Задача 1. Докажете, че събитията A и B са независими, ако индикаторите $1_A, 1_B$ са независими случайни величини.

Задача 2. (независимост дискретни)

- 1. Кога наричаме две събития независими? Дефинирайте кога наричаме две дискретни случайни величини независими и кога некорелирани.
- 2. Нека хвърляме n>3 пъти монета с вероятност за ези p и да дефинираме събитията A="третото хвърляне е ези" и B="общо са се паднали 3 езита". При какви условия A и B са независими?

Задача 3. Нека X е непрекъсната случайна величина с функция на разпределение F, която е строго монотонно растяща върху реалната права. Покажете, че $Y = F(X) \in U(0,1)$. Всъщност условията върху F могат да се облекчат, но идеята e, че ако можем да симулираме равномерно разпределение с компютър и знаем F^{-1} , то $F^{-1}(Y)$ ще ни e симулация за X.

Задача 4. (независимост непрекъснати)

- 1. Дефинирайте кога наричаме две непрекъснати случайни величини независими и кога некорелирани.
- 2. Дефинирайте функция пораждаща моментите $M_X(t)$ на случайната величина X. Нека $X \sim N(0,1)$. Пресметнете $M_X(t)$. На колко са равни $\mathbb{E} X, \mathbb{E} X^2$ и $\mathbb{E} X^3$?
- 3. Нека $X \sim N(0,1)$. Потърсете случайна величина, която е полином на X и е некорелирана, но не е независима с X.

Задача 5. Нека X е случайна величина с плътност $3(1-x)^2$ за $x \in (0,1)$. Намерете първите два цели момента и изчислете функцията на моментите.

Задача 6. Нека X,Y и Z са случайни величини със стойности в $\mathbb N$ и $f:\mathbb N\to\mathbb N$. Кога наричаме X и Y еднакво разпределени? Да предположим, че последното е изпълнено. Вярно ли е, че f(X) и f(Z) са еднакво разпределени? А X+Z и Y+Z? Докажете или дайте контрапримери. Вярно ли е, че ако X и Z са независими, то стига $\mathbb E(f(X))<\infty$ и $\mathbb E(g(Z))<\infty$, където $g:\mathbb N\to\mathbb N$, то

$$\mathbb{E}\left(f(X)g(Z)\right) = \mathbb{E}\left(f(X)\right)\mathbb{E}\left(g(Z)\right).$$

Решение 1. Нека $X\stackrel{d}{=}Y$. Трябва да покажем, че за всяко $n\in\mathbb{N}$ е вярно, че

$$\mathbb{P}\left(f(X) = n\right) = \mathbb{P}\left(f(Y) = n\right).$$

Но $\{f(X)=n\}=\bigcup_{k\in\mathbb{N}: f(k)=n}\{X=k\}$ или събитието $\{f(X)=n\}$ е обединението на независимите събития $\{X=k\}$ за тези k, за които f(k)=n. Пример ако $f(l)=l^2$, то $\{f(X)=n\}$ е празното множество ако n не е квадрат и $\{f(X)=n\}=\{X=\sqrt{n}\}$ иначе. Тогава

$$\begin{split} \mathbb{P}\left(f(X) = n\right) &= \mathbb{P}\left(\bigcup_{k \in \mathbb{N}: f(k) = n} \{X = k\}\right) = \sum_{k \in \mathbb{N}: f(k) = n} \mathbb{P}\left(X = k\right) \\ &= \sum_{k \in \mathbb{N}: f(k) = n} \mathbb{P}\left(Y = k\right) = \mathbb{P}\left(\bigcup_{k \in \mathbb{N}: f(k) = n} \{Y = k\}\right) \\ &= \mathbb{P}\left(f(Y) = n\right). \end{split}$$

Задача 7. (контрапример ЗГЧ)

1. Разполагаме със зар с 2 червени и 4 черни страни и със зар с 4 червени и 2 черни страни. Вероятността да се падне, която и да е от страните е 1/6.

Избираме с вероятност 1/2 един от двата зара и го хвърляме безкраен брой пъти. Да дефинираме за $n \geq 1$

$$X_n = egin{cases} 1 & \text{, ако на n-тото хвърляне се е паднала черна страна,} \\ 0 & \text{, иначе} \ . \end{cases}$$

Докажете, че дефинираните по-горе случайни величини са еднакво разпределени и пресметнете очакването им. Независими ли са?

2. Формулирайте слабия ЗГЧ. Докажете, че той е в сила/не е в сила за редицата $(X_n)_n$.

Задача 8. Докажете, че вероятността броят на шестиците при хвърляне на стандартен зар 900 пъти да е между 120 и 180 е поне 31/36.

Задача 9. Хвърляте монета 1000 пъти и получавате 800 езита. Това ви усъмнява, че монетата е честна. Нека θ вероятността за ези.

- Пресметнете каква е вероятността да наблюдавате 800 езита при допускане, че монетата е честна.
- Използвайте ЦГТ, за да конструирате доверителен интервал с ниво на доверие за точковата оценка на θ. Най-вероятно няма да можете да използвате понятието централна статистика, но се опитайте чрез увеличаване на доверителния интервал, което е резултат от оценка на дисперсията (зависеща от θ).
- (**) Ако приемете, че вероятността за честна монета е 0.99 и с вероятност 0.01 е точковата оценка, която получавате от тези 1000 хвърляния, т.е. 4/5. Как бихте преизчислили вероятността за честност при настъпването на тези данни?

Задача 10. Нека X е случайна величина с разпределение $f_X(x;\theta) = C(\theta)e^{-\theta x^2}, x>0, \theta>0$. Намерете максимално правдоподобна оценка за θ от nнаблюдения. Можете да използвате, че $C(\theta)=K\theta^{1/2}$, където K не зависи нито от θ . Вярно ли e, че оценката e състоятелна?