Monte Carlo methods for Option Pricing in the Black and Scholes model

Damien LAMBERTON and Bernard LAPEYRE

July 20, 2007

Preliminaries

1. Write a Scilab function computing the empirical mean (Mean, the empirical variance Variance of an array of numbers.

Check they are equal to the ones prefined in Scilab: mean, variance.

Correction

2. Write a function which sample a vector of gaussian independent random variables with mean 0 and variance 1. Note that this function already exists in Scilab(x=rand(1,n,"gauss")).

Draw the histogram of the vector and compare it with the law of gaussian random variable with mean 0 and variance 1.

Correction

3. We want to compute using a Monte-Carlo method $\mathbf{E}(e^{\beta G})$ where G is gaussian with