Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-16 (Canceled)

17. (Currently amended) A method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment of an effective amount of a quinoline of formula (I) or a pharmaceutically acceptable derivative thereof:

$$\begin{array}{c|c} A-B-(CH_2) & & \\ \hline & & \\ (R^1)_m & & \\ & & \\ \end{array} N \longrightarrow R^4$$

(l)

wherein:

m is 1 or 2;

each R^1 is independently hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6})alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6})alkyl, acyl or (C_{1-6})alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C_{1-6})alkylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6})

 $_{6}$)alkylsulphonyloxy; (C₁₋₆)alkoxy-substituted (C₁₋₆)alkyl; halogen; (C₁₋₆)alkyl; (C₁₋₆)alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C₁₋₆)alkylsulphonyl; (C₁₋₆)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups;

either R² is hydrogen; and

 $\rm R^3$ is in the 2- or 3-position and is hydrogen or (C₁₋₆)alkyl or (C₂₋₆)alkenyl optionally substituted with 1 to 3 groups selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azido; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋ 6)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋ 6)alkylcarbonyl or (C₂₋₆)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆) 6)alkenylcarbonyl, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, (C₂₋ 6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) 6) alkyl, (C₂₋₆) alkenyl, (C₁₋₆) alkoxycarbonyl, (C₁₋₆) alkylcarbonyl, (C₂₋ 6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; oxo; (C_{1-6}) 6)alkylsulphonyl; (C2-6)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; or

 R^3 is in the 3-position and R^2 and R^3 together are a divalent residue = $CR^{5^1}R^{6^1}$ where R^{5^1} and R^{6^1} are independently selected from H, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, aryl (C_{1-6}) alkyl and aryl (C_{2-6}) alkenyl, any alkyl or alkenyl moiety being optionally substituted by 1 to 3 groups selected from those listed above for substituents on R^3 :

 R^4 is a group -CH₂- R^5 in which R^5 is selected from:

 $(C_{3-12}) \text{alkyl}; \ \text{hydroxy}(C_{3-12}) \text{alkyl}; \ (C_{1-12}) \text{alkoxy}(C_{3-12}) \text{alkyl}; \ (C_{1-12}) \text{alkyl}; \ (C_{1-12}) \text{alkyl}; \ (C_{1-12}) \text{alkyl}; \ (C_{1-12}) \text{alkyl}; \ \text{hydroxy-}, \ (C_{1-12}) \text{alkoxy-} \text{ or } (C_{1-12}) \text{alkyny-} \text{ or } (C_{3-6}) \text{cycloalkyl}(C_{3-12}) \text{alkyl}; \ \text{cyano}(C_{3-12}) \text{alkyl}; \ (C_{2-12}) \text{alkyny-}; \ \text{tetrahydrofury-}; \ \text{mono-} \text{ or } \text{di-}(C_{1-12}) \text{alkylamino}(C_{3-12}) \text{alkyl-}; \ \text{or } \text{acyl-aminocarbonyl}(C_{3-12}) \text{alkyl-}; \ \text{mono-} \text{ or } \text{di-}(C_{1-12}) \text{alkylamino}(\text{hydroxy}) \ (C_{3-12}) \text{alkyl-}; \ \text{optionally substituted} \ \text{phenyl}(C_{1-2}) \text{alkyl-}; \ \text{optionally substituted phenyl}(C_{1-2}) \text{alkyl-}; \ \text{optionally substituted phenyl}(C_{2-3}) \text{alkenyl-}; \ \text{optionally substituted phenyl-}; \ \text{optionally substituted phenyl-}; \ \text{optionally substituted phenyl-}; \ \text{optionally substituted}$

substituted benzoyl or benzoylmethyl; optionally substituted heteroaryl(C₁₋₂)alkyl;and optionally substituted heteroaroyl or heteroaroylmethyl;

or R⁴ is 3-benzoylpropyl or 3-(4-fluorobenzoyl)propyl; n is 0, 1 or 2;

A is NR¹¹, O, S(O)_x or CR⁶R⁷ and B is NR¹¹, O, S(O)_x or CR⁸R⁹ where x is 0, 1 or 2 and wherein A is CR⁶R⁷ and B is CR⁸R⁹ and wherein:

each of R^6 and R^7 R^8 and R^9 R^6 , R^7 , R^8 and R^9 is independently selected from: H; thiol; (C_{1-6})alkylthio; halo; trifluoromethyl; azido; (C_{1-6})alkyl; (C_{2-6})alkenyl; (C_{1-6})alkoxycarbonyl; (C_{1-6})alkylcarbonyl; (C_{2-6})alkenyloxycarbonyl; (C_{2-6})alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-6})alkylsulphonyl; (C_{2-6})alkenylsulphonyl; or (C_{1-6})aminosulphonyl wherein the amino group is optionally substituted by (C_{1-6})alkyl or (C_{1-6})alkenyl;

or ${\sf R}^6$ and ${\sf R}^8$ together represent a bond and ${\sf R}^7$ and ${\sf R}^9$ are as above defined;

or R^6 and R^8 together represent –O- and R^7 and R^9 are both hydrogen; or R^6 and R^7 or R^8 and R^9 together represent oxo;

and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkyl or (C_{1-6}) alkyl or (C_{1-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl;

provided that A and B cannot both be selected from NR¹¹, O and S(O)_X and when one of A and B is CO the other is not CO, O or S(O)_X; wherein:

