Алгоритм овыпукления в \mathbb{R}^d

1 Обозначения и определения

Евклидово пространство \mathbb{R}^d , d > 1. Его элементы обозначим $\vec{x} = (x_i)_{i=1}^d$.

Ноль-вектор будем обозначать $\vec{0}$.

Аффинное пространство \mathbb{A}^d , d > 1. Его элементы обозначим $x = [x_i]_{i=1}^d$.

Элементу $x \in \mathbb{A}^d$ сопоставляется элемент $\vec{x} \in \mathbb{R}^d$, который есть радиус-вектор точки x. Определены операции умножения на скаляр, сложения и вычитания. Над элементами \mathbb{R}^d они определяются классическим образом как операции линейного пространства. Для аффинного пространства \mathbb{A}^d определения следующие:

- $\forall \alpha \in \mathbb{R} \ \forall x = [x_i] \in \mathbb{A}^d \ \alpha \cdot x = \alpha x = [\alpha \cdot x_i] \in \mathbb{A}^d;$
- $\forall a \in \mathbb{A}^d \ \forall \vec{x} \in \mathbb{R}^d \ a + \vec{x} = [a_i + x_i] \in \mathbb{A}^d;$
- $\forall a, b \in \mathbb{A}^d \ a b = (a_i b_i) \in \mathbb{R}^d$.

Линейная независимость векторов из \mathbb{R}^d понимается в классическом смысле линейной независимости в линейном пространстве.

Линейная независимость набора точек $\{a_k\}_{k=0}^m \subset \mathbb{A}^d, \, m \leqslant d$, понимается как линейная независимость набора векторов $\{a_k-a_0\}_{k=1}^m \subset \mathbb{R}^d$.

k-мерным симплексом (k-симплексом) в пространстве \mathbb{A}^d , $k \leqslant d$, назовём линейно независимый набор k+1 точек.

Базис линейного пространства \mathbb{R}^d понимается в классическом смысле. Аффинный базис аффинного пространства \mathbb{A}^d может представляться в двух эквивалентных формах: либо как d-симплекс этого пространства, либо как пару $(o, \{\vec{x}_i\}_{i=1}^d), o \in \mathbb{A}^d, \vec{x}_i \in \mathbb{R}^d$, такую что набор точек $\{o, o + \vec{x}_i\}_{i=1}^d$ линейно независим.

Назовём (d-1)-грань d-многогранника cumnnuquanьной, если она имеет ровно d вершин (является (d-1)-симплексом).

Под словом «плоскость в пространстве \mathbb{R}^d » будем понимать гиперплоскость размерности \mathbb{R}^{d-1} .

Вектор $\vec{e}_i = (\delta_{i,k})_{k=1}^d - i$ -й вектор ортонормированного базиса \mathbb{R}^d . Здесь $\delta_{i,k}$ – символ Кро́некера:

$$\delta_{i,k} = \begin{cases} 1, & i = k, \\ 0, & i \neq k. \end{cases}$$

Обозначим через $\mathcal{N}(\vec{x})$ операцию нормирования вектора: $\mathcal{N}(\vec{x}) = \vec{x}/\|\vec{x}\|$. Считаем, что $\mathcal{N}(\vec{0}) = \vec{0}$.

Обозначим через $\mathcal{ON}(\vec{v}, \mathcal{B})$ операцию ортонормирования вектора \vec{v} на фоне ортонормированного набора векторов \mathcal{B} . Выполняется с использованием алгоритма Грамма-Шмидта. Считаем, что $\mathcal{ON}(\vec{a}, \varnothing) = \mathcal{N}(\vec{a})$.

2 Построение начальной грани ${\mathcal P}$

Пусть $\mathcal{S} \subset \mathbb{R}^d$ — рой d-мерных точек в d-мерном пространстве. Построение начальной грани состоит из двух шагов. Первый — поиск аффинной плоскости, содержащей какуюлибо грань выпуклой оболочки \mathcal{P} . Второй — поиск вершин этой грани. Построение аффинной плоскости заключается в последовательном повороте некоторой начальной плоскости, проходящей через одну точку роя. Каждый поворот аффинной плоскости заключается в

подмене одного вектора из её базиса так, чтобы она проходила через ещё хотя бы одну точку роя. Когда очередная плоскость содержит d линейно независимых точек, искомая плоскость построена.

