### **UNCLASSIFIED**

# AD NUMBER ADB011678 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; FEB 1976. Other requests shall be referred to Air Force Flight Dynamics Lab., Wright-Patterson AFB, OH 45433. **AUTHORITY** AFFDL ltr, 27 Dec 1977

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.





# ADVANCED METALLIC AIR VEHICLE STRUCTURE PROGRAM

FIFTH INTERIM REPORT

GENE 'L DYNAMICS FORT WORTH DIVISION

FEBRUARY 1976

ET STECHNICAL REPORT AFFOL-TR-76-8



Distribution limited to U.S. Government rencies only; Test and Evaluation; December 1975. Other requests for this document must be referred to Air Force Flight Dynamics Laboratory (FB-A), Wright-Patterson Air Force Base, Ohio 45433.

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio 45433

### NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implification or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

CHARLES R. WAITZ

Project Engineer

Lt. Col, USAF

Program Manager AMS Program Office

FOR THE COMMANDER

RALD G. LEIGH, Lt. Col US

Chief, Structures Division

TECES SE IN

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE - 19 MAY 76 - 200

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM TREPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 5. TYPE OF REPORT & PERIOD COVERED Interim Report / ADVANCED METALLIC AIR VEHICLE STRUCTURE 12/16/74 - 10/21/75 PROGRAM. FIFTH-INTERIM REPORT 6. PERFORMING ORG. REPORT NUMBER AUTHOR(e) CONTRACT OR GRANT NUMBER(+) R. C. Bissell, K. D. Mabry AF 33615-73-C-3001 General Dynamics Fort Worth Division 486U Ø104 P.O. Box 748, Fort Worth, Texas 76101 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE February 1976 Air Force Flight Dynamics Laboratory (FBA Wright Patterson AFB, Ohio 45433 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Off SECURITY CLASS, (of this report) Air Force Flight Dynamics Laboratory (FBA) Unclassified Wright-Patterson AFB, Ohio 45433 16. DISTRIBUTION STATEMENT (of this Report) Distribution limited to U.S. Government Agencies only; Test and Evaluation; December 1975. Other requests for this document must be referred to Air Force Flight Dynamics Laboratory (FB-A), Wright-Patterson Air Force Base, Ohio 45433. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Distribution Unlimited 18. SUPPLEMENTARY NOTE 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Structural Design, Materials, Stress Analysis. Manufacturing Technology, Fracture Mechanics Damage ,Tolerance. 20 ABSTRACT (Continue on reverse side if necessary and identify by block number) This report covers the final stages of manufacture of the wing carrythrough structure (WCTS), mating of the WCTS to the upper test structure, completion of the hardware and software elements of the test set-up leading to an operational test system, and start of the fatigue test program of the AMAVS WCTS. Included are design and analysis supporting the WCTS manufacture, mating task, and test system preparation activities.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

サンツ カロタート

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Also included is the analytical task of incorporating updated loads/spectrum data from Rockwell International (RI) into the AMAVS program.

Following completion of the test system, operational checkouts were accomplished and strain surveys for the existing load conditions were made. The updated loads/spectrum data was then incorporated, further system check-outs made, and the fatigue test was started on 21 October 1975.

UNCLASSIFIED

### FOREWOPD

This report covers the period 16 Necember 1974 through 21 October 1975. The efforts reported herein were sponsored by the Air Force Flight Dynamics Laboratory (AFFDL) under joint management and technical direction of AFFDL and the Air Force Materials Laboratory (AFML), Wright-Patterson Air Force Base, Ohio.

This work was performed under Contract F33615-73-C-3001 "Advanced Metallic Air Vehicle Structure" (AMAVS) as a part of the Advanced Metallic Structures, Advanced Development Programs (AMS ADP), Program Element 63211F, Project Number 486UQ104.

J. S. Ford II, Lt. Col., USAF (AFFDL/FBA), is the ADP Manager, with Mr. N. G. Tupper (AFML) serving as Deputy ADP Manager.

Mr. C. R. Waitz (AFFDL/FBA) is the Project Engineer for the AMAVS Program.

Earlier documentation of this program is contained in the following AFFDL-TR-XX-Y reports:

| <u>Pha</u> | ase Reports                                  |  |   | Interim                  | Reports                         |
|------------|----------------------------------------------|--|---|--------------------------|---------------------------------|
| II         | Prel. Design<br>Detail Design<br>Fabrication |  | ı | 1st<br>2nd<br>3rd<br>4th | 73-1<br>73-77<br>74-98<br>75-40 |

Principal General Dynamics contributors to this report were:

- R. C. Bissell Program Manager
- R. E. Miller Stress Analysis
- K. D. Mabry Structural Design
- R. S. Chambers Stress Analysis

This work was performed during the period 16 December 1974 through 21 October 1975. It was submitted by the authors in November 1975.

### TABLE OF CONTENTS

| Section |           |                                                                     | Page           |
|---------|-----------|---------------------------------------------------------------------|----------------|
| 1       | INTRODUCT | CION                                                                | 1              |
| 2       | TECHNICAI | DISCIPLINES PROGRESS                                                | 3              |
|         | 2.1 Engi  | inegring                                                            | 3              |
|         | 2.1.      | Structural Design Structural Analysis Fatigue and Fracture Analysis | 3<br>4<br>54   |
| •       | 2.2 Test  | ing                                                                 | 77             |
|         | 2.2.      | 1 Material Testing<br>2 Component Tests<br>3 Full Scale Testing     | 77<br>85<br>85 |
| 3       | FACTORY I | PROGRESS                                                            | 89             |
|         |           | cication of the WCIS                                                | 89<br>91       |

AND THE PERSON OF THE PERSON OF THE PERSON WERE THE PERSON OF THE PERSON

### LIST OF ILLUSTRATIONS

| Figure  |                                                                                                         | Page |
|---------|---------------------------------------------------------------------------------------------------------|------|
| 2.1.2-1 | Strain Gage Locations WCTS Lower Plate Assembly.                                                        | 25   |
| 2.1.2-2 | Strain Gage Locations WCTS Upper Cover                                                                  | 27   |
| 2.1.2-3 | Strain Gage Locations WCTS $Y_F932$ Bulkhead                                                            | 29   |
| 2.1.2-4 | Strain Gage Locations WCTS $Y_F992$ Bulkhead                                                            | 33   |
| 2.1.2-5 | Strain Gage Locations WCTS Ribs                                                                         | 37   |
| 2.1.2-6 | Strain Gage Locations - Shear Struts                                                                    | 39   |
| 2.1.2-7 | Strain Survey Stresses of Upper<br>Pivot Lug                                                            | 41   |
| 2.1.2-8 | Strain Survey Stresses of Lower<br>Pivot Lug                                                            | 43   |
| 2.1.3-1 | Control Point 1, YF992 Bulkhead Inboard Panel, Fuel Transfer Hole @ XF29                                | 58   |
| 2.1.3-2 | Control Point 2, Lower Plate Assembly, Wing Pivot Lug                                                   | 59   |
| 2.1.3-3 | Control Point 3, Lower Plate, Lug .875 Diameter Taper-lok Hole                                          | 60   |
| 2.1.3-4 | Control Point 4, Lower Plate Assembly, Aft Outboard Cutout                                              | 61   |
| 2.1.3-5 | Control Point 5, Bulkhead YF932, Lower Attach Flange                                                    | 62   |
| 2.1.3-6 | Control Point 6, Upper Lug Installation<br>Aft Outboard Longeron Attachment                             | 63   |
| 2.2.1-1 | Drawing 603R100-11, 10 Nickel Steel -<br>Electron Beam Welding Properties -<br>Development Test Program | 81   |

是一个时间,我们们的时间,我们们们的时间,这个时间,这个人们们的时间,我们们们的时间,我们们的时间,我们们的时间,我们们的时间,我们们们的时间,我们们们们们们的

# LIST OF ILLUSTRATIONS (CONTINUED)

| Figure  |                                                                                               | Page |
|---------|-----------------------------------------------------------------------------------------------|------|
| 2.2.1-2 | Drawing 603R100-12, 10 Nickel Steel -<br>GTA Welding Properties - Development<br>Test Program | 83   |

### LISTOFTABLES

| Table      |                                                                                        | Page |
|------------|----------------------------------------------------------------------------------------|------|
| 2.1.2-1    | Basic Fatigue Load Conditions                                                          | 6    |
| 2.1.2-II   | Updated AMAVS Spectrum Data for Fatigue Test                                           | 8    |
| 2.1.2-111  | Analytic Spectrum                                                                      | 12   |
| 2.1.2-IV   | Typical Test and Predicted Stresses                                                    | 20   |
| 2.1.2-V    | Simulated Fuselage Longeron Comparisons                                                | 45   |
| 2.1.2-VI   | Ram Loads for Basic Revised NA75-346 and General Dynamics Modified Conditions          | 47   |
| 2.1.2-VII  | Strain Survey Data Cycle for First Flight Using "Every 100th Flight" Spectrum          | 51   |
| 2.1.2-VIII | Baseline Data Cycle for Fifth Flight Using "Every Flight" Spectrum                     | 52   |
| 2.1.2-IX   | Periodic Data Cycle for 100 Flight<br>Increments Using "Every 10th Flight"<br>Spectrum | 53   |
| 2.1.3-I    | Wing Bending Moment Spectrum at the Wing Pivot Flight-By-Flight Composite Mission      | 57   |
| 2.1.3-11   | Summary - WCTS Fatigue Damage - Phase II Loads and Spectrum                            | 64   |
| 2.1.3-III  | Stress Spectra for NBB Control Point<br>No. 1 YF992 Bulkhead, Lower Plate              | 65   |
| 2.1.3-IV   | Stress Spectra for NBB Control Point No. 2 Lower Plate Lug - Pivot Bore                | 66   |

# L I S T O F T A B L E S (CONTINUED)

| Table      |                                                                                                | Page |
|------------|------------------------------------------------------------------------------------------------|------|
| 2.1.3-V    | Stress Spectra for NBB Control Point<br>No. 3 Lower Plate Lug 0.875 Diameter<br>Taper-lok Hole | 67   |
| 2.1.3-     | Stress Spectra for NBB Control Point<br>No. 4 Lower Plate, Aft Outboard Cutout                 | 68   |
| 2.1.3-VII  | Stress Spectra for NBB Control Point No. 5 $Y_{\rm F}932$ Bulkhead Lower Flange                | 69   |
| 2.1.3-VIII | Stress Spectra for NBB Control Point<br>No. 6 Upper Aft Outboard Longeron<br>Attachment        | 70   |
| 2.1.3~IX   | Summary of Wing Pivot Data for Fatigue<br>Analysis                                             | 72   |
| 2.1.3-X    | Summary - Preliminary. WCTS Fatigue<br>Damage Analysis - 1975 Loads Update                     | 76   |
| 2.2.1-I    | Credible Option Material Tests Completed<br>16 December 1974 through 15 October 1975           | 78   |
| 2.2.1-11   | Credible Option Deferred Tests                                                                 | 79   |

### SECTION 1

### INTRODUCTION

This interim report summarizes the accomplishments of the Advanced Metallic Air Vehicle Structure (AMAVS) Program from 16 December 1974 to 21 October 1975. This work is part of the Air Force's Advanced Motallic Structures, Advanced Development Program. It was performed under contract to the Air Force Flight Dynamics Laboratory (AFFDL) by the Fort Worth Division of General Dynamics at Fort Worth, Texas.

The ten months covered by this report include the final activities of Phase III (Fabrication), the mating operation at WPAFB, and the Phase IV test support activities leading to start of the fatigue portion of the Full Scale Test Program. Also included is the additional material testing funded under the "Credible Option" task and design activities required to comply with the contractual drawing requirements. Tasks accomplished in Phase III, Fabrication, and during the mating operation at WPAFB are reported in AFFDL-XX-Y, to be published, and included the following significant items:

- 1. Fabrication of the "No-Box" Box (NBB) configuration of the Wing Carrythrough Structure (WCTS).
- 2. Instrumentation of the WCTS and fit-checking of test fixture parts to the WCTS.
- 3. Mating of the test fixture upper structure to the WCTS at WPAFB.
- 4. Installation of the dummy gear assemblies, positioning of the mated upper structure on the test fixture base and installation of the dummy wings.

Fabrication of all program hardware items, including the WCTS and Full Scale Test fixture parts was completed. Reassembly of the test fixture and mating of the WCTS to the upper test fixture was accomplished at WPAFB. Completion of the hydraulic, electrical/electronic, and other systems to create an operational test system was accomplished by Structural Test Facility personnel. A baseline NDI inspection on the WCTS, strain surveys to verify load

distribution, reprogramming of control/data systems to incorporate updated loads from Rockwell International (RI), and system checkout runs were accomplished prior to start of the fatigue test on 21 October 1975.

A contract change to incorporate updated loads/spectrum data from RI was received in July, 1975. Intent of this change was to incorporate the updated DVT-2 spectrum data into the AMAVS program. Ram loads and fatigue spectrum data were generated from the RI data and provided to AFFDL/FBT for use in reprogramming of the computer programs. A preliminary fatigue analysis of the WCTS using the updated data was accomplished. Static loads data from RI will allow completion of the additional analyses required, i.e. stress, fracture, and fatigue.

Material testing funded as part of the "Credible Option" task was completed except for certain portions which were deferred in December, 1974 because of budgetary constraints. The deferred testing, comprising mechanical property testing on EB/GTA welded 10 Nickel steel and crack growth testing on both 6A1-4V titanium and 10 Nickel steel, was reinstated 16 September 1975 and will be completed in early 1976.

kalavain alikelen kun antisania kikea ankan kun ankan kun anta manin kalaman kan kan kan ankan kalaman kalama

### SECTION 2

### TECHNICAL DISCIPLINES PROGRESS

The progress made by the technical groups during the final stages of Phase III, Manufacturing, and the initial stages of Phase IV, Test and Evaluation, is reported in this section.

### 2.1 ENGINEERS

The engineering functions progress for the period 16 December 1974 to 21 October 1975 is detailed below.

### 2.1.1 Structural Design

Design activities during this reporting period include the implementation of two screetinal design changes and the updating of Engineering arawings for the NBP configuration. The Design Group also provided full the Engineering support during (1) the final stages of the Wing Carryth ough Structure (WCTS) fabrication (2) mating of the WCTS to the upper test fixture (3) mating of the dummy landing gears and dummy wings and (4) full scale test system set-up and check-out.

### 2.1.1.1 Design Changes

A design change was incorporated to provide adequate fastener strength to the wing sweep actuator fitting assembly. The original titanium Hi-lok fasteners attaching the aluminum splice plate to the basic support fittings were replaced with steel Hi-loks. In addition, four (4) steel Hi-loks were added to the splice plate of each assembly.

Another design change was also required to increase fastener strength. This change added a total of seventy-two (72) steel Hi-lok fasteners to the existing fastener pattern attaching the apper panels to the Xr39 ribs.

### 2.1.1.2 Engineering Drawing Update

The NBB drawings require the incorporation of all outstanding Engineering Change Notices (ECN) to reflect the configuration of the Wing Carrythrough Structure (WCTS) as it was fabricated. A total of 211 ECNs were outstanding on 92 drawings at the time

the WCTS was completed. To date, 122 ECNs have been incorporated on 54 drawings.

Updating of the Engineering drawings also includes the preparation of Parts List (PL) for all 27 NBB assembly and installation drawings onto Air Force forms. Preliminary preparation of all PLs was accomplished, but final completion is dependent on the ECN incorporation.

The FSIL configuration consists of 101 drawings of which 76 were completed at the time the NBB was selected for fabrication. No additional work has been accomplished toward completion of the 25 remaining drawings.

### 2.1.2 Structural Analysis

### 2.1.2.1 <u>General</u>

During the reporting period, activities of Structural Analysis personnel included the following:

- 1. Performed structural liaison during completion of WCTS and simulated fuselage manufacture, prefitting of landing gears and dummy wings, and during moving and installation in the test fixture at AFFDL's Structural Test Facility at WPAFB.
- 2. Performed stress analysis of structural design changes found to be necessary.
- 3. Updated additional portions of the preliminary stress analysis to reflect results from the NBB 5 series of math models.
- 4. Participated further in planning for the full scale test program including completion of estimated and allowable stress data at strain gage points for the simulated fuselage, review of AFFDL test plans, and instrumentation coordination.
- 5. Witnessed a portion of the full scale operational checkout strain survey and reviewed all strain survey data collected by AFFDL.
- 6. Coordinated loads update information and furnished necessary information to affected AFFDL and General Dynamics sections.

- 7. Coordinated the planned usage of data gathering channels for subsequent testing.
- 8. Converted General Dynamics TNI overall WCTS model to General Dynamics UGO program for more efficient stress determination during loads update efforts.

### 2.1.2.2 Design Loads

In order to preserve the credible option concept, current B-1 fatigue test spectrum loads were furnished formally by Rockwell International (RI) in Report NA 75-346 and its revisions for use in AMAVS fatigue testing and fatigue and fracture analysis. In general, data was presented in the form of node forces from a current RI math model for a set of basic conditions. With a few exceptions, the basic conditions are 1g or Alg. A list of the basic conditions, grouped according to wing sweep angle, is given in Table 2.1.2-I. The maximum and minimum load sets for each fatigue step in the fatigue test spectrum were specified as linear combinations of the basic conditions. In addition, the frequency of application of each load set was specified. (Table 2.1.2-II) Supplementary data for such items as wing sweeping friction effects was also included in NA 75-346.

Subsequent to the receipt of the fatigue test spectrum data from RI, information was provided on the B-1 analytic spectrum for AMAVS fatigue and fracture analysis. Necessary RI math model loads were furnished as well as a definition of the load combinations for each load step. The analytic spectrum data is presented in Table 2.1.2-III.

# Table 2.1.2-I BASIC FATIGUE LOAD CONDITIONS

| San Kara et anna 1800 anna                                                                                      |   | COND.                                                                                                                                                                                                                                         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RUN WING<br>POS.                                             | STRUCTURAL LOADS CONDITION NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L LOADS<br>NUMBER                                 |  |
|-----------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| of the second | 6 | 10100<br>60100<br>120100<br>16100<br>66100<br>31210<br>32210<br>31210<br>111310<br>111310<br>1113210<br>42430<br>81530<br>82530<br>82530<br>82530<br>82640<br>102440<br>102440<br>31440<br>31440<br>31440<br>31440<br>31440<br>31440<br>31440 | Inertia Ground Cond. Inertia Ground Cond. Braking Ground Cond. Post Take-Off Flight Pre Landing Flight Pre Landing Flight Pre Landing Flight Pre Landing Flight Climb and Descent Subsonic Gruise Subsonic Gruise Subsonic Gruise Subsonic Cruise Subsonic Cruise Subsonic Cruise Subsonic Cruise Subsonic Cruise Subsonic Cruise Subsonic Gruise Subsonic Gruise Subsonic Gruise Flight Cond. Terrain Following-Out Terrain Following-Out Terrain Following-Out | 15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 | + 481001774<br>+ 481001784<br>+ 481001784<br>+ 800010770<br>+ 800010780<br>+ 011002809<br>+ 011002809<br>+ 019102809<br>+ 019102809<br>+ 019102809<br>+ 019102809<br>+ 019102809<br>+ 019103835<br>+ 019103835<br>+ 019103835<br>+ 019103835<br>+ 019103835<br>+ 019104845<br>+ 019104865<br>+ 019104865 | 1001110000<br>1001110000<br>1001110000<br>1000000 |  |
|                                                                                                                 |   |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |  |

Table 2.1.2-I BASIC FATIGUE LOAD CONDITIONS (CONT'D.)

| OND.  NO.  91870 Climb and Descent 92770 Climb and Descent 111780 Supersonic Cruise 112780 Supersonic Cruise 51750 Terrain Following-In 52750 Terrain Following-In 71760 Terrain Following-In 72760 Terrain Following-Our 72760 Te | CRIPTION  CRIPTION  CRIPTION  CA Descent  CA Descent  Caruise  Caruise  Caruise  Collowing-In  Following-In  Following-Out  Following-Out  Following-Out  Following-Out  Following-Out  Following-Out  Following-Out  Following-Out  Following-Out  Following-Out | WING POS. 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67. | STRUCTURAL LOADS CONDITION NUMBER + 011003885 145308 + 019103885 145308 + 019103885 145308 + 019103885 145308 + 011004895 155308 + 011006905 100308 + 011007915 100308 + 011007915 100308 + 319206905 100508 + 319206905 100508 + 319206905 100508 | L LOADS NUMBER 1453081312 1453081312 1453081312 1553081500 1003080500 1003080500 1005080700 1005080700 1005080700 1005080700 1005080700 1005080700 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 91870 Climb an 92770 Climb an 92870 Climb an 111780 Superson 112780 Superson 51750 Terrain 52750 Terrain 72760 Terrain 72760 Terrain 72760 Terrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t<br>scas<br>t scas                                                                                                                                                                                                                                               | ທ່ານ ທຳ ຄ. ( ນຳ ເນ ານ ານ ານ ານ ານ ານ ານ ວ        |                                                                                                                                                                                                                                                    | 1453081312<br>1453081310<br>1453081312<br>1553081500<br>1003080500<br>1003080500<br>1003080700<br>1003080700<br>1005080700<br>1005080700           |  |
| 53755 Terrain<br>73765 Terrain<br>17100 Towing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                   |                                                  |                                                                                                                                                                                                                                                    |                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en e                                                                                                                                                                                                                          | *                                                |                                                                                                                                                                                                                                                    |                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                   |                                                  |                                                                                                                                                                                                                                                    |                                                                                                                                                    |  |

TABLE 4.1.2-II

|      |       |          |                |                   | UPDATE | UPDATED AMAVS SPECTRUM DATA<br>FOR FATIGUE TEST | CTRUM DA | TA              | M     | MISSION | *0     |
|------|-------|----------|----------------|-------------------|--------|-------------------------------------------------|----------|-----------------|-------|---------|--------|
|      | WING  | FAT.     |                | MAXIMUM           | FAT.   | -                                               | MIM      | MINIMUM         | EVERY | EVERY   | EVERY  |
| STEP | ANGLE | 00MD.    | H              |                   | CONO   | —#-                                             | ##       |                 | 100TH | ₩-      |        |
| ٦    | 15    | 3        | 1.51 x 60100   |                   | 503    | ×                                               | 60100    |                 | 1     |         |        |
| 2    |       | 4        | 1.43 x 60100   |                   | 705    | .57 X                                           | 00109    |                 |       | 7       |        |
| 3    |       | Ŋ        | 1.35 x 60100   |                   | 505    | × 79.                                           | 60100    |                 |       |         | 1      |
| 7    |       | <b>∞</b> | 1.00 X 66100.5 | 5 + 1.00 x 60100  | 508    | 1.00 x                                          | 60100    |                 |       |         | 1      |
| 2    |       | 12       | 1.48 X 10100   |                   | 512    | .52 X                                           | 10100    |                 | 1     |         |        |
| 9    |       | 13       | 1.39 X 10100   |                   | 513    | x 19.                                           | 10100    |                 |       | 7       | _      |
| 7    |       | 14       | 1.32 x 10100   |                   | 514    | x 89.                                           | 10100    |                 |       |         | 1      |
| 80   |       | 16       | 1.00 X 16100.5 | 5 + 1.00 X 10100  | 516    | 1.00 X                                          | 10100    |                 |       |         | -1     |
| 6    |       | 18       | 1.00 x 31210   | + .72 x 32210     | 518    | 1.00 x                                          | 31210    | .76 x 32210     | 1     |         |        |
| ខ    |       | 19       | 1.00 x 31210   | +48 X 32210       | 519    | 1.00 x                                          | 31210    | .54 X 32210     |       | , 1     |        |
| 11   |       | 50       | 1.00 x 31210   | + .28 x 32210     | 520    | 1.00 x                                          | 31210    | .37 x 32210     |       |         | 1      |
| 12   | 15    | 21       | 1.00 X 31210   | - 1.00 x 1345.15  | 521    | 1.00 x                                          | 31210    | 1.00 X 1345.15  |       |         | 1      |
| 13   | 25    | 22       | 1.00 x 41430   |                   | 522    | 1.00 x                                          | 41430 +  | 1.00 X 1345.25  |       |         | 1      |
| 14   |       | 23       | 1.00 x 41430   | + .85 x 42430     | 523    | 1.00 x                                          | 41430 +  | .89 X 42430     | 1     |         |        |
| 15   |       | 57       | 1.00 x 41430   | + .62 x 42430     | 254    | 1.00 x                                          | 41430    | .65 X 42430     |       | 1       |        |
| 16   |       | 25       | 1.00 X 41430   | + .42 x 42430     | 525    | 1.00 x                                          | 41430    | .48 X 42430     |       |         | 1      |
| ~ 17 |       | 26       | 1.00 x 41430   | + .24 x 42430     | 526    | 1.00 x                                          | 41430    | .00 x 42430     |       |         | 1      |
|      |       | 27       | 1.00 X 41430   | + .00 x 42430     | 527    | 1.00 X                                          | 41430    | .34 X 42430     |       | _       | 1      |
| 19   |       | 28       | 1.00 X 51440   | + .85 x 53440     | 528    | 1.00 x                                          | 51440    | . 85 X 53440    | -     |         |        |
| 8    |       | 29       | 1.00 x 51440   | + .57 x 53440     | 529    | 1.00 x                                          | 51440    | .57 X 53440     |       | 1       |        |
| 21   |       | 30       | 1.00 x 51440   | + .34 x 53440     | 530    | 1.00 x                                          | 51440    | .34 x 53440     |       |         | 1      |
| 22   |       | 31       | 1.00 x 51440   | + .22 x 53440     | 531    | 1.00 x                                          | 51440    | .22 x 53440     |       | _       | 1      |
| 23   |       | 32       | 1.00 X 51440   | + .95 x 52440     | 532    | 1.00 x                                          | 51440    | .80 X 52440     | 1     | _       |        |
| 24   |       | 33       | 1.00 x 51440   | + .75 x 52440     | 533    | 1.00 x                                          | 51440    | .63 X 52440     |       |         |        |
| 25   |       | 35       | 1.00 x 51440   | ויי               | 534    | _                                               | 51440    | .48 X 52440     |       | -       | 7      |
| 26   |       | 35       | 1.00 x 51440   | 4,1               | 535    | _                                               | 51440    | .00 x 52440     |       |         | -<br>- |
| 27   |       | 36       | 1.00 x 51440   | + .00 x 52440     | 536    | 1.00 x                                          | 51440    | .35 x 52440     |       | -       | • 1    |
| 28   | 25    | 37       | 1.00 x 51440   | ► 1.00 x 1072.25  | 537    | 1.00 x                                          | 51440    | 1.00 x 1072.25  |       | -       | 1      |
| 29   | 67.5  | 38       | 1.00 x 91770   | - 1.00 x 1072.675 | 538    | 1.00 x                                          | 91770    | 1.00 x 1072.675 |       | _       | 1      |
| 30   |       | 39       | 1.00 x 91770   | + 1.63 x 92770    | 939    | 1.00 x                                          | 91770    | 1.53 x 92770    | 1     |         |        |
| 31   |       | 40       | 1.00 x 91770   | + 1.14 x 92770    | 540    | 1.00 x                                          | 91770    | 1.07 x 92770    |       | -       |        |
| 32   |       | 41       | 1.00 x 91770   | 4 .71 x 92770     | 541    | ×                                               | 91770    | .73 x 92770     |       |         | 1      |
| 33   |       | 42       | 1.00 x 91770   | 91                | 545    |                                                 | 91770    | .00 x 92770     |       |         | 1      |
| 34   |       | 44       | 1.00 x 111780  | ~                 | 544    |                                                 | 111780   | 1.18 X 112780   | 1     | _       |        |
| 35   | 67.5  | 45       | 1.00 x 111780  | + 1.12 x 112780   | 545    | 1.00 X                                          | 111780   | .81 x 112780    |       | -       |        |
|      |       |          |                |                   |        |                                                 |          |                 |       | •       |        |

| STEP ANGLE COND. |               |                                         | FAT.<br>COND. | MINIMUM                    |                 | OT              | 100TH 10TH |          |
|------------------|---------------|-----------------------------------------|---------------|----------------------------|-----------------|-----------------|------------|----------|
| 36 67.5 46       | 1.00 X 111780 | + .69 x  112780 ·                       | 546 1.00      | x 11178051                 | x 112780        |                 |            | 7        |
| 37 49            |               | к 92870                                 |               | x 91870 - 1.53             | 92870           | 1               | -          |          |
| 38 50            | 1.00 x 91870  | +1.14 x 92870                           | 550 1.00 X    | X 91870 - 1.07 X           | 92870           |                 | 7          |          |
|                  |               | 92870                                   | 551 1.00 X    | 91870 -                    | 92870           | -               | -          | -        |
| 5                | 1.00 x        | 1.00 x 1072.675                         |               | + 0//16                    | 1.00 X 10/2.6/3 |                 | -          | 4 -      |
| 25               | 1.00 X 31440  | 1.00 X 1072.25                          | X 00 T        | 31440 + 1.00 X             | 32660           |                 |            | 7        |
|                  | T.00 A        | 00 0 00 00 00 00 00 00 00 00 00 00 00 0 | -             | x 29 - 077/18              | 32440           | •               | -          | -        |
|                  | X 200.        | .36 X 32440                             |               | 31440 -                    | 0776            |                 |            | -        |
| 44               | 1.00 x 51440  | 32440                                   | -             | 31440                      | 32440           |                 | -          | 1        |
| 60 64            | 4 ×           | 00 x 32440                              | +             | 31440                      | 32440           |                 |            | 1        |
| -                | 1.00 X        | 1.00 x 22440                            | -             | 21440 -                    | 22440           | 1               |            |          |
|                  | 1.00 X        | 22440                                   |               | x 2144062 x 22440          | 22440           | -               | 1          |          |
| -                | 1.00 x        | .58 X 22440                             | 563 1.00 X    | X 21440 + .45 X 22440      | 22440           |                 |            | 1        |
| 50 64            | 1.00 x        | X 22440                                 | 564 1.00 X    | 21440 + .00 X              | 22440           |                 |            | 1        |
| 51 65            |               | + .00 k 22440                           | 565 1.00      | x 21440 + .30              | X 22440         |                 |            | 1        |
| 52 66            | 1.00 X 41430  | + .85 X 42430                           | 566 1.00 X    | x 41430 + .89              | x 42430         | 1               | -          |          |
| 53 67            | 1.00 x 41430  | -                                       | -             | x 41430 + .                | 42430           |                 | 1          |          |
| 54               | 1.00 X 41430  | + .42 X 42430                           | 568 1.00 X    | 41430 -                    | 42430           | -               |            | -        |
| 55 69            | 1.00 X 41430  |                                         |               | 41430 -                    | 42430           |                 |            |          |
| 56 25 71         | 1.00 X        |                                         | -             | 41430 -                    | 1.00 X 1057.25  |                 |            | <b>,</b> |
| 57 67.5 72       | 1.00 X        | 1057.675                                | -†            | 51750 + 1.00               | w -             |                 |            | 7        |
| 58*              | x   1.00      | .50 x 52750 + .65 x 53755               | +             | x 0c. + 0c/1c              |                 | . 05/50 X 53/50 |            |          |
| -                | X 00.1        | CC/SC X TC. + UC/SC X UC.               | +             | 05/10 4                    | 17:             | V 53755         |            | -        |
| 60*              | 1.00 X 51750  | 50 X 52750 + .40 X 53755                | 275 1.00 X    | x 5175050                  | X 53755         | 1 1             |            | -        |
| -                | 2001          | 56 12 53755                             | -             | x 51750 - 56               | 53755           |                 | 1          |          |
|                  | 1.00 X        | 53755                                   | -             | X 51750 + .45 X            | 53755           | -               |            | 1        |
|                  | × 90 -        | 70 k 52750 + .65 x 53755                | -             | 51750 +                    | -               | .66 X 53755 1   |            |          |
| -                | 1.00 ×        | .70 X 52750 1+ .52 X 53755              | -             | x 07. + 02712              | 53              | X 53755         | 1          |          |
| -                | T             | .70 x 52750 + .41 x 53755               | 585 1.00      | 1.00 x 51750 + .70 x       | 52750 ,42       | X 53755         |            | 1        |
|                  | T             | x 52750                                 | 588 1.00      | 1.00 X 51750 + .00 X       | X 52750         |                 |            | -1       |
|                  | 1.00 X        | 1.50 K 52750                            |               | 1.00 x 51750 + .00 x 52750 | 52750           |                 |            | 1        |
|                  | 1.00 X        | + 1.18 X 52750                          | 590 1.00      | 1.00 X 5175066 X 52750     | 52750           |                 |            | -        |
| 2 63             | 200           | x \$2750                                |               | -                          | 52750           |                 | _          | 11       |

