1 Introducció. Insuficiència de Q

El concepte de nombre real sorgeix de forma natural en mesurar magnituds. Els racionals ja permeten mesurar certs intervals (donat un interval I que prenem com unitat, diem que la mesura d'un interval J és el racional p/q si podem dividir I en q parts iguals tals que p vegades una d'elles és J). Però hi ha segments que són incommensurables. Per exemple, si prenem com a I el costat d'un quadrat, llavors la seva diagonal J no és mesurable. Expressat en llenguatge algebraic, no existeix cap racional p/q tal que $(p/q)^2 = 2$. En efecte, si existís un p/q així amb mcd(p,q) = 1 tindríem $p^2 = 2q^2$, és a dir, p^2 és parell, de manera que p també ho és i per tant p^2 és múltiple de 4. Però llavors $4k = p^2 = 2q^2 \Rightarrow q^2 = 2k$ parell, de manera que q també és parell, en contradicció amb mcd(p,q) = 1.

Més en general, els reals sorgeixen de la necessitat que les equacions de la forma $x^n=q$ amb $n\in\mathbb{N}$ i $q\in\mathbb{Q}$ tinguin solució.

2 Conceptes i resultats previs

Definició. Una successió de nombres racionals és una aplicació de \mathbb{N} a \mathbb{Q} . És a dir, assignem a cada natural un racional que anomenarem a_n i direm que és el terme general de la successió. Notarem la successió per $\{a_n\}$. Notarem S el conjunt de totes les successions racionals.

Proposició. El conjunt S amb les operacions suma $\{a_n\} + \{b_n\} = \{a_n + b_n\}$ i producte $\{a_n\} \cdot \{b_n\} = \{a_nb_n\}$ té estructura d'anell commutatiu i unitari.

Definició. Una successió $\{a_n\}$ té límit $\ell \in \mathbb{Q}$ (o convergeix a ℓ) si $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}$ tal que $|a_n - \ell| < \varepsilon \ \forall n > n_0$. Ho escriurem com $\lim \{a_n\} = \ell$ o bé $\{a_n\} \to \ell$.

Definició. Una successió $\{a_n\}$ és *fitada* si existeix $k \in \mathbb{Q}$ tal que $|a_n| \leq k$ per a tot n.

Proposició. Tota successió convergent és fitada.

DEMOSTRACIÓ. Si $\{a_n\} \to \ell$ prenem $\varepsilon = 1$ i llavors $\exists n_0 \in \mathbb{N}$ tal que $|a_n - \ell| < 1 \ \forall n > n_0$. Llavors $|a_n| = |a_n - \ell + \ell| \le |a_n - \ell| + |\ell| < 1 + |\ell|$ per a $n > n_0$. Per tant $\{a_n\}$ està fitada per $\max(|a_1|, \ldots, |a_{n_0}|, 1 + |\ell|)$

Proposició. Si $\{a_n\} \to a$ i $\{b_n\} \to b$ llavors $\{a_n + b_n\} \to a + b$ i $\{a_n b_n\} \to ab$.

DEMOSTRACIÓ. Donat $\varepsilon > 0$ existeixen n_0, n_1 tals que $|a_n - a| < \varepsilon/2$ per $n > n_0$ i $|b_n - b| < \varepsilon/2$ per $n > n_1$. Llavors $|a_n + b_n - (a + b)| \le |a_n - a| + |b_n - b| < 2\varepsilon/2 = \varepsilon$ per a

 $n > n_2 = \max(n_0, n_1).$

Veiem-ho pel producte: com $\{a_n\}$ convergeix és fitada, $\{a_n\} \leq k$. Si b = 0 donat $\varepsilon > 0$ $\exists n_0$ tal que $|b_n| < \varepsilon/k$ i llavors $|a_n b_n| = |a_n| |b_n| < k\varepsilon/k = \varepsilon$ per $n > n_0$. Si $b \neq 0$ donat $\varepsilon > 0$ $\exists n_0$ tal que $|b_n - b| < \varepsilon/(2k)$ i $|a_n - a| < \varepsilon/(2|b|)$ per $n > n_0$, i aleshores

