

Loop Signature Serial Protocol

Loop Signature Serial Protocol

Date: 9/1/2016

For further information or assistance, call IRD's Customer Service Hotline at (306) 653-6626 or Toll Free at (877) 444-4IRD (4473)

International Road Dynamics Inc. reserves the right to alter any of its products or related published technical data anytime, without notice.

Copyright© 2016 by International Road Dynamics Inc. (IRD)

All rights reserved, including the right to reproduce this document or portions thereof in any form whatsoever, without written consent of the copyright holder. For information, please contact IRD at:

Corporate Office U.S. Corporate Office

702 43rd Street Saskatoon, Sask. Canada S7K 3T9 Tel: (306) 653-6600 Fax: (306) 242-5599

2402 Spring Ridge Drive, Suite E Spring Grove, IL USA 60081

Ph: 1 (877) 444-4473 Fax: (815) 675-1530

TABLE OF CONTENTS

TΑ	BLE (OF CON	TENTS	I
1	DOC	UMENT	OVERVIEW	1-1
	1.1	Points	of Contact	1-1
2	FRA	ME	2-1	
	2.1	Messa	ge Format	2-1
	2.2	iSINC@	CRC-16 CCITT Pseudo Code	2-1
3	MES	SAGES	(MSG)	3-1
	3.1	Identif	iers	3-1
	3.2	Absolu	ıte Time Report	3-1
	3.3	Loop A	Activation Report	3-2
	3.4	Signat	ure Sample Report	3-2
	3.5	Minima	a Detection Report	3-3
	3.6	Maxim	a Detection Report	3-3
4	EVE	NT TIMI	NG	4-1
5	DAT	A VALU	ES	5-1
6	EXA	MPLES	6-1	
7	PAR	AMETE	RS	7-1
ΑP	PEND	ICES	A-1	
ΑP	PEND	IX A	LIST OF TABLES AND FIGURES	A-1
	A.1	List of	Tables	A-1
	A.2	List of	Figures	A-1

1 DOCUMENT OVERVIEW

1.1 Points of Contact

For clarification of any material appearing in this manual or questions arising from the application/implementation of its content, please contact the Customer Service Hotline of International Road Dynamics Inc. at the numbers shown below.

Customer Service Hotline: (306) 653.6626 Toll Free: 1(877) 444.4473

ree: 1(877) 44 or

Email: support@irdinc.com

2 FRAME

2.1 Message Format

All messages are transmitted within a frame with the following format:

Table 2-1 Message Format

Field	Byte	Bits	Value	Description
005	•	7:4	0xD	This nibble is fixed to indicate start of frame
SOF	U	3:0	n	MSG length in number of bytes (0-15)
MSG	1 : n			This is the message
CRC	n + 1	15:8		CCITT CRC16 checksum
	n + 2	7:0	crc	

The 16 bit CRC of the frame is calculated using the CCITT algorithm with a 0x1021 truncated polynomial and an initial value of 0xFFFF. The pseudo code used to calculate the CRC is included below.

2.2 ISINC® CRC-16 CCITT PSEUDO CODE

iSINC CRC-16 CCITT Pseudo Code

```
crc = 0xFFFF
for ( number of data bytes )
{
    crc = (unsigned char)(crc >> 8) | (crc << 8)
    crc ^= data byte
    crc ^= (unsigned char)(crc & 0xff) >> 4
    crc ^= (crc << 8) << 4
    crc ^= ((crc & 0xff) << 4) << 1
}</pre>
```

3 MESSAGES (MSG)

3.1 **IDENTIFIERS**

The first 4 bytes of every message is the identifier (ID) which specifies the meaning of the remaining bytes. Identifiers are constructed as shown below:

Table 3-1 Message Identifiers

Field	Byte	Value	Description	
	0		One World a management and the Latesta transport and a	
Message Content	1	mid	Specify the meaning of included data bytes as per the definitions that follow	
Content	2	-		
Message Source	3	uid	Unit Identification Number of the loop sensor that sent the message	

A list of identifiers included in this document is given below:

