

$$F(s) = L\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt$$

$$f(t) = \mathcal{L}^{-1} \{ \mathbf{F}(s) \} = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma} \mathbf{F}(s) e^{st} ds$$

|             | Właściwość                                                                                                                                                                                               | σ − y∞<br>Określenie                             |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Priusciwosc |                                                                                                                                                                                                          | Omesiene                                         |  |
| 1.          | $L\left\{t^{n} f\left(t\right)\right\} = \left(-1\right)^{n} \frac{d^{n}}{ds^{n}} \left\{F\left(s\right)\right\}$ np. $L\left\{t f\left(t\right)\right\} = -\frac{d}{ds} \left\{F\left(s\right)\right\}$ | Pochodna transformaty                            |  |
| 2.          | $L\{f'(t)\} = sF(s) - f(0-)$ $L\{f''(t)\} = s^2F(s) - sf(0-) - f'(0-)$                                                                                                                                   | Transformata pochodnej (I-ej i II-ej)            |  |
| 3.          | $L\left\{\int_{0-}^{t} f(\tau)d\tau\right\} = \frac{1}{s}F(s)$                                                                                                                                           | Transformata całki oznaczonej                    |  |
| 4.          | $L\left\{\int f(t)dt\right\} = \frac{1}{s}F(s) + \frac{C}{s}$                                                                                                                                            | Transformata całki nieoznaczonej                 |  |
| 5.          | $L\left\{e^{at}f\left(t\right)\right\} = F\left(s-a\right)$                                                                                                                                              | Przesunięcie w dziedzinie zespolonej             |  |
| 6.          | $L\left\{f\left(t-t_{0}\right)\right\} = F\left(s\right)e^{-st_{0}}$                                                                                                                                     | Przesunięcie w dziedzinie czasu                  |  |
| 7.          | $L\left\{f\left(at\right)\right\} = \frac{1}{a}F\left(\frac{s}{a}\right)$                                                                                                                                | Zmiana skali                                     |  |
| 8.          | $L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\lambda) d\lambda$                                                                                                                                 | Całkowanie w dziedzinie zespolonej               |  |
| 9.          | $L\left\{f(t)*g(t)\right\} = F(s)\cdot G(s)$                                                                                                                                                             | Transformata splotu                              |  |
| 10          | $L\left\{f(t)g(t)\right\} = \frac{1}{2\pi j}F(s)*G(s)$                                                                                                                                                   | Splot zespolony                                  |  |
| 11.         | $\lim_{s \to \infty} s \mathbf{F}(s) = \lim_{t \to 0+} f(t) = f(0+);$ $\lim_{s \to 0} s \mathbf{F}(s) = \lim_{t \to \infty} f(t)$                                                                        | Twierdzenia o wartości początkowej<br>i końcowej |  |
| 12.         | $L\left\{f\left(t\right)\right\} = \frac{F_{T}\left(s\right)}{1 - e^{-sT}} \text{gdzie: } F_{T}\left(s\right) = \int_{0}^{T} f\left(t\right)e^{-st}dt$                                                   | Transformata funkcji okresowej                   |  |



|    | f(t)                                                                            | $\boldsymbol{F}(s) = \boldsymbol{L}\left\{f(t)\right\}$               |    | f(t)                                                              | $\boldsymbol{F}(s) = \boldsymbol{L}\left\{f(t)\right\}$                              |
|----|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|----|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1  | $I(t), I(t-t_0)$                                                                | $\frac{1}{s}$ , $\frac{1}{s}e^{-st_0}$                                | 11 | $e^{at}igl[m{sin}igl(\omega_0tigr)igr]\cdotm{1}igl(tigr)$         | $\frac{\omega_0}{\left(s-a\right)^2+\omega_0^2}$                                     |
| 2  | $\boldsymbol{\delta}(t), \boldsymbol{\delta}'(t), \boldsymbol{\delta}^{(n)}(t)$ | 1, s, s <sup>n</sup>                                                  | 12 | $e^{at} [cos(\omega_0 t)] I(t)$                                   | $\frac{s-a}{\left(s-a\right)^2+\omega_0^2}$                                          |
| 3  | $oldsymbol{\delta}ig(t\!-\!t_0ig)$                                              | $e^{-st_0}$                                                           | 13 | $te^{at}igl[ sin(\omega_0 t)igr] I(t)$                            | $\frac{2(s-a)\omega_0}{\left[\left(s-a\right)^2+\omega_0^2\right]^2}$                |
| 4  | $t\boldsymbol{I}(t),,t^{n}\boldsymbol{I}(t)$                                    | $\frac{1}{s^2}, \dots, \frac{n!}{s^{n+1}}$                            | 14 | $te^{at}igl[ oldsymbol{cos}igl(\omega_0tigr)igr] oldsymbol{I}(t)$ | $\frac{\left(s-a\right)^2-\omega_0^2}{\left[\left(s-a\right)^2+\omega_0^2\right]^2}$ |
| 5  | $t \Big[ oldsymbol{1} ig(t) - oldsymbol{1} ig(t - t_0ig) \Big]$                 | $\frac{1}{s^2} \left[ 1 - \left( 1 + t_0 s \right) e^{-st_0} \right]$ | 15 | $[sh(\beta t)] \cdot I(t)$                                        | $\frac{\beta}{s^2 - \beta^2}$                                                        |
| 6  | $e^{at}I(t)$                                                                    | $\frac{1}{s-a}$                                                       | 16 | $[ch(\beta t)] \cdot I(t)$                                        | $\frac{s}{s^2 - \beta^2}$                                                            |
| 7  | $te^{at} I(t)$                                                                  | $\frac{1}{\left(s-a\right)^2}$                                        | 17 | $e^{at} [sh(\beta t)] \cdot I(t)$                                 | $\frac{\beta}{\left(s-a\right)^2-\beta^2}$                                           |
| 8  | $t^n e^{at} \cdot \boldsymbol{I}(t)$                                            | $\frac{n!}{\left(s-a\right)^{n+1}}$                                   | 18 | $e^{at} [ch(\beta t)] \cdot I(t)$                                 | $\frac{s-a}{\left(s-a\right)^2-\beta^2}$                                             |
| 9  | $\left[ oldsymbol{sin} ig( \omega_0 t ig)  ight] \cdot oldsymbol{I}(t)$         | $\frac{\omega_0}{s^2 + \omega_0^2}$                                   | 19 | $te^{at} [sh(\beta t)] \cdot I(t)$                                | $\frac{2(s-a)\beta}{\left[\left(s-a\right)^2-\beta^2\right]^2}$                      |
| 10 | $\left[ oldsymbol{cos} \left( \omega_0 t  ight)  ight] \cdot oldsymbol{I}(t)$   | $\frac{s}{s^2 + \omega_0^2}$                                          | 20 | $te^{at} [\mathbf{ch}(\beta t)] \cdot \mathbf{I}(t)$              | $\frac{\left(s-a\right)^2+\beta^2}{\left[\left(s-a\right)^2-\beta^2\right]^2}$       |



