

Computer Networks

Wenzhong Li

Nanjing University Fall 2014

- Tentative topics:
 - 1. Introduction to 4G/5G techniques
 - 2. Social Network Analysis
 - 3. Most Popular Apps in Android/IOS
 - 4. Location-based service (LBS)
 - 5. Mobile Cloud Computing
 - 6. Software Defined Network (SDN)
 - 7. Other topics proposed by yourself
- Confirm: before Oct 17
- Present: Oct 31 or Nov 5
- 10-15 minutes for each presentation

- Link layer services
 - Link access, Framing, Error detection, Flow control, etc.
- Bridges and Layer-2 switch
- LAN
 - Token ring
 - Ethernet
 - WLAN

Chapter 3. Packet Switching Networks

- Network Layer Functions
- Virtual Circuit and Datagram Networks
- ATM and Cell Switching
- X.25 and Frame Relay
- Routing

Network Layer Functions

Network Layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two Key Network-layer Functions

- OSI network-layer functions:
- Switching / Routing
 - Determine route taken by packets from source to destination (multiple nodes)
 - Shortest path from source to destination
 - Routing algorithms

Forwarding

- Move packets from input to designated output determined by switching (single node)
- Error handling, queuing and scheduling

analogy: Trip Planning

- routing: planning the route from Nanjing to Shanghai (e.g., Nanjing-Wuxi-Suzhou-Shanghai)
- forwarding: getting through single city (e.g., entering and leaving Suzhou Station)

Switch Functions

Routing determines the forwarding table

- Queuing and scheduling
 - Host to Switch
 - Switch to Host
 - Switch to Switch

Two key switch functions:

- Run routing algorithms/protocol
- Forwarding packets from incoming to outgoing link

Connection setup

- 3rd important function in *some* network architectures:
 - ATM, frame relay, X.25
- Before datagrams flow, two end hosts and intervening routers establish virtual connection
 - Routers get involved
- Network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Network Service Model

Q: What service model for "channel" transporting datagrams from sender to receiver?

- Network service model
 - Service model for "channel" transporting packets from sender to receiver
 - Called Quality of Service from host perspective

Example services for individual packets

- Guaranteed delivery
- Guaranteed delivery with less than 40 msec delay

Example services for a flow of packets

- In-order packet delivery
- Guaranteed minimum bandwidth to flow
- Restrictions on changes in inter-packet spacing

Virtual Circuit and Datagram Networks

Virtual Circuit and Datagram Networks

- Virtual circuit networks
 - Network service provided on flow of packets
 - VC network provides network-layer connection oriented service
- Datagram networks
 - Network service provided on singular packet
 - Datagram network provides network-layer connectionless service

Routing in Virtual Circuit

Routing in Datagram Nets

Virtual Circuit Networks

- Connection setup, teardown for each flow of packets
- Each packet carries VC identifier (not destination host address)
- Every switch on source-destination path maintains "state" for each passing connection
- Link, switch resources (bandwidth, buffers) may be allocated to VC
 - Dedicated resources = predictable quality of service

Connection Setup

- Essential function for virtual circuit networks
 - E.g. ATM, frame relay, X.25
- Two end hosts and intervening switches pre-establish a path for virtual connection
- Routing is used for finding a suitable (shortest) path

- A VC consists of
 - Path from source to destination
 - VC numbers, maybe one number for each link along the path
 - Entries in forwarding tables in switches along the path

Note:

- Packet belonging to VC carries VC number (rather than addresses)
- VC number can be changed on each link, forwarding table lists the new VC number

VC number 12 32 interface number

Forwarding table in northwest switch

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #	
1	12	3	22	
2	63	1	18	
3	7	2	17	
1	97	3	87	

Table entries constitutes state information of a VC

Virtual Circuits: Signaling Protocols

- Used to setup, maintain and teardown VC
- Used in ATM, frame-relay, X.25
- Not used in today's Internet

- No call setup at network layer
- No network-level concept of "connection"
- Switches: no state about end-to-end connections
- Packets forwarded using destination host address
- Packets between same source-dest pair may take different paths

A Forwarding Table for Datagram Networks

- Also called routing table
- May reach 4 billion entries
- The destination address prefix may define a switch address or a subnet address

Dest Address Prefix	Address Mask	Link Interface
11001000 00010111 00010	11111111 11111111 11111000 00000000	0
11001000 00010111 00011000	11111111 11111111 11111111 00000000	1
11001000 00010111 000110	11111111 11111111 111111100 00000000	2
default	*	3

Address Prefix	Link Interface
11001000 00010111 00010	0
11001000 00010111 00011000	1
11001000 00010111 00011	2
otherwise	3

Examples

DA: 11001000 00010111 0001<mark>0110 10100001 Which interface?</mark>

DA: 11001000 00010111 00011000 10101010 Which interface?

