Math 335 Assignment 4

Arnold Jiadong Yu

Feb-18-2018

(1) Let $n \geq 3$. Show that $\#A_n = \frac{n!}{2}$. (Recall, A_n is the alternating subgroup of S_n , i.e., the subgroup consisting of even permutations.)

proof: Let $\sigma \in S_n$ be an odd permutation namely $\sigma = (1 \ 2)$. Pick a map from A_n to odd permutation, then

$$A_n \to \{\text{odd permutation}\}\$$

$$f: x \mapsto x(1\ 2)$$

thus for every $x \in A_n$, $f(x) = x(1\ 2) \in \{ \text{ odd permutation} \}$. Pick another map from odd permutation to A_n , then

 $\{\text{odd permutation}\} \to A_n$

$$q: y \mapsto y(1\ 2)$$

thus for every $y \in \{ \text{ odd permutation} \}, g(y) = y(1 \ 2) \in A_n$. Hence

$$(g \circ f)(x) = x(1\ 2)(1\ 2) = x$$

These exists a bijective map from A_n to odd permutation. As a result $\#A_n = \#\{ \text{ odd permutation} \}$ and $\#A_n + \#\{ \text{ odd permutation} \} = \#S_n = n!$, then $\#A_n = \frac{n!}{2}$.

(2) Let $k \leq n$ be natural numbers. Determine the parity (even or odd) of a cyclic permutation in $(a_1 a_2 ... a_k) \in S_n$. (The answer may depend on k.)

proof: A cyclic permutation of $(a_1a_2...a_k) \in S_n$ can be written in transpositions as

$$(a_1a_2...a_k) = (a_1a_2)(a_2a_3)(a_3a_4)...(a_{k-1}a_k)$$

By Theorem, for every $\sigma \in S_n$, all factorization into transpositions, the parity of the involved transpositions is invariant. Hence the parity of $(a_1a_2...a_k)$ is k-1. Thus when k is odd, the parity is even, and when k is even, the parity is odd.

(3) Let n be a natural number. Determine the parity of the permutation $\sigma \in S_n$, defined by $\sigma(i) = n + 1 - i$ for i = 1, ..., n. (The answer may depend on n.)

proof: A permutation $\sigma \in S_n$ defined as $\begin{pmatrix} 1 & 2 & 3 & \dots & n \\ n & n-1 & n-2 & \dots & 1 \end{pmatrix}$ There are two case. When n=2k is even.

$$\sigma_{2k} = \begin{pmatrix} 1 & 2 & \dots & k & k+1 & \dots & 2k \\ 2k & 2k-1 & \dots & k+1 & k & \dots & 1 \end{pmatrix}$$

When n = 2k + 1 is odd,

$$\sigma_{2k+1} = \begin{pmatrix} 1 & 2 & \dots & k-1 & k & k+1 & \dots & 2k+1 \\ 2k+1 & 2k-1 & \dots & k+1 & k & k-1 & \dots & 1 \end{pmatrix}$$

As a result, only when n is odd, k is the image of itself, and it has $\frac{n-1}{2}$ transpositions. When n is even, it also has $\frac{n-1}{2}$ transpositions. Hence σ has partiy even when k is even, σ has parity odd when k is odd.

(4) Are the groups $\mathbb{Z}_2 \times \mathbb{Z}_4$ and \mathbb{Z}_8 isomorphic?

proof: No. $\mathbb{Z}_2 \times \mathbb{Z}_4$ does not have a generator, since $(1, 1) \to (0, 2) \to (1, 3) \to (0, 0)$. But \mathbb{Z}_8 has a generator. By Theorem, if two groups are isomorphic, then a generator must map to a generator. Hence $\mathbb{Z}_2 \times \mathbb{Z}_4$ and \mathbb{Z}_8 is not isomorphic.

(5) Are the groups $\mathbb{Z}_2 \times \mathbb{Z}_3$ and \mathbb{Z}_6 isomorphic?

proof: Yes. $\#\mathbb{Z}_2 \times \mathbb{Z}_3 = 6 = \#\mathbb{Z}_6$. Pick a map $f: \mathbb{Z}_2 \times \mathbb{Z}_3 \to \mathbb{Z}_6$, such that

$$\begin{array}{ccc} (0,0) \to & 0 \\ (1,1) \to & 1 \\ (0,2) \to & 2 \\ (1,0) \to & 3 \\ (0,1) \to & 4 \\ (1,2) \to & 5 \end{array}$$

 $\langle (1,1) \rangle = \mathbb{Z}_2 \times \mathbb{Z}_3$, it generates in the order of $(1,1) \to (0,2) \to (1,0) \to$ $(0,1) \rightarrow (1,2) \rightarrow (0,0)$. $\langle 1 \rangle = \mathbb{Z}_6$, it generates in the same order of <(1,1)>, $1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 0$. f is clearly bijective and f(m(1,1)) = mf(1) for every $m \in \mathbb{Z}$. Pick a x and a $y \in \mathbb{Z}_2 \times \mathbb{Z}_4$, then x = a(1,1) and y = b(1,1) for some $a,b \in \mathbb{Z}$. Then f(x+y) = $f((a+b)\cdot(1,1)) = (a+b)f(1) = af(1)+bf(1) = f(a\cdot1)+f(b\cdot1) = f(x)+f(y).$ Hence they are isomorphic.

(6) Describe all possible isomorphisms $\mathbb{Z}_3 \to \mathbb{Z}_3$.

proof: Two isomorphisms. Neutral Element is 0 and generators are 1 and 2 in \mathbb{Z}_3 . Since Neutral Elements must map to Neutral Elements and $0 \rightarrow$

 $0 \rightarrow 0$ $1 \rightarrow$ 1 $1 \rightarrow 2$. or

Generators must map to Generators. Therefore, $2 \rightarrow$ $2 \rightarrow$

Proof of f(x+y) = f(x) + f(y) is similar as question 5. Hence there are two isomorphisms.

(7) Describe all possible isomorphisms $\mathbb{Z}_4 \to \mathbb{Z}_4$.

proof: Two isomorphisms. Neutral Element is 0 and generators are 1 and 3 in \mathbb{Z}_4 . Since Neutral Elements must map to Neutral Elements and Gen-

erators must map to Generators. Therefore, $3 \rightarrow$

of f(x+y) = f(x) + f(y) is similar as question 5. Hence there are two isomorphisms.