NOSITEL VYZNAMENÁNÍ ZA BRANNOU VÝCHOVU I. A II. STUPNĚ

ŘADA PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXVI/1987 ● ● ČÍSLO 4

V TOMTO SEŠITĚ

Urychlení, přestavba, kvalita... 121

PŘIJÍMAČE PRO PŘÍJEM BAREVNÉ TELEVIZE

Signálová část přijímačů
1. Úvod 122
2. Základní obvodová koncepce
tuzemských BTVP 122
Přijímače s tyristorovým řádkovým
rozkladem 123
Přijímače s rozkladovou a napájecí
části IPSALO 123
Přijímače s pulsním napájecím
zdrojem 124
3. Signálové a dekódovací
obvody 124
3.1 Kanálové voliče 128
3.2 Jednotky předvolby 132
3.3 Jednotky programové volby
133
3.4 Obrazové mf obvody a obvody
AFC 137
3.5 Obvody ke zpravování zvuko-
vého signálu146
3.6 Dekódovací obvody chromi-
nančního signálu151
Napěťová syntéza s aplikací elekt-
ronické programovatelné paměti
pro rozhlasové a televizní přijíma-
če (dokončení z AR B3/87) 157
Opravy k AR B1/87 159

AMATÉRSKÉ RADIO ŘADA B

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJSKO, Vladislavova 26, 133 66 Praha 1, tel. 26 06 51–7. Šéfredaktor ing. Jan Klabal, Redakční radu řídí ing. J. T. Hyan. Redaktor L. Kalousek, OK1FAC. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7, šéfredaktor linka 354, redaktor linka 353, sekretářka linka 355. Ročně vyjde 6 čísel. Cena výtisku 5 Kčs, pololetní předplatné 15 Kčs, Rozšiřuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřizuje PNS, ústřední expedice a dovoz tisku, závod 01, Kafkova 9, 160 00 Praha 6. Tiskne NAŠE VOJSKO, n. p., závod 08, 160 05 Praha 6, Vlastina ulice č. 889/23. Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy po 14. hodině. Číslo indexu 46 044.

Toto číslo má vyjít podle plánu 31. 7. 1987. © Vydavatelství NAŠE VOJSKO.

DO URYCHLENÍ, PŘESTAVBA, KVALITA

(Pokračování)

Posledně jsme si uvedli stručný obsah dvacátého prvního bodu zásad přestavby, který se týká komplexního přebudování velkoobchodních a nákupních cen. Kromě již uvedených důvodů k přestavbě cen by nové ceny měly zajišťovat cíle v plánovaném snížení nákladů, ve zpevnění a zracionálnění kursů Kčs a v přiblížení relací a úrovní velkoobchodních, nákupních a zahraničních cen. Tím by se mělo odstranit např. množství nežádoucích dotací a přerozdělovacích procesů.

Důsledkem přebudování velkoobchodních cen by měla být i plynulá aktualizace cen, diferenciace jejich vztahu podle míry efektivnosti dovozu, popř. vývozu, kvality a technické porokovovosti produkce. Tato systematická objektivizace cen by však měla být ovlivňována především tlakem plánu a nástrojů hmotné stimulace na snižování společenských nákladů při nejširší společenské kontrole cen odběrateli a spotřebiteli. To by mělo kromě jiného vytvořit předpoklady k tomu, aby bylo možno průkazně zjišťovat komparativní výhody z mezinárodní dělby práce.

Bod 22 Zásad určuje tvořit důsledněji kursy Kčs k zahraničním měnám a to na základě vztahu úrovně vnitřních a zahraničních cen, směřovat k uplatňování jednotných kursů a státem regulované směnitelnosti měny. Dále kursy trvale zpevňovat v závislosti na zvyšování efektivnosti vývozu a zdokonalování finančních nástrojů. Kursy by také měly zastávat kriteriální funkci při srovnávání naší a zahraniční produktivity práce a mělo by být možno využívat je i jako jednoho z nástrojů obrany proti pronikání zahraničních inflačních vlivů do čs. ekonomiky.

Bod 23 Zásad pojednává o nutnosti spojovat zdokonalování hodnotových nástrojů s vytvářením předpokladů k přestavbě celého integračního mechanismu, zejména úlohy kolektivní měny (převoditelného rublu), jakož i směnitelnosti národních měn navzájem

Nutnost propracovat kritéria úvěrové emise a jejího směrování do základních oblastí tvorby a užití národního důchodu tak, aby spolehlivěji odrážela reálné materiálové krytí peněžních prostředků organizací, státu i obyvatelstva zbožím a službami, aby přispěla k plánovitému zabezpečování rovnovážnosti čs. ekonomiky, stability kupní síly měny a sociálních jistot obyvatelstva, je obsahem 24. bodu Zásad. V této souvislosti je třeba i přizpůsobit úlohu SBČS.

Další bod hovoří o nutnosti posílit podnikatelskou funkci poboček bank, přičemž ukládá zásadně neposkytovat úvěry na krytí nedostatků v hospodaření, ale poskytovat je především na nejefektivnější směry činnosti organizací, popř. na krytí momentálního nedostatku prostředků. Úvěrování organizací by tedy mělo být spojeno pouze s těmi kritérii, odvody, normativy a úkoly, které jsou výstupem státního plánu u organizací s platební schopností, v žádném případě by úvěry neměly být poskytovány organizacím s trvalou potřebou oběžných prostředků

Dvacátý šestý bod Zásad ukládá těsně spojovat objektivizaci celého komplexu hodnotových nástrojů a zvláště cen s programovým plánovitým zabezpečováním globální i strukturální ekonomické rovnováhy v oblasti osobní i společenské spotřeby obyvatelstva, v oblasti výrobní spotřeby, investic, pracovních sil a platebních vztahů se zahraničím. K tomu je třeba dbát na rovnovážnost státního rozpočtu, a kromě jiného, hospodárným vynakládáním zdrojů a účinnějším plánovitě usměrňovaným tlakem vnějších ekonomických vztahů vyvozovat důraz na žádoucí vývoj společenské produktivity práce v ČSSR.

27. bod Zásad ukládá orientovat důslednější využívání principu rozdělování a odměňování podle konečných výsledků práce především na zásadní zvýšení účinnosti všech stimulačních systémů na úrovní hospodářské organizace, pracovního kolektivu a jednotlivců. Společenské zdroje přitom umísťovat do nejefektivnějších směrů rozvoje národního hospodářství. Přejít od dosud nejrozšířenějšího rozdělování podle individualizovaných ukazatelů či podmínek k rozdělování podle jednotných, objektivizovaných společenských kritérií efektivnosti. Základní pravidla a proporce tvorby a užití těchto zdrojů stanovit centrálně v souladu se socialistickým charakterem výrobních vztahů.

Zásadní jednotnost normativů, odvodů a dalších pravidel pro rozdělování zdrojů by měla být rozhodujícím předpokladem pro objektivní diferenciaci nejen ve výdělcích uvnitř organizací, ale především ve všech důchodech a tím i průměrných výdělcích mezi organizacemi — to je požadavek 28. bodu Zásad. K tomu je třeba důsledně uplatnit chozrasčotní závislost nároků organizace na její skutečný přínos pro společnost. Žádoucí typ diferenciace v rozdělování by měl mít za následek vytvoření náročného kriteriálního a sociálně spravedlivého ekonomického prostředí jako základní podmínky pro přechod k intenzívnímu typu rozvoje. Jednotné kriteriální nástroje, normativně určené, by měly pomoci objektivně hodnotit rozdílnost výsledků hospodaření organizací, rozlišit zaostávající a progresívní výrobní programy, podněcovat socialistické podnikání, soutěživost a iniciativu. K realizaci strukturálních záměrů hospodářské politiky státu využívat diferencované nástroje k podpoře nebo útlumu vybraných oborů nebo výrob.

29. bod Zásad pojednává o nutnosti uplatnit v oblasti mezd v celé ekonomice jednotné tarify pro tvorbu základních mezd podle vykonané práce, přitom ovšem mnohem výrazněji posílit úlohu těch složek mezd, které jsou spojeny se skutečnými zásluhami a konečnými výsledky činnosti jednotlivců, pracovních kolektivů a organizací pro společnost (výsledková složka mezd). Současně s tím brát ohled na zapojení do mezinárodní dělby práce.

Využít závislosti vývoje mezd na vývoji čisté produkce a to s podmínkou, že má organizace vytvořeny disponibilní zdroje čistého důchodu. Jako variantu použít závislosti přírůstku mezd (popř. jen přírůstku výsledkových mezd) na přírůstku čistého důchodu.

30. bod Zásad určuje cílevědomě a podstatně zvětšovat pravomoc organizací v určování směrů využívání zdrojů a posilování účasti kolektivů pracujících v této oblasti, a to především cestou jejich účasti na tvorbě i realizaci hospodářských plánů i sociálních programů organizací, rozvíjením brigád-

ních forem organizace práce a odměňování, úlohy kolektivních smluv apod. Přednostně zabezpečovat systémem rozdělování reprodukci socialistického vlastnictví a centrální záměry v proporcích i tempech, růstu individuální a společenské potřeby.

31. bod Zásad se týká rozdělování důchodů organizací, především mezd, závislých na jejich hospodářských vý-

závislých na jejich hospodářských výsledcích. Ty je třeba účelněji provázat s rozdělováním fondů společenské spotřeby zejména ve zdravotnictví, školství, důchodovém a nemocenském zabezpečení, v oblasti rekreace apod., se zajišťováním restrukturalizace a rekvalifikace pracovníků, se sociálními výhodami na úseku pracovní doby, dovolené a rozvíjením dalších prvků sociálního programu.

Dále je třeba přehodnotit vzájemné proporce i formy odměn podle práce, sociálních příjmů a výhod, zdokonalit tyto vzájemné proporce zejména s ohledem na dosažený stupeň rozvoje životní úrovně i mzdové diferenciace, změn ve struktuře zájmů pracujících. Především však zabezpečit účinnější vliv celého sociálního programu na intenzifikaci čs. ekonomiky.

(Dokončení příště)

Přijímače pro příjem barevné televize

SIGNÁLOVÁ ČÁST PŘIJÍMAČŮ

Ing. Milan Žebrák

Toto a příští číslo AR pro konstruktéry je věnováno popisu činnosti a opravám tuzemských přijímačů barevné televize, nechybějí ani popis nastavovacích postupů a popis dálkového ovládání. Redakce se domnívá, že tím alespoň částečně splácí dluh, který v této oblasti elektroniky má, a který byl způsoben převážně tím, že činnost a především opravy přijímačů pro barevnou televizi včetně jejich nastavování vyžadují jak velké teoretické, tak i praktické znalosti a navíc i neběžné vybavení přístroji, a proto se poněkud vymykají z běžně publikované problematiky.

1. Úvod

Cílem tohoto čísla Amatérského radia pro konstruktéry není podat konkrétní návod na zjištění a odstranění jednotlivých závad "barevných" televizních přijímačů. Vytvoření podrobné opra-vářské "kuchařky" by jistě uvítali jak profesionálové, tak zejména amatéři, kteří se zajímají o televizní techniku. Avšak realizovat ve skutečnosti tak podrobný návod na opravy televizních přijímačů by bylo možné pouze tehdy, kdyby se opakovaně vyskytoval jen konečný počet určitých závad. V každém jiném případě by takto koncipovaná publikace nemohla postihnout všechny možné případy poruch a tudíž by ztrácela svůj smysl. To se týká i televizních přijímačů, popisovaných v tomto čísle AR, neboť u tuzemských barevných televizních přijímačů posledních let se prakticky, až na některé výjimky, nevyskytují typické závady. To svědčí sice o zvýšené spolehlivosti televizních přijímačů, avšak na druhé straně tato skutečnost ztěžuje jejich opravy do té míry, že případě závady nejde většinou výměnu či opravu poruchové součástky nebo dílu televizního přijímače, ale o vadnou součást, která se vyskytla prakticky nahodile, a k jejímuž nalezení vede pouze logický postup plynoucí z dokonalé znalosti obvodového řešení

V tomto smyslu bychom rádi tímto číslem AR pomohli všem, kteří se k opravě televizních přijímačů dostanou, ať již při výkonu svého povolání, nebo z vlastního zájmu. V následujících kapitolách se snažíme pokud možno podrobně vysvětlit funkci jednotlivých částí současných tuzemských barevných televizních přijímačů do té míry, aby závada a vadný díl či součástka mohly být lokalizovány nikoli na základě dlouholeté opravářské praxe, ale na základě znalosti správné funkce jednotlivých obvodů přijímače.

V souvislosti se způsobem nalezení závady je nutno se zmínit alespoň v krátkosti o potřebné měřicí technice. Hned úvodem musí být řečeno, že čím skromnější přístrojové vybavení a jednodušší měřicí technika jsou k dispozici, tím obtížnější je rychlé a přesné určení závady. Naprostou nezbytností je dobrý osciloskop, nejvhodnější je typ se šířkou pásma alespoň 10 MHz, nejlépe dvoukanálový s dvojitou časovou základnou. Určení závady ve většině případů závisí právě na správném a přesném vyhodnocení tvaru a úrovně napětí či proudu v obvodech přijímače. Ještě větší nároky jsou kladeny na měřicí techniku pro optimální nastavení televizního přijímače a o barevných přijímačích platí toto pravidlo dvojnásobně. S ohledem na reálné možnosti přístrojového vybavení většiny amatérů je však obvykle nutno vystačit i s jednoduchým jednokanálovým osciloskopem se šířkou pásma několik MHz. Práce je ovšem v tomto případě obtížnější a nastavení přijímače méně přesné.

Dalším problémem, zejména při nastavování přijímačů, je zdroj vhodného měřicího signálu. Kvalitní měřicí signály poskytuje barevný zkušební obrazec vysílaný v určitých hodinách. Plně využít zkušebního obrazce (monoskopu) však lze pouze ve spojení se speciálním osciloskopem s výběrem řádků. Navíc v souvislosti s rozšiřováním vysílacího času programu Československé televize je zkušební obrazec vysílán prakticky už jen v dopoledních hodinách pracovních dnech a v tuto dobu je přístupný většinou pouze profesionálním opravářům. Ve dnech pracovního klidu je doba vysílání zkušebního obrazce poměrně krátká, což ztěžuje jeho využití v tuto dobu. Nejvhodnějším řešením je použít vlastní televizní generátor. Na stránkách AR byly již několikrát publikovány konstrukce televizních generátorů pro černobílou televizi. Vhodný typ "barevného" televizního generátoru lze nalézt např. v [1].

Tyto úvodní řádky nemají za úkol odradit čtenáře od této problematiky. Je však nutno si uvědomit, že obvodová i koncepční řešení současných barevných televizních přijímačů se dosti značně liší od jejich předchůdců. Tato odlišnost vyžaduje nejen poněkud jiný přístup k opravě přijímače, ale klade zejména větší nároky na teoretické znalosti a měřicí a zkušební techniku.

2. Základní obvodová koncepce tuzemských barevných televizních přijímačů

Na následujících stránkách jsou popisovány tuzemské berevné televizní přijímače od typu COLOR 110 až po současně vyráběné typy přijímačů, určené pro příjem barevného televizního signálu. Tuto řadu televizních přijímačů lze rozdělit na tři základní skupiny, které se zcela liší základní koncepcí obvodového řešení barevného televizního přijímače:

- přijímače s tyristorovým řádkovým rozkladem,
- přijímače s rozkladovou a napájecí částí typu IPSALO,
- přijímače s pulsním napájecím zdroiem.

První skupinu tvoří přijímače, jež jsou galvanicky spojeny se sítí. Všechny typy přijímačů z následujících dvou skupin jsou již řešeny jako přijímače s bezpečnostním oddělením od sítě.

Přijímače s tyristorovým řádkovým rozkladem

Do této skupiny patří typy COLOR 110, COLOR 110 ST, popř. COLOR 110 ST II, COLOR 429 a COLOR 424. Všechny tyto typy jsou prakticky totožné až na malé odchylky v zapojení, vyplývající ze záměny původní obrazovky s toroidním vychylovacím systémem u typu COLOR 110 za obrazovky se sedlo-toroidním vychylovacím stémem u následujících typů. Další drobné odchylky v zapojení souvisí s použitím dálkového ovládání u tvpu COLOR 110 ST II a COLOR 429. s použitím obrazovky o menší úhlopříč-ce u typu COLOR 424 či z drobných úprav ovládacích prvků přijímačů. Všechny tyto typy lze charakterizovat jediným blokovým schématem (obr. 1), z něhož je patrné uspořádání jednotlivých funkčních bloků.

Všechny obvody přijímače jsou galvanicky spojeny se sítí, pouze anténní vstup je oddělen bezpečnostními oddělovacími kondenzátory, umístěnými přímo v anténním konektoru, výstup zvukového doprovodu pro připojení magnetofonu či sluchátek je oddělen oddělovacím transformátorem. Při opravách přijímače tohoto typu bezpodmínečně platí, že přijímač musí být z bezpečnostních důvodů napájen přes síťový oddělovací transformátor. Přepólování síťové zástrčky neodstraní síťové napětí ze šasi přístroje, neboť síťový usměrňovač je v můstkovém zapojení!

Vysokofrekvenční signál z televizní antény je selektlvně zesílen kanálovým voličem a ze vstupního signálu a signálu oscilátoru je ve směšovači vytvořen mezifrekvenční signál. Ten je v bloku obrazové mezifrekvence dále selektivně zesílen obvody soustředěné selektivity a několikastupňového zesilovače a dále demodulován synchronním detektorem na nízkofrekvenční obrazový (video) signál. Součástí bloku obrazové mezifrekvence jsou i obvody pro vytváření řídicího napětí AVC, jednak k řízení zisku mezifrekvenčního zesilovače, jednak k řízení zisku ka-

nálového voliče. Současně je odtud odebírán signál pro obvody AFC k automatickému dolaďování kanálového voliče (tzv. tuperu).

vého voliče (tzv. tuneru).
Přes vstupní filtr v bloku pro zpracování zvukového doprovodu je odebírán zvukový signál mezifrekvenčního kmitočtu, který je po zesílení a omezení demodulován kmitočtovým diskriminátorem. Po zesílení v koncovém zesilovači je nf signál přiveden na reproduktor.

Pro zpracování televizního signálu v obvodech jasového a chrominančního kanálu je videosignál odebírán přes odlaďovač zvukového mezifrekvenčního signálu 6,5 MHz. Odtud je také videosignál přiváděn do synchronizačních obvodů, vytvářejících řádkové a snímkové synchronizační impulsy pro synchronizaci příslušných rozkladových obvodů. Přes horní propust a odlaďovač signálu zvukového mezifrekvenčního kmitočtu 5,5 MHz je dále videosignál přiváděn na dvounormový dekodér barev a na automatický přepínač PAL/SECAM, který automaticky přepíná dekodér podle druhu normy přijímaného televizního signálu.

Jasový signál je přes odlaďovače signálů barvonosných kmitočtů a jasové zpožďovací vedení přiveden spolu s rozdílovými signály (R-Y) a (B-Y) z výstupu dekodéru na maticové obvody pro vytvoření zeleného rozdílového signálu (G-Y). Součástí těchto obvodů jsou i zesilovače pro řízení jasu, kontrastu a barevné sytosti, řízené ss napětím z ovládacího panelu přijímače. Všechny tři rozdílové barevné signály jsou spolu s jasovým signálem přivedeny do bloku obrazových (video) zesilovačů, v němž jsou vytvořeny a zesíleny jednotlivé signály RGB pro buzení katod barevné obrazovky.

Vychylování paprsku na stínítku obrazovky zajišťují snímkové a řádkové vychylovací obvody prostřednictvím příslušných vychylovacích cívek. V obvodech řádkového rozkladu jsou navíc vytvářena všechna potřebná napájecí napětí pro jednotlivé obvody přijímače a pro obrazovku. Vlastní zdrojová část přijímače obsahuje pouze demagnetizační obvody, přídavné

stabilizátory napětí pro napájení koncového zesilovače zvukového dílu a obvodů signálové desky, rozběhový zdroj +12 V a usměrňovač síťového napětí s elektronickou pojistkou a rozběhovým zdrojem pro napájení řádkového rozkládu. Usměrněné síťové napájecí napětí je do obvodů řádkového rozkladu přiváděno přes elektronickou pojistku a přes regulační obvody. Tyto obvody zajišťují stabilizaci pracovního bodu rozkladu a obsahují ochranné obvody proti přetížení. Součástí řádkových rozkladových obvodů jsou i obvody pro korekci geometrického zkreslení rastru.

Přijímače s rozkladovou a napájecí částí typu IPSALO

Do této skupiny přijímačů patří přenosné barevné televizní přijímače Mánes Color a Color Oravan. Oba výrobky jsou po elektrické stránce prakticky totožné. Malé odchylky v zapojení vyplývají pouze z použití odlišných typů barevných obrazovek. Blokové schéma těchto přijímačů je na obr. 2.

Způsob zpracování vlastního televizního signálu není třeba popisovat, je v podstatě shodný jako u předchozích typů přijímačů a je dostatečně znázorněn na blokovém schématu. Zapojení signálové cesty je proti předchozím typům jednodušší, neboť jsou použity modernější integrované obvody s větší hustotou integrace.

Zcela odlišná je však koncepce řádkového rozkladu a zdrojové části. Je zde použit systém IPSALO, což je zkratka anglického názvu Integrated Power Supply And Line Output. Jak vyplývá z názvu, vznikl tento systém spojením řádkového rozkladu a napájecího zdroje a jeho použití umožňuje realizovat přijímač s galvanickým oddělením od sítě. To značně zjednodušuje připojování přídavných zařízení jako je videomagnetofon, magnetofon, sluchátka apod.

Obvody přijímače, které jsou galvanicky spojeny se sítí, jsou na blokovém schématu vyznačeny. Oddělení od sítě je realizováno pomocí sekundárních

Obr. 2. Blokové schéma přijímačů s rozkladovou a napájecí částí typu IPSALO

vinutí s bezpečnostní izolací v síťovém rozběhovém transformátoru Tr₁, v budicích transformátorech tyristorů síťové části (Tr₂, Tr₃) a v řádkovém transformátoru Tr₄.

Plynulý start a vlastní stabilizace jsou řízeny blokem regulace, který pracuje synchronně s řádkovým rozkladem a ovládá síťový a regulační tyristor ve zdrojové části. Součástí tohoto bloku jsou i ochranné obvody.

Vlastní řádkový rozklad je tvořen klasickým zapojením s koncovým rozkladovým tranzistorem a s budičem s transformátorovou vazbou. Energie však není do rozkladových obvodů dodávána ze stejnosměrného zdroje přes pracovní vinutí řádkového transformátoru jako u běžného tranzistorového rozkladu, nýbrž ze zdrojové části impulsně (vazbou realizovanou transformátorem Tr₄).

Budicí stupeň řádkového rozkladu je řízen impulsy ze synchronizačního bloku. Všechna napájecí napětí obvodů přijímače jsou získávána detekcí z řádkového transformátoru. Vertikální rozklad je tvořen jediným integrovaným

124

obvodem a je synchronizován impulsy, přiváděnými ze synchronizačního bloku.

Přijímače s pulsním napájecím zdrojem

Do skupiny přijímačů s pulsním napájecím zdrojem patří současně vyráběné typy stolních barevných televizních přijímačů COLOR 416, 419 a 422. Pulsní napájecí zdroj zajišťuje dobře stabilizované napájecí napětí všech obvodů přijímače a současně jejich oddělení od sítě. Blokové schéma tohoto typu přijímače je na obr. 3.

Oddělení od sítě je realizováno vinutím vlastního měničového transformátoru Tr₁, vinutím transformátorů Tr₁ a Tr₂, které zajišťují napájení přijímače dálkového ovládání a regulačního a budicího stupně pulsního zdroje, a vinutím budicího transformátoru Tr₃.

Použitý pulsní zdroj je závěrného typu a pracuje na řádkovém kmitočtu synchronně s rozkladovými obvody. Řádkový rozklad je klasického zapojení s koncovým řádkovým tranzistorem a diodovým modulátorem s transformátorovou vazbou pro korekci geometrického zkreslení rastru ve vodorovném směru. Ze sekundárních vinutí řádkového transformátoru jsou odebírána pouze napájecí napětí pro obrazovku.

Snímkový rozklad je plně integrovaný, stejného typu jako u přijímačů Mánes a Oravan pouze s úpravami s ohledem na odlišný vychylovací systém obrazovek, použitých u těchto přijímačů.

Šignálové obvody koncepčně vycházejí z obvodů přenosných přijímačů Mánes a Oravan. Byly však provedeny zásadní změny v modulu obrazové mezifrekvence, v dekodéru barev, na modulu videozesilovačů a modulu zvuku.

Blok obrazové mezifrekvence obsahuje i zvukový mezifrekvenční díl s kvaziparalelním odběrem zvuku a klasické laděné obvody soustředěné selektivity v obrazovém mezifrekvenčním zesilovači byly nahrazeny filtrem s povrchovou vlnou.

V dekodéru barev a v bloku videozesilovačů jsou použity modernější typy integrovaných obvodů — MDA3530 a MDA3505. Jako koncový zesilovač zvukového nf signálu je použit integrovaný obvod A2030V. S ohledem na lepší jakost zvuku při kvaziparalelním odběru zvukového mezifrekvenčního signálu byl před koncový stupeň zařazen předzesilovač s MDA4290 V, obsahující kromě regulátoru hlasitosti oddělené regulátory hloubek a výšek.

Tento typ přijímačů předstávuje v současné době poslední způsob řešení tuzemských barevných televizních přijímačů.

3. Signálové a dekódovací obvody přijímačů

V této kapitole jsou popsány jednotlivé obvody signálové cesty včetně nastavovacích předpisů a způsobu odstraňování jejich případných závad. Jednotlivé funkční bloky jsou popisovány postupně za sebou tak, jak je zpracováván televizní signál.

Signálové obvody lze podle generace použitých integrovaných obvodů rozdělit přibližně na dvě základní skupiny. Jednak to jsou obvody používané u všech typů přijímačů řady COLOR 110. Schéma zapojení signálových

obvodů této skupiny je na obr. 4. Do druhé skupiny lze zařadit řešení signálových obvodů, používané od zahájení výroby přenosných barevných televizních přijímačů. Od této doby je používána nová generace integrova-

ných obvodů, která je prakticky shodná i s obvody používanými u současné řady COLOR 416. Na obr. 5 je schéma propojení signálových obvodů u přenosných přijímačů Mánes a Oravan. Drobné odchylky v zapojení mezi

Obr. 5. Schéma zapojení signálových

oběma typy přijímačů budou specifikovány při konkrétním popisu jednotlivých funkčních celků. Na obr. 6 je

schéma signálových obvodů přijímačů řady COLOR 416. Všechny popisované přijímače pou-

žívají barevné obrazovky typu in-line. Jsou určeny pro příjem ve všech televizních pásmech a obou evrop-

ských normách (Secam, PAL). Dekodér barev se podle druhu přijímaného signálu přepíná automaticky. Také zvu-

kový doprovod lze přijímat v obou hlavních evropských normách a to s mezifrekvencí 6,5 a 5,5 MHz.

3.1 Kanálové voliče

V průběhu výroby byly popisované televizní přijímače osazovány několika typy tunerů. Původní kanálové voliče s germaniovými tranzistory používané u prvních modelů řady COLOR 110 byly postupem času nahrazeny moderními kanálovými voliči s tranzistory FET, ať už z dovozu, či tuzemské výroby.

Blokové schéma odpovídající používaným typům kanálových voličů je na obr. 7. Kanálové voliče jsou realizovány buď jako dvouvstupové s oddělenými vstupy VHF a UHF, nebo jako jednovstupové, u nichž jsou oba vstupy sloučeny kmitočtovou výhybkou (obr. 7)

7).
Vstupní signál VHF je zesílen vstupním zesilovačem a přes laděnou pásmovou propust přiveden na směšovač VHF. Pro toto přijímané pásmo je použit směšovač s odděleným oscilátorem, aby se snadněji zamezilo vzájemnému ovlivňování dvou kmitočtově blízkých signálů zejména v l. televizním pásmu. Směšovací stupeň pro pásmo VHF slouží současně jako mezifrekvenční zesilovač při příjmu v pásmu IHF

Vstupní signál UHF je zesílen ve vf zesilovači a přiveden přes laděnou pásmovou propust na kmitající směšovač UHF. Odtud je přes mezifrekvenční pásmovou propust přiveden na vstup výše zmíněného mezifrekvenčního zesilovače.

Zesílení vstupních vf zesilovačů je řízeno změnou pracovního bodu tranzistorů regulačním napětím U_{AVC} . Laděné obvody lze plynule přelaďovat v jednotlivých pásmech varikapy. Jednotlivá přijímaná televizní pásma lze přepínat vnějšími přepínacími napětími, ovládajícími spínací diody, které přepínají laděné obvody a napájecí napětí jednotlivých částí kanálového

Kanálový volič 7PN 382 002

Tento typ kanálového voliče je použit u televizních přijímačů řady COLOR 110. Schéma zapojení kanálového voliče je na obr. 8. Na obr. 9 je zapojení vývodů a tabulka přepínacích napětí na jednotlivých vývodech voliče při příslušných přijímaných pásmech.

Tento typ kanálového voliče je osazen převážně germaniovými tranzistory, pouze kmitající směšovač v pásmu

vstup $\frac{VHF}{f_1}$ $\frac{VHF}{f_2}$ $\frac{VHF}{f_3}$ $\frac{VHF}{f_4}$ $\frac{VY}{f_5}$ $\frac{VY}{$

Obr. 7. Blokové schéma kanálového voliče

UHF je osazen křemíkovým tranzistorem (T_{52}).

