

CptS 317: Automata and Formal Languages

Assefaw Gebremedhin

assefaw.gebremedhin@wsu

http://www.eecs.wsu.edu/~assefaw

About me

- Name: Assefaw Gebremedhin

 (pronounced "Asse-faw" "Geb-re-me-d-hin")
- Email: assefaw.gebremedhin@wsu.edu
- Webpage: <u>www.eecs.wsu.edu/~assefaw</u>
- Research interests: Data science, graph algorithms, high performance computing, health informatics, cybersecurity
- Lab: Scalable Algorithms for Data Science (SCADS) Laboratory (https://scads.eecs.wsu.edu)
- Teaching at WSU:
 - CptS 475/575: Data Science (Fa. 2015--2021)
 - CptS 591: Elements of Network Science (Sp. 2015–2022)
 - CptS 317: Automata and Formal Languages (Sp. 2020, 2021)
 - DATA 424: Data Analytics Capstone (Sp. 2019)

- CptS 317 Spring 2022:
 - Lectures: MWF, 10:10--11
 - **Instructor Office Hour**: Wed. 1-2pm (or by appointment).
 - Graduate Teaching Assistant 1: James Halvorsen
 - Email: james.halvorsen@wsu.edu
 - Office Hour: TBD
 - Graduate Teaching Assistant 2: Olufunso Oje
 - Email: olufunso.oje@wsu.edu
 - Office Hour: TBD
 - **UG Teaching Assistant:** Nathan Waltz
 - Email: nathan.waltz@wsu.edu
 - Office Hour: TBD
 - All TAs Office: Dana 115

What I know (so far) about the class

- Enrolled: 115, Waitlisted: 7
- Majors:
 - BS in Computer Science
 - BS in Software Engineering
 - BA in Computer Science
 - BS in Data Analytics
 - BS in Electrical Engineering
 - BS in Computer Engineering
 - BA in Business

Course management system

- Everything will be done on Canvas
 - Syllabus
 - Lecture notes/slides
 - Panopto Recordings
 - Homework posting
 - Homework submission
 - Announcements
 - Messages (emails)
- Make sure to work on your Canvas setting
 - Time zone
 - Notification frequency

Course Objectives

- Introduce concepts in automata theory and theory of computation
- Identify different formal language classes and their relationships
- Design grammars and recognizers for different formal languages
- Prove theorems in automata theory using its properties
- Determine the decidability and intractability of computational problems

Major Course Topics (Modules)

- 1. Introduction
- 2. Regular Languages
- 3. Context-free Languages
- 4. Church-Turing Thesis
- 5. Decidability
- 6. Reducibility
- 7. Time Complexity

Why study theory of computation?

• Theory is relevant to practice

• Theory is relevant to you

• Theory is good for you

Why study theory of computation?

- 1) Theory is relevant to practice
 - Designing a new programming language for a specialized application
 - Grammars
 - String searching and pattern matching
 - Automata and regular expressions
 - Intractable problems
 - NP-completeness

Why study theory of computation?

- 2) Theory is relevant to you
 - It shows you a new, simpler, and more elegant side of computers
 - A theoretical course can heighten your aesthetic sense and help you build more beautiful systems
- 3) Theory is good for you
 - Studying it expands your mind

Pre-requisites

• CptS 122/132: Data Structures

• Math 216: Discrete Structures

Textbook

Textbook (required):

- Introduction to the Theory of Computation, 3rd Edition
 - By Michael Sipser

(Optional reference):

- Introduction to Automata Theory, Languages and Computation, 3rd Ed.
 - By J.E. Hopcroft, R. Motwani, J.D. Ullman

Textbook

Optional reference:

Coursework and grading

- 7 homeworks (58%) best 6 out of 7 will be used toward final grade
- 2 midterms (20%)
- 1 final exam (20%)
- Class participation (2%)
- Exam formats not decided yet
- Final letter grade based on ranges (see syllabus)

Homework submission policy

- Solutions submitted electronically on Canvas
 - Type up and generate PDF, or
 - Scan hand-written solution
- No late submissions allowed (unless there was prior permission)
 - Permission is given only under extraordinary circumstances
- Homeworks will be posted on Canvas.
- A HW will be posted a week before it is due, typically on a Wed

Homework policy

• All homework must be done individually

• Cheating:

- Helping others, getting help, looking up website for solution, etc
- Students caught cheating will be awarded an F grade, and will be subjected to the WSU academic dishonesty policy
- If something is not clear, on what constitutes cheating and what does not, please consult the instructor in advance

Exam policy

- 2 midterms and 1 final exam
- Format not decided yet (could be take-home)
- Will certainly be creative, will require reflection, challenging, fun
- Make-ups happen only under extraordinary circumstances
- Seek prior permission from instructor (at least two weeks in advance)

Weekly schedule

Week	Topics	Assignments/comments
01 (Jan 12)	Intro to course	HW0 (survey) out
02 (Jan 17)	Intro to automata theory	HW0 in, HW1 out
$03 \; (Jan \; 24)$	Finite Automata	HW1 in, HW2 out
$04 \; (Jan \; 31)$	Regular Expressions	HW2 in
05 (Feb 7)	Nonreguar Languages	HW3 out
06 (Feb 14)	Context-free Languages	HW3 in
07 (Feb 21)	Context-free Grammars	Mid-Term 1, HW4 out
08 (Feb 28)	Pushdown Automata	HW4 in, HW5 out
09 (Mar 7)	CFG and PDA equivalence, DFA minimization	HW5 in;
10 (Mar 14)	Spring Break	
11 (Mar 21)	Deterministic CFL, non-context free Languages	Review for MT2
12 (Mar 28)	Turing Machines	Mid-Term 2; HW 6 Out
13 (Apr 4)	Decidable languages	HW6 in; HW 7 out
14 (Apr 11)	Reducibility	HW 7 in
15 (Apr 18)	Time Complexity	Practice
16 (Apr 25)	NP-Completness, Review	
17 (May 2)	Finals Week	Final Exam

Lecture basics

- Classes will mostly be based on Slides but occasionally may involve "Board" writing
- Lecture slides will be posted on Canvas immediately after class
- Take your own notes in class (can't stress this enough), even if slides are posted afterwards

In conclusion...

- Welcome to this course again
- This is going to be a fun semester
- Put in your best effort
- You will be rewarded
- Class begins sharp at 10:10, be in class at least a few minutes early
- Thanks for today and see you in class on Friday!

