# MATH 578 Numerical Analysis, Fall 2020 Student Notes

#### Kai Yang

kai.yang2@mail.mcgill.ca McGill University Montréal, Quebec Canada H3A 1A2

January 23, 2021

#### **Abstract**

This is just my re-organized notes going through the highlights from the course material for MATH 578 Numerical Analysis, Fall 2020 [1] and the course textbooks. As a computational statistician muggle taking this course for optimization, this notes *might* not suit your needs. As an overview, the first chapter covers up some basics of analytic functions – specifically, Lagrange interpolation (Taylor series expansion is a special case) and minimax polynomials; the second chapter focuses on solving linear systems, which includes Gaussian elimination, LU factorization, QR factorization, with some content on error analysis; the third and fourth chapters are on eigenvalue problems and iterative methods (all eigenvalue problems must be iterative!), they mostly follow from *Numerical linear algebra*, and consisting of QR algorithms, Arnoldi iteration, GMRES and CG. The last section is on quadrature and ODE solvers, where I gave a very brief summery on Chapter 11 of the book *Numerical Mathematics*.

## 1 Function Evaluation

**Basic Computer Arithmetic**  $\forall a \in \mathbb{Z}$ , a base- $\beta$  representation exists for some  $\beta \in \mathbb{N} \setminus \{1\}$ :

$$a = \pm \sum_{k=0}^{\infty} a_k \beta^k$$

where  $0 \le a_k \le \beta - 1$  is defined as the k-th digit of a in base  $\beta$ . And grade-school column sum/difference first carries out *Cauchy sum* or *difference*, which takes sum/difference for each digits; then it recursively perform carrying for addition for borrowing for subtraction. Let

$$n := \max\{k|a_k \neq 0\}, m := \max\{k|b_k \neq 0\}$$

So a, b will be n + 1 and m + 1 digit number. The bit complexity for addition/subtraction will then be O(n + m + 1). Column multiplication carries out similarly. However, multiplication can also be done row-wisely: the *Cauchy product* 

$$ab = \left(\sum_{i=0}^{\infty} a_i \beta^i\right) \cdot b = \sum_{i=0}^{n} a_i \cdot \beta^i b$$

where  $\beta^j b$  is simply shifting digits, and multiplication by  $a_i$  can be carried out as column addition. The bit complexity for column multiplication would then be O(nm + 1).

As for division algorithm, assume that the quotient is expressed as:

$$q = q_0 + q_{-1}\beta^{-1} + q_{-2}\beta^{-2} + \cdots$$

And let a, b here be positive and normalized. The partial reminder refers to the normalized reminder obtained in the division process. Two division algorithms for a/b were introduced here: i). restoring division: keeping performing subtraction see if the partial reminder goes below 0, and if it goes below 0, "restore" by adding the divisor back to it to prevent negative digits; ii). non-restoring division: the idea of non-restoring division is to use generalized digit, e.g.  $\{-1,1\}$  for binary computing, to allow negative sign in a digit, and a conversion back to standard digit will be indeed required in the end. To generalize

non-restoring division to any radix  $\beta$ , note that the partial reminders are given by:

$$r_{j+1} = \beta r_j - q_{-j}b$$

the above two division processes determine  $q_{-j}$  both by subtracting b from  $\beta r_j$ , the difference is for restoring division,  $0 \le q_{-j} < \beta$  gives partial reminder  $0 \le r_{j+1} < b$ ; for non-restoring division,  $-\beta < q_j < \beta$  gives partial reminder  $-b \le r_{j+1} < b$ .

However, both of above division algorithms are not efficient – especially not for bignums. WLOG, let *a*, *b* be integers here, the idea of *long division* is to determine the quotient by observing the first digit of the divisor and perform restoring division. In comparison, *SRT division* is non-restoring division with normalized divisor and reminder. *Error propagation* describes the idea of computation will alternate (mostly increase) the error of approximation numbers, such as floating point numbers. Usually error propagation is captured upper-boundedly by *conditional number*, e.g. conditional number of summation is

$$\kappa_{+}(x) = \frac{|x_1| + |x_2| + \dots + |x_n|}{|x_1 + x_2 + \dots + x_n|}$$

Furthermore, the following axiom is used for a wide-range of numerical error analysis for floating point numbers: For each  $\star \in \{+, -, \times, /\}$ , there exists a binary operation  $\oplus : \tilde{\mathbb{R}} \times \tilde{\mathbb{R}} \mapsto \tilde{\mathbb{R}}$  s.t.

$$|x \star y - x \otimes y| \le \varepsilon |x \star y|, \ x, y \in \tilde{\mathbb{R}}$$

dividing by zero is excluded. Normally,  $\varepsilon$  is referred as "machine precision."

**Evaluation of Power Series** A function  $f:(a,b)\mapsto\mathbb{R}$  is called *analytic* at  $c\in(a,b)$  if it can be developed into a power series around c; and called analytic at (a,b) if analytic at c,  $\forall c\in(a,b)$ . For such class of analytic functions, a way to evaluate them is through Taylor series, backed by a generalized version of mean value theorem proposed by Lagrange: Let f be a n+1 times differentiable function in (c,x), with  $f^{(n)}$  continuous in [c,x). Then  $\exists \xi \in (c,x)$  s.t.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}$$

See Lagrange interpolation section coming later for proof. This theorem gives an expression of the error as a result of approximating using n-th order Taylor series. Moreover, recall that the *relative condition number* is defined by:

$$\kappa \coloneqq \lim_{\varepsilon \downarrow 0} \sup_{\|\delta x\| \le \varepsilon} \frac{\|\delta f\|/\|f(x)\|}{\|\delta x\|/\|x\|}$$

then the following power series are listed with their relative condition numbers:

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k, \ \forall |x| < 1$$

$$\kappa(x) = \left| \frac{(1-x)^{-2}}{(1-x)^{-1}/x} \right| = \left| \frac{x}{1-x} \right|$$

$$e^x = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \dots, \ \forall x \in \mathbb{R}$$

$$\kappa(x) = \left| \frac{(e^x)'}{e^x/x} \right| = |x|$$

$$\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{n-1} x^n}{k}, \ -1 < x \le 1$$

$$\kappa(x) = \left| \frac{(1+x)^{-1}}{\log(1+x)/x} \right| = \frac{x}{(1+x)} \cdot \left| \frac{1}{\log(1+x)} \right|$$

$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}, \ \forall x \in \mathbb{R}$$

$$\kappa(x) = \left| \frac{\cos x}{\sin x/x} \right| = |x \cot x|$$

$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \ \forall x \in \mathbb{R}$$

$$\kappa(x) = \left| \frac{-\sin x}{\cos x/x} \right| = |x \tan x|$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, \ |x| \le 1$$

$$\arcsin x = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots, \ -1 \le x < 1$$

**Acceleration of Convergence** Two methods of acceleration of convergence are discussed here:

i). Euler transform: Hausdorff moment characterization theorem says that (margin here too narrow to contain a good proof)

$$m_k \coloneqq \int_0^1 x^k d\mu$$
 for some  $\sigma$ -additive Borel probability measure  $\mu$ 

 $\Leftrightarrow m_0 = 1$ , and m is completely monotone; i.e.,  $\forall n, k \ge 0$ ,  $(-1)^n \Delta^n m_k \ge 0$ 

Note the recursive definition  $\Delta^n m_k := \Delta^{n-1} m_{k+1} - \Delta^{n-1} m_k$  in above formula. Meanwhile, the formula to numerically evaluate  $\pi$  given as

$$\frac{\pi}{4} = \sum_{k=0}^{n} (-1)^k \frac{1}{2k+1}$$

can be accelerated by repeatedly taking average of two consecutive terms, called *Euler* transform. Applying Hausdorff moment characterization, error analysis for this can be done by noticing that

$$a_k = \frac{1}{k} = \int_0^1 t^k d\mu$$

and the rest follows from power series.

ii). Aitken's  $\Delta^2$ -process: used to evaluate a noisy geometric series. For a series defined by

$$a_k = Cq^k + O(\delta^k)$$
, for some  $0 < \delta < q < 1$   
 $S_n = \sum_{k=1}^n a_k$ 

Observe that

$$S = S_n + \sum_{k=n+1}^{\infty} a_k$$

$$= S_n + \sum_{k=n+1}^{\infty} Cq^k + O(\delta^n)$$

$$= S_n + \frac{Cq^{n+1}}{1-q} + O(\delta^n)$$

$$=S_n + \frac{a_n^2}{a_{n-1} - a_n} + O(\delta^n)$$

The last equality above used the fact that

$$q = \frac{a_n}{a_{n-1}} + O\left(\left(\frac{\delta}{q}\right)^n\right)$$

$$a_n = Cq^n + O(\delta^n)$$

$$\Rightarrow Cq^{n+1} = \left(\frac{a_n}{a_{n-1}} + O\left(\left(\frac{\delta}{q}\right)^n\right)\right) (a_n - O(\delta^n)) = \frac{a_n^2}{a_{n-1}} + O(\delta^n), \text{ and}$$

$$\frac{1}{1-q} = \frac{a_{n-1}}{a_{n-1}-a_n} + O\left(\left(\frac{\delta}{q}\right)^n\right)$$

Let

$$\Delta S_{n-1} := S_n - S_{n-1} = a_n$$
  
$$\Delta^2 S_{n-2} := a_n - a_{n-1} = \Delta a_{n-1}$$

We then have the easy-to-compute form for *S*:

$$S_n + \frac{a_n^2}{a_{n-1} - a_n} = S_n - \frac{(\Delta S_{n-1})^2}{\Delta^2 S_{n-2}}$$

which gives the name " $\Delta^2$ "

**Root Finding** Fixed point iterations are based on a theorem: Let  $\phi:(a,b)\mapsto(a,b)$  be continuous. Further, let  $x_{k+1}=\phi(x_k)$ ,  $x_0\in(a,b)$ , and

$$\forall x, y \in (a, b), \exists \rho < 1 \text{ s.t. } \left| \phi(x) - \phi(y) \right| \le \rho \left| x - y \right|$$

Moreover, assume that  $\exists \alpha \in (a,b)$  s.t.  $\phi(\alpha) = \alpha$ . Then  $\forall x_0 \in (a,b)$ ,  $x_n \to \alpha$  as  $n \to \infty$  (linear convergence). Note that possible underlying connection to Lipschitz continuity here. And recall that much of optimization can be more or less considered as a root finding procedure of the first-order optimality condition. The examples given in class are chord method (corresponding to gradient descent), and Newton-Raphson method (local quadratic convergence).

