0.1 Time lags

0.1.1 Method

Some bla bla about cross correlaion and stacking

0.1.2 Cross-correlation of tremor recordings

Definitions

We define the Fourier transform \hat{f} of the function f by:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt \tag{1}$$

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t} d\omega \tag{2}$$

We define the convolution product by:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$
(3)

We have:

$$(\hat{f} * g)(\omega) = \sqrt{2\pi} \hat{f}(\omega) \hat{g}(\omega) \tag{4}$$

and:

$$(\hat{f}g)(\omega) = \frac{1}{\sqrt{2\pi}}\hat{f}(\omega) * \hat{g}(\omega)$$
 (5)

We define the cross correlation by:

$$(f \otimes g)(t) = \int_{-\infty}^{\infty} f^*(\tau)g(t+\tau)d\tau \tag{6}$$

where f^* is the complex conjugate of f. We have:

$$(f \hat{\otimes} g)(\omega) = \sqrt{2\pi} \hat{f}^*(\omega) \hat{g}(\omega) \tag{7}$$

and:

$$(\hat{f}g)(\omega) = \frac{1}{\sqrt{2\pi}}\hat{f}^*(\omega) \otimes \hat{g}(\omega) \tag{8}$$

Finally, we have:

$$(f(t) * g(t)) \otimes (f(t) * g(t)) = (f(t) \otimes f(t)) * (g(t) \otimes g(t))$$

$$(9)$$

If we have a point source at ξ with a source function $f_k(t)$ for k = 1, 2, 3, then we can express the displacement u(x, t) with the Green's function:

$$u_i(x,t) = \int_{-\infty}^{\infty} G_{ik}(x,\xi,t-\tau) f_k(\xi,\tau) d\tau \tag{10}$$

In the case of a moment tensor, we have:

$$u_i(x,t) = \int_{-\infty}^{\infty} \frac{\partial G_{ip}}{\partial \xi_q}(x,\xi,t-\tau) M_{pq}(\xi,\tau) d\tau$$
(11)

In the Fourier domain, we have:

$$\hat{u}_i(x,\omega) = \sqrt{2\pi}\hat{G}_{ik}(x,\xi,\omega)\hat{f}_k(\xi,\omega)$$
(12)

or:

$$\hat{u}_i(x,\omega) = \sqrt{2\pi} \frac{\partial \hat{G}_{ip}}{\partial \xi_a}(x,\xi,\omega) \hat{M}_{pq}(\xi,\omega)$$
(13)

When we compute the cross correlation between two components of the displacements, we have:

$$(u_i \otimes u_j)(x,t) = \int_{-\infty}^{\infty} u_i^*(x,\tau)u_j(x,t+\tau)d\tau$$
(14)

In the Fourier domain, we have:

$$(u_{i} \hat{\otimes} u_{j})(x,\omega) = \sqrt{2\pi} \hat{u}_{i}^{*}(x,\omega) \hat{u}_{j}(x,\omega)$$

$$= (2\pi)^{\frac{3}{2}} [\hat{G}_{ik}^{*}(x,\xi,\omega) \hat{f}_{k}^{*}(\xi,\omega)] [\hat{G}_{jl}(x,\xi,\omega) \hat{f}_{l}(\xi,\omega)]$$

$$= (2\pi)^{\frac{3}{2}} [\frac{\partial \hat{G}_{ip}}{\partial \xi_{q}}^{*}(x,\xi,\omega) \hat{M}_{pq}^{*}(\xi,\omega)] [\frac{\partial \hat{G}_{jr}}{\partial \xi_{s}}(x,\xi,\omega) \hat{M}_{rs}(\xi,\omega)]$$

$$(15)$$

Change of coordinates

Point source Equation (15) can be written as:

$$\begin{pmatrix}
(u_1 \otimes u_1) & (u_1 \otimes u_2) & (u_1 \otimes u_3) \\
(u_2 \otimes u_1) & (u_2 \otimes u_2) & (u_2 \otimes u_3) \\
(u_3 \otimes u_1) & (u_3 \otimes u_2) & (u_3 \otimes u_3)
\end{pmatrix} = (2\pi)^{\frac{3}{2}} \begin{pmatrix}
\hat{G}_{11}^{*} & \hat{G}_{12}^{*} & \hat{G}_{13}^{*} \\
\hat{G}_{21}^{*} & \hat{G}_{22}^{*} & \hat{G}_{23}^{*} \\
\hat{G}_{31}^{*} & \hat{G}_{32}^{*} & \hat{G}_{33}^{*}
\end{pmatrix}
\begin{pmatrix}
\hat{f}_{1}^{*} \\
\hat{f}_{2}^{*} \\
\hat{f}_{3}^{*}
\end{pmatrix}
\begin{pmatrix}
\hat{f}_{1} & \hat{f}_{2} & \hat{f}_{3}
\end{pmatrix}
\begin{pmatrix}
\hat{G}_{11} & \hat{G}_{21} & \hat{G}_{31} \\
\hat{G}_{12} & \hat{G}_{22} & \hat{G}_{32} \\
\hat{G}_{13}^{*} & \hat{G}_{32}^{*} & \hat{G}_{33}^{*}
\end{pmatrix}$$
(16)

that is:

$$\hat{U} = (2\pi)^{\frac{3}{2}} \hat{G}^* \hat{f}^* \hat{f}^T \hat{G}^T \tag{17}$$

We define a new coordinate system with the unit vectors $n^{(1)}$, $n^{(2)}$ and $n^{(3)}$, and the matrix N by:

$$N = \begin{pmatrix} n_1^{(1)} & n_1^{(2)} & n_1^{(3)} \\ n_2^{(1)} & n_2^{(2)} & n_2^{(3)} \\ n_3^{(1)} & n_3^{(2)} & n_3^{(3)} \end{pmatrix}$$
(18)

In the new coordinate system, the Green's function is equal to $G' = N^T G N$, thus we have:

$$N^{T}\hat{U}N = (2\pi)^{\frac{3}{2}}\hat{G'}^{*}N^{T}\hat{f}^{*}\hat{f}^{T}N\hat{G'}^{T}$$
(19)

with:

$$N^{T}\hat{U}N = \begin{pmatrix} (u.n^{(1)} \hat{\otimes} u.n^{(1)}) & (u.n^{(1)} \hat{\otimes} u.n^{(2)}) & (u.n^{(1)} \hat{\otimes} u.n^{(3)}) \\ (u.n^{(2)} \hat{\otimes} u.n^{(1)}) & (u.n^{(2)} \hat{\otimes} u.n^{(2)}) & (u.n^{(2)} \hat{\otimes} u.n^{(3)}) \\ (u.n^{(3)} \hat{\otimes} u.n^{(1)}) & (u.n^{(3)} \hat{\otimes} u.n^{(2)}) & (u.n^{(3)} \hat{\otimes} u.n^{(3)}) \end{pmatrix}$$

$$(20)$$

If we choose N_1 such that:

$$N_1^T \hat{f} = \begin{pmatrix} \hat{F} \\ 0 \\ 0 \end{pmatrix} \tag{21}$$

we get:

