

Design and Analysis of Algorithms

Chapter 5: Dynamic Programming

• Wikipedia definition: "method for solving complex problems by breaking them down into simpler subproblems"

• This definition will make sense once we see some examples - Actually, we'll only see problem solving examples.

General, powerful Algorithm Design Technique.

- A method for solving classical problems (Like Divide & Conquer; it's not a specific algorithm)
- 'programming' here is not referring to software. The word itself is older than the computer. 'programming' means any tabular method to accomplish a task.
- Richard Bellman introduced it in 1949. He developed the method with Lester Ford to find the shortest path in a graph.

- For what type of problems DP is useful?
 - the problems that can be broken into subproblems
- Think of DP as kind of exhaustive search.
- Perspectives:
 - ~~ Careful brute force search all possibilities but do it in a smart way to get the optimal solution
 - ~~ Subproblems + re-use (the solution)

Divide & Conquer

you deal with independent subproblems

Dynamic Programming

you deal with overlapping subproblems

Steps for Solving DP Problems

- 1. Define subproblems
- 2. Write down the recurrence that relates subproblems
- 3. Recognize and solve the base cases

Each step is important

- Dynamic programming is a very powerful, general tool for solving optimization problems.
- Once understood it is relatively easy to apply, but many people have trouble understanding it.

Greedy Algorithms

- Greedy algorithms focus on making the best local choice at each decision point.
- For example, a natural way to compute a shortest path from x to y might be to walk out of x, repeatedly following the cheapest edge until we get to y. WRONG!
- In the absence of a correctness proof greedy algorithms are very likely to fail.

Inductive definitions

Factorial

•
$$f(0) = 1$$

•
$$f(n) = n \times f(n-1)$$

Insertion sort

- isort([]) = []
- isort([x1,x2,...,xn]) = insert(x1,isort([x2,...,xn]))

... Recursive programs


```
int factorial(n):
 if (n <= 0)
   return(1)
 else
   return(n*factorial(n-1))
```


Optimal substructure property

- Solution to original problem can be derived by combining solutions to subproblems
- factorial(n-1) is a subproblem of factorial(n)
 - So are factorial(n-2), factorial(n-3), ..., factorial(0)
 - isort([x₂,...,x_n]) is a subproblem of isort([x₁,x₂,...,x_n])
 - So is isort($[x_i,...,x_j]$) for any $1 \le i \le j \le n$

Evaluating subproblems

Fibonacci numbers

- fib(0) = 0
- fib(1) = 1
- fib(n) = fib(n-1) + fib(n-2)

```
function fib(n):
   if n == 0 or n == 1
     value = n
   else
     value = fib(n-1) +
         fib(n-2)
   return(value)
```



```
function fib(n):
   if n == 0 or n == 1
     value = n
   else
     value = fib(n-1) +
         fib(n-2)
   return(value)
```