Table 3-2 List of Identifiers

Identifier	;	Specification	Description
0x000800 XX	3.2	Absolute Time Report	Reports absolute time in seconds since Thursday, 1 January 1970 (UNIX time) as determined by TGM XX
0x4C2800 XX	3.3	Loop Activation Report	Reports time of activation/deactivation of loop sensor channels along with the current state of unchanged channels
0xCBE90A XX	3.4	Signature Sample Report	Reports three loop sensor samples along with the time they occurred as measured by LSM XX
0x8B4B06 XX	3.5	Minima Detection Report	Reports localized minimum period for loop signature sample data along with the time it occurred as measured by LSM XX
0x8B4B05 XX	3.6	Maxima Detection Report	Reports localized maximum period for loop signature sample data along with the time it occurred as measured by LSM XX

Reports absolute time in seconds since Thursday, 1 January 1970 (UNIX time). The message is issued once per second and successive time-stamped messages report time as an offset from this value:

Table 3-3 Identifiers: Absolute Time Report

ABSOLUTE TIME REPORT

Field	Byte	Bits	Value	Description
	0		31 0x000800	
Identifier	1	8:31		Absolute Time Report
identillei	2			
	3	0:7	uid	Message Source
Absolute Time Stamp	4 5 6 7	0:31	t_{Abs}	Current time in seconds since Thursday, 1 January 1970 (UNIX time)

3.2

3.3 LOOP ACTIVATION REPORT

Reports time of activation/deactivation of loop sensor channels with an absolute timestamp offset in $\frac{1}{4}$ mS.

A bit-wise (1 channel per bit) representation of the state (1=on, 0=off) of each channel as of this report is included along with a mask indicating which channel(s) changed at time \mathbf{t}_1

Table 3-4 Identifiers: Loop Activation Report

Field	Byte	Bits	Value	Description
Identifier	0	8:31	0x4C2800	Loop Activation Report
Identifici	2			
	3	0:7	uid	Message Source
		15	f_{ps}	Previous Second Flag
Time	4	14:12	n/a	Reserved
Stamp Offset	7	11:0	to	Absolute Time Offset for (De)Activation event(s) [1/4 mS]
	5			
Channel Mask	6	0:7	cm	Bit-wise mask of channel(s) for which state changed at time t ₁ [b0=channel 0, b1= channel 1, etc.]
State Mask	7	0:7	sm	Bit-wise list of state(s) for each channel as of time \mathbf{t}_1

3.4 SIGNATURE SAMPLE REPORT

Reports three loop sensor samples along with the time they occurred.

Each message contains one 16 bit integer absolute sample of period in nanoseconds with an absolute timestamp offset in ¼ mS.

This is followed by two 12 bit 2's complement differential samples, each with a relative (successive) timestamp in mS:

Table 3-5 Identifiers: Signature Sample Report

Field	Byte	Bits	Value	Description
	0	_	0xCBE90A	
Identifier	1	8:31		Signature Sample Report
ideritiilei	2			
	3	0:7	uid	Message Source
		15	f_{ps}	Previous Second Flag
Time	4	14:12	ch	Channel Number [0-3]
Stamp Offset		11:0	to	Absolute Time Offset for Sample 1 [¼ mS]
	5			
Sample 1	6 7	0:15	V ₁	Absolute Period for Sample 1 [nanoseconds]
		15:12	dt ₂	Relative Time Offset for Sample 2 [mS]
Sample 2	9	11:0	dv ₂	Relative Period Offset for Sample 2 [nanoseconds - 2's complement]

		15:12	dt ₃	Relative Time Offset for Sample 3 [mS]	
Sample 3	10	_ 11:0	dv ₃	Relative Period Offset for Sample [nanoseconds - 2's complement]	

3.5 MINIMA DETECTION REPORT

Reports localized minimum period (in hundredths of % of baseline) for real-time loop signature sample data along with the time it occurred. Also reports the current absolute baseline period in nanoseconds that can be used with the minima value to calculate the absolute period.

