AMENDMENT AND PRESENTATION OF CLAIMS

Please replace all prior claims in the present application with the following claims, in which claims 11 and 12 are currently amended.

1. (Previously Presented) A method for monitoring stability of a carrier frequency (ω_i) of identical transmitted signals $(s_i(t))$ of several transmitters $(S_1,...,S_i,...,S_n)$ of a single-frequency network comprising:

receiving, by a receiver device (E) positioned within the transmission range of the single-frequency network, a signal $(e_i(t))$ associated with a transmitted signal $(s_i(t))$ of a transmitter (S_i) and a reference signal $(e_0(t))$ of a reference transmitter (S_0) ; and

evaluating a phase position of the received signal $(e_i(t))$ associated with the transmitted signal $(s_i(t))$ of the transmitter (S_i) with reference to the received signal $(e_0(t))$ of the reference transmitter (S_0) .

2. (Previously Presented) A method according to claim 1, further comprising:

calculating a carrier-frequency displacement $(\Delta\omega_i)$ of a carrier frequency (ω_i) of a transmitter (S_i) relative to a reference carrier frequency (ω_0) of the reference transmitter (S_0) from a phase-displacement difference $(\Delta\Delta\Theta_i(t_{B2}-t_{B1}))$ caused by the carrier-frequency displacement $(\Delta\omega_i)$ of this transmitter between a phase displacement $(\Delta\Theta_i(t_{B2}))$ at least at one second observation time (t_{B2}) and a phase displacement $(\Delta\Theta_i(t_{B1}))$ at a first observation time (t_{B1}) of a received signal $(e_i(t))$ of this transmitter (S_i) associated with the transmitted signal $(s_i(t))$ relative to a received signal $(e_0(t))$ of the reference transmitter (S_0) associated with the transmitted signal $(s_0(t))$.

3. (Previously Presented) A method for monitoring the stability of the carrier frequency according to claim 2, wherein said calculating includes:

determining a transmission function ($H_{SFN}(f)$) of the transmission channel from the transmitters ($S_1,...,S_i,...,S_n$) to the receiver device (E),

calculating a characteristic of a complex, time-discrete, summated impulse response $(h_{SFN1}(t))$ at the first observation time (t_{B1}) and a characteristic of a complex, time-discrete, summated impulse response $(h_{SFN2}(t))$ at the second observation time (t_{B2}) of the transmission channel respectively from the transmission function $(H_{SFN}(f))$ of the transmission channel,

masking a characteristic of a complex impulse response ($h_{SFN1i}(t)$) at the first observation time (t_{B1}) and of a characteristic of a complex impulse response ($h_{SFN2i}(t)$) at the second observation time (t_{B2}) for every transmitter (S_i) of the single-frequency network respectively from the characteristic of the complex, summated impulse response ($h_{SFN1}(t)$) at the first observation time (t_{B1}) and from the characteristic of the complex, summated impulse response ($h_{SFN2}(t)$) at the second observation time (t_{B2}),

determining a phase characteristic ($arg(h_{SFN1i}(t))$) of the complex impulse response ($h_{SFN1i}(t)$) at the first observation time (t_{B1}) and of a phase characteristic ($arg(h_{SFN2i}(t))$) of the complex impulse response ($h_{SFN2}(t)$) at the second observation time (t_{B2}) for every transmitter (S_i) of the single-frequency network, and

calculating the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) between a phase displacement ($\Delta\Theta_i(t_{B2})$) at the second observation time (t_{B2}) and a phase displacement ($\Delta\Theta_i(t_{B1})$) at the first observation time (t_{B1}) by subtraction of a phase characteristic ($arg(h_{SFN1i}(t))$) of the complex impulse response ($arg(h_{SFN1i}(t))$) at the first observation time (t_{B1}) from a phase

characteristic ($arg(h_{SFN2i}(t))$) of the complex impulse response ($h_{SFN1i}(t)$) at the second observation time (t_{B2}) of the respective transmitter (S_i).

4. (Previously Presented) A method for monitoring the stability of the carrier frequency according to claim 3, further comprising:

increasing the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) by the factor $2^*\pi$ in the case of a decrease in the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) to the value $-\pi$ or below and

reducing the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) by the factor $-2*\pi$ in the case of an increase in the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) above the value π .

