```
▼ Исходные данные
```

safety = 1.3Коэф. запаса:

Степень двухконтурности: m2 = 6

РТ: Воздух compressor = "КВД"

Число Maxa: M = 0

Геометрическая высота работы (м): $H_{\bullet} = 0$

 $G_{\text{N}} = 35.65 + 213.93$ if compressor = "B\pi" = 34.81 Массовый расход (кг/с):

35.65 if compressor = "КНД"

34.81 if compressor = "КВД"

Полная температура на входе в К (К):

 $T^*_{K1} = \begin{vmatrix} 418.2 & \text{if compressor} = "КВД" = 418.2 \\ 288.2 & \text{otherwise} \end{vmatrix}$

Полное давление на входе в К (Па):

 $P*_{K1} = \begin{bmatrix} 316.2 \cdot 10^3 & \text{if compressor} = "КВД" = 316.2 \cdot 10^3 \end{bmatrix}$

101325 otherwise

Степень повышения давления КВД:

 $\pi^*_{K} = \begin{bmatrix} 1.6 & \text{if compressor} = "B\pi" & = 9.000 \end{bmatrix}$

 $\frac{3.2}{1.6}$ if compressor = "КНД"

9 if compressor = "КВД"

Ожидаемый адиабатический КПД ОК:

$$\eta^*_{\rm K} = \begin{vmatrix} 0.86 & \text{if compressor} = "Вл" & = 88.00 \cdot \% \\ 0.87 & \text{if compressor} = "КНД" \\ 0.88 & \text{if compressor} = "КВД" \end{vmatrix}$$

Частота вращения ротора (c-1):

$$\omega = \begin{bmatrix} 1570.8 & \text{if compressor} = \text{"КВД"} \end{bmatrix} = 1570.8$$
 555 otherwise

Относ. диаметр корня 1ой ступени [14, с.7]:

$$\overline{d}_1 = \begin{vmatrix} 0.40 & \text{if compressor} = "Вл" \\ 0.75 & \text{if compressor} = "КНД" \\ 0.65 & \text{if compressor} = "КВД" \end{vmatrix}$$

$0.3 \le \overline{d}_1 \le 0.6 = 0$

Частота вращения ротора (об/мин):
$$n = \frac{60 \cdot \omega}{2 \cdot \pi} = 15000$$

Закон профилирования проточной части (ЗППЧ):

Относ. параметры по относительным ступеням:

$$\begin{pmatrix} z_{\sim} \\ R_{L \sim cp} \\ K_{\sim H} \\ \eta^*_{\sim} \\ \overline{c}_{\sim a1} \\ \overline{H}_{\sim T} \end{pmatrix} = \begin{pmatrix} (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)^T \\ (0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5)^T \\ (0.99 \ 0.98 \ 0.97 \ 0.96 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95)^T \\ (0.88 \ 0.89 \ 0.905 \ 0.91 \ 0.91 \ 0.905 \ 0.89 \ 0.88)^T \\ (0.435 \ 0.425 \ 0.415 \ 0.405 \ 0.395 \ 0.385 \ 0.375 \ 0.365)^T \\ (0.25 \ 0.29 \ 0.32 \ 0.33 \ 0.35 \ 0.32 \ 0.29 \ 0.27)^T \end{pmatrix}$$

Тип компрессора			I	Номер ступс	ени и $\overline{L}_{CT.i}$			
тип компрессора	I	II	III	IV	Z_{CP}	z - 2	z - 1	Z
Дозвуковой	0,18-0,20	0,24-0,25	0,24-0,25	0,29-0,30	0,30-0,32	0,28-0,29	0,27-0,28	0,26-0,27
Трансзвуковой	0,19-0,22	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С одной св/зв ступенью	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 2-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 3-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,25-0,26

[16, c. 60]

[18, c. 24]

Уточнение параметров:

$$\overline{c}_{\sim a1} = \overline{c}_{\sim a1} -$$
 0.100 if compressor = "Вл" 0.141 if compressor = "КНД" 0.203 if compressor = "КВД"

увеличение несущественно увеличивает π

$$\eta^*_{\sim} = \eta^*_{\sim} + \begin{vmatrix} -0.020 & \text{if compressor} = "Вл" \\ -0.028 & \text{if compressor} = "КНД" \\ -0.017 & \text{if compressor} = "КВД" \end{vmatrix}$$

понижение существенно увеличивает
$$\pi$$

$$\overline{H}_{T} = \overline{H}_{T} +$$
0.0145 if compressor = "Вл"
0.0164 if compressor = "КНД"
0.0173 if compressor = "КВД"

увеличение несущественно увеличивает π

увеличение существенно увеличивает
$$\pi$$

$$\operatorname{stack}\left(R_{L\sim cp}^{T},K_{\sim H}^{T},\eta^*_{\sim}^{T},\overline{c}_{\sim a1}^{T},\overline{H}_{\sim T}^{T}\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 \\ 2 & 0.990 & 0.980 & 0.970 & 0.960 & 0.950 & 0.950 & 0.950 \\ 3 & 0.863 & 0.873 & 0.888 & 0.893 & 0.893 & 0.888 & 0.873 & 0.863 \\ 4 & 0.232 & 0.222 & 0.212 & 0.202 & 0.192 & 0.182 & 0.172 & 0.162 \\ 5 & 0.267 & 0.307 & 0.337 & 0.347 & 0.367 & 0.337 & 0.307 & 0.287 \end{bmatrix}$$

$$0.18 \le \overline{H} \sim_{T}^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$$
 $\overline{H} \sim_{T}^{T} \le 0.35 = (1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)$

$$ext{Коэф. теор. напора "средней" ступени [14, c.11]:} \qquad \overline{H}_{Tcp} = rac{\displaystyle\sum_{i=1}^{rows \left(z_{\sim}
ight)}}{rows \left(z_{\sim}
ight)} = 0.3198$$

 $0.25 \le \overline{H}_{Ten} \le 0.32 = 1$

▼ Распределение основных параметров ОК по ступеням

Кинематическая степень реактивности:
$$R_{L\sim cp}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp} \right), \frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp}, i \right)$$
 Коэф. уменьшения теор. напора:
$$K_{\sim H}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H} \right), \frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H}, i \right)$$
 Изоэнтропический КПД:
$$\prod_{m=1}^{\infty} (i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim}, i \right)$$
 Коэф. расхода:
$$\overline{c}_{max}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1}, i \right)$$
 Коэф. напора:
$$\overline{H}_{\sim T}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T}, i \right)$$

$$\begin{pmatrix} R_{L,cp} \\ K_{,H} \\ \eta^*, \\ \hline c_{,a1} \\ \hline H_{,T} \end{pmatrix} = \begin{vmatrix} R_{L,cp}(Z,i) = & R_{L\sim cp} \left(\frac{1}{\operatorname{rows}\{z_{\sim}\}}\right) & \text{if } i < 1 \\ R_{L\sim cp} \left(\frac{i}{Z}\right) & \text{otherwise} \\ \\ K_{,H}(Z,i) = & K_{\sim} H \left(\frac{1}{\operatorname{rows}(z_{\sim})}\right) & \text{if } i < 1 \\ \\ K_{\sim} H \left(\frac{i}{Z}\right) & \text{otherwise} \\ \\ \eta^*, (Z,i) = & \eta^*_{\sim} \left(\frac{1}{\operatorname{rows}(z_{\sim})}\right) & \text{if } i < 1 \\ \\ \eta^*_{\sim}(1) & \text{if } i > Z \\ \\ \eta^*_{\sim} \left(\frac{i}{Z}\right) & \text{otherwise} \\ \\ \hline \hline c_{,a1}(Z,i) = & \overline{c_{,a1}} \left(\frac{1}{\operatorname{rows}(z_{\sim})}\right) & \text{if } i < 1 \\ \\ \overline{c_{,a1}}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline c_{,a1}(1) & \text{if } i$$

$$\begin{pmatrix} Z_{\text{temp}} \\ i_{\text{temp}} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} R_{L.cp}(Z_{temp}, i_{temp}) \\ K_{.H}(Z_{temp}, i_{temp}) \\ \eta^*.(Z_{temp}, i_{temp}) \\ \overline{c}_{.a1}(Z_{temp}, i_{temp}) \\ \overline{H}_{.T}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.863 \\ 0.162 \\ 0.287 \end{pmatrix}$$

Показатель адиаьаты перед К []: $k_{K1} = k_{ad} \left(Cp_{BO3dyx} \left(P^*_{K1}, T^*_{K1} \right), R_B \right) = 1.394$

Полное давление после К [Па]: $P^*_{K3} = \pi^*_{K} \cdot P^*_{K1} = 2846 \cdot 10^3$

Количество итераций []: iteration₃ = 2

Полная температура после К [K]: $T*_{K3} = 805.9$

Показатель адиаьаты после К []: $k_{K3} = 1.354$

Полная плотность перед и после К [кг/м³]: $\begin{pmatrix} \rho^* K1 \\ \rho^* K3 \end{pmatrix} = \frac{1}{R_B} \cdot \begin{pmatrix} \frac{P^* K1}{T^* K1} \\ \frac{P^* K3}{T^* K3} \end{pmatrix} = \begin{pmatrix} 2.633 \\ 12.297 \end{pmatrix}$

Критические скорости перед и после К [м/с]: $\begin{pmatrix} a^*_{\mathbf{C}.\mathbf{BX}} \\ a^*_{\mathbf{C}.\mathbf{BMX}} \end{pmatrix} = \begin{pmatrix} a_{\mathbf{K}p} \big(\mathbf{k}_{\mathbf{K}1} \,, \mathbf{R}_{\mathbf{B}} \,, \mathbf{T}^*_{\mathbf{K}1} \big) \\ a_{\mathbf{K}p} \big(\mathbf{k}_{\mathbf{K}3} \,, \mathbf{R}_{\mathbf{B}} \,, \mathbf{T}^*_{\mathbf{K}3} \big) \end{pmatrix} = \begin{pmatrix} 373.9 \\ 515.9 \end{pmatrix}$

Ср. показатель адиабаты К []: $k_{cp} = k_{ad} \left(Cp_{Bo3dyx.cp} \left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3} \right), R_B \right) = 1.374$

Теоретический напор [Дж/кг]: $H_{TK} = \frac{Cp_{\text{воздух.cp}}\left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3}\right) \cdot T^*_{K1} \cdot \left(\frac{\frac{k_{cp}-1}{k_{cp}}}{\pi^*_{K}} - 1\right)}{\eta^*_{K}} = 410.3 \cdot 10^3$

```
iteration<sub>u</sub>
    <sup>u</sup>1пер
Z_{recomend}
                            = | iteration<sub>u</sub> = 0
       c_{BX}
                                     \rho_{K1} = \rho^*_{K1}
                                      while 0 < 1
       \rho_{K1}
                                           iteration_u = iteration_u + 1
                                            | trace(concat("iteration.u = ", num2str(iteration_u))) |
                                          u_{1 \text{mep}} = \sqrt[3]{\frac{\pi \cdot G \cdot n^2}{900 \cdot \overline{c}_{.a1}(1,0) \cdot \rho_{K1} \cdot \left[1 - \left(\overline{d}_1\right)^2\right]}}
                                         Z_{recomend} = max \left( round \left( \frac{H_{TK}}{\overline{H}_{Tcp} \cdot u_{1 \pi ep}} \right), 1 \right)
                                           c_{\text{BX}} = \overline{c}_{.a1}(Z_{\text{recomend}}, 0) \cdot u_{1 \pi ep}
                                         \lambda_{\rm BX} = \frac{c_{\rm BX}}{a_{\rm c.BX}^*}

ho'_{K1} = 
ho*_{K1} \cdot \Gamma \mathcal{I} \Phi \left( "
ho", \lambda_{BX}, k_{K1} \right)
                                          \left| \text{ if } \left| \text{eps} \left( \text{"rel"} , \rho'_{K1}, \rho_{K1} \right) \right| \leq \text{epsilon} \right|

\rho_{K1} = \rho'_{K1}

                                           \rho_{K1} = \rho'_{K1}
                                         iterationu
                                            <sup>u</sup>1пер
                                        Z_{recomend} \\
                                               c_{BX}
                                               \lambda_{BX}
                                               \rho_{K1}
```

Количество итераций []: iteration = 2

Окружная скорость на перифкрии перед K [м/c]: $u_{1\text{пер}} = 430.5$

Рекомендуемое количество ступеней []: $Z_{recomend} = 7$

Абс. скорость перед K [м/с]: $c_{BX} = 99.9$

Приведенная скорость перед К []: $\lambda_{BX} = 0.2671$

Плотность перед К [кг/м^3]: $\rho_{K1} = 2.555$

Кольцевая площадь перед К [м²]:
$$F_{BX} = \frac{G \cdot \sqrt{R_B \cdot T^*_{K1}}}{m_q(k_{K1}) \cdot P^*_{K1} \cdot \Gamma \angle \Phi \left(\text{"G"} , \lambda_{BX}, k_{K1} \right)} = 0.1364$$

$$D'_{\text{nep1}} = \frac{2 \cdot u_{1\text{nep}}}{\omega} = 548.2 \cdot 10^{-3}$$

Диамтеры перед К [м]: $D'_{cp1} = \overline{r}_{cp} (\overline{d}_1) \cdot D'_{nep1} = 462.3 \cdot 10^{-3}$

$$D'_{\text{kop1}} = \overline{d}_{1} \cdot D'_{\text{nep1}} = 356.3 \cdot 10^{-3}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} .. 2 \cdot \pi$$

Рекомендуемое количество ступеней []:

Количество ступеней []:
$$Z = \begin{bmatrix} 1 & \text{if compressor} = "Вл" \end{bmatrix} = 9$$

▲ Нулевые приближения

```
BHA = \begin{bmatrix} 1 & \text{if compressor} = \text{"КВД"} = 1 \\ 0 & \text{otherwise} \end{bmatrix}
```

▼ Расчет ВНА

```
\alpha_{1BHA}
                   \alpha_{3BHA}
 \sigma_{\mathrm{BHA}}
                    \sigma_{
m BHA}
                 d<sub>3BHA</sub>
d<sub>1BHA</sub>
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
\rho^*_{1BHA} \rho^*_{3BHA}
k<sub>1BHA</sub> k<sub>3BHA</sub>
<sup>а</sup>кр1ВНА <sup>а</sup>кр3ВНА
                                              for r \in av(N_r)
c<sub>a1BHA</sub> c<sub>a3BHA</sub>
                                                  \alpha_{1BHA_r} = 90^{\circ}
c<sub>u1BHA</sub> c<sub>u3BHA</sub>
                                                   \overline{d}_{1BHA} = \overline{d}_{1}
ca1BHA ca3BHA
                                                   \overline{d}_{3BHA} = \overline{d}_{1BHA}
<sup>c</sup>u1BHA <sup>c</sup>u3BHA
                                                   T^*_{1BHA_r} = T^*_{K1}
 c<sub>1BHA</sub>
                   c<sub>3BHA</sub>
                                                   T^*_{3BHA_r} = T^*_{1BHA_r}
\lambda_{c1BHA} \lambda_{c3BHA}
F<sub>1BHA</sub>
                   F<sub>3BHA</sub>
                                                   P_{1BHA_r} = P_{K1}
                    \epsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                   k_{1BHA_r} = k_{ad}(Cp_{BO3dyx}(P^*_{1BHA_r}, T^*_{1BHA_r}), R_B)
                                                   a_{\text{Kp1BHA}_r} = a_{\text{Kp}}(k_{1BHA_r}, R_B, T^*_{1BHA_r})
                                                   \overline{c}_{a1BHA_r} = \overline{c}_{.a1}(Z,0)
                                                  \overline{c}_{u1BHA_r} = \overline{r}_{cp}(\overline{d}_{1BHA}) \cdot (1 - R_{L.cp}(Z, 0)) - \frac{\overline{H}_{.T}(Z, 0)}{2 \cdot \overline{r}_{cp}(\overline{d}_{1BHA})} \text{ if BHA} = 1
                                                     c_{a1BHA_r} = c_{a1BHA_r} \cdot u_{1\pi ep}
```

$$\begin{split} &\sigma_{BHA} = 0.9982 \\ &\operatorname{submatrix} \left(\epsilon_{BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (22.17) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{1BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{3BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (67.83) \cdot \operatorname{deg} \\ &\left(\overline{d}_{1BHA} \right) = \begin{pmatrix} 0.6500 \\ 0.6500 \end{pmatrix} \qquad \begin{pmatrix} F_{1BHA} \\ F_{3BHA} \end{pmatrix} = \begin{pmatrix} 0.1364 \\ 0.1373 \end{pmatrix} \end{split}$$

$$c_{u1BHA_r} = \frac{c_{a1BHA_r}}{\tan(\alpha_{1BHA_r})}$$

$$c_{1BHA_r} = \frac{c_{a1BHA_r}}{\sin(\alpha_{1BHA_r})}$$

$$\lambda_{c1BHA_r} = \frac{c_{1BHA_r}}{a_{p1BHA_r}}$$

$$\sigma_{BHA} = \begin{bmatrix} 1 + \max(0.03, 0.06) \cdot \Gamma/(\Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot \frac{k_{1BHA_r}}{k_{1BHA_r}} + 1 \cdot (\lambda_{c1BHA_r})^2 \end{bmatrix}^{-1} \text{ if } BHA = 1$$

$$\int_{1}^{\infty} 1 \text{ otherwise}$$

$$P^*_{3BHA_r} = P^*_{1BHA_r}^{*} \sigma_{BHA}$$

$$\rho^*_{3BHA_r} = \frac{P^*_{3BHA_r}}{R_n^* T^*_{3BHA_r}}$$

$$k_{3BHA_r} - k_{aq}(Cp_{nonqyq}(P^*_{3BHA_r}, T^*_{3BHA_r}) \cdot R_n)$$

$$a_{kp3BHA_r} = \frac{R_n(k_{3BHA_r}, R_n, T^*_{3BHA_r})}{R_n^* T^*_{3BHA_r}}$$

$$\overline{c}_{a3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(Z, 1) & \text{if } BHA = 1 \\ \overline{c}_{a1BHA_r} & \text{otherwise} \end{bmatrix}$$

$$\overline{c}_{a3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(Z, 1) & \text{if } BHA = 1 \\ \overline{c}_{a1BHA_r} & \text{otherwise} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(\overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r}) & \text{if } BHA = 1 \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \\ \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \\ \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a3BHA_r} \\ \overline{c}_{a1BHA_r} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \frac{\overline{c}_{a1BHA_r}}{\tan(\alpha_{3BHA_r})}$$

$$\alpha_{3BHA_r} = \frac{\overline{c}_{a1BHA_r}}{\sin(\alpha_{3BHA_r})}$$

$$\begin{split} & \text{submatrix} \left(T^*_{1BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (418.2) \\ & \text{submatrix} \left(T^*_{3BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (418.2) \\ & \text{submatrix} \left(P^*_{1BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (316.2) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (315.6) \cdot 10^3 \\ & \text{submatrix} \left(\rho^*_{1BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (2.633) \\ & \text{submatrix} \left(\rho^*_{3BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (2.628) \\ & \text{submatrix} \left(k_{1BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (1.394) \\ & \text{submatrix} \left(k_{3BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (1.394) \end{split}$$

$$\begin{split} & \text{submatrix} \Big(a_{Kp1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big(a_{Kp3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.232) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.233) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.095) \\ & \text{submatrix} \Big(\overline{c}_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.097) \\ & \text{submatrix} \Big(c_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big(c_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big(c_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (40.7) \\ & \text{submatrix} \Big(c_{1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big(c_{3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (107.9) \\ & \text{submatrix} \Big(\lambda_{c3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.267) \\ & \text{submatrix} \Big(\lambda_{c3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.288) \\ \end{aligned}$$

$$\begin{pmatrix} F_{1BHA} \\ F_{3BHA} \end{pmatrix} = G \sqrt{R_B} \begin{pmatrix} \frac{\sqrt{T^*_{1BHA_r}}}{m_q(k_{1BHA_r}) \cdot P^*_{1BHA_r}^{-1/1\Phi}({}^*G^*, \lambda_{c_1BHA_r}, k_{1BHA_r}) \cdot sin(\alpha_{1BHA_r})} \\ \frac{\sqrt{T^*_{1BHA_r}}}{m_q(k_{3BHA_r}) \cdot P^*_{3BHA_r}^{-1/1\Phi}({}^*G^*, \lambda_{c_3BHA_r}, k_{3BHA_r}) \cdot sin(\alpha_{3BHA_r})} \\ \frac{\sigma_{1BHA}}{\sigma_{BHA}} = -1 \cdot (\alpha_{3BHA_r} - \alpha_{1BHA_r}) \end{pmatrix} \\ \begin{pmatrix} \alpha_{1BHA} & \alpha_{3BHA} \\ \sigma_{BHA} & \sigma_{3BHA} \\ \sigma_{1BHA} & \sigma_{3BHA} \\ \sigma^*_{1BHA} & \sigma^*_{3BHA} \\ \rho^*_{1BHA} & \rho^*_{3BHA} \\ \sigma_{a_1BHA} & \sigma^*_{a_2BHA} \\ \sigma_{a_1BHA} & \sigma^*_{a_1BHA} \\ \sigma_{a_1BHA} & \sigma^*_{a_2BHA} \\ \sigma_{a_1BHA} & \sigma^*_{a_1BHA} \\ \sigma_{a_1$$