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab| \le |a_n b_n - a_n b| + |a_n b - ab| =$$

$$= |a_n||b_n - b| + |b||a_n - a| < k \frac{\varepsilon}{2k} + |b| \frac{\varepsilon}{2|b|} = \varepsilon. \quad \Box$$

3 Successions de Cauchy i construcció de \mathbb{R}

Definició. Una successió $\{a_n\}$ és de Cauchy si $\forall \varepsilon > 0 \exists n_0$ tal que $|a_n - a_m| < \varepsilon \forall n, m > n_0$. Informalment podem dir que "els termes de la successió es fan tan propers com vulguem". Anomenarem S_C el conjunt de les successions de Cauchy.

Proposició. Tota successió de Cauchy és fitada.

DEMOSTRACIÓ. Si $\{a_n\}$ és de Cauchy existeix un n_0 tal que $|a_n - a_m| < 1$ per a $n, m > n_0$, i podem escriure $|a_n| = |a_n - a_{n_0+1} + a_{n_0+1}| \le |a_n - a_{n_0+1}| + |a_{n_0+1}| < 1 + |a_{n_0+1}|$ i per tant una fita de $\{a_n\}$ és $k = \max(|a_1|, \ldots, |a_{n_0}|, 1 + |a_{n_0+1}|)$.

Proposició. Tota successió convergent és de Cauchy.

Demostració. Si $\{a_n\} \to \ell \exists n_0 \text{ tal que } |a_n - \ell| < \varepsilon/2 \text{ per } n > n_0$. Si també $m > n_0$ tenim

$$|a_n - a_m| = |a_n - \ell + \ell - a_m| \le |a_n - \ell| + |a_m - \ell| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \qquad \Box$$

El recíproc en general no és cert a \mathbb{Q} . En efecte, sigui $\{a_n\}$ la successió de terme general $a_n = \sum_{k=0}^n 1/k!$. Llavors, si m > n,

$$|a_m - a_n| = \sum_{k=n+1}^m \frac{1}{k!} = \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \dots + \frac{1}{m(m-1)\dots(n+2)} \right) \le \frac{1}{(n+1)!} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{m-(n+1)}} \right) < \frac{2}{(n+1)!}$$

que és arbitràriament petit, i per tant $\{a_n\}$ és de Cauchy. Però en canvi $\{a_n\}$ no pot tenir per límit un $p/q \in \mathbb{Q}$ ja que aleshores tindríem $0 < p/q - a_n \le 2/(n+1)!$ i multiplicant tota la desigualtat per n! on n > q tindríem $0 < n! p/q - n! a_n \le 2/(n+1)$. Ara bé, el nombre $n! p/q - n! a_n$ és un enter i aquesta desigualtat no pot verificar-se per n prou gran.

Teorema. El conjunt S_C de successions de Cauchy amb la suma i producte definits a S té estructura d'anell commutatiu i unitari.

DEMOSTRACIÓ. Si $\{a_n\}, \{b_n\} \in S_C$, donat ε tenim $|a_n - a_m| < \varepsilon/2$, $|b_n - b_m| < \varepsilon/2$ per $m, n > n_0$, i aleshores $|a_n + b_n - (a_m + b_m)| \le |a_n - a_m| + |b_n - b_m| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Per veure-ho pel producte usem que les successions de Cauchy són fitades, $\{a_n\}, \{b_n\} \le k$ i prenem $|a_n - a_m| < \varepsilon/(2k)$, $|b_n - b_m| < \varepsilon/(2k)$. Llavors

$$|a_n b_n - a_m b_m| = |a_n b_n - a_n b_m + a_n b_m - a_m b_m| \le |a_n| |b_n - b_m| + |b_m| |a_n - a_m| < \varepsilon.$$

Les propietats de la suma i el producte (associativa, commutativa, distributiva) es dedueixen immediatament de les de \mathbb{Q} . L'element neutre de la suma és la successió constant igual a 0, i el del producte la successió constant igual a 1, i l'oposat de $\{a_n\}$ és $\{-a_n\}$.

