

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

Notas de Física

Renan Wenzel - 11169472

Patrícia Christina Marques Castilho - patricia.castilho@ifsc.usp.br

19 de abril de 2023

Conteúdo

1	Aula 00 - 23/03/2023	3			
2	Aula 01 - 27/03/2023 2.1 Movimentos 1D	3			
3	Aula 02 - 29/03/2023				
	3.1 Motivações	6			
	3.2 Aceleração	6			
	3.3 Movimento Retilíneo Uniformemente Variado	6			
4	Aula 03 - 30/03/2023	9			
	4.1 Motivações	9			
	4.2 Exercício 29 - Tipler	9			
	4.3 Exercício 44 - Tipler	10			
	4.4 Exercício 58 - Tipler	10			
	4.5 Exercício 67 - Tipler	10			
	4.6 Exercício 72 - Tipler	10			
	4.7 Exemplo - Aula 06 Vanderlei	11			
5	Aula 04 - 10/04/2023	13			
	5.1 Motivações	13			
	5.2 Vetores	13			
	5.3 Movimento Uniforme Bidimensional	15			
6	Aula 06 - 13/04/2023	16			
	6.1 Motivações	16			
	6.2 Movimento Relativo	16			
_	A 1 7 17 /09 /0009	10			
7	Aula 7 - 17/03/2023 7.1 Motivações	18 18			
	7.1 Motivações	18			
	7.3 Acelerações no Movimento Circular	19			
	7.4 Movimento Circular Uniforme	20			
	7.4 Movimento Circulai Offici de	20			
8	Aula 8 - 19/04/2023	22			
	8.1 Motivações	22			
	8.2 Exemplo de MCU - 67 Tiples	22			
	8.3 Dinâmica e Leis de Newton	22			
	8.3.1 O que esperar	22			
	8.3.2 Leis de Newton	23			
	8 3 3 Exemplo 4 2 - Tipler	2.4			

1 Aula 00 - 23/03/2023

(Revisão Unidades de Medidas)

2 Aula 01 - 27/03/2023

- Revisar propriedades de derivadas;
- Aplicar derivadas em movimento 1D.

2.1 Movimentos 1D

Dada uma partícula com posição descrita por x=x(t), em que t é a variável de tempo, denotamos seu deslocamento por $\Delta x=x_2-x_1=x(t_2)-x(t_1)$. Analogamente, o intervalo de tmepo é definido por $\Delta t=t_2-t_1$. Com essas ferramentas, já podemos definir a velocidade média de um objeto em uma dimensão como $\vec{v}=\frac{\Delta x}{\Delta t}$. Observe que, quanto menor o intervalo de tempo, mais momentâneo se torna essa definição, de modo que a velocidade instantânea pode ser encontrada como

$$\lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \vec{v}(t).$$

Regras de derivadas:

$$\begin{split} f(t) &= c \Rightarrow \frac{df}{dt} = 0 \text{ Derivada de uma constante \'e sempre nula;} \\ f(t) &= x^n \Rightarrow \frac{df}{dt} = nx^{n-1} \text{ Regra do tombo;} \\ f(t) &= A\sin\left(t\right) \Rightarrow \frac{df}{dt} = A\cos\left(t\right); \\ f(t) &= B\cos\left(t\right) \Rightarrow \frac{df}{dt} = -B\sin\left(t\right); \\ f(t) &= Ce^t \Rightarrow \frac{df}{dt} = Ce^t. \end{split}$$

Exemplo 1.

$$i)f(t) = 3t^4 + t^2 \Rightarrow \frac{df}{dt} = 12t^3 + 2t$$

$$ii)f(t) = 5\sin(t) + 3(t^2 + 1) = 5\sin(t) + 3t^2 + 3 \Rightarrow \frac{df}{dt} = 5\cos(t) + 6t$$

A partir deste ponto, tome t como tempo, x(t) como posição e v(t) a velocidade instantânea.

Esse movimento em que a velocidade é descrita por uma linha reta é conhecido como movimento retilíneo uniforme, pois a velocidade v(t) muda de forma linear, i.e., $\frac{dx}{dt}=c$, em que c é uma constante. Por outro lado, há outro tipo de movimento, o movimento retilíneo uniformemente variado, em que a

Por outro lado, há outro tipo de movimento, o movimento retilíneo uniformemente variado, em que a velocidade não é constante. A ação responsável por mudar a velocidade é conhecida como aceleração, e os gráficos tendem a assumir o seguinte formato

Ou, caso a velocidade cresça com o tempo,

Há ainda o caso em que a velocidade cresce por um tempo e diminui depois, com gráficos como o que segue

Nestes casos, para calcular o deslocamento da particula, precisamos somar muito mais intervalos de tempo. Para isso, observe que cada instante, a posição da partícula pode ser encontrada multiplicando-se o intervalo de tempo pela velocidade instanânea, i.e., $\Delta x_i' = v_i' \Delta t_i'$. Quebrando os intervalos desta forma, o deslocamento de um ponto a outro é denotado por

$$\Delta x_{1,2} = x(t_2) - x(t_1) \approx \sum_{k=1}^{N} \Delta x_i' = \sum_{k=1}^{N} v_i' \Delta t_i'$$

Assim como para a velocidade instantânea, quanto menor tomarmos o intervalo de tempo, mais preciso é o valor encontrado para $\Delta x_{1,2}$, o que indica uma boa oportunidade para o uso do limite novamente. Com isso, definimos

$$x(t_2) - x(t_1) = \lim_{\Delta t' \to 0} \sum_{i=1}^{N} v(t_i') \Delta t_i' = \int_{t_1}^{t_2} v(t) dt$$

Este último símbolo, chamado integral, descreve a área "embaixo" da curva da função f(t) dentro do intervalo $[t_1, t_2]$. Supondo que c e k são constantes quaisquer, seguem abaixo algumas das regras de integração:

$$\begin{split} i)f(t) &= ct^n \Rightarrow \frac{df}{dt} = nct^{n-1} \Rightarrow F(t) = \frac{ct^{n+1}}{n+1} \text{ (Primitiva de f)} \\ ii) \int_{t_1}^{t_2} f(t)dt &= F(t_2) - F(t_1) = \frac{c}{n+1}t_2^{n+1} - \frac{c}{n+1}t_1^{n+1} \text{ (Integral definida de f)} \\ iii) \int f(t)dt &= \frac{c}{n+1}t^{n+1} + k \text{ (Integral indefinida de f)} \end{split}$$

Para conferir se a integral está correta, é preciso derivar a função F e, se obter como resultado a função f, significa que está correto. Com este conhecimento em mente, segue que

$$x(t) = \int v_0 dt = v_0 t + x_0$$

Algumas outras regras importantes:

$$iv)\frac{d\sin(t)}{dt} = \cos(t) \Rightarrow \int \cos(t)dt = \sin(t) + c$$

$$v)\frac{d\cos(t)}{dt} = -\sin(t) \Rightarrow \int \sin(t)dt = \cos(t) + c$$

$$vi)\frac{de^t}{dt} = e^t \Rightarrow \int e^t dt = e^t + c$$

Ou seja, em certo sentido, a integral e a derivada são dois lados da mesma moeda, assim como mulitplicação e divisão ou adição e subtração.

