

EZ 7	1	2	3	4	5	6	7	8	9	ا ۱۰		
答案												
1、若一	模拟信号	号为带队	l的基带	信号,	且对其	采样满足	已奈奎斯	特采样	定理, 则	J 只要将采		
样信号通	过(/	月) 則	可无失	真恢复	原信号。							
A.	理想低	通滤波器	8		B. 理想高通滤波器							
	理想带边				D. 理想带阻滤波器							
100 600		170	x(n) + 3	其中	x(n), $y($	n)分别:	表示系统	花的输入	、输出,	则该系统		
为(】)系统	充。										
Α.	A. 线性时变					B. 线性时不变						
	C. 非线性时变						D. 非线性时不变					
3、己知	序列 x(r	$a = \frac{1}{2}\delta$	(n+1)+	$\delta(n)$ +	$\frac{1}{2}\delta(n-1)$,则其	、时域离	前傅里	叶变换的	的直流分量		
$X(e^{j\omega})\Big _{\omega}$	。为((().	{±,	1, 1/2	}							
Α.	A1					B. 0.5						
C. 2						D. 1	1					
				0.(m)	$\frac{1}{1-3z^{-1}},$	收敛域	送 z >	3,通过	t求解 X	(z) 的逆 Z 变		
换,可求	得序列	x(n) 为	(/-	1).								
Α.	A. $3^n u(n)$					B. $3^n u(-n-1)$						
C.	C. $(-3)^n u(n)$					D. $(-3)^n u(-n-1)$						
5、已知月	序列 x _i (n	(x_2)	n)的N	点 DFT	分别为	$X_1(k)$.	$X_2(k)$	N 大·	F序列 x	$(n) \cdot x_2(n)$		
长度,则	循环卷	积 $x_1(n)$	\bigcirc x_2	(n) 的 N	V点 DFT	为(D).					
Α.	$A. X_1(k) \cdot X_2(k)$					B. $X_1(k) - X_2(k)$						
C.	$X_{1}(k)+$	$X_2(k)$				D. X_1	(k) (N)	$X_2(k)$				
6、对于/	亨列的何	尊立叶多	を換而	言, 其信	号的特	点是(D).					
Α.	时域连:	续非周	期,频	域连续	非周期	В.	时域离	散厝				
	0	40	期,频	域连续	非周期	D.	时域离	散制				

7、己知实连续信号x(1)为60Hz的余弦信号,现用 f,=120Hz的采样频率对其进行采样, 并利用 N = 1024 点 DFT 分析该信号的频谱,则得到的频谱峰值出现在幅频特性曲线的 () 谱线附近。

A. k=0

B. k = 60

C. k = 120

D. k = 512

 $g(x_1(n)) = R_{10}(n)$, $x_2(n) = R_7(n)$, 用 DFT 计算二者的线性卷积, 为使计算量尽可能的少, 应使 DFT 的长度 N满足(B)。

A.N > 16

B. N = 16 C. N < 16

D. N ≠ 16

A. 无混频, 线性频率关系

B. 有混频, 线性频率关系

C. 无混频, 非线性频率关系 D. 有混频, 非线性频率关系

10、利用窗函数法设计 FIR 滤波器, 为了减小通带内波动以及加大阻带衰减, 可通过改 变() 有效实现。

A. 主瓣宽度

B. 过渡带宽度

C. 窗函数形状

D. 滤波器阶数

三、计算题(共30分)

1、已知一系统由系统 $h_i(n)$ 与系统 $h_i(n)$ 级联而成,如图所示,设x(n)=u(n), $h_1(n) = \delta(n) - \delta(n-4)$, $h_2(n) = \delta(n-2)$, 试求系统的输出 y(n)。(8分)

$$R_{N}(n) = u(n) - u(n-N) \underbrace{x(n)}_{h_1(n)} \underbrace{m(n)}_{h_2(n)} \underbrace{y(n)}_{h_2(n)}$$

$$= u(n) + \underbrace{[S(n) - S(n-4)]}_{u(n) = R_{4}(n)}$$

$$= u(n) - u(n-4) = R_{4}(n)$$

$$2$$
、已知序列 $x(n)=2^{-n}u(n)$, 试求序列的 2 变换及其收敛域。 $(7 分)$

3、已知序列x(n)的 Z 变换为 $X(z) = \frac{5z^{-1}}{1+z^{-1}-6z^{-2}}$, 其收敛域为2 < |z| < 3, 试求序

$$\frac{y_{1}x(n) \cdot (8 + h)}{\frac{\chi(2)}{2}} = \frac{52}{2^{2}+2-6} = \frac{5}{2^{2}+2-6} = \frac{5}{(2-2)(2+h)} = \frac{A_{1}}{2-2} + \frac{A_{2}}{2+h}$$

$$A_{1} = \frac{5}{(2-2)(2+h)} (2-2) \Big|_{z=2} = |$$

$$A_{2} = \frac{5}{(2-2)(2+h)} (2+h) \Big|_{z=-3} = -|$$

$$\chi(2) = \frac{1}{2}$$

$$\frac{\chi(2)}{Z} = \frac{1}{2 \cdot 2} - \frac{1}{2 + 3}$$

$$\chi(\frac{2}{2}) = \frac{1}{1 - 22^{-1}} - \frac{1}{2 + 327}$$

 $\chi(n)=2^n \kappa(n)-(-3)^n \kappa(n)$ 4、己知实序列 $\chi(n)$ 的 8 点 DFT 的前 5 个值为:30.0000、-2.5858 +j14.4853、-2.0000

