

Algebraic expressions

AS Pure Mathematics (Year 1) – Unit P1

Key Information

Key Formulae:

$$x^{a} \times x^{b} = x^{a+b}$$

$$x^{a} \div x^{b} = x^{a-b}$$

$$(x^{a})^{b} = x^{ab}$$

$$x^{-n} = \frac{1}{x^{n}}$$

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$a^{2} - b^{2} = (a-b)(a+b)$$

Key Terms:

- Expanding Brackets: Multiplying brackets out
- Factorising Brackets: Putting expressions back into brackets
- Surd: A root of a number which can't be written as a whole number or fraction
- Rationalising Denominator: Removing the surd from the bottom of the fraction

Solution Bank:

Links to the Big Picture

P1. Algebraic expressions

P1.1 Index Laws

P1.2 Expanding Brackets

P1.3 Factorising

P1.4 Negative and fractional indices

P1.5 Surds

P1.6 Rationalising Denominators

Develops:

• GCSE algebraic manipulation

Leads to:

- P2 Quadratics
- P6 Algebraic Methods
- P9 Integration
- P12 Differentiation
- P13 Integration

Exam Question

a Write $\sqrt{45}$ in the form $a\sqrt{5}$, where a is an integer.

(1 mark)

b Express $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})}$ in the form $b+c\sqrt{5}$, where b and c are integers.

(5 marks)

Overview

After completing this chapter you should be able to:

- · Multiply and divide integer powers
- Expand a single term over brackets and collect like terms
- Expand the product of two or three expressions
- Factorise linear, quadratic and simple cubic expressions
- Know and use the laws of Indices
- Simplify and use the rules of surds
- Rationalise denominators

Index Laws

- You can use the laws of indices to simplify powers of the same base.
 - $a^m \times a^n = a^{m+n}$
 - $a^m \div a^n = a^{m-n}$
 - $(a^m)^n = a^{mn}$
 - $(ab)^n = a^n b^n$

Example 1

Simplify these expressions:

a
$$x^2 \times x^5$$

h
$$2r^2 \times 3r^3$$

$$\mathbf{c} \quad \frac{b^7}{L^4}$$

d
$$6x^5 \div 3x^3$$

a
$$x^2 \times x^5$$
 b $2r^2 \times 3r^3$ c $\frac{b^7}{b^4}$ d $6x^5 \div 3x^3$ e $(a^3)^3 \times 2a^2$ f $(3x^2)^3 \div x^4$

$$(3x^2)^3 \div x^4$$

Expand these expressions and simplify if possible:

a
$$-3x(7x-4)$$

b
$$y^2(3-2y^3)$$

$$\mathbf{c} \quad 4x(3x-2x^2+5x^3)$$

a
$$-3x(7x-4)$$
 b $y^2(3-2y^3)$ **c** $4x(3x-2x^2+5x^3)$ **d** $2x(5x+3)-5(2x+3)$

Watch Out A minus sign outside brackets changes the sign of every term inside the brackets.

Example 3

Simplify these expressions:

a
$$\frac{x^7 + x^4}{x^3}$$

b
$$\frac{3x^2 - 6x^5}{2x}$$

a
$$\frac{x^7 + x^4}{x^3}$$
 b $\frac{3x^2 - 6x^5}{2x}$ **c** $\frac{20x^7 + 15x^3}{5x^2}$

Independent Practice: Exercise 1A

1.2 Expanding Brackets

Finding the product

To find the product of two expressions you multiply each term in one expression by each term in the other expression.

Multiplying each of the 2 terms in the first expression by each of the 3 terms in the second expression gives $2\times 3=6$ terms.

Example 4

Expand these expressions and simplify if possible:

a
$$(x+5)(x+2)$$
 b $(x-2y)(x^2+1)$ **c** $(x-y)^2$ **d** $(x+y)(3x-2y-4)$

Expand these expressions and simplify if possible:

a
$$x(2x+3)(x-7)$$

a
$$x(2x+3)(x-7)$$
 b $x(5x-3y)(2x-y+4)$ **c** $(x-4)(x+3)(x+3)$

$$(x-4)(x+3)(x+3)$$

Independent Practice: Exercise 1B

Factorising

You can write expressions as a product of their factors.

• Factorising is the opposite of expanding brackets.

