Active Microwave Circuits

Noise Analysis in Microwave Circuits Part II

© copyright 1997-2006 R. W. Jackson

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Dependence of Noise Figure on Source Admittance

Will show
$$F = F_{min} + (R_n / G_s)I Y_s - Y_{opt}I^2$$

for any linear 2-port

 F_{min} , R_{n} , G_{opt} , B_{opt} are the <u>noise parameters</u>

Thevenin-Norton Representations of Noisy 2-Ports

e₁ , e₂ are open circuit noise voltages

+ noisy + e2 - _______

Thevenin equivalent

Thevenin-Norton equiv.

$$e_2 = -i Z_{21}$$

$$e_1 = -i Z_{11} + e$$

Solve for i, e in terms of \boldsymbol{e}_1 , \boldsymbol{e}_2

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Equivalent Noise Sources - an example

$$i_2 = i_n$$
 equate and solve for e $i_2 = g_m V_i = -g_m e$

$$i_1 = 0$$
 $i_1 = i - j\omega C_g e$ equate and solve for i

$$e = \frac{-i_n}{g_m} \qquad i = j\omega C_g e = \frac{-j\omega C_g}{g_m} i_r$$

Equivalent noise sources in terms of model noise sources

Example- continued

$$e = \frac{-i_n}{g_m} \quad i = j\omega C_g e = \frac{-j\omega C_g}{g_m} i_n$$

Write in terms of noise notation

$$\overline{\left|e\right|^2} = \frac{\overline{\left|i_n\right|^2}}{g_m^2} \qquad \overline{\left|i\right|^2} = \left(\frac{\omega C_g}{g_m}\right)^2 \overline{\left|i_n\right|^2} \qquad \overline{\left|ei^*\right|} = \left(-j\omega C_g \Big/ g_m^2 \overline{\left|\left|i_n\right|^2}\right|^2$$

Derive for yourself the correlation coefficient, C.

Note e and i are uncorrelated since they are 90° out of phase.

This results in C being imaginary and Re(C) = 0 (see lecture 9)

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

-

Thevenin-Norton Equivalent

Thevenin-Norton equivalent of a noisy 2-port

- •e and i are functions of impedances and noise sources internal to the 2-port
- •e and i are specified by $|e|^2$, $|i|^2$, e^{i}

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Calculation of Noise Temp. in terms of e and i

First create Norton equivalent of everything on the input

all sources

Norton equivalent

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Noise temperature i/t/o sources i, e

$$i_{SC} = i + i_S + eY_S$$
 i_{SC}
 Y_S
noiseless
2-port
 Y_L

Source appears "hotter" because of e & i

$$P_{av} = \frac{\left|\overline{i_{SC}}\right|^2}{4 \operatorname{Re}(Y_S)} = \frac{\left|\overline{i + i_S + eY_S}\right|^2}{4 \operatorname{Re}(Y_S)} = \kappa (T_O + T_N) \Delta f$$

noise temp. =
$$\frac{P_{av}|_{i_S=0}}{k\Delta f} = T_n = \frac{\overline{\left|i + eY_S\right|^2}}{4k\Delta f Re(Y_S)}$$

Noise Factor i/t/o e and i

It's easy to go from noise $tem\underline{p}$ to noise factor

$$F = 1 + \frac{T_n}{T_0} = 1 + \frac{|i + eY_s|^2}{4kT_0\Delta f Re(Y_s)}$$

- •Shows how F varies versus Y_s for <u>any</u> linear 2-port
- •Need $|\overline{e}|^2$, $|\overline{i}|^2$, \overline{ei}^* to specify the equation (4 numbers)
- •Form is not convenient as it stands

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

(

A More Convenient Form

Will show
$$F = F_{min} + (R_n / G_s)I Y_s - Y_{opt}I^2$$

 \boldsymbol{F}_{min} , $\boldsymbol{R}_{n},$ $\boldsymbol{G}_{opt},$ \boldsymbol{B}_{opt} are the <u>noise parameters</u>

These four numbers are derived from the four numbers, $|e|^2$, $|i|^2$, $|e|^*$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Derivation of Noise Equation

$$\begin{split} F &= 1 + \frac{\overline{\left(i + eY_{s}\right)\!\left(i^{*} + e^{*}Y_{s}^{*}\right)}}{4kT_{o}\Delta f Re(Y_{s})} \\ &= 1 + \frac{\overline{\left|i\right|^{2}} + \overline{ei^{*}} Y_{s} + \overline{e^{*}} i Y_{s}^{*} + \overline{\left|e\right|^{2}} |Y_{s}|^{2}}{4kT_{o}\Delta f Re(Y_{s})} \end{split}$$