▲ Расчет ВНА:

$$\begin{split} D_{st(1,1),N_{\Gamma}} &= \frac{2^{4}u_{st(1,1),N_{\Gamma}}}{\omega} \\ D_{st(1,1),\tau} &= \overline{t_{0}} \left(D_{st(1,1),N_{\Gamma}} \right)^{2} - \frac{4^{4}F_{st(1,1)}}{\pi} \\ D_{st(1,1),\tau} &= \overline{t_{0}} \left(\frac{D_{st(1,1),1}}{D_{st(1,1),N_{\Gamma}}} \right) D_{st(1,1),N_{\Gamma}} \\ \overline{d}_{st(1,1)} &= \frac{D_{st(1,1),1}}{D_{st(1,1),N_{\Gamma}}} \\ \text{for } i \in 1..Z \\ &\text{trace(coneat("cryneth i = ",num2str(i)))} \\ \left(\frac{\overline{H}_{T_{i}}}{K_{H_{i}}} \right) &= \left(\frac{\overline{H}_{T_{i}}(Z,i)}{K_{H_{i}}(Z,i)} \right) \\ R_{L,cp}(Z,i) \\ R_{I_{i},\tau} &= \overline{H}_{T_{i}} \left(u_{st(i,1),N_{\Gamma}} \right)^{2} \\ L_{1} &= K_{H_{i}}^{1}H_{T_{i,\Gamma}} \\ L^{\phi_{i}} &= L_{\tau_{i}}\eta^{\phi_{i}} \\ \text{iteration}_{12} &= 0 \\ k_{st(1,2),\tau} &= k_{st(i,1),\tau} \\ while 0 < 1 \\ &= iteration_{12} + iteration_{12} + 1 \\ \text{trace} \left(concat(" iteration_{12} - ",num2str(iteration_{12})) \right) \\ k_{12} &= mcan(k_{st(i,1),\tau},k_{st(i,2),\tau}) \\ Cp_{12} &= \frac{k_{12}}{k_{12}-1} R_{R} \\ T^{*}st(i,2),\tau &= T^{*}st(i,1),\tau^{*} + \frac{L_{i}}{Cp_{12}} \\ \pi^{*}_{i} &= \left(1 + \frac{L_{i}}{Cp_{12}^{1}} \right) \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,1),\tau^{*} \right)^{*}_{i} \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,1),\tau^{*} \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,2),\tau^{*} \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,2),\tau^{*} \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,2),\tau^{*} \\ D^{*}_{st(i,2),\tau} &= P^{*}_{st(i,2),\tau} \\ D^{*}_{st(i,2),\tau} &= P^{}_{st(i,2),\tau} \\ D^{*}_{st(i,2),\tau} &= P^{*}_{st(i,2),\tau} \\ D^{*}_{s$$

```
if \left| \text{eps}\left(\text{"rel"}, k_{\text{st}(i,2),r}, k'_2\right) \right| < \text{epsilon}
          k_{st(i,2),r} = k'_2
      k_{st(i,2),r} = k'_2
a_{c_{st(i,2),r}}^* = a_{kp}(k_{st(i,2),r}, R_B, T_{st(i,2),r})
T^*_{st(i,3),r} = T^*_{st(i,2),r}
P^*_{st(i,3),r} = P^*_{st(i,2),r}
Cp_{st(i,3),r} = Cp_{BO3JJYX}(P^*_{st(i,3),r}, T^*_{st(i,3),r})
k_{st(i,3),r} = k_{aJ}(Cp_{st(i,3),r},R_{B})
a_{c_{st(i,3),r}}^* = a_{kp}(k_{st(i,3),r}, R_B, T_{st(i,3),r})
\overline{c}_{a_{st(i,3),r}} = \overline{c}_{.a1}(Z,i+1)
iteration_3 = 0
                    =\frac{F_{st(i,1)}\cdot m_{q}\left(k_{st(i,1),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,1),r}},k_{st(i,1),r}\right)\cdot \sin\left(\alpha_{st(i,1),r}\right)\cdot P^{*}_{st(i,1),r}\cdot \sqrt{T^{*}_{st(i,3),r}}}{m_{q}\left(k_{st(i,3),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,3),r}},k_{st(i,3),r}\right)\cdot \sin\left(\alpha_{st(i,3),r}\right)\cdot P^{*}_{st(i,3),r}\sqrt{T^{*}_{st(i,1),r}}}
 while 0 < 1
      iteration_3 = iteration_3 + 1
       trace(concat(" iteration.3 = ", num2str(iteration_3))))
       if (3\Pi\Pi H_i \neq "пер") \land (3\Pi\Pi H_i \neq "кор") \land (3\Pi\Pi H_i \neq "ср")
          D_{st(i,3),N_r} = D_{st(i,1),N_r} \cdot str2num(3\Pi\Pi Y_i)
D_{st(i,3),1} = \sqrt{(D_{st(i,3),N_r})^2 - \frac{4F_{st(i,3)}}{\pi}}
```

$$\begin{split} & \begin{vmatrix} D_{st(i,3),N_{f}} = D_{st(i,1),N_{f}} \\ D_{st(i,3),1} = \int_{Q} \left(D_{st(i,3),N_{f}} \right)^{2} - \frac{4F_{st(i,3)}}{\pi} \\ & \text{if } 3\Pi\Pi^{i}_{i} = \text{'kop''} \\ & \begin{vmatrix} D_{st(i,3),N_{f}} = \sqrt{\left(D_{st(i,1),1} \right)^{2} + \frac{4F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),N_{f}} = \sqrt{\left(D_{st(i,1),1} \right)^{2} + \frac{4F_{st(i,3)}}{\pi}} \\ & \begin{vmatrix} D_{st(i,3),N_{f}} = \sqrt{\left(D_{st(i,1),r} \right)^{2} + \frac{2F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),N_{f}} = \sqrt{\left(D_{st(i,1),r} \right)^{2} + \frac{2F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),1} = \sqrt{\left(D_{st(i,3),N_{f}} - \frac{2F_{st(i,3)}}{\pi} \right)} \\ & D_{st(i,3),r} = \overline{C_{op}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_{f}}} \\ & \overline{C}_{u_{st(i,3),r}} = \overline{C_{op}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_{f}}} \\ & \overline{C}_{u_{st(i,3),r}} = \overline{C_{op}(\overline{d}_{st(i,3),r})} \quad \text{if } \operatorname{atan} \left(\frac{\overline{c}_{a_{st(i,3),r}}}{\overline{c}_{u_{st(i,3),r}}} \right) \geq 0 \\ & \operatorname{atan} \left(\frac{\overline{c}_{a_{st(i,3),r}}}{\overline{c}_{u_{st(i,3),r}}} \right) + 2\pi \quad \text{otherwise} \\ & D_{st(i,3),N_{f}} = u_{st(i,1),N_{f}} \cdot D_{st(i,3),N_{f}} \\ & u_{st(i,3),r} = \overline{c}_{a_{st(i,3),r}} \cdot u_{st(i,3),r} \\ & c_{st(i,3),r} = \frac{\overline{c}_{a_{st(i,3),r}}}{\overline{c}_{st(i,3),r}} \cdot u_{st(i,3),r} \\ & c_{st(i,3),r} = \frac{\overline{c}_{a_{st(i,3),r}}}{\overline{c}_{st(i,3),r}} \\ & c_{st(i,3),r} = \frac{\overline{c}_{st(i,3),r}}{\overline{c}_{st(i,3),r}} \\ & c_{st(i,3),r} = \frac{\overline{c}_{st(i,3),r}}{\overline{c}_{st(i,3),r}}$$

```
\overline{c}_{a_{st(i,2),r}} = mean(\overline{c}_{a_{st(i,1),r}}, \overline{c}_{a_{st(i,3),r}})
 iteration_2 = 0
 F_{st(i,2)} = mean(F_{st(i,1)}, F_{st(i,3)})
  while 0 < 1
       iteration_2 = iteration_2 + 1
       trace(concat(" iteration.2 = ", num2str(iteration_2))))
       if (3\Pi\Pi\Pi_i \neq "пер") \land (3\Pi\Pi\Pi_i \neq "кор") \land (3\Pi\Pi\Pi_i \neq "ср")
           D_{st(i,2),N_r} = mean(D_{st(i,1),N_r},D_{st(i,3),N_r})
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
           D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if 3ППЧ<sub>i</sub> = "пер"
           D_{st(i,2),N_r} = D_{st(i,1),N_r}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if ЗППЧ<sub>i</sub> = "кор"
            D_{st(i,2),1} = D_{st(i,1),1}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),N_r} = \frac{D_{st(i,2),1}}{\overline{d}_{st(i,2)}}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
       if 3\Pi\Pi\Pi_i = "cp"
            D_{st(i,2),r} = D_{st(i,1),r}
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
           D_{st(i,2),N_r} = \frac{D_{st(i,2),r}}{\overline{r_{cp}(\overline{d}_{st(i,2)})}}
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
```

$$\begin{vmatrix} \overline{c}_{u_{st(i,2),r} = \frac{1}{r_{cp}(\overline{d}_{st(i,2)})} \left(\frac{\mathcal{W}_{st(i,2),N_r}}{D_{st(i,2),r}} \cdot \overline{c}_{u_{st(i,1),r}} \right) \\ O_{st(i,2),r} = \operatorname{triangle} \left(\overline{c}_{a_{st(i,2),r}}, \overline{c}_{u_{st(i,2),r}} \right) \\ O_{st(i,2),N_r} = u_{st(i,1),N_r} \frac{D_{st(i,2),N_r}}{D_{st(i,1),N_r}} \\ u_{st(i,2),N_r} = u_{st(i,1),N_r} \frac{D_{st(i,2),N_r}}{D_{st(i,2),r}} \\ c_{a_{st(i,2),r}} = \overline{c}_{a_{st(i,2),r}} \frac{C_{a_{st(i,2),r}}}{S_{st(i,2),r}} \\ c_{st(i,2),r} = \frac{\overline{c}_{a_{st(i,2),r}}}{\overline{s}_{st(i,2),r}} \\ \sum_{c_{st(i,2),r}} \frac{C_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \frac{C_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{C_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \frac{C_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2)$$

```
\begin{cases} & |\mathbf{N}^{I}\mathbf{c}_{st(i,a),r} = \frac{1}{a_{3B_{st}(i,a),r}} \\ & | \mathbf{h}_{st(i,a)} = 0.5 \cdot \left(D_{st(i,a),N_r} - D_{st(i,a),1}\right) \\ & | \mathbf{for} \ \ radius \in 1...N_r \\ & | \mathbf{u}_{st(i,a),radius} = \omega \cdot \frac{D_{st(i,a),radius}}{2} \\ & \left(\frac{\varepsilon_{rotor}_{i,av(N_r)}}{\varepsilon_{stator}_{i,av(N_r)}}\right) = \begin{pmatrix} \beta_{st(i,2),av(N_r)} - \beta_{st(i,1),av(N_r)} \\ \alpha_{st(i,3),av(N_r)} - \alpha_{st(i,2),av(N_r)} \end{pmatrix} \\ & | \mathbf{for} \ \ i \in 1...Z \\ & | \mathbf{for} \ \ a \in 1...3 \\ & | \mathbf{for} \ \ r \in 1...N_r \\ & | \mathbf{R}_{st(i,a),r} = 0.5 \cdot D_{st(i,a),r} \\ & | \mathbf{R}_{st(i,a),r} = 0.5 \cdot D_{st(i,a),r} \\ & \left(\frac{R_L \ K_H \ Cp \ \overline{H}_T \ L^* \ T^* \ P^* \ \rho^* \ a^*_c \ \lambda_c \ F \ D \ \overline{d} \ \overline{c}_a \ c_a \ u \ c \ M_c \ \alpha \ \varepsilon_{rotor}}{\pi^* \ \eta^* \ k \ H_T \ L \ T \ P \ \rho \ a_{3B} \ \lambda_c \ F \ R \ h \ \overline{c}_u \ c_u \ w_u \ w \ M_w \ \beta \ \varepsilon_{stator} \end{pmatrix}^T \end{aligned}
```

$$\begin{pmatrix} H_T \\ R_L \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ H_{T_-}(r) = \text{interp} \\ \text{pspline} \\ \\ \begin{pmatrix} 1 \\ \text{av}(N_r) \\ N_r \end{pmatrix}, \begin{pmatrix} H_{T_{i,av}(N_r)} - \frac{\Delta H_T(\overline{d} \operatorname{st}(i,2))}{2} \\ H_{T_{i,av}(N_r)} \\ H_{T_{i,av}(N_r)} + \frac{\Delta H_T(\overline{d} \operatorname{st}(i,2))}{2} \\ \\ H_{T_{i,av}(N_r)} \end{pmatrix}, \begin{pmatrix} H_{T_{i,av}(N_r)} - \frac{\Delta H_T(\overline{d} \operatorname{st}(i,2))}{2} \\ \\ H_{T_{i,av}(N_r)} + \frac{\Delta H_T(\overline{d} \operatorname{st}(i,2))}{2} \\ \\ H_{T_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \operatorname{st}(i,2))}{2} \\ \\ R_{L_i,av}(N_r) \\ \\ R_{L_{i,av}(N_r)} + \frac{\Delta R_L(\overline{d} \operatorname{st}(i,2))}{2} \\ \\ R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \operatorname{st}(i,2))}{2} \\ \\ R_{L_{i,av}(N_r)} -$$

$$CA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

▼ Расчет СА

```
α<sub>1CA</sub>
             \alpha_{3CA}
\sigma_{CA}
               \sigma_{CA}
             \overline{d}_{3CA}
T^*_{1CA} T^*_{3CA}
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
                                   for r \in av(N_r)
\overline{c}_{a1CA} \overline{c}_{a3CA}
                                         \alpha_{1CA_r} = \alpha_{st(Z,3),r}
cu1CA cu3CA
                                         \alpha_{3\text{CA}_r} = 90^{\circ} \text{ if CA} = 1
ca1CA ca3CA
                                                           \alpha_{1CA_r} otherwise
cu1CA cu3CA
                                         \overline{d}_{1CA} = \overline{d}_{st(Z,3)}
              c<sub>3CA</sub>
c<sub>1CA</sub>
                                          \overline{d}_{3CA} = \overline{d}_{1CA}
              \lambda_{3CA}
\lambda_{1CA}
                                          T^*_{1CA_r} = T^*_{st(Z,3),r}
              F<sub>3CA</sub>
F<sub>1CA</sub>
                                          T^*_{3CA_r} = T^*_{1CA_r}
 \varepsilon_{\mathrm{CA}}
               \epsilon_{\mathrm{CA}}
                                          P^*_{1CA_r} = P^*_{st(Z,3),r}
                                          iterarion_{CA} = 0
                                          \sigma_{\text{CA}} = 1
                                           while 0 < 1
                                             iterarion_{CA} = iterarion_{CA} + 1
                                              trace(concat("iterarion.CA = ", num2str(iterarion_{CA})))
                                              P^*_{3CA_r} = P^*_{1CA_r} \cdot \sigma_{CA}
```

$$\begin{split} &\sigma_{CA} = 0.9981 \\ &\operatorname{submatrix} \left(\varepsilon_{CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (36.82) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{1CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (53.18) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{3CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\left(\overline{d}_{1CA} \right) = \begin{pmatrix} 0.8390 \\ 0.8390 \end{pmatrix} & \begin{pmatrix} F_{1CA} \\ F_{3CA} \end{pmatrix} = \begin{pmatrix} 0.0498 \\ 0.0598 \end{pmatrix} \end{split}$$

$$\begin{vmatrix} \rho^*_{3CA_r} \end{vmatrix} = \frac{1}{R_B} \begin{vmatrix} \frac{P_{3CA_r}}{T^*_{3CA_r}} \\ \frac{k_{1CA_r}}{k_{3CA_r}} \end{vmatrix} = \begin{pmatrix} \frac{k_{a,q}(C_{Pao_{3},qy_q}(P^*_{1CA_r}, T^*_{1CA_r}), R_B)}{k_{a,q}(C_{Pao_{3},qy_q}(P^*_{3CA_r}, T^*_{3CA_r}), R_B)} \end{pmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{1CA_r}, R_B, T^*_{1CA_r})}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp$$

$$\begin{aligned} & \text{submatrix} \left(T^*_{1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (826.7) \\ & \text{submatrix} \left(T^*_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (826.7) \\ & \text{submatrix} \left(P^*_{1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (2841.7) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (2836.3) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (11.972) \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (11.949) \\ & \text{submatrix} \left(k_{1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (1.352) \\ & \text{submatrix} \left(k_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (1.352) \\ & \text{submatrix} \left(a_{Kp1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (522.4) \\ & \text{submatrix} \left(\overline{c}_{a1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.121) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (44.1) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (44.1) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.094) \\ \end{aligned}$$

```
1 otherwise
         break if (|eps("rel", \sigma'_{CA}, \sigma_{CA})| < epsilon) \land (iterarion_{CA} = 0)
         | \text{iterarion}_{CA} = -1 \text{ if } (| \text{eps}(\text{"rel"}, \sigma'_{CA}, \sigma_{CA}) | < \text{epsilon}) 
        \sigma_{CA} = \sigma'_{CA}
                                                                          F_{st(Z,3)}
     (F<sub>1CA</sub>)
                                                                     G \cdot \sqrt{R_B \cdot T^*_{3CA_r}}
    (F_{3CA})
                         \left( \overline{m_{q}(k_{3CA_{r}}) \cdot P^{*}_{3CA_{r}} \cdot \Gamma \Pi \Phi("G", \lambda_{3CA_{r}}, k_{3CA_{r}}) \cdot \sin(\alpha_{3CA_{r}})} \right)
    \varepsilon_{\text{CA}_{r}} = \alpha_{3\text{CA}_{r}} - \alpha_{1\text{CA}_{r}}
 \alpha_{1CA} \alpha_{3CA}
 \sigma_{\text{CA}}
                \sigma_{\mathrm{CA}}
 \overline{d}_{1CA} \overline{d}_{3CA}
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
\frac{1}{c_{a1CA}} \frac{1}{c_{a3CA}}
\frac{1}{c_{u1CA}} = \frac{1}{c_{u3CA}}
ca1CA ca3CA
cu1CA cu3CA
 c<sub>1CA</sub> c<sub>3CA</sub>
 \lambda_{1CA} \lambda_{3CA}
 F<sub>1CA</sub> F<sub>3CA</sub>
  \varepsilon_{\mathrm{CA}} \varepsilon_{\mathrm{CA}}
```


▼ Результаты поступенчатого расчета по ср. ЛТ

Относ. погрешность расчета по массовому расходу (кг/с):

$\overline{\Delta}G =$	for $i \in 1Z$
	for $a \in 13$
	$\overline{\Delta}G_{st(i,a)} = \left eps\left("rel", G, \rho_{st(i,a),av(N_r)} \cdot c_{a_{st(i,a),av(N_r)}} \cdot F_{st(i,a)} \right) \right $
	$ar{\Delta}\mathrm{G}$

$\overline{\Delta}G^{T} = \Box$		1	2		3	4	5	6		7	8	9	10	11	12	13	14	15	16	6	17	18	19	.%
1		0.00	0.0	00	0.04	0.00	0.03	0.0	00	0.15	0.00	0.11	0.00	0.08	0.00	0.06	0.00	0.04	1 0.	.00	0.02	0.00	0.03	
$\overline{\mathbf{A}}_{\mathbf{G}}\mathbf{T}$	/ ₀ =		1	2	3	4	5	6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19					

Количество ступеней ОК: Z = 9

Дискритизация сечений: ii = 1..2Z + 1

Дискритизация ступеней: i = 1..Z

_																
$\pi^{*T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148						

Степень повышения давления в ЛА: $\pi^*_{\text{ЛА}} = \frac{P^*_{3\text{CA}_{av(N_r)}}}{P^*_{1\text{BHA}_{av(N_r)}}} = 8.970$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$H_{\mathbf{T}}^{T} =$	1	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							.10
11	2	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							
	3	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							

Действительная работа К (Дж/кг):
$$L_{K} \, = \, \sum_{i \, = \, 1}^{Z} \ \, L_{i} \, = \, 430.1 \cdot 10^{3}$$

Адиабатная работа К [Дж/кг]:
$$L^*_{K} = \sum_{i=1}^{Z} L^*_{i} = 378.5 \cdot 10^3$$

Адиабатная КПД К []:
$$n_{K}^* = \frac{L_K^*}{L_K} = 88.00 \cdot \%$$

Мощность K (Вт):
$$N_K = G \cdot L_K = 14.97 \cdot 10^6$$

submatrix $(Cp, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 1016.2	2 1024.3	3 3 1024.3	4 1034.0	5 1034.0	6 1045.1	7 1045.1	8 1056.3	9 1056.3	10 3 1067	.5 1067.5	12 5 1078.3	13 1078.3	14 1087.8	15 1087.8	16 1096.2	17 1096.2	18 1103.8	19 1103.8
submatrix $(k, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 1.394	2 1.390	3 4 1.390 1.	5 384 1.3	6 84 1.37	7 9 1.379	8 1.373	9 1.373	10 1.368	11 1.368		3 14 .363 1.3	15 59 1.359	16 1.355	17 1.355	18 1.352	19 1.352	20 2	1
submatrix $(T^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1			3 465.7	4 ! 516.3 5	5 6	7 9.1 569.		9 619.5	10 668.6	11 668.6	12 715.5	13 1·715.5 7!	4 15 66.3 756.	16 3 792.9	17	18 826.7	19 826.7	20	21
submatrix $(T, 1, 2Z + 1, av(N_r), av(N_r))^T$					1 5 96.3 51				9	10	11	12 1	.3 14	15	16	17	18	19	20 2	1
submatrix $(P^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	1	412.5		_					616.3	650.2	10	698.1 7	12.8 740	13	778.9	790.4	813.5	824.2	18	1.10^3
3domatrix(1 ,1,22 + 1,4v(11r),4v(11r))	1	315.6	439.3	3 439.3	606.5	606.5	828	828	1091.8	1091.8	1404.	.5 1404.5	1759.5	1759.5	2117.2	2117.2	2476.2	2476.2		10
submatrix $(P, 1, 2Z + 1, av(N_r), av(N_r))^T$	1	300.6	2 376.3	3 422.8	526.1	5 588.5	6 724.9	7 808.7	972.5	9 1071.5	10 1266.0	11 1383.0	12 1604.1	13 1734.9	14 1958.5	15 2089.9	16 2313.5	17 2446.6		·10 ³
submatrix $(\rho^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 2.628	2 3.285	3 3.285	4 4.091	5 4.091	6 5.067	7 5.067	8 6.138	9 6.138	10 7.31	.5 7.315	12 8.565	13 8.565	14 9.75	15 9.75	16 10.876	17 10.876	18 11.972	19 11.972
submatrix $(\rho, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 2.538	2 2.939	3 3.196	4 3.691	5 4.003	6 4.601	7 4.981	8 5.642	9 6.055	10 6.781	11 7.233	12 8.003	13 8.477	14 9.206	15 9.657	16 10.344	17 10.78	18 11.439	19 11.871

 $k_{\text{AD}} = k_{\text{AD}} \left(\text{Cp}_{\text{BO3DJYX.cp}} \left(P^*_{\text{st}(1,1),\text{av}\left(N_r\right)}, P^*_{\text{st}(Z,3),\text{av}\left(N_r\right)}, T^*_{\text{st}(1,1),\text{av}\left(N_r\right)}, T^*_{\text{st}(Z,3),\text{av}\left(N_r\right)} \right), R_B \right) = 1.373$

$F^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	1	0.1373	0.1218	0.1155	0.1031	0.098	0.0884	0.0846	0.0775	0.0747	0.069	0.0668	0.0624	0.0608	0.0578	0.0568	0.0547	0.0541	0.0514	0.0498		

$\overline{d}^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	1	0.6467	0.6726	0.6978	0.7190	0.7397	0.7517	0.7636	0.7734	0.7831	0.7913	0.7995	0.8061	0.8127	0.8173	0.8220	0.8252	0.8284	0.8337	0.8390				

 $\overline{d}_{st(Z,3)} = 0.839$ $\overline{d}_{st(Z,3)} \le 0.9 = 1$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$\mathbf{D}^{\mathrm{T}} =$	1	354.5	364.3	373.6	381.1	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2			$\cdot 10^{-3}$
D	2	461.6	461.6	461.6	461.6	461.6	456.9	452.3	448.7	445.3	442.4	439.6	437.4	435.3	433.8	432.3	431.3	430.3	428.7	427.1			10
	3	548.2	541.7	535.4	530.0	524.8	516.5	508.4	502.0	495.8	490.6	485.6	481.6	477.7	475.0	472.3	470.5	468.7	465.7	462.7			

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$R^{T} =$	1	177.3	182.2	186.8	190.5	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1						
11	2	230.8	230.8	230.8	230.8	230.8	228.4	226.2	224.4	222.6	221.2	219.8	218.7	217.6	216.9	216.2	215.7	215.2	214.4	213.6						
	3	274.1	270.8	267.7	265.0	262.4	258.2	254.2	251.0	247.9	245.3	242.8	240.8	238.9	237.5	236.2	235.2	234.3	232.8	231.4						

 $\cdot 10^{-3}$

$h^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	$\cdot 10^{-3}$
	1	96.8	88.7	80.9	74.5	68.3	64.1	60.1	56.9	53.8	51.2	48.7	46.7	44.7	43.4	42.0	41.1	40.2	38.7	37.2							

