WE CLAIM:

1. A compound or a pharmaceutically acceptable salt or a prodrug derivative thereof represented by formula (IA):

$$Z_{P} \xrightarrow{(L_{P2})} \xrightarrow{(L_{P1})} \xrightarrow{RP_{3}} \xrightarrow{RP_{3}} \xrightarrow{RT_{3}} \xrightarrow{(IA)} \xrightarrow{RT_{3}} \xrightarrow{(IA)} Z_{TB}$$

wherein

R and R' are independently C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP₃ and RB are independently selected from hydrogen, halo, C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, -O- C_1 - C_5 alkyl, -S- C_1 - C_5 alkyl, -O- C_1 - C_5 fluoroalkyl, -CN, -NO₂, acetyl, -S- C_1 - C_5 fluoroalkyl, C_2 - C_5 alkenyl, C_3 - C_5 cycloalkyl, or C_3 - C_5 cycloalkenyl;

RP, RT₃, and RB' are independently selected from hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, or C₃-C₅ cycloalkenyl;

 (L_{P1}) , (L_{P2}) , and (L_{TB}) are divalent linking groups independently selected from the group consisting of

a bond ,
$$\begin{array}{c} OH \\ \hline --(CH_2)_{\overline{m}} --CH ---- \end{array} ,$$

$$\begin{array}{c} --(CH_2)_{\overline{m}} -O --- \end{array} ,$$

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl;

Z_P is

branched C₃-C₅ alkyl,

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentynyl,

- 3-ethyl-3-hydroxy-4-methylpentenyl,
- 3-ethyl-3-hydroxy-4-methylpentynyl,
- 3-propyl-3-hydroxypentyl,
- 3-propyl-3-hydroxypentenyl,
- 3-propyl-3-hydroxypentynyl,
- 1-hydroxy-2-methyl-1-(methylethyl)propyl,
- 2-methyl-3-hydroxy-4-dimethylpentyl,
- 2-methyl-3-hydroxy-3-ethylpentyl,
- 2-ethyl-3-hydroxy-3-ethylpentyl,
- 2-ethyl-3-hydroxy-4-dimethylpentyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentenyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
- 1-hydroxycyclopentenyl,
- 1-hydroxycyclohexenyl,
- 1-hydroxycycloheptenyl,
- 1-hydroxycyclooctenyl,
- 1-hydroxycyclopropyl,
- 1-hydroxycyclobutyl,
- 1-hydroxycyclopentyl,
- 1-hydroxycyclohexyl,
- 2-oxocyclohexyloxy,
- 2-oxocyclohexylmethyl,
- 3-methyl-2-oxocyclohexyloxy,
- 3-methyl-2-oxocyclohexylmethyl,
- 3,3-dimethyl-2-oxocyclohexyloxy,
- 3,3-dimethyl-2-oxocyclohexylmethyl,
- 2-hydroxycyclohexyloxy,
- 2-hydroxycyclohexylmethyl,

3-methyl-2-hydroxycyclohexyloxy,

3-methyl-2-hydroxycyclohexylmethyl,

3,3-dimethyl-2-hydroxycyclohexyloxy,

3,3-dimethyl-2-hydroxycyclohexylmethyl,

1-hydroxycycloheptyl, or

1-hydroxycyclooctyl;

provided, however, that when

Z_P is

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

3-ethyl-3-hydroxy-4-methylpentynyl,

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentenyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

3-ethyl-3-hydroxy-4,4-dimethylpentenyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl, or

1-hydroxy-2-methyl-1-(methylethyl)propyl;

then (L_{P1}) and (L_{P2}) combine as a bond;

Z_{TB} is selected from

- $-O-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_2-C_5 \text{ alkenyl}),$
- -O-(C₃-C₅ cycloalkyl),
- -O-(C₃-C₅ cycloalkenyl),
- $-O-(C_1-C_5 \text{ hydroxyalkyl}),$
- $-O-(C_1-C_5 \text{ fluoroalkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})$ -phenyl,
- $-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$
- -O-(C_1 - C_5 alkyl) NH₂,
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $\hbox{-O-(C$_1$-C$_5$ alkyl)-C(O)-(O-C$_1$-C$_5$ alkyl),}\\$
- $-O-(C_1-C_5 \text{ alkyl})-NH_2$
- -O-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -O-(C_1 - C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,
- -O-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -O-(C₁-C₅ alkyl)-N-pyrrolidine,
- -O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -O-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl,)
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- -O-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),

- $-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- -O- $(C_1-C_5 \text{ alkyl})$ -SO₂- $(C_1-C_5 \text{ alkyl})$,
- -O-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl,)
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- -O- $(C_1$ - C_5 alkyl)-S(O)-NH- $(C_1$ - C_5 alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- -O-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,
- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl}),$
- -O-C(O)-NH2,
- -O-C(O)-N-(CH₃)₂,
- $-O_{-}C(S)-N_{-}(CH_3)_2$,
- -O-C(O)-O-(C₁-C₅ alkyl),
- -O-(5-tetrazolyl),
- $\hbox{-O-SO}_2\hbox{-(}C_1\hbox{-}C_5\hbox{ alkyl,})$
- $-O-SO_2-NH_2$,
- -O-SO₂-NH-(C_1 - C_5 alkyl),
- -O-SO₂-N- $(C_1$ -C₅ alkyl)₂,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- -O-S(O)-NH2,
- $-O-S(O)-NH-(C_1-C_5 alkyl)$,
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C₂-C₅ alkenyl),
- -S-(C3-C5 cycloalkyl),

- -S-(C₃-C₅ cycloalkenyl),
- -S-(C₁-C₅ fluoroalkyl),
- -S-(C₁-C₅ hydroxyalkyl),
- $-S-(C_1-C_5 \text{ alkyl})$ -phenyl,
- -S-(C_1 - C_5 alkyl)-O-(C_1 - C_5 alkyl),
- -S-(C₁-C₅ alkyl)-C(O)-OH,
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- -S-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S-(C_1-C_5 \text{ alkyl}) \text{ NH}_2$
- $-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- -S-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -S-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -S-(C₁-C₅ alkyl)-N-pyrrolidine,
- -S- $(C_1$ - C_5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $\hbox{-S-(C$_1$-C$_5$ alkyl)-SO$_2$-(C$_1$-C$_5$ alkyl),}\\$
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $\hbox{-S-(C$_1$-C$_5$ alkyl)-SO$_2$-N-(C$_1$-C$_5$ alkyl)$_2$,}\\$
- $\hbox{-S-(C$_1$-C$_5$ alkyl)-SO$_2$-(C$_1$-C$_5$ alkyl),}\\$
- -S-(C_1 - C_5 alkyl)-P(O)-(O- C_1 - C_5 alkyl)₂ ,
- $-S-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$

- $-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl}),$
- -SO₂-(C₂-C₅ alkenyl),
- -SO₂-(C₃-C₅ cycloalkyl),"
- -SO₂-(C₃-C₅ cycloalkenyl),
- $-SO_2$ -(C_1 - C_5 hydroxyalkyl),
- $-SO_2$ -(C₁-C₅ fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- -SO₂-NH₂
- $-SO_2$ -NH-(C₁-C₅ alkyl),
- -SO₂-NH-CH₂-C(O)OH,
- -SO₂-NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NH-(C₁-C₅ alkyl)-C(O)OH,
- -SO₂-NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NHC(O)-(C₃-C₆ cycloalkyl),
- $-SO_2$ -NH-C(O)-(C₁-C₅ alkyl),
- $-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-SO_2-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-SO_2$ -(C₁-C₅ alkyl) NH₂
- $-SO_2$ -(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- $-SO_2$ -(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-NH₂
- $-SO_2$ - $(C_1$ - C_5 alkyl)-C(O)-NH- $(C_1$ - C_5 alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-SO_2-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -SO₂-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl)-C(O)-OH,

$$-SO_2$$
- $(C_1$ - C_5 alkyl)-5-tetrazolyl,

$$-SO_2-(C_1-C_5 \ alkyl)-SO_2-(C_1-C_5 \ alkyl),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-SO_2$$
-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),

$$-SO_2$$
-(C₁-C5 alkyl)-SO₂-N-(C₁-C5 alkyl)₂

$$-SO_2$$
-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),

$$-\mathsf{SO}_2\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_5 \text{ alkyl})\text{-}\mathsf{P}(\mathsf{O})\text{-}(\mathsf{O}\text{-}\mathsf{C}_1\text{-}\mathsf{C}_5 \text{ alkyl})_2\;,$$

$$-SO_2$$
-(C₁-C₅ alkyl),

-SO₂-(
$$C_1$$
- C_5 hydroxyalkyl),

$$-SO_2-(C_1-C_5 fluoroalkyl),$$

$$-SO_2-(C_1-C_5)$$
-phenyl,

$$-SO_2-N=CHN(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$\hbox{-S(O)-NH-CH}_2\hbox{-C(O)OH}$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)OH,$$

$$\hbox{-S(O)-NH-CH$_2$-C(O)(O-C$_1$-C$_5$ alkyl),}\\$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$\hbox{-S(O)-(C$_1$-C$_5$ alkyl)-SO$_2$-NH-(C$_1$-C$_5$ alkyl),}\\$$

$$\hbox{-S(O)-(C$_1$-C$_5$ alkyl)-S(O)-NH-(C$_1$-C$_5$ alkyl),}\\$$

$$-S(O)-(C_1-C_5)$$
 alkyl)- $SO_2-N-(C_1-C_5)$ alkyl)₂,

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_{2,}$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$\hbox{-S(O)-(C$_1$-C$_5$ alkyl)-S(O)-(C$_1$-C$_5$ alkyl),}\\$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2\;,$$

$$-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2$$

- $-NHC(S)NH_{2}$
- -NHC(S)NH-(C1-C5 alkyl),
- -NHC(S)N-(C_1 - C_5 alkyl)₂,
- -NHC(S)NH-(C2-C5 alkenyl),
- -NHC(S)NH-(C3-C5 cycloalkyl),
- -NHC(S)NH-(C3-C5 cycloalkenyl),
- -NHC(S)NH-(C₁-C₅ fluoroalkyl),
- -NHC(S)NH-C₁-C₅ hydroxyalkyl,
- -NHC(S)NH-(C₁-C₅ fluoroalkyl)
- -NHC(S)NH-phenyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
- -NHC(S)NH-(C_1 - C_5 alkyl)-O-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),
- $-NHC(S)NH-(C_1-C_5 alkyl)-C(O)-(O-C_1-C_5 alkyl),$
- -NHC(S)NH-(C₁-C₅ alkyl)-NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-NH₂,
- $\hbox{-NHC(S)NH-(C$_1$-C$_5 alkyl)-C(O)-NH-(C$_1$-C$_5 alkyl),}\\$
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-S(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C_1 - C_5 alkyl)-N-pyrrolidine,
- -NHC(S)NH-(C_1 - C_5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),

- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-N-(C_1 - C_5 alkyl)₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-P(O)-(O- C_1 - C_5 alkyl)₂,
- $-NHC(O)NH_2$,
- -NHC(O)NH-(C_1 - C_5 alkyl),
- -NHC(0)N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C2-C5 alkenyl),
- -NHC(O)NH-(C3-C5 cycloalkyl),
- -NHC(O)NH-(C3-C5 cycloalkenyl),
- -NHC(O)NH-(C_1 - C_5 hydroxyalkyl),
- -NHC(O)NH-(C_1 - C_5 fluoroalkyl),
- -NHC(O)NH-phenyl,
- -NHC(O)NH-(C₁-C₅ alkyl)-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C1-C $_5$ alkyl)-O-(C $_1$ -C $_5$ alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-NH₂,
- -NHC(O)NH- $(C_1-C_5 \text{ alkyl})$ -NH- $(C_1-C_5 \text{ alkyl})$,
- -NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂.
- -NHC(O)NH-(C₁-C₅ alkyl)-C(O)-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂.
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),

- -NHC(O)NH-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- -NHC(O)NH-(C₁-C₅ alkyl)-

