New Tricks

Analysing response time distributions with the ex-Gaussian and shifted Wald

New Tricks Internal Seminar

Mark Hurlstone Lancaster University

June 3, 2021

Outline

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean RT

Mean RT
Statistical

ex-Gaussia Shifted Wal

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fit

Application Example

- Response time (RT) as a dependent measure
- Problems with conventional analysis of mean RT
- Probability functions for representing RT distributions:
 - ex-Gaussian
 - Shifted Wald
- How to fit probability functions to RT data:
 - conceptual overview
 - RT-Distrib-Fit program for MATLAB
- Application example
- Caveats regarding interpretation of distribution parameters

Response Times (RT)

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussian Shifted Walk

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- Response time (RT) is a popular dependent measure in cognitive psychology
- Long history and rich tradition (e.g., Donders, 1868; Luce, 1986; Ratcliff, 1978; Sternberg, 1969; Wundt, 1880)
- Spawned several sophisticated sequential sampling models of choice RT (e.g., Ratcliff, 1978; Brown & Heathcote, 2005, 2008; Logan et al., 2014; Usher & McClelland, 2001)
- Detailed analyses of empirical RTs provide powerful constraints for choosing between cognitive models (Farrell & Lewandowsky, 2004; Hurlstone & Hitch, 2015, 2018)

Mean RT (M_{RT})

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean RT

Statistical

Models ex-Gaussia Shifted Wal

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- In empirical studies of RT, mean RT, M_{RT} , is the dominant measure of performance
- Faster M_{RT} in condition A than condition B implies more efficient cognitive processing in condition A
- Thus, M_{RT} is a measure of performance—lower M_{RT} implies better performance
- However, some researchers have abandoned this approach in favour of more detailed distributional analyses
- Motivated by many problems associated with analysis of M_{RT} (e.g., Heathcote et al., 1991)

Problems With M_{RT} : Skewed Data

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With

Mean RT

Statistical Models

ex-Gaussia Shifted Wa

Fitting

PDF Functions

Objective Function

Using RT-Distrib-Fit

Application

Cavea

Problems With M_{RT} : Skewed Data

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussiar Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fit

Application Example

- Two possible implications of skewed data (Heathcote et al., 1991):
 - 1 the cognitive process of interest yields skewed data
 - 2 the cognitive process of interest yields symmetrical data—skew reflects nuisance variables
- If (1) is true, then an analysis of distribution shape, not M_{RT}, is required
- If (2) is true, then nuisance scores must be removed
- Most researchers assume (2) is true and trim or transform their data

Problems With M_{RT}

New Tricks

Problems With

Mean RT

- Data trimming
- 2 Data transformation
- 3 Data representation

Problems With M_{RT}

New Tricks

Problems With

Mean RT

- Data trimming
- 2 Data transformation
- 3 Data representation

Problems With M_{RT} : Data Trimming

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussian Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fit

Application Example

Caveate

- Addressing skew by trimming data to eliminate extreme (presumed to be nuisance) values
 - removing trials with an RT above a fixed value
 - removing trials with an RT more than a fixed number of standard deviations (typically 2.5) from the mean
- Creates a distribution closer to normal
- It is reasonable to trim post-error trials and when a participant is known to have been distracted
- But trimming on basis of a trial's value is a brutal response to managing skew that "risks throwing the baby out with the bath water" (Heathcote et al., 1991, p.341)

Problems With M_{RT}

New Tricks

Problems With

Mean RT

- Data trimming
- 2 Data transformation
- 3 Data representation

Problems With M_{RT}

New Tricks

Problems With

Mean RT

- Data trimming
- 2 Data transformation
- 3 Data representation

Problems With M_{RT} : Data Transformation

New Tricks

Problems With Mean RT

- Addressing skew using a data transformation (e.g., logarithm) of RT)
- Normalises the distribution by discounting extreme (presumed to be nuisance) values
- If skew is produced by a nuisance process, discounting must be done in proportion to the N data points produced by that process
- Failure to do so means rescaled data may misrepresent the cognitive process of interest
- Transformations are misleading and discard valuable information

Problems With M_{RT}

New Tricks

Problems With

Mean RT

- Data trimming
- 2 Data transformation
- 3 Data representation

Problems With M_{RT}

New Tricks

Problems With

Mean RT

- Data trimming
- 2 Data transformation
- 3 Data representation

Problems With M_{RT} : Data Representation

New Tricks

Problems With Mean RT

- When a distribution is skewed, the mean misrepresents central tendency—it gives extreme values too much weight
- A partial solution is to use median RT instead
- But when data are skewed, the mean, median, and mode do not converge—the concept of central tendency is ambiguous
- Central tendency is only meaningful for symmetrical distributions
- The analysis of means is misleading

