BACS HW3

109062710

March 17, 2021

Question 1

Here is the helper functions for $\mathrm{Q}1$

```
standardize <- function(data) {</pre>
  standardized <- (data - mean(data)) / sd(data)</pre>
  return(standardized)
}
create_density <- function(data, title) {</pre>
  mean <- mean(data)</pre>
  sd_values = c(
    mean(data) - 2 * sd(data),
    mean(data) - sd(data),
    mean(data) + sd(data),
    mean(data) + 2 * sd(data)
  ggplot(mapping = aes(data)) +
    geom_density(
      fill="#69b3a2",
      color="#e9ecef",
    geom_vline(xintercept = mean, col="black") +
    geom_vline(xintercept = sd_values, col="red") +
    ggtitle(title)
}
create_histogram <- function(data, title) {</pre>
  n = length(data)
  # Freidman-Darconis' BiUnwidth Rule
  binwidth \leftarrow (2 * IQR(data)) / n^{(1/3)}
  bins <- ceiling(max(data) - min(data)) + binwidth</pre>
  ggplot(mapping = aes(data)) +
    geom_histogram(
      fill="#69b3a2",
      color="#e9ecef",
      bins = bins,
```

```
binwidth = binwidth
) +
ggtitle(title)
}
```

A. create a normal distribution (mean = 940, sd = 190) and standardize it

```
rnorm_q1 <- rnorm(1000, mean = 940, sd = 190)
rnorm_std <- standardize(rnorm_q1)</pre>
```

i) What should we expect the mean and standard deviation of rnorm_std to be, and why?

```
## The mean of rnorm is 939.252693793615,
## and its standard deviation is 185.163250814107.

## The mean of rnorm_std is 7.58356051566711e-17,
## and its standard deviation is 1.

grid.arrange(
    rnorm_density,
    rnorm_std_density,
    ncol=1,
    nrow=2
```

Non-STD Density

)

In this case, the mean value is 0. After standardization, x_value has a range of -3 to 3. That range represents how far each instance from the mean in STD unit. This happens because standardization scales down everything to STD unit scale.

ii) What should the distribution (shape) of rnorm_std look like, and why?

```
grid.arrange(
  rnorm_hist,
  rnorm_density,
  rnorm_std_hist,
  rnorm_std_density,
  ncol=2,
  nrow=2
)
```


Basically, rnorm_std and rnorm plots should look entirely the same, but they are not. Let's take the graph above as a reference.

However, there is a worth mentioning here:

- 1. Non-standardized and standardized histograms look almost the same, but there is a slight difference if you take a close look.
- 2. The x_values range becomes smaller in standardized density plot because standardization scales down everything to STD unit scale.

iii) What do we generally call distributions that are normal and standardized?

It's called **bell-shaped curved** distribution.

B. Create a standardized version of minday from the earlier question (let's call it minday_std)

```
minday_std <- standardize(minday)</pre>
```

i) What should we expect the mean and standard deviation of minday_std to be, and why?

```
## The mean of minday_std -4.25589034500073e-17, while its SD is 1.
```

We expect the mean and the STD values to be really small which are within -2.5 to 2.5 range after standardization because standardization scales down everything to STD unit scale. In this case, mean becomes zero.

ii) What should the distribution of minday_std look like compared to minday, and why?

Before standardization,

```
grid.arrange(
  minday_hist,
  minday_density,
  ncol=1,
  nrow=2
)
```

Minute (of the day) of first ever booking

Minute (of the day) of first ever booking

After standardization,

```
grid.arrange(
  minday_std_hist,
  minday_std_density,
  ncol=1,
  nrow=2
)
```

Minute (of the day) of first ever booking

Minute (of the day) of first ever booking

The situation is the similar to the section a, part ii. In the non-standardized data set, the STD lines are far away when we expect them to be. Besides, we have a huge range of x_value which is from 0 to 1500.

However, in the standardized data set, the mean line is exactly in between the STD lines. In addition, we have a smaller range of x_value which is from -4 to 4.

Question 2

- a) Simulate 100 samples (each of size 100), from a normally distributed population of 10,000:
- i) How many samples do we expect to NOT include the population mean in its 95% CI?

5.55

Out of 100 simulations, the answer can be rounded down to 5 samples.

ii) How many samples do we expect to NOT include the population mean in their 99% CI?## 1.14

Out of 100 simulations, the answer can be rounded down to 1 sample.

- b) Rerun the previous simulation with larger samples (sample_size=300):
- i) Now that the size of each sample has increased, do we expect their 95% and 99% CI to become wider or narrower than before?

Sample Size = 100

Sample Size = 300

As we can see from those two plots above, the 95% and 99% CI become narrower when the sample size

increases.

ii) This time, how many samples (out of the 100) would we expect to NOT include the population mean in its 95% CI?

4.52

Out of 100 simulations, the answer can be rounded down to 4 samples.

c) If we ran the above two examples (a and b) using a uniformly distributed population (specify distr_func=runif for visualize_sample_ci), how do you expect your answers to (a) and (b) to change, and why?

```
num_sample = 100 & distr_func = runif
```

- i) How many samples do we expect to NOT include the population mean in their 95% CI?
- ## 5.062
 - ii) How many samples do we expect to NOT include the population mean in their 99% CI?

1.116

```
num_sample = 300 & distr_func = runif
```

- i) How many samples do we expect to NOT include the population mean in their 95% CI?
- ## 4.724
 - ii) How many samples do we expect to NOT include the population mean in their 99% CI?

0.967

When we look at those two configurations above, we can see that the changes in mean and standard deviation values both in rnorm and runif follow the same pattern.

Sample Size = 100

Sample Size = 300

ever,we can see that the the 95% and 99% CI are concentrated in 0.35 - 0.65 range. Conversely, they are concentrated in 18.5 - 21.5 range. Clearly, the x_value range has been reduced in distr_func = runif.

Question 3

a) What is the "average" booking time for new members making their first restaurant booking?

(use minday, which is the absolute minute of the day from 0-1440)

i) Use traditional statistical methods to estimate the population mean of minday, its standard error, and the 95% confidence interval (CI) of the sampling means

```
mean <- mean(minday)
sd_error <- sd(minday) / ( length(minday)^0.5 )
ci95_low <- mean - 1.96 * sd_error
ci95_high <- mean + 1.96 * sd_error</pre>
The mean value is
```

942.49635

The standard deviation error is

0.599767314943967

The 95% CI is

941.32080606271

The 99% CI is

943.67189393729

- ii) Bootstrap to produce 2000 new samples from the original sample
- iii) Visualize the means of the 2000 bootstrapped samples
- iv) Estimate the 95% CI of the bootstrapped means.