Problem Set 2 — Order of Growth and Asymptotic Analysis

- 1. Describe a $\Theta(n \log n)$ -time algorithm that, given an array A of n integers and another integer x, determines whether or not there exist two elements in A whose sum is exactly x. (Hint: do not use divide-and-conquer.)
- 2. Problem 3.1-1 in CLRS.

We shall prove that that $max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Since f(n) and g(n) are nonnegative functions $f(n) \le f(n) + g(n)$ and $g(n) \le f(n) + g(n)$. Therefore, max(f(n), g(n)) = O(f(n) + g(n)).

Note that $f(n) + g(n) \le 2 * max(f(n), g(n))$ because $f(n) \le max(f(n), g(n))$ and $g(n) \le max(f(n), g(n))$ by definition.

Also, the definition of Ω if there exists a positive constant k which $0 \le cg(n) \le f(n) \forall n \ge n_0$. In this case, $n_0 = 0$ and k = 2.

Since we proved that $max(f(n), g(n)) = \Omega(f(n) + g(n))$ and max(f(n), g(n)) = O(f(n) + g(n)) then by definition $max(f(n), g(n)) = \Theta(f(n) + g(n))$.

3. Problem 3-2 (Big Oh, Big Omega, and Big Theta only) in CLRS.

A	В	0	Ω	Θ
$lg^k n$	n^{ϵ}	No	Yes	No
n^k	c^n	Yes	No	No
\sqrt{n}	$n^{\sin n}$	No	No	No
2^n	$2^{n/2}$	Yes	Yes	Yes
n^{lgc}	c^{lgn}	Yes	No	No
lg(n!)	$lg(n^n)$	Yes	No	No

- 4. Problem 3-4 (parts c,d,e,g) in CLRS.
 - c $f(n) = O(g(n)) \implies lg(f(n)) = O(g(n))$. We will prove this directly. By defition of upper bound: $f(n) \leq g(n)$ and by definition of $lg(f(n)) \leq lg(g(n))$ which means that lg(f(n)) = O(lg(g(n)))
 - d Suppose that f(n) = 2n and g(n) = lgn. Then by definition, f(n) = O(g(n)) when c = 2. However, $2^{2n} \neq O(2^n)$ since there is no c that works so that so that $f(n) \leq g(n)$ for all n.
 - e Suppose that $f(n) = \frac{1}{n}$ thus $(f(n))^2 = \frac{1}{n^2}$. So the statement $f(n) = O((f(n))^2)$ is a contradiction since there exists no c that works so that for all n $f(n) \leq (f(n))^2$.
 - g Suppose that $f(n) = 2^n$ so we must show that $2^n \le c * 2^{\frac{n}{2}}$