

F16.1a

FIG. 3a

FIG. 3b

200

FIG S

Diold	Rit Number	Bits	Description
ricia	Dit Manager		11 11 11 11 11 11 11 11 11 11 11 11 11
Ĺ	31.74	∞	Frame Type. This field shall be set to zero by unc
7.4	1 2:10	1	transmitter. The receiver shall decode this field and
,			discard the frame if it's anything other than zero.
מעשם	23		Reserved. This field shall be set to zero by unc
2	1	ı	transmitter, and the receiver shall ignore it
100	00.00	m	Priority (0-7)
LN	07:77		
טֿו	19:16	4	Scrambler Initialization
70	04.74		
DE	15:8	∞	Payload Encoding
7.7	2.0		
NUH	7:0	∞	Header Check Sequence
COTT	>		

F16, 7

Value	Interpretation
	Reserved on transmit, discard frame on receive
	Baud rate=2 MHz, 2 bits per Baud
2	Baud rate=2 MHz, 3 bits per Baud
3	Baud rate=2 MHz, 4 bits per Baud
4	Baud rate=2 MHz, 5 bits per Baud
5	Baud rate=2 MHz, 6 bits per Baud
9	Baud rate=2 MHz, 7 bits per Baud
7	Baud rate=2 MHz, 8 bits per Baud
∞	Reserved on transmit, discard frame on receive
6	Baud rate=4 MHz, 2 bits per Baud
10	Baud rate=4 MHz, 3 bits per Baud
	Baud rate=4 MHz, 4 bits per Baud
12	Baud rate=4 MHz, 5 bits per Baud
13	Baud rate=4 MHz, 6 bits per Baud
. 14	Baud rate=4 MHz, 7 bits per Baud
15	Baud rate=4 MHz, 8 bits per Baud
16-256	Reserved on transmit, discard frame on receive

F16.10

2 bits per Baud

F/6/2a, ii ii

3 bits per Baud

001	000	100	101
011	010	110	F16-12 11

4 bits per Baud

0011	1000	1001	101
00,00	0000	1000	1010
0110	0100	. 1100	11,10
011	1010	1101	Ę
	7.	アプレン	

5 bits per Baud

	00111	00011	10011	10111	
00010	00 (01	00001	10001	10101	10010
00110	00 100	00000	10000	10100	10110
01110	01 100	01000	11000	11 600	1110
01010	01101	01001	11001	1101	11010
	01111	01011	11011	11111	
			1/1	129×	

6 bits per Baud

001010	001110	000110	000010	100010	100110	101110	101010
001011	001111	010100 000100 000101 000111 000110	010001 010000 000000 000001 000011 000010	110010 110011 110001 110000 100001 100011 100010	100111	101111 101110	101011
001001	001101	000101	000001	100001	110100 100100 100101	101101	111000 101000 101001
001000	011100 001100	000,100	000000	100000	100100	111100 101101	101000
011001 011000 001000 001001	011100		010000	110000	110100		
011001	011101	010101	010001	110001	110110 110111 110101	111101	111810 111811 111801
011010 011011	011110 011111	010110 010111	010010 010011	110011	110111	นนั้น นนั้น	1110111

F/6 ->

Tohoto Zeseco 76/75 PER BAUD 1

		=	<u>-</u>	Ξ	<u>.</u>	=	Ξ	-	***		
		001011	001111	000111	000011	100011	100111	101111	101011		
		อเเอ็บเร อนเอ็บเอ อนเอ็อนอ อนเอ็อน อนเอ็อน อนเอ็ออด อนเอ็ออด อนเอ็ออด อนเอ็อน อนเอ็อน อนเอ็นเอ อนเอ็นน	פוולווז פוולוום פוולפום פוולפום מוולפסו פטולפסם פטולפסם פטולפסו פטולווז פוולפום פטולווס	פוס פונון פוס	סוספֿווס סוספֿסום מוספֿסום מוספֿסום סטספֿסום סטספֿסטם סטספֿסטן סטספֿוו סטספֿטום סוספֿסום סטספֿווו	1100111 1100110 1100010 1100011 1100000 11000000	110โ111 110โ110 110โ010 110โ011 110โ001 110โ000 100โ000 100โ001 100โ011 100โ010 100โ110 100โ111	ากรีกก การรักษ์ การโอเอ การโอเา การโออา การโอออ เอารื่ออ เอารื่ออา เอารื่อน เอารื่อน เอารีกาย เอารีกาก	111อี111 111อี110 111อีอ10 111อีอ11 111อีอ00 101อีอ00 101อีอ01 101อีอ11 101อีอ10 101อี110 101อี111		
0001100	0000 100	0010010	0011010	0001010	0000010	1000010	1001010	1011010	1010010	1000100	1001100
סומלוסס מומלוטו טוולוטו טוולוסט מטולוטט מטולוטו טמטלוטו סממלוטט	otoðiot ottótot ottótoo ootótoo ootótot oooótot oooótoo	0010011	0011011	0001011	0000011	1000011	1001011	1011011	10100111	11อช้าออ 11อช้าอ1 111ช้าอา 111ช้าออ 1อาช้าออ 1อาช้าอา 10อช้าอา 10อช้าอา	ווסלומט ווסלוטו ווולוסי ומולוטס ומולוטו ומסלוטו ומסלוטו ומסלומט
0011101	0010101	0010001	0011001	0001001	0000001	1000001	1001001	1011001	1010001	1010101	1011101
0011100	0010100	0010000	0011000	000 1000	೦೦೦೦೦೦೦೦	1000000	1001000	101 1000	1010000	1010100	1011100
0111100	0110100	0110000	0111000	0101000	0100000	1100000	1101000	111 1000	1110000	1110100	1111100
0111101	0110101	0110001	0111001	0101001	0100001	1100001	1101001	1111001	1110001	1110101	1111101
0101101	0100101	01100111	01110111	0101011	0100011	1100011	1101011	1111011	11100111	1100101	1101101
0101100	0100100	01100110	0111010	0101010	0100010	1100010	1101010	1111010	1110010	1100100	1101100
		0110110	01111110	0101110	0100110	1100110	1101110	11111110	11101110		
		01101111	0111111	0101111	0100111	1100111	1101111	11111111	11101111		

F/F.

Toho Kasasa 3 bits Per Baud

என்ன என்ன என்ப வர்க்க கர்க்க கர்க்க கர்கள் என்ன வண்க கர்க்க கர்கள் கர்கப் கர்கள் கண்க கர்கள் கர்கப் கர்கள ពៈសំនា ពរស័ពេ ចាច់អោ ចាច់អោ ចាច់នេង ចាង់ចា ចាស់កា ចាស់កា ២សំភា បាច់កា បាស់កា បាស់កា បាស់កា បាស់កា បាស់អា គារវិត្តេ គារវិត្យេ សូវវិររុវ គួរពិត្យេ សូវវិស្ស គួរវិស្សា សូវវិស្សា សូវវិស្សា សូវវិស្សា សូវវិស្សា សូវវិស្សា សូវវិស្សា வரிகள் வரிகள் வரியா வரியை வரியை வரியோ வரியை வரியை குரியை குரியா குரியா கரியா கரியா கரியா கரியா கரியா கரியா கரி ១១ពិទេខ ១១វិទេ៖ ១១ពិះទេ ១១ពិះទេ ១១ពិនេះ ១១ពិនះ ១១ពិនេះ ១១ពិនេះ ១១ពិនេះ នេះបំខា នេះបំខា នេះបំខា នេះបំខា នេះបំខា អស្មាយ អេសិល អេសិល សង្គេរ អេសិល អេសិល អេសិល អេសិល អេសិល ២សិល ខេសិល ខេសិល ខេសិល ខេសិល ខេសិល ខេសិល ខេសិល ១លវិទេ១ ១ៈឃុំនេះ ខរយវិការ ១ៈឃុំការ ១ៈឃុំការ ១ៈឃុំនេះ ១ៈឃុំនេះ ១ៈឃុំនេះ ១ៈឃុំនេះ ច្រាស់ខា ខាស់ខា ខាឃុំនេះ ខាឃុំនេះ ខាឃុំនេះ ខាឃុំនេះ ខាឃុំនេះ ខាឃុំនេះ ाक्कैरक १९क्कैरक १९क्किर १९क्किरक १९क्किरक १९क्किरक १९क्क्किरक १०क्किरक १०क्किरक १०क्किरक १०क्किरक १०क्किरक १ រៈជាំរៈច រៈជាំរេរៈ រៈជាំរេខ រៈជាំនធ រៈជាំនធរ រៈជាំនធរ រៈជាំនច រៈជាំនេ នៅនេះ ជាវិទរៈ ជាវិទរៈ នេះ នេះ រចវិះឆា នៅវិទេ ចៅវែទេ ចៅវែទេ ចៅជាធា ចៅពីទេ ចៅវិធា ចៅវិធា ខាវិធា ចៅវិធា ឆាវិទេ ឆាវិទេ ឆាវិទេ ឆាវិទេ ឆាវិទេ ឆាវិទេ איניים אולוים אולוים שולוים שולוים שולים אמלים שולים אמלים שולוים אולים אולוים אולווו שולווו שולווו שולווום שולוום שולום אולוום שולום אולוום שולום אולום שולום שולום אולום שולום שולו អណ្ដេច អេជិវទេ អេជិវទេ អេជិវទេ មេជិវទេ កេជិវទេ ចេជិវទេ ចេជិវទេ ខេវជិវទេ ខេវជិវទេ ខេវជិវទេ ខេវជិវទេ ខេវជិវទេ ខេវជិវទេ ១១ភាគ ១១ភាគ ១១ភាអ ១១វាអ ១១វាអ ១១វាអ ១១វាភា ១១វិទារ ១១វិយា ១១វិយា ១១វិយា យាវិយា យាវិយា យវិសា យវិសា មនៅខា ១នៅខា ១នៅខា ១នៅខា ១នៅខា ១នៅខា ១នៅខា ១នៅខា ១នៅខា ខាន់ខា រចេសិនា គេសំពេ ខេលិញ អចមិនេ វេទជិធា វេទជិធា វេទជិធា វេទជិធា ខេសិធា ខេសិធា ខេសិធា ខេសិព ខេសិខេ

