of the flap essentially the trailing edge of the wing. The plain flap is hinged so that the trailing edge can be lowered. This increases wing camber and provides greater lift.

A split flap is normally housed under the trailing edge of the wing. [Figure 1-63B] It is usually just a braced flat metal plate hinged at several places along its leading edge. The upper surface of the wing extends to the trailing edge of the flap. When deployed, the split flap trailing edge lowers away from the trailing edge of the wing. Airflow over the top of the wing remains the same. Airflow under the wing now follows the camber created by the lowered split flap, increasing lift.

Fowler flaps not only lower the trailing edge of the wing when deployed but also slide aft, effectively increasing the area of the wing. [Figure 1-63C] This creates more lift via the increased surface area, as well as the wing camber. When stowed, the fowler flap typically retracts up under the wing trailing edge similar to a split flap. The sliding motion of a fowler flap can be accomplished with a worm drive and flap tracks.

An enhanced version of the fowler flap is a set of flaps that actually contains more than one aerodynamic surface. *Figure 1-64* shows a triple-slotted flap. In this configuration, the flap consists of a fore flap, a mid flap, and an aft flap. When deployed, each flap section slides aft on tracks as it lowers. The flap sections also separate leaving an open slot between the wing and the fore flap, as well as between each of the flap sections. Air from the underside of the wing flows through these slots. The result is that the laminar flow on the upper surfaces is enhanced. The greater camber and effective wing area increase overall lift.

Heavy aircraft often have leading edge flaps that are used in conjunction with the trailing edge flaps. [Figure 1-65] They can be made of machined magnesium or can have an aluminum or composite structure. While they are not installed or operate independently, their use with trailing edge flaps can greatly increase wing camber and lift. When stowed, leading edge flaps retract into the leading edge of the wing.

Figure 1-64. Triple-slotted flap.

Figure 1-65. Leading edge flaps.

The differing designs of leading edge flaps essentially provide the same effect. Activation of the trailing edge flaps automatically deploys the leading edge flaps, which are driven out of the leading edge and downward, extending the camber of the wing. *Figure 1-66* shows a Krueger flap, recognizable by its flat mid-section.

Slats

Another leading edge device which extends wing camber is a slat. Slats can be operated independently of the flaps with their own switch in the cockpit. Slats not only extend out of the leading edge of the wing increasing camber and lift, but most often, when fully deployed leave a slot between their trailing edges and the leading edge of the wing. [Figure 1-67] This increases the angle of attack at which the wing will maintain its laminar airflow, resulting in the ability to fly the aircraft slower with a reduced stall speed, and still maintain control.

Spoilers and Speed Brakes

A spoiler is a device found on the upper surface of many heavy and high-performance aircraft. It is stowed flush to the wing's upper surface. When deployed, it raises up into the airstream and disrupts the laminar airflow of the wing, thus reducing lift.

Spoilers are made with similar construction materials and techniques as the other flight control surfaces on the aircraft. Often, they are honeycomb-core flat panels. At low speeds, spoilers are rigged to operate when the ailerons operate to assist with the lateral movement and stability of the aircraft. On the wing where the aileron is moved up, the spoilers also raise thus amplifying the reduction of lift on that wing. [Figure 1-68] On the wing with downward aileron deflection,