RSA Problem and Encryption

Yu Zhang

HIT/CST/NIS

Cryptography, Autumn, 2014

Outline

1 RSA Problem

2 Attacks against "Textbook RSA" Encryption

3 RSA Encryption in Practice

Content

1 RSA Problem

2 Attacks against "Textbook RSA" Encryption

3 RSA Encryption in Practice

RSA Overview

- RSA: Ron Rivest, Adi Shamir and Leonard Adleman, in 1977
- **RSA problem**: Given N=pq (two distinct big prime numbers) and $y\in\mathbb{Z}_N^*$, compute y^{-e} , e^{th} -root of y modulo N
- **Open problem:**RSA problem is easier than factoring N?
- Certification: PKCS#1 (RFC3447), ANSI X9.31, IEEE 1363
- **Key sizes**: 1,024 to 4,096 bit
- Best public cryptanalysis: a 768 bit key has been broken
- RSA Challenge: break RSA-2048 to win \$200,000 USD

Key lengths with comparable security:

Symmetric	RSA
80 bits	1024 bits
128 bits	3072 bits
256 bits	15360 bits

"Textbook RSA"

Construction 1

- Gen: on input 1^n run GenRSA (1^n) to obtain N, e, d. $pk = \langle N, e \rangle$ and $sk = \langle N, d \rangle$.
- Enc: on input pk and $m \in \mathbb{Z}_N^*$, $c := [m^e \mod N]$.
- Dec: on input sk and $m \in \mathbb{Z}_N^*$, $m := [c^d \mod N]$.

Insecurity

Since the "textbook RSA" is deterministic, it is insecure with respect to any of the definitions of security we have proposed.

Q: How to generate N, e, d? What's \mathbb{Z}_N^* ? How to compute $m^e \mod N$? Is it TDP? Why is it hard?

Textbook

"A Computational Introduction to Number Theory and Algebra" (Version 2) by Victor Shoup

Primes and Modular Arithmetic

- The set of integers \mathbb{Z} , $a, b, c \in \mathbb{Z}$.
- p > 1 is **prime** if it has no factors; otherwise, **composite**.
- **Greatest common divisor** gcd(a, b) is the largest integer c such that $c \mid a$ and $c \mid b$. gcd(0, b) = b, gcd(0, 0) undefined.
- Remainder $r = [a \mod N] = a b \lfloor a/b \rfloor$ and r < N. N is called **modulus**.
- $\mathbb{Z}_N = \{0, 1, \dots, N 1\} = \{a \mod N | a \in \mathbb{Z}\}.$
- a is invertible modulo $N \iff \gcd(a,N) = 1$. If $ab \equiv 1 \pmod{N}$, then $b = a^{-1}$ is multiple inverse of a modulo N.

Examples of Modular Arithmetic

Euclidean algorithm: $gcd(a, b) = gcd(b, [a \mod b])$.

Find gcd(12, 27)

Extended Euclidean algorithm: Given a, N, find X, Y with $Xa + YN = \gcd(a, N)^{1}$.

Find the inverse of $11 \pmod{17}$

Reduce and then add/multiply

Compute 193028 · 190301 mod 100

Cancellation law: If gcd(a, N) = 1 and $ab \equiv ac \pmod{N}$, then $b \equiv c \pmod{N}$.

$$a = 3, c = 15, b = 2, N = 24$$

¹Bézout's lemma

\mathbb{Z}_N^* Group

$$\mathbb{Z}_N^* \stackrel{\mathsf{def}}{=} \{ a \in \{1, \dots, N-1\} | \gcd(a, N) = 1 \}$$

A **group** is a set \mathbb{G} with a binary operation \circ :

- **Closure**:) $\forall g, h \in \mathbb{G}, g \circ h \in \mathbb{G}$.
- **(Existence of an Identity**:) \exists **identity** $e \in \mathbb{G}$ such that $\forall g \in \mathbb{G}, e \circ g = g = g \circ e$.
- **■** (Existence of Inverses:) $\forall g \in G, \exists h \in \mathbb{G}$ such that $g \circ h = e = h \circ g$. h is an inverse of g.
- (Associativity:) $\forall g_1, g_2, g_3 \in \mathbb{G}$, $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$.

