

Termodinámica (FIS1523) Diagramas de fase y tablas

Felipe Isaule felipe.isaule@uc.cl

Lunes 7 de Abril de 2025

Resumen clase anterior

- Definimos las sustancias puras.
- Revisamos las fases de la materia y los cambios de fase.
- Vimos que durante un cambio de fase la temperatura se mantiene constante.

Clase 10: Diagramas de fase y tablas

- Diagramas de propiedades.
- Tablas termodinámicas.

- Bibliografía recomendada:
- → Cengel (3.4, 3.5).

Clase 10: Diagramas de fase y tablas

- Diagramas de propiedades.
- Tablas termodinámicas.

Diagramas para cambios de fase

- Si bien la temperatura se mantiene constante durante un cambio de fase, otras propiedades sí cambian.
- Además, la temperatura en que ocurre un cambio de fase depende de otras propiedades termodinámicas.
- Por esto, para visualizar estos comportamientos es conveniente examinar diagramas de propiedades.

- En un diagrama $T-\nu$ se grafica la temperatura T en función del volumen específico $\nu=\rho^{-1}$.
- Ya vimos un diagram $T-\nu$ en la clase pasada.

Diagrama $T-\nu$ del agua.

Cada curva considera una presión constante.

- Las lineas a temperatura constante se van acortando a medida que la presión aumenta.
- Esta línea se vuelve un punto a cierta presión (**punto crítico**).
 - Presión crítica $P_{\rm cr}$.
 - Temperatura crítica $T_{
 m cr}$.
 - Volumen específico crítico $\nu_{\rm cr}$.
- En este punto crítico el líquido y vapor saturado son idénticos.

- Al unir los puntos de saturación obtenemos la **línea de líquido** saturado y la **línea de vapor saturado**.
- Las líneas se unen en el punto crítico.

Diagrama $T-\nu$: Fluído supercrítico

- A presiones mayores se tiene un fluído supercrítico.
- No se tiene una transición de fase definida.
- Un fluído supercrítico tiene propiedades de gas y líquido.
- <u>Ejemplo</u>:

CO2 supercrítico tiene alta aplicación comercial debido a ser un buen solvente (líquido) y poder expandirse facilmente (gas).

• En un diagrama $P-\nu$ se grafica la presión P en función del volumen específico $\nu=\rho^{-1}$.

 Cada curva considera una temperatura constante.

Diagrama $P-\nu$: Inclusión de la fase sólida

a) Diagrama P-V de una sustancia que se contrae al congelarse.

Diagrama $P-\nu$: Inclusión de la fase sólida

b) Diagrama P-v de una sustancia que se expande al congelarse (por ejemplo, agua).

Diagrama $P-\nu$: Línea triple

 La línea triple corresponde a valores donde se encuentran los tres estados.

a) Diagrama P-V de una sustancia que se contrae al congelarse.

Diagrama T-P

• En un diagrama T-P se grafica la temperatura T en función de la presión P.

• La frontera con el fluído supercrítico no está del todo bien definida en un diagrama $T\!-\!P$.

Diagrama T-P: Punto triple

 El punto triple corresponde a un punto donde las tres fases coexisten.

-						
Lamparaturas v	preciones	dol	Dunto	triple	dα	varias sustancias
remperaturas y	presidires	ucı	punto	uibic	uc	varias sustantias

Sustancia	Fórmula	T_{tp} , K	$P_{ m tp}$, kPa
Acetileno	C_2H_2	192.4	120
Agua	H ₂ O	273.16	0.61
Amoniaco	NH_3	195.40	6.076
Argón	Α	83.81	68.9
Carbón (grafito)	С	3 900	10 100
Cloruro de hidrógeno	HCI	158.96	13.9
Deuterio	D_2	18.63	17.1
Dióxido de azufre	SO_2	197.69	1.67
Dióxido de carbono	CO_2	216.55	517
Etano	C_2H_6	89.89	8×10^{-4}
Etileno	C_2H_4	104.0	0.12
Helio 4 (punto λ)	He	2.19	5.1
Hexafluoruro de uranio	UF ₆	337.17	151.7
Hidrógeno	H_2	13.84	7.04
Mercurio	Hg	234.2	1.65×10^{-7}
Metano	CH ₄	90.68	11.7
Monóxido de carbono	CO	68.10	15.37
Neón	Ne	24.57	43.2
Nitrógeno	N_2	63.18	12.6
Óxido nítrico	ΝŌ	109.50	21.92
Óxido nitroso	N_2O	182.34	87.85
Oxígeno	02	54.36	0.152
Paladio	Pd	1 825	3.5×10^{-3}
Platino	Pt	2 045	2.0×10^{-4}
Titanio	Ti	1 941	5.3×10^{-3}
Xenón	Xe	161.3	81.5
Zinc	Zn	692.65	0.065

