Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Институт математики и механики им. Н. И. Лобачевского Направление: 01.03.01 – Математика

КОНТРОЛЬНАЯ РАБОТА ПО ЧИСЛЕННЫМ МЕТОДАМ №2 (научно-исследовательская работа)

Вариант № 5

Обучающийся: Греков Лев Евгеньевич 05-104

Преподаватель:

доцент, к.н. Насибуллин Рамиль Гайсаевич

Дата сдачи контрольной: _____

1 Теоритическая Часть

1.1 Линейные Сплайны

Для построения сплайна 1 порядка, я просто для каждой пары узлов строил полином Лагранжа в форме Ньютона (Програмно реализовал в прошлой контрольной).

Для нахождения Максимальной погрешности использовался иттеративный метод. Пробегал от начала до конца промежутка с шагом 10e-6

```
fun findMaxError(lowLim: Double, upLim: Double,f: (Double)
     -> Double?, g: (Double) -> Double?, epsilon: Double = 10e
     -6): Double {
      val a = min(lowLim, upLim)
      val b = max(lowLim,upLim)
      var x = a
      var maxError = Double.MIN_VALUE
      while (x \le b) {
           val fValue = f(x)
           val gValue = g(x)
           if(fValue!= null && gValue != null){
               val error = abs(fValue - gValue)
10
               if (error > maxError) {
                   maxError = error
12
               }
13
           }
15
           x += epsilon
      }
17
      return maxError
18
```

1.2 Кубические Сплайны

1.2.1 По определению

Для того, чтобы определить 4n коэффициенты всех многочленов должны быть сформулированы несколькими уравнениями. Прежде всего, известно, что каждый многочлен проходит ровно через две точки. Следовательно, имеем 2n уравнения

$$f_{1}(x_{1}) = y_{1} \Leftrightarrow a_{1}x_{1}^{3} + b_{1}x_{1}^{2} + c_{1}x_{1} + d_{1} = y_{1}$$

$$f_{1}(x_{2}) = y_{2} \Leftrightarrow a_{1}x_{2}^{3} + b_{1}x_{2}^{2} + c_{1}x_{2} + d_{1} = y_{2}$$

$$f_{2}(x_{2}) = y_{2} \Leftrightarrow a_{2}x_{2}^{3} + b_{2}x_{2}^{2} + c_{2}x_{2} + d_{2} = y_{2}$$

$$f_{2}(x_{3}) = y_{3} \Leftrightarrow a_{2}x_{3}^{3} + b_{2}x_{3}^{2} + c_{2}x_{3} + d_{2} = y_{3}$$

$$\cdots$$

$$f_{n}(x_{n}) = y_{n} \Leftrightarrow a_{n}x_{n}^{3} + b_{n}x_{n}^{2} + c_{n}x_{n} + d_{n} = y_{n}$$

$$f_{n}(x_{n+1}) = y_{n+1} \Leftrightarrow a_{n}x_{n+1}^{3} + b_{n}x_{n+1}^{2} + c_{n}x_{n+1} + d_{n} = y_{n+1},$$

Кроме того, первая и вторая производные всех многочленов идентичны в точках, где они касаются соседнего многочлена.

$$\frac{d}{dx}f_1(x) = \frac{d}{dx}f_2(x) \Leftrightarrow 3a_1x_2^2 + 2b_1x_2 + c_1 = 3a_2x_2^2 + 2b_2x_2 + c_2$$

$$\frac{d}{dx}f_2(x) = \frac{d}{dx}f_3(x) \Leftrightarrow 3a_2x_3^2 + 2b_2x_3 + c_2 = 3a_3x_3^2 + 2b_3x_3 + c_3$$

$$\cdots$$

$$\frac{d}{dx}f_{n-1}(x) = \frac{d}{dx}f_n(x) \Leftrightarrow 3a_{n-1}x_n^2 + 2b_{n-1}x_n + c_{n-1} = 3a_nx_n^2 + 2b_nx_n + c_n.$$

Аналогично, для второй производной

$$\frac{d^2}{dx^2} f_1(x) = \frac{d^2}{dx^2} f_2(x) \Leftrightarrow 6a_1 x_2 + 2b_1 = 6a_2 x_2 + 2b_2$$

$$\frac{d^2}{dx^2} f_2(x) = \frac{d^2}{dx^2} f_3(x) \Leftrightarrow 6a_2 x_3 + 2b_2 = 6a_3 x_3 + 2b_3$$

$$\cdots$$

$$\frac{d^2}{dx^2} f_{n-1}(x) = \frac{d^2}{dx^2} f_n(x) \Leftrightarrow 6a_{n-1} x_n + 2b_{n-1} = 6a_n x_n + 2b_n.$$

