THESIS TITLE - CHANGE POINT DETECTION

Tyler Manning-Dahan

A THESIS

IN

THE DEPARTMENT

OF

ENGINEERING AND COMPUTER SCIENCE

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science
Concordia University
Montréal, Québec, Canada

June 2019
© Tyler Manning-Dahan, 2019

CONCORDIA UNIVERSITY School of Graduate Studies

This is to certify	y that the thesis prepared	
By:	Tyler Manning-Dahan	
Entitled:	Thesis Title - Change Point D	etection
and submitted i	n partial fulfillment of the requireme	ents for the degree of
	Master of Applied Sci	ence
complies with t	he regulations of this University and	d meets the accepted standard
with respect to	originality and quality.	
Signed by the fi	nal examining commitee:	Chair
		Examiner
		Supervisor
Approved		
••	Chair of Department or Graduat	te Program Director
	_ 20	

Abstract

Thesis Title - Change Point Detection

Tyler Manning-Dahan

Text of abstract.

Acknowledgments

I would like to thank my supervisor Dr. Jia Yuan Yu for accepting me into his lab and pushing the limit of my intellectual understanding to places I have never thought possible.

I would also like to thank all my colleagues at DRW who have helped me learn about the finance industry over the past two years. I am especially grateful to Yves, Neil and Laura, who have been very patient with me and have me taught me a lot about understanding financial market micro-structure, writing clean code and building robust statistical models.

Lastly, I would like to thank my fiancée, Tanya, who initially pushed me to go back to school while I was still young and had the opportunity.

Contents

List of Figures			
Li	ist of	Tables	vii
1	Intr	oduction	1
	1.1	Motivation	1
		1.1.1 Health Care	1
		1.1.2 Financial Applications	2
	1.2	Characteristics of the change point problem	2
	1.3	Problem Formulation	4
		1.3.1 Performance Measures	4
		1.3.2 Other performance measures	5
	1.4	Related Work	6
	1.5	Our Contributions	7
2	Cha	pter 2	8
	2.1	Chapter 2 Section	8
		2.1.1 Chapter 2 Subsection	8

List of Figures

List of Tables

Chapter 1

Introduction

1.1 Motivation

The use of statistical control charts for detecting real-time changes in variation was pioneered by Walter Shewart in the first half of the twentieth century. Shewart was interested in reducing the unexpected causes of variation in the manufacturing processes that produced faulty manufacturing equipment [16]. Shewart's method involved charting the process measurements over time and detecting when a statistical process was no longer exhibiting an expected level of variation. Once this detection occurred, the process was stopped and was not restarted until the cause of the variation was fixed. Shewart's control charts were one of the first formal frameworks to solve the problem of detecting changes in a distribution of a sequence of random variables. This problem is now known more generally as the *change point detection problem*. Many industries make use of change-point techniques including monitoring computer network traffic, healthcare monitoring systems, and detecting regime shifts financial markets. The following are a few motivating examples.

1.1.1 Health Care

Health care is an important area for quickly detecting signal changes in heart rate monitoring [20] [17], epilepsy signal segmentation [12], and multi-modal MRI lesion detection [3] to name a few. Quickly detecting changes to a patient's health is absolutely necessary for any system to be of practical use. However, this quick detection must be balanced with high accuracy as false positives or missed detections could

have life-threatening consequences.

1.1.2 Financial Applications

The application of accurate and timely change point detection is also very appealing to the finance sector where shifts in asset prices can suddenly happen. Change point detection is further complicated in financial applications because of the non-stationary data typically observed in asset pricing along with long memory processes. Note, in the financial literature, change-points are also referred to as structural breaks, but for this thesis will use the broader term change-points.

An on-line, quick detection technique is proposed in [15], where a modified Shiryaev - Roberts procedure is used in a case study to detect a change-point on a single stock's daily returns. They compare their non-parametric method with other classic control chart methods using speed of detection and false alarm rate as measures of performance.

Detecting changes in variance is specifically explored in [9]. The authors propose an off-line change-point algorithm that minimizes a global cost function by using an adaptive regularization function. The algorithm is applied to the absolute returns of the FTSE 100 stock index and the US dollar-Japanese Yen foreign intra-day exchange rate to detect changes in asset price volatility. The change-points identified in the FTSE 100 coincided with key market events such as the stock market crash that occurred on October 14^{th} , 1987 and breaking the 5000 price barrier in August 1997.