(1-methylpyrrolidin-2-one-3-yl),

- -NHC(O)NH-(C₁-C₅ alkyl)-C(O)-OH,
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-O-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO $_2$ -NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-N-(C_1 - C_5 alkyl)₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-P(O)-O-(C_1 - C_5 alkyl)₂,
- -NH₂
- -NH- $(C_1-C_5 \text{ alkyl})$,
- -NH-CH₂-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- -NH-C(O)-NH2,
- -NH-C(O)-NH-(C_1 - C_5 alkyl),
- -NH-C(O)-N-(C_1 - C_5 alkyl)₂.
- -NH-C(O)-(C_1 - C_5 alkyl),
- -NH-SO₂-(C_1 - C_5 alkyl),
- $-NH-S(O)-(C_1-C_5 \text{ alkyl});$
- $-N(CH_3)(OCH_3),$
- $-N(OH)(CH_3),$
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),

- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- -C(O)CH₂S(O)Et,
- -C(O)CH₂S(O)₂Me,
- $-C(O)CH_2S(O)_2Et$,
- -C(O)CH₂CH₂S(O)Me,
- -C(O)CH₂CH₂S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$,
- -C(O)CH₂CH₂S(O)₂Et,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH₂CO₂Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH₂CO₂tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO₂H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,

-186-

- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂
- $-C(O)NMe_2$,
- -C(O)NH-CH₂-C(O)OH,
- -C(O)NH-CH₂-C(O)OMe,
- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH2-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- -C(O)NH-C(Me)₂-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,

- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)2-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF₃)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,

- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH₂SO₂Me;
- -C(O)NHCH₂SO₂Et,
- $-C(O)NHCH_2CH_2S(O)Me$,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO₂iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO₂tBu,
- -C(O)N(Me)CH₂S(O)Me,
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- -C(O)N(Me)CH₂CH₂S(O)Me,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- -C(O)N(Me)CH2CH2SO2Et,

- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH2NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH2NHSO2Me,
- -CH2NHSO2Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- $-CH_2NHS(O)tBu,\\$
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH2NH(CH2CO2H),
- $-CH_2N(C(O)Me)(CH_2CO_2H),$
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,
- $-CH_2S(O)_2iPr$,
- -CH₂S(O)tBu,
- -CH2S(O)2tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- $-CH_2C(O)NMe_2$,
- -CH₂C(O)NHMe,

- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,
- $-CH(OH)C(O)NH_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- $-CH_2CH_2C(O)NMe_2$,
- -CH₂CH₂-5-tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- -CH₂CH₂S(O)Me,
- -CH₂CH₂S(O)₂Et,
- -CH₂CH₂S(O) Et,
- -CH2CH2S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- -CH2CH2S(O)tBu,
- -CH₂CH₂S(O)₂tBu,
- $-CH_2CH_2S(O)NH_2$,
- -CH₂CH₂S(O)NHMe,
- -CH₂CH₂S(O)NMe₂,
- $-CH_2CH_2S(O)_2NH_2$,
- -CH₂CH₂S(O)₂NHMe
- -CH₂CH₂S(O)₂NMe₂,

-191-

-CH₂CH₂CH₂S(O)Me,

-CH₂CH₂CH₂S(O)Et,

-CH₂CH₂CH₂S(O)₂Me,

 $-CH_2CH_2CH_2S(O)_2Et,\\$

CH(Me)CH₂C(O)OH,

-C(Me)₂CH₂C(O)OH,

-5-tetrazolyl,

HO

PCT/US2004/037181

-imidazolidine-2,4-dione-5-yl,

-isoxazol-3-ol-yl, or

-1,3,4-oxadiazolin-2-thione-5-yl;

provided that RB is substituted at either the 6 or 7 position of the benzothiophene ring, except that RB is substituted only at the 7 position of the benzothiophene ring when Z_{TB} is at the 6 position.; and

provided that -(L_{TB})- Z_{TB} is substituted at either the 5 or 6 position of the benzothiophene ring; and

provided that RB is substituted at either the 6 or 7 position of the benzothiophene ring, except that RB is substituted only at the 7 position of the benzothiophene ring when the group $-(L_{TB})-Z_{TB}$ is at the 6 position.; and

provided that RB' is substituted at either the 4 or 5 position of the benzothiophene ring, except that RB' is substituted only at the 5 position of the benzothiophene ring when the group $-(L_{TB})$ - Z_{TB} is at the 6 position of the phenyl ring; and

provided that RP is substituted at either the 2, or 5 or 6 position of the phenyl ring.

2. A compound or a pharmaceutically acceptable salt or a prodrug derivative thereof represented by formula (IB):

$$Z_{P} \xrightarrow{(L_{P2})} (L_{P1}) \xrightarrow{R} RB_{3} \xrightarrow{R} RB_{4} \xrightarrow{R} RT_{3} \xrightarrow{(IB)} Z_{BT}$$

wherein

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP, RB₄, RT₃, and RB are independently selected from the group consisting of hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, and C₃-C₅ cycloalkenyl;

 RP_3 and RB_7 are independently selected from hydrogen, halo, C_1 - C_5 alkyl, C_1 - C_5 fluoroalkyl, -O- C_1 - C_5 alkyl, -S- C_1 - C_5 alkyl, -O- C_1 - C_5 fluoroalkyl, -CN, -NO₂, acetyl, -S- C_1 - C_5 fluoroalkyl, C_2 - C_5 alkenyl, C_3 - C_5 cycloalkyl, or C_3 - C_5 cycloalkenyl;

 (L_{P1}) , (L_{P2}) , and (L_{BT}) are divalent linking groups independently selected from the group consisting of

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl;

Z_P is

branched C₃-C₅ alkyl,
3-methyl-3-hydroxypentyl,

- 3-methyl-3-hydroxypentenyl,
- 3-methyl-3-hydroxypentynyl,
- 3-ethyl-3-hydroxypentyl,
- 3-ethyl-3-hydroxypentenyl,
- 3-ethyl-3-hydroxypentynyl,
- 3-ethyl-3-hydroxy-4-methylpentyl,
- 3-ethyl-3-hydroxy-4-methylpentenyl,
- 3-ethyl-3-hydroxy-4-methylpentynyl,
- 3-propyl-3-hydroxypentyl,
- 3-propyl-3-hydroxypentenyl,
- 3-propyl-3-hydroxypentynyl,
- 1-hydroxy-2-methyl-1-(methylethyl)propyl,
- 2-methyl-3-hydroxy-4-dimethylpentyl,
- 2-methyl-3-hydroxy-3-ethylpentyl,
- 2-ethyl-3-hydroxy-3-ethylpentyl,
- 2-ethyl-3-hydroxy-4-dimethylpentyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentenyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
- 1-hydroxycycyclopentenyl,
- 1-hydroxycyclohexenyl,
- 1-hydroxycycloheptenyl,
- 1-hydroxycyclooctenyl,
- 1-hydroxycyclopropyl,
- 1-hydroxycyclobutyl,
- 1-hydroxycyclopentyl,
- 1-hydroxycyclohexyl,
- 2-oxocyclohexyloxy,
- 2-oxocyclohexylmethyl,

-197-

- 3-methyl-2-oxocyclohexyloxy,
- 3-methyl-2-oxocyclohexylmethyl,
- 3,3-dimethyl-2-oxocyclohexyloxy,
- 3,3-dimethyl-2-oxocyclohexylmethyl,
- 2-hydroxycyclohexyloxy,
- 2-hydroxycyclohexylmethyl,
- 3-methyl-2-hydroxycyclohexyloxy,
- 3-methyl-2-hydroxycyclohexylmethyl,
- 3,3-dimethyl-2-hydroxycyclohexyloxy,
- 3,3-dimethyl-2-hydroxycyclohexylmethyl,
- 1-hydroxycycloheptyl, or
- 1-hydroxycyclooctyl;

provided, however, that when

Z_P is

- 3-methyl-3-hydroxypentyl,
- 3-methyl-3-hydroxypentenyl,
- 3-methyl-3-hydroxypentynyl,
- 3-ethyl-3-hydroxypentyl,
- 3-ethyl-3-hydroxypentenyl,
- 3-ethyl-3-hydroxypentynyl,
- 3-ethyl-3-hydroxy-4-methylpentyl,
- 3-ethyl-3-hydroxy-4-methylpentenyl,
- 3-ethyl-3-hydroxy-4-methylpentynyl,
- 3-propyl-3-hydroxypentyl,
- 3-propyl-3-hydroxypentenyl,
- 3-propyl-3-hydroxypentynyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentenyl,
- 3-methyl-3-hydroxy-4,4-dimethylpentyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
- 3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl, or

1-hydroxy-2-methyl-1-(methylethyl)propyl;

then (L_{P1}) and (L_{P2}) combine as a bond;

ZBT is selected from

- $-O-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_2-C_5 \text{ alkenyl}),$
- -O-(C3-C5 cycloalkyl),
- -O-(C3-C5 cycloalkenyl),
- $-O-(C_1-C_5 \text{ hydroxyalkyl}),$
- -O-(C₁-C₅ fluoroalkyl),
- -O-(C₁-C₅ alkyl)-phenyl,
- $-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl) NH₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$
- -O-(C₁-C₅ alkyl)-C(O)-NH₂
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl)-NH₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl})$

- -O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -O-(C1-C5 alkyl)-N-pyrrolidine,
- -O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl},)$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5$ alkyl)- $SO_2-(C_1-C_5$ alkyl),
- -O-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl,)
- -O-(C₁-C₅ alkyl)-S(O)-NH₂
- -O-(C_1 - C_5 alkyl)-S(O)-NH-(C_1 - C_5 alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- -O-(C_1 - C_5 alkyl)-P(O)-(O- C_1 - C_5 alkyl)₂ ,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,
- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- -O-(C₁-C₅ alkyl),
- -O-C(O)-NH2,
- -O-C(O)-N-(CH₃)₂,
- $-O-C(S)-N-(CH_3)_2$,
- -O-C(O)-O-(C1-C5 alkyl),
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 \text{ alkyl,})$
- -O-SO₂-NH₂,
- -O-SO₂-NH-(C_1 - C_5 alkyl),
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$

- $-O-S(O)-NH_2$,
- $-O-S(O)-NH-(C_1-C_5 alkyl),$
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C2-C5 alkenyl),
- -S-(C3-C5 cycloalkyl),
- -S-(C₃-C₅ cycloalkenyl),
- $-S-(C_1-C_5 fluoroalkyl)$,
- $-S-(C_1-C_5 \text{ hydroxyalkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})$ -phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- -S-(C_1 - C_5 alkyl) NH₂.
- -S-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- $-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -S-(C_1 - C_5 alkyl)-N-pyrrolidine,
- $-S-(C_1-C_5 \ alkyl)-(1-methylpyrrolidin-2-one-3-yl),\\$
- $\hbox{-S-(C$_1$-C$_5$ alkyl)-SO$_2$-(C$_1$-C5$ alkyl),}\\$
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

-S-(
$$C_1$$
- C_5 alkyl)-P(O)-(O- C_1 - C_5 alkyl)₂ ,

$$-S-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},$$

-S-(
$$C_1$$
- C_5 alkyl)-S(O)-(C_1 - C_5 alkyl),

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C_1 - C_5 hydroxyalkyl),

$$-SO_2-(C_1-C_5)$$
-phenyl,

$$-SO_2-NH_2$$

$$-SO_2$$
-NH-(C₁-C₅ alkyl),

$$\hbox{-SO}_2\hbox{-NH-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}C(O)OH,$$

$$-SO_2$$
-NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),

$$-SO_2$$
-NH-C(O)-(C₁-C₅ alkyl),

$$-SO_2-N-(C_1-C_5 alkyl)_2$$
,

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-O-}(C_1\hbox{-}C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl) NH₂,

$$-SO_2$$
-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),

$$-SO_2$$
-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂

$$-SO_2$$
-(C₁-C₅ alkyl)-C(O)-NH₂

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-SO_2-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
- $(C_1$ - C_5 alkyl)- $C(O)$ - O - $(C_1$ - C_5 alkyl),

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-OH$$
,

$$-SO_2$$
-(C_1 - C_5 alkyl)-5-tetrazolyl,

$$-SO_2$$
-(C₁-C₅ alkyl)-SO₂-(C₁-C₅ alkyl),

$$-SO_2$$
-(C₁-C₅ alkyl)-SO₂-NH₂

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C5 alkyl)-SO₂-N-(C₁-C5 alkyl)₂,

