Построение модели линейной корреляции по несгруппированным данным

§ 16. Лабораторная работа № 3

Лабораторная работа № 3.

Ц е л ь р а б о т ы: овладение способами построения моделей линейной корреляции для несгруппированных данных, выработка умения и навыков оценки надежности коэффициента корреляции, уравнения регрессии и его коэффициентов.

Содержание аботы: на основании опытных данных требуется:

- 1. Построить корреляционное поле. По характеру расположения точек в корреляционном поле выбрать общий вид регрессии.
- 2. Вычислить числовые характеристики $\bar{\mathbf{x}}$, $\bar{\mathbf{y}}$, $S_{\mathcal{X}}$, $S_{\mathcal{Y}}$, r, σ_{r} .
- 3. Определить значимость коэффициента корреляции r и найти для него доверительный интервал с надежностью $\gamma=0.95$.
- 4. Написать эмпирические уравнения линий регрессий y на x и x на y.
- 5. Вычислить коэффициент детерминации R^2 и объяснить его смысловое значение.
- 6. Проверить адекватность уравнения регрессии у на х
- 7. Провести оценку величины погрешности уравнения регрессии у на х и его коэффициентов.
- 8. Построить уравнение регрессии у на х в первоначальной системе координат.

Суть лабораторной работы отражает следующая задача.

3 а д а ч а. Результаты наблюдений зависимости средней заработной платы Y (тыс. руб.) от производительности труда X (тыс. руб.) по цеху технологической связи ТПЭУС № 1 по кварталам приведены в табл. 23.

Таблица 23 435 | 454 | 459 |

X	24,3	24,9	28,1	30,5	31,5	39,3	40,2	43,5	45,4	45,9
Y	8,2	8,6	8,7	8,9	9,1	10,6	11,3	11,8	12,9	13,1

Для решения поставленной задачи методами корреляционного анализа определим, какой из указанных в условии показателей выбрать за факторный признак, а какой за результативный. На основании, например, экономического анализа производственной деятельности и взаимосвязи производительности труда и средней заработной платы следует, что за факторный признак X следует принять производительность труда, а среднюю зарплату за результативный признак Y.

Для определения формы связи между признаками Х и Y строим на координатной плоскости точки (xi,yi), пользуясь табл. 23. Около построенных точек проводим так называемую линию тренда (на рис. 8 — пунктирная линия) так, чтобы построенные точки были расположены как можно ближе к ней. По расположению точек около линии тренда делаем вывод о том, что связь между производительностью труда и средней зарплатой может носить линейный характер. Произведем расчет статистик $\overline{\mathbf{x}}$, $\overline{\mathbf{y}}$, $S_{\mathcal{X}}$, $S_{\mathcal{V}}$, r , которые войдут в уравнения линий регрессий.

Составим расчетную табл. 24.

Таблица 24

x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	y_i	$y_i - \overline{y}$	$(y_i - \overline{y})^2$	x^2	xy
24,3	- 11,06	122,3236	8,2	-2,12	4,4944	590,49	199,26
24,9	- 10,46	109,4116	8,6	- 1,72	2,9584	620,01	214,14
28,1	- 7,26	52,7076	8,7	- 1,62	2,6244	789,61	244,47
30,5	- 4,86	23,6196	8,9	- 1,42	2,0164	930,25	271,45
31,5	-3,86	14,8996	9,1	-1,22	1,4884	992,25	286,65
39,3	3,94	15,5236	10,6	0,28	0,0784	1544,49	416,58
40,2	4,84	23,4256	11,3	0,98	0,9604	1616,04	454,26
43,5	8,14	66,2596	11,8	1,48	2,1904	1892,25	513,3
45,4	10,04	100,8016	12,9	2,58	6,6564	2061,16	585,66
45,9	10,54	11,0916	13,1	2,78	7,7284	2106,81	601,29
353,6		640,064	103,2		31,196	13143,36	3787,06

Пользуясь результатами последней строки табл. 24, находим:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{10} \cdot 353,6 = 35,36$$
 — средняя производительность труда.

