ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 3.2.8

Релаксационные колебания

Баранов Даниил Группа Б02-103 **Цель работы:** изучение вольтамперной характеристики нормального тлеющего заряда; исследование релаксационного генератора на стабилитроне.

В работе используются: стабилитрон СГ-2 (газонаполненный диод) на монтажной панели, магазин ёмкостей, магазин сопротивлений, источник питания, амперметр, вольтметр, осциллограф.

1 Теоретические сведения

Колебательные системы, как правило, имеют два накопителя, между которыми происходит перекачка энергии. В контуре, содержащем конденсатор и катушку индуктивности, электрическая энергия переходит в магнитную и обратно; при колебаниях маятника потенциальная энергия поля тяжести переходит в кинетическую энергию движущейся массы и т.д.

Встречаются, однако, колебательные системы, содержащие всего один накопитель энергии. Рассмотрим в качестве примера электрическую цепь, содержащую конденсатор и сопротивление без самоиндукции. Разряд конденсатора через сопротивление представляет собой апериодический процесс. Разряду, однако, можно придать периодический характер, возобновляя заряд конденсатора через постоянные промежутки времени. Колебания в этом случае являются совокупностью двух апериодических процессов - процесса зарядки конденсатора и процесса его разрядки. Такие колебания называются релаксационними.

В нашей установке роль ключа, обеспечивающего последовательно попеременную зарядку и разрядку конденсатора, играет газоразрядный диод. Зависимость тока от напряжения для газоразрядной лампы не подчиняется закону Ома и характеризуется рядом особенностей (рис. 1). При малых напряжениях лампа не пропускает тока вовсе (не горит). Ток в лампе возникает только в том случае, если разность потенциалов на её электродах достигает напряжения зажигания V_1 . При этом, тлеюиций разряд. При

Рис. 1: Вольтамперная характеристика стабилитрона с последовательно включенным резистором

дальнейшем незначительном увеличении напряжения сила тока заметно возрастает по закону, близкому к линейному. Если начать уменьшать напряжение на горящей лампе, то при напряжении, равном V_1 , лампа ещё не гаснет, и сила тока продолжает уменьшаться. Лампа перестанет пропускать ток лишь при напряжении гашения V_2 , которое обычно существенно меньше V_1 . Сила тока при этом скачком падает от значения I_2 ($I_2 < I_1$) до нуля. Характеристика, изображённая на рис. 1, несколько идеализирована. У реальной лампы зависимость I(V) не вполне линейна. При $V > V_1$ графики соответствующие возрастанию и убыванию напряжения, не всегда совпадают. Эти отличия, впрочем, носят второстепенный характер и для нашей задачи несущественны.

Рассмотрим схему релаксационного генератора, представленную на рис. 2. Пусть напряжение бата- реи U больше напряжения зажигания V_1 . В обозначениях, принятых на схеме, справедливо уравнение

$$I(V) = \frac{U - V}{R}$$

$$C\frac{dV}{dT} + I(V) = \frac{U - V}{R} \tag{1}$$

В стационарном режиме работы, когда напряжение V на конденсаторе постоянно и dV/dt=0, ток через лампу равен

$$I_{\rm cr} = \frac{U - V}{R} \tag{2}$$

Равенство (2) может быть представлено графически (рис. 3) При разных R графрики имеют вид прямых, пересекаЮщихся в точке V=U,I=0. Область, где эти иагрузочиъе прямвие пересекают вольт-амперную характеристику лампы, соответствует стационарному режиму при малых R (прямая 1) лампа горит постоянно, колебания Отсутствуют. Прямая 2, проходящая через точку (I_2, V_2) , соответствует критическому сопротивлению

$$R_{\rm Kp} = \frac{U - V_2}{I_2} \tag{3}$$

При сопротивлении $R > R_{\rm kp}$ нагрузочная прямая 3 не пересекает характеристику лампы, поэтому стационарный режим невозможен. В этом случае в системе устанавливаются колебания. Рассмотрим, как происходит колебательный процесс. Пусть в начале опыта ключ K разомкнут (рис. 2) и V=0. Замкнём ключ. Конденсатор C начинает заряжаться через сопротивление R, напряжение

Рис. 3: Режимы работы релаксационного генератора

на нём увеличивается (рис. 4) Как только оно достигнет напряжения зажигания V_1 , лампа начинает проводить ток, причём прохождение тока сопровождается разрядкой конденсатора. В самом деле, батарея U, подключённая через большое сопротивление R, не может поддерживать необходимую для горения лампы величину тока. Во время горения лампы конденсатор разряжается, и когда напряжение на нём достигнет потенциала гашения, лампа перестанет проводить ток, а конденсатор вновь начнёт заряжаться. Возникают релаксационные колебания с амплитудой, равной $(V_1 - V_2)$.

