

Fine-Grained Object Classification via Self-Supervised Pose Alignment

Xuhui Yang¹, Yaowei Wang^{1*}, Ke Chen^{2,1*}, Yong Xu^{1,2,3}, Yonghong Tian¹

¹Peng Cheng Laboratory ²South China University of Technology

³China Communication and Computer Network Laboratory of Guangdong

{yangxh, wangyw}@pcl.ac.cn, {chenk, yxu}@scut.edu.cn, tianyh@pcl.ac.cn

CVPR2022

- □作者介绍
- □研究背景
- □本文方法
- □实验效果
- □总结反思

作者介绍

Yonghong Tian, Professor, IEEE Fellow

School of CS and School of ECE at <u>Peking University</u>, Pengcheng Laboratory Verified email at pku.edu.cn - <u>Homepage</u>

Machine Learning Neuromorphic Vision Multimedia Big Data

arXiv preprint arXiv:2104.12369

yaowei wang

Pengcheng Laboratory 在 bit.edu.cn 的电子邮件经过验证 multimedia analysis

	All	Since 2017
Citations	8756	7182
h-index	44	39
i10-index	144	115
		2300
		-
		1725
		4450
		1150
		575
2015 2016 2017	2018 2019 2020	2021 2022 0

VIEW ALL

Cited by

Deep relative distance learning: Tell the difference between similar vehicles H Liu, Y Tian, Y Wang, L Pang, T Huang Proceedings of the IEEE Conference on Computer Vision and Pattern	619	2016
Conformer: Local features coupling global representations for visual recognition Z Peng, W Huang, S Gu, L Xie, Y Wang, J Jiao, Q Ye Proceedings of the IEEE/CVF International Conference on Computer Vision, 367-376	136	2021
PanGu-α: Large-scale Autoregressive Pretrained Chinese Language Models with Autoparallel Computation W Zeng, X Ren, T Su, H Wang, Y Liao, Z Wang, X Jiang, ZZ Yang, K Wang,	62	2021

- □作者介绍
- □研究背景
- 口本文方法
- 口实验效果
- □总结反思

基于定位的细粒度识别

□ 定位网络:检测图像中的**判别性区域**,裁剪出局部特征

□ 识别网络:综合局部-全局特征进行识别

□ 流程如下图所示

□ 弱监督定位:分类越准说明定位越准,互相促进。

问题

- □ 细粒度识别类间差异小,类内差异大
- □ 为什么类内差异大? 姿态多样

- □ 本文提出网络应该对姿态不敏感
 - ⊙ 准确的局部特征定位
 - ⊙ 实现自监督的局部特征对齐

- □作者介绍
- □研究背景
- □本文方法
- 口实验效果
- □总结反思

Overview

- □ 以往方法将局部特征与全局特征简单拼接,进行预测
- 本文利用局部特征构造姿态不敏感的表示,并作为正则化约束,仅在训练过程中使用

Conventional part-based methods:

总体结构

Graph Matching for Part Alignment

- □ 每张图像的N个局部特征 构成一个graph
- □ 对N做全排列,选出相似 度得分最高的

$$M_{ij} = <\!\!r_{p_i}, r_{p_j}\!\!>,$$

$$\hat{M} = \underset{M'}{\operatorname{argmax}} \operatorname{vec}(M')^{T} \operatorname{vec}(M),$$

Contrastive Feature Regularization

- □ 局部特征组合得到的特征 应该与全局特征接近,即 希望模型忽略背景信息
- □ 局部特征拼接后通过MLP 与全局特征计算KL散度

$$L^{reg} = \sum_{s=1}^{S} \ell_{kl}(\boldsymbol{r}_{im}^{(s)}, \phi([\boldsymbol{r}_{p_1}^{(s)}; \boldsymbol{r}_{p_2}^{(s)}; ...; \boldsymbol{r}_{p_N}^{(s)}])),$$

Curriculum Supervision

□ 课程学习是指模拟人类学习 的过程,由易到难进行训练。

- □ 本文认为将标签软化后更容易学习,因此在训练过程中,让软化的标签逐步接近one-hot标签。
- $\square \quad \mathbb{P} \quad \alpha \colon \frac{1}{k} \to 1$
- □ 效果:

