Rappels de statistiques mathématiques : cours 1

Guillaume Lecué

2 septembre 2015

Rappels de statistiques mathématiques : cours 1

Lecué

Agenda

Echantillonnag et

nodélisatic :atistique

Aujourd'hui

- 1 Agenda
- 2 Echantillonnage et modélisation statistique
 - Données d'aujourd'hui
 - Expérience statistique
 - Modéle statistique
- 3 Fonction de répartition empirique et théorème fondamentale de la statistique
 - Loi d'une variable aléatoire
 - Fonction de répartition empirique
 - Approche non-asymptotique

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

délisation tistique

Organisation

Cours Guillaume Lecué

guillaume.lecue@cmap.polytechnique.fr

Les lundis et mercredis de septembre de 11h à 13h

TD Vincent Cottet

Les lundis de septembre et les vendredis 21 et 28 septembre de 14h à 16h

Examen

Fin octobre/ début novembre

Rappels de statistiques mathématiques : cours 1

Agenda

Présentation (succinte) du cours de rappels stats

- Echantillonnage et modélisation statistique. Fonction de répartition empirique (2 cours)
- Méthodes d'estimation classiques (2 cours)
- Information statistique, théorie asymptotique pour l'estimation (2 cours)
- Décision statistique et tests (2 cours)
- Compléments sur le modéle linéaire et statistiques Bayésiennes(1 cours)

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnag t

odélisation atistique

Plan

■ Données et modélisation statistique

■ fonction de répartition empirique

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

nodélisatio tatistique

Les données d'aujourd'hui : fichiers (en local) .csv ou .txt

Les chiffres du travail

Taux d'activité par tranche d'âge hommes vs. femmes

	A	В	С	D	E	F	G	Н	1
1									
2	Taux d'activité par tranche d'âge de 1975 à 2005								
3	En %								
4	OCO TO ART.	1975	1976	1977	1978	1979	1980	1981	1982
5	Femmes								
6	15-24 ans	45,5	45,7	45,2	43,9	44,2	42,9	42,1	41,87
7	25-49 ans	58,6	60,3	62,1	62,8	64,7	65,4	66,2	67,55
8	50 ans et plus	42,9	43,1	44,4	43,9	44,8	45,9	45,2	43,47
9	Ensemble	51,5	52,5	53,6	53,6	54,8	55,1	55,1	55,29
10	Hommes								
11	15-24 ans	55,6	54,7	53,7	52,2	52,5	52,0	50,4	45,02
12	25-49 ans	97,0			96,9	96,9		96,9	111111111111111111111111111111111111111
13	50 ans et plus	79,5	78,8	79,5	78,8	79,4	78,3	75,4	71,65
14	Ensemble	82,5	82,2	82,1	81,6	81,8	81,5	80,4	78,14

http://www.insee.fr/

https://www.data.gouv.fr/

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

(genda

Echantillonnag et

Données d'aujourd'hui Expérience statistique Modéle

Les données d'aujourd'hui : séries temporelles

Le monde de la finance

http://fr.finance.yahoo.com/ http://www.bloomberg.com/enterprise/data/ Rappels de statistiques mathématiques

> Guillaum Lecué

.genda

Echantillonnag et

modélisation statistique Données d'aujourd'hui Expérience statistique Modéle

Les données d'aujourd'hui : grandes matrices

Biopuces et analyse d'ADN

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

genda 🏻

Echantillonnag et nodélisation

Données d'aujourd'hui Expérience statistique Modéle

Les données d'aujourd'hui : graphes

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnage

Statistique

Données
d'aujourd'hui

Expérience
statistique

Expérience statistique Modéle statistique

Fonction de répartition empirique et théorème fondamentale de la statistique

190

Les données d'aujourd'hui : le métier en data science

Problèmatique :

- stockage, requettage : expertise en base de données
- data "jujitsu", data "massage"
- data-vizualization (Gephi, Tulip, widget python, etc.)
- mathématiques :
 - ★ modélisation (statistiques)
 - construction d'estimateurs implémentation d'algorithmes
- Python, R, H2O, Torch7, vowpal wabbit, spark, github,...

Pour s'entrainer aux métiers en "data science" :

- https://www.kaggle.com, https://www.datascience.net/
- notebooks python
- Coursera

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

\genda

chantillonnage

modélisation statistique Données d'aviourd'hui

Données d'aujourd'hui Expérience statistique Modéle statistique

Objectif du cours "Rappels de statistiques mathématiques"

- Construire des modèles statistiques pour des données classiques
- Construire des estimateurs / tests classiques
- 3 Connaître leurs propriétés statistiques et les outils mathématiques qui permettent de les obtenir

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

et modélisation

Données d'aujourd'hui Expérience statistique Modéle statistique

Problématique statistique

1) Point de départ : données (ex. : des nombres réels)

$$x_1, \ldots, x_n$$

- 2) Modélisation statistique :
 - les données sont des réalisations

$$X_1(\omega),\ldots,X_n(\omega)$$
 de v.a.r. X_1,\ldots,X_n .

