```
In [1]: # import all required modules
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import yfinance as yf
      import random
      import warnings
      warnings.filterwarnings('ignore')
In [2]: # getting the list of securities under FnO section in NSE
      csv = pd.read_csv('sos_scheme.csv')
      symbol = csv['Symbol']
In [3]: data = pd.DataFrame() # creating an empty dataframe
      for i in symbol:
                       # running loop for downloading daily historical stock data of all securities from yahoo finance
         df = yf.download(f'{i}.NS',period='5y')
         df = df.rename(columns={'Adj Close':f'{i}'}) # renaming 'Adj Close' column to symbol ticker
         data[i] = df[i]
                                           # stacking columns of securities with adj close prices
                                          1 TOLT COMPTECCE
      [********* 100%************* 1 of 1 completed
      [********* 100%******** 1 of 1 completed
      [******** 100%********** 1 of 1 completed
      [********* 100%********* 1 of 1 completed
      [******** 100%********** 1 of 1 completed
      [******** 100%********** 1 of 1 completed
      [********* 100%********* 1 of 1 completed
      [******** 100%********* 1 of 1 completed
      [******** 1 of 1 completed
      [******** 100%********** 1 of 1 completed
      [******** 100%********** 1 of 1 completed
      [********** 100%********** 1 of 1 completed
      [********* 100%******** 1 of 1 completed
      [******** 100%******** 1 of 1 completed
      [******** 100%********** 1 of 1 completed
      [******* 100%********* 1 of 1 completed
      [********** 100%*********** 1 of 1 completed
      [******** 100%********** 1 of 1 completed
      [********** 100%********* 1 of 1 completed
```

Out[66]:

	AARTIIND	ABB	ABBOTINDIA	ABCAPITAL	ABFRL	ACC	ADANIENT	ADANIPORTS	ALKEM	AMBUJACEM	 TRENT	TVSMOTOR	
Date													
2018- 07-02	286.061188	1135.304688	6853.536133	129.350006	137.449997	1217.956665	66.427162	351.926178	1757.505127	177.911133	 308.102417	538.766541	109
2018- 07-03	289.538544	1127.665649	6791.241699	129.750000	139.550003	1229.673462	67.185966	351.877655	1803.816650	178.801132	 305.048492	543.610291	114
2018- 07-04	285.501434	1133.238770	6844.151367	129.050003	137.899994	1246.280151	68.102859	349.161591	1778.352417	178.890152	 307.757629	563.227295	11!
2018- 07-05	283.131714	1136.073608	6865.649902	127.349998	136.399994	1282.122681	66.964653	351.053101	1794.582886	184.630646	 305.344055	552.667969	112
2018- 07-06	286.894806	1128.338257	6868.666992	126.949997	138.850006	1267.361206	70.157959	354.787750	1789.680420	184.719666	 305.491791	558.771057	114
						•••					 	•••	
2023- 06-22	524.299988	4270.500000	22554.849609	171.649994	209.250000	1831.750000	2397.250000	745.599976	3349.399902	444.850006	 1710.699951	1326.150024	15(
2023- 06-23	502.799988	4239.700195	22659.300781	175.000000	203.949997	1766.900024	2233.550049	714.299988	3349.949951	425.799988	 1724.949951	1301.250000	149
2023- 06-26	508.100006	4285.350098	22841.150391	181.250000	208.300003	1792.300049	2295.600098	724.400024	3401.500000	432.049988	 1753.650024	1290.349976	149
2023- 06-27	507.450012	4294.500000	22707.800781	192.300003	210.899994	1788.599976	2284.449951	720.250000	3395.449951	433.850006	 1742.849976	1304.199951	149
2023- 06-30	506.000000	4387.799805	23330.800781	194.449997	214.649994	1808.900024	2366.000000	742.500000	3466.500000	435.799988	 1774.050049	1332.000000	15 ⁻

