

Random Planted Forest A Directly Interpretable Tree Ensemble

Meyer, J. T.⁵ Burk, L.^{1,2,3,4} Hiabu, M.⁶ Mammen, E.⁵

¹Leibniz Institute for Prevention Research and Epidemiology – BIPS

²LMU Munich ³University of Bremen

⁴Munich Center for Machine Learning (MCML)

⁵Heidelberg University ⁶University of Copenhagen

DAGStat 2025 — March 27th, 2025

• Tree-based methods like Random Forest (RF):

- Tree-based methods like Random Forest (RF):
 - Fast & flexible

Lnibniz

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? \rightarrow It depends

Lnibniz

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:

Lnibniz

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance

Lnibniz

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance
 - Quantification of main- and interaction effects

Lnibniz

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models (LMs, GAMs, ...) can provide both

Lnibniz

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models (LMs, GAMs, ...) can provide both

Lnibniz

- Tree-based methods like Random Forest (RF):
 - Fast & flexible
 - Interpretable? → It depends
- Desirable properties:
 - Meaningful feature importance
 - Quantification of main- and interaction effects
- Additive models (LMs, GAMs, ...) can provide both

→ Random Planted Forest (RPF): Additive Random Forest

 \bullet Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i

)

Libniz

- \bullet Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- \bullet Expand prediction $\hat{m}(\mathbf{x}_i)$ for Y_i into

Libniz

- \bullet Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- ullet Expand prediction $\hat{m}(\mathbf{x}_i)$ for Y_i into
 - ullet \hat{m}_0 : Average prediction ("intercept") plus...

Libniz

- \bullet Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- ullet Expand prediction $\hat{m}(\mathbf{x}_i)$ for Y_i into
 - \hat{m}_0 : Average prediction ("intercept") plus...
 - $\bullet \ \ \mbox{Terms} \ \hat{m}_S$ with feature set $S \subseteq \{1,\dots,p\}$

Libniz

- \bullet Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- ullet Expand prediction $\hat{m}(\mathbf{x}_i)$ for Y_i into
 - \hat{m}_0 : Average prediction ("intercept") plus...
 - $\bullet \ \ \mbox{Terms} \ \hat{m}_S$ with feature set $S \subseteq \{1,\dots,p\}$

Libniz

- \bullet Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- ullet Expand prediction $\hat{m}(\mathbf{x}_i)$ for Y_i into
 - \hat{m}_0 : Average prediction ("intercept") plus...
 - \bullet Terms \hat{m}_S with feature set $S\subseteq\{1,\dots,p\}$

$$\begin{split} \hat{m}(\mathbf{x}_i) = & \hat{m}_0 + \\ & \underbrace{\hat{m}_1(x_1) + \hat{m}_2(x_2) + \hat{m}_3(x_3)}_{\text{Main effect terms}} + \end{split}$$

Libniz

- \bullet Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- ullet Expand prediction $\hat{m}(\mathbf{x}_i)$ for Y_i into
 - \hat{m}_0 : Average prediction ("intercept") plus...
 - \bullet Terms \hat{m}_S with feature set $S\subseteq\{1,\dots,p\}$

$$\begin{split} \hat{m}(\mathbf{x}_i) = & \hat{m}_0 + \\ & \underbrace{\hat{m}_1(x_1) + \hat{m}_2(x_2) + \hat{m}_3(x_3)}_{\text{Main effect terms}} + \\ & \underbrace{\hat{m}_{1,2}(x_1, x_2) + \hat{m}_{1,3}(x_1, x_3) + \hat{m}_{2,3}(x_2, x_3)}_{\text{2nd order interactions}} + \end{split}$$

Lnibniz

- \bullet Regression with target $Y_i \in \mathbb{R}$, features $X_i \in \mathbb{R}^p$, instance \mathbf{x}_i
- ullet Expand prediction $\hat{m}(\mathbf{x}_i)$ for Y_i into
 - \hat{m}_0 : Average prediction ("intercept") plus...
 - Terms \hat{m}_S with feature set $S \subseteq \{1, \dots, p\}$

$$\begin{split} \hat{m}(\mathbf{x}_i) = & \hat{m}_0 + \\ & \underbrace{\hat{m}_1(x_1) + \hat{m}_2(x_2) + \hat{m}_3(x_3)}_{\text{Main effect terms}} + \\ & \underbrace{\hat{m}_{1,2}(x_1, x_2) + \hat{m}_{1,3}(x_1, x_3) + \hat{m}_{2,3}(x_2, x_3)}_{\text{2nd order interactions}} + \\ & \underbrace{\hat{m}_{1,2,3}(x_1, x_2, x_3)}_{\text{3rd order interaction}} \end{split}$$

Trees in Random Forest

Planted Trees (I)

Planted Trees (II)

8

• Ensemble of trees like RF

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained
- Tree stops after adjustable number of splits

- Ensemble of trees like RF
- Splits nodes multiple times (→ non-binary trees!)
- Nodes keep track of features involved in construction
- Degree of interaction can be constrained
- Tree stops after adjustable number of splits
- Prediction built up incrementally using residuals (cf. Gradient Boosting)

9

• Bikeshare regression dataset ¹

- Bikeshare regression dataset 1
- Target bikers: Number of bikers on a given day in 2011/2012

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$
 - $\bullet \ \mathsf{temp} \ \mathsf{normalized} \ \mathsf{temperature} \in [0,1]$

