1. Ethics & Bias (10 points)

How Biased Training Data Affects Patient Outcomes

Biased training data can lead to **unfair or harmful predictions**, particularly in healthcare where disparities already exist. Potential impacts include:

1. Underdiagnosis of High-Risk Groups

- •If historical data underrepresents certain demographics (e.g., minority populations, low-income patients), the model may **fail to flag them as high-risk**, leading to inadequate care.
- •Example: A model trained mostly on affluent patients may underestimate readmission risk for homeless individuals due to missing social determinant factors.

2. Over-prediction for Certain Groups

- •If a demographic group has historically had higher readmissions due to systemic barriers (e.g., lack of transportation), the model may **unfairly label all similar patients as high-risk**, leading to unnecessary interventions.
- •Example: A model associating "Medicaid patients" with higher readmissions might bias clinicians against them, even if individual cases don't warrant it.

3. Reinforcing Existing Disparities

•If biased predictions lead to **diverting resources away from some groups**, it could worsen health inequities.

Strategy to Mitigate Bias: Adversarial Debiasing

•How it works:

- •Train the model to predict readmission risk while simultaneously minimizing its ability to predict protected attributes (e.g., race, insurance status).
- •Uses an adversarial network to penalize the model for learning biased patterns.

Advantages:

- •Does not require removing useful features (e.g., ZIP code can still be used for social risk, but not for racial bias).
- Actively reduces discrimination rather than just detecting it.

Alternative Strategies:

- •Reweighting: Assign higher importance to underrepresented groups during training.
- •Fairness Constraints: Enforce statistical parity (equal readmission prediction rates across groups).

2. Trade-offs (10 points)

Trade-off: Model Interpretability vs. Accuracy

In healthcare, **interpretability is often prioritized over pure accuracy** because:

High-Accuracy, Low-Interpretability	Interpretable Models (e.g., Logistic Regression, Decision
Models (e.g., Deep Learning)	Trees)
✓ May achieve slightly better	✔ Doctors can understand and trust predictions (e.g.,
AUC/accuracy (e.g., 92% vs. 88%).	"Patient flagged due to diabetes + prior admission").
x Black-box nature makes clinicians skeptical.	x May sacrifice some predictive power for simplicity.
x Hard to explain to regulators (e.g., FDA, HIPAA compliance).	✓ Easier to debug and audit for bias.

Best Compromise:

- •Use **XGBoost/LightGBM** (balance of accuracy + interpretability via feature importance).
- •Supplement with **SHAP values/LIME** to explain individual predictions.

Impact of Limited Computational Resources on Model Choice

If the hospital lacks high-performance GPUs/cloud infrastructure:

1.Simpler Models Become Necessary

- •Logistic Regression or Random Forests may replace deep learning.
- •Pros: Lower compute needs, easier to deploy on-premise servers.

•Cons: Potentially lower accuracy for complex patterns.

2. Reduced Feature Complexity

- •Fewer features (e.g., drop NLP-extracted notes from discharge summaries).
- •Use **PCA** or **feature selection** to reduce dimensionality.

3.Batch Processing vs. Real-Time Predictions

•If real-time inference is too costly, switch to **nightly batch predictions**.

4.Edge Deployment

•Run lightweight models (e.g., **TensorFlow Lite**) on local hospital servers instead of cloud APIs.

Example Workaround:

•Train an **XGBoost model** on a subset of high-impact features (e.g., comorbidities, prior admissions) instead of a full EHR dataset.