Interim Report: 20 June 2025

I. CORE SYSTEM AND PROBLEM DEFINITIONS

A. core.models.base.DynamicalSystem

Abstract base class for dynamical systems:

$$\dot{x} = f(x, u, \theta, t)$$
 (Dynamics)
 $y = g(x, \theta, t)$ (Observation)

Interface & Capabilities:

- __init__(n, m, p, params, ...):
 Constructor taking state (n), input (m), output (p) dimensions, and a JAX array of parameters (params).
- f(...): Abstract method for the dynamics function.
- g(...): Abstract method for the observation function.
- simulate(...): High-level method that uses diffrax to solve the initial value problem and return the system's trajectory.

B. core.idp.IdentificationProblem

A high-level class designed to encapsulate all components of a system identification experiment into a single object. **Interface & Capabilities:**

- Bundles a Dynamical System instance with:
- $y_m eas: Measured output data$

II. MODEL IMPLEMENTATIONS

core.models.

A. linearCT.LinearSystem

Implements a classical Linear Time-Invariant (LTI) system:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

Interface & Capabilities:

- ullet Inherits from DynamicalSystem
- Implements is_controllable() and is_observable(), which can use either the Kalman or PBH tests

B. .controlAffine.ControlAffineSystem

Implements a nonlinear system with dynamics affine in the control input:

$$\dot{x}(t) = f_d(x,\theta) + \sum_{i=1}^m g_i(x,\theta)u_i(t)$$

$$u(t) = h(x)$$

Interface & Capabilities:

- Inherits from DynamicalSystem
- Implements observability and controllability criteria based on Lie Algebra
- Basic operations of the Lie Algebra are implemented in core.utils.algebra

III. ALGORITHMIC TOOLKIT

A. Differential Geometry (core.utils.algebra)

Provides fundamental operations for nonlinear system analysis. These functions are implemented using jax.jacfwd and jax.jacrev for efficient and accurate computation of Jacobians.

- **lie_derivative(f, h):** Computes the Lie derivative of a scalar field h along a vector field $f: L_f h = (\nabla h) \cdot f$.
- **lie_bracket (f, g):** Computes the Lie bracket of two vector fields f and g: $[f,g] = (\nabla g)f (\nabla f)g$.

B. Structural Identifiability Analysis

These methods assess whether parameters can be uniquely determined from noise-free data.

Taylor Series Method (analyze_diffalg) :

- **Principle:** Parameters are identifiable if they uniquely affect the Taylor series expansion of the output y(t) at t=0. The coefficients of this series are functions of repeated Lie derivatives of h(x) with respect to $f(x,\theta)$, evaluated at x_0 .
- **Computation:** An identifiability matrix is formed by taking the Jacobian of the vector of output derivatives with respect to the parameters θ : $J = \frac{\partial [y(0), \dot{y}(0), \ddot{y}(0), \dots]}{\partial \theta}$.
- Criterion: Parameters are structurally locally identifiable if rank(J) equals the number of parameters.

Initial Condition-based Score (ICIS)
 (QiuICIS.analyze):

- **Principle:** For an unforced, diagonalizable LTI system, parameters in A are identifiable if and only if the initial condition x_0 excites all dynamic modes (i.e., has a non-zero projection onto every eigenvector).
- Computation: The score is the product of the squared magnitudes of the coordinates of x_0 in the eigenvector basis: ICIS = $\prod_{i=1}^{n} |(V^{-1}x_0)_i|^2$, where V is the eigenvector matrix.

C. Practical Identifiability and Sensitivity Analysis

All methods are part of the QiuICIS class.

Sensitivity Trajectory Computation (compute_sensitivity_trajectory):

- **Principle:** Computes the sensitivity of the state trajectory to changes in parameters, $S(t) = \frac{\partial x(t)}{\partial \theta}$. This is achieved by solving an augmented state-space system.
- Computation: The state vector is augmented as $z = [x^\top, \text{vec}(S)^\top]^\top$. The dynamics of the augmented system are:

$$\dot{x} = f(x, \theta)$$
$$\dot{S} = \frac{\partial f}{\partial x} S + \frac{\partial f}{\partial \theta}$$

This augmented ODE system is solved once using diffrax, yielding both x(t) and S(t).

Likelihood Ratio Test (analyze_LR) :

- **Principle:** A statistical test to determine if a parameter is necessary for a model to fit the data. It compares the goodness-of-fit (Residual Sum of Squares, RSS) of the full model against a nested model where one parameter is fixed.
- Computation:
 - 1) Minimize RSS for the full model to find $\hat{\theta}$ and RSS_{full} .
 - 2) For each parameter θ_i , fix it to $\hat{\theta}_i$ and re-minimize the RSS over the remaining parameters to find $RSS_{reduced,i}$.
 - 3) Calculate the test statistic: $LR_i = N \log(RSS_{reduced,i}/RSS_{full})$.
- Criterion: The statistic LR_i is compared to a $\chi^2(1)$ distribution. A small p-value indicates the parameter is practically identifiable.

This script serves as a template for conducting insilico experiments.

Objective: To evaluate the effect of control input magnitude on the practical identifiability of parameters in the SimpleGlucoseInsulinModel.

Workflow: 1) **Setup:** Define a ground truth model and generate synthetic data with varying input signal strengths.

- 2) **Encapsulation:** For each condition, create an IdentificationProblem instance.
- 3) Optimization: A cost function (Sum of Squared Errors) is defined, which wraps the model's simulate method. scipy.optimize.minimize is then used to find the maximum likelihood parameter estimates.
- 4) **Conclusion:** The estimated parameters are plotted against the true values for each input condition, allowing for a visual assessment of identifiability.