SEMINAR D.M. 8

2.24 Specialitațile: Matematică și Matematică aplicată (sesiune, 2005)

I. Există funcții:

$$f: [-3.5] \to \mathbb{R}$$

care să satisfacă simultan la următoarele condiții:

- a) f admite primitive pe [-3,-1),
- b) f nu este integrabilă pe [-3,-1],
- c) f admite primitive pe [-1,1],
- d) f este integrabilă pe [-1,1],
- e) f este indefinit derivabilă în x=0 și, pentru orice $n \in \mathbb{N}$,

$$f^{(n)}(0)=n^2+n+1,$$
 (i)

- f este derivabilă în x=2,
- g) pentru orice $a \in (1,3) \setminus \{2\}$, nu există $\lim_{x \to a} f(x)$,
- h) f este integrabilă pe [3,5],
- i) f nu admite primitive pe [3,5]?

Rezolvare: Răspunsul la întrebarea din enunț este: Da, există. De exemplu, funcția:

$$f: [-3.5] \to \mathbf{R}$$

dată de legea:

h) f este integrabilă pe [3,5],
b) f nu admite primitive pe [3,5]?
b) vare: Răspunsul la întrebarea din enunț este: Da, există. De exemplu, funcția f: [-3,5]
$$\rightarrow$$
 R,
de legea:
$$\begin{cases}
2 \cdot (x+2) \cdot \sin \frac{1}{(x+2)^2} - \frac{2}{x+2} \cdot \cos \frac{1}{(x+2)^2}, \text{dacă } x \in [-3,1) \setminus \{-2\} \\
0, \text{dacă } x = -2, \\
e^x \cdot (x+1)^2, \text{dacă } x \in [-1,1], \\
(x-2)^2, \text{dacă } x \in [1,3) \cap Q, \\
0, \text{dacă } x \in (1,3) \cap (R \setminus Q), \\
x, \text{dacă } x \in [3,4), \\
7, \text{dacă } x \in [4,5],
\end{cases}$$

satisface la toate cerințele din enunt, pentru că:

1) functia $f_1: [-3,1) \to \mathbb{R}$,

$$f_1(x) = \begin{cases} 2 \cdot (x+2) \cdot \sin \frac{1}{(x+2)^2} - \frac{2}{x+2} \cdot \cos \frac{1}{(x+2)^2}, \, \text{dacă } x \in [-3,1) \setminus \{-2\} \\ 0, \, \text{dacă } x = -2 \end{cases},$$

satisface la condițiile a) și b), deoarece funcția:

$$F_1: [-3,1) \to \mathbf{R},$$

dată de legea:

$$F_{1}(x) = \begin{cases} (x+2)^{2} \cdot \sin \frac{1}{(x+2)^{2}}, dacă \ x \in [-3,1) \setminus \{-2\} \\ 0, dacă \ x = -2 \end{cases}$$

este o primitivă a funcției f_1 și f_1 este nemărginită – deci f_1 nu este integrabilă pe [-3,1);

2) funcția:

$$f_2: [-1,1] \to \mathbf{R},$$

unde, pentru orice $x \in [-1,1]$,

$$f_2(x)=e^x\cdot(x+1)^2$$
,

satisface la condițiile c), d) și e), deoarece este continuă (deci admite primitive și este integrabilă pe [-1,1]) și, în plus, este indefinit derivabilă în x=0 și are loc egalitatea de la e) (această egalitate se verifică analog cu cea de la Exercițiul 5, Setul 1.21);

3) funcția:

$$f_3: (1,3) \to \mathbf{R},$$

data de legea:

$$f_3(x) = \begin{cases} (x-2)^2, \text{ dacă } x \in (1,3) \cap Q \\ 0, \text{ dacă } x \in (1,3) \cap (R \setminus Q) \end{cases}$$

satisface la condițiile f) și g), căci:

$$\lim_{\substack{x\to 2\\x\in Q}}f_3(x) = \lim_{\substack{x\to 2\\x\in R\setminus Q}}f_3(x) = f_3(2) = 0,$$

ceea ce arată că f este continuă în x=2 și:

$$f'_{3,Q}(2) = \lim_{\substack{x \to 2 \\ x \in O}} \frac{f_3(x) - f_3(2)}{x - 2} = \lim_{\substack{x \to 2 \\ x \in O}} (x - 2) = 0 = \lim_{\substack{x \to 2 \\ x \in R \setminus O}} \frac{f_3(x) - f_3(2)}{x - 2} = f'_{3,R \setminus Q}(2),$$

adică f_3 este derivabilă în x=2 – în plus, dacă $a \in (1,3) \setminus \{2\}$, atunci:

$$\lim_{\substack{x\to a\\x\in Q}}f_3(x){=}(a{-}2)^2{\neq}0, \qquad \qquad \text{iar} \qquad \qquad \lim_{\substack{x\to a\\x\in R\setminus Q}}f_3(x){=}0,$$

ceea ce arată că f₃ nu are limită în x=a;