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \hbox{ alkyl})\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \hbox{ alkyl}),$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-P(O)-}(O\hbox{-}C_1\hbox{-}C_5 \text{ alkyl})_2\;,$$

$$-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C_2 - C_5 alkenyl),

$$-SO_2-(C_1-C_5 \text{ hydroxyalkyl}),$$

$$-SO_2$$
-(C_1 - C_5 fluoroalkyl),

$$-SO_2$$
- $(C_1$ - $C_5)$ -phenyl,

$$-SO_2-N=CHN(C_1-C_5 \text{ alkyl})_{2}$$

$$-S(O)-NH2,$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

- $-S(O)-NH-(C_1-C_5 alkyl)-C(O)OH$,
- $-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),$
- $-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -S(O)-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -S(O)-(C₁-C₅ alkyl)-N-pyrrolidine,
- $-S(O)-(C_1-C_5 \text{ alkyl})-(1-\text{methylpyrrolidin-2-one-3-yl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- $-S(O)-(C_1-C_5 \ alkyl)-5-tetrazolyl,$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$,
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- -S(O)-(C₁-C₅ alkyl)-S(O)-NH-(C₁-C₅ alkyl),

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2$$

- -NHC(S)NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl),
- -NHC(S)N- $(C_1-C_5 \text{ alkyl})_2$,
- -NHC(S)NH-(C2-C5 alkenyl),
- -NHC(S)NH-(C3-C5 cycloalkyl),
- -NHC(S)NH-(C3-C5 cycloalkenyl),
- -NHC(S)NH-(C1-C5 fluoroalkyl),
- -NHC(S)NH-C₁-C₅ hydroxyalkyl,
- -NHC(S)NH-(C₁-C₅ fluoroalkyl)
- -NHC(S)NH-phenyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
- -NHC(S)NH-(C_1 - C_5 alkyl)-O-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(O- C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-NH₂.
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- $-NHC(S)NH-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH₂.
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-S(O)-(C_1 - C_5 alkyl),

- -NHC(S)NH-(C1-C5 alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- -NHC(S)NH-(C_1 - C_5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -NHC(S)NH-(C1-C5 alkyl)-5-tetrazolyl,
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-N-(C_1 - C_5 alkyl)₂.
- -NHC(S)NH-(C_1 - C_5 alkyl)-P(O)-(O- C_1 - C_5 alkyl)₂,
- -NHC(O)NH₂,
- -NHC(O)NH-(C_1 - C_5 alkyl),
- -NHC(O)N-(C₁-C₅ alkyl)₂,
- -NHC(O)NH-(C2-C5 alkenyl),
- -NHC(O)NH-(C₃-C₅ cycloalkyl),
- -NHC(O)NH-(C₃-C₅ cycloalkenyl),
- -NHC(O)NH-(C₁-C₅ hydroxyalkyl),
- -NHC(O)NH-(C_1 - C_5 fluoroalkyl),
- -NHC(O)NH-phenyl,
- -NHC(O)NH-(C_1 - C_5 alkyl)-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C1-C $_5$ alkyl)-O-(C $_1$ -C $_5$ alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-NH₂

- -NHC(O)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- -NHC(O)NH-(C1-C5 alkyl)-C(O)-NH2.
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C1-C5 alkyl)-NH-SO2-(C1-C5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(O)NH-(C1-C5 alkyl)-N-pyrrolidine,
- $-NHC(O)NH-(C_1-C_5 alkyl)-$

(1-methylpyrrolidin-2-one-3-yl),

- -NHC(O)NH-(C₁-C₅ alkyl)-C(O)-OH,
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-O-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C1-C5 alkyl)-5-tetrazolyl,
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C1-C5 alkyl)-SO2-N-(C1-C5 alkyl)2;
- -NHC(O)NH-(C1-C5 alkyl)-P(O)-O-(C1-C5 alkyl)2 ,
- -NH₂
- -NH-(C₁-C₅ alkyl),
- -NH-CH₂-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- -NH-C(O)-NH2,
- -NH-C(O)-NH-(C_1 - C_5 alkyl),
- $-NH-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- -NH-C(O)-(C_1 - C_5 alkyl),
- -NH-SO₂-(C₁-C₅ alkyl),

-207-

- -NH-S(O)-(C_1 - C_5 alkyl),
- -N(CH₃)(OCH₃),
- -N(OH)(CH₃),
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- $-C(O)CH_2S(O)Et$,
- $-C(O)CH_2S(O)_2Me$,
- -C(O)CH₂S(O)₂Et,
- -C(O)CH₂CH₂S(O)Me,
- -C(O)CH2CH2S(O)Et,
- -C(O)CH₂CH₂S(O)₂Me,
- -C(O)CH2CH2S(O)2Et,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH₂CO₂Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO₂tBu,
- -C(O)CH(Me)C(Me) 2CO2H,

- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO₂tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- -C(O)C(O)NMe2,
- -C(O)NH₂,
- -C(O)NMe2,
- -C(O)NH-CH₂-C(O)OH,
- -C(O)NH-CH₂-C(O)OMe,
- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- -C(O)NH-C(Me)2-C(O)OEt,
- -C(O)NH-C(Me)2-C(O)iPr,

-209-

- -C(O)NH-C(Me)₂-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)₂-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF₃)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,

- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH₂SO₂Me,
- -C(O)NHCH₂SO₂Et,
- -C(O)NHCH₂CH₂S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- -C(O)N(Me)CH₂S(O)Me,
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,

WO 2005/051940 PCT/US2004/037181

-211-

- -C(O)N(Me)CH₂SO₂Et,
- -C(O)N(Me)CH2CH2S(O)Me,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- -C(O)N(Me)CH₂CH₂SO₂Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH2NHS(O)Me,
- -CH2NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH2NHSO2Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH2NHCH2CH2SO2CH3,
- -CH2NH(CH2CO2H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH2-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,

- -CH₂S(O)tBu,
- -CH₂S(O)₂tBu,
- $\hbox{-CH}_2\hbox{CO}_2\hbox{H, CH}_2\hbox{C(O)}\hbox{NH}_2,$
- - $CH_2C(O)NMe_2$,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- - $CH_2S(O)_2Me$, $CH_2S(O)Me$,
- -CH(OH) CO₂H,
- -CH(OH)C(O)NH2,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NE t_2 ,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{C(O)}\hbox{NH}_2,$
- -CH₂CH₂C(O)NHMe,
- $-CH_2CH_2C(O)NMe_2,\\$
- -CH₂CH₂-5-tetrazolyl,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{Me,}\\$
- $-CH_2CH_2S(O)Me$,
- - $CH_2CH_2S(O)_2Et$,
- - $CH_2CH_2S(O)$ Et,
- -CH₂CH₂S(O)iPr,
- $-CH_2CH_2S(O)_2iPr$,
- -CH2CH2S(O)tBu,
- -CH₂CH₂S(O)₂tBu,
- $-CH_2CH_2S(O)NH_2$,

-CH₂CH₂S(O)NHMe,

-CH₂CH₂S(O)NMe₂,

 $-CH_2CH_2S(O)_2NH_2$,

-CH₂CH₂S(O)₂NHMe

-CH₂CH₂S(O)₂NMe₂,

-CH₂CH₂CH₂S(O)Me,

-CH₂CH₂CH₂S(O)Et,

-CH₂CH₂CH₂S(O)₂Me,

- $CH_2CH_2CH_2S(O)_2Et$,

CH(Me)CH₂C(O)OH,

-C(Me)₂CH₂C(O)OH,

-5-tetrazolyl,

- -1,3,4-oxadiazolin-2-one-5-yl,
- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl;

provided that RP is substituted at either the 2, 5, or 6 position of the phenyl ring.

3. A compound or a pharmaceutically acceptable salt or a prodrug derivative thereof represented by formula (IC):

$$Z_{p} \xrightarrow{(L_{P2})} (L_{P1}) \xrightarrow{R} RB_{q} (IC)$$

$$RP \xrightarrow{R} RB_{q} RB_{q} RB_{q}$$

$$RB_{q} RB_{q} RT_{3}$$

$$RT_{3} RT_{3}$$

$$(L_{BT}) - (Z_{BT})$$

wherein

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 3 to 8 carbon atoms;

RP, RB₄, RT₃ and RB are independently selected from the group consisting of hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, and C₃-C₅ cycloalkenyl;

RP₃ and RB₇ are independently selected from hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, or C₃-C₅ cycloalkenyl;

 (L_{P1}) , (L_{P2}) , and (L_{BT}) are divalent linking groups independently selected from the group consisting of

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl;

 Z_P is

branched C₃-C₅ alkyl,

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

3-ethyl-3-hydroxy-4-methylpentynyl,

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

1-hydroxy-2-methyl-1-(methylethyl)propyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentenyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

3-ethyl-3-hydroxy-4,4-dimethylpentenyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

1-hydroxycycyclopentenyl,

1-hydroxycyclohexenyl,

1-hydroxycycloheptenyl,

1-hydroxycyclooctenyl,

1-hydroxycyclopropyl,

1-hydroxycyclobutyl,

1-hydroxycyclopentyl,

1-hydroxycyclohexyl,

2-oxocyclohexyloxy,

2-oxocyclohexylmethyl,

3-methyl-2-oxocyclohexyloxy,

3-methyl-2-oxocyclohexylmethyl,

3,3-dimethyl-2-oxocyclohexyloxy,

3,3-dimethyl-2-oxocyclohexylmethyl,

2-hydroxycyclohexyloxy,

2-hydroxycyclohexylmethyl,

3-methyl-2-hydroxycyclohexyloxy,

3-methyl-2-hydroxycyclohexylmethyl,

3,3-dimethyl-2-hydroxycyclohexyloxy,

3,3-dimethyl-2-hydroxycyclohexylmethyl,

1-hydroxycycloheptyl, or

1-hydroxycyclooctyl;

provided, however, that when

 Z_P is

3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

3-ethyl-3-hydroxy-4-methylpentynyl,

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-methyl-3-hydroxy-4,4-dimethylpentenyl,

3-methyl-3-hydroxy-4,4-dimethylpentyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

3-ethyl-3-hydroxy-4,4-dimethylpentenyl,

3-ethyl-3-hydroxy-4,4-dimethylpentynyl,

2-methyl-3-hydroxy-4-dimethylpentyl,

2-methyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-3-ethylpentyl,

2-ethyl-3-hydroxy-4-dimethylpentyl, or

1-hydroxy-2-methyl-1-(methylethyl)propyl;

then (L_{P1}) and (L_{P2}) combine as a bond;

ZBT is selected from

- $-O-(C_1-C_5 \text{ alkyl}),$
- -O-(C2-C5 alkenyl),
- -O-(C3-C5 cycloalkyl),
- -O-(C3-C5 cycloalkenyl),
- -O-(C₁-C₅ hydroxyalkyl),
- -O-(C₁-C₅ fluoroalkyl),
- -O-(C_1 - C_5 alkyl)-phenyl,
- $-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$
- -O-(C₁-C₅ alkyl) NH₂
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH$
- -O-(C₁-C₅ alkyl)-C(O)-NH-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- -O-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -O-(C₁-C₅ alkyl)-N-pyrrolidine,
- -O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl})$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$

$$-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

-O-
$$(C_1-C_5 \text{ alkyl})$$
-SO₂- $(C_1-C_5 \text{ alkyl})$,

-O-(
$$C_1$$
- C_5 alkyl)-S(O)-(C_1 - C_5 alkyl,)

-O-(
$$C_1$$
- C_5 alkyl)-S(O)-NH-(C_1 - C_5 alkyl),

$$-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

-O-
$$(C_1-C_5 \text{ alkyl})$$
-S(O)- $(C_1-C_5 \text{ alkyl})$,

-O-
$$(C_1-C_5 \text{ alkyl})$$
-5-tetrazolyl,

$$-O-(C_1-C_5 \text{ alkyl}),$$

$$-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$\hbox{-O-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl,})$$

-O-SO₂-NH-(
$$C_1$$
- C_5 alkyl),

-O-SO₂-N-
$$(C_1$$
-C₅ alkyl)₂,

-O-S(O)-(
$$C_1$$
- C_5 alkyl,)

$$-O-S(O)-NH_2$$
,

-O-S(O)-NH-(
$$C_1$$
- C_5 alkyl),

$$-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

-S-(
$$C_1$$
- C_5 alkyl),

$$-S-(C_2-C_5 \ alkenyl),$$

- -S-(C₃-C₅ cycloalkenyl),
- $-S-(C_1-C_5 fluoroalkyl)$,
- -S-(C₁-C₅ hydroxyalkyl),
- -S-(C₁-C₅ alkyl)-phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_{2,}$
- -S-(C₁-C₅ alkyl) NH₂
- $-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$
- $-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -S-(C₁-C₅ alkyl)-N-pyrrolidine,
- -S-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- -S-(C_1 - C_5 alkyl)-SO₂-NH₂,
- -S-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2,\\$
- $-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- $-S_{-}(C_1-C_5 \text{ alkyl})-5\text{-tetrazolyl},$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$