129

Value	1+i	(12+5i)/9	(5+12i)/9	(1+i)/3	(1+i)/4	(1+i)/7	9/(i+1)	(1+i)/15	ud 2 MBaud	 First 2 MBaud Symbol	
Reference Point(s)	00	000	000	0000	00000	00000	000000	00000000	4 MBaud 4 MBaud 4 MBaud 6 19 19 19 19 19 19 19 19 19 19 19 19 19	mbol	
bred and a	Bits per Daud		m		4		0	~	Peak Symbol Amplitude Zero	 First 4 MBaud Sy	

F16. 14

F16.15

M modulo 2 P modulo 2	P modulo 2	EOF/EOP sequence
0	0	• 4 symbols, defined by the bits 0xfc
		• 12 zero symbols
		• 1 symbol, defined by the bits 00
0		• 4 symbols, defined by the bits 0x03
,		• 12 zero symbols
		• 1 symbol, defined by the bits 11
	0	 4 symbols, defined by the bits 0x03
		12 zero symbols
		• I symbol, defined by the bits 11
		 4 symbols, defined by the bits 0xfc
		 12 zero symbols
		• 1 symbol, defined by the bits 00

M modulo 2	P modulo 4	P modulo 14 EOFTS Equence
0	0	 4 symbols, defined by the bits 0xfc
	-	 12 zero symbols
		• 1 symbol, defined by the bits 00
0		• 4 symbols, defined by the bits 0x56
		 12 zero symbols
		• 1 symbol, defined by the bits 10
0	2	 4 symbols, defined by the bits 0x03
		 12 zero symbols
		 1 symbol, defined by the bits 11
0	3	• 4 symbols, defined by the bits 0xa9
		 12 zero symbols
		• 1 symbol, defined by the bits 01
	0	 4 symbols, defined by the bits 0x03
	*	 12 zero symbols
		• 1 symbol, defined by the bits, 11
		 4 symbols, defined by the bits 0xa9
		 12 zero symbols
		 1 symbol, defined by the bits 01
1	2	 4 symbols, defined by the bits 0xfc
		• 12 zero symbols
		 1 symbol, defined by the bits 00
	3	• 4 symbols, defined by the bits 0x56
		12 zero symbols
		• 1 symbol, defined by the bits 10

-

F/G. 22

F/G. 23a

Frequency (MHz)	PSD Limit (dBm/Hz)
0.015 < f <= 1.7	-140
1.7 < f <= 3.5	-140 + (f – 1.7)*50.0/1.8
3.5 < f <= 4.0	-90 + (f – 3.5)*17.0
4.0 < f < 7.0	-71.5
7.0 <= f <= 7.3	-81.5
7.3 < f < 10.0	-71.5
10.0 <= f < 13.0	-81.5 – (f –10.0)*43.5/3.0
13.0 <= f < 25.0	-125
25.0 <= f < 30.0	-140

F16- 236

F16, 24

Frequency Range (MHz)	Maximum Peak- to-PeakInterferer Level (Volts)
0.01 - 0.1	6.0
0.1 - 0.6	3.3
0.6 – 1.7	1.0
1.7 – 4.0	0.1
7.0 - 7.3	0.1
10.0 – 10.15	0.1
14.0 – 14.35	0.28
18.068 – 18.168	0.5
21.0 – 21.45	0.5
24.89 – 24.99	0.5
28.0 – 29.7	0.5

F16.25

Frequency Range (MHz)	Maximum Peak- to-PeakInterferer Level (Volts)
0.01 – 0.1	20.0
0.1 - 0.6	20.0
0.6 – 1.7	10.0
1.7 – 4.0	2.5
7.0 – 7.3	2.5
10.0 – 10.15	2.5
14.0 – 14.35	5.0
18.068 - 18.168	5.0
21.0 – 21.45	5.0
24.89 – 24.99	5.0
28.0 – 29.7	5.0

Frequency Range	Min. Impedance
(kHz)	(Ohms)
$0 < f \le 0.285$	1 M
0.285 < f <= 2.85	100 k
2.85 < f <= 28.5	10 k
28.5 < f <= 95	4.0 k
95 < f <= 190	2.0 k
190 < f <= 285	1.4 k
285 < f <= 380	1.0 k
380 < f <= 475	850
475 < f <= 570	700
570 < f <= 665	600
570 < f <= 665 665 < f <= 760	525
760 < f <= 855	450
760 < f <= 855 855 < f <= 950	400
950 < f <= 1000	350
1000 < f <= 1400	175
1400 < f <= 2300	100
2300 < f <= 2850	50
2850 < f <= 3085	25
3085 < f <= 3725	10
3725 < f <= 3935	25
3935 < f <= 4000	50
10000 < f <= 10450	40
10450 < f <= 10925	25
10925 < f <= 13125	10
13125 < f <= 14175	25
14175 < f <= 16800	50
_16800 < f <= 21000	100
21000 < f <= 30000	50

		Function
OSI	TEEE	١
DATA	1	Link Layer Signaling (driver)
INK		a) Rate Adaptation, QoS and 1Mts Companions
רוויון		b) LARQ Error Recovery
		c) Link Integrity and Capability Discovery
	MAC	MAC Controller Layer Functions
	Controller	a) Host Interface
	Laver	b) Control and Status Registers, Interrupts
		c) DMA transfers, data buffering and command list lines promises.
		d) Performance counters
<u> </u>		AN proc
	MIT	Optional MII Interface (in PHY-only)
	117	Ontional Link Layer Signaling (in PHY-only)
	יייייייייייייייייייייייייייייייייייייי	Crass Adaptation Oos and 1M8 Compatibility
	Logical Link	a) Kate Anapianon, Co and and a
	Control	b)
		c) Link Integrity and Capability Discovery
		Frame Processing (transmit and receive)
		Framing (frame boundary delineation and synchronization)
	NA MAC	Media Access Control (MAC)
		a) CSMA/CD
		b) Collision Resolution (backoff algorithm)
DLIV	AHd	Physical Coding Sublayer
	• • •	a) Coding and Modulation, Carrier Sense, Collision December
	The state of the s	

F16, 29

Without Priority Access:

With Priority Access:

