Data Models

01418221 Fundamentals of Database Systems

ตัวแบบข้อมูล (Data Model)

- กำหนดวิธีการสร้างแบบจำลองโครงสร้างเชิงตรรกะของฐานข้อมูล ตัวแบบข้อมูลเป็นเอนทิตีพื้นฐานที่จะ นำเสนอนามธรรมใน DBMS
- ตัวแบบข้อมูลกำหนดวิธีการเชื่อมต่อข้อมูลซึ่งกันและกันและวิธีการประมวลผลและจัดเก็บภายในระบบ
- ตัวแบบข้อมูลแรกอาจเป็นตัวแบบข้อมูลแบบเรียบ (flat data-models) ซึ่งข้อมูลทั้งหมดที่ใช้จะถูกเก็บไว้ใน ระนาบเดียวกัน
 - แบบจำลองข้อมูลก่อนหน้านี้ไม่ได้เป็นหลักวิชาการออกแบบ ดังนั้นพวกเขาจึงมีแนวโน้มที่จะแนะนำการเก็บข้อมูลซ้ำซ้อน (lots of duplication) จำนวนมากและปรับปรุงข้อมูลที่ไม่ถูกต้อง (update anomalies)

ตัวแบบข้อมูล (Data Model)

- แบบจำลองข้อมูล (Data Model) คือ โครงสร้างข้อมูลในระดับตรรกะที่อาจเป็นการนำเสนอข้อมูลในรูปแบบ กราฟฟิก หรือรูปแบบอื่น ๆ ที่นำเสนอข้อมูลและความสัมพันธ์ระหว่างข้อมูล
 - การนำเสนอข้อมูลให้อยู่ในรูปแบบที่ง่ายในการทำความเข้าใจ แบบจำลองข้อมูลถูกนำไปใช้โดยนักออกแบบฐานข้อมูล
 - ส่วนประกอบของแบบจำลองข้อมูลคือ
 - ส่วนโครงสร้าง (Structural Part)
 - ส่วนการจัดการ (Manipulative Part)
 - กฎความคงสภาพ (Integrity Rules)
 - ตัวอย่างแบบจำลองช้อมูล
 - แบบจำลองข้อมูลเชิงลำดับชั้น (Hierarchical Data Model)
 - แบบจำลองข้อมูลแบบเครือข่าย (Network Data Model)
 - แบบจำลองข้อมูลเชิงสัมพันธ์ (Relation Data Model)
 - แบบจำลองข้อมูลเชิงวัตถุ (object Data Model)

แบบจำลองข้อมูลเชิงลำดับชั้น (Hierarchical Data Model)

- แบบจำลองที่นำเสนอความสัมพันธ์ระหว่างข้อมูลในรูปแบบของโครงสร้างต้นไม้ โดยเรคอร์ดที่อยู่ระดับบนสุด เรียกว่า root
- ข้อดี
 - โครงสร้างเข้าใจง่าย
 - โครงสร้างที่เหมาะกับข้อมูลที่มีความสัมพันธ์แบบ One-To-Many
 - ป้องกันความปลอดภัยในข้อมูลที่ดี
 - เหมาะกับข้อมูลที่มีการเรียงลำดับแบบต่อเนื่อง
- ข้อเสีย
 - ไม่สามารถรอบรับข้อมูลที่มีความสัมพันธ์ในลักษณะ Many-To-Many
 - เรียกใช้ข้อมูลจำเป็นต้องผ่าน Root เสมอ
 - การพัฒนาโปรแกรมค่อนข้างยาก

แบบจำลองข้อมูลแบบเครื่อข่าย (Network Data Model)

- การนำเสนอความสัมพันธ์ระหว่างข้อมูลในรูปมัลติลิสต์ หรือเชื่อมโยงระหว่างจุดข้อมูล
- ข้อดี
 - สนับสนุนความสัมพันธ์แบบ Many-To-Many
 - ความซับซ้อนในข้อมูลเกิดขึ้นน้อยกว่าแบบจำลอง
 - สามารถเชื่อมโยงข้อมูลไป-กลับได้
 - มีความยืดหยุ่นในด้านการหาข้อมูล
- ข้อเสีย
 - สามารถเข้าถึงเรคอร์ดได้โดยตรง ทำให้การป้องกันข้อมูลมีน้อย
 - สิ้นเปลืองเนื้อที่หน่วยความจำ
 - การเปลี่ยนแปลงในโครงสร้างข้อมูลทำได้ยาก

แบบจำลองข้อมูลเชิงสัมพันธ์ (Relational Data Model)