3 Aula 02 - 29/03/2023

3.1 Motivações

- Estudar a aceleração;
- Entender o Movimento Retilíneo Uniformemente Variado.

3.2 Aceleração

Definimos previamente a velocidade média como sendo a variação de tempo dividindo o deslocamento, sendo, portanto, uma quantidade representando a taxa de variação da posição em um intervalo de tempo. De forma análoga, definimos a aceleração como a taxa de variação da velocidade em um intervalo de tempo, ou seja,

$$\vec{a_m} = \frac{\Delta \vec{v}}{\Delta t}.$$

Ainda mais, se ela for positiva, a velocidade aumenta. Caso contrário, ela diminui. Ainda repetindo o processo feito para o caso da velocidade, podemos encontrar uma aceleração instanânea como

$$a(t) = \lim_{\Delta t \to 0} \left[\frac{v(t + \Delta t) - v(t)}{\Delta t} \right] = \frac{dv(t)}{dt}$$

Observe também que

$$a(t) = \frac{d}{dt} \left(\frac{dx(t)}{dt} \right) = \frac{d^2x}{dt^2}.$$

Utilizando a análise dimensional, é possível encontrar a dimensão da aceleração como $[a] = \frac{[v]}{[t]} = \frac{\frac{[L]}{[t]}}{[t]} = \frac{[L]}{[t]^2}$. Assim, se o sistema de medida for o Sistema Internacional, $[a] = \frac{m}{s^2}$.

3.3 Movimento Retilíneo Uniformemente Variado.

Sabendo que $a = \frac{d^2x(t)}{dt^2}$, podemos fazer o caminho oposto para encontrar uma fórmula para a posição sabendo a aceleração. De fato, dado um intervalo de tempo $[t_0, t]$,

$$v(t) = \int_{t_0}^{t} a(t)dt = at \Big|_{t_0}^{t} = at - at_0$$

Sabemos, também, que $v(t) - v(t_0) = \Delta v$, tal que

$$v(t) = v(t_0) + a(t - t_0) = v_0 + a(t - t_0)$$

Além disso, vimos que

$$\Delta x = x(t) - x(t_0) = \int_{t_0}^t v(t)dt.$$

Juntando tudo, segue a fórmula dita:

$$x(t) - x(t_0) = \int_{t_0}^{t} [v_0 + a(t - t_0)] dt = \int_{t_0}^{t} v_0 dt + \int_{t_0}^{t} at dt - \int_{t_0}^{t} at_0 dt$$

$$\Rightarrow x(t) - x(t_0) = v_0 t \Big|_{t_0}^{t} + a \frac{t^2}{2} \Big|_{t_0}^{t} - at_0 t \Big|_{t_0}^{t}$$

$$= v_0(t - t_0) + a \frac{(t^2 - t_0^2)}{2} - at_0(t - t_0)$$

$$= v_0(t - t_0) + a \frac{t^2 - t_0^2}{2} - at_0 t + at_0^2 = v_0 t - v_0 t_0 + \frac{a}{2}(t^2 - 2t_0 t + 2t_0^2)$$

$$= v_0(t - t_0) + \frac{a}{2}(t - t_0)^2$$

$$\Rightarrow x(t) = x(t_0) + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2.$$

Com isso, no caso em que $t_0 = 0$, segue que

$$x(t) = x_0 + v_0 t + \frac{at^2}{2}$$

Uma coisa notável é que todas essas fórmulas estão dependentes de tempo. No entanto, será que é possível se livrar dessa variável e relacionar, por exemplo, velocidade e posição? A resposta é sim! E vamos mostrar como a seguir, na equação conhecida como Equação de Torricelli. Com efeito,

$$(I) \quad (t - t_0) = \frac{v(t) - v_0}{a} = \frac{v - v_0}{a}$$

$$(II) \quad x(t) = x_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

$$(I \text{ com } II) \quad x = x_0 + v_0\frac{v - v_0}{a} + \frac{1}{2}a\frac{v - v_0}{a}$$

$$\Rightarrow x = x_0 + \frac{1}{a}\left\{v_0v - v_0^2 + \frac{1}{2}(v^2 - 2vv_0 + v_0^2)\right\}$$

$$= x_0 + \frac{1}{a}\left\{-v_0^2 + \frac{v^2}{2} + \frac{v_0^2}{2}\right\}$$

$$\Rightarrow x - x_0 = \frac{1}{2a}\left[v^2 - v_0^2\right] \iff [v^2 - v_0^2] = 2a(x - x_0).$$

Portanto, chegamos na Equação de Torricelli

$$v^2 = v_0^2 + 2a(x - x_0)$$

Para reforçar o que foi visto até agora, vejamos um exemplo.

Exemplo 2. Suponha que um carro freia uniformemente, passando de 60km/h para 30km/h em 5 segundos. Qual é a distância que o carro percorrerá até parar? Em quanto tempo?

Solução: Sabemos que $x(t) = x_0 + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$, $v(t) = v_0 + a(t - t_0)$, $e v^2 = v_0^2 + 2a(x - x_0)$. Além disso, como é até o carro parar, a velocidade final é 0 km/h, a variação de tempo até o momento em que a velocidade atinge 30 km/h (=8.333m/s) é dada como $\Delta t = 5 - 0 = 5s$, sendo a velocidade inicial 60 km/h (=16,666m/s). Pela equação dois,

$$a = \frac{v(t_1) - v_0}{t_1 - t_0} = \frac{8.33 - 16.66}{5} = -1.66 \frac{m}{s^2}$$

Agora, para obter a distância, sendo $v_2 = 0km/h$ o valor da aceleração no tempo em que o carro para (o segundo percurso), utilizamos Torricelli para obter o deslocamento no pedaço final do percurso

$$v_2^2 = v_1^2 + 2a(x_2 - x_1) \Rightarrow 0 = 8.33^2 + 2(-1.66)\Delta x_2$$

Assim, isolando o Δx_2 ,

$$\Delta x_2 = \frac{8.33^2}{3.32} =$$
 Professora vai passar na próxima aula.

