DUTY CYCLE EXPLANATION

This device transmits at a 9600 baud rate and can have a maximum 2 data bits high. Based on this calculation, the maximum calculated duty cycle using the formulas on pages 2 and 3 would be 42.24%. Plots of the duty cycle are given showing that the actual measured duty cycle is less than or equal to 42.24% (See the duty cycle plot exhibits, which are separate from this exhibit). However, per the FCC response, the maximum calculated duty is to be used for the purposes of testing.

MS Series Encoder Data Structure

The MS Series encoder is designed to securely register button presses or switch closures over a wireless link for remote control applications. It will turn eight parallel input lines into a secure, encoded serial bit stream output.

The MS Series algorithm is designed to create a data stream with a 50% duty cycle by using the same number of high bits and low bits. Two wait times reduce this duty cycle to just below 50%.

Logic State Description:

1 = HIGH

0 = LOW

Total bits, including start and stop bits = 80

Total 1's = 40

Total 0's = 40

Value for each bit per baud rate:

2400bps = 417uS or 1.18% of duty cycle

9600bps = 104uS or 1.01% of duty cycle

19200bps = 52uS or 0.85% of duty cycle

28800bps = 35uS or 0.74% of duty cycle

Wait Time	Processing Time		Wait Time	Wake	Noise Filter	Error Check	ADDR-H	ADDR-M	ADDR-L	Data Byte	Error Check	
680uS	11111111	00000000	465uS	1010	800uS	0 01101000 1	0 10101010 1	0 01010101 1	0 00000000 1	0 11111111 1	0 11101010 1	
				\								

Duty Cycle =
$$\frac{\text{Time High}}{\text{Total Time}}$$
 \longrightarrow $\frac{40 \text{ bits} + 800 \text{uS}}{80 \text{ bits} + 680 \text{uS} + 465 \text{uS} + 800 \text{uS}}$ \longrightarrow $\frac{(40*104 \text{uS}) + 800 \text{uS}}{(80*104 \text{uS}) + 1,945 \text{uS}} = \frac{4,960 \text{uS}}{10,265 \text{uS}} = 48.3\%$

MS Series Encoder Data Structure

The MS Series encoder is designed to securely register button presses or switch closures over a wireless link for remote control applications. It will turn eight parallel input lines into a secure, encoded serial bit stream output.

The MS Series algorithm is designed to create a data stream with a 50% duty cycle by using the same number of high bits and low bits. Two wait times reduce this duty cycle to just below 50%.

Logic State Description:

1 = HIGH

0 = LOW

Total bits, including start and stop bits = 80

Total 1's = 40

Total 0's = 40

Value for each bit per baud rate:

2400bps = 417uS or 1.18% of duty cycle

9600bps = 104uS or 1.01% of duty cycle

19200bps = 52uS or 0.85% of duty cycle

28800bps = 35uS or 0.74% of duty cycle

Wait Time	Process	Wait Time	Wake	Noise Filter	Error Check	ADDR-H	ADDR-M	ADDR-L	Data Byte	Error Check		
680uS	11111111	00000000	465uS	1010	800uS	0 01101000 1	0 10101010 1	0 01010101 1	0 00000000 1	0 10000001 1	0 11101010 1	
				\								

Duty Cycle =
$$\frac{\text{Time High}}{\text{Total Time}}$$
 \longrightarrow $\frac{40 \text{ bits} + 800 \text{uS}}{80 \text{ bits} + 680 \text{uS} + 465 \text{uS} + 800 \text{uS}}$ \longrightarrow $\frac{(34*104 \text{uS}) + 800 \text{uS}}{(80*104 \text{uS}) + 1,945 \text{uS}} = \frac{4,336 \text{uS}}{10,265 \text{uS}} = 42.24\%$