- $-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-SO_2$ -(C_1 - C_5 alkyl),
- -SO₂-(C₂-C₅ alkenyl),
- -SO₂-(C₃-C₅ cycloalkyl),
- -SO₂-(C₃-C₅ cycloalkenyl),
- $-SO_2$ -(C_1 - C_5 hydroxyalkyl),
- -SO₂-(C₁-C₅ fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-NH_2$
- -SO₂-NH-(C_1 - C_5 alkyl),
- -SO₂-NH-CH₂-C(O)OH,
- -SO₂-NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)OH,
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NHC(O)-(C₃-C₆ cycloalkyl),
- -SO₂-NH-C(O)-(C_1 - C_5 alkyl),
- $-SO_2-N-(C_1-C_5 \text{ alkyl})_{2,}$
- $\hbox{-SO}_2\hbox{-}(\hbox{C}_1\hbox{-}\hbox{C}_5 \text{ alkyl})\hbox{-}\hbox{O-}(\hbox{C}_1\hbox{-}\hbox{C}_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-SO_2$ -(C₁-C₅ alkyl) NH₂,
- $-SO_2-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_{2,}$
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-NH₂,
- $-SO_2-(C_1-C_5 \ alkyl)-C(O)-NH-(C_1-C_5 \ alkyl),\\$
- $-SO_2-(C_1-C_5 \ alkyl)-C(O)-N-(C_1-C_5 \ alkyl)_2,$
- $-SO_2-(C_1-C_5 \ alkyl)-NH-SO_2-(C_1-C_5 \ alkyl),\\$
- $-SO_2$ - $(C_1$ - C_5 alkyl)-N-pyrrolidin-2-one,

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl)-C(O)-OH,

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl)-SO₂-NH₂

$$-SO_2-(C_1-C_5 \ alkyl)-SO_2-NH-(C_1-C_5 \ alkyl),\\$$

$$-SO_2$$
-(C₁-C5 alkyl)-SO₂-N-(C₁-C5 alkyl)₂,

$$-\mathsf{SO}_2\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_5 \text{ alkyl})\\-\mathsf{SO}_2\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \ alkyl)-P(O)-(O-C_1-C_5 \ alkyl)_2 \ ,$$

$$-SO_2$$
-(C_1 - C_5 alkyl),

$$-SO_2$$
-(C_2 - C_5 alkenyl),

$$-SO_2-(C_3-C_5 \text{ cycloalkyl}),$$

-SO₂-(
$$C_1$$
- C_5 hydroxyalkyl),

-SO₂-(
$$C_1$$
- C_5 fluoroalkyl),

$$-SO_2$$
-(C_1 - C_5)-phenyl,

-SO₂-N=CHN(
$$C_1$$
- C_5 alkyl) 2,

-S(O)-NH-(
$$C_1$$
- C_5 alkyl),

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)OH$$
,

$$-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-(1-\text{methylpyrrolidin-}2-\text{one-}3-\text{yl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH$$
,

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \ alkyl)-SO_2-(C_1-C_5 \ alkyl),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \ alkyl)-P(O)-(O-C_1-C_5 \ alkyl)_2 \ ,$$

$$-S(O)-N=CHN(C_1-C_5 \text{ alkyl})_{2}$$

- -NHC(S)NH₂
- -NHC(S)NH-(C₁-C₅ alkyl),
- -NHC(S)N- $(C_1-C_5 \text{ alkyl})_2$,
- -NHC(S)NH-(C2-C5 alkenyl),
- -NHC(S)NH-(C3-C5 cycloalkyl),
- -NHC(S)NH-(C₃-C₅ cycloalkenyl),
- -NHC(S)NH-(C_1 - C_5 fluoroalkyl),
- -NHC(S)NH-C₁-C₅ hydroxyalkyl,
- -NHC(S)NH-(C₁-C₅ fluoroalkyl)
- -NHC(S)NH-phenyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
- -NHC(S)NH-(C_1 - C_5 alkyl)-O-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(O- C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂.
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-NH₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- $\hbox{-NHC(S)NH-(C$_1$-C$_5$ alkyl)-NH-S(O)-(C$_1$-C$_5$ alkyl),}\\$
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- -NHC(S)NH-(C_1 - C_5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-(C_1 - C_5 alkyl),

- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- -NHC(S)NH-(C₁-C₅ alkyl)-SO₂-NH-(C₁-C₅ alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-N-(C_1 - C_5 alkyl)₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-S(O)-NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-N-(C_1 - C_5 alkyl)₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-P(O)-(O- C_1 - C_5 alkyl)₂,
- -NHC(O)NH₂,
- -NHC(O)NH-(C₁-C₅ alkyl),
- -NHC(0)N- $(C_1-C_5 \text{ alkyl})_2$,
- -NHC(0)NH-(C2-C5 alkenyl),
- -NHC(O)NH-(C3-C5 cycloalkyl),
- -NHC(O)NH-(C₃-C₅ cycloalkenyl),
- -NHC(O)NH-(C_1 - C_5 hydroxyalkyl),
- -NHC(O)NH-(C_1 - C_5 fluoroalkyl),
- -NHC(O)NH-phenyl,
- -NHC(O)NH-(C₁-C₅ alkyl)-NH₂.
- -NHC(O)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂,
- -NHC(O)NH-(C1-C $_5$ alkyl)-O-(C $_1$ -C $_5$ alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-NH₂
- -NHC(O)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-NH₂.
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),

-228-

- -NHC(O)NH-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(O)NH-(C1-C5 alkyl)-N-pyrrolidine,
- -NHC(O)NH-(C1-C5 alkyl)-

(1-methylpyrrolidin-2-one-3-yl),

- -NHC(O)NH-(C₁-C₅ alkyl)-C(O)-OH,
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-O-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-NH₂,
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C_1 - C_5 alkyl)-P(O)-O-(C_1 - C_5 alkyl)₂,
- $-NH_2$
- -NH-(C_1 - C_5 alkyl),
- -NH-CH₂-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- $-NH-C(O)-NH_2$,
- -NH-C(O)-NH-(C_1 - C_5 alkyl),
- -NH-C(O)-N-(C_1 - C_5 alkyl)₂
- -NH-C(O)-(C_1 - C_5 alkyl),
- -NH-SO $_2$ -(C $_1$ -C $_5$ alkyl),
- -NH-S(O)-(C_1 - C_5 alkyl),
- -N(CH₃)(OCH₃),
- $-N(OH)(CH_3),$
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),

- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- -C(O)CH₂S(O)Et,
- $-C(O)CH_2S(O)_2Me$,
- -C(O)CH₂S(O)₂Et,
- -C(O)CH₂CH₂S(O)Me,
- -C(O)CH₂CH₂S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$,
- -C(O)CH2CH2S(O)2Et,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH₂CO₂Me,
- -C(O)CH(Me)CH2CO2Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO₂tBu,
- -C(O)CH(Me)C(Me) 2CO₂H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,

-230-

- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,
- $-C(O)NMe_2$,
- -C(O)NH-CH₂-C(O)OH,
- -C(O)NH-CH₂-C(O)OMe,
- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH2-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- -C(O)NH-C(Me)2-C(O)OEt,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)₂-C(O)OH,

- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF₃)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)2-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,

- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH₂SO₂Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO₂iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- -C(O)N(Me)CH₂S(O)Me,
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- -C(O)N(Me)CH₂CH₂S(O)Me,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- -C(O)N(Me)CH2CH2SO2Et,

- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH2NHS(O)Me,
- -CH2NHS(O)Et,
- -CH2NHSO2Me,
- -CH2NHSO2Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH2NHCH2CH2SO2CH3,
- -CH2NH(CH2CO2H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- -CH₂S(O)tBu,
- -CH₂S(O)₂tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,

- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,
- -CH(OH)C(O)NH $_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- -CH₂CH₂S(O)Me,
- -CH₂CH₂S(O)₂Et,
- -CH₂CH₂S(O) Et,
- -CH₂CH₂S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- -CH₂CH₂S(O)tBu,
- -CH₂CH₂S(O)₂tBu,
- -CH₂CH₂S(O)NH₂,
- -CH₂CH₂S(O)NHMe,
- $-CH_2CH_2S(O)NMe_2,\\$
- $-CH_2CH_2S(O)_2NH_2$,
- -CH₂CH₂S(O)₂NHMe
- -CH₂CH₂S(O)₂NMe₂,

 $-CH_2CH_2CH_2S(O)Me,\\$

-CH₂CH₂CH₂S(O)Et,

-CH₂CH₂CH₂S(O)₂Me,

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{Et},$

CH(Me)CH₂C(O)OH,

 $-C(Me)_2CH_2C(O)OH$,

-5-tetrazolyl,

OH.

- -1,3,4-oxadiazolin-2-one-5-yl,
- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl;

provided that RP is substituted at either the 2, 5, or 6 position of the phenyl ring.

4. A compound according to claim 1 or a pharmaceutically acceptable salt or prodrug derivative thereof wherein

 (L_{P1}) , (L_{P2}) , and (L_{TB}) are divalent linking groups independently selected from

the group consisting of

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl; and

 $\hbox{-CH$_2CH_2$S(O)$_2$Me,}\\$

-CH2CH2S(O)Me,

-CH₂CH₂S(O)₂Et,

-CH₂CH₂S(O) Et,

-CH₂CH₂S(O)iPr,

-CH₂CH₂S(O)₂iPr,

 $-CH_{2}CH_{2}S(O)tBu,\\$

 $-\mathrm{CH}_2\mathrm{CH}_2\mathrm{S}(\mathrm{O})_2\mathrm{tBu},$

 $-CH_2CH_2S(O)NH_2$,

-CH₂CH₂S(O)NHMe,

 $-CH_2CH_2S(O)NMe_2,\\$

 $-CH_2CH_2S(O)_2NH_2$,

-CH₂CH₂S(O)₂NHMe

-CH₂CH₂S(O)₂NMe₂,

-CH₂CH₂CH₂S(O)Me,

-CH₂CH₂CH₂S(O)Et,

-CH₂CH₂CH₂S(O)₂Me,

-CH₂CH₂CH₂S(O)₂Et,

-C(O)OH,

-5-tetrazolyl,

- -isoxazol-3-ol-yl, or -1,3,4-oxadiazolin-2-thione-5-yl.
- 5. A compound according to claim 2 or a pharmaceutically acceptable salt or prodrug derivative thereof wherein (L_{P1}) , (L_{P2}) , and (L_{BT}) are divalent linking groups independently selected from the group consisting of

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl; and

ZBT is selected from

- $-O-(C_1-C_5 \text{ fluoroalkyl}),$
- -O-(C₁-C₅ alkyl)-phenyl,
- $-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl}) \text{ NH}_2$
- $-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-OH,$
- -O-(C_1 - C_5 alkyl)-C(O)-NH-5-tetrazolyl,
- -O-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-NH_2$
- -O- $(C_1-C_5 \text{ alkyl})$ -NH- $(C_1-C_5 \text{ alkyl})$,
- -O-(C_1 - C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,
- -O-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -O-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -O-(C₁-C₅ alkyl)-N-pyrrolidine,
- -O-(C₁-C₅ alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $\hbox{-O-(C$_1$-C$_5$ alkyl)-SO$_2$-(C$_1$-C$_5$ alkyl,)}\\$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$
- -O-(C_1 - C_5 alkyl)-SO $_2$ -NH-(C_1 - C_5 alkyl),
- -O-(C_1 - C_5 alkyl)-SO₂-N-(C_1 - C_5 alkyl)₂,
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $\hbox{-O-(C$_1$-C$_5$ alkyl)-S(O)-(C$_1$-C$_5$ alkyl,)}\\$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$
- -O-(C_1 - C_5 alkyl)-S(O)-NH-(C_1 - C_5 alkyl),
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$

