First-Order Term-Indexing

Alexander Maringele

January 27th, 2016

References

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov, *Term indexing*, Handbook of Automated Reasoning (Alan Robinson and Andrei Voronkov, eds.), Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 2001, pp. 1853–1964.

Outline

- 1 Motivation
- 2 Term Structure
- 3 Path Indexing
- 4 Discrimination Trees
- 5 Substitution Trees
- 6 Search times

Clausal form

 $\{ P(f(x)) \lor f(x) \not\approx a, g(x,y) \approx a \lor \neg Q(x,y), C_3 \}$

$$\left\{ \begin{array}{l} \mathsf{P}(\mathsf{f}(x)) \vee \mathsf{f}(x) \not\approx \mathsf{a}, \ \mathsf{g}(x,y) \approx \mathsf{a} \vee \neg \mathsf{Q}(x,y), \ \mathcal{C}_3 \end{array} \right\} \\ \equiv \\ \forall x \left(\mathsf{P}(\mathsf{f}(x)) \vee \mathsf{f}(x) \not\approx \mathsf{a} \right) \\ \wedge \\ \forall xy \left(\mathsf{g}(x,y) \approx \mathsf{a} \vee \neg \mathsf{Q}(x,y) \right) \\ \wedge \\ \forall \mathcal{V}\mathsf{ar}(\mathcal{C}_3) \left(\mathcal{C}_3 \right) \end{aligned}$$

A sound and refutation complete calculus.

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

$$\frac{A \vee \mathcal{C} \quad \neg B \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D})\sigma} \ (\sigma) \ \text{resolution} \qquad \frac{A \vee B \vee \mathcal{C}}{(A \vee \mathcal{C})\sigma} \ (\sigma) \ \text{factoring}$$

$$\sigma = \mathrm{mgu}(A, B)$$

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

$$\frac{A \vee \mathcal{C} \quad \neg B \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D}) \sigma} \ (\sigma) \ \text{resolution} \qquad \frac{A \vee B \vee \mathcal{C}}{(A \vee \mathcal{C}) \sigma} \ (\sigma) \ \text{factoring}$$

$$\sigma = \mathrm{mgu}(A, B)$$

and the empty clause will be derived eventually.

A sound and refutation complete calculus.

Resolution (without equality)

Resolve and factor all clauses and literals in an unsatisfiable set

$$\frac{A \vee \mathcal{C} \quad \neg B \vee \mathcal{D}}{(\mathcal{C} \vee \mathcal{D}) \sigma} \ (\sigma) \ \text{resolution} \qquad \frac{A \vee B \vee \mathcal{C}}{(A \vee \mathcal{C}) \sigma} \ (\sigma) \ \text{factoring}$$

$$\sigma = \mathrm{mgu}(A, B)$$

and the empty clause will be derived eventually.

Observation

Usually the set grows too fast to obtain a result.

A sound, refutation complete, and

A sound, refutation complete, and effective calculus.

1 Reduce search space

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...
 - with selection functions for clauses and literals

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...
 - with selection functions for clauses and literals
- 2 *Reduce* redundancy

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...
 - with selection functions for clauses and literals
- 2 Reduce redundancy
 - e.g. discard clauses that are subsumed by other clauses

- 1 Reduce search space
 - Ordered Resolution, Strategies, ...
 - with selection functions for clauses and literals
- 2 Reduce redundancy
 - e.g. discard clauses that are subsumed by other clauses
 - ... depending on the calculus

A sound, refutation complete, and *effective* calculus.

- 1 Reduce search space
 - Ordered Resolution, Strategies, . . .
 - ... with selection functions for clauses and literals
- 2 Reduce redundancy
 - e.g. discard clauses that are subsumed by other clauses
 - ...depending on the calculus

Example (forward subsumption)

$$S = \{^{^{1:}}\mathsf{P}(x,y),^{^{2:}}\neg\mathsf{P}(\mathsf{a},z)\} \cup \{^{^{3:}}\!\mathsf{P}(\mathsf{a},z')\}$$

$$t_1$$
 subsumes t_3

$$\frac{\mathsf{P}(x,y) \quad \neg \mathsf{P}(\mathsf{a},z)}{\Box} \ \{x \mapsto \mathsf{a}, y \mapsto z\}$$

Resolution

$$S \perp = \{ \mathsf{P}(\perp, \perp), \neg \mathsf{P}(\mathsf{a}, \perp), \mathsf{P}(\mathsf{a}, \perp) \}$$

InstGen / SMT

A sound, refutation complete, and effective calculus.

