Administrative Matters

- Course: Graph Theory
- ☐ Time/Location: M56-EC016
- □ Instructor: 李毅郎
- E-mail: ylli@cs.nctu.edu.tw
- URL: https://people.cs.nctu.edu.tw/~ylli/
- □ Office: エ三441
- Office Hours: T56 or make an appointment by @
- ☐ Teaching Assistants:
 - ✓ 張竣翔:<u>lemonade.cs07@nycu.edu.tw</u> 黃晨凱: <u>huangkevin88.ee07@nctu.edu.tw</u>
 - ✓ 石孟祐: yoyochang24.c@nycu.edu.tw 李承翰: darrenleeleelee1@gmail.com
 - ✓ 倪子傑: nibilly118@gmail.com 白 育濬: a0935796620@gmail.com
 - ✓ 耿鈺展: kch772018@gmail.com
- ☐ Prerequisites: none
- Textbook: "Graph Theory and Its Applications" by Jonathan L. Gross and Jay Yellen, Second Edition. Publisher: Chapman & Hall/CRC

Administrative Matters

- Course goal: This course introduces well-known graph models and their applications, and also offers deeper discussions in various well-known graph models and their deduction processes, which are helpful preliminary practices to develop your own solid research model.
- Course contents:
 - ✓ Introduction to Graph Models
 - ✓ Structures and Representation
 - ✓ Trees
 - ✓ Spanning Trees
 - Connectivity
 - ✓ Optimal Graph Traversals
 - ✓ Planarity and Kuratowski's Theorem
 - Drawing Graphs and Maps
 - ✓ Graph Colorings
 - Network Flows and Applications

Administrative Matters

- Grading
 - ✓ assignments: 35%,
 - ✓ Two tests: 65%, (The better one : 35%, the worse one 30%)
 - ✓ Class participation: bonus
- Course Web Site: eCampus
- Academic Honesty: Avoiding cheating at all cost.

Preliminary

- Geometria (Euclidean geometry, Solid geometry, non-Euclidean geometry, Riemannian geometry, Algebraic geometry, Differential geometry, Topology) & Algebra
- Manifold: Each point of an n-dimensional manifold has a neighborhood that is homeomorphic (topological isomorphical) to the Euclidean space of dimension n.
- □ 1-D manifold: line and circle. 2-D manifold: surface including plane, sphere and torus.
- Graph theory can be regarded as 1-D topology.

柏拉圖的形上學將世界切割為兩個不同的區塊:「形式的」智慧世界、以及我們所感覺到的世界。我們所感覺到的世界是從有智慧的形式或理想裡所複製的,但這些複製版本並不完美。那些真正的形式是完美的而且無法改變的,而且只有使用智力加以理解才能實現之,這也表示了人的智力並不包含知覺能力或想像力。

source: wiki

Preliminary

Preliminary

■ **The problem of Seven Bridges of Königsberg** solved by Leonhard Euler in 1735

Figure source: wiki

Chap 1. Introduction to Graph Models

Yih-Lang Li (李毅郎)

Computer Science Department

National Chiao Tung University, Taiwan

The sources of most figure images are from the course slides (Graph Theory) of Prof. Gross

Outline

- Graph Theory Introduction
- Graphs and Digraphs
- Common Families of Graphs
- Graph Modeling Applications
- Walks and Distance
- Paths, Cycles, and Trees
- Vertex and Edge Attributes: More Applications

1.1 Graphs and Digraphs

- **DEFINITION**: A *graph* G = (V,E) is a mathematical structure consisting of two finite sets V and E. The elements of V are called *vertices* (or *nodes*), and the elements of E are called *edges*. Each edge has a set of one or two vertices associated to it, which are called its *endpoints*.
- **TERMINOLOGY**: An edge is said to *join* its endpoints. A vertex joined by an edge to a vertex v is said to be a *neighbor* of v.
- **DEFINITION**: The (*open*) *neighborhood* of a vertex v in a graph G, denoted N(v), is the set of all the neighbors of v. The *closed neighborhood* of v is given by $N[v] = N(v) \cup \{v\}$.

