BEST AVAILABLE COPY

Europäisches Patentamt **European Patent Offic** Offic européen des br v ts

① Veröffentlichungsnummer: 0 606 055 A2

12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 94100009.3

2 Anmeldetag: 03.01.94

(1) Int. Cl.5: C08F 222/00, C08F 210/14, C08F 216/14, C08L 35/00, C08F 8/32, C08L 23/08, C10L 1/22, C10M 149/06, C10M 145/10, C10M 145/16

Priorität: 06.01.93 DE 4300128

Veröffentlichungstag der Anmeldung: 13.07.94 Patentblatt 94/28

Benannte Vertragsstaaten: AT BE DE DK ES FR GB IT NL SE Anmelder: HOECHST AKTIENGESELLSCHAFT Brüningstrasse 50 D-65929 Frankfurt am Main(DE)

Erfinder: Krull, Matthlas, Dr. Erlenweg 5 D-65812 Bad Soden/Ts.(DE) Erfinder: Feustel, Michael, Dr. Freiherr-von-Stein-Strasse 35 D-65779 Kelkheim(DE)

 Terpolymere auf Basis von alpha, beta-ungesättigten Dicarbonsäureanhydriden, alpha,beta-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen.

Die vorliegende Erfindung betrifft Terpolymere auf Basis von α,β-ungesättigten Dicarbonsäureanhydriden, α,β-ungesättigten Verbindungen und Polyoxyalkylenethern gemäß Anspruch 1, sowie ein Verfahren zur Herstellung derselben gemäß Anspruch 5.

Ebenfalls Gegenstand der Erfindung ist eine Mischung aus mindestens einem Terpolymer gemäß Anspruch 1 und mindestens einem Ethylen-Vinylester-Copolymeren.

Die erfindungsgemäßen Terpolymere, sowie deren Mischungen, werden als Paraffininhibitoren in Rohölen und Erdölprodukten verwendet.

Mineralöle und Mineralöldestillat , wie Dieselkraftstoff oder Heizöl, enthalten in der Regel einen Anteil an gelösten n-Paraffinen, die bei Erni drigung der Temperatur auskristallisieren und dadurch zur Verschlechterung der Fließeigenschaften dieser Öle bzw. Destillate führen können. Bei Mineralölen kann dies beim Transport durch Rohrl itungen zu Ablagerungen an der Wand, in besonderen Fällen (z.B. bei Stillstand einer Pipeline) sogar zu deren völligen Verstopfung führen. Auch bei der Lagerung und Weiterverarbeitung der Mineralöle können Ausfällungen von Paraffinen zu Komplikationen führen. Bei Mineralöldestillaten können als Folge der Kristallisation Verstopfungen der Filter in Dieselmotoren und Feuerungsanlagen auftreten.

Außer den klassischen Methoden der Beseitigung dieser Paraffinprobleme (thermisch, mechanisch oder mit Lösungsmitteln), die sich lediglich auf die Entfernung der bereits gebildeten Ausfällungen beziehen, wurden in den letzten Jahren eine Reihe von chemischen Additiven (Paraffininhibitoren) entwickelt, die durch physikalisches Zusammenwirken mit den ausfallenden Paraffinkristallen dazu führen, daß deren Form, Größe und Adhäsionseigenschaften modifiziert werden. Die Additive wirken dabei als zusätzliche Kristallkeime und kristallisieren teilweise mit den Paraffinen aus; ein Teil ihrer Wirkung wird auch durch Dispergierung der Kristalle erklärt. Die modifizierten Kristalle neigen weniger zu Ablagerungen, sind auch kleiner und besitzen eine veränderte Kristallform. Mit Additiven versetzte Öle lassen sich noch bei Temperaturen pumpen bzw. verarbeiten, die oft mehr als 20 °C tiefer liegen als bei nicht additivierten Ölen.

Es sind einige Copolymere auf der Basis von Maleinsäureanhydrid und α,β -ungesättigten Verbindungen als Paraffininhibitoren für Rohöle und Mineralöldestillate bekannt.

In EP-B-0 154 177 werden Umsetzungsprodukte von Copolymeren auf Basis von Maleinsäureanhydrid und α,β-ungesättigten Verbindungen mit primären Monoalkylaminen und/oder aliphatischen Alkoholen beschrieben. Diese Copolymeren sind besonders als Paraffininhibitoren für paraffinhaltige Erdölprodukte, beispielsweise Rohöle und Destillationsrückstände der Erdölverarbeitung, geeignet.

Aus EP-A-0 436 151 sind Umsetzungsprodukte von Copolymeren auf der Basis von Maleinsäureanhydrid und α,β-ungesättigten Verbindungen wie Styrol mit Dialkylaminen bekannt. Diese Copolymeren werden Erdölmitteldestillaten in Mengen von 50 bis 1000 ppm, bevorzugt 100 bis 500 ppm, zugesetzt. Derartige Erdölmitteldestillate enthalten in der Regel bereits Fließverbesserer, wie Ethylen-Vinylester-Copolymere.

EP-A-0 283 293 offenbart Copolymere abgeleitet aus der Polymerisation eines aliphatischen Olefins mit Maleinsäureanhydrid, wobei das Copolymer sowohl eine Ester- als auch eine Amidgruppe aufweisen muß, von denen jede eine Alkylgruppe mit mindestens 10 Kohlenstoffatomen enthält sowie Copolymere von der Umsetzung eines sekundären Amins mit einem Polymer, das Anhydridgruppen enthält, wobei aus den Anhydridgruppen zu gleichen Teilen Amide bzw. Aminsalze hergestellt werden.

Die noch nicht veröffentlichte deutsche Patentanmeldung P 41 23 795.1 betrifft Copolymere aus ethylenisch ungesättigten Carbonsäureestern mit Polyoxyalkylenethern von niederen, ungesättigten Alkoholen sowie deren Verwendung in paraffinhaltigen Ölen, wie Rohölen, Rückstandsölen und Öldestillaten.

Die paraffininhibierende Wirkung der bekannten Paraffininhibitoren, insbesondere bei Mitteldestillaten ist jedoch nicht ausreichend, sodaß sich bei Abkühlung teilweise große Paraffinkristalle bilden können, die aufgrund ihrer höheren Dichte sedimentieren und zu einer paraffinreichen Schicht am Boden und einer paraffinarmen oberen Schicht führen können.

Es wurde nun gefunden, daß trotz der bekannten Schwierigkeiten bei dem Einsatz von Allylverbindungen als Monomere (H.-G. Elias, Makromoleküle, 4. Auflage (1981), S. 571, 581, 585), es ebenfalls möglich ist, Terpolymere auf Basis α,β -ungesättigter Dicarbonsäureanhydriden, α,β -ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen einzusetzen.

Es wurde ebenfalls gefunden, daß durch Zugabe von Alkohol/Amin-modifizierten Terpolymeren auf Basis von α,β-ungesättigten Dicarbonsäureanhydriden, α,β-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen, gegebenenfalls in Mischung mit bekannten Paraffininhibitoren, bevorzugt Mischpolymerisaten auf Basis von Ethylen und Vinylacetat, die bei Abkühlung ausfallenden Paraffinkristalle dispergiert bleiben. Infolge dieser gleichmäßigen Dispergierung wird eine homogen trübe Phase erhalten, bei der der für die "operability" entscheidende CFPP (Cold Filter Plugging Point)-Wert von oberer und unterer Phase annähernd gleich ist.

Gegenstand der Erfindung sind Terpolymere auf Basis von α,β -ungesättigten Dicarbonsäureanhydriden, α,β -ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen, die dadurch gekennzeichnet sind, daß sie

5 20-80, b vorzugt 40-60 Mol.- % an bivalenten Struktur inheiten A, B und/oder C

wobei

R¹ und R² unabhängig voneinander Wasserstoff oder Methyl,

a, b gleich Null oder Eins und a + b gleich Eins,

X und Y gleich oder verschieden sind und

für die Gruppe -N-HR³,

wobei R^3 C_6 - C_{40} -Alkyl, C_5 - C_{20} -Cycloalkyl oder C_6 - C_{18} -Aryl,

die Gruppe -N-(R3)2,

50 wobei R³ gleich oder verschieden ist und die obengenannte Bedeutung hat, und/oder die Gruppe -O-R⁴,

wobei R⁴ Wasserstoff, ein Kation der Formel H₂N^e(R³)₂ oder H₃N^eR³, C₆-C₄₀-Alkyl, C₅-C₂₀-Cycloalkyl oder C₆-C₁₈-Aryl, bevorzugt Phenyl, stehen,

19-80 Mol.-%, bevorzugt 39-60 Mol.-% an bivalenten Struktureinheiten D

(D)

5

10

15 worin

R⁵ Wasserstoff oder C₁-C₄-Alkyl und R⁶ C₆-C₆₀-Alkyl oder C₆-C₁₈-Aryl bedeuten

1-30 Mol.-%, bevorzugt 1-20 Mol.-% an bivalenten Struktureinheiten E

20

30

35

(E)

25

worin

R7 Wasserstoff oder Methyl,

R8 Wasserstoff oder C1-C4-Alkyl,

Z C1-C4-Alkylen,

m eine Zahl von 1 bis 100,

 R^9 C₁-C₂₄-Alkyl, C₅-C₂₀-Cycloalkyl, C₆-C₁₈-Aryl oder -C(0)-R¹⁰, wobei

 R^{10} C_1 - C_{40} Alkyl, C_5 - C_{10} -Cycloalkyl oder C_6 - C_{18} -Aryl,

enthalten.

Die vorgenannten Alkyl-, Cycloalkyl- und Arylreste können gegebenenfalls substituiert sein. Geeignete Substituenten der Alkyl- und Arylreste sind beispielsweise (C_1 - C_6)-Alkyl, Halogene, wie Fluor, Chlor, Brom und Jod, bevorzugt Chlor, und (C_1 - C_6)-Alkoxy.

Alkyl (R³, R⁴) steht erfindungsgemäß im allgemeinen für einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit 6-40, bevorzugt 10-24 Kohlenstoffatomen. Im einzelnen seien genannt: n-Hexyl, n-Octyl, Decyl, Dodecyl, Tetradecyl, Hexadecyl, Octadecyl, Dodecenyl, Tetrapropenyl, Tetradecenyl, Pentapropenyl, Hexadecenyl, Octadecenyl und Eicosanyl oder Mischungen, wie Cocosalkyl, Talgfettalkyl und Behenyl.

