02

머신러닝 회귀

• 회귀란?

- > 여러 개의 독립 변수와 한 개의 종속변수 간의 상관관계 모델링
- $> Y = W_0 X_0 + W_1 X_1 + W_2 X_2 + \dots + W_N X_N$ 일 경우
 - Y: 종속변수, 레이블
 - X:독립변수, 피쳐
 - W:회귀계수
- > 최적의 회귀 계수를 찾아내는 일이 회귀 분석이다.
- > 독립 변수가 1개면 단일 회귀, 다수면 다중 회귀로 나뉜다.
- > 회귀 계수의 결합에 따라 선형이냐 비선형이냐로 나뉜다.

• 회귀란?

03

> 선형 결합이란?

■ 회귀 계수를 선형 모델로 만들 수 있는 상태

•
$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 \Rightarrow \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

•
$$y = \beta_0 x^{\beta_1} \Rightarrow \log(y) = \log(\beta_0 x^{\beta_1}) \Rightarrow \log\beta_0 + \beta_1 \log(x) \Rightarrow y^* = \beta_0^* + \beta_1 x^*$$

•
$$y = \frac{e^{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3}}{1 + e^{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3}} \Rightarrow \frac{y}{1 - y} = e^{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3} \Rightarrow \log\left(\frac{y}{1 - y}\right) = y^* = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

> 비선형 결합이란?

■ 선형 모델로 표현이 불가능한 상태

$$y = \frac{\beta_1 x}{\beta_2 + x}$$

• 회귀라?

> 대표적인 선형 회귀

- 일반 선형 회귀: 예측값과 실제값의 오류를 최소화할 수 있도록 회귀 계수를 최적화화며, 규제(Regularization)를 적용하지 않는 모델
- 릿지(Ridge): 선형 회귀에 L2 규제를 추가한 모델
- 라쏘(Lasso): 선형 회귀에 L1 규제를 추가한 모델
- 엘리스틱넷: L2, L1 규제를 결합한 모델
- 로지스틱 회귀 : 회귀보단 이진 분류에 특화된 모델
- SGD: 확률적 경사 하강법을 적용한 선형 모델

• 단순 선형 회귀

05

> 독립변수 하나, 종속변수 하나인 선형 회귀

$$\bullet \quad Y = W_0 + W_1 * x$$

> 오류:실제 값과 회귀 모델의 차이

■ 오류의 합을 최소화 하는 회귀 선을 구한다.

> RSS : 오류 값의 제곱을 더해 평균을 내는 방식

> MAE : 오류 값의 절대값을 더해 평균을 내는 방식

$$RSS(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (w_0 + w_1 * x_i))^2$$

• 선형 회귀 분석

> 당뇨병 수치 예측

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy import stats
from sklearn.datasets import load_diabetes

diabetes = load_diabetes()

diabetes_df = pd.DataFrame(diabetes.data , columns = diabetes.feature_names) diabetes_df['target'] = diabetes.target

• 선형 회귀 분석

> 당뇨병 수치 예측

diabetes_df.head()

Out:

	age	sex	bmi	bp	s1	s2	s3	s4	s5	s6	target
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019907	-0.017646	151.0
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068332	-0.092204	75.0
2	0.085299	0.050680	0.044451	-0.005670	-0.045599	-0.034194	-0.032356	-0.002592	0.002861	-0.025930	141.0
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022688	-0.009362	206.0
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031988	-0.046641	135.0

• 선형 회귀 분석

> 당뇨병 수치 예측

```
fig, axs = plt.subplots(figsize=(16,8) , ncols=5 , nrows=2)
lm_features = ['age','sex','bmi','bp','s1','s2','s3','s4', 's5', 's6']

for i , feature in enumerate(lm_features):
    row = int(i/5)
    col = i%5
    sns.regplot(x=feature , y='target',data=diabetes_df, ax=axs[row][col])
    diabetes_df.corr()['target']
```

• 선형 회귀 분석

> 당뇨병 수치 예측

0.187889 age 0.043062 sex 0.586450 bmi 0.441482 bр 0.212022 s1 s2 0.174054 s3 -0.394789 0.430453 s4 s5 0.565883 s6 0.382483 1.000000 target

