Unidad III: Teoría de conjuntos

Teoría de conjuntos: Russell, separación y más.

Clase 09 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Definiciones por comprensión

Si tenemos una "propiedad" P, entonces

 $\{a \mid a \text{ satisface la propiedad } P\}$

debería ser un conjunto.

Ejemplos:

- $[n \mid n]$ es un número natural par].
- \blacksquare {a | a es un conjunto con exactamente dos elementos}.

¿Qué axiomas agregamos para capturar esto?

Un poco de historia...

Georg Cantor (1845 - 1918)

Gottlob Frege (1848 - 1925)

Cantor (1874):

Da inicio a la teoría (informal) de conjuntos moderna.

Frege (1893-1903):

Sistema formal para la aritmética, basado en lógica y teoría de conjuntos.

Un poco de historia...

Bertrand Russell (1872 - 1970)

Paradoja de Russell (1901):

El sistema de Frege es inconsistente.

Paradoja de Russell

El sistema de Frege permitía definiciones por comprensión, sin **ninguna** restricción.

Para cada fórmula $\varphi(x)$, el siguiente conjunto estaba bien definido:

$$A = \{c \mid \varphi(c)\}.$$

Ejemplos:

■ La fórmula $\varphi(x) = \forall y \neg (y \in x)$ define el conjunto:

$$A = \{c \mid \forall y \neg (y \in c)\} = \{c \mid c \text{ no tiene elementos}\} = \{\emptyset\}.$$

La fórmula $\varphi_1(x) = \exists y (y \in x) \land \forall y_1 \forall y_2 ((y_1 \in x \land y_2 \in x) \rightarrow y_1 = y_2)$ define el conjunto:

$$A_1 = \{c \mid \varphi_1(c)\} = \{c \mid c \text{ tiene un solo elemento}\}.$$

■ La fórmula $\varphi_2(x) = \exists y_1 \exists y_2 (y_1 \in x \land y_2 \in x \land \neg (y_1 = y_2))$ define el conjunto:

$$A_2 = \{c \mid \varphi_2(c)\} = \{c \mid c \text{ tiene al menos dos elementos}\}.$$

Paradoja de Russell

Considere el conjunto A_1 anterior:

$$A_1 = \{c \mid c \text{ tiene un solo elemento}\} = \{\{\emptyset\}, \{\{\emptyset\}\}, \ldots\}.$$

¿Se tiene que $A_1 \in A_1$? **NO!**

Considere el conjunto A_2 anterior:

```
A_2 = \{c \mid c \text{ tiene al menos dos elementos}\} = \{\{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\{\emptyset\}\}\}\}, \dots\}.
3 Se tiene que A_2 \in A_2? SI!
```

Paradoja de Russell

Definamos el siguiente conjunto, usando $\psi(x) = \neg(x \in x)$:

$$R = \{c \mid \neg(c \in c)\} = \{c \mid c \notin c\}.$$

Tenemos que $A_1 \in R$ y $A_2 \notin R$.

¿Cuál es la contradicción?

Se debe cumplir uno de los dos casos: $R \in R$ o $R \notin R$.

¿Cuál de los dos casos se cumple?

Si $R \in R$, entonces R cumple la propiedad ψ que define a R. Esto implica que $R \notin R$. **Contradicción.**

Si $R \notin R$, entonces R no cumple la propiedad ψ que define a R. Esto implica que $R \in R$. **Contradicción.**

Axioma de separación

Debemos restringir las definiciones por comprensión.

Idea: En vez de permitir definiciones de la forma $\{c \mid \varphi(c)\}$, sólo permitiremos definiciones de la forma:

$$S = \{c \mid c \in A \land \varphi(c)\}$$

donde A es un conjunto (bien definido).

Además, la propiedad $\varphi(x)$ podrá depender de más variables, no solo x.

Las definiciones **deben** estar "protegidas" por un conjunto A.

