Создание алгоритма для создания музыкального (аудио) сопровождения к видеоклипам

Выполнил **Гамаюнов Никита**, с/б: 1032207777

Научный руководитель: Карандашев Я.М.

Задачи работы

- Исследовать возможности создания алгоритма для генерации звука по входному видео или фото
- Разработать подобный алгоритм
- Адаптировать все компоненты для работы при небольших вычислительных мощностях

Нейронная сеть

• Может быть представлена в виде функции:

$$N(x,\Theta):X\to Y$$

• Моделирует работу мозга при обработке информации

Схема алгоритма

Датасеты

Используется два датасета, содержащие два класса, данные объединены в пары:

1. $(\phi o t o - K \land a c c)$

- KOT

2. ((3BYK - KAGCC))

ResNet-50

Мощная модель для классификации изображений

Автоэнкодер (АЕ)

- Состоит из двух частей: **энкодера** и **декодера**
- Энкодер трансформирует входные данные в латентное представление
- Декодер восстанавливает данные в изначальный вид
- Задача минимум потерь при кодировании и декодировании

VQ-VAE-2

Использует два набора дискретных кодов

Модели Тор и Bottom

Две модели для двух наборов кода VQ-VAE-2:

$$X \in \{0,1\} \longrightarrow \mathsf{Top} \longrightarrow \mathit{Code}_{top} \in \mathbb{Q}^{901}$$

$$\downarrow \qquad \qquad \qquad \mathsf{Boffom} \longrightarrow \mathit{Code}_{bottom} \in \mathbb{Q}^{3601}$$

Внимание, трансформеры

Attention(Q,K,V) =
$$softmax\left(\frac{QK^{I}}{\sqrt{d_{K}}}\right)V$$

$$Q = xW^{Q}$$

$$K = xW^{K}$$

$$V = xW^{V}$$

$$softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{d_K} e^{z_j}}$$
 , $i = 1, 2, ..., d_K$

Инструменты реализации

- Язык программирования Python
- Фреймворк PyTorch, библиотеки numpy, matplotlib и torchaudio
- Графический ускоритель Nvidia Tesla P100
- Платформа Kaggle

Модель	Количество параметров	Шагов обучения	Время обучения	Accuracy	FAD	Perplexity
VQ-VAE-2	580 641	10 920	3,4 часа	1	32883	_
Top	5 341 084	10 080	10,3 часов	_	-	6.217
Bottom	5 341 084	10 080	10,5 1000	_	_	13.3276
ResNet-50 (пред- обученная)	23 512 130	До 60×10 ⁴	He приведено	0.51	_	_
ResNet-50 (дообучение)	23 512 130	160	2,06 минут	0.98		_

Результаты

- Хоть результаты генерации пока слабы, глядя на метрики, можно судить о том, что модели учатся и работают корректно
- В дальнейших исследованиях можно увеличить масштаб моделей и время обучения

Лай собаки

Нейросетевой лай

Заключение

- Проведённое исследование подтвердило возможность создания алгоритма для генерации аудио по изображениям
- При работе на небольших мощностях приходится терять в качестве
- Алгоритм был построен из четырёх моделей, каждая из которых функционирует корректно

 $Attention(Q,K,V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{K}}}\right)V$

Спасибо за внимание!

