

Code Mania 2019

Machine Learning

Module - 1: Introduction to Machine learning

- 1. What is Data Science?
- 2. Life of an Data Scientist?
- 3. Use case
- 4. Business case

Module - 2 : Statistics Basic Statistical Concepts and Measure

- 1. About Data, Statistical terminology,
- 2. Central Tendency, Variance and Spread
- 3. Basic Probability Concepts of Probability Distribution
 - o Probability basics, Bayes Theorem, Confusion Metrics
 - Probability Distribution basics
- 4. Discrete probability Distribution

- o Geometric, Bernoulli, Binomial, Poisson
- 5. Continuous Probability Distribution
 - o Exponential, Normal, t-distribution
- 6. Inferential Statistics
 - Central limit Theorem, Sampling Distributions
 - Confidence interval and Hypothesis testing.
- 7. Statistical Hypothesis testing
 - o t-test, z-test, f-test, chi-square and ANOVA
- 8. Hands-On Practical
 - Python for Statistics on Distribution.

Module - 3: Python for Data Science

- 1. Python setup
- 2. Python Basics
- 3. Python Data Structure
- 4. Programming fundamentals
- 5. Data Analysis using Python
 - Importing Data set into Jupyter
 - Introduction to Numpy
 - Introduction to pandas
 - Introduction of Matplotlib
- 6. Data Cleaning
 - Identifying missing values and imputing
 - Data Formatting
 - Binning
 - Label Encoding
 - Dummies Creation
 - Data Splitting

Module - 4: Machine Learning

- 1. Introduction to supervised and unsupervised learning
- 2. Introduction to Regression and Classification
- 3. Supervised Learning: Regression
 - Simple Linear Regression
 - Multiple linear Regression
 - Polynomial Regression
 - Support Vector Regression
 - Time Series
- 4. Hands-on Practical:

- You will be implementing each Regression algorithms in python.
- We will take a dataset implement necessary preprocessing steps, building model
- Evolution Metrics and Model Overfitting, Underfitting Concepts

Module - 5: Supervised Learning(Classification)

- 1. Logistic Regression
- 2. Decision Tree
- 3. Support Vector Machine
- 4. K-Nearest Neighboring
- 5. Naive-Bayes
- 6. Ensemble
 - Bagging and Boosting
 - Random Forest
- 7. Hands-on Practical:
 - You will be implementing each Classification algorithms in python...
 - We will take a dataset implement necessary preprocessing steps, building model
 - Evolution Metrics and Model Overfitting, Underfitting Concepts

Module - 6: Unsupervised Learning

- 1. Clustering
 - K-means Clustering
 - Hierarchical Clustering
- 2. Hands-On Practical:
 - You will be implementing each Classification algorithms in python.
 - We will take a dataset implement necessary preprocessing steps, building model
 - Evolution Metrics and Model Overfitting Underfitting Concepts

Module - 7: Rules based learning

- 1. Apriori
- 2. Collaborative filtering
- 3. Market Basket Analysis
- 4. Dimension Reduction:
 - Principal component Analysis
- 5. Hands-On Practical:

- You will be implementing each Classification algorithms in python.
- We will take a dataset implement necessary preprocessing steps, building model
- Evolution Metrics and Model Overfitting, Underfitting Concepts

Module - 8: Introduction to Data Science Experience

- 1. Setting up IBM data platform
- 2. Getting started with DSX
- 3. Getting started with Data Catalog
- 4. Getting Started with IBM Data Refinery
- 5. Organize resources in a project
 - Set up a project
 - Watson Data Platform projects
 - Project Collaborators
 - Add associated services
- 6. Prepare data
 - Add data to a project
 - Refine data
 - Ingest streaming data
- 7. Working with Jupyter Notebooks
 - o Create notebooks
 - Code and run notebooks
 - Share and publish notebooks
- 8. Machine Learning Flows
 - Creating Machine Learning flows with IBM SPSS
 - Creating Machine Learning flows with Spark MLlib
- 9. Watson Machine Learning
 - Setting up your machine learning environment
 - Building models
 - Deploying machine learning
- 10. Visualizations
 - Pixie Dust
 - Brunel visualization
 - SPSS model visualization
- 11. Predictive Analytics Algorithms
 - Classification and regression
 - Clustering
 - Forecasting
 - Survival analysis