**Lagrange Interpolation** The problem *Lagrange Interpolation* aims to solve is, given  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ , find coefficients  $a_0, \dots, a_n$  for  $p \in \mathbb{P}_n$  s.t.

$$p(x) := \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

One way to get the coefficients for the polynomial is to use Lagrange coefficients:

$$\phi_k(x) := \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$$

and we can construct p(x) this way:

$$p(x) = \sum_{k=0}^{n} y_k \phi_k(x)$$

as it can be observed that

$$\phi_j(x_i) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Now define Lagrange interpolation as a map  $\mathcal{L}_n : \mathcal{C}(a,b) \mapsto \mathbb{P}_n$ , where  $\{x_0,\ldots,x_n\} \subset (a,b)$  are distinct and fixed; i.e., to take n+1 points on f and construct the Lagrange polynomial passing through these n+1 points. Note that  $\mathcal{L}_n$  is a projection, i.e.  $\mathcal{L}_n\mathcal{L}_n = \mathcal{L}_n$ . Recall we have mentioned Lagrange's generalization of mean value theorem to higher-orders for Taylor series in evaluation of power series section, and here is its origin – Lagrange Theorem:

Let *f* be n + 1th order differentiable in (a, b), and  $x \in (a, b)$ . Then  $\exists \xi := \xi(x)$  s.t.

$$\min\{x_0, ..., x_n, x\} < \xi < \max\{x_0, ..., x_n, x\}, \text{ and}$$
 (1)

$$f(x) - (\mathcal{L}_n f)(x) = \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi)$$

i.e., the idea is, existence of a point  $\xi$  on int (conv  $\{x_0, ..., x_n, x\}$ ) s.t. the Lagrange interpolation can have an error of power n + 1. The idea of proof is to construct the *Lagrange* reminder:

$$R(x) := f(x) - (\mathcal{L}_n f)(x); A := \frac{R(x)}{\prod_{i=0}^{n} (x - x_i)}$$

then the function

$$F(z) := f(z) - (\mathcal{L}_n f)(x) - A \prod_{i=0}^n (z - x_i)$$

has n+2 distinct zeros at  $\{x_0,\ldots,x_n,x\}$ ; F'(z) has n+1 distinct zeros; ...;  $F^{(n+1)}(\xi)=f^{(n+1)}(\xi)-A(n+1)!=0$  for some  $\xi$  in the convex hull as described in (1). This then implies that

$$f(x) - (\mathcal{L}_n f)(x) = R(x) = A \prod_{i=0}^{n} (x - x_i) = \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi)$$

Note here how Rolle's theorem is used to bridge the gap between higher-order in the last of the proof. Another noteworthy thing is that, Taylor's series expansion can be considered as Lagrange interpolation with repeated  $x_i$ .

**Runge's Phenomenon** Runge's phenomenon refers to the phenomenon that for a typical analytic function, equispaced Lagrange interpolation tends to oscillate more towards the boundary – that is, it tends to interpolate better in the middle. A typical analytic function will have  $f^{(n)}(x) \sim \frac{n!}{\delta^n}$ , and will have error  $\sim \frac{\pi(x)}{\delta^n}$  for  $\pi(x) = (x - x_0) \cdots (x - x_n)$ . This suggests that high-order polynomials on equispaced grid is not a good idea, rather, it's a better idea to pick more points around the edge. Alternatively, it might be a better idea to approximate a function not by interpolating at certain points, but rather to minimize the upper bound of the approximation error norm – which leads to the discussion of the following three sections.

**Weierstrass Approximation Theorem** The *Weierstrass Approximation Theorem* states that a polynomial is dense in the space of continuous function in uniform norm: Let

 $f \in \mathcal{C}[a,b]$  and  $\varepsilon > 0$ ; then  $\exists n \in \mathbb{N}$ ,  $\exists q \in \mathbb{P}_n(x)$  s.t.

$$\max_{x \in [a,b]} |f(x) - q(x)| \le \varepsilon$$

Bernstein proposed a constructive proof back in 1904. WLOG, [a,b] = [0,1]. Define Bernstein polynomials to have coefficients

$$\beta_{n,j}(x) := \binom{n}{j} x^j (1-x)^{n-j}, \ j=0,\ldots,n$$

i.e., binomial polynomial if you study stats... It has a few simple but useful properties:

- 1.  $\beta_{n,j}(x) > 0$ ,  $\forall x \in (0,1)$
- 2.  $\sum_{j=0}^{n} \beta_{n,j}(x) = 1$
- 3.  $\sum_{j=0}^{n} \frac{j}{n} \beta_{n,j}(x) = x$
- 4.  $\sum_{j=0}^{n} \frac{j^2}{n^2} \beta_{n,j}(x) = \left(1 \frac{1}{n}\right) x^2 + \frac{1}{n} x$

And the interpolation proceeds as: let  $x_j := \frac{j}{n}$ , j = 0, 1, ..., n, and let  $B_n f(x) := \sum_{j=0}^n f(x_j) \beta_{n,j}(x)$ . Then observe that

$$f(x) - B_n f(x) = f(x) \sum_{j=0}^{n} \beta_{n,j}(x) - \sum_{j=0}^{n} f(x_j) \beta_{n,j}(x)$$
$$= \sum_{j=0}^{n} [f(x) - f(x_j)] \beta_{n,j}(x)$$

Now split the function into two components:

$$R_{\delta}(x) := \left| \sum_{|x-x_{j}| \le \delta} \left[ f(x) - f(x_{j}) \right] \beta_{n,j}(x) \right|$$

$$\leq \left| \sum_{j=0}^{n} \beta_{n,j}(x) \right| \cdot \max_{y \in [0,1], |x-y| \le \delta} \left| f(x) - f(y) \right|$$

$$= 1$$

$$= :\omega(\delta)$$

$$S_{\delta}(x) := \left| \sum_{|x-x_{j}| > \delta} \left[ f(x) - f(x_{j}) \right] \beta_{n,j}(x) \right|$$

and construct interpolation sequence of  $\xi_1, \xi_2, ..., \xi_p$  between x and  $x_j$  s.t. the distance (in Euclidean norm) between two neighbor points  $\leq \delta$ , then

$$\left| f(x) - f(x_j) \right| \le |f(x) - f(\xi_1)| + |f(\xi_1) - f(\xi_2)| + \dots + \left| f(\xi_p) - f(x_j) \right|$$

$$\le (p+1)\omega(\delta)$$

$$\le \left( 1 + \frac{|x - x_j|}{\delta} \right) \omega(\delta)$$

This further implies that

$$|S_{\delta}(x)| \leq \sum_{\substack{|x-x_{j}| > \delta}} \omega(\delta) \beta_{n,j}(x) + \frac{\omega(\delta)}{\delta} \sum_{\substack{|x-x_{j}| > \delta}} |x-x_{j}| \beta_{n,j}(x) \leq \left(1 + \frac{1}{4\delta^{2}n}\right) \omega(\delta)$$

$$=:A$$

where above inequality uses the fact that

$$\delta A \leq \sum_{|x-x_{j}| > \delta} (x - x_{j})^{2} \beta_{n,j}(x)$$

$$\leq \sum_{j=0}^{n} (x - x_{j})^{2} \beta_{n,j}(x)$$

$$= x^{2} \sum_{j=0}^{n} \beta_{n,j}(x) - 2x \sum_{j=0}^{n} \frac{j}{n} \beta_{n,j}(x) + \sum_{j=0}^{n} \frac{j^{2}}{n^{2}} \beta_{n,j}(x)$$

$$= x^{2} - 2x^{2} + \left(1 - \frac{1}{n}\right)x^{2} + \frac{1}{n}x$$

$$= \frac{x(1-x)}{n}$$

$$\leq \frac{1}{4n}$$

Hence,

$$|f(x) - B_n f(x)| \le \left(2 + \frac{1}{4n\delta^2}\right)\omega(\delta), \ \forall \delta > 0 \text{ and } x \in [0, 1]$$

Pick  $\delta = \frac{1}{\sqrt{n}}$  completes the proof.

**Minimax polynomials** The *minimax polynomial* refers to the polynomial of a given degree that minimizes the uniform norm of the error for a continuous function on a closed interval, and its existence is ensured by the following theorem: Let  $f \in C[0,1]$  and  $n \in \mathbb{N}_0$ . Then  $\exists p \in \mathbb{P}_n$  s.t.

$$||f - p||_{\infty} = \inf_{q \in \mathbb{P}_n} ||f - q||_{\infty}$$

such q is called a *minimax polynomial* of degree n for f (on [0,1]).

The proof follows from continuous function attains its minimizer over a compact set (Weierstrass Theorem): For the sake of simplicity, let  $a \in \mathbb{R}^{n+1}$  denote the coefficient vector for a nth order polynomial q, and

$$E(a) := ||f - q||_{\infty} = \max_{x \in [0,1]} |f(x) - q(x)|$$

First we are to prove the continuity of *E*:

$$|E(a + \delta a)| \le |||f - q - \delta q||_{\infty} - ||f - q||_{\infty}|$$
  
$$\le ||\delta q||_{\infty}$$
  
$$\le |\delta a_0| + \dots + |\delta a_n|$$

Now let  $K := \{ a \in \mathbb{R}^{n+1} | E(a) \le ||f||_{\infty} + 1 \}$ . Then:

- 1. *K* is closed, because  $K = E^{-1}([0, ||f||_{\infty} + 1])$  (pre-image of a closed set under continuous mapping is closed)
- 2. K is bounded, because  $\|q\|_{\infty} \le \underbrace{\|f q\|_{\infty}}_{=:E(a)} + \|f\|_{\infty}$  and

$$||a|| \le \operatorname{constant} \cdot ||q||_{\infty} \Rightarrow E(a) \to \infty \text{ as } ||a|| \to \infty$$

3. *Nonempty*, because  $0 \in K$ 

Thus, by Weierstrass Theorem,  $\exists a^* \in K \text{ s.t. } E(a^*) = \inf_{a \in K} E(a)$  – but we still have to prove that  $E(a^*) = \inf_{a \in \mathbb{R}^{n+1}} E(a)$ :

$$E\left(a^{*}\right) \leq E\left(0\right) = \left\|f\right\|_{\infty} \leq \left\|f\right\|_{\infty} + 1 < E\left(a\right), \ \forall a \in \mathbb{R}^{n+1} \setminus K$$

**Equioscillation Theorems** Two important theorems are given to characterize minimax polynomials.

The first one is *De la Vallee Poussin Theorem*:  $\forall f \in C[a,b], n \in \mathbb{N}_0, p \in \mathbb{P}_n$ , if

$$f(x_i) - p(x_i) = (-1)^j e_i, \forall j = 0, 1, ..., n + 1$$

where  $a_0 \le x_0 < x_1 < \dots < x_{n+1} \le b$ , and sgn  $e_j = \text{constant for } j = 0, 1, \dots n+1$ ; then<sup>1</sup>

$$E_n(f) := \min_{q \in \mathbb{P}_n} ||f - q||_{\infty} \ge \min_{j} |e_j|$$

i.e., for a nth order polynomial p oscillates around f with intersecting f for n+1 times, the uniform norm of the minimax polynomial q is greater or equal to  $\min_j |e_j|$ . The proof is by contradiction: assume that the conclusion is false, then the difference of two nth order polynomials at  $x_0, x_1, \ldots, x_{n+1}$  satisfies

$$p(x_j) - q(x_j) = (-1)^j e_j + \underbrace{f(x_j) - q(x_j)}_{<|e_j|}$$

$$\Rightarrow p - q$$
 has  $n + 1$  (distinct) zeros

$$\Rightarrow p \equiv q$$

but it contradicts our assumption on p and q

The second one is *Chebyshev's Oscillation Theorem*, which characterizes the minimax polynomials:  $p \in \mathbb{P}_n$  is a minimax polynomial for  $f \in \mathcal{C}[0,1]$  iff f-p takes the value  $\pm ||f-p||_{\infty}$ , with alternating changes of sign, at least n+2 times in [0,1]. Moreover, this minimax polynomial is unique.

