基于WEB的计算机领域新术语的自动检测

刘知远

指导教师: 孙茂松教授

June 22, 2006

目录

- 1 目录
- 2 概述
 - 需求
 - 实验日程
 - 前人的研究
 - 若干概念
 - 算法设计
- ③ 算法实现
 - 预处理

- 即时新闻文本获取
- N元词串统计
- 候选新术语发现
- 时间序列分析
- 4 结论
 - 实验结果
 - 结论
 - 未来工作
 - 致谢

- 随着计算机技术的迅速发展,汉语需要接纳大量外来术语;
- ② 没有权威机构及时检测并给以规范的命名,导致:
 - · 蹩脚的翻译, 如menu;
 - 多种翻译并存,如Hash Table;
- ③ 因此亟需一种有效的自动检测新术语的算法。

- 随着计算机技术的迅速发展,汉语需要接纳大量外来术语;
- ② 没有权威机构及时检测并给以规范的命名,导致:
 - 蹩脚的翻译, 如menu;
 - 多种翻译并存,如Hash Table;
- ③ 因此亟需一种有效的自动检测新术语的算法。

目的

- 随着计算机技术的迅速发展,汉语需要接纳大量外来术语;
- ② 没有权威机构及时检测并给以规范的命名,导致:
 - 蹩脚的翻译,如menu;
 - 多种翻译并存,如Hash Table;
- ③ 因此亟需一种有效的自动检测新术语的算法。

- 随着计算机技术的迅速发展,汉语需要接纳大量外来术语;
- ② 没有权威机构及时检测并给以规范的命名,导致:
 - 蹩脚的翻译,如menu;
 - 多种翻译并存,如Hash Table;
- ◎ 因此亟需一种有效的自动检测新术语的算法。

● 1-4周

● 5-12周

- 13-14周
- · 技行的名工基金を出、表指令UU、LM是示关键的
- 15-16周

● 1-4周

- 调研前人的研究,设计系统架构;
- 获取通用语料库,旧术语语料库;
- 开始定期检测IT新闻网站。

② 5-12周

- 处理语料库,获取各种词语列表;
- 实现系统各模块:
- 组织各模块, 完成新术语自动检测系统。

◎ 13-14周

- 设计调试工具如坐标图、表格等GUI, 直观显示实验数据;
- 调整参数,使用调试工具比对数据,提高系统性能

④ 15-16周

撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库, 旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库、获取各种词语列表;
 - 实现系统各模块:
 - 组织各模块,完成新术语自动检测系统
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI, 直观显示实验数据;
- ④ 15-16周
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库, 获取各种词语列表;。 空和系统及增益:
 - 组织各模块、完成新术语自动检测系统
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI, 直观显示实验数据;○ 调整参数、使用调试工具比对数据、提高系统性能。
- ④ 15-16周
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库,获取各种词语列表;实现系统各模块;
 - 组织各模块, 完成新术语目动检测系统。
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI,直观显示实验数据;调整参数、使用调试工具比对数据、提高系统性能。
- ④ 15-16质
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库, 旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库, 获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块,完成新术语自动检测系统。
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI,直观显示实验数据;● 调整参数、使用调试工具比对数据、提高系统性能。
- ④ 15-16周
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库,获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块,完成新术语自动检测系统。
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI,直观显示实验数据;调整参数、使用调试工具比对数据、提高系统性能。
- ④ 15-16周
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库, 获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块, 完成新术语自动检测系统。
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI,直观显示实验数据;调整参数,使用调试工具比对数据,提高系统性能。
- ④ 15-16周
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库, 获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块,完成新术语自动检测系统。
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI,直观显示实验数据;调整参数、使用调试工具比对数据、提高系统性能。
- ④ 15-16周
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库,获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块,完成新术语自动检测系统。
- ◎ 13-14周
 - 设计调试工具如坐标图、表格等GUI, 直观显示实验数据;
 - 调整参数,使用调试工具比对数据,提高系统性能。
- ④ 15-16周
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库, 获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块,完成新术语自动检测系统。
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI, 直观显示实验数据;
 - 调整参数,使用调试工具比对数据,提高系统性能。
- ④ 15-16周

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库, 获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块,完成新术语自动检测系统。
- ③ 13-14周
 - 设计调试工具如坐标图、表格等GUI, 直观显示实验数据;
 - 调整参数,使用调试工具比对数据,提高系统性能。
- ④ 15-16周

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库, 获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块,完成新术语自动检测系统。
- ◎ 13-14周
 - 设计调试工具如坐标图、表格等GUI, 直观显示实验数据;
 - 调整参数,使用调试工具比对数据,提高系统性能。
- 15-16周
 - 撰写论文。

- 1-4周
 - 调研前人的研究,设计系统架构;
 - 获取通用语料库,旧术语语料库;
 - 开始定期检测IT新闻网站。
- ② 5-12周
 - 处理语料库,获取各种词语列表;
 - 实现系统各模块;
 - 组织各模块,完成新术语自动检测系统。
- ◎ 13-14周
 - 设计调试工具如坐标图、表格等GUI,直观显示实验数据;
 - 调整参数,使用调试工具比对数据,提高系统性能。
- 4 15-16周
 - 撰写论文。

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生
 - Linguistic approach
 - 根据句法,语义和规则实现
 - Statistical approach
 - 通过计算左信息或N元语法(N-gram)实现

4ロ > 4回 > 4 き > 4 き > り へ ら

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - Linguistic approach
 - 根据句法, 语义和规则实现
 - Statistical approach
 - 通过计算五信息或N元语法(N-gram)实现