TABLE 2.1.2-II (Cont'd)

| EVERY          | 29     | 1       |         |              | 1       |        |         | 1       | -            | -             |                |                | 1              |          |              | 1             |                |                | 1              | 1             | 9             | 8             | 1         | 1         |         | ,       | 1        |               | -             | 1      |         |         |         | - -              |
|----------------|--------|---------|---------|--------------|---------|--------|---------|---------|--------------|---------------|----------------|----------------|----------------|----------|--------------|---------------|----------------|----------------|----------------|---------------|---------------|---------------|-----------|-----------|---------|---------|----------|---------------|---------------|--------|---------|---------|---------|------------------|
| EVERY<br>10TH  |        |         |         | 1            |         |        | 7       |         |              |               |                | -              | -              |          | -            |               |                | 1              |                |               |               |               |           |           |         | 4       |          | 1.            | 4             |        | -       | 7       | 1       |                  |
| EVERY<br>100TH |        | -       | 1       |              | ~       | -      | -       | -       |              |               | 7              |                | -              | 7        |              | - 4           | -              |                | -              |               |               |               | -         |           | -       |         |          | 1             |               | ,      | 7       |         |         |                  |
|                | ,      |         |         | 4            |         |        |         | - 1     |              |               |                |                | .35 x 113620   |          |              |               | - 1            | ×              | .35 x 113620   |               |               |               |           |           |         |         | -        |               |               |        |         |         | ,       |                  |
|                | 52750  | 52750   | 73765   | 73765        | 73765   | 72760  | 72760   | 72760   | 1044.675     | 1044.55       | 112620 -       | 112620 -       | 112620 -       | 113620   | 113620       | 113620        | 112620 -       | 112620 -       | 112620 -       | 112620        | 112620        | 112620        | 1057.55   | 1057.25   | 82430   | 82430   | 82430    | 102440        | 102440        | 102440 | 82530   | 82530   | 82530   | 1248.25          |
| MINIMUM        | 58 X   | 52 X    | 81 X    | × 49         | . 50 ×  | . 39 x | 35 x    | .30 ×   | + 1.00 X     | + 1.00 X      | × 05.          | . 50 x         | × 05.          | ¥ 59     | 52 X         | x 68          | × 09. +        | x 09. +        | x 09. +        | x 99          | ×             | ×             | ×         | + 1.00 x  | 87 X    | × 0.    | ¥ 59     | x 87          | 63 X          | - 1    | × 78.   | × 2.    | × 99    | +<br>8<br>8<br>1 |
| 1              | 51750  | L       | 71760   | 71760        | 71760   | 71760  | 71760   | 71760   | 71760        | 1.00 x 111620 | x 111620       |                | x 111620       | X 111620 | .00 x 111620 | 1.00 x 111620 | 1.00 x 111620  | 1.00 x 111620  | 111620         | 1.00 x 111620 | 1.00 x 111620 | 1.00 x 111620 |           | - 4       | 81430   | L       |          | 101440        | 1.00 X 101440 | -1     | ŧ       | x 81530 | - 1     | x 81430          |
|                | 1.00 X | 1.00 x  | 1.00 x  | 1.00 x       | 1.00 X  | 1.60 X | 1.00 X  | 1.00 x  | 1.00 x       | 1.00 ×        | 1.00 >         | 1.00 x         | 1.00 >         | 1.00     | 1.00         | 1.00          | 1.00           | 1.00 \         | 1.00 X         | 1.00 >        | 1.00          | 1.00          | 1.00      | 1.00 X    | 1.00 X  | 1.00    | 1.00 X   | 1.00 X        | 1.00          | 1.00   | 1.00    | 1.00    | 1.00    | 1.00             |
| FAT.           | 592    | 593     | 596     | 597          | 598     | 602    | 603     | 604     | 909          | 607           | 809            | 609            | 610            | 613      | 614          | 615           | 617            | 618            | 619            | 621           | 622           | 623           | 625       | 626       | 627     | 628     | 629      | 632           | 633           | 634    | 637     | 638     | 639     | 642              |
|                | ·<br>  |         |         |              | -       |        |         |         |              |               | + .59 X 113620 | + .46 x 113620 | + .34 x 113620 |          |              |               | + .60 x 113620 | + .46 X 113620 | + .34 x 113620 |               |               |               |           | •         | - : : ; |         | ****     |               |               |        |         | _       |         | •                |
|                | 52750  | Š       |         | 1            | 7       |        | . 1     | 72760   | X 1044.675   | X 1044.55     | x 112620       | 112620         | 112620         | X 113620 | x 113620     | ~             | 12620          | 12620          | 12620          | x 112620      | x' 112620     |               | X 1057.55 | x 1057.25 | X 82430 | x 82430 | X: 82430 |               | X 102440      | ×      | x 82530 | X 82530 | x 82530 | X 1248.25        |
| МАХІМСМ        | × 06.  | 4. 70 × | × 08. + | × 35.        | + .50 X | × 39 × | + .36 x | + .31 x | + 1.00 x 1   | + 1.00 x 1    | . 50 x         | × 05.          | . 50 ×         | + .65 X  | + .51 X      | + .38         | + .60 x 1      | 9. +           | + .60 x 1      | 1 x 96 x 1    | + .83 X       | + .61 X       | + 1.00 X  | + 1.00 x  | x 56. + | x 0/. + | X 87. +  | + .95 x 1     | + .73 X       | + .51  | + .95   | +       | + .48   | + 1.00 x 1       |
|                | 51750  | 51750   | 71760   | 71760        | 71760   | 71760  | 71760   | /1760   | 71760        | 111620        | 111620         | 111620         | 111620         | 111620   | 111620       | 111620        | 111620         | 111620         | 111620         | 111620        | 111620        | .co x 111620  | 111620    | 81430     | 81430   | 81430   | 81430    | 101440        | 101440        | 101440 | 81530   | 81530   | 81530   | 81430            |
|                | 1.00 x | 1.00 X  | 1.00 x  | 1.00 X 71760 | 1.00 X  | 1.00 X | 1.00 X  | 1.00 X  | 1.00 X 71760 | 1.00 X 111620 | 1.00 X 111620  | 1.00 x 111620  | 1.00 x 111620  | 1.00 x   | 1.00 x       | 1.00 x 111620 | 1.00 X 111620  | 1.00 X         | 1.00 X         |               | 1.00 X        | 1.00 X        | 1.00 X    | 1.00 X    | 1,00 X  | 1.00 X  | 1.00 X   | 1.00 x 101440 | 1.00 x        | 1.00 X | 1.00 x  | 1.00 X  | 1.00 X  | 1.00 X           |
| FAT.           | - 26   | . 8     | 96      | . 97         |         | 102    | 103     | 104     | 106          | 107           | 108            | 601            | 110            | 113      |              | 115           | 117            | 118            | 119            | 121           | 122           | 123           | 125       | 126       | 127     | 128     | 129      | 132           | 133           | 134    | 137     | 138     | 139     | 142              |
| WING           | 5 29   |         | 1       |              |         |        | -       |         | 67.5         | 55            |                | ,<br>•         |                |          |              |               |                |                |                |               |               | -             | 55        | 25        | _       |         |          |               |               |        |         |         |         | 25               |
| STEP           |        | 72      | 73*     | 74.*         | 75*     | 92     | - 12    | 78      | 79           | 80            | 81             | 82             | 83             | 84       | 85           | !             | 87             | 88             | 68             | 8             | 91            | 92            | 93        | *         | 95      | 96      | 97       | 88            | 66            | 100    | 101     | 102     | 103     | 104              |

TABLE 2.1.2-II (Cont'd)

| EVERY          |                        |                   | 7                 | 1              |                      |                   | -              | 1              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |               | 1             | <del>                                     </del> | 7.            | 1-                      | -     | -              | 4               | 1                 | -             | -             |                       |               |                 |                |               |                  |                  |                        |                         |                    |               |               |
|----------------|------------------------|-------------------|-------------------|----------------|----------------------|-------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|---------------|--------------------------------------------------|---------------|-------------------------|-------|----------------|-----------------|-------------------|---------------|---------------|-----------------------|---------------|-----------------|----------------|---------------|------------------|------------------|------------------------|-------------------------|--------------------|---------------|---------------|
| EVERY<br>10TH  |                        | 1                 |                   |                | -                    | 1                 |                | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1             | -             | -                                                |               |                         | -     |                |                 | -                 | -             | -  -          |                       | -             | 1               | +              | 7             | -                | -                | 4                      | 1                       | +                  | +             | -             |
| EVERY<br>100TH | 7                      |                   |                   |                | 1                    |                   | •              | ,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               | -             |                                                  | -             |                         |       |                |                 |                   |               |               |                       |               |                 | -              |               |                  |                  |                        |                         |                    |               |               |
| MINIMUM        | 111210 - 1.06 x 113210 | 11121077 x 113210 | 11121056 X 133210 | 11121032 X     | 111210 :80 x 112210' | 11121067 x 112210 | 111210         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>i</del> - |               | -+-           | 120100                                           | 11121053 X    | 111210 - 1.00 X 1248.15 | 00750 | 81430 + 1.00 X | 111210 + 1.00 X | 11121053 X 112210 | 111310        | ı.            |                       | 120100        | 120100          | 53 X           | -             | ,81430 - 1.00 X  | .8143055 x 82430 | 81430 + 1.00 x 1248.25 | 111210 + 1.00 X 1248.15 | 11121060 x 112210. |               | 120100        |
| FAT.<br>COND.  | 644 1.00 X             | 645 1.00 X        | 646 1.00 X        | 647 1.00 X     | 648 1.00 X           | 649 1.00 X        | , 650 1,00 X   | 651 1.00 X     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | .54           | -             | K 900 X                                          | 7             | 664 1.00 X              | 1     | 667 1.00 X     | -               | x 00.1 669        | 6701.00_X     | +             | 7                     | 675 .62 x     |                 |                |               |                  | 680 1.00 X       | 681 1.00 X             | 682 1.00 X              | . 683 1.00 X       | ٦             | 685 . 62 X    |
| ~ X-           | 4 1,06 X 113210        | + .77 x 113210    | + .54 X 113210    | + .32 X 113210 | + 1.03 x 112210      | 4 .75 x 112210    | + .52 X 112210 | # .27 x 112210 | The state of the s | -              |               |               | + 1.00 x 120100                                  |               | 1.00 X 1248.15          |       | 1.00 x 1248.25 |                 | + .52 x 112210    |               | - †           | + 1.00 x 120100       |               | _±.             | + .52 x 112210 |               | - 1.00 X 1248.25 | + .48 X 82430    | + 1.00 X 1248.25       | + 1.00 X 1248.15        | + .52 X 112210     | -             |               |
| MAXIMUM        | 1.00 X 111210          | 1.00 x 111210     | 1.00 X 111210     | 1.00 X 111210  | 1.00 X 111210        | 1.00 X 111210     | 1.00 X 111210  | 1.00 x 111210  | 1.00 x 111310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.54 X 120100  | 1.46 X 120100 | 1.38 x 120100 | . 1.00 x 126100.5                                | 1.00_X 111210 |                         |       | 1.00 X 81430   |                 | 1.00 x 111210     | 1.00 x 111310 | 1.38 X 120100 | 1.00 x 126100.5+ 1.00 | 1.38 x 120100 | 1.00 X 126100.5 | 1.00 X 111210  | 1.00 X 111210 | 1.00 X 81430     | 1.00 X 81430     | 1.00 X 81430           | 1.00 X 111210           | 1.00 X 111210      | 1.00 x 111310 | 1.38 x 120100 |
| FAT.           | 144                    | 145               | 146               | 147            | 148                  | 149               | 150            | 151            | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 154            | 155           | 156           | 159                                              | 163           | 164                     | 6     | 167            | 168             | 169               | 170           | 171           | 172                   | 175           | 176             | 177            | 178           | 179              | 180              | 181                    | 182                     | 183                | 184           | 185           |
| WING           | 15                     |                   | . :               |                |                      |                   |                | •              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |               | ١                                                |               | 15                      | 3     | 25             | 15              |                   |               |               |                       |               | -               |                | 15            | 25               | 25               | 25                     | 15                      |                    |               |               |
|                | *                      |                   |                   |                |                      |                   |                | · •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115            | 116           | 117           | 118                                              | 119           | 120                     | *     | 123            | 124             | 125               | 126           | 127           | 128                   | 129           | 130             | 131            | 132           | 133              | 134              | 135                    | 136                     | 137                | 138           | 139           |

- Karling Transfer of the Company of

AMAVS UPDATED ANALYTIC FATIGUE SPECTRUM

Table 2.1.2-III

10/14/75 Revised 10/23/75 MISSION EVERY 42 m 13 EVERY 10TH EVERY 100TH 17100 17100 17100 1.00 x 1345.15 1.00 x 1345.25 .48 X 52440 .34 X 42430 .85 X 53440 .54 x 32210 .48 X 42430 .76 X 32210 .37 x |32210 .89 x 42430 .65 x 42430 .34 X 53440 .00 x 42430 .57 X 53440 .22 X 53440 .80 X 52440 .63 X 52440 10100 - 1.00 X 10100 - 1.00 X 10100 .39 X MINIMIN 79 x 60100 1.00 x 60100 1.00 x 60100 60100 .71 X 60100 10100 60100 10100 10100 10100 60100 .49 x 60100 10100 31210 1.00 x |31210 31210 41430 41430 41430 1.00 X 51440 1.00 x .51440 1.00 X 51440 1.00 X S1440 1.00 X 41430 1.00 x 41430 1.00 x 51440 1.00 x | 51440 1.00 X 51440 1.00 X | S1440 41430 1.00 X 1.00 X .61 x 1.00 X 1.00 X x 00° 1.00 X .57 X 1.00 X 1.00 X 1.00 x 1.00 X .77 X 1.00 X 1.00 X 52 52 53 17100 17100 ..00 X 1345.1 1.00 X 1345.2 17100 + .53 X 16100 + .72 X 32210 + 1.00 x 60100. + .53 x 66100 99199 . 55 x 52440 .32 x 52440 .62 x 42430 .42 x 42430 .00 x 42430 .85 x 53440 .85 X 42430 ..28 x 32210 24 X 42430 22 X 53440 .48 x 32210 .57 x 53440 .34 x 53440 .95 x 52440 .75 x 52440 10100 + 1.00 X . 78 X 1.00 x 10100 + 1.00 x 1.00 x 10100 + 1.00 x .39 **HAXIMUM** 60100 1.00 x 10100 1.00 x 31210 1.35 x 60100 1.28 x 60100 1.21 x 60100 1.23 X 10100 1.00 X 16100 1.00 X 60100 60100 1.51 x 60100 1.39 X 10100 1.00 X 51440 1.00 X 51440 1.00 X 51440 1.48 X 10100 1.32 x 10100 1.30 X 31210 1.00 X 51440 1.43 X 60100 1.00 x 66100 1.00 x 31210 1.00 X 31210 1.00 x 41430 1.00 X 51440 1.00 X 51440 1.00 X 51440 1.00 X 51440 1.00 X 1.00 X FAT. 워크 15 17 18 12 되 31 32 38 27 38 33 34 33 13 WING ANGLE 52 STEP ដ 13 13 23 2 2 2 2 2 32 23 82 65 31 32 33 3 %

AMAVS UPDATED ANALYTIC FATIGUE SPECTRUM

Table 2,1.2-III (CONT'B)

| 15   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |      |            | railous Specifum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  | MISSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17   23   1.00   X. Elsino   1   |            | WING | FAT.       | MAXIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FAT.<br>COND. | MINIMUM          | EVERY<br>10TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15.   27.   19.   1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.0   | T          | 25   | 36         | X 51440 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 536           | X 51440 + .35    | ģ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 25   | 37         | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 537           | x 51440 -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 67.5 | 38         | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 538           | 91770            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39         |      | <u>د</u> د | Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 539           | 91770            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07         |      | 9          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97            | 91770            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1        |      | 13         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.           | 91770            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0, 11, 10, 0,   | 4.5        |      | 74         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 242           | X 00 07.16       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43         |      | 43         | 이                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 243           | X 54 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| St.    |            |      | 3          | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$\$<br>\$    | -• j             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 45   46   1.00 × 111729   + 56 × 1127290   544   1.00 × 111729   - 1.1 × 111729   - 1.2 × 112729   544   1.00 × 111729   - 1.1 × 111729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   - 1.2 × 112729   -    |            | 67.5 | 45         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 545           | 11178081         | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 47         47         LOCK MILTON         347         LOCK MILTON         55           49         40         LOCK MILTON         4100 K 2020         549         LOCK MILTON         1100 K 2020         1100 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5        | 67.5 | 95         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 246           | 111780           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 49         48         48         1.00         \$1411780         1         2           59         1.00         \$1500         \$1,100         \$1,111780         1         1         1         1         1         2           59         1.00         \$1500         \$1,00         \$1500         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,00         \$1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47         | _    | 47         | 111780 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 547           | x 111780         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,00 kg 11,00 kg 18207   1,10 kg 18207   1,1   | - 87       |      | 48         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 248           | x 12 31 x        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.00 k   1   | 49-        | -    | 67         | + 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 549           | 91870 - 1.53 X   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1, 10, 00   1, 10, 00   1, 10, 00   1, 10, 00   1, 10, 00   1, 10, 00   1, 10, 00   1, 10, 00   1, 10, 00   1, 10, 00   1, 10, 10, 10, 10, 10, 10, 10, 10, 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50         |      | 20         | +1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 550           | X 91870 - 1.07 X | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51         |      | 21         | + .71 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1\$5          | X 57 07816       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51         53         1,000 K 19400   1,000 K 1072,615         535         1,000 K 19400   1,000 K 1072,615         535         1,000 K 19400   1,000 K 1072,615                                                                                                                                                                                                                                                                                                                                                                                                                           | 52         |      | 52         | 91870 + .35 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 552           | 91870            | 80 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 55         54         1.00 × 51770         1.100 × 1072.673         354         1.100 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.00 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673         1.10 × 1072.673<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53         | -    | 53         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 553           | 9187045 % 92870  | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 55         25         1.00         X 1,000         X 1,000 <td>z<br/>z</td> <td>67.5</td> <td>*</td> <td>_</td> <td>756</td> <td>17/70</td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z<br>z     | 67.5 | *          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 756           | 17/70            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 55         1.00 x 13440         4.55 x 23440         55         1.00 x 13440         4.55 x 23440         1.0           58         1.00 x 13440         4.55 x 23440         55         1.00 x 13440         4.50 x 132440         1.5           59         60         1.00 x 13440         4.00 x 132440         55         1.00 x 13440         1.00 x 13440         1.00 x 13440         1.00 x 132440         1.00 x 122440         1.00 x 122440 <td>22</td> <td>25</td> <td>2/2</td> <td></td> <td>250</td> <td>317.60 1 85</td> <td>, T</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22         | 25   | 2/2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250           | 317.60 1 85      | , T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | os i       |      | 2          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.2          | 31660            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57         | _    | ٥          | +   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35            | 31440            | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 50   50   1.00 x   51440   + 1.00   x   32440   56   1.00 x   31440   + 37 x   32440   1.0   x   32440   1.0   x   32440   62 x   32440   62 x   32440   1.0   x   32440   62 x   32440   62 x   32440   62 x   32440   1.0   x   32440   1.0   x   32440   62 x   32440   62 x   32440   1.0   x   32440    | 2 3        |      | 8          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 539           | 31:40 +          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Column   C   | , 9<br>, 9 |      | 3          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 260           | 31440 +          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 62         62         1.00 x Plu40         + .78 k 22440         587         1.00 x 21440         -62 x 12240         1.01 x 21440         -1.02 x 22440         -1.02 x 21440         -1.02 x 21440         -1.02 x 21440         -1.02 x 21440         -1.03 x 21440<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19         |      | 19         | +1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 561           | 21440            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 63         1.00 x 21440         +.58 x 22440         563         1.00 x 21240        23 x 22440         1.00 x 212440         1.00 x 2124400         1.00 x 212440         1.00 x 212440         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62         |      | 62         | + .78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 295           | 21440 -          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Second   S   | 63         |      | 63         | 35. +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 563           | 21440            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 65   65   1.00 x ½1440   + .00 x 22440   565   1.00 x ½1440   + .30 x 122440   1   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3          |      | 25         | + .34 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 264           | x 21440 +        | . 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 66         6         6         1.00 x \u00e41430 + .63 x 42430         566         1.00 x \u00e41430 + .63 x 42430         1         1         1           67         1.00 x \u00e41430 + .62 x 42430         567         1.00 x \u00e41430 + .63 x 42430         1         1         1         1           63         68         1.00 x \u00e41430 + .62 x 42430         569         1.00 x \u00e442430         4         4         4         4           69         1.00 x \u00e41430 + .24 x 42430         569         1.00 x \u00e44430 + .00 x \u00e42430         4         4         4           70         1.00 x \u00e41430   4.1430   .24 x 42430         570         1.00 x \u00e41430   .24 x 42430         3         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65         |      | 65         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 565           | x 21440 -        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 67   67   1.00 x 41430   + .62 x 42430   567   1.00 x   41430   + .62 x 42430   1.00 x   41430   + .42 x 42430   568   1.00 x   41430   + .42 x 42430   1.00 x   41430   + .24 x 42430   1.00 x   41430   + .24 x 42430   1.00 x   41430   + .34 x 42430   + .34 x 424   | 99         |      | 99         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 266           | 41430            | $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 68 68 1.00 x 4,423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67         |      | 67         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 567           | 41430 +          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 69 69 1,00 x b1430 + 24 x 42430   559 1,00 x   41430 - 34 x   42430   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68         |      | 89         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 568           | 41430 -          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 70 1.00 x   41430   570 1.00 x   41430   3   1.00 x | 69         |      | 69         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 898           | 41430 + 00 X     | <b>+</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2          |      | 20         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             | 4143034 X        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i          |      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |            | A THE ALEXANDER OF THE PROPERTY OF THE PROPERT |               |                  | . The second sec | deposition of the state of the |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  | e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

10/14, 75

| 1057.25   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | Ogpantuck 18 |                |          |          |          |          |          |          |               |          |          |                |           |         |         |         |          |         |                   |          |          |                      |          |              |        |         |         |        |        |          |         |              |         |                   |        |        |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|----------------|----------|----------|----------|----------|----------|----------|---------------|----------|----------|----------------|-----------|---------|---------|---------|----------|---------|-------------------|----------|----------|----------------------|----------|--------------|--------|---------|---------|--------|--------|----------|---------|--------------|---------|-------------------|--------|--------|---------|
| NEW    | 10/14/75 | ٠            | EVERY          | -        | -        |          |          | 7        | 2        | 17            |          |          | <b>-</b> ;     | 2         | 19      |         |         | 7        | 2       | - <del>7</del> 26 | 1        | -1       | 7                    | ::       | 29           | 97     | 2 3     | 98      |        | ].     | -        | 07      | 20           | 42      |                   | ].     | 7      | `<br>   |
| Titolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | ION          | EVERY<br>10TH  |          |          |          |          |          |          |               |          | 1        | 1              |           |         |         | 7       |          |         |                   |          |          |                      |          |              |        | -       |         | •      | •      |          |         |              |         |                   | 7      |        |         |
| The Court   Available   The Court   The    |          | SSIM         | EVERY<br>100TH |          |          |          |          |          |          | ľ             | 7        |          |                |           |         | 7       |         |          |         | i                 |          | İ        |                      |          |              |        |         | -       | 1      | Ì      |          |         |              |         | -                 |        |        | K .     |
| Valve   Valv   |          |              |                |          | _,<br>   | 53755    | 53755    | 53755    | 053755   | 053755        |          |          | -              |           |         | 37.55   | 37.55   | 33755    | 53755   | ر<br>ب            |          |          |                      |          |              |        |         | 1       |        |        | 1        |         | 1            |         |                   |        |        | -       |
| NATING   PARTICUS      |          |              |                |          |          | . 65 x   | . 51 X   | . 41 X   | .30 X    |               |          |          | -              |           |         | x 99.   | . 53 X  | .42 X    | .31 x'  |                   | -        | -        | ^                    |          |              | i      |         |         | -      |        | -        |         |              |         |                   |        | 1      | 1       |
| HILLS FAT. HYDRATHOR SPECIALLY CORT. D. 1. CO. X 1.430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |              |                | 057.25   | 057.675  | 52750    | 52750    | 52750    | 27/20 -  | 52750         | 3755     | 3755     | 3755           | 2/2/      | 33/33   | 2750    | 2750    | 2750     | 52750   | 52750 -           | 52750    | 52750    | 52750                | 52750    | - 1          | - 1    | 52750   | 52750   | 20/6/  | 13/63  | 73765    | 73765   | 73765        | 73765   | 72760             | 7:760  | 72760  | 17/00   |
| AWAYER ANGLE COND.  AWATER OND.  25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |              | MUM            | 1.00 x   | 1.00 X   | .50 X    | . 50 X   | X 05.    | . 50 X   | . So x        | . X X    | . 56 X S | 45 X S         | 2 :       | X 57    | 5 × 5   | . X X   | 57<br>27 | . X     | × 2.              | x 00.    | % e.     | .66 x                | x 19.    | . 58 x       | . 52 X | x 53.   | .29 ×   | ¥ 10:  | ž      | ×۱<br>چز | 37 ×    | , 28 X       | .23 ×   | .39 x             | .35 X  | × 90   | ٠<br>۲  |
| VILING FATL   PATICHE SPECTRING   PATICHE SP   |          |              | MIX            | 41430 -  | 51750 4  | 51750 -  | 51750 +  | 51750 -  | 51750 -  | 51750 -       | 51750 +  | 51750    | 51750 ÷        | - 06/16   | 51750   | 1750 +  | ļ       | i        | 5175n + | 91                | 1750     | 1750     | 1750                 | 2750     | 51750        | 51750  | 21/20   | 51750   | 71,00  | 71760  | 71,760   | 71760   | 71760 -      | 71760 - | 71760  -          | 71760. | 71760  | 1700/1/ |
| ANATICHE SPECTRUM  ANGLE COND.  | our'b.)  |              |                | ×        | . 1      | 1.00 X   | i        | - 1      | 1.00 x   | ×             |          | - 1      | . !-           | × 00 ×    |         |         |         | •        | 1.00 X  | 1.00 X            | 1.00 X S | 1.00 X.5 | 1.00 X'S             | 1.00 X 5 |              | 1.00 X | × 00.1  | 1.00 x  | 7.00 X | × <br> | <br>8    | 1.00 X  | × 00.1       | 1       |                   | 1.00 X |        |         |
| VING   FAT.   PRATED ARALKTIC   FAT.   PAXIMUM   PRATECUE SPECTRUM   PRATECUE SPECTRUM   PAXIMUM   PRATECUE SPECTRUM   PRATE   | 2-111 (C |              | AT.            | 571      | 572      | 573      | 574      | 1        | +        | 7             | 578      | 579      | +              | $\dagger$ | 1       | 283     | 584     | -        |         |                   | 588      | -        |                      | H        | 592          | +      | +       |         | +      | +      | ┪        | -       | -            | ٦       | 602               |        | 7      | _       |
| VILING   FAT.   MAXIMUM   ANGLE COND.   1.00 × 1150 × 1257 0   4.55     1.00 × 1150 × 1150   - 1.00 × 12570   4.55     1.00 × 1150   - 1.00 × 1250   - 4.50     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 4.51     1.00 × 1150   - 1.00 × 1250   - 1.50     1.00 × 1150   - 1.00 × 1250   - 1.50     1.00 × 1150   - 1.00 × 1250   - 1.50      | ble 2.1. |              |                |          |          | 33755    | 33755    | 53755    | 053755   | <b>u53755</b> |          |          | <del>- \</del> |           |         |         | 53755   | 53755    | 53755   | 53755             |          |          |                      |          |              | 1      |         | ,       |        |        |          |         |              |         |                   |        |        | _       |
| ANNUALE COND.  ANCLE COND.  ANC | Ta       |              |                |          | -        |          | . 51 X   | × 07.    |          | 1             |          |          |                |           |         | × 59.   |         | ×        | ×       | .23               | -        |          | -<br> <br> <br> <br> |          |              |        |         |         |        |        |          |         |              |         |                   |        |        | _       |
| WING FAT.  ANGLE COND.  25 71 1.00 x 41430  26 7.5 72 1.00 x 51750  74 1.00 x 51750  76 1.00 x 51750  77 1.00 x 51750  78 1.00 x 51750  81 1.00 x 51750  82 1.00 x 51750  84 1.00 x 51750  85 1.00 x 51750  86 1.00 x 51750  87 1.00 x 51750  88 1.00 x 51750  89 1.00 x 51750  99 1.00 x 51750  90 1.00 x 51750  91 1.00 x 51750  91 1.00 x 51750  92 1.00 x 51750  93 1.00 x 51750  94 1.00 x 51750  96 1.00 x 71760  97 1.00 x 71760  98 1.00 x 71760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ç        | ၁ၟႜၟ         |                | 1057.2\$ | 1057.675 | 52750 -  | 52750    |          | 52750 +  |               | 53755    | 53755    | 53755          | 53755     | 53755   | 52750 1 | 750     | 52750 1- | 52750 + | 52750 H           | 52750    | ۱~       | 5                    |          | 52750        | 52750  | 52750   | 527.30  | 73765  | 73765  | 73765    | 73765   | 73765        | 73765   | 72760             | 72760  | 72760  | 72760   |
| WING FAT.  ANGLE COND.  25 71 1.00 x 41430  26 7.5 72 1.00 x 51750  74 1.00 x 51750  76 1.00 x 51750  77 1.00 x 51750  78 1.00 x 51750  81 1.00 x 51750  82 1.00 x 51750  84 1.00 x 51750  85 1.00 x 51750  86 1.00 x 51750  87 1.00 x 51750  88 1.00 x 51750  89 1.00 x 51750  99 1.00 x 51750  90 1.00 x 51750  91 1.00 x 51750  91 1.00 x 51750  92 1.00 x 51750  93 1.00 x 51750  94 1.00 x 51750  96 1.00 x 71760  97 1.00 x 71760  98 1.00 x 71760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LYAVS    | SPECTRU      | IMOM           | 1.00 X   | 1.00 X   | . 50 X   | . So x   | . So x   | .50 X    | . S.          |          | ->4      | × 77           |           |         | .×      | × 02.   | .×       | 70 X    | ļ                 | 2.00     | 1.50 X   | 1.18 X               |          | ,            |        | ~ ;     | ~       |        | 1      |          | × 75.   | . 28 X       |         | .39 X             | .36 x  | 31 X   | . 24 ×  |
| MING FAT.  25 71 1.00 x 41  26 7.5 72 1.00 x 51  74 1.00 x 51  76 1.00 x 51  77 1.00 x 51  78 1.00 x 51  79 1.00 x 51  81 1.00 x 51  82 1.00 x 51  83 1.00 x 51  84 1.00 x 51  86 1.00 x 51  87 1.00 x 51  88 1.00 x 51  88 1.00 x 51  89 1.00 x 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7        | FATICUE      | <del>-</del>   |          |          |          | 750      | 750      | 51750  - | 51750 -       |          | 750 +    |                | 51750 +   | 51750 + | 750  +  |         | -        | 18      |                   | -        | Γ        |                      |          | +            | -+-    | 51750 + | 51750 + | 1760 + | 1760 + | 1760 F   | 71760 4 | 71760 +      | 71760 H | 1760 <sup>‡</sup> | 1760 F | 1760 + | 71760 + |
| VING PAT.  ANGLE COND.  25 71  67.5 72  77 77  77 77  78 83  88 88  88 88  88 88  89 89  67.5 91  67.5 92  67.5 93  99 99  99 99  99 99  100  100  100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |              |                | .00 x 41 | 00 x 51  | .00 x 51 | .00 x S1 | .00 X 51 | 1.00 x   | 1.00 x        | .00 x 51 | .00 X 51 | .00 x 51       | 1.00 x    | 1.00 x  | 00 X S1 | 00 x 51 | .00 X 51 | × 00    |                   | .00 x 51 | .00 x 51 | 00. X 51             | .00 × 52 |              |        | 1.00 x  |         | 1      | -+     | -        | 1.00 x  | 1.00 x       | 1.00 X  |                   | ١٠٠١   |        |         |
| ANGLE C C 25 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |              | AT.            |          |          |          | -        |          | ,        | _             | -        | -        |                |           | -       | -       | T       | Τ        |         | -                 | -        | ┪        | ┪                    | ╁        |              | !      |         |         |        |        | _        |         | <del> </del> | -       |                   |        |        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              | -              | 25       | 57.5     | _        |          |          |          |               | -        |          | -              | -         |         |         | -       |          |         | -                 | -        | 1        | +                    | 67.5     | <del> </del> | -      |         |         |        | -      | _        | -       |              |         |                   | 1      | -      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |              |                | F        | -        | ╬        | 72       | 75       | 2/2      | 12            | 78       | 79       | 8              | 81        | 82      | 83      | 28      | 85       | 1 2     | 26                | 88       | 8        | S                    | t        | t            |        | ķ       | 95      | 96     | 97     | 86       | 66      | 100          | 101     | 102               | 103    | 104    | 105     |

Table 2.1.2-III (00111"D.)

