Algorithm analysis

Algorithm analysis

We want to predict the performance of our algorithms.

Predicting time in seconds isn't feasible.

- What if you use a different programming language?
- What if you used a better compiler?
- What if you just bought a faster computer?

Algorithm analysis

We want to predict the performance of our algorithms.

Predicting time in seconds isn't feasible.

- What if you use a different programming language?
- What if you used a better compiler?
- What if you just bought a faster computer?
- (And, honestly, it's too difficult.)

Usually, we don't care about exact timings (real-time systems excepted).

Primitive operations

Instead of estimating time in seconds, we estimate the number of primitive operations:

- variable assignments
- arithmetic operations
- essentially, CPU instructions

We still call this "running time".

Primitive operations

Instead of estimating time in seconds, we estimate the number of primitive operations:

- variable assignments
- arithmetic operations
- essentially, CPU instructions

We still call this "running time".

But what if you buy a computer with a different CPU instruction set?

It doesn't matter, because we'll abstract away from this level of detail.

Scalability

We want to know how algorithms' performance scales as the input gets large:

- Express running times as functions of input size, n.
- e.g., "Inserting into a sorted list takes time proportional to n."
- e.g., "... into a priority queue takes time proportional to $log_2(n)$."

Scalability

We want to know how algorithms' performance scales as the input gets large:

- Express running times as functions of input size, n.
- e.g., "Inserting into a sorted list takes time proportional to n."
- e.g., "... into a priority queue takes time proportional to $log_2(n)$."

Asymptotic behaviour

We're interested in **asymptotic** performance: large inputs, as $n \to \infty$.

Suppress constant factors and lower-order terms.

— Tim Roughgarden, Algorithms Illuminated, Part I.

Ignoring constant factors

"The number of steps to insert an item into a sorted list is proportional to the list's length" – What's the constant of proportionality?

- Depends on hardware, compiler, etc.
- Exactly what we're trying to abstract away.
- It's probably a small number (like 10, not a million) so it doesn't matter much.

Ignoring constant factors

"The number of steps to insert an item into a sorted list is proportional to the list's length" – What's the constant of proportionality?

- Depends on hardware, compiler, etc.
- Exactly what we're trying to abstract away.
- It's probably a small number (like 10, not a million) so it doesn't matter much.

Can we really ignore constant factors?

Mostly.

When choosing between fundamentally different approaches

- difference between the "underlying functions" is the big deal.
- e.g., linked list vs priority queue.

Can we really ignore constant factors?

Mostly.

When choosing between fundamentally different approaches

- difference between the "underlying functions" is the big deal.
- e.g., linked list vs priority queue.

When Choosing between similar approaches:

- constant factors can be important
- e.g., implementing stacks as arrays vs lists.

Can we really ignore constant factors?

Mostly.

When choosing between fundamentally different approaches

- difference between the "underlying functions" is the big deal.
- e.g., linked list vs priority queue.

When Choosing between similar approaches:

- constant factors can be important
- e.g., implementing stacks as arrays vs lists.

When writing code: twice as fast is twice as fast.

Ignoring lower-order terms

Lower-order terms are ones that become insignificant as $n \to \infty$.

• The two curves are basically the same.

Ignoring lower-order terms

Lower-order terms are ones that become insignificant as $n \to \infty$.

- The two curves are basically the same.
- For x = 10, 6x is 40% of $x^2 + 6x$.
- For x = 100, it's 6%; for x = 1000, it's 0.6%.

Ignoring lower-order terms

Lower-order terms are ones that become insignificant as $n \to \infty$.

- The two curves are basically the same.
- For x = 10, 6x is 40% of $x^2 + 6x$.
- For x = 100, it's 6%; for x = 1000, it's 0.6%.
- For x > 6, $x^2 + 6x < 2x^2$ and we already agreed to ignore constant factors.

Can we really ignore lower-order terms?

Usually, yes.

- For small inputs, any algorithm will do.
- It's large inputs that need us to be smart.
- Lower-order terms are negligible for large inputs.

Asymptotic notation

We want a system for comparing functions while ignoring constant factors and lower-order terms.