Cycloalkyl (R³, R⁴, R³ und R¹o) steht erfindungsgemäß im allgemeinen für einen cyclischen aliphatisch n R st mit 5-20 Kohlenstoffatomen. Bevorzugt Cycloalkylrest sind Cyclopentyl und Cyclohexyl.

Die erfindungsgemäßen Terpolymere besteh n aus den bivalenten Struktureinheiten A, B, und/oder C sowie D und E. Si nthalten lediglich noch in an sich bekannter Weise die bei der Polymerisation durch Initiierung, Inhibierung und Kettenabbruch entstandenen Endgruppen.

Im einzelnen I iten sich di Struktureinheiten A, B und C von α,β -ungesättigten Dicarbonsäureanhydriden der allgemeinen Formel F und/oder G

 $\begin{array}{c}
 & R^{1} \\
 & R^{2} \\
 & C = C - C - R^{2} \\
 & C = C - C - R^{2}
\end{array}$

wie Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid, bevorzugt Maleinsäureanhydrid, ab.

Die Struktureinheiten D leiten sich von den α,β-ungesättigten Verbindungen der allgemeinen Formel H

ab.

45 (H) $H_{2}C = C$

50

Beispielhaft seien die folgenden α,β -ungesättigten Verbindungen genannt: Styrol, α -Methylstyrol, Dimethylstyrol, α -Ethylstyrol, Diethylstyrol, i-Propylstyrol, tert.-Butylstyrol, Diisobutylen und α -Olefine, wie Decen, Dodecen, Tetradecen, Pentadecen, Hexadecen, Octadecen, C_{20} - α -Olefin, C_{24} - α -Olefin, C_{30} - α -Olefin, Tripropenyl, Tetrapropenyl, Pentapropenyl sowie deren Mischungen. Bevorzugt sind α -Olefine mit 10 bis 24 C-Atomen und Styrol, besonders b vorzugt sind α -Olefine mit 12 bis 20 C-Atom n.

Di Struktureinheiten E leiten sich von den Polyoxyalkylenethern niederer, ungesättigter Alkohole der allgemeinen Formel J ab.

Bei den Monomeren der Formel J handelt es sich um Veretherungsprodukte ($R^9 = -C(O)R^{10}$) oder Veresterungsprodukte ($R^9 = -C(O)R^{10}$) von Polyoxyalkylenethern ($R^9 = H$).

Die Polyoxyalkylenether (R⁹ = H) lassen sich nach bekannten Verfahren durch Anlagerung von α-Olefinoxiden, wie Ethylenoxid, Propylenoxid und/oder Butylenoxid an polymerisierbare niedere, ungesättigte Alkohole der Formel K

(K)

R
7

C = C = C = OH

herstellen. Solche polymerisierbaren niederen ungesättigten Alkohole sind z.B. Allylalkohol, Methallylalkohol, Butenole, wie 3-Buten-1-ol und 1-Buten-3-ol, oder Methylbutenole, wie 2-Methyl-3-buten-1-ol, 2-Methyl-3-buten-2-ol und 3-Methyl-3-buten-1-ol. Bevorzugt sind Anlagerungsprodukte von Ethylenoxid und/oder Propylenoxid an Allylalkohol.

Eine nachfolgende Veretherung dieser Polyoxyalkylenether zu Verbindungen der Formel J mit $R^9 = C_1$ bis C_{24} -Alkyl, Cycloalkyl oder Aryl erfolgt nach an sich bekannten Verfahren. Geeignete Verfahren sind z.B. aus J. March, Advanced Organic Chemistry, 2. Auflage, S. 357f (1977) bekannt. Diese Veretherungsprodukte der Polyoxyalkylenether lassen sich auch herstellen, indem man α -Olefinoxide, bevorzugt Ethylenoxid, Propylenoxid und/oder Butylenoxid an Alkohole der Formel L

(L) R9-OH

50

55

15

worin R⁹ gleich C₁-C₂₄-Alkyl, C₅-C₂₀-Cycloalkyl oder C₆-C₁₈-Aryl, nach bekannten Verfahren anlagert und mit polymerisierbaren niederen, ungesättigten Halogeniden der Formel M

(M)

umsetzt, wobei W für in Halogenatom steht und R⁷ und Z di zuvor angegebene Bedeutung besitzen. Als Halogenide werden bevorzugt die Chloride und Bromide eingesetzt. Geeignete Herstellungsverfahren werden z.B. in J. March, Advanced Organic Chemistry, 2. Auflage, S. 357f (1977) genannt.

Die Veresterung der Polyoxyalkylenether (R³ = -C(O)-R¹0) erfolgt durch Umsetzung mit gängigen Veresterungsmitteln, wie Carbonsäurehalogeniden, Carbonsäureanhydriden oder Carbonsäureestern mit C¹-C₄-Alkoholen. Bevorzugt werden die Halogenide und Anhydride von C¹-C₄0-Alkyl-, C₅-C¹0-Cycloalkyl- oder C₆-C¹8-Arylcarbonsäuren verwendet. Die Veresterung wird im allgemeinen bei Temperaturen von 0 bis 200 °C, vorzugsweise 10 bis 100 °C durchgeführt. Das Carbonsäurederivat wird im allgemeinen in einer, bezogen auf die Alkoholgruppe des Polyoxyalkylenethers, stöchiometrischen Menge eingesetzt. Es ist jedoch möglich, die Säurekomponente im Überschuß, z.B. in einem Überschuß von 20 bis 100 %, wie auch in Unterschuß zuzugeben. Die Veresterung wird zweckmäßig in einem Lösungsmittel durchgeführt. Geeignete Lösungsmittel sind beispielsweise aromatische Kohlenwasserstoffe, z.B. Alkylaromaten, wie Toluol, Xylol, Trimethylbenzole, Dimethylethylbenzole, Dimethylnaphthalin sowie Aromatengemische.

Bei den Monomeren der Formel J gibt der Index m den Alkoxylierungsgrad, d.h. die Anzahl der Mole an α-Olefinoxid an, die pro Mol der Formel K oder L angelagert werden.

Die Struktureinheit A enthält die Gruppen -NHR³, -N(R³)₂ und/oder -OR⁴, die sich von primären Aminen der Formel (N) NH₂R³, den sekundären Aminen der Formel (P) bzw. den Alkoholen der Formel (Q) HO-R⁴ ableiten.

Als primäre Amine seien beispielsweise die folgenden genannt: n-Hexylamin, n-Octylamin, n-Tetradecylamin, n-Hexadecylamin, n-Stearylamin oder auch N,N-Dimethylaminopropylendiamin, Cyclohexylamin, Dehydroabietylamin sowie deren Mischungen.

Als sekundäre Amine seien beispielsweise genannt: Didecylamin, Ditetradecylamin, Distearylamin, Dicocosfettamin, Ditalgfettamin und deren Mischungen.

Im Rahmen der Erfindung werden kürzer und/oder längerkettige Alkohole (C₅-C₄₀) der allgemeinen 5 Formel

(Q) HO-R4

eingesetzt.

Alkohole dieser Art sind an sich bekannt. Als Beispiele seien n-Butanol, n-Hexanol, n-Octanol, n-Dodecanol und als längerkettige Alkohole Stearylalkohol, Behenylalkohol oder die unter der Bezeichnung ®Alfole (Fa. Condea) bekannten Alkohole mit einer Kohlenstoffkettenlänge bis zu 40 C-Atomen genannt.

Ein Kation (R⁴) bedeutet erfindungsgemäß ein Ammoniumkation der Formel H₂Nº(R³)₂ oder H₃NºR³.

Die erfindungsgemäßen Terpolymeren besitzen K-Werte (gemessen nach Ubbelohde in 5 gew.-%iger Lösung in Toluol bei 25 °C) von 8 bis 100, bevorzugt 8 bis 50, entsprechend mittleren Molekulargewichten (\overline{M}_{w}) zwischen ca. 500 und 100.000.

Der Anteil der einzelnen bivalenten Struktureinheiten A bis E in den erfindungsgemäßen Terpolymeren wird im wesentlichen durch die Mengenverhältnisse der eingesetzten Reaktanten bestimmt.

Ebenfalls Gegenstand der Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Terpolymeren auf Basis von α,β-ungesättigten Dicarbonsäureanhydriden, α,β-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen, das dadurch gekennzeichnet ist, daß man zunächst Monomere der allgemeinen Formel F und/oder G

45

50

(F)

5 10 15

(G)

20 25

wobei R¹ und R², unabhängig voneinander Wasserstoff oder Methyl, Monomere der allgemeinen Formel H

(H)

35

40

wobei R^5 Wasserstoff oder C_1 - C_4 -Alkyl und R^6 C_6 - C_{60} -Alkyl oder C_6 - C_{18} -Aryl und Monomere der allgemeinen Formel J

50

$$H_{2}C = C \\ C \\ Z - 0 - (CH_{2} - CH - 0)_{m} - R^{9} \\ C \\ R^{8}$$

15

25

worin

R7 Wasserstoff oder Methyl,

R8 Wasserstoff oder C1-C4-Alkyl,

Z C1-C4-Alkylen,

m eine Zahl von 1 bis 100,

 R^9 C₁-C₂₄-Alkyl, C₅-C₂₀-Cycloalkyl, C₆-C₁₈-Aryl oder -C(O)-R¹⁰, wobei

R¹⁰ C₁-C₄₀ Alkyl, C₅-C₁₀-Cycloalkyl oder C₆-C₁₈-Aryl,

miteinander polymerisiert und

anschließend mit primären und/oder sekundären Aminen der Formeln

(N) $-N-H_2R^3$,

(P) $-N-H(R^3)_2$,

 wobei R³ C₆-C₄₀-Alkyl, C₅-C₂₀-Cycloalkyl oder C₆-C₁₈-Aryl, und/oder Alkoholen der Formel

(Q) H-O-R4,

5 wobei R⁴ C₆-C₄₀-Alkyl, C₅-C₂₀-Cycloalkyl oder C₆-C₁₈-Aryl, bevorzugt Phenyl, umsetzt.

