CS 118 Midterm Cheat Sheet

Physical Layer

Layer Violation - layers may only access/view their own headers/layer content easy way to identify: if a header of a lower layer is changed, it should not impact current layer service - if it does there is a violation ECN - Explicit Congestion Notification - added to IP & TCP to inform source abt congestion and to decrease sent packet rate Bandwidth/Frequency (B) = F = 1/T hz where T is period an F is frequency Intersymbol Interference (ISI) - interference between the lag of the previous symbol and the next symbol Nyquist Limit = 2B bits/s you can bypass Nyquist limit by sending on different phases or frequency **Baud Rate** = $\log_2 L \times 2B$ bits/s where $\it L$ is the number of signal amplitudes **Shannon Bound =** $B\log_2(1+S/2N)$ S: Maximum Signal Amplitude Level 5 N: Maximum Noise Amplitude Level 4 log(S/2N) bits/signal Level 3 2B signals/sec (Nyquist) Naive Bound: $log(S/2N) \times 2B$ Level 1 Shannon Bound: $log(1 + S/2N) \times B$ Nyquist-Shannon Sampling Thm - Anti-aliasing iff $f_s>2f_{
m max}$ where f_s is sampling freq and $f_{
m max}$ is og max freq Synch. Clock Recovery - signals require preamble w/ transitions to reduce receiver clock overhead when sampling synchronously Manchester Encoding - encodes bits to transitions at mid bit width: 1:hi→lo, 0:lo \rightarrow hi con: 50% efficient - encodes only half bit per transition NR7 Manchester Manchester Alternate Mark Inversion (AMI) Encoding - encodes bits to alternating voltage levels: 0:0V, 1: \pm V. Each bit alternates positive and negative voltage. e.g. $111001111 \rightarrow +-+00+-+$ con: issues with long seq of 0s 4-5 Encoding - encodes 4 bit seq to 5 bit seq w/ transisition e.g., 1111 \rightarrow 00001, mitigates long preamble con: introduces new overhead for every 4 bit pattern Broadband Encoding - Frequency Shift Keying (FSK), Amplitude Shift Keying (ASK), Phase Shift Keying (PSK) not limited to energy levels like baseband encoding above Signal Demux - Time/Freq/Phase Division Mux (T/F/PDM) e.g., tv channels - signals muxed by frequency of signal **Twisted Pair Cable** - low bandwidth, cheap \rightarrow Cat 5 twisted pair higher quality Coax Cable - high bandwidth, og ether, too clunky replaced by Cat5 Fiber Optic Cable - huge bandwidth, unidirectional, but chromatic and modal (bounce) dispersion, expensive, multichannel via multicolor but expensive with prism to demux color

channels

Wireless 802.11b - broadband, requires spectrum allocation, possibly satellite, radio large passes through objects

Medium	Speed	Distance Span	Pros	Cons
Twisted Pair	1 Mps -1 G (Cat 1 – Cat 5)	1 – 2 Km	Cheap, easy to install	Low distance
Digital Coax	10-100 Mbps	1- 2 km	broadcast	Hard to install in building
Analog Coax	100-500 Mbps	100 Km	Cable companies Use it now	Expensive amplifiers
Fiber	Terabits	100 km	Security, low noise, BW	No broadcast, Needs digging
Microwave	10-100 Mbps	100 km	Bypass, no right Of way need	Fog outages
Satellite	100-500 Mbps	worldwide	Cost independent of distance	250 msec delay Antenna size
RF/Infrared	1 – 100 Mbps, < 4 Mbps	1 km 3 m	wireless	Obstacles for infrared

Data Link Layer

Flags - wrap datagrams to fragment into frames, signify start and end
HDLC - bit stuffing for false flags, no escapes
PPP (Ethernet) - byte stuffing, with escapes
Stuffing Overhead - #stuffed bits / #og bits
Stuffing Efficiency - Probability of stuff = #flags / #bit combs/patterns
CRC32 Mod2 Div - shift left by len(gen)-1 then long divide generator, xor only for leading

1s, if leading $0 \rightarrow \text{move right until leading } 1$

CRC-16:
$$X^{16} + X^{15} + X^2 + 1 = 11000000000000101$$

We skip proofs of these properties this <u>quarter</u> but they are in your notes, Not required for HWs and tests.

Odd bit errors: can handle but not a big deal as parity can handle with using just 1 bit. 1

Two bit errors specially designed CRCs can do this. Beats parity!

