MATH104: Topology

Fall 2023

Homework 9 David Yang

Chapter 11 (The Seifert-van Kampen Theorem) Problems.

Section 70 (The Seifert-van Kampen Theorem), 70.2

Suppose that i_2 is surjective.

a) Show that j_1 induces an epimorphism

$$h: \pi_1(U, x_0) \to \pi_1(X, x_0),$$

where M is the least normal subgroup of $\pi_1(U, x_0)$ containing $i_1(\ker i_2)$. [Hint: Show j_1 is surjective.]

b) Show that h is an isomorphism. [Hint: Use Theorem 70.1 to define a left inverse for h.]

Hatcher Problem

Let X be the union of n lines through the origin in \mathbb{R}^3 . Compute the fundamental group of $\mathbb{R}^3 - X$.

Solution. We claim that there is a deformation retract of \mathbb{R}^3-X to S^2 with 2n points removed. To conceptualize this, we describe the deformation retract. For any point of \mathbb{R}^3-X that is on S^2 , then stay as is. Otherwise, for any point y of R^3-X that is not on S^2 , let ℓ be the line passing through the origin and y. Deformation retract y to its closest intersection of ℓ with S^2 . Each of the n lines removed passes through S^2 twice, so this description characterizes a deformation retract from \mathbb{R}^3-X to S^2 with 2n points removed.

Through stereographic projection, we know that there is a homeomorphism from S^2 – pt to \mathbb{R}^2 . By defining one of our 2n points removed from S^2 to be the "north pole" and applying the stereographic projection map, we get a homeomorphism from S^2 with 2n points removed to \mathbb{R}^2 with 2n-1 points removed.

The fundamental group of \mathbb{R}^2 with 2n-1 points removed is simply the fundamental group of the wedge of 2n-1 circles, which is the free group with 2n-1 generators.