Ademais, para encontrar todo o caminho que o carro andou, temos

$$0 = v_0^2 + 2a(x_2 - x_0) = 16.66^2 + 2(-1.66)\Delta x \Rightarrow \Delta x = \frac{16.66^2}{3.32}$$

Finalmente, o instante de tempo pode ser encontrado fazendo

$$v_2(t) = v_1 + a(t_2 - t_0) \Rightarrow 0 = 8.33 - 1.66 \Delta t_2 \Rightarrow \Delta t_2 = 5s. \blacksquare$$

4 Aula 03 - 30/03/2023

4.1 Motivações

• Resolução de Exercícios.

4.2 Exercício 29 - Tipler

"Considere a trajetória de dois carros, o Carro A e o Carro B. (a) Existe algum instante para o qual os carros estão lado-a-lado? (b) Eles viajam sempre no mesmo sentido? (c) Eles viajam com a mesma velocidade em algum instante t? (d) Para que t os carros estão mais distantes entre si? (e) Esboce os gráficos de $v \times t$ '

Os carros se encontram lado-a-lado quando os gráficos se cruzam, ou seja, em t=1s e t=9s (Tipler mais acurado que meu gráfico.). É notável quer eles não estão sempre no mesmo sentido, visto que, a partir de 6s, o gráfico do carro B passa a mudar o sentido. Em aproximadamente 5s, ambos estão com a reta tangente iguais, ou seja, estão com a mesma velocidade, e distância entre eles está maior exatamente no ponto em que as velocidades estão iguais. Finalmente, seguem os gráficos:

4.3 Exercício 44 - Tipler

"Um carro viaja em linha reta com $\vec{v} = 80 \text{km/h}$ durante $\Delta t_1 = 2.5 \text{h}$. Depois, $\vec{v_2} = 40 \text{km/h}$, $\Delta t_2 = 1.5 \text{h}$. Qual é o deslocamento total? E qual é a velocidade \vec{v} total?"

(a)
$$\Delta x = \Delta x_1 + \Delta x_2 = \vec{v_1} \Delta t_1 + \vec{v_2} \Delta t_2 \Rightarrow \Delta x = 260 \text{km}.$$

(b)
$$\vec{v} = \frac{\Delta x}{\Delta t} = \frac{260}{4} = 65 \text{km/h}.$$

4.4 Exercício 58 - Tipler

"Um carro acelera de 48.3km/h para 80.5km/h em 3.70s. Qual a aceleração média?"

Primeiramente, precisamos converter as unidades para medidas iguais. Com isso, note que $\vec{v_1} = 48.3 km/h = 13.52 m/s$, $\vec{v_2} = 80.5 km/h = 22.54 m/s$. Assim, chegamos em

$$\vec{a} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{\Delta t} \approx 2.4 \text{m/s}.$$

4.5 Exercício 67 - Tipler

"Um corpo está em uma posição inicial x_1 com velocidade inicial $\vec{v_1}$. Passado um tempo, ele se encontra na posição x_2 com velocidade $\vec{v_2}$. Qual é a aceleração deste corpo?"

Utilizaremos Torricelli. sabemos que

(1):
$$x_1 = 6m, \vec{v_1} = 10m/s$$

(2):
$$x_2 = 10m, \vec{v_2} = 15m/s.$$

Deste modo, $v^2 = v_0^2 + 2a\Delta x \Rightarrow v_2^2 = v_1^2 + 2a(x_2 - x_1) \Rightarrow a \approx 16m/s^2$

4.6 Exercício 72 - Tipler

"Um parafuso se desprende de um elevador subindo a $v_0 = 6m/s$. O parafuso atinge o fundo do poço em 3s. (a) Qual era a altura do elevador? (b) Qual é a velocidade do parafuso no chão? Tome $g = 9.8 \ m/s^2$ "

Sabemos que $t_0 = 0s$, $y(t_0) = h$, $v(t_0) = v_0$. Com isso, podemos descrever $y(t) = h + v_0 t + \frac{1}{2}gt^2$. Vamos responder, agora, o item a, isto é, qual é o valor da altura h? Segue que, em t = 3s, y(t) = 0. Utilizando a fórmula,

$$h = -v_0t + \frac{1}{2}gt^2 = -6 \cdot 3 + \frac{1}{2}9.8 \cdot 3^2 = 26.1m$$

Com relação ao item (b), vimos que $v(t) = v_0 + at$. Deste modo,

$$v(3s) = 6 - 9.8 \cdot 3 = -23.4m/s$$

Indo um pouco além do que foi pedido, analisemos o movimento do parafuso. É possível concluir que o parafuso atingirá a altura máxima no instante em que $t^* = \frac{v_0}{g} = 0.6s$, visto que este momento ocorre quando $v(t) = v_0 - gt = 0$. Com isso, conclui-se que a altura máxima é $y(t^*) = h + v_0 t^* - \frac{1}{2} g t^{*2} \approx 27.5m$. No gráfico,

4.7 Exemplo - Aula 06 Vanderlei

"Suponha que há um trem parado no instante t=0 com aceleração a. Passados 6s, um passageiro chega ao local e observa o trem na posição x_{trem_1} . Este passageiro sai correndo com velocidade v_0 para tentar alcançar o trem. Qual é a velocidade mínima que o passageiro precisa atingir para alcançá-lo?"

Com relação ao trem, suas condições iniciais são $t_0 = 0, x_{trem} = 0, v_{trem} = 0$, tal que $x_{trem}(t) = \frac{1}{2}at^2$. Por outro lado, quanto ao passageiro, quando $t = 6s, x_p = 0$, de modo que $x_p(t) = x_{p_0} + v_0t$. Como temos a informação da posição do passageiro aos 6s,

$$x_p(6) = x_{p_0} + v_0 \cdot 6 = 0 \Rightarrow x_{p_0} = -6v_0 \Rightarrow x_p(t) = v_0(t - 6).$$

No momento em que o passageiro alcança o trem, eles possuem posições iguais, isto é, $x_p(t) = x_{trem}(t)$. Graficamente,

Ou seja, buscamos t^* tal que $x_p(t^*) = x_{trem}(t^*), v_p(t^*) = v_{trem}(t^*)$. Com efeito,

$$v_0(t^* - 6) = \frac{at^{*^2}}{2} \Rightarrow v_0 = at^* \Rightarrow t^* = \frac{v_0}{a}$$
$$v_0 = \frac{a}{2} \frac{\left(\frac{v_0}{a}\right)^2}{\frac{v_0}{a} - 6} \Rightarrow \frac{v_0^2}{2a} = 6v_0 \Rightarrow v_0 = 12a.$$

Outra forma de resolver é utilizando o fato de que quando $\frac{dv}{dt}=0$, a função está num mínimo. Ou seja, basta encontrar o valor mínimo de v_0 que satisfaça o que buscamos. Temos

$$v_0(t-6) = \frac{at^2}{2} \Rightarrow v_0(t) = \frac{at^2}{2} \frac{1}{(t-6)}.$$