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生成
 - Linguistic approach
 - 根据句法,语义和规则实现
 - Statistical approach
 - · 通过计算互信息或N元语法(N-gram)实现 · TF*IDF

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生成
 - Linguistic approach
 - 根据句法,语义和规则实现
 - Statistical approach
 - 通过计算互信息或N元语法(N-gram)实现 TF*IDF

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生成
 - Linguistic approach
 - 根据句法,语义和规则实现
 - Statistical approach
 - 通过计算互信息或N元语法(N-gram)实现 TF*IDF

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生成
 - Linguistic approach
 - 根据句法, 语义和规则实现
 - Statistical approach
 - 通过计算互信息或N元语法(N-gram)实现 - TF*IDF

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生成
 - Linguistic approach
 - 根据句法,语义和规则实现
 - Statistical approach
 - 通过计算互信息或N元语法(N-gram)实现 TF*IDF

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生成
 - Linguistic approach
 - 根据句法,语义和规则实现
 - Statistical approach
 - 通过计算互信息或N元语法(N-gram)实现
 - TF*IDF

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生成
 - Linguistic approach
 - 根据句法,语义和规则实现
 - Statistical approach
 - 通过计算互信息或N元语法(N-gram)实现
 - TF*IDF

- Information Extraction
- Key-phrase Extraction
- 基本方法
 - Dictionary approach
 - 人工生成
 - Linguistic approach
 - 根据句法,语义和规则实现
 - Statistical approach
 - 通过计算互信息或N元语法(N-gram)实现
 - TF*IDF

• 新术语

- 某学科中出现的新专门词语;
- 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库:
 - 用于剔除新闻文本中与IT领域无关的部分。
- 计算机领域背景语料库
 - 某时间点之前已经出现的IT术语语料库:
 - 用于剔除新闻文本中与IT领域相关,但在过去已经出现的术语。

- 新术语
 - 某学科中出现的新专门词语;
 - 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库;
 - 用于剔除新闻文本中与IT领域无关的部分。
- 计算机领域背景语料库
 - 某时间点之前已经出现的IT术语语料库;
 - 用于剔除新闻文本中与IT领域相关,但在过去已经出现的术语。

- 新术语
 - 某学科中出现的新专门词语;
 - 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库;周干剔除新闻文本中与广领域无关的部分
- 计算机领域背景语料库
 - 某时间点之前已经出现的IT术语语料库;
 - 用于剔除新闻文本中与IT领域相关,但在过去已经出现的术语。

- 新术语
 - 某学科中出现的新专门词语;
 - 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库;
 - 用于剔除新闻文本中与IT领域无关的部分。
- 计算机领域背景语料库
 - 某时间点之前已经出现的IT术语语料库;
 - 用于剔除新闻文本中与IT领域相关,但在过去已经出现的术语。

- 新术语
 - 某学科中出现的新专门词语;
 - 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库;
 - 用于剔除新闻文本中与IT领域无关的部分。
- 计算机领域背景语料库
 - 某时间点之前已经出现的IT术语语料库
 - 用于剔除新闻文本中与IT领域相关,但在过去已经出现的术语。

- 新术语
 - 某学科中出现的新专门词语;
 - 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库;
 - 用于剔除新闻文本中与IT领域无关的部分。
- 计算机领域背景语料库

- 新术语
 - 某学科中出现的新专门词语;
 - 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库;
 - 用于剔除新闻文本中与IT领域无关的部分。
- 计算机领域背景语料库
 - 某时间点之前已经出现的IT术语语料库;
 - 用于剔除新闻文本中与IT领域相关, 但在过去已经出现的术语。

- 新术语
 - 某学科中出现的新专门词语;
 - 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库;
 - 用于剔除新闻文本中与IT领域无关的部分。
- 计算机领域背景语料库
 - 某时间点之前已经出现的IT术语语料库;
 - 用于剔除新闻文本中与IT领域相关,但在过去已经出现的术语。

- 新术语
 - 某学科中出现的新专门词语;
 - 该算法将主要检测在计算机领域中新出现的,并在大众生活中流行的新术语。
- 通用语料库
 - 具有一般意义、与学科领域无关的语料库;
 - 用于剔除新闻文本中与IT领域无关的部分。
- 计算机领域背景语料库
 - 某时间点之前已经出现的IT术语语料库;
 - 用于剔除新闻文本中与IT领域相关, 但在过去已经出现的术语。

新术语特征

- ❶ 自某一时间点以来首次出现;
- ② 被广泛地应用,而非昙花一现。

- 通过语料库的比对,找到"自某一时间点"以来在计算机类 语料库中新出现的词语、即候选新术语;
- ② 通过考查候选新术语在时间上的频度曲线,找到其中"被广 泛地应用,而非昙花一现"的词语,确定为新术语。

新术语特征

- 自某一时间点以来首次出现;
- ② 被广泛地应用,而非昙花一现。

- ① 通过语料库的比对,找到"自某一时间点"以来在计算机类 语料库中新出现的词语,即候选新术语;
- ② 通过考查候选新术语在时间上的频度曲线,找到其中"被广 泛地应用,而非昙花一现"的词语,确定为新术语。

新术语特征

- 自某一时间点以来首次出现;
- ② 被广泛地应用,而非昙花一现。

- 通过语料库的比对,找到"自某一时间点"以来在计算机类 语料库中新出现的词语,即候选新术语;
- ② 通过考查候选新术语在时间上的频度曲线,找到其中"被广泛地应用,而非昙花一现"的词语,确定为新术语。

新术语特征

- 自某一时间点以来首次出现;
- ② 被广泛地应用,而非昙花一现。

- 通过语料库的比对,找到"自某一时间点"以来在计算机类 语料库中新出现的词语,即候选新术语;
- ② 通过考查候选新术语在时间上的频度曲线,找到其中"被广泛地应用,而非昙花一现"的词语,确定为新术语。