Expanding Brackets

$$4x(2x + y) = 8x^{2} + 4xy$$
$$(x + 5)^{3} = x^{3} + 15x^{2} + 75x + 125$$
$$(x + 2y)(x - 5y) = x^{2} - 3xy - 10y^{2}$$

Factorising

Example 6

Factorise these expressions completely:

- **a** 3x + 9
- **b** $x^2 5x$ **c** $8x^2 + 20x$
- **d** $9x^2y + 15^xy^2$ **e** $3x^2 9xy$

• A quadratic expression had the form $ax^2 + bx + c$ Notation: Real numbers are all the positive and where a, b and c are real numbers and $a \neq 0$.

To factorise a quadratic expression:

- Find two factors of ac that add up to b
- ullet Rewrite the b term as a sum of these two factors
- Factorise each pair of terms
- Take out the common factor
- $x^2 y^2 = (x + y)(x y)$

negative numbers, or zero, including fractions and

For the expression $2x^2 + 5x - 3$, $ac = -6 = -1 \times 6$ and -1 + 6 = 5 = b

- = x(2x-1) + 3(2x-1)
- = (x+3)(2x-1)

Notation: An expression in the form $x^2 - y^2$ is called the difference of two sqaures.

Factorise:

a
$$x^2 - 5x - 6$$

b
$$x^2 + 6x + 8$$

a
$$x^2 - 5x - 6$$
 b $x^2 + 6x + 8$ **c** $6x^2 - 11x - 10$ **d** $x^2 - 25$ **e** $4x^2 - 9y^2$

d
$$x^2 - 25$$

$$e 4x^2 - 9y^2$$

Example 8

Factorise completely:

a
$$x^3 - 2x^2$$

b
$$x^3 - 25x$$

a
$$x^3 - 2x^2$$
 b $x^3 - 25x$ **c** $x^3 + 3x^2 - 10x$

Independent Practice: Exercise 1C

Negative and fractional indices

Indices can be negative or fractions.

$$x^{\frac{1}{2}} \times x^{\frac{1}{2}} = x^{\frac{1}{2}} + \frac{1}{2} = x^1 = x$$

similarly
$$\underbrace{x^{\frac{1}{n}} \times x^{\frac{1}{n}} \times \dots \times x^{\frac{1}{n}}}_{n \text{ terms}} = x^{\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} + x^1} = x$$

- You can use the laws of indices with any rational power.
 - $a^{\frac{1}{m}} = \sqrt[m]{a}$
 - $a^{\frac{n}{m}} = \sqrt[m]{a^n}$
 - $a^{-m} = \frac{1}{a^m}$ $a^0 = 1$

Notation Rational numbers are those that can be written $\frac{a}{b}$ where \boldsymbol{a} and \boldsymbol{b} are integers.

Notation $a^{\frac{1}{2}} = \sqrt{a}$ is the positive square root of a. For example $9^{\frac{1}{2}} = \sqrt{9} = 3$ but $9^{\frac{1}{2}} \neq -3$.

Example 9

$$\mathbf{a} \quad \frac{x^3}{x^{-3}}$$

b
$$x^{\frac{1}{2}} \times x^{\frac{3}{2}}$$

c
$$(x^3)^{\frac{2}{3}}$$

Simplify:
 a
$$\frac{x^3}{x^{-3}}$$
 b $x^{\frac{1}{2}} \times x^{\frac{3}{2}}$ **c** $(x^3)^{\frac{2}{3}}$ **d** $2x^{1.5} \div 4x^{-0.25}$

$$e^{-\sqrt[3]{125x^6}}$$

Evaluate:

- **a** $9^{\frac{1}{2}}$

- **b** $64^{\frac{1}{3}}$ **c** $49^{\frac{3}{2}}$ **d** $25^{-\frac{3}{2}}$

Example 11

Factorise completely:

- **b** $4y^{-1}$

Independent Practice: Exercise 1D

1.5 Surds

If n is an integer that is not a sqaure number, then any multiple of \sqrt{n} is called a surd.

Examples of surds are: $\sqrt{2}$, $\sqrt{19}$ and $5\sqrt{2}$

Surds are examples of irrational numbers.

The decimal expansion of a surd is never-ending and never repeats, for example $\sqrt{2}$ = 1.414213562...

You can use surds to write exact answers to calculations.

• You can manipulate surds using these rules:

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

$$\bullet \quad \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Notation Irrational numbers cannot be written in the form $\frac{a}{b}$ where a and b are integers. Surds are examples of irrational numbers.

