Miléna Kostov, Sami Joudet

L3 Informatique : Méthodes de simulation Valrose - Université Nice Côte d'Azur

Mai, 2022

- 1 Introduction
- 2 Méthodes
- 3 Expériences
- 4 Résultats
- 6 Références

Introduction

- 2 Méthodes
- 3 Expériences
- 4 Résultats
- 5 Références

	Gender	Home Location	Level of Education	Age(Years)	Number of Subjects	Device type used to attend classes	Economic status	Family size	Internet facility in your locality	Are you involved in any sports?	
0	Male	Urban	Under Graduate	18	11	Laptop	Middle Class	4	5	No	_
1	Male	Urban	Under Graduate	19	7	Laptop	Middle Class	4	1	Yes	

Nom de la base : Online Education System - Review (lien)

23 variables dont des continues et des catégorielles

Taille de l'échantillon : 1033 élèves et étudiants

Introduction

000

Introduction 000

- 1 Introduction
- 2 Méthodes
- 3 Expériences
- 4 Résultats
- 5 Références

Inertia =
$$\sum_{i=1}^{k} \sum_{x_j \in C_i} ||x_j - \mu_i||^2$$
 (1)

Apprentissage supervisé : Support Vector Machine (SVM)

But : séparer les données selon une classe y en maximisant la marge entre les classes

$$\arg \max_{\omega,b} \left\{ \min_{i} d(x_{i}, H) = \frac{1}{\|\omega\|} \min_{i} y_{i}(\omega^{T} x + b) \right\}$$
 (2)

3 méthodes :

- Classification binaire
- Classification multi-classe
- Novau RBF

SVM avec une classification binaire

Deux classes : positive et négative

Séparation de la base pour les tests : 50% entraînement, 25% validation, 25% test

SVM avec une classification multi-classe

Plusieurs classes : $y \in \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Séparation de la base pour les tests : 50% entraı̂nement, 25% validation, 25% test

But : Calculer la similitude entre deux points X_1 et X_2

$$K(X_1, X_2) = \exp\left(-\frac{\|X_1 - X_2\|^2}{2\sigma^2}\right)$$
 (3)

Deux critères importants :

- Gamma : mesure de similitude entre deux points.
- C : paramètre de régularisation.

Séparation de la base pour les tests : 70% entraînement, 30% validation

12 / 22

- 3 Expériences

K_mean

```
for i in range (1, 50):
       kmeans = KMeans(n_clusters=i,
            init='k-means++', max_iter=300,
            n_init=10, random_state=0
5
6
       kmeans.fit(X)
       wcss.append(kmeans.inertia)
8
9
   init centers=np1.array(
10
        [[0]*29,[1]*29,[2]*29,[3]*29,
11
        [4] *29, [5] *29, [6] *29, [7] *29]
12
13
   kmeans = KMeans(n_clusters=8,init=init_centers)
14
   pred y = kmeans.fit predict(X)
```

Résultats

```
def reapeated_random(n_iter,df_1) :
       C_i = [0.001, 1, 100, 1000]
       for i in range (n_iter) :
            for i in C i:
                svm clf = SVC(
                    kernel="linear", C=C i[i]
                svm clf.fit(
                    X_syn_training, y_syn_training
10
11
   matrice = np1.array(reapeated random(10, df 1))
```

Résultats

SVM à noyau RBF (Radial Basis Function)

```
param_grid = {
    "C": loguniform(1e2, 1e5),
    "gamma": loguniform(1e-4, 1e-1),
}

clf = RandomizedSearchCV(
    SVC(kernel="rbf", class_weight="balanced"),
    param_grid, n_iter=10
}

clf = clf.fit(X_training,y_training)
```

- Introduction

- 4 Résultats

Clustering: invalidation

Observations avec un tableau de corrélation

SVM : les différents modèles

• Meilleur résultat: 79.49% de précision avec RBF.

- Introduction
- 3 Expériences
- **6** Références

```
Cours de cette année: https://github.com/mesin-cours/
methodes-simulation-informatique
https://www.kaggle.com/datasets/sujaradha/
online-education-system-review
https://scikit-learn.org/stable/auto_examples/applications...
openclassrooms
https://chrisalbon.com/code/machine_learning/support_
vector machines/svc parameters using rbf kernel/
```

Références

000

Merci pour votre attention