	Question A1		
	Page 1/2	Marks	
a)	A strong monoprotic acid HX , is a solid at 25 °C. It is the only acidic constituent of a descaler for cafetières. – AVKALKNING FÖR KAFFEMASKINER		
	Assuming that the scale is composed of calcium carbonate, $CaCO_3(s)$, give the equation for the reaction observed when a cafetière is descaled using a solution of $\mathbf{HX}(aq)$. SCALE- KALK-AVLAGRING	2 marks	
b)	A commercial descaling product contains 91.0% by mass of this acid HX .		
	In order to determine the molar mass of this acid, 3.00 g of the descaler were dissolved in distilled water and the total volume made up to $5.00 \times 10^{-1} \text{ dm}^3$. A 20.0 cm ³ sample of this solution was titrated with sodium hydroxide solution, NaOH(aq). The pH of the solution was recorded as the volume of base, V_{b} , was added progressively.		
	The titration graph obtained, pH = $f(V_b)$, gave the following information:		
	pH = 1.25 when $V_b = 0.00 \text{ cm}^3$;		
	pH = 7.00 when V_b = 11.2 cm ³ .		
	i. Sketch the titration graph obtained.	3 marks	
	ii. Show with the help of a calculation that the initial concentration of the acid solution was 5.62×10^{-2} mol dm ⁻³ .	2 marks	
	iii. Calculate the molar mass of the acid HX .	2 marks	
	iv. Calculate the concentration of the solution of sodium hydroxide used.	2 marks	
	Further experiments were carried out to determine the percentage composition by mass of each of the elements in the acid HX . The following results were obtained:		
	H: 3.10 %, N: 14.4 %, S: 33.0%, O: 49.5 %		
	v. Determine the molecular formula of the acid HX.	3 marks	
	Given: The ionic product of water at 25 °C: $K_w = 1.00 \times 10^{-14}$		
	Molar atomic mass (in g mol ⁻¹):		
	H: 1.01; O: 16.0; N: 14.0; S: 32.1.		

Question A1		
	Page 2/2	Marks
c)	Another descaler is a pure monoprotic acid, HY , and was studied using a similar technique.	
	3.00 g of pure HY was dissolved in distilled water and the total volume made up to 5.00×10^{-1} dm ³ . A 20.0 cm ³ sample of this solution was titrated with a solution of sodium hydroxide, NaOH(aq) and the pH measured as the volume of base, V_b , was progressively added. A graph of pH = $f(V_b)$ was plotted.	
	The titration graph obtained, pH =f(V_b), showed that HY is a weak acid and gave the following information :	
	pH = 2.90 when V_b = 0.00 cm ³ ; pH at the half-equivalence point = 4.80.	
	i. Calculate the initial concentration of the solution of acid HY .	2 marks
	ii. Show by calculation that the pH at the equivalence point is 8.75, knowing that the equivalence point was reached after the addition of 20.0 cm ³ of the sodium hydroxide solution.	3 marks
	iii. State how the titration graph of a strong acid with a strong base differs to that of a weak acid with a strong base.	2 marks
d)	Each of the two acids, HX and HY , can be used to prepare a buffer solution by mixing them with another substance in aqueous solution.	
	i. Show how this can be achieved in each case.	2 marks
	ii. With the help of two relevant equations show how a buffer solution prepared using the acid HY can function as a buffer.	2 marks

	Question A1		
	Page 1/2	Marks	
a)	A strong monoprotic acid HX , is a solid at 25 °C. It is the only acidic constituent of a descaler for cafetières.avkalkning av kaffemaskin		
	Assuming that the scale is composed of calcium carbonate, $CaCO_3(s)$, give the equation for the reaction observed when a cafetière is descaled using a solution of $HX(aq)$.	2 marks	
b)	A commercial descaling product contains 91.0% by mass of this acid HX .		
	In order to determine the molar mass of this acid, 3.00 g of the descaler were dissolved in distilled water and the total volume made up to $5.00 \times 10^{-1} \text{ dm}^3$. A 20.0 cm ³ sample of this solution was titrated with sodium hydroxide solution, NaOH(aq). The pH of the solution was recorded as the volume of base, V_b , was added progressively.		
	The titration graph obtained, pH = $f(V_b)$, gave the following information:		
	pH = 1.25 when $V_b = 0.00 \text{ cm}^3$;		
	pH = 7.00 when V_b = 11.2 cm ³ .		
	vi. Sketch the titration graph obtained.	3 marks	
	vii. Show with the help of a calculation that the initial concentration of the acid solution was 5.62 x 10 ⁻² mol dm ⁻³ . Använd pH =1.25 och att stark syra protolyseras fullständigt	2 marks	
	viii. Calculate the molar mass of the acid HX .	2 marks	
	ix. Calculate the concentration of the solution of sodium hydroxide used.	2 marks	
	Further experiments were carried out to determine the percentage composition by mass of each of the elements in the acid HX . The following results were obtained:		
	H: 3.10 %, N: 14.4 %, S: 33.0%, O: 49.5 %		
	x. Determine the molecular formula of the acid HX.	3 marks	
	Given: The ionic product of water at 25 °C: $K_w = 1.00 \times 10^{-14}$		
	Molar atomic mass (in g mol ⁻¹):		
	H: 1.01; O: 16.0; N: 14.0; S: 32.1.		

Question A1		
	Page 2/2	Marks
c)	Another descaler is a pure monoprotic acid, HY , and was studied using a similar technique. 3.00 g of pure HY was dissolved in distilled water and the total volume made up to 5.00×10^{-1} dm ³ . A 20.0 cm ³ sample of this solution was titrated with a solution of sodium hydroxide, NaOH(aq) and the pH measured as the volume of base, $V_{\rm b}$, was progressively added. A graph of pH = f($V_{\rm b}$) was plotted.	
	The titration graph obtained, pH =f(V_b), showed that HY is a weak acid and gave the following information :	
	pH = 2.90 when V_b = 0.00 cm ³ ; pH at the half-equivalence point = 4.80. detta ger pka och pkb	
	iv. Calculate the initial concentration of the solution of acid HY.	2 marks
	v. Show by calculation that the pH at the equivalence point is 8.75, knowing that the equivalence point was reached after the addition of 20.0 cm³ of the sodium hydroxide solution. Obs vi behöver inte basens concentration. Vi behöver volymen 20.0 för att räkna ut koncentrationen Y vid ekvivalenspunkten. Så vi kan beräkna pOH och sen pH. Vi behöver pkB också från pkA =4.80	3 marks
	vi. State how the titration graph of a strong acid with a strong base differs to that of a weak acid with a strong base. Tänk buffert zoner	2 marks
d)	Each of the two acids, HX and HY , can be used to prepare a buffer solution by mixing them with another substance in aqueous solution.	
	ii. Show how this can be achieved in each case.	2 marks
	iii. With the help of two relevant equations show how a buffer solution prepared using the acid HY can function as a buffer.	2 marks