- 1 Let $\{\mathbf{x}\}_{k=1}^{\infty} \subseteq \mathbb{R}^n$ be a convergent sequence, prove that there exists B > 0 such that $\|\mathbf{x}^k\| \leq B$ for all k.
- **Solution** Since $\{\mathbf{x}\}_{k=1}^{\infty}$ is convergent, its limit $\mathbf{x} \in \mathbb{R}^n$ exists. Then by definition of convergence, there exists $N \in \mathbb{N}$ such that for all $k \geq N$, $\|\mathbf{x}^k \mathbf{x}\| < 1$. Then by the triangle inequality,

$$\|\mathbf{x}^k\| - \|\mathbf{x}\| \le \|\mathbf{x}^k - \mathbf{x}\| < 1 \implies \|\mathbf{x}^k\| \le 1 + \|\mathbf{x}\|$$

for all $k \ge N$. Choose $B = \max \{ \|\mathbf{x}\|^1, \|\mathbf{x}\|^2, \dots, \|\mathbf{x}\|^{N-1}, 1 + \|\mathbf{x}\| \}$. Then $\|\mathbf{x}^k\| \le B$ for all k.

- **2** Let $\mathbf{x}, \mathbf{x} \in \mathbb{R}^n$, consider the functions $f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$ and $g(\mathbf{x}) = (\mathbf{a}^{\top} \mathbf{x})^2$.
 - a. Find $\nabla f(\mathbf{x})$ and the Hessian $H_f(\mathbf{x})$.
 - b. Show that $g(\mathbf{x})$ is a quadratic form
 - c. Find $\nabla g(\mathbf{x})$ and $H_g(\mathbf{x})$ using part (b).
- Solution a. Note that $f(\mathbf{x}) = \sum_{n=1}^{n} a_n x_n$. $\frac{\partial f}{\partial x_i} = a_i$ and $\frac{\partial^2 f}{\partial x_i \partial x_2} = 0$. Then $\nabla f(\mathbf{x}) = \mathbf{a}$ and $H_f(\mathbf{x}) = \mathbf{0}$.
 - b. Note that since $\mathbf{a}^{\top}\mathbf{x} \in \mathbb{R}$, $\mathbf{a}^{\top}\mathbf{x} = (\mathbf{a}^{\top}\mathbf{x})^{\top} = \mathbf{x}^{\top}\mathbf{a}$. Thus, $g(\mathbf{x}) = (\mathbf{a}^{\top}\mathbf{x})^2 = \mathbf{x}^{\top}(\mathbf{a}\mathbf{a}^{\top})\mathbf{x}$. $\mathbf{a}\mathbf{a}^{\top}$ is an $n \times n$ matrix, so $g(\mathbf{x})$ is a quadratic form.
 - c. Note that $\mathbf{a}\mathbf{a}^{\top}$ is symmetric since $(\mathbf{a}\mathbf{a}^{\top})^{\top} = \mathbf{a}\mathbf{a}^{\top}$. Thus, $\nabla g(\mathbf{x}) = 2\mathbf{a}\mathbf{a}^{\top}\mathbf{x}$ and $H_g(\mathbf{x}) = 2\mathbf{a}\mathbf{a}^{\top}$.
 - **3** Let $f(\mathbf{x}) = \mathbf{x}^{\top} Q \mathbf{x}$ be a quadratic form, where $Q \in \mathbb{R}^{n \times n}$ is **NOT** symmetric. Show that the Hessian matrix is $H_f(\mathbf{x}) = Q + Q^T$. You may use the result for symmetric matrices without proof.
- **Solution** First notice that since $f(\mathbf{x}) \in \mathbb{R}$, $f(\mathbf{x}) = (f(\mathbf{x}))^{\top} = \mathbf{x}^{\top} Q^{\top} \mathbf{x}$.

Consider the quadratic form $2f(\mathbf{x}) = \mathbf{x}^\top Q \mathbf{x} + \mathbf{x}^\top Q^\top \mathbf{x} = \mathbf{x}^\top (Q + Q^\top) \mathbf{x}$. Note that $Q + Q^\top$ is symmetric, so

$$H_{2f}(\mathbf{x}) = 2H_f(\mathbf{x}) = 2(Q + Q^{\top}) \implies H_f(\mathbf{x}) = Q + Q^{\top}.$$

4 Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(\mathbf{x}) = \mathbf{x}^{\top} \begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 4 \\ 8 \end{pmatrix}^{\top} \mathbf{x} + 10$$

and the point $\mathbf{x}^* = (1,1)^{\top}$.