■ **DEFINITION**: A *simple graph* has neither self-loops nor multi-edges. A (*general*) *graph* may have self-loops and/or multi-edges.

$$E_A = \{pq, pr, ps, rs, qs\}$$

 $E_B=\{a, b, c, d, f, g, h, k\}$ can use vertex to represent edge like E_A ?

What's the difference between E_A and E_B ?

Line drawings of a graph A and a graph B.

Simple, General, Null, and Trivial Graphs and Edge Directions

- **DEFINITION**: A *proper edge* is an edge that joins two distinct vertices.
- **DEFINITION**: A *self-loop* is an edge that joins a single endpoint to itself.
- **DEFINITION**: A *multi-edge* is a collection of two or more edges having identical endpoints. The *edge multiplicity* is the number of edges within the multi-edge.
- **DEFINITION**: A *simple graph* has neither self-loops nor multi-edges.
- **DEFINITION**: A *loopless graph* (or *multi-graph*) may have multi-edges but no self-loops.
- **DEFINITION**: A *(general) graph* may have self-loops and/or multi-edges.
- **DEFINITION**: A *null graph* is a graph whose vertex- and edge-sets are empty.
- **DEFINITION**: A *trivial graph* is a graph consisting of one vertex and no edges.
- DEFINITION: A directed edge (or arc, from tail to head), oppositely directed, multi-arc, arc multiplicity, directed graph (or digraph), simple digraph, mixed graph (or partially directed graph)
- □ Forward: along the direction; backward: anti the direction.

Formal Specification of Graphs and Digraphs

- **DEFINITION**: The *underlying graph* of a directed or mixed graph G is the graph that results from removing all the designations of head and tail from the directed edges of G (i.e., deleting all the edge directions).
- **DEFINITION**: A *formal specification of a simple graph* is given by an *adjacency table* with a row for each vertex, containing the list of neighbors of that vertex.
- A formal specification of a general graph G = (V, E, endpts) consists of a list of its vertices, a list of its edges, and a two-row incidence table (specifying the endpts function) whose columns are indexed by the edges. The entries in the column corresponding to edge e are the endpoints of e.

Degree of a Vertex

- **DEFINITION**: A *formal specification of a general digraph or a mixed graph* D = (V, E, endpts, head, tail) is obtained from the formal specification of the underlying graph by adding the functions $head : E_G \rightarrow V_G$ and $tail : E_G \rightarrow V_G$, which designate the *head* vertex and *tail* vertex of each arc.
 - ✓ How to add *head* and *tail* function ordered-pair, mark head or fixed positioning
- □ DEFINITION: Adjacent vertices, adjacent edges, incident, degree/valence, d-valent vertex
- **DEFINITION**: The *degree sequence* of a graph is the sequence formed by arranging the vertex degrees in non-increasing order.
- Two graphs with different structures may have the same degree sequence.

< 6, 6, 4, 1, 1, 0 > v u w z y x

Two graphs with the same degree sequence < 3, 3, 2, 2, 2, 2>

Degree of a Vertex

- **Proposition 1.1.1.** A non-trivial simple graph G must have at least one pair of vertices whose degrees are equal.
 - ✓ **Proof:** pigeonhole principle.
- **Theorem 1.1.2** [Euler's Degree-Sum Theorem]. The sum of the degrees of the vertices of a graph is twice the number of edges.
- □ Corollary 1.1.3. *In a graph, there is an even number of vertices having odd degree.*
- □ Corollary 1.1.4. The degree sequence of a graph is a finite, non-increasing sequence of nonnegative integers whose sum is even.
- **Question:** For a non-increasing nonnegative sequence of integers, is this sequence the degree sequence of some graph if the sum of all integers is even?
- **Example:** To construct a graph whose degree sequence is < 5, 4, 3, 3, 2, 1, 0 >