3 Quickly find

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants

variant removal

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances

variant removal backward subsumption

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations

variant removal backward subsumption forward subsumption A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations
 - unifiable terms

variant removal backward subsumption forward subsumption resolution, demodulation

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations
 - unifiable terms

of a query term in a given set of terms.

variant removal backward subsumption forward subsumption resolution, demodulation

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations
 - unifiable terms

of a query term in a given set of terms.

variant removal backward subsumption forward subsumption resolution, demodulation

Observation

Deduction rate drops quickly with sequential search.

A sound, refutation complete, and effective calculus.

- 3 Quickly find
 - variants
 - instances
 - generalizations
 - unifiable terms

of a query term in a given set of terms.

variant removal backward subsumption forward subsumption resolution, demodulation

Observation

Deduction rate drops quickly with sequential search.

Term Indexing

Data structures and algorithms for fast retrieval of matching terms.

$$\mathcal{P}\mathsf{os}^\Sigma(t) = \bigg\{$$

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \left\{ \left\{ \left< \epsilon, x \right> \right\} \right.$$

if $t = x \in \mathcal{V}$

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle \} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle \} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^\Sigma(t_i) \} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$\mathcal{P} \mathsf{os}^{\Sigma}(t) = \begin{cases} \{\langle \epsilon, x \rangle \} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle \} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^{\Sigma}(t_i) \} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\mathcal{P}os^{\Sigma}(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{$$

First-Order Term-Indexing January 27th, 2016

9 / 19

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle \} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle \} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^\Sigma(t_i) \} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\mathcal{P} \mathsf{os}^\Sigma(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{\langle \epsilon,\mathsf{h} \rangle, \}$$

 $\langle \epsilon, \mathsf{h} \rangle$

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle \} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle \} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^\Sigma(t_i) \} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

 $\langle \epsilon, \mathsf{h} \rangle$

 $\langle 1, f \rangle$

$$\mathcal{P}$$
os $^{\Sigma}(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{\langle \epsilon,\mathsf{h} \rangle, \langle 1,\mathsf{f} \rangle,$ }

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle \} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle \} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^\Sigma(t_i) \} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

 $\langle \epsilon, \mathsf{h} \rangle$

 $\langle 1, f \rangle$

$$\mathcal{P}os^{\Sigma}(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{\langle \epsilon,\mathsf{h}\rangle, \langle 1,\mathsf{f}\rangle, \langle 11,\mathsf{a}\rangle, \\ \}$$

 $\langle 11, \mathsf{a} \rangle$

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle \} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle \} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^\Sigma(t_i) \} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

 $\langle \epsilon, \mathsf{h} \rangle$

 $\langle 1, \mathsf{f} \rangle$

 $\langle 11, \mathsf{a} \rangle \qquad \langle 12, \mathsf{y} \rangle$

$$\mathcal{P} \mathsf{os}^\Sigma(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{\langle \epsilon,\mathsf{h}\rangle, \langle 1,\mathsf{f}\rangle, \langle 11,\mathsf{a}\rangle, \langle 12,y\rangle\}$$

Alexander Maringele

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle\} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle\} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^\Sigma(t_i)\} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\mathcal{P} \mathsf{os}^{\Sigma}(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{\langle \epsilon,\mathsf{h}\rangle, \langle 1,\mathsf{f}\rangle, \langle 11,\mathsf{a}\rangle, \langle 12,y\rangle\}$$

$$\langle \epsilon,\mathsf{h}\rangle$$

$$\langle 1,\mathsf{f}\rangle$$

$$\langle \epsilon,\mathsf{h}\rangle \langle 1,\mathsf{f}\rangle \langle 12,y\rangle$$
 path from root to leaf
$$\langle 11,\mathsf{a}\rangle$$

