Computational Methods in Economics Simulations Methods

March 22, 2020

General idea

Consider a model in which the true value, θ_0 , of a parameter vector is implicitly defined as the unique solution to an equation $G(\theta)=0$ for a suitable vector-value function, G. A natural way to estimate θ_0 is to construct a sequence $\{G_n\}$ of random functions that converges to G in some sense, then find the $\widehat{\theta}_n$ that makes $G_n(\widehat{\theta}_n)$ as close to zero as possible.

Simulated Maximum Likelihood

- Models where the density involves an integral with no closed form solution
- replace the integral with a Monte Carlo integral
- Some examples
 - Random Parameters
 - Multinomial Probit

SML: Illustration

Suppose the conditional density $f(y|x,\theta)$ for an observation is intractable

$$f(y_i|x_i,\theta) = \int h(y_i|x_i,\theta,\epsilon) dg(\epsilon)$$
 (1)

Use monte-carlo methods to evaluate the density:

$$\widehat{f}(y_i|x_i,\theta) = \frac{1}{S} \sum_{s=1}^{S} h(y_i|x_i,\theta,\epsilon_{is})$$
 (2)

where $\epsilon_{iS} = \{\epsilon_{i1}, \ldots, \}$ are draws from $g(\cdot)$

Variants

Two types of estimation:

- ► Frequency simulator: construct the latent variable, and generate the outcome variable
- Sampling methods: construct the empirical probabilities from draws

Example 1: Multivariate Models

Consider J(>2) binary choices such that, for example the trivariate probit,

$$y_1 = \begin{cases} 1 \text{ if } x_1'\beta + \epsilon_1 > 0 \\ 0 \text{ if } x_1'\beta + \epsilon_1 < 0 \end{cases}$$
 (3)

$$y_2 = \begin{cases} 1 \text{ if } x_2' \gamma + \epsilon_2 > 0 \\ 0 \text{ if } x_2' \gamma + \epsilon_2 < 0 \end{cases}$$
 (4)

$$y_3 = \begin{cases} 1 \text{ if } x_3'\delta + \epsilon_3 > 0 \\ 0 \text{ if } x_3'\delta + \epsilon_3 < 0 \end{cases}$$
 (5)

$$(\epsilon_1, \epsilon_2, \epsilon_3) \sim \mathbb{N}_3 \left(0, \Sigma = \begin{pmatrix} 1 & \rho_{12} & \rho_{13} \\ \rho_{21} & 1 & \rho_{23} \\ \rho_{31} & \rho_{32} & 1 \end{pmatrix} \right)$$
 (6)

Probabilities and Likelihood

For example,

$$\begin{aligned}
\rho_{111} &= Pr(y_1 = 1, y_2 = 1, y_3 = 1) \\
&= Pr(x_1'\beta + \epsilon_1 > 0, x_2'\gamma + \epsilon_2 > 0, x_3'\delta + \epsilon_3 > 0) \\
&= Pr(x_1'\beta > -\epsilon_1, x_2'\gamma > -\epsilon_2, x_3'\delta > -\epsilon_3) \\
&= Pr(\epsilon_1 < x_1'\beta, \epsilon_2 < x_2'\gamma, \epsilon_3 < x_3'\delta) \\
&= \int_{-\infty}^{x_1'\beta} \int_{-\infty}^{x_2'\gamma} \int_{-\infty}^{x_3'\delta} \phi_3(z_0, z_1, z_2, \Sigma) dz_0 dz_1 dz_2
\end{aligned} (11)$$

The log-likelihood is given by:

$$\log \mathcal{L} = \sum_{i}^{n} \sum_{l} \sum_{k} \sum_{l} y_{ijkl} \log(p_{ijkl})$$
 (12)

Application

- ▶ Given β_0 and Σ_0
- ightharpoonup Simulate S multivariate distributions using Σ_0
- ► Construct y_{1s}^*, y_{2s}^* and y_{3s}^*
- Evaluate the empirical probabilities, as the frequency $\frac{\sum_{s} I(y_{s}^{*} > 0)}{S}$

In practice, in multivariate models, the frequency simulator is not efficient.