Временные векторы базиса Т – векторы из этого множества могут быть заменены.

Финальные векторы базиса \mathbf{F} – векторы базиса, которые далее не будут заменяться и будут входить в базис искомой плоскости.

2.1 Построение начальной плоскости $\mathcal L$ по мотивам Сварта

Представленная процедура опирается на алгоритм из статьи¹.

Вход: $\mathcal{S} \subset \mathbb{R}^d$ – рой точек в d-мерном пространстве.

Выход: Начальная плоскость $\mathcal{L} \subset \mathbb{R}^d$, заданная аффинным базисом $(o, \mathcal{L}_{\mathcal{B}})$, где размерность линейного базиса равна d-1. Внешняя нормаль \vec{n} к этой плоскости.

- 1. Выберем точку $o \in \mathcal{S}$, минимальную в лексикографическом порядке (она гарантировано будет вершиной \mathcal{P});
- 2. Проведём через $o = (o_i)_{i=1}^d$ плоскость \mathcal{L} перпендикулярно первому базисному вектору пространства. (Все точки роя \mathcal{S} гарантированно лежат не левее этой плоскости.) Положим $\mathbf{F}_0 \leftarrow o$.
- 3. Положим нормаль к плоскости $\vec{n}_0 \leftarrow -\vec{e}_1$.
- 4. Пока $|\mathbf{F}_k| < d 1$, повторяем:
 - (a) Имеем \vec{n}_k нормаль к текущей плоскости, \mathbf{F}_k накопленная часть базиса плоскости такая, что (o, \mathbf{F}_k) аффинный базис тех точек, которые уже включены в плоскость.
 - (b) Вычислим вектор \vec{e}_* , перпендикулярный оси вращения. Перебираем все орты \vec{e}_i и для очередного вектора \vec{e}_i вычисляем вектор: $\vec{v} = \mathcal{ON}(\vec{e}_i, \mathbf{F}_k \cup \{\vec{n}_k\})$. В качестве искомого вектора \vec{e}_* положим первый ненулевой вектор \vec{e}_i .
 - (c) Пусть $s \in \mathcal{S}$. Рассмотрим вектор $\vec{u} = \langle s o, \vec{v} \rangle \vec{v} + \langle s o, \vec{n}_k \rangle \vec{n}_k$ вектор, перпендикулярный оси вращения и лежащий в новой плоскости, содержащей точку s. Если $\vec{u} = \vec{0}$, то есть точка s лежит в оси вращения, то переходим на шаг 4c.
 - (d) Иначе найдём вычислим угол между \vec{v} и \vec{u} . Если он больше текущего максимального угла, то запоминаем его, точку s и вектор $\mathcal{N}(u)$. Переходим на шаг 4с.
 - (e) Если точка s_* не нашлась, это означает, что весь рой \mathcal{S} лежит в аффинном подпространстве размерности меньше d-1. В этом случае или алгоритм прекращает работу, если целью было найти выпуклую оболочку полной размерности, или переходит к построению выпуклой оболочки роя \mathcal{S} в найденном аффинном подпространстве с базисом (o, \mathbf{F}_k) .
 - (f) Если таких экстремальных точек несколько, то можно выбрать любую. Расширим финальный базис: $\mathbf{F}_{k+1} \leftarrow \mathbf{F}_k \cup \{\mathcal{ON}(s_* o, \mathbf{F}_k)\}$.
 - (g) Вычислим нормаль \vec{n}_{k+1} новой плоскости: $\vec{n}_{k+1} = \langle \vec{u}^*, \vec{n}_k \rangle \vec{v} \langle \vec{u}^*, \vec{v} \rangle \vec{n}_k$. Выполним переориентацию нормали (см. 4.1). После нужно проверить, что есть хотя бы одна точка роя $\mathcal S$ вне плоскости $\mathcal L$. Если такой точки не нашлось, значит все точки лежат в аффинном подпространстве с базисом $(o, \mathbf F_{k+1})$. Аналогично пункту 4е либо останавливаем алгоритм, либо переходим к построению выпуклой оболочки в этом аффинном подпространстве.

¹Swart, Garret. "Finding the Convex Hull Facet by Facet." J. Algorithms 6(1) (1985): 17–48.