$$\langle 12,\mathsf{y}\rangle$$

$$\mathcal{P} \mathsf{os}^\Sigma(t) = \begin{cases} \{\langle \epsilon, x \rangle \} & \text{if } t = x \in \mathcal{V} \\ \{\langle \epsilon, f \rangle \} \cup \{\langle ip, s \rangle \mid (p, s) \in \mathcal{P} \mathsf{os}^\Sigma(t_i) \} & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Term traversals

$$\mathcal{P} os^{\Sigma}(\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{y}))) = \{\langle \epsilon,\mathsf{h}\rangle, \langle 1,\mathsf{f}\rangle, \langle 11,\mathsf{a}\rangle, \langle 12,y\rangle\}$$

$$\langle \epsilon,\mathsf{h}\rangle$$

$$\langle 1,\mathsf{f}\rangle$$

$$\langle 1,\mathsf{f}\rangle$$

$$\langle \epsilon,\mathsf{h}\rangle\langle 1,\mathsf{f}\rangle\langle 12,y\rangle$$
 path from root to leaf
$$\langle \epsilon,\mathsf{h}\rangle\langle 1,\mathsf{f}\rangle\langle 11,\mathsf{a}\rangle\langle 12,y\rangle$$
 pre-order traversal
$$\langle 11,\mathsf{a}\rangle$$

$$\langle 12,\mathsf{y}\rangle$$

Variants of terms generate the same position strings

Variants of terms generate the same position strings

• if variable names are ignored

$$\mathsf{f}(y,z)\Rightarrow \langle \epsilon,\mathsf{f}\rangle\langle 1,*\rangle\langle 2,*\rangle$$

Variants of terms generate the same position strings

• if variable names are ignored

 $f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$

or normalized

 $f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$

Variants of terms generate the same position strings

- if variable names are ignored
- or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, * \rangle \langle 2, * \rangle$$

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, f \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$\begin{array}{l} \mathsf{f}(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle \\ \mathsf{f}(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle \end{array}$$

In the first case even non-variants of terms generate the same strings.

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

• path strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 12, * \rangle$

h.1.f.2.*

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

• path strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 12, * \rangle$

h.1.f.2.*

• and traversal strings $\langle \epsilon, h \rangle \langle 1, f \rangle \langle 11, * \rangle \langle 12, * \rangle$

h.f.a.*

Variants of terms generate the same position strings

• if variable names are ignored

$$f(y,z) \Rightarrow \langle \epsilon, f \rangle \langle 1, * \rangle \langle 2, * \rangle$$

or normalized

$$f(y,z) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_2 \rangle$$

$$f(y,y) \Rightarrow \langle \epsilon, \mathsf{f} \rangle \langle 1, x_1 \rangle \langle 2, x_1 \rangle$$

In the first case even non-variants of terms generate the same strings.

Notation

We abbreviate

• path strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 12, * \rangle$

h.1.f.2.*

• and traversal strings $\langle \epsilon, \mathsf{h} \rangle \langle 1, \mathsf{f} \rangle \langle 11, * \rangle \langle 12, * \rangle$ when traversal order and arities of symbols are fixed.

h.f.a.*

$$\begin{split} t_1 & \mapsto \mathsf{\{h.1.f.1.*,h.1.f.2.*\}} \\ t_2 & \Rightarrow \mathsf{\{h.1.f.1.*,h.1.f.2.*\}} \\ t_2 & \Rightarrow \mathsf{\{h.1.f.1.*,h.1.f.2.a\}} \\ t_3 & \Rightarrow \mathsf{\{h.1.f.1.a,h.1.f.2a\}} \end{split}$$

h

$$t_1 = h(f(x,y)), t_2 = h(f(x,a)), t_3 = h(f(a,a))$$

 $t_1 \Rightarrow \{h.1.f.1.*, h.1.f.2.*\}$

$$t_2 \Rightarrow \{\text{h.1.f.1.*}, \text{h.1.f.2.a}\}$$

$$t_3 \Rightarrow \{\text{h.1.f.1.a}, \text{h.1.f.2a}\}$$

$$t_1 \Rightarrow \{\text{h.1.f.1.*}, \text{h.1.f.2.*}\}$$

 $t_2 \Rightarrow \{\text{h.1.f.1.*}, \text{h.1.f.2.a}\}$
 $t_3 \Rightarrow \{\text{h.1.f.1.a}, \text{h.1.f.2a}\}$