Remember correl coef.
$$C = C_r + jC_i \equiv \frac{e^{\frac{i}{s}}}{\sqrt{\left|e\right|^2 \left|i\right|^2}} \qquad \text{Normalize admittance} \\ \tilde{Y}_S = \tilde{G}_S + j\tilde{B}_S \equiv Y_S \sqrt{\frac{\left|e\right|^2}{\left|i\right|^2}}$$

Normalize admittance

$$\tilde{Y}_{S} = \tilde{G}_{S} + j\tilde{B}_{S} = Y_{S} \sqrt{\frac{|e|^{2}}{|i|^{2}}}$$

$$F = 1 + \frac{\sqrt{|\,e\,|^2}\,\,\overline{|\,i\,|^2}}{4kT_0\Delta f}\,\frac{\tilde{G}_S^2 + \tilde{B}_S^2 + 2\,C_r\,\tilde{G}_S - 2\,C_i\,\tilde{B}_S + 1}{\tilde{G}_S}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Choosing Admittance to Minimize F

$$F = 1 + \frac{\sqrt{|e|^2 |i|^2}}{4kT_0 \Delta f} \frac{\tilde{G}_S^2 + \tilde{B}_S^2 + 2C_r \tilde{G}_S - 2C_i \tilde{B}_S + 1}{\tilde{G}_S}$$

Find minimum versus B_s in usual manner (d F/d B_s)= 0

$$\tilde{B}_{s,min} = C_i \equiv \tilde{B}_{opt}$$

Find minimum versus
$$G_s$$

$$\tilde{G}_{s,min} = \sqrt{1 - C_i^2} \equiv \tilde{G}_{opt}$$

Insert back in equation to get minimum F

$$F_{min} = 1 + \frac{\sqrt{|e|^2 |i|^2}}{2kT_0 \Delta f} \left(\sqrt{1 - C_i^2} + C_r \right)$$

Rewrite Expression for F i/t/o minimum parameters

$$\begin{split} F - F_{min} &= \frac{\sqrt{\left|e\right|^2\left|i\right|^2}}{4kT_o\Delta f} \frac{\tilde{G}_s^2 - \tilde{G}_s 2\sqrt{1 - C_i^2} + \tilde{B}_s^2 - 2C_i\tilde{B}_s + 1}{\tilde{G}_s} \\ &= \frac{\sqrt{\left|e\right|^2\left|i\right|^2}}{4k\Delta f} \frac{\left(\tilde{G}_s - \tilde{G}_{opt}\right)^2 + \left(\tilde{B}_s - \tilde{B}_{opt}\right)^2}{\tilde{G}_s} \\ \text{un-normalize} \\ \tilde{Y}_s &\equiv Y_s \sqrt{\frac{\left|e\right|^2}{\left|i\right|^2}} \qquad \tilde{Y}_{opt} \equiv Y_{opt} \sqrt{\frac{\left|e\right|^2}{\left|i\right|^2}} \\ F - F_{min} &= \frac{\left|e\right|^2}{4kT_o\Delta f} \frac{\left(G_s - G_{opt}\right)^2 + \left(B_s - B_{opt}\right)^2}{B_s} \end{split}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

$$\frac{Final\ Form}{F-F_{min}=R_{n}}\frac{\left(G_{s}-G_{opt}\right)^{2}+\left(B_{s}-B_{opt}\right)^{2}}{B_{s}}$$

Noise parameters

Noise parameters
$$F_{min} = 1 + \frac{\sqrt{|e|^2 |i|^2}}{2kT_0\Delta f} \left(\sqrt{1 - C_i^2} + C_r\right)$$

$$R_n = \frac{|e|^2}{4\kappa T_0\Delta f}$$

$$G_{opt} = \sqrt{\frac{|i|^2}{|e|^2}} \sqrt{1 - C_i^2} \quad B_{opt} = \sqrt{\frac{|i|^2}{|e|^2}} C_i$$

$$C_r + jC_i = \frac{\overline{e^i}^*}{\sqrt{|e|^2|i|^2}}$$

General Form Noise Figure of Two Port

$$F = F_{min} + R_n \frac{\left| Y_s - Y_{opt} \right|^2}{G_s}$$

 F_{min} , R_{n} , G_{opt} , B_{opt} are the <u>noise parameters</u>

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

15

Example: an OP-AMP

The noise spec. for op-amps often includes $|e|^2$, $|i|^2$. These sources are uncorrelated at low, non microwave, frequencies.