$$N_{1}^{T}\hat{U}N_{1} = (2\pi)^{\frac{3}{2}}\hat{F}^{*}\hat{F} \begin{pmatrix} \hat{G}_{11}^{'} {}^{*}\hat{G}_{11}^{'} & \hat{G}_{11}^{'} {}^{*}\hat{G}_{21}^{'} & \hat{G}_{11}^{'} {}^{*}\hat{G}_{31}^{'} \\ \hat{G}_{21}^{'} {}^{*}\hat{G}_{11}^{'} & \hat{G}_{21}^{'} {}^{*}\hat{G}_{21}^{'} & \hat{G}_{21}^{'} {}^{*}\hat{G}_{31}^{'} \\ \hat{G}_{31}^{'} {}^{*}\hat{G}_{11}^{'} & \hat{G}_{31}^{'} {}^{*}\hat{G}_{21}^{'} & \hat{G}_{31}^{'} {}^{*}\hat{G}_{31}^{'} \end{pmatrix}$$

$$(22)$$

If we choose N_2 such that:

$$N_2^T \hat{f} = \begin{pmatrix} 0 \\ \hat{F} \\ 0 \end{pmatrix} \tag{23}$$

we get:

$$N_2^T \hat{U} N_2 = (2\pi)^{\frac{3}{2}} \hat{F}^* \hat{F} \begin{pmatrix} \hat{G}_{12}^{'} * \hat{G}_{12}^{'} & \hat{G}_{12}^{'} * \hat{G}_{22}^{'} & \hat{G}_{12}^{'} * \hat{G}_{32}^{'} \\ \hat{G}_{22}^{'} * \hat{G}_{12}^{'} & \hat{G}_{22}^{'} * \hat{G}_{22}^{'} & \hat{G}_{22}^{'} * \hat{G}_{32}^{'} \\ \hat{G}_{32}^{'} * \hat{G}_{12}^{'} & \hat{G}_{32}^{'} * \hat{G}_{22}^{'} & \hat{G}_{32}^{'} * \hat{G}_{32}^{'} \end{pmatrix}$$

$$(24)$$

If we choose N_3 such that:

$$N_3^T \hat{f} = \begin{pmatrix} 0\\0\\\hat{F} \end{pmatrix} \tag{25}$$

we get:

$$N_3^T \hat{U} N_3 = (2\pi)^{\frac{3}{2}} \hat{F}^* \hat{F} \begin{pmatrix} \hat{G}'_{13} & \hat{G}'_{13} & \hat{G}'_{13} & \hat{G}'_{23} & \hat{G}'_{13} & \hat{G}'_{33} \\ \hat{G}'_{23} & \hat{G}'_{13} & \hat{G}'_{23} & \hat{G}'_{23} & \hat{G}'_{23} & \hat{G}'_{33} \\ \hat{G}'_{33} & \hat{G}'_{13} & \hat{G}'_{33} & \hat{G}'_{23} & \hat{G}'_{33} & \hat{G}'_{33} \end{pmatrix}$$

$$(26)$$

If we define strike ϕ , dip δ and rake λ , we can define the following vectors

$$e_{1} = \begin{pmatrix} \sin \phi \\ \cos \phi \\ 0 \end{pmatrix}, e_{2} = \begin{pmatrix} \cos \phi \\ -\sin \phi \\ 0 \end{pmatrix}, e_{3} = \cos \delta e_{2} - \sin \delta e_{z} = \begin{pmatrix} \cos \phi \cos \delta \\ -\sin \phi \cos \delta \\ -\sin \delta \end{pmatrix} \text{ and } e_{4} = \sin \delta e_{2} + \cos \delta e_{z} = \begin{pmatrix} \cos \phi \sin \delta \\ -\sin \phi \sin \delta \\ \cos \delta \end{pmatrix}$$
(27)

and the new coordinate system (u, v, w) with:

$$u = \cos \lambda e_1 - \sin \lambda e_3, v = -\sin \lambda e_1 - \cos \lambda e_3 \text{ and } w = e_4$$
 (28)

Thus we have:

$$u = \begin{pmatrix} \sin \phi \cos \lambda - \cos \phi \cos \delta \sin \lambda \\ \cos \phi \cos \lambda + \sin \phi \cos \delta \sin \lambda \\ \sin \delta \sin \lambda \end{pmatrix}, v = \begin{pmatrix} -\sin \phi \sin \lambda - \cos \phi \cos \delta \cos \lambda \\ -\cos \phi \sin \lambda + \sin \phi \cos \delta \sin \lambda \\ -\sin \delta \cos \lambda \end{pmatrix} \text{ and } w = \begin{pmatrix} \cos \phi \sin \delta \\ -\sin \phi \sin \delta \\ \cos \delta \end{pmatrix}$$
(29)

We can choose:

$$N_{1} = \begin{pmatrix} u_{x} & v_{x} & w_{x} \\ u_{y} & v_{y} & w_{y} \\ u_{z} & v_{z} & w_{z} \end{pmatrix} = \begin{pmatrix} \sin\phi\cos\lambda - \cos\phi\cos\delta\sin\lambda & -\sin\phi\sin\lambda - \cos\phi\cos\delta\cos\lambda & \cos\phi\sin\delta \\ \cos\phi\cos\lambda + \sin\phi\cos\delta\sin\lambda & -\cos\phi\sin\lambda + \sin\phi\cos\delta\sin\lambda & -\sin\phi\sin\delta \\ \sin\delta\sin\lambda & -\sin\delta\cos\lambda & \cos\delta \end{pmatrix}$$
(30)

to get Equation (19). To get Equations (21) and (23), we just have to permute the columns of N_1 to get N_2 and N_3 . If we go back into the time domain, we have:

$$N_{k}^{T} \begin{pmatrix} u_{1} \otimes u_{1} & u_{1} \otimes u_{2} & u_{1} \otimes u_{3} \\ u_{2} \otimes u_{1} & u_{2} \otimes u_{2} & u_{2} \otimes u_{3} \\ u_{3} \otimes u_{1} & u_{3} \otimes u_{2} & u_{3} \otimes u_{3} \end{pmatrix} N_{k} = \begin{pmatrix} (F * G'_{1k}) \otimes (F * G'_{1k}) & (F * G'_{1k}) \otimes (F * G'_{2k}) & (F * G'_{2k}) \otimes (F * G'_{3k}) \\ (F * G'_{2k}) \otimes (F * G'_{1k}) & (F * G'_{2k}) \otimes (F * G'_{2k}) & (F * G'_{2k}) \otimes (F * G'_{3k}) \\ (F * G'_{3k}) \otimes (F * G'_{1k}) & (F * G'_{3k}) \otimes (F * G'_{2k}) & (F * G'_{2k}) \otimes (F * G'_{3k}) \end{pmatrix}$$
(31)

which can also be written as:

$$N_{k}^{T} \begin{pmatrix} u_{1} \otimes u_{1} & u_{1} \otimes u_{2} & u_{1} \otimes u_{3} \\ u_{2} \otimes u_{1} & u_{2} \otimes u_{2} & u_{2} \otimes u_{3} \\ u_{3} \otimes u_{1} & u_{3} \otimes u_{2} & u_{3} \otimes u_{3} \end{pmatrix} N_{k} = \begin{pmatrix} (F \otimes F) * (G'_{1k} \otimes G'_{1k}) & (F \otimes F) * (G'_{1k} \otimes G'_{2k}) & (F^{S} \otimes F^{S}) * (G'_{1k} \otimes G'_{3k}) \\ (F \otimes F) * (G'_{2k} \otimes G'_{1k}) & (F \otimes F) * (G'_{2k} \otimes G'_{2k}) & (F^{S} \otimes F^{S}) * (G'_{2k} \otimes G'_{3k}) \\ (F \otimes F) * (G'_{3k} \otimes G'_{1k}) & (F \otimes F) * (G'_{3k} \otimes G'_{2k}) & (F^{S} \otimes F^{S}) * (G'_{3k} \otimes G'_{3k}) \end{pmatrix}$$

$$(32)$$

Moment tensor We have:

$$M_{pq} = \int \int_{\Sigma} m_{pq} d\Sigma = \int \int_{\Sigma} \mu(\nu_p[u_q] + \nu_q[u_p]) d\Sigma = \mu A(\nu_p[u_q] + \nu_q[u_p])$$
(33)

where ν is the normal to the fault surface and [u] is the displacement discontinuity on the fault. We define a new coordinates system with the unit vectors $n^{(1)}$, $n^{(2)}$ and $n^{(3)}$, and the matrix N by:

$$N = \begin{pmatrix} n_1^{(1)} & n_1^{(2)} & n_1^{(3)} \\ n_2^{(1)} & n_2^{(2)} & n_2^{(3)} \\ n_3^{(1)} & n_3^{(2)} & n_3^{(3)} \end{pmatrix}$$
(34)

In the new coordinates system, the Green's function is equal to $G' = N^T G N$, the moment tensor to $M' = N^T M N$, and the displacement to $u' = N^T u$. We choose N such that:

$$M' = \mu DA \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{35}$$

Therefore, we have:

$$u_{i}' \hat{\otimes} u_{j}' = (2\pi)^{\frac{3}{2}} \mu D^{*} A \left[\frac{\partial \hat{G}_{i1}'}{\partial \xi_{1}'} - \frac{\partial \hat{G}_{i2}'}{\partial \xi_{2}'} \right] \mu D A \left[\frac{\partial \hat{G}_{j1}'}{\partial \xi_{1}'} - \frac{\partial \hat{G}_{j2}'}{\partial \xi_{1}'} \right]$$
(36)

If we come back in the time domain, we have:

$$u_i' \otimes u_j' = \mu^2 A^2 \left(D * \left[\frac{\partial G_{i1}'}{\partial \xi_1'} - \frac{\partial G_{i2}'}{\partial \xi_2'}\right]\right) \otimes \left(D * \left[\frac{\partial G_{j1}'}{\partial \xi_1'} - \frac{\partial G_{j2}'}{\partial \xi_2'}\right]\right)$$
(37)

which can also be written as:

$$u_i' \otimes u_j' = \mu^2 A^2(D \otimes D) * (\left[\frac{\partial G_{i1}'}{\partial \xi_1'} - \frac{\partial G_{i2}'}{\partial \xi_2'}\right] \otimes \left[\frac{\partial G_{j1}'}{\partial \xi_1'} - \frac{\partial G_{j2}'}{\partial \xi_2'}\right])$$
(38)

If we choose N such that:

$$M' = \mu DA \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \tag{39}$$

we would get:

$$u_i' \otimes u_j' = \mu^2 A^2(D \otimes D) * (\left[\frac{\partial G_{i1}'}{\partial \xi_1'} - \frac{\partial G_{i3}'}{\partial \xi_3'}\right] \otimes \left[\frac{\partial G_{j1}'}{\partial \xi_1'} - \frac{\partial G_{j3}'}{\partial \xi_3'}\right])$$

$$\tag{40}$$

If we choose N such that:

$$M' = \mu DA \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \tag{41}$$

we would get:

$$u_i' \otimes u_j' = \mu^2 A^2(D \otimes D) * ([\frac{\partial G_{i2}'}{\partial \xi_2'} - \frac{\partial G_{i3}'}{\partial \xi_3'}] \otimes [\frac{\partial G_{j2}'}{\partial \xi_2'} - \frac{\partial G_{j3}'}{\partial \xi_3'}])$$

$$(42)$$

How to compute the autocorrelation of the source term $F \otimes F$ or $D \otimes D$?

White noise At time t_i , we assume that the amplitude of the source function is A_i (random variable with expectancy m = 0 and standard deviation σ). We define a_i by:

$$P(A_i < p_0) = \int_{-\infty}^{p_0} a_i(p) dp$$
 (43)

We have:

$$\int_{-\infty}^{\infty} a_i(p)dp = m \tag{44}$$

and:

$$\int_{-\infty}^{\infty} a_i^2(p)dp = m^2 + \sigma^2 \tag{45}$$

We suppose that the source function is a white noise, that is:

$$\int_{-\infty}^{\infty} (a_i(p) - m)(a_j(p) - m)dp = 0$$

$$\tag{46}$$

Thus, we have:

$$\int_{-\infty}^{\infty} a_i(p)a_j(p)dp = m^2 \tag{47}$$

We define the source time function $F(t_i) = A_i$ and we compute the autocorrelation. We have:

$$(F \otimes F)(t) = \int_{-\infty}^{\infty} F^*(\tau)F(t+\tau)d\tau \tag{48}$$

The expectancy of the term $F^*(\tau)F(t+\tau)$ is $m^2+\sigma^2$ if t=0 and m^2 if $t\neq 0$.

Stacking

0.1.3 Computation of amplitudes for P-, SV- and SH-waves

Changes of coordinates

We denote (x, y) the coordinates of the receiver array, (x_0, y_0) the coordinates of the tremor source, and d the depth of the tremor source.

In the $(\vec{e}_X, \vec{e}_Y, \vec{e}_Z)$ coordinate system, we have:

$$\vec{e}_R = \begin{pmatrix} \cos \beta \\ \sin \beta \\ 0 \end{pmatrix}, \ \vec{e}_T = \begin{pmatrix} -\sin \beta \\ \cos \beta \\ 0 \end{pmatrix} \text{ and } \vec{e}_Z = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (49)

with $\beta = \operatorname{atan2}(y - y_0, x - x_0)$

In the $(\vec{e}_R, \vec{e}_T, \vec{e}_Z)$ coordinate system, we have:

$$\vec{e}_X = \begin{pmatrix} \cos \beta \\ -\sin \beta \\ 0 \end{pmatrix}, \ \vec{e}_Y = \begin{pmatrix} \sin \beta \\ \cos \beta \\ 0 \end{pmatrix} \text{ and } \vec{e}_Z = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 (50)

For the direct wave, we have:

$$\vec{e}_P = \begin{pmatrix} \sin \alpha \\ 0 \\ \cos \alpha \end{pmatrix}, \ \vec{e}_{SV} = \begin{pmatrix} \cos \alpha \\ 0 \\ -\sin \alpha \end{pmatrix} \text{ and } \vec{e}_{SH} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 (51)

with $\alpha = \frac{\sqrt{(x-x_0)^2 + (y-y_0)^2}}{d}$

For the reflected wave, we have:

$$\vec{e}_P = \begin{pmatrix} \sin \alpha \\ 0 \\ -\cos \alpha \end{pmatrix}, \ \vec{e}_{SV} = \begin{pmatrix} \cos \alpha \\ 0 \\ \sin \alpha \end{pmatrix} \text{ and } \vec{e}_{SH} = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$
 (52)

where α is computed with the RayTracing code.