 ${}^{t_1:} h(f(x,y)), {}^{t_2:} h(f(x,a)), {}^{t_3:} h(f(a,a))$

Retrieve
$$^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))$$

$$\mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h.f.*},\mathsf{h.f.b}\}$$

$$u:\mathsf{h}(\mathsf{f}(\mathbf{x'},\mathsf{b}))\mapsto$$

Retrieve t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,a)), {}^{t_3}$:h(f(a,a)) $h(f(x,b))) \Rightarrow \{h.f.*, h.f.b\}$ $u: \mathsf{h}(\mathsf{f}(\mathbf{x'},\mathsf{b})) \mapsto$

t_1
h $(f(x,y))$, t_2 h $(f(x,a))$, t_3 h $(f(a,a))$

$$h(f(x,b))) \Rightarrow \{h.f.*, h.f.b\}$$

$$u: h(f(x',b)) \mapsto$$

$$h(f(x,y)), \stackrel{t_2:}{\mapsto} h(f(x,a)), \stackrel{t_3:}{\mapsto} h(f(a,a))$$

$$h(f(x,b))) \Rightarrow \{h.f.*, h.f.b\}$$

$$u: h(f(x',b)) \mapsto$$

$$\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))$$
$$\mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h.f.*},\mathsf{h.f.b}\}$$

$$u: \mathsf{h}(\mathsf{f}(\underline{x'},\mathsf{b})) \mapsto$$

Retrieve
$$t_1 = h(f(x,y)), t_2 = h(f(x,a)), t_3 = h(f(a,a))$$

$$h(f(x,b))) \Rightarrow \{h.f.*, h.f.b\}$$

$$u: h(f(x',b)) \mapsto \{t_1,t_2,\dots\}$$

$$^{^{t_1}\cdot}\!\mathsf{h}(\mathsf{f}(x,y)),^{^{t_2}\cdot}\!\mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{^{t_3}\cdot}\!\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))$$

$$\mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h.f.*},\mathsf{h.f.b}\}$$

$$u:\mathsf{h}(\mathsf{f}(\boldsymbol{x'},\mathsf{b}))\mapsto\{t_1,t_2,t_3\}$$

$${}^{t_1:}\mathsf{h}(\mathsf{f}(x,y)), {}^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{a})), {}^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))$$
 $\mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h.f.*},\mathsf{h.f.b}\}$
 $u:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\}$

$$\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))$$
$$\mathsf{h}(\mathsf{f}(x,\mathsf{b})))\Rightarrow \{\mathsf{h.f.*},\mathsf{h.f.b}\}$$

$$u:\mathsf{h}(\mathsf{f}(\mathbf{x'},\mathsf{b}))\mapsto\{t_1,t_2,t_3\}$$

$$h(f(x,y)), t_2: h(f(x,a)), t_3: h(f(a,a))$$

$$h(f(x,b))) \Rightarrow \{h.f.*, h.f.b\}$$

$$u: h(f(x',b)) \mapsto \{t_1, t_2, t_3\}$$

$${}^{t_1:} h(f(x,y)), {}^{t_2:} h(f(x,a)), {}^{t_3:} h(f(a,a))$$

$$h(f(x,b))) \Rightarrow \{h.f.*, h.f.b\}$$

$$u:\mathsf{h}(\mathsf{f}(\boldsymbol{x'},\mathsf{b}))\mapsto\{t_1,t_2,t_3\}\cap\{t_1\}$$

$$\begin{split} ^{t_1:} &\mathsf{h}(\mathsf{f}(x,y)),^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ &\mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h.f.*},\mathsf{h.f.b}\} \\ &u: \mathsf{h}(\mathsf{f}(\pmb{x'},\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{t_1\} \\ &i: \mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{\} \end{split}$$

$$\begin{split} & \quad \quad \mathsf{h}(\mathsf{f}(x,y)),^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \quad \quad \mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h}.\mathsf{f}.*,\mathsf{h}.\mathsf{f}.\mathsf{b}\} \\ & \quad \quad u : \mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{t_1\} \\ & \quad \quad i : \mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{\} \\ & \quad \quad g : \mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{t_1\} \end{split}$$

