$\begin{array}{c} \mathbf{Modern~Quantum~Chemistry,~Szabo~\&~Ostlund} \\ \mathbf{HW} \end{array}$

王石嵘

$March\ 5,\ 2020$

Contents

	Pair and Coupled-pair Theories				
	5.1	The Ir	ndependent Electron Pair Approximation	:	
			Ex 5.1		
			Ex 5.2		
			Ex 5.3		
		5.1.1	Invariance under Unitary Transformations: An Example		
			Ex 5.4		
			Ex 5.5		
			Ex 5.6		

5 Pair and Coupled-pair Theories

5.1 The Independent Electron Pair Approximation

Ex 5.1

a.

$${}^{1}E_{\text{corr}}(\text{FO}) = \frac{|\langle 1\bar{1} \parallel 2\bar{2} \rangle|^{2}}{\varepsilon_{1} + \varepsilon_{1} - \varepsilon_{2} - \varepsilon_{2}}$$

$$= \frac{|\langle 1\bar{1} \mid 2\bar{2} \rangle - \langle 1\bar{1} \mid \bar{2}2 \rangle|^{2}}{2\varepsilon_{1} - 2\varepsilon_{2}}$$

$$= \frac{|[12|\bar{1}\bar{2}] - [1\bar{2}|\bar{1}2]|^{2}}{2\varepsilon_{1} - 2\varepsilon_{2}}$$

$$= \frac{K_{12}^{2}}{2(\varepsilon_{1} - \varepsilon_{2})}$$
(5.1.1)

b.

$${}^{1}E_{\text{corr}} = \Delta - \Delta \sqrt{1 + \frac{K_{12}^{2}}{\Delta^{2}}}$$

$$= \Delta - \Delta \left(1 + \frac{K_{12}^{2}}{2\Delta^{2}}\right)$$

$$= -\frac{K_{12}^{2}}{2\Delta}$$

$$\approx \frac{K_{12}^{2}}{2(\varepsilon_{1} - \varepsilon_{2})}$$
(5.1.2)

Ex 5.2 From Eq. 5.9a and 5.9b in the textbook, we get

$$\sum_{t < u} c_{1_i \bar{1}_i}^{tu} \left\langle \Psi_0 \middle| \mathcal{H} \middle| \Psi_{1_i \bar{1}_i}^{tu} \right\rangle = e_{1_i \bar{1}_i}$$
 (5.1.3)

$$\left\langle \Psi^{rs}_{1_{i}\bar{1}_{i}} \middle| \mathcal{H} \middle| \Psi_{0} \right\rangle + \sum_{t < u} \left\langle \Psi^{rs}_{1_{i}\bar{1}_{i}} \middle| \mathcal{H} - E_{0} \middle| \Psi^{tu}_{1_{i}\bar{1}_{i}} \right\rangle c^{tu}_{1_{i}\bar{1}_{i}} = e_{1_{i}\bar{1}_{i}} c^{rs}_{1_{i}\bar{1}_{i}}$$

$$(5.1.4)$$

: .

$$c_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}}\left\langle \Psi_{0}\left|\,\mathcal{H}\,\right|\Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}}\right\rangle =e_{1_{i}\bar{1}_{i}}\tag{5.1.5}$$

$$\left\langle \Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} \middle| \mathcal{H} \middle| \Psi_{0} \right\rangle + \sum_{t \leq u} \left\langle \Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} \middle| \mathcal{H} - E_{0} \middle| \Psi_{1_{i}\bar{1}_{i}}^{tu} \right\rangle c_{1_{i}\bar{1}_{i}}^{tu} = e_{1_{i}\bar{1}_{i}} c_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}}$$

$$(5.1.6)$$

(5.1.5) gives

$$K_{12}c_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} = e_{1_{i}\bar{1}_{i}} \tag{5.1.7}$$

(5.1.6) gives

$$K_{12} + \sum_{jk} \left\langle \Psi_{1_i \bar{1}_i}^{2_i \bar{2}_i} \middle| \mathcal{H} - E_0 \middle| \Psi_{1_i \bar{1}_i}^{2_j \bar{2}_k} \right\rangle c_{1_i \bar{1}_i}^{2_j \bar{2}_k} = e_{1_i \bar{1}_i} c_{1_i \bar{1}_i}^{2_i \bar{2}_i}$$

$$(5.1.8)$$

Since

$$\left\langle \Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} \middle| \mathcal{H} - E_{0} \middle| \Psi_{1_{i}\bar{1}_{i}}^{2_{j}\bar{2}_{k}} \right\rangle c_{1_{i}\bar{1}_{i}}^{2_{j}\bar{2}_{k}} = \begin{cases} 2\Delta & j = k = i \\ 0 & j = k \neq i \\ 0 & i = j = \neq k \end{cases}$$
(5.1.9)