■ La loi $\mathbb{P}^{(X_1,...,X_n)}$ de $(X_1,...,X_n)$ est inconnue, mais appartient à une famille donnée (a priori)

$$\left\{ \left. \mathbb{P}^{\it n}_{ heta}, heta \in \Theta
ight\} \right.$$
 : le modéle

On pense qu'il existe $\theta \in \Theta$ tel que $\mathbb{P}^{(X_1,...,X_n)} = \mathbb{P}^n_{\theta}$.

3) Problématique : à partir de « l'observation » X_1, \ldots, X_n , peut-on estimer θ ? tester des propriétés de θ ?

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

nodelisation statistique Données d'aujourd'hui Expérience statistique Modéle statistique

Problématique statistique (suite)

- ullet est le paramètre et Θ l'ensemble des paramètres.
- **Estimation**: à partir de X_1, \ldots, X_n , construire $\varphi_n(X_1, \ldots, X_n)$ qui « approche au mieux » θ .
- Test : à partir des données X_1, \ldots, X_n , établir une décision $\varphi_n(X_1, \ldots, X_n) \in \{\text{ensemble de décisions}\}$ concernant une hypothèse sur θ .

Definition

Une statistique est une fonction mesurable des données

!ATTENTION! Une statistique ne peut pas dépendre du paramètre inconnu : une statistique se construit uniquement à partir des données!

Rappels de statistiques mathématiques : cours 1

Lecué

Agenda

chantillonnage t

statistique

Données
d'aujourd'hui

Expérience
statistique

Expérience statistique Modéle statistique

Fonction de répartition empirique et théorème fondamentale de la statistique

Exemple du pile ou face

• On lance une pièce de monnaie 18 fois et on observe (P = 0, F = 1)

$$0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0$$

- Modéle statistique : on observe n=18 variables aléatoires X_i indépendantes, de Bernoulli de paramètre inconnu $\theta \in \Theta = [0,1]$.
 - Estimation. Estimateur $\bar{X}_{18} = \frac{1}{18} \sum_{i=1}^{18} X_i \stackrel{\text{ici}}{=} 8/18 = 0.44$. Quelle précision?
 - Test. Décision à prendre : « la pièce est-elle équilibrée ? ». Par exemple : on compare $\bar{X_{18}}$ à 0.5. Si $|\bar{X}_{18}-0.5|$ « petit », on accepte l'hypothèse « la pièce est équilibrée ». Sinon, on rejette. Quel seuil choisir, et avec quelles conséquences (ex. probabilité de se tromper).

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnage

modelisation statistique Données d'aujourd'hui Expérience statistique Modéle statistique

Echantillonnage = répétition d'une même expérience

- L'expérience statistique la plus centrale : on observe la réalisation de X_1, \ldots, X_n , v.a.r. où les X_i sont indépendantes, identiquement distribuées, de même loi commune $\mathbb{P}^X \in \{\mathbb{P}_{\theta} : \theta \in \Theta\}$.
- problème : à partir des données $X_1, ..., X_n$ que dire de la loi \mathbb{P}^X commune aux X_i ? (moyenne, moments, symétrie, densité, etc.)

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnage et

nodélisation statistique Données d'aujourd'hui Expérience statistique Modéle

Expérience statistique

Consiste à déterminer :

l'espace des observations

$$\mathfrak{Z}$$
 (ex. : $\mathfrak{Z} = \{0,1\}^{18}$)

C'est l'espace où vivent les observations

- Une tribu : \mathcal{Z} (on modélise les données comme des réalisations de variables aléatoires...) (ex. : $\mathcal{Z} = \mathcal{P}(\mathfrak{Z})$)
- Une famille de lois = modéle

$$\{\mathbb{P}_{ heta},\, heta\in\Theta\}\ (ext{ex.}:\mathbb{P}_{ heta}=\mathbb{P}_{ heta}^n=(heta\delta_1+(1- heta)\delta_0)^{\otimes 18})$$

Rappels de statistiques mathématiques : cours 1

Expérience statistique

Expérience statistique

Definition

Une expérience statistique $\mathcal E$ est un triplet

$$\mathcal{E} = ig(\mathfrak{Z}, ig\{ \, \mathbb{P}_{ heta}, heta \in \Theta ig\} ig)$$

οù

- $(\mathfrak{Z},\mathcal{Z})$ espace mesurable (ex. : $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$),
- $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ famille de probabilités définies simultanément sur le même espace $(\mathfrak{Z}, \mathcal{Z})$.

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

statistique
Données
d'aujourd'hui
Expérience
statistique
Modéle
statistique

Fonction de répartition empirique et théorème fondamentale de la statistique

Modéles statistiques (jargon)

- $\{\mathbb{P}_{\theta}, \, \theta \in \Theta\}$ est appelé modéle
- quand il existe k tel que $\Theta \subset \mathbb{R}^k$, on parle de modéle paramétrique
- quand θ est un paramètre infini dimensionnel, on parle de modéle non-paramétrique (ex. : densité)
- quand $\theta=(f,\theta_0)$ où f est infini dimensionnel (souvent, paramètre de nuisance) et $\theta\in\mathbb{R}^k$ (paramètre d'intérêt), on parle de modéle semi-paramétrique
- lacktriangle quand $heta \in \Theta \mapsto \mathbb{P}_{ heta}$ est injectif, on dit que le modéle est identifiable

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnage

Données d'aujourd'hui Expérience statistique Modéle statistique

Modéles statistiques

Question centrale en statistiques : Quel modéle est le plus adapté à ces données ?