IVICUIOU	CUB	CAR	AIR
(a) Baseline	85.5	92.7	90.3
(b) Baseline+CS	88.4	94.9	93.8

$$m{y}_{lpha}[t] = egin{cases} lpha, & t = y \ rac{1-lpha}{K}, & t
eq y \end{cases},$$

$$\begin{split} \ell_{sce}(\hat{\pmb{y}}^{(s)}, y, \alpha^{(s)}) &= \ell_{ce}(\hat{\pmb{y}}^{(s)}, \pmb{y}_{\alpha^{(s)}}) \\ &= \sum_{t=0}^{K-1} -\pmb{y}_{\alpha^{(s)}}[t] \log(\hat{\pmb{y}}^{(s)}[t]), \end{split}$$

$$L_{im}^{cls} = \sum_{s=1}^{S+1} \ell_{sce}(\hat{y}^{(s)}, y, \alpha^{(s)}).$$

训练、推理

$$\square \quad \text{Loss:} \qquad \qquad L = L_{im}^{cls} + L_{parts}^{cls} + L^{rank} + \beta \cdot L^{reg},$$

训练、推理

$$\begin{split} L^{rank} &= \sum_{n=1}^{N} \sum_{n'=1}^{N} \ell_{hg}(L_{p_n}, L_{p_{n'}}) * c_{nn'} \\ &= \sum_{n=1}^{N} \sum_{n'=1}^{N} max(0, L_{p_n} - L_{p_{n'}} + \delta) * c_{nn'}, \end{split}$$
 with the indicator $c_{nn'}$ is defined as
$$c_{nn'} &= \begin{cases} 1, & sc_{p_n} > sc_{p_{n'}} \\ 0, & sc_{p_n} \leqslant sc_{p_{n'}} \end{cases},$$

定位越准确←→分类越准确

$$L = L_{im}^{cls} + L_{parts}^{cls} + L^{rank} + \beta \cdot L^{reg},$$

$$\hat{y}^{(final)} = \sum_{s=1}^{S+1} \hat{y}^{(s)},$$

- □作者介绍
- □研究背景
- □本文方法
- □实验效果
- □总结反思

模型性能

Mathad	Dooldhono	Accuracy (%)		
Method	Backbone	CUB	CAR	AIR
B-CNN [21]	VGG	84.1	91.3	84.1
RA-CNN [9]	VGG19	85.3	92.5	88.2
MA-CNN [44]	VGG19	86.5	92.8	89.9
FCAN [22]		84.7	93.1	-
MAMC [32]		86.3	93.0	-
DFL-CNN [35]		87.4	93.1	91.7
NTS-Net [41]		87.5	93.9	91.4
DCL [4]		87.8	94.5	93.0
TASN [46]		87.9	93.8	-
Cross-X [24]	ResNet50	87.7	94.6	92.6
S3N [6]		88.5	94.7	92.8
LIO [47]		88.0	94.5	92.7
BNT [15]		88.1	94.6	92.4
ASD [31]		88.6	94.9	93.5
DF-GMM [36]		88.8	94.8	93.8
PMG [8]		89.6	95.1	93.4
API-Net [48]	ResNet101	88.6	94.9	93.4
API-Net [48]	DenseNet-161	90.0	95.3	93.9
P2P-Net (ours)	ResNet34	89.5	94.9	92.6
P2P-Net (ours)	ResNet50	90.2	95.4	94.2

Table 1. Comparison with the state-of-the-art methods.

消融实验

□ CS: curriculum supervision

□ FR: feature regularization

□ FC: feature concatenation

UPA: unsupervised part alignment

Method	Accuracy (%)		
Wethod	CUB	CAR	AIR
(a) Baseline	85.5	92.7	90.3
(b) Baseline+CS	88.4	94.9	93.8
(c) Baseline+FR (w/o UPA)	89.0	94.8	92.0
(d) Baseline+FR (w/ UPA)	89.0	95.0	92.5
(e) Baseline+FC	88.4	94.7	93.8
(f) Baseline+CS+FR (w/o UPA)	90.0	95.0	93.9
(g) Baseline+CS+FR (w/ UPA)	90.2	95.4	94.2

Parts number (N)	2	3	4	5	6
CUB	88.1	89.9	90.2	90.2	90.0

可视化

□ T-SNE

□类内特征的均方差

Figure 7. A T-SNE plot of learned representations on three datasets. First row: the baseline model; second row: baseline+FR (w/ UPA).

Method	RMSE			
Method	CUB	CAR	AIR	
Baseline	0.501	0.354	0.399	
Baseline+FC	0.268	0.213	0.354	
Baseline+FR (w/ UPA)	0.213	0.179	0.263	

Table 3. RMSE of learned representations of different methods.

可视化

Figure 5. Discriminative parts detected by our P2P-Net.

Figure 6. Class activation maps of some test samples.

- □作者介绍
- □研究背景
- □本文方法
- 口实验效果
- □总结反思

总结

- □ 本文是首次尝试解决姿态多样性的问题
- □ 用图匹配方法实现自监督姿态对齐
- □ 向网络中加入几何结构的先验信息

Thanks!