See section 1.3.6 of [18] for more applications to options markets and arbitrage opportunities.

1.2 Characteristics of the change point problem

A number of surveys of the literature already exist [1] [13], therefore we will not cover all existing methods but rather touch upon several, important factors to consider when tackling the change point detection problem. Across the body of literature, these factors determine what methods are available to practitioners.

The first factor is selecting between *parametric* and *non-parametric* techniques. Deciding between these two broad techniques is dependent on the prior knowledge one wants to encode into the problem. For example, if it is known that data is

generated by a distribution from the exponential family of distributions, then we can subset the problem from the space of all possible distributions to a smaller space of distributions. Shewart control charts and CUSUM change-point techniques are both parametric techniques based on Gaussian-family of distributions [14] [5]. In certain settings, it is not possible to leverage information about the data and non-parametric techniques must be used instead [4].

The second factor is deciding whether change-points should be detected offline or online. Some algorithms are off-line—also referred to as batch algorithms or retrospective or a posteriori change-point detection—and they are applied in an ex-post fashion after the dataset has been completely acquired [19]. The aforementioned Shewart control chart and CUSUM algorithm are both designed for data that is streamed in a real-time fashion. In the literature, on-line methods of change point detection are also referred to sequential change point detection [18]. For this thesis, we will use the terms interchangeably.

The third factor is determining if there are multiple change points or to assume there is only a single change point to detect. This is an important factor for off-line change point detection where the decision to detect 1 or more change-points is chosen at the outset. Detecting multiple change-points could also be relevant for the on-line case if a situation arises where the window of time series under consideration may contain more than one change point. However, most on-line change-point methods are designed to detect a single change-point at a time.

Finally, the last factor to address is determining exactly what kinds of statistical changes an algorithm should detect. Many methods focus solely on detecting changes in the mean of a distribution [10]. Some methods are more general and can detect changes in the variance or higher order moments and do not focus on any particular one. Methods like kernel change point detection can typically detect any distributional changes.

This thesis will concern itself with on-line change point detection, where data is received in a streaming nature. We assume no prior distributional characteristics on the data and operate in a completely non-parametric setting.

1.3 Problem Formulation

The basic change-point problem is set up as hypothesis test between two segments of a time series. Since we are concerned with the on-line setting, we will always consider a time series of fixed size, n. Let $X_i, ..., X_n$ be a series of independent random variables of dimensions $d \geq 1$ be sequentially observed. Then, one of the following hypotheses holds:

$$\begin{cases}
H_0: X_1, X_2, ..., X_n \sim F_0 & \text{(no change-point occured)} \\
H_1: X_1, X_2, X_{t_0-1} \sim F_0, X_{t_0}, X_{t_0+1}, \sim F_1 & \text{(a change-point occured).}
\end{cases}$$
(1)

Where $i = 1, 2, ..., t_0 - 1$ and $j = t_0, ..., n$ are two distinct segments separated by change-point t_0 that is within the time series window. Furthermore, F_0 , F_1 are cumulative distribution functions (CDFs) with corresponding probability density functions (PDFs), f_0 , f_1 . Because we are operating in a non-parametric setting, the CDFs are assumed to be completely unknown.

If there is no change in the data then we say the change time is equal to infinity and denote this probability as P^{∞} and the expectation is E^{∞} .

Many change-point detection algorithms define a statistic that is computed using each set before and after the possible change-point, t. If the statistic is above a particular threshold then time t is classified as a change-point, $\hat{\tau}$.

In the on-line scenario, the time series under consideration can be thought of as a sliding window with data constantly coming in and out of the window of interest. The size of the window is an important consideration that is typically chosen based on the problem being solved. Too small a window and the sets of data may not yield a statistically significant result. Too large of a window and the problem leans more towards and off-line model, where high volumes must be stored and several change-points may appear in a given window.

1.3.1 Performance Measures

Because of the unsupervised nature of detecting change-points, it is difficult to evaluate the performance of change-point detection models with real world data. Many papers detail asymptotic or non-asymptotic theoretical guarantees of their proposed change-point methods. These theoretical results are typically compared across different change-point methods for benchmarking a new algorithm.

Two main issues arise when detecting change-points in a stream of data. The first is detecting a change-point when there is no actual statistical change in the observed sequence. These are typically called false positives or false alarms in change-point detection literature. The false alarm rate is defined by a metric known as the *average* run length (ARL).

$$ARL = E_{\infty}[T] = E_{\theta}[N] \tag{2}$$

Where it is the expected number of observations that must be recorded before a change-point is incorrectly detected. In other words, it is the average amount of time until a change is detected given a sequence of observations with no change. Therefore, a larger value of ARL is preferable.

