What is claimed is:

1	1.	An apparatus for transporting a fluid, comprising:
2		a channel for receiving a fluid;
3		a sensor for determining an internal condition of the fluid in the channel; and
4		a channel actuator in communication with the sensor for changing a cross-
5		sectional area of the channel based on the internal condition, wherein the change in cross
6		sectional area controls a parameter selected from a pressure and a fluid flow.
1.	2.	The apparatus of claim 1, wherein the channel actuator is selected from a piezoelectric
2		actuator and a capacitive actuator.
1	3.	The apparatus of claim 1, wherein the channel comprising a plurality of channels.
1	4.	The apparatus of claim 3, wherein at least two of the channels comprising a separate
2		actuator for changing the cross-sectional area of each channel.
1	5.	The apparatus of claim 3, wherein at least two of the channels share the same actuator for
2		changing the cross-sectional area of each channel.
1	6.	The apparatus of claim 1, wherein the channel is a microchannel.
1	7.	The apparatus of claim 1, wherein the channel actuator is responsive to an alternating
2		current actuation signal and a direct current bias signal.

1	8.	The apparatus of claim 1, further comprising:
2		an atomizer including, a first reservoir for receiving the fluid, an atomizer actuator
3		disposed in communication with the first reservoir for generating an acoustical pressure
4		wave through the fluid, and a first set of ejectors including at least one ejector for
5		dispensing atomized fluid in response to the acoustical pressure wave.
1	9.	The apparatus of claim 8, further comprising:
2		a reactor selected from a reverse-flow micro-reactor and a unidirectional-flow
3		micro-reactor.
1	10.	The apparatus of claim 1, further comprising
2		a reactor is selected from a reverse-flow micro-reactor and a unidirectional-flow
3		micro-reactor.
1	11.	The apparatus of claim 8, wherein the channel comprising:
2		a first end for receiving a fluid from a fluid reservoir; and
3		a second end for delivering the fluid to the atomizer.
1	12.	The apparatus of claim 9, wherein the channel comprising:
2		a first end for receiving a fluid from a fluid reservoir; and
3		a second end for delivering the fluid to the reactor.
1	13.	The apparatus of claim 1, wherein the channel is integrated with a fuel cell.
1	14.	The apparatus of claim 10, wherein the channel is integrated with a membrane in the
2		reactor.

1	15.	An atomizer, comprising:
2		a first reservoir for receiving a fluid;
3		an atomizer actuator disposed in communication with the first reservoir for
4		generating an acoustical pressure wave through the fluid, and
5		a first set of ejectors including at least one ejector for dispensing atomized fluid in
6		response to the acoustical pressure wave.
1	16.	The atomizer of claim 15, further comprising:
2		a reactor selected from a reverse-flow micro-reactor and a unidirectional-flow
3		micro-reactor.
1	17.	The atomizer of claim 15, wherein the atomizer actuator is selected from a piezoelectric
2		actuator and a capacitive actuator.
1	18.	The atomizer of claim 17, wherein the atomizer actuator operates in a range from about
2		100kHz to 100MHz.
1	19.	The atomizer of claim 15, wherein the ejector has a structure for focusing acoustic waves
2		and wherein the structure is selected from a horn structure and a pyramidal structure.
1	20.	The atomizer of claim 15, further comprising:
2		a second reservoir for receiving the fluid, the atomizer actuator disposed in
3		communication with the first reservoir for generating an acoustical pressure wave
4		through the fluid in the first reservoir and second reservoir; and
5		a second set of ejectors including at least one ejector for dispensing atomized
6		fluid in response to the acoustical pressure wave disposed, wherein the second set of
7		ejectors is disposed on opposite side of the atomizer actuator as the first set of ejectors.

- The atomizer of claim 15, further comprising at least two sets of ejectors and at least two 21. 1 atomizer actuators for activating the at least two ejector nozzles. 2 1 22. The atomizer of claim 15, further comprising at least two atomizers. The atomizer of claim 22, further comprising a pressure sensor for controlling each 1 23. 2 atomizer. The atomizer of claim 15, wherein the atomizer having at least one set of ejectors 1 24. disposed on opposing sides of the atomizer actuator. 2 The atomizer of claim 15, wherein the at least one ejector nozzle further comprising a 1 25. structure for focusing an acoustic wave at a tip of the at least one ejector nozzle. 2
- The atomizer of claim 25, wherein the structure selected from a horn structure and a pyramidal structure.
- The atomizer of claim 26, wherein the horn structure having an internal cavity that
 expands from a tip according to at least one function selected from a linear function and
 an exponential function.
- The atomizer of claim 25, wherein the structure formed by at least one of chemical etching and physical machining of a solid substrate.
- The atomizer of claim 15, wherein each of the at least one ejector nozzles being individually activated.
- The atomizer of claim 15, wherein the at least one ejector nozzle having a tip through which an opening may be formed.

