not

∘ Be:

⊳ Infinite,

since

• Induction

o Is:

⊳ Not

used

To

o Define:

▶ It.

• And similarly,

o There

⊳ Will

- Be:

"a lower bound,"

for

• The

o Mass

⊳ Of:

- A particle.

• And

o Also

⊳ That:

 Lower bound 	
will	
• Not	
∘ Be:	
⊳ Zero,	
since	
• A fermion	
 Cannot 	
▶ Be:	
- Defined	
as:	
	"nothing."
• And	
o So	
⊳ From:	
- These,	
we see that,	
• As	
o The mass	
⊳ Of	
- A particle:	
	"increases,"

it

• Will

- Like:	
	"matter,"
• And as	
o The mass	
⊳ Of	
- A particle:	
	"decreases,"
it	
• Will	
o Behave	
> More	
- Like:	
	"a wave."
• And	
o Also	
⊳ From:	
- This,	
we see that,	
 Bosons 	
o Are	
> A transformation:	
– Of a part	
of:	

o Behave

	"fermions."
• Also	
Since:	
> Fermions	
can	
• Be:	
	"moved,"
from	
• One	
o Place	
▶ To:	
- Another,	
we see that,	
 Fermions 	
o Will	
> Not	
– Be	
a	
• State	
o Of:	
⊳ An	

- Orbital,

• But

o Some

Real:Things	
that	
• Can	
o Be:	
⊳ Placed in– In:	
	"an orbital,"
• Or moved	
o From:	
One orbitalTo another.	
• Also	
o Since:	
> Fermions	
are	
• Created	
• When:	
OrbitalsMove,	
we see that,	
• Fermions	

o Are:

- Of orbitals.

- Orbitals,	
since	
• Bosons	
o Are	
▷ A transformation:	
- Of a part	
of:	
	"fermions."
• But bosons	
o Cannot:	
> Interact	
- With:	
	"orbitals,"
since	
• If	
o They	
⊳ Do	
- So;	
then	
 Bosons 	
• Will be:	
	106

• And so bosons

o Can pass

o So	
⊳ Bosons:	
– Will	
be	
 Converted 	
o Into:	
▷ Orbitals,	
• And	
o There	
⊳ Will:	
– Be	
a	
 Violation 	
o Of:	
⊳ The	
 First exclusion pri 	nciple.
• Also	
o Since:	
▶ Bosons	
are	
• Emitted	
o By:	
▶ Fermions,	
	107

- By orbitals,

• And

•	
.1	ust

- For
 - o The:
 - ⊳ Sake

of

- Being
 - o Absorbed by
 - Other:
 - Fermions,

we see that,

- The
 - \circ Sum total
 - ▷ Of:
 - Bosons

in

- In
 - o This universe
 - ⊳ Will
 - Be:

"a constant,"

- Also since
 - o A fermion
 - ⊳ Can emit:
 - A boson,

we see that,

•	All

• The mass

▶ In:

A fermion

can

• Be

Emitted

▶ As:

- Bosons,

• And

o That:

▶ Fermion

will

• Cease

o To:

⊳ exist.

• But

We

⊳ Will:

- Deal

with

• This

o Problem

▶ In:

- Sub section 2.14.

So	we	see	that,

- If
 - o We:
 - ▶ Assume

that,

- We
 - o Do not
 - - Movons,

then

- There
 - o Will
 - ▶ Be:
 - A seed,
- And
 - Nothing
 - ⊳ Will act:
 - On it,
- And there
 - o Will be:
 - ⊳ No
 - Space.

So we see that,

- We
 - o Need:

▷ Tions.
• And
o Also
From:What
we
• Saw
o Earlier,
we see that,
• We
o Need:
Nions,
• And
o Also:
> Nions
can
• Act
o Without:
▶ Tions.
• Also
o Since
Nions:
- Causes
the
 Construction

o Of:	
⊳ A metric,	
• And	
Since	
Space-bosonsEmerge	
only	
• Because	
o Of:	
⊳ A metric,	
we see that,	
Nions	
o Causes	
> The production	
– Of:	
	"space-bosons."
 Also since 	
Tions	
⊳ Can	
- Cause:	
	"a change,"
• And	

can

o Since:

⊳ A change

• Occur		
Without		
▷ Creating:		
– A metric,		
we see that,		
• Tions		
Can act		
⊳ Without:		
- Nions.		
• And so:		
o Tions		
⊳ And		
- Nions		
can		
• Act:		
o Together		
⊳ Or		
- Alone.		
2.5 Second exclusion prin	nciple	
Assume		
• That		
• These		
⊳ Points:		
	(0, 1),	
(-1, 0),	(0, 0),	(1, 0),
	110	

- Belongs
 - o To:
 - ▶ A structure.
- Then we see that,
 - o In:
 - ⊳ All these
 - Points

there

- Will be:
 - o A direction
 - ▶ Along
 - Each axis.
- And
 - o So
 - ⊳ From
 - This,
- And since fermions
 - o Are used
 - ⊳ To: construct
 - Structures,
- And since
 - o Equal
 - o And opposite
 - ▷ Directions:
 - Cancel each other,

we	se	e	that
	•	I	n

o All:

▶ Fermions,

there

- Will be
 - o Exactly:
 - ▷ One direction
 - For each axis.
- And so
 - o For each
 - ▶ Fermion:
 - In a structure,

there

- Will
 - ∘ Be:
 - - And n directions,

where

- \bullet n is
 - o The number
 - ▷ Of dimensions:
 - In space.
- And
 - o So

	- We	change		
the				
•	Direction			
	o Of:			
	▶ A fermion	on,		
then				
•	It			
	o Will			
	⊳ Be:			
	– Equ	ivalent		
to				
•	Changing			
	o Its:			
	⊳ State.			
•	But			
	o When			
	⊳ We:			
	- Con	sider		
the				
•	Fermions			
	o At			
	⊳ The			
	- Poir	nts:		
		(1, 0),	(2, 0),	(3, 0)
		` ' ' ' ' '	· //	())

▶ If:

we see that,

- (3, 0)
 - o Can be
 - ▶ Reached
 - From: (2, 0),

by

- Moving
 - o One step
 - ▶ To:
 - The right.
- And
 - o Similarly,
 - ⊳ (1, 0)

can

- Be
 - o Reached
 - ⊳ From:
 - -(2, 0),

by

- Moving
 - o One step
 - ▶ To:
 - The left.
- And
 - o So we see that,

_		1	Δ 1	re	٠
_					

- Should

be

- Two
 - Directions
 - ⊳ For:
 - An axis.
- And
 - o So
 - ⊳ All:
 - Points

of

- A structure
 - o Will
 - ⊳ Have:
 - -2n directions.
- And
 - o So
 - ⊳ From
 - This,
- And
 - o Since
 - ⊳ All:
 - Fermions

can

• Have only

- o One direction
 - ⊳ For:
 - Each axis,

we see that,

- All orbitals
 - o Can
 - ▷ Contain:
 - Two fermions.
- But
 - o If:

are

- More than
 - o Two fermions
 - ▶ In:
 - An orbital,

then

- There
 - o Will be:
 - - 2n directions.
- And
 - o So
 - - Cannot

be

- More than
 - o Two fermions
 - ▶ In:
 - An orbital.
- Also
 - o Since

are

- Only
 - \circ 2n directions
 - ▶ At:
 - All points,
- And
 - o Since:
 - ⊳ Two
 - Fermions

in

- An orbital
 - o Will always
 - ⊳ Produce:
 - 2n directions,

we see that,

- Directions
 - o Of:
 - ⊳ Two
 - Fermions

in

• An

o Orbital

will

• Always

o Be:

▷ Different.

• But when

• We consider

▶ Fermions

- At the points:

(0, 0), (1, 0),

we see that,

• If

o The directions

⊳ Of those:

- Two fermions

in

• Those

o Two orbitals

⊳ Are:

- Are same,

then

• Their

	⊳ Will be:
	 Different.
•	And
	o So
	⊳ At:
	- A time,
all	
•	Quantum states
of	
•	Two fermions
	o Will never
	⊳ Be:
	- The same.
•	Also
	o Since:
	⊳ The
	- Rules
in	
•	The
	 Definition

⊳ Of:

⊳ Bosons

Since

• And

- A structure,

o Positions

- Sent

by

- The
 - o Fermions
 - ▶ In:
 - A structure,

are

- Used
 - o To:
 - Stabilize
 - The structure,

we see that,

- Bosons
 - \circ And
 - - Rules

will

- Be:
 - o Related.
- And
 - o So
 - - Bosons

will

• Also be

0	A	part
\circ	7	part

▷ Of:

- The inductive definition.

- And so
 - o Bosons
 - ⊳ Will
 - Also

have

- Directions
 - o For:
 - ⊳ Each
 - Axis.
- But
 - o Since
 - ▶ Bosons
 - Are not

the

- Points
 - o Of:
 - ⊳ The
 - Structure,

we see that,

- Quantum states
 - o Of:
 - ⊳ Two
 - Bosons

- Be:
 - o The
 - ⊳ Same.
- In
 - Sub section 2.4

we saw that,

- Attractive
 - o And repulsive
 - ⊳ Forces
 - Arises

just

- Because
 - o Of:
 - ⊳ A metric,
- And
 - \circ In
 - ⊳ Sub section 2.2,

we saw that,

- There is:
 - o No metric
 - ▶ In:
 - An orbital.

So we see that,

• There

- o Will
 - ⊳ Be:
 - No forces

between

- Two
 - o Fermions
 - ▶ In:
 - An orbital.

2.6 Velocity

Consider

- A finite
 - o System.
- Then since
 - o It
 - ▷ Is:
 - Finite,

we see that,

- It
- o Will:
 - ⊳ Never
 - Change.
- But if
 - We add:
 - > An inductive process
 - Into it,

- Will
 - Start
 - ⊳ Seeing:
 - Changes.
- And so
 - An action
 - ⊳ For:
 - Induction

will

- Create:
 - o A change.
- But
 - o If
 - ▶ We remove:
 - That induction

which

- We
 - o Added:
 - ⊳ Into
 - It,

then

- We
 - o Will:
 - ⊳ No

- Longer

see

- Any
 - o More:
 - ⊳ Changes.
- And so
 - We see that,
 - ⊳ Only:
 - Induction

can

- Cause:
 - o A change.
- And
 - o So
 - ▶ Assume
 - That,

an

- Action
 - o For:
 - ▷ An induction

has

- Been
 - o Applied:
 - ⊳ On

a

	• Fermion,
	o Or
	▶ A structure.
	• Then
	o Since:
	⊳ Such
an	
	• Action
	o Causes:
	▷ A change,
	• And since
	o The number
	▷ Of things:
	 In the system
is	
	• Not
	o Going
	▶ To:
	- Change,
	• And
	Since

we saw that,

• Fermions

 \triangleright In

- Sub section 2.4,

 And structures 	
⊳ Can:	
- Move,	
we see that,	
• When	
o That	
> Action:	
- On	
that	
• Fermion,	
o Or	
> Structure	
- Causes:	
	"a change,"
we see that,	"a change,"
we see that, • That	"a change,"
• That	"a change,"
	"a change,"
ThatChange:	"a change,"
 That Change: ▶ Made	"a change,"
That○ Change:▷ Made will	"a change,"
 That Change: ▶ Made will Be to 	"a change,"
 That Change: Made will Be to Change 	"a change,"
 That Change: Made Will Be to Change Their: 	"a change,"

D	An actio	n
	- For:	induction

"velocity."

We saw that,

will

• When

• Create:

- o An orbital
 - ⊳ Moves:
 - To the right,

a

- Fermion
 - o Will get
 - ▷ Created:
 - In that direction,
- And
 - o An anti-fermion
 - ▶ In:
 - The other direction.

So we see that,

- If
 - o Such a thing:
 - ⊳ Will not
 - Happen,

then

o So

⊳ From

- This,

we see that,

- Mass of:
 - o A fermion
 - ▶ And velocity of:
 - Orbital motion

will

- Be related
 - o To:
 - ⊳ Each
 - Other.
- Also
 - \circ In
 - ▶ This
 - Case,

since

- There
 - o Cannot be:
 - ▶ Negative mass
 - For fermions,

we see that,

- When orbitals
 - o Moves
 - ⊳ With:
 - A greater velocity,

- Corresponding
 - o Fermion
 - ⊳ Will be:
 - Different,
- And
 - o So
 - > The corresponding:
 - Fermion

will

- Be
 - o More
 - Massive.
- And so velocity
 - o Of orbital motion
 - ▶ And mass
 - Of a fermion

will

- Be
 - o Proportional
 - ▶ To:
 - Each other.
- And
 - o So
 - ⊳ When

- Orbital
 - o Moves
 - ▶ To:
 - The right,

we see that,

- The
 - o Corresponding:
 - ⊳ Fermion
 - Will

be

- Defined
 - o In:
 - ⊳ The
 - Orbital,
- And so
 - o Velocity
 - ▷ Of:
 - Orbital motion
 - \circ And
 - ⊳ Velocity
 - Of a fermion

will

- Be
 - o Proportional
 - ▶ To:

- Each other.
- And so mass:
 - o Of a fermion
 - ⊳ And
 - Its velocity

will

- Be
 - o Proportional
 - ▶ To:
 - Each other.

2.7 Uncertainty principle

Consider

- An inductive sequence
 - o From
 - ▶ The points:
 - A to B.
- Then
 - o Since
 - ▶ It:
 - **–** Is

an

- Inductive
 - o Sequence,

we see that,

• There

- o Will be:
 - ⊳ Some rule
 - To define it.
- Also
 - o If:

are:

- Some
 - Conditions
 - ▶ To apply
 - Those rules,

then

- Those:
 - Conditions
 - ⊳ Will:
 - Also

be

- A part
 - o Of:
 - - Rules.
- And
 - o So

will

• Be:		
0	No	Rules
for	V	Kuics

• The

- o Rules
 - > Themselves.
- And
 - o So
 - ▶ At:
 - The microscopic level,

there

- Will
 - o Be:
 - ▶ Nothing

that

- Can
 - o Establish
 - ▶ Things:
 - Precisely

with

- Respect
 - o To:
 - ⊳ The
 - Underlying space.

- And
 - o So
 - ⊳ If we:
 - Divide

that

- Sequence
 - o Into:
 - ⊳ Tiny
 - Intervals,

then

- There
 - o Will be:
 - ⊳ No rules
 - In it

to

- Make
 - o Things:
 - ▷ Precise.
- And
 - o So
 - - Will

be

- Randomness
 - o In

	Γh	റ	Δ.
>	111	OS	—

- Intervals

with

- Respect
 - o To:
 - ⊳ The
 - Underlying space.
- But if:
 - o We
 - ▷ Expand:
 - Those intervals,

then

- We
 - o Can
 - ⊳ Do it:
 - Only

by

- Applying
 - o The rules
 - ▷ Of:
 - The sequence

relative

- To:
 - o The
 - ▶ Underlying space.

• And so
o When
⊳ We:
– Do it,
we see that,
• The
 Randomness
⊳ Will:
- Disappear,
• And
o An order
⊳ Will:
– Appear.
• And
o So
> There:
– Will
be
Uncertainty
o At:
- Level,
• And

o Order

▶ At:

- The macroscopic level.

o So

⊳ When:

- The motion

of

- A particle
 - o Is:
 - ▶ Defined

- By: induction,

we see that,

- At:
 - o The
 - ▶ Microscopic
 - Level,

there

- Will be:
 - o Some uncertainty
 - ▶ In:
 - Its velocity.
- But
 - o At:
 - ▶ The macroscopic
 - Level,

we

• Will not

o See

⊳ Any:

- Randomness.