Рассчитаем период колебаний. Полное время одного периода колебаний T состоит из суммы времени зарядки τ_3 и времени разрядки τ_p , но если сопротивление R существенно превосходит сопротивление Зажжённой лампы, то $\tau_3 \gg \tau_p$ и $T \simeq \tau_3$ (этим случаем мы и ограничимся). Во время зарядки конденсатора лампа не горит [I(V)=0], и уравнение (1) приобретает вид

$$RC\frac{dV}{dt} = U - V \tag{4}$$

Будем отсчитывать время с момента гашения лампы, так что $V=V_2$ при t=0 (рис. 4). Решив уравнение (4), найдём

$$V = U - (U - V_2) e^{-t/(RC)}$$
(5)

В момент зажигания $t= au_3, V=V_1,$ поэтому

$$V_1 = U - (U - V_2) e^{-\tau_3/(RC)}$$
(6)

Рис. 4: Осциллограмма

релаксационных

Из уравнений (5) и (6) нетрудно найти период колебаний:

$$T \approx \tau_3 = RC \ln \frac{U - V_2}{U - V_1}$$

Развитая выше теория является приближённой. Ряд принятых при расчётах упрощающих предположений оговорен в тексте. Следует иметь в виду, что мы полностью пренебрегли паразитными емкостями и индуктивностями схемы. Не рассматривались также процессы развития разряда и деионизация при гашении. Поэтому теория справедлива лишь в тех случаях, когда в схеме установлена достаточно большая ёмкость и когда период колебаний существенно больше времени развития разряда и времени деионизации (практически $\gg 10^{-5}$ с). Кроме того, потенциал гашения V_2 , взятый из статической вольт-амперной характеристики, может отличаться от потенциала гашения лампы, работающей в динамическом режиме релаксационных колебаний.

2 Результаты измерений и обработка данных

2.1 Характеристика стабилитрона

В первой части работы использовалась схема, изображённая на рис. 5. Добавочное сопротивление r=5,1 кОм было подпаяно между ножкой лампы и соответствующей клеммой для того, чтобы предохранить стабилитрон от перегорания. Это сопротивление оставалось включённым при всех измерениях.

Вольтамперная характеристика стабилитрона с резистором r при возрастании и убывании напряжения представлена в табл. 1. При этом, для более точного определения потенциалов зажигания и гашения показания приборов были сняты пятикратно. Потенциалы зажигания (V_1) и гашения (V_2) отмечены соответсутющими значками в первом столбце.

Рис. 5: Схема установки для изучения характеристик стабилитрона

По полученным данным был построен график (рис. 6). В качестве напряжений зажигания и гашения были взяты средние значения всех измеренний данных величин.

2.2 Осциллограммы релаксационных колебаний

Для снятия осциллограмм была собрана схема согласно рис. 2. Для проведения эксперимента было выставлено напряжение $U=117,3\pm0,5$ В. После подбора частоты развёртки ЭО, при которой на экране видна картина пилообразных колебаний, было оцененно отношение $\frac{\tau_3}{\tau_p}$, которое составило ≈ 15 .

При данном значении напряжение $R_{\rm KD}$ оказалось равным 140 ± 1 кОм.

Далее была проведена серия измерений для снятия показаний для зависимости T(C). Напряжение при этом было выставлено $118\pm0,3$ В, сопротивление – R=560 кОм. Результаты измерений приведены в таблице 2.

Таблица 1: Вольтамперная характеристика стабилитрона

	V,B	I, мА	σ_V , B	σ_I , MA	
Увеличение напряжения					
V_1	87,5	2,94	0,5	0,05	
	92,6	3,93	0,5	0,05	
	100,0	5,30	0,5	0,05	
	110,2	7,14	0,5	0,05	
	120,0	9,23	0,5	0,05	
	130,2	11,1	0,5	0,05	
	143,0	13,5	0,5	0,05	
	158,0	16,4	0,5	0,05	
Понижение напряжения					
	148,5	14,6	0,5	0,05	
	136,7	12,4	0,5	0,05	
	123,5	9,90	0,5	0,05	
	108,7	6,90	0,5	0,05	
	95,3	4,56	0,5	0,05	
	84,5	2,47	0,5	0,05	
V_2	81,6	0	0,5	0,05	
Повторение измерений					
V_1	88,3	_	0,5	0,05	
V_1	88,0	_	0,5	0,05	
V_1	87,8	_	0,5	0,05	
V_2	82,3	_	0,5	0,05	
V_2	82,0	_	0,5	0,05	
V_2	83,6	_	0,5	0,05	

Данные были нанесены на график (рис. 7). Помимо этого, были рассчитаные теоретические значения периода и также отмечены на графике.

Как видно из графика, коэффициенты наклона сильно отличаются, из чего следует, что динамический потенциал отличается от статического. Динамический потенциал гашения лампы составил $\approx 42~\mathrm{B}.$

3 Выводы

Была изучена вольтамперная характеристика нормального тлеющего заряда, и исследован релаксационный генератор на стабилитроне.

Рис. 6: График зависимости I(U)

Таблица 2: Зависимость периода от электроёмкости (данные)

C , н Φ	T , MC ($\varepsilon_T = 5\%$)
50	26
40	21
30	15,5
20	10
15	7,2
10	4,6
5	2

Рис. 7: Зависимость времени колебаний от электроёмкости конденсатора