Projection of (non-)smooth functions

Problem

Consider the domain $\Omega = [0, 1]^2$. Our objective is project

$$f(\mathbf{x}) = \sin^4(2\pi x)\sin^4(2\pi y),$$

$$g(\mathbf{x}) = \begin{cases} 1, & \text{if } x \in [0.35, 0.65] \text{ and } y \in [0.35, 0.65], \\ 0, & \text{otherwise} \end{cases}$$

to the finite element space

$$V_h = \{ v \in C^0(\Omega) : v|_K \in \mathbb{P}^p(K) \},$$

where p = 1, 2, 3 and 4, and to verify the order of convergence using the L_2 -norm.

Weak formulation

The discrete weak formulation is given as follows. Find $f_h(\mathbf{x}), g_h(\mathbf{x}) \in V_h$ such that

$$\int_{\Omega} f_h(\mathbf{x}) \varphi(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) \varphi(\mathbf{x}) d\mathbf{x}, \quad \forall \varphi(\mathbf{x}) \in V_h,
\int_{\Omega} g_h(\mathbf{x}) \varphi(\mathbf{x}) d\mathbf{x} = \int_{\Omega} g(\mathbf{x}) \varphi(\mathbf{x}) d\mathbf{x}, \quad \forall \varphi(\mathbf{x}) \in V_h.$$

Since $f_h(\mathbf{x}) \in V_h$, $f_h(\mathbf{x}) = \sum_j F_j \varphi_j(\mathbf{x})$. Therefore,

$$\sum_{j} F_{j} \underbrace{\int_{\Omega} \varphi_{i}(\mathbf{x}) \varphi_{j}(\mathbf{x}) d\mathbf{x}}_{=m_{ij}} = \underbrace{\int_{\Omega} f(\mathbf{x}) \varphi_{i}(\mathbf{x}) d\mathbf{x}}_{=r_{i}},$$

and similarly for $g_h(\mathbf{x})$.

Numerical results

Let us solve the problem with different polynomial spaces. The summary of a convergence test for the projection of $f(\mathbf{x})$ and $g(\mathbf{x})$ is shown in Tables 1 and 2, respectively.

	p = 1		p=2		p=3		p=4	
Cells	E_2	rate	E_2	rate	E_2	rate	E_2	rate
1536	4.85e-03	_	1.06e-04	_	2.26e-06	_	4.56e-08	_
6144	1.21e-03	2.00	1.32e-05	3.00	1.41e-07	4.00	1.42e-09	5.00
24576	3.03e-04	2.00	1.65e-06	3.00	8.82e-09	4.00	4.45e-11	5.00
98304	7.59e-05	2.00	2.07e-07	3.00	5.52e-10	4.00	1.51e-12	4.88
393216	1.90e-05	2.00	2.58e-08	3.00	3.47e-11	3.99	9.51e-12	-2.65

Table 1: Convergence results of the projection of $f(\mathbf{x})$.

	p=1		p=2		p=3		p=4	
Cells	E_2	rate	E_2	rate	E_2	rate	E_2	rate
1536	4.85e-03	_	1.06e-04	_	2.26e-06	_	4.56e-08	_
6144	1.21e-03	2.00	1.32e-05	3.00	1.41e-07	4.00	1.42e-09	5.00
24576	3.03e-04	2.00	1.65e-06	3.00	8.82e-09	4.00	4.45e-11	5.00
98304	7.59e-05	2.00	2.07e-07	3.00	5.52e-10	4.00	1.51e-12	4.88
393216	1.90e-05	2.00	2.58e-08	3.00	3.47e-11	3.99	9.51e-12	-2.65

Table 2: Convergence results of the projection of $g(\mathbf{x})$.

References

- For the general structure of a similar code, see https://www.dealii.org/9.0.0/doxygen/deal.II/step40.html.
- To create simple domains, see

 https://www.dealii.org/9.0.0/doxygen/deal.II/step_1.html,

 https://www.dealii.org/current/doxygen/deal.II/namespaceGridGenerator.html.
- To generate a triangulation, see

 https://www.dealii.org/current/doxygen/deal.II/classTriangulation.html,

 https://www.dealii.org/current/doxygen/deal.II/classparallel_1_1distributed_1_
 1Triangulation.html.
- To generate a finite element space, see

 https://www.dealii.org/current/doxygen/deal.II/group__fe.html,

 https://www.dealii.org/current/doxygen/deal.II/classFE__Q.html.
- To generate a DoF handler, see
 https://www.dealii.org/current/doxygen/deal.II/group__dofs.html,
 https://www.dealii.org/current/doxygen/deal.II/classDoFHandler.html.
- To compute error norms, see https://www.dealii.org/current/doxygen/deal.II/step_7.html and

```
integrate_difference in
https://www.dealii.org/current/doxygen/deal.II/namespaceVectorTools.html.
```

• To generate the convergence tables, see

```
https://www.dealii.org/current/doxygen/deal.II/step_7.html,
https://www.dealii.org/current/doxygen/deal.II/classConvergenceTable.html.
```