Definició. Una successió $\{a_n\}$ és $nul\cdot la$ si té límit 0. Anomenem S_0 el conjunt de les successions nul·les.

Proposició. Si $\{a_n\}, \{b_n\} \in S_0$ i $\{c_n\} \in S_C$ llavors $\{a_n + b_n\} \in S_0$ i $\{a_n c_n\} \in S_0$. Dit més breument, $S_0 \subset S_C$ és un ideal.

DEMOSTRACIÓ. Ja s'havia provat que si $\{a_n\} \to a$ i $\{b_n\} \to b$ llavors $\{a_n + b_n\} \to a + b$. Per provar la segona part només cal notar que $|c_n| \le k$ i donat $\varepsilon > 0$ $|a_n| < \varepsilon/k$ per $n > n_0$. Per tant $|a_n c_n| = |a_n| |c_n| < k \varepsilon/k = \varepsilon$.

Proposició. Si $\{a_n\}$, $\{b_n\} \in S_C$, definim la relació $\{a_n\} \sim \{b_n\} \Leftrightarrow \{a_n-b_n\} \in S_0$. Aquesta relació és d'equivalència.

Definició. Anomenem conjunt dels nombres reals al conjunt quocient $\mathbb{R} = S_C / \sim$.

4 Propietats de \mathbb{R}

Proposició. Les operacions suma i producte definides a \mathbb{R} per $[\{a_n\}] + [\{b_n\}] = [\{a_n + b_n\}]$ i $[\{a_n\}] \cdot [\{b_n\}] = [\{a_n b_n\}]$ són consistents i no depenen dels representants escollits de cada classe. Aquestes operacions doten a \mathbb{R} d'estructura d'anell commutatiu i unitari. A més, existeix un homomorfisme de grups $\varphi : \mathbb{Q} \longrightarrow \mathbb{R}$ definit per $\varphi(q) = [\{q\}]$ (on $\{q\}$ és la successió constant $\{q, q, q, \ldots\}$) que permet pensar $\mathbb{Q} \subset \mathbb{R}$ identificant \mathbb{Q} amb $\varphi(\mathbb{Q})$.

Definició. Diem que $\{a_n\} \in S_C$ és positiva (resp. negativa) si $\exists \delta > 0$ (resp. $\delta < 0$) tal que $\forall n > n_0$ es verifica $a_n \geq \delta$ (resp. $a_n \leq \delta$).

Teorema. L'anell $(\mathbb{R}, +, \cdot)$ té estructura de cos.

DEMOSTRACIÓ. Cal veure que si $[\{a_n\}] \neq [\{0\}]$ (això és, $\{a_n\} \notin S_0$) llavors $\exists [\{a_n\}]^{-1}$. Com $\{a_n\}$ no és nul·la serà positiva o negativa i existirà $\delta > 0$ tal que $|a_n| \geq \delta$ per $n > n_0$. Si definim $b_n = 1$ per $n = 1, \ldots, n_0$ i $b_n = 1/a_n$ per $n > n_0$, la successió $\{b_n\}$ és de Cauchy doncs, donat $\varepsilon > 0$, per $n, m > n_0$ tenim que $|a_n - a_m| < \varepsilon \delta^2$ i

$$|b_n - b_m| = \left| \frac{1}{a_n} - \frac{1}{a_m} \right| = \frac{|a_m - a_n|}{|a_n a_m|} < \frac{\varepsilon \delta^2}{\delta^2} = \varepsilon$$

i per la manera com l'hem construït, $[\{b_n\}] = [\{a_n\}]^{-1}.$

Proposició. La relació definida per $[\{a_n\}] \leq [\{b_n\}] \Leftrightarrow \{b_n - a_n\}$ és una successió positiva o nul·la, és una relació d'ordre a \mathbb{R} , que és consistent i no depèn dels representats escollits de cada classe, i dota a \mathbb{R} d'estructura de cos ordenat.