新术语特征

- 自某一时间点以来首次出现;
- ② 被广泛地应用,而非昙花一现。

- 通过语料库的比对,找到"自某一时间点"以来在计算机类 语料库中新出现的词语,即候选新术语;
- ② 通过考查候选新术语在时间上的频度曲线,找到其中"被广 泛地应用,而非昙花一现"的词语,确定为新术语。

算法设计流程图

算法设计流程图

- 该算法主要是检测在大众生活中流行的计算机领域新术语, 而非在学术论文中出现的,一般为专业人士使用的术语。
- ② 该算法只是对新术语的<mark>预警</mark>,它只是为用户提供一个可能是 新术语的词语列表,至于甄别哪些是真正的新术语,仍然需 要人工来确定。
- 只需使用相应的语料库,该算法适用于任何领域的新术语的 检测。

- 该算法主要是检测在大众生活中流行的计算机领域新术语, 而非在学术论文中出现的,一般为专业人士使用的术语。
- 该算法只是对新术语的预警,它只是为用户提供一个可能是新术语的词语列表,至于甄别哪些是真正的新术语,仍然需要人工来确定。
- 只需使用相应的语料库,该算法适用于任何领域的新术语的 检测。

- 该算法主要是检测在大众生活中流行的计算机领域新术语, 而非在学术论文中出现的,一般为专业人士使用的术语。
- ② 该算法只是对新术语的<mark>预警</mark>,它只是为用户提供一个可能是 新术语的词语列表,至于甄别哪些是真正的新术语,仍然需 要人工来确定。
- 只需使用相应的语料库,该算法适用于任何领域的新术语的 检测。

- 该算法主要是检测在大众生活中流行的计算机领域新术语, 而非在学术论文中出现的,一般为专业人士使用的术语。
- ② 该算法只是对新术语的<mark>预警</mark>,它只是为用户提供一个可能是 新术语的词语列表,至于甄别哪些是真正的新术语,仍然需 要人工来确定。
- 只需使用相应的语料库,该算法适用于任何领域的新术语的 检测。

• 主要功能

• 实现方法

· 使用Offine Explorer就取网站就搬

• 主要功能

- 取《英文世界名著1000部》作为通用语料库;
- 抓取五大英文IT网站网页数据,作为背景语料库。
- 实现方法
 - 使用Offline Explorer抓取网站数据;
 - 使用HTML Parser提取网页文本内容。

- 主要功能
 - 取《英文世界名著1000部》作为通用语料库;
 - 抓取五大英文IT网站网页数据,作为背景语料库。
- 实现方法
 - 使用Offline Explorer抓取网站数据:
 - 使用HTML Parser提取网页文本内容

- 主要功能
 - 取《英文世界名著1000部》作为通用语料库;
 - 抓取五大英文IT网站网页数据,作为背景语料库。
- 实现方法
 - 使用Offline Explorer抓取网站数据。
 - 使用HTML Parser提取网页文本内容

- 主要功能
 - 取《英文世界名著1000部》作为通用语料库;
 - 抓取五大英文IT网站网页数据,作为背景语料库。
- 实现方法
 - 使用Offline Explorer抓取网站数据;
 - 使用HTML Parser提取网页文本内容。

- 主要功能
 - 取《英文世界名著1000部》作为通用语料库;
 - 抓取五大英文IT网站网页数据,作为背景语料库。
- 实现方法
 - 使用Offline Explorer抓取网站数据;
 - 使用HTML Parser提取网页文本内容。

- 主要功能
 - 取《英文世界名著1000部》作为通用语料库;
 - 抓取五大英文IT网站网页数据,作为背景语料库。
- 实现方法
 - 使用Offline Explorer抓取网站数据;
 - 使用HTML Parser提取网页文本内容。

预处理-相关数据

• 五大英文IT网站

Table: 五大英文IT新闻网站列表

● 总共获取13.5GB网页文件,经解析得到1.37GB纯文本。

预处理-相关数据

• 五大英文IT网站

Table: 五大英文IT新闻网站列表

网站名	URL	Alexa排名
CNet News	www.news.com	54/1
ZDNet	news.zdnet.com	658/2
Slashdot	slashdot.org	287/3
PC World	www.pcworld.com	571/1
PC Magazine	www.pcmag.com	571/2

• 总共获取13.5GB网页文件, 经解析得到1.37GB纯文本。

预处理-相关数据

• 五大英文IT网站

Table: 五大英文IT新闻网站列表

网站名	URL	Alexa排名
CNet News	www.news.com	54/1
ZDNet	news.zdnet.com	658/2
Slashdot	slashdot.org	287/3
PC World	www.pcworld.com	571/1
PC Magazine	www.pcmag.com	571/2

• 总共获取13.5GB网页文件, 经解析得到1.37GB纯文本。

```
• 主要功能
```

通过RSS新阅聚合(一种XML应用)获取每日效率的新阅阅 页;

。 使用目 ML Parser 装填新图图 其文本内容。

• 王要技术

o XML文件解

。HTML Parser提取例页文本

● 每日可以获得150~400篇新闻,大小约1~4MB。

• 主要功能

- 通过RSS新闻聚合(一种XML应用)获取每日发布的新闻网
- 使用HTML Parser提取新闻网页文本内容。
- 主要技术

- 主要功能
 - 通过RSS新闻聚合(一种XML应用)获取每日发布的新闻网 页;
 - 使用HTML Parser提取新闻网页文本内容。
- 主要技术
- 每日可以获得150~400篇新闻,大小约1~4MB。

