Aula – Computação Gráfica	
Transformações Geométricas	
•	
Slides para uso pessoal e exclusivo durante o período de aula. Distribuição ou	
qualquer uso fora do escopo da disciplina é expressamente proibido.	
1	
Como Usov Transformações Coométrises?	
Como Usar Transformações Geométricas?	
Objetos em uma cena são coleções de pontos	
Esses objetos possuem	
LocalizaçãoOrientação	
 Tamanho Esses parâmetros correspondem a 	
 Esses parâmetros correspondem a Translação (T) 	
Rotação (R)Escala (S)	
250.0 (5)	
2	
2	
Como Han Transferraçãos Constituição	
Como Usar Transformações Geométricas?	
Uma cena tem uma câmera/ponto de vista de onde é observada	
A câmera tem uma localização e uma orientação no espaço 3D	
 Esses parâmetros correspondem a transformações Translações e Rotações 	
 Outros tipos de transformações de visualização são necessárias Visto em aulas futuras 	
- visto em auias luturas	
/ \ •	
—	

	Como Usar Transformações Geométricas?	
	 Porque usar as transformações geométricas? Facilitar o reuso dos objetos Como usar as transformações geométricas? 	
	Aplicando transformações nos vértices dos objetos	
	4	
4		
	Conceitos Necessários de Álgebra Linear	
	Geometria em coordenadas 3D Victoria en coordenadas 3D	
	 Vetores no espaço 2D e 3D Produto escalar e produto vetorial (definição e uso) 	
	Notações básicas de vetor e matriz Matrin identidade.	
	Matriz identidadeAssociatividade multiplicativa	
	 Ex.: (AB)C = A(BC) Matriz transposta e inversa 	
	 Sistema de coordenadas homogêneas (x, y, z, w) 	
	5	
5		
	Transformações Lineares	
	Padrão de representação no slides	
	 Vetores: Negrito-Itálico (v) Escalares: Itálico (c) Qualquer vetor no plano pode ser definido 	
	pela soma de dois vetores não colineares Lembre-se que a base para um espaço vetorial é um conjunto de vetores com as	
	seguintes propriedades: — Os vetores são linearmente independentes	
	Qualquer vetor nesse espaço pode ser representado por uma combinação linear dos vetores base.	
	 A multiplicação de um vetor por um escalar altera a magnitude do vetor 	

Transformações Lineares

- Função linear deve atender duas propriedades:
 - 1) $f(\mathbf{v}+\mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$ para todo $\mathbf{v} \in \mathbf{w}$ no domínio de f
 - 2) f(cv) = cf(v) para todo escalar c e elementos v no domínio
- Exemplo da propriedade 1
 - $f(x) = f(x_1, x_2) := (3x_1 + 1x_2, -3x_1 + 2x_2)$
 - $f(v+w) = f(v_1+w_1, v_2+w_2)$
 - = $(3(v_1+w_1)+1(v_2+w_2), -3(v_1+w_1)+2(v_2+w_2))$
 - = $(3v_1+1v_2, -3v_1+2v_2) + (3w_1+1w_2, -3w_1+2w_2)$
 - $\cdot = f(v) + f(w)$

7

Transformações Lineares

- Uso gráfico de funções lineares
 - Transformação de um ponto em torno da origem
 - Deixa a origem invariante
- Funções lineares
 - Incluem Rotação e Escala
 - Não inclui Translação
 - Qualquer transformação de um ponto
 - · Resulta em outro ponto
 - Transformado em torno da origem

.

8

Transformações Lineares como Matrizes

- · Podem ser representadas como
 - Matrizes inversíveis (não singulares)
- Começando com transformações 2D que podem ser representas por matrizes 2x2:

$$T = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

• Se e_1 e e_2 são os vetores base:

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• Então as colunas da matriz de transformação T são T aplicada a e_1 e e_2 :

$$T(e_1) = \begin{bmatrix} a \\ c \end{bmatrix}, T(e_2) = \begin{bmatrix} b \\ d \end{bmatrix}$$

Transformações Lineares como Matrizes

- Isso significa que podemos derivar a matriz de transformação
 Considerando como a transformação afeta os vetores base
- A transformação de um vetor arbitrário $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ tem a forma:

$$T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix}$$

- Com isso, pode-se verificar o porquê da estratégia anterior
- Substitua cada vetor base por x para obter:

$$T\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}a & b\\c & d\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}a\\c\end{bmatrix} \qquad T\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}a & b\\c & d\end{bmatrix}\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}b\\d\end{bmatrix}$$

10

Transformação de Escala

- Escalar \mathbf{x} de 3 e \mathbf{y} de 2 ($S_x = 3$, $S_y = 2$) • $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ (vértice original); $\mathbf{v}' = \begin{bmatrix} x' \\ y' \end{bmatrix}$ (novo vértice)
- v' = St
- Derivar **S** determinando como e_1 e e_2 deveriam ser transformados

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow S_X * e_1 = \begin{bmatrix} S_X \\ 0 \end{bmatrix}$$
 Escala X de S_X

$$e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow s_y * e_2 = \begin{bmatrix} 0 \\ s_y \end{bmatrix}$$
 Escala Y de s_y