Это добавляет еще один 2(n-1) уравнения. Остается 2 уравнения: Для построения естественного кубического сплайна, мы приравниваем 2ую производную на начале

и конце промежутка к 0.

$$6a_1x_1 + 2b_1 = 0$$
$$6a_nx_{n+1} + 2b_n = 0.$$

Осталось решить систему, тогда мы найдем коэфиценты для полиномов участков сплайна. Матрица 16 на 16 плохо смотрится на странице, поэтому я её покажу на компьютере при необходимости:

1.2.2 Метод Моментов

Для Краткости изложения, я приведу только некоторые формулы. Полностью не буду описывать как их получить. Полный порядок действий я смотрел на сайте: ссылка. Так же можно скачать документ с более наглядными действиями (На сайте картинки с формулами плющит) Скачать Документ. Дублирую ссылку в текстовом виде: https://textarchive.ru/c-2026214.html Задача сводится к нахождению уравнений Уравнений:

$$\mu_k M_{k-1} + 2M_k + \lambda_k M_{k+1} = d_k k = 1..n.$$

$$\lambda_k = \frac{h_{k+1}}{h_k + h_{k+1}} \quad \mu_k = \frac{h_k}{h_k + h_{k+1}} \quad d_k = \frac{6}{h_k + h_{k+1}} \left(\frac{y_{k+1} - y_k}{h_{k+1}} - \frac{y_k - y_{k-1}}{h_k} \right)$$

Так же нужно учесть условия естественного сплайна: $M_0 = 0$, $M_n = 0$. Учтём эти уравнения, причем первое из этих условий запишем перед уравнениями, а второе условие – после. Тогда получаем систему n+1 линейных уравнений с n+1 неизвестными M_k , k = 0..n Полученная система имеет трёхдиагональную матрицу. Чтобы найти полином на сигменте k, Подставляем полученые значения в уравнение.

$$x^{3} \left(\frac{M_{k} - M_{k-1}}{6h_{k}} \right) + x^{2} \left(\frac{M_{k-1} \cdot x_{k} - M_{k} \cdot x_{k-1}}{2h_{k}} \right) +$$

$$x \left(\frac{h_{k} \cdot M_{k-1} - h_{k} \cdot M_{k} + (3M_{k} \cdot x_{k-1}^{2} - 3M_{k-1} \cdot x_{k}^{2} + 6y_{k} - 6y_{k-1})}{6h_{k}} \right) +$$

$$\left(\frac{M_{k} \cdot h_{k} \cdot x_{k-1} - h_{k} \cdot M_{k-1} \cdot x_{k} + (-M_{k} \cdot x_{k-1}^{3} + M_{k-1} \cdot x_{k}^{3} - 6x_{k-1} \cdot y_{k} + 6x_{k} \cdot y_{k-1})}{6h_{k}} \right)$$

(Особые благодарности Булату Абдрахманову в помощи с выводом формулы)

1.2.3 Сравнение Методов

Проверим скорость расчета кубического сплайна. Создадим сплайн на 300 узлах и сравним время вычисления по определению и через моменты.

$$\frac{\text{(по определению)}}{\text{(метод моментов)}} = \frac{1983774800}{5615200} \approx 353.29$$

Таким образом, метод моментов оказывается быстрее, чем вычисление по определению в 353.29 раза для наших радомносгенерированных 300 узлов. Это объясняется тем, что при вычислении по определению мы используем метод Гаусса с алгоритмической сложностью $\mathbf{O}(\mathbf{n}^3)$, в то время как для метода моментов используется метод Томаса (Для решения 3х Диагональной матрицы), который имеет линейную сложность $\mathbf{O}(\mathbf{n})$.

1.3 Дополнительная часть

Для интереса я построил полиномы Лагранжа для этих же узлов, чтобы узнать, какой интерполянт лучше приближает функцию для данных узлов

Минимальная максимальная погрешность = $2.739643739912978 \times 10^{-5}$ у интерполянта $L_2(x)$. , Т.е Полином Лагранжа, построенный по узлам Чебышева для данной функции и узлов, интерполирует лучше, чем сплайн.

Так же, для интересна, разность между погрешностями полиномов Лагранжа и Кубическими сплайнами для первого и второго набора узлов.

Максимальная погрешность между $S_1^3(x)$ и $L_1(x)=0.009572481933644017$. Максимальная погрешность между $S_2^3(x)$ и $L_2(x)=0.005305133519867944$.