In the $(\vec{e}_P, \vec{e}_{SV}, \vec{e}_{SH})$ coordinate system, we have for the direct wave:

$$\vec{e}_R = \begin{pmatrix} \sin \alpha \\ \cos \alpha \\ 0 \end{pmatrix}, \ \vec{e}_T = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ and } \vec{e}_Z = \begin{pmatrix} \cos \alpha \\ -\sin \alpha \\ 0 \end{pmatrix}$$
 (53)

For the reflected wave, we have:

$$\vec{e}_R = \begin{pmatrix} \sin \alpha \\ \cos \alpha \\ 0 \end{pmatrix}, \ \vec{e}_T = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \text{ and } \vec{e}_Z = \begin{pmatrix} -\cos \alpha \\ \sin \alpha \\ 0 \end{pmatrix}$$
 (54)

We compute the seismic moment M in the $(\vec{e}_X, \vec{e}_Y, \vec{e}_Z)$ coordinate system. We have:

$$M_{ij} = u_i \nu_j + u_j \nu_i \tag{55}$$

with:

$$\vec{u} = \begin{pmatrix} -\cos\delta\cos\phi \\ \cos\delta\sin\phi \\ \sin\delta \end{pmatrix} \text{ and } \vec{\nu} = \begin{pmatrix} \sin\delta\cos\phi \\ -\sin\delta\sin\phi \\ \cos\delta \end{pmatrix}$$
 (56)

where ϕ is the strike of the subducting plate, and δ is the dip of the subducting plate. We then compute the value of M in the $(\vec{e}_P, \vec{e}_{SV}, \vec{e}_{SH})$ coordinate system. We have:

$$\begin{pmatrix}
M_{RR} & M_{RT} & M_{RZ} \\
M_{TR} & M_{TT} & M_{TZ} \\
M_{ZR} & M_{ZT} & M_{ZZ}
\end{pmatrix} = \begin{pmatrix}
\cos \beta & \sin \beta & 0 \\
-\sin \beta & \cos \beta & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
M_{XX} & M_{XY} & M_{XZ} \\
M_{YX} & M_{YY} & M_{YZ} \\
M_{ZX} & M_{ZY} & M_{ZZ}
\end{pmatrix} \begin{pmatrix}
\cos \beta & -\sin \beta & 0 \\
\sin \beta & \cos \beta & 0 \\
0 & 0 & 1
\end{pmatrix}$$
(57)

For the direct wave, we have:

$$\begin{pmatrix}
M_{PP} & M_{PSV} & M_{PSH} \\
M_{SVP} & M_{SVSV} & M_{SVSH} \\
M_{SHP} & M_{SHSV} & M_{SHSH}
\end{pmatrix} = \begin{pmatrix}
\sin \alpha & 0 & \cos \alpha \\
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
M_{RR} & M_{RT} & M_{RZ} \\
M_{TR} & M_{TT} & M_{TZ} \\
M_{ZR} & M_{ZT} & M_{ZZ}
\end{pmatrix} \begin{pmatrix}
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1 \\
\cos \alpha & -\sin \alpha & 0
\end{pmatrix} (58)$$

For the reflected wave, we have:

$$\begin{pmatrix}
M_{PP} & M_{PSV} & M_{PSH} \\
M_{SVP} & M_{SVSV} & M_{SVSH} \\
M_{SHP} & M_{SHSV} & M_{SHSH}
\end{pmatrix} = \begin{pmatrix}
\sin \alpha & 0 & -\cos \alpha \\
\cos \alpha & 0 & \sin \alpha \\
0 & -1 & 0
\end{pmatrix} \begin{pmatrix}
M_{RR} & M_{RT} & M_{RZ} \\
M_{TR} & M_{TT} & M_{TZ} \\
M_{ZR} & M_{ZT} & M_{ZZ}
\end{pmatrix} \begin{pmatrix}
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & -1 \\
-\cos \alpha & \sin \alpha & 0
\end{pmatrix} (59)$$

In the $(\vec{e}_P, \vec{e}_{SV}, \vec{e}_{SH})$ coordinate system, we have

$$\vec{\Gamma} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \tag{60}$$

from Equation 9.13.1 of Pujol (2003), we have:

$$\begin{pmatrix} A_P \\ A_{SV} \\ A_{SH} \end{pmatrix} = \begin{pmatrix} M_{PP} \\ M_{SVP} \\ M_{SHP} \end{pmatrix}$$
(61)

Getting the reflection, conversion and transmission coefficients

We compute the reflection, conversion and transmission coefficients at the interface between two homogeneous media, following Aki and Richards (2002, ch. 5.2).

SH-wave

We have $u_x = 0$, $u_z = 0$ and $\frac{\partial}{\partial y} = 0$. Thus the wave equations become:

$$\rho \frac{\partial^2 u_y}{\partial t^2} = \frac{\partial \sigma_{yx}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial z}$$

$$\sigma_{xy} = \mu \frac{\partial u_y}{\partial x}$$

$$\sigma_{yz} = \mu \frac{\partial u_y}{\partial z}$$

$$\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = \sigma_{xz} = 0$$
(62)

The incident SH-wave is of the form:

$$u_y(t) = \acute{S}_1 exp(i\omega(t - p_{\beta_1}x - q_{\beta_1}z))$$
(63)

From Snell's law, we have $\frac{\sin j_1}{\beta_1} = \frac{\sin j_2}{\beta_2}$ At z = 0, we have $u_y(z^+) = u_y(z^-)$, and $\sigma_{yz}(z^+) = \sigma_{yz}(z^-)$ thus:

Therefore, using $q_{\beta_1} = \frac{\cos j_1}{\beta_1}$ and $q_{\beta_2} = \frac{\cos j_2}{\beta_2}$, we find:

$$\dot{S}_{1} = \dot{S}_{1} \frac{\rho_{1} \beta_{1} \cos j_{1} - \rho_{2} \beta_{2} \cos j_{2}}{\rho_{1} \beta_{1} \cos j_{1} + \rho_{2} \beta_{2} \cos j_{2}}
\dot{S}_{2} = \dot{S}_{1} \frac{2\rho_{1} \beta_{1} \cos j_{1}}{\rho_{1} \beta_{1} \cos j_{1} + \rho_{2} \beta_{2} \cos j_{2}}$$
(65)