Teorema. \mathbb{R} és un cos arquimedià, això és, els naturals no estan fitats a \mathbb{R} .

DEMOSTRACIÓ. Si $[\{a_n\}] \in \mathbb{R}$, com $\{a_n\} \in S_C \Rightarrow |a_n| \leq k$ i per tant existeix un natural m tal que $a_n < m \ \forall n \Rightarrow [\{a_n\}] \leq [\{m\}]$.

Lema. Tot element $\alpha \in \mathbb{R}$ és límit d'alguna successió de racionals.

DEMOSTRACIÓ. Sigui la successió $\{a_1, a_2, a_3, \ldots\}$ un representant de α . Identificant $a_n \in \mathbb{Q}$ amb $\alpha_n = [\{a_n, a_n, a_n, \ldots\}] \in \mathbb{R}$ veiem que $\lim \{\alpha_n\} = \alpha$ (fent un abús de notació escriurem $\lim \{a_n\} = \alpha$). En efecte, com $\{a_n\} \in S_C$, donat un racional $\varepsilon > 0$ tenim $|a_n - a_m| \le \varepsilon/2$ $\forall n, m > n_0$. Ara bé, la successió $\{|a_n - a_1|, |a_n - a_2|, \ldots\}$ és un representant de $|\alpha_n - \alpha|$, i la successió constant $\{\varepsilon/2, \varepsilon/2, \ldots\}$ ho és de $\varepsilon/2$, i per tant $|\alpha_n - \alpha| \le \varepsilon/2 < \varepsilon$.

Corol·lari. Donat $\alpha \in \mathbb{R}$ i $\varepsilon > 0$ existeix $q \in \mathbb{Q}$ tal que $|\alpha - q| < \varepsilon$.

Teorema. \mathbb{R} és complet per successions, això és, tota successió de Cauchy de \mathbb{R} té límit.

DEMOSTRACIÓ. Sigui $\{\alpha_n\}$ una successió de Cauchy a \mathbb{R} . Pel corol·lari anterior, $\forall n$ $\exists q_n \in \mathbb{Q}$ tal que $|\alpha_n - q_n| < 1/n$. La successió $\{q_n\}$ és de Cauchy. En efecte, donat $\varepsilon > 0$ sigui n_0 tal que $|\alpha_n - \alpha_m| < \varepsilon/3 \ \forall n, m > n_0$ i també $1/n_0 < \varepsilon/3$. Llavors

$$|q_n - q_m| \le |q_n - \alpha_n| + |\alpha_n - \alpha_m| + |\alpha_m - q_m| < \varepsilon$$

per $n, m > n_0$. Ara, si posem $\alpha = [\{q_n\}] \in \mathbb{R}$, pel lema anterior sabem que $\lim \{q_n\} = \alpha$, i com $|\alpha_n - q_n| < 1/n \to 0$, també tenim que $\lim \{\alpha_n\} = \alpha$.

Teorema. \mathbb{Q} és dens a \mathbb{R} , això és, donats $x, y \in \mathbb{R}$, x < y, $\exists q \in \mathbb{Q}$ tal que x < q < y.

Demostració. Considerem el cas 0 < x < y; els altres són trivials o es redueixen a aquest. Sigui n tal que 1/n < y - x, i sigui m tal que $m - 1 \le nx < m$, de manera que

 $(m-1)/n \le x < m/n$. Combinant ambdues designaltats obtenim $x < m/n \le x + 1/n < y$, i el racional buscat és q = m/n.

