Contrôle 1

Calculatrice autorisée.

 $Documents\ interdits\ (sur\ tous\ supports),\ t\'el\'ephone,\ tablette\ (etc...)\ interdits.$

Durée 1h.

Vous pouvez toujours admettre le résultat d'une question et l'utiliser dans la suite.

Problème

- 1. Étude de la fonction $f: x \mapsto \frac{1}{2} \left(x + \frac{2}{x} \right)$ sur l'intervalle [1,2]:
 - (a) [2 points] Calculer f' et f''.
 - (b) [3] Utiliser f'' pour étudier les variations et le signe de f'. En déduire les variations de f. Résumer les résultats dans un tableau de variations.
 - (c) [2] Utiliser ce qui précède pour calculer $\sup |f'| \sup [1,2]$ et déduire que f est contractante.
 - (d) [1] Montrer que $\sqrt{2}$ est un point fixe de f.
- 2. Étude de la suite $x_0 = 2$, $x_{n+1} = f(x_n)$:
 - (a) [1] Montrer que l'intervalle $[\sqrt{2}, 2]$ est stable par f.
 - (b) [2] Faire un dessin de premiers termes de la suite (x_n) .
 - (c) [2] Étudier les variations de la suite (x_n) , en vous aidant de la question 1.
 - (d) [2] Montrer que la suite (x_n) converge. Vers quelle valeur?
- 3. Approximation de la limite :
 - (a) [1] On pose $g(x) = x^2 2$. On rappelle que dans la méthode de Newton, la fonction φ à itérer est donnée par

$$\varphi(x) = x - \frac{g(x)}{g'(x)}.$$

Montrer que $\varphi = f$.

- (b) [1] Itérer φ en partant de $x_0=2$. Donner autant de termes que possible.
- (c) [2] Donner une majoration de l'erreur (prendre a=1 et b=2)
- (d) [1] Conclusion : donner une approximation de la valeur de la limite de la suite (x_n) .