

Access Control and Authorisation (2)

Budi Arief

b.arief@kent.ac.uk

Based on slides by Shujun Li

Outline

- Identity Management
- Summary

Week 17 Authentication: Entity vs Identity

- Entity vs Identity: a many-to-many relationship
 - One entity can have multiple identities.
 - One identity can be allocated/claimed/used by multiple entities.
 - An identity management system or an identity provider (IdP/IDP) is often used to create, maintain and manage identities, including mappings to entities.
- Identity vs Identifier (ID)
 - Identities are normally identified via a **unique identifier** to avoid ambiguity in the authentication process.
- Real vs Virtual
 - Example: a person's real name vs a person's pen name
- Physical vs Electronic
 - Example: a person's real name vs a person's email address

Identity management (IdM / IDM)

- The definitions

- <u>NIST</u>: "Identity management systems are responsible for the creation, use, and termination of electronic identities ..."
- ISO/IEC 24760-1:2019: "processes and policies involved in managing the lifecycle and value, type and optional metadata of attributes in identities known in a particular domain"
- ITU-T X.1250 (2009): "A set of functions and capabilities (e.g., administration, management and maintenance, discovery, communication exchanges, correlation and binding, policy enforcement, authentication and assertions) used for:
 - assurance of identity information (e.g., identifiers, credentials, attributes);
 - assurance of the identity of an entity (e.g., users/subscribers, groups, user devices,
 - organizations, network and service providers, network elements and objects, and virtual objects); and
 - supporting business and security applications"

Attributes and credentials

Attributes

- <u>ITU-T X.1250 (2009)</u>: "Information bound to an entity that specifies a characteristic of the entity."
- Identifier is a special attribute of an entity.
- An attribute may be self-claimed by an entity, but may also be assigned by **attribute authorities (AAs)**.
- IdM is about verifying **attribute assertions**: An entity claims to hold one or more specific attributes (identifier and others).

Credentials

- ITU-T X.1250 (2009): "... used to support the authentication of entities – either one or both parties to an information exchange or transaction."
 - Examples: digital certificates, government-issued credentials, SIM cards, automatic teller machine (ATM) cards, ...

"In-class" exercise

- List some attributes and credentials of entities that are used for real-world service providers you've ever seen.
 - Think about why these attributes are needed and if they are self-claimed or are issued / assigned by an AA.
 - What AAs are involved?
 - What attributes are included in each of the credentials?
 - How are such attributes verified?

Author: <u>Audun</u> <u>Jøsang</u>

Local and remote identity management (IdM)

- IdM systems on <u>local</u> computing devices
 - Examples: user management system on a local computer (e.g., a Windows PC running a local domain), user management system in a local video game, ...
- IdM systems on <u>remote</u> servers
 - Examples: Active Directory Domain Services
 (Windows domain controllers), user management
 system on remote servers / email servers /
 websites / any other online services, ...
- No clear cut between the two
 - Your local system may actually be based on one or more remote IdM systems (e.g., a cached / synchronised version or just a local user interface of the latter)

Federated identity management (FIM)

The problem

- We are living in a highly connected world.
- ⇒ We use many different computing systems at the same time.
- \Rightarrow It is a pain to register with and log into all systems separately.

The need

- **Attribute authentication** (not user authentication): Many service providers only need to authenticate one or more relevant attribute(s) of you (e.g., if you have a specific degree).

A solution

- Use a **federation** to allow a user to access many security domains
 - ITU-T X.1250 (2009): "An association of users, service providers and identity providers"
- ⇒ <u>Single sign-on (SSO)</u>: A user can access resources at many different service providers by logging in just once.

FIM: The general idea

- Separation of authentication and authorisation
 - Authentication: between users and identity providers (IdPs)
 - Authorisation: between users and service providers (SPs)

- The trust model
 - Users trust IdPs + SPs trust IdPs + Users do not trust SPs (on handling identity information at IdPs)

FIM: A typical three-party protocol (1)

- ITU-T X.1250 (2009) Figure 2a
 - Requesting / asserting entity: subject / principal (e.g., a user)
 - Relying party entity = SP

FIM: A typical three-party protocol (2)

- Difference from Figure 2a of <u>ITU-T X.1250 (2009)</u>
 - (If not already done) The user (or the user agent) communicates with the IdP for authentication.

FIM: A typical three-party protocol (3)

- Differences from the one on the previous slide
 - The user (or its agent) returns an authentication ticket to the SP, and the SP verifies it with the IdP.

FIM: A typical three-party protocol (4)

- Differences from the one on the previous slide
 - The SP may want to verify some relevant attribute(s) of the requesting entity after authentication is verified.

FIM: A typical three-party protocol (5)

- Differences from the one on the previous slide
 - The SP may want to verify some relevant attribute(s) of the requesting entity after authentication is verified.

FIM: A more complicated system

- ITU-T X.1250 (2009) Figure 2b
 - The IdP is split into three separate system entities: identity provider (narrow sense), credential SP, and verification SP

"In-class" exercise

- Find real-world examples of FIMs you've ever used or seen.
 - If possible, find out how each FIM system works technically.
 - Depending on the application context, a FIM can involve a single IdP or multiple IdPs.
 - Try to understand **SSO does not mean a single IdP**, not even for a single user (which is why some people prefer using the term **RSO** reduced sign-on instead).
- Hint: Pay attention to the trust model and the business model behind those examples.

Selected FIM technique: Kerberos

- An authentication server (AS) is used as the IdP, and a ticket-granting server (TGS) issues <u>ticket-granting tickets (TGTs)</u> after authentication.
- The TGS authorises service requests from clients and issues client-toserver tickets for clients to access service servers (SSs = SPs).

