STUFF I SHOULD KNOW FOR THE AP TEST BUT DO NOT KNOW YET

IONS LIST

acetate	$C_2H_3O_2^-$	ferric	Fe ³⁺	oxalate	$C_2O_4^{2-}$ O^{2-}
aluminum	Al^{3+}	ferrous	Fe^{2+}	oxide	O^{2-}
ammonium	$\mathrm{NH_4}^+$	fluoride	F^-	perbromate	$\mathrm{BrO_4}^-$
barium	Ba^{2+}	hydrogen	H^{+}	perchlorate	${\rm ClO_4}^-$
bicarbonate	HCO ₃	hydronium	H_3O^+	periodate	$\mathrm{IO_4}^-$
bisulfate	$\mathrm{HSO_4}^-$	hydroxide	OH^-	permanganate	MnO_4^- (purple)
bisulfide	HS^-	hypobromite	BrO ⁻	peroxide	O_2^{2-}
bisulfite	$\mathrm{HSO_3}^-$	hypochlorite	ClO ⁻	phosphate	PO ₄ ³⁻ P ³⁻
bromate	$\mathrm{BrO_3}^-$	hypoiodite	IO ⁻	phosphide	
bromide	Br^-	iodate	$\mathrm{IO_3}^-$	phosphite	PO_3^{3-}
bromite	$\mathrm{BrO_2}^-$	iodide	Γ	potassium	K^{+}
calcium	Ca^{2+}	iodite	$\mathrm{IO_2}^-$	silver	${ m Ag}^+ \ { m Na}^+$
carbonate	CO_3^{2-}	lead	$Pb^{\overline{2}+}$	sodium	Na ⁺
chlorate	ClO ₃	lithium	Li ⁺	stannic	Sn ⁴⁺
chloride	Cl ⁻	magnesium	Mg^{2+}	stannous	Sn ²⁺
chlorite	ClO_2^-	manganese	Mn^{2+}	strontium	Sr^{2+}
chromate	CrO ₄ ²⁻ (yellow)	mercuric	Hg^{2+}	sulfate	${{ m SO_4}^{2-}} {{ m S}^{2-}}$
chromium	Cr ³⁺	mercurous	Hg_2^{2+}	sulfide	
cupric	Cu ²⁺ (blue)	nickel	Ni ²⁺ (green)	sulfite	SO_3^{2-}
cuprous	Cu ⁺ (blue)	nitrate	NO_3^-	thiocyanate	SCN
cyanide	CN ⁻	nitride	N^{3-}	thiosulfate	${\operatorname{S_2O_3}^{2-}\atop\operatorname{Zn}^{2+}}$
dichromate	$\operatorname{Cr_2O_7}^{2-}$ (orange)	nitrite	NO_2^-	zinc	Zn^{2+}

SOLUBILITY RULES

Always soluble:

alkali metal ions (Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺), NH₄⁺, NO₃⁻, ClO₃⁻, ClO₄⁻, C₂H₃O₂⁻

Generally soluble: (mnemonics)

Cl, Br, I Soluble except Ag^+ , Pb^{2+} , Hg_2^{2+} (AP/H) F Soluble except Ca^{2+} , Sr^{2+} , Ba^{2+} , Pb^{2+} , Mg^{2+}

 SO_4^{2-} Soluble except Ca^{2+} , Sr^{2+} , Ba^{2+} , Pb^{2+} (CBS/PBS)

Generally insoluble:

 O^{2-} , OH^{-} Insoluble except and alkali metals, and NH_4^+ Ca^{2+} , Sr^{2+} , Ba^{2+} (CBS) somewhat soluble

 ${\rm CO_3}^{2-}, {\rm PO_4}^{3-}, {\rm S}^{2-}, {\rm SO_3}^{2-}, {\rm C_2O_4}^{2-}, {\rm CrO_4}^{2-}$ Insoluble except alkali metals and ${\rm NH_4}^+$

GASES THAT FORM

 $\begin{array}{ll} \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O & \rightarrow NH_4OH \rightarrow NH_3 + H_2O \\ \rightarrow H_2SO_3 \rightarrow SO_2 + H_2O & \rightarrow H_2S \end{array}$

 \rightarrow HNO₂ \rightarrow NO + NO₂ + H₂O \rightarrow HCN

WEAK ELECTROLYTES

Weak Acids (esp. HC₂H₃O₂ and HF)

(Memorize the 8 strong acids... all others are weak)

HNO₃ **HC1** hydrochloric acid nitric acid HBr hydrobromic acid HIO_4 periodic acid НІ hydroiodic acid H_2SO_4 sulfuric acid HClO₄ perchloric acid HClO₃ chloric acid Ammonium Hydroxide ($NH_4OH \approx NH_3(aq)$) Water (H_2O)

DRIVING FORCES — Double Replacement

- Insoluble Solid (Precipitate)
- Weak Electrolyte (H₂O or Weak Acid)
- Gas Formation

STRONG OXIDIZERS (Oxidizing Agents)

MnO₄ in acid solution \rightarrow Mn²⁺ + H₂O \rightarrow Mn²⁺ + H₂O MnO₂ in acid solution MnO_4 in neutral or basic sol'n $\rightarrow MnO_2$ $Cr_2O_7^{2-}$ in acid solution \rightarrow Cr³⁺ + H₂O $\rightarrow \text{CrO}_4^{2-} + \text{H}_2\text{O}$ $Cr_2O_7^{2-}$ with a base CrO₄²⁻ in basic solution \rightarrow CrO₂⁻ + H₂O \rightarrow NO₂ + H₂O HNO3, concentrated HNO_3 , dilute (e.g. 6 \underline{M}) \rightarrow NO + H₂O H₂SO₄, hot, concentrated \rightarrow SO₂ + H₂O \rightarrow halide ions (Cl⁻) Free halogens (e.g. Cl₂) H₂O₂ in acid solution $\rightarrow H_2O$

 H_2O_2 in acid solution $\rightarrow H_2O$ Note: H_2O_2 decomposes $\rightarrow H_2O + O_2$ Na_2O_2 $\rightarrow NaOH$ $HClO_4$ $\rightarrow C\Gamma + H_2O$

Other Oxidizers

Metal-"ic" ions (e.g. Sn^{4+} , Fe^{3+}) \rightarrow "-ous" ions (Sn^{2+} , Fe^{2+}) $\rightarrow \operatorname{H}_2 + \operatorname{OH}^-$

STRONG REDUCERS (Reducing Agents)

Halide ions (e.g. $C\Gamma$) \rightarrow Free halogen (Cl_2)

Free metals \rightarrow metal ions

"ites" $SO_3^{\ 2^-}$ or SO_2 , $NO_2^{\ -}$ \rightarrow "ates" $SO_4^{\ 2^-}$, $NO_3^{\ -}$ Free halogens, dil. basic sol'n \rightarrow hypohalite ions (ClO^-)

Free halogens, conc. basic sol'n \rightarrow halate ions ($ClO_3^{\ -}$) $S_2O_3^{\ 2^-}$ \rightarrow $S_4O_6^{\ 2^-}$

Other Reducers

Metal-"ous" ions (e.g. Sn^{2+}) \rightarrow "-ic" ions (Sn^{4+}) $\operatorname{H}_2\operatorname{O} \rightarrow \operatorname{O}_2 + \operatorname{H}^+$