$$v_1 v_2 v_3 v_4 v_5 v_6 v_7$$

Graphic Sequences

- **Theorem 1.1.5.** Suppose that $\langle d_1, d_2, ..., d_n \rangle$ is a sequence of nonnegative integers whose sum is even. Then there exists a graph with vertices $v_1, v_2, ..., v_n$ such that $deg(v_i)=d_i$, for $i=1, \dots, n$ 1, ..., n.
- **DEFINITION:** A sequence $\langle d_1, d_2, ..., d_n \rangle$ is said to be graphic if there is a permutation of it that is the degree sequence of some simple graph. Such a simple graph is said to *realize* the sequence.
- **Theorem 1.1.6.** Let $\langle d_1, d_2, ..., d_n \rangle$ be a graphic sequence, with $d_1 \geq d_2 \geq ... \geq d_n$. Then there is a simple graph with vertex-set $\{v_1, ..., v_n\}$ satisfying $deg(v_i)=d_i$ for i=1, 2, ..., n, such that v_1 is adjacent to vertices v_2 , ..., v_{d_1+1} .
 - **✓** Proof:

Proof: $r = |N_G(v_1) \cap \{v_2, ..., v_{d_1+1}\}| \text{ Select G such that r is maximum.}$ Assume there is a vertex v_s , $2 \le s \le d_1 + 1 < t$, $deg(v_1) \ge deg(v_s) \ge deg(v_{d_1+1}) \ge deg(v_t)$, In case $deg(v_s) > deg(v_t)$, $\exists v_k : G \rightarrow \tilde{G}$, $|N_{\tilde{G}}(v_1) \cap \{v_2, ..., v_{d_1+1}\}| = r+1 \rightarrow contradiction$ to the assumption.

In case $deg(v_s) = deg(v_t)$, swap v_t with v_s .

Graphic Sequences

Corollary 1.1.7 [Havel and Hakimi]. A sequence $< d_1, d_2, ..., d_n > of nonnegative integers such that <math>d_1 \ge d_2 \ge ... \ge d_n$ is graphic if and only if the sequence $< d_2 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n > is graphic.$

```
ALGORITHM: RECURSIVE GRAPHICSEQUENCE (\langle d_1, d_2, \dots, d_n \rangle)

Input: a non-increasing sequence \langle d_1, d_2, \dots, d_n \rangle.

Output: TRUE if the sequence is graphic; FALSE if it is not.

If d_1 = 0 && d_n = 0

Return TRUE

Else

If d_n < 0

Return FALSE

Else

Let \langle a_1, a_2, \dots, a_{n-1} \rangle be a non-incr permutation of \langle d_2 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n \rangle.

Return GraphicSequence (\langle a_1, a_2, \dots, a_{n-1} \rangle)
```

Example. $<5,4,3,2,2,1> \rightarrow <3,2,1,1,0> \rightarrow <1,0,0,0> \rightarrow <0,0,-1>$

Indegree and Outdegree in a Digraph

- **DEFINITION**: The *indegree* of a vertex v in a digraph is the number of arcs directed to v; the *outdegree* of vertex v is the number of arcs directed from v. Each self-loop at v counts one toward the indegree of v and one toward the outdegree.
- □ **Theorem 1.1.8.** In a digraph, the sum of the indegrees and the sum of outdegrees both equal the number of edges.

1.2 Common Families of Graphs

Regular Graphs

■ **DEFINITION**: A regular graph is a graph whose vertices have common degree *k* and is denoted *k*-regular graph.

- *Platonic graph*: Only five types of this kind of graphs (in "Timaeus dialogue" & "The elements") and each of them consists of regular polygons
 - ✓ *Tetrahedron*: 4 regular triangles; *cube*: 6 squares; *Octahedron*: 8 regular triangles; *Dodecahedron*: 12 regular pentagons; *Icosahedron*: 20 regular triangles
 - ✓ **Property 1**: The number of polygons adjacent to each vertex is the same.
 - ✓ **Property 2**: There exists a sphere such that all vertices are on its surface.
 - ✓ **Property 3**: The sum of vertex number and face number equals to the edge number plus 2.