Agora, derivando essa equação para v_0 ,

$$\frac{dv_0}{dt} = \frac{d}{dt} \left(\frac{at^2}{2} \frac{1}{t-6} \right) = \frac{d}{dt} (f(t)g(t)),$$

em que $f(t) = \frac{at^2}{2}$, $g(t) = (t-6)^{-1}$. Fazemos isso porque há uma regra para derivar o produto de funções, a Regra do Produto

$$\boxed{\frac{df(t)g(t)}{dt} = g(t)\frac{df(t)}{dt} + f(t)\frac{dg(t)}{dt}}$$

Derivando individualmente f e g,

$$\frac{df(t)}{dt} = at, \quad \frac{dg(t)}{dt} = -(t-6)^{-2} = -\frac{1}{(t-6)^2}.$$

Agora, vamos juntar tudo para obter a derivada de v_0 :

$$\frac{dv_0}{dt} = \frac{df(t)}{dt}g(t) + \frac{dg(t)}{dt}f(t) = \frac{at}{t - 6} - \frac{1}{2(t - 6)^2}at^2$$

$$= at\left(\frac{1}{t - 6} - \frac{t}{2(t - 6)^2}\right) = 0$$

$$\Rightarrow \frac{1}{t - 6} = \frac{t}{2(t - 6)} \Rightarrow 1 = \frac{t}{2(t - 6)}$$

$$\Rightarrow 2(t - 6) = t \Rightarrow 2t - t = 12 \Rightarrow t = 12s.$$

5 Aula 04 - 10/04/2023

5.1 Motivações

- Iniciar os estudos de movimentos em um plano todo (duas dimensões);
- Revisar vetores e sua manipulação.

5.2 Vetores

Começamos com um estudo das propriedades de veotres. Dados vetores $\vec{r_1}, \vec{r_2}$ e um número real λ , definimos:

i) A soma dos vetores:

ii) A multiplicação por escalar: $\lambda(r_1+r_2)$ (Essencialmente, o resultado é aumentar ou diminuir o tamanho da seta.)

A título de curiosidade, a soma de vetores em três dimensões seria desta forma:

Porém, não basta utilizar apenas representações gráficas para vetores. Desta forma, é comum definirmos um sistema de coordenadas cartesiano para suas componentes. Assim, um vetor \vec{u} pode ser decomposto em uma coordenada x e outra coordenada y:

$$\vec{u} = u_x \hat{i} + u_y \hat{j} (+u_z \hat{k})$$

chamamos os valores u_x, u_y, u_z de projeções, sendo a última um objeto presente apenas no caso de três coordenadas. Com isso, definimos o módulo do vetor, ou seja, seu tamanho, pela fórmula

$$|\vec{u}| = \sqrt{u_x^2 + u_y^2},$$

e, de brinde, ganhamos fórmulas para as projeções em cada coordenada:

$$u_x = |u| \cos \theta \Rightarrow \cos \theta = \frac{u_x}{|\vec{u}|}$$
$$u_y = |u| \sin \theta \Rightarrow \sin \theta = \frac{u_y}{|\vec{u}|}$$
$$\tan \theta = \frac{u_y}{u_x}.$$

É importante, tamém, darmos uma forma de obter um betor de módulo 1, i.e., um vetor unitário, visto que ele pode nos fornecer a informação do valor do ângulo θ , a direção, etc. Ele é obtido reduzindo um vetor u pelo seu módulo,

 $\hat{u} = \frac{\vec{u}}{|\vec{u}|}.$

Uma utilidade imediata da definição em coordenadas é que agora temos um modo de tratar a soma de vetores algebricamente

Soma:
$$\vec{u} + \vec{v} = (u_x \hat{i} + u_y \hat{j}) + (v_x \hat{i} + v_y \hat{j}) = (u_x + v_x) \hat{i} + (u_y + v_y) \hat{j}$$

Multiplicação por Escalar: $\lambda \vec{u} = \lambda (u_x \hat{i} + u_y \hat{j}) = \lambda u_x \hat{i} + \lambda u_y \hat{j}$
 $\theta = ctg\left(\frac{\lambda u_y}{\lambda u_x}\right) = ctg\left(\frac{u_y}{u_x}\right)$.

Agora podemos ir à aplicação física dessa discussão, o deslocamento de uma partícula no plano. Nesta configuração, normalmente terá-se uma partícula com posição $\vec{x}(t) = x(t)\hat{i} + y(t)\hat{j} + (+z(t)\hat{k})$. Para realizar o estudo desses casos, vamos decompor o movimento dela em cada eixo, ou seja, quebramos o movimento no plano em dois movimentos independentes, um em cada eixo x ou y. Nestas condições, o deslocamento de uma partícula de uma posição 1 até uma posição 2 será

$$\vec{x_2} - \vec{x_1} = (x_2\hat{i} + y_2\hat{j}) - (x_1\hat{i} + y_1\hat{j}) = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j}.$$

Com isso, podemos escrever que o deslocamento $\Delta \vec{r}$ é

$$\Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j}.$$

Ainda mais, se conhecemos o valor do ângulo entre as posições 1 e 2 e o módulo dos vetores representando-as,

$$|\Delta r|^2 = x_1^2 + x_2^2 - 2x_1x_2\cos\theta.$$

Tendo o básico do deslocamento, podemos repetir o raciocínio prévio para trabalhar com aceleração e velocidade. De fato,

$$\vec{v_m} = \frac{\Delta \vec{r}}{\Delta t}, \quad \vec{a_m} = \frac{\Delta \vec{v_m}}{\Delta t}$$

e os valores instantâneos serão dados por

$$\begin{split} \vec{v}(t) &= \frac{d\vec{r}(t)}{dt} = \frac{dx(t)}{dt}\hat{i} + \frac{dy(t)}{dt}\hat{j} = v_x\hat{i} + v_y\hat{j}.\\ \vec{a}(t) &= \frac{d\vec{v}(t)}{dt} = \frac{dv_x(t)}{dt}\hat{i} + \frac{dv_y(t)}{dt}\hat{j} = a_x\hat{i} + a_y\hat{j}. \end{split}$$

Além disso, o módulo e orientação desses valores serão dados por

$$\begin{aligned} |\vec{v}| &= \sqrt{v_x^2 + v_y^2}, \quad \theta_v = ctg\left(\frac{v_y}{v_x}\right) \\ |\vec{a}| &= \sqrt{a_x^2 + a_y^2}, \quad \theta_a = ctg\left(\frac{a_y}{a_x}\right). \end{aligned}$$

Note que a aceleração não aponta na direção da velocidade em si, mas sim na direção da variação da velocidade.

