Introdução à Inferência Bayesiana

Quase sem equações

Texts in Statistical Science

Statistical Rethinking

A Bayesian Course with Examples in R and Stan

Richard McElreath

- http://xcelab.net/rm/statistical-rethinking/
- https://www.amazon.com/Statistical-Rethinking-B ayesian-Examples-Chapman/dp/1482253445
- https://www.github.com/rmcelreath/rethinking

Experimento

Sacola tem quatro bolas, que podem ser de dois tipos:

Então temos 5 possibilidades:

(1) [0000], (2) [0000], (3) [0000], (4) [0000], (5) [0000]

Experimento

Sorteio com reposição

Dados observados

Mapeando possibilidades

Vamos explorar a hipótese que a sacola tem a composição:

Um sorteio:

Dois sorteios

Três sorteios

Quais possibilidades são compatíveis com os

Quais possibilidades são compatíveis com os dados?

Conjecture Ways to produce •O•

$$[0000] 0 \times 4 \times 0 = 0$$

[
$$0000$$
] $1 \times 3 \times 1 = 3$
[000] $2 \times 2 \times 2 = 8$

$$[\bullet \bullet \bullet \bullet] \qquad 4 \times 0 \times 4 = 0$$

Aprendemos alguma coisa... ()

... vamos continuar o experimento

Sorteio com reposição

Juntando a informação anterior com a nova

	Ways to	Previous	
Conjecture	produce •	counts	New count
[0000]	0	0	$0 \times 0 = 0$
[0000]	1	3	$3 \times 1 = 3$
[0000]	2	8	$8 \times 2 = 16$
[•••0]	3	9	$9 \times 3 = 27$
$[\bullet \bullet \bullet \bullet]$	4	0	$0 \times 4 = 0$

E se a informação sobre as hipóteses vier de outro lugar?

E se a informação sobre as hipóteses vier de outro lugar?

E se a informação sobre as hipóteses vier de outro lugar?

Proporção na fábrica

Proporção na fábrica + os dados:

		Factory	
Conjecture	Prior count	count	New count
[0000]	0	0	$0 \times 0 = 0$
[0000]	3	3	$3 \times 3 = 9$
[0000]	16	2	$16 \times 2 = 32$
[•••0]	27	1	$27 \times 1 = 27$
	0	0	$0 \times 0 = 0$

De contagens para plausibilidades

Plausibilidade de

dado que observei

De contagens para plausibilidades

Plausibilidade de OOO dado que observei OO

geram (

Número de caminhos que

De contagens para plausibilidades

dado que observei Plausibilidade de Número de caminhos que geram (Plausibilidade anterior de

Usando parâmetros para representar hipóteses

P = proporção de bolas azuis

No primeiro caso OO

		Ways to	
Possible composition	p	produce data	Plausibility
[0000]	0	0	0
[•000]	0.25	3	0.15
[••00]	0.5	8	0.40
	0.75	9	0.45
	1	0	0

Juntando tudo...

		Ways to	
Possible composition	p	produce data	Plausibility
[0000]	0	0	0
[0000]	0.25	3	0.15
[••00]	0.5	8	0.40
[• • • • 0]	0.75	9	0.45
	1	0	0

Plausibilidade de P depois dos dados = # caminhos que P produz os dados x plausibilidade anterior de P

Soma do produtos

Plausibilidade de P = 0.25

$$P(\theta = 0.25|[A, B, A]) \propto P([A, B, A]|\theta = 0.25) \times P(\theta = 0.25)$$

	Ways to		
Possible composition	p	produce data	Plausibility
[0000]	0	0	0
[0000]	0.25	3	0.15
[0000]	0.5	8	0.40
[•••0]	0.75	9	0.45
	1	0	0

Teorema de Bayes

$$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{\sum_{\theta} P(y|\theta)P(\theta)}$$

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Qual será a proporção de água na superfície da terra?

Motivação do modelo

- 1. A proporção de água na superfície da terra é p
- Cada satélite que cai tem probabilidade p de cair na água e (1-p) de cair na terra
- Cada observação é independente da anterior

Resultado:

y = WLWWWLWLW

Plausibilidade dos dados

$$P(w|n,p) = \frac{n!}{w!(n-w)!} p^w (1-p)^{n-w}$$

w = número de vezes que deu água n = número de experimentos p = proporção de água

Alguma informação antes dos dados?

Pra mim qualquer coisa entre 0 e 1 da na mesma

Alguma informação antes dos dados?

Processo de update ótimo

Os 3 ingredientes

Exemplo de modelo de regressão

$$y = X\beta + Za + e$$

$$e_i \sim N(0, V_e)$$
 $a_k \sim N(0, V_a)$