Vysokofrekvenční signál v pásmu VHF je přiváděn přes odlaďovač obrazového mezifrekvenčního signálu (C₄₂, L₃₀) a ochranné obvody (D₁₃, D₁₄, L₃₁) na vstupní laděný filtr. Pro pásmo I, II tvoří indukčnost vstupního laděného

filtru cívka L_5 v sérii s cívkou L_3 . Obvod je laděn varikapem D_1 . Na vstupní tranzistor T_1 je signál přiváděn přes sekundární obvod (cívka L_6 v sérii s cívkou L_4). Vstupní tranzistor je napájen přes diody D_4 a D_{15} . Přes tlumivku L_6 je přiváděno závěrné napětí na D_3 . Při příjmu v pásmu III jsou diody

Pásmo		K6	K5	K4	КЗ	K2	K1
		VHF P	Us	UL	UAVC	VHF PI,I	UHF
	$P_{I,II}$	-1V				+12 V	
VHF	PI	+12 V	12 V	102 32 V	1 aż 9 V	_	_
UHF		_	¥	+ +	""	T -	+12 V

D₂ a D₃ sepnuty přepínacím napětím, přiváděným přes L7 a R2. Cívky L4 a L₃ jsou tedy zkratovány kondenzátory C₅ a C₆ a ve vlastním filtru se uplatňují pouze cívky L6 a L5. Po zesílení tranzistorem T1 je signál přiveden přes kondenzátor C66 na pásmovou propust, tvořenou pro pásmo I, II cívkami L₁₃, L₁₁ a L₁₄, L₁₂. Vazbu pásmové propusti tvoří cívka L₁₀. Filtr je laděn varikapy D₆ a D₈. Výstupní signál z pásmové propusti je odebírán přes cívky L₁₆ a L_{15} (dioda D_{10} je v sepnutém stavu), přičemž L_{16} je indukčně vázána na cívku L₁₄ a L₁₅ na cívku L₁₂. Při příjmu v pásmu III je pásmová propust přeladěna spínacími diodami D₆, D₂ a D₉, které jsou nyní v sepnutém stavu.

Oscilátor pro pásmo VHF je tvořen tranzistorem T₂. Stejnosměrné napájení tranzistoru zajišťuje dioda D₉, popř. D₁₀ podle přijímaného pásma. Oscilátorový rezonanční obvod je přelaďován varikapem D₁₁. Přepínání ladicího rozsahu pro příslušné pásmo zajišťuje spínací dioda D₁₂. Při příjmu v pásmu III je dioda sepnuta a zkratuje tak cívku L₁₉. Při přepnutí na pásmo I, II, kdy není na diodu D₁₂ přiváděno kladné přepínací napětí, detekuje tato dioda oscilační napětí na cívce L₁₉. Na anodě diody D₁₂ tak vznikne záporné stejnosměrné napětí přibližně -1 V. Toto napětí je přes R₁₆ přiváděno na společný vodič přepínacího napětí pro pásmo III a odtud k ostatním spínacím diodám pro III. pásmo. Jsou jím polarizovány diody v závěrném směru, takže se neuplatňuje jejich zbytková kapacita přechodu při ladění na nejnižších kmitočtech I. pásma.

Výstupní napětí oscilátoru je přiváděno přes kondenzátor C24 na emitor tranzistoru T₃, pracujícího jako směšovač. Současně je na emitor přiváděn přes C₁₈ i vstupní vysokofrekvenční signál z pásmové propusti. Tranzistor T₃ je napájen trvale z napájecího napětí $12\,V$ přes R_{19} a bázový dělič, tvořený R_{20} a R_{21} . V kolektoru tranzistoru je zapojena výstupní pásmová propust pro mezifrekvenční signál, tvořená cívkami L₂₆ a L₂₈ s vazbou tvořenou cívkou L₂₇. Primární obvod, laděný kondenzátorem C₃₉, je zatlumen rezistorem R₂₄. Sekundární obvod je laděn kondenzátorem C40. Výstupní mezifrekvenční signál je odebírán z vazebního vinutí L₂₉ přes kondenzátor C₄₁. Vazební vinutí je navrženo s ohledem na malou impedanci (50 Ω) vstupu obrazové mezifrekvence. Použití tohoto výstupního obvodu, tvořeného úplnou pásmovou propustí, přizpůsobenou k vstupní impedanci mezifremalé

kvenčního zesilovače, umožňuje vyměnit kanálový volič bez složitého dolaďování vazebního obvodu.

Při příjmu v pásmu UHF je vstupní signál přiveden přes horní propust (C51, C₅₂ a L₅₃) na vstupní tranzistor T₅₁. Stejnosměrný obvod tranzistoru je uzavřen tlumivkou L54. Z prvního stupně je zesílený signál přiváděn přes vazební kondenzátor C₅₅ na laděnou pásmovou propust (L₅₆ a L₆₀) s vazbou cívkami L₅₇, L₅₈ a dolaďovacími cívkami L₅₅ a L₅₉. Pásmová propust je přelaďována přes celé pásmo varikapy D53 a D₅₄. Přes vazební obvod tvořený L₆₁ je signál přiveden do druhého stupně (T₅₂), který pracuje jako kmitající směšovač. Výstupní mezifrekvenční signál je přes cívku L₆₅ přiveden na mezifrekvenční pásmovou propust (L70, L71, L72). Odtud jde signál přes R18 a C28 na emitor tranzistoru T3, který nyní pracuje jako mezifrekvenční zesilováč.

Kanálový volič FET — 1T (MLR)

Tento typ kanálového voliče je alternativně osazován u přijímačů COLOR 110 ST. Celkové schéma zapojení je na obr. 10, na obr. 11 je zapojení vývodů a tabulka přepínacích napětí.

Kanálový volič je na vf stupních a směšovači VHF osazen tranzistory MOSFET s dvěma řídicími elektrodami. Na vstupu v pásmu UHF je to tranzistor BF960, v pásmu VHF BF961 a ve směšovači VHF tranzistor BF963. V obvodech oscilátorů jsou použity nové typy bipolárních tranzistorů BF606 a BF970 (kmitající směšovač UHF), vyvinuté speciálně pro toto použití.

Použití tranzistorů řízených polem umožňuje dosáhnout lepších parametrů tuneru. Tyto tranzistory jsou podstatně odolnější proti vzniku křížové modulace, regulace zisku tranzistoru napětím na druhé řídicí elektrodě zabezpečuje, že se při změnách zisku obvody nerozlaďují. Velká činná složka jejich vstupní impedance umožňuje optimálnější návrh vstupních obvodů a tím i větší citlivost tuneru. Použitím vstupního laděného obvodu v pásmu UHF a kompenzačního obvodu v pásmové propusti UHF je dosaženo většího potlačení signálů zrcadlových kmitočtů.

Zisk vf zesilovačů je řízen napětím na elektrodách G_2 vstupních tranzistorů. Rozsah napětí $U_{\rm AVC}$ je stejný jako u bipolárních tranzistorů, tedy přibližně +9 až +1 V. Napětí druhé řídicí elektrody proti emitoru, $U_{\rm G2-S}$, se přitom mění v rozsahu od +4 V do asi —1 V. Protože při zmenšování napětí $U_{\rm G2-S}$ se zmenšuje i kolektorový proud tranzistoru, je emitor (S) připojen na napětový dělič, který zabezpečuje i při nulovém kolektorovém proudu kladné napětí na emitoru (děliče $R_{\rm 27}/R_{\rm 26}$ a $R_{\rm 8}/R_{\rm 7}$).

Pracovní bod vstupních tranzistorů je nastaven děliči v první řídicí elektrodě (R_{25}/R_{24} a R_5/R_6) tak, aby G_1 měla proti emitoru napětí přibližně okolo nuly. Emitorový odpor 220 Ω stabilizuje pracovní bod tranzistoru s ohledem na široké tolerance kolektorového proudu při pevném napětí řídicích elektrod vůči emitoru.

Ve směšovacím stupni VHF (T₄) se elektroda G₂ nepoužívá pro multiplika-

tivní směšování, které je nevhodné pro velkou úroveň šumu, ale pouze nastavení vhodného pracovního bodu. Směšování je tedy stejně jako u bipolárních tranzistorů aditivní a vstupní vf signál i signál z oscilátoru jsou příváděny do první řídicí elektrody. Při funkci T4 jako směšovače není přiváděno na G1 kladné napětí vůči zemi, takže G1 je vůči emitoru mírně záporná. Pokud pracuje tento stupeň jako mf zesilovač při příjmu v pásmu UHF, je přivedeno na G₁ přes diodu D₁₅ a odpor R₁₁ kladné napětí +0,9 V. Zvětší se tedy kolektorový proud a emitorovým rezistorem R₃₆ se automaticky nastaví vhodné napětí U_{G1-S}.

Vstupní signál přivedený na vstup kanálového voliče se podle přijímaného pásma rozdělí do větve VHF (přes L_{13} , C_{25}) nebo UHF (přes L_{1} , C_{1}). Sériové odlaďovače L_{14} , C_{26} a L_{15} , C_{28} potlačují signál z pásma mezifre-

kvenčních kmitočtů.

Při příjmu signálu v pásmech I, II tvoří indukčnost vstupního laděného obvodu cívka L_{16} v sérii s cívkou L_{17} . Rezonanční obvod je přitlumen rezistorem R_{18} . Na řídicí elektrodu G_1 tranzistoru T_3 je vstupní laděný obvod navázán kondenzátory C_{34} , C_{32} a C_{35} . Při příjmu v pásmu III se přes sepnutou diodu D_8 připojí cívka L_{18} a přes diodu D_7 se paralelně spojí cívky L_{17} a L_{19} . Obvod je v tomto případě zatlumen paralelním rezistorem R_{23} , kondenzátor C_{32} zužuje rozsah ladění III. pásma.

Pásmová propust je tvořena pro pásma I a II cívkami L₂₅ a L₂₆, navinutými na společném feritovém jádře. Na vstupní a směšovací stupeň je pásmová propust navázána kondenzátory C_{41} a C_{48} . Varikapem D_{14} se reguluje stupeň vazby na směšovač v závislosti na naladění (aby se udrželo rovnoměrné zesílení a stejná účinnost směšování v celém rozsahu ladění). Primární obvod pásmové propusti je zatlumen rezistorem R28, připojeným paralelně k tlumivce L21, sekundární obvod sériovým rezistorem R₃₀. Při příjmu ve III. pásmu je pásmová propust tvořena cívkami L₂₀ a L₂₄. Proudovou vazbu mezi nimi vytváří cívka L23, realizovaná na desce s plošnými spoji. Konden-zátory C₄₁ a C₄₈ zužují rozsah ladění, tlumení pásmové propusti zajišťuje rezistor R₃₁ a v závislosti na naladění rezistor R₃₃

Laděný obvod oscilátoru v pásmech I a II tvoří s varikapem cívka L_{33} . Kondenzátor C_{59} je vazební, C_{66} je souběhový kondenzátor. Zpětná vazba je realizována kondenzátorem C_{60} . Při příjmu v pásmu III je sepnuta dioda D_{17} . Indukčnost laděného obvodu v tomto případě představuje cívka L_{31} . Souběhový kondenzátor nyní tvoří C_{59} v sérii s C_{66} .

V části UHF jsou indukčnosti laděných obvodů realizovány cívkami s přibližně jedním závitem tlustšího postříbřeného drátu, což je výhodné z hlediska mikrofoničnosti obvodů. Varikap D₂ ve vstupním laděném obvodu mění vazbu na vstupní tranzistor T₁ v závislosti na naladění. Na kolektor tranzistoru T₁ je přes kondenzátor C₈ (0,82 pF) navázána pásmová propust UHF. Cívka L₄ zabezpečuje napájení kolektoru T₁ a v pásmu UHF sechová jako tlumivka. Všechny laděné obvody v pásmu UHF mají v sérii s

Obr. 10. Schéma zapojení kanálového voliče FET-1T

	2	3	4	5	7	8
VHF P _{L,I}		_	** .	• 8.	-1 V	+12 V
VHF P _■	121	_	0,5 aż 28 V	0,5 aż 12 V.	+12 V	-
UHF	+	+12 V	0.0	0.4	_	

varikapy zapojeny kondenzátory pro úpravu šířky pásma $(C_3, C_{10}, C_{14}, C_{21})$. Kondenzátor C_{12} s velmi malou kapacitou, realizovaný dvěma dráty vedenými přes distanční držák ze vstupu pásmové propusti na vstup T_2 , zlepšuje potlačení signálů zrcadlových kmitočtů. Pro tyto kmitočty, které jsou o 76 MHz vyšší $(2 \times f_{\rm mf})$, je totiž při správném naladění signál na C_{10} v protifázi vůči signálu na C_{14} v sekundárním obvodu pásmové propusti.

Kmitající směšovač s tranzistorem T₂ vytváří na laděném obvodu L₁₀, C₂₂, připojeném na kolektor přes oddělovací člen L9, R16, signál mezifrekvenčního kmitočtu. Signál ze sekundárního obvodu pásmové propusti je přiváděn na emitor T₂ přes kondenzátor C₁₅. Výstupní mezifrekvenční signál je přes kondenzátor C52 a sepnutou diodu D₁₅ přiveden na vstupní elektrodu tranzistoru T4, který nyní pracuje jako mf zesilovac. Na vystupu ... úplná pásmová propust L₂₈, L₃₀ s jako mf zesilovač. Na výstupu tuneru je zaručuje dobré impedanční přizpůsobení ke vstupním obvodům následujícího mezifrekvenčního zesilovače a dostatečnou šířku pásma pro mf signál, takže při výměně kanálového voliče není nutno slaďovat jeho výstupní obvody následujícími S mezifrekvenčnímí obvody.

Kanálový volič 6PN 385 15

Tento typ kanálového voliče je řešen obdobně jako volič popsaný v předcházejícím odstavci a stejně jako on je osazen tranzistory typu MOSFET. Schéma zapojení je na obr. 12. Je vyráběn v několika provedeních, lišících se navzájem mechanickým uspořádáním vstupu a výstupu. U typu 6PN 385 15 je vstupní konektor umístěn přímo na kanálovém voliči a výstup mezifrekvenčního signálu je vyveden na řadový konektor spolu s ostatními přívody. U typu 6PN 385 19 je výstup mf signálu vyveden na průchodku na boku kanálového voliče (viz obr. 12). Provedení typu 6PN 38516 se liší uspořádáním vstupního konektoru, není umístěn na krytu kanálového voliče, ale na prodlužovacím souosém (koaxiálním) kabelu.

Kanálové voliče tohoto typu se začaly používat již v průběhu výroby posledních sérií přijímačů řady COLOR 110 ST a jsou používány dodnes.

Jako vstupní tranzistory ve větvi VHF i UHF a na místě směšovače VHF jsou použity čs. tranzistory MOSFET, KF907. V oscilátoru VHF je použit bipolární tranzistor BF506 a na místě kmitajícího směšovače UHF tranzistor BF479S.

Pracovní bod vstupních tranzistorů T_1 a T_{101} je nastaven děličem v emitoru (R_6/R_5 a R_{108}/R_{107}) a rezistorem mezi emitorem a řídicí elektrodou G_1 (R_4 , R_{106}). Napětí U_{G1-S} je tedy automaticky při jakémkoli řídicím napětí na elektrodě G_2 prakticky rovno 0 V. Pracovní bod směšovače VHF je nastaven děličem v řídicí elektrodě G_2 (R_{116} , R_{117}) a emitorovým rezistorem R_{118} . Řídicí elektroda G_1 je uzemněna přes R_{115} . Napětí U_{G1-S} je nastaveno automaticky rezistorem R_{118} v emitoru.

Vstupní signál je kmitočtovou výhybkou rozdělen do větví VHF a UHF. Signál UHF je přiveden na vstupní laděný obvod přes horní propust (C₁, C₂ a L₁). Na vstupní elektrodu G₁ tranzistoru T₁ je vstupní obvod navázán přes D₂ a C₄. Varikap D₂ mění vazbu na T₁ v závislosti na naladění. Kolektor tranzistoru je napájen přes tlumivku L₅. Přes kondenzátor C₁₀ je na kolektor tranzistoru připojen primární obvod pásmové propusti. Kompenzační kondenzátor C₁₃ slouží ke kompenzaci potlačení signálů zrcadlových kmitočtů a je realizován stejným způsobem jako u tuneru FET-1T. Na kmitající směšovač je signál z pásmové propusti přiveden přes kondenzátor C₁₇. Na rozdíl od tuneru FET-1T netvoří kolektorový obvod směšovače jednoduchý

1

laděný obvod, ale primární obvod pásmové propusti (L₁₂, L₁₃, L₁₄), z níž je mf signál přiváděn přes sepnutou diodu D₆ na vstup tranzistoru T₁₀₂, který nyní pracuje jako mf zesilovač. V kolektoru tohoto tranzistoru je zapojena výstupní pásmová propust.

Vstupní signál v pásmu VHF je přiváděn na vstupní laděný obvod přes dolní propust a odlaďovače mf kmitočtu. Jednotlivé ladicí sekce ve vstupním laděném obvodu i v pásmové propusti na výstupu tranzistoru T₁₀₁ jsou přepínány pro jednotlivá pásma spínacími diodami obdobně jako u předešlého typu kanálového voliče. Kompenzační kondenzátor C₁₁₀₃ použitý nyní i u pásmové propusti VHF kompenzuje opět potlačení signálů zrcadlových kmitočtů. Signál z výstupu pásmové pro-VHF pusti jе přes kondenzátor

přiváděn na řídicí elektrodu G₁ tranzistoru T₁₀₂, stejně jako signál z oscilátoru C₁₂₃). (přes Tranzistor T₁₀₂ pracuje v tomto případě jako směšovač a výstupní mf signál je vytvářen na primárním obvodu výstupní pásmové propusti (L116, L117, L118).

Stejnosměrné napájení kolektoru tranzistoru T₁₀₂ je zajištěno přes L₁₁₈ a L116

Závady kanálových voličů

V tomto odstavci je popsán způsob odstranění běžných závad kanálových voličů při použití klasických měřicích přístrojů. Není zde uvažována možnost zásahu do laděných obvodů či celkové ladění kanálového voliče, neboť k těmto pracem je nezbytný polyskop, který však není běžně dostupný. Navíc záva-

Pásma		Tabulka napėti					
		U z	U1,1	Us	UAVC	UL	U _{EF, EF}
VHF	I, II	-2 V	+12V	+12V	+0,8aż+8,5V	+0,5 aż +28 V	-
	Ш	+12V	_				_
UHF	₩, ₽	-	-		9+	Ť	+12V

dy, po jejichž odstranění je nutno celý kanálový volič naladit, jsou poměrně

Při jakékoli poruše funkce kanálového voliče je nutno nejdříve určit, zda je závada v samotném voliči, nebo v jednotce předvolby. Proto je výhodné nejprve změřit napětí na jednotlivých vývodech kanálového voliče a ověřit. zda odpovídají napětím, uvedeným v tabulkách přepínacích napětí (podle typu kanálového voliče). Z tohoto měření lze jednoznačně určit, zda je závada přímo v kanálovém voliči. Pokud jsou jednotlivá napětí na příslušných vývodech kanálového voliče v pořádku, je možno závadu lokalizovat následujícím postupem:

– kanálový volič nepracuje na žádném

z televizních pásem: závada musí být v té části voliče, která je společná pro všechna pásma, tj. v obvodu směšovače VHF nebo výstupního filtru. Obvykle je vadný tranzistor ve směšovači, ale může být také závada v prvcích nastavujících jeho pracovní bod, mohou být špatně zapájené cívky výstupního filtru či vadný výstupní kondenzátor;

kanálový volič pracuje pouze v pásmu UHF.

je vadný buď oscilátor VHF, nebo vstupní zesilovač. Změřením napětí na vývodech příslušných tranzistorů lze zjistit, není-li některý z nich vadný. Ze změny napětí na emitoru tranzistoru při zatlumení oscilátorového obvodu rukou se zjistí, zda oscilátor kmitá. Pokud oscilátor nekmitá a tranzistor je v pořádku, zkontrolovat ladicí napětí na varikapu. Jsou-li ladicí napětí i varikap v pořádku, je nutno nejdříve vizuálně a pak elektricky zkontrolovat pasívní součástky oscilátoru, zejména vazební a blokovací kondenzátory.

Není-li závada v oscilátoru, je nutno ověřit pracovní bod vstupního tranzistoru VHF změřením napětí na jeho vývodech. Odpovídají-li naměřená napětí, je třeba dále zkontrolovat ladicí napětí na jednotlivých varikapech. Obvykle je však vadný vstupní tranzistor. Závada ve splnacích diodách je nepravděpodobná, neboť by musely být zároveň vadné odpovídající spínací diody současně;

 kanálový volič pracuje v pásmu UHF a pouze v jednom z pásem VHF:

v tomto případě je obvykle vadná jedna ze spínacích diod v obvodech příslušného nefunkčního pásma;

— kanálový volič pracuje pouze v pásmech VHF:

zkontrolovat pracovní body tranzistorů ve větvi UHF, dále popř. ladicí napětí na varikapech. Obvykle je vadný vstupní tranzistor nebo dioda, přes níž je tento tranzistor napájen (v případě kanálového voliče s bipolárními tranzistory).

Popsané typy závad jsou nejběžnější a lze je identifikovat základními měřicími přístroji. Je samozřejmě možné, že mohou nastat i závady, způsobující deformaci propustné křivky kanálového voliče, závady v rozsahu ladění a podobně, způsobené vadou některé pasívní součástky v laděných obvodech. V tomto případě je k určení závady nezbytné použít polyskop, který však nepatří k běžným a dostupným přístrojům. Tyto závady jsou však velmi ojedinělé.

3.2 Jednotky předvolby

Jednotka předvolby slouží k vytváření potřebných ovládacích napětí pro kanálový volič, tedy ladicího napětí $U_{\rm L}$ a přepínacích napětí $U_{\rm I, II}, U_{\rm III}$ a $U_{\rm IV, V}$. Je ovládána buď elektronicky prostřednictvím jednotky programové volby, nebo přímo, mechanicky. V tom případě tvoří mechanicky jeden celek s jednotkou volby, jako je tomu např. u současně používaného typu mechanické předvolby LPA 8.

Jednotka předvolby se skládá jednak z vlastního ladicího agregátu tvořeného potenciometry pro nastavení potřebného ladicího napětí, jednak z přepínacího agregátu pro volbu určitého přepínacího napětí pro tuner podle typu požadovaného televizního pásma.

Jednotky předvolby 6PN 384 33, 6PN 386 87, 6PN 386 91

Všechny tyto tři jednotky mají shodné elektrické zapojení (obr. 13), liší se pouze mechanickým provedením. Jednotka 6PN 384 33 je použita v BTVP Color 110 a 110 ST. V přijímači Color 429 je použita jednotka předvolby v provedení 6PN 386 87 a v přijímači Color 416 je to typ 6PN 386 91.

Přes konektor Z61 (vývody 1 až 8) je z jednotky programové volby při-váděno stabilizované napětí +30 V k jednotlivým potenciometrům ladicího agregátu (napětí U1 až U8). Současně je toto napětí přiváděno přes diody D₁₀ až D₁₇ na přepínače pásem. Ze sběrnic přepínačů, odpovídajících jednotlivým pásmům, jsou ovládány tranzistory T₁ až T₃, vytvářející vlastní přepínací napětí pro kanálový volič. Podle polohy přepínače u zvolené předvolby je přivedeno kladné napětí na bázi příslušného tranzistoru. Tranzistor sepne a na jeho emitoru se objeví kladné napájecí napětí z kolektoru. Jednotlivá přepínací napětí jsou přes zásuvku Z11 přivedena do základní desky a odtud ke kanálovému voliči. Přepínací napětí pro pásmo III je na kanálový volič přiváděno přes oddělovací tranzisto. T₁₀₁ (viz např. obr. 4). Báze tranzistoru je uzemněna přes rezistor R₁₀₂. Pokud je na emitor tranzistoru přivedeno z jednotky předvolby kladné přepínací napětí, je tranzistor ve vodivém stavu a přepínací napětí je i na jeho kolektoru. Pokud není na emitor přivedeno kladné napětí, je tranzistor uzavřen. Tímto způsobem je dosaženo, že záporné závěrné napětí pro spínací diody v kanálovém voliči není zatěžováno obvody jednotky předvolby. (Toto napětí asi 1 V vzniká při příjmu v l. pásmu detekcí oscilačního napětí na spínací diodě v oscilátorovém rezonančním obvodu. Záporné předpětí spínacích diod III. pásma je nezbytné pro potlačení vlastní kapacity těchto diod.)

Vlastní ladicí napětí z běžců potenciometrů P₁ až P₈ je vyvedeno na společnou sběrnici přes oddělovací diody D₁ až D₈. Zemní konce ladicích potenciometrů jsou uzemněny přes diodu D₉, sloužící ke kompenzaci teplotní závislosti napětí přechodu diod D₁ až D₈. Ladicí napětí ze sběrnice je přiváděno ke kanálovému voliči přes zásuku Z₁₁.

Kontakty zásuvek Z11/5 a Z61/9 slouží pouze k přivedení stabilizovaného napětí +30 V k obvodům jednotky programové volby.

Obr. 14. Schéma zapojení jednotky předvolby BTVP Color 110 ST II

Jednotka předvolby BTVP Color 110 ST II

Tato jednotka byla jako součást celého kompletu dálkového ovládání dovážena z Jugoslávie. Schéma zapojení je na obr. 14. Elektrické zapojení je prakticky shodné s předchozími jednotkami, pouze pro vytváření přepínacích napětí pro kanálový volič nejsou použity tranzistory, neboť jednotka programové volby, s níž tato jednotka předvolby spolupracuje, nevytváří na výstupu jednotlivých předvoleb pouze stabilizované napětí pro ladicí potenciometry, ale i přepínací napětí +12 V. Na jednotlivé přepínače pásem Př, až Př₈ je tedy přímo přiváděno napětí +12 V.

Ladicí jednotka LPA 8

Tato ladicí jednotka umožňuje volbu 8 předladěných vysílačů ručně ovládanými tlačítky. Jednotka je použita u

Obr. 13. Schéma zapojení jednotek předvolby 6PN 384 33, 6PN 386 87 a 6PN 386 91

Obr. 15. Schéma zapojení jednotky předvolby LPA 8

přenosných barevných televizních přijímačů Mánes Color a Color Oravan a u stolních přijímačů Color 419 a 422.

Schéma zapojení jednotky je na obr. 15. Ladicí napětí z běžců potenciometrů je přiváděno na výstupní sběrnici přes spínací kontakty ovládané tlačítky jednotlivých předvoleb. Stejným způsobem je přiváděno napětí +12 V na přepínače pásem. Přepínací napětí +12 V se tedy objeví na příslušné sběrnici podle polohy přepínače pásem u zvolené předvolby.

Mimo to obsahuje jednotka ještě doplňkové spínací kontakty s následujícími funkcemi: Spínač označený BLOK. AFC se na okamžik sepne vždy při přepínání jednotlivých předvoleb a je využit pro zablokování obvodů AFC při přepínání jednotlivých předvoleb. Spínač označený VCR je mechanicky spřažen s osmou předvolbou a je použit pro přepínání časové konstanty synchronizace při reprodukci záznamu z videomagnetofonu. K trvalému vypnutí obvodů AFC po dobu ladění jednotlivých předvoleb slouží kontakty označené AFC VYP... které jsou ovládány dvířky, pod kterými je příslušný ladicí agregát. Žárovka Ž, ve spojení se světlovody slouží k indikaci zvolené předvolby. Průchod světla příslušným světlovodem je řízen mechanickou clonou spřaženou s tlačítky předvolby.

Závady jednotek předvolby

V souvislosti s jednotkou předvolby mohou nastat dva typy závad. Buď nejsou na kanálový volič přiváděna příslušná přepínací nebo ladicí napětí. Rozbor možných závad je výhodné udělat zvlášť pro elektronicky ovládané jednotky a zvlášť pro jednotku s mechanickou předvolbou.

Elektronicky ovládané jednotky předvolby

— Chybějící ladicí napětí na kanálovém voliči při všech předvolbách:

ověříme, zda jsou na příslušných špičkách konektoru Z11 přítomna přepínací napětí pro kanálový volič. Jsou-li tato napětí v pořádku, znamená to, že jsou z jednotky programové volby přiváděna napětí U_1 až U_8 na jednotlivé ladicí potenciometry. (Toto tvrzení platí s výjimkou jednotky předvolby Color 110 ST II - zde je nutno zkontrolovat přítomnost napětí U_1 až U_8 měřením); b) zkontrolujeme, zda chybí ladicí napětí i na vývodu Z11/2, abychom vyloučili chybu v přívodu ladicího na-pětí od zásuvky Z11 ke kanálovému voliči. U přijímačů řady 110 může být tato cesta přerušena ještě závadou v modulu D, přes který je ladicí napětí ke kanálovému voliči přiváděno. Pro vyloučení možnosti zkratu ladicího napětí na základní desce nebo přímo v kanálovém voliči je výhodné změřit napětí na Z11/2 při odpojeném přívodu k této špičce konektoru. Pokud i v tomto případě ladicí napětí na konektoru Z11 chybí, je buď zkrat na sběrnici za oddělovacími diodami (např. zkrat C₈), nebo je přerušený plošný spoj k vývodu Z11/2. (Možnost, že by byly vadné všechny ladicí potenciometry nebo všechny oddělovací diody je prakticky vyloučena):

c) pokud nejsou do jednotky předvolby přiváděna již napětí U_1 až U_8 z jednotky volby, je závada mimo jednotku předvolby — buď ve zdroji stabilizovaného napětí +30 V, nebo v jednotce volby (zkrat napájecího napětí +30 V nebo vadné IO):

 chybějící ladicí napětí u jedné nebo několika předvoleb:

a) chybí-li již na konektoru Z61 příslušné napětí přiváděné z jednotky předvolby, je závada v této jednotce. (U tuzemských jednotek předvolby nemůže být v tomto případě na jejich výstupu při zvolení vadné předvolby přítomno ani přepínací napětí pro kanálový volič);

b) jsou-li všechna přiváděná napětí U_1 až U_8 v pořádku, je vadný ladicí potenciometr nebo oddělovací dioda u příslušné předvolby;

 chybějící všechna tři přepínací napětí u všech předvoleb, ladicí napětí je v pořádku:

závada je v přívodu napájecího napětí +12 V (Z11/1). U BTVP Color 110 ST II může být závada ještě v jednotce programové volby;

— chybějící přepínací napětí pro všechna pásma u určité předvolby: přerušená příslušná z diod D₁₀ až D₁₇, nebo je vadný příslušný přepínač pásem (vadný kontakt běžce přepínače). U Color 110 ST II může být závada v jednotce programové volby;

 chybějící přepínací napětí pro určité pásmo u všech předvoleb:

pokud není závada způsobena zkratem v kanálovém voliči (lze vyloučit odpojením příslušného vodiče na zásuvce Z11), je závada v obvodu příslušného tranzistoru T₁ až T₃ (u tuzemských jednotek předvolby). V případě chybějícího přepínacího napětí pro III. pásmo může být závada způsobena přerušením oddělovacího tranzistoru na základní desce.