Evaluation

- Propose an algorithm to estimate the binary choice model (probit) using a frequency simulator.
- ▶ Redo part 7 of assignment 4 using the proposed simulator.
- Assignment 5 is available, and due on Tuesday 31st of March.

Simulated Maximum Likelihood

Method of Moments

Simulated Method of Moments

Moment estimators

Let $X_1,...,X_n$ be a sample from a distribution P_{θ} that depends on a parameter θ , ranging over some set Θ . The method of moments consists of estimating θ by the solution of a system of equations

$$\frac{1}{n}\sum_{i=1}^n f_j(X_i) = E_\theta f_j(X) \qquad j=1,\ldots,k$$

for given functions f_1, \ldots, f_k . The parameter is chosen such that the sample moments match the theoretical moments.

Method of Moments in Linear Models

Orthogonality condition in Linear Models

$$E(x(y'-x)) = 0$$
 (13)

Moment Condition

$$\frac{1}{N} \sum_{i} x_i (y_i - x'\beta) \tag{14}$$

Moment Estimator

$$\hat{\beta}_{MM} = (\sum_{i} x_i x_i')^{-1} (\sum_{i} x_i y_i)$$
 (15)

Nonlinear Model

Consider

$$Y_i = g(X_i, b_0) + u_i$$

Orthogonality Condition

$$E[X'(y-g(X,b_0))]=0$$

Moments condition

$$E_0h(Y,X,a_0)=0$$

► The function *h* is H-dimensional and the parameter *a* is of size *K*.

Formal Idea

Definition

The basic idea of generalized method of moments is to choose a value for *a* such that the sample mean is closest to zero.

$$\frac{1}{n}\sum_{i=1}^n h(Y_i,X_i,a)$$

Formal Definition

Definition

Let \mathbb{S}_n be an $(H \times H)$ symmetric positive definite matrix that may depend on the observations. The generalized method of moments (GMM) estimator associated with \mathbb{S}_n is a solution $\tilde{a}_n(\mathbb{S}_n)$ to the problem

$$min_a \left[\sum_{i=1}^n h(Y_i, X_i, a)\right]' \mathbb{S}_n \left[\sum_{i=1}^n h(Y_i, X_i, a)\right]$$

Assumptions

- H1 The variables (Y_i, X_i) are independent and identically distributed.
- H2 The expectation $E_0h(Y,X,a)$ exists and is zero when a is equal to the true value a_0 of the parameter of interest.
- H3 The matrix \mathbb{S}_n converges almost surely to a nonrandom matrix \mathbb{S}_0
 - H4 The parameter a_0 is identified from the equality constraints, i.e. $E_0h(Y,X,a)'\mathbb{S}_0E_0h(Y,X,a)=0$
 - H5 The parameter value a_0 is known to belong to a compact set \mathcal{A}
- H6 The quantity $(1/n)\sum_{i=1}^{n} h(Y_i, X_i, a)$ converges almost surely and uniformly in a to $E_0 h(Y, X, a)$
- H7 The function h(Y, X, a) is continuous in a
- H8 The matrix $\left[E_0 \frac{h(Y,X,a)}{\partial a}\right]' \mathbb{S}_0 \left[E_0 \frac{h(Y,X,a)}{\partial a'}\right]$ is nonsingular, which implies $H \geq K$.

Asymptotic Normality

Under the assumptions, we have

$$\sqrt{n}(\tilde{a}_n(\mathbb{S}_n)-a_0)\sim \mathbb{N}(0,\Sigma(\mathbb{S}_0))$$

where

$$\Sigma(\mathbb{S}_0) = \left(\left[E_0 \frac{h(Y, X, a)}{\partial a} \right]' \mathbb{S}_0 \left[E_0 \frac{h(Y, X, a)}{\partial a'} \right] \right)^{-1}$$

$$\left(\left[E_0 \frac{h(Y, X, a)}{\partial a} \right]' \mathbb{S}_0 V_0 (h(Y, X, a_0)) \mathbb{S}_0 \left[E_0 \frac{h(Y, X, a)}{\partial a'} \right] \right)^{-1}$$

$$\left(\left[E_0 \frac{h(Y, X, a)}{\partial a} \right]' \mathbb{S}_0 \left[E_0 \frac{h(Y, X, a)}{\partial a'} \right] \right)^{-1}$$

Optimal GMM

- $ightharpoonup \mathbb{S}_0$ is not known.
- ► Two-step procedure
 - Estimate

$$min_a \left[\sum_{i=1}^n h(Y_i, X_i, a) \right]' I \left[\sum_{i=1}^n h(Y_i, X_i, a) \right]$$

where I is the identity matrix, and recover \hat{a} .