Example 12

Simplify:

$$\mathbf{a} \quad \sqrt{12}$$

$$\mathbf{b} \quad \frac{\sqrt{20}}{2}$$

c
$$5\sqrt{6} - 2\sqrt{24} + \sqrt{294}$$

Example 13

Simplify:

a
$$\sqrt{2}(5-\sqrt{3})$$

b
$$(2-\sqrt{3})(5+\sqrt{3})$$

Independent Practice: Exercise 1E

1.6 Rationalising denominators

If a fraction has a surd in the denominator, it is sometimes useful to rearrange it so that the denominator is a rational number. This is called rationalising the denominator.

- The rules to rationalise denominators are:
 - For fractions in the form $\frac{1}{\sqrt{a}}$, multiply the numerator and denominator by \sqrt{a} .
 - • For fractions in the form $\frac{1}{a+\sqrt{a}}$ multiply the numerator and denominator by $a-\sqrt{a}$.
 - For fractions in the form $\dfrac{1}{a-\sqrt{a}}$ multiply the numerator and denominator by $a+\sqrt{a}$.

Example 14

Rationalise the denominator of:

$$\mathbf{a} \quad \frac{1}{\sqrt{3}}$$

$$\mathbf{b} \quad \frac{1}{3+\sqrt{2}}$$

$$\mathbf{c} \quad \frac{\sqrt{5} + \sqrt{2}}{3 + \sqrt{2}}$$

d
$$\frac{1}{(1-\sqrt{3})^2}$$

Independent Practice: Exercise 1F

Summary of key points

1. You can use the laws of indices to simplify powers of the same base.

•
$$a^m \times a^n = a^{m+n}$$

•
$$a^m \div a^n = a^{m-n}$$

•
$$(a^m)^n = a^{mn}$$

•
$$(ab)^n = a^n b^n$$

- 2. Factorising is the opposite of expanding brackets.
- 3. A quadratic expression has the form $ax^2 + bx + c$ where a, b, and c are real numbers and $a \neq 0$.

4.
$$x^2 - y^2 = (x + y)(x - y)$$

5. You can use the laws of indices with any rational power.

•
$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

•
$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

•
$$a^{-m} = \frac{1}{a^m}$$

•
$$a^0 = 1$$

6. You can manipulate surds using the rules:

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- 7. The rules to rationalise denominators are:
 - For fractions in the form $\frac{1}{\sqrt{a'}}$ multiply the numerator and denominator by \sqrt{a} .
 - $\bullet \;$ For fractions in the form $\frac{1}{a+\sqrt{a'}}$ multiply the numerator and denominator by $a-\sqrt{a}.$
 - For fractions in the form $\frac{1}{a-\sqrt{a'}}$ multiply the numerator and denominator by $a+\sqrt{a}$.

Exercise 1A

1. Simplify these expressions:

$$\mathbf{a} \ x^3 \times x^4$$

$$\mathbf{d} \ \frac{4p^3}{2p}$$

g
$$10x^5 \div 2x^3$$

j
$$8p^4 \div 4p^3$$

$$m 9x^2 \times 3(x^2)^3$$

$$p (4y^3)^3 \div 2y^3$$

b
$$2x^3 \times 3x^2$$

$$e^{\frac{3x^3}{3x^2}}$$

h
$$(p^3)^2 \div p^4$$

$$\mathbf{k} \ 2a^4 \times 3a^5$$

$$\mathbf{n} \ 3x^3 \times 2x^2 \times 4x^6$$

$$\mathbf{q} \ 2a^3 \div 3a^2 \times 6a^5$$

$$\mathbf{c} \ \frac{k^3}{k^2}$$

$$f(y^2)^5$$

i
$$(2a^3)^2 \div 2a^3$$

$$1\frac{21a^3b^7}{7ab^4}$$

o
$$7a^4 \times (3a^4)^2$$

r
$$3a^4 \times 2a^5 \times a^3$$

c -3y(4-3y)

 $\mathbf{f} - 5x(4x+1)$

i -2x(5x-4)

15x-6-(3x-2)