2) Mechanická jednotka předvolby LPA 8

Pokud jde o to zjistit, je-li závada v jednotce předvolby nebo mimo ni, platí to, co bylo řečeno v souvislosti s elektronicky ovládanými jednotkami předvolby.

Je-li závada přímo v jednotce předvolby a napětí +30 V a +12 V přiváděná na jednotku jsou v pořádku, může být vadný příslušný ladicí potenciometr, přepínač pásem nebo sběrnicový kontakt

3.3 Jednotky programové volby

Jednotka programové volby zajišťuje napájení příslušného ladicího potenciometru v jednotce předvolby, čímž je vybrán určitý, předem předvolený vysílač. V některých případech (podle typu zapojení) vytváři i vlastní přepínací napětí pro napájení přepínačů pásem. Je řízena buď místně (tlačítky nebo senzory), nebo dálkově přijímačem dálkového ovládání.

Jednotka programové volby 6PN 384 80

Tato jednotka, použitá v BTVP Color 110, obsahuje jednak spínač ladicího napětí (MAS562), jednak jednotku zobrazení, zajišťující indikaci čísla zvolené předvolby na obrazovce (MAS1008). Schéma zapojení jednotky je na obr. 16.

Integrovaný obvod MAS562 je unipolární obvod zhotovený technologií MNOS s vodivým kanálem typu p. Je určen pro bezkontaktní volbu předvoleného kanálu v TVP. Umožňuje přepínání osmi předvoleb. Blokové schéma obvodu je na obr. 17.

Základní částí obvodu je osmibitový vratný sériový posuvný registr, tvořený klopnými obvody KO₁ až KO₈. Vazba mezi jednotlivými klopnými obvody pro kruhový přenos v obou směrech je tvořena vazebním obvodem VO. Po zapnutí klopného obvodu KO₁ se ostatní klopné obvody vynulují prostřednictvím nulovacího obvodu NO. Výstupy klopných obvodů ovládají výstupní tranzistory s otevřeným kolektorem. Emitory těchto tranzistorů jsou vyvedeny na společný vývod E₁₋₈.

Změna stavu posuvného registru je způsobena přivedením spínacího napětí na vstup SD (posuv dolů), nebo SH (posuv nahoru) synchronně s hodinovými impulsy Φ_1 až Φ_2 , které generuje taktovací obvod TO. Hodinové impulsy Φ_1 jsou vyvedeny na vývod F. Kmitočet hodinových impulsů je určen paralelním členem RC, připojeným mezi přívod T a substrát. Generátor TO je v činnosti jen po dobu výskytu spínacího napětí na některém ze vstupů SD, SH. Stav vstupu SD, SH je indikován na vývodu A — aktivační výstup.

Po připojení napájecího napětí se přes obvod přednostního spínání PS zapne výstup O₁. Tohoto stavu lze kdykoli přímo dosáhnout i přivedením spínacího napětí na oba vstupy SD a SH současně.

Integrovaný obvod MAS1008 je určen pro zobrazení čísla zvolené předvolby na obrazovce TVP. Je navržen pro spolupráci se spínačí řady MAS. Číslo zvolené předvolby je zobrazeno v levém horním rohu obrazovky TVP ve formě matice 5×8 bodů v poli 7×9 bodů. Blokové schéma obvodu je na obr. 18.

Poloha znaku na obrazovce je dána činností časovacího bloku, který je řízen synchronizačními impulsy S_H a S_V, odvozenými od řádkového a snímkového rozkladu televizního přijímače.

Mimo to obsahuje časovací blok ještě vnitřní generátor, jehož kmitočet je dán kapacitou kondenzátoru připojeného mezi vývody 2 (T) a 16 ($U_{\rm DD}$) integrova-ného obvodu. Vzdálenost horního okraje znaku od náběžné hrany impulsu přivedeného na vstup SV je 54 řádků. . Jeden bod matice má výšku 4 řádky. Šířka jednoho bodu matice se rovná

KO8 KO, KO₆ KO-klopný obvod KS-koncový stupen TO -taktovaci KO₅ obvod VO-vazební ahvod KO4 NO -nulovaci obvod PS - přednostní ΚO₃. spinání KO₂ KO₁ PS NO тО È1028

Obr. 17. Blokové schéma zapojení IO MAS562

jedné periodě kmitočtu vnitřního generátoru. Vzdálenost levého okraje znaku od náběžné hrany impulsu přivedeného na vstup SH se rovná 15 periokmitočtu vnitřního generátoru (obr. 18). Současně musí být splněno, že šířka napěťového impulsu na vstupech SH a SV musí být větší než doba trvání 108 řádků, popř. 22 period vnitřního generátoru. Zobrazené číslo je dané připojením jednoho ze vstupů ${
m I_1}$ až ${
m I_8}$ na napětí $U_{
m vst(1)} < 1,5$ V vzhledem k referenčnímu bodu na vývodu 8integrovaného obvodu (Ucc). Výstupy VČ (číslo) a VP (pole) tvořené tranzistorem s otevřeným kolektorem jsou určeny pro klíčování obrazových obvodů v TVP. Jednotlivé výstupní tranzistory jsou sepnuty v době, kdy má být číslo, popř. pozadí zobrazeno. Znak na obrazovce je zobrazen jen po dobu připojení vstupu A na napětí $U_{\text{vst(1)}} < 1.5 \text{ V}$ vzhledem k Ucc.

Tato jednotka je s jednotkou předvolby propojena přes zásuvku Z61 a prostřednictvím zásuvky Z62 se základní signálovou deskou. Stabilizované napájecí napětí +30 V pro MAS562 je přivedeno přes kontakt Z61/9. Připojením napájecího napětí se vlivem přednostní volby sepne volba č. 1 a na vývodu 9 IO2 se objeví napětí +30 V, které je přes Z61/1 přivedeno na příslušný potenciometr jednotky předvolby. Stisknutím tlačítka Tl₂, popř. Tl₃ se uzavře dělič napětí tvořený rezistory R₁₂, popř. R₁₃ a R₁₄. Po dobu stisknutí tlačítka je tedy na vstupu SD (popř. SH) záporný impuls, který uvede v činnost taktovací obvod. Rvchlost kroku přepínání jednotlivých předvoleb je určena časovou konstantou členu

R₁₁, C₇, připojeného k vývodu 3 IO₂. Stiskne-li se tlačítko Tl₁, přivede se záporný impuls na oba dva vstupy současně a nastaví se přímo předvolba č. 1. Z výstupu 6 IO₂ je odebírán kladný impuls sloužící jednak k blokování obvodů AFC při přepínání předvoleb (Z62/7), jednak jako aktivační impuls pro zobrazení znaku, kdy je přes D₄ a R₁₀ přiveden na blokovací vstup IO1 (vývod 3).

Napájecí napětí pro MAS1008 je vytvářeno z napětí +24 V, přivedeného přes Z62/2, stabilizací rezistorem R1 a diodou D₁. Kmitočet vnitřního generátoru je určen kondenzátorem C5. Napětí na jednotlivé vstupy zobrazovací jednotky je přivedeno přes rezistory R₁₆ až R₂₃ z jednotlivých výstupů spínače MAS562. Doba zobrazení čísla na obrazovce je dána dobou, po kterou trvá napětí na vývodu 3 IO₁. Tato doba je dána velikostí časové konstanty členu R₉, C₆. Nabíjecí časové konstanta je dána volbou C₆, R₁₀ a D₄. Nabíjecím zdrojem je impuls +30 V, který se krátkodobě objeví na vývodu 6 lO₂ při každém přepnutí. Dioda D₃ zabezpeču-je, aby napětí na vývodu 3 IO₁ nepřekročilo povolených +18 V. Dioda D₄ zabraňuje vybíjení C₆ po dobu odeznění kladného napěťového impulsu na vývodu 6 integrovaného obvodu MAS562.

Synchronizaci signálů, generovaných z MAS1008 do obrazových obvodů TVP (video), zabezpečují synchronizační imhorizontálně kladné řádkové +50 V (Z62/4), vertikálně impulsy záporné snímkové zatemňovací impulsy s amplitudou asi -2 V (Z62/3). Tyto impulsy musí být pro MAS1008 ampli-

Obr. 19. Schéma zapojení jednotky programové volby 6PN 385 13

Obr. 20. Blokové schéma zapojení IO MAS560 A

tudově upraveny. Řádkové impulsy jsou proto přivedeny přes C_1 a R_2 na bázi tranzistoru T_1 . Záporná část impulsů je současně ořezávána diodou D_2 . Na emitorovém rezistoru R_6 tak dostáváme kladné impulsy pro synchronizaci MAS1008. Záporné vertikální impulsy naopak uzavírají tranzistor T_2 , takže na jeho kolektoru vzniká kladné napětí blízké +18 V po dobu vertikálního impulsu. Výstupní impulsy zobrazení pro klíčování obrazových obvodů v televizním přijímači jsou odebírány z vývodů 4 IO_1 (pozadí) a 5 (číslo) přes členy R_7 , C_3 , popř. R_8 , C_4 . Odporovými trimry P_1 a P_2 se nastavuje pracovní režim klíčovacích tranzistorů obrazových obvodů a tím i ostrost rozhraní číslo — pozadí a šířka — pozadí tak, aby se číslo nacházelo ve středu políčka pozadí.

Vlastní obvody zajišťující klíčování obrazových obvodů pro zobrazení čísla předvolby na obrazovce jsou umístěny na základní desce signálové a budou popsány spolu s příslušnými obvody jasového kanálu.

Jednotka programové volby 6PN 385 13

Toto provedení jednotky volby používá pro zobrazení čísla zvolené předvolby opět integrovaný obvod MAS1008. Jako spínače ladicího napětí je však použita dvojice integrovaných obvodů MAS560A. Tato jednotka je použita v BTVP Color 110 ST a její schéma zapojení je na obr. 19.

Integrovaný obvod MAS560A je unipolární obvod zhotovený technologií MNOS. Jeden obvod slouží pro volbu čtyř programů. Blokové schéma obvodu je na obr. 20. Obvod se ovládá záporným napěťovým skokem přivedeným na jeden ze vstupů (vývody 9 až 12 IO). Tímto záporným napěťovým skokem se uvede v činnost příslušný spínací a nulovací obvod S. Na výstupu tohoto obvodu se vytvoří nastavovací impuls, který překlopí klopný obvod KO a ten sepne koncový stupeň KS tvořený tranzistorem s otevřeným kolektorem. Klopný obvod zabezpečuje trvání zvoleného stavu i po skončení vstupního impulsu. Současně se zapnutím vstupního stupně S se na jeho výstupu objeví nulovací impuls N, který trvá tak dlouho, pokud je stupeň S sepnutý, tedy pokud je přiváděn na vstup IO záporný napěťový skok. Nulovací impuls je vyveden na společnou sběrnici (vývod 13 IO), odkud se dostává na ostatní obvody S, které pomocí mazacích impulsů R zruší předcházející volbu.

IO obsahuje také obvod, zajišťující automatické zapnutí první předvolby po připojení napájecího napětí (přednostní spínání). Vnější ovládání tohoto obvodu je vyvedeno na vývod 8 IO. Pokud se vývod 8 spojí s napájecím napětím, vyřadí se obvod přednostního spínání z činnosti.

Vlastní ovládací impuls se vytváří sepnutím příslušného tlačítka (Tl₁ až Tl₈, viz obr. 19). Sepnutím tlačítka se připojí mezi příslušný vstup IO a zem rezistor 5,6 $M\Omega$. Tím se původní napětí +30 V na vstupu, přiváděné přes rezistor 10 MΩ, zmenší asi na 11 V. Tímto záporným napěťovým skokem se uvede v činnost příslušný spínací a nulovací obvod a proběhne celý cyklus tak, jak byl popsán. Obvod MAS560A nemá na rozdíl od MAS562 aktivační výstup. Pro spouštění jednotky zobrazení se proto využívá nulovacího impulsu z výstupu na vývodu 13 IO, který je na aktivační vstup zobrazovací jednotky přiváděn přes vnější diodu D₄ a rezistor R₁₀. Nulovací impuls se objeví na výstupu pouze při současném přepnutí předvolby. Nelze jej proto použít pro vyvo-lání samotného zobrazení čísla zvolené předvolby na obrazovce přijímače. Pro tento účel je nutno použít tlačítko Tl₉, pomocí něhož se přivedé kladné napětí přes rezistor R₁₀ na aktivační vstup zobrazovací jednotky (vývod 3 MAS1008).

Zapojení zobrazovací jednotky i zapojení propojovacích konektorů je shodné jako u předcházejícího typu jednotky volby.

Jednotka programové volby Color 110 ST II

V jednotce jsou použity bipolární integrované obvody typu SAS560S a SAS570S (Siemens). Přestože jde o bipolární obvody, velká vstupní citlivost umožňuje jejich použití i v přístrojích, jež nejsou v provedení s bezpečnostním oddělením od sítě (typický vstupní proud je 100 nA). Blokové schéma obvodů je na obr. 21. Oba typy obvodů jsou prakticky shodné, pouze typ SAS560S obsahuje navíc obvod přednostního spínání, zajišťující sepnutí první předvolby automaticky po připojení napájecího napětí. Obvod SAS570S je tedy určen k dalšímu rozšíření počtu předvoleb.

Každá předvolba obsahuje dva samostatné koncové spínací stupně. Jeden pro ladicí okruh a druhý pro napájení indikace nebo přepínače pásem pro kanálový volič. Zapojení

jednotlivých vývodů obvodů:

1 — zem,
2 — nulovací výstup,
3 — výstup — ladění 4,
4 — výstup — ladění 3,
5 — výstup — ladění 2,
6 — výstup — ladění 1,
7 — +U_{B1} (11 až 35 V),
8 — +U_{B2} (5 až 25 V),
9 — výstup — indikace 1,
10 — vstup 1,
11 — výstup — indikace 2,
12 — vstup 2,
13 — výstup — indikace 3,
14 — vstup 3,

15 — výstup — indikace 4,

16 — vstup 4.

Předvolba se přepne záporným napěťovým skokem na příslušném vstupu. Impuls je zesílen a tvarován vstupním zesilovačem a přiveden na obvody nastavení a nulování (S a R). Z obvodu nastavení jsou ovládány oba koncové spínače. Na výstupu obvodu nulování se objeví nulovací impuls, který je po společné sběrnici (vývod 2 IO) přiveden k ostatním stupňům a zruší předchozí volbu. V klidovém stavu je na vývodu 2 IO napětí typicky 3,2 V (na zatěžovacím rezistoru 15 k Ω). Během trvání vstupního impulsu se napětí na tomto vývodu zvětší na 4,7 V.

Konkrétní zapojení jednotky programové volby s těmito obvody je na obr. 22. Jednotlivé vstupy spínačů jsou aktivovány buď přímo prostřednictvím dotykových plošek DP₁ až DP₈, nebo přes konektor K4 z přijímače dálkového ovládání. V klidovém stavu jsou vstupy spínačů napájeny přes rezistory 1 MΩ ze zdroje +12 V. S jednotkou předvolby je tato jednotka propojena

Obr. 21. Blokové schéma integrovaných obvodů SAS560 S, SAS570 S

19žilovým plochým vodičem. Tímto propojovacím kabelem jsou jednak do jednotky přiváděna napájecí napětí +12 V (U_{B2}) a +30 V (U_{B1}), jednak jsou jím zpětně odváděna napětí pro ladicí potenciometry z výstupů koncových spínačů ladicího okruhu a přes diody D_1 až D_8 napětí +12 V pro přepínače pásem kanálového voliče z výstupů druhé skupiny koncových spínačů. Výstupní napětí pro přepínače pásem jsou rovněž použita k napájení indikačních svítivých diod.

Jednotky programové volby 6PN 054 06, 6PN 054 07

Tyto jednotky jsou navrženy pro spolupráci s přijímačem dálkového ovládání. Jsou použity v BTVP Color 429 (6PN 05407) a Color 416 (6PN 05406). Schéma zapojení obou typů jednotek volby je prakticky shodné a je na obr. 23.

Spínač stabilizovaného napětí +30 V pro ladicí potenciometry předvolby tvoří převodník z kódu BCD na kód 1 z 8 (IO2, MH74141) ve spojení s tranzistory T₄ až T₁₁. Kód odpovídající číslu předvolby je na vstup dekodéru přiváděn od přijímače dálkového ovládání přes zásuvku Z66. Protože pro 8 předvoleb stačí pouze 3 bity (číslo 0 až 7. ti. 0000 až 0111), je vstup pro čtvrtý bit trvale uzemněn (vývod 4 IO₂). Výstupní stupně převodníků jsou tvořeny tranzistory s otevřeným kolektorem. Jejich kolektorové rezistory maií odpor 100 kΩ a jsou zapojeny mezi výstupy IO₂ a napájecí napětí +30 V (R₂₃, R₂₅, ...). V aktivním stavu je příslušný výstupní tranzistor v sepnutém stavu. Tím je báze vnějšího spínacího tranzistoru uzemněná přes rezistor 10 kΩ (R₂₁, R₂₃, ...), tranzistor se dostává do saturace a na jeho kolektoru je prakticky plné napájecí napětí z emitoru. Toto napětí je přes zásuvku Z61 přivedeno na příslušný ladicí potenciometr v jednotce předvolby.

Zobrazovací jednotka s IO₁, MAS1008, je zapojena prakticky shodně jako u předcházejících typů jednotek volby. Odlišně jsou pouze zapojeny obvody pro aktivaci obvodu MAS1008. Záporný aktivační impuls je přiváděn přes Z66/7 z přijímače dálkového ovládání na bázi tranzistoru T₃. Impuls je tranzistorem invertován a zesílen a přes diody D₁₃, D₃ a rezistor R₁₀ přiveden na aktivační vstup IO₁.

Kladný impuls na anodě diody D₃ je u BTVP Color 429 využíván pro blokování obvodů AFC během přepínání předvoleb. Impuls je k tomuto účelu vyveden na kontakt 762/7

na kontakt Z62/7.

Pro BTVP Color 416 (jednotka 6PN 054 06) je upraveno zapojení v přívodu snímkových synchronizačních impulsů (viz obr. 23). Protože snímkové synchronizační impulsy, jež jsou v tomto typu BTVP k dispozici, jsou kladné polarity s amplitudou asi 12 V, není nutno použít tranzistor T₂.

Přepínání jednotlivých předvoleb je řízeno přijímačem dálkového ovládání přes zásuvku Z66 (kontakty 1 až 3). Vlastní přijímač dostává povely buď prostřednictvím vysílače nebo z tlačítek místního ovládání. Tato tlačítka jsou připojena na konektor Z71 a umožňují krokovat jednotlivé předvolby směrem nahoru nebo dolů.

Zobrazovací jednotka je řízena buď přes přijímač dálkového ovládání (přes Z66/7), nebo lze zobrazení čísla předvolby vyvolat kdykoli tlačítkem místního ovládání, připojeným mezi kontakty 4 a 5 zásuvky Z71. Sepnutím tohoto tlačítka se přivede přes D₃ a R₁₀ kladné napětí na aktivační vstup IO₁ a na obrazovce se zobrazí číslo zvolené předvolby.

Závady jednotek programové volby

U těchto jednotek mohou nastat dva základní typy závad. Jednak to mohou být závady v zobrazení čísla předvolby na obrazovce, jednak závady v obvodech spínaců ladicího napětí pro ladicí potenciometry, případně — u jednotky pro Color 110 STII v obvodech přepínacího napětí pásem kanálového voliče.

— Závady v zobrazení čísla předvolby na obrazovce:

pokud je pozadí nebo číslo zobrazeno zkresleně, zkontrolujeme nastavení potenciometrů P₁ a P₂. Není-li indikace předvolby zobrazena vůbec, zkontrolujeme výstupní impulsy zobrazení na kontaktech Z62/6 a Z62/5. Pokud tam impulsy jsou, je závada v klíčovacích obvodech obrazového signálu mimo tuto jednotku. Chybí-li impulsy, zkontrolujeme postupně napájecí napětí na vývodu 8 MAS1008, přítomnost synchronizačních impulsů na Z62/4 a Z62/3 i na vývodech 1 a 15 IO. Dále zkontrolujeme kladný aktivační impuls na vývodu 3 IO a přítomnost vstupního signálu za rezistory R₁₆ až R₂₃ (popř. R₁₃ až R₂₀ u 6PN 054 06, 07). Pokud jsou všechny vstupní signály a napětí v pořádku, je vadný integrovaný obvod MAS1008;

— chybějící výstupní napětí pro ladicí potenciometr u některé z předvoleb: ověříme, zda je skutečně volena příslušná volba — např. postupným krokováním v případě MAS562A, nebo kontrolou vstupních impulsů na příslušných vstupech IO, tj. přítomnost záporného impulsu na vstupu IO při doteku na sensor (SAS560, SAS570), při stisknutí příslušného tlačítka (MAS560A) nebo ověřením správnosti kombinace vstupního kódu (MH74141).

Pokud jsou vstupní impulsy v pořádku a výstup spínače není zkratován následujícími obvody (lze ověřit odpojením příslušného vodiče z konektoru Z61), je vadný spínač uvnitř IO. U jednotky s obvodem MH74141 může být závada ještě ve vnějším spínacím tranzistoru;

— chybějící výstupní napětí pro ladicí potenciometr u všech předvoleb: Závada je buď v přívodu napájecího napětí +30 V (případně i +5 V u jednotky s MH74141), nebo je vadný IO volby;

– nepřepínají se jednotlivé předvolby: pokud jsou vstupní impulsy pro IO v pořádku, je vadný integrovaný obvod. V opačném případě je závada v obvodech sensorů či tlačítek, nebo není přiváděn ovládací signál z přijímače dálkového ovládání (u 6PN 054 06, 07).

O závadách v obvodech spínačů přepínacího napětí pásem u BTVP Color 110 ST II platí totéž co bylo řečeno o závadách v obvodech spinačů ladicího napětí.

3.4 Obrazové mezifrekvenční obvody a obvody AFC

Obrazové mezifrekvenční obvody jsou řešeny jako samostatné jednotky (moduly). U televizních přijímačů řady Color 416 tvoří jeden celek i se zvukovými mezifrekvenčními obvody. Detekní obvody AFC jsou u přijímačů řady Color 110 umístěny ještě mimo mezifrekvenční obvody na samostatném modulu (modul D), avšak od doby výroby přenosných barevných televizních přijímačů jsou tyto obvody již součástí nového integrovaného obvodu použitého v obrazových mezifrekvenčních obvodech.

Modul obrazové mezifrekvence (O), 6PN 052 19

Tento typ modulu je použit u přijímačů řady Color 110, tedy u všech přijímačů s tyristorovým řádkovým rozkladem.

Obrazový mezifrekvenční zesilovač Integrovaným obvodem osazen A240D z produkce NDR. Tento obvod obsahuje tři zesilovací mezifrekvenční stupně, řízený demodulátor obrazové mezifrekvence, předzesilovač obrazového signálu a obvody pro regulaci zisku vlastního mezifrekvenčního zesilovače i zpožděné řízení zisku tuneru. Blokové schéma integrovaného obvodu A240D je na obr. 24. Mf zesilovač se skládá ze tří stupňů, které zesilují vstupní úroveň mf signálu na optimální velikost pro dokonalou detekci. Vstupní úroveň třetího stupně je udržována konstantní i při velkých změnách vstupního signálu automatickým řízením zisku (AVC), které ovlivňuje nejdříve druhý a potom první stupeň mf zesilovače.

Obr. 24. Blokové schéma zapojení IO A240D

Toto rozdělení AFC dovoluje zpracovávat větší signál a umožňuje získat optimální poměr signál/šum v celém rozsahu řízení zisku. Uspořádání mf zesilovače umožňuje, aby mohl být použit kompaktní filtr soustředěné selektivity zařazený před vlastní integrovaný obvod.

Zesílený mf signál se detekuje multiplikativním demodulátorem, z kterého se získává obrazový signál tak, že se násobí amplituda modulované nosné vlny samotnou nosnou vlnou. Nemodulovaná nosná vlna se získává obnovením v omezovacím stupni s vnějším laděným obvodem připojeným k vývodům 8 a 9 10.

Takto získaný obrazový signál se dále výkonově zesiluje v předzesilovači, který má dva výstupy navzájem v protifázi, což zjednodušuje problém připojení k následujícím obvodům přiiímače.

Detektor AVC, který může být klíčo-aný impulsy řádkových zpětných běhů, porovnává amplitudu získaného obrazového signálu s vnitřním refe-renčním napětím, zesiluje a integruje rozdílový signál a ovládá obvody AVC prvních dvou stupňů zesilovače. Obrazový signál z demodulátoru a referenční napětí mohou být porovnávány na různých úrovních obrazového signálu, tj. buď na úrovni černé, nebo na úrovní vrcholů synchronizačních impulsů, podle požadavku uživatele.

AVC pro tuner je dalším obvodem zahrnutým v A240D, který umožňuje zjednodušit vnější obvody. Zpoždění tohoto AVC může být voleno vnějším potenciometrem. Obvod A240D umožňuje přímo řídit zisk tunerů osazených tranzistory p-n-p, "proudová vy-datnost" výstupu AVC pro tuner umožňuje také řízení útlumových článků s diodami PIN, které se používají v tunerech ke zlepšení odolnosti proti křížové modulací a intermodulaci.

Integrovaný stabilizátor napětí zabezpečuje vhodný systém nastavení pracovních bodů tranzistorů uvnitř IO, což činí funkci integrovaného obvodu nezávislou na změnách napájecího na-

Výstupní úroveň bílé může být nastavena vnějším nastavovacím prvkem. Výstupní úroveň černé a vnitřní prahové napětí pro AVC jsou stabilizovány proti změnám napájecího napětí a teploty, takže je udržovaná konstantní výstupní úroveň, což zjednodušuje konstrukci obvodů následujících za modulem obrazové mezifrekvence.

Skutečné schéma zapojení modulu obrazové mezifrekvence včetně doplňkových obvodů umístěných na základní signálové desce je na obr. 25.

Mezifrekvenční signál z kanálového voliče je přiváděn na vstup modulu O (vývod 2) přes rezistor R₁₀₄. Vně modulu na základní desce je umístěň odlaďovač nosné zvuku 32,5 MHz pro zúžení pásma OMF při příjmu signálu v normě CCIR-G (zvuk 5,5 MHz). Je tvořen součástkami C₁₀₂, C₁₀₃, L₁₀₁, D₁₀₁, R₁₀₅ a zapíná se sepnutím diody D₁₀₁ kladným napětím +12 V přivedeným na R₁₀₅. Tento odlaďovač se zapojuje automaticky při příjmu signálu PAL napětím, přiváděným na R₁₀₅ z

0

Schéma zapojení modulu 6PN 052 19

25.

modulu dekodéru PAL/Secam (modul P) přes D₁₄₁ a T₁₄₁ na základní desce (obr. 4). Při příjmu signálu Secam se zvukem 5,5 MHz (vysílání NDR), je nutno odlaďovač 32,5 MHz zapojit ručně tlačítkem K-G na ovládacím

panelu přijímače.

Přes vstup modulu O je mf signál přiveden na vlastní filtr mf zesilovače se soustředěnou selektivitou. Všechny cívky filtru (L1 až L7) jsou plošné cívky, vyleptané na desce modulu O. Obvod L1, C₁, R₂ tvoří odporově kompenzovaný odlaďovač na nosnou obrazu sousedního kanálu 30 MHz, ladí se na minimum a potlačuje naladěný signál o kmitočtu 30 MHz minimálně o 50 dB. Odlaďovač nosné zvuku 31,5 MHz (L2, C2, C3) se ladí na minimum a potlačuje nosnou zvuku o 22 dB. Následující odporově kompenzovaný odlaďovač (L₃, R₃, C₄) je naladěn jádrem cívky L₃ na minimum na kmitočtu 39,5 MHz (sousední nosná obrazu) a má potlačení asi 50 dB. Za těmito odlaďovači následuje širokopásmový neřízený předzesilovač s tranzistorem T₁, který kompenzuje útlum mezifrekvenčního filtru. Z kolektoru T1 je signál přiveden na pásmovou propust s cívkami L4 až L7, kterými se nastavuje výsledný tvar amplitudové charakteristiky mezifrekvenčního filtru (obr. 26). Cívkou L6 se nastavuje levý vrchol křivky na kmitočet 33,7 MHz (pomocný nosný kmitočet

Obr. 26. Amplitudová charakteristika filtru OMF

barvy), cívkou L₅ pravý vrchol na kmitočet 36,3 MHz a současně potlačení signálu nosného kmitočtu obrazu 38 MHz na —6 dB. Cívkami L₄ a L₂ se nastavuje střed pásma na co největší amplitudu a současně tak, aby prosedlaní na vrcholu bylo co nejmenší. Sklon vrcholu od 33,7 MHz k 36,3 MHz může klesat maximálně o 1,5 dB.