we have

$$K_{12} + 2\Delta c_{1_i\bar{1}_i}^{2_i\bar{2}_i} = e_{1_i\bar{1}_i}c_{1_i\bar{1}_i}^{2_i\bar{2}_i}$$

$$(5.1.10)$$

Ex 5.3

$${}^{2}E_{\text{corr}}(\text{FO}) = \sum_{i} \frac{\left| \langle 1_{i} \bar{1}_{i} \parallel 2_{i} \bar{2}_{i} \rangle \right|^{2}}{\varepsilon_{1} + \varepsilon_{1} - \varepsilon_{2} - \varepsilon_{2}}$$

$$= 2 \times \frac{K_{12}^{2}}{2(\varepsilon_{1} - \varepsilon_{2})}$$

$$= \frac{K_{12}^{2}}{(\varepsilon_{1} - \varepsilon_{2})}$$
(5.1.11)

5.1.1 Invariance under Unitary Transformations: An Example

Ex 5.4

$$|a\bar{a}b\bar{b}\rangle = 2^{-1/2} \left(|1_1\bar{a}b\bar{b}\rangle + |1_2\bar{a}b\bar{b}\rangle \right)$$

$$= 2^{-1} \left(|1_1\bar{1}_1b\bar{b}\rangle + |1_1\bar{1}_2b\bar{b}\rangle + |1_2\bar{1}_1b\bar{b}\rangle + |1_2\bar{1}_2b\bar{b}\rangle \right)$$

$$= 2^{-2} \left(|1_1\bar{1}_11_1\bar{1}_1\rangle - |1_1\bar{1}_11_1\bar{1}_2\rangle - |1_1\bar{1}_11_2\bar{1}_1\rangle + |1_1\bar{1}_11_2\bar{1}_2\rangle + |1_1\bar{1}_21_1\bar{1}_2\rangle + |1_1\bar{1}_21_1\bar{1}_2\rangle + |1_1\bar{1}_21_2\bar{1}_2\rangle + |1_1\bar{1}_21_1\bar{1}_1\rangle - |1_2\bar{1}_11_1\bar{1}_2\rangle - |1_2\bar{1}_11_2\bar{1}_1\rangle + |1_2\bar{1}_11_2\bar{1}_2\rangle + |1_2\bar{1}_21_2\bar{1}_2\rangle + |1_2\bar{1}_21_1\bar{1}_1\rangle - |1_2\bar{1}_21_1\bar{1}_2\rangle - |1_2\bar{1}_21_2\bar{1}_1\rangle + |1_2\bar{1}_21_2\bar{1}_2\rangle + |1_2\bar{1}_21_1\bar{1}_1\rangle - |1_2\bar{1}_21_1\bar{1}_2\rangle - |1_2\bar{1}_21_2\bar{1}_1\rangle + |1_2\bar{1}_21_2\bar{1}_2\rangle + |1_2\bar{1}_21_2\bar{1}_2\rangle + |1_2\bar{1}_21_2\bar{1}_2\rangle + |1_2\bar{1}_21_2\bar{1}_2\rangle + |1_2\bar{1}_21_2\bar{1}_2\rangle + |1_1\bar{1}_11_2\bar{1}_2\rangle - 2|1_1\bar{1}_21_2\bar{1}_2\rangle + |1_1\bar{1}_11_2\bar{1}_2\rangle + |1_1\bar{1}_11_2$$

Ex 5.5

$$\langle \Psi_0 \mid \mathcal{H} \mid \Psi_{a\bar{a}}^{**} \rangle = 2^{-1/2} \left(\left\langle \Psi_0 \mid \mathcal{H} \mid \Psi_{a\bar{a}}^{r\bar{r}} \right\rangle + \left\langle \Psi_0 \mid \mathcal{H} \mid \Psi_{a\bar{a}}^{s\bar{s}} \right\rangle \right)$$