Longest prefix matching rule: when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Datagram (Internet)

- Data exchange among computers
 - "Elastic" service, no strict timing
- "Smart" end systems (computers)
 - Can adapt, perform control, error recovery
 - Simple inside network, complexity at "edge"
- Many link types
 - Different characteristics
 - Uniform service difficult

Virtual Circuit (ATM)

- Evolved from telephony
- Human conversation:
 - Strict timing, reliability requirements
 - Need guaranteed service
- "Dumb" end systems
 - Telephones
 - Complexity inside network (switches)
- Link type standardized

ATM and Cell Switching

ATM and Cell Switching

- ATM: Asynchronous Transfer Mode
 - 1990's/2000 standard for high-speed Broadband Integrated Service Digital Network (ISDN, 综合业务数字网) architecture
 - 155Mbps to 622 Mbps and higher

Features

- Meeting timing/QoS requirements of voice and video, also support "burst" data
- "Next generation" telephony: technical roots in telephone world
- Packet-switching (fixed length packets, called "cells") using virtual circuits

ATM Architecture

- Adaptation layer: only at edge of ATM network
 - Data segmentation/reassembly, different service models
 - Roughly analogous to Internet transport layer
- ATM layer: "network" layer
 - Cell switching, routing
- Physical layer: SDH/SONET

ATM Adaptation Layer

- ATM Adaptation Layer (AAL)
 - "Adapts" upper layers (IP or native ATM applications) to ATM layer below
 - Present only in end systems, not in switches
- Different types of AALs
 - AAL1, Constant Bit Rate (CBR), e.g. circuit emulation
 - AAL2, Variable Bit Rate (VBR), e.g. voice and video
 - AAL3/4, Connection-oriented data service, e.g. X.25 and Frame Relay
 - AAL5, Connectionless data service, e.g IP datagram

ATM Services

In decreasing priority

- Constant Bit Rate (CBR) and Variable Bit Rate (VBR)
- Available Bit Rate (ABR) and Unspecified Bit Rate (UBR)

	Network	Service	Guarantees ?				Congestion
Architecture		Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
_	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
_	ATM	UBR	none	no	yes	no	no

AAL Frames

- AAL layer frame
 - Header + data + trailer, specific in each AAL type
 - Fragmented across multiple ATM cells

Common Part Convergence Sublayer (CPCS)
Segmentation and Reassembly (SAR)

ATM Layer: Virtual Circuits

- VC transport: cells carried on VC from source to destination
- Permanent VCs (PVC)
 - Long lasting connections
- Switched VCs (SVC)
 - Dynamically set up on per-connection basis
- A VC consists of virtual paths and virtual channels
 - Virtual Path Identifier (VPI) + Virtual Channel Identifier (VCI)

信元路由信息:

虚通道: 由VPI指定,一个VPI包含一组VCI

虚通路: 由VCI指定

ATM VCs

- Advantages of ATM VC approach
 - QoS performance guarantee for data communication on VC
 - Bandwidth, delay, delay jitter
- Drawbacks of ATM VC approach
 - Inefficient support of Internet datagram traffic
 - One VC for each IP packet: introduces call setup latency and processing overhead
 - Better: one VC for a flow of IP packets

ATM Cells

- 5 octet header + 48 octet payload
- Small payload → short cell-creation delay and switching delay
- 48 = halfway between 32 (Europe) and 64 (North America), a compromise

ATM Cell Header

- GFC: Generic Flow Control (一般流量控制)
 - 0 by default, local flow control bits
- VPI/VCI: virtual circuit ID
 - Will change from link to link thru net

VPI(Virtual Path Identifier,虚通道标识符) VCI(Virtual Connection Identifier,虚通 路标识符)

