PK №2

Рыжкова Юлия Николаевна ИУ5-61Б

Вариант 14

Задание. Для заданного набора данных (вариант 14) постройте модели регрессии. Для построения моделей используйте методы Линейная регрессия и Случайный лес. Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Данные: https://www.kaggle.com/noriuk/us-education-datasets-unification-project (файл states_all.csv)

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import math
        import seaborn as sns
        import scipy
        import plotly
        import missingno as msno
        from numpy import nan
        from sklearn.impute import SimpleImputer, MissingIndicator
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean absolute error, mean squared error, median
        from sklearn.linear model import LinearRegression
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.compose import ColumnTransformer
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.preprocessing import LabelEncoder
        import warnings
        warnings.filterwarnings('ignore')
```

Загрузим датасет и выведем информацию о нем.

```
In [2]: dataset = pd.read_csv('./Datasets/states_all.csv')
In [3]: dataset.head(5)
```

Out[3]:		PRIMARY_KEY	STATE	YEAR	ENROLL	TOTAL_REVENUE	FEDERAL_REVENUE	S1
	0	1992_ALABAMA	ALABAMA	1992	NaN	2678885.0	304177.0	
	1	1992_ALASKA	ALASKA	1992	NaN	1049591.0	106780.0	
	2	1992_ARIZONA	ARIZONA	1992	NaN	3258079.0	297888.0	
	3	1992_ARKANSAS	ARKANSAS	1992	NaN	1711959.0	178571.0	
	4	1992_CALIFORNIA	CALIFORNIA	1992	NaN	26260025.0	2072470.0	

5 rows × 25 columns

```
In [4]: dataset.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1715 entries, 0 to 1714 Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype		
0	PRIMARY_KEY	1715 non-null	object		
	STATE	1715 non-null	object		
2	YEAR	1715 non-null	int64		
3	ENROLL	1224 non-null	float64		
4	TOTAL_REVENUE	1275 non-null	float64		
5	FEDERAL_REVENUE	1275 non-null	float64		
6	STATE_REVENUE	1275 non-null	float64		
7	LOCAL_REVENUE	1275 non-null	float64		
8	TOTAL_EXPENDITURE	1275 non-null	float64		
9	INSTRUCTION_EXPENDITURE	1275 non-null	float64		
10	SUPPORT_SERVICES_EXPENDITURE	1275 non-null	float64		
11	OTHER_EXPENDITURE	1224 non-null	float64		
12	CAPITAL_OUTLAY_EXPENDITURE	1275 non-null	float64		
13	GRADES_PK_G	1542 non-null	float64		
14	GRADES_KG_G	1632 non-null	float64		
15	GRADES_4_G	1632 non-null	float64		
16	GRADES_8_G	1632 non-null	float64		
17	GRADES_12_G	1632 non-null	float64		
18	GRADES_1_8_G	1020 non-null	float64		
19	GRADES_9_12_G	1071 non-null	float64		
20	GRADES_ALL_G	1632 non-null	float64		
21	AVG_MATH_4_SCORE	565 non-null	float64		
22	AVG_MATH_8_SCORE	602 non-null	float64		
		650 non-null			
24	AVG_READING_8_SCORE	562 non-null	float64		
dtypes: float64(22), int64(1), object(2)					

memory usage: 335.1+ KB

Подсчитаем количество и процент пропусков по столбцам.

```
In [5]: for col in dataset.columns:
            pct_missing = np.mean(dataset[col].isnull())
            print('{}: {} - {}%'.format(col, dataset[col].isna().sum(), round(pct_mi
```

```
PRIMARY_KEY: 0 - 0.0%
STATE: 0 - 0.0%
YEAR: 0 - 0.0%
ENROLL: 491 - 28.63%
TOTAL_REVENUE: 440 - 25.66%
FEDERAL REVENUE: 440 - 25.66%
STATE REVENUE: 440 - 25.66%
LOCAL REVENUE: 440 - 25.66%
TOTAL EXPENDITURE: 440 - 25.66%
INSTRUCTION_EXPENDITURE: 440 - 25.66%
SUPPORT_SERVICES_EXPENDITURE: 440 - 25.66%
OTHER EXPENDITURE: 491 - 28.63%
CAPITAL OUTLAY EXPENDITURE: 440 - 25.66%
GRADES_PK_G: 173 - 10.09%
GRADES KG G: 83 - 4.84%
GRADES_4_G: 83 - 4.84%
GRADES_8_G: 83 - 4.84%
GRADES_12_G: 83 - 4.84%
GRADES 1 8 G: 695 - 40.52%
GRADES_9_12_G: 644 - 37.55%
GRADES_ALL_G: 83 - 4.84%
AVG MATH 4 SCORE: 1150 - 67.06%
AVG_MATH_8_SCORE: 1113 - 64.9%
AVG_READING_4_SCORE: 1065 - 62.1%
AVG_READING_8_SCORE: 1153 - 67.23%
```

Обработка пропусков.

Последние 4 столбца невозможно восстановить из-за слишком большого процента пропусков. Посмотрим на корреляционную матрицу признаков.