К проекту прилогается программа, код которой доступен на **github**. так же в приложении придусмотрен графический интерфейс для отрисовки рассмотренных выше интерполянтов.

github: https://github.com/LevGrekov/SplineInterpolationNumericsMethods

2 Практическая Часть (Результаты)

Первый Линейный Сплайн:

$$S_3(x) = \begin{cases} 0.407366x + 2.013897, & \text{если } -1.0 \leq x < -0.5, \\ 0.634824x + 2.127626, & \text{если } -0.5 \leq x < 0.0, \\ 0.902165x + 2.127626, & \text{если } 0.0 \leq x < 0.5, \\ 1.226186x + 1.965615, & \text{если } 0.5 \leq x \leq 1.0. \end{cases}$$

$$r_0 = f(x_0) - S(x_0) = 1.749245 - 1.759293 = -0.010048,$$

 $r_1 = f(x_1) - S(x_1) = 2.819636 - 2.841463 = -0.021827,$
 $r_2 = f(x_2) - S(x_2) = 2.367413 - 2.385388 = -0.017975.$
 $r_m = 0.022402324883997515$

Второй Линейный Сплайн:

$$S_3(x) = \begin{cases} 0.398644x + 2.000989, & \text{если} - 0.9511 \le x < -0.5878, \\ 0.614092x + 2.127626, & \text{если} - 0.5878 \le x < 0, \\ 0.928995x + 2.127626, & \text{если} \ 0 \le x < 0.5878, \\ 1.238658x + 1.945611, & \text{если} \ 0.5878 \le x \le 0.9511. \end{cases}$$

$$r_0 = f(x_0) - S(x_0) = 1.749245 - 1.751837 = -0.002591,$$

 $r_1 = f(x_1) - S(x_1) = 2.819636 - 2.830366 = -0.010731,$
 $r_2 = f(x_2) - S(x_2) = 2.367413 - 2.393053 = -0.025641.$
 $r_m = 0.025697081711057113.$

Первый Кубический Сплайн:

$$S_3(x) = \begin{cases} 0.190466x^3 + 0.571397x^2 + 0.931147x + 2.156746, & \text{если} - 1.0 \le x < -0.5, \\ -0.042498x^3 + 0.221951x^2 + 0.756424x + 2.127626, & \text{если} - 0.5 \le x < 0.0, \\ 0.139061x^3 + 0.221951x^2 + 0.756424x + 2.127626, & \text{если} 0.0 \le x < 0.5, \\ -0.287029x^3 + 0.861087x^2 + 0.436857x + 2.180887, & \text{если} 0.5 \le x \le 1.0. \end{cases}$$

$$r_0 = f(x_0) - S(x_0) = 1.749245 - 1.751481 = -0.002236,$$

 $r_1 = f(x_1) - S(x_1) = 2.819636 - 2.827655 = -0.008020,$
 $r_2 = f(x_2) - S(x_2) = 2.367413 - 2.365109 = 0.002303,$
 $r_m = 0.0.009622095298745137$

Второй Кубический Сплайн:

$$S_3(x) = \begin{cases} 0.246483x^3 + 0.703258x^2 + 1.034954x + 2.182088, & \text{если} - 0.9511 \le x < -0.5878, \\ -0.021703x^3 + 0.230351x^2 + 0.756987x + 2.127626, & \text{если} - 0.5878 \le x < 0, \\ 0.105971x^3 + 0.230351x^2 + 0.756987x + 2.127626, & \text{если} \ 0 \le x < 0.5878, \\ -0.382832x^3 + 1.092284x^2 + 0.250355x + 2.226890, & \text{если} \ 0.5878 \le x \le 0.9511. \end{cases}$$

$$r_0 = f(x_0) - S(x_0) = 1.749245 - 1.749775 = -0.000530,$$

 $r_1 = f(x_1) - S(x_1) = 2.819636 - 2.823486 = -0.003850,$
 $r_2 = f(x_2) - S(x_2) = 2.367413 - 2.365184 = 0.002229,$
 $r_m = 0.005332528901208722$

Первый Полином Лагранжа

$$L_1(x) = 0.005599x^4 + 0.032188x^3 + 0.265942x^2 + 0.760448x + 2.127626$$

$$r_0 = f(x_0) - L_1(x_0) = 1.749245 - 1.749225 = 0.000020$$

$$r_1 = f(x_1) - L_1(x_1) = 2.819636 - 2.819675 = -0.000039$$

$$r_2 = f(x_2) - L_1(x_2) = 2.367413 - 2.367394 = 0.000018$$

$$r_m = 4.982320857882527 \times 10^{-5}$$

Второй Полином Лагранжа

$$L_2(x) = 0.005599x^4 + 0.032188x^3 + 0.265939x^2 + 0.760423x + 2.127626$$

$$r_0 = f(x_0) - L_2(x_0) = 1.749245 - 1.749240 = 0.000005$$

$$r_1 = f(x_1) - L_2(x_1) = 2.819636 - 2.819656 = -0.000020$$

$$r_2 = f(x_2) - L_2(x_2) = 2.367413 - 2.367387 = 0.000026$$

$$r_m = 2.739643739912978 \times 10^{-5}.$$