Research Proposal

Keiran Suchak — 200888140 May 29, 2019

- 1 Title of Research Topic
- 2 Research Questions and Statement
- 3 Description of Research

This section should describe the background to the research topic, provide a review of the relevant literature (methodological and or previous work in this domain) and should point towards research gaps that will be addressed by this thesis. Essentially the student is being asked to demonstrate their understanding of the topic area, to show that they can summarise a body of research and to develop an implicit rationale for the need for their proposed research.

A better understanding of how people move around their environment is of great utility to both academics and policy-makers. Such knowledge can be made use of in the contexts of urban planning, event management and emergency response, particularly when considering urban environments. Furthermore, this may be of use to those interested in the social issues of mobility, inclusivity and accessibility of opportunities.

When considering such concepts, investigators often make use of modelling techniques. At their most fundamental, models represent our understanding of the system that we are studying — an understanding that may not be perfect (Stanislaw 1986). There exist modelling techniques for the simulation of how pedestrians move around urban spaces. However, these methods exist largely in isolation of the real-world — that is to say that whilst the simulations aim to reflect the real-world, there is no method by which we can incorporate up-to-date observations into these models to stop their divergence from reality.

Simulating pedestrian behaviour is often undertaken at a micro-scale, with such models typically aiming to model at the individual level or on a spatially fine-grained grid (Burstedde et al. 2001). One of the most prevalent simulation methods in this field is that of Agent-Based Modelling. Such methods consist of two key components: agents and environments. In an Agent-Based Model, we prescribe sets of rules by which individuals interact with each other and their local environment; as interactions take place on the micro-scale, we typically observe the emergence of structure at the macro-scale such as crowding (Batty et al. 2003) or lane formation (Liu et al. 2014). The evaluation of these rules is often not deterministic and instead introduces some element of randomness; these stochastic elements aim to emulate the variability of human behaviour. The introduction of such randomness in conjunction with an imperfect understanding of the phenomena at play, however, typically result in simulation runs diverging from the real system.

In constructing their models, agent-based modellers undertake a development process that involves model verification, validation and calibration. We can take these to mean the following:

- Model verification: The process of ensuring that the implementation is an accurate representation of the model (Xiang et al. 2005).
- Model validation: The process of ensuring that the chosen model is an accurate representation of the phenomenon that we wish to study (Crooks et al. 2008).
- Model calibration: The process of searching for model parameter values such that we can achieve model validation (Thiele et al. 2014).

Beyond this, modellers also make efforts to ensure that the initial model conditions are realistic by setting them based on historical data.

The practices of validation, calibration and setting initial model states based on historical data are appropriate for offline evaluations such as testing designs of new buildings or experimenting with different individual behaviours; however, when aiming to simulate events in real-time, this simple delays the inevitable divergence of the model from the real system. Furthermore, model parameters may be transient and thus require to be updated as time passes and the dynamics evolve.

Given the apparently inevitable divergence of stochastic simulations from the real system that they aim to model, one may alternatively turn to big data. Data is now being generated in higher volumes and at greater velocity than ever before (Chen et al. 2014); however there also exist issues with observational data from such systems. Whilst models typically allow us to simulate a whole system, observations are typically sparse in either time or space (or both); this is to say that we observations rarely provide complete coverage of events. We therefore seek a solution whereby we can integrate up-to-date observations into our models as the models continue to simulate the system.

One of the methods by which we can combine knowledge represented by our model with observations as they become available is through data assimilation techniques, which are most commonly used in the field of numerical weather prediction (Kalnay 2003). Such techniques are typically made up of two steps:

- 1. **Predict**: Run the model forward, estimating the state of the system, until new observations become available.
- 2. **Update**: Upon receipt of new observations, combine the model's estimate of the system state with the new data.

These steps are repeated iteratively in a cycle. It is important to note that just as there is error associated with the model, we also acknowledge that there is observational error associated with the data. The aim of incorporating the observations into the model is to improve the model accuracy with respect to the true system.

A large volume of work exists in which such techniques are applied to meteorological systems where the models are based on differential equations. Significantly less work exists in which data assimilation methods are applied to agent-based models — in particular pedestrian models. This dissertation therefore aims to expand on the pre-existing work by implementing a data assimilation scheme known as the Ensemble Kalman Filter in conjunction with a relatively simple agent-based model of pedestrians crossing a two-dimensional station from one side to the other.

4 Description of Methodology and Data

5 Timetable of Programme of Work

6 Risk Assessment

Bibliography

Batty, M., DeSyllas, J. & Duxbury, E. (2003), 'The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and

- street parades', International Journal of Geographical Information Science 17(7), 673–697.
- Burstedde, C., Klauck, K., Schadschneider, A. & Zittartz, J. (2001), 'Simulation of pedestrian dynamics using a two-dimensional cellular automaton', *Physica A: Statistical Mechanics and its Applications* **295**(3-4), 507–525.
- Chen, M., Mao, S. & Liu, Y. (2014), 'Big data: A survey', *Mobile networks and applications* **19**(2), 171–209.
- Crooks, A., Castle, C. & Batty, M. (2008), 'Key challenges in agent-based modelling for geo-spatial simulation', *Computers, Environment and Urban Systems* **32**(6), 417–430.
- Kalnay, E. (2003), Atmospheric modeling, data assimilation and predictability, Cambridge university press.
- Liu, S., Lo, S., Ma, J. & Wang, W. (2014), 'An agent-based microscopic pedestrian flow simulation model for pedestrian traffic problems', *IEEE Transactions on Intelligent Transportation Systems* **15**(3), 992–1001.
- Stanislaw, H. (1986), 'Tests of computer simulation validity: what do they measure?', Simulation & Games 17(2), 173–191.
- Thiele, J. C., Kurth, W. & Grimm, V. (2014), 'Facilitating parameter estimation and sensitivity analysis of agent-based models: A cookbook using netlogo and r', *Journal of Artificial Societies and Social Simulation* 17(3), 11.
- Xiang, X., Kennedy, R., Madey, G. & Cabaniss, S. (2005), Verification and validation of agent-based scientific simulation models, *in* 'Agent-directed simulation conference', Vol. 47, p. 55.