Definitions

REINFORCEMENT LEARNING

Introduction to Reinforc... 3/3 Markov Decision Proce... 12/23 Reinforcement Learning 0/16

GAME THEORY

Game Theory

24/24

PROJECT

Project Details

5/6

- Overview
- Software Requirements
- Common Problems with PyG...
- Starting the Project
- **Definitions**
- Submitting the Project

Submission

Definitions

Environment

The smartcab operates in an ideal, grid-like city (similar to N North-South and East-West directions. Other vehicles will ce there will be no pedestrians to be concerned with. At each in either allows traffic in the North-South direction or the Eastrules apply:

- On a green light, a left turn is permitted if there is no c or coming straight through the intersection.
- On a red light, a right turn is permitted if no oncoming through the intersection. To understand how to correct turning left, you may refer to this official drivers' educ (https://www.youtube.com/watch?v=TW0Eq2Q-9Ac), (https://www.youtube.com/watch?v=0EdkxI6NeuA).

Inputs and Outputs

Assume that the *smartcab* is assigned a route plan based or and destination. The route is split at each intersection into v the *smartcab*, at any instant, is at some intersection in the w to the destination, assuming the destination has not already away in one direction (North, South, East, or West). The sma the intersection it is at: It can determine the state of the traf movement, and whether there is a vehicle at the intersection directions. For each action, the *smartcab* may either idle at t intersection to the left, right, or ahead of it. Finally, each trip which decreases for each action taken (the passengers want time becomes zero before reaching the destination, the trip

Rewards and Goal

The *smartcab* will receive positive or negative rewards basec Expectedly, the *smartcab* will receive a small positive reward varying amount of negative reward dependent on the sever

REINFORCEMENT LEARNING			
Introduction to Reinforc 3/3			
Markov Decision Proce 12/23			
Reinforcement Learning 0/16			
GAME THEORY			
Game Theory 24/24		24/24	
PROJECT			
Project Details 5/6			
√	Overview		
√	Software Requirements		
√	Common Problems with PyG		
√	Starting the Project		
√	Definitions		
•	Submitting the Project		

Submission

have committed. Based on the rewards and penalties the sr. agent implementation should learn an optनिर्द्धी गृंखें शिश्र For dri traffic rules, avoiding accidents, and reaching passengers' du