Regular Graphs

Peterson graph

Bouquets, Dipoles, Path Graphs, and Cycle Graphs

DEFINITION: A graph consisting of a single vertex with n self-loops is called a **bouquet** and is denoted B_n .

DEFINITION: A graph consisting of two vertices and n edges joining them is called a *dipole* and is denoted D_n .

Path graphs P₂ and P₄

Cycle graph C_1 , C_2 , and C_4

Hypercubes, Circular Ladders, and Circulant Graphs

 $lue{}$ Hypercube: $oldsymbol{\mathit{Q}}_{3}$

- \square Circular ladder graph: CL_4
- **DEFINITION**: To the group of integers $Z_n = \{0, 1, ..., n-1\}$ under addition modulo n and a set $S \subseteq \{1, 2, ..., n-1\}$, the *circulant graph* circ(n : S) has a vertex set Z_n , and two vertices i and j are adjacent if and only if there is a number $s \in S$ such that $i+s=j \mod n$ or $j+s=i \mod n$.
 - ✓ The elements of the set S are called *connections*.

Intersection, Interval Graphs, and Line Graphs

- **DEFINITION**: A simple graph G with vertex-set $V_G = \{v_1, v_2, ..., v_n\}$ is an *intersection graph* if there exists a family of sets $F = \{S_1, S_2, ..., S_n\}$ such that vertex v_i is adjacent to v_j if and only if $i \neq j$ and $S_i \cap S_j \neq \emptyset$.
- **DEFINITION**: A simple graph is an *interval graph* if it is an intersection graph corresponding to a family of intervals on the real line.
- **DEFINITION**: The *line graph* L(G) of a graph G has a vertex for each edge of G, and two vertices in L(G) are adjacent if and only if the corresponding edges in G have a vertex in common.

1.3 Graph Modeling Applications

- ☐ An optimal assignment of employees to jobs
- ☐ An acquaintance network
- ☐ Geometric Polyhedra A non-regular 1-skeleton of a polyhedron

- Butterfly interconnection
- Assigning broadcasting frequencies

	В	С	D	E	F	G
A	55	110	108	60	150	88
В		87	142	133	98	139
C			77	91	85	93
D				75	114	82
E					107	41
F						123

1.3 Graph Modeling Applications

Activity-scheduling networks

- ☐ Flow diagrams for computer programs (auto-tracing & auto-verification)
- Lexical Scanners
 - ✓ Ex. if and ifabc

1.4 Walks and Distance – Walks and Directed Walks

- **DEFINITION**: In a graph G, a walk from vertex v_0 to vertex v_n is an alternating sequence $W = \langle v_0, e_1, v_1, e_2, ..., v_{n-1}, e_n, v_n \rangle$ of vertices and edges, such that endpts $(e_i) = \{v_{i-1}, v_i\}$, for i = 1, ..., n.
 - ✓ For directed graph, W is a *directed walk* if each edge e_i is directed from vertex v_{i-1} to vertex v_i . $(tail(e_i) = v_{i-1})$ and $tail(e_i) = v_i$
- \square For a simple graph, $W = \langle v_0, v_1, ..., v_n \rangle$
- For a general graph, $W = \langle v_0, e_1, e_2, ..., e_n, v_n \rangle$
- **DEFINITION**: The *length* of a walk or directed walk is the number of edge-steps in the walk sequence.
- **DEFINITION**: A *close walk* (or *closed directed walk*) is a nontrivial walk (or directed walk) that begins and ends at the same vertex. An *open walk* (or *open directed walk*) begins and ends at different vertices.
- **DEFINITION**: The *concatenation* of two walks $W_1 = \langle v_0, e_1, ..., v_{k-1}, e_k, v_k \rangle$ and $W_2 = \langle v_k, e_{k+1}, v_{k+1}, e_{k+2}, ..., v_{n-1}, e_n, v_n \rangle$ such that walk W_2 begins where walk W_1 ends, is the walk $W_1 = \langle v_0, e_1, ..., v_{k-1}, e_k, v_k, e_{k+1}, ..., v_{n-1}, e_n, v_n \rangle$
- □ Sub-walk