-244-

- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,
- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- -O-(C₁-C₅ alkyl),
- -O-C(O)-NH₂,
- $-O-C(O)-N-(CH_3)_2$,
- -O-C(S)-N-(CH₃)₂,
- $-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 alkyl,)$
- $-O-SO_2-NH_2$,
- $-O-SO_2'-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- -O-S(O)-NH₂,
- $-O-S(O)-NH-(C_1-C_5 alkyl)$,
- $-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$,
- $-S-(C_1-C_5 \text{ alkyl}),$
- -S-(C_2 - C_5 alkenyl),
- -S-(C3-C5 cycloalkyl),
- -S-(C3-C5 cycloalkenyl),
- $-S-(C_1-C_5 fluoroalkyl)$,
- $-S-(C_1-C_5 \text{ hydroxyalkyl}),$
- -S-(C₁-C₅ alkyl)-phenyl,
- $-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-C(O)-OH,

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$\hbox{-S-}(C_1\hbox{-}C_5 \hbox{ alkyl})\hbox{-SO}_2\hbox{-N-}(C_1\hbox{-}C_5 \hbox{ alkyl})_2,$$

$$\hbox{-S-}(C_1\hbox{-}C_5 \hbox{ alkyl})\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \hbox{ alkyl}),$$

-S-(C1-C5 alkyl)-P(O)-(O-C1-C5 alkyl)
$$_2$$
 ,

-S-
$$(C_1-C_5 \text{ alkyl})$$
-5-tetrazolyl,

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$
,

$$\hbox{-S-(C$_1$-C$_5$ alkyl)-S(O)-NH-(C$_1$-C$_5$ alkyl),}\\$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2,\\$$

$$-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),\\$$

$$-SO_2$$
-(C_1 - C_5 alkyl),

- -SO₂-(C₁-C₅ hydroxyalkyl),
- -SO₂-(C₁-C₅ fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-NH_2$
- -SO₂-NH-(C₁-C₅ alkyl),
- -SO₂-NH-CH₂-C(O)OH,
- $-SO_2$ -NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)OH,
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NHC(O)-(C₃-C₆ cycloalkyl),
- $-SO_2-NH-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-SO_2$ -(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
- $\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \hbox{ alkyl})\hbox{-}C(O)\hbox{-}(C_1\hbox{-}C_5 \hbox{ alkyl}),$
- -SO₂-(C_1 - C_5 alkyl) NH₂,
- -SO₂-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- $-SO_2$ -(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-NH₂,
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-SO_2-(C_1-C_5 \ alkyl)-C(O)-N-(C_1-C_5 \ alkyl)_2,$
- $-SO_2-(C_1-C_5 \ alkyl)-NH-SO_2-(C_1-C_5 \ alkyl),\\$
- $-SO_2$ -(C_1 - C_5 alkyl)-N-pyrrolidin-2-one,
- -SO₂-(C₁-C₅ alkyl)-N-pyrrolidine,
- -SO₂-(C₁-C₅-alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-\mathrm{SO}_2\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_5 \text{ alkyl})\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_5 \text{ alkyl}),$
- $-SO_2$ -(C₁-C₅ alkyl)-C(O)-OH,
- $-SO_2$ -(C_1 - C_5 alkyl)-5-tetrazolyl,
- $-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl)-SO₂-N-(C₁-C₅ alkyl)₂

$$-SO_2-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

$$-SO_2-(C_1-C_5 alkyl)$$
,

$$-\mathsf{SO}_2\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_5\;\mathsf{hydroxyalkyl}),$$

$$-SO_2-(C_1-C_5)$$
-phenyl,

$$-SO_2-N=CHN(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-NH2$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-CH_2-C(O)OH$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)OH,$$

$$-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$\hbox{-S(O)-NH-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-}C(O)(O\hbox{-}C_1\hbox{-}C_5 \text{ alkyl}),$$

$$-S(O)HC(O)-(C_3-C_6 \text{ cycloalkyl}),$$

$$-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-N-(C_1-C_5 \text{ alkyl})_{2,}$$

$$\hbox{-S(O)-(C$_1$-C$_5$ alkyl)-O-(C$_1$-C$_5$ alkyl),}\\$$

$$\hbox{-S(O)-(C$_1$-C$_5$ alkyl)-C(O)-(C$_1$-C$_5$ alkyl),}\\$$

$$\hbox{-S(O)-(C$_1$-C$_5$ alkyl)-C(O)-(O-C$_1$-C$_5$ alkyl),}\\$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH$$
,

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$\hbox{-S(O)-(C$_1$-C$_5$ alkyl)-SO$_2$-NH-(C$_1$-C$_5$ alkyl),}\\$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-N=CHN(C_1-C_5 \text{ alkyl}) 2$$

-NHC(S)N-(
$$C_1$$
- C_5 alkyl)₂,

- -NHC(S)NH-(C_1 - C_5 fluoroalkyl),
- -NHC(S)NH-C₁-C₅ hydroxyalkyl,
- -NHC(S)NH-(C₁-C₅ fluoroalkyl)
- -NHC(S)NH-phenyl,
- -NHC(S)NH-(C1-C5 alkyl)-C(O)-OH,
- -NHC(S)NH-(C_1 - C_5 alkyl)-O-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(O- C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-NH₂.
- -NHC(S)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-N-(C_1 - C_5 alkyl)₂.
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂.
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-S(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- -NHC(S)NH-(C_1 - C_5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-NH₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-N-(C_1 - C_5 alkyl)₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-NH₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-NH-(C_1 - C_5 alkyl),

- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-N-(C_1 - C_5 alkyl)₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-P(O)-(O- C_1 - C_5 alkyl)₂,
- -NHC(O)NH2,
- -NHC(O)NH-(C_1 - C_5 alkyl),
- -NHC(O)N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C2-C5 alkenyl),
- -NHC(O)NH-(C3-C5 cycloalkyl),
- -NHC(O)NH-(C3-C5 cycloalkenyl),
- -NHC(O)NH-(C_1 - C_5 hydroxyalkyl),
- -NHC(O)NH-(C₁-C₅ fluoroalkyl),
- -NHC(O)NH-phenyl,
- -NHC(O)NH-(C₁-C₅ alkyl)-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- -NHC(O)NH-(C1-C $_5$ alkyl)-O-(C $_1$ -C $_5$ alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-NH₂,
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,
- -NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidine,
- -NHC(O)NH-(C₁-C₅ alkyl)-

(1-methylpyrrolidin-2-one-3-yl),

-NHC(O)NH-(C1-C5 alkyl)-C(O)-OH,

- -NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-O-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-N-(C_1 - C_5 alkyl)₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-P(O)-O-(C_1 - C_5 alkyl)₂,
- $-NH_2$
- -NH-(C₁-C₅ alkyl),
- -NH-CH₂-C(O)OH,
- $-N-(C_1-C_5 \text{ alkyl})_2$
- -NH-C(O)-NH2,
- -NH-C(O)-NH-(C_1 - C_5 alkyl),
- -NH-C(O)-N-(C₁-C₅ alkyl)₂
- -NH-C(O)-(C_1 - C_5 alkyl),
- -NH-SO₂-(C_1 - C_5 alkyl),
- $-NH-S(O)-(C_1-C_5 \text{ alkyl}),$
- -N(CH₃)(OCH₃),
- -N(OH)(CH₃),
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- $-C(O)CH_2S(O)Et$,
- -C(O)CH₂S(O)₂Me,

- $-C(O)CH_2S(O)_2Et$,
- -C(O)CH₂CH₂S(O)Me,
- -C(O)CH₂CH₂S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$,
- -C(O)CH₂CH₂S(O)₂Et,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH₂CO₂Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO₂tBu,
- -C(O)CH(Me)C(Me) 2CO₂H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) $_2$ CO $_2$ iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,

- $-C(O)C(O)NMe_2$
- -C(O)NH₂,
- $-C(O)NMe_2$
- $-C(O)NH-CH_2-C(O)OH$,
- -C(O)NH-CH₂-C(O)OMe,
- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- $-C(O)NH-C(Me)_2-C(O)tBu$,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- $-C(O)NH-CH(CF_3)-C(O)OH$,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,

- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- $-C(O)NMe-CH_2-C(O)OH$,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)₂-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF₃)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,

- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- $-C(O)N(Me)CH_2S(O)Me$,
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- -C(O)N(Me)CH2CH2S(O)Me,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- -C(O)N(Me)CH2CH2SO2Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,

- -CH₂CO₂Et,
- -CH2NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH₂NHSO₂Et,
- -CH2NHS(O)iPr,
- -CH₂NHSO₂iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH₂NH(CH₂CO₂H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- - CH_2 -(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- $-CH_2S(O)_2Et$,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- -CH₂S(O)tBu,
- -CH₂S(O)₂tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- $-CH_2C(O)NMe_2$,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,

- $-CH(OH)C(O)NH_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe₂,
- -CH(OH)C(O)NEt2,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- - $CH_2CH_2S(O)Me$,
- $-CH_2CH_2S(O)_2Et$,
- -CH₂CH₂S(O) Et,
- $-CH_{2}CH_{2}S(O)iPr,\\$
- $-CH_2CH_2S(O)_2iPr$,
- -CH₂CH₂S(O)tBu,
- -CH₂CH₂S(O)₂tBu,
- -CH₂CH₂S(O)NH₂,
- -CH₂CH₂S(O)NHMe,
- -CH₂CH₂S(O)NMe₂,
- $-CH_2CH_2S(O)_2NH_2$,
- -CH₂CH₂S(O)₂NHMe
- -CH₂CH₂S(O)₂NMe₂,
- -CH₂CH₂CH₂S(O)Me,

-CH₂CH₂CH₂S(O)Et,

 $-CH_2CH_2CH_2S(O)_2Me,\\$

 $\hbox{-CH$_2CH_2CH_2$S(O)$_2$Et,}\\$

-259-

$$0$$
 N
 N
 N
 N

-1,3,4-oxadiazolin-2-one-5-yl,

-imidazolidine-2,4-dione-5-yl,

-isoxazol-3-ol-yl, or

-1,3,4-oxadiazolin-2-thione-5-yl.

6. A compound according to claim 3 or a pharmaceutically acceptable salt or prodrug derivative thereof wherein

 (L_{P1}) , (L_{P2}) , and (L_{BT}) are divalent linking groups independently selected from the group consisting of

where m is 0, 1, or 2, and each R40 is independently hydrogen, C_1 - C_5 alkyl, or C_1 - C_5 fluoroalkyl; and

ZBT is selected from

$$-O-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ hydroxyalkyl}),$$

$$-O-(C_1-C_5 \text{ fluoroalkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl})-(O)-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl}) \text{ NH}_{2}$$

$$-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl})_2$$

$$-O-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

-O-(
$$C_1$$
- C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),

$$\hbox{-O-(C$_1$-C$_5$ alkyl)-C(O)-N-(C$_1$-C$_5$ alkyl)$_{2,}$}$$

-O-(
$$C_1$$
- C_5 alkyl)-C(O)-NH-5-tetrazolyl,

-O-(
$$C_1$$
- C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),

$$\hbox{-O-(C$_1$-C$_5$ alkyl)-C(O)-(O-C$_1$-C$_5$ alkyl),}\\$$

$$-O-(C_1-C_5 \text{ alkyl})-NH_2$$

$$-O-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-O-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$$

-O-(
$$C_1$$
- C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),

- -O-(C1-C5 alkyl)-N-pyrrolidine,
- -O-(C1-C5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl},)$
- -O-(C₁-C₅ alkyl)-SO₂-NH₂,
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl},)$
- -O-(C₁-C₅ alkyl)-S(O)-NH₂
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-O-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-O-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- -O-(C₁-C₅ alkyl)-5-tetrazolyl,
- -O-CH₂-CO₂H,
- -O-CH₂-5-tetrazolyl,
- $-O-(C_1-C_5 \text{ alkyl}),$
- -O-C(O)-NH₂,
- $-O-C(O)-N-(CH_3)_2$,
- $-O-C(S)-N-(CH_3)_2$,
- $-O-C(O)-O-(C_1-C_5 \text{ alkyl}),$
- -O-(5-tetrazolyl),
- $-O-SO_2-(C_1-C_5 \text{ alkyl,})$
- $-O-SO_2-NH_2$,
- $-O-SO_2-NH-(C_1-C_5 \text{ alkyl}),$
- $-O-SO_2-N-(C_1-C_5 \text{ alkyl})_2$,
- $-O-S(O)-(C_1-C_5 \text{ alkyl,})$
- -O-S(O)-NH₂,

$$-O-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-O-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-S-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ hydroxyalkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-OH,$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