- 主要功能
 - 通过RSS新闻聚合(一种XML应用)获取每日发布的新闻网页;
 - 使用HTML Parser提取新闻网页文本内容。
- 主要技术
 - XML文件解析; • HTML Parcor 提取
 - HIML Parser 提取网贝又平内谷
- 每日可以获得150~400篇新闻,大小约1~4MB。

- 主要功能
 - 通过RSS新闻聚合(一种XML应用)获取每日发布的新闻网页;
 - 使用HTML Parser提取新闻网页文本内容。
- 主要技术
 - · XML文件解析;
 - HTML Parser提取网页文本内容。
- 每日可以获得150~400篇新闻,大小约1~4MB。

- 主要功能
 - 通过RSS新闻聚合(一种XML应用)获取每日发布的新闻网页;
 - 使用HTML Parser提取新闻网页文本内容。
- 主要技术
 - XML文件解析;
 - HTML Parser提取网页文本内容。
- 每日可以获得150~400篇新闻,大小约1~4MB。

- 主要功能
 - 通过RSS新闻聚合(一种XML应用)获取每日发布的新闻网页;
 - 使用HTML Parser提取新闻网页文本内容。
- 主要技术
 - XML文件解析;
 - HTML Parser提取网页文本内容。
- 每日可以获得150~400篇新闻,大小约1~4MB。

- 主要功能
 - 通过RSS新闻聚合(一种XML应用)获取每日发布的新闻网页;
 - 使用HTML Parser提取新闻网页文本内容。
- 主要技术
 - XML文件解析;
 - HTML Parser提取网页文本内容。
- 每日可以获得150~400篇新闻,大小约1~4MB。

N元词串统计-简介

• 主要功能

。 统计语符库程序询询 II 和 DI 开转行, 形成平列表。

• 相天孜不

(ロ) (部) (注) (注) 注 り(0)

N元词串统计-简介

• 主要功能

- 统计语料库中相邻两单词的TF和DF并排序,形成二元词串表:
- 统计语料库中单词的TF和DF并排序,形成单词表。

• 相关技术

- 引入Frequent Word List以减小统计规模;
- 词串或单词及其对应频度的存储结构采用Hash Map;
- 需要对文本进行分句,采用正则表达式完成。

N元词串统计-简介

- 主要功能
 - 统计语料库中相邻两单词的TF和DF并排序,形成二元词串 表;
 - · 统计语料库中单词的TF和DF并排序,形成单词表。
- 相关技术

- 主要功能
 - 统计语料库中相邻两单词的TF和DF并排序,形成二元词串 表;
 - 统计语料库中单词的TF和DF并排序、形成单词表。
- 相关技术

- 主要功能
 - 统计语料库中相邻两单词的TF和DF并排序,形成二元词串 表;
 - 统计语料库中单词的TF和DF并排序,形成单词表。
- 相关技术
 - 引入Frequent Word List以减小统计规模;
 - 词串或单词及其对应频度的存储结构采用Hash Map;
 - 需要对文本进行分句,采用正则表达式完成。

- 主要功能
 - 统计语料库中相邻两单词的TF和DF并排序、形成二元词串 表;
 - 统计语料库中单词的TF和DF并排序,形成单词表。
- 相关技术
 - 引入Frequent Word List以减小统计规模;
 - 词串或单词及其对应频度的存储结构采用Hash Map;
 - 需要对文本进行分句,采用正则表达式完成。

- 主要功能
 - 统计语料库中相邻两单词的TF和DF并排序、形成二元词串 表;
 - 统计语料库中单词的TF和DF并排序、形成单词表。
- 相关技术
 - 引入Frequent Word List以减小统计规模;
 - 词串或单词及其对应频度的存储结构采用Hash Map;
 - 需要对文本进行分句,采用正则表达式完成。

• 主要功能

- 统计语料库中相邻两单词的TF和DF并排序,形成二元词串表;
- 统计语料库中单词的TF和DF并排序,形成单词表。
- 相关技术
 - 引入Frequent Word List以减小统计规模;
 - 词串或单词及其对应频度的存储结构采用Hash Map;
 - 需要对文本进行分句,采用正则表达式完成。

词语统计模块-相关数据

Table: 通用语料库和旧术语语料库统计表

文件名	词条数目 (万条)
通用语料库单词表	29
背景语料库单词表	53
通用语料库二元词串表	384
背景语料库二元词串表	291

词语统计模块-相关数据

Table: 通用语料库和旧术语语料库统计表

文件名	词条数目 (万条)
通用语料库单词表	29
背景语料库单词表	53
通用语料库二元词串表	384
背景语料库二元词串表	291

● 主要功能: 从新闻文本中提取、统计和存储候选新术语;

• 主要包括:

- 主要功能: 从新闻文本中提取、统计和存储候选新术语;
- 主要包括:
 - 孤岛词串发现算法──在新闻文本中发现候选新术语;
 - 对及现的恢远却不谙进行统订和存储。

- 主要功能: 从新闻文本中提取、统计和存储候选新术语;
- 主要包括:
 - 孤岛词串发现算法—在新闻文本中发现候选新术语;
 - 对发现的候选新术语进行统计和存储。

- 主要功能: 从新闻文本中提取、统计和存储候选新术语;
- 主要包括:
 - 孤岛词串发现算法—在新闻文本中发现候选新术语;
 - 对发现的候选新术语进行统计和存储。

- 主要功能: 从新闻文本中提取、统计和存储候选新术语;
- 主要包括:
 - 孤岛词串发现算法—在新闻文本中发现候选新术语;
 - 对发现的候选新术语进行统计和存储。

孤岛词串发现算法-流程图

孤岛词串发现算法-流程图

Sample: This is an algorithm that can improve information retrieval performance. This is an algorithm that can improve information retrieval performance. Step 1: 将一个句子划分为连续的二元词串。 an algorithm that information retrieval performance. Step 2: 根据通用语料库二元词串表、背景语料库二元词 串表等, 删除过去已出现的词串, 形成若干孤岛词串。 algorithm information retrieval performance Step 3: 修整孤岛词串边界, 删除 "an", "that"等。 最后确定候选新术语"Algorithm"、"Information retrieval performance".

