

Ορισμός: Ο πίνακας γειτνίασης (ή μητρώο σύνδεσης) ενός μη κατευθυνόμενου γραφήματος G=(V,E) με |V|=n είναι ένας n x η τετραγωνικός πίνακας που ορίζεται ως:

 $A_{n\times n} = (a_{i,j}) = \begin{cases} 1, & \alpha v [v_i, v_j] \in E \\ 0, & \alpha v [v_i, v_j] \notin E \end{cases}$

Παράδειγμα: Στο σχήμα βλέπουμε ένα μη κατευθυνόμενο γράφημα και τον πίνακα γειτνίασής του:

$$A = \begin{bmatrix} v_1 v_2 v_3 v_4 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Θεώρημα (υπολογισμού μονοπατιών):

Το στοιχείο (i,j) του πίνακα A^k (ο πίνακας γειτνίασης υψωμένος στην k δυναμη). δίνει πόσα μονοπάτια μήκους \mathbf{k} υπάρχουν από την κορυφή $\mathbf{v_i}$ στην κορυφή $\mathbf{v_i}$ Πόρισμα 1:

Το στοιχείο (i,j) του πίνακα $A+A^2+\cdots+A^k$ δίνει πόσα μονοπάτια μήκους το πολύ k υπάρχουν από την κορυφή v_i στην κορυφή v_i

Πόρισμα 2:

Aν ένα μη διαγώνιο στοιχείο (i, j) του πίνακα $A + A^2 + \cdots + A^{n-1}$ (όπου n=|V|) είναι 0, τότε το γράφημα δεν είναι συνδεόμενο.

Ορισμός: Ο πίνακας γειτνίασης (ή μητρώο σύνδεσης) ενός μη κατευθυνόμενου γραφήματος G=(V,E) με |V|=n είναι ένας n x

η τετραγωνικός πίνακας που ορίζεται ως:

$$A_{n\times n} = (a_{i,j}) = \begin{cases} 1, & \alpha v [v_i, v_j] \in E \\ 0, & \alpha v [v_i, v_j] \notin E \end{cases}$$

Παράδειγμα: Στο σχήμα βλέπουμε ένα μη κατευθυνόμενο γράφημα και τον πίνακα γειτνίασής του:

ΙΣΟΜΟΡΦΙΚΑ ΓΡΑΦΗΜΑΤΑ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός: Δύο γραφήματα $G_1(V_1, E_1)$ και $G_2(V_2, E_2)$ είναι **ισομορφικά**, αν υπάρχει συνάρτηση $f: V_1 \to V_2$ 1-1 και επί, τέτοια ώστε $(v_i, v_i) \in E_1$ και $(f(v_i), f(v_i)) \in E_2$ και αντίστροφα. Η f λέγεται συνάρτηση ισομορφισμού ή ισομορφισμός του G_1 με το G_2

Με απλά λόγια:

Υπάρχει αντιστοίχιση των κορυφών ώστε να ταυτίζονται οι ακμές.

Θεώρημα: Για δύο ισομορφικά γραφήματα $G_1(V_1, E_1)$ και $G_2(V_2, E_2)$ ισχύει ότι με κάποια κατάλληλη διάταξη των κορυφών οι πίνακες γειτνίασης των δύο γραφημάτων ταυτίζονται

Παράδειγμα: Στο σχήμα βλέπουμε δύο ισόμορφα γραφήματα. Η αναδιάταξη των κορυφών του G_2 ώστε να ταυτίζονται οι κορυφές προκύπτει από την συνάρτηση ισομορφισμού

Ορισμός:

γράφημα στον εαυτό του

- Το K_n έχει n! αυτομορφισμούς
- Το $K_{n,m}$ έχει $n! \, m!$ αυτομορφισμούς

Αυτομορφισμός είναι ένας ισομορφισμός από ένα

Αυτοσυμπληρωματικό καλείται ένα γράφημα, αν είναι ισόμορφο με το συμπλήρωμά του.

- έχει m = n(n-1)/4 ακμές
- Το μονοπάτι 4 κορυφών είναι αυτοσυμπληρωμα
 - τικό γράφημα Ο κύκλος 5 κορυφών είναι αυτοσυμπληρωματικό γράφημα

Για να δείξω ότι δύο γραφήματα είναι ισομορφικά:

- Δίνω τη συνάρτηση ισομορφισμού
- Δείχνω ότι τα συμπληρώματα είναι ισομορφικά

Για να δείξω ότι δύο γραφήματα δεν είναι ισομορφικά:

- Βρίσκω μία αναλλοίωτη ιδιότητα που δεν διατηρείται π.χ.
 - έχει η κορυφές, έχει m ακμές, έχει κορυφή βαθμού k, έχει κύκλο Euler, έχει κύκλο Hamilton, είναι συνδεόμενο, είναι επίπεδο κ.λπ.