Matrix of variance/covariance

$$\hat{\mathbb{S}} = \frac{1}{N} \sum_{i=1}^{n} h(Y_i, X_i, \hat{a}) h(Y_i, X_i, \hat{a})'$$

Relationship to Simulations

When models are highly nonlinear, moments conditions are not that simple.

- ► Indirect Inference
- Simulated method of moments

SMM

The basic idea of simulated estimation methods is to adjust the parameter of interest θ in order to get similar properties for the observed endogenous variables y_t and their simulated counterparts $(y_t^s(\theta))$.

- What does "similar properties" mean? This can be qualitative and quantitative.
- GMM requires a closed form for the specification of the moments. Under SMM, the moments are replaced bby an approximation based on simulations. Such an approximation is referred to as **simulator**. Simulated counterparts have to be easier to obtain.

SMM

The GMM estimator is given by:

$$\zeta = \underset{\zeta}{\operatorname{argmin}} \quad \Delta(\zeta) \Sigma(\zeta) \Delta(\zeta)'$$

Where $\Delta(\zeta)$ is the distance between the simulated and empirical moments for the specific set of moments ζ .

Inference

- ▶ In practice, most applications will set the matrix of variance/covariance to a diagonal matrix where each diagonal is equal to 1 divided by the variance of each moment. As a consequence, each moment will be weighted by the inverse of its variance.
- ► There is no closed form solution for most moment. Bootstrap is used to evaluate the variance.
- The variance of estimator has this closed form solution

$$V(\zeta) = \frac{1}{N} (\widehat{G}' \widetilde{\Sigma(\zeta)}^{-1} \widehat{G})^{-1}$$

where G is the vector of gradient of the optimum.

SMM - Finding moments

- ► Finding moments is the hardest part of this estimation process.
- Which moments matter? Depends on the question. Moment selection is usually based on the previous literature. Not the best practice.
- ► There is an old literature on efficient moment selection, but too costly to implement when model is complicated.

Indirect inference

- Indirect inference is a solution to the problem of finding moments. Sometimes researchers do not care about moments per see, but they do care about some correlations.
- ▶ For example, I estimate a model of schooling investment in general equilibrium, and what I care about is the observed correlation between ability, education, experiences and wages in the data.
- ► This idea could be captured using expected wages conditional on education, ability and experiences. However, such an undertaking will require too many moments.
- ► The idea of indirect inference in this setting is to run a regression of wages on ability, education and experience in the data and in the simulated data, and minimizes the difference between the two sets of coefficients.

Indirect inference

- Interest in a set of parameters θ such that $G(\theta) = 0$
- ► G() is unknown or extremely difficult to evaluate
- ► Find an auxiliary model that fits the statistical properties of the data
- Estimate the parameters that match best the description of the data

Details

- From the data, find $\zeta^d = arg \max_{\zeta} L(\{X\}, \zeta)$
- For a candidate parameter θ_c , evaluate the auxiliary model $\widehat{\zeta}^s(\theta_c) = \arg\max_{\zeta} L(\{X\}, \zeta)$
- ► There is a mapping $\widetilde{\beta}(\theta)$ that rationalizes the parameters. It can be recovered by simulating and averaging $\widehat{\beta}^s(\theta)$

$$\widetilde{\beta}(\theta) pprox rac{1}{H} \sum_{h}^{H} \widehat{\beta}_{h}^{s}(\theta)$$

▶ Minimize the distance $(\widehat{\beta}^d - \widetilde{\beta}(\theta))^T W(\widehat{\beta}^d - \widetilde{\beta}(\theta))$