Il existe deux manières équivalentes de définir un modéle :

- **1** soit en se donnant une famille de loi $\{\mathbb{P}_{\theta}, \, \theta \in \Theta\}$
- 2 soit en se donnant une équation

Rappels de statistiques mathématiques : cours 1

Lecué

Agenda

Echantillonnage

modélisation statistique Données

d'aujourd'hu Expérience statistique Modéle statistique

Exemple de modéle/modélisation (1)

On observe un *n*-uplet de variables aléatoires réelles :

$$Z=(X_1,\ldots,X_n)$$

On peut modéliser ces observations de deux manières (équivalentes) :

■ Famille de lois : $\{\mathbb{P}_{\theta} : \theta \in \mathbb{R}\}$, par exemple,

$$\mathbb{P}_{\theta} = \big(\mathcal{N}(\theta, 1)\big)^{\otimes n}$$

■ Par une équation : pour tout $i \in 1, ..., n$,

$$X_i = \theta + g_i$$

4 11 1 4 21 1 4 2 1 4 2 1 2 2

où g_1, \ldots, g_n sont n variables aléatoires Gaussiennes centrées réduites indépendantes.

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

atistique Jonnées Jaujourd'hui xpérience tatistique

Expérience statistique Modéle statistique

Exemple de modéle/modélisation (2)

On observe un *n*-uplet de variables aléatoires réelles :

$$Z=(X_1,\ldots,X_n)$$

On peut modéliser ces observations de deux manières (équivalentes) :

■ Par une équation : $X_1 = g_1$ et pour tout $i \in 1, ..., n-1$,

$$X_{i+1} = \theta X_i + g_i$$

où g_1, \ldots, g_n sont iid $\mathcal{N}(0,1)$.

■ Famille de lois : $\{\mathbb{P}_{\theta}: \theta \in \mathbb{R}\}$ où

$$\mathbb{P}_{\theta} = f_{\theta}.\lambda^{n}$$

où λ^n est la mesure de Lebesgue sur \mathbb{R}^n et

$$f_{\theta}(x_1,\ldots,x_n)=f(x_1)f(x_2-\theta x_1)\cdots f(x_n-\theta x_{n-1})$$

et
$$f(x) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}}$$
.

Rappels de statistiques mathématiques : cours 1

Lecué

Agenda

hantillonnage

tatistique Données d'aujourd'hui Expérience

Expérience statistique Modéle statistique

Pourquoi modéliser?

Pourquoi modéliser?:

- 1) Outils mathématiques
- 2) Résultats mathématiques
- 3) Algorithmes

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnage et

t nodélisation tatistique

Données d'aujourd'hui Expérience statistique Modéle statistique

3 modèles (non-paramétriques) classiques

1 Modéle de densité : on observe un *n*-échantillon

$$X_1,\ldots,X_n$$
 de v.a.r. de densité f tel que $f\in\mathcal{C}$

où $\mathcal C$ est une classe de densités sur $\mathbb R$ (Lebesgue).

2 Modéle de régression : on observe un *n*-échantillon de couples $(X_i, Y_i)_{i=1}^n$ tel que $Y_i \in \mathbb{R}$, $X_i \in \mathbb{R}^d$ et

$$Y_i = f(X_i) + \xi_i$$

où ξ_i sont des v.a.r.i.i.d. indépendantes des X_i et $f \in \mathcal{C}$.

- **quand** $f(X_i) = \langle \theta, X_i \rangle$: modéle de regression linéaire,
- lacktriangle et quand $\xi_i \sim \mathcal{N}(0, \sigma^2)$: modéle linéaire Gaussien
- modéle de classification : on observe un n-échantillon $(Y_i, X_i)_{i=1}^n$ tel que $Y_i \in \{0, 1\}$ et $X_i \in \mathcal{X}$. Par ex. :

$$\mathbb{P}[Y_i = 1 | X_i = x] = \sigma(\langle x, \theta \rangle)$$
 où $\sigma(x) = (1 + e^{-x})$

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

\genda

chantillonnage t

modélisation statistique Données d'aujourd'hui Expérience statistique Modéle statistique

Fonction de répartition empirique et théorème fondamentale de la statistique

Partie 2

Fonction de répartition empirique et théorème fondamentale de la statistique

Rappels de statistiques mathématiques : cours 1

Lecué

Agenda

Chantillonnage t

odélisat atistique

Fonction de répartition empirique et théorème fondamentale

de la statistique

Question fondamentale

Considérons le modéle d'échantillonnage sur $\mathbb R$: on observe

$$X_1, \ldots, X_n$$

qui sont i.i.d. de loi commune \mathbb{P}_X .

Rem.: Comme la loi de l'observation (X_1, \ldots, X_n) est $\mathbb{P}_X^{\otimes n}$, se donner un modéle est ici (pour le modéle d'échantillonnage) équivalent à se donner un modéle sur \mathbb{P}_X .

