Lecture 1.2

Reinforcement Learning: Dynamic Programming Methods

Alexey Gruzdev alexey.s.gruzdev@gmail.com HSE, Winter 2019

Recap: Markov Decision Process

 A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all states are Markov.

- A Markov reward process is a Markov chain with values.
- A Markov Decision Process is a tuple (S, A, P, R, γ)
 - **S** is a (finite) set of states
 - A is a finite set of actions
 - $P_{ss'}^a$ is a state transition probability matrix
 - $P^{\alpha}_{ss'} = P[S_{t+1} = s' | S_t = s, A_t = \alpha]$
 - R is a reward function, $R_s^a = E[R_{t+1} | S_t = s, A_t = a]$
 - y is a discount factor, $y \in [0, 1]$

Ergodic MDPs

Definition:

An MDP is ergodic if the Markov Chain induced by any policy is ergodic.

For any policy π , an ergodic MDP has an average reward per time-step ρ^{π} that is independent of start state.

$$ho^{\pi} = \lim_{T o \infty} rac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} R_t
ight]$$

Recap: Tabular Cross Entropy method

- Policy is matrix A
 - $\pi(a \mid s) = P[A_t = a \mid S_t = s] = A_{s,a}$
- Sample N sessions with that policy
- Get M best sessions (elites)
- Elite = $[(s_1, a_1), (s_2, a_2), ..., (s_k, a_k)]$
- Update policy:

$$\pi(a \mid s) = \frac{took \ a \ at \ s \ state}{was \ at \ s \ state} = \frac{\sum [s_t = s][a_t = a]}{\sum [s_t = s]}$$

Recap: Cross Entropy Method

CEM:

- Evolutionary
- Go in the direction where elite goes.
- Easy to implement
- Black Box
- Need to play full episode to start learning

What is Dynamic Programming?

- Dynamic sequential or temporal component to the problem
- Programming optimizing a `program`, i.e. a policy
 - A method for solving complex problems
 - By breaking them down into sub problems
 - Solve the sub problems
 - Combine solutions to sub problems

Requirements for Dynamic Programming

- Dynamic Programming is a very general solution method for problems which have two properties:
- Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into sub problems
- Overlapping sub problems
 - Sub problems recur many times
 - Solutions can be cached and reused
 - Markov decision processes satisfy both properties
 - Bellman equation gives recursive decomposition
 Value function stores and reuses solutions

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- For prediction:
 - Input: MDP (S, A, P, R, γ) and policy π
 - or: MRP (S, P, R, γ)
 - Output: value function \mathbf{v}_{π}
- For control:
 - Input: MDP (S, A, P, R, γ)
 - Output: optimal value function $oldsymbol{v}_*$ and optimal policy $oldsymbol{\pi}_*$

A bunch of applications for Dynamic Programming

- Dynamic programming is used to solve many other problems:
 - Scheduling algorithms
 - String algorithms (e.g. sequence alignment)
 - Graph algorithms (e.g. shortest path algorithms)
 - Graphical models (e.g. Viterbi algorithm)
 - Bioinformatics (e.g. lattice models)
- Q: Which algorithms do you know for finding shortest path problems in graphs?

State-value function

- The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{t=0}^{\infty} y^t R_{t+k+1}$$

• The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$V_{\pi}(s) = E_{\pi}[G_t | S_t = s] = E_{\pi}[R_t + \gamma G_{t+1} | S_t = s] =$$

$$= \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) [r + \gamma E_{\pi}[G_{t+1} \mid S_{t+1} = s']]$$

$$= \sum_{a} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,a) [r + \gamma v_{\pi}(s')]$$

$$\pi(a \mid s)$$
 – policy stochasticity $p(r, s' \mid s, a)$ – environment stochasticity