Selected FIM technique: <u>SAML</u>

- SAML = Security Assertion Markup Language
 - Current version 2.0 (2005)
 - A standard of OASIS (
 Organization for the Advancement of Structured Information Standards)
- Two types of system entities
 - SAML identity providers: authentication authorities and attribute authorities
 - SAML service providers
- An example SAML 2.0 assertion (→)
 - The assertion ("b07b804c-7c29-ea16-7300-4f3d6f7928ac") was issued at time "2004-12-05T09:22:05Z" by identity provider (https://idp.example.org/SAML2) regarding subject (3f7b3dcf-1674-4ecd-92c8-1544f346baf8) exclusively for service provider (https://sp.example.com/SAML2).

```
<saml:Assertion</pre>
  xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  ID=" d71a3a8e9fcc45c9e9d248ef7049393fc8f04e5f75"
  IssueInstant="2004-12-05T09:22:05Z">
  <saml:Issuer>https://idp.example.org/SAML2</saml:Issuer>
    xmlns:ds="http://www.w3.org/2000/09/xmldsig#">...</ds:Signature>
  <saml:Subject>
    <saml:NameID
       Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">
      3f7b3dcf-1674-4ecd-92c8-1544f346baf8
    </saml:NameID>
    <saml:SubjectConfirmation</pre>
      Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
      <saml:SubjectConfirmationData</pre>
         InResponseTo="aaf23196-1773-2113-474a-fe114412ab72"
        Recipient="https://sp.example.com/SAML2/SSO/POST"
         NotOnOrAfter="2004-12-05T09:27:05Z"/>
    </saml:SubjectConfirmation>
  </saml:Subject>
  <saml:Conditions
    NotBefore="2004-12-05T09:17:05Z"
    NotOnOrAfter="2004-12-05T09:27:05Z">
    <saml:AudienceRestriction>
      <saml:Audience>https://sp.example.com/SAML2</saml:Audience>
    </saml:AudienceRestriction>
  </saml:Conditions>
  <saml:AuthnStatement</pre>
    AuthnInstant="2004-12-05T09:22:00Z"
    SessionIndex="b07b804c-7c29-ea16-7300-4f3d6f7928ac">
    <saml:AuthnContext>
       <saml:AuthnContextClassRef>
        urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
      </saml:AuthnContextClassRef>
    </saml:AuthnContext>
  </saml:AuthnStatement>
  <saml:AttributeStatement>
      xmlns:x500="urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"
      x500:Encoding="LDAP"
      NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"
      Name="urn:oid:1.3.6.1.4.1.5923.1.1.1.1"
      FriendlyName="eduPersonAffiliation">
      <saml:AttributeValue</pre>
        xsi:type="xs:string">member</saml:AttributeValue>
      <saml:AttributeValue</pre>
        xsi:type="xs:string">staff</saml:AttributeValue>
    </saml:Attribute>
  </saml:AttributeStatement>
</saml:Assertion>
```

Selected FIM technique: OpenID

- An open standard for (decentralised) authentication protocol on the Web
 - Current version 2.0 (2007)
 - Promoted by OpenID Foundation
- For users to access multiple websites (SPs) by using an OpenID IdP.
 - SPs are called OpenID acceptors (who accept authentication assertions from OpenID IdPs).
- OpenID Attribute Exchange facilitates attribute assertions.

Selected FIM technique: OAuth 2.0 + OpenID Connect (OIDC)

- OAuth 2.0 (<u>IETF RFC</u> 6749, 2012)
 - A user-centric
 authorisation
 framework for users to
 grant access of their
 information on some
 websites to other
 websites or applications.

- OIDC

- OpenID authentication layer on top of OAuth 2.0
- Current version 1.0 (2014)
- An example (オ)

*valet key = limited scope OAuth Token & the API Provider

adapted from a drawing by @_nat_en

The future?

Self-sovereign identity (SSI)

- Self-sovereign = Giving control back to users!
 - Claim-issuers issue identities to users.
 - Each user <u>controls</u> her/his <u>own</u> identities.
 - A user presents (part of) her/his identity to a <u>verifier</u> so that the latter can verify the presented identity (i.e., relevant attribute(s)).
 - Such user-controlled identities can be represented in the form of verifiable credentials (more on the next slide).
 - European Self-Sovereign Identity Framework (ESSIF)
- Can be based on <u>decentralised identifiers (DIDs)</u> or more traditional (centralised) identities.
 - W3C DID working group is drafting a DID standard (as of 12/2020):
 - "DIDs are URIs that associate a DID subject with a DID document allowing trustable interactions associated with that subject."

The future?

Verifiable credentials (VCs)

- Verifiable credentials (VCs)
 - Electronic credentials that individual users can hold and get them verified by others when needed in the context of SSI.
 - W3C Verifiable Credentials Data Model 1.0 (2019)
- Use cases
 - Parking permits
 - **COVID** immunity passports

Author: Daniel H Hardman

The future?

Verifiable credentials (VCs)

- If you are interested to learn more, you can have a look at the work of a former colleague: <u>Professor David Chadwick</u>, who is an expert in FIM and VC.
 - Reducing Identity Theft with Verifiable Credentials
 - https://www.youtube.com/watch?v=MgE5dI09A4M
 - Self Sovereign Identity (SSI) Covid-19 Application Demo
 - https://www.youtube.com/watch?v=Q-1X1FRSTss

Outline

- Identity Management
- Summary

Making it easier to manage your identity

- Identity Management
 - A way to alleviate the burden of remembering and managing too many passwords
- Some examples
 - Federated Identity Management (FIM)
 - Self-sovereign Identity (SSI)
 - Verifiable Credentials (VC)
- Final Lecture:
 - Accountability