Dynamic programming

Dynamic programming

- Characterize the structure of an optimal solution. (Define subproblem.)
- Recursively define the value of an optimal solution. (Express solutions to subproblems recursively.)
- Compute the value of an optimal solution (in right order.)
- Construct an optimal solution from computed information.

Chain matrix multiplication

- Suppose that we want to multiply four matrices, $A \times B \times C \times D$, of dimensions 50×20 , 20×1 , 1×10 , and 10×100 , respectively.
- How many ways can < A, B, C, D> be fully parenthesized?
 - (A(B(CD)))
 - (A((BC)D))
 - -((AB)(CD))
 - -((A(BC))D)
 - -(((AB)C)D)

Matrix multiplication

```
MATRIX-MULTIPLY(A, B)
if columns[A] \neq rows[B]
   then error "imcompatible dimensions"
  else for i\leftarrow 1 to rows[A]
            do for j\leftarrow 1 to columns[B]
                     do C[i,j] \leftarrow 0
                         for k \leftarrow 1 to columns[A]
                                do C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]
       return C
```

A: $p \times q$ matrix, B: $q \times r$ matrix, C = AB: $p \times r$ matrix Time to compute C: pqr

Chain matrix multiplication

• Suppose that we want to multiply four matrices, $A \times B \times C \times D$, of dimensions 50×20 , 20×1 , 1×10 , and 10×100 , respectively.

Parenthesization	Cost computation	Cost
$A \times ((B \times C) \times D)$	$20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$	120,200
$(A \times (B \times C)) \times D$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60,200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7,000

- The order of multiplications makes a big difference in running time.
- Greedy approach (choose the cheapest multiplication) does not work. (case 2 above)
- Problem: How do we determine the optimal order, if we want to compute $A_1 \times A_2 \times ... \times A_n$ where the A_i 's are matrices with dimensions $m_0 \times m_1$, $m_1 \times m_2$,..., $m_{n-1} \times m_n$, respectively?

Number of parenthesizations

- P(n) = # of alternative parenthesizations of a sequence of n matrices
- n = 1 : 1
- n > 1:
 - a fully parenthesized matrix product is the product of two fully parenthesized matrix subproducts
 - the split between the two subproducts may occur between the kth and (k+1)th matrices for any k=1, 2, ..., n-1.

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

Show that P(n) is $\Omega(2^n)$ using substitution method.

- A particular parenthesization can be represented by a *binary tree*
 - the individual matrices correspond to the leaves
 - the root is the final product
 - intermediate nodes are intermediate products.
- The possible orders to do the multiplication = the various full binary trees with n leaves whose number is *exponential* in n.

(a)
$$((A \times B) \times C) \times D$$
; (b) $A \times ((B \times C) \times D)$; (c) $(A \times (B \times C)) \times D$.

Optimal substructure

- For a tree to be optimal, its subtrees must also be optimal.
- What are the *subproblems* corresponding to the subtrees? products of the form $A_i \times A_{i+1} \times ... \times A_i$
- Define $C(i, j) = \text{minimum cost of multiplying } A_i \times A_{i+1} \times ... \times A_j$ for $1 \le i \le j \le n$.
- The size of the subproblem C(i, j) = number of matrix multiplications = j i
- Base case the smallest subproblem : when i = j, C(i, j) = 0.

Optimal substructure

- For j > i, consider the optimal subtree for C(i, j).
- Suppose that an optimal subtree of $A_i A_{i+1} ... A_j$ splits the product between A_k and A_{k+1} . ($i \le k < j$)
- Then the subtrees of $A_iA_{i+1}...A_k$ and $A_{k+1}A_{k+2}...A_j$ within this optimal subtree of $A_iA_{i+1}...A_j$ must be optimal subtrees of $A_iA_{i+1}...A_k$ and $A_{k+1}A_{k+2}...A_j$, respectively.
- The cost of the subtree is then the cost of these two partial products + the cost of combining them: $C(i, k) + C(k + 1, j) + m_{i-1} \cdot m_k \cdot m_j$
- Need to find the splitting point k for which this is smallest: $C(i, j) = \min_{1 \le k < i} \{ C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \}$

Recursion tree for C(1,4)

<u>Algorithm</u>

• *s* : problem size

```
for i=1 to n: C(i,i)=0 for s=1 to n-1: for i=1 to n-s: j=i+s C(i,j)=\min\{C(i,k)+C(k+1,j)+m_{i-1}\cdot m_k\cdot m_j:i\leq k< j\} return C(1,n)
```

- Two-dimensional table, each entry takes O(n) time : $O(n^3)$ overall running time.
- How can we reconstruct the optimal parenthesization?

