Глава 4. **Числовые характеристики случайных** величин

Глава 4. Числовые характеристики случайных величин

Определение. Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности:

$$EX = x_1 p_1 + x_2 p_2 + x_3 p_3 + \dots + x_n p_n = \sum_{k=1}^{n} x_k p_k,$$

где x_k - значения случайной величиныX, $p_k = P(X = x_k)$ - их вероятности, k = 1,...,n.

Глава 4. Числовые характеристики случайных величин

Определение. Математическим ожиданием **дискретной** случайной величины называют сумму произведений всех ее возможных значений на их вероятности:

$$EX = x_1 p_1 + x_2 p_2 + x_3 p_3 + \dots + x_n p_n = \sum_{k=1}^{n} x_k p_k,$$

где x_k - значения случайной величиныX, $p_k = P(X = x_k)$ - их вероятности, k = 1,...,n. Если множество значений X счетно, то

$$EX = \sum_{k=1}^{\infty} x_k p_k$$

если ряд сходится абсолютно, т.е. $\sum_{k=1}^{\infty} |x_k| p_k < \infty$.

Пример. Найти математическое ожидание случайной величины X, зная ее закон распределения

X 3 5 2 *p* 0.1 0.6 0.3

Решение. $EX = 3 \cdot 0.1 + 5 \cdot 0.6 + 2 \cdot 0.3 = 3.9$.

1. Математическое ожидание случайной величины X, имеющей биномиальный закон распределения Bin(n,p), равно:

$$EX = np$$
.

1. Математическое ожидание случайной величины X, имеющей биномиальный закон распределения Bin(n,p), равно:

$$EX = np$$
.

$$EX = \sum_{k=0}^{n} k C_n^k p^k (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^k (1-p)^{n-k} =$$

1. Математическое ожидание случайной величины X, имеющей биномиальный закон распределения Bin(n,p), равно:

$$EX = np$$
.

$$EX = \sum_{k=0}^{n} k C_n^k p^k (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^k (1-p)^{n-k} =$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-1-(k-1))!} p^{k-1} (1-p)^{n-1-(k-1)} =$$

1. Математическое ожидание случайной величины X, имеющей биномиальный закон распределения Bin(n,p), равно:

$$EX = np$$
.

$$EX = \sum_{k=0}^{n} k C_{n}^{k} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k} (1-p)^{n-k} =$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-1-(k-1))!} p^{k-1} (1-p)^{n-1-(k-1)} =$$

$$= np \sum_{m=0}^{n-1} C_{n-1}^{m} p^{m} (1-p)^{n-1-m} = np.$$

2. Математическое ожидание случайной величины X, имеющей закон распределения Пуассона $P(\lambda)$, равно: $EX = \lambda$.

2. Математическое ожидание случайной величины X, имеющей закон распределения Пуассона $P(\lambda)$, равно:

$$EX = \lambda$$
.

$$EX = \sum_{n=0}^{\infty} n \cdot \frac{\lambda^n}{n!} e^{-\lambda} = \lambda \sum_{n=1}^{\infty} \frac{\lambda^{n-1}}{(n-1)!} e^{-\lambda} = \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} e^{-\lambda} = \lambda.$$

Определение. Математическим ожиданием *случайной величины* X, имеющей абсолютно непрерывное распределение с плотностью f(x), называют интеграл

$$EX = \int_{-\infty}^{+\infty} x f(x) dx$$

(если интеграл сходится абсолютно, т. е. существует

$$E \mid X \models \int_{-\infty}^{\infty} |x| f(x) dx.$$

1. Математическое ожидание случайной величины X, имеющей равномерное распределение на отрезке [a,b] равно:

$$EX = \frac{a+b}{2}.$$

1. Математическое ожидание случайной величины X, имеющей равномерное распределение на отрезке [a,b] равно:

$$EX = \frac{a+b}{2}.$$

$$EX = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{1}{b-a} \frac{x^{2}}{2} \begin{vmatrix} b \\ a \end{vmatrix} = \frac{a+b}{2}.$$

$$EX = a$$
.

$$EX = a$$
.

$$EX = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \left| y = \frac{(x-a)}{\sigma}, dx = \sigma dy \right|$$

$$EX = a$$
.

$$EX = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \left| y = \frac{(x-a)}{\sigma}, dx = \sigma dy \right|$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\sigma y + a) \cdot e^{-\frac{y^2}{2}} dy =$$

$$EX = a$$
.

$$EX = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \left| y = \frac{(x-a)}{\sigma}, dx = \sigma dy \right|$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\sigma y + a) \cdot e^{-\frac{y^2}{2}} dy =$$

$$= \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y e^{-\frac{y^2}{2}} dy + a \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy = a.$$

$$EX = a$$
.