New Tricks

m.hurlstone@ lancaster.ac.u

Outline

Response Time (RT)

Problems With Mean RT

Statistical Models

ex-Gaussia Shifted Wa

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- The analysis of entire distributions of RT solves the problems with M_{RT}
- Preserves all information and provides clear description of behaviour
- Avoids mischaracterising central tendency
- Can detect changes across manipulations not possible with M_{RT} (e.g., an increase in skew or a shift in the distribution)
- But we need a statistical model to describe the distribution

New Tricks

Statistical Models

- The two statistical models that have proved most popular are:
 - ex-Gaussian
 - Shifted Wald

New Tricks

ex-Gaussian

- The two statistical models that have proved most popular are:
 - ex-Gaussian
 - Shifted Wald

New Tricks

ex-Gaussian

- Convolution of a Gaussian and an exponential distribution
- Three parameters:
 - μ and σ , the mean and standard deviation of the Gaussian component
 - τ, the mean of the exponential component
- Roughly, μ and σ reflect the leading edge of the distribution
- au reflects the upper tail
- Has a positively skewed unimodal shape
- Provides excellent fit to BT distributions

New Tricks

m.hurlstone@ ancaster.ac.ul

Outline

Response Time (RT)

Problems With

Mean RT

Models ex-Gaussian

ex-Gaussia Shifted Wa

PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-F

Application Example

Taken from Matzke & Wagenmakers (2009)

New Tricks

ex-Gaussian

 The probability density function (henceforth, 'PDF') of the ex-Gaussian is given by:

$$f(x|\tau,\mu,\sigma) = \frac{1}{\tau} \exp\left(\frac{\mu}{\tau} + \frac{\sigma^2}{2\tau^2} - \frac{x}{\tau}\right) \Phi\left(\frac{x - \mu - \sigma^2/\tau}{\sigma}\right), \tag{1}$$

- where Φ is the cumulative density of the Gaussian component
- Its mean and variance are:

$$E(x) = \mu + \tau \tag{2}$$

and

$$Var(x) = \sigma^2 + \tau^2 \tag{3}$$

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Statistical

Models ex-Gaussian Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- Hohle (1965) proposed the ex-Gaussian reflects the duration of two successive components of cognitive processing
- Gaussian component reflects "the time required for organization and execution of the motor response" (transduction component)
- Exponential component reflects "the decision and perceptual portion of an RT" (decision component)
- This interpretation has been challenged repeatedly (see e.g., Luce, 1965; Matzke & Wagenmakers, 2009; McGill & Gibbon, 1965)

New Tricks

m.hurlstone@ lancaster.ac.u

Outline

Response Time (RT)

Problems With Mean RT

Statistical

IVIOCICIS ex-Gaussian Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- The ex-Gaussian does not have a plausible theoretical rationale
- The Gaussian component assigns positive probabilities to negative RTs
- It does not correspond to a plausible cognitive process model
- "Although the ex-Gaussian model describes RT data successfully, it does so without the benefit of an underlying theory" (Heathcote et al., 1991, p.346)

New Tricks

ex-Gaussian

- The two statistical models that have proved most popular are:
 - ex-Gaussian
 - Shifted Wald

New Tricks

ex-Gaussian

- The two statistical models that have proved most popular are:
 - ex-Gaussian
 - 2 Shifted Wald

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean BT

Mean RT

ex-Gaussian

Shifted Wal

PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

Caveats

 The Wald (1947) distribution is the finishing time distribution of a Wiener diffusion process towards a boundary

Taken from Matzke & Wagenmakers (2009)

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Statistical

Models ex-Gaussian Shifted Wald

Fitting
PDF Functions
Objective Function

Using RT-Distrib-Fit

Application Example

- The Wald distribution has two parameters:
 - γ , reflecting the drift rate of the diffusion process
 - α , reflecting the separation between the diffusion starting point and boundary
- In the RT context, a third parameter, θ is included that shifts the location of the distribution
- Has a positively skewed unimodal shape
- Provides excellent fit to RT distributions

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With

Mean RT

Models ex-Gaussia

ex-Gaussian Shifted Wald

Fitting
PDF Functions
Objective Function

Using RT-Distrib-F

Application Example

Taken from Matzke & Wagenmakers (2009)