Optimal binary search trees

• Suppose we know the frequency with which keywords occur in programs of a certain language, for instance:

5%
40%
8%
4%
10%
10%
23%

• We want to organize them in a *binary search tree*, so that the keyword in the root is alphabetically bigger than all the keywords in the left subtree and smaller than all the keywords in the right subtree.

$${\rm cost} \ = \ 1(0.04) + 2(0.40 + 0.10) + 3(0.05 + 0.08 + 0.10 + 0.23) \ = \ 2.42.$$

do

begin

else

Optimal binary search trees

- Input: n keys (in sorted order); frequencies of these keys: $p_1, p_2, ..., p_n$.
- Output: The binary search tree of lowest cost (= the expected number of comparisons in looking up a key).
- Observations :
 - Optimal BST might not have smallest height
 - Optimal BST might not have highest-probability key at root.
- Build by exhaustive checking?
 - Construct each *n*-node BST
 - For each, put in keys
 - Then compute expected search cost
 - There are $\Omega(4^n / n^{3/2})$ different BSTs with *n* nodes.

Optimal substructure

• Consider any subtree of a BST. It contains keys in a contiguous range k_i , ..., k_j for some $1 \le i \le j \le n$.

If T is an optimal BST and T contains subtree T' with keys ki, ..., kj, then T' must be an optimal BST for ki, ..., kj.

Proof: cut and paste.

Using optimal substructure

- Given keys k_i , ..., k_i (the problem)
- One of them, k_r , where $i \le r \le j$, must be the root.
- Left subtree of k_r contains k_i , ..., k_{r-1}
- Right subtree of k_r contains $k_{r+1}, ..., k_i$

If we

- examine all candidate roots k_r , for $i \le r \le j$, and,
- determine all optimal BSTs containing k_i , ..., k_{r-1} and containing k_{r+1} , ..., k_i

then we're guaranteed to find an optimal BST for k_i , ..., k_j

Recursive solution

Subproblem domain:

- Find optimal BST for k_i , ..., k_j , where $i \ge 1$, $i 1 \le j \le n$
- When j = i -1, the tree is empty.

Define $e[i,j] = \text{expected search cost of optimal BST for } k_i, ..., k_j$ If j = i -1, then e[i,j] = 0If $j \ge i$,

- Select a root k_r , for some $i \le r \le j$
- make an optimal BST with k_i , ..., k_{r-1} as the left subtree.
- make an optimal BST with k_{r+1} , ..., k_i as the right subtree.
- When a subtree becomes a subtree of a node:
 - depth of every node in subtree goes up by 1.
 - expected search cost increases by $w(i, j) = \sum_{l=i}^{j} p_l$

Recursive solution

- If k_r is the root of an optimal BST for k_i , ..., k_j :
- $e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$
- $w(i,j) = w(i,r-1) + p_r + w(r+1,j)$
- e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)

$$e[i,j] = \begin{cases} 0 & \text{if } j = i-1 \\ \min\{ e[i,r-1] + e[r+1,j] + w(i,j) \} & \text{if } i \leq j \end{cases}$$

Computing an optimal solution

- *Need 3 tables :*
 - -e[1..n+1,0..n]
 - root[i, j]: root of subtree with keys k_i , ..., k_j
 - w[1..n+1, 0..n]

```
OPTIMAL-BST(p, n)
for i=1 to n+1
    do e[i, i-1] = 0
       w[i, i-1] = 0
for l = 1 to n
    do for i = 1 to n-l+1
            do j = i+l-1
                e[i,j] = \infty
                w[i, j] = w[i, j-1] + p_i
                for r = i to j
                      do t = e[i, r-1] + e[r+1, j] + w[i, j]
                         if t < e[i, j]
                                 then e[i, j] = t
                                       root[i, j] = r
```

return e and root