$submatrix \left(a *_{c}, 1, 2Z + 1, av \left(N_{r}\right), av \left(N_{r}\right)\right)^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 373.9 & 394.4 & 394.4 & 414.9 & 414.9 & 435.3 & 435.3 & 453.7 & 471.0 & 471.0 & 486.8 & 486.8 & 500.2 & 500.2 & 511.9 & 511.9 & 522.4 & 522.4 \end{bmatrix}$
$submatrix \left(a_{3B}, 1, 2Z + 1, av \left(N_{r}\right), av \left(N_{r}\right)\right)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(c , 1 , 2Z + 1 , av \Big(N_r \Big) , av \Big(N_r \Big) \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 107.9 & 201.3 & 100.9 & 203.3 & 94.2 & 206.6 & 87.7 & 201.3 & 81.6 & 198.3 & 77.0 & 193.7 & 75.9 & 183.0 & 75.0 & 175.2 & 74.0 & 170.2 & 73.5 \\ \hline \end{array}$
$submatrix \Big(w, 1, 2Z, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$u^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ 1 & 278.4 & 286.2 & 293.4 & 299.3 & 304.9 & 30$
$c_{a_{st(Z,3),av(N_r)}} = 58.88$ $c_{a_{st(Z,3),av(N_r)}} \le 130 = 1$ Для КС
$submatrix \Big(c_a, 1, 2Z+1, av \Big(N_f \Big), av \Big(N_f \Big) \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 99.9 & 97.3 & 94.3 & 91.5 & 88.8 & 85.5 & 82.4 & 79.6 & 76.9 & 74.4 & 72.0 & 69.7 & 67.5 & 65.4 & 63.4 & 61.5 & 59.6 & 59.3 & 58.9 \\ \hline \end{array}$
$submatrix \Big(c_{u}, 1, 2Z+1, av \Big(N_{r} \Big), av \Big(N_{r} \Big), av \Big(N_{r} \Big) \Big)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(w_u, 1, 2Z + 1, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\Delta c_{a_{i,av(N_r)}} = \left(c_{a_{st(i,2),av(N_r)}} - c_{a_{st(i,1),av(N_r)}}\right)$
$submatrix \Big(\Delta c_{a}^{}, 1, Z, av \Big(N_{r}^{}\Big), av \Big(N_{r}^{}\Big)\Big)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(\Delta c_{a}, 1, Z, av \Big(N_{r}\Big), av \Big(N_{r}\Big)\Big)^{T} \geq -12 = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$

submatrix $(\alpha, 1, 2\cdot Z + 1, av(N_r), av(N_r))^T$	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	۰. [
	1	67.83	28.90	69.13	26.74	70.50	24.46	70.13	23.31	70.54	22.04	69.20	21.08	62.72	20.94	57.68	20.56	53.70	20.37	53.18			
T_{cons}		1	2	3	4	5	6	7	Q	a	10	11	12	13	14	15	16	17	18	19	20	21	1
submatrix $(\beta, 1, 2\cdot Z + 1, av(N_r), av(N_r))^T$	= 1	17.38	27.57	16.1	26.82	15.01	26.61	14.21	25.42	13.41	24.45	12.75	23.17	12.39	21.07	11.95	19.39	11.46	18.5	11.42	20	21	.°
_																							-
submatrix $\left(\varepsilon_{\text{rotor}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
(1) (1)	1	10.19	10.72	11.6	11.21	11.04	10.42	8.68	7.44	7.04													
_																							•
submatrix $\left(\varepsilon_{\text{stator}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T =$	= 🔲	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
(Stator (1) - (1))	1	40.23	43.76	45.67	47.23	47.16	41.64	36.74	33.14	32.81													l

5 19 7 8 9 10 11 12 13 14 15 16 17 18 0.2269 0.4746 0.2014 0.4436 0.1798 0.3979 0.3659 0.1500 0.3259 0.4211 0.1634 0.1559 0.3422 0.1446 0.1408

14 15 7 9 10 11 12 13 16 17 18 19 0.7598 0.4098 0.7096 0.3814 0.6726 0.3557 0.6374 0.3388 0.5953 0.3384 0.5645 0.3365 0.5413 0.3324

19 8 9 10 11 12 13 14 15 18 0.4432 0.1853 0.1383 0.4137 0.1655 0.3924 0.1505 0.3706 0.1437 0.3404 0.3182 0.1334 0.3030 0.1300

▼ Расчет параметров потока по высоте Л

Относ. диамет р корня при увеличении которого меняется з-н профилирования Л с промежуточного на Ц = const:

с R = const на промежуточный:

[16, c.94-99]

$$\begin{array}{ll} \overline{m} = & \text{for } i \in 1 ... Z \\ \\ m_i = & \begin{vmatrix} -1 & \text{if } \overline{d} \ \operatorname{st}(i,1) \leq \overline{d} \ \operatorname{R2m} \\ \\ 1 & \text{if } \overline{d} \ \operatorname{st}(i,1) \geq \overline{d} \ \operatorname{m2II} \\ \\ -1 + \frac{1 - (-1)}{\overline{d} \ \operatorname{m2II} - \overline{d} \ \operatorname{R2m}} \cdot \left(\overline{d} \ \operatorname{st}(i,1) - \overline{d} \ \operatorname{R2m} \right) \end{array} \right. \text{ otherwise} \\ \\ m \end{array}$$

$$\begin{pmatrix} \overline{d}_{m2II} \\ \overline{d}_{R2m} \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix}$$

$$m_i = \begin{bmatrix} 0.73 & \text{if compressor} = "B\pi" \\ m_i & \text{otherwise} \end{bmatrix}$$

$\mathbf{m}^{\mathrm{T}} =$		1	2	3	4	5	6	7	8	9	10	11	12
	1	0.733	0.989	1.000	1.000	1.000	1.000	1.000	1.000	1.000			

```
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
ρ*<sub>1BHA</sub> ρ*<sub>3BHA</sub>
Cp<sub>1BHA</sub> Cp<sub>3BHA</sub>
k<sub>1BHA</sub> k<sub>3BHA</sub>
a*c1BHA a*c3BHA
                                                    for i \in 1
cu1BHA cu3BHA
                                                        for r \in 1..N_r
<sup>c</sup>a1BHA <sup>c</sup>a3BHA
                                                                                              \left(T^*_{1BHA_{av(N_r)}}\right)
                                                               \left(T^*_{1BHA_r}\right)
\alpha_{1BHA} \alpha_{3BHA}
                                                               T^*_{3BHA_r}
                                                                                                T^*_{3BHA_{av(N_r)}}
 c<sub>1BHA</sub>
                     c<sub>3BHA</sub>
\lambda_{c1BHA} \lambda_{c3BHA}
                                                              (P^*1BHA_r)
                                                                                               \left(P^*_{1BHA_{av(N_r)}}\right)
                       \varepsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                               P*3BHA<sub>r</sub>
                                                                                               P^*_{3BHA_{av(N_r)}}
                                                                                               \left( \rho^*_{1BHA_{av\left(N_r\right)}} \right)
                                                               (\rho^*_{1BHA_r})
                                                               ρ*<sub>3BHA</sub><sub>r</sub>
                                                                                              \left( \rho^*_{3BHA_{av(N_r)}} \right)
                                                                                               \left( Cp_{\text{воздух}} \left( P^*_{1BHA_r}, T^*_{1BHA_r} \right) \right)
                                                               \left( Cp_{1BHA_{r}} \right)
                                                               Cp<sub>3BHA</sub><sub>r</sub>
                                                                                               \left( \operatorname{Cp}_{\text{воздух}} \left( \operatorname{P*}_{3\text{BHA}_r}, \operatorname{T*}_{3\text{BHA}_r} \right) \right)
                                                               (k<sub>1BHA</sub><sub>r</sub>
                                                                                            \left(k_{ad}\left(Cp_{1BHA_{r}},R_{B}\right)\right)
                                                                                            \left( k_{aд} \left( C_{p_{3BHA_{r}}}, R_{B} \right) \right)
                                                               k<sub>3</sub>BHA<sub>r</sub>
                                                                                                    \frac{2 \cdot k_{1BHA_{r}}}{k_{1BHA_{r}} + 1} \cdot R_{B} \cdot T^{*}_{1BHA_{r}}
                                                               (a*c1BHA<sub>r</sub>)
                                                               a*c3BHA<sub>r</sub>
                                                             A = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,1),av(N_r)}\right)^{m_i + 1}
                                                            B = \frac{H_{T_{i,av}(N_r)}}{2 \cdot \omega}
                                                                                                                            c_{u1BHA_{av(N_r)}}
```



```
P*
                       P
   Cp
                       k
  a*c
                    a_{3B}
     c_{u}
                       c_{a}
                                       = \int for i \in 1...Z
                       β
     \alpha
                                                          for a \in 1...3
     c
                       \mathbf{W}
                                                              for r \in 1..N_r
    \lambda_{\rm c}
                      w_{u}
                                                                  T^*_{st(i,a),r} = T^*_{st(i,a),av(N_r)}
 M_{W}
                     M_{c}
                                                                   P^*_{st(i,a),r} = P^*_{st(i,a),av(N_r)}
                      \mathbf{R}_{\mathbf{L}}
  R_{L}
                                                                  \rho^*_{st(i,a),r} = \rho^*_{st(i,a),av(N_r)}
<sup>ε</sup>rotor <sup>ε</sup>stator ,
                                                                    Cp_{st(i,a),r} = Cp_{BO3ДYX}(P*_{st(i,a),r}, T*_{st(i,a),r})
                                                                     k_{st(i,a),r} = k_{a \perp} (Cp_{st(i,a),r}, R_B)
                                                                    a_{c_{st(i,a),r}}^{*} = \sqrt{\frac{2 \cdot k_{st(i,a),r}}{k_{st(i,a),r} + 1} \cdot R_{B} \cdot T_{st(i,a),r}^{*}}
                                                                     if \Delta H_{Tmax} = 0
                                                                            A_{st(i,a)} = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,a),av(N_r)}\right)^{m_i+1} 
                                                                                                                          0 if (a = 1) \land (i = 1) \land (BHA = 0)
                                                                                                                          \frac{\left|\frac{A_{st(i,a)}}{\left(R_{st(i,a),r}\right)^{m_i}} - \frac{B_{st(i,a)}}{\left(R_{st(i,a),r}\right)}\right| \text{ otherwise}
                                                                             c_{a_{st(i,a),r}} = c_{a3BHA_r} \text{ if } (a = 1) \land (i = 1) \land (BHA = 1)
                                                                                                               \sqrt{ \left( c_{a_{st(i,a)},av(N_r)}^{} \right)^2 - 2 \cdot \left( A_{st(i,a)}^{} \right)^2 \cdot \left[ \left( R_{st(i,a),r}^{} \right)^2 - \left( R_{st(i,a),av(N_r)}^{} \right)^2 \right] + 4 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2  if m_i = -1  \sqrt{ \left( c_{a_{st(i,a),av(N_r)}^{}} \right)^2 - 2 \cdot \left( A_{st(i,a)}^{} \right)^2 \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),r}} \right) - 2 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \left( \frac{1}{R_{st(i,a),av(N_r)}} - \frac{1}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2  if m_i = 0
```

$$\begin{cases} A_{M(i,a)}(m_i-1) & \left(\stackrel{*_{M(i,a)}}{=} , a_{M(i,a)}(m_i-1) \right) & \left(\stackrel{*_{M(i,a)}}{=} , a_{M(i,a)}(m_i-1) \right)$$

$$\begin{split} c_{st(1,a),r} &= \operatorname{unangre} \left({^{\text{C}}a}_{st(i,a),r}, {^{\text{C}}u}_{st(i,a),r} \right) \\ c_{st(i,a),r} &= \frac{c_{st(i,a),r}}{\sin(\alpha_{st(i,a),r})} \\ \lambda_{c_{st(i,a),r}} &= \frac{c_{st(i,a),r}}{a^{*}c_{st(i,a),r}} \\ \begin{pmatrix} T_{st(i,a),r} \\ P_{st(i,a),r} \end{pmatrix} &= \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} &= \sqrt{P^{*}st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \sqrt{P$$

```
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
Cp<sub>1CA</sub> Cp<sub>3CA</sub>
k<sub>1CA</sub> k<sub>3CA</sub>
a*c1CA a*c3CA
                                               for i \in Z
cu1CA cu3CA
                                                    for r \in 1...N_r
calCA ca3CA
                                                           \left(T^*_{1CA_r}\right)
                                                                                              T*_{st(i,3),r}
\alpha_{1CA} \alpha_{3CA}
                                                                                             T*_{3CA_{av(N_r)}}
                                                             T*3CA<sub>r</sub>
 c<sub>1CA</sub> c<sub>3CA</sub>
                                                            (P^*_{1CA_r})
                                                                                             P*_{st(i,3),r}
 \lambda_{c1CA} \lambda_{c3CA}
                                                                                            P^*_{3CA_{av\left(N_r\right)}} \bigg)
                                                             P*3CA<sub>r</sub>
 \epsilon_{\mathrm{CA}} \epsilon_{\mathrm{CA}}
                                                             (\rho^*_{1CA_r})
                                                                                            \rho^*_{st(i,3),r}
                                                                                            \left[ \rho^*_{3CA_{av(N_r)}} \right]
                                                             \rho^*_{3CA_r}
                                                                                            \left(\operatorname{Cp}_{\operatorname{BO3}\operatorname{JYX}}\left(\operatorname{P*}_{\operatorname{1CA}_{\operatorname{r}}},\operatorname{T*}_{\operatorname{1CA}_{\operatorname{r}}}\right)\right)
                                                             \left( C_{p_{1}CA_{r}} \right)
                                                              Cp<sub>3CA<sub>r</sub></sub>
                                                                                           \left( Cp_{BO3ДУX} \left( P^*_{3CA_r}, T^*_{3CA_r} \right) \right)
                                                            \binom{k_{1CA_r}}{}
                                                                                       \left(k_{ad}\left(Cp_{1CA_{r}},R_{B}\right)\right)
                                                                                    = \left[ k_{ad} \left( Cp_{3CA_r}, R_B \right) \right]
                                                             \left[ \begin{array}{c} k_{3}CA_{r} \end{array} \right]
                                                             (a*c1CA<sub>r</sub>)
                                                             \left(a^* c3CA_r\right)
                                                            |\mathbf{A}| = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,3),av(N_r)}\right)^{m_i + 1}
                                                          B = \frac{H_{T_{i,av}(N_r)}}{2 \cdot \omega}
                                                                                                              c_{u_{st(i,3),r}}
                                                             \begin{pmatrix} c_{u1CA_r} \end{pmatrix}
```

$$\begin{pmatrix} c_{alCA_{1}} \\ c_{alCA_{2}} \\ c_{a3CA_{n}} \\ c$$

▼ Результаты расчета параметров потока по высоте Л

$$T^*_{1BHA} = \begin{pmatrix} 418.2 \\ 418.2 \\ 418.2 \end{pmatrix}$$

$$T^*_{3BHA} = \begin{pmatrix} 418.2 \\ 418.2 \\ 418.2 \end{pmatrix}$$

$$P*_{1BHA} = \begin{pmatrix} 316.2 \\ 316.2 \\ 316.2 \end{pmatrix} \cdot 10^{3} \qquad P*_{3BHA} = \begin{pmatrix} 315.6 \\ 315.6 \\ 315.6 \end{pmatrix} \cdot 10^{3}$$

$$\rho^*_{1BHA} = \begin{pmatrix} 2.633 \\ 2.633 \\ 2.633 \end{pmatrix} \qquad \qquad \rho^*_{3BHA} = \begin{pmatrix} 2.628 \\ 2.628 \\ 2.628 \end{pmatrix}$$

$$Cp_{1BHA} = \begin{pmatrix} 1016.2 \\ 1016.2 \\ 1016.2 \end{pmatrix} \qquad Cp_{3BHA} = \begin{pmatrix} 1016.2 \\ 1016.2 \\ 1016.2 \end{pmatrix}$$

$$k_{1BHA} = \begin{pmatrix} 1.394 \\ 1.394 \\ 1.394 \end{pmatrix}$$
 $k_{3BHA} = \begin{pmatrix} 1.394 \\ 1.394 \\ 1.394 \end{pmatrix}$

$$a^*_{c1BHA} = \begin{pmatrix} 373.95 \\ 373.95 \\ 373.95 \end{pmatrix}$$

$$a*_{c3BHA} = \begin{pmatrix} 373.95 \\ 373.95 \\ 373.95 \end{pmatrix}$$

$$c_{1BHA} = \begin{pmatrix} 99.9 \\ 99.9 \\ 99.9 \end{pmatrix} \qquad c_{3BHA} = \begin{pmatrix} 112.6 \\ 108.2 \\ 105.6 \end{pmatrix}$$

$$c_{u1BHA} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \qquad c_{u3BHA} = \begin{pmatrix} 44.5 \\ 41.6 \\ 39.3 \end{pmatrix}$$

$$c_{a1BHA} = \begin{pmatrix} 99.9 \\ 99.9 \\ 99.9 \end{pmatrix} \qquad c_{a3BHA} = \begin{pmatrix} 103.5 \\ 99.9 \\ 98.0 \end{pmatrix}$$

$$\alpha_{1BHA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix}$$
 $\circ \qquad \qquad \alpha_{3BHA} = \begin{pmatrix} 66.71 \\ 67.39 \\ 68.13 \end{pmatrix}$
 $\circ \qquad \qquad \qquad \circ$

$$\varepsilon_{\text{BHA}} = \begin{pmatrix} 23.29 \\ 22.61 \\ 21.87 \end{pmatrix} \cdot \circ$$

