교육 제목	데이터 기반 인공지능 시스템 엔지니어 양성 과정_ 머신러닝
교육 일시	2021년 10월 14일
교육 장소	YGL C-6 학과장 & 자택(디스코드 이용한 온라인)
교육 내용	
	지난 시간 Review & 선형회귀 선형회귀(Linear regression) 1. 최소제곱추정량(OLS : Ordinary least square estimation) Linear model, $\hat{y}(x_i) = \hat{\theta}_0 + \hat{\theta}_1 x_i$ 2. 손실함수(Loss function, J) $J(\theta) = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - \hat{\theta}_0 - \hat{\theta}_1 x)^2 = \sum_{i=1}^n e_i^2 - \hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_i$ - Sum of Squares of the Errors (SSE) = $\sum_i^n e_i^2$
오전	் Goal is to solve for $\hat{\theta}_0$ and $\hat{\theta}_1$ to minimize the objective function. $\hat{\theta}_o, \hat{\theta}_1 = argmin_{\theta_0,\theta_1} \sum_i^n e_i^2 = argmin_{\theta_0,\theta_1} J(\theta)$ 기계학습(Machine Learning ML) 1. 기계학습의 분류

2. Training set and test set

- · ML 모델의 성능평가를 위해서 자료를 분할
- Training set: 모델의 알고리즘 learning, 모델에 사용될 feature들을 결정, 초매개변수 조절 (약 전체 자료수의 70% 로 설정)
 - Training set: 모델의 알고리즘 learning
 - **Validation set**: 모델에 사용될 feature들을 결정, 초매개변수 조절, 과적합 (Overfitting) 방지
- · Test set: 최종 선택된 모델의 성능평가 (약 전체 자료수의 30% 로 설정), 자료의 수가 적을 경우 생략 가능

3. ML 모델의 치우침(Bias)과 분산(variance)

예측값들과 정답이 대체로 멀리 떨어져 있으면 결과의 편향(bias)이 높다고 말하고, 예측값들이 자기들끼리 대체로 멀리 흩어져있으면 결과의 분산(variance)이 높다고 말합니다.

Total Error가 최소화 되는 지점을 찾아 초매개변수를 정해야 함

4. 기계학습 모델 평가 : k-fold 교차검증(k-fold cross validation(CV))

- · k-fold 교차 검증 (일명 k-fold CV)은 훈련 데이터를 동일한 크기의 k 그룹 (k-fold)으로 무작위로 나누는 리샘플링 방 병
- · k-fold CV 추정치는 k 테스트 오류를 평균화하여 계산.

Figure 2.4: Illustration of the k-fold cross validation process.

- · Bootstrapping 샘플은 복원추출을 이용한 데이터의 무작위 샘플.
- · Bootstrapping은 선택한 샘플을 기반으로 모델을 구축하고 OOB (Out-of-Bag) 샘플을 이용하여 모델을 평가

- 6. 초매개변수 조절(Hyperparameter tuning)
 - 초매개변수는 학습 과정을 제어하는 데 사용되는 매개 변수를 의미
 - 초매개변수는 모델 학습과정이 아닌 모델 개발자에 의해서 지정됨
- 7. KNN (K-nearest neighbors classification)
 - 지도학습으로 분류나 회귀에 사용되는 비모수적 방법
 - 파라메터 학습을 위한 훈련과정이 없으나 훈련 집합은 필요
 - 각 데이터 간 거리를 계산하기 위한 거리 척도 필요
 - 초매개변수 k를 성정해야 함
 - 거리에 대한 가중치 고려
- 8. Feature 표준화(Standardization)
 - 각 feature의 측정 단위에 대한 보정 : 가격과 평수 비교를 위한 보정
 - Centering and scaling을 통해서 평균이 0, 표준편차 1이 되도록 변환
- 9. 결측치 처리
 - 결측치 종류 : 완전무작위(단순 결측), 무작위 결측(일부가 답을 안함), 비무작위 결측치(특정 부류에 의해 결측 발생)
 - o 결측치 대체 : Estimated statistic(Mean, Median, Mode, Regression...), K-nearest neighbor, Tree-based
- 10. 중요하지 않은 Feature 제거(Filtering)
- 11. 제로분산 Feature(Zero variance Features)
- 12. 범주형 데이터 (Categorical Feature) Engineering
 - o 재범주화(Lumping)
 - One-hot & dummy encoding
 - Label encoding
 - Replacing with the mean proportion
- 13. 차원축소(Dimension reduction) : 여러개의 feature 중 불요한 것을 제거
- 14. 모델평가 지표 (Model evaluation metrics)
 - 회귀분석모델
 - · MSE (Mean squared error) = $rac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$
 - RMSE (Root mean squared error)= $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$
 - ' MAE (Mean absolute error)= $rac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$
 - 분류 모델 (Classification models)

오후

- · Misclassification
- · Mean per class error
- · MSE
- · Cross entropy
- · Gini Index

o Confusion matrix(혼동행렬, 분류결과표

o ROC (Receiver Operating Characteristic curve)와 AUC(Area under the curve)

