SISTEMA DE PREDICCIÓN METEOROLÓGICA

PROYECTO 3

ÍNDICE

- 1. NEGOCIO
- 2. ENTENDER DATOS
- 3. PREPARAR DATOS
- 4. MODELACIÓN
- 5. EVALUACIÓN
- 6. DEMO

The Team

Aakriti Guerrero Bertolín

Oriol Fernández Font

Joan Pau Grau Homs

NEGOCIO

¿Quiénes somos?

En PREMETEO S.L. estamos comprometidos con el almacenamiento y análisis de millones de datos meteorológicos. Estos datos se utilizan exclusivamente para desarrollar sistemas avanzados de predicción meteorológica, el producto principal de nuestra empresa, diseñado para satisfacer la creciente demanda de diversas industrias.

Nuestros objetivos y criterios

Objetivos de Negocio	KPI (Éxito empresarial)
Precisión del sistema	Aumentar la precisión de los datos y predicciones del sistema en comparación a los sistemas actuales.
Velocidad de procesamiento	Disminuir el tiempo de espera a la hora de obtener un resultado y el tiempo de ejecución de los modelos entrenados.
Gestión de datos	Debido a la gran cantidad de datos que se reciben, es importante saber tratar los datos y obtener variables significativas.
Visualización de datos	Crear una interfaz user friendly a la vez que los datos se muestren de forma detallada.

NEGOCIO

Situación de partida

Riesgos	Contingencias
Datos históricos faltantes o poco fiables	Controles rigurosos de calidad y procesos de limpieza de datos
Complejidad técnica	Desarrollo del modelo por fases con validaciones intermedias
Restricciones de recursos computacionales	Provisión de infraestructura en la nube escalable
Competencia	Monitoreo continuo del mercado y actualización ágil de la hoja de ruta del producto

Supuestos	Restricciones
Datos históricos de calidad	Plazo ajustado para el desarrollo e implementación
Equipo con habilidades técnicas requeridas	Presupuesto limitado para infraestructura y personal
Demanda de mercado para predicciones meteorológicas	

Objetivos y criterios en la minería de datos

ENTENDER DATOS

- Descripción de los datos
- Verificación de la calidad los datos

Variables	Description	Data Type
cloudiness_id	Identificador único que representa un estado específico de nubosidad	int64
cloudiness	Descripción del nivel de nubosidad	<u>object</u>
date_id	Identificador único para una fecha específica	int64
date	Fecha para identificar cuándo se realizó la observación	<u>object</u>
weather_id	Identificador único asociado a un tipo específico de condición meteorológica	int64
weather	Descripción de las condiciones meteorológicas observadas	<u>object</u>
season_id	Identificador único para la estación del año	int64
season	Estación del año	object
observation_id	Identificador único para cada registro individual de observación	int64
precipitation	Cantidad de precipitación registrada durante el periodo (mm)	float64
temp_max	Temperatura máxima registrada durante el periodo, medida en grados Celsius (°C)	float64
temp_min	Temperatura mínima registrada durante el periodo, medida en grados Celsius (°C)	float64
wind	Velocidad del viento registrada (km/h)	float64
humidity	Nivel de humedad relativa en el aire	float64
pressure	Presión atmosférica registrada (hPa)	float64
solar_radiation	Cantidad de radiación solar recibida en la superficie (W/m²)	float64
visibility	Distancia máxima a la que se puede ver un objeto claramente (km)	float64

ENTENDER DATOS

14000

12000

10000

Cloudiness

despejado

Weather

8 400

visibility

SELECCIÓN

Hemos seleccionado los siguientes datos:

- Viento
- Humedad
- Temp. Min.
- Temp. Max.

LIMPIEZA

Antes de crear el modelo es necesario limpiar los datos para garantizar la calidad de los mismos.

Para la limpieza:

- Eliminar valores innecesarios y duplicados
- Conversar tipos de datos
- Imputar datos faltantes
- Balancear la data

CONSTRUCCIÓN

Calculamos la media e imputamos los datos substituyendo los

nulos:

```
observation date
precipitation
temp max
temp min
wind
humidity
pressure
solar radiation
visibility
weather description
cloudiness_description
season description
```

Normalizamos y transformamos los datos para evitar que estén desbalanceados.

Aplicamos en:

- Precipitation: Transformación logarítmica
- Wind: Transformación de raíz cuadrada
- Temp_max, Temp_min, Precipitation y Wind: Escalar minmax

MODELACIÓN

Modelo utilizado

Modelo SVM (Support Vector Machines)

¿Porqué?

- Manejo de datos no liniales
- Robustez
- Manejo de datos desbalanceados
- Flexibilidad en las características del núcleo

Reporte de Cl	asificación:				
nepor de de da	precision	recall	f1-score	support	
1	0.97	0.89	0.93	2704	
2	0.97	0.85	0.91	2852	
3	0.74	0.88	0.80	1773	
4	0.38	0.93	0.54	142	
5	0.39	0.90	0.55	29	
accuracy			0.87	7500	
macro avg	0.69	0.89	0.75	7500	
weighted avg	0.90	0.87	0.88	7500	
Accuracy: 0.874133333333333					

Características del modelo

- Class_weight='balanced'
- C = 10
- Gamma = scale
- Kernel = poly

```
# Crear el modelo SVM 01 MAXMINSCALER 3
svm_model1M3 = SVC(class_weight='balanced', kernel='poly', C=10, gamma='scale', random_state=42)
# Entrenar el modelo
svm_model1M3.fit(X_train_std, y_train)
```

EVALUACIÓN

Para la evaluación se ha analizado el Reporte de Clasificación y la Accuracy.

El modelo ha mostrado un rendimiento sólido y con una exactitud global del 87.41%.

También muestra ciertos puntos dónde el modelo falla, como las clases 4 y 5, que refleja. la necesidad de un mejor manejo del desequilibrio de clases.

PERMETEO SL demo

Contact us to get more info

PermeteoSL@gmail.com

www.PermeteoSL.com