12 EVERY ន 72 EVERY 10TH EVERY 100TH .25 X; 113620 .61.X 113620 .60 x 112620 |- .47 x 113620 .35 X 113620 .50 x 112620 |- .47 x |113620 .50 x 112620 |- .35 x |113620 - .59 X 113620 .24 X, 113620 1.00 x 111620 + .60 x 112620 - 1.00 x 111620 + .60 x 112620 -.70 X 82530 1.00 x 111620 + ..60 x 112620 -.63 x 102440 .47 x 102440 .60 x 112620 -1.00 X 111620 + 1.00 X 1057.55 .65 X 8353 1.00 x 81430 !+ 1.00 x 1057.25 71760 |+ 1.00 x 1044.675 . So X 112620 87 \$ 82430 .70 X 82430 78 x 102440 1.00 x 111620 i- .61 x 112620 1.00 x 111620 - .50 x 112620 82430 .36 X 102440 1.00 x 111620 + 1.00 x 1044.55 .65 x 113620 1,00 x | 111620 |- ,39 x 113620 1,00 x | 111620 - ,29 x 113620 .66 x 112620 82430 1.00 X 111620 |- .50 X 112620 - .52 x 113620 1.00 x 111620 - .29 x 113620 1.00 x 111620 - .23 x 113620 .65 X .41 X MINIMIN 1.00 x 101440 -1.00 X 81530 -- 05 71 81430 --81530 .-1,00 X 111620 |-1.00 x 111620 + 1.00 x | 81430 + 1.00 X 111620 -1.00 x 81430 1.00 x 101440 1.00 x 101440 1.00 x | 101440 1.00 x 81430 1.00 x 31530 81430 1.00 x 111620 1.00 X 111620 1.00 x 111620 1.00 x 111620 1.00 X 1.00 X × 00.1 66.39 615 715 616 8 8 8 625 619 629 630 631 636 637 638 620 621 622 623 929 632 828 617 609 609 610 610 613 8 579 .60 x 112620 + .34 x 113620 .60 x 112620 + .24 x 113620 .60 X 112620 + .60 X 113620 .60 x 112620 + .46 x 113620 .50 x 112620 + .59 x 113620 .50 x 112620 + .46 x 113620 .50 X 112620 + .34.X 113620 .50 X 112620 + .24 X 113620 1.00 x 1057.55 1.00 x 1057.25 .48 X 82430 .26 X 82430 .26 x 82530 + 1.00 X 1044.675 .29 X 102440 .95 x 82530 .95 X 82530 .48 X 82530 .34 X 112620 .51 x 102440 .28 X 113620 -.61 X 112620 82430 .95 x 102440 .73 x 102440 1.00 X 111620 + 1.00 X 1044.55 .38 x 113620 .22 X 113620 .83 X 112620 .51 x 113620 .96 X 112620 .65 x 113620 AMAVS UPDATED ANALYTIC FATIGUE SPECIRUM 70 X 1.00 x | 81530 |+ 1.00 X 101440 + 1.00 x 81530 + 81430 |+ 1.00 x 111620 + 1.00 X 111620 H 1.00 x 101440 + 1.00 X 111620 + 1,00 X 111620 1.00 X 81430 1.00 x 101440 1.00 x 81530 1.00 X 81430 1.00 x 111620 1.00 x 81430 1.00 x 81430 MAXIMU 1.00 X 111620 1.00 X 111620 1.00 X j 81530 1.00 x ho1440 1.00 X 111620 1.00 X 111620 1.00 X 111620 1.00 x 111620 .00 x 11162U 1,00 x 81430 1.00 x h11620 1.00 X 111620 1.00 x 111620 1.00 x h11620 1.00 X 111620 1.00 X 1.00 X 13,50 135 113 124 120 110 108 111 81 1 125 128 123 FAT. 117 121 127 WING 67.5 121 122 123 120 - 250 - 250 136 128 130 116 124 131 53 135 127 132 12 137 138 139 107 511 118 STEP 106 109 126 108

10/14/75

MISSION

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

AMAUS UPDATED ANALYTIC FATIGUE SPECTRUM

SECTION OF THE PROPERTY OF THE PARTY OF THE

Table 2.1.2-III (CONT'D.)

10/14/75 Revised 10/23/75 MISSION EVERY 2 104 1/8 EVERY 10TH -EVERY 100TH 1 + 1.00 x 1248.25 + 1.00 x 1248.15 - 1.06 x 113210 .77 x 113210 .56 x 113210 .32 x 113210 .80 X 112210 - .67 X 112210 - .53 ¥ 112210 . do x 112210 1.00 x | 111210 - | - 1.00 x 1248.15 - 1.00 x 1248.25 + 1.00 x 1248.25 1248.15 53 \$ 112210 82530 .39 X 112210 155 X 82430 . 53 \$ 112210 17100 17100 - .49 X: 17100 1.00 x 120100 - .49 x 17100 × 14. MINIM + 1.00 + 1.00 1.00 x 120100 1.00 x 120100 1.00 x 81430 1.00 x 111210 1.00 X 111210 1.00 x 111210 1.00 x 1111210 1.00 x 111210 1.00 x 111210 1.00 X 111210 3.00 X 111210 1.00 X 111210 120100 1.00 x 120100 1.00 x 120100 1.00 x 111210 .69 X 120100 1.00 X 111220 1,00 X 81430 1.00 X 111210 1.00 X 111210 111310 .46 X 120100 .62 x 120100 1.00 x 120100 120100 1.00 X 120100 1,00 x 111310 .62 X 120100 .62 x 120100 1.00 X 81430 1.00 x 81430 .78 X × X 90 FAT. 3 3 3 3 3 3 650 651 652 33888 658 859 999 662 3 3 3 629 £ 5 6. 5:3 799 47,9 999 675 17100 1.00 X 120100 H .53 X 126100 1.00 x 126100 + 1.00 x 120100 1.00 x 120100 + .49 x 17100 1.00 X 120100 + .49 X 17100 1.00 X 120100 + .24 X 1/100 - 1.00 X 1248,15 + 1.00 x 1248.25 + 1.00 x 1248.15 .54 X 113210 + .32 × 113210 + 1.03 × 112210 .75 x 112210 112210 1.00 X 1248.25 1.00 X 81430 H 1.00 X 1248.25 4 1.00 X 1248 15 1.00 x 111210 + 1.06 x 113210 .27 X 112210 ... 52 X 112210 .52 X 112210 .77 × 113210 1.00 x 1126100 + 1.00 x 120100 48 X 82430 PAXIMIN 4.9 1.00 X 120100 + 1.00 x 111210 1.00 x 111210 1.00 x 111210 1.00 x 111210 1.31 X 120100 120100 1.00 X 111210 1.54 x 120100 1.46 x 120100 1.38 x 120100 1.00 X 111210 1.00 X 81430 1.00 X 111210 .00 x 111210 1.00 x 111210 1.00 X 111210 1.00 x 111210 1.00 x 111310 1.00 x 111210 1.00 x 111210 1.00 X 81430 1.00 X 81430 016111 x 00.1 1.38 X 120100 1.38 X 120100 1.00 x FAT. 151 156 159 153 161 149 153 147 172 172 154 155 7 5 3 168 169 170 WING ANGLE 2 25 25 25 2 2 STEP 159 160 161 161 157 145 146 151 143 147 148 172 141 250 16 21% 144 2 3 163 164 165 166 167 170 2 2 171

Table 2.1.2-III (CONT'D ) AMAVS UPDATED ANALYTIC FATIGUE SPECTRUM

10/14/75

AND AND PROPERTY.

EVERY EVECY 10TH EVERY 100TH - 1.00 x 1248.15 - 1.00 x 1248.25 - .55 x 82430 1.00 x 81430 + 1.00 x 1248.15 1.00 x 111210 | + 1.00 x 1248.15 .53 \$ 112210 60 \* 112210 17100 x 67. MINIMUM 1.00 x 111310 -62 x 120100 1.00 x 120100 1,00 x 111210 1,00 x 111210 1,00 x 81430 1,00 x 81430 1.00 X 111239 120100 120100 X 120100 1.00 x 686 EAT. 678 679 680 681 682 2 583 - 1.00 x 1248.15 - 1.00 x 1248.25 + .48 x 82430 17160 + 1.00 x 1248.25 # 1.00 X 1248.15 .52 x 112210 + 1.00 x 120100 + 1.00 x 120100 MX. .M 64. 1.00 x | 120100 |+ 1.00 x 111210 1.00 x 81430 1.00 x 81430 1.00 x 81430 1.00 x 111210 1,00 X 111210 1.00 x h11310 1.38 x 120100 1.00 x 126100 1.00 x 111210 1.00 x 126100 FAT. 187 184 185 186 176 178 179 180 181 182 WING Angle 2 2 2 25 23 STE? 176 177 178 179 180 181 183 184 185 186 187

### 2.1.2.3 Analysis of Structural Changes

The existing titanium Hi-Lok pattern attaching the X7223903 aluminum splice plate to the basic wing sweep actuator fittings was found to be structurally deficient so a new pattern using eight additional steel Hi-Loks per airplane was developed and analyzed.

It was also found that the fastener patterns at XF39 and XF84 for the upper cover chordwise splices were not adequate for the final math model loads and patterns incorporating added and increased size fasteners were analyzed to arrive at an acceptable configuration.

### 2.1.2.4 Strain Survey, Full Scale Test

AFFDL Structural Test Facility personnel first performed the test operations check out and strain survey task through the static application of each of the fatigue test conditions specified in FZS-219, Rev. B. This included loading at selected increments to the following percentages of limit load which represented maximums for the original spectrum:

```
85.1% of AS2000 (\Lambda = 15^{\circ})
92.1% of AS5000 (\Lambda = 15^{\circ})
60.8% of AS7000 (\Lambda = 15^{\circ}) Taxi
71.3% of AS9000 (\Lambda = 25^{\circ})
64.2% of AS10000 (\Lambda = 67.5^{\circ})
```

For the flight conditions, 5 psig internal pressure was applied at maximum loads.

Since equipment limitations prevented reading and recording all strain gage channels simultaneously, the gages not connected for the first series were connected and runs for AS 2000 and AS 10000 were repeated since a review of the initial data indicated that they were representative conditions.

Following these tests, the updated fatigue conditions were reviewed and it was decided that Fatigue Condition 117 should be run since it was for a 55° sweep angle for which no prior data had been obtained. Loals were applied in increments up to 100% of the condition and 5 psig. internal pressure was applied. Finally, the test was rerun with the disconnected channels connected.

Computer printouts of all sensor readings were received from AFFDL and the raw data was reviewed. It was found, in general, that no excessively high stresses existed in the WCTS although some were less than predicted and some were greater.

Sample data for several representative points is shown in Table 2.1.2-IV. No significant nonlinear behavior was observed. The left hand instrumented shear strut (Gage 7001) showed better agreement with predicted loads than did the right hand strut. (Gage 7002). Complete agreement was not expected since these loads are very sensitive to upper lug angles which have manufacturing variations. In addition, the right hand strut attachment had some variable looseness for a portion of the testing.

One area of concern was the lugs where bending was indicated by corresponding gages on upper and lower surfaces. The measured and predicted stresses are shown in Figures 2.1.2-7 and 2.1.2-8 for the upper and lower lugs. Although bending was present, it was decided that no tension stresses were high enough to indicate a potential fatigue problem.

As a measure of the efficacy of the test fixture in applying the fuselage interface loads to the WCTS, the axial stresses in the longerons near 932 and 992 were compared with those predicted by the simulated fuselage math model for corresponding locations. The comparisons are shown in Table 2.1.2-V. Relatively good agreement was obtained for the major members, particularly since the predicted stresses are based on estimations of effective axial area to supplement the relatively gross finite element simulation of the simulated fuselage and adjacent structure. Preliminary review of the data indicates that shear flows do not agree as well, but because of the limited number of strain gages, a full comparison is not possible. By way of additional comparison, ratios of the predicted simulated fuselage longeron loads to the NARSAP values furnished by RI are included in the table.

It should be noted that for all strain survey data presented small corrections for zero shift were not made in most instances so that stresses as obtained from gages are preliminary in nature. In addition, axial stresses from axial gages reflect no correction for biaxial stresses.

As a part of the strain survey, deflections of the fixture and of the specimen relative to the test fixture were measured. In general, the wing hip deflections were greater than predicted. A full review of the data has not been made, but a portion of the discrepancy appears to lie in greater than expected fixture deflections which allowed fuselage pitch to occur.

Further review of the test data is planned.

Table 2.1.2-IV

St. St. St. St. St. St. Lower Plate - 10 Ni. St. Lower Plate - 6AL4V Ti. Lower Plate - 6AL4V Ti. Lower Plate - 10 Ni. GENERAL LOCATION Lower Plate - 10 Ni. - 10 Ni. Lower Plate - 10 Ni. - 10 Ni. Lower Plate - 10Ni. Lower Plate Lower Plate TYPICAL TEST AND PREDICTED STRESSES - 0 PSIG INTERNAL PRESSURE 1.0XFC117 38.8 29.1 39.2 29.7 26.9 27.7 37.1 39.3 25.3 28.3 43.1 32.7 11.4 12.2 21.2 KSI .642XAS10000(2) -26.2 45.8 18.6 48.4 41.1 35.1 32.2 40.0 -35.4 32.1 45.4 12.1 11.7 21.9 25.7 KSI 40.6 -39.0 32.9 32.9 32.9 36.4 -37.7 55.7 48.0 36.4 14.4 10.1 26.6 24.7 19.7 KSI 53.6 77.9 72.3 75.0 62.9 4.69 69.2 50.9 63.4 71.4 22.6 28.1 68.4 73.7 55.0 KSI 3 .851XAS2000 PREDICTED KSI 65.3 73.8 74.9 61.3 28.0 79.4 51.1 50.0 51.1 28.8 81.1 65.3 72.2 68.4 60.2 1057 AX 1071 AX 1072 AX 1073 AX 1075 AX 1076 AX 1079 AX 1081 AX 1080 AX 1056 AX 1050 R 1051 R 1059 R 1061 R 1062 R

(3) See Figures 2.1.2-1 thru (5) R=Rosette, AX.=AXIAL

(1) Principal Stresses for Rosettes (2) At Max Fatigue Load 2.1.2-6 (4) Predicted Stresses not Available for FCII7

Lower Plate - 10 Ni. St.

25.2

22.0

23.1

64.1

64.1

1082 AX

NOTES:

| $\overline{}$ |
|---------------|
| •             |
| Ω             |
| -             |
| -             |
| ~             |
| -             |
| ~             |
| 0             |
| CONT          |
| $\sim$        |
| _             |
|               |
| _             |
|               |
| ĭ             |
| 1             |
| ٠.            |
| 2             |
| •             |
| -             |
| ۲.            |
| •             |
| 7             |
| • •           |
|               |
| a)            |
| Ť             |
| Table         |
| Ω,            |
| œ             |
| ٽ             |
| _             |

| GENERAL LOCATION | Lower Plate - 6AL4V Ti. | Lower Plate - 10 Ni St. | Lower Plate - 10 Ni St. | Lower Plate - 10 Ni St. | Lower Plate - 6AL4V Ti. | Lower Plate - 10 Ni St. | Lower Plate - 6ALAV Ti. | Lower Plate - 6ALAV Ti. | Lower Plate - 6ALAV Ti. | Lower Plate - 10 Ni. St. | Upper Cover - 10 Ni. St. | Upper Cover - 1C Ni. St. | Upper Cover - 10 Ni. St. | Upper Cover - 10 Ni. St. | Upper Cover - 2024 AL. |
|------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| T                | 17.4                    | 28.1                    | 32.4                    | 24.6                    | 8.1                     | 20.0                    | 20.0                    | 17.0                    | 11.2                    | 27.2                     | -30.1                    | -12.5                    | -8.0                     | -11.7                    | -12.4                  | -11.4                  | -5.8                   | -7.7                   | -11.6                  |
| E                | 16.5                    | 25.3                    | 31.8                    | 24.8                    | 8.1                     | 21.5                    | 20.7                    | 17.9                    | 12.4                    | 26.8                     | -28.6                    | -12.4                    | -3.8                     | -11.3                    | -12.4                  | -11.5                  | -6.2                   | -7.8                   | -12.4                  |
| ы                | 17.1                    | 27.8                    | 32.5                    | 34.7                    | 13.0                    | 18.4                    | 23.8                    | 20.5                    | 11.5                    | 13,3                     | -15.5                    | -8.7                     | -3.9                     | -11.2                    | -11.2                  | -11.7                  | -6.8                   | -10.7                  | -13.6                  |
| Ħ                | 42.7                    | 1.69                    | 70.5                    | 63.0                    | 17.8                    | 49.7                    | 44.1                    | 41.5                    | 23.7                    | 65.3                     | -73.4                    | -26.5                    | -30.8                    | -28.6                    | -28.6                  | -26.2                  | -13.6                  | -18.3                  | -23.0                  |
| ρι               | 43.1                    | 6.89                    | 67.5                    | 9.59                    | 24.0                    | 43.4                    | 51.1                    | 43.8                    | 24.8                    | 38.6                     | -45.5                    | -23.7                    | -32.9                    | -28.9                    | -26.9                  | -26.5                  | -14.6                  | -23.4                  | -21.0                  |
| •                | 1084 AX                 | 1085 AX                 | 1087 AX                 | 1088 AX                 | 1098 AX                 | 1102 AX                 | 1104 AX                 | 1106 AX                 | 1109 AX                 | 1112 AX                  | 2042 AX                  | 2050 AX                  | 2054 R                   | 2058 AX                  | 2064 AX                | 2070 AX                | 2072 AX                | 2074 AX                | 2077 R                 |

Table 2.1.2-IV (CONT'D.)

|   | $Y_{\mathrm{F}}932$ Bhd - 6AL 4V Ti. | $Y_F932$ Bhd - 10 Ni. St. | $ m Y_F932$ Bhd - 10 Ni. St. | $ m Y_F932$ Bhd - 10 Ni. St. | $Y_F932$ Bhd - 10 Ni. St. | $Y_F932$ Bhd - 10 Ni. St. | $Y_F932$ Bhd - 10 Ni. St. | $\gamma_F 932$ Bhd - 10 Ni. St. | $ m Y_F932$ Bhd - 10 Ni. St. | $ m Y_F932$ Bhd - 10 Ni. St. | $Y_{\mathrm{F}}932$ Bhd - 6AL 4V Ti. | $ m Y_F932$ Bhd - 10 Ni. St. | $ m Y_F932$ Bhd - 10 Ni. St. | $Y_F992$ Bhd - 6AL 4V Ti. | YF992 Bhd - 10 Ni. St. | YF992 Bhd - 10 Ni. St. | YF992 Bhd - 10 Ni. St. | $ m Y_F992$ Bhd - 10 Ni. St. |
|---|--------------------------------------|---------------------------|------------------------------|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|---------------------------|------------------------|------------------------|------------------------|------------------------------|
| H | 29.1                                 | 42.5                      | 22.4                         | 24.7                         | 29.8                      | 0                         | 38.0                      | 31.7                            | 24.0                         | -23.2                        | -14.1                                | -32.4                        | -30.4                        | 14.3                      | 23.4                   | 24.8                   | 26.9                   | 29.8                         |
| Н | 33.6                                 | 48.7                      | 26.0                         | 28.3                         | 35.8                      | 1.0                       | 45.5                      | 36.0                            | 28.6                         | -31.6                        | -15.7                                | -37.6                        | -35.2                        | 13.8                      | 22.7                   | 23.5                   | 23.8                   | 27.6                         |
| а | 21.0                                 | 16.2                      | 26.9                         | 32.9                         | 32.9                      | 2.4                       | 29.3                      | 33.8                            | 33.8                         | -28.2                        | -28.2                                | -34.9                        | -38.1                        | 24.8                      | 29.5                   | 29.5                   | 29.1                   | 29.6                         |
| Ħ | 41.4                                 | 83.8                      | 40.2                         | 48.7                         | 54.2                      | 14.5                      | 66.1                      | 55.7                            | 7. 77                        | -32.0                        | -19.7                                | -57.4                        | -59.1                        | 31.1                      | 57.6                   | 52.2                   | 63.0                   | 69.7                         |
| Ф | 24.4                                 | 31.2                      | 43.8                         | 51.1                         | 51.1                      | 13.6                      | 7°44                      | 50.8                            | 50.8                         | -22.1                        | -37.5                                | -56.0                        | -60.4                        | 56.5                      | 61.3                   | 65.8                   | 69,2                   | 69.2                         |
|   | 3005 R                               | 3007 AX                   | 3008 AX                      | 3009 AX                      | 3010 AX                   | 3011 AX                   | 3012 AX                   | 3013 AX                         | 3014 AX                      | 3017 R                       | 3020 AX                              | 3022 AX                      | 3025                         | 4003 AX                   | 4005 AX                | 4006 AX                | 4007 AX                | 4008 AX                      |

| _             |
|---------------|
| ·             |
| Ω             |
| Ξ.            |
| 딛             |
| 7             |
| CONT          |
| $\overline{}$ |
| _             |
| $\Gamma$      |
|               |
| 2-            |
| •             |
| Н             |
| 2             |
| • •           |
| Ð             |
| H             |
| 5             |
| [able         |
|               |

|                          | Δ     | Ę     | Δ     | F     | Ę-    |                              |
|--------------------------|-------|-------|-------|-------|-------|------------------------------|
|                          | •     | 4     | 4     | 4     | 4     |                              |
| XA 6004                  | 18.7  | 17.7  | 22.3  | 20.9  | 16.3  | YF992 Bhd - 10 Ni. St.       |
| 4010 AX                  | 8.09  | 42.1  | 26.8  | 20.6  | 20.3  | $ m Y_F992$ Bhd - 10 Ni. St. |
| 4011 AX                  | 68.7  | 64.0  | 27.0  | 22.2  | 25.5  | $ m Y_F992$ Bhd - 10 Ni. St. |
| 4012 AX                  | 68.7  | 69.5  | 27.0  | 24.0  | 26.9  | $ m Y_F992$ Bhd - 10 Ni. St. |
| 4018 AX                  | -9.1  | -1.7  | 7.0   | 8.7   | 5.3   | YF992 Bhd - 10 Ni. St.       |
| 4022 AX                  | -68.7 | -70.3 | -15.0 | -13.2 | -17.6 | YF992 Bhd - 10 Ni. St.       |
| 4026 AX                  | -29.1 | -24.1 | -4.6  | -4.1  | -5.9  | $ m Y_F992$ Bhd - 6AL 4V Ti. |
| 4027 AX                  | -56.8 | 9.64- | -17.5 | -14.5 | -17.2 | $ m Y_F992$ Bhd - 10 Ni. St. |
| 4028 AX                  | -55.1 | -41.3 | -15.0 | -10.0 | -13.2 | $ m Y_F992$ Bhd - 10 Ni. St. |
| 5302 AX                  | 14.2  | 3.0   | 47.1  | 0.9   | 8.9   | Closure Rib 6AL 4V Ti.       |
| 5303 AX                  | 14.2  | -1.2  | 47.1  | 5.    | 0     | Closure Rib 6AL 4V Ti.       |
| 7001 ) Load Cells        | -20.7 | -10.1 | -27.1 | -23.0 | -8.6  | Shear Strut, Left            |
| ) values in 7002 ) KIPS. | -20.7 | 0     | -27.1 | -16.8 | -2.6  | Shear Strut, Right           |







Mary Market Market Barrier





AMERICAN STREET, 


3

<u> Sentember som kretons krententinkinker er ferere og formere begreen som er en e</u>







William Control

, Sich der Schreiber der S

AND THE PROPERTY OF THE PROPER





and the second second



minute in the state of the stat

Management of the comment of the com





/34

portemple of the contract of t







The second second

3

endances encommences of the contract of the co

# X 7224030 # 1 0F2 5302 SL 5303 SL F6 5306 AL FILLED + 100 x7224032-9 #7224032-10 OPF 17224032-7 — 17224032 8 OFF 17224031 REF 5306 AL 11 -150 -20 119 00

Samuel Standard Contract

THE CHARLES AND THE PROPERTY OF THE PROPERTY O



## COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION



AND REPORT OF THE



Figure 2.1.2-6 STRAIN GAGE LOCATIONS SIMULATED FUSELAGE STRUCTURE







41/42







natakonkun manunya di manungan kangan kangan manungan mengan mengan mengan mengan mengan mengan mengan mengan

| AFFDL-T<br>MEMBER 3                      | AFFDL-TR-74-17<br>MEMBER NUMBER<br>146<br>148 |                      |                                                            |                                   |              |                                  |                                 |       |                                   |            |     | SPT (SPESSY English company company and all the second specifications of the second specification and specifications are second specifications. |
|------------------------------------------|-----------------------------------------------|----------------------|------------------------------------------------------------|-----------------------------------|--------------|----------------------------------|---------------------------------|-------|-----------------------------------|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| AFFDL-'<br>MEMBER<br>14                  | TR-74-17 NUMBER 16 18                         |                      | Tal                                                        | Table 2.1.2-V S                   | SIMULATED FU | ED FUSELAGE LONGERON COMPARISONS | N COMPARISONS                   |       |                                   |            |     | elementer est                                                                                                                                   |
| 14                                       | ð 8 08                                        | STRAIN<br>GAGE       | ,851 AS 2000 (3) (4)<br>PRED STRESS TEST STRESS<br>KSI KSI | 000 (3) (4)<br>TEST STRESS<br>KSI | R (1)        | .642 AS<br>PRED STRESS<br>KSI    | 10000 (3)<br>TEST STRESS<br>KSI | R (1) | DESCRIPTION                       | z          |     | der administration                                                                                                                              |
| 14:                                      | 8 <sup>2</sup> 08                             | 7101<br>7102         | 51.7                                                       | 57.2                              | 1.09         | 30.6                             | 32.0                            | 1.01  | Upper Centerline, YF932           | e, YF932   | (2) | actual and the second of                                                                                                                        |
|                                          | 0;                                            | 7103<br>7104         | 50•5                                                       | 49.2                              | 1.05         | 28.5                             | 30.8                            | 1.06  | 25°                               | , $Y_F932$ | (2) | Marilla Greek L'A                                                                                                                               |
| 150                                      |                                               | 7105                 | 22.7                                                       | N.A.                              | *8.          | 14.3                             | N.A.                            | .78   | X <sub>F</sub> 39 Upper           |            |     | a s confessi                                                                                                                                    |
| 157                                      | 73                                            | 7106<br>7107         | -8.2                                                       | -8.4                              | 1.65         | -11.4                            | -13.2                           | 1.08  | Outboard Upper                    | , YF932    | (2) | The interpretation                                                                                                                              |
| 162                                      | 25                                            | 7108<br>7109         | -14.4                                                      | -9.7                              | 1.09         | -3.0                             | 1.0                             | 99.   | Outboard Lower                    | , YF932    | (2) | TANK PLANT                                                                                                                                      |
| 171 4                                    | Į,                                            | 7110                 | -10.6                                                      | -11.2                             | •65          | -4.0                             | 9.4-                            | .76   | XF 52, Lower                      | , YF932    | (2) | kur er er er er er                                                                                                                              |
| 52                                       | 99                                            | 7201<br>7202         | 27.6                                                       | 26.9                              | .92          | 23.4                             | 21.1                            | .93   | Upper Centerline, $ m Y_F992$     | e, YF992   | (2) | twee arrichment                                                                                                                                 |
| 259                                      | 6                                             | 7208<br>7209         | 32.9                                                       | 34.4                              | 1.24         | 26.8                             | 25.1                            | 1.29  | 25° Outboard                      | , YF992    | (2) | . Med Myddiad                                                                                                                                   |
| 260                                      | 0                                             | 7207                 | 6.7                                                        | 7.8                               | .90          | 9.4                              | 6.1                             | .79   | 25° Inboard                       | , YF992    |     | كالمسارخون                                                                                                                                      |
| 262                                      | 7.                                            | 7210                 | 4.5                                                        | 3.6                               | .92          | 3.9                              | 2.8                             | 1.31  | XF 54 Upper                       | , YF992    |     | remented                                                                                                                                        |
| 266                                      | <b>ب</b> و                                    | 721 <u>1</u><br>7212 | 7.2                                                        | .7                                | 3.57         | 14.4                             | 15.6                            | 2.23  | XF 103 Upper                      | , YF992    |     | ~ ************************************                                                                                                          |
| 267                                      | <i>L</i> :                                    | 7215                 | 7.6                                                        | 1.5                               | .93          | 22.9                             | 18.2                            | 1.05  | Outboard Upper                    | , YF992    | (2) | the state                                                                                                                                       |
| 275                                      | ñ                                             | 7217<br>7218         | -16.4                                                      | -12.6                             | 1.07         | -25.0                            | -24.6                           | 1.05  | Outboard Lower                    | , YF992    | (2) | identic ord                                                                                                                                     |
| 282                                      | 2                                             | 7213<br>7214         | -11.5                                                      | -23.7                             | 09.          | -19.2                            | -36.5                           | 86.   | XF 103 Lower                      | , YF992    | (2) | <b>₩</b> \$\$ <b>\$\$</b> \$\$                                                                                                                  |
| 286                                      | 9                                             | 720}206              | -13.7                                                      | -8.5                              | 1.34         | -13,3                            | -8.4                            | 1.71  | Lower Centerline, YF992           | , YF992    |     | M)AVOTT                                                                                                                                         |
| 258                                      | 80                                            | 7204                 | -1.2                                                       | 7                                 | -3.0         | -2.7                             | 6                               | 0.6-  | ZF 48 Centerline,                 | s, YF992   |     | MICE SEP-                                                                                                                                       |
| 257                                      | _                                             | 7203                 | 7:1                                                        | 20                                | 7            |                                  | 1.9                             |       | ZF 69 Centerline,                 | e, YF992   |     |                                                                                                                                                 |
| . C. |                                               | otm. Fus.            | Notes Notes Notes Notes Notes Load                         | (Z) Major Long.                   | වි           | At Max. Fat. i                   | Load. (4) Av.                   |       | of Adjacent Gages Where Available | Available  |     | antiga pagasanan                                                                                                                                |

## 2.1.2.5 Full Scale Fatigue Test Updated Ram Loads and Reactions

In generating the updated ram and reaction loads from the updated RI data, the basic assumptions and formulas used in developing the original test loads for FZS-219 were retained. However, HP 9830 programs were written to allow expeditious handling of the larger number of conditions involved and to provide faster reaction capability for revisions received from RI.