'heterocyclic' as used herein is an aromatic or non-aromatic, single or fused, ring containing up to four hetero-atoms in each ring selected from oxygen, nitrogen and sulphur, and having from 4 to 7 ring atoms which rings may be unsubstituted or substituted by up to three groups selected from amino, halogen, (C₁₋₆)alkyl, (C₁₋₆)alkyl, hydroxy, carboxy, carboxy salts, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkoxycarbonyl(C₁₋₆)alkyl, aryl, and oxo groups, and wherein any amino group

forming part of a single or fused non-aromatic heterocyclic ring as defined is optionally substituted by (C₁₋₆)alkyl optionally substituted by hydroxy, C₁₋₆)alkoxy, thiol, C₁₋₆)alkylthio, halo, trifluoromethyl, acyl or (C₁₋₆)alkylsulphonyl;

'heteroaryl' is an aromatic heterocyclic group referred to above;

'aryl' is phenyl or naphthyl, each optionally substituted with up to five groups selected from halogen, mercapto, (C₁₋₆)alkyl, phenyl, (C₁₋₆)alkoxy, hydroxy(C₁₋₆)alkyl, mercapto (C₁₋₆)alkyl, halo(C₁₋₆)alkyl, hydroxy, amino, nitro, carboxy, (C₁₋₆)alkylcarbonyloxy, (C₁₋₆)alkoxycarbonyl, formyl, and (C₁₋₆)alkylcarbonyl groups; and

'acyl' is an (C₁₋₆)alkoxycarbonyl, formyl or (C₁₋₆) alkylcarbonyl group; and wherein the pharmaceutically acceptable derivative is an acid addition salt, quaternary ammonium salt, or N-oxide.

18. (Currently amended) A compound of formula (IA) which is a compound of formula (I) wherein R³ is hydroxy(C₁₋₆)alkyl or 1,2-dihydroxy(C₂₋₆)alkyl optionally substituted on the hydroxy group(s) of formula (I) or a pharmaceutically acceptable derivative thereof:

$$\begin{array}{c|c}
A-B-(CH_2) & & & \\
& & & & \\
\hline
(R^1)_m & & & & \\
N & & & & \\
\end{array}$$

(1)

wherein:

m is 1 or 2;

each R¹ is independently hydroxy; (C₁₋₆) alkoxy optionally substituted by (C₁₋₆)alkoxy, amino, piperidyl, quanidino or amidino optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C₁₋₆)alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C₁₋₆)alkylsulphonyloxy; (C₁₋₆)alkylsulphonyloxy; (C₁₋₆)alkoxy-substituted (C₁₋₆)alkyl; halogen; (C₁₋₆)alkyl; (C₁₋₆)alkyl; (C₁₋₆)alkyl; (C₁₋₆)alkyl; halogen; (C₁₋₆)alkyl; (C

6) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; $(C_{1-$

6)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C1-6)alkyl, acyl or (C1-6)alkylsulphonyl groups; R² is hydrogen; R³ is hydroxy(C₁₋₆)alkyl or 1,2-dihydroxy(C₂₋₆)alkyl optionally substituted on the hydroxy group(s); R⁴ is a group -CH₂-R⁵ in which R⁵ is selected from: (C₃₋₁₂)alkyl; hydroxy(C₃₋₁₂)alkyl; (C₁₋₁₂)alkoxy(C₃₋₁₂)alkyl; (C₁₋₁₂) 12)alkanoyloxy(C₃₋₁₂)alkyl; (C₃₋₆)cycloalkyl(C₃₋₁₂)alkyl; hydroxy-, (C₁₋₁₂)alkoxyor (C₁₋₁₂)alkanoyloxy-(C₃₋₆)cycloalkyl(C₃₋₁₂)alkyl; cyano(C₃₋₁₂)alkyl; (C₂₋ 12)alkenyl; (C2-12)alkynyl; tetrahydrofuryl; mono- or di-(C1-12)alkylamino(C3-12)alkyl; acylamino(C3-12)alkyl; (C1-12)alkyl- or acyl-aminocarbonyl(C3-12)alkyl; mono- or di- (C₁₋₁₂)alkylamino(hydroxy) (C₃₋₁₂)alkyl; optionally substituted phenyl(C₁₋₂)alkyl, phenoxy(C₁₋₂)alkyl or phenyl(hydroxy)(C₁₋₂)alkyl; optionally substituted diphenyl(C₁₋₂)alkyl; optionally substituted phenyl(C₂₋₃)alkenyl; optionally substituted benzoyl or benzoylmethyl; optionally substituted heteroaryl(C₁-2)alkyl;and optionally substituted heteroaroyl or heteroaroylmethyl;

or R⁴ is 3-benzoylpropyl or 3-(4-fluorobenzoyl)propyl; n is 0, 1 or 2;