Fuente: Datos del National Bureau of Standards (U.S). Circ., 500 (1952).

Ejemplo diagrama T-P: Nitrógeno

Superficie $P-\nu-T$

 Es posible graficar una superficie en tres dimensiones para incluir las tres variables.

Superficie $P-\nu-T$

 Es posible graficar una superficie en tres dimensiones para incluir las tres variables.

Superficie *P-v-T* de una sustancia que se *contrae* al congelarse.

Superficie P-V-T de una sustancia que se expande al congelarse (como el agua).

Ejemplo: Diagrama de QCD

Clase 10: Diagramas de fase y tablas

- Diagramas de propiedades.
- Tablas termodinámicas.

Tablas termodinámicas

- Para la mayoría de sustancias no es posible escribir las relación entre propiedades en forma de ecuaciones.
- Por esto, las propiedades termodinámicas suelen ser tabuladas en las llamadas tablas termodinámicas.

			n especifico, m³/kg	£	nergia in kJ/kj			Entaipi kJ/kg			Entropia NJ/kg - F	
	Pres.	Lig.	Vapor	Líq.		Vapor	Líq.		Vapor	Líq.		Vapor
Temp.,		sat.,	sat.,	sat.,	Evap.,	sat.,	sat.,	Evap.,	sat.,	sat.,	Evap.,	sat.,
T°C	$P_{\rm sel}$ kPa	ν_{i}	v_g	U)	u _@	u_{s}	h_f	h_{S}	h_{δ}	\mathbf{S}_{i}	$s_{\hat{\alpha}}$	s_s
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763		9.0249
10	1.2281	0.001000	105.32	42.020	2345.6	2388.7	42.022	2477.2	2519.2	0.1511		8.8999
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245		8.7803
20	2.3392	0.001002	67.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672		8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368		8.4520
35	5.6291	0.001006	25.205	145.63	2276.0	2422.7	145.64	2417.9	2564.6	0.5051		8.3517
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724		8.2556
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	8.1633
50	12.352	0.001012	12:026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038		8.0748
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680		7.9898
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313		7.9082
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937		7.8296
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158		7.6812
80	47.416	0.001029	3.4063	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756		7.6111
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346		7.5435
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929		7.4782
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634		7.2952
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188		7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737		7.1829
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279		7.1292
125	232,23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816		7.0771
130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	545.38	2173.7	2720.1	1.6346		7.0265
135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872		6.9773
140	361.53	0.001080	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	
145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.C919	
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418		6.8371
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924		6.7927
180	618.23	0.001102	0.30680	674.79	1893.0	2557.8	675.47	2082.0	2757.5	1.9426		6.7492
155	700.93	0.001108	0.27244	695.46	1875.4	2571.9	697.24	2065.6	2762.8	1.9923		6.7067
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.0417	4.6233	
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0905		6.6242
180	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392		6.5841
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2.1875		6.5447
190	1255.2	0.001141	0.15636	806.00	1783.0	2589.0	807.43	1977.9	2785.3	2.2355		6.5059
195 200	1398.8	0.001149	0.14089	829.18 850.46	1763.6	2591.7 2594.2	829.78 852,26	1959.0	2788.8	2.2831	4.1847	6.4678
200	1554.9	0.001157	0.12721	000,46	1743.7	2094.2	002,20	1939.8	2792.0	2,3300	4.6997	9.4302