第一步:划分二元词串

将句子划分为二元词串。对一个句子的单词序列,表示如

1.

到二元词甲:

 $B_1, B_2, B_3, \ldots, B_{n-1}$

● 任何相邻的两个二元词串都在一个单词上重叠。用

衣不机定

 $\forall i \in [1, n-1].$

第一步:划分二元词串

将句子划分为二元词串。对一个句子的单词序列,表示如下:

$$W_1$$
 W_2 W_3 \dots W_{n-1} W_n .

可以得到二元词串:

$$B_1, B_2, B_3, \ldots, B_{n-1}.$$

任何相邻的两个二元词串都在一个单词上重叠。用数学公式表示就是:

$$w_i, w_{i+1} \in B_i \quad \forall i \in [1, n-1].$$

第一步:划分二元词串

将句子划分为二元词串。对一个句子的单词序列,表示如下:

$$w_1$$
 w_2 w_3 \dots w_{n-1} w_n .

可以得到二元词串:

$$B_1, B_2, B_3, \ldots, B_{n-1}.$$

任何相邻的两个二元词串都在一个单词上重叠。用数学公式表示就是:

$$w_i, w_{i+1} \in B_i \quad \forall i \in [1, n-1].$$

第二步:初步提取孤岛词串

● 为句子的每个单词打标签: Appeared/Unappered

● 将单词序列中标签为 Unappeared 的连续的子序列提取出

来,这就是孤岛间阜。

- 为句子的每个单词打标签: Appeared/Unappered;
 - 如果一个二元词串的两个单词都是stop word,两个单词应该被标记为Appeared;
 - 一个单词所在的两个二元词串都已经在语料库中以很高的频率出现过,该单词被标记为Appeared;
 - 比较特殊的情况,如果 B_1 或 B_{n-1} 已经在语料库中以很高的频率出现过,简单地将 w_1 或 w_n 标记为Appeared。
- ② 将单词序列中标签为 Unappeared 的连续的子序列提取出来,这就是孤岛词串。

- 为句子的每个单词打标签: Appeared/Unappered;
 - 如果一个二元词串的两个单词都是stop word,两个单词应该被标记为Appeared;
 - 一个单词所在的两个二元词串都已经在语料库中以很高的频率出现过,该单词被标记为Appeared;
 - 比较特殊的情况,如果 B_1 或 B_{n-1} 已经在语料库中以很高的频率出现过,简单地将 w_1 或 w_n 标记为Appeared。
- ② 将单词序列中标签为 Unappeared 的连续的子序列提取出来,这就是孤岛词串。

- 为句子的每个单词打标签: Appeared/Unappered;
 - 如果一个二元词串的两个单词都是stop word,两个单词应该被标记为Appeared;
 - 一个单词所在的两个二元词串都已经在语料库中以很高的频率出现过,该单词被标记为Appeared;
 - 比较特殊的情况,如果 B_1 或 B_{n-1} 已经在语料库中以很高的频率出现过,简单地将 w_1 或 w_n 标记为Appeared。
- ② 将单词序列中标签为 Unappeared 的连续的子序列提取出来,这就是孤岛词串。

- 为句子的每个单词打标签: Appeared/Unappered;
 - 如果一个二元词串的两个单词都是stop word,两个单词应该被标记为Appeared;
 - 一个单词所在的两个二元词串都已经在语料库中以很高的频率出现过,该单词被标记为Appeared;
 - 比较特殊的情况,如果 B_1 或 B_{n-1} 已经在语料库中以很高的频率出现过,简单地将 w_1 或 w_n 标记为Appeared。
- ② 将单词序列中标签为 Unappeared 的连续的子序列提取出来,这就是孤岛词串。

- 为句子的每个单词打标签: Appeared/Unappered;
 - 如果一个二元词串的两个单词都是stop word,两个单词应该被标记为Appeared;
 - 一个单词所在的两个二元词串都已经在语料库中以很高的频率出现过,该单词被标记为Appeared;
 - 比较特殊的情况,如果 B_1 或 B_{n-1} 已经在语料库中以很高的频率出现过,简单地将 w_1 或 w_n 标记为Appeared。
- ② 将单词序列中标签为 Unappeared 的连续的子序列提取出来,这就是孤岛词串。

- 对孤岛词串,如果它是一个单词,查看是否在之前很高频度出现,如果是,则丢弃,否则进入3;如果它是一个二元词串,查看其是否在通用语料库二元词串表和背景语料库二元词串表的高频部分或Frequent Word List的二元词串组合中出现,如果是,则丢弃,否则进入步骤2;如果它是一个含有超过三个单词的词串,进入步骤2。
- ② 查看词串的首尾单词是否出现在Empty Word List中,如果是则将该单词从这个词串中删除,进入3;
- ③ 如果该词串较1时有修改,则递归重新进入步骤1,对修整后的新词串进行新的一轮修整;否则进入步骤4。
- 查看词串是否出现在Current IT Term List中,如果是,则丢弃; 否则,输出为新术语候选词串。