• And

o Similarly,

▶ If:

- A particle

is

• Not

o A part

⊳ Of:

- A structure,

then

• There

o Will

⊳ Be:

- Nothing

to

• Precisely

o Define:

 \triangleright Its

- Position.

• And

o So

- Will

	TT	
•	Incar	tointy
•	Uncer	taintv

o In

⊳ Its:

- Position.

• Or we see that,

o Since:

A finite

- Number

of

• Orbitals

o Can be:

▶ Defined

- Without induction,

we see that,

• If:

o We

⊳ Say

- That,

a

• Particle

o Is

▶ Present

– In:

"a finite metric space,"

ť	h	Δ.	n
		С.	H

- That
 - o Particle:
 - \triangleright Can
 - And will

be

- Present:
 - o Anywhere

in

- That:
 - o Finite
 - ▶ Metric space.
- In
 - o Section 4,

we

- Will
 - o Give:
 - \triangleright An
 - Upper bound

for

- The size
 - o Of:
 - - Metric space.
- But

If: We Say

that,

- A particle
 - o Can be
 - ⊳ Any where:
 - In:

"an infinite space,"

then

- In effect,
 - o We
 - ▶ Would have:
 - Defined

some

- Rules
 - o For:
 - ⊳ An infinite
 - Number of:

"positions."

- And
 - \circ So

 $\triangleright By$

- That,

the

Position	
o Of:	
- Will become:	
	"precise."
 Also since 	
A particle	
▶ Is:	
- A single entity,	
we see that,	
• All its	
o Properties	
⊳ Will be:	
- Related.	
• But	
o Since	
is	
• <i>No</i>	
Induction	
▶ In:	
- A particle,	
we see that,	
• When	
o There	

▶ Is:	
 A change 	
in	
• One	
\circ Of	
⊳ Those:	
- Properties,	
_	
then	
• There	
o Will be:	
⊳ No	
- Rules	
to	
Precisely	
o Define:	
⊳ How	
- That:	
	"change"
will	
Be reflected	
o In:	
⊳ The other	
Properties.	

• And so

o We

- Predict,

how

• That

o Change

⊳ Will

be

• Reflected

 \circ In

▶ The other:

- Properties.

• And

o So

- Set

of

• States

o Of:

▶ A particle

can

• Only be

o Defined

▶ Using:

- Probability.

• And

- o Also
 - ⊳ From
 - These,

we see that,

- Orbitals
 - o Will:
 - ▶ Randomly
 - Move

to

- The left
 - o Or to the right
 - ⊳ Or to the top
 - Or to the bottom.
- And also
 - o The velocity
 - ⊳ Of:
 - That motion

will

- Be
 - o A random value
 - ⊳ From:
 - A finite range.

2.8 Superposition

In

• Sub section 2.5,

we saw that,

- Two particles
 - o Can reside
 - ▶ In:
 - An orbital,
- And that
 - o There
 - ⊳ Will be:
 - No forces

between

- Two
 - o Particles
 - ▶ In:
 - An orbital.
- And so
 - o If:
 - ⊳ Two
 - Particles

can

Exist

at

• The same

- o Place (informally)
 - ▶ In:
 - An orbital,

then

- They will
 - o Interact
 - ⊳ With:
 - Each other.
- And so
 - o If
 - o And when
 - ▶ Two fermions:
 - Interact,

their

- Vector properties
 - o Will:
 - ⊳ Add up
 - Or substract.
- And so when
 - o Particles:
 - - And interact,

we see that,

- They
 - o Will not
 - ▷ Destroy:

—
 Each other,
• But there
o Will be:
⊳ A local
 Cancelation.
• And so
If we try
 A particular property,
then
• That
o Property
⊳ Will:
 Single out.
• Also
o Since:
▶ Interacting
- Particles
will
• Not
o Destroy:
⊳ Each
- Other,
we see that,
• <i>Two</i>

- o Interacting:
 - > Particles

can

- Stop
 - o Interacting,
 - ▶ And move
 - Away.
- In
 - Sub section 2.7,

we see that,

- A free particle
 - o Can:
 - ▶ Randomly
 - **–** Ве

at

- Any point
 - o Of:
 - ⊳ A finite
 - Metric space.
- But
 - o Since
 - ⊳ That:
 - Finite space

is

• A space,

we s	see t	hat.
------	-------	------

- It can
 - o Contain:
 - ⊳ Two
 - Particles.
- Then
 - o Since
 - - Two particles

can

- Be
 - o Anywhere
 - ▶ In:
 - That space,

we see that,

- Those:
 - o Two
 - > Particles

can

- Be at
 - o The same place;
 - \triangleright At
 - The same time.
- And so
 - o They both

	\sim
\triangleright	Can

- ⊳ Or will:
 - Interact,
- Or
 - o Since
 - - Particles

are

- Present
 - o In:
 - ▷ A probabilistic
 - Space,

we see that,

- There
 - o Will be:
 - ⊳ No rules
 - For induction.
- And
 - \circ So
 - ⊳ The
 - Second exclusion principle

will

- Not
 - o Be:
 - ▶ Applicable.
- And so

- o They both
 - ⊳ Will:
 - Interact.
- Also
 - o We
 - ⊳ Can
 - Give

a

- Description
 - o The way
 - ⊳ We did:
 - Earlier.

2.9 Particle copies

Consider

- The
 - o Inductive
 - ⊳ Sequence:

$$i_1, \quad i_2 = f(i_1), \quad i_3 = f(i_2), \quad i_4 = f(i_3), \quad \dots$$
 (2)

- Then
 - o In:
 - ▶ The above
 - Sequence 2,

we see that,

- There
 - o Is:

```
⊳ At least

                – One: f
to
   • Generate
        o The:
            ⊳ Elements,
   • But we see that,
        \circ The number of: f
            ▶ Used to:
                - Generate
that
   • Sequence
        o Is not
            ▷ Defined:
                - By induction.
   • And
        o So
            ▶ In:
                - Theory,
the
   • System:
        o Can
            ▶ Have
```

a

• Finite constant

o Number ▷ Of copies: - Of the same: f. • And so \circ The number ⊳ Of: *f* - In it, will • Be an integer o Greater ⊳ Than: - Zero, o And less than ⊳ Some: - Finite integer. • Or since o The rules ⊳ Of: - The sequence 2 does • Not o Dictate:

are

- Copies of: f

o Be:

we see that,

- At
 - o Anytime,

– Of: *f*

can

- Be
 - o A random value
 - ⊳ From:
 - A finite range.
- And
 - o So
 - ▶ Assume

that,

- The number
 - ∘ Of: *f*
 - \triangleright In:

- The sequence 2,

is

- Is
 - o Equal
 - ▶ To:

- Say, ten

	_	
•	К	11f

- We see that,
 - ▶ At:
 - The same time,

all

- These:
 - \circ Ten f
 - ⊳ Will always be:
 - Equivalent,
 - Or the same,

since

- The rules
 - o Of:
 - ▶ The sequence 2
 - Dictates

that

- The: *f*
 - o Used
 - ⊳ To:
 - Generate it

should

- Be
 - o Such and such
 - \triangleright And
 - So and so.
- In

o Sub section 2.1,

we saw that,

• If

o There

⊳ Are:

- No rules

in

• A part

o Of:

⊳ A system,

then

• That

o Part

⊳ Of:

- The system

will

• Randomly

o Take:

⊳ One

of

• The

o Allowed

⊳ States.

• And

o So

▶ FromThis,

in

• The

o Sequence 2,

since

- Nothing
 - o Dictates:
 - ⊳ How
 - **–** Many: *f*

are

- To
 - o Be:

we see that,

- Sometimes
 - \circ Two: f

⊳ Will

be

- Used
 - o To:
 - ⊳ Generate,
- And
 - o Sometimes

⊳ All

will • Be o Used ▶ To: - Generate, • And o So ⊳ On. • But o At least \triangleright One: fwill • Be \circ Used ⊳ Generate: - An element, since • That o Sequence: ▶ Exists • And o So ⊳ From - This,

- Those: ten f

we see that,

- At
 - o Anytime,
 - - Can

be

- Many,
 - o But
 - ⊳ Finite
 - Number

of

- Copies
 - o For:
 - A single
 - Particle.
- But
 - o If we:
 - ⊳ Force
 - Ourselves

to

- Have
 - o Only
 - \triangleright One: f

to

• Generate

 \circ An

⊳ Element,

then

- Only
 - o One element
 - ⊳ Will be:
 - Generated.
- And
 - o So
 - ⊳ If we:
 - Try

to

- Observe
 - o A particle,

then

- We
 - o Will
 - \triangleright See
 - Only: one.
- But
 - o If we
 - ⊳ Apply:
 - The same logic

to:

"orbitals,"

we	see	that
we	see	that

- There
 - o Will be
 - ▶ A violation of:
 - The first exclusion principle,
- Or we see that,
 - o Because
 - ▷ Of:
 - The first exclusion principle,

it

- Will
 - o Be
 - ⊳ Like:
 - All orbitals

are

- Always
 - o Being:
 - ▷ Observed
 - By someone.
- And so
 - \circ The number
 - ⊳ Of:
 - Copies

of

• An orbital

- o Will
 - ⊳ Always
 - Be: one.
- But if
 - o The number
 - ▷ Of copies:
 - Of a fermion

is

- More
 - o Than:
 - ⊳ One,

then

- There
 - o Will be:
 - ⊳ No violation
 - Of anything.
- In
 - o Section 4,

we

- Will
 - o Talk:
 - ⊳ More

on

- The maximum
 - o Number
 - ▷ Of:
 - Copies.

2.10 Speed of light

Con	

-	П	h	e

o Points:

(2, 0), (1, 0),

• And

o Also:

▶ Assume

that,

• There are

o No points

⊳ Between

- Them.

• Then

 \circ If

⊳ We:

- Want

to

Move

o From:

(1, 0) to (2, 0),

we see that,

• It

o Will

a

- Finite
 - o Non-zero
 - > Amount
 - Of: time.
- Then
 - o Since
 - ⊳ No
 - Induction

is

- Used
 - o To:
 - ▶ Define
 - It,

we see that,

- It
 - o Will
 - ⊳ Always
 - Be:

"a constant,"

- Or
 - o A random
 - - From:

	"a finite range,"
such that,	
• That	
Finite rangeWillNever:	
Tiever.	"change,"
since	
• There are:	
o No rules	
⊳ To:	
 Change it. 	
• Also	
o Since	
⊳ It	
- Has:	
	"a non-zero value"
we see that,	
• It	
o Will	
▶ Be:	
 Measurabl 	e.

• And so

We see that, ▷ If

– There is:
"a metric;"
then
• There
o Will
▶ Be:
– A time.
• And
o So
⊳ From:
– These,
• And
o Since:
⊳ In
- Sub section 2.5,
we saw that,
 Bosons move
o Between
> Points
– Of:
"a structure,"

• And

Space-bosons⊳ Move

- Between:

"orbitals,"

we see that,

- Their
 - o Movements
 - ⊳ Will:
 - Take place

at

- The
 - o Speed
 - ⊳ Of:
 - Time.
- And
 - o So
 - - Of:

"light,"

will

- Be
 - o Equal:
 - ⊳ To

the

- Speed
 - o Of:
 - ⊳ Time.
- And

So
 If:
 the
 Speed
 Of:
 Time
 Is not:
 "fixed,"
 then
 When
 The
 Speed
 Of time:

"changes,"

then

- So
 - o Will
 - - Of:

space-bosons and bosons

sent

- Per:
 - o Second.
- And

o So

▶ By:

- That,

the

• Structure

o Of:

⊳ Space:

will

• Not

o Be:

⊳ Fixed.

• But

o Since

⊳ The:

Structure

of

• Space

o Is:

⊳ Fixed,

we see that,

• The

Speed

⊳ Of:

- Time

will

•	Also				
	o Be:				
	\triangleright	Fixed.			
•	And				
	o So				
	⊳	The speed - Of:			
		space-bosons	an	d	bosons
will					
•	Also				
	o Be:				
	\triangleright	Fixed,			
•	And				
	o So				
	\triangleright	The number			
		– Of:			
		space-bosons	an	d	bosons
sent					
•	Per:				
	o Seco	ond			
by					
•	Their				
	o Res	pective:			
	\triangleright	Senders			
			176		

will

	Δ	lso
•	\neg	\sim

o Be:

⊳ Fixed.

• And

o Also

⊳ From:

– This,

• And

Since

- Of:

"light"

• Is:

"measurable"

we see that,

• If

o We:

▶ Measure

the

• Speed

o Of:

⊳ Light,

then

• It	
o Will	
⊳ Always	
– Be:	
	"a constant."
• And	
o So:	
▷ Assume	
– That,	
we	
• Have	
o Some	
⊳ How:	
Managed	
to	
• Bring	
o Down:	
"t	the speed of bosons."
Then we see that,	
 Something 	
o From	
- Bosons	
should	

• Have	
。 To	
⊳ Be:	
- Removed,	
so that	
• If	
o We	
⊳ Can	
- Return:	
	"those things"
1.1	
which	
• We	
o Removed:	
⊳ From	
– It,	
then	
• Its	
 Velocity 	
⊳ Will:	
- Return	
to	
• Its:	
	"original."
	original.
• But we see that,	
o To	
	170

Do:It,

we

- Have to
 - o Remove
 - ⊳ That:
 - Something,
- And
 - o Then
 - ⊳ Store
 - It:

"somewhere else."

- But
 - o When
 - ⊳ We:
 - Do

such

- A thing
 - o With:
 - ⊳ Bosons,

we see that,

- Those
 - o Thing
 - ▶ Which
 - Where:

should
• Have
o То
▶ Be:
 Converted
into:
"fermionic components.
since
• Space
o Contains
Only:Orbitals,FermionsAnd bosons,
• And
 It ► Cannot Be:
"converted,"
• Into:
"orbitals,"
since
• That
o Will

"removed"

	Tirst exclusion principle.
• And so	
o When	
⊳ The:	
- Speed	I
of	
of	
A boson	
o Comes:	
⊳ Down,	
then	
	<i>((C)</i>
	"fermionic components"
• Will	
 Appear 	
⊳ In	
– It,	
- And	vice versa.
• And so	
o If:	
> Something	g:
- Move	
-4	
at	
• The	
o Speed	
	102
	182

⊳ Violate

- The:

⊳ Of:
– Light,
then
• It will
o Only
⊳ Have:
 Bosonic components,
• And
∘ No:
⊳ Fermionic
- Component,
• And
o So
▶ If:
 Bosonic components
have:
"mass,"
then
• There
• Will be:
NoDistinction
between

• Fermions

 \circ And

⊳ Bosons.

• And

o So

⊳ We:

- Say

that,

• If

o There

▶ Is:

- Mass,

then

• There

o Is:

⊳ Fermionic

- Components,

- And vice versa.

• And so

o If:

⊳ Something

- Moves

at

• The

o Speed

▷ Of:

- Light,

then

• It will
o Have:
⊳ No
– Mass.
• And so
o When
⊳ A boson
- Moves:
"slower"
than
• The
o Speed
▷ Of:
– Light
then
• It
o Will
⊳ Have:
– Mass,
 And vice versa.
• Also
o From:
⊳ Now
- Onwards.

when

• We

Say,⊳ Speed of:– Time,

we mean,

- The
 - o Rate
 - ⊳ Of:
 - Change

between

- Two
 - o Consecutive
 - ▶ Points:
 - In space.

