© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°08

- Le devoir devra être rédigé sur des copies *doubles*.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. Il existe donc $P \in GL_n(\mathbb{R})$ tel que $B = P^{-1}AP$. Par propriété de la trace, $tr(B) = tr(P^{-1}AP) = tr(APP^{-1}) = tr(A)$. Par propriété du déterminant,

$$\det(B) = \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) = \det(P)^{-1}\det(A)\det(P) = \det(A)$$

Deux matrices semblables sont a fortiori équivalentes et ont donc même rang : rg(B) = rg(A). Soit $\lambda \in \mathbb{R}$. Alors

$$B - \lambda I_n = P^{-1}AP - \lambda I_n = P^{-1}(A - \lambda I_n)P$$

Donc $A - \lambda I_n$ et $B - \lambda I_n$ sont semblables donc ont même déterminant d'après ce qui précède. Ainsi

$$\chi_{\mathbf{B}}(\lambda) = \det(\mathbf{B} - \lambda \mathbf{I}_n) = \det(\mathbf{A} - \lambda \mathbf{I}_n) = \chi_{\mathbf{A}}(\lambda)$$

Ainsi $\chi_{\rm B} = \chi_{\rm A}$.

Il est clair que tr(A) = tr(B) = 5. Comme A et B sont triangulaires à coefficients diagonaux non nuls, rg(A) = rg(B) = 3. Comme A et B sont triangulaires, det(A) = det(B) = 4 et $\chi_A = \chi_B = (X - 1)(X - 2)^2$. On a donc $Sp(A) = Sp(B) = \{1, 2\}$.

Posons P = (X-1)(X-2). On vérifie que P(A) = 0. Comme $Sp(A) = \{1, 2\}$, on a donc $\mu_A = P$. Comme μ_A est simplement scindé, A est diagonalisable.

Comme Sp(B) = $\{1, 2\}$, si B était diagonalisable, on aurait de même $\mu_B = P$. Or $P(B) \neq 0$ donc $\mu_B \neq 0$. Comme A et B n'ont pas le même polynôme minimal, A et B ne sont pas semblables.

- Comme la matrice de u dans la base (e_1, e_2, e_3) est A, on a $u(e_1) = e_2 + 2e_3$, $u(e_2) = e_1 + e_3$ et $u(e_3) = e_1$. La matrice de u dans la base (e_2, e_1, e_3) est donc B. On en déduit que A et B sont semblables.
 - Un calcul donne $\chi_A = \chi_B = X^3 3X 1$ (en utilisant la règle de Sarrus par exemple). Posons $P = X^3 3X 1$. Alors $P' = 3X^2 3 = 3(X-1)(X+1)$. Ainsi P est strictement croissante sur $]-\infty,-1]$, strictement décroissante sur [-1,1] et strictement croissante sur $[1,+\infty[$. Or $\lim_{-\infty} P = -\infty, P(-1) = 1 > 0, P(1) = -3 < 0$ et $\lim_{+\infty} P = +\infty$. Comme P est continu sur \mathbb{R} , P s'annule exactement trois fois sur \mathbb{R} en vertu du corollaire du théorème des valeurs intermédiaires. Comme deg P = 3, P possède exactement trois racines toutes réelles. On les note α , β et γ . Comme $\chi_A = \chi_B = P$ est simplement scindé, A et B sont toutes deux diagonalisables et semblables à la même matrice diagonale de coefficients diagonaux α , β et γ . Comme la similitude est une relation d'équivalence, A et B sont semblables.
- Soient $A \in \mathcal{M}_n(\mathbb{R})$ et u l'endomorphisme canoniquement associé à A. D'après le théorème du rang dim Ker u = n-1. Choisissons un supplémentaire S de Ker u. Dans une base adaptée à la décomposition $\mathbb{R}^n = S \oplus \text{Ker } u$, la matrice de u est de la forme de U. Ainsi A est semblable à U.
- 5 On trouve $U^2 = a_n U$. Or $U^2 \neq 0$ donc $a_n \neq 0$. Ainsi $X^2 a_n X = X(X a_n)$ est un polynôme annulateur de U (et donc de u) simplement scindé. u est donc diagonalisable.
- **6** Posons $A = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \in S_2(\mathbb{C})$. Alors $\chi_A = X^2$. Notamment $Sp(A) = \{0\}$. Si A était diagonalisable, elle serait semblable à la matrice nulle et donc nulle, ce qui n'est pas. A n'est donc pas diagonalisable.

© Laurent Garcin MP Dumont d'Urville

7 Les deux dernières colonnes de A sont les mêmes que les deux premières. Supposons que ces deux colonnes soient liées. Il existerait alors $\lambda \in \mathbb{C}$ tel que $\beta = \lambda \alpha$ et $\alpha = \lambda \beta$ et donc $\alpha = \lambda^2 \alpha$. Comme $\alpha \neq 0$, on aurait donc $\lambda^2 = 1$ i.e. $\lambda = \pm 1$ puis $\alpha = \pm \beta$, ce qui est exclu. Ainsi les deux premières colonnes de A sont linéairements indépendantes de sorte que rg(A) = 2. Notamment rg(A) < 4, A n'est donc pas inversible : $0 \in Sp(A)$.

En posant
$$U = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, on a $AU = 2(\alpha + \beta)U$ donc $2(\alpha + \beta) \in Sp(A)$. En posant $V = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$, on a $AV = 2(\alpha - \beta)V$ donc $2(\alpha - \beta) \in Sp(A)$.

