Chemistry HL 2018-2020 Bonding test.

Time Allowed: 55 mins

Name: Jerry Jiang

Part A: Circle the correct answer

- 1. How many atoms are present in 0.10 mol of PtCl₂(NH₃)₂?
 - 6.0×10^{22}

 3.0×10^{23} B.

6.02×1023

- 6.6×10^{23} (C.)
- 6.6×10^{24} D.

2.05mg/

2. What mass of carbon dioxide, CO₂(g), in g, is produced when 5.0 g of calcium carbonate, CaCO₃(s), reacts completely with hydrochloric acid, HCl(aq)?

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

0.050 A.

0.05 × 44 = 2.20

(B)2.2

> C. 4.4

D. 5.0

The volume occupied by one mole of an ideal gas at 273 K and 1.01×10⁵ Pa is 22.4 dm³ mol⁻¹. 3. What volume of hydrogen, in dm3, is produced when excess magnesium ribbon reacts with 100 cm3 of 2.00 mol dm⁻³ hydrochloric acid? 0. | X2

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

A. 0.100 0.1 mo 1

0,2001

2.24

4.48

D. 22.4

Which species will require the least energy for the removal of one electron?

- A. Na⁺ X
- —) (B.) Mg+
 - C. Al^{2+}
 - D. C3+ X
 - 5.

Which species has the same molecular geometry as SO₃²-?

- A. BF₃
- B. SO.
- C.) PF₃
- D. CO₃²⁻

 ✓
- FFF

6.

How many lone pairs and bonding pairs of electrons surround the central chlorine atom in ${\rm ClF_2}^+$?

	Lone pairs	Bonding pairs
Α.	0	2
В.	0	4
C.	2	4
(D.)	2	2

Which is the best description of a metallic bond?

- A. Electrostatic attraction between oppositely charged ions
- B. Electrostatic attraction between a pair of electrons and positively charged nuclei
- (C)Electrostatic attraction between a lattice of positive ions and delocalized electrons
- Electrostatic attraction for a bonding pair of electrons which have been supplied by one of D. the atoms

8.

How many sigma (σ) and pi (π) bonds are there in the following molecule?

(a)	
1	٠
V	
B	
1	
	(A)

What is the hybridization of the circled carbon, oxygen and nitrogen atoms?

	Carbon	Oxygen	Nitrogen
A.	sp³	sp	sp
₩.	sp ²	sp ²	sp
A.	sp²	sp³	sp ²
D.	sp³	sp²	sp ²

10. What are the correct formulas of the following ions?

	Nitrate	Sulfate	Phosphate	Hydrogencarbonate
(A.)	NO ₃	SO ₄ ²⁻	PO ₄ ³⁻	HCO ₃ -
В.	NO ₃	SO ₄ ²⁻	P)(3-	HCO ₃ ²⁻
C.	NO ₂ -	S\(\sqrt_4^-	PO ₄ ³⁻	HCO ₃ -
D.	NOJ-	SO ₃ ²⁻	PØ ₃ ³−	HCO ₃ ²⁻

Part B

1. A student decided to determine the molecular mass of a solid monoprotic acid, HA, by titrating a solution of a known mass of the acid.

The following recordings were made.

Mass of bottle / $g \pm 0.001 g$	1.737
Mass of bottle + acid HA / $g \pm 0.001 g$	2.412

(a) Calculate the mass of the acid and determine its absolute and percentage uncertainty.

[2]

	٠.	v.	H.	A.	-		2					9.			•	.'.	۶.	19) .		0 .		6	? :	5		١.			*			•						•		 					•	
		<i>ې</i> ه	Şọ	ļ٠	ţ.	٥.	١,	•	۸.	ع		1.0		^.	۲] .	. :	٠.		o	٠. '	a !	0	19	4	.0.	9	0 !	19			٠	٠.	9:	0.	ż	3.	٠		•	٠.		ò	;		· ;	/
• • • •	٠. ا	٠		•••	Ţ	.4				•	· .	Ģ	1	1	9		· †	J	. :	٤.		:	?		?	9	•			Q	. 6	ר	2	J					٥.		 .1,	ė	.1		. :		
			٠.		*					4		٠		٠	٠	٠.		٠			40.0						•					*	•					•				٠					
		٠.			•		•		•		• •	*)[•	٠			•			•.:	•	*		•:	• •	•					*	•		٠			٠		*		٠	*			٠	
	٠.				4				٠			•		•	*												٠						•			•		٠	٠	٠		•	٠			•	