For example at 10KHz a 741 opamp has

$$|e|^{2}/\Delta f = 5x10^{-16} V^{2}/Hz$$
 $|i|^{2}/\Delta f = 3X10^{-25} A^{2}/Hz$

Using these numbers we get

$$F_{min} = 1 + \frac{\sqrt{|e|^2 |i|^2}}{2kT_0 \Delta f} \left(\sqrt{1 - C_i^2} + C_r\right) = 2.53$$

Of course this ignores the feedback normally used with op-amps

Invariants

•Adding a lossless 2-port to a noisy 2-port will not change F_{min} . (A Y_s ' can always be found to make $Y_s = Y_{opt}$)

*Adding a lossless 2-port to a noisy 2-port will not change the product ($R_{\rm n}$ X $G_{\rm opt}$).

$$(R'_n X G'_{opt}) = (R_n X G_{opt}) = N$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Invariants

The minimum noise measure, M_{min} , is invariant for any lossless embedding network (even including feedback)

(Haus & Adler, Proc. IEEE, Aug. 1958)

 $T_{\rm min}$ < $4{
m NT}_{
m O}$ (Pospieszalski, MTT Trans. Sept.1989)

Noise Figure Expression in terms of Γ

$$Y_s = Y_o \frac{1 - \Gamma_s}{1 + \Gamma_s}$$
 $Y_{opt} = Y_o \frac{1 - \Gamma_{opt}}{1 + \Gamma_{opt}}$

$$F = F_{min} + 4 r_n \frac{\left| \Gamma_S - \Gamma_{opt} \right|^2}{\left| 1 + \Gamma_{opt} \right|^2 \left(1 - \left| \Gamma_S \right|^2 \right)} \quad , r_n \equiv \frac{R_n}{Z_o}$$

Find ${\rm R_{n},\,F_{min},\,\Gamma_{opt}}$ experimentally by measuring F for 4 or more known $\Gamma_{\rm S}$

Fit equation to measurements.

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Noise Parameter Measurement

$$F_{meas} = \frac{1}{G_{av1}} + \frac{F_{dut} - 1}{G_{av1}} + \frac{F_{LNA} - 1}{G_{av1}G_{av2}}$$
 need to de-embed F_{dut} from measurement

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Interpretation of Effect of Source on Noise

To minimize noise delivered to load, $\Gamma_{\rm S}$ is adjusted so as to reflect noise through 2-port and partially cancel noise emitted from port 2

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

2

Low Noise Amplifier Design

Previously $\Gamma_{\rm S},\,\Gamma_{\rm L}$ chosen for gain and match

$$F = F_{min} + 4 r_n \frac{\left| \Gamma_S - \Gamma_{opt} \right|^2}{\left| 1 + \Gamma_{opt} \right|^2 \left(1 - \left| \Gamma_S \right|^2 \right)} \quad , r_n \equiv \frac{R_n}{Z_o}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Amplifier vs. Device: Gain and Noise Figure

For lossless matching networks

$$F_{M1} = \frac{1}{G_{avM1}} = 1$$

$$F_{M2} = \frac{1}{G_{avM2}} = 1$$

If M₁, M₂ lossless, amplifier available gain and noise figure = device available gain and noise figure

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Noise Circles

Noise equation gives noise figure resulting from $\Gamma_{\rm S}$

$$F = F_{min} + 4 r_n \frac{\left| \Gamma_S - \Gamma_{opt} \right|^2}{\left| 1 + \Gamma_{opt} \right|^2 \left(1 - \left| \Gamma_S \right|^2 \right)} \quad , r_n \equiv \frac{R_n}{Z_o}$$

The reverse problem is: Find a set of $\Gamma_{\rm S}$ that give a specified noise figure.

A locus of $\Gamma_{\rm S}$ points that all give the same noise figure form a <u>noise circle</u> in the $\Gamma_{\rm S}$ plane.

Noise Circles on the Smith Chart

center of i'th circle

$$C_{fi} = \frac{\Gamma_{opt}}{1 + N_i}$$

radius of i'th circle

$$\begin{split} r_{fi} &= \frac{1}{1+N_i} \sqrt{N_i \bigg(1 - \left|\Gamma_{opt}\right|^2\bigg) + N_i^2} \\ N_i &\equiv \frac{\left(F_i - F_{min}\right) \!\! \left|1 + \Gamma_{opt}\right|^2}{4 r_n} \end{split}$$

$$N_{i} = \frac{\left(F_{i} - F_{min}\right)\left|1 + \Gamma_{opt}\right|^{2}}{4r_{n}}$$

Derivation is similar to previous derivations that use circles in the Smith Chart