$$= 2^{-1/2} \left(2 \times \frac{1}{2} K_{12} \right)$$

$$= 2^{-1/2} K_{12}$$

$$(5.1.13)$$

$$\langle \Psi_{a\bar{a}}^{**} | \mathcal{H} - E_{0} | \Psi_{a\bar{a}}^{**} \rangle = 2^{-1} (\langle \Psi_{a\bar{a}}^{r\bar{r}} | \mathcal{H} - E_{0} | \Psi_{a\bar{a}}^{r\bar{r}} \rangle + \langle \Psi_{a\bar{a}}^{r\bar{r}} | \mathcal{H} - E_{0} | \Psi_{a\bar{a}}^{s\bar{s}} \rangle + \langle \Psi_{a\bar{a}}^{s\bar{s}} | \mathcal{H} - E_{0} | \Psi_{a\bar{a}}^{r\bar{r}} \rangle + \langle \Psi_{a\bar{a}}^{s\bar{s}} | \mathcal{H} - E_{0} | \Psi_{a\bar{a}}^{s\bar{s}} \rangle = 2^{-1} \left[\left(2h_{11} + 2h_{22} + \frac{1}{2}J_{11} + \frac{1}{2}J_{22} + 2J_{12} - K_{12} \right) - (4h_{11} + 2J_{11}) \right] + \frac{1}{2}J_{22} + \frac{1}{2}J_{22} + \left(2h_{11} + 2h_{22} + \frac{1}{2}J_{11} + \frac{1}{2}J_{22} + 2J_{12} - K_{12} \right) - (4h_{11} + 2J_{11}) \right] = 2^{-1} \left(-2h_{11} + 2h_{22} - \frac{3}{2}J_{11} + J_{22} + 2J_{12} - K_{12} \right) \times 2 = -2h_{11} + 2h_{22} - \frac{3}{2}J_{11} + J_{22} + 2J_{12} - K_{12}$$
 (5.1.14)

Since

$$\varepsilon_2 - \varepsilon_1 = h_{22} - h_{11} + 2J_{12} - K_{12} - J_{11} \tag{5.1.15}$$

we have

$$\langle \Psi_{a\bar{a}}^{**} | \mathcal{H} - E_0 | \Psi_{a\bar{a}}^{**} \rangle = 2(\varepsilon_2 - \varepsilon_1) - 2J_{12} + K_{12} + \frac{1}{2}J_{11} + J_{22}$$
 (5.1.16)

Ex 5.6 Since

$$|\Psi_{a\bar{b}}^{**}\rangle = 2^{-1/2}(|\Psi_{a\bar{b}}^{r\bar{s}}\rangle + |\Psi_{a\bar{b}}^{s\bar{r}}\rangle) \tag{5.1.17}$$

$$\langle \Psi_{0} \mid \mathcal{H} \mid \Psi_{a\bar{b}}^{**} \rangle = 2^{-1/2} \left(\langle \Psi_{0} \mid \mathcal{H} \mid \Psi_{a\bar{b}}^{r\bar{s}} \rangle + \langle \Psi_{0} \mid \mathcal{H} \mid \Psi_{a\bar{b}}^{s\bar{r}} \rangle \right)$$

$$= 2^{-1/2} \left(\langle a\bar{b} \parallel r\bar{s} \rangle + \langle a\bar{b} \parallel s\bar{r} \rangle \right)$$

$$= 2^{-1/2} ((ar|bs) + (as|br))$$

$$= 2^{-1/2} K_{12}$$
(5.1.18)

$$\langle \Psi_{a\bar{b}}^{**} | \mathcal{H} - E_{0} | \Psi_{a\bar{b}}^{**} \rangle = 2^{-1} (\langle \Psi_{a\bar{b}}^{r\bar{s}} | \mathcal{H} - E_{0} | \Psi_{a\bar{b}}^{r\bar{s}} \rangle + \langle \Psi_{a\bar{b}}^{r\bar{s}} | \mathcal{H} - E_{0} | \Psi_{a\bar{b}}^{s\bar{r}} \rangle$$

$$+ \langle \Psi_{a\bar{b}}^{s\bar{r}} | \mathcal{H} - E_{0} | \Psi_{a\bar{b}}^{r\bar{s}} \rangle + \langle \Psi_{a\bar{b}}^{r\bar{s}} | \mathcal{H} - E_{0} | \Psi_{a\bar{b}}^{s\bar{r}} \rangle)$$

$$= 2^{-1} \left[\left(2h_{11} + 2h_{22} + \frac{1}{2}J_{11} + \frac{1}{2}J_{22} + 2J_{12} - K_{12} \right) - (4h_{11} + 2J_{11}) \right]$$

$$+ \frac{1}{2}J_{22} + \frac{1}{2}J_{22}$$

$$+ \left(2h_{11} + 2h_{22} + \frac{1}{2}J_{11} + \frac{1}{2}J_{22} + 2J_{12} - K_{12} \right) - (4h_{11} + 2J_{11}) \right]$$

$$= \dots$$

$$= 2(\varepsilon_{2} - \varepsilon_{1}) - 2J_{12} + K_{12} + \frac{1}{2}J_{11} + J_{22}$$

$$(5.1.19)$$

Thus the equations determining $e_{a\bar{b}}$ are identical to that of $e_{a\bar{a}}$. Similarly, $e_{\bar{a}b}$ shares the same equations with them.

 $\therefore e_{a\bar{b}} = e_{\bar{a}b} = e_{a\bar{a}}.$