מבוא לתורת הקבוצות – תרגיל 7

להגשה עד ליום חמישי ה־5 בינואר 2012

- 1. חשבו את עוצמת כל אחת מבין הקבוצות הבאות:
- 00 את הרצף מכילות שאינן מכילות החדרות (א)
- 01 קבוצת הסדרות הבינאריות שאינן מכילות את הרצף (ב)
- (ג) קבוצת הסדרות הבינאריות שאינן מכילות את הרצף 111
- 11 את הסדרות הסדרות את מכילות את אינן מכילות את הרצף (ד) קבוצת הסדרות הבינאריות שאינן מכילות את אינן אונו הרצף
 - האוגיים הסדרות הבינאריות שהן 0 בכל המקומות האוגיים (ה)
 - (ו) קבוצת הסדרות הבינאריות שהן מחזוריות החל ממקום מסוים
- (ז) קבוצת הסדרות הבינאריות שבכל תחילית שלהן מספר ה־1-ים גדול או שווה למספר ה-0-ים
 - (ח) קבוצת הסדרות הבינאריות שבכל תחילית זוגית שלהן מספר ה־1-ים שווה למספר ה-0-ים
 - (ט) קבוצת הסדרות החשבוניות שכל איבריהן שלמים
 - 2. עבור כל אחת מן הקבוצות הבאות החליטו האם היא בהכרח סופית או בת־מניה, ונמקו:
 - (א) קבוצה של עיגולים (כולל פנים − •) זרים במישור
 - (ב) קבוצה של מעגלים (ללא פנים ○) זרים במישור
 - ורות במישור (∞ ארות מהצורה אובייקטים (גו) למניסקטות (גו)
 - (ד) קבוצה של ישרים זרים במישור
- (ה) קבוצה של מעגלים זרים במישור, כך שלכל שני מעגלים שונים קיים אחד שרדיוסו הנו בגודל לכל היותר מחצית מהרדיוס של השני
 - $|\mathcal{P}(x_1)| \leq |\mathcal{P}(x_2)|$ כי והכיחו כי $|x_1| \leq |x_2|$ ש־ .3
 - $|y_1|=|y_2|$ וגם $|x_1|=|x_2|$ אייו כך של $|x_1,x_2,y_1,y_2|$.4
 - $|x_1^{y_1}| = |x_2^{y_2}|$ (א) הוכיחו כי
 - $|\mathcal{I}(y_1,x_1)|=|\mathcal{I}(y_2,x_2)|$ בי הוכיחו כי $|\mathcal{I}(y_1,x_1)|=|\mathcal{I}(y_1,x_1)|$ קבוצת הפונקציות החח"ע מ־y
 - $|\mathcal{S}\left(y_1,x_1
 ight)|=|\mathcal{S}\left(y_2,x_2
 ight)|$ כי הוכיחו מ־y על מ־y קבוצת הפונקציות גו $\mathcal{S}\left(y,x\right)$
- $|\mathcal{B}\left(y_{1},x_{1}
 ight)|=|\mathcal{B}\left(y_{2},x_{2}
 ight)|$ כד) תהי (דy קבוצת הפונקציות ה<u>הפיכות</u> מ־y מ־y מ־y
 - 5. חשבו את עוצמת כל אחת מבין הקבוצות הבאות:
 - $\mathcal{S}\left(\mathbb{N},\mathbb{R}
 ight)$ (a) $\mathcal{B}\left(\mathbb{Z},\mathbb{Q}
 ight)$ (t) $\mathcal{B}\left(\mathbb{N},\mathbb{N}
 ight)$ (k) $\mathcal{S}\left(\mathbb{N},\mathbb{N}
 ight)$ (c) $\mathcal{I}\left(\mathbb{N},\mathbb{N}
 ight)$ (x)