For statement besides uniqueness: Proof for " $\Leftarrow$ " is done by DLVP,  $||f - p||_{\infty} \le E_n(f) \Rightarrow$   $||f - p||_{\infty} = E_n(f)$  by minimality of  $E_n(f)$ ; proof for " $\Rightarrow$ " is done by contradiction: assume the conclusion is false, i.e., f - p takes the value  $\pm ||f - p||_{\infty}$  of k times for some  $2 \le k \le n + 1^2$ ,

<sup>&</sup>lt;sup>1</sup>existence of minimax polynomial was proved in Section 1

 $<sup>^{2}</sup>k \ge 2$  because it's a minimax polynomial

and let  $\delta := \pm \|f - p\|_{\infty}$ ; then  $f(x_i) - p(x_i) = (-1)^j \delta$  for j = 1, ..., k. And WLOG this allows us to (quasi-)partition [0,1] into k intervals split by  $\xi_1, \xi_2, ..., \xi_{k-1}$  s.t. on

$$(0,\xi_1),(\xi_2,\xi_3),\dots:-\delta \le f-p \le \delta-\varepsilon$$
$$(\xi_1,\xi_2),(\xi_3,\xi_4),\dots:-\delta+\varepsilon \le f-p \le \delta$$

for some  $\varepsilon > 0$ . Now let  $r(x) = \pm (x - \xi_1) \cdots (x - \xi_{k-1})$  – we'll discuss choice of sign shortly after, and let  $q(x) \coloneqq p(x) - \alpha \cdot r(x)$  for some small  $\alpha > 0$  s.t.  $\|\alpha r\|_{\infty} \le \frac{\varepsilon}{2}$ , then  $f - q = f - p + \alpha r$ . Thus on

$$(0,\xi_1),(\xi_2,\xi_3),\dots:-\delta<-\delta+\alpha r\leq f-q\leq \delta-\frac{\varepsilon}{2}$$
  
$$(\xi_1,\xi_2),(\xi_3,\xi_4),\dots:-\delta+\frac{\varepsilon}{2}\leq f-q\leq \delta+\alpha r<\delta$$

and we choose the sign of r(x) s.t. r > 0 on the first line above and r < 0 on the second line above. Then q actually takes strictly less error than p, which contradicts that p is the minimax polynomial.

For uniqueness statement: let p, q both be minimax polynomials, and let  $r := \frac{p+q}{2}$ . Then

$$|f - r| \le \frac{1}{2}|f - p| + \frac{1}{2}|f - q| \le E_n(f)$$

$$\Rightarrow |f - r| = E_n(f) \text{ at } n + 2 \text{ distinct points}$$

$$\Rightarrow f - p = f - q = \pm E_n(f) \text{ at those points - because } f - p = -(f - q) \Rightarrow f - r = 0$$

$$\Rightarrow p = q \text{ at } n + 2 \text{ distinct points}$$

$$\Rightarrow p \equiv q$$

**Chebyshev Polynomials** Recall that the Runge's phenomenon suggests that the equispaced interpolation of polynomials does not approximate the function well, then we aim to position the interpolation points over a non-equal grid to approximate the function better. For example, we are to find the minimax polynomial in  $\mathbb{P}_n$  for  $f(x) = x^{n+1}$ . Recall that sin, cos usually brings oscillations, but they are not polynomials *per se*, then Chebyshev introduced a polynomial variant from it:

$$t_n(x) := \cos(n\arccos x)$$

which is based on the idea that the projection of equispaced semi-circle on horizontal axis (see Fig. 1) – indeed this will put more interpolating points near the boundary. The above polynomial formula gives us  $t_n(x) = 1$ ,  $t_1(x) = x$ . Recall that

$$cos((n+1)\theta) + cos((n-1)\theta) = 2cos(n\theta)cos\theta$$

translate this into  $t_n(x)$ , it is

$$t_{n+1}(x) = 2t_n(x)x - t_{n-1}(x)$$

these are called *Chebyshev polynomials*, the zeros of  $t_{n+1}(x)$  satisfy  $(n+1) \arccos x = \frac{\pi}{2} + k\pi$  for k = 0, 1, ..., n.



## 2 Equation Solving

**Gaussian Elimination** The idea of *Gaussian Elimination* is based on use upper rows to eliminate front-end matrix terms – one term at a time; and the resulting matrix will be an upper-triangular matrix. e.g.:

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 3 & 3 \\ 8 & 7 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 3 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$A_{1} \longrightarrow A_{2} \longrightarrow A_{3}$$

written in matrix form of above example, it will be a series of left multiplications:

$$A_{2} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} A_{1}, A_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix} A_{2}$$

note that such  $\Lambda_k$  are always lower-triangular – in fact it only has nonzero entries at the kth column and all diagonal entries being 1, as we use upper rows to eliminate elements from lower rows.

**LU-decomposition** As a summary, for the example in the last section,  $A_3 = \underbrace{\Lambda_2 \Lambda_1 A}_{\Lambda}$ ; as a product of lower-triangular matrices,  $\Lambda$  is therefore also lower-triangular, hence  $\Lambda^{-1}$  is also lower-triangular. And the decomposition for full rank matrix  $A = \Lambda^{-1} A_3$  is called *LU-decomposition*, some useful results in practice:

- 1. LU-decomposition has arithmetic complexity of roughly  $\frac{1}{3}n^3$  multiplications;
- 2. LU-decomposition breaks down if  $(A_k)_{k,k} = 0$  for some k
- 3. L and U can be stored in a single  $n \times n$  array (because  $\Lambda^{-1}$  always has diagonal elements all being 1)

LU decomposition of *A* exists iff all principal minors of *A* are nonzero. If exists, LU decomposition is unique. This can be proved by *noticing that Gaussian elimination always* preserves principal minors. For uniqueness, let

$$LU = \hat{L}\hat{U} \Rightarrow \underbrace{\hat{L}^{-1}L}_{\text{lower-trig}} = \underbrace{\hat{U}U^{-1}}_{\text{upper-trig}} = I \Rightarrow \hat{U} = U, \hat{L} = L$$

Now the issue still remains if we encounter  $(A_k)_{k,k} = 0$  for some k. To solve this issue, and also to make most prominent values (measured by Euclidean norm) up to the top to

ensure numerical stability, *pivoting* is introduced. *Partial pivoting* means row interchanges (arithmetic complexity  $n^2$ ); and *complete pivoting* refers to row and column interchanges (arithmetic complexity  $\frac{1}{3}n^3$ ). An example for partial pivoting row interchange:

$$\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4
\end{bmatrix} = \begin{bmatrix}
a_2 \\
a_4 \\
a_1 \\
a_3
\end{bmatrix}$$

and the *permutation matrix* P has properties that  $PP^T = P^TP = I$ , and the product of permutation matrix is still a permutation matrix (recall it just interchanges rows). Now partial pivoting LU decomposition performs pivoting after each elimination step, specifically,

$$U = \Lambda_n P_n \Lambda_{n-1} P_{n-1} \cdots \Lambda_1 P_1 A$$

$$= \Lambda_n \underbrace{\left(P_n \Lambda_{n-1} P_n^{-1}\right) \left(P_n P_{n-1} \Lambda_{n-2} P_{n-1}^{-1} P_n^{-1}\right)}_{\Lambda'_{n-2}} \cdots \underbrace{\left(P_n \cdots P_2 \Lambda_1 P_2^{-1} \cdots P_n^{-1}\right)}_{\Lambda'_1} P_n \cdots P_2 P_1 A$$

where  $\Lambda'$  are unit lower triangular matrices – note that they are not lower triangular. And let  $\Lambda' = \Lambda_n \Lambda'_{n-1} \Lambda'_{n-2} \cdots \Lambda'_1$ , then  $U = \Lambda' P A$ , this gives

$$PA = LU$$

which is called *PLU-decomposition*. From the above pivoting process, it can be concluded that every square matrix has a PLU-decomposition.

**Orthogonalization and QR-decomposition** A matrix  $Q \in \mathbb{R}^{n \times n}$  is called *orthogonal* if  $Q^TQ = I$ , i.e., if its column vectors form a orthonormal basis of  $\mathbb{R}^n$ . The idea of QR-decomposition comes from

$$Ax = QRx = b \Rightarrow QRx = b \Rightarrow Rx = Q^Tb$$

then  $Rx = Q^T b$  can be solved by back-substitution. If A, B are orthogonal, then AB and BA are both orthogonal. This allows us to perform QR-decomposition by a series of steps and times an orthogonal matrix at each step.

Recall that the projection of *a* on *b* is defined to be

$$\operatorname{proj}_b a := \frac{\langle a, b \rangle}{\|a\| \cdot \|b\|} \cdot \|a\| \cdot \frac{b}{\|b\|} = \frac{\langle a, b \rangle}{\langle b, b \rangle} b$$

First we'll have a look at *Gram-Schmidt method*: let  $a_1, a_2, ..., a_m \in \mathbb{R}^n$  be column vectors of  $A \in \mathbb{R}^{n \times m}$ , we can then construct a orthonormal basis for col(A), denoted by  $\{q_1, q_2, ..., q_m\}$ , by letting

$$q_{1} \leftarrow \frac{a_{1}}{\|a_{1}\|};$$

$$q'_{2} \leftarrow a_{2} - \langle a_{2}, q_{1} \rangle q_{1}, \ q_{2} = \frac{q'_{2}}{\|q'_{2}\|};$$

$$\vdots$$

$$q'_{m} \leftarrow a_{m} - \sum_{k=1}^{m-1} \langle a_{m}, q_{k} \rangle q_{k}, \ q_{m} = \frac{q'_{m}}{\|q'_{m}\|}.$$

where  $\|\cdot\|$  denotes Euclidean norm. i.e., in each Gram-Schmidt step, first take off the projection of  $a_k$  onto the existing orthonormal basis we constructed, then the remaining vector will be orthogonal to the existing basis, then normalize  $a_k$ . Applying Gram-Schmidt to perform QR-decomposition, each Gram-Schmidt step can be considered as multiplication with a triangular matrix (i.e., step k will normalize  $a_k^{(k)}$ , and subtract the projections on  $a_k$  from  $a_{k+1}^{(k)}, a_{k+2}^{(k)}, \ldots, a_m^{(k)}$ ):

Or view  $a_k$  as the sum of its projections on  $q_1, q_2, \dots, q_k$ , from which we formulate

$$A = \begin{bmatrix} q_1 & q_2 & \dots & q_m \end{bmatrix} \begin{bmatrix} \langle q_1, a_1 \rangle & \langle q_1, a_2 \rangle & \dots & \langle q_1, a_m \rangle \\ 0 & \langle q_2, a_2 \rangle & & \langle q_2, a_m \rangle \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \langle q_m, a_m \rangle \end{bmatrix} = QR$$

where  $q_k$  is obtained using Gram-Schmidt – note that this ensures all the 0s below diagonal.

**QR-decomposition by Triangularization** *Triangularization* refers to the idea of triangularizing a matrix by zeroing its below-diagonal entries. Here two methods are discussed.