• Obtendo: $\mathbf{S} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$

11

Transformação de Escala

- Escalar \mathbf{x} de 3 e \mathbf{y} de 2 ($S_x = 3$, $S_y = 2$) • $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ (vértice original); $\mathbf{v'} = \begin{bmatrix} x' \\ y' \end{bmatrix}$ (novo vértice)
- v' = Sv
- Derivar S determinando como e₁ e e₂ deveriam ser transformados

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow S_x * e_1 = \begin{bmatrix} S_x \\ 0 \end{bmatrix}$$
 Escala X de S_x

 $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow s_y * e_2 = \begin{bmatrix} 0 \\ s_y \end{bmatrix}$ Escala Y de s_y

• Obtendo: $\mathbf{S} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$

Transformação de Escala

- **S** é uma matriz diagonal
- Ela pode ser rapidamente verificada

$$Sv = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

- S multiplica cada coordenada de v pelo fator de escala apropriado
- Outras propriedades da escala
 - Não preserva ângulos entre linhas em um plano
 - · Exceto para escala uniforme
 - Se o objeto não estiver na origem
 - Ele vai se aproximar ou se afastar dela
 - · Isso geralmente não é desejável

13

Transformação de Rotação

- Rotaciona de $\boldsymbol{\theta}$ em torno da origem $-\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ (vértice original);

$$-\mathbf{v'} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$
 (novo vértice)
• $\mathbf{v'} = \mathbf{R}_{\theta} \mathbf{v}$

• Derivar $extbf{ extit{R}}_{ heta}$ determinando como $extbf{ extit{e}}_{ extit{2}}$ deveriam ser transformados [cos(θ)]

$$\begin{split} \boldsymbol{e_1} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} & \text{Primeira coluna de } \boldsymbol{\mathit{R}_\theta} \\ \boldsymbol{e_2} &= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix} \text{Segunda coluna de } \boldsymbol{\mathit{R}_\theta} \end{split}$$

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

14

Transformação de Rotação

• R_{θ} pode ser rapidamente verificada

$$\boldsymbol{R}_{\boldsymbol{\theta}}\boldsymbol{v} = \begin{bmatrix} \cos(\boldsymbol{\theta}) & -\sin(\boldsymbol{\theta}) \\ \sin(\boldsymbol{\theta}) & \cos(\boldsymbol{\theta}) \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} = \begin{bmatrix} \cos(\boldsymbol{\theta}) - y\sin(\boldsymbol{\theta}) \\ x\sin(\boldsymbol{\theta}) + y\cos(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}' \\ \boldsymbol{y}' \end{bmatrix} = \boldsymbol{v}'$$

 $x' = x \cos(\theta) - y \sin(\theta)$

 $y' = x \sin(\theta) + y \cos(\theta)$

- Outras propriedades da rotação
 - Transformação de corpo rígido
 - · Preserva comprimento dos objetos
 - Preserva ângulos entre as partes dos objetos
 - Para objetos não centrados na origem
 - Uma translação indesejada é introduzida

 $-\sin(\theta)$

cos(θ)

| sin(θ)

Transformação de Translação		
E como fica a translação? Translação não é uma transformação linear A origem não é invariante Portanto, não pode ser expressada por uma matriz 2x2 Existe alguma outra solução?	_	
Enote agains out a sociação.		
6	16	
Transformação de Translação		
E como fica a translação? Translação não é uma transformação linear A origem não é invariante Portanto, não pode ser expressada por uma matriz 2x2		
 Existe alguma outra solução? Sim Fazer: v' = v + t, where t = [dx] 		
 Porém, quebra a uniformidade Não se pode tratar como as matrizes anteriores 		
7	17	
Transformação de Translação		
Se pudéssemos tratar tudo como matriz Então, poderíamos combinar transformações por matrizes		
 Usando multiplicação e associatividade Vamos tentar usar uma matriz novamente Como? Coordenadas homogêneas 		
Adicionar uma dimensão adicional (o eixo w) Adicionar uma coordenada adicional (componente w) Então temos: 2D como 3D (hiperespaço englobando o 2D)		
	18	

Coordenada Homogêneas

- Permite uniformizar todas as 3 transformações básicas
 - Representar escala, rotação e translação como matrizes 3x3
- Começamos com um ponto P_{2d} no plano xy

• Aplicamos o w para trazer para o hiperespaço

 $-\ P_{2d}(x,y)\ =>\ P_h(wx,\,wy,\,w),\,w\ne 0$

- O ponto resultante P_h
 - Possui coordenadas diferentes
 - -(x',y') = (wx,wy)
 - $-P_h(x',y',w),\,w\neq 0$

19

Coordenada Homogêneas

- Com o ponto no novo espaço e representado por P_h
 - Transformações homogeneizadas podem ser aplicadas
 - Transformações representadas por matrizes com tamanho fixo
- · Para se obter o ponto no espaço 2D original
 - Basta aplicar a transformada inversa
 - Dividir todas as componentes por w
 - Após a divisão o vértice $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ será representado por $\mathbf{v} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