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Low Noise Amplifier Design

Previously $\Gamma_{\text{S}},\,\Gamma_{\text{L}}$ chosen for gain and match

Different choice for minimum noise

$$\Gamma_{S} = \Gamma_{opt}$$
 (minimum noise)

$$\Gamma_{L} = \left(S_{22} + \frac{S_{21}S_{12}\Gamma_{S}}{1 - S_{11}\Gamma_{S}}\right)^{*}$$
 (good output match)

input match sacrificed

Gain Versus Noise Trade

- Choosing $\Gamma_{\rm S} = \Gamma_{\rm opt}$ trades (i) gain and (ii) input match for good noise performance
- The <u>associated gain</u> of a device is the gain achieved when $\Gamma_{\rm S} = \Gamma_{\rm opt}$ and $\Gamma_{\rm L} = \Gamma_{\rm out}$ *
- Often a designer will trade a little noise performance for improved gain
- ◆ To evaluate gain-noise trades plot noise and available gain circles on Smith charts

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

2

Noise and Available Gain Circles in $\Gamma_{\rm S}$ Plane

Note associated gain

- **♦**Choosing $\Gamma_{\rm S} = \Gamma_{\rm Sm}$ gives F > 4 dB and $G_{\rm T} = G_{\rm mag} =$ 20 dB
- **♠**Choosing $\Gamma_{\rm S}$ = 0.5 < 100° gives F = 2dB and G_T = 14 dB

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Equations for Available Gain circles

$$C_{A} = \frac{g_{a} \left(S_{11} - \Delta S_{22}^{*}\right)^{*}}{1 + g_{a} \left(\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}\right)}, \quad g_{a} = \frac{G_{AV}}{\left|S_{21}\right|^{2}} \quad r_{A} = \frac{\left[1 - 2 \, K \, \left|S_{21} S_{21}\right| g_{a} + \left|S_{21} S_{21}\right|^{2} g_{a}^{2}\right]^{\frac{1}{2}}}{\left|1 + g_{a} \left(\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}\right)\right|}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

29

LNA with Potentially Unstable Device

◆Design to achieve at least 12 dB gain and < 2.5 dB noise figure

- ♠A possible realization

♦ S parameters of over-all amplifier: IS21I =12.1 dB IS11I = -1.0 dB IS22I = -42 dB F =1.84 dB

Notes on LNA example

$$\begin{array}{lll} @\ 10\ GHz & F_{min} = \ 1.12\ dB \\ S_{11} = 0.806 < -96 & S_{21} = 2.24 < 99 & \Gamma_{opt} = 0.71 < 74.0 \\ S_{12} = 0.115 < 38 & S_{22} = 0.553 < -43 & r_n = 0.458 \end{array}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Use of Source Inductance in LNA design

Find source inductance and Γ_{L} such that $\Gamma_{in} = \Gamma^{*}_{opt}$ with good gain

- •Source inductance reduces F_{\min} , but not much
- •Source inductance reduces G_{mag} (or G_{msg})
- •Goal is to get a good input match and a good noise figure

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Procedure

- ♠ Pick a trial inductance
- lacktriangle Compute a new Γ_{opt}
- Is there a Γ_L that gives $\Gamma_{in} = \Gamma_{opt}^* = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 S_{22}\Gamma_L}$
- For this Γ_{L} compute gain enough?
- ♠ If not good, increase inductance and try again

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

33

Example

	S and noise parameters of FET at 10 GHz	After adding 0.2 nH series L
S11	0.76<-87°	0.53<-76°
S21	2.2<94°	2.08<94°
S12	0.11<52°	0.13<52°
S22	0.54<-50°	0.57<-28°
F _{min}	1.5 dB	1.47 dB ←
$\Gamma_{\sf opt}$	0.50<81°	0.40<92°
R _n	0.37(50)	0.26(50)
Gmsg	13 dB	12 dB ←

Note: gain went down, noise circles spread, \mathbf{F}_{\min} stays same

Find Γ_L and check gain

$$\Gamma_{\text{in}} = S_{11} + \frac{S_{21}S_{12}\Gamma_L}{1 - S_{22}\Gamma_L} = \Gamma_{\text{opt}}^{\ *}$$

Solve for Γ_{l}

$$\Gamma_{L} = \frac{\Gamma_{\text{in}} - S_{11}}{-\Delta + S_{22}\Gamma_{\text{in}}} \Big|_{\Gamma_{\text{in}} = \Gamma_{\text{opt}}^{*}} = .40 < -92^{\circ}$$

$$\Gamma_{L} = .58 < -22.7$$

Evaluate gain

ate gain
$$G_{p} = \frac{1}{1 - |\Gamma_{in}|^{2}} |S_{21}|^{2} \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}}$$

$$= \frac{7db}{1}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

35

Final Results

 $\Gamma_{S} = .40 < 92^{\circ}$ $\Gamma_{I} = .58 < -22.7$

poor match at output

•good match at input

•good noise figure

·mediocre gain

$$|S21| = 2.22 (6.9 dB)$$

$$Fmin = 1.5 dB$$

IS11I = .004

$$\Gamma_{\rm S} = .40 < 92^{\circ}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Inductive Source Degeneration in CMOS LNA

