Docket No.: 09475/000M563-US0

Application No.: 10/615,209

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS

1. (Original) A connecting structure of a coaxial cable and a coaxial connector for electrically and mechanically connecting said coaxial cable and said coaxial connector, said connecting structure comprising:

a braided conductor exposed on an end of said coaxial cable;

a metal tape conductor inside said braided conductor on said coaxial cable;

connecting conductor portions formed continuously on an end of a shell of said coaxial connector, said connecting conductor portions being inserted into a space between said braided conductor and said metal tape conductor; and

a caulked, cylindrical sleeve having a crimp height H1, said sleeve formed by jointing two opposing almost semi-circular members, an outside contour of each said almost semi-circular member having a radius R1 so that said radius R1 and said crimp height H1 satisfy the following Equations (1) and (2), respectively:

(1)
$$R1 = P1 \times (D + 2 \times T1)$$
 and

(2)
$$H1 = P2 \times R1$$

where D is an outside diameter of said coaxial cable, T1 is a plate thickness of said sleeve, P1 is a numerical value set within the range from 0.45 to 0.48, and P2 is a numerical value set within the range from 2.02 to 2.12.

2. (Original) The connecting structure of a coaxial cable and a coaxial connector according to Claim 1, further comprising:

protruding strips formed on an outer circumference of said caulked sleeve and

a joint portion between said almost semi-circular member and said protruding strips; wherein

an outside contour of a cross section of said joint portion connects an outside contour of a cross section of said protruding strips to an outside contour of a cross section of said almost semi-circular member;

Docket No.: 09475/000M563-US0

Application No.: 10/615,209

said outside contour of said cross section of said joint portion has a curvature radius R2 and said outside contour of the cross section of said protruding strips has a height H2 in a direction of said crimp height H1, said curvature radius R2 and said height H2 satisfy the following Equations (3) and (4), respectively:

3

- (3) $R2 = P3 \times T1$ and
- (4) $H2 = P4 \times R1$

where P3 is a numerical value set within the range from 1.8 to 2.2 and P4 is a numerical value set within the range from 1.5 to 2.0.

- 3. (Original) A connecting structure of a coaxial cable and a coaxial connector for electrically and mechanically connecting said coaxial cable and said coaxial connector, said connecting structure comprising:
 - a braided conductor exposed on an end of said coaxial cable;
 - a dielectric material inside said braided conductor on said coaxial cable;

connecting conductor portions formed continuously on an end of a shell of said coaxial connector, said connecting conductor portions being inserted into a space between said braided conductor and said dielectric material; and

a caulked, cylindrical sleeve having a crimp height H1, said sleeve formed by jointing two opposing almost semi-circular members, an outside contour of each said almost semi-circular member having a radius R1 so that said radius R1 and said crimp height H1 satisfy the following Equations (1) and (2), respectively:

- (1) $R1 = P1 \times (D + 2 \times T1)$ and
- (2) $H1 = P2 \times R1$

where D is an outside diameter of said coaxial cable, T1 is a plate thickness of said sleeve, P1 is a numerical value set within the range from 0.45 to 0.48, and P2 is a numerical value set within the range from 2.02 to 2.12.

4. (Original) The connecting structure of a coaxial cable and a coaxial connector according to Claim 3, further comprising:

Docket No.: 09475/000M563-US0

Application No.: 10/615,209

protruding strips formed on an outer circumference of said caulked sleeve and

a joint portion between said almost semi-circular member and said protruding strips; wherein

4

an outside contour of a cross section of said joint portion connects an outside contour of a cross section of said protruding strips to an outside contour of a cross section of said almost semi-circular member;

said outside contour of said cross section of said joint portion has a curvature radius R2 and said outside contour of the cross section of said protruding strips has a height H2 in a direction of said crimp height H1, said curvature radius R2 and said height H2 satisfy the following Equations (3) and (4), respectively:

- (3) $R2 = P3 \times T1$ and
- $(4) H2 = P4 \times R1$

where P3 is a numerical value set within the range from 1.8 to 2.2 and P4 is a numerical value set within the range from 1.5 to 2.0.

5. (Currently amended) A method for forming a connecting structure of a coaxial cable and a coaxial connector for electrically and mechanically connecting a coaxial cable and a coaxial connector, said method comprising:

allowing a braided conductor to be exposed from an end of said coaxial cable;

inserting connecting conductor portions formed continuously from an end of a shell of said coaxial connector into a space between said braided conductor and a metal tape conductor inside said braided conductor;

caulking a cylindrical sleeve having a crimp height H1, said step of caulking said sleeve comprising jointing two opposing almost semi-circular members, each almost semi-circular member having a radius R1, said radius R1 and said crimp height H1 satisfying the following Equations (1) and (2), respectively:

- (1) $R1 = P1 \times (D + 2 \times T1)$
- $(2) H1 = P2 \times R1$

where D is an outside diameter of said coaxial cable, T1 is a plate thickness of said sleeve, P1 is a numerical value set within the range from 0.45 to 0.48, and P2 is a numerical value set within the range from 2.02 to 2.12;

said caulked sleeve further comprises protruding strips formed on an outer circumference of said caulked sleeve and a joint portion between said almost semi-circular member and said protruding strips;

an outside contour of a cross section of said joint portion connects an outside contour of a cross section of said protruding strips to an outside contour of a cross section of said almost semi-circular member; and

said outside contour of said cross section of said joint portion has a curvature radius R2 and said outside contour of the cross section of said protruding strips has a height H2 in a direction of said crimp height H1, said curvature radius R2 and said height H2 satisfy the following Equations (3) and (4), respectively:

- (3) $R2 = P3 \times T1 \text{ and }$
- (4) $H2 = P4 \times R1$

where P3 is a numerical value set within the range from 1.8 to 2.2 and P4 is a numerical value set within the range from 1.5 to 2.0.

6. (Currently amended) A method for forming a connecting structure of a coaxial cable and a coaxial connector for electrically and mechanically connecting a coaxial cable and a coaxial connector, said method comprising:

allowing a braided conductor to be exposed from an end of said coaxial cable;

inserting connecting conductor portions formed continuously from an end of a shell of said coaxial connector into a space between said braided conductor and a dielectric material inside said braided conductor;

caulking a cylindrical sleeve having a crimp height H1, said step of caulking said sleeve comprising jointing two opposing almost semi-circular members, each almost semi-circular member having a radius R1, said radius R1 and said crimp height H1 satisfying the following Equations (1) and (2), respectively:

Application No.: 10/615,209

(1)
$$R1 = P1 \times (D + 2 \times T1)$$

(2)
$$H1 = P2 \times R1$$

where D is an outside diameter of said coaxial cable, T1 is a plate thickness of said sleeve, P1 is a numerical value set within the range from 0.45 to 0.48, and P2 is a numerical value set within the range from 2.02 to 2.12;

6

said caulked sleeve further comprises protruding strips formed on an outer circumference of said caulked sleeve and a joint portion between said almost semi-circular member and said protruding strips;

an outside contour of a cross section of said joint portion connects an outside contour of a cross section of said protruding strips to an outside contour of a cross section of said almost semi-circular member; and

said outside contour of said cross section of said joint portion has a curvature radius R2 and said outside contour of the cross section of said protruding strips has a height H2 in a direction of said crimp height H1, said curvature radius R2 and said height H2 satisfy the following Equations (3) and (4), respectively:

(3)
$$R2 = P3 \times T1$$
 and

(4)
$$H2 = P4 \times R1$$

where P3 is a numerical value set within the range from 1.8 to 2.2 and P4 is a numerical value set within the range from 1.5 to 2.0.