Unlike the previous fatigue spectrum, the ground conditions included braking which would require the application of drag loads at the landing gear with fore and aft loads on the dummy wings and upper test fixture fuselage for full test simulation. Since the drag loads are critical primarily for local gear attach structure, it was decided that only the sweeping moment portion of the condition would be included for cycling. This simplification precluded extensive modification of the test set up since the sweeping moment portion can be applied with the existing set up. Consideration is being given jointly by General Dynamics and AFFDL to running a low load level static test to obtain the incremental effects of a drag load for use in fatigue analysis.

A complete set of basic condition ram loads was completed first for the data from NA 75-346 and then for its revision. These loads were then combined using factors from Table 2.1.2-II to get the fatigue condition loads for each spectrum step. A partial set of maximum fatigue conditions was prepared using NA 75-346 data and a complete set (280) was developed for the most current revised data received. Because one load ram per wing can be chosen somewhat arbitrarily, the basic condition ram loads and consequently those for the fatigue conditions loads were modified to avoid exceeding current ram capabilities so far as possible. All loads calculated were furnished to AFFDL on a progressive basis to allow closer coordination. Current basic condition ram loads are shown in Table 2.1.2-VI.

TABLE 2.1.2-VI

\* Revised 8-4-75 \* Revised 8-15-75 \* Revieed 9-24-75

| 16100.5   21440   22440   31210   31440   32210   32440   41430   42430   51440   51750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750     1750 | 37.035                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **22.892         **** - 185         40.684         38.74         576           **** 22.892         *** - 185         40.684         34.213         40.747         59.073         48.196         1.517         41.694         38.967         33.74         576           ***** 21.000         **** - 110         25.876         30.229         41.118         11.694         33.996         19.182         19.867         18.755         2.231         1.897           ***** - 110         25.876         30.229         41.118         11.694         33.996         19.182         19.867         18.755         2.231         1.897           ***** - 110         25.876         30.229         41.118         11.694         33.996         19.182         19.867         18.755         2.231           ***** - 13.626         ***** - 845         12.309         20.000         17.590         17.000         2.200         17.009         2.200         18.974         - 38.484         - 7.039         0           ****** - 83.242         2.667         - 2.849         - 3.269         - 4.350         - 4.773         - 9.680         - 1.770         109.661           ******* - 12.866         *********** - 2.419         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3, 160 4, 715 -, 608 -, 842 * 28<br>3, 160 4, 715 -, 758 -, 515 *-51<br>5, 030 22, 000 14, 500 20, 000 * 8<br>34, 079 1, 971 25, 133 17, 703 *-14<br>0 -97, 401 0 0 |
| *-31.000         *** -110         25.876         30.529         41.118         11.694         33.996         19.187         18.755         2.231         1.897           *** -311        200         26.303         18.000         20.000         17.590         18.000         22.000         18.000         25.000         18.000         25.000         19.000           *** 13.626         *** .845         12.320         -3.436         -27.000         5.215         10.006         4.677         3.675         26.599           *** 13.626         *** 63.242         2.667         -11.209         -31.205         -3.436         -209.135         -17.296         -18.976         -38.484         -7.039         0           ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         ***         *** <td>3.160 4.715758515 *-51<br/>5.030 22.000 14.500 20.000 * 8<br/>1.971 25.113 17.703 *-14</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.160 4.715758515 *-51<br>5.030 22.000 14.500 20.000 * 8<br>1.971 25.113 17.703 *-14                                                                                |
| *-13.626         **-64.13         *-200         20.000         17.590         18.000         17.590         18.000         22.000         18.000         17.590         18.000         22.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         18.000         20.000         20.000         20.000         20.000         20.000         20.000         20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.000 22.000 14.500 20.000 * 8<br>34.079 1.971 25.133 17.703 *-14<br>0 -97.401 0 0                                                                                  |
| 13.626 ** .845 12.730 2.949 13.512 15.889 -12.060 5.215 10.006 4.677 3.675 26.599  D .280 **-53.242 2.665 -11.209 -33.205 -3.436 -209.135 -17.296 -18.974 -38.484 -7.039 0  FT 0 0 0 .665 -2.819 0 -864 0 -4.350 -4.773 -9.880 -1.770 109.641  P.011 **-12.866 .121 -2.182 -5.419 -960 -32.088 -3.262 -3.730 -6.992 -1.596 -10.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.079 1.971 25.113 17.703 *-14                                                                                                                                     |
| TI 0 0 0 -4.350 -4.350 -4.350 -3.436 -209.135 -17.296 -18.976 -38.484 -7.039 0 -1.770 -109.641 -7.039 0 -1.700 -1.504 0 -4.350 -4.773 -9.680 -1.770 -109.641 -7.011 -4.12.866 1.21 -2.182 -5.419 -9.960 -32.088 -3.262 -3.730 -6.992 -1.596 -10.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0 0 -97,401 0 0                                                                                                                                                   |
| 77 0 0 0 -655 -22,819 0 -864 0 -4,350 -4,773 -9,880 -1,770 -109,641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -63 082 -22 699 -118 253 -13. 667 0                                                                                                                                 |
| 0.011 +±-12.8661212.182 -5.419960 -32.088 -3.262 -3.730 -6.992 -1.596 -10.782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3,827 -6,403 -17,560 -11,477 - 12,971 ,018 ***11,260                                                                                                               |
| 40.25937.426 -29.324 -43.712 -49.589 -30.922 -41.652 -45.423 -34.255 -43.279 -49.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -35.255 -27.455 -79.510 -137.322 - 94.691 20.805                                                                                                                    |
| £2 175.269 12.021 43.248 11.698 14.497 15.465 14.601 64.891 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -14.135 27.955 70.020 181.192 140.017119.975                                                                                                                        |
| F3 -6.689 0 -6.540 -7.320 -6.487 -2.254 -2.050 -2.954 -6.421 -7.394 -6.800 -3.880 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7.547 -7.177 .011 5.790 3.677 -6.520 0                                                                                                                             |
| 4. 1,295 1,535 1,428 1,475 -2,022 ,970 -2,652 1,535 ,662 1,194 3,816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .525857 -1.078 -1.414 -1.517 1.446                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0 0                                                                                                                                                             |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0 0 139,972                                                                                                                                                     |
| -40.431 -47.486 -9.370 -33.016 -43.244 -40,180 -31,774 -41,096 -34,343 -49,214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -41,431 -33,350 -75,533 -47,371 -72,770 -57,781                                                                                                                     |
| F7 -70.213 -86.039 -61.184 -118.890 -91.734 -51.606 -66.590 -90.676 -59.024 -85.427 -61.516 -66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -60,499 -49,150 -51,497 -76,999 -46,946 -59,379                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112210 | 38.846          | 19.951       | 8.000           | 1,639                | -85.408    | 0                                                         | -13.092                                    | -23.744                                        | -29.834                               | -7.609                          | 697.           | 0 0          | -35.653                           | -40.009                            |         |  |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|--------------|-----------------|----------------------|------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------------------|---------------------------------------|---------------------------------|----------------|--------------|-----------------------------------|------------------------------------|---------|--|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111780 | -1.911          | -1.959       | 2.000           | 45,704               | 0          | 65.824                                                    | 5,102                                      | -38.539                                        | 34,543                                | -3.774                          | -3,388         | 0            | 3.855                             | -80.545                            |         |  |     |
| A PARTICIPATION OF THE PARTICI | 111620 | 2,895           | 9.856        | 25,000          | 15.048               | -7.016     | -22.802                                                   | -3.952                                     | -52.173                                        | 51.209                                | -1.761                          | -1,581         | <b>a</b> 0   | -22.725                           | -78.441                            |         |  |     |
| Revised 8-4-75<br>Revised 9-24-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111310 | 34,524          | 24.833       | 20.000          | 9.472                | 233,281    | 0                                                         | 35.668                                     | -34,540 -52,173                                | -38.312                               | -3.656                          | 4,016          | 0 0          | -6.636                            | -99.534                            |         |  |     |
| Revised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111210 | 26.485          | 35.862       | 25.500          | .840                 | 90.094     | 0                                                         | 13.569                                     | -34,623                                        | -35.451                               | -3,469                          | 4.185          | 0 0          | -14.744                           | -93.658                            |         |  |     |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102440 | 32,267          | 10.225       | 9.000           | 8,534                | -25.329    | -6,371                                                    | -4.638                                     | -43.789                                        | 13.711                                | -4.313                          | -3,871         | 0 0          | -33.584                           | -48.036                            |         |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101440 | 33.786          | 12.163       | 14.000          | 12.561               | -11.450    | -2.880                                                    | -2.356                                     | -51.874                                        | 13,406                                | -3.542                          | -3.180         | 0            | -26.953                           | -72.801                            |         |  |     |
| TABLE 2.1.2-VI (CONT'D) REVISED NA75-346 AND G/D MODIFIED CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92870  | 077.            | .025         | 12.000          | 40.379               | 0          | -55.095                                                   | -5.877                                     | -26.901                                        | 25.193                                | 617.ş.                          | 1.537          | 0 0          | -26.335                           | -73.237                            |         |  |     |
| 'D)<br>MODIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92770  | .702            | 005          | 11.50%          | 41.054               | 0          | 9.025                                                     | - v89                                      | -26.568                                        | 24.264                                | -6.508                          | 1,456          | 0            | -25.185                           | -73.959                            | ,       |  |     |
| 2.1.2-VI (CONT'D) NA75-346 AND G/D MOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91870  | -1.459          | 299          | 8.000           | 50.688               | - 6        | 177.870                                                   | 107.51.                                    | -36,263                                        | 34.266                                | -6.299                          | 1.652          | 00           | -21,259                           | -85.683                            | !  <br> |  |     |
| E 2.1.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | . 858           | -1.220       | 8.700           | 49.776               | o          | 49.613                                                    | 3.527                                      | -36,942                                        | 36.142                                | -6.198                          | 1.814          | 6 0          | -23,584                           | -84.228                            | 1       |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82530  | 31.738          | 16.502       | 9.965           | 9.445                | -18.086    | -4.549                                                    | -3.372                                     | -33,293                                        | -4,621                                | -7.952                          | .161           | 0            | -42.542                           | -46.934                            | :       |  |     |
| RAH LOADS FOR BASIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82430  | 31.778          | 16.469       | 9.956           | 9.447                | -25.061    | -6.303                                                    | -4.604                                     | 33.292                                         | -4.480                                | -7.935                          |                | 0            | -42.996                           | -46.612                            |         |  | -   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 12.915          | 18.939       | 16.372          | 14.764               | 231.696    | 58.278                                                    | .40.561                                    | -44.126.                                       | -8.994                                | -7.124                          | * 904          | с о          | -18.932                           | -83.908                            |         |  |     |
| !<br>!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81430  | 782 34.591      | 17.522       | 20.00 16.000    | 14.727               | -5.544     | -1.395                                                    | -1.355                                     | -44.593                                        | -3.107                                | -6.925                          | 1.083          | <b>c</b> . o | -65.374 **-51,429 -34.058 -18.932 | -31.3121***-40.229 -76.042 -83.908 |         |  |     |
| ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 1765 |                 | 4,2,1        | 20.00           | 8.960                | 0          | -227.348                                                  | -21.226                                    | 36.746                                         | 47.4. U. 474                          | -5.701                          | 1.616 ** 2.181 | 0            | **-51,429                         | **-40.229                          |         |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73760  | - 390           | 776          | 000             | 12.493               | 0          | 223.253                                                   | -20.844                                    | 70.963                                         | 108.675                               | 1.800                           | 1.616          | 00           | -65.374                           | -31.312                            |         |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72760  | -2.596 2.619    | -2.820 1.355 | 6,000           | 61.406 35.020 12.493 | 0          | 128.891                                                   | 12,376                                     | 14.814                                         | 53,470 16,258 108,675**117,474 -3.107 | .2704.296 1.800** -5.701 -6.925 | .242 -3.856    |              | -65.476 -41.231                   | -54.308 -41.603                    |         |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71760  | 5) -2.596 2.619 | -2.830       | 23 -2.500 6.000 | 905-19               | oi<br>• a: | PSA APT -90.037 :128.891223.253] :227.348 -1.395 . 58.278 | -9,053 -12,37629,844 -21,2261,352 _ 40,561 | 40,88614.81470,963#-76,746 -44.59344,12633.292 | 53.470                                | .270                            |                | 。 c ·        | 65.476                            | -54.304                            |         |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COND   | (KIPS)          | 42           | :               | š                    | PSA "UD    | PSA AF                                                    | - XX                                       | Z,                                             | 2                                     | + ¤                             | 2              |              | 129                               | 73                                 |         |  | . ! |

TABLE 2.1.2-VI (CONT'D)

Revised 94-75

-.066 6-068 -.097 23,695 1345.25 106 4.184 ٥ 790. - 088 27,092 47184 1345.15 707 21,986 3,683 103 790--.097 5.631 1072.25 1072.675 1248.15 1248.25 25.138 -.062 -.093 3,882 a ٩ ٩ 620 4.837 36.346 -.081 3.335 -,048 -.054 3,335 89 - 079 18.886 0 1057.675 36,429 3.288 3.288 ..051 -,086 NAM LOADS FOR MASIC REVISED NA75-246 AND G/D HODIFIED CONDITIONS g 0 ۰ 23.712 150.-1044.55 | 1044.675 | 1057.25 | 1057.55 -,086 -1084 0 . 296 -.052 4.769 680 -,076. 18.621 3.288 670 -35.981 180 780 3.248 0 23,421 .083 7.206 -.051 -,084 3.248 \*\* -8.637 .191 \*\*-55.883 126100.5 -5,727 4\* ,353 21.560 \*\* -.319 191 -38.167 \*\*\* :,039 .-74.725 .-33.098...<u>:</u>47.894... 89.304 120100 -2.419 -61.607 -10.831 -56.756 -31.230 2.800 0 -1.982 3.166 43,583 23,069 34,023 83,020 16.360, 31.260 -2.783 3.505 .058 -17.848 -16.517 -4.095: -3.850.: -.246 :- -275. -42.681 -26.321 -43.113 -55.850 4.046 25.000 -115.369 -35.137 114, 195 11362 12,000 40.652 113210 0 8.553 -.243 -.416 17.000 5.500 112620 | 112780 -11.120 . -30.246. -5.671 PSA AFT - 36.140 6.699 7.122 PSA PED اي ا

THE TOTAL STATE OF THE SECOND CONTRACTOR OF TH

## 2.1.2.6 Fatigue Test Instrumentation and Data Recording Requirements

Following the operational checkout strain survey, a reduced number of strain gage channels was selected for use during the fatigue testing since equipment limitations prevented the simultaneous use of all channels. The channels were selected on the basis of results from the strain survey. A small number of gages were added in areas of particular interest.

Prior to the 1975 fatigue loads update, data points for obtaining baseline and comparative data were defined on page 2-41 of FZS-219B. Because of the updated spectrum, it was necessary to redefine these points. The first flight strain survey has added significance in that only one of the updated conditions has been previously applied (FC 117). The currently defined points are shown in Tables 2.1.2-VII, -VIII, and -IX. The points were chosen, in general, because they were at relatively high loads for representative types of conditions or because they occurred during significant transitions.

Table 2.1.2-VII

Strain Survey Data Cycle For 1st Flight Using "Every 100th Flight" Spectrum

All points are at 100% of the given fatigue condition except as noted for transition points.

| Point Designation<br>and Data Point<br>Numbers | Fatigue<br>Condition | Point Designation and Data Point Numbers | Fatigue<br>Condition |
|------------------------------------------------|----------------------|------------------------------------------|----------------------|
| 1-1                                            | 12                   | 1-19                                     | 61                   |
| 1-2                                            | 14                   | 1-20                                     | 561                  |
| 1-3                                            | 16                   | 1-21                                     | 63                   |
| 1-4                                            | 516 to 18 *          | 1-22                                     | 563                  |
| 1-5                                            | 18                   | 1-23                                     | 88                   |
| 1-6                                            | 18 to 518 *          | 1-24                                     | 588                  |
| 1-7                                            | 518                  | 1-25                                     | 96                   |
| 1-8                                            | 20                   | 1-26                                     | 117                  |
| 1-9                                            | 520                  | 1-27                                     | 617                  |
| 1-10                                           | 34                   | 1-28                                     | 119                  |
| 1-11                                           | 537                  | 1-29                                     | 619                  |
| 1-12                                           | 537 to 38 *          | 1-30                                     | 122                  |
| 1-13                                           | 38                   | 1-31                                     | 127                  |
| 1-14                                           | 39                   | 1-32                                     | 637                  |
| 1-15                                           | 5 <b>3</b> 9         | 133                                      | 148                  |
| 1-16                                           | 549                  | 1-34                                     | 150                  |
| 1-17                                           | 51                   | 1-35                                     | 166                  |
| 1-18                                           | 560                  | 1-36                                     | 169                  |

<sup>\*</sup> These points are to be taken midway between noted end conditions where each loads ram has undergone one-half of its straight line load change.

Table 2.1.2-VIII

Baseline Data Cycle for 5th Flight Using "Every Flight" Spectrum

All points are at 100% of the given fatigue condition except as noted for the transition point.

| Point Designation | Fatigue Condition | Data Point Number |
|-------------------|-------------------|-------------------|
| 37                | 14                | 1-2               |
| 38                | 16                | 1-3               |
| 39                | 516 to 20 *       | 5-1               |
| 40                | 20                | 1-8               |
| 41                | 520               | 1-9               |
| 42                | 34                | 1-10              |
| 43                | 51                | 1-17              |
| 44                | 63                | 1-21              |
| 45                | 563               | 1-22              |
| 46                | 88                | 1-23              |
| 47                | 119               | 1-28              |
| 48                | 619               | 1-29              |
| 49                | 122               | 1-30              |
| 50                | 150               | 1-34              |
| 51                | 166               | 1-35              |
| 52                | 169               | 1-36              |

<sup>\*</sup> These points are to be taken midway between noted end conditions where each loads ram has undergone one-half of its straight line load change.

Table 2.1.2-IX

Periodic Data Cycle For 160 Flight Increments Using "Every 10th Flight" Spectrum

All points are at 100% of the given fatigue condition.

| Point Designation | Fatigue ( | Condition  | Data Point | Number |
|-------------------|-----------|------------|------------|--------|
|                   | <b></b>   |            |            |        |
| 53                | 14        | **         | 1-2        |        |
| 54                | 20        | **         | 1-8        |        |
| 55                | 34        | <b>%</b>   | 1-10       |        |
| 56                | 51        |            | 1-17       |        |
| 57                | 63        |            | 1-21       |        |
| 58                | 88        | **         | 1-23       |        |
| 59                | 119       | <b>*</b> * | 1-28       |        |
| 60                | 122       |            | 1-30       |        |
| 61                | 150       |            | 1-34       |        |
| 62                | 166       |            | 1-35       |        |

<sup>\*\*</sup> To be printed out in format shown in Table 7-1 (Ref. Sec. 7.0, FZS-219) for comparison with data previously recorded in 1st and 5th test flights. Other data recorded is to be retained on tape.

### 2.1.2.7 Stress Determination for Final Fatigue Analysis

Current plans are to obtain stresses for fatigue analysis by loading the current NBB 5 finite element model with the updated fatigue conditions from the analytic spectrum (Table 2.1.2-III. The model was changed from TN1 to UGO to facilitate handling of the larger number of conditions and to take advantage of shorter run times resulting from the "frontal" approach. UGO is currently being used for F-16 structural analysis at General Dynamics.

To load the models, panel point loads must be determined. A program was developed that uses NARSAP data as input and produces node loads that can be merged directly with the current model for stress determination. Other output provides various checks on input data and intermediate values. The program was written for the HP 9830 for development purposes and then programmed in FORTRAN for running on IBM 370 equipment. The program which handles symmetric and asymmetric conditions has now been completed and is on production. The GD program number is CM 7. It is operational from the time sharing terminals for more efficient turnaround.

Subsequent to the development of CM 7, it was found that the current RI loads data presentation is no longer in the NARSAP format, but rather in more detail in some areas. In order to take advantage of CM 7, an HP 9830 program was written which converts the NA 75-346 data to quasi - NARSAP form for input into CM 7 at the TSO terminals. The quasi-NARSAP data has been obtained for the basic conditions which are combined to form the fatigue conditions. Initial CM 7 runs were made and are being checked out.

#### 2.1.3 Fatigue and Fracture Analysis

During the reporting period, the fatigue analysis for the spectrum current at the time of WCTS final design was completed. The results were reported in FZS-219, Revision A, 3 Feb. 1975, Section 2.3 (AMAVS Full Scale Test Program Test Plan, Vol. I). However, for completeness, the results are presented in Section 2.1.3.1 of this report. Subsequent to this analysis, the 1975 updated test facigue spectrum became available as a part of the "credible option" concept and a preliminary fatigue analysis was made using the updated test spectrum. A further discussion and results of the preliminary analysis are presented in Section 2.1.3.2.

### 2.1.3.1 Fatigue Analysis for WCTS Phase II Design Loads

For each of the five mission segments defined by a single static load condition, the limit wing bending moment (Mx) noted in Table 2.1.3-I is used to relate the wing bending moments to the WCTS internal loads and stresses. The noted static conditions were used to determine the fatigue loads as a percentage of design limit load. Using linear stress/load coefficients for selected WCTS areas, the fatigue loads were converted to a stress spectrum for each fatigue control point by range-pair-counting techniques. The range-pair-counting procedures developed by RI and described in their report TFD 72-358 "A Method of Counting Spectrum Load Cycles," 10 March 1972 were used to derive analytical stress spectra. A computer program was developed to range-pair count the stress spectra for each distinct flight type (i.e., flights 1, 10, 100).

Selection of the WCTS control points was based on the stress/load state of individual sections of the structure. Primarily tensile-loaded elements of the WCTS were identified as control points based on the evaluation of finite element math model stresses, stress analysis results, and the details of the design configuration.

Stress-state distributions for the five fatigue spectrum mission segments (Conditions AS2000, AS10000, AS5000, AS9000 and AS7000; representing post-take-off, TFR, prelanding, climb-cruise-refuel, and ground/taxi, respectively) were considered in the selection of control points. Based on these selection criteria the following WCTS structural areas were identified as fatigue control points:

- o Control Point 1, Figure 2.1.3-1, X7224061 YF992 Bhd. Inbd. Panel, Fuel Transfer Hole @ XF29.
- o Control Point 2, Figure 2.1.3-2, X7224170 Lower Lug, Pivot Bore.
- o Control Point 3, Figure 2.1.3-3, X7224170 Lower Plate, Lug: .875 Dia. Taper-Lok hole.
- o Control Point 4, Figure 2.1.3-4, X7224170 Lower Plate Assy., Aft Outb'd Cutout, XF68-72, YF992, ZF0.
- o Control Point 5, Figure 2.1.3-5, X7224080 Bhd., YF932, Lower Attach Flage XF65, YF932, ZF0.

o Control Point 6, Figure 2.1.3-6, X7224011 Upper Aft, Outboard Longeron Attachment.

The range-pair counting spectrum development procedure noted was used to derive analytical stress spectra from the basic flight-by-flight stress spectra for each of the selected control points. Fatigue analyses were conducted for each control point to evaluate the fatigue damage associated with each design range-pair-counted spectrum. The results of these analyses are summarized in Table 2.1.3-II. Comparisons of the basic flight-by-flight stress spectrum and the corresponding range-pair-counted stress spectrum for each of the six selected control points are shown in Tables 2.1.3-III through -VIII.

Table 2.1.3-I

# WING BENDING MOMENT SPECTRUM AT THE WING PLYOT FLIGHT-BY-FLIGHT COMPOSITE MISSION

|                                        | <u> </u>                                                            | *Bending Mom               | T-    | T                 | *Bendi                                             | ng Mom                                       | 7.                                                   | of                                                   | **Analytic                          |
|----------------------------------------|---------------------------------------------------------------------|----------------------------|-------|-------------------|----------------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------|
| Load                                   |                                                                     | x 106 in-1b                |       | Wing              | × 106                                              | in-1b                                        |                                                      | lition                                               | Spectrum                            |
| Step                                   | Mission Segment                                                     | l.imit                     | _     | An: le            | Max                                                | Min                                          | Max                                                  | Min                                                  | Cycles/Mission                      |
| 1                                      | Ground (Cond AS7000                                                 | - 13.0                     |       | 150               | - 1.5                                              | - 7.9                                        | 11.5                                                 | 60.8                                                 | 1                                   |
| 2<br>3<br>4<br>5                       | Post Takeoff<br>(Cond AS2000)                                       | 68.15                      | м     | 150               | 58.0<br>52.2<br>40.4<br>35.1                       | 35.1<br>35.1<br>35.1                         | 85.1<br>76.6<br>59.3<br>51.5                         | 51.5<br>51.5<br>51.5<br>41.4                         | 0.1<br>2                            |
| 6<br>7<br>8                            |                                                                     |                            | G     |                   | 41.2<br>41.5<br>34.4                               | 24.7                                         | 60.5<br>60.9<br>50.5                                 | 56.8<br>36.2<br>44.5                                 | 2<br>1<br>29                        |
| 9<br>10<br>11<br>12<br>13<br>14<br>15  | Climb, Cruise &<br>Refuel<br>(Cond AS9000)                          | 64.38                      | м     | 250               | 27.0<br>33.1<br>27.0<br>36.3<br>19.3<br>25.5       | 27.0<br>23.0<br>19.3                         | 56.4<br>30.0<br>39.6                                 | 19.1<br>41.9<br>35.7<br>30.0<br>11.8<br>30.0<br>25.3 | 1<br>22<br>22<br>1<br>1<br>58<br>58 |
| 16<br>17                               | Fly-Up<br>(Cond A\$10000)                                           | 34.25                      |       | 67.5°             | 22.0<br>15.0                                       |                                              | 64.2<br>43.8                                         | 23.9<br>24.8                                         | 1<br>1                              |
| 18<br>19<br>20<br>21<br>22<br>23<br>24 | Terrain Following<br>(Cond AS10000)                                 | 34.25                      | G     | 67.5°             | 20.8<br>17.7<br>14.5<br>15.6<br>10.3<br>9.2<br>6.3 | 9.0<br>11.1<br>2.6<br>5.8<br>- 1.4           | 60.7<br>51.7<br>42.3<br>45.5<br>30.1<br>26.9<br>18.4 | 45.3<br>26.3<br>32.4<br>7.6<br>16.9<br>- 4.1<br>7.9  | 0.1<br>1<br>7<br>1<br>132<br>1      |
| 25<br>26<br>27                         |                                                                     |                            | М     |                   | 21.0<br>15.9<br>10.3                               | 2.2                                          | 61.3<br>46.4<br>30.1                                 | 3.5<br>6.4<br>13.1                                   | 1<br>9<br>95                        |
| 28<br>29<br>30                         | Prelanding<br>(Cond AS5000)                                         | 62.23                      | м     | 150               | 57.3<br>51.6<br>44.4                               | - 8.6                                        | 92.1<br>82.9<br>71.3                                 | 51.7<br>- 13.8<br>51.7                               | 0.01<br>0.1<br>1                    |
| 31<br>32<br>33                         | Ground (Cond AS7000)<br>Takeoff (Cond AS2000<br>Climb (Cond AS9000) | - 13.0<br>) 68.15<br>64.38 |       | 150<br>150<br>250 | - 1.5<br>49.9<br>45.9                              | - 7.9<br>33.7<br>27.0                        | 11.5<br>73.2<br>71.3                                 | 60.8<br>49.4<br>41.9                                 | 1<br>1<br>1                         |
| 34<br>35<br>36                         | Prelanding<br>(Cond AS5000)                                         | 62.23                      | м<br> | 150               | 32.2<br>37.3<br>32.2                               | 21.5<br>32.2<br>28.7                         | 59.9                                                 | 34.5<br>51.7<br>46.1                                 | 1<br>19<br>19                       |
| 37<br>38<br>39<br>40<br>41<br>42       |                                                                     |                            | G     |                   | 47.8<br>40.9<br>41.7<br>37.7<br>35.7<br>33.0       | 29.8<br>35.0<br>20.9<br>24.8<br>26.8<br>28.7 | 65.7<br>67.0<br>60.6<br>57.4                         | 47.9<br>56.2<br>33.6<br>39.9<br>43.1<br>46.1         | 1<br>4<br>1<br>9<br>48<br>294       |
| 43<br>44                               | Ground<br>(Cond AS7000)                                             | - 13.0                     |       | 150               | - 1.5<br>- 2.0                                     |                                              | 11.5                                                 | 60.8<br>56.2                                         | 8<br>154                            |

NOTES: \*\* (1) This composite mission table contains 1143.32 cycles per mission and 1,463,449.6 cycles per life.

(2) Legend: M -- Maneuver Load G -- Gust Load

\* (3) Bending Moment is in the Fuselage Reference System. Wing roll moment component, M<sub>X</sub>, only is shown.



Endanger of the second

PART IDENTIFICATION

X7224060,
YF992 BIID WEB
LOCATION  $X_F29$ ,  $Y_F992$ ,  $Z_F5$ MATERIAL

TI, 6AL-4V ( $\beta$ , MA)

DAMAGE TOLERANCE CATECORY

SLOW CRACK GROWTH

INSPECTABILITY

DEPOT LEVEL

| TRATION                        |                                         | CULATED                         | 2.17                 |
|--------------------------------|-----------------------------------------|---------------------------------|----------------------|
| STRESS CONCENTRATION           | FACTOR                                  | SIS CA                          |                      |
| STRES                          | ı                                       | ANALY                           | 5.0                  |
|                                | ا                                       | ALLOWABLE ANALYSIS   CALCULATED | 80                   |
|                                | NOLICES LIN                             | ULTIMATE                        | 65.23                |
| STRESS, KSI                    | NET SECTION   NET SECTION               | LIMIT                           | 43.51                |
|                                | HAXIMON                                 | SPECTRUM                        | 37.82 43.51          |
|                                | č                                       | LIMIT                           | 36.87                |
| 1 553                          | , KSI                                   | AS7000                          | .03 -1.30            |
| SCTIVE STRESS                  | SPECTRUM                                | AS9000                          |                      |
| GROSS SECTION ULTIMATE EFFECTI | FOR CONDITIONS IN PATIGUE SPECTRUM, KSI | AS5000                          | 55.28 27.47 52.17 50 |
| CTION ULT                      | SECTIONS                                | AS10306                         | 27.47                |
| GROSS SE                       | F08 C0                                  | AS2000                          | 55.28                |

Figure 2.1.3-1 CONTROL POINT 1, YF992 RHD. INBD. PANEL, FUEL TRANSFER HOLE @ XF29



EAST IDENTIFICATION

X7224170

PLATE ASSY, PIVOT LUG, LWB.