5.3 Movimento Uniforme Bidimensional

Considere uma partícula com posição $\vec{r}(t)$ e uma orientação, tal que forma um ângulo θ com o plano. Como estaremos considerando o movimento do tipo uniforme, a aceleração é nula e a velocidade $\vec{v}(t) = v_0$ é constante, tendo módulo v_0 e orientação θ . Em outras palavras, as componentes desse vetor serão, também, constantes, isto é,

constantes
$$\begin{cases} v_x(t) = v_{x_0} \\ v_y(t) = v_{y_0}. \end{cases}$$

Desta forma, a decomposição da velocidade em coordenadas é tal que

Eixo x:
$$v_x(t) = v_{x_0} \Rightarrow x(t) = x_0 + v_{x_0}(t - t_0), \quad x_0 = x(t_0)$$

Eixo y: $v_y(t) = v_{y_0} \Rightarrow y(t) = y_0 + v_{y_0}(t - t_0), \quad y_0 = y(t_0).$

Logo, a posição da partícula no plano será dada por

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} = (x_0 + v_{x_0}(t - t_0)\hat{i}) + (y_0 + v_{y_0}\hat{j}).$$

Note que, quando falamos de trajetória de uma partícula ou objeto, buscamos uma relação entre as componentes x(t) e y(t) que independe do tempo, isto é, a relação temporal é dada de forma implicita. Uma forma de fazer isso é a através da tangente, pois

$$\frac{y(t) - t_0}{x(t) - x_0} = \frac{v_{y_0}(t - t_0)}{v_{x_0}(t - t_0)} = \frac{v_{y_0}}{v_{x_0}} = \tan \theta_0.$$

Com isso,

$$y(t) - y_0 = \tan \theta_0(x(t) - x_0) \Rightarrow y = \tan (\theta_0)x - \tan (\theta_0)x_0 + y_0$$

ou seja, y tem a forma de um equação da reta com inclinação constante e igual a tan θ_0 .

6 Aula 06 - 13/04/2023

6.1 Motivações

• Revisar movimento relativo;

6.2 Movimento Relativo

Fixada uma origem O, a soma dos vetores representando os corpos A e B

$$\vec{r}_{AO} + \vec{r}_{BA} = \vec{r}_{BO}$$

nos fornece a direção relativa do corpo B com relação a A. Se A e B estão se movendo, ou seja, os vetores deles possuem dependência no tmepo $(\vec{r}_{AO} = \vec{r}_{AO}(t), \vec{r}_{BO} = \vec{r}_{BO}(t))$, então

$$\vec{r}_{BA}(t) = \vec{r}_{BO}(t) + \vec{r}_{AO}(t),$$

ou seja, a posição relativa de B com relação a A também dependerá do tempo. Além de posição relativa, podemos definir outros conceitos, tais como a velocidade relativa:

$$\vec{v}_{BA}(t) = \frac{d\vec{r}_{BA}(t)}{dt} = \frac{d\vec{r}_{BO}}{dt} + \frac{d\vec{r}_{AO}}{dt} \Rightarrow \vec{v}_{BA}(t) = \vec{v}_{BO}(t) + \vec{v}_{AO}(t)$$

e aceleração relativa de modo análogo, i.e., $\vec{a}_{BA}(t) = \vec{a}_{BO}(t) + \vec{a}_{AO}(t)$. Vejamos alguns exemplos

Exemplo 3. Considere um sistema em que um carrinho viaja com velocidade \vec{v}_r e tem um passageiro \vec{v}_p com ele. Ambos se movem para a direita. Neste caso, há o sistema referencial de inérca da pessoa dentro do trem. Buscamos descobrir a velocidade da pessoa com relação ao trem. De fato, segue que

$$\vec{v}_p = \vec{v}_{PT} + \vec{v}_T.$$

Exemplo 4. Considere um sistema análogo ao anterior, mas, embaixo, há uma plataforma se movendo para a esquerda com velocidade igual à do trem. Neste caso, há o sistema referencial de inérca da pessoa dentro do trem. Buscamos descobrir a velocidade da pessoa com relação à plataforma. Obtemos

$$\vec{v}_{PT} = \vec{v}_{PT}^x \hat{i} + \vec{v}_{PT}^y \hat{j}. \Rightarrow \vec{v}_p = (\vec{v}_{PT}^x + \vec{v}_T) \hat{i} + \vec{v}_P^y \hat{j}$$

Exemplo 5. (Exemplo 32 do Tipler): Considere um sistema de avião e vento, no qual o módulo da velocidade do avião é de 200km/h e, o da velocidade do vento, é 90km/h. O vento é dado por um vetor apontando para a direito, enquanto o avião é um vetor apontando para cima. Pergunta-se: (a) Qual é a orientação que o avião deve voar? (Ambos estão sendo vistos do solo.) (b) Qual é o módulo da velocidade do avião visto do solo? (a) Segue que

$$\vec{v}_{AO} = \vec{v}_A - \vec{v}_v \Rightarrow \sin \theta = \frac{|\vec{v}_v|}{|\vec{v}_{av}|} = \frac{90}{200} = \frac{9}{20} \approx 27 \deg$$

(b) Sabemos, por pitágora, que

$$|\vec{v}_{AT}|^2 = |\vec{v}_v|^2 + |\vec{v}_a|^2 \Rightarrow |\vec{v}_a| = \sqrt{|\vec{v}_{av}|^2 - |\vec{v}_v|^2} = \sqrt{51900} \approx 178 km/h$$

Com relação a este último exemplo, por que a velocidade \vec{v}_a tem valor 178km/h e não 200 - 90 = 110km/h? A resposta está na decomposição de \vec{v}_{av} , pois

$$v_{av}^x = |\vec{v}_{av}| \sin \theta = -200 \cdot 0.454 \approx -90 km/h$$

 $v_{av}^y = |\vec{v}_{av}| \cos \theta = 200 \cdot 0.891 \approx 178 km/h.$

Exemplo 6. Suponha que, num instante t_0 , dois trens estão andando em direção a uma plataforma. O trem um chegou nela, vindo do Norte, enquanto o trem dois, vindo pelo Leste, ainda se move, ambos com velocidade

$$|\vec{v}_1| = |\vec{v}_2| = 60km/h.$$

Passados dois minutos, o trem 2 alcança a plataforma e continua andando na direção Oeste com velocidade \vec{v}_2 e o trem um continuou sua viagem ao Sul com velocidade \vec{v}_1 . Pede-se: (a) Determine o vetor \vec{v}_{21} da velocidade relativa dos trens. (b) Encontre, para este vetor do item (a), seu módulo (c) Quando a distância entre os vetores é mínima?

Faremos o diagrama de velocidades. Nele, $|v_1| = |v_2|$.