5. (Previously Presented) A method for monitoring the stability of the carrier frequency according to claim 3, further comprising:

determining, in the case of digital terrestrial TV, the transmission function of the transmission channel from the transmitters $(S_1,...,S_i,...,S_n)$ to the receiver device (E) from the DVB-T symbols of scattered pilot carriers of received signals $(e_i(t))$ of the transmitters $(S_1,...,S_i,...,S_n)$ modulated according to the orthogonal-frequency-division-multiplexing (OFDM) method.

6. (Previously Presented) A method for monitoring the stability of the carrier frequency according to claim 3, wherein:

said calculating the characteristic of a complex, time-discrete, summated impulse response $h_{SFN1/2}(t)$ at the discrete first observation time t_{B1} of the transmission channel is derived

from the transmission function $H_{SFN}(f)$ of the transmission channel using the Fourier transform according to the formula:

$$h_{SFN1/2}(t) = \sum_{k=0}^{N_F-1} H_{SFN}(k) * e^{j2\pi kt/N_F}$$

wherein

H_{SFN}(f)denotes the transmission function or respectively the frequency response of the transmission channel,

N_F denotes the number of sampling values for the discrete Fourier transform,

k denotes the discrete frequency values,

- t denotes the sampling times of the time-discrete, summated impulse response of the transmission channel and
- denotes the index for the observation time t_{B1} or respectively t_{B2} .
- 7. (Previously Presented) A method for monitoring the stability of the carrier frequency according to claim 6, wherein:

said calculating the phase-displacement difference ($\Delta\Delta\Theta_i(t_{B2}-t_{B1})$) for each transmitter S_i of the single-frequency network is derived according to the formula:

$$\Delta\Delta\Theta_{i}(t_{B2}-t_{B1}) = arg(h_{SFN2i}(t)) - arg(h_{SFN1i}(t))$$

observation time t_{B2} of the transmitter S_i and

wherein

i denotes the index for the transmitter S_i $arg(h_{SFN2i}(t)) \ \ denotes \ the \ phase \ characteristic \ of \ the \ complex \ impulse \ response \ h_{SFN2i}(t) \ at \ the$

 $arg(h_{SFN1i}(t))$ denotes the phase characteristic of the complex impulse response $h_{SFN1i}(t)$ at the observation time t_{B1} of the transmitter S_i .

8. (Previously Presented) A method for monitoring the stability of the carrier frequency according to claim 7, wherein:

said calculating the carrier-frequency displacement $\Delta\omega_i$ of the transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter of the single-frequency network is derived according to the formula:

$$\Delta\omega_{\rm I} = \Delta\Delta\Theta_{\rm i}(t_{\rm B2}-t_{\rm B1})/(t_{\rm B2}-t_{\rm B1})$$

wherein

i denotes the index for the transmitter S_i,

 $\Delta\Delta\Theta_i(t_{B2}-t_{B1})$ denotes the phase position difference $\Delta\Delta\Theta_i(t_{B2}-t_{B1})$ for the transmitter S_i of the single-frequency network and

t_{B1}, t_{B2} denote the observation times.

9. (Previously Presented) A method for monitoring the stability of the carrier frequency according to claim 8, further comprising performing the following steps repeatedly:

calculating the characteristic of the complex, time-discrete, summated impulse response $h_{SFNj}(t)$ and $(h_{SFN(j+1)}(t))$ at the observation times t_{Bj} and $t_{B(j+1)}$,

masking the characteristic of the complex impulse response $h_{SFNji}(t)$ and $h_{SFN(j+1)i}(t)$ at the observation times t_{Bi} and $t_{B(j+1)}$ for every transmitter S_i of the single-frequency network,

determining the phase characteristics $arg(h_{SFNji}(t) \text{ and } arg(h_{SFN(j+1)i}(t)) \text{ of the complex}$ impulse responses $h_{SFNji}(t)$ and $h_{SFN(j+1)i}(t))$ at the observation times t_{Bj} and $t_{B(j+1)}$,

calculating the phase-displacement difference $(\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj}))$ between the phase displacement $\Delta\Theta_i(t_{B(j+1)})$ at the observation time $t_{B(j+1)}$ and the phase displacement $\Delta\Theta_i(t_{Bj})$ at the observation time t_{Bj} for every transmitter S_i of the single-frequency network,