- การนำเสนอความสัมพันธ์ระหว่างข้อมูลในรูปรีเลชั่นที่เป็นตารางสองมิติ ประกอบด้วยแถว คอลัมน์
- ข้อดี
 - มีความเข้าใจและสื่อสารได้เข้าใจง่าย
 - สามารถเลือกข้อมูลตามเงื่อนไขได้หลายคีย์ฟิลด์
 - ความซับซ้อนในข้อมูลมีน้อย
 - โครงสร้างข้อมูลมีความอิสระจากโปรแกรม
 - มีระบบความปลอดภัยที่ดี
- ข้อเสีย
 - จำเป็นต้องเสียค่าใช้จ่ายในระบบค่อนข้างสูง

แบบจำลองข้อมูลเชิงวัตถุ (Object Data Model)

- แบบจำลองที่เกิดจากแนวคิดของการเขียนโปรแกรมเชิงวัตถุ (Object Oriented Programming: OOP) ที่มี การมองของทุกสิ่งเป็นวัตถุ
 - โดยแต่ละวัตถุจะเป็นแหล่งรวมของข้อมูล และการทำงาน (Procedure) ที่มีคลาสเป็นตัวกำหนดคุณสมบัติหรือรายละเอียด ของวัตถุ รวมทั้งคุณสมบัติปกปิดความลับของวัตถุ (Encapsulation)
- ข้อดี
 - สามารถจัดการกับข้อมูลชนิดต่าง ๆ ที่มีความสลับซับซ้อนได้เป็นอย่างดี
 - มีคุณสมบัติการสืบทอด ทำให้ข้อมูลมีความคงสภาพสูง
 - มีคุณสมบัติในการกลับมาใช้ใหม่
- ข้อเสีย
 - ต้องการผู้เชี่ยวชาญโดยเฉพาะ และมีค่าใช้จ่ายระบบค่อนข้างสูง
 - ยังไม่มีมาตรฐานรองรับที่ชัดเจน

แบบจำลองข้อมูลเชิงสัมพันธ์ (Relational Data Model)

แบบจำลองข้อมูลเชิงสัมพันธ์ (Relational Data Model)

รีเลชั่น (Relation) เป็นโครงสร้างของแบบจำลองเชิงข้อมูลเป็นตาราง 2 มิติ ซึ่งประกอบไปด้วย แถว (Row) และคอลัมน์ (Column)

คุณสมบัติของรีเลชั่น (Relation Properties)

https://en.wikipedia.org/wiki/Relational_database

- รีเลชั่นต้องมีชื่อเพื่อใช้ในการอ้างถึง และชื่อรีเลชั่นต้องไม่ซ้ำ กัน
- แอตทริบิวต์ในรีเลชั่นต้องมีชื่อ และต้องเป็นชื่อที่แตกต่างกัน
- ลำดับก่อนหลังของแอตทริบิวต์ในรีเลชั่นไม่มีความสำคัญ
- ลำดับก่อนหลังของทัพเพิลในรีเลชั่นไม่มีความสำคัญ
- แต่ละเซลล์ในรีเลชั่น (แถวและคอลัมน์ตัดกัน) ต้องเป็นข้อมูล
 เดี่ยว หรือ Atomic
- แต่ละทัพเพิลในรีเลชั่นต้องไม่ซ้ำ
- ข้อมูลในแอตทริบิวต์เดียวกันต้องใช้รูปแบบ (Format) เดียวกัน และอยู่ในโดเมน (Domain) เดียวกัน

กุญแจหรือคีย์ (Key)

- แบบจำลองข้อมูลเชิงสัมพันธ์ใช้โครงสร้างตาราง 2 มิติ การอ้างถึงข้อมูลในระบบทำได้ ด้วยการกำหนดให้แอตทริบิวต์ของรีเลชั่นทำหน้าที่เป็น "คีย์" (Key) เพื่อกำหนด (Determine) ข้อมูลในรีเลชั่น
 - คีย์ทำหน้าที่เป็นผู้กำหนด (Determinant) เขียนให้อยู่ในรูป Determination ได้ดังนี้ A o B
 - หมายถึง A กำหนด (Determine) B
 - หรืออาจกล่าวไว้ว่า แอตทริบิวต์ A ทำหน้าที่เป็นผู้กำหนด ที่ทำการกำหนดแอตทริบิวต์ B

ซุปเปอร์คีย์ (Super Key)

• ซุปเปอร์คีย์ (Super Key) คือแอตทริบิวต์หรือกลุ่มของแอตทริบิวต์ที่ระบุความแตกต่างกันของแต่ละทัพเพิลใน รีเลชั่นได้ (Uniquely Identifies)

