Examen de fin d'études secondaires 2007

Section: B, C

Branche: PHYSIQUE

Numéro d'ordre du candidat

1. Déviation de particules chargées (2+3+12=16 points)

$$OA = OD = OA' = R$$

Une cathode C émet un faisceau d'électrons qui est ensuite accéléré par une tension $U_{AC} = 300 \text{ V}$.

- a) En admettant que les électrons sont émis par la cathode avec une vitesse négligeable, calculer leur vitesse lorsqu'ils passent par A.
- b) Le faisceau d'électrons pénètre ensuite dans une région de l'espace où règne un champ magnétique uniforme \vec{B} .

Déterminer la direction et le sens de \vec{B} pour que les électrons décrivent un quart de cercle et sortent en D. (1)

Calculer le rayon de la trajectoire sachant que $B = 10^{-3} T$. (2)

c) Ensuite le faisceau pénètre dans une région où règne un champ électrostatique uniforme \vec{E} parallèle à l'axe Ov.

parallèle à l'axe Oy.

Quel doit être le sens de \vec{E} pour que les électrons sortent en A'? (1)

Etablir les équations horaires. En déduire l'équation et la nature de la trajectoire des électrons. (8) Calculer la valeur de \vec{E} . (2)

2. Mouvement des satellites (2+1+5=8 points)

Un satellite décrit autour de la Terre une trajectoire quasi circulaire. Le champ de gravitation exercé par la Terre sur le satellite est donné par la relation : $G = K \frac{M}{r^2}$

- a) Ecrire la signification des symboles utilisés.
- b) Préciser le référentiel dans lequel on étudie le mouvement.
- c) Etablir l'expression de la vitesse et de la période du satellite autour de la Terre.

Epreuve écrite

Examen de fin d'études secondaires 2007

Section:

B, C

Branche:

PHYSIQUE

Numéro d'ord	re du candidat

3. Atome de Bohr (2+8=10 points)

- a) Enoncer le premier postulat de Bohr.
- b) Etablir en vous basant sur les modèles de Rutherford et de Bohr, l'expression du rayon des orbites en fonction du rayon de Bohr.

4. Petites questions (2+2+2+2=8 points)

- a) Que devient la période des oscillations dans un circuit LC si on double l'inductance sans changer la capacité.
- b) Vrai ou faux. Justifier.

Pour extraire un électron d'un métal il faut une longueur d'onde supérieure à la longueur d'onde seuil.

c) On veut produire des franges d'interférences à l'aide du dispositif des fentes d'Young.

- 1) Peut-on utiliser deux lampes S₁ et S₂ au lieu d'une seule lampe S pour éclairer les deux fentes ?
- 2) Observe-t-on une frange sombre ou brillante au point O de l'écran situé à égale distance des deux fentes ? Justifier la réponse.

5. Ondes progressives (5+1+1=7 points)

Une source ponctuelle S produit à la surface de l'eau des oscillations verticales d'amplitude 3 mm, de fréquence 100 Hz, se propageant avec une célérité de 40 cm·s⁻¹.

- a) Ecrire l'équation du mouvement de S, puis celle du mouvement d'un point M situé à la distance d = 1, 4 cm de S, sachant qu'en S la surface de l'eau est à son point le plus bas à l'instant origine.
- b) Comparer les mouvements vibratoires de S et M.
- c) Quelle est l'élongation d'un point P situé à 5 mm de S à l'instant t = 0.035 s?

6. Radioactivité (2+3+2+4=11 points)

Le noyau d'or $^{198}_{79}Au$ est radioactif β^- . Le noyau fils produit se trouve dans un état excité et revient dans son état fondamental.

- a) Ecrire les équations bilan des deux réactions.
- b) Calculer l'énergie libérée au cours de la désintégration β^{-} .

On donne:

masse du noyau d'or 198 :

197,92493 и

On donne:

masse du noyau fils :

197,92291 u

- c) Sachant que le noyau fils émet un rayonnement d'énergie 0,412 MeV en revenant dans son état fondamental, calculer la longueur d'onde de ce rayonnement
- d) Calculer la vitesse d'émission des particules β^- sachant que leur énergie cinétique maximale est de 0.963 MeV. Sont-elles relativistes ? Justifier.