A is CR⁶R⁷ and B is CR⁸R⁹ and wherein:

substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl or (C₂₋₆)alkenyl; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₁₋₆)alkenyl; or R⁶ and R⁸ together represent a bond and R⁷ and R⁹ are as above defined; or R⁶ and R⁸ together represent –O- and R⁷ and R⁹ are both hydrogen; or R⁶ and R⁷ or R⁸ and R⁹ together represent oxo; provided that when one of A and B is CO the other is not CO; and wherein the pharmaceutically acceptable derivative is an acid addition salt, quaternary ammonium salt, or N-oxide.

19. (Currently amended) A compound of formula (IB) which is a compound of formula (I) wherein at least one R¹-is (C₂₋₆) alkoxy substituted by optionally N-substituted amino, guanidino or amidino or C₁₋₆-alkoxy substituted by piperidyl, A is CH₂, CHOH, CH(NH₃), C(Me)(OH) or CH(Me) and B is CH₂, CHOH or CO of formula (I) or a pharmaceutically acceptable derivative thereof:

$$\begin{array}{c|c} A-B-(CH_2)_{\overline{n}} & N - R^4 \\ \hline (R^1)_{\overline{m}} & R^2 & R^3 \end{array}$$

wherein:

m is 1 or 2;

at least one R¹ is (C₂₋₆) alkoxy substituted by optionally N-substituted amino, quanidino or amidino or (C₁₋₆) alkoxy substituted by piperidyl, and

each other R¹ is independently hydroxy; (C₁₋₆) alkoxy optionally substituted by (C₁₋₆)alkoxy, amino, piperidyl, quanidino or amidino optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, NH₂CO, hydroxy, thiol, (C₁₋₆)alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C₁₋₆)alkylsulphonyloxy; (C₁₋₆)alkoxy-substituted (C₁₋₆)alkyl; halogen; (C₁₋₆)alkyl; (C₁₋₆)alkylthio; nitro; azido; acyl; acyloxy; acylthio; (C₁₋₆)alkylsulphonyl; (C₁₋₆)alkylsulphonyl; (C₁₋₆)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, quanidino or amidino group optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups;

either R² is hydrogen; and

R³ is in the 2- or 3-position and is hydrogen or (C₁₋₆)alkyl or (C₂₋₆)alkenyl optionally substituted with 1 to 3 groups selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azido; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₁ 6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C1-6)alkyl, (C2-6)alkenyl, (C1-6) alkylcarbonyl or (C2-6) alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆) 6) alkenylcarbonyl, (C₁₋₆) alkyl, (C₂₋₆) alkenyl, (C₁₋₆) alkylsulphonyl, (C₂₋₆ 6) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋ 6)alkyl, (C2-6)alkenyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl, hydroxy(C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl or (C₂₋₆)alkenyl; oxo; (C₁₋₆) 6)alkylsulphonyl; (C2-6)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; or

