

Docket No.: 243905US2

COMMISSIONER FOR PATENTS ALEXANDRIA, VIRGINIA 22313

RE: Application Serial No.: 10/682,119

Applicants: Atsuo SAKAI Filing Date: October 10, 2003

For: STEERING CONTROL DEVICE

Group Art Unit: 3611

Examiner: Yeagley, Daniel S.

SIR:

Attached hereto for filing are the following papers:

## APPEAL BRIEF UNDER 37 C.F.R. § 41.37

Our online credit card payment in the amount of \$500.00 is attached covering any required fees. In the event any variance exists between the amount enclosed and the Patent Office charges for filing the above-noted documents, including any fees required under 37 C.F.R 1.136 for any necessary Extension of Time to make the filing of the attached documents timely, please charge or credit the difference to our Deposit Account No. 15-0030. Further, if these papers are not considered timely filed, then a petition is hereby made under 37 C.F.R. 1.136 for the necessary extension of time. A duplicate copy of this sheet is enclosed.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Gregory J. Maier

Registration No. 25,599

22850

22850

Customer Number

(703) 413-3000 (phone) (703) 413-2220 (fax) Robert T. Pous

Registration No. 29,099

OBLON
SPIVAK
MCCLELLAND
MAIER
&
NEUSTADT
P.C.

ATTORNEYS AT LAW

Gregory J. Maier (703) 413-3000 gmaier@oblon.com

Robert T. Pous (703) 413-3000 rpous@oblon.com



**DOCKET NO: 243905US2** 

## IN THE UNITED STATES PATENT & TRADEMARK OFFICE

IN RE APPLICATION OF

ATSUO SAKAI : EXAMINER: YEAGLEY, DANIEL S

SERIAL NO: 10/682,119

FILED: OCTOBER 10, 2003 : GROUP ART UNIT: 3611

FOR: STEERING CONTROL DEVICE

# APPEAL BRIEF UNDER 37 C.F.R. § 41.37

COMMISSIONER FOR PATENTS ALEXANDRIA, VIRGINIA 22313 SIR:

#### I. REAL PARTY IN INTEREST

The real party in interest is the assignee of record, TOYODA KOKI KABUSHIKI KAISHA of Kariya, Japan, now JTEKT.

### II. RELATED APPEALS AND INTERFERENCES

There are no related appeals or interferences.

## ·III. STATUS OF CLAIMS

Claims 1-2 and 11-14 stand rejected and are being appealed. Claims 3-10 have been 02/06/2007 JADDO1 00000037 10682119 cancelled. 01 FC:1402 500.00 OP

#### IV. STATUS OF AMENDMENTS

All amendments have been entered. It is noted that the advisory action dated October 27, 2006 indicates that the amendment filed October 5, 2006 overcomes the rejection under 35 U.S.C. § 112.

#### V. SUMMARY OF CLAIMED SUBJECT MATTER

In a conventional steering system the steered road wheels are mechanically connected to the steering wheel and so the driver receives feedback in the form of a reaction force from the steered road wheels. On the other hand, in a vehicle having an electric steering system it becomes necessary to provide a mechanism for simulating the reaction force.

It has been known to provide a reaction force to the driver in an electric steering system by taking into account the steering torque and a current command value  $I_n$  being provided to the vehicle wheel steering motor 6. Such a system is illustrated in Fig. 12 of the present specification. In this case, a position control portion 10A issues an output current  $I_n$  to the vehicle wheel steering motor 6 which steers the road wheels 9, based on a sensed steering angle  $\theta$  and a sensed vehicle wheel position  $X_a$ . The reaction force to the driver corresponds to a signal  $I_n$  provided by a reaction force control portion 5 based upon the current  $I_n$  and a torque signal.

In order to provide a virtual contact resistance force corresponding to the contact resistance conventionally felt due to a mechanical stop at the end of movement of the steering wheel shaft, the output current  $I_n$  is rapidly increased at a fixed end of movement position of the steering wheel, which also increases the reaction force current  $i_n$ . However, since the increased end of movement reaction force current  $i_n$  results from an increased steering

command current  $I_n$  which is delivered to the steering motor 6, this can result in an excessively large command value  $I_n$  being delivered to the steering motor, resulting in heat build-up or damage in the motor (page 3, lines 14-21).

According to a feature of the invention set forth in Claim 1, and referring to the non-limiting embodiments in Figs. 3 and 5, the end of movement position of the steering wheel is not fixed. Instead, a predetermined permissible range  $(-\theta_E \le \theta \le \theta_E)$  of the steering angle  $\theta$  is based on factors including the vehicle speed v. For example,  $\theta_E$  is determined at step 830 in Fig. 8 as a function of vehicle speed as shown in Fig. 9. The steering angle limits may therefore be chosen to minimize the heat build-up problem (page 14, lines 17-23).