1.4 Walks and Distance – Walks and Directed Walks

Distance, Eccentricity, Diameter, and Radius

- **DEFINITION**: The *distance* d(s, t) from a vertex s to a vertex t in a graph G is the length of a shortest s-t walk if one exists; otherwise, $d(s, t) = \infty$
 - ✓ Directed distance
- **DEFINITION**: The *eccentricity* of a vertex v in a graph G, denoted ecc(v), is the distance from v to a vertex farthest from v. That is, $ecc(v) = \max\{d(v, x)\}$
- **DEFINITION**: The *diameter* of a graph G, denoted diam(G), is the maximum of the vertex eccentricities in G or, equivalently, the maximum distance between two vertices in G. That is $diam(G) = \max_{x \in V_G} \{ecc(x)\} = \max_{x,y \in V_G} \{d(x,y)\}$
- **DEFINITION**: The *radius* of a graph G, denoted rad(G), is the mnimum of the vertex eccentricities. That is, $rad(G) = \min_{x \in V_C} \{ecc(x)\}$
- **DEFINITION**: A *central vertex* v of a graph G is a vertex with minimum eccentricity. Thus, ecc(v) = rad(G).
- **Example.** diam(G) = 4, rad(G) = 2

Connectedness, Strongly Connected Digraph

- DEFINITIONS: reachable from; connected; connected (digraph);
- DEFINITIONS: mutually reachable; strongly connected
- DEFINITIONS: strongly orientable; strong orientation

Application of Connectedness to Rigidity

- Rigidity of Rectangular Fameworks: Consider a 2-dimensional framework of steel beams connected by joints that allow each beam to swivel in the plane.
- **DEFINITION**: the framework is said to be *rigid* if none of its beams can swivel.

Non-rigid

rigid

- Checking rule: Rigidity can be judged by checking if every rectangle must keep their center lines in perpendicular

 C₁ C₂ C₃
 - ✓ A diagonal brace in a rectangle at row *i* and column $j \rightarrow r_i \perp c_j$
 - \checkmark \bot is not completely transitive but can be formed as a sequence
 - $ightharpoonup r_i \perp c_i \& c_i \perp r_k \rightarrow r_i /\!\!/ r_k$ and $r_i \perp c_i \perp r_k$ but not $r_i \perp r_k$

$$r_1 \perp c_2 \& c_2 \perp r_2 \& c_1 \perp r_2$$

$$r_1 \perp c_2 \perp r_2 \perp c_1 \rightarrow r_1 \perp c_1$$

$$r_1 \perp c_2 \& r_1 \perp c_3 \& r_2 \perp c_2 \& r_2 \perp c_3 \& r_3 \perp c_1$$

 $r_1 \perp c_2 \perp r_2 \perp c_3 \perp r_1 \& r_3 \perp c_1$

Application of Connectedness to Rigidity

- **OBSERVATION**: If every pair row i and column j has a related perpendicularity sequence starting at r_i and ending at c_i then the framework is rigid.
- We can build a bipartite graph for perpendicularity sequence by forming a row node set and a column node set and inserting an edge between a row node and a column node if they have perpendicularity relation.

$$r_1 \perp c_2 \& r_1 \perp c_3 \& r_2 \perp c_1 \& r_3 \perp c_1 \& r_3 \perp c_3$$

 $c_2 \perp r_1 \perp c_3 \perp r_3 \perp c_1 \perp r_2$

■ **Theorem 1.4.1.** A rectangular framework is rigid if only if its associated bipartite graph is connected.