 \mathbb{G} with \circ is **abelian** if

Commutativity:) $\forall g, h \in \mathbb{G}, g \circ h = h \circ g$.

Existence of inverses implies cancellation law.

When \mathbb{G} is a **finite group** and $|\mathbb{G}|$ is the **order** of group.

Is \mathbb{Z}_N^* a group under '·'? How about \mathbb{Z}_N under '·'? $\mathbb{Z}_{15}^* = ?$ $\mathbb{Z}_{13}^* = ?$

Group Exponentiation

$$g^m \stackrel{\mathsf{def}}{=} \underbrace{g \circ g \circ \cdots \circ g}_{m \text{ times}}.$$

Theorem 2

 \mathbb{G} is a finite group. Then $\forall g \in \mathbb{G}, g^{|\mathbb{G}|} = 1$.

Calculate all exponentiation of $3 \in \mathbb{Z}_7^*$

Corollary 3

 $\forall g \in \mathbb{G} \text{ and } i, g^i \equiv g^{[i \mod |\mathbb{G}|]}.$

Calculate $3^{78} \in \mathbb{Z}_7^*$

Arithmetic algorithms

- **Addition/subtraction**: linear time O(n).
- Mulplication: naively $O(n^2)$. Karatsuba (1960): $O(n^{\log_2 3})$ Basic idea: $(2^b x_1 + x_0) \times (2^b y_1 + y_0)$ with 3 mults. Best (asymptotic) algorithm: about $O(n \log n)$.
- **Division with remainder**: $O(n^2)$.
- **Exponentiation**: $O(n^3)$.

Algorithm 1: Exponentiating by Squaring

```
input : g \in G; exponent x = [x_n x_{n-1} \dots x_2 x_1 x_0]_2
output: q^x
```

- 1 $y \leftarrow q; z \leftarrow 1$
- 2 for i=0 to n do
- 3 | if $x_i == 1$ then $z \leftarrow z \times y$ 4 | $y \leftarrow y^2$
- return z

Euler's Phi Function

Euler's phi function: $\phi(N) \stackrel{\text{def}}{=} |\mathbb{Z}_N^*|$.

Theorem 4

$$N=\prod_i p_i^{e_i}$$
 2, $\{p_i\}$ are distinct primes, $\phi(N)=\prod_i p_i^{e_i-1}(p_i-1)$.

$$N=pq$$
 where p,q are distinct primes. $\phi(N)=?$ $\phi(12)=?$ $\phi(30)=?$

Corollary 5 (Euler's theorem & Fermat's little theorem)

$$a \in \mathbb{Z}_N^*$$
. $a^{\phi(N)} \equiv 1 \pmod{N}$. If p is prime and $a \in \{1, \dots, p-1\}$, then $a^{p-1} \equiv 1 \pmod{p}$.

$$3^{43} \mod 49 = ?$$

²Fundamental theorem of arithmetic

Permutation by Group Exponentiation Function

Exponentiation function $f_e: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ by $f_e(x) = [x^e \mod N]$. e'th root of $y: x^e \equiv y, x \equiv y^{1/e}$.

Corollary 6

If $gcd(e, \phi(N)) = 1$, then f_e is a permutation.

Proof.

Let $d = [e^{-1} \mod \phi(N)]$, then f_d is the inverse of f_e . $y \equiv x^e$; $f_d(y) \equiv y^d \equiv x^{ed} \equiv x$.

In
$$\mathbb{Z}_{10}^*$$
, $e = 3$, $d = ?$, $f_e(3) = ?$, $f_d(f_e(3)) = ?$, $9^{\frac{1}{3}} = ?$

What if we cannot get $\phi(N)$ for some 'special' N? What if we cannot factorize these 'special' N?