 $\underline{\mathsf{Par}\;\mathsf{exemple}}:\mathbb{P}_{\mathsf{X}}\in\{\mathcal{N}(\theta,1):\theta\in\mathbb{R}\}$

Une question fondamentale est la suivante :

Question fondamentale

On considère le modéle "total" =

 $\mathbb{P}_X \in \{ \text{ toutes les lois sur } \mathbb{R} \}$, est-il possible de connaître exactement \mathbb{P}_X quand le nombre n de données tends vers ∞ ?

Rappels de statistiques mathématiques : cours 1

Lecué

genda

chantillonnage t

odélisation atistique

Fonction de répartition empirique et théorème fondamentale de la statistique

Rappel : loi d'une variable aléatoire réelle

Definition

$$X: (\Omega, \mathcal{A}, \mathbb{P}) \longrightarrow (\mathbb{R}, \mathcal{B})$$

Loi de X: mesure de probabilité sur (\mathbb{R},\mathcal{B}) , notée \mathbb{P}^X , définie par

$$\mathbb{P}^X[A] = \mathbb{P}[X^{-1}(A)], A \in \mathcal{B}.$$

Formule d'intégration

$$\mathbb{E}\left[\varphi(X)\right] = \int_{\Omega} \varphi(X(\omega)) \, \mathbb{P}(d\omega) = \int_{\mathbb{R}} \varphi(x) \, \mathbb{P}^{X}(dx)$$

pour toute fonction test φ .

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage

odélisatior itistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire (1/4)

Exemple 1 : X suit la loi de Bernoulli de paramètre 1/3

■ <u>La loi de X</u> est décrite par

$$\mathbb{P}\left[X=1\right] = \frac{1}{3} = 1 - \mathbb{P}\left[X=0\right]$$

Ecriture de \mathbb{P}^X :

$$\mathbb{P}^X = \frac{1}{3}\delta_1 + \frac{2}{3}\delta_0$$

■ Formule de calcul (φ fonction test)

$$\mathbb{E}\left[\varphi(X)\right] = \int_{\mathbb{R}} \varphi(x) \, \mathbb{P}^{X}(dx)$$

$$= \frac{1}{3} \int_{\mathbb{R}} \varphi(x) \delta_{1}(dx) + \frac{2}{3} \int_{\mathbb{R}} \varphi(x) \delta_{0}(dx)$$

$$= \frac{1}{3} \varphi(1) + \frac{2}{3} \varphi(0)$$

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

odélisatior atistique

onction de épartition mpirique et héorème ondamentale e la tatistique

Loi d'une variable aléatoire (2/4)

Exemple 2 : $X \sim \text{loi de Poisson de paramètre 2}$

■ <u>La loi de X</u> est décrite par

$$\mathbb{P}[X = k] = \frac{2^k}{k!}e^{-2}, \ k = 0, 1, \dots$$

Ecriture de \mathbb{P}^X :

$$\left| \mathbb{P}^X = e^{-2} \sum_{k \in \mathbb{N}} \frac{2^k}{k!} \delta_k \right|$$

■ Formule de calcul (φ fonction test)

$$\mathbb{E}\left[\varphi(X)\right] = \int_{\mathbb{R}} \varphi(x) \, \mathbb{P}^X(dx) = e^{-2} \sum_{k \in \mathbb{N}} \varphi(k) \frac{2^k}{k!}$$

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

odélisatio atistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire (3/4)

Exemple 3 : $X \sim \mathcal{N}(0,1)$ (loi normale standard).

■ <u>La loi de X</u> est décrite par

$$\mathbb{P}\left[X \in [a,b]\right] = \int_{[a,b]} e^{-x^2/2} \frac{dx}{\sqrt{2\pi}}$$

Ecriture de \mathbb{P}^X :

$$\boxed{\mathbb{P}^X = f.\lambda} \text{ où } f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

 λ : mesure de Lebesgue

Formule de calcul

$$\mathbb{E}\left[\varphi(X)\right] = \int_{\mathbb{R}} \varphi(x) \, \mathbb{P}^X(dx) = \int_{\mathbb{R}} \varphi(x) e^{-x^2/2} \frac{dx}{\sqrt{2\pi}}$$

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

délisation tistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire (4/4)

Exemple 4 : X = min(Z, 1), où la loi de Z a une densité f par rapport à la mesure de Lebesgue sur \mathbb{R} .

Ecriture de \mathbb{P}^X :

$$\mathbb{P}^{X} = g.\lambda + \mathbb{P}\left[Z \geq 1\right]\delta_{1},$$

où
$$g(x) = f(x)I(x < 1), \forall x \in \mathbb{R}$$
.

■ Formule de calcul

$$\mathbb{E}\left[\varphi(X)\right] = \int_{-\infty}^{1} \varphi(x)f(x)dx + \mathbb{P}\left[Z \ge 1\right]\varphi(1)$$

Rappels de statistiques mathématiques : cours 1

Guillaume Lecué

Agenda

chantillonnage t

délisatio tistique

onction de épartition empirique et héorème ondamentale de la

Loi d'une variable aléatoire Fonction de répartition empirique

Fonction de répartition

Les lois sont des objets compliquées. On peut néanmoins les caractériser par des objets plus simples.

