TTIC 31250 An Introduction to the Theory of Machine Learning

Uniform convergence, tail inequalities, VC-dimension I

Avrim Blum 04/20/20

Basic sample complexity bound recap

- If $|S| \ge \frac{1}{\epsilon} \left[\ln |H| + \ln \frac{1}{\delta} \right]$, then with probability $\ge 1 \delta$, all $h \in H$ with $\operatorname{err}_{\mathsf{D}}(\mathsf{h}) \ge \epsilon$ have $\operatorname{err}_{\mathsf{S}}(\mathsf{h}) > 0$.
- * Argument: fix bad h. Prob of consistency at most $(1-\epsilon)^{|S|}$. Set to $\delta/|H|$ and use union bound.
- So, if the target concept is in H, and we have an algorithm that can find consistent functions, then we only need this many examples to achieve the PAC guarantee.

3

Uniform Convergence

- Our basic result only bounds the chance that a bad hypothesis looks perfect on the data. What if there is no perfect hEH?
- Without making any assumptions about the target function, can we say that whp all h∈H satisfy $|err_D(h) err_S(h)| \le \epsilon$?
 - Called "uniform convergence".
 - Motivates optimizing over S, even if we can't find a perfect function.
- To prove bounds like this, need some good tail inequalities.

Today: back to distributional setting

- We are given sample $S = \{(x_i, y_i)\}.$
 - Assume x's come from some fixed probability distribution D over instance space.
 - View labels y as being produced by some target function. [Or can think of distrib over pairs (x_i, y_i) .]
- Alg does optimization over S to produce some hypothesis h. Want h to do well on new examples also from D.
- How big does 5 have to be to get this kind of guarantee?

Today: two issues

- If $|S| \ge \frac{1}{\epsilon} \left[\ln |H| + \ln \frac{1}{\delta} \right]$, then with probability $\ge 1 \delta$, all $h \in H$ with $\operatorname{err}_{\mathcal{D}}(h) \ge \epsilon$ have $\operatorname{err}_{\mathcal{D}}(h) > 0$.
- Look at more general notions of "uniform convergence".
- Replace In(|H|) with better measures of complexity.

<u>Tail inequalities</u>

Tail inequality: bound probability mass in tail of distribution.

Consider a hypothesis h with true error p.

6

- If we see m examples, then the expected fraction of mistakes is p, and the standard deviation σ is $(p(1-p)/m)^{1/2}$.
- A convenient rule for iid Bernoulli trials, in our notation, is: $Pr[|err_b(h) err_s(h)| > 1.96\sigma] < 0.05$.
 - If we want 95% confidence that true and observed errors differ by only ϵ , only need $(1.96)^2p(1-p)/\epsilon^2 < 1/\epsilon^2$ examples. [worst case is when p=1/2]
- Chernoff and Hoeffding bounds extend to case where we want to show something is really unlikely, so can rule out lots of hypotheses.

1

Chernoff and Hoeffding bounds

Consider m flips of a coin of bias p. Let N_{heads} be the observed # heads. Let $\epsilon, \alpha \in [0,1]$.

Hoeffding bounds:

- $Pr[N_{heads}/m > p + \varepsilon] \le e^{-2m\varepsilon^2}$, and
- $Pr[N_{heads} / m .$

Chernoff bounds:

- $Pr[N_{heads} / m > p(1+\alpha)] \le e^{-mp\alpha^2/3}$, and
- $\Pr[N_{heads} / m < p(1-\alpha)] \le e^{-mp\alpha^2/2}$.

E.g,

- Pr[N_{heads} > 2(expectation)] ≤ e^{-(expectation)/3}.
- $Pr[N_{heads} < (expectation)/2] \le e^{-(expectation)/8}$.

7

8

Typical use of bounds

Thm: If $|S| \geq \frac{1}{2\epsilon^2} \Big[\ln(2|H|) + \ln\Big(\frac{1}{\delta}\Big) \Big]$, then with prob $\geq 1 - \delta$, all $h \in H$ have $|\text{err}_{\mathsf{D}}(h)| \cdot \text{err}_{\mathsf{S}}(h)| < \epsilon$.

