GENERAL CERTIFICATE OF EDUCATION (GCE) BOARD

General Certificate of Education Examination

 α and β we the nods of $2x^2 + x - 3$. This can can

JI	T	N	F	2	02	1
	U.		r,	·L	u z	

June 2021/0575/2/B/Q

© 2021 GCEB

(Carent S)

approfit me that can be made a fine a + to ORDINARY LEVEL

June 2021/0575/2/8/Q

Subject Title	е	Additional Mathe		
Paper No.		2	are—and——and——	
Subject Cod	le No.	0575		
To rento	fem a	nd a class prefect girl	Find the number of ways of selecting a class profeet boy a	(1)
Ladance h.			India to the city of	(ii)
g powers	scendin	of $(1-2x)^{-1}$ in a	Write shown the first three terms in the same and a half hours	(11)
(4 marles)			with the year answer as the aspossole.	
nswer ALL (ECTION B (QUES or SEC	TIONS IN SECTION C. IN SECT	ON A and ANY TWO QUESTIONS FROM EITHER TIONS B AND C, ALL QUESTIONS CARRY EQUAL	AT The
	'v		Month Monthly Monthly salary (M)	
			Increase (19	
andidates are	expec	ted to answer a com	abination of Section A and Section B OR Section A and	Section C
		on of all three	$2 I_2 = 1,000 I_3 = 110,000$	
			$J_3 = 1.100$ $M = 321.000$	
There necessary	ets may	y be used. oom $\forall x = x \neq x \in \{4\}$	 the salary for the sixth month. the total salary earned by the teacher within the first 6 mon. The binary operation * is defined over the set, S = [1, 2, 3]. (a) Copy and complete the operation table below for (S, *). 	
(1 mark)		nie associativity]	(b) Give a reason why (5, *) does not form a group! [Assure a matrix, $M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ and form a matrix, $M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$	(ii)
		is placement from Con-	(a) Find the inverse of M .	
(3 marks)				
	alt and	he valuable of the	(b) Find the point whose image is (5, -1) under the trans	
(box 6	on no	pourosoulot noneiluor	matrix, M.	
(2 marks)			Turi	n Over

Go to the next page

SECTION A: PURE MATHEMATICS THIS SECTION IS COMPULSORY TO ALL CANDIDATES (ANSWER ALL QUESTIONS)

1. (i) Given that (x + 2) is a factor of f(x), where $f(x) = x^3 + 3x^2 + kx + 6$.

(a) Find the value of k.

(2 marks)

With this value of k,

(b) Show that $f(x) = (x+2)(x^2+x+3)$.

(2 marks)

- (ii) Given that α and β are the roots of $2x^2 + x 3$,
 - (a) find the values of $\alpha + \beta$ and $\alpha\beta$.

(2 marks)

Hence,

(b) write down another quadratic equation with integral coefficients whose roots

are
$$\frac{1}{\alpha}$$
 and $\frac{1}{\beta}$.

(2 marks)

- 2. (i) Find the number of ways of selecting a class prefect boy and a class prefect girl from a class of 4 boys and 5 girls. (4 mar
 - (ii) Write down the first three terms of the binomial expansion of $(1-2x)^{-1}$ in ascending powers of x, simplifying your answer as far as possible. (4 marks
- 3. The basic salary of a teacher in a school is 100,000 FCFA and his salary is increased monthly by 10%. The table below shows his salary for the first 3 months.

Month	Monthly	Monthly salary (M)		
	Increment (I)			
1.	$I_1 = 0$	$M_1 = 100,000$		
2	$I_2 = 1,000$	$M_2 = 110,000$		
3	$I_3 = 1,100$	$M_3 = 121,000$		

(a) Show that $\frac{M_3}{M_2} = \frac{M_2}{M_1}$.

(2 marks)

Hence or otherwise, find:

1,) the salary for the sixth month,

(3 marks)

c) the total salary earned by the teacher within the first 6 months.

(3 marks)

- 4. (i) The binary operation * is defined over the set, $S = \{1, 2, 3, 4\}$ as $x * y = x^y$ modulo 5.
 - (a) Copy and complete the operation table below for (S, *).

(3 marks)

	-			
*	1	2	3	4
1	1		1	1
2	2	4		1
3	3	4	2	
4	4		3	1

(b) Give a reason why (S, *) does not form a group. [Assume associativity]

(1 mark)

- (ii) Given a matrix, $M = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$.
 - (a) Find the inverse of *M*. Hence or otherwise,

(3 marks)

(b) Find the point whose image is (5, -1) under the transformation represented by the matrix, M.

