

Introduction

Why research and development in AI have skyrocketed?

> The focus was largely on supervised learning methods that need huge amounts of labeled data to train system for specific use cases

Introduction

Unsupervised learning

➤ It is a deep learning technique used to find implicit patterns of data without being trained on labeled data

Introduction

Semi-supervised learning

> We have input data and a fraction of input data is labeled as the output

Introduction

Self-supervised learning (SSL)

- > It is an evolving machine learning technique to solve the challenges posed by the over-dependence of labeled data
- > A special type of representation learning via unlabeled data
- > Model trains itself to learn one part of the input from another part of the input

Why do we need SSL?

- High cost The cost of good quality labeled data is very high in terms of time and money
- ➤ Lengthy lifecycle The preparation lifecycle is a long process including data clean, annotation, review, and reconstruction

Introduction

Introduction

The workflow of SSL

- > Training with unlabeled data to obtain a general representation
- > Fine-tuning with few labeled data

Introduction

Approaches

- > Generative
- > Predictive
- > Contrastive
- Bootstrapping
- > Regularization

Generative

Generative

- > Training model to reconstruct the pixel space
 - Image inpainting

Generative

Generative

- > Training model to reconstruct the pixel space
 - Image inpainting

02

Predictive

- > "Change" and "recovery" image without pixel generation
 - High-level representation generation based on pixel is a hard task
 - Context prediction

Predictive

- > "Change" and "recovery" image without pixel generation
 - High-level representation generation based on pixel is a hard task
 - Context prediction

Predictive

- > "Change" and "recovery" image without pixel generation
 - High-level representation generation based on pixel is a hard task
 - Context prediction

Contrastive

Contrastive

- > A widely used approach in SSL
- > The higher similarity between images of same class is the better
 - Siamese network

Contrastive

Contrastive

Contrastive

Contrastive - MoCov1

- Dictionary as a queue
 - Enqueue a batch representation and dequeue the oldest representation
- > Momentum encoder
 - Keep queue dictionary data consistent
- ➤ Shuffling BN
 - shuffle the data order before training and recovery the order after extracting representation

Reference

Contrastive

Contrastive - SimCLRv1

- Data augmentation combination
- Projection head
- > NT-Xent loss function

Contrastive

Contrastive - SimCLRv1

Projection head

Contrastive

Contrastive - SimCLRv1

> NT-Xent loss function

Bootstrapping

Bootstrapping

Bootstrapping

- > In contrastive methods, the negative samples selection is a hard problem
 - The contribution of negative samples is to avoid model collapse
- ➤ How to training without negative samples?
 - BYOL
 - SimSiam

Bootstrapping

BYOL (Bootstrap your own latent)

Bootstrapping

BYOL (Bootstrap your own latent)

Bootstrapping

SimSiam (Simple siamese)

05

Regularization

Regularization

Simple extra regularization

- > Training also without negative samples
- > Representation mining with regularization while training
 - SwAV
 - Barlow twins

Regularization

SwAV (Swapping assignments between views)

Regularization

SwAV (Swapping assignments between views)

Regularization

Barlow Twins

$$\mathcal{C}_{ij} \triangleq \frac{\sum_{b} z_{b,i}^{A} z_{b,j}^{B}}{\sqrt{\sum_{b} \left(z_{b,i}^{A}\right)^{2}} \sqrt{\sum_{b} \left(z_{b,j}^{B}\right)^{2}}}$$

$$\mathcal{L}_{\mathcal{BT}} \triangleq \underbrace{\sum_{i} (1 - \mathcal{C}_{ii})^{2}}_{\text{invariance term}} + \lambda \underbrace{\sum_{i} \sum_{j \neq i} \mathcal{C}_{ij}^{2}}_{\text{redundancy reduction term}}$$