increasing the phase-displacement difference $\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$ by the factor $2^*\pi$ in the case of a decrease in the phase-displacement difference $(\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj}))$ to the value $-\pi$ or below,

reducing the phase-displacement difference $(\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj}))$ by the factor $-2*\pi$ in the case of an increase in the phase-displacement difference $\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj})$ above the value π and

calculating the carrier-frequency displacement $\Delta\omega_{ij}$ of the transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter of the single-frequency network at several observation times t_{Bj} ; and

averaging all carrier-frequency displacements $\Delta\omega_{ij}$ of every transmitter S_i relative to the carrier frequency ω_0 of the reference transmitter S_0 of the single-frequency network calculated respectively in procedural stage (S70), is implemented at the observation times t_{Bj} .

10. (Previously Presented) A method for monitoring the stability of the carrier frequency according to claim 9, wherein said averaging all carrier-frequency displacements $\Delta\omega_{ij}$ of every transmitter S_i relative to the carrier frequency ω_0 of a reference transmitter S_0 of the single-frequency network calculated in procedural stage (S70), is implemented using a recursive method.

- 11. (Currently Amended) A device for monitoring the stability of the carrier frequency (ω_i) of identical transmitted signals $s_i(t)$ of several transmitters $(S_1,...,S_i,...,S_n)$ of a single-frequency network comprising:
 - a receiver device,
- a unit for determining a transmission function $H_{SFN}(f)$ of a transmission channel of several transmitters $(S_1,...,S_i,...,S_n)$ of the single-frequency network to the receiver device disposed within the transmission range of the single-frequency network,
 - a unit for implementing an inverse Fourier transform,
- a unit for masking a <u>an</u> impulse response $(h_{SFNi}(t))$ for every transmitter (S_i) from the summated impulse response $(h_{SFN}(t))$,
- a unit for determining the phase characteristic $(arg(h_{SFNi}(t)))$ of the impulse response $(h_{SFNi}(t))$ for every transmitter (S_i) ,
- a unit for calculating the phase-displacement difference $(\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj}))$ of the phase displacement $(\Delta\Theta_i)$ of a transmitter (S_i) relative to a reference transmitter (S_0) at least at two different times $((t_{B1}, t_{Bj+1}))$ and the carrier-frequency displacement $(\Delta\omega_i)$ of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) , and
- a unit for presenting the calculated carrier-frequency displacement $(\Delta\omega_i)$ of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) of the single-frequency network.
- 12. (Currently Amended) A device for monitoring the stability of the carrier wave (ω_i) of identical transmitted signals $s_i(t)$ of several transmitters $(S_1,...,S_i,...,S_n)$ of a single-frequency network comprising:

a receiver device,

a unit for determining a transmission function $(H_{SFN}(f))$ from pilot carriers of the received signal $(e_i(t))$,

a unit for masking a <u>an</u> impulse response $(h_{SFNi}(t))$ for every transmitter (S_i) from the summated impulse response $(h_{SFN}(t))$,

a unit for determining the phase characteristic ($arg(h_{SFNi}(t))$) of the impulse response ($h_{SFNi}(t)$) for every transmitter (S_i),

a unit for calculating the phase-displacement difference $(\Delta\Delta\Theta_i(t_{B(j+1)}-t_{Bj}))$ of the phase displacement $\Delta\Theta_i$ of a transmitter (S_i) relative to a reference transmitter (S_0) at least at two different times $(t_{Bj}-t_{B(j+1)})$ and the carrier-frequency displacement $(\Delta\omega_i)$ of every transmitter relative to the carrier frequency (ω_0) of the reference transmitter (S_0) , and

a unit for presenting the calculated carrier-frequency displacement $(\Delta\omega_i)$ of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) of the single-frequency network.

13. (Previously Presented) A device for monitoring the stability of the carrier frequency according to claim 11, wherein:

the unit for presenting the calculated carrier-frequency displacement $(\Delta\omega_i)$ of every transmitter (S_i) relative to the carrier frequency (ω_0) of the reference transmitter (S_0) comprises a tabular and/or graphic display device.