รทัสพ นักงาน	ชื่อ	นามสกุล	รทัสแผนก	ตำแหน่ง
EmpID	FirstName	LastName	DepID	Position
E991005	บุญโชค	เอื้ออำนวย	D1	ผู้จัดการแผนก
E991102	ปริชา	เปรมปริย์	D2	รองผู้จัดการแผนก
E010109	ริระพงษ์	ทองมาก	D2	พนักงาน
E020401	ปัญญา	มีคม	D3	พนักงาน
E030202	ภิญญา	ทรัพย์สมบัติ	D1	พนังงาน
E031101	จักรินศ์	เปรมปริย์	D3	ผู้จัดการแผนก

https://na5cent.blogspot.com/2011/12/keys-database.html

- 1. EmplD
- 2. EmplD + FirstName
- 3. EmpID+LastName
- 4. EmplD+DeplD
- 5. EmpID+Position
- 6. EmplD+FirstName+LastName
- 7. EmplD+FirstName+DeplD
- 8. EmpID+FirsttName+Position
- 9. EmplD+LastName+DeplD
- 10. EmplD+LastName+Position
- 11. EmpID+DepID+Position
- 12. FirstName+LastName+DepID+Position

Composite Key

• Composite Key หมายถึง Key ที่ประกอบกัน หรือมีมากกว่า 1 Key เช่น

รหัสพนักงาน	ชื่อ	นามสกุล	รทัสแผนก	ตำแหน่ง
EmpID	FirstName	LastName	DepID	Position
E991005	บุญโชค	เอื้ออำนวย	D1	ผู้จัดการแผนก
E991102	ปริชา	เปรมปริย์	D2	รองผู้จัดการแผนก
E010109	ริระพงษ์	ทองมาก	D2	พนักงาน
E020401	ปัญญา	มีคม	D3	พนักงาน
E030202	ภิญญา	ทรัพย์สมบัติ	D1	พนังงาน
E031101	จักรินศ์	เปรมปริย์	D3	ผู้จัดการแผนก

- 1. EmplD + FirstName
- 2. EmpID+LastName
- 3. EmplD+FirstName+LastName
- 4. FirstName+LastName+DepID+Position
- แต่ EmpID ไม่ใช่ Composite Key เนื่องจากเป็นเพียงแค่ Key เดียว

https://na5cent.blogspot.com/2011/12/keys-database.html

คีย์คู่แข่ง (Candidate Key)

- คีย์คู่แข่ง (Candidate Key) คือซุปเปอร์คีย์ขนาดเล็กที่สุดที่ สามารถระบุความแตกต่างของแต่ละทัพเพิลในรีเลชั่นได้ เรา สามารถตรวจสอบว่าแอตทริบิวต์ที่รวมกันเป็นคีย์คู่แข่งนั้นเป็น จำนวนน้อยที่สุดหรือไม่
- แอตทริบิวต์ที่เป็นคีย์คู่แข่งต้องมีคุณสมบัติ 2 ข้อต่อไปนี้
 - **ยูนิคเนส (Uniqueness)** แอตทริบิวต์ใด ๆ ที่จะเป็นคีย์ได้ ต้องมี ค่าที่มีความแตกต่างกันหรือไม่มีค่าซ้ำกัน
 - มินิมอลลิตี้ (Minimality) จะมีจำนวนแอตทริบิวต์ที่น้อยที่สุด
- แคนดิเดตคีย์ในบางครั้งเรียกว่า ยูนิคคีย์ (unique key) ยูนิค คีย์ถูกใช้ในภาษากำหนดโครงสร้าง (DDL) ที่มีการใช้ พารามิเตอร์ UNIQUE ตามหลังชื่อของแอตทริบิวต์
 - ถ้ารีเลชันมีแคนดิเดตคีย์มากกว่าหนึ่งตัว หนึ่งในนั้นจะถูกเลือกให้ เป็นคีย์หลัก (primary key) ที่เหลือจะถูกใช้เป็นคีย์ทดแทนเรียกว่า อัลเทอเนทคีย์ (alternate keys)

คีย์หลัก (Primary Key)

