计算机组成原理——机器

第8章 CPU 的结构和功能

刘宏伟

哈尔滨工业大学 计算机科学与技术学院

第8章 CPU 的结构和功能

- 8.1 CPU 的结构
- 8.2 指令周期
- 8.3 指令流水
- 8.4 中断系统

8.1 CPU 的结构

一、CPU的功能

1. 控制器的功能

取指令

分析指令

执行指令,发出各种操作命令

控制程序输入及结果的输出

总线管理

处理异常情况和特殊请求

2. 运算器的功能

实现算术运算和逻辑运算

指令控制

操作控制

时间控制

处理中断

数据加工

二、CPU结构框图

8.1

1. CPU 与系统总线

指令控制 PC IR

操作控制 } CU 时序电路

时间控制

ALU 寄存器

处理中断

数据加工

中断系统

三、CPU 的寄存器

1. 用户可见寄存器

(1) 通用寄存器 存放操作数

可作 某种寻址方式所需的 专用寄存器

存放操作数 (满足各种数据类型) (2) 数据寄存器

两个寄存器拼接存放双倍字长数据

(3) 地址寄存器 存放地址,其位数应满足最大的地址范围 用于特殊的寻址方式 段基值 栈指针

(4) 条件码寄存器 存放条件码,可作程序分支的依据 如正、负、零、溢出、进位等

2. 控制和状态寄存器

(1) 控制寄存器

 $PC \rightarrow MAR \rightarrow M \rightarrow MDR \rightarrow IR$

控制 CPU 操作

其中 MAR、MDR、IR 用户不可见

PC

用户可见

(2) 状态寄存器

状态寄存器 存放条件码

PSW 寄存器 存放程序状态字

8.1

四、控制单元 CU 和中断系统

1. CU 产生全部指令的微操作命令序列

组合逻辑设计

硬连线逻辑

微程序设计

存储逻辑

参见第4篇

CPU

ALU

寄存器

CU

2. 中断系统

参见 8.4 节

五、ALU

参见第6章

2015/9/16

数据总线