0.1.4 P-wave

We have $u_y = 0$ and $\frac{\partial}{\partial y} = 0$. Thus the wave equations become:

$$\rho \frac{\partial^{2} u_{x}}{\partial t^{2}} = \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z}$$

$$\rho \frac{\partial^{2} u_{z}}{\partial t^{2}} = \frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z}$$

$$\sigma_{xx} = (\lambda + 2\mu) \frac{\partial u_{x}}{\partial x} + \lambda \frac{\partial u_{z}}{\partial z}$$

$$\sigma_{yy} = \lambda \left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{z}}{\partial z}\right)$$

$$\sigma_{zz} = \lambda \frac{\partial u_{x}}{\partial x} + (\lambda + 2\mu) \frac{\partial u_{z}}{\partial z}$$

$$\sigma_{xz} = \mu \left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x}\right)$$

$$\sigma_{xy} = \sigma_{yz} = 0$$

$$(66)$$

The incident P-wave is of the form:

$$u_x(t) = \acute{P}_1 sini_1 exp(i\omega(t - p_{\alpha_1} x - q_{\alpha_1} z))$$

$$u_z(t) = \acute{P}_1 cosi_1 exp(i\omega(t - p_{\alpha_1} x - q_{\alpha_1} z))$$
(67)

From Snell's law, we have $\frac{\sin i_1}{\alpha_1} = \frac{\sin i_2}{\alpha_2} = \frac{\sin j_1}{\beta_1} = \frac{\sin j_2}{\beta_2}$ At z=0, we have $u_x(z^+) = u_x(z^-)$, $u_z(z^+) = u_z(z^-)$, $\sigma_{xz}(z^+) = \sigma_{xz}(z^-)$ and $\sigma_{zz}(z^+) = \sigma_{zz}(z^-)$ thus:

that is:

$$-\acute{P}_{2}sini_{2} - \acute{S}_{2}cosj_{2} + \grave{P}_{1}sini_{1} + \grave{S}_{1}cosj_{1} = -\acute{P}_{1}sini_{1}$$

$$\acute{P}_{2}cosi_{2} - \acute{S}_{2}sinj_{2} + \grave{P}_{1}cosi_{1} - \grave{S}_{1}sinj_{1} = \acute{P}_{1}cosi_{1}$$

$$\mu_{2}q_{\alpha_{2}}\acute{P}_{2}sini_{2} + \mu_{2}p_{\alpha_{2}}\acute{P}_{2}cosi_{2} + \mu_{2}q_{\beta_{2}}\acute{S}_{2}cosj_{2} - \mu_{2}p_{\beta_{2}}\acute{S}_{2}sinj_{2}$$

$$+\mu_{1}q\alpha_{1}\grave{P}_{1}sini_{1} + \mu_{1}p_{\alpha_{1}}\grave{P}_{1}cosi_{1} + \mu_{1}q_{\beta_{1}}\grave{S}_{1}cosj_{1} - \mu_{1}p_{\beta_{1}}\grave{S}_{1}sinj_{1} =$$

$$\mu_{1}q_{\alpha_{1}}\acute{P}_{1}sini_{1} + \mu_{1}p_{\alpha_{1}}\acute{P}_{1}cosi_{1}$$

$$-\lambda_{2}p_{\alpha_{2}}\acute{P}_{2}sini_{2} - (\lambda_{2} + 2\mu_{2})q_{\alpha_{2}}\acute{P}_{2}cosi_{2} - \lambda_{2}p_{\beta_{2}}\acute{S}_{2}cosj_{2} + (\lambda_{2} + 2\mu_{2})q_{\beta_{2}}\acute{S}_{2}sinj_{2}$$

$$+\lambda_{1}p_{\alpha_{1}}\grave{P}_{1}sini_{1} + (\lambda_{1} + 2\mu_{1})q_{\alpha_{1}}\grave{P}_{1}cosi_{1} + \lambda_{1}p_{\beta_{1}}\grave{S}_{1}cosj_{1} - (\lambda_{1} + 2\mu_{1})q_{\beta_{1}}\grave{S}_{1}sinj_{1} =$$

$$-\lambda_{1}p_{\alpha_{1}}\acute{P}_{1}sini_{1} - (\lambda_{1} + 2\mu_{1})q_{\alpha_{1}}\acute{P}_{1}cosi_{1}$$

$$(69)$$

that is:

$$-\acute{P}_{2}sini_{2} - \acute{S}_{2}cosj_{2} + \grave{P}_{1}sini_{1} + \grave{S}_{1}cosj_{1} = -\acute{P}_{1}sini_{1}$$

$$\acute{P}_{2}cosi_{2} - \acute{S}_{2}sinj_{2} + \grave{P}_{1}cosi_{1} - \grave{S}_{1}sinj_{1} = \acute{P}_{1}cosi_{1}$$

$$(\mu_{2}q_{\alpha_{2}}sini_{2} + \mu_{2}p_{\alpha_{2}}cosi_{2})\acute{P}_{2} + (\mu_{2}q_{\beta_{2}}cosj_{2} - \mu_{2}p_{\beta_{2}}sinj_{2})\acute{S}_{2}$$

$$+ (\mu_{1}q_{\alpha_{1}}sini_{1} + \mu_{1}p_{\alpha_{1}}cosi_{1})\grave{P}_{1} + (\mu_{1}q_{\beta_{1}}cosj_{1} - \mu_{1}p_{\beta_{1}}sinj_{1})\grave{S}_{1} =$$

$$(\mu_{1}q_{\alpha_{1}}sini_{1} + \mu_{1}p_{\alpha_{1}}cosi_{1})\acute{P}_{1}$$

$$- (\lambda_{2}p_{\alpha_{2}}sini_{2} + (\lambda_{2} + 2\mu_{2})q_{\alpha_{2}}cosi_{2})\acute{P}_{2} - (\lambda_{2}p_{\beta_{2}}cosj_{2} - (\lambda_{2} + 2\mu_{2})q_{\beta_{2}}sinj_{2})\acute{S}_{2}$$

$$+ (\lambda_{1}p_{\alpha_{1}}sini_{1} + (\lambda_{1} + 2\mu_{1})q_{\alpha_{1}}cosi_{1})\grave{P}_{1} + (\lambda_{1}p_{\beta_{1}}cosj_{1} - (\lambda_{1} + 2\mu_{1})q_{\beta_{1}}sinj_{1})\grave{S}_{1} =$$

$$- (\lambda_{1}p_{\alpha_{1}}sini_{1} + (\lambda_{1} + 2\mu_{1})q_{\alpha_{1}}cosi_{1})\acute{P}_{1}$$

$$(70)$$

that is:

$$-\alpha_{2}p_{\alpha_{2}}\dot{P}_{2} - \cos j_{2}\dot{S}_{2} + \alpha_{1}p_{\alpha_{1}}\dot{P}_{1} + \cos j_{1}\dot{S}_{1} = -\alpha_{1}p_{\alpha_{1}}\dot{P}_{1}$$