2.11 Entanglement

Consider

- The
 - o Finite
 - ⊳ Sequence:

$$i_a, \quad i_b.$$
 (3)

Then we see that,

- We
 - o Can:
 - ⊳ Construct

a

• Similar:

 Sequence
with
• Three
o Elements
▶ In:
– It,
• And
o It will
⊳ Still be:
- Finite.
• But
o If we
> Continue:
– This way,
then
• After:
o Sometime,
it
• Will
o No longer
⊳ Be
- Termed:

• But

 \circ An

"finite,"

- ▶ Inductive:
 - Sequence.
- Then
 - o When
 - ⊳ We:
 - Consider

the

- Inductive
 - o Sequence:

$$i_0, \quad i_1, \quad i_2, \quad \dots,$$
 (4)

we see that,

- If
 - o We
 - ⊳ Want to:
 - Calculate

the

- Value
 - o Of,
 - \triangleright Say i_{1000} ,

then

- We
 - Have to:
 - ⊳ Start
 - From: i_1 ,
- And

- o Proceed:
 - ▶ Inductively

until

- We
 - \circ Reach: i_{1000} .
- And
 - o So:
 - ▶ The things
 - Of: i₁₀₀₀

will

- Have
 - o To be:
 - ▷ Deduced
 - From: i_1 .
- And
 - So:
 - ⊳ It

will

- Take:
 - o A time.
- And so
 - o The things
 - > Of:
 - i_1 and i_{1000}

will

• *Not*:

Exist

at

• The

Same:

▶ Time.

• But

o When

⊳ We:

Consider

the

• Finite:

o Sequence 3,

we see that,

• We

o Do not

▶ Have

– To:

"deduce"

the

• Things

 \circ Of: i_b

 \triangleright From: i_a ,

since

• Both	
o Of	
⊳ Them:	
– Exists	
- LAISIS	
at	
• The	
o Same:	
▷ Time.	
Or we see that,	
• Due	
о То	
– Of:	
- 01.	
	"induction,"
all	
• Things	
o In:	
- Sequence 3,	
sequence 3,	
will	
• Always:	

o Exist

at

• The

o Same:			
⊳ Time.			
• And so			
 The values 			
⊳ Of:			
- Both:			
	$"i_a$	and	i_b ,
will			
• Be defined			

- Same time.

• And so

o At:

• We see that,

⊳ The

⊳ There:

- Is

a

• Lack

o Of:

⊳ Time

due

• To:

o The lack

▷ Of:

- Induction.

- And
 - o So
 - ▶ In:
 - The sequence 3,

if:

$$i_b = i_a + 1,$$

- And
 - o The value

$$\triangleright$$
 Of: i_a - Is: 10,

then

- At
 - o That:
 - ⊳ Very
 - Instant,

the

- Value
 - \circ Of: i_b
 - ⊳ Will
 - Be: 11.
- And so
 - o There
 - ▶ Is:
 - A timeless-ness

in

- The
 - o Finite:
 - ⊳ Sequence 3.
- But
 - o If
 - ⊳ We:
 - Explicit

add

- A delay
 - o Into:
 - ▶ It,
- Or
 - o If
 - - Is

an

- Induction
 - o То
 - ⊳ Do:
 - It,

then

- The
 - Value
 - \triangleright Of: i_b

will

- Be: 11
 - o Only
 - ▶ After
 - Some: time.
- And so
 - We see that,
 - ⊳ This:
 - Timeless-ness

will:

"disappear."

- And
 - o So
 - ⊳ From:
 - This,

we see that,

- If
 - o We
 - ⊳ Do *not*:
 - Explicitly

add

- An induction
 - \circ Or
 - ⊳ A delay,

into

• A system

o With: \triangleright Just - Two things, then • It o Will ⊳ Be: - A timeless-less system. • And o So ⊳ We: - Assume that, • If o There: ⊳ Are only • Two o Things ▶ In: - A system, then

• It

o Will

▶ Be:

- A timeless system.

- And
 - So:
 - ⊳ Let

us

- Consider:
 - \circ A system, S,

such that

- At anytime,
 - o It
 - ⊳ Can:
 - Be

in

- One
 - o Of
 - ▶ The states:
 - q_1 or q_2 ,
 - o But
 - *⊳ Not*:
 - Both.

Then we see that,

- We
 - o Can draw
 - ▶ This:
 - State diagram

in

- A two
 - o Dimensional:
 - ⊳ Space.

Exemplifying,

- Let
 - o The
 - \triangleright Point: (0, 0)
 - Represent: q_1 ,
- And
 - o Let
 - \triangleright The point: (1, 0)
 - Represent: q_2 .
- And
 - o Let us,
 - ⊳ Call
 - This:

"the first representation."

- But we see that,
 - o We
 - ⊳ Can:
 - Represent

this

- State diagram
 - \circ In
 - ▷ Another:

- Way.

Exemplifying,

- Let
 - o The

 \triangleright Point: (0, 0)

- Represent: q_1 ,

- And
 - o Let

 \triangleright The point: (2, 0)

- Represent: q_2 .

- And
 - o Let us,

⊳ Call

- This:

"the second representation."

- Then we see that,
 - o We

⊳ Can:

- Represent

this

- State diagram
 - o In:

> Yet another

- Way.

Exemplifying,

- Let

 The
 Point: (0, 0)
 Represent: q₁,

 And

 Let
 The point: (3, 0)
 Represent: q₂.

 And

 Let us,
 Call
 This:
 "the third representation."
 Then
- these
 - Three
 - o Representations
 - ⊳ Are:

We see that, All

- Equivalent.
- And
 - o So
 - ▶ A state diagram:
 - Can

٠			
ı	h	Δ	
ı	,		

- Stretched
 - o Or contorted
 - ⊳ Or twisted,
- And
 - o It:
 - ▶ Will

still

- Remain
 - o The:
 - ⊳ Same.
- And
 - ∘ So
 - ▶ If:
 - We

can

- Connect:
 - o Two
 - ▶ Particles,

such that,

- That
 - o System
 - ⊳ Can be:
 - Stretched
 - Or contorted

- Or twisted,

then

- The change
 - o In:
 - ⊳ One
 - Of: them

will

- Be
 - o Immediately:
 - ⊳ Felt

in

- The:
 - o Other,

since

- *Two*:
 - o Related
 - ▶ Things

will

- Always
 - o From:
 - A timeless
 - System.
- And
 - o So:
 - ⊳ They

will

- Be:
 - o Entangled.
- And
 - o So
 - ▶ To:
 - Look

into

- The
 - o Concept
 - ⊳ Of:
 - Stretchablity,

let

- \bullet i_1 and i_2
 - o Be
 - > Two:
 - Something

in:

"a metric space."

- Then
 - o If:
 - - Of:

"stretchablity"

is

- Not
 - o Defined
 - ⊳ Between:
 - Them,

we see that,

- If: i_1
 - \circ Is
 - ▶ Located
 - At: (0, 0),
- And: i_2
 - o At:
 - \triangleright (10, 0).
- And: i_2
 - o Moves
 - ⊳ To: (11, 0),

then

- The relation
 - o Between
 - Them
 - Will:

"break down."

- And so
 - o That relation
 - - Them

will

- Be
 - o Dependent
 - \triangleright On
 - Their:

"positions."

- But
 - o A relation:
 - ⊳ Should not
 - Depend

on

- The positions
 - o Of:
 - - Things,

since

• If:

$$S = \{ a, b \},$$

then

- There
 - Need:
 - ⊳ Not

be

• Any

Metric

 \triangleright In: S,

- And
 - o At:
 - ⊳ The
 - Same time,

there

- Can be
 - o A relation
 - ⊳ Between:
 - -a and b
 - Say: b = a + 1.
- And
 - o So
 - ⊳ The:
 - Concept

of

- Stretchablity
 - o Should be
 - ▷ Defined:
 - Between:

 i_1 and i_2 .

- But
 - \circ If: i_1 and i_2
 - ⊳ Are:
 - Two something

such that

•
$$i_2 = i_1 + 1$$
,

o And if

⊳ They:

- Both

do

• Not

o Belong

▶ To:

- A metric space,

then

• There

o Will:

⊳ Not

be

• Any

o Concept of:

⊳ Stretchablity

- Between:

 i_1 and i_2 .

• But

o If

⊳ We:

Introduce

a

• Metric
o Between:
⊳ Them,
then
• The
Concept
▷ Of:
 Stretchablity
will
• Become
o Defined;
 Regardless
o Of:
⊳ How far
– They are.
• And
o It will
⊳ Get:
- Defined,
since
• The relation
o Has
⊳ To hold
– In:

So we see that,

- Stretchablity
 - o Is:
 - ▶ An inherent:
 - Property

of

- All
 - o Relations
 - ▶ In:
 - A metric space.
- Also
 - o If
 - ⊳ It
 - Is:

"stretchable,"

then

- It will
 - o Obviously
 - ▶ Be:
 - Contort-able
 - And twistable.
- And
 - o So
 - ⊳ Let:
 - p_1 and p_2

be

o Particles.

Then we see that,

- We cannot
 - o Use
 - Other:
 - Particles

to

- Construct
 - o A relation
 - ⊳ Between:
 - Them,

since

- That
 - o Relation
 - ▶ Is:
 - **–** To

be

- Between:
 - o Two
 - > Particles.
- And
 - o So
 - ⊳ From:
 - This,

• And	
o Since:	
> Stretchablity	
is	
• An inherent:	
o Property	
⊳ Of	
- All:	
	"metric spaces,"
• And	
• And	
o Since	
⊳ All:	
- Systems	
with	
• Just	
o Two:	
▶ Things	
will	
• Be:	
o A timeless	
⊳ System,	
we see that,	
• If:	
o Two particles	

- Related, then • They o Both ⊳ Will - Also be: "entangled." • And o So ⊳ Let: - p_1 and p_2 be • Two o Entangled: > Particles. • Then o Since - Are: "entangled." we see that, • Change o In: ⊳ One

⊳ Are:

- Of: them

will

- Be
 - o Immediately
 - ⊳ Felt
 - In:

"the other."

- But
 - o If we
 - ⊳ Gradually:
 - Increase

the

- Distance
 - o Of separation
 - ⊳ Between:
 - Them,

then

- After
 - o Sometime,
 - ▶ We cannot:
 - Say

that,

- This
 - o Is:
 - ▶ A finite

- System.
• Or
When we
⊳ Gradually:
Increase
the
• Distance
o Of:
> Separation,
then
• After
o Sometime,
⊳ An:
Induction
will
• Appear
o In:
- System.
• And
o So:
⊳ A time

will

• Appear

o In:

	_	_		
	-	Г'	h	0
\sim		ш	П	C

- System.

• And

o That

⊳ Will be:

- Equivalent

to

- Physically
 - o Adding:
 - ⊳ A time
 - Between:

$$p_1$$
 and p_2 .

- And
 - o So
 - ⊳ At that:
 - Moment,

we see that,

- The timeless-ness
 - \circ Between: p_1 and p_2
 - ⊳ Will:
 - Disappear.
- And
 - o So
 - ▶ At that:
 - Moment,

we see that,
$ullet$ p_1 and p_2
。 Will
⊳ Cease
- To be:
"entangled."
• In
• Sub section 2.4,
we saw that,
• Two fermions
∘ Can
▶ Be:
- Related.
• And
o So
<i>– Two</i> fermions
can
• Be:
"entangled."
• Also

 \circ If: i

▶ Is:

- Something,

- And we say that,
 - o The value

> Of: i- Is: 10,

then

- At
 - o The
 - ⊳ Very:
 - Instant

we

- Finished
 - o Saying:
 - ⊳ That,

the

- Value
 - \circ Of: i

⊳ Is: 10,

it

- Would
 - o Mean:
 - ⊳ That,

if

- We
 - o Take
 - ⊳ Into:

- Consideration

all

- The
 - o Sub components

⊳ Of: *i*,

only

- Then:
 - o Will

the

- Value
 - \circ Of: i

⊳ **Be**: 10.

- And
 - o So
 - ⊳ From:
 - This,

we see that,

- All
 - o The
 - > Sub components
 - **−** Of: *i*

will

• Be:

"entangled."

 \circ If: p

 \triangleright Is

- A fermion,

• And

 \circ If: p

⊳ Has:

- Decided

to

• Emit:

o A boson,

then

• Until

o The

▶ Moment:

- Before

that

• Boson

o Was:

⊳ Emitted,

all

• Those

o Things

⊳ That:

- Will

be

- Emitted
 - o As:
 - A boson,
- And
 - o The
 - ⊳ Rest

− Of: p

will

• Be:

"entangled."

- And
 - o So
 - ⊳ After:
 - That boson

has

- Been:
 - o Emitted,

we see that,

- Until
 - o An induction
 - ⊳ Appears
 - In:

"the system,"

ť	h	a	1
		1	

- Boson
 - \circ And
 - > That fermion
 - Will be:

"entangled."

- And
 - o So:
 - ▶ We see that,

a

- Fermions
 - \circ And
 - A boson
 - Can be:

"entangled."

- And
 - o Also
 - ⊳ From:
 - This,

we see that,

- Two
 - o Bosons
 - ⊳ Emitted by:
 - A fermion

• Be:	
	"entangled."
• And	
o So	
⊳ Any two:	
- Fermions	
Or boson	S
can	
• Be:	
	"entangled."
• Also	
o Since:	
⊳ In	
- Sub secti	on 2.4,
we saw that:	
	"adjacent fermions"
in	-
• A structure	
o Are:	
⊳ Related.	
• And so	
o All	
⊳ Adjacent:	
Fermions	
in	
• A structure	
o Will	
⊳ Be:	
– Entangle	d.
_	
	222

2.12 Localdynamics

Later.

2.13 Lineardynamics

In

• Sub section 2.12,

we see that,

- Atoms
 - o Are used to:
 - ▷ Construct
 - Structures,
- And also there
 - o Are only
 - ▶ A finite number:
 - Of atoms,
- And
 - o So
 - ⊳ Let
 - The list

of

- All
 - o Atoms
 - ⊳ Be:

$$\mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3, \ldots$$
 (5)

• In

\circ	Sub	section	2	12
\circ	Sub	SCCHOIL	4.	14,

we saw that,

- Negative
 - o Fermions
 - ⊳ Are:
 - Present

in

- Orbitals
 - o Around
 - ⊳ The:
 - Nuclei.
- In
 - o Sub section 2.5,

we saw that,

- An orbital
 - o Can contain:
 - ⊳ Zero
 - ⊳ Or one
 - ⊳ Or two
 - Fermions in it.
- And so there
 - o Will
 - ▶ Be:
 - Atoms

in which

_	Λ 11
•	$A\Pi$

o The:

▷ Orbitals

will

- Not have:
 - o Two
 - > Fermions:
 - In it.
- And so
 - o All atoms
 - ▶ Will have:
 - Some characteristics.
- And so if we
 - o Construct
 - > Structures:
 - With atoms,

then

- Those structures
 - o Will exhibit
 - - Characteristics.
- But
 - o Since:
 - > Structures

are

• Constructed:
o Using
⊳ Some:
- Rules,
we see that,
• Only
o Those
⊳ Rules
- Should
be
• Evident
o In:
- Picture.
• And
o So:
⊳ Atomic
 Characteristics
should
• Not
o Be evident
> Outside:
- A structure.
• And so

o Before we

⊳ Construct:

- Structures,
all
• Atomic characteristics
o Should
▶ Be:
 Neutralized.
• And so if:
o An atom
⊳ Has:
 Some characteristics
then
• There
o Will:
⊳ Exist
 Another atom
that
• Can
o Cancel
▷ Its:
 Characteristics.
• And
o So

▶ It:

- Should

be

 Possible
∘ To bind:
> Two or more
- Atoms together,
so that
• The basic constituents
o Of
⊳ All:
- Structures
will
• Have
∘ <i>No</i> :
> Atomic
- Characteristics.
• And
o So
> Atoms
will
• First
 Combine
⊳ Into:
- Molecules,
•
• And
o Then:

▶ Molecules

will

- Be
 - Used to
 - ▷ Construct:
 - Structures.
- And also bonds
 - o Between atoms
 - ⊳ Will be:
 - Stable,

since

- Basic
 - o Components
 - > Of:
 - A structure

should

- Remain:
 - o As
 - ⊳ Such.