Доказательство.

$$EX = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \left| y = \frac{(x-a)}{\sigma}, dx = \sigma dy \right|$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\sigma y + a) \cdot e^{-\frac{y^2}{2}} dy =$$

$$= \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y e^{-\frac{y^2}{2}} dy + a \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} dy = a.$$

A = 0 как интеграл от нечетной функции по симметричному промежутку.

$$EX = \frac{1}{\lambda}$$
.

$$EX = \frac{1}{\lambda}$$
.

$$EX = \int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \lambda (-\frac{1}{\lambda}) \int_{0}^{\infty} x de^{-\lambda x} =$$

$$EX = \frac{1}{\lambda}$$
.

$$EX = \int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \lambda (-\frac{1}{\lambda}) \int_{0}^{\infty} x de^{-\lambda x} =$$

$$= -\int_{0}^{\infty} x de^{-\lambda x} = -x e^{-\lambda x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda x} dx = \left(-\frac{1}{\lambda}\right) \int_{0}^{\infty} de^{-\lambda x} =$$

$$EX = \frac{1}{\lambda}$$
.

$$EX = \int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{\infty} x e^{-\lambda x} dx = \lambda (-\frac{1}{\lambda}) \int_{0}^{\infty} x de^{-\lambda x} =$$

$$= -\int_{0}^{\infty} x de^{-\lambda x} = \underbrace{-x e^{-\lambda x}}_{=0}^{\infty} + \int_{0}^{\infty} e^{-\lambda x} dx = \left(-\frac{1}{\lambda}\right) \int_{0}^{\infty} de^{-\lambda x} =$$

$$= \left(-\frac{1}{\lambda}\right) e^{-\lambda x} \Big|_{0}^{\infty} = \frac{1}{\lambda}.$$

4. Покажем, что математическое ожидание не всегда существует.

Рассмотрим распределение Коши, которое определяется плотностью

$$f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}.$$

4. Покажем, что математическое ожидание не всегда существует.

Рассмотрим распределение Коши, которое определяется плотностью

$$f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}.$$

Математическое ожидание

$$E \mid X \models \int_{-\infty}^{\infty} |x| \frac{1}{\pi} \frac{1}{1+x^2} dx = 2\frac{1}{\pi} \int_{0}^{\infty} x \frac{1}{1+x^2} dx =$$

4. Покажем, что математическое ожидание не всегда существует.

Рассмотрим распределение Коши, которое определяется плотностью

$$f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}.$$

Математическое ожидание

$$E \mid X \mid = \int_{-\infty}^{\infty} |x| \frac{1}{\pi} \frac{1}{1+x^2} dx = 2\frac{1}{\pi} \int_{0}^{\infty} x \frac{1}{1+x^2} dx =$$

$$\frac{1}{\pi} \int_{0}^{\infty} d \ln (1 + x^{2}) = \frac{1}{\pi} \ln (1 + x^{2}) \Big|_{0}^{\infty} = \infty.$$

1. Математическое ожидание постоянной величины равно самой постоянной: EC = C.

1. Математическое ожидание постоянной величины равно самой постоянной: EC = C.

Доказательство.
$$EC = \sum_{k} Cp_{k} = C \sum_{k} p_{k} = C$$
 (для

непрерывных случайных величин доказывается аналогично).

1. Математическое ожидание постоянной величины равно самой постоянной: EC = C.

Доказательство.
$$EC = \sum_{k} Cp_{k} = C \sum_{k} p_{k} = C$$
 (для

непрерывных случайных величин доказывается аналогично).

2. Постоянный множитель можно выносить за знак математического ожидания: $E(C \cdot X) = C \cdot EX$.

1. Математическое ожидание постоянной величины равно самой постоянной: EC = C.

Доказательство.
$$EC = \sum_{k} Cp_k = C \sum_{k} p_k = C$$
 (для

непрерывных случайных величин доказывается аналогично).

