Aula 16 - Análise sintática: Gramática, Linguagens e Ambiguidade

Análise Sintática

- Processo que verifica se uma determinada entrada corresponde ao de uma gramática
- Seja G1 uma gramática, L(G1) uma linguagem definida por G1 e "a" uma sentença de entrada.

Então, um analisador sintático é uma ferramenta capaz de dizer se "a" ∈ L(G1)

• Hierarquia de Chomsky

Reconhecedores para cada nível da Hierarquia de Chomsky

Tipo	Nome	Exemplo	Reconhecedor	Complexidade
0	Recursivamente	Estrutura	Maquina de	Undecidable
	Enumerável	de Frase	Turing	
1	Linguagem	a ⁿ b ⁿ c ⁿ	Aut. Linearm.	NP-Completo
	Sensível Cont.		Delimitado	
2	Linguagem Livre	a ⁿ b ⁿ	Automato a	$O(n^3)$
	de Contexto		Pilha	
3	Linguagem	a ⁿ b	Automato	O(n)
	Regular		Finito	

C

Linguagens Livres de Contexto Determinísticas

- Linguagens livres de contexto determinísticas são um subconjunto das LLC onde as linguagens não são ambíguas
 - Todas as linguagens de programação pertencem a esta classe
- Para se especificar uma linguagem de programação, é necessário formalizar sua sintaxe, semântica e alfabeto.
 - o Para especificar a sintaxe, usa-se a BNF (Formalismo de Backus-Naur)
 - Para especificar a semântica, usa-se regras informais. Por exemplo, associar o símbolo "*"
 com a operação de multiplicação
 - Alfabeto (Σ): conjunto finito e não vazio de símbolos
 - o Cadeia (palavra ou sentença): sequência finita de símbolos do alfabeto.
 - Σ* = conjunto de todas as sentenças de um alfabeto
 - Uma linguagem é um subconjunto de Σ*

Gramática

- Uma gramática livre de contexto é definida pela 4-tupla G={T, V, P, S} onde
 - T = Símbolos terminais
 - V = Símbolos não terminais / variáveis
 - P = Produção ou regras

- S = Símbolo inicial
- Exemplo

S

- \circ G1 = {{a, b}, {S}, {S \rightarrow ab|aSb}, S)
- Derivações: S ⇒ aSb ⇒ aaSbb ⇒ aaabbb
- Linguagem: $L(G1) = \{a^nb^n, n \ge 1\}$
- Árvore de derivação
 - o Uma árvore de derivação é uma alternativa gráfica para mostrar o processo de derivação de uma sentença em uma gramática
 - \circ S ⇒ aSb ⇒ aaSbb ⇒ aaabbb

- Gramática Ambígua
 - Uma gramática é dita ambígua se existe uma sentença para a qual existe mais de uma árvore de derivação
 - Exemplo: G2 = {E \rightarrow a|E + E}, α = a + a + a

 \circ Para eliminar a ambiguidade de uma gramática G1, deve-se reescrever a gramática para uma nova gramática G2 não ambígua tal que L(G1)=L(G2). Exemplo: G1 = {A \rightarrow Aa|aA|a} para G2 = {A \rightarrow Aa|a}

Contexto em compiladores

- Em compiladores, o alvo é um subconjunto de linguagens livres de contexto chamadas "Linguagens livres de contexto determinísticas", que não são ambíguas, são o conjunto de linguagens do qual fazem parte todas as linguagens de programação e os reconhecedores tem complexidade O(n).
- Seja α uma sentença e G uma gramática para uma LLCD. O que será estudado aqui são mecanismos para reconhecer se $\alpha \in L(G)$.
 - Para tal, existem duas abordagens: top-down e bottom-up.