Z pásmové propusti je mf signál přiveden na vstupy integrovaného obvodu A240D (vývody 13, 16). Kondenzátor C₁₇ zapojený mezi vývody 2 a 16 IO přemosťuje pro mf signál stejnosměrnou zápornou zpětnou vazbu. Člen RC na vývod 4 IO (C19, R11) tvoří integrační článek rozdílového napětí pro AVC. Z vývodu 5 IO je odebíráno zpožděné AVC pro řízení tuneru. Bez vstupního signálu je maximální napětí AVC určeno vnějším děličem z rezistorů R₁₆, R₁₇ a je přibližně 9 V. S rostoucím vstupním signálem se kolektorový proud tranzistoru uvnitř IO zvětšuje, jeho etevřený kolektor je připojen na vývod 5 IO a regulační napětí AVC se zmenšuje úměrně vstupnímu signálu. Zpoždění nasazení AVC pro tuner se nastavuje trimrem P₂ na vývodu 6 IO. Pro klíčování obvodů AVC se využívají záporné impulsy řádkového zpětného

běhu o amplitudě asi —50 V. Impulsy jsou přes dělič napětí R_{106} , R_{107} a vazební kondenzátor C_{108} na základní desce přivedeny na vývod 8 môdulu O a přes odpor R_{13} na vývod 7 IO. Mezi vývody 8 a 9 IO je zapojen vnější laděný obvod k obnovení nosné obrazu 38 MHz (L_9 , C_{23}). Součástí laděného obvodu je cívka L_{10} s těsnou vazbou k získání signálu pro obvody AFC. Signál z L_{10} je přes R_{19} vyveden za průchodku 21 a odtud přes základní desku k obvodům AFC (modul D).

Z vývodu 12 IO je přes R₁₀ a C₂₁ odebírán výstupní záporný obrazový signál pro zvukový díl TVP. Kladný obrazový signál je přiveden z vývodu 11 IO přes R₁₂ a odlaďovač zvukového mezifrekvenčního signálu 6,5 MHz (L₈, C₂₂) na bázi tranzistoru T₂. Z kolektoru tranzistoru (vývod 4-0) je záporný obrazový signál (tj. kladné synchronizační impulsy) přiváděn pouze na synchronizační obvody přijímače (modul S). Z tohoto důvodu je omezena šířka pásma kondenzátorem C25 v kolektoru . T₂. Kladný obrazový signál pro další zpracování v signálových obvodech přijímače je odebírán z emitoru tranzistoru T2 (vývod 5-0). Výstupní mezivrcholová úroveň obrazového signálu je nastavena_trimrem P1 na 2,5 V na vývodu 5-0.

Nastavení modulu

Z nastavovacích úkonů na modulu obrazové mezifrekvence připadá v úvahu, při použití běžných měřicích přístrojů, jen kontrola a případné nastavení výstupní úrovně obrazového signálu a kontrola činnosti obvodů AVC. Jakýkoli zásah do obvodů mezifrekvenčního filtru, obnovovače nosné vlny či jednotlivých odlaďovačů bez použití speciálních přístrojů může přinést více škody než užitku. Ti, kdo mají potřebné měřicí přístroje k dispozici, najdou přesný nastavovací předpis modulu obrazové mezifrekvence v [5].

— Kontrola výstupní úrovně obrazového signálu:

osciloskop připojíme na vývod 5-O. Televizní přijímač optimálně naladíme nejlépe při vysílání zkušebního obrazce nebo podle signálu z televizního generátoru. Mezivrcholové napětí obrazového signálu musí být 2,5 V. Případnou odchylku upravíme potenciometrem

 kontrola řídicího napětí AVC pro tuner:

pro přesné nastavení ovodů AVC pro tuner je nutný vysokofrekvenční generátor televizního signálu s regulovatelnou výstupní úrovní (viz [5]). Činnost obvodů AVC lze zkontrolovať následujícím způsobem. Na vývod 9-0 připojíme ss voltmetr. Televizní přijímač naladíme co nejpřesněji. Vyjmeme anténní přívod ze vstupního konektoru televizního přijímače a změříme napětí AVC bez signálu. Mělo by být asi 8 až 9 V (je určeno pouze vnějším děličem R₁₆, R₁₇). Po připojení anténního přívodu se musí napětí AVC při dostatečné úrovni vstupního signálu zmenšit. Je výhodné zkontrolovat napětí AVC na všech přijímaných kanálech (na všech přijímaných programech). Napětí AVC by se mělo pohybovat v rozmezí 3 až 9 V, pokud se extrémně neliší vstupní úrovně jednotlivých přijímaných signálů. Je-li při příjmu s nejslabší vstupní úrovní (tj. největší napětí AVC) obraz rušen viditelným šumem a napětí AVC přitom nedosahuje maximální velikosti, můžeme zmenšit úroveň šumu tak, že odporovým trimrem P₂ zvětšíme napětí AVC (více zpozdíme nasazení obvodů AVC), až šum zmizí. Maximálně však jen do té míry, aby napětí AVC bylo nepatrně menší než bez signálu, tj. aby byla smyčka AVC ještě v regulačním rozsahu. Současně však musíme zkontrolovat, zda se při příjmu vysílače s nejsilnější úrovní signálu na svorkách TVP (tj. nejmenší napětí AVC) neporušuje synchronizace vlivem limitace signálu, tj. je-li smyčka AVC ještě v regulačním rozsahu i při nejsilnějším ze vstupních signálů.

Závady modulu

V modulu obrazové mezifrekvence mohou vzniknout závady nejčastěji při poškození polovodičových součástek. Závady v laděných obvodech mf zesilovače nejsou běžné. Navíc kontrola tvaru křivky OMF je bez speciálních přístrojů nemožná.

 Na žádném z výstupu modulu O (4, 5, 7) není demodulovaný signál:

zkontrolujeme napájecí napětí modulu na vývodu 6-O. Osciloskopem zkontrolujeme úroveň klíčovacích impulsů na vývodu 8-O a přítomnost vstupního signálu na vývodu 2-O, na kolektoru tranzistoru T₁ a vstupu IO (vývod 14). Pokud je signál na vstupu IO a výstupní signál na samotných výstupech IO není (vývody 11, 12), je vadný IO A240D;

 chybí některý z výstupních demodulovaných signálů:

pokud chybí výstupní signál na vývodu 7-O (nejde zvuk), zkontrolovat signál na vývodu 12 IO. Není-li již ani zde, je vadný IO. Jinak je vadný R₁₀ nebo

C₂₁.
Chybí-li výstupní signál na vývodech 4 a 5-O, zkontrolujeme pracovní bod tranzistoru T₂, přítomnost signálu na bázi T₂ a vývodu 11 IO. Je-li tranzistor T₂ i integrovaný obvod v pořádku, je přerušena signálová cesta přes R₁₂ a odlaďovač 6,5 MHz (L₈, C₂₂);

– závady v napětí AVC pro tuner:

je-li napětí AVC trvale maximální, zkontrolujeme amplitudu klíčovacích impulsů na vývodu 8-O a na vývodu 7 IO. Zkontrolujeme kondenzátor C₁₉, nemá-li zkrat. Jinak je závada uvnitř IO. Je-li napětí AVC trvale i bez signálu minimální a není-li zkrat v tuneru, zkontrolovat R₁₁, dělič·R₁₆, R₁₇ a kondenzátor C₂₀. Jinak je opět vadný integrovaný obvod.

Obvody automatického dolaďování kmitočtu oscilátoru kanálového voliče — modul D 6PN 052 12

Pro zjednodušení přesnosti naladění a vykompenzování teplotního driftu oscilátoru kanálového voliče je v televizním přijímači použit modul D s obvody AFC. Schéma zapojení modulu je na obr. 27. Tento typ modulu je použit v BTVP Color 110.

Vlastní obvod AFC je řešen jako fázový diskriminátor, tvořený tranzistorem T₂, filtrem L₁, L₂ a sekundárními obvody diskriminátoru s diodami D₁, D₂. Pro dosažení dostatečného zisku a tím i dostatečné regulační úrovně na výstupu obvodu je před vlastní diskriminátor zařazen předzesilovací stupeň s tranzistorem T₁. Výstupní regulační charakteristikou je klasická křivka S.

Obr. 27. Schéma zapojení modulu D 6PN 052 12

Při správném naladění přijímače, kdy je na vstup modulu D přiváděn z vinutí Ĺ₁₀—O signál o kmitočtu 38 MHz, je výstupní napětí diskriminátoru mezi vývody 7-D a 5-D nulové. Odchylka kmitočtu od jmenovité velikosti na vstupu diskriminátoru vyvolá vznik kladného, popř. záporného napětí na jeho výstupu. Protože jsou výstupní svorky diskriminátoru zapojeny do série se zdrojem ladicího napětí pro kanálový volič, přičítá se výstupní napětí diskriminátoru k ladicímu napětí a koriguje se tak naladění kanálového voliče.

Tranzistor T₁₀₅ na základní desce blokuje činnost obvodů AFC při přepínání předvoleb. Tímto způsobem je zajištěno, že obvody AFC po odblokování začnou pracovat blízko středu křivky S a nemůže se "zaseknout" AFC (jev známý např. u BTVP Univerzál, u něhož se po přepnutí předvolby mohly obvody AFC dostat svým pracovním bodem vně křivky S a bylo nutno po přepnutí předvolby v určitých případech vypnout a opět zapnout tlačítko AFC).

Impuls pro řízení tranzistoru T₁₀₅ je odebírán z jednotky volby (Z62/7) z aktivačního výstupu IO MAS562 (vývod 6). Na tomto výstupu je při přepnutí předvolby napěťový impuls asi +30 V. Tento impuls pres R₁₁₆ sepne tranzistor T₁₀₅. To způsobí zkrat báze tranzistoru -D na zem, čímž se vyřadí obvody AFC z činnosti po dobu přepínání předvolby.

Nastavení modulu

Optimálně lze obvody AFC nastavit rozmítačem a osciloskopem tak, aby střed křivky S na výstupu modulu byl přesně na kmitočtu 38 MHz [5]. Modul je však možno nastavit i vf generátorem a voltmetrem. Z generátoru přivedeme na vstup modulu D (vývod 2) signál o kmitočtu 38 MHz s úrovní asi 50 mV. Mezi výstupní svorky 5 a 7 zapojíme ss

voltmetr. Cívkou L2 ladíme tak, aby voltmetr ukazoval napětí blízké nule a cívkou L1 ladíme na maximální napětí. Při postupném ladění L, neustále zmenšujeme měřené napětí směrem k nule pomocí L2. Po nastavení cívky L1 na maximum výchylky (tj. největší citlivost na rozladění) nastavíme cívkou La údaj voltmetru přesně na nulu. Jemně lze dolaďovaný kmitočet korigovat přímo v televizním přijímači podle obrazu cívkou L₂. Nemáme-li k dispozici vf generátor,

může jako zdroj signálu o kmitočtu 38 MHz pro nastavování posloužit samotný přijímač. Vývody 2, 3 a 4 modulu D propojíme kabelem se základní deskou přijímače. Vývody 5 a 7 na základní desce zkratujeme, čímž propojíme obvod ladicího napětí. Mezi vývody 5 a 7 modulu D opět zapojíme voltmetr. Televizní přijímač zapneme a přesně naladíme (nejlépe při monoskopu). Modul D je tedy vyřazen z okruhu ladicího napětí, takže se při dolaďování nemůže uplatňovat, ale na jeho vstup je přiváděn signál o kmitočtu 38 MHz z obnovovače nosné v obrazové mezifrekvenci. Jednotlivé cívky naladíme pomocí voltmetru stejně jako s použitím vf generátoru. Po naladění, odpojení zkratu na základní desce a zasunutí modulu lze jemně korigovat naladění opět podle obrazu cívkou L2.

Závady modulu

V obvodech automatického dolaďování kmitočtu mohou vzniknout následující závady.

Po přepnutí předvolby někdy nena-skočí normální obraz, je "uladěný" stranou, zvuk vrčí:

Tento jev je způsoben tím, že se fázový diskriminátor dostal na vnější stranu křivky S. Protože vnější strana křivky S má opačný sklon, nemůže se obvod z tohoto stavu dostat do oblasti správného pracovního bodu. Je to způsobeno tím, že nepracuje obvod

zajišťující blokování obvodů AFC při přepínání předvoleb. Je tedy nutno zkontrolovat tranzistor T₁₀₅ na základní desce a blokovací impuls z jednotky

- obvody AFC nedolaďují:

pokud je na výstupu modulu D mezi vývody 7 a 9 trvale nulové napětí, není buď přiváděn signál 38 MHz na vstup modulu D (vadný R₁₉-0, C₁₀₉, T₁₀₅) nebo na modulu D nepracují stupně s T₁ a T₂ (zkontrolovat napájecí napětí modulu a pracovní doby tranzistorů).

Je-li na výstupu modulu D při rozlaďování TVP pouze výchylka jedné polarity, jsou rozladěné obvody s L1, L₂ nebo je vadná příslušná dioda diskriminátoru;

– modul D je neprůchozí pro ladicí 🦂 napětí:

v tomto případě je přerušen sekundární obvod fázového diskriminátoru. Vadnou součástku určíme snadno ss voltmetrem.

Modul D - 6PN 052 85

Od výroby BTVP Color 110 ST byly tyristorové přijímače osazovány tímto inovovaným typem modulu D.

U tohoto provedení (obr. 28) byl sekundární obvod fázového diskrimidoplněn varikapem, nátoru který umožňuje jemně přelaďovat S diskriminátoru a měnit tak bod, na který je přijímač automaticky dolaďován. Ladicí napětí pro varikap D₃ je přiváděno přes kontakt 6 konektoru Z15 z běžce potenciometru P604, umístěného na ovládacím panelu přijímače.

Při poloze běžce potenciométru ve středu odporové dráhy (ladicí napětí pro D₃ je asi 6 V) je kanálový volič dolaďován na jmenovitý kmitočet. Podle natočení běžce do této střední polohy je dolaďování posunuto k vyššímu nebo nižšímu kmitočtu (ostřejší nebo naopak "kulatější" obraz). Tato korekce automatického dolaďování, je

Obr. 28. Schéma zapojení modulu D 6PN 052 85

někdy výhodná s ohledem na specifické příjmové podmínky, ale zejména umožňuje obsluze zvolit naladění obrazu podle vlastního vkusu.

Pokud jde o nastavení modulu a případné závady, platí bezezbytku to, co bylo řečeno o předcházejícím typu modulu D. Při nastavování je pouze nutno dodržet podmínku, že je běžec potenciometru P₁₀₄ ve středu odporové dráhy a na varikap je tedy přiváděno ladicí napětí asi 6 V.

Modul obrazové mezifrekvence (O) 6PN 053 02

Tento typ obrazové mezifrekvence je použit v přenosných barevných televizních přijímačích Mánes Color a Color Oravan. Na místě zesilovače a demodulatoru mf signálu je použit novější integrovaný obvod A241D (TDA2541) z produkce NDR.

Integrovaný obvod A241D je určen pro obrazové mezifrekvenční obvody v barevných televizních přijímačích a černobílých televizních přijímačích vyšší kvalitativní třídy. Vestavěním vypínatelného obvodu AFC dovnitř integrovaného obvodu se značně zmenšil počet vnějších součástek. Obvod umožňuje odpojit obrazový výstup při napájení TVP vnějším obrazovým signálem. Obvody AVC u tohoto IO již nepotřebují vnější klíčovací impulsy.

Blokové schéma obvodu A241D je na obr. 29. Obvod obsahuje regulovatelný třístupňový zesilovač, omezovací zesilovač pro získání referenčního signálu, synchronní demodulátor, obvod pro získání napětí AVC pro mf zesilovač a tuner, obvod pro vyklíčování poruch a vypínatelný diskriminátor AFC s protitaktním výstupem.

Mf vstupní signál je symetricky přiveden na vývody 1 a 16 IO. Mf zesilovač je tvořen třemi téměř stejnými rozdílovými zesilovači a emitorovými sledovači na výstupu každého stupně. Zisk každého stupně lze měnit v rozsahu —3 až +19 dB, takže celkový zisk mf zesilovče se dá měnit v rozsahu 66 dB, jeho maximální zisk je 57 dB. Regulační napětí je přiváděno postupně do všech stupňů počínaje třetím stupněm, aby bylo dosaženo optimálního zpracování signálu a dobrého poměru signál/šum. Pracovní bod mf zesilovače je stabilizován vnitřní stejnosměrnou zpětnou vazbou přes všechny tři stupně. Vnější

kondenzátor mezi vývody 2 a 15 lO blokuje ss zpětnou vazbu pro mf signál.

Mf výstupní signál je dále veden do omezovacího zesilovače, zapojeného jako rozdílový zesilovač, kde se získává referenční signál a dále je signál nosné obrazu vyfiltrován paralelním rezonančním obvodem naladěným na 38 MHz, zapojeným mezi vývody 8 a 9 IO. Aby mohla být zpracována obrazová modulace při rozdílných úrovních nosné obrazu, je amplituda referenčního signálu omezena dvěma antiparalelně zapojenými diodami v IO, které zatlumují referenční rezonanční obvod, a to pří malé hloubce modulace (úroveň synchronizačního impulsu) více než při modulačních špičkách (úroveň bílé). Referenční signál je veden jako spínací signál na vstup synchrodemodulátoru, na jehož druhý vstup je přiveden regulovaný mf výstupní signál. Synchronní demodulátor tvoří dva křížově propojené rozdílové zesilovače, s řízenými zdroji proudu v emitorech jeden zdroj konstantního proudu, v jehož emitoru se nastavuje pracovní bod demodulátoru. Demodulátor pracuje jako protitaktní multiplikativní směšovač. Produktem demodulace je obrazový signál s mezinosnou zvuku, který je dále zesílen v obrazovém předzesilovači.

Obrazový předzesilovač je zapojen jako rozdílový zesilovač v kaskódovém zapojení s třemi za sebou zapojenými emitorovými sledovači. Výstupní kladný obrazový signál (záporné synchronizační impulsy) je odebírán z vývodu 12 IO. Zdroj proudu pro výstupní emitorové sledovače může být odpojen stejnosměrným napětím menším než 0,8 V, přivedeným na vývod 14 IO. Tím je

Obr. 31. Vytváření regulačního napětí AVC v IO A241D

umožněno přivést vnější obrazový signál do signálové cesty TVP.

V obrazovém zesilovačí je obvod pro vyklíčování ultrabílých poruch. Špičky obrazového signálu, které jsou větší než úroveň bílé a které vznikají rušením vstupního signálu, jsou omezeny na úroveň středně šedé. Koncový obrazový předzesilovač je zapojen jako další emitorový sledovač a řídí vyklíčování ultračerných poruch. Když je vstupní mf signál rušen poruchami, které značně překračují úroveň synchronizační směsi v obrazovém signálu, omezí tento obvod poruchy na úroveň černé. Vliv obvodů vyklíčování poruch je zřejmý z obr. 30.

Obvod pro získání regulačního naoětí AVC, který nevyžaduje žádné vnější klíčovací impulsy, je schematicky znázorněn na obr. 31. Obvod je v podstatě tvořen rozdílovým zesilováčem, zapojeným jako detektor úrovně, jehož jeden vstup je připojen na vnitřní referenční napětí a na jehož neinvertující vstup je přiveden obrazový signál. odebíraný z prvního emitorového sledovače v obrazovém předzesilovači, který není ovlivněn obvodem pro vy-klíčování poruch. Tento komparátor začne pracovat po dosažení úrovně synchronizačního impulsu v obrazovém signálu (3,1 V) a řídí dva zdroje proudu l_1 a l_2 tak, že nabíjejí nebo vybíjejí kondenzátor C_{14} , připojený na vývod 14 IO. Na kondenzátoru C_{14} vzniká regulační napětí $U_{\rm B}$, které je přes další stupeň a dělič napětí vedeno do mf zesilovače a do obvodu AVC tuneru.

Ke zlepšení filtrace napětí U_R je na vývod 3 lO připojen kondenzátor C_3 . Z regulačního napětí je v proudovém zrcadle odvozen regulační proud, který je po zesílení v koncovém stupni použit pro regulaci zesílení v tuneru. Tento proud je možno odebírat z vývodu 4 lO. Bod nasazení AVC pro tuner nastavujeme vnějším děličem napětí připojeným na vývod 3 lO.

Napětí AFC je získáváno z koincidenčního detektoru, který je zapojen jako kmitočtový diskriminátor. Do koincidenčního detektoru je přiváděn jednak referenční protitaktní signál z mf

Obr. 30. Princip vyklíčování poruch v A241D

synchrodemodulátoru a fázově posunutý signál, získaný na fázovacím obvodu, zapojeném mezi vývody 7 a 10 IO, ze signálu referenčního. Fázovací obvod je rovněž naladěn na kmitočet 38 MHz a je volně navázán na obvod referenčního signálu omezovacího zesilovače, takže s ním tvoří pásmovou propust. V závislosti na rozladění dostáváme fázový posuv, z něhož je prostřednictvím vývodu 5 IO použit k doladění kanálového voliče. Diskrimnátor AFC lze odpojit stejnosměrným napětím menším než 1,2 V, přivedeným na vývod 6 IO a tak AFC vyřadit z činnosti. Na vývodu 5 IO je pak napětí určené vnějším děličem napětí.

Konkrétní schéma zapojení modulu obrazové mezifrekvence 6PN 053 02 je na obr. 32 spolu s příslušnými doplňkovými obvody ze základní desky.

Mf signál z kanálového voliče je na vstup modulu (vývod 12) přiveden přes R₃. Na vstup je opět navázán odlaďovač pro 32,5 MHz (C₂, L₁,C₁), umístěný vně modulu na základní desce. Odlaďovač je zapojován do obvodu pomocí diody D₁ buď automaticky kladným napětím z modulu P (přes D₂, T₂, R₄) při příjmu signálu PAL, nebo ručně tlačítkem na ovládacím panelu TVP při příjmu signálu Secam/5,5 MHz. Tím se příslušně zúží pásmo tak, aby jeho šířka odpovídala příjmu signálu se zvukem s mezinosným kmitočtem 5,5 MHz.

Zapojení vlastního filtru soustředěné selektivity a příslušných odlaďovačů je prakticky shodné s typem 6PN 052 19. Před vlastní filtr soustředěné selektivity jsou opět zařazeny odlaďovače pro sousední kanály a nosnou zvuku: L₁C₁R₁ (30 MHz), L₂C₂C₃ (31,5 MHz) a L₃C₄R₂ (39,5 MHz). Dále následuje jednostupňový tranzistorový zesilovač (T1), sloužící k vyrovnání ztrát v laděných obvodech. Z jeho kolektoru je mf signál přiváděn na filtr soustředěné selektivity. Cívkou L₆ se opět nastavuje levý vrchol křivky na kmitočet 33,7 MHz (viz obr. 26), cívkou L₅ pravý vrchol na kmitočet 36,3 MHz a současně kmitočet nosné obrazu 38,0 MHz na úroveň —6 dB. Cívkami L₄, L₇ se nastavuje střed pásma na co největší amplitudu a současně tak, aby prosedlání vrcholu bylo co nejmenší (max. 1,5 dB).

Z filtru soustředěné selektivity je mf signál přiveden na vstup A241D (vývody 1, 16). Kondenzátor C₁₉ blokuje ss zápornou zpětnou vazbu pro mf signál.

Regulační napětí AVC je vytvářeno na vnějším integračním členu, připojeném na vývod 14 IO (C_{20} , C_{21} , R_{10}). Práh nasazení (zpoždění) AVC se nastavuje odporovým trimrem P_1 . Kondenzátor C_{18} dále filtruje regulační napětí AVC. Napětí AVC pro tuner se odebírá z vývodu 4 IO. Napěťový dělič z rezistorů R_{11} , R_{16} určuje základní (maximální) napětí AVC bez signálu. Uzemněním vývodu 14 IO (napětí $U_R \leq 0.8$ V) se zablokuje výstupní obrazový zesilovač v IO. Tím se zablokuje výstupní obrazový signál na výstupu IO a je možno zpracovávat externí obrazový signál bez mechanického přepínání signálové cestv.

Rezonanční obvod pro obnovení nosné obrazu (L₉, C₂₆) je připojen mezi vývody 8 a 9 IO. Fázovací člen kmitočtového diskriminátoru obvodů AFC

tvoří rezonanční obvod s L₁₀ a C₂₉. Paralelně k němu je připojen varikap D₁. Toto uspořádání (pouze u BTVP Mánes Color) opět umožňuje s ohledem na specifické příjmové podmínky či požadavky uživatele posunout nulový bod diskriminátoru AFC. Ladicí napětí je od potenciomeru "AFC" na čelním panelu přijímače přiváděno na varikap přes vývod 5 modulu a rezistor R₂₁. Kondenzátor C₃₂ stejnosměrně odděluje obvod ladicího napětí od obvodů kmitočtového diskriminátoru uvnitř IO. Výstup detektoru AFC pro korekci ladicího napětí je na vývodu 5 IO. Tento výstup je proudový a je tvořen, jak již bylo řečeno, proudovým zrcadlem. Podle rozladění je tedy tento korekční

proud kladný nebo záporný $(\pm 200~\mu\text{A}/\pm 100~\text{kHz})$. Při jmenovitém naladění je nulový. Tímto proudem je ovládán zdroj ladicího napětí na základní desce. Korekce velikosti ladicího napětí je dosaženo tím, že zdroj celkového ladicího napětí (IO₁, MAA550) je "podložen" napětím U_{CE} tranzistoru T_5 . Při jmenovitém naladění je napětí U_{CE} tranzistoru T_5 . Při jmenovitém naladění je napětí U_{CE} tranzistoru T_5 . Při jmenovitém prouze děličem tvořeným prvky R_{12}/D_7 , R_{10} , R_{11} . Při rozladění tuneru se korekční proud AFC z vývodu 5 A241D přičítá nebo odečítá od proudu tekoucího tímto děličem. Tím dochází k posuvu stejnosměrné úrovně na bázi T_5 a ke změně U_{CE} a tedy i celkového ladicího napětí pro jednotku předvolby.

Obvody AFC isou odpojovány uzemněním vývodu 6 A241D (vývod 7 modulu). V zapnutém stavu jsou udržovány předpětím na vývodu 6 IO přes rezistor R₂₃. Trvalé vypnutí umožňuje vypínač AFC ovládaný dvířky jednotky předvolby, zablokování obvodů AFC při přepínání předvoleb je ovládáno mžiko-vým spínačem "AFC BLOK," v jednotce předvolby Impuls vzniklý sepnutím tohoto spínače je prodlužován obvodem tvořeným tranzistorem T4 a kondenzátorem C3 (BTVP Color Oravan). Při sepnutí spínače "AFC BLOK." je přiveden kladný napěťový impuls +12 V přes R₇ na bázi tranzistoru T₄. Tranzistor sepne a pres rezistor Re (100 Ω) se vybije kondenzátor C3. Po skončení tohoto kladného impulsu se kondenzátor nabíjí s delší časovou konstantou přes D₃ a R₂₃ v modulu O a přes D₄ a potenciometr hlasitosti (viz obr. 5). Tím se prodlužuje ovládací impuls z jednotky předvolby, zajišťující spolehlivé zablokování obvodů AFC po dobu přepínání předvoleb (tohoto impulsu je využito i k zablokování zvuku pomocí výše zmíněné diody D₄).

U BTVP Mánes Color je zapojení pro prodloužení ovládacího impulsu použito ve zjednodušené verzi (obr. 5). Kondenzátor C3 je v tomto případě vybíjen přímo mžikovým kontaktem přes R₅ a R₇. Rezistor R₇ omezuje špičkový proud kontaktem na přípustnou velikost. V této verzi musí být také odlišně zapojen mžikový kontakt "AFC BLOK.", neboť není spínán na kladné napětí +12 V, ale na zem. Nabíjení kondenzátoru probíhá však stejně jako u předchozího zapojení.

Výstupní demodulovaný obrazový signál s mezinosnou zvuku je odebírán z vývodu 12 A241D přes rezistor R₁₄. Odtud je veden jednak přímo přes vývod 4 modulu O ke zvukovému dílu TVP a jednak k výstupnímu zesilovači obrazového výstupu (modul N).

Obrazový signál pro zpracování v obrazových obvodech přijímače je přes odlaďovač mezinosné zvuku 6,5 MHz (L₈, C₂₂) přiveden na oddělovací stupeň s tranzistorem T₂. Z jeho kolektoru (vývod 2 modulu O) je odebírán záporný obrazový signál pro synchronizační obvody TVP. Kondenzátor C₃₁ omezuje šířku pásma, čímž se potlačují "vyšší" modulační signály (zejména barvonosný signál) vůči synchronizačním impulsům, což je výhodné pro další zpracování v synchronizačních obvodech. Z emitoru tranzistoru T2 je odebírán kladný obrazový signál pro zpracování v dekódovacích a obrazových obvodech přijímače.

Nastavení modulu

O nastavení laděných obvodů modulu, tj. filtru soustředěné selektivity a odlaďovačů (včetně odlaďovačů 32,5 MHz a 6,5 MHz) platí to, co již bylo řečeno v souvislosti s předchozím typem modulu O. Pokud má někdo k dispozici speciální přístroje pro nastavení amplitudové charakteristiky obrazové mezifrekvence, najde přesný popis nastavení v [10]. Jakékoli ladění obvodů improvizovanými způsoby či "podle obrazu" nelze doporučit.

