易揚州大學

第七章 基因表达的实时检测技术

第一节 基因表达与调控的概念与原理

第二节 转录水平的基因表达检测 扬州大学农学院 Lt QF

第三节 蛋白水平的基因表达检测

第一节 基因表达与调控的概念与原理

扬州大学农学院 Li OF

扬州大学农学院 Li O

分化:来自同一基因组的不同类型细胞

归因于基因的表达及其调控

基因表达的概念

·基因组(genome)

一个细胞或病毒所携带的全部遗传信息或整套基因。

扬州·基因表达(gene expression)

扬州大学农学院 Li OI

基因经过转录、翻译,产生具有特异生物学功能的 蛋白质分子或RNA分子的过程。

•基因表达调控(regulation of gene expression)

基因表达是受内源及外源信号调控的。

DNA 細胞核 知胞核 DNA 特景 加工 special protein 翻译 細胞质

基因表达调控

基因表达的特点

基因表达具有时间特异性和空间特异性

- 基因表达按一定的时间顺序发生
- 特定生长发育阶段,同一基因在不同的组织器官表达不同

扬州大**基因表达的方式存在多样性** 扬州大学农学院 Li QF

- 有些基因几乎在所有细胞中持续表达
- 有些基因的表达受到环境变化的诱导和阻遏
- 生物体内不同基因的表达受到协调调节
- > 基因表达受调控序列和调节分子共同调节
- 基因表达调控呈现多层次和复杂性

人体发育过程中不同类型珠蛋白的含量变化

如何研究不同基因的表达特性?

第二节 转录水平的基因表达检测

扬州大学农学院 ★实时荧光定量PCR学农学院 Li OF

- ◆ 荧光原位杂交
- ◆报告基因

2.1 实时荧光定量PCR

扬州大学农学院Li QF

qPCR检测新冠病毒

核酸检测结果一般被视为"黄金标准"

PCR (polymerase chain reaction)

普通PCR的问题

- 灵敏度低,分辨率低
- 非自动化,结果不以数字显示
- EB染色定量

常规PCR反应

Real-time PCR quantitative PCR (qPCR)

qPCR是一种可以在反应进行时"实时"显示PCR反应的技术。 qPCR可以定量起始DNA的含量。

试管中DNA的量

如何定量?

阈值循环数(Cycle threshold, Ct值)

定义: 每个反应管内的荧光信号到达设定<mark>阈值</mark>时所经历的循环数。

DNA 的起始量与达到任意数量的 DNA 拷贝(Ct 值)的循环次数之间存在直接关系。

qPCR的两种化学方法

SYBR Green方法过程

1.当 SYBR 染料加入到样品中后,它可立即与样品中的所有双链 DNA 进行结合。

2.在 PCR 过程中, DNA 聚合酶对产生 PCR 产物的目标序列进行扩增。

3.随后,SYBR 染料会与每 一个新产生的双链 DNA 分

子进行结合。 4.随着PCR进行,生成更多 PCR产物,SYBR会结合所有 双链DNA,荧光强度也增强。

Heat denaturation Intercaliator (Fluorescent substance)

2 Primer annealing Polymerase 3 3 Extension

TaqMan探针法

- 5'端标记一个报告荧光基团 (Reporter, R), 一般为FAM、 VIC、HEX、TET等荧光基团。
- 3'端标记一个淬灭荧光基团 (Quencher , Q) , 一般为 TAMRA、MGB等。

荧光探针

TaqMan 方法过程

1. 构建一段寡核苷酸探针。

2.探针会在其中一个引物结合位点的下游发生退火,并随着引物的延伸通过 Taq DNA 聚合酶的 5'核酸酶活性,完成切除。

3. 探针从目的链去除,荧 光报告增强。引物沿模板链 继续延伸。

TaqMan 方法过程

两种方法的优缺点比较

qPCR应用

2.2 原位杂交

(In situ hybridization, ISH)

扬州大学农学院 Li QF

扬州大学农学院 Li O

一、原位杂交的概念

原位杂交技术(In situ hybridization, ISH)是指将特定标记的已知序列核酸为探针与细胞或组织切片中核酸(DNA、RNA)进行杂交,从而对特定核酸顺序进行精确定量、定位的过程。

两种可视化显示原位RNA和DNA靶标方法:

显色原位杂交

(Chromogenic In Situ Hybridization, CISH)

荧光原位杂交

(Fluorescence In Situ Hybridization, FISH)

基本原理

根据碱基互补配对原则,同源的DNA-DNA、DNA-RNA和RNA-RNA两条单链在一定条件下能结合成双链

。用放射性或非放射性物质标记的DNA、RNA或与mRNA互补的cDNA作探针,与组织切片或细胞内待测核酸(RNA或DNA)片段进行杂交,经放射自显影或非放射检测体系予以显示,在组织、细胞、间期核及染色体上对核酸进行定位和相对定量研究。

原位杂交常用的标记物质

荧光素、生物素、地高辛等

FISH工作原理

FISH特点

1.安全性高;

2.FISH探针稳定:

3.实验周期短:

学穴学院 J. OF 4. 其灵敏度与放射性探针相当;

5.多色FISH通过在同一个核中显示不同的颜色可同 时检测多种序列;

6.既可以在玻片上显示中期染色体数量或结构的变 化,也可以在悬液中显示间期染色体DNA的结构。

检测并定位染色体变异

FISH应用

物种鉴定

RNA亚细胞定位

2.3 报告基因

扬州大学农学院 Li (reporter gene)州大学农学院 Li OF

启动子 (promoter)