4) funcția:

$$f_4: [3,5] \to \mathbf{R},$$

unde:

$$f_4(x) = \begin{cases} x, \text{ dacă } x \in [3,4) \cup (4,5] \\ 7, \text{ dacă } x = 4 \end{cases},$$

satisface la condițiile h) și i), pentru că are doar un singur punct de discontinuitate (de speța întâi) și nu are Proprietatea lui Darboux.

II. Să se determine cel mai mic număr natural $n \in \mathbb{N}^*$ cu proprietatea că ecuația:

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{n} \tag{i}$$

are ca soluții exact 15 perechi ordonate $(x,y) \in \mathbb{N}^* \times \mathbb{N}^*$.

Rezolvare: Ecuația (i) este simetrică și echivalentă cu ecuația:

$$(x-n)\cdot(y-n)=n^2. \tag{1}$$

Deci x-n și y-n sunt divizori ai lui n² și al căror produs este tot n². Rezultă că:

$$\begin{cases} x = n + d \\ y = n + \frac{n^2}{d} \end{cases}$$

cu $d \in \mathcal{D}(n^2)$ sunt singurele soluții ale ecuației date. Deci, numărul soluțiilor acestei ecuații este egal cu numărul divizorilor lui n^2 ; dacă:

$$n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot ...\cdot p_k^{\alpha_k}, \qquad (2)$$

unde, pentru orice $i=\overline{1,k}$, α_i sunt numere naturale nenule, iar p_i sunt numere prime, este descompunerea numărului n în produs de puteri de numere prime, atunci, numărul divizorilor lui n^2 și, așa cum am precizat mai sus, al soluțiilor ecuației este:

$$(2 \cdot \alpha_1 + 1) \cdot (2 \cdot \alpha_2 + 1) \cdot \dots \cdot (2 \cdot \alpha_k + 1), \tag{3}$$

adică este un număr impar. În plus,

$$(2\cdot\alpha_1+1)\cdot(2\cdot\alpha_2+1)\cdot...\cdot(2\cdot\alpha_k+1)=15$$
 dacă și numai dacă $[(\alpha_1=1)\wedge(\alpha_2=2)].$ (4)

Deci, există numerele prime distincte p și q astfel încât numărul n este de forma:

$$n=p\cdot q^2$$
. (5)

Din egalitatea (5) deducem că cel mai mic număr n cu acestă proprietate îl obținem pentru:

$$p=3$$
 şi $q=2$,

adică:

n=12.

Într-adevăr, rezolvând, după modelul de mai sus, ecuatia:

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{12}$$
,

obținem soluțiile:

$$\begin{cases} x = 13 \\ y = 154 \end{cases}; \quad \begin{cases} x = 14 \\ y = 84 \end{cases}; \quad \begin{cases} x = 15 \\ y = 60 \end{cases}; \quad \begin{cases} x = 16 \\ y = 48 \end{cases}; \quad \begin{cases} x = 18 \\ y = 36 \end{cases}; \quad \begin{cases} x = 20 \\ y = 30 \end{cases}; \\ \begin{cases} x = 21 \\ y = 28 \end{cases}; \quad \begin{cases} x = 24 \\ y = 24 \end{cases}; \quad \begin{cases} x = 28 \\ y = 21 \end{cases}; \quad \begin{cases} x = 30 \\ y = 20 \end{cases}; \quad \begin{cases} x = 36 \\ y = 18 \end{cases}; \quad \begin{cases} x = 48 \\ y = 16 \end{cases}; \\ \begin{cases} x = 60 \\ y = 15 \end{cases}; \quad \begin{cases} x = 84 \\ y = 14 \end{cases}; \quad \begin{cases} x = 154 \\ y = 13 \end{cases}. \end{cases}$$

III. Mulțimea soluțiilor ecuației:

$$\sin(5 \cdot x) = \sin x \tag{i}$$

este:

Rezolvare: Din ecuația (i) deducem că:

$$5 \cdot \mathbf{x} = \mathbf{x} + 2 \cdot \mathbf{k} \cdot \boldsymbol{\pi}$$
 sau $5 \cdot \mathbf{x} = \boldsymbol{\pi} - \mathbf{x} + 2 \cdot \mathbf{k} \cdot \boldsymbol{\pi}$, (1)

unde, $k \in \mathbb{Z}$. Deci,

$$x = \frac{k \cdot \pi}{2} \qquad \text{sau} \qquad x = \frac{(2 \cdot k + 1) \cdot \pi}{6}, \qquad (2)$$

unde, k∈Z. Aşadar, răspunsul corect este b).

2.25 Specialitatea: Matematică - Informatică (sesiune, 2005)

I. Soluția ecuației:

este:

a)
$$\frac{\sqrt{3}-1}{2}$$
b) $\frac{\sqrt{3}}{2}$
c) 0
d) $\frac{\sqrt{2}-1}{2}$.

Rezolvare: Deoarece:

$$\arcsin: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],\tag{1}$$

rezultă, conform ecuației (i) din enunț, că:

$$\arccos x \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right].$$
 (2)

Dar,

$$\arccos: [-1,1] \to [0,\pi].$$
 (3)

Deci, din relațiile de mai sus, rezultă că:

Conform ecuației (i):

 $\sin(\arcsin x) = \sin(2 \cdot \arccos x)$,

adică:

$$x=2\cdot x\cdot \sqrt{1-x^2}$$
.

Această ecuație admite doar soluția $\frac{\sqrt{3}}{2} \in \left[\frac{\sqrt{2}}{2},1\right]$.

II. Fie x_n soluția ecuației:

$$tgx=x$$
 (i)

 $\text{din intervalul}\left((2\cdot k\cdot n-1)\cdot\frac{\pi}{2},(2\cdot k\cdot n+1)\cdot\frac{\pi}{2}\right)\text{, unde }k\in\textbf{N}\text{. Să se determine }k\text{ astfel încât:}$

$$\lim_{n \to \infty} \mathbf{n} \left[(2 \cdot \mathbf{k} \cdot \mathbf{n} + 1) \frac{\pi}{2} - \mathbf{x}_{\mathbf{n}} \right] = \frac{1}{2005 \cdot \pi} . \tag{ii)}$$

Rezolvare: Fie:

$$L = \lim_{n \to \infty} n \cdot \left[(2 \cdot k \cdot n + 1) \frac{\pi}{2} - x_n \right].$$

Din ipoteză deducem că:

$$k \cdot n \cdot \pi - \frac{\pi}{2} < x_n < k \cdot n \cdot \pi + \frac{\pi}{2} \qquad \qquad \text{si} \qquad \qquad tg(x_n) = x_n. \tag{1}$$

Deci, conform inegalităților de la (1),

$$-\frac{\pi}{2} < x_n - k \cdot n \cdot \pi < \frac{\pi}{2}. \tag{2}$$

Din egalitatea (2) și ultima egalitate de la (1), rezultă că:

$$x_n-k\cdot n\cdot \pi = arctg(tg(x_n-k\cdot n\cdot \pi)) = arctg(tg(x_n)) = arctg(x_n).$$
 (3)

Acum limita din enunt devine:

$$L = \lim_{n \to \infty} n \cdot \left(k \cdot n \cdot \pi + \frac{\pi}{2} - x_n \right) = \lim_{n \to \infty} n \cdot \left[\frac{\pi}{2} - (x_n - k \cdot n \cdot \pi) \right]$$

$$= \lim_{n \to \infty} n \cdot \left[\frac{\pi}{2} - \operatorname{arctg}(x_n) \right]. \tag{4}$$

Dar, se verifică foarte ușor că, pentru orice x>0,

$$\frac{\pi}{2} - \arctan\left(x\right) = \arctan\left(\frac{1}{x}\right). \tag{5}$$

Acum, din egalitățile (4) și (5), limita noastră devine:

$$L = \lim_{n \to \infty} n \cdot \arctan\left(\frac{1}{x_n}\right). \tag{6}$$

Din prima inegalitate de la (1), obținem că:

$$\frac{2}{(2 \cdot \mathbf{k} \cdot \mathbf{n} + 1) \cdot \pi} < \frac{1}{\mathbf{x}_{n}} < \frac{2}{(2 \cdot \mathbf{k} \cdot \mathbf{n} - 1) \cdot \pi}.$$
 (7)