PT: Payload type

- 载荷类型,用于指示信息字段的信息是用户信息还是网络信息
- E.g. "Operation Administration and Maintenance" cell or data cell
- CLP: Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- HEC: Header Error Checksum (cyclic redundancy check)

2 sublayers

- Transmission Convergence (TC) sublayer
- Physical Medium Dependent (PMD) sublayer: depends on physical medium being used
- TC sublayer functions
 - Header checksum generation: 8 bits CRC
 - Cell delineation to signal representation
 - Transmission of idle cells when no data cells to send

传输聚合子层:在发送方,它从ATM层接收信元,组装成特定形式的帧(SONET帧或FDDI数据帧). 在接收方,它从PMD子层提取信元,交付ATM层. 类似于链路层功能物理介质相关子层: 指定物理特性

Physical Medium Dependent Sublayer

- SONET/SDH: transmission frame structure
 - Bit synchronization
 - Bandwidth partitions (TDM)
 - Multiple speeds: OC3 = 155.52 Mbps; OC12 = 622.08 Mbps;
 OC48 = 2.45 Gbps, OC192 = 9.6 Gbps
- TI/T3: transmission frame structure
 - Low speed line: 1.5 Mbps/ 45 Mbps
- Unstructured: just cells (busy/idle)

X.25 and Frame Relay

■ X.25

- A packet-switching wide area network developed by ITU-T in 1976
- Defines how a packet-mode terminal can be connected to a packet network
- Known as a subscriber network interface (SNI) protocol

Frame Relay

- Packet-switching with virtual-circuit technology
- An enhancement of X.25, due to improved transmission media
- Interconnect LANs, instead of terminals

X.25

- Defines how a user's DTE (Data Terminal Equipment) communicates with DCEs (Data Communications Equipments) in a packet switching network
- Defines how packets are sent thru the virtual circuit established between DTEs

X.25 Layers

- Specify the physical interface between DTE and DCE
- Signaling on the link that connected the X.25 network
- Can provide synchronous data transmission at rates from 100 kbps to 10 Mbps
- Capable of running full-duplex data transmissions

- Link access procedure, balanced (LAPB) protocol
 - Reliable data transfer: error and flow control
 - Link Setup; Packet Transfer; Link Disconnect
- 3 types of frames
 - I-Frames: data frame
 - S-Frames: flow and error control
 - U-Frames: setup and disconnect links between DTE and DCE

- Packet Layer Protocol (PLP)
 - Establish connection, transfer data, and terminate connection between 2
 DTEs
 - Create virtual circuits and negotiate network services between DTEs
- Virtual circuits in X.25
 - 2 types: permanent VC, switched VC
 - Identified by logical channel number (LCN)

Connection Events in X.25

- Setup links between DCE and DTE pairs
- Establish VC between DTEs
- Transfer data
- Release the VC
- Disconnect the links

Frame Relay

- Improvement of X.25, taking advantage of highspeed new links with lower error-rates
 - Operate only at the Physical and Data link layer
 - Not provide error checking or require ACK in data link layer
- Layers in FR
 - Physical layer, any protocols recognized by ANSI, up to 44.376 Mbps
 - Data link layer, a simplified version of HDLC called core LAPF, no error and flow control fields

ANSI: American National Standards Institute

LAPF: Link Access Procedure for Frame Mode Services

Acknowledgment from the network layer sent in data link layer frames

Data from the network layer sent in data link layer frames

- Also provide PVC and SVC connections
- A VC is identified by a Data Link Connection Identifier (DLCI)
 - 2 DLCIs are given for each end of the connection
- DLCI is assigned to the DTEs when the VC is established
 - Serve as addresses of the DTEs
 - Not changed on DCEs

SVC Setup and Release

FR Frame Structure

C/R: Command/response

EA: Extended address

FECN: Forward explicit congestion notification DLCI: Data link connection identifier

BECN: Backward explicit congestion notification

DE: Discard eligibility

Summary

- ■网络层基本功能
 - 交换/路由, 转发, 建立连接
- 虚电路+分组交换
 - ATM(面向连接,信元: 固定长度的分组,支持CBR, VBR, ABR, UBR)
 - X.25 (面向连接,流控制和错误检测),帧中继(面向连接,无错误控制,无流控制)