Factoring Is Hard

- **Factoring** N = pq. p, q are of the same length n.
- Trial division: $\mathcal{O}(\sqrt{N} \cdot \mathsf{polylog}(N))$.
- **Pollard's** p-1 method: effective when p-1 has "small" prime factors.
- **Pollard's rho** method: $\mathcal{O}(N^{1/4} \cdot \mathsf{polylog}(N))$.
- Quadratic sieve algorithm [Carl Pomerance]: sub-exponential time $\mathcal{O}(\exp(\sqrt{n \cdot \log n}))$.
- The best-known algorithm is the **general number field sieve** [Pollard] with time $\mathcal{O}(\exp(n^{1/3} \cdot (\log n)^{2/3}))$.

The RSA Problem Is Hard

Idea: factoring is hard

- \implies for N = pq, finding p, q is hard
- \implies computing $\phi(N) = (p-1)(q-1)$ is hard
- \implies computations modulo $\phi(N)$ is not available

There is a gap.

 \implies RSA problem is hard:

Given $y \in \mathbb{Z}_N^*$, compute y^{-e} , e^{th} -root of y modulo N.

Open problem

RSA problem is easier than factoring?

Generating Random Primes

Algorithm 2: Generating a random prime

```
input : Length n; parameter t output: A random n-bit prime
```

```
1 for i=1 to t do

2 p' \leftarrow \{0,1\}^{n-1}

3 p:=1\|p'

4 if p is prime then return p
```

- 5 return fail
 - \exists a constant c such that, $\forall n > 1$, a randomly selected n-bit number is prime with probability at least c/n.
 - If N is prime, then the Miller-Rabin test always outputs "prime". If N is composite, then the algorithm outputs "prime" with probability at most 2^{-t} .

Generating RSA Problem

Let GenModulus (1^n) be a polynomial-time algorithm that, on input 1^n , outputs (N, p, q) where N = pq, and p, q are n-bit primes except with probability negligible in n.

Algorithm 3: GenRSA

input : Security parameter 1^n

output: N, e, d

- $\mathbf{1} \ (N,p,q) \leftarrow \mathsf{GenModulus}(1^n)$
- 2 $\phi(N) := (p-1)(q-1)$
- 3 find e such that $\gcd(e,\phi(N))=1$
- **4 compute** $d := [e^{-1} \mod \phi(N)]$
- 5 return N, e, d

Show an example of RSA problem

The RSA Assumption

The RSA experiment RSAinv_{A,GenRSA}(n):

- I Run GenRSA (1^n) to obtain (N, e, d).
- **2** Choose $y \leftarrow \mathbb{Z}_N^*$.
- **3** \mathcal{A} is given N, e, y, and outputs $x \in \mathbb{Z}_N^*$.
- 4 RSAinv_{\mathcal{A} ,GenRSA(n) = 1 if $x^e \equiv y \pmod{N}$, and 0 otherwise.}

Definition 7

RSA problem is hard relative to GenRSA if \forall PPT algorithms \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{RSAinv}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1] \leq \mathsf{negl}(n).$$

Constructing Trap-Door Permutations

Construction 8

Define a family of permutations with GenRSA:

- Gen: on input 1^n , run GenRSA (1^n) to obtain (N, e, d) and output $I = \langle N, e \rangle$, td = d, Set $\mathcal{D}_I = \mathcal{D}_{\mathsf{td}} = \mathbb{Z}_N^*$.
- Samp: on input I, choose a random element x of \mathbb{Z}_N^* .
- deterministic inverting algorithm $Inv_{td}(y) = [y^d \mod N]$.

Reduce the RSA problem to the inverting problem.

Content

1 RSA Problem

2 Attacks against "Textbook RSA" Encryption

3 RSA Encryption in Practice

Recall "Textbook RSA"

Construction 9

- Gen: on input 1^n run GenRSA (1^n) to obtain N, e, d. $pk = \langle N, e \rangle$ and $sk = \langle N, d \rangle$.
- Enc: on input pk and $m \in \mathbb{Z}_N^*$, $c := [m^e \mod N]$.
- Dec: on input sk and $m \in \mathbb{Z}_N^*$, $m := [c^d \mod N]$.

