

DIPLÔME DE QUALIFICATION DE PHYSIQUE RADIOLOGIQUE ET MÉDICALE PROMOTION 2014/2016

ÉPREUVE TRONC COMMUN ET RADIOTHÉRAPIE (1 H) 21 avril 2016

CET EXAMEN EST PRÉVU SANS DOCUMENTS. DES RÉPONSES COURTES, SANS DÉVELOPPEMENTS INUTILES SONT RECOMMANDÉES.

Rédiger chacune des questions I à III sur des feuilles séparées

Tenir compte du temps indiqué pour chaque question, pour dimensionner votre réponse

QUESTION I : Gestion des risques (20 min) P. François

Décrire la manière dont est mesuré le niveau de criticité en gestion des risques. Expliquer ensuite les différentes stratégies pour réduire ce niveau de criticité.

QUESTION II : Dosimétrie des petit-faisceaux (20 min) M. Le Roy

1. DEFINITION D'UN PETIT FAISCEAU

- a) A partir de quelle taille de champ d'irradiation un faisceau de photons de haute énergie est-il considéré comme petit ? Justifier brièvement votre réponse.
- b) Quels autres facteurs peuvent être pris en compte pour la définition d'un petit faisceau ? Quelles en sont les conditions « petit faisceau » ?

2. DETECTEURS

A ce jour, est-il possible d'étendre aux petits faisceaux de photons de haute énergie la dosimétrie de référence réalisée en champ $10x10~\rm cm^2~$ à l'aide de chambres d'ionisation à cavité d'air ? Justifier brièvement.

QUESTION III : Les accélérateurs et faisceaux en Radiothérapie par Particules Lourdes chargées (20 min) S. Meyroneinc

1. Accélérateur-cyclotron

Parmi ces 4 cyclotrons, lesquels sont susceptibles de fournir des particules de même énergie :

- A. cyclotron avec un champ magnétique de 1 Tesla, un rayon d'extraction de 1m et un courant de 100 nA
- B. cyclotron avec un champ magnétique de 2 Tesla, un rayon d'extraction de 1m et un courant de 50 nA
- C. cyclotron avec un champ magnétique de 0,5 Tesla, un rayon d'extraction de 2m et un courant de 100 nA
- D. cyclotron avec un champ magnétique de 1 Tesla, un rayon d'extraction de 1m et un courant de 200 nA

2. Accélérateur-synchrotron

Pour chaque tour effectué par paquet de particules dans un synchrotron, pourriez-vous indiquer le nom de chaque type d'éléments traversés (l'ordre n'a pas d'importance) et l'effet (oui/non, si oui nature de l'effet) produit sur le faisceau par l'élément.

Nom de l'élément traversé		
Effet sur Energie		
Effet sur Intensité		
Effet sur Taille (mm FWHM)		

3. Pic de Bragg

Sur le même graphe ci-dessous (où vous aurez indiqué les unités), dessinez 3 « pics de Bragg » :

- A. un pic de bragg d'une machine émettant un faisceau mono-énergétique de 100 MeV, en localisant par des axes l'identification du parcours
- B. un pic de bragg d'une machine émettant un faisceau mono-énergétique de 50 MeV
- C. un pic de bragg d'une machine émettant un faisceau de 100 MeV ave une dispersion énergétique de quelques %

Les courbes n'ont pas vocation à être exacte en valeur absolue mais correcte dans leur forme les unes par rapport aux autres

4. Pencil Beam scanning

Quelles sont les grandeurs (et leur unités) qui permettent de définir un faisceau 1. à la sortie du système de balayage 2. dans la tumeur.

	Grandeur1	unité	Grandeu2	unité	Grandeur 3	unité	Grandeu4	unité
Sortie du balayage								
Dans tumeur								

5. Fiabilité

Vous devez assurer en une demi-journée le traitement de 20 patients dans une salle de traitement. Temps moyen en salle : 15 min, temps moyen de faisceau : 1 min. Le responsable du faisceau vous fait part de la situation particulièrement fragile du jour et ses estimations de MTBF et de MTTR de plusieurs éléments concourant à la délivrance du faisceau.

Elément	MTBF	MTTR
Source d'ions	3h	1h
Systèmes RF	30 min	2 min
Vide	8h	2h
Aimants de transport	1h	10 min

Sur quel élément lui conseilleriez-vous de travailler en priorité la fiabilité pour maximiser vos chances de traiter les patients comme prévu ?