VE527

Computer-Aided Design of Integrated Circuits

Multi-Level Logic Synthesis:

Extraction

Outline

- Single-cube Extraction
- Multiple-cube Extraction

How Do We Find Good Divisors?

- The operator is called **extraction**.
 - Want to extract either single-cube divisor or multiple-cube divisor from multiple expressions.
- How do we extract good divisors?
- Solution:
 - When you want a **single-cube divisor**, go look for **co-kernels**.
 - When you want a **multiple-cube divisor**, go look for **kernels**.

Approach Overview

- For single cube extraction
 - Build a very large matrix of 0s and 1s
 - Heuristically look for "prime rectangles" in this matrix
 - Each such "prime" gives a good common single-cube divisor
- For multiple cube extraction
 - Build a (different) very large matrix of **0s and 1s**
 - Heuristically look for "prime rectangles" in this matrix
 - Each such "prime" gives a good multiple-cube divisor

Single Cube Extract: Matrix Representation

- Given: a set of SOP Boolean equations
- Construct the **cube-literal matrix** as follows:
 - One row for each **unique** product term.
 - One column for each unique literal.
 - A "1" in the matrix if this product term uses this literal, else a "-".

$$P = abc + abd + eg$$

$$Q = abfg$$

$$R = bd + ef$$

		а	b	С	d	е	f	g
		1	2	3	4	5	6	7
abc	1	1	1	1	-	-	-	-
abd	2	1	1	-	1	-	-	-
eg	3	_	-	-	-	1	-	1
abfg	4	1	1	-	-	-	1	1
bd	5	_	1	-	1	-	-	-
ef	6	_	-	-	_	1	1	_

Covering this Matrix: Prime Rectangles

- A **rectangle** of a cube-literal matrix is a set of rows R and columns C that has a '1' in **every row/column intersection**.
 - Need not be contiguous rows or columns in matrix. Any set of rows or columns is fine.

		a	b	С	d	е	f	g
		1	2	3	4	5	6	7
abc	1	1	1	1	-	-	-	-
abd	2	1	1	Γ -	1	-	-	-
 eg	3	_	_		_	1	-	1
abfg	4	1	1] -	_	-	1	1
 bd	5	_	1	_	1	_	-	-
ef	6	_	_	-	_	1	1	-

Covering this Matrix: Prime Rectangles

• A **prime rectangle** is a rectangle that cannot be made any bigger by adding another row or a column.

		a	b	С	d	е	f	g
		1	2	3	4	5	6	7
abc	1	1	1	1	_	_	_	-
abd	2	1	1	_	1	_	_	-
eg	3	-	_	_	-	1	-	1
abfg	4	1	1	_	-	-	1	1
bd	5)-	7	-	1	-	_	-
ef	6	I	-	-	-	1	1	_

Prime Rectangle Columns = Divisor!

- Primes are "biggest possible" common single-cube divisors.
 - <u>Makes sense</u>: columns of the prime rectangle tell you the literals in the single-cube divisor, while rows tell you which product terms you can divide!

		$\overline{}$						
		a	b	С	d	е	f	g
		1	2	3	4	5	6	7
abc	1	1	1	1	-	-	_	-
abd	2	1	1] -	1	-	-	-
eg	3	-	-		-	1	-	1
abfg	4	1	1] -	-	-	1	1
bd	5	_	1	_	1	-	-	-
ef	6	-	_	-	-	1	1	-

Single-cube divisor:

X = ab

Prime Rectangle Columns = Divisor!

	_	lacksquare						
		a	b	С	d	е	f	g
		1	2	3	4	5	6	7
abc	1	1	1	1	_	-	_	-
abd	2	1	1] -	1	_	_	-
eg	3	_	-	[-	-	1	_	1
abfg	4	1	1] -	-	_	1	1
bd	5	_	1	_	1	_	_	-
ef	6	-	-	-	_	1	1	-

Single-cube divisor: X = ab

$$P = abc + abd + eg$$

$$Q = abfg$$

$$R = bd + ef$$

$$P = Xc + Xd + eg$$

$$Q = Xfg$$

$$R = bd + ef$$

$$X = ab$$

Simple Bookkeeping to Track # Literals

- Recall: we factor & extract to **reduce literals** in logic network.
 - Would be nice if there was a simple formula to compute the number of reduced literals.
- Indeed, there is:
 - Start with a prime rectangle.
 - Let C = # columns in rectangle.
 - For each row r in rectangle: let Weight(r) = # times this product appears in network.
 - Compute $L = (C 1) \times [\sum_{\text{rows } r} \text{Weight}(r)] C$.
- Nice result: for a prime rectangle, L = # literals saved
 - To be precise: if you count literals before extracting this single-cube divisor, and after, L is how many literals are saved.

