Regressão Linear

Prof. Danilo Silva

EEL7514/EEL7513 - Tópico Avançado em Processamento de Sinais: Introdução ao Aprendizado de Máquina

EEL / CTC / UFSC

Tópicos

- Regressão: Conceitos gerais
- Regressão linear
- Função custo
- Otimização analítica (equações normais)
- Regressão linear com funções de base
- Método do gradiente

Regressão: Conceitos Gerais

Regressão

	TV	Radio	Newspaper	Sales	
1	230.1	37.8	69.2	22.1	
2	44.5	39.3	45.1	10.4	
3	17.2	45.9	69.3	9.3	
4	151.5	41.3	58.5	18.5	
5	180.8	10.8	58.4	12.9	

- Variáveis aleatórias:
 - $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ é o vetor de entrada ou vetor de atributos
 - $y \in \mathbb{R}$ é a variável de saída ou valor-alvo ou rótulo correspondente a \mathbf{x}
- A distribuição $p(\mathbf{x},y)$ é desconhecida, mas conhecemos m amostras $(\mathbf{x}^{(i)},y^{(i)})$ dessa distribuição chamadas de exemplos de treinamento
- ▶ Conjunto de treinamento: $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$

Regressão

- ▶ Um modelo de aprendizado determina uma função hipótese $g: \mathbb{R}^n \to \mathbb{R}$ que realiza a predição $y = g(\mathbf{x})$
 - lacktriangle A função g é escolhida dentre um espaço de hipóteses ${\cal G}$
- ▶ É intuitivo exigir $g(\mathbf{x}) \approx y$ para $(\mathbf{x},y) \in \mathcal{D}$, mas o que realmente importa é qualidade da predição para novos exemplos $(\mathbf{x},y) \not\in \mathcal{D}$ fora do conjunto de treinamento

Função Perda

- Para avaliar um modelo é preciso definir uma métrica de desempenho, isto é, uma função erro ou função perda (loss function) $L(\hat{y},y)$
 - ▶ Indica quão "ruim" é a predição \hat{y} quando o valor-alvo correto é y
- Exemplos:
 - Erro absoluto:

$$L(\hat{y}, y) = |\hat{y} - y|$$

Erro quadrático:

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

ou

$$L(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2$$

- Vantagem: Mais conveniente matematicamente, diferenciável em todos os pontos
- Desvantagem: Mais sensível a outliers

Erro Médio de um Modelo

Para medir o desempenho de um modelo no conjunto de treinamento, é usual calcular o erro médio (média aritmética) sobre todo o conjunto:

$$J(g) = \frac{1}{m} \sum_{(\mathbf{x}, y) \in \mathcal{D}} L(g(\mathbf{x}), y) = \frac{1}{m} \sum_{i=1}^{m} L(g(\mathbf{x}^{(i)}), y^{(i)})$$

- Para avaliar o poder preditivo de um modelo (generalização), deve-se medir o desempenho sobre um conjunto de teste \mathcal{D}_{test} gerado de forma independente do conjunto de treinamento
 - Nesse caso denotamos o erro médio por $J_{\text{test}}(g)$:

$$J_{\text{test}}(g) = \frac{1}{m_{\text{test}}} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\text{test}}} L(g(\mathbf{x}), y) = \frac{1}{m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} L(g(\mathbf{x}_{\text{test}}^{(i)}), y_{\text{test}}^{(i)})$$

Treinamento

- ▶ O erro no conjunto de treinamento é usado para determinar os parâmetros do modelo, isto é, para selecionar a hipótese $g \in \mathcal{G}$ (dentre um espaço de hipóteses pré-definido) que melhor se ajusta aos dados de treinamento
 - ► Treinamento também é chamado de ajuste (fit)
- A função J(g) é usada como função objetivo (ou função custo) de um algoritmo de otimização:

$$\min_{g \in \mathcal{G}} J(g)$$

Regressão Linear

Modelo Linear para Regressão

Função-hipótese:

$$\hat{y} = g(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_n x_n$$

- Parâmetros do modelo: w_0, w_1, \ldots, w_n
- ▶ Se n = 1, temos uma reta

$$\hat{y} = g(x) = w_0 + w_1 x = b + w x$$

onde $w=w_1$ é o coeficiente de inclinação e $b=w_0$ é a intersecção com o eixo y (intercept term), também chamado de bias