Při nastavování amplitudové charakteristiky rozmítačem doporučuji, na rozdíl od pokynů výrobce, nechat při-pojený výstup kanálového voliče a signál z rozmítače přivést nikoli na vstup modulu O, ale do kanálového voliče na vstup směšovače VHF (na kanálový volič přivedeme pouze trvalé

napájecí napětí +12 V pro směšovač). Amplitudová charakteristika je pak nastavována včetně vlivu výstupní pásmové propusti kanálového voliče. Tento způsob není sice zcela přesný pokud jde o nastavení samotného modulu O, přesněji ľže však nastavit výslednou charakteristiku uspořádání kanálový obrazová mezifrekvence. Způsob nastavení podle výrobce (tj. nastavení kanálového voliče a obrazové mezifrekvence jako samostatných celků) je výhodný z hlediska možnosti výměny jednotlivých dílů při dosažení určitých standardních parametrů bez nutnosti dolaďování ohvodů výměně. Z hlediska možnosti dosáhnout optimálního naladění je lepší nastavovat oba díly jako celek s respektováním jejich vzájemného vlivu. Při tomto způsobu ladění je výhodné laděním vlastních mezifrekvenčních obvodů zkontrolovat sondou rozmítače s velkou impedancí naladění výstupní pásmové propusti kanálového voliče (sondu připojit na výstup KV) a případně nastavení upravit.

Běžnějšími měřicími přístroji lze na modulu naladit obnovovač nosné, obvody AFC a zkontrolovat nastavení obvodů AVC. U obvodu A241D odpadá možnost nastavovat úroveň bílé (rozkmit výstupního obrazového slanálu). Amplituda i ss úroveň obrazového signálu na výstupu IO jsou pevně dány obvody uvnitř IO (viz obr. 29).

Nastavení obnovovače nosné

Na vstup modulu O (vývod 12-O) přivedeme z generátoru nemodulovaný signál 38,0 MHz s úrovní asi 3 mV (výstup kanálového voliče odpojíme např. vyjmutím R3 na základní desce). Přesnost nastavení kmitočtu kontrolujeme čítačem. Na vývod 14 IO (vývod 9-0) připojíme ss voltmetr. Obvod L₉, C₂₆ ladíme cívkou na minimální ss napětí na vývodu 14 10.

Nastavení obvodů AFC

Na vstup modulu O opět přivedeme z generátoru nemodulovaný 38,0 MHz. Vypneme obvody AFC ote-vřením dvířek předvolby. U BTVP Mánes Color nastavíme potenciometr na čelním panelu do středu odporové dráhy. Na vývodu 8 modulu O změříme ss napětí UAFC (asi 6 V). Potom zavřeme dvířka (zapneme obvody AFC) a cívkou L₁₀ nastavíme stejné ss napětí na vývodu 8 modulu.

Pokud nemáme k dispozici zdroi signálu 38,0 MHz, postupujeme stejně, avšak jako zdroj signálu použijeme televizní přijímač, který při vypnutých obvodech AFC naladíme podle vysílaného zkušebního obrazce na co nejlepší obraz.

Nastavení obvodů AVC

K nastavení zpoždění AVC pro tuner slouží odporový trimr P1. Postup kontroly a nastavení obvodů AVC použití vf generátoru byl popsán u minulého typu modulu O. Postup při přesném nastavování je uveden v [10].

Závady modulu

S ohledem na příbuznou koncepci zapojení jsou možné závady obdobné jako u předcházejícího typu modulu obrazové mezifrekvence.

Chybí výstupní obrazový signál na vývodech 1 a 2 modulu:

Závada je způsobena přerušením signálové cesty od vývodu 4—O přes odlaďovač 6,5 MHz (L₈, c₂₂) a tranzistor T₂. Obvykle je vadný tranzistor T₂;

chybí výstupní obrazový signál i na vývodu 4 modulu:

zkontrolujeme napájecí napětí na vývodu 11 10 a ověříme, zda chybí obrazový signál i na vývodu 12 IO. Dále, zda není uzemněn vývod 14 IO jako při provozu "VCR" (např. zkrat C₂₀ na modulu nebo zkrat T₆ na základní desce) a vývod 3 IO (zkrat C₁₈). Osciloskopem zkontrolujeme přítomnost mf signálu na vstupu A241D. Je-li mf signál na vstup přiváděn, je vadný IO.

Není-li mf signál již na vstupu IO, zjistíme osciloskopem místo, v němž je přerušena signálová cesta od vstupu modulu O na vstup IO (laděné obvody mf filtru, tranzistor T1);

- závady v obvodech AVC pro tuner: je-li napětí AVC trvale maximální. zkontrolujeme nastavení potenciometru P₁, případně zda nemá svod kondenzátor C₁₈. Změříme napětí na vývodu 14 IO. Je-li toto napětí trvale na dolní hranici (asi 1 V), je závada uvnitř IO, případně má svod článek RC na tomto vývodu. Je-li napětí v pořádku (blíže horní hranici 9,5 V), je vadný koncový stupeň AVC pro tuner uvnitř IO, nebo je přerušený rezistor R₁₂ na vývodu 4 IO. Dosahuje-li napětí AVC pro tuner maximální velikosti blížící se napájecímu napětí, je přerušen rezistor R₁₆ ve vnějším vodiči.

Je-li napětí AVC pro tuner trvale minimální i bez signálu a není-li zkrat v

samotném kanálovém voliči, zkontrolujeme dělič R₁₁/R₁₆, kondenzátor C₃₀,

jinak je závada opět v IO:

závady v obvodech AFC: pokud obvody AFC nedolaďují vůbec, tedy napětí na vývodu 8-0 je při rozlaďování TVP konstantní, ověříme nejdříve, nejsou-li tyto obvody vypnuty, nebo není-li na vývodu 7-O napětí menší než 1,2 V. To může být způsobeno jednak mechanickou závadou příslušných kontaktů v jednotce předvolby, nebo svodem kondenzátoru C₃ či proraženým tranzistorem T₄ (jen u BTVP Color Oravan) na základní desce. Jinak je závada ve fázovacím článku

(L₁₀, C₂₉) nebo ve vlastním diskrimi-nátoru AFC uvnitř IO. Nedolaďují-li obvody AFC přesně, je s největší pravděpodobností špatně nastaven fázovací článek AFC. Uvedený jev však může způsobit i špatná kvalita přijímaného signálu (např. signál slabé úrovně s četnými odrazy).

Je-li při rozlaďování TVP odchylka ss napětí na vývodu 8-O pouze "jednosměrná", je buď příliš rozladěn fázovací článek, což může být způsobeno i vadným kondenzátorem C₁₉ nebo varikapem D₁, nebo je opět vadný diskriminátor AFC uvnitř integrovaného

Dochází-li po přepnutí předvolby k "zaseknutí" obvodů AFC (obraz je odladěn stranou, po otevření a opětovném zavření dvířek předvolby jev zmizí), nepracují správně obvody pro blokování AFC po dobu přepínání předvoleb. Je nutno ověřit, zda je vytvářen těmito obvody blokovací impuls na vývodu 7-0. Závadu může způsobit vadný kontakt "AFC BLOK." v jednotce

předvolby, vadný R7, T4 či D3 na základní desce.

V souvislosti s touto závadou ještě jednu poznámku. Protože ovládací impuls z jednotky předvolby je velmi krátký a obvody pro prodloužení tohoto impulsu jsou řešeny poměrně jednoduchým způsobem, je nutno upozornit, že k uvedenému negativnímu jevu někdy dochází i při bezchybné funkci blokovacích obvodů. Jev by bylo možno úplně odstranit např. použitím monostabilního klopného obvodu s časovou konstantou asi 0.5 až 1 s místo stávaiících blokovacích obvodů.

Modul mezifrekvencí (O) 6PN 053 36

Modul je použit v současných typech barevných televizních přijímačů řady Color 416 (416, 419, 422).

Jak vyplývá již z názvu, obsahuje modul kromě obrazových i zvukové mezifrekvenční obvody. Toto sloučení obvodů v jeden celek je jednak umožněno použitím moderního obrazového mezifrekvenčního filtru s povrchovou akustickou vlnou (PAV) místo klasických obvodů LC, což vedlo ke značnému zmenšení rozměrů obvodů. jednak je toto uspořádání výhodné pro použitý způsob kvaziparalelního odběru zvuku.

Na místě obrazového mí zesilovače a demodulátoru je opět použit integrovaný obvod A241D. Odlišným způsobem je však proti předcházejícím zapojením řešen vstupní mf předzesilovač, mf filtr, obvody pro blokování AFC a nf signálu při přepínání předvoleb a systém zpracování zvukového signálu.

Filtr s povrchovou akustickou vlnou (PAV), použitý místo klasických obvodů LC je integrovaná pasívní součástka s charakteristikou pásmové propusti. Jeho funkce je založena na interferenci mechanických (akustických) povrchových vln. Filtr PAV má proti klasickým filtrům s cívkami řadu předností. Jsou to zejména:

- velmi stálý průběh charakteristiky,
- odpadá nutnost složitého nastavo-
- nezávisle na sobě specifikovaný průběh amplitudové a fázové charakteristiky,
- parametry s úzkými tolerancemi,

- malé vnější rozměry. Příklad konstrukce takového filtru (Siemens) je na obr. 33. Na monokry-

Obr. 33. Příklad konstrukčního řešení filtru PAV (Siemens)

stalický piezoelektrický substrát (lithiumniobát LiNbO₃) je napařen kovový (hliníkový) film. Fotolitografickou cestou je vytvořen vstupní a výstupní piezoelektrický měnič. Substrát je přilepen na kovovou podložku a propojen s jednotlivými vývody pouzdra. Tlumicí hmota na okrajích zabraňuje rušení zbytky povrchových vln odrážejících se od okrajů substrátu. Proti vnějším

vlivům je systém chráněn zapouzdře-

Je-li na vstupní měnič přiváděn elektrický signál, vysílá mechanické povrkteré jsou výstupním chové vlny, měničem opět převedeny na elektrický signál. Měniče pracují jako vysílací a přijímací "anténa" pro povrchové vlny. Strukturou a rozměry měničů lze dosahovat velmi rozdílných přijímacích a vysílacích charakteristik. Tak může být nastaven určitý střední kmitočet filtru, tvar propustné křivky a velikost skupinového zpoždění. Fázová ychlost povrchových vln je přibližně 1/100 000 rychlosti světla, takže jejich vlnová délka je asi 0,1 mm při 40 MHz, což vede k velmi malým rozměrům celého

Použitý filtr je typu OFW K1950 (Siemens). Amplitudová charakteristifiltru a průběh skupinového zpoždění jsou na obr. 34 až 36. Základní parametry filtru isou v tab. 1.

Obr. 34. Amplitudová charakteristika filtru PAV OFW K 1950

Použitý typ filtru byl původně určen pro zpracování mf signálu s nosnou obrazu 38,0 MHz a zvukovým kanálem v obou normách (nosné zvuku 31,5 a 32,5 MHz), jak je patrné i z obr. 34. Nebyl tedy původně určen pro kvaziparalelní odběr zvuku, takže výstupní demodulovaný obrazový signál obsahuje mezinosné zvukové kmitočty 5,5 a 6.5 MHz v plné úrovni jako při klasickém mezinosném zpracování zvuku. Signály těchto kmitočtů tedy musí být opět dodatečně potlačeny v obrazovém signálu příslušnými odlaďovači. Toto řešení není tedy optimální, vychází však z dostupného typu filtru.

Celkové schéma zapojení modulu je na obr. 37. Signál z kanálového voliče je přes vývod 15-O přiveden na vstupní předzesilovač s tranzistorem T₁, jež kompenzuje provozní útlum filtru (asi 17 dB) a zároveň zajišťuje impedanční přizpůsobení vstupu filtru F₁. V kolektoru tranzistoru je zapojen neladěný širokopásmový transformátor, z jehož sekundárného symetrického vinutí je odebírán mf signál pro zvukové mezi-

Obr. 35. Průběh skupinového zpoždění filtru PAV OFW K 1950

Obr. 36. Potlačení vedlejších pásem filtru PAV OFW K 1950

frekvenční obvody. Tyto obvody jsou podrobně popsány spolu s ostatními obvody pro zpracování zvukového signálu v následující kapitole.

Z výstupních svorek filtru F1 je mf signál přiveden na vstup integrovaného obvodu A241D (vývody 1, 16). Zapojení obvodu A241D je prakticky shodné s již popsaným modulem O a není třeba je znovu detailně probírat. Drobné změny v zapojení či hodnotách některých součástek souvisí pouze s úpravou některých pracovních bodů jednotlivých rozčleněním odlišným obvodů (např. vnější dělič na vývodu 5 IO1 určující klidové korekční napětí U_{AFC} je uvnitř modulu O — rezistory R_{10} / R_{14}). Odlišné zapojení je použito v obvodu pro korekci ladicího napětí pro kanálový volič (obr. 37). Napětí AFC z výstupu IO1 není opravováno celkové ladicí napětí přiváděné do jednotky předvolby, ale přímo ladicí napětí pro kanálový volič odebírané z ladicích potenciometrů v jednotce předvolby. Ladicí korekční napětí se sčítají na rezistorech R₁₀₁ a R₁₀₂ na základní desce.

Demodulovaný obrazový signál je z vývodu 12 IO přiveden přes odlaďovač 6,5 MHz (L₁, C₁₅) na výstupní oddělovací stupeň s tranzistorem T₂. Z jeho kolektoru se opět odebírá záporný obrazový signál pro synchronizační obvody TVP. Kladný obrazový signál je pro další zpracování v signálových obvodech odebírán z emitoru T2.

Tab. 1. Základní parametry filtru OFW K 1950 (Siemens)

Parametr		Min.	Тур.	Max.
Provozní útlum na 36,50 MHz				
(ref. úroveň pro				
ostatní údaje) [dB]	*	_	17	18,5
Útlumy [dB]:				
Nosná obrazu (38,00 MHz)	ļ.	5, 0	6,0	7,0
Nosná barvy (33,5,7 MHz)	1	1,2	2,2	3,2
Nosná zvuku (31,50 MHz)		19,6	20,6	21,6
Sousední nosná obrazu (30,00 MHz)		43,0	51,0	_
Sousední nosná zvuku (39,50 MHz)		42,0	51,0	_
25.00 až 30.00 MHz		38	46	-
39.50 až 45.00 MHz		36	43	_
Skupinové zpoždění (38,00 MHz) [ns]	ĺ		40	80
Impedance (36,50 MHz)		vstu	pní: 2,1 kΩ 1	2 pF
,		výst	upní: 1,7 kΩ 🛚	7 pF

Z výstupu odlaďovače je obrazový signál ještě vyveden přímo na vývod 1-O, umožňující přivést signál k teletextovému dekodéru a současně je z tohoto bodu přiveden přes kondenzátor C41 na obvod, zajišťující blokování AFC zvukového nf signálu při přepínání jednotlivých předvoleb.

Funkce obvodu automatického blo-

kování AFC:

Vstupní článek RC spolu s tranzistorem T₃ tvoří oddělovač synchroni-začních impulsů. Při příjmu TV signálu jsou na kolektoru T3 oddělené řádkové synchronizační impulsy s mezivrcholovou úrovní asi 10 V (obr. 38a). Tyto impulsy jsou pres R_{35} a C_{45} přivedeny na bázi tranzistoru T₄ a v tomto místě jsou pomocí diody D₃ klíčovány impulsy řádkových zpětných běhů přiváděných přes vývod 4-0 o mezivrcholové úrovni 10 V v kladné polaritě. Jsou-li tyto impulsy soufázové s impulsy přiváděnými z kolektoru T₃ (zasyn-chronizovaný TV signál), je dioda v době synchronizačního impulsu uzavřena kladným předpětím impulsu zpětného běhu na její katodě a na bázi tranzistoru T4 je průběh podle obr. 38b. Tranzistor T4 je tedy po dobu synchronizačního impulsu sepnut a zabraňuje nabití kondenzátoru C46 přes rezistor R_{41} . Tranzistor T_5 tak nedostává potřebné předpětí, je uzavřen, na jeho kolektoru je napětí asi 11 až 12 V a obvody AFC jsou zapnuty.

Pokud není TV signál zásynchronizovaný, není dioda D3 po dobú synchronizačního impulsu uzavřena předpětím zpětných běhů. Synchronizační impulsy přiváděné z kolektoru T_3 jsou diodou D_3 omezeny a tranzistor T_4 není spínán. Kondenzátor C₄₆ se nabije přes rezistor R₄₁ na asi 10 V. Tímto napětím se přes

Obr. 37. Schéma zapojení modulu O 6PN 053 36

R₄₄ sepne tranzistor T₅, napětí na jeho kolektoru se zmenší na méně než 1 V a obvody AFC se vypnou. Současně se kladným napětím z kolektoru T4 přes R₃₈ a diodu D₂ zablokuje nf výstup z IO₂, (přepnutí MDA4281 externí na vstup/výstup pro VCR).

Pokud není na vstup TVP přiváděn signál, je na bázi T4 pouze šumové napětí (obr. 38c), tranzistor T₄ opět není spínán, takže se zablokuje AFC i nf výstup jako v předcházejícím případě.

Tento blokovací obvod je používán i v provedení bez tranzistoru T5. Obvod AFC se potom vypíná pouze záporným blokovacím impulsem z přijímače dálkového ovládání při přepínání předvoleb po dobu několika ms. Při přerušení dodávky signálu se v tomto případě obvody AFC nevypnou.

Nastavení modulu

Postup nastavení obvodů obrazové mezifrekvence je shodný s postupem u

již popsaného typu modulu O 65N 053 02 s výjimkou vlastního mf filtru, který se zde díky použití filtru PAV nenasta-

vuje. Při nastavování obvodů AFC je nutno zkratovat rezistor R45 v bázi T5 (pokud je použit), aby se nevypínalo AFC. Obvod blokování AFC a nf signálu nemá žádný nastavovací prvek. Je pouze výhodné zkontrolovat průběhy a amplitudu příslušných impulsů, zda odpovídají hodnotám uvedeným v popisu obvodu.

Nastavení obvodů zvukového mf zesilovače a demodulátoru (IO2) je uvedeno spolu s popisem činnosti v následující kapitole.

Závady modulu

Příčiny možných závad v obvodech obrazového mf zesilovače a demodulátoru jsou prakticky shodné s příčina-mi závad i modulu 6PN 053 02.

Závady v obvodu automatického blo-kování AFC a nf signálu lze rozdělit do následujících skupin:

- nepracuje blokování AFC, blokování nf signálu v pořádku:

závada v děliči R₄₄/R₄₅, nebo je vadný T₅. Není-li v zapojení T₅ použit, nejsou přiváděny záporné blokovací impulsy z přijímače dálkového ovládání na vývod

- nepracuje blokování nf signálu (u zapojení s tranzistorem T₅): vadný rezistor R₃₈ nebo dioda D₂;
- nepracuje blokování AFC ani nf signálu (u zapojení s tranzistorem T₅):

B/4 Amatérské! A D (1)

na kolektoru tranzistoru T₄ se tedy nevytváří kladné blokovací napětí. Tato závada může být způsobena svodem kondenzátoru C₄₆, přerušeným rezistorem R₄₁ nebo zkratem tranzistoru T₄;

 obvody AFC i nf signál jsou neustále zablokovány (u zapojení s tranzistorem T_s):

na kolektoru T₄ chybějí záporné vybíjecí impulsy. Zkontrolovat průběh kladných synchronizačních impulsů na bázi T₄ (viz obr. 38b). Jsou-li v pořádku, je přerušený T₄ nebo má odpor R₄₁ zkrat. Nemají-li impulsy v bázi T₄ správnou amplitudu či chybějí-li vůbec, zkontrolovat přítomnost řádkových zpětných běhů na katodě diody D₃ (asi 10 V) a kladných synchronizačních impulsů (asi 10 V) na kolektoru T₃ (mezivrcholová napětí). Jsou-li impulsy v pořádku, je přerušený článek R₅₅, C₄₅. Chybějí-li impulsy v kolektoru T₃, je vadný T₃ nebo je přerušená signálová cesta přes C₄₁ a článek RC v bázi T₃.

Závady zvukové části modulu mezifrekvencí jsou uvedeny v následující kapitole.

3.5 Obvody pro zpracování zvukového signálu

Obvody ve zvukové části televizního přijímače zajišťují selektivní zesílení signálu mezifrekvenčního kmitočtu a jeho demodulaci na nf signál, který je dále zesílen v koncovém nízkofrekvenčním zesilovači.

mezifrek-Zapojení zvukových venčních obvodů závisí na tom, jakým způsobem se získává zvukový mezinosný kmitočet. V současné době se používají dva způsoby odběru zvukového mezifrekvenčního signálu. Jednak to je klasický způsob, při němž se využívá signálu mezinosného kmitočtu při detekci obrazového signálu. Tento princip zpracování zvukového signálu je použit u všech typů přijímačů řady Color 110 a u přenosných přijímačů Mánes Color a Color Oravan. U současně vyráběných stolních přijímačů řady Color 416 je již použit modernější způsob odběru zvuku v tzv. kvaziparalelním zapojení. V tomto případě je mezifrekvenční signál pro zvukový díl odebírán před obrazovým mf filtrem a samostatně zesílen bez potláčení nosné zvuku. Detekcí je opět získán signál mezinosného kmitočtu 6,5, popř. 5,5 MHz, který je již dále kmitočtově demodulován klasickým způsobem. Protože při tomto způsobu zpracování přichází signál nosného kmitočtu zvuku na zesilovač FM a demodulátor bez předchozího zeslabení, je kvalita demodulovaného nf signálu téměř nezávislá na síle televizního signálu na vstupu přijímače a v signálu se prakticky nevyskytuje typický mezinosný brum.

Kvaziparalelní odběr zvuku umožňuje zlepšit i obrazový signál. Protože je signál nosného kmitočtu zvuku odebírán už před obrazovým mf filtrem, může být v tomto filtru úplně potlačen, čímž se zmenšuje možnost vzniku záznějů mezi signály barvonosných kmitočtů a signálem nosného kmitočtu zvuku

Zvukový modul (Z) 6PN 052 03

Tento typ modulu je použit u barevného televizního přijímače Color 110. Modul umožňuje zpracovávat zvukový doprovod v normách CCIR-K i G.

Modul pro zpracování zvuku obsahuje jak obvody mezifrekvenčního zesilovače, tak koncový nízkofrekvenční zesilovač. Pro mezifrekvenční stupeň a demodulátor je použit integrovaný obvod A220D, koncový nízkofrekvenční zesilovač je osazen obvodem MBA810S. Oba použité integrované obvody jsou dostatečně známé a není třeba je detailně popisovat.

Schéma zapojení modulu Z spolu s doplňkovými obvody umístěnými mimo samotný modul je na obr. 39. Vstupní mezifrekvenční signál je přiváděn přes kondenzátor C₁ na vstupní laděný filtr. Vstupní filtr je tvořen dvěma paralelními rezonančními obvody zapojenými do série a připojenými na vstup integrovaného obvodu A220D (vývody 14 a 13). Rezonanční obvod L₁C₃ je laděn na kmitočet 6,5 MHz, obvod L₂C₂ na kmitočet 5,5 MHz. Tímto způsobem je zajištěn výběr signálů s mezifrekvenčním kmitočtem 5,5 i 6,5 MHz. Podobně je řešen i fázovací obvod koincidenčního demodulátoru, který je opět tvořen paralelními laděnými obvody L_3C_9 (6,5 MHz) a L_4C_{10} (5,5 MHz) zapojenými v sérii. Obvod nízkofrékvenční deemfáze je tvořen kondenzátorem C7 a výstupním odporem integrovaného obvodu na vývodu 8 (asi 2,6 kΩ). U obvodu A220D se nevyužívá možnosti elektronické regulace hlasitosti, neboť výstupní nf signál je použit i pro magnetofonovou

přípojku. Výstupní signál je přes C8 a kontakt 8-Z vyveden na základní signálovou desku. Odtud je veden jednak na zesilovací stupeň s tranzistorem T₁₀₂ pro buzení oddělovacího transformátoru Tr₆₀₁, z jehož sekundárního vinutí je vyveden nf signál pro připojení magnetofonu a sluchátek, jednak přes rezistor R₁₁₃ k obvodům tónové clony a na regulátor hlasitosti P₆₀₁. Rezistor R₁₁₃ tvoří s kondenzátorem C₆₀₂ dolní propust (potlačení vysokých tónů). Kondenzátor C₆₀₁ spolu s potenciometrem hlasitosti P₆₀₁ tvoří horní propust (potlačení nízkých tónů). Kondenzátory C₆₀₁ a C₆₀₂ jsou zapojovány do obvodu tlačítky na čelním panelu. Z běžce potenciometru P₆₀₁ je nf signál přiveden zpět na modul Z, na vstup koncového zesilovače (vývod 8 IO2). Pro koncový zesilovač je použito klasické zapojení se zátěží proti zemi s vazbou "bootstrap" (C₁₉). Kondenzátory C₁₄ a C₁₇ omezují horní mezní kmitočet přenášeného pásma a zajišťují stabilitu koncového zesilovače. Kondenzátor C₁₈ a rezistor R₅ tvoří Boucherotův člen. zabraňující oscilacím na vyšších kmitočtech, při nichž může mít výstupní impedance koncového stupně indukční charakter. Odpor R_{117} zapojený paralelně k R_4 v obvodu záporné zpětné vazby (je umístěn vně modulu Z) zvětšuje zisk koncového stupně bez nutnosti měnit R4 na modulu (modul Z je univerzální pro několik typů TVP). Zesílený výstupní nf signál je přiváděn na reproduktor přes oddělovací výstupní kondenzátor C20.

Nastavení modulu

U koncového stupně zvukového modulu nejsou žádné nastavovací prvky. Stačí zkontrolovat ss voltmetrem, je-li napětí na vývodu 12 IO₂ poloviční vůči napájecímu napětí na vývodu 1-Z modulu.

V obvodech mezifrekvenčního zesilovače a demodulátoru je nutno nastavit vstupní filtr a fázovací obvody koincidenčního demodulátoru. Nastavení těchto obvodů rozmítačem je podrobně popsáno v [5]. Vf generátorem lze obvody nastavit takto: Vf generátor s možností kmitočtové modulace připojíme na vstupu modulu (7-Z) přes oddělovací článek podle obr. 40. Na vývod 8-Z připojíme osciloskop. Na generátoru nastavíme kmitočet 6,5 MHz, hloubku modulace ±50 kHz a výstupní úroveň asi 50 mV. Jádry cívek

Obr. 40. Přizpůsobovací sonda pro připojení generátoru

L₁ a L₃ naladíme obvody tak, abychom obdrželi na výstupu maximální nezkreslený nf signál. Při dolaďování zmenšujeme výstupní napětí z generátoru tak, aby nebyl mf signál v integrovaném obvodu omezován, aby bylo možno přesně naladit L₁ na maximum výstupního signálu.

Stejným způsobem naladíme obvody pro mf kmitočet 5,5 MHz (L₂ a L₄). Nastavení několikrát zopakujeme, neboť obvody pro 6,5 a 5,5 MHz se navzájem poněkud ovlivňují.

V nouzi lze obvody naladit podle sluchu přímo v televizním přijímači. Při ladění je nutno mít zapnuté tlačítko AFC, aby byl přijímač stále přesně naladěn. Kvalitu naladění zvuku zkontrolujeme při příjmu v pásmu VHF i UHF a popřípadě jemně doladíme.

Závady modulu

Při poruchách zvukového dílu přijímače je nutno nejdříve určit, zda je závada již v mezifrekvenční části, nebo až v koncovém stupni. Koncový stupeň lze v případě pochybností jednoduše odzkoušet nf generátorem.

– Z reproduktoru se neozývá žádný zvuk, ani hluk pozadí:

v tomto případě vůbec nepracuje koncový nf zesilovač. Zkontrolovat napájecí napětí na 1-Z, ss napětí na vývodu 12 IO₂, popř. i na ostatních vývodech IO a výstupní kondenzátor C₂₀-Z. Obvykle je vadný IO₂ nebo chybí napájecí napětí na vývodu modulu 1-Z;

— z reproduktoru je slyšet pouze hluk pozadí:

nf koncový stupeň je v pořádku, na jeho vstup není přiváděn signál od IO₁. Zkontrolovat osciloskopem signálovou cestu od vstupu IO₂ přes regulátor hlasitosti na výstup IO₁ (vývod 8). Neníli na výstupu IO₁ demodulovaný signál, zkontrolovat vstupní signál na 7-Z a vývodu 14 IO₁. Je-li signál na vstupu IO₁ v pořádku, zkontrolovat napájení a ss napětí na vývodech IO₁;

 chybí výstupní signál na konektorech pro připojení magnetofonu a sluchátek:

zkontrolovat průchodnost signálu od vývodu 8-Z přes C_{105} , T_{102} , C_{106} , Z14/7 a T_{1607} ;

 při reprodukci jsou nadměrně zdůrazněny signály vysokých kmitočtů:

zkontrolovat nastavení fázovacího článku demodulátoru, dále C₇, C₁₄, C₁₇;

 v reprodukovaném signálu jsou potlačeny signály nízkých kmitočtů: zkontrolovat C₈, C₁₃, C₂₀.

V souvislosti s opravami modulu Z je nutno upozornit na ještě jednu skutečnost. Při náhradě integrovaného obvodu MBA810S modernějším typem MBA810DS je nutno mezi vývody 1 a 4 IO připojit vnější rezistor 100 Ω, neboť ten není součástí obvodu jako u MBA810S.

Zvukový modul (Z) 6PN 052 87, 6PN 053 14

Modul opět obsahuje mezifrekvenční zesilovač s demodulátorem FM a koncový nízkofrekvenční zesilovač. Mezifrekvenční zesilovač je osazen integrovaným obvodem A223D (NDR), v koncovém stupni je použit obvod MBA810DS.