Table 3-6 Identifiers: Minima Detection Report

Field	Byte	Bits	Value	Description
	0	0.04	0×0D4D00	Minima Datastian Danast
Identifier		8:31	0x8B4B06	Minima Detection Report
	2			
	3	0:7	uid	Message Source
		15	f_{ps}	Previous Second Flag
Time	4	14:12		reserved
Stamp	4			
Offset		11:0	to	Absolute Time Offset for minima event [1/4 mS]
	5	='		
Channel	6	0:7	ch	Channal Number [0, 2]
Mask	b	0.7	CII	Channel Number [0-3]
Minima	7	0:15		Local minima detuning [hundredths of % of
Value	8	0.15	V 1	baseline]
Baseline	9	0.45	1.1	0
Value	10	0:15	bl	Current baseline period [nanoseconds]

3.6 MAXIMA DETECTION REPORT

Reports localized maximum period (in hundredths of % of baseline) for real-time loop signature sample data along with the time it occurred. Also reports the current baseline period in nanoseconds that can be used with the maxima value to calculate the absolute period.

Table 3-7 Identifiers: Maxima Detection Report

Field	Byte	Bits	Value	Description
	0			
Identifier	1	8:31	0x8B4B05	Maxima Detection Report
identiller	2	•		
	3	0:7	uid	Message Source
		15	f _{ps}	Previous Second Flag
Time	4	14:12		reserved
Stamp Offset		11:0	to	Absolute Time Offset for minima event [¼ mS]
Channel Mask	6	0:7	ch	Channel Number [0-3]
Maxima	7	0:15	V 1	

Value	8			Local maxima detuning [hundredths of % of baseline]
Baseline Value	9	0:15	bl	Current baseline period [nanoseconds]

4 EVENT TIMING

All data reports contain a "Time Stamp Offset" (to) field which represents the elapsed time since the last "Absolute Time Report" (t_{abs}).

For single valued data reports, except as noted below, the absolute time of occurrence of the data (t_1) is determined by:

$$t_1 = t_{abs} + to$$

For the special case of the "Signature Sample Report" there are three distinct samples (v_1, v_2, v_3) reported. Absolute time of occurrence of the data (t_1, t_2, t_3) is determined by:

$$t_1 = t_{abs} + to$$

$$t_2 = t_{abs} + to + dt_2$$

$$t_3 = t_{abs} + to + dt_2 + dt_3$$

Note:

It is possible for \mathbf{t}_{abs} to be updated while one or more data reports are in transit. In this case \mathbf{to} for the affected message should be referenced to the previous \mathbf{t}_{abs} . This is generally done by subtracting 1 second from the final value determined as above. Affected messages are tagged with "Previous Second Flaq" (\mathbf{f}_{ps}) = 1.

5 DATA VALUES

Activation reports provide a bit-wise representation of the state of each channel as of time \mathbf{t}_1 . Channels which changed at time \mathbf{t}_1 are masked in a similar manner

- eg. sm = 0b00001010 indicates that channels 1 and 3 are currently on
- eg. cm = 0b00000010 indicates that channel 1 just changed to active

There is no indication of when channel 3 became active in the above example, only that it is currently.

For single valued data reports the value is communicated in absolute terms and is given by \mathbf{v}_1 as noted for each message.

For the special case of the "Signature Sample Report" there are three distinct samples $(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3})$ reported. Absolute values are determined by:

- $V_1 = V_1$
- $v_2 = v_1 + dv_2$
- $v_3 = v_2 + dv_3$

6 EXAMPLES

The following example serial data stream (shown on two lines to fit the page) is split into individual frames along the boundaries determined by the SOF character (in bold).

