

Команда УИИ

Кейс

Разработка системы для обнаружения, оценки и мониторинга нефтеразливов (экологического ущерба) с использованием технологий дистанционного зондирования Земли.

СТЕК ТЕХНОЛОГИЙ

РЕШЕНИЕ

Compact Convolutional Transformer (CCT)

Модель визуального трансформера

РЕШЕНИЕ

Очистка данных

С помощью pd.read_excel было загружено в ноутбук таблицу загрязнений.

И произвелась очистка от нулевых столбцов и строк.

Путем анализа всех значений были выделены такие столбцы:

Категория загрязнения | широта | долгота | дата | категория земель

Широта и долгота были приведены к единому десятичному формату.

Так же удалены все записи ранее 2017 года, так как по ним нет спутниковых снимков. И чуть позже записи по которым не было снимков.

	cat_pollution	lat	lon	date	cat_ground	square
0	нефть	73.506833	62.592583	2017-02-15 00:00:00	земли лесного фонда	0.1703
1	нефть	73.508194	62.543500	2017-02-15 00:00:00	земли лесного фонда	0.2595
2	нефть	73.347778	62.616667	2019-03-04 00:00:00	земли лесного фонда	0.1559
3	нефть	73.547472	62.557611	2021-02-18 00:00:00	земли лесного фонда	0.0100
4	нефть	73.983397	62.129353	2021-02-18 00:00:00	земли лесного фонда	0.0050

4714	нефть	77.792639	61.173361	2020-03-11 00:00:00	земли лесного фонда	0.0200
4715	нефть	77.738583	61.227111	2020-03-11 00:00:00	земли лесного фонда	0.4500
4716	подтоварная вода	77.742867	61.166608	2021-02-18 00:00:00	земли лесного фонда, земли промышленности	0.0983
4717	нефтепродукты	77.539306	61.316889	2020-02-18 00:00:00	земли лесного фонда	0.0200
4718	нефть	75.120758	61.429492	2020-03-05 00:00:00	земли лесного фонда/земли иных категорий	0.7663
4719 rd	ows × 6 columns					

Работа с данными

Следующий этап было получение координат по снимкам и временные метки по каждому снимку. Приводилось все в табличный вид.

Для работы со снимками использовалась **библиотека eo-learn**.

Было замечено, что снимки в каждом году делались одних и тех же участков, поэтому был взят за основу 2021 год и собраны все ВВох в виде координат.

	dir	name	x1	y1	x2	y2
0	2021-04	PH-CHΓ-2013-5116	76.989089	61.190537	77.001351	61.196104
1	2021-04	PH-CHΓ-2013-4345	76.686472	61.227745	76.698695	61.233340
2	2021-04	PH-CHΓ-2013-4361	76.728468	61.229940	76.740699	61.235530
3	2021-04	PH-CHF-2013-5163	76.923933	61.152721	76.936168	61.158294
4	2021-04	PH-CHΓ-2013-5380	76.890414	61.206888	76.902665	61.212464
		(444)	***			***
11678	2021-07	PH-CHГ-2018-626	76.485370	61.446162	76.497643	61.451774
11679	2021-07	PH-CHГ-2017-240	76.764541	61.376538	76.776836	61.382125
11680	2021-07	PH-CHГ-2018-553	76.667407	61.182925	76.679610	61.188521
11681	2021-07	PH-CHГ-2018-434	76.471186	61.143595	76.483339	61.149209
11682	2021-07	PH-CHГ-2018-237	76.561286	61.219327	76.573483	61.224933
11683 rd	ws × 6 col	umns				

Соответствие

Затем, имея все координаты снимков и координаты загрязнений была создана таблица соответствий файлов и загрязнений. В расчет бралось то понимание, что координата разлива будет между координатами у снимка.

Так же понимая дату разлива было легко узнать год, и как следствие архив, где его нужно искать. Сами координаты нам не нужны, а нужна была дата, ну и для возможных улучшений связь с таблицей загрязнений

Эта таблица выглядит так:

date	d	name	dir		id_pollution	date	name	dir	year	
01-21 06:42:12+00:00	0	РН-ЮНГ-2013-988	2020-11	0	0	2017-02-15 00:00:00	ЛУК-2016-6	01	2017	0
1-28 06:32:13+00:00	1	РН-ЮНГ-2013-988	2020-11	1	1	2017-02-15 00:00:00	ЛУК-2016-7	01	2017	1
02-22 06:32:15+00:00	2	РН-ЮНГ-2013-988	2020-11	2	2	2019-03-04 00:00:00	ЛУК-КГ-2018-1	01	2019	2
3-18 06:32:18+00:00	3	РН-ЮНГ-2013-988	2020-11	3	3	2021-02-18 00:00:00	ЛУК-КГ-2020-1	01	2021	3
04-10 06:42:15+00:00	4	РН-ЮНГ-2013-988	2020-11	4	4	2021-02-18 00:00:00	ЛУК-КГ-2020-2	01	2021	4
					Jest C		222	223	***	
08-31 06:30:12+00:00	4	PH-CHГ-2018-601	2017-07	179420	11807	2021-02-18 00:00:00	ПП-2013-129	01	2021	76649
10-07 06:17:15+00:00	5	PH-CHГ-2018-601	2017-07	179421	11807	2021-02-18 00:00:00	ПП-2013-130	01	2021	76650
10-12 06:18:04+00:00	6	PH-CHГ-2018-601	2017-07	179422	11809	2014-02-15 00:00:00	ПП-2013-207	01	2014	76651
10-25 06:29:33+00:00	7	PH-CHГ-2018-601	2017-07	179423	11810	2020-02-18 00:00:00	РУФ-2020-1	16	2020	76652
11-14 06:31:20+00:00	8	PH-CHГ-2018-601	2017-07	179424	11811	2020-03-05 00:00:00	TC-2019	16	2020	76653

Кроме этого нам нужны временные метки каждого участка, что мы оставили, они будут использоваться в модели при обучения, чтобы брать нужный батч, где есть разлив и сравнивать с другими, которые были до него.

Создание облегченной базы

Имея таблицу соответствия файлов и загрязнений была создана облегченная база, где есть все необходимые снимки и данные для обучения нейронной сети

Аналитика

Ещё хочется отметить момент, что достаточно немало файлов не имели координат для снимков или их временные метки. Такие данные откидывались.

Владелец	Последнее изменение	Размер файла
Я	13:48 я	1,69 ГБ
я	13:47 я	4,41 ГБ
я	13:48 я	5,03 ГБ
я	13:52 я	2,41 ГБ
я	11:24 я	2,87 ГБ
	я я я	я 13.48 я я 13.47 я я 13.48 я я 13.52 я

ПОЛЬЗОВАТЕЛЬСКИЙ ИНТЕРФЕЙС

http://144.76.152.13:9999

логин: admin,

пароль: 12345678

Возможности:

- 1. Распаковка датасета
- 2. Обработка загруженного изображения нейросетью с выдачей Документы (презентация и документация)
- 3. Генерация карты

КОМАНДА УИИ

Качалкин Артём

Data Scientists

Соснин Дмитрий

Data Scientists

Курочкин Алесей

Data Scientists

Борис Хуторной

Data Scientist

Домненко Алексей

Data Scientists Full-stack