به نام خدا

دانشگاه تهران دانشکدگان فنی دانشکده مهندسی برق و کامپیوتر

درس داده کاوی

تمرین اول

نام و نام خانوادگی : حسین سیفی

شماره دانشجویی : ۸۱۰۱۰۰۳۸۶

فهرست

٣	سوال ۱	١.
٣	١-١. الف	
٣	۲–۱. ب	
٣	سوال ۲	۲.
٣	١-٢. الف	
٤	۲-۲. ب	
0	٣-٢. ج	
٦	4-۲. د	
٦	Δ-۲. ٥	
٧	سوال ۳	۳.
٧	١–٣. الف	
٨	۲–۳. ب	
٨	~ 4-4	

١. سوال

١-١. الف

Attribute	Type	Discrete or Continuous
سر عت خودر و بر اساس MPH	Ratio-Scaled	Continuous
شدت بارش با مقادیر بدون بارش ، بارش متناوب و بارش بی وقفه	Ordinal	Discrete
تجزیه نور به رنگهای رنگین کمان	Nominal	Discrete
IQ انداز ه گیری هوش افراد با	Ratio-Scaled	Discrete
عدد بار کد اجناس در سوپر مارکت	Nominal	Discrete

۲-۱. ب

	Nominal	Ordinal	Interval- Scaled	Ratio- Scaled
Histogram			*	*
Pie chart	*	*		
Box-Plot			*	*
Bar chart	*	*		

۲. سوال ۲

١-٢. الف

میانگین خصیصه A و B به شکل زیر محاسبه می شود:

$$avg(A) = \frac{\sum_{i=0}^{19} Ai}{count(A)} = \frac{2839.4}{20} = 141.97$$

$$avg(B) = \frac{\sum_{i=0}^{19} Bi}{count(B)} = \frac{243.73}{20} = 12.1865$$

برای به دست آوردن چارک اول و سوم می توانیم مقادیر هر خصیصه را مرتب کنیم:

A: 0.04, 0.31, 0.78, 6.21, 11.7, 42.5, 43.02, 58.1, 72, 75.3, 95, 110.02, 111, 111.87, 121.2, 145, 265.6, 311.54, 598.23, 659.98

B: 0.53, 1.5, 2.3, 3.9, 4.2, 5.6, 6.7, 7.43, 7.8, 8.6, 11.3, 12.1, 12.9, 13.2, 15.8, 17.2, 19.8, 23.9, 34.17, 34.8

با توجه به اینکه تعداد مقادیر هر دو خصیصه زوج و برابر ۲۰ میباشد ، چارک اول برابر میانگین مقادیر پنجم و ششم (بین مقادیر مرتب شده) و چارک سوم برابر میانگین مقادیر پانزدهم و شانزدهم میباشد:

$$FirstQuartile(A) = \frac{11.7 + 42.5}{2} = 27.1 \text{ , } ThirdQuartile(A) = \frac{121.5 + 145}{2} = 133.25$$

$$FirstQuartile(B) = \frac{4.2 + 5.6}{2} = 4.9 \text{ , } ThirdQuartile(B) = \frac{15.8 + 17.2}{2} = 16.5$$

با استفاده از مقادیر خصیصه ها و مقدار میانگین هر خصیصه ، مقدار انحراف معیار را با فرمول زیر محاسبه می کنیم:

$$\sigma = \sqrt{\frac{\sum_{i=0}^{N-1} (Xi - \mu)^2}{N}}$$

$$\sigma(A) = \sqrt{\frac{(0.04 - 141.97)^2 + \dots + (659.98 - 141.97)^2}{20}} = \sqrt{\frac{657686.2148}{20}} = \sqrt{32884.31} = 181.34$$

$$\sigma(B) = \sqrt{\frac{(0.53 - 12.1865)^2 + \dots + (34.8 - 12.1865)^2}{20}} = \sqrt{\frac{1838.82}{20}} = \sqrt{91.941} = 9.5885$$

۲-۲. پ

برای رسم نمودار جعبهای به ۵ مقدارمیانه ، چارک اول ، چارک سوم ، حداقل مقدار و حداکثر مقدار هر خصیصه نیازمندیم.این مقادیر برای خصیصه A به شرح زیر میباشند:

دیگر مقادیر مورد نیاز برای رسم نمودار به کمک مقادیر فوق قابل محاسبه است:

$$IQR(A) = Q3(A) - Q1(A) = 133.25 - 27.1 = 106.15$$

Low Outlier Treshold(B) = $27.1 - 1.5 * 106.15 = -132.65$
High Outlier Treshold(B) = $133.25 + 1.5 * 106.15 = 292.475$

outlier با توجه به اینکه دادههای جمع آوری شده برای خصیصه A همگی مثبت هستند و همچنین مقداری کمتری از آستانه پایین توجود ندارد پس حد پایین نمودار همان حداقل مقدار خصیصه میباشد. از طرفی دیگر این خصیصه مقادیری بزرگتر آستانه بالا outlier وجود دارد و در نتیجه این aoutlier به شکل نقاطی پراکنده نمایش داده می شوند. در نهایت ، نمودار جعبهای خصیصه A به طور تقریبی به شکل زیر درمی آید:

مقادیر میانه ، چارک اول ، چارک سوم ، حداقل مقدار و حداکثر مقدار برای خصیصه B به شرح زیر میباشند:

Median(B) = (8.6+11.3)/2 = 9.95 Minimum(B)= 0.53 Maximum(B)= 34.8 Q3(B)= 16.5 Q1(B)= 4.9

دیگر مقادیر مورد نیاز برای رسم نمودار به کمک مقادیر فوق قابل محاسبه است:

IQR(B) = Q3(B) - Q1(B) = 16.5 - 4.9 = 11.6Low Outlier Treshold(B) = 4.9 - 1.5 * 11.6 = -12.5 High Outlier Treshold(B) = 16.5 + 1.5 * 11.6 = 33.9

با توجه به دادههای فوق و توضیحات ذکر شده برای نمودار جعبهای خصیصه A، نمودار جعبهای خصیصه B به شکل زیر درمی آید:

با توجه به اینکه نمودار جعبهای خصیصه A بازه IQR بزرگتری نسبت به خصیصه B دارد و خصیصه A طول IQRهای بیشتری نسبت به B دارد و همچنین بیشتر بودن چشمگیر انحراف معیار A نسبت به B نتیجه می B براکنده و هستند. A نسبت به خصیصه A پراکنده و هستند.

Y-Y. ج برای رسم نمودار پراکندگی از زوج (A_i, B_i) با همین ترتیب ذکر شده در سوال استفاده می Yنیم. نتیجه به شکل زیر درمی آید:

برای رسم نمودار Q-Q plot خصیصه A نسبت به خصیصه B از زبان پایتون استفاده کردهایم. این پیاده سازی بدین صورت انجام گرفته است که با توجه به اینکه هر دو خصیصه au مقدار دارند می توان لیست مقادیر هر خصیصه را مرتب کرد و مقدار هر عضو از خصیصه A همراه با مقدار متناظر با اندیس آن در خصیصه B مختصات یک نقطه را نشان می دهند. (عضو i مرتب شده هر خصیصه نشان دهنده i است.) همچنین خطی مورب برای نمایش وابستگی دادههای محور عمودی و افقی رسم شده است. نمودار رسم شده به شکل زیر می باشد:

۵-۲. ه

نمودارهای زیر مقایسه دادههای نمونه A و B را با دادههای تئوری از توزیع نمایی نشان میدهند.(نمودار سمت راست مربوط به خصیصه A و نمودار چپ مربوط به خصیصه B میباشد) همانطور که مشخص است ، مقادیر خصیصه B توزیع نمایی دارند اما خصیصه A از این توزیع پیروی نمی کند.(توزیعهای دیگری نیز بررسی شدند اما مقادیر این خصیصه از هیچ توزیع شناخته شده ی دیگری پیروی نمی کند) این موضوع به همراه بررسی نمودارهای رسم شده در بخش ب ، ج و د همین سوال نشان می دهد که این دو خصیصه هم بستگی ندارند.