			n específico, m³/kg	ı	nergia in k.Mq		Entalpia, k.l/kg			Entropia, k.l/kg - K		
	Pres.	Líq.	Vapor	Líq.		Vapor	Líq.		Vapor	Liq.		Vapor
Temp.,	sat.,	sat,	sat.,	sat.,	Evap.,	sat.,	sat.,	Evap.,	sat.,	sat.,	Evap.,	sat.,
T °C	P _{sat} kPa	V/-	ν_g	g_f	u_{ig}	u_q	h_t	b_{tg}	h_g	s,	$s_{i_{\overline{k}}}$	$S_{\widetilde{x}}$
205	1724.3	0.001164	0.11508	872.86	1723.5	2596.4		1920.0	2794.8	2.3776		6.3930
210	1907.7	0.001173	0.10429	895.38	1702.9	2598.3		1899.7	2797.3	2.4245		6.3553
215	2105.9	0.001181	0.094680	918.02	1681.9	2599.9		1878.8	2799.3	2.4712		6.3200
220	2319.6	0.001190	0.086094	940.79	1660.5	2601.3		1857.4	2801.0	2.5176		6.2840
225	2549.7	0.001199	0.078405	963.70	1638.5	2602.3		1835.4	2802.2	2.5639		6.2483
230	2797.1	0.001209	0.071505	986.76	1616.1	2602.9		1812.8	2802.9	2.5100		6.2128
235	3062.6	0.001219	0.065300	1010.0	1593.2	2603.2	1013.7	1789.5	2803.2	2.5560		6.1775
240	3347.0	0.001229	0.059707	1033.4	1569.8	2603.1	1037.5	1765.5	2803.0	2.7018		6.1424
245	3651.2	0.001240	0.054656	1056.9	1545.7	2602.7	1061.5	1740.8	2802.2	2.7476		6.1072
250	3976.2	0.001252	0.050085	1080.7	1521.1	2601.8	1085.7	1715.3	2801.0	2.7933		6.0723
255	4322.9	0.001263	0.045941	1104.7	1495.8	2600.5	1110.1	1689.0	2799.1	2.8390		6.0359
260	4692.3	0.001276	0.042175	1128.8	1469.9	2598.7	1134.8	1661.8	2796.5	2.8847		6.0012
265	5085.3	0.001289	0.038748	1153.3	1443.2	2596.5	1159.8	1633.7	2793.5	2.9304		5.9662
270	5503.0	0.001303	0.035622	1177.9	1415.7	2593.7	1185.1	1604.6	2789.7	2.9762		5.9308
275	5946.4	0.001317	0.032767	1202.9	1387.4	2590.3	1210.7	1574.5	2785.2	3.0221		5.8944
280	6416.6	0.001333	0.030153	1228.2	1358.2	2586.4	1235.7	1543.2	2779.9	3.0681	2.7898	
285	6914.6	0.001349	0.027756	1253.7	1328.1	2581.8	1263.1	1510.7	2773.7	3.1144		5.8210
290	7441.8	0.001366	0.025554	1279.7	1296.9	2576.5	1289.8	1476.9	2766.7	3.1608	2,5225	
295	7999.0	0.001384	0.023528	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2076	2.5374	
300	8587.9	0.001404	0.021659	1332.7	1230.9	2563.6	1344.8	1404.8	2749.5	3.2548	2.4511	5.7059
305	9209.4	0.001425	0.019932	1360.0	1195.9	2555.8	1373.1	1366.3	2739.4	3.3024	2.3533	5.6657
310	9865.0	0.001447	0.018333	1387.7	1159.3	2547.1	1402.0	1325.9	2727.9	3.3506	2.2737	5.6243
315	10,556 11,284	0.001472	0.016849	1415.1 1445.1	1121.1 1080.9	2537.2	1431.6 1462.0	1283.4	2715.0 2700.5	3.3994	2.1821	5.5816
320 325	12,051	0.001499	0.015470 0.014183	1445.1	1038.5	2526.0 2513.4	1493.4	1238.5 1191.0	2584.3	3.4491	1.9911	5.5377
		0.001528										5.4908
330	12,858	0.001560	0.012979	1505.7	993.5	2499.2	1525.8	1140.3	2666.0	3.5516		5.4423
335	13,707	0.001597	0.011848	1537.5	945.5	2483.0	1559.4	1085.0	2645.4	3.5050		5.3900
340	14,501	0.001638	0.010783	1570.7	893.8 837.7	2464.5 2443.2	1594.6 1531.7	1027.4 963.4	2522.0 2595.1	3.5602	1.5585	5.3356
345	15,541 16,529			1605.5 1642.4	775.9	2418.3	1671.2	892.7	2595.1	3.7788		5.2114
350		0.001741	0.008806									
355	17,570	0.001808	0.007872	1682.2	706.4	2388.6	1714.0	812.9	2526.9	3.8442		5.1384
360	18,566	0.001895	0.006950	1726.2	625.7	2351.9	1761.5	720.1	2481.5	3.9165		5.0532
365	19,822	0.002015	0.006009	1777.2	526.4	2303.6	1817.2	605.5	2422.7	4.0004		4.9493
370	21,044	0.002217	0.004953	1844.5	385.5	2230.1	1891.2	443.1	2334.3	4.1119		4.8009
373.95	22,064	0.003106	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070

