

NON-LINEAR MODELS FOR NEUROPHYSIOLOGICAL TIME SERIES

Tom Dupré la Tour

Prix de thèse "Signal, Images, Vision" Club EEA – GdR Isis – GRETSI

Neurophysiological time series

Outline

1. Cross-frequency coupling analysis with driven autoregressive models

2. Temporal waveform analysis with convolutional sparse coding models

1. Cross-frequency coupling

Low-frequency phase and high-frequency amplitude (Bragin et al 1995, Canolty et al, 2006)

1. Driven auto-regressive model

Auto-regressive (AR) model

(Makhoul, 1975)

$$y(t) + \sum_{i=1}^{p} a_i y(t-i) = \varepsilon(t)$$
 $\varepsilon(t) \sim \mathcal{N}(0, \sigma^2)$

Driven AR (DAR) model

(Grenier, 1983, 2013)

$$a_i(t) = \sum_{j=0}^{m} a_{ij} x(t)^j$$
 $\log(\sigma(t)) = \sum_{j=0}^{m} b_j x(t)^j$

1. Driven auto-regressive model

Auto-regressive (AR) model

(Makhoul, 1975)

$$y(t) + \sum_{i=1}^{p} a_i y(t-i) = \varepsilon(t)$$
 $\varepsilon(t) \sim \mathcal{N}(0, \sigma^2)$

Driven AR (DAR) model

(Grenier, 1983, 2013)

$$a_i(t) = \sum_{j=0}^{m} a_{ij} x(t)^j$$
 $\log(\sigma(t)) = \sum_{j=0}^{m} b_j x(t)^j$

A different parametrization ensuring DAR model stability:

Parametric estimation of spectrum driven by an exogenous signal T. Dupré la Tour, Y. Grenier, A. Gramfort, *ICASSP 2017*

1. Driven auto-regressive model

Driven AR (DAR) model

$$a_i(t) = \sum_{j=0}^m a_{ij} x(t)^j$$

(Grenier, 1983, 2013)

$$\log(\sigma(t)) = \sum_{j=0}^{m} b_j x(t)^j$$

1. Driver selection

1. Driver selection

A finer optimization of the driver filter:

Driver estimation in non-linear autoregressive models T. Dupré la Tour, Y. Grenier, A. Gramfort, *ICASSP 2018*

1. Robustness to short signals

1. Robustness to short signals

Non-linear auto-regressive models for cross-frequency coupling in neural time series

T. Dupré la Tour, L. Tallot, L. Grabot, V. Doyère, V. van Wassenhove, Y. Grenier, A. Gramfort, *PLOS Computational Biology 2017*

1. Cross-frequency coupling analysis with driven auto-regressive models

https://pactools.github.io

Outline

1. Cross-frequency coupling analysis with driven autoregressive models

2. Temporal waveform analysis with convolutional sparse coding models

2. Convolutional sparse coding

$$x^{n}[t] = \sum_{k=1}^{K} (z_k^{n} * d_k)[t] + \varepsilon[t]$$

(Grosse et al, 2007)

2. Univariate model

2. Alpha-stable univariate model

2. Alpha-stable univariate model

Learning the morphology of brain signals using alpha-stable convolutional sparse coding

M. Jas*, T. Dupré la Tour*, U. Şimşekli, A. Gramfort, NeurIPS 2017

2. Rank-1 multivariate model

2. Rank-1 multivariate model

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals

T. Dupré la Tour*, T. Moreau*, M. Jas, A. Gramfort, NeurlPS 2018

2. Temporal waveform analysis with convolutional sparse coding models

https://alphacsc.github.io

NON-LINEAR MODELS FOR NEUROPHYSIOLOGICAL TIME SERIES

Tom Dupré la Tour

Prix de thèse "Signal, Images, Vision" Club EEA – GdR Isis – GRETSI