- 对孤岛词串,如果它是一个单词,查看是否在之前很高频度出现,如果是,则丢弃,否则进入3;如果它是一个二元词串,查看其是否在通用语料库二元词串表和背景语料库二元词串表的高频部分或Frequent Word List的二元词串组合中出现,如果是,则丢弃,否则进入步骤2;如果它是一个含有超过三个单词的词串,进入步骤2。
- ② 查看词串的首尾单词是否出现在Empty Word List中,如果是则将该单词从这个词串中删除,进入3;
- ③ 如果该词串较1时有修改,则递归重新进入步骤1,对修整后的新词串进行新的一轮修整;否则进入步骤4。
- 查看词串是否出现在Current IT Term List中,如果是,则丢弃; 否则,输出为新术语候选词串。

- 对孤岛词串,如果它是一个单词,查看是否在之前很高频度出现,如果是,则丢弃,否则进入3;如果它是一个二元词串,查看其是否在通用语料库二元词串表和背景语料库二元词串表的高频部分或Frequent Word List的二元词串组合中出现,如果是,则丢弃,否则进入步骤2;如果它是一个含有超过三个单词的词串,进入步骤2。
- ② 查看词串的首尾单词是否出现在Empty Word List中,如果是则将该单词从这个词串中删除,进入3;
- ⑤ 如果该词串较1时有修改,则递归重新进入步骤1,对修整后的新词串进行新的一轮修整;否则进入步骤4。
- ① 查看词串是否出现在Current IT Term List中,如果是,则丢弃; 否则,输出为新术语候选词串。

- 对孤岛词串,如果它是一个单词,查看是否在之前很高频度出现,如果是,则丢弃,否则进入3;如果它是一个二元词串,查看其是否在通用语料库二元词串表和背景语料库二元词串表的高频部分或Frequent Word List的二元词串组合中出现,如果是,则丢弃,否则进入步骤2;如果它是一个含有超过三个单词的词串,进入步骤2。
- ② 查看词串的首尾单词是否出现在Empty Word List中,如果是则将该单词从这个词串中删除,进入3;
- 如果该词串较1时有修改,则递归重新进入步骤1,对修整后的新词串进行新的一轮修整;否则进入步骤4。
- ◆ 查看词串是否出现在Current IT Term List中,如果是,则丢弃;
 否则,输出为新术语候选词串。

• 主要功能:

- 对每一个候选新术语,根据其在一段时间内的频度曲线,通过评价函数为其打分;
- 当分数超过某一个阈值的时候,就最终确定该词语为新术语。

• 主要功能:

- 对每一个候选新术语,根据其在一段时间内的频度曲线,通 过评价函数为其打分;

• 主要功能:

- 对每一个候选新术语,根据其在一段时间内的频度曲线,通 过评价函数为其打分;
- 当分数超过某一个阈值的时候,就最终确定该词语为新术 语。

◎ 将某候选新术语的频度数据按照设置的粒度进行聚合;

③ 由评价函数判断候选新术语是否符合新术语要求

- 将某候选新术语的频度数据按照设置的粒度进行聚合;
- ② 由评价函数判断候选新术语是否符合新术语要求
 - 数 $f(a_{i+1},a_i)$ 如下:
 - f(a a) =
 - $(a_{i+1}, a_i) = \begin{pmatrix} a_{i+1}, a_i \end{pmatrix}$
 - 通过以下求和函数得到评价分数
 - N
 - $S = \sum_{i=1}^{r} f(a_{i+1},$
 - 在 N=1 → n-1 过程中。比较
 - 判定该词语为新术语。

- 将某候选新术语的频度数据按照设置的粒度进行聚合;
- 由评价函数判断候选新术语是否符合新术语要求:
 - 设候选新术语对应的频度聚合数据为 a₁, a₂,...,a_n, 评价函

$$f(a_{i+1}, a_i) = \begin{cases} 1 & \text{if } a_{i+1} > a_i \\ -0.5 & \text{if } a_{i+1} = a_i \\ -1 & \text{if } a_{i+1} < a_i \end{cases}$$

$$S = \sum_{i=1}^{N} f(a_{i+1}, a_i)$$
 (1)

- 将某候选新术语的频度数据按照设置的粒度进行聚合;
- ② 由评价函数判断候选新术语是否符合新术语要求:
 - ① 设候选新术语对应的频度聚合数据为 $a_1, a_2, ..., a_n$,评价函数 $f(a_{i+1}, a_i)$ 如下:

$$f(a_{i+1}, a_i) = \begin{cases} 1 & \text{if } a_{i+1} > a_i \\ -0.5 & \text{if } a_{i+1} = a_i \\ -1 & \text{if } a_{i+1} < a_i \end{cases}$$

② 通过以下求和函数得到评价分数:

$$S = \sum_{i=1}^{N} f(a_{i+1}, a_i)$$
 (1)

在 $N=1 \rightarrow n-1$ 过程中,比较 S 和阈值 δ ,一旦 $S > \delta$ 则判定该词语为新术语。

时间序列分析-算法设计

- 将某候选新术语的频度数据按照设置的粒度进行聚合;
- ② 由评价函数判断候选新术语是否符合新术语要求:
 - ① 设候选新术语对应的频度聚合数据为 $a_1, a_2, ..., a_n$,评价函数 $f(a_{i+1}, a_i)$ 如下:

$$f(a_{i+1}, a_i) = \begin{cases} 1 & \text{if } a_{i+1} > a_i \\ -0.5 & \text{if } a_{i+1} = a_i \\ -1 & \text{if } a_{i+1} < a_i \end{cases}$$