$$\begin{array}{c} {}^{t_1} \mathsf{h}(\mathsf{f}(x,y)), {}^{t_2} \mathsf{h}(\mathsf{f}(x,\mathsf{a})), {}^{t_3} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h}.\mathsf{f}.*,\mathsf{h}.\mathsf{f}.\mathsf{b}\} \\ & u: \mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{t_1\} \\ & i: \mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{\} \\ & g: \mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v: \mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{\} \end{array}$$

$$\begin{array}{c} ^{t_1}\mathsf{h}(\mathsf{f}(x,y)),^{t_2} \mathsf{h}(\mathsf{f}(x,\mathsf{a})),^{t_3} \mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(x,\mathsf{b}))) \Rightarrow \{\mathsf{h}.\mathsf{f}.*,\mathsf{h}.\mathsf{f}.\mathsf{b}\} \\ & u:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{t_1\} \\ & i:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2,t_3\} \cap \{\} \\ & g:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{t_1\} \\ & v:\mathsf{h}(\mathsf{f}(x',\mathsf{b})) \mapsto \{t_1,t_2\} \cap \{\} \\ & v:\mathsf{h}(\mathsf{f}(x',x')) \mapsto \{t_1,t_2\} \cap \{t_1\} \end{array}$$

Unit Superposition Inference Rules

$$\frac{s \approx t \quad L[s']}{(L[t]) \cdot \sigma} \quad \underset{\text{paramodulation}}{\text{unit}}$$

where $\sigma = \text{mgu}(s, s'), s' \notin \mathcal{V}, t\sigma \not\succeq s\sigma$

$$\frac{s \approx t \quad u[s'] \not\approx v}{(u[t] \not\approx v) \cdot \sigma} \text{ } \underset{\text{superposition}}{\text{unit}} \quad \frac{s \approx t \quad u[s'] \approx v}{(u[t] \approx v) \cdot \sigma}$$

where $\sigma = \text{mgu}(s, s'), s' \notin \mathcal{V}, t\sigma \not\succeq s\sigma, v\sigma \not\succeq u[s']\sigma$

where s and t (A and B respectively) are unifiable

Insert

$$^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$

$$t_1\Rightarrow \mathsf{h.f.}*.*$$

 $t_2 \Rightarrow \mathsf{h.f.*.h.a}$ $t_3 \Rightarrow h.f.h.a.a$

Insert

 $t_1 \Rightarrow \mathsf{h.f.}*.*$

 t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,h(a))), {}^{t_3}$:h(f(h(a),a))

 $t_2 \Rightarrow \mathsf{h.f.*.h.a}$

 t_1 h(f(x,y)), t_2 h(f(x,h(a))), t_3 h(f(h(a),a))

 $t_1 \Rightarrow \mathsf{h.f.}*.*$

 $t_2 \Rightarrow \mathsf{h.f.*.h.a}$

 $t_3 \Rightarrow h.f.h.a.a$

Build

$$\begin{split} ^{t_1:} \mathsf{h}(\mathsf{f}(x,y)), ^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), ^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ t_1 &\Rightarrow \mathsf{h.f.} *. * \\ t_2 &\Rightarrow \mathsf{h.f.} *. \mathsf{h.a} \end{split}$$

$$^{t_1:}$$
h(f(x,y)), $^{t_2:}$ h(f($x,$ h(a))), $^{t_3:}$ h(f(h(a), a))
 $t_1 \Rightarrow \text{h.f.}*.*$
 $t_2 \Rightarrow \text{h.f.}*.\text{h.a}$
 $t_3 \Rightarrow \text{h.f.}*.\text{h.a}$

Insert

$$\begin{split} {}^{t_1:}\!\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\!\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\!\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ t_1 &\Rightarrow \mathsf{h.f.*.*} \\ t_2 &\Rightarrow \mathsf{h.f.*.h.a} \end{split}$$

Insert

Insert t_1 : $h(f(x,y)), {}^{t_2}$: $h(f(x,h(a))), {}^{t_3}$:h(f(h(a),a)) $t_1 \Rightarrow \text{h.f.}*.*$ $t_2 \Rightarrow h.f.*.h.a$ $t_3 \Rightarrow h.f.h.a.a$

$$\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$
$$\mathsf{h}(\mathsf{f}(x',\mathsf{a}))\Rightarrow \mathsf{h.f.}*.\mathsf{a}$$