Além disso, pelo desenho,

$$\sin \theta = \frac{|\vec{v}_2|}{|\vec{v}_{21}|}, \quad \cos \theta = \frac{|\vec{v}_1|}{|\vec{v}_{21}|} = \frac{|\vec{v}_2|}{|\vec{v}_{21}|} = \sin \theta.$$

A igualdade entre seno e cosseno ocorre quando o ângulo vale 45 graus, ou seja, $\theta = 45 \deg$. Assim,

$$\vec{v}_{21} = \vec{v}_2 - \vec{v}_1 = -|\vec{v}_2|\hat{i} - (-|\vec{v}_1|\hat{j}) \Rightarrow \vec{v}_{21} = -|\vec{v}_2|\hat{i} + |\vec{v}_1|\hat{j}.$$

Logo,

$$|\vec{v}_{21}| = \sqrt{|\vec{v}_1|^2 + |\vec{v}_2|^2} \approx 85km/h$$

Para resolver, agora, o item b, a comecemos pela posição relativa 2 nos instantes t=0, t=2min e t=4min. Quanto ao trem 2, as informações que temos indicam que ele se move no eixo x $(y_2(t)=0)$, em t=2min, ele está na origem $(x_2(2min)=0)$ e, deste modo,

$$\vec{r}_2(t) = x_2(t)\hat{i} + y_2(t)\hat{j} = x_2(t)\hat{i} \Rightarrow x_2(t) = x_{2O} + |\vec{v}_2|t$$

Utilizando o valor que sabemos, i.e., x(2min), segue que, convertendo 2 minutos para horas $(2min \approx 0.03h)$

$$x(0.03) = 0 = x_{2O} - 60 \cdot 0.03 \Rightarrow x_{2O} = 60 \cdot 0.03 = 2km.$$

Agora, sobre o trem 1, sabe-se que ele se move no eixo y, ou seja, $x_1(t) - 0$, tal que

$$y_1(t) = -|\vec{v}_1|t = -60t$$

Com essas informaçõs, encontramos os valores

$$t = 0min: \quad x_1(0) = 0, y_1(0) = 0, \quad x_2(0) = 2km, y_2(0) = 0km$$

$$t = 2min: \quad x_1(2) = 0, y_1(2) = -2km, \quad x_2(2) = 0km, y_2(2) = 0km$$

$$t = 4min: x_1(4) = 0, y_1(4) = -4km, x_2(4) = -2, y_2(4) = 0km.$$

Desta forma,

$$\vec{r}_{21}(t) = \vec{r}_2(t) - \vec{r}_1(t) \Rightarrow \vec{r}_{21}(t) = x_2(t)\hat{i} - y_1(t)\hat{j}.$$

Finalmente, para o item c, calculamos a disência como

$$L_{21}(t) = \sqrt{x_1^2 + (-y_1)^2} = \sqrt{(x_{20} - |\vec{v}_2(t)|)^2 + (|\vec{v}_1|)^2} = \sqrt{7200t^2 - 240t + 4}.$$

Para encontrar a distância **mínima**, é preciso derivar esta fórmula, igualar a 0 e resolver para tempo. $Coloque\ l = 7200t^2 - 240t + 4$, tal que

$$\frac{dl}{dt} = 2 \cdot 7200t - 240 + 0 = 0$$

Resolvendo isso, encontramos o tempo em que a distância é mínima, valendo $t^* \approx 0.017h \approx 1 min$, tal que a distância mínima é

$$L_{21}(t^*) \approx 1.4.$$

7 Aula 7 - 17/03/2023

7.1 Motivações

• Começar a estudar o movimento circular;

•

7.2 Movimento Circular

Quando temos uma particular fazendo movimento circular em um círculo de raio R num eixo x, y, diremos que ela, sua posição em qualquer instante será dada por um vetor $\mathbf{r}(t)$, sendo sua trajetória limitada a este círculo. Assim, obtemos o sistema $R = |\vec{r}(t)|$, sendo $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$ e

$$\begin{cases} x(t) = R\cos\theta(t) \\ y(t) = R\sin\theta(t). \end{cases}$$

Utilizando o sistema e o desenho, obtemos

$$\vec{r}(t) = R\cos\theta(t)\hat{i} + R\sin\theta(t)\hat{j},$$

donde segue o valor do módulo do vetor $\vec{r}(t)$:

$$|\vec{r}(t)|^2 = x^2(t) + y^2(t) = (R\cos\theta(t))^2 + (R\sin\theta(t))^2$$

= $R^2(\cos\theta(t)^2 + \sin\theta(t)^2)$
= $R^2 \Rightarrow |\vec{r}(t)| = R$.

Concluímos, assim, que todo o movimento da partícula é dado em termos do ângulo $\theta(t)$. Além disso, o deslocamento da partícula é feita em arcos de círculo $s(t) = R\theta(t)$. Chamamos esta posição de "posição escalar do corpo sobre o círculo". No entanto, no movimento circular, há outra posição, chamada "posição angular do corpo", que é dada por $\theta(t) = \frac{s(t)}{R}$.

Utilizando estes dois, podemos encontrar uma equação para $\vec{r}(t)$:

$$\vec{r}(t) = R\cos\theta(t)\hat{i} + R\sin\theta(t)\hat{j} = R\underbrace{\left[\cos\theta(t)\hat{i} + \sin\theta(t)\hat{j}\right]}_{\hat{r}(t)} = R\hat{r}(t),$$

em que $\hat{r}(t)$ é um versor na direção de $\vec{r}(t)$, isto é, um vetor com módulo um. De fato, vamos verificar isto:

$$|\hat{r}(t)| = \sqrt{\cos^2(\theta(t)) + \sin^2(\theta(t))} = 1$$

A seguir, vamos estudar como este versor $\hat{r}(t)$ varia, ou seja, vamos derivar este vetor com respeito ao tempo. Para isso, introduizremos outra regra de derivação, a "Regra da Cadeia". Dada uma função f(t) = u(v(t)), ou seja, uma função definida como uma função composta, sua derivação é feita de denro pra fora: Derivamos v(t) com respeito a t, depois derivamos u com relação a v e multiplicamos, ou seja,

$$\frac{df}{dt} = \frac{du}{dv}\frac{dv}{dt}$$

Assim, no caso do versor $\hat{r}(t)$,

$$\begin{split} \frac{d\hat{r}(t)}{dt} &= \frac{d}{dt}[\cos\theta(t)\hat{i} + \sin\theta(t)\hat{j}] \\ &= \frac{d}{dt}[\cos\theta(t)]\hat{i} + \frac{d}{dt}[\sin\theta(t)]\hat{j} \\ &= \frac{d\cos\theta(t)}{d\theta}\frac{d\theta(t)}{dt}\hat{i} + \frac{d\sin\theta(t)}{d\theta}\frac{d\theta(t)}{dt}\hat{j} \\ &= -\sin\theta(t)\frac{d\theta(t)}{dt}\hat{i} + \cos\theta(t)\frac{d\theta(t)}{dt}\hat{j}. \end{split}$$