New Tricks

Shifted Wald

The PDF of the shifted Wald is given by:

$$f(x|\alpha, \theta, \gamma) = \frac{\alpha}{\sqrt{2\pi(x-\theta)^3}}$$

$$\exp\left(-\frac{[\alpha - \gamma(x-\theta)]^2}{2(x-\theta)}\right),$$
(4)

where $x > \theta$, its mean and variance are:

$$E(x) = \theta + \alpha/\gamma \tag{5}$$

and

$$Var(x) = \alpha/\gamma^3 \tag{6}$$

New Tricks

Shifted Wald

- Shifted Wald has a cognitive interpretation
- People accumulate noisy information from the environment until a threshold amount is reached and a response initiated
- Drift rate γ reflects task difficulty or participant ability
- Response criterion α reflects response caution
- Shift parameter θ reflects nondecision time

Fitting the ex-Gaussian and Shifted Wald to RT Distributions

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussiar Shifted Wald

Fitting PDF Functions Objective Function Search Algorithm

Using RT-Distrib-F

Application Example

Caveat

Next ...

- Guide to how to fit probability functions to RT distributions
- RT-Ditrib-FIT: a MATLAB toolbox for fitting the ex-Gaussian and shifted Wald
- https://github.com/mark-hurlstone/RT-Distrib-Fit
- R toolbox forthcoming

Fitting the ex-Gaussian and Shifted Wald to RT Distributions

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With

Mean RT

Models ex-Gaussian Shifted Wald

Fitting
PDF Functions
Objective Function

Using RT-Distrib-Fi

Application Example

- Fitting probability functions to RT distributions requires at least three functions:
 - 1 functions implementing the ex-Gaussian PDF and shifted Wald PDF
 - a function implementing the computation of the objective function
 - 3 a search algorithm to find best-fitting parameter values

Fitting the ex-Gaussian and Shifted Wald to RT Distributions

New Tricks

PDF Functions

 Fitting probability functions to RT distributions requires at least three functions:

- functions implementing the ex-Gaussian PDF and shifted Wald PDF
- a function implementing the computation of the objective function
- a search algorithm to find best-fitting parameter values

Distribution Functions

New Tricks

PDF Functions

- Functions are required for implementing the ex-Gaussian (equation 1), and shifted Wald (equation 4) PDFs
- RT-Ditrib-Fit contains two PDF functions:
 - f = exGaussPdf(parms,x)
 - f = shiftWaldPdf(parms,x)
- where f returns the PDF of the relevant distribution, parms is a vector of distribution paramater values $(\tau,\mu,\sigma \mid \alpha,\theta,\gamma)$, and x is a data vector of empirical RTs

Fitting the ex-Gaussian and Shifted Wald to RT Distributions

New Tricks

PDF Functions

 Fitting probability functions to RT distributions requires at least three functions:

- functions implementing the ex-Gaussian PDF and shifted Wald PDF
- a function implementing the computation of the objective function
- a search algorithm to find best-fitting parameter values

Fitting the ex-Gaussian and Shifted Wald to RT Distributions

New Tricks

PDF Functions

- Fitting probability functions to RT distributions requires at least three functions:
 - 1 functions implementing the ex-Gaussian PDF and shifted Wald PDF
 - 2 a function implementing the computation of the objective function
 - a search algorithm to find best-fitting parameter values

Objective Function

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussia

Fitting
PDF Functions
Objective Function

Using BT-Distrib-Fi

Application Example An objective function is required that returns the goodness-of-fit of the theoretical PDF— given the supplied parameters—to the empirical data

- Several possibilities:
 - chi-square goodness-of-fit (Smith, 1995)
 - continuous maximum likelihood (Heathcote, 1991)
 - quantile maximum probability (Brown & Heathcote, 2003)
- RT-Distrib-Fit uses continuous maximum likelihood estimation

Likelihood Function

New Tricks

Objective Function

• Given a PDF $f(x|\theta)$ with k parameters, $\theta = [\theta_1, \theta_2, ..., \theta_k]$ and a set of data containing N observations, x_i , i = 1,...N, the likelihood function is:

$$L(\theta|x) = \prod_{i=1}^{N} f(x_i|\theta), \tag{7}$$

- where ∏ is the product operator
- Problem: can return values close to zero producing overflow errors

Log-Likelihood Function

New Tricks

Objective Function

 Overflow errors can be avoided by using the log of the likelihood

 Substitutes the sum operator with the product operator, which is less likely to produce overflow errors:

$$lnL(\theta|x) = -\sum_{i=1}^{N} ln [f(x_i|\theta)],$$
(8)

