Alexander Golovnev

Outline

Antivirus System

Vertex Covers

König's Theorem

9 edges, max deg is 3

9 edges, max deg is 3 No triple of vertices of deg 3 covers all edges

9 edges, Thus, need at max deg is 3 least 4 vertices No triple of vertices of deg 3 covers all edges

Outline

Antivirus System

Vertex Covers

König's Theorem

 A Vertex Cover of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.

- A Vertex Cover of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
- A Minimal Vertex Cover is a vertex cover which does not contain other vertex covers.

- A Vertex Cover of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
- A Minimal Vertex Cover is a vertex cover which does not contain other vertex covers.
- A Minimum Vertex Cover is a vertex cover of the smallest size.

- A Vertex Cover of a graph G is a set of vertices C such that every edge of G is connected to some vertex in C.
- A Minimal Vertex Cover is a vertex cover which does not contain other vertex covers.
- A Minimum Vertex Cover is a vertex cover of the smallest size.
- The Size of a Minimum Vertex Cover is denoted by $\beta(G)$.

A Vertex Cover

A Vertex Cover

Not a Minimal VC

A Vertex Cover

An Independent Set

Vertex Covers and IS's

Fact

A set of vertices is a Vertex Cover if and only if its complement is an Independent Set

Vertex Covers and IS's

Fact

A set of vertices is a Vertex Cover if and only if its complement is an Independent Set

Corollary

For every graph G on n vertices:

$$\beta(G) + \alpha(G) = n$$
.

Outline

Antivirus System

Vertex Covers

König's Theorem

König's Theorem

Fact

The vertices of any Maximal Matching form a (not necessarily minimal) Vertex Cover.

König's Theorem

Fact

The vertices of any Maximal Matching form a (not necessarily minimal) Vertex Cover.

Indeed, if an edge (u, v) is not covered by a matching, then it can be added to it (contradicts its maximality).

König's Theorem

Fact

The vertices of any Maximal Matching form a (not necessarily minimal) Vertex Cover.

Indeed, if an edge (u, v) is not covered by a matching, then it can be added to it (contradicts its maximality).

Theorem (König, 1931)

In a bipartite graph, the number of edges in a Maximum Matching equals the number of vertices in a Minimum Vertex Cover.

Theorem (König, 1931)

In a bipartite graph $G = ((L \cup R), E)$, the number of edges in a Maximum Matching equals the number of vertices in a Minimum Vertex Cover.

Theorem (König, 1931)

In a bipartite graph $G = ((L \cup R), E)$, the number of edges in a Maximum Matching equals the number of vertices in a Minimum Vertex Cover.

Proof:

 A VC must contain at least 1 vertex from each edge of a Matching

Theorem (König, 1931)

In a bipartite graph $G = ((L \cup R), E)$, the number of edges in a Maximum Matching equals the number of vertices in a Minimum Vertex Cover.

Proof:

 A VC must contain at least 1 vertex from each edge of a Matching

Theorem (König, 1931)

In a bipartite graph $G = ((L \cup R), E)$, the number of edges in a Maximum Matching equals the number of vertices in a Minimum Vertex Cover.

Proof:

- A VC must contain at least 1 vertex from each edge of a Matching
- Thus, |Min VC| ≥ |Max Matching|

Theorem (König, 1931)

In a bipartite graph $G = ((L \cup R), E)$, the number of edges in a Maximum Matching equals the number of vertices in a Minimum Vertex Cover.

Proof:

- A VC must contain at least 1 vertex from each edge of a Matching
- Thus, |Min VC| ≥ |Max Matching|
- We'll show that $|Min VC| \leq |Max Matching|$

• A Min VC C. $L_C = L \cap C$, $R_C = R \cap C$

- A Min VC C. $L_C = L \cap C$, $R_C = R \cap C$
- Let G_1 be the subgraph on $(L \setminus L_C) \cup R_C$

A Min VC C

- A Min VC C. $L_C = L \cap C$, $R_C = R \cap C$
- Let G_1 be the subgraph on $(L \setminus L_C) \cup R_C$

- A Min VC C. $L_C = L \cap C$, $R_C = R \cap C$
- Let G_1 be the subgraph on $(L \setminus L_C) \cup R_C$
- $\forall S \subseteq R_{C_i} |N(S)| \ge |S|$ (otherwise C is not min)

- A Min VC C. $L_C = L \cap C$, $R_C = R \cap C$
- Let G_1 be the subgraph on $(L \setminus L_C) \cup R_C$
- $\forall S \subseteq R_{C_i} |N(S)| \ge |S|$ (otherwise C is not min)

- A Min VC C. $L_C = L \cap C$, $R_C = R \cap C$
- Let G_1 be the subgraph on $(L \setminus L_C) \cup R_C$
- $\forall S \subseteq R_{C_i} |N(S)| \ge |S|$ (otherwise C is not min)
- By Hall's Theorem, G_1 has a matching of size $|R_C|$

- A Min VC C. $L_C = L \cap C$, $R_C = R \cap C$
- Let G_1 be the subgraph on $(L \setminus L_C) \cup R_C$
- $\forall S \subseteq R_{C_i} |N(S)| \ge |S|$ (otherwise C is not min)
- By Hall's Theorem, G_1 has a matching of size $|R_C|$
- Similarly, G_2 the subgraph on $L_C \cup (R \setminus R_C)$ has a matching of size $|L_C|$

- A Min VC C. $L_C = L \cap C$, $R_C = R \cap C$
- Let G_1 be the subgraph on $(L \setminus L_C) \cup R_C$
- $\forall S \subseteq R_{C_i} |N(S)| \ge |S|$ (otherwise C is not min)
- By Hall's Theorem, G_1 has a matching of size $|R_C|$
- Similarly, G_2 the subgraph on $L_C \cup (R \setminus R_C)$ has a matching of size $|L_C|$
- Total matching size $|L_C| + |R_C| = |C|$