Quantum Mechanics - Griffiths, David J

The Wave Function 1

1.1

For the distribution of ages in section...

1.2

a) Find the standard deviation...

Gaussian distribution

Consider the Gaussian distribution...

a)
$$\sqrt{\frac{\lambda}{\pi}}$$

b)
$$\langle x \rangle = a, \langle x^2 \rangle = \frac{1}{2\lambda} + a^2, \sigma^2 = \frac{1}{2\lambda}$$

c) a smooth gentle hump centered at a

Triangle wavefunction

At time t=0 a particle is represented by...

a)
$$A = \frac{2}{b}$$

c) ??

Delta potential 1.5

Consider the wave function...

a)
$$A = \sqrt{\lambda}$$

b)
$$\langle x \rangle = 0, \langle x^2 \rangle = \frac{1}{2\lambda^2}$$

b)
$$\langle x \rangle = 0, \langle x^2 \rangle = \frac{1}{2\lambda^2}$$

c) $\sigma = \frac{\sqrt{2}}{2} \frac{1}{\lambda}, \Pr(|x| > \sigma) = e^{-\sqrt{2}}$

1.6

1.7

1.8

Gaussian wavefunction

A particle of mass m is in the state...

a)
$$A^2 = \sqrt{\frac{2am}{\pi \hbar}}$$

b)
$$V = 2a^{2}mx^{2}$$

a)
$$A^2 = \sqrt{\frac{2am}{\pi\hbar}}$$

b) $V = 2a^2mx^2$
 $c)\langle x \rangle = 0, \langle x^2 \rangle = \frac{\hbar}{4am}, \langle p \rangle = 0, \langle p^2 \rangle = am\hbar$
d) $\sigma_x^2 \sigma_p^2 = \frac{\hbar^2}{4}$

d)
$$\sigma_x^2 \sigma_p^2 = \frac{\hbar^2}{4}$$

1.10

1.11

1.12

1.13

1.14 Probability current

Let $P_{ab}(t)$ be the probability of finding...

a) ?? b) 0

1.15 Unstable particle

Suppose you wanted to describe an unstable particle...

a) ?? b) $P = P_0 e^{-(2\Gamma/\hbar)t}$

1.16

Done

Quadratic wavefunction 1.17

A particle is represented (at time t = 0) by the...

a) $A^2 = \frac{15}{16a^5}$ b) $\langle x \rangle = 0$

c) $\langle p \rangle = 0$

d) $\langle x^2 \rangle = \frac{A^2 a^7 16}{105}$ e) $\langle p^2 \rangle = \frac{8}{3} \hbar^2 A^2 a^4$ f,g,h) $\sigma_x^2 \sigma_p^2 = \hbar^2 \frac{5}{2}$

1.18 Quantum mechanical systems

In general, quantum mechanics is relevant...

The time-independent Schrödinger equation $\mathbf{2}$

2.1

Prove the following three theorems...

Show that E must exceed the minimum value of V(x)...

Done

2.3

Show that there is no acceptable solution to the...

Done

2.4 Uncertainty [ISW]

Calculate $\langle x \rangle, \langle x^2 \rangle, \dots$ for the *n*th stationary state...

$$\begin{split} \langle x \rangle &= a/2 \\ \langle x^2 \rangle &= a^2 \left(\frac{1}{3} + \frac{1}{2n\pi} \right) \\ \langle p \rangle &= 0 \\ \langle p^2 \rangle &= \frac{\hbar^2 n^2 \pi^2}{a_x^2} \\ \sigma_x^2 &= a^2 \left(\frac{1}{12} + \frac{1}{2n\pi} \right) \\ \sigma_x^2 \sigma_p^2 &= \hbar^2 \pi^2 \left(\frac{n^2}{12} + \frac{n}{2\pi} \right) \end{split}$$

2.5 Oscillating particle [ISW]

A particle in the infinite square well has as its initial wave function an even mixture of the first two...

a)
$$A = \frac{\sqrt{2}}{2}$$

b) $\psi(x,t) = \frac{\sqrt{a}}{a} \left(\sin(\frac{\pi x}{a}) e^{-i\pi^2 \hbar/2ma^2} + \sin(\frac{2\pi x}{a}) e^{-4i\pi^2 \hbar t/2ma^2} \right)$, $|\psi|^2 = \frac{1}{a} \left(\sin^2 \frac{\pi x}{a} + \sin^2 \frac{2\pi x}{a} + 2 \sin \frac{\pi x}{a} \sin \frac{2\pi x}{a} \cos \frac{3\pi^2 \hbar}{2ma^2} t \right)$
c) $\langle x \rangle = \frac{a}{2} - \frac{16a}{9\pi^2} \cos 3\omega t$
d)? e)?

2.6 [ISW]

Although the overall phase constant of the wave function...

2.7 Triangular wave function [ISW]

A particle in the infinite square well has the initial wave function...

$$\begin{array}{l} \langle x \rangle = \frac{a}{2}, \, \langle x^2 \rangle = \frac{2}{7}a^2, \, \sigma_x^2 = \frac{5}{14}a^2 \\ \langle p \rangle = 0, \, \langle p^2 \rangle = \frac{10\hbar^2}{a^2} \end{array}$$