EECE 5552-Assistive Robotics Assignment 2

Alireza Ramezani

*Due by 9:50 AM Eastern Time, Tuesday, September 29

Problem 1

- (a) Consider the following sequence of rotations.
 - A: Rotate by ϕ about the world x-axis.
 - B: Rotate by θ about the current z-axis.
 - C: Rotate by ψ about the world y-axis.

What is the resulting rotation matrix?

- (b) Consider the following sequence of rotations.
 - A: Rotate by ϕ about the world x-axis.
 - B: Rotate by θ about the world z-axis.
 - C: Rotate by ψ about the current x-axis.

What is the resulting rotation matrix?

Problem 2

- (a) A group is a set X together with an operation * defined on that set such that
 - a) $x_1 * x_2 \in \mathbf{X}$ for all $x_1, x_2 \in \mathbf{X}$,
 - b) $(x_1 * x_2) * x_3 = x_1 * (x_2 * x_3),$
 - c) There exists an element $I \in \mathbf{X}$ such that I * x = x * I = x for all $x \in \mathbf{X}$,
 - d) For every $x \in \mathbf{X}$, there exists some $y \in \mathbf{X}$ such that x * y = y * x = I.

Now, demonstrate that SO(3) with the operation of matrix multiplication is a group.

(b) Suppose $A \in SO(2)$. This implies that $A^TA = \mathbb{I} \in \mathbb{R}^{2 \times 2}$ and $\det\{A\} = 1$. Show that there exists a unique θ such that A is of the form:

$$A = \begin{bmatrix} c_{\theta} & -s_{\theta} \\ s_{\theta} & c_{\theta} \end{bmatrix}$$

1

Figure 1: Problem 3-a.

Problem 3

- (a) According to Fig. 1, what are the homogeneous transformations H_1^0 , H_2^0 , H_2^1 ? How H_2^1 is compared to H_1^2 ?
- (b) Drive the forward kinematic solution for the robot shown in Fig. 2 (apply Danvit-Hartenberg convention after choosing the coordinate frames).

Figure 2: Problem 3-b.