Adding inductance simplifies matching without reducing F

Input impedance

$$V_{T} = I_{G} \frac{1}{sC_{gs}} + sL_{s}(I_{G} + g_{m}V) \qquad V = \frac{I_{G}}{sC_{gs}}$$

$$Z_{in} = \frac{V_{T}}{I_{G}} = \frac{1}{j\omega C_{gs}} + j\omega L_{s} + \underbrace{\frac{g_{m}L_{s}}{C_{gs}}}_{C_{gs}}$$

 L_s set to make $Re(Z_i)$ equal source resistance, R_s

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

CMOS Noise Model

$$\overline{\left| i_{\text{nd}} \right|^2} = 4 \kappa T \gamma g_{\text{do}} \Delta f$$

$$\overline{\left|\mathbf{v}_{ng}\right|^{2}} = 4\kappa T \delta \mathbf{r}_{g} \Delta \mathbf{f}$$

$$C = \frac{\overline{v_{\text{ng}}i_{\text{nd}}^{\star}}}{\sqrt{\left|v_{\text{ng}}\right|^{2}\left|\overline{i_{\text{nd}}}\right|^{2}}}$$

$$C = \frac{\overline{v_{ng}i_{nd}^{\star}}}{\sqrt{\left|v_{ng}\right|^{2}\left|\overline{i}_{nd}\right|^{2}}} \qquad \qquad \text{For long channel CMOS} \\ \delta \approx 4/3 \quad \gamma \approx 2/3 \quad C \approx -j(.39) \\ r_{g} \approx 1/5g_{do}$$

 g_{do} is drain source conductance at V_{ds} = $V_{\alpha s}$ - V_{T}

$$g_{do} \approx g_{m}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Noise Figure Inductor Degenerated CMOS

To simplify algebra

$$V \approx \frac{i_g}{j\omega C_{gs}}$$

$$C \approx 0$$

$$\delta \approx 1$$

$$\begin{split} F &= 1 + \frac{\left|i_{o}\right|_{v_{S}=0}^{2}}{\left|i_{o}\right|_{v_{ng},i_{nd}=0}^{2}} = 1 + \frac{r_{g}}{R_{s}} + \frac{\omega^{2}}{\omega_{T}^{2}} R_{s} \gamma g_{do} \\ &= 1 + \frac{1}{R_{s} 5 g_{do}} + \frac{\omega^{2}}{\omega_{T}^{2}} R_{s} \gamma g_{do} \end{split} \qquad \qquad \sigma_{T} \equiv \frac{g_{m}}{C_{gs}} R_{s} \gamma g_{do} \\ &= \frac{1}{R_{s} 5 g_{do}} + \frac{\sigma^{2}}{\omega_{T}^{2}} R_{s} \gamma g_{do} \\ &= \frac{1}{R_{s} 5 g_{do}} + \frac{\sigma^{2}}{\omega_{T}^{2}} R_{s} \gamma g_{do} \end{split}$$

Choosing width of device for F_{min}

$$F = 1 + \frac{1}{R_s 5 g_{do}} + \frac{\omega^2}{\omega_T^2} R_s \gamma g_{do} \qquad \qquad \omega_T \equiv \frac{g_m}{C_{gs}}$$

 $\text{For a long channel device} \qquad g_m = \frac{\partial i_d}{\partial v_{gs}} = \mu_n C_{ox} \underbrace{\overline{W}}_L \big(V_{GS} - V_T \, \big) \approx g_{do}$

$$(g_{do})_{min} = \frac{\omega_T}{\omega} \frac{1}{R_s \sqrt{5\gamma}}$$

$$F_{min} = 1 + \frac{\omega}{\omega_T} 2 \sqrt{\frac{\gamma}{5}}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

41

Example: $\omega/\omega_t = 0.25$, $R_s = 50$, $\gamma = 2$

$$\left(g_{do}\right)_{min} = \frac{\omega_T}{\omega} \frac{1}{R_s \sqrt{5\gamma}} = .025 \, S \qquad \qquad F_{min} = 1 + \frac{\omega}{\omega_T} 2 \sqrt{\frac{\gamma}{5}} \rightarrow 1.1 dB$$

