CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 18 MARZO 2014

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Fornire le definizioni di dominio di integrità e di campo. Se possibile, fornire esempi di:

- (i) un dominio di integrità che non sia un campo;
- (ii) un campo che non sia un dominio di integrità;
- (iii) un anello che non sia un dominio di integrità.

Esercizio 2. Posto $S = \{n \in \mathbb{N} \mid n \leq 10\}$, per ogni parte X di S si ponga $\hat{X} = \{10 - x \mid x \in X\}$ e si consideri l'applicazione $f \colon X \in \mathcal{P}(S) \mapsto \hat{X} \in \mathcal{P}(S)$.

- (i) Determinare $f(\{1\}), f(\{5,7\}) \in f(S);$
- (ii) f è iniettiva?
- (iii) f è suriettiva?
- (iv) Calcolare l'applicazione composta $f \circ f$.

Detto \mathcal{R} il nucleo di equivalenza di f, si descrivano gli elementi di $\mathcal{P}(S)/\mathcal{R}$ e si calcoli $|\mathcal{P}(S)/\mathcal{R}|$.

Esercizio 3. Vero o falso? Tutte le frasi sono riferite ad un insieme ordinato (non vuoto) (X, \leq) .

- (i) Se (X, \leq) è un reticolo, certamente esistono inf X e sup X.
- (ii) Se esistono inf X e sup X, allora certamente (X, <) è un reticolo.
- (iii) Se (X, <) è un reticolo finito, certamente esistono inf X e sup X.
- (iv) Se (X, \leq) è limitato e totalmente ordinato, e se |X| > 2, allora X non può essere complementato.
- (v) Se (X, \leq) è totalmente ordinato, allora sicuramente X è distributivo.
- (vi) Se (X, <) è un reticolo finito e |X| è una potenza di 2, allora X è necessariamente booleano.
- (vii) Se (X, \leq) è un reticolo finito booleano, allora |X| è necessariamente una potenza di 2.

Esercizio 4. Si definiscano, nel prodotto cartesiano $R := \mathbb{Z}_6 \times \mathbb{Z}_{19}$ due operazioni binarie \oplus e * ponendo, per ogni $a, c \in \mathbb{Z}_6$ e $b, d \in \mathbb{Z}_{19}$, $(a, b) \oplus (c, d) = (a + c, b + d)$ e (a, b) * (c, d) = (ac, bd). Verificare che $(R, \oplus, *)$ è un anello commutativo unitario.

- (i) Determinare gli invertibili ed in divisori dello zero in $(R, \oplus, *)$, indicandone anche il numero. Verificare che tutti gli elementi non nulli e non invertibili sono divisori dello zero.
- (ii) Determinare tutti e soli gli $(x,y) \in R$ tali che $(\bar{4},\bar{8})*(x,y)=(\bar{8},\bar{4})$.

Esercizio 5. Sia M l'insieme dei polinomi monici di grado 3 in $\mathbb{Z}_3[x]$.

- (i) Calcolare |M|.
- Siano poi $A = \{ f \in M \mid \overline{1} \text{ è radice di } f \} \text{ e } B = \{ f \in M \mid \overline{1} \text{ e } \overline{2} \text{ sono radici di } f \}.$
 - (ii) Caratterizzare gli elementi di A e calcolare |A|.
 - (iii) Caratterizzare gli elementi di B e calcolare |B|.
 - (iv) È vero che ogni elemento di A è prodotto di tre polinomi irriducibili?
 - (v) È vero che ogni elemento di B è prodotto di tre polinomi irriducibili?