Notação Vetorial

► Em notação vetorial, temos

$$\hat{y} = g(\mathbf{x}) = w_0 + \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = b + \mathbf{w}^T \mathbf{x}$$

onde
$$b = w_0$$
 e $\mathbf{w} = \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix}^T$

Matematicamente, é mais conveniente considerar b=0 e incluir o atributo constante $x_0=1$ como parte do vetor ${\bf x}$:

$$\hat{y} = g(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

onde
$$\mathbf{w} = \begin{bmatrix} w_0 & w_1 & \cdots & w_n \end{bmatrix}^T$$
 e $\mathbf{x} = \begin{bmatrix} 1 & x_1 & \cdots & x_n \end{bmatrix}^T$

 Usaremos essa notação daqui para frente, exceto quando mencionado o contrário

Função Custo

ightharpoonup Como $g(\cdot)$ é parametrizada por ${f w}$, denotamos a função custo do treinamento (erro médio no conjunto de treinamento) por

$$J(\mathbf{w}) = J(g) = \frac{1}{m} \sum_{i=1}^{m} L(g(\mathbf{x}^{(i)}), y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{w}^{T} \mathbf{x}^{(i)}, y^{(i)})$$

- Assumindo como função perda o erro quadrático $L(\hat{y},y)=\frac{1}{2}(\hat{y}-y)^2$:

$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2}$$

▶ Como encontrar \mathbf{w} que minimiza $J(\mathbf{w})$?

Função Custo

▶ Como $g(\cdot)$ é parametrizada por \mathbf{w} , denotamos a função custo do treinamento (erro médio no conjunto de treinamento) por

$$J(\mathbf{w}) = J(g) = \frac{1}{m} \sum_{i=1}^{m} L(g(\mathbf{x}^{(i)}), y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} L(\mathbf{w}^{T} \mathbf{x}^{(i)}, y^{(i)})$$

Assumindo como função perda o erro quadrático $L(\hat{y},y)=\frac{1}{2}(\hat{y}-y)^2$:

$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2}$$

- ▶ Como encontrar \mathbf{w} que minimiza $J(\mathbf{w})$?
- **R**: Fazendo $\frac{\partial J(\mathbf{w})}{\partial w_j} = 0$

Otimização dos Parâmetros do Modelo

Pode-se mostrar que

$$\nabla J(\mathbf{w}) = \begin{bmatrix} \frac{\partial J(\mathbf{w})}{\partial w_0} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_n} \end{bmatrix} = \frac{1}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y})$$

onde

$$\mathbf{X} = egin{bmatrix} (\mathbf{x}^{(1)})^T \\ draingledown \\ (\mathbf{x}^{(m)})^T \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{y} = egin{bmatrix} y^{(1)} \\ draingledown \\ y^{(m)} \end{bmatrix}$$

são a matriz de projeto (design matrix) e o vetor de rótulos de treinamento

Decorre que o valor ótimo de w é dado por

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Conhecida como equação normal (normal equation)

Interpretação Geométrica

- Predição no conjunto de treinamento: $\hat{y}^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} = \mathbf{x}^{(i)}^T \mathbf{w}$
- ▶ Seja $\hat{\mathbf{y}} = (\hat{y}^{(1)}, \dots, \hat{y}^{(m)})^T = \mathbf{X}\mathbf{w}$ o vetor de predições
 - $\,\blacktriangleright\,$ Note que $\hat{y}\in\mathcal{S},$ onde \mathcal{S} é o subespaço gerado pelas colunas de X
- Erro de predição médio sobre o conjunto de treinamento:

$$J(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 = \frac{1}{2m} ||\hat{\mathbf{y}} - \mathbf{y}||^2$$

