

Large Language Model(LLM)

Transformer & BERT

Artificial Intelligence Project

SWE3032-41 Prof. Hogun Park TA Jiwon Jeong

Table of Contents

Part 1

- Language Model

Part 2

- Transformer

Part 3

- BERT

Part 4

- References

Part 1

Language Model

Introduction

- Language Model is a model that represents the probability of a sentence
 - Predict the <u>probability of occurrence of the sentence</u> itself
 - A model to <u>predict the next word</u> given the previous words
- 버스 정류장에서 방금 버스를 OOO.
 - 사랑해
 - 고양이
 - 굿바이
 - 큰일남
 - 놓쳤다

Objective:

- $\bullet \quad D = \{x^i\}_{i=1}^N$
- $\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log P(x_{1:n}^i; \theta)$, where $x_{1:n} = \{x_1, \dots, x_n\}$.

Chain Rule:

We can convert joint probability to conditional probability.

$$P(A, B, C, D) = P(D|A, B, C)P(A, B, C)$$

= $P(D|A, B, C)P(C|A, B)P(A, B)$
= $P(D|A, B, C)P(C|A, B)P(B|A)P(A)$

By Chain Rule,

• We can re-write the equation,

$$egin{aligned} P(x_{1:n}) &= P(x_1, \cdots, x_n) \ &= P(x_n | x_1, \cdots, x_{n-1}) \cdots P(x_2 | x_1) P(x_1) \ &= \prod_{i=1}^n P(x_i | x_{< i}) \end{aligned}$$

$$\log P(x_{1:n}) = \sum_{i=1}^N \log P(x_i|x_{< i})$$

By Chain Rule,

• We can re-write the Objective,

$$egin{aligned} \mathcal{D} &= \{x^i\}_{i=1}^N \ \hat{ heta} &= rgmax \sum_{ heta \in \Theta}^N \sum_{i=1}^N \log P(x_{1:n}^i; heta) \ &= rgmax \sum_{ heta \in \Theta}^N \sum_{j=1}^n \log P(x_j^i | x_{< j}^i; heta) \ & ext{where } x_{1:n} &= \{x_1, \cdots, x_n\}. \end{aligned}$$

Using Language Model

- Pick better(fluent) sentence
- Predict next word given previous words.

$$\hat{x_t} = rgmax \log P(\mathrm{x}_t | x_{< t}; heta) \ _{\mathrm{x}_t \in \mathcal{X}}$$

Part 2

Transformer

Attention is all you need

Attention is all you need

A Vaswani, N Shazeer, N Parmar... - Advances in neural ..., 2017 - proceedings.neurips.cc

- ... to attend to all positions in the decoder up to and including that position. We need to prevent
- ... We implement this inside of scaled dot-product attention by masking out (setting to -∞) ...

☆ 저장 꾀 인용 92585회 인용 관련 학술자료 전체 62개의 버전 ≫

Figure 1: The Transformer - model architecture.

A High-Level Look

- The encoding component is a stack of encoders
- The decoding component is a stack of decoders of the same number

Self-Attention at a High Level

- Input sentence to translate :
 - "The animal didn't cross the street because it was too tired"
- What does "it" in this sentence refer to? Street or animal?
 - Simple question to a human but not as simple to an algorithm
- Self attention allows it to look at other positions in the input sequence for clues that can help lead to a better encoding for this word.
- Self-attention is the method the Transformer uses to bake the "understanding" of other relevant words into the one we're currently processing.

Self-Attention Example

Multi-Head Attention

Masked Multi-Head Attention

• Do not need to be done sequentially, but can be done at one batch

	Features				Labels
position: 1		2	3	4	
Example:	robot	must	obey	orders	must
2	robot	must	obey	orders	obey
3	robot	must	obey	orders	orders
4	robot	must	obey	orders	<eos></eos>

Masked Multi-Head Attention

Keys

Scores (before softmax)

Queries

robot must	obey	orders
------------	------	--------

Scores (before softmax)

0.11	0.00	0.81	0.79
0.19	0.50	0.30	0.48
0.53	0.98	0.95	0.14
0.81	0.86	0.38	0.90

Apply Attention Mask

Masked Scores (before softmax)

0.11	-inf	-inf	-inf
0.19	0.50	-inf	-inf
0.53	0.98	0.95	-inf
0.81	0.86	0.38	0.90

Masked Scores (before softmax)

0.11	-inf	-inf	-inf
0.19	0.50	-inf	-inf
0.53	0.98	0.95	-inf
0.81	0.86	0.38	0.90

Softmax (along rows)

Scores

1	0	0	0
0.48	0.52	0	0
0.31	0.35	0.34	0
0.25	0.26	0.23	0.26

The Decoder side

The Decoder side

Part 3

BERT

BERT : Bidirectional Encoder Representations from Transformer

- Designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers
 - Masked language Model(MLM): bidirectional pre-training for language representations
 - Next sentence prediction(NSP)

• Pretrained BERT model can be fine-tuned with just one additional output layer to create SOTA models for a wide range of NLP task(QA, NER, Sentiment Analysis, etc.)

BERT : Bidirectional Encoder Representations from Transformer

• BERT : Input/Output Representations

BERT: Bidirectional Encoder Representations from Transformer

- Pre-training BERT
 - ✓ Task 1 : Masked Language Model(MLM)
 - (Problem) A mismatch occurs between pre-training and fine-tuning, since the [MASK] token does not appear during fine-tuning
 - (Solution) If the *i*-th token is chosen, we replace the *i*-th token with
 - 1) The [MASK] token 80% of the time
 - The man went to the store -> The man went to the [MASK]
 - 2) A random token 10% of the time
 - The man went to the store -> The man went to the dog
 - 3) The unchanged i-th token 10% of the time
 - The man went to the store -> The man went to the store

BERT : Bidirectional Encoder Representations from Transformer

- Pre-training BERT
 - ✓ Task 2 : Next Sentence Prediction(NSP)
 - Many important downstream task such as QA and NLI are based on understanding the relationship between two sentences, which is not directly captured by language modeling
 - A binarized next sentence prediction task that can be trivially generated from any monolingual corpus is trained
 - 50% of the time B is the actual next sentence that follows A (IsNext)
 - 50% of the time it is a random sentence from the corpus (NotNext)
 - C(CLS's hidden vector) is used for next sentence prediction
 - Despite its simplicity, pre-training towards this task is very beneficial both QA and NLI

BERT : Bidirectional Encoder Representations from Transformer

Pre-training BERT

BERT: Bidirectional Encoder Representations from Transformer

Fine-training BERT

Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.

References

References

- https://jalammar.github.io/illustrated-transformer/
- https://jalammar.github.io/illustrated-gpt2/
- https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
- https://wikidocs.net/115055

Thank you..!!!!!

Thank you for listening.
Tell us if you have any questions jwjw9603@g.skku.edu

성균관대학교