Integrovaný obvod A223D je ekvivaobvodu TBA120U. Oproti A220D (TBA120S) má odlišným způsobem řešen zejména výstupní nf zesilovač (obr. 41). Nové řešení umožňuje odebírat z obvodu jak signál pro koncový nf zesilovač, jehož úroveň je závislá na regulátoru hlasitosti (vývod 8), tak nf signál s konstantní výstupní úrovní (vývod 12), vhodný např. pro nahrávání na magnetofon. Dále byl obvod doplněn vštupem (vývod 3), umožňujícím připojit externí nf signál. Funkce ostatních částí obvodu je prakticky shodná s IO A220D. Podrobný popis integrovaného obvodu A223D je např. v [13].

Schéma zapojení zvukového modulu společně s doplňkovými obvody umístěnými mimo modul je na obr. 42. Zvukový modul v provedení 6PN 052 87 je použit v BTVP Color 110 ST a Color 429. Typ s označením 6PN 053 14 je použit v BTVP Color 110 ST II a liší se pouze úpravou obvodu regulace hlasitosti, jež je uzpůsoben pro připojení k analogovému výstupu regulace hlasitosti přijímače dálkového ovládání (obr. 42)

Zvukový mf signál je přiveden přes vývod 7-Z modulu na výstupní filtr, tvořený opět dvěma paralelními rezonančními obvody L₁, C₃ (6,5 MHz) a L₂, C₂ (5,5 MHz). Použití dvou rezonančních obvodů umožňuje zpracovávat signály s mf kmitočtem 6,5 i 5,5 MHz. Obdobně je opět řešen i fázovací článek koincidenčního detektoru, který je tvořen obvody C₉, L₃ (6,5 MHz) a C₁₀, L₃ (5,5 MHz). Kondenzátory C₇ a C₆ zapojené na výstupy nf signálu (vývody 8 a 12 IO₁) proti zemi tvoří spolu s vnitřním odporem výstupů (asi 1,1 kΩ) článek nf deemfáze.

K regulaci úrovně nf signálu na vývodu 8 IO₁, odkud je přiváděn na vstup koncového zesilovače, je prostřednictvím vývodu 5 IO₁ používána vnitřní elektronická regulace. Regulační napětí je vytvářeno napěťovým děličem R₂, R₈ a R₁, R₆₀₇, P₆₀₁.

Nf signál z neregulovaného výstupu IO₁ (vývod 12) je přes vývod 8-Z modulu přiveden na oddělovací zesilovač s tranzistorem T₁₀₂ na základní desce. Z jeho kolektoru je buzen oddělovací transformátor Tr₆₀₁, z jehož sekundárního vinutí je nf signál přiveden na konektor pro připojení magnetofonu a konektor pro připojení sluchátek. Úroveň nf signálu, přiváděného do sluchátek, je tedy konstantní a nezávisí na nastavení regulátoru hlasitosti P₆₀₁.

Jako koncový nf zesilovač je použit obvod MBA810DS v běžném zapojení s vazbou "bootstrap" (C₁₉) a zátěží zapojenou proti zemi. V obvodu záporné zpětné vazby jsou zapojeny součástky pro plynulou korekci signálů vysokých a nízkých kmitočtů (C₁₃₄, R₁₃₆, P₆₀₇ a C₁₃₂, P₆₀₈). Oproti zapojení s MBA810S (obr. 39) je navíc v zapojení použit rezistor R₇, neboť ten není u typu MBA810DS umístěn uvnitř IO. Jinak je zapojení koncového zesilovače shodné jako na obr. 39.

Nastavení a závady modulu

O nastavení modulu a identifikaci závad na tomto modulu platí v podstatě totéž, co bylo řečeno o předcházejícím modulu typu 6PN 052 03.

Zvukový modul (Z) 6PN 053 74

Modul v tomto provedení je použit v přenosných barevných televizních přijímačích Mánes Color a Color Óravan. Jeho schéma zapojení (obr. 43) je prakticky opět stejné jako u popsaných typů zvukového modulu. Jediným podstatným rozdílem v zapojení je vyvedení vývodu 2 10₁ na kontaktní špičku. Uzemněním tohoto bodu přes diodu D₆ a tranzistor T₆ na základní desce (při provozu VCR) se posuvem pracovního bodu zablokuje mf zesilovač v A223D. Tím je mf zesilovač a demodulátor FM uvnitř intergrovaného obvodu odpojen a na externí vstup (vývod 3 IO) je v tomto případě přiváděn z konektoru nf signál při reprodukci z videorekordéru.

Nastavení modulu a identifikace závad jsou opět stejné jako u předcházejících modulů tohoto typu.

Obr. 41. Blokové schéma zapojení IO

K1/11 K1/12 K1/1

frekvenční zesilovač a demodulátor pro signál FM. Pro vstupní laděný obvod mezifrekvenčního zesilovače signálu FM a pro fázovací článek demodulátoru FM je možno použít piezokeramický filtr, fázovací článek lze však realizovat i laděným obvodem *LC*.

Zvuková část modulu O 6PN 053 36

Ve zvukové části tohoto modulu je použito kvaziparalelní zapojení odběru zvukového mezifrekvenčního signálu. Modul je osazen v barevných televizních přijimačích řady Color 416 (obr.

37).
Pro zpracování mezifrekvenčního signálu je použit integrovaný obvod MDA4281V, který obsahuje řízený širokopásmový zesilovač pro amplitudově modulovaný signál včetně demodulátoru a obvodu AVC, osmistupňový omezující zesilovač s koincidenčním demodulátorem pro kmitočtově modulovaný signál a nf předzesilovač se dvěma oddělenými výstupy pro nf zesilovač a videorekordér (obr. 44).

Obvod umožňuje také zpracovávat signál z videorekordéru nf zesilovačem po přivedení řídicího signálu na vývod 8 IO. Současně se přitom zablokuje mezi-

Obr. 44. Blokové schéma zapojení IO MDA4281 V

Společný mf signál, obsahující nosnou obrazu (38 MHz) a nosnou zvuku (31,5, popř. 32,5 MHz), se přivádí na symetrický vstup zesilovače signálu AM. Signál je zesilován v třístupňovém zesilovači s regulací zisku v prvních dvou stupních. Dále signál postupuje na vstup synchronního demodulátoru. Druhý vstup synchronního demodulátoru je naladěn externím fázovacím článkem na 38 MHz (selektivní výběr obrazové nosné). Mezifrekvenční sig-nál 6,5, popř. 5,5 MHz jako produkt synchronního demodulátoru je k dispozici na vývodech 6 a 7 IO. Dva samostatné výstupy umožňují připojit i další obvody, např. stereofonní nebo dvoukanálový systém zvuku.

Regulační napětí AVC se získává v samostatném detektoru, připojeném na výstup zesilovače AM. Detekované napětí je vyfiltrované na vývodu 2 a zesílí se v napěťovém regulačním zesilovači — odtud je přivedeno na řízené

mf zesilovací stupně.

Zvukový mf signál je přiveden přes keramický filtr na vstup osminásobného omezujícího zesilovače. Signál je demodulován v koincidenčním demodulátoru, na který je signál přiveden přes fázovací článek (např. keramický rezonátor).

Nízkofrékvenční signál z demodulátoru je po zesílení k dispozici na vývodech 11 a 14 IO.

Obvod je v pouzdru DIL 24. Zapojení jednotlivých vývodů je v tab. 2.

Tab. 2. Zapojení vývodů integrovaného obvodu MDA4281V

Vývod	
1	zemnicí bod
2	řízení mf zesilovače AM
3	demodulátor AM
2 3 4 5	demodulátor AM
	napájení +U _{cc}
6 7	první výstup nosné zvuku
7	druhý výstup nosné zvuku
8	blokování mf zesilovače a pře- pínání nf zesilovače
9	záporná zp. vazba mf zesilovače FM
10	vstup mf zesilovače signálu FM
11	nf výstup pro nf zesilovač
12	NC
13	NC
14	vstup/výstup pro videorekordér (VCR)
15	výstup mf zesilovače FM (emitoro- vý sledovač)
16	výstup mf zesilovače FM (emitoro- vý sledovač)
17	vstup demodulátoru FM signálu
18	vstup demodulátoru FM signálu
19	připojení kondenzátoru deemfáze
20	NC
21	záporná zp. vazba mf zesilovače AM
22	vstup mf zesilovače signálu AM
23	vstup mf zesilovače signálu AM
24	záporná zp. vazba mf zesilovače AM

Konkrétní schéma zapojení kvaziparalelní mezifrekvence je na obr. 37 (v celkovém schématu zapojení modulu

O). Úplný mf signál s nepotlačenou nosnou zvuku 31,5, popř. 32,5 MHz je odebírán ze sekundárního symetrického vinutí transformátoru T_{r_1} a přes oddělovací kondenzátory C_{25} , C_{26} je přiveden na vstup IO_2 (vývody 22, 23). Laděný obvod pro výběr nosné 38 MHz tvoří C_{36} a L_6 , zapojené mezi vývody 3 a

4 IO2. Vzniklý signál mezinosného kmitočtu zvuku 6,5, popř. 5,5 MHz je odebírán vývodu IO₂ a přes mf filtr tvořený paralelním spojením keramických filtrů F₂ a F₃ je přiveden na vstup omezovacího zesilovače signálu FM (vývod 10 IO₂). Mezi výstup zesilovače FM (15, 16 IO₂) a vstup kmitočtového diskriminátoru (17, 18 IO2) je zapojen fázovací článek (sériové spojení dvou paralelních rezonančních obvodů L₄, C₂₃, 5,5 MHz, a L₅, C24, 6,5 MHz). Nf demodulovaný signál je odebírán z vývodu 11 IO2 a přes potenciometr P2 a kondenzátor C34 je vyveden na vývod modulu 5 O. Kondenzátor nf deemfáze C29 je připojen na vývod 19 IO₂.

K blokování nf signálu je využit

K blokování nf signálu je využit přepínač externího nf vstupu, ovládaný spínacím proudem (0,3 až 1 mA), přiváděným přes diodu D₂ na vývod 8 IO₂. Činnost obvodu pro blokování nf signálu byla popsána v článku 3.4.

Nastavení zvukových mf obvodů

Před nastavováním uzemníme anodu diody D_2 , čímž vyřadíme z činnosti umlčovač zvuku.

Nastavení obvodů rozmítačem a příslušným vf generátory je uvedeno v [12]. Obvody zvukového mf zesilovače a demodulátoru je možno nastavit i servisním TV generátorem (např. BM 516) nebo podle televizního signálu (monoskopu).

Na vstup TV přijímače přivedeme signál z generátoru včetně zvukové modulace (nebo signál vysílaného zkušebního obrazce) a přijímač přesně naladíme na přijímaný signál.

naladíme na přijímaný signál. Na vývod 7 IO₂ připojíme osciloskop a cívkou L₆ naladíme minimum nezkresleného demodulovaného obrazového signálu. Tím je nastaven obnovo-

vač obrazové nosné.

Dále osciloskop zapojíme na vývod 11 IO₂ a cívkou L₄, popř. L₅ nastavíme maximální nezkreslenou úroveň nf demodulovaného signálu při nosné 5,5, popř. 6,5 MHz (při ladění podle zkušebního obrazce je nutno mít k dispozici signál se zvukovým mf kmitočtem 5,5 MHz). Má-li modulační signál sinusový průběh, je možno fázovací obvody nastavovat měřičem zkreslení na minimální zkreslení demodulovaného nf signálu.

Potenciometrem P₂ nakonec nastavíme efektivní napětí nf signálu na vývodu modulu 5-O na 300 mV.

Po nastavení všech obvodů opět rozpojíme zkrat anody diody D_2 na zem.

Závady ve zvukové mf části

 Na vývodu modulu 5-O chybí výstupní nf signál:

osciloskopem zkontrolujeme, chybíli signál i na vývodu $11\ IO_2$ (není-li pouze vadný P_2 nebo C_{34}). Dále změříme ss voltmetrem napětí na kolektoru T_4 , má být max. 2,8 V (zjistíme tím, není-li zvuk umlčen spínacím proudem přes D_2). Ověříme napájecí napětí na vývodu $5\ IO_2$ a osciloskopem*prověříme signálovou cestu od výstupu IO_2 přes vstup zesilovače FM ($10\ IO_2$), výstup demodulátoru AM ($7\ IO_2$) až po vstup mf signálu na vývodech 22, $23\ IO_2$ a výstupní signál z transformátoru Tr_1 (vývody $5\ a$ 3). Zjistíme, je-li signálová cesta přerušena uvnitř IO, nebo je-li vadná některá vazební součástka v obvodu;

- výstupní nf signál je zkreslen:

vadné nastavení fázovacího článku, zkontrolovat nastavení a upravit;

 při reprodukci jsou nadměrně zdůrazněny signály vysokých kmitočtů:

zkontrolovat nastavení fázovacího článku demodulátoru FM a kondenzátor nf deemfáze C_{29} .

Zvukový modul (Z) 6PN 053 31

Modul je použit ve stolních barevných televizních přijímačích řady Color 416. Obsahuje monolitický tónový regulátor (MDA4290V) a koncový nf zesilovač (A2030V).

Integrovaný obvod MDA4290V je určený pro řízení hlasitosti, výšek a hloubek stejnosměrným napětím z vnitřního zdroje referenčního napětí (obr. 45). Charakteristika řízení hlasito-

Obr. 45. Blokové schéma zapojení IO MDA4290 V

sti je přepínatelná na lineární nebo fyziologický průběh. Obvod má malé zkreslení a velký odstup signál/šum. Je zapouzdřen v pouzdře DIL 16. některé základní parametry obvodu jsou v tab. 3.

Tab. 3. Základní parametry integrovaného obvodu MDA4290V

Napájecí napětí U _{cc} [V]	14,0 typ., 18 max.
Referenční napětí $U_{ref}\left[V\right]$	4,5 až 5,2
Vstupní odpor R ₁₁ [k Ω]	≥ 2,9
Regulace výšek U_2/U_{11} [dB] $f = 15$ kHz, $U_{16} = 0$ až U_{ref}	≧ ±15
Regulace hloubek U_2/U_{11} [dB] $f = 40$ Hz, $U_{10} = 0$ až U_{ref}	≧ ±15
Kmitočtový rozsah (–1 dB) f [Hz] všechny regulátory v lineárním postavení	20 až 20 000
Zkreslení k [%] $U_{110f} = 300 \text{ mV},$ f = 1 kHz, $U_5 = 0.5U_{10f}$	≦ 0,7

Vstupní signál je přes vývod 11 IO přiveden nejprve na regulátor hloubek, pak výšek a odtud na regulátory hlasitosti zesilovačů Z1, Z2. K fyziologickému řízení hlasitosti slouží součtový člen RC mezi výstupy zesilovačů Z1 a Z2 (vývody 3 a 6 IO).

Integrovaný obvod A2030V (NDR) je koncový nf zesilovač s maximálním celkovým ztrátovým výkonem 20 W a maximálním napájecím napětím ±18 V. Blokové schéma vnitřního zapojení obvodu je na obr. 46. Za vstupním diferenciálním zesilovačem je zapojen omezovací stupeň, zabraňující přebu-

Obr. 46. Blokové schéma zapojení IO A2030 V

zení budiče koncového stupně. Ochranné obvody proti tepelnému a proudovému přetížení zajišťují, že obvod pracuje v bezpečném pracovním rozsahu. Nadproudová ochrana reaguje pouze na střídavý signál. Obvod je zapouzdřen v pouzdře TO-220 pro svislou montáž (V).

Záklaďní doporučené zapojení obvodu pro nesymetrické napájecí napětí je na obr. 47. Při nesymetrickém napájecím napětí je nutno nastavit ss pracovní bod zesilovače vnějším děličem napětí na vývodu 1 IO (R4, R5). Při uzavřené smyčce zpětné vazby platí (podobně jako u operačního zesilovače), že rozdíl ss napětí (bez signálu) mezi vývody 1 a 2, ale i 1 a 4 IO je nulový. V uvedeném

Obr. 47. Základní zapojení nf zesilovače s IO A2030 V

příkladu zapojení bude tedy na výstupu zesilovače ss napětí rovno prakticky polovině napájecího napětí. Pro dosažení dobrého potlačení brumu ve výstupním signálu je nutné ss vstupní napětí vytvořené děličem dobře filtrovat (kondenzátor C₃). Napěťové zesílení je nastaveno rezistory R₁ a R₂ ve zpětné vazbě. Platí:

$$A_{\rm u} = U_{\rm vvst}/U_{\rm vst} = 1 + (R_1/R_2).$$

Dolní mezní kmitočet zesilovače je určen vstupním článkem *RC* (*R*₃, *C*₁) a článkem *RC* ve zpětné vazbě (*R*₂ *C*₂). Pro tyto mezní kmitočty platí:

$$f_d = 1/(2\pi R_3 C_1)$$
, popř. $1/(2\pi R_2 C_2)$.

Diody na vývodu 4 IO chrání výstup zesilovače před indukčními napěťovými špičkami, vznikajícími např. při připojení a odpojení reproduktoru.

Schéma zapojení modulu 6PN 053 31 včetně doplňkových obvodů umístěných mimo modul je na obr. 48.

Výstupní nf signál z modulu O je přiveden na vstup modulu přes vývod 4-Z. Současně je z tohoto bodu signál přiváděn přes dělič R₆₀₁/R₆₀₂ na konektor pro připojení magnetofonu.

Na vstup IO₁ (vývoď 11) je nf signál přiveden přes oddělovací kondenzátor C₁. V použitém zapojení je regulace hlasitosti trvale zapojena na fyziologický průběh (vývody 4 a 2 IO₁ spojeny). Referenční napětí z vývodu 2 IO₁ je přes kontakt 2-Z konektoru přivedeno na děliče vytvářející potřebná regulační napětí. Z běžců příslušných potencio-

metrů jsou jednotlivá regulační napětí přiváděna zpět na vývody 1, 3 a 5 modulu Z.

Signál z výstupů 3 a 6 IO1 je přes součtový člen RC a oddělovací kondenzátor C₁₀ přiveden na vstup koncového zesilovače. Napěťový dělič R₁₀/R₉ nastavuje ss pracovní bod zesilovače. Kondenzátor C₁₄ slouží k potlačení rušivých signálů nad horním kmitočtem přenášeného pásma. Zisk koncového zesilovače je určen rezistory R₇ a R₆ v obvodu záporné zpětné vazby. Stabilitu zesilovače s ohledem na zátěž zajišťuje Boucherotův člen R₈, C₁₆. Výstupní signál z koncového zesilovače je přes oddělovací kondenzátor C20 přiveden k vnitřnímu reproduktoru, který je možno odpojit vypínačem. Na výstupní svorku koncového zesilovače je připojena ještě zásuvka pro připojení vnějšího reproduktoru a přes odpor R₆₀₃ a regulátor hlasitosti P₆₀₁ konektor pro připojení sluchátek.

Nastavení modulu

Modul nemá žádné nastavovací prvky. Při kontrole modulu je výhodné ověřit podle údajů ve schématu napájací napětí na vývodech 6 a 7 modulu a referenční napětí na vývodu 2 IO₁ i ověřit rozsahy regulačních napětí na vývodech 5, 10 a 16 IO₁. U koncového zesilovače ověříme, je-li napětí na výstupu (vývod 4 IO₂) přibližně polovinou napájecího napětí koncového stupně.

Nf generátorem můžeme případně zkontrolovat průběh kmitočtových korekcí a celkové přenosové vlastnosti modulu Z.

Závady modulu

Jelikož jde o běžné zapojení nf zesilovače, není nutné vyhledání případné závady detailně popisovat.

Při chybějícím signálu na výstupu modulu zkontrolujeme nejprve napájecí napětí na výstupu IO₂ a osciloskopem ověříme přítomnost vstupního signálu na vývodu 4-Z. Zkontrolujeme rozsa regulačního napětí hlasitosti na vývodu 5 IO₁ a osciloskopem prověříme celou signálovou cestu od vstupu 11 IO₁, přes

výstupy 6 a 3 $\rm IO_1$, výstup součtového článku RC až po vstup koncového zesilovače (1 $\rm IO_2$) a lokalizujeme místo přerušení signálové cesty.

Při závadě v průběhu korekcí hloubek či výšek zkontrolujeme rozsah regulačního napětí na vývodech 10, popř. 16 IO₁ a kondenzátor C₄, C₃, popř. C₇.

3.6 Dekódovací obvody chrominančního signálu

Úkolem těchto obvodů je vyhodnotit přítomnost a druh barvonosného signálu a dekódovat jej zpět na nízkofrekvenční modulační signály R-Y a B-Y. Dekódovací obvody u popisovaných typů přijímačů umožňují zpracovat chrominanční signál v normách Secam i PAL. Přepínání jednotlivých soustav je automatické.

Dekódovací obvody přijímačů řady Color 110

Obvody zajišťující dekódování chrominančního signálu jsou převážně umístěny na modulu P, 6PN 052 14. Mimo vlastní modul P jsou ještě na základní desce umístěny pomocné obvody, zajišťující tvarování snímkových a řádkových impulsů nezbytných pro funkci dekódovacích obvodů, a na modulu A, 6PN 052 09, je realizován automatický přepínač PAL/Secam, zajišťující přepínání funkce dekodéru podle typu přijímaného signálu.

Pro obvodové řešení vlastního dekodéru barev jsou použity integrované obvody MCA640, MCA650 a MBA540.

Integrovaný obvod MCA640 obsahuje chrominanční zesilovač PAL/Secam, vypínač barev, klopný obvod $f_{\rm H/2}$, obvod pro identifikaci řádků Šecam, klíčovací obvody pro oddělení synchronizačního impulsu barvy PAL (SIB) a identifikačních impulsů Secam a přepínač soustav Secam/PAL. Blokové schéma obvodu je na obr. 49.

Vstupní signál Secam je na chrominanční zesilovač přiveden z obvodu "cloche", vytvářejícího pro vstupní signál obvod ví deemfáze. Při vstupním signálu PAL je tento obvod zatlumen paralelním odporem, takže je dostatečně široký a jeho účinek na signál v normě PAL se omezí na přijatelnou úroveň. Chrominanční zesilovač je společný pro obě soustavy jen s tím rozdílem, že při příjmu v soustavě PAL je ovládán samočinným řízením zesílení, kdežto při příjmu v soustavě Secam je řízení vypnuto a chrominanční zesilovač omezuje. Regulační napětí pro chrominanční zesilovač PAL je přiváděno na vývod 16 IO a je vytvářeno v integrovaném obvodu MBA540. V následující části integrovaného obvodu se odděluje synchronizační impuls barvy (PAL) vyklíčováním vhodně tvarovaným řádkovým impulsem přiváděným na vývod 6 IO, nebo se získává identifikační impuls (Secam) vyklíčováním snímkovým impulsem přivedeným na vývod 7 IO. Ve výstupních obvodech se před odběrem signálů z vývodů 1 a 15 . chrominanční signál snímkově i řádkově zatemňuje

Synchronizační impuls barvy pro integrovaný obvod MBA540 se odebírá z vývodu 13 IO. Při příjmu signálu Secam se identifikační impulsy získávají buď z pravých identifikačních impulsů modrého kanálu o kmitočtu 3,9 MHz, nebo se mohou vyklíčovat v každém řádku oba barvonosné signály vysílané na

Obr. 49. Blokové schéma zapojení IO MCA640

zadní části řádkového zatemňovacího impulsu. V obou případech je na výstupu detektoru synchronizační signál s polovičním řádkovým kmitočtem, jímž se synchronizuje vestavěný bistabilní klopný obvod. Při příjmu v soustavě PAL se synchronizační signál vytváří v integrovaném obvodu MBA540 a přivádí se zpět do obvodu MCA640 na vývod *16*. Součástí popisovaného obvodu je i vypínač barev, který přes vývod 8 uzemní při nepřítomnosti synchronizačních nebo identifikačních Impulsů regulátor systosti barev, takže uzavře chrominanční kanál (v obvodu MCA660).

Integrovaný obvod MCA650 obsahuje synchronní demodulátor chrominančního signálu Secam/PAL, součtovou a rozdílovou matici PAL, přepínač řádků a omezovač Secam, přepínač fáze složky R-Y při signálu PAL a přepínač soustav PAL/Secam. Blokové schéma obvodu je na obr. 50.

Na vývod 1 obvodu se přivádí přímý signál z vývodu 1 IO MCA640, na vývod

3 se přivádí zpožděný signál z ultrazvukové zpožďovací linky. Při příjmu v soustavě Secam se signál nejdříve dokonale omezuje a pak se přivádí na přepínač Secam, který vytvoří dva současné signály. Přijímá-li se v soustavě PAL, vzniknou v součtové a rozdílové matici PAL z přímého a zpožděného signálu dva signály F_{R-Y} a F_{B-Y}. Elektronický přepínač je společný pro obě soustavy. V soustavě PAL přepíná fázi signálu F_{R-Y} v každém řádku o 180° v souladu s vysílací stranou, takže za přepínačem již tento signál nemění polaritu. Přepínač je řízen impulsy z vývodu 12 obvodu MBA640. Kmitočtová modulace obou signálů Secam se za přepínačem převádí vnějšími rezonančními obvody na modulaci fázovou. Takto přeměněné fázově modulované signály se demodulují v synchronních detektorech R-Y a B-Y stejně jako signály PAL přiváděné do detektorů přímo. Signály PAL vyžadují pro demodulaci signály referenčních kmitočtů, R-Y a B-Y, které se

Obr. 50. Blokové schéma zapojení IO MCA650

Obr. 51. Blokové schéma zapojení IO MBA540

do synchronních detektorů přivádějí v konstantní fázi se vzájemným posuvem 90° (referenční osy R-Y a B-Y).

Integrovaný obvod MBA540 se používá pouze při příjmu signálu v soustavě PAL. Obsahuje zdroj referenčních signálů R-Y a B-Y, zdroj napětí pro řízení vypínače barvy a zisku chrominančního zesilovače v MCA640 a referenční oscilátor barvonosného signálu. Blokové schéma obvodu je na obr. 51.

Integrovaný obvod MBA540 vytváří potřebné řídicí signály pro obvody MCA640 a MCA650 při provozu PAL. Funkce tohoto obvodu je řízena synchronizačními impulsy barvy a výstupním signálem bistabilního klopného obvodu z MCA640.

Vyklíčovaný synchronizační impuls barvy jde na vývod 5 IO MBA540 přes člen LC, kterým se nastavuje správná fáze přiváděných impulsů. Vzorek referenčního signálu oscilátoru je vyveden na vývod 4 IO a odtud je přes transformátor obracející fázi o 180° přiveden na vývod 6 IO. Vývody 4, 5 a 6 jsou vstupy koincidenčního demodulátoru, který porovnává referenční signál oscilátoru dvojí polarity s okamžitou fází synchronizačního impulsu barvy. Podle velikosti

signály vznikají ve fázovém detektoru různě široké impulsy, které jsou členy RC na vývodech 13 a 14 integrovány na pilovitý průběh. Pokud je fáze generovaného referenčního signálu správná vůči střední fázi SIB, dostáváme na výstupech 13 a 14 střídavě po řádcích stejně velké kladné a záporné impulsy, takže časová střední hodnota napětí mezi vývody 13 a14 je nulová. Pokud dojde k určité fázové odchylce, vyhodnotí ji koincidenční demodulátor tak, že časová střední hodnota napětí mezi vývody 13 a 14 není nulová, ale odpovídá této fázové odchylce. Tímto způsobem se vytváří regulační veličina pro synchronizaci oscilátoru barvonosného kmitočtu.

Rídicí napětí pro chrominanční zesilovač se odvozuje z amplitudy SIB, který je vysílán s konstantní úrovní. Využívá se k tomu napětí z jednoho výstupu fázového detektoru synchronizačního impulsu barvy, které má impulsní průběh s opakovacím kmitočtem $f_{H/2}$. Toto napětí se přivádí na porovnávací obvod spolu s impulsy H/2 z klopného obvodu v MCA640, přiváděnými na vývod 8 MBA540. Tyto impulsy mají konstantní amplitudu. Výsledkem porovnání těchto dvou

průběhů, po filtraci obvodem zapojeným mezi vývody 10 a 12 MBA540, je ss napětí, které po zesílení slouží k řízení chrominančního zesilovače v MCA640. Tento obvod současně zajišťuje synchronizaci přepínače PAL v MCA640. Pokud nebude fáze signálu z demodulátoru SIB shodná s fází impulsů z klopného obvodu v integrovaném obvodu MCA640, budou obě tato napětí přiváděna na porovnávací obvod v protifázi, což vyvolá prudké zvětšení regulačního napětí na vývodu 9 MBA540. Pro potřebný rozsah regulace se toto napětí mění v rozmezí od 4 V do 0,2 V. Při nesprávné fázi bistabilního klopného obvodu v MCA640 bude napětí na vývodu 9 větší než 4 V (až 11 V) a v IO MCA640 jednak zablokuje bistabilní klopný obvod, jednak uzavře barevný kanál. V následujícím řádku, kdy je již fáze klopného obvodu správná, se regulační napětí zmenší opět do oblasti regulace zisku chrominančního zesilovače, odblokuje se klopný obvod a otevře se barevný kanál. Tímto způsobem je zajištěn soufázový chod přepínače PAL v přijímači s přepína-. čem na vysílači.

Blokové schéma dekodéru PAL/Secam s popisovanými integrovanými obvody je na obr. 52.

Konkrétní schéma zapojení dekódovacích obvodů v BVTP řady Color 110 včetně přepínače PAL/Secam (modul A) a doplňkových obvodů, umístěných na základní desce, je na obr. 53.