So we see that,

- If: \mathscr{A}_i
 - o Is:
 - ⊳ Bound
 - To: \mathscr{A}_j ,

then

• \mathscr{A}_i will

		-	
\cap	н	27	10

to

• Do

 \circ With: \mathscr{A}_j ,

 \triangleright And

- Vice versa.

so that

• The bond

o Between:

- Two atoms

will

Neutralize

o Each

Others:

- Characteristics.

• Also

o If:

 $\mathscr{A}_i, \qquad \mathscr{A}_{i+1}, \qquad \mathscr{A}_{i+2}$

are

- Three
 - o Consecutive
 - ▶ Atoms:
 - In the list 5,

- And if:
 - $\circ \mathscr{A}_i$ is:
 - ▶ Compatible
 - With: \mathscr{A}_{i+1} ,
 - And: \mathscr{A}_{i+1} with: \mathscr{A}_{i+2}

then

- \mathscr{A}_i will
 - o Be:
 - ▷ Compatible
 - With: \mathscr{A}_{i+2} .
- And
 - o So
 - ⊳ In
 - Effect,

all

- Atoms
 - o Will have
 - - Characteristics.
- And so
 - o Characteristics
 - ⊳ Of:
 - Atoms

in

- Cannot
 - o Be:

▷ Canceled.	
• Also if:	
o The characteristics	
▷ Of:	
- Atoms	
in	in
• The list 5	
 Increases 	

then

- Atomic
 - Characteristics

⊳ With:

- ▶ In:
 - A molecule

- Each step,

cannot

- Cancel:
 - Each
 - Other.
- And
 - So
 - \triangleright In
 - The list 5,

we see that,

• Atomic

- o Characteristics
 - ⊳ Should:
 - Repeat,

so that

- Characteristics
 - o Of:
 - ⊳ Some
 - Atoms

can

- Cancel
 - o That
 - ⊳ Of:
 - Others.
- And
 - o So
 - ▶ It:
 - Will

be

- Possible to
 - o Divide:
 - ⊳ The list 5
 - Into periods.
- And
 - o Also
 - ⊳ When

we

- Divide
 - o The list 5
 - ⊳ Into:
 - Periods,

we see that,

- The length
 - o Of all periods
 - ⊳ Will be:
 - The same,

so that

- If:
 - o An atom
 - - Characteristics,

then

- There
 - o Can:
 - ⊳ Exist
 - Another atom

that

- Can cancel
 - o The previous
 - ⊳ Atoms:
 - Characteristics.
- And

 $\circ \ So \\ \qquad \triangleright \ If$

we

- Periodicalize
 - o The list 5,
 - ⊳ Into,
 - Say:

 $\mathscr{A}_1, \qquad \ldots, \qquad \mathscr{A}_{n-1}, \qquad \mathscr{A}_n,$

 $\mathscr{A}_{n+1}, \qquad \ldots, \qquad \mathscr{A}_{2n-1}, \qquad \mathscr{A}_{2n},$

. . . ,

then

- The
 - o Atoms:

 $\mathscr{A}_1, \qquad \mathscr{A}_{n+1}, \qquad \dots$

will

- Have
 - o The
 - ⊳ Same:
 - Characteristics.
- And
 - o Similarly,
 - ⊳ For
 - The atoms:

 $\mathscr{A}_2, \qquad \mathscr{A}_{n+2}, \qquad \dots$

•	Also				
	0	In:			
		\triangleright	The	e	
			-	List 5	j,

since

- Atomic characteristics
 - o Repeats
 - ⊳ With:
 - Each period,

we see that,

• If:

$$\mathscr{A}_{n+1}, \qquad \dots \qquad \mathscr{A}_{2n-1}, \qquad \mathscr{A}_{2n}$$

o Is:

▶ A period,

then

- As we
 - o Move
 - ⊳ Forward:
 - In that period,

the

• Characteristics

$$\circ$$
 Of: \mathscr{A}_{n+1}

will

• Gradually

- o Change
 - ⊳ Into:
 - The opposite,

so that

- There:
 - o Will
 - ⊳ Be

a

- Compatible
 - o Atom
 - \triangleright For: \mathscr{A}_{n+1} .
- And
 - o So
 - - Atom: \mathcal{A}_1

will

- Have
 - o Some:

since

- If not,
 - o Then
 - - Will

be

- No
 - o Characteristics
 - ▶ To:
 - Change.
- Also
 - \circ In
 - ⊳ The
 - List 5,

since

- Atomic characteristics
 - o Change
 - ⊳ To:
 - The opposite,
- And
 - o Then
 - ⊳ Start
 - Anew,

we see that,

- There
 - o Will:
 - ⊳ Exist
 - Atoms

with

- No
 - o Characteristics:
 - \triangleright At

- All.			
• And			
o So			
⊳ Such			
- Atoms			
- Atoms			
will			
• Not			
o Combine			
⊳ With:			
- Other a	toms.		
• And			
o So			
⊳ From			
- This,			
• And since: \mathcal{A}_1			
o Has			
⊳ Some:			
- Charact	eristics,		
we see that,			
• These			
o Atoms:			
	$\mathscr{A}_n,$	$\mathscr{A}_{2n},$	
	ω_n ,	ω_{2n} ,	

will

• Not

o Have:

		⊳ Any
		 Characteristics.
•	And	
	0	So
vill		
•	Not	
	0	Combine:
		▶ With Any
		- Other atom.
•	And	
	0	Also
		⊳ From
		- These,

we see that,

- The number
 - o Of:
 - ▶ Atomic
 - Characteristics

- Be:
 - o Finite.
- And
 - o So

- Will

be

- A finite
 - o Number
 - ⊳ Of:
 - Rules

to

- Construct
 - o All:
 - ▶ Molecules.
- Also
 - o Since:

is

- A separate
 - o Area for:
 - ▶ Positive
 - ⊳ And negative
 - Fermions,

we see that,

• The average force

- Spill
 - \circ Out
 - ▷ Of:

_	Δ11	atoms.
_	Δ III	awins.

- And
 - o So
 - ▶ By
 - That,

there

- Will be
 - o A force
 - ⊳ Between:
 - Molecules,
- And so
 - Structures
 - ⊳ Could be:
 - Built.
- And
 - o So
 - ▶ The average force

- Be used
 - o To
 - ▷ Construct:
 - All structures.
- Also
 - o Since
 - \triangleright In
 - Sub section 2.12,

we saw that,

- There are
 - o Only:
 - ▶ A finite number
 - Of atoms,

we

- Call
 - o That
 - ▶ Periodicalized list:
 - Periodic table.

2.14 Neutraldynamics

Later.

3 Gravity

In

• Sub section 2.11,

we

- Saw
 - o The concept
 - ⊳ Of:
 - Timeless-ness.
- And
 - o So:
 - ⊳ Let

us,

- Review:
 - ∘ It,
- And
 - o Let us,
 - ⊳ Build:
 - Upon it.
- And so
 - То
 - ⊳ Review:
 - It,

consider

- A finite
 - o Timeless

$$\triangleright$$
 System: i_1 , i_2 ,

- Such that: $i_2 = i_1 + 1$.
- Then
 - o When
 - ⊳ We:
 - Make

the

- Value
 - \circ Of: i_1
 - ⊳ To
 - Be: 10,

we see that,

- The
 - o Value

 \triangleright In: i_2

will:

- Automatically
 - o Be:

⊳ Equal– To: 11,

since

- There
 - o Is:
 - No timeIn it.
- And
 - o Similarly,
 - ⊳ When:
 - We consider

a

- System
 - o With:
 - > Three elements,

- Say $i_1, i_2, i_3,$

⊳ Such that:

 $-i_2 = i_1 + 1,$

 $-i_3 = i_2 + 1,$

then

• We

o Can:

▶ Assume

that,

• There

o Is:

⊳ No time

- Between:

 i_1 and i_2

• And

o Similarly,

⊳ Between:

- i_2 and i_3 .

• And

o So

▶ In:

- This case,

we

• Can:

o Assume

that,

• There

o Is:

⊳ No time - Between: i_1 and i_3 . • And o So: ⊳ We can • Construct o Such systems ⊳ With: 4, 5, ... - Elements in it. • But \circ As ⊳ The: - Size of • The o System: ▷ Increases, we see that, • At o Some point, ⊳ We: - Will be:

"unable"

•	Make
---	------

o The:

⊳ Change

in

• Zero

o Units

▷ Of:

- Time.

• Or we see that,

o As

⊳ The:

- Size

of

• The

o System:

▷ Increases,

at

• Some:

o Point,

the

• Change

o Made

▶ In:

- The system

•	1	1
XX/1	ı	1
vv i		

- Be:
 - o Reflected

in

- The
 - o Entire:
 - ⊳ System

only

- After
 - o Some:
 - ⊳ Non-zero
 - Units of time.
- And so
 - \circ As
 - ⊳ The:
 - Size

of

- The
 - o System:

we see that,

- An
 - o Inductive:
 - ⊳ Process

• Begin	
o То	
⊳ Appear:	
– In it,	
• And so	
 The timeless-ness 	
⊳ Will:	
 Disappear. 	
So we see that,	
• There	
o Is:	
⊳ A limit	
to	
• The applicability	
o Of:	
- Of: timeless-ness.	
• And	
o So	
⊳ We:	
 Introduce 	
a	
• A new	
 Constant 	
⊳ Called:	
- The pons constant, p	2

which

• Is

o The

▶ Minimum:

- Number

of

• Elements

o Required

⊳ To have:

- A time.

• Or

o We

⊳ Mean:

- That,

if

• A system

o Has

⊳ At least: <u>p</u>

- Elements in it,

then

• It

o Will:

▶ Have

a

• Time

o In: ▶ It. Note that, • The value \circ Of ⊳ This: - Constant has • To be o Found ⊳ Out: - Experimentally, since • It o Is: Like a • Grown up o Person ⊳ Can - Handle:

• But

o A small:

 \triangleright Child

"many things,"

- Only
 - o Handle:

"a few things."

- And so
 - o Let
 - ⊳ Us,
 - Look

at

- This
 - o Emergent time
 - ▶ In:
 - Details.
- And so
 - o Consider:
 - ⊳ A structure,
 - Say L.
- Then
 - o Since
 - ▶ It:
 - Had

been

- Constructed
 - o Using:
 - ▶ Induction,

o Has:
"a characteristic function."
• Also
Since
⊳ All:
- Structures
are
• Always
 Constructed
▶ In:
 The same way,
• And
o Since
- Space
is
• Always:
o Used
to
• Construct
o All:
> Structures,
254

we see that,

• It

we	see	that
----	-----	------

- All
 - o Characteristic functions
 - ⊳ Can
 - Only be:

"constructed"

in

- A finite
 - o Number
 - ▷ Of:
 - Ways.
- And
 - \circ So
 - ⊳ We:
 - Assume

that,

- All
 - Functions:
 - ⊳ Can

be

- Constructed
 - \circ Only
 - ▶ In:
 - A single way.
- And

o So

⊳ From:

- This,

we see that,

- All
 - o Functions
 - ⊳ Can:
 - Always

be

- Represented
 - o Using:
 - $\triangleright n$ number
 - Of things.
- And
 - o Also
 - ⊳ With:
 - -n things,

we

- Can
 - o Have
 - ⊳ At most:
 - -2^n combinations.

Therefore

- Since
 - o There
 - ▶ Is:

- An upper bound

for

- The
 - o Number
 - ⊳ Of:
 - Ways

in

- Which:
 - o The:

of

- A function
 - o Can
 - ▶ Be:
 - Arranged,

we see that,

- At
 - o Any:
 - ⊳ Moment,

all

- Functions
 - o Can
 - ⊳ Only:
 - Handle

a

- Finite
 - o Number
 - ▷ Of:
 - Things.
- Or
 - \circ At
 - ⊳ Any:
 - Moment,

we see that,

- No function
 - o Can:
 - ▶ Handle
 - More than

a

- Certain
 - o Number
 - ⊳ Of:
 - Things.
- And
 - o So
 - ⊳ From:
 - This,

assume that,

- At
 - o Any:
 - ⊳ Moment,

- Function
 - o Can handle:
 - \triangleright Only $\underline{p}-1$ things
 - All at once.
- Then
 - o When
 - ▶ A function
 - Handles:

"
$$\underline{p} - 1$$
 things"

all

- At:
 - o Once,

we see that,

- Change
 - o In:
 - ⊳ One
 - Of them

will

- Be
 - o Immediately:
 - ▶ Reflected

in

• All

▷ Other:

- $\underline{p} - 2$ things.

• And so

o All

- \underline{p} - 1 things

will

• Be:

"entangled."

• But if:

o It

▶ Handles:

- \underline{p} things,

then

To

o Make:

A change,

it

• Will

o First make

⊳ A change

– In:

" $\underline{p} - 2$ things,"

• And

o Then:

⊳ Stop,

- And
 - o Make
 - \triangleright The
 - Change in:

"the \underline{p}^{th} thing."

Or we see that,

- Since
 - \circ It
 - ⊳ Cannot:
 - Handle

more

- Than
 - ∘ <u>p</u> things
 - ⊳ All:
 - At once,

it

- Has
 - o То
 - ⊳ First:
 - Make

the

- Change
 - o In:

$$\triangleright \underline{p} - 2$$
 things,

- And
 - o Stop,
 - ⊳ And then:
 - Make

the

- Change
 - \circ In
 - ⊳ The:
 - \underline{p}^{th} thing.

So we see that,

- When
 - A Function:
 - ▶ Does something
 - Initially;
- And
 - o Then
 - ⊳ Stops,
- And
 - o Does
 - - Else,

we see that,

- There
 - o Will

Appear: A time

in

• The:

"process."

• And

o So

⊳ When we:

- Construct

a

• Structure

o From

▶ Basic:

- Elements,

initially,

• There

o Will

▶ Be:

- No time

in

• The

o Inside

> Of:

– It.

• But

- \circ As
 - - Grows,
- And when
 - o There are:
 - ⊳ <u>p</u> things
 - In it,

we see that,

- A time
 - o Will:
 - ⊳ Appear

in

- The
 - o Inside
 - > Of:
 - It.
- And
 - o Also
 - ⊳ The:
 - Scope

of

- This
 - Time;
- Or
 - o The area

⊳ Of:

Applicability

of

• This:

o Time

will

• Be

o The

▶ Entire:

- Structure.