Compute Saved Literals: Example

$$R = abw + wz$$

Build Matrix

S = abw + aby

	а 1		b 2	W 3	у 4	z 5			
abw 1	1		1	1	-	1			
wz 2	_		_	1	-	1			
aby 3	1		1] -	1	-			

Original # literals: 11

Extraction

saved: 1

$$R = Xw + wz$$

$$S = Xw + Xy$$

After extraction # literals: 10

Compute Saved Literals: Example

$$R = abw + wz$$

$$S = abw + aby$$

		а	b	W	У	Z
		1	2	3	4	5
abw	1	1	1	1	-	-
WZ	2	_	_	1	-	1
aby	3	1	1] -	1	-

Result by Counting: # saved: 1

- Now apply formula $L = (C 1) \times [\sum_{\text{rows } r} \text{Weight}(r)] C$
 - C = # columns in rectangle $\Rightarrow 2$
 - Weight(abw) \Rightarrow 2 (appear twice in the network)
 - Weight(aby) \Rightarrow 1 (appear once in the network)
 - $L = (2-1) \times (2+1) 2 = 1$

Correct!

Outline

• Single-cube Extraction

• Multiple-cube Extraction

How About Multiple-Cube Factors?

- Remarkably, a very similar matrix-rectangle-prime concept.
 - Make an appropriate **matrix**. Find **prime rectangle**. Do literal count **bookkeeping** with numbers associated with rows/columns.
- Given: A set of Boolean functions (nodes in a network)

$$P = af + bf + ag + cg + ade + bde + cde$$

 $Q = af + bf + ace + bce$
 $R = ade + cde$

- First: find **kernels** of each of these functions.
 - Why? Brayton-McMullen theorem: Multiple-cube factors are intersections of the expressions in the kernels for each of these functions.

Kernels / Co-Kernels of P,Q,R Example

- P = af + bf + ag + cg + ade + bde + cde
 - Co-kernel a, kernel de + f + g
 - Co-kernel b, kernel de + f
 - Co-kernel c, kernel de + g
 - Co-kernel de, kernel a + b + c
 - Co-kernel f, kernel a + b
 - Co-kernel g, kernel a + c
 - Co-kernel 1, kernel af + bf + ag + cg + ade + bde + cde (trivial, ignore)

Kernels / Co-Kernels of P,Q,R Example

- Q = af + bf + ace + bce
 - Co-kernel a, kernel ce + f
 - Co-kernel b, kernel ce + f
 - Co-kernel ce, kernel a + b
 - Co-kernel f, kernel a + b
 - Co-kernel 1, kernel af + bf + ace + bce (trivial, ignore)
- R = ade + cde
 - Co-kernel de, kernel a + c
 - Note: *R* is not its own kernel, why?

New Matrix: Co-Kernel-Cube Matrix

- One row for each **unique** (function, co-kernel) **pair** in problem.
- One column for each unique cube among all kernels in problem.

P: co-kernel a, kernel de + f + gP: co-kernel b, kernel de + fP: co-kernel c, kernel de + gP: co-kernel de, kernel a + b + cP: co-kernel f, kernel a + bP: co-kernel g, kernel a + cQ: co-kernel a, kernel ce + fQ: co-kernel b, kernel ce + fQ: co-kernel ce, kernel a + bQ: co-kernel f, kernel a + bR: co-kernel de, kernel a + c

			а	b	С	се	de	f	g
			1	2	3	4	5	6	7
Р	а	1							
P	b	2							
Р	С	3							
Р	de	4							
Р	f	5				7			
Р	g	6							
Q	a	7							
Q	b	8							
Q	се	9							
Q	f	10							
R	de	11							

Entries in the Co-Kernel-Cube Matrix

- For each **row**, take the co-kernel, go look at the associated kernel.
- Look at **cubes** in this kernel: put "1" in columns that are cubes in this kernel; else put "-"

P: co-kernel a, kernel de + f + gP: co-kernel b, kernel de + fP: co-kernel c, kernel de + gP: co-kernel de, kernel a + b + cP: co-kernel f, kernel a + bP: co-kernel g, kernel a + cQ: co-kernel a, kernel ce + fQ: co-kernel b, kernel ce + fQ: co-kernel ce, kernel a + bQ: co-kernel f, kernel a + bR: co-kernel de, kernel a + c

			а	b	С	се	de	f	g
			1	2	3	4	5	6	7
Р	а	1	-	-	-	_	1	1	1
Р	b	2	-	_	-	_	1	1	_
Р	С	3	-	_	-	_	1	-	1
Р	de	4	1	1	1	_	-	-	-
Р	f	5	1	1	-	_	-	-	_
Р	g	6	1	-	1	_	_	-	-
Q	a	7	-	-	-	1	-	1	-
Q	b	8	-	-	-	1	_	1	-
Q	се	9	1	1	-	_	_	-	-
Q	f	10	1	1	-	-	_	-	-
R	de	11	1	-	1	-	-	-	-

Entries in the Co-Kernel-Cube Matrix

• Each row gives the kernel of the function (e.g., P) obtained by dividing the cokernel (e.g., a).

P: co-kernel a, kernel de + f + g

			a	b	С	се	de	f	g
			1	2	3	4	5	6	7
Р	а	1	_	_	_	_	1	1	1
Р	b	2	_	_	-	-	1	1	-
Р	С	3	-	_	-	-	1	-	1
Р	de	4	1	1	1	_	-	-	-
Р	f	5	1	1	-	-	-	-	-
Р	g	6	1	_	1	-	-	_	-
Q	a	7	_	_	-	1	-	1	-
Q	b	8	_	_	-	1	-	1	-
Q	се	9	1	1	-	-	-	-	-
Q	f	10	1	1	-	-	-	-	-
R	de	11	1	_	1	_	-	-	-

Prime Rectangles in Co-Kernel-Cube Matrix

• Prime rectangle is again a good divisor: now multiple cubes

• Create the multiple cube divisor as **sum** (OR) of cubes of prime rectangle **columns**.

		Γ-				8-					
				a 1	b 2	с 3	ce 4	de 5	f 6	g 7	(a+b) is a multiple cube divisor!
									<u> </u>	1	
	P	a	1	-	-	-	_	1	1	1	
	Р	b	2	-	-	-	-	1	1	-	P = (de)•(a+b) + stuff1
_	Р	С	3	-	_	_	-	1		1	
	Р	de	4	1	1	1	-	-	-		$P = (f) \cdot (a+b) + stuff2$
	Р	f	5	1	1	<u>} </u>	-	-	_	_	
	Р	g	6	1	-	1	-	-	-	-	
	Q	a	7	-	-	-	1	-	1	-	$Q = (ce) \cdot (a+b) + stuff3$
_	Q	b	8	_		_	1		1	-	
	Q	се	9	1	1	}	-	_	_	-	\rightarrow $O = (f)_0(a + b)$ $= atuff A$
	Q	f	10	1	1	<u>} </u>	_	_	_	-	\rightarrow Q = (f)•(a+b) + stuff4
	R	de	11	1		1	_	_	_	_	

Final Result

$$P = af + bf + ag + cg + ade + bde + cde$$

$$Q = af + bf + ace + bce$$

R = ade + cde

Original # literals: 33

From Rectangle

Extraction

(a+b) is a multiple cube divisor!

$$P = (de) \cdot (a+b) + stuff1$$

$$P = (f) \cdot (a+b) + stuff2$$

$$Q = (ce) \cdot (a+b) + stuff3$$

$$Q = (f) \cdot (a+b) + stuff4$$

$$P = Xf + Xde + ag + cg + cde$$

$$X = a + b$$
 $Q = Xf + Xce$

R = ade + cde

After extraction # literals: 25

saved: 8

Simple Formula to Get # Literals Saved

- For each column c in rectangle: let Weight(c) = # literals in column cube.
- For each row r in rectangle: let Weight(r) = 1 + # literals in co-kernel label.
- For each "1" covered at row r and column c: AND row cokernel and column cube; let Value(r, c) = # literals in this new ANDed product.
- # literals saved is

$$L = \sum_{\substack{\text{row } r \text{ col } c}} \sum_{\substack{\text{Value}(r,c) - \sum_{\text{row } r}}} \text{Weight}(r)$$

$$-\sum_{\substack{\text{col } c}} \text{Weight}(c)$$

Compute Saved Literals: Example


```
P = af + bf + ag + cg + ade + bde + cde
```

$$Q = af + bf + ace + bce$$

$$R = ade + cde$$

saved: 8

- Column weight
 - Weight(a) = #literals in "a" \Rightarrow 1
 - Weight(b) = #literals in "b" \Rightarrow 1
- Row weight
 - Weight((P, de)) = 1 + #literals in "de" $\Rightarrow 3$
 - Weight((P, f)) = 1 + #literals in "f" $\Rightarrow 2$
 - Weight((Q, ce)) = 1 + #literals in "ce" $\Rightarrow 3$
 - Weight((Q, f)) = 1 + #literals in "f" $\Rightarrow 2$

Compute Saved Literals: Example

saved: 8

- Column weight
 - Weight(a) = 1; Weight(b) = 1
- Row weight
 - Weight((P, de)) = 3; Weight((P, f)) = 2
 - Weight((Q, ce)) = 3; Weight((Q, f)) = 2
- Value(r,c): # literals in the **product** of row co-kernel and column cube.
- Apply formula $L = \sum_{\text{row } r} \sum_{\text{col } c} \text{Value}(r, c) \sum_{\text{row } r} \text{Weight}(r) \sum_{\text{col } c} \text{Weight}(c) = 20 10 2 = 8$

Correct!

Details for Both Single/Multiple Cube Extraction

- You can extract a **second**, **third**, etc., divisor using same matrix.
 - Works for both single-cube and multiple-cube divisors.
- ...but must **update** matrix to reflect new Boolean logic network.
 - Because the node contents are different, and there is a new divisor node in network.
 - For multiple-cube case, must **kernel** new divisor nodes to update matrix.
 - All mechanical. A bit tedious. Just skip it...
 - For us: just know how to **extract first good divisor** is good enough.

How to Find Prime Rectangle in Matrix?

- **Greedy heuristics** work well for this rectangle covering problem.
 - Start with a single row rectangle with "good #literal savings".
 - Grow the rectangle by adding more rows, more columns.
- Example: Rudell's Ping Pong heuristic.
 - From his Berkeley PhD dissertation in 1989.
 - **Very good** heuristic:
 - < 1% of optimal result.
 - 10~100x faster than brute force approach.

Extraction: Summary

- Single cube extraction
 - Build the cube-literal matrix.
 - Each prime rectangle is a good single cube divisor.
 - Simple bookkeeping lets us obtain savings in #literals.
- Multiple cube extraction
 - Kernel all the expressions in network; build the co-kernel-cube matrix.
 - Each prime rectangle is a good multiple cube divisor.
 - Simple bookkeeping lets us obtain savings in #literals.
- Mechanically, both are **rectangle covering** problems
 - Good **heuristics** to obtain a good prime rectangle, fast and effective.

Aside: How do We Really Do This?

- Do **not** use rectangle covering on **all** kernels/co-kernels
 - Too expensive to compute **complete** set of kernels, co-kernels
 - Too expensive to do rectangle problem on big circuits (>20K gates)
- Often use heuristics to find a "quick" set of likely divisors.
 - Don't fully kernel each node of network: too many cubes to consider. Instead, can extract a **subset** of useful kernels quickly.
 - Then, can either do rectangle cover on these smaller problems (smaller since fewer things to consider in covering problem)...
 - ...or, try to do simpler overall network restructuring, e.g., try all pairwise **substitutions** of one node into another node: keep good ones, continue in a greedy way.

References

- R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A.R. Wang, "MIS: A Multiple-Level Logic Optimization System," *IEEE Transactions on CAD of ICs*, vol. CAD-6, no. 6, November 1987, pp. 1062-1081.
- Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
- R.K. Brayton, R. Rudell, A.S. Vincentelli, and A. Wang, "Multi-Level Logic Optimization and the Rectangular Covering Problem," Proceedings of the International Conference on Computer Aided Design, pp. 66-69, 1987.
- Richard Rudell, *Logic Synthesis for VLSI Design*, PhD Thesis, Dept of EECS, University of California at Berkeley, 1989.
- Srinivas Devadas, Abhijit Gosh, Kurt Keutzer, *Logic Synthesis*, McGraw Hill Inc., 1994.