Particle learning for low counts in disease outbreaks

Jarad Niemi with Mike Ludkovski and Nicholas Michaud

Iowa State University

April 18, 2016

Outline

- Measles outbreak in Zimbabwe
- Model for low counts in disease outbreaks
- Particle learning
- Simulation study
- Application to outbreak in Zimbabwe

Making decisions based on surveillance data

The primary purpose of this work is to use surveillance data to help inform public health officials on control measures.

Measles outbreak in Zimbabwe (2009-2010):

- Late summer of 2009, measles detected in Zimbabwe
- Reporting of measles added to regular cholera reporting
 Lab confirmed: Suspected case of measles with positive serum IgM antibody, with no history of measles vaccination in the past 4 weeks.
- Fall of 2009, localized vaccination campaign
- Measles spread across the country
- Summer 2010, mass vaccination campaign
- Fall 2010, no additional measles cases reported

Measles outbreak in Zimbabwe (2009-2010)

Total cases as of 2010-12-05

Outline

- Measles outbreak in Zimbabwe
- Model for low counts in disease outbreaks
- Particle learning
- Simulation study
- Application to outbreak in Zimbabwe

Imagine a well-mixed space in thermal equilibrium with

- M states: S_1, \ldots, S_M with
- number of individuals X_1, \dots, X_M with elements $X_m \in \mathbb{Z}^+$
- which change according to K transitions: R_1, \ldots, R_K with
- propensities $a_1(x), \ldots, a_K(x)$.
- The propensities are given by $a_k(x) = \lambda_k f_k(x)$
- where $f_k(x)$ is a known function of the system state.
- ullet If transition k occurs, the state is updated by the stoichiometry v_k with
- elements $v_{ij} \in \{-2, -1, 0, 1, 2\}$.

au-leaping

• If transition $k \in \{1, ..., K\}$ has the following probability

$$\lim_{\tau \to 0} \frac{P(\text{transition } k \text{ within the interval } (t, t + \tau)|X_t)}{\tau} = \lambda_k f_k(X_t),$$

then this defines a continuous-time Markov jump process.

This model can be discretized using the τ -leaping approximation:

$$\Delta X_{tk} \stackrel{ind}{\sim} Po(\lambda_k f_k(X_t)\tau)$$

and updating

$$X_{t+\tau,m} = X_{tm} + \sum_{k=1}^{K} v_{mk} \Delta X_{tk}$$

For simplicity, we'll set $\tau = 1$, the observation interval.

Binomial-Poisson discrete-time state-space model

$$\begin{array}{ll} Y_{tk} & \overset{ind}{\sim} \ Bin(\Delta X_{tk}, \theta_k), & k = 1, \ldots, K \\ \Delta X_{tk} & \overset{ind}{\sim} \ Po(\lambda_k f_k(X_{t-1})), & \\ X_{tm} & = X_{t-1,m} + \sum_{k=1}^K v_{mk} \Delta X_{tk}, & m = 1, \ldots, M \end{array}$$

$S \rightarrow I \rightarrow R$ stochastic compartment model

An SIR compartment model tracks the number of

- Susceptibles (S)
- Infectious (I)
- Recovered (R)

usually with the stipulation that N = S + I + R is constant.

A stochastic SIR model has M=3 (states) and K=2 (transitions) with $X_t=(S_t,I_t,R_t)$,

$$v = \begin{cases} S \to I & I \to R \\ S & -1 & 0 \\ 1 & -1 \\ R & 0 & 1 \end{cases},$$

 $f_1(X_t) = S_t I_t / N$, and $f_2(X_t) = I_t$.

$S \rightarrow I \rightarrow R$ stochastic compartment model

Binomial sampling of transitions

$$Y_{\mathsf{S} \to \mathsf{I}} \sim \mathit{Bin}(\Delta X_{\mathsf{S} \to \mathsf{I}}, \theta_{\mathsf{S} \to \mathsf{I}}) \qquad Y_{\mathsf{I} \to \mathsf{R}} \sim \mathit{Bin}(\Delta X_{\mathsf{I} \to \mathsf{R}}, \theta_{\mathsf{I} \to \mathsf{R}})$$

Binomial sampling of transitions

$$Y_{\mathsf{S} \to \mathsf{I}} \sim \mathit{Bin}(\Delta X_{\mathsf{S} \to \mathsf{I}}, \theta_{\mathsf{S} \to \mathsf{I}}) \qquad Y_{\mathsf{I} \to \mathsf{R}} \sim \mathit{Bin}(\Delta X_{\mathsf{I} \to \mathsf{R}}, \theta_{\mathsf{I} \to \mathsf{R}})$$