- a. Find $\nabla f(\mathbf{x}^*)$ and $H_f(\mathbf{x}^*)$.
- b. Find the unit-normed vector (direction) d that minimizes the directional derivative $\frac{\partial f}{\partial \mathbf{d}}(\mathbf{x}^*)$.
- c. Find a point that satisfies the FONC for f. Does this point satisfy the SONC?
- Solution a. $\nabla f(\mathbf{x}) = 2 \begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 4 \\ 8 \end{pmatrix} \implies \nabla f(\mathbf{x}^*) = \begin{pmatrix} 12 \\ 24 \end{pmatrix}$ $H_f(\mathbf{x}) = 2 \begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 6 & 10 \end{pmatrix} \implies H_f(\mathbf{x}^*) = \begin{pmatrix} 2 & 6 \\ 6 & 10 \end{pmatrix}$
 - b. $\frac{\partial f}{\partial \mathbf{d}}(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) \cdot \mathbf{d} = \| \begin{pmatrix} 12\\24 \end{pmatrix} \| \| \mathbf{d} \| \cos \theta \text{ is minimized when } \theta = \pi \implies \mathbf{d} = -\frac{1}{12\sqrt{5}} \begin{pmatrix} 12\\24 \end{pmatrix}$.
 - c. Our feasible set is the interior of \mathbb{R}^2 (i.e., the whole space), so we want $\nabla f(\mathbf{x}^{\dagger}) = 0$. This occurs when $\mathbf{x}^{\dagger} = -(\frac{1}{2}, \frac{1}{2})^{\top}$:

$$\nabla f(\mathbf{x}^{\dagger}) = 2 \begin{pmatrix} 1 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \begin{pmatrix} 4 \\ 8 \end{pmatrix} = -\begin{pmatrix} 4 \\ 8 \end{pmatrix} + \begin{pmatrix} 4 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

However, it does not satisfy the SONC since not all the eigenvalues of $H_f(\mathbf{x}^{\dagger})$ are positive; in particular, one of its eigenvalues is $\lambda = -2(\sqrt{13} - 3) < 0$.

5 Consider the problem

$$\min x_1^2 + x_2^2 - 2x_2 + 2$$
 subject to $x_1, x_2 \ge 0$.

- a. Is the FONC satisfied at $\mathbf{x}^* = (0,0)^{\top}$?
- b. Is the FONC satisfied at $\mathbf{x}^* = (0,1)^{\top}$? Is the SONC satisfied at \mathbf{x}^* ?
- Solution a. Let $f(\mathbf{x}) = x_1^2 + x_2^2 2x_2 + 2$. Then $\nabla f(\mathbf{x}) = (2x_1, 2x_2 2)^{\top} \implies \nabla f(\mathbf{x}^*) = (0, -2)^{\top}$. Then if $\mathbf{d} = (\cos \theta, \sin \theta)^{\top}$ is a feasible direction, $0 \le \theta \le \frac{\pi}{2}$. Hence,

$$\frac{\partial f}{\partial \mathbf{d}} = \begin{pmatrix} 0 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} = -2\sin \theta \le 0.$$

In particular, the directional derivative is negative if $0 < \theta \le \frac{\pi}{2}$. Hence, \mathbf{x}^* does not satisfy the FONC.

- b. $\nabla f(\mathbf{x}^*) = (0,0)^{\top}$, so it satisfies the FONC. Note that $H_f(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \implies H_f(\mathbf{x}^*) = 2I_2 \succ 0$ since both of its eigenvalues are 2 > 0. Hence, it satisfies the SONC also.
- **6** Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Let $\mathbf{d} \in \mathbb{R}^n$ with ||d|| = 1. Show that

$$\langle \nabla f(\mathbf{x}), \mathbf{d} \rangle \ge -\|\nabla f(\mathbf{x})\|.$$

For what **d** does the equality hold?

Solution Using the standard inner product, we have that

$$\langle \nabla f(\mathbf{x}), \mathbf{d} \rangle = \nabla f(\mathbf{x}) \cdot \mathbf{d} = \|\nabla f(\mathbf{x})\| \|\mathbf{d}\| \cos \theta = \|\nabla f(\mathbf{x})\| \cos \theta,$$

where θ is the angle between $\nabla f(\mathbf{x})$ and \mathbf{d} . The minimum value is attained when $\cos \theta = -1 \implies \theta = \pi$, which gives us

$$\mathbf{d} = -\frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|} \implies \langle \nabla f(\mathbf{x}), \mathbf{d} \rangle = -\|\nabla f(\mathbf{x})\|.$$

Since that is the minimum value, we have the desired inequality

$$\langle \nabla f(\mathbf{x}), \mathbf{d} \rangle \ge -\|\nabla f(\mathbf{x})\|.$$