The first one is triangularization by givens rotation: a (clockwise) givens rotation matrix $^3$  is defined by

$$G = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

And for  $a = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ , to zero the second entry, i.e., to ensure

$$Ga = \begin{bmatrix} a_1 \cos \theta + a_2 \sin \theta \\ -a_1 \sin \theta + a_2 \cos \theta \end{bmatrix} = \begin{bmatrix} \sqrt{a_1^2 + a_2^2} \\ 0 \end{bmatrix}$$

we only need to let

$$\sin \theta = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}$$

$$\cos \theta = \frac{a_1}{\sqrt{a_1^2 + a_2^2}}$$

Note that givens rotation matrix is orthogonal; and generalization to zeroing the n-dimensional vector entry  $a_{k+1}$  can be simply done by taking an identity matrix and mutate  $\begin{bmatrix} I_{kk} & I_{k(k+1)} \\ I_{(k+1)k} & I_{(k+1)(k+1)} \end{bmatrix}$ 

<sup>&</sup>lt;sup>3</sup>recall that we have seen them in complex analysis

to be the givens rotation matrix. Then for  $A \in \mathbb{R}^{n \times m}$ , we can zero the entries of  $a_i$ ,  $\forall i = 1, 2, ..., m$  in an order of n, n - 1, ..., i + 1 – we have to stop at i + 1 for  $a_i$  as further zeroing will mutate the sparse patterns for zeroed  $a_1, a_2, ..., a_{i-1}$ . This way, we can obtain an upper-triangular matrix.

The second QR-decomposition method is *Householder's reflector*. Different from how givens rotations method *rotates* the vector to zeroing an entry, Householder's method will *reflect* the vector by a hyperplane H s.t. the reflection can point to the desired direction – reflecting one column vector at a time. Specifically, for  $a_1 \in \mathbb{R}^n$ , we try to reflect  $a_1$  to the direction of  $e_1$  by left-multiplying an orthogonal matrix  $Q_1$  s.t.  $Q_1a_1 = ||a_1||e_1$ , where  $e_1$  denotes the vector with the first entry being 1 and the rest of entries being 0; the hyperplane H is set orthogonal to  $v := ||a_1||e_1 - a_1$ , therefore

$$Q_1 = I - 2\frac{vv^T}{v^Tv}$$

where  $Q_1$  is orthogonal. In general,

$$Q_k = \left[ \begin{array}{cc} I & 0 \\ 0 & F \end{array} \right]$$

where  $I \in \mathbb{R}^{(k-1)\times(k-1)}$ , and  $F \in \mathbb{R}^{(n-k+1)\times(n-k+1)}$  s.t.  $F\tilde{a}_k^{(k)} = \left\| \tilde{a}_k^{(k)} \right\| e_1$ , where  $\tilde{a}_k^{(k)} \in \mathbb{R}^{n-k+1}$  is  $\left( \left( a_k^{(k)} \right)_k, \left( a_k^{(k)} \right)_{k+1}, \ldots, \left( a_k^{(k)} \right)_n \right)$ ; i.e., the upper-left sub-matrix I together with the two zero sub-matrices are to preserve obtained  $a_1^{(k)}, a_2^{(k)}, \ldots, a_{k-1}^{(k)}$  from the first k-1 steps, and F is reflecting  $\tilde{a}_k^{(k)}$  to obtain  $a_k^{(k+1)}$  — which is to be preserved later; i.e.,  $a_k^{(k+1)} = a_k^{(k+2)} = \cdots = a_k^{(\min(m,n-1))}$ .

**Singular Value Decomposition (SVD)** Click here for the slides I've made for SVD. The most important thing to remember is, SVD represents a change of basis; i.e., giving adequate basis for domain space and range space, any matrix can be represented as a diagonal matrix.

**Cholesky Decomposition** *Hermitian* is an analogue for complex matrices to symmetric for real matrices, defined to be  $A = A^*$  if  $a_{ij} = \bar{a}_{ji}$ . Note that  $x^*Ay = \overline{y^*Ax}$  for all  $x, y \in \mathbb{C}^m$ ,

this implies  $\forall x \in \mathbb{C}^m$ ,  $x^*Ax \in \mathbb{R}$ ; and it follows that eigenvalues for hermitian matrices are real. If in addition  $x^*Ax > 0$  for all  $x \neq 0$ , then A is called *hermitian positive definite* (note that all positive definite matrices must be hermitian). The eigenvalues for such matrices are all positive – the converse is also true. Eigenvectors corresponding to distinct eigenvalues of a hermitian matrix are orthogonal:

$$\lambda_2 x_1^* x_2 = x_1^* A x_2 = \overline{x_2^* A x_1} = \lambda_1 \overline{x_2^* x_1} = \lambda_1 x_2^* x_2 \Rightarrow x_1^* x_2 = 0$$

Cholesky decomposition on positive definite matrices can be viewed as a symmetric Gaussian elimination; i.e., each Gaussian elimination step introduced zeros below the kth entry in column k by left multiplying a matrix, doing this symmetrically on the right will be

$$A = \begin{bmatrix} a_{11} & w^* \\ w & K \end{bmatrix} = \begin{bmatrix} \sqrt{a_{11}} & 0 \\ \frac{w}{\sqrt{a_{11}}} & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - \frac{ww^*}{a_{11}} \end{bmatrix} \begin{bmatrix} \sqrt{a_{11}} & \frac{w^*}{\sqrt{a_{11}}} \\ 0 & I \end{bmatrix}$$

and from positive definiteness of A we have  $a_{11}>0$  and  $\begin{bmatrix} \sqrt{a_{11}} & 0 \\ \frac{w}{\sqrt{a_{11}}} & I \end{bmatrix}$  is non-singular,

which implies  $\begin{bmatrix} 1 & 0 \\ 0 & K - \frac{ww^*}{a_{11}} \end{bmatrix} > 0$ , hence  $K - \frac{ww^*}{a_{11}} > 0 \Rightarrow$  the upper left corner entry of  $K - \frac{ww^*}{a_{11}}$  must be positive. This construction procedure also gives uniqueness of Cholesky factorization.

**Conditioning of** Ax = b Consider a linear system with numerical error:

$$(A + \delta A)(x + \delta x) = b + \delta b$$
  
$$\Leftrightarrow (A + \delta A)\delta x = \delta b - \delta A x$$

From where, we would expect for all invertible A,  $A + \delta A$  will also be invertible if  $\delta A$  is small. To solve this issue, first we'll look at  $induced^4$  matrix norm, defined for any  $A \in \mathbb{R}^{n \times m}$  by

$$||A|| := \sup_{x \in \mathbb{R}^m} \frac{||Ax||}{||x||} = \sup_{||x|| \le 1} \frac{||Ax||}{||x||} = \sup_{||x|| = 1} ||Ax||$$

<sup>&</sup>lt;sup>4</sup>induced means matrix norm induced by vector norms

Immediately following from the definition, the matrix norm satisfies

- $||\alpha A|| = |\alpha| ||A||$  (absolutely homogeneous)
- $||A + B|| \le ||A|| + ||B||$  (triangle inequality)
- $||A|| \ge 0$  and  $||A|| = 0 \Leftrightarrow A = 0$  (positive-definiteness)

and the well-known Frobenius norm:

$$||A||_F := \sqrt{\sum_{j=1}^m \sum_{i=1}^n |a_{ij}|^2} = \operatorname{tr}(A^T A) = \operatorname{tr}(AA^T)$$

which leads to the use fact that:  $\exists \alpha, \beta > 0$  s.t.  $\alpha ||A||_F \le ||A||_* \le \beta ||A||_F$ , where  $||\cdot||_*$  denotes any induced norm.

And for matrix geometric series, we are thinking of

$$(I - K)^{-1} = I + K + K^{2} + \cdots$$
 (2)

and (2) converges iff the  $\ell-2$  norm of all eigenvalues of A are strictly less than 1 – recall that I-K is invertible iff 1 is not an eigenvalue of K. And specific for convergence proof, let

$$B_l := I + K + \dots + K^l$$

then we have

$$||B_{l+m} - B_l|| = ||K^{l+1} + \dots + K^{l+m}||$$

$$\leq ||K||^{l+1} + \dots + ||K||^{l+m}$$

$$\leq \frac{||K||^{l+1}}{1 - ||K||}$$

if ||K|| < 1. Then  $\{B_l\}$  is Cauchy, which implies that  $\exists B \in \mathbb{R}^{n \times m}$  s.t.  $B_l \to B$  as  $l \to \infty$ .

Now go back to our problem, we need  $A + \delta A = A \left( I + A^{-1} \delta A \right)$  to be invertible, then we'll have  $(A + \delta A)^{-1} = \left( I + A^{-1} \delta A \right)^{-1} A^{-1}$ ; and  $\left( I + A^{-1} \delta A \right)^{-1}$  exists if  $\left\| A^{-1} \delta A \right\| < 1$ , note that

 $||A^{-1}\delta A|| \le ||A^{-1}|| ||\delta A||$ , then we only need  $||\delta A|| < \frac{1}{||A^{-1}||}$ . The rest of error analysis follows from matrix norm properties and matrix geometric series properties<sup>5</sup>. Eventually, it can be derived that

$$\frac{\|\delta x\|}{\|x\|} \le \frac{\|A\| \|A^{-1}\|}{1 - \|A^{-1}\delta A\|} \left( \frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|} \right)$$

where we define the condition number for matrix A as

$$\kappa\left(A\right) = ||A|| \left\|A^{-1}\right\|$$

**Backward Error Analysis** For floating point addition, we can treat them *as if* the input were perturbed; e.g.:

$$x_1 \oplus x_2 = (x_1 + x_2)(1 + \delta) = (1 + \delta)x_1 + (1 + \delta)x_2 =: \tilde{x}_1 + \tilde{x}_2$$

Applying this treatment to the entire algorithm, we perform backward error analysis (BEA). Let  $\tilde{f}: \mathbb{R}^n \mapsto \mathbb{R}^m$  be some algorithmic realization of  $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ , then BEA refers to the idea of model the errors committed within  $\tilde{f}$  by error in the input data. The algorithm  $\tilde{f}$  is called stable if it gives nearly the right answer to nearly the right question; i.e.,  $\forall x \in \mathbb{R}^n$ ,  $\frac{\|\tilde{f}(x)-f(\tilde{x})\|}{\|f(\tilde{x})\|} = O(\varepsilon)$  for some  $\tilde{x}$  with  $\frac{\|\tilde{x}-x\|}{\|x\|} = O(\varepsilon)$ . And a stronger condition defined as backward stable is used if the algorithm gives exactly the right answer to nearly the right question, i.e.,  $\forall x \in \mathbb{R}^n$ ,  $\tilde{f}(x) = f(\tilde{x})$  for some  $\tilde{x}$  with  $\frac{\|\tilde{x}-x\|}{\|x\|} = O(\varepsilon)$ . The error analysis for an algorithm can be written as

$$\tilde{f}(x) - f(x) = \tilde{f}(x) - f(\tilde{x}) + f(\tilde{x}) - f(x)$$

from which we can deduce that

$$\frac{\left\|\tilde{f}(x) - f(x)\right\|}{\left\|f(x)\right\|} \le \frac{\left\|\tilde{f}(x) - f(\tilde{x})\right\|}{\left\|f(x)\right\|} + \underbrace{\frac{\left\|f(\tilde{x}) - f(x)\right\|}{\left\|f(x)\right\|} \cdot \frac{\left\|x\right\|}{\left\|\tilde{x} - x\right\|}}_{=:\kappa_f(x,\tilde{x})} \cdot \frac{\left\|\tilde{x} - x\right\|}{\left\|x\right\|}$$