Deoarece funcția arctg este crescătoare pe **R**, din inegalitățile (7), obținem că:

$$\arctan\left(\frac{2}{(2 \cdot k \cdot n + 1) \cdot \pi}\right) < \arctan\left(\frac{1}{x_n}\right) < \arctan\left(\frac{2}{(2 \cdot k \cdot n - 1) \cdot \pi}\right). \tag{8}$$

și:

$$n \cdot \arctan\left(\frac{2}{(2 \cdot k \cdot n + 1) \cdot \pi}\right) < n \cdot \arctan\left(\frac{1}{x_n}\right) < n \cdot \arctan\left(\frac{2}{(2 \cdot k \cdot n - 1) \cdot \pi}\right). \tag{9}$$

Dar,

$$\lim_{n\to\infty} \left[n \cdot \operatorname{arctg}\left(\frac{2}{(2 \cdot k \cdot n + 1) \cdot \pi}\right) \right] = \lim_{n\to\infty} \left[n \cdot \frac{\operatorname{arctg}\left(\frac{2}{(2 \cdot k \cdot n + 1) \cdot \pi}\right)}{\frac{2}{(2 \cdot k \cdot n + 1) \cdot \pi}} \cdot \frac{2}{(2 \cdot k \cdot n + 1) \cdot \pi} \right]$$

$$= \lim_{n\to\infty} \left[n \cdot \frac{2}{(2 \cdot k \cdot n + 1) \cdot \pi} \right] = \frac{1}{k \cdot \pi}. \tag{10}$$

Analog,

$$\lim_{n \to \infty} \left[n \cdot \operatorname{arctg}\left(\frac{2}{(2 \cdot k \cdot n - 1) \cdot \pi}\right) \right] = \lim_{n \to \infty} \left[n \cdot \frac{2}{(2 \cdot k \cdot n - 1) \cdot \pi} \right] = \frac{1}{k \cdot \pi}.$$
 (11)

În final, prin trecere la limită în inegalitățile de la (9) și ținând cont de egalitățile (10) și (11), dar și de cea din enunț, obținem,

k=2005.

III. Fie m, n, $p \in \mathbb{N}^*$, A şi B două mulțimi astfel încât:

și mulțimea:

$$F=\{f: A \to B \mid f \text{ are exact p retracte}\}.$$
 (ii)

- a) Să se determine o relație între m și n astfel încât $F \neq \emptyset$.
- **b**) În condițiile de la punctul a), construiți o astfel de funcție, pentru m, n și p convenabil aleși.
 - c) Determinați numărul de elemente ale lul F.

Rezolvare: a) Conform ipotezei, orice funcție f∈F este injectivă. Deci,

$$m \le n$$
. (1)

În plus, numărul retractelor unei astfel de funcții, coincide cu numărul funcțiilor de la B\f(A) la A, adică este m^{n-m}. Așadar,

$$p=m^{n-m}.$$

b) Fie:

m=3, n=5, $caz \hat{n} care$ p=9. (3)

Să considerăm mulțimile:

$$A=\{a,b,c\}$$
 şi $B=\{1,2,3,4,5\}.$ (4)

Atunci, conform celor precizate mai sus, orice funcție:

$$f: A \rightarrow B$$

are exact 9 retracte. Într-adevăr, fie f o astfel de funcție, definită astfel:

$$f(a)=1,$$
 $f(b)=2$ gi $f(c)=3.$ (5)

Atunci, retractele lui f sunt următoarele:

X	1	2	3	4	5	X	1	2	3	4	5
$r_1(x)$	a	b	С	a	a	$r_2(x)$	a	b	С	b	b

X	1	2	3	4	5	X	1	2	3	4	5
r ₃ (x)	a	b	С	С	С	r ₄ (x)	a	b	c	a	b

X	1	2	3	4	5	X	1	2	3	4	5
r ₅ (x)	a	b	С	a	С	$r_6(x)$	a	b	С	b	a

X	1	2	3	4	5	X	1	2	3	4	5
r ₇ (x)	a	b	С	b	С	r ₈ (x)	a	b	c	С	a

X	1	2	3	4	5
r ₉ (x)	a	b	С	С	b

c) Numărul de elemente ale mulțimii F este egal cu numărul funcțiilor injective:

$$f: A \rightarrow B;$$

acesta este egal cu A $_{n}^{m}$.