② 通过以下求和函数得到评价分数:

$$S = \sum_{i=1}^{N} f(a_{i+1}, a_i)$$
 (1)

在 $N=1 \rightarrow n-1$ 过程中,比较 S 和阈值 δ ,一旦 $S>\delta$ 则判定该词语为新术语。

实验结果-准确率

Table: 算法返回新术语的准确率

日期	人工确定新术语数目	算法返回新术语数目	准确率(%)
2006.06.17	17	126	13.5
2006.06.18	12	71	16.9
2006.06.19	6	35	17.1
2006.06.20	21	177	11.9

说明

人工确定新术语,是指由人工确定算法返回新术语中真正为新术语的 数目。其中存在一定主观因素的影响。下同。

实验结果-算法返回新术语的来源

Table: 算法返回新术语来源分类 (个数/%)

日期	广告	ID	新闻正文	评论	其它	总计
2006.06.17	58/46.0	8/6.3	26/20.6	7/5.6	27/21.4	126
2006.06.18	48/67.6	4/5.6	9/12.7	4/5.6	6/8.5	71
2006.06.19	14/40.0	2/5.7	10/28.6	1/2.9	7/20.0	35
2006.06.20	89/50.3	2/1.1	40/22.6	0/0.0	47/26.6	177

实验结果-人工确定新术语的来源

Table: 人工确定新术语来源分类 (个数/%)

日期	广告	ID	新闻正文	评论	其它	总计
2006.06.17	6/35.3	0/0.0	8/47.1	0/0.0	3/17.6	17
2006.06.18	9/75.0	0/0.0	1/8.3	1/8.3	1/8.3	12
2006.06.19	1/16.7	0/0.0	4/66.7	0/0.0	1/16.7	6
2006.06.20	5/23.8	0/0.0	6/28.6	0/0.0	9/42.9	21

实验结果-各来源新术语的准确率

Table: 各来源新术语的准确率 (%)

日期	广告	ID	新闻正文	评论	其它
2006.06.17	10.3	0.0	30.8	0.0	11.1
2006.06.18	18.8	0.0	11.1	25.0	16.7
2006.06.19	7.1	0.0	40.0	0.0	14.3
2006.06.20	5.6	0.0	15.0	0.0	19.1

实验结果-新术语示例

- ullet Critical Strategy: \sim for Managing Information in the 21st Century...
- ullet overkill: Beware of broadband speed \sim .
- Wearable Tech
- googlepages
- Code Name Tracker
- Seamless Mobility: ~: A Continuity of Experiences Across Domains, Devices and Networks Motorola.
- Vista-capable
- picasa: Google product name.
- two-way Web: ...he is only now realizing his early vision of a ~ where people can easily work together on the same page...
- IP Migration: The Return on Voice over \sim .

实验结果-新术语"Picasa"频度曲线

说明

Picasa是Google开发的一款图片管理工具,在2006年5月26日其Linux版本发布。

实验结果-新术语"Picasa"出现位置

picasa			×
Date/Name	TF/Line	DF/Details	Ī
= 2006-05-19	1	1	Τ
Read your Reader from anywhere	71	File	1
= 2006-05-20	3	3	
Google Music gets closer	73	File	ı
Google (service name here) isn't that p	74	File	Ï
Turning the map Green	73	File	
- 2006-05-23	1	1	
Measure Map getting closer#	71	File	
= 2006-05-24	1	1	
Google video ads good# I think so	77	File	ı
= 2006-05-25	3	3	
Calling International Rescue!	72	File	
Google Calendar RSS problems#	73	File	
Improving Software Usability#	82	File	
2006-05-26	19	5	
Dell Installs Google Software at Factory	149	File	
Web 2.0 trademark tailspin	54	File	ı
Picasa for Linux	0 18 21 22 28 44 75	File	ı
Google Releases Picasa for Linux	65 68 136 207 208 248 259 269 319	File	
Dude, you got Google	74	File	1
= 2006-05-27	7	4	
Gmail to get prices	49 59 79	File	1
Google's Picasa for Linux Arrives	8 10	File	1
Dell wields its leverage and disrupts Wi	59	File	1
PowerPage wins on appeal	56	File	1
= 2006-05-28	3	1	
Google Video mix up	42 53 71	File	1

◆ 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。

少 日间交易压入。 1.09 日初年9年3 16。 ② 广告一报在一个图图中只会出现一次。广告中的词形的统计 格点是其TF和DF相等。可以优化评价函数要询对广告新术

● 活跃用户的 ID 等也是造成系统准确率较低的重要原因。

- 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。
 - 广告也是新术语的重要来源之一;
 - ② 目前提取正文、去除广告的准确率较低;
 - ⑤ 广告一般在一个网页中只会出现一次,广告中的词串的统计 特点是其TF和DF相等。可以优化评价函数提高对广告新术 语的提取。
- 活跃用户的 ID 等也是造成系统准确率较低的重要原因。
 - 系统具有一定的自适应能力,对于这些活跃ID只会错判一 次;
 - 💿 目前提取正文、去除广告的准确率较低
 - 可以根据网页评论的格式,识别哪些词语是用户ID。

- 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。
 - 广告也是新术语的重要来源之一;
 - ② 目前提取正文、去除广告的准确率较低;
 - ⑤ 广告一般在一个网页中只会出现一次,广告中的词串的统计 特点是其TF和DF相等。可以优化评价函数提高对广告新术 语的提取。
- 活跃用户的 ID 等也是造成系统准确率较低的重要原因。
 - 系统具有一定的目並应能力,对于这些活跃ID只会错判一次;
 - ◎ 目前提取正文、去除广告的准确率较低
 - ◎ 可以根据网贝评论的格式,识别哪些闻语走用户ID。

