LERNZIELE TEMPERATUR UND WÄRME

Temperatur Begriff "thermisches Gleichgewicht" mit einem Diagramm erk Beispiele für temperaturabhängige Materialeigenschaften kenr Definition der Celsiusskala (Fixpunkte, Einteilung) erklären zwischen Celsius- und Kelvintemperaturen umrechnen Längenausdehnung für einen festen Körper berechnen realisieren, dass lineare Ausdehnung nur innerhalb eines besti ten Temperaturbereichs gute Näherung ist Funktionsweise von Bimetallen erklären zwei Anwendungen von Bimetallen kennen Volumenausdehnung Volumenausdehnung von Flüssigkeiten und festen Körpern m fe der Werte aus der FoTa berechnen Dichteänderung von Flüssigkeiten und iesten Körpern berecht Anomalie des Wassers um 4°C beschreiben und ihre Bedeutur die Natur realisieren innere Energie und Wärme Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhän spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechnen Zwei Beispiele für Konvektion beschreiben	mm- it Hil-
realisieren, dass lineare Ausdehnung nur innerhalb eines besti ten Temperaturbereichs gute Näherung ist Funktionsweise von Bimetallen erklären zwei Anwendungen von Bimetallen kennen Volumenausdehnung von Flüssigkeiten und festen Körpern m fe der Werte aus der FoTa berechnen Dichteänderung von Flüssigkeiten und festen Körpern berecht Anomalie des Wassers um 4°C beschreiben und ihre Bedeutur die Natur realisieren innere Energie und Wärme Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhän spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechnen	it Hil- nen
ten Temperaturbereichs gute Näherung ist Funktionsweise von Bimetallen erklären zwei Anwendungen von Bimetallen kennen Volumenausdehnung von Flüssigkeiten und festen Körpern m fe der Werte aus der FoTa berechnen Dichteänderung von Flüssigkeiten und festen Körpern berecht Anomalie des Wassers um 4°C beschreiben und ihre Bedeutur die Natur realisieren innere Energie und Wärme Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhän spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechnen	it Hil- nen
Volumenausdehnung Volumenausdehnung von Flüssigkeiten und festen Körpern m fe der Werte aus der FoTa berechnen Dichteänderung von Flüssigkeiten und festen Körpern berecht Anomalie des Wassers um 4°C beschreiben und ihre Bedeutur die Natur realisieren innere Energie und Wärme Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhän spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechner	nen
Volumenausdehnung von Flüssigkeiten und festen Körpern m fe der Werte aus der FoTa berechnen Dichteänderung von Flüssigkeiten und festen Körpern berecht Anomalie des Wassers um 4°C beschreiben und ihre Bedeutur die Natur realisieren innere Energie und Wärme Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhän spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechnen	nen
fe der Werte aus der FoTa berechnen Dichteänderung von Flüssigkeiten und festen Körpern berecht Anomalie des Wassers um 4°C beschreiben und ihre Bedeutur die Natur realisieren innere Energie und Wärme Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhän spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechner	nen
Anomalie des Wassers um 4°C beschreiben und ihre Bedeutur die Natur realisieren Energie und Wärme Energie und Värme Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhän spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechnet	
die Natur realisieren Energie und Wärme Energiezufuhr durch Arbeit und/oder Wärme, Zusammenhän spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechner	
spezielle Prozesse ("Wasserkesselmodell") Unterschied zwischen adiabatischen und isothermen Prozesse klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechnen	g tur
klären; je ein Beispiel für einen adiabatischen, aber nicht isoth men, und einen isothermen, aber nicht adiabatischen Prozess nen Wärmezufuhr mit Hilfe des spezifischen Heizwertes berechne	ge für
-	er-
Wärmetransportarten Zwei Beispiele für Konvektion beschreiben	1
Zeitlichen Temperaturverlauf bei Wärmeleitung beschreiben	
Je zwei Beispiele für gute und schlechte Wärmeleiter kennen (1 Anwendungen)	nit
Strahlungsgesetze auf einfache Beispiele anwenden	
spezifische Wärme zwei Möglichkeiten zur Bestimmung der zugeführten Wärmer beschreiben	nenge
zugeführte bzw. abgegebene Wärmemenge aus Temperaturänd berechnen	erung
zwei Beispiele für die Bedeutung von Wasser als Wärmespeich bzw. Kühlmittel kennen	er
einfache Mischrechnungen systematisch lösen	
Phasenübergänge Temperaturverlauf bei Phasenübergang skizzieren	
Übergangswärmen berechnen	
erklären, was gesättigter Dampf ist	
Siedepunkt für beliebigen Druck anhand einer Dampfdruckku bestimmen	rve
Phasendiagramm qualitativ skizzieren	
Bedeutung von kritischem Punkt und Tripelpunkt kennen	

Wärmemaschinen zwei Beispiele für reale Wärmekraftmaschinen (z.B. Viertaktmotor,

Dampfmaschine, Gasturbine) beschreiben und deren Wirkungsgra-

de kennen

Energieflussdiagramme für Wärmekraftmaschine, Kühlmaschine

und Wärmepumpe zeichnen

Berechnungen mit Leistungsziffern für Kühlmaschine und Wärme-

pumpe (real und ideal)

Grösse Wert

absoluter Nullpunkt	o K = -273.15 °C
Längenausdehnungskoeffizient (Metalle)	typisch 10 – 30 · 10-6 K-1
Volumenausdehnung (Flüssigkeiten)	typisch $2 - 20 \cdot 10^{-4} \mathrm{K}^{-1}$
spezifischer Heizwert von Heizöl	42.7 MJ/kg
Stefan-Boltzmann-Konstante	$\sigma = 5.67 \cdot 10^{-8} \text{ W/(m}^{2} \cdot \text{K}^{4})$
Solarkonstante	$S = 1'380 \text{ W/m}^2$
spezifische Wärme von Wasser	$c = 4.182 \text{ kJ/(kg} \cdot \text{K)}$
Verdampfungswärme von Wasser	Lv = 2.26 MJ/kg
Schmelzwärme von Wasser	$L_f = 334 \text{ kJ/kg}$
typische Wirkungsgrade	Benzinmotor: 20 % – 30 %
	Kernkraftwerk: 30 %