- คือคีย์คู่แข่งที่ถูกเลือกให้เป็นคีย์หลักเพื่อใช้ในการระบุหรืออ้างถึงข้อมูลที่ต้องการในรีเลชั่น คีย์หลักเป็นสิ่งที่ใช้ แสดงความเป็นหนึ่งเดียวของแต่ละทูเปิลในรีเลชั่น
 - คีย์หลักคือหนึ่งในคีย์คู่แข่งที่ถูกเลือกของรีเลชันในฐานข้อมูลเพื่อระบุความเป็นหนึ่งเดียวของแต่ละทูเปิลในรีเลชัน รีเลชันใน ฐานข้อมูลควรมีการระบุคีย์หลักเสมอ
- ระบบจัดการฐานข้อมูล (DBMS) สามารถกำหนดคีย์หลักในขั้นตอนการสร้างรีเลชัน (ตารางข้อมูล) ภาษาที่ใช้ สำหรับกำหนดโครงสร้าง (DDL) จะใช้คำว่า PRIMARY KEY ในการกำหนดคีย์หลัก
 - ค่าของแอตทริบิวต์ดังกล่าวต้องเป็นค่ายูนิคและไม่เป็นค่าว่าง (NOT NULL) สำหรับทุกทูเปิลในรีเลชั้น
- คีย์รอง (Alternate Key) คือคีย์คู่แข่งตัวใด ๆ ที่ไม่ได้ถูกเลือกเป็นคีย์หลัก

คีย์นอก (Foreign Key)

Primary	key					Foriegn key	_
TYPE	PRODUCER	MODEL	FABRICATION YEAR	COLOR	FUEL	SERIAL NUMBER	DENTIFI CATION NUMBER
LIMOUSINE	BMV	740	2008	BLACK	GAS	WBADL9105 GW65796	SB24MEA
VAN	vw	TRANSPORTER	2007	RED	DIESEL	QASMD8209 NF37590	AB08DGF
LIMOUSINE	MERCEDES	320	2008	WHITE	GAS	XEFAR2096 WM19875	SB06GHX
LIMOUSINE	AUDI	ALLROAD	2009	BLUE	DIESEL	AKLMD8064 MW79580	SB52MAG
LIMOUSINE	BMW	525	2007	GREY	DIESEL	QMXAS4390 WQ21998	AB02AMR

คีย์นอก (Foreign Key) คือแอตทริบิวต์ หรือกลุ่มของแอตทริบิวต์ของรีเลชั่นที่มีค่า ตรงกันกับค่าของคีย์หลักของรีเลชั่นอื่น

- ความสัมพันธ์คีย์นอกไปยังคีย์หลัก (Foreign-to-primary-key) ที่ตรงกัน เป็นการอ้างอิงรีเลชันหนึ่งไปยังอีกรี เลชันหนึ่ง เหมือนเป็นกาวที่ยึดโยงรีเล ชันต่างๆไว้ด้วยกันในฐานข้อมูล
- ความสัมพันธ์คี่ย์นอกไปยังคี่ย์หลักเป็น ความสัมพันธ์ที่เชื่อมโยงกันระหว่างทู เปิล

- รีเลชั่นต่าง ๆ ในระบบฐานข้อมูลเชิงสัมพันธ์ มีการอ้างอิงความสัมพันธ์ของแต่ละรีเลชั่นโดยใช้คีย์ในการอ้างอิง หรือ ใช้คีย์เป็นตัวเชื่อมโยงระหว่างรีเลชั่น จึงจำเป็นต้องมีกฎความคงสภาพเพื่อเป็นการควบคุมความถูกต้องในระบบ ฐานข้อมูล
- ในการสร้างแบบจำลองข้อมูลเชิงสัมพันธ์ กฎควบคุมความถูกต้อง (integrity rules) หรือเงื่อนไขการควบคุมข้อมูล (constraint) เป็นส่วนหนึ่งที่สำคัญในการกำหนดความถูกต้องของข้อมูล
- ถ้าต้องการให้ฐานข้อมูลเชิงสัมพันธ์มีความถูกต้องเชิงโครงร่าง (schema level) โดยการควบคุมข้อมูลถูกใช้ในระดับ การออกแบบโครงร่างฐานข้อมูล ซึ่งถ้าผู้ใช้พยายามที่จะละเมิดการควบคุมข้อมูลดังกล่าวระบบจะทำการปฏิเสธ การดำเนินการนั้นหรือหาทางเลือกอื่นให้กับผู้ใช้เพื่อไม่ให้กระทบต่อข้อมูลในฐานข้อมูล ในลำาดับต่อไปจะอธิบายถึง การควบคุมข้อมูลต่างๆที่ใช้ในฐานข้อมูลเชิงสัมพันธ์