$$+j2.0000$$
、 $-5.4142+j2.4853$ 、 -2.0000 ,求 $X(k)$ 的其余 3 点的值。(7 分)

$$X(k) = X^{*}(N \cdot k) \cdot k = 0.1, 2 \cdots N \cdot 1$$

 $X(0) = 30 \cdot X(1) = -2.5858 t j 14.4853$
 $X(2) = -2.0 + j 2.0 \quad X(3) = -5.4142 t j 2.4853 \quad X(4) = -2.00$
 $N = 8 \quad X(0) = X^{*}(8) L \overline{F}_{2}(2)$
 $X(1) = X^{*}(7) = -2.5858 + j 4.4853$
 $X(4) = -2 - j 2$
 $X(5) = -5.4142 - j 2.4853$

四、应用分析题(共40分)

装

iT

1、对某线性因果二端口网络测试发现, 其输入、输出关系满足:

$$y(n) = -0.8y(n-1) - 0.15y(n-2) + x(n-1)$$

其中 x(n)、y(n)分别表示该网络的输入、输出。试分析如下问题:

- (1) 求解该网络的系统函数 H(z),并判定其稳定性: (7分)
- (2) 求解该网络的频率响应函数 H(eja); (5分)

(1)
$$y(h) = -0.8y(h-1) - 0.15y(h-2) + x(h-1)$$

 $Y(z) = -0.8Y(z)z^{-1} \cdot 0.5Y(z)z^{-2} + x(z)z^{-1}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = x(z)z^{-1}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$
 $Y(z) + 0.5Y(z)z^{-1} + 0.5Y(z)z^{-2} = \frac{1}{z + 0.5 + 0.5z^{-2}} \cdot \frac{x(z)}{x(z)}$

- (1) 最小记录时间 Tp min: (2分)
- (2) 最大取样间隔 Tmax; (2分)
- (3) 最少采样点数 Nmin: (2分)
- (4) 在频带宽度不变的情况下, 使频率分辨率提高 1 倍的 N 值。(2 分)

(4)使用DFT的快速等法,超时给 2面整数军,为此选用H:372点, 使频率分辨率提高-信,即F=50112

- 3、采用巴特沃斯滤波器设计一个 Π R 低通数字滤波器,其中 3dB 截止频率 Ω_c = 2 rad/s,抽样频率 Ω_s = 2 π rad/s。
 - (1) 请写出二阶巴特沃斯低通滤波器的幅度平方函数表达式|H_a(jΩ)|²:(2分)
- (2) 由幅度平方函数 $|H_a(j\Omega)|^2$ 可求出,其 4 个极点分别为: $+\sqrt{2}\pm j\sqrt{2}$ 、 $-\sqrt{2}\pm j\sqrt{2}$, 试求稳定的二阶巴特沃兹低通滤波器系统函数 Ha(s); (4 分)
- (3) 试用双线性变换法将 Ha(s)转换为相应的数字滤波器 H(z)。(4分)

(2)选取无料面积,介的Ha(5) m根

$$H_{a(5)} = \frac{c_{c}^{2}}{(5-51)(5-52)^{2}} \frac{4}{(5+\overline{J}2-\overline{J})\overline{J}2} (5+\overline{J}2+\overline{J})\overline{J}2$$

$$= \frac{\overline{J}J^{2}}{5+\overline{J}2+\overline{J}J^{2}} - \frac{\overline{J}J^{2}}{5+\overline{J}2} - \frac{\overline{J}J^{2}}{5+\overline{J}2}$$

$$(3) \ H(2) = \frac{\overline{J}^{2}}{|-e^{(-\overline{J}2-\overline{J}\overline{E})\overline{I}}2^{-1}} - \frac{\overline{J}J^{2}}{|-e^{(-\overline{J}2+\overline{J}}2+\overline{J}2)\overline{I}2^{-1}}$$

4、设计一 FIR 滤波器, 所得系统函数为 $H(z) = 0.5 \times (0.9 + 0.85z^{-1} - 0.85z^{-3} - 0.9z^{-4})$

- (1) 求出该滤波器的单位脉冲响应 h(n)。(2分)
- (2) 试判断该滤波器是否具有线性相位特点。(2分)
- (3) 求出其幅频响应函数和相频响应函数。(6分)

由人们的现在可采的满足 h(n)=-h(W-1-n). N=4

(2) 具有线性相位特点

(3)
$$H(e^{jw}) = \sum_{n=0}^{N-1} h(n)e^{-jwn}$$

= 0.5 x(0.9+0.85 z^{jw} -0.85 z^{jw} -0.9 z^{-4jw})
= $e^{j(\frac{\pi}{2}-2jw)}$ (0.95in zw +0.855inw).

Hlw)= 0.9 sinzw + 0.855inw Ow)= 1 - 2w.