Minimum Edit Distance

How similar are two strings?

- Spell correction
 - The user typed "graffe"Which is closest?
 - graf
 - graft
 - grail
 - giraffe

 Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings
- Is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution
- Needed to transform one into the other

Minimum Edit Distance

4

• Two strings and their alignment:

Minimum Edit Distance

- If each operation has cost of 1
 - o Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8

How to find the Min Edit Distance?

- 6
- Searching for a path (sequence of edits) from the start string to the final string:
 - o **Initial state**: the word we're transforming
 - o **Operators**: insert, delete, substitute
 - o Goal state: the word we're trying to get to
 - Path cost: what we want to minimize: the number of edits

Minimum Edit as Search

- But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisted states.

Defining Min Edit Distance

8

- For two strings
 - X of length *n*
 - Y of length m
- We define D(i,j)
 - o the edit distance between X[1..i] and Y[1..j]
 - \square i.e., the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(n,m)

Dynamic Programming for Minimum Edit Distance

- **Dynamic programming**: A tabular computation of D(n,m)
- Solving problems by combining solutions to sub problems.
- Bottom-up
 - We compute D(i,j) for small i,j
 - And compute larger D(i,j) based on previously computed smaller values
 - o i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

Defining Min Edit Distance (Levenshtein)

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$

$$D(i | j) = min$$
if $X(i) \neq Y(j)$

$$D(i-1,j) + 1$$

$$D(i,j-1) + 1$$

$$V(j)$$

$$V(j)$$

• Termination:

D(N,M) is distance

0; if X(i) = Y(j)

The Edit Distance Table: Initialization

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4									
T	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

The Edit Distance Table

12

7/19/2023

The Edit Distance Table

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

13 7/19/2025

Computing alignments

- Edit distance isn't sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Edit Distance

15

N	9					رD(i-1	.,j) + 1						
O I	7			— D(<i>i,</i>	<i>j</i>) = min	D(i,j	D(i,j-1) + 1 —						
Т	6				$D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq \\ 0; & \text{if } S_1(i) = \end{cases}$								
N	5												
Е	4												
Т	3												
N	2												
Ι	1												
#	0	1	2	3	4	5	6	7	8	9			
	#	Е	X	Е	С	U	Т	I	0	N			

MinEdit with Backtrace

n	9	↓ 8	∠ ←↓9	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	/8	
0	8	↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	∠←↓ 11	↓ 10	↓9	∠ 8	← 9	
i	7	↓ 6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠←↓ 10	↓9	∠8	← 9	← 10	
t	6	↓ 5	∠ - ↓6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓ 8	<u>/</u> ←↓9	∠←↓ 10	∠←↓ 11	∠ ↓ 10	
e	4	∠3	← 4	∠ ← 5	← 6	← 7	←↓ 8	∠ ←↓9	∠←↓ 10	↓9	
t	3	∠ - ↓4	∠ ←↓ 5	∠ ←↓ 6	∠←↓ 7	∠ ←↓ 8	∠7	←↓ 8	∠ ←↓9	↓8	
n	2	∠ ←↓3	∠ ←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓ 8	↓ 7	∠←↓ 8	1 7	
i	1	∠←↓ 2	∠←↓ 3	∠ ←↓4	∠ ←↓ 5	∠ ←↓ 6	∠←↓ 7	Z 6	← 7	← 8	4
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

Base conditions:

$$D(i,0) = i$$

 $D(0,j) = j$

D(N,M) is distance

DIAG

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$

D(i-1, j-1) +

substitution

The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal sub alignments

Result of Backtrace

• Two strings and their alignment:

Performance

Time:

O(nm)

Space:

O(nm)

Backtrace

O(n+m)

21

THANK YOU