fib(5)


```
function fib(n):
   if n == 0 or n == 1
     value = n
   else
     value = fib(n-1) +
        fib(n-2)
   return(value)
```



```
function fib(n):
    if n == 0 or n == 1
        value = n
    else
        value = fib(n-1) +
             fib(1)
    return(value)        fib(2)
```



```
function fib(n):
  if n == 0 or n == 1
                                           fib(5)
    value = n
  else
                                                      fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                         fib(3)
                                      fib(2)
                            fib(1)
                     fib(2)
```



```
function fib(n):
  if n == 0 or n == 1
                                           fib(5)
    value = n
  else
                                                      fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2)
                         fib(3)
                            fib(1)
                     fib(2)
```



```
function fib(n):
  if n == 0 or n == 1
                                           fib(5)
    value = n
  else
                                                     fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                     fib(2)
                        fib(3)
                     fib(2) fib(1)
```



```
function fib(n):
  if n == 0 or n == 1
                                          fib(5)
    value = n
  else
                                                     fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                     fib(2)
                        fib(3)
                     fib(2) fib(1)
```



```
function fib(n):
  if n == 0 or n == 1
                                           fib(5)
    value = n
  else
                                                     fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                        fib(3)
                                     fib(2)
                     fib(2) fib(1)
```



```
function fib(n):
  if n == 0 or n == 1
                                          fib(5)
    value = n
  else
                                                     fib(3)
                                fib(4)
    value = fib(n-1) +
             fib(n-2)
  return(value)
                        fib(3)
                                     fib(2)
                     fib(2) fib(1)
```



```
function fib(n):
  if n == 0 or n == 1
                                           fib(5)
    value = n
  else
                                                      fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                        fib(3)
                                      fib(2)
                     fib(2) fib(1)
                                  fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                           fib(5)
    value = n
  else
                                                      fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                     fib(2)
                        fib(3)
                     fib(2) fib(1) fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                           fib(5)
    value = n
  else
                                                      fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2)
                         fib(3)
                     fib(2) fib(1) fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                           fib(5)
    value = n
  else
                                                      fib(3)
                                fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                     fib(2)
                        fib(3)
                     fib(2) fib(1) fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                            fib(5)
    value = n
  else
                                                       fib(3)
                                 fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2)
                         fib(3)
                                                           fib(1)
                                                    fib(2)
                     fib(2) fib(1) fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                            fib(5)
    value = n
  else
                                                       fib(3)
                                 fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2)
                         fib(3)
                                                    fib(2)
                                                            fib(1)
                     fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                            fib(5)
    value = n
  else
                                                       fib(3)
                                 fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2)
                         fib(3)
                                                   fib(2)
                                                          fib(1)
                     fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                            fib(5)
    value = n
  else
                                                       fib(3)
                                 fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2)
                         fib(3)
                                                    fib(2)
                                                           fib(1)
                     fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                            fib(5)
    value = n
  else
                                                       fib(3)
                                 fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                         fib(3)
                                      fib(2)
                                                           fib(1)
                                                    fib(2)
                     fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
```



```
function fib(n):
  if n == 0 or n == 1
                                            fib(5)
    value = n
  else
                                                       fib(3)
                                 fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                         fib(3)
                                      fib(2)
                                                           fib(1)
                                                    fib(2)
                     fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
```



```
function fib(n):
                                              5
  if n == 0 or n == 1
                                            fib(5)
    value = n
  else
                                                       fib(3)
                                 fib(4)
    value = fib(n-1) +
              fib(n-2)
  return(value)
                                      fib(2)
                         fib(3)
                                                    fib(2)
                                                           fib(1)
                     fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)
```


Overlapping subproblems

Wasteful recomputation

Computation tree grows exponentially

Python Implementation


```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```


Never re-evaluate a subproblem

- Build a table of values already computed
 - Memory table
- Memoization
 - Remind yourself that this value has already been seen before

Memoized fib(5)

Memoization

- Store each newly computed value in a table
- Look up table before starting a recursive computation
- Computation tree is linear

fib(5)

k	fib(k)

Memoized fib(5)

Memoization

- Store each newly computed value in a table
- Look up table before starting a recursive computation
- Computation tree is linear

k	fib(k)

Memoization

- Store each newly computed value in a table
- Look up table before starting a recursive computation
- Computation tree is linear

Memoization

Store each newly computed value in a table

- Look up table before starting a recursive computation
- Computation tree is linear

Memoization

Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

 Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

 Store each newly computed value in a table

 Look up table before starting a recursive computation

Memoization

 Store each newly computed value in a table

- Look up table before starting a recursive computation
- Computation tree is linear

Memoized fibonacci


```
function fib(n):
  if fibtable[n]
    return(fibtable[n])
  if n == 0 or n == 1
   value = n
  else
   value = fib(n-1) + fib(n-2)
  fibtable[n] = value
  return (value)
```


In general


```
function f(x,y,z):
  if ftable[x][y][z]
   return(ftable[x][y][z])
  value = expression in terms of subproblems
  ftable[x][y][z] = value return(value)
```


Python Implementation