Estados de líquido y vapor saturado

- Las propiedades de líquidos y vapores saturados de muchas sustancias se encuentran tabuladas.
 - El subíndice f denota propiedades de un líquido saturado.
 - ► El subíndice *g* denota propiedades de un vapor saturado.

Ejemplo:

 ν_q : volúmen específico de gas saturado

 ν_f : volúmen específico de líquido saturado

$$\nu_{fg} = \nu_g - \nu_f.$$

Estados de líquido y vapor saturado

Agua saturada. Tabla de temperaturas

			n específico, m³/kg	£	nergia in kJ/kg	,		Entalpi kJ/kg			Entropía, kJ/kg + h	
Temp.,		Líq. sat.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,
T °C	P_{sat} kPa	V_f	ν_g	u_{t}	u_{fg}	$u_{\tilde{\mathbf{g}}}$	h_f	h_{fg}	h_g	S_f	$S_{f_{\overline{K}}}$	$S_{\widetilde{g}}$
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7.8466	8.3517
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	8.2556
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	8.1633
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680	7.2218	7.9898
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313	7.0769	7.9082
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6.9360	7.8296
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158	6.6655	7.6812
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756		7.6111
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346		7.5435
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929		7.4782
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634		7.2952
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188		7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737		7.1829
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279		7.1292
125	232.23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7.0771
130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346		7.0265
135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872		6.9773
140	361.53	0.001080	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392		6.9294
145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	6.8827
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418	4.9953	6.8371
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924		6.7927
160	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2082.0	2757.5	1.9426		6.7492
165	700.93	0.001108	0.27244	696.46	1875.4	2571.9	697.24	2065.6	2762.8	1.9923		6.7067
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.0417		6.6650
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4 5335	6.6242
180	1002.8	0.001121	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392		6.5841
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2.1875		6.5447
190	1255.2	0.001141	0.15636	806.00	1783.0	2589.0	807.43	1977.9	2785.3	2.2355		6.5059
195	1398.8	0.001149	0.14089	828.18	1763.6	2591.7	829.78	1959.0	2788.8	2.2831		6.4678
200	1554.9	0.001157	0.12721	850.46	1743.7	2594.2	852.26	1939.8	2792.0	2.3305	4.0997	

Entalpía

- En estas tablas ha aparecido una nueva cantidad denotada h y llamada entalpia.
- En muchos procesos, en especial de generación de potencia y refrigeración, aparece la combinación $u+P\nu$.
- Esto nos motiva a definir la **entalpía** h y la **entalpía total** H

$$h = u + P\nu$$
, $H = U + PV$.

- La entalpía total tiene unidades de energía.
- Mide la cantidad de energía que un sistema puede intercambiar con su entorno.

Entalpía de saturación

- La entalpía de saturación h_{fg} corresponde a la energía necesaria para evaporar una masa de líquido a temperaturas y presiones determinadas.
- Disminuye al aumentar la presión y se vuelve cero sobre el punto crítico.

Ejemplo 1:

 Un recipiente rígido contiene 50 kg de agua líquida saturada a 90 °C. Determine la presión en el recipiente y el volumen del mismo.

	Pres.	Volumen específic m ³ /kg					
Temp.	sat. kPa	Líquido sat.	Vapor sat.				
T	$P_{\rm sat}$	v_f	V_g				
85	57.868	0.001032	2.8261				
90 95	70.183 84.609	0.001036 0.001040	2.3593 1.9808				

Ejemplo 1:

 Un recipiente rígido contiene 50 kg de agua líquida saturada a 90 °C. Determine la presión en el recipiente y el volumen del mismo.

	Pres.	Volumen específi m ³ /kg					
Temp. °C T		Líquido sat. V _f	Vapor sat. v _g				
85 90 95	57.868 70.183 84.609	0.001032 0.001036 0.001040	2.8261 2.3593 1.9808				

De la figura vemos que el agua saturada está a una presión:

De la tabla, el volumen específico:

$$\nu_{\rm sat} = 0.001036 \text{ m}^3/\text{kg}$$

El volumen total:

$$V_{\rm sat} = m\nu_{\rm sat} = 50 \text{ kg} 0.001036 \text{ m}^3/\text{kg}$$

$$\longrightarrow V_{\rm sat} = 0.0518 \text{ m}^3$$

Ejemplo 2:

 Una masa de 200 gramos de agua líquida saturada se evapora por completo a una presión constante de 100 kPa. Determine el cambio de volumen y la cantidad de energía transferida al agua.

		Volumes especifica, m ² /kg ²		Energie interna Alting			Entelpla, AIRG			Entropie, AARg - K		
Pres. P kPa	Temp. sat., Y _{ot} *C	Liq. sat.,	Vapor sat., v _e	Lin. sat.	Evap.,	Vapor sat., u _e	Liq. sat. by	Evap.,	Vapor sat., h _e	Liq. sat., s _r	Exap.,	Vapor sat.,
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.974
1.5	13.02	0.001001	87.964	54,686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.827
2.0	17.50	0.001001	66,990	73,431	2325.5	2398.9	73.433	2459.5			8.4621	8.722
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3300	8.642
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5761
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7		8.0510	
5.0	32.87	0.001005	28.185	137,75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1489
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	22016	2456.0	251.42	2357.5	2608.9	0.8320	7.0750	7.9075
25	64.96	0.001020	6.2034	271.93	2190.4	2452.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8303
30	69.09	0.001022	5.2297	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6410	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.35	2111.8	2495.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4556
100	99.61	0.001043	1.6941	417.40	2388.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2387.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2368.8	2513.0	444.35	2240.5	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0007	486.82	2007.7	2524.5	487.01	2213.1		1.4850	5.6865	7.1710
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520,47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0523
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.0	573.19	2155.4	2728.6	1,7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1,7274	5.2128	6.9403
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8950
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2580.7	540.09	2108.0	2748.1	1.8804	4.9603	6.8707
550	155.46	0.001097	0.34261	655,16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2556.8	670.38	2085.R	2755.2	1.9308	4.R285	
650	161.98	0.001104	0.29260	683.37	1886.1	2559.4	684.08	2075.5	2769.6	1.9523	4.7699	6.7322
700	154.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	9,7153	6.7071
750	167.75	0.001111		708.40	1865.6	2574.0	209.24	2056.4	2765.7			

Ejemplo 2:

 Una masa de 200 gramos de agua líquida saturada se evapora por completo a una presión constante de 100 kPa. Determine el cambio de volumen y la cantidad de energía transferida al agua.

El cambio de volumen total:

$$\Delta V = m\Delta \nu = 0.2 \text{ kg } 1.693057 \text{ m}^3/\text{kg}$$

$$\longrightarrow \qquad \Delta V = 0.3386 \text{ m}^3$$

Ejemplo 2:

 Una masa de 200 gramos de agua líquida saturada se evapora por completo a una presión constante de 100 kPa. Determine el cambio de volumen y la cantidad de energía transferida al agua.

La energía transferida total:

$$H_{fg} = mh_{fg} = 0.2 \text{ kg } 2257.5 \text{ kJ/kg}$$

$$\longrightarrow H_{fg} = 461.5 \text{ kJ}$$

Resumen

- Hemos revisado distintos tipos de diagrama de propiedades para visualizar las fases de la materia y sus transiciones.
- Comenzamos a revisar las tablas termodinámicas en el caso de líquidos y vapores saturados.
- Definimos la entalpía.
- Próxima clase:
 - → Tablas termodinámicas (continuación).