$$\lambda_{c1BHA} = \begin{pmatrix} 0.267 \\ 0.267 \\ 0.267 \end{pmatrix}$$
 $\lambda_{c3BHA} = \begin{pmatrix} 0.301 \\ 0.289 \\ 0.282 \end{pmatrix}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$T^{*T} =$	1 418.2	465.7	465.7	516.3	516.3				619.5	668.6	668.6	715.5	715.5	756.3	-			826.7	826.7						
	2 418.2	465.7	465.7	516.3	516.3				619.5	668.6	668.6	715.5	715.5	756.3				826.7	826.7						
	3 418.2	465.7	465.7	516.3	516.3	3 569.	1 569.1	619.5	619.5	668.6	668.6	715.5	715.5	756.3	756.3	792.9	792.9	826.7	826.7						
	4	2	2	4				0		10	4.4	12	10	14	4 =	1.0	17	10	10	20	24	22	22	24	75
т	1 412.0	2	3	4 400.5	5	6	7	8	9	10	11	12	13	14	15	16	700.2	18		20	21	22	23	24	25
$T^1 = -$	 412.0 412.4 	436.9 446.0	460.4 460.7	488.5 496.3	511.9 512.1	542.2 548.8	565.3 565.4	594.9 600.4	616.2 616.3	645.5 650.3	665.8 665.9	694.0 698.1	712.6 712.8	737.6 740.9	753.5 753.7	776.0 779.0	790.2 790.4	811.0 813.6	824.1 824.3						
-	3 412.7	450.3	460.7	500.3	512.1	552.5	565.5	603.7	616.4	653.3	665.9	700.8	712.9	743.2	753.7	780.9	790.4	815.4	824.4						
	5 112.7	T30.3	400.9	300.5	J12.2	332.3	303.3	003.7	010.4	033.3	003.9	700.0	/12.9	775.2	733.0	700.9	790.0	013.4	024.4						
	1	2	3	4		5	6	7	8	9	10	11	12	2	13	14	15	16	17	18	19		20	21]
$P^{*T} =$	1 315.			9.3 60	06.5	606.5	828.0	828.0	1091.8	1091.					1759.5	2117.2	2117.2	2476.2	2476.2	2841.					.10 ³
r · =	2 315.		-		06.5	606.5	828.0	828.0	1091.8	1091.		_			1759.5	2117.2	2117.2	2476.2	2476.2	2841.					.10
	3 315.	6 439.	3 439	9.3 60	06.5	606.5	828.0	828.0	1091.8	1091.	3 1404.	5 1404	4.5 175	59.5	1759.5	2117.2	2117.2	2476.2	2476.2	2841.	.7 284	1.7			
			П	<u> </u>	L				I				ı	I	1		ļ.			•			L	J	
	1	2	3	4		5	6	7	8	9	10	11	12	1	13	14	15	16	17	18	19	2	0	21	
$\mathbf{P}^{\mathrm{T}} = \mathbf{L}$	1 299.3	349.8	421.7	7 496	6.9	587.7	694.1	807.9	940.5	1070.8	1232.1	1382.	.2 1569	9.2 17	733.6	1925.3	2088.1	2281.0	2444.2	2640.3	2807	.9			$\cdot 10^3$
	2 300.5	376.4	422.8	8 526	6.1	588.5	725.5	808.7	973.0	1071.5	1266.4	1383.	.0 1604	1.5	734.9	1958.9	2089.9	2313.8	2446.6	2672.7	2810	.2			
	3 301.2	389.7	423.3	3 54:	1.3	589.0	743.5	809.2	992.7	1071.9	1288.1	1383.	.5 1627	7.6 17	735.8	1981.5	2091.2	2336.2	2448.2	2695.2	2811	.8			
1																					i	ı			1
т	1	2	3	4		5	6	7	8	9	10	11	12		13	14	15	16	17	18	19		20	21	
${\rho^*}^T =$	1 2.62	8 3.28	5 3.28	85 4	.091	4.091	5.067	5.067	6.138	6.13	3 7.31	5 7.3	815 8.	565	8.565	9.750	9.750	10.876	10.876	11.97	72 11.9	972	20	21	
${\rho^*}^T =$	2 2.62	8 3.28 8 3.28	5 3.28 5 3.28	85 4. 85 4.	.091	4.091 4.091	5.067 5.067	5.067 5.067	6.138 6.138	6.13	3 7.31 3 7.31	7.3 7.3	315 8. 315 8.	565 565	8.565 8.565	9.750 9.750	9.750 9.750	10.876 10.876	10.876 10.876	11.97 11.97	72 11.9	972 972	20	21	
${\rho*}^T =$		8 3.28 8 3.28	5 3.28 5 3.28	85 4. 85 4.	.091	4.091	5.067	5.067	6.138	6.13	7.31 7.31	7.3 7.3	315 8. 315 8.	565	8.565	9.750	9.750	10.876	10.876 10.876	11.97	72 11.9	972 972	20	21	
$\rho^{*^T} =$	2 2.62	8 3.28 8 3.28 8 3.28	5 3.28 5 3.28 5 3.28	85 4 85 4 85 4	.091 .091 .091	4.091 4.091 4.091	5.067 5.067 5.067	5.067 5.067 5.067	6.138 6.138 6.138	6.138 6.138 6.138	7.31 3 7.31 3 7.31	7.3 7.3 7.3	815 8. 815 8. 815 8.	565 565 565	8.565 8.565 8.565	9.750 9.750 9.750	9.750 9.750 9.750	10.876 10.876 10.876	10.876 10.876 10.876	11.97 11.97 11.97	72 11.9 72 11.9 72 11.9	972 972 972			
т [2 2.62 3 2.62	8 3.28 8 3.28 8 3.28	5 3.28 5 3.28 5 3.28	85 4 85 4 85 4	.091 .091 .091	4.091 4.091 4.091 5	5.067 5.067 5.067	5.067 5.067 5.067	6.138 6.138 6.138	6.138 6.138 6.138	7.31 3 7.31 3 7.31 10	7.3 7.3 7.3 11	815 8. 815 8. 815 8.	565 565 565	8.565 8.565 8.565	9.750 9.750 9.750	9.750 9.750 9.750	10.876 10.876 10.876	10.876 10.876 10.876	11.97 11.97 11.97	72 11.9 72 11.9 72 11.9	972 972 972 2		21	
$\rho^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	2 2.62 3 2.62 1 1 2.530	8 3.28 8 3.28 8 3.28 2 2.788	5 3.28 5 3.28 5 3.28 3 3.190	85 4. 85 4. 85 4. 0 3.5	.091 .091 .091	4.091 4.091 4.091 5 3.999	5.067 5.067 5.067 6 4.458	5.067 5.067 5.067 7 4.977	6.138 6.138 6.138 8 5.506	6.136 6.136 6.137 9 6.052	7.31 7.31 7.31 10 6.648	7.3 7.3 7.3 7.3 7.3 7.3	815 8. 815 8. 815 8. 112 90 7.8	565 565 565 175 8	8.565 8.565 8.565	9.750 9.750 9.750 14 9.091	9.750 9.750 9.750 15 9.651	10.876 10.876 10.876 16 10.236	10.876 10.876 10.876 17 10.772	11.97 11.97 11.97 18 11.338	72 11.9 72 11.9 72 11.9 19 11.86	972 972 972 972 2			
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537	8 3.28 8 3.28 8 3.28 2 2.788 2.940	5 3.26 5 3.26 5 3.26 3 3.196 3.196	85 4. 85 4. 85 4. 0 3.5 6 3.6	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003	5.067 5.067 5.067 6 4.458 4.604	5.067 5.067 5.067 7 4.977 4.981	6.138 6.138 6.138 8 5.506 5.644	6.136 6.136 6.136 9 6.052 6.055	7.31: 7.31: 7.31: 10 6.648 6.782	7.3 7.3 7.3 7.3 11 7.23 7.23	815 8. 815 8. 815 8. 815 8. 90 7.8 93 8.0	565 565 565 175 8 04 8	8.565 8.565 8.565 13 8.472 8.477	9.750 9.750 9.750 14 9.091 9.207	9.750 9.750 9.750 15 9.651 9.657	10.876 10.876 10.876 16 10.236 10.345	10.876 10.876 10.876 17 10.772 10.780	11.97 11.97 11.97 18 11.338 11.441	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86	972 972 972 972 2 66 73			
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530	8 3.28 8 3.28 8 3.28 2 2.788 2.940	5 3.26 5 3.26 5 3.26 3 3.196 3.196	85 4. 85 4. 85 4. 0 3.5 6 3.6	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999	5.067 5.067 5.067 6 4.458	5.067 5.067 5.067 7 4.977	6.138 6.138 6.138 8 5.506	6.136 6.136 6.137 9 6.052	7.31: 7.31: 7.31: 10 6.648 6.782	7.3 7.3 7.3 7.3 7.3 7.3	815 8. 815 8. 815 8. 815 8. 90 7.8 93 8.0	565 565 565 175 8 04 8	8.565 8.565 8.565	9.750 9.750 9.750 14 9.091	9.750 9.750 9.750 15 9.651 9.657	10.876 10.876 10.876 16 10.236	10.876 10.876 10.876 17 10.772 10.780	11.97 11.97 11.97 18 11.338	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86	972 972 972 972 2 66 73			
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537	8 3.28 8 3.28 8 3.28 2 2.788 2.940	5 3.26 5 3.26 5 3.26 3 3.196 3.196	85 4. 85 4. 85 4. 0 3.5 6 3.6	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981	6.138 6.138 6.138 8 5.506 5.644 5.727	6.136 6.136 6.136 9 6.052 6.055	7.31: 7.31: 7.31: 10 6.648 6.782	7.3 7.3 7.3 7.3 11 7.23 7.23	815 8. 815 8. 815 8. 815 8. 90 7.8 93 8.0	565 565 565 175 8 04 8	8.565 8.565 8.565 13 8.472 8.477	9.750 9.750 9.750 14 9.091 9.207	9.750 9.750 9.750 15 9.651 9.657 9.661	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014	5 3.28 5 3.28 5 3.28 3 3.190 3.190 3.190	85 4. 85 4. 85 4. 0 3.5 6 3.6 9 3.7	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981 4.983	6.138 6.138 6.138 8 5.506 5.644 5.727	6.136 6.136 6.136 9 6.052 6.055 6.056	7.31 7.31 7.31 10 6.648 6.782 6.867	7.3 7.3 7.3 7.3 7.23 7.23 7.23	815 8. 815 8. 815 8. 12 7.8 3 8.0 5 8.0	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 8.472 8.477 8.480	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014	5 3.26 5 3.26 5 3.26 5 3.196 3.196 3.196 3.196	85 4 85 4 85 4 0 3.5 6 3.6 9 3.7	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9	6.138 6.138 6.138 8 5.506 5.644 5.727	6.13i 6.13i 9 6.052 6.055 6.056	10 6.648 6.782 6.867 12 8 1078	7.3 7.3 7.3 7.3 7.23 7.23 7.23 13 1078	815 8. 815 8. 815 8. 12 7.8 3 8.0 5 8.0 14 1088	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 8.472 8.477 8.480	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542 1 1 1016	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024	3 3.190 3 3.190 3.190 3 1024 1024	85 4, 85 4, 85 4, 0 3.5 6 3.6 9 3.7 4 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 13 1078	815 8. 815 8. 815 8. 915 8. 10 7.8 13 8.0 15 8.0 14 1088 1088 1088	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 8.472 8.477 8.480 16 1096	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542 1 1 1016 2 1016	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024 1024	3 3.190 3 3.190 3.190 3 1024 1024	85 4, 85 4, 85 4, 0 3.5 6 3.6 9 3.7 4 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 13 1078	815 8. 815 8. 815 8. 915 8. 10 7.8 13 8.0 15 8.0 14 1088 1088 1088	565 565 565 75	8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096 1096	9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = \begin{bmatrix} \\ Cp^{T} = \end{bmatrix} $	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542 1 1 1016 2 1016	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024 1024	3 3.190 3 3.190 3.190 3 1024 1024	85 4, 85 4, 85 4, 0 3.5 6 3.6 9 3.7 4 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 13 1078	815 8. 815 8. 815 8. 915 8. 10 7.8 13 8.0 15 8.0 14 1088 1088 1088	565 565 565 75	8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096 1096	9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	25
$\rho^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$ $Cp^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$	2 2.62 3 2.62 1 1 1 2.530 2 2.537 3 2.542 1 1 1016 2 1016 3 1016 1 1 1.394	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024 1024 1024 1024	3 3.196 3 3.196 3 3.196 3 1024 1024 1024 1024	85 4, 85 4, 85 4, 85 3,6 6 3,6 9 3,7 4 1034 1034 1034 1034 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045 1045 6 1.379	5.067 5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045 1045 7 1.379	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106 056 106 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106 68 106 10 1.368	10 6.648 6.782 6.867 12 8 1078 8 1078 8 1078 11 1.368	11 7.23 7.23 7.23 7.23 13 1078 1078 1078	315 8. 315 8. 315 8. 315 8. 40 7.8 33 8.0 45 8.0 1088 1088 1088 1088 13 1.363	565 565 565 75	8.565 8.565 8.565 13 8.472 8.477 8.480 16 1096 1096 1096 15 1.359	9.750 9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096 1096 1.355	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104 1104 1104 18 1.352	10.876 10.876 10.876 17 10.772 10.780 10.785 20 21 19 1.352	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 8 11.86 11.87 2 23	972 972 972 972 266 73 78	0 25	21	25
$\rho^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$ $Cp^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542 1 1 1016 2 1016 3 1016	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024 1024 1024	3 3.196 3 1024 1024 1024 3 1.390 1.390	85 4, 85 4, 85 4, 85 3,5 6 3,6 9 3,7 4 1034 1034 1034 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045 1045	5.067 5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106 056 106 056 106 056 106	6.13i 6.13i 6.13i 9 6.052 6.055 6.056 11 68 106 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078 8 1078 11 1.368 1.368	11 7.23 7.23 7.23 7.23 13 1078 1078	315 8. 315 8. 315 8. 315 8. 40 7.8 33 8.0 45 8.0 1088 1088 1088 1088 13 1.363	565 565 565 75 8 04 8 89 8 15 1088 1088 1088	8.565 8.565 8.565 13 8.472 8.477 8.480 16 1096 1096 1096	9.750 9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096 1096 1.355	9.750 9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 8 11.86 11.87 2 23	972 972 972 972 266 73 78	0 25	21	25

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a*c	= 1	373.9	394.4	394.4	414.9	414.9	9 435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
C	2	373.9	394.4	394.4	414.9	414.9	9 435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
	3	373.9	394.4	394.4	414.9	414.9	9 435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
				1	I					T						1						1			1	
т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a_{3B}^{1}	= 1	406.0		428.6	440.7	451.	_	473.1	484.3	493.0	503.5		521.1	528.1	536.4	542.2	549.5	554.5	561.0	565.5						
	2	406.3	_	428.8	444.2	451.2		473.2	486.6	493.0	505.4	511.4	522.7	528.2	537.6	542.2	550.5	554.5	561.9	565.6						
	3	406.4	423.9	428.8	446.0	451.2	2 467.7	473.2	487.9	493.0	506.6	511.4	523.7	528.2	538.4	542.3	551.2	554.6	562.5	565.6						
		4	2	2	4	r	c	7	0	0	10	11	12	12	14	15	16	17	10	10	20	21	22	22	24	25
Т	1	112.6	2 243.0	3 104.2	239.8	5 96.3	6 237.2	89.4	228.0	9 83.0	10 222.3	78.3	12 215.2	77.9	201.9	15 77.5	16 192.3	76.9	18 185.9	75.3	20	21	22	23	24	25
$c^{T} =$		108.2	201.0	100.9	203.3	94.2	206.0	87.7	200.8	81.6	198.0	77.0	193.5	75.9	182.8	75.0	175.0	74.0	169.9	72.7						
		105.6	177.6	99.2	182.2	93.0	186.3	86.6	182.8	80.7	181.2	76.1	178.0	74.5	168.9	73.3	162.2	71.9	157.9	70.8						
		100.0	277.0	33.2	102.2	30.0	100.5	00.0	102.0	00.7	10112	7 0.12	17010	75	100.5	75.5	102.2	7 2 1 3	20715	7 0.0						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
\mathbf{w}^{T}	_ 1	255.8	131.6	266.6	120.6	281.9	119.6	282.5	121.1	284.3	121.0	283.3	122.9	274.4	131.4	267.9	137.3	263.2	141.7	264.7						
vv -	2	336.1	210.4	339.9	202.8	342.8	191.6	335.8	186.0	331.6	180.1	326.0	177.4	314.4	182.2	306.1	185.4	300.2	187.1	298.7						
	3	403.3	286.5	400.6	274.2	394.7	255.0	381.8	243.1	373.0	232.3	363.8	225.5	350.1	227.0	340.2	227.9	333.3	227.2	329.4						
				•												•										
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$u^{T} =$	1	278.4	286.2	293.4	299.3	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9						
	2	362.5	362.5	362.5	362.5	362.5	358.8	355.3	352.4	349.7	347.5	345.3	343.6	341.9	340.7	339.6	338.8	338.0	336.7	335.5						
	3	430.5	425.4	420.5	416.3	412.2	405.6	399.3	394.3	389.4	385.3	381.4	378.3	375.2	373.1	371.0	369.5	368.1	365.7	363.4						
						-		- 1			10		40	40		4-	46 [4-7	40	10	20				24	25
Т	1	102.5	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
c_a	$= \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	103.5 99.9	97.3	94.4	92.0 91.5	88.8	85.5 85.5	82.4 82.4	79.6 79.6	76.9 76.9	74.4 74.4	72.0 72.0	69.7 69.7	67.5 67.5	65.4 65.4	63.4 63.4	61.5	59.6 59.6	59.3 59.3	58.9 58.9						
	3	98.0	89.6	94.2	91.2	88.8	85.5	82.4	79.6	76.9	74.4	72.0	69.7	67.5	65.4	63.4	61.5	59.6	59.3	58.9						
		50.0	05.0	31.2	31.2	00.0	03.5	02.1	73.0	70.5	7 1. 1	72.0	03.7	07.5	05.1	05.1	01.5	33.0	33.3	30.5						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
T	1	44.5	216.0	44.1	221.4	37.4	221.3	34.7	213.7	31.2	209.5	31.0	203.6	39.0	191.0	44.7	182.2	48.6	176.2	46.9						
$c_{\mathbf{u}}$	= 1 2	41.6	175.9	35.9	181.6	31.4	187.4	29.8	184.4	27.2	183.5	27.3	180.5	34.8	170.7	40.1	163.8	43.8	159.3	42.6						
	3	39.3	153.3	31.1	157.7	27.6	-	26.5	164.6	24.4	165.2	24.7	163.7	31.7	155.7	36.7	150.1	40.2	146.4	39.3						
			.										<u>'</u>					<u> </u>							· ·	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
$\mathbf{w_{ij}}^{\mathrm{T}}$	= 1	233.9	70.2	249.3	77.9	267.6	83.6	270.2	91.3	273.7	95.5	274.0	101.3	265.9	113.9	260.3	122.7	256.4	128.7	258.0						
u	2	321.0	186.6	326.6		331.1			168.1	322.5			+	307.1	170.0		174.9	294.2	177.5	292.8]
	3	391.2	272.1	389.3	258.6	384.6	5 240.2	372.8	229.7	365.0	220.1	356.6	214.5	343.5	217.3	334.3	219.5	327.9	219.3	324.1						J

$$\begin{array}{c|c} \Delta c_a = & \text{for } i \in 1..Z \\ & \text{for } a \in 2..3 \\ & \text{for } r \in 1..N_r \\ & \Delta c_{a_{st(i,a),r}} = c_{a_{st(i,a),r}} - c_{a_{st(i,a-1),r}} \\ & \Delta c_a \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\Delta c_{o}^{T} =$	1	0.00	7.83	-16.91	-2.36	-3.28	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		
—-a	2	0.00	-2.60	-3.01	-2.79	-2.73	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		
	3	0.00	-8.41	4.66	-3.01	-2.45	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
[16, c. 81]	$\Delta c_0^T \ge -25 = 1$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						
[,]	— a —	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						
		3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						

		1	2	3	4	5	6	7	8	9	10	11	12
$R_{\tau}^{T} =$	1	0.5386	0.5520	0.5759	0.5927	0.6054	0.6153	0.6229	0.6280	0.6314			
T'L	2	0.7000	0.7000	0.6967	0.6974	0.6978	0.6983	0.6990	0.6994	0.6990			
	3	0.7749	0.7743	0.7639	0.7592	0.7552	0.7519	0.7495	0.7478	0.7457			

		1	2	3	4	5	6	7	8	9	10	11	12
$R_{\tau}^{T} > 0 =$	1	1	1	1	1	1	1	1	1	1			
LL = 0	2	1	1	1	1	1	1	1	1	1			
	3	1	1	1	1	1	1	1	1	1			

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
$\alpha^{T} =$	1	66.71	27.26	64.95	22.57	67.17	21.14	67.17	20.44	67.94	19.56	66.72	18.89	59.97	18.91	54.84	18.65	50.84	18.58	51.47							. c
30	2	67.39	28.94	69.13	26.74	70.50	24.54	70.13	23.36	70.54	22.08	69.20	21.11	62.72	20.97	57.68	20.58	53.70	20.41	54.10							
	3	68.13	30.29	71.71	30.05	72.70	27.34	72.18	25.83	72.39	24.24	71.02	23.05	64.84	22.78	59.93	22.29	56.00	22.03	56.25							
		·					•		•	•	•		•			•			•						•		•
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21					
$\beta^{T} =$	1	23.86	57.77	20.74	49.75	18.35	45.64	16.97	41.11	15.70	37.94	14.72	34.53	14.23	29.86	13.69	26.62	13.09	24.72	12.85			.0				
١٥	2	17.29	27.53	16.10	26.82	15.01	26.52	14.21	25.36	13.41	24.41	12.75	23.14	12.39	21.04	11.95	19.37	11.46	18.46	11.37							
	3	14.06	18.22	13.60	19.43	13.00	19.60	12.47	19.12	11.90	18.68	11.41	18.00	11.11	16.75	10.74	15.66	10.31	15.12	10.30							

12

13

15

10

11

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$3^{\mathrm{T}} < 91.^{\circ} =$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

33.91

36.52

29.01

40.26

27.29

11.51

46.04

22.24

10.99

19.81

10.38

48.39 47.91

24.14

46.74

11.14

 $\beta.2 > 91 \Longrightarrow$ поменять 3-н профилирования

	3	4.16	5.82	6.61	6.65	6.78	6.59	5.64	4.92	4.81							
																	_
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
ε ^T =	1	38.38	41.87	47.52	47.71	49.08	48.10	40.53	35.16	32.89							۰.
estator –	2	37.26	41.21	46.92	47.37	48.87	48.14	41.09	36.00	33.70							

41.32

15.63

8.66

12.93

7.42

36.50

11.63

7.01

34.22

	_	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\lambda_c^T = \begin{bmatrix} 1 & 0.3 \\ 2 & 2.3 \end{bmatrix}$.3012	0.6161	0.2642	0.5779	0.2321	0.5451	0.2055	0.5025	0.1829	0.4720	0.1663	0.4421	0.1600	0.4036	0.1550	0.3757	0.1502	0.3559	0.1441				
2 0.2	.2893	0.5098	0.2559	0.4900	0.2269	0.4733	0.2014	0.4426	0.1798	0.4204	0.1634	0.3974	0.1559	0.3654	0.1500	0.3419	0.1446	0.3253	0.1391				
3 0.2	.2823	0.4503	0.2516	0.4390	0.2240	0.4279	0.1989	0.4029	0.1779	0.3848	0.1616	0.3656	0.1531	0.3377	0.1465	0.3169	0.1405	0.3024	0.1355				
_																							
			1 2	2 3	4 5	6 7	8	9 10	11 12	13	14 15	16 17	18 1	9									
[16, c. 87] λ	$\lambda_0^T \leq 0.$.85 = 1	1	1 1	1 1	1	1 1	1 1	1	1 1	1 1	1 :	1	1									
. , ,	C	2		1 1	1 1	1	1 1	1 1	1	1 1	1 1	1	1	1									
		3	1	1 1	1 1	1	1 1	1 1	1	1 1	1 1	1	1	1									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_c^T = \begin{bmatrix} 1 & 0. \\ \hline 2 & 2 \end{bmatrix}$	0.2774	0.5820	0.2431	0.5441	0.2135	0.5120	0.1891	0.4708	0.1684	0.4415	0.1532	0.4130	0.1475	0.3763	0.1430	0.3500	0.1387	0.3314	0.1331				
2 2 0.	0.2663	0.4766	0.2353	0.4577	0.2087	0.4419	0.1853	0.4128	0.1655	0.3918	0.1505	0.3701	0.1437	0.3400	0.1383	0.3179	0.1334	0.3024	0.1285				
3 0.	0.2597	0.4189	0.2314	0.4084	0.2060	0.3982	0.1830	0.3747	0.1637	0.3578	0.1488	0.3398	0.1411	0.3137	0.1351	0.2942	0.1297	0.2808	0.1252				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_{W}^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix}$	0.6299	0.3151	0.6220	0.2736	0.6249	0.2582	0.5972	0.2501	0.5768	0.2404	0.5539	0.2359	0.5195	0.2449	0.4941	0.2498	0.4747	0.2525	0.4680				

0.6374

0.7114

0.3393

0.4307

0.5953

0.6628

0.3388

0.4215

0.5645

0.6274

0.3369

0.4135

0.5413

0.6009

0.3329

0.4039

0.5281

0.5824

0.8274

0.9923

0.4989

0.6758

0.7928

0.9341

0.4565

0.6149

0.7598

0.8747

0.4110

0.5451

0.7096

0.8069

0.3822

0.4983

0.6726

0.7565

0.3563

0.4586

$$T^*_{1CA} = \begin{pmatrix} 826.7 \\ 826.7 \\ 826.7 \end{pmatrix} \qquad T^*_{3CA} = \begin{pmatrix} 826.7 \\ 826.7 \\ 826.7 \end{pmatrix} \qquad a^*_{c1CA} = \begin{pmatrix} 522.4 \\ 522.4 \\ 522.4 \end{pmatrix} \qquad a^*_{c3CA} = \begin{pmatrix} 522.4 \\ 522.4 \\ 522.4 \end{pmatrix} \qquad \alpha_{1CA} = \begin{pmatrix} 51.47 \\ 54.10 \\ 56.25 \end{pmatrix} \cdot \alpha_{3CA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix} \cdot \alpha_{3CA} = \begin{pmatrix} 2841.7 \\ 2841.7 \\ 2841.7 \end{pmatrix} \cdot 10^3 \qquad P^*_{3CA} = \begin{pmatrix} 2836.3 \\ 2836.3 \\ 2836.3 \end{pmatrix} \cdot 10^3 \qquad c_{1CA} = \begin{pmatrix} 75.3 \\ 72.7 \\ 70.8 \end{pmatrix} \qquad c_{3CA} = \begin{pmatrix} 48.9 \\ 48.9 \\ 48.9 \end{pmatrix} \qquad \varepsilon_{CA} = \begin{pmatrix} 38.53 \\ 35.90 \\ 33.75 \end{pmatrix} \cdot \alpha_{3CA} = \begin{pmatrix} 11.972 \\ 11.972 \\ 11.972 \end{pmatrix} \qquad \rho^*_{3CA} = \begin{pmatrix} 11.949 \\ 11.949 \\ 11.949 \end{pmatrix} \qquad c_{u1CA} = \begin{pmatrix} 46.9 \\ 42.6 \\ 39.3 \end{pmatrix} \qquad c_{u3CA} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 0.144 \\ 0.139 \\ 0.136 \end{pmatrix} \qquad \lambda_{c3CA} = \begin{pmatrix} 0.094 \\ 0.094 \\ 0.094 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad k_{3CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad k_{3CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad k_{3CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad k_{3CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA}$$

Рассматриваемая ступень:
$$j = \begin{cases} j = 1 \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r} \right) \geq 0 \land - \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \right| \leq v \leq 0 \right) \\ & \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r} \right) < 0 \land 0 \leq v \leq \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \right| \right) \\ \Delta_W(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r} \right) \geq 0 \right) \land \left(-\left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right| \leq v \leq 0 \right) \land (j \neq 3) \\ & -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) < 0 \right) \land \left(0 \leq v \leq \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right| \right) \land (j \neq 3) \\ \Delta_U(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} \quad \text{if } \left(-c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right) \land (j \neq 3) \\ & \text{NaN otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2}\right) \cdot 10^2 = 500$$

Дискретизация скорости: $v = -v_{lim}, -v_{lim} + \frac{v_{lim}}{3000} ... v_{lim}$

 $r = av(N_r)$

▲ Построение треугольников скоростей в 3х сечениях

$$\begin{pmatrix} F_{I} & F_{II} \\ D_{2} & R_{2} \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \text{for } a \in 1...3 \end{cases}$$

$$\begin{cases} \rho_{\cdot}(z) = \text{interp} \left(\text{Ispline} \left(\text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(\rho, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), 1, N_{p}$$

Кольцевые площади (м^2):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$\operatorname{stack}\left(F_{\mathbf{I}}^{T}, F_{\mathbf{II}}^{T}, F^{T}\right) =$	1	0.0196	0.0180	0.0165	0.0152	0.0140	0.0130	0.0121	0.0114	0.0107	0.0101	0.0095	0.0091	0.0087	0.0084	0.0081	0.0079	0.0077	0.0074	0.0071
	2	0.1177	0.1082	0.0990	0.0914	0.0840	0.0781	0.0726	0.0682	0.0640	0.0606	0.0573	0.0547	0.0522	0.0504	0.0487	0.0476	0.0464	0.0445	0.0427
	3	0.1373	0.1218	0.1155	0.1031	0.0980	0.0884	0.0846	0.0775	0.0747	0.0690	0.0668	0.0624	0.0608	0.0578	0.0568	0.0547	0.0541	0.0514	0.0498

Радиус и диаметр двухконтурности (м):

. (TT)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	– 3
$\operatorname{stack}(R2^{1}, D2^{1}) =$	1	194.1	197.3	200.4	202.9	205.3	204.5	203.8	203.2	202.7	202.2	201.8	201.5	201.1	200.9	200.7	200.5	200.4	200.1	199.9	.10
	2	388.1	394.6	400.7	405.7	410.5	409.0	407.6	406.4	405.3	404.5	403.6	402.9	402.2	401.8	401.3	401.0	400.7	400.2	399.7	

$$\begin{pmatrix} \pi^* \Pi \\ \pi^* I \end{pmatrix} = \begin{cases} \text{for i = 1..Z} \\ \text{for a = 1} \end{cases} \\ \begin{pmatrix} C_{D}(z) = \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(C_{D}, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), 1, N_f$$