X<sub>F</sub>141.18, Y<sub>F</sub>951, Z<sub>F</sub>0

HATERIAL

10 Ni STEEL

DAHAGE TOLFRANCE CATEGORY

SLOW CRACK GROWTH

INSPECTABILITY

DEPOT. LEVEL

| TION                           |          | LATED                                                  | 30                |
|--------------------------------|----------|--------------------------------------------------------|-------------------|
| NCENTRA                        | TOR      | ו כערכה                                                | 5.0 2.30          |
| STRESS CONCENTRATION           | FAC      | ULTIMATE ALLOWABLE ANALYSIS CALCULATED                 | 5.0               |
| 103                            |          | BLE                                                    |                   |
|                                |          | ALLOW!                                                 | 131               |
|                                | ECTION   | MATE                                                   | .71               |
|                                | NET S    | ULTI                                                   | 121.71            |
| KSI                            | SECTION  | TIM                                                    | 14                |
| STRESS,                        | NET S    | <u> </u>                                               | 81.               |
|                                | AXIMIX!  | PECTRUM                                                | 61.76 81.14       |
|                                | NO. 1 M  | S                                                      | 9                 |
|                                | S SECTI  | IMIT                                                   | 72.60             |
| -                              | GROS     | <u></u>                                                | 7                 |
| ESS                            | . KSI    | \$2000 ASTON ASTON ASTON LIMIT SPECTRUM LIMIT ULTIMATE | 0                 |
| TIVE STR                       | SPECTRUM | 000651                                                 | 95.0              |
| EFFEC                          | TICLE    | 000                                                    | 6.                |
| MATE                           | N. EA    | ASS                                                    | 88                |
| GROSS SECTION ULTINATE EFFECTI | SYCIET   | \$10000 P                                              | 73.08108.85 89.96 |
| SS SECT                        | 50       | 000                                                    | . 089             |
| GROS                           | 2        | A\$2000                                                | 73                |

Figure 2.1.3-2 CONTROL POINT 2; LOWER PLATE ASSY., WING PIVOT LUG



| STRESS CONCENTRATION | FACTOR                              |
|----------------------|-------------------------------------|
|                      |                                     |
|                      | NET SECTION                         |
| TRESS. KSI           | MAXIMUM   NET SECTION   NET SECTION |
| i c                  | MAXIMUM                             |
|                      | GROSS SECTION                       |
| SECTIVE CIPECS       | ile ceerrain. KSI                   |

| SIKESS CONCENTION          | .0%                                           | ALLOWABLE ANALYSIS CALCULATED     | 2.92                   |
|----------------------------|-----------------------------------------------|-----------------------------------|------------------------|
| SIRESS CON                 | FACTOR                                        | ANALYSIS                          | 5.00                   |
|                            |                                               | ALLOWABLE                         | 131.44   131.00   5.00 |
|                            | NET SECTION                                   | ULTIMATE                          | 131.44                 |
| STRESS, KSI                | NET SECTION                                   | LIMIT                             | 56.28 87.67            |
| S                          | MAXIMUM                                       | SPECTRUM                          | 56.28                  |
|                            | GROSS SECTION MAXIMUM NET SECTION NET SECTION | LIMIT                             | .13 -4.81 82.71        |
|                            | W. KST                                        | ASSOOD   ASSOOD   ASSOOD   ASTOOD | -4.81                  |
| CTIVE ST                   | CDECTEL                                       | 0006SV                            | 84.13                  |
| PLITIMATE EFFECTIVE STRESS | 127777777                                     | AS5000                            | 77.26                  |
| CITIO CONTRACTOR           |                                               | AS10.00                           | 90.54 124.00 77.2684.  |
| Capes SEC.                 | (10)                                          | AS2000                            | 90.54                  |

Figure 2.1.3-3 CONTROL POINT 3, LOWER PLATE, LUG .875 DIA. TAPER-LOK HOLE

,



| PART IDENTIFICATION       | <b>.</b>                                    |
|---------------------------|---------------------------------------------|
| X7224170 LWR PLATE ASSY   | R PLATE ASSY                                |
| X7224172 LWR PLATE,       | R PLATE, WEB                                |
| LOCATION                  | •                                           |
| XF68; YF992; ZF0          | $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ |
|                           |                                             |
| MIERIAL                   |                                             |
| 10 NI STEEL               |                                             |
|                           |                                             |
| DAMAGE TOLERANCE CATEGORY | NTECORT                                     |
| SLOW CRACK GROWTH         | SROWIH                                      |
| INSPECTABILITY            |                                             |
| DEPOT LEVEL               |                                             |
|                           |                                             |

| 1-                           |                                                 | _                             | <u> </u> |
|------------------------------|-------------------------------------------------|-------------------------------|----------|
| STRESS CONCENTRATION         | OR                                              | ALLOWABLE ANALYSIS CALCULATED | 3.6      |
| STRESS CON                   | FACTOR                                          | ANALYSIS                      | 5.0      |
|                              |                                                 | ALLOWABLE                     | 150      |
|                              | NET SECTION                                     | ULTIMATE                      | 146.38   |
| TRESS, KSI                   | NET SECTION                                     | LIMIT                         | 97.63    |
| S                            | HUMIXYK                                         | SPECTRUM                      | 86.41    |
|                              | GROSS SECTION MAXIMUM NET SECTION   NET SECTION | LIMIT                         | 85.38    |
| ESS                          | SPECTRUM, KSI                                   | AS7000                        | -21      |
| CTIVE STRESS                 | SPECTRUM                                        | AS9000                        | 118 -21  |
| WATE EFFE                    | N FATIGUE                                       | AS5000                        | 123      |
| ROSS SECTION ULTIMATE EFFECT | FOR CONDITIONS IN FATICUE                       | AS10000                       | 62       |
| CROSS SE                     | FOR CO                                          | A52000                        | 128      |

CONTROL POINT 4 LOWER PLATE ASSY., AFT OUTB'D CUTOUT Figure 2.1.3-4



| CALCULATED | 3.31             |
|------------|------------------|
| ANALYSIS   | 5.00             |
| ALLOWABLE  | 115.56 150.0     |
| ULTIMATE   | 115.56           |
| LIMIT      | 77.04            |
| SPECTRUM   | 65.56 77.04      |
| LIMIT      | 36.0 -22.0 60.03 |
| AS7000     | -22.0            |
| AS9000     | 86.0             |
| ASS000     | 0.69             |
| 00001SK    | 90.0 77.0 69.0   |
| 2000       | 0.0              |
|            | SPECTRUM LIMIT   |

Figure 2.1.3-5 CONTROL POINT 5, BHD., YF932, LOWER ATTACH FLANGE



PART IDENTIFICATION

X7224011 PIVOT LUG, UPPER LOCATION

XF115.7, YF1006

MATERIAL

10 NI STEEL

DAMAGE TOLERANCE CATEGONY

SLOW CRACK GROWTH

INSPECTABILITY

DEPOT LEVEL

| STRESS CONCENTRATION           | ALLOWABLE ANALYSIS CALCULATED                                               | 3.89                 |
|--------------------------------|-----------------------------------------------------------------------------|----------------------|
| STRESS CON                     | FACTOR<br>ANALYSIS CA                                                       | 5.00                 |
|                                | ALLOWABLE                                                                   | 130.00 5.00          |
|                                | NET SECTION<br>ULTIMATE                                                     | 124.17               |
| STRESS, KSI                    | NET SECTION<br>LIMIT                                                        | 53.17 82.82          |
| S                              | SPECTRUM                                                                    | 53.17                |
|                                | CROSS SECTION MAXINUM NET SECTION NET SECTION LIMIT SPECTRUM LIMIT ULTIMATE | 8.53 19.99 62.12     |
| i ssa                          | S9000 AS7000                                                                | 19.99                |
| CTIVE STRESS                   | AS9000                                                                      | 28.53                |
| INATE EFF                      | ASS000                                                                      | 13.64                |
| GADES SECTION : LITHATE EFFECT | A52000   A810000   A85000   A                                               | 23.91 93.13 13.64 2. |
| 38 SSC/3                       | 1,52000                                                                     | 23.91                |

CONTROL POINT 6, UPPER LUG INSTL. AFT OUTB'D LONGERON ATTACHMENT Figure 2.1.3-6

Table 2.1.3-II

SUMMARY - WCTS FATIGUE DAMAGE
PHASE II LOADS & SPECTRUM

| Fatigue Damage, $\sum$ n/N; 1280 Flights; S.F. 1.0; $K_T$ 5.0                                                   |                                                                              |                                                                                      |                                                                                      |                                                                                      |                                                                                          |                                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| Mission                                                                                                         | Fatigue Control Point No. (Ref. Figures 2-4 thru 2-9)                        |                                                                                      |                                                                                      |                                                                                      |                                                                                          |                                                      |  |  |  |
| Segment                                                                                                         | 1                                                                            | 2                                                                                    | 3                                                                                    | 4                                                                                    | 5                                                                                        | 6                                                    |  |  |  |
| Ground (1) Post-Takeoff Climb, Cruise, Refuel Fly-up TFR Prelanding Ground(1) Takeoff Climb Prelanding round(1) | 0.<br>0.0124<br>0.<br>0.<br>0.0007<br>0.0211<br>0.<br>0.0254<br>0.<br>0.0024 | 0.<br>0.0015<br>0.0120<br>0.0445<br>0.1441<br>0.0362<br>0.<br>0.<br>0.0163<br>0.0404 | 0.<br>0.0136<br>0.0003<br>0.0544<br>0.1997<br>0.0162<br>0.<br>0.0327<br>0.<br>0.0067 | 0.<br>0.0759<br>0.0249<br>0.<br>0.0007<br>0.1084<br>0.<br>0.0410<br>0.0098<br>0.3213 | 0.<br>0.0451<br>0.0102<br>0.0157<br>0.0255<br>0.0291<br>0.<br>0.0635<br>0.0029<br>0.0111 | 0.<br>0.<br>0.<br>0.0467<br>0.1570<br>0.<br>0.<br>0. |  |  |  |
| Total Damage, $\sum n/N^{(2)}$                                                                                  | 0.0620                                                                       | 0.2950                                                                               | 0.3236                                                                               | 0.5820                                                                               | 0.2031                                                                                   | 0.2037                                               |  |  |  |

- NOTES: (1) The "Ground" mission segments indicate no fatigue damage because these cycles are "paired" in the range-pair spectra (Ref. Tables 2.1.3-III thru 2.1.3-VIII) within other flight conditions to form "ground-air-ground" cycles. Hence, damage resulting from these ground cycles is included in the flight mission segment damages.
  - (2) Fatigue damages shown are conservative since a stress concentration factor of 5.0 was used for all points in the analysis. The stress concentration factor of 5.0 was used to provide a conservative evaluation to establish fatigue design allowables and to provide conservatism in the development of the spectrum to be used for test. Fatigue damages based on calculated K<sub>T</sub>'s are considerably less as shown below.

| Control Point             | 1    | 2    | 3      | 4      | 5      | 6      |
|---------------------------|------|------|--------|--------|--------|--------|
| Calculated K <sub>T</sub> | 2.17 | 2.30 | 2.92   | 3.60   | ·3.31  | 3.89   |
| $\sum n/N$ ; S.F. 1.0     | 0.0  | 0.0  | 0.0028 | 0.1473 | 0.0274 | 0.0367 |

Table 2.1.3-III STRESS SPECTRA FOR NBB CONTROL POINT NO 1 Y, 992 BULKHEAD, LOWER PLATE (REFERENCE FIGURE 2.1.3-1)

| MISSION                     | LIMIT           |                                              |                                                                      | BASIC S                                                              | PLCTRUM                                                                       |                                                                               |                                                |                                                                      |                                                                                                          |                                                                                                                   |                                                               | RANGE                                                         | PAIR COL                                                      | NTED SPE                                                      | CTRUM              |                     |
|-----------------------------|-----------------|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------|---------------------|
| SECHENT                     | STRESS<br>(KSI) |                                              | 2 CONU                                                               | ITION                                                                | STRES                                                                         | s (KSI)                                                                       |                                                |                                                                      | STRESS                                                                                                   | (KSI)                                                                                                             |                                                               |                                                               | PER FLIC                                                      | अर                                                            | FATIGUE I          | AMACE(1)            |
|                             | ,,              | STEP                                         | HAX                                                                  | MIN                                                                  | MAX                                                                           | HIN                                                                           | n                                              | STEP                                                                 | YAX                                                                                                      | MIN                                                                                                               | 100 <sup>TH</sup>                                             | 10 <sup>TH</sup>                                              | EVERY                                                         | COMPO-<br>SITE                                                | K <sub>T</sub> 5.0 | K <sub>7</sub> 2.17 |
| GRUUND                      | -1.02           | 1                                            | 11.5                                                                 | 60.8                                                                 | 12                                                                            | 62                                                                            | 1                                              | 1                                                                    | 12                                                                                                       | - 62                                                                                                              | ı                                                             | 1                                                             | 0                                                             | .10                                                           |                    |                     |
| POST<br>TAKE-OFF            | 43.51           | 2 3                                          | 85.1<br>76.6                                                         | 51.5<br>51.5                                                         | 37.03<br>33.33                                                                | 22.41<br>22.41                                                                | .01<br>.10                                     | 2 3                                                                  | 37.03<br>33.33                                                                                           | 89<br>22.41                                                                                                       | 1                                                             | 0                                                             | 0                                                             | 01<br>.01                                                     | .0005              | .0                  |
|                             |                 | 4                                            | 59.3                                                                 | 51.5                                                                 | 25.80                                                                         | 22.41                                                                         | 2                                              | 5<br>6                                                               | 33 33<br>25.80<br>25 80                                                                                  | 89<br>22.41<br>18 01                                                                                              | 0<br>2<br>0                                                   | 1<br>2<br>0                                                   | 0<br>1<br>1                                                   | .09<br>1 10<br>90                                             | 9027               | .0                  |
|                             |                 | 5<br>6<br>7                                  | 51.5                                                                 | 41 4<br>56.8                                                         | 22.41<br>26 32                                                                | 18.01<br>24.71                                                                | 2 2                                            | 7                                                                    | 22.41<br>26.32                                                                                           | 18 01<br>24,71                                                                                                    | 1 2                                                           | 1 2                                                           | 1 2                                                           | 1 2                                                           |                    |                     |
|                             |                 | c                                            | 50.5                                                                 | 36.2<br>44.5                                                         | 26.50                                                                         | 15.75<br>19.36                                                                | 1<br>29                                        | 9<br>10<br>11<br>12                                                  | 26.50<br>26.50<br>21.97<br>21.97                                                                         | 18.01<br>62<br>19.36<br>15.75                                                                                     | 1<br>0<br>28                                                  | 1<br>0<br>28<br>1                                             | 0<br>1<br>28<br>1                                             | .1<br>.9<br>28                                                | _0092              | .0                  |
| CLIMB,<br>CRUISE,<br>REFUEL | 39.37           | 9<br>10<br>11<br>12<br>13<br>14              | 41.9<br>51.4<br>41.9<br>56.4<br>30.0<br>39.6                         | 19.1<br>41.9<br>35.7<br>30.0<br>11.8<br>30 0                         | 16 50<br>20.24<br>16.50<br>22.20<br>11.81<br>15 59                            | 7.52<br>16.50<br>14.06<br>11.81<br>4.65<br>11.81                              | 1<br>22<br>22<br>1<br>1<br>58                  | 13<br>14<br>15<br>16<br>17<br>18                                     | 20.24<br>20.24<br>16.50<br>22.20<br>15.59<br>15.59                                                       | 16.50<br>14.06<br>14.06<br>7.52<br>11.81<br>4.65                                                                  | 21<br>1<br>21<br>1<br>57                                      | 21<br>1<br>21<br>1<br>57                                      | 21<br>1<br>21<br>1<br>57                                      | 21<br>1<br>21<br>1<br>57                                      |                    |                     |
| FLY-UP                      | 21 62           | 15<br>16<br>17                               | 30 n<br>64.2<br>43.8                                                 | 25 3<br>23.9<br>24.8                                                 | 11.81<br>13.88<br>9.47                                                        | 9.96<br>5.17<br>5.36                                                          | )9<br>1                                        | 20<br>21                                                             | 13.88                                                                                                    | 9 96                                                                                                              | 57                                                            | 57                                                            | 57                                                            | 1                                                             |                    |                     |
| TFR                         | 21.62           | 18                                           | 60.7                                                                 | 45.3                                                                 | 13.12                                                                         | 9.79                                                                          | .10                                            | 22                                                                   | 13.12                                                                                                    | 5.36                                                                                                              | 1                                                             | 1                                                             | 0                                                             | .1                                                            |                    |                     |
|                             |                 | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 51.7<br>42.3<br>45.5<br>30.1<br>26.9<br>18.4<br>61.3<br>40.4<br>30.1 | 26.3<br>32.4<br>7.6<br>10.9<br>-4.1<br>7.9<br>3.5<br>6.4             | 9.15<br>9.24<br>6.51<br>5.82<br>3.98<br>13.25<br>10.03<br>6.51                | 7.00<br>1.64<br>3.65<br>89<br>1.71<br>.76<br>1.38<br>2.83                     | 1<br>7<br>1<br>132<br>1<br>132<br>1<br>9       | 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32             | 11.18<br>11.16<br>9.15<br>9.84<br>6.51<br>6.51<br>5.82<br>3.98<br>13.25<br>10.03<br>6.51                 | 9.79<br>5.17<br>7.00<br>5.69<br>3.65<br>1.64<br>3.65<br>1.71<br>.76                                               | 1<br>0<br>7<br>1<br>131<br>1<br>1<br>132<br>1                 | 1<br>0<br>7<br>1<br>131<br>1<br>132<br>1<br>9                 | 0<br>1<br>7<br>1<br>131<br>:<br>1<br>132<br>1<br>9            | .1<br>.9<br>7<br>1<br>131<br>1<br>1<br>132<br>1<br>9          |                    |                     |
| PRE-<br>LANDING             | 41.06           | 28<br>29                                     | 92.1<br>82.9                                                         | 51.7<br>-13.8                                                        | 37.82 ·<br>34.04                                                              | 21<br>-5.67                                                                   | .01<br>.10                                     | 34<br>35                                                             | 37.82<br>34.04                                                                                           | 2.83<br>-5.67<br>21.23                                                                                            | 1                                                             | 0 0                                                           | 0                                                             | .0:                                                           | .0007              | .0                  |
|                             |                 | 30                                           | 71.3                                                                 | 51.7                                                                 | 29.28                                                                         | 21.23                                                                         | 1                                              | 36<br>37                                                             | 34.04<br>29.20                                                                                           | -5.67<br>62                                                                                                       | 0                                                             | 1                                                             | 0                                                             | ı°                                                            | .0040<br>.0164     | .0<br>0             |
| CROUND                      | -1.C2           | 31                                           | 11.5                                                                 | 60.8                                                                 | - ,12                                                                         | 62                                                                            | 1                                              |                                                                      |                                                                                                          |                                                                                                                   |                                                               |                                                               |                                                               |                                                               |                    |                     |
| TAKE-OFF                    | 43 51           | 32                                           | 73.2                                                                 | 49 4                                                                 | 31.85                                                                         | 21.49                                                                         | 1                                              | 38<br>39                                                             | 31.85<br>31.85                                                                                           | 62<br>89                                                                                                          | 1 0                                                           | 1 0                                                           | 0<br>1                                                        | .10<br>90                                                     | .0023<br>0231      | .0<br>0             |
| CLIMB                       | 39.37           | 33                                           | 71.3                                                                 | 41.9                                                                 | 28.07                                                                         | 16.50                                                                         | 1                                              | 40                                                                   | 28.07                                                                                                    | 21 49                                                                                                             | 1                                                             | 1                                                             | 1                                                             | 1                                                             |                    |                     |
| PRE-<br>LANDING             | 41.06           | 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41 | 51.7<br>59.9<br>51.7<br>76.8<br>65.7<br>67.0<br>60.6<br>57.4<br>53.0 | 34.5<br>51.7<br>46.1<br>47.9<br>56.2<br>33.6<br>39.9<br>43.1<br>46.1 | 21.23<br>24.59<br>21.23<br>31.53<br>26.98<br>27.51<br>24.88<br>23.57<br>21.74 | 14.17<br>21.23<br>18.93<br>19.67<br>23.08<br>13.80<br>16.38<br>17.70<br>18.93 | 1<br>19<br>19<br>1<br>4<br>1<br>9<br>48<br>294 | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52 | 21.23<br>24.59<br>24.59<br>21.23<br>31.53<br>26.98<br>27.51<br>24.88<br>24.88<br>23.57<br>23.57<br>21.76 | 16.50<br>21.23<br>18.93<br>18.93<br>14 17<br>23.08<br>19 67<br>16.38<br>13.80<br>17 70<br>16.38<br>18.93<br>17 70 | 1<br>18<br>1<br>18<br>1<br>4<br>2<br>9<br>1<br>47<br>1<br>297 | 1<br>18<br>1<br>18<br>1<br>4<br>1<br>6<br>1<br>47<br>1<br>293 | 1<br>18<br>1<br>18<br>1<br>4<br>1<br>8<br>1<br>47<br>1<br>293 | 1<br>18<br>1<br>18<br>1<br>4<br>1<br>8<br>1<br>27<br>1<br>255 | 0024               | .0                  |
| GROUND                      | -1.02           | 43<br>44                                     | 11.5<br>15.4                                                         | 60 B<br>56.2                                                         | · .12                                                                         | 62                                                                            | A<br>154                                       | 54<br>55<br>56                                                       | · 12<br>· 16<br>· 16                                                                                     | - 62<br>- 51<br>- 62                                                                                              | 155<br>6                                                      | 7<br>135<br>ਹ                                                 | 7<br>154<br>1                                                 | ;<br>154<br>.9                                                |                    |                     |
|                             |                 |                                              |                                                                      |                                                                      |                                                                               |                                                                               | <b>.</b>                                       |                                                                      |                                                                                                          | . ——                                                                                                              | Σ- ":                                                         | SF 1 G                                                        | 1260 91                                                       | inns                                                          | 9 32.0             | 0.3                 |
|                             |                 |                                              |                                                                      |                                                                      |                                                                               |                                                                               |                                                |                                                                      |                                                                                                          |                                                                                                                   |                                                               |                                                               |                                                               |                                                               | k, 1 "             | F. ? 17             |

IESE A HIGH DESCRIPTION OF THE WEST OF THE SECOND OF THE S

(1.) The calculated stress concentration factor  $\ell K_{T} = t$  (ontrol Point Vo. ) is 2.17

Table 2.1.3-IV

STRESS SPECTRA FOR NBB CONTROL POINT NO. 2 LOWER PLATE LIG - PIVOT BORF (REFERENCE FIGURE 2.1.3-2)

| MISSION              | LIMIT           |                      |                              | BASIC S              | SPECTRUM                         |                                 |                     |                                        |                                                   |                                                            |                                                  | RANGE -                                          | PAIR COL                      | NTED SPEC                                         | TPLM                          |                     |
|----------------------|-----------------|----------------------|------------------------------|----------------------|----------------------------------|---------------------------------|---------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------|---------------------------------------------------|-------------------------------|---------------------|
| SECHENT              | STRESS<br>(KSI) |                      | 2 CON                        | DITION               | STRESS                           | (YSI)                           |                     |                                        | STRESS                                            | (KSI)                                                      |                                                  | CYCLES                                           | PER FLIC                      | нт                                                | ATRICUE DA                    |                     |
|                      |                 | STEP                 | MAX                          | HIN                  | MAX                              | MIN                             | n                   | STEP                                   | MAX                                               | MIN                                                        | 100TH                                            | 10TH                                             | EVERY                         | COMPO-<br>SITE                                    | F 1 '; 17                     | K <sub>7</sub> 2.30 |
| GROUND               | 0               | 1                    | 11 5                         | 60 B                 | 0                                | 0                               | 1                   | 1                                      | 0                                                 | 0                                                          | 1                                                | 1                                                | 1                             | 4.0                                               | 0                             | 0                   |
| POST -<br>TAKE - OFF | 54 48           | 2                    | 85 1<br>'6.6                 | 51.5<br>51.5         | 46 36<br>41 73                   | 28 06<br>28 06                  | 01<br>10            | 3 4                                    | 46 36<br>41 73<br>41 73                           | 8 36<br>28 06                                              | 1<br>1<br>0                                      | 0                                                | 0<br>0<br>0                   | .01<br>.01<br>.09                                 | .0002<br>0013                 | 0.0                 |
| !                    |                 | 4                    | 59 3                         | 51 5                 | 32 31                            | 28.06                           | 2                   | 5                                      | 32 31<br>32 31                                    | 8.36<br>28 06<br>22 55                                     | 2                                                | 2                                                | 1                             | 1.10                                              | 0013                          | 5.0                 |
|                      |                 | 5 5 /                | 51 5<br>60 5<br>60 9         | 4, 4<br>-5 8<br>36 2 | 28.06<br>32 06<br>33 48<br>27.51 | 22.55<br>30.94<br>19.72         | 2<br>2<br>1<br>29   | 8<br>9<br>10                           | 28 06<br>32.96<br>33.18<br>33.18<br>27 51         | 22 55<br>30.94<br>22 55<br>13.53<br>24.24                  | 1<br>2<br>1<br>0<br>27                           | 1<br>2<br>1<br>0<br>29                           | 1<br>2<br>0<br>1<br>29        | 1.0<br>2.0<br>0.10<br>.90<br>29 0                 |                               |                     |
| CLIME-<br>CRUISE-    | 70.82           | <del> </del>         | ا .<br>ا ا ا                 |                      | 29 67<br>36,50                   | 13 53<br>29.67                  | 1<br>22             | 12<br>13                               | 29.67<br>36,40                                    | 19 72<br>29.67                                             | 1<br>21                                          | 1 21                                             | 1 21                          | 1 0<br>21.0                                       |                               |                     |
| JERVEL               |                 | 11<br>12<br>13<br>-4 | 41 9<br>56 4<br>30.0<br>39.6 | 30.7<br>11.8<br>30 0 | 29.67<br>39.94<br>21 25<br>28 C4 | 25.28<br>21.25<br>8.36<br>21.25 | 22<br>3<br>58<br>58 | 14<br>15<br>16<br>17<br>18<br>19<br>20 | 36 40<br>29.67<br>39.94<br>39.94<br>28 +<br>21.25 | 25 28<br>25 28<br>13 53<br>8 36<br>21,25<br>17 92<br>17,92 | 1<br>21<br>1<br>0<br>57<br>1<br>57               | 1<br>21<br>1<br>0<br>57<br>1<br>57               | 21<br>0<br>1<br>57<br>1<br>57 | 1 0<br>21.0<br>0 10<br>0.9<br>57 0<br>1.0<br>57 4 | . 2008<br>. 0112              | 00                  |
| FLY-UP               | 81.14           | 16<br>17             | 64.2<br>43.8                 | 23.9<br>24 8         | 52.09<br>35 54                   | 19.39<br>20 12                  | 1                   | 21<br>22                               | 52.09<br>35.54                                    | -3.3s<br>20 12                                             | 1 1                                              | 1                                                | 1                             | 1 0<br>1.0                                        | 0445                          | 0.0                 |
| TFR                  | 81 14           | 18<br>19             | 60.7<br>51 7                 | 45 3<br>26.3         | 49,25<br>+1.95                   | 35.76<br>21 34                  | ,10                 | 24                                     | 49.25<br>41 9°                                    | 19.39<br>36.76                                             |                                                  | 1                                                | ວ<br>ວ                        | 0.10<br>10<br>.90                                 | .0018                         | 0 6                 |
|                      |                 | 20<br>21<br>22       | 42 3<br>45 5<br>30 1         | 32 4<br>7 6<br>16.9  | 34 32<br>36 92<br>24 42          | 26.29<br>6.17<br>13 71          | 132                 | 25<br>26<br>27<br>28<br>29             | 41.95<br>34 32<br>36.92<br>24 42<br>24.42         | 19.39<br>26 29<br>21.34<br>13.71<br>6 17                   | 0<br>7<br>1<br>131                               | 0<br>7<br>1<br>131                               | 131                           | 7 0<br>1.0<br>131.0                               |                               | 0.0                 |
|                      |                 | 23<br>24<br>25       | 26.9<br>18 4<br>61.3         | 7.9<br>3.5           | 21 83<br>14 93<br>49 74          | -3.33<br>6 41<br>2.84           | ] 1                 | 30<br>31<br>32<br>33                   | 21 83<br>14 93<br>49.74<br>49 74                  | 13.71<br>6.41<br>2 54<br>0                                 | 1: 1                                             | 1<br>132<br>1<br>0                               | 1<br>132<br>0<br>1            | 1.0<br>132.0<br>.10<br>90                         | 0033<br>3324                  | 00                  |
|                      |                 | 26<br>27             | 46.4<br>30.1                 | 13.1                 | 37 65<br>24 42                   | 5.19<br>10.63                   | 9<br>95             | 34<br>35                               | 37.65<br>24.42                                    | 5.19<br>10.63                                              | 9<br>95                                          | 95                                               | 95                            | 9.0<br>95.0                                       | 1012                          | 0.0                 |
| LANDING              | 67.06           | 25<br>29<br>30       | 92.1<br>82 9<br>71.3         | 51.7<br>51.7         | 61 76<br>55 59<br>47.81          | 34.67<br>-9.65<br>34.67         | .01<br>10           | 36<br>37<br>38<br>39                   | 61.76<br>55.59<br>55.59<br>47.81                  | -9 25<br>-9.25<br>34.67<br>2 84                            | 1<br>0<br>1<br>0                                 | 0 1 0 0                                          | 0 0 0                         | ,C1<br>,09<br>,01<br>,90                          | .0008<br>0053<br>0001<br>0268 | 0.0<br>0 0<br>0 0   |
|                      |                 | 1                    |                              |                      |                                  |                                 | ļ                   | 10                                     | 47.81                                             | 0 0                                                        | <u> </u>                                         | l i                                              | <u>-</u> -                    | .10                                               | 0032                          | 0.0                 |
| GROUND               | 0               | 31                   | 11.5                         | 60.8                 | ļ .                              | <u> </u>                        | 1                   | <b> </b>                               |                                                   | ļ                                                          | ļ                                                | <b> </b>                                         | ļ                             |                                                   |                               | <u> </u>            |
| TAKE-OFF             | 54.48           | 32                   | 73.2                         | 49.5                 | 39,88                            | 25.91                           | 1                   | 41                                     | 39 88                                             | 25 91                                                      | <u>  '</u>                                       | 1                                                | 1                             | 1.0                                               |                               |                     |
| C!.IMB               | 70.92           | 33                   | 71.3                         | 41.0                 | 50 49                            | 29.67                           | 1                   | 42                                     | 50 49                                             | 23 14                                                      | 1                                                | <del>                                     </del> | 1                             | 10                                                | .0163                         | 0.0                 |
| PRE-<br>LANDING      | 67 06           | 34<br>35<br>36       | 51.7<br>59.9<br>51.7         | 34 5<br>51.7<br>46 1 | 34.67<br>40 17                   | 24.67<br>30.91                  | 1<br>19<br>19       | 43<br>44<br>45<br>46                   | 34.67<br>40.17<br>40.17<br>34.67                  | 29.67<br>34.67<br>30.91<br>30.91                           | 1<br>18<br>1<br>18                               | 1<br>18<br>1<br>18                               | 1<br>18<br>1<br>18            | 1 0<br>18.0<br>1.0<br>18.0                        |                               |                     |
|                      |                 | 37<br>38             | 76.8<br>65.7                 | 47 9<br>56.2         | 51.50<br>44 06                   | 32.12<br>37 69                  | 1 1                 | 47<br>48                               | 51 50<br>44.06                                    | 0 0<br>37 69                                               | 1 4                                              | 1 4                                              | 1 4                           | 1.0                                               | .0394                         | 0.0                 |
|                      | ĺ               | 39<br>46             | 67.0<br>60 6                 | 33.4                 | 44.93                            | 22 53<br>26 76                  | 1                   | 49<br>50                               | 44.93                                             | 32 12<br>26 76                                             | 1 8                                              | 1 8                                              | 1 8                           | 1.0                                               | 0001                          | 0.0                 |
|                      |                 | 1 41                 | 57.4                         | 43 1                 | 38 49                            | 28 20                           | 1                   | 51                                     | 40.64<br>38 49                                    | 22.53<br>28 90                                             | 47                                               | 4.                                               | 47                            | 47 0                                              | 0009                          | 0.0                 |
|                      |                 | 42                   | 2.0                          | 46.1                 | 35.54                            | 30.91                           | !                   | 53<br>54<br>55                         | 38.49<br>35.54<br>35.54                           | 26.76<br>30.91<br>28.90                                    | 293<br>1                                         | 293<br>1                                         | 293<br>1                      | 1.0<br>293.0<br>1 0                               |                               |                     |
| GROUND               | v               | 43                   | 11 5<br>15 4                 | 60.8<br>52 2         | 0 0                              | 0 0                             | 8<br>154            | 56                                     | 0                                                 | 0                                                          | <del>                                     </del> | 1                                                | 1                             | 1.0                                               |                               |                     |
|                      | <u></u>         |                      |                              |                      |                                  |                                 |                     |                                        |                                                   |                                                            |                                                  |                                                  | <u> </u>                      | FLIGHTS                                           | 0 2950                        | 0.0                 |

