Isomorphism of $\mathfrak{so}(3)$ and \mathbb{R}^3

Oftentimes, we claim that $\mathbb{R}^3 \cong \mathfrak{so}(3)$, and we proceed to do all our math in \mathbb{R}^3 . This document seeks to solidify that claim.

Lie Algebras

A lie algebra is a vector space \mathfrak{g} endowed with a lie bracket $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$ satisfying

- 1. Bilinearity: $[\alpha x + \beta y, z] = \alpha[x, z] + \beta[y, z]$
- 2. Alternativity: [x, x] = 0
- 3. Jacobi Identity: [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

For $x, y, z \in \mathfrak{g}$, $\alpha, \beta \in \mathbb{R}$.

Two examples of lie algebras are $\mathfrak{so}(3)$ and \mathbb{R}^3 .

The Lie Algebra \mathbb{R}^3

It is well known that \mathbb{R}^3 forms a vector space over the real numbers. We claim that when we endow this vector space with the cross product $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$, it becomes a lie algebra.

Proposition 1. \mathbb{R}^3 endowed with the cross product $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ is a lie algebra

Proof. Let $x, y, z \in \mathbb{R}^3$ and $\alpha, \beta \in \mathbb{R}$. Using properties of the cross product, we can show that the properties of the lie bracket hold.

- 1. Bilinearity: $(\alpha x + \beta y) \times z = (\alpha x) \times z + (\beta y) \times z = \alpha (x \times z) + \beta (y \times z)$
- 2. Alternativity: $x \times x = 0$
- 3. Jacobi Identity: $x \times (y \times z) + y \times (z \times x) + z \times (x \times y) = \langle x, z \rangle y \langle x, y \rangle z + \langle y, x \rangle z \langle y, z \rangle x + \langle z, y \rangle x \langle z, x \rangle y = 0$

The Lie Algebra $\mathfrak{gl}(n)$

The set $\mathfrak{gl}(n)$ consisting of $n \times n$ matrices can be shown to be a vector space over the real numbers. We will endow this vector space with the operation [X,Y] = XY - YX, where XY denotes matrix multiplication between $X,Y \in \mathfrak{gl}(n)$. This operation is commonly called the commutator.

Proposition 2. $\mathfrak{gl}(n)$ endowed with the commutator $[\cdot,\cdot]:\mathfrak{gl}(n)\times\mathfrak{gl}(n)\to\mathfrak{gl}(n)$ is a lie algebra.

Proof. Let $X,Y,Z\in\mathfrak{gl}(n)$ and $\alpha,\beta\in\mathbb{R}$. Using the properites of matrix multiplication, we can show that the properties of the lie bracket hold.

- 1. Bilinearity: $[\alpha X + \beta Y, Z] = (\alpha X + \beta Y)Z Z(\alpha X + \beta Y) = \alpha XZ + \beta YZ \alpha ZX \beta ZY = \alpha (XZ ZX) + \beta (YZ ZY) = \alpha [X, Z] + \beta [Y, Z]$
- 2. Alternativity: [X, X] = XX XX = 0
- 3. Jacobi Identity: [X,[Y,Z]]+[Z,[X,Y]+[Y,[Z,X]]=[X,YZ-ZY]+[Z,XY-YX]+[Y,ZX-XZ]=XYZ-XZY-YZX+ZYX+ZXY-ZYX-ZYX-XYZ+YXZ+YZX-YXZ-ZXY+XZY=0

At this point we note that the set of skew symmetric matrices are a subspace of $\mathfrak{gl}(n)$ and specifically we have that when n=3 the set of skew-symmetric matrices forms a subspace of $\mathfrak{gl}(3)$. We call this space of 3×3 skew-symmetric matrices $\mathfrak{so}(3)$. Although, $\mathfrak{so}(3)$ is a subspace of $\mathfrak{gl}(3)$, it remains to be shown that it is a subalgebra. To do this we must show that $\mathfrak{so}(3)$ is closed under the commutator.

Proposition 3. $\mathfrak{so}(3)$ is a subalgebra of $\mathfrak{gl}(3)$ and therefore is a lie algebra.

Proof. Let $X, Y \in \mathfrak{so}(3)$. Thus we have $X^T = -X$ and $Y^T = -Y$. Thus we have

$$[X,Y] = XY - YX = (-X^T)(-Y^T) - (-Y^T)(-X^T) = (YX)^T - (XY)^T = (YX - XY)^T = -(XY - YX)^T = -[X,Y]^T = -[$$

Thus $[X,Y] \in \mathfrak{so}(3)$, and $\mathfrak{so}(3)$ is a subalgebra of $\mathfrak{gl}(3)$.