1.5 Paths, Cycles, and Trees

- **DEFINITION**: *trail* (no repeated edges); *path* (no repeated vertices and edges); *trivial*
- **TERMINOLOGY**: no universally agreed-upon terminology for walks, trail, and paths.

$$T = \langle v, a, b, c, d, e, u \rangle$$

DEFINITION: Given a walk $W = \langle v_0, e_1, v_1, ..., v_{n-1}, e_n, v_n \rangle$ that contains a nontrivial closed subwalk $W' = \langle v_k, e_{k+1}, v_{k+1}, ..., v_{m-1}, e_m, v_k \rangle$, the *reduction of walk W by subwalk W'*, denoted W - W', is the walk

$$W - W' = \langle v_0, e_1, ..., v_{k-1}, e_k, v_k, e_{m+1}, v_{m+1}, ..., v_{n-1}, e_n, v_n \rangle$$

Thus, W - W' is obtained by deleting from W all of the vertices and edges of W' except v_k .

DEFINITION: Given two walks A and B, the walk B is said to be a *reduced walk of A* if there exists a sequence of walks $A = W_1, W_2, ..., W_r = B$ such that for each i = 1, ..., r - 1, walk W_{i+1} is the reduction of W_i by some closed subwalk of W_i .

Deleting Closed Subwalks from Walks and Cycles

- **Lemma 1.5.1.** Every open x-y walk W is either an x-y path or contains a closed subwalk.
- **Theorem 1.5.2.** Let W be an open x-y walk. Then either W is an x-y path or there is an x-y path that is a reduced walk of W.
- Corollary 1.5.3. The distance from a vertex x to a reachable vertex y is always realizable by an x-y path.

Theorem 1.5.4. A graph G is bipartite if and only if it has no cycles of odd length.

Necessity ⇒ In a bipartite, a cycle must return to original set

Sufficiency \Leftarrow Assume G is connected. Get a partition (X,Y) of V as follows

pick any vertex u, $X = \{x \mid d(u,x) \text{ is even}\}; Y = \{y \mid d(u,y) \text{ is odd}\};$

assume (X,Y) is not a bipartition of $G \rightarrow e=(v,w)$, v and w are in X or Y

Let P_1 and P_2 be the shortest path from u to v and w. The lengths of P_1 and P_2 are

both even or odd. There is at least one common point between P_1 and P_2 , say m.

 P_1 and P_2 have the same length from u to m.

Cycle (m, v, w, m) is odd-length.

Deleting Closed Subwalks from Walks and Cycles

- **Proposition 1.5.5.** Every non-trivial, closed trail T contains a subwalk that is a cycle. Let T be a minimum length, nontrivial, closed subwalk of $T \rightarrow$ no proper closed subwalk.
- **Remark.** The assertion of Proposition 1.5.5 is no longer true if T is merely a closed walk.
- **DEFINITION**: A collection of edge-disjoint cycles, C_1 , C_2 , ..., C_m , is called a *decomposition* of a closed trail T if each cycle C_i is either a subwalk or a reduced walk of T and the edge-sets of the cycles *partition* the edge-set of trail T.
- **Theorem 1.5.6.** A closed trail can be decomposed into edge-disjoint cycles. prove by induction:
 - a closed trail with only one edge is itself a cycle. Assume that the theorem holds for all closed trails with m or fewer edges.
 - for the edges > m, By the proposition 1.5.5, the trail must contain a cycle C. T-C can be decomposed into edge-disjoint cycles => T also can be decomposed into edge-disjoint cycles.

Cycles and Eulerian Trails

Edge-disjoint cycles

$$T = \langle u, a, b, c, d, e, f, g, h, i, j, k, u \rangle$$

 $C_1 = \langle z, k, c, f, z \rangle, \langle u, a, b, c, u \rangle$
 $C_2 = \langle u, a, b, e, d, u \rangle, \langle w, e, f, g, w \rangle$
 $C_3 = \langle w, h, i, j, g, w \rangle, \langle u, d, h, i, j, k, u \rangle$

- DEFINITION: Eulerian trail, eulerian tour, eulerian graph
- **DEFINITION**: The *girth* of a graph G with at least one cycle is the length of a shortest cycle in G.
- **DEFINITION**: A *tree* is a connected graph that has no cycles.