In case of backward stability, we'll have

$$\frac{\left\|\tilde{f}\left(x\right) - f\left(x\right)\right\|}{\left\|f\left(x\right)\right\|} \le \kappa_{f}\left(x, \tilde{x}\right) \cdot \frac{\left\|\tilde{x} - x\right\|}{\left\|x\right\|}$$

<sup>&</sup>lt;sup>5</sup>which is frequently used when we deal with matrix inverse

Moreover, let  $[x,y] := \frac{\|x-y\|}{\|x\|}$  denote some error measure, and we define *backward stability* constant of  $\tilde{f}$  at x to be

$$\beta(x) := \inf_{\tilde{x} \in \mathbb{R}^n} \left\{ [x, \tilde{x}] | \tilde{f}(x) = f(\tilde{x}) \right\}$$

and backward stability was defined to be  $\beta(x) = O(\varepsilon)$ . Backward stability can be characterized by the following fact: if  $\tilde{f}$  is backward stable at x, then

$$\begin{split} \left[ f\left(x\right), \tilde{f}\left(x\right) \right] &= \left[ f\left(x\right), f\left(\tilde{x}\right) \right] \\ &= \frac{\left[ f\left(x\right), f\left(\tilde{x}\right) \right]}{\beta\left(x\right)} \cdot \beta\left(x\right) \\ &\leq \kappa_{f}\left(x\right) \cdot \beta\left(x\right) \\ &= O\left(\kappa_{f}\left(x\right) \cdot \varepsilon\right) \end{split}$$

Finally, as an example to describe backward non-stability, consider  $f: \mathbb{R} \mapsto \mathbb{R}^2$  defined by  $f(x) \coloneqq \begin{bmatrix} \cos x & \sin x \end{bmatrix}^T$ , and let  $\tilde{f}$  be an algorithm realization of f; but  $\tilde{f}(x) \neq f(\tilde{x})$  because the range of f is the unit circle – so unless  $\tilde{f}(x)$  maps to a unit circle  $\forall x \in \mathbb{R}$ , the algorithm  $\tilde{f}$  can never be backward stable. It can be shown that naive outer product is not backward stable, and Householder's QR is backward stable.

## 3 Eigenvalue Problems

**Eigenvalue Problems** Eigenvalue problems are mostly encountered in iteratively compound form of a matrix, such as power series  $A^k$  or  $e^{tA}$ . Let X be a matrix with column vectors being eigenvectors of A, then we have

$$AX = X \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_m \end{bmatrix} \Rightarrow AX = X\Lambda \Rightarrow A = X\Lambda X^{-1}$$

called the *eigenvalue decomposition* of  $A \in \mathbb{C}^{m \times m}$  – it might well not exist. The eigenvalue decomposition can be expressed as a change of basis:

$$Ax = b \Rightarrow (X^{-1}b) = \Lambda(X^{-1}x)$$

The set of eigenvectors corresponding to a single eigenvalue forms a subspace of  $\mathbb{C}^m$ , known as the *eigenspace*, denoted by  $E_{\lambda}$ ; and we have  $AE_{\lambda} \subseteq E_{\lambda}$ . The dimension of  $E_{\lambda}$  can be interpreted as the maximum number of linearly independent eigenvectors that can be found, defined as the *geometric multiplicity* of  $\lambda$ ; recall  $\text{null}(A - \lambda I) = E_{\lambda}$ , the geometric multiplicity is then  $\dim E_{\lambda} = \dim (\text{null}(A - \lambda I))$ .

The *characteristic polynomial* of  $A \in \mathbb{C}^{m \times m}$  is defined as

$$p_A(z) = \det(zI - A)$$

The main usage reflects in the fact that  $\lambda$  is an eigenvalue of  $A \Leftrightarrow p_A(\lambda) = 0$ . Recall that fundamental theorem of algebra allows us to write  $p_A(z)$  as a product of root, which raises the definition of *algebraic multiplicity* of an eigenvalue  $\lambda$  as its multiplicity as a root of  $p_A$ .

If  $X \in \mathbb{C}^{m \times m}$  is nonsingular, then the map  $A \mapsto X^{-1}AX$  is called a *similarity transformation* of A. To characterize similarity transformation, note that if X is nonsingular, then A and  $X^{-1}AX$  have the same characteristic polynomial, eigenvalues, as well as algebraic and geometric multiplicities – the rest all follow from characteristic polynomial proof:

$$p_{X^{-1}AX}(z) = \det(zI - X^{-1}AX) = \det(X^{-1}(zI - A)X) = \det(X^{-1})\det(zI - A)\det(X) = \det(zI - A)$$

and similarity transformation allows us to prove the following proposition: the algebraic multiplicity of an eigenvalue  $\lambda$  is greater or equal to its geometric multiplicity. To see this, for matrix  $A \in \mathbb{C}^{m \times m}$ , let n be the geometric multiplicity of  $\lambda$  for A, apparently  $n \leq m$ , now form a matrix  $V = \begin{bmatrix} \hat{V} & \tilde{V} \end{bmatrix}$ , where the column vectors of  $\hat{V}$  form a orthonormal basis for  $E_{\lambda}$ , and  $\tilde{V} \in \mathbb{C}^{m \times (m-n)}$  is chosen s.t. V is unitary; then

$$V^*AV = \begin{bmatrix} \lambda I & C \\ 0 & D \end{bmatrix} \tag{3}$$

will have characteristic polynomial  $\det(zI - \lambda I) \det(zI - D) = (z - \lambda)^n \det(zI - D)$ , which completes the proof.

Note that the geometric and algebraic multiplicity don't have to be the same: e.g., the

matrix 
$$\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$
 and  $\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$  both have same algebraic multiplicity 3 for eigen-

value  $\lambda=2$ , but the former matrix has  $\dim E_{\lambda}=3$ , spanned by  $e_1,e_2,e_3$ ; the later one, however, has  $\dim E_{\lambda}=1$ , spanned only by  $e_1$ . An eigenvalue whose algebraic multiplicity exceeds geometric multiplicity is called a *defective eigenvalue*; and a matrix that has a defective eigenvalue is called a *defective matrix*. The following diagonalization proposition characterizes non-defectiveness: a matrix A is non-defective if it has an eigenvalue decomposition  $A=X\Lambda X^{-1}$ ; " $\Leftarrow$ " can be shown by using the similarity transformation proposition we've shown above, and " $\Rightarrow$ " can be shown by constructing X using linearly independency of eigenvectors implied by non-defectiveness. As a sidenote, *for both defective and non-defective matrices*, the determinant and trace equal to the product and sum of eigenvalues counted with algebraic multiplicity (proved by using characteristic polynomial).

Note that not all diagonalizable matrices have orthogonal eigenvectors – those who do are called unitarily diagonalizable; i.e.,  $\exists Q$  unitary s.t.  $A = Q\Lambda Q^*$ . And matrix A is defined to be *normal* if  $A^*A = AA^*$ . To characterize normality, A is unitarily diagonalizable  $\Leftrightarrow A$  is normal; proof for " $\Rightarrow$ " is trivial by substitution, proof for " $\Leftarrow$ " can be done by Schur factorization:

A *Schur factorization* of a matrix A is a factorization  $A = QTQ^*$  where Q is unitary and T is upper-triangular. Every square matrix A has a Schur factorization; the proof uses induction on the dimension of A: similar to (3), for arbitrary square matrix A,  $\exists U$  unitary s.t.

$$U^*AU = \left[ \begin{array}{cc} \lambda & B \\ 0 & C \end{array} \right]$$

assume a Schur factorization  $VTV^*$  exist for C, then  $Q := U \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}$  is unitary and  $Q^*AQ = \begin{bmatrix} \lambda & BV \\ 0 & T \end{bmatrix}.$ 

**Eigenvalue Algorithms** An explicit solving method for eigenvalue problems will be reducing to a root finding problem of its characteristic polynomials – but root finding is in fact an ill-conditioned problem *per se*, so it is not really an ideal approach. Moreover, note that for a monic polynomial

$$p(z) = z^m + a_{m-1}z^{m-1} + \dots + a_1z + a_0$$

the roots are in fact the eigenvalues of the matrix

$$A := \begin{bmatrix} 0 & 1 & & & & & & \\ & 0 & 1 & & & & & \\ & & 0 & 1 & & & & \\ & & & \ddots & \ddots & & & \\ & & & 0 & 1 & & \\ -a_0 & -a_1 & -a_2 & \cdots & \cdots & -a_{m-2} & -a_{m-1} \end{bmatrix}$$

with corresponding eigenvectors  $(1, z, z^2, ..., z^{m-1})^T$ . Therefore, A is called a *companion matrix* corresponding to p. Moreover, Abel proved that no analogue of the quadratic formula can exist for polynomial of degree 5 or more; in view of this, *any eigenvalue solver must be iterative*.

Recall form last section that Schur factorization exists for all matrices, it then follows that most general eigenvalues solver aims to reduce a matrix to by Schur factorization to reveal its eigenvalues. For the sake of computational efficiency, today's algorithms usually splits into two phrases: the first phrase reduce the matrix to a upper–Hessenberg form, and the second phrase upper-triangularizes this upper-Hessenberg matrix.

Now for the first phrase, we apply Householder's reflection to reduce A to a upper-Hessenberg form. At step k,  $Q_k^*$  perform Householder's reflection *starting from the second* row of the (sub-)matrix (see the figure), so that right multiplication will not mutate the zeros just created (see Fig. 2).

Figure 2: reduce to upper-Hessenberg form using Householder's reflection [2]

**Rayleigh Quotient, Inverse Iteration** For this and next section, we consider  $A = A^T \in \mathbb{R}^{m \times m}$  and  $x \in \mathbb{R}^m$ . The *Rayleigh quotient* of a vector  $x \in \mathbb{R}^m$  is defined as

$$r(x) := \frac{x^T A x}{x^T x}$$

Apparently, if x is an eigenvector, then  $r(x) = \lambda$ . The motivation comes from: given x, what scalar  $\alpha$  acts most like an eigenvalue for x in the sense of minimizing  $||Ax - \alpha x||_2$ ? Furthermore, we have

$$\nabla r(x) = \frac{2}{x^T x} (Ax - r(x) x)$$

Therefore, at eigenvector x of A, the gradient is a zero vector; moreover, if the gradient is zero at x with  $x \neq 0$ , then x is an eigenvector and r(x) is the corresponding eigenvalue. Furthermore, note that  $\forall \lambda \in \mathbb{R} \setminus \{0\}$ ,  $r(\lambda x) = r(x)$ ; we can then view the Rayleigh quotient as a continuous function on the unit sphere, and its stationary points are normalized eigenvectors of A.

The *power iteration* process can be used to find the eigenvector corresponding to the largest eigenvalue of A: initialized with unit vector  $v^{(0)}$ , then the update process proceeds as  $v^{(k)} \leftarrow$  normalized  $Av^{(k-1)}$ , and  $\lambda^{(k)} \leftarrow \left(v^{(k)}\right)^T Av^{(k)}$ .

Recall that the eigenvectors of  $(A-\mu I)^{-1}$  are the same as the eigenvectors of A, with corresponding eigenvalues  $\left\{\left(\lambda_j-\mu\right)^{-1}\right\}$ . Therefore, if choosing  $\mu$  closer to  $\lambda_j$  than to all other eigenvalues of A,  $\left(q_j-\mu\right)^{-1}$  is greater than all other  $\left(q_{-j}-\mu\right)^{-1}$ ; which suggests applying power iteration on  $(A-\mu I)^{-1}$  can be used to find eigenvector corresponding to the eigenvalue closest to  $\mu$ ; this process is called *inverse iteration*, which takes updating formula by solving  $(A-\mu I)w=v^{(k-1)}$  for w and normalize w for  $v^{(k)}$ .