Name: target, dtype: float64

• 선형 회귀 분석

> 당뇨병 수치 예측

```
from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

y = diabetes_df.iloc[:, -1]

X = diabetes_df.iloc[:, :-1]

X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size=0.3, random_state=156)
```

• 선형 회귀 분석

> 당뇨병 수치 예측

```
Ir = LinearRegression()
Ir.fit(X_train ,y_train )
pred = Ir.predict(X_test)
mse = mean_squared_error(y_test, pred)
rmse = np.sqrt(mse)
print(f'MSE : {mse:.3f} , RMSE : {rmse:.3F}')
print(f'Variance score : {r2_score(y_test, pred):.3f}')
```

011

Out: MSE: 2993.705, RMSE: 54.715

Variance score: 0.497

• 선형 회귀 분석

> 당뇨병 수치 예측

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

평가 지표	설명	수식
MAE	Mean Absolute Error(MAE)이며 실제 값과 예측값의 차이를 절댓값으로 변환해 평균한 것입니다	$\mathit{MAE} = \frac{1}{n} \sum_{i=1}^{n} Yi - \hat{Y}i $
MSE	Mean Squared Error(MSE)이며 실제 값과 예측값의 차이를 제곱해 평균한 것입니다.	$MSE = \frac{1}{n} \sum_{\ell=1}^{n} (Y\ell - \widehat{Y}\ell)^2$
MSLE	MSE에 로그를 적용한 것입니다. 결정값이 클 수록 오류값도 커지기 때문에 일부 큰 오류값들로 인해 전체 오류값이 커지는 것을 막아줍니다.	Log(MSE)
RMSE	MSE 값은 오류의 제곱을 구하므로 실제 오류 평균보다 더 커지는 특성이 있으므로 MSE에 루트를 씌운 것이 RMSE(Root Mean Squared Error)입니다	$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Yi - \hat{Y}i)^2}$
RMSLE	RMSE에 로그를 적용한 것입니다. 결정값이 클 수록 오류값도 커지기 때문에 일부 큰 오류값들로 인해 전체 오류값이 커지는 것을 막아줍니다.	Log(RMSE)
R ²	분산 기반으로 예측 성능을 평가합니다. 실제 값의 분산 대비 예측값의 분산 비율을 지표로 하며, 1에 가까울수록 예측 정확도가 높습니다.	$R^2 = \frac{$ 예측값 $Variance}{ 실제 값 Variance}$

• 선형 회귀 분석

> 당뇨병 수치 예측

```
print('절편 값:',lr.intercept_)
print('회귀 계수값:', np.round(lr.coef_, 1))
```

Out: 절편 값: 152.38617209733573 회귀계수값: [39.1 -251.9 468.8 305.3 -1146.9 788. 177.2 117.4 937.9 53.7]

```
coeff = pd.Series(data=np.round(lr.coef_, 1), index=X.columns)
coeff
```

```
Out: sex -251.9
bmi 468.8
bp 305.3
s1 -1146.9
s2 788.0
s3 177.2
s4 117.4
s5 937.9
s6 53.7
dtype: float64
```

• 선형 회귀 분석

> 당뇨병 수치 예측

```
from sklearn.model_selection import cross_val_score
Ir = LinearRegression()
neg_mse_scores = cross_val_score(lr, X, y, scoring="neg_mean_squared_error", cv = 5)
# 'neg_root_mean_squared_error', 'neg_mean_absolute_error', 'r2'
rmse_scores = np.sqrt(-1 * neg_mse_scores)
avg_rmse = np.mean(rmse_scores)
print('5 folds 의 개별 Negative MSE scores:', np.round(neg_mse_scores, 2))
print('5 folds 의 개별 RMSE scores :', np.round(rmse_scores, 2))
print(f'5 folds 의 평균 RMSE : {avg_rmse:.3f}')
```

• 선형 회귀 분석

015

> 당뇨병 수치 예측

Out: 5 folds 의 개별 Negative MSE scores: [-2779.92 -3028.84 -3237.69 -3008.75 -2910.21]