Axioma de separación

Axioma de separación (o especificación):

Sea $\varphi(x, y_1, ..., y_k)$ una fórmula. Si $A, B_1, ..., B_k$ son conjuntos, entonces existe un conjunto S tal que:

$$S = \{c \mid c \in A \land \varphi(c, B_1, \ldots, B_k)\}.$$

Ejemplos:

Para $\varphi_2(x) = \exists y_1 \exists y_2 (y_1 \in x \land y_2 \in x \land \neg (y_1 = y_2))$ y un conjunto A, el siguiente conjunto S existe:

$$S = \{c \mid c \in A \land \varphi_2(c)\} = \{c \mid c \in A \land c \text{ tiene al menos dos elementos}\}.$$

Para $\varphi(x, y_1) = x \in y_1$ y conjuntos A, B, el siguiente conjunto S existe:

$$S = \{c \mid c \in A \land \varphi(c, B)\} = \{c \mid c \in A \land c \in B\}.$$

¿A qué corresponde S?

■ Para $\psi(x, y_1) = x \notin y_1$ y conjuntos A, B, el siguiente conjunto S existe:

$$S = \{c \mid c \in A \land \psi(c, B)\} = \{c \mid c \in A \land c \notin B\}.$$

¿A qué corresponde *S*?

Operaciones básicas

Definición:

Sean A y B conjuntos. Definimos los siguientes conjuntos:

■ Unión: $A \cup B$ contiene los elementos que están en A o en B.

$$A \cup B = \{c \mid c \in A \lor c \in B\}.$$

■ Intersección: $A \cap B$ contiene los elementos que están en A y en B.

$$A \cap B = \{c \mid c \in A \land c \in B\}.$$

■ **Diferencia:** $A \setminus B$ contiene los elementos que están en A y no en B.

$$A \setminus B = \{c \mid c \in A \land c \notin B\}.$$

Todos estos conjuntos están bien definidos en nuestra teoría. (¿por qué?)

Operaciones básicas

Ejemplos:

Considere $A = \{a, b\} \text{ y } B = \{b, \{a\}\}.$

- $A \cup B = \{a, b, \{a\}\}.$
- $A \cap B = \{b\}.$
- $A \setminus B = \{a\}.$
- $B \setminus A = \{\{a\}\}.$

Operaciones básicas: propiedades

Sean A, B y C conjuntos. Se cumple lo siguiente:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C \qquad \text{(asociatividad)}$$

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A \qquad \text{(conmutatividad)}$$

$$A \cup A = A$$

$$A \cap A = A \qquad \text{(idempotencia)}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad \text{(distributividad)}$$

$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$$

$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B) \qquad \text{(De Morgan)}$$

Ejercicio: demuestre las propiedades.

Operaciones básicas: más propiedades

Sean A y B conjuntos. Se cumple lo siguiente:

$$A \subseteq A \cup B$$
 $B \subseteq A \cup B$

$$A \cap B \subseteq A$$
 $A \cap B \subseteq B$

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

Ejercicio: demuestre las propiedades.

Operaciones generalizadas

También permitiremos uniones e intersecciones generalizadas.

- \blacksquare $\bigcup_{i=1}^{n} A_i$, donde A_1, \ldots, A_k son conjuntos.
 - $a \in \bigcup_{i=1}^{n} A_i$ si y sólo si **existe** i tal que $a \in A_i$.
- $\bigcap_{i=1}^{n} A_i$, donde A_1, \ldots, A_k son conjuntos.
 - $a \in \bigcup_{i=1}^{n} A_i$ si y sólo si **para todo** *i* se tiene $a \in A_i$.

Operaciones generalizadas

También permitiremos uniones e intersecciones generalizadas.

Ejemplo:

Sean
$$A_1 = \{a, b\}$$
, $A_2 = \{b, c, d\}$, $A_3 = \{e, d, b\}$ y $A_4 = \{b, e\}$.

$$\bigcup_{i=1}^{4} A_i = \{a, b, c, d, e\}.$$

$$\bigcap_{i=1}^4 A_i = \{b\}.$$

Conjunto potencia

Axioma del conjunto potencia:

Si A es un conjunto, entonces existe un conjunto $\mathcal{P}(A)$ cuyos elementos son todos los subconjuntos de A.

Notación: A $\mathcal{P}(A)$ le llamamos el conjunto potencia de A.

Ejemplos:

Si $A = \{a, b, c\}$, entonces:

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}.$$

■ Si $A = \{\emptyset\}$, entonces:

$$\mathcal{P}(A) = \{\emptyset, \{\emptyset\}\}.$$

Si $A = \emptyset$, entonces:

$$\mathcal{P}(A) = \{\emptyset\}.$$