CLAIMS

- 1. A two-bit non-volatile memory transistor comprising:
 - a semiconductor region having a first conductivity type;
 - a first source/drain region located in the semiconductor region, the first source/drain region having a second conductivity type, opposite the first conductivity type;
 - a second source/drain region located in the semiconductor region, the second source/drain region having the second conductivity type, wherein a channel region of the first conductivity type is located between the first and second source/drain regions;
 - a gate dielectric layer located over the channel region and portions of the first and second source/drain regions;
 - a first floating gate electrode located on the gate dielectric layer over the channel region and the first source/drain region, wherein the first floating gate electrode stores charge representative of a first data bit;
 - a second floating gate electrode located on the gate dielectric layer over the channel region and the second source/drain region, wherein the first and second floating gate electrodes are separated by a gap over the channel region, and wherein the second floating gate electrode stores charge representative of a second data bit;

a dielectric layer located over the first floating gate electrode and the second floating gate electrode; and

a control gate located over the dielectric layer.

- The 2-bit non-volatile memory transistor of Claim
 wherein the first and second floating gate electrodes
 comprise polysilicon.
- 3. The 2-bit non-volatile memory transistor of Claim 1, further comprising:
 - a first diffusion bit line continuous with the first source/drain region; and
 - a second diffusion bit line continuous with the second source/drain region.
- 4. The 2-bit non-volatile memory transistor of Claim 3, further comprising:
 - a first oxide region located over the first diffusion bit line; and
 - a second oxide region located over the second diffusion bit line.
- 5. The 2-bit non-volatile memory transistor of Claim 4, wherein a portion of the first floating gate electrode is located over the first oxide region, and a portion of the second floating gate electrode is located over the second oxide region.
- 6. The 2-bit non-volatile memory transistor of Claim 5, further comprising:

a first oxide layer located on an edge of the first floating gate electrode located over the first oxide region; and

a second oxide layer located on an edge of the second floating gate electrode located over the second oxide region.

- 7. The 2-bit non-volatile memory transistor of Claim 1, wherein a first portion of the control gate extends into the gap between the first and second floating gate electrodes.
- 8. The 2-bit non-volatile memory transistor of Claim 7, wherein the first portion of the control gate is separated from the channel region by the dielectric layer and the gate dielectric layer.
- 9. The 2-bit non-volatile memory transistor of Claim 1, wherein the control gate comprises polysilicon and metal silicide.
- 10. The 2-bit non-volatile memory transistor of Claim 1, wherein the gate dielectric layer comprises silicon oxide, and the dielectric layer comprises a first silicon oxide layer, a silicon nitride or silicon oxynitride layer located over the first silicon oxide layer, and a second silicon oxide layer located over the silicon nitride or silicon oxynitride layer.
- 11. A method of operating a 2-bit non-volatile memory transistor having a control gate, a first floating gate and a second floating gate, the method comprising:

programming the first floating gate by hot electron injection using a first set of programming voltages, wherein the second floating gate is in an erased state when the first floating gate is programmed; and

programming the second floating gate by hot electron injection using a second set of programming voltages, wherein the first floating gate is in a programmed state when the second floating gate is programmed, and wherein the first set of programming voltages includes a first voltage applied to the control gate, and the second set of programming voltages includes a second voltage applied to the control gate, the second voltage being higher than the first voltage.

- 12. The method of Claim 11, wherein the first voltage is about 1-2 Volts, and the second voltage is about 3-4 Volts.
 - 13. The method of Claim 11, further comprising:
 erasing the first floating gate by applying a
 first erase voltage to the control gate and a second
 erase voltage to a first source/drain region of the
 transistor, thereby removing electrons from the first
 floating gate; and

erasing the second floating gate by applying the first erase voltage to the control gate and the second erase voltage to a second source/drain region of the transistor, thereby removing electrons from the second floating gate.

14. The method of Claim 11, further comprising:
reading the state of the first floating gate by
applying a first set of read voltages to the
transistor; and

reading the state of the second floating gate by applying a second set of read voltages to the transistor, wherein the first set of read voltages includes a first read voltage applied to a first source/drain region of the transistor and a second read voltage applied to a second source/drain region of the transistor, and wherein the second set of read voltages includes the first read voltage applied to the second source/drain region and the second read voltage applied to the first source/drain region.

- 15. The method of Claim 11, further comprising erasing the first and second floating gates by exposure to ultraviolet light.
- 16. A method of fabricating a 2-bit non-volatile memory transistor, comprising:

forming a gate dielectric layer over a semiconductor substrate having a first conductivity type;

forming floating gate layer over the gate dielectric layer;

removing a first portion of the floating gate layer, thereby creating an opening through the floating gate layer;

forming a dielectric layer over the floating gate layer, wherein a portion of the dielectric layer

extends into the opening and onto the gate dielectric layer;

removing a second portion of the floating gate layer, thereby creating first floating gate and a second floating gate, wherein a first opening is located adjacent to the first floating gate, and a second opening is located adjacent to the second floating gate;

implanting impurities having a second conductivity type, opposite the first conductivity type, into the substrate, through the first and second openings;

thermally growing oxide on the substrate and sidewalls of the first and second gate electrodes through the first and second openings; and

depositing a control gate over the dielectric layer and the oxide.

17. The method of Claim 16, wherein the dielectric layer comprises a silicon oxide layer and a silicon nitride or silicon oxynitride layer located over the silicon oxide layer.