Definition

Let f(n) and g(n) be functions $\mathbb{N}_{>0} \to \mathbb{N}_{>0}$.

We write f(n) = O(g(n)) if there are constants n_0 and c such that, for all $n \ge n_0$, $f(n) \le c g(n)$.

Asymptotic notation

We want a system for comparing functions while ignoring constant factors and lower-order terms.

Definition

Let f(n) and g(n) be functions $\mathbb{N}_{>0} \to \mathbb{N}_{>0}$.

We write f(n) = O(g(n)) if there are constants n_0 and c such that, for all $n \ge n_0$, $f(n) \le c g(n)$.

We say "f is big-O of g".

"Constant" means that n_0 and c cannot depend on n in any way.

Big-O, visually

Think of f = O(g) as "f is sort-of less than g."

$$n^2+6n=O(n^2).$$

$$n^2 + 6n = O(n^2).$$

For all $n \ge 6$, $6n \le n^2$ so $n^2 + 6n \le 2n^2$.

$$n^2 + 6n = O(n^2).$$

For all $n \ge 6$, $6n \le n^2$ so $n^2 + 6n \le 2n^2$.

So take $n_0 = 6$ and c = 2.

$$2n^2+6n=O(n^2).$$

$$2n^2 + 6n = O(n^2).$$

For all $n \ge 6$, $6n \le n^2$ so $2n^2 + 6n \le 3n^2$.

$$2n^2+6n=O(n^2).$$

For all
$$n \ge 6$$
, $6n \le n^2$ so $2n^2 + 6n \le 3n^2$.

So take
$$n_0 = 6$$
 and $c = 3$.

For any constants k, and a_0, \ldots, a_k ,

let
$$p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$
.

E.g.,
$$p(n) = 5n^4 - 16n^3 + 0n^2 + 3n - 1$$
.

Claim:
$$p(n) = O(n^k)$$
.

For any constants k, and a_0, \ldots, a_k ,

let
$$p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$
.

E.g.,
$$p(n) = 5n^4 - 16n^3 + 0n^2 + 3n - 1$$
.

Claim: $p(n) = O(n^k)$.

First, we have $p(n) \le |a_k| n^k + |a_{k-1}| n^{k-1} + \cdots + |a_1| n + |a_0|$.

For any constants k, and a_0, \ldots, a_k ,

let
$$p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$
.

E.g.,
$$p(n) = 5n^4 - 16n^3 + 0n^2 + 3n - 1$$
.

Claim: $p(n) = O(n^k)$.

First, we have
$$p(n) \le |a_k| n^k + |a_{k-1}| n^{k-1} + \cdots + |a_1| n + |a_0|$$
.

For all
$$n \ge 1$$
, $1 \le n \le n^2 \le \cdots \le n^{k-1} \le n^k$.

For any constants k, and a_0, \ldots, a_k ,

let
$$p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$
.

E.g.,
$$p(n) = 5n^4 - 16n^3 + 0n^2 + 3n - 1$$
.

Claim: $p(n) = O(n^k)$.

First, we have $p(n) \le |a_k| n^k + |a_{k-1}| n^{k-1} + \cdots + |a_1| n + |a_0|$.

For all $n \ge 1$, $1 \le n \le n^2 \le \cdots \le n^{k-1} \le n^k$.

Therefore, $p(n) \leq (|a_k| + \cdots + |a_0|)n^k$.

For any constants k, and a_0, \ldots, a_k ,

let
$$p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$
.

E.g.,
$$p(n) = 5n^4 - 16n^3 + 0n^2 + 3n - 1$$
.

Claim: $p(n) = O(n^k)$.

First, we have
$$p(n) \le |a_k| n^k + |a_{k-1}| n^{k-1} + \cdots + |a_1| n + |a_0|$$
.

For all
$$n \ge 1$$
, $1 \le n \le n^2 \le \cdots \le n^{k-1} \le n^k$.

Therefore,
$$p(n) \leq (|a_k| + \cdots + |a_0|)n^k$$
.

So take
$$n_0 = 1$$
 and $c = |a_k| + \cdots + |a_0|$.

