Wiktor Murawski #58

Modelowanie matematyczne 2024 – zadanie projektowe nr 1 Rozwiązywanie układów równań różniczkowych zwyczajnych

Dany jest następujący układ równań różniczkowych zwyczajnych (URRZ):

$$\frac{\mathrm{d}y_1(t)}{\mathrm{d}t} = -\frac{14}{3}y_1(t) - \frac{2}{3}y_2(t) + x(t) \\ \frac{\mathrm{d}y_2(t)}{\mathrm{d}t} = \frac{2}{3}y_1(t) - \frac{19}{3}y_2(t) + x(t)$$

$$\frac{\mathrm{d}t}{\mathrm{d}t} = \frac{2}{3}y_1(t) - \frac{19}{3}y_2(t) + x(t)$$

$$\frac{\mathrm{d}t}{\mathrm{d}t} = \frac{2}{3}y_1(t) - \frac{19}{3}y_2(t) + x(t)$$

Zadanie 1. Wyznacz dokładne rozwiązanie URRZ, $\dot{y}_1(t)$ i $\dot{y}_2(t)$, dla zerowych warunków początkowych za pomocą procedury *dsolve* (*MATLAB Symbolic Toolbox*).

Zadanie 2. Rozwiąż URRZ za pomocą:

- procedury *ode45*
- metody zdefiniowanej wzorem $\mathbf{y}_n = \mathbf{y}_{n-1} + h\mathbf{f}\left(t_{n-1} + \frac{h}{2}, \mathbf{y}_{n-1} + \frac{h}{2}\mathbf{f}\left(t_{n-1}, \mathbf{y}_{n-1}\right)\right)$
- metody zdefiniowanej wzorem $\mathbf{y}_n = \mathbf{y}_{n-2} + h \Big[\mathbf{f} \Big(t_n, \mathbf{y}_n \Big) + \mathbf{f} \Big(t_{n-2}, \mathbf{y}_{n-2} \Big) \Big]$
- metody zdefiniowanej wzorem $\mathbf{y}_n = \mathbf{y}_{n-1} + h \sum_{k=1}^3 w_k \mathbf{f}_k$, gdzie $\mathbf{f}_k = \mathbf{f} \left(t_{n-1} + c_k h, \mathbf{y}_{n-1} + h \sum_{\kappa=1}^3 a_{k,\kappa} \mathbf{f}_\kappa \right)$, a współczynniki przyjmują wartości przedstawione w poniższej tabeli Butchera:

gdzie
$$\mathbf{y}_n = \begin{bmatrix} y_1(t_n) & y_2(t_n) \end{bmatrix}^T$$
, a funkcja $\mathbf{f}(t_n, \mathbf{y}_n)$ określona jest przez URRZ: $\frac{\mathrm{d}\mathbf{y}(t)}{\mathrm{d}t} \bigg|_{t=t_n} = \mathbf{f}(t_n, \mathbf{y}_n)$.

Zadanie 3. Zbadaj zależność dokładności rozwiązań numerycznych, uzyskanych za pomocą trzech ostatnich metod zdefiniowanych w zadaniu 2, od długości kroku całkowania $h \in [h_{\min}, h_{\max}]$. Dobierz zakres zmienności $h \in [h_{\min}, h_{\max}]$ w taki sposób, aby zaobserwować zjawisko niestabilności numerycznej dla zbyt dużego kroku h. Jako kryterium dokładności rozwiązań przyjmij zagregowane błędy względne:

$$\delta_{1}(h) = \frac{\sum_{n=1}^{N(h)} \left(\hat{y}_{1}(t_{n}, h) - \dot{y}_{1}(t_{n}) \right)^{2}}{\sum_{n=1}^{N(h)} \left(\dot{y}_{1}(t_{n}) \right)^{2}} \quad i \quad \delta_{2}(h) = \frac{\sum_{n=1}^{N(h)} \left(\hat{y}_{2}(t_{n}, h) - \dot{y}_{2}(t_{n}) \right)^{2}}{\sum_{n=1}^{N(h)} \left(\dot{y}_{2}(t_{n}) \right)^{2}}$$

gdzie $\dot{y}_1(t_n)$ i $\dot{y}_2(t_n)$ to wartości funkcji uzyskanych w zadaniu 1, a $\hat{y}_1(t_n,h)$ i $\hat{y}_2(t_n,h)$ to ich estymaty uzyskane dla kroku całkowania h. N(h) oznacza zależną od kroku całkowania liczbę punktów rozwiązania.