Die Polymerisation erfolgt nach bekannten diskontinuierlichen oder kontinuierlichen Polymerisationsverfahren, wie Masse-, Suspensions-, Fällungs- oder Lösungspolymerisation und Initiierung mit geeigneten Radikalkettenstartern, z.B. Hydroperoxide, Peroxide oder Azoverbindungen, wie Dilauroylperoxid, Dibenzoylperoxid, t-Butylperpivalat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-t-butyl-peroxid, Cumolhydroperoxid, t-Butylhydroperoxid, 2,2'-Azo-bis(2-methyl-putyronitril) und Mischungen untereinander.

Im allgemeinen werden diese Initiatoren in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise 0,2 bis 10 Gew.-%, berechnet auf die Monomeren, eingesetzt.

Die Molverhältnisse zwischen den α,β -ungesättigten Dicarbonsäureanhydriden, α,β -ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen liegen zwischen 1:0,5-2:0,01 - 0,5, bevorzugt 1:0,9 - 1,1 0,04-0,2.

Die Polymerisation erfolgt in der Regel bei Temperaturen von $40-400^{\circ}$ C, vorzugsweise $80-250^{\circ}$ C, wobei bei Verwendung von α,β -ungesättigten Verbindungen oder Lösungsmitteln mit Siedetemperaturen unterhalb der Polymerisationstemperatur zweckmäßig unter Druck gearbeitet wird. Die Polymerisation wird zweckmäßig unter Luftausschluß, z.B. unter Stickstoff durchgeführt, da Sauerstoff die Polymerisation stört. Bei der Wahl des Initiators bzw. des Initiatorsystems ist es zweckmäßig, darauf zu achten, daß die Halbwertzeit des Initiators oder des Initiatorsystems bei der gewählten Polymerisationstemperatur weniger als 3 Stunden beträgt.

Zur Erzielung niedermolekularer Copolymer ist es oftmals zweckmäßig, in Gegenwart von an sich bekannten Reglern zu arbeiten. Geeignet Regl r sind beispielsweise organische Mercapto-Verbindungen, wie 2-Mercapto-Ethanol, 2-Mercapto-Propanol, Mercapto-Essigsäur , Mercapto-Propionsäure, tert.-Butylmercaptan, n-Butylmercaptan, n-Octylmercaptan, n-Dodecylmercaptan und tert.-Dodecylmercaptan, die im allgemeinen in Mengen von 0,1 Gew.-% bis 10 Gew.-% eingesetzt werden.

Für die Polymerisation geeignete Apparaturen sind z.B. übliche Rührkess I mit beispielsweise Anker-, Blatt-, Impeller- oder Mehrstufenimpuls-Gegenstrom-Rührer und für die kontinuierliche Herstellung Rührkesselkaskaden, Rührreaktoren oder statisch Mischer.

Bevorzugtes Verfahren zur Herstellung der erfindungsgemäßen T rpolymeren ist die Lösungspolymerisation. Sie wird durchgeführt in Lösungsmitteln, in denen die Monomeren und die gebildeten Terpolymeren löslich sind. Es sind hierfür alle Lösungsmittel geeignet, die diese Vorgabe erfüllen und die mit den Monomeren sowie den gebildeten Terpolymeren keine Reaktion eingehen. Beispielsweise sind dies organische, bevorzugt aromatische Lösemittel, wie Cumol, Toluol, Xylol, Ethylbenzol oder auch kommerzielle Lösemittelgemische, wie ®Solvent Naphtha, ®Shellsol AB oder ®Solvesso 150, 200, 250.

Bei der Herstellung können alle Monomere vorgelegt und durch Zugabe eines Radikalkettenstarters und Wärmezufuhr polymerisiert werden.

Zweckmäßigerweise wird jedoch das Lösungsmittel und ein Teil der Monomeren (z.B. ca. 5-20 %) vorgelegt und der Rest der Monomerenmischung mit dem Initiator und gegebenenfalls Co-Initiator und Regler zudosiert.

Bevorzugt werden auch Lösungsmittel und α,β-ungesättigte Verbindungen der Formel H, besonders C₄-C₆₀-α-Olefine, im Polymerisationsreaktor vorgelegt und nach Erreichen der Polymerisationstemperatur das säureanhydridgruppenhaltige Monomer der Formel F und/oder G sowie das Monomer der Formel J, beide gegebenenfalls gelöst im Lösungsmittel, und der Initiator sowie gegebenenfalls Co-Initiator und Regler zudosiert.

Die Konzentration der zu polymerisierenden Monomeren liegt zwischen 20 und 95 Gew.-%, bevorzugt 50 und 90 Gew.-%.

Das feste Terpolymer kann durch Ausfällung mit geeigneten Nicht-Lösemitteln, wie Aceton oder Methanol oder durch Verdampfen des Lösungsmittels isoliert werden. Es ist jedoch zweckmäßig, für die Polymerisation ein Lösungsmittel zu wählen, in dem die weitere Umsetzung mit Aminen und/oder Alkoholen erfolgen kann. In der Regel ist es von Vorteil, die Anhydride der Dicarbonsäuren und nicht die freien Säuren für die Polymerisation einzusetzen, da diese besser mit Olefinen reagieren und anschließend selektiv mit Aminen und/oder Alkoholen umgesetzt werden können. Der Einsatz der entsprechenden Dicarbonsäuren ist jedoch nicht auszuschließen.

Nach der Polymerisation erfolgt die Umsetzung mit Aminen der allgemeinen Formel N, P und/oder Alkoholen der Formel Q.

Die Umsetzung der Terpolymeren mit den primären und/oder sekundären Aminen erfolgt bei Temperaturen zwischen 30 und 250 °C im Verlauf von 0,5 bis 20 Stunden. Das primäre und/oder sekundäre Amin, bevorzugt Fettamin, wird dabei in Mengen von ungefähr 1 bis 2 Mol pro Mol einpolymerisiertem Dicarbonsäureanhydrid, das sind ca. 0,9-2,5 Mol pro Mol angewandt. Die Verwendung größerer oder geringerer Mengen ist möglich, bringt aber keinen Vorteil.

Werden 2 Mol eines sekundären Amins eingesetzt, erhält man bei niedrigen Reaktionstemperaturen (30 - 120 °C) Amid-Ammoniumsalze. Die Bildung einer zweiten Amidgruppierung erfordert Temperaturen oberhalb 120 °C, längere Verweilzeiten und Wasserauskreisen. Werden geringere Mengen als 1 Mol angewandt, findet keine vollständige Umsetzung zum Monoamid statt. Die Wahl der Reaktionsbedingungen/Derivat hängt vom Einsatzzweck ab.

Bei der Umsetzung der Terpolymeren mit primären und/oder sekundären Aminen N, P und/oder Alkoholen der Formel Q wird zweckmäßigerweise zunächst die Umsetzung des Terpolymeren mit dem Alkohol zu dem Halb- bzw. Diester durchgeführt. Der Umsetzungsgrad der Anhydridgruppen mit den Alkoholen liegt im allgemeinen zwischen 60 und 95 Mol.-%. Die teilveresterten Terpolymeren werden danach mit den primären und/oder sekundären Aminen entweder vollständig oder teilweise zu Amiden, Ammoniumsalzen, Diamiden und/oder cyclischen Imiden umgesetzt.

Am zweckmäßigsten wird bei der Herstellung der erfindungsgemäßen Terpolymerisate so vorgegangen, daß zunächst die Umsetzung mit den Alkoholen der Formel Q in Lösung, Suspension oder Schmelze zu den Halb- bzw. Di-Estern vorgenommen wird. Zur Beschleunigung der Bisveresterung, die unter Wasserabspaltung erfolgt, können Katalysatoren, im allgemeinen Säuren, wie Schwefelsäure oder p-Toluolsulfonsäure zugesetzt werden. Zur Entfernung des Reaktionswassers arbeitet man vorzugsweise unter Verwendung eines mit Wasser nicht mischbaren Lösungsmittels, wie Toluol oder Xylol, entweder in Suspension oder Lösung, und destilliert das Reaktionswasser azeotrop ab. Ist das umzusetzende Terpolymer am Anfang der Umsetzung in dem Lösungsmittel unlöslich, so geht es mit zunehmendem Veresterungsgrad in Lösung, um nach Beendigung der Reaktion eine klare Lösung zu bilden.

Der bevorzugt Temperaturbereich für die Bildung der Halb- bzw. Di-Ester liegt im Bereich von 60-180 °C, bevorzugt von 80-140 °C.

Anschließend an die Halbveresterung wird bevorzugt im selben Lösungsmittel die Amidierung mit primären und/oder s kundären Aminen der Formeln N und/oder P im Temperaturbereich von 50-250 °C, bevorzugt 100-200 °C, durchgeführt, wobei ebenfalls das Reaktionswasser azeotrop entfernt wird.

Es ist j doch auch möglich, di Amidi rungsreaktion gl ichzeitig mit oder vor d r Veresterungsreaktion durchzuführen. Bei gleichzeitiger Veresterung und Amidierung bringt man das Ausgangsterpolymer mit einem Gemisch aus Alkoholen der Formel Q und/oder primären und/oder sekundären Aminen der Formeln N und/oder P zur Reaktion.

Die erfindungsgemäßen Terpolymere sind besonders als Paraffininhibitoren für paraffinhaltige Rohöle und Erdölprodukte, die paraffine Wachse, Asphaltene, Harze usw. enthalten, geeignet. Als paraffinhaltige Erdölprodukte im Sinne der Erfindung seien beispielsweise Rohöle, Destillationsrückstände der Erdölverarbeitung oder andere paraffinhaltige Öle, wie Mitteldestillate genannt (vgl. z.B. Compositions and Properties of Petroleum, F. Enke Publishers, Stuttgart, 1981, Seiten 1-37).

Paraffine können hierbei geradkettig oder verzweigte Alkane mit etwa 10-50 Kohlenstoffatomen sein.

Die Anwendungskonzentrationen der erfindungsgemäßen Paraffininhibitoren betragen im allgemeinen 10-10000 ppm, bevorzugt 20-5000 ppm, besonders bevorzugt 50-1000 ppm im Erdölprodukt.

Die für ein bestimmtes paraffinhaltiges Öl optimale Anwendungskonzentration kann jeweils, z.B. durch Stockpunktbestimmung (DIN ISO 3016) ermittelt werden.

Beispielsweise bei Rohölen kann die Zugabe der erfindungsgemäßen Paraffininhibitoren sowohl im Bohrloch als auch während des Transports, der Lagerung oder der Weiterverarbeitung erfolgen.