$$\cos i_{2}\dot{P}_{2} - \beta_{2}p_{\beta_{2}}\dot{S}_{2} + \cos i_{1}\dot{P}_{1} - \beta_{1}p_{\beta_{1}}\dot{S}_{1} = \cos i_{1}\dot{P}_{1}$$

$$(2\rho_{2}\beta_{2}^{2}p_{\alpha_{2}}\cos i_{2})\dot{P}_{2} + \rho_{2}\beta_{2}(1 - 2\beta_{2}^{2}p_{\beta_{2}}^{2})\dot{S}_{2}$$

$$+(2\rho_{1}\beta_{1}^{2}p_{\alpha_{1}}\cos i_{1})\dot{P}_{1} + \rho_{1}\beta_{1}(1 - 2\beta_{1}^{2}p_{\beta_{1}}^{2})\dot{S}_{1} =$$

$$(2\rho_{1}\beta_{1}^{2}p_{\alpha_{1}}\cos i_{1})\dot{P}_{1}$$

$$-\rho_{2}\alpha_{2}(1 - 2\beta_{2}^{2}p_{\alpha_{2}}^{2})\dot{P}_{2} + 2\rho_{2}\beta_{2}^{2}p_{\beta_{2}}\cos j_{2}\dot{S}_{2}$$

$$+\rho_{1}\alpha_{1}(1 - 2\beta_{1}^{2}p_{\alpha_{1}}^{2})\dot{P}_{1} - 2\rho_{1}\beta_{1}^{2}p_{\beta_{1}}\cos j_{1}\dot{S}_{1} =$$

$$-\rho_{1}\alpha_{1}(1 - 2\beta_{1}^{2}p_{\alpha_{1}}^{2})\dot{P}_{1}$$

$$(71)$$

that is:

$$M\begin{pmatrix} \acute{P}_2\\ \acute{S}_2\\ \grave{P}_1\\ \grave{S}_1 \end{pmatrix} = N\begin{pmatrix} 0\\0\\ \acute{P}_1\\0 \end{pmatrix} \tag{72}$$

with:

$$M = \begin{pmatrix} -\alpha_2 p_{\alpha_2} & -\cos j_2 & \alpha_1 p_{\alpha_1} & \cos j_1 \\ \cos i_2 & -\beta_2 p_{\beta_2} & \cos i_1 & -\beta_1 p_{\beta_1} \\ 2\rho_2 \beta_2^2 p_{\alpha_2} \cos i_2 & \rho_2 \beta_2 (1 - 2\beta_2^2 p_{\beta_2}^2) & 2\rho_1 \beta_1^2 p_{\alpha_1} \cos i_1 & \rho_1 \beta_1 (1 - 2\beta_1^2 p_{\beta_1}^2) \\ -\rho_2 \alpha_2 (1 - 2\beta_2^2 p_{\alpha_2}^2) & 2\rho_2 \beta_2^2 p_{\beta_2} \cos j_2 & \rho_1 \alpha_1 (1 - 2\beta_1^2 p_{\alpha_1}^2) & -2\rho_1 \beta_1^2 p_{\beta_1} \cos j_1 \end{pmatrix}$$
 (73)

and:

$$N = \begin{pmatrix} 0 & 0 & -\alpha_1 p_{\alpha_1} & 0\\ 0 & 0 & cosi_1 & 0\\ 0 & 0 & 2\rho_1 \beta_1^2 p_{\alpha_1} cosi_1 & 0\\ 0 & 0 & -\rho_1 \alpha_1 (1 - 2\beta_1^2 p_{\alpha_1}^2) & 0 \end{pmatrix}$$

$$(74)$$

SV-wave

We have $u_y = 0$ and $\frac{\partial}{\partial y} = 0$. Thus the wave equations become:

$$\rho \frac{\partial^{2} u_{x}}{\partial t^{2}} = \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z}$$

$$\rho \frac{\partial^{2} u_{z}}{\partial t^{2}} = \frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z}$$

$$\sigma_{xx} = (\lambda + 2\mu) \frac{\partial u_{x}}{\partial x} + \lambda \frac{\partial u_{z}}{\partial z}$$

$$\sigma_{yy} = \lambda \left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{z}}{\partial z}\right)$$

$$\sigma_{zz} = \lambda \frac{\partial u_{x}}{\partial x} + (\lambda + 2\mu) \frac{\partial u_{z}}{\partial z}$$

$$\sigma_{xz} = \mu \left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x}\right)$$

$$\sigma_{xy} = \sigma_{yz} = 0$$

$$(75)$$

The incident S-wave is of the form:

$$u_x(t) = \dot{S}_1 cos j_1 exp(i\omega(t - p_{\beta_1} x - q_{\beta_1} z))$$

$$u_z(t) = -\dot{S}_1 sin j_1 exp(i\omega(t - p_{\beta_1} x - q_{\beta_1} z))$$
(76)

From Snell's law, we have $\frac{\sin i_1}{\alpha_1} = \frac{\sin i_2}{\alpha_2} = \frac{\sin j_2}{\beta_1} = \frac{\sin j_2}{\beta_2}$ At z=0, we have $u_x(z^+) = u_x(z^-)$, $u_z(z^+) = u_z(z^-)$, $\sigma_{xz}(z^+) = \sigma_{xz}(z^-)$ and $\sigma_{zz}(z^+) = \sigma_{zz}(z^-)$ thus:

$$\dot{S}_{1}cosj_{1} + \dot{P}_{1}sini_{1} + \dot{S}_{1}cosj_{1} = \dot{P}_{2}sini_{2} + \dot{S}_{2}cosj_{2}
\dot{S}_{1}sinj_{1} + \dot{P}_{1}cosi_{1} - \dot{S}_{1}sinj_{1} = -\dot{P}_{2}cosi_{2} + \dot{S}_{2}sinj_{2}
\mu_{1}(-q_{\beta_{1}}\dot{S}_{1}cosj_{1} + q_{\alpha_{1}}\dot{P}_{1}sini_{1} + q_{\beta_{1}}\dot{S}_{1}cosj_{1}) + \mu_{1}(p_{\beta_{1}}\dot{S}_{1}sinj_{1} + p_{\alpha_{1}}\dot{P}_{1}cosi_{1} - p_{\beta_{1}}\dot{S}_{1}sinj_{1}) =
\mu_{2}(-q_{\alpha_{2}}\dot{P}_{2}sini_{2} - q_{\beta_{2}}\dot{S}_{2}cosj_{2}) + \mu_{2}(-p_{\alpha_{2}}\dot{P}_{2}cosi_{2} + p_{\beta_{2}}\dot{S}_{2}sinj_{2})
\lambda_{1}(p_{\beta_{1}}\dot{S}_{1}cosj_{1} + p_{\alpha_{1}}\dot{P}_{1}sini_{1} + p_{\beta_{1}}\dot{S}_{1}cosj_{1}) + (\lambda_{1} + 2\mu_{1})(-q_{\beta_{1}}\dot{S}_{1}sinj_{1} + q_{\alpha_{1}}\dot{P}_{1}cosi_{1} - q_{\beta_{1}}\dot{S}_{1}sinj_{1}) =
\lambda_{2}(p_{\alpha_{2}}\dot{P}_{2}sini_{2} + p_{\beta_{2}}\dot{S}_{2}cosj_{2}) + (\lambda_{2} + 2\mu_{2})(q_{\alpha_{2}}\dot{P}_{2}cosi_{2} - q_{\beta_{2}}\dot{S}_{2}sinj_{2})$$
(77)