For any constants k, and a_0, \ldots, a_k ,

let
$$p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_1 n + a_0$$
.

E.g.,
$$p(n) = 5n^4 - 16n^3 + 0n^2 + 3n - 1$$
.

Claim: $p(n) = O(n^k)$.

First, we have $p(n) \le |a_k| n^k + |a_{k-1}| n^{k-1} + \cdots + |a_1| n + |a_0|$.

For all $n \ge 1$, $1 \le n \le n^2 \le \cdots \le n^{k-1} \le n^k$.

Therefore, $p(n) \leq (|a_k| + \cdots + |a_0|)n^k$.

So take $n_0 = 1$ and $c = |a_k| + \cdots + |a_0|$.

Summary. Any polynomial is big-O of its leading term.

Big-O is ignoring constant factors and lower-order terms.

$$n^{k+1} \neq O(n^k)$$
.

$$n^{k+1} \neq O(n^k)$$
.

For all c and all $n \ge c$, $n^{k+1} \ge c n^k$.

So we cannot find c and n_0 such that $n^{k+1} \le c n^k$ for all $n \ge n_0$.

Properties of big-O

Big-O behaves a lot like \leq on numbers:

- f(n) = O(f(n)) for all functions f.
- $f(n) + g(n) = O(\max\{f(n), g(n)\}).$
- If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n)).

Big-O and logarithms

• The base-b logarithm of n is $\log_b n$, the unique number such that $b^{(\log_b n)} = n$.

- The base-b logarithm of n is $\log_b n$, the unique number such that $b^{(\log_b n)} = n$.
- $\log_a n = (\log_a b) \log_b n = O(\log_b n)$.

- The base-b logarithm of n is $\log_b n$, the unique number such that $b^{(\log_b n)} = n$.
- $\log_a n = (\log_a b) \log_b n = O(\log_b n)$.
- Big-O doesn't care about base; we can write " $O(\log n)$ " without specifying the base.

- The base-b logarithm of n is $\log_b n$, the unique number such that $b^{(\log_b n)} = n$.
- $\log_a n = (\log_a b) \log_b n = O(\log_b n)$.
- Big-O doesn't care about base; we can write " $O(\log n)$ " without specifying the base.
- $\log(m \, n) = (\log m) + (\log n)$ so $\log(n^2) = 2 \log n = O(\log n)$.

- The base-b logarithm of n is $\log_b n$, the unique number such that $b^{(\log_b n)} = n$.
- $\log_a n = (\log_a b) \log_b n = O(\log_b n)$.
- Big-O doesn't care about base; we can write " $O(\log n)$ " without specifying the base.
- $\log(m \, n) = (\log m) + (\log n)$ so $\log(n^2) = 2 \log n = O(\log n)$.
- But $(\log n)^2 \neq O(\log n)$, just as $n^2 \neq O(n)$.

- The base-b logarithm of n is $\log_b n$, the unique number such that $b^{(\log_b n)} = n$.
- $\log_a n = (\log_a b) \log_b n = O(\log_b n)$.
- Big-O doesn't care about base; we can write " $O(\log n)$ " without specifying the base.
- $\log(m \, n) = (\log m) + (\log n)$ so $\log(n^2) = 2 \log n = O(\log n)$.
- But $(\log n)^2 \neq O(\log n)$, just as $n^2 \neq O(n)$.
- $\log n = O(n^k)$ for any k > 0, even non-integer k.

- The base-b logarithm of n is $\log_b n$, the unique number such that $b^{(\log_b n)} = n$.
- $\log_a n = (\log_a b) \log_b n = O(\log_b n)$.
- Big-O doesn't care about base; we can write " $O(\log n)$ " without specifying the base.
- $\log(m \, n) = (\log m) + (\log n)$ so $\log(n^2) = 2 \log n = O(\log n)$.
- But $(\log n)^2 \neq O(\log n)$, just as $n^2 \neq O(n)$.
- $\log n = O(n^k)$ for any k > 0, even non-integer k.
- E.g., $\log n = O(\sqrt{n})$, since $\sqrt{n} = n^{1/2}$.