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{10} \cdot 103, 2 = 10,32$$
 — средняя зарплата сотрудников цеха технологический связи,

Пользуясь результатами последней строки табл. 24, находим:

$$\hat{S}_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{9} \cdot 640,064 = 71,118 \implies \hat{S}_{x} = 8,43,$$

$$\hat{S}_{y}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{1}{9} \cdot 31{,}196 = 3{,}466 \implies \hat{S}_{y} = 1{,}87$$

$$\overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i = \frac{1}{10} \cdot 3787,06 = 378,71,$$

$$r = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\hat{S}_x \cdot \hat{S}_y} = \frac{378,71 - 35,36 \cdot 10,32}{8,43 \cdot 1,87} = 0,87$$

Проверяем значимость коэффициента корреляции. Вычислим статистику t_{p} по формуле

$$t_{\rm p} = \frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.87 \cdot \sqrt{10-2}}{\sqrt{1-0.87^2}} = 5.02$$
.

По таблице критических точек распределения Стьюдента (приложение 6) по уровню значимости $\alpha = 0.05$ и числу степеней свободы k = n - 2 = 10 - 2 = 8 находим $t_{\rm T} = t_{\alpha;k} = t_{0.05;8} = 2.31$. Так как $t_p = 5.02 > t_{\rm T}$, то выборочный коэффициент корреляции значимо отличается от нуля. Следовательно, можно предположить, что средняя зарплата Y и производительность X труда в цехе связаны линейной корреляционной зависимостью, и провести приблизительную прямую c на числовой плоскости (рис. 8).

Находим доверительный интервал для выборочного коэффициента корреляции r с надежностью $\gamma = 0.95$. Так как объем выборки n = 10 < 50, то доверительный интервал находим по формуле

$$r - t_{\gamma} \cdot \sigma_r \leq \hat{r} \leq r + t_{\gamma} \cdot \sigma_r$$
.

Так как по условию надежность (доверительная вероятность) равна $\gamma = 0.95$, то по таблице функции Лапласа (приложение 2) находим $t_{\gamma} = 1.96$. Вычисляем среднюю квадратическую ошибку σ_{r} по формуле

$$\sigma_r = \frac{1-r^2}{\sqrt{n-2}} = \frac{1-0.87^2}{\sqrt{10-2}} = 0.08$$
.

Записываем доверительный интервал:

$$0.87 - 1.96 \cdot 0.08 \le \hat{r} \le 0.87 + 1.96 \cdot 0.08$$

или $\tilde{r} \in [0,71;1]$.

Следовательно, с вероятностью 0,95 линейный коэффициент корреляции генеральной совокупности находится в пределах от 0,71 до 1. Применительно к решаемой задаче полученный результат означает, что по имеющейся выборке следует ожидать влияние производительности труда на рост средней зарплаты работников цеха технологической связи не менее чем на 71 %.

Найдем эмпирические линейные уравнения регрессии у на *x* и *x* на *y*, которые являются приближенными уравнениями для истинных уравнений регрессий.

Уравнение регрессии у на х:

$$\hat{y}_x = \bar{y} + r \frac{\hat{s}_y}{\hat{s}_x} (x - \bar{x}) \Rightarrow \hat{y}_x = 10,32 + 0,87 \cdot \frac{1,87}{8,43} (x - 35,36) \Rightarrow$$

$$\hat{y}_x = 0,192989x + 3,495898.$$

Уравнение регрессии х на у:

$$\hat{x}_{y} = \overline{x} + r \frac{\hat{S}_{x}}{\hat{S}_{y}} (y - \overline{y}) \Rightarrow \hat{x}_{y} = 35,36 + 0,87 \cdot \frac{8,43}{1,87} (y - 10,32)_{\Rightarrow}$$

$$\hat{x}_{y} = 3,921979y - 5,114819.$$

Контроль вычислений:

$$a_1b_1 = 0.192989 \cdot 3.921979 = 0.7569$$
,
 $r^2 = 0.87 \cdot 0.87 = 0.7569$.

Так как условие $r^2 = a_1 b_1$ выполняется, то вычисления выполнены верно.