2. Постоянный множитель можно выносить за знак математического ожидания: $E(C \cdot X) = C \cdot EX$.

$$E(C \cdot X) = \sum_{k} C x_{k} p_{k} = C \sum_{k} x_{k} p_{k} = C \cdot EX.$$

$$E(X+Y) = \sum_{k,l} (x_k + y_l) P(X = x_k, Y = y_l) =$$

$$E(X + Y) = \sum_{k,l} (x_k + y_l) P(X = x_k, Y = y_l) =$$

$$= \sum_{k} x_k \sum_{l} P(X = x_k, Y = y_l) + \sum_{l} y_l \sum_{k} P(X = x_k, Y = y_l) =$$

$$= P(X = x_k)$$

$$E(X + Y) = \sum_{k,l} (x_k + y_l) P(X = x_k, Y = y_l) =$$

$$= \sum_{k} x_k \sum_{l} P(X = x_k, Y = y_l) + \sum_{l} y_l \sum_{k} P(X = x_k, Y = y_l) =$$

$$= P(X = x_k)$$

$$= \sum_{l} x_k P(X = x_k) + \sum_{l} y_l P(Y = y_l) = EX + EY.$$

Доказательство.

$$E(X + Y) = \sum_{k,l} (x_k + y_l) P(X = x_k, Y = y_l) =$$

$$= \sum_{k} x_k \sum_{l} P(X = x_k, Y = y_l) + \sum_{l} y_l \sum_{k} P(X = x_k, Y = y_l) =$$

$$= P(X = x_k)$$

$$= \sum_{l} x_k P(X = x_k) + \sum_{l} y_l P(Y = y_l) = EX + EY.$$

Следствие. Математическое ожидание суммы конечного числа случайных величин равно сумме математических ожиданий слагаемых.

Доказательство.

$$E(X + Y) = \sum_{k,l} (x_k + y_l) P(X = x_k, Y = y_l) =$$

$$= \sum_{k} x_k \sum_{l} P(X = x_k, Y = y_l) + \sum_{l} y_l \sum_{k} P(X = x_k, Y = y_l) =$$

$$= P(X = x_k)$$

$$= \sum_{l} x_k P(X = x_k) + \sum_{l} y_l P(Y = y_l) = EX + EY.$$

Следствие. Математическое ожидание суммы конечного числа случайных величин равно сумме математических ожиданий слагаемых.

Замечание. E(X-Y)=EX-EY

Доказательство.
$$E(XY) = \sum_{k,l} x_k y_l P(X = x_k, Y = y_l) =$$

Доказательство.
$$E(XY) = \sum_{k,l} x_k y_l P(X = x_k, Y = y_l) = \sum_{k,l} x_k y_l P(X = x_k) P(Y = y_l) =$$

Доказательство.
$$E(XY) = \sum_{k,l} x_k y_l P(X = x_k, Y = y_l) = \sum_{k,l} x_k y_l P(X = x_k) P(Y = y_l) =$$

$$\left[\sum_{k} x_k P(X = x_k) \right] \left[\sum_{l} y_l P(Y = y_l) \right] = EX \cdot EY.$$

Доказательство.
$$E(XY) = \sum_{k,l} x_k y_l P(X = x_k, Y = y_l) = \sum_{k,l} x_k y_l P(X = x_k) P(Y = y_l) =$$

$$\left[\sum_k x_k P(X = x_k) \right] \left[\sum_l y_l P(Y = y_l) \right] = EX \cdot EY.$$

5. Если $X \ge Y$, то $EX \ge EY$.

Доказательство.
$$E(XY) = \sum_{k,l} x_k y_l P(X = x_k, Y = y_l) = \sum_{k,l} x_k y_l P(X = x_k) P(Y = y_l) =$$

$$\left[\sum_k x_k P(X = x_k) \right] \left[\sum_l y_l P(Y = y_l) \right] = EX \cdot EY.$$

5. Если $X \ge Y$, то $EX \ge EY$. **Доказательство.** Обозначим Z = X - Y, тогда

$$EZ = \sum_{k} z_k P(Z = z_k) \ge 0$$
 так как все $z_k \ge 0$.

Пример. Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных костей.

Пример. Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных костей.

Решение. Обозначим число очков, которое может выпасть на первой кости через X и на второй — через Y.

Тогда
$$EX = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = \frac{7}{2}$$
.

Пример. Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных костей.

Решение. Обозначим число очков, которое может выпасть на первой кости через X и на второй — через Y.

Тогда
$$EX=1\cdot\frac{1}{6}+2\cdot\frac{1}{6}+3\cdot\frac{1}{6}+4\cdot\frac{1}{6}+5\cdot\frac{1}{6}+6\cdot\frac{1}{6}=\frac{7}{2}$$
. Очевидно, что $EY=\frac{7}{2}$. Значит $E\left(X+Y\right)=EX+EY=7$.