Adopted Levels, Gammas

 $Q(\beta^-)=10470\ 40$; $S(n)=2470\ 40$; $S(p)=18680\ 40$; $Q(\alpha)=-13690\ 40$ 2021Wa16 $S(2n)=10020\ 40$, $S(2p)=33930\ 40$, $Q(\beta^-n)=2090\ 40$ (2021Wa16). Isotope discovery (2012Th10): $^{232}Th(^{40}Ar,X)$ at Dubna (1971Ar32). ^{35}Si production:

- 2015Mo17: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=95 MeV/nucleon at RIKEN. Measured angular distributions and transverse momentum distributions of fragments. Deduced formulation for the width of transverse momentum distribution as a function of fragment velocity.
- 2012Kw02: ⁹Be,^{nat}Ni,¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=140 MeV/nucleon at NSCL. Measured fragmentation cross sections, parallel momentum transfers, and widths. Compared with empirical formula EPAX, and predictions from internuclear cascade and deep inelastic models using Monte Carlo ISABEL-GEMINI and DIT-GEMINI codes.
- 2012Zh06: ⁹Be, ¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=57 MeV/nucleon at HIRFL. Measured momentum distributions and production cross sections of fragments. Observed competition between projectile fragmentation and other mechanisms. Compared with EPAX, abrasion- ablation, and HIPSE models. Studied target dependence of fragment cross sections.
- 2007No13: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=100 MeV/nucleon at RIKEN. Measured fragment momentum distributions and production cross sections.

2006Ro34: ${}^{2}H({}^{42}S,X)$ at $E({}^{42}S)$ =99.8 MeV/nucleon at NSCL. Measured production cross sections.

1997Fo01: ²⁰⁸Pb(³⁷Cl,X) at E(³⁷Cl)=230 MeV at Legnaro. Measured yields.

³⁵Si decay measurements:

1986Du07,1986HuZW,1987DuZU,1988DuZS,1988DuZT: 9 Be(40 Ar,X) at GANIL. Measured $T_{1/2}$ and β^- -delayed γ rays.

2007Ne14: 35 Si g.s. magnetic moment and g-factor using β -NMR.

³⁵Si radius measurements:

- 2006Kh08: ³⁵Si produced by ¹⁸¹Ta(⁴⁸Ca,X) fragmentation at E(⁴⁸Ca)=60.3 MeV/nucleon at GANIL. Measured energy-integrated reaction cross sections at 30-65 MeV/nucleon using a silicon telescope as both active target and detector. Deduced reduced strong absorption radii, isospin dependence, and possible halo structure or large deformation.
- 1999Ai02: Si(³⁵Si,X) at NSCL. Measured energy-integrated reaction cross sections at E=38-80 MeV/ nucleon. Deduced strong absorption radii.

³⁵Si mass measurements: 1986Fi06, 1986Sm05, 1984Ma49.

Theoretical calculations (binding energies, deformation, quadrupole moments, radii, levels, J^{π} , etc.): 2011Ka03, 2009No01, 2008Wi11, 2007Ch82, 2004Kh16, 1999Du05, 1994Mo37, 1994Po05, 1987Wa10, 1986Wo02.

35Si Levels

Cross Reference (XREF) Flags

- A $^{35}\text{Al}\,\beta^{-}$ decay (37.2 ms)
- B ¹H(³⁴Si,p):from IAR
- 2 H(34 Si,p γ)
- D ${}^{9}\text{Be}({}^{36}\text{Si}.{}^{35}\text{Si}\nu)$

 $\frac{\text{E(level)}^{\dagger}}{0} \quad \frac{\text{J}^{\pi \ddagger}}{(7/2)^{-}} \quad \frac{\text{T}_{1/2}}{0.78 \text{ s } 12} \quad \frac{\text{XREF}}{\text{ABCD}}$

Comments

 $\%\beta^-=100; \%\beta^- n<5 (1995 ReZZ/2008 ReZZ)$ $\mu=(-)1.638 \ 4 (2007 Ne14,2014 StZZ)$

 μ : Using β -NMR on a polarized fragment beam (2007Ne14).

 J^{π} : (d,p)=3 in ${}^2H({}^{34}Si,p\gamma)$, $7/2^-$ from shell-model predictions, and systematic trends in Si isotopes.