DA0008000657462859A09E DECBE90A06AF3E255CAFFCAFFE49A0 DD8B4B050600060200202573010B

DD8B4B0606005702001A25731B1F DECBE90A0620162553A003A001E002 D84C28000620160201

Frame 4 Frame 5 Frame 6

Figure 6-1 Serial Data Stream: Frames

Parsing of each data frame is detailed in the following tables:

Table 6-1 Serial Data: Frame 1

Frame 1				DA0008000657462859A09E
Value	Field	Byte	Bits	Parse
0xDA	SOF	0	7:4	0xD → start of frame
UXDA	301	O	3:0	0xA → Message length = 10 bytes
0x00		1		
0x08	Identifier	2	8:31	0x000800 → mid = Absolute Time Report
0x00	identifier	3		
0x06		4	0:7	0x06 → uid = Message source = UID 6
0x57	A la a a la 4 a	5		0x57462859 → t _{Abs} = Wed, 25 May 2016 22:34:01 GMT
0x46	Absolute Time	6	0:32	
0x28	Stamp	7	0.32	
0x59	Otamp	8		
0xA0	CRC	9	0:15	0xA09E → CCITT CRC16 checksum
0x9E	CRC	10	0.15	OXAGSE 7 COTTT CRCTO CHECKSUIT

Table 6-2 Serial Data: Frame 2

Frame 2	DECBE90A06AF3E255CAFFCAFFE49A0					
Value	Field	Byte	Bits	Parse		
0xDE	005	0	7:4	$(0xDE \& 0xF0) >> 4 = 0xD \rightarrow start of frame$		
UXDE	SOF	0	3:0	(0xDE & 0x0F) = 0xE → Message length = 14 bytes		
0xCB		1				
0xE9	Identifier	2	8:31	0xCBE90A → mid =Signature Sample Report		
0x0A	identiller	3				
0x06		4	0:7	0x06 → uid = Message source = UID 6		
			15	$(0xAF \& 0x80) >> 7 = 1 \rightarrow f_{ps} = True$		
0xAF	Time	5	14:12	$(0xAF \& 0x70) >> 4 = 0x02 \rightarrow ch = 2$		
OXAI	Stamp Offset	5	11:0	$(0xAF3E \& 0xFFF) = 0xF3E \rightarrow to = 3902 = 975.5 mS$		
0x3E		6				
0x25	Sample	7	0:16	0x255C → v ₁ = 9564 nS		
0x5C	1	8		0A2330 7 V 1 = 9304 113		
			15:12	$(0xA0 \& 0xF0) >> 4 = 0x0A \rightarrow dt_2 = 10 \text{ mS}$		
0xAF	Sample 2	9	11:0	$(0xAFFC \& 0xFFF) = 0xFFC \rightarrow dv_2 = -4 nS$		
0xFC		10				
			15:12	$(0xA0 \& 0xF0) >> 4 = 0x0A \rightarrow dt_3 = 10 \text{ mS}$		
0xAF	Sample 3	11	11:0	$(0xAFFE \& 0xFFF) = 0xFFE \rightarrow dv_3 = -2 \text{ nS}$		
0xFE		12				
0x49	CRC	13		0x49A0 → CCITT CRC16 checksum		
0xA0	14		0:16	OXTONO 7 CONTI CINCIO CHECKSUIII		

Table 6-3 Serial Data: Frame 3

Frame 3	DD8B4B050600060200202573010B				
Value	Field	Byte	Bits	Parse	
0xDD	SOF	0	7:4	$(0xDD \& 0xF0) >> 4 = 0xD \rightarrow start of frame$	
UXDD	301	0	3:0	(0xDD & 0x0F) = 0xD → Message length = 13 bytes	
0x8B		1			
0x4B	Identifier	2	8:31	0x8B4B05 → mid = Maxima Detection Report	
0x05	identinei	3			
0x06		4	0:7	0x06 → uid = Message source = UID 6	
			15	$(0x0F \& 0x80) >> 4 = 0 \rightarrow f_{ps} = False$	
0x00	Time	5	14:12	reserved	
0,000	Stamp Offset		11:0	$(0x0006 \& 0xFFF) = 0x6 \rightarrow to = 6 = 1.5 \text{ mS}$	
0x06		6			
0x02	Channel Mask	7	0:7	$0x02 \rightarrow \mathbf{ch} = 2$	
0x00	Maxima	8	0:16	0v0020 -> v = 22 = 0 0022	
0x20	Value	9	0.16	$0x0020 \rightarrow \mathbf{v_1} = 32 = 0.0032$	
0x25	Baseline	10	0:16	0x2573 → bl = 9587 nS	
0x73	Value	11	0.10	0X2373 7 bi = 9307 113	
0x01	CRC	12	0:16	0.40D > CCITT CDC4C abasics	
0x0B	13		0.16	0x10B → CCITT CRC16 checksum	