Lie Algebra Isomorphisms

At this point we will explore transformations between lie algebras. As in most fields of abstract algebra, we can define homomorphisms and isomorphisms of lie algebras.

Homomorphisms of Lie Algebras

A lie algebra homomorphism is a mapping $\varphi: \mathfrak{g}_1 \to \mathfrak{g}_2$ such that

- 1. φ is a linear map, $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$.
- 2. $\varphi([x,y]_{\mathfrak{g}_1}) = [\varphi(x),\varphi(y)]_{\mathfrak{g}_2}$

Isomorphisms of Lie Algebras

A lie algebra isomorphism is a mapping $\varphi : \mathfrak{g}_1 \to \mathfrak{g}_2$ such that

- 1. φ is a lie algebra homomorhpism
- 2. φ is bijective

Isomorphism from \mathbb{R}^3 to $\mathfrak{so}(3)$

We define the following mapping from $\wedge : \mathbb{R}^3 \to \mathfrak{so}(3)$, such that

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}^{\wedge} = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

We claim that is mapping is a lie algebra isomorphism

Proposition 4. $\wedge : \mathbb{R}^3 \to \mathfrak{so}(3)$ as defined above is a lie algebra isomorphism.

Proof. It is straight-forward to show that \wedge is a bijective mapping, so we will focus on showing that \wedge is a lie algebra homomorphism. Let $x_1, x_2 \in \mathbb{R}^3$ and $\alpha, \beta \in \mathbb{R}$. We have that

1.

$$(\alpha x_1 + \beta x_2)^{\wedge} = \begin{bmatrix} 0 & -\alpha z_1 - \beta z_2 & \alpha y_1 + \beta y_2 \\ \alpha z_1 + \beta z_2 & 0 & -\alpha x_1 - \beta x_2 \\ -\alpha y_1 - \beta y_2 & \alpha x_1 + \beta x_2 & 0 \end{bmatrix}$$
$$= \alpha \begin{bmatrix} 0 & -z_1 & y_1 \\ z_1 & 0 & -x_1 \\ -y_1 & x_1 & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & -z_2 & y_2 \\ z_2 & 0 & -x_2 \\ -y_2 & x_2 & 0 \end{bmatrix}$$
$$= \alpha x_1^{\wedge} + \beta x_2^{\wedge}$$

2.

$$(x_1 \times x_2)^{\wedge} = \begin{bmatrix} -z_1 y_2 + y_1 z_2 \\ z_1 x_2 - x_1 z_2 \\ -y_1 x_2 + x_1 y_2 \end{bmatrix}^{\wedge} = \begin{bmatrix} 0 & y_1 x_2 - x_1 y_2 & z_1 x_2 - x_1 z_2 \\ -y_1 x_2 + x_1 y_2 & 0 & z_1 y_2 - y_1 z_2 \end{bmatrix}$$

$$= \begin{bmatrix} -z_1 z_2 - y_1 y_2 & y_1 x_2 & z_1 x_2 \\ x_1 y_2 & -z_1 z_2 - x_1 x_2 & z_1 y_2 \\ x_1 z_2 & y_1 z_2 & -y_1 y_2 - x_1 x_2 \end{bmatrix} - \begin{bmatrix} -z_1 z_2 - y_1 y_2 & x_1 y_2 & x_1 z_2 \\ y_1 x_2 & -z_1 z_2 - x_1 x_2 & y_1 z_2 \\ z_1 x_2 & z_1 y_2 & -y_1 y_2 - x_1 x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -z_1 & y_1 \\ z_1 & 0 & -x_1 \\ -y_1 & x_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -z_2 & y_2 \\ z_2 & 0 & -x_2 \\ -y_2 & x_2 & 0 \end{bmatrix} - \begin{bmatrix} 0 & -z_2 & y_2 \\ z_2 & 0 & -x_2 \\ -y_2 & x_2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -z_1 & y_1 \\ z_1 & 0 & -x_1 \\ -y_1 & x_1 & 0 \end{bmatrix}$$

$$= [x_1^{\wedge}, x_2^{\wedge}]$$

At this moment we note that there is an inverse transformation, given by

$$\begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}^{\vee} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

This implies that in every sense $\mathfrak{so}(3) \cong \mathbb{R}^3$, because \wedge and \vee preserve all necessary properties of the lie algebra.

2