T = T		1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{stack}(\pi^*_{I}, \pi^*_{II}) =$	1	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148			
, , ,	2	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148			

$$\prod_{i=1}^{Z} \pi^*_{\prod_{i=1}} = 9.003$$

Относ. толщины ЛРК и СА:

$$\overline{c}_{rotor.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{cases} 12 + \begin{vmatrix} 4 \text{ if compressor} = "B\pi" \\ -4 \text{ if compressor} = "KHД" \\ -0.8 \text{ otherwise} \\ 3 + \begin{vmatrix} 1.65 \text{ if compressor} = "B\pi" \\ 0 \text{ if compressor} = "KHД" \\ 0.62 \text{ otherwise} \\ 2 \end{cases}, \begin{cases} 1 \\ av(N_r) \\ N_r \end{cases}, \begin{cases} 12 + \begin{vmatrix} 4 \text{ if compressor} = "B\pi" \\ -4 \text{ if compressor} = "KHД" \\ -0.8 \text{ otherwise} \\ 3 + \begin{vmatrix} 1.65 \text{ if compressor} = "B\pi" \\ 0 \text{ if compressor} = "KHД" \\ 0.62 \text{ otherwise} \\ 2 \end{bmatrix}, \begin{cases} 1 \\ av(N_r) \\ N_r \end{cases}, \begin{cases} 1 \\ 0 \text{ if compressor} = "KHД" \\ 0.62 \text{ otherwise} \\ 2 \end{cases}$$

$$\overline{c}_{stator.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}, (7 \\ 8 \\ 9 \end{bmatrix}, (7 \\ 8 \\ 9 \end{bmatrix}$$

$$r = ORIGIN, ORIGIN + \frac{N_r - ORIGIN}{N_{dis}} .. N_r$$

$$\overline{c}_{BHA} = \begin{bmatrix} \text{for } r \in 1..N_r \\ \overline{c}_{BHA_r} = \overline{c}_{stator.}(r) \end{bmatrix}$$

$$\overline{c}_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 3.00 \\ \hline 2 & 6.00 \\ \hline 3 & 9.00 \\ \hline \end{array} .\%$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{bmatrix}
for & i \in 1 ... Z \\
for & r \in 1 ... N_r
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator}_{i,r} \\
\overline{c}_{rotor}_{i,r}
\end{bmatrix} = \begin{bmatrix}
\overline{c}_{stator.}(r) \\
\overline{c}_{rotor.}(r)
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 \\ 2 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 & 6.00 \\ 3 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 & 9.00 \\ \end{bmatrix} .\%$$

$$\overline{c}_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 & 11.20 \\ 2 & 3.62 & 3.62 & 3.62 & 3.62 & 3.62 & 3.62 & 3.62 & 3.62 \\ 3 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 & 2.00 \end{bmatrix} . 0$$

$$\overline{c}_{CA} = \begin{vmatrix} for & r \in 1 ... N_r \\ \overline{c}_{CA_r} & = \overline{c}_{stator.}(r) \\ \overline{c}_{CA} \end{vmatrix}$$

$$\overline{c}_{CA} = \begin{bmatrix} & 1 & \\ 1 & 3.00 \\ 2 & 6.00 \\ \hline 3 & 9.00 \end{bmatrix} .0$$

$$\begin{bmatrix}
\underline{r}_{inlet_{CA}} \\
\underline{r}_{outlet_{CA}}
\end{bmatrix} = \begin{bmatrix}
for \ r \in 1..N_r & if \ CA = 1 \\
\hline
\begin{bmatrix}
\underline{r}_{inlet_{CA}_r} \\
\underline{r}_{outlet_{CA}_r}
\end{bmatrix} = \begin{bmatrix}
0.2 \\
0.1
\end{bmatrix} \cdot \underline{c}_{stator.}(r)$$

$$\begin{bmatrix}
\underline{r}_{inlet_{CA}} \\
\underline{r}_{outlet_{CA}}
\end{bmatrix}$$

$$\frac{1}{\text{r_inlet}_{BHA}} = \begin{vmatrix}
 & 1 & \\
 & 1 & 0.600 \\
 & 2 & 1.200 \\
 & 3 & 1.800
\end{vmatrix} .\%$$

$$\frac{1}{\text{r_inlet}_{\text{stator}}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ 2 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 \\ 3 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 & 0.900 \\ \end{bmatrix}$$

$$\frac{T}{r_outlet_{stator}}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.150 & 0.150 & 0.150 & 0.150 & 0.150 & 0.150 & 0.150 & 0.150 \\ 2 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ 3 & 0.450 & 0.450 & 0.450 & 0.450 & 0.450 & 0.450 & 0.450 & 0.450 \\ \end{bmatrix} .\%$$

$$\frac{1}{\text{r_outlet}_{BHA}} = \begin{bmatrix} & 1 & \\ 1 & 0.300 \\ 2 & 0.600 \\ \hline 3 & 0.900 \end{bmatrix} .\%$$

$$\underline{r}_{inlet_{CA}} =
\begin{vmatrix}
 & 1 & \\
 & 1 & 0.600 \\
 & 2 & 1.200 \\
 & 3 & 1.800
\end{vmatrix}$$
.%

$$\frac{T}{r_outlet_{rotor}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 & 0.560 \\ 2 & 0.181 & 0.181 & 0.181 & 0.181 & 0.181 & 0.181 & 0.181 & 0.181 \\ 3 & 0.100 & 0.100 & 0.100 & 0.100 & 0.100 & 0.100 & 0.100 & 0.100 \\ \end{bmatrix} .\%$$

Относ. удлинение ЛРК и НА:

[16, c. 244]

$$\overline{h}_{rotor}(Z,i) = \begin{vmatrix} \overline{h}_{\sim rotor} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim rotor}(1) & \text{if } i > Z \end{vmatrix} \begin{vmatrix} \overline{h}_{\sim stator} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim stator}(1) & \text{if } i > Z \end{vmatrix}$$
$$\overline{h}_{\sim rotor} \left(\frac{i}{Z} \right) & \text{otherwise} \end{vmatrix}$$

$$\overline{\underline{h}}_{\sim}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor, i \right)$$

$$\overline{\underline{h}}_{\text{constator}}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator}, i \right)$$

Для компрессора газогенератора

$$\frac{h_{_{PK}}}{S_{_{PK}}}$$
=2,5...4,5 – для первой дозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
 =2,0...3,5 – для первой околозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,7...3,0 – для первой сверхзвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,0...2,5 – для последней ступени.

[16, c. 83-84]

▼ Расчет длин хорд по высоте Л

$$\begin{array}{l} \mathsf{chord}_{BHA} = & \mathsf{for} \ i \in I \\ \\ \mathsf{chord}_{BHA}_{av\left(N_r\right)} = \frac{b_{st(i,1)}}{\overline{h}_{stator}(Z,0)} \\ \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av\left(N_r\right)} - R_{st(1,1),1}} \\ \mathsf{for} \ \ r \in 1 ... N_r \\ \\ \mathsf{b}_{BHArop} = \frac{\mathsf{chord}_{BHA}_{av\left(N_r\right)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ \mathsf{b}_{BHAnep} = b_{BHAkop} \cdot \mathsf{sail}_{stator} \\ \mathsf{b}_{BHA,(z)} = \mathsf{interp} \left[\mathsf{cspline} \left[\begin{pmatrix} R_{st(i,1),N_r} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHAkop} \\ \mathsf{chord}_{BHA_{av\left(N_r\right)}} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} R_{st(i,1),1} \\ R_{st(i,1),av\left(N_r\right)} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHAkop} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHAnep} \\ \mathsf{chord}_{BHA_{av\left(N_r\right)}} \\ \mathsf{b}_{BHAnep} \end{pmatrix}, \mathsf{z} \\ \mathsf{chord}_{BHA} \\ \mathsf{chord}_{BH$$

$$\left(\begin{array}{c} \mathsf{chord}_{\mathsf{rotor}} \cdot \mathsf{chord}_{\mathsf{stator}} \cdot \mathsf{ehord}_{\mathsf{stator}} \cdot \mathsf{av}(N_{\mathsf{r}}) \\ \mathsf{chord}_{\mathsf{stator}} \cdot \mathsf{av}(N_{\mathsf{r}}) \\ \mathsf{chord}_{\mathsf{stator}} \cdot \mathsf{av}(N_{\mathsf{r}}) \\ \mathsf{sail} = \frac{\mathsf{mean} \left(h_{\mathsf{Si}(\mathsf{i},1)}, h_{\mathsf{st}(\mathsf{i},2)} \right)}{\mathsf{R}_{\mathsf{stator}} (\mathcal{X}, \mathsf{i})} \\ \mathsf{sail} = \frac{\mathsf{R}_{\mathsf{Si}(\mathsf{i},2)}, \mathsf{av}_{\mathsf{r}} - \mathsf{R}_{\mathsf{st}(\mathsf{i},2)}, \mathsf{1}}{\mathsf{R}_{\mathsf{st}(\mathsf{i},2)}, \mathsf{av}_{\mathsf{r}} (\mathsf{N}_{\mathsf{i}})} - \mathsf{R}_{\mathsf{st}(\mathsf{i},2)}, \mathsf{1}} \\ \mathsf{bp}_{\mathsf{K} \mathsf{kop}} = \frac{\mathsf{chord}_{\mathsf{rotor}} \cdot \mathsf{i}_{\mathsf{i}, \mathsf{av}}(\mathsf{N}_{\mathsf{i}})}{\mathsf{sail}} \\ \mathsf{bp}_{\mathsf{K} \mathsf{kop}} = \frac{\mathsf{chord}_{\mathsf{rotor}} \cdot \mathsf{i}_{\mathsf{i}, \mathsf{av}}(\mathsf{N}_{\mathsf{i}})}{\mathsf{sail}} \\ \mathsf{b}_{\mathsf{H} \mathsf{A} \mathsf{kop}} - \mathsf{l}_{\mathsf{r}} \cdot \mathsf{sail} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{A} \mathsf{kop}} - \mathsf{l}_{\mathsf{h}} \cdot \mathsf{sail} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{A} \mathsf{kop}} - \mathsf{l}_{\mathsf{h}} \cdot \mathsf{sail} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{A} \mathsf{kop}} - \mathsf{l}_{\mathsf{h}} \cdot \mathsf{l}_{\mathsf{kop}} \cdot \mathsf{l}_{\mathsf{h}} \cdot \mathsf{l}_{\mathsf{kop}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{A} \mathsf{lop}} - \mathsf{l}_{\mathsf{h}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{l} \mathsf{lop}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{l} \mathsf{lop}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{l} \mathsf{lop}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{l}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{l}} - \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{l}} - \mathsf{l}$$

$$\begin{split} \mathsf{chord}_{CA} = & \quad \text{for } i \in Z \\ & \quad \mathsf{chord}_{CA_{av}(N_r)} = \frac{h_{st(i,3)}}{h_{stator}(Z,Z+1)} \\ & \quad \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av}(N_r) - R_{st(1,1),1}} \\ & \quad \mathsf{for } r \in I \dots N_r \\ & \quad b_{CA\kappa op} = \frac{\mathsf{chord}_{CA_{av}(N_r)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ & \quad b_{CA\pi cp} = b_{CA\kappa op} \cdot \mathsf{sail}_{stator} \\ & \quad b_{CA}(z) = \mathsf{interp} \begin{bmatrix} \mathsf{cspline} \begin{bmatrix} R_{st(i,1),av}(N_r) \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{bmatrix} \begin{bmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \end{bmatrix} \begin{bmatrix} R_{st(i,1),1} \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{bmatrix} \begin{bmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \end{bmatrix} \\ & \quad \mathsf{chord}_{CA} \\ & \quad \mathsf{chord}_{CA} \\ & \quad \mathsf{chord}_{CA} \\ & \quad \mathsf{chord}_{CA} \end{aligned}$$

▼ Определение количества Л РК и Н.

$$\begin{aligned} & \stackrel{r}{\mathcal{E}}_{BHA(b:t)=1} \\ & \stackrel{r}{\mathcal{E}}_{BHA} \\ & \stackrel{r}{\operatorname{Inide}}_{BHA} \\ & \stackrel{r}{\operatorname{Inide}}_{BHA} \\ & \stackrel{r}{\operatorname{IBHA}} \\ & \stackrel{r}{\operatorname{BBIA}} \\ & \stackrel{\theta}{\operatorname{BBIA}} \\ & \stackrel{\theta}{\operatorname{BBIA}}$$


```
\varepsilon_{\text{HA}(b/t)=1}
\varepsilon_{PK(b/t)=1}
   Z<sub>rotor</sub>
                         Z<sub>stator</sub>
r_inletrotor
                    r_inlet<sub>stator</sub>
r_outlet<sub>rotor</sub> r_outlet<sub>stator</sub>
     trotor
                          tstator
                          i<sub>stator</sub>
     <sup>1</sup>rotor
   m<sub>rotor</sub>
                         m<sub>stator</sub>
    \theta_{rotor}
                          \theta_{\text{stator}}
                         \boldsymbol{\delta}_{stator}
    \delta_{rotor}
                                             = \int for i \in 1...Z
                                                        for r \in av(N_r)
                          \chi_{\text{stator}}
    \chi_{rotor}
   v_{\text{rotor}}
                         v_{
m stator}
 R_{\text{СЛ.rotor}}
                       R<sub>CЛ.stator</sub>
                         K_{stator}
    K<sub>rotor</sub>
   \mathbf{D}_{\text{rotor}}
                         D<sub>stator</sub>
    \zeta_{\rm rotor}
                          \zeta_{\rm stator}
                     quality<sub>stator</sub>
qualityrotor
   \eta_{stage}
                          \eta_{stage}
                                                                                        chord_{rotor_{i,\underline{r}}}
                                                                                          b/t<sub>PK</sub>i,r
                                                               tstator<sub>i,r</sub>
```

$$\begin{cases} r & \text{inlet}_{\text{stator}_{i,r}} \\ r & \text{inlet}_{\text{rator}_{\text{totor}_{i,r}}} \end{cases} = \begin{cases} \frac{r & \text{inlet}_{\text{stator}_{i,r}}}{r & \text{inlet}_{\text{rotor}_{i,r}}} \\ \frac{r & \text{inlet}_{\text{rotor}_{i,r}}}{r & \text{inlet}_{\text{rotor}_{i,r}}} \end{cases} = \begin{cases} \frac{r & \text{inlet}_{\text{stator}_{i,r}}}{r & \text{inlet}_{\text{rotor}_{i,r}}} \\ \frac{r & \text{inlet}_{\text{rotor}_{i,r}}}{r & \text{chord}_{\text{rotor}_{i,r}}} \end{cases} = \frac{r & \text{outlet}_{\text{stator}_{i,r}}}{r & \text{chord}_{\text{rotor}_{i,r}}} \end{cases} = \frac{r & \text{outlet}_{\text{rotor}_{i,r}}}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{r & \text{rotor}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} \end{cases} = \frac{r & \frac{mean(D_{\text{St}(i,2),r})_{\text{St}(i,3),r}}{r & \text{rotor}_{i,r}} \\ \frac{r & \text{chord}_{\text{rotor}_{i,r}}}{r & \text{chord}_{\text{stator}_{i,r}}} - 1 \\ \frac{r & \text{chord}_{\text{rotor}_{i,r}}}{r & \text{chord}_{\text{rotor}_{i,r}}} \end{cases} = \frac{r & \frac{c & \text{chord}_{\text{rotor}_{i,r}}}{r & \text{chord}_{\text{rotor}_{i,r}}} - 1 \\ \frac{r & \text{chord}_{\text{rotor}_{i,r}}}{r & \text{chord}_{\text{rotor}_{i,r}}} - 2 \end{cases} \\ \frac{\theta & \text{rotor}_{i,r}}{\theta & \text{stator}_{i,r}} = \frac{r & \frac{c & \text{chord}_{\text{rotor}_{i,r}}}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ - & \frac{c & \text{chord}_{\text{rotor}_{i,r}}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{stator}_{i,r}} \\ - & \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{stator}_{i,r}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text{rotor}_{i,r}}} - \frac{1}{r & \text{chord}_{\text{rotor}_{i,r}}} \\ \frac{c & \text{stator}_{i,r}}{r & \text{chord}_{\text$$

$$\left(\begin{array}{l} R_{CJI.stator_{1,\,r}} \\ R_{CJI.stator_{1,\,r}} \\ \end{array} \right) = \frac{1}{2} \cdot \left| \begin{array}{l} \frac{1}{\sin(0.5 \cdot \Theta_{rotor_{1,\,r}})} \\ -\frac{1}{\sin(0.5 \cdot \Theta_{rotor_{1,\,r}})} \\ -\frac{1}{\sin(0.5 \cdot \Theta_{rotor_{1,\,r}})} \\ -\frac{1}{\sin(0.5 \cdot \Theta_{rotor_{1,\,r}})} \\ -\frac{1}{\cos(3\pi(i,\,1),\,r)} \\ -\frac{1}{\cos(3\pi(i,\,2),\,r)} \\ -\frac{1}{\cos(3\pi(i,\,2),\,r)} \\ -\frac{1}{\cos(3\pi(i,\,2),\,r)} \\ -\frac{1}{\cos(3\pi(i,\,2),\,r)} \\ -\frac{1}{\cos(3\pi(i,\,2),\,r)} \\ -\frac{1}{\sin(3\pi(i,\,2),\,r)} \\$$

```
\epsilonCA(b/t)=1
    Z_{CA}
r_inlet<sub>CA</sub>
r_outlet_{
m CA}
     t_{CA}
     iCA
    m_{CA}
                                   if CA = 1
    \theta_{\text{CA}}
                                             for r \in av(N_r)
    \delta_{\text{CA}}
                                                    \left| \varepsilon_{CA(b/t)=1_r} = \varepsilon_{(b/t)=1} \left( \alpha_{3CA_r} \right) \right|
    \chi_{\text{CA}}
    v_{\mathrm{CA}}
RСЛ.СА
    K_{CA}
    D_{CA}
                                                   Z_{CA} = \left[ \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right) \text{ if } \text{mod} \left( \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right), 2 \right) = 0 \right]
                                                           round \left(\frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}}\right) + 1 otherwise
                                                    \left| \left( r_{-} \text{inlet}_{CA_r} \quad r_{-} \text{outlet}_{CA_r} \right) \right| = \text{chord}_{CA_r} \cdot \left( \overline{r_{-}} \text{inlet}_{CA_r} \quad \overline{r_{-}} \text{outlet}_{CA_r} \right)
                                                   m_{\text{CA}_{r}} = 0.23 \cdot (2 \cdot \overline{x}_{f})^{2} + 0.18 - \frac{0.002}{\text{deg}} \cdot (\alpha_{3\text{CA}_{r}})^{2}
```

$$\begin{split} \delta_{\text{CA}_r} &= \text{m}_{\text{CA}_r} \cdot \theta_{\text{CA}_r} \cdot \sqrt{\frac{^{\text{i}_{\text{CA}_r}}}{\text{chord}_{\text{CA}_r}}} \\ \chi_{\text{CA}_r} &= \theta_{\text{CA}_r} \cdot \frac{1 + 2 \cdot \left(1 - 2 \cdot \overline{x}_f\right)}{2} \\ v_{\text{CA}_r} &= \chi_{\text{CA}_r} + \alpha_{1\text{CA}_r} + i_{\text{CA}_r} \\ R_{\text{CJI.CA}_r} &= \frac{\text{chord}_{\text{CA}_r}}{2 \cdot \sin\left(0.5 \cdot \theta_{\text{CA}_r}\right)} \\ K_{\text{CA}_r} &= \frac{^{\text{c}_{\text{a3CA}_r}}}{^{\text{c}_{\text{a1CA}_r}}} \\ D_{\text{CA}_r} &= \left(1 - K_{\text{CA}_r} \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{\sin\left(\alpha_{3\text{CA}_r}\right)}\right) + \left(\frac{1}{\tan\left(\alpha_{1\text{CA}_r}\right)} - K_{\text{CA}_r} \cdot \frac{1}{\tan\left(\alpha_{3\text{CA}_r}\right)}\right) \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{^{\text{c}_{\text{chord}_{\text{CA}_r}}}} \\ \left(\varepsilon_{\text{CA}(b/t)=1} \mid Z_{\text{CA}_r} \mid r_{\text{inlet}_{\text{CA}_r}} \mid r_{\text{outlet}_{\text{CA}_r}} \mid t_{\text{CA}_r} \mid t_{\text{CA}$$

$$chord_{BHA} = \begin{bmatrix} & & 1 & \\ & 1 & 26.42 \\ & 2 & 29.35 \\ & 3 & 31.71 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
chord , T =	1	54.30	48.94	43.38	39.63	36.89	34.80	33.42	32.84	32.50							$\cdot 10^{-3}$
chord _{rotor} =	2	63.23	56.88	50.34	45.95	42.75	40.30	38.68	38.00	37.59							
	3	70.59	63.63	56.39	51.52	47.96	45.24	43.45	42.69	42.25							

Длина хорды Л (м):

$$chord_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 25.80 \\ \hline 2 & 28.65 \\ \hline 3 & 30.96 \\ \hline \end{array} \cdot 10^{-3}$$

$$r_inlet_{BHA} = \begin{bmatrix} & & 1 & \\ 1 & 0.16 & \\ 2 & 0.35 & \\ \hline 3 & 0.57 & \end{bmatrix} \cdot 10^{-3} \quad r_outlet_{BHA} = \begin{bmatrix} & 1 & \\ 1 & 0.08 & \\ \hline 2 & 0.18 & \\ \hline 3 & 0.29 & \end{bmatrix} \cdot 10^{-3}$$

$$r_inlet_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.61 & 0.55 & 0.49 & 0.44 & 0.41 & 0.39 & 0.37 & 0.37 & 0.36 \\ 2 & 0.23 & 0.21 & 0.18 & 0.17 & 0.15 & 0.15 & 0.14 & 0.14 & 0.14 \\ 3 & 0.14 & 0.13 & 0.11 & 0.10 & 0.10 & 0.09 & 0.09 & 0.09 & 0.08 \\ \end{bmatrix} \cdot 1$$

$$r_inlet_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.07 & 0.07 & 0.06 & 0.06 & 0.06 & 0.06 & 0.07 & 0.07 & 0.08 \\ 2 & 0.15 & 0.15 & 0.14 & 0.14 & 0.14 & 0.15 & 0.16 & 0.18 \\ 3 & 0.24 & 0.24 & 0.23 & 0.22 & 0.22 & 0.23 & 0.24 & 0.26 & 0.29 \end{bmatrix} \cdot 10^{-3}$$

$$r_inlet_{CA} = \begin{bmatrix} & 1 & \\ 1 & 0.15 \\ 2 & 0.34 \\ \hline 3 & 0.56 \end{bmatrix} \cdot 10^{-3} \qquad r_outlet_{CA} = \begin{bmatrix} & 1 \\ 1 & 0.08 \\ \hline 2 & 0.17 \\ \hline 3 & 0.28 \end{bmatrix} \cdot 10^{-3}$$