Big-O and constants

Let f(n) = k be any constant function.

For all $n \ge 1$, $f(n) \le k \cdot 1$, so f(n) = O(1).

f(n) = O(1) if, and only if, there is a constant c such that $f(n) \le c$ for all $n \ge 1$.

Big-O cheat sheet

Common functions ordered by big-O ("sort-of less than"):

$$k, \ldots, \log(\log n), \log n, \sqrt{n} = n^{1/2}, n,$$

 $n, n \log n, n^{1.0001}, n^2, n^3, \ldots, 2^n, 2^{n^2}, \ldots$

Big-O's friends (1)

Definition

Let f(n) and g(n) be functions $\mathbb{N}_{>0} \to \mathbb{N}_{>0}$.

We write $f(n) = \Omega(g(n))$ if there are constants n_0 and c such that, for all $n \ge n_0$, $f(n) \ge c g(n)$.

We say "f is big-Omega of g."

Big-O's friends (1)

Definition

Let f(n) and g(n) be functions $\mathbb{N}_{>0} \to \mathbb{N}_{>0}$.

We write $f(n) = \Omega(g(n))$ if there are constants n_0 and c such that, for all $n \ge n_0$, $f(n) \ge c g(n)$.

We say "f is big-Omega of g."

Equivalently, $f(n) = \Omega(g(n))$ if, and only if, g(n) = O(f(n)).

Big-O's friends (1)

Definition

Let f(n) and g(n) be functions $\mathbb{N}_{>0} \to \mathbb{N}_{>0}$.

We write $f(n) = \Omega(g(n))$ if there are constants n_0 and c such that, for all $n \ge n_0$, $f(n) \ge c g(n)$.

We say "f is big-Omega of g."

Equivalently, $f(n) = \Omega(g(n))$ if, and only if, g(n) = O(f(n)).

So big- Ω is "kind-of greater than".

Big-O's friends (2)

Definition

Let f(n) and g(n) be functions $\mathbb{N}_{>0} \to \mathbb{N}_{>0}$.

We write $f(n) = \Theta(g(n))$ if there are constants n_0 , c and d such that, for all $n \ge n_0$, $c g(n) \le f(n) \le d g(n)$.

We say "f is big-Theta of g."

Big-O's friends (2)

Definition

Let f(n) and g(n) be functions $\mathbb{N}_{>0} \to \mathbb{N}_{>0}$.

We write $f(n) = \Theta(g(n))$ if there are constants n_0 , c and d such that, for all $n \ge n_0$, $c g(n) \le f(n) \le d g(n)$.

We say "f is big-Theta of g."

Equivalently, $f(n) = \Theta(g(n))$ if, and only if, f(n) = O(g(n)) and g(n) = O(f(n)).

Big-O's friends (2)

Definition

Let f(n) and g(n) be functions $\mathbb{N}_{>0} \to \mathbb{N}_{>0}$.

We write $f(n) = \Theta(g(n))$ if there are constants n_0 , c and d such that, for all $n \ge n_0$, $c g(n) \le f(n) \le d g(n)$.

We say "f is big-Theta of g."

Equivalently,
$$f(n) = \Theta(g(n))$$
 if, and only if, $f(n) = O(g(n))$ and $g(n) = O(f(n))$.

So big- Θ is "approximately proportional to".

Big- Θ , visually

Here, $f(n) = \Theta(g(n))$.

Plotting graphs of f(n) and g(n) is often a good way to see if f(n) = O(g(n)).

Plotting graphs of f(n) and g(n) is often a good way to see if f(n) = O(g(n)).

Plotting graphs of f(n) and g(n) is often a good way to see if f(n) = O(g(n)).

Plotting graphs of f(n) and g(n) is often a good way to see if f(n) = O(g(n)).

Plotting graphs of f(n) and g(n) is often a good way to see if f(n) = O(g(n)).

Plotting graphs of f(n) and g(n) is often a good way to see if f(n) = O(g(n)).

Plotting graphs of f(n) and g(n) is often a good way to see if f(n) = O(g(n)).

