Roadmap of Targeted Learning

ROADMAP FOR THE AVERAGE TREATMENT EFFECT (ATE)

Comparison of Standard Approach to Targeted Maximum Likelihood Estimation

W Subjects were sampled I. DESCRIBE n = 100 subjects pre-treatment covariate independently from eachother and from the same population For each subject, distribution P_{α} pre-treatment covariates (W), treatment (A), and outcome (Y)indicating whether subject received $O_1, \ldots, O_n \stackrel{\text{iid}}{\sim} P_0$ continuous post-treatment vectors were measured treatment ($\mathbf{A} = \mathbf{1}$) or not ($\mathbf{A} = \mathbf{0}$) STATISTICAL MODEL realistic True data-generating process (DGP) **Standard Approach** Targeted Maximum Likelihood Estimation 2. SPECIFY Parametric statistical model Realistic semiparametric or nonparametric statistical model oarametr Does not contain P_0 , the DGP Treatment (A) + 0 Defined to ensure Po is contained in model (i.e., misspecified model)

Additional assumptions are required to interpret this estimand as causal

What is the average effect of treatment on outcome?

 Ψ is a function that takes as input P_0 $\Psi(P_0)=E_0\big(E_0[Y|A=1,W]-E_0[Y|A=0,W]\big)$ and outputs the answer to the question of interest

The **assumption of positivity** is requied to estimate of this quantity from the data. That is, it must be possible to observe both levels of treatment for all strata of *W*.

Standard Approach

Generalized Linear Model (GLM) to estimate

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{A} + \beta_2 \mathbf{W} + \boldsymbol{\epsilon}$$

Estimated coefficients are biased

Cannot detect heterogeneity in treatment effect

Targeted Maximum Likelihood Estimation

TMLE implements a two-step procedure

- initial estimation of $E_0[Y|A,W]$ with super (machine) learning
- targeting towards optimal biasvariance trade-off for $\Psi(P_0)$

TMLE estimates are unbiased and doubly robust

To have legitimate estimate and inference, statistical model must be (1) correctly specified (i.e., contain P₀) and (2) selected a priori, before looking at the data.

5. FORM

JEERENCE

4. CONSTRUCT

ESTIMATOR

3. DEFINE ESTIMAND

Standard Approach

Inference (such as *p*-value and confidence interval) is misleading and erroneous

Targeted Maximum Likelihood Estimation

Targeting (step 2) improves estimate and makes inference possible

Trustworthy inference obtained with efficient influence function

B. ROADMAP FOR THE OPTIMAL TREATMENT EFFECT (steps identical to ATE omitted)

 $\Psi(P_0) = E_0\big(E_0[Y|A=d_{\mathrm{opt}}(W),W]\big) - E_0[Y]$ $d_{\mathrm{opt}}(W) \text{ is a decision rule that tailors treatment assignment to the subject (based on their characteristics W) to maximize their expected outcome.}$ The optimal intervention assigns treatment <math>A=1 if $W\geq 5$ and A=0 if W<5 Treatment A=1 if A=1

4. CONSTRUCT ESTIMATOR

Step 1 of TMLE requires estimation of the conditional additive treatment effect (CATE)

$$E_0(Y|A=1,W) - E_0(Y|A=0,W)$$

to learn the decision boundary for optimal rule $d_{opt}(W)$ to assign treatment A

5. FORM NFERENCE