Радисы входных и выходных кромок профилей Л (мм):

$$r_outlet_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 1 & 0.30 & 0.27 & 0.24 & 0.22 & 0.21 & 0.19 & 0.19 & 0.18 & 0.18 \\ \hline 2 & 0.11 & 0.10 & 0.09 & 0.08 & 0.08 & 0.07 & 0.07 & 0.07 \\ \hline 3 & 0.07 & 0.06 & 0.06 & 0.05 & 0.05 & 0.05 & 0.04 & 0.04 & 0.04 \end{bmatrix} \cdot 10^{-1}$$

$$r_outlet_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.03 & 0.03 & 0.03 & 0.03 & 0.03 & 0.03 & 0.04 & 0.04 \\ 2 & 0.08 & 0.07 & 0.07 & 0.07 & 0.07 & 0.07 & 0.08 & 0.09 \\ 3 & 0.12 & 0.12 & 0.12 & 0.11 & 0.11 & 0.11 & 0.12 & 0.13 & 0.14 \end{vmatrix} \cdot 10^{-1}$$

$$\varepsilon_{\text{BHA}(b/t)=1_{\text{av}(N_r)}} = 23.47.^{\circ}$$

 $submatrix \left(\varepsilon_{PK(b/t)=1}, 1, Z, av(N_r), av(N_r) \right)^T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	.°
1	7.41	7.26	7.19	6.95	6.76	6.52	6.16	5.91	5.78							

Угол поворота потока:

$$\varepsilon_{\text{CA(b/t)}=1_{\text{av}(N_r)}} = 33.67 \cdot ^{\circ}$$

$$\frac{\text{chord}_{BHA}}{t_{BHA}} = \begin{vmatrix} 1 & 1 \\ 1 & 3.429 \\ 2 & 2.924 \\ 3 & 2.661 \end{vmatrix}$$

(chord)T	Γ [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(chord _{rotor}	=[1	2.068	2.353	2.810	2.827	2.813	2.653	1.891	1.427	1.306						
(trotor)		2	1.875	2.236	2.757	2.825	2.851	2.720	1.955	1.485	1.365						
		3	1.773	2.167	2.724	2.824	2.879	2.769	2.003	1.528	1.410						

Густота решетки:

$$\frac{\text{chord}_{CA}}{t_{CA}} = \begin{vmatrix} 1 & 1 \\ 1 & 3.455 \\ 2 & 3.488 \\ 3 & 3.479 \end{vmatrix}$$

$$Z_{BHA} = 46$$

 $Z_{CA} = 52$

Количество Л:

Значения округляются до целого в большую сторону так, чтобы при разъемном корпус е количество Л НА было четным, а количества ЛРК и НА были взаимно простыми

$$t_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 7.71 \\ \hline 2 & 10.04 \\ \hline 3 & 11.92 \\ \hline \end{array} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
t , T =	1	26.26	20.80	15.44	14.02	13.11	13.11	17.68	23.01	24.89							$\cdot 10^{-3}$
rotor –	2	33.73	25.44	18.26	16.27	14.99	14.81	19.78	25.60	27.54							10
	3	39.81	29.36	20.70	18.24	16.66	16.34	21.69	27.94	29.95							

Шаг решетки (м):

$$t_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ & 1 & 8.16 & 7.03 & 4.59 & 4.48 & 3.72 & 2.28 & 2.85 & 3.37 & 5.04 & & & & & & \\ & 2 & 10.21 & 8.43 & 5.37 & 5.16 & 4.22 & 2.56 & 3.18 & 3.74 & 5.56 & & & & & & & & \\ & 3 & 11.91 & 9.63 & 6.05 & 5.76 & 4.68 & 2.81 & 3.48 & 4.08 & 6.03 & & & & & & & & \\ \end{bmatrix} \cdot 10^{-3}$$

$$t_{CA} = \begin{bmatrix} & 1 & \\ 1 & 7.47 \\ 2 & 8.21 \\ \hline 3 & 8.90 \end{bmatrix} \cdot 10^{-3}$$

$$i_{BHA} = \begin{vmatrix} & & 1 \\ 1 & 3.572 \\ 2 & 2.311 \\ 3 & 1.652 \end{vmatrix} . \circ$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
i =	1	2.669	3.383	4.524	4.567	4.533	4.133	2.227	1.067	0.764							.0
rotor –	2	2.187	3.089	4.392	4.561	4.628	4.301	2.388	1.211	0.913							
	3	1.932	2.918	4.309	4.560	4.697	4.423	2.508	1.319	1.026							

Угол атаки:

$$i_{CA} = \begin{vmatrix} & 1 \\ 1 & 3.639 \\ 2 & 3.721 \\ \hline 3 & 3.698 \end{vmatrix}$$

$$m_{BHA} = \begin{array}{|c|c|}\hline & 1\\ 1 & 0.2766\\ \hline 2 & 0.2752\\ \hline 3 & 0.2737\\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T} =	1	0.2945	0.3105	0.3187	0.3278	0.3341	0.3409	0.3503	0.3568	0.3606						
m _{rotor} =	2	0.3549	0.3564	0.3570	0.3593	0.3612	0.3637	0.3679	0.3713	0.3731						
	3	0.3736	0.3711	0.3708	0.3718	0.3726	0.3740	0.3765	0.3787	0.3798						

Коэф. формы ср. линии профиля по Ховеллу:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T}	1	0.2801	0.2757	0.2757	0.2741	0.2766	0.2901	0.3003	0.3083	0.3071						
m _{stator} =	2	0.2717	0.2690	0.2697	0.2689	0.2716	0.2846	0.2946	0.3026	0.3018						
	3	0.2666	0.2646	0.2656	0.2652	0.2680	0.2803	0.2901	0.2980	0.2975						

$$m_{CA} = \begin{vmatrix} & & 1 \\ 1 & 0.2300 \\ 2 & 0.2300 \\ 3 & 0.2300 \end{vmatrix}$$

$$\theta_{\text{BHA}} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 23.18 \\ \hline 2 & 24.19 \\ \hline 3 & 24.29 \\ \hline \end{array}.$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
θ , $T =$	1	39.28	32.14	28.11	24.32	22.12	19.83	17.98	16.92	15.87							.0
orotor –	2	10.88	10.02	9.07	8.37	8.10	7.80	8.50	8.92	8.95]
	3	3.10	3.88	2.96	2.69	2.67	2.79	4.27	5.19	5.56							1

Угол изгиба ср. линии профиля:

$$\theta_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 43.86 & 46.01 & 46.85 & 47.17 & 45.55 & 33.17 & 29.23 & 25.11 & 28.60 & & & & & & \\ 2 & 43.71 & 46.09 & 46.93 & 47.31 & 45.70 & 33.59 & 30.02 & 26.09 & 29.42 & & & & & & \\ 3 & 43.53 & 45.50 & 46.44 & 46.95 & 45.44 & 33.62 & 30.39 & 26.68 & 29.93 & & & & & & & \\ \end{bmatrix}$$

$$\theta_{\text{CA}} = \begin{bmatrix} & 1 \\ 1 & 39.82 \\ 2 & 36.69 \\ \hline 3 & 34.27 \end{bmatrix} .$$

$$\delta_{\text{BHA}} = \begin{bmatrix} & 1 \\ 1 & 3.462 \\ 2 & 3.893 \\ 3 & 4.076 \end{bmatrix} .$$

Угол отставания:

$$\delta_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 7.387 & 7.106 & 5.982 & 6.016 & 5.347 & 3.165 & 3.149 & 2.889 & 3.833 \\ 2 & 7.584 & 7.228 & 6.031 & 6.038 & 5.339 & 3.171 & 3.187 & 2.953 & 3.871 \\ 3 & 7.696 & 7.210 & 5.993 & 5.995 & 5.290 & 3.146 & 3.188 & 2.979 & 3.880 \end{bmatrix}$$

$$\delta_{\text{CA}} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 4.926 \\ \hline 2 & 4.519 \\ \hline 3 & 4.226 \\ \hline \end{array}.$$

$$\upsilon_{\text{BHA}} = \begin{vmatrix} & & 1 \\ 1 & 105.16 \\ \hline 2 & 104.40 \\ \hline 3 & 103.80 \end{vmatrix} . \circ$$

		1	2	3	4	5	6	7	8	9	
$v_{rotor}^{T} =$	1	46.18	40.19	36.93	33.69	31.29	28.76	25.45	23.22	21.79	.0
rotor	2	24.91	24.20	23.93	22.96	22.09	20.95	19.03	17.63	16.85	
	3	17.54	18.46	18.79	18.37	17.93	17.23	15.75	14.65	14.11	

Угол установки Л:

$$\upsilon_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 51.10 & 48.54 & 51.21 & 50.58 & 51.21 & 53.57 & 47.96 & 44.15 & 41.01 \\ 2 & 51.93 & 52.14 & 54.02 & 53.11 & 53.43 & 55.63 & 50.24 & 46.49 & 43.27 \\ 3 & 52.74 & 54.77 & 56.15 & 55.09 & 55.20 & 57.30 & 52.10 & 48.43 & 45.17 \end{bmatrix} . \circ$$

$$v_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 75.02 \\ \hline 2 & 76.17 \\ \hline 3 & 77.09 \\ \hline \end{array}.$$

$$R_{\text{СЛ.BHA}} = \begin{bmatrix} & 1 & \\ 1 & 65.77 \\ 2 & 70.03 \\ \hline 3 & 75.35 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$R_{CH} = T$	1	80.77	88.42	89.30	94.08	96.17	101.05	106.93	111.63	117.69							$\cdot 10^{-3}$
R _C Л.rotor =	2	333.47	325.78	318.31	314.82	302.80	296.09	260.85	244.20	240.89							
	3	1306.64	939.04	1090.02	1098.07	1030.28	927.48	583.29	471.73	435.47							

Радиус дуги ср. линии (м):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$R_{CJI.stator}^{T} =$	1	30.22	28.63	26.88	25.89	26.66	36.83	43.90	55.64	53.55							1.10^{-3}
*CJI.stator	2	33.64	31.68	29.70	28.56	29.39	40.21	47.27	59.20	57.54							10
	3	36.52	34.73	32.52	31.20	32.07	43.63	50.73	62.91	61.46							

$$R_{\text{СЛ.CA}} = \begin{bmatrix} & 1 & \\ 1 & 37.88 \\ 2 & 45.51 \\ \hline 3 & 52.53 \end{bmatrix} \cdot 10^{-3}$$

$$K_{BHA} = \begin{vmatrix} & 1\\ 1 & 1.0359\\ 2 & 1.0000\\ 3 & 0.9808 \end{vmatrix}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
K_{\cdots}	1	1.0757	0.9750	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						
$\mathbf{x}_{\text{rotor}} - \mathbf{v}$	2	0.9740	0.9704	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						
	3	0.9142	0.9680	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						

Фактор диффузорности решетки:

$$K_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 0.8302 \\ \hline 2 & 0.8302 \\ \hline 3 & 0.8302 \\ \hline \end{array}$$

$$D_{BHA} = \begin{array}{|c|c|}\hline & 1\\ \hline 1 & -0.1928\\ \hline 2 & -0.1544\\ \hline 3 & -0.1308\\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D_{\cdots} = T$	1	0.6404	0.6843	0.6917	0.6833	0.6858	0.6809	0.6676	0.6675	0.6475						
rotor -	2	0.4805	0.4993	0.5256	0.5291	0.5407	0.5433	0.5321	0.5311	0.5192						
	3	0.3730	0.3907	0.4212	0.4296	0.4446	0.4506	0.4416	0.4405	0.4337						

Диффузорность решетки:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D \cdot \cdot T =$	1	0.6991	0.7188	0.7073	0.7226	0.7200	0.6794	0.6625	0.6485	0.6615						
stator –	2	0.6401	0.6624	0.6613	0.6819	0.6842	0.6492	0.6360	0.6251	0.6375						
	3	0.5925	0.6177	0.6231	0.6474	0.6533	0.6226	0.6124	0.6040	0.6160						

$$D_{CA} = \begin{vmatrix} & & 1 \\ 1 & 0.4407 \\ 2 & 0.4115 \\ 3 & 0.3896 \end{vmatrix}$$

		1	
D _{BHA} ≤ 0.6 =	1	1	
BHA = 0.0	2	1	
	3	1	

		1	2	3	4	5	6	7	8	9
$D_{mator} \stackrel{T}{\leq} 0.6 =$	1	0	0	0	0	0	0	0	0	0
rotor = 0.0 -	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

[18, c. 71]

		1	2	3	4	5	6	7	8	9
$D_{\text{stator}} \stackrel{T}{\leq} 0.6 =$	1	0	0	0	0	0	0	0	0	0
stator = 0.0 =	2	0	0	0	0	0	0	0	0	0
	3	1	0	0	0	0	0	0	0	0

		1	
$D_{CA} \le 0.6 =$	1	1	
DCA = 0.0 -	2	1	
	3	1	

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$C \cdot T =$	1	0.1570	0.2300	0.3005	0.3197	0.3431	0.3452	0.2678	0.2245	0.2055						
Srotor =	2	0.1475	0.1929	0.2643	0.2859	0.3120	0.3159	0.2386	0.1955	0.1803						
	3	0.1404	0.1716	0.2383	0.2608	0.2870	0.2925	0.2196	0.1781	0.1660						

Коэф. потерь полного давления:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
C_{-1}	1	0.2392	0.2892	0.4074	0.4223	0.5074	0.7833	0.6592	0.6117	0.4634						
$\varsigma_{\text{stator}} =$	2	0.1685	0.2162	0.3234	0.3485	0.4311	0.6770	0.5769	0.5405	0.4131						
	3	0.1302	0.1734	0.2694	0.2979	0.3763	0.5990	0.5153	0.4864	0.3741						

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$quality_{rotor}^{T} =$	1	9.264	6.101	4.625	4.403	4.163	4.256	6.054	7.639	8.907						
rotor	2	9.020	7.083	5.063	4.726	4.388	4.462	6.642	8.629	10.166						
	3	6.616	7.281	5.146	4.751	4.386	4.445	6.787	8.970	10.690						

Качество профилей решеток РК и НА:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$quality_{stator}^{T} =$	1	4.944	4.613	2.981	2.888	2.187	0.788	1.194	1.371	2.456						
Stator	2	7.583	6.028	3.825	3.565	2.693	1.147	1.545	1.706	2.807						
	3	10.095	7.312	4.583	4.178	3.146	1.453	1.847	1.995	3.121						

.%

11 12 13 15 6 10 14 КПД элементарной ступени: $\eta_{stage}^{T} = \frac{1}{2}$ 67.95 73.97 57.82 56.04 50.83 37.74 48.01 52.64 61.06 57.02 75.29 69.62 59.59 52.20 42.65 52.42 57.11 63.86 67.58 58.02 55.32 58.57 64.53 67.36 51.02 43.70 53.56

▶ Результаты расчета количества Л и параметров решеток РК и НА

EXCEL_{AIRFOIL}.subsonic = ...\A40.xlsx

 $X/B_{subsonic} = submatrix (EXCEL_{AIRFOIL.subsonic}, 2, rows (EXCEL_{AIRFOIL.subsonic}), ORIGIN + 0, ORIGIN + 0)$

 $Y/B_{subsonic} = submatrix (EXCEL_{AIRFOIL.subsonic}, 2, rows (EXCEL_{AIRFOIL.subsonic}), ORIGIN + 1, ORIGIN + 1)$

Предел использования дозвукового профиля:

 $M_{lim} = 0.95$

EXCEL_{AIRFOIL}.supersonic =

X/B_{supersonic} = submatrix(EXCEL_{AIRFOIL.supersonic}, 2, rows(EXCEL_{AIRFOIL.supersonic}), ORIGIN + 0, ORIGIN + 0)

Y/B_{supersonic} = submatrix(EXCEL_{AIRFOIL.supersonic}, 2, rows(EXCEL_{AIRFOIL.supersonic}), ORIGIN + 1, ORIGIN + 1)

 $augment \left(X/B_{subsonic}, Y/B_{subsonic} \right)^{T} = \boxed{\frac{1}{2}}$ 5 8 10 11 12 13 14 15 16 17 18 19 20 0.000 0.010 0.015 0.025 0.050 0.075 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.500 0.600 0.700 0.800 0.900 0.950 1.000 0.114 0.143 0.185 0.255 0.309 0.352 0.416 0.455 0.479 0.493 0.494 0.500 0.486 0.444 0.378 0.285 0.172 0.100 0.000

15 $augment(X/B_{supersonic}, Y/B_{supersonic})^{T} =$ 0.050 0.000 0.100 0.200 0.150 0.300 0.400 0.500 0.600 0.700 0.800 0.850 0.900 0.950 1.000 0.045 0.132 0.208 0.282 0.342 0.430 0.482 0.500 0.482 0.430 0.342 0.282 0.208 0.132 0.045


```
\begin{aligned} \text{AIRFOIL}_{\text{subsonic}}(x, \text{line}, \overline{c}, \theta) &= & \text{if } 0 \leq x \leq 1 \\ & \text{interp}\big(\text{cspline}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) + Y/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}},
```

$$\begin{aligned} \text{AIRFOIL}_{\text{supersonic}}(\textbf{x}, \text{line}, \overline{\textbf{c}}, \theta) &= & \text{if } 0 \leq \textbf{x} \leq 1 \\ & \text{interp}\big(\text{cspline}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \textbf{I}}\big(\textbf{X}/\textbf{B}/\textbf{B}), \textbf{y}/\textbf{B}_{\text{cp}, \textbf{I}}\big(\textbf{I}/\textbf{B}/\textbf{B}/\textbf{B}/\textbf{B}/\textbf{B}/\textbf{B}/\textbf{B}/\textbf$$

$$x = 0,0.005..1$$
 $y = 1$

	Γ		1	2	3	4	1 !	5	6	7	,	8	9	7	
1 years	ı	1 2	3.18	23.08	22.20) 2:	1.53 2	1.49	21.86	22	2.82	24.75	27.01	10^{-3}	1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
l_upper _{stator} T	_		5.94	25.81	24.82	_			24.43			27.63	30.13	- 10	l_uppei
	ı		8.32	28.23	27.19				26.83			30.35	33.09	_	
							l	<u> </u>						_	
	Γ		1	2	3	4	1 !	5	6	7	'	8	9		
1_lower _{stator} T	_	1 2	2.86	22.73	21.83	3 2:	1.16 2	1.12	21.49	22	2.48	24.44	26.69	$\cdot 10^{-3}$	1_lower
¹ _lowerstator	_		5.25	25.07	24.02	2 23	3.27 2	3.21	23.62	24	1.75	26.92	29.40		I_IOWCI
		3 2	7.26	27.07	25.93	3 25	5.15 2	5.08	25.54	26	5.82	29.21	31.92		
	_		·				l	·	I			I		_	
		1	2	- :	3	4	5	6	7	,	8	9)		
$area_{stator}^{T} = $	1	11.18	3 10.	99 1	0.02	9.42	9.35	9.7	0 10).77	12.8	34 1	5.36	10^{-6}	arearote
stator	2	27.53	26.	99 2	4.56	23.05	22.86	23.7	0 26	5.31	31.3	33 3	7.47	10	rote
	3	48.29	47.	48 4	3.29	40.67	40.38	41.9	0 46	5.55	55.4	15 60	5.34		
		1	2	3		4	5	6	7		8	9			
$Sx_{stator}^{T} = \frac{1}{2}$		16.3	17.	4 17	7.3	15.8	16.1	16.7	16	5.4	18.4	22	2.5	0^{-9}	Sx _{rotor}
stator 2		43.3	46.0	6 46	5.3	42.5	43.4	45.1	44	.8	50.8	62	2.0		rotor
3		80.5	86.	7 86	5.8	80.3	82.3	86.1	86	5.5	99.0	121	.2		
		1	2	3	•	4	5	6	7		8	9			
$Sy_{stator}^{T} = \frac{1}{2}$	_	114.0	111.	1 96	5.7	88.1	87.1	92.1	107	.8	140.2	183	.10) ⁻⁹	Sy _{rotor}
		311.4	302.3	3 262	2.4 2	38.6	235.6	248.8	291	.0	378.1	494	.4		710101
3		590.8	575.9	501	L.3 4	56.6	451.7	477.4	559	.0	726.8	951	.1		
		1	2	3		4	5	6	7		8	9			
$x0_{stator}^{T} = \frac{1}{2}$	_	10.19	10.13	١ 9.	65	9.36	9.32	9.50	10.0	01	10.92	11.	95 .10	0^{-3}	$x0_{rotor}$
2		11.31	11.20	10.	68 1	0.35	10.31	10.50	11.0	06	12.07	13.	20		10101
3		12.23	12.13	3 11.	58 1	1.23	11.19	11.39	12.0	01	13.11	14.	34		
									_						
		1	2	3	4	5	6	7	8		9				
$y0_{stator}^{T} = \frac{1}{2}$	_	1.46	1.59	1.73	1.68	1.7			+	_	1.46	$\cdot 10^{-3}$	3		y0 _{rotor}
		1.57	1.73	1.89	1.85	1.9					1.66				7 10101
3		1.67	1.83	2.00	1.97	2.0	2.06	1.86	1.7	79	1.83				

			1	2		3		4	5		6		7	8		9		
l_upper _{rotor} T	=	1 !	57.05	51.0)8 4	45.18	4	1.12	38	.19	35.	.93	34.35	33	.67	33.	.28	- 3
_ rotor		2	63.57	57.2	20 !	50.64	4	16.22	42	.99	40.	.51	38.86	38	.15	37.	.74	
		3	70.65	63.7	73 !	56.50	5	51.62	48	.06	45.	.32	43.52	42	.75	42.	.31	
			1	2		3		4	5		6		7	8		9		
1_lower _{rotor} T	=	1	54.63	49.2	22 4	43.62	3	39.86	37	.11	35.	.02	33.67	33	.11	32.	.78	- 3
– rotor		2	63.27	56.9	92 !	50.38	4	15.99	42	.78	40.	.32	38.71	38	.03	37.	.62	
		3	70.59	63.6	54 !	56.40	5	51.53	47	.97	45.	.25	43.46	42	.70	42.	.25	
-													ı					,
T		1		2	_	3		4		5		6	7		8		9	
$area_{rotor}^{T} = $	1	241.		196.22	_	4.13	_	28.65	1	11.50	+	99.19	91	_		3.34	86.51	$\cdot 10^{-6}$
10001		105.		85.66	+	57.10		55.91		48.38	+	42.99	39			3.23	37.42	_
L	3	69.	81	59.22	. 4	16.51		38.82	,	33.65		29.93	27	.61	26	5.66	26.11]
		1	2		3	4	L	5		6		7	8		9			
$_{\alpha}$ $_{T}$ $_{1}$		747.9		7 3	305.7)5.9	153	3 0	114	2		_	5	54	5	9	
$Sx_{rotor}^{T} = \frac{1}{2}$,	114.2		7.0	64.8	+	17.7		7.9	30	_	22.1	17		16	4	·10 ⁻⁹	
3		35.0	<u> </u>	5.5	28.8	-	22.2		3.2	14		11.3	<u> </u>	.3		.8		
						_												
		1		2	3		4		5		6	5	7		8			
$Sy_{rotor}^{T} = \frac{1}{2}$		5922.2	2 43	37.1	301	9.5	230	02.6	185	7.8	15.	58.9	1380.	9	1310	.1	·10 ⁻⁹	
yrotor 2		3023.0) 22	200.4	152	5.6	116	50.3	93	34.2	78	82.5	692.	2	656	.1	10	
3		2464.0) 17	01.5	118	4.6	9(03.4	72	28.9	6	11.6	541.	8				
						•				·								
		1	2		3	4		5		6		7	8		9			
$x0_{rotor}^{T} = \frac{1}{2}$		24.52	22.	10	19.59	17	7.90	16.	66	15.7	'2	15.09	14.8	33	14.6	8	$\cdot 10^{-3}$	
2		28.56	25.	69	22.74	20).75	19.	31	18.2	20	17.47	17.	16	16.9	8		
3		35.29	28.	73	25.47	23	3.27	21.	66	20.4	13	19.62	19.2	28	19.0	8(
_														_				
		1	2	3		4	5		6	7		8	9					
$y0_{rotor}^{T} = \boxed{\frac{1}{2}}$	_	3.10	2.38	+	_	1.60			1.15		87	0.71	0.63	<u> </u> .	10^{-3}			
		1.08	1.02	+		0.85			0.70		56	0.47	0.44	Ŀ				
3		0.50	0.62	0.6	52 (0.57	0.	54	0.50	0.	41	0.35	0.34	ł				