Out[6]: <AxesSubplot: >

Видно, что последние 4 признака не коррелируют с остальными. Так как мы не будем выбирать эти признаки а качестве целевых, их можно вырезать из датасета и не использовать для построения модели. Также удалим столбец PRIMARY_KEY, так как он является первичным ключом и не нужен для построения модели.

В строках с процентом пропусков >20 заполнение приведет к резкому снижению достоверности. Условия задачи позволяют сократить набор данных, поэтому лучшим решением будет удалить строки с пропусками.

По количеству пропусков очевидно, что в столбцах ENROLL, TOTAL_REVENUE, ... CAPITAL_OUTLAY_EXPENDITURE отсутствующие значения находятся на одних и тех же строчках, поэтому достаточно очистить один из этих столбцов.

Также почистим пропуски в паре столбцов GRADES_1_8_G и GRADES_9_12_G

```
In [8]: dataset.dropna(subset=['ENROLL'], axis=0, inplace=True)
dataset.dropna(subset=['GRADES_1_8_G', 'GRADES_9_12_G'], axis=0, inplace=Tru

In [9]: for col in dataset.columns:
    pct_missing = np.mean(dataset[col].isnull())
    if pct_missing > 0:
        print('{}: {} - {}%'.format(col, dataset[col].isna().sum(), round(pc)

GRADES_PK_G: 8 - 0.78%
```

Осталось лишь заполнить пропуски в столбце GRADES_PK_G. Посмотрим гистограмму распределения его значений.

```
In [10]: dataset['GRADES_PK_G'].plot.hist(bins=50)
```

Out[10]: <AxesSubplot: ylabel='Frequency'>

Наиболее оптимальной стратегией в данном случае является заполнение наиболее часто встречающимся значением.

```
In [11]: imputer = SimpleImputer(strategy='most_frequent', missing_values=nan)
    imputer = imputer.fit(dataset[['GRADES_PK_G']])
    dataset['GRADES_PK_G'] = imputer.transform(dataset[['GRADES_PK_G']])

In [12]: dataset.shape

Out[12]: (1020, 20)
```

Кодирование признаков и разделение выборки.

В качестве целевого признака возьмем ENROLL. Закодируем столбец STATE с названиями штатов при помощи LabelEncoder.

```
In [13]: le = LabelEncoder()
  dataset['STATE']= le.fit_transform(dataset['STATE'])

In [14]: X = dataset.drop(columns="ENROLL")
  y = dataset["ENROLL"]

In [15]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, r
```

Обучение модели линейной регрессии и оценка её качетва.

В качестве метрик возьмём:

- 1. MSE чтобы подчеркнуть большие ошибки
- 2. Median Absolute Error чтобы оценить качество модели с устойчивостью к выбросам
- 3. R2 чтобы точно и наглядно интерпретировать качество модели

```
In [16]: reg = LinearRegression().fit(X_train, y_train)
In [17]: y_pred_test_reg = reg.predict(X_test)
    y_pred_train_reg = reg.predict(X_train)
        mse_reg = mean_squared_error(y_train, y_pred_train_reg), mean_squared_error(
        mse_reg

Out[17]: (617608112.5351241, 706205103.8209462)
In [18]: med_reg = median_absolute_error(y_train, y_pred_train_reg), median_absolute_med_reg

Out[18]: (9091.4630940489, 10168.79657311365)
In [19]: r2_reg = r2_score(y_train, y_pred_train_reg), r2_score(y_test, y_pred_test_r_r2_reg
Out[19]: (0.9995102798427169, 0.9992288185054551)
```

Обучение модели случайного леса и оценка её качетва.

Метрики аналогичные.

```
In [20]: rf = RandomForestRegressor(n_estimators=5, oob_score=True, random_state=1).f
In [22]: # Out-of-bag error
rf.oob_score_, 1-rf.oob_score_
```

Сравним качество 2-ух моделей.

```
In [31]: print('-----
                            -----' MSF -----')
       print('LinearRegression: ', mse_reg)
       print('RandomForest: ', mse_rf)
                        -----')
       print('LinearRegression: ', med_reg)
       print('RandomForest: ', med_rf)
       print('----
                          ----- R2 --
       print('LinearRegression: ', r2 reg)
       print('RandomForest: ', r2_rf)
             ----- MSE -----
       LinearRegression: (617608112.5351241, 706205103.8209462)
       RandomForest: (134284743.18044087, 551655859.0731376)
       ----- MedAE -----
       LinearRegression: (9091.4630940489, 10168.79657311365)
       RandomForest: (1730.200000000116, 4664.80000000003)
          ----- R2 ------
       LinearRegression: (0.9995102798427169, 0.9992288185054551)
       RandomForest: (0.9998935215645386, 0.999397587488999)
```

Вывод.

Обе модели получились очень точными, что показывает практически единичный коэффициент детерминации.

Модель Случайного леса оказалась немного более устойчивой к выбросам в данных, что показывает разница на порядок в метрике MSE, а также в целом немного точнее модели Линейной регрессии, что также показывает метрика MedAE.

Такой высокой точности удалось добиться из-за сильной корреляции в признаках выборки, а также из-за малого объёма выборки.

In []:			
---------	--	--	--