- ✓ Aug 21: Comprehensive Exam 10:30am
- ✓ Aug 26: make new list of dates for goals
- Sep 4: Have all clustering testing complete for all bacteria
- Sep 7: Write Up methods for clustering testing and add to substitutions paper
 - Sep 9: Gene expression data for the inversions project
 - Sep 14: Compile notes from comps papers into one document
 - Sep 30: New intro for Substitution paper
 - Sep 15-28: Apply for NSERC (if applicable)
 - Oct 3: NSERC Due
 - Oct 5-12: Apply for Mac Scholarships and Awards
 - Oct 31: Write out methods for gene expression paper
 - Sep 9: Think about/compile list of inversions in E. coli for new paper
 - Nov 15: Think about how to better look at the COG data
 - Nov 25: Complete any extra analysis needed for Substitution paper
 - Dec 4: Mac Scholarships and Awards Due
 - Dec 1: Write out COG methods
 - Dec 15: Gather papers for COG paper intro
 - Dec 15: Implement COG stuff

Last Week

I had my comprehensive exam which took up most of the beginning of last week. For the remainder of the week I combined all of the R scripts for the clustering testing which was the last bit that had to be made more automated. This should all run quite quickly from here on out so I am hoping to have that done by the end of the week.

I also made new goals for the next little while (see above) so let me know what you think!

I have also looked into NSERC and below is what I found:

Selection Criteria:

- 30% Academic excellence (transcript, scholarships/awards based on academic excellence)
- 50% Research ability or potential (research proposal, publications, conferences, posters, technical reports, stage of academic career to be considered, not only the number of publication and conferences but also the quality, scholarships/awards based on research ability/potential, researcher attributes (critical thinking, application of knowledge...etc), ability to complete projects within appropriate time)
- 20% Communication, interpersonal and leadership abilities (extracurriculars, professional, academic, awards for reports, posters, teaching, volunteer work, participation in publication writing, quality of presentation of application)

I currently have one paper out that was from work I did as a summer student at SickKids in which I'm second author and did all of the data collection and organization.

I could not find any info on people in the Biology department at Mac that got the NSERC Doctoral award. But I did look up some other awardees from Ontario and their publications range. Some have 2-4 first author pa-

pers accompanied by 3+ non-first author papers. However, there are some recipients who only have 2 first author papers, or 2 non-first author papers.

I trust your opinion so please let me know if you think it is worth it for me to apply!

This Week

I would like to have all of the clustering testing complete for all replicons by the end of this week.

Next Week

I plan on writing out methods for the clustering analysis and adding this to the substitutions paper. I would also like to go back to gathering gene expression data for the expression and inversions analysis.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-6.41×10^{-5}	1.65×10^{-5}	1.1×10^{-4}
B. subtilis Chromosome	-9.9×10^{-5}	2.18×10^{-5}	6×10^{-6}
Streptomyces Chromosome	-1.5×10^{-6}	1.4×10^{-7}	$<2 \times 10^{-16}$
S. meliloti Chromosome	3.19×10^{-5}	3.57×10^{-5}	3.7×10^{-1}
S. meliloti pSymA	-5.36×10^{-5}	6.34×10^{-4}	9.33×10^{-1}
$S. \ meliloti \ pSymB$	5.05×10^{-4}	2.6×10^{-4}	5.3×10^{-2}

Table 1: Linear regression analysis of the median counts per million expression data along the genome of the respective bacteria replicons. Grey coloured boxes indicate statistically significant results at the 0.5 significance level. Linear regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-1.394×10^{-7}	2.425×10^{-9}	$<2 \times 10^{-16}$
$B.\ subtilis\ { m Chromosome}$	-1.265×10^{-8}	1.562×10^{-9}	5.430×10^{-16}
Streptomyces Chromosome	1.736×10^{-8}	7.231×10^{-10}	$<2 \times 10^{-16}$
$S.\ meliloti\ { m Chromosome}$	-1.541×10^{-6}	3.042×10^{-8}	$<2 \times 10^{-16}$
S. meliloti pSymA	-9.130×10^{-7}	1.975×10^{-8}	$<2 \times 10^{-16}$
S. meliloti pSymB	2.488×10^{-7}	1.964×10^{-8}	$<2 \times 10^{-16}$

Table 2: Logistic regression analysis of the number of substitutions along the genome of the respective bacteria replicons. Grey coloured boxes indicate a negative logistic regression coefficient estimate. All results are statistically significant. Logistic regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication.

2000000 --2100000 --2200000 --

Distance from the Origin of Replication (bp)