		1	2	3	4	5	6	7	8	9	
Jx . $T =$	1	27	31	33	29	31	32	28	29	37	$\cdot 10^{-12}$
stator –	2	79	92	99	89	93	97	87	95	120	10
	3	165	191	205	186	196	207	192	217	276	

$$Jy_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 1486 & 1437 & 1194 & 1054 & 1039 & 1119 & 1381 & 1959 \\ 2 & 4507 & 4332 & 3587 & 3159 & 3107 & 3340 & 4117 & 5838 \\ 3 & 9246 & 8937 & 7428 & 6559 & 6464 & 6960 & 8589 & \dots \end{bmatrix} \cdot 10^{-12}$$

$$Jxy_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 173 & 183 & 173 & 154 & 156 & 165 & 170 & 209 & 279 \\ 2 & 509 & 543 & 514 & 457 & 465 & 492 & 515 & 637 & 851 \\ 3 & 1023 & 1093 & 1044 & 937 & 957 & 1020 & 1080 & 1349 & 1807 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2.64 & 2.98 & 3.12 & 2.77 & 2.88 & 2.99 & 2.70 & 2.98 & 3.81 \\ 2 & 10.43 & 11.45 & 11.41 & 10.19 & 10.50 & 11.04 & 10.84 & 12.93 & 17.07 \\ 3 & 30.53 & 32.24 & 30.74 & 27.60 & 28.28 & 30.11 & 31.78 & 40.23 & 54.59 \end{bmatrix} \cdot 10^{-15}$$

$$Jy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 325 & 314 & 261 & 230 & 227 & 244 & 301 & 428 & 612 \\ 2 & 984 & 946 & 783 & 690 & 679 & 729 & 899 & 1275 & 1823 \\ 3 & 2019 & 1952 & 1622 & 1432 & 1412 & 1520 & 1876 & 2662 & 3810 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 6.57 & 6.93 & 6.54 & 5.80 & 5.88 & 6.21 & 6.45 & 7.94 & 10.62 \\ 2 & 19.34 & 20.58 & 19.41 & 17.26 & 17.52 & 18.55 & 19.50 & 24.21 & 32.39 \\ 3 & 38.83 & 41.39 & 39.38 & 35.30 & 36.03 & 38.40 & 40.84 & 51.17 & 68.63 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{major_{stator}}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.17 & 1.28 & 1.45 & 1.46 & 1.50 & 1.47 & 1.24 & 1.07 & 1.00 \\ 2 & 1.14 & 1.26 & 1.44 & 1.45 & 1.50 & 1.48 & 1.26 & 1.10 & 1.03 \\ 3 & 1.12 & 1.23 & 1.42 & 1.44 & 1.49 & 1.48 & 1.27 & 1.12 & 1.05 \\ \end{bmatrix} . \circ$$

		1	2	3	4	5	6	7	8	9	
$Jx \cdot T =$	1	3086	1581	887	516	346	236	154	121	107	$\cdot 10^{-12}$
Jx _{rotor} =	2	169	119	82	54	40	29	18	14	12	10
	3	27	31	23	16	13	10	6	5	4	

		1	2	3	4	5	6	7	8	9	
$Jy_{rotor}^{T} =$	1	185803	122653	75683	52727	39605	31344	26667	24859	23840	$\cdot 10^{-12}$
rotor	2	110446	72318	44378	30808	23074	18218	15472	14406	13798	
	3	105911	62553	38598	26891	20199	15986	13600	12678	12159	

$$Jxy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 19065 & 10739 & 6227 & 3832 & 2650 & 1866 & 1251 & 964 & 831 \\ & 2 & 3392 & 2324 & 1532 & 1029 & 760 & 567 & 401 & 320 & 290 \\ & 3 & 1235 & 1091 & 764 & 536 & 410 & 316 & 230 & 187 & 175 \end{bmatrix} \cdot 10^{-12}$$

$$Jy0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 40578 & 26786 & 16528 & 11515 & 8649 & 6845 & 5824 & 5429 & 5207 \\ 2 & 24117 & 15792 & 9691 & 6727 & 5039 & 3978 & 3379 & 3146 & 3013 \\ 3 & 18949 & 13659 & 8428 & 5872 & 4411 & 3491 & 2970 & 2768 & 2655 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{-} major_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.04 & 0.89 & 0.84 & 0.74 & 0.68 & 0.61 & 0.48 & 0.40 & 0.36 \\ 2 & 0.31 & 0.32 & 0.35 & 0.34 & 0.33 & 0.31 & 0.26 & 0.22 & 0.21 \\ 3 & 0.00 & 0.18 & 0.20 & 0.20 & 0.20 & 0.20 & 0.17 & 0.15 & 0.15 \end{bmatrix}.$$

		1	2	3	4	5	6	7	8	9	
$Ju \cdot T =$	1	2.50	2.82	2.95	2.63	2.73	2.83	2.56	2.84	3.62	$\cdot 10^{-12}$
Ju _{stator} =	2	10.04	11.00	10.92	9.75	10.04	10.56	10.41	12.47	16.48	
	3	29.77	31.35	29.77	26.71	27.35	29.12	30.87	39.23	53.33	

$$Jv_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 325 & 314 & 261 & 230 & 227 & 244 & 302 & 428 & 613 \\ 2 & 985 & 946 & 784 & 690 & 679 & 730 & 899 & 1275 & 1823 \\ 3 & 2020 & 1953 & 1623 & 1433 & 1413 & 1521 & 1877 & 2663 & 3811 \end{bmatrix} \cdot 10^{-12}$$

$$Juv_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.00 & 0.00 \\ 2 & -0.00 & -0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 3 & 0.00 & 0.00 & 0.00 & 0.00 & -0.00 & 0.00 & -0.00 & 0.00 \\ \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{\text{stator}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 327 & 317 & 264 & 233 & 230 & 247 & 304 & 431 & 616 \\ 2 & 995 & 957 & 795 & 700 & 689 & 740 & 910 & 1288 & 1840 \\ 3 & 2050 & 1984 & 1653 & 1460 & 1440 & 1550 & 1908 & 2702 & 3864 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 26.3 & 25.6 & 22.3 & 20.3 & 20.1 & 21.2 & 24.8 & 32.3 & 42.3 \\ 2 & 71.9 & 69.8 & 60.6 & 55.1 & 54.4 & 57.5 & 67.2 & 87.3 & 114.2 \\ 3 & 137.1 & 133.7 & 116.4 & 106.0 & 104.8 & 110.8 & 129.8 & 168.7 & 220.8 \end{bmatrix} \cdot 10^{-9}$$

$$stiffness_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 1.25 & 1.21 & 1.00 & 0.88 & 0.87 & 0.94 & 1.16 & 1.64 \\ 2 & 15.13 & 14.54 & 12.04 & 10.60 & 10.43 & 11.21 & 13.82 & 19.59 \\ 3 & 69.81 & 67.47 & 56.08 & 49.52 & 48.81 & 52.55 & 64.85 & ... \\ \end{bmatrix} \cdot 10^{-1}$$

		1	2	3	4	5	6	7	8	9	
$Ju \cdot T =$	1	756.40	461.54	277.45	184.80	135.33	103.92	84.46	76.82	72.91	$\cdot 10^{-12}$
rotor –	2	45.31	30.38	19.43	13.23	9.83	7.52	5.88	5.19	4.89	10
	3	9.56	7.95	5.28	3.70	2.81	2.18	1.70	1.49	1.41	

		1	2	3	4	5	6	7	8	9	
$Jv_{rotor}^{T} =$	1	40591	26793	16532	11517	8651	6846	5824	5429	5207	10^{-12}
rotor	2	24118	15792	9691	6727	5039	3978	3379	3146	3013	10
	3	18949	13659	8429	5872	4411	3491	2970	2768	2655	

		1	2	3	4	5	6	7	8	9	
$Juv_{rotor}^{T} =$	1	0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	0.00	$\cdot 10^{-12}$
rotor	2	0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	0.00	0.00	
	3	0.00	-0.00	0.00	0.00	0.00	0.00	-0.00	0.00	0.00	

$$Jp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 41348 & 27254 & 16809 & 11702 & 8786 & 6950 & 5909 & 5506 & 5280 \\ 2 & 24163 & 15822 & 9710 & 6741 & 5049 & 3986 & 3385 & 3151 & 3018 \\ 3 & 18958 & 13667 & 8434 & 5876 & 4414 & 3493 & 2971 & 2770 & 2656 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1381.2 & 1011.5 & 704.2 & 537.0 & 433.3 & 363.6 & 322.0 & 305.5 & 296.1 \\ 2 & 696.5 & 507.0 & 351.5 & 267.3 & 215.2 & 180.3 & 159.5 & 151.2 & 146.4 \\ 3 & 537.1 & 391.7 & 272.7 & 207.9 & 167.8 & 140.8 & 124.7 & 118.3 & 114.7 \end{bmatrix} \cdot 10^{-9}$$

		1	2	3	4	5	6	7	8	9				1	2	3	4	5	6	7	8	9	
$CPx_{stator}^{T} =$	1	7.900	7.833	7.479	7.250	7.224	7.359	7.756	8.465	9.259	$\cdot 10^{-3}$ CP	$Px_{rotor}^{T} =$	1	19.004	17.130	15.182	13.871	12.913	12.179	11.697	11.494	11.374	$\cdot 10^{-3}$
Stator	2	8.767	8.680	8.280	8.021	7.988	8.134	8.570	9.352	10.227	10 01	rotor	2	22.131	19.908	17.620	16.083	14.962	14.104	13.540	13.300	13.157	10
	3	9.480	9.400	8.975	8.700	8.669	8.830	9.307	10.158	11.111			3	24.705	22.269	19.737	18.032	16.787	15.833	15.206	14.942	14.786	
		1	2	3	4	5	6	7	8	9				1	2	3	4	5	6	7	8	9	
$CPy_{stator}^{T} =$	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$ CP	$Py_{rotor}^{T} =$	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$
stator	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	10 01	rotor	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	10
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Результат расчета абсолютных геометрических характеристик сечений Л

Абс. координаты профиля:

$$\begin{split} & \text{Airfoil(type}, \textbf{x}, \text{line}, \textbf{i}, \textbf{r}) = & \text{if type} = \text{"BHA"} \\ & \text{AIRFOIL}_{\text{subsonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_{r}}, \varepsilon_{\text{BHA}_{r}}\right) & \text{if } \textbf{M}_{\textbf{c}_{\text{st}(1,1)}, \textbf{r}} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_{r}}, \varepsilon_{\text{BHA}_{r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"rotor"} \\ & \text{AIRFOIL}_{\text{subsonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{i,r}}, \varepsilon_{\text{rotor}_{i,r}}\right) & \text{if } \textbf{M}_{\textbf{w}_{\text{st}(i,1)}, \textbf{r}} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{i,r}}, \varepsilon_{\text{rotor}_{i,r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"stator"} \\ & \text{AIRFOIL}_{\text{subsonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{stator}_{i,r}}, \varepsilon_{\text{stator}_{i,r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"CA"} \\ & \text{AIRFOIL}_{\text{subsonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{if } \textbf{M}_{\textbf{c}_{\text{st}(Z,3),r}} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \\ & \text{AIRFOIL}_{\text{supersonic}}\left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}\right) & \text{otherwise} \\ \\ & \text{AIRF$$

Профилирование решеток

Рассматриваемая ступень:

$$j_w = \begin{bmatrix} j = 1 \\ j = \end{bmatrix}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Построение профилей Л РК и НА

$$\begin{split} AXLEO(type,x,i,r) &= & \left| \frac{y0_{rotor_{i,r}}}{chord_{rotor_{i,r}}} + tan\Big(\alpha_major_{rotor_{i,r}}\Big) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{chord_{rotor_{i,r}}}\right) \text{ if type = "rotor"} \right. \\ & \left. \frac{y0_{stator_{i,r}}}{chord_{stator_{i,r}}} + tan\Big(\alpha_major_{stator_{i,r}}\Big) \cdot \left(x - \frac{x0_{stator_{i,r}}}{chord_{stator_{i,r}}}\right) \text{ if type = "stator"} \right. \\ & \left. NaN \text{ otherwise} \right. \end{split}$$

$$\begin{aligned} \text{AXLE90(type}, \textbf{x}, \textbf{i}, \textbf{r}) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}} + \frac{\pi}{2}\right) \cdot \left(\textbf{x} - \frac{\textbf{x}0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) \text{ if } (\text{type} = "rotor") \land \left|\alpha_{-}\text{major}_{rotor_{i,r}}\right| \geq 1 \cdot \circ \\ \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}} + \frac{\pi}{2}\right) \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) \text{ if } (\text{type} = "stator") \land \left|\alpha_{-}\text{major}_{stator_{i,r}}\right| \geq 1 \cdot \circ \\ \text{NaN otherwise} \end{aligned}$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

 $r = av(N_r)$

 $r = N_r$

r = 1

$r = av(N_r)$

Построение профилей Л РК и НА

Рассматриваемая ступень:
$$j = j = 1$$

$$j = 1$$
 = 1
 $j = 1$ "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$
 j otherwise

$$b_{\text{Linear}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

▼ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

r = 1

 $r = av(N_r)$

 $r = av(N_r)$

■ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

▼ Радиальные и осевые зазоры и длина К

Радиальный зазор (м) [с.64 казаджан]:

 $\overline{\Delta}$ r = 0.0025

 $0.0015 \le \overline{\Delta}r \le 0.0035 = 1$

$$\Delta_{\mathbf{r}_{i}} = \overline{\Delta}\mathbf{r} \cdot \mathbf{D}_{\mathrm{st}(i,2), N_{\mathbf{r}}}$$

Относительный осевой зазор () [16, с. 245]:

 $\overline{\Delta}$ a = 0.17

 $0.1 \le \overline{\Delta}a \le 0.2 = 1$

Осевой зазор (м): $\Delta a_i = \overline{\Delta} a \cdot \text{chord}_{rotor_{i,av(N_r)}}$

Односторонний осевой зазор (м):

, T											
$\frac{\Delta a}{} =$		1	2	3	4	5	6	7	8	9	$\cdot 10^{-3}$
2	1	5.37	4.83	4.28	3.91	3.63	3.43	3.29	3.23	3.20	10

Длина ОК (м):

$$\begin{aligned} \text{Length} &= \begin{bmatrix} \Delta a_1 + \left| \text{chord}_{BHA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{BHA_{av\left(N_r\right)}}\right) & \text{if } BHA = 1 & \dots \\ 0 & \text{otherwise} \\ + \sum_{i \, = \, 1}^{Z} \left(\text{chord}_{rotor_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{rotor_{i}, \, av\left(N_r\right)}\right) \right) + 2 \cdot \sum_{i \, = \, 1}^{Z} \Delta a_i + \sum_{i \, = \, 1}^{Z} \left(\text{chord}_{stator_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{stator_{i}, \, av\left(N_r\right)}\right) \right) \\ + \left| \begin{array}{c} \text{chord}_{CA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{CA_{av\left(N_r\right)}}\right) & \text{if } CA = 1 & + \Delta a_Z \\ 0 & \text{otherwise} \\ \end{bmatrix} \end{aligned} \end{aligned}$$

▲ Проточная часть

$$j_{w} = \begin{bmatrix} j = 1 \\ j = \end{bmatrix}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{dis}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{rotor} = 1 ... Z_{rotor_{j}}$$

$$\mathbf{i}_{stator} = 1 ... Z_{stator_{j}}$$

$$\Pi_{HA}(r,j) = \begin{bmatrix} \frac{2 \cdot \pi}{Z_{stator_{j}}} & \text{if } D_{st(j,2),1} < r < D_{st(j,2),N_{r}} \\ NaN & \text{otherwise} \end{bmatrix}$$

Запас по температуре (К):

 $\Delta T_{safety} = 50$

Выбранный материал Л:

$$\begin{split} \text{material_blade}_i &= & \text{"\mathbb{K}C-6$K"} \quad \text{if } 1123 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} \\ & \text{"$BT41"} \quad \text{if } 873 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} < 1123 \\ & \text{"$BT25"} \quad \text{if } 753 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} < 873 \\ & \text{"$BT9"} \quad \text{otherwise} \end{split}$$

Плотность материала Л (кг/м^3):

$$\rho_blade_i = \begin{bmatrix} 8393 & if material_blade_i = "KC-6K" \\ 7900 & if material_blade_i = "BT41" \\ 4500 & if material_blade_i = "BT25" \\ 4570 & if material_blade_i = "BT23" \\ 4510 & if material_blade_i = "BT9" \\ 4430 & if material_blade_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$$

Предел длительной прочности ЛРК (Па):

$$\sigma_blade_long_i = 10^6. \begin{tabular}{llll} 125 & if material_blade_i = "KC-6K" \\ 123 & if material_blade_i = "BT41" \\ 150 & if material_blade_i = "BT25" \\ 230 & if material_blade_i = "BT23" \\ 200 & if material_blade_i = "BT9" \\ 210 & if material_blade_i = "BT6" \\ NaN & otherwise \\ \end{tabular}$$

material_blade^T

de T	=		1	2	כ	4	5	O	,	0	כ
		1	"BT9"	"BT9"	"BT9"	"BT9"	"BT9"	"BT25"	"BT25"	"BT25"	"BT

 $\rho_{\text{blade}}^{\text{T}} =$

Γ =		1	2	3	4	5	6	7	8	9
	1	4510	4510	4510	4510	4510	4500	4500	4500	7900

$$\sigma_blade_long^T$$

											_
_		1	2	3	4	5	6	7	8	9	$\cdot 10^6$
	1	200.0	200.0	200.0	200.0	200.0	150.0	150.0	150.0	123.0	

material_blade $_{i}$ = "BT23" if compressor = "В π " "BT6" if compressor = "КНД" material_blade $_{i}$ otherwise

Коэф. формы: $\frac{k_n}{k_n} = 6.8$

Модуль Юнга Ірода материала Л (Па): $E_{blade} = 210 \cdot 10^{9}$

Коэф. Пуассона материала Π (): μ steel = 0.3

```
\nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \nu 0_{\text{изг.rotor}}
                                                                                  \nu 0_{y_{\Gamma \Pi}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \nu_{\rm VII.rotor}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for r \in av(N_r)
(\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for mode \in 1..6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M5}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big)\,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)} \,, h_{\text{st}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}} \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}\,, \rho\_\text{blade}\,,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \nu 0_{\text{yrn.stator}_{i,\,mode}} = \nu 0_{\text{yrn}} \Big( \text{mode}\,, 0\,, \text{mean} \Big( h_{st(i,\,2)}\,, h_{st(i,\,3)} \Big) \,, \\ \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade}) \,, \rho\_\text{blade}_i\,, \\ \text{stiffness}_{stator}_{i,\,r}\,, \\ \text{Jp}_{stator}_{i,\,r} \,, \\ \text{Jp}_{st
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \nu 0_{\text{yr.i.rotor}_{i, \, mode}} = \nu 0_{\text{yr.ii}} \left( \text{mode} \,, 0 \,, \text{mean} \left( h_{\text{st(i,1)}} \,, h_{\text{st(i,2)}} \right) \,, \\ \text{Jung}(2 \,, \mu\_\text{steel} \,, E\_\text{blade}) \,, \rho\_\text{blade}_{i} \,, \\ \text{stiffness}_{\text{rotor}_{i,r}} \,, \\ \text{Jp}_{\text{rotor}_{i,r}} \,, \\ \text{Jp}_{
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \nu 0_{y_{\Gamma JI}.stator\_bondage_{\hat{1},\,mode}} = \nu 0_{y_{\Gamma JI}} \Big( mode, 1, mean \Big( h_{st(\hat{1},\,2)}, h_{st(\hat{1},\,3)} \Big), \\ Jung(2, \mu\_steel, E\_blade), \rho\_blade_{\hat{1},\,stiffness}_{stator_{\hat{1},\,r}}, \\ Jp_{stator_{\hat{1},\,r}}, Jp_{stator
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \nu 0_{\text{yrst.rotor\_bondage}_{i, \, mode}} = \nu 0_{\text{yrst}} \left( \text{mode}, 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ν0<sub>VГЛ.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu_{\rm V\Gamma J. stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	1539	1826	2097	2353	2606	2851	3056	3212	2597	852	1018	1194	1352	1506	1660	1796	1903	1513
$\operatorname{stack}\left(\nu 0_{\text{угл.stator}}, \nu 0_{\text{угл.rotor}}\right)^{T} = \begin{bmatrix} 2\\ 3\\ 4\\ 5\\ 6 \end{bmatrix}$	2	4617	5479	6290	7060	7819	8553	9167	9635	7790	2557	3053	3582	4055	4519	4979	5389	5710	4540
	3	7694	9131	10483	11767	13031	14255	15278	16059	12983	4261	5088	5970	6758	7532	8298	8982	9516	7567
	4	10772	12784	14677	16474	18243	19956	21389	22482	18177	5966	7124	8358	9461	10544	11617	12575	13322	10594
	5	13850	16436	18870	21180	23456	25658	27500	28906	23370	7670	9159	10746	12164	13557	14936	16168	17129	13621
	6	16927	20089	23063	25887	28668	31360	33611	35329	28563	9375	11194	13135	14867	16570	18256	19761	20935	16648

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	321	478	660	811	1015	1221	1318	1457	1326	290	377	469	543	625	703	759	814	669
, T	2	2011	2998	4137	5085	6360	7653	8260	9134	8312	1820	2362	2938	3402	3916	4407	4755	5103	4195
$\operatorname{stack}(\nu 0_{\text{M3}\Gamma.\text{stator}}, \nu 0_{\text{M3}\Gamma.\text{rotor}})^{T} =$	3	5630	8395	11585	14241	17810	21430	23131	25578	23275	5095	6614	8226	9528	10967	12341	13316	14290	11749
	4	11042	16464	22719	27927	34926	42026	45362	50160	45645	9992	12970	16132	18685	21507	24202	26114	28024	23040
	5	18245	27205	37541	46147	57711	69443	74956	82885	75423	16511	21431	26657	30875	35538	39992	43151	46307	38071
	6	27248	40629	56066	68918	86189	103709	111943	123783	112640	24658	32006	39811	46109	53074	59725	64444	69156	56857

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	3078	3653	4193	4707	5212	5702	6111	6423	5193	1705	2035	2388	2703	3013	3319	3593	3806	3027
\T	2	6155	7305	8387	9414	10425	11404	12222	12847	10387	3409	4071	4776	5406	6025	6638	7186	7613	6054
$stack(\nu_{yrл.stator_bondage}, \nu_{yrл.rotor_bondage})^{T} =$	3	9233	10958	12580	14120	15637	17106	18333	19270	15580	5114	6106	7164	8109	9038	9958	10779	11419	9081
	4	12311	14610	16773	18827	20850	22807	24444	25694	20773	6818	8141	9552	10813	12051	13277	14372	15225	12108
	5	15389	18263	20967	23534	26062	28509	30555	32117	25967	8523	10177	11941	13516	15063	16596	17965	19032	15135
	6	18466	21915	25160	28241	31275	34211	36666	38541	31160	10227	12212	14329	16219	18076	19915	21558	22838	18162

Pасчетный узел: type = "compressor"

Объем бандажной полки (M^3) : $V_{6\Pi} = 0$

Радиус положения ЦМ бандажной полки (м): $R_{6\Pi} = 0$

▼ Расчет Л на прочность