- 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。
 - 广告也是新术语的重要来源之一;
 - ② 目前提取正文、去除广告的准确率较低;
 - ⑤ 广告一般在一个网页中只会出现一次,广告中的词串的统计 特点是其TF和DF相等。可以优化评价函数提高对广告新术 语的提取。
- 活跃用户的 ID 等也是造成系统准确率较低的重要原因。
 - ◎ 系统具有一定的自适应能力,对于这些活跃ID只会错判一次:
 - ◎ 目前提取正文、去除广告的准确率较低
 - ◎ 可以根据网页评论的格式,识别哪些闻语是用户ID。

- 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。
 - 广告也是新术语的重要来源之一;
 - ② 目前提取正文、去除广告的准确率较低;
 - 广告一般在一个网页中只会出现一次,广告中的词串的统计特点是其TF和DF相等。可以优化评价函数提高对广告新术语的提取。
- 活跃用户的 ID 等也是造成系统准确率较低的重要原因。
 - ◎ 目前提取正文、去除广告的准确率较低;

 - 可以根据网贝评论的格式, 识别哪些间语是用户ID。

- 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。
 - 广告也是新术语的重要来源之一;
 - ② 目前提取正文、去除广告的准确率较低;
 - ⑤ 广告一般在一个网页中只会出现一次,广告中的词串的统计 特点是其TF和DF相等。可以优化评价函数提高对广告新术 语的提取。
- 活跃用户的 ID 等也是造成系统准确率较低的重要原因。
 - 系统具有一定的自适应能力,对于这些活跃ID只会错判一次;
 - ② 目前提取正文、去除广告的准确率较低
 - ③ 可以根据网页评论的格式,识别哪些词语是用户ID。

- 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。
 - 广告也是新术语的重要来源之一;
 - ② 目前提取正文、去除广告的准确率较低;
 - ⑤ 广告一般在一个网页中只会出现一次,广告中的词串的统计 特点是其TF和DF相等。可以优化评价函数提高对广告新术 语的提取。
- 活跃用户的 ID 等也是造成系统准确率较低的重要原因。
 - 系统具有一定的自适应能力,对于这些活跃ID只会错判一次;
 - ② 目前提取正文、去除广告的准确率较低
 - ③ 可以根据网页评论的格式,识别哪些词语是用户ID。

- 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。
 - 广告也是新术语的重要来源之一;
 - ② 目前提取正文、去除广告的准确率较低;
 - ◎ 广告一般在一个网页中只会出现一次,广告中的词串的统计 特点是其TF和DF相等。可以优化评价函数提高对广告新术 语的提取。
- 活跃用户的 ID 等也是造成系统准确率较低的重要原因。
 - 系统具有一定的自适应能力,对于这些活跃ID只会错判一次;
 - ② 目前提取正文、去除广告的准确率较低;
 - ③ 可以根据网页评论的格式,识别哪些词语是用户ID。

- 大量的广告词在一段时间内反复出现在新闻网页中,会对数据的可靠性造成一定的影响。但不能简单去除广告了事。
 - 广告也是新术语的重要来源之一;
 - ② 目前提取正文、去除广告的准确率较低;
 - ◎ 广告一般在一个网页中只会出现一次,广告中的词串的统计 特点是其TF和DF相等。可以优化评价函数提高对广告新术 语的提取。
- 活跃用户的 ID 等也是造成系统准确率较低的重要原因。
 - 系统具有一定的自适应能力,对于这些活跃ID只会错判一次;
 - ② 目前提取正文、去除广告的准确率较低;
 - 可以根据网页评论的格式,识别哪些词语是用户ID。

结论

- ◎ 基本完成了任务书中所提的日程和任务;
- 实验表明,该算法已经能够较好地自动检测到相当数量的新术语,达到可用程度。
- ◎ 该算法只是对新术语的预警,它只能减小人类查找新术语的 范围,不能代替人类确定哪些是新术语。

结论

- 基本完成了任务书中所提的日程和任务;
- ② 实验表明,该算法已经能够较好地自动检测到相当数量的新术语,达到可用程度。
- ③ 该算法只是对新术语的预警,它只能减小人类查找新术语的 范围,不能代替人类确定哪些是新术语。

- 基本完成了任务书中所提的日程和任务;
- ② 实验表明,该算法已经能够较好地自动检测到相当数量的新术语, 达到可用程度。
- ◎ 该算法只是对新术语的预警,它只能减小人类查找新术语的 范围,不能代替人类确定哪些是新术语。

结论

- 基本完成了任务书中所提的日程和任务;
- ② 实验表明,该算法已经能够较好地自动检测到相当数量的新术语, 达到可用程度。
- ◎ 该算法只是对新术语的预警,它只能减小人类查找新术语的 范围,不能代替人类确定哪些是新术语。

未来工作

- 优化评价函数,解决广告问题带来的性能下降;
- 提供GUI界面,方便用户使用;
- 增加词性标注等自然语言处理手段,提高算法的性能。

未来工作

- 优化评价函数,解决广告问题带来的性能下降;
- ② 提供GUI界面,方便用户使用;
- ◎ 增加词性标注等自然语言处理手段,提高算法的性能。

- 优化评价函数,解决广告问题带来的性能下降;
- ② 提供GUI界面,方便用户使用;
- ◎ 增加词性标注等自然语言处理手段,提高算法的性能。

未来工作

- 优化评价函数,解决广告问题带来的性能下降;
- ② 提供GUI界面,方便用户使用;
- ◎ 增加词性标注等自然语言处理手段,提高算法的性能。

谢谢各位老师、同学! 敬请指正!