- where In is the natural logarithm
- Search algorithms (next) typically use minimisation procedures, so it is customary to minimise the negative log-likelihood instead of maximising the log-likelihood

Log-Likelihood Function

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Statistical

Models ex-Gaussia Shifted Wal

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

Caveate

- RT-Distrib-Fit computes the log-likelihood via the function, lnL = logMaxLikelihood(parms)
- Nested within the function wrapperLoopFmin, described next

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Statistical Models

ex-Gaussian Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example A search algorithm is needed that systematically adjusts the parameters of the to-be-fitted probability distribution to minimise the objective function (maximise the log-likelihood)

- The SIMPLEX algorithm (Nelder & Mead, 1965) is a robust and widely used parameter estimation method
- Invoked in MATLAB using the inbuilt fminsearch function (invoked via the optim function in R)
- RT-Distrib-Fit uses the function fminSearchBnd—version of SIMPLEX with reflection boundaries for to-be-estimated parameters

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Mean RT

Models ex-Gaussia Shifted Wa

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- SIMPLEX algorithm requires starting parameter values to initiate the search
- The closer these starting points are to the true parameter values, the better the performance of SIMPLEX
- Heuristic starting points are available for the ex-Gaussian (Lacouture & Cousineau, 2008)
- Sensible starting parameters can also be found for the shifted Wald (Heathcote, 2004)
- To avoid local minima problems, it is imperative that the search is conducted with multiple starting parameter values

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussial Shifted Wal

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- RT-Distrib-Fit contains a function that generates starting parameter values and reflection boundaries for parameters
- [startVec1,startVec2,startVec3,IB,uB] = ... genStartingParameters(data,chooseDistrib)
- where data is a data vector of empirical RTs and chooseDistrib is the distribution being fitted (0 = ex-Gaussian, 1 = shifted Wald)
- startvec1, startVec2, and startVec3 are vectors of starting parameter values $(\tau,\mu,\sigma\mid\alpha,\theta,\gamma)$, and IB and UB are vectors of lower and upper boundaries on parameter values $(\tau,\mu,\sigma\mid\alpha,\theta,\gamma)$

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean RT

Mean RT

ex-Gaussia Shifted Wa

Shifted Wald Fitting

PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- Yields three starting values for each distribution parameter
- Starting values and reflection boundaries are input arguments to another function wrapperLoopFmin
- bestX = wrapper-LoopFmin(parms,data,startVec1,startVec2,startVec3,IB,uB, chooseDistrib)
- Runs SIMPLEX with 27 different starting parameter combinations
- Returns bestX, a vector of the best-fitting parameter estimates (τ,μ,σ | α,θ,γ)

Using RT-Distrib-Fit

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussiar Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fit

Application Example

- A front-end script, rtDistribFitScript, controls the fitting
- To-be-fitted data should be stored as text files in the RT-Distrib-Fit MATLAB directory
- Naming convention: Participant_1.txt, Participant_2.txt, Participant_3.txt ...
- Each row represents an RT, each column represents a condition
- Choose what distribution you want to fit by setting the parameter chooseDistrib (0 = exGaussian, 1 = shifted Wald) then hit F5 to run

Using RT-Distrib-Fit

New Tricks

m.hurlstone@ lancaster.ac.uk

Dutline

Response Time (RT)

Problems With Mean RT

Statistical Models

Models ex-Gaussia Shifted Wa

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fit

Application Example **1** Retrieves data for participant p and condition c

- Sort's the data and removes any missing values (coded as NaN in data files)
- 3 Generates starting parameter values based on the participant's data
- 4 Fits the data using 27 different starting points
- **5** Records best-fitting parameters, lnL, χ^2 , and KS tests of data RT distributions
- 6 Iterate until all participant data has been fit
- z-Transform participant RTs, rescale, then fit group distribution (see Rouder, 2014; cf. Vincent averaging)
- 8 Results written to text files (last row is group fit)
- Generate histogram plots with best-fitting PDF overlaid

Some Considerations

New Tricks

Using RT-Distrib-Fit

- You need at least 100 RT observations per condition to obtain stable maximum likelihood estimates (Heathcote et al., 1991)
- Ignore fits to individual participants if there are less than 100 observations each—use group fits instead
- Reminder: these are contained in the final row of the output files