=CR5¹R6¹ where R5¹ and R6¹ are independently selected from H, (C₁₋₆)alkyl, (C₂₋₁ 6)alkenyl, aryl(C1-6)alkyl and aryl(C2-6)alkenyl, any alkyl or alkenyl moiety being optionally substituted by 1 to 3 groups selected from those listed above for substituents on R3; R⁴ is a group -CH₂-R⁵ in which R⁵ is selected from: (C₃₋₁₂)alkyl; hydroxy(C₃₋₁₂)alkyl; (C₁₋₁₂)alkoxy(C₃₋₁₂)alkyl; (C₁₋₁₂) 12)alkanoyloxy(C3-12)alkyl; (C3-6)cycloalkyl(C3-12)alkyl; hydroxy-, (C1-12)alkoxyor (C₁₋₁₂)alkanoyloxy-(C₃₋₆)cycloalkyl(C₃₋₁₂)alkyl; cyano(C₃₋₁₂)alkyl; (C₂₋₁₂)alkyl; cyano(C₃₋₁₂)alkyl; (C₂₋₁₂)alkyl; cyano(C₃₋₁₂)alkyl; (C₂₋₁₂)alkyl; cyano(C₃₋₁₂)alkyl; cyano(C₃₋₁₂)alkyl; (C₂₋₁₂)alkyl; cyano(C₃₋₁₂)alkyl; cyano(C₃₋₁₂ 12)alkenyl; (C2-12)alkynyl; tetrahydrofuryl; mono- or di-(C1-12)alkylamino(C3-12)alkyl; acylamino(C₃₋₁₂)alkyl; (C₁₋₁₂)alkyl- or acyl-aminocarbonyl(C₃₋₁₂)alkyl; mono- or di- (C₁₋₁₂)alkylamino(hydroxy) (C₃₋₁₂)alkyl; optionally substituted phenyl(C₁₋₂)alkyl, phenoxy(C₁₋₂)alkyl or phenyl(hydroxy)(C₁₋₂)alkyl; optionally substituted diphenyl(C₁₋₂)alkyl; optionally substituted phenyl(C₂₋₃)alkenyl; optionally substituted benzoyl or benzoylmethyl; optionally substituted heteroaryl(C₁-2) alkyl; and optionally substituted heteroaroyl or heteroaroylmethyl; or R⁴ is 3-benzoylpropyl or 3-(4-fluorobenzoyl)propyl; n is 0, 1 or 2; A is CH2, CHOH, CH(NH2), C(Me)(OH) or CH(Me); and B is CH2, CHOH or CO; and wherein the pharmaceutically acceptable derivative is an acid addition salt, quaternary ammonium salt, or N-oxide.

R³ is in the 3-position and R² and R³ together are a divalent residue

20. (Previously presented) A method according to claim 17 wherein R^1 is in the 6-position on the quinoline nucleus and is methoxy, amino(C_{3-5})alkyloxy, nitro or fluoro and m is 1.

21. (Currently amended) A method according to claim 17 or 20 wherein R^3 is (C_{1-6}) alkyl, (C_{1-6}) alkenyl, or optionally substituted 1-hydroxy- (C_{1-6}) alkyl.

- 22. (Currently amended) A method according to claim 21 wherein R³ is hydroxymethyl, 1- hydroxyethyler hydroxyethyl or 1,2-dihydroxyethyl wherein the 2-hydroxy group is optionally substituted with alkylcarbonyl or aminocarbonyl where the amino group is optionally substituted.
- 23. (Previously presented) A method according to claim 17 wherein R3 is in the 3-position.
- 24. (Currently amended) A method according to claim 17 wherein: A is NH, NCH₃, O, CH₂, CHOH, CH(NH₃) CH(NH₂), C(Me)(OH) or CH(Me) and B is CH₂, CHOH, or CO er S; or A is CR⁶R⁷, and B CR⁸R⁹, and R⁶ and R⁸ together represent -O-,and R⁷ and R⁹ are both hydrogen, and n is 0 or 1.

25. (Currently amended) A method according to claim 24 wherein:

A is NH, B is CO and n is 1 or 0;

A is O, B is CH2 and n is 1 or 0;

A is CH2 or CH2OH, B is CH2, and n is 1 or 0;

A is NCH_3 , $CH(NH_2)$ $CH(NH_2)$, C(Me)(OH) or CH(Me), B is CH_2 and n is 1; or

A is CR⁶R⁷, and B CR⁸R⁹, and R⁶ and R⁸ together represent –O-,and R⁷ and R⁹ are both hydrogen, and n is 1.

- 26. (Previously presented) A method according to claim 17 wherein R^4 is (C_{5-10}) alkyl, unsubstituted phenyl (C_{2-3}) alkyl or unsubstituted phenyl (C_{3-4}) alkenyl.
- 27. (Previously presented) A method according to claim 17 wherein R^5 is unbranched at the α and, where appropriate, β positions.
- 28. (Currently amended) A compound of formula (I) as defined in claim 17 selected from:

[3R,4R]-3-Ethyl-1-hexyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine; [3R,4R]-3-Ethyl-1-hexyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

```
yl)propyl]piperidine;
 [3R,4R]-[3R,4R]-3-Ethyl-1-octyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-octyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
 yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-decyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-decyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-dodecyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;
 [3R,4R] 3-Ethyl-1-dodecyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
 yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-cinnamyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
 yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
 [3R,4R]-3-Ethenyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
 vI)propyI]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-hydroxyquinolin-4-
 yl)propyl]piperidine;
 [3R,4R]-1-Heptyl-3-(2-hydroxyethyl)-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
 yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-[5-phthalimidopentyloxy]-quinolin-4-
 yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-[5-aminopentyloxy]-quinolin-4-
 vl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-[2-Amino--amino-2-oxo-1,1-
 dimethyl]ethoxyquinolin-4-yl)propyl]piperidine;
 [3R,4R] 3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-[2-hydroxy-2-methyl-
 propionamido]quinolin-4-yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-aminoquinolin-4-
 yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-azidoquinolin-4-yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-hydroxyquinolin-4-yl)propyl]piperidine;
 [3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-propyloxyquinolin-4-yl)propyl]piperidine;
```