Signál pro dekodér je odebírán z vývodu 5 modulu obrazové mezifrekvence (5-O). Na vstup dekodéru (15-P) je přiveden přes horní propust a odlaďovač 2,1 MHz (C₁₄₁, R₁₄₁, L₁₅₂, C₁₄₃) a přes odlaďovač zvukového mezifrekvenčního signálu 5,5 MHz (L₁₅₄ C₁₄₉). Odlaďovač pro kmitočet 2,1 MHz (záznějový kmitočet barvonosného signálu a nosného kmitočtu zvuku) je tvořen cívkou L₁₅₂ a kondenzátorem C₁₄₃. Vazební kondenzátor C₁₄₁ tvoří spolu s malou impedancí tohoto odlaďovače s paralelně připojeným rezistorem R₁₄₁ horní propust, která potlačuje kmitočty nižší než 2 MHz. Zpracování

signálu vlastním dekodérem bude popsáno nejdříve pro soustavu Secam.

Přes vstup modulu P (15-P) a přes C a R₁ je signál přiveden na vstupní laděný filtr "cloche" (L₁, C₂). Činitel jakosti Q tohoto obvodu je 16, obvod je laděn na $f_r = 4,286$ MHz. Tento obvod kompenzuje původní vf.preemfázi barvonosného signálu Secam. Signál je nejdříve v IO₁ MCA640 zesílen a omezen. Typická výstupní mezivrcholová úroveň signálu na vývodech 1 a 15 IO1 je 1,8 až 2,3 V. Z výstupů je zavedená ss záporná zpětná vazba na vstup. Jednak z vývodu 15 přes R_4 na vývod 5 a z vývodu 1 přes P_1 a L_1 na vývod 3. Potenciometr P₁ slouží k nastavení symetrie omezení.

Činnost integrovaného obvodu řídí dva druhy impulsů. Jednak kladné řádkové impulsy s mezivrcholovou úrovní 6 V, přiváděné na vývod 6 IO1, a jednak vertikální impulsy s mezivrcholovou úrovní 8 V, přiváděné na vývod 7 10. Impulsy jsou na potřebnou velikost a tvar upravovány tvarovacími obvody na základní desce. Řádkové klíčovací impulsy jsou vytvářeny obvodem s tranzistorem T₁₃₁. Na bázi tranzistoru jsou ze zástrčky 5-Z41 přes R₁₃₁ a R₁₃₂, C₁₃₁ přiváděny záporné řádkové impulsy zpětného běhu. V době činného běhu je tranzistor T₁₃₁ vlivem ss složky tohoto impulsního průběhu ve stavu nasycení. Záporný impuls zpětného běhu způsobí, že se v tuto dobu tranzistor uzavře a na jeho kolektoru se objeví kladný impuls o šířce asi 12 μs. Amplituda tohoto impulsu je dána

děličem R₁₃₄, R₁₃₅. Snímkové klíčovací impulsy jsou tvarovány ze snímkových zpětnovazebních impulsů monostabilním klopným obvodem s tranzistory T_{121} a T_{122} . Stabilní stav tohoto obvodu je ten, je-li tranzistor T₁₂₂ v saturaci a T₁₂₁ uzavřen. Na výstupu klopného obvodu (kolektor T₁₂₂) je pouze saturační napětí tranzistoru, tedy asi 0,4 V. Přivedeme-li na bázi tohoto tranzistoru záporný vertikální impuls, překlopí se obvod do nestabilního stavu, ve kterém setrvá po dobu, danou časovou konstantou článku P₁₂₁, R₁₂₇, C₁₂₈. Za tuto dobu se kondenzátor C₁₂₈ nabije přes P₁₂₁ a R₁₂₇ na takové kladné napětí, že se opět otevře tranzistor T₁₂₂ a výstupní napětí se zmenší na původní velikost. Odporovým trimrem P₁₂₁ se nastaví šířka kladného impulsu na dobu t = 1,1 ms, potřebnou pro správné vyklíčování identifikačních impulsů Secam.

Takto vytvořené impulsy plní několik funkcí. Řádkový klíčovací impuls jednak zatemňuje oblast řádkového zpětného běhu v chrominačním signálu, dále spouští bistabilní klopný obvod v MCA640 a slouží k vyklíčování nemodulovaných barvonosných kmitočtů, jež jsou potom k dispozici na vývodu 11 IO₁ k dalšímu zpracování. Snímkový klíčovací impuls rovněž slouží jako zatemňovací impuls v chrominačním signálu a vyklíčovává identifikační impulsy Secam (taktéž jsou vyvedeny na vývod

Jak vyplývá z principu systému Secam, kde se barevné složky (R-Y) a (B-Y) přenášejí postupně v řádkovém sledu, je nutno zjistit, ve kterém řádku je přenášen který signál a na základě toho řídit přepínač Secam. Tuto úlohu plní identifikační obvody, které jsou součástí MCA640 (samotný přepínač Secam je až v MCA650).

Laděný obvod pro výběr identifi-kačních impulsů z kanálu B-Y je připo-

jen na vývod 11 IO₁ (L₂, C₁₃). Kmitočet identifikačních impulsů je 3,9 MHz. Současně však jsou na tomto výstupu integrovaného obvodu k dispozici i vyklíčované nemodulované barvonosné signály. Barvonosný signál modrého kanálu je 4,250 MHz. Tento signál je možno také využít k identifikaci. Proto je obvod L₂, C₁₃ laděn na kmitočet f_r , pro který platí 3,9 MHz $< f_r < 4,25$ MHz. ldentifikační obvody potom vytvářejí regulační signál pro řízení fáze bistabilního klopného obvodu, jehož výstup je na vývodu 12 IO₁. Odtud se impulsy pro řízení přepínače Secam přivádějí přes C₁₇ na vývod 16 IO₂ (MAS650). Identifikačními obvody je řízen i vypínač barvy, jehož výstup je na vývodu 8 IO1. V případě černobílého provozu tento uzemní regulační napětí barevné sytosti (přes Z12 a D₁₄₂) a odpojí odlaďovače barvonosných kmitočtů v jasovém kanálu (D₁₅₁ není sepnuta kladným napětím přes R₁₅₄) viz schéma signálových obvodů na obr.

Výstupní signál z vývodu 1 IO1 je přiveden přes C₁₆, R₈ a C₁₉ přímo na vstup 1 IO₂. Signál z výstupu 15 IO₁ je na vstup MCA650 přiveden přes ultrazvukovou zpožďovací linku. Vlivem zpoždění o jeden řádek vzniknou ze dvou postupných signálů, u nichž se střídají složky R-Y a B-Y ob řádek, dva současné signály R-Y a B-Y. Barevné signály rozděluje přepínač Secam řízený impulsy přiváděnými na vývod 16 lO₂. Obvody L₃, C₁₅ a L₄ slouží k optimálnímu přizpůsobení zpožďovací linky. Odporovým trimrem P7 se nastavuje shodná úroveň zpožděného a přímého signálu (vývod 1 a 3 lO₂).

Výstupní signály z přepínače Šecam jdou na vývod 15 IO2 (signál B-Y) a 13 ÍO2 (signál R-Y). Odtuď jsou sígnály přivedeny na demodulátory rozdílových signálů jednak přímo (vývody 9 a 11 IO2), jednák s fázovým posuvem 90° při nulové modulaci nosné vlny (vývody 8 a 5 IO2). Fáze o 90° se natáčí jednoduchými rezonančními obvody L5, C_{29} (B-Y) a L_6 , C_{26} (R-Y). Paralelně k laděným obvodům jsou zapojeny odporové trimry P3 a P4, jimiž se mění strmost fázové charakteristiky děného obvodu a tím i amplituda výstupních demodulovaných signálů na vývodech 10 (B-Y) a 12 (R-Y) IO2. Výstupní demodulované rozdílové signály se vedou na dolní propusti (C31, L7, C₃₃, popř. C₃₅, L₈, C₃₄) pro potlačení nežádoucích vf složek, zejména zbytků barvonosných signálů. Za dolními propustmi jsou sepnutými diodami D₂ a D₃ připojeny členy P5, C32 a P6, C36, které tvoří obvody nf deemfáze.

Při příjmu signálů v normě PAL musí být obvody MCA640 a MCA650 přepnuty vnějším napětím na provoz v této normě a zároveň je funkčně doplňuje obvod MBA540. Toto přepnutí dekodéru zajišťuje automatický přepínač (modul A), na jehož výstupu (7-A) je v tomto případě napětí +12 V, slouží jak k napájení MBA540 (vývod 3), tak k přepnutí zbývajících dvou integrovaných obvodů (vývody 4 IO1 a

Vstupní signál je přiváděn stejným

způsobem jako při zpracování signálu Secam. Vstupní filtr však nesmí mít charakteristiku "cloche". To zabezpečuje spínací dioda D1, která je sepnuta výstupním napětím z modulu A přes R₂₀ a R₁₉. Sepnutím diody je paralelně k vstupnímu ladění obvodu připojen R₁₉, který jej zatlumí, takže je dostatečně

široký a nevzniká nežádoucí zkreslení amplitudové a fázové charakteristiky

vstupního signálu.

Přepínací napětí přiváděné na vývod MCA640 způsobí, že vstupní zesilovače signál neomezují, ale jejich zisk je řízen regulačním napětím z MBA540. Toto automatické řízení zisku umožňuje regulaci v rozsahu -20 dB až +6 dB při jmenovité mezivrcholové vstupní úrovni 40 mV. To znamená, že vstupní mezivrcholová úroveň signálu se může měnit v rozmezí od 4 do 80 mV, aniž by se měnila výstupní mezivrcholová úroveň signálu na vývodech 1 a 15 integrovaného obvodu MCA640, která je typicky 500 mV.

Štejnými obvody jako při signálu Secam je ze signálu PAL vyklíčován synchronizační impuls barvy, SIB (burst). K vyklíčování se používají řádkové impulsy, přiváděné na vývod 6 MCA640. Tvarování řádkových impulsů opět zajišťuje tranzistor T₁₃₁ na základní desce. Na bázi tranzistoru je však přiváděno kladné napětí přes R₁₃₃ z výstupu přepínače PAL-Secam. Tím se posune úroveň spínání tranzistoru a vlivem sklonu náběžné hrany impulsu zpětného běhu dojde i k časovému posuvu - výstupní klíčovací impuls se . zúží asi na 4μs v oblasti, v níž je v signálu přenášen SIB.

Snímkové klíčovací impulsy jsou blokovány tranzistorem T₁, který je výstup-ním napětím z přepínače PAL/Secam

udržován v saturaci.

Vyklíčovaný SIB je na vývodu 13 IO1, odkud je přiváděn na integrovaný obvod MBA540 přes obvod R₂₃, L₉, C₄₀, kterým se korigují fázové odchylky SIB vůči barvonosnému signálu vlivem odděleného zesilování obou signálu.

Z výstupů 1 a 15 integrovaného obvodu MCA640 se zesílený barvonosný signál přivádí, stejně jako v případě signálu Secam, na vývody 1 a 3 MCA650. Na vývod 1 přímo a na vývod 3 přes ultrazvukové zpožďovací vedení. Odtud jdou signály nejdříve na maticoobvod. který z přímého signálu vytvoří složky zpožděného F_B-F_Y a ±F_R-F_Y) (kde znaménko ± značí, že se fáze této složky mění po řádku o 180°), a potom na přepínač PAL, na jehož výstupu jsou již složky F_B-F_Y a F_R-Fy (vývody 15 a 13 IO2) vzájemně posunuty o 90°. Signál F_R-F_Y na vývodu 13 je už v každém řádku ve stejné fázi. Přes vazební kondenzátory C27 a C23 jsou tyto signály přivedeny na první vstupy demodulátorů, a sice z vývodu 15 na vývod 9 a z vývodu 13 na vývod Do série s vazebními kondenzátory je zapojen R₁₁, popř. trimr P₁₁, sloužící k nastavení amplitudy demodulova-ných signálů. Fázovací články, pomocí nichž se u signálu Secam převádí kmitočtová modulace na fázovou jsou nyní neúčinné, neboť přepínacím na-pětím přivedeným na IO jsou tyto druhé vstupy demodulátorů odpojeny uvnitř IO (vývody 8 a 5 jsou uzemněny). Místo toho se nyní přivádějí na další druhé vstupy demodulátorů (vývody 6 a 7 IO2) referenční nosné signály o fn 4,43361875 MHz z integrovaného obvodu MBA540. Jejich vzájemný posuv je 90°, což je v souladu s přiváděným barvonosným signálem. Demodulační obvody nyní pracují jako synchronní demodulátory amplitudově modulovaných signálů. Demodulované rozdílové signály B-Y a R-Y dostáváme na stejných výstupech jako u signálu Secam, tj. na vývodech 10 a 12 IO2. Dolní propusti na výstupech plní stejnou

úlohu jako při signálu Secam. Pouze obvody deemfáze nesmějí signál PAL ovlivňovat. Proto se v tomto případě odpojují spínacími diodami D₂ a D₃ napětím Z výstupu přepínače

PAL/Secam přes R₃₄ a R₃₅.

Integrovaný obvod MBA540 plní své funkce tak, jak bylo řečeno při popisu vlastního integrovaného obvodu. Vvklíčovaný synchronizační impuls barvy je přes fázovací článek přiváděn na vývod 5 IO3 a řídicí signál z klopného obvodu v MCA640 je přiváděn přes C₄₂ na vývod 8. Regulační napětí pro řízení vstupního chrominančního zesilovače a řídicí napětí pro synchronizaci klopného obvodu v MCA640 je ode-bíráno z vývodu 9 IO₃ a je přes R₂₄ přivedeno na vstup 16 integrovaného obvodu MCA640.

Oscilátor barvonosného signálu je tvořen kondenzátory C43, C45 a krystalem Q₁ s dolaďovacými prvky C₄₄ a L₁₀. Krystal s imenovitým rezonančním kmitočtem 4,43361875 MHz dává tomuto obvodu potřebnou kmitočtovou stabilitu. Vzorek referenčního barvonosného kmitočtu pro fázový detektor SIB je přes C₄₆ přiveden na vývod 6 IO₃ a přes transformátor otáčející fázi o 180° (L11) na druhý vstup detektoru (vývod 4 IO₃). Z vývodu 6 je současně přes C₅₈ odebírán signál referenčního kmitočtu pro demodulátor v MCA650 (referenční osa R-Y) a fázovacím článkem R₃₃, P₈ a C₄₈ je vytvářen druhý referenční signál s posuvem 90° pro demodulátor v MCA650, kam je přiváděn přes C₅₉ (referenční osa B-Y).

Pracovní bod obvodů AVC pro PAL se nastavuje trimrem P10. Zisk obvodů AVC a tím i velikost výstupního demodulovaného signálu se nastavuje trimrem P₉ (popř. velikost výstupního signálu B-Y s ohledem na pevný rezistor R₁₇ na výstupu B-Y; velikost sig-nálu R-Y se pak upravuje trimrem P₁₁ ve výstupu R-Y).

Jak již bylo řečeno, správnou funkci dekodéru podle normy přijímaného signálu zabezpečuje automatický přepínač PAL/Secam, jehožiobvody jsou umístěny na modulu A. Hlavním úkolem těchto obvodů je dodat při signálu kladné napájecí napětí MBA540 a napětí pro přepnutí IO1 a IO2 na tento druh provozu. Při signálu Secam je na výstupu modulu A téměř nulové napětí (<1 V), takže MBA540 není napájen a integrované obvody MCA640 a 650 jsou prostřednictvím vstupů na přepínacích vývodech přepnuty do provozu Secam.

Automatické přepínání pracuje na základě vyhodnocení, je-li v přijíma-ném signálu přítomen identifikační sig-

nál Secam, či nikoli.

K praktické realizaci demodulace, identifikačního signálu vyklíčování a zesílení je použit integrovaný obvod A220D, který pracuje jako amplitudově omezující zesilovač, koincidenční demodulátor a klíčovací zesilovač.

Obrazový signál je přiváděn na vstup obvodu (vývod 14 IO) přes vazební kondenzátor C1. Vnější ss zpětnou vazbu vytváří rezistor R₁. Kondenzátory C₂ a C₃ slouží pro střídavé blokování

této vazby.

V porovnání s běžným zapojením vnějších obvodů (např. u zvukové mezifrekvence), kdy je výstupní demodu-lační charakteristika (křivka S) orientovaná tak, že signály vyšších kmitočtů vytvářejí na výstupu záporný demodulovaný signál, je nutné v této aplikaci upravit vnější obvody tak, aby orienta-

ce křivky S byla opačná, neboť na rozdíl od identifikačního signálu Secam, který má po demodulaci působit na další obvody přepínače svou zápornou hodnotou, potřebujeme, aby klidový stav totožný se signálem PAL byl demodulačními obvody vyhodnocen jako kladná hodnota. Je to proto, že díky velkému zesílení integrovaného obvodu A220D se v tomto případě detekuje vf šum. Pouze tak jsou vytvořeny podmínky pro jednoznačnost přepínání systémů.

Prakticky je otočení fáze křivky S realizováno kondenzátory C5 a C7, jimiž jsou vstupy koincidenčního demodulátoru zapojeny křížem, tj. opačně než vnitřními kapacitními diodami. V důsledku toho se sice na vstupy demodulátoru přivádějí současně dva signály v protifázi, takže se uplatní pouze jejich rozdíl, avšak protože kapacita vnějších kondenzátorů je větší než kapacita vnitřních diod, otočí se křivka S a amplituda výstupního demodulovaného signálu je vlivem vzájemného odečítání signálu pouze relativně men-

Díky tomuto zapojení tedy platí, že pro signály všech kmitočtů $f < f_r$ (f_r je rezonanční kmitočet fázovacího článku C₆, L₁) se mění demodulovaný nf signál do záporných hodnot a pro $f>f_r$ do

kladných hodnot.

Pro vyklíčování identifikačního signálu Secam se používá obvod, který je v integrovaném obvodu původně určen pro řízení hlasitosti (vývod 5 IO). V tomto případě však regulace pracuje pouze v krajních polohách, tj. výstup je úplně zablokovaný nebo je na výstupu maximální úroveň demodulovaného signálu. Vlastní klíčování zabezpečuje tranzistor T₁, řízený zápornými snímkovými impulsy zpětného běhu, odebíranými z kolektoru tranzistoru T₁₂₁ monostabilního obvodu na základní desce.

Tvarovacím obvodem R₈, C₁₀, P₂ je nastavena šířka klíčovacího impulsu tak, aby byla vyklíčována celá oblast identifikačních impulsů. Po dobu činného snímkového běhu je tedy tranzistor T_1 udržován v saturaci rezistorem R_4 a zesilovač v IO je zablokován. V době záporného impulsu je tranzistor T₁ uzavřen a výstupní úroveň signálu je maximální. Při signálu Secam je to tedy demodulovaný identifikační signál, při příjmu signálu PAL je to kladný impuls detekovaného vf šumu. Tento výstupní demodulovaný signál je dále zpracován následujícími obvody přepínače.

Při příjmu signálu Secam je demodulovaný identifikační signál přiváděn přes oddělovací kondenzátor C₈ a ochranný rezistor R₅ na bázi tranzistoru T2. Tento tranzistor pracuje jako omezovací zesilovač. Kladné napětí báze přes odporový trimr P₁ určuje zápor-nou úroveň demodulovaného identifikačního signálu, potřebnou pro otevření tranzistoru. Na zatěžovacím rezistoru R₆ tak dostáváme kladné impulsy přibližně pravoúhlého tvaru. Tranzistor T₃ s kondenzátorem C₁₁ v emitoru pracuje jako usměrňovač těchto kladných impulsů. S ohledem na velkou časovou konstantu vybíjecího obvodu je napětí na kondenzátoru C₁₁ dostatečně velké, praktičky 12 V. Tímto ss napětím je udržován tranzistor T4 v saturaci, także tranzistor T₅ je uzavřen a na výstupu přepínače je prakticky nulové napětí.

Při příjmu signálu v normě PAL (tento stav je totožný s příjmem černo-bílého signálu nebo nulového signálu) je na vývodu 8 IO pouze kladný impuls o šířce klíčovacího impulsu na vývodu 5 10. Tranzistor T2 je tedy trvale uzavřen předpětím do jeho báze a proto je napětí na kondenzátoru C₁₁ a tedy i na bázi tranzistoru T₄ nulové a tranzistor je uzavřen. Tranzistor T₅ je kladným napětím přiváděným přes R₁₀ a D₁ udržován v nasyceném stavu a na výstupu přepínače dostáváme prakticky plné napájecí napětí, zmenšené o úbytek napětí na R₁₂ a o saturační napětí tranzistoru T₅.

Dioda D₁ tvoří ochranu přechodu E-B tranzistoru T₅ při jeho uzavření, pokud se nevybije filtrační kondenzátor C₁₂, který je zapojen na výstupu přepínače spolu se svítící diodou pro vizuální kontrolu přepnutí. Dioda D₂ svítí při příjmu signálu PAL (popř. signálu ČB, nebo není-li přiváděn vstupní signál).

Nastavení dekódovacích obvodů

Nastavení doplňkových obvodů na základní desce

1. Nastavení odlaďovače 5,5 MHz: na kolík 5 zásuvky pro modul O přivést signál 5,5 MHz o mezivrcholové úrovni asi 2,5 V a na kolíku 15 zásuvky pro modul P nastavit jádrem L₁₅₄ minimální úroveň tohoto signálu. 2. Nastavení šířky klíčovacích vertikálních impulsů: na kolíku 12 zásuvky modulu P nastavit odporovým trimrem P₁₂₁ šířku vertikálních klíčovacích impulsů na 1,1 ms.

Nastavení přepínače PAL/Secam modul A

1. Nastavení při příjmu signálu Secam: a) na vstup TVP přivést z TV generátoru signál v normě Secam (např. normalizované barevné pruhy) nebo signál barevného zkušebního obrazce (monoskopu) v normě Secam;

b) na měřicím bodu 1 (kolektor tranzistoru T₁) nastavit odporovým trimrem P₂ šířku snímkového impulsu asi na

1 ms:

c) na měřicím bodu 2 (vývod 8 IO1) nastavit jádrem cívky L₁ maximální rozkmit identifikačního signálu Secam. Odporovým trimrem P2 nastavit šířku klíčového impulsu tak, aby byl v tomto měřicím bodu vyklíčovaný celý identifikační signál Secam (tj. 4, popř. 5 identifikačních impulsů);

d) na měřicím bodu 3 (výstup 7 modulu A) zkontrolovat, zda je výstupní napětí

2. Nastavení při příjmu signálu PAL: a) na vstup TVP přivést z TV generátoru signál PAL nebo signál barevného zkušebního obrazce v normě PAL;

b) na měřicím bodu 2 nastavit odporovým trimrem P₁ amplitudu kladného impulsu na 1 V;

c) zkontrolovat, zda výstupní napětí na měřicím bodu 3 je +12 V (dioda musí svítit).

Nastavení dekodéru PAL/Secam modul P

1. Nastavení obvodů PAL:

a) na vstup přijímače přivést normalizováné barevné pruhy v normě PAL. Odporovým trimrem P₁ nastavit na vývodu 13 IO1, MCA640, v době řádkového zpětného běhu střed synchronizačního impulsu barvy (SIB) na úroveň signálu v době činného běhú podle obr.

Obr. 54.

b) naladit přibližně vstupní filtr jádrem cívky L₁ na největší úroveň barvonosného signálu v měřicím bodu *2*;

c) připojit vývod 5 IO MBA540 na zem přes kondenzátor TK 754, 47 nF nebo TK 783, 100 nF a nastavit na vývodu 9 MBA540 odporovým trimrem P₁₀ napětí +4 V a změnou indukčnosti L₁₀ nastavit jmenovitý kmitočet oscilátoru (labilně zasynchronizovat barevné pruhy na obrazovce). Odpojit kondenzátor;

d) připojiť vývod 3 MCA650 na zem přes kondenzátor 47 nF nebo 100 nF, sondu osciloskopu připojit na vývod 1 modulu P a změnou indukčnosti L₉ nastavit dva následující řádky demodulovaného signálu R-Y na stejný průběh. Na vývodu 3 modulu P nastavit odporovým trimrem P₈ dva následující řádky demodulovaného signálu B-Y na nejmenší rozdíl. Odpojit kondenzátor; e) odporovým trimrem P₇ nastavit na vývodu 3 MCA650 stejnou amplitudu

signálu jako na vývodu 1 tohoto IO; f) na vývodech 1 a 3 modulu P (MB13 a MB12) nastavit změnou indukčnosti cívek L₃ a L₄ ve dvou následujících řádcích identický průběh demodulovaných signálů R-Y a B-Y;

g) na MB12 nastavit odporovým trimrem P₉ mezivrcholovou úroveň signálu B-Y na 1 V;

h) na *MB13* nastavit odporovým trimrem P₁₁ mezivrcholovou úroveň signálu R-Y na 0,8 V.

2. Nastavení obvodů Secam:

a) na MB2 nastavit jádrem cívky
 L₁ obvodu "cloche" maximální vyrovnaný průběh barvonosného signálu (minimální amplitudovou modulaci).
 Mezivrcholová úroveň signálu je asi
 100 mV:

b) na MB14 nastavit jádrem cívky L_2 maximální rozdíl amplitud nemodulovaných barvonosných kmitočtů u jednotlivých následujících řádků. Ten nastává při rezonančních kmitočtech f=4,406 MHz a f=4,250 MHz. Správná poloha jádra je ta, která odpovídá nižšímu kmitočtu (větší indukčnost). Potom zašroubovat jádro ještě o dva závity dovnitř (směrem k větší indukčnosti). Současně kontrolovat ss napětí na vývodech 9 a 10 MCA640. Na vývodu 9 musí být napětí větší nejméně o 100 mV než na vývodu 10. Ověřit průběhy demodulovaných signálů na MB12, popř. 13;

c) na MB12 jádrem cívky L₅ nastavit nulovou úroveň signálu B-Y (pruh bílé barvy) na úroveň řádkového zatemňovacího impulsu:

d) na měřicím bodu 12 odporovým trimrem P_6 nastavit správný účinek obvodů deemfáze na demodulovaný signál B-Y (co největší strmost náběžné hrany, průběh na vrcholech bez překmitů);

e) na MB12 nastavit odporovým trimrem P₄ mezivrcholovou úroveň signálu B-Y na 1 V. Překontrolovat nasta-

vení nuly diskriminátoru podle bodu c) a případně upravit;

f) na MB13 jádrem cívky L₆ nastavit nulovou úroveň signálu B-Y (pruh bílé barvy) na úroveň řádkového zatemňovacího impulsu;

g) na MB13 nastavit odporovým trimrem P₆ správný účinek obvodu deemfáze na demodulovaný signál R-Y (co největší strmost náběžné hrany, průběh na vrcholech bez překmitů);

h) na MB13 nastavit odporovým trimrem P₃ mezivrcholovou úroveň signálu R-Y na 0,8 V. Překontrolovat nastavení nuly diskriminátoru podle bodu f) a případně upravit.

Při nastavování obvodů PAL podle bodů d) a f) je výhodné zasynchronizovat osciloskop tak, aby byly liché a sudé řádky zobrazeny přes sebe. Obvody pak nastavujeme na maximální krytí obou signálů.

Obvody barevného dekodéru lze uvedeným postupem nastavit i podle barevného zkušebního obrazce vysílaného v příslušné normě, pokud máme k dispozici osciloskop s možností výběru řádku, pomocí kterého si vybereme oblast, v níž jsou vysílány normalizované barevné pruhy.

Pomocí barevného zkušebního obrazce vyslaného v normě PAL můžeme velmi snadno a přesně nastavit demodulátor PAL a synchronní detektory pomocí měřicích signálů +V a ±U. Popis barevného zkušebního obrazce FuBK, popř. PHILIPS PM 5544 s vyznačením těchto měřicích polí je např. v [7] a [8].

Nesprávné nastavení demodulátoru PAL (L₃, L₄, P₇) způsobuje vznik "žaluzií" v těchto polích. Nesprávné nastavení fáze synchronních demodulátorů (L₉, P₈) způsobuje zabarvení těchto polí. Při správném nastavení jsou obě tato pole bez žaluzií a neutrálně šedá (na výstupech dekodéru je nulový signál).

Postup nastavení je následující. Laděním přizpůsobovacích cívek L_3 , L_4 zpožďovacího vedení a regulací rozkmitu zpožděného signálu přímému trimrem P7 odstraníme žaluzie v obou polích bez ohledu na jejich zabarvení. Když zmizí žaluzie, je demodulátor PAL správně nastavený. Přesnost nastavení můžeme zlepšit pozorováním výstupních signálů dekodéru (vývody 1 a 3 modulu P) osciloskopem. Při správném nastavení demodulátoru PAL musí dát signál +V na výstupu R-Y (vývod 1-P) nulové (minimální) napětí stejně jako signál ±U na výstupu B-Y (vývod 3-P). Případné zabarvení polí +V a ±U odstraníme správným nafázováním synchronních detektorů. Nejdříve odstraníme zbarvení pole ±U laděním cívky L₉ (na výstupu R-Y musí být při signálu ±U nulové napětí). Potom trimrem P₈ odstraníme barevné zabarvení pole +V (signál +V musí dát na výstupu B-Y nulové napětí).

Tímto způsobem lze nastaviť demodulátor PAL a synchronní detektory pouze vizuálně (i bez kontroly výstupního signálu dekodéru osciloskopem) snadněji a přesněji než postupem uvedeným v nastavovacím předpisu, kdy jsou obvody nastavovány osciloskopem na maximální překnytí sudých a lichých

Po nastavení dekódovacích obvodů podle televizního generátoru je výhodné zkontrolovat vizuálně kvalitu barevného podání podle vysílaného barevného zkušebního obrazce. To se týká zejména systému Secam, který je značně citlivý na přesnost naladění

fázových diskriminátorů a vstupního filtru "cloche". Nepřesnost naladění fázových diskriminátorů se projevuje velmi rušivě v tmavém pozadí na obraze. Kvalitu naladění filtru "cloche" posuzujeme podle kvality svislého přechodu mezi zeleným a purpurovým pruhem. Přechod musí být co nejostřejší bez barevných a amplitudových zkreslení. Přesnost naladění nul diskriminátorů nejlépe ověříme tak, že posuzujeme odstín šedé plochy při současném vypínání barev tlačítkem na čelním panelu přijímače. Pokud se při zapnutí barev mění odstín šedé do červené nebo modrozelené barvy, je nepřesně nastaven diskriminátor R-Y. Mění-li se odstín do modré nebo žluté barvy, ne nepřesně nastaven diskriminátor B-Y. Při současné odchylce v nastavení obou demodulátorů je změna šedé příslušnou kombinací těchto barev.