Como $\theta(t)$ é a posição angular, chamamos a sua derivada com respeito a tempo de velocidade ângular

$$\omega(t) = \frac{d\theta(t)}{dt}.$$

De brinde, conseguimos definir a velocidade escalar da partícula como

$$\frac{ds(t)}{dt} = \frac{dR\theta(t)}{dt} = R\frac{d\theta(t)}{dt} = R\omega(t).$$

$$\Rightarrow \boxed{v(t) = R\omega(t).}$$

Vamos estudar a dimensão dessa quantidade. Temos

$$[\omega] = \frac{[\theta]}{[t]} = \frac{1}{T}$$
 (Exemplo: rad/s (radianos por segundo.))

como unidades de velocidade angular e

$$[v] = [R][\omega] = LT^{-1}$$
 (Exemplo: m/s (metros por segundo))

como dimensão da velocidade escalar. Com relação ao versor definido, sua derivada é

$$\frac{d\hat{r}(t)}{dt} = \omega(t) \underbrace{\left[-\sin\theta(t)\hat{i} + \cos\theta(t)\hat{j}\right]}_{\theta(\hat{t})},$$

em que $\theta(t)$ é um versor apontando na direção do ângulo. Com isso, definimos a velocidade vetorial por

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = R \frac{d\hat{r}(t)}{dt} \Rightarrow \vec{v}(t) = R\omega(t)\theta(t).$$

Algo interessante de notar é que a velocidade escalar consiste do módulo da velocidade vetorial, i.e., $v(t) = |\vec{v}(t)|$. Também podemos representar a velocidade por meio das componentes em cada eixo:

$$\vec{v}(t) = \underbrace{-R\omega(t)\sin\theta(t)}_{v_x(t)}\hat{i} + \underbrace{R\omega(t)\cos\theta(t)}_{v_y(t)}\hat{j}.$$

7.3 Acelerações no Movimento Circular.

Agora que estamos mais familiariizados com a velocidade e posição angular, podemos estudar a aceleração no movimento circular. Assim como antes, começamos definindo a aceleração angular:

$$\alpha(t) = \frac{d\omega(t)}{dt} = \frac{d^2\theta(t)}{dt^2},$$

que possui dimensão $[\alpha] = \frac{[\omega]}{[t]} = \frac{T^{-1}}{T} = T^{-2}$, sendo um exemplo a unidade rad/s^2 , i.e., radiano por segundo quadrado. Analogamente, definimos a aceleração vetorial por

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \frac{d}{dt}[R\omega(t)\hat{\theta}(t)].$$

Pela regra do produto,

$$\vec{a}(t) = R\left[\frac{d\omega(t)}{dt}\theta(\hat{t}) + \omega(t)\frac{d\theta(\hat{t})}{dt}\right].$$

Analisando termo a termo, a primeira derivada acontece no módulo da velocidade, i.e., $R\frac{d\omega(t)}{dt}$, ou seja, representa a variação no módulo da velocidade. Por outro lado, o segundo termo representa a variação da direção da velocidade. Como já encontramos alguns desses termos antes, segue que

$$\vec{a}(t) = R[\alpha(t)\hat{\theta(t)} + v(t)\frac{d\hat{\theta}(t)}{dt}].$$

Mas o que é este termo $\frac{d\hat{\theta}}{dt}$? Olhando pra ele com cuidado, vemos que

$$\begin{split} \frac{d\hat{\theta}}{dt} &= \frac{d}{dt} [-\sin\theta(t)\hat{i} + \cos\theta(t)\hat{j}] \\ &= -\frac{d}{dt} [\sin\theta(t)]\hat{i} + \frac{d}{dt} [\cos\theta(t)]\hat{j} \\ &= -\cos\theta(t) \frac{d\theta(t)}{dt} \hat{i} - \sin\theta(t) \frac{d\theta(t)}{dt} \hat{j} \\ &\Rightarrow \frac{d\theta(\hat{t})}{dt} = \omega(t) [-\cos\theta(t)\hat{i} - \sin\theta(t)\hat{j}] = \omega(t) (-\hat{r}(t)). \end{split}$$

Portanto,

$$\vec{a}(t) = R[\alpha(t)\hat{\theta(t)} + \omega^2(t)(-\hat{r}(t))] = \underbrace{R\alpha(t)\hat{\theta(t)}}_{\text{aceleração tangencial } \vec{a}_t(t)} - \underbrace{R\omega^2(t)\hat{r}(t)}_{\text{aceleração centrípeta } \vec{a}_{cp}(t)}$$

Obtivemos disso tudo duas acelerações novas e que precisam ser mais compreendidas. Vamos começar pela tangencial.

Com relação ao módulo da aceleração tangencial, note que $|\vec{a}_t(t)| = R\alpha(t) = \frac{dv(t)}{dt}$. Agora, quanto à aceleração centrípeta, seu módulo é dado por $|\vec{a}_{cp}(t)| = R\omega^2(t) \Rightarrow |\vec{a}_{cp}(t)| = \frac{v^2}{R}$.

7.4 Movimento Circular Uniforme

Resumindo o que temos até o momento em forma de tabela, segue que

	Variáveis angulares	Variáveis escalares
Posição	$\theta(t)$	$s(t) = R\theta(t)$
Velocidade	$\omega(t) = \frac{d\theta(t)}{dt}$	$v(t) = \frac{ds(t)}{dt} = R\omega(t)$
Aceleração	$\alpha(t) = \frac{d\omega(t)}{dt} = \frac{d^2\theta(t)}{dt^2}$	$ \vec{a}(t) = \frac{dv(t)}{dt} = R\alpha(t), \vec{a}_{cp} = \frac{v^2}{R}$

Tabela 1: Resumo movimento circular.

No movimento circular uniforme, estudamos arcos iguais em tempos iguais, ou seja,

$$\Delta s_1 = \Delta s_2, \quad \Delta t_1 = \Delta t_2,$$

tal que $\Delta\theta_1 = \Delta\theta_2$. Além disos, $\omega(t) \equiv \omega$ constante. Assim,

$$|\vec{v}(t)| = v(t) = R\omega(t) \equiv v$$
, constante $\Rightarrow a_t = R\alpha(t) = 0$.