- การควบคุมข้อมูลเอนทิตีอินทิกริต (Entity Integrity) เป็นกฎการควบคุมให้รีเลชั่นสามารถอ้างอิงค่าคีย์ได้ ตลอดเวลา การควบคุมข้อมูลเอนทิตีอินทิกริตี เป็นการกำหนดว่าแอตทริบิวต์ที่ถูกใช้เป็นคีย์หลักในแต่ละรีเลชันต้อง โดยมีเงื่อนไขดังนี้
 - ค่าคีย์หลักในแถวข้อมูลจะต้องไม่ซ้ำกัน กล่าวคือ ค่าใดค่าหนึ่งจะแสดงเพียงแถวเดียว ไม่ตรงกับคีย์หลักของแถวอื่น ๆ ในตาราง
 - ค่าคีย์หลักไม่อนุญาตให้เป็นค่าว่าง (null values) คำาว่า Null หมายถึง ไม่มีค่า (property inapplicable) หรือค่าที่ไม่รู้จักมา ก่อน (information unknown) Null เป็นเหมือนเครื่องหมายแสดงการขาดหายไปของค่า หรือเป็นค่าที่ไม่สามารถระบุได้

artist_id	artist_name
1	Bono
2	Cher
3	Nuno Bettencourt

Link B	roken
--------	-------

	artist_id	album_id	album_name
	3	1	Schizophonic
١	4	2	Eat the rich
١	3	3	Crave (single)

- การควบคุมข้อมูลเรเฟอเรนเชียลอินทริกริตี (Referential integrity) เป็นการ กำหนดเงื่อนไขสำหรับความสัมพันธ์ของรีเลชัน กล่าวว่า
- ถ้ารีเลชัน R2 มีคีย์นอกคือ FK อ้างอิงหรือตรงกับคีย์หลัก PK ของรีเลชันอื่นคือ รีเล ชัน R1
 - ทุก FK ใน R2 ต้องเท่ากับค่า PK ใน R1 เสมอ หรือเป็นค่าว่าง (ค่าแอตทริบิวต์ที่เป็น FK เป็นค่าว่าง)
- 👱 เรเฟอเรนเชียลอินทริกริตีมีที่มาได้จากหลายสาเหตุดังต่อไปนี้
 - ถ้าทูเปิล t2 จากรีเลชัน R2 อ้างอิงถึงบางทูเปิล t1 จากรีเลชัน R1 ดังนั้นต้องมีค่า t1 อยู่ ก่อน ไม่อย่างนั้นการอ้างอิงก็ไม่สามารถทำได้
 - ดังนั้นค่าของคีย์นอกต้องตรงกับค่าของคีย์หลัก ในการอ้างอิงผ่านความสัมพันธ์ คีย์นอกจึง ควรเป็นค่าที่ไม่ใช่ค่าว่าง
 - บางครั้งในทางปฏิบัติจะอนุญาตให้คีย์นอกเป็นค่าว่างได้

- สำหรับการระบุค่าคีย์นอกในฐานข้อมูลนั้น นักออกแบบฐานข้อมูลต้องพิจารณาประเด็นสำาคัญ 3 ข้อ ดังต่อไปนี้
- สามารถยอมรับค่าว่าง (Null Value) ได้หรือไม่ สำหรับคำตอบในข้อนี้นักออกแบบฐานข้อมูลไม่ต้องการให้ เป็นค่าว่าง แต่ในความเป็นจริงอาจเกิดขึ้นโดยการมีการจัดเก็บค่าว่างในฐานข้อมูล
- ประเด็นที่ต้องพิจารณาคือจะเกิดอะไรขึ้นหากคีย์หลักที่ คีย์นอกอ้างอิงถึงถูกลบไป โดยปกติการกระทำา ดังกล่าว มี 3 แนวทางที่เป็นไปได้
 - CASCADE การดำาเนินการลบแบบ cascades จะทำาการลบทูเปิลที่เกี่ยวข้องหรืออ้างอิงไปถึงด้วย (ทูเปิลที่มีความสัมพันธ์ ผ่านคีย์นอก) ในกรณีนี้ถ้ารถยนต์ถูกลบทูเปิลของเจ้าของรถก็จะถูกลบทิ้งด้วย
 - RESTRICT การดำาเนินการลบแบบ restricted ทำาการลบข้อมูลเมื่อไม่มีการอ้างอิงถึงทูเปิล (จะทำการยกเลิกการลบ ทันทีในกรณีที่มีการอ้างอิงข้อมูลผ่านคีย์นอก)
 - NULLIFIES จะเปลี่ยนค่าคีย์นอกให้เป็นค่าว่างในกรณีที่มีการอ้างอิงและทูเปิลที่เป็นคีย์หลักจะถูก