10

Origin Location	$\it E.~coli$ Chromosome	${\it B. subtilis Chromosome}$	$Streptomyces\ {\bf Chromosome}$	$S.\ meliloti\ {\it Chromosome}$	$S.\ meliloti\ pSymA$	$S.\ meliloti\ p{ m Sym}{ m B}$
Moved 100kb Left	$-1.445 \times 10^{-7***}$	4.374×10^{-9} *	6.909×10 ^{-9***}	-1.316×10 ⁻⁶ ***	-1.058×10 ⁻⁶ ***	-2.009×10 ^{-7***}
Moved 90kb Left	$-1.544 \times 10^{-7***}$	$-1.036 \times 10^{-7***}$	$5.677 \times 10^{-9***}$	$-1.32 \times 10^{-6***}$	$-1.246 \times 10^{-6***}$	$-1.357 \times 10^{-7***}$
Moved 80kb Left	$-1.65 \times 10^{-7***}$	$-1.072 \times 10^{-7***}$	$8.11 \times 10^{-9***}$	$-1.338 \times 10^{-6***}$	$-1.398 \times 10^{-6***}$	-6.57×10 ^{-8***}
Moved 70kb Left	$-1.667 \times 10^{-7***}$	$-1.102 \times 10^{-7***}$	$6.716 \times 10^{-9***}$	$-1.363 \times 10^{-6} ***$	$-1.405 \times 10^{-6***}$	9.83×10^{-8}
Moved 60kb Left	$-1.64 \times 10^{-7***}$	$-1.19 \times 10^{-7***}$	$8.7 \times 10^{-9***}$	$-1.324 \times 10^{-6***}$	$-1.394 \times 10^{-6***}$	$1.129 \times 10^{-7***}$
Moved 50kb Left	$-1.446 \times 10^{-7***}$	$-1.211 \times 10^{-7***}$	$1.045 \times 10^{-8***}$	$-1.36 \times 10^{-6***}$	$-1.403 \times 10^{-6***}$	$1.521 \times 10^{-7***}$
Moved 40kb Left	$-1.4 \times 10^{-7***}$	$-1.299 \times 10^{-7***}$	$1.214 \times 10^{-8***}$	$-1.255 \times 10^{-6***}$	$-1.422 \times 10^{-6***}$	$1.543 \times 10^{-7***}$
Moved 30kb Left	$-1.498 \times 10^{-7***}$	$-1.292 \times 10^{-7***}$	$1.24 \times 10^{-8***}$	$-1.26 \times 10^{-6***}$	$-1.392 \times 10^{-6***}$	$1.63 \times 10^{-7***}$
Moved 20kb Left	$-1.51 \times 10^{-7***}$	$-1.1 \times 10^{-7***}$	$1.395 \times 10^{-8***}$	$-1.525 \times 10^{-6***}$	$-1.412 \times 10^{-6***}$	$1.603 \times 10^{-7***}$
Moved 10kb Left	$-1.262 \times 10^{-7***}$	-2.602×10^{-9}	$1.563 \times 10^{-8***}$	$-1.599 \times 10^{-6***}$	$-9.499 \times 10^{-7***}$	$2.973 \times 10^{-7***}$
Moved 10kb Right	$-1.305 \times 10^{-7***}$	$-2.045 \times 10^{-8***}$	$1.578 \times 10^{-8***}$	$1.614 \times 10^{-6***}$	$-1.026 \times 10^{-6***}$	$3.505 \times 10^{-7***}$
Moved 20kb Right	$-1.454 \times 10^{-7***}$	-1.006×10 ⁻⁷ ***	$1.903 \times 10^{-8***}$	-1.634×10 ⁻⁶ ***	$-1.475 \times 10^{-6***}$	$1.649 \times 10^{-7***}$
Moved 30kb Right	$-1.548 \times 10^{-7***}$	$-8.596 \times 10^{-8***}$	$2.046 \times 10^{-8***}$	$-1.698 \times 10^{-6***}$	$-1.417 \times 10^{-6***}$	$1.526 \times 10^{-7***}$
Moved 40kb Right	$-1.632 \times 10^{-7***}$	-8.378×10 ^{-8***}	$2.125 \times 10^{-8***}$	$-1.719 \times 10^{-6***}$	$-1.367 \times 10^{-6***}$	$1.589 \times 10^{-7***}$
Moved 50kb Right	$-1.856 \times 10^{-7***}$	-7.879×10 ^{-8***}	$1.957 \times 10^{-8***}$	$-1.735 \times 10^{-6***}$	$-1.277 \times 10^{-6***}$	$1.654 \times 10^{-7***}$
Moved 60kb Right	$-1.91 \times 10^{-7***}$	-6.98×10 ^{-8***}	$1.974 \times 10^{-8***}$	$-1.788 \times 10^{-6} ***$	$-1.169 \times 10^{-6***}$	$1.645 \times 10^{-7***}$
Moved 70kb Right	$-1.892 \times 10^{-7***}$	-6.634×10 ^{-8***}	$1.934 \times 10^{-8***}$	$-1.854 \times 10^{-6} ***$	$-1.059 \times 10^{-6***}$	$1.843 \times 10^{-7***}$
Moved 80kb Right	$-1.879 \times 10^{-7**}$	$-5.814 \times 10^{-8***}$	$2.313 \times 10^{-8***}$	$-1.891 \times 10^{-6***}$	$-9.07 \times 10^{-7***}$	$1.90 \times 10^{-7***}$
Moved 90kb Right	$-1.862 \times 10^{-7***}$	$-4.314 \times 10^{-8***}$	$2.304 \times 10^{-8***}$	$-1.865 \times 10^{-6***}$	$-7.171 \times 10^{-7***}$	$2.415 \times 10^{-7***}$
Moved 100kb Right	$-1.799 \times 10^{-7***}$	-2.597×10 ^{-8***}	$1.945 \times 10^{-8***}$	$-1.525 \times 10^{-6***}$	$-6.572 \times 10^{-7***}$	$3.095 \times 10^{-7***}$

Table 3: Logistic regression analysis of the number of substitutions along the genome of the respective bacteria replicons. All results are marked with significance codes as followed: <0.001= '***', 0.001<0.01= '**', 0.01<0.01= '**', 0.05= '*', 0.05<0.1= '.', 0.01= '.' Logistic regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication.