Learning from Data Streams

Einführung

Christian Zimmer

Definition Data Streams

☐ Allgemeine Definition

"... sequence of digitally encoded signals used to represent information in transmission"

http://www.its.bldrdoc.gov/projects/devglossary/data stream.html

Puzzle – ein einfaches Beispiel

- "Finde die fehlende Zahl!"
 - Paul: Zeigt Zahlen einer Menge n, lässt ein Element aus
 - Carole: Muss ausgelassenes Element bestimmen
 - □ trivial für kleines *n* (Gedächtnis)
 - □ Für großes n (beschränktes Gedächtnis) nicht praktikabel
- Lösungsalgorithmus:

$$s = \frac{n(n+1)}{2} - \sum_{j \le i} \pi_{-1}[j]$$

 π : *Permutation von* $\{1, ..., n\}$

 π_{-1} : π , wobei 1 Element fehlt

Puzzle – ein einfaches Beispiel (2)

Paul

$$\pi_{-1}[1] = 2$$

ul Carole

$$s = \frac{n(n+1)}{2} = \frac{6 \cdot 7}{2} = 21$$

21-16=5

$$\sum_{j \leq i} \pi_{-\!1}[\,j]$$

Data Streams

- ☐ Im Puzzle: Lösungsalgorithmus ist deterministisch und exakt, *O(log n)* bits
 - → Untypisch für Data Streaming
- Charakteristika für Data Stream Algorithmen
 - Nicht deterministisch
 - Approximierte Lösung
 - Hohe Güte nur bei großer Anzahl von Elementen

Inhalt

- Definition Data Streams
- Einleitung
- Data Stream Phänomen
- □ Data Streaming: Formale Aspekte
- Grundlagen
- □ Streaming Systeme
- Zusammenfassung
- Diskussion

Data Stream Phänomen

- Erweiterung der Definition
 - "... sequence of digitally encoded signals used to represent information in transmission"
 - "...input data that comes at a very high rate"
- → kommunikations- und rechenintensiv
 - **T** transmit
 - C compute
 - **S** store

Data Stream Phänomen (2)

- ☐ Herausforderungen an die TCS Infrastruktur
 - Hoch-detaillierte Dateneingaben einschließlich fortlaufender Updates
 - Hochauflösende Abbildung der Erdoberfläche (Geodäsie
 - Wetterdaten
 - ☐ Internet: Clicks, Queries, IP Traffic Logs
 - Differenzierte Analyse von Update Streams
 - Monitoring Anwendungen
 - atmosphärisch, astronomisch, erzeugt durch Netzwerke oder Sensoren
 - Erkennen von Ausreißern, Sonderfällen; Betrug, Eingriffe
 - zeitkritisch: Schritt halten mit der Update Rate

National Oceanic & Athmospheric Administration
Image of the day, 30th November 2006, http://www.noaa.gov/

Unidata – Enhanced Earth-system education and research Real-time Remote Sensing Image Data , http://www.unidata.ucar.edu/data/

Data Stream Phänomen (3)

- □ Klassischer Blickwinkel der Informatik
 - Effizientes Manipulieren speichergebundener Daten
 - Verwalten von Datenbanken in Größenordnung von PB's → BaBar (Objectivity/DB), Nov. 2004: 895 TB
 - Erzeugen synthetischer Datenbanken: Design Vergleich
- □ Wie den Herausforderungen begegnen?
 - Parallelisierung (CS!, T?)
 - Datenrate kontrollieren (Sampling vs. Shedding Updates)
 → CERN: 40TB/s reduziert auf 800GB/s (Quantenphysik)
 - Hierarchisch gegliederte Analyse (vgl. Speicherhierarchie)
 - "Kreativität"
- Logische Schlussfolgerung
 - Sammeln gewaltiger Datenmengen ist möglich
 - Aber: Verwerfen von Informationen aufgrund zeitkritischer Scans

Data Streaming: formale Aspekte

- Modelle
 - Sequentieller Datenstrom, elementweise
 - Beschrieben wird ein zu Grunde liegendes Signal A
- □ 'Time Series Modell': Signal entspricht dem aktuell gesehenen Element (=)
- 'Cash Register Modell': gesehenes Element aktualisiert Signal (+)
- Turnstile Modell': gesehenes Element aktualisiert Signal (+/-) $a_{i}=0$
 - Strict turnstile $A_i[j] \ge 0 \ \forall i$

$$a_1, a_2, \dots$$

 $A: [1...N] \rightarrow R$

$$A[i] = a_i$$

$$a_i = (j, I_i), I_i \ge 0$$

 $A_i[j] = A_{i-1}[j] + I_i$

$$a_i = (j, U_i), U_i positiv oder negativ$$

$$A_{i}[j] = A_{i-1}[j] + U_{i}$$

Data Streaming: formale Aspekte (2)

Turnstile

allgemein

Cash register

speziell

Time series

- ☐ Grad der Allgemeinheit
 - theoretisch: Design gemäß des 'Turnstile' Modells wünschenswert
 - praktisch: schwächere Modelle können geeigneter, einfacher zu realisieren sein
- □ Berechnungen auf dem Signal A
 - Pro Element Bearbeitungszeit (processing time)
 - Platzbedarf (storage)
 - Berechnungszeit von Funktionen (compute time)
- Berechnungen sollten mit logarithmischem Aufwand durchführbar sein
 - Vgl. mit Baumstrukturen
 - Compute time kann höhere Komplexität

Data Streaming: formale Aspekte (3)

- Motivierendes (häufiges) Szenario: Traffic Data beim IP Packet Forwarding am Router
 - Verschiedene Ebenen vorstellbar
 - Packet log: Header mit Ausgangs- und Ziel IP, Ports, ...
 - □ **Flow log:** Sammlung von Paketen mit gleichen Werten für Schlüsselattribute, kumulierte Informationen
 - SNMP log (application layer): aggregierte Daten
 - Flow und Packet logs sind wesentlich voluminöser als SNMP log → Data Streaming Argumente greifen hier
 - Mögliche Abfragen
 - ☐ HTTP Traffic über einen bestimmten Link initiiert durch einem gewissen IP Bereich?
 - □ Unterschiedliche IP Adressen, die gewissen Link zum Senden von Daten benutzen?
 - Top k der am meisten beanspruchten Flows?

Data Streaming: formale Aspekte (4)

- ☐ Im Detail: Wie viele verschiedene IP Adressen...
 - ...haben einen bestimmten Link verwendet um Daten zu senden (seit Begin des Tages)?

input stream $a_1, a_2,...$ sequence of IP packets a_i has source IP address s_i A[0...N-1] number of packets sent by s_i , $0 \le i \le N-1$ Solution: calculate nonzero A[i]'s

Cash Register

...nutzen zur Zeit einen gegebenen Link (d.h. sind momentan Bestandteil eines Flows über diesen Link)?

time t, source IP address s_i , flow f_i began $\prec t$, ends $\succ t$ $A[0...N-1] number of flows <math>s_i$ is currently involved in $set i = 0 \forall 0 \le i \le N-1$

if a_i is beginning of flow $\rightarrow +1$ for $A[s_j]$ if s_j is source of a_i if a_i is end of flow $\rightarrow -1$ for $A[s_j]$ if s_j is source of a_i

Solution : calculate nonzero A[i]'s

Turnstile

Data Streaming: formale Aspekte (5)

- □ Weitere Anwendungen
 - "One-pass", sequentielle E/A
 - Data Streams entstehen als Produkt beim Arbeiten mit großen Datenmengen
 - ☐ Einmalige (oder einige wenige) Abtastungen werden dabei bevorzugt (da 'kostspielig')
 - Daten entstehen inkrementell als Serie von Updates (z.B. disk, bus, tape transfers)
 - Monitoring von Datenbank Inhalten
 - ☐ Große Datenbanken mit regelmäßigen Transaktionen: Einfügen/Löschen/Abfragen
 - ☐ Selectivity Estimation: Abschätzen des Zeitbedarfs einfacher Abfragen um komplexe Abfragen effektiv zu gestalten
 - Data Stream Szenario (Turnstile): Einfügen und Löschen sind Updates, Signal wird durch Datenbank repräsentiert

Grundlagen

- Mathematische Konzepte
 - Sampling
 - Auswahl von Elementen aus dem Data Stream anhand festgelegter Kriterien
 - Domain sampling, universe sampling, distinct sampling, etc.
 - □ z.B. bestimme Anzahl verschiedener Elemente, finde häufige Elemente, ...
 - 15. November

<u>Approximate frequency counts over data streams</u> <u>Mining Top-K Frequent Itemsets from Data Streams</u>

- Random Projections
 - Reduktion der Dimension durch Projektion anhand zufälliger Vektoren
 - Ansatz lässt sich auf Turnstile Modell anwenden (sketches, synopses)

Grundlagen (2)

- □ Grundlegende Algorithmen
 - Binäre Suche, Greedy-Algorithmen bzw. Dynamische Programmierung, "Teile-und-Herrsche" Ansätze
 - Group Testing
 - \square Beispiel: Durch $I \le x$? gesuchte Zahl erfragen
 - ☐ Bestimme *B* häufigste Elemente in Turnstile Data Streams
 - Tree Method
 - □ Datenstrom wird durch (balancierten) Baum repräsentiert
 - □ Update: Aufdecken der Blätter des Baums (z.B. Histogramme)
 - 22. November Learning Decision Trees from Data Streams
 - Exponential Histograms
 - $lue{}$ Zerlegung einer Struktur in Regionen mit Abstand 2^i
 - □ z.B. nearest neighbour Probleme, Sliding Windows
 - 08. November Aggregating Statistics: Stream Statistics over Sliding Windows

Streaming Systeme

- ☐ Hands-on Systeme
 - Streams mit Unterstützung des BS und Standard Programmiersprachen aufzeichnen
 - Beispiele: AT&T Research Call Detail Records
- ☐ Leistungsfähige Datenbank verarbeitet Updates
 - Standard Technologien (bulk loading, fast transaction support)
 - Applikationen setzen auf die Datenbank auf (IPSOFACTO: IP Stream-Oriented Fast Correlation Tool: SNMP log updates)
- Datenbanksysteme, die auf die Verarbeitung von Data Streams ausgelegt sind
 - aktives Forschungsgebiet (new stream operators, sql extensions, scheduling methods)
 - Beispiele: Aurora, Telegraph, Stanford Stream

Zusammenfassung

- Was sind Data Streams?
 - Welche Eigenschaften haben sie?
 - In welchem Zusammenhang enstehen sie?
- Welche Herausforderungen bieten Data Streams?
- Welche Modelle werden unterschieden?
 - Was sind die Annahmen der Modelle?
 - Wo finden sich die Modelle in der Praxis wieder?
- Welchen mathematischen Konzepte und Algorithmen finden Anwendung?
- Welche Streaming Systeme werden unterschieden?

Literaturliste

- S. Muthukrishnan (2003) <u>Data streams: Algorithms and Applications.</u> Proceedings of the fourteenth annual ACM-SIAM symposium on discrete algorithms.
- Flip Korn, S. Muthukrishnan and Yunyue Zhu (2003) <u>IPSOFACTO: A Visual Correlation Tool for Aggregate Network Traffic Data.</u> SIGMOD 2003, June 9-12.
- A. Arasu, B. Babcock, J. Cieslewicz (2004) <u>STREAM: The Stanford Data Stream Management System.</u> Book chapter.
- J. Gray, P. Sundaresan, S. Englert, K. Baclawski, P. Weinberger (1994)
 Quickly Generating Billion-Record Synthetic Databases. Proc. ACM SIGMOD Conf. Minneapolis.
- M. Datar, A. Gionis, P. Indyk, and R. Motwani (2002) <u>Maintaining Stream</u>
 <u>Statistics Over Sliding Windows.</u> In SIAM Journal on Computing, Vol. 31 No.

 6.
- S. Guha, K. Mungala, K. Shankar and S. Venkatasubramanian (2003) <u>Application of the two-sided depth test to CSG rendering.</u> I3d, ACM Interactive 3D graphics.

Literaturliste (2)

- Sudipto Guha and Nick Koudas (2001) <u>Data-Streams and Histograms.</u> In Proc. STOC
- Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang (2002) <u>Multidimensional</u> regression analysis of time-series data streams. In VLDB Conference.
- G. Wrochna Soltan (1996) <u>Control Data Rate by Sampling or Shedding.</u>
 Institute for Nuclear Studies, Warsaw.
- N. Koudas, D. Srivastava (2003) <u>Data Stream Query Processing: A Tutorial.</u> Proceedings of the 29th VLDB Conference, Berlin.
- Lukasz Golab and M. Tamer Ozsu (2003) <u>Issues in Data Stream</u> <u>Management.</u> In SIGMOD Record, Volume 32, Number 2, pp. 5--14.
- M. Garofalakis, Johannes Gehrke, Rajeev Rastogi (2002) <u>Querying and mining data streams</u>: you only get one look a tutorial. SIGMOD Conference 635.
- B. Babcock, S.Babu, M.Datar, R.Motwaniand J.Widom (2002) <u>Models and issues in data stream systems.</u> ACMPODS, 1–16.

Diskussion

☐ Vielen Dank für die Aufmerksamkeit

ChristianZimmer@freenet.de

Zusatz

- □ Der Mensch als "Data Stream Verarbeitungsmaschine"
- ☐ Streaming Models (Window Streaming, Permutation Streaming)

Window Streaming

Window Streaming (2)

Step 1: Divide the stream into 'windows'

At window boundary, decrement all counters by 1

At window boundary, decrement all counters by 1

Permutation Streaming