5 folds 의 개별 RMSE scores : [52.72 55.03 56.9 54.85 53.95]

5 folds 의 평균 RMSE : 54.692

• 다항회귀

> 다항회귀 실습

```
from sklearn.preprocessing import PolynomialFeatures import numpy as np
```

```
X = np.arange(4).reshape(2,2)
print('일차 단항식 계수 feature:₩n',X )
poly = PolynomialFeatures(degree=2)
poly.fit(X)
poly_ftr = poly.transform(X)
print('변환된 2차 다항식 계수 feature:₩n', poly_ftr)
```

• 다항회귀

> 다항회귀 실습

bias	x_1	x_2	x_{1}^{2}	x_1x_2	x_2^2
1	0	1	0	0	1
1	2	3	4	6	9

• 다항회귀

> 다항회귀 실습

```
def polynomial_func(X):

y = 1 + 2*X[:,0] + 3*X[:,0]**2 + 4*X[:,1]**3

return y

X = np.arange(0,4).reshape(2,2)

print('일차 단항식 계수 feature: ₩n',X)

y = polynomial_func(X)

print('삼차 다항식 결정값: ₩n', y)
```

```
Out: 일차 단항식 계수 feature:
[[0 1]
[2 3]]
삼차 다항식 결정값:
[ 5 125]
```

• 다항회귀

019

> 다항회귀 실습

poly_ftr = PolynomialFeatures(degree=3).fit_transform(X) print('3차 다항식 계수 feature: ₩n',poly_ftr)

Out: 3차 다항식 계수 feature:

[[1. 0. 1. 0. 0. 1. 0. 0. 0. 1.]

[1. 2. 3. 4. 6. 9. 8. 12. 18. 27.]]

> 다음과 같은 규칙을 가지고 생성한다.

x_1	x_2	
0	1	
2	3	

bias	x_1	x_2	x_{1}^{2}	x_1x_2	x_2^2	x_1^3	$x_1^2 x_2$	$x_1 x_2^2$	x_2^3
1	0	1	0	0	1	0	0	0	1
1	2	3	4	6	9	8	12	18	27

• 다항회귀

> 다항회귀 실습

from sklearn.linear_model import LinearRegression

model = LinearRegression()

model.fit(poly_ftr,y)

print('Polynomial 회귀 계수\\(\mathbb{m}\)r' , np.round(model.coef_, 2))

print('Polynomial 회귀 Shape :', model.coef_.shape)

020

Out: Polynomial 회귀 계수 [0. 0.18 0.18 0.36 0.54 0.72 0.72 1.08 1.62 2.34] Polynomial 회귀 Shape: (10,)

• 다항회귀와 과적합/과소적합

> 과적합, 과소적합 이해

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
def true_fun(X):
   return np.cos(1.5 * np.pi * X)
np.random.seed(0)
n_samples = 30
X = np.sort(np.random.rand(n_samples))
y = true_fun(X) + np.random.randn(n_samples) * 0.1
```

• 다항회귀와 과적합/과소적합

> 과적합, 과소적합 이해

```
plt.figure(figsize=(14, 5))
degrees = [1, 4, 15]
for i in range(len(degrees)):
   ax = plt.subplot(1, len(degrees), i + 1)
   polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False)
   Ir_reg = LinearRegression()
   X_poly = polynomial_features.fit_transform(X.reshape(-1,1), y)
   lr_reg.fit(X_poly, y)
   scores = cross_val_score(lr_reg, X_poly, y, scoring='neg_mean_squared_error', cv=10)
   coeff = lr_reg.coef_
```

• 다항회귀와 과적합/과소적합

023

> 과적합, 과소적합 이해