Definition

Soit X variable aléatoire réelle. La fonction de répartition de X est :

$$F(x) := \mathbb{P}[X \le x], x \in \mathbb{R}.$$

- F est croissante, cont. à droite, $F(-\infty) = 0$, $F(+\infty) = 1$
- \blacksquare F caractérise la loi \mathbb{P}^X :

$$\mathbb{P}^{X} [(a,b]] = \mathbb{P} [a < X \le b] = F(b) - F(a)$$

■ Désormais, la loi (distribution) de X désignera indifféremment F ou \mathbb{P}^X .

Rappels de statistiques mathématiques : cours 1

Lecué

Agenda

chantillonnage t

délisation tistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire Fonction de répartition

Fonction de répartition empirique Approche nonasymptotique

Retour sur la question fondamentale

On \ll observe \gg

$$X_1,\ldots,X_n\sim_{i.i.d.}F$$
,

F fonction de répartition quelconque, inconnue.

Question: Est-il possible de retrouver exactement F quand n tends vers ∞ ?

Idée : On va chercher à estimer F sur \mathbb{R} . Soit $x \in \mathbb{R}$.

 $F(x) = \mathbb{P}[X \leq x]$ est la probability que X soit plus petit que x. On va alors compter le nombres de X_i qui sont plus petit que xet diviser par n :

$$\frac{1}{n}\sum_{i=1}^n I(X_i \leq x).$$

Rappels de statistiques mathématiques : cours 1

Fonction de

Fonction de répartition empirique

Definition

Fonction de répartition empirique associée au n-échantillon (X_1, \ldots, X_n) :

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \leq x), \ x \in \mathbb{R}.$$

(C'est une fonction aléatoire)

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnag :

délisation tistique

Fonction de répartition empirique et théorème fondamentale de la

statistique

Loi d'une variable aléatoire Fonction de répartition empirique

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Propriétés asymptotiques de $\widehat{F}_n(x)$

Pour tout $x \in \mathbb{R}$:

$$\widehat{F}_n(x) \xrightarrow{p.s.} F(x)$$
 quand $n \to \infty$

C'est une conséquence de la loi forte des grands nombres appliquée à la suite de v.a.r.i.i.d. $(I(X_i \le x))_i$.

On dit que $\widehat{F}_n(x)$ est un estimateur fortement consistant de F(x).

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

odélisatio atistique

Fonction de répartition empirique et théorème fondamentale de la statistique

Loi d'une variable aléatoire Fonction de répartition empirique

Propriétés asymptotiques de \widehat{F}_n

Theorem (Glivenko-Cantelli)

$$\|\widehat{F}_n - F\|_{\infty} \xrightarrow{p.s.} 0 \text{ quand } n \to \infty$$

Aussi appelé Théorème fondamental de la statistique. Interprétation: Avec un nombre infini de données dans le modéle d'échantillonnage, on peut donc reconstruire exactement F et donc déterminer exactement la loi des observations. Rappels de statistiques mathématiques : cours 1

Lecué

Agenda

Echantillonnag et

> odélisation itistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire Fonction de répartition

empirique Approche n asymptotiqu

Notebooks

http://localhost: 8888/notebooks/cdf_empirique.ipynb Glivenko-Cantelli Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

odélisatio atistique

Fonction de répartition empirique et théorème fondamentale

statistique

Loi d'une variable aléatoire Fonction de

Fonction de répartition empirique Approche non-

Autres propriétés asymptotiques de $\widehat{F}_n(x)$

Soit $x \in \mathbb{R}$. On sait que si $n \to \infty$ alors

$$\widehat{F}_n(x) \xrightarrow{p.s.} F(x)$$

Question F(x): Quelle est la vitesse de convergence de $F_n(x)$ vers

<u>Outil</u>: Théorème central-limite appliqué à la suite de v.a.r.i.i.d. $(I(X_i \le x))_i$:

$$\sqrt{n}(\widehat{F}_n(x) - F(x)) \stackrel{d}{\longrightarrow} \mathcal{N}(0, F(x)(1 - F(x)))$$

On dit que $\widehat{F}_n(x)$ est asymptotiquement normal de variance asymptotique F(x)(1 - F(x)).

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

délisatio tistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire Fonction de répartition empirique

Notebooks

http://localhost: 8888/notebooks/cdf_empirique.ipynb Glivenko-Cantelli Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

odélisatio itistique

Fonction de répartition empirique et théorème

de la statistique

Loi d'une variable aléatoire Fonction de répartition

Fonction de répartition empirique Approche nonasymptotique

TCL et intervalle de confiance asymptotique

On a montré par le TCL que pour tout $0 < \alpha < 1$, quand $n \to \infty$,

$$\mathbb{P}\left[\left|\widehat{F}_n(x) - F(x)\right| \ge c_\alpha \frac{\sigma(F)}{\sqrt{n}}\right] \to \int_{|x| > c_\alpha} \exp(-x^2/2) \frac{dx}{\sqrt{2\pi}} = \alpha$$

où
$$\sigma(F) = F(x)(1 - F(x))$$
 et $c_{\alpha} = \Phi^{-1}(1 - \alpha/2)$.

