

Bayesian local surrogate models for the control-based continuation of multiple-timescale systems

Mark Blyth (speaker), Lucia Marucci and Ludovic Renson

University of Bristol
BrisSynBio
Imperial College London

ONLINE, FEBRUARY 16 - 19, 2021

Numerical continuation needs models

- Numerical continuation is the standard tool for computational bifurcation analysis
- Continuation traces out implicitly defined manifolds, and as such, requires a model to define these manifolds
- Usable models are not always available
- Can we apply the same methods in cases where a usable model is unavailable?

Control-based continuation is model-free

Control-based continuation is a reformulation of the traditional continuation paradigm

$$\dot{x} = f(x) + u(x, x^*)$$

 $u \equiv 0 \Rightarrow$ system operates under stabilised natural dynamics
Zero-problem: find x^* such that $u \equiv 0$

• Nonlinear oscillations require discretising before they can be studied

Discretisations are not noise-robust

- All continuation methods use nonlinear solvers for prediction-correction steps
- CBC applications use Fourier discretisation
- Multiple-timescale systems typically require many Fourier harmonics
- Larger numbers of Fourier harmonics cause less noise-robustness
- We can't filter the noise off using simple filters

Surrogate models can clean the data

- Noise reduces the discretisation accuracy, and it can't be filtered off easily;
 instead we propose a surrogates approach
- Surrogates are a statistical regression model

Assume
$$x_i = f(t_i) + \varepsilon_i$$
, $\varepsilon_i \sim N(0, \sigma^2)$.

- A well-fitted model allows us to separate samples into signal and noise
- Challenge: find some function f(t) that is sufficiently general to describe the signals of interest

Gaussian process regression

- Gaussian processes generalise the normal distribution to infinite dimensions
- Gaussian process regression is a nonparametric function-space regression method
- Bayesian methods require priors; GP priors are covariance functions
- We use periodic and non-periodic RBF and Matern 3/2, and Matern 5/2 kernels

Bayesian free-knot splines

- Spline regressors are maximally smooth piecewise-polynomial curves
- BSplines are a set of basis functions over an associated set of spline curves
- Choosing good BSpline knots can be hard
- Bayesian inference can be used to maintain a distribution over spline curves

No single surrogate model is always best

- Surrogates are tested on noise-corrupted outputs from simulations of two multiple-timescale models
- Goodness-of-fit is quantified by fitting the models to noisy data, then comparing the actual and predicted values at unseen datapoints

No single surrogate model is always best

- Surrogates are tested on noise-corrupted outputs from simulations of two multiple-timescale models
- Goodness-of-fit is quantified by fitting the models to noisy data, then comparing the actual and predicted values at unseen datapoints

	$\sigma = 0$	$\sigma = 1$	$\sigma = 2$
SNR (dB)	-	37.4	31.4
	8.00×10^{-2}		
GPR: Periodic Matern $3/2$	1.80×10^{-4}	0.213	0.641
GPR: Periodic RBF	3.36×10^{-2}	0.406	0.806
GPR: Matern $3/2$	3.24×10^{-2}	0.759	1.82
GPR: Matern $5/2$	1.72×10^{-2}		
GPR: RBF	5.61×10^{-1}	1.78	2.60

Hodgkin-Huxley MSPE

No single surrogate model is always best

- Surrogates are tested on noise-corrupted outputs from simulations of two multiple-timescale models
- Goodness-of-fit is quantified by fitting the models to noisy data, then comparing the actual and predicted values at unseen datapoints

	$\sigma = 0$	$\sigma = 1$	$\sigma = 2$	
SNR (dB)	-	37.4	31.4	
Bayesian splines	8.00×10^{-2}	0.185	0.597	
GPR: Periodic Matern $3/2$	1.80×10^{-4}	0.213	0.641	
GPR: Periodic RBF	3.36×10^{-2}	0.406	0.806	
GPR: Matern 3/2	3.24×10^{-2}	0.759	1.82	
GPR: Matern 5/2	1.72×10^{-2}	0.915	1.91	
GPR: RBF	5.61×10^{-1}	1.78	2.60	

Hodgkin-Huxley MSPE

Surrogates fit easily into CBC

Surrogates appear before the numerical solver to pre-process the system output

The discretisor-solver step now receives a much less noisy system output

Conclusion

- CBC is a method for analysing the bifurcation structure of black-box and physical systems
- Oscillatory dynamics require discretising to be tracked
- It is difficult to accurately Fourier-discretise noisy multiple-timescale signals
- Bayesian regression models can be used instead to average out the noise
- Future work includes alternatives to Fourier discretisation, however these are often even less noise-robust