```
# 이전 코드에 이어서 작성
   print(f'\nDegree {degrees[i]} 회귀계수는 \np.round(coeff, 2)}\n입니다.')
   print(f'MSE는 {-1 * np.mean(scores)}입니다.')
   X_{\text{test}} = \text{np.linspace}(0, 1, 100).\text{reshape}(-1, 1)
   X_test_poly = polynomial_features.transform(X_test)
   pred = Ir_req.predict(X_test_poly)
   plt.plot(X_test, pred, label = 'Model')
   plt.plot(X_test, true_fun(X_test), '--', label='True Function')
   plt.scatter(X, y, edgecolors='b', s = 20, label = 'Samples')
   plt.xlabel('x');plt.ylabel('y'); plt.xlim((0,1)); plt.ylim((-2, 2)); plt.legend()
   plt.title(f'Degree {degrees[i]}₩nMSE={-scores.mean():.2f}')
plt.show()
```

• 다항회귀와 과적합/과소적합

> 과적합, 과소적합 이해

Out:
Degree 1 회귀계수는
[-1.61]
입니다.
MSE는 0.40772896250986845입니다.

Degree 4 회귀계수는
[0.47 -17.79 23.59 -7.26]
입니다.
MMSE는 0.0432087498722184인나다

MSE는 0.0432087498723184입니다.

Degree 15 회귀계수는
[-2.98294000e+03 1.03899850e+05 -1.87416981e+06 2.03717199e+07 -1.44874017e+08 7.09319141e+08 -2.47067173e+09 6.24564702e+09 -1.15677216e+10 1.56895933e+10 -1.54007040e+10 1.06457993e+10 -4.91381016e+09 1.35920643e+09 -1.70382078e+08] 입니다.
MSE는 182581084.8263125입니다.

Degree 4 MSE=0.04 Degree 15 MSE=182581084.83 Degree 1 MSE=0.41 2.0 2.0 2.0 — Model --- True Function --- True Function --- True Function 1.5 1.5 1.5 Samples Samples Samples 1.0 1.0 1.0 -0.5 0.5 0.5 > 0.0 0.0 0.0 -0.5-0.5-1.0-1.0-1.5-1.5-1.5-2.00.0 0.2 0.6 0.0 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

• 과적합/과소적합

- > 과적합
 - 데이터를 학습할 때, 학습 데이터에만 과하게 학습을 하여 일반화하지 못하게 되어 테스트 데이터에서 오차가 커지는 현상
- > 과소적합
 - 학습 데이터에 대한 학습이 부족하여 훈련/테스트 데이터에서 오차가 크게 나오는 현상

• 규제 선형 모델

> 릿지 회귀 : L2 규제

```
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score
y = diabetes_df.iloc[:, -1]
X = diabetes_df.iloc[:, :-1]
ridge = Ridge(alpha = 10)
neg_mse_scores = cross_val_score(ridge, X, y,scoring="neg_mean_squared_error", cv = 5)
rmse_scores = np.sqrt(-1 * neg_mse_scores)
avg_rmse = np.mean(rmse_scores)
print(' 5 folds 의 개별 Negative MSE scores: ', np.round(neg_mse_scores, 3))
print(' 5 folds 의 개별 RMSE scores : ', np.round(rmse_scores,3))
print(' 5 folds 의 평균 RMSE : {0:.3f} '.format(avg_rmse))
```

• 규제 선형 모델

> 릿지 회귀: L2 규제

Out: 5 folds 의 개별 Negative MSE scores: [-4540.477 -5430.505 -5284.404 -4364.15 -5463.355]

5 folds 의 개별 RMSE scores : [67.383 73.692 72.694 66.062 73.915]

5 folds 의 평균 RMSE : 70.749

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

L2 Regularization

$$\mathbf{Cost} = \underbrace{\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2}_{\mathbf{Loss \ function}}$$
Regularization
Term

• 규제 선형 모델

028

> 릿지 회귀 : L2 규제

Out: alpha 0 일 때 5 folds 의 평균 RMSE : 54.692 alpha 0.1 일 때 5 folds 의 평균 RMSE : 54.825 alpha 1 일 때 5 folds 의 평균 RMSE : 58.449 alpha 10 일 때 5 folds 의 평균 RMSE : 70.749 alpha 100 일 때 5 folds 의 평균 RMSE : 76.399

• 규제 선형 모델

> 릿지 회귀 : L2 규제