Teorema (representació decimal d'un nombre real). Sigui $x \in \mathbb{R}$, $x \geq 0$. Existeix una única successió d'enters a_0, a_1, a_2, \ldots amb $0 \leq a_n \leq 9$ per a $n \geq 1$ tals que

$$a_0 + \frac{a_1}{10} + \dots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \dots + \frac{a_n + 1}{10^n}$$

per a cada n, on no tots els termes són 9 d'un lloc en endavant. Recíprocament, donada una successió d'aquestes característiques, $\exists ! \, x \in \mathbb{R}, \, x \geq 0$ que compleix aquestes designaltats. Tenim un resultat anàleg per x < 0.

Teorema. \mathbb{R} és no numerable, això és, no existeix cap bijecció de \mathbb{N} en \mathbb{R} .

DEMOSTRACIÓ. Si $i: \mathbb{N} \longrightarrow \mathbb{R}$ és injectiva no pot ser exhaustiva. En efecte, si construïm un nombre real que tingui una expressió decimal $x = a_0, a_1 a_2 \dots$ de forma que $a_n \neq 9$ i a_n sigui diferent del n-èsim terme de l'expressió decimal de i(n), llavors $x \notin i(\mathbb{N})$ \square .

Teorema. Tot conjunt fitat superiorment (resp. inferiorment) a \mathbb{R} té suprem (resp. ínfim).

DEMOSTRACIÓ. Ens limitarem al cas de conjunts fitats superiorment, doncs es demostra fàcilment que $\sup(-A) = -\inf(A)$ (on $-A = \{-x \mid x \in A\}$).

Sigui k_0 una fita superior de A i sigui $b_0 \in A$. Considerem l'interval $[b_0, k_0] = \{x \in \mathbb{R} \mid b_0 \le x \le k_0\}$ i dividim-lo per la meitat en dos subintervals: $[b_0, (b_0 + k_0)/2]$ i $[(b_0 + k_0)/2, k_0]$. Dels dos ens quedarem amb el de més a la dreta que contingui elements de A, i l'anomenem $[b_1, k_1]$. Repetint aquest procés indefinidament obtenim una successió d'intervals encaixats $[b_0, k_0] \supset [b_1, k_1] \supset [b_2, k_2] \supset \cdots$ on tots els k_n són fites superiors de A, en cada interval $[b_n, k_n]$ hi ha elements de A i $k_n - b_n = (k_0 - b_0)/2^n$.

Sigui ara $c_n \in [b_n, k_n]$ qualsevol. La successió $\{c_n\}$ és de Cauchy ja que si n > m, $|c_n - c_m| \le k_m - b_m = (k_0 - b_0)/2^m$, que és arbitràriament petit. Per tant, com \mathbb{R} és complet, $\{c_n\} \to S$, i com $b_n \le c_m \le k_n$ per tot m > n també tindrem que $b_n \le S \le k_n$. Anem a veure que $S = \sup(A)$. Primer, S és una fita superior de A: sigui $c \in A$ tal que S < c. Llavors tindrem $S \le k_n < c$ d'un n en endavant (doncs $k_n - S \le k_n - b_n$ que es fa arbitràriament petit), en contradicció amb el fet que k_n és una fita superior de A. Finalment, S és la menor de les fites superiors, doncs si d també ho és i d < S, pel mateix raonament tenim que $d < b_n \le S$ a partir d'un n, en contradicció amb el fet que $[b_n, k_n] \cap A \ne \emptyset$.

Corol·lari. Tota successió $\{a_n\}$ de nombres reals monòtona creixent (resp. decreixent) fitada superiorment (resp. inferiorment) té límit.

DEMOSTRACIÓ. Ens limitem al cas de successions creixents. Sigui $S = \sup\{a_n\}$. Donat $\varepsilon > 0$, com S és la menor de les fites superiors tindrem que $S - \varepsilon < a_{n_0}$ per un cert n_0 , i llavors si $n > n_0 \Rightarrow a_n \ge a_{n_0} \Rightarrow 0 \le S - a_n \le S - a_{n_0} < \varepsilon$, i així $\lim\{a_n\} = S$.