<sup>(1)</sup> CALCULATED STRESS CONCENTRATION FACTOR,  $K_{\overline{T}} = 2.3$ 

Table 2.1.3-V

STRESS SPECIFIA FOR NBB CONTROL POINT NO. 3 LOWER PLAN. - LUC 0.875 DIA. TAPER-LOK HOLE (REFERENCE FIGURE 2.1.3-3)

| MISSION           | LIMIT           |                |                      |                      | SPECTRUM                |                        |               | <b> </b>       | ,                           |                         |                   | KANGE -          | PAIR COL      | INTED SPE      |                       |                           |
|-------------------|-----------------|----------------|----------------------|----------------------|-------------------------|------------------------|---------------|----------------|-----------------------------|-------------------------|-------------------|------------------|---------------|----------------|-----------------------|---------------------------|
| SI CMFNT          | STRESS<br>(KSI) |                | 7. CONI              | ITION                | STRES                   | (KSI)                  | i i           | l              | STRESS                      | (KSI)                   |                   |                  | PER FLIC      | CHT            | FATIGUE U             | DAMAGE(1 )<br>280 FLIGHT: |
|                   |                 | STEP           | MAX                  | MIN                  | MAX                     | MIN                    | n             | STEP           | MAX                         | MIN                     | 100 <sup>TH</sup> | 10 <sup>TH</sup> | LVERY         | COMPO-<br>SITE | KT 5.0                | K <sub>T</sub> 7 92       |
| GROUND            | -3 40           | 1              | 11 5                 | 60 8                 | - 39                    | -2 07                  | 1             | 1              | 39                          | -2 07                   | 1                 | 1                | 1             | 1              |                       |                           |
| POST<br>TAKE-OFF  | 64 01           | 2 3            | 81.5<br>76.6         | 51.5<br>51.5         | 54.47<br>49.03          | 32 97<br>32.97         | 01<br>.10     | 2 3            | 54 47<br>49.03              | 7 02<br>32 97           | 1                 | 0                | 0             | .01            | .0004                 |                           |
|                   |                 | 4              | 59.3                 | 51 5                 | 37.96                   | 32.97                  | 2             | 5              | 49 03<br>37 96              | 7 02<br>32 97           | 0                 | 1 2              | 0             | .09<br>1 10    | .0025                 |                           |
|                   |                 | 5              | 51.5                 | 41.4<br>56 8         | 32 97<br>38.73          | 26.50<br>36 36         | 2 2           | 6<br>7<br>8    | 37.96<br>32.97<br>38.73     | 26.50<br>26.50<br>76.36 | 0<br>1<br>2       | 0 1 2            | 1             | .90<br>1<br>2  |                       |                           |
|                   |                 | ,              | 60 9                 | 36.2                 | 38 98                   | 23.17                  | ì             | 9<br>10        | 38.98<br>38.98              | 26 50<br>7.02           | 1                 | i                | 0             | .10<br>90      | 6.77                  |                           |
|                   | ļ               | 8              | 50 5                 | 44.5                 | 32.33                   | 28.48                  | 29            | 11<br>12       | 32 33<br>32,23              | 28.48<br>23 17          | 28<br>1           | 28<br>1          | 28<br>1       | 28             |                       | ı                         |
| CIIMB,<br>CRUISE, | 59.48           | 9              | 41 9                 | 19.1                 | 24 92<br>30.57          | 11.36<br>24.92         | 1 22          | 13             | 30.57                       | 24 92<br>21,23          | 21                | 21               | 21            | 21             |                       |                           |
| REFUEL            | ]               | 11<br>12       | 41 9<br>56 4         | 35.7<br>30.0         | 24.92<br>33.55          | 21.23<br>17.84         | 22<br>1       | 15<br>16       | 24.92<br>33.55              | 21 23<br>115            | 21<br>1           | 21<br>1          | 21            | 21<br>1        | .0003                 |                           |
|                   |                 | 13<br>14<br>15 | 30 0<br>39.6<br>30.0 | 11.8<br>30 0<br>25 3 | 17 84<br>23.55<br>17.84 | 7 02<br>17 84<br>15 05 | 1<br>58<br>58 | 17<br>18<br>19 | 23.55<br>23.55<br>17 84     | 17 84<br>15.05<br>15.05 | 57<br>1<br>57     | 57<br>1<br>57    | 57<br>1<br>57 | 57<br>1<br>57  |                       |                           |
| FLY-UP            | 87 67           | 16             | 64 2                 | 23.9                 | 56.28                   | 20.95                  | 1             | 20<br>21       | 56.28<br>56.28              | -7.54<br>-3.59          | 1 0               | 1 0              | 0             | .10            | .0059<br>0485         | .0003<br>0018             |
|                   |                 | 17             | 43 8                 | 24 8                 | 38.40                   | 21.74                  | 1             | 22             | 38.40                       | 21 74                   | ĭ                 | ľ                | <u> </u>      | 1.70           | 0407                  |                           |
| 1FR               | 87 67           | 18<br>19       | 60.7<br>51 7         | 45 3<br>26 3         | 53.22<br>45 33          | 39 71<br>23.06         | 1.1           | 23<br>24<br>25 | 53.22<br>45.33<br>45.33     | 26 95<br>39 71<br>20,95 | 1<br>1<br>0       | 1 1              | 0             | .09<br>90      | .0022                 |                           |
|                   |                 | 20<br>21       | 42 3<br>45 5         | 32 4<br>7 6          | 37.08<br>39.6           | 28.41<br>6,66          | 7<br>1        | 26<br>27       | 37.08<br>39.89              | 28,41<br>23,06          | 7                 | 7                | 7             | 7              | .0002                 |                           |
|                   | j               | 22             | 30.1                 | 169<br>              | 26.39                   | 14.82                  |               | 28<br>25       | 26 39<br>26 39              | 14 82                   | 131               | 131              | 131           | 131            |                       |                           |
|                   |                 | 23<br>24<br>25 | 26.9<br>18.4<br>61 3 | -4.1<br>7.9<br>3.*   | 23.58<br>16.13<br>53.74 | -3 59<br>*6 93<br>3,07 | 1<br>132<br>1 | 30<br>31<br>32 | 23.58<br>16.13<br>53.74     | 14 82<br>6.93<br>-3.57  | 132               | 132              | 132           | 132            | .0048                 | 1000                      |
|                   | Ì               | 26             | 46,4                 | 6.4                  | 40.68                   | 5.61                   | 9             | 33<br>34<br>35 | 53.74<br>40.68<br>40.68     | -2.07<br>5.61<br>3.07   | 9                 | 9                | 8             | 3.1<br>3.1     | .0417<br>1255<br>0158 | ,0006                     |
|                   | <u> </u>        | 27             | 30 1                 | 13 1                 | 26 39                   | 11.48                  | 95            | 36             | 26.39                       | 11 48                   | 95                | 95               | 95            | 95             |                       |                           |
| ire.<br>Landing   | 54.63           | 28<br>29       | 92 1<br>82 9         | 51.7<br>-13 8        | 50 31<br>45 29          | 28 24<br>-7 54         | .01<br>10     | 37<br>38       | 50 31<br>45 29              | 3.07<br>28,24           | 1                 | 0                | 0             | .01<br>.01     | 0003                  |                           |
|                   |                 | 30             | 71 3                 | 51.7                 | 38.95                   | 28 24                  | 1             | 39<br>40<br>41 | 45 29<br>  38 95<br>  38 95 | 3,07<br>-2 07           | 0<br>1<br>3       | 1 1              | 0             | .10<br>•ņ      | .0023<br>0019<br>0117 |                           |
| GTOUND            | -3 40           | 31             | 11 ,                 | 60 8                 | - 39                    | -2.07                  | 1             | `              | ļ                           |                         | <del> </del> -    | <del> </del>     |               | †              |                       |                           |
| T4KE-OFF          | 64 01           | 32             | 73 2                 | 49.4                 | 46.96                   | 31.62                  | 1             | 2              | 46 86                       | -2.07                   | 1                 | 1                | 1             | 1              | 0327                  |                           |
| CLIMB             | 59 48           | 33             | 71 3                 | 41.9                 | 42.41                   | 24.92                  | 1             | 43             | 42.41                       | 31,62                   | 1                 | 1                |               | 1              |                       |                           |
| PRE-<br>LANDING   | 54.63           | 34<br>35       | 51 7<br>59 9         | 34.5<br>51           | 28.24<br>32 72          | 18 45<br>28.24         | 1<br>19       | 44<br>45<br>46 | 28 24<br>32 72<br>32 72     | 24 92<br>28 24<br>25 18 | 18                | 1<br>18<br>1     | 1<br>18       | 1<br>18        |                       |                           |
|                   |                 | 36<br>37       | ·51 7                | 46 1<br>47 9         | 28 24<br>41 96          | 25 18<br>26 17         | 19<br>1       | 47<br>48       | 28 24                       | 25.18                   | 18                | 18<br>1          | 18            | 18             | 0067                  |                           |
|                   | 1               | 38             | 65 7                 | 56.2                 | 35 89                   | 30.70                  | 4             | 49             | 35.89                       | 30.70                   | 4                 | 4                | 4             | 4              |                       |                           |
|                   |                 | 39<br>40       | 67.0                 | 33.6<br>39.9         | 36 60<br>33 11          | 18 36<br>21.80         | 9             | \$0<br>1       | 36.60                       | 26,17                   | 8                 | 8                | 8             | 8              |                       |                           |
|                   |                 | 41             | 57 4                 | 43.1                 | 31.36                   | 23 55                  | 48            | 52<br>53<br>54 | 33.11<br>31.36<br>31.36     | 18 36<br>23 55<br>21.80 | 47                | 47               | 47            | 47             |                       |                           |
|                   | 1               | 42             | 53.0                 | 46 1                 | 28 95                   | 25 18                  | 294           | 55<br>56       | 28.95<br>28.95              | 25 18<br>23 55          | 2 y 3<br>1        | 293<br>1         | 293           | 293            |                       |                           |
| GROUND            | -3 0            | 43             | 11 5<br>15 4         | 69.8<br>56 2         | - 39<br>- 52            | -2.07<br>-1 91         | 8<br>154      | 57<br>58       | 39                          | -2 07<br>-1 91          | 7<br>154          | 7<br>154         | 154           | 7<br>154       |                       |                           |
|                   |                 |                |                      |                      |                         |                        |               |                |                             | Σ                       | n/N, SI           | 1.00             | 280 FLI       | CHTS           | 0 3236                | 0 0028                    |
| (1) The c         | alculated       | i stres        | s concer             | tration              | factor                  | K- at (                | Control Pa    | int            |                             |                         |                   |                  |               |                | V 50                  | N= 2 92                   |

(1) The calculated stress concentration factor  $(K_{\overline{1}})$  at Control Point No. 3 is 2 92

Table 2.1.3-VI

STRESS SPECTRA FOR NBB CONTROL POINT M). 4 LOWER PLATE, AFT OUT JARD CUTSUT (Reference Figure 2.1.3-4)

| MISSION                     | LIMIT           |                                                    |                                                                      | BASIC                                                                | PECTRUM                                                                       |                                                                               |                                                | <u> </u>                                                                   |                                                                                                                   |                                                                                                                |                                                                    | RANGE                                                         | PAIR CO                             | UNTED SPE                           | CTRUM                                                                |                               |
|-----------------------------|-----------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------------|-------------------------------|
| SEGMENT                     | STRESS<br>(KSI) |                                                    | % COND                                                               | ITION                                                                | STRESS                                                                        | (KSI)                                                                         |                                                |                                                                            | STRESS                                                                                                            | (KSI)                                                                                                          |                                                                    | CYCI ES                                                       | PER FLI                             | CHT                                 | FACIGUE DA                                                           | MAGE(1)<br>280 FLIGHT         |
|                             | (KSI)           | STEP                                               | MAX                                                                  | MIN                                                                  | MAX                                                                           | MIN                                                                           | n                                              | STEP                                                                       | MAX                                                                                                               | MIN                                                                                                            | 100TH                                                              | 10 <sup>TH</sup>                                              | EVFRY                               | COMPO-<br>SITE                      |                                                                      | K <sub>T</sub> 3.60           |
| GROUND                      | -16.02          | 1                                                  | 11.5                                                                 | 60.8                                                                 | -1 84                                                                         | -9.74                                                                         | 1                                              | 1                                                                          | -1 84                                                                                                             | -9.74                                                                                                          | 1                                                                  | 1                                                             | 1                                   | 1                                   |                                                                      |                               |
| POST<br>TAKE-OFF            | 97.63           | 2<br>3<br>4<br>5<br>6<br>7                         | 85 1<br>76.6<br>59 3<br>51 5<br>60.5<br>60 9                         | 51.5<br>51.5<br>51.5<br>41.4<br>55.8<br>36.2                         | 83.08<br>74.78<br>57.89<br>50.28<br>59.07<br>59.46                            | 50.28<br>50.28<br>50.28<br>40.42<br>55.45<br>35.34                            | .01<br>.10<br>2<br>2<br>2<br>2                 | 2<br>3<br>4<br>5<br>6<br>7<br>8                                            | 83 08<br>74.78<br>74.78<br>57.89<br>57.89<br>50.28<br>59.07<br>59.46                                              | -1.84<br>50 28<br>-1.84<br>50.28<br>40.42<br>40.42<br>55.45<br>40.42                                           | 1<br>0<br>2<br>0<br>1<br>2                                         | 0<br>0<br>1<br>2<br>0<br>1<br>2                               | 0<br>0<br>1<br>1<br>1<br>2<br>0     | .01<br>.01<br>.09<br>1 10<br>.90    | .0014<br>.0002<br>.0098<br>0086                                      | .0007<br>0046                 |
|                             |                 | 8                                                  | 50 5                                                                 | 44 5                                                                 | 49.30                                                                         | 43.45                                                                         | 29                                             | 10<br>11<br>12                                                             | 59.46<br>49.30<br>49.30                                                                                           | -1.84<br>43.45<br>35 34                                                                                        | 0<br>28<br>1                                                       | 0<br>28<br>1                                                  | 28<br>1                             | 28<br>1                             | 0535                                                                 | 0243                          |
| CLIMB,<br>CRUISE,<br>REFUEL | 90.01           | 9<br>10<br>11<br>12<br>13<br>14<br>15              | 41.9<br>51.4<br>41 9<br>56.4<br>30.0<br>39.6<br>30.0                 | 19.1<br>41.9<br>35.7<br>30.0<br>11.8<br>30.0<br>25.3                 | 37.71<br>46 27<br>37.71<br>50.77<br>27 00<br>35.64<br>27.00                   | 17.19<br>37.71<br>32.13<br>27.00<br>10 62<br>27.00<br>22.77                   | 1<br>22<br>22<br>1<br>1<br>58<br>58            | 13<br>14<br>15<br>16<br>17<br>18<br>19                                     | 46.27<br>46.27<br>37.71<br>50.77<br>35.64<br>35.64<br>27.00                                                       | 37.71<br>32 13<br>32.13<br>17.19<br>27.00<br>10 62<br>22 77                                                    | 21<br>1<br>21<br>1<br>57<br>1<br>57                                | 21<br>1<br>21<br>1<br>57<br>1<br>57                           | 21<br>1<br>21<br>1<br>57<br>1<br>57 | 21<br>1<br>21<br>1<br>57<br>1<br>57 | .0007<br>.0218<br>0024                                               | 0013                          |
| FLY-UP                      | 47,29           | 16<br>17                                           | 64.2<br>43.8                                                         | 23.9<br>24 8                                                         | 30 36<br>20,71                                                                | 11,30<br>11,73                                                                | 1                                              | 20<br>21                                                                   | 30.36<br>20 71                                                                                                    | 22.77<br>11 73                                                                                                 | 1                                                                  | 0                                                             | 0                                   | 01                                  |                                                                      |                               |
| TFR                         | 47 29           | 18<br>19<br>20<br>21<br>22                         | 60.7<br>51.7<br>42 3<br>45 5<br>30 1                                 | 45.3<br>26.3<br>32 4<br>7.6<br>16.9                                  | 28.71<br>24.45<br>20.00<br>21.52<br>14.32                                     | 21.42<br>12.44<br>15.32<br>3.59<br>7.99                                       | 7<br>1<br>132                                  | 22<br>23<br>24<br>25<br>26<br>27                                           | 24.45<br>24.45<br>24.45<br>20.00<br>21.52<br>14.23                                                                | 11.30<br>21.42<br>11 30<br>15.32<br>12.44<br>7.99                                                              | 1<br>0<br>7<br>1<br>131                                            | 1<br>1<br>0<br>7<br>1                                         | 0<br>0<br>1<br>7<br>1<br>131        | 10<br>.10<br>.9<br>7<br>1           |                                                                      |                               |
|                             |                 | 23<br>24<br>25<br>26<br>27                         | 26.9<br>18.4<br>61.3<br>46 4<br>30.1                                 | -4.1<br>7.9<br>3.5<br>6 4<br>13.1                                    | 12.72<br>8 70<br>28 99<br>21 94<br>14.23                                      | -1 94<br>3.74<br>1.66<br>3.03<br>6.19                                         | 1<br>132<br>1<br>9                             | 28<br>29<br>29<br>30<br>31<br>32<br>33                                     | 14 21<br>12.72<br>12.72<br>8.70<br>28.99<br>21.94<br>14.23                                                        | 3 59<br>7.99<br>7.99<br>3.74<br>1.66<br>3 03<br>6.19                                                           | 1<br>1<br>1<br>132<br>1<br>9<br>95                                 | 1<br>1<br>1<br>132<br>1<br>9<br>95                            | 1<br>1<br>1<br>132<br>1<br>9<br>95  | 1<br>1<br>1<br>132<br>1<br>9<br>95  | 0007                                                                 | ,                             |
| PRE-<br>LANDING             | 93 82           | 28<br>29<br>30                                     | 92.1<br>82.9<br>71 3                                                 | 51.7<br>-13 8<br>51 7                                                | 86.41 · 77 78 66 89                                                           | 48 50<br>-12,95<br>48 50                                                      | 01<br>10                                       | 34<br>35<br>36<br>37                                                       | 86.41<br>77.78<br>27 78<br>66 89                                                                                  | - 2 95<br>48 50<br>-12 95<br>-1 74                                                                             | 1<br>1<br>0<br>1                                                   | 0<br>0<br>1<br>1                                              | 0<br>0<br>0<br>1                    | 01<br>01<br>.09                     | .0018<br>.3003<br>0125<br>0938                                       | 0010<br>0001<br>.0062<br>0423 |
| GROUND                      | -16 02          | 31                                                 | 11.5                                                                 | - 8                                                                  | -1 84                                                                         | -9.74                                                                         | 1                                              |                                                                            |                                                                                                                   |                                                                                                                |                                                                    |                                                               |                                     |                                     |                                                                      |                               |
| TAKE-OFF                    | 9' 63           | 32                                                 | 73.2                                                                 | 7.4                                                                  | 71.47                                                                         | 48 23                                                                         | 1                                              | 38                                                                         | 71 47                                                                                                             | 32 37                                                                                                          | 1                                                                  | 1                                                             | 1                                   | 1                                   | 0410                                                                 | 0148                          |
| CLIMB                       | 90.01           | 33                                                 | 71.3                                                                 | 41 9                                                                 | 64.18                                                                         | 37./1                                                                         | <u>'</u>                                       | 39                                                                         | 64 18                                                                                                             | 48 23                                                                                                          | 1                                                                  | <u>'</u>                                                      | <u> </u>                            | 1                                   | 0098                                                                 | 1                             |
| PRE-<br>LANDING             | 93.82           | 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 51 7<br>59 9<br>51 7<br>76.8<br>65.7<br>67 0<br>60 6<br>57.4<br>53 0 | 34 5<br>51 7<br>46.1<br>47.9<br>56.2<br>33.6<br>39.9<br>43 1<br>46.1 | 48 50<br>56 20<br>48 50<br>72 05<br>61 64<br>62 86<br>56 85<br>53.85<br>49.72 | 32 37<br>48 50<br>43.25<br>44.94<br>52.73<br>31.52<br>37 43<br>40.44<br>43.25 | 1<br>19<br>19<br>1<br>4<br>1<br>9<br>48<br>294 | 40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52 | 48 50<br>56 20<br>56 20<br>48.50<br>72.05<br>61 64<br>62 86<br>56 85<br>56 85<br>53.85<br>53 85<br>49 72<br>49 72 | 371<br>48 59<br>43 2<br>43.2*<br>-9 74<br>52 73<br>44 94<br>37 43<br>31 52<br>40 44<br>37.43<br>43 25<br>40 44 | 1<br>18<br>1<br>18<br>1<br>4<br>1<br>8<br>1<br>47<br>1<br>293<br>1 | 1<br>18<br>1<br>18<br>1<br>4<br>1<br>8<br>1<br>47<br>1<br>293 | 1 18 1 18 1 4 4 1 4 7 1 293 1       | 1 18 1 18 1 4 4 1 8 1 7 7 1 293 1   | 0018<br>11.6<br>2003<br>- 0115<br>0917<br>- 0174<br>- 0803<br>- 0465 | 0520                          |
| GROUND                      | -16,02          | 43<br>44                                           | 11 5<br>15.4                                                         | 60.8<br>56.2                                                         | -1 84<br>-2 47                                                                | -9.74<br>-9.00                                                                | 8<br>154                                       | 53<br>54                                                                   | -1 84<br>-2 47                                                                                                    | .9 74<br>-9 00                                                                                                 | 7<br>154                                                           | 7<br>154                                                      | 7<br>154                            | <i>j</i><br>154                     |                                                                      |                               |
|                             |                 |                                                    |                                                                      |                                                                      |                                                                               |                                                                               |                                                |                                                                            |                                                                                                                   | <u> </u>                                                                                                       | n/h                                                                | SF 1 0.                                                       | 1280 H                              | 16998                               | 0 5820<br>k <sub>T</sub> 5 0                                         | 0 1473<br>F <sub>T</sub> 3 50 |

<sup>(1)</sup> The calculated stress concentration factor ( $k_{\rm p})$  at Control Point No. 4 is 3.60

Table 2.1.3-VII

STRESS SPECTRA FOR NBB CONTROL POINT NO. 5  $_{1,932}$  BHD LOWER FLANGE (REFERENCE FIGURE 2.1.3-5)

| MISSION<br>SIGNENT | LIMIT<br>STRESS |                                                  |                | BASIC S      | PECTRUM        |                  |              | L        |                |                  |                   | RANGE - | PAIR COL | NTED SPEC | TRIM      |              |
|--------------------|-----------------|--------------------------------------------------|----------------|--------------|----------------|------------------|--------------|----------|----------------|------------------|-------------------|---------|----------|-----------|-----------|--------------|
| S-CALENT           | (K41)           |                                                  | 7. CONDI       |              | STRESS         |                  |              |          | STRESS         |                  |                   | CYCLES  |          |           | PATIGUE   | IMMAGE(1)    |
| 1                  |                 | STEP                                             | MAX            | MIN          | MAX            | MIN              | n            | STEP     | MAX            | MIN              | 100 <sup>TH</sup> | 10111   | EVFRY    | SITE      | SF 1 0, 1 | 280 FLIGHT   |
|                    |                 |                                                  |                |              |                |                  |              |          |                |                  |                   |         |          |           |           |              |
| GROUND             | -18.83          | 1                                                | 11.5           | 60.8         | -2 17          | -11.45           | 1            | 1        | -2 17          | -11 45           | 1                 | 1       | 1        | 1         |           |              |
| POST               | 77 04           | 2                                                | 85 1           | 51.5         | 65 56 •        | 39 68<br>39.68   | .01<br>10    | 2<br>3   | 65 56<br>59 01 | -11.45<br>39.68  | 1                 | 0       | 0        | 01<br>01  | 0009      | .0002        |
| TAKF-OFF           |                 | 3                                                | 76 6           | 51.5         | 59.01          | 1                |              | 4        | 59.01          | -11 45           | ō                 | 1 2     | 0        | 1 10      | 0064      | .0015        |
|                    |                 | 4                                                | 59.3           | 51 5         | 45.68          | 39 68            | 2            | 5        | 45.68<br>45.68 | 39.68<br>31.89   | 0                 | 0       | i        | , 90      | 0004      |              |
|                    |                 | 6                                                | 51.5<br>60.5   | 41.4<br>56.8 | 39.68<br>46.61 | 31 89<br>43 76   | 2 2          | 7<br>8   | 39 68<br>46 61 | 31.89<br>43.76   | 1 2               | 1 2     | 2        | 2         | 0001      |              |
|                    |                 | 7                                                | 60 9           | 36.2         | 46.92          | 27 89            | 1            | 9<br>10  | 46 92<br>46 92 | 31 89<br>-11 45  | 0                 | 0       | 0        | .10       | 0372      | 0070         |
|                    |                 | 8                                                | 50 5           | 44.5         | 38 91          | 34 28            | 29           | 11<br>12 | 38 91<br>38 91 | 34.28<br>27.89   | 28<br>1           | 28<br>1 | 28<br>1  | 28        |           |              |
| CI IMB,            | 73.62           | 9                                                | 41.9           | 19 1         | 30.85          | 14.06            |              | 13<br>14 | 37.84<br>37.84 | 30.85<br>26 28   | 21<br>1           | 21<br>1 | 21<br>1  | 21        |           | Ī            |
| CRUISE,<br>REFUEL  |                 | 10<br>11                                         | 51.4<br>41.9   | 41.9<br>35 7 | 37.84<br>30.85 | 30,85<br>26 28   | 22           | 15       | 30.85          | 26,28            | 21                | 21      | 21       | 21        | 0102      |              |
|                    |                 | 12<br>13                                         | 56.4<br>30.0   | 30 0<br>11 8 | 41.52<br>22.09 | 22 09<br>8 69    | 1            | 16<br>17 | 41 52<br>29 15 | 14.06<br>22.09   | 57                | 57      | 57       | 57        | 0102      |              |
|                    |                 | 14<br>15                                         | 39.6<br>30.0   | 30 0<br>25 3 | 29.15<br>22.09 | 22.09<br>18 63   |              | 18<br>19 | 29 15<br>22 09 | 18 63<br>18.63   | 1<br>57           | 57      | 57       | 57        |           |              |
| FLY-UP             | 65 91           | 16<br>17                                         | 64 2<br>43.8   | 23 9<br>24 8 | 42.31<br>28 87 | 15.75<br>16 35   |              | 20<br>21 | 42 31<br>28 87 | 8 69<br>16.35    | 1                 | ;       | 1        | 1         | 0157      |              |
| THR                | 55 91           | 18<br>19                                         | 60.7           | 45.3<br>26.3 | 40 01<br>34.08 | 29.86<br>17.33   |              | 22<br>23 | 40 01<br>34 08 | 15 75<br>29.86   | 1                 | 1       | 0        | .10       | .0006     |              |
| - 1                |                 | 20                                               | 42.3           | 32 4         | 27.88          | 21 35            |              | 24<br>25 | 34.08<br>27 88 | 15 75<br>21.35   | 7                 | 7       | 7        | 7.90      | ł         | İ            |
|                    |                 | 21                                               | 45.5<br>30 1   | 7.6<br>16 9  | 29.99<br>19.84 | 5.01<br>11 14    | 132          | 26<br>27 | 29 99<br>19 84 | 17.33            | 131               | 131     | 131      | 131       | İ         | l            |
|                    |                 | 23                                               | 26 9           | -41          | 17.73          | -2 70            |              | 28<br>29 | 19 84<br>17 73 | 5.01<br>11 14    | 1 1               | 1       | 1        | 1 1       |           | ]            |
|                    |                 | 24                                               | 18 4 61.3      | 3.5          | 12.13          | 5 21<br>2.31     | 1            | 30<br>31 | 12 13<br>40 40 | 5.21<br>2 31     | 132               | 132     | 132      | 132       | 0178      | 0006         |
|                    |                 | 26<br>27                                         | 46 4<br>30 1   | 13.1         | 30.58<br>19.84 | 4,22<br>8 63     |              | 32<br>33 | 30.58<br>19.84 | 4.22<br>8.63     | 9<br>95           | 9 95    | 9<br>95  | 9<br>95   | 0071      |              |
| PRE-               | 59.07           | 28<br>29                                         | 92.1           | 51 7         | 54,40          | 30 54<br>•8 15   |              | 34<br>35 | 54.40<br>48 97 | -2.7°<br>30.54   | 1                 | 0       | C        | 10.       | 0005      | 0001         |
| LANDING            |                 | 1                                                | 82.9           | -13.8        | 48.97          |                  | ]            | 36       | 48 97          | -2.70            | 0                 |         | 000      | 09        | 0033      | 000h<br>0005 |
|                    |                 | 30                                               | 71 3           | 51.7         | 42.12          | 30 54            | 1            | 37<br>38 | 42 12<br>42 12 | -8.15<br>-2.70   | 0                 | 0       | L., ĭ    | \$5       | 0029      | 0021         |
| GROUND             | -18 83          | 31                                               | 11.5           | 60,8         | -2 17          | -11 45           | 1            | <u> </u> | ļ              |                  |                   |         |          | <u> </u>  | <u> </u>  | <u></u>      |
| TAKE -OFE          | 77 04           | 32                                               | 73.2           | 49.4         | 56,39          | 38.06            | 1            | 39       | 56 39          | -11 45           | 1                 | 1       | 1        | 1         | 0635      | 0148         |
| CLIMB              | 73.62           | 33                                               | 71.3           | 41.9         | 52.49          | 30.85            | 1            | 40       | 52 49          | 38.06            | i                 | 1       | 1        | 1         | 0029      | <u> </u>     |
| PRF.<br>LANDING    | 59 07           | 34                                               | 51.7           | 34.5         | 30 54<br>35,38 | 20 3d<br>30.54   |              | 41       | 35 38          | 30 54<br>27 33   | 13                | 18      | 18       | 18        |           | i            |
| III.               |                 | 36                                               | 51.7           | 46 1         | 30.54          | 27.23            | 19           | 43       | 30 54          | 27.23            | 18                | 18      | 18       | 18        |           | 1            |
|                    |                 | 37                                               | 76 E<br>65.7   | 47 9<br>56.2 | 45.37<br>38 81 | 28.29            |              | 44       | 45 37<br>38 81 | 20 38<br>33 20   | 1 4               | 1 2     | 4        | 4         | 0111      |              |
|                    |                 | 32                                               | 67.0           | 33.6         | 39.58          | 19.85            |              | 46       | 39 58          | 28.29            | l i               | i       | ī        | i         | i         | 1            |
|                    |                 | 40                                               | 60.6           | 39.9         | 35 80          | 23 57            | 9            | 47       | 35 80          | 23 57            | 8                 | 8       | 8        | 8         | }         | 1            |
|                    |                 | 41                                               | 57.4           | 43.1         | 33.91          | 25,46            | 48           | 48<br>49 | 35 80          | 19.85            | 47                | 4/      | 47       | 47        | 1         | 1            |
|                    |                 | 42                                               | 53.0           | 46.1         | 31 31          | 27.21            | i            | 50<br>51 | 33 91<br>31 31 | 23 57<br>27,23   | 293               | 293     | 293      | 293       |           | }            |
|                    |                 | <del>                                     </del> | <del> </del> - |              | <del>  </del>  | <del> </del>     | <del> </del> | 52       | 31 31          | 25.46            |                   | 1 ,     | ', -     | ļ.,       |           | <del> </del> |
| GROUND             | -18 83          | 43                                               | 11.5           | 60.8<br>56 2 | -2 17<br>-2 96 | -11 45<br>-10.58 |              | 53<br>54 | -2 17<br>-2 90 | -11.45<br>-10.58 | 154               | 154     | 154      | 154       |           | 1            |
|                    |                 |                                                  | T-1            |              |                | ,                |              |          |                | Σ                | n/N; 5.           | r 10.   | 1280 F1  | ACHTS     | 2031      | 0.0274       |
|                    |                 |                                                  |                |              |                |                  |              |          |                |                  |                   |         |          |           | KT 5 0    | Ky 3 3       |