The atomizer of claim 15, further comprising a fuel cell. 1 31. The atomizer of claim 31, wherein the atomizer and the fuel cell are directly integrated. 1 32. The atomizer of claim 15, further comprising: 1 33. a storage reservoir for storing the fluid. 2 The atomizer of claim 33, wherein the storage reservoir comprising a separate reservoir 1 34. 2 for delivering the fluid to the atomizer. The atomizer of claim 34, wherein the separate reservoir is selected from a disposable 1 35. cartridge and a refillable cartridge. 2 The atomizer of claim 34, wherein the separate reservoir comprising a pressurized 1 36. cartridge for storing the fluid in a pressurized environment. 2 The atomizer of claim 36, wherein the atomizer controls a pressure of the pressurized 1 37. cartridge using the atomizer actuator. 2 The atomizer of claim 15, wherein the fluid is selected from a liquid, a gas, a fluidized 1 38. polymer, liquid with solid particles, a gas with solid particles, and combinations thereof. 2 The apparatus of claim 15, wherein the atomizer is integrated with a membrane in the 1 39. 2 reactor.

A reactor, comprising at least one internal channel for transporting a fluid in a first

1

2

40.

direction and a second direction.

- 1 41. The reactor of claim 40, wherein the at least one internal channel comprising a catalyst disposed along an internal surface for reacting with the reactant.
- 1 42. The reactor of claim 41, wherein the catalyst is disposed along the internal surface of the internal channel in a discontinuous pattern comprising a fractal pattern.
- 1 43. The reactor of claim 40, wherein the reactor is selected from a reverse-flow micro-reactor and a unidirectional-flow micro-reactor.
- 1 44. The reactor of claim 40, wherein the reactor comprising a rotating reactor design.
- The reactor of claim 44, wherein the reactor further comprising a mixing chamber for mixing the fluid, the mixing chamber rotated about an axis to accomplish flow reversal of the fluid through the at least one internal channel.
- The reactor of claim 45, wherein the reactor further comprising a reaction chamber disposed within the mixing chamber, whereby heat from the reaction chamber is used to heat the fluid in the mixing chamber.
- 1 47. The reactor of claim 45, wherein the mixing chamber selected from a spiral configuration 2 and a swiss roll configuration.
- The reactor of claim 46, wherein the reaction chamber selected from a spiral configuration and a swiss roll configuration.

1	49.	The reactor of claim 45, wherein the reactor further comprising:
2		a first plate in communication with the at least one internal channels and having
3		openings for biasing a flow of the fluid in the first direction and the second direction; and
4		a second plate mounted to slide along the first plate between a first position and a
5		second position with respect to the openings, wherein when the second plate is in the first
6		position, the fluids flow in the first direction and when the second plate is in the second
7		position, the fluids flow in the second direction.
1	50.	The reactor of claim 45, wherein the reactor further comprising:
2		a third plate disposed between the first plate and the second plate, the third plate
3		having openings for the flow of the fluid, the third plate further including a seal disposed
4		between the first plate and the second plate for preventing a leakage of the fluid.
1	51.	The reactor of claim 40, wherein the reactor comprising a planar plate reactor design.
1	52.	The reactor of claim 51, wherein the reactor further comprising:
2		a first plate in communication with the at least one internal channels and having
3		openings for biasing a flow of the fluid in the first direction and the second direction;
4		a second plate mounted to slide along the first plate between a first position and a
5		second position with respect to the openings, wherein when the second plate is in the first
6		position, the fluids flow in the first direction and when the second plate is in the second
7		position, the fluids flow in the second direction; and
8		a third plate disposed between the first plate and the second plate, the third plate
9		having openings for the flow of the fluid, the third plate further including a seal disposed
10		between the first plate and the second plate for preventing a leakage of the fluid.
1	53.	The reactor of claim 40, wherein the reactor comprising a tubular reactor design.

