Álgebra Linear

* 5

Mestrado Integrado em Engenharia Informática

e) (-2,1,1) é um vetor próprio de A.

Teste 2 - A

Universidade do Minho
Escola de Ciências
Departamento de Matemática

reste 2 - A	e Aplicaçõe:	5	
7 janeiro 2017	Duração:	2 ho	ras
Nome:	Número:		
•			
'			
Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdade assinalando a opção conveniente.	eira (V) ou	falsa	(F),
As respostas incorretamente assinaladas têm cotação negativa.			
Questão 1.		V	F
a) O subespaço $\mathcal{S}=\langle (1,0,-1,0), (2,0,-1,1), (1,0,0,1), (0,0,1,1) angle$ tem dimensã	io 2.	\bigcirc	\subset
b) $\langle (1,1,1),(1,2,0) \rangle = \langle (0,1,-1),(2,1,0),(2,3,1) \rangle.$		\bigcirc	\subset
c) As coordenadas do vetor $(1, -1, 3)$ na base $((1, 1, 1), (0, -1, 1))$ são $(1, 2)$.		\bigcirc	\subset
d) O vetor $x^2-x+5\in\mathcal{P}_2$ é combinação linear dos vetores x^2+x+1 e $x-2$.		\bigcirc	\subset
e) $((1,0,0,0),(0,1,0,0))$ é uma base do subespaço $\mathcal{S} = \{(x,y,z,t) \in \mathbb{R}^4 : t=0\}$		\bigcirc	C
Questão 2. Seja f uma aplicação linear de \mathbb{R}^2 em \mathbb{R}^3 tal que			
f(1,-2)=(1,1,0) e f(-1,1)=(1,0,-1).		V	F
a) $f(1,0) = (-3,-1,2)$.		\bigcirc	\subset
b) $f(0,0) = (1,-1,1)$.		\bigcirc	\subset
c) A matriz da aplicação f é de ordem $3 imes 2$.		\bigcirc	\subset
d) f é uma aplicação sobrejetiva.		\bigcirc	\subset
e) $\dim Nuc f \leq 1.$		\bigcirc	\subset
Questão 3. Seja			
$A = \left(egin{array}{ccc} 1 & 1 & 1 \ 0 & 1 & -1 \ 0 & -1 & 1 \end{array} ight) { m e} b = \left(egin{array}{c} 1 \ 1 \ 1 \end{array} ight).$			
(0 -1 1)		V	F
a) O polinómio característico de A é $p(\lambda)=\lambda(\lambda-1)(2-\lambda)$.		\bigcirc	
b) A matriz A é diagonalizável.		0	
c) A matriz $A^2 - 4I$ é invertível.		0	
d) O sistema $(A-3I)x=b$ é um sistema de Cramer.			\subset

Questão 4. Seja

$$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{array}\right).$$

a) A matriz $\operatorname{adj} A$ tem duas linhas nulas.

F

b)
$$(1,0,1) \in \mathcal{C}(A)$$
.

- c) A matriz A é a matriz da aplicação linear f(x, y, z) = (x + 2y + 3z, 4x + 5y + 6z, 0) relativamente à base canónica de \mathbb{R}^3 .
- d) As colunas de A são vetores linearmente independentes de \mathbb{R}^3 .
- e) $\mathcal{L}(A) = \mathbb{R}^2$.

П

Responda às questões deste grupo numa folha de teste.

Questão 1. Considere as matrizes

$$A_k = \left(egin{array}{ccc} 2 & 0 & 1 \ k & 1+k & 0 \ 1 & 0 & 2 \end{array}
ight), \; k \in \mathbb{R}.$$

- a) Discuta, em função de k, a dimensão de $\mathcal{C}(A_k)$ e indique uma base de $\mathcal{C}(A_{-1})$ e $\mathcal{L}(A_{-1})$.
- b) Determine os valores próprios de A_0 e o subespaço próprio associado ao menor valor próprio desta matriz.
- c) Diga, justificando, se existe algum número real α para o qual a matriz A_0 é semelhante à matriz

$$\left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \alpha - 2 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

- d) Considere, para cada k, a aplicação linear ϕ_k definida pela matriz A_k .
 - i. Determine Nuc(ϕ_{-1}).
 - ii. Diga, justificando, se $(1,2,3) \in Im(\phi_2)$;
 - iii. Existe algum valor de k para o qual ϕ_k é bijetiva? Justifique.

Questão 2. Para cada uma das alíneas seguintes, diga, justificando, se a afirmação é verdadeira ou falsa.

- a) O conjunto das matrizes reais simétricas de ordem 2 com traço nulo não é um subespaço vetorial de $\mathbb{R}^{2\times 2}$.
- b) Se P é uma matriz invertível de ordem n, a aplicação $\phi: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ definida por $\phi(A) = P^{-1}AP$ é uma aplicação linear.
- c) Seja A uma matriz diagonalizável cujos valores próprios são 0 e 1. A matriz A é uma matriz idempotente, isto é, $A^2 = A$.