(2 marks)

111 10 1	- She r	nan has x cups of beans and y cups of corn to prepare corn chaff. Given that: must use at least 2 cups of beans and at least 4 cups of corn quantity of corn she uses must be greater than or equal to the quantity of beans.	(ii)
1800	If the (a) Wr	quantity of bean and corn that she has to prepare the corn chaff is 20 cups, down of small rite down four inequalities in terms of x and y that satisfy these conditions.	(3 marks)
marks	(b) Sha	ade so as to leave unshaded, the region represented by these inequalities. (4) ven that a cup of beans costs 100 francs and a cup of corn cost 50 francs,	(3 marks)
locitie of	(c) Fin	nd the maximum expenditure that can be incurred by the woman. The bank 8 solviting ow the solviting solviting ow the solviting solviting of the solviting so	(2 marks)
		olve for θ , in the range, $0^{\circ} \le \theta \le 360^{\circ}$, the equation $\sin 2\theta - \cos \theta = 0$. The function $f(x) = \sqrt{3} \cos x + \sin x$, where $0 \le x \le 2\pi$.	(3 marks)
marks) marks	(2	a) Copy and complete the table. (a) Copy and complete the table. (b) Copy and complete the table.	(3 marks)
) 1	. 11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(i) .0
narks)		f(x) 1.7 1 -1.7 -1.7 0 1.7	
narks	(1 L) Ta	aking 1cm to represent $\frac{\pi}{6}$ radian units on the x-axis and 2cm to represent 1 unit on the y-axis,	
	tor rich	The area bounded by the carrie $y^2 = x^2 + 1$, the seases are $f(x) = f(x)$ and the drawn of $y = f(x)$	(2 marks)
narks id	Fr	rom the graph or otherwise.	(1 mark)
	(c	write down the maximum value of $f(x)$. and to solution with the device of $f(x)$ with the devi	(1 mark)
marks	(0)	Find the position vector of the contre of gravity of these three particles	1 7 16,1
_	The p	points P and Q have position vectors $3i - 2j$ and $2i + 3j$ respectively.	1 1 Mari
2kg.	The p	points P and Q have position vectors $3i - 2j$ and $2i + 3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r = a + tb$,	(1) (2 marks)
2kg. marks)	The p (a) W w Ar	points P and Q have position vectors $3i - 2j$ and $2i + 3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r = a + tb$, where t is a scalar. In the line, l_2 has vector equation, $l_2 : r = 2i + 3j + s(5i + j)$, where, s is also a scalar.	(1) (2 marks)
2kg. marks)	The p (a) W W Ar Fin	points P and Q have position vectors $3i - 2j$ and $2i + 3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r = a + tb$, where t is a scalar. In the respective equation, $l_2 : r = 2i + 3j + s(5i + j)$, where, s is also a scalar. In the position vector of the point of intersection of the lines l_1 and l_2 .	(2 marks)
2kg. marks marks	The p (a) W W Ar Fin (b) th	points P and Q have position vectors $3i - 2j$ and $2i + 3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r = a + tb$, where t is a scalar. In the line, l_2 has vector equation, $l_2 : r = 2i + 3j + s(5i + j)$, where, s is also a scalar. In the position vector of the point of intersection of the lines l_1 and l_2 .	(2 marks)
2kg. marks) marks	The p (a) W W Ar Fin (b) th	points P and Q have position vectors $3i - 2j$ and $2i + 3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r = a + tb$, where t is a scalar. In the line, l_2 has vector equation, $l_2 : r = 2i + 3j + s(5i + j)$, where, s is also a scalar. In the position vector of the point of intersection of the lines l_1 and l_2 .	(2 marks)
narks) marks marks marks	The p (a) W W Ar Fin (b) th (c) th	points P and Q have position vectors $3i - 2j$ and $2i + 3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r = a + tb$, where t is a scalar. In the respective equation, $l_2 : r = 2i + 3j + s(5i + j)$, where, s is also a scalar. In the position vector of the point of intersection of the lines l_1 and l_2 .	(2 marks)