Relevé des principales constantes physiques

Grandeur physique	Symbole	Valeur	Unité
	usuel	numérique	
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹
Constante molaire des gaz parfaits	R	8,314	JK ⁻¹ mol ⁻¹
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	Nm ² kg ⁻²
Célérité de la lumière dans le vide	С	$2,998 \cdot 10^8$	ms ⁻¹
Perméabilité du vide	μ_0	$4\pi \cdot 10^{-7}$	Hm ⁻¹
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	Fm ⁻¹
Charge élémentaire	e	1,602·10 ⁻¹⁹	С
Masse au repos de l'électron	m _e	9,109-10 ⁻³¹	kg
		$0.549 \cdot 10^{-3}$	u
		0,511	MeV/c ²
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷	kg
		1,0073	u
		938,27	MeV/c ²
Masse au repos du neutron	m_n	1,6749·10 ⁻²⁷	kg
		1,0087	u
		939,57	MeV/c^2
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷	kg
		4,0015	u
		3727,4	MeV/c^2
Constante de Planck	h	$6,626\cdot10^{-34}$	Js
Constante de Rydberg	R_{∞}	$1,097 \cdot 10^7$	m ⁻¹
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m
Energie de l'atome d'hydrogène dans l'état fondamental	E ₁	-13,6	eV

Grandeurs terrestres qui peuvent dépendre du lieu ou du temps		Valeur utilisée sauf indication contraire			
Accélération de la pesanteur à la surface terrestre	g	9,81	ms ⁻²		
Composante horizontale du champ magnétique terrestre	B _h	2.10-5	T		
Rayon de la Terre	R	6370	km		
Masse de la Terre	M	$5,98 \cdot 10^{24}$	kg		

Conversion d'unités en usage avec le SI

1 angström 1 électronvolt

= 1 $\overset{\circ}{A}$ = 10⁻¹⁰ m = 1 eV = 1,602·10⁻¹⁹ J = 1 u = 1,661·10⁻²⁷ kg = 931,49 MeV/c² 1 unité de masse atomique

TABLEAU PERIODIQUE DES ELEMENTS

×
pai
princi
sedi
d
970

				_			т-			T			T			1			T										
	VIII	4,0 He	2	20,2	Ne	10	39,9	Ar	18	83,8	ᅐ	36	131,3	×e	54	(222)	Rn	98											
	II/			19,0	ш	6	35,5	ਹ	17	6'62	Br	35	126,9	H	53	(210)	At	85											
cipaux	5			16,0	0	80	32,1	S	16	79,0	Se	34	127,6	Te	52	(209)	Po	84											
groupes principaux	>			14,0	Z		31,0	۵	15	74,9	As	33	121,8	Sb	51	209,0	<u>B</u>	83											
grou	2			12,0	ပ	. 9	28,1	Si	14	72,6	Ge	32	118,7	Sn	50	207,2	Pb	82											
				10,8	8	5	27,0	Ā	13	2'69	Сa	31	114,8	In	49	204,4	F	81			-								
						<u> </u>	[(1		=	65,4	Zu	30	112,4	g	48 4	200,6	Hg												
									_	63,5	J	29 3		Ag		197,0 2	Au	79 8											
							es											58,7 6	Ż	28	<u> </u>	Pd	46 4	165,1	늄				
									II/	58,9 5	ပိ		102,9 1	R		192,2 1	ī	78	(268)	¥	109								
							econdair			55,8 58	Fe	27	101,1 10	Ru	45	190,2 11	Os	77		Hs									
							groupes secondaires		II.	6	Σ	26		_ ပ	44	186,2 19	Re	92			7 108								
							gra			54	_ ბ	25	(26)	0	43			75	3) (264)		107								
									IV	52,0	<u> </u>	24	95,9	<u>ω</u>	42	183,9	<u>></u>	74	(598)	Sg	106								
									\	50,9	> _	23	92,9	S S	4	180,9	Ta	73	(262)	DP DP	105								
									<u> </u>	47,9	F	22	91,2	Zr	40	178,5	HŁ	72	(261)	R	104								
aux			ſ						=	45,0	Sc	21	6'88	>	39	175,0	Γn	71	(500)	ļ	103								
groupes principaux				0,6	Be	4	24,3	Μg	12	40,1	Ca	20	9,78	Sr	38	137,3	Ва	56	226,0	Ra	88								
groupes		°, T	_	6,9	'	3		Na	7-	39,1	¥		85,5	Rb		132,9	S		(223)	<u>ن</u>	87								

173,0	Yb	70	(259)	S N	102
168,9	TH	69	(258)	PΨ	- 1
167,3	Tb Dy Ho Er Tm Yb	89	(257)	Fm	100
164,9	9 H	29	(254)	Es	99
162,5	D	99	(251)	۲	98
158,9	Tb	65	(247)	盎	97
157,3	P _S		ı	E C	96
152,0	Eu Gd			Am	95
150,4	Sm		1	Pu	94
(145)	Pm	61	237,0	ď	93
144,2	PZ	09	238,0	<u> </u>	92
140,9	<u>7</u>	59	231,0	Pa	91
140,1	Ce	58	232,0	H	90
138,9	Гa	22	227,0 232,0	Ac T	89
	lanthanides			actinides	