The second issue is not missing a change-point when one occurs. This could be detecting a change-point much too late for it to be of any use or simply missing it altogether. For quantifying this error, the worst case detection delay (WDD) metric to measure how slow a model will detect a change-point in a worst case scenario. Conversely to ARL, lower values of WDD are preferable.

Balancing the ARL and WDD of an on-line detection algorithm is crucial to for an algorithm to be of any practical use.

1.3.2 Other performance measures

If labelled change-points are available for a real world dataset or a synthetic dataset, then the ground truth change-point vector, τ^* , is known. For example the *Hausdorff* metric can be used. It measures the furthest temporal distance between a predicted change-point $\hat{\tau}$ and τ^* . It is defined as:

Other standard classifier metrics can also used for comparing $\hat{\tau}$ and τ^* . This includes the F1-Score that is based on a classifier's precision and recall:

$$F_1(\hat{\tau}, \tau^*) = 2 * \frac{\text{precision*recall}}{\text{precision + recall}}$$
 (3)

F1-Score is defined as the harmonic mean of precision and recall. Precision is defined as the ratio of true positives (TP) to the number of true positives (TP) and false positives (FP) and recall is defined as the ratio the number of true positives to the number of true positives plus the number of false negatives. F1-Score is best when F1 = 1 (perfect precision and recall) and reaches its worst value at F1 = 0.

Depending on the context, any other classifier evaluation tools such as the Receiver Operating Characteristics Curve and the Precision Recall Curve may be used as well.

1.4 Related Work

In 2005, Desobry et al. [6] developed an on-line kernel change point detection model based on single class support vector machines (ν -SVMs). The authors train a single class support vector on a past set, $\mathbf{x}_{t,1} = x_{t-m_1}, ..., x_{t-1}$ of size m_1 and train another single class support vector on a future set $\mathbf{x}_{t,2} = x_t, ..., x_{t+m_2-1}$ of size m_2 . A ratio is then computed between the two sets that acts as the dissimilarity measure in Hilbert space. If the points are sufficiently dissimilar over some predetermined threshold, η , then a change point is assigned to the time spitting the two sets of data. Desobry argues that a dissimilarity measure between kernel projection of points in a Hilbert space should estimate the density supports rather than estimate the probability distributions of each set of points.

In 2007, Harchoui and Cappe [8] approached the off-line change point problem with a fixed number of change points by using kernel change point detection. This was further extended to an unknown number of change points in 2012 by Arlot et al. [2]. Finally, Garreau and Arlot extended this in line of research kernel change points in the off-line setting of detecting change points. Fundamentally, their method is the kernel version of the following least squares optimization problem:

$$J(\tau, \mathbf{y}) = \frac{1}{n} \sum_{k=1}^{K} (\tau) \sum_{k=1} (Y_i - (Y_k)^2 + \beta \operatorname{pen}(\tau)$$
(4)

The benefits of this off-line kernel change point detection is that it operates on any kind of data for which a kernel that properly reproduces a Hilbert space can be applied. For example, it can be applied to image data, histogram data, as well as d-dimensional vectors in \mathbb{R}^d . Garreau shows their KCP procedure outputs an off-line segmentation near optimal with high probability. Lastly, the authors recommend choosing the kernel based on best possible signal to noise ratio that the distribution gives based on Δ^2/M^2 . Therefore, some prior knowledge or training set is necessary for calibrating the kernel.

In the on-line setting, several methods use kernel embeddings with a two-sample hypothesis test. This is done in a similar vein to the classic CUSUM and Shewart control charts. They all make use of the maximum mean discrepancy (MMD) test statistic for a two-sample kernel hypothesis test. The two-sample kernel test statistic is defined in [7] as:

$$\widehat{\text{MMD}}(P,Q) = \left\| \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) - \frac{1}{m} \sum_{i=1}^{m} \phi(y_i) \right\|_{\mathcal{H}}^{2}$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_i, x_j) + \frac{1}{m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} k(y_i, y_j) - \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} k(x_i, y_j)$$

Where the null hypothesis is that both samples stem from the same distribution, (i.e. P = Q) and the alternative hypothesis is that they are not drawn from the same distribution such that $P \neq Q$.

