Monash University
Faculty of Information Technology

Lecture 10 Context Free Grammars

Slides by David Albrecht (2011), modified by Graham Farr (2013).

FIT2014 Theory of Computation

Overview

- Inductive Definitions
- Context Free Grammars
- Parse Trees
- Derivations

Arithmetic Expressions

- I.All integers are Arithmetic Expressions
- 2. If A and B are Arithmetic Expressions, so are:
 - (i) A + B
 - (ii) A B
 - (iii) A*B
 - (iv) A/B
 - (v) (A)

Production Rules

AE → integer

 $AE \rightarrow AE + AE$

 $AE \rightarrow AE - AE$

 $AE \rightarrow AE * AE$

 $AE \rightarrow AE / AE$

 $AE \rightarrow (AE)$

$$S \rightarrow A$$

 $A \rightarrow integer$

$$A \rightarrow A + A$$

$$A \rightarrow A - A$$

$$A \rightarrow A * A$$

$$A \rightarrow A/A$$

$$A \rightarrow (A)$$

Backus-Naur Form

(a.k.a. Backus Normal Form)

John Backus (1924-2007)

http://www-history.mcs.st-and.ac.uk/Biographies/Backus.html

 $S \rightarrow A$

 $A \rightarrow integer | A + A | A - A | A * A | A / A | (A)$

Peter Naur (b. 1928) http://datamuseum.dk/

Historical example: fragment of the BNF of ALGOL 60

4.1. COMPOUND STATEMENTS AND BLOCKS

4.1.1. Syntax

```
(unlabelled basic statement) ::= (assignment statement)
      (go to statement)|(dummy statement)|(procedure statement)
\langle \text{basic statement} \rangle ::= \langle \text{unlabelled basic statement} \rangle \langle \text{label} \rangle:
      (basic statement)
\langle unconditional statement \rangle ::= \langle basic statement \rangle | \langle for statement \rangle |
       (compound statement)|(block)
\langle \text{statement} \rangle ::= \langle \text{unconditional statement} \rangle
      (conditional statement)
\langle compound \ tail \rangle ::= \langle statement \rangle \ end \ | \langle statement \rangle |
      (compound tail)
\langle block \ head \rangle ::= begin \langle declaration \rangle | \langle block \ head \rangle
      (declaration)
\langle \text{unlabelled compound} \rangle ::= \mathbf{begin} \langle \text{compound tail} \rangle
\langle \text{unlabelled block} \rangle ::= \langle \text{block head} \rangle; \langle \text{compound tail} \rangle
\langle compound statement \rangle ::= \langle unlabelled compound \rangle
      ⟨label⟩:⟨compound statement⟩
\langle block \rangle :: = \langle unlabelled block \rangle | \langle label \rangle : \langle block \rangle
```

from: J. W. Backus et al., Comm. ACM 3 (5) (May 1960) 299-314.

Definitions

- A string is in EQUAL if it has an equal number of a's and b's.
- E.g.

```
\{\varepsilon, ab, ba, aabb, abab, abba, baba, ...\}
```

- An a-type string has one more a than b.
- A b-type string has one more b than a.

Definition of EQUAL

- A string is in **EQUAL** if it is
 - **E**, or
 - an, **a** followed by a string of **b-type**, or
 - it is a **b** followed by a string of **a-type**.
- A string is of **a-type** if it is
 - an **a**, or
 - an **a** followed by a string in **EQUAL**, or
 - a **b** followed by two strings of **a-type**.
- A string is of **b-type** if it is
 - an **b**, or
 - a **b** followed by a string in **EQUAL**, or
 - an **a** followed by two strings of **b-type**.

$$S \rightarrow \varepsilon$$

$$S \rightarrow aB$$

$$S \rightarrow bA$$

$$A \rightarrow a$$

$$A \rightarrow aS$$

$$A \rightarrow bAA$$

$$B \rightarrow b$$

$$B \rightarrow bS$$

$$B \rightarrow aBB$$

Production Rules

A Context Free Grammar consists of:

- I.An alphabet
 - The letters are called terminals
- 2. A set of symbols
 - We call these symbols nonterminals
 - One of these symbols is the Start symbol
 - S is often used as the start symbol.
- 3. A finite set of production rules of the form:
 - One nonterminal -> finite string of terminals and/or nonterminals

Definition

- The language generated by a Context Free Grammar (CFG)
 - consists of those strings which can be produced from the start symbol using the production rules.
- A language generated by a CFG is called a Context Free Language (CFL).

History

- Pāṇini (c520BC-c460BC)
 - studied Sanskrit

http://www-groups.dcs.st-and.ac.uk/history/Biographies/Panini.html

- Noam Chomsky (b. 1928)
 - studied natural languages

- John Backus
 - studied programming languages

Noam Chomsky, during visit to Australia in 2011 to accept Sydney Peace Prize.