 $T_{1/2}$: From β-decay measurement (1988DuZT). In an earlier paper by the same group (1986Du07) value given is 0.87 s I7. The evaluators adopt the more recent value. Mean square absorption radius=1.261 fm² 35 from 2006Kh08 in Si(35 Mg,X) reaction at E=33.79 and 38.79 MeV/nucleon, also measured energy-integrated cross sections, σ_R =2.53 b 8. Other: r_0^2 =1.26 fm² 9, σ_R =2.46 b I8 at E=68.81 MeV/nucleon (1999Ai02).

Configuration= $\nu f_{7/2}$.

Adopted Levels, Gammas (continued)

³⁵Si Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments			
909.95 23	(3/2) 55	PS 14	ABCD	J^{π} : L(d,p)=1 in ${}^{2}H({}^{34}Si,p\gamma)$, $3/2^{-}$ from shell-model predictions, and systematic trends in Si isotopes.			
				$T_{1/2}$: From analysis of broadened lineshape in ${}^{9}\text{Be}({}^{36}\text{Si}, {}^{35}\text{Si}\gamma)$ (2014St18).			
				Configuration= $\nu p_{3/2}$.			
973.88 18	$(3/2^+)$	5.9 ns 6	AB D	$T_{1/2}$: From the time spectrum of delayed coincidences in 35 Al β^- decay (2001Nu01).			
1444?	$(1/2^+)$		В	E(level), J^{π} : corresponding to a possible IAR in 35 P with L(p)=0 from R-Matrix analysis in 1 H(34 Si,p):From IAR (2012Im01).			
1689 <i>3</i>	1/2+		D	J^{π} : L(n)=0 in ${}^{9}Be({}^{36}Si, {}^{35}Si\gamma)$.			
1970 6	-/-		D	0 1 2(n) 0 m 20(01, 01/).			
2044 5	(1/2)-		CD	J^{π} : L(d,p)=1 in ${}^{2}H({}^{34}Si,p\gamma)$, $1/2^{-}$ from shell-model predictions.			
	T (0.1			Configuration= $\nu p_{1/2}$.			
2168.2 4	5/2+		AB D	J^{π} : corresponding to an IAR in 35 P with L(p)=2 and J=5/2 ⁺ from R-Matrix analysis in 1 H(34 Si,p):From IAR (2012Im01).			
2194?	$(1/2^-,3/2^-)$		В	E(level), J^{π} : corresponding to a possible IAR in ³⁵ P with L(p)=1 from R-Matrix analysis in ¹ H(³⁴ Si,p):From IAR (2012Im01).			
2275 6			D	it matrix analysis in Ti(51,p). From Titt (2012/mor).			
2377 7			D				
3140			Α				
3450			Α				
3611? 8			D				
3770			Α				
5190			Α				
≈5500	(5/2)		С	J^{π} : L(d,p)=3 in ${}^{2}H({}^{34}Si,p\gamma)$. Configuration= $vf_{5/2}$.			
5760			A				
6330			Α				
7360			Α				
7690			Α				

 $^{^{\}dagger}$ From a least-squares fit to γ -ray energies if applicable. Values without uncertainties are from 35 Al β^- decay, unless otherwise noted. \ddagger From shell mode predictions and systematic trends on Si isotopes.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α#	Comments
909.95	$(3/2)^{-}$ 55	910.11 30	100	0	(7/2)	[E2]		
973.88	$(3/2^+)$	64.1 <i>3</i>	100	909.95	$(3/2)^-$ 55	[E1]	0.0368 8	B(E1)(W.u.)=0.00036 4
		973.78 20	11.8 24	0	$(7/2)^{-}$	[M2]		B(M2)(W.u.)=0.059 14
1689	1/2+	715 [‡] 4	14.6 [‡] <i>15</i>	973.88	$(3/2^+)$			
		780 [‡] 4	100 [‡] 8	909.95	$(3/2)^{-}$ 55			
1970		1970 [‡] 6	100	0	$(7/2)^{-}$			
2044	$(1/2)^{-}$	1134 [‡] 5	100	909.95	$(3/2)^{-}$ 55			
2168.2	5/2+	1194.2 <i>4</i>	35 8	973.88	$(3/2^+)$			
		2168.2 <i>6</i>	100 20	0	$(7/2)^{-}$			
2275		2275 [‡] 6	100	0	$(7/2)^{-}$			
2377		2377 [‡] 7	100	0	$(7/2)^{-}$			
3611?		3611 [‡] 8	100	0	$(7/2)^{-}$			

Adopted Levels, Gammas (continued)

γ (35Si) (continued)

 † From 35 Al β^- decay, unless otherwise noted. ‡ From 9 Be(36 Si, 35 Si γ).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.