Assignment 1 (Due Date: Friday, Sept 21, 11:59pm)

1. Let

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{array} \right)$$

- (a) Find the eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$ and their corresponding normalized eigenvectors $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3})$.
- (b) Let $\mathbf{P} = (x_1, x_2, x_3)$, a matrix formed by using the eigenvectors as columns. Find \mathbf{PDP}' where \mathbf{D} is a diagonal matrix with the eigenvalues $(\lambda_1, \lambda_2, \lambda_3)$ on its diagonal.
- (c) Find the singular value decomposition of **A**.
- 2. Let the eigenvalue-eigenvector pairs of a 2×2 symmetric matrix **A** be

$$\left(3, \left(\begin{array}{c} 1/\sqrt{2} \\ -1/\sqrt{2} \end{array}\right)\right)$$
 and $\left(5, \left(\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array}\right)\right)$

- (a) Find **A**.
- (b) Find the determinant of **A**.
- (c) Find the trace of **A**.
- 3. Using $x_3 x_9$ of the US Crime Data, compute
 - (a) the sample mean $(\overline{\mathbf{x}})$,
 - (b) the sample covariance matrix (S), and
 - (c) the sample correlation matrix (**R**).