Insecurity

Since the "textbook RSA" is deterministic, it is insecure with respect to any of the definitions of security we have proposed.

Attacks on "Textbook RSA" with a small e

Small e and small m make modular arithmetic useless.

- If e=3 and $m< N^{1/3}$, then $c=m^3$ and m=___?
- In the hybrid encryption, 1024-bit RSA with 128-bit DES.

A general attack when small e is used:

- \bullet e=3, the same message m is sent to 3 different parties.
- $c_1 = [m^3 \mod N_1], c_2 = [m^3 \mod N_2], c_3 = [m^3 \mod N_3].$
- N_1, N_2, N_3 are coprime, and $N^* = N_1 N_2 N_3$, \exists unique $\hat{c} < N^*$: $\hat{c} \equiv c_1 \pmod{N_1}$, $\hat{c} \equiv c_2 \pmod{N_2}$, $\hat{c} \equiv c_3 \pmod{N_3}$.
- With Chinese Remainder Theory³, $\hat{c} \equiv m^3 \pmod{N^*}$. Since $m^3 < N^*$, $m = \hat{c}^{1/3}$.

 $^{^3}N=pq$ where $\gcd(p,q)=1.$ $\mathbb{Z}_N\simeq\mathbb{Z}_p imes\mathbb{Z}_q$ and $\mathbb{Z}_N^*\simeq\mathbb{Z}_p^* imes\mathbb{Z}_q^*$.

A Quadratic Improvement in Recovering m

If $1 \leq m < \mathcal{L} = 2^{\ell}$, there is an attack that recovers m in time $\sqrt{\mathcal{L}}$.

$$\mathsf{Idea}: c \equiv m^e = (r \cdot s)^e = r^e \cdot s^e \pmod{N}$$

Algorithm 4: An attack on textbook RSA encryption

input: Public key $\langle N, e \rangle$; ciphertext c; parameter ℓ **output**: $m < 2^{\ell}$ such that $m^{e} \equiv c \pmod{N}$

1 set
$$T:=2^{\alpha\ell}$$
 /* $\frac{1}{2}<$ constant $\alpha<1$ */

- 2 for r = 1 to T do $x_r := [c/r^e \mod N]$
- 3 sort the pairs $\{(r, x_r)\}_{r=1}^T$ by x_r
- 4 for s=1 to T do
- 5 | if $[s^e \mod N] \stackrel{?}{=} x_r$ for some r then 6 | return $[r \cdot s \mod N]$
- 7 return fail

It can be shown that with good probability that $m = r \cdot s$:

Common Modulus Attacks

Common Modulus Attacks: the same modulus N.

Case I: for multiple users with their own secret keys. Each user can find $\phi(N)$ with his own e,d, then find others' d.

Case II: for the same message encrypted with two public keys. Assume $\gcd(e_1,e_2)=1$, $c_1\equiv m^{e_1}$ and $c_2\equiv m^{e_2}\pmod{N}$. $\exists X,\,Y$ such that $Xe_1+Ye_2=1^4$.

$$c_1^X \cdot c_2^Y \equiv m^{Xe_1} m^{Ye_2} \equiv m^1 \pmod{N}.$$

$$N = 15, e_1 = 3, e_2 = 5, c_1 = 8, c_2 = 2, m = ?$$

⁴Bézout's lemma

CCA in "Textbook RSA" Encryption

Recovering the message with CCA

 $\mathcal A$ choose a random $r\leftarrow \mathbb Z_N^*$ and compute $c'=[r^e\cdot c \bmod N]$, and get m' with CCA. Then m=?