Tight bounds

Asymptotic notation allows us to bound one function in terms of another.

A bound is **tight** if it can't be simplified or made more precise.

Examples:

- π < 4 and π > 3 are tight integer bounds on pi.
- $\pi \le 4$ and $\pi > 0$ are not tight but true and may be useful!
- $n^2 + 3n + 4 = O(n^2)$ is tight.
- $n^2 + 3n + 4 = O(n^2 + n)$ and $= O(n^3)$ are not tight.

Pet peeve

There is no such thing as "the big-O of a function", as in "What is the big-O of $n \log n + 3n$?"

This is like asking "What is the integer bigger than π ?"

Pet peeve

There is no such thing as "the big-O of a function", as in "What is the big-O of $n \log n + 3n$?"

This is like asking "What is the integer bigger than π ?"

There are infinitely many correct answers:

- 4 > π , 5 > π , 76 > π , ...
- $n \log n + 3n = O(n \log n), O(n^2), O(2^{2^n}), ...$

Pet peeve

There is no such thing as "the big-O of a function", as in "What is the big-O of $n \log n + 3n$?"

This is like asking "What is the integer bigger than π ?"

There are infinitely many correct answers:

- 4 > π , 5 > π , 76 > π , ...
- $n \log n + 3n = O(n \log n), O(n^2), O(2^{2^n}), ...$

Instead, ask "What is a tight big-O bound for $n \log n + 3n$?"

Not my pet peeve

Some people object vehemently to writing, e.g., "3n + 4 = O(n)" and insist on " $3n + 4 \in O(n)$ ".

Their point:

- 3n + 4 is a function
- formally, O(n) is a set of functions
- the two things cannot be equal because "they have different types".

Not my pet peeve

Some people object vehemently to writing, e.g., "3n + 4 = O(n)" and insist on " $3n + 4 \in O(n)$ ".

Their point:

- 3n + 4 is a function
- formally, O(n) is a set of functions
- the two things cannot be equal because "they have different types".

This is true but most people write =.

$$f(n) = \Theta(g(n))$$

- f is approximately proportional to g;
- For all large n, $c g(n) \le f(n) \le d g(n)$.

$$f(n) = \Theta(g(n))$$

- f is approximately proportional to g;
- For all large n, $c g(n) \le f(n) \le d g(n)$.

$$f(n) = O(g(n))$$

- f is at most approximately proportional to g;
- For all large n, $f(n) \le c g(n)$.

$$f(n) = \Theta(g(n))$$

- f is approximately proportional to g;
- For all large n, $c g(n) \le f(n) \le d g(n)$.

$$f(n) = O(g(n))$$

- f is at most approximately proportional to g;
- For all large n, $f(n) \le c g(n)$.

$$f(n) = \Omega(g(n))$$

- f is at least approximately proportional to g;
- For all large n, $f(n) \ge c g(n)$.

Practical program analysis

Consequences of running time bounds

If your program's input has length *n* and it runs in time...

• $\Theta(n)$ then doubling n doubles the time taken.

Consequences of running time bounds

If your program's input has length *n* and it runs in time...

- $\Theta(n)$ then doubling n doubles the time taken.
- $\Theta(n^2)$ then doubling *n* quadruples the time taken.
- $\Theta(n^k)$ then doubling *n* multiplies the time by 2^k .

Consequences of running time bounds

If your program's input has length *n* and it runs in time...

- $\Theta(n)$ then doubling n doubles the time taken.
- $\Theta(n^2)$ then doubling *n* quadruples the time taken.
- $\Theta(n^k)$ then doubling *n* multiplies the time by 2^k .
- $\Theta(\log n)$ then doubling n adds one time unit.

Consequences of running time bounds

If your program's input has length *n* and it runs in time...

- $\Theta(n)$ then doubling n doubles the time taken.
- $\Theta(n^2)$ then doubling *n* quadruples the time taken.
- $\Theta(n^k)$ then doubling *n* multiplies the time by 2^k .
- $\Theta(\log n)$ then doubling n adds one time unit.
- $\Theta(n \log n)$ then doubling n slightly more than doubles the time.

