RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT SESSION 2020

Session de contrôle	
Épreuve : Mathématiques	Section : Mathématiques
Durée : 4h	Coefficient de l'épreuve : 4

ষ্থ্যমুগ্ৰ

Le sujet comporte 5 pages numérotées de 1/5 à 5/5. La page 5/5 est à rendre avec la copie.

Exercice 1: (5 points)

Le plan est orienté.

Dans la figure de l'annexe jointe, ABC est un triangle équilatéral direct de centre O.

I, J et K sont les milieux respectifs des cotés [BC], [AC] et [AB].

Soit S la similitude directe de centre B et telle que S(J)=C.

- 1) Déterminer l'angle de S et montrer que son rapport est égal à $\frac{2\sqrt{3}}{3}$.
- 2) Soit (Γ) le cercle de diamètre [AB] et (Γ') le cercle circonscrit au triangle ABC.
 - a) Montrer que S (K) = O.
 - b) En déduire que S(Γ) = Γ'.
 - c) Déterminer et construire le point A' = S(A).
- La droite (OC) recoupe (Γ') en P et la droite (BP) recoupe (Γ) en Q.

On note S-1 l'application réciproque de S.

- a) Donner la nature et les éléments caractéristiques de S-1
- b) Montrer que $S^{-1}(A) = Q$.
- c) Quelle est la nature du triangle BJQ ?
- d) Prouver que K est le milieu du segment [QI].
- 4) Soit $\sigma = S \circ S_{(AB)}$ où $S_{(AB)}$ est la symétrie orthogonale d'axe (AB).
 - a) Justifier que σ est une similitude indirecte et déterminer ses éléments caractéristiques.
 - b) Déterminer $\sigma(Q)$ et $\sigma(J)$.
 - c) La droite (IJ) coupe la droite (QB) en un point M.
 Déterminer et construire le point M' = σ (M).

Exercice 2: (4 points)

Soit $k \in \mathbb{N}^*$ et r le reste modulo 7 de k.

- 1) Montrer chacun des résultats suivants :
 - $k^3 \equiv 1 \pmod{7}$, si et seulement si, $r \in \{1, 2, 4\}$.
 - $k^3 \equiv 6 \pmod{7}$, si et seulement si, $r \in \{3, 5, 6\}$.
 - $k^3 \equiv 0 \pmod{7}$, si et seulement si, r = 0.
- 2) Soit (x,y) ∈ N *×N *. Déterminer les restes possibles modulo 7 de x³ + y³.
- 3) Pour tout $a \in \mathbb{N}^*$, on désigne par $E_a = \left\{ (x,y) \in \mathbb{N}^* \times \mathbb{N}^*, \ x^3 + y^3 = a \right\}$.

Montrer que les équations $x^3 + y^3 \equiv 3 \pmod{7}$ et $x^3 + y^3 \equiv 4 \pmod{7}$ n'admettent pas de solutions dans $\mathbb{N}^* \times \mathbb{N}^*$.

- 4) On considère l'ensemble E_{9990} . Supposons qu'il existe $(x,y) \in \mathbb{N} * \times \mathbb{N} * \text{tel que } (x,y) \in E_{9990}$.
 - a) Montrer alors que $x \equiv 0 \pmod{7}$ ou $y \equiv 0 \pmod{7}$.
 - b) Déterminer E₉₉₉₀.

Exercice 3: (5 points)

On dispose d'une urne U₁ contenant deux boules noires et deux boules blanches et d'une urne U₂ contenant une boule noire et trois boules blanches. Toutes les boules sont indiscernables au toucher. On procède à l'expérience aléatoire suivante :

On tire au hasard une boule de U1.

- Si elle est blanche, on la remet dans U₁ et on tire simultanément deux boules de U₂,
- Si elle est noire, on la met dans U2 et on tire simultanément deux boules de U2.

On considère les évènements suivants :

A « La boule tirée de U₁ est blanche. »

B « On tire deux boules blanches de l'urne U2. »

C « On tire deux boules noires de l'urne U2. »

D « On tire deux boules de couleurs différentes de l'urne U_2 . ».

1) a) Recopier et compléter l'arbre de choix suivant :

- b) Déterminer p(B) et p(D).
- c) Montrer que la probabilité qu'il ne reste aucune boule noire dans U_2 est égale à $\frac{3}{10}$
- 2) Soit X la variable aléatoire ayant pour valeur le nombre de boules noires restantes dans U2.
 - a) Déterminer la loi de probabilité de X.
 - b) Quelle est la probabilité qu'il reste au moins une boule noire dans U2?
- 3) On répète n fois de suite (n>1) et de manière indépendante l'expérience aléatoire précédente. On désigne par F_n l'évènement : « Il ne reste dans U₂ aucune boule noire pour les (n-1) premières épreuves et il reste au moins une boule noire à la n^{ème} épreuve ».

Quelle est la probabilité p_n de F_n ?

Exercice 4: (6 points)

Soit f la fonction définie sur]-1,+ ∞ [par f(x) = $\frac{x \ln(1+x)}{1+x}$.

On désigne par (C) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

A)

- 1) a) Montrer que $\lim_{x\to -1^+} f(x) = +\infty$. Interpréter graphiquement le résultat.
 - b) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$ et $\lim_{x\to +\infty} \frac{f(x)}{x} = 0$. Interpréter graphiquement les résultats.
- 2) a) Montrer que f est dérivable sur $]-1,+\infty[$.
 - b) Montrer que f'(x) = $\frac{x + \ln(1+x)}{(1+x)^2}$, x > -1.
 - c) Montrer que $x + \ln(1+x) > 0$, si et seulement si, x > 0.
 - d) En déduire le tableau de variation de f.
 - e) Tracer (C).

B) Soit G la fonction définie sur $[1, +\infty[$ par $G(x) = \int_1^x \frac{f(t)}{t} dt.$

Pour tout entier $n \ge 1$, on pose $V_n = \int_1^{\frac{n+1}{n}} f(t^n) dt$ et on considère la fonction F_n définie sur $\left[1, +\infty\right]$ par $F_n(x) = \int_1^{x^n} \frac{f(t)}{t} \sqrt[n]{t} dt$.

- 1) Montrer que $G(x) = \frac{1}{2} \ln^2(1+x) \frac{1}{2} \ln^2(2), x \ge 1.$
- 2) Montrer que pour tout $x \ge 1$, $G(x^n) \le F_n(x) \le x G(x^n)$.
- 3) Montrer que F_n est dérivable sur $[1, +\infty[$ et que $F'_n(x) = n f(x^n), x \ge 1$.
- 4) En déduire que pour tout entier $n \ge 1$, $n \ V_n = F_n(\frac{n+1}{n})$.
- $5) \ a) \ Montrer \ que \ \ G\Bigg(\Bigg(\frac{n+1}{n}\Bigg)^n \Bigg) \ \le \ n \ \ V_n \ \le \ \Bigg(\frac{n+1}{n}\Bigg) G\Bigg(\Bigg(\frac{n+1}{n}\Bigg)^n \Bigg), \ n \ge 1.$
 - b) Vérifier que $\left(\frac{n+1}{n}\right)^n = e^{n\ln\left(1+\frac{1}{n}\right)}$. En déduire que $\lim_{n\to+\infty}\left(\frac{n+1}{n}\right)^n = e$.
 - c) Déterminer $\lim_{n\to+\infty} n V_n$ puis $\lim_{n\to+\infty} V_n$

	Section:Série:	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance :	
8		
×		

Épreuve: Mathématiques - Section : Mathématiques Session de contrôle (2020) Annexe à rendre avec la copie

Figure