-S-(
$$C_1$$
- C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),

-S-(
$$C_1$$
- C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂,

-S-(
$$C_1$$
- C_5 alkyl) NH₂,

-S-(
$$C_1$$
- C_5 alkyl)-NH-(C_1 - C_5 alkyl),

-S-(
$$C_1$$
- C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,

$$-S-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-N-pyrrolidin-2-one,$$

$$-S-(C_1-C_5 \text{ alkyl})-N-pyrrolidine,$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$\hbox{-S-(C$_1$-C$_5$ alkyl)-SO$_2$-NH-(C$_1$-C$_5$ alkyl),}\\$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2,$$

$$-S-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$$
,

- -S-(C₁-C₅ alkyl)-5-tetrazolyl,
- -S-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl),
- -S-(C₁-C₅ alkyl)-S(O)-NH₂
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$
- -S-(C₁-C₅ alkyl)-S(O)-N-(C₁-C₅ alkyl)₂,
- $-S-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-SO_2$ -(C₁-C₅ alkyl),
- -SO₂-(C₂-C₅ alkenyl),
- -SO₂-(C₃-C₅ cycloalkyl),
- -SO₂-(C₃-C₅ cycloalkenyl),
- -SO₂-(C₁-C₅ hydroxyalkyl),
- -SO₂-(C₁-C₅ fluoroalkyl),
- $-SO_2-(C_1-C_5)$ -phenyl,
- $-SO_2-NH_2$
- $-SO_2$ -NH-(C₁-C₅ alkyl),
- -SO₂-NH-CH₂-C(O)OH,
- $-SO_2$ -NH-CH₂-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NH-(C₁-C₅ alkyl)-C(O)OH,
- $-SO_2$ -NH-(C₁-C₅ alkyl)-C(O)(O-C₁-C₅ alkyl),
- -SO₂-NHC(O)-(C₃-C₆ cycloalkyl),
- $-SO_2$ -NH-C(O)-(C₁-C₅ alkyl),
- $-SO_2-N-(C_1-C_5 \text{ alkyl})_2$
- $-SO_2$ -(C₁-C₅-alkyl)-O-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$
- $-SO_2$ -(C₁-C₅ alkyl) NH₂
- $-SO_2$ -(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- $-SO_2-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_2$

$$-SO_2$$
-(C₁-C₅ alkyl)-C(O)-NH₂,

$$-SO_2$$
-(C₁-C₅ alkyl)-C(O)-NH-(C₁-C₅ alkyl),

$$-SO_2$$
-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),

$$-SO_2-(C_1-C_5 \text{ alkyl})-C(O)-O-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C₁-C₅ alkyl)-C(O)-OH,

$$-SO_2$$
-(C_1 - C_5 alkyl)- SO_2 -(C_1 - C_5 alkyl),

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

$$-\mathsf{SO}_2\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_5 \text{ alkyl})\text{-}\mathsf{SO}_2\text{-}(\mathsf{C}_1\text{-}\mathsf{C}_5 \text{ alkyl}),$$

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5 \text{ alkyl})\hbox{-P(O)-}(O\hbox{-}C_1\hbox{-}C_5 \text{ alkyl})_2\;,$$

$$-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-SO_2$$
-(C_2 - C_5 alkenyl),

$$-SO_2$$
-(C₃-C₅ cycloalkyl),

$$-SO_2$$
-(C_1 - C_5 hydroxyalkyl),

$$-SO_2$$
-(C_1 - C_5 fluoroalkyl),

$$\hbox{-SO}_2\hbox{-}(C_1\hbox{-}C_5)\hbox{-phenyl},$$

-SO₂-N=CHN(
$$C_1$$
- C_5 alkyl) 2,

$$-S(O)-NH2$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-(C_1-C_5 alkyl)-C(O)OH$$
,

$$-S(O)-NH-CH_2-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-(C_1-C_5 \text{ alkyl})-C(O)(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-NH-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-N-(C_1-C_5 \text{ alkyl})_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-O-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-N-(C_1-C_5 \text{ alkyl})_{2,}$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-N-(C_1-C_5 \text{ alkyl})_2$$
,

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-NH-S(O)-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-(O-C_1-C_5 \text{ alkyl}),\\$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-C(O)-OH,$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-5-\text{tetrazolyl},$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \ alkyl)-S(O)-(C_1-C_5 \ alkyl),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH_2$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-NH-(C_1-C_5 \text{ alkyl}),$$

$$-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-N-(C_1-C_5 \text{ alkyl})_2$$

- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-N-(C_1-C_5 \text{ alkyl})_2$
- $-S(O)-(C_1-C_5 \text{ alkyl})-SO_2-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-S(O)-(C_1-C_5 \text{ alkyl}),$
- $-S(O)-(C_1-C_5 \text{ alkyl})-P(O)-(O-C_1-C_5 \text{ alkyl})_2$,
- $-S(O)-N=CHN(C_1-C_5 \text{ alkyl})_2$
- $-NHC(S)NH_2$
- -NHC(S)NH-(C_1 - C_5 alkyl),
- -NHC(S)N-(C₁-C₅ alkyl)₂,
- -NHC(S)NH-(C2-C5 alkenyl),
- -NHC(S)NH-(C3-C5 cycloalkyl),
- -NHC(S)NH-(C3-C5 cycloalkenyl),
- -NHC(S)NH-(C₁-C₅ fluoroalkyl),
- -NHC(S)NH-C₁-C₅ hydroxyalkyl,
- -NHC(S)NH-(C₁-C₅ fluoroalkyl)
- -NHC(S)NH-phenyl,
- -NHC(S)NH-(C₁-C₅ alkyl)-C(O)-OH,
- -NHC(S)NH-(C₁-C₅ alkyl)-O-(C₁-C₅ alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-(O- C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-NH₂
- -NHC(S)NH-(C₁-C₅ alkyl)-NH-(C₁-C₅ alkyl),
- $-NHC(S)NH-(C_1-C_5 alkyl)-N-(C_1-C_5 alkyl)_2$
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-NH₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂.
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-SO₂-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-NH-S(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C₁-C₅ alkyl)-N-pyrrolidin-2-one,

- -NHC(S)NH-(C1-C5 alkyl)-N-pyrrolidine,
- -NHC(S)NH-(C_1 - C_5 alkyl)-(1-methylpyrrolidin-2-one-3-yl),
- -NHC(S)NH-(C₁-C₅ alkyl)-5-tetrazolyl,
- $-NHC(S)NH-(C_1-C_5 alkyl)-SO_2-(C_1-C_5 alkyl),$
- -NHC(S)NH-(C1-C5 alkyl)-SO2-NH2
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-SO₂-N-(C_1 - C_5 alkyl)₂
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-NH₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-NH-(C_1 - C_5 alkyl),
- -NHC(S)NH-(C_1 - C_5 alkyl)-S(O)-N-(C_1 - C_5 alkyl)₂,
- -NHC(S)NH-(C_1 - C_5 alkyl)-P(O)-(O- C_1 - C_5 alkyl)₂,
- -NHC(O)NH2,
- -NHC(O)NH-(C1-C5 alkyl),
- -NHC(O)N-(C_1 - C_5 alkyl)₂,
- -NHC(O)NH-(C2-C5 alkenyl),
- -NHC(O)NH-(C3-C5 cycloalkyl),
- -NHC(O)NH-(C3-C5 cycloalkenyl),
- -NHC(O)NH-(C1-C5 hydroxyalkyl),
- -NHC(O)NH-(C1-C5 fluoroalkyl),
- -NHC(O)NH-phenyl,
- -NHC(O)NH-(C₁-C₅ alkyl)-NH₂
- -NHC(O)NH-(C_1 - C_5 alkyl)-NH-(C_1 - C_5 alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-N-(C₁-C₅ alkyl)₂
- -NHC(O)NH-(C1-C $_5$ alkyl)-O-(C $_1$ -C $_5$ alkyl),
- -NHC(O)NH-(C₁-C₅ alkyl)-NH₂
- $-NHC(O)NH-(C_1-C_5 alkyl)-NH-(C_1-C_5 alkyl),$

-NHC(O)NH-(C_1 - C_5 alkyl)-N-(C_1 - C_5 alkyl)₂,

-NHC(O)NH-(C₁-C₅ alkyl)-C(O)-NH₂,

 $\hbox{-NHC}(O)\hbox{NH-}(C_1\hbox{-}C_5 \hbox{ alkyl})\hbox{-C}(O)\hbox{-NH-}(C_1\hbox{-}C_5 \hbox{ alkyl}),$

-NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-N-(C_1 - C_5 alkyl)₂,

-NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-(C_1 - C_5 alkyl),

-NHC(O)NH-(C₁-C₅ alkyl)-NH-SO₂-(C₁-C₅ alkyl),

-NHC(O)NH-(C1-C5 alkyl)-N-pyrrolidin-2-one,

-NHC(O)NH-(C₁-C₅ alkyl)-N-pyrrolidine,

-NHC(O)NH-(C₁-C₅ alkyl)-

(1-methylpyrrolidin-2-one-3-yl),

-NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-OH,

-NHC(O)NH-(C_1 - C_5 alkyl)-C(O)-O-(C_1 - C_5 alkyl),

-NHC(O)NH-(C₁-C₅ alkyl)-5-tetrazolyl,

-NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-(C_1 - C_5 alkyl),

-NHC(O)NH-(C₁-C₅ alkyl)-SO₂-NH₂,

-NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-NH-(C_1 - C_5 alkyl),

-NHC(O)NH-(C_1 - C_5 alkyl)-SO₂-N-(C_1 - C_5 alkyl)₂

-NHC(O)NH-(C_1 - C_5 alkyl)-P(O)-O-(C_1 - C_5 alkyl)₂,

-NH₂

-NH-(C_1 - C_5 alkyl),

-NH-CH₂-C(O)OH,

 $-N-(C_1-C_5 \text{ alkyl})_2$

 $-NH-C(O)-NH_2$,

-NH-C(O)-NH-(C_1 - C_5 alkyl),

-NH-C(O)-N- $(C_1-C_5 \text{ alkyl})_2$,

-NH-C(O)-(C_1 - C_5 alkyl),

-NH-SO $_2$ -(C $_1$ -C $_5$ alkyl),

-NH-S(O)-(C_1 - C_5 alkyl),

-270-

- -N(CH₃)(OCH₃),
- -N(OH)(CH₃),
- -N-pyrrolidin-2-one,
- -N-pyrrolidine,
- -(1-methylpyrrolidin-2-one-3-yl),
- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- -C(O)CH₂S(O)Et,
- -C(O)CH₂S(O)₂Me,
- -C(O)CH₂S(O)₂Et,
- -C(O)CH₂CH₂S(O)Me,
- $-C(O)CH_2CH_2S(O)Et$,
- -C(O)CH₂CH₂S(O)₂Me,
- -C(O)CH₂CH₂S(O)₂Et,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH₂CO₂Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH₂CO₂iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO2Me,

-271-

- -C(O)CH(Me)C(Me) 2CO₂Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$
- -C(O)NH₂,
- $-C(O)NMe_2$
- -C(O)NH-CH₂-C(O)OH,
- -C(O)NH-CH₂-C(O)OMe,
- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- -C(O)NH-C(Me)2-C(O)tBu,

-272-

- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)₂-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF₃)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)2-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF₃)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,

- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH₂SO₂Me,
- -C(O)NHCH₂SO₂Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- $-C(O)N(Me)SO_2Me$,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO₂iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- -C(O)N(Me)CH₂S(O)Me,
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH2SO2Me,
- -C(O)N(Me)CH₂SO₂Et,

-274-

- -C(O)N(Me)CH2CH2S(O)Me,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH2CH2SO2Me,
- -C(O)N(Me)CH₂CH₂SO₂Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH₂NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH2NHSO2Et,
- -CH₂NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- -CH2NH(CH2CO2H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- $-CH_2S(O)_2Et$,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- -CH₂S(O)tBu,

- -CH₂S(O)₂tBu,
- $-CH_2CO_2H$, $CH_2C(O)NH_2$,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,
- -CH(OH)C(O)NH $_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- $-CH_2CH_2S(O)_2Me,\\$
- $\hbox{-CH}_2\hbox{CH}_2\hbox{S(O)Me,}\\$
- $-CH_2CH_2S(O)_2Et,\\$
- -CH₂CH₂S(O) Et,
- -CH₂CH₂S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- -CH₂CH₂S(O)tBu,
- $\hbox{-CH}_2\hbox{CH}_2\hbox{S}(\hbox{O})_2\hbox{tBu},$
- $-CH_2CH_2S(O)NH_2$,
- -CH₂CH₂S(O)NHMe,

 $-CH_2CH_2S(O)NMe_2$,

 $-CH_2CH_2S(O)_2NH_2,\\$

-CH₂CH₂S(O)₂NHMe

 $-CH_2CH_2S(O)_2NMe_2,\\$

 $-CH_2CH_2CH_2S(O)Me,\\$

 $-CH_2CH_2CH_2S(O)Et,\\$

 $\hbox{-CH}_2\hbox{CH}_2\hbox{CH}_2\hbox{S(O)}_2\hbox{Me},$

 $-CH_2CH_2CH_2S(O)_2Et,\\$

-5-tetrazolyl,

- -imidazolidine-2,4-dione-5-yl,
- -isoxazol-3-ol-yl, or
- -1,3,4-oxadiazolin-2-thione-5-yl.