Section Basic CSMA CS_RANGE CS_IFG CS_DEFER	Parameter	TATTAT		
	HOVE TOX	2	1	mVrms
CS IN	NOMINAL_KMS_VOLIAGE	38	•	dB
CS LI	NGE	29.0-₽	29.0+∇	microseconds
CS D	J. C.		12.0	microseconds
	HUK	64		octets
minfr	minFrameSize	1526	See 3.3.7.1	octets
maxFr	maxFrameSize	92.5	See 3.3.7.1	microseconds
TX_FRAME	AME	0	4.0	microseconds
TX_ON		21.0-₽	21.0+Δ	microseconds
Priority PRI_SLOT	LOT			
		∇-0.02	70.0+⊅	microseconds
Collision CD_FRAG	RAG	32.0	1	microseconds
CD MIN	N.	257	92.0	microseconds
CD_T	CD_THRESHOLD (recommended)	76		dB
2 CD	CD RANGE	20		spaceson;
	THE PAPIA	1	12.0	IIIICI OSCCOTICA
	CD_OFFSE1_FARE		15.0	microseconds
CD_CD	CD OFFSEI LAIE	256	256	
Collision attemp	attemptLimit	32.0-₽	32.0+0	microseconds
Resolution SIG_SECT				

F16, 36

Explanation	Destination Address	Source Address	0x886c (Link Protocol Frame. Assigned to Has toward Handle	0 - Reserved 1 - Rate Request Control Frame	2 - Link Integrity Short Frame	3 - Capabilities Announcement	4 - LARQ	5 – Vendor-specific short format type	6 –126 Reserved	127 Reserved	Values 128-255 correspond to the Long Secretaring with	Number of additional octets in the control licaded, statistic first octet following SSLength if it is	and defined as SSVersion) and ending with the second(last) octet	of the Next Ethertype field. Min is 2 and max is 255.	Version number of the control information	Control information / / / /	Estational Industry layer protocol, 0 if none.	the state of the meet minimum if data < 41 octets	Padding required to moon	Frame Check Sequence
Lanath	6 octets	6 octets	2 octets / / /	1 octet								1 octet			1 octob	O OSO CATATO	0-737 Octob	2 octets	41-0 octets / /	1 Octets
	Field	1	5th	SSType						٠		SSLength				SSVersion	Data // / //	Next Ethertype	Pad /	111111111111111111111111111111111111111

F16,37

Field Length fype 6 octets type 2 octets pe 2 octets rsion 1 octet LSLength - 3 octets Ethertype 2 octets 42-0 octets 4 octets		14201	Explanation
ertype 2 octets Fype 2 octets Cype 2 octets Cype 2 octets a 1 octet 2 octets a LSLength 3 octets a LSLength 42-0 octets 4 2-0 octets	Field	rengui	Ì
Fype 2 octets Fype 2 octets Fype 2 octets Comparison 1 octet A Ethertype 2 octets A 42-0 octets A 4 octets	DA //	6 octets	Destination Address
ertype 2 octets Fype 2 octets Fype 2 octets Ar Ethertype 2 octets A 42-0 octets A 4 octets	1 1 10	6 octets / /	Source Address / / / / /
rype 2 octets pe 2 octets ngth 2 octets rision 1 octet LSLength - 3 octets Ethertype 2 octets 42-0 octets 4 octets	J. J. J.	2 cotate	0x886c (Link Protocol Frame. Assigned to Epigram by
pe 2 octets ngth 2 octets rsion 1 octet LSLength-3 octets Ethertype 2 octets 4 octets 4 octets	Ethertype	/// / mann 7	IEEE)
ngth 2 octets rision 1 octet Ethertype 2 octets 42-0 octets 4 octets	TOTE	2 octets	32768 Reserved
ngth 2 octets rsion 1 octet LSLength - 3 octets Ethertype 2 octets 42-0 octets 4 octets	Lo Lype		32769 Vendor-specific long-format
ngth 2 octets rsion 1 octet LSLength-3 octets Ethertype 2 octets 42-0 octets 4 octets			32770 - 65534 reserved
ngth 2 octets rrsion 1 octet LSLength - 3 octets Ethertype 2 octets 4 02-0 octets 4 octets			65535 Reserved
rigin 2 octet rision 1 octet LSLength - 3 octets Ethertype 2 octets 42-0 octets 4 octets	T Of Saceth	2 octate	Number of additional octets in the control header, starting
Ethertype 2 octets 42-0 octets 4 octets	וויפוופרכר	2000	with the SSVersion field (or the first octet following
Ethertype 2 octets 42-0 octets 4 octets 4 octets			SSLength if it is not defined as SSVersion) and ending with
Ethertype 2 octets 42-0 octets 4 octets			the second(last) octet of the Next Ethertype field. Min is 2
Ethertype 2 octets 42-0 octets 4 octets			and max is 65535.
Ethertype 2 octets 42-0 octets 4 octets	T Official	1 octet	Version number of the following protocol information
Ethertype 2 octets 42-0 octets 4 octets	Laversion	ath 3 october	TST voe protocol dependent data
Ethertype 2 octets 42-0 octets 4 octets	Data	(A) motoo (C = 111	Ethertyne/length of next laver protocol, 0 if none.
42-0 octets / / 4 octets /	Next Ethertype	2 octets	Marin Paris : :
/// 4 octets / ///	Pad / /	42-0 octets / ///	pad to minimum size it inccued
	FC9	4 octets / ///	Frame Check Sequence

F/6, 38

Field	Length	Meaning
DA	6 octets	Destination Address
SA	6 octets	Source Address
Ethertype	2 octets	0x886c (Link Control Frame)
SSType	1 octet	=1
SSLength	1 octet	Number of additional octets in the control header, starting with the SSVersion field and ending with the second(last) octet of the Next Ethertype field. The minimum value of SSLength is 8 for SSVersion 0.
SSVersion	1 octet	=0
	1 octet	Operation code for this control message.
OpCode NumBands	1 octet	Number of bands specified in this control. Each band has a two octet descriptor. The first band refers to 2 MBaud modulation rate, the next to 4 MBaud. NumBands shall be 1 or 2 on transmission for 10M8 stations, and stations shall ignore band entries beyond Band2 on receive if
4 A. T.		NumBands is larger than 2. The value 0 is not allowed.
NumAddr U	1 octet	Number of addresses specified in the payload of this control message. NumAddr may be zero. The SA in the Ethernet header is always used, and is referred to in the following sections as RefAddr0.
Bandl_PE	1 octet	2MBaud, 7 MHz carrier: The PE value that should be used to send data when the 2MBaud band is selected. (18) are the only valid values. The value 8 is used to request HPNA 1.0 type frames, and is valid only when the network is operating in V1M2mode, and only in Band 1.
Band1_rank	1 octet	The rank order of the ReqDAs' preference for this band, I is highest preference, and the other bands are assigned successively larger rank values, no two bands shall have the same rank
Band2_PE	1 octet	Optional, only present if NúmBands >= 2. 4MBaud, 7 MHz carrier: If included, this field is the PE value that should be used to send data when the 4MBaud band is selected, (0, 915) are the only valid values.
Band2_rank	1 octet	Optional only present if NumBands >= 2. Rank order of RegDAs preference for this band
RefAddr L	6 octets	Optional. Present if NumAddr >= 1. The second MAC Address for which the rates are being specified, typically Broadcast or a multicast
RefAddr2/	6 octets	address. Optional. Present if NumAddr >= 2. The third MAC Address for which the rates are being specified.
****	× - · ·	[additional instances of RefAddr, until the number of RefAddr fields equals NumAddr]
Next Ethertype	2 octets	=0.
Pad		To reach minFrameSize if required
FCS		Frame Check Sequence

F16, 39

PE	Data Rate	Meaning
0	N/A	Means this band is Not Supported
1	4 Mbit/s	2 Mbaud FDQAM, 2 bits per Baud
2	6 Mbit/s	2 Mbaud FDQAM, 3 bits per Baud
3	8 Mbit/s	2 Mbaud FDQAM, 4 bits per Baud
4	10 Mbit/s	2 Mbaud FDQAM, 5 bits per Baud
5	12 Mbit/s	2 Mbaud FDQAM, 6 bits per Baud
6	14 Mbit/s	2 Mbaud FDQAM, 7 bits per Baud
7	16 Mbit/s	2 Mbaud FDQAM, 8 bits per Baud
8	1 Mbit/s	HPNA 1.0
9	8 Mbit/s	4 Mbaud QAM, 2 bits per Baud
10	12 Mbit/s	4 Mbaud QAM, 3 bits per Baud
11	16 Mbit/s	4 Mbaud QAM, 4 bits per Baud
12	20 Mbit/s	4 Mbaud QAM, 5 bits per Baud
13	24 Mbit/s	4 Mbaud QAM, 6 bits per Baud
14 -	28 Mbit/s	4 Mbaud QAM, 7 bits per Baud
15	32 Mbit/s	4 Mbaud QAM, 8 bits per Baud