```
def fib(n, memo):
  if memo[n] is not None:
    return memo[n]
  if n == 1 or n == 2:
    result = 1
  else:
    result = fib(n-1, memo) + fib(n-2, memo)
  memo[n] = result
  return result
def fib_memo(n):
  memo = [None] * (n+1)
  return fib(n, memo)
fib_memo(5)
fib_memo(1000) # recursive error due to too many recursive calls. # Try bottom-up dynamic
programming
```


- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

Anticipate what the memory table looks like

fib(5)

- Subproblems are known from problem structure
- Dependencies form a DAG
- Solve subproblems in topological order

 Anticipate what the memory table looks like

fib(5)

 Subproblems are known from problem structure

fib(4)

Dependencies form a DAG

fib(3)

 Solve subproblems in topological order **fib(2)**

fib(1)

fib(0)

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

fib(2)

fib(1)

fib(0)

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

fib(1)

fib(0)

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

k	0	1	2	3	4	5
fib(k)						

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

k	0	1	2	3	4	5
fib(k)	0					

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

k	0	1	2	3	4	5
fib(k)	0	1				

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

k	0	1	2	3	4	5
fib(k)	0	1	1			

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

k	0	1	2	3	4	5
fib(k)	0	1	1	2		

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

k	0	1	2	3	4	5
fib(k)	0	1	1	2	3	

- Anticipate what the memory table looks like
 - Subproblems are known from problem structure
 - Dependencies form a DAG
- Solve subproblems in topological order

k	0	1	2	3	4	5
fib(k)	0	1	1	2	3	5

Dynamic programming fibonacci


```
function fib(n):
 fibtable[0] = 0
 fibtable[1] = 1
 for i = 2, 3, ... n
   fibtable[i] = fibtable[i-1] +
                   fibtable[i-2]
 return(fibtable[n])
```


Python Implementation | Bottom-up DP


```
def fib_bottom_up(n):
    if n ==1 or n== 2:
        return 1
    bottom_up = [None] * (n+1)
    bottom_up[1] = 1
    bottom_up[2]= 1
    for k in range(3, n+1):
        bottom_up[k] = bottom_up[k-1] + bottom_up[k-2]
    return bottom_up[n]
fib_bottom_up(5)
```


Graph Theory – A Brief!

Graph – A Graph is defined as a set of:

- V = Nodes (vertices)
- \triangleright E = Edges (links, arcs) between pairs of nodes
- \triangleright Denoted by G = (V, E).
- Graph Size Parameters:
 - \triangleright Order of G: number of vertices, n = |V|,
 - \triangleright Size of G: number of edges, m = |E|.

- The *running time of algorithms* are usually measured in terms of the order and size of a graph
- Path Path represents a sequence of edges between two vertices

Directed Graph

An edge $e \in E$ of a directed graph is represented as an ordered pair (u,v), where

- > u is the initial vertex
- > v is the **terminal** vertex.

$$V = \{ 1, 2, 3, 4 \}, |V| = 4$$

 $E = \{(1,2), (2,3), (2,4), (4,1), (4,2) \}, |E| = 5$

Undirected Graph

An edge $e \in E$ of an undirected graph is represented as an unordered pair (u,v) = (v,u), where $u, v \in V$, $u \neq v$

 $V = \{ 1, 2, 3, 4 \}, |V| = 4$ $E = \{(1,2), (2,3), (2,4), (4,1) \}, |E| = 4$

Degree of a Vertex

Degree of a vertex in an undirected graph is the number of edges incident on it. In a directed graph, the out degree of a vertex is the number of edges leaving it and the in degree is the number of edges entering it.

The *in degree* of vertex 2 is 2 and the *out degree* of vertex 3 is 0

Adjacent/Neighbor Nodes

If an edge $e=\{u,v\} \in E$, u and v are adjacent or neighbors

Weighted Graph

A weighted graph is a graph for which each edge has an associated weight

Trees

- An undirected graph is a **tree** if it is connected and does not contain a cycle.
- For an undirected tree Graph G, the following statements are equivalent:
 - ➤ Any two vertices in G are connected by unique simple path
 - ➤ G is connected, but if any edge is removed from E, the resulting graph is disconnected
 - \triangleright G is connected, and $\mid E \mid = \mid V \mid -1$
 - \triangleright G is acyclic, and |E| = |V| 1
 - ➤ G is acyclic, but if any edge is added to E, the resulting graph contains a cycle

Graph Representation: Adjacency Matrix

Adjacency Matrix $|V| \times |V|$ matrix with $A_{uv} = 1$ if (u, v) is an edge

- Symmetric matrix for undirected graphs (not for directed graphs)
- \triangleright Space: proportional to $|V|^2$.
 - ➤ Not efficient for *sparse graphs*
 - Algorithms might have longer running time if this representation is used
- Checking if (u, v) is an edge consumes O(1) time.
- \triangleright Identifying all edges consumes $O(|V|^2)$ time.

Graph Representation: Adjacency List

- Two common data structures for representing graphs:
 - Adjacency lists
 - Adjacency matrix

Adjacency List - Node indexed array of lists

- Two representations of each edge
- \triangleright Space proportional to |E| + |V|
- \triangleright Checking if (u, v) is an edge consumes O(deg(u)) time
- \triangleright Identifying all edges takes O(|E|+|V|) time
- \triangleright Requires O(|E|+|V|) space. Good for dealing with sparse graphs

Graph Representation

Adjacency Matrix

	order of the order							
	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Adjacency List

		/				
1	2 1 1 2 2 5 3	3				
2	1	3	4	5		
3	1	3	5	7	8	
4	2	5				
5	2	3	4	6		
6	5					
7	3	8				
8	3	7				

Basic Operations

- Add Vertex add a vertex to a graph.
- Add Edge add an edge between two vertices of a graph.
- Display Vertex display a vertex of a graph.

Depth First Traversal

• Depth First Search algorithm(DFS) traverses a graph in a depthward motion and uses a stack to remember to get the next vertex to start a search when a dead end occurs in any iteration.

Rule 1 – Visit adjacent unvisited vertex. Mark it visited. Display it. Push it in a stack.

Rule 2 – If no adjacent vertex found, pop up a vertex from stack. (It will pop up all the vertices from the stack which do not have adjacent vertices.)

Rule 3 – Repeat Rule 1 and Rule 2 until stack is empty.

3. Mark A as visited and put it onto the stack. Explore any unvisited adjacent node from A. top→ Both **S**and **D** are adjacent to **A** but we are concerned for unvisited nodes only. Stack 4. Visit **D** and mark it visited and put onto the stack. Here we top→ D have **B** and **C** nodes which are adjacent to **D** and both are Α unvisited. But we shall again s choose in alphabetical order. Stack

Breadth First Traversal

- Breadth First Search algorithm(BFS) traverses a graph in a breadthwards motion and uses a queue to remember to get the next vertex to start a search when a dead end occurs in any iteration.
- Rule 1 Visit adjacent unvisited vertex. Mark it visited. Display it. Insert it in a queue.
- Rule 2 If no adjacent vertex found, remove the first vertex from queue.
- Rule 3 Repeat Rule 1 and Rule 2 until queue is empty.

Motivation

 Many algorithms use a graph representation to represent data or the problem to be solved

Examples:

- Cities with distances between
- Roads with distances between intersection points
- Course prerequisites
- Network
- Social networks

Social Network Graph Example