[3R,4R] 3-Ethyl-1-heptyl-4-[3-oxo-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyguinolin-4-

```
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-(5-Phthalimidopentyloxy)-quinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-(5-aminopentyloxy)-quinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethenyl-1-(2-t-butyloxycarbonylaminoethyl)-4-[3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethenyl-1-(2-phenoxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-(4-ethylbenzyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3S,4R]-3-Ethenyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethenyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(2-hydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(2-acetoxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(3-hydroxypropyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(1-hydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-(2-phenylethyl)-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-(3-phenylpropyl)-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
Heptyl-4-[2-(R,S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;
1-Heptyl-4-[3-(6-methoxyquinolin-4-yl)prop-2-enyl]piperidine;
1-Heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(R,S)-hydroxy-3-(6-methoxyquinolin-4-
yl)butyl]piperidine;
[3R,4R]-3-Ethenyl-1-heptyl-4-[3-(R,S)-azido-3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethenyl-1-heptyl-4-[3-(R,S)-amino-3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-(3-(R,S)4-[3-(R,S)-amino-3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)butyl]piperidine;
[3R,4R]-3-Ethenyl-1-heptyl-4-(3-(R,S)4-[3-(R,S)-acetamido-3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(2-(R,S)-Hydroxypropyl -hydroxypropyl)-4-[3-(6-methoxyquinolin-
4-vI)propyl]piperidine;
[3R,4R]-1-Heptyl-3-(1-(R,S),2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-
yl)propyl]piperidine;
```

[3R,4R]-1-Heptyl-3-aminocarbonyloxyethyl-4-[3-(6-methoxyquinolin-4yl)propyl]piperidine; [3R,4R]-3-Ethyloxycarbonylaminocarbonyloxyethyl-1-heptyl-4-[3-(6-methoxyquinolin-4-vI)propyl]piperidine; [3R,4R]-3-(1-(R,S)-2--(1-(R,S),2-Dihydroxyethyl)-1-heptyl-4-[3-(R,S)-hydroxy-3-(6methoxyquinolin-4-yl)propyl]piperidine; [3R, 4R]-3-Ethyl-1-heptyl-4-[(6-methoxyquinolinyl-4-oxy)methyl]piperidine; [3R,4S]-3-Ethenyl-1-heptyl-4-[2-(6-methoxyquinolin-4-yl)-oxyethyl]piperidine; 1-Heptyl-4-[(6-methoxyquinolin-4-yl)oxymethyl]piperidine; [3R,4R]-3-Ethyl-1-heptyl-4-[(6-methoxyquinolin-4-yl)methylthiomethyl]piperidine; [3R,4R]-1-Heptyl-3-ethenyl-4-[(6-methoxyquinoline-4yl)carbonylamino\methyl]piperidine; [3R,4R]-3-Ethenyl-1-heptyl-piperidine-4-[N-(6-methoxyquinolin-4-yl)]propionamide; [3R,4R]-3-Ethenyl-1-heptyl-piperidine-4-[N-(6-methoxyquinolin-4-yl)]propylamine; [3R,4S] 3-Ethenyl-1-heptyl-piperidine-4-[N-(6-methoxyquinolin-4-yl)]acetamide; [3R,4R]-3-Ethenyl-1-hoptyl-piperidine-4-[N-(6-methoxyquinolin-4-yl)]ethylamine; [3R,4S]-3-Ethenyl-1-heptyl-4-[2-(R,S)-hydroxy-2-(6-methoxyquinolin-4yl)ethyl]piperidine; [3R,4R]-3-Ethenyl-1-heptyl-4-[2-(6-methoxyquinolin-4-yl)ethyl]piperidine; [3R,4R]-3-Ethyl-1-heptyl-4-[2-(6-methoxyquinolin-4-yl)ethyl]piperidine; 1-Heptyl-4-[2(R,S)-hydroxy-2-(6-methoxy-4-quinolinyl)ethyl]-piperidine; [3S,4R]-3-Ethenyl-1-heptyl-4-[2-(6-methoxyquinolin-4-yl)ethyl]piperidine; N-(6-Methoxy-4-quinolinyl)-1-heptyl-4-piperidinecarboxamide; (3Z)-(4R)-3-Ethylidene-1-heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine; [3R,4S] -1-Cinnamyl-4-[2-(6-methoxyquinolin-4-yl)-oxyethyl]piperidine; [3R,4R]-3-(2-Acetoxyethyl)-1-heptyl-4-[3-(6-methoxy-quinolin-4-yl)propyl]piperidine; [3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-{2-hydroxyethyloxy}quinolin-4-yl)propyl]piperidine; [3R,4R]-3-(Ethylaminocarbonyloxyethyl)-1-heptyl-4-[3-(6-methoxyquinolin-4yl)propyl]piperidine; [3R,4R]-3-Ethenyl-1-heptyl-4-[3-(R,S)-aminocarbonylamino-3-(6-methoxyquinolin-4yl)propyl]piperidine; [3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-(4-aminobutyloxy)-quinolin-4-yl)propyl]piperidine; I3R. 4RI-1-Heptyl-3-(1-(R)- and 1-(S)-hydroxy-2-methoxyethyl)-4-[3-(6methoxyquinelin-4-yl) propyl] piperidine;