OpCode	Meaning
0	Rate Change Request
1	Rate Test Request
2	Rate Test Reply
3-255	Reserved

band specification	A Payload Encoding (PE) and Rank associated with a given band. A band is a single combination of baud rate, modulation type (e.g. QAM or FDQAM) and carrier frequency. Two bands are defined in HPNA VZ
Logical channel, channel	A flow of frames from a sender to one or more receivers on a single network segment, consisting of all the frames with a single combination of DA and SA.
Receiver	A station that receives frames sent on a particular channel. If the destination is a unicast address there is at most one receiver. If the destination is a group address (including broadcast), there may be many receivers.
Receiver PE	The preferred PE to be used on this channel, as determined by the receiver.
RRCF	Rate Request Control Frame. Sent from the receiver to the sender to effect a change in PE.
RefAddr0	The SA in the Ethernet header of the RRCF frame. This is the DA of the receiver (for the channel), and is always used by the channel sender as the first RefAddr processed.
RefAddr1RefAddr <n></n>	Other addresses including Broadcast and Multicast addresses for which the receiver is indicating rate information to the sender. The channel receiver's station address (RefAddr0) should not be put in the list of additional RefAddr's.
	Note1: At least one RefAddr field is necessary to support rate negotiation for Broadcast and Multicast addresses since these cannot be used as the source address in the Ethernet header.
Sender	The sending station for a channel, usually the station owning the source MAC address.
Sender PE	The preferred PE associated with a channel, as noted by the sender.

F16,42

F16. 43a

	DOWN	UP-1	UP0	UP-RX	UPI	UP2
Receive 1.0 link	UP-RX	UP-RX	UP-RX	UP-RX	UPI	UP2
indication or any non- broadcast frame	(none)	(none)	(none)	(none)	(none)	(none)
Receive broadcast	UPI	UP1	UPI	UP1	UPI	UP2
frame with SA == SA1	Set SA1<-SA	Set SA1<-SA	Set SA1<-SA	Set SA1<-SA	(none)	(none)
Receive broadcast frame with SA!= SA1	UPI	UPI	UPI	UPI	Native:UP2	UP2
mano wan oz :- ozi				No other his	Compat: UP1	
	Set SA1<-SA	Set SA1<-SA	Set SA1<-SA	Set SAT<-SA	(none)	(none)
Timeout and Force_Send == 0	DOWN	DOWN	UP-I	UP0	UP0	UP0
	Send LICF, reinit Force_Send	Send LICF, reinit Force_Send	Send LICF, reinit Force_Send	Send LICF, reinit Force_Send	Send LICF, reinit Force_Send	Send LICF, reinit Force_Send
Timeout and Force_Send > 0	DOWN	DOWN	UP-1	UP0	UP0	UP0
Torce_scha > 0	Send LICF, reinit Force_Send	Send LICF, reinit Force_Send	Send LICF, reinit			1
	11 Olac_Scha	TOICE_Sella	Force_Send	Force_Send	Force_Send	Force_Send

FIG. 436

Field	Length	Meaning
DA	6 octets	Destination Address (FF.FF.FF.FF.FF.FF)
SA	6 octets	Source Address
Ethertype	2 octet	0x886c (Link Control Frame)
SSType	1 octet	=2
SSLength	I octet	Number of additional octets in the control neader, starting with the SSVersion field and ending with the second(last) octet of the Next Ethertyne field Minimum is 4 for SSVersion 0.
		Luicity policies.
SSVersion	I octet	0=
LI pad	1 octet	Ignored on reception.
Next Ethertype	2 octets	0=
Pad	41 octets	Any value octet
FCS	4 octets	

Field	Length	Meaning
DA	6 octets	Destination Address (FF.FF.FF.FF.FF)
SA	6 octets	Source Address of the station that transmitted this frame
Ethertype	2 octet	0x886c (Link Control Frame)
SStype	1 octet	=3
SSLength	I octet	Number of additional octets in the control header, starting with the SSVersion field and ending with the second (last) octet of the Next Ethertype field. Minimum is 32 for SSVersion 0
SSVersion	1 octet	=0
CSA_ID_Space	I octet	Identifies the registration space of CSA_MFR_ID 0 - Unspecified 1 - JEDEC 2 - PCI
CSA_MFR_ID II II II II	2 octets	HW manufacturer ID - Identifies the manufacturer of the PHY controller chip. The purpose of this field plus the part number and revision is to identify specific implementations of the PHY specification. This is not a board or assembly-level identifier.
CSA_Part_No	2 octets	HW Manufacturer Part Number - The part number of the PHY controller chip.
CSA_Rev	Î octet	HW Revision
© SA_Opcode	1 octet	0 – Announce 1 – Request
ĆSA_MTU ⊨	2 octets	Maximum size link-level PDU this receiver accepts in octets, the default value is 1526 octets. This is also the minimum value that shall be accepted by all ILINE10 stations
CSA_SA	6 octets	Source address of the station that generated this CSA frame
CSA_pad	2 octets	Reserved for version 0. Shall be sent as 0, ignored on reception.
CSA_CurrentTxSet	4 octets	Configuration flags, plus all current in-use status for this station.
CSA_OldestTxSet	4 octets	A copy of the "oldest" TX flags for this stations, from the period ending at least one period(minute) earlier.
CSA_CurrentRxSet	4 octets	The union of recent flags received from other stations.
Next Ethertype	2 octets	=0
Pad		Pad to reach minFrameSize if necessary
FCS	4 octets	