- Proof: Just apply Hoeffding + union bound.
 - Chance of failure at most $2|H|e^{-2|S|\epsilon^2}$.
 - Set to δ. Solve.
- So, whp, best on sample is ε-best over D.
 - Note: this is worse than previous bound (1/ ϵ has become 1/ ϵ ²), because we are asking for something stronger.
 - Can also get bounds "between" these two.

9

Next topic: improving the |H|

• For convenience, let's go back to the question: how big does S have to be so that whp, $\operatorname{err}_S(h) = 0 \Rightarrow \operatorname{err}_D(h) \leq \varepsilon$.

Typical use of bounds

Thm: If $|S| \ge \frac{1}{2\epsilon^2} \left[\ln(2|H|) + \ln\left(\frac{1}{\delta}\right) \right]$, then with prob $\ge 1 - \delta$, all $h \in H$ have $|\text{err}_{\mathsf{D}}(h) - \text{err}_{\mathsf{S}}(h)| < \epsilon$.

- Proof: Just apply Hoeffding + union bound.
 - Chance of failure at most $2|H|e^{-2|S|\epsilon^2}$.
 - Set to δ. Solve.

Hoeffding bounds:

- $Pr[N_{heads}/m > p + \varepsilon] \le e^{-2m\varepsilon^2}$
- $Pr[N_{heads} / m$

Typical use of bounds

Thm: If $|S| \ge \frac{6}{\epsilon} \left[\ln |H| + \ln \frac{1}{\delta} \right]$, then with prob $\ge 1-\delta$, all $h \in H$ with $\operatorname{err}_{\mathsf{D}}(h) > 2\epsilon$ have $\operatorname{err}_{\mathsf{S}}(h) > \epsilon$, and all $h \in H$ with $\operatorname{err}_{\mathsf{D}}(h) < \epsilon/2$ have $\operatorname{err}_{\mathsf{S}}(h) < \epsilon$.

Proof: apply Chernoff...

Chernoff bounds:

- $Pr[N_{heads} / m > p(1+\alpha)] \le e^{-mp\alpha^2/3}$
- $Pr[N_{heads} / m < p(1-\alpha)] \le e^{-mp\alpha^2/2}$

E.g,

- Pr[N_{heads} > 2(expectation)] ≤ e^{-(expectation)/3}.
 - $Pr[N_{heads} < (expectation)/2] \le e^{-(expectation)/8}$.

10

VC-dimension and effective size of H

- If many hypotheses in H are very similar, we shouldn't have to pay so much
- E.g., consider the class $H = \{[0,a]: 0 \le a \le 1\}$.
 - Define a_{ϵ} so $Pr([a_{\epsilon},a])=\epsilon$, and a_{ϵ}' so $Pr([a,a_{\epsilon}'])=\epsilon$.

- Enough to get at least one example in each interval. Just need $(1-\epsilon)^{|S|} \le \delta/2$.
- $(1/\epsilon)\ln(2/\delta)$ examples.
- How can we generalize this notion?

11

Effective number of hypotheses

Define: H[S] = set of all different ways to label points in S using concepts in H.

Define H[m] = maximum |H[S]| over datasets S of m points.

What is H[m] for "initial intervals"?

Effective number of hypotheses

Define: H[S] = set of all different ways to label points in S using concepts in H.

Define H[m] = maximum |H[S]| over datasets S of m points.

What is H[m] for linear separators in R^2 ?

13

Effective number of hypotheses

Define: H[S] = set of all different ways to label points in S using concepts in H.

Define H[m] = maximum |H[S]| over datasets S of m points.

Thm: For any class H, distribution D, if

$$|S| = m > \frac{2}{\epsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right],$$

then with prob. 1- δ , all $h \in H$ with error > ϵ are inconsistent with data. [Will prove next class]

I.e., can roughly replace "|H|" with "H[2m]".

15

16

14

Shattering

- Defn: A set of points S is shattered by H if there are concepts in H that label S in all of the 2^{|S|} possible ways.
 - In other words, all possible ways of classifying points in S are achievable using concepts in H.
- E.g., any 3 non-collinear points in \mathbb{R}^2 can be shattered by linear threshold functions, but no set of 4 points can be.

