1 Pushdown automata

1.1 Definition

A pushdown automaton (PDA) is a nondeterministic finite automaton with ε transitions. It also has a stack where it can store symbols.

A pushdown automaton can be defined as $P = (Q, \Sigma, \Gamma, \delta, q_0.Z_0, F)$, where:

- ullet Q is the finite set of states
- Σ : input alphabet (finite set of symbols)
- Γ : stack alphabet (finite set of symbols)
- $q_0 \in Q$: starting state
- $Z_0 \in F$: starting stack symbol
- $F \subseteq Q$: set of accepting states
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_w(Q \times \Sigma^*)$

1.2 Instantaneous descriptors

Configurations of P: $C = Q \times \Sigma^* \times \Gamma^*$ A configuration can be represented as $(q, w, \gamma) \in C$, where

- q is the current state of P,
- w is the remaining input,
- γ is the string on the stack.

Suppose configuration $(q, aw, Z\gamma)$ and transition $\delta(q, a, Z) = \{..., (p, X), ...\}$. Then

$$(q, aw, Z\gamma) \vdash (p, w, X\gamma)$$

Accepting with final state:

$$L_f = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash^* (q, \varepsilon, \delta), \text{ where } q \in F, \delta \in \Sigma^* \}$$

Accepting with empty stack:

$$L_{\emptyset} = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon), \text{ where } q \in Q \}$$

1.3 PDA Exercises

Provide a PDA for the following languages:

1.
$$L = \{a^n b^n \mid n \ge 0\}$$

2.
$$L = \{a^n b^{2n} \mid n \ge 0\}$$

3.
$$L = \{wcw^{-1} \mid w \in \{a, b\}^*\}$$

4.
$$L = \{a^{2n}b^n \mid n > 0\}$$

5.
$$L = \{a^n b^m | n < m\}$$

$$L = \{a^n b^n \mid n \ge 0\}$$

Empty stack acceptance: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, \emptyset)$, where:

- $Q = \{q_0, q_1\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z, A\}$
- δ : defined by the following PDA

Final state acceptance: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, \{q_2\})$, where:

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\bullet \ \Gamma = \{Z,A\}$
- δ : defined by the following PDA

Figure 1: Exercise 1

$$L=\{a^nb^{2n}\mid n\geq 0\}$$

Empty stack acceptance: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, \emptyset)$, where:

- $Q = \{q_0, q_1\}$
- $\bullet \ \Sigma = \{a,b\}$
- $\Gamma = \{Z, B\}$
- δ : defined by the following PDA

Final state acceptance: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, \{q_2\})$, where:

- $Q = \{q_0, q_1, q_2\}$
- $\bullet \ \Sigma = \{a,b\}$
- $\Gamma = \{Z, B\}$
- $\bullet~\delta$: defined by the following PDA

Figure 2: Exercise 2

Figure 3: Exercise 3

$$L = \{a^{2n}b^n \mid n \ge 0\}$$

Empty stack acceptance: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, \emptyset)$, where:

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{Z, A\}$
- $\bullet~\delta$: defined by the following PDA

Final state acceptance: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, \{q_3\})$, where:

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\bullet \ \Sigma = \{a,b\}$
- $\bullet \ \Gamma = \{Z,A\}$
- δ : defined by the following PDA

Figure 4: Exercise 4

$$L = \{a^n b^m | n < m\}$$

Empty stack acceptance: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, \emptyset)$, where:

- $Q = \{q_0, q_1\}$
- $\bullet \ \Sigma = \{a,b\}$
- $\bullet \ \Gamma = \{Z,A\}$
- δ : defined by the following PDA

Final state acceptance: $P = (Q, \Sigma, \Gamma, \delta, q_0, Z, \{q_2\})$, where:

- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{a, b\}$
- $\bullet \ \Gamma = \{Z,A\}$
- δ : defined by the following PDA

Figure 5: Exercise 5