2. Expand and simplify if possible:

a
$$9(x-2)$$

d
$$x(y+5)$$

$$g(4x+5)x$$

$$\mathbf{j} (3x-5)x^2$$

$$\mathbf{m} \ 4(c+3d^2) - 3(2c+d^2)$$

$$\mathbf{p} \ 7y^2(2-5y+3y^2)$$

$$\mathbf{s} 5x - 3(4-2x) + 6$$

$$\mathbf{v} \ 3x^2(2x+1) - 5x^2(3x-4)$$

b
$$x(x+9)$$

$$e - x(3x + 5)$$

$$h -3y(5-2y^2)$$

$$\mathbf{k} \ 3(x+2) + (x-7)$$

n
$$(r^2 + 3t^2 + 9) - (2t^2 + 3t^2 - 4)$$
 o $x(3x^2 - 2x + 5)$

$$\mathbf{q} - 2y^2(5 - 7y + 3y^2)$$

 $t 3x^2 - x(3-4x) + 7$

$$1 - 2u^2(5 - 7u + 3u^2)$$

$$\mathbf{r} \ 7(x-2) + 3(x+4) - 6(x-2)$$

$$\mathbf{u} \ 4x(x+3) - 2x(3x-7)$$

3. Simplify these fractions:

a
$$\frac{6x^4 + 10x^6}{2x}$$

$$\mathbf{d} \ \frac{8x^3 + 5x}{2x}$$

$$b \frac{3x^5 - x^7}{x}$$

$$\mathbf{e} \ \frac{7x^7 + 5x^2}{5x}$$

$$c \frac{2x^4 - 4x^2}{4x}$$

$$f \frac{9x^5 - 5x^3}{3x}$$

Exercise 1B 1B

1. Expand and simplify if possible:

a
$$(x+4)(x+7)$$

d
$$(x-y)(2x+3)$$

$$\mathbf{g} (2x-3)(x-4)$$

$$\mathbf{j} (x+5)(2x+3y-5)$$

$$\mathbf{m} \ (x+2y-1)(x+3)$$

$$\mathbf{p} (4y+5)(3x-y+2)$$

b
$$(x-3)(x+2)$$

$$e(x+3y)(4x-y)$$

h
$$(3x + 2y)^2$$

$$\mathbf{k} (x-1)(3x-4y-5)$$

$$n (2x + 2y + 3)(x + 6)$$

$$\mathbf{q} (5y - 2x + 3)(x - 4)$$

c
$$(x-2)^2$$

$$\mathbf{f} (2x - 4y)(3x + y)$$

$$i(2x+8y)(2x+3)$$

$$1(2x+6y)(2x+6)$$

$$1(x-4y)(2x+y+5)$$

$$o(4-y)(4y-x+3)$$

$$r(4y-x-2)(5-y)$$

2. Expand and simplify if possible:

a
$$5(x+1)(x-4)$$

$$\mathbf{d} \ x(x-y)(x+y)$$

$$g y(3x-2y)(4x+2)$$

$$\mathbf{j} \ x(x+2)(x+3y-4)$$

$$m \ x(2x+3)(x+y-5)$$

$$\mathbf{p}(x+3)(x+2)(x+1)$$

$$s(x-5)(x-4)(x-3)$$

$$\mathbf{v} (3x-2)(2x+1)(3x-2)$$

b
$$7(x-2)(2x+5)$$

$$e \ x(2x+y)(3x+4)$$

h
$$y(7-x)(2x-5)$$

$$k y(2x+y-1)(x+5)$$

$$\mathbf{n} \ 2x(3x-1)(4x-y-3)$$

$$\mathbf{q} (x+2)(x-4)(x+3)$$

$$\mathbf{t} (2x+1)(x-2)(x+1)$$

$$\mathbf{w} (x+y)(x-y)(x-1)$$

c
$$3(x-3)(x-3)$$

f
$$y(x-5)(x+1)$$

i
$$x(2x+y-3)(2x+1)$$

$$1y(3x+2y-3)(2x+1)$$

o
$$3x(x-2y)(2x+3y+5)$$

$$\mathbf{r} (x+3)(x-1)(x-5)$$

$$\mathbf{u} (2x+3)(3x-1)(x+2)$$

$$\mathbf{x} (2x - 3y)^3$$

3. The digram shows a rectangle with a square cut out. The rectangle has length 3x-y+4 and width x+7. The square has length x-2.

Find an expanded and simplified expression for the shaded area.

Problem-solving

Use the strategy as you use if the lengths were given as number.

- 3x y + 4
- 4. A cuboid has dimensions x + 2, 2x 1cm and 2x + 3cm. Show that the volume of the cuboid is $4x^3 + 12x^2 + 5x - 6$ cm³.
- 5. Given that $(2x+5y)(3x-y)(2x+y) = ax^3 + bx^2y + cxy^2 + dy^3$, where a, b, c and d are constants, find the values of a, b, c and d.