The compound of Claim 1 7.

wherein for Formula IA;

R and R' are independently methy or ethyl;

RP and RT₃ are independently, hydrogen or methyl;

RP₃ and RB are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;

 (L_{P1}) and (L_{TB}) divalent linking groups are both bonds;

 (L_{P2}) is a bond, $-CH_2$ -, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentynyl;

 Z_{TB} is

- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- -C(O)CH₂S(O)Me,
- -C(O)CH2S(O)Et,
- -C(O)CH₂S(O)₂Me,
- $-C(O)CH_2S(O)_2Et$,
- -C(O)CH₂CH₂S(O)Me,
- -C(O)CH₂CH₂S(O)Et,
- $-C(O)CH_2CH_2S(O)_2Me$,
- -C(O)CH₂CH₂S(O)₂Et,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH₂CO₂Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH2CO2iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,

- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,
- $-C(O)NMe_2$,
- -C(O)NH-CH₂-C(O)OH,
- -C(O)NH-CH₂-C(O)OMe,
- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-C(Me)2-C(O)OMe,
- -C(O)NH-C(Me)₂-C(O)OEt,

- -C(O)NH-C(Me)2-C(O)iPr,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- -C(O)NH-C(Me)(CF₃)-C(O)OH,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- $-C(O)NMe-CH_2-C(O)OMe$,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)₂-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF₃)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,

- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO₂tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH₂SO₂Me,
- -C(O)NHCH₂SO₂Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH₂CH₂SO₂Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- $-C(O)N(Me)SO_2Me$,
- $-C(O)N(Me)SO_2Et$,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO₂tBu,
- -C(O)N(Me)CH₂S(O)Me,
- -C(O)N(Me)CH₂S(O)Et,

- -C(O)N(Me)CH2SO2Me,
- -C(O)N(Me)CH₂SO₂Et,
- -C(O)N(Me)CH₂CH₂S(O)Me,
- -C(O)N(Me)CH₂CH₂S(O)Et,
- -C(O)N(Me)CH₂CH₂SO₂Me,
- -C(O)N(Me)CH2CH2SO2Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH2NHS(O)Me,
- -CH2NHS(O)Et,
- -CH2NHSO2Me,
- -CH₂NHSO₂Et,
- -CH2NHS(O)iPr,
- -CH₂NHSO₂iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH2NHCH2CH2SO2CH3,
- -CH₂NH(CH₂CO₂H),
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- -CH₂S(O)₂Et,
- -CH₂S(O)iPr,

- $-CH_2S(O)_2iPr$,
- -CH₂S(O)tBu,
- $-CH_2S(O)_2tBu$,
- -CH₂CO₂H, CH₂C(O)NH₂,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,
- -CH(OH)C(O)NH₂,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt₂,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH2CH2CO2Et,
- $-\mathrm{CH_2CH_2C}(\mathrm{O})\mathrm{NH_2},$
- -CH₂CH₂C(O)NHMe,
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- -CH₂CH₂S(O)₂Me,
- -CH₂CH₂S(O)Me,
- -CH₂CH₂S(O)₂Et,
- - $CH_2CH_2S(O)$ Et,
- -CH₂CH₂S(O)iPr,
- $-\mathrm{CH_2CH_2S}(\mathrm{O})_2\mathrm{iPr},$
- -CH₂CH₂S(O)tBu,
- -CH₂CH₂S(O)₂tBu,

- -CH₂CH₂S(O)NH₂,
- -CH₂CH₂S(O)NHMe,
- -CH₂CH₂S(O)NMe₂,
- -CH₂CH₂S(O)₂NH₂,
- -CH₂CH₂S(O)₂NHMe
- -CH₂CH₂S(O)₂NMe₂,
- -CH₂CH₂CH₂S(O)Me,
- -CH2CH2CH2S(O)Et,
- -CH2CH2CH2S(O)2Me, or
- -CH₂CH₂CH₂S(O)₂Et.

8. The compound of claim 2 wherein for formula IB;

R and R' are independently methy or ethyl;

RP, RB, RB₄, and RT₃ are independently, hydrogen or methyl;

 RP_3 and RB_7 are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;

(L_{P1}) and (L_{BT}) divalent linking groups are both bonds;

(L_{P2}) is a bond, -CH₂-, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl,

3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentenyl, 3-ethyl-3-hydroxypentynyl;

 Z_{BT} is

- -CO₂H,
- -CO₂Me,
- -CO₂Et,
- $-C(O)CH_2S(O)Me$,
- -C(O)CH₂S(O)Et,
- -C(O)CH2S(O)2Me,
- $-C(O)CH_2S(O)_2Et$,
- -C(O)CH2CH2S(O)Me,

- -C(O)CH₂CH₂S(O)Et,
- -C(O)CH₂CH₂S(O)₂Me,
- -C(O)CH₂CH₂S(O)₂Et,
- -C(O)CH(Me)CH₂CO₂H,
- -C(O)CH(Me)CH2CO2Me,
- -C(O)CH(Me)CH₂CO₂Et,
- -C(O)CH(Me)CH2CO2iPr,
- -C(O)CH(Me)CH2CO2tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO2Me,
- -C(O)CH(Me)C(Me) 2CO₂Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- $-C(O)C(O)NMe_2$,
- -C(O)NH₂,

- $-C(O)NMe_2$,
- -C(O)NH-CH₂-C(O)OH,
- -C(O)NH-CH₂-C(O)OMe,
- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH2-C(O)OiPr,
- -C(O)NH-CH₂-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,
- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OMe$,
- -C(O)NH-C(Me)2-C(O)OEt,
- $-C(O)NH-C(Me)_2-C(O)iPr$,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- $-C(O)NH-CH(CF_3)-C(O)OH$,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,

-288-

- -C(O)NMe-CH₂-C(O)tBu,
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)₂-C(O)OH,
- -C(O)NMe-CF(Me)-C(O)OH,
- $-C(O)NMe-C(Me)(CF_3)-C(O)OH$,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO₂Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO₂tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH₂SO₂Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,

- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO₂Me,
- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO₂tBu,
- -C(O)N(Me)CH₂S(O)Me,
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- -C(O)N(Me)CH₂CH₂S(O)Me,
- -C(O)N(Me)CH₂CH₂S(O)Et,
- -C(O)N(Me)CH₂CH₂SO₂Me,
- -C(O)N(Me)CH2CH2SO2Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,

-290-.

- -CH₂CO₂Et,
- -CH2NHS(O)Me,
- -CH2NHS(O)Et,
- -CH2NHSO2Me,
- -CH₂NHSO₂Et,
- -CH2NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- $-CH_2NH(CH_2CO_2H),$
- -CH₂N(C(O)Me)(CH₂CO₂H),
- -CH₂-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- -CH₂S(O)₂Me,
- $-CH_2S(O)_2Et$,
- -CH₂S(O)iPr,
- -CH₂S(O)₂iPr,
- -CH₂S(O)tBu,
- -CH₂S(O)₂tBu,
- -CH₂CO₂H, CH₂C(O)NH₂,
- -CH₂C(O)NMe₂,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,

-291-

- $-CH(OH)C(O)NH_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2,
- -CH₂CH₂CO₂H,
- -CH₂CH₂CO₂Me,
- -CH₂CH₂CO₂Et,
- -CH₂CH₂C(O)NH₂,
- -CH₂CH₂C(O)NHMe,
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- $-CH_2CH_2S(O)_2Me,\\$
- -CH₂CH₂S(O)Me,
- -CH₂CH₂S(O)₂Et,
- -CH₂CH₂S(O) Et,
- -CH₂CH₂S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- -CH₂CH₂S(O)tBu,
- -CH₂CH₂S(O)₂tBu,
- -CH₂CH₂S(O)NH₂,
- -CH₂CH₂S(O)NHMe,
- -CH2CH2S(O)NMe2,
- $-CH_2CH_2S(O)_2NH_2$,
- -CH₂CH₂S(O)₂NHMe
- -CH₂CH₂S(O)₂NMe₂,
- -CH₂CH₂CH₂S(O)Me,

-292-

-CH₂CH₂CH₂S(O)Et,

-CH₂CH₂CH₂S(O)₂Me, or

-CH₂CH₂CH₂S(O)₂Et.

9. The compound of claim 3 wherein for formula IC;

R and R' are independently methy or ethyl;

RP, RB, RB₄, and RT₃ are independently, hydrogen or methyl;

RP₃ and RB₇ are independently hydrogen, methyl, ethyl, -O-methyl, or cyclopropyl;

(L_{P1}) and (L_{BT}) divalent linking groups are both bonds;

 (L_{P2}) is a bond, $-CH_2$ -, -CH(OH)-, or -C(Me)OH-;

Zp is 1,1-dimethylethyl; 1-hydroxycyclopentyl, 1-hydroxycyclohexyl, 3-ethyl-3-hydroxypentyl, 3-ethyl-3-hydroxypentynyl;

 Z_{BT} is

-CO₂H,

-CO₂Me,

-CO₂Et,

-C(O)CH2S(O)Me,

-C(O)CH2S(O)Et,

-C(O)CH₂S(O)₂Me,

 $-C(O)CH_2S(O)_2Et$,

-C(O)CH2CH2S(O)Me,

-C(O)CH2CH2S(O)Et,

-C(O)CH2CH2S(O)2Me,

 $-C(O)CH_2CH_2S(O)_2Et$,

-C(O)CH(Me)CH₂CO₂H,

 $-C(O)CH(Me)CH_2CO_2Me$,

-C(O)CH(Me)CH₂CO₂Et,

-C(O)CH(Me)CH₂CO₂iPr,

- -C(O)CH(Me)CH₂CO₂tBu,
- -C(O)CH(Me)CH(Me)CO₂H,
- -C(O)CH(Me)CH(Me)CO₂Me,
- -C(O)CH(Me)CH(Me)CO₂Et,
- -C(O)CH(Me)CH(Me)CO2iPr,
- -C(O)CH(Me)CH(Me)CO2tBu,
- -C(O)CH(Me)C(Me) 2CO2H,
- -C(O)CH(Me)C(Me) 2CO₂Me,
- -C(O)CH(Me)C(Me) 2CO2Et,
- -C(O)CH(Me)C(Me) 2CO2iPr,
- -C(O)CH(Me)C(Me) 2CO2tBu,
- -C(O)CH(Me)CH(Et)CO₂H,
- -C(O)CH(Me)CH(Et)CO₂Me,
- -C(O)CH(Me)CH(Et)CO₂Et,
- -C(O)CH(Me)CH(Et)CO2iPr,
- -C(O)CH(Me)CH(Et)CO2tBu,
- -C(O)C(O)OH,
- $-C(O)C(O)NH_2$,
- -C(O)C(O)NHMe,
- -C(O)C(O)NMe2,
- -C(O)NH₂,
- -C(O)NMe2,
- -C(O)NH-CH₂-C(O)OH,
- $-C(O)NH-CH_2-C(O)OMe$,
- -C(O)NH-CH₂-C(O)OEt,
- -C(O)NH-CH₂-C(O)OiPr,
- -C(O)NH-CH2-C(O)OtBu,
- -C(O)NH-CH(Me)-C(O)OH,
- -C(O)NH-CH(Me)-C(O)OMe,