According to a further feature of the invention set forth in Claim 11, the steering actuator imparts a steering reaction force to the steering wheel based upon *the sum of* the reaction force signal from the reaction force control means and a virtual contact resistance force signal from an end of movement reaction force generation control means. For example, the reaction force motor 4 in Figs. 3 and 5 receives both a signal i<sub>1</sub> from the reaction force control portion 5 and another signal i<sub>2</sub> from the end reaction force control portion 20 (21), which signals are summed to provide the steering reaction force (equation 1; step 850 in Fig. 8). Since i<sub>2</sub> can be increased without affecting the value of the signal to the steering motor 6, heat build-up or damage in the motor is avoided.

#### VI. GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

Claims 1, 2 and 11-14 stand finally rejected under 35 U.S.C. § 102 as being anticipated by U.S. patent 5, 247,441 (Serizawa et al).

#### VII. ARGUMENT

#### A. Claims 1-2

Serizawa et al does not provide a steering angle threshold value variation unit that dynamically changes the upper limit point  $\theta_E$  and the lower limit point  $-\theta_E$  of the permissible steering range based on a vehicle speed v.

Serizawa et al is concerned with ensuring that the vehicle operator will know when the end of movement limit of the steering wheel has been reached. Accordingly, Serizawa et al. provides that the steering reaction force is sharply increased or oscillated when such end of movement has been reached. To this end, the maximum steering angle and steering reaction force are set according to steps S11-S37 in Serizawa et al.

To determine the maximum steering angle, it is first determined at step S11 (Fig. 4b) if the steering angle command value  $\delta_{f(n)}$  is less than or equal to a "prescribed" maximum value  $\delta_{flim}$  of the steering angle (col. 6, lines 28-34). If this is determined to be the case at step S11, the present *measured* steering angle  $\theta_{H(n)}$  is substituted into  $\theta_{Hlim}$  at step S26 (col. 8, lines 14-17): "Thus the largest possible value of the steering angle can be set up" (col. 8, lines 19-20). It may therefore be appreciated that "the largest possible value of the steering angle" is the *measured* value  $\theta_{H(n)}$  when the steering command value exceeds a prescribed limit  $\delta_{flim}$ , and is not changed based upon the vehicle speed.

Claims 1 and 2 recite a steering angle threshold value variation unit that dynamically changes the upper and lower limit points of the permissible steering range based on a vehicle speed. As explained above, the maximum value of the steering command value in <u>Serizawa et al</u> is a *measured* value  $\theta_{H(n)}$  and is not changed based upon the vehicle speed. <u>Serizawa et al</u> thus fails to anticipate these claims.

The final Office Action nonetheless asserts that columns 5-6 of <u>Serizawa et al</u> teach changing the upper and lower limit points of a permissible steering range based on vehicle

speed. However, while <u>Serizawa et al.</u> also teaches determining the vehicle speed, there is no evidence that this vehicle speed information is used to change the upper and lower limit points of a permissible steering angular range. For example the coefficients  $C_0$ - $C_2$ ,  $C_C$  and  $d_1$  are described as corresponding to the vehicle speed (col. 5, lines 1-2; col. 6, lines 22-24). However these coefficients are only used in equations (3)-(6) and (14) to determine the yaw rate and ultimately the steering angle command value  $\delta_{f(n)}$  at step S10. There is no evidence that they are used to determine the "prescribed" maximum value  $\delta_{flim}$ , the measured steering angle  $\theta_{H(n)}$  or the upper and lower limit points of a permissible steering range.

Appellants further note the statement on page 4 of the final Office Action that the limit points of the permissible steering range are changed in Serizawa et al. in accordance with the vehicle speed because column 8 describes "substituting a measured value of a steering angle into a variable  $\theta_{Hlim}$  ... wherein the value is obtained using equations that contain a variable coefficient associated with the vehicle speed." However it is respectfully submitted that this statement is incorrect. The value substituted into  $\theta_{Hlim}$  is not the steering angle command value  $\delta_{f(n)}$  which "is obtained using equations that contain a variable coefficient associated with the vehicle speed." The steering angle command value  $\delta_{f(n)}$  is only the commanded steering angle. Instead, the value substituted into  $\theta_{Hlim}$  to determine the maximum steering angle is the *measured* steering angle  $\theta_{H(n)}$  (col. 8, lines 14-17), which is *measured* and is not obtained using equations that contain a variable coefficient associated with the vehicle speed (col. 4, lines 55-56). Thus it is respectfully submitted that there is no evidence that Serizawa et al. teaches a steering angle threshold value variation unit that dynamically changes the upper limit point and the lower limit point of the permissible steering range based on a vehicle speed.

#### B. Claims 11-14

There is no description in <u>Serizawa et al.</u> of a signal actuator that imparts a steering reaction force to the steering wheel based upon the *sum* of a reaction force signal from a reaction force control means and a virtual contact resistance force signal from an end of movement reaction force generation control means.