- ▶ 启动子是位于基因5'端近旁的一段调控序列,能作为 RNA聚合酶的结合位点,同时也是转录因子结合的位点。
- ▶ 启动子控制基因表达的时间和地点。
- 扬 ▶ 启动子的功能可通过报告基因简便检测。大学农学院 Li OF

报告基因(reporter gene)

- ▶ 是一种编码容易被检测的蛋白质或酶的基因。
- ▶ 将某个基因表达调控序列与报告基因编码序列相融合, 扬州大学和学院 Li QF 利用报告基因表达研究该基因表达调控。
 - ▶ 利用报告基因与其它目的基因融合蛋白的表达,进行蛋 白定位。

报告基因的特点:

- ▶ 报告基因产物必须区别于转染前真核细胞内任何相似
- → 受体细胞内其它的基因产物不会干扰报告基因产物的 检测;
 - ▶ 报告基因编码产物的检测应该快速、简便、灵敏度高 而且重现性好。

GUS报告系统

β-葡萄糖苷酸酶 (GUS)

- □由uidA编码,该酶是一种水解酶,能催化许多β-葡萄糖苷 酯类物质的水解。
- № □广泛用于转基因植物、细菌和真菌的报告基因,尤其在研 究外源基因瞬时表达的转化实验中。

水稻胚表现 GUS活性

GUS检测方法

组织化学染色定位法(定性)

能够将无色的底物x-gluc催化生成蓝色的产物。

荧光法 (定量)

以4-甲基伞形酮酰-β-D葡萄糖醛酸苷为底物, GUS催化其 水解为4-甲基伞形酮及β-D葡萄糖醛酸。 4-甲基伞形酮分子 中的羟基解离后被365nm的光激发,产生455nm的荧光,可 用荧光分光光度计定量。

GUS染色分析结果

GUS其他用途:

用于确定基因传递系统的效率、基因产物的细胞内定位、 蛋白-蛋白或蛋白-DNA互作检测、翻译起始信号效率等。

GUS优点:

扬,州大多数植物组织中GUS活性的本底低州大学农学院 Li QF

- 反应物基本不扩散,在植物细胞内积累
- 通过简单的扩散或者真空渗入,底物易被植物细胞吸收。

GUS缺点:

- 不适用于活体组织的观察
- 反应产物可与脂质结合扩散到远离酶活位点, 导致定位不准

荧光素酶 (Luciferase)

荧光素酶 (Luciferase) 是自然界中能够产生生物荧光的酶的 总称。荧光素酶可以催化荧光素氧化成氧化荧光素, 在荧光

常用的报告基因

- β-葡萄糖苷酸酶 (β-glucuronidase, GUS) 基因
- · 荧光素酶(Luciferase, LUC)基因
 - 绿色荧光蛋白(green fluorescent protein, GFP)基因

素氧化的过程中, 会发出生物荧光。

荧光素酶成像

第三节 蛋白水平的基因表达检测

扬州大学农学院 Li ❷ 大蛋白 扬州大学农学院 Li QF

◆激光共聚焦显微镜

3.1 荧光蛋白

扬州大学农学院LiOE

扬州大学农学院 Li OF

生物发光

绿色荧光蛋白基因 (green fluorescent protein, GFP)

• 从维多利亚多管发光水母中分离获得

· 能够在不使用底物的情况下使用这种报告子来监测活细 胞的变化

显微镜的尺度

显微镜的功能

• 通过好的对比更有效地分清物体-----反差

反差 反差

反差

3.2 激光共聚焦显微镜

(Laser scanning confocal microscope, LSCM)

共聚焦显微镜 VS 宽厂显微镜

Differential Interference Contrast (DIC)

荧光

物质中的电子吸收光的能量由低能状态转变为高能状态, 再回到低能状态时释放出的光,是非温度辐射光——冷光 。即:物质吸收短波光,发射出的长波光。

荧光现象

应用

1、形态结构观察:在不损伤细胞的前提下对活的组织、细胞或者细胞器的形态结构进行观察,这种功能对于细胞培养、转基因研究尤为重要,可以说是LSCM最大的优势。

区加土坐水光险工: 0.5

大学农学院 Li OF

2、细胞物理化学测定:对细胞形状、周长、面积、平均荧光强度等参数进行测定;对细胞的溶酶体、线粒体、内质网、DNA、RNA、酶和受体分子等细胞内特异结构的含量、组分及分布进行定量、定性、定位测定。

大学农学院 Li QF

AFB1和TIR1两个基因的亚细胞定位

3、动态观察和测量: 观察和测量细胞内 pH 和多种离子 (Ca2+、K+、Na+、Mg2+)在活细胞内的浓度及变化。

扬州大学农等

学农学院 Li QF

WINCHATE LIGH

表明受体AFB1对于生长素诱导的 Ca^{2+} 转运是必需的。

在afb1突变体中,施加生长素后, 细胞质中Ca²⁺浓度并未增加。

4、三维图像的重建:可以对样品的立体结构分析,直观 地 进行形态学观察,并揭示其结构的空间关系。

5、长时程观察细胞迁移和生长

线虫运动神经元和肌臂

这张苍蝇头部图像是通过使用软件将六张图像拼 接在一起而创建的。

激光扫描共聚焦显微镜的局限性

1、标记染料的光漂白:为了获得足够的信噪比必须提

高激光强度; 而高强度的激光会使染料在连续扫描过

为一程中迅速褪色。i OF

扬州大学农学院 Li OF

2、光毒作用:在激光照射下,许多荧光染料分子会产生单态氧或自由基等细胞毒素。