```
fig, axs = plt.subplots(figsize = (18,6), nrows=1, ncols=5)
coeff_df = pd.DataFrame()
for pos, alpha in enumerate(alphas):
   ridge = Ridge(alpha = alpha)
   ridge.fit(X, y)
   coeff = pd.Series(data = ridge.coef_, index = X.columns)
   colname='alpha:'+ str(alpha)
   coeff df[colname] = coeff
   coeff = coeff.sort_values(ascending = False)
   axs[pos].set_title(colname); axs[pos].set_xlim(-900, 800)
   sns.barplot(x = coeff.values, y=coeff.index, ax=axs[pos])
plt.show()
```

• 규제 선형 모델

> 릿지 회귀: L2 규제

Out:

• 규제 선형 모델

> 릿지 회귀 : L2 규제

ridge_alphas = [0 , 0.1 , 1 , 10 , 100]
sort_column = 'alpha:'+ str(ridge_alphas[0])
coeff_df.sort_values(by=sort_column, ascending=False)

Out:

	alpha:0	alpha:0.1	alpha:1	alpha:10	alpha:100
s5	751.273700	443.812917	262.944290	70.143948	8.876851
bmi	519.845920	489.695171	306.352680	75.416214	9.240720
s2	476.739021	-70.826832	-29.515495	13.948715	2.616766
bp	324.384646	301.764058	201.627734	55.025160	6.931289
s4	177.063238	115.712136	117.311732	48.259433	6.678027
s3	101.043268	-188.678898	-152.040280	-47.553816	-6.174550
s6	67.626692	86.749315	111.878956	44.213892	5.955597
age	-10.009866	1.308705	29.466112	19.812842	2.897090
sex	-239.815644	-207.192418	-83.154276	-0.918430	0.585254
s1	-792.175639	-83.466034	5.909614	19.924621	3.230957

규제 강도가 강할수록 회귀계수가 작아진다.

• 규제 선형 모델

> 라쏘 회귀 : L1 규제

Out: alpha 0 일 때 5 folds 의 평균 RMSE : 54.692 alpha 0.01 일 때 5 folds 의 평균 RMSE : 54.756 alpha 0.1 일 때 5 folds 의 평균 RMSE : 54.843 alpha 1 일 때 5 folds 의 평균 RMSE : 62.009 alpha 10 일 때 5 folds 의 평균 RMSE : 77.264

• 규제 선형 모델

> 라쏘 회귀 : L1 규제

```
fig, axs = plt.subplots(figsize = (18,6), nrows=1, ncols=5)
coeff_df = pd.DataFrame()
for pos, alpha in enumerate(alphas):
   lasso = Lasso(alpha = alpha)
   lasso.fit(X, y)
   coeff = pd.Series(data = lasso.coef_, index = X.columns)
   colname='alpha:'+ str(alpha)
   coeff df[colname] = coeff
   coeff = coeff.sort_values(ascending = False)
   axs[pos].set_title(colname); axs[pos].set_xlim(-900, 800)
   sns.barplot(x = coeff.values, y=coeff.index, ax=axs[pos])
plt.show()
```

• 규제 선형 모델

> 라쏘 회귀 : L1 규제

Out:

• 규제 선형 모델

> 라쏘 회귀 : L1 규제

lasso_alphas = [0 , 0.1 , 1 , 10 , 100]
sort_column = 'alpha:'+ str(lasso_alphas[0])
coeff_df.sort_values(by=sort_column, ascending=False)

Out:

	alpha:0	alpha:0.01	alpha:0.1	alpha:1	alpha:10
s5	751.273690	571.330356	483.912648	307.605418	0.0
bmi	519.845920	525.566130	517.186795	367.703860	0.0
s2	476.739000	89.324647	-0.000000	0.000000	0.0
bp	324.384645	316.168834	275.077235	6.298858	0.0
s4	177.063234	119.597616	0.000000	0.000000	0.0
s3	101.043256	-105.078369	-210.157991	-0.000000	-0.0
s6	67.626692	65.008383	33.673965	0.000000	0.0
age	-10.009866	-1.304662	-0.000000	0.000000	0.0
sex	-239.815644	-228.819129	-155.359976	-0.000000	0.0
s1	-792.175612	-307.016211	-52.539365	0.000000	0.0

L2 규제와 똑같이 규제 강도가 강할수록 회귀계수가 작아진다. 035

하지만 L1 규제는 강도가 강하면 0으로 수렴한다.

• 규제 선형 모델

> 엘라스틱넷 회귀: L1, L2 규제

Out: alpha 0 일 때 5 folds 의 평균 RMSE : 54.692 alpha 0.01 일 때 5 folds 의 평균 RMSE : 61.112 alpha 0.1 일 때 5 folds 의 평균 RMSE : 73.203 alpha 1 일 때 5 folds 의 평균 RMSE : 76.925 alpha 10 일 때 5 folds 의 평균 RMSE : 77.264

• 규제 선형 모델

> 엘라스틱넷 회귀 : L1, L2 규제