marks marks marks marks marks	The p (a) W W Ar Fin (b) th (c) th	points P and Q have position vectors $3i - 2j$ and $2i + 3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r = a + tb$, where t is a scalar. In other line, l_2 has vector equation, $l_2 : r = 2i + 3j + s(5i + j)$, where, s is also a scalar. In other line, l_2 has vector of the point of intersection of the lines l_1 and l_2 . The equation of the point of intersection of the lines l_1 and l_2 . The equation of the point of intersection of the lines l_1 and l_2 . The equation of the point of intersection of the lines l_1 and l_2 . The equation of l_1 and l_2 are equation of l_2 and l_2 are equation of l_1 and l_2 are equation of l_1 and l_2 are equation of l_1 and l_2 are equation of l_2 and l_2 are equation of l_1 and	(2 marks) (4 marks) (2 marks)
narks) marks marks marks	The p (a) W Ar Fin (b) th (c) the	points P and Q have position vectors $3i-2j$ and $2i+3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r=a+tb$, where t is a scalar. In the line, l_2 has vector equation, $l_2: r=2i+3j+s(5i+j)$, where, s is also a scalar. In the position vector of the point of intersection of the lines l_1 and l_2 . The earliest between the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the point of intersection of the lines l_1 and l_2 . In the position vector of the position vector of the li	(2 marks) (4 marks) (2 marks) (2 marks) (2 marks)
marks) marks marks marks	The p (a) W Ar Fin (b) th (c) the	points P and Q have position vectors $3i-2j$ and $2i+3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r=a+tb$, where t is a scalar. The position vector equation, $l_2: r=2i+3j+s(5i+j)$, where, s is also a scalar. The position vector of the point of intersection of the lines l_1 and l_2 . The engle between the lines l_1 and l_2 . The engle between the lines l_1 and	(2 marks) (4 marks) (2 marks) (2 marks) (2 marks)
2kg. marks c marks marks	The p (a) W Ar Fin (b) th (c) the	points P and Q have position vectors $3i-2j$ and $2i+3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r=a+tb$, where t is a scalar. The inequality l_2 has vector equation, $l_2: r=2i+3j+s(5i+j)$, where, s is also a scalar. The position vector of the point of intersection of the lines l_1 and l_2 . The end of l_1 is a scalar and l_2 and l_3 in the point of intersection of the lines l_1 and l_2 . The end of l_1 is a scalar and l_2 in the point of intersection of the lines l_1 and l_2 . The end of l_1 is a scalar and l_2 in the point of l_1 and l_2 in the point of l_1 and l_2 in the point of l_2 in the point of l_1 and l_2 in the point of l_2 in the point of l_1 and l_2 in the point of l_2 in the point of l_1 and l_2 in the point of l_2 in the point of l_1 and l_2 in the point of l_2 in the poi	(2 marks) (2 marks) (2 marks) (2 marks) (2 marks) (4 marks)
Zkg. marks) marks marks marks	The p (a) W Ar Fin (b) th (c) the	Printe down the vector equation of the line l_1 passing through P and Q in the form $r=a+tb$, where t is a scalar. The interpolation of the line l_1 passing through P and Q in the form $r=a+tb$, where t is a scalar. The interpolation l_2 has vector equation, $l_2: r=2i+3j+s(5i+j)$, where, s is also a scalar. The position vector of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of the point of intersection of the lines l_1 and l_2 . The end of the point l_1 and l_2 . The end of the point l_2 and l_3 and l_4 and l_4 and l_4 and l_4 and l_4 are end of the point l_4 and l_4 and l_4 and l_4 and l_4 are end of the point l_4 and l_4 and l_4 are end of the point l_4 and l_4 are end of th	(2 marks) (2 marks) (2 marks) (2 marks) (2 marks) (4 marks)
	The p (a) W Ar Fin (b) th (c) th (i)	points P and Q have position vectors $3i-2j$ and $2i+3j$ respectively. Write down the vector equation of the line l_1 passing through P and Q in the form $r=a+tb$, where t is a scalar. The incher line, l_2 has vector equation, $l_2: r=2i+3j+s(5i+j)$, where, s is also a scalar. The position vector of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of intersection of the lines l_1 and l_2 . The end of the point of the point of intersection of the lines l_1 and l_2 . The end of the point of the	(2 marks) (2 marks) (2 marks) (2 marks) (2 marks) (4 marks)