<sup>(1 )</sup> The calculated stress concentration factor (i\_T) at Control Point No. 5 is 3 31

Table 2.1.3-VIII
SIRESS SPECIAA FOR NEW CONTROL POINT NO. 6 UPPER AFT OUTBOARD LONGERON ATTACHMENT (REFERENCE FIGURE 2.1.3-6)

| HISSION                     | 11811           | 1                                                  |                                                                      | BASIC S                                                              | PECTRUM                                                                       |                                                                                    |                                                |                                                                                  |                                                                                                                                              |                                                                                                                                        |                                                                                   | RANGE-P                                                                 | ALR COUN                                                                          | TED SPECTI                                                                    |                                                       |                           |
|-----------------------------|-----------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|
| SECHENT                     | STRESS<br>(KSI) |                                                    | % COND                                                               | IT ION                                                               | STRESS                                                                        | (KSI)                                                                              |                                                |                                                                                  | STRFSS                                                                                                                                       | (KSI)                                                                                                                                  |                                                                                   | CYCLES                                                                  | PFR FLI                                                                           | GHT                                                                           |                                                       | DAMAGE (1)<br>280 FLIGHTS |
| ļ                           |                 | STEP                                               | MAX                                                                  | MIN                                                                  | MAX                                                                           | MIN                                                                                | в                                              | STEP                                                                             | MAX                                                                                                                                          | MIN                                                                                                                                    | 100 <sup>TH</sup>                                                                 | 10 <sup>TH</sup>                                                        | FVERY                                                                             | COMPO-<br>SITE                                                                | Кт 5 0                                                | K <sub>T</sub> 3 89       |
| GROUND                      | 17 78           | 1                                                  | 60 8                                                                 | 11.5                                                                 | 10.81                                                                         | 2 04                                                                               | 1                                              | 1                                                                                | 10 81                                                                                                                                        | 2.04                                                                                                                                   | 1                                                                                 | 1                                                                       | 1                                                                                 | 1                                                                             |                                                       |                           |
| POST<br>TAKE-OFF            | 21.26           | 2 3 4 5                                            | 85 1<br>76 6<br>59.3<br>51.5                                         | 51 5<br>51 5<br>51 5<br>41.4                                         | 18.09<br>16 29<br>12.61<br>10.95                                              | 10.95<br>10.95<br>10.95<br>8 90                                                    | .01<br>.10<br>2<br>2                           | 2<br>3<br>4<br>5<br>6<br>7<br>9                                                  | 18.90<br>16.29<br>16.29<br>12.61<br>12.61<br>10.95<br>12.61<br>10.95                                                                         | 10.81<br>10.95<br>10.81<br>10.95<br>10.81<br>2.04<br>8.80<br>8.80                                                                      | 1<br>0<br>1<br>0<br>1                                                             | 0<br>0<br>1<br>1<br>0<br>1<br>1                                         | 0<br>0<br>0<br>1<br>1                                                             | 01<br>01<br>09<br>10<br>90                                                    |                                                       |                           |
|                             |                 | 6<br>7<br>8                                        | 60 5<br>60 9<br>50.5                                                 | 55.8<br>36.2<br>44.5                                                 | 12.86<br>12.95<br>10.74                                                       | 12 08<br>7 70<br>9 46                                                              | 2<br>1<br>29                                   | 10<br>11<br>12<br>13                                                             | 12.86<br>12.95<br>10.74<br>10.74                                                                                                             | 12 08<br>4.85<br>9 46<br>7 70                                                                                                          | 1<br>2<br>1<br>28<br>1                                                            | 2<br>1<br>29<br>1                                                       | 1<br>2<br>1<br>28<br>1                                                            | 1<br>2<br>1<br>28<br>1                                                        |                                                       |                           |
| CLIMB,<br>CRUISE,<br>REFUEL | 25.37           | 9<br>10<br>11<br>12<br>13<br>14<br>15              | 30 0<br>39 6                                                         | 19.1<br>41 9<br>35.7<br>30.0<br>11.8<br>30 0<br>25 3                 | 10.63<br>13 04<br>10 63<br>14.31<br>7 61<br>10 05<br>7 61                     | 4.85<br>10 63<br>9 06<br>7.61<br>2 99<br>7 61<br>6 42                              | 1<br>22<br>22<br>1<br>1<br>58<br>68            | 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                                     | 10 63<br>13 04<br>13.04<br>10.63<br>14.31<br>10 05<br>10 05<br>7.61                                                                          | 9 46<br>10.63<br>9.06<br>9.06<br>2.99<br>7 61<br>6.42<br>6 42                                                                          | 1<br>21<br>1<br>21<br>1<br>57<br>1<br>57                                          | 1<br>21<br>1<br>21<br>1<br>57<br>1<br>57                                | 1<br>21<br>1<br>21<br>1<br>57<br>1<br>57                                          | 1<br>21<br>21<br>3<br>57<br>1<br>57                                           |                                                       |                           |
| FLY-UP                      | 82 82           | 16<br>17                                           | 64 2<br>43.8                                                         | . 23 9<br>24.8                                                       | 53 17 •<br>36 28                                                              | 19 79<br>20.54                                                                     | 1 1                                            | 22<br>23                                                                         | 53 17<br>36 28                                                                                                                               | -3 40<br>20 54                                                                                                                         | 1                                                                                 | 1                                                                       | 1                                                                                 | 1                                                                             | 0467                                                  | 0226                      |
| TFR                         | 82.82           | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 60 7<br>51.7<br>42.3<br>45.5<br>30.1<br>26.9<br>18.4<br>61.3<br>46 4 | 45 3<br>26.3<br>32.4<br>7 6<br>16 9<br>-4.1<br>7.9<br>3 5<br>6 4     | 50.27<br>42.82<br>35.03<br>37.68<br>24.93<br>22.28<br>15.24<br>50.77<br>38.43 | 37 52<br>21 78<br>26.83<br>6.29<br>14 \ \text{10}<br>6.54<br>2.90<br>5 30<br>10 85 | 10<br>1<br>7<br>1<br>132<br>1<br>132<br>1<br>9 | 24<br>25<br>26<br>27<br>28<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | 50 27<br>42 82<br>42.82<br>35.03<br>37 68<br>24.93<br>24.93<br>22 28<br>15.24<br>50.77<br>50.77<br>38.43<br>38.43<br>38.43<br>24.93<br>24.93 | 19 79<br>37 52<br>19.79<br>26 83<br>21 78<br>14.00<br>6 29<br>14 00<br>6 .54<br>-1 67<br>2 90<br>5 30<br>2 90<br>4 08<br>10 85<br>5 30 | 1<br>1<br>0<br>7<br>1<br>131<br>1<br>1<br>132<br>1<br>0<br>8<br>8<br>1<br>0<br>94 | 1<br>1<br>0<br>7<br>1<br>131<br>1<br>132<br>1<br>0<br>8<br>1<br>0<br>94 | 0<br>0<br>1<br>7<br>1<br>131<br>1<br>1<br>132<br>0<br>1<br>8<br>8<br>0<br>1<br>94 | 10<br>10<br>90<br>7<br>1<br>131<br>1<br>1<br>132<br>90<br>8<br>10<br>90<br>90 | 0049<br>0067<br>0040<br>0315<br>.0995<br>0014<br>0120 | 001°<br>0124              |
| PRE-<br>LANDING             | 12 13           | 29<br>30                                           | 92 1<br>82 9<br>71 3                                                 | 51 7<br>-13.8<br>51 7                                                | 11.17<br>10.06<br>8.65                                                        | 6,27<br>6,27                                                                       | 01<br>10                                       | 40<br>41<br>42                                                                   | 11 17<br>10 06<br>10,81                                                                                                                      | 10 85<br>6 27<br>8 65                                                                                                                  | 1                                                                                 | 0<br>1<br>1                                                             | 0<br>0<br>1                                                                       | 10                                                                            |                                                       |                           |
| GROUND                      | 17 78           | 31                                                 | 11.5                                                                 | 60.8                                                                 | 10 81                                                                         | 2.04                                                                               | 1                                              |                                                                                  |                                                                                                                                              |                                                                                                                                        |                                                                                   |                                                                         |                                                                                   |                                                                               |                                                       |                           |
| TAKE OFF                    | 21 26           | 32                                                 | 73.2                                                                 | 49 4                                                                 | 15 56                                                                         | 10 50                                                                              | 1                                              | 43                                                                               | 15 56<br>15 56                                                                                                                               | 10,50<br>10 81                                                                                                                         | 0                                                                                 | 1 0                                                                     | n<br>1                                                                            | 10<br>90                                                                      |                                                       |                           |
| CLIMB                       | 25 37           | 33                                                 | 71 3                                                                 | 41 9                                                                 | 18 09                                                                         | 10 63                                                                              | 1                                              | 45<br>46                                                                         | 18 09<br>18 09                                                                                                                               | 4 08<br>10 50                                                                                                                          | 1 0                                                                               | 1 0                                                                     | 0                                                                                 | 10<br>90                                                                      |                                                       |                           |
| PRE-<br>LANDING             | 12.13           | 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 51 7<br>59 9<br>51.7<br>76.8<br>65.7<br>67.0<br>60.6<br>57.4<br>53.0 | 34 5<br>51.7<br>46.1<br>47 9<br>56 2<br>33 6<br>39 9<br>43.1<br>46.1 | 6 27<br>7 27<br>6 22<br>9 32<br>7 97<br>8 13<br>7 35<br>6,96<br>6,43          | . 18<br>6.27<br>5 59<br>5 81<br>6.82<br>4 08<br>4 64<br>5 23<br>5 59               | 1<br>19<br>19<br>1<br>4<br>1<br>9<br>48<br>294 | 47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55                               | 7 27<br>7 27<br>6 27<br>3 32<br>7 97<br>8 17<br>7.35<br>6 96<br>6 43                                                                         | 6 27<br>5 59<br>5 59<br>4 18<br>6 ×2<br>5 81<br>4 84<br>5 23<br>5 59                                                                   | 18<br>1<br>18<br>1<br>4<br>1<br>2<br>48<br>293                                    | 18<br>1<br>18<br>1<br>4<br>1<br>9<br>48<br>293                          | 18<br>1<br>18<br>1<br>4<br>1<br>9<br>48<br>293                                    | 18<br>1<br>18<br>1<br>4<br>1<br>9<br>46<br>293                                |                                                       |                           |
| GROUND                      | .7.78           | 43<br>44                                           | 60 8<br>56 2                                                         | 11 5<br>15 4                                                         | 10.81                                                                         | 2 04<br>2 74                                                                       | 8<br>154                                       | 56<br>57                                                                         | 9 99                                                                                                                                         | 6 43<br>2 74                                                                                                                           | 154                                                                               | 8<br>154                                                                | 8<br>154                                                                          | 8<br>154                                                                      |                                                       |                           |
|                             |                 |                                                    |                                                                      |                                                                      |                                                                               |                                                                                    |                                                |                                                                                  |                                                                                                                                              | 2                                                                                                                                      | n/N, 3                                                                            | S F 1 C                                                                 | , 1280 i                                                                          | 11681 <                                                                       | .2097                                                 | 0.0367                    |

<sup>(1)</sup> The calculated stress concentration factor (K  $_{T})$  at Control Point No. 6 is 3.89

### 2.1.3.2 Fatigue Analysis Using 1975 Updated Loads

Upon receipt of the 1975 updated fatigue loads it became necessary to determine whether fatigue testing using the updated loads would be feasible. Consequently, a preliminary fatigue analysis was run to determine the impact of the updated loads.

Since stress math model data was not available, the following approach was used to develop the fatigue stress spectrum. Because the spectrum was no longer defined as simple percentages of five basic conditions, but rather as linear combinations of several basic conditions (See Table 2.1.2-II), it was decided that, in general, ratios of Mx (rolling moment at pivot) would be used to estimate stress levels from existing NBB-5 series math models for corresponding wing sweep angles. i.e.,  $\sigma$  update =  $\sigma$  NBB-5 X Mx update The updated moments used are essentially as shown in Mx NBR-5 Table 2.1.3-IX. This table reflects some small changes and corrections made after the preliminary fatigue analysis was run, but the effects on the fatigue analysis were considered insignificant. For the  $55^{\circ}$  conditions, the stresses were related to both Mx and My using constants obtained by considering AS 10000 (67.50) and AS 9000 (250) simultaneously since no 550 models had previously been run. In addition, the constants were and for the 67.50 steps 67, 68, 69, 70, 71 and 72 to account for variations of  $\frac{Mx}{My}$ from the value for AS 10000 because the ratioed AS 10000 stresses were unrealistically conservative without correction for the variations. Using the noted assumptions and range pair counting the test spectrum data, a preliminary damage summary for the control points of FZS-219B was obtained. The summary is given in Table 2.1.3-X. Although damages for Kt=5.0 at control points 2, 3, 4, and 5 are significantly higher than for the previous spectrum, no serious problems are indicated when actual calculated Kt's are It should be noted that some conservatism exists since all corrections for  $M_{N_V}$  were not made for the preliminary run in order to expedite the analysis.

Preparations are being made to perform a complete fatigue analysis using stresses from NBB5 series models and the RI analytic fatigue spectrum.

# 2.1.3.3 UD 1 Documentation and Implementation

Procedure UD 1 for computing stress intensity factors for fracture analysis was put on production and customer instructions were completed.

TABLE 2.1.3-1X

| -75<br>Revised 10/16/75<br>Revised 10/23/75<br>Including 501 Data | My/10 <sup>6</sup> NOTES       | 0.279<br>0.325<br>0.365<br>0.570 Drag Cond.<br>0.612         | 8.508<br>9.308<br>9.308<br>9.327<br>1.1274<br>1.150<br>8.150<br>8.346<br>6.998<br>6.998<br>6.997<br>7.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 5.830<br>- 5.287<br>- 16.344<br>- 0.578<br>- 4.376                                        |
|-------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 8 * *<br>8 * *                                                    | MIN<br>MX/10 <sup>6</sup> M.   | 2.176<br>- 2.531<br>- 2.842<br>- 4.440<br>- 3.494<br>- 4.098 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 5.095<br>- 0.947<br>- 2.119<br>- 8.702<br>- 0.785<br>- 1.323                              |
| NLYSIS (Revised)                                                  | FATIGUE<br>CONDITION<br>NUMBER | 503***<br>504***<br>505***<br>512<br>513                     | 525<br>525<br>525<br>525<br>525<br>525<br>525<br>523<br>523<br>523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5339<br>542<br>544<br>545                                                                   |
| TABLE 2.1.3-1X<br>WING PIVOT DATA FOR FATIGUE ANALYSIS            | K<br>My/10 <sup>6</sup>        | 0.861<br>0.816<br>0.770<br>0.570<br>1.394<br>1.394           | -13.894<br>-13.021<br>-12.293<br>-17.440<br>-17.440<br>-17.926<br>-13.734<br>-15.796<br>-16.449<br>-16.449<br>-16.449<br>-16.449<br>-16.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -41.033<br>-33.611<br>-27.098<br>-21.645<br>-28.806                                         |
| TABLE 2.1<br>DATA FOR                                             | MX/106                         |                                                              | , x 0 4 M 0 0 4 M M 0 2 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M | 23.400<br>18.982<br>15.104<br>11.858<br>14.888                                              |
| ING PIVOT                                                         | FATIGUE<br>CONDITION<br>NUMBER | * * * * *                                                    | 337873777887887878788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |
| SUMNARY OF W                                                      | LOAD TYPE                      | Taxi<br>Braking<br>Taxi                                      | Maneuver Gust Aneuver Maneuver 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maneuver<br>Maneuver                                                                        |
| ns                                                                | 4                              | 15                                                           | 15 15 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67.                                                                                         |
|                                                                   | MISSION SEGMENT                | Ground                                                       | 0 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Supersonic Climb<br>Supersonic Cruise                                                       |
|                                                                   | LOAD<br>STEP                   | -0m4vvr                                                      | 3845255555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 <del>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 </del>                                           |

| 10/16/75                          |         | NOTES              |         |                  |         |         | Sweep      | Sweep      |          |         |         |         |          |                 |         |         |         |         |                  |         |         |         | Sweep      | Sweep      |                   |         |         |        |         |        |         |        |         |                 |             |                    |
|-----------------------------------|---------|--------------------|---------|------------------|---------|---------|------------|------------|----------|---------|---------|---------|----------|-----------------|---------|---------|---------|---------|------------------|---------|---------|---------|------------|------------|-------------------|---------|---------|--------|---------|--------|---------|--------|---------|-----------------|-------------|--------------------|
| 8-8-75<br>* Revised<br>** Revised | z       | My/106             |         | 6.763            | - 0.196 | - 5.    | -16.       | T          | ı        | - 5.610 | +08.9 - | -10.941 | - 7.997  | - 4.443         | - 6.048 | - 7.412 | -11.023 | - 8.616 | + .564           | - 6.340 | - 7.598 | -11.150 | -11.150    | -14.241    | - 0.871           | - 2.593 | - 3.822 | 5.510  | - 7.354 | ဃ      | -13.652 | un 1   | -16.603 | -14.241         | * ^         | .′.                |
| 00 * *                            | X       | MX/106             | 3.033   | - 5.293          | - 1.120 | 1.966   | 8.707      | 29.842     | 6.927    | 11.779  | 15.823  | 29.842  | 19.867   | 7.854           | 13.348  | 18.019  | 30.382  | 22.140  | 6.403            | 12.526  | 16.864  | 29.111  | 29.111     | 9.054      | 0.710             | 1.645   | 2.313   | 4.312  | 5.314   | 6.048  | 10.249  | 2.1.8  | 11.852  | 9.054           | 2.034       | 4.171              |
|                                   | FATIGUE | NUMBER             | 546     | 549              | 550     | 551     | 554        | 555        | 556      | 557     | 558     | 559     | 560      | 561             | 562     | 563     | 564     | 565     | 266              | 267     | 268     | 569     | 175        | 572        | 573**             | 574**   | 575**   | 278**  | 579**   | 580**  | 583**   | 584**  | 585**   | 588<br>69<br>60 | n 0         | 591                |
| TABLE 2.1.3-1X (Cont'd)           | ×       | My/106             | -19.773 | -41.040          | -33.627 | -27.122 | -16.344    | -10.941    | w        | -15.397 |         | ** ,    | $\circ$  | -19.048         | -17.283 | -15.678 | 1.1     | -11.023 | -17.440          | 7       |         | -13     | =          |            |                   |         | -13.783 |        |         |        | -29.761 |        |         | -35.747         | 7 6         | -25.854            |
| 3LE 2.1.3-                        | MAX     | M <sub>X</sub> /10 | 9.873   | •                | 18.933  | •       | •          | 29.842     | 48.175   | 44.940  | 40.087  | 36.852  | 29.845   | 57.857          | 51.812  | 46.318  | 39.724  | 30.382  | 50.798           | 44.930  | 39.827  | 35.234  | 29.111     | 9.054      | 9.393             | 8.458   | 7.723   | 13.796 | 12.795  | 11.992 | 18.999  | 18.131 | 17.396  | 25.064          |             | 17.699             |
| TAE                               | FATIGUE | NUMBER             | 746     | 64               | 20.     | 51      | 54         | 55         | 26       | 57      | 28      | 59      | 09       | 19              | 62      | 63      | 49      | 65      | 99               | 29      | 89      | 69      | 71         | 72         | 73**              | 74**    | 75**    | 78**   | 79**    | 80**   | 83**    | 84**   | 85**    | & &             | ۍ<br>د<br>د | 9.<br>1.           |
|                                   |         | LOAD TYPE          |         | Maneuver         |         |         | 91         | <u>9</u>   | Maneuver |         |         |         | Maneuver | Maneuver        |         |         |         |         | Maneuver         |         |         |         | 16         | 9          | Gust              |         |         |        |         |        |         |        |         | Maneuver        | :           | maneuver           |
|                                   |         | 4                  |         | 67.5             |         |         | 67.5       | 25         | 25       |         |         |         | 25       | 25              |         |         |         |         | 25               |         |         |         | 25         |            | -9                |         |         |        |         |        |         |        |         | 67.5            | ſ           | د./٥               |
|                                   |         | MISSION SEGMENT    |         | Supersonic Desc. |         |         | Wing Sweep | Wing Sweep | Refuel   |         |         |         | Refuel   | Subsonic Cruise |         |         |         |         | Subsonic Descent |         |         |         | Wing Sweep | Wing Sweep | Terrain Follow.85 |         |         |        |         |        |         |        |         | Fly-up          |             | lerrain Follow. 85 |

| <b>P</b> - |
|------------|
| (Cont      |
| <u>×</u>   |
| .1.3       |
| TABLE 2    |
| -          |

|              |                    |          |           | TABLE                            | LE 2.1.3-1X     | IX (Cont'd)             |                                | <b>ω</b> κ κ   | 8-8-75 * Revised ** Revised | 10/16/75 |
|--------------|--------------------|----------|-----------|----------------------------------|-----------------|-------------------------|--------------------------------|----------------|-----------------------------|----------|
| LOAD<br>STEP | MISSION SEGMENT    | 4        | LOAD TYPE | FATIGUE<br>CONDITION<br>NUMBER P | MX/106          | ×<br>My/10 <sup>6</sup> | FATIGUE<br>CONDITION<br>NUMBER | MX/106         | MIN<br>My/10 <sup>6</sup>   | NOTES    |
| ł            |                    |          |           | 92<br>93                         | 16.258          | -23.918                 | 592<br>593                     | 4.411<br>4.892 | 400.8 -                     |          |
|              | errain Follow.95 ( | 67.5     | Gust      | 96**                             | 11.090          | -22.881<br>-21.288      | 596**                          | 2.399          | - 6.856<br>- 8.548          |          |
|              |                    |          |           | 98**                             | 9.471           | -19.895                 | \$38**                         | 4.072          | တ်                          |          |
| 76           |                    |          | Maneuver  | 102                              | 9.919           |                         | 602<br>603                     | 3.624          | -10.494                     |          |
|              |                    |          |           | 104                              | 9.274           | -18.435                 | 409                            | 4.350          | -11.515                     |          |
|              | Sweep              | 67.5     | 5-        | 901                              | 6.771           | <u>.</u>                | 909                            | 6.771          | -14.918                     | Sweep    |
|              | Wing Sweep         | 55       | <u> </u>  | 107                              | 11.995          | -13.624                 | 60 <i>/</i>                    | 1.268          | 7 ,                         | Sweep    |
|              | CC.WOLIO4 1115     | 0        | 2         | 80.                              | 10.446          | -13.050                 | 609                            | 2.317          | ı                           |          |
|              |                    |          |           | 110%                             | 9.397           | -11.787                 | 610                            | 3.366          | ı                           |          |
|              |                    |          |           | 113                              | 17.677          | -20.466                 | 613                            | 6.313          | ı                           |          |
|              |                    |          |           | 114                              | 16.453          | -18.993                 | 614                            | 7.449          | ı                           |          |
|              |                    |          |           | 115                              | 15.317          | -17.624                 | 515                            | 3.586          | , 7                         |          |
|              |                    |          |           | / 2                              | 22.699          | -24.966                 | /18<br>(18                     | 14.570         |                             |          |
|              |                    |          |           | 5 - 5                            | 21.650          | -23.703                 | 619                            | 15.619         | 7                           |          |
|              |                    |          | Maneuver  | 121                              | 22.689          | -24.023                 | 621                            | 4.643          | ı                           |          |
|              | Terrain Follow.55  | 55       | Maneuver  | 122                              | 21.240          | -22.615                 | 622                            | 5.200          | ı                           |          |
|              | 1                  | 1        |           | 123                              | 18.790          | -20.232                 | 623                            | 6.425          | , [                         |          |
|              | Sweep              | υ<br>L   | <u> </u>  | 125                              | 11.995          | - 15.c                  | 77.7<br>57.9                   | 27. 500        | ī ī                         | Sweep    |
|              | ep<br>61:          | ۷ ر<br>د | 5 Z       | 721                              | 121.030         | -16.052                 | 627                            | 4.50           | ٠                           | do       |
|              | Subsonic Citmb     | 62       | maneuver  | 128                              | 39,804          |                         | 628<br>628                     | 9.976          | •                           |          |
|              |                    |          |           | 129                              | 35.117          | -13.075                 | 629                            | 11.041         | ı                           |          |
|              | Subsonic Cruise    | 25       | Ma ver    | 132                              | 40.503          | -14.105                 | 632                            | 7.152          | ı                           |          |
|              |                    |          |           | 133                              | 36.262          | -12.854                 | 633                            | 10.044         |                             |          |
|              |                    |          |           | 134                              | 32.021          | _                       | 634                            | 13.128         |                             |          |
|              | Subsonic Descent   | 25       | Maneuver  | 137                              | 44.888          | -16.472                 | 637                            | 6.123          |                             |          |
|              |                    |          |           | - 7<br>2<br>2<br>2<br>3          | 59.565<br>57.85 | -14.895                 | 630<br>639                     | 10.809         | - 6.374                     |          |
|              | Cooper             | 25       | 2         | 150                              | ~1              | $\setminus$             | 642                            | 24.890         | -10.052                     | Sweep    |
| + 15         |                    | 15       | 5 5       | 143                              | 27.174          | 7                       | 643                            | 27.174         | -10.239                     | Sweep    |
|              |                    |          |           |                                  |                 |                         |                                |                |                             |          |

| _     |
|-------|
| Ŧ     |
| Ξ.    |
| Ę     |
| (Cont |
| ပ     |
| _     |
| ×     |
| -     |
| 4     |
|       |
| _     |
| 2.1.  |
| TABLE |
| 핆     |
| ₹     |
| -     |

| 10/16/75                      | NOTES                          |                                                                                      |                                                                                                                             | Drag Cond Sweep Sweep Sweep Sweep                                                                                                   |
|-------------------------------|--------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| -8-75<br>Revised<br>* Revised | MIN<br>My/10 <sup>6</sup>      | - 6.207<br>- 7.310<br>- 8.109<br>- 9.022<br>- 7.489<br>- 7.936<br>- 8.417<br>-10.239 | 0.182<br>0.246<br>0.246<br>0.397<br>-10.239<br>-10.052<br>-10.052<br>-10.052                                                | 0.397<br>0.246<br>0.397<br>- 0.397<br>- 10.239<br>- 10.052<br>- 10.239<br>- 8.177<br>- 10.475<br>0.246                              |
| ∞* *                          | M <sub>X</sub> /106            | 8.119<br>13.332<br>17.107<br>21.421<br>8.305<br>11.372<br>14.673<br>27.174<br>27.096 | - 1.649<br>- 1.649<br>- 3.054<br>- 3.054<br>- 27.174<br>- 24.890<br>- 13.172<br>- 27.174<br>- 14.673<br>- 27.096<br>- 1.673 | - 3.054<br>- 1.893<br>- 3.054<br>14.673<br>27.174<br>24.890<br>13.172<br>24.890<br>27.174<br>13.022<br>27.096<br>- 1.893<br>- 3.054 |
|                               | FATIGUE<br>CONDITION<br>NUMBER | 644<br>645<br>646<br>647<br>648<br>649<br>650<br>651                                 | 665<br>665<br>665<br>666<br>666<br>666<br>666<br>666<br>666<br>666                                                          | 675<br>675<br>676<br>677<br>679<br>681<br>681<br>683<br>685<br>685                                                                  |
| 1X (Cont'd)                   | الا<br>الاسلام                 | -14.272<br>-13.168<br>-12.293<br>-11.457<br>-13.780<br>-12.817<br>-12.027<br>-11.167 | 000000000000000000000000000000000000000                                                                                     | 0.397<br>0.547<br>0.397<br>-12.027<br>-10.052<br>-13.075<br>-10.052<br>-12.027<br>-10.475<br>0.397                                  |
| LE 2.1.3-1X                   | M <sub>X</sub> /106            | 46.229<br>41.015<br>36.881<br>32.926<br>51.467<br>44.863<br>39.438<br>33.542         | 24.254<br>3.054<br>- 4.258<br>- 4.214<br>27.174<br>27.174<br>39.438<br>27.174<br>27.174<br>27.096                           | - 3.054<br>- 4.214<br>- 3.054<br>39.438<br>27.174<br>24.890<br>35.117<br>24.890<br>27.174<br>39.438<br>- 4.214<br>- 4.214           |
| TABLE                         | FATIGUE<br>CONDITION<br>NUMBER | 144<br>145<br>146<br>147<br>148<br>150<br>151                                        | 7.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20                                                                | 172<br>175<br>176<br>177<br>180<br>181<br>184<br>185                                                                                |
|                               | LOAD TYPE                      | Gus t<br>Maneuver                                                                    | Taxi Braking Maneuver 16 16 16 16 16 17 17 19 10 10 10 10 10 10 10 10 10 10 10 10 10                                        | Braking<br>Taxi<br>Braking<br>Maneuver<br>16<br>Maneuver<br>16<br>Maneuver<br>Taxi<br>Braking                                       |
|                               | 4                              | 51                                                                                   | 15<br>25<br>25<br>25<br>25<br>15<br>15<br>15                                                                                | 25<br>25<br>25<br>25<br>15<br>15<br>15                                                                                              |
|                               | MISSION SEGMENT                | Pre-Landing                                                                          | Ground Post Take-Off Wing Sweep Wing Sweep Subsonic Climb Wing Sweep Wing Sweep Pre-Landing                                 | Post Take-Off<br>Wing Sweep<br>Wing Sweep<br>Wing Sweep<br>Wing Sweep<br>Pre-Landing                                                |
|                               | LOAD<br>STEP                   | 106                                                                                  | 1115<br>1117<br>1120<br>121<br>123<br>124<br>125<br>127                                                                     | 122<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133                                                                  |

TABLE 2.1.3-X
SUMMARY - PRELIMINARY WCTS FATIGUE DAMAGE ANALYSIS 1975 LOADS UPDATE

|                                 |        | <del></del> |        |        |        |        |
|---------------------------------|--------|-------------|--------|--------|--------|--------|
| MISSION SEGMENT                 | C.P.1  | C.P.2       | C.P.3  | C.P.4  | C.P.5  | C.P.6  |
| Ground                          | 0.0    | 0.0         | 0.0    | 0.0    | 0.0    | 0.0    |
| Post-Take-Off                   | 0.0135 | 0.0010      | 0.0181 | 0.0934 | 0.0365 | 0.0    |
| Subsonic Climb-Cruise           | 0.0012 | 0.0518      | 0.0097 | 0.1028 | 0.0420 | 0.0    |
| Supersonic Climb -              | 0.0    | 0.0144      | 0.0263 | 0.0001 | 0.0021 | 0.0263 |
| Cruise-Descent                  |        |             |        |        |        |        |
| Refuel                          | 0.0004 | 0.0154      | 0.0003 | 0.0453 | 0.0191 | 0.0    |
| Subsonic Cr Des.                | 0.0162 | 0.0552      | 0.0428 | 0.1494 | 0.0820 | 0.0    |
| TFR (67.5°85M)                  | 0.0    | 0.0002      | 0.0007 | 0.0    | 0.0    | 0.0    |
| Fly-Up                          | 0.0    | 0.0552      | 0.0672 | 0.0065 | 0.0243 | 0.0461 |
| TFR (67.5085M)                  | 0.0    | 0.1588      | 0.2934 | 0.0    | 0.0042 | 0.0871 |
| TFR (67.5°95M)                  | 0.0    | 0.0         | 0.0    | 0.0    | 0.0    | 0.0    |
| TFR (55055M)                    | 0.0    | 0.0712      | 0.0828 | 0.0005 | 0.0138 | 0.0098 |
| Subsonic Climb -                | 0.0003 | 0.0189      | 0.0018 | 0.0630 | 0.0304 | 0.0    |
| Cruise-Descent                  |        |             |        |        |        |        |
| Prelanding                      | 0.0085 | 0.0247      | 0.0034 | 0.1101 | 0.0071 | 0.0    |
| Ground                          | 0.0    | 0.0         | 0.0    | 0.0    | 0.0    | 0.0    |
| Post-Take-Off                   | 0.0002 | 0.0         | 0.0145 | 0.0304 | 0.0308 | 0.0    |
| Subsonic Climb                  | 0.0    | 0.0045      | 0.0    | 0.0160 | 0.0057 | 0.0    |
| Prelanding                      | 0.0088 | 0.0232      | 0.0006 | 0.0630 | 0.0019 | 0.0    |
| Ground                          | 0.0    | 0 0         | 0.0    | 0.0    | 0.0    | 0.0    |
| Post-Take-Off                   | 0.0    | 0.0         | 0.0014 | 0.0030 | 0.0028 | 0.0    |
| Subsonic Climb                  | 0.0    | 0.0004      | 0.0    | 0.0016 | 0.0006 | 0.0    |
| Prelanding                      | 0.0008 | 0.0023      | 0.0001 | 0.0065 | 0.0002 | 0.0    |
| Ground                          | 0.0    | 0.0         | 0.0    | 0.0    | 0.0    | 0.0    |
| Damage: ∑ 1 (Kt=5.0)            | 0.0499 | 0.4972      | 0.5633 | 0.6916 | 0.3035 | 0.1693 |
| Calculated Xt                   | 2.17   | 2.30        | 2.92   | 3.60   | 3.31   | 3.89   |
| Damage: $\sum n_{N}$ (Calc. Kt) | 0.0    | 0.0         | .0022  | .1514  | .0207  | .0134  |

NOTES: 1. Range Pier Counted
2. 1280 Flights, Scatter Factor = 1.0

#### 2.2 TESTING

Material testing, component testing, and full scale test activities during this reporting period are described in this section.