- Attention! ceci ne fournit pas un intervalle de confiance : $\sigma(F) = F(x)^{1/2} (1 F(x))^{1/2}$ est inconnu!
- Solution: remplacer $\sigma(F)$ par $\sigma(\widehat{F}_n) = \widehat{F}_n(x)^{1/2} (1 \widehat{F}_n(x))^{1/2}$ (qui est observable), grâce au lemme de Slutsky.

Rappels de statistiques mathématiques : cours 1

Lecué

genda

chantillonnage t

odélisat itistique

Fonction de répartition empirique et théorème fondamentale de la statistique

Loi d'une variable aléatoire Fonction de répartition empirique

TCL et intervalle de confiance asymptotique

Proposition

Pour tout $\alpha \in (0,1)$,

$$\mathcal{I}_{n,\alpha}^{\text{asymp}} = \left[\widehat{F}_n(x) \pm \frac{\widehat{F}_n(x)^{1/2} (1 - \widehat{F}_n(x))^{1/2}}{\sqrt{n}} \Phi^{-1}(1 - \alpha/2)\right]$$

est un intervalle de confiance asymptotique pour F(x) au niveau de confiance $1-\alpha$:

$$\mathbb{P}\left[F(x) \in \mathcal{I}_{n,\alpha}^{\mathtt{asymp}}\right] \to 1 - \alpha.$$

Rappels de statistiques mathématiques : cours 1

> Guillaum Lecué

Agenda

Echantillonnage et

odélisatior atistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire Fonction de répartition

empirique

◆ロト ◆母 ト ◆ 草 ト ◆ 草 ・ 夕 Q ()

Vitesse de convergence dans le Théorème de Glivenko-Cantelli

Theorem (Théorème de Kolmogorov-Smirnov)

Soit X une v.a.r. de fonction de répartition F qu'on suppose continue et $(X_n)_n$ une suite de v.a.r. i.i.d. de même loi que X alors :

$$\sqrt{n} \left\| \widehat{F}_n - F \right\|_{\infty} \stackrel{d}{\longrightarrow} K$$

où K est une variable aléatoire telle que pour tout $x \in \mathbb{R}$

$$\mathbb{P}[K \le x] = 1 - 2\sum_{k=1}^{\infty} (-1)^{k+1} \exp(-2k^2x^2)$$

- Utile pour le test de Kolmogorov-Smirnov
- version non-asymptotique de ce résultat : quand F est continue, la loi de $\|\widehat{F}_n F\|_{\infty}$ est indépendante de F

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

ichantillonnage t andélisation

odélisati atistique

répartition empirique et théorème fondamentale de la statistique

Loi d'une variable aléatoi Fonction de répartition empirique Approche non-

résultats asymptotiques et non-asymptotiques

On classe les résultats statistiques en deux catégories :

- Un résultat obtenu quand n tend vers l'infini est un résultat dit asympotique
- 2 Un résultat obtenu à *n* fixé est un résultat dit non-asympotique

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnag

odélisati atistique

onction de répartition empirique et chéorème ondamentale

de la statistique

variable aléatoire Fonction de répartition empirique

Approche no asymptotiqu

Estimation non-asymptotique de F(x) par $\widehat{F}_n(x)$

Soit $0<\alpha<1$ donné (petit). On veut trouver ε , le plus petit possible, de sorte que

$$\mathbb{P}\left[|\widehat{F}_n(x) - F(x)| \ge \varepsilon\right] \le \alpha.$$

On a (Tchebychev)

$$\mathbb{P}\left[|\widehat{F}_n(x) - F(x)| \ge \varepsilon\right] \le \frac{1}{\varepsilon^2} \text{Var}\left[\widehat{F}_n(x)\right]$$

$$= \frac{F(x)\left(1 - F(x)\right)}{n\varepsilon^2}$$

$$\le \frac{1}{4n\varepsilon^2}$$

$$\le \alpha$$

Conduit à

$$\varepsilon = \frac{1}{2\sqrt{n\alpha}}$$

Rappels de statistiques mathématiques : cours 1

Guillaume Lecué

genda

Echantillonnag et

eatistique onction de opartition

héorème ondamental le la tatistique

oi d'une ariable aléatoire onction de épartition mpirique

Intervalle de confiance

<u>Conclusion</u>: pour tout $\alpha > 0$,

$$\mathbb{P}\left[|\widehat{F}_n(x) - F(x)| \ge \frac{1}{2\sqrt{n\alpha}}\right] \le \alpha.$$

Terminologie

L'intervalle

$$\mathcal{I}_{n,\alpha} = \left[\widehat{F}_n(x) \pm \frac{1}{2\sqrt{n\alpha}}\right]$$

est un intervalle de confiance pour F(x) au niveau de confiance $1-\alpha$.