With a small modification to inverse iteration above: at each step, instead of using  $\mu$ , we use  $r(v^{(k-1)})$  – this is called *Rayleigh quotient iteration*.

QR Algorithm The second phrase of eigenvalue problems is based on an algorithm called QR algorithm – the idea is based on similarity transformations: initialize  $A^{(0)} = A$ ; for each step, perform QR factorization  $Q^{(k)}R^{(k)} = A^{(k-1)}$ , then recombine factors  $A^{(k)} = R^{(k)}Q^{(k)}$ . Under suitable assumptions, it will converge to an upper-triangular form for matrix A – diagonal if A is hermitian. QR algorithm itself is motivated by power iteration; just like inverse iteration can use Rayleigh quotient to for acceleration, same goes for QR algorithm: for step k, we pick a shift  $\mu^{(k)}$ , then perform QR factorization  $Q^{(k)}R^{(k)} = A^{(k-1)} - \mu^{(k)}I$ , and recombine factors by  $A^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$ . For the choice of shifts, we can choose Rayleigh quotient shift  $\mu^{(k)} = R^{(k-1)}_{m,m}$ , or Wilkinson's shift, etc.

There are quite a few other algorithms as well; e.g., one might crop the matrix  $A^{(k)}$  when  $A_{m,m-1}^{(k)}$  becomes close enough to zero, and it turns out to accelerate convergence.

#### 4 Iterative Methods

**Iterative Methods Basics** Let X be a Banach space and  $U \subset X$  be a complete subspace, then  $\phi: U \mapsto U$  is called *Lipschitz continuous* if  $\exists \rho \geq 0$  s.t.  $\|\phi(x) - \phi(y)\| \leq \rho \|x - y\|$ ,  $\forall x, y \in U$ ; furthermore,  $\phi$  is called *non-expansive* if  $\rho \leq 1$ , and called  $\rho$ -contractive if  $\rho < 1$ . As a theorem to characterize  $\rho$ -contraction: Let  $U \subset X$  be closed,  $\phi: U \mapsto U$  be a  $\rho$ -contractive mapping, then

- $\exists x \in U$  s.t.  $x = \phi(x)$ , and x is unique
- $\forall x_0 \in U$ ,  $x_{k+1} = \phi(x_k)$  for  $k = 0, 1, \dots$  converges to x, and

$$||x_{k+1} - x|| \le \rho ||x_k - x||$$

$$||x_k - x|| \le \frac{\rho^k}{1 - \rho} ||x_0 - x||$$

$$||x_k - x|| \le \frac{\rho}{1 - \rho} ||x_k - x_{k-1}||$$

we just show the existence and uniqueness of such x in the first point, the rest will be trivial. Note that  $\forall n \ge m \ge 1$  and  $\forall x_0 \in U, \exists \rho < 1$  s.t.

$$||x_{n} - x_{m}|| = ||\phi^{n}(x_{0}) - \phi^{m}(x_{0})||$$

$$\leq \rho^{m} ||\phi^{n-m}(x_{0}) - x_{0}||$$

$$\leq \rho^{m} (||\phi^{n-m}(x_{0}) - \phi^{n-m-1}(x_{0})|| + ||\phi^{n-m-1}(x_{0}) - \phi^{n-m-2}(x_{0})|| + \dots + ||\phi(x_{0}) - x_{0}||)$$

$$\leq \rho^{m} \sum_{i=0}^{n-m-1} \rho^{k} ||\phi(x_{0}) - x_{0}||$$

$$\leq \rho^{m} \sum_{i=0}^{\infty} \rho^{k} ||\phi(x_{0}) - x_{0}||$$

$$= \frac{\rho^{m}}{1 - \rho} ||\phi(x_{0}) - x_{0}||$$

which implies that  $\{x_k\}$  is Cauchy. Now let  $x \in U$  denote the limit of  $\{x_k\}$  as  $n \to \infty$ , then x is a fixed point because

$$\phi(x) = \phi\left(\lim_{k \to \infty} x_k\right) = \lim_{k \to \infty} \phi(x_k) = \lim_{k \to \infty} x_{k+1} = x$$

and uniqueness of x can be proved by assuming x, y are both fixed points, then

$$0 \le ||x - y|| = ||\phi(x) - \phi(y)|| \le \rho ||x - y|| < ||x - y||$$

which implies x = y.

Here are a few examples of fixed point methods: (i).  $\phi(x) = Tx + c$ , where T is called *iteration matrix*, contraction of T is equivalent to  $||T|| = \sigma_{\max}(T) \le 1$ . (ii). *Richardson method*:

 $\phi(x)=x+\omega(b-Ax)$ , where b-Ax is called *residual*. View Richardson's methods in an iteration manner, we have  $\phi(x)=(I-\omega A)x+\omega b$ ; further suppose A>0, with eigenvalues  $0<\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_n$ , then  $I-\omega A$  has eigenvalues  $1-\omega \lambda_1, 1-\omega \lambda_2, \ldots, 1-\omega \lambda_n$ , then  $\|I-\omega A\|=\max_k |1-\omega \lambda_k|=\max\{|1-\omega \lambda_1|, |1-\omega \lambda_n|\}$ , which yields the optimal  $\omega^*=\frac{2}{\lambda_1+\lambda_n}$ . As a remark to Richardson's method, people usually left-multiply *pre-conditioner*  $P^{-1}$  to the linear system, resulting in  $P^{-1}Ax=P^{-1}b$  – the purpose here is to make cond (A) small.

**Arnoldi Iteration** Most of the iterative methods discussed here will be based on the idea of projecting onto Krylov subspaces. Given matrix  $A \in \mathbb{C}^{m \times m}$  and vector b, Krylov sequence refers to the set of vectors b, Ab,  $A^2b$ ,...(they are not necessarily linearly independent!), and the corresponding Krylov subspaces of order r is then defined as the space spanned by the first r terms of Krylov sequence. Arnoldi iteration then can be interpreted as performing (modified) Gram-Schmidt on the Krylov matrix

$$K_n := \left[ \begin{array}{cccc} b & Ab & A^2b & \cdots & A^{n-1}b \end{array} \right] \in \mathbb{C}^{m \times n}$$

to construct its orthonormal basis. In view of A itself, Arnoldi iteration can be considered as an Hessenbergized method analogous to Gram-Schmidt, see Table 1 – one similarity is, they both can stop at any iteration with a sequence of triangular/Hessenberg factors and a partial orthogonalized factor  $Q^{(k)}$ , therefore serves as a better iterative method.

Table 1: Householder's reflection vs Gram-Schmidt/Arnoldi process

|                                     | QR factorization                             | Hessenberg formation             |
|-------------------------------------|----------------------------------------------|----------------------------------|
|                                     | A = QR                                       | $A = QHQ^*$                      |
| Householder's                       | orthogonal                                   | orthogonal                       |
| reflection                          | triangularization <sup>6</sup>               | Hessenberg-ition                 |
| Gram-<br>Schmidt/Arnoldi<br>process | triangular<br>orthogonalization <sup>7</sup> | Hessenbergized orthogonalization |

For iterative methods we consider m to be large or infinite, so we only consider the first n columns of AQ = QH. Let  $Q_n \in \mathbb{C}^{m \times n}$  denote the first n columns of Q; and let  $\tilde{H}_n \in \mathbb{C}^{(n+1) \times n}$  be the submatrix located at the upper-left corner of H, which will also be a Hessenberg matrix itself. Then we'll have  $AQ_n = Q_{n+1}\tilde{H}_n$  as the first n columns of AQ = QH. And equating the nth column of both sides gives us  $Aq_n = h_{1n}q_1 + \cdots + h_{nn}q_n + h_{n+1,n}q_{n+1}$ , which is a recurrence relation for  $q_{n+1} - A$ rnoldi iteration follows directly on this recurrence relation: let  $q_1 = \frac{b}{\|b\|}$  be the initializer, and choose  $h_{kn}$  s.t.  $h_{kn}q_k$  is a projection of  $q_k$  on  $Aq_n$  for  $k = 1, 2, \ldots, n$ ; as an interpretation, the updating step first subtracts the projections of the built orthogonal bases from  $Aq_n$ , then normalizing the reminder with  $h_{n+1,n}$  to ensure  $\|q_{n+1}\| = 1$ . Because the recurrence formula states that each  $q_n$  is formed by a linear combination of  $Aq_{n-1}$  and  $q_1, q_2, \ldots, q_{n-2}$ , each  $q_n$  is therefore a degree-(n-1) polynomial of A times b; hence  $q_1, q_2, \ldots, q_n$  form an orthonormal basis for the Krylov subspace

$$\mathcal{K}_n \coloneqq \langle b, Ab, \dots, A^{n-1}b \rangle$$

(i). In this view, Arnoldi process can be considered as systematic construction of orthonormal bases for successive Krylov subspaces  $K_1, K_2, K_3, \ldots$  Because Arnoldi iteration constructs orthonormal basis in a Gram-Schmidt manner, the  $Q_n$  here will be exactly the same as the  $Q_n$  present in the Gram-Schmidt QR factorization of  $K_n$ , while here  $K_n$  and R per se are never explicitly constructed. And it's called modified Gram-Schmidt because at iteration k, we subtract projections of constructed bases  $q_1, q_2, \ldots, q_k$  from the vector  $Aq_k$  instead of the "original" vector  $A^kb$ .

(ii). Another view of Arnoldi process is a computation of projections onto successive Krylov subspaces. Note that  $Q_n^*Q_{n+1}$  is a  $n\times(n+1)$  matrix with 1 on the diagonal and 0 elsewhere; then from  $AQ_n = Q_{n+1}\tilde{H}_n$  we have

$$\underbrace{Q_n^*Q_{n+1}\tilde{H}_n}_{=:H_n} = Q_n^*AQ_n$$

<sup>&</sup>lt;sup>6</sup>i.e., (left) multiply an orthogonal matrix in each iteration to triangularize the matrix in the end <sup>7</sup>i.e.; (right) multiply a triangular matrix in each iteration to orthogonalize the matrix in the end

apparently,  $H_n$  here will be the  $n \times n$  submatrix located at the upper-left corner of H. This is an analogue to change of basis, with  $Q_n$  not orthogonal but of shape  $m \times n$  – and the resulting interpretation is: given some  $v \in \mathcal{K}_n$ , applying A to it, then orthogonally project Av back to  $\mathcal{K}_n$ .

Note that here  $H_n$  and A are pseudo-similar. Intuitively, one might then consider the eigenvalues of  $H_n$  as estimates for the eigenvalues of A – for this reason, they are called Arnoldi eigenvalue estimates (at step n) or Ritz values (wrt.  $K_n$ ).