1C Exercise 1C

1. Expand and simplify if possible:

a
$$4x + 8$$

d
$$2x^2 + 4$$

$$g x^2 - 7x$$

$$\mathbf{j} 6x^2 - 2x$$

$$m x^2 + 2x$$

$$\mathbf{p} \ 5y^2 - 20y$$

$$s 5x^2 - 25xy$$

$$v 12x^2 - 30$$

b
$$6x - 24$$

$$e 4x^2 + 20$$

h
$$2x^2 + 4x$$

$$k 10y^2 - 5y$$

$$n 3y^2 + 2y$$

$$q 9xy^2 + 12x^2y$$

 $t 12x^2y + 8xy^2$

$$\mathbf{w} xy^2 - x^2y$$

c
$$20x + 15$$

$$\mathbf{f} 6x^2 - 18x$$

i
$$3x^2 - x$$

$$135x^2 - 28x$$

$$\mathbf{o} \ 4x^2 + 12x$$

$$r 6ab - 2ab^2$$

u
$$15y - 20yz^2$$

$$x 12y^2 - 4yx$$

2. Factorise:

a
$$x^2 + 4x$$

$$d x^2 + 8x + 12$$

$$g x^2 + 5x + 6$$

$$\mathbf{j} \ x^2 + x - 20$$

$$m 5x^2 - 16x + 3$$

$$\mathbf{o} \ 2x^2 + 7x - 15$$

$$a^2 - 4$$

$$s 4x^2 - 25$$

$$v 2x^2 - 50$$

b
$$2x^2 + 6x$$

$$e^{x^2} + 3x - 40$$

$$h x^2 - 2x - 24$$

$$\mathbf{k} \ 2x^2 + 5x + 2$$

$$n 6x^2 - 8x - 8$$

$$\mathbf{p} \ 2x^4 + 14x + 24$$

$$x^2 - 49$$

$$t 9x^2 - 25y^2$$

$$\mathbf{w} 6x^2 - 10x + 4$$

Hint For part n, take 2 out as a common factor first. For part p, let $y = x^2$.

u
$$36x^2 - 4$$

$$\mathbf{x} \ 15x^2 + 42x - 9$$

 $\mathbf{c} \ x^2 + 11x + 24$

 $\mathbf{f} \ x^2 - 8x + 12$

 $\mathbf{i} \ x^2 - 3x - 10$ $13x^2 + 10x - 8$

3. Factorise completely:

a
$$x^3 + 2x$$

d
$$x^3 - 9x$$

$$g x^3 - 7x^2 + 6x$$

$$\mathbf{j} \ 2x^3 + 13x^2 + 15x$$

b
$$x^3 - x^2 + x$$

$$e^{x^3} - x^2 - 12x$$

h
$$x^3 - 64x$$

$$k x^3 - 4x$$

c
$$x^3 - 5x$$

$$\mathbf{f} \ x^3 + 11x^2 + 30x$$

i
$$2x^3 - 5x^2 - 3x$$

$$13x^3 + 27x^2 + 60x$$

4. Factorise completely $x^4 - y^4$.

Problem-solving

Watch out for terms that can be written as a function of a function: $x^4 = (x^2)^2$.

5. Factorise completely $6x^3 + 7x^2 - 5x$.

(2 marks)

Challenge

Write $4x^4 - 13x^2 + 9$ as the product of four linear factors.