• Also

o The:

⊳ Speed

of

• This

o Time

▶ In:

- The structure

will

• Be:

o Equal

to

• The

Velocity

⊳ Of:

Light,sinceisUsed○ To

"the characteristic function,"

"the underlying space"

• And so

o The

⊳ Speed

▷ Construct:

- Of: time

in

• The function

 \circ Will

▶ Be:

- Equal

to

• The speed

o Of

▶ Time:

- In space.

• And

 \circ So

⊳ From:

we see that,	
• The characteristic function	
o Of:	
will	
• Be	
o Divided	
⊳ Into:	
- Divisions,	
such that,	
• Each:	
"divis	ion"
will	
• Have	
o A function	
⊳ Represented	
- Using:	
"n thi	ngs,"
• And	
o So	
⊳ All:	
Particles	
in	

- These,

o Will

▶ Be:

- Entangled.

Note that,

• We

o Do not

⊳ Call

- Them:

"partitions,"

since

- Adjacent
 - o Divisions
 - ⊳ Will:
 - Intersect.
- And so
 - \circ Let: L
 - ⊳ Be:
 - A structure.
- And
 - o Also
 - ⊳ Let:
 - D_1 and D_2

be

• Two

o Divisions

▶ In:

- It,

such that

- They
 - o Both:
 - ⊳ Intersect.
- Also

 \circ Let: D^c

⊳ Be

the

- Particles
 - o Common

▶ To:

- Both: D_1 and D_2 .

- And
 - o Also

 \triangleright Let: D_1^-

be

- The particles
 - \circ Of: D_1

▷ Obtained

- By: removing

the

• Particles

- \circ Of: D^c
 - \triangleright From: D_1 .
- And
 - o Similarly,
 - \triangleright Define: D_2^- .
- And
 - o Assume:
 - ⊳ That,

a

- Change
 - o Has:
 - ⊳ Occurred
 - In: D_1^- .
- Then
 - o Since
 - ⊳ The:
 - Function

for

- A division
 - o Can
 - ▶ Handle:
 - All

the

- Particles
 - \circ Of: D_1

⊳ All:

- At once,

we see that,

- The change
 - o Will
 - ▶ Be:
 - Reflected

in

- All
 - o The particles
 - \triangleright Of: D_1
 - Immediately.
- And
 - o So
 - ⊳ The:
 - Change

will

- Be
 - o Reflected:

in

- All
 - o Particles
 - ▷ Of:
 - D_1^- and D^c .

	_		
_	v	11	+
•	1)	ш	ı

 \circ At

⊳ That:

- Moment,

we see that,

- That
 - o Change

⊳ Will:

- Not

be

• Reflected

 \circ In: D_2^- ,

since

- This
 - o Change
 - ⊳ Was:
 - Caused

by

- The function
 - o For:

⊳ The

- Division: D_1 ,

- And
 - o Since

⊳ That:

- Function

cannot

- Handle
 - o More
 - ⊳ Than:
 - \underline{p} things.
- And so
 - o At
 - ⊳ That:
 - Moment,

we see that,

- That
 - o Change
 - ⊳ Will be:
 - Reflected

only

- In: D^c ,
 - \circ And
 - ⊳ Not
 - In: D_2^- .
- But
 - o Since:
 - ▶ All particles
 - Of: D^c and D_2^-

are

o To:
⊳ Each
- Other,
we see that,
• After
o The:
> Properties
have
• Been:
 Transfered
\triangleright To: D^c
in
• Zero
o Units
▷ Of:
- Time,
then
• In the next
o Unit
▷ Of:
- Time;
• Or
o In

⊳ The:

• Entangled

- Unit

of

- Time
 - o After
 - ⊳ That:
 - Transfer,

the

- Properties
 - \circ Of: D^c
 - ⊳ Will

be

- Transfered:
 - o Immediately
 - \triangleright Into: D_2^- .
- Also
 - o In
 - ⊳ The:
 - Case,

when

- A change:
 - o Occurs

at

- The
 - o Same:
 - ⊳ Time,

in

- Both:
 - $\circ D_1$ and D_2 ,

then

- The change
 - o That:
 - ▷ Occurred
 - In: D_1 ,

will

- Be:
 - o Reflected
 - ▶ In:
 - D^c and D_1^-

in

- Zero
 - o Units
 - ▷ Of:
 - Time.
- And
 - o Similarly,
 - ▶ In:
 - D^c and D_2^- .
- And so
 - The total:
 - ⊳ Change

– In: D^c

will

• Be:

"the vectorial sum"

• Of:

"the changes"

that

- Occurred
 - o In

⊳ Both:

- D_1^- and D_2^- .

- And
 - o Then
 - > After that:
 - Transfer

from

- \bullet D_1^- and D_2^- .
 - \circ Into: D_c ,

in

- The:
 - o Unit

of

- Time
 - o After

► That: – Transfer,

the

• Properties

 \circ In: D_c

will

- Be
 - o Transfered:
 - > Immediately
 - Into: D_1^- and D_2^-

as

- Per
 - o The rules
 - ▷ Of:
 - The system.
- And
 - o Also
 - This:
 - Rate

of

- Transfer
 - o Of:
 - ⊳ Property

will

• Take:

o Place

at

• The

o Speed

⊳ Of:

- Light,

since

• That

o Is

⊳ The:

- Speed

of

• Time

o In

⊳ The:

- Function.

• Then

o Since:

⊳ Something

- Is:

is:

"transfered"

at

• The

o Speed

▷ Of:Light,

we see that,

- Those
 - o Things
 - > Transfered
 - Will be:

"bosons,"

since

- In
 - o Sub section 2.10,

we saw that,

- If:
 - o Something:

at

- The
 - o Speed
 - > Of:
 - Light,

then

- It
- o Will
 - ⊳ Only
 - Have:

"bosonic components."

o So
⊳ It:
- Should
be
Possible
o For
⊳ All:
Divisions
in
• A structure
o То
⊳ Emit:
- Bosons.
But we see that,
• If:
o A division
will
• Not
o Emit:
⊳ Bosons,
then
• In

• And

o Effect,

- Will

be

• *No*:

Characteristic

▶ Function

for

• The

o Whole:

> Structure.

• Or

o If

⊳ All:

Divisions

will

• Not

o Always

⊳ Emit:

- Bosons,

then

• It

o Would:

⊳ Be

like

• All
o Divisions
⊳ Are:
 Independent entities.
• And
∘ So
⊳ All:
- Divisions
in
• A structure
o Will:
Always
– Emit: bosons,
so that
• There
o Will
▶ Be:
"a characteristic function"
for
• The
o Whole:
⊳ Structure.
• And
o So
⊳ All:
283
203

- Divisions

will

- Emit
 - o Bosons
 - ▶ In:
 - All directions.
- Also since
 - o These
 - ⊳ Are:
 - Bosons,

we see that,

- There
 - o Will:
 - \triangleright Be

a

- Force
 - o Associated
 - \triangleright With:
 - It.

Then we see that,

- Since
 - o That:
 - - Always:

"exists"

+	h	01	ra

- Will be
 - A relation
 - ⊳ Between
 - All:

"divisions."

- And
 - So
 - ⊳ From:
 - This,
- And
 - Since
 - ⊳ That:
 - Relation

should

- Not
- o Be:
 - ▷ Broken,

we see that,

- This:
- Force

should

- Not
 - Break
 - ⊳ That:

Relation.
• And
∘ So
▶ This:
- Force
will
• Be:
"an attractive force."
• Also
o Since
⊳ All:
- Divisions
can
• Emit:
o Bosons,
we see that,
• The
o Number
▷ Of bosons:
- Emitted
by:
"a structure"
will
• Be:
297

 Proportional
to
• The number
o Of:
> Divisions
– In it.
• And
o So
⊳ This:
- Force
will
• Be:
 Proportional
to
• The mass
o Of:
⊳ The
- Structure.
• Also
o Since
⊳ The:
 Characteristic function
has

• A time

o In:

\triangleright	It,

- And
 - Since▶ The characteristic function:
 - Exits

only

- Because
 - o Of
 - - Bosons,

we see that,

- These:
 - o Bosons

will

- Have:
 - o A time
- And
 - o So
 - > The magnitude
 - Of:

"direction"

for

• Each: axis

 \circ In

- Bosons

will

• Be

o One

⊳ More:

- Than

that

• In

Usual:

⊳ Bosons.

• And

So:

⊳ Let

us,

• Call

o These

▶ Bosons:

- Gravitons.

• And

o Also

⊳ Since:

- These things

are

• The
o Only
⊳ Possible:
- Things
- Timigs
that
• Can
o Emit
⊳ Such:
- Bosons,
we see that,
• There
Will be:
⊳ <i>No</i> other
– Bosons
Bosons
with
• The
o Same:
▷ Direction
 Magnitudes
111451114405
as
• That
o In:
⊳ Gravitons.

• But

o Since:

▶ Induction	
is	
 Definable 	
o In:	
⊳ Empty– Space,	
we see that,	
• It:	
o Might	
be	
 Possible 	
o For:	
⊳ Us	
to	
• Define	
o This	
ConceptIn:	
	"empty space."

we saw that,

• But:

• An inductive:

o In

⊳ Sub section 2.4,

- o Definition
 - ⊳ Can:
 - Only

be

- Realized
 - o Using:
 - > Fermions.
- And
 - o So
 - - Will

be

- No
 - o Gravitons
 - ⊳ Due to:
 - Empty space.
- But
 - o Gravitons
 - ⊳ From:
 - A structure

can

- Spill
 - o Into:
 - - Or empty space,

since

Gravitons	
o Passes:	
the	
 Orbitals 	
o Inside	
⊳ The:	
- Structure,	
• And	
o Since	
> All divisions	
– Of:	
a structure	
a structure will	
will	
will • Send	
will • Send • Gravitons	
will • Send ∘ Gravitons ⊳ In:	
will • Send • Gravitons ▷ In: - All directions.	
will • Send • Gravitons □ In: □ All directions. • And • So □ From:	
will • Send • Gravitons □ In: - All directions. • And • So	
will • Send • Gravitons □ In: □ All directions. • And • So □ From:	

o Gravitons:

⊳ Spills

into

- Empty:
 - o Space
 - ⊳ From:
 - A structure,

we see that,

- They
 - o Will
 - ⊳ Go:
 - Beyond

the

- Immediate
 - o Neighborhood
 - ⊳ Of:
 - That structure.

We saw that,

- The
 - o Characteristic:
 - ⊳ Function

of

- A structure
 - o Exits
 - ⊳ Only
 - Because of:

"gravitons."

• And

o So

▶ If:

- Gravitons

are

• Present

 \circ In

⊳ Some:

- Place,

then

• At

o That place,

- Will

be

• An action

o To

▷ Create:

- A function.

• And

o So

▶ If:

- Gravitons

are

•	Presen	ıt		
	0 I	n		
		\triangleright	Em	pty:
			_	Space,

then

- There
 - o Will:
 - ⊳ Exist
 - An action

to

- Create
 - o A function
 - ⊳ Over:
 - There.
- And
 - o So
 - ⊳ From:
 - These,

we see that,

- Gravitons
 - o Can
 - o And will
 - > Interact
 - With empty space.
- Then
 - o Since

> This force
– Is:
"an attractive force,"
we see that,
• The effect:
 Of gravitons
⊳ On:
 Empty orbitals
will
• Be
o То
- Them
towards:
"the structure."
• In
○ Sub section 2.4,
we saw that,
• Fermions
o And
> Anti-fermions
will
• Be:
o Created,
297

WhenOrbitals:
"move."
• And
o So
Consider:A circle
in
"a Cartesian plane."
• Then
o Since:
⊳ It
is
• A closed:
o System,
we see that,
• It
∘ Has:
⊳ A left side
▷ And right side,
- And also a top
 And a bottom.
• And

o So

⊳ From:

- This, we see that, • The o Amount ⊳ Of: - Gravitons sent To o The left ⊳ And to: - The right will • Be o The: ⊳ Same. • And o So ⊳ The - Effect of: "gravitons"

on

- Both
 - o Sides
 - ▷ Of:
 - The circle

.11	
WIII	
* * 111	

- Be:
 - o Equal
 - ⊳ And:
 - Opposite.
- And
 - o So:
 - \triangleright If

a

- Fermion
 - o Gets:
 - ▷ Created

at

- The left side
 - o Of:
 - ⊳ That
 - Circle,
- And
 - o Another fermion
 - ⊳ On:
 - The other side,

then

- Those
 - ∘ Two:
 - ▶ Fermions

•	Average out,
	o Due
	▶ To:
	 Timeless-ness.
•	And
	o So:
	⊳ In
	- Effect,
those	
•	Two
	Fermions:
	⊳ Will
	- Not:
	"appear."
•	And
	 Similarly,
	⊳ For:
	- Those two:
	"anti-fermions."
•	And
	o So
	⊳ When:
	Orbitals

• Towards:
o A structure,
we see that,
• Space:
o Near
ThatStructure
will
• Be:
"curved."
• And
o Also
> This:
Curvature
will
• Extend
o Beyond
> The immediate:
 Neighborhood
of:
"structures,"
since
• When
o Gravitons:
302

SpillsInto:
"empty space,"
they
• Will
o Go:
▶ Beyond
the
• Immediate
 Neighborhood
▷ Of:
 The structure.
• But when
o Orbitals
⊳ Move towards:
- A structure,
those
 Orbitals
o Will
<i>▶ Not</i> :
Collapse
because
• Of:

o The

▶ First exclusion principle.

• Also
o When
▷ Orbitals:
- Move,
then
• Since:
Something
⊳ Has
- Been:
"created,"
• And
o Since
⊳ Neither:
- Fermions
- Nor anti-fermions,
are:
"created,"
we see that,
Those things
-
o Which
b Where:
- Created
will
• Be
 Something
304
501

- Can:
"transfer properties"
transfer properties
in
• The
o Same
⊳ Way:
Properties
were
• Transfered
o Inside:
⊳ The
- Structure.
• And so
o Properties
▷ Of:
 The structure
will
• Be:
o Transfered
to
• All
o Things
⊳ Placed:
- On

"curvature."

- And so
 - o All
 - ▶ Things:
 - Placed

on

- That:
 - o Curvature

will

- Be
 - o Attracted
 - ▶ To:
 - That structure.
- And so
 - That curvature
 - ▶ In:
 - Space

around

- A structure
 - o Will
 - Cause:
 - Gravity.
- And
 - o So:

⊳ Let

us,

- Call
 - o This

"pseudo-sequences."

- And
 - \circ Let: L_1
 - ▶ Be:
 - A structure,
 - ⊳ Placed:
 - In empty space.
- Then
 - o Since
 - - **–** Is

a

- Pseudo-sequence
 - \circ Around: L_1 ,
- And
 - o Since
 - ⊳ The:
 - Amount

of

• Gravitons

Sent

 \triangleright By: L_1

is

- Proportional
 - o To:
 - The mass
 - Of: L_1 ,

we see that,

- Given
 - The mass
 - ▶ And position
 - Of: L_1 ,

we

- Can
 - o Derive
 - ⊳ The:
 - Rules

of

• That:

"pseudo-sequence."