Intuition: value of following policy π from state s

Bellman Expectation Equation #1

• Recursive definition of $\mathbf{v}_{\pi}(\mathbf{s})$ is an important concept in RL

$$v_{\pi}(s) = \sum_{\alpha} \pi(a \mid s) \sum_{r,s'} p(r,s' \mid s,\alpha) [r + \gamma v_{\pi}(s')]$$

$$= E_{\pi}[R_{t} + \gamma v_{\pi}(s_{t+1}) \mid S_{t} = s]$$

Action-value function

• The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = E_{\pi}[G_{t} | S_{t} = s, A_{t} = a]$$

$$= E_{\pi}[R_{t} + \gamma G_{t+1} | S_{t} = s, A_{t} = a]$$

$$= \sum_{r,s'} p(r, s' | s, a)[r + \gamma E_{\pi}[G_{t+1} | S_{t+1} = s']]$$

$$= \sum_{r,s'} p(r, s' | s, a)[r + \gamma V_{\pi}(s')]$$

• Intuition: value of following policy π from state s, after committing action a

Relations between Action/state value functions

• We know relationship $q_{\pi}(s, a)$ in terms of $v_{\pi}(s)$

$$q_{\pi}(s, a) = \sum_{r,s'} p(r, s' \mid s, a) [r + \gamma v_{\pi}(s')]$$

• What about $v_{\pi}(s)$ in terms of $q_{\pi}(s, \alpha)$

$$v_{\pi}(s) = \sum_{\alpha} \pi(\alpha \mid s) \sum_{r,s'} p(r,s' \mid s,\alpha) [r + \gamma v_{\pi}(s')]$$

$$v_{\pi}(s) = \sum_{\alpha} \pi(a \mid s) \ q_{\pi}(s, \alpha)$$

Bellman Expectation Equation #2

Recursive definition of $q_{\pi}(s, a)$ in term of $q_{\pi}(s, a)$

$$q_{\pi}(s, a) = \sum_{r,s'} p(r, s' \mid s, a) [r + \gamma \sum_{a'} \pi(a' \mid s') \ q_{\pi}(s', a')]$$

Recap: optimal policy

Define a partial ordering over policies:

$$\pi \geq \pi' \text{ if } V_{\pi}(s) \geq V_{\pi'}(s) \ \forall s$$

Theorem: For any Markov Decision Process

- Best policy π_* performs better or equal than any other policy $\pi_* \ge \pi \ \forall \pi$
- Optimal state-value function:

$$v_*(s) = \max_{\pi} (v_{\pi}(s))$$

Optimal action-value function:

$$q_{\pi*}(s, \alpha) = \max_{\pi} (q_{\pi}(s, \alpha))$$

Bellman Optimality Equation #1

$$v_*(s) = \max_{a} \sum_{r,s'} p(r,s' \mid s,a) [r + \gamma v_*(s')]$$

Bellman Optimality Equation #2

$$q_*(s, a) = \sum_{r,s'} p(r, s' \mid s, a) [r + \gamma \max_{a'} q_*(s', a')]$$

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup
- $V_1 -> V_2 -> \dots -> V_{\pi}$
- Using synchronous backups:
 - At each iteration t + 1
 - For all states s ∈ S
 - Update $v_{t+1}(s)$ from $v_t(s')$, where s' is a successor state of s
- Convergence is guaranteed but is not subject of this lecture.

Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop:  \Delta \leftarrow 0  Loop for each s \in \mathbb{S}:  v \leftarrow V(s)   V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]   \Delta \leftarrow \max(\Delta,|v-V(s)|)  until \Delta < \theta
```

Policy Improvement

- Given a policy π :
 - Evaluate the policy π

$$V_{\pi}(s) = E[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \mid S_{t} = s]$$

• Improve the policy by acting greedily with respect to v_{π}

$$\pi'$$
 = greedy(v_{π})

- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to $\pi*$

Policy Improvement

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
-stable $\leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - e.g. ε -convergence of value function
- Or simply stop after k iterations of iterative policy evaluation?
- Why not update policy every iteration? i.e. stop after k = 1
 - This is equivalent to value iteration (next section)

Value Iteration

- Problem: find optimal policy π
- Solution iterative application of Bellman optimality backup
- $V_1 -> V_2 -> \dots -> V_{\pi}$
- Using synchronous backups
 - At each iteration t + 1
 - For all states $s \in S$
 - Update $v_{t+1}(s)$ from $v_t(s')$, where s' is a successor state of s
 - Unlike policy iteration, there is no explicit policy
 - Intermediate value functions may not correspond to any policy

Value Iteration

Value vs Policy Iteration

- VI is faster per iteration O(|A||S|²)
- VI requires many iterations
- PI is slower per iteration $-O(|A||S|^2 + |S|^3)$
- PI requires few iterations
- No silver bullet → experiment with # of steps spent in policy evaluation phase to find the best

Resume

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

Let's do something real?!

Questions?