- [3R, 4R]-1-Heptyl-3-(1-(R)-hydroxy-2-methoxyethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;
- [3R, 4R]-1-Heptyl-3-(1-(S)-hydroxy-2-methoxyethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;
- [3R, 4R]-1-Hoptyl-3-(1-(R)- and 1-(S)-hydroxy-2-methylthioethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl]piperidine;
- [3R, 4R]-1-Heptyl-3-(1-(R)-hydroxy-2-methylthioethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl]piperidine;
- [3R, 4R]-1-Heptyl-3-(1-(S)-hydroxy-2-methylthioethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl]piperidine;
- [3R, 4R]-1-(5-Methylhexyl)-3-(1-(R)- and 1-(S)-2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
- [3R, 4R]-1-(5-Methylhexyl)-3-(1-(R),2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
 - [3R, 4R]-1-(5-Methylhexyl)-3-(1-(S),2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
 - [3R, 4R]-3-Ethyl-1-heptyl-4-[3-(6-(3-aminopropyl)oxyquinolin-4-yl) propyl]piperidine;
 - [3R, 4R]-3-Ethyl-1-heptyl-4-[3-(6-(2-aminoethyl)oxyquinolin-4-yl) propyl]piperidine;
 - [3R,4R]-3-Ethyl-1-heptyl-4-[3-(6-(3-guanidinopropyl)oxyquinolin-4-yl) propyl] piperidine;
 - [3R, 4R]-3-Ethyl-1-heptyl-4-[3-(6-(piperidine-4-yl) methoxyquinolin-4-yl <u>6-(piperidine-4-yl) methoxyquinolin-4-yl</u>) propyl]piperidine;
 - [3R, 4S]-1-Heptyl-3-vinyl-4-[3-(6-methoxyquinolin-4-yl)-(R,R)-oxiran-2-ylmethyl]piperidine;
 - [3R, 4S]-1-Heptyl-4-[(2S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]-3-vinylpiperidine;
 - [3R, 4S]-1-Heptyl-3-vinyl-4-[3-(6-methoxyquinolin-4-yl)-(S,S)-oxiran-2-yl-methyl]piperidine;
 - [3R, 4S]-3-Ethyl-1-heptyl-4-[2-(S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;
 - [3R, 4S]-1-Heptyl-4-[N-methyl-N-(6-methoxyquinolin-4-yl)aminoethyl]-3-vinylpiperidine;
 - [3R,4R]-1-Heptyl-3-(1-(R,S)-hydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
 - [3R,4R]-1-Heptyl-3-(1-(R,S)-hydroxy-1-methylethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-Heptyl-3-hydroxymethyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine; [3R,4R]-1-(6-Methylheptyl)-3-(1-(R) and 1-(S),2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-(6-Methylheptyl)-3-(1-(R),2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R,4R]-1-(6-Methylheptyl)-3-(1-(S),2-dihydroxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4S]-1-Heptyl-4-[(2S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]-3-(2-hydroxyethyl)piperidine; <u>and</u>

[3R, 4S]-1-Heptyl-3-aminocarbonyloxymethyl-4-[3-(6-methoxyquinolin-4-yl)propyl]piperdinepiperidine;and

[3R, 4R] 1-Heptyl-4-[3-(6-methoxyquinolin-4-yl)propyl] 3-(2-carbamoylethyl)piperidine;

or a pharmaceutically acceptable <u>acid addition salt, quaternary ammonium salt, or Noxide derivative</u> of any of the foregoing compounds.