Cumulative Observations

Outline

- Measles outbreak in Zimbabwe
- Model for low counts in disease outbreaks
- Particle learning
- Simulation study
- Application to outbreak in Zimbabwe

Bayesian inference

$$Y_{tk} \stackrel{ind}{\sim} Bin(\Delta X_{tk}, \theta_k), \qquad k = 1, \dots, K$$
 $\Delta X_{tk} \stackrel{ind}{\sim} Po(\lambda_k f_k(X_{t-1})), \qquad \qquad M$
 $X_{tm} = X_{t-1,m} + \sum_{k=1}^K v_{mk} \Delta X_{tk}, \quad m = 1, \dots, M$
 $\theta_k \stackrel{ind}{\sim} Be(a_{0k}, b_{0k}), \qquad \qquad M$
 $\lambda_k \stackrel{ind}{\sim} Ga(c_{0k}, d_{0k}), \qquad \qquad Mult(N; \chi_1, \dots, \chi_M)$

Filtered distribution:

$$p(X_t, \lambda, \theta|y_{1:t})$$

Forecast distribution

$$p(X_{t+1:T}, y_{t+1:T}|y_{1:t}) = \int \int \int p(X_{t+1:T}, y_{t+1:T}|X_t, \lambda, \theta) p(X_t, \lambda, \theta|y_{1:t}) d\lambda d\theta dX_t$$

Particle learning

Approximating a filtered distribution:

$$p(X_t, \lambda, \theta | y_{1:t}) \approx J^{-1} \sum_{j=1}^J \delta_{(X_t, \psi)^{(j)}} p(\lambda | \psi^{(j)}) p(\theta | \psi^{(j)})$$

where

- $\delta_{(X_t,\psi)^{(j)}}$ indicates a particle location
- ullet ψ are particle sufficient statistics
- $p(\lambda|\psi^{(j)})$ is a joint distribution for all rate parameters
- ullet $p(heta|\psi^{(j)})$ is a joint distribution for all sampling parameters

Intuition:

- each particle represents a current belief about the world
- lots of particles provide uncertainty about this belief

Particle learning: going from t to t+1

Start with
$$p(X_t, \lambda, \theta | y_{1:t}) \approx J^{-1} \sum_{j=1}^J \delta_{(X_t, \psi_t)^{(j)}} p(\lambda | \psi_t^{(j)}) p(\theta | \psi_t^{(j)})$$

- 1. For all particles,
 - a. Sample $\theta^{(j)} \sim p(\theta|\psi^{(j)})$.
 - b. Calculate $w_j \propto p(y_{t+1}|X_t^{(j)},\theta^{(j)},\psi^{(j)})$.
- 2. For j = 1, ..., J
 - a. Sample j^* with probability w_{j^*} .
 - b. Sample $\lambda^{(j)} \sim p(\lambda | \psi^{(j^*)})$
 - c. Sample $\Delta X_{t+1}^{(j)} \sim p(\Delta X | \lambda^{(j)}, \theta^{(j^*)}, X_t^{(j^*)}, y_{t+1})$.
 - d. Update $X_{t+1}^{(j)}$ based on $X_t^{(j^*)}$ and $\Delta X_{t+1}^{(j)}$.
 - e. Update $\psi_{t+1}^{(j)} = \mathcal{S}(\psi_t^{(j^*)}, y_{t+1}, \Delta X_{t+1}^{(j)}).$

End with $p(X_{t+1}, \lambda, \theta | y_{1:t+1}) \approx J^{-1} \sum_{j=1}^{J} \delta_{(X_{t+1}, \psi_{t+1})^{(j)}} p(\lambda | \psi_{t+1}^{(j)}) p(\theta | \psi_{t+1}^{(j)})$

Particle sufficient statistics

(k subscript is implicit on the next 3 slides)

Recall the model

$$egin{array}{lll} Y_{t+1} &\sim extit{Bin}(\Delta X_{t+1}, heta) & \Delta X_{t+1} &\sim extit{Po}(\lambda_t f(X_t)), \ heta | y_{1:t} &\sim extit{Be}(a_t, b_t), & \lambda | y_{1:t} &\sim extit{Ga}(c_t, d_t) \end{array}$$

Set $\psi_t = (a_t, b_t, c_t, d_t)$, then

$$a_{t+1} = a_t + y_{t+1},$$

$$b_{t+1} = b_t + \Delta X_{t+1} - y_{t+1},$$

$$c_{t+1} = c_t + \Delta X_{t+1},$$

$$d_{t+1} = d_t + f(X_t).$$

This defines $\psi_{t+1} = \mathcal{S}(\psi_t, y_{t+1}, \Delta X_{t+1})$.