For a long channel device

$$g_{do} = \mu_{n}C_{ox} \frac{W}{L} (V_{GS} - V_{T})$$
.04 m²/V-s .015 F/m² .18 uM $V_{OD} = .25 \text{ V}$

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W_{opt}}{L} V_{od}^2 = \underline{6mA}$$

Noise Models for Devices

Used to determine noise parameters for:

- · different frequency
- · different size devices

Used to diagnose device noise behavior

Noise sources not frequency dependent

Noise sources depend on channel doping, device structure Can be found by fitting to measurements or theoretically

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

FET Noise Model (Pospieszalski model)

 $\rm r_{\rm ds}$ and $\rm r_{\rm gs}$ at temperatures, $\rm T_{\rm d}$ and $\rm T_{\rm g}$

 T_d and T_g set by noise measurements at one frequency

 T_q usually near ambient, T_d is much higher (500-2000 $^{\circ}$ K)

Other resistors have a thermal noise source in series having a value $e_{rx}^2 = 4kT_ar_x\Delta f$ (T_a is ambient temp.)

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

HBT Noise Model

Each resistor has a thermal noise source in series with it having a value $|e_R|^2 = 4kTR\Delta f$

See Also Rudolph et. al. IEEE E.D. Letters Jan. 1999

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Summary

- ◆ Transforming noise parameters
- Source inductance in LNA design
- ♠ Noise models for FET, HBT

References on CAD of Noisy Circuits

"An Efficient Method for Computer Aided Analysis of Linear Amplifier Networks," H. Hillbrand and P. H. Russer, IEEE Trans. on Circuits and Systems, April 1976

Computationally Efficient Electronic-Circuit Noise Calculations," R. Rohrer, L. Nagel, R. Meyer, and L, Weber, IEEE Journal of Solid State Circuits, August 1971

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Supplemental Material

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Transforming Noise Parameters

Given the device parameters F_{min} , R_{n} , G_{opt} , B_{opt}

Find the parameters F^{a}_{min} , R^{a}_{n} , G^{a}_{opt} , B^{a}_{opt}

To find the noise parameters for the "a" circuit from the device parameters use thevenin, norton sources

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Reminder

$$F = F_{min} + (R_n / G_s)I Y_s - Y_{opt}I^2$$

The $\underline{\it noise\ parameters\ }, {\sf F}_{min}$, ${\sf R}_{n}, \, {\sf G}_{opt}, \, {\sf B}_{opt}$ can be derived from the four numbers,

$$\overline{|e|^2}, \overline{|i|^2}, \overline{ei}^*$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

40

Noise sources needed for combining noisy circuits

First go from noise parameters to equivalent sources

$$\begin{cases} F_{min} \\ R_n \\ Y_{opt} \end{cases} \Rightarrow \begin{cases} \overline{|e|^2} \\ \overline{|i|^2} \end{cases} \quad \text{where} \quad C = C_r + jC_i \equiv \frac{\overline{ei}^*}{\sqrt{\overline{|e|^2}}\sqrt{\overline{|i|^2}}}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Transformations

Sources Noise Param. Noise Param. Sources

Sources Noise Param. Noise Param. Sources
$$R_{n} = \frac{\overline{|e|^{2}}}{4KT\Delta f}$$

$$Y_{opt} = \frac{\sqrt{\overline{|i|^{2}}}}{\sqrt{\overline{|e|^{2}}}} \left[\sqrt{1 - C_{i}^{2}} + jC_{i} \right]$$

$$F_{min} = \frac{\sqrt{\overline{|i|^{2}}} \overline{|e|^{2}}}{2kT\Delta f} \left(\sqrt{1 - C_{i}^{2}} + C_{r} \right) + 1$$

$$R_{n} = \frac{\overline{|e|^{2}}}{4KT\Delta f} = 4KT\Delta fR_{n} |Y_{opt}|^{2}$$

$$C_{i} = Im[Y_{opt}]/|Y_{opt}|$$

$$C_{r} = \frac{1}{|Y_{opt}|} \left[\frac{F_{min} - 1}{2R_{n}} - Re(Y_{opt}) \right]$$

$$\begin{aligned} & \frac{\left| \mathbf{e} \right|^2}{\left| \mathbf{i} \right|^2} = 4 \mathbf{K} \mathbf{T} \Delta f \mathbf{R}_n \\ & \left| \mathbf{i} \right|^2 = 4 \mathbf{K} \mathbf{T} \Delta f \mathbf{R}_n \left| \mathbf{Y}_{opt} \right|^2 \\ & \mathbf{C}_i = \mathbf{Im} \left[\mathbf{Y}_{opt} \right] / \left| \mathbf{Y}_{opt} \right| \\ & \mathbf{C}_r = \frac{1}{\left| \mathbf{Y}_{opt} \right|} \left[\frac{\mathbf{F}_{min} - 1}{2 \mathbf{R}_n} - \mathbf{Re} \left(\mathbf{Y}_{opt} \right) \right] \end{aligned}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Where do transformations come from?