Exercise 1D

1. Simplify

a
$$x^3 \div x^{-2}$$

d
$$(x^2)^{\frac{3}{2}}$$

$$\mathbf{g} \ 9x^{\frac{2}{3}} \div 3x^{\frac{1}{6}}$$

$$\mathbf{j} \sqrt{x} \times \sqrt[3]{x}$$

$$i\sqrt{x} \times \sqrt[3]{x}$$

$$\mathbf{J} \sqrt{x} \times \sqrt{y}$$

a
$$25^{\frac{1}{2}}$$

$$d 4^{-2}$$

$$g\left(\frac{3}{4}\right)^0$$

$$\mathbf{j} \left(\frac{27}{8}\right)^{\frac{2}{3}}$$

$$\mathbf{b} \ x^5 \div x^7$$

$$e(x^3)^{\frac{5}{3}}$$

h
$$5x^{\frac{7}{5}} \div x^{\frac{2}{5}}$$

$$\mathbf{k} \left(\sqrt{x}\right)^3 \times \left(\sqrt[3]{x}\right)$$

$$\mathbf{k} \left(\sqrt{x}\right)^3 \times \left(\sqrt[3]{x}\right)$$

$$\mathbf{k} \left(\sqrt{x}\right)^3 \times \left(\sqrt[3]{x}\right)$$

$$\mathbf{k} \, \left(\sqrt{x}\right)^3 \times \left(\sqrt[3]{x}\right)^4$$

$$\mathbf{k} \left(\sqrt{x}\right)^3 \times \left(\sqrt[3]{x}\right)^2$$

$$\mathbf{k} \left(\sqrt{x}\right)^3 \times \left(\sqrt[3]{x}\right)^3$$

$$\mathbf{k} \left(\sqrt{x}\right)^3 \times \left(\sqrt[3]{x}\right)^2$$

$$c \ 27^{\frac{1}{3}}$$

 $\mathbf{c} \ x^{\frac{3}{2}} \times x^{\frac{5}{2}}$

f $3x^{0.5} \times 4x^{-0.5}$

i $3x^4 \times 2x^{-5}$

$$\mathbf{f} (-5)^{-3}$$

$$\mathbf{i} \left(\frac{25}{16}\right)^{\frac{3}{2}}$$

$$\mathbf{k} \left(\frac{6}{5}\right)^{-1}$$

h $1296^{\frac{3}{4}}$

b $81^{\frac{3}{2}}$

 $e^{9^{-\frac{1}{2}}}$

$$\mathbf{k} \, \left(\frac{6}{5}\right)^{-1}$$

$$1 \left(\frac{343}{512} \right)^{-\frac{2}{3}}$$

3. Simplify:

$$\mathbf{a} (64x^{10})^{\frac{1}{2}}$$

$$\mathbf{b} \; \frac{5x^3 - 2x^2}{x^5}$$

c
$$(125x^{12})^{\frac{1}{3}}$$
 d $\frac{x+4x^3}{x^3}$

d
$$\frac{x+4x^3}{x^3}$$

$$\mathbf{e} \ \frac{2x + x^2}{x^4}$$

$$\mathbf{f} \left(\frac{4}{9}x^4\right)^{\frac{3}{2}}$$

$$\mathbf{g} \; \frac{9x^2 - 15x^5}{3x^3}$$

$$h \frac{5x + 3x^2}{15x^3}$$

4. **a** Find the value of $81^{\frac{1}{4}}$.

(1 mark)

Simplify $x\left(2x^{-\frac{1}{3}}\right)^4$.

- (2 marks)
- 5. Given that $y = \frac{1}{8}x^3$ express each of the following in the form kx^n , where k and n are constants.

a
$$y^{\frac{1}{3}}$$

$$\mathbf{b} \ \frac{1}{2} y^{-2}$$

Excercise 1E

1. Do not use your calculator for this exercise. Simplify:

$$\mathbf{a} \sqrt{28}$$

b
$$\sqrt{72}$$

$$\mathbf{c} \sqrt{50}$$

d
$$\sqrt{32}$$

$$e \sqrt{90}$$

$$f \frac{\sqrt{12}}{2}$$

$$\mathbf{g} \, \frac{\sqrt{27}}{3}$$

$$h \sqrt{20} + \sqrt{80}$$

$$i\sqrt{200} + \sqrt{18} - \sqrt{72}$$

$$\mathbf{j} \sqrt{175} + \sqrt{63} - 2\sqrt{28}$$

$$k\sqrt{28} - 2\sqrt{63} + \sqrt{7}$$

$$1\sqrt{80} - 2\sqrt{20} + 3\sqrt{45}$$

$$\mathbf{m} \ 3\sqrt{80} - 2\sqrt{20} + 5\sqrt{45}$$

$$\mathbf{n} \, \frac{\sqrt{44}}{\sqrt{11}}$$

$$\mathbf{o} \sqrt{12} + 3\sqrt{48} + \sqrt{75}$$

2. Expand and simplify if possible:

a
$$\sqrt{3}(2+\sqrt{3})$$

b
$$\sqrt{5}(3-\sqrt{3})$$

$$c \sqrt{2}(4-\sqrt{5})$$

d
$$(2 - \sqrt{2})(3 + \sqrt{5})$$

$$e(2-\sqrt{3})(3-\sqrt{7})$$

$$f (4 + \sqrt{5})(2 + \sqrt{5})$$

$$\mathbf{g} \ (5 - \sqrt{3})(1 - \sqrt{3})$$

h
$$(4+\sqrt{3})(2-\sqrt{3})$$

$$\mathbf{i} (7 - \sqrt{11})(2 + \sqrt{11})$$

3. Simplify $\sqrt{75} - \sqrt{12}$ giving your answer in the form $a\sqrt{3}$, where a is an integer.

(3 marks)