- And
 - o So

 \triangleright If: L_2

- Is another:

"structure,"

- And
 - o If:

 \triangleright It

is

- Placed:
 - \circ Near: L_1 ,
 - o Or in
 - ⊳ That:
 - Pseudo-sequence,

then

- There
 - o Will
 - ▶ Be:
 - A change

in

- The pseudo-sequence
 - o Of
 - ▶ This:
 - Space,

since

- Gravitons
 - \circ Of: L_2

will

- Also:
 - o Begin

⊳ То	
- Have:	
	"an effect."
• And	
o So	
⊳ There:	
- Will be:	
	"a change"
	"a change"
in	
• The	
o Pseudo-sequence	
⊳ Of:	
- The space.	
• And	
o Also	
⊳ The:	
- Rules	
of	
• This	
o New:	
> Pseudo-sequence	
can	
• Be derived	

o Given:

> And positions

- Of:

 L_1 and L_2 .

• And

o So

be

- Used to
 - o Denote:

 - ▶ And positions
 - Of:

 L_1 and L_2 .

- Then
 - o Since
 - ▶ The algorithm:
 - Used

to

- Derive
 - o The:
 - ▶ Rules

of

- The pseudo-sequences
 - o Always

- ▶ Remains:
 - The same,

we see that,

- At
 - o Anytime,
 - ⊳ Given:
 - $\overline{L_1}$ and $\overline{L_2}$,

we

- Can
 - o Always
 - ▷ Derive:
 - The rules

of:

"the system."

- Or
 - o Given:

$$S = \{ \overline{L_1}, \overline{L_2} \},$$

we see that,

- We
 - o Can
 - ⊳ Always:
 - Derive

the

• Rules

o Of:

⊳ The

- Pseudo-sequence

in

"the system."

• But

 \circ Since: L_2

- Placed

in

• The

o Curvature:

⊳ Caused

- By: L_1 ,

we see that,

• L_2 will

o Start:

- Towards: L_1 .

• And

o Also

⊳ Since:

- There

are

• Some

 Rules
 Rules

▶ To:

- Construct

the

- Already
 - o Existing:
 - > Pseudo-sequence,

we see that,

- The
 - Movement

 \triangleright Of: L_2

- Towards: L_1

will

- Be
 - Governed
 - ▶ By:
 - Some rules.
- And
 - o So
 - \triangleright When: L_2
 - Enters

into

- Its
 - o New:
 - ⊳ Position,

		.1 .	
We	See	that	

- There
 - o Will be
 - ⊳ Some:
 - Rules

to

- Derive
 - o The
 - ⊳ New:
 - Pseudo-sequences.
- And
 - o So
 - - In: S

will

- Always
 - o Be
 - ▶ According
 - **–** To:

"some rules."

- And
 - o So
 - ⊳ The:
 - Rate

of

•	Change		
	0	Of:	

> The characteristic

- Function

of

 \bullet The set: S

o Is:

 \triangleright Not

- Zero.

• Or

• We see that,

⊳ The:

- Rate

of

• Change

o Of:

> The characteristic

- Function

of

• This

o System

⊳ Will not

- Be:

"zero."

• And so

- Be:	
	"a characteristic function"
for	
• This	
o System	
▷ Of:	
- Two	structures.
• Also	
o Since	
⊳ All:	
- Funct	ions
can	
• Be:	
o Constructed	
only	
• In:	
o A finite:	
⊳ Number	
- Of wa	ys,
we see that,	
• The:	
o Characteristic	
▶ Function	
	317

o There

⊳ Will

- Of:

"this system"

can

- Also
 - o Be:
 - ▶ Represented:
 - Using

a

- Finite
 - o Number
 - ▷ Of:
 - Things.
- And
 - o So
 - ⊳ That:
 - Function

will

- Be
 - o Made:
 - \triangleright Up

of

- A finite
 - o Number
 - ⊳ Of:
 - Sub components.

•	And	
	0	Also

- Will

be

- A relation
 - o Among

 \triangleright All

- Those:

"sub components,"

so that

- They
 - o Together
 - ⊳ Will:
 - Form

a

- Sensible:
 - o Characteristic
 - ▶ Function.
- And
 - o So

 \triangleright When: L_2

comes

- Closer
 - \circ To: L_1 ,

•	All	
	o The:	
	> Sub components	
of		
•	That:	
	o Characteristic	
	▶ Function	
will		
•	Tend	
	o To:	
	▶ Have	
the		
•	Same	
	o Distinguishing:	
	Characteristics.	
•	Or	
	o Since	
	- Space	
is:		
		"used"
to		
•	Construct	

we see that,

o All	I
C	Those:Sub components,
we see that,	2

- When
 - o Those
 - ⊳ *Two*:
 - Structures

come

- Closer
 - o To:
 - ⊳ Each
 - Other,

then

- There
 - o Will:
 - ⊳ Not

be

- Enough
 - o Space
 - ▶ To:
 - Create

the

- Same
 - o Number of

	n ·					
_	1)10	tın	guis	hal	hΙ	ρ.
\sim	ν 10	un	guio.	ma	ω_1	v.

- Sub components.

• And

o So

⊳ The:

- Sub components

of

• That:

o Characteristic

⊳ Function

will

Tend

o To

▶ Be:

- The same.

• And

o So

⊳ An:

- Action

to

• Oppose

o This

⊳ Will:

- Appear.

• But

o When	
▶ It:	
- Happens,	
we see that,	
• That	
 Action 	
∘ Action ⊳ Will:	
⊳ wiii. – Be	
to	
• Oppose:	
The creation	
⊳ Of	
- The new:	
	"pseudo-sequence."
. 0.	-
• Or	
Since	
▶ That	
- Old:	
	"pseudo-sequence"
• Was:	
	"stabilized"
	staomzea
by	
• The existence	
o Of:	
▷ Its:	
	323

- Rules,
we see that,
• When
• We:
⊳ Try
to
• Change
o Its:
> Rules,
we see that,
• Those rules
o Will
⊳ Oppose
– That:
"change."
• And so
o There
⊳ Will:
– Appear
a
• Repulsive force
o Between
> Those:
- Two structures.

• And

0	Also
	This:
	 Repulsive force
will	
• Be	

- Proportional
 - ⊳ To:
 - Their: masses,

since

- It
- o Is
 - ⊳ Due to:
 - The opposition

for

- Creating
 - o That:
 - ⊳ New
 - Pseudo-sequences,

which

- In turn
 - o Is proportional
 - ▶ To:
 - The masses.
- But
 - o Even

- Repulsive
 - o Force
 - ⊳ Will:
 - Appear,

we see that,

- The
 - o New state
 - ⊳ Of:
 - The system

is

- Still
 - o A permissible:
 - ⊳ State.
- And
 - o So,
 - ⊳ Even
 - Though,

there

- Will
 - o Appear
 - ▷ A repulsive:
 - Force,

we see that,

 \bullet L_1 and L_2

\cap	Will	

⊳ Still:

- Come closer.

• And

o So

▶ If:

- We drop

a

- Very light
 - o Object
 - ⊳ Of:
 - One gram,
- And a very heavy
 - o Object
 - ▷ Of:
 - Ten kilograms

at

- The
 - o Same:
 - ⊳ Time,
- And
 - o Also
 - ⊳ From:
 - The same height,

then

• The

o Lighter:

⊳ Object

will

• Reach

o The

⊳ Ground:

- First.

• Well,

o A very very very

⊳ Tiny bit:

- Earlier.

• And

o So

▶ If:

- We

see

• Such:

o A thing,

then

• Gravity

o Will

▶ Be:

- Absent

in

• The:

o Quantum
⊳ World.
• And
o So
⊳ Gravity:
will
• Be
o A force
- Among:
"structures."
• And so:
• And so:
And so:General relativity
And so:General relativity▷ And
 And so: General relativity And Quantum mechanics
 And so: General relativity And Quantum mechanics
 And so: General relativity And Quantum mechanics will Be
 And so: General relativity And Quantum mechanics will Be Incompatible

329

• The

o Repulsive force

⊳ Among:

inside:	
	"a structure,"
will	
• Not	
o Act	
- A repulsive f	orce
among:	
	"structures,"
since	
• That	
 Repulsive force 	
⊳ Among:	
- Fermions	
in	
• The	
∘ Inside	
⊳ Of:	
The structure	,
is	
• Just	
• Weak:	
⊳ Enough	

to

• Resist

▷ Of:	
- The stru	cture.
• Also:	
 Gravity 	
⊳ Will be:	
- Weaker	
than:	
	"the weak force,"
since	
• If	
o Not,	
then	
 Gravity 	
o Will	
> Overcome:	
	"the weak force,"
• And	
o The:	
⊳ Structure	
will	
• Behave	
 Unexpectedly 	
▶ With:	
- Size.	
	331

 \circ The implosion

o Gravity:

⊳ Will

be

- Very very
 - o Weak
 - ⊳ Compared
 - **–** To:

"the weak force,"

since

• If

o Not,

then

- All
 - o Properties
 - ⊳ Of:
 - A structure

will

- Be
 - o Transfered
 - - **–** To:

"all nearby structures,"

• And

	α
\sim	> 0

▷ After:

- Sometime,

all

• Structures

o In

⊳ The:

- Universe

will

• Have

o The

⊳ Same:

- Properties.

• Also

o Since:

are

• Some

o Precise:

▶ Rules

for

• The construction

 \circ Of

- Structures,

we	se	e	that,
	•]	They

o As:

A whole

will

- Not
 - o Have:
 - ⊳ A wave
 - Nature.
- But all:
 - o Divisions
 - ▶ In:
 - Them

will

- Have:
 - o A wave
 - ⊳ Nature,

since

- There is:
 - o No induction
 - ▶ In:
 - That locality.
- And
 - o So

- Will

be

- A wave
 - o Nature:
- Also
 - o For:
 - ⊳ The same
 - Reason,

we see that,

- The
 - o Uncertainty principle:
 - ⊳ Will
 - Not

be

- Applicable
 - o For
 - - Structures.
- And
 - o So
 - ▷ Everything:
 - About

these

• Structures

▶ Position,	
- Will be:	
	"precise."
• And	
o So	
> These:	
- Structures	
will	
• Only	
o Have:	
A single	
 Copy. 	
• Also	
o As	
- Of this,	
we see that,	
• There	
o Will be:	
⊳ No	
 Uncertainty 	
in	
• Their:	
• Their.	
	"velocity."
	336

o Including:

• Also
o When
⊳ These:
 Structures
are
• Created
o Using:
> Induction,
we see that,
• The
 Directions
⊳ On:
Fermions
will
WIII
• Be
o Used
⊳ In:
- The process
• And
o So
> These:
- Structures
will
• Not
o Have:

⊳ A direction.

4 Dark matter

In

• Section 3,

we saw,

- How time
 - o Can
 - ▶ Emerge
 - From:

"a timeless system."

- In
 - o This:
 - ⊳ Section,

we

- Are
 - o Going
 - ▶ To:
 - Generalize it,
- And
 - o Then
 - ▶ Build:
 - Upon it.
- And
 - o So
 - \triangleright Let: S_q

be

•	Α	system
•	4 A	S y StCIII

o Of:

 $\triangleright q$ structures.

• And

o Let

⊳ The:

Structures

in

• It

o Be:

$$L_1, L_2, \ldots, L_{q-1}, L_q.$$

• Then

o In

▶ This:

- System,

we see that,

 \bullet L_1 will

 \circ Attract: L_2 .

• And

o When

⊳ That:

- Happens,

we see that,

- The
 - o Attractive force
 - ⊳ Between:
 - L_2 and L_3

will

- Change
 - o The
 - ▶ Position
 - Of: L_3 ,

:

- And finally,
 - \circ When: L_{q-1}
 - ⊳ Changes:
 - Position,

we see that,

- The
 - o Attractive force
 - ⊳ Between:
 - L_{q-1} and L_q

will

- Change
 - o The
 - ▶ Position
 - Of: L_q .
- Then

o We

⊳ Can:

- Assume

that,

• When: L_{i-1}

o Changes:

▶ Position,

that

• Change

o Will:

⊳ Be

– Reflected in: L_i

after

• One

o Unit

⊳ Of:

- Time.

• And

o So

⊳ We can:

- Assume

that,

• When

o There:

 \triangleright Is

• Change

 \circ In: S_q ,

that

• Change

o Will

▶ Be:

- Reflected

in

• The entire

o System

⊳ Within:

-q units of time.

• And so

o If

⊳ We:

- Make

a

• Change

 \circ In: S_q ,

then

• There

o Will

▶ Be:

- No change

in

- It
- o After:

 $\triangleright q-1$ units

- Of time.

- And so
 - o After:

 $\triangleright q-1$ units

- Of time,

the

- System:
 - \circ Will
 - ▶ Remain:
 - As such.
- And
 - o So:

▶ We can

- Call: S_q

a

- Timeless system
 - o Beyond:

 $\triangleright q-1$ units

- Of time.

- Then
 - o When we
 - ▶ Iterate

- This:

"construction,"

we see that,

- At
 - o Some point
 - ▷ Of:
 - Time,

we

- Will
 - Have
 - ⊳ Such:
 - A system

with

- <u>p</u> elements
 - o In:
 - ▶ It.
- In
 - o Section 3,

we saw that,

- If:
 - \circ L_1 and L_2
 - ⊳ Are:
 - Structures,

then

- The
 - o System:

$$\triangleright S_1 = \{ L_1, L_2 \}$$

will

- Have:
 - o A characteristic
 - ▶ Function.
- And
 - o So
 - - The arguments

which

- We
 - Gave
 - ▶ In:
 - Section 3,

we see that,

- At
 - o Any:
 - ⊳ Moment,

the

- Characteristic
 - o Function

can

- Only:
 - Handle

a

- Finite
 - o Number
 - ▷ Of:
 - Things.
- And
 - o So
 - ⊳ When:
 - There

are

- <u>p</u> elements
 - o In
 - ⊳ Such:
 - Systems,

we see that,

- There
 - o Will:
 - ⊳ Be

a

- Time
 - o In:
 - ▶ It.
- Or

o If:

are

- More
 - o Than:
 - ⊳ <u>p</u> structures
 - In a system,

we see that,

- Initially,
 - o Changes:
 - ⊳ Will

be

- Made
 - o In:
 - - $\underline{p} 1$ structures,
- And
 - o Then
 - ⊳ Control:
 - Will

be

- Passed
 - o To
 - ⊳ The next:
 - Division.

• And

o So

- Will be

a

• New

o Time

▶ In:

- The system.

• And so

o Let

⊳ Us,

- Look at:

this:

"time."

• And so

o Consider

⊳ An inductive

- Sequence:

 $i_0, \quad i_1, \quad i_2, \quad i_3, \quad \dots$ (6)

• And

 \circ Let: I_0

⊳ Be

- Used

to

o The	
⊳ Above:	
- Sequence 6.	
• Also	
 Assume 	
⊳ That,	
there	
• Are:	
o Infinite	
⊳ Such:	
- Sequences.	
• And	
o So	
▶ If:	
I_1, I_2, I_3	$I_3, I_4, \ldots,$
are	
• Infinite	
Number	
▷ Of:	
 Such sequences, 	
then	
• We	
o Can	
⊳ Create	
	240

• Denote

- A sequence:

$$I_0, I_1, I_2, I_3, I_4, \dots$$
 (7)

• And

 \circ Let: \mathscr{I}

▶ Be:

- Used

to

- Denote
 - o The
 - ▷ Above:
 - Sequence 7.
- Then
 - o Since: I
 - \triangleright Is

an

- Inductive:
 - o Sequence,

we see that,

- It
 - o Will:
 - ▶ Have

a

- Time
 - o In:
 - ▶ It.