Es hat sich gezeigt, daß die erfindungsgemäßen Terpolymere in Mischungen mit Ethylen-Vinylester-Copolymeren ausgezeichnete Wirkung als Paraffindispergatoren in Mitteldestillaten besitzen. Darüber hinaus sind die erfindungsgemäßen Terpolymere in Mischung mit Ethylen-Vinylester-Copolymeren zur Absenkung des cloud points (CP) in Mitteldestillaten geeignet. Üblicherweise bestehen diese Mischungen aus 50 bis 1000 ppm, bevorzugt 50 bis 500 ppm der erfindungsgemäßen Terpolymere und 50 bis 1000 ppm, bevorzugt 50 bis 500 ppm an Ethylen-Vinylester-Copolymeren. Neben diesen Copolymeren kommen jedoch auch gleichermaßen Terpolymere in Betracht, die neben Ethylen und Vinylestern weitere Comonomere enthalten. Die erfindungsgemäßen Terpolymeren und Ethylen-Vinylester-Copolymeren können auch als Einzelstoffe den Mitteldestillaten, die eine dieser Komponenten bereits enthalten, zugesetzt werden.

Geeignete Vinylestermonomere sind C₁-C₂₀-Alkylvinylester, bevorzugt C₁-C₁₂-Alkylvinylester, z.B. Vinylacetat, Vinylpropionat, Neononansäurevinylester und Neodecansäurevinylester sowie Vinylester von gesättigten C₁₀-C₂₄-Fettsäuren. Weitere geeignete Comonomere sind Ester ungesättigter Carbonsäuren, bevorzugt die C₁-C₂₄-Alkylester der Acrylsäure, Methacrylsäure und Fumarsäure sowie C₁-C₁₀-Alkylvinylester, Diisobutylen, Dimethylvinylcarbinol und Methoxyessigsäurevinylester.

Derartige Ethylen-Vinylester-Copolymere bzw. Terpolymere sind in der Patentliteratur eingehend beschrieben. Beispielsweise seien die DE-B-11 47 799 (Ethylen/Vinylacetat), DE-A-32 47 753 (Ethylen/Alkencarbonsäureester, Carbonsäurevinylester/ Vinylketone), US-A- 4 015 063 (Ethylen, Dimethylvinylcarbinol, Fettsäurevinylester), EP-A-203 554 (Ethylen/Diisobutylen/Vinylacetat), EP-A-309 897 (Ethylen/Methoxyessigsäurevinylester) und DE-A-40 42 206 (Ethylen/Vinylacetat/Neononan- oder Neodecansäurevinylester) angeführt.

Bevorzugte Copolymerisate sind solche, die im wesentlichen

80 - 51 Gew.-% Ethylen und

20 - 49 Gew.% Vinylacetat oder Vinylpropionat enthalten.

Bevorzugte Terpolymerisate enthalten neben

79 - 40 Gew.-% Ethylen,

20 - 35 Gew.%, bevorzugt 1 - 15 Gew.-% Vinylacetat oder Vinylpropionat, und

1 - 25 Gew.%, bevorzugt 1 - 15 Gew.-% Diisobutylen,

Neononansäurevinylester oder Neodecansäurevinylester.

Des weiteren hat sich gezeigt, daß Mischungen aus den erfindungsgemäßen Terpolymeren, den vorstehend beschriebenen Ethylen-Vinylester-Copolymeren und bestimmten quartären Ammoniumsalzen ausgezeichnete Wirkung als Paraffindispergatoren in Mitteldestillaten besitzen.

Geeignete quartäre Ammoniumsalze besitzen die allgemeine Formel

[®]N(R¹¹)₄X[®]

20

wobei R¹¹ gleich oder verschieden sein kann und für C₁-C₃₀-Alkyl, bevorzugt C₁-C₂₂-Alkyl, C₁-C₃₀-Alkenyl, bevorzugt C₁-C₂₂-Alkenyl, Benzyl oder einen Rest der Formel -(CH₂-CH₂-O)_n-R¹² steht, wobei R¹² Wasserstoff oder ein Fettsäurerest der Formel C(O)-R¹³ ist, mit R¹³ C₅-C₄₀-Alkyl oder C₅-C₄₀-Alkenyl, n eine Zahl von 1 bis 30 und X für Halogen, bevorzugt Chlor oder Methosulfat steht.

Beispielhaft für derartige quartäre Ammoniumsalze seien genannt: Dihexadecyl-dimethylammonium-chlorid, Distearyl-dimethylammonium-chlorid, Quaternisierungsprodukte von Estern des Di- und Triethanolamins mit langkettigen Fettsäuren (Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Behensäure, Ölsäure und Fettsäuremischungen, wie Cocosfettsäur , Talgfettsäure, hydrierte Talgfettsäure, Tallölfettsäure), wie N-Methyl-triethanolammonium-distearylester-chlorid, N-Methyl-triethanolammonium-distearylestermethosulfat, N,N-Dimethyl-diethanolammonium-distearylester-chlorid, N-Methyl-triethanolammonium-distearylester-methosulfat, N-Methyl-triethanolammonium-tristearylester-methosulfat und deren Mischungen.

Üblicherweise bestehen diese Mischungen aus 50 bis 1000 ppm, bevorzugt 50 bis 500 ppm der erfindungsgemäßen Terpolymere, 50 bis 1000 ppm, bevorzugt 50 bis 500 ppm an Ethylen-Vinylester-Copolymeren und 50 bis 1000 ppm, bevorzugt 50 bis 500 ppm der quartären Ammoniumsalze.

Ein weiterer Gegenstand der Erfindung sind auch die mit den erfindungsgemäßen Paraffininhibitoren gegen Paraffinablagerungen stabilisierten Erdölprodukte. Die erfindungsgemäßen Terpolymerisate und Terpolymerisat/ Co-Additiv-Gemische verbessern das Tieftemperaturverhalten dieser Öle und bewirken hiermit ein gegenüber dem Stand der Technik verbessertes Fließverhalten. Insbesondere werden der Stockpunkt (pour point) und die Viskosität verbessert.

Die Verbesserung des Fließverhaltens kann z.B. durch die Bestimmung des Stockpunktes (nach der ASTM-Norm Nr. 97 B, Section 6 f) durch Messungen der ausgeschiedenen Paraffinmengen sowie durch Viskositätsmessungen bestimmt werden. Insbesondere die erstgenannte Methode stellt einen in der Praxis stark verbreitetes Verfahren dar, das bei Screening-Untersuchungen meist den praktischen Anwendungsbedingungen angepaßt wird (z.B. Zugabe des Additivs bei 50 °C (actual pour point)).

Die Paraffindispergierung in Mitteldestillaten kann nachgewiesen werden durch Lagerung der additivierten Ölproben im Kälteschrank bei Temperaturen zwischen -13 und -20 °C (Durchführung nach M. Feustel et al., Science & Technology, Bd. 43, S. 396, Fig. 2 (1990)) mit anschließender optischer Beurteilung des Sedimentationsverhaltens sowie Auftrennung des Ölmusters in eine obere und eine untere Phase des CFPP-Wertes (EN 116).

Beispiele

30 Allgemeine Herstellvorschrift

Die Polymerisation erfolgt in einem 2 I-Fünfhalskolben (gegebenenfalls mit zusätzlichen Claisen-Aufsätzen) mit Ankerrührer, Rückflußkühler, Innenthermometer, Gaseinleitungsrohr und bis zu 3 (beheizbaren) Tropftrichtern. Die zur Polymerisation vorgelegten Lösungen werden vor und während der Polymerisation mit Stickstoff gespült. Die Eigenviskositätswerte K werden nach Ubbelohde in Toluol bei einer Polymerkonzentration von 5 Gew.-% bestimmt. IR-Spektren werden anhand 1 gew.-%iger Lösungen in Chloroform erstellt.

Bei den eingesetzten Allylmethylpolyglykolen handelt es sich um Handelsprodukte der Fa. Hoechst AG mit folgenden Charakteristika:

40 ®Polyglykol AM 250: durchschnittliches Molekulargewicht = 250 g/mol
 ®Polyglykol AM 350: durchschnittliches Molekulargewicht = 350 g/mol
 ®Shellsol AB und Solvent Naphtha sind kommerzielle, oberhalb 180 °C siedende aromatische Lösemittelge-

Shellsol AB und Solvent Naphtha sind kommerzielle, oberhalb 180 °C siedende aromatische Lösemittelgemische der Firmen Shell bzw. Veba Oel.

45 Beispiel 1: Terpolymer aus C₁₈-α-Olefin, Maleinsäureanhydrid und ®Polyglykol AM 350 in Toluol

Eine Lösung von 277,2 g (1,1 mol) Octadecen-1 in 50g Toluol wird unter Durchleiten eines Stickstoffstroms auf 100 °C erwärmt. Bei dieser Temperatur werden unter starkem Rühren im Laufe von 3 Stunden aus separaten Tropftrichtern 88,2 g (0 °9 mol) geschmolzenes Maleinsäureanhydrid, 35 g (0,1 mol) @Polyglykol AM 350 sowie eine Initiatorlösung bestehend aus 3,5 g tert.-Butyl-peroxybenzoat und 3,5 g tert.-Butyl-peroxy-2-ethylhexanoat in 55,8 g Toluol zudosiert. Es wird noch 2 Stunden bei 100 °C nachgerührt.

Die resultierende, rotbraun gefärbte Polymerlösung hat einen Feststoffgehalt von 48,2 % und enthält kein unumgesetztes Maleinsäureanhydrid. Das Polymer hat einen K-Wert von 16. IR-Banden bei 1775 und 1855 cm⁻¹ zeigen die Anwesenheit von Anhydriden.

Beispiel 2: Terpolymer aus C₁₈-α-Olefin, Maleinsäureanhydrid und ®Polyglykol AM 350 in Shellsol AB

Eine Lösung von 252 g (1,0 mol) C_{18-α}-Olefin in 115 g Shellsol AB wird unter Durchleiten eines Stickstoffstroms auf 160 °C erwärmt. Binnen 2 Stunden werden aus separaten Tropftrichtern kontinuierlich 98 g (1,0 mol) geschmolzenes Maleinsäureanhydrid, eine Lösung von 3,5 g Di-tert.-butylperoxid und 3,5 g tert.-Butyl-peroxybenzoat in 85 g Shellsol AB sowie 70 g (0.2 mol) ®Polyglykol AM 350 in 73,7 g Shellsol AB eingetropft. Es wird noch 2 Stunden bei 180 °C nachgerührt.