Burst errors: CRC-32 can catch any $\underline{32 \text{ bit}}$ burst error for sure. Further it can catch larger burst errors with very high probability: $(1 - 1/2^{32})$

Summary: So the big deal is that it can for sure catch up to 3 bit errors, and can detect any error with very high probability. Like a hash function with with some deterministic guarantees

Band Invariance – sender and receiver will alway be within x+1 packet ids of each other. Receiver state is id of packet waiting to receive, ack is id of receiver state

Sender state updates with ack

Throughput (bits/s) - jobs/s (usually round trip)

Latency (s) - worst case time to complete 1 job

1-way propagation delay (s) - time for transmitted bit to cross link

Transmission Rate (bps) - bit rate over link bits/s

Pipe Size aka Bandwidth Delay Product (bits) = Transmission Rate × Round-trip propagation delay

Sliding Window Ack Protocol

only fifo packets with ordering, fails on UDP

mod for packet ids depends on window size W (max number of packets sent in sequence)

alternating bit - mod 2

go back W - mod W+1

selective reject - mod 2W

SELECTIVE GO BACK 3 REJECT 0,2 0 D(0) 0 D(0) A(1) A(1) D(1) -WINDOW 1,32 LIDES D(2) D(2) REJECT BUFFER D(3) REJECT D(3) BUFFER Ack with list EXPIRES D(1) A(1; 2, 3) of numbers TIMER D(1) D(2) Received out Of order D(31 MODINT SLIDES A(4) A(4) WINDOW 4,6 4.6

Restart Signal - requires ids to mitigate multi restart usually uses max frame timer then restart - issue is must wait for timer so longer time to reboot

LAN

Ethernet - multi-access many-to-many, demux via MAC addr

Total Frame length 64<=L<=1500

Strict Multiplexing (B/N) - allocate static bandwidth via TDM/FDM
Stat. Mux.(B/x s.t. x < N) - allocate bandwidth based on traffic
allows clients to use others' bandwidth when low traffic
CSMA/CD - Collision detection via carrier sense - stations must listen and detect
collisions occurring at their station and propagate info to all stations
Ethernet uses min frame size of 64 bytes = Pipe size = Trans. Rate (10 Mbps) × RTPD (51.2μs
) = 512 bits
Limits cable length if link has higher transmission rate
Collision detection via voltage, if high is 1, avg volt for 0 or 1 is 0.5V, collision would cause avg volt of 1V
Jam bits during collision to extend collision to be detected by other stations
Binary Exponential Backoff - wait longer time for more collisions

Choose wait time after k collisions from 2^k-1 time sots e.g., after 1st, choose 0 or 1 wait, then 2nd choose 0 to 3 wait Hubs - Single point of connection for all nodes on ether, requires CD

Wireless 802.11b

Multichannel - 12 allocated channels, 3 orthogonal channels at a time

Stations can be on orthogonal channels so CD wont be detected if on diff channel

RTS/CTS (MACA) - before node A transmits, send couple bytes called Request-to-Send on all

channels, node B hears and calls Clear-to-Send broadcast → node C hears and defers

Bridges/Switches

MAC Addr - 6 bytes (48 bits) Unique to device, unique to terminal (rec/send) first 3 bytes for vendor, last 3 host MSB leading $1 \rightarrow multicast$ **IPv4** - 4 bytes (32 bits) allocated per network via DHCP Accessible IPs mapped via DNS leading 1 (or 1110) signifies multicast Switches - 1-to-many, point to point, buffer frames if link is busy Entries in DB by looking at Src addr (up) Flood down if dest not known No loops \rightarrow tree topology Timer for buffering, timer expires \rightarrow flood all buffered frames Switch Transparency - bridges must be transparent to nodes, must appear as simple ether/cable Promiscuous Receive - Switches buffer from all stations regardless of src Flood - Forward to all stations on line, picked up by correct MAC Filtering - filter packets by ether header for forward or buffer Bridge Spanning Tree Algo - bridge ids, drop longer links to same LANs

- Root is Min ID node (in this case Bridge 1)
- Other bridges finds Min port, port through which it has shortest path to root (parent), For 11 it is upper port.
- Each bridge also finds the ports for which this bridge is
 on the shortest path between root and corresponding
 LAN: Designated Ports. For example, 11 and 12 have d=
 2 for LAN 1, so we pick shorter ID as tiebreaker, Bridge
 11 is designated bridge for LAN 1, 12 for LAN 2
- Each bridge turns ON Min port and all Designated Ports. ON,OFF are software states: always receive hello and management messages on all ports. Drop data packets to/from OFF port.

13