- 5. Положим аффинный базис начальной плоскости $(o, F_k), \vec{n} = \vec{n}_k$.
- 6. Конец процедуры.

Заметим, что в пункте 4g происходит накопление ошибки. Однако при вычислении начальной плоскости пересчётов нормали немного, максимум d, поэтому на результат ошибка не успеет оказать влияния. В качестве альтернативы можно воспользоваться следующей процедурой:

1. Перебираем орты e_i вычисляя $n_{k+1} = \mathcal{ON}(\vec{e_i}, \mathbf{F}_k)$. Выполняем пока $n_{k+1} = 0$.

2.2 Построение начальной плоскости $\mathcal L$ нашим методом.

Вход: $\mathcal{S} \subset \mathbb{R}^d$ – рой точек в d-мерном пространстве.

Выход: Начальная плоскость $\mathcal{L} \subset \mathbb{R}^d$, заданная аффинным базисом (o, \mathcal{B}) , где размерность линейного базиса равна d-1. Внешняя нормаль \vec{n} к данной плоскости.

- 1. Выберем точку $o \in \mathcal{S}$, минимальную в лексикографическом порядке (она гарантировано будет вершиной \mathcal{P});
- 2. Проведём через $o = (o_i)_{i=1}^d$ плоскость \mathcal{L} перпендикулярно первому базисному вектору пространства. (Все точки роя \mathcal{S} гарантированно лежат не левее этой плоскости.) Положим $\mathbf{F}_0 = \{o\}, \mathbf{T}_0 = \{\vec{e}_i\}_{i=2}^d$.
- 3. Обозначим V множество просмотренных вершин плоскости \mathcal{L} . Положим $V = \{o\}$.
- 4. Пока $\mathbf{T}_k \neq \emptyset$, повторяем:
 - (a) Возьмём произвольный $\vec{t} \in \mathbf{T}_k$. Удалим вектор \vec{t} из \mathbf{T}_k : $\mathbf{T}_k \leftarrow \mathbf{T}_k \setminus \{\vec{t}\}$. Будем вращать вокруг ребра, аффинный базис которого есть (o, E), где $E = \mathbf{F}_k \cup \mathbf{T}_k$.
 - і. Будем искать точку s_* такую, что на ней достигается максимум угла между t и s-o.
 - іі. Берём очередную точку $s \in \mathcal{S}$, $s \notin \mathcal{V}$. Пусть $\vec{u}_F = \mathcal{ON}(s-o, \mathbf{F}_k)$. Если $\vec{u}_F = \vec{0}$, то есть набор $\mathbf{F}_k \cup \{s-o\}$ линейно зависим, то добавляем точку s в множество \mathcal{V} и переходим на шаг 4(a)іі.
 - ііі. Иначе вычислим вектор $\vec{u} = \mathcal{ON}(\vec{u}_F, \mathbf{T}_k)$. Если $\vec{u} = \vec{0}$, то есть набор векторов $\mathbf{T}_k \cup \{\vec{u}_F\}$ линейно зависим, то переходим на шаг 4(a)іі. (В этом случае мы не добавляем точку во множество просмотренных вершин, так как она может попасть в выпуклую оболочку роя).
 - iv. Иначе вычислим угол между \vec{u} и \vec{t} . Если он больше текущего максимума, то запомнить текущий угол и данную точку s. Угол между двумя векторами может быть вычислен как арккосинус от скалярного произведения векторов делённых на их длину. Переходим на шаг 4(a)ii.
 - (b) Если точка s_* не нашлась, это означает, что весь рой S лежит в аффинном подпространстве размерности меньше d-1. В этом случае или алгоритм прекращает работу, если целью было найти выпуклую оболочку полной размерности, или переходит к построению выпуклой оболочки роя S в найденном аффинном подпространстве с базисом (o, \mathbf{F}_k) .
 - (c) Если таких экстремальных точек несколько, то можно выбрать любую. Пусть $\vec{v} = \mathcal{ON}(s_* o, \mathbf{F}_k)$. Добавим вектор \vec{v} в финальный базис: $\mathbf{F}_{k+1} \leftarrow \mathbf{F}_k \cup \{\vec{v}\}$. Добавим точку s_* в множество \mathcal{V} .