Die resultierende, orangefarbene Polymerlösung hat einen Trockenrückstand von 46,2 %; das resultierende Polymer hat einen K-Wert von 17.

Beispiel 3: Terpolymer aus C_{18-α}-Olefin, Maleinsäureanhydrid und ®Polyglykol AM 350 in Shellsol AB

10

20

25

30

Eine Lösung von 302,4g (1,2 mol) C₁₈-α-Olefin in 115 g Shellsol AB wird unter Durchleiten eines Stickstoffstroms auf 180 °C erwärmt. Binnen 2 Stunden werden kontinuierlich 88,2 g (0,9 mol) geschmolzenes Maleinsäureanhydrid, eine Lösung von 7 g Di-tert.-butylperoxid in 85 g Shellsol AB sowie 17,5 g (0,05 mol) ®Polyglykol AM 350 in 76,68 g Shellsol AB eingetropft. Es wird noch 1 Stunde bei 180 °C nachgerührt.

Die resultierende Polymerlösung hat einen Trockenrückstand von 45,9 %; das resultierende Polymer hat einen K-Wert von 17.

Beispiel 4: Terpolymer aus C₁₈-α-Olefin, Maleinsäureanhydrid und ®Polyglykol AM 250 in Shellsol AB

Analog Beispiel 3 werden 302,4 g Octadecen-1, 88,2 g Maleinsäureanhydrid und 12,5 g ®Polyglykol AM 250 bei 180°C polymerisiert. Das resultierende Polymer hat einen K-Wert von 15.

Beispiel 5: Terpolymer aus C₁₄₋₁₆-α-Olefin, Maleinsäureanhydrid und @Polyglykol AM 350 in Shellsol AB

Analog Beispiel 3 werden 252 g einer Mischung aus Tetradecen und Hexadecen (1:1), 88,2 g Maleinsäureanhydrid und 17,5 g ®Polyglykol AM 350 bei 180°C polymerisiert. Das resultierende Polymer hat einen K-Wert von 15.

Beispiel 6: Terpolymer aus C_{20-24-α}-Olefin, Maleinsäureanhydrid und @Polyglykol AM 350 in Shellsol AB

Analog Beispiel 3 werden 396,6 g (1,2 mol) eines C_{20-24} - α -Olefins, 88,2 g Maleinsäureanhydrid und 17,5 g @Polyglykol AM 350 bei 180 °C polymerisiert. Das resultierende Polymer hat einen K-Wert von 18.

Beispiel 7: Terpolymer aus Styrol, Maleinsäureanhydrid und @Polyglykol AM 350

Zu einer Lösung von 98 g (1,0 mol) Maleinsäureanhydrid in 300 g Shellsol AB werden unter Rühren und Durchleiten eines Stickstoffstroms im Laufe von 4 Stunden bei 160 °C parallel 99 g (0,95 mol) Styrol, eine Lösung von 4,0 g Di-tert.-Butylperoxid in 50 g Shellsol AB sowie eine Lösung von 17,5 g (0,05 mol) @Polyglykol AM 350 in 50 ml Shellsol AB zugetropft. Es resultiert eine hellbraune, 35 gew.-%ige Polymerlösung.

45 Beispiel 8: Terpolymer aus C₁₈-α-Olefin, Maleinsäureanhydrid und Allylpolyglykolstearylester

Analog Beispiel 3 werden 277,2 g (1,2 mol) C₁₈-α-Olefin, 88,2 g (0,9 mol) Maleinsäureanhydrid und 17,5 g Allylpolyglykol-stearylester (dargestellt durch Veresterung von Stearinsäure mit einem Ethoxylat des Allylalkohols mit 6 mol Ethylenoxid) bei 180 °C polymerisiert. Das resultierende Polymer hat einen K-Wert von 18.

Beispiel 9: Terpolymer aus C_{14/18}-α-Olefin, Maleinsäureanhydrid und Allylbutylpolyglykol

Analog Beispiel 3 werden 334 g einer Mischung aus Tetradecen und Hexadecen (1:1), 118 g Maleinsäureanhydrid und 107 g Allylbutylpolyglykol (enthaltend 24 mol Ethylenoxid und 8 mol Propylenoxid) in 376 g Solvent Naphtha bei 180 °C polymerisiert. Das resultierende Polymer hat einen K-Wert von

Beispiel 10: Terpolymer aus C_{14/18}-α-Olefin, Maleinsäureanhydrid und Allylbutylpolyglykol

Analog Beispiel 3 werden 334 g eine Mischung aus Tetradecen und Hexadecen (1:1), 118 g Maleinsäureanhydrid und 107 g Allylbutylpolyglykol (enthaltend 15 mol Ethylenoxid und 15 mol Propylenoxid) in 376 g Solvent Naphtha bei 180 °C polymerisiert. Das resultierende Polymer hat einen K-Wert von 17.

Beispiel 11: Umsetzung des Terpolymers nach Beispiel 1 mit Ditalgfettamin zum Amid-Ammoniumsalz

132,6 g der Polymerlösung nach Beispiel 3 werden bei 80°C mit 100 ml Toluol und 190 g Ditalgfettamin versetzt und 2 Stunden bei dieser Temperatur gerührt. Der titrierbare Stickstoff der 66,5 gew-%igen Polymerlösung beträgt 0,73 %.

Im IR-Spektrum sind keine Banden des Anhydrids zu erkennen; Banden bei 1565 und 1620 cm⁻¹ zeigen die Bildung eines Amid-Ammoniumsalzes.

5 Beispiel 12: Umsetzung des Terpolymers nach Beispiel 5 mit Ditalgfettamin

50 g der Polymerlösung nach Beispiel 5, enthaltend 0,086 mol Anhydridgruppen, werden bei 75 °C mit 84 g Shellsol AB und 86 g Ditalgfettamin versetzt und 3 Stunden bei dieser Temperatur gerührt. Der titrierbare Basenstickstoff der 50 %igen Polymerlösung beträgt 0,8 %.

Beispiel 13: Umsetzung des Terpolymers nach Beispiel 5 mit Distearylamin

20

25

Entsprechend Beispiel 12 wurden 50 g der Polymerlösung nach Beispiel 5 mit Distearylamin umgesetzt.

Beispiel 14: Umsetzung des Terpolymers nach Beispiel 3 mit Distearylamin

100 g der Polymerlösung nach Beispiel 3, enthaltend 0,13 mol Anhydridgruppen, werden bei 80°C mit einer Lösung aus 130 g (0,26 mol) Distearylamin in 100 g Xylol versetzt und 3 Stunden bei 150°C gerührt. Der titrierbare Basenstickstoff der 50 gew.-%igen Polymerlösung beträgt 0,51 %.

Beispiel 15: Umsetzung des Terpolymers nach Beispiel 3 mit Dicocosfettamin

100 g der Polymerlösung nach Beispiel 3, enthaltend 0,13 mol Anhydridgruppen, werden bei 80°C mit einer Lösung aus 100 g (0,26 mol) Dicocosfettamin in 100 g Xylol versetzt und 3,5 Stunden bei 160°C gerührt. Der titrierbare Basenstickstoff der 50 gew.-%igen Polymerlösung beträgt 0,62%.

Beispiel 16: Umsetzung des Terpolymers nach Beispiel 3 mit Stearylamin und Ditalgfettamin

100 g einer Polymerlösung nach Beispiel 3, enthaltend 0,13 mol Anhydridgruppen, werden bei 80°C mit 33,9 g (0,13 mol) Stearylamin versetzt und 2 Stunden bei dieser Temperatur gerührt. Anschließend werden 65 g (0,13 mol) Ditalgfettamin in 93 g Xylol zugegeben und 3 Stunden bei 150°C am Wasserabscheider gekocht. Der titrierbare Basenstickstoff der 50 gew.-%igen Polymerlösung beträgt 0,15 %.

45 Beispiel 17: Umsetzung des Terpolymers nach Beispiel 7 mit Ditalgfettamin

50 g der Polymerlösung nach Beispiel 7, enthaltend 0,063 mol Anhydrid, wird bei einer Temperatur von 75 °C unter Rühren eine Lösung von 63,2 g (0,126 mol) Ditalgfettamin in 58,6 g Shellsol AB gegeben. Es wird 2 Stunden bei dieser Temperatur nachgerührt. Die resultierende 50 gew.-%ige Polymerlösung enthält 0,78 % titrierbaren Basenstickstoff.

Beispiel 18: Umsetzung des Terpolymers nach Beispiel 1 mit Behenylalkohol

181,0 g der Polymerlösung (ntsprechend 0,3 mol Maleinsäureanhydrid) nach Beispiel 1 und 94,1 g (0,3 mol) Behenylalkohol werden 3 Stunden bei 150 °C am Rückfluß gekocht. Die Säurezahl beträgt 58.

Beispi 119: Neutralisation des teilverestert in Terpolymers nach Beispiel 18 mit Distearylamin

Die nach Beispiel 18 erhaltene teilver sterte Terpolymerlösung wird bei 70°C durch Zugabe von 143,6 g (0,3 mol) g schmolzenem Distearylamin neutralisiert und 1 Stunde bei 70°C gerührt. Di resultierend, hochviskose, hellgelb gefärbte Polymerlösung hat einen Feststoffgehalt von 78 % und titrierbaren Basenstickstoff von 0,91 %.

Beispiel 20: Amidierung des teilveresterten Terpolymers nach Beispiel 18 mit Distearylamin

Die gemäß Beispiel 18 erhaltene teilveresterte Terpolymerlösung wird mit 143,6 g (0,3 mol) Distearylamin und 226 g Toluol versetzt und 3 Stunden bei 130 - 140 °C am Wasserabscheider gekocht. Die resultierende 51 %ige Polymerlösung enthält 0,02 % titrierbaren Basenstickstoff. IR-Banden bei 1735 und 1620 cm⁻¹ zeigen die Anwesenheit von Ester- und Amidgruppierungen.

Beispiel 21: Umsetzung des Terpolymers nach Beispiel 1 mit Benzylalkohol und anschließende Neutralisation mit Distearylamin

216,6 g der Polymerlösung nach Beispiel 1 und 34,2 g (0,32 mol) Benzylalkohol werden 3 Stunden bei 140 °C unter Rückfluß gekocht. Die Säurezahl der teilveresterten Polymerlösung beträgt 80.