Ορισμός: Δύο γραφήματα καλούνται **ομοιομορφικά** αν μπορούν να απλοποιηθούν (με απλοποιήσεις σειράς) σε ισομορφικά γραφήματα.

Απλοποίηση σειράς είναι μια πράξη, πάνω σε γράφημα που «απαλείφει» κορυφές βαθμού 2:

Ορισμός: Ένα γράφημα είναι **επίπεδο**, αν μπορούμε να το απεικονίσουμε στο επίπεδο, χωρίς να τέμνονται οι ακμές του.

- Μία απεικόνιση στο επίπεδο χωρίς να τέμνονται οι ακμές του λέγεται **επίπεδη αποτύπωση** του γραφήματος
- Κάθε τμήμα του επιπέδου που ορίζεται από απλό κύκλο της αποτύπωσης λέγεται **όψη** της αποτύπωσης
- Το πλήθος των όψεων: Συμβολίζεται με ο και προσοχή ότι συμπεριλαμβάνει πάντα και την εξωτερική όψη
- **Βαθμός της όψης** o_i το πλήθος των ακμών που περιέχει ο απλός κύκλος της όψης (συμβολίζεται με $d(o_i)$)

Σε ένα επίπεδο γράφημα:

- $\sum_{i=1}^{o} d(o_i) \le 2m$
- Αν είναι και συνδεόμενο ισχύει ο τύπος του Euler: o=m-n+2

Παράδειγμα: Στην ακόλουθη επίπεδη αποτύπωση έχουμε 5 όψεις

Και ισχύει για τους βαθμούς των όψεων:

$$d(o_1) = 4$$
, $d(o_2) = 3$, $d(o_3) = 3$, $d(o_4) = 4$,
 $d(o_5) = 8$

Ένα γράφημα είναι επίπεδο αν:

- Μπορούμε να το ζωγραφίσουμε στο επίπεδο χωρίς να τέμνονται οι ακμές του!
- Δεν περιέχει ως υπογράφημα το Κ5 ή το Κ3,3 και δεν περιέχει υπογράφημα ομοιομορφικό του Κ5 ή του Κ3,3 (από θ.Kuratowski)

Ένα γράφημα δεν είναι επίπεδο αν:

- Είναι απλό και ισχύει m > 3n-6
- Περιέχει ως υπογράφημα το K5 (από θ.Kuratowski)
- Περιέχει ως υπογράφημα το K3,3 (από θ.Kuratowski)
- Περιέχει υπογράφημα ομοιομορφικό του Κ5 ή το Κ3,3(από θ.Kuratowski)

Θεώρημα Kuratowski: Ένα γράφημα είναι επίπεδο αν και μόνο **αν** δεν περιέχει το K_5 ή το $K_{3,3}$ (ή ομοιομορφικό αυτών)

Σκιαγράφηση Αλγόριθμου Dijkstra:

Κατά την διάρκεια εκτέλεσης του αλγορίθμου σημειώνουμε σε κάθε κορυφή ν:

- L[v] το κόστος του καλύτερου μονοπατίου για να πάμε από την αφετηρία s στην κορυφή v
- Ρ[ν] είναι η κορυφή μέσω της οποίας καταλήγουμε στην κορυφή ν

Στην αρχικοποίηση:

Θέτουμε όλες τις ετικέτες L[v]=+∞ εκτός της αφετηρίας που έχει L[s]=0

Σε κάθε βήμα:

- Οριστικοποιείται η κορυφή με το μικρότερο κόστος από τις μη οριστικοποιημένες
- Διορθώνονται οι ετικέτες των γειτονικών μη οριστικοποιημένων κορυφών (σε περίπτωση που βρεθεί καλύτερο μονοπάτι από την κορυφή που οριστικοποιήθηκε)

Τερματισμός:

Όταν οριστικοποιηθεί η κορυφή τερματισμού t.

Παράδειγμα:

Σχηματική απεικόνιση μετα την εκτέλεση 2 βημάτων σε ένα γράφημα:

Επόμενη κορυφή που οριστικοποιείται είναι η ν2