Computer Vision

Undergraduate Course

Chapter 9. Image Segmentation (Practice)

Dongbo Min

Department of Computer Science and Engineering

Chungnam National University, Korea

Practice Lecture

Image segmentation

- Run the code for image segmentation in page 7-12.
- Run the code for adaptive threshold in page 17-20.

Edge detection

- Implement Prewitt, Roberts, Sobel filters in page 25-27 using your own implementation.
- Then, display the magnitude of the edge image.

Canny Edge detection

Run the code for Canny edge detection in page 38.

Hough Transform

Run the code for Hough transform in page 45-50.

Principles for homework submission

MATLAB homework

- Submit all source codes (m file) for each (sub-) problem
- If the codes do NOT work, then there will be a penalty.
- The report for MATLAB homework should include the intermediate process, reason, and final results.

Report homework

- The report should include the intermediate process, reason, and final results.
- The report homework should be done by hand, NOT using any computer software.

Example of Source Code

- For each problem, the source code should consist of two functions, as below.
 - In the 'homwork_main.m', the results should appear or be saved as below.

```
homework_main.m

in1 = imread('cameraman.tif');

out1 = function_example(in1);

imshow(out1); % or use imwrite(out1, 'output.png');
```

function_example.m

```
% Please make sure that there is a return variable to save an output.
% In the example below, 'y' is the return variable.
function y = function_example( im )
% Implement your code here.
end
```

숙제 제출 원칙

• 매트랩 숙제

- 각 세부문제 별로 모든 소스 코드를 제출
- 만약 코드가 작동하지 않을 경우, 감점
- 매트랩 숙제에 대한 보고서는 중간 결과, 이유, 최종 결과 등을 모두 포함하여 자세히 서술할 것

• 문제풀이 숙제

- 보고서는 중간 결과, 이유, 최종 결과 등을 모두 포함하여 자세히 서술할 것
- 문제풀이 숙제는 반드시 손으로 해서 낼 것 (컴퓨터 SW를 사용하지 말 것!)

Practice Homework

- 1. (MATLAB) Exercise 7, 10, and 13
 - For exercises 10 and 13, you can use the MATLAB function for edge detection
- 2. (Report) Exercise 14, 15, and 16
 - Do NOT use any computer software.
- 3. (Report) In page 41 of 'cv-ch09-image segmentation.pdf', please derive the equation $x\cos\theta + y\sin\theta = r$.