1	54.	The reactor of claim 48, wherein the at least one internal channel comprising:
2		a first internal channel having a first valve disposed at a first end and a second
3		valve at a second end, the first valve and the second valve for biasing the flow of the fluid
4		through the first internal channel;
5		a second internal channel having a third valve disposed at a third end and a fourth
6		valve disposed at a fourth end, the third valve and the fourth valve for biasing the flow of
7		the fluid through the second internal channel.
1	55.	The reactor of claim 40, wherein the reactor further comprising:
2	•	a membrane for separating a fuel from the fluid, wherein the fuel is derived from
3		the fluid.
1	56.	The reactor of claim 55, further comprising:
2		a fuel cell in fluid communication with the reactor, wherein at least one channel
3		of the fuel cell is disposed adjacent the membrane, wherein the membrane is permeable
4		to the fuel and not substantially permeable to the fluid, and wherein the fuel cell is
5		adapted for generating electricity from the fuel
1	57.	The reactor of claim 56, wherein the membrane is a proton conducting membrane having
2		a catalyst disposed thereon for reacting with the fuel.
1	58.	The reactor of claim 57, wherein the fuel cell includes an anode and a cathode adjacent
2		the membrane for generating an electrical current from the reaction of the fuel with the
3		catalyst.
1	59.	The reactor of claim 57, wherein the catalyst disposed on the proton conducting
2		membrane is in a discontinuous pattern comprising fractal pattern.

1	60.	The reactor of claim 56, further comprising at least one internal channel for transporting
2		the fuel to the fuel cell, wherein the internal channel includes the internal channel for
3		receiving the fuel, a sensor for determining an internal condition of the fuel in the internal
4		channel, and a channel actuator in communication with the sensor for changing a cross-
5		sectional area of the internal channel based on the internal condition, wherein the change
6		in cross-sectional area controls a parameter selected from pressure and fluid flow.
1	61.	The reactor of claim 55, wherein the membrane comprising a hydrogen separating
2		membrane, and wherein the fuel comprises a hydrogen containing gas.
1	62.	The reactor of claim 60, wherein the reactor further comprising:
2		a mixing chamber for mixing the fuel prior to transportation of the fuel to the at
3		least one internal channel.
1	63.	The reactor of claim 40, further comprising at least one valve for selecting the first
2		direction and the second direction for the flow of the reactant.
1	64.	The reactor of claim 43, wherein the reverse-flow reactor includes:
2		a reverse-flow channel having a first end and a second end, the first end and the
3		second end are disposed on opposite ends of the reverse-flow channel;
4		a first inlet for dispensing the reactant at the first end of the reverse-flow channel
5		in a first direction along of the reverse-flow channel;
6		a second inlet for dispensing the reactant at the second end of the reverse-flow
7		channel in a second direction along the reverse-flow channel opposite the first direction;
8		and
9		a membrane disposed between the reverse-flow channel and a second channel.

wherein the membrane is adapted to catalytically generate a fuel from the reactant.

10

l	65.	An integrated fuel processing apparatus comprising:						
2		an atomizer, including:						
3		a first reservoir for receiving a reactant,						
4		an atomizer actuator disposed in communication with the first reservoir for						
5		generating an acoustical pressure wave through the reactant, and						
6		a first set of ejectors including at least one ejector for dispensing atomized						
7	reactant in response to the acoustical pressure wave; and							
8		a reactor fluidically coupled to the atomizer, including						
9		at least one internal channel for transporting the reactant in a first direction						
0		and a second direction to produce a fuel.						
1	66.	The apparatus of claim 65, further comprising at least one channel system fluidically						
2		couples the fluid to a receiving apparatus selected from the atomizer and the reactor,						
3		wherein the channel system includes:						
4		a channel for receiving a reactant,						
5		a sensor for determining an internal condition of the fluid in the channel, and						
6		a channel actuator in communication with the sensor for changing a cross-						
7		sectional area of the channel based on the internal condition, wherein the change in cross-						
8		sectional area controls a parameter selected from a pressure and a fluid flow.						
1	67.	The apparatus of claim 66, wherein the reactant is selected from a liquid and a gas.						
1	68.	The apparatus of claim 66, wherein the reactant is selected from methanol, methane, a						
2		hydrocarbon, and combinations thereof.						
1	69.	The apparatus of claim 66, wherein the atomizer actuator is selected from a piezoelectric						
2		actuator and a capacitive actuator.						