that is:

$$-\acute{P}_{2}sini_{2} - \acute{S}_{2}cosj_{2} + \grave{P}_{1}sini_{1} + \grave{S}_{1}cosj_{1} = -\acute{S}_{1}cosj_{1}$$

$$\acute{P}_{2}cosi_{2} - \acute{S}_{2}sinj_{2} + \grave{P}_{1}cosi_{1} - \grave{S}_{1}sinj_{1} = -\acute{S}_{1}sinj_{1}$$

$$\mu_{2}q_{\alpha_{2}}\acute{P}_{2}sini_{2} + \mu_{2}p_{\alpha_{2}}\acute{P}_{2}cosi_{2} + \mu_{2}q_{\beta_{2}}\acute{S}_{2}cosj_{2} - \mu_{2}p_{\beta_{2}}\acute{S}_{2}sinj_{2}$$

$$+\mu_{1}q\alpha_{1}\grave{P}_{1}sini_{1} + \mu_{1}p_{\alpha_{1}}\grave{P}_{1}cosi_{1} + \mu_{1}q_{\beta_{1}}\grave{S}_{1}cosj_{1} - \mu_{1}p_{\beta_{1}}\grave{S}_{1}sinj_{1} =$$

$$\mu_{1}q_{\beta_{1}}\acute{S}_{1}cosj_{1} - \mu_{1}p_{\beta_{1}}\acute{S}_{1}sinj_{1}$$

$$-\lambda_{2}p_{\alpha_{2}}\acute{P}_{2}sini_{2} - (\lambda_{2} + 2\mu_{2})q_{\alpha_{2}}\acute{P}_{2}cosi_{2} - \lambda_{2}p_{\beta_{2}}\acute{S}_{2}cosj_{2} + (\lambda_{2} + 2\mu_{2})q_{\beta_{2}}\acute{S}_{2}sinj_{2}$$

$$+\lambda_{1}p_{\alpha_{1}}\grave{P}_{1}sini_{1} + (\lambda_{1} + 2\mu_{1})q_{\alpha_{1}}\grave{P}_{1}cosi_{1} + \lambda_{1}p_{\beta_{1}}\grave{S}_{1}cosj_{1} - (\lambda_{1} + 2\mu_{1})q_{\beta_{1}}\grave{S}_{1}sinj_{1} =$$

$$-\lambda_{1}p_{\beta_{1}}\acute{S}_{1}cosj_{1} + (\lambda_{1} + 2\mu_{1})q_{\beta_{1}}\acute{S}_{1}sinj_{1}$$

$$(78)$$

that is:

$$-\acute{P}_{2}sini_{2} - \acute{S}_{2}cosj_{2} + \grave{P}_{1}sini_{1} + \grave{S}_{1}cosj_{1} = -\acute{S}_{1}cosj_{1}$$

$$\acute{P}_{2}cosi_{2} - \acute{S}_{2}sinj_{2} + \grave{P}_{1}cosi_{1} - \grave{S}_{1}sinj_{1} = -\acute{S}_{1}sinj_{1}$$

$$(\mu_{2}q_{\alpha_{2}}sini_{2} + \mu_{2}p_{\alpha_{2}}cosi_{2})\acute{P}_{2} + (\mu_{2}q_{\beta_{2}}cosj_{2} - \mu_{2}p_{\beta_{2}}sinj_{2})\acute{S}_{2}$$

$$+(\mu_{1}q_{\alpha_{1}}sini_{1} + \mu_{1}p_{\alpha_{1}}cosi_{1})\grave{P}_{1} + (\mu_{1}q_{\beta_{1}}cosj_{1} - \mu_{1}p_{\beta_{1}}sinj_{1})\grave{S}_{1} =$$

$$(\mu_{1}q_{\beta_{1}}cosj_{1} - \mu_{1}p_{\beta_{1}}sinj_{1})\acute{S}_{1}$$

$$-(\lambda_{2}p_{\alpha_{2}}sini_{2} + (\lambda_{2} + 2\mu_{2})q_{\alpha_{2}}cosi_{2})\acute{P}_{2} - (\lambda_{2}p_{\beta_{2}}cosj_{2} - (\lambda_{2} + 2\mu_{2})q_{\beta_{2}}sinj_{2})\acute{S}_{2}$$

$$+(\lambda_{1}p_{\alpha_{1}}sini_{1} + (\lambda_{1} + 2\mu_{1})q_{\alpha_{1}}cosi_{1})\grave{P}_{1} + (\lambda_{1}p_{\beta_{1}}cosj_{1} - (\lambda_{1} + 2\mu_{1})q_{\beta_{1}}sinj_{1})\grave{S}_{1} =$$

$$(-\lambda_{1}p_{\beta_{1}}cosj_{1} + (\lambda_{1} + 2\mu_{1})q_{\beta_{1}}sinj_{1})\acute{S}_{1}$$

that is:

$$-\alpha_{2}p_{\alpha_{2}}\acute{P}_{2} - cosj_{2}\acute{S}_{2} + \alpha_{1}p_{\alpha_{1}}\grave{P}_{1} + cosj_{1}\grave{S}_{1} = -cosj_{1}\acute{S}_{1}$$

$$cosi_{2}\acute{P}_{2} - \beta_{2}p_{\beta_{2}}\acute{S}_{2} + cosi_{1}\grave{P}_{1} - \beta_{1}p_{\beta_{1}}\grave{S}_{1} = -\beta_{1}p_{\beta_{1}}\acute{S}_{1}$$

$$(2\rho_{2}\beta_{2}^{2}p_{\alpha_{2}}cosi_{2})\acute{P}_{2} + \rho_{2}\beta_{2}(1 - 2\beta_{2}^{2}p_{\beta_{2}}^{2})\acute{S}_{2}$$

$$+(2\rho_{1}\beta_{1}^{2}p_{\alpha_{1}}cosi_{1})\grave{P}_{1} + \rho_{1}\beta_{1}(1 - 2\beta_{1}^{2}p_{\beta_{1}}^{2})\grave{S}_{1} =$$

$$\rho_{1}\beta_{1}(1 - 2\beta_{1}^{2}p_{\beta_{1}}^{2})\acute{S}_{1}$$

$$-\rho_{2}\alpha_{2}(1 - 2\beta_{2}^{2}p_{\alpha_{2}}^{2})\acute{P}_{2} + 2\rho_{2}\beta_{2}^{2}p_{\beta_{2}}cosj_{2}\acute{S}_{2}$$

$$+\rho_{1}\alpha_{1}(1 - 2\beta_{1}^{2}p_{\alpha_{1}}^{2})\grave{P}_{1} - 2\rho_{1}\beta_{1}^{2}p_{\beta_{1}}cosj_{1}\grave{S}_{1} =$$