- (d) Пересчитаем \mathbf{T}_k в \mathbf{T}_{k+1} на фоне \mathbf{F}_{k+1} .
 - i. $\mathbf{T}' \leftarrow \emptyset$.
 - ії. Для всех векторов $\vec{t} \in \mathbf{T}_k$ ортогонализируем его на фоне текущего финального базиса, после чего ортогонализируем на фоне текущего накопленного \mathbf{T}' и добавляем получившийся вектор в \mathbf{T}' :
 - iii. $\mathbf{T}' \leftarrow \mathcal{ON}(\vec{t}, \mathbf{F} \cup \mathbf{T}') = \mathcal{ON}(\mathcal{ON}(\vec{t}, \mathbf{F}), \mathbf{T}').$
 - iv. Положим $\mathbf{T}_{k+1} \leftarrow \mathbf{T}'$.
- (е) Возвращаемся в начало цикла.
- 5. Вычислим внешнюю нормаль \vec{n}_* к начальной плоскости (см. 4.2).
- 6. Положим $\vec{n} \leftarrow \vec{n}_*$, аффинный базис начальной плоскости (o, \mathbf{F}) .
- 7. Конец процедуры.

2.3 Построение грани

Вход: Рой точек $\mathcal{S} \subset \mathbb{R}^d$ и плоскость $\mathcal{L} \subset \mathbb{R}^d$, то есть аффинный базис (o,\mathcal{B}) , размерность базиса k=d-1. Возможна передача (d-2)-ребра \mathcal{E} , являющегося начальной гранью для процедуры овыпукления в (d-1)-пространстве плоскости \mathcal{L} .

Выход: (d-1)-грань $\mathcal{F} \subset \mathbb{R}^d$, лежащая в плоскости \mathcal{L} .

- 1. Пусть $\mathcal{S}_{\mathcal{L}}$ множество точек $\mathcal{S} \subset \mathbb{R}^d$, лежащих в плоскости \mathcal{L} .
- 2. Если $|\mathcal{S}_{\mathcal{L}}| = d$, то полученная грань симплициальна, дальнейшая обработка не требуется. Искомая грань симплекс, построенный на d данных точках.
- 3. Иначе проецируем $\mathcal{S}_{\mathcal{L}}$ на \mathcal{L} используя аффинный базис (предварительно запоминая из какой точки $s \in \mathcal{S}$ получилась очередная точка $s' \in \mathcal{L}$) и рекурсивно строим выпуклую оболочку в аффинном подпространстве плоскости \mathcal{L} , если передано ребро \mathcal{E} , то проецируем его на \mathcal{L} , в качестве нормали к нему устанавливаем \vec{e}_k (вектор размерности d-1, где на последней позиции стоит единица) и передаём его в процедуру овыпукления в подпространстве (см. ??).
- 4. Результатом овыпукления в подпространстве плоскости будет (d-1)-многогранник выраженный в терминах (d-1)-пространства, поэтому «поднимаем» его в d-мерное исходное пространство: очередную вершину s' подменяем исходной для неё точкой s. Производим аналогичную операцию для всех дочерних объектов данного многогранника.
- 5. На данном этапе можно убрать некоторые вершины из роя S. В результате овыпукления в подпространстве получился набор V вершин выпуклого (d-1)-гранника. Значит из S можно выкинуть все точки содержащиеся в разности $S_{\mathcal{L}}$ и V. Данные точки точно не будут состоять в выпуклой оболочке всего роя S.
- 6. Конец процедуры.

3 Процесс заворачивания

Можно рассмотреть граф граней искомой выпуклой оболочки \mathcal{P} . Вершины графа сопоставляются с гранями \mathcal{P} . Две вершины являются соседними, если соответствующие им (d-1)-грани имеют общее (d-2)-ребро.

Если требуется построить выпуклую оболочку в двумерном пространстве, то запускается какой-либо плоский алгоритм построения выпуклой оболочки. Иначе запускается следующий многомерный алгоритм, вообще говоря, рекурсивный по размерности овыпукляемых роёв.

В начале процесса заворачивания с помощью алгоритма из предыдущего раздела нам становится известна какая-то вершина этого графа. Также нам известны рёбра графа, выходящие из этой вершины, так как нам известны рёбра этой начальной грани.

В таком рассмотрении построение выпуклой оболочки соответствует обходу всех её граней, то есть обходу графа граней \mathcal{P} . Такой обход графа может быть осуществлён какимлибо поисковым алгоритмом. Наиболее компактную реализацию имеет алгоритм поиска в глубину. Эта реализация является рекурсивной.