	ъ.	
•	Riit	•

 \circ Since: I_0

is

- Also:
 - o An inductive
 - ⊳ Sequence,

we see that,

- It
 - o Will
 - ⊳ Also:
 - Have

a

- Time
 - o In:
 - \triangleright It.
- And
 - o Similarly,
 - ⊳ Since all:
 - Elements of: \mathscr{I}

are

- Inductive:
 - o Sequences,

we see that,

• All

o Of:

⊳ Them

will

• Also

o Have:

⊳ A time.

• And

o So

 \triangleright If: I_n

is

• An arbitrary

o Element

 $\quad \triangleright \ \text{Of:} \ \ \mathscr{I},$

let us,

• Compare

o The time

⊳ Speeds

– In:

 I_n and \mathscr{I} .

• And so

o Let

⊳ The speed:

- Of time

in

- I_n be: c_0 .
 - \circ And
 - \triangleright That
 - In: \mathscr{I} be: c_1 .
- Then
 - o If:

$$c_0 > c_1,$$

we see that,

- ullet The sequence: ${\mathscr I}$
 - o Cannot
 - ⊳ Be:
 - Created,

since

- The elements
 - \circ Of: \mathscr{I}
 - ⊳ Will
 - Overshoot: \mathscr{I} .
- Also
 - o If:

$$c_0 = c_1,$$

then

- ullet The sequence: \mathscr{I}
 - o Cannot
 - ⊳ Be:
 - Created,

since

ullet The sequence: \mathscr{I}

o And

▶ The elements:

- In it

will

• Be

 \circ At

▶ The same:

- Level.

• But

o If:

 $c_0 < c_1,$

then

ullet The sequence: \mathscr{I}

o Will

▶ Be:

- Creatable,

since

• The

o Elements

will

• Be

- Contained
 - ▶ In:
 - It,
- And so: I
 - o Would
 - ▶ Be:
 - Definable.
- And
 - So
 - ⊳ The:
 - Speed

of

- Time
- ∘ In: I

will

- Be
 - Greater:

that

- Of:
 - o All
 - - **–** In: 𝓕.
- And
 - o So

⊳ From:		
- This,		
• And		
Since		
– Of:		
	"light"	
in		
• The		
 Pseudo-sequences 		
⊳ Of: S <u>p</u> ,		
is		
15		
• Equal		
o То		
- Of:		
	"earthly light,"	
we see that,		
• The emergent		
o Time		
▶ In:		
 A timeless system 		

beyond:

will

"<u>p</u> units of time"

•	Be	
	o Faster	
	⊳ Than:	
	- The speed	
of:		
		"earthly light."
•	And	
	o So	
	⊳ From:	
	– This,	
•	And	
	o Since	
	A timeless sys	tem
	- Beyond:	
		"p units of time,"
has		
•	A faster	
	o Time	
	▶ In:	
	– It,	

did

• And

o Since

This faster: – Time

 Exist: Previously, we see that, This New:
we see that,
 This New: Time has To Be: Created. But If We: Increase the Time speed Of That:
 New: Time has To Be: Created. But If We: Increase the Time speed Of That:
 ▶ Time has • To ○ Be: ▷ Created. • But ○ If ▷ We: - Increase the • Time speed ○ Of ▷ That:
has • To • Be: • Created. • But • If • We: - Increase the • Time speed • Of • That:
 To Be: Created. But If We: Increase the Time speed Of That:
 Be: Created. But If We:
 Be: Created. But If We:
 ▶ Created. • But ○ If ▷ We:
 But If We: Increase the Time speed Of That:
 o If b We: - Increase the • Time speed o Of b That:
 ▶ We: Increase the Time speed Of That:
IncreasetheTime speedOf That:
the • Time speed ○ Of ▷ That:
• Time speed○ Of▷ That:
Of▶ That:
⊳ That:
to
• Get
That
⊳ New:
- Faster time,

then	
• The speed	
o Of	
> That:	
- Faster tin	me,
• And	
o That	
▶ In:	
- The:	
	"pseudo-sequences"
will	
• Be	
o The:	
⊳ Same,	
• And	
o There:	
⊳ Will	
be	
• <i>No</i>	
o Faster:	
▶ Time.	
• And so	
• We see that,	
⊳ The:	
 New time 	<u>a</u>

has

To

o Be

⊳ Created:

- Anew.

• And

o So

⊳ Something:

- New

should

• Be:

o Created

▶ To:

- Represent

this:

"new time."

• And

o So

- Will

be

• Something

o New:

⊳ That

will

• Represent
o This:
⊳ New
- Time.
• Then
o Since
⊳ Only:
Orbitals
can
• Represent
o This:
⊳ New
- Time,
we see that,
• New
 Orbitals
⊳ With:
 A faster time
will
• Be
o Created,
• And

 \circ Also

These:

- New orbitals

will	
• Be:	
	"created"
on	
• Top	
o Of	
⊳ The old:	
- Space.	
_	
• Also	
o Since:	
new	
Orbitals	
o Have	
A faster:	
	"time speed,"
we see that,	
• The:	
• The:	
	"first exclusion principle"
will	
• Not	

o Be:

• And so

o It

⊳ Will

- Be:

"an area"

where

- There
 - o Are:
 - ⊳ Two
 - Times.
- And
 - o So
 - ⊳ From:
 - These,
- And
 - o Since:

is

- An inductive
 - o Transfer
 - ⊳ Of:
 - Something,
- And
 - o Since
 - ▶ Tions:
 - Creates

the

- Next
 - o In:
 - ⊳ An
 - Induction,

we see that,

- These
 - o New
 - ▷ Orbitals:
 - Will

be

- Created
 - Inductively
 - ▶ By:
 - Tions.
- And
 - o So
 - ⊳ From:
 - What

we

- Saw
 - o In
 - ▶ Sub section 2.4,

we see that,

• Tions

 \circ And

▶ Nions

will

• Will

o Act:

• And

o So:

▷ Initially,

all

• Those

o New:

▷ Orbitals

will

• Be

o Created

▶ At:

- The same place,

• And

o Then:

⊳ By

the

• Action

o Of:

▶ Nions

	- The:
	"first exclusion principle"
will	
•	Become:
	"applicable."
•	And
	o So
	Newly created:
	"orbitals"
•	Will:
	"move,"
•	And
	∘ So
	⊳ They:
	– Will
be	
•	Filled
	o With:
	▶ Fermions.

• And

o So

▷ Initially,

- Dark matter

will

- Be
 - o Created
 - ▶ As:
 - A lump,
- And
 - o Then
 - - Will be:

"an explosion"

like

- What
 - o We
 - ⊳ Saw:
 - In sub section 2.4.
- And
 - o Then:
 - ⊳ After

that,

- The
 - o Splitting:
 - ▶ Which

we

- We
 - o Saw

▶ In sub section 2.12− Will:

"occur."

- Also
 - o Since:
 - ▶ Tions
 - And nions

created:

- Earthly
 - \circ And
 - ▶ Dark matter
 - Orbitals,

we see that,

- Dark matter
 - o Orbitals
 - ⊳ Will:
 - **–** Ве

as

- Stable
 - o As:
 - ⊳ Earthly
 - Orbitals.

Therefore

- Since
 - o The speed

▷ Of:Light

in

- Dark matter
 - o Is:
 - ⊳ Greater
 - Than

that

- Of:
 - o The
 - \triangleright Speed
 - Of:

"earthly light,"

we see that,

- Light
 - o Of
 - - Orbitals

will

- Not,
 - o Or cannot
 - ▶ Interact:
 - With us.
- And
 - o So:

▶ Dark matter

will

- Be
 - o Invisible
 - ▶ To:
 - Us.
- But:
 - o Earthly
 - ▶ Light

can

- Pass
 - o Through:
 - ▷ Dark matter,

since

- It is
 - o Built
 - ⊳ On
 - Top of:

"earthly orbitals."

- Also
 - \circ When
 - - Are:

"dark matter orbitals,"

we see that,
• They
o Will
⊳ Emit:
 Space-bosons.
• But since
 Orbitals
⊳ Send:
Space-bosons
in
• All:
"directions,"
directions,
• And
o Since:
▷ Dark matter
is
• Wholly
 Contained
▶ In:
 Earthly orbitals,
we see that,
• Dark matter
o Space-bosons
⊳ Will

– Be:

"forced"

to

- Pass
 - o Through:
 - ⊳ Earthly
 - Orbitals.
- And so
 - \circ If: c_1
 - \triangleright Is

the

- Speed
 - o Of:
 - ▶ Earthly
 - Light,
- And: c_2
 - o That
 - ⊳ Of:
 - Dark matter,

then

- When:
 - o Dark matter
 - ⊳ Space-bosons

passes

- Through:
 - o Earthly

we see that:	
	$c_2 - c_1$
of	
 Dark matter 	
 Space-bosons ▶ Will: Act	
as	
• An inductive:	
ComponentFor:	
	"earthly orbitals."
• And so	
o With	
⊳ Respect– To:	
	"earthly orbitals,"
we see that,	
• There	
o Will	
▶ Be:	
	"a gravitational effect"
• For:	
	373

⊳ Orbitals,

"dark matter space-bosons."
• But
o Since:
> Dark matter
Space-bosons
are
 Gravitationally
 Neutral
▶ With
- Respect to:
"dark matter structures,"
we see that,
• The
o Force:
> Due
to
• Dark matter
 Gravitons
⊳ On:
 Earthly orbitals
will
• Be
o Greater
⊳ Than
– That of:

"dark matter space-bosons."

- Also
 - o Since
 - ▶ Time speed
 - In:

"dark matter"

is

- Greater
 - o Than:
 - ⊳ Earthly
 - Fermions,

we see that,

- With
 - o Respect
 - ▶ To:
 - Earthly orbitals,

all

- Dark matter
 - \circ Bosons

will

- Have
 - \circ An
 - ▷ Inductive:
 - Component.
- And so

o With
▶ Respect– To:
– 10:
"earthly orbitals,"
we see that,
• There
o Will
▶ Be:
 A gravitational effect
for:
"dark matter bosons."
A.1
• Also since:
o Orbitals
⊳ And
- Fermions
are
 Variants
o Of:
⊳ Each
- Other,
we see that,
• The effect
o Of
Dark matter:
Space-bosons

 And bosons 	
on	
• Earthly	
o Things	
⊳ Will	
- Be:	
	"the same."
• Also	
o Since	
– In:	
	"dark matter"
is	
• Greater	
o Than:	
⊳ Earthly	
- Fermions,	
we see that,	
 Dark matter 	
o And:	
- Fermions	
will	
■ Re	

o Very:

- ▷ Different.
- And
 - o So:
 - ▶ Earthly
 - Fermions

cannot

- Absorb:
 - o Dark matter
 - ▶ Bosons.
- And so:
 - o Dark matter
 - o And:
 - - Fermions

will

- Never
 - o Interact
 - ⊳ With:
 - Each other,

like

- Earthly
 - o fermions
 - ▶ And bosons:
 - Interact.
- In

o Section 5,	
we	
• Will:	
o Show	
that,	
• When	
 Dark matter 	
▶ Massive	
- Lump:	
	"explodes,"
then	
• Not	
o Only:	
▶ Dark matter	
- Orbitals,	
• But	
 Earthly orbitals 	
⊳ Will:	
- Also be:	
	"created."
• Then	
Since	

- Are:

	"no rules"
to	
• Choose	
o The	
⊳ Speed– Of:	
	"time"
• In:	
	"dark matter orbitals,"
we see that,	
• The	
o Speed	
⊳ Of:– Time	
in:	
	"dark matter orbitals"
will	
• Be:	
o A random	
> Value	
- From:	

• In

o Sub section 2.7

"finite range."

we saw that,

- If
 - o There
 - ▷ Is:
 - A probability

for

- Something
 - o To:
 - ⊳ Happen,

then

- It
- o Will
 - ⊳ Happen:
 - Sometime,
- And
 - \circ In
 - ⊳ Sub section 2.9,

we see that,

- If
 - o Two things
 - ⊳ Can:
 - Happen,

then

- They
 - o Both

⊳ Can:	
- Happen	
at	
• The	
o Same:	
⊳ Time.	
• And	
o So	
▶ From:These,	
• And	
o Since:	
- Speed	
in:	
	"dark matter orbitals"
is	
• A random	
o Value	
⊳ Chosen	
- From:	
	"a finite range,"
we see that,	
• Two	
o Or more:	
	382

- Orbitals	
with	
• Different	
o Time	
⊳ Speeds	
- Maybe:	
	"created."
• But	
o Even	
⊳ Though,	
– More	
112010	
than	
• One	
o Time	
⊳ Speed:	
Orbitals	
can	
• Be:	
	"created,"
we see that,	
• The number	
o Of	
⊳ Different	
- Time speeds:	
ime speeds.	
	383

▶ Dark matter

		"created,"
will		
•	Always	
	o Be:	
	– Than: <u>p</u> ,	
since		
•	If:	
	o More	
	⊳ Than: <u>p</u>	
	- Time speeds:	
		"are created,
then		
•	An	
	 Induction 	
	⊳ Will:	
	- Appear,	
•	And	
	o Thereby:	
	▷ An undefined:	
	- Time	
will:		
		"appear."
•	But	

o Since:

D	Earthly	
	Orbitals	

are

- Also
 - o Created
 - ▶ Along
 - With:

"dark matter orbitals,"

we see that,

- When
 - o Two
 - ⊳ Or
 - More:

"dark matter orbitals,"

with

- Different
 - o Time speed
 - ⊳ Are:
 - Created,

then

- More
 - o Earthly orbitals
 - ⊳ Will be:
 - Created.
- And

▶ This:	
- Happe	ns,
we see that,	
• The:	
	"first exclusion principle"
	mst exclusion principle
have	
• To	
o Be:	
> Satisfied,	
for	
• All:	
o Earthly	
▷ Orbitals.	
• And	
o So	
⊳ From:	
– This,	
• And	
o Since:	
A timeless	system
beyond:	
	"p units of time"
can	

o When

o With	
- Faster:	
	"time speed orbitals,"
we see that,	
• When	
o Many:	
▷ Different	
	"time speed orbitals,"
• Are:	
	"created,"
then	
• Some	
o Faster	
- Orbitals	
maybe	
• Thrown out	
o Of:	
⊳ The	
- System.	
• And	
o So	
	387

• Exist

	ThereMaybe:	
		"galaxies"
in		
	• Which	
	o There	

a

- Few
 - o Stars
 - ⊳ That:

⊳ Are:

- Only

- Can

be

- Detected
 - o Using:
 - ⊳ Earthly
 - Equipments.
- And
 - o Also
 - ⊳ From:
 - This,

we see that,

- The
 - o Number

- Things
in:
"a probabilistic space"
will
• Always
• Be:
o be. ⊳ Less
− Than: <u>p</u> .
• Also
o Due
⊳ To:
- These
we see that:
"gravitational forces"
from
• Such
SuchSystems
o Systems
Systems Can:
SystemsCan:Interact
SystemsCan:Interact
 Systems Can: Interact with Elements
 Systems Can: Interact with Elements Outside

⊳ Of:

• And	
o So	
> There:	
- Will	
be	
• More	
 Gravitational 	
⊳ Force:	
On stars	
in	
• The	
 Outskirts 	
⊳ Of:	
– A galaxy.	
So we see that,	
• When	
The first	
Pons barrier	
- Is:	
	"crossed,"
we	
• Will	
o Get:	
> Structures.	