29. (Withdrawn - currently amended) A process for preparing a compound of formula (IA)(I) or a pharmaceutically acceptable derivative thereof, according to claim 18 which process comprises:

(a) reacting a compound of formula (IV) with a compound of formula (V):

$$(R^{1})_{m}$$

$$(CH_{2})_{n}$$

$$R^{2}$$

$$(V)$$

$$(V)$$

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), and X and Y may be the following combinations:

- (i) X is M and Y is CH₂CO₂R^X
- (ii) X is CO₂RY and Y is CH₂CO₂RX
- (iii) one of X and Y is CH=SPh2 and the other is CHO
- (iv) X is CH₃ and Y is CHO
- (v) X is CH₃ and Y is CO₂R^X

- (vi) X is CH₂CO₂R^y and Y is CO₂R^x
- (vii) X is CH=PR^Z₃ and Y is CHO
- (viii) X is CHO and Y is CH=PRZ3
- (ix) X is halogen and Y is CH=CH₂
- (x) one of X and Y is COW and the other is NHR^{11'} or NCO
- (xi) one of X and Y is $(CH_2)_p$ -V and the other is $(CH_2)_qNHR^{11}$, $(CH_2)_qOH$, $(CH_2)_qSH$ or $(CH_2)_qSCOR^X$ where p+q=1
- (xii) one of X and Y is CHO and the other is NHR11'
- (xiii) one of X and Y is OH and the other is -CH=N₂

in which V and W are leaving groups, R^X and R^Y are (C_{1-6}) alkyl and R^Z is aryl or (C_{1-6}) alkyl;

(b) rearranging a compound of formula (II):

$$(R^{1'})_m$$

$$(II)$$

to give a compound of formula (III) which is a compound of formula (I) where R^3 is in the 3-position, n is 1, A-B is $COCH_2$ or disubstituted epoxide and R^2 is H, and thereafter optionally reducing to a compound of formula (VII) which is a compound of formula (I) where n is 1, A-B is $CHOHCH_2$ or CH_2CHOH and R^2 is H;

(c) photooxygenating a compound of formula (VI):

$$(R^1)_m$$
 $N-R^4$
 (VI)

or

(d) reacting a compound of formula (IV) with a compound of formula (Vb):

$$(R^{1})_{m}$$

$$(CH_{2})_{n-1}$$

$$R^{2}$$

$$(Vb)$$

wherein m, n, R¹, R², R³ and R⁴ are as defined in formula (I), X is $CH_2NHR^{11'}$ and Y is CHO or COW or X is CH_2OH and Y is $-CH=N_2$; in which R^{11'}, R^{1'}, R^{2'}, R^{3'} and R^{4'} are R¹¹, R¹, R², R³ and R⁴ or groups convertible thereto, and thereafter optionally or as necessary converting R^{11'}, R^{1'}, R^{2'}, R^{3'} and R^{4'} to R^{11'}, R¹, R², R³ and R⁴, converting A-B to other A-B, interconverting R¹¹, R¹, R², R³ and/or R⁴ and forming a pharmaceutically acceptable derivative thereof, wherein the pharmaceutically acceptable derivative is an acid addition salt, quaternary ammonium salt, or N-oxide.

- 30. (Withdrawn currently amended) A process for preparing a compound of formula (IB)(I), or a pharmaceutically acceptable derivative thereof, according to claim 19 which process comprises:
 - (a) reacting a compound of formula (IV) with a compound of formula (V):

$$(R^{1'})_{m}$$

$$(CH_{2})_{n}$$

$$R^{2'}$$

$$(IV)$$

$$(V)$$

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), and X and Y may be the following combinations:

- (i) X is M and Y is $CH_2CO_2R^X$
- (ii) X is CO₂Ry and Y is CH₂CO₂RX

- (iii) one of X and Y is CH=SPh2 and the other is CHO
- (iv) X is CH₃ and Y is CHO
- (v) X is CH₃ and Y is CO₂R^X
- (vi) X is CH₂CO₂R^y and Y is CO₂R^x
- (vii) X is CH=PRZ3 and Y is CHO
- (viii) X is CHO and Y is CH=PRZ3
- (ix) X is halogen and Y is CH=CH₂
- (x) one of X and Y is COW and the other is NHR^{11'} or NCO
- (xi) one of X and Y is $(CH_2)_p$ -V and the other is $(CH_2)_qNHR^{11}$, $(CH_2)_qOH$, $(CH_2)_qSH$ or $(CH_2)_qSCOR^X$ where p+q=1
- (xii) one of X and Y is CHO and the other is NHR¹¹
- (xiii) one of X and Y is OH and the other is -CH=N2

in which V and W are leaving groups, R^X and R^Y are (C_{1-6}) alkyl and R^Z is aryl or (C_{1-6}) alkyl;

(b) rearranging a compound of formula (II):

$$(R^1)_m$$
 (II)

to give a compound of formula (III) which is a compound of formula (I) where R^3 is in the 3-position, n is 1, A-B is $COCH_2$ or disubstituted epoxide and R^2 is H, and thereafter optionally reducing to a compound of formula (VII) which is a compound of formula (I) where n is 1, A-B is CHOHCH₂ or CH_2CHOH and R^2 is H;