- 3. เกิดอะไรขึ้นหากมีการเปลี่ยนแปลงค่า (update) คีย์หลักที่มีค่าคีย์นอกอ้างอิงถึง
 - CASCADE การดำาเนินการอัพเดตแบบ cascades ทำาการอัพเดตค่าของคีย์นอกที่เกี่ยวข้องหรืออ้างอิง มายังทูเปิล(รวมไปถึงทูเปิลจากความสัมพันธ์ของคีย์นอก)
 - RESTRICT การดำาเนินการอัพเดตแบบ restricted ทำาการอัพเดตข้อมูลเมื่อไม่มีการอ้างอิงถึงทูเปิล (ทำาการยกเลิกการอัพเดตหากมีการอ้างอิง)
 - NULLIFIES จะเปลี่ยนค่าคีย์นอกให้เป็นค่าว่างในกรณีที่มีการอ้างอิงและทูเปิลที่มีคีย์หลักจะถูกอัพเดต (ในกรณีนี้ไม่สามารถทำาได้หากไม่มีการกำาหนดให้คีย์นอกยอมรับค่าว่าง)

- การควบคุมข้อมูลซีเมนทิคอินทิกริตี (Semantic integrity constraints) ซีเมนทิคอินทิกริตีเป็นการควบคุมข้อมูลที่ แสดงถึงความถูกต้องของความหมายข้อมูล ขอบเขตและชนิดของข้อมูล
 - ตัวอย่างเช่น แอตทริบิวต์ เลขที่ถนน จากรีเลชัน OWNERS ต้องเป็นเลขจำนวนเต็มบวกเพราะในความจริงนั้นเลขที่ถนนต้องเป็น เลขจำานวนเต็มบวกเท่านั้น
- ซีเมนทิคอินทิกริตีถือเป็นสิ่งที่ควรปฏิบัติเพื่อความถูกต้องในสถานะของรีเลชันตามความต้องการการจัดเก็บข้อมูลของ ฐานข้อมูล ถ้าผู้ใช้พยายามที่จะละเมิดการควบคุมข้อมูลดังกล่าว ระบบจะปฏิเสธการดำเนินการดังกล่าวทันที หรือ ดำเนินการอย่างอื่น เพื่อให้คงความถูกต้องของข้อมูลในฐานข้อมูล
 - 1. **การควบคุมข้อมูลโดเมน (Dom**ain constraint) การควบคุมข้อมูลโดเมนเปรียบเสมือนเป็นการกำหนดคุณลักษณะของแอตทริ บิวต์ ที่ปรากฏในรีเลชัน การควบคุมข้อมูลโดเมนจะเป็นการระบุค่าเพื่อเป็นการตรวจสอบว่าค่านั้นอยู่ในเซตที่กำหนดไว้ในโดเมน หรือไม่
 - 1. การควบคุมข้อมูลแบบกำหนดชื่อ (namely format)
 - 2. การควบคุมข้อมูลแบบขอบเขตของข้อมูล (range)
 - 3. การควบคุมข้อมูลแบบกำหนดชื่อ
 - 2. **การควบคุมข้อมูลค่าว่าง (Null value)** การควบคุมข้อมูลค่าว่างเป็นการระบุให้แอตทริบิวต์ไม่สามารถเป็นค่าว่าง
 - 3. **การควบคุมข้อมูลยูนิค (Unique constraint**) การควบคุมข้อมูลยูนิคเป็นการระบุให้ค่าแอตทริบิวต์ที่จัดเก็บไม่ซ้ำกัน ซึ่งจำาเป็น ต้องพิจารณาถึงลักษณะของข้อมูลที่จัดเก็บว่าในกรณีใดบ้างที่ค่าที่จัดเก็บนั้นจะไม่มีค่าที่ซ้ำกัน

พีชคณิตเชิงสัมพันธ์ (Relational Algebra)

- พีชคณิตเชิงสัมพันธ์เป็นแนวทางการดำาเนินการสำาหรับจัดการรีเลชัน โดยที่แต่ละตัวดำเนินการของพีชคณิต เชิงสัมพันธ์จะนำเข้ารีเลชันหนึ่งหรือสองรีเลชันแล้วได้ผลลัพธ์เป็นรีเลชันที่สร้างขึ้นมาใหม่ ได้กำาหนดตัว ดำเนินการ 8 ตัว ประกอบด้วย 2 กลุ่มโดยแต่ละกลุ่มมี 4 ตัวดำเนินการ ดังนี้
 - ตัวดำเนินการที่เกี่ยวกับเซต คือ Union, Intersection, Difference, และ Cartesian product
 - ตัวดำเนินการที่เกี่ยวกับรีเลชัน คือ Select , Project, Join, และ Divide