• And when

	⊳ Second	
	- Is:	
		"crossed,"
we		
•	Will	
	o Get:	
	> Dark matter.	
•	But we see that,	
	 This creation 	
	⊳ Of:	
	 Dark matter 	
will		
•	Be:	
		<i>"</i>
		"applicable"
only		
•	If	
	o There	
	▶ Is:	
a		
•	Definite	
	o Inductive:	
	▶ Process	
due		

o The

•	To:

- o Gravitational
 - > Interaction.
- And
 - o So
 - ▶ In:
 - The strict sense,

what

- We
 - Have:
 - ⊳ Given

is

- The
 - Ideal:
- And
 - So
 - ▶ In:
 - Reality,

we see that,

- There
 - o Should:
 - ⊳ Be

a

• Very

o High:	
▶ Level	
of	
 Gravitational 	
 Interaction 	
⊳ To	
- Get:	
	"dark matter."
• And	
∘ So	
▶ This:	
- Phenomena	
will	
• Be:	
- 201	,,
	"evident"
only	
• If:	
o The	
▷ Overall:	
- Change	
is	
• Very	
o High	
⊳ In:	
– The system.	

Prediction. Let

- \mathscr{S}^{\star} be
 - A collection

of

- More
 - o Than:
 - $\triangleright \underline{p}$ stars.
- If
 - o These
 - \triangleright Stars
 - Are:

"tightly coupled,"

- And
 - o Also
 - ▶ If:
 - The interaction

among

- Them
 - o Is
 - *⊳ Not*:
 - Noticeable,

then

- There:
 - o Will

be

- No
 - Dark matter

▶ In:

– It.

5 Dark energy

Consider

- The
 - Inductive

⊳ Sequence:

$$i_1, i_2 = f(\mathcal{C}, i_1), i_3 = f(i_1, i_2), i_4 = f(i_2, i_3), \dots, (8)$$

where

- \bullet \mathcal{C} is
 - A constant.

Then

- We see that,
 - o The
 - ⊳ Generator: f

of

- The sequence
 - o Will
 - ⊳ *Never*:
 - Change,
- And

o Only:

 $\triangleright i_{k-2}$ and i_{k-1}

will

• Be

o Given:

▶ As parameters

– To: *f*

while:

"generating: i_k ,"

• And

o No

Other:

- Element

will

• Be

o Used:

 \triangleright At

- That: *time*.

• And

o So

⊳ The above:

- Sequence 8,

will

• Never

o Be:

$$i_1, \qquad i_2 = f(i_1), \qquad i_3 = f(i_2), \qquad i_4 = f(i_2, \ i_1), \qquad \dots,$$
 or
$$i_1, \qquad i_2 = f(i_1), \qquad i_3 = f(i_2), \qquad i_4 = f(i_3), \qquad \dots,$$
 or
$$i_1, \qquad i_2 = f(i_1), \qquad i_3 = g(i_2), \qquad i_4 = f(i_3), \qquad \dots.$$

- And
 - o So
 - ▶ We see that,
 - The:

"basic structure"

of

- A sequence
 - o Will
 - ⊳ Never:
 - Change.
- And so
 - o In
 - ⊳ All:
 - Inductive processes,

we see that,

- There
 - o Will
 - ⊳ Be:
 - Something

⊳ All:

- Changes
can
• Only
o Be
▶ Due to:
- Induction,
we see that,
• An inductive
 Sequence
⊳ Will:
- Not
have
• Another
Induction
▶ Inside
– Its:
"basic structure,"
• And
o So
"the forward relation."
will
• See

o To:

 \triangleright It

+	h	0	+
ı.	H	а	ι.,

- There
 - o Is:
 - ⊳ No
 - Induction

in

- All:
 - o Basic
 - > Structures.
- In
 - o Section 4,

we saw that,

- Gravitational
 - o Interaction
 - ⊳ Between:
 - Structures

can

- Form
 - \circ An
 - ▶ Inductive:
 - Process.
- And
 - o So
 - ⊳ When
 - We apply:

on	
• That	
Inductive:	
> Process	
of	
 Gravitational 	
 Interacting 	
> Structures,	
we see that:	
	"the forward relation,"
will	
• Forbid	
o All	
> Structures	
– In:	
	"the universe,"
to	
• Interact	
o With:	
⊳ Each	
- Other	
via:	
	"gravity."
	401

"the forward relation,"

• And

o So:

"the forward relation,"

will

• Not

o Be

▶ Applicable

- Inside:

"galaxies,"

but

• It

o Will

⊳ See:

- To it

that,

• Structures

 \circ Of

▷ Two different:

- Galaxies

will

• Not

o Interact

⊳ Via:

- Gravity.

• And so

o There	
⊳ Will:	
– Be	
a	
 Noticeable 	
 Repulsive 	
> force:	
- Between	
all:	
	"galaxies."
• And so	
The expansion	
▷ Of:	
 The universe 	

will

- Be
 - More
 - ⊳ Than:
 - What

we

- Expect
 - o It

▶ To:

– Be,

so that

• The repulsion
o Will
> Have:
- An effect.
• But we see that,
 Galaxies
⊳ Can:
Interact
via:
"gravity,"
• If:
"the forward relation"
will
• Not
∘ Be:
Or we see that,
• A galaxy
o Can
⊳ Act
– As:
"a single entity,"
• And
o So
404

	▶ A finite:	
	- Number	
o.f		
of		
•	Galaxies	
	o Can	
	> Interact	
	– Via:	
		"gravity."
•	And so	
	o There	
	⊳ Will	
	– Be:	
		"galactic clusters."
•	But	
	o All:	
	⊳ Galaxies	
will		
•	Not	
	o Form:	
	⊳ A cluster,	
since		
•	If:	
	o So,	
then	,	

• It
o Will
⊳ Mean:
- That,
all
• Structures
 Interact
⊳ Via:
- Gravity.
• And so
o Let
⊳ Us:
– Call
this
• Force:
"the forward force."
• Then
o Since
Forbids
the
• Creation
o Of:
⊳ An
Induction

- All:
 - o Basic
 - > Structures,

we see that,

- The action
 - o Of
 - ▷ This:
 - Force

will

- Always
 - o Be:
 - ▶ Non-inductive.
- And so
 - o When
 - ▶ This force:
 - Causes

the

- Expansion
 - o Of:
 - ⊳ The
 - Universe,

we see that,

- Orbitals
 - o Will be

⊳ Created:
 Non-inductively.
 Also since
• Also since
o This
⊳ Force
– Is:
"repulsive,"
• And
o Since
⊳ It
- Opposes
the
• Large
o Scale
- Of: gravity,
we see that,
• If
o This
⊳ Force
is
• As

o Strong

⊳ As:

- Gravity,

•	Or	
	 Comparable 	
	⊳ With:	
	- Gravity,	
then		
•	There	
	o Will	
	⊳ Be:	
	- No gravity.	
for		
•	Structures	
	o That	
	⊳ Does not:	
	- Belong	
to:		
		"a galaxy."
•	And so	
	o This	
	⊳ Force:	
	 Will make 	
those		
•	Structures	

o Very:

• And

o So This: - Force will • Be o Very very ⊳ Weak: - Compared to: "gravity." • In o Sub section 2.4, we saw that, • Initially, o There ⊳ Was: - A massive lump, • And \circ Then

after

- Enough
 - o Fermions

▶ It:

- Exploded

• But	
o If:	
– At it,	
from	
• The	
o Angle	
⊳ Of:	
	"the forward relation"
we see that,	
• Since	
o All:	
> Orbitals	
are	
• Filled	
• With:	
> Fermions,	
– It will:	
	"look"
like	
• No orbital	
o Have	
▷ A fermion:	
	411

- Created.

- In it, which • Inturn o Would ▷ Contradict: - The fact that, • The next o In: ⊳ The - Sequence cannot • Be: "created." • And o So: "the forward relation" should • Be: "applicable," • And o So: ⊳ It will

• Cause
o That:
Explosion.
• And
o Also
- Logic
_
will
• Be
o Applicable
⊳ For:
 Dark matter lump.
• But
o When
⊳ We:
– Look
at
• It
o In:
▷ Detail,
we see that,
• Initially,
o That

⊳ Lump:

- Will grow,

• And
o Its
⊳ Mass:
– Will
be
• Equal to
o That
▷ Of:
– A galaxy.
Then we see that,
• Using
o So
⊳ Much:
- Of mass,
it
• Is
o Possible
⊳ То
- Define:
"the inductive process"
which
• We
o Saw:

 \triangleright In

- Section 4.

o At:
> This point,
– In theory:
"the forward relation"
can
• Create
o An:
Explosion
so
• As
o To
⊳ Realize:
 The definition
of:
"the process"
which
• We
o Saw:
⊳ In
- Section 4.
• But
o If
▶ It:
- Does so,

• And so

then:		
		"the forward relation"
•	Will	
	o Cancel:	
	2000	"itself"
		nsen
since		
•	It	
	 Cancels 	
	▶ Itself:	
	- In a gal	axy.
•	And	
	o So:	
		"the forward relation"
will		
•	Also	
	 Consider 	
	– That:	
		"clusters are feasible,"
•	And	

o Let

• And

The lump: Grow,

When	
b the mass b c c c c	
– Of:	
	"the lump"
	the fump
is	
• Large	
o Enough	
▶ To:	
- Create	
enough:	
	"galaxies"
• Then:	
	"the forward relation"
• Will	
o Be:	
	"applied"
so that	
• Its	
o Future	
ApplicationWill be:	
	"sensible."
• And	
o So	
	417

⊳ Cause:
 The explosion.
• Also
o The
⊳ Same:
- Logic
227
can
• Is
o Applied
▶ To:
 Dark matter lump,
o Except
⊳ That:
"star mass"
should
• Be
o Used
⊳ Instead
– Of:
"galactic mass."
_
• Also
 Similarly,
⊳ When
а

• Dark matter

⊳ Created,
we see that,
"gravitational forces"
in
• The
o System
⊳ Will:
- Increase.
• And it
o Will
▶ Be:
– Like
the
• Generator
o Of:
> The sequence
 Is changing.
• And
o So:
"the forward relation"
will
• Be:
"applicable,"
419

o Is:

o So									
⊳ More:									
 Earthly orbitals, 									
will									
• Be:									
"created,"									
• So that:									
"gravitational force	es"								
• Due									
o To:									
"dark matter"									
will									
• Not									
o Have									
▶ An:									
- Effect									
in									
• The system									
o Which									
⊳ Created:									
– It.									
• In									
o Section 4,									
420									

• And

• There
o Can be:
Dark matter
- Galaxies.
• And so
When there
⊳ Are:
 Such things,
we see that,
• Expansion
o Of
⊳ The
- Universe
due
• To
o The:
⊳ Forward
- Force
will
• Be:
"more."
///////////////////////////////////////
//////////////////////////////////////

we saw that,

/	//	Ι.	//	//	/,	/ /		/																																			
,	//	/.	//	//	/,	//	/	/	С	a.	lc	u	1 á	at	i	10	n	0	f	1	nc	:		S	tı	rι	ıc	t	ur	re	es	in	. 1	the	un:	iv	er	îse)	la	te:	r.	
,	//	/.	//	//	/,	//	/	/																																			
,	//	/.	//	//	/,	//	/	//	//	/,	//	/	//	//	/	/,	//	//	/	/,	//	//	//	/	/ /	//	//	/	//	//	//												
,	//	/.	//	//	/,	//	/	//	//	/,	//	/	//	//	/	/,	//	//	/	/,	//	//	//	/	/ /	//	//	/	//	//	//												
,	//	/.	//	//	/,	//	/	//	//	/,	//	/	//	//	/	/,	//	//	/	/,	//	//	//	/	/ /	//	//	/	//	//	//												
,	//	/.	//	//	/,	//	/	//	//	/,	//	/	//	//	/	/,	//	//	/	/,	//	//	//	/	/ /	//	//	/	//	//	//												

6 Axiomatizability

Universal equivalence principle. For

- Every
 - Mathematical:
 - ▷ Construction,

there

- Will:
 - o Exists

an

- Equivalent
 - o Physical
 - ▷ Construct,
- And
 - o Vice versa,

since

- A rule
 - o Will

▶ Be:– True

for:

"mathematics,"

if

• And

o Only:

▶ If,

it

• It

o Is:

> Permitted

in

• This:

o Universe.

• And

o So

▶ If:

- There

are

• Many:

Universes,

then

• All

o Rules	
---------	--

⊳ Of:

All universes

will

• Be:

o True

▶ In:

- Mathematics.

• But

o If:

A rule

is

• Valid:

o Somewhere

▶ In:

- Mathematics,

then

• It

Will

be

Valid

o Everywhere

▶ In:

- Mathematics.

• Or

o If

– Is

a

- Condition
 - o То
 - ⊳ Apply:
 - A rule,

we

- Assume
 - o That,
 - ⊳ That:
 - Condition

is

- A part
 - o Of:
 - ⊳ That:
 - Rule.
- And
 - o So
 - ⊳ All:
 - Rules

of

- All universes
 - o Will
 - ▶ Be:

- Valid in • All: o Universes. • And o So: ⊳ In - Effect, all • Universes o Will: ⊳ Be - The: same. • Or since: o Mathematics \triangleright Is - The: "underlying-principle" of

• All

o The:

▶ Universes

we

• Can:

o Define,

we see that,

- In
 - o Effect,
 - ⊳ All:
 - Universes

will

- Be:
 - o The
 - ⊳ Same.
- Also
 - o If:
 - ⊳ The
 - Set

of

- Rules
 - o Changes,

then

- Only
 - o Those rules:
 - ⊳ Can
 - Change it.
- But
 - o When
 - ▶ It:

- Tries

to

- Change
 - o Itself,

then

- Those
 - o Things
 - ⊳ That:
 - Try

to

- Make
 - o That change
 - ⊳ Will:
 - Change.
- And
 - o So
 - - Will

be

- No
 - o Definition

for

- What
 - \circ Is
 - ⊳ To be:

- Made.	
• And	
o So	
⊳ It	
– Will be:	
	"impossible"
for	
• Those	
o Rules	
⊳ To	
- Change:	
	"itself."
• And	
o So	
▶ From:	
– This,	
• And	
o Since	
▷ Everything:	
- Definable	
can	
• Be	
o Defined	
▶ Using	
- Those:	

"rules,"
"change,"
"rules"

- Same.

- An: universe

o If: something

⊳ Of

• Also

is

• Not

o Valid

▶ In:

- Mathematics,

then

• That:

o Universe

⊳ Will

- Be:

"beyond"

the

• Scope

o Of:

▶ Mathematics.

• And

o So

- Will

be

• No point:

o In:

► Talking

- About: them,

 \circ Or of

• In	
o Sub section 2.1,	
we see that,	
• If	
o A part	
▷ Of:	
- A system	
have	
• Some:	
o Rules,	
then	
• That	
o Part	
⊳ Will:	
- Follow	
those:	
	"rules,"
D	
• But	
o If:	
<i>⊳ Not</i> ,	
then:	
• That:	
	432

- Axiomatizability.

"part"

will

- Take
 - o One of:
 - ⊳ The
 - Possible:

"states."

- And
 - o So
 - ▷ Everything:
 - About

this

- Universe
 - o Is:
 - ▶ Understandable.
- And
 - o So:
 - ▶ Physics
 - Is:

"axiomatizable."