Из уравнения $\hat{y}_x = 0.192989x + 3.495898$ следует, что при увеличении производительности труда на 1 тыс. руб. средняя зарплата работников цеха технологической связи возрастает на 192,989 рублей. Этот результат следует учесть на предприятии при разработке мероприятий по стимулированию производственной деятельности работников цеха в условиях рыночных отношений.

Подставляя $\bar{x} = 35,36$, $\bar{y} = 10,32$ в уравнения регрессий, получаем точки, координаты которых совпадают с координатами центра распределения $C(\bar{x},\bar{y})$. Следовательно, линии регрессий пересекаются в точке $C(\bar{x},\bar{y})$.

Найдем коэффициент детерминации. Для линейной корреляции при вычисленном коэффициенте r он равен r^2 . У нас r^2 = 0,76. Это означает, что 76 % рассеивания средней зарплаты работников технологического цеха связи объясняется линейной корреляционной зависимостью между средней зарплатой и производительностью труда, и только 24 % рассеивания средней зарплаты работников технологического цеха остались необъяснимыми. Такое положение могло произойти из-за того, что в модель не включены другие факторы, влияющие на изменение средней зарплаты работников технологического цеха связи, либо опытных данных в данной выборке не достаточно, чтобы построить более надежное уравнение регрессии.

Проверим адекватность уравнения линейной регрессии y на x по критерию Фишера — Снедекора. Вычислим статистику $F_{\rm H}$ по формуле (64):

$$F_{\rm H} = \frac{R^2(n-2)}{1-R^2}$$
, где $R^2 = 1 - \frac{\sum (y_i - \hat{y}_{x_i})^2}{\sum (y_i - \bar{y})^2}$.

Для нахождения суммы $\sum (y_i - \hat{y}_x)^2$ составляем табл. 25. Из табл. 24 и 25 находим: $\sum (y_i - \bar{y})^2 = 31,\!196$, $\sum (y_i - \hat{y}_{x_i})^2 = 1,\!8729$. Тогда

Таблица 25

y_i	\hat{y}_x	$y_i - \hat{y}_x$	$(y_i - \hat{y}_x)^2$
8,2	8,18	0,02	0,0004
8,6	8,3	0,3	0,09
8,7	8,9	-0,2	0,04
8,9	9,4	-0,5	0,25
9,1	9,6	-0,5	0,25
10,6	11,1	-0,5	0,25
11,3	11,25	0,05	0,0025
11,8	11,9	-0,1	0,01
12,9	12,2	0,7	0,49
13,1	12,4	0,7	0,49
			1,8729

При уровне значимости $\alpha=0{,}05$ и числах степеней свободы $k_1=1$, $k_2=n-2=10-2=8$ по таблице критических точек распределения Фишера — Снедекора (приложение 7) находим $F_{\rm T}=F_{\alpha;\,k_1;\,k_2}=F_{0{,}05;1;8}=5{,}32$. Так как $F_{\rm H}=125{,}3>5{,}32$, то заключаем, что уравнение линейной регрессии $\hat{y}_x=0{,}192989x+3{,}495898$ статистически значимо описывает результаты эксперимента.

Проведем оценку величины погрешности уравнения регрессии $\hat{y}_x = 0,192989x + 3,495898$. Найдем относительную погрешность δ уравнения по формуле (67):

$$\delta = \frac{\sigma_u}{\overline{y}} \cdot 100\%,$$

где

$$\sigma_u = \sqrt{Du} = \sqrt{\frac{\sum (u_i - \overline{u})^2}{n-2}}, \ u_i = y_i - \hat{y}_x, \ \overline{u} = \frac{1}{n} \sum (y_i - \hat{y}_x)^2.$$

Так как $\sum (y_i - \hat{y}_{x_i})^2 = 1,8729$, то $\overline{u} = 0,19$. Для нахождения суммы $\sum (u_i - \overline{u})^2$ составляем табл. 26.