 $u: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{$

$$h(f(x,y)), h(f(x,h(a))), h(f(h(a),a))$$

$$h(f(x',a)) \Rightarrow h.f.*.a$$

 $u: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{$

$$\begin{split} ^{t_1:}\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ & \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ & u:\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{ \qquad \} \end{split}$$

$$\begin{array}{c} {}^{t_1:}\!\mathsf{h}(\mathsf{f}(x,y)), {}^{t_2:}\!\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), {}^{t_3:}\!\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ \\ \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ \\ u: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{ \qquad \} \end{array}$$

$$\mathsf{h}(\mathsf{f}(x,y)), \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$

$$\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h}.\mathsf{f}.*.\mathsf{a}$$

$$u : \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1, \dots\}$$

$$\mathsf{h}(\mathsf{f}(x,y)),^{t_2:} \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:} \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$

$$\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a}$$

$$u: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1, \dots\}$$

$$\mathsf{h}(\mathsf{f}(x,y)),^{t_2}: \mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3}: \mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$
$$\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h}.\mathsf{f}.*.\mathsf{a}$$

 $u:\mathsf{h}(\mathsf{f}(x',\mathsf{a}))\mapsto\{t_1,t_3\}$

t_1
: $\mathsf{h}(\mathsf{f}(x,y)), {}^{t_2}$: $\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), {}^{t_3}$: $\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$
 $\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a}$
 $u:\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1,t_3\}$
 $i:\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_3\}$

$$\mathsf{h}(\mathsf{f}(x,y)),^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a}))$$

$$\mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a}$$

 $u: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1,t_3\}$ $i: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_3\}$ $q: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1\}$

$$\begin{array}{c} {}^{t_1:}\mathsf{h}(\mathsf{f}(x,y)), {}^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), {}^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})) \\ \\ \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \Rightarrow \mathsf{h.f.*.a} \\ \\ u: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1,t_3\} \\ \\ i: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_3\} \\ \\ g: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{t_1\} \\ \\ v: \mathsf{h}(\mathsf{f}(x',\mathsf{a})) \mapsto \{\ \} \end{array}$$

Subterms

 ${}^{t_1}\dot{h}(f(x,y)), {}^{t_2}\dot{h}(f(x,h(a))), {}^{t_3}\dot{h}(f(h(a),a))$

 $^{t_{1}:}\mathsf{h}(\mathsf{f}(x,y)),^{t_{2}:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_{3}:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})),^{t_{4}:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})))$

$$\begin{array}{c} {}^{t_1:}\mathsf{h}(\mathsf{f}(x,y)), {}^{t_2:}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), {}^{t_3:}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})), {}^{t_4:}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))) \\ \downarrow \\ *_0 \mapsto \mathsf{h}(*_1) \end{array}$$

Build

$$\begin{array}{c} {}^{t_1}\dot{\mathsf{h}}(\mathsf{f}(x,y)), {}^{t_2}\dot{\cdot}\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), {}^{t_3}\dot{\cdot}\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})), {}^{t_4}\dot{\cdot}\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a}))) \\ \downarrow \\ *_0 \mapsto \mathsf{h}(*_1) \\ \downarrow \\ *_1 \mapsto \mathsf{f}(*_2,*_3) \end{array}$$

Build $^{t_{1}:}\!\mathsf{h}(\mathsf{f}(x,y)),^{t_{2}:}\!\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_{3}:}\!\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})),^{t_{4}:}\!\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})))$ $*_0 \mapsto \mathsf{h}(*_1)$ $*_1 \mapsto f(*_2, *_3)$ $*_2 \mapsto x$

Build $^{t_{1}:}\!\mathsf{h}(\mathsf{f}(x,y)),^{t_{2}:}\!\mathsf{h}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))),^{t_{3}:}\!\mathsf{h}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})),^{t_{4}:}\!\mathsf{h}(\mathsf{f}(\mathsf{a},\mathsf{a})))$ $*_0 \mapsto \mathsf{h}(*_1)$ $*_1 \mapsto f(*_2, *_3)$ $*_2 \mapsto x$ $*_3 \mapsto y \qquad *_3 \mapsto \mathsf{h}(\mathsf{a})$