Effective number of hypotheses

Define: H[S] = set of all different ways to label points in S using concepts in H.

Define H[m] = maximum |H[S]| over datasets S of m points.

- H[m] is sometimes hard to calculate exactly, but can get a good bound using "VC-dimension".
- VC-dimension is roughly the point at which H stops looking like it contains all functions.

VC-dimension

- The VC-dimension of a hypothesis class H is the size of the largest set of points that can be shattered by H.
- So, if the VC-dimension is d, that means there
 exists a set of d points that can be shattered, but
 no set of d+1 points can be shattered.
- E.g., VC-dim(linear threshold fns in 2-D) = 3.
 - Will later show VC-dim(LTFs in R^n) = n+1.
 - What is the VC-dim of intervals on the real line? 2
 - How about C = {all 0/1 functions on {0,1}ⁿ}?

17 18

Upper and lower bound theorems

- Theorem 1: For any class H, distribution D, if $m = |S| > \frac{2}{\epsilon} \left[\log_2(2H[2m]) + \log_2 \frac{1}{\delta} \right]$, then with prob. 1- δ , all $h \in H$ with error > ϵ are inconsistent with data.
- Theorem 2 (Sauer's lemma):

$$H[m] \leq \sum_{i=0}^{VCdim(H)} {m \choose i} = O(m^{VCdim(H)}).$$

- Corollary 3: can replace bound in Thm 1 with $O\left(\frac{1}{\epsilon}\Big|VCdim(H)\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\Big|\right)$
- Theorem 4: For any alg A, class H, exists distrib D and target in H such that if $|S| < \frac{VCdim(H)-1}{8\epsilon}$ then $E[err_D(A)] \ge \epsilon$.

19

Upper and lower bound theorems

- Theorem 4: For any alg A, class H, exists distrib D, $f \in H$ s.t. if $|S| < \frac{VCdim(H)-1}{8\varepsilon}$ then $\mathsf{E}[\mathsf{err}_\mathsf{D}(\mathsf{A})] \geq \varepsilon$.
- · Proof:
 - Consider d = VC-dim(H) shattered points. Define distrib D with prob $1-4\epsilon$ on one point and prob $\frac{4\epsilon}{d-1}$ on the rest.
 - Pick a random labeling of the d points as the target.
 - $E[err_D(A)] = Pr[mistake \ on \ test \ point] \ge \frac{1}{2} Pr[test \ point \ not \ in \ S] \ge \frac{1}{2} (4\epsilon) \left(1 \frac{4\epsilon}{d-1}\right)^{|S|} \ge (2\epsilon) \left(1 \frac{|S|4\epsilon}{d-1}\right) = (2\epsilon) \left(1 \frac{1}{2}\right) = \epsilon.$

20

Upper and lower bound theorems

- Theorem 2 (Sauer's lemma): $H[m] \le {m \choose \le d} = \text{ways of }$ choosing d=VCdim(H) or fewer items out of m.
- Proof:
 - First, note that $\binom{m}{\leq d} = \binom{m-1}{\leq d} + \binom{m-1}{\leq d-1}$. See why?

Upper and lower bound theorems

- Theorem 2 (Sauer's lemma): $H[m] \le {m \choose \le d} = \text{ways of }$ choosing d=VCdim(H) or fewer items out of m.
- Proof:
 - First, note that $\binom{m}{\leq d} = \binom{m-1}{\leq d} + \binom{m-1}{\leq d-1}$. See why?
 - Say we have a set S of m examples. Look at H[S].
 - Pick an $x \in S$. Call $h, h' \in H[S]$ "twins" if differ only on x.
 - We know $H[S \setminus \{x\}]$ has $\leq \binom{m-1}{\leq d}$ labelings by induction.
 - How much larger is H[S] compared to $H[S \setminus \{x\}]$? Just the number of twins. Let $H' = \{h \in H[S] \text{ that labels } x \text{ negative but has a twin that labels } x \text{ positive}\}.$
 - $VCdim(H') \le d 1$. (Since $VCdim(H) \ge VCdim(H') + 1$.)
 - Proof follows.

21