Com isso, as posições são descritas por

$$\omega(t) = \omega \Rightarrow \theta(t) = \theta_0 + \omega(t - t_0)$$
$$v(t) = v \Rightarrow s(t) = s_0 + v(t - t_0)$$

Neste caso, o movimento é periódico, ou seja, ele volta a ter as mesmas propriedades após um período T. Em forma matemática, isso quer dizer que

$$\left\{ \begin{array}{l} \vec{r}(t+T) = \vec{r}(t) \\ \vec{v}(t+T) = \vec{v}(t). \end{array} \right.$$

Tendo isso em mente, definimos também a frequência como o número de ocorrências. Ele vale o inverso do período T, i.e., $f = \frac{1}{T}$.

8 Aula 8 - 19/04/2023

8.1 Motivações

• Começar os estudos de dinâmica

8.2 Exemplo de MCU - 67 Tiples

Suponha que a Terra tem velocidade angular ω constante, velocidade e aceleração angulares $\vec{v}_{\theta}(t), \vec{a}_{\theta}(t)$ e velocidade e aceração escalares $\vec{v}_{e}(t), \vec{a}_{e}(t)$.

No equador, $R_E = R_T, \omega_E = \omega$, tal que

$$\begin{cases} v_E = \omega_E R_E = \omega R_T \\ a_{E_{cp}} = \frac{v_E^2}{R_E} = \frac{(\omega R_T)^2}{R_T} = \omega^2 R_T. \end{cases}$$

Na latitude θ , $R_{\theta} = R_T \cos \theta$, $\omega_{\theta} = \omega$, de modo que

$$\begin{cases} v_{\theta} = \omega R_T \cos \theta \\ a_{\theta_{cp}} = \omega^2 R_T \cos \theta \end{cases}$$

Para a Terra dar uma volta em torno de si de novo, ela demora aproximadamente 24h. Assim, T=24h é o período da Terra, donde concluímos que a frequência será $f=\frac{1}{T}=\frac{1}{86400}s^{-1}$. Como $\omega=2\pi f$, segue que

$$\omega = \frac{2\pi}{86400} = 7.27 \cdot 10^{-5} rad/s.$$

Pede-se: a) Quais são os valores de v_e, a_e ? b e d) Quais são as orientações das acelerações? c) Quanto valem v_θ, a_θ ?

- a.) Vemos que $v_E = 463.1 m/s$, $a_E = 0.0337 m/s^2$, $g = 9.8 m/s^2$. Em particular, $a_E = 0.0034 g$.
- b. e d.) O diagrama de v indica que o vetor aceleração aponta na vertical pra esquerda e levemente pra cima.
 - c.) Temos $v_{\theta} = 379.4 m/s, a_{\theta} = 0.0276 m/s^2$.

8.3 Dinâmica e Leis de Newton

8.3.1 O que esperar

Quando estudamos os movimentos anteriores, estávamos vendo cinemática, a descrição matemática do movimento. No entanto, nunca nos questionamos o que causa o movimento. Como ele surge, o que influencia-o, etc. Essa pergunta é respondida pela dinâmica, q formulação matemática que explicíta as causas do movimento. Ela nos fornece uma relação entre as interações, chamadas forças, que o corpo sofre e o seu movimento. A primeira formulação da dinâmica foi feita por Isaac Newton, sendo suas Leis nosso Ponto de partida.

8.3.2 Leis de Newton

A primeira Lei de Newton, também chamada de Lei da Inércia, afirma que

"Um corpo em repouso, ou em movimento retilíneo uniforme, permenecerá em seu estado de movimento a não ser que uma força externa atue sobre ele."

Observe que velocidade constante significa que tanto seu módulo será constante quanto a direção o movimento precisa ser em linha reta. Uma consequência dessa Lei é que não tem distinção entre um corpo em repouso e um corpo se movendo com velocidade constante. Com isso, um sistema de referencial inercial será definido como um eixo de coordenadas que está em repouso ou se movendo com velocidade constante.

A segunda Lei de Newton surge para explicar como aparecem as forças dentro do contexto da dinâmica, dizendo que

"A força resultante atuando em um corpo é igual à massa dele multiplicada pela aceleração"

Matematicamente, isto significa que

$$\vec{F_r} = m \cdot \vec{a} = m \cdot \frac{d\vec{v}}{dt}$$

O termo novo m é chamado de massa inercial, sendo interpretada como a grandeza física que expressa a resistência do corpo ao movimento. Quanto maior for a massa, maior vai ser a resistência a se mover. De fato, se temos dois blocos de massas $m_1 > m_2$, então

$$\vec{a}_1 = \frac{\vec{F}}{m_1}, \quad \vec{a}_2 = \frac{\vec{F}}{m_2} \Rightarrow a_1 < a_2.$$

A dimensão dessa grandeza é [m] = M. No Sistema Internacional, a unidade de massa é o kilograma.

Note que a força é uma grandeza vetorial que soma-se, ou seja, se há várias forças agindo sobre um corpo, a resultante será a soma delas. Se temos forças $\vec{F}_{21}, \vec{F}_{31}$ agindo sobre um corpo, então a resultante será $\vec{F}_R = \vec{F}_{21} + \vec{F}_{31}$. Além disso, suas coordenadas serão

$$x: F_{res}^{x} = -F_{21} \sin \alpha + F_{31} \sin \beta$$

 $y: F_{res}^{y} = -F_{21} \cos \alpha - F_{31} \cos \beta$

A unidade da força é dada por $[F] = [ma] = MLT^{-2}$. No SI, sua unidade é $1kgms^{-2} = 1N$ o Newton. Um corpo será dito em equilíbrio quando a força resultante agindo sobre ele é nula, pois, neste caso,

$$\vec{F}_{res} = \sum_{n} \vec{F}_{n} = 0 \Rightarrow F_{res} = ma = 0 \Rightarrow a = 0.$$

A terceira e última Lei de Newton é conhecida como Lei da Ação e Reação. Segue seu enunciado

"Se um corpo faz uma força em outro, então este segundo também realizará uma força no primeiro, sendo esta de mesmo módulo, mas com direção oposta."

Em outras palavras, se um corpo 2 age sobre um corpo 1 com força \vec{F}_{21} , então o corpo 1 fará uma força sobre o corpo 2 \vec{F}_{12} tal que $\vec{F}_{21} = -\vec{F}_{12}$, $|\vec{F}_{21}| = |\vec{F}_{12}|$.

8.3.3 Exemplo 4.2 - Tipler

Os dados que temos é que há uma pessoa que se moveu 2.25m em 3s e cuja massa é 68kg. Pede-se para encontrar o módulo da força agindo sobre ela. Segue que

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2 \Rightarrow \Delta x = x(3) - x(0) = \frac{1}{2}a3^2 = \frac{9}{2}a = 2.25m$$

Isolando a equação, encontra-se que $a=0.5m/s^2$. Com isso, como $|\vec{F}|=|m\vec{a}|=68\cdot 0.5=34N$.