Dr. Anca Grad

Winter semester 2013-2014

"Babes-Bolyai" University, Cluj-Napoca

Exercise Sheet no.10

Analysis for CS

GROUPWORK:

(G 27)

Determine all local extrema, their type (minima or maxima) and the corresponding extreme values of the following functions:

a)
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x,y,z) = x^3 - 3x + y^2 + z^2$; b) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^4 + y^4 - 4(x-y)^2$;

c)
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x, y, z) = z^2(1 + xy) + xy$; d) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^3 + 3xy^2 - 15x - 12y$.

HOMEWORK:

(H 25) (To be delivered in the next exercise-class)

Determine all local extrema, their type (minima or maxima) and the corresponding extreme values of the following functions:

a)
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x, y, z) = 2x^2 - xy + 2xz - y + y^3 + z^2$; b) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^2 + y^2(1 - x)^3$.

(H 26)

Let $f \colon \mathbb{R}^2 \to \mathbb{R}$ be the function defined in statement a) of exercise (H 23).

a) Show that f is twice partially differentiable with respect to (x, y) and (y, x) on \mathbb{R}^2 , and determine the second-order partial derivatives $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$. Observe that

$$\frac{\partial^2 f}{\partial y \partial x}(0_2) \neq \frac{\partial^2 f}{\partial x \partial y}(0_2).$$

b) Show that the functions $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$ are not continuous at 0_2 , thus $f \notin C^2(\mathbb{R}^2)$.

(H 27)

Let $M:=\{(x,y)\in\mathbb{R}^2\mid x+y>0\}$ and let $f\colon M\to\mathbb{R}$ be defined by $f(x,y)=\frac{x^2+y^2}{x+y}$. Show that $x\frac{\partial f}{\partial x}(x,y)+y\frac{\partial f}{\partial y}(x,y)=f(x,y), \forall \ (x,y)\in M.$