Exercise 1F

1. Simplify:

$$\mathbf{a} \ \frac{1}{\sqrt{5}}$$

$$\mathbf{b} \ \frac{1}{\sqrt{11}}$$

$$\mathbf{c} \ \frac{1}{\sqrt{2}}$$

$$\mathbf{d} \, \frac{\sqrt{3}}{\sqrt{15}}$$

$$\mathbf{e} \ \frac{\sqrt{12}}{\sqrt{48}}$$

$$\mathbf{f} \, \frac{\sqrt{5}}{\sqrt{80}}$$

$$\mathbf{g} \, \frac{\sqrt{12}}{\sqrt{156}}$$

$$h \frac{\sqrt{7}}{\sqrt{63}}$$

2. Rationalise the denominators and simplify:

$$\mathbf{a} \ \frac{1}{1+\sqrt{3}}$$

$$\mathbf{b} \ \frac{1}{2+\sqrt{5}}$$

$$\mathbf{c} \ \frac{1}{3 - \sqrt{7}}$$

a
$$\frac{1}{1+\sqrt{3}}$$
 b $\frac{1}{2+\sqrt{5}}$ **c** $\frac{1}{3-\sqrt{7}}$ **d** $\frac{4}{3-\sqrt{5}}$ **e** $\frac{1}{\sqrt{5}-\sqrt{3}}$

$$e \frac{1}{\sqrt{5} - \sqrt{5}}$$

$$\mathbf{f} \ \frac{3 - \sqrt{2}}{4 - \sqrt{5}}$$

$$\mathbf{g} \; \frac{5}{2 + \sqrt{5}}$$

$${f f} \; rac{3-\sqrt{2}}{4-\sqrt{5}} \qquad \qquad {f g} \; rac{5}{2+\sqrt{5}} \qquad \qquad {f h} \; rac{5\sqrt{2}}{\sqrt{8}-\sqrt{7}} \qquad \qquad {f i} \; rac{11}{3+\sqrt{11}}$$

$$\mathbf{i} \ \frac{11}{3 + \sqrt{11}}$$

$$\mathbf{j} \; \frac{\sqrt{3} - \sqrt{7}}{\sqrt{3} + \sqrt{7}}$$

$$1\frac{\sqrt{41}+\sqrt{29}}{\sqrt{41}-\sqrt{29}}$$

$$\mathbf{m} \ \frac{\sqrt{2} - \sqrt{3}}{\sqrt{3} - \sqrt{2}}$$

Problem-solving

You can check that you answer is in the correct form but writing down the values of p and q and check that they are rational numbers.

1**G** Mixed Exercise 1

1. Simplify:

a
$$y^3 \times y^5$$

b
$$3x^2 \times 2x^5$$

$$\mathbf{c} (4x^2)^3$$

d
$$4b^2 \times 3b^3 \times b^4$$

2. Expand and simplify if possible:

a
$$(x+3)(x-5)$$

b
$$(2x-7)(3x+1)$$

c
$$(2x+5)(3x-y+2)$$

3. Expand and simplify if possible:

a
$$x(x+4)(x-1)$$

b
$$(x+2)(x-3)(x+7)$$

$$\mathbf{c} (2x+3)(x-2)(3x-1)$$

4. Expand the brackets:

a
$$3(5u+4)$$

b
$$5x^2(3-5x+2x^2)$$

c
$$5x(2x+3) - 2x(1-3x^2)$$

a
$$3(5y+4)$$
 b $5x^2(3-5x+2x^2)$ **c** $5x(2x+3)-2x(1-3x)$ **d** $3x^2(1+3x)-2x(3x-2)$