Union

R1

Name	Age	Sex
Α	20	М
С	21	М
В	21	F

R2

Name	Age	Sex
D	20	F
Α	20	М
Е	21	F

R3 = R1 U R2

Name	Age	Sex
Α	20	М
С	21	М
В	21	F
D	20	F
Е	21	F

- Union เป็นการดำเนินการที่เชื่อมรีเลชัน 2 ตัว เข้า ด้วยกัน โดย R1 UNION R2 คือเซตของทุกทูเปิล t ของ R1 หรือ R2 หรือ ของทั้งคู่ ซึ่งทั้งสองรีเลชัน สามารถทำาการ union กันได้ (union-compatible) รีเลชันทั้งสองต้องมีดีกรีที่เท่ากันและ มีโดเมนของแอ ตทริบิวต์ที่เหมือนกัน
 - สัญลักษณ์ที่ใช้แทน Union คือ U
 - Union เป็นการดำเนินการที่มีคุณสมบัติสามารถสลับที่ได้ และเปลี่ยนกลุ่มได้

Intersection

R1

Name	Age	Sex
Α	20	М
С	21	М
В	21	F

R2

Name	Age	Sex
D	20	F
Α	20	М
Е	21	F

 $R3 = R1 \cap R2$

Name	Age	Sex
Α	20	М

- Intersection เป็นการดำาเนินการกับรีเลชันโดยที่ R1 INTERSECT R2 จะได้ผลลัพธ์เป็นเซตของทุกทูเปิล t ที่ เหมือนกันของรีเลชันทั้งคู่คือ R1 และ R2
 - สัญลักษณ์ที่ใช้แทนสำหรับการดำเนินการ intersect คือ \cap
- intersect เป็นการดำเนินการที่มีคุณสมบัติสามารถสลับที่ ได้และเปลี่ยนกลุ่มได้

Difference

1	_	٠,		4
1	L	,		ı
1	Г	١		п
۰	•	•	۰	•

Name	Age	Sex
Α	20	М
С	21	М
В	21	F

ю.	,
1114	_

Name	Age	Sex
D	20	F
Α	20	М
Е	21	F

$$R3 = R1 - R2$$

Name	Age	Sex
С	21	М
В	21	F

$$R3 = R2 - R1$$

Name	Age	Sex
D	20	F
Е	21	F

- Difference เป็นการดำาเนินการของรีเลชันโดยที่ R1 MINUS R2 คือเซตของทุกทูเปิลของรีเลชัน R1 ที่ไม่อยู่ ใน R2 สัญลักษณ์ที่ใช้แทนสำาหรับการดำาเนินการ difference คือ '-'
- Difference เป็นการดำเนินการที่ไม่สามารถสลับที่และ เปลี่ยนกลุ่มได้

Cartesian product

• Cartesian product ระหว่างรีเลชัน R1 และ R2 โดยใช้ R1 TIMES R2 คือ เซตของทุกทูเปิล t โดยที่เกิดจาก การเชื่อมต่อกันของทูเปิล r ของรีเลชัน R1 กับทูเปิล s ของรีเลชัน R2 การเชื่อมต่อกันของทูเปิล

R1				
Name	Age	Sex		
А	20	М		

Name	Age	Sex		
D	20	F		
Е	21	F		

$$R3 = R1 \times R2$$

Name	Age	Sex	Name	Age	Sex
А	20	М	D	20	F
С	21	М	D	20	F
А	20	М	Е	21	F
С	21	М	Е	21	F

Selection

R

Name	Age	Sex
А	20	М
М	21	F
В	20	F
F	19	М
А	20	F
R	21	F
С	21	М

 $R1 = \sigma (Age=20)(R)$

Name	Age	Sex
А	20	М
В	20	F
А	20	F

 $R2 = \sigma (Sex=M AND Age>19))(R)$

Name	Age	Sex
Α	20	М
С	21	М

• ตัวดำเนินการ select เป็นการเลือกทูเปิลที่เป็นซับเซต (subset) ในรีเลชัน เป็นตัวดำเนินการทางคณิตศาสตร์ ที่ใช้กับรีเลชัน เดียว เพื่อให้ได้ซับเซตที่เป็นจริงตามเงื่อนไขการเลือกหรือเป็น จริงตามเงื่อนไขที่กำหนดรูปแบบของการใช้การดำเนินการ select คือ

σ <select condition> (<relation>)