	Diold	Lenoth	Description
Octet	TyDriority7	-	Station is(was) transmitting frames with LL priority 7. (always set)
riagsO	TxPriority6		Station is(was) transmitting frames with LL priority 6.
	TxPriority5	1	Station is(was) transmitting frames with LL priority 5.
	TxPriority4	1	Station is(was) transmitting frames with LL priority 4.
	TxPriority3	1	Station is(was) transmitting frames with LL priority 3.
	TxPriority2		Station is(was) transmitting frames with LL priority 2.
	TxPriority1	1	Station is(was) transmitting frames with LL priority 1.
`	TxPriority0	1	Station is(was) transmitting frames with LL priority 0. (always set)
Flags	Reserved	9	Shall be sent as 0 and ignored by 2.0 stations when received.
10011	No VIM2 Frames	-	This station does not support the reception or transmission of
	,		compatibility frames (VIM2 frames).
	Supports 4Mbaud	1	This station supports 4 megaband payload encodings.
Flags2	Reserved	8	Shall be sent as 0 and ignored by 2.0 stations when received.
Flags3	ConfigV2		Force use of 10M8 mode, defers to Config and Config v 11M2.
2001	ConfigV1M2	Ţ	Force use of V1M2 mixed mode, deters to Config v1.
	ConfigVI	ĭ	Force use of HPNA 1.x mode, highest precedence of configurage.
	Reserved	2	Shall be sent as 0 and ignored by 2.0 stations when received.
~~~	Highest Version	3	This station's highest supported HPNA version:
	0		0x000 - Reserved
			0x001 - HPNA1.0
			0x010 - iLine10
			0x011-0x111 Reserved
_			

A computed value used to detect newly removed status information. Computed values used to detect new status flags. NewRxFlags, ReallyNewRxFlags DeleteSet

F16, 47

|--|

F16, 48

NewTxSet	The set of flags announced during the current CS period, updated immediately when a new link layer priority is used or new volatile status is set. When the CSP_Timer expires, CurrentTxSet is given the value of NewTxSet, and NewTxSet is reset to the default set.
PreviousTxSet	The set of flags that were announced during the previous CS period (the ending value of NewTxSet from the previous CS period).
OldestTxSet	The set of flags rolled over from PreviousTxSet at the end of the previous CS period (the value of PreviousTxSet from the previous CS period). Flags that are present in OldestTxSet and missing from PreviousTxSet were not actively used or detected (by the sender) for an entire CS period, and will be deleted. This set is sent in CSA frames as CSA_OldestTxSet.
NewRxSet	The union of all CSA_CurrentTxSet flags received in CSAs from other stations during the current CS period. This is rolled over into PreviousRxSet at the expiration of the CSP_Timer, then reset to the empty set (0).
	A volatile status flag (one of the priority flags) in this set may subsequently be deleted if the only station previously announcing that flag stops using it. The deletion from that station's CurrentTxSet is noted by the difference from its OldestTxSet. The fact that it was the only sender is noted by the absence of the flag in that station's CurrentRxSet, indicating that it has received the flag from no other
	Stations.  If deleted from NewRxSet, a flag shall also be deleted from PreviousRxSet.
PreviousRxSet	The set of announced flags received during the previous CS period (the ending value of NewRxSet from the previous CS period). A flag may be deleted from this set, as described under NewRxSet above.

FIG. 49

CurrentTxSet	The set of flags that were announced during the previous CS period plus any new status and priority flags (or changed configuration/options flags) used during the current CS period, i.e. the union of PreviousTxSet and NewTxSet. This set is sent in
	CSA frames as CSA_Cultering Ascu-
CurrentRxSet	The union of NewRxSet, PreviousRxSet. This set is sent in CSA frames as
	CSA_CurrentKxSet.
CurrentInliseSet	The union of CurrentTxSet and CurrentRxSet. This set is used to determine the
	operational mode of the station and to modify the mapping between the LL product
	of the frame and the actual PHY priority usage.

								TX	LL	prio	rity				
								0	1	2	3	4	5	6	7
	CurrentInuse Priorities (any)						Def	ault	TX I	Phy I	Prior	ities			
a	n	Y	t	x	s	е	t	2	0	1	3	4	5	7	6

F16. 5/a

								ſ			TX	LL	prio	rity		
									0	1	2	3	4	5	6	7
(	Curre	ntIn	use I	Prior	ities	(LL)	)		F	Rema	ppe	TX	Phy	Pric	oritie	S
0							7		6	/5/	15/	8	6/	8	15/	7
0						6	7		5	4	4/	5/	15	5	7	6
0	1			4			7		5	4	14/	15/	6	18/	1	7
0			3		5	6	7		3	12/	12/	4	14	5	7	6

Field	Length	17 Juni 11 Vani 11 Vani 1 Vani
7.4	6 octets	Destination Address
חשח	6 00000	Source Address
SA	O OCICIS	Court of Cartain
Ethertype	2 octets	0x886c (Link Control Flattic)
SSTVDE	1 octet	=4
331750		Nimber of additional octets in the control fleader, starting with the
SSLength	I octet	SSVersion field and ending with the second(last) octet of the Next
	,	Ethertype field. SSLength is 0 101 33 veision 5:
2011	1 Octob	0=
SSVersion	1 0000	The state of the state with 1 ARO ct bit = 1. LAKO NACK = 0.
I ARO hdr data	3 octets	LARQ Control Header data with Electron
Maxt Ethertyne	2 octets	0
ואכעו דיוויכו ול אכעו		
Pad	38 octets	
FCS	4 octets	Frame Check Sequence
33,		

F16.52a

		Messing
Field	Length	IMEAIIIIB
Δď	6 octets	Destination Address
. 40	6 octets	Source Address
Ethertype	2 octets	0x886c (Link Control Frame)
SSTvpe	1 octet	=4
SSLength	1 octet	Number of additional octets in the control lieads, statuting with the Second (last) octet of the Next SSVersion field and ending with the second (last) octet of the Next of the Nack frames with SSVersion 0.
		Ethertype Held. Solleligui is 12 for them them the solleligui is 12 for the
SSVersion	1 octet	=0
I ARO hdr data	3 octets	LARQ Control Header data with LARQ cti bit = 1, LARQ track = 1
NACK DA	6 octets	Original Destination Address
Next Ethertype	2 octets	0=
Pad	32 octets	
FCS	4 octets	Frame Check Sequence

FIG. 52b

Field	Length	Meaning
DA	6 octets	Destination Address (from original Ethernet PDU)
SA	6 octets	Source Address (from original Ethernet PDU)
Ethertype	2 octets	0x886c (Link Control Frame)
SStype	1 octet	=4
SSLength	1 octet	Number of additional octets in the control header, starting with the SSVersion field and ending with the second(last) octet of the Next Ethertype field. SSLength is 6 for SSVersion 0.=6
SSVersion	1 octet	=0
LARQ_hdr data	3 octets	LARQ Encapsulation header data (with LARQ_CTL bit = 0)
Next Ethertype	2 octets	From original Ethernet PDU
Payload	Min 46 octets	From original Ethernet PDU payload
FCS	4 octets	Frame Check Sequence

Han her her his Li

## F16. 52C

Octet	Field	Length	Meaning
Flags0	LARQ_Mult	1 bit	Multiple Retransmission Flag. 0 in the original transmission of a data frame. For retransmitted frames (LARQ_Rtx = 1), set to the value of LARQ_Mult in the NACK-frame that caused the retransmission. This flag can be used by receivers to measure the round-trip times associated with the miss/nack/receive-rtx process.
] <del></del>	LARQ_Rtx	1 bit	O for first transmission of a frame, 1 if frame is retransmitted. Stations not implementing LARQ shall drop any data frame if this bit is 1.
·	LARQ_NoRtx	1 bit	0 if implementation supports retransmission, 1 if only priority is meaningful. May be used on a perchannel basis.
	LARQ_NewSeq	I bit	1 if the sequence number space for the channel has been reset, and older sequence numbers should not be nacked, 0 otherwise
	LARQ_Ctl	1 bit	"0" when in Encapsulation Format
	Priority	3 bits	Link Layer Priority of this frame
Flags1_Seq0	Reserved	4 bits	Reserved, shall be 0
·	LARQ_seq_high	4 bits	High 4 bits of Sequence number
Seq1	LARQ_seq_low	8 bits	Low 8 bits of Sequence number

F16.52d

TOPESTRUMENT TOPESTRUMENT

	E E 9500	Tanadh	Meaning
Octet	Field	rengm	John John College
Flaor()	LARO Mult	1 bit	Multiple Retransmission Flag. U in the lifst Inach
200	}		sent for a given sequence number, 1 in all
			retransmitted Nacks.
-	I ARO NACK	3 bits	NACK Count
			If 0 in a LARQ Control Frame, then this is a
			Reminder.
	1 1000	1 hit	Set to 1 for LARQ Control Header data format
	LARG	15	
			T. 1 T. Disaster of this frome
	Priority	3 bits	Link Layer Priority of ults traine
	Doggan	4 hits	Reserved, shall be 0
Flags1_Sed0	Nesel ved	Caro -	
)	I ARO sea high 4 bits	4 bits	High 4 bits of Sequence number
		o Lite	I ow 8 hits of Sequence number
Seal	LAKU_sed_low	o UIS	

FG. 52e