Напомним, что один рекурсивный шаг поиска в глубину состоит в переборе всех не посещённых соседей текущей вершины и переходов в них с продолжением поиска оттуда. В геометрических терминах перебор соседей и переход в них соответствует перебору рёбер текущей грани и построению грани, соседней текущей через очередное рассматриваемое ребро. Такое построение осуществляется поворотом плоскости текущей грани вокруг рассматриваемого ребра до касания какой-либо точки роя \mathcal{S} , не лежащей на рассматриваемом ребре.

3.1 Заворачивание подарка

Вход: $\mathcal{S} \subset \mathbb{R}^d$, возможна передача информации о начальной (d-1)-грани $\mathcal{F} \subset \mathbb{R}^d$, она должна содержать информацию о внешней нормали.

Выход: d-многогранник $\mathcal{P} \subset \mathbb{R}^d$.

- 1. Если d=2, то запускается алгоритм двумерного овыпукления, например ArcHull или GrahamScan. Тогда $\mathcal P$ создаётся на основе их результата.
- 2. Если не передали начальную грань:
 - (а) Выполняем построение начальной плоскости см. 2.1 или 2.2.
 - (b) Строим начальную грань \mathcal{F} см. 2.3.
- 3. Проходимся по всем (d-2)-рёбрам начальной грани и увеличиваем счётчик смежных граней на один. (Изначально он равняется нулю.)
- 4. Пусть Q очередь. В ней будут лежать грани с которых можно перекатиться на соседнюю грань. Добавим в неё начальную грань. Пока $Q \neq \varnothing$:
 - (a) Пусть \mathcal{F} это очередной взятый элемент из Q.
 - (b) Пусть \mathcal{E} это ребро \mathcal{F} у которого счётчик смежных граней равняется одному (то есть через него нужно перекатиться).
 - (c) Перекатываемся (3.2) через ребро \mathcal{E} с грани \mathcal{F} . Получили новую грань \mathcal{F}'
 - (d) У всех ребёр новой грани увеличиваем счётчик смежных граней на один. Если хотя бы у одного ребра значение счётчика оказалось равным единице, то добавляем новую грань в очередь: $Q \leftarrow \mathcal{F}'$.

- 5. «Собираем» из полученных (d-1)-граней d-многогранник \mathcal{P} .
- 6. Конец процедуры.

3.2 Процедура перекатывания через ребро

Вход: $\mathcal{S} \subset \mathbb{R}^d$, текущая (d-1)-грань \mathcal{F} и (d-2)-ребро \mathcal{E} текущей грани, через которое происходит перекатывание, $(o, \mathcal{B}_{\mathcal{F}})$ — аффинный базис плоскости содержащей грань \mathcal{F} . Вектор \vec{n} — внешняя нормаль к грани \mathcal{F} .

Выход: Новая грань \mathcal{F}' и внешняя нормаль \vec{n}' к ней.

- 1. Построим аффинный базис ребра \mathcal{E} .
 - (a) Возьмём произвольную точку $o \in \mathcal{E}$ начало аффинного базиса. Положим $\mathcal{B}_{\mathcal{E}} = \varnothing$.
 - (b) Пока $|\mathcal{B}_{\mathcal{E}}| < d-2$: $\mathcal{B}_{\mathcal{E}} \leftarrow \mathcal{ON}(s_e o, \mathcal{B}_{\mathcal{E}})$, где $s_e \in \mathcal{E}$. Если получился нулевой вектор в результате ортонормирования, то его не добавляем в базис ребра и переходим к следующей точке.
- 2. Вычислим вектор \vec{v} , перпендикулярный оси вращения и лежащий в плоскости \mathcal{F} .
 - (a) Возьмём точку $f \in \mathcal{F} \setminus \mathcal{E}$.
 - (b) Тогда искомый вектор равняется $\vec{v} = \mathcal{ON}(f o, \mathcal{B}_{\mathcal{E}})$.
- 3. Находим точку $s_* \in \mathcal{S}$ такую, что $s_* \notin \mathcal{F}$, и угол между \vec{v} и \vec{u} , наибольший среди всех точек роя (то есть $\arccos(\langle \vec{v}, \vec{u} \rangle / \|\vec{u}\|)$ принимает наибольшее значение), где $\vec{u} = \langle s-o, \vec{v} \rangle \vec{v} + \langle s-o, \vec{n} \rangle \vec{n}$ вектор, перпендикулярный оси вращения и лежащий в новой плоскости, содержащей точку s_* . Соответствующий данной точке s_* вектор \vec{u} обозначим \vec{r} .
- 4. Тогда аффинный базис новой плоскости получается следующим: $(o, \mathcal{B}_{\mathcal{E}} \cup \{\vec{r}\})$.
- 5. Вычислим внешнюю нормаль \vec{n}' к новой плоскости \mathcal{F}' (см. 4.1).
- 6. Выполняем построение новой грани \mathcal{F}' на точках роя, попавших в плоскость \mathcal{L} , проходящую через ребро \mathcal{E} и точку s (см. процедуру 2.3).
- 7. Конец процедуры.

