練習実験報告

肖宇笑 May 18, 2024

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Galvano Sepctrum

Fig. 1: Wavelen. correction

Galvano Sepctrum

Fig. 1: Wavelen. correction

Galvano Sepctrum

Correction

Fig. 2: Correction function

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Selected peaks

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Peak assignments

464.484 nm ≈ 43058.49 cm ⁻¹	464.114nm ≈ 43092.81 cm ⁻¹	460.875 nm $\approx 43395.69 \text{cm}^{-1}$	456.659 nm ≈ 43796.34 cm ⁻¹
px = 253.177	px = 253.650	px = 181.319 & 256.147	px = 246.776
$rR2\ 44.5$ $qR12\ 51.5$ $qQ2\ 51.5$	$rR2\ 45.5$ $qR12\ 51.5$ $qQ2\ 51.5$	sR21~48.5	$sR21\ 58.5$ $pQ12\ 76.5$ $pP2\ 76.5$

Notice

Colored assignments are mismatched, and will not be used to calculate.

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

Galvano Sepctrum

REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

\boldsymbol{y} trans. energy of NO

	E_{total}	$E_{bond}(\mathrm{O}\mathrm{-NO})^1$	$E_{int.}(NO)$
Peak 1 464.484nm	43058.49 cm $^{-1}$		$\Delta E_v(1 \to 0) + E(J = 44)$
Peak 2 464.114nm	43092.81 cm $^{-1}$		$\Delta E_v(1 \to 0) + E(J = 45)$
Peak 3 460.875nm	43395.69 cm $^{-1}$	25 128.57cm ⁻¹	$\Delta E_v(1 \to 0) + E(J = 48)$
Peak 4 456.659nm	$43796.34\mathrm{cm}^{-1}$		$\Delta E_v(1 \to 0) + E(J = 58)$

¹Rémy Jost et al. The Journal of Chemical Physics **105**.3 (July 1996).

y trans. energy of NO

	E_{total}	$E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^2$	$E_{int.}(NO)$
Peak 1 464.484nm	43058.49 cm $^{-1}$		$2341.9327750 \text{cm}^{-1} + E(J = 44)$
Peak 2 464.114nm	43092.81 cm $^{-1}$		$2341.9327750 \text{cm}^{-1} + E(J = 45)$
Peak 3 460.875nm	43395.69 cm $^{-1}$	25 128.57cm ⁻¹	$2341.9327750 \text{cm}^{-1} + E(J = 48)$
Peak 4 456.659nm	43796.34 cm $^{-1}$		$2341.9327750 \text{cm}^{-1} + E(J = 58)$

²Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

³J. Danielak et al. Journal of Molecular Spectroscopy **181**.2 (1997), pp. 394–402.

y trans. energy of NO

	E_{total}	$E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^2$	$E_{int.}(NO)$
Peak 1 464.484nm	$43058.49\mathrm{cm}^{-1}$		$2341.9327750 \text{cm}^{-1} + E(J = 44)$
Peak 2 464.114nm	43 092.81cm ⁻¹		$2341.9327750 \text{cm}^{-1} + E(J = 45)$
Peak 3 460.875nm	43 395.69cm ⁻¹	25 128.57cm ⁻¹	$2341.9327750 \text{cm}^{-1} + E(J = 48)$
Peak 4 456.659nm	43 796.34cm ⁻¹		$2341.9327750 \text{cm}^{-1} + E(J = 58)$

Vib. energy level³

$$E_v = \omega_e \left(v + \frac{1}{2} \right) - \omega_e x_e \left(v + \frac{1}{2} \right)^2 + \omega_e y_e \left(v + \frac{1}{2} \right)^3.$$

²Rémy Jost et al. The Journal of Chemical Physics **105**.3 (July 1996).

³J. Danielak et al. Journal of Molecular Spectroscopy 181.2 (1997), pp. 394–402.

\boldsymbol{y} trans. energy of NO

	E_{total}	$E_{bond}(\mathrm{O-NO})^4$	$E_{int.}(NO)$
Peak 1 464.484nm	43058.49 cm $^{-1}$		5814.033 cm $^{-1}$
Peak 2 464.114nm	43092.81 cm $^{-1}$		5965.969cm ⁻¹
Peak 3 460.875nm	43 395.69cm ⁻¹	25 128.57cm ⁻¹	6239.696cm ⁻¹
Peak 4 456.659nm	43796.34cm ⁻¹		8004.278cm^{-1}

⁴Rémy Jost et al. The Journal of Chemical Physics 105.3 (July 1996).