5. Factorise these expressions completely:

a
$$3x^2 + 4x$$

b
$$4y^2 + 10y$$

$$x^2 + xy + xy^2$$

$$d 8xy^2 + 10x^2y$$

6. Factorise:

$$a x^2 + 3x + 2$$

b
$$3x^2 + 6x$$

$$x^2 - 2x - 35$$

d
$$2x^2 - x - 3$$

$$e 5x^2 - 13x - 6$$

$$\mathbf{f} \ 6 - 5x - x^2$$

7. Factorise:

a
$$2x^3 + 6x$$

$$b x^3 - 36x$$

$$\mathbf{c} \ 2x^3 + 7x^2 - 15x$$

8. Simplify:

a
$$9x^3 \div 3x^{-3}$$

b
$$(4^{\frac{3}{2}})^{\frac{1}{3}}$$

c
$$3x^{-2} \times 2x^4$$

$$d 3x^{\frac{1}{3}} \div 6x^{\frac{2}{3}}$$

9. Evaluate:

$$\mathbf{a} \; \frac{3}{\sqrt{63}}$$

$$\mathbf{b} \left(\frac{225}{289} \right)^{\frac{3}{2}}$$

10. Simplify:

a
$$\frac{3}{\sqrt{63}}$$

$$\mathbf{b} \sqrt{20} + 2\sqrt{45} - \sqrt{80}$$

Find the value of $35x^2 + 2x - 48$. 11. **a**

> By factorising the expression, show that your answer to part a can be written as the product of two prime factors.

12. Expand and simplify if possible:

a
$$\sqrt{2}(3+\sqrt{5})$$

b
$$(2-\sqrt{5})(5+\sqrt{3})$$

c
$$(6-\sqrt{2})(4-\sqrt{7})$$

13. Rationalise the denominator and simplify:

$$\mathbf{a} \frac{1}{\sqrt{3}}$$

$$b \frac{1}{\sqrt{2}-1}$$

$$\mathbf{c} \ \frac{3}{\sqrt{3}-2}$$

$$\mathbf{b} \ \frac{1}{\sqrt{2}-1} \qquad \mathbf{c} \ \frac{3}{\sqrt{3}-2} \qquad \mathbf{d} \ \frac{\sqrt{23}-\sqrt{37}}{\sqrt{23}+\sqrt{37}} \qquad \mathbf{e} \ \frac{1}{(2+\sqrt{3})^2} \qquad \mathbf{f} \ \frac{1}{(4-\sqrt{7})^2}$$

$$e^{\frac{1}{(2+\sqrt{3})^2}}$$

$$f \frac{1}{(4-\sqrt{7})^2}$$

Given that $x^3 - x^2 - 17x - 15 = (x+3)(x^2 + bx + c)$, where b and c are constants, work out the 14. **a** values of b and c.

Hence, fully factorise $x^3 - x^2 - 17x - 15$. b

15. Given that $y = \frac{1}{64}x^3$ express each of the following in the form kn^n , where k and n are constants.

a
$$y^{\frac{1}{3}}$$

b
$$4y^{-1}$$

- 16. Show that $\frac{5}{\sqrt{75}-\sqrt{50}}$ can be written in the form $\sqrt{a}+\sqrt{b}$, where a and b are integers. (5 marks)
- 17. Expand and simplify $(\sqrt{11} 5)(5 \sqrt{11})$. (2 marks)
- 18. Factorise completely $x 64x^3$. (3 marks)
- 19. Express 27^{2x+1} in the form 3^y , stating y in terms of x. (2 marks)
- 20. Solve the equation $8 + x\sqrt{12} = \frac{8x}{\sqrt{3}}$ Give your answer in the form $a\sqrt{b}$, where a and b are integers. (4 marks)
- 21. A rectangle has a length of $(1 + \sqrt{3})$ cm and area of $\sqrt{12}$ cm². Calculate the width of the rectangle in cm. Express you answer in the form $a + b\sqrt{3}$, where a and b are integers to be found.
- 22. Show that $\frac{(2-\sqrt{x})^2}{\sqrt{x}}$ can be written as $4x^{-\frac{1}{2}} 4 + x^{\frac{1}{2}}$. (2 marks)
- 23. Given $243\sqrt{3} = 3^a$, find the value of a. (3 marks)
- 24. Given that $\frac{4x^3 + x^{\frac{3}{2}}}{\sqrt{x}}$ can be written in the form $4x^a + x^b$, write down the value of a and the value of b. (2 marks)

Challenge

- **a** Simplify $\left(\sqrt{a} + \sqrt{b}\right)\left(\sqrt{a} \sqrt{b}\right)$
- **b** Hence show that $\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{24}+\sqrt{25}} = 4$