Таблица 26

$u_i = y_i - \hat{y}_x$	$u_i - \overline{u}$	$(u_i - \overline{u})^2$
0,02	-0,17	0,0289
0,03	-0,16	0,0256
- 0,2	- 0,39	0,1521
- 0,5	- 0,69	0,4761
- 0,5	- 0,69	0,4761
- 0,5	- 0,69	0,4761
0,05	-0,14	0,0196
- 0,1	- 0,29	0,0841
0,7	0,51	0,2601
0,7	0,51	0,2601
		2,2588

Тогда $\sigma_u = \sqrt{\frac{2,2588}{8}} = 0,53$, $\delta = \frac{0,53}{10,32} \cdot 100\% = 5\%$. Так как величина δ мала, то уравнение линейной регрессии $\hat{y}_x = 0,192989x + 3,495898$ хорошо описывает опытные данные.

Оценим коэффициенты уравнения регрессии. У нас $a_0 = 3,495898$, $a_1 = 0,192989$. Для нахождения отношений $Sa_0/|a_0|$ и $Sa_1/|a_1|$ вычислим средние квадратические ошибки коэффициентов по формулам (68) и (69):

$$S_{a_0} = S_{y/x} \cdot \sqrt{\frac{[x^2]}{n[x^2] - ([x])^2}} \,, \; S_{a_1} = S_{y/x} \sqrt{\frac{n}{n[x^2] - ([x])^2}} \,, \; S_{y/x} = \hat{S}_y \sqrt{1 - r^2} \,.$$

По табл. 24 находим: [x] = 353,6, $[x^2] = 13143,36$. Учитывая, что n = 10, $r^2 = 0,7569$ и $\hat{S}_y = 1,87$, находим:

$$S_{y/x} = 1,87 \cdot \sqrt{1 - 0,7569} = 0,4931,$$

$$S_{a_0} = 0,4931 \cdot \sqrt{\frac{13143,36}{10 \cdot 13143,36 - (353,6)^2}} = 0,71,$$

$$S_{a_1} = 0,4931 \cdot \sqrt{\frac{10}{10 \cdot 13143,36 - (353,6)^2}} = 0,04.$$

Так как $S_{a_0}/|a_0| = \frac{0.71}{3.495898} < 0.5$ и $S_{a_1}/|a_1| = \frac{0.04}{0.192989} < 0.5$, то коэффициенты a_0 и a_1 уравнения регрессии y на x значимы. Графиками найденных регрессий являются прямые a, b, представленные на рис. 8.

Таким образом, уравнение регрессии $\hat{y}_x = 0,192989x + 3,495898$, описывающее зависимость средней зарплаты работников цеха технологической связи от производительности труда, значимо описывает опытные данные и может быть принято для практического руководства.

Рис. 8. Линейная регрессия Y на X — прямая a с уравнением y = 0,193 x + 3,5 и линейная регрессия X на Y — прямая b с уравнением x = 3,922 y + 5,1. Пунктированная прямая c проведена «от руки».

Вариант \mathbb{N}_{2} 1. Имеются данные, характеризующие зависимость между стоимостью X основных производственных фондов и объемом Y валовой продукции по десяти однотипным предприятиям:

X	1	2	3	4	5	6	7	8	9	10
Y	20	25	31	31	40	56	52	60	60	70

Вариант № 2. Зависимость между стоимостью X (тыс. млн. руб.) основных средств предприятий и месячным выпуском Y (тыс. руб.) продукции характеризуется следующими данными:

X	1	2	3	4	5	6	7
Y	10	12	28	40	42	52	54

Найти эмпирическую формулу функциональной зависимости месячного выпуска продукции от стоимости основных средств предприятий. Построить эмпирическую и теоретическую линии.

Вариант № 3. Имеются данные наблюдений изменения средней заработной платы Y (руб.) в зависимости от изменения производительности труда X (шт.) за 4 месяца 1992 года по девяти токарям цеха № 23 электромеханического завода:

X	406	660	914	1168	1422	1676	1930	2184	2438
Y	518,5	813,5	1108,5	1403,5	1698,5	1993,5	2288,5	2583,5	2878,5

Вариант № 4. Дано распределение заводов по производственным средствам X (млн. руб.) и по суточной выработке Y (тыс. руб.):

