Exercises 10.1.5 — Problem 3

Problem. If f is differentiable at y, show that $d_u f(y)$ is linear in u, meaning $d_{au+bv} f(y) = a d_u f(y) + b d_v f(y)$ for any scalars a and b.

Proof. Before beginning, note that Theorem 10.1.1 says that if $f:D\to\mathbb{R}^m$ for $D\subset\mathbb{R}^n$ is differentiable at y with differential df(y), then $d_uf(y)$ exists at y for any $u\in\mathbb{R}^n$ and $d_uf(y)=df(y)\cdot u$. Now let w=au+bv for $u,v\in\mathbb{R}^n$ and scalars a,b.

Since \mathbb{R}^n is a vector space, we have that $w \in \mathbb{R}^n$. Thus we have

$$d_{au+bvd}f(y) = d_w f(y) \cdot df(y) \cdot w = df(y) \cdot (au+bv) = adf(y) \cdot u + bdf(y) \cdot v = ad_u f(y) + bd_v f(y)$$

where the crucial steps are justified by Theorem 10.1.1 and because scalars commute with matrices.