EE3206/EE3206E INTRODUCTION TO COMPUTER VISION AND IMAGE PROCESSING

Semester 1, 2013/2014

Tutorial Set C

- 1. (a) Describe a simple procedure, based on the bubble sort algorithm, for computing the median of an $k \times k$ neighbourhood. Obtain an expression for C_1 , the number of comparison operations that are needed.
 - (b) Instead of sorting k^2 values each time the window is moved to the next pixel, we can remove k values corresponding to the discarded pixels from the sorted list, and insert the new k values in the appropriate positions in the list. Determine the number of comparison operations, C_2 that are needed with this procedure.
 - (c) Calculate the ratio C_1/C_2 for k=3,5,7.
- 2. A noisy 8×8 image consists of a bright object on a dark background. The nominal gray values of the background and object are, respectively, 60 and 160. Show the result of applying the noise reduction techniques below to the image. (Use 3×3 windows; hence, the resulting images are of size 6×6 .)
 - (a) neighbourhood averaging
 - (b) median filter
 - (c) mid-point filter
 - (d) alpha-trimmed mean filter (p=2)

60	72	66	63	70	46	46	80
64	72	60	44	76	40	76	50
70	58	48	64	76	78	50	76
64	0	50	68	56	40	74	64
60	54	74	52	158	146	162	152
42	54	60	68	164	140	142	148
66	52	78	54	160	172	174	166
58	40	50	66	156	146	180	142

- 3. An image is contaminated by salt noise of probability 0.01. The image and its histogram are shown below.
 - (a) Is the MMSE filter effective in removing noise in this case? Discuss this by considering a neighbourhood centred at a noise point (gray level = 255).
 - (b) Discuss the suitability of applying image averaging to reduce noise in this image.

