Задача funcp_rotateC-Поворот

Задача funcp_rotateC: Поворот

Прямоугольник со сторонами, параллельными осям, задан координатами двух точек - левой верхней и правой нижней.

Написать и использовать функцию **void rotateC(int * x1, int * y1, int * x2, int * y2)**, которая поворачивает прямоугольник вокруг его центра (пересечения диагоналей).

Гарантируется, что тесты будут оставлять прямоугольник после поворота в целых координатах. Ничего округлять не нужно.

Формат входных данных

4 целых числа через пробел - х и у координаты левой верхней и правой нижней точки исходного прямоугольника.

Формат результата

4 целых числа через пробел - х и у координаты левой верхней и правой нижней точки после поворота.

Примеры

Входные данные

0 6 10 4

Результат работы

4 10 6 0

Задача f_temper-f_temper

Полный балл:	30
Штраф за посылку:	1
Ограничение времени:	4 c
Ограничение реального времени:	10 c
Ограничение памяти:	64M

Температура

Написать функцию , которая переводит температуру по Фаренгейту, в температуру по Цельсию. Измерения - в целых числах. Формула для перевода: Градусы по Цельсию = (градусы по Фаренгейту - 32) / 1.8

```
float temFC(int faren);
```

Для отладки использовать функцию main() и написанную функцию float temFC(int faren). Для проверки отправлять только функцию!!!

Задача f_printTime-f_printTime

Местное время

Московское время **hMos** часов, разница по времени с городом N **h** часов. Если h < 0, город N находится восточнее Москвы, если наоборот - западнее.

Самолет вылетает из Москвы в **hMos** часов 5 числа некоторого месяца и летит **hplane** часов.

Необходимо узнать во сколько прилетает самолет в гоорд N по местному времени.

Написать функцию

```
void printLocalTime(int hMos, int h, int hplane);
```

которая получает: Московское время (hMos), разницу во времени с городом N(h), время полета(hplane) и печатает местное время и дату прилета самолета (только число месяца) в город N.

В Москве и в городе N 24-часовой отсчет времени.

Для отладки использовать функцию main() и написанную функцию printLocalTime().

Для проверки отправлять только функцию!!! Не использовать конструкцию **if**, циклы, массивы, рекурсию...!!!

Примеры

Входные данные

17 7 8

Результат работы

18 5

Входные данные

9 -7 10

Результат работы

2 6

Задача f_middle-Новый центр отрезка

Задача f_middle: Новый центр отрезка

Отрезок на прямой 0X задан своими координатами (int). Написать и использовать функцию **void toMiddle(int * x1, int * x2, int middle)**, которая перемещает отрезок так, чтобы его центр оказался в точке middle.

Округление новых координат производить по математическим правилам округления.

Посылать нужно только функцию.

Формат входных данных

3 числа через пробел - координаты начала, конца исходного отрезка и точки middle.

Формат результата

2 числа через пробел - координаты начала и конца отрезка после перемещения.

Примеры

Входные данные

0 2 2

Результат работы

1 3

Входные данные

-1 8 0

Результат работы

-4 5

Задача func_m_geron-Формула Герона

Функция

Можно вычислить площадь треугольника **s** по трем его сторонам.

Напишите и проверьте функции:

float length(int x1, int y1, int x2, int y2);

, которая вычисляет расстояние между 2 точками.

Длина не может быть отрицательной.

$$c^2 = (x_1-x_2)^2 + (y_1-y_2)^2$$

float s3(int x1, int y1, int x2, int y2, int x3, int y3);

, которая вычисляет площадь треугольника по 3 точкам по формуле

Входные данные

Координаты 3 точек х1 у1 х2 у2 х3 у3

Выходные данные

Площадь треугольника

Примеры

Вход	Выход
300400	6

Задача f_dsum1-Сумма цифр(1)

Сумма четных и нечетных цифр

Дано восьмизначное десятичное число.

Написать функцию

void printOddEvent(unsigned int number);

которая делит это число на 2 и печатает сумму цифр, стоящих на четных местах этого числа, а через пробел - сумму цифр, стоящих на нечетных местах этого числа. Цифра с номером 1 - самый младший разряд числа.

Для отладки использовать функцию main().