۳. سوال ۳

١ – ٣. الف

با استفاده از زبان برنامه نویسی پایتون توابعی برای محاسبه فواصل منهتن ، اقلیدسی ، سوپریمم و شباهت کسینوسی تعریف شدهاند تا این مقادیر را برای زوج کلمه پرسش و هر کدام از کلمات X1 تا X5 محاسبه کند. نتیجه محاسبات و رتبه بندی فاصلهها به شرح زیر میباشد:

Rank	Euclidean	Manhattan	Supremum	Cosine Similarity
1	X_1	X_1	X_1	X_1
2	X_4	X_4	X_3 , X_4	X_3
3	X_3	X_3	X_2, X_5	X_4
4	X_5	X_5	-	X_2
5	X_2	X_2	-	X_5

مقادیر این فواصل نیز در جدول زیر به تفکیک قابل مشاهده است:

Rank	Euclidean	Manhattan	Supremum	Cosine Similarity
1	0.141	0.2	0.1	0.999991
2	0.224	0.3	0.2	0.999969
3	0.283	0.4	0.6	0.999028
4	0.608	0.7	-	0.995752
5	0.671	0.9	-	0.965363

فرمول فواصل استفاده شده در کد پایتون به شکل زیر میباشد:

• فاصله اقلیدسی:

Euclidean Distance
$$(x, y) = \sqrt{(A_{1,x} - A_{1,y})^2 + (A_{2,x} - A_{2,y})^2}$$

• فاصله منهتن:

$$Manhattan\ Distance(x, y) = |A_{1,x} - A_{1,y}| + |A_{2,x} - A_{2,y}|$$

فاصله سویریمم:

$$Supremum \ Distance(x,y) = \max \left(\left| A_{1,x} - A_{1,y} \right| \ , \ \left| A_{2,x} - A_{2,y} \right| \right)$$

• شباهت کسینوسی:

Cosine Similarity(x,y) =
$$\frac{\left(A_{1,x} * A_{1,y}\right) + \left(A_{2,x} * A_{2,y}\right)}{\sqrt{A_{1,x}^2 + A_{2,x}^2} * \sqrt{A_{1,y}^2 + A_{2,y}^2}}$$

٧-٣-٢

برای نرمال سازی دادههای X_1 تا X_2 نیاز به مقادیر میانگین و انحراف معیار برای هر یک از خصیصههای A_1 و A_1 داریم که با استفاده از فرمولهای ذکر شده در بخش الف سوال X_2 قابل محاسبه است. مقدار میانگین و انحراف معیار برای خصیصه A_1 به ترتیب برابر ۱.۵۸ و ۲۵۷۶ و میانگین و انحراف معیار برای خصیصه A_2 برابر ۱.۵۸ و ۲۱۸۷۶ و میاشند. سپس هر کدام از مقادیر خصیصهها به کمک فرمول زیر نرمال سازی می شود:

$$Z - Score(x) = \frac{x - \mu}{\sigma}$$

مجموعه کلمات X_1 تا X_2 پس از نرمالسازی به صورت بردارهای دو بعدی زیر درمی آید:

	$\mathbf{A_1}$	\mathbf{A}_2
X_1	-0.2328	0.3764
X_2	1.7075	1.0039
X_3	0.1552	0.6902
X_4	-1.3970	-0.2509
X_5	-0.2328	-1.8196

اگر بردار پرس و جو را نرمال نکنیم فاصله اقلیدسی که بین این بردار و بردار کلمات به دست می آید مقدار دقیقی را نشان نمی دهد و در بعضی موارد ، لیست مرتب شده فواصل ترتیب درستی ندارند و قابل اتکا نیستند. به همین دلیل برای محاسبه هر نوع فاصله باید بردار پرس و جو نیز به کمک فرمول Z-score نرمال شود . فرم نرمال شده پرس و جو به شکل (Z-score می باشد.

این بخش سوال نیز به کمک زبان برنامه نویسی پایتون از صفر پیاده سازی شده است و ترتیب فاصله اقلیدسی کلمات X_1 تا X_2 با کلمه پرس و جو X و مقادیر فواصل به شرح زیر میباشند:

Rank	Word Number	Euclidean Distance
1	X_1	0.499
2	X_4	0.837
3	X_3	0.998
4	X_5	1.922
5	X2.	2.511

٣-٣. ج

- برای محاسبه عدم شباهت بین متغیرهای ratio-scaled میتوان بر روی مقادیر این متغیرها تابع لگاریتم را اعمال کرد و سپس با اعداد به دست آمده که مقداری حقیقی دارند مانند متغیرهای Interval-scaled برخورد کرد و از فواصل اقلیدسی ، منهتن ، سویریمم و شباهت کسینوسی استفاده کرد.
- روش دیگر این است که بدون تغییر دادهها ، با آنان مانند دادههای Interval-Scaled رفتار کنیم که اغلب راه حل مناسبی نیست و به درستی پاسخ نمیدهد.