control frame	A frame generated by a LARQ protocol module that contains only a LARQ protocol header as its payload.
Current sequence number	The most recently received new sequence number for a channel.
Data frame	Any standard Ethernet frame from higher (than LARQ) protocol layers. A LARQ-enabled station encapsulates the original payload of an Ethernet frame by inserting a LARQ header (short form control header with LARQ_hdr data) between the source address and the remainder of the frame before the frame is passed down to the driver for transmission on the network.
Forget timer	An implementation dependent mechanism to allow a receiver to reset the sequence number space of a channel when a received sequence number is not the next expected (Current Sequence Number + 1). One second is a suggested default value.
hold timer, lost timer	An implementation dependent timing mechanism that limits the time a receiver will hold onto a received frame while waiting for a missing frame to be retransmitted. Conceptually, there is one such timer per missing sequence number. The timer interval is Maximum Hold Interval.
logical channel, channel	A flow of frames from a sender to one or more receivers on a single network segment consisting of all the frames with a single combination of destination address, source address, and link layer priority.
NACK, Nack, nack	An indication from a receiver to a sender requesting retransmission of one or more frames. Also, the action of providing such an indication. E.g. "to nack a sequence number" meaning to send a NACK indication.
NACK timer	An implementation dependent timing mechanism used by a receiver to retransmit NACKs for missing sequence numbers. Conceptually, there is one such timer per missing sequence number per logical channel. The timer is reset each time a NACK is sent for a sequence number. The timer interval is NACK Retransmission Interval.
new	A new sequence number is one whose difference from the current sequence number for the channel, modulo the size of the sequence number space and considered as a signed integer, is greater than 0. In particular, the numbers (current + 1) through (current + 2047).
old	An old sequence number is one whose difference from the current sequence number for the channel, modulo the size of the sequence number space and considered as a signed integer, is less than or equal to 0. In particular, the numbers (current - 2048) through (current) are old. Note, however, that most of the old sequence numbers are also out-of-sequence.

out of sequence	Any sequence number that falls outside a reasonable range, old or new, of the current sequence number for a logical channel is considered out of sequence. It is recommended that plus or minus twice the value of MaximumSaveLimit (defined below) be used as the "reasonable range" when checking for out of sequence.
receiver	A station that receives frames sent on a particular channel. If the destination address is a unicast address there is at most one receiver. If the destination address is a group address (including broadcast), then there may be many receivers.
reminder	A control frame sent by the channel sender with the most recently used sequence number for a channel which has been inactive for Reminder Interval after its most recent data frame.
reminder timer	An implementation dependent timing mechanism used by a sender to generate a reminder frame after a period of inactivity for a channel. The timer is reset each time a new data frame is transmitted. Conceptually, there is one such timer per channel. The timer interval is Reminder Interval.
save timer	An implementation dependent timing mechanism that limits the time a sender will save a frame waiting for retransmission requests. The timer interval is Maximum Save Interval.
sender	The sending station for a channel, usually the station owning the source MAC address.
sequence numbers	Sequence numbers are maintained separately for each logical channel by the sender.

F16. 52f.z

Send Sequence Number	The sequence number of the most recently transmitted data trame.
Reminder Timer Interval	A fixed interval. The default is 50 ms. Lower values will increase the
TOTAL TARGET TAR	overhead of reminders on network load, while higher values increase the
	latency for end-of-sequence frames requiring retransmission.
	Implementations should not use values outside of the range 25-75 ms, based
	on 150 ms maximum save and hold times.
Minimum Retransmission	An interval used to prevent too-frequent retransmissions of a single frame.
Interval	Most important for mulicast chambers. The deficiency of the
Maximum Save Limit	The maximum number of frames that will be saved for a single logical
	channel. This is implementation dependent, and varies with the maximum
	frame rate the sender is expected to support. Values of 100 of more can be
	useful for high-speed applications such as video.
M. Caro Intorno	The maximum time that the sender will normally save a frame for possible
Maximum Save interval	retransmission. The default is 150 ms.
	I OU GAIGAMMENT TO THE PROPERTY OF THE PROPERT

## F16, 53

Current Sequence Number	The most recent sequence number received in a LARQ header for the channel, whether in a data frame or a reminder control frame.
Oldest missing sequence number	The oldest sequence number for a frame not yet received which has not been declared lost.
Maximum Hold Interval	The longest interval that a frame will be held awaiting an earlier missing frame. The default is to use the same value as Maximum Save Interval, which has a default of 150 ms
Maximum Receive Limit	The maximum number of frames that a receiver will buffer while awaiting an earlier missing frame. The default should normally be the same as the Maximum Save Limit.
NACK Retransmission Interval	The interval after which a receiver will retransmit a Nack control frame for a missing sequence number, with the expectation that earlier Nack control frames or data frame retransmissions were lost. The default for fixed implementations is 20 ms.

FIGSH

## I GEREST OF THE

Field	Length	Meaning
DA	6 octets	Destination Address
40	6 octets	Source Address
Trhertyne	2 octet	0x886c (Link Control Frame)
SSTVne	1 octet	==5
SSI enoth	1 octet	Number of additional octets in the control header, starting with the
		SSVersion field and ending with the second(last) octet of the liext
		Ethertype field. SSLength shall be >= 6 for SSVersion 0.
COMParion	1 octet	0=
33 V CI SIOII	7 2012	
Vendor OUI	3 octets	An IEEE assigned Organizationally Ullique Jucillille
Control data	0-249 octets	Vendor specific control data
Next Ethertype	2 octets	= next Ethertype if an encapsulation format, or 0 if no encapsulated
		frame
Pad	0-38 octets	Any value octet
T and	A cototo	
FCS	4 octets	

FIG. 55a.

		¥.
Field	Length	Meaning
DA	6 octets	Destination Address
A A	6 octets	Source Address
Fithertype	2 octet	0x886c (Link Control Frame)
I ST vne	2 octets	= 32769
LSLength	2 octets	Number of additional octets starting with the LSVersion field and
		ending with the second(last) octet of the Ivext Eulertype field:
		LSLength shall be > 6 for LS Version U.
I SVersion	1 octet	0=
	2 00000	An IEFE assigned Organizationally Unique Identifier
Vendor UUI	3 Octobs	
Control data	1-65531 octets	Vendor specific data
Next Ethertype	2 octets	= next Ethertype if an encapsulation format, or 0 ii iio eiicapsulated
		frame
Dad	40-0 octets	If needed to make minimum size frame. Should be zero
ד מכ		
FCS	4 octets	

FIG 55b

carrier sense state	Output events
init	energy <= 0. Only start-of-preamble events checked.
المالية	Only start-of-preamble events checked.
	Only end-of-preamble events checked.
Dusy	Only start-of-preamble events checked (collision
ที่สู่เหม	detection).

F165 56







Test L*k*n L*k*n-1 rold > F_j + thd_off Test 2 roki > rj +
thd_off fold <= I; + thd off Test 2 0 Int <= I; + thd off Iold <= Ii + thd off  $\Gamma_{j-L^*p} > \Gamma_j + thd_off$ Test 1

FIG. 61

Table Index	Table Value
0	(dB) 0.00
1	3.00
	6.00
3	
	9.00
5	12.00
	15.00
6	18.00
7	21.00
8	24.00
9	27.00
10	30.00
11	33.00
12	36.00
13	39.25
14	42.25
15	45.25
16	48.25
17	51.25
18	54.25
19	57.25
20	60.25
21	63.25
22	66.25
23	69.25
24	72.25
25	75.25
26	78.25
27	81.25
28	84.25
29	87.25
30	90.25
31	93.25

F16,62a

Table Index	Table Value
	(dB)
0	0.00