Table 6-4 Serial Data: Frame 4

Frame 4	DD8B4B0606005702001A25731B1F					
Value	Field	Byte	Bits	Parse		
0xDD	SOF	0	7:4	$(0xDD \& 0xF0) >> 4 = 0xD \rightarrow start of frame$		
UXDD	SOF	0	3:0	(0xDD & 0x0F) = 0xD → Message length = 13 bytes		
0x8B		1				
0x4B	Identifier	2	8:31	0x8B4B06 → mid = Minima Detection Report		
0x06	identinei	3				
0x06		4	0:7	0x06 → uid = Message source = UID 6		
			15	$(0x0F \& 0x80) >> 4 = 0 \rightarrow f_{ps} = False$		
0x00	Time	5	14:12	reserved		
0,00	Stamp Offset		11:0	$(0x0057 \& 0xFFF) = 0x57 \rightarrow to = 6 = 21.75 \text{ mS}$		
0x57		6				
0x02	Channel Mask	7	0:7	$0x02 \rightarrow \mathbf{ch} = 2$		
0x00	Maxima	8	0:16	$0x001A \rightarrow v_1 = 26 = 0.0026$		
0x1A	Value	9	0.16	$0x001A - 7 v_1 = 20 = 0.0020$		
0x25	Baseline	10	0:16	0x2573 → bl = 9587 nS		
0x73	Value	11	0.16	0x23/3 7 bl = 936/113		
0x1B	CRC	12	0:16	0x1B1F → CCITT CRC16 checksum		
0x1F	CRC	13	0.16			

Table 6-5 Serial Data: Frame 5

Frame 5	DECBE90A0620162553A003A001E002					
Value	Field	Byte	Bits	Parse		
0xDE	SOF	0	7:4	$(0xDE \& 0xF0) >> 4 = 0xD \rightarrow start of frame$		
UXDE	SUF	0	3:0	(0xDE & 0x0F) = 0xE → Message length = 14 bytes		
0xCB		1	8:31	0xCBE90A → mid =Signature Sample Report		
0xE9	Identifier	2				
0x0A	identillei	3				
0x06		4	0:7	0x06 → uid = Message source = UID 6		
			15	$(0x20 \& 0x80) >> 7 = 0 \rightarrow f_{ps} = False$		
0x20	Time	5	14:12	$(0x20 \& 0x70) >> 4 = 0x02 \rightarrow \mathbf{ch} = 2$		
OAZO	Stamp Offset		11:0	$(0x2016 \& 0xFFF) = 0x016 \rightarrow to = 22 = 5.5 \text{ mS}$		
0x16		6				
0x25	Sample	7	0:16	0x2553 → v ₁ = 9555 nS		
0x53	1	8		0x2555 7 v 1 = 9555 115		
			15:12	$(0xA0 \& 0xF0) >> 4 = 0x0A \rightarrow dt_2 = 10 \text{ mS}$		
0xA0	Sample 2	9	11:0	$(0xA003 \& 0xFFF) = 0x003 \rightarrow dv_2 = + 3 \text{ nS}$		
0x03		10				
			15:12	$(0xA0 \& 0xF0) >> 4 = 0x0A \rightarrow dt_3 = 10 \text{ mS}$		
0xA0	Sample 3	11	11:0	$(0xA001 \& 0xFFF) = 0x001 \rightarrow dv_3 = + 1 nS$		
0x01	5	12				
0xE0	CRC	13	0.16	0 F000 \ 00UTT 0D040 d ad a		
0x02	CKC	14	0:16	0xE002 → CCITT CRC16 checksum		

