Computer Vision HW1

安捷 1601210097 2017 年 3 月 20 日

1 算法实现介绍

在这一次作业中,我按照作业要求,分别实现了 Harris 角点检测算法与 SIFT 特征检测与描述子生成算法,并针对作业中要求的具体问题,基于 MATLAB 编程实现了相关要求,其中,Harris 角点检测算法我使用了 MATLAB 自带 Harris 角点检测函数; SIFT 算子我使用了 vl-feat 工具包。

2 脚本功能介绍

为完成作业要求,我共编写三个 MATLAB 脚本,下面分别介绍其功能及对应的问题:

- harris_robustness_test.m 对应于作业的问题 1,用于测试 harris 角点检测算法对于旋转、缩放的鲁棒性;
- **sift_robustness_test.m** 对应于作业的问题 2, 用于测试 SIFT 检测子对于图像旋转、缩放的鲁棒性;
- **sift_descriptor_robustness_test.m** 对应于作业的问题 3, 用于测试 SIFT 描述子对于 图像亮度、对比度、噪声、模糊的鲁棒性;

3 各脚本参数设置

3.1 harris_robustness_test.m 参数设置

参数名称	参数值	参数含义
IMG_PATH	'cover_1.jpg'	图像路径
$MIN_QUALITY$	0.01	Harris 角点检测阈值
$ROTATE_ANGLE$	15	旋转角度
$SCALE_FACTOR$	1.2	缩放倍数

表 1: harris_robustness_test.m 参数表

3.2 sift_robustness_test.m 参数设置

参数名称	参数值	参数含义
IMG_PATH	'cover_1.jpg'	图像路径
PEAK_THRESH	1	SIFT 算法峰阈值
$EDGE_THRESH$	5	SIFT 算法边阈值
ROTATE_ANGLE	15	旋转角度
SCALE_FACTOR	1.2	缩放倍数

表 2: sift_robustness_test.m 参数表

3.3 sift_descriptor_robustness_test.m 参数设置

5. 华 万 孙	分兆店	会事会の
参数名称	参数值	参数含义
IMG_PATH	'building.jpg'	图像路径
PEAK_THRESH	1	SIFT 算法峰阈值
EDGE_THRESH	5	SIFT 算法边阈值
ROTATE_ANGLE	15	旋转角度
SCALE_FACTOR	1.2	缩放倍数
BRIGHTNESS_MINUS_MAX	-100	最大亮度减小值
$BRIGHTNESS_PLUS_MAX$	100	最大亮度增加值
${\tt BRIGHTNESS_CHANGE_LEVEL}$	20	亮度增减幅度
CONTRAST_MIN	0.5	最小对比度调整值
$CONTRAST_MAX$	2.0	最大对比度调整值
$CONTRAST_CHANGE_LEVEL$	0.25	对比度调整幅度
NOISE_MIN	0	最小高斯噪声标准差
$NOISE_MAX$	30	最大高斯噪声标准差
$NOISE_CHANGE_LEVEL$	5	高斯噪声标准差调整幅度
GAUSS_MIN	1	最小高斯模糊标准差
$GAUSS_MAX$	10	最大高斯模糊标准差
$GAUSS_CHANGE_LEVEL$	1	高斯模糊标准差调整幅度

表 3: sift_descriptor_robustness_test.m 参数表

4 软件版本及测试平台信息

这部分内容请参看源代码所在文件夹内的 REAME 文件。