1233 rows × 186 columns

```
In [48]: stocks = random.sample(list(symbol),10) # randomly selecting 10 stocks from the list of securities under FnO section
         stocks
Out[48]: ['GLENMARK',
           'BALRAMCHIN',
          'TATACOMM',
          'HEROMOTOCO',
          'PETRONET',
          'DIVISLAB',
          'HAVELLS',
          'POWERGRID',
          'BOSCHLTD',
          'BHARTIARTL']
In [49]: class Portfolio Optimization():
             def init (self,data,stocks):
                 self.data = data
                 self.stocks = stocks
             def pct change(self):
                                                                  # calculating daily percent change of randomly chosen stocks
                 data portfolio = self.data[self.stocks]
                 return data portfolio.pct change().dropna()
             def corr(self):
                                                                  # calculating correlation of daily percentage changes among the randomly chosen stock
                 data portfolio = self.data[self.stocks]
                 return data portfolio.pct change().dropna().corr().round(2)
             def historical stock Return Pct Returns(self):
                                                                  # calculating historical annual return of randomly chosen stocks
                 data portfolio train = self.data[self.stocks][:-252]
                 return data portfolio train.pct change().dropna().mean()*252
             def historical stock covariance(self):
                                                                 # calculating covariance of daily percentage changes among the randomly chosen stocks
                 data portfolio train = self.data[self.stocks][:-252]
                 return data portfolio_train.pct_change().cov()*252
```

selecting adj close prices of randomly chosen stocks

In [50]: port train = data[stocks]

Out[67]:

	GLENMARK	BALRAMCHIN	TATACOMM	HEROMOTOCO	PETRONET	DIVISLAB	HAVELLS	POWERGRID	BOSCHLTD	BHARTIARTL
Date										
2018-07-02	566.460327	59.334854	553.352600	2848.199707	170.274185	1011.821411	508.733551	105.323036	16486.957031	330.412506
2018-07-03	574.460693	58.447865	549.475769	2875.094238	170.628174	1045.921387	518.999023	105.038467	16532.378906	332.836426
2018-07-04	582.900024	58.447865	551.811218	2884.392578	173.066833	1061.815308	526.598755	104.156258	16551.380859	329.829010
2018-07-05	568.655518	58.634598	556.341858	2923.545898	172.516190	1037.926025	528.876099	103.387894	17095.361328	326.238037
2018-07-06	568.655518	58.914700	551.717773	3033.082031	170.746185	1034.554688	533.963806	103.473274	16798.201172	325.205627
2023-06-22	627.700012	407.000000	1556.374634	2825.050049	222.850006	3543.850098	1325.400024	253.550003	18879.300781	842.799988
2023-06-23	633.000000	390.649994	1539.849976	2776.399902	218.800003	3462.949951	1284.949951	250.100006	18616.949219	854.799988
2023-06-26	645.400024	387.950012	1569.150024	2851.250000	220.350006	3534.350098	1290.400024	248.500000	18588.400391	851.950012
2023-06-27	655.700012	382.000000	1565.800049	2844.100098	220.100006	3583.300049	1285.900024	249.550003	18572.599609	864.900024
2023-06-30	678.500000	384.500000	1563.699951	2880.500000	221.649994	3623.500000	1293.250000	253.149994	19003.099609	868.799988

1233 rows × 10 columns

```
In [51]: plt.figure(figsize=(25,10))  # plotting normalized adj close prices of randomly chosen stocks
    plt.plot(port_train/port_train.iloc[0]*100)
    plt.legend(stocks,loc='upper left',fontsize=12)
    plt.ylabel('Price in Rs')
    plt.show()
```


In [52]: portfolio_train = Portfolio_Optimization(data,stocks)

```
In [53]: weight = []
         w table = pd.DataFrame(columns = list(portfolio train.historical stock covariance().columns))
         for i in range(3000):
             w = np.random.random(len(portfolio train.historical stock covariance().columns))
             w = w/(np.sum(w))
             w table.loc[i] = w
                                                 # building dataframe to store random weights of randomly chosen stocks in the portfolio
         returns of weighhts = []
         for i in range(3000):
                 returns = w table.loc[i]@portfolio train.historical stock Return Pct Returns()
                 returns of weighhts.append(returns) # calculating return of portfolios
         variance of weights = []
         for i in range(3000):
                 var = np.transpose(w table.loc[i])@portfolio train.historical stock covariance()@w table.loc[i]
                 risk = np.sqrt(var)
                 variance of weights.append(risk)
                                                      # calculating risk of portfolios
         w table["RETURNS"] = returns of weighhts
         w table["RISK"] = variance of weights
         risk free rate = 0.071
         w table['SHARPE RATIO'] = (w table['RETURNS']-risk free rate)/w table['RISK'] # calculating sharpe ratio of portfolios
         high return = w table.sort values(by=['RETURNS'],ascending=False) # sorting all portfolios on the basis of returns in descending order
         low risk = w table.sort values(by=['RISK'],ascending=True)
                                                                             # sorting all portfolios on the basis of risk in asscending order
         high_sharpe = w_table.sort_values(by=['SHARPE RATIO'],ascending=False)
                                                                                   # sorting all portfolios on the basis of sharpe ratio in descending
```

