Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).

```
A. The following function definition in LISP is given

(DEFUN F(G L)

(COND

((NULL L) NIL)

(> (FUNCALL G L) 0) (CONS (FUNCALL G L) (F (CDR L))))

(T (FUNCALL G L))

)
```

Rewrite the definition in order to avoid the repeated call **(FUNCALL G L)**. Do NOT redefine the function. Do NOT use SET, SETQ, SETF. Justify your answer.

B. Given a nonlinear list composed of numbers greater or equal to 2, write a SWI-PROLOG program that replaces each nonprime number with the sum of its own proper divisors. Repeat the process until the list contains only prime numbers. **For example**, for the list [10, 20, 30, 40] the result will be [7, 7, 41, 7] (the initial list becomes first [7, 21, 41, 49], then [7, 10, 41, 7] and finally [7, 7, 41, 7]). Return only the final list.

C. Write a PROLOG program that generates the list of permutations of the set 1..N, having the property that the absolute value of the difference between 2 consecutive values from the permutation is >=2. Write the mathematical models and flow models for the predicates used. For example, for $N=4 \Rightarrow [[3,1,4,2], [2,4,1,3]]$ (not necessarily in this order).

D. Given a nonlinear list, write a Lisp function to return the list with all non-numerical atoms on even levels removed. The superficial level is assumed 1. **A MAP function shall be used. Example** for the list (a (1 (2 b)) (c (d))) the result is (a (1 (2 b)) ((d)))