Consider a vector  $x \in \mathcal{K}_n$ , such a vector can then be written as a linear combination of Krylov's vectors  $b, Ab, \dots, A^{n-1}b$ , put in polynomial form, it will be

$$x = q(A)b$$

Now consider  $P^n := \{\text{monic polynomials of degree } n\}$ , the famous Arnoldi-Lanczos approximation problem is proposed as

$$\min_{p^n \in P^n} ||p^n(A)b||$$

and the Arnoldi iteration solves this problem exactly (if it doesn't break down ofc...) – the minimizer  $\bar{p}^n$  is uniquely given by the characteristic polynomial of  $H_n$ . As a proof, let  $y := A^n b - p^n(A)b \in \mathcal{K}_n$ , then the problem can be considered as minimizing  $\|A^n b - y\|$  wrt. y; i.e., minimizing the distance from  $A^n b$  to  $\mathcal{K}_n$  – thus the minimization can be characterized by  $p^n(A)b \perp \mathcal{K}_n \Leftrightarrow Q_n^* p^n(A)b = 0$  as  $q_1, q_2, \dots, q_n$  are a basis of  $\mathcal{K}_n$ . Now consider  $A = QHQ^*$ ; where  $Q := \begin{bmatrix} Q_n & U \end{bmatrix}$  s.t. Q is a orthogonal matrix extended from  $Q_n$ , and  $H := \begin{bmatrix} H_n & X_2 \\ X_1 & X_3 \end{bmatrix}$ , where the entries of  $X_1$  is all 0 besides its upper-right entry and

 $X_3$  is Hessenberg – due to the Hessenberg structure of H. Then we have

$$Q_{n}^{*}p^{n}(A)b = 0$$

$$\Leftrightarrow Q_{n}^{*}Qp^{n}(H)Q^{*}b = 0$$

$$\Leftrightarrow \left[ I_{n} \quad 0 \right] p^{n}(H)e_{1}||b|| = 0$$

$$(4)$$

and (4) follows from  $q_1 = \frac{b}{\|b\|}$ . The interpretation of last equation is, the minimization characterization now becomes that the first n entries in the first column of  $p^n(H)$  are 0. Due to the Hessenberg structure of H, the first n entries in the first column of  $p^n(H)$  are exactly the first column of  $p^n(H_n)$  – in view of this, it is *sufficient* to make  $p^n(H_n) = 0$ : by Cayley-Hamilton theorem, if  $p^n$  is the characteristic polynomial of  $H_n$ ,  $p^n(H_n) = 0$ . Proof of uniqueness uses contradiction: if uniqueness is voided, taking difference of two distinct degree-n monic polynomials that both minimize  $\|p^n(A)b\|$  will then result in a non-zero polynomial q(A) of degree  $\leq n-1$  s.t. q(A)b=0 – this contradicts the assumption that  $K_n$  is of full-rank.

Based on this finding, (iii). the Ritz values generated by Arnoldi iteration are the roots of the optimal polynomial to the Arnoldi-Lanczos approximation problem. And this gives the Ritz values some invariant properties:

- (translation invariance) If A is changed to  $A + \sigma I$  for some  $\sigma \in \mathbb{C}$ , and b is left unchanged, the Ritz values  $\{\theta_j\}$  at each step will be changed to  $\{\theta_j + \sigma\}$
- (scale invariance) If A is changed to  $\sigma A$  for some  $\sigma \in \mathbb{C}$ , and b is left unchanged, the Ritz values  $\{\theta_i\}$  at each step will be changed to  $\{\sigma\theta_i\}$
- (unitary similarity transformation invariance) If A is changed to  $UAU^*$  for some unitary U, and b is changed to Ub, the Ritz values do not change

**GMRES** Generalized minimal residuals (GMRES) is a method using Arnoldi iteration to solve a linear system Ax = b, the resulting mechanic is to use  $x_n \in K_n$  at step n to approximate the root by formulating the problem:

$$\min_{x_n \in \mathcal{K}_n} ||Ax_n - b||$$

$$\Leftrightarrow \min_{c \in \mathbb{C}^n} ||AK_n c - b||$$

$$\Leftrightarrow \min_{v \in \mathbb{C}^n} ||AQ_n v - b||$$

$$\Leftrightarrow \min_{y \in \mathbb{C}^{n}} \| Q_{n+1} \tilde{H}_{n} y - b \|$$

$$\Leftrightarrow \min_{y \in \mathbb{C}^{n}} \| \tilde{H}_{n} y - Q_{n+1}^{*} b \|$$
(5)

$$\Leftrightarrow \min_{v \in \mathbb{C}^n} \left\| \tilde{H}_n y - \|b\| e_1 \right\| \tag{6}$$

where (5) is because that b is in the column space of  $Q_{n+1}$  (because  $q_1 := \frac{b}{\|b\|}$ ), therefore left multiplication of  $Q_{n+1}^*$  does not change the norm. Furthermore, note that  $Q_{n+1}^*b = \|b\|e_1$ , which gives us (6).

On another note, the initial assumption for GMRES of  $x_n \in \mathcal{K}_n$  is equivalent to  $x_n = q_n(A)b$  for some degree-(n-1) polynomial  $q_n$ , with coefficients being c mentioned in above equations. Then the residual satisfies  $b-Ax_n=(I-Aq_n(A))b$ ; let  $p_n(z):=1-zq(z)$ , then GMRES in fact solves problem  $\min_{p_n\in P_n}\|p_n(A)b\|$ , but with  $P_n:=\{\text{degree}\leq n \text{ polynomials } p \text{ with } p(0)=1\}$  here.

**Lanczos Iteration and CG** If A is Hermitian, the Arnoldi iteration will be redundant to find eigenvalues of A – a method called Lanczos iteration was introduced as a simplification of Arnoldi iteration (mainly simplified by noticing that  $H_n$  becomes tri-diagonal now). With a similar simplification idea, if A is symmetric positive definite, solving  $\min_x ||Ax - b||$  using GMRES will in fact not be efficient – conjugate gradient (CG) was then introduced based on minimizing the A-norm of the error; where the A-norm of  $e_n := x^* - x_n$  is defined as  $e_n^T A e_n$ . Specifically, the famous CG is proposed as algorithm 1 on the following page.

And induction on *n* can show that:

1. (identity of subspaces)

$$\mathcal{K}_n = \langle x_1, x_2, \dots, x_n \rangle = \langle p_0, p_1, \dots, p_{n-1} \rangle$$
$$= \langle r_0, r_1, \dots, r_{n-1} \rangle = \langle b, Ab, \dots, A^{n-1}b \rangle$$

2. (orthogonal residuals)

$$r_i^T r_j = 0, \; \forall i \neq j$$

#### **Algorithm 1** Conjugate Gradient (CG)

**Input:**  $A \in \mathbb{R}^{m \times m} > 0$ ,  $b \in \mathbb{R}^m$ 

**Output:**  $x_n$  – the solution of linear system Ax = b

1: Set 
$$x_0 \leftarrow 0$$
,  $r_0 \leftarrow b$ ,  $p_0 \leftarrow r_0$ 

▶ Initialization

2: while not converged do

3: 
$$\alpha_k \leftarrow \frac{r_{k-1}^T r_{k-1}}{p_{k-1}^T A p_{k-1}}$$
 > calculate step length  
4:  $x_k \leftarrow x_{k-1} + \alpha_k p_{k-1}$  > approximate solution  
5:  $r_k \leftarrow r_{k-1} - \alpha_k A p_{k-1}$  > calculate residual  
6:  $\beta_k \leftarrow \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}$  > calculate improvement from this step  
7:  $p_k \leftarrow r_k + \beta_k p_{k-1}$  > calculate next step's search direction

#### 3. (A-conjugate search directions)

$$p_i^T A p_j = 0, \ \forall i \neq j$$

Following results above, for iteration n, we can show that  $x_n$  is the unique point in  $\mathcal{K}_n$  that minimizes  $||e_n||_A$ ; and the convergence is monotonic (descent property), i.e.,

$$||e_n||_A \le ||e_{n-1}||_A$$

and  $e_n = 0$  is achieved for some  $n \le m$ . The first statement follows simple calculation, the monotonicity follows  $\mathcal{K}_n \subset \mathcal{K}_{n+1}$ .

As CG minimizes *A*-norm of the error in an iterative manner, this enables us to view CG as an optimization algorithm – simple calculations allow us to formulate the following problem for CG:

$$\min_{x \in \mathbb{R}^m} \frac{1}{2} x^T A x - x^T b$$

Lastly, similar to how we build the connection between Arnoldi iteration and GMRES in a polynomial minimization manner at the end of last section, it's similar for CG: CG approximation problem can be formulated as  $\min_{p_n \in P_n} \|p_n(A)e_0\|_A$ ; where  $e_0 := x^* - x_0$  denotes the initial error, and  $P_n := \{\text{degree} \le n \text{ polynomials } p \text{ with } p(0) = 1\}$ , same as before.

### 5 Quadrature and ODE Solvers

**Numerical Integration** Let  $f: \mathbb{R} \to \mathbb{R}$  be a second-order smooth function, i.e.,  $f \in \mathcal{C}^2$ , numerical integration aims to approximate the integral  $I(f) := \int_a^b f(x) dx$ . *Midpoint method* uses the midpoint  $c := \frac{a+b}{2}$ : based on Taylor theorem  $f(x) = f(c) + f'(c)(x-c) + O(h^2)$ , where h := b-a; then the midpoint approximation will be  $\tilde{I}(f) = (b-a)f(\frac{a+b}{2}) + O(h^3)$ . *Composite midpoint formula* improved by dividing [a,b] into n intervals, each of length  $h := \frac{b-a}{n}$ ; i.e., consider n-1 "midpoint" interpolations  $a < x_1 < x_2 < \cdots < x_n < b$ ; as a result, the error is now  $n \cdot O(h^3) = O(n^{-2}) = O(h^2)$ .

Now consider when  $f \in C^1$ , we are to perform analysis of convergence for the midpoint rule, called *Lebesgue type analysis*. Now consider the integral and approximate-integral operators I and  $\tilde{I}: C([a,b]) \mapsto \mathbb{R}$ ; it's trivial that they are both linear operators. The *degree of exactness* measures to which degree of polynomial p,  $\tilde{I}(p)$  approximates I(p) exactly; e.g., for midpoint method, we have  $\tilde{I}(p) = I(p)$  for  $p \in P_1$ , then the degree of exactness is 1. As a normal strategy in numerical analysis, we analyze error by using polynomials:

$$\tilde{I}(f) - I(f) = \tilde{I}(f) - \tilde{I}(p) + I(p) - I(f)$$

$$= \tilde{I}(f-p) + I(p-f)$$

$$= (\tilde{I} - I)(f-p)$$
(7)

Now consider the norm of I, defined by  $||I|| = \sup_{f} \frac{|I(f)|}{||f||_{\infty}}$ :

$$|I(f)| = \left| \int_{a}^{b} f(x) dx \right| \le (b - a) ||f||_{\infty} \Rightarrow \frac{|I(f)|}{||f||_{\infty}} \le b - a$$

$$\forall f \text{ constant function, } \left| \int_{a}^{b} f(x) dx \right| = (b - a) ||f||_{\infty} \Rightarrow \sup_{f} \frac{|I(f)|}{||f||_{\infty}} \ge b - a$$

therefore, ||I|| = b - a; same goes for  $\tilde{I}$ , we'll have  $||\tilde{I}|| = b - a$ . And from (7),

$$|\tilde{I}(f) - I(f)| \le |\tilde{I}(f - p)| + |I(p - f)| \le 2(b - a)||f - p||_{\infty}, \forall p \in P_1$$
  
 $\Rightarrow |\tilde{I}(f) - I(f)| \le 2(b - a) \inf_{p \in P_1} ||f - p||_{\infty}$ 

this analysis essentially says without assumption  $f \in C_2$ , the quadrature error can be deduced from p – making p to be the minimax polynomial of f can give most meaningful results (though not always easy). Note that p here is merely a tool introduced to perform error analysis.