(c) The percentage composition of HA is 70.56% carbon, 23.50% oxygen and 5.94% hydrogen. Determine its empirical formula.

[2]

$\begin{cases} n(C) = 70.56 = 12.01 = 5.875 \\ n(0) = 23.5 = 16.00 = 1.47 \end{cases}$	
) n (0) = 23. 5 = 16.00 = 1.47	
(N(H)=5.94=1.01 = 5.88.	
(C: 5.875÷ 1.47 ≈ 4	***************************************
(H: 5.88÷1.47 ≈ 4	
:. C4 H40	

 Apply the Aufbau principle to state the full electron configuration for an atom of phosphorus.

[1]

(ii) Deduce the Lewis structures for PCl₃ and PCl₅.

[2]

(iii) Predict the shapes and the bond angles in the two molecules.

[4]

	PCl ₃	PCl ₅
Shape	trigonal pyramidal	trigonal bipyramidal
Bond angles	≈.!∘1°	Clax P Clax = 180° Clax P Cleq = 90° Cleq P Cleq = 120°

P: sp3 hybridized

Cl: sp3 hybridized

(b) (i) Draw two Lewis (electron dot) structures for BrO₃⁻.

[2]

Structure I – follows octet rule:

Structure II - does not follow octet rule:

(ii) Determine the preferred Lewis structure based on the formal charge on the bromine atom, giving your reasons.

[2]

According to the formal charged in blue above, structure one has formal charge of +2 for bromine atom, while instructure two, Br has 2 as formal charge. I as formal charge is preferred, So structure two is preferred.

PS: Also, the overall change adds up to 5 units in Structure 1, but only

(unit in structure 2. furthermore, the negative charge in structure 2 is on oxygen, which is more electronegative, is preferred. These makes structure 2 preferred as well.

	(c) Predict, using the VSEPR theory, the geometry of the BrO ₃ ⁻ ion and the O-Br-O bond angles. [3]	3]
	Geometry: trigonal pyramidal	
	Reason: 4 charge centers forms tetrahedral frame work, but one center 75 lone electron pair which exerts repulsion to the three othe groups, forming trigonal pyramidal shape. O-Br-O angle: \$\times 107^{\circ}\$.	3
4.	Properties of elements and their compounds can be related to the position of the elements in the periodic table.	
	(a) Explain the decrease in atomic radius from Na to Cl. [2	2]
	Zeff = 2-5. as period 3 develops, Z increase although the shielding, screening and repulsion (5) increased as well, 02>05, making Zeff increase. Thus, electrons are more and more attracting to the nucleus, presenting the decreasing trend in atomic radius.	2
	(b) Explain why the radius of the sodium ion, Na ⁺ , is smaller than the radius of the oxide ion, O ²⁻ . [2]	2]
	Nat and 02 have the same electron configuration, 15t 25 2p6, so in Zeff = 2-5, Sis the same. However, Nat has high	
**********	2 than 02 , (more stronger nuclear charge), make the Zeff for Wathigh than 02, so the to ionic radius of Nat is smaller.] 2
	meaning that electrons are more since Nathas II protons while It has attracted in Nat.	only 8.

(c) Sketch a graph to show the relative values of the successive ionization energies of boron.

[2]

(ii) Describe how sigma (σ) and pi (π) bonds form.

[2]

Complete the following table:

[3]

Type of Bonding	Strong Electrosta	tic Attraction between and
Covalent	two nucleis	shared pairs of elections
Ionic	enos tes	anions.
Metallic	cartions	electron sea. of delo contined sle

(P)