

Outline

- Team Dynamics
- EDA
- Unsupervised ML
- Supervised ML
- Takeaways

Team Development / Management

EDA

Gray scale image visualising the dataset with features ordered by the log loss. You can see patterns in which the values of particular features

EDA - Comparison between test and train datasets

Some categorical variables are not present in the test set in total 45 variables

EDA - Correlation between continuous features

Continuous variables

Variables	Correlation
Cont 11 & Cont 12	0.994384
Cont 1 & Cont 9	0.929912
Cont 6 & Cont 10	0.883351
Cont 6 & Cont 13	0.815091
Cont 1 & Cont10	0.808551
Cont 9 & Cont 6	0.797544
Cont 9 & Cont 10	0.785697
Cont 6 & Cont12	0.785144

PCA- Dimensionality reduction

Dimensionality reduction for continuous variables using PCA: We have 14 continuous features

EDA - Correlation between 2-variables categorical features

72, 2-variables categorical data (A,B)

Label encoding

Numerical values

Correlation

Variables	Correlation	
Cat 2 & Cat 9	0.932420	
Cat 50 & Cat 6	0.925731	
Cat 8 & Cat 66	0.862231	
Cont 57 & Cont 7	0.809418	
Cont 3 & Cont 16	0.783480	

SVD - Correlation between 2-variables categorical features

SVD: Singular Value Decomposition

We can reduce the number of 2-variable categorical data to 26 variables

State Mean Loss

- Assuming cat112 == US states
- Average loss per state
- Calibrate premium setting for states with very high loss rate

Hierarchical Clustering into Five Groups

Dendrogram of Average Linkage 5 Clusters

Hierarchical Clustering Cont...

```
## clusters.average
## 1 2 3 4 5
## 3 22 19 7 1
```

```
##
     cluster
                Min
                       Ol Median Mean
                                         03
                                               Max
## 1
              23.69 1200 1981.0 2844 3523 121000
## 2
           2 123.05 1183 2025.5 2827 3537
                                             24450
## 3
           3 189,20 1376 2339,0 3216 4178
                                             30440
## 4
           4 201.60
                      998 1671.0 2428 3015
                                             19620
## 5
           5 786.30 1327 2187.0 2735 3123
                                              7998
```

- We can consider performing feature engineering
- We can consider removing AQ only has 30 observations

Machine Learning for Prediction

Tactics to Reduce Iteration Time:

Regularization

- Near-zero variance function
- Use p values from regression
- Reduced # levels (e.g., cat116)

Sampling

- Random sampling
- Sampling cat80D versus B

Other

- Used AWS, but parallel processing not always a turn-key solution
- Reduce # folds in validation

Models Examined:

Regression

- Linear regression -- R^2 of 50%. Good for initial analysis
- Boosted trees -- XGBoost had best performance
- Neural network -- close second to XGBoost
- XGBBoost + NN => marginal improvement MAE 1126

Classification

- Logistic regression
- SVM

Machine Learning for Prediction -- XGB Model Tuning

- Final result: 850 iterations, learning rate 0.05, 5 trees
- Prediction unstable with reduced cross-validation folds
- Regularization penalized MAE \$300

Machine Learning for Prediction -- Model Assessment Variable Importance

Machine Learning for Prediction -- XGB Model Tuning

Most of error for claims between exp(\$6) and exp(\$9) ~(\$400-\$8000), therefore no need to get distracted by tails

Model gets more accurate until exp(\$8) ~\$3000, then performance degrades

Machine Learning for Prediction -- Model Assessment

Underestimates increase with loss

Linear Regression w/ 6 Features vs XGBoost with all Features

What's Salvageable?

When you've been devastated by a serious car accident, your focus is on the things that matter the most: family, friends, and other loved ones. Pushing paper with your insurance agent is the last place you want your time or mental energy spent.

Conclusion: claim size can not be accurately predicted based on provided features

Root Problem

Doing paperwork for claim protects insurer against fraud

May be able to **reduce paperwork** burden for claims if they don't look "fishy"

Can features support a classification question?

New classifier: "smallClaim"

80% of customers account for 50% of claims by value -- all below \$4500

"Fishy" claims: feature set associated with small claim value, but requested value is large (the opposite is not important for protection against fraud)

Fishing for Fishy Claims

Models used: GB, SVM, logistic regression. All had high accuracy but ~50% sensitivity.

We needed something that can be optimized to minimize false positives (logistic)

Next Steps: quantify dollar risk of misclassification and dollar benefit to customer of reduced paperwork

Classification Model: Low Profile with High Valued Accounts

Confusion Matrix and Statistics			
	High	Low	
High	1684	537	
Low	1641	13097	
Accuracy	0.8716		
95% CI	(0.8664, 0.8766)		
No Information Rate	0.8039		
Sensitivity	0.5065		
Specificity	0.9606		

Training a classification model (using GBM) with a profile having a loss value <= \$4500 provides 87% accuracy.

Sensitivity (false positive) rate of 50% results in half the low profile accounts being falsely identified as high profile, hence increasing the paperwork process.

Specificity (false negatives) rate of 96% indicates a low error rate of 4%; thus a low probability of missing a low profile account with a high value claim request.

Conclusion

Kaggle Competition

- To what degree are we improving performance versus overfitting the test data?
- Continue to fine tune models to improve scoring (mean absolute estimate) in Kaggle

Business Insight

- Tune classifier model by incorporating missing categorical values into the training / test set
- Reducing CV folds is a mixed blessing: useful initially, but becomes easy to overfit