1	0.25
2	0.25
3	0.50
4	0.50
5	0.75
6	0.75
7	0.75
8	1.00
9	1.00
10	1.25
11	1.25
12	1.50
13	1.50
14	1.50
15	1.75
16	1.75
17	1.75
18	2.00
19	2.00
20	2.00
21	2.25
22	2.25
23	2.25
24	2.50
25	2.50
26	2.50
27	2.75
28	2.75
29	2.75
30	2.75
31	3.00

FIG. 63a



FIG. 636









Table Index	Table Value
0	0.00
1	6.00
2	12.00
3	18.00
4	24.00
5	30.00
6	36.00
7	42.25
8	48.25
9	54.25
10	60.25
11	66.25
12	72.25
13	78.25
14	84.25
15	90.25

F16.66a

Table Index	Table Value
0	0.00
1	0.50
2	1.00
3	1.50
4	2.00
5	2.25
6	2.75
7	3.25
8	3.50
9	4.00
10	4.25
11	4.50
12	4.75
13	5.25
14	5.50
15	5.75

F16.66b











F16, 72a



F16. 726



F16.73

	UPSTREAM			DOWNSTREAM			
parameter	"10E- 6 Case	91% Case	90% Case	"10E- 6 Case	91% Cas e	90% Case	
Access delay	3.1	1.3	1.3	3.1	1.3	1.3	
Collision Resolution	2.7	2.7	0.8	2.7	2.7	0.8	
3 up, 1 down	2.1	1.0	1.0	2.1	1.0	1.0	
last up	0.5	0.3	0.3	0.5	0.3	0.3	
Collision Resolution	0.8	0.8	0.8	0.8	0.8	8.0	
3 up, 1 down	2.1	1.0	1.0	2.1	1.0	1.0	
last up	0.5	0.3	0.3	0.5	0.3	0.3	
3 down				1.5	0.8	0.8	
3 down				1.5	0.8	0.8	
Total latency	11.8	7.4	5.5	14.9	8.9	7.1	

10E-6 case is 10E-6 CRA once of two tries in homes with maximum 4Mbits/sec raw rate 91% case is 10E-6 CRA once of two tries in homes with minimum 10Mbits/sec raw rate 90% case is 10E-1 CRA twice in two tries in homes with minimum 10Mbits/sec raw rate

Values in the table above are in milliseconds.

Overh	eads:				linear PCM	5 nodes	5 nodes	5 nodes
ifg	per coll	frame hdr	Larq hdr	rtp_h dr	frame size	CRA 10E- 6	CRA 10E-	CRA fixed
0.0 18	0.206	0.07	8	40	160	13	4	2
mse C	msec	msec	Bytes	bytes	bytes	collisio ns	collisio ns	collisi ons

Frame header includes preamble, FC, DA, SA, T/L, EOF

	UPSTREAM			DOWNSTREAM			
parameter	"10E- 6 Case	91% Case	90% Case	"10E- 6 Case	91% Cas e	90% Case	
Access delay	3.1	1.3	1.3	3.1	1.3	1.3	
Collision Resolution	0.4	0.4	0.4	0.4	0.4	0.4	
3 up, 1 down	1.4	0.8	0.8	1.4	0.8	0.8	
last up	0.5	0.3	0.3	0.5	0.3	0.3	
Collision Resolution	0.0	0.0	0.0	0.0	0.0	0.0	
3 up, 1 down	0.0	0.0	0.0	0.0	0.0	0.0	
last up	0.0	0.0	0.0	0.0	0.0	0.0	
3 down				1.1	0.6	0.6	
3 down				0.0	0.0	0.0	
Total latency	5.5	2.7	2.7	6.5	3.3	3.3	

Field	Length	Meaning
DA	6 octets	Destination Address
SA	6 octets	Source Address
Ethertype	2 octets	(TBD) = VOHN Link Control Frame - new IEEE assignment
Туре	2 octets	1 = Timestamp Sync Message
Length	2 octets	= 4
Version	2 octets	= 0
SeqNum	2 octets	Timestamp Sync Message Sequence Number
Pad		Any value octet
FCS	4 octets	Frame Check Sequence

F1G. 76

Field	<u>Lengt</u> <u>h</u>	Meaning		
DA	6 octet s	Destination Address		
SA	6 octet s	Source Address		
Ethertype	2 octet s	(TBD) = VOHN Link Control Frame - new IEEE assignment		
Туре	2 octet s	2 = Timestamp Report Message		
Length	2 octet s	Number of additional octets in the signaling frame, starting with Version field and ending with the last octet of the Data Payload field. Minimum is 2.		
Version	2 octet s	= 0		
TSMSeqNum	2 octet s	Sequence number of TSM to which the Timestamp in this message is applicable.		
Timestamp	4 octet s	Timestamp of a previously transmitted Timestamp Report Message, corresponding to TSMSeqNum.		
Frequency	2 octet s	Resolution of the timestamp and Gtimesta fields, in ticks/1.000ms. For example, value 32768 corresponds to one clock ticat 32.768Mhz, in which the LSBit of the Timestamp corresponds to a time of 0.030517578125usec. The Timestamp will rollover every 131 seconds = 2.2 minutes		
NumGrants	2 octet s	Number of Grant Timestamps specified in the payload of this control message.  NumGrants may be zero. Each grant timestamp is accompanied by a Line ID and Call ID field. Including the Grant Timestamp, the total for each grant timestamp is 8 bytes.		

FIG. 77(1)

Line ID		Identifier of the Line termination associated with the immediately following GTimestamp.			
Call ID	2 octet s	dentifier of the call instance on the ine termination associated with the mmediately following GTimestamp.			
GrantTimest amp	4 octet s	Grant Timestamp corresponding to the immediately preceding Line ID. This is the time at which the Proxy Gateway wishes to receive a future constant bit rate service flow packet in order to minimize delivery latency to subsequent delivery to a synchronous network. The time value corresponds to the time at the timing master. Additional packets for the identified service flow are expected to arrive at periodic intervals measured from this time.			
•••		additional instances of {Line ID, Call ID, Grant Timestamp} field tuples			
Pad		Any value octet			
FCS	4 octet s	Frame Check Sequence			

F16.77(2)

PIN NAME	CM-side Function (HPNA timing master)		Handset Function (HPNA timing slave)	
DPLL_REF_CLK	DPLL input clock	IN		
Grant[4]	Grant Present Indication	IN		
Grant[3]	Grant SID Value[3]	IN		
Grant[2]	Grant SID Value[2]	IN		
Grant[1]	Grant SID Value[1]	IN		
Grant[0]	Grant SID Value[0]	IN	go variety	
V_CLK_OUT			DPLL output clock	OUT
GPI[0]			Grant Present Indication[0]	OUT
GPI[1]			Grant Present Indication[1]	OUT

PIN NAME	CM-side Function (HPNA timing master)		Handset Function (HPNA timing slave)	
DPLL_REF_CLK	DPLL input clock	IN		
Grant[4]	Grant Present Indication	IN		
Grant[3]	Grant SID Value[3]	IN		
Grant[2]	Grant SID Value[2]	IN		
Grant[1]	Grant SID Value[1]	IN		
Grant[0]	Grant SID Value[0]	IN		
V_CLK_OUT			DPLL output clock	OUT
Frame[0]			Frame boundary marker[0]	OUT
Frame[1]			Frame boundary marker[1]	OUT



200MHz to 32.768MHz





PIN NAME	CM-side Function (HPNA timing master)		Handset Function (HPNA timing slave)
DPLL_REF_CLK	Timestamp input clock	IN	Timestamp input clock
Grant[4]	Grant Present Indication	IN	NA
Grant[3]	Grant SID Value[3]	IN	NA
Grant[2]	Grant SID Value[2]	IN	NA
Grant[1]	Grant SID Value[1]	IN	NA
Grant[0]	Grant SID Value[0]	IN	NA

F16,83a

Bit locations	Field name	Description
7-3	Reserved	
2	TsReset	When set to 1, forces timestamp register to value of 0x00000000. When set to 0, allows timestamp register to increment by one for each detected DPLL_REF_CLK rising edge.
1	SGrant	When set to 1, causes timestamp to be latched into txTimeStampHigh and txTimeStampLow registers whenever the value of tscSID matches the value of input pins Grant[3:0] and Grant[4] is asserted. When set to 0, disables txTimeStampHigh and txTimeStampLow latching under the stated conditions.
0	TMaster	When set to 1, enables txTimestampHigh and txTimestampLow registers to be latched with timestamp_values at times determined by frame transmissions (through the LTS descriptor bit) or grant events (through the sGrant descriptor bit). When set to 0, enables txTimestampHigh and txTimestampLow registers to be latched with timestamp values at times determined by txTimeStampHigh and txTimeStampLow register read accesses.

Default value of this register is 0x05

F16,836

Bit locations	Field name	Description
7-4	Reserved	
3-0	SID	SID value that is to be matched by Grant[3:0] pins in order to cause a grant timestamp value to be latched. When the Grant[3:0] pins match the SID value and the Grant[4] input is 1 and the sGrant register bit is 1, then the current timestamp value will be latched into the txTimeStampHigh and txTimeStampLow registers.

Default value of this register is 0x00

Bit locations	Field name	Description
15-0	txTimeStampL ow	Least significant 16 bits of the latched tx timestamp value

Default value of this register is undefined.

F16,83 d

Bit locations	Field name	Description
15-0	txTimeStampH igh	Most significant 16 bits of the latched tx timestamp value

Default value of this register is undefined.

F16.83e

Bit locations	Field name	Description
15-0	rxTimeStampL ow	Least significant 16 bits of the latched rx timestamp value

Default value of this register is undefined.

F16.83f

Bit locations	Field name	Description
15-0	rxTimeStampH igh	Most significant 16 bits of the latched rx timestamp value

Default value of this register is undefined.

## DPLL Output Jitter TS=24.576MHz, TRM=1.0sec, Ig=0.9, ig=0.1, tgood=0.95, m_j_dev=1ppm



time (sec) F16,84a

DPLL Output Jitter
TS=24.576MHz, TRM=1.0sec, Ig=0.9, ig=0.1, tgood=0.95,
m_j_dev=0ppm



F14 846

Field	<u>Length</u>	Meaning	
DA	6 octets	Destination Address (FF.FF.FF.FF.FF)	
SA	6 octets	Source Address	
Ethertype	2 octets	0x886c (HPNA Link Control Frame)	
SSType	1 octet	= TBD	