Consequences of running time bounds

If your program's input has length n and it runs in time...

- $\Theta(n)$ then doubling n doubles the time taken.
- $\Theta(n^2)$ then doubling *n* quadruples the time taken.
- $\Theta(n^k)$ then doubling *n* multiplies the time by 2^k .
- $\Theta(\log n)$ then doubling n adds one time unit.
- $\Theta(n \log n)$ then doubling n slightly more than doubles the time.
- $\Theta(2^n)$ then adding 1 to *n* doubles the time. (Eek!)

Simple statements take time O(1)

- assignments
- evaluating expressions without method calls
- jumps (e.g., break, skipping past an if when the condition is false)

Simple statements take time O(1)

- assignments
- evaluating expressions without method calls
- jumps (e.g., break, skipping past an if when the condition is false)

Method calls:

- Analyze the method to find it runs in time O(f(n)).
- Jumping to the method and back takes time O(1).
- Total is O(1 + f(n)) = O(f(n));

```
if ([condition]) {
    [block 1]
} else {
    [block 2]
}
```

```
if ([condition]) {
    [block 1]
} else {
    [block 2]
}
```

• Analyze the condition and two blocks to find they run in time $O(f_{\rm c})$, $O(g_1)$ and $O(g_2)$.

```
if ([condition]) {
    [block 1]
} else {
    [block 2]
}
```

- Analyze the condition and two blocks to find they run in time $O(f_{\rm c})$, $O(g_1)$ and $O(g_2)$.
- Total is $O(1 + f_c + \max\{g_1, g_2\}) = O(\max\{f_c, g_1, g_2\})$.

```
while ([condition]) {
    [block]
}
```

```
while ([condition]) {
    [block]
}
```

ullet Analyze [condition] and [block] to find they run in time $O(f_{
m c})$, O(g).

```
while ([condition]) {
    [block]
}
```

- Analyze [condition] and [block] to find they run in time $O(f_{\rm c})$, O(g).
- Analyze the loop to find it runs O(t(n)) times.

```
while ([condition]) {
    [block]
}
```

- Analyze [condition] and [block] to find they run in time $O(f_{\rm c})$, O(g).
- Analyze the loop to find it runs O(t(n)) times.
- Total is O(1 + (1 + g(n))t(n)) = O(g(n)t(n)).

```
for ([initializer]; [condition]; [increment]) {
    [block]
}
```

is equivalent to

```
[initializer]
while ([condition]) {
    [block]
    [increment]
}
```

A specific, common case of for loops:

```
for (int i = 0; i < n; i++) {
    [block]
}</pre>
```

- We know the loop runs *n* times.
- Total cost is n times the cost of executing [block].

```
1 for (int i = 0; i < n; i++)
2    for (int j = 0; j < n; j++)
3         if (A[i] == B[j])
4         duplicates++;</pre>
```

• Line 4 runs in time O(1) (simple statement).

```
1 for (int i = 0; i < n; i++)
2    for (int j = 0; j < n; j++)
3        if (A[i] == B[j])
4        duplicates++;</pre>
```

- Line 4 runs in time O(1) (simple statement).
- Lines 3–4 run in time O(1) (if with simple condition and simple statement).

```
1 for (int i = 0; i < n; i++)
2    for (int j = 0; j < n; j++)
3        if (A[i] == B[j])
4        duplicates++;</pre>
```

- Line 4 runs in time O(1) (simple statement).
- Lines 3–4 run in time O(1) (if with simple condition and simple statement).
- for (j...) runs lines 3-4 n times: takes time $O(n \times 1) = O(n)$.

```
1 for (int i = 0; i < n; i++)
2    for (int j = 0; j < n; j++)
3         if (A[i] == B[j])
4         duplicates++;</pre>
```

- Line 4 runs in time O(1) (simple statement).
- Lines 3–4 run in time O(1) (if with simple condition and simple statement).
- for (j...) runs lines 3-4 n times: takes time $O(n \times 1) = O(n)$.
- for (i...) runs lines 2–4 n times: takes time $O(n \times n) = O(n^2)$.