Application Example

New Tricks

Application Example

- Artificial RT data set generated using shifted log-normal distribution (for lack of simple RT data set)
- Another distribution that provides an excellent fit to empirical RT distributions (Ratcliff & Murdock, 1976)
- 15 artificial participants, 3 treatments, 150 RTs each
- Uniform random sampling of parameters $(\mu, \sigma, \text{ and } \theta)$ with different expected values across treatments
- Fit ex-Gaussian and shifted Wald to resulting RT distributions

M_{RT} By Treatment

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response

Problems With

Chatiatical

ex-Gaussi

Shifted Wald

PDF Functions Objective Function

Using

Application Example

PDF Histograms With Fitted ex-Gaussian Functions

New Tricks

m.huristone@ lancaster.ac.ul

Outline

Response Time (RT

Problems Wit Mean RT

Statistical

Model ex-Gaus

Shifted Wald Fitting

PDF Functions Objective Function Search Algorithm

RT-Distrib-Fi

Application Example

PDF Histograms With Fitted Shifted Wald Functions

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems Wit Mean RT

Mean RT

Model

Shifted Wal

PDF Functions Objective Functio Search Algorithm

RT-Distrib-Fi

Application Example

Caveate

Chi-Square Goodness-of-Fits

New Tricks

m.hurlstone@ lancaster.ac.u

Dutline

Response Time (RT)

Problems With Mean RT

Chatiatical

Model

ex-Gaussia Shifted Wa

Fitting
PDF Functions
Objective Function

Using RT-Distrib-Fi

Application Example

Caveate

	Distribution					
	ex-Gaussian			Shifted Wald		
Fit Type	T_1	T_2	T_3	T_1	T_2	T_3
Individuals	18.76	14.49	27.47	20.99	16.45	21.97
Group	19.55	12.22	30.60	68.88	72.33	99.24

Summary

New Tricks

m.hurlstone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With Mean RT

Statistical

Models ex-Gaussiar Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fit

Application Example

- Fits of ex-Gaussian and shifted Wald show the (hypothetical) manipulation caused an increase in skew of RT distribution, but not a shift in location
- Not discernible from analysis of M_{RT}
- Both ex-Gaussian and shifted Wald provided excellent fits to individual participant RT distributions
- ex-Gaussian also provided an excellent fit to group data, whereas shifted Wald performed less well
- Parameter averaging recommended for both distributions (shifted Wald perhaps more so) where possible (cf. Rouder & Speckman, 2004)

How To Report a Distributional Analysis

New Tricks

m.hurlstone@ lancaster.ac.uk

Outlin

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussiar Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fit

Application Example

- Conventional analysis of M_{RT}
- Distributional analysis:
 - KS tests of empirical RT distributions with example density histograms for one or more participants
 - Group density histograms per condition, with best fitting probability function overlaid
 - Table or plot of estimated distribution parameters by condition
 - Inferential statistics (e.g., ANOVA) performed on distribution parameters (for fits to individual participants)
- See Heathcote et al. (1991) for guidelines and an example

Caveats

New Tricks

m.hurlstone@ lancaster.ac.ul

Outline

Response Time (RT)

Problems With Mean RT

Statistical

Models ex-Gaussiar Shifted Wald

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- Should you interpret changes in distribution parameters in terms of components of cognitive processing?
- Matzke and Wagenmakers (2009) fit the Ratcliff (1978) diffusion model to ex-Gaussian and shifted Wald probability distributions
- Diffusion model contains parameters that are known to map onto specific cognitive processes
- If ex-Gaussian and shifted Wald parameters represent components of cognitive processing, they should relate to parameters of the diffusion model

Caveats

New Tricks

m.hurlstone@ lancaster.ac.u

Outline

Response Time (RT)

Problems With Mean RT

Statistical

ex-Gaussia Shifted Wa

Fitting
PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Application Example

- Matzke and Wagenmakers (2009) find no one-to-one mapping of diffusion model parameter estimates with ex-Gaussian and shifted Wald parameter values
- We conclude that researchers should resist the temptation to interpret changes in the ex-Gaussian and shifted Wald parameters in terms of cognitive processes (Matzke & Wagenmakers, 2009, p.798)
- Use these distributions as descriptive, rather than inferential, tools

Fin!

New Tricks

m.nuristone@ lancaster.ac.uk

Outline

Response Time (RT)

Problems With

Mean RT

Models

ex-Gaussia

Shifted Wald

PDF Functions
Objective Function
Search Algorithm

Using RT-Distrib-Fi

Applicatio Example

Caveats

Thanks for listening!

Recommended Reading and References

New Tricks

Caveats

To be added shortly ...