$$\begin{split} & \frac{\text{Where do transformations come from?}}{\mathsf{R}_n = \frac{|e|^2}{4\mathsf{K}\mathsf{T}\Delta\mathsf{f}}} \quad \Rightarrow \quad \frac{\overline{|e|^2} = 4\mathsf{K}\mathsf{T}\Delta\mathsf{f}\mathsf{R}_n}{} \\ & \mathsf{Y}_{opt} = \frac{\sqrt{|i|^2}}{\sqrt{|e|^2}} \Big[\sqrt{1 - \mathsf{C}_i^2} + \mathsf{j}\mathsf{C}_i \Big] \quad \Rightarrow \quad \overline{|i|^2} = \big|\mathsf{Y}_{opt}\big|^2 \overline{|e|^2} \\ & \qquad = 4\mathsf{K}\mathsf{T}\Delta\mathsf{f}\mathsf{R}_n \big|\mathsf{Y}_{opt}\big|^2 \\ & \qquad \Rightarrow \mathsf{C}_i = \sqrt{\frac{|e|^2}{|i|^2}} \, \mathsf{Im} \big[\mathsf{Y}_{opt}\big] \\ & \qquad = \mathsf{Im} \big[\mathsf{Y}_{opt}\big] \big/ \big|\mathsf{Y}_{opt}\big| \end{split}$$

Algebra for Transformation (cont.)

$$\begin{split} F_{min} = \frac{\sqrt{\left|i\right|^{2}\left|e\right|^{2}}}{2kT\Delta f} \left(\sqrt{1-C_{i}^{2}} + C_{r}\right) + 1 & \Rightarrow \quad C_{r} = \left(F_{min} - 1\right) \frac{2kT\Delta f}{\sqrt{\left|i\right|^{2}\left|e\right|^{2}}} - \sqrt{1-C_{i}^{2}} \\ & = \frac{F_{min} - 1}{2R_{n}\left|Y_{opt}\right|} - \sqrt{1-C_{i}^{2}} \\ \frac{C_{r} = \frac{1}{\left|Y_{opt}\right|} \left[\frac{F_{min} - 1}{2R_{n}} - Re\left(Y_{opt}\right)\right]}{2R_{n}} \end{split}$$

$$\sqrt{1-C_i^2} = \sqrt{1-\left(\frac{Im\!\!\left(Y_{opt}\right)}{\left|Y_{opt}\right|}\right)^2} = \frac{1}{\left|Y_{opt}\right|}\sqrt{\left|Y_{opt}\right|^2-Im\!\!\left(Y_{opt}\right)^2} = \frac{Re\!\!\left(Y_{opt}\right)}{\left|Y_{opt}\right|}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Combined Noise Sources of Shunt Connected Circuit

Norton equivalent noise sources make shunt combinations easy

Combined Noise Sources of Series Connected Circuit

Thevenin equivalents make series combinations easy

(Thevenin-Norton sources are appropriate for cascaded connections of noisy 2-ports)

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

5

Example: Effect of Series Feedback Inductance

•Given e,i convert to Thevenin sources

•sum Z matrix of FET to Z matrix of inductor

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Convert Back to Thevenin-Norton

Solve for e_a , i_a i/t/o e_1 , e_2 from last slide

 $\begin{cases}
e_{a} - i_{a}z_{11}^{a} = e_{1} \\
- i_{a}z_{11}^{a} = e_{2}
\end{cases}
\rightarrow
\begin{cases}
e_{a} = e_{1} + \frac{-e_{2}}{z_{21}^{a}}z_{11}^{a} \\
i_{a} = \frac{-e_{2}}{z_{21}^{a}}
\end{cases}
\rightarrow
\begin{cases}
e_{a} = e - iz_{11} + \frac{iz_{21}}{z_{21}^{a}}z_{11} \\
i_{a} = \frac{iz_{21}}{z_{21}^{a}}
\end{cases}$

Replace e₁, e₂ with device noise sources e, i

$$\begin{cases} e_{a} = e - iz_{11} + \frac{iz_{21}}{z_{21}^{a}} z_{11} \\ i_{a} = \frac{iz_{21}}{z_{21}^{a}} \end{cases}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Noise Transformation Matrix

$$e_{a} = e + \left[-z_{11} + \frac{z_{11}^{a}}{z_{21}^{a}} \right] i$$

$$i_{a} = \frac{z_{21}}{z_{21}^{a}} i$$

$$\begin{bmatrix} e_a \\ i_a \end{bmatrix} = \begin{bmatrix} n_{11} & n_{12} \end{bmatrix} \begin{bmatrix} e \\ n_{21} & n_{22} \end{bmatrix} \begin{bmatrix} i \end{bmatrix}$$

noise transformation matrix

$$n_{12} = -z_{11} + \frac{z_{11} + j\omega L}{z_{21} + j\omega L}$$

$$n_{21} = 0$$

$$n_{22} = \frac{z_{21}}{z_{21} + j\omega L}$$

Noise Transformation Matrix

In this example, the circuit (inductor) added was lossless.

