Tutorial Sheet 9

Derivative of a Function of Several Variables

1. Find the first order partial derivatives of the following functions at the given points

(a)
$$f(x,y) = (x^2 + xy)^3$$
, at $(1,0)$ (b) $g(x)$

(a)
$$f(x,y) = (x^2 + xy)^3$$
, at $(1,0)$ (b) $g(x,y) = \left(\frac{x^2 + y^2}{xy}\right)$, at $(\sqrt{2}, \sqrt{2})$.

- 2. Prove that if f is a function such that $f_x(x,y) = f_y(x,y) = 0$, for all (x,y), then f(x,y) is a constant function.
- 3. Discuss the differentiability of the following functions at (0,0).

(a)
$$f(x,y) = \begin{cases} x \sin\frac{1}{x} + y \sin\frac{1}{y}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$
 (b) $g(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x = y = 0 \end{cases}$

- 4. Let f(x,y) = ||x| |y|| |x| |y|. Is f continuous at (0,0)? Which directional derivatives of f exist at (0,0)? Is f differentiable at (0,0)? Give reasons.
- 5. If $z = x^5 e^{9y}$, then find the value of dz.
- 6. Find the total differential of $z = x^3y + xy$ at the point (1, 2).
- 7. If $z = x^3y + xy + 4$ and $x = \cos t$, $y = \sin 2t$, then compute $\frac{dz}{dt}$ and evaluate it at
- 8. Find the direction where the directional derivative is greatest for the function $f(x,y) = 3x^2y^2 - x^4 - y^4$ at the point (1,2).
- 9. Let $f(x,y) = \frac{1}{2}\ln(x^2 + y^2) + \tan^{-1}\left(\frac{y}{x}\right)$, P = (1,3). Find the direction in which f(x,y) is increasing the fastest at P. Find the derivative of f(x,y) in this direction.
- 10. Let $\sin(xyz) = x + 3z + y$. Then find $\frac{\partial z}{\partial x}$.
- 11. Let $f(x,y) = \sqrt{x} \sin y$. Find the approximate value of f(4.1,0.2).
- 12. Given that f(2,-3) = 6, $f_x(2,-3) = 1.3$ and $f_y(2,-3) = -0.6$. Approximate the value of f(2.1, -3.03).

1

13. An ant travels along a path on a surface. The exact path and surface are not known, but at time $t=t_0$, it is known that :

$$\frac{\partial z}{\partial x} = -7$$
, $\frac{\partial z}{\partial y} = 2$, $\frac{dx}{dt} = -1$ and $\frac{dy}{dt} = 3$.

Find $\frac{dz}{dt}$ at time t_0 .

- 14. Let $\sin(xy) + y^2 + x = 5$. Find $\frac{dy}{dx}$.
- 15. Find the equation of the plane tangent to the ellipsoid $\frac{x^2}{16} + \frac{y^2}{8} + \frac{z^2}{4} = 1$ at P = (2, 2, 1).
- 16. Find the tangent plane and normal line to $x^2 + y^2 + z^2 = 10$ at the point (1,0,3).