cis. poly. edu 到 dns. poly. edu 发出的查询是递归查询,因为该查询请求 dns. poly. edu 以自己的名义获得该映射。而后继的3个查询是迭代查询,因为所有的回答都是直接返回给

dns. poly. edu。从理论上讲,任何 DNS 查询既可以是迭代的也能是递归的。例如,图 2-22显示了一条 DNS 查询链,其中的所有查询都是递归的。实践中,查询通常遵循图 2-21 中的模式。从请求主机到本地 DNS 服务器的查询是递归的,其余的查询是迭代的。

2. DNS 缓存

至此我们的讨论还没有涉及 DNS 系统的一个非常重要特色: DNS 缓存 (DNS caching)。实际上,为了改善时延性能并减少在因特网上到处传输的 DNS 报文数量,DNS 广泛使用了缓存技术。DNS 缓存的原理非常简单。在一个请求链中,当某 DNS 服务器接收一个 DNS 回答 (例如,包含主机名到 IP 地址的映射)时,它能将该回答中的信息缓存在本地存储器中。例如,在图 2-21中,每当本地 DNS 服务器 dns. poly. edu 从某个 DNS 服务器接收到一个回答,它能够缓存包含在该回答中的任何信息。如果在 DNS 服务器中缓存了一台主机名/IP地址对,另一个对相同主机名的查询到达该 DNS 服务器时,该 DNS 服务器就能够提

图 2-22 DNS 中的递归查询

供所要求的 IP 地址,即使它不是该主机名的权威服务器。由于主机和主机名与 IP 地址间的映射并不是永久的,DNS 服务器在一段时间后(通常设置为两天)将丢弃缓存的信息。

举一个例子,假定主机 apricot. poly. edu 向 dns. poly. edu 查询主机名 cnn. com 的 IP 地址。此后,假定过了几个小时,Polytechnic 理工大学的另外一台主机如 kiwi. poly. edu 也向 dns. poly. edu 查询相同的主机名。因为有了缓存,该本地 DNS 服务器可以立即返回 cnn. com 的 IP 地址,而不必查询任何其他 DNS 服务器。本地 DNS 服务器也能够缓存 TLD 服务器的 IP 地址,因而允许本地 DNS 绕过查询链中的根 DNS 服务器(这经常发生)。

2.5.3 DNS 记录和报文

共同实现 DNS 分布式数据库的所有 DNS 服务器存储了资源记录(Resource Record, RR), RR 提供了主机名到 IP 地址的映射。每个 DNS 回答报文包含了一条或多条资源记录。在本小节以及后续小节中,我们概要地介绍 DNS 资源记录和报文; 更详细的信息可以在 [Albitz 1993] 或有关 DNS 的 RFC 文档 [RFC 1034; RFC 1035] 中找到。

资源记录是一个包含了下列字段的4元组:

(Name, Value, Type, TTL)