In [54]: port_amount = int(input("Please enter your portfolio amount: "))

Please enter your portfolio amount: 10000000

```
In [55]: class PnL():
             def init (self,df1,df2,port amount):
                 self.df1 = df1
                 self.df2 = df2
                 self.port amount = port amount
             def value of each security(self):
                                                         # calculating amount to funds to be invested in each randomly chosen stock
                 value of each security = self.df1.iloc[0,:-3]*self.port amount
                 return value of each security
             def buy price(self):
                                                         # calculating buy price of stocks on 23-06-2022
                 buy price = self.df2.iloc[-252]
                 return buy price
             def sell price(self):
                                                         # calculating buy price of stocks on 30-06-2023
                 sell price = self.df2.iloc[-1]
                 return sell price
             def no of shares of security(self):
                                                        # calculating number of shares to buy of each stock
                 no of shares = PnL.value of each security(self)//PnL.buy price(self)
                 return no of shares
             def pnl(self):
                 return from each security = ((self.sell price()-self.buy price())*self.no of shares of security()).round(0) # calculating absolute
                 percent return from each security = return from each security/self.value of each security()*100 # calculating percentage return of
                 total return from portfolio = np.sum(return from each security).round(0) # calculating absolute return of the portfolio
                 percentage return from portfolio = total return from portfolio/self.port amount*100 # calcultaing percentage return of the portfolio
                 PnL = pd.DataFrame()
                 PnL['return from each security'] = return from each security
                 PnL['percent return from each security'] = percent return from each security
                 print(PnL)
                 print("Absolute return from portfolio is {}".format(total_return_from_portfolio))
                 print("Percentage return from portfolio is {}%".format(percentage return from portfolio.round(2)))
```

```
In [71]: port_train.iloc[-252]
Out[71]: GLENMARK
                          374,477448
         BALRAMCHIN
                          358.444672
         TATACOMM
                          890.406921
         HEROMOTOCO
                         2541.176514
         PETRONET
                         195.537079
         DIVISLAB
                         3638.446289
         HAVELLS
                         1090.197388
         POWERGRID
                         197.046982
         BOSCHLTD
                        13588.797852
         BHARTIARTL
                          657.278564
         Name: 2022-06-23 00:00:00, dtype: float64
In [73]: portfolio test = PnL(high sharpe,port train,port amount)
In [57]: portfolio test.buy price()
Out[57]: GLENMARK
                          374.477448
         BALRAMCHIN
                          358.444672
         TATACOMM
                          890.406921
         HEROMOTOCO
                         2541.176514
                         195.537079
         PETRONET
         DIVISLAB
                         3638.446289
         HAVELLS
                         1090.197388
         POWERGRID
                         197.046982
         BOSCHLTD
                        13588.797852
         BHARTIARTL
                          657.278564
         Name: 2022-06-23 00:00:00, dtype: float64
In [58]: portfolio test.value of each security()
Out[58]: GLENMARK
                        3.654483e+05
         BALRAMCHIN
                        2.414844e+06
         TATACOMM
                        6.726296e+05
         HEROMOTOCO
                       1.003146e+05
         PETRONET
                        4.275865e+05
         DIVISLAB
                        3.187042e+06
         HAVELLS
                        1.729253e+06
         POWERGRID
                        3.819132e+05
         BOSCHLTD
                        1.167286e+05
         BHARTIARTL
                        6.042402e+05
         Name: 2558, dtype: float64
```

```
In [59]: portfolio_test.no_of_shares_of_security()
Out[59]: GLENMARK
                         975.0
         BALRAMCHIN
                        6737.0
         TATACOMM
                        755.0
         HEROMOTOCO
                          39.0
         PETRONET
                        2186.0
         DIVISLAB
                        875.0
         HAVELLS
                        1586.0
         POWERGRID
                        1938.0
         BOSCHLTD
                          8.0
         BHARTIARTL
                         919.0
         dtype: float64
In [60]: portfolio test.sell price()
Out[60]: GLENMARK
                          678.500000
         BALRAMCHIN
                          384.500000
         TATACOMM
                        1563.699951
         HEROMOTOCO
                         2880.500000
         PETRONET
                         221.649994
         DIVISLAB
                         3623.500000
         HAVELLS
                         1293.250000
         POWERGRID
                          253.149994
         BOSCHLTD
                        19003.099609
         BHARTIARTL
                          868.799988
         Name: 2023-06-30 00:00:00, dtype: float64
In [61]: portfolio test.pnl()
                      return_from_each_security
                                                percent return from each security
         GLENMARK
                                       296422.0
                                                                         81.111885
         BALRAMCHIN
                                       175535.0
                                                                          7.269000
                                       508336.0
         TATACOMM
                                                                         75.574433
         HEROMOTOCO
                                       13234.0
                                                                         13.192499
         PETRONET
                                        57083.0
                                                                         13.350047
         DIVISLAB
                                       -13078.0
                                                                         -0.410349
         HAVELLS
                                       322041.0
                                                                         18.623132
         POWERGRID
                                       108728.0
                                                                         28.469293
         BOSCHLTD
                                       43314.0
                                                                         37.106594
         BHARTIARTL
                                       194388.0
                                                                         32.170651
         Absolute return from portfolio is 1706003.0
         Percentage return from portfolio is 17.06%
```

