MAT217 HW 6 Due Tues. Mar. 26, 2013

- 1. Read Section 1.6 in Hoffman-Kunze and do exercises 3 and 9.
- 2. Prove that S_n , the set of permutations on n letters, is a group under composition. Show that S_n is abelian (its multiplication is commutative) if and only if n < 3.
- 3. Let $f: S_n \to \mathbb{Z}$ be a function that is multiplicative; that is, $f(\sigma \tau) = f(\sigma)f(\tau)$. Show that f must be one of the following three functions: identically zero, identically 1 or the signature function.
- 4. List the elements of S_4 and state which are odd and which are even.
- 5. Show that any element of S_n can be written as a product of disjoint cycles.
- 6. Show that if $T \subset S_n$ is a subgroup (a subset that is also a group under composition) and T contains both (12) and $(12 \cdots n)$ then $T = S_n$.

Hint. If $\sigma \in S_n$ then what is the relation between the cycle decomposition of π and that of $\sigma^{-1}\pi\sigma$?

7. (From Hoffman-Kunze) Let \mathbb{F} be a field and $f: \mathbb{F}^2 \to \mathbb{F}$ be a 2-linear alternating function. Show that

$$f\left(\left(\begin{array}{c} a \\ b \end{array}\right), \left(\begin{array}{c} c \\ d \end{array}\right)\right) = (ad - bc)f(e_1, e_2),$$

where e_i is the vector with a 1 in the *i*-th spot and a zero in the other. Find an analogous formula for a 3-linear alternating function from \mathbb{F}^3 to \mathbb{F} .

- 8. Let \mathbb{F} be a field and write $\mathbb{F}[x]$ for the set of polynomials with coefficients in \mathbb{F} . Define $\deg(p)$ for the degree of $p \in \mathbb{F}[x]$: the largest k such that the coefficient of x^k in p is nonzero. The degree of the zero polynomial is defined to be $-\infty$.
 - (a) Show that for $p, q \in \mathbb{F}[x]$, the product pq has degree $\deg(pq) = \deg(p) + \deg(q)$.
 - (b) Show that for $p, d \in \mathbb{F}[x]$ such that d is nonzero, there exist $q, r \in \mathbb{F}[x]$ such that p = qd + r and $\deg(r) < \deg(d)$. (This result is called the *division algorithm*.)

Hint. We may assume that $\deg(p) \geq 0$, for otherwise we can choose r = q = 0. Also we can assume $\deg(d) \leq \deg(p)$, or else we choose q = 0 and r = p. So use induction on $\deg(p)$, starting with $\deg(p) = 0$, meaning that p(x) = c for some nonzero $c \in \mathbb{F}$. For the inductive step, if $\deg(p) > 0$, find some $q_1 \in \mathbb{F}[x]$ such that $\deg(p - q_1 d) < \deg(p)$ and continue.

9. Show that if $p \in \mathbb{F}[x]$ and $c \in \mathbb{F}$ then p(c) = 0 if and only if the polynomial x - c divides p (that is, we can find $d \in \mathbb{F}[x]$ such that (x - c)d = p).

10. Let $p, q \in \mathbb{F}[x]$ be nonzero and define the subset \mathcal{S} of $\mathbb{F}[x]$ as

$$\mathcal{S} = \{ap + bq : a, b \in \mathbb{F}[x]\} .$$

- (a) Let $d \in \mathcal{S}$ be nonzero of minimal degree. Show that d divides both p and q (see the definition of "divides" in exercise 9).
- (b) Show that if $s \in \mathbb{F}[x]$ divides both p and q then s divides d.
- (c) Conclude that there exists a unique monic polynomial (that is, with leading coefficient 1) $d \in \mathbb{F}[x]$ satisfying:
 - i. d divides both p and q and
 - ii. if $s \in \mathbb{F}[x]$ divides both p and q then s divides d.

(This d is called the greatest common divisor of p and q.)