${\it UdeSA}$ - Fundamentos de Probabilidad y Estadística Adicionales Python

- 1. Simular N variables aleatorias independientes con distribución exponencial de parámetro $\lambda=2$ para N=100,200,400,600,800. Calcular los intervalos de confianza del 90%, 95% y 99% para μ con varianza desconocida. Graficar los intervalos para cada confianza, en función de N.
- 2. Simular 400 variables aleatorias independientes con distribución exponencial de parámetro $\lambda=2$. Considerando la muestra calcular el intervalo de confianza del 95% para μ asumiendo varianza desconocida. Volver a hacer esta simulación y este intervalo 100 veces. Para cada simulación fijarse si el verdadero valor de μ está o no en el intervalo, mostrar esta información con algún gráfico.
- 3. Simular N (con N=100,200,300,400) v.a.i.i.d. con distribución Poisson de parámetro $\lambda=1/2$. Para cada valor de N hacer los histogramas de frecuencias relativas sabiendo que la distribución es discreta y conociendo su rango. ¿Importa el ancho de banda?
- 4. Simular N (con N = 100, 200, 300, 400) v.a.i.i.d. con distribución Uniforme en el intervalo [2, 5]. Para cada valor de N hacer los histogramas de probabilidad con anchos de banda 2, 1 y 0.5.
- 5. Simular N=400 v.a.i.i.d. con distribución normal $\mu=2$, $\sigma^2=1/2$ y N v.a.i.i.d. con distribución normal $\mu=-1$ y $\sigma^2=1/4$. Considerar los datos que vienen de sumar lugar a lugar cada una de estas simulaciones. De estos nuevos datos, calcular la media y la varianza muestral. Interpretar. Graficar el histograma de probabilidad con ancho de banda 0.5, 1 y 4. ¿Qué observa?
- 6. Simular 20 variables aleatorias independientes llamadas X_i , $i=1,2,\ldots,20$ cada una con distribución normal de parámetros $\mu_i=i$ y $\sigma^2=\frac{1}{i},$ $i=1,2,\ldots,20$. Sean $U=\sum_{i=1}^{20}X_i$ y $Z=\frac{U-E(U)}{\sqrt{Var(U)}}$. Volver a realizar este procedimiento de manera independiente para obtener 100 muestras de la variable aleatoria Z. Utilizando la muestra de Z graficar el histograma de probabilidad. Hint: Recordar la fórmula para la esperanza y la varianza de suma de normales, la cual está en la clase de distribuciones especiales.
- 7. Simular N=200 v.a.i.i.d. una con distribución normal de parámetros $\mu=2$ y $\sigma^2=3$. Usar estos datos para calcular un intervalo de confianza de nivel 90%, 95% y 99% para la varianza. ¿Cuál intervalo es mas grande y cual mas chico? ¿A qué se debe esto?.