5 Topologia de la recta real

Definició. Donat un conjunt X s'anomena una topologia sobre X a un conjunt $\tau \subset \mathfrak{p}(X)$ que verifica:

- 1. $\emptyset, X \in \tau$
- 2. Si U_i és una col·lecció arbitrària d'elements de τ llavors $\cup U_i \in \tau$.
- 3. Si U_i és una col·lecció finita d'elements de τ llavors $\cap U_i \in \tau$.

A la parella (X, τ) se l'anomena espai topològic.

Definició. Un conjunt $A \subset \mathbb{R}$ s'anomena tancat si tota successió $\{x_n\}$ convergent amb $x_n \in A$ i $\lim \{x_n\} = \ell$ verifica $\ell \in A$.

Exemple. Els intervals de la forma [a,b), (a,b] o (a,b) no són tancats. Pel primer cas prenem $x_n = b - (b-a)/n \in [a,b) \ \forall n$ i $\lim \{x_n\} = b \notin [a,b)$. Els altres casos són anàlegs.

Proposició. Els intervals [a, b], $(-\infty, b]$ i $[a, +\infty)$ són tancats.

DEMOSTRACIÓ. Veiem-ho pels [a,b] (els altres dos casos són similars). Suposem que no és tancat, llavors $\exists \{x_n\} \subset [a,b], \{x_n\} \to \ell \notin [a,b]$. Suposem $\ell > b$ (l'altre cas és anàleg) i sigui $\varepsilon = \ell - b$. Llavors, per a $n > n_0, \ell - x_n = |x_n - \ell| < \varepsilon = \ell - b \Rightarrow x_n > b$!!

Proposició. Si A_1, \ldots, A_m és una col·lecció finita de tancats, $\bigcup_{i=1}^m A_i$ també és tancat.

DEMOSTRACIÓ. Per inducció sobre m. Per m=2, sigui $\{x_n\} \subset A_1 \cup A_2$ convergent a ℓ . Si $\{x_n\} \subset A_1$ o $\{x_n\} \subset A_2$ llavors $\ell \in A_1$ o $\ell \in A_2 \Rightarrow \ell \in A_1 \cup A_2$. En cas contrari existirà una subsuccessió $\{x_{n_k}\}$ de $\{x_n\}$ continguda en A_1 o en A_2 , i com $\{x_{n_k}\} \to \ell$ tindrem també $\ell \in A_1 \cup A_2$. Si ara suposem que és cert fins a m tenim $\bigcup_{i=1}^{m+1} A_i = (\bigcup_{i=1}^m A_i) \cup A_{m+1}$ que és una unió de dos tancats i per tant és tancat.

Una unió infinita de tancats pot no ser tancada. Només cal prendre $\cup [0, 1 - 1/n] = [0, 1)$.

Proposició. Si A_i és una col·lecció arbitrària de tancats, $\cap_i A_i$ també és tancat.

Demostració. Si $\{x_n\} \subset \cap_i A_i$ i $\{x_n\} \to \ell \Rightarrow \{x_n\} \subset A_i \ \forall i \Rightarrow \ell \in A_i \ \forall i \Rightarrow \ell \in \cap_i A_i$. \square

Definició. Un conjunt $V \subset \mathbb{R}$ s'anomena *obert* si el seu complementari $\mathbb{R} \setminus V$ és tancat.

Proposició. Els intervals $(-\infty, b)$, $(a, +\infty)$ i (a, b) són oberts.

DEMOSTRACIÓ. Cert, doncs els seus complementaris són $[b, +\infty)$, $(-\infty, a]$ i $(-\infty, a] \cup [b, +\infty)$ respectivament, que són tancats. \square Proposició. Si V_1, \ldots, V_m és una col·lecció finita d'oberts, $\cap_{i=1}^m V_i$ també és obert.