Nach Abkühlen auf 45°C werden 155,9 g geschmolzenes Distearylamin dazugegeben, wobei ein Temperaturanstieg um 3°C auftritt. Es wird 1 Stunde bei 45°C gerührt und anschließend abgefüllt. Das 80 gew.%ige, hochviskose Produkt hat einen titrierbaren Basenstickstoff von 0,98 %.

Beispiel 22: Umsetzung des Terpolymers nach Beispiel 1 mit Distearylamin

25

10

Zu 620 g der Polymerlösung nach Beispiel 1 werden bei 160 °C im Laufe von 4 Stunden 467 g (1 mol) Distearylamin gegeben und 1 Stunde bei dieser Temperatur gehalten. Der titrierbare Basenstickstoff der 49 gew.-%igen Polymerlösung beträgt 0,27 %. IR-Banden bei 1620 und 1720 cm⁻¹ deuten auf die Anwesenheit von Amid- und Carbonsäureeinheiten.

30

Beispiel 23: Umsetzung des Terpolymers nach Beispiel 9 mit Dicocosfettamin und Distearylamin

62 g der Polymerlösung nach Beispiel 9 (entsprechend 0,08 mol Anhydridgruppen) werden bei 90 °C mit einer Mischung aus 32 g (0,078 mol) Dicocosfettamin und 39 g (0,078 mol) Distearylamin in 72 g Solvent Naphtha versetzt und 3 Stunden bei dieser Temperatur gerührt. Der titrierbare Basenstickstoff der 49 %igen Polymerlösung beträgt 0,64 %.

Beispiel 24: Umsetzung des Terpolymers nach Beispiel 10 mit Dicocosfettamin und Distearylamin

40 62 g der Polymerlösung nach Beispiel 10 (entsprechend 0,08 mol Anhydridgruppen) werden bei 90°C mit einer Mischung aus 32 g (0,078 mol) Dicocosfettamin und 39 g (0,078 mol) Distearylamin in 72 g Solvent Naphtha versetzt und 3 Stunden bei dieser Temperatur gerührt. Der titrierbare Basenstickstoff der 50 %igen Polymerlösung beträgt 0,65 %.

45 Beispiel 25: Herstellung eines Copolymeren aus Maleinsäureanhydrid und C₁₈-α-Olefin und nachfolgender Umsetzung mit Ditalgfettamin (Vergleich)

Analog Beispiel 1 wird eine Lösung von 277 g (1,1 mol) C₁₈- α -Olefin in 150 g Toluol unter Durchleiten von Stickstoff auf 100 °C erwärmt. Unter starkem Rühren werden im Laufe von 3 Stunden 98 g (1 mol) geschmolzenes Maleinsäureanhydrid sowie eine Lösung von 3,5 g tert.-Butyl-peroxybenzoat und 3,5 g tert.-Butyl-peroxy-2-ethylhexanoat in 55,8 g Toluol zudosiert. Es wird 3 Stunden nachgerührt. Das resultierende Copolymer hat einen K-Wert von 16. Entsprechend Beispiel 9 werden 85,8 g obiger Polymerlösung (enthaltend 0,15 mol Anhydridgruppen) mit 142 g (0,3 mol) Ditalgfettamin in das Amid-Ammoniumsalz überführt.

Anwendungstechnische Ausprüfung

1. Stockpunktserniedriger für Rohöle

15

20

30

35

40

45

50

55

Die Wirksamkeit der erfindungsgemäßen Terpolymere als Fließverbesserer für Mineralöle wird durch die Bestimmung der Stockpunkte (pour points) gemäß der Methode DIN ISO 3016 beschrieben. Bei dieser Methode werden die nichtadditivierten bzw. die mit den Terpolymeren additivierten Rohölproben unter definierten Bedingungen nach vorangehender Aufwärmung und anschließender definierter Abkühlung auf die Fließfähigkeit geprüft. Mit den erfindungsgemäßen Terpolymerisaten wurden die Stockpunktuntersuchungen an zwei kolumbianischen Rohölen vorgenommen, die in unbehandeltem Zustand Stockpunkte von 13,5 °C (Rohöl A) bzw. 6 °C (Rohöl B) aufweisen.

Produkt	Einsatzmenge	Stockpunkt			
		Rohöl A	Rohöl B		
Terpolymer nach Beispiel 11	300 ppm	10,3 ° C	-1,9 ° C		
	500 ppm	8,4 ° C	-2,1 ° C		
	1000 ppm	5,3 ° C	-3,5 ° C		
Terpolymer nach Beispiel 18	300 ppm	9,5 ° C	-1,3 ° C		
	500 ppm	7,9 ° C	-4,1 ° C		
	1000 ppm	3,5 ° C	-15,2 ° C		

2. Paraffindispergatoren für Mitteldestillate

Für die folgenden Versuche werden acht typische, repräsentative Winterdieselkraftstoffe aus deutschen Raffinerien verwendet. Diese werden nachfolgend als Mitteldestillat I bis VIII bezeichnet.

	at de							
Mittel-		5 (5 9	2 8 5	6			
Mittel-		>	> &	> & &	-8 -8 0,822	-8 -8 0,822	-8 -8 0,822 173	V -8 -8 -8 173 221 221 221 333
Mittel-		≥ 0	≥ &	≥ 8- 01-	-8 -10 -10 0,837	-8 -10 0,837	-8 -10 -10 0,837 183 225	-8 -10 -10 0,837 183 225 338
Mittel-	:	≡	≡ ∞	≡ 8- 13	-8 -13 0,812	-8 -13 0,812	-8 -13 0,812 167 217	-8 -13 0,812 167 217 324
Mittel-	:	= (= 9-	9-	-6 -10 -10	-6 -10 -10 0,817 173	-6 -10 0,817 173 219	-6 -10 0,817 173 219 362
Mittel-	•	u	_ ç.	- rċ 8·	-5 -8 0,822	-5 -8 0,822	-5 -8 0,822 163	-5 -8 0,822 163 207 341
			ngspunkt(°C) Ipoint CP)	ngspunkt(°C) dpoint CP) (°C)	ingspunkt(°C) dpoint CP) (°C) e/20°C (g/ml)	ungspunkt(°C) dpoint CP) (°C) e/20°C (g/ml) anfang (°C)	ungspunkt(°C) dpoint CP) (°C) e/20°C (g/ml) anfang (°C) Siedepunkt (°C)	Trübungspunkt(°C) (Cloudpoint CP) CFPP (°C) Dichte/20°C (g/ml) Siedeanfang (°C) 20 % Siedepunkt (°C) 90 % Siedepunkt (°C)
			-5 -6 -8 -8 -6 -1	-5 -6 -8 -8 -8 -6 -1 -8 -10 -13 -10 -8 -11 -4	-5 -6 -8 -8 -6 -1 -1 -4 -8 -8 -6 -1 -1 -4	C) -5 -6 -8 -8 -8 -6 -1 -8 -10 -13 -10 -8 -11 -4 II) 0,822 0,817 0,812 0,837 0,822 0,819 0,830 163 173 167 183 173 169 171	-5 -6 -8 -8 -8 -6 -1 -8 -10 -13 -10 -8 -11 -4 0,822 0,817 0,812 0,837 0,822 0,819 0,830 163 173 167 183 173 169 171 207 219 217 225 221 219 252	-5 -6 -8 -8 -8 -6 -1 -8 -10 -13 -10 -8 -11 -4 0,822 0,817 0,837 0,822 0,819 0,830 163 173 167 183 173 169 171 207 219 217 225 221 219 252 341 362 324 338 333 330 353

Bei den Fließverbesserern (FI) handelt es sich um:

- FI (A) Ethylen/Vinylacetat-Copolymer (mit ca. 27 % Vinylacetat)
- Schmelzviskosität (140 °C) von 200 mPa •s
 FI (B) Ethylen/Vinylacetat-Copolymer (mit ca. 30 % Vinylacetat)
 mittleres Molekulargewicht von ca. 1500.

Beschreibung der Testmethode

Die Mitteldestillate werden zunächst separat, mit Fließverbesserer und in Kombination mit Paraffindispergator auf di durch Kälte induzierten Trübungs- und Paraffininsedimentationserscheinungen g testet. Nach Einlagerung der Proben in einem Kälteschrank und Durchlaufen eines speziellen Abkühlungsprogramms (siehe M. Feustel et al., Science & Technology, Bd. 43, S. 396, Fig.2 (1990)) werden nach 72 Stunden die Proben bei -13 °C auf Dispergierung beurteilt. Hierfür werden 20 ml bzw. 100 ml Mitteldestillatvolumina verwendet. Von den 100 ml Proben werden zusätzlich, nach der optischen Beurteilung, die obere Phase (50 Vol.-%) in der Kälte abgezogen. Von oberer sowie unterer Phase werden anschließend der cloud point (CP) und der cold filter plugging point (CFPP) bestimmt.

Die Bestimmung des cloud points (CP) erfolgt in Anlehnung an DIN 51597 durch Abkühlen der Ölprobe und optischer Messung des Trübungspunktes. Die Temperatur bei der eine erste Paraffin-Ausfällung zu einer Trübung führt ist der cloud point (CP). Die Messung des cloud points (CP) erfolgt in einem Gerät Herzog CP SC 815. Der cold filter plugging point (CFPP) wird gemäß Europa-Norm EN 116 bestimmt.

Es zeigt sich daß durch Zusatz der erfindungsgemäßen Additive eine Paraffindispergierung erzielt wird. Darüber hinaus wird eine Absenkung des cloud points (CP) erreicht (Tabelle IV).

