RELATIONS, FUNCTIONS AND BINARY OPERATION

Types of relation

(1) Reflexive

A relation on set A is said to be reflexive if $a \in A \Rightarrow (a, a) \in R$

or If
$$a \in A \Rightarrow aRa$$

Let $A = \{1, 2, 3\}$ Relations are subsets of $A \times A$

$$A \times A = \{(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)\}$$

$$R_1 = \{(1,1)(2,2)(3,3)\}$$
 is reflexive

$$R_2 = \{(1,1)(2,2)(1,2)\}$$
 is not reflexive because $3 \in A$ but $(3,3) \notin R_2$

$$R_3 = \{(1,2)(2,2)(3,3)(1,2)\}$$
 is reflexive

 $R_4 = \phi$ is not reflexive

 $R_5 = A \times A$ is reflexive

Note

If n(A) = n then number of reflexive relation on $A = 2^{n^2-n}$

2. Symmetric

If
$$(a,b) \in R \Rightarrow (b,a) \in R$$

or

If $aRb \Rightarrow bRa$

Let $A = \{1, 2, 3\}$

$$R_{_1} = \left\{ \big(1,2\big)\big(2,1\big)\big(2,3\big)\big(3,2\big)\big(1,3\big)\big(3,1\big)\big(1,1\big) \right\} \text{ is symmetric }$$

$$R_2 = \{(1,2)(2,1)(2,2)\}$$
 is symmetric

$$R_3 = \{(1,2)(2,1)(2,3)(3,3)\}$$
 is not symm because $(2,3) \in R_3$ but $(3,2) \notin R_3$

 $R_{_{4}}=\varphi \ \ \text{is symmetric}$

 $R_5 = A \times A$ is symmetric

Note

- (1) If R is symmetric then $R=R^{-1}$
- (2) If n(A) = n the number of symmetric relation is $2^{\frac{n(n+1)}{2}}$
- (3) Transitive relation

If
$$\big(a,b\big)$$
 and $\big(b,c\big)\!\in\!R\Rightarrow\!\big(a,c\big)\!\in\!R$ then R is transitive

Let
$$A = \{1, 2, 3\}$$

$$R_1 = \{(1,2)(2,3)(1,3)\}$$
 is transitive

$$R_2 = \{(2,3)(3,1)\}$$
 is not transitive because $(2,1) \notin R_2$

$$R_3 = \{(1,2)\}$$
 is transitive

 $R_4 = \phi$ is transitive

$$R_5 = \{(1,1)(2,2)(3,3)\}$$
 is transitive

$$R_s = \{(1,1)(2,2)(3,3)(1,2)\}$$
 is transitive

Equivalence relation

A relation which is reflexice symmetric and transitive is called an equivalence relation

Note

If n(A)=n+1 then number of equivalence relation (number of partition on a set) can be find by using the following reccurring formula

$$P_{_{n+1}} = \sum_{_{r=0}}^{^{n}} n C_{_{r}}.P_{_{r}} \quad \text{where} \ P_{_{o}} = 1, P_{_{1}} = 1, P_{_{2}} = 2$$

Types of function

1) Into function

A function $f:A \to B$ is said to be an into function then $\, \, \operatorname{ran} \big(f \big) \subset \operatorname{codom} \, (f) \,$

2) Onto function (surjection)

If $f: A \rightarrow B$ is said to be an onto function then ran (f) = codom (f)

3) One one function (Injection)

If $f:A\to B$ is said to be a one one function then different elements in A have different images in B Or

If
$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Many one function

At least two different elements in A have same image in B

4

Bijection

A function which is one one and onto is called bijection

Inverse function

If $f:A \to B$ is a bijection then $\,f^{\scriptscriptstyle -1}\,$ exists and $\,f^{\scriptscriptstyle -1}:B \to A$

Composition of function

If $f:A\to B$ and $g:B\to C$ are two functions then $g\circ f$ $A\to C$ is called the composition of functions and is defined as $g\circ f\left(x\right)=g\left(f\left(x\right)\right)$

From the figure $f(x) = y \rightarrow (1)$

$$g(y) = z \rightarrow (2)$$

Sub (1) in (2)

$$g(f(x)) = z \Rightarrow g \circ f(x) = z$$

$$g \circ f : A \to C$$

Note

- (1) $g \circ f$ is defined only when the dom (g) = the codom (f)
- (2) $Dom(g \circ f) = Dom(f)$ and $codom(g \circ f) = codo(g)$
- (3) $g \circ f \neq f \circ g$

$$(4) \quad g \circ (f \circ h) = (g \circ f) \circ h$$

(5)
$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

(6)
$$(g \circ h \circ f)^{-1} = f^{-1} \circ h^{-1} \circ g^{-1}$$

Number of functions

(1) If n(A) = m, n(B) = n then number of functions from $A \text{ to } B = n^m$

(2) If
$$n(A) = m, n(B) = n$$
 then number of one one functions from A to $B = \begin{cases} {}^{n}P_{m} & \text{if } n \ge m \\ 0 & \text{if } n < m \end{cases}$

- (3) If n(A) = m = n(B) then number of bijections from A to B = m!
- (4) If n(A) = m, n(B) = n then number of onto functions from A to B

$$\begin{cases} \sum_{r=1}^{n} (-1)^{n-r} nC_r r^m & \text{if } m \ge n \\ 0 & \text{if } m < n \end{cases}$$

Note

$$\sum_{r=1}^{n} \left(-1\right)^{n-r} n C_{r} r^{m} = n C_{n} \left(n\right)^{m} - n_{n-1} C \left(n-1\right)^{m} + n C_{n-2} \left(n-2\right)^{m} + + n C_{1} \left(1\right)^{m}$$

Binary operation

Binary operation on a set A is a function from $A \times A$ to A

It is denoted by the symbols $*, \oplus, \otimes...$

Note

Addition and multiplication are functions from $N \times N \to N$: they are binary operations on N But substraction and division are not functions from $N \times N \to N$: they are not binary operation on N

Properties of binary operation

(1) Commutative

If a * b = b * a then * is commutative

(2) Associative

If a*(b*c)=(a*b)*c then * is associative

(3) Identity

If a * e = a = e * a, $a, e \in A$ then e is called the identity

(4) Inverse

If $a * a' = e = a' * a, a, a', e \in A$ then a' is called then inverse of a

Note

- (1) n(A) = n then number of binary operation on $A = n^{n^2}$
- (2) If n(A) = n then number of commutative binary operation on $A=n^{\frac{n(n+1)}{2}}$ Even and odd function

(1) If f(-x) = f(x) then f(x) is even function

Example

(1)
$$f(x) = x^2$$
, $(2) f(x) = |x|$

(3)
$$f(x) = \cos x$$
 (4) $f(x) = \sin^2 x$ (5) $f(x) = \cos^2 x$

The graphs of even functions are symmetrical about Y axis

(2) If f(-x) = -f(x) then f is an odd function

Example

(1)
$$f(x) = x$$
, (2) $f(x) = x^3$, (3) $f(x) = \sin x$ (4) $f(x) = \tan x$ (5) $f(x) = \sin^3 x$

The graphs of odd function are symmetrical about origin

Periodic function

If f(T+x)=f(x) then f is periodic function the least (+) ve value of T is called the fundamental period of the function

$$f(x) = \sin x, \text{ period} = 2\pi$$

$$f(x) = \cos x, \text{period} = 2\pi$$

$$f(x) = \sin^2 x$$
, period = π

$$f(x) = |\sin x| + |\cos x|$$

Period =
$$\frac{\pi}{2}$$