```
from collections import deque
                                                  def mutual_friends(self, user1, user2):
                                                     if user1 not in self.graph or user2 not in self.graph:
                                                     return "Invalid users"
class SocialNetwork:
  def __init__(self):
                                                     queue = deque([(user1, [])])
                                                     visited = set()
        self.graph = {}
                                                    while queue:
  def add_user(self, user):
                                                     current_user, path = queue.popleft()
    if user not in self.graph:
                                                     if current user == user2:
        self.graph[user] = set()
                                                           return path
  def add_connection(self, user1, user2):
                                                     for friend in self.graph[current_user]:
                                                           if friend not in visited:
    self.add_user(user1)
                                                           queue.append((friend, path + [friend]))
    self.add_user(user2)
                                                           visited.add(friend)
    self.graph[user1].add(user2)
    self.graph[user2].add(user1)
                                                     return "No mutual friends"
```

Social Network Graph Example


```
# Example usage:
social_network = SocialNetwork()
social_network.add_connection("John", "Luke")
social_network.add_connection("Joe", "Diana")
social_network.add_connection("John", "Diana")
social_network.add_connection("Diana", "Karen")
user1 = "John"
user2 = "Karen"
result = social_network.mutual_friends(user1, user2)
print(f"Mutual friends between {user1} and {user2}:
{result}")
```


Summary

- Memoization
 - Store values of subproblems in a table
 - Look up the table before making a recursive call
- Dynamic programming:
 - Solve subproblems in topological order of dependency
 - Dependencies must form a dag (why?) Iterative evaluation

Exercise

You are given a directed acyclic graph G = (V, E) with real-valued edge weights and two distinguished vertices s and t. The weight of a path is the sum of the weights of the edges in the path. Describe a dynamic-programming approach for finding a longest weighted simple path from s to t. What is the running time of your algorithm?