Abkürzungen in den folgenden Tabellen:

FI = Mitteldestillatfließverbesserer 20 PD = Paraffindispergator PD(1) =nach Beispiel 11 PD(2) =nach Beispiel 12 PD(3) =nach Beispiel 13 PD(4) =nach Beispiel 14 25 PD(5) =nach Beispiel 25 (Vergleichsbeispiel) PD(6) =nach Beispiel 19 QAS = Quartäres Ammoniumsalz, hier N-Methyl-triethanolammoniumdistearylester-methosulfat

30 Beurteilungsbezeichnungen:

K = klar
T = trüb
LT = leicht trüb
35 S = Sediment
D = dispergiert, kaum Sediment

40

45

50

Tabelle I

	Mitteldestillat I CP-5°C/CFPP-8°C							
FI	Konz. (ppm)	PD	Konz. (ppm)	QAS (ppm)	Öl- Phase	Sediment- höhe	Volumen- anteil	
			., ,			(cm)	(%)	
FI(A)	100	- 1		•	К	1,6	15	
FI(A)	400	-	-	-	κ	1,9	17	
FI(B)	100	-	-	-	κ	1,4	13	
FI(B)	400	-	-	-	κ	1,7	15	
FI(A)	400	PD(1)	200	-	Т	0,8	7	
FI(A)	400	PD(1)	400	-	Т	0,5	5	
FI(A)	400	PD(1)	300	200	Т	0,0	0	
FI(B)	400	PD(1)	300	150	Т	0,1	1	
Mitteld	estillat II			CP-6°	C/CFPP-	10°C		
FI	Konz.	PD	Konz.	QAS	Öl-	Sediment-	Volumen-	
FI	Konz.	PD	Konz.	QAS (ppm)	Öl- Phase	Sediment- höhe	Volumen- anteil	
FI		PD		ŀ				
FI(A)		PD -		ŀ		höhe	anteil	
	(ppm)	PD - -		ŀ	Phase	höhe (cm)	anteil (%)	
FI(A)	(ppm)	PD		ŀ	Phase K	höhe (cm)	anteil (%) 13	
FI(A) FI(B)	(ppm) 100 100	- - - PD(2)		ŀ	Phase K K	höhe (cm) 1,4 1,0	anteil (%) 13 9	
FI(A) FI(B) FI(A)	100 100 200	- - -	(ppm) - - -	ŀ	Phase K K	höhe (cm) 1,4 1,0 1,4	anteil (%) 13 9 13	
FI(A) FI(B) FI(A) FI(A)	100 100 200 200	- - - - PD(2)	(ppm) - - - 200	ŀ	Phase K K K LT	höhe (cm) 1,4 1,0 1,4 0,5	anteil (%) 13 9 13 5	
FI(A) FI(B) FI(A) FI(A)	100 100 200 200 200	- - - PD(2) PD(2)	(ppm) - - - 200 350	ŀ	Phase K K K LT T	höhe (cm) 1,4 1,0 1,4 0,5 0,3	anteil (%) 13 9 13 5	
FI(A) FI(B) FI(A) FI(A) FI(A)	100 100 200 200 200 200	- - - PD(2) PD(2) PD(2)	(ppm) 200 350 500	ŀ	Phase K K LT T T	höhe (cm) 1,4 1,0 1,4 0,5 0,3 0,1	anteil (%) 13 9 13 5 2	

Mit	teldes	stillat III		CP-8°C/CFPP-13°C					
FI		Konz. (ppm)	PD	Konz. (ppm)	QAS (ppm)	Öl- Phase	Sediment- höhe (cm)	Volumen- anteil (%)	
FI(E		100 200	-			K K	1,7 1,8	15 16	
FI(E		200 200	PD(3) PD(3)	100 200	-	K LT	1,0 0,5	9	
FI(E		200 200	PD(3) PD(3)	300 500	-	T T	0,2 0,2	2 2	
FI(E		200 200	PD(3) PD(3)	200 500	100 200	T T	0,1 0,1	1	

Tabelle II

Mitteldestillat I CP-5°C/CFPP-8°C

obere Phase		CFPP	ပ္	-32	-33	-38	-36	-37	-37	-37	-34	
obere		8	၁	-10	-1	-13	-13	-12	÷	÷	-12	
untere Phase		CFPP	၁့	-16	-13	-20	-29	-29	-28	-32	-17	
untere		S	ပ္	Į-	7	-	-5	-5	ကု	4-	7	
Disper- gierung				S	S	۵	S	٥	۵	۵	S	
Paraffin in Öl-	Phase			¥	¥	- -	-	F	F	H	L	
Paraffin- sediment	(Vol%)			14	19	4	7	വ	2	-	7	
QAS (ppm)				•	,	,	200	200	200	200		
Konz. (ppm)					,	400	20	100	200	300	400	
PD				•	•	PD(1)	PD(1)	PD(1)	PD(1)	PD(1)	PD(5)	
Konz. (ppm)				200	400	400	400	400	400	400	400	
Œ				FI(A)	FI(A)	FI(A)	FI(A)	FI(A)	FI(A)	FI(A)	FI(A)	

Tabelle III

Phase			CFPP	၁့	-30	-24	ن ع	ب	-28	-29	-30
obere			ပ	၁ ့	-15	-14	-14	-14	-14	-12	-12
Phase			CFPP	ပွ	-11	-19	-21	-28	-10	-23	-26
untere			ე ე	ပွ	0	-2	-2	ငှ	7	-5	ڊ-
Disper-	gierung				S	S	S	۵	S	S	۵
Paraffin	in Öl-	Phase			¥	¥	L L	5	¥	ב	⊢
Paraffin-	sediment	(Vol%)			21	10	œ	7	19	∞	ស
OAS	(mdd)				,	ı	150	20	•	,	150
Konz.	(mdd)				,	250	200	200	,	250	200
PD					•	PD(2)	PD(2)	PD(2+3)	. •	PD(2)	PD(2)
Konz.	(mdd)				200	200	200	200	200	200	200
ш					FI(B)	FI(B)	FI(B)	FI(B)	FI(A)	FI(A)	FI(A)
	Konz. PD Konz. QAS Paraffin	Konz.PDKonz.QASParaffin-Paraffin-Paraffin-Disper-untere Phase(ppm)(ppm)(ppm)sedimentin Öl-gierung	Konz.PDKonz.QASParaffin-Paraffin-Paraffin-Disper-untere Phase(ppm)(ppm)sedimentin Öl-gierung(Vol%)Phase	Konz. PD Konz. QAS Paraffin- Paraffin- Paraffin- Disper- untere Phase obere Phase (ppm) (ppm) sediment in Öl- gierung (Vol%) Phase . CP CFPP CP	Konz. QAS Paraffin- Paraffin- Paraffin- Disper- untere Phase obere Pobere (ppm) (ppm) sediment in Öl- gierung (Vol%) Phase . CP CFPP CP °C °C °C	Konz. OAS Paraffin- sediment (ppm) Paraffin in Öl- gierung Untere Phase (bere Phase) Obere Phase (ppm) (ppm) (vol%) Phase CP CFPP CP 200	Konz. PD Konz. OAS Paraffin- in Öl- gierung Praser untere Phase obere Phase (ppm) (ppm) (ppm) sediment in Öl- gierung r r (Vol%) Phase CP CFPP CPP CPP 200 - 21 K S 00 -11 -15 200 PD(2) 250 - 10 K S -2 -19 -14	Konz. Conz. CAS Paraffin-sediment Paraffin in Öl-siper-siperung Oisper-siperung In Öl-siper-siperung Oisper-siperung Ooere Paraffin sediment Oin Öl-siperung Ooere Paraffin sediment Oin Öl-siperung Ooere Paraffin sediment Ooere Paraffin sediment	Konz. OAS Paraffin- sediment (ppm) Paraffin- sediment in Öl- gierung OI-Mol- sediment in Öl-	Konz. PD Konz. OAS Paraffin- sediment in Öl- gierung Disper- gierung In Öl- gierung OP GFPP OP GFPP	Konz. PD Konz. QAS Paraffin- sediment in Öl- gierung Disper- gierung Inter Phase Obere Phase

Tabelle IV

400 ppm PD(6) 800 ppm PD(6)	400 ppm PD(6)	400 ppm PD(6)	400 ppm PD(6)	400 ppm PD(6)		400 ppm PD(6)	400 ppm PD(6)
10,1-			-10,1	-8,1 -10,1	-10,1	-8,1 -8,1	-8,1 -10,1
-10,7			-10,7	-8,4 -10,7	-10,7	-8,4 -10,7	-8,4 -10,7
-7,7-			-7,4	-5,7 -7,4	-7,4	-5,7 -7,4	-5,7 -7,4
		-2,1	-2,1	-0,9	-0,9	-0,9	0,9 -0,9
-10,1 -10,7 -7,4	-10,1 -10,7 -7,4	-10,1 -10,7 -7,4	-10,1 -10,7 -7,4	-10,1 -10,7 -7,4	-10,1 -10,7 -7,4	-8,1 -8,1 -10,1 -10,1 -10,1 -10,1 -10,7 -10,7 -10,7 -10,7 -10,7 -10,9 -2,1	-8,1 -8,1 -10,1 -10,1 -10,1 -10,1 -10,7 -10,7 -10,7 -10,7 -10,7 -10,9 -2,1
400 ppm PU(6) -10,1 -10,7 -7,4	-10,1 -10,7 -10,7 -7,4	-8,1 -10,1 -8,4 -10,7 -5,7 -7,4	+ 150 ppm FI(4) 400 ppm PD(6) -8,1 -10,1 -8,4 -10,7 -5,7 -7,4	400 ppm PD(6) 41 -8,1 -10,1 44 -8,4 -10,7 7 -5,7 -5,7 9 -0,9 -2,1	onne Additiv + 150 ppm FI(A) 400 ppm PD(6) -8,1 -8,1 -10,1 -8,4 -8,4 -10,7 -5,7 -5,7 -7,4	-8,1 -8,1 -8,1 -8,4 -5,7 -5,7 -0,9	-8,1 -8,1 -8,1 -8,4 -5,7 -5,7 -0,9
400 ppi -1C -1C -7	-10 -10 -10 -2	50 ppm FI(A) 400 ppi -8,1 -10 -8,4 -10 -5,7 -7,	+ 150 ppm FI(A) 400 ppi -8,1 -10 -8,4 -10 -5,7 -7	Additiv + 150 ppm FI(A) 400 ppi 7.1 -8,1 -10 7.7 -5,7 -7 9 -0,9 -2	ohne Additiv + 150 ppm FI(A) 400 ppi -8,1 -10 -8,4 -8,4 -10 -5,7 -5,7 -7 0,9 -0,9 -2	ohne Additiv + 150 ppm FI(A) -8,1 -8,4 -8,4 -5,7 -5,7 -0,9	ohne Additiv + 150 ppm FI(A) -8,1 -8,4 -8,4 -5,7 -5,7 -0,9
	FI(A)	50 ppm FI(A) -8,1 -8,4 -5,7	+ 150 ppm FI(A) -8,1 -8,4 -5,7	Additiv + 150 ppm FI(A) 7,1 -8,1 -8,4 7,7 -5,7 9 -0,9	ohne Additiv + 150 ppm FI(A) -8,1 -8,4 -8,4 -5,7 -5,7 -0,9		