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnage et

> odélisati atistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire Fonction de répartition empirique

asymptotique

Inégalité de Hoeffding

Proposition

 Y_1, \ldots, Y_n v.a.r.i.i.d. telles que $a \leq Y_1 \leq b$ p.s.. Alors

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}Y_{i}-\mathbb{E}Y_{1}\right|\geq t\right]\leq 2\exp\left(-\frac{2nt^{2}}{(a-b)^{2}}\right)$$

Application : on fait $Y_i = I(x_i \le x)$ et p = F(x). On en déduit

$$\mathbb{P}\left[\left|\widehat{F}_n(x) - F(x)\right| \ge \varepsilon\right] \le 2\exp(-2n\varepsilon^2).$$

On résout en ε :

$$2\exp(-2n\varepsilon^2) = \alpha,$$

soit

$$\varepsilon = \sqrt{\frac{1}{2n}\log\frac{2}{\alpha}}.$$

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

délisatio tistique action de

Fonction de répartition empirique et théorème fondamentale de la

atistique
oi d'une
ariable aléatoire
conction de
épartition
mpirique

Comparaison Tchebychev vs. Hoeffding

Nouvel intervalle de confiance

$$\mathcal{I}_{n,\alpha}^{\text{hoeffding}} = \left[\widehat{F}_n(x_0) \pm \sqrt{\frac{1}{2n}\log\frac{2}{\alpha}}\right],$$

à comparer avec

$$\mathcal{I}_{n,\alpha}^{\text{tchebychev}} = \left[\widehat{F}_n(x_0) \pm \frac{1}{2\sqrt{n\alpha}}\right].$$

- Même ordre de grandeur en *n*.
- Gain significatif dans la limite $\alpha \to 0$. La « prise de risque » devient marginale par rapport au nombre d'observations.

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

odélisatio itistique

Fonction de répartition empirique et théorème fondamentale de la

oi d'une
variable aléatoire
Fonction de
épartition
empirique

asymptotique

■ Optimalité d'une telle approche?

Observation finale

Comparaison des longueurs des 3 intervalles de confiance :

- Tchebychev (non-asymptotique) $\frac{2}{\sqrt{n}}\frac{1}{2}\frac{1}{\sqrt{\alpha}}$
- Hoeffding (non-asymptotique) $\frac{2}{\sqrt{n}}\sqrt{\frac{1}{2}\log\frac{2}{\alpha}}$
- TCL (asymptotique)

$$\frac{2}{\sqrt{n}}\widehat{F}_n(x_0)^{1/2}(1-\widehat{F}_n(x_0))^{1/2}\Phi^{-1}(1-\alpha/2).$$

La longueur la plus petite est (sans surprise!) celle fournie par le TCL. Mais la longueur de l'intervalle de confiance fournie par l'inégalité de Hoeffding comparable au TCL en n et α (dans la limite $\alpha \to 0$).

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

genda

chantillonnage t

> délisation tistique

Fonction de épartition empirique et héorème ondamentale le la

Loi d'une
variable aléatoire
Fonction de
répartition
empirique
Approche non-

Version non-asymptotique de Kolmogorov-Smirnov

 X_1, \ldots, X_n i.i.d. de loi F continue, \widehat{F}_n leur fonction de répartition empirique.

Proposition (Inégalité de Dvoretsky-Kiefer-Wolfowitz)

Pour tout $\varepsilon > 0$.

$$\mathbb{P}\left[\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\geq\varepsilon\right]\leq 2\exp\left(-2n\varepsilon^2\right).$$

- Résultat difficile (théorie des processus empiriques).
- Permet de construire des régions de confiance avec des résultats similaires au cadre ponctuel :

$$\mathbb{P}\left[\forall x \in \mathbb{R}, F(x) \in \left[\widehat{F}_n(x) \pm \sqrt{\frac{1}{2n}\log\frac{2}{\alpha}}\right]\right] \geq 1 - \alpha$$

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

odélisatior atistique

onction de épartition mpirique et héorème ondamentale

de la statistique

Loi d'une variable aléatoire Fonction de répartition empirique

4 ≥ + 4 ≥ + 0 ≤ €

Rappels de probabilités

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag et

nodélisation tatistique

Fonction de répartition empirique et théorème fondamentale

statistique

variable aléatoi Fonction de répartition empirique Approche non-

Tribus et mesures de probabilité

Soit 3 un ensemble.

- 1 Une tribu \mathcal{Z} sur \mathfrak{Z} est un ensemble de parties de \mathfrak{Z} tel que:
 - \mathbf{Z} est stable par union et intersection dénombrable
 - \blacksquare Z est stable par passage au complémentaire
 - $\mathbf{3} \in \mathcal{Z}$

Les éléments de \mathcal{Z} sont appelés des événements.

- 2 Une mesure de probabilité sur $(3, \mathbb{Z})$ est une appplication $\mathbb{P}: \mathcal{Z} \mapsto [0,1]$ telle que
 - $\mathbb{P}[3] = 1$
 - Si (A_n) est une famille dénombrable d'événements disjoints alors

$$\mathbb{P}\left[\cup_n A_n\right] = \sum_n \mathbb{P}[A_n]$$

Le dernier point est aussi équivalent à : pour (A_n) une suite croissante d'événements on a $\mathbb{P}(A_n) \uparrow \mathbb{P}(\cup A_n)$.