X	50	49	48	51	52	53	54	57	59	60	61	55	60	62	63
Y	10	8	10	9	10	12	13	15	16	18	20	17	21	25	24

Вариант № 5. Данные нормы расхода моторного масла на угар и замену Y (л/100 л.т.) от максимальной мощности двигателя X (л.с.) приведены в таблице:

X	39	42	53	70	73,5	75	90	98	110	115
Y	1,3	1,3	0,8	2,2	1,8	2	2,2	1,8	2,8	2,1

Вариант № 6. Результаты наблюдений изменения диаметра Y (мм) вала и износа X (мм) резца приведены в следующей таблице:

X	0,01	0,02	0,024	0,03	0,032	0,035	0,037	0,042	0,048	0,057
Y	20	20,01	20,014	20,022	20,024	20,027	20,029	20,034	20,04	20,049

Найти зависимость диаметра вала от износа резца.

Вариант № 7. Компанию по прокату автомобилей интересует зависимость между пробегом X автомобилей и стоимостью Y ежемесячного технического обслуживания. Для выяснения характера этой связи было отобрано 15 автомобилей. Данные приведены в таблице:

X	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Y	13	16	15	20	19	21	26	24	30	32	30	35	34	40	39

Вариант № 8. При исследовании зависимости между выпуском готовой продукции Y (тыс. руб.) и энерговооруженностью труда X (кВт-час) получены следующие данные:

X	1201	1300	1375	1412	1443	1500	1526	1516	1718	1783	1819	1877
Y	14	21	27	29	30	31,5	35	34	41	38	39	46

Вариант № 9. В таблице приведены данные, характеризующие зависимость израсходованных долот Y (шт.) при бурении 8 скважин в зависимости от механической скорости X (м/с) проходки:

X	10	15	8	12	16	18	22	25
Y	55	40	60	50	40	30	25	20

Вариант № 10. Скорость Y (м/час) бурения в твердых породах от нагрузки X (атм.) на долото характеризуется следующими данными:

\boldsymbol{X}	10	10,5	11	11,5	12	12,5	13	13,5
Y	3,5	2,5	2,5	1,5	1	0,5	1	0,5

Найти эмпирическую формулу зависимости Y от X.

Вариант № 11. Зависимость между выработкой продукции X (тыс. руб.) и затратами топлива Y в условных единицах характеризуется следующими данными:

X	3	4	5	6	7	8	9	10	11	12
Y	2	2,3	2,2	2,3	2,5	2,6	2,5	2,6	2,8	2,9

Вариант № 12. Имеются данные распределения заводов по производственным средствам X (млн. руб.) и по суточной выработке Y (млн. руб.):

X	48	49	50	52	53	54	57	60	63	65	68	80
Y	11	8	10	10	12	13	15	18	24	26	25	38

Вариант № 13. Найти формулу, устанавливающую зависимость между коэффициентом Y сменности техники и ее средним возрастом X по предприятию ПМК-7 объединения Сибкомплектмонтаж на основании следующих данных:

Y	1,18	1,21	1,25	1,26	1,3	1,32	1,33	0,69	0,72	0,8
X	6,31	5,8	5,1	5,6	6,1	6,5	6,55	3,8	3,41	4

Вариант № 14. Имеются данные о реализации продукции X (млн. руб.) и накладных расходах Y (тыс. руб.) на реализацию:

X	9	13	17	22	29	36	44	51	60	65
Y	27	36	29	41	54	71	65	81	90	95

Вариант № 15. Зависимость линейной нормы расхода топлива Y (л) от максимальной мощности двигателя автомобиля X (л.с.) характеризуется следующими данными:

X	39	53	70	75	90	98	110	115	120	150
Y	12	11	21,5	22,8	18	21	31	25	30	36

Вариант № 16. Имеются данные нормы расхода моторных масел на угар и замену Y (л/100 л.т.) в зависимости от максимального крутящего момента X:

X	7,4	7,6	8,2	10,8	17	21	35	41	42	44
Y	1,3	1,3	1,5	1,8	2,2	2,1	2,8	2,6	2,3	2,4

Вариант № 17. Фазовая проницаемость нефти Y и насыщенность породы нефтью X характеризуются следующими данными:

X	0,05	0,15	0,25	0,35	0,45	0,55	0,65	0,75	0,85	0,95
Y	0,35	0,45	0,55	0,65	0,75	0,8	0,85	0,95	1	1,25

Вариант № 18. Имеются данные нормы расхода моторных масел на угар и замену $Y(\pi/100 \text{ л.т.})$ в зависимости от максимальной мощности двигателя автомобиля $X(\pi.c.)$:

X	39	42	53	70	75	90	110	115	150	170
Y	1,3	1,3	0,9	2,2	2,2	2,2	2,8	2,4	2,5	2,6

Вариант № 19. Зависимость между среднегодовой стоимостью основных производственных фондов X (млн. руб.) и стоимостью товарной продукции Y (млн. руб.) характеризуется следующими данными:

X	1,94	2,68	3,47	4,12	4,77	5,34	5,85	6,65
Y	0,82	0,97	1,06	1,08	1,1	1,14	1,21	1,25

Вариант № 20. Найти формулу, устанавливающую зависимость себестоимости одной тонны нефти Y (в руб.) от затрат X (в тыс. руб.) на одну тонну по следующим данным:

X	1,44	1,6	1,85	2,1	2,25	2,42	2,55	2,65
Y	161,5	165	170	175	178	182	186	190

Вариант № 21. Ниже приводятся данные о производительности труда $Y(\mathbf{m})$ на одного чел/час и стаже рабочих $X(\mathbf{B} \text{ годах})$:

X	1	2	3	4	5	6	7	8
Y	9,8	15	16	19	20	22	23	27

Вариант № 22. Найти формулу зависимости электрического сопротивления R (Ом) проводника от температуры Θ °C по следующим данным:

Θ	19,1	25,0	30,1	36,0	40,0	45,1	50,0
R	76,30	77,80	79,75	80,80	82,35	83,90	85,10

Построить теоретическую и эмпирическую линии.

Вариант № 23. Найти зависимость израсходованных долот Y при бурении 10 скважин в зависимости от механической скорости X проходки на основании следующих данных:

X	8	10	12	14	15	16	18	19	20	21
Y	60	55	50	48	45	40	30	31	29	32

Вариант № 24. Зависимость между пористостью Y пород и их газонасыщенностью X задана таблицей:

X	10	18	25	36	43	54	62	70	75	80
Y	12	16	21	24	27	29	31	34	37	42

Вариант № 25. В таблице приведены данные, характеризующие зависимость растворимости азотно-натриевой соли S в зависимости от температуры T:

T	0	4	10	15	21	29	36	51	68
S	66,7	71	76,3	80,6	85,7	92,9	99,4	113,6	125,1

Вариант № 26. При исследовании зависимости хода Y (мм) поршня двигателя автомобиля от максимального крутящего момента X получены следующие данные:

X	7,4	8,2	10,8	17	18,4	21	29	41	46	47,5
Y	66	67	70	92	92	110	85	95	88	88

Вариант № 27. Результаты исследования зависимости между средней месячной выработкой Y (млн. руб.) продукции на одного рабочего и стоимостью X (млн. руб.) основных производственных средств приведены в таблице:

X	9,9	10,0	10,1	10,2	10,3	10,4	10,5	10,6
Y	0,8	0,9	0,95	1,1	1,25	1,2	1,28	1,32

Вариант № 28. При исследовании зависимости между выработкой Y (тыс. руб.) и энерговооруженностью X (кВт / час) труда получены следующие данные:

X	5	3	6	7	10	4	11	9	2	8
Y	6,3	3,6	7,5	8,5	12,5	6,2	12,6	10,7	2,6	7,7

Вариант № 29. При изучении зависимости между производительностью Y (тн / чел.) труда и дебитом X (тн / сут.) скважин получены следующие результаты:

X	51	40	46	42	43	44	45	47	49	50
Y	30	33	30,8	32	31,5	33	33,5	32,5	31,2	31

Вариант № 30. При исследовании зависимости времени t (c), затрачиваемого на закрепление детали, от ее веса P (кг) получены следующие результаты:

P	51	40	46	42	43	44	45	47	49	50
t	30	33	30,8	32	31,5	33	33,5	32,5	31,2	31