Go to the next page

Turn Over

	(ii)	A particle P, of mass $3kg$ lies at rest on a smooth plane, inclined at 30° to the horizontal	l. Given that
		the particle, P is attached to an inelastic string which passes over a smooth fixed pulley a plane, to another particle, Q of mass 6kg hanging freely. Given that the system is release	at the top of the
arks)	m E)	with the string taut, find:	ip 581 41
		(a) the common acceleration of the particles,	(4 marks)
arks)	m E)	(b) the tension in the string the region represented by the string of the sound of	(2 marks)
rarks)	(iii)	Two particles S and T of masses $2kg$ and $3kg$ respectively are moving in a straight line $12 ms^{-1}$ and $6 ms^{-1}$ respectively. S collides with T and after collision S moves with a vertex of the straight line $12 ms^{-1}$ and $12 ms^{-1}$ respectively.	
arks)	m E)	$6 ms^{-1}$. $0 - 9 so - 9 So$, the equation $\sin 2\theta - \cos \theta = 0$.	
		Find: $\int (x) = \sqrt{3} \cos x + \sin x, \text{ where } 0 \le x \le 2\pi.$	TOE TOE
(edte)	m E)	(a) the velocity of T after collision.	(/marke)
		(b) the loss in kinetic energy after collision.	(3 marks)
-	111	0 R E W 2n 5n n 7n 4n 3n 5n 1m 2n	
10.	(i)	The rate of change of the radius of a circle is $2cms^{-1}$ at the instant when the radius is 2	cm.
		Find:	<u>.</u>
		(a) the rate of change of the area of the circle,	(3 marks)
		(b) and the rate of change of the circumference of the circle.	
(z)he	(ii)	The area bounded by the curve $y^2 = x^2 + 1$, the x-axis and the ordinates $x = 1$ and $x = 1$	= 3 is rotated
		completely about the x-axis. Find the volume of the solid generated.	(6 marks)
(Ansr	(iii)	The position vectors of three particles of masses 2kg, 5kg and 9kg are $(-2i + 3j)$, $(4i - 2i + 3j)$	— 3 j) and
	_	(3i + 5j) respectively.	
		Find the position vector of the centre of gravity of these three particles.	(6 marks)
11.	(i)	The forces $F_1 = (pi + j)N$, $F_2 = (2qi + 3pj)N$ and $F_3 = (i + qj)N$ act on a particle	of mass 2kg.
arks).	m (1)	(a) Find the resultant of the three forces in terms of p and q .	(3 marks)
		Given that a fourth force, $F_4 = (6i)N$ is added to the system and the system is at equilib	orium.
		(b) Find, the values of p and q .	(5 marks)
(zhts)	(ii)	A car of mass $2000kg$ has a maximum speed of $10 ms^{-1}$ up a slope inclined at an angle	$e \theta$ to the
nacks)	н 🗐	horizontal, where, $\sin \theta = 0.4$, against a constant resistance of 2000 N.	340 (G)
		(a) Find the power generated by the engine of the car.	(4 marks)
-		Given that the power generated and the resistance remain unchanged,	
		(b) Find the acceleration of the car on a level road at the instant when the speed is 2	$20 \ ms^{-1}$.
orks)	m ()	can Province to a similar manner, the gradie a function of $f'(x)$	(5 marks)
deshi.	m I.i	(b) Palume ('(-1)	
anks)-	ni 🍇	Evaluate $\int_0^{\frac{\pi}{4}} (2x + \sin 2x) dx$.	
	****	SECTION B: MECHANICS	
		IF THIS SECTION IS CHOSEN, THEN SECTION C MAY NOT BE CHOSEN	
		(AMSWORR AMY TWO QUESTIONS)	

Diana 2021/0575 LB/Q

A particle moves from rost in a straight line from a fixed point (), and after t seconds of its motion .

SECTION C: STATISTICS AND PROBABILITY IF THIS SECTION IS CHOSEN, THEN SECTION B MAY NOT BE CHOSEN (ANSWER ANY TWO QUESTIONS)

12. The marks scored by 100 students in an examination are distributed as follows:

Marks (x)	1 - 5	6 -10	11-15	16-20	21-25	26-30	31-35	36 - 40
Number of								
students (f)	8	10	12	20	23	12	9	6

(a) Draw a cumulative frequency graph of the distribution.

(5 marks)

From your graph, estimate:

(b) the median,

(3 marks)

(c) the semi-interquartile range.

(4 marks)

(d) Find the mean of the distribution.

(5 marks)

13. (i) A discrete random variable, X has probability mass function, p defined by

$$p(x) = \begin{cases} \frac{(x+1)}{k}, & \text{for } x = 0, 1, 2, 3, 4 \\ 0, & \text{elsewhere} \end{cases}$$

where, k, is a constant.

(a) Copy and complete the distribution table.

(2 marks)

x	0	1	2	3	4
P(X=x)	1		3		
	\overline{k}		\overline{k}		

Find:

(b) the value of the constant k.

(2 marks)

(c) the mean and variance of X.

(5 marks)

(ii) A random variable, X is such that $X \sim Bin(10, \frac{1}{2})$.

Find:

(a) The mean and the standard deviation of the distribution.

(3 marks)

(b) P(X < 2)

(3 marks)

(c) $P(X \ge 2)$

(2 marks)

14. (i) Two events A and B are independent such that $P(A) = \frac{1}{5}$ and $P(B) = \frac{3}{20}$.

Find:

(a) $P(A \cap B)$,

(2 marks)

(b) $P(A \cup B)$,

(3 marks)

(c) $P(A' \cap B)$.

(3 marks)

(ii) In a class of 200 students 80 are boys and 120 are girls. Given that $\frac{3}{4}$ of the boys and $\frac{2}{5}$ of the girls offer the sciences. A student X is chosen at random from the class. By drawing a tree diagram or otherwise, find the probability that:

(a) X offers the sciences.

(3 marks)

(b) X is a girl or offers the sciences.

(3 marks)

(c) X is a boy given that he offers the sciences.

(3 marks)