Rappels de statistiques mathématiques : cours 1

Type de convergence de suite de variables aléatoires

Soit (Z_n) une suite de variable aléatoires et Z une variable aléatoire à valeurs dans (\mathbb{R},\mathbb{B}) (toutes définies sur un espace probabilisé $(\Omega,\mathcal{F},\mathbb{P})$).

1 (Z_n) converge en loi vers Z, noté $Z_n \stackrel{d}{\to} Z$, quand pour pour toute fonction continue bornée $f : \mathbb{R} \mapsto \mathbb{R}$ on a

$$\mathbb{E}\,f(Z_n)\to\mathbb{E}\,f(Z)$$

2 (Z_n) converge en probabilité, vers Z, noté $Z_n \stackrel{\mathbb{P}}{\to} Z$, quand pour tout $\epsilon > 0$,

$$\mathbb{P}\left[|Z_n - Z| \ge \epsilon\right] \to 0$$

3 (Z_n) converge presque surement vers Z, noté $Z_n \overset{p.s.}{\to} Z$, quand il existe un événement $\Omega_0 \in \mathcal{F}$ tel que $\mathbb{P}[\Omega_0] = 1$ et pour tout $\omega \in \Omega_0$

$$Z_n(\omega) o Z(\omega)$$

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

\genda

chantillonnage

délisation istique

ronction de répartition empirique et théorème fondamentale de la statistique

oi d'une variable aléatoi Fonction de épartition empirique

Approche nor asymptotique

Loi forte des grands nombres

Theorem

Soit (X_n) une suite de v.a.r.i.i.d. telle que $\mathbb{E}|X_1| < \infty$. Alors

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\overset{p.s.}{\to}\mathbb{E}X_{1}$$

Il y a aussi une "équivalence" à ce résultat : si (X_n) est une suite de v.a.r.i.i.d. telle que $\left(\frac{1}{n}\sum_{i=1}^n X_i\right)_n$ converge presque surement alors $\mathbb{E}\left|X_1\right|<\infty$ et elle converge presque surement vers $\mathbb{E}\left|X_1\right|$.

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

Echantillonnag •t

odélisation atistique

Fonction de répartition empirique et théorème fondamentale de la

Loi d'une variable aléatoire Fonction de répartition empirique Approche non-

Théorème central-limite

Theorem

Soit (X_n) une suite de v.a.r.i.i.d. telle que $\mathbb{E} X_1^2 < \infty$. Alors

$$\frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E} X_1 \right) \stackrel{d}{\to} \mathcal{N}(0,1)$$

- TCL :« vitesse » dans la loi des grands nombres.
- Interprétation du TCL :

$$\frac{1}{n}\sum_{i=1}^n Y_i = \mu + \frac{\sigma}{\sqrt{n}}\xi^{(n)}, \quad \xi^{(n)} \stackrel{d}{\approx} \mathcal{N}(0,1).$$

■ Le mode de convergence est la convergence en loi. Ne peut pas avoir lieu en probabilité.

Rappels de statistiques mathématiques : cours 1

Lecué

Agenda

chantillonnage t

délisatio tistique

Fonction de répartition empirique et théorème fondamentale de la

oi d'une variable aléatoire Fonction de épartition empirique

Lemme de Slutsky

• Le vecteur $(X_n, Y_n) \stackrel{d}{\rightarrow} (X, Y)$ si

$$\mathbb{E}\left[\varphi(X_n,Y_n)\right]\to\mathbb{E}\left[\varphi(X,Y)\right],$$

pour φ continue bornée.

- Attention! Si $X_n \stackrel{d}{\to} X$ et $Y_n \stackrel{d}{\to} Y$, on n'a pas en général $(X_n, Y_n) \stackrel{d}{\to} (X, Y)$.
- Mais (lemme de Slutsky) si $X_n \stackrel{d}{\to} X$ et $Y_n \stackrel{\mathbb{P}}{\to} c$ (constante), alors $(X_n, Y_n) \stackrel{d}{\to} (X, Y)$.
- Par suite, sous les hypothèses du lemme, pour toute fonction continue g, on a $g(X_n, Y_n) \stackrel{d}{\rightarrow} g(X, Y)$.

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

odélisation atistique

Fonction de répartition empirique et théorème fondamentale de la statistique

Loi d'une variable aléatoire Fonction de répartition empirique Approche nonasymptotique

Continuous map theorem

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue et (X_n) une suite de v.a.r.

- I si (X_n) converge en loi vers X alors $f(X_n)$ converge en loi vers f(X)
- 2 si (X_n) converge en probabilité vers X alors $f(X_n)$ converge en probabilité vers f(X)
- 3 si (X_n) converge p.s. vers X alors $f(X_n)$ converge p.s. vers f(X)

Rappels de statistiques mathématiques : cours 1

> Guillaume Lecué

Agenda

chantillonnage t

odélisation atistique

répartition empirique et théorème fondamentale de la statistique

Loi d'une variable aléatoire Fonction de répartition empirique Approche nonasymptotique