TP morphologie mathématique des images binaires

Module traitement et synthèse d'image (TSI)

Pour ce second TP TSI, à travers deux applications (granulométrie et recherche d'un motif), on étudie les opérateurs de bases de la morphologie mathématique (érosion, ouverture...).

Sommaire

1.	Opér	ations de base sur une image:	. 1
	-	Lecture, transformation en niveau de gris, affichage	
		Histogramme, seuillage	
		phologie mathématique	
	-	Granulométrie	
	2.2.	Recherche d'un motif	. 2
		exe	

1. Opérations de base sur une image :

1.1. Lecture, transformation en niveau de gris, affichage

- Télécharger l'image 'piece.jpg ' depuis le e-campus.
- Ouvrir matlab
- Créer un répertoire Image_4ETI_S7/TP/TP_Morpho_Bin
- Dans ce répertoire, créer un fichier TP_morpho_bin.m
- En tête du fichier ajouter les 3 lignes suivantes :
 - o clear all
 - o close all
 - o clc
- Lire l'image : I = imread('piece.jpg');
- Afficher l'image avec un titre : figure(1), imagesc(I), title('Image I originale');
- Transformer l'image couleur en niveau de gris : I=rgb2gray(I) ;
- L'afficher en utilisant la palette des gris : figure(2), imagesc(I), colormap ('gray') ;

1.2. Histogramme, seuillage

- Obtenir et afficher l'histogramme des niveaux de gris :
 - o H=imhis(I);
 - o figure(3), stairs(H), title('Histogramme des NG de I'), xlabel('NG')

Bien comprendre et analyser la forme de l'histogramme.

- Obtenir la valeur du seuil pour transformer l'image à niveau de gris en une image binaire :
 - o s=graytresh(I);
 - o fprintf('\nValeur de seuil : %f',s);
- Situer cette valeur de seuil sur l'histogramme. Vous semble-t-elle cohérente ?
- Seuiller l'image : Ib=im2bw(I,s) ;

JP Bruandet 1

- L'afficher
- Obtenir le complement : Ib = imcomplement(Ib);
- L'afficher
- Obtenir et afficher la taille de l'image :
 - o [H W]=size(Ib);
 - o fprintf('Taille image: %d par %d',H,W);
- Commenter votre fichier TP morpho bin.m par des « %% » et « % »
- Ajouter des titres aux différentes figures.
- Ecrire vous-même une méthode de seuillage automatique par maximisation de la variance inter-classe (cf polycopié du cours) en ne travaillant que sur l'histogramme H.

2. Morphologie mathématique

2.1. Granulométrie

Dans cette partie on cherche à obtenir la courbe de granulométrie des pièces c'est-à-dire le nombre de pièces en fonction de leur taille. Avant cela, pour ne pas fausser la statistique, on procède à quelques prétraitements afin de « nettoyer » l'image.

NB: vous trouverez en annexe la liste de quelques opérations matlab qui vous seront utiles pour la suite du TP.

- Sur l'image binaire obtenue, les pièces ne sont pas tout à fait homogènes. *Par quelle opération* « boucher » les trous ?
- Effectuer l'opération déduite ci-dessus, sur l'image binaire Ib obtenue précédemment.
- Certaines pièces étant « coupées » par le champ de vu, on risque de mal estimer leur taille. On va donc supprimer les objets touchant le bord par reconstruction par marqueur. *Quel marqueur définir pour cette reconstruction*?
- Effectuer la reconstruction par marqueur pour éliminer les pièces touchant le bord :
 - o en écrivant vous-même l'algorithme à l'aide de dilatation, intersection (on affichera, à chaque itération, l'image de la reconstruction),
 - o puis en utilisant la fonction matlab permettant de supprimer les objets du bord.
- Obtenir les courbes de granulométrie : fonction de distribution et densité en nombre. Vérifier que les courbes obtenues sont cohérentes avec le contenu de l'image.

2.2. Recherche d'un motif

Dans cette partie, on cherche à identifier les positions d'un motif donné, ici une croix, par la transformée tout-ourien (en anglais « Hit-Or-Miss »).

- Télécharger les images : 'ICroix1.png ' et 'ICroix2.png'.
- Afficher l'image 'ICroix1.png'
- Définir l'élément structurant permettant, par la transformée Hit-Or-Miss, d'extraire les positions des croix.
- Ecrire, à l'aide de l'opérateur érosion, la transformée Hit-or-Miss.
- Afficher le lieu des positions des croix et compter le nombre de croix.
- Reprendre la procédure avec l'image 'ICroix2.png'.

JP Bruandet 2

3. Annexe

Opérations de base		
Lecture image	imread	
Transformation image couleur en niveau de gris	rgb2gray	
Histogramme d'une image	imhist	
Taille d'une image	size	
Seuillage		
Seuillage image niveau de gris vers binaire	im2bw	
Obtention seuil pour binarisation	graytresh	
Affichage		
Afficher la i ème valeur d'un tableau de float	fprintf('T[%d]=%f,i,T(i))	
Affichage image	imagesc	
Affichage fonction en escalier	stairs	
Afficher deux courbes	subplot(2,1,1), plot(C1); subplot(2,1,2), plot(C2)	
Opérations de morphomath		
Erosion	imerode	
Dilatation	imdilate	
Fermeture	imclose	
Ouverture	imopen	
Définir un élément structurant	strel	
Transformée tout-ou-rien	bwhitmiss	
Reconstruction par marqueur objets du bord	imclearborder	

JP Bruandet 3