D'après le théorème du rang dim Ker(A) = 2. On voit facilement que $X = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ et $Y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ forment une base de

Ker A.

Ainsi (U, V, X, Y) est une base de vecteurs propres de A.

Soit u l'endomorphisme canoniquement associé à $\begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$. En notant (e_1, e_2) la base canonique de \mathbb{R}^2 , on a donc

$$u(e_1) = \lambda e_1 \qquad \qquad u(e_2) = \lambda e_2 + b e_1$$

Posons $f_1 = \frac{a}{b}e_1$ et $f_2 = e_2$. Comme $\frac{a}{b} \neq 0$, (f_1, f_2) est encore une base de \mathbb{R}^2 . De plus,

$$u(f_1) = \frac{a}{b}u(e_1) = \lambda \cdot \frac{a}{b}e_1 = \lambda f_1$$

$$u(f_2) = u(e_2) = \lambda e_2 + be_1 = \lambda e_2 + b \cdot \frac{a}{b}e_1 = \lambda f_2 + bf_1$$

La matrice de u dans la base (f_1, f_2) est donc $\begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$. On en déduit que les matrices $\begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$ et $\begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$ sont semblables.

9 On a PB = AP i.e. (R + iS)B = A(R + iS) ou encore RB + iSB = AR + iAS. Comme les matrices RB, SB, AR et ASsont à coefficients réels, on obtient RB = AR et SB = AS en identifiant parties réelle et imaginaire.

10 On sait que si $A \in \mathcal{M}_n(\mathbb{R})$, $\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n A_{\sigma(i),i}$. Comme chaque coefficient de $\det(R + xS)$ est une fonction affine de x, la formule précédente permet d'affirmer que $\varphi : x \mapsto \det(R + xS)$ est une fonction polynomiale en tant que

combinaison linéaire de produits de fonctions affines.

De plus, $\varphi(i) = \det(P) \neq 0$ car P est inversible. Ainsi φ n'est pas identiquement nulle (sur \mathbb{C}). Si φ était nulle sur \mathbb{R} , elle admettrait une infinité de racines : tous ses coefficients seraient nuls donc elle serait nulle sur $\mathbb C$. Il existe donc $x \in \mathbb R$ tel que R + xS est inversible.

11 Comme RB = AR et SB = AS, (R + xS)B = A(R + xS). Puisque $Q = R + xS \in GL_n(\mathbb{R})$, $B = Q^{-1}AQ$ et A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

12
$$\chi_A = X^3 + X = X(X-i)(X+i)$$
 est simplement scindé dans \mathbb{C} donc A est diagonalisable et semblable à $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix}$

dans $\mathcal{M}_3(\mathbb{C})$. Un calcul évident montre que $\chi_B=X^3+X$. Pour les mêmes raisons que précédemment, B est également semblable à D dans $\mathcal{M}_3(\mathbb{C})$. On en déduit que A et B sont semblables dans $\mathcal{M}_3(\mathbb{C})$. Comme A et B sont à coefficients réels, elles sont également semblables dans $\mathcal{M}_3(\mathbb{R})$ d'après la question précédente.

- Soit (A, B) $\in \mathcal{M}_2(\mathbb{R})^2$ telle que $\chi_A = \chi_B$ et $\mu_A = \mu_B$.
 - Si $\chi_A = \chi_B$ est simplement scindé dans \mathbb{R} ou \mathbb{C} , alors A et B sont toutes deux semblables à une même matrice diagonale dans $\mathcal{M}_2(\mathbb{R})$ ou $\mathcal{M}_2(\mathbb{C})$. Elles sont donc semblables dans $\mathcal{M}_2(\mathbb{R})$ ou $\mathcal{M}_2(\mathbb{C})$. Dans le deuxième cas, puisque A et B sont à coefficients réels, le résultat de la partie précédente sont encore semblables dans $\mathcal{M}_2(\mathbb{R})$.
 - Sinon, $\chi_A = \chi_B = (X \lambda)^2$ avec $\lambda \in \mathbb{R}$. Comme le polynôme minimal divise le polynôme caractéristique, on a donc $\mu_A = \mu_B = (X \lambda)$ ou $\mu_A = \mu_B = (X \lambda)^2$.
 - Si $\mu_A = \mu_B = (X \lambda)$, alors A et B sont toutes deux égales à λI_2 . A fortiori, elles sont semblables dans $\mathcal{M}_2(\mathbb{R})$.

- Si $\mu_A = \mu_B = (X - \lambda)^2$, alors A et B ne sont pas diagonalisables puisque leur polynôme minimal n'est pas simplement scindé mais elles sont quand même trigonalisables dans $\mathcal{M}_2(\mathbb{R})$ puisque leur polynôme caractéristique est scindé sur \mathbb{R} . Les matrices A et B sont donc respectivement semblables à des matrices $\begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$ et $\begin{pmatrix} \lambda & b \\ 0 & \lambda \end{pmatrix}$ avec a et b non nuls (sinon A et B seraient diagonalisables). Le résultat de la question a permet alors d'affirmer que A et B sont encore semblables.

d'indice 2 donc $\mu_A = \mu_B = X^2$. Pourtant, A et B ne sont manifestement pas semblables puisque rg(A) = 1 et rg(B) = 2 de sorte que $rg(A) \neq rg(B)$.