TCAD for electronic devices part 2

Microelectronics devices, sensors and MEMS

Academic Year 2023/2024

Lucio Pancheri

lucio.pancheri@unitn.it

P-N junction – 1D simulation domains

P-N junction – 2D simulation domains

Structure 2a: simulation setup

Right-click in gray area below the SDE tool

Parameter: substrate doping concentration ND

Dialog box

;; Defines the doping profiles

```
(sdedr:define-constant-profile "substrate" "PhosphorusActiveConcentration" @ND@)
(sdedr:define-constant-profile-material "substrate" "substrate" "Silicon")
```

```
(sdedr:define-gaussian-profile "Ptop_prof" "BoronActiveConcentration" "PeakPos" 0 "PeakVal"
5e19 "ValueAtDepth" 1e15 "Depth" 1 "Gauss" "Factor" 0.5)
(sdedr:define-refinement-window "Ptop_refwin" "Line" (position 0 0 0) (position 10 0 0))
(sdedr:define-analytical-profile-placement "Ptop_plac" "Ptop_prof" "Ptop_refwin" "Positive"
"NoReplace" "Eval")
```

IV curves in reverse bias

```
Physics{
     Temperature = 300
     Recombination(SRH( DopingDep ) Avalanche)
}
```

Turns on avalanche multiplication By impact ionization

IV curves in reverse bias

IV curves in forward bias

```
Solve {
        Poisson
        Coupled{ Poisson Electron Hole }
        Quasistationary(
                 InitialStep=0.01 MinStep=1e-6 MaxStep=0.01
                 Goal{ Name="Pcontact" Voltage=2 } 
                 Plot { Range = (0 1) Intervals =5}
                                                                   Target voltage
        ) { Coupled { Poisson Electron Hole} }
}
                          n3_des
                          n8 des
                          n12_des
                 0.04
              Pcontact TotalCurrent
                             Effect of series
                                                         ND=1e17
                             resistance
                 0.02
                                                                   ND=1e16
                                                                      ND=1e15
```

Pcontact OuterVoltage

IV curves in forward bias

Capacitance-Voltage (CV) curves

Device block

```
Device DIODE {
Electrode {
        { Name="Ncontact" Voltage=0}
        { Name="Pcontact" Voltage=0}
File
        grid
                = "@tdr@"
        current = "@plot@"
        plot
                = "@tdrdat@"
Physics{
        Temperature = 300
        Recombination(SRH( DopingDep ) )
Plot
        eDensity hDensity
        TotalCurrent/Vector eCurrent/Vector
        hCurrent/Vector
        ElectricField/Vector Potential
        SpaceCharge
        Doping
 # device
```

```
File {
          Output = "@log@"
         ACExtract = "@acplot@"
 System {
                                                   System
          DIODE d (Ncontact Pcontact)
         Vsource pset vn (Ncontact 0) {dc=0}
                                                   block
         Vsource pset vp (Pcontact 0) {dc=0}
  Solve {
          Poisson
          Coupled { Poisson Electron Hole }
         Quasistationary (
                 InitialStep=0.01 MaxStep=0.01 MinStep=1e-5
                 Goal { Parameter=vn.dc Voltage=10 } Target voltage
              ) { ACCoupled (
Frequency: 10kHz StartFrequency=10e3 EndFrequency=10e3
                 NumberOfPoints=1 Decade
                 Node(Ncontact Pcontact) Exclude(vn vp)
          ) { Poisson Electron Hole }
```

CV curves

Planar p+/n junction

P+/n junction breakdown

Assignment 1.

p+/n diode

Simulate I-V curves in reverse bias, including avalanche breakdown and in forward bias.

Parameters: junction depth (XJ) and substrate doping (N_D)

Assignment 1. Reverse bias

Parameters: junction depth (XJ) and substrate doping (N_D)

Tasks: plot the IV curves together and compare the reverse current and breakdown voltage in the different cases. How do the parameters affect the simulated characteristics?

Assignment 1. Forward bias

Parameters: substrate doping (N_D), XJ=1

Tasks: plot the IV curves together in lin-lin and log-lin scale and compare the forward current in the different operation regions. How do the parameters affect the simulated characteristics?

Assignment 2.

Perform the same simulations of Example 1.

Differences between p+/n diode and p+/n/n+ diode:

- Shape of the electric field (vertical cross section)
- Breakdown voltage
- Series resistance