Table 6-6 Serial Data: Frame 6

Frame 6	D8 4C28000620160201				
Value	Field	Byte	Bits	Parse	
0D0	SOF	0	7:4	$(0xDE \& 0xF0) >> 4 = 0xD \rightarrow start of frame$	
0xD8			3:0	(0xDE & 0x0F) = 0x8 → Message length = 8 bytes	
0x4C		1			
0x28	lalamatitian	2		0x4C2800 → mid =Loop Activation Report	
0x00	Identifier	3			
0x06		4	0:7	0x06 → uid = Message source = UID 6	
		5	15	$(0x20 \& 0x80) >> 7 = 0 \rightarrow f_{ps} = False$	
0x20	Time		14:12	reserved (0x2016 & 0xFFF) = 0x016 \Rightarrow to = 22 = 5.5 mS	
0,20	Stamp Offset		11:0		
0x16		6			
0x02	Channel Mask	7	0:7	cm = 0x02 → Channel 2 just changed	
0x01	State Mask	8	0:7	sm = 0x01 → Channel 2 is off; Channel 1 is on	

A summary of data points collected is detailed below. For convenience absolute time is not shown. Time can be considered as relative to t_{Abs} = Wed, 25 May 2016 22:34:01 GMT as collected in Frame 1.

Table 6-7 Data Points

Time (S)	Period (nS)	Source	Calculation	Note	
- 0.0245	9564		$t_1 = t_{abs} + to - 1$ $v_1 = v_1$		
- 0.0145	9560	Frame 2	$t_2 = t_{abs} + to + dt_2 - 1$ $v_2 = v_1 + dv_2$	-1 offset to time since f _{ps} = 1 (True)	
- 0.0045	9558	2	$t_3 = t_{abs} + to + dt_2 + dt_3 - 1$ $v_3 = v_2 + dv_3$		
0.0015	9556	Frame 3	$t_1 = t_{abs} + to - 1$ $av_1 = bI - (bI \times v_1)$	Absolute value obtained using baseline and detune value sent. Sense of (Min/Max) is with respect to frequency and is counter-intuitive as sent	
0.02175	9562	Frame 4	$t_1 = t_{abs} + to - 1$ $av_1 = bI - (bI \times v_1)$	Absolute value obtained using baseline and detune value sent. Sense of (Min/Max) is with respect to frequency and is counter-intuitive as sent	
0.0055	9555		$t_1 = t_{abs} + to$ $V_1 = V_1$		
0.0155	9558	Frame 5	$t_2 = t_{abs} + to + dt_2$ $v_2 = v_1 + dv_2$	Packet is sent once all 3 data points are collected. Since Min/Max frames contain only one point ordering can be	
0.0255	9559		$t_3 = t_{abs} + to + dt_2 + dt_3$ $v_3 = v_2 + dv_3$	only one point ordering can be	

The following graph depicts the data obtained from the sample stream:

Figure 6-2 Sample Stream Graph

7 PARAMETERS

The serial interface operates with the following parameters:

Baud Rate: 57600

Data Bits: 8

Parity: none

Stop Bits: 1

Flow Control: none

APPENDICES

Appendix A LIST OF TABLES AND FIGURES

A.1 LIST OF TABLES

Table 2-1	Message Format	2-1
Table 3-1	Message Identifiers	
Table 3-2	List of Identifiers	
Table 3-3	Identifiers: Absolute Time Report	
Table 3-4	Identifiers: Loop Activation Report	
Table 3-5	Identifiers: Signature Sample Report	
Table 3-6	Identifiers: Minima Detection Report	
Table 3-7	Identifiers: Maxima Detection Report	
Table 6-1	Serial Data: Frame 1	6-1
Table 6-2	Serial Data: Frame 2	
Table 6-3	Serial Data: Frame 3	
Table 6-4	Serial Data: Frame 4	6-4
Table 6-5	Serial Data: Frame 5	6-5
Table 6-6	Serial Data: Frame 6	
Table 6-6	Data Points	6-8
A.2 Lis	T OF FIGURES	
Figure 6-1	Serial Data Stream: Frames	6-1
Figure 6-2		