$$2\rho_{1}\beta_{1}^{2}p_{\beta_{1}}cosj_{1}\acute{S}_{1}$$

$$(80)$$

that is:

$$M\begin{pmatrix} \acute{P}_2\\ \acute{S}_2\\ \grave{P}_1\\ \grave{S}_1 \end{pmatrix} = N\begin{pmatrix} 0\\0\\0\\ \acute{S}_1 \end{pmatrix} \tag{81}$$

with:

$$M = \begin{pmatrix} -\alpha_2 p_{\alpha_2} & -\cos j_2 & \alpha_1 p_{\alpha_1} & \cos j_1 \\ \cos i_2 & -\beta_2 p_{\beta_2} & \cos i_1 & -\beta_1 p_{\beta_1} \\ 2\rho_2 \beta_2^2 p_{\alpha_2} \cos i_2 & \rho_2 \beta_2 (1 - 2\beta_2^2 p_{\beta_2}^2) & 2\rho_1 \beta_1^2 p_{\alpha_1} \cos i_1 & \rho_1 \beta_1 (1 - 2\beta_1^2 p_{\beta_1}^2) \\ -\rho_2 \alpha_2 (1 - 2\beta_2^2 p_{\alpha_2}^2) & 2\rho_2 \beta_2^2 p_{\beta_2} \cos j_2 & \rho_1 \alpha_1 (1 - 2\beta_1^2 p_{\alpha_1}^2) & -2\rho_1 \beta_1^2 p_{\beta_1} \cos j_1 \end{pmatrix}$$
(82)

and:

$$N = \begin{pmatrix} 0 & 0 & 0 & -\cos j_1 \\ 0 & 0 & 0 & -\beta_1 p_{\beta_1} \\ 0 & 0 & 0 & \rho_1 \beta_1 (1 - 2\beta_1^2 p_{\beta_1}^2) \\ 0 & 0 & 0 & 2\rho_1 \beta_1^2 p_{\beta_1} \cos j_1 \end{pmatrix}$$
(83)

0.1.5Ray tracing

We solve the eikonal and the transport equations following Čeverný (2001, ch. 3.1).

Eikonal equation

Following Čeverný (2001, ch. 2.4), the eikonal equation is:

$$\nabla T.\nabla T = \frac{1}{V^2} \tag{84}$$

with $V = \alpha$ or $V = \beta$. Using the Hamiltonian, it can also be written as:

$$\mathcal{H}(x_i, p_i) = \frac{1}{2}(p_i^2 - \frac{1}{V^2}) = 0 \tag{85}$$

where $p_i = \frac{\partial T}{\partial x_i}$. We define the auxiliary variable σ by:

$$\frac{dx_i}{d\sigma} = \frac{\partial \mathcal{H}}{\partial p_i} \text{ and } \frac{dp_i}{d\sigma} = -\frac{\partial \mathcal{H}}{\partial x_i}$$
 (86)

We get:

$$\frac{dT}{d\sigma} = \frac{\partial T}{\partial x_i} \frac{\partial x_i}{\partial \sigma} = p_i \frac{\partial \mathcal{H}}{\partial p_i} = \frac{1}{V^2}$$
(87)

thus we have:

$$T = T_0 + \frac{1}{V^2}\sigma \text{ and } \sigma = V^2(T - T_0)$$
 (88)

Constant velocity We have:

$$\frac{dp_i}{d\sigma} = -\frac{\partial \mathcal{H}}{\partial x_i} = \frac{1}{2} \frac{\partial}{\partial x_i} (\frac{1}{V^2}) = -\frac{1}{V^3} \frac{\partial V}{\partial x_i} = 0$$
 (89)

thus:

$$p_1 = p_{10} p_2 = p_{20} p_3 = p_{30}$$
 (90)

We have:

$$x_i = x_{i0} + \frac{\partial \mathcal{H}}{\partial p_i} \sigma = x_{i0} + p_i \sigma \tag{91}$$

thus:

$$x_1 = x_{10} + p_{10}V^2(T - T_0)$$

$$x_2 = x_{20} + p_{20}V^2(T - T_0)$$

$$x_3 = x_{30} + p_{30}V^2(T - T_0)$$
(92)

Constant gradient of velocity We write the velocity as V = az + b.

We have:

$$\frac{dp_1}{d\sigma} = 0, \frac{dp_2}{d\sigma} = 0 \text{ and } \frac{dp_3}{d\sigma} = -\frac{1}{V^3} \frac{\partial V}{\partial z} = -\frac{a}{(az+b)^3}$$
(93)

thus:

$$p_{1} = p_{10}$$

$$p_{2} = p_{20}$$

$$p_{3} = p_{30} - \frac{a}{(az+b)^{3}}\sigma = p_{30} - \frac{a}{az+b}(T-T_{0})$$
(94)

We have:

$$x_{1} = x_{10} + p_{10}\sigma$$

$$x_{2} = x_{20} + p_{20}\sigma$$

$$x_{3} = x_{30} + p_{30}\sigma - \frac{1}{2} \frac{a}{(az+b)^{3}}\sigma^{2}$$
(95)

thus:

$$x_{1} = x_{10} + p_{10}(az + b)^{2}(T - T_{0})$$

$$x_{2} = x_{20} + p_{20}(az + b)^{2}(T - T_{0})$$

$$x_{3} = x_{30} + p_{30}(az + b)^{2}(T - T_{0}) - \frac{1}{2}a(az + b)(T - T_{0})^{2}$$
(96)

Transport equation

Following Čeverný (2001, ch. 2.4), the transport equation is:

$$2\nabla T \cdot \nabla(\sqrt{\rho V^2} A) + \sqrt{\rho V^2} A \nabla^2 T = 0 \tag{97}$$

with $V = \alpha$ or $V = \beta$ and A is the amplitude of the P-wave or one of the two components of the S-wave.

Constant velocity We have $(\nabla T)_i = p_i = p_{i0}$ thus $\nabla^2 T = 0$ and the wave equation becomes:

$$2\nabla T.\nabla(\sqrt{\rho V^2}A) = 0\tag{98}$$

As ρ and V are constant, we get:

$$\nabla T.\nabla A = p_i \frac{\partial A}{\partial x_i} = 0 \tag{99}$$

However, we have:

$$\frac{\partial A}{\partial \sigma} = \frac{\partial A}{\partial x_i} \frac{\partial x_i}{\partial \sigma} = \frac{\partial A}{\partial x_i} \frac{\partial \mathcal{H}}{\partial p_i} = \frac{\partial A}{\partial x_i} p_i \tag{100}$$

Thus:

$$\frac{\partial A}{\partial \sigma} = 0 \text{ that is } A = A_0 \tag{101}$$

Constant gradient of velocity We have:

$$\nabla^2 T = \frac{a^2}{(az+b)^2} (T - T_0) \tag{102}$$

If we assume constant density, we get the transport equation:

$$2A\nabla T.\nabla V + 2V\nabla T.\nabla A + A\frac{a^2}{az+b}(T-T_0) = 0$$
(103)