Závady v dekódovacích obvodech

Na tomto místě jsou uvažovány závady nejen samotného modulu P, ale i závady v obvodech automatického přepínače (modul A) čl v příslušných doplňkových obvodech na základní signálové desce, neboť funkce všech těchto obvodů spolu úzce souvisí.

Při závadě v podání barev je výhodné se nejdříve přesvědčit, zda je optimálně naladěný přijímač a zda je reprodukce černobílého signálu při vypnutém kanálu barvy v pořádku. Nesprávým naladěním přijímače (např. vlivem špatně nastavených obvodů AFC) může být barvonosný signál v obrazovém signálu do značné míry znehodnocen. V takovém případě buď vyhodnotí obvody dekodéru přijímaný signál jako černobílý a barevný kanál se automaticky uzavře, nebo může být podání barev značně zkresleno.

Pokud máme k dispozici signál v normě Secam i PAL, je výhodné vyzkoušet, jakým způsobem se zjištěná závada projeví při zpracování signálu vysílaného v druhé normě. Protože většina obvodů je pro obě normy společná, můžeme touto jednoduchou zkouškou získat cenné informace o možném typu závady.

Je-li obraz na stínítku obrazovky zobrazen pouze černobíle, prověříme nejdříve správnost naladění přijímače a nastavení ovládacích prvků (vypínač barev, regulátor barevné sytosti).

Osciloskopem pak zkontrolujeme výstupní signál na vývodech 1 a 3 modulu P. Pokud zde demodulované signály R-Y a B-Y chybí, je závada skutečně v dekódovacích obvodech a nikoli v následujících obvodech obrazového kanálu. Pro první přibližné určení místa závady je výhodné zjistit, v jaké poloze přepnutí jsou obvody automatického přepínače systémů (modul A), tedy svítí-li dioda D₂ na tomto modulu či nikoli.

Je-li přijímaný signál v normě Secam, nesmí dioda D2 svítit. Pokud tedy dioda nesvítí, znamená to, že na vstup modulu A a tedy i na vstup modulu P je skutečně přiváděn signál Secam a obvody modulu A jej správně vyhodnotily. V tomto případě je tedy závada ve funkci modulu P. Svítí-li dioda, je buď vadný modul A, nebo není přiváděn signál Secam na jeho vstup. V tomto případě vyjmeme modul A, takže na jeho výstupu 7-A bude zaručeně napětí 0 V a dekodér bude trvale přepnut do systému Secam. Objeví-li se po vyjmutí modulu A na stínítku obrazovky barevný obraz, je závada pouze ve funkci modulu A. Je-li obraz i nadále černobílý, může být závada už v přívodu signálu k modulům A a P, nebo je současně vadný ještě i modul P.

Je-li přijímaný signál v normě PAL dioda D₂ na modulu A svítí, je dekodér přepnut na zpracování signálu v normě PAL. Tento stav přepínače je však klidový, tedy dekodér je do tohoto stavu přepnutý i tehdy, není-li na vstup modulů A a P přiváděn vstupní signál. Je tedy nutno ověřit osciloskopem přítomnost barvonosného signálu na vstupu modulu P (vývod 15-P). Jestliže je signál na vstupu modulu v pořádku. je závada v modulu P. Pokud dioda D2 na modulu A při příjmu signálu PAL nesvítí (na výstupu modulu není napětí +12 V), je vadný modul A. Modul vyjmeme a propojíme kontakty 3 a 7 zástrčky pro tento modul na základní desce. Na výstupní kontakt modulu A tak přivedeme trvale napětí +12 V a dekodér přepneme do provozu PAL. Pokud je obraz i nadále černobílý, je závada i v modulu P.

Závady modulu A

Při rozboru závad modulu A předpokládejme, že postupem podle předcházejících odstavců byl tento modul vytipován jako vadný, a že přiváděný vstupní signál a napájecí napětí modulu jsou v pořádku. V podstatě mohou nastat tři typy závad:

1. Přepnutí modulu do určité normy je nestabilní:

zkontrolujeme nastavení modulu. Ověříme správnost vyklíčování identifikačních impulsů Secam (zkontrolujeme šířku klíčovacího impulsu na vývodu 5 IO₁), prověříme naladění obvodu s cívkou L₁ a nastavení úrovně předpětí tranzistoru T₂ odporovým trimrem P₁.

2. Na výstupu modulu je trvale napětí +12 V:

na vstup TVP přivedeme signál Secam. Osciloskop připojíme na vývod 8 IO₁ (MB2). Není-li v tomto bodě demodulovaný identifikační signál, zkontrolu-

jeme správnost klíčovacích impulsů na vývodu 5 IO₁ (MB1), popř. ss napětí na vývodech IO₁. Je-li na výstupu IO₁ bez vstupního televizního signálu kladný impuls vzniklý detekcí šumu, je IO₁ v pořádku a je pouze rozladěný obvod s L₁. Pokud je demodulovaný identifikační signál na vývodu 8 IO₁ v pořádku, je závada v obvodech následujících za IO₁. Osciloskopem ověříme přítomnost signálu na bázi tranzistoru T₂ a změříme postupně ss napětí na vývodech následujících tranzistorů. Obvykle je vadný některý z tranzistorů T₂ až T₅.

Na výstupu modulu je trvale napětí
 V:

závada je v obvodech s tranzistory T_2 až T_5 . TVP odladíme na volný kanál nebo vyjmeme anténní přívod. Na vývodu \mathcal{B} IO₁ zkontrolujeme přítomnost kladných impulsů. Tranzistory T_2 , T_3 a T_4 musí být správně uzavřeny a tranzistor T_5 musí být sepnut. Ss voltmetrem ověříme napěťové poměry na jednotlivých tranzistorech. Z naměřených napětí snadno určíme vadnou součástku.

Závady modulu P

Závady v této části obvodů televizního přijímače můžeme rozdělit na dvě základní skupiny. Jednak jde o případ, kdy dekodér nepracuje vůbec, tedy obraz na obrazovce je černobílý. Do druhé skupiny závad patří případy, kdy je barevné podání nějakým způsobem zkresleno.

Předpokládejme opět, že vstupní signál modulu P i napájecí napětí jsou v pořádku. Pokud je obraz černobílý (na výstupech dekodéru je nulový signál), je v případě signálu Secam závada pravděpodobně v obvodech identifikace, u signálu PAL v obvodech pro zpracování SIB nebo v obvodech oscilátoru referenčního kmitočtu.

Nejdříve zkontrolujeme přítomnost a správnost průběhů snímkových a řádkových klíčovacích impulsů (kontakty 12 a 13 modulu P) v případě signálu Secam a řádkové klíčovací impulsy na vývodu 13 modulu v případě signálu PAL. Snímkové klíčovací impulsy musí být v tomto případě zkratovány tranzistorem T₁. Pokud některé z těchto impulsů nemají správný tvar či amplitudu, je závada v obvodech monostabilního klopného obvodu na základní desce (T₁₂₁, T₁₂₂) nebo v tvarovacím obvodu řádkových impulsy s tranzistorem T₁₃₁. Jsou-li řídicí impulsy v pořádku, je nutno hledat závadu přímo v obvodech modulu P.

Nejrychleji a zcela mechanicky lze nalézt a odstranit závadu překontrolováním funkce obvodů dekodéru postupně podle nastavovacího předpisu uvedeného v předchozích odstavcích. Tímto způsobem prověříme kvalitu zpracování signálu od vstupu dekodéru až po výstupy demodulovaných rozdílových signálů a přesně určíme místo závady jednoduše tím, že buď nelze požadovaný parametr nastavit, nebo příslušný signál chybí. Současně tak zkontrolujeme a případně opravíme nastavení dekódovacích obvodů.

Stejným způsobem lze postupovat i tehdy, je-li obraz reprodukován barevně, avšak reprodukce barev je zkreslená či rušena různými rušivými strukturami.

K usnadnění určení místa poruchy v dekódovacích obvodech jsou v závěru této kapitoly uvedeny běžné typy závad ve zpracování chrominančního signálu s odkazy na pravděpodobné příčiny závad. Tento přehled platí obecně pro

všechny typy dekodérů PAL/Secam.

(Pokračování)

NAPĚŤOVÁ SYNTÉZA

s aplikací elektronické programovatelné paměti

PRO ROZHLASOVÉ A TELEVIZNÍ PŘIJÍMAČE

Ing. Jiří Linha, ing. František Kopp

(Dokončení z AR B3/87)

Śpička 22 — vstup pro STOP/AFC. Této špičky je užíváno pouze při automatickém způsobu vyhledávání. Když je EPM v ručním způsobu činnosti, je tato špička vnitřně vyřazena z činnosti.

STOP/AFC je také vnitřně vyřazena z činnosti během změny programu po dobu trvání umlčovacího signálu. Tento vstup může mít tři rozdílné úrovně: velkou -(H), střední (M), malou (L). Střední úroveň, na rozdíl od ostatních tříúrovňových vstupů obvodu, není buzena vnitřně a má být určována externě v souhlase s doporučenými provozními podmínkami. Není-li tento vstup použit, má být spojen s U_{SS} (GND) nebo U_{DD2} .

Vstup má dvě rozdílné funkce závisející na tom, zda je systém ve vyhledávací či normální činnosti (řízení AFC).

A. Vyhledávací způsob: po stlačení tlačítka pro start vyhledávání přechody a úrovně signálů přicházejících z MDA4431, přiváděné na tuto špičku, řídí funkci vyhledávání a určují, kdy musí být vyhledávání zastaveno, tj. kdy byla rozpoznána TV stanice. Obvod pracuje v následujícím sledu (viz obr. 8, z něhož je patrna změna vyhledávací rychlosti na špičce 12):

1 — po stisknutí tlačítka pro start vyhledávání probíhá vyhledávání způsobem RYCHLE NAHORU, 2 — po dobu prvních 15 vyhledávacích kroků po startu vyhledávání jsou všechny úrovňové přechody přicházející z MDA4431 ingnorovány. Teprve po této době nastaví první úrovňový přechod z M — H získaný z MDA4431 za posledním M — L přechodem vyhledávání do způsobu STŘEDNĚ DOLŮ (1/4 RYCHLE NAHORU).

Přijetí zpoždění 15 vyhledávacích kroků bylo zavedeno, aby se zabránilo stavu, kdy by se systém mohl zastavit na předešlé stanici (např. v případě, že povel pro start vyhledávání byl dán právě před řídicím povelem pro AFC), 3 — následující přechod M — L přepne vyhledávání na rychlost POMALU NAHORU (67,7 Hz). Od tohoto okamžiku je systém v normální činnosti AFC.

B. Cinnost AFC: když je stanice dokonale naladěna, je vstupní signál přicházející z MDA4431 na střední úrovni.
Probíhá-li ladění níže, než je prahová
hodnota (pod 38,9 MHz), pak se napěťová úroveň na šp. 22 změní z M na
L a vnitřní 13bitový čítač je posouván
rychlostí POMALU NAHORU, aby tak
zajistil zvětšení ladicího napětí na varikapu. Když dojde k rozladění

v opačném směru, vstup "jde nahoru" a ladicí napětí se zmenšuje rychlostí POMALU DOLŮ (8,4 Hz)

Změny ladicího napětí jsou zastaveny, jakmile se vstup vrátí na úroveň M. Při běžné činnosti funguje tedy šp. 22 jako povel AFC.

C. Vyvolání z paměti: když je obvod automatickém způsobu činnosti dříve zapsaný program je vyvolán paměti, pevná hodnota 8 0,6 MHz na UHF a kolem 0,3 MHz na VHF III v té části mf časové odezvy, která odpovídá plně přenášenému postrannímu pásmu.

Od tohoto okamžiku probíhá činnost AFC tak, jak bylo popsáno v bodě B nahoře a přesného naladění je dosaženo asi za 0,2 s. V důsledku této vlastnosti může být zachycovací rychlost AFC zvětšena a požadavky na stabilitu tuneru, zdrojů referenčního napětí a stabilitu převodníku D/A jsou méně přísné.

V ručním způsobu činnosti je obsah paměti vyvolán beze změny.

Špičky 23, # 24, # 25, # 26 — výstupy pro buzení pásem. Na těchto výstupech je informace pro volbu pásma. Výstupy jsou realizovány tranzistory s otevřenými kolektory. Ve vodivém stavu je ten tranzistor, který přísluší právě zvolenému pásmu (obr. 87).

Obr. 87. Přepínání pásem

Šp. 23 = VHF I, šp. 24 = VHF III, šp. 25 = UHF, šp. 26 = AV. Špička 27 — výstup umlčovače. Během umlčovací činnosti má tranzistorový sledovač na výstupu velkou úroveň. Umlčení je přítomno v následujících případech:

- během automatického vyhledávání; umlčení je přítomno 110 ms před startem vyhledávání,
- během změny programu po dobu 320 ms; umlčení je aktivní 110 ms před tím, než dojde ke změně programu,
- zapnutí napájecího napětí $U_{\rm DD2}$ po dobu asi 320 ms,
- při vypnutí napájecího napětí U_{DD2}.

Špička 28 — a) automatický provoz: a) automatický provoz: start vyhledávání,

b) ruční provoz: vyhle-NAHORU/DOLŮ. dávání

Vstup má jednu ze tří úrovní, tj. normálně je na střední úrovni a výše zmíněné funkce jsou aktivovány, je-ll tato špička spojena s $U_{
m DD2}$ nebo GND. Vstup je držen na napětí odpovídající polovině napájecího napětí prostřednictvím vnitřního děliče, tvořeného dvěma rezistory (asi 1MΩ).

a) Automatický provoz

Je-li špička 28 krátce spojena s GND, startuje vyhledávání v pásmech VHF III a UHF, které jsou snímány postupně. Je-li špička spojena s $U_{
m DD2}$, hledání probíhá v pásmech VHF I a AV. Jestliže tlačítko zůstane stlačeno, jiné vyhledávání může být odstartováno pouze uvolněním tlačítka a jeho zapojením znovu s GND nebo $U_{\rm DD2}$.

Je-li dán povel pro start vyhledávání době, kdy systém je již v činnosti vyhledávání, hledání je okamžitě zastaveno a pak znovu nastartováno v nové skupině volených pásem; pásmo, kde systém bude hledat je to, které má stejnou vyhledávací rychlost jako při posledním vyhledávání. Během hledání se ladicí napětí mění od menšího k většímu. Vyhledávání je automaticky zastaveno, když je nalezena první stani-Vyhledávání je také zastaveno, kdykoli je dán povel pro změnu progra-

Když je dosaženo hořejší hranice ladicího napětí, vyhledávání znovu nastartuje od dolní hranice druhého pásma po 210 ms dočasného zastavení. Vyhledávací rychlost je určena členem RC, připojeným na šp. 12.

b) Ruční provoz

Je-li vstup spojen s $U_{\rm DD2}$, obsah vnitřního čítače je změněn takovým způsobem, aby se zvětšilo ladicí napětí na varikapu. Je-li vstup spojen s GND, ladicí napětí na varikapu se zmenšuje.

Vvhledávací rychlost je určena čle-

nem *RC*, připojeným na šp. *12*. Vyhledávací rychlosti rychlosti LE/POMALU je možno dosáhnout změnou téhož členu *RC* (obr. 88).

V ručním způsobu činnosti probíhá vyhledávání vždy v témže pásmu. Je-li dosaženo horní nebo dolní hranice ladicího napětí na varikapech v závislosti na stisknutém tlačítku (NAHORU-DOLŮ), ladění přejde skokem vždy na opačný konec ladicího rozsahu. Kroková voľba pásma je možná dočasným spojováním šp. 2 s UDD2.

Všeobecné informace

Pravidla pro přijetí povelu 1. Když je na šp. 2, 3, 28 dán ruční povel, je okamžitě uveden do chodu vnitřní čítač. Povel je přijat teprve po

Obr. 88. Změna vyhledávací rychlosti při ručním ladění

Tab. 17. Mezní údaje MDA4431

16 V.
16 V.
-5 až +6 V.
±1 mA.
2 mA.
2 mA.
±2 mA.
500 mW.
—40 až 150 °C.

Tab. 18. Elektrické údaje při doporučovaných provozních údajích (UDD = 12 V, 25 ℃)

Parametr	Měřeno při	
Rozsah napájecího napětí U _S (šp. 1)		min. 10,8, max. 14,5 V.
Napájecí proud / (šp. 1)	U _{DD} = 14,5 V	max. 30 mA.
Výstupní napětí U 2: velká úroveň	flad to	min. <i>U</i> _{DD} — 0,5 V,
střední úroveň	$f_{lad} = f_o$	min. 5,2, max. 8,5 V,
	$U_{\rm DD} = 10.8 \rm az 10.0 ms$	4,5 V
malá úroveň	fied fo	max. 0,8 V.
Výstupní proud /₂		max. ±20 μA.
Rozsah vstupního napětí U ₃		min. 4, max. 8 v.
Horní prahové парětí, U _{зн}		min. U_1 —20, typ. U_1 , max. U_1 +20 mV.
Dolní prahové napětí, U _{3L}		min U_1 — 420, typ. U_1 — 400, max. U_1 — 380 mV.
Vstupní odpor, R ₃	$U_3 = U_4$	min. 1,4 MΩ.
Stabilizované napětí, U ₄		typ. 6,6 V.
Výstupní proud, / 4		max. 1 mA.
Výstupní vnitřní odpor, R ₄		max. 60 Ω.
Stabilizované napětí $\frac{\Delta U_4}{\Delta T_1}$ teplotní nestabilita,		max. ±2 mV/°C.
Výstupní indentifikační napětí, U 10	/ ₁₀ = 1 mA	min. <i>U</i> _{DD} — 1 V.
Výstupní rezistence, R ₁₀		typ. 100 Ω.
Prahová hodnota spínacího napětí, U 12		max. 1 V.
Vstupní proud impulsů zpět. běhu, / 12		min. 0,5, max. 1,5 mA.
Vstupní rezistence, R ₁₂	•	typ. 10 Ω.
Doba zpoždění mezi šestupnou hranou impulsu zpětného běhu a synchron impulsem		min. 0, max. 3,5 μs.
Vstupní obraz. signál, U 13mv		min. 2,5, max. 4,5 V.
Amplituda synchronizačních impulsů (k úrovni černé)		min. 0,52 V.
Vstupní rezistence, R ₁₃		max. 15 kΩ.

31 ms jeho plynulého výskytu. Zmizí-li povel dříve (např. v důsledku zakmi-távání kontaktu), čítač je okamžitě přednastaven do výchozí polohy. Když byl povel přijat, žádný jiný ruční povel není přijat, dokud předchozí povel není

vvbaven.

2. Povely pro změnu programu jsou přijaty okamžitě a je-li obvod v automatickém způsobu vyhledávání, je vyhledávání zastaveno. Při ručním provozu nejsou příkazy dané během vykonávání změny programu přijaty s výjimkou povelu pro start automatického vyhledávání.

3. Během cyklu ukládání do paměti jsou přijímány pouze povely pro změnu programu a start vyhledávání a jsou provedeny na konci cyklu. Ostatní povely jsou ignorovány.

MDA4431 — citlivý obvod pro identifi-kaci TV signálu a interface AFC

MDA4431 je monolitický integrovaný křemíkový obvod se 14 vývody (obr. 89) ve dvou paralelních řadách v plastikovém pouzdře. Soustřeďuje v sobě následující funkce (viz obr. 11):

- identifikace TV signálu,
- synchronizační oddělovač.
- prahový detektor,
 číslicový interface,
- napěťový stabilizátor.

Obr. 89. Zapojení vývodů MDA4431

Obr. 90. Aplikační zapojení MDA4431

ňuje nabíjením kondenzátoru, připojeného na šp. 5; překročí-li napětí na kondenzátoru pevnou prahovou hodnotu napětí, Schmittův obvod sepne a uvede v činnost řízení AFC. Jestliže je rozpoznán TV signál, kondenzátor je nepatrně nabíjen každým řádkem a jeho napětí dosáhne prahové hodnoty po takovém počtu řádků, který je určen kapacitou tohoto kondenzátoru. Po takto stanoveném počtu řádků, potřebných k nabití kondenzátoru, lze citlivost identifikačního obvodu nastavit rezistorem, zapojeným mezi šp. 11

Identifikační signál je k dispozici na šp. 10.

Prahový detektor

Obvod zjišťuje tři rozsahy napětí AFC a v kombinaci s obvodem pro identifikaci TV signálu budí elektronické spínače. Při správném TV signálu jsou výstupní úrovně odpovídající třem rozsahům výstupního napětí (obr. 25):

Literatura

Data book SGS Ates: MOS AND SPE-CIAL COS/MOS, první vydání. Technical note 134, SGS ATES.

Technical note 135, SGS ATES.

Kopačka, J.; Kopp, F.: Digitalizace ovládacích obvodů rozhlasových a televizních přijímačů (studijní zpráva TESLA VÚSTÍ

Technické zprávy TESLA Rožnov předběžné údaje.

Firemní literatura TESLA Rožnov.

Opravy k AR B1/87

Prosíme, opravte si (nebo doplňte) v AR B1/87:

- na str. 5 chybí v diagramu kružnice, procházející body 0,5 a 2,0 na reálné (svislé) ose, se středem v bodě 1;
- vztah (42) na str. 12 je třeba uvažovat se záporným znaménkem (jde o útlum);
- na str. 14 k rozpisce součástek: C₁₁ = C₁, C₃, C₆, C₁₂ = C₂ nebo 1,5 nF, TK 725, 744; na str. 17 a 16, k obr. 35 a 38: cívka
- L₁ má 1,5 z drátu CuL o ø 0,5 mm na ø 3 mm;
- na str. 21 ve vztahu (64) má být poslední výraz v rovnici nikoli // λ, ale 1/λ; ve vztahu (67) má být místo $\sin^2 2\pi \frac{I}{X}$ správně $\sin^2 2\pi \frac{X}{I}$;
 - přitom rovnice (62), (63), a (64) platí pro kapacitně nezkrácené vedení; ve vztahu (56) místo 1/2π správně
- na str. 25 ve vztahu (72) má být místo
- Z_1+Z_2 správně Z_1Z_2 :

 na str. 34 cívky L_1 , L_2 v rozpisce součástek mají mít 2 1/2 závitu a konečně
- graf na obr. 134 (str. 38) nahraďte následujícím obrázkem.

Je určen pro ladicí systémy s EPM ve spojení s MHB193, provádí identifikaci pouze TV stanic, má malou vstupní impedanci identifikovaného signálu, poskytuje číslicový řídicí signál pro automatické vyhledávání a pro činnost AFC. Napěťový stabilizátor je teplotně kompenzován (tab. 17 a 18).

Aplikační informace (obr. 90)

Obvod pro identifikaci TV signálu Obvod rozeznává pouze signály TV logickým zkoušením negativních průchodů impulsů detekovaných synchronizačním oddělovačem během jednoho řádku. Identifikace signálu se uskuteč-

kmitočet	výstupní napětí <i>U</i> ₂
$f_{\circ} - \Delta f$	malá úroveň
f_{o}	střední úroveň
$f_{o} + \Delta f$	velká úroveň

Výstupní napětí zůstává na střední úrovni, není-li na vstup přiveden žádný TV signál nebo nemůže-li být obrazový signál identifikován jako TV signál.

Napěťový stabilizátor

Obvod může dodávat proud 1 mA a může být užit jako referenční převodník D/A pro napájecí zdroj napětí pro jemné ladění.

Inzerci přijímá osobně a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce ARB), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 22. 5. 1987, do kdy jsme

MEZINÁRODNÍ A MEZIMĚSTSKÁ TELEFONNÍ A TELEGRAFNÍ ÚSTŘEDNA v Praze 3. Olšanská 6

přijme

výzkumné a vývojové pracovníky se zaměř. na měřicí a kontrolní činnost v oboru spoj. systémů II. až IV. generace.

Odbor. znalosti: sděl. elektrotechnika po vedeních Vzděl.: VŠ + praxe Plat. zařaz. podle ZEUMS II, tř. 10—13 la

Pro mimopražské pracovníky zajistíme ubytování.
Poskytujeme náborové výhody.

Informace osobně, písemně i telefonicky na č. tel. 714 41 64, 27 28 53.

museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

Fotokopie kompletních servisních manuálů komunikačních přijímačů vč. dodatků nebo jen schéma zapojení a plány osazení tišť. spojů — Sony CRF — 320 (350, 150), Sony ICF7600D (300, 150), schéma zapojení a umístění seřiz. prvků — Grundig Sattelitt 2000 (100), SSB + RF Gain + Filtr 1000 Hz jednotka (100). Možno též vše za malý FM20 — 200 MHz či podobný. J. Frendlovský, Skelná 51, 466 00 Jablonec nad Nisou.

DRAM 4116 — **200 ns** (65), kúpim 8251, 74LS240, -244, -245, -377, -373, -374. M. Kovalčík, Astronautická 31, 040 01 Košice.

Elektronika C430 — 2, moduly, ZMF, OMF, Vn, VHF, RGB, senzor., atd, (90, 250, 450, 300, 300, 400), konc. zes. TW040 (700). J. Sulc, Jiráskova 1018, 763 61 Napajedla.

Šach. senzor. computer (1300), TV hry s AY-3-8500 (450). J. Podzemský, Na Marsu 1073, 252 28 Černošice.

ICL7106 + LCD, zákl. modul, ICL7208, MK50395 prog. 6 dek. UP/DOWN s reg. bud. LED (dig. vstup), ICL8038, tov. spín. reg. zdroj IN11-33 V DC, OUT 5 V, 3 A, 5 V, 6 A, úč. 84 % (500, 360, 700, 300, 600, 800). P. Novák, Lesná 289, 811 04 Bratislava.

Sovětský osciloskop H313 (2500), nový nepoužitý. F. Beránek, Tylova 2081, 436 01 Litvínov.

Antény zosilovač I.—V. pásmo, 2× BFR91, 25 dB (500). Ing. Paštrnák, Majerský rad 71, 963 01 Krupina.

Dram 256 k, Eprom 64 k (à 345, à 645). I. Sidiropulos, Mitušova 71, 705 00 Ostrava 3.

KOUPĚ

IO XR 2206, B260D, A281D, C520, D146, D147, MC1350, MC10116 (10216), MC10131 (10231), K500TM131 (231) K100TM131 (231), C-MOS (čítače, dekodéry atd), mf filtry 455 kHz, krystaly z RM31 i jiné, výkonové vf tranzistory (KV, VKV, UKV), objímky pro elektronky OS51, GU50, GU29 a 6L50, krystal 35,0 MHz, RM31, ant. díl RM31, různé LED, ferit. toroidy i větších ø, literaturu o mikropočítačích. Vítězslav Valtr, Míru 772, 382 41 Kaplice.

Osciloskop — továr. přenos. do 8 MHz, trychtýřový reproduktor — do r. v. 1927. V. Hlavatý, Pražská 199, 278 01 Kralupy IV.

MC10131P, MHB4013, 4011, 4518, 4024, 4029, 4311, krystal 100 kHz, 10,245 MHz, KSY81, BFQ65. M. Chlápek, Mojmírovců 1248, 709 00 Ostrava 1.

Časť, resp. celé zar. na príj. druž. TV 10,9—12,6 GHz, príp. kto za odmenu pomôže? Za hlavicu dám dve paraboly (ø 2 až 2,5 m), resp. dva tunery do zar. J. Národa, Lúčna 6, 984 01 Lučenec, tel. 229 57.

VÝMĚNA

Osazené desky na JPR 1 (procesor, AND 1, trafa na zdroje, sběrnice, klávesnice, 16 ks 4116, 16 ks 2114) za soustruh nebo prodám a koupím i jednotlivě. Jen písemně. L. Bláha, Budovatelská 907, 674 01 Třébíč.

RŮZNÉ

Kdo přestaví výstup a příjem v zakoupeném rad. vysílači k ovládání let. modelů? M. Sembol, PS — 74, 708 00 Ostrava-Poruba.

Desky s plošnými spoji radioamatérům

Drobné provozovny Čeladná se sídlem v Ostravě Vítkovicích, Lidická č. 24, PSČ 703 00, budou zhotovovat desky s plošnými spoji, které vyjdou v AR počínaje číslem 7/1987. Desky s plošnými spoji budou dodávány ihned po vyjití AR proti zaslané objednávce. Objednávka musí obsahovat:

 a) přesnou adresu objednatele včetně PSČ,

b) označení desky a číslo AR, v němž deska vyšla,

c) počet kusů.

Desky bude provozovna dodávat s povrchovou úpravou lakováním, případně stříbřením (je třeba uvést v objednávce) a s vyvrtanými děrami. Za správnost desek s plošnými spoji ručí jejich autoři.

Vzhledem k tomu, že dosud nikdo nevyrábí desky s plošnými spoji na přijímač FM MINI, jehož popis byl uveřejněn v AR A9, A10, A11/1986, budeme dodávat i tyto desky, a to ihned po vyjití tohoto čísla AR. Toto upozornění platí především pro ty čtenáře AR, kteří si desky objednávali u svazarmovské výrobny desek v Hradci Králové. Budete-li si objednávat desky na přijímač FM MINI, neopomeňte uvést, kterou z desek číslicové stupnice objednáváte (byly uveřejněny dvě varianty).

Drobné provozovny Čeladná