In general, quadrature proceeds as

$$\tilde{I}(f) = \sum_{i=0}^{n} w_i f(x_i), \ a \le x_i \le b$$

and the sequence  $x_1, x_2, ..., x_n$  are called *quadrature nodes*, while  $w_1, w_2, ..., w_n$  are called *quadrature weights*. An example could be *interpolatory quadrature*, which proceeds by computing the Lagrangian interpolation polynomial first, then taking integral of the polynomial:

$$\tilde{I}(f) = I(\mathcal{L}_n f) = \int_a^b \mathcal{L}_n f(x) dx$$
$$= \int_a^b \sum_{i=0}^n f(x_i) \phi_i(x) dx$$
$$= \sum_{i=0}^n f(x_i) \int_a^b \phi_i(x) dx$$

and the degree of exactness here will be at least n – as Lagrangian interpolation can represent a degree-n polynomial exactly. The rest of error analysis will proceed similar as we've seen before for midpoint quadrature.

(first-order<sup>8</sup>) IVP The *initial value problem* (*IVP*), otherwisely called the *Cauchy problem*, basically refers to a DE with initial values given; specifically, it is defined as finding a real-valued function  $y \in C^1(I)$  s.t.

$$\begin{cases} y'(t) = f(t, y(t)), & t \in I \\ y(t_0) = y_0 \end{cases}$$
 (8)

<sup>&</sup>lt;sup>8</sup>Note that in numerical analysis, *first-order IVP* is of special interest because higher-order IVP can always be rewritten as a first-order IVP; e.g. see this example of six-body motion problem (Problem 4) solved by Runge-Kutta.

where f(t,y) is a given real-valued function in the strip  $S = I \times \mathbb{R}$ . Immediately from this definition, we have the following equivalent of above formula:

$$y(t) - y_0 = \int_{t_0}^{t} f(\tau, y(\tau)) d\tau$$

And recall from ODE that the existence and uniqueness results are:

- 1. *Local*: if f(t,y) is locally L-Lipschitz continuous at  $(t_0,y_0)$  wrt. y, with the neighborhood  $J,\Sigma$  width to be  $r_J$  for  $t_0$  and  $r_\Sigma$  for  $y_0$ ; then the IVP admits a unique solution in a neighborhood of  $t_0$  with radius  $0 < r_0 < \min\left\{r_J, \frac{r_\Sigma}{\max_{t,v \in J \times \Sigma} |f(t,y)|}, \frac{1}{L}\right\}$ ;
- 2. *Global*: if f is uniformly Lipschitz continuous wrt. y over the entire domain  $I \times \mathbb{R}$ .

And in view of stability analysis of IVP, the definition follows from the idea that *small* perturbations results in small error to solutions. Formally, the IVP is Liapunov stable on I if  $\forall (\delta_0, \delta(t))$  satisfying

$$|\delta_0| < \varepsilon$$
,  $|\delta(t)| < \varepsilon$ ,  $\forall t \in I$ ,

with  $\varepsilon > 0$  sufficiently small to ensure existence of solution for the perturbed problem

$$\begin{cases} z'(t) = f(t, z(t)) + \delta(t), & t \in I \\ z(t_0) = y_0 + \delta_0, \end{cases}$$

we have  $\exists C > 0$  s.t.  $|y(t) - z(t)| < C\varepsilon$ ,  $\forall t \in I$  – the constant C here depends on  $t_0, y_0, f$ , but not on  $\varepsilon$ .

**Numerical Methods for ODE** The approximation of the problem (8) is called *one-step* method if  $\forall n \geq 0$ ,  $u_{n+1}$  depends only on  $u_n$ ; otherwise, it will be called *multistep* method. Moreover, if  $u_{n+1}$  depends only on the past q steps (i.e.,  $u_n, \ldots, u_{n+2-q}, u_{n+1-q}$ ). A few one-step methods are:

• forward Euler:  $u_{n+1} \leftarrow u_n + hf_n$ 

• backward Euler:  $u_{n+1} \leftarrow u_n + h f_{n+1}$ 

• Crank-Nicolson method:  $u_{n+1} \leftarrow h \cdot \frac{f_n + f_{n+1}}{2}$ 

• Heun method:  $u_{n+1} \leftarrow u_n + h \cdot \frac{f_n + f(t_{n+1}, u_n + hf_n)}{2}$ 

A method is called *explicit* if  $u_{n+1}$  can be computed directly from  $u_k$ , for some  $k \le n$  (e.g., forward Euler and Heun); *implicit* if  $u_{n+1}$  depends implicitly on itself through f (e.g., backward Euler and Crank-Nicolson).

The linear multistep method refers to

$$u_n \leftarrow \sum_{j=1}^r a_j u_{n-j} + h \left( \sum_{j=1}^r b_j f_{n-j} + b_0 f_n \right), \ \forall n = r, r+1, \dots$$

or write in a more interpretable manner: the updating formula above aims to build a connection between numerical values and slopes:

$$u_n - \sum_{j=1}^r a_j u_{n-j} = h \left( \sum_{j=1}^r b_j f_{n-j} + \underbrace{b_0 f_n}_{\text{implicit term}} \right)$$

Linear multistep method is, of course, linear in both u and f, and it evaluates f once per step; its accuracy can be increased by increasing the number of steps r. For the sake of clarity, we shall re-parameterize the equation above, denoted by:

$$\sum_{j=0}^{r} \alpha_j u_{k+j} = h \left( \sum_{j=0}^{r} \beta_j f_{k+j} \right)$$

where now k := n - r. Thanks to its simple linear structure, error analysis is feasible for linear multistep method – first let's define the local truncation error for linear multistep method  $\tau_h$ :

$$h\tau_h := y_{k+r} - u_{k+r}$$

And the error analysis will just assume previous r steps are exact, i.e.,  $u_{k+j} = y_{k+j}$  for j = 0, 1, ..., r-1. Under this assumption, the error analysis can be achieved by substitution

to the updating formula:

$$\alpha_r u_{k+r} + \sum_{j=0}^{r-1} \alpha_j y_{k+j} = h \left( \beta_r f_{k+r} + \sum_{j=0}^{r-1} \beta_j f \left( t_{k+j}, y_{k+j} \right) \right)$$
$$= h \left( \beta_r f_{k+r} + \sum_{j=0}^{r-1} \beta_j y'_{k+j} \right)$$

and taking difference term-wisely, we have:

$$L_{h} := \sum_{j=0}^{r} \left[ \alpha_{j} y_{k+j} - h \beta_{j} y_{k+j}' \right]$$

$$= \alpha_{r} (y_{k+r} - u_{k+r}) - h \beta_{r} (f(t_{k+r}, y_{k+r}) - f_{k+r})$$

$$= \alpha_{r} (y_{k+r} - u_{k+r}) - h \beta_{r} \underbrace{\left[ \frac{\partial f}{\partial u} (\xi) \right]}_{-: I \in \mathbb{R}^{m \times m}} (y_{k+r} - u_{k+r})$$
(9)

where m is just the dimension of u. or y., and the symbol " $\xi$ " comes from mean value theorem. Moreover, by definition, now we have

$$h\tau_n(h) = (\alpha_0 I - h\beta_0 J)^{-1} L_h$$

The linear multistep method is *of order* p if  $\tau_n(h) = O(h^p) \Leftrightarrow L_h = O(h^{p+1})$ . And from above steps, we are ready to prove that the following statements are equivalent:

1. linear multistep method is of order *p* 

2. 
$$\sum \alpha_j = 0$$
,  $\sum j\alpha_j = \sum \beta_j$ ,  $\sum j^2\alpha_j = 2\sum j\beta_j$ ,  $\cdots$ ,  $\sum j^p\alpha_j = p\sum j^{p-1}\beta_j$ 

3.  $\rho(e^h) - h \cdot \sigma(e^h) = O(h^{p+1})$  as  $h \to 0$ , where the characteristic and generating polynomials are defined by

$$\rho(z) = \alpha_0 + \alpha_1 z + \dots + \alpha_r z^r$$
$$\sigma(z) = \beta_0 + \beta_1 z + \dots + \beta_r z^r$$

4. 
$$\frac{\rho(z)}{\log z} - \sigma(z) = O((z-1)^p)$$
 as  $z \to 1$ 

The proof of equivalence between 2 and 3 follows by taking  $u(t) = e^t$  we have

$$L_{h} = \sum_{j=0}^{r} \left[ \alpha_{j} e^{t+jh} - h \beta_{j} e^{t+jh} \right] = e^{t} \left[ \rho \left( e^{h} \right) - h \cdot \sigma \left( e^{h} \right) \right].$$

and other part of proof follows by taking second-order Taylor polynomial expansion on (9).

The Runge-Kutta method refers to

$$u_{n+1} \leftarrow u_n + h \cdot F(t_n, u_n, h; f), \forall n \ge 0$$

where *F* is the increment function defined as:

$$F(t_n, u_n, h; f) = b^T K,$$
  
 $[K]_i = f(t_n + [c]_i h, u_n + h A_{i,:} K), i = 1, 2, ..., s$ 

where 
$$A := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & & a_{2s} \\ \vdots & & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{ss} \end{bmatrix} \in \mathbb{R}^{s \times s}, \ b, c \in \mathbb{R}^{s}; \text{ and we assume } c_i = \sum_{j=1}^{s} a_{ij}, \ \forall i = 1, 2, \dots, s.$$

Obviously Runge-Kutta is explicit iff *A* is a strictly lower triangular matrix. *Runge-Kutta method is a one-step method, and its accuracy can be increased by increasing number of function evaluations s*. Finally, it's straightforward to verify that both Euler's methods belong to the Runge-Kutta family. From the optimization perspective, forward Euler's method corresponds to gradient descent, while backward Euler's method with Newton-Raphson as the iterative solver and forward Euler as stepwise initial guess behaves like Newton-Raphson – see numerical example here (Problem 2 a.).

## References

- [1] Gantumur Tsogtgerel. MATH 598 Lecture Notes, Fall 2020. 2020.
- [2] Lloyd Trefethen. *Numerical linear algebra*. Philadelphia, Pa: Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104, 1997. ISBN: 0898719577.
- [3] Alfio M. Quarteroni, Riccardo Sacco, and Fausto Saleri. *Numerical Mathematics*. Springer-Verlag GmbH, Oct. 19, 2006. ISBN: 3540346589. URL: https://www.ebook.de/de/product/5810163/alfio\_m\_quarteroni\_riccardo\_sacco\_fausto\_saleri\_numerical\_mathematics.html.
- [4] Lloyd N. Trefethen. *Approximation Theory and Approximation Practice*. CAMBRIDGE, Jan. 3, 2013. 295 pp. ISBN: 1611972396. URL: https://www.ebook.de/de/product/20339745/lloyd\_n\_trefethen\_approximation\_theory\_and\_approximation\_practice.html.
- [5] Xiangmin Jiao. Lecture 13: Householder Reflectors; Updating QR Factorization. 2012. URL: http://www.ams.sunysb.edu/~jiao/teaching/ams526\_fall12/lectures/lecture13.pdf.