Для проверки отправлять только функцию!!!

Примеры

Входные данные

24242424

Результат работы

8 4

Задача f_shifr2-f_shifr2

Шифр (2)

Слово из четырех заглавных латинских букв необходимо зашфровать 8-значным целым числом. Каждая латинская буква кодируется двумя десятичными цифрами этого числа.

Код букв соответствует положению буквы в латинском алфавите.

Написать функцию

```
unsigned int codeToNumber(char 11, char 12, char 13, char 14);
```

, которая кодирует слово из 4-х заглавных латиских букв в 8-разрядное число.

Функция будет использоваться в программе:

```
#include <stdio.h>
unsigned int codeToNumber(char 11, char 12, char 13, char 14);
int main() {
    char 11, 12, 13, 14;
unsigned long long number;
scanf("%c%c%c%c", &11, &12, &13, &14);

printf("%08u\n", codeToNumber(11, 12, 13, 14));
}
```

Конструкции **if**, циклы, массивы, рекурсию не использовать!!! После написания и проверки программы с функцией, проверяющей системе отправлять только функцию!!!

Выходные данные. Одно целое восьмизначное число - закодированное слово.

Примеры

Входные данные

AAAA

Результат работы

01010101

Задачи f_shifr1-f_shifr1

Шифр

Слово из четырех заглавных латинских букв зашфровано 8-значным целым числом. Каждая латинская буква кодируется двумя десятичными цифрами этого числа.

Код букв соответствует положению буквы в латинском алфавите.

Написать функцию

```
void deCode(unsigned int kodeNumber, char *11, char *12, char *13, char
*14);
```

, где **kodeNumber** - код слова в виде числа, ***I1**, ***I2**, ***I3**, ***I4** - адреса переменных для записаи соответствующих букв.

Задача f_tret-f_tret

Треть

Отрезок на прямой задан своими координатами (float).

Написать функцию

```
void oneTr(float* x1, float* x2);
```

, которая "обрезает" отрезок сначала на 1/3 и с конца на 1/3. При этом х1 и х2 получают новые координаты.

Например, для точек 0 и 12 новые координаты будут 4 и 8, и для 12 и 0 новые координаты будут 4 и 8.

Для отладки использовать функцию main() и написанную функцию float temFC(int faren).

Для проверки отправлять только функцию!!!

Конструкцию **if**, циклы, массивы, рекурсию не использовать!!!

Задача funcp_mirror1_c-Отобразить точку

Задача funcp_mirror1_c: Отобразить точку

Написать и использовать функцию **void mirror(int * x1, int * y1)**, которая отображает точку с координатами x,y относительно оси Y.

Формат входных данных

2 целых числа через пробел - х и у координаты точки до отображения.

Формат результата

2 целых числа через пробел - х и у координаты точки после отображения.

Примеры

Входные данные

3 2

Результат работы

-3 2

Задача funcp_mirror2_c-Отобразить прямоугольник

Задача funcp_mirror2_c: Отобразить прямоугольник

Написать и использовать функцию **void mirror(int * x1, int * y1, int * x2, int * y2)**, которая отображает отрезок относительно оси X.

Формат входных данных

4 целых числа через пробел - х и у координаты концов отрезка до отображения.

Формат результата

4 целых числа через пробел - х и у координаты концов отрезка после отображения.

Примеры

Входные данные

3 2 7 -1

Результат работы

3 -2 7 1

Задача funcp_rotateC-Поворот

Задача funcp_rotateC: Поворот

Прямоугольник со сторонами, параллельными осям, задан координатами двух точек - левой верхней и правой нижней.

Написать и использовать функцию **void rotateC(int * x1, int * y1, int * x2, int * y2)**, которая поворачивает прямоугольник вокруг его центра (пересечения диагоналей).

Гарантируется, что тесты будут оставлять прямоугольник после поворота в целых координатах. Ничего округлять не нужно.

Формат входных данных

4 целых числа через пробел - х и у координаты левой верхней и правой нижней точки исходного прямоугольника.

Формат результата

4 целых числа через пробел - х и у координаты левой верхней и правой нижней точки после поворота.

Примеры

Входные данные

0 6 10 4

Результат работы

4 10 6 0