The Signature of Semantic Structures

Let us have the compound particle V_{comp} represented by its elementary particle sequence and semantic tree $stree(V_{comp})$:

$$stree(V_{comp}) = \\ V_{1} \\ / & | \\ V_{2} \\ V_{5} \\ / & | \\ V_{3} \\ V_{4} \\ V_{7} \\ V_{8} \\ V_{9}$$

The property tree for each V-particle V_k , k=1..9 are given with the algebraic notation discussed in Semantic Tree Operations.

 $ptree(V_k) = \sum_{\pmb{k} \in \mathfrak{T}(V_k), i \in \mathfrak{p}(V_k)} (\pmb{k}, P_i)$. Here \pmb{k} denotes the path $(k_{l_1}, k_{l_2}, \dots, k_{l_h})$ constructed by branching consecutively along the k_{l_1} -th branch from the top level, then the k_{l_2} -th branch from the lower level and finally k_{l_h} -th branch from the h-th level. The set $\mathfrak{T}(V_k)$ denotes the set of all paths from the root to a leaf in the property tree of V_k . The set $\mathfrak{p}(V_k)$ denotes the indices of the vertices in the property tree of V_k .

Expressing the property tree of V_1 with the algebraic notation discussed earlier:

$$ptree(V_1) = \sum_{k_j \in \mathfrak{T}(V_1), i \in \mathfrak{p}(V_1)} (k_j, P_j)$$

Similarly, $ptree(V_2)$ is given with

$$ptree(V_2) = (1, P_0) + (k_1, P_1) + (k_2, P_2) + (k_3, P_3) + (k_4, P_4) + (k_5, P_5) + (k_3k_1, P_6) + (k_3k_2, P_7) + (k_5k_1, P_8) + (k_5k_2, P_9) + (k_3k_1k_1, P_{10})$$

Here P_0 is $text(V_2)$.

Now if we expand the property trees for each V-particle in the semantic tree for the composite particle V_{comp} we will have a larger augmented property tree. This augmented property tree represents the semantic structure of V_{comp} and can be recorded in a matrix form which is the semantic signature of V_{comp} . The semantic signature matrix of V_{comp} will have the following structure:

$$ssig(V_{comp}) = [p_0 \ a_{0,1} \ p_1 \ p_0 \ a_{0,2} \ p_2 \ p_0 \ a_{0,3} \ p_3 \ \dots \ p_p \ a_{p,q} \ p_q]$$

The last matrix can be rewritten in block matrix notation:

$$ssig(V_{comp}) = [B_1 B_2 B_3 \dots B_q]$$

$$B_1 = \begin{bmatrix} p_0 & a_{0,1} & p_1 \end{bmatrix}$$
, $B_2 = \begin{bmatrix} p_0 & a_{0,2} & p_2 \end{bmatrix}$, $B_3 = \begin{bmatrix} p_0 & a_{0,2} & p_3 \end{bmatrix}$, ..., $B_q = \begin{bmatrix} p_0 & a_{0,2} & p_q \end{bmatrix}$

Here the block matrix B_1 fully describes the property P_1 including how it is connected to the property tree $ptree(V_1)$. Similarly, B_2 and B_3 fully describes the properties P_2 and P_3 and their connectivity to $ptree(V_1)$. Finally, P_q fully describes the property P_q and its connectivity to $ptree(V_2)$.

In the block matrix for $ssig(V_{comp})$ p_0 denotes the signature column vector of the property P_0 , $a_{0,1}$ denotes the signature column vector of the arc between property P_0 and property P_1 , $a_{p,q}$ denotes the signature column vector of the arc between property P_p and P_q . Let us denote the number of rows of $ssig(V_{comp})$ by N and the number of columns by M.

The semantic signature matrix $ssig(V_{comp})$ can be decomposed as a sum of two intrinsic structural matrices – property signature matrix $psig(V_{comp})$ and connectivity signature matrix $csig(V_{comp})$:

$$ssig(V_{comp}) = psig(V_{comp}) + csig(V_{comp})$$

$$psig(V_{comp}) = \begin{bmatrix} \boldsymbol{p_0} & 0 & \boldsymbol{p_1} & \boldsymbol{p_0} & 0 & \boldsymbol{p_2} & \boldsymbol{p_0} & 0 & \boldsymbol{p_3} & \dots & \boldsymbol{p_p} & 0 & \boldsymbol{p_q} \end{bmatrix}$$

$$csig(V_{comp}) = [0 \ a_{0,1} \ 0 \ 0 \ a_{0,2} \ 0 \ 0 \ a_{0,3} \ 0 \ \dots \ 0 \ a_{p,q} \ 0]$$

Let us denote by $psig(P_1, V_{comp})$ the augmented semantic property signature of property P_1 with respect to V_{comp} . It is given with:

$$psig(P_0, V_{comp}) = [\mathbf{p_0} \ 0 \ 0 \ \mathbf{p_0} \ 0 \ 0 \ \mathbf{p_0} \ 0 \ 0 \ \dots \ 0 \ 0]$$

Similarly,

$$psig(P_1, V_{comp}) = [0 \ 0 \ p_1 \ 0 \ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 0]$$

Then obviously:

$$psig(V_{comp}) = \sum_{k \in \mathbb{S}(V_{comp})} \sum_{i \in \mathbb{p}(V_k)} psig(P_i, V_{comp})$$

Here $\mathbb{S}(V_{comp})$ denotes the set of the indices of all semantic particles which the composite V_{comp} is composed from.

Another way to partition the signature matrix into block matrices is:

$$ssig(V_{comp}) = [V_1 A_{1,2} V_2 A_{1,3} V_3 \dots A_{6,8} V_8 A_{6,9} V_9]$$

The block matrix V_1 represents the property tree of the particle V_1 and it is given by:

$$V_1 = \begin{bmatrix} p_0 & a_{0,1} & p_1 & p_0 & a_{0,2} & p_2 & p_0 & a_{0,3} & p_3 & \dots & p_0 & a_{0,k} & p_k \end{bmatrix}$$

The block matrix $A_{1,2}$ describes the connection between the particles V_1 and V_2 connecting the root properties of both as:

$$A_{1,2} = [p_0 \ a_{0,k+1} \ p_{k+1}]$$

Here are some interesting properties of $ssig(V_{comp})$:

The number of rows N in $ssig(V_{comp})$ is 3 \times the number of arcs in the augmented property tree of V_{comp} .

The rank of