#### 2.2.1 Material Testing

All material testing to be accomplished at Fort Worth was completed except for the Credible Option Tests deferred in December 1974. Table 2.2.1-I summarizes the tests completed during this report period.

The deferred tests include spectrum environmental fatigue crack growth (4), 10 Nickel steel weldments (60), and fracture mechanics tests regarding holes with cracks and fasteners installed (15). Specimen fabrication and testing has been resumed and the scheduled tests are listed in Table 2.2.1-II.

Specimen fabrication is required only from the 10 Nickel steel weldments. The plates were welded and inspected prior to this report period. The drawings depicting the weldments were revised to include specimen identification and to replace flat tension specimens with round specimens for a reduction in machining cost. These revised drawings were released and are shown in Figures 2.2.1-1 and 2.2.1-2. Material allocation plans, defining specimen location within the weldments, were prepared and released.

There are (16) notched fatigue specimens (FTJ 10940-151) at WPAFB to be tested to determine the effect of spectrum truncation on the fatigue life of 10 Nickel steel. The required spectra has been generated and supplied to AFFDL, programming has been completed, but testing has not begun.

Test results for all of the above tests will be incorporated into the Material Property Data Test Report, FZM 6148.

Table 2.2.1-I

CREDIBLE OPTION MATERIAL TEST COMPLETED
FROM 16 DECEMBER 1974 THRU 15 OCTOBER 1975

| MATERIAL                   | TYPE TEST                                                                                                                                  | SPECIMEN NO.                                                                                                                                                             | QTY                                                     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 10 Nickel<br>Steel         | Tension Compression Shear Bearing Bearing Charpy Fatigue Fatigue Fatigue Crack Growth Stress Corrosion Stress Corrosion Fracture Toughness | FTJ10940-1<br>FTJ10940-38<br>FTJ10940-161<br>FTJ10940-62<br>FTJ10940-100<br>FTJ10940-134<br>FTJ10940-134<br>FTJ10940-135<br>FTJ10940-135<br>FTJ10940-136<br>FTJ10940-201 | 18<br>9<br>6<br>6<br>36<br>18<br>54<br>6<br>2<br>6<br>4 |
| Beta<br>Annealed<br>6AL-4V | Tension Tension Compression Fracture Toughness Fracture Toughness Stress Corrosion Fatigue Fatigue Fatigue Crack Growth                    | FTJ10940-1<br>FTJ10940-8<br>FTJ10940-38<br>FTJ10940-138<br>FTJ10940-135<br>FTJ10940-135<br>FTJ10940-134<br>FTJ10940-199                                                  | 4<br>4<br>6<br>6<br>9<br>12<br>12<br>2                  |
|                            | TOTAL                                                                                                                                      |                                                                                                                                                                          | 230                                                     |

Table 2.2.1-II

CREDIBLE OPTION DEFERRED TESTS

| TYPE TEST                              | SPECIMEN NUMBER                                                                          | QTY                               | TYPE SPECIMEN                                                                                         | MATERIAL                                           |
|----------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Spectrum Environmental<br>Crack Growth | FTJ10940-152<br>FTJ10940-185<br>FTJ10940-186                                             | 1 2 2                             | Cracked Hole<br>Surface Flaw<br>Cracked Hole                                                          | Titanium<br>Steel<br>Steel                         |
|                                        |                                                                                          | (4)                               |                                                                                                       |                                                    |
| Fracture Mechanics                     | 603FTB063-1 thru -17<br>603FTB064-1 thru 9<br>603FTB064-11                               | 9<br>5                            | Unloaded Holes<br>Loaded Holes<br>Loaded Holes                                                        | Steel<br>Steel<br>Titanium                         |
|                                        |                                                                                          | (15)                              |                                                                                                       |                                                    |
| 10 Nickel Steel<br>Weldments           | FTJ10940-1<br>FTJ10940-2<br>FTJ10940-100<br>FTJ10940-124<br>FTJ10940-142<br>FTJ10940-147 | 6<br>4<br>15<br>24<br>3<br>6<br>6 | Tension<br>Tension<br>Charpy<br>Fatigue<br>Stress Corrosion<br>Fat Crack Growth<br>Fracture Toughness | Steel<br>Steel<br>Steel<br>Steel<br>Steel<br>Steel |
|                                        |                                                                                          | (00)                              |                                                                                                       |                                                    |

# 10 NICKEL STEEL E.B. WELD

| MANUFACTURING RESE            | ARCH         | <del></del> |             | NON DESTRUCTIVE                        | ENGINEERING            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------------------|--------------|-------------|-------------|----------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SPECIMEN                      | STACK<br>THK | "T "<br>THK | ASSY<br>QTY | INSPECTION .                           | SPECIMEN               | TYPE<br>TES <b>T</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| GRAIN WELD  -1 A 55Y          | 2.50         | 1.60        | 2 =         | <b>→</b>                               | WELD  WELD  WELD  WELD | TENS<br>FATIGI<br>FATIGI<br>CRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 9<br>GRAIN                    |              |             |             | RADWGRAPHIC X-RAY<br>MAGNETIC PARTICLE | WELD T                 | FATIGI<br>FATIGI<br>CRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| E SYMM WELD                   | 2.50         | 1.60        | 5 -         | <b>⇒</b>                               | WELD WELD              | GROW<br>STRE<br>CORRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| - 3 ASSY  GRAIN  12           | 1.90         | 1.60        | 3 =         | <b>→</b>                               | WELD WELD              | FRACTIVITATION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY |  |  |
| SYMM WELD 5 ASSY (SEE NOTE 5) |              |             |             | 5                                      | ⇒ WELD                 | CV O -65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

# B. WELD

| 439           |                                              |                                              |             |                                                   |                                                                                                                                                                                                                                                                                                                  |
|---------------|----------------------------------------------|----------------------------------------------|-------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENGINE        | ERING                                        | TEST                                         |             |                                                   |                                                                                                                                                                                                                                                                                                                  |
| MEN           | TYPE OF                                      | TEST SPEC<br>PART Nº                         | CUANTITY    | MAKE<br>FROM                                      | SPECIMEN<br>I DEN TI FICATION                                                                                                                                                                                                                                                                                    |
|               |                                              |                                              | 1           | -1<br>A55Y                                        | H-95-2                                                                                                                                                                                                                                                                                                           |
| <b>♣</b> WELD | Tracian                                      | TRANVERSE<br>WELD SPEC<br>FTJ10940 - 1       | 15          | - 3                                               | H-89-5 UPPER<br>H-89-4,-9,1-10 MIDUE<br>H-89-6 LOWER<br>H-91-1,-4,1-7 UPPER<br>H-91-3,-6,1-9 MIDUE<br>H-91-2,-5,8,1-17 LOWER                                                                                                                                                                                     |
| a WELD        | TENS10N                                      | LONGITUDINAL                                 | 1           | - <i>J</i><br>A 55 Y                              | H-94-7                                                                                                                                                                                                                                                                                                           |
|               |                                              | WELD SPFC.<br>FTJ10940 - 3                   | 3           | - 3<br>ASSY                                       | H-89-13 UPPER<br>H-92-3<br>H-93-3                                                                                                                                                                                                                                                                                |
| E WELD        |                                              | FTJ10940-1<br>TRANYERSE<br>WELD SPEC         | 2           | - 5<br>ASSY                                       | F410132-3 MIDDLE<br>F410132B-3 MIDDLE<br>©                                                                                                                                                                                                                                                                       |
| O L           | FATIGUE                                      | FTJ10940-124                                 | 6           | -  <br>ASSY                                       | H-94-1,-3,4-5<br>H-94-2,-4,9-6                                                                                                                                                                                                                                                                                   |
| E WELD        |                                              |                                              | 6           | - 5<br>ASSY                                       | F410132-1,-2 MIDDLE<br>F410132A-1,-2 MIDDLE<br>F410132B-1,-2 MIDDLE                                                                                                                                                                                                                                              |
| T             | FATIGUE                                      |                                              | /           | - / A557                                          | <u>H-94-8</u><br>H- <i>B9-8 LOWER</i><br>H-92-4                                                                                                                                                                                                                                                                  |
|               | CRACK                                        | FTJ10940-147                                 | .3          | - 3<br>ASSY                                       | H-93-4                                                                                                                                                                                                                                                                                                           |
| X WELD        | GROWTH                                       | FTJ10940-147                                 | .5<br>      | A55Y<br>-5 ASSY                                   |                                                                                                                                                                                                                                                                                                                  |
|               | _                                            | FTJ10940-147<br>FTJ10940-142                 |             |                                                   | н-93-4                                                                                                                                                                                                                                                                                                           |
|               | GROWTH STRESS CORROSION FRACTURE             |                                              | 1           | -5 ASSY<br>-3<br>ASSY                             | H-93-4 F410132-4 MIDDLE © H-89-7 MIDDLE H-90-3 MIDDLE                                                                                                                                                                                                                                                            |
| WELD T        | GROWTH STRESS CORROSION                      | FTU10940-142                                 | 3           | -5 ASSY<br>-3<br>ASSY                             | H-93-4  F410132-4 MIDDLE ©  H-89-7 MIDDLE  H-90-3 MIDDLE  H-91-16 MIDDLE  H-90-/ 2-2 MIDDLE  H-92-1 1-2 MIDDLE  H-93-1 1-2 MIDDLE                                                                                                                                                                                |
| WELD T        | GROWTH STRESS CORROSION FRACTURE             | FTU10940-142                                 | 3           | -5 ASSY<br>-3<br>ASSY                             | H-93-4  F410132-4 MIDDLE ©  H-89-7 MIDDLE  H-90-3 MIDDLE  H-91-16 MIDDLE  H-90-/ 2-2 MIDDLE  H-92-1 1-2 MIDDLE  H-93-1 1-2 MIDDLE                                                                                                                                                                                |
| WELD T        | GROWTH STRESS CORROSION FRACTURE             | FTJ10940-142<br>FTJ10940-195                 | 3           | -5 ASSY<br>-3<br>ASSY<br>-3<br>ASSY<br>-5<br>ASSY | H-93-4  F410132-4 MIDDLE ©  H-89-7 MIDDLE H-90-3 MIDDLE H-91-16 MIDDLE  H-92-1 4-2 MIDDLE H-93-1 4-2 MIDDLE H-93-1 4-2 MIDDLE F410132-5 MIDDLE F410132 B-4 MIDDLE                                                                                                                                                |
| T WELD        | GROWTH STRESS CORROSION FRACTURE             | FTJ10940-142<br>FTJ10940-195                 | 3           | -5 ASSY<br>-3<br>ASSY<br>-3<br>ASSY               | H-93-4  F410132-4 MIDDLE ©  H-89-7 MIDDLE H-90-3 MIDDLE H-91-16 MIDDLE  H-90-/ \$-2 MIDDLE H-92-1 \$-2 MIDDLE H-93-1 \$-2 MIDDLE F410132-5 MIDDLE  F410132 B - 4 MIDDLE                                                                                                                                          |
| T WELD        | GROWTH  STRESS CORROSION  FRACTURE TOUGHNESS | FTJ10940-195<br>FTJ10940-195<br>FTJ10940-200 | 1<br>3<br>6 | -5 ASSY -3 ASSY -3 ASSY -5 ASSY -17 ASSY          | H-93-4  F410132-4 MIDDLE ©  H-89-7 MIDDLE H-90-3 MIDDLE H-91-16 MIDDLE  H-90-/ 2-2 MIDDLE H-92-1 4-2 MIDDLE H-93-1 4-2 MIDDLE F410132-5 MIDDLE  F410132-5 MIDDLE  F410132-5 MIDDLE  F410132-5 MIDDLE  F410132-5 MIDDLE  H-95-/ H-99-1 5-11 H-91-11 4-14 UPPER H-89-3, H-90-4:24-5-2] H-91-10 5-13, H-92-51, 6-13 |





DETAIL B

6. AGE ALL WELL 5. GTA WELD RI . ONE (1) PLAT 4. FTJ10940-100 MA

3. ALL TESTING 2 ALL WELDIN 1. MACHINING 0

NOTES:







The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

|      |      | REVISIONS                                                                                                                        |                 |                    |
|------|------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 3714 | ZONE | DESCRIPTION                                                                                                                      | DATE            | APPROVED           |
| Δ    |      | FTJ10940-195 WAS -146 T THK<br>1.60 WAS 2.100                                                                                    | 104-73          | Same               |
| B    |      | REVISED & REDRAWN                                                                                                                | 8-27 <i>7</i> 4 | Sparrage<br>Spinds |
| С    |      | ADDED SPECIMEN IDENTIFICATION FOR -5 PLATE ASSYS, REMOVED NOTE 7 STATING IDENT TO BE ADDED REPLACED FTJ10940-149 WITH FTJ10940-1 | P-43-34         |                    |
|      |      |                                                                                                                                  |                 |                    |



DETAIL

8. WELD SPECIMEN H95-3 SHIPPED TO NRL FOR DWTT

6. AGE ALL WELDED ASSY'S TO COND STA PER FPS-1096 5. GTA WELD REPAIR TWO (2) PLATES COMPLETE LENGTH &

ONE (I) PLATE 7.50 INCHES

- 4. FTJ10940-100 MADE FROM -5 ASSY TO BE UN REPAIRED WELDED PLATE
- 3. ALL TESTING TO BE ACCOMPLISHED BY ETL.
- 2 ALL WELDING TO BE ACCOMPLISHED BY MFG. ENGR.
- I. MACHINING OF ENGR SPECIMENS TO BE ACCOMPLISHED BY ETL.

NOTES:

Figure 2.2.1-1

#### PRELIMINARY DESIGN DRAWING

10 NICKEL STEEL - ELECTRON BEAM WELDING PROPERTIES -ELOPMENT TEST PROGRAM

GENÉRAL DYNAMICS Convair Aerospace Division

Fort Worth Operation

603R100-11

81/82

# 10 NICKEL STEEL GTA WELD

| MANUFACTURING RESE        | ARCH         | ì    |             | NON DESTRUCTIVE                                       | ENGINE   |                           |
|---------------------------|--------------|------|-------------|-------------------------------------------------------|----------|---------------------------|
| SPECIMEN                  | STOCK<br>THK | THK  | A55Y<br>QTY | !NOFECTION                                            | SPECIMEN | TYPE<br>TEST              |
| GRAIN  JE SYMM WELD  (-7) | .80          | .50  | 5 -         | <b>↑</b>                                              | WELD A   | TENSIC                    |
| - 1 A 55Y                 |              |      |             | RADIOGRAPHIC (XRAY) <sup>E</sup><br>MASNETIC PARTICLE | WELD T   | FATIGUE                   |
| SYMM WELD  -3 ASSY        | 1.62         | 1.30 | 3 .         | <b>☆</b>                                              | T WELD   | FATIGUI<br>CRACK<br>GROWT |
|                           |              |      | c           | ÷                                                     |          | STRES<br>CORROS           |
|                           |              |      |             |                                                       | & WELD   | CYN                       |

| IE     | ERING                      | TEST                   |                         |              |                                                                                        |
|--------|----------------------------|------------------------|-------------------------|--------------|----------------------------------------------------------------------------------------|
|        | TYPE OF<br>TEST            | TEST SPEC<br>PART Nº   | QUANTITY                | MAKE<br>FROM | SPECIMEN<br>IDENTIFICATION                                                             |
|        | TENSION                    | FTJI0940-2<br>(A)      | 4                       | - I<br>ASSY  | F410128-3,-4<br>F410128C-3,-4                                                          |
|        |                            | FTJ10940-1<br>(A)      | 4                       | - 3<br>ASSY  | F410131A-3,-4<br>F410131A-3,-4                                                         |
| -T     | FATIGUE                    | FTU10940-124           | 12                      | - 1<br>A55Y  | F410128-1,-2<br>F410128A-3,-4<br>F410128B-3,-4<br>F410128C-1,-2<br>F410128D-2,-3,-4,-5 |
|        | FAIIGUE                    | F 1010 <i>3</i> 40-124 | 6                       | - 3<br>ASSY  | F410131-1,-2<br>F410131 A-1,-2<br>F410131 B-1,-2                                       |
| -<br>D | FATIGUE<br>CRACK<br>GROWTH | FTJ10940-147           | 5                       | -I<br>ASSY   | F410128A -1,-2<br>F410128B-1,-2<br>F410128D-1                                          |
|        | STRESS<br>CORROSION        | FTJ 10940-142          | 3                       | -3<br>A55Y   | F410/31-5<br>F410/31B-3,-4                                                             |
| t      | CYN                        | FTJ10940-100           | 4<br>@-65°<br>4<br>@ 0° | ĀŠSY         | F410128-5,-6,<br>F410128C-5,-6<br>F410128C-7,-8<br>F410128C-7,-8<br>F410131A-5,-6      |
|        |                            |                        | 4<br>@ 0°               | - 3<br>ASSY  | F41031 B-5,-6                                                                          |

A 7. EQUAL SIZE FLATS PER FTJ/0940-2

A6. ALL SPECIMENS TO BE TAKE

A6. AGE ALL WELDED ASSYS TO G

4 AGE ALL WELDED ASSYS TO G

3. ALL TESTING TO BE ACCOM

2. ALL WELDING TO BE ACCOM 2. ALL WELDING TO BE ACCOM 1. MACHINING OF ALL SPECIMEN :



| <u>8</u>                                     |                                                                   |                 |
|----------------------------------------------|-------------------------------------------------------------------|-----------------|
|                                              | SYN ZONE SECUPTION DATE                                           | APPROVED        |
| \$ <sup>1</sup>                              | A ADDED SPECIMEN IDENTIFICATION.                                  |                 |
| NEN                                          | REMOVED NOTE 5. STATING                                           | Seid.           |
| EICATION                                     | [   IDENT. TO BE ADDED. REPLACES 1943                             | -               |
|                                              |                                                                   | í               |
|                                              | ADDED NOTES 6 AND 7                                               | <del>  </del>   |
| -4                                           |                                                                   | 1               |
|                                              |                                                                   | 1               |
| <u> </u>                                     |                                                                   | 1               |
|                                              | 111                                                               | 1               |
| <b>*</b>                                     | 111                                                               | ł .             |
|                                              | 111                                                               | 1               |
| <u>.                                    </u> |                                                                   | 1               |
| 4                                            |                                                                   | 1               |
| <b>4</b>                                     |                                                                   | İ               |
| <i>t</i>                                     |                                                                   | 1               |
|                                              | 111                                                               | •               |
| <u> </u>                                     |                                                                   |                 |
| <u> </u>                                     |                                                                   |                 |
| 2<br>-3 -4 -5                                |                                                                   |                 |
|                                              |                                                                   |                 |
| ē. l                                         |                                                                   |                 |
| -2                                           |                                                                   |                 |
| (y-2, -4, -3                                 |                                                                   |                 |
|                                              |                                                                   |                 |
| <b>E</b>                                     |                                                                   |                 |
| <u>*-</u>                                    |                                                                   |                 |
| ا وَ ا                                       |                                                                   |                 |
| E-Z                                          |                                                                   |                 |
|                                              |                                                                   |                 |
|                                              |                                                                   |                 |
| <i>f</i> .                                   |                                                                   |                 |
| <u>2</u>                                     |                                                                   |                 |
| 3-2<br>1-2                                   |                                                                   |                 |
|                                              |                                                                   |                 |
|                                              | _                                                                 |                 |
| 4                                            | A 7. EQUAL SIZE FLATS PERMITTED IN THREAD AREA OF FTJ10940-2      |                 |
| į                                            |                                                                   |                 |
|                                              | (4)6. ALL SPECIMENS TO BE TAKEN FROM MIDDLE OF PLATES             |                 |
|                                              | <b>⊘</b> 5.                                                       |                 |
|                                              | A DIE ALL WEIDED ASSIS TO COME STA DEP EPS-1007                   |                 |
| . 2<br> -2<br> -2                            | 4 AGE ALL WELDED ASSYS TO COND STA PER FPS-1096                   |                 |
| <b>X</b> .                                   | 3. ALL TESTING TO BE ACCOMPLISHED BY E.T.L                        |                 |
|                                              | 2. ALL WELDING TO BE ACCOMPLISHED BY MFG ENGR                     |                 |
| <u> </u>                                     | I. MACHINING OF ALL SPECIMENS TO BE ACCOMPLISHED BY E.T.L. NOTES: |                 |
| 3,-4                                         |                                                                   |                 |
| 3,-4                                         |                                                                   |                 |
| į                                            |                                                                   |                 |
|                                              |                                                                   |                 |
| <u>f.</u>                                    |                                                                   |                 |
|                                              |                                                                   |                 |
|                                              | Eigen 0 0 1 0                                                     |                 |
|                                              | Figure 2.2.1-2                                                    |                 |
| 646                                          |                                                                   |                 |
|                                              | PRELIMINARY DESIGN DRAV                                           |                 |
|                                              |                                                                   | 41147           |
| 8                                            | IO NCKEL STEEL - GTA                                              |                 |
| <u> </u>                                     | WELDING PROPERTIES -                                              |                 |
| 5,-6<br>5,-6                                 | DEVELOPMENT TEST PROGRAM                                          | 1               |
| 5,-6                                         | BILLIA APPROVED IN THE TOTAL STATE                                | 9-6-74          |
|                                              |                                                                   |                 |
|                                              | Conveir Aerospece Division 603RI00                                | <i>)</i> -12 /  |
|                                              | For Work Operation SMEET                                          | , <del></del> . |

Vorket blandskinder og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se state og se stat

#### 2.2.2 Component Tests

All component tests to be conducted at Fort Worth were completed prior to this reporting period. Three Credible Option Fastener Evaluation Tests (603FTB059) were tested to four fatigue lives at WPAFB with no failures. A carry-on test program for these specimens was defined and submitted to the AFFDL. The plan requires the induction of a flaw in one of the Taper-Lok holes and application of an additional fatigue life. To date this testing has not been started.

#### 2.2.3 Full Scale Testing

Full scale fatigue testing of the WCTS has begun, and is in the early stages of the first fatigue life. The majority of the full scale test activity was devoted to the mating of the WCTS in the upper test fixture, test set-up operations and conducting the pre-test strain surveys.

#### 2.2.3.1 Mating of the WCTS

The mating of the full scale test article to the upper test fixture was accomplished by General Dynamics during the period 18 February to 12 April 1975, as described in Section 3.2.

## 2.2.3.2 <u>Test Set-Up Operations</u>

Completion of the test set-up was accomplished by Structural Test Facility personnel and included the following:

- o Mating of the dummy landing gears and dummy wings to the WCTS
- o Mating the upper test fixture to the lower fixture
- o Installation and check-out of the load control system, the counter-balance system, and the attitude control system
- o Pressurization check of the WCTS
- o Hook-up and check-out of the hydraulic system and the control/data systems.
- o Conducting Category IV Baseline NDI/Inspections.

An in-depth review of the Structural Test Program was conducted on 28, 29 and 30 May by General Dynamics and AFFDL personnel. The review covered all phases of the test operation plans with emphasis on the safety of the wing carrythrough test structure. In general, the Structural Test Facility plans were quite acceptable; however, a few changes were proposed by General Dynamics. The most significant changes recommended are listed below. These recommendations have since been reviewed by Structural Test Facility personnel and, where appropriate, have been incorporated into the test system.

- o Incorporate a redundant run/dump solenoid pressure valve in the hydraulic distribution and control system
- o The programmed "Abort" mode should be programmed to return to zero load at a rate nearly equal to the loading rate
- o Record the fuselage and wing shear, moment, and torsion voltage output in the back-up overload system on a direct writing oscillograph
- o An independent dump system should be utilized on the roll control hydraulics

- o An external timing marker should be utilized on all strip chart recorders for coordination of charts
- o Collars should be placed around rods on fuselage counterbalance rams to protect against total power failure
- o An emergency light source should be available for controlled test shut-down in event of power failure
- o Collars should be placed on WI wing rams to limit roll to  $3\frac{1}{2}$   $4^{\circ}$
- o During removal of Epoxy paint by grinding for mag rubber and dye penetrant inspection, all grinding marks should be polished out
- o Lubrication of the wing pivot pin should be accomplished under a counter-balance system "active" status.

#### 2.2.3.3 Strain Survey

All five strain survey conditions required per the FZS-219B Test Plan have been run plus one fatigue condition from the revised Rockwell International fatigue spectrum. Instrumentation available for monitoring these conditions consisted of 558 strain gage channels (402 gages), 38 load cells, 46 deflection pots, and one pressure transducer. These 643 channels along with one program channel represent the total 644 channels available to the AMAVS Program.

The results of these surveys have been reviewed for compatibility with the predicted stress magnitude and distribution. Generally the test results had good correlation with the predicted values, but some deviations did occur. These variations were analyzed and it was concluded that none represented an appreciable impact on the fatigue test. Additional evaluation will be required in some areas, however, prior to static tests.

Significant bending in both the upper and lower pivot lugs was observed during the aft wing sweep condition (AS 10000). One strain gage, located in the outboard lower corner of the forward opening, monitored exceptionally high stresses as compared with predicted values and adjacent gage results. An additional gage, has been added on the RH side in this same area and will be monitored during future tests for comparison with the LH gage.

# 2.2.3.4 Full Scale Test Support

A design engineer was on site at the Structural Test Facility at Wright Patterson Air Force Base during the period 18 February to 30 June 1975. During this period, technical support was provided the General Dynamics factory crew during the mating operation of the wing carrythrough to the upper test fixture. Also, technical support was provided to Air Force Flight Dynamics Laboratory personnel during the mating of the dummy landing gears, the dummy wings, and the wing sweep actuator.

\* LH gage number - 3007 SL RH gage number (added) - 3007 SR

#### SECTION 3

#### FACTORY PROGRESS

Fabrication and assembly of the WCTS was completed during this reporting period. The WCTS was also mated to the upper test fixture at Wright Patterson Air Force Base.

#### 3.1 FABRICATION OF THE WCTS

All remaining planned Fort Worth Operations were completed prior to shipment of the WCTS to WPAFB on 14 February 1975. These operations consisted of the following:

- o The installation of the upper cover center panel with sealant and fasteners. The holes had already been drilled and reamed.
- o Drill, ream and installation of both upper pivot lugs including their support beams

- o Drill, ream and installation of both upper cover contoured panels including their support beams
- o The installation of the upper fairing supports at  $Y_F932$  and  $Y_F992$  bulkheads, and the upper cover splices at  $X_F84$  rib. These installations included hole drilling and reaming.
- o The drilling and reaming of full size holes to interface with the forward longerons at YF932 and the lower centerline longeron at YF992. Undersize index holes were drilled in the aft longeron tabs to locate the aft simulated fuselage.
- o Taper-Lok installations were completed in the YF932 and YF992 bulkheads.
- o The final installation of the aft removable access covers, creating formed-in-place gaskets
- o Drill, ream and final installation of the MLG trunnion fittings and side load fitting

In addition to the deferred WCTS assembly items, the mating task consisted of the following:

#### Forward Fuselage

- o Assembly and installation of the aft section of the outboard shear web, including the splice to the WCTS
- o The splicing of the weapon's bay skin to the WCTS
- o The splicing of the upper and lower skins to the WCTS

- o The splicing of the centerline simulated fuselage upper longerons
- o The splicing of the 250longerons
- o The splicing of the weapon's bay longerons to the WCTS
- o The splicing of the outboard upper and lower longerons to the WCTS fittings.

#### Aft Fuselage

- o Attaching the upper centerline longeron and the 25° longeron to the WCTS
- o Completing the assembly of the 603FTB205 and 603FTB206 outboard shear webs, including splicing to the WCTS at XF119 and XF103 respectively
- o Splicing of the upper and lower outboard longerons to the WCTS. These splices utilize 1-1/4 inch taper-loks and 1-3/8 inch straight shank bolts.
- o Splicing of the upper and lower outboard MLG longerons to the WCTS
- o Splicing of the lower centerline longeron to the WCTS
- o Splicing of the centerline web and the routing tunnel webs to the WCTS
- o Installation of the upper and lower skin panels, including splicing to the WCTS.

- o The boring and facing of the upper and lower pivot lugs
- o The installation of the lower fairing support structure.

Prior to drilling of the longeron interface holes, the WCTS was removed from the assembly fixture to allow final coordination between the fixture and the tooling gage. All drill plates on the assembly fixture were found to be within acceptable tolerances and no changes were made.

Several WCTS assembly operations were deferred to facilitate mating with the forward and aft upper test fixtures at WPAFB. These deferred items are listed below:

- o Final location and installation of the forward outboard longeron interface fittings. Full size interface holes were pre-drilled at Fort Worth.
- o The assembly and installation of the wing sweep actuator fittings. This operation was deferred to allow taper reaming of the lower longeron fittings.
- o Holes and fasteners in the upper cover in area of the centerline rib and common to the simulated fuselage longeron
- o Fasteners in the upper cover contoured panels at the  $X_F39$  rib, common to the upper fairing of the simulated fuselage
- o Taper-lok installations through the YF932 bulkhead and the closure rib, and through the XF103 stiffener on the  $Y_F992$  bulkhead

o Miscellaneous fastener installations common to the mating structure of the forward and aft simulated fuselages.

#### 3.2 MATING OF THE WCTS

The mating of the WCTS to the forward and aft upper test fixtures was accomplished by General Dynamics at WPAFB commencing 18 February 1975. The major portion of this task was completed on 26 March at which time most of the factory crew returned to Fort Worth. A smaller crew, consisting of four factory and one inspection personnel, remained at WPAFB an additional three weeks to complete the mating task.

There were some mating tasks left open at the time the last of the factory crew returned to Fort Worth. They were accomplished by the AFFDL Structural Test Facility personnel with the assistance of the on-site General Dynamics Engineering Representative. The most major items left open were necessary to facilitate the mating of the dummy landing gears and to permit Category IV baseline inspections. These included the installation of the upper and lower aft skin panels. The other tasks left open were of a minor nature and were deferred to permit the remaining factory orew to return to Fort Worth without an additional extension.