Boolos and Jeffrey - HW2

David Maldonado, david.m.maldonado@gmail.comSeptember 8, 2014

1 All nodes lead to Rome.

Proposition:

The set of nodes of an infinite binary tree is enumerable.

Conclusion:

Proof. Starting from the single origin node at the first level d = 1 the amount of nodes on each level is 2^d . The nodes can be counted simply starting at the origin like so:

2 What a long, strange trip it's been.

Proposition:

The set of infinite paths beginning at the origin down an infinite binary tree is not enumerable.

Conclusion:

(in progress)

3 \mathbb{N} into \mathbb{N}

Proposition:

Where \mathbb{N} is the set of positive integers, prove that the set of all *one-to-one*, total functions from \mathbb{N} into \mathbb{N} is not enumerable.

Conclusion:

(in progress)

4 \mathbb{N} onto \mathbb{N}

Proposition:

Where \mathbb{N} is the set of positive integers, prove that the set of all *one-to-one*, total functions from \mathbb{N} onto \mathbb{N} is not enumerable.

Conclusion:

(in progress)