2	70.	actuator and a capacitive actuator.						
1	71.	The apparatus of claim 66, wherein the channel comprising a plurality of channels.						
1 2	72.	The apparatus of claim 65, wherein the reactor is selected from a rotating reactor design, a planar plate reactor design, and a tubular reactor design.						
1 2 3	73.	The apparatus of claim 65, wherein the reactor further comprising: a membrane for separating a fuel from the reactant, wherein the fuel is derived from the reactant.						
1 2 3	74.	The apparatus of claim 65, further comprising: a fuel cell in fluid communication with the reactor and wherein the fuel cell is adapted for generating electricity from the fuel.						
1 2 3 4	75.	An integrated fuel processing apparatus comprising: an atomizer, including: a first reservoir for receiving a reactant, an atomizer actuator disposed in communication with the first reservoir for						
5 6 7		generating an acoustical pressure wave through the reactant, and a first set of ejectors including at least one ejector for dispensing atomized reactant in response to the acoustical pressure wave; and						
8		a reactor comprising a catalytically active membrane fluidically coupled to the atomizer.						

1	70.	A method, comprising:
2		providing an atomizer having at least one ejector nozzle, at least one atomizer
3		reservoir, and at least one actuator, wherein the atomizer reservoir is disposed between
4		the ejector nozzle and the actuator;
5		activating the actuator to generate an acoustical pressure wave for forcing the
6		reactant through the ejector nozzle; and
7		atomizing the reactant to produce an atomized reactant.
1	77.	The method of claim 76, further comprising:
2		mixing the atomized reactant with a gas;
3		transferring the atomized reactant/gas to a reactor, wherein the reactor includes a
4		membrane and a channel having a catalyst disposed thereon, and wherein the membrane
5		bounds the channel on at least one side;
6		forming a fuel and reaction products by reacting the atomized reactant/gas and
7		catalyst in the channel; and
8		separating the fuel from the atomized reactant/gas and reaction products using the
9	,	membrane to produce a substantially pure fuel steam.
1	78.	The method of claim 76, further comprising:
2		collecting the fuel in a second channel of a fuel cell; and
3		generating electricity from the fuel.
1	79.	The method of claim 76, further comprising:
2		focusing the acoustical pressure wave with a structure of the atomizer.

1	80.	The method of claim 76, further comprising:
2		providing at least one channel that fluidically couples the atomizer and a reactant
3		storage reservoir, wherein the channel includes a flexible membrane responsive to a
4		signal to expand and contract a cross-sectional area of the channel; and
5		transferring the reactant to the atomizer from the storage reservoir by causing the
6		flexible membrane to contract the cross-sectional area of the channel.
1	81.	The method of claim 77, further comprising:
2		providing at least one channel that fluidically couples the atomizer and the
3		reactor, wherein the channel includes a flexible membrane responsive to a signal to
4		expand and contract a cross-sectional area of the channel; and
5		transferring the reactant to the reactor from the atomizer after atomizing the
6		reactant by causing the flexible membrane to contract the cross-sectional area of the
7		channel.
1	82.	The method of claim 77, further comprising:
2		introducing the atomized reactant/gas to the reactor in a first direction at a first
3		end of the reactor along the membrane, and
4		introducing the atomized reactant/gas to the reactor in a second direction at a
5		second end of the reactor along the membrane, wherein introducing the atomized
6		reactant/gas in the first direction and the second direction is alternated to achieve a forced
7		unsteady-state operation of the reactor.

1	83.	Αn	nethod	of	moving	a	fluid,	compris	ing
•	.			-		•	,	p	

providing at least one channel that fluidically couples a first structure to a second structure, wherein the channel includes a flexible membrane responsive to a signal to expand and contract a cross-sectional area of the channel; and

transferring the fluid to the second structure from the first structure by causing the flexible membrane to contract the cross-sectional area of the channel while the channel is under a constant parameter selected from a pressure and a flow rate.

1 84. A method of reverse-flow in a reactor, comprising:

providing a reactor having at least one internal channel for transporting a reactant in a first direction and a second direction to produce a fuel, wherein the reactor includes a catalyst disposed on the reactor;

introducing the reactant to the reactor in a first direction at a first end of the reactor; and

introducing the reactant to the reactor in a second direction at a second end of the reactor along the membrane, wherein introducing the reactant in the first direction and the second direction is alternated to achieve a forced unsteady-state operation of the reactor, and wherein the reactant reacts with the catalyst to produce the fuel

85. A method, comprising:

controlling a pressure through flow rate in a system using an actuator.