Conditional forward propagation

Recall the model

$$Y_{t+1} \sim Bin(\Delta X_{t+1}, \theta)$$

 $\Delta X_{t+1} \sim Po(\lambda f(X_t))$

Then $p(\Delta X_{t+1}|\lambda, \theta, X_t, y_{t+1})$ is

$$\Delta X_{t+1} = y_{t+1} + Z_{t+1}$$

$$Z_{t+1} \sim Po([1 - \theta]\lambda f(X_t))$$

by an appeal to Bayes' Rule, a change of variables, and the marginal distribution for Y_t :

$$Y_{t+1} \sim Po(\theta \lambda f(X_t)).$$

One-step ahead predictive distribution

From the previous slide and model construction:

$$Y_{t+1} \sim Po(\theta \lambda f(X_t))$$

 $\lambda | y_{1:t} \sim Ga(c_t, d_t)$

Then

$$Y_{t+1}|\theta,\psi_t,X_t \sim \textit{NegBin}(c_t,e_t)$$

where

$$e_t = \frac{\theta f(X_t)}{d_t + \theta f(X_t)}.$$

and

- c_t is the number of failures,
- Y_{t+1} is the number of successes, and
- e_t is the success probability.

Outline

- Measles outbreak in Zimbabwe
- Model for low counts in disease outbreaks
- Particle learning
- Simulation study
- Application to outbreak in Zimbabwe

Simulation study

- 100 simulations from
 - $X_0 \sim Mult(16100; (.994, .006, 0))$ corresponds to $E[I_0] = 100$
 - $\theta_{S\rightarrow I}, \theta_{I\rightarrow R} \sim Be(50, 950)$ for all k
 - $\lambda_{S \to I} \sim Ga(50, 100)$
 - $\lambda_{I \to R} \sim \textit{Ga}(25, 100)$
 - Ensured simulations had at least one S o I observation in first 5 time points
- Settings
 - 500 particles
 - multinomial resampling

r: I->R

S

Coverage

RMSE

Outline

- Measles outbreak in Zimbabwe
- Model for low counts in disease outbreaks
- Particle learning
- Simulation study
- Application to outbreak in Harare

Harare measles outbreak

- Model
 - Known incubation period: $S \rightarrow E \rightarrow I \rightarrow R$
 - Only observe weekly $E \rightarrow I$ transitions
- Priors
 - $N \sim Bin(1.5M, 0.01)$
 - $X \sim Mult(N, (.998, .001, .001, 0))$
 - $\theta_{S \to E} = \theta_{I \to R} = 0$
 - $\theta_{E \to I} \sim Be(10, 990)$
 - $\lambda_{S \to E} \sim Ga(1,1)$
 - $\lambda_{E \to I} = 1$ and $\lambda_{E \to I} \sim Ga(1,1)$
 - $\lambda_{I \rightarrow R} \sim Ga(1,1)$
- Settings
 - 10,000 particles
 - stratified resampling

Harare measles outbreak

Summary

- discrete-time binomial-Poisson state-space model
- Particle learning (with integration of some parameters)
- Computationally efficient
- Data timely, accurate, disaggregated, usable, e.g. https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv
- Slides: https://github.com/jarad/IDM2016
- tlpl R package: https://github.com/jarad/tlpl

Thank you!

Theoretical results

Specifically, from Section 3.5.1 of Del Moral 2004, for bounded functions f_t and any p>1, the following result holds

$$E_{e_0}^J \left[\left| e_t^J(f_t) - e_t(f_t) \right|^p \right]^{1/p} \leq \frac{a(p)b(t)||f||}{\sqrt{J}}$$

where

- $e_t(f_t)$ is the expectation of f_t under the true filtered distribution at time t,
- $e_t^J(f_t)$ is the expectation of f_t under the particle approximation at time t using J particles,
- a(p) is a function of p,
- b(t) is an increasing function of t that depends on which algorithm is used, and
- \bullet || \cdot || is the supremum norm.