- ตัวดำเนินการ select เป็นการเลือกทูเปิลที่เป็นซับเซต (subset) ในรีเลชัน
 - เป็นตัวดำเนินการทางคณิตศาสตร์ ที่ใช้กับรีเลชันเดียว เพื่อให้ได้ซับ เซตที่เป็นจริงตามเงื่อนไขการเลือกหรือเป็นจริงตามเงื่อนไขที่กำหนด รูปแบบของการใช้การดำเนินการ select คือ

σ <select condition> (<relation>)

Projection

R

Name	Age	Sex
А	20	М
М	21	F
В	20	F
F	19	М
А	20	F
R	21	F
С	21	М

$$R2 = \pi (Age, Sex)(R)$$

R1= π (Name, Sex)(R)

Name	Sex
А	М
М	F
В	F
F	М
Α	F

Age	Sex
20	М
21	F
20	F
19	М

- การดำเนินการ Project สร้างรีเลชันใหม่โดยการ เลือกซับเซตของแอตทริบิวต์ ในรีเลชัน ที่มีค่าของทูเปิลที่ไม่ซ้ำากัน เป็นตัวดำาเนินการทางคณิตศาสตร์
- รูปแบบของตัวดำเนินการ project คือ

π <attribute list> (<relation>)

- โดยที่ <attribute list> เป็นซับเซตของแอตทริบิวต์ที่อยู่ในรีเลชัน
- รีเลชันดีกรีของผลลัพธ์เท่ากับจำนวนของแอตทริบิวต์ที่กำหนดจาก <attribute list> เพราะจะปรากฏเฉพาะแอตทริบิวต์ที่เลือกในรีเลชันผลลัพธ์
- หากแอตทริบิวต์ที่เลือกเป็นแคนดิเดตคีย์ คาร์ดินัลลิตีของรีเลชันผลลัพธ์จะน้อย กว่าหรือเท่ากับคาร์ดินัลลิตีของรีเลชันเริ่มต้น เนื่องจากมีทูเปิลที่ซ้ำากันซึ่งถูก การดำเนินการดังกล่าวตัดออก

Join

R1

Last Name
Mary
John
Ann

R2

12		
Last Name	Sex	
Ann	F	
John	М	
Mary	F	
Bill	М	
`		

R3=R1(Last Name=Last Name) R2

First Name	Last Name
А	Mary
В	John
С	Ann

Natural Join

First Name	Last Name	Sex
Α	Mary	F
В	John	М
С	Ann	F

Right Outer Join

First Name	Last Name	Last Name	Sex
А	Mary	Mary	F
В	John	John	М
С	Ann	Ann	F
NULL	NULL	Bill	М

- Join เป็นตัวดำเนินการในการเชื่อมรีเลชันสองรีเลชัน บนเงื่อนไขการ เชื่อม (join condition or predicate)
- รีเลชันที่จะทำการเชื่อมกันต้องมีอย่างน้อย 1 แอตทริบิวต์ที่เป็นแอตทริ บิวต์กลางที่ใช้ร่วมกัน อยู่ภายใต้โดเมนเดียวกัน การ join ต้องมีการ ระบุแอตทริบิวต์ที่จะใช้ในการ join
- รูปแบบของการดำเนินการ join คือ

R1 ► <join condition> R2

- โดยที่ <join condition> คือ <attribute from R1> <comparison operator> < <attribute from R2>
 - เครื่องหมายเปรียบเทียบที่สามารถใช้ได้ในเงื่อนไข <, >, <=, >=, =, <> ใช้ กับโดเมนของแอตทริบิวต์

R1 \[\blacktriangle \]
Last Name = Last Name R2

Division

R1

Name	Sex	
Α	М	
В	F	
Α	F	
С	F	

 $R1 = R1 \div R2$

R2

- ตัวดำาเนินการ Division เป็นการแบ่งรีเลชันหรือการหารรีเลชัน รีเลชัน R1 มีดีกรีเท่ากับ (n + m) หารด้วยรีเลชัน R2 มีดีกรี เท่ากับ m
- ผลลัพธ์ที่ได้คือรีเลชันที่มีดีกรีเท่ากับ n ลำดับแอตทริบิวต์ (n+i) ของรีเลชัน R1 และ ลำดับแอตทริบิวต์ i จากรีเลชัน R2 ควร กำหนดในโดเมนเดียวกัน
- ผลลัพธ์การดำเนินการ division ระหว่าง R1 และ R2 จะได้รีเลชัน ผลลัพธ์ใหม่ที่ประกอบด้วยทูเปิลทั้งหมดที่เชื่อมต่อด้วยทูเปิล ทั้งหมดของ R2 ที่เป็นส่วนหนึ่งของรีเลชัน R1