Assignment

Due on Wednesday, September 11, 2019

Advanced Lectures on Pattern Processing by Tomoya Sakai

You will write a report on chest X-ray classification experiments in the following senario, using sample codes with tensorflow.

EXPERIMENTS

■ Aims

- ➤ Show your understanding on how to build a convolutional neural network (CNN) classifier.
- > Explain why the resulting classifier is reasonably tuned by providing convincing reasons/evidence.

■ Senario

The task is chest radiography: input and output of the classifier are respectively a chest X-ray image and probabilities of being normal and pneumonia. The experiments use chest X-ray images, which is open to the public as

Kermany, et al., "Labeled optical coherence tomography (OCT) and chest X-ray images for classification", Mendeley Data, Version 2, 2018. (ChestXRay2017.zip) DOI: http://dx.doi.org/10.17632/rscbjbr9sj.2#file-41d542e7-7f91-47f6-9ff2-dd8e5a5a7861

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

> To build and evaluate the CNN classifier, you will undertake two practices, namely, Part I (mandatory) and Part II (optional), as described below. Sample codes in Jupyter Notebook (ipynb) are available from

https://github.com/tsakailab/prml/tree/master/ChestXray

On the LACS course website, you can find the links to open the sample codes in Google Colabratory.

> Part I: Design Your Own CNN (mandatory)
♦ Dataset: The sample code <u>ChestXray CCN bbXXXXXXXX.ipynb</u> uses a resized
version of the chest X-ray images.
☐ Write a summary of the dataset in your report.
♦ CNN modeling and training: Complete ChestXray CCN bbXXXXXXXX.ipynb to build
your own CNN classifier. Read the code and comments to see how it works and what
to do.
\square Describe the CNN architecture and explain why you designed it as such.
\square When fitting the CNN model to the training dataset, how was the convergence of
the training loss and accuracy? How did you terminate the training?
♦ Evaluation: Observe the predictions and visualized feature maps.
☐ Report the prediction performance (not only the test accuracy but precision and
recall).
☐ What did (should) you do to achieve a good performance? Show why as well.
☐ What do the feature maps tell you?
❖ Private scoring: You can save the CNN model in h5 format at the end of the code.
Then, open ChestXray PrivateScore.ipynb and upload your best CNN model.
\square Include in the report the displayed test loss and accuracy.
☐ What do you think is the purpose of this private scoring?
♦ Submission of your code: Upload your ipynb at LACS. The filename should be
ChestXray_CNN_bbXXXXXXXX.ipynb where XXXXXXXX is your student ID. Do not
clear the outputs of all cells. Indicate your modification clearly as comments or texts.
The shorter the running time and the simpler your code, the better.
Part II: Transfer Learning (optional)
♦ Play around with <u>ChestXray FCN TL.ipynb</u> if you like.
☐ How is transfer learning implemented?
\square What is the FCN with GAP? Explain its advantages.
☐ Which pretrained model is used in the original paper, and how much accuracy was
achieved by transfer learning?
REPORTING REQUIREMENTS
$\label{eq:chestxray_bbxxxxxxxx} \square \ \ \text{The PDF filename of your report should be } \\ \text{Chestxray_bbxxxxxxx.pdf where } \\ \text{XXXXXXXX}.$
is your student ID

☐ Clearly written in Japanese or English.
\square The contents fill at least four pages in A4 format including figures.
\square Describe what each figure shows, and explain what it means.
\square Do not contain source codes. Include the lines only if necessary.
\square Provide convincing reasons for your definitions/settings.
\square Try to explain why for every cause and result.
$\hfill\Box$ Cite reliable sources and show the list of references. Note that a URL alone is not a citation.
\square Justify if your report does not satisfy any one of these requirements.

Submission: Assignment, Advanced Lectures on Pattern Processing @LACS

Due date: Wednesday, September 11, 2019

Questions: tsakai@cis.nagasaki-u.ac.jp