

21MES102L Engineering Graphics and Design School of Mechanical Engineering

Dr.R.SANTHANAKRISHANAN M.E., Ph.D., Associate Professor, Department of Mechanical Engineering, SRM IST, Kattankulathur.

Disclaimer

The content prepared in the presentation are from various sources, only used for education purpose. Thanks to all the sources.

21MES102L Engineering Graphics and Design

E7 Orthographic Projection of Solid of Revolutions

Topics Covered

➤ Projection of Solids of Revolution with its Axis Inclined to one Principal Plane and Parallel to other Plane

Cylinder

Cone

Sphere

Cylinder of Base Diameter 50 mm & Height 120 mm Resting on the HP on a Point on the Circumference of the base with its Axis Inclined 45° to the HP

- ➤ Change the work space environment to **3D Modeling** (WORKSPACE SWITCHING)
- > Complete the preliminary steps (setting UNITS & LIMITS)
- > Select the **TOP** plane in **VIEW CONTROLS**
- > Start with **TOP** View (as the True Shape is visible in **TOP** view)
- ➤ Use Cylinder command from **MODELLING** tool bar to create the Cylinder with given height

View Controls

Provides access to standard and custom views, and 3D projections.

Cylinder Resting on the HP on A Point on the circumference of the base with its Axis Inclined at 45 ° to the HP

Click on the Pull Down to Select the Cylinder

mmand: cylinder

ecify center point of base or [3P/2P/Ttr/Elliptical]

- 1. Specify the center point of the Cylinder
- 2. Specify the Diameter as 50
- 3. Specify the Height as 120.

- ➤ Use **DRAFTING STANDARD** from **VIEW BASE** tool bar for setting the **FIRST ANGLE** of projection.
- ➤ Use BASE command from VIEW BASE tool bar & select the command FROM MODEL SPACE to the select solid & press ENTER & assign the LAYOUT NAME & press enter.

➤ Use DIMENSION tool from

ANNOTATION tool bar & mark
the relevant dimensions.

A cone of base diameter 42 mm and axis length 65 mm rests on the HP on a point in the circumference of the base with one of its slant generators perpendicular to the HP and parallel to the VP. Draw its projections.

- ➤ Change the work space environment to 3D Modeling (WORKSPACE SWITCHING)
- > Complete the preliminary steps (setting UNITS & LIMITS)
- > Select the **TOP** plane in **VIEW CONTROLS**
- > Start with **Top** view (since **True** shape of the solid is visible in **Top** view)
- ➤ Use Cone command from **MODELLING** tool bar to create the Cone with given Base Diameter & Axis length.

Click on the Pull Down to Select the Cone

➤Draw a Vertical
Reference Line from the
Right side of the Base
Point.

➤ Use Rotate Command & Select the Cone

Select objects:

▼ ROTATE Select objects:

Specify the **Right** side Base of the **Cone** as the Base Point

- ➤ To Specify the References
- ➤ Select First the Right side

Bottom Corner of the Cone

> Select **Second** the **Apex** of

Cone

➤ Select **Third** as the **Top**

End point of the Vertical

Reference Line.

Select First the Right side Bottom Corner of the Cone Select Second Apex of the Cone & Select Third as the Top End point of the Vertical Reference Line.

- ➤ Use **DRAFTING STANDARD** from **VIEW BASE** tool bar for setting the **FIRST ANGLE** of projection.
- ➤ Use BASE command from VIEW BASE tool bar & select the command FROM MODEL SPACE to the select solid & press ENTER & assign the LAYOUT NAME & press enter.

Side View

Top View

A cone of base diameter **40** mm and axis length **60** mm has a point of its base circle in the VP, **40** mm above HP. Its axis is inclined at **45°** to the VP and parallel to the HP. Draw its Projections.

- Change the work space environment to 3D Modeling (WORKSPACE SWITCHING)
- > Complete the preliminary steps (setting UNITS & LIMITS)
- > Select the Front plane in VIEW CONTROLS
- > Start with **Front** view (since **True** shape of the solid is visible in **FRONT** view)
- ➤ Use Cone command from **MODELLING** tool bar to create the Cone with given Base Diameter & Axis length.

- > Select the FRONT Plane from VIEW controls
- ➤ Create the Cone For Given

 Base Diameter (40) &

 Height (60)

- Change the plane of view to the TOP
- ➤ Rotate the Cone for 45 ° Axis is inclined with respect to VP

- ➤ Use **DRAFTING STANDARD** from **VIEW BASE** tool bar for setting the **FIRST ANGLE** of projection.
- ➤ Use BASE command from VIEW BASE tool bar & select the command FROM MODEL SPACE to the select solid & press ENTER & assign the LAYOUT NAME & press enter.

REFERENCE BOOKS

- ➤ JEYAPOOVAN T, "ENGINEERING GRAPHICS AND DESIGN", 2023, Vikas Publishing House Pvt Ltd,
- K.V.NATARAJAN, "Engineering Graphics", 2015, Dhanalakshmi Publishers.