$S \rightarrow aS \mid Sa \mid \epsilon$

I.
$$S \rightarrow Sa$$

2.
$$S \rightarrow aS$$

3.
$$S \rightarrow \varepsilon$$

Derivation of aaaa

$$S \Rightarrow Sa$$
 (Rule 1)

$$\Rightarrow$$
 aSa (Rule 2)

$$\Rightarrow$$
 aaSa (Rule 2)

$$\Rightarrow$$
 aaSaa (Rule 1)

$$\Rightarrow$$
 aa ϵ aa (Rule 3)

$$=$$
 aaaa

Parse Tree

Derivation of aaaa

 $S \Rightarrow Sa$ (Rule 1)

 \Rightarrow aSa (Rule 2)

 \Rightarrow aaSa (Rule 2)

 \Rightarrow aaSaa (Rule 1)

 \Rightarrow aa ϵ aa (Rule 3)

= aaaa

EQUAL

Derivation of baaabbab

$$S \rightarrow \varepsilon$$

$$S \rightarrow bA$$

$$S \rightarrow aB$$

4.
$$A \rightarrow a$$

5.
$$A \rightarrow aS$$

6.
$$A \rightarrow bAA$$

7.
$$B \rightarrow b$$

8.
$$B \rightarrow bS$$

9.
$$B \rightarrow aBB$$

$$S \Rightarrow bA$$
 (Rule 2)

$$\Rightarrow$$
 baS (Rule 5)

$$\Rightarrow$$
 baaB (Rule 3)

$$\Rightarrow$$
 baaaBB (Rule 9)

$$\Rightarrow$$
 baaaBb (Rule 7)

$$\Rightarrow$$
 baaabSb (Rule 8)

$$\Rightarrow$$
 baaabbAb (Rule 2)

$$\Rightarrow$$
 baaabbab (Rule 4)

Parse Tree

 $S \Rightarrow bA$

 \Rightarrow baS

⇒ baaB

⇒ baaaBB

⇒ baaaBb

⇒ baaabSb

⇒ baaabbAb

⇒ baaabbab

PARENTHESES

(a.k.a. the Dyck Language)

$$S \rightarrow \varepsilon$$

$$S \rightarrow (S)$$

 $S \rightarrow SS$

Walther von Dyck (1856-1934)

Derivation of ()(())

$$S \Rightarrow SS$$
 (Rule 3)

$$\Rightarrow$$
 (S)S (Rule 2)

$$\Rightarrow$$
 (S)(S) (Rule 2)

$$\Rightarrow$$
 ()(S) (Rule 1)

$$\Rightarrow$$
 ()((S)) (Rule 2)

$$\Rightarrow$$
 ()(()) (Rule 1)

Parse Tree

Exercises

- Suppose we have two types of brackets, such as round and square: () and [].
 Find a context-free language for the set of all valid strings of such brackets.
- Find a context-free grammar for PALINDROMES
- For other languages we have met:
 - find context-free grammars for them, OR
 - if you think they don't have one, think about why.

A simple property of derivations

At any stage, the string to the left of the first nonterminal must be a prefix of the final (derived) string.

```
x_{1}...x_{k}\mathbf{A}\mathbf{B}...
\Rightarrow x_{1}...x_{k}\mathbf{a}\mathbf{X}\mathbf{Y}\mathbf{B}... \qquad \text{(using } \mathbf{A} \rightarrow \mathbf{a}\mathbf{X}\mathbf{Y}\text{)}
....
\Rightarrow x_{1}...x_{k}\mathbf{a}..... \qquad \text{(derived string)}
```

4 + 2*3

$$S \rightarrow E$$
 $E \rightarrow T + E \mid T - E \mid T$
 $T \rightarrow F * T \mid F / T \mid F$
 $F \rightarrow integer \mid (E)$

4 + 2*3

$$S \rightarrow E$$

$$E \rightarrow T + E \mid T - E \mid T$$

$$T \rightarrow F * T \mid F / T \mid F$$

$$F \rightarrow integer \mid (E)$$

Leftmost Derivation

$$S \Rightarrow E$$

$$\Rightarrow T + E$$

$$\Rightarrow F + E$$

$$\Rightarrow 4 + E$$

$$\Rightarrow 4 + T$$

$$\Rightarrow 4 + F*T$$

$$\Rightarrow 4 + 2*T$$

$$\Rightarrow 4 + 2*F$$

$$\Rightarrow 4 + 2*S$$

4 + 2*3

$$S \rightarrow E$$
 $E \rightarrow T + E \mid T - E \mid T$
 $T \rightarrow F * T \mid F / T \mid F$
 $F \rightarrow integer \mid (E)$

Rightmost Derivation

$$S \Rightarrow E$$

$$\Rightarrow T + E$$

$$\Rightarrow T + T$$

$$\Rightarrow T + F*T$$

$$\Rightarrow T + F*F$$

$$\Rightarrow T + F*3$$

$$\Rightarrow T + 2*3$$

$$\Rightarrow F + 2*3$$

$$\Rightarrow 4 + 2*3$$

Leftmost and rightmost derivations

- In a **Leftmost derivation**, the leftmost nonterminal is always replaced first.
- In a **Rightmost derivation**, the rightmost nonterminal is always replaced first.

Theorem

Whenever a string has a derivation, it also has a leftmost derivation of the same length.

Proof: see Tute 3.

Does the same hold for rightmost derivations?

A simple property of leftmost derivations

Whenever a production

X → terminals Non-terminal theRest

is applied, the terminal letters on the left are appended to the current prefix to give a larger prefix of the derived string

```
x_{1}...x_{k}\mathbf{A}\mathbf{B}...
\Rightarrow x_{1}...x_{k}\mathbf{a}\mathbf{X}\mathbf{Y}\mathbf{B}... \qquad \text{(using } \mathbf{A} \rightarrow \mathbf{a}\mathbf{X}\mathbf{Y}\text{)}
....
\Rightarrow x_{1}...x_{k}\mathbf{a}..... \qquad \text{(derived string)}
```

Revision

- Context Free Grammars
 - Definition. How to use them.
- Parse Trees
 - Definition. How to make them.
- Be able to construct leftmost and rightmost derivations.
- Read
 - M. Sipser, "Introduction to the Theory of Computation", Chapter 2.