- -C(O)NH-CH(Me)-C(O)OEt,
- -C(O)NH-CH(Me)-C(O)iPr,
- -C(O)NH-CH(Me)-C(O)tBu,
- -C(O)NH-CH(Et)-C(O)OH,
- $-C(O)NH-C(Me)_2-C(O)OH$,
- -C(O)NH-C(Me)₂-C(O)OMe,
- $-C(O)NH-C(Me)_2-C(O)OEt$,
- -C(O)NH-C(Me)2-C(O)iPr,
- -C(O)NH-C(Me)2-C(O)tBu,
- -C(O)NH-CMe(Et)-C(O)OH,
- -C(O)NH-CH(F)-C(O)OH,
- -C(O)NH-CH(CF₃)-C(O)OH,
- -C(O)NH-CH(OH)-C(O)OH,
- -C(O)NH-CH(cyclopropyl)-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-C(Me)2-C(O)OH,
- -C(O)NH-CF(Me)-C(O)OH,
- $-C(O)NH-C(Me)(CF_3)-C(O)OH$,
- -C(O)NH-C(Me)(OH)-C(O)OH,
- -C(O)NH-C(Me)(cyclopropyl)CO₂H
- -C(O)NMe-CH₂-C(O)OH,
- -C(O)NMe-CH₂-C(O)OMe,
- -C(O)NMe-CH₂-C(O)OEt,
- -C(O)NMe-CH₂-C(O)OiPr,
- -C(O)NMe-CH₂-C(O)tBu,
- $-C(O)NMe-CH_2-C(O)OH$,
- -C(O)NMe-CH(Me)-C(O)OH,
- -C(O)NMe-CH(F)-C(O)OH,
- -C(O)NMe-CH(CF₃)-C(O)OH,
- -C(O)NMe-CH(OH)-C(O)OH,
- -C(O)NMe-CH(cyclopropyl)-C(O)OH,
- -C(O)NMe-C(Me)2-C(O)OH,

- -C(O)NMe-CF(Me)-C(O)OH,
- -C(O)NMe-C(Me)(CF₃)-C(O)OH,
- -C(O)NMe-C(Me)(OH)-C(O)OH,
- -C(O)NMe-C(Me)(cyclopropyl)-C(O)OH,
- -C(O)NHS(O)Me,
- -C(O)NHSO₂Me,
- -C(O)-NH-5-tetrazolyl,
- -C(O)NHS(O)Me,
- -C(O)NHS(O)Et,
- -C(O)NHSO₂Me,
- -C(O)NHSO2Et,
- -C(O)NHS(O)iPr,
- -C(O)NHSO2iPr,
- -C(O)NHS(O)tBu,
- -C(O)NHSO2tBu,
- -C(O)NHCH₂S(O)Me,
- -C(O)NHCH₂S(O)Et,
- -C(O)NHCH2SO2Me,
- -C(O)NHCH2SO2Et,
- -C(O)NHCH2CH2S(O)Me,
- -C(O)NHCH2CH2S(O)Et,
- -C(O)NHCH2CH2SO2Me,
- -C(O)NHCH2CH2SO2Et,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)SO₂Me,
- -C(O)-N(Me)-5-tetrazolyl,
- -C(O)N(Me)S(O)Me,
- -C(O)N(Me)S(O)Et,
- -C(O)N(Me)SO₂Me,

- -C(O)N(Me)SO₂Et,
- -C(O)N(Me)S(O)iPr,
- -C(O)N(Me))SO2iPr,
- -C(O)N(Me))S(O)tBu,
- -C(O)N(Me)SO2tBu,
- -C(O)N(Me)CH₂S(O)Me,
- -C(O)N(Me)CH₂S(O)Et,
- -C(O)N(Me)CH₂SO₂Me,
- -C(O)N(Me)CH₂SO₂Et,
- -C(O)N(Me)CH₂CH₂S(O)Me,
- -C(O)N(Me)CH2CH2S(O)Et,
- -C(O)N(Me)CH₂CH₂SO₂Me,
- -C(O)N(Me)CH₂CH₂SO₂Et,
- -CH₂CO₂H,
- -CH₂-5-tetrazolyl,
- -CH₂CO₂Me,
- -CH₂CO₂Et,
- -CH2NHS(O)Me,
- -CH₂NHS(O)Et,
- -CH₂NHSO₂Me,
- -CH2NHSO2Et,
- -CH₂NHS(O)iPr,
- -CH2NHSO2iPr,
- -CH2NHS(O)tBu,
- -CH2NHSO2tBu,
- -CH₂NHCH₂CH₂SO₂CH₃,
- $-CH_2NH(CH_2CO_2H),$
- $\hbox{-CH}_2\hbox{N(C(O)Me)(CH}_2\hbox{CO}_2\hbox{H),}\\$

-297-

- -CH2-N-pyrrolidin-2-one,
- -CH₂-(1-methylpyrrolidin-2-one-3-yl),
- -CH₂S(O)Me,
- -CH₂S(O)Et,
- $-CH_2S(O)_2Me$,
- $-CH_2S(O)_2Et$,
- -CH₂S(O)iPr,
- $-\mathrm{CH}_{2}\mathrm{S}(\mathrm{O})_{2}\mathrm{i}\mathrm{Pr},$
- -CH₂S(O)tBu,
- $-CH_2S(O)_2tBu$,
- -CH $_2$ CO $_2$ H, CH $_2$ C(O)NH $_2$,
- $-CH_2C(O)NMe_2$,
- -CH₂C(O)NHMe,
- -CH₂C(O)-N-pyrrolidine,
- -CH₂S(O)₂Me, CH₂S(O)Me,
- -CH(OH) CO₂H,
- $-CH(OH)C(O)NH_2$,
- -CH(OH)C(O)NHMe,
- -CH(OH)C(O)NMe2,
- -CH(OH)C(O)NEt2,
- -CH₂CH₂CO₂H,
- $\hbox{-CH$_2CH_2CO_2$Me},$
- -CH₂CH₂CO₂Et,
- $-CH_2CH_2C(O)NH_2$,
- -CH₂CH₂C(O)NHMe,
- -CH₂CH₂C(O)NMe₂,
- -CH₂CH₂-5-tetrazolyl,
- -CH₂CH₂S(O)₂Me,

-298-

- -CH₂CH₂S(O)Me,
- - $CH_2CH_2S(O)_2Et$,
- -CH₂CH₂S(O) Et,
- -CH₂CH₂S(O)iPr,
- -CH₂CH₂S(O)₂iPr,
- -CH₂CH₂S(O)tBu,
- -CH₂CH₂S(O)₂tBu,
- -CH₂CH₂S(O)NH₂,
- -CH₂CH₂S(O)NHMe,
- -CH₂CH₂S(O)NMe₂,
- $-CH_2CH_2S(O)_2NH_2$,
- -CH₂CH₂S(O)₂NHMe
- -CH₂CH₂S(O)₂NMe₂,
- -CH₂CH₂CH₂S(O)Me,
- -CH2CH2CH2S(O)Et,
- -CH₂CH₂CH₂S(O)₂Me, or
- -CH₂CH₂CH₂S(O)₂Et.
- 10. The compound represented by formula (C1) to (C22) or a pharmaceutically acceptable salt or prodrug derivative thereof:

C1)

C2)

C4)

C5)

C6)

C7)

C8)

C9)

C10)

C11)

C12)

C13)

C14)

C15)

C16)

C17)

C18)

S HOOH

C20)

C21)

C22)

11. The compound represented by the structural formula AA or a pharmaceutically acceptable salt or prodrug thereof:

12. A compound according to claim 1 or a pharmaceutically acceptable salt or prodrug thereof wherein said compound is selected from

- 13. The prodrug derivative of the compound according to any one of claims 1 to 12 wherein the prodrug is a methyl ester; ethyl ester; N,N-diethylglycolamido ester; or morpholinylethyl ester.
- The salt derivative of the compound according to any one of claims 1 to 13 14. wherein the salt is sodium or potassium.

- 15. A pharmaceutical formulation comprising the compound according to any one of claims 1 to 14 together with a pharmaceutically acceptable carrier or diluent.
 - 16. A formulation for treating osteoporosis comprising:

Ingredient (A1): the vitamin D receptor modulator according to any one of claims 1 to 14;

Ingredient (B1):

one or more co-agents selected from the group consisting of:

- a. estrogens,
- b. androgens,
- c. calcium supplements,
- d. vitamin D metabolites,
- e. thiazide diuretics,
- f. calcitonin,
- g. bisphosphonates,
- h. SERMS, and
- i. fluorides; and

Ingredient (C1): optionally, a carrier or diluent.

- 17. The formulation of claim 16 wherein the weight ratio of (A1) to (B1) is from 10:1 to 1:1000.
 - 18. A formulation for treating psoriais comprising:

Ingredient (A2): the vitamin D receptor modulator according to any one of claims 1 to 14;

Ingredient (B2):

one or more co-agents that are conventional for treatment psoriasis selected from the group consisting of:

- a. topical glucocorticoids,
- b. salicylic acid,
- c. crude coal tar; and

Ingredient (C2): optionally, a carrier or diluent.

- 19. The formulation of claim 18 wherein the weight ratio of (A2) to (B2) is from 1:10 to 1:100000.
- 20. A method of treating a mammal to prevent or alleviate the pathological effects of Acne, Actinic keratosis, Alopecia, Alzheimer's disease, Benign prostatic hyperplasia, Bladder cancer, Bone maintenance in zero gravity, Bone fracture healing, Breast cancer, Chemoprovention of Cancer, Crohn's disease, Colon cancer, Type I diabetes, Host-graft rejection, Hypercalcemia, Type II diabetes, Leukemia, Multiple sclerosis, Myelodysplastic syndrome, Insufficient sebum secretion, Osteomalacia, Osteoporosis, Insufficient dermal firmness, Insufficient dermal hydration, Psoriatic arthritis, Prostate cancer, Psoriasis, Renal osteodystrophy, Rheumatoid arthritis, Scleroderma, Skin cancer, Systemic lupus erythematosus, Skin cell damage from, Mustard vesicants, Ulcerative colitis, Vitiligo, or Wrinkles; wherein the method comprises administering a pharmaceutically effective amount of at least one compound according to any one of claims 1 to 14.
 - 21. The method of claim 20 for the treatment of psoriasis.
 - 22. The method of claim 20 for the treatment of osteoporosis.
- 23. A method of claim 20 for treating a mammal to prevent or alleviate skin cell damage from Mustard vesicants.
- 24. A method of treating a mammal to prevent or alleviate the pathological effects of benign prostatic hyperplasia or bladder cancer wherein the method comprises administering a pharmaceutically effective amount of at least one compound according to any one of claims 1 to 14.
- 25. A method of treating or preventing disease states mediated by the Vitamin D receptor, wherein a mammal in need thereof is administered a pharmaceutically

effective amount of the compound of any one of claims 1 to14.

- 26. A compound as claimed in any one of claims 1 to 14 for use in treating a mammal to prevent or alleviate the pathological effects of Acne, Actinic keratosis, Alopecia, Alzheimer's disease, Benign prostatic hyperplasia, Bladder cancer, Bone maintenance in zero gravity, Bone fracture healing, Breast cancer, Chemoprovention of Cancer, Crohn's disease, Colon cancer, Type I diabetes, Host-graft rejection, Hypercalcemia, Type II diabetes, Leukemia, Multiple sclerosis, Myelodysplastic syndrome, Insufficient sebum secretion, Osteomalacia, Osteoporosis, Insufficient dermal firmness, Insufficient dermal hydration, Psoriatic arthritis, Prostate cancer, Psoriasis, Renal osteodystrophy, Rheumatoid arthritis, Scleroderma, Skin cancer, Systemic lupus erythematosus, Skin cell damage from, Mustard vesicants, Ulcerative colitis, Vitiligo, or Wrinkles.
- 27. A compound as claimed in any one of claims 1 to 14 for use in treating or preventing disease states mediated by the Vitamin D receptor.
- 28. A compound as claimed in any one of claims 1 to 14 substantially as hereinbefore described with reference to any of the Examples.
- 29. A process for preparing a compound as claimed in any one of claims 1 to 14 substantially as hereinbefore described with reference to any of the Examples.
- 30. The use of a compound as claimed in any one of claims 1 to 14 substantially as herein described with reference to any of the Assays and Tables for mediating the Vitamin D receptor.