21

20

Coordenada Homogêneas

- As transformações que vamos usar manterão w = 1
- Ou seja, utilizaremos transformações **7** que mapeiam

$$- \mathbf{v} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \text{ em } \mathbf{v'} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

- Como fazer isso para as transformações que já derivamos?
 - Para as transformações lineares
 - Basta fazer $\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Transformação de Translação

• A matriz de translação focará na última coluna

$$\boldsymbol{T} = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix}$$

• Para verificar a matriz, basta fazer:

$$Tv = \begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + dx \\ y + dy \\ 1 \end{bmatrix} = v'$$

- · Perceba que as coordenadas foram transladadas
 - ν' permanece em coordenadas homogêneas

22

Transformações Homogeneizadas

- Perceba que a escala e a rotação não foram afetadas
- Essas 3 transformações são chamadas de afins

23

Transformações Homogeneizadas

- Exemplos
 - Escala de 10 em x e 20 em y

$$\begin{bmatrix} 10 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotação de 10°

$$\begin{bmatrix} \cos(10) & -\sin(10) & 0 \\ \sin(10) & \cos(10) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Translação de -10 em x e 20 em y

$$\begin{bmatrix} 1 & 0 & -10 \\ 0 & 1 & 20 \\ 0 & 0 & 1 \end{bmatrix}$$

Ve	toı	es	vs	Р	o	'n	to	15
----	-----	----	----	---	---	----	----	----

- Até agora só utilizamos o conceito de pontos
- · Porém, também podemos utilizar vetores

- As coordenadas homogêneas foram introduzidas para
 - Facilitar a translação
 - Portanto pontos são representados por $(x, y, 1)^T$
- Um vetor pode ser rotacionado e escalado
 - Mas não pode ser transladado, portanto (x, y, 0)^r
- Vamos focar nos pontos, ou seja, nos vértices dos objetos

25

Transformações Inversas

- Como achar as transformações inversas?
 - Use a matriz inversa das transformações
 - Graças a homogeneização
 - Todas são invertíveis

26

26

Transformações Inversas

- Como achar as transformações inversas?
 - Use a matriz inversa das transformações
 - Graças a homogeneização
 - Todas são invertíveis

Transformação	Matriz	Descrição
Escala	$\begin{bmatrix} 1/S_x & 0 & 0 \\ 0 & 1/S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$	Se você escala algo de a, para desfaze-la seria necessário escalar de 1/a
Rotação	$\begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$	O inverso da rotação por um ângulo θ é a rotação por $-\theta$. Como a matriz é ortonormal, sua inversa é a transposta.
Translação	$\begin{bmatrix} 1 & 0 & -dx \\ 0 & 1 & -dy \\ 0 & 0 & 1 \end{bmatrix}$	Se você translada algo de x, para desfazer basta transladar de –x.

Composição de Transformações

- Agora temos várias ferramentas a disposição
 - Podemos combiná-las
- Um objeto em uma cena é composto por vários vértices
- O objeto usa várias transformações para ser formado
- · Como representamos isso por funções?
- Transformação é uma função
- Elas podem ser compostas por associatividade
 - (f o g)(i)
- Equivalente a aplicar g e depois f:
 - f(g(i))

28

Composição de Transformações

- Considere nossas funções f e g como matrizes ($M_1 e M_2$)
- Considere nossa entrada como um vetor ${m v}$
- Nossa composição é equivalente a M₁M₂v
- Agora podemos formar transformações complexas
 - Usando composição de transformações básicas
 - Podemos compor as matrizes em uma só antes de multiplicar
 - Útil para aumentar performance dado o alto número de vértices
 - Por exemplo, TRSv

$$\begin{bmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

29

Composição de Transformações

- Importante: A ordem das transformações importa!
 - Multiplicação de matrizes não é comutativo!

Composição de Transformações

31

Composição de Transformações

32

Composição de Transformações

Composição de	Transformaco	ies (Inversa)

- Qual é a inversa de uma sequência de transformações?
 - É a composição das inversas na ordem invertida
 - $(M_1M_2...M_n)^{-1} = M_n^{-1}M_{n-1}^{-1}...M_1^{-1}$
- Supondo que queiramos desfazer as transformações aplicadas nos slides anteriores T¹RST
 - $-(T^{-1}RST)^{-1} = T^{-1}S^{-1}R^{-1}T$
- Ainda sim precisamos transladar a origem e levar de volta

$$\textbf{\textit{T}}^{-1}\textbf{\textit{S}}^{-1}\textbf{\textit{R}}^{-1}\textbf{\textit{T}} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(90) & \sin(90) & 0 \\ -\sin(90) & \cos(90) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

Forma Alternativa de Pensar

- · Pensamento natural
 - Transformações mudam posição dos vértices em relação aos eixos
- Pensamento alternativo
 - Transformações mudam os eixos dos sistemas de coordenadas
 - Essa forma facilita a representação no papel

Escala

35

Perguntas ?????