Claim 11 recites that the steering actuator imparts a steering reaction force to the steering wheel based upon the *sum* of the reaction force signal from the reaction force control means and a virtual contact resistance force signal from an end of movement reaction force generation control means. For example, the reaction force motor 4 in Figs. 3 and 5 receives signal i<sub>1</sub> from the reaction force control portion 5 and signal i<sub>2</sub> from the end reaction force control portion 20 (21), which signals are summed to provide the steering reaction force (equation 1; step 850 in Fig. 8). Since the value of i<sub>2</sub> does not affect the steering motor 6, heat build-up or damage in the motor is minimized.

There is no description in <u>Serizawa et al</u> of an end of movement reaction force generating means which generates a virtual contact resistance force signal, wherein the signal actuator imparts a steering reaction force to the steering wheel based upon the *sum* of a reaction force signal from a reaction force control means and a virtual contact resistance force signal from an end of movement reaction force generation control means. <u>Serizawa et al.</u> instead only provides that the steering reaction force is sharply increased or oscillated when such end of movement has been reached, in order to inform the vehicle operator. Therefore, when the end of movement limit is recognized, a maximum steering reaction force T<sub>lim</sub> is substituted into the steering reaction force T at step S30 so that the torque is sharply increased (col. 8, lines 26-35).

Thus while <u>Serizawa et al</u> teaches increasing the steering reaction torque at the limit of the permissible steering range, it does not suggest that this be done by imparting a steering

Application No. 10/682,119 Appeal Brief

reaction force to the steering wheel based on the sum of: (1) a reaction force signal based on a signal to a vehicle wheel steering actuator, and (2) a separate virtual contact resistance force signal. Claims 11-14 therefore also define over Serizawa et al.

Appellants therefore believe that the final rejection is improper and request that it be REVERSED.

Customer Number 22850

Tel: (703) 413-3000 Fax: (703) 413 -2220 (OSMMN 03/06) RTP/rac

Gregory J! Maier

Registration No. 25,599

Robert T. Pous

Registration No. 29,099 Attorneys of Record

#### **APPENDIX OF APPEALED CLAIMS**

Claim 1. A steering control device including a steering wheel steering mechanism having a steering actuator that imparts a steering reaction force to a steering wheel, and a vehicle wheel steering mechanism having a vehicle wheel steering actuator that drives a vehicle wheel steering shaft, comprising:

a steering angle sensor that detects a steering angle  $\theta$  of the steering wheel; and a steering change amount sensor that detects a steering change amount  $X_a$  in the vehicle wheel steering mechanism;

an end-of-movement reaction force generation unit that respectively generates, in a vicinity of an upper limit point  $\theta_E$  of the steering angle  $\theta$  and a vicinity of a lower limit point -  $\theta_E$  of the steering angle  $\theta$ , a virtual contact resistance force that inhibits the steering angle  $\theta$  from exceeding threshold values of a predetermined permissible range  $(-\theta_E \le \theta \le \theta_E)$  of the steering angle  $\theta$ , based on the steering angle  $\theta$ , the steering change amount  $X_a$  or a command value  $X_n$  for the steering change amount  $X_a$ ; and

a steering angle threshold value variation unit that dynamically changes the upper limit point  $\theta_E$  and the lower limit point  $-\theta_E$  of the permissible range  $(-\theta_E \le \theta \le \theta_E)$ , based on a vehicle speed v.

Claim 2. The steering control device according to claim 1, wherein the steering wheel steering mechanism and the vehicle wheel steering mechanism are mechanically separate.

Claim 11. A steering control device including a steering wheel steering mechanism having a steering wheel steering actuator that imparts a steering reaction force to a steering wheel, and a vehicle wheel steering mechanism having a vehicle wheel steering actuator that drives a vehicle wheel steering shaft, comprising:

a steering angle sensor that detects a steering angle  $\theta$  of the steering wheel; and a steering change amount sensor that detects a steering change amount  $X_a$  in the vehicle wheel steering mechanism;

position control means for generating a command value  $I_n$  for the vehicle wheel steering actuator based on the detected steering change amount  $X_a$  and the detected steering angle  $\theta$  of the steering wheel;

reaction force control means for generating a reaction force signal  $i_n$  to the steering wheel steering actuator based on the command value  $I_n$ ; and

an end-of-movement reaction force generation means for generating, in a vicinity of an upper limit point  $\theta_E$  of the steering angle  $\theta$  and a vicinity of a lower limit point  $\theta_E$  of the steering angle  $\theta$ , a virtual contact resistance force signal,

wherein the steering wheel steering actuator imparts a steering reaction force to the steering wheel based on the sum of the reaction force signal and the virtual contact resistance force signal.

Claim 12. The steering control device according to claim 11, wherein the virtual contact resistance force signal is based on the detected steering angle  $\theta$ .

Claim 13. The steering control device according to claim 11, wherein the virtual contact resistance force signal is based on the detected steering change amount  $X_a$ .

Claim 14. The steering control device according to claim 11, wherein the steering wheel steering mechanism and the vehicle wheel steering mechanism are mechanically separate.

Application No. 10/682,119 Appeal Brief

# **EVIDENCE APPENDIX**

None.

# RELATED PROCEEDINGS APPENDIX

There are no related proceedings.