SSLength	1 octet	Number of additional octets in the control header, starting with the SSVersion field and ending with the second (last) octet of the Next Ethertype field. Minimum is 16.	
SSVersion	1 octet	= 0	
TRM_type	1 octet	Value of x00 means that this is a TRM containing a valid timestamp. Value of x01 means that the master does not have a valid clock and slaves should give local indication that they are no longer locked to a master reference. Value of x80 means that this is a TQM. Value of x81 means that this is a TSM. All other values are reserved.	
TRMSeqNum	2 octets	Timestamp Report Message Sequence Number for this message. Sequence number of x0000 indicates an initial TRM, implying that Timestamp and PrevTRMSeqNum are both invalid.	
PrevTRMSeqNu m	2 octets	Sequence number of TRM to which the Timestamp in this message is applicable. The value of PrevTRMSeqNum is not necessarily equal to TRMSeqNum minus one. PrevTRMSeqNum is set to x0000 for the first TRM of a TRM pair.	

Fig. 85(1)

Field	<u>Length</u>	<u>Meaning</u>	
Timestamp	4 octets	Timestamp of a previously transmitted Timestamp Report Message, corresponding to PrevTRMSeqNum. The LSBit of the Timestamp corresponds to a time of $0.030517578125\mu sec = one clock tick at 32.768MHz$ . The Timestamp will rollover every 131 seconds = 2.2 minutes.	
NumSlots	1 octet	Number of Slot Timestamps specified in the payload of this control message. NumSlots may be zero. Each Slot Timestamp is accompanied by a MACAddr, and Channel_ID field. Including the Slot Timestamp, each Slot Timestamp is 12 bytes long.	
PAD_0	3 octets	Padding to align to a 32-bit boundary. Always present, even when NumSlots has the value of 0.	
MACAddr	6 octets	MAC Address associated with the immediately following Channel_ID and STimestamp.	
Channel_ID	2 octets	Identifier for a channel associated with the immediately preceding MACAddr.	
STimestamp	4 octets	Slot Timestamp corresponding to the immediately preceding Channel_ID. This is the time at which the TRM sender wishes to receive a future constant bit rate service flow packet in order to minimize overall latency of delivery to a synchronous network. The time value corresponds to the time at the timing master. Additional packets for the identified service flow are expected to arrive at periodic intervals measured from this time. The LSBit of the STimestamp corresponds to a time of $0.030517578125\mu sec = one clock tick at 32.768MHz$ .	
MACAddr	6 octets	MAC Address associated with the immediately following Channel-ID and STimestamp.	
Channel_ID	2 octets	Identifier for a channel associated with the immediately following Channel_ID and STimestamp.	

F16.85(2)

<u>Field</u>	<u>Length</u>	Meaning
STimestamp	4 octets	Slot Timestamp corresponding to the immediately preceding Channel_ID. This is the time at which the TRM sender wishes to receive a future constant bit rate service flow packet in order to minimize overall latency of delivery to a synchronous network. Additional packets for the identified service flow are expected to arrive at periodic intervals measured from this time. The LSBit of the STimestamp corresponds to a time of $0.030517578125\mu sec = one$ clock tick at $32.768$ MHz.
•••		[additional instances of MACAddr, Channel_ID and Gtimestamp fields, until the number of Gtimestamp fields equals NumGrants]
Next Ethertype	2 octets	= 0
Pad	max (0,44- SSLengt h octets	Any value octet
FCS	4 octets	

F16.85(3)

Field	Length	Meaning
DA	6 octets	Destination Address (FF.FF.FF.FF.FF)
SA	6 octets	Source Address
Ethertype	2 octets	0x886c (HPNA Link Control Frame)
SSType	1 octet	= 6
SSLength	1 octet	Number of additional octets in the control header, starting with the SSVersion field and ending with the second (last) octet of the Next Ethertype field. Minimum is 4.
SSVersion	1 octet	= 0
TRM_type	1 octet	Value of x80 means that this is a TQM.
Next Ethertype	2 octets	= 0
Pad	MIN(0,4 0- SSLengt h) octets	Any value octet
FCS	4 octets	

F16,86

Field	Length	Meaning
DA	6 octets	Destination Address (FF.FF.FF.FF.FF)
SA	6 octets	Source Address
Ethertype	2 octets	0x886c (HPNA Link Control Frame)
SSType	1 octet	= 6
SSLength	1 octet	Number of additional octets in the control header, starting with the SSVersion field and ending with the second (last) octet of the Next Ethertype field. Minimum is 4.
SSVersion	1 octet	= 0
TRM_type	1 octet	Value of x81 means that this is a TSM.
Next Ethertype	2 octets	= 0
Pad	MIN(0,4 0- SSLengt h) octets	Any value octet
FCS	4 octets	



Input Level	Uniform Quantizer	The required SNR for the ADC/DAC
0 dBm	38.43 dB	gp 09
-30 dBm	35.50 dB	54 dB
- 40 dBm	30.09 dB	44 dB
		- 320 7.7

er + Compander + jitter Clock	nsed)	used)	used)	
The total SNR with Uniform Quantizer + Compander + Jitter Clock	38.32 dB (60 dB ADC/DAC SNR is used)	35.42 dB (54 dB ADC/DAC SNR is used)	30.05 dB (44 dB) ADC/DAC SNR is used)	
G.712 SNR Spec	35 dB	35 dB	29 dB	
Input Level	0 dBm	-30 dBm	-40 dBm	

FIG. 896

Input Level	G.712 SNR Spec	The total SNR with Uniform Quantizer + Compander + Jitter Clock
0 dBm	35 dB	38.38 dB (60 dB ADC/DAC SNR is used)
-30 dBm	35 dB	35.26 dB (54 dB ADC/DAC SNR is used)
- 40 dBm	29 dB	30.03 dB (44 dB) ADC/DAC SNR is used)

F16 890







Octet	Field	Lengt h	Description
Flags 0	TxPriority7	1	Station is (was) transmitting frames with LL priority 7. (always set)
	TxPriority6	1	Station is (was) transmitting frames with LL priority 6.
	TxPriority5	1	Station is (was) transmitting frames with LL priority 5.
	TXPriority4	1	Station is (was) transmitting frames with LL priority 4.
	TxPriority3	1	Station is (was) transmitting frames with LL priority 3.
,	TxPriority2	1	Station is (was) transmitting frames with LL priority 2.
	TxPriority1	1	Station is (was) transmitting frames with LL priority 1.
	TxPriority0	1	Station is (was) transmitting frames with LL priority 0. (always set)
Flags	Reserved	5	Shall be sent as 0 and ignored by 2.0 stations when received.
	CSS_Master_Capab ility	1	This station is capable of operating as a CSS Master node.
	No_V1M2_Frames	1	This station does not support the reception or transmission of compatibility frames (V1M2 frames).
	Supports 4Mbaud	1	This station supports 4 megabaud payload encodings.
Flags 2	Reserved	8	Shall be sent as 0 and ignored by 2.0 stations when received.
Flags	ConfigV2	1	Force use of 10M8 mode, defers to Config1 and ConfigV1Ms.
	ConfigV1M2	1	Force use of HPNA V1M2 mixed mode, defers to ConfigV1.

F16. 93(1)

Octet	Field	Lengt h	Description
	ConfigV1	1	Force use of HPNA 1.x mode, highest precedence of config flags.
	Reserved	2	Shall be sent as 0 and ignored by 2.0 stations when received.
	Highest Version	3	This station's highest supported HPNA version: 0x000 Reserved 0x001 HPNA 1.0 0x010 HPNA 2.0 0x001-0x111 Reserved

F16.93(2)

<u>Field</u>	<u>Lengt</u> <u>h</u>	<u>Meaning</u>
CSEType	1 octet	X00 = signifies a CSS Extension type
CSELength	1 octet	X08 = Number of additional octets in this CSEType. CSELength is always x08 for CSEType = x00 = CSS
CSS_MAC	6 octet s	MAC address of client station
CSS_SEQ	2 octet s	CSS sequence, 8 two-bit values concatenated: 0-2 indicate a specific signaling slot, while 3 indicates the use of a randomly selected value chosen by the client at the time of the collision.  X0000 - xBFFF = assigned CSS_SEQ value for the node possessing the MAC address specified in CSS_MAC  XC000 - xFEFF = reserved  XFF00 = indication by the client node specified by CSS_MAC that it is no longer an active sender of link layer priority 6 frames (equivalent to a "0 active channels" indication)  XFF01 - xFFFE = request by the client node specified by CSS_MAC for a CSS Sequence from the master node. The 8 Least significant bits indicate the number of active channels which are sending link layer.  priority 6 frames for this client.  XFFFF - reserved

2-bit CSS register value (binary)	Signal slot integer (decimal)
00	0
01	1
10	2
11	Random in range [0,2]

Bit Number	Value
7:0	Station Type:  0 – HomePNA 1.x station  1 – 10M8 station in V1M2 Mode  2 – 10M8 station in V1M2 Mode, that has detected a recent 1M8 transmission with  PCOM Station Type = 0  Other values reserved
31:8	Reserved, must be 0 on transmission

F16, 96

Precedence	Variable
1	ConfigV1
2	ConfigV1M2
7 "	Config V2
4	VI DETECTED
4	V1_SIGNALED

F16, 97