```
fig, axs = plt.subplots(figsize = (18,6), nrows=1, ncols=5)
coeff_df = pd.DataFrame()
for pos, alpha in enumerate(alphas):
   elastic = ElasticNet(alpha = alpha)
   elastic.fit(X, y)
   coeff = pd.Series(data = elastic.coef_, index = X.columns)
   colname='alpha:'+ str(alpha)
   coeff df[colname] = coeff
   coeff = coeff.sort_values(ascending = False)
   axs[pos].set_title(colname); axs[pos].set_xlim(-900, 800)
   sns.barplot(x = coeff.values, y=coeff.index, ax=axs[pos])
plt.show()
```

• 규제 선형 모델

> 엘라스틱넷 회귀: L1, L2 규제

Out:

• 규제 선형 모델

> 엘라스틱넷 회귀 : L1, L2 규제

alpha:1 alpha:10

alpha:0.1

alphas = [0 , 0.1 , 1 , 10 , 100]
sort_column = 'alpha:'+ str(alphas[0])
coeff_df.sort_values(by=sort_column, ascending=False)

alpha:0.01

alpha:0

Out:

	•	•	•	•	•
s5	751.273690	185.325911	35.465700	3.105835	0.0
bmi	519.845920	211.024367	37.464655	3.259767	0.0
s2	476.739000	0.000000	8.355892	0.250935	0.0
bp	324.384645	144.559236	27.544765	2.204340	0.0
s4	177.063234	100.658917	25.505492	2.114454	0.0
s3	101.043256	-115.619973	-24.120809	-1.861363	-0.0
s6	67.626692	96.257335	22.894985	1.769851	0.0
age	-10.009866	33.147367	10.286332	0.359018	0.0
sex	-239.815644	-35.245354	0.285983	0.000000	0.0
s1	-792.175612	21.931722	11.108856	0.528646	0.0

마찬가지로 규제 강도가 클수록 회귀계수가 작아진다.

L1처럼 0으로 수렴하기도 하지만 L2처럼 천천히 값이 작아진다.

L1, L2 특징을 모두 표현

• 경사 하강법

> 비용(Cost)을 최소화 하는 방법

■ 미분 값이 0이 되는 지점이 최소점

$$\frac{\partial R(w)}{\partial w_1} = \frac{2}{N} \sum_{i=1}^{N} -x_i * (y_i - (w_0 + w_1 x_i)) = -\frac{2}{N} \sum_{i=1}^{N} x_i * (실제값_i - 예측값_i)$$

$$\frac{\partial R(w)}{\partial w_0} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (w_0 + w_1 x_i)) = -\frac{2}{N} \sum_{i=1}^{N} (실제값_i - 예측값_i)$$

출처: https://towardsdatascience.com/using-machine-learning-to-predict-fitbit-sleep-scores-496a7d9ec48

• 경사 하강법

041

> 확률적 경사 하강법(SGD) 실습

Out: alpha 0 일 때 5 folds 의 평균 RMSE : 59.020 alpha 0.01 일 때 5 folds 의 평균 RMSE : 65.432 alpha 0.1 일 때 5 folds 의 평균 RMSE : 74.984 alpha 1 일 때 5 folds 의 평균 RMSE : 76.999 alpha 10 일 때 5 folds 의 평균 RMSE : 77.244

• 경사 하강법

> 확률적 경사 하강법(SGD) 실습