- Desejamos encontrar o vetor $\hat{\mathbf{y}} \in \mathcal{S}$ mais próximo de y
- Solução é dada pela projeção ortogonal de y em S:

$$\hat{\mathbf{y}} = \mathbf{P}\mathbf{y}$$

onde $\mathbf{P} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ é a matriz de projeção

Regressão Linear com Funções de Base

- Suponha n=1. Se desejarmos ajustar um modelo mais flexível do que uma reta $\hat{y}=w_0+w_1x$?
- Regressão polinomial:

$$\hat{y} = w_0 + w_1 x + w_2 x^2 + \dots + w_d x^d$$

A determinação de ${\bf w}$ continua a mesma: basta definir $x_i=x^i$, isto é, ${\bf x}=(1,x,x^2,x^3,\cdots,x^d)^T$ e n=d. Em particular:

$$\mathbf{X} = \begin{bmatrix} 1 & x^{(1)} & (x^{(1)})^2 & \cdots & (x^{(1)})^d \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x^{(m)} & (x^{(m)})^2 & \cdots & (x^{(m)})^d \end{bmatrix}$$

Regressão Linear com Funções de Base

▶ Em geral, podemos considerar como atributos $x_i = \varphi_i(x)$, i.e.,

$$\hat{y} = w_0 + w_1 \varphi_1(x) + w_2 \varphi_2(x) + \dots + w_n \varphi_n(x)$$

onde $\varphi_i(x)$ são funções de base quaisquer

A determinação de w não muda pois o modelo continua sendo linear nos parâmetros:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- ▶ Do ponto de vista computacional, não importa se x_i é um atributo "natural" ou produzido "artificialmente" a partir de outros atributos
- Escolher bons atributos (ou transformações de atributos) é um problema de feature engineering

Limitações das Equações Normais

- ▶ O aumento de n introduz alguns desafios:
 - Para que $\mathbf{X}^T\mathbf{X}$ seja inversível, é necessário que $m \geq n$
 - ▶ Mesmo que $\mathbf{X}^T\mathbf{X}$ seja inversível, invertê-la pode ser computacionalmente custoso: a ordem de complexidade (em número de operações) é $O(n^3)$
- Essas limitações podem ser eliminadas usando um método de otimização iterativo: o método do gradiente (gradient descent)

Método do Gradiente

- Percorre o espaço de busca escolhendo sempre a direção de maior declive na função objetivo
- Método:
 - ▶ Inicie com pesos quaisquer $\mathbf{w}^{[0]}$
 - A cada iteração t = 1, 2, ..., atualize

$$\mathbf{w}^{[t+1]} = \mathbf{w}^{[t]} - \alpha \nabla J(\mathbf{w}^{[t]})$$

onde α é a taxa de aprendizado

- lacktriangle Se $\mathbf{w}^{[t]}$ praticamente não variar entre iterações (convergência), pare
- No caso em que $J(\mathbf{w})$ é o erro quadrático médio:

$$\mathbf{w}^{[t+1]} = \mathbf{w}^{[t]} - \alpha \frac{1}{m} \mathbf{X}^T (\mathbf{X} \mathbf{w}^{[t]} - \mathbf{y})$$

Escolha da Taxa de Aprendizado

- Uma das desvantagens do método do gradiente é ter de escolher a taxa de aprendizado
- lacktriangle Se lpha é muito pequeno, a convergência pode ser lenta
- ightharpoonup Se α é muito grande, pode ocorrer overshoot. Nesse caso, o método pode não convergir ou até mesmo divergir
- ▶ Sempre é possível encontrar um valor de α (suficientemente pequeno) que garante convergência. No entanto, para acelerar a convergência na prática, também é possível usar um valor de α selecionado adaptativamente de acordo com a iteração, $\alpha^{[t]}$.

Gradient Descent

Exemplo: Custo em função da iteração

Exemplo: Custo em função da iteração

Exemplo: Custo em função da iteração

