## Chapter 1

## Introduction

### 1.1 Defining Probability

#### The Classical Definition

The probability of an event is

the number of ways the event may occur the total number of possible outcomes

provided all outcomes are equally likely.

#### Example 1.1.1

The probability of a fair dice landing on 3 is 1/6 because there is one way in which the dice may land on 3 and 6 total possible outcomes of faces the dice may land on. The sample space of the experiment,  $\mathbb{S}$ , is  $\{1, 2, 3, 4, 5, 6\}$  and the event occurs in only one of these six outcomes.

The main limitation of this definition is that it demands that the outcomes of a sample space are equally likely. This is a problem since a definition of "likelyhood" (probability) is needed to include this postulate in a definition of probability itself.

#### The Relative Frequency Definition

The probability of an event is the limiting proportion of times that an event occurs in a large number of repetitions of an experiment.

#### Example 1.1.2

The probability of a fair dice landing on 3 is 1/6 because after a very large series of repetitions (ideally infinite) of rolling the dice, the fraction of times the face with 3 is rolled tends to 1/6.

The main limitation of this definition is that we can never repeat a process indefinitely so we can never truly know the probability of an event from this definition. Additionally, in some cases we cannot even obtain a long series of repetitions of processes to produce an estimate due to restrictions on cost, time, etc.

#### The Subjective Definition

The probability of an event occurring is a measure of how sure the person making the statement is that the event will occur.

#### Example 1.1.3

The probability that a football team will win their next match can be predicted by experts who regard all the data of past matches and current situations to provide a subjective probability.

This definition is irrational and leads to many people having different probabilities for the same events, with no clear "right" answer. Thus, by this definition, probability is not an objective science.

#### **Probability Model**

To avoid many of the limitation of the definitions of probability, we can instead treat probability as a mathematical system defined by a set of axioms. Thus, we can ignore the numerical values of probabilities until we consider a specific application. The model is defined as follows

- A sample space of all possible outcomes of a random experiment is defined.
- A set of events, to which we may assign probabilities, is defined.
- A mechanism for assigning probabilities to events is specified.

## Chapter 2

# Mathematical Probability Models

### 2.1 Sample Spaces

A sample space, S, is a set of distinct outcomes for an experiment or process, with the property that in a single trial, one and only one of these outcomes occurs. The outcomes that make up a sample space are called sample points or simply points.

#### Example 2.1.1

The sample space for a roll of a six-sided die is

 $\{a_1, a_2, a_3, a_4, a_5, a_6\}$  where  $a_i$  is the event the top face is i

More simply we could define the sample space as

$$\{1, 2, 3, 4, 5, 6\}$$

Note that a sample space of a probability model for a process is not necessarily unique. Often times, however, we try to chose sample points that are the smallest possible or "indivisible".

#### Example 2.1.2

If we define E to be the event that the top face of a six-sided die is even when rolled and O to be the event the top-face is odd, then the sample space,  $\mathbb{S}$ , can be defined as

$$\{E,O\}$$

This is the same process as Example 2.1.1 (rolling a six-sided die), so since the sample spaces differ, clearly, sample spaces are not unique. Moreover, if we are interested in the event that a 3 is rolled, this sample space is not suitable since it groups the event in question with other events.

A sample space can be either **discrete** or **non-discrete**. If a sample space is discrete, it consists of a finite or countably infinite number "simple events". A countably infinite set is one that can be put into a one-to-one correspondence with the set of real numbers. For example,  $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$  is countably infinite whereas  $\{x | x \in \mathbb{R}\}$  is not.

#### Simple Events

An event in a discrete sample space is a subset of the sample space, i.e.,  $A \subset \mathbb{S}$ . If the event is indivisible, so as to only contain one point, we call it a simple event, otherwise it is a compound event.

#### Example 2.1.3

A simple event for a roll of a six-sided die is  $A = \{a_1\}$  where  $a_i$  is the event the top face is i. A compound event is  $E = \{a_2, a_4, a_6\}$ .

### 2.2 Assigning Probabilities

Let  $\mathbb{S} = \{a_1, a_2, a_3, \ldots\}$  be a discrete sample space. We assign probabilities,  $P(a_i)$ , for  $i = 1, 2, 3, \ldots$  to each sample point  $a_i$  such that the following two conditions hold

- $0 \le P(a_i) \le 1$
- $\sum_{\text{all } i} P(a_i) = 1$

The set of probabilities  $\{P(a_i)|i=1,2,3,\ldots\}$  is called a **probability distribution** on  $\mathbb{S}$ .