```
fig, axs = plt.subplots(figsize = (18,6), nrows=1, ncols=5)
coeff_df = pd.DataFrame()
for pos, alpha in enumerate(alphas):
   sgd_reg = SGDRegressor(alpha = alpha)
   sgd_reg.fit(X, y)
   coeff = pd.Series(data = sgd_reg.coef_, index = X.columns)
   colname='alpha:'+ str(alpha)
   coeff df[colname] = coeff
   coeff = coeff.sort_values(ascending = False)
   axs[pos].set_title(colname); axs[pos].set_xlim(-200, 300)
   sns.barplot(x = coeff.values, y=coeff.index, ax=axs[pos])
plt.show()
```

• 경사 하강법

> 확률적 경사 하강법(SGD) 실습

Out:

• 경사 하강법

> 확률적 경사 하강법(SGD) 실습

```
fig, axs = plt.subplots(figsize = (18,6), nrows=1, ncols=4)
coeff_df = pd.DataFrame()
ratios = [0, 0.3, 0.7, 1]
for pos, ratio in enumerate(ratios):
   sqd_req = SGDRegressor(alpha = 0.01, penalty='elasticnet', l1_ratio=ratio)
   sgd_reg.fit(X, y)
   coeff = pd.Series(data = sgd_reg.coef_, index = X.columns)
   colname='ratio:'+ str(ratio)
   coeff_df[colname] = coeff
   coeff = coeff.sort_values(ascending = False)
   axs[pos].set_title(colname); axs[pos].set_xlim(-200, 300)
   sns.barplot(x = coeff.values, y=coeff.index, ax=axs[pos])
plt.show()
```

• 경사 하강법

> 확률적 경사 하강법(SGD) 실습

Out:

• 회귀 트리

- > 회귀 트리란 회귀 함수(선형, 비선형)를 기반으로 하지 않고 트리 기반으로 회귀 예측을 하는 방식
- > 분류의 회귀와 크게 다르지 않지만 노드를 생성하는 방식이 다름
 - 클래스 대신 노드에 속한 데이터의 평균으로 값을 다룸
- > 분류에서 쓰이는 대부분의 트리 알고리즘들은 Classifier, Regression 2개로 구분되어 있다.

• 회귀 트리

> 회귀 트리 실습

from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import load_diabetes

diabetes = load_diabetes()

diabetes_df = pd.DataFrame(diabetes.data , columns = diabetes.feature_names) diabetes_df['target'] = diabetes.target

y = diabetes_df.iloc[:, -1]

X = diabetes_df.iloc[:, :-1]

• 회귀 트리

> 회귀 트리 실습

```
rf_reg = RandomForestRegressor(random_state=0, n_estimators=1000)
mse_scores = cross_val_score(rf_reg, X, y, scoring="neg_mean_squared_error", cv = 5)
rmse_scores = np.sqrt(-1 * mse_scores)
avg_rmse = np.mean(rmse_scores)
print(' 5 교차 검증의 개별 Negative MSE scores: ', np.round(mse_scores, 2))
print(' 5 교차 검증의 개별 RMSE scores : ', np.round(rmse_scores, 2))
print(f' 5 교차 검증의 평균 RMSE : {avg_rmse:.3f} ')
```

048

Out: 5 교차 검증의 개별 Negative MSE scores: [-2994.11 -3112.26 -3547.44 -3272.69 -3709.92] 5 교차 검증의 개별 RMSE scores : [54.72 55.79 59.56 57.21 60.91] 5 교차 검증의 평균 RMSE : 57.637

• 회귀 트리

> 회귀 트리 실습

• 회귀 트리

> 회귀 트리 실습

from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import GradientBoostingRegressor from xgboost import XGBRegressor

dt_reg = DecisionTreeRegressor(random_state=0, max_depth=4)
gb_reg = GradientBoostingRegressor(random_state=0, n_estimators=1000)
xgb_reg = XGBRegressor(random_state=0, n_estimators=1000)

• 회귀 트리

> 회귀 트리 실습