DEMOSTRACIÓ. $\mathbb{R} \setminus \bigcap_{i=1}^m V_i = \bigcup_{i=1}^m (\mathbb{R} \setminus V_i)$ és tancat en ser una unió finita de tancats. \square Una intersecció infinita d'oberts pot no ser oberta, per exemple $\cap (-1/n, 1/n) = \{0\}$.

Proposició. Si V_i és una col·lecció arbitrària d'oberts, $\cup_i V_i$ també és obert.

DEMOSTRACIÓ. $\mathbb{R} \setminus \bigcup_i V_i = \cap_i (\mathbb{R} \setminus V_i)$ és tancat en ser una intersecció de tancats. \square Corol·lari. El conjunt $\tau = \{V \subset \mathbb{R} \mid V \text{ obert}\}$ és una topologia per \mathbb{R} . \square Teorema. V és obert $\Leftrightarrow \forall x \in V \exists \varepsilon > 0$ tal que $(x - \varepsilon, x + \varepsilon) \subset V$.

DEMOSTRACIÓ. Suposem que V és obert i que la tesi és falsa, és a dir, $\exists x \in V$ tal que $\forall \varepsilon > 0 \ (x - \varepsilon, x + \varepsilon) \not\subseteq V$. Prenent $\varepsilon = 1/n$ agafem $x_n \in (x - 1/n, x + 1/n)$ amb $x_n \in \mathbb{R} \setminus V$.

La successió $\{x_n\}$ convergeix a x doncs $|x_n - x| < 1/n \to 0$ i com $\mathbb{R} \setminus V$ és tancat $x \in \mathbb{R} \setminus V$, en contradicció amb $x \in V$.

Recíprocament, suposem que V no és obert, això és, $\mathbb{R} \setminus V$ no és tancat. Llavors existeix una successió $\{x_n\} \subset \mathbb{R} \setminus V$ tal que $\{x_n\} \to x \in V$. Per hipòtesi $\exists \varepsilon > 0$ tal que $(x-\varepsilon, x+\varepsilon) \subset V$, i per $n > n_0 |x_n - x| < \varepsilon$, això és, $x_n \in (x - \varepsilon, x + \varepsilon)$, en contradicció amb $x_n \in \mathbb{R} \setminus V$. \square

Definició. Diem que U és un entorn de x si $\exists \varepsilon > 0$ tal que $(x - \varepsilon, x + \varepsilon) \subset U$.

Proposició. Si U_1, U_2 són dos entorns de x llavors $U_1 \cap U_2$ també ho és.

DEMOSTRACIÓ. Com U_1, U_2 són entorns de $x \exists \varepsilon_1, \varepsilon_2 > 0$ tals que $(x - \varepsilon_1, x + \varepsilon_1) \subset U_1$, $(x - \varepsilon_2, x + \varepsilon_2) \subset U_2$. Prenen $\varepsilon = \min(\varepsilon_1, \varepsilon_2), (x - \varepsilon, x + \varepsilon) \subset U_1 \cap U_2$.

Definició. Sigui $A \subset \mathbb{R}$. Diem que x és un punt interior a A si existeix un entorn U de x tal que $U \subset A$. El conjunt de punts interiors a A es nota com int(A). Diem que x és un punt exterior a A si x és interior a $\mathbb{R} \setminus A$, i notem el conjunt de punts exteriors a A com ext(A). Diem que x és un punt frontera de A si tot entorn U de x conté punts de A i de $\mathbb{R} \setminus A$. El conjunt de punts frontera de A es nota com Fr(A).

Proposició. V és obert $\Leftrightarrow V = int(V)$.

Demostració. Aquesta proposició és clarament equivalent al teorema anterior que caracteritza els oberts: V és obert $\Leftrightarrow \forall x \in V \ \exists \varepsilon > 0 \ \text{tal que} \ (x - \varepsilon, x + \varepsilon) \subset V$.