55 Patentansprüche

1. T rpolymer auf Basis von α,β -ungesättigten Dicarbonsäureanhydriden, α,β -ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen, dadurch gekennzeichnet, daß sie

20 - 80, bevorzugt 40 - 60 Mol.-% an bivalenten Struktureinheiten A, B und/oder C

24

19 - 80 Mol.-%, bevorzugt 39 - 60 Mol.-% an bivalenten Struktureinheiten D

wobei R⁴ Wasserstoff, ein Kation der Formel H₃N^eR³ oder H₂N^e(R³)₂,C₆-C₄₀-Alkyl, C₅-C₂₀-Cycloalkyl

die Gruppe -O-R4,

55

oder C₆-C₁₈-Aryl, bevorzugt Phenyl, stehen,

(D)

5

10

15

R5 Wasserstoff oder C1-C4-Alkyl und

R⁶ C₆-C₆₀-Alkyl oder C₆-C₁₈-Aryl bedeuten

und

worin

1 - 30 Mol.-%, bevorzugt 1-20 Mol.-% an bivalenten Struktureinheiten E

20

(E)

25

30

35

45

50

worin

R7 Wasserstoff oder Methyl,

40 R8 Wasserstoff oder C1-C4-Alkyl,

Z C1-C4-Alkylen,

m eine Zahl von 1 bis 100,

 R^3 C₁-C₂₄-Alkyl, C₅-C₂₀-Cycloalkyl, C₆-C₁₈-Aryl oder -C(0)- R^{10} ,

wobei

 R^{10} C_1 - C_{40} Alkyl, C_5 - C_{10} -Cycloalkyl oder C_6 - C_{18} -Aryl,

enthalten.

 Terpolymer nach Anspruch 1, enthaltend bivalente Struktureinheiten der Formel A, worin X eine Gruppe der Formel O-R⁴ mit

R4 C6-C40-Alkyl und

Y eine Gruppe der Formel O-R4, wobei

R4 ein Kation der Formel H2Nº(R3)2 mit

R3 C6-C40-Alkyl.

Terpolymer nach Anspruch 1, enthaltend bivalente Struktur inheiten der Formel A, worin X ein Gruppe der Formel -N(R³)₂ mit R³ C₆-C₄₀-Alkyl und Y eine Grupp der Form I O-R⁴, wobei R⁴ ein Kation der Formel

 $H_2N^{\bullet}(R^3)_2$ mit R^3 C_6 - C_{40} -Alkyl.

- 4. Terpolymere nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß R^3 und R^4 C_6 - 6_2 4-Alkyl.
- 5. Verfahren zur Herstellung der Terpolymeren nach Anspruch 1, dadurch gekennzeichnet, daß man Monomere der allgemeinen Formel F und/oder G

25

(G) R_1 $C = C - C - R^2$ 0 - C - C = 0

wobei R¹ und R² unabhängig voneinander Wasserstoff oder Methyl, Monomere der allgemeinen Formel H

(H) $H_{2}C = C$ R^{5}

40

55

worin R⁵ Wasserstoff oder C₁-C₄-Alkyl und R⁶ C₆-C₆₀-Alkyl oder C₆-C₁₈-Aryl und Monomere der allgemein n Formel J

 $H_{2}C = C \\ C \\ Z - O - (CH_{2} - CH - O)_{m} - R^{9} \\ C \\ R^{8}$

15

20

25

worin

R7 Wasserstoff oder Methyl,

R8 Wasserstoff oder C1-C4-Alkyl,

Z C1-C4-Alkylen,

m eine Zahl von 1 bis 100,

R⁹ C₁-C₂₄-Alkyl, C₅-C₂₀-Cycloalkyl, C₆-C₁₈-Aryl oder -C(O)-R¹⁰,

wobei

R¹⁰ C₁-C₄₀ Alkyl, C₅-C₁₀-Cycloalkyl oder C₆-C₁₈-Aryl,

miteinander polymerisiert und

anschließend mit primären und/oder sekundären Aminen der Formeln

- (N) NH2-R3
- (P) NH-(R3)2,

30

wobei R^3 C_6 - C_{40} -Alkyl, C_5 - C_{20} -Cycloalkyl oder C_6 - C_{18} -Aryl und/oder Alkoholen der Formel

(Q) HO-R4

35

40

50

wobei R⁴ C₆-C₄₀-Alkyl, C₅-C₂₀-Alkyl oder 6₆-C₁₈-Aryl, bevorzugt Phenyl, umsetzt.

- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die Polymerisation in Lösung, Suspension oder Schmelze, bevorzugt in Lösung durchführt.
- 7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die Polymerisation in einem Rührkessel, einer Rührkesselkaskade, einem Rührreaktor oder einem statischen Mischer durchführt.
- 8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Molverhältnis der Monomeren der Formeln F und/oder G, H und J 1:0,5 2:0,01 0,5, bevorzugt 1:0,9 1,1:0,04 0,2 beträgt.
 - Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Polymerisation in Gegenwart von 0,1 bis 20 Gew.-%, bevorzugt 0,2 bis 10 Gew.-%, bezogen auf den Monomerengehalt, eines Radikalkettenstarters erfolgt.
 - 10. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Polymerisation in Gegenwart von 0,1 bis 10 Gew.-%, bezogen auf den Monomerengehalt, eines Reglers erfolgt.
- 11. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß di Polymerisation bei einer Temperatur von 40 bis 400 °C, bevorzugt 80 bis 250 °C und gegebenenfalls unter Luftausschluß durchgeführt wird.
 - 12. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Polymerisation in einem Lösungsmittel durchgeführt wird, in dem die Monomeren der Formeln F,G,H und J und die Terpolymere nach

Anspruch 1 löslich sind.

5

10

15

- 13. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man bei der Umsetzung mit Aminen der Formeln N, P und/oder Alkoholen der Formel Q zunächst die Ums tzung des Polymeren mit dem Alkohol durchgeführt wird und anschließend die Umsetzung mit den primären und/oder sekundären Aminen erfolgt.
 - 14. Verwendung von Terpolymeren nach Anspruch 1 als Paraffininhibitor für paraffinhaltige Rohöle und Erdölprodukte.
 - 15. Verwendung der Terpolymeren nach Anspruch 14, dadurch gekennzeichnet, daß man 10 bis 10 000 ppm des Terpolymeren dem paraffinhaltigen Rohöl oder Erdölprodukt zusetzt.
- 16. Paraffinhaltige Erdöle und Erdölprodukte enthaltend ein Terpolymer nach Anspruch 1.

17. Mischung bestehend aus mindestens einem Terpolymer nach Anspruch 1 und mindestens einem Ethylen-Vinylester-Copolymeren.

- 18. Mischung nach Anspruch 17, dadurch gekennzeichnet, daß sie Ethylen-Vinylester-Copolymere enthalten, die sich von Copolymeren ableiten, die C₁-C₂₀-Alkylvinylester, Vinylester von gesättigten C₁₀-C₂₄-Fettsäuren, Ester ungesättigter Carbonsäuren, Diisobutylen, Dimethylvinylcarbinol und Methoxyessigsäurevinylester als Monomere enthalten.
- Mischung nach Anspruch 17, dadurch gekennzeichnet, daß die Ethylen-Vinylester-Copolymeren
 80 51 Gew.-% Ethylen,
 - 20 49 Gew.-% Vinylacetat oder Vinylpropionat, enthalten.
 - 20. Mischung nach Anspruch 17, dadurch gekennzeichnet, daß die Ethylen-Vinylester-Copolymeren 79 40 Gew.-% Ethylen,
- 30 20 35 Gew.-%, bevorzugt 1 15 Gew.- %, Vinylacetat oder Vinylpropionat und
 - 1 25 Gew.-%, bevorzugt 1 15 Gew.-%, Diisobutylen, Neononansäurevinylester oder Neodecansäurevinylester enthalten.
- 35 21. Verwendung von Mischungen nach Anspruch 17 als Paraffindispergatoren in Erdölmitteldestillaten.
 - Verwendung von Mischungen nach Anspruch 17 zur Absenkung des Trübungspunktes (cloud point) in Erdölmitteldestillaten.
- 23. Verwendung nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß man eine Mischung bestehend
 - 50 bis 1000 ppm, bevorzugt 50 bis 500 ppm an Terpolymer und 50 bis 1000 ppm, bevorzugt 50 bis 500 ppm an Ethylen-Vinylester-Copolymeren dem paraffinhaltigen Erdölmitteldestillat zusetzt.
 - 24. Paraffinhaltige Erdölmitteldestillate enthaltend Mischungen nach Anspruch 17.
 - Mischung bestehend aus einer Mischung nach Anspruch 17 und mindestens einem quartärem Ammoniumsalz der Formel
 - *N(R11)₄X*

45

50

55

worin R¹¹ C₁-C₃₀-Alkyl, bevorzugt C₁-C₂₂-Alkyl, C₂-6₃₀-Alkenyl, bevorzugt C₂-C₂₂-Alkenyl, Benzyl oder ein Rest der Formel -(CH₂-CH₂-O)_n-R¹², wobei R¹² Wasserstoff oder ein Fettsäurerest der Formel C(O)-R¹³, wobei R¹³ C₅-C₄₀-Alkyl od r C₅-C₄₀-Alkenyl, n ein Zahl von 1 bis 30 und X für ein Halogen, bevorzugt Chlor oder Methosulfat steht.

26. Verwendung von Mischungen nach Anspruch 25 als Paraffindispergatoren in Erdölmitteldestillaten.

27.	V rwendung nach Anspruch 26, dadurch gekennz ichnet, daß man eine Mischung bestehend aus
	50 bis 1000 ppm, bevorzugt 50 bis 500 ppm an Terpolymer nach Anspruch 1,
	50 bis 1000 ppm bevorzugt 50 bis 500 ppm an Ethylen-Vinylester-Copolymeren und
	50 bis 1000 ppm, bevorzugt 50 bis 500 ppm an quartär m Ammoniumsalz der Formel N(R11)4X9 dem
	paraffinhaltigen Erdölmitteldestillat zusetzt.

28. Paraffinhaltige Erdölmitteldestillate enthaltend Mischungen nach Anspruch 25.