What is claimed is:

1	1. A system for providing passive screening of transient messages in
2	a distributed computing environment, comprising:
3	a network interface passively monitoring a transient packet stream at a
4	network boundary comprising receiving incoming datagrams structured in
5	compliance with a network protocol layer;
6	a packet receiver reassembling one or more of the incoming datagrams
7	into a segment structured in compliance with a transport protocol layer; and
8	an antivirus scanner scanning contents of the reassembled segment for a
9	presence of at least one of a computer virus and malware to identify infected
10	message contents.
1	2. A system according to Claim 1, further comprising:
2	, — — — — — — — — — — — — — — — — — — —
3	an incoming queue staging each incoming datagram intermediate to
5	reassembly.
1	3. A system according to Claim 1, further comprising:
2	a network protocol-specific decoder decoding the reassembled segment
3	prior to scanning.
1	4. A system according to Claim 1, wherein the antivirus scanner
	,
2	terminates the transient packet stream if the reassembled segment is not infected
3	with at least one of a computer virus and malware.
1	5. A system according to Claim 1, wherein the antivirus scanner takes
2	an action if the reassembled segment is infected with at least one of a computer
3	virus and malware.
1	6. A system according to Claim 5, wherein the action comprises at
2	least one of logging an infection; generating a warning; spoofing a valid datagram
3	in place of the infected datagram; and acquiescing to the infection.
1	7. A system according to Claim 1, further comprising:

2	a protocor-specific queue staging each reassembled segment with other
3	reassembled segments sharing the same transport protocol layer.
1	8. A system according to Claim 7, further comprising:
2	an information record storing information dependent on the same transport
3	protocol layer with the staged reassembled segment.
1	9. A system according to Claim 8, further comprising:
2	a contents record storing the contents with the staged reassembled
3	segment.
1	10. A system according to Claim 8, wherein the information comprises
2	at least one of a source address, source port number, destination address,
3	destination port number, URL, file name, user name, sender identification,
4	recipient identification, and subject.
1	11. A system according to Claim 1, further comprising:
2	a protocol-specific module processing each reassembled datagram based
3	on the transport layer protocol employed by the reassembled datagram.
1	12. A system according to Claim 11, wherein the transport layer
2	protocol comprises at least one of HTTP, FTP, SMTP, POP3, NNTP, and
3	Gnutella.
1	13. A system according to Claim 1, further comprising:
2	an event correlator analyzing the transient packet stream for events
3	indicative of a network service attack.
1	14. A system according to Claim 13, further comprising:
2.	a data repository maintaining each event.
1	15. A system according to Claim 1, wherein the distributed computing
2	environment is TCP/IP-compliant and each incoming message is SMTP-
3	compliant.

1 ,	10. A method for providing passive screening of transient messages in
2	a distributed computing environment, comprising:
3	passively monitoring a transient packet stream at a network boundary
4	comprising receiving incoming datagrams structured in compliance with a
5	network protocol layer;
6	reassembling one or more of the incoming datagrams into a segment
7	structured in compliance with a transport protocol layer; and
8	scanning contents of the reassembled segment for a presence of at least
9	one of a computer virus and malware to identify infected message contents.
1	17. A method according to Claim 16, further comprising:
2	staging each incoming datagram intermediate to reassembly.
1	18. A method according to Claim 16, further comprising:
2	decoding the reassembled segment prior to scanning.
1	19. A method according to Claim 16, further comprising:
2	terminating the transient packet stream if the reassembled segment is not
3	infected with at least one of a computer virus and malware.
1	20. A method according to Claim 16, further comprising:
2	taking an action if the reassembled segment is infected with at least one of
3	a computer virus and malware.
1	21. A method according to Claim 20, further comprising:
2	executing the action, comprising at least one of:
3	logging an infection;
4	generating a warning;
5	spoofing a valid datagram in place of the infected datagram; and
6	acquiescing to the infection.
1	22. A method according to Claim 16, further comprising:

2	staging each reassembled segment with other reassembled segments
3	sharing the same transport protocol layer.
1	23. A method according to Claim 22, further comprising:
2	storing information dependent on the same transport protocol layer with
3	the staged reassembled segment.
1	24. A method according to Claim 23, further comprising:
2	storing the contents with the staged reassembled segment.
1 -	25. A method according to Claim 23, wherein the information
2	comprises at least one of a source address, source port number, destination
3	address, destination port number, URL, file name, user name, sender
4	identification, recipient identification, and subject.
1	26. A method according to Claim 16, further comprising:
2	processing each reassembled datagram based on the transport layer
3	protocol employed by the reassembled datagram.
1	27. A method according to Claim 26, wherein the transport layer
2	protocol comprises at least one of HTTP, FTP, SMTP, POP3, NNTP, and
3	Gnutella.
1	28. A method according to Claim 16, further comprising:
2	analyzing the transient packet stream for events indicative of a network
3	service attack.
1	29. A method according to Claim 28, further comprising:
2	maintaining each event in a data repository.
1	30. A method according to Claim 16, wherein the distributed
2	computing environment is TCP/IP-compliant and each incoming message is
3	SMTP-compliant.