In [11], the authors use the MMD hypothesis test by using a windowed approach where a fixed size of past data is compared with a fixed size of new data. They define a B-test statistic for two-sample testing for rejecting null hypothesis of first equation. The B-test statistic is a recently developed alternative to the MMD that is more efficient; it involves taking an average of the MMD over a partitioning of the data into N blocks.

Finally, in a recent, preprint paper, a kernel CUSUM algorithm is proposed, where the classic CUSUM algorithm is adapted using the MMD statistic for on-line detection. While this non-parametric approach can detect any change in the distribution of a sequence, it does struggle with more complicated distributional changes such as higher moments changes in a single dimension.

1.5 Our Contributions

Lay out the contributions of this work.

Chapter 2

Chapter 2

- 2.1 Chapter 2 Section
- 2.1.1 Chapter 2 Subsection

Subsection Test

Bibliography

- [1] Samaneh Aminikhanghahi and Diane J Cook. A survey of methods for time series change point detection. *Knowledge and information systems*, 51(2):339–367, 2017.
- [2] Sylvain Arlot, Alain Celisse, and Zaid Harchaoui. Kernel change-point detection. arXiv preprint arXiv:1202.3878, 6, 2012.
- [3] Marcel Bosc, Fabrice Heitz, Jean-Paul Armspach, Izzie Namer, Daniel Gounot, and Lucien Rumbach. Automatic change detection in multimodal serial mri: application to multiple sclerosis lesion evolution. *NeuroImage*, 20(2):643–656, 2003.
- [4] E Brodsky and Boris S Darkhovsky. *Nonparametric methods in change point problems*, volume 243. Springer Science & Business Media, 2013.
- [5] Jie Chen and Arjun K Gupta. Parametric statistical change point analysis: with applications to genetics, medicine, and finance. Springer Science & Business Media, 2011.
- [6] Frédéric Desobry, Manuel Davy, and Christian Doncarli. An online kernel change detection algorithm. *IEEE Trans. Signal Processing*, 53(8-2):2961–2974, 2005.
- [7] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. *Journal of Machine Learning Research*, 13(Mar):723-773, 2012.
- [8] Zaid Harchaoui and Olivier Cappé. Retrospective mutiple change-point estimation with kernels. In 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, pages 768–772. IEEE, 2007.

- [9] Marc Lavielle and Gilles Teyssiere. Adaptive detection of multiple change-points in asset price volatility. In *Long memory in economics*, pages 129–156. Springer, 2007.
- [10] Tze-San Lee. Change-point problems: bibliography and review. *Journal of Statistical Theory and Practice*, 4(4):643–662, 2010.
- [11] Shuang Li, Yao Xie, Hanjun Dai, and Le Song. M-statistic for kernel changepoint detection. In Advances in Neural Information Processing Systems, pages 3366–3374, 2015.
- [12] Rakesh Malladi, Giridhar P Kalamangalam, and Behnaam Aazhang. Online bayesian change point detection algorithms for segmentation of epileptic activity. In 2013 Asilomar Conference on Signals, Systems and Computers, pages 1833– 1837. IEEE, 2013.
- [13] Yue S Niu, Ning Hao, Heping Zhang, et al. Multiple change-point detection: A selective overview. *Statistical Science*, 31(4):611–623, 2016.
- [14] Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100-115, 1954.
- [15] Andrey Pepelyshev and Aleksey S Polunchenko. Real-time financial surveillance via quickest change-point detection methods. arXiv preprint arXiv:1509.01570, 2015.
- [16] Walter Andrew Shewhart. Economic control of quality of manufactured product. ASQ Quality Press, 1931.
- [17] M Staudacher, S Telser, A Amann, H Hinterhuber, and M Ritsch-Marte. A new method for change-point detection developed for on-line analysis of the heart beat variability during sleep. *Physica A: Statistical Mechanics and its Applications*, 349(3-4):582–596, 2005.
- [18] Alexander Tartakovsky, Igor Nikiforov, and Michele Basseville. Sequential analysis: Hypothesis testing and changepoint detection. Chapman and Hall/CRC, 2014.

- [19] Charles Truong, Laurent Oudre, and Nicolas Vayatis. A review of change point detection methods. arXiv preprint arXiv:1801.00718, 2018.
- [20] Ping Yang, Guy Dumont, and John Mark Ansermino. Adaptive change detection in heart rate trend monitoring in anesthetized children. *IEEE transactions on biomedical engineering*, 53(11):2211–2219, 2006.