Definició. Sigui $A \subset \mathbb{R}$. Diem que x és un punt adherent a A si tot entorn U de x conté algun punt de A. El conjunt de punts adherents a A es nota com \bar{A} i s'anomena adherència de A. Diem que x és un punt d'acumulació de A si tot entorn U de x verifica $(U \setminus \{x\}) \cap A \neq \emptyset$. El conjunt de punts d'acumulació a A es nota com A' i s'anomena conjunt derivat de A. Diem que un punt x és aillat si $x \in \bar{A} \setminus A'$.

Proposició. Sigui $A \subset \mathbb{R}$. Es verifica:

- 1. x és adherent $\Leftrightarrow x$ és límit d'alguna successió continguda en A.
- 2. $A \subset \bar{A}$, i tenim la igualtat $A = \bar{A} \Leftrightarrow A$ és tancat.
- 3. $A' \subset \bar{A}$.
- 4. $Fr(A) \subset \bar{A}$.
- 5. $\sup(A)$ i $\inf(A)$, en cas d'existir, pertanyen a \bar{A} .

DEMOSTRACIÓ. 1. Si tot entorn de x conté algun punt de A prenem $x_n \in (x-1/n, x+1/n)\cap A$ i clarament $\{x_n\} \to x$. Recíprocament, si $A \supset \{x_n\} \to x$ llavors $\forall \varepsilon > 0 \ |x_n-x| < \varepsilon$ i així tot entorn $(x-\varepsilon, x+\varepsilon)$ conté punts de $\{x_n\}$ i per tant de A.

- 2. Si $x \in A$ trivialment $x \in A$ doncs tot entorn de x com a mínim conté el propi x. Ara, per la propietat 1. tot punt de A és adherent \Leftrightarrow tot punt de A és límit d'una successió de $A \Leftrightarrow A$ és tancat (per definició de tancat).
- 3. i 4. Són trivials a partir de llurs definicions.
- 5. Si no fos així existiria un $\varepsilon > 0$ tal que $(\sup(A) \varepsilon, \sup(A) + \varepsilon) \cap A = \emptyset$ i per tant existirien fites superiors de A més petites que $\sup(A)$, en contra de la definició de $\sup(A)$. El mateix raonament val per $\inf(A)$.

Teorema (Bolzano-Weierstrass). Sigui $A \subset \mathbb{R}$ infinit i fitat. Llavors $A' \neq \emptyset$.

DEMOSTRACIÓ. Sigui $[a_0,b_0]\supset A$. Dividim l'interval per la meitat i ens quedem amb un dels dos subintervals $[a_1,b_1]$ que contingui infinits punts de A. Repetint el procés obtenim una successió decreixent d'intervals encaixats $[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\supset \cdots$ que contenen infinits punts de A i es fan arbitràriament petits. Prenent $x_n\in [a_n,b_n]\cap A$, la successió $\{x_n\}$ és de Cauchy i convergirà a un $x\in A'$ ja que per construcció tot entorn de x arbitràriament petit conté infinits punts de A.

Observació. Alguns dels resultats d'aquest apartat només són certs si treballem amb la topologia usual de \mathbb{R} , que és la que hem estat considerant en tot moment. Per exemple, en la topologia usual els únics conjunts que són oberts i tancats alhora són \mathbb{R} i \emptyset ; en canvi en la topologia discreta tot subconjunt de \mathbb{R} és obert, i per tant també és tancat.

També, en altres topologies els conceptes de punt interior, frontera, adherència, etc. deixen de ser intuïtius. Per exemple, en la topologia τ del complementari finit, que és aquella on $U \in \tau \Leftrightarrow U = \mathbb{R} \setminus F$ on F és finit, considerem l'interval obert (a,b). Si x és un punt interior existeix un conjunt finit F tal que $x \in \mathbb{R} \setminus F \subset (a,b)$, que és fals. Per tant $int(a,b) = \emptyset$ i de forma anàloga $ext(a,b) = \emptyset$. Per tant $Fr(a,b) = \mathbb{R}$.