## Zadanie 1.

Wyznaczyć transformatę Laplace'a następujących funkcji f(t)

a) 
$$2\delta(t-4)$$

**b**) 
$$2e^{-2t}I(t-3)$$

c) 
$$t\mathbf{1}(t-1)$$

**d**) 
$$te^{-2t} I(t-3)$$

$$\mathbf{e})(t-2)^2 \mathbf{I}(t-4)$$

f) 
$$\lceil sin(\omega_0 t) \rceil I(t-2)$$

f) 
$$\lceil sin(\omega_0 t) \rceil I(t-2)$$
 g)  $t \cdot \lceil sin(\omega_0 t) \rceil I(t-3)$  h)  $e^{4t} \lceil sin(3t) \rceil I(t-1)$ 

**h**) 
$$e^{4t} \lceil sin(3t) \rceil I(t-1)$$

## Zadanie 2.

Wyznaczyć funkcję oryginalną transformaty:

**a)** 
$$F(s) = \frac{s^2 + 1}{s^3 + 1}$$

**b**) 
$$F(s) = \frac{s^2 - 1}{s^4 + 1}$$

c) 
$$F(s) = \frac{s^2 + 2s + 2}{(s+1)^2 (s+2)(s+3)}$$

$$\mathbf{d}) \ \mathbf{F}\left(s\right) = \frac{s}{\left(s^2 + I\right)^2}$$

**e)** 
$$F(s) = \frac{s^2 e^{-3s}}{(s+2)^2}$$

**f)** 
$$F(s) = \frac{2s^2}{(s-1)(s+2)^2}$$

**g**) 
$$F(s) = \frac{s - s^2}{(s+1)^2} e^{-3s}$$

$$\mathbf{h}) \ \mathbf{F}\left(s\right) = \frac{s}{\left(s+1\right)^{3}}$$

i) 
$$F(s) = \frac{3s+2}{(s+2)^2-5}$$



## Zadanie 3.

Wykorzystując rachunek operatorowy wyznaczyć przebieg wskazanych wielkości.

a) Wyznaczyć i(t),  $u_C(t)$ .

Dane: 
$$e(t) = [e^{-t} - e^{-2t}] \cdot I(t), R = I,$$

$$L = 2$$
,  $C = 0.5$ ,  $u_C(0-) = 1$ ,  $i(0-) = 0.5$ 



Ułożyć równania: prądów oczkowych i potencjałów węzłowych.
 Uwzględnić warunki początkowe.

 $\begin{array}{c|cccc} C_1 & C_5 \\ \hline & L_2 & i_{2r4}(t) \\ \hline & R_3 & L_6 \\ \end{array}$ 

e) wyznaczyć  $u_C(t)$ , i(t); E = 1, R = 1, L = 1, C = 1



**b)** Wyznaczyć prąd  $i_0(t)$  wykorzystując twierdzenie Thevenina.

Dane:  $u_C(0-) = 1, i_L(0-) = 2$ 

$$e(t) = 2[\mathbf{1}(t) - \mathbf{1}(t - 1)], R = 1, L = 1, C = 0.5.$$



**d)** Wyznaczyć  $u_C(t)$ , i(t).

Zastosować metodę potencjałów węzłowych.

$$E = 6$$
,  $R = 2$ ,  $L = 1$ ,  $C = 1$ ;



**f**) wyznaczyć i(t) E = 1, R = 1,  $L_1 = L_2 = L = 1$ ,



Ponadto zalec się rozwiązanie zadania z listy 1 metodą operatorową, dla porównania z metodą klasyczną.



## Zadanie 4.

 $\mathbf{1}^0$  Wyznaczyć transmitancję operatorową układu . H(s)

 ${f 2^0}$  Wykorzystując transmitancję operatorową  ${f H(s)}$  wyznaczyć odpowiedź  $u_2(t)$ układów na zadane wymuszenie  $u_I(t)=e^{-\alpha t}I(t)$ 

b)

d)

f)



 $\begin{array}{c|c} R_1 \\ \hline \\ u_1(t) \\ \hline \\ C \end{array} \begin{array}{c} R_2 \\ \hline \\ U_2(t) \\ \hline \end{array}$ 