Заметим, что нормаль можно вычислять аналогично 4g, но в данном случае количество её пересчётов может быть очень большим, и ошибка накапливающаяся в процессе вычисления уже будет заметно влиять на результат. Поэтому разумно каждый раз нормаль строить точно.

4 Вспомогательные процедуры

4.1 Ориентирование нормали

Вход: $\mathcal{S} \subset \mathbb{R}^d$, вектор нормали \vec{n} и точка p от которой этот вектор отложен.

Выход: Нормаль \vec{n}' такая, что весь рой лежит в неотрицательном полупространстве относительно плоскости с нормалью \vec{n}' и проходящей через точку p.

1. Возьмём очередную точку $s \in \mathcal{S}$. Вычислим скалярное произведение $\langle \vec{n}, s - p \rangle$.

- 2. Если оно равно нулю, то переходим на 4.1.
- 3. Если оно положительно, то меняем знак у нормали: $\vec{n}' \leftarrow -\vec{n}$. Иначе нормаль ориентирована верно и $\vec{n}' \leftarrow \vec{n}$.
- 4. Конец процедуры.

4.2 Вычисление внешней нормали к плоскости

Вход: $\mathcal{S} \subset \mathbb{R}^d$, плоскость \mathcal{L} заданная аффинным базисом $(o, \mathcal{B}_{\mathcal{L}})$.

Выход: Нормаль \vec{n} такая, что весь рой лежит в неотрицательном полупространстве плоскости \mathcal{L} .

- 1. Перебираем орты e_i (i=1..d), до тех пор пока $\vec{n}_i = \mathcal{ON}(\vec{e}_i, \mathcal{B}_{\mathcal{L}})$ не станет отличным от нуля.
- 2. Пусть при i = k, $\vec{n}_k \neq \vec{0}$. Это искомая нормаль с точностью до ориентации. Выполним переориентирование (см. 4.1). Полученная нормаль будет искомой.
- 3. Конец процедуры.

4.3 ??? Нужна ли она ??? Процедура получения базиса плоскости, содержащего базис ребра

Вход: базис $\mathcal{B}_{\mathcal{F}}$ (d-1)-грани \mathcal{F} , (d-2)-ребро \mathcal{E} этой грани (важен набор E точек, лежащих в этом ребре).

Выход: базис $\mathcal{B}_{\mathcal{F}}$, содержащий базис ребра \mathcal{E} .

- 1. Выбираем две точки p, p' из $E, p \neq p'$. Точку p полагаем началом аффинного базиса, нормированный вектор p'-p полагаем первым вектором \vec{b}_1 конструируемого набора $\mathcal{B}'_{\mathcal{T}}$.
- 2. Берём точку $p'' \in \mathcal{F}$, $p'' \notin E$. Вектор p'' p, нормированный на фоне \vec{b}_1 , полагаем (d-1)-м вектором \vec{b}_{d-1} конструируемого набора $\mathcal{B}'_{\mathcal{F}}$.
- 3. Для всех векторов $b \in \mathcal{B}_{\mathcal{F}}$ проверяем, является ли b линейно-независимым на фоне уже накопленного набора $\mathcal{B}'_{\mathcal{F}}$, и, если является, добавляем в $\mathcal{B}'_{\mathcal{F}}$ результат ортонормирования b на фоне текущего набора $\mathcal{B}'_{\mathcal{F}}$.

5 TODO