1	31. A computer-readable storage medium holding code for performing
2	the method according to Claims 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
3	29, or 30.
1	32. A system for passively detecting computer viruses and malware
2	and denial of service-type network attacks in a distributed computing
3.	environment, comprising:
4	a network interface receiving copies of datagrams transiting a boundary of
5	a network domain into an incoming packet queue, each datagram being copied
6	from a packet stream;
7	a packet receiver reassembling one or more such datagrams from the
8	incoming packet queue into network protocol packets, each staged in a
9	reassembled packet queue;
10	an antivirus scanner scanning each network protocol packet from the
11	reassembled packet queue to ascertain an infection of at least one of a computer
12	virus and malware; and
13	an event correlator evaluating events identified from the datagrams in the
14	packet stream to detect a denial of service-type network attack on the network
15	domain.
1	33. A system according to Claim 32, further comprising:
2	a parser parsing each reassembled datagram into network protocol-specific
3	information and packet content.
1	34. A system according to Claim 33, wherein the network protocol-
2	specific information comprises a source address, source port number, destination
3	address, destination port number, and URL for HTTP; a file name and user name
4	for FTP; and a sender identification, recipient identification, and subject for
5	SMTP.

A system according to Claim 33, further comprising:

35.

1

2	a decoder decoding the packet content prior to performing the operation of
3	scanning.
1	36. A system according to Claim 32, further comprising:
2	a log logging an occurrence of at least one of the infection and the network
3	attack.
1	37. A system according to Claim 32, further comprising:
2	a warning module generating a warning responsive to an occurrence of at
3	least one of the infection and the network attack.
1	38. A system according to Claim 32, further comprising:
2	a spoof module sending a spoofed network protocol packet responsive to
3	an occurrence of at least one of the infection and the network attack.
1	39. A system according to Claim 32, further comprising:
2	one or more protocol-specific modules implementing one of HTTP, FTP,
3	SMTP, POP3, NNTP, and Gnutella network protocols.
1	40. A system according to Claim 32, wherein the distributed
2	computing environment is TCP/IP-compliant, each datagram is IP-compliant, and
3	each network protocol packet is TCP-compliant.
1	41. A method for passively detecting computer viruses and malware
2	and denial of service-type network attacks in a distributed computing
3	environment, comprising:
4	receiving copies of datagrams transiting a boundary of a network domain
5	into an incoming packet queue, each datagram being copied from a packet stream;
6	reassembling one or more such datagrams from the incoming packet queue
7.	into network protocol packets, each staged in a reassembled packet queue;
8	scanning each network protocol packet from the reassembled packet queue
9	to ascertain an infection of at least one of a computer virus and malware; and
10	evaluating events identified from the datagrams in the packet stream to
11	detect a denial of service-type network attack on the network domain.

1	42. A method according to Claim 41, further comprising.
2	parsing each reassembled datagram into network protocol-specific
3	information and packet content.
1	43. A method according to Claim 42, wherein the network protocol-
. 2	specific information comprises a source address, source port number, destination
3	address, destination port number, and URL for HTTP; a file name and user name
4	for FTP; and a sender identification, recipient identification, and subject for
5	SMTP.
1	AA A madhad according to Olein 40 footh a constitution
_	44. A method according to Claim 42, further comprising:
2	decoding the packet content prior to performing the operation of scanning
1	45. A method according to Claim 41, further comprising:
2	logging an occurrence of at least one of the infection and the network
3	attack.
1	46. A method according to Claim 41, further comprising:
2	generating a warning responsive to an occurrence of at least one of the
3	infection and the network attack.
1	47. A method according to Claim 41, further comprising:
2	
	sending a spoofed network protocol packet responsive to an occurrence of
3	at least one of the infection and the network attack.
1	48. A method according to Claim 41, further comprising:
2	implementing at least one of HTTP, FTP, SMTP, POP3, NNTP, and
3	Gnutella network protocols.
1	49. A method according to Claim 41, wherein the distributed
2	computing environment is TCP/IP-compliant, each datagram is IP-compliant, and
3	each network protocol packet is TCP-compliant.

- 1 50. A computer-readable storage medium holding code for performing
- 2 the method according to Claims 41, 42, 43, 44, 45, 46, 47, 48, or 49.