If the feedback circuit was lossy, the transformation matrix would look like,

$$\begin{bmatrix} e_{a} \\ i_{a} \end{bmatrix} = \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} \begin{bmatrix} e \\ i \end{bmatrix} + \begin{bmatrix} n_{11}' & n_{12}' \\ n_{21}' & n_{22}' \end{bmatrix} \begin{bmatrix} e_{n} \\ i_{n} \end{bmatrix}$$

due to noise in feedback circuit

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

5

$$\begin{split} \overline{\left|e^{a}\right|^{2}} &= \overline{\left|n_{11}e + n_{12}i\right|^{2}} \quad \underline{Calculate \ Noise \ Amplitudes \ \& Correlation} \\ &= \left|n_{11}\right|^{2} \overline{\left|e\right|^{2}} + \overline{n_{11}e\left(n_{12}i\right)^{*}} + \overline{n_{12}i\left(n_{11}e\right)^{*}} + \left|n_{12}\right|^{2} \overline{\left|i\right|^{2}} \\ &= \left|n_{11}\right|^{2} \overline{\left|e\right|^{2}} + 2Re\left[n_{11}n_{12} * C\sqrt{\overline{\left|e\right|^{2}}}\sqrt{\overline{\left|i\right|^{2}}}\right] + \left|n_{12}\right|^{2} \overline{\left|i\right|^{2}} \\ \overline{\left|i^{a}\right|^{2}} &= \overline{\left|n_{21}e + n_{22}i\right|^{2}} \\ &= \left|n_{21}\right|^{2} \overline{\left|e\right|^{2}} + 2Re\left[n_{21}n_{22} * C\sqrt{\overline{\left|e\right|^{2}}}\sqrt{\overline{\left|i\right|^{2}}}\right] + \left|n_{22}\right|^{2} \overline{\left|i\right|^{2}} \\ C^{a} &= \frac{1}{\sqrt{\overline{\left|e^{a}\right|^{2}}\sqrt{\overline{\left|a^{2}\right|^{2}}}}} \overline{e^{a}i^{a}} * = \frac{1}{\sqrt{\overline{\left|e^{a}\right|^{2}}\sqrt{\overline{\left|a^{2}\right|^{2}}}} \overline{\left(n_{11}e + n_{12}i)(n_{21}e + n_{22}i)^{*}} \\ &= n_{11}n_{21} * \overline{\left|e^{a}\right|^{2}} + n_{12}n_{21} * \overline{ie^{*}} + n_{11}n_{22} * \overline{ei^{*}} + n_{12}n_{22} * \overline{\left|i\right|^{2}} \end{split}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Finally, Calculate New Noise Parameters

$$Y_{opt}^{a} = \frac{\sqrt{\left|i^{a}\right|^{2}}}{\sqrt{\left|e^{a}\right|^{2}}} \left[\sqrt{1 - \left(C_{i}^{a}\right)^{2}} + jC_{i}^{a} \right]$$

$$F_{min}^{a} = \frac{\sqrt{\left|i^{a}\right|^{2}\left|e^{a}\right|^{2}}}{2kT\Delta f} \left[\sqrt{1 - \left(C_{i}^{a}\right)^{2}} + C_{r}^{a} \right] + 1$$

$$R_{n}^{a} = \frac{\left|e^{a}\right|^{2}}{4kT\Delta f}$$

University of Massachusetts at Amherst - Active Microwave Circuits - Noise Analysis

Summary

- **♦** Start with F_{min} , R_n , G_{opt} , B_{opt} of FET **♦** Find $|e|^2$, $|i|^2$, C from formulas
- Find noise transformation matrix for circuit under study

$$\begin{cases}
e \\
i
\end{cases} \rightarrow \begin{cases}
e^a \\
i^a
\end{cases}$$

- Form $|e^{a}|^2$, $|i^a|^2$, C^a
- Plug into formulas for F^a_{min}, R^a_n, G^a_{opt} B^a_{opt}

(usually done by CAD)