Summary of: Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces

Key findings:

- 1. **Total and Viable Microbial Communities**: **Total Microbial Load**: The cultivable bacterial and fungal populations ranged from 10^4 to 10^9 CFU/m^2, depending on location. **Viable Microbial Load**: The average number of viable bacteria and fungi ranged from 10^4 to 10^9 CFU/m^2.
- 2. **Temporal Distribution**: **Temporal Changes**: The bacterial load fluctuated across locations, but no significant differences were observed between flights. **Temporal Changes**: The fungal load fluctuated across locations, but no significant differences were observed between flights.
- 3. **Spatial Distribution**: **Spatial Changes**: The bacterial load varied across locations, but no significant differences were observed between flights. **Spatial Changes**: The fungal load varied across locations, but no significant differences were observed between flights.
- 4. **Community Composition**: **Bacterial Community**: The bacterial community composition changed over time, but not across locations. **Fungal Community**: The fungal community remained the same between samplings and locations.
- 5. **Viable vs. Dead Cells**: **Viable Cells**: Approximately 46% of the viable bacteria and 40% of the viable fungi could be cultured. **Dead Cells**: The remaining 54% of viable bacteria and 60% of viable fungi were dead cells.
- 6. **Comparison with Culture-Based Methods**: **Similarity**: Both methods identified similar numbers of fungal phyla. **Quantitative Differences**: The bacterial load was higher than the fungal load by 2 to 3 logs at all locations.
- 7. **Microbial Diversity**: **Total Diversity**: The total bacterial and fungal diversity was high, with 68 different families detected. **Alpha Diversity**: The alpha diversity (measured with Shannon's diversity index) was high, with Shannon's diversity index indicating high diversity.
- 8. **Microbial Load**: **Total Load**: The total bacterial and fungal loads ranged from 6.7 \times 10^3 to 7.8 \times 10^10 CFU/m^2. **Fungal Load**: The fungal load ranged from 1.1 \times 10^5 to 3.1 \times 10^8 CFU/m^2.
- 9. **Antimicrobial Resistance**: **Antimicrobial Resistance**: The presence of opportunistic pathogens was noted, including Staphylococcus aureus, Klebsiella quasipneumoniae, and Aspergillus fumigatus.

- 10. **Comparison with Earth Microbiomes**: **Similarity**: The ISS microbiome shares similarities with indoor microbiomes, particularly those in hospitals, offices, and classrooms. **Differences**: The ISS microbiome is more similar to indoor microbiomes than to outdoor microbiomes.
- 11. **Implications**: **Health Risks**: The presence of opportunistic pathogens highlights the need for safety measures to prevent infections. **Long-term Space Missions**: The ISS microbiome provides insights for long-term space habitation, including countermeasures to reduce microbial spread.
- 12. **Sample Collection**: **Sampling Locations**: The ISS was sampled at eight locations, including the US module, PMM, and PMM port 1. **Sampling Frequency**: Samples were collected over a period of 14 months, with three flight sampling sessions.
- 13. **Data Processing**: **DNA Extraction**: DNA extraction was performed using the Maxwell 16 automated system. **PCR Amplification**: qPCR was used to quantify microbial abundance. **Amplicon Sequencing**: 16S rRNA gene and ITS region were targeted for amplicon sequencing.
- 14. **Statistical Analysis**: **PMA Treatment**: PMA was used to distinguish between viable and dead cells. **Statistical Tests**: Kruskal-Wallis test was used to compare groups, with Dunn's post-hoc test for significance.
- 15. **Comparison with Other Studies**: **Comparison with Other ISS Studies**: The ISS microbiome was compared to other closed environments, particularly hospital settings. **Comparison with Other Clean Rooms**: The ISS microbiome was compared to spacecraft assembly cleanrooms.
- 16. **Future Research**: **Long-term Studies**: Future studies should include longer-term studies to assess microbial persistence. **Spacecraft Assembly Cleanrooms**: Studies should be conducted in spacecraft assembly cleanrooms to understand microbial dynamics.
- 17. **Conclusion**: **Health Risks**: The ISS microbiome poses health risks to astronauts, particularly to those with compromised immune systems. **Safety Measures**: The ISS