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0, 1, \dots, 23\}$
 - temp normalized temperature $\in [0, 1]$
 - workingday binary → {workingday, no workingday}

- Bikeshare regression dataset ¹
- Target bikers: Number of bikers on a given day in 2011/2012
- Focus on 3 features for example
 - hour of day $\in \{0,1,\ldots,23\}$
 - temp normalized temperature $\in [0, 1]$
 - workingday binary → {workingday, no workingday}
- ullet Average prediction: $\hat{m}_0 pprox$ 144

Main Effects

Main Effects

Main Effects

Main Effects

$$\hat{m} = \hat{m}_0 + \hat{m}_{\rm hr}({\rm hr}) + \hat{m}_{\rm temp}({\rm temp}) + \hat{m}_{\rm workingday}({\rm workingday}) + \dots$$

Hour × Working Day: "Rush Hour Effect"

11

$$\ldots + \hat{m}_{\rm hr,workingday}({\rm hr,workingday}) + \ldots$$

More 2nd Order Interactions

12

 $+ \hat{m}_{\rm temp,workingday}({\rm temp,workingday})$

More 2nd Order Interactions

$$+ \hat{m}_{\rm temp,workingday}({\rm temp,workingday})$$

$$+\hat{m}_{\rm hr,temp}({\rm hr,temp})+\dots$$

3rd Order Interaction

14

ullet Average of absolute values of terms \hat{m}_S for S of interest

$$FI_S = \frac{1}{n} \sum_{i=1}^{n} |\hat{m}_S(\mathbf{x}_i)|$$

14

ullet Average of absolute values of terms \hat{m}_S for S of interest

$$FI_S = \frac{1}{n} \sum_{i=1}^{n} |\hat{m}_S(\mathbf{x}_i)|$$

• Unlike RF Feature importance:

14

ullet Average of absolute values of terms \hat{m}_S for S of interest

$$FI_S = \frac{1}{n} \sum_{i=1}^{n} |\hat{m}_S(\mathbf{x}_i)|$$

- Unlike RF Feature importance:
 - Scores also per interaction term

14

ullet Average of absolute values of terms \hat{m}_S for S of interest

$$FI_S = \frac{1}{n} \sum_{i=1}^n |\hat{m}_S(\mathbf{x}_i)|$$

- Unlike RF Feature importance:
 - Scores also per interaction term
 - Importance scores on same scale as prediction

Feature Importance: Main Terms

15

Feature Importance: All Terms

17

Gains in interpretibility \rightarrow sacrifices in predictive performance?

17

Gains in interpretibility → sacrifices in predictive performance?

• Benchmark on 28 datasets ² comparing RPF with XGBoost & RF, incl. tuning

²OpenML-CTR23 regression benchmark suite: Fischer et al. (2023)

17

Gains in interpretibility → sacrifices in predictive performance?

- Benchmark on 28 datasets ² comparing RPF with XGBoost & RF, incl. tuning
- Additionally comparing XGBoost & RPF with constrained order of interaction to 2

²OpenML-CTR23 regression benchmark suite: Fischer et al. (2023)

17

Gains in interpretibility → sacrifices in predictive performance?

- Benchmark on 28 datasets ² comparing RPF with XGBoost & RF, incl. tuning
- Additionally comparing XGBoost & RPF with constrained order of interaction to 2

²OpenML-CTR23 regression benchmark suite: Fischer et al. (2023)

17

Gains in interpretibility → sacrifices in predictive performance?

- Benchmark on 28 datasets ² comparing RPF with XGBoost & RF, incl. tuning
- Additionally comparing XGBoost & RPF with constrained order of interaction to 2

→ Generally: RPF never best, rarely bad, usually close to XGBoost

²OpenML-CTR23 regression benchmark suite: Fischer et al. (2023)

Benchmark Results (Selected Tasks)

18

$$\{ \operatorname{RRSE} := \sqrt{\operatorname{SSE}(Y, \hat{Y}) / \operatorname{SSE}(Y, \bar{Y})} \}$$

19

Random Planted Forests = Additive Random Forests

ullet (ullet) Nicely interpretable feature importance on same scale as target

19

- (↑) Nicely interpretable feature importance on same scale as target
- (↑) Quantifies main effects and interaction terms

19

- ullet (ullet) Nicely interpretable feature importance on same scale as target
- (↑) Quantifies main effects and interaction terms
- (↑) R package available ³

³github.com/PlantedML/randomPlantedForest

19

- ullet (ullet) Nicely interpretable feature importance on same scale as target
- (↑) Quantifies main effects and interaction terms
- (↑) R package available ³
- (→) Competetive predictive performance (mostly)

³github.com/PlantedML/randomPlantedForest

19

- (↑) Nicely interpretable feature importance on same scale as target
- (↑) Quantifies main effects and interaction terms
- (↑) R package available ³
- (→) Competetive predictive performance (mostly)
- (↓) Computationally heavy for large data (Optimization WIP!)

³github.com/PlantedML/randomPlantedForest

Thank you for your attention!

www.leibniz-bips.de/en

Contact
Lukas Burk
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
burk@leibniz-bips.de

References I

21

Fischer, Sebastian Felix et al. (2023). "OpenML-CTR23 – A Curated Tabular Regression Benchmarking Suite". In: AutoML Conference 2023 (Workshop).