1 Advanced Improvements

1.1 Compare the results of checkpoint averaging and ensembling and fill the results in the table:

Model	BLEU Score	Time [s]
Only checkpoint25.pt	28.4	26.2
Only checkpoint26.pt	29.0	24.5
Only checkpoint27.pt	28.7	25.5
Averaged checkpoint ckpt_avg3.pt	29.8	24.1
Only ckpt_model2.pt	28.6	25.2
Ensemble checkpoint $2\{5,6,7\}$. pt	29.8	68.7
Ensemble ckpt_avg3.pt and ckpt_model2.pt	30.1	46.8

1.2 What are your observations on the decoding speed?

Checkpoint Averaging maintains the decoding speed similar to that of a single model since the averaged model is still a single model.

Ensembling significantly slows down the decoding process because it requires running multiple models for each input. With Ensembling the runtime has increased linearly in the number of models. The more models in the ensemble, the slower the decoding process, as the computational overhead increases linearly with the number of models.

1.3 What are potential advantages and disadvantages of doing so?

The Dutch texts are more aggresively split into subwords, because we reuse the BPE learned on the German-English data.

Advantages	Disadvantages	
Resource Efficiency: Reusing	Suboptimal Subword Seg-	
BPE models means not having to	mentation for Dutch: Dutch	
train a new subword model specif-	has its unique linguistic fea-	
ically for Dutch	tures and vocabulary that may	
	not be optimally captured by a	
	BPE model trained on German-	
	English data	
Consistency Across Lan-	Potential for Increased Out-	
guages: Applying the same BPE	of-Vocabulary (OOV) Rates:	
model across different languages	If the BPE model does not seg-	
may help maintain consistency in	ment Dutch words in a way that	
the handling of subwords	aligns with their actual usage or	
	morphological structure, it could	
	increase the OOV rate.	
Better Handling of Loan-	Impacts on Model Training	
words and Named Entities:	and Adaptation: Training a	
Dutch and German share a con-	model with suboptimal segmen-	
siderable amount of vocabulary,	tation could also affect the ef-	
including loanwords and named	ficiency of the model's learning	
entities	process	

1.4 What would happen if we leave out –decoder-langtok?

Omitting—decoder-langtok in a multilingual translation task affects the model's performance by introducing ambiguity about the target language, potentially leading to decreased translation quality and reduced operational flexibility. Therefore the Bleu score drops sharply.