⁵J. Danielak et al. *Journal of Molecular Spectroscopy* **181**.2 (1997), pp. 394–402.

⁶Colin M. Western. *Journal of Quantitative Spectroscopy and Radiative Transfer* **186** (2017), pp. 221–242.

y trans. energy of NO

	E_{total}	$E_{bond}(\mathrm{O-NO})^4$	$E_{int.}(NO)$
Peak 1 464.484nm	43058.49 cm $^{-1}$	25 128.57cm ⁻¹	5814.033 cm $^{-1}$
Peak 2 464.114nm	43092.81 cm $^{-1}$		5965.969cm ⁻¹
Peak 3 460.875nm	43 395.69cm ⁻¹		6239.696cm ⁻¹
Peak 4 456.659nm	43796.34 cm $^{-1}$		8004.278cm^{-1}

Rot. energy level⁵

Simulated data generated by PGOPHER⁶.

⁴Rémy Jost et al. The Journal of Chemical Physics **105**.3 (July 1996).

⁵J. Danielak et al. *Journal of Molecular Spectroscopy* **181**.2 (1997), pp. 394–402.

⁶Colin M. Western. Journal of Quantitative Spectroscopy and Radiative Transfer **186** (2017), pp. 221–242.

\boldsymbol{y} trans. energy of NO

$E_{int.}(O)$	$\begin{split} E_{trans}(total) &\approx 2.875464 E_{trans}(NO) \\ &= E_{total} - E_{bond}(O-NO) - E_{int.}(O) - E_{int.}(NO) \end{split}$	$E_{trans}(NO)$ = $\frac{1}{2}m(NO)v^2(NO)$
$^{3}P_{2}$ (0cm^{-1})	$11081.356 \mathrm{cm}^{-1}$ $10964.609 \mathrm{cm}^{-1}$ $10794.143 \mathrm{cm}^{-1}$ $9398.766 \mathrm{cm}^{-1}$	1923.847cm^{-1} 1903.578cm^{-1} 1873.983cm^{-1} 1631.730cm^{-1}
$^{3}P_{1}$ (158.625cm ⁻¹)	$10922.731 \mathrm{cm}^{-1}$ $10805.984 \mathrm{cm}^{-1}$ $10635.518 \mathrm{cm}^{-1}$ $9240.141 \mathrm{cm}^{-1}$	1896.308cm ⁻¹ 1876.039cm ⁻¹ 1846.444cm ⁻¹ 1604.191cm ⁻¹
$^{3}P_{0}$ (226.977cm ⁻¹)	$10854.379 \mathrm{cm}^{-1}$ $10737.632 \mathrm{cm}^{-1}$ $10567.166 \mathrm{cm}^{-1}$ $9171.789 \mathrm{cm}^{-1}$	1884.441cm^{-1} 1864.172cm^{-1} 1834.577cm^{-1} 1592.324cm^{-1}

⁷Charlotte Emma Moore and Jean W. Gallagher. "Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions". 1993.

y Trans. speed of NO

$E_{int.}(O)$	$v(\text{NO}) = \sqrt{\frac{2E_{trans}(\text{NO})}{m(NO)}}$	Δy
$^{3}P_{2}$ (0cm ⁻¹)	$1832.932 \mathrm{m s}^{-1} \\ 1824.013 \mathrm{m s}^{-1} \\ 1826.228 \mathrm{m s}^{-1} \\ 1719.564 \mathrm{m s}^{-1}$	253.177 253.650 256.147 246.776
$^{3}P_{1}$ (158.625cm ⁻¹)	$1820.893 \mathrm{m s}^{-1} \\ 1811.916 \mathrm{m s}^{-1} \\ 1814.145 \mathrm{m s}^{-1} \\ 1706.726 \mathrm{m s}^{-1}$	253.177 253.650 256.148 246.776
$^{3}P_{0}$ (226.977cm ⁻¹)	$1815.681 \mathrm{m s}^{-1} \\ 1806.678 \mathrm{m s}^{-1} \\ 1808.914 \mathrm{m s}^{-1} \\ 1701.165 \mathrm{m s}^{-1}$	253.177 253.650 256.147 246.776

y Trans. speed of NO

y Trans. speed of NO

Reference

- J. Danielak et al. Journal of Molecular Spectroscopy 181.2 (1997), pp. 394–402.
- [2] Rémy Jost et al. The Journal of Chemical Physics 105.3 (July 1996).
- [3] Charlotte Emma Moore and Jean W. Gallagher. "Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions". 1993.
- [4] Colin M. Western. Journal of Quantitative Spectroscopy and Radiative Transfer 186 (2017), pp. 221–242.

Open source

