

Université A. Mira – Bejaia
Faculté des Sciences Exactes
Département de Mathématiques /M.I
Master 1 (PSA)

Corrigé de l'Examen de Processus Stochastiques

Exercice 1. (06 points)

 (X_n) une C.M sur $\mathbb{E} = \{0, 1, 2, 3, 4, 5\}$ de matrice de transition

$$P = \begin{pmatrix} 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/2 & 0 & 1/4 & 1/4 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 0 & 1/2 & 0 \end{pmatrix}$$

1. Le graphe de transition (voir la figure ci-dessus).

0.5 pt

2.

$$\mathbb{P}(X_1 = 1, X_2 = 2 | X_0 = 0) = \frac{\mathbb{P}(X_2 = 2, X_1 = 1, X_0 = 0)}{\mathbb{P}(X_0 = 0)}$$

$$= \mathbb{P}(X_2 = 2 | X_1 = 1, X_0 = 0) \mathbb{P}(X_1 = 1 | X_0 = 0)$$

$$= \mathbb{P}(X_2 = 2 | X_1 = 1) \mathbb{P}(X_1 = 1 | X_0 = 0)$$

$$= P_{12} \times P_{01}$$

$$= \frac{1}{4} \times \frac{1}{6} = \frac{1}{24}$$
1 pt

$$\mathbb{P}(X_2 = 0 | X_0 = 0) = P_{00}^{(2)} = (1/6)^2 + 5(1/6.1/2) = \frac{1}{36} + \frac{5}{12} = \frac{4}{9}.$$
 1 pt

3. On a $\forall i, j \in \mathbb{E}, i \longleftrightarrow j$. Donc (X_n) est irréductible.

0.5 pt

Le graphe possède une seule classe finale apériodique \mathbb{E} . Donc (X_n) est régulière. 0.5 pt L'état 0 est un site intermédiaire pour passer d'une page web à une autre. 0.5 pt

4. (X_n) est une C.M finie, irréductible, apériodique donc ergodique. Elle possède donc une unique distribution stationnaire $\pi = (\pi_0, \pi_1, \pi_2, \pi_3, \pi_4, \pi_5)$ telle que $\pi = \pi P$ et $\sum_{i=0}^5 \pi_i = 1$. Après résolution du système linéaire, on trouve $\pi = (\frac{3}{8}, \frac{1}{16}, \frac{5}{32}, \frac{5}{32}, \frac{1}{8}, \frac{1}{8})$ **2 pt**

Exercice 2. (08 points)

 (X_n) une chaîne de Markov sur $\mathbb{E} = \mathbb{Z}^*$.

- **1.** $\forall i, j \in \mathbb{E}, i \longleftrightarrow j$. Donc (X_n) est irréductible.
- 1 pt
- 2. Soit $f_{11}^{(n)}$ la probabilité du premier retour en 1 en n étapes. L'état 1 est récurrent si $\sum_{n\geq 1} f_{11}^{(n)} = 1$

On a
$$f_{11}^{(1)} = 0$$
, $f_{11}^{(2)} = 1/2$, $f_{11}^{(3)} = 0$, $f_{11}^{(4)} = (\frac{1}{2})^2$

On en déduit que
$$f_{11}^{(n)} = \begin{cases} 0, & \text{si } n = 2k+1; \\ (\frac{1}{2})^k, & \text{si } n = 2k. \end{cases}$$

Par la suite,
$$\sum_{n\geq 1} f_{11}^{(n)} = \sum_{k=1}^{\infty} (\frac{1}{2})^k = 1$$
. D'où l'état 1 est récurrent. **2 pt**

3. L'état 1 est récurrent positif car le temps moyen de retour est

$$\mu_1 = \sum_{n\geq 1} f_{11}^{(n)} = \sum_{k\geq 1} 2k(\frac{1}{2})^k = 4 < \infty$$
. Donc l'état 1 est récurrent positif. 1 pt

- **4.** On a $PGCD\{n \ge A : P_{11}^{(n)} > 0\} = 2$. Donc l'état 1 est périodique de période 2. **1 pt**
- 5. Soit π la distribution stationnaire de la chaîne. On $\pi=\pi P$

On trouve $\pi_1 = \pi_{-1}$ et $\pi_i = \pi_{-i} = (\frac{1}{2})^{i-1}\pi_1$ et comme $\sum_{i \in \mathbb{Z}^*} \pi_i = 1$, on trouve $\pi_1 = 1/4$ **2 pts**

6.
$$\pi_i = (\frac{1}{2})^{i-1} \frac{1}{4} = (\frac{1}{2})^{|i|+1}$$
 pour tout $i \in \mathbb{E}$. **1 pt**

Exercice 3. (06 points)

Soit $N_1(t)$:" nombre de voitures arrivant à la station sur [0, t]".

 $(N_1(t))_{t\geq 0}$ un processus de Poisson da paramètre $\lambda_1=10v/h$

1. Soit T temps entre le passage de deux voitures consécutives: On sait que $T \rightsquigarrow \exp(\lambda_1)$.

D'où
$$\mathbb{E}(T) = \frac{1}{\lambda_1} = \frac{1}{10}h = 6mn$$
 1 pt

2. Sachant que 10 voitures sont passées entre 12h et 13h, la probabilité que 5 voitures soient passées entre 12h et 12h30 est donnée par:

$$\mathbb{P}(N_{1}(\frac{1}{2}) = 5 | N_{1}(1) = 10) = \frac{\mathbb{P}(N_{1}(\frac{1}{2}) = 5, N_{1}(1) = 10)}{\mathbb{P}(N_{1}(1) = 10)} \text{ (d'après } C_{1})$$

$$= \frac{\mathbb{P}(N_{1}(\frac{1}{2}) = 5, N_{1}(\frac{1}{2}) = 5)}{\mathbb{P}(N_{1}(1) = 10)}$$

$$= \frac{\mathbb{P}(N_{1}(\frac{1}{2}) = 5)\mathbb{P}(N_{1}(\frac{1}{2}) = 5)}{\mathbb{P}(N_{1}(1) = 10)} \text{ (d'après } C_{2})$$

$$= \frac{e^{-5} \times \frac{5^{5}}{5!}}{e^{-10}\frac{10^{10}}{10!}} = \frac{63}{256} \simeq 0.25 \quad \mathbf{2 pts}$$

3. Soit $N_2(t)$: "Le nombre de camions arrivant à la station service sur [0,t]." $(N_2(t))_{t\geq 0}$ un processus de Poisson da paramètre $\lambda_2=5c/h$. $(N_1(t))$ et $(N_2(t))$ sont indépendants.

Soit N(t): "Le nombre de véhicules arrivant sur l'intervalle [0, t]." $N(t) = N_1(t) + N_2(t)$.

(N(t)) est un processus de Poisson de paramètre $\lambda = \lambda_1 + \lambda_2 = 15v/h$ (supperposition de deux processus de Poisson indépendants.) Donc $N(t) \leadsto \mathcal{P}(\lambda t)$. 1 pt

La probabilité que k véhicules (voitures ou camions) passent entre les instants 0 et t est donnée par

$$\mathbb{P}(N(t) = k) = e^{-15t} \frac{(15t)^k}{k!}, \quad \forall k \in \mathbb{N}.$$
 1 pt

4. Soit S: "le temps séparant le passage de deux véhicules consécutifs."

$$S \leadsto \exp(\lambda) \Longrightarrow \mathbb{E}(S) = \frac{1}{\lambda} = \frac{1}{15}h = 4mn.$$
 1 pt

Fin