(c) photooxygenating a compound of formula (VI):

$$(R^{1'})_{m}$$
 $N-R^{4'}$
 (VI)

or

(d) reacting a compound of formula (IV) with a compound of formula (Vb):

$$(R^{1'})_{m}$$

$$(IV)$$

$$(CH_{2})_{n-1}$$

$$R^{2'}$$

$$(Vb)$$

wherein m, n, R¹, R², R³ and R⁴ are as defined in formula (I), X is CH₂NHR^{11'} and Y is CHO or COW or X is CH₂OH and Y is -CH=N₂; in which R^{11'}, R^{1'}, R^{2'}, R^{3'} and R^{4'} are R¹¹, R¹, R², R³ and R⁴ or groups convertible thereto, and thereafter optionally or as necessary converting R^{11'}, R^{1'}, R^{2'}, R^{3'} and R^{4'} to R^{11'}, R¹, R², R³ and R⁴, converting A-B to other A-B, interconverting R¹¹, R¹, R², R³ and/or R⁴ and forming a pharmaceutically acceptable derivative thereof, wherein the pharmaceutically acceptable derivative is an acid addition salt, quaternary ammonium salt, or N-oxide.

- 31. (Withdrawn currently amended) A process for preparing a compound of formula (I), or a pharmaceutically acceptable derivative thereof, according to claim 28 which process comprises:
 - (a) reacting a compound of formula (IV) with a compound of formula (V):

$$(R^{1'})_{m}$$

$$(CH_{2})_{n}$$

$$R^{2'}$$

$$(IV)$$

$$(V)$$

wherein m, n, R^1 , R^2 , R^3 and R^4 are as defined in formula (I), and X and Y may be the following combinations:

- (i) X is M and Y is CH₂CO₂R^X
- (ii) X is CO₂R^y and Y is CH₂CO₂R^x
- (iii) one of X and Y is CH=SPh2 and the other is CHO
- (iv) X is CH3 and Y is CHO
- (v) X is CH₃ and Y is CO₂R^x
- (vi) X is CH₂CO₂R^y and Y is CO₂R^x
- (vii) X is CH=PRZ3 and Y is CHO
- (viii) X is CHO and Y is CH=PRZ3
- (ix) X is halogen and Y is CH=CH₂
- (x) one of X and Y is COW and the other is NHR^{11'} or NCO
- (xi) one of X and Y is $(CH_2)_p$ -V and the other is $(CH_2)_qNHR^{11}$, $(CH_2)_qOH$, $(CH_2)_qSH$ or $(CH_2)_qSCOR^x$ where p+q=1
- (xii) one of X and Y is CHO and the other is NHR¹¹'
- (xiii) one of X and Y is OH and the other is -CH=N2

in which V and W are leaving groups, R^X and R^Y are (C_{1-6}) alkyl and R^Z is aryl or (C_{1-6}) alkyl;

(b) rearranging a compound of formula (II):

$$(R^{1})_{m}$$

$$(II)$$

to give a compound of formula (III) which is a compound of formula (I) where R^3 is in the 3-position, n is 1, A-B is $COCH_2$ or disubstituted epoxide and R^2 is H, and thereafter optionally reducing to a compound of formula (VII) which is a compound of formula (I) where n is 1, A-B is $CHOHCH_2$ or CH_2CHOH and R^2 is H;

(c) photooxygenating a compound of formula (VI):

$$(R^1)_m$$
 $N-R^4$
 (VI)

or

(d) reacting a compound of formula (IV) with a compound of formula (Vb):

$$(R^{1'})_{m}$$

$$(IV)$$

$$(CH_{2})_{n-1}$$

$$R^{2'}$$

$$(Vb)$$

wherein m, n, R¹, R², R³ and R⁴ are as defined in formula (I), X is CH₂NHR^{11'} and Y is CHO or COW or X is CH₂OH and Y is -CH=N₂; in which R^{11'}, R^{1'}, R^{2'}, R^{3'} and R^{4'} are R¹¹, R¹, R², R³ and R⁴ or groups convertible thereto, and thereafter optionally or as necessary converting R^{11'}, R^{1'}, R^{2'}, R^{3'} and R^{4'} to R^{11'}, R¹, R², R³ and R⁴, converting A-B to other A-B, interconverting R¹¹, R¹, R², R³ and/or R⁴ and forming a pharmaceutically acceptable derivative thereof, wherein the pharmaceutically acceptable derivative is an acid addition salt, guaternary ammonium salt, or N-oxide.

32. (Currently amended) A pharmaceutical composition comprising a compound <u>or derivative</u> according to claim 18, and a pharmaceutically acceptable carrier.

33. (Currently amended) A pharmaceutical composition comprising a compound <u>or derivative</u> according to claim 19, and a pharmaceutically acceptable carrier.

Claim 34 (Canceled)