Build t_1 ${}^{\mathsf{h}}(\mathsf{f}(x,y)), {}^{t_2}$ ${}^{\mathsf{h}}(\mathsf{f}(x,\mathsf{h}(\mathsf{a}))), {}^{t_3}$ ${}^{\mathsf{h}}(\mathsf{f}(\mathsf{h}(\mathsf{a}),\mathsf{a})), {}^{t_4}$ ${}^{\mathsf{h}}(\mathsf{f}(\mathsf{a},\mathsf{a})))$ $*_0 \mapsto \mathsf{h}(*_1)$ $*_1 \mapsto f(*_2, *_3)$ $*_2 \mapsto x$ $*_3 \mapsto y \quad *_3 \mapsto \mathsf{h}(\mathsf{a}) \quad *_2 \mapsto \mathsf{h}(\mathsf{a})$

literals sequential index speed $A, \neg B$ search search total (ℓ_1,ℓ_2) new up

literals				sequential	index	speed
new	total	(ℓ_1,ℓ_2)	$A, \neg B$	search	search	up
1 000	1 000	500 000	761	726ms	70ms	10

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search		speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

lite nev	rals v	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 0	00	1 000	500 000	761	726ms	70ms	10
1 0	00	2 000	1 500 000	812	2s	69ms	29
1 0	00	4 000	3 500 000	723	4s	75ms	53
1 0	00	8 000	7 500 000	433	9s	125ms	72

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53
1 000	8 000	7 500 000	433	9s	125ms	72
1 000	16 000	15 500 000	742	21s	221ms	95

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53
1 000	8 000	7 500 000	433	9s	125ms	72
1 000	16 000	15 500 000	742	21s	221ms	95
1 000	32 000	31 500 000	592	40s	489ms	82

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53
1 000	8 000	7 500 000	433	9s	125ms	72
1 000	16 000	15 500 000	742	21s	221ms	95
1 000	32 000	31 500 000	592	40s	489ms	82
1 000	64 000	63 500 000	1167	80s	697ms	115

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53
1 000	8 000	7 500 000	433	9s	125ms	72
1 000	16 000	15 500 000	742	21s	221ms	95
1 000	32 000	31 500 000	592	40s	489ms	82
1 000	64 000	63 500 000	1167	80s	697ms	115
1 000	128 000	127 500 000	1479	160s	13s	12

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53
1 000	8 000	7 500 000	433	9s	125ms	72
1 000	16 000	15 500 000	742	21s	221ms	95
1 000	32 000	31 500 000	592	40s	489ms	82
1 000	64 000	63 500 000	1167	80s	697ms	115
1 000	128 000	127 500 000	1479	160s	13s	12
1 000	256 000	255 500 000	1097	320s	440s	1

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53
1 000	8 000	7 500 000	433	9s	125ms	72
1 000	16 000	15 500 000	742	21s	221ms	95
1 000	32 000	31 500 000	592	40s	489ms	82
1 000	64 000	63 500 000	1167	80s	697ms	115
1 000	128 000	127 500 000	1479	160s	13s	12
1 000	256 000	255 500 000	1097	320s	440s	1
1 000	512 000	511 500 000	1440	640s	348s	2

TPTP/Problems/HWV/HWV134-1.p 2 332 428 formulae, 6 570 884 literals

literals new	total	(ℓ_1,ℓ_2)	$A, \neg B$	sequential search	index search	speed up
1 000	1 000	500 000	761	726ms	70ms	10
1 000	2 000	1 500 000	812	2s	69ms	29
1 000	4 000	3 500 000	723	4s	75ms	53
1 000	8 000	7 500 000	433	9s	125ms	72
1 000	16 000	15 500 000	742	21s	221ms	95
1 000	32 000	31 500 000	592	40s	489ms	82
1 000	64 000	63 500 000	1167	80s	697ms	115
1 000	128 000	127 500 000	1479	160s	13s	12
1 000	256 000	255 500 000	1097	320s	440s	1
1 000	512 000	511 500 000	1440	640s	348s	2
1 000	1 024 000	1023 500 000	1534	1280s	348s	4