Homework 2

Coverage: Chapter 4 and 5

Due date: 5th November 2024

Problem 1

Find v_x in the below circuit:

Figure 1: Circuit for Problem 1

Use source transformation to find i_x in the circuit

Figure 2: Circuit for Problem 2

Find the Thevenin equivalent of a-b

$$\frac{2000}{2000} = \frac{2000}{2000} = \frac{2000}{2000$$

Find the maximum power transferred to resistor R

Find v_o and i_o in the circuit

Figure 5: Circuit for Problem 5

$$\frac{1-V_1}{\sqrt{01}} = \frac{V_1}{\sqrt{0}}$$

$$\frac{V_1}{\sqrt{01}} + \frac{V_1-V_0}{\sqrt{00}} = 0$$

$$\frac{V_1-0.9V}{\sqrt{00}}$$

$$\frac{V_0-21.7V}{\sqrt{00}}$$

$$\frac{V_0-V_1}{\sqrt{00}}$$

$$= 2.88 \times 10^{\frac{1}{4}} A$$

Find voltage gain v_o/v_i of the circuit

Figure 6: Circuit for Problem 6

$$\frac{V_{1}-V_{x}}{P_{1}} = \frac{V_{x}}{P_{2}}$$

$$\frac{V_{x}-V_{0}}{P_{1}} + \frac{V_{x}-V_{0}}{P_{1}+P_{2}} = 0$$

$$\frac{V_{x}}{P_{1}} + \frac{V_{x}-V_{0}}{P_{1}+P_{2}} = 0$$

$$\frac{V_{x}}{P_{x}+P_{x}} = 0$$