```
models = [dt_reg, rf_reg, gb_reg, xgb_reg]
for model in models:
    get_model_cv_prediction(model, X, y)
```

051

Out: #### DecisionTreeRegressor #####
5 교차 검증의 평균 RMSE: 64.320
RandomForestRegressor
5 교차 검증의 평균 RMSE: 57.637
GradientBoostingRegressor
5 교차 검증의 평균 RMSE: 65.495
XGBRegressor
5 교차 검증의 평균 RMSE: 63.035

• 회귀 트리

> 회귀 트리 동작 비교

```
rf_reg.fit(X, y)
ftr_importances_values = rf_reg.feature_importances_
ftr_importances = pd.Series(ftr_importances_values,index=X.columns)
ftr_top20 = ftr_importances.sort_values(ascending=False)[:20]
plt.figure(figsize=(8,6))
plt.title('Feature importances Top 20')
sns.barplot(x=ftr_top20 , y = ftr_top20.index)
plt.show()
```

• 회귀 트리

> 회귀 트리 동작 비교

• 회귀 트리

> 회귀 트리 동작 비교

```
import matplotlib.pyplot as plt

sample_df = diabetes_df[['s5','target']]
sample_df = sample_df.sample(n=100,random_state=0)
print(sample_df.shape)
plt.figure()
plt.scatter(sample_df['s5'] , sample_df['target'])
```

054

Out: (100, 2)

• 회귀 트리

> 회귀 트리 동작 비교

Out:

• 회귀 트리

> 회귀 트리 동작 비교

```
import numpy as np
from sklearn.linear_model import LinearRegression
Ir_reg = LinearRegression()
dt_reg = DecisionTreeRegressor()
X_{\text{test}} = \text{np.linspace}(-0.1, 0.1, 50).reshape(-1,1)
X_feature = sample_df['s5'].values.reshape(-1,1)
y_target = sample_df['target'].values.reshape(-1,1)
lr_reg.fit(X_feature, y_target)
dt_reg.fit(X_feature, y_target)
```

• 회귀 트리

> 회귀 트리 동작 비교

```
pred_lr = lr_reg.predict(X_test)
pred_dt = dt_reg.predict(X_test)
fig , (ax1, ax2) = plt.subplots(figsize=(14,4), ncols=2)
ax1.set_title('Linear Regression')
ax1.scatter(sample_df['s5'], sample_df['target'], c="darkorange")
ax1.plot(X_test, pred_lr, linewidth=2 )
ax2.set_title('Decision Tree Regression')
ax2.scatter(sample_df['s5'], sample_df['target'], c="darkorange")
ax2.plot(X_test, pred_dt, linewidth=2 )
```

• 회귀 트리

> 회귀 트리 동작 비교

Out:

058

.

• 회귀 트리

> 회귀 트리 동작 비교

```
dt_reg1 = DecisionTreeRegressor(max_depth=3)
dt_reg1.fit(X_feature, y_target)
pred_dt1 = dt_reg1.predict(X_test)
dt_reg2 = DecisionTreeRegressor(max_depth=5)
dt_reg2.fit(X_feature, y_target)
pred_dt2 = dt_reg2.predict(X_test)
```

• 회귀 트리

060

> 회귀 트리 동작 비교

```
fig , (ax1, ax2) = plt.subplots(figsize=(14,4), ncols=2)
ax1.set_title('Decision Tree Regression\text{\psi}nMax_depth = 3')
ax1.scatter(sample_df['s5'], sample_df['target'], c="darkorange")
ax1.plot(X_test, pred_dt1, linewidth=2)
ax2.set_title('Decision Tree Regression\text{\psi}nMax_depth = 5')
ax2.scatter(sample_df['s5'], sample_df['target'], c="darkorange")
ax2.plot(X_test, pred_dt2, linewidth=2)
```

• 회귀 트리

061

> 회귀 트리 동작 비교