```
\begin{aligned} & \text{area0}_{rotor}(i,z) = \text{area}_{rotor_{i},N_{r}} \cdot \begin{bmatrix} e^{\left( \overrightarrow{\sigma 0}_{rotor.max}(i,z) \cdot \int_{Z} & z \, dz \right)} & \text{if } z \leq R0_{rotor}(i,z) \\ & 1 \quad \text{otherwise} \\ & \text{N0}_{rotor}(i,z) = \rho\_\text{blade}_{i} \cdot \omega^{2} \cdot \begin{bmatrix} \int_{Z}^{mean\left(R_{st(i,1),N_{r}},R_{st(i,2),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{bmatrix} & \text{if type} = \text{"compressor"} \\ & \left( \int_{Z}^{mean\left(R_{st(i,2),N_{r}},R_{st(i,3),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) & \text{if type} = \text{"turbine"} \end{aligned} \right) \end{aligned}
                \sigma_{0_{rotor}(i,z)} = \frac{N0_{rotor}(i,z)}{area0_{rotor}(i,z)}
                     area_{rotor.}(i,z) = interp\Big(pspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                     area_{stator.}(i,z) = interp \left( pspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T, submatrix \left( area_{stato
          \begin{aligned} N_{rotor}(i,z) &= \rho\_{blade}_{i} \cdot \omega^{2} \cdot \\ & \int_{z}^{mean \left(R_{st(i,1),N_{r}}, R_{st(i,2),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{aligned} \quad \text{if type = "compressor"} \\ & \left(\int_{z}^{mean \left(R_{st(i,2),N_{r}}, R_{st(i,3),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) \quad \text{if type = "turbine"} \end{aligned}
                \sigma_{z_{rotor}(i,z)} = \frac{N_{rotor}(i,z)}{area_{rotor}(i,z)}
                      \rho_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(
                     \rho_{2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2
                     \rho_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3
                     P_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                     P_2(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i
                     P_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(
                     c_{a1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                     c_{a2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),
                     c_{a3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),
                     c_{u1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(s_{u},st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st
```

```
c_{u2}(i,z) = interp\Big(lspline\Big(submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1\Big),submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,
         c_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i
         w_{u1}(i,z) = interp \Big( lspline \Big( submatrix \Big( R \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \,, submatrix \Big( w_u \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \Big), submatrix \Big( R \,, st(i,1) \,, st(i
         w_{u2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(
         w_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(w_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(w_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st
        qx_{rotor}(i,z) = -\frac{2\pi z}{Z_{rotor_i}} \cdot \begin{bmatrix} \left[ \left( P_2(i,z) - P_1(i,z) \right) + \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{a2}(i,z) - c_{a1}(i,z) \right) \right] & \text{if type = "compressor"} \\ \left[ \left( P_3(i,z) - P_2(i,z) \right) + \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{a3}(i,z) - c_{a2}(i,z) \right) \right] & \text{if type = "turbine"} \end{aligned}
   \begin{vmatrix} q y_{rotor}(i,z) &= \frac{2\pi\,z}{Z_{rotor_i}} \cdot \\ \begin{bmatrix} \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left(w_{u2}(i,z) - w_{u1}(i,z)\right) \end{bmatrix} & \text{if type = "compressor"} \\ \left[ \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left(w_{u3}(i,z) - w_{u2}(i,z)\right) \right] & \text{if type = "turbine"} \\ \end{vmatrix} 
    | \text{qy}_{\text{stator}}(i,z) = -\frac{2\pi z}{Z_{\text{stator}_i}} \cdot \left[ \begin{bmatrix} \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{u3}(i,z) - c_{u2}(i,z) \right) \end{bmatrix} \text{ if type = "compressor"} \\ \left[ \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{u2}(i,z) - c_{u1}(i,z) \right) \right] \text{ if type = "turbine"} 
qy_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                           mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                         \bigcap \mathsf{lmean} \big( \mathsf{R}_{\mathsf{st}(i,1),1}, \mathsf{R}_{\mathsf{st}(i,2),1} \big) \quad \text{if type="turbine"} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              qy_{stator}(i,z1)\cdot(z1-z)dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       qx_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                              mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                                        mean (R_{st(i,1),1}, R_{st(i,2),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        qx_{stator}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \left( \begin{array}{c} \operatorname{mean} \left( {{R_{st(i,1),N_r}},{R_{st(i,2),N_r}}} \right) & \text{if type="compressor"} \\ \operatorname{mean} \left( {{R_{st(i,2),N_r}},{R_{st(i,3),N_r}}} \right) & \text{if type="turbine"} \end{array} \right)
```

```
q_{rotor}(1, z) uz
shift_x_{rotor}(i, z) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        N_{rotor}(i,z)
                                                                                                                                             mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                               mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          mean(R_{st(i,1),N_r}, R_{st(i,2),N_r}) \text{ if type="compressor"}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \operatorname{mean}(R_{\operatorname{st}(i,2),N_r},R_{\operatorname{st}(i,3),N_r}) | \text{ if type="turbine"} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (qy_{rotor}(i,z)\cdot z) dz
shift_y_{rotor}(i, z) = z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      N_{rotor}(i,z) \cdot z^2
                                                                                                                                                       mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                                           mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
x0_{\text{rotor.}}(i,z) = \text{interp} \left( \text{lspline} \left( \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( x0_{\text{rotor}}, i, i, 1, N_r \right)^T \right), \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( x0_{\text{rotor}}, i, i, 1, N_r \right)^T, z \right)
x0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
y0_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big)
y0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big)
\alpha_{major_{rotor.}(i,z)} = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right)
\alpha_{\text{major}_{\text{stator.}}(i,z)} = \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big) \Big)
Ju_{rotor.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T, submatrix \left( Ju
Ju_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Ju_
Jv_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T, su
Jv_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Jv_
CPx_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big)
CPx_{stator.}(i, z) = interp \left( lspline \left( submatrix \left( R, st(i, 2), st(i, 2), 1, N_r \right)^T, submatrix \left( CPx_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i, 2), st(i, 2), 1, N_r \right)^T, submatrix \left( CPx_{stator}, i, i, 1, N_r \right)^T, submatrix \left( C
CPy_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big)
CPy_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T
CPx_{rotor.axis}(i,z) = axis_{X} \Big( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \Big)
CPx_{stator.axis}(i,z) = axis_{x} \left( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{stator.}(i,z), \alpha_{
CPy_{rotor.axis}(i,z) = axis_{y} \left( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \right)
CPy_{stator.axis}(i,z) = axis_{v} \Big( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{major_{stator.}}(i,z), 1 \Big)
```

```
Wp_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),
  Wp_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \left(qx_{rotor}(i,z1) \cdot CPy_{rotor.axis}(i,z1) - qy_{rotor}(i,z1) \cdot CPx_{rotor.axis}(i,z1)\right) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                          \left(qx_{stator}(i,z1)\cdot CPy_{stator.axis}(i,z1) - qy_{stator}(i,z1)\cdot CPx_{stator.axis}(i,z1)\right) dz1
  \varphi_{\text{uv}_{\text{rotor}}(i,z)} = \text{interp} \left[ \text{lspline} \left[ \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( \frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T \right] \right], \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( \frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T, \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{st}(i,2), \text
 \left| \phi_{\_} u v_{stator}(i,z) \right| = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, sub
  Mu_{rotor}(i,z) = axis_{x}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
  Mu_{stator}(i,z) = axis_{x}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
  Mv_{rotor}(i,z) = axis_{y}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
   Mv_{stator}(i,z) = axis_{v}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
```

14.811

14.799

14.779

14.776

14.769

14.766

										T													7		
		1	2	3	4	5	6	7	8	9				1	2	3	4	5	6	7	8	9			
$u_u_{rotor}^T =$	1	-2.547	-2.080	-2.107	-1.590	-1.605	-1.621	-1.641	-1.652	-1.659	$\cdot 10^{-3}$	v_u _{rotor} =	1	4.006	3.850	3.795	3.707	3.653	3.586	3.474	3.401	3.366	$\int \cdot 10^{-3}$		
– rotor	2	-0.725	-0.724	-0.723	-0.724	-0.724	-0.725	-0.727	-1.361	-1.361		– rotor	2	1.463	1.478	1.503	1.491	1.486	1.467	1.413	1.375	1.362			
	3	0.000	-0.818	-0.817	-0.817	-0.817	-0.817	-0.818	-0.818	-0.818			3	0.845	0.908	0.935	0.936	0.941	0.934	0.901	0.876	0.872			
		•		•	•	•	•	•							•	•		•	'	•			_		
		1	2	3	4	5			7	8	0			1	2	3	4	5	6	7	,	8	9		
. Т	1	29.509	29.617	29.64	9 29.13	20 20	.068 26	007	12.640	-9.373	0.260	– 3 T	1	-5.036	-4.050	-3.697	-3.228	2 070	-2.69	00 2		2.726		- 3	
$u_{lrotor} =$	2	34.666	34.665	1	+		-		12.640 21.609	-20.343	-9.369 -19.710	$\cdot 10^{-3} \text{ v_l}_{\text{rotor}}^{\text{T}} =$	2	-1.331	+	-1.487	-1.437	-2.970 -1.415	+			1.117	-2.749 -1.106	$\cdot 10^{-3}$	
	2												2		-1.388										
	3	23.293	38.705	38.70	38.70	J4 38.	.704 38	3.704	38.705	-24.823	-24.822		3	-0.582	-0.819	-0.929	-0.935	-0.952	-0.92	25 -0.	.791 -	0.730	-0.725		
			2	2	4	-		7	Ι ο		1			1	1 2	1 2	1 4			c	7	0			
т		1	2	3	4	5	6	/	8	9	1 ,	Т		1	2	3	4	5		6	/	8	9		2
u_u _{stator} =	= 1	0.206	0.209	-1.564	-1.570	-1.618	-	-1.326	1	+	1 10	v_u _{stator}	= 1	0.766	-	+		_		.0.238	10.225	10.21	_		,
Stato	2	-0.014	-0.009	-0.001	-0.000	0.003		-0.008	_		4	Stato	2	1.210					351	1.342	1.257	1.19	_		
	3	-0.276	-0.268	-0.257	-0.256	-0.252	-0.250	-0.264	-0.273	-0.278			3	1.703	3 1.75	2 1.82	9 1.83	1.8	359	1.853	1.767	1.70	3 1.6	73	
		1	2	3	4	5	6	7	8	9				1	2	3	4		5	6	7		8	9	
, T	1	12.342	12.335	-2.137	-2.146	-2.210) -2.164	-1.81	.2 -1.5	67 -1.4	64 1.0-	3 , T	1	-1.73	5 -1.90		327 -12	.327 -	12.324	-12.32	26 -12	.341	12.351	-12.354	10-3
u_l _{stator} =	= +	13.697	13.687	13.669	+	13.662	-	_				v_l _{stator} =	= -	-1.87					-2.522	-2.50		.102	-1.826	-12.554	$\cdot 10^{-3}$
		13.09/	13.00/	13.009	12.000	13.002	7 12.001	. L T2.00	סיכד ורים	וטכן וטכ./	ן דט			-1.0/(υ -2.03	77 -2.5	111 -2	ן ככד.	-2.322	-2.50	JU -2	.102	-1.020	-1.039	

-2.005

-2.237

-2.588

-2.627

-2.733

-2.729

-2.319

-2.032

-1.891

14.793

14.808

14.815

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} & \sigma_{-n}rotor \\ \sigma_{-Dstator}$$

$$\begin{pmatrix} \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} &$$

		1	2	3	4	5	6	7	8	9
$\sigma p \cdot T =$	1	-24.59	-35.43	-47.02	-62.63	-78.53	-98.25	-143.38	-184.44	-193.90
$\sigma_p_{rotor} =$	2	-66.85	-75.01	-90.36	-110.97	-132.28	-160.03	-230.81	-296.24	-315.96
	3	-0.34	-0.29	-1.04	-0.93	-0.85	-0.74	-0.57	-0.38	-1.16

		1	2	3	4	5	6	7	8	9
$\sigma n = \frac{T}{\sqrt{10^6}} = \frac{T}{\sqrt{10^6}}$	1	1	1	1	1	1	1	1	1	1
-protor = 70 ro =	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 38.31 & 45.18 & 54.66 & 64.61 & 74.69 & 85.27 & 103.32 & 140.76 & 151.40 \\ 2 & 63.68 & 73.61 & 93.21 & 111.30 & 130.92 & 151.20 & 184.57 & 235.46 & 251.55 \\ 3 & 0.24 & 0.27 & 1.06 & 0.95 & 0.88 & 0.74 & 0.51 & 0.31 & 0.95 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4	5	6	7	8	9
$\sigma n_{\text{mater}} \leq 70.10^6 =$	1	1	1	1	1	0	0	0	0	0
-rotor = 70 10 -	2	1	0	0	0	0	0	0	0	0
	3	1	1	1	1	1	1	1	1	1

		1	2	3	4	5	6	7	8	9	
$\cdot 10^6 \sigma p_{\text{stator}} =$	1	0.55	0.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.10
$\cdot 10 \sigma_{p_{stator}} =$	2	83.95	58.73	39.85	38.94	28.76	14.34	14.90	12.68	12.98	10
	3	134.64	98.88	68.11	67.27	50.49	25.15	24.90	20.35	20.51	

		1	2	3	4	5	6	7	8	9
$\sigma p_{\text{stator}} \leq 70 \cdot 10^6 =$	1	1	1	1	1	1	1	1	1	1
o_pstator = 70 10 =	2	0	1	1	1	1	1	1	1	1
	3	0	0	1	1	1	1	1	1	1

		1	2	3	4	5	6	7	8	9	
$\sigma n_{\text{stater}} =$	1	-1.25	-0.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$\cdot 10^6$
stator	2	-132.36	-99.95	-74.49	-73.17	-55.40	-27.72	-25.65	-19.85	-19.28	
	3	-162.26	-130.36	-100.17	-99.90	-77.32	-38.87	-34.05	-25.17	-23.91	

		1	2	3	4	5	6	7	8	9
$\sigma n_{\text{stator}} \leq 70 \cdot 10^6 =$	1	1	1	1	1	1	1	1	1	1
-nstator = 70 10 -	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1 ... Z \\ \text{for } r \in 1 ... N_r \end{cases}$$

$$\begin{vmatrix} \sigma_{rotor_{i,r}} = \sqrt{\left(\sigma_{z_{rotor}}(i, R_{st(i,2),r}) + \max\left(\sigma_{p_{rotor_{i,r}}}, \sigma_{n_{rotor_{i,r}}})\right)^2 + \tau_{rotor}(i, R_{st(i,2),r})^2}$$

$$\begin{vmatrix} \sigma_{stator_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{p_{stator_{i,r}}}, \sigma_{n_{stator_{i,r}}}\right)\right)^2 + \tau_{stator}(i, R_{st(i,2),r})^2} \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, z \Big) \\ \sigma_{stator.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator}, i, i, 1, N_r \Big)^T, z \Big) \\ \begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix}$$

		1	2	3	4	5	6	7	8	9				1	2	3	4	5	6	7	8	9	
σ , $T =$	1	152.77	142.09	138.21	137.27	139.06	143.07	156.39	190.65	233.81	$\cdot 10^6$	$\sigma \cdot \cdot \stackrel{T}{=}$	1	0.57	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	$\cdot 10^6$
o _{rotor} =	2	153.13	150.11	160.35	169.30	182.06	196.87	226.18	274.33	316.42		o _{stator} =	2	83.95	58.74	39.86	38.95	28.78	14.35	14.91	12.68	12.99	10
	3	5.14	4.21	7.12	5.48	4.42	3.43	2.30	1.52	4.37			3	134.64	98.88	68.12	67.28	50.50	25.15	24.91	20.35	20.52	

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix} = \begin{vmatrix} for \ i \in 1...Z \\ for \ r \in 1...N_r \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{rotor} \\ safety_{rotor} \\ safety_{stator} \\ safety_{stator} \\ safety_{stator} \\ safety_{stator} \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{rotor}} & \text{if } \sigma_{rotor} \\ safety_{stator} \\ safety_{stator} \\ safety_{stator} \\ safety_{stator} \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{stator}} & \text{if } \sigma_{stator} \\ safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

$safety_{rotor}^{T} =$		1	2	3	4	5	6	7	8	9
	1	1.31	1.41	1.45	1.46	1.44	1.05	0.96	0.79	0.53
	2	1.31	1.33	1.25	1.18	1.10	0.76	0.66	0.55	0.39
	3	38.90	47.54	28.09	36.53	45.26	43.76	65.24	98.98	28.13

		1	2	3	4	5	6	7	8	9
$safety_{rotor}^{T} \ge safety =$	1	1 1 1	1	1	0	0	0	0		
rotor = safety =	2	1	1	0	0	0	0	0	0	0
	3	1	1	1	1	1	1	1	1	1

		1	2	3	4	5
safety =	1	352.11	562.93	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
salety stator –	2	2.38	3.4	5.02	5.13	6.95
	3	1.49	2.02	2.94	2.97	

		1	2	3	4	5	6	7	8	9
$safety_{stator}$ $\geq safety =$	1	1	1	1	1	1	1	1	1	1
stator = surety =	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

Рассматриваемая ступень:

$$j = \begin{vmatrix} j = 1 & \text{if type} = \text{"compressor"} \\ Z & \text{if type} = \text{"turbine"} \end{vmatrix}$$
 = 1 $= 1$

$$\mathbf{b_{limb}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 177.3 & 230.8 & 274.1 \\ 2 & 182.2 & 230.8 & 270.8 \\ \hline 3 & 186.8 & 230.8 & 267.7 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = \min(Rj), \min(Rj) + \frac{\max(Rj) - \min(Rj)}{100} ... \max(Rj)$$

$$z_{rotor} = \begin{bmatrix} mean(Rj_{1,1},Rj_{2,1}), mean(Rj_{1,1},Rj_{2,1}) + \frac{mean(Rj_{1,N_r},Rj_{2,N_r}) - mean(Rj_{1,1},Rj_{2,1})}{100} ... mean(Rj_{1,N_r},Rj_{2,N_r}) & \text{if type = "compressor"} \\ mean(Rj_{2,1},Rj_{3,1}), mean(Rj_{2,1},Rj_{3,1}) + \frac{mean(Rj_{2,N_r},Rj_{3,N_r}) - mean(Rj_{2,1},Rj_{3,1})}{100} ... mean(Rj_{2,N_r},Rj_{3,N_r}) & \text{if type = "turbine"} \\ \end{bmatrix}$$

▼ Результаты расчета на прочность Л

$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "rotor" \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -2.55 & 4.01 \\ 2 & 29.51 & -5.04 \\ 3 & 0.21 & 0.77 \\ 4 & 12.34 & -1.74 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -25 & 1 \\ 38 & -1 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 1 \\ 153 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 352.115 \\ 2 \\ 1.309 \end{bmatrix}$$

$$\begin{pmatrix} v_{-}p \\ v_{-}n \end{pmatrix} = \begin{pmatrix} v_{-}u_{rotor_{j},r} \\ v_{-}l_{rotor_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = \begin{pmatrix} x_{0} \\ 1 & 4.006 \\ 2 & -5.036 \end{pmatrix} \cdot 10^{-3} \quad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{$$

$$\begin{pmatrix} \text{blade} \\ \text{max} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.72 & 1.46 \\ 2 & 34.67 & -1.33 \\ 3 & -0.01 & 1.21 \\ 4 & 13.70 & -1.88 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -67 & 84 \\ 64 & -132 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 84 \\ 153 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2.382 \\ 2 \\ 1.306 \end{bmatrix}$$

$$\begin{pmatrix} v_{-}v_{rotor_{j,r}} \\ v_{-}l_{rotor_{j,r}} \end{pmatrix} \text{ if blade = "rotor" } = \begin{bmatrix} \frac{1}{1 & 1.463} \\ \frac{1}{2} & -1.331 \end{bmatrix} \cdot 10^{-3} \qquad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{bmatrix} x_{0}r_{otor_{j,r}} \\ y_{0}r_{otor_{j,r}} \\ y_{0}r_{otor_{j,r}} \end{pmatrix} \text{ if blade = "rotor" } = \begin{bmatrix} \frac{1}{1 & 28.557} \\ \frac{1}{2} & 1.079 \end{bmatrix} \cdot 10^{-3} \qquad \text{chord} = \begin{bmatrix} \text{chord}_{rotor_{j,r}} & \text{if blade = "rotor" } & 63 \cdot 10^{-3} \\ \text{chord}_{stator_{j,r}} & \text{if blade = "stator" } \end{bmatrix}$$

$$\begin{pmatrix} v_{-}u_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

$$\begin{pmatrix} v_{-}u_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

$$\begin{pmatrix} \text{blade} \\ \text{constant} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -0.72 & 1.46 \\ 2 & 34.67 & -1.33 \\ 3 & -0.01 & 1.21 \\ 4 & 13.70 & -1.88 \end{bmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -67 & 84 \\ 64 & -132 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 84 \\ 153 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2.382 \\ 2 \\ 1.306 \end{bmatrix}$$

$$\begin{pmatrix} \text{blade} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 0.00 & 0.85 \\ 2 & 23.29 & -0.58 \\ 3 & -0.28 & 1.70 \\ 4 & 14.81 & -2.00 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -0 & 135 \\ 0 & -162 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 135 \\ 5 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 38.90

▼ Выбор материала Д

Запас по температуре (K): $\Delta T_{\text{safety}} = 0$

Выбранный материал Д: material_disk_i = "BT23" if compressor = "Вл" "BT6" if compressor = "КНД"

"ВТ9" if compressor = "КВД"

Плотность материала Д (кг/м^3):

Предел длительной прочности Д (Па):

 $\begin{array}{lll} \rho_{disk_i} = & 8266 & if \; material_{disk_i} = "B\%175" \\ & 8320 & if \; material_{disk_i} = "ЭП742" \\ & 8393 & if \; material_{disk_i} = "ЖС-6К" \\ & 7900 & if \; material_{disk_i} = "BT41" \\ & 4500 & if \; material_{disk_i} = "BT25" \\ & 4570 & if \; material_{disk_i} = "BT23" \\ & 4510 & if \; material_{disk_i} = "BT9" \\ & 4430 & if \; material_{disk_i} = "BT6" \\ \end{array}$

NaN otherwise

 $\sigma_{disk_long_i} = 10^6 \cdot \begin{vmatrix} 620 & \text{if material_disk}_i = "B\%175" \\ 680 & \text{if material_disk}_i = "ЭП742" \\ 125 & \text{if material_disk}_i = "ЖС-6К" \\ 123 & \text{if material_disk}_i = "BT41" \\ 150 & \text{if material_disk}_i = "BT25" \\ 230 & \text{if material_disk}_i = "BT23" \\ 200 & \text{if material_disk}_i = "BT9" \\ 210 & \text{if material_disk}_i = "BT6" \\ NaN & \text{otherwise} \end{vmatrix}$

$\rho \operatorname{disk}^{\mathrm{T}} =$		1	2	3	4	5	6	7	8	9
F	1	4510	4510	4510	4510	4510	4510	4510	4510	4510

Рассматриваемая ступень:
$$j = 1$$

$$j = 1$$
 = 1
 $j = 1$ "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$
 $j = 1$ otherwise

▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{cases} \frac{\rho_{-} \text{disk}_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-} z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \left[\left(R_{st(i,2),ORIGIN}\right)^{2} - z^{2} \right] \\ \text{or} \quad \text{if } z \leq R_{st(i,2),ORIGIN} \end{cases}$$

$$\text{NaN otherwise}$$

$$z = 0, \frac{R_{st(j,2), ORIGIN}}{N_{dis}} .. R_{st(j,2), ORIGIN}$$