In [62]: high_sharpe

Out[62]:

	GLENMARK	BALRAMCHIN	TATACOMM	HEROMOTOCO	PETRONET	DIVISLAB	HAVELLS	POWERGRID	BOSCHLTD	BHARTIARTL	RETURNS	RISK	SHARPE_RATIO
558	0.036545	0.241484	0.067263	0.010031	0.042759	0.318704	0.172925	0.038191	0.011673	0.060424	0.347094	0.244342	1.129950
258	0.030847	0.227704	0.202356	0.003117	0.021879	0.173076	0.106733	0.173045	0.009728	0.051514	0.321779	0.237753	1.054790
528	0.004197	0.197605	0.108270	0.002294	0.110619	0.155509	0.142216	0.170357	0.010727	0.098206	0.302869	0.220466	1.051720
980	0.006945	0.196827	0.045758	0.023376	0.095366	0.199859	0.276718	0.016639	0.004776	0.133738	0.314816	0.232971	1.046553
792	0.071203	0.222603	0.068871	0.002753	0.033058	0.197440	0.215982	0.039738	0.001646	0.146707	0.320124	0.238296	1.045440
713	0.220512	0.034446	0.062623	0.244931	0.145580	0.018716	0.088008	0.117997	0.046972	0.020215	0.101623	0.220004	0.139191
069	0.202137	0.011380	0.147616	0.172041	0.086822	0.016265	0.101240	0.052008	0.154518	0.055972	0.099671	0.225587	0.127096
498	0.174662	0.016754	0.038967	0.157804	0.217785	0.064644	0.024351	0.121210	0.145469	0.038354	0.097922	0.212038	0.126969
521	0.219453	0.014315	0.168750	0.186627	0.117303	0.010379	0.084098	0.065116	0.101470	0.032489	0.098759	0.226731	0.122431
973	0.061059	0.027523	0.179879	0.252052	0.203993	0.003338	0.044035	0.029838	0.190801	0.007482	0.095667	0.227255	0.108545

)00 rows × 13 columns

In [63]: high_return

Out[63]:

	GLENMARK	BALRAMCHIN	TATACOMM	HEROMOTOCO	PETRONET	DIVISLAB	HAVELLS	POWERGRID	BOSCHLTD	BHARTIARTL	RETURNS	RISK	SHARPE_RAT
2558	0.036545	0.241484	0.067263	0.010031	0.042759	0.318704	0.172925	0.038191	0.011673	0.060424	0.347094	0.244342	1.1299
2258	0.030847	0.227704	0.202356	0.003117	0.021879	0.173076	0.106733	0.173045	0.009728	0.051514	0.321779	0.237753	1.05479
792	0.071203	0.222603	0.068871	0.002753	0.033058	0.197440	0.215982	0.039738	0.001646	0.146707	0.320124	0.238296	1.04544
1111	0.015123	0.241507	0.196676	0.023680	0.022121	0.108107	0.015142	0.129800	0.014135	0.233708	0.315586	0.245352	0.99687
1980	0.006945	0.196827	0.045758	0.023376	0.095366	0.199859	0.276718	0.016639	0.004776	0.133738	0.314816	0.232971	1.0465
2713	0.220512	0.034446	0.062623	0.244931	0.145580	0.018716	0.088008	0.117997	0.046972	0.020215	0.101623	0.220004	0.13919
1069	0.202137	0.011380	0.147616	0.172041	0.086822	0.016265	0.101240	0.052008	0.154518	0.055972	0.099671	0.225587	0.12709
1521	0.219453	0.014315	0.168750	0.186627	0.117303	0.010379	0.084098	0.065116	0.101470	0.032489	0.098759	0.226731	0.12240
498	0.174662	0.016754	0.038967	0.157804	0.217785	0.064644	0.024351	0.121210	0.145469	0.038354	0.097922	0.212038	0.12696
2973	0.061059	0.027523	0.179879	0.252052	0.203993	0.003338	0.044035	0.029838	0.190801	0.007482	0.095667	0.227255	0.10854

3000 rows × 13 columns

In [64]: low_risk

Out[64]:

	GLENMARK	BALRAMCHIN	TATACOMM	HEROMOTOCO	PETRONET	DIVISLAB	HAVELLS	POWERGRID	BOSCHLTD	BHARTIARTL	RETURNS	RISK	SHARPE_RAT
2603	0.063170	0.009518	0.046244	0.070580	0.186930	0.135311	0.166489	0.212911	0.044030	0.064818	0.181107	0.196009	0.56174
144	0.015350	0.014916	0.081144	0.115894	0.166151	0.196786	0.119517	0.231474	0.057925	0.000843	0.192556	0.196627	0.61820
1177	0.031509	0.010956	0.023055	0.082580	0.130388	0.119953	0.124458	0.231509	0.107845	0.137747	0.177948	0.197253	0.54218
1071	0.008468	0.004279	0.053127	0.084368	0.236637	0.120421	0.084372	0.180482	0.056169	0.171678	0.177022	0.197334	0.53726
1591	0.030336	0.026986	0.021134	0.029363	0.213088	0.191949	0.196795	0.185943	0.013590	0.090817	0.217551	0.198493	0.7383 ⁻
483	0.017681	0.278471	0.040129	0.250253	0.266787	0.014610	0.022639	0.044523	0.026354	0.038554	0.228926	0.252572	0.6252
834	0.091795	0.259223	0.051287	0.052899	0.020495	0.090470	0.027586	0.014025	0.260454	0.131766	0.242286	0.253781	0.67490
218	0.158739	0.209665	0.240419	0.193204	0.019752	0.014683	0.021958	0.004580	0.096852	0.040148	0.201407	0.258007	0.50544
1020	0.062751	0.265007	0.250362	0.098906	0.033960	0.051932	0.030362	0.049650	0.114046	0.043025	0.265178	0.259630	0.74790
1085	0.238221	0.199683	0.234562	0.021022	0.044833	0.033156	0.001574	0.005089	0.208129	0.013730	0.188091	0.265974	0.44023

3000 rows × 13 columns

```
In [65]: plt.subplots(figsize=(10,10))
plt.scatter(high_sharpe['RISK'],high_sharpe['RETURNS'],marker = 'o', s=100, alpha = 0.25) # plotting risk and return of all portfolios
plt.scatter(high_sharpe.iloc[0]['RISK'],high_sharpe.iloc[0]['RETURNS'],color='g',marker='*',s=500) # identifying portfolio with max sharpe
plt.scatter(low_risk.iloc[0]['RISK'],low_risk.iloc[0]['RETURNS'],color='r',marker='*',s=500) # identifying portfolio with min risk
```

Out[65]: <matplotlib.collections.PathCollection at 0x1fa3372a4d0>