Doubling the bid at an auction

The ciphertext of an bid is $c = [m^e \mod N]$. $c' = [2^e c \mod N]$.

$$(c')^d \equiv ?$$

Content

1 RSA Problem

2 Attacks against "Textbook RSA" Encryption

3 RSA Encryption in Practice

RSA Implementation Issues

- Encoding binary strings as elements of \mathbb{Z}_N^* : $\ell = \|N\|$. Any binary string m of length $\ell-1$ can be viewed as an element of Z_N . Although m may not be in Z_N^* , RSA still works.
- **Choice of** e: Either e=3 or a small d are bad choices. Recommended value: $e=65537=2^{16}+1$
- Using the Chinese remainder theorem: to speed up the decryption.

$$[c^d \mod N] \leftrightarrow ([c^d \mod p], [c^d \mod q]).$$

Assume that exponentiation modulo a v-bit integer takes v^3 operations. RSA decryption takes $(2n)^3=8n^3$, whereas using CRT takes $2n^3$.

Padded RSA

Idea: add randomness to improve security.

Construction 10

Let ℓ be a function with $\ell(n) \leq 2n - 2$ for all n.

- Gen: on input 1^n , run GenRSA (1^n) to obtain (N, e, d). Output $pk = \langle N, e \rangle$, and $sk = \langle N, d \rangle$.
- Enc: on input $m \in \{0,1\}^{\ell(n)}$, choose a random string $r \leftarrow \{0,1\}^{\|N\|-\ell(n)-1}$. Output $c := [(r\|m)^e \mod N]$.
- Dec: compute $\hat{m} := [c^d \mod N]$, and output the $\ell(n)$ low-order bits of \hat{m} .

 ℓ should neither be too large (r is too short in theory) nor be too small (m is too short in practice).

Theorem 11

If the RSA problem is hard relative to GenRSA, then Construction with $\ell(n) = \mathcal{O}(\log n)$ is CPA-secure.

PKCK #1 v2.1 (RSAES-OAEP)

Optimal Asymmetric Encryption Padding (OAEP): encode m of length n/2 as \hat{m} of length 2n. G,H are Random Oracles.

$$\hat{m}_1 := G(r) \oplus (m \| \{0\}^{n/2}), \hat{m} := \hat{m}_1 \| (r \oplus H(\hat{m}_1)).$$

RSA-OAEP is CCA-secure in Random Oracle model. ⁵ [RFC 3447] Q: How to decipher?

⁵It may not be secure when RO is instantiated.

OAEP Improvements

OAEP+: \forall trap-door permutation F, F-OAEP+ is CCA-secure.

SAEP+: RSA (e=3) is a trap-door permutation, RSA-SAEP+ is CCA-secure.

W, G, H are Random Oracles.

Implementation Attacks on RSA

CCA on PKCS1 v1.5 in HTTPS [Bleichenbacher 1998]: Web server tells if 16 MSBs of plaintext = '02' for a given ciphertext. **Defense**: treating incorrectly formatted message blocks in a manner indistinguishable from correctly formatted blocks.

Timing attack: [Kocher et al. 1997] The time it takes to compute c^d can expose d.

Power attack: [Kocher et al. 1999] The power consumption of a smartcard while it is computing c^d can expose d.

Defense: **Blinding** by choosing a random r and deciphering $r^e \cdot c$.

Key generation trouble (in OpenSSL RSA key generation): Same p will be generated by multiple devices (due to poor entropy at startup), but different q (due to additional randomness). N_1, N_2 from different devices, $\gcd(N_1, N_2) = p$. Experiment result: factor 0.4% of public HTTPS keys.

Faults Attack on RSA

Faults attack: A computer error during $c^d \mod N$ can expose d.

Using Chinese Remainder Theory to speed up the decryption:

$$[c^d \mod N] \leftrightarrow ([m_p \equiv c^d \pmod p], [m_q \equiv c^d \pmod q)].$$

Suppose error occurs when computing m_q , but no error in m_p .

Then output $m' \equiv c^d \pmod{p}$, $m' \not\equiv c^d \pmod{q}$. So $(m')^e \equiv c \pmod{p}$, $(m')^e \not\equiv c \pmod{q}$.

$$\gcd((m')^e - c, N) = ?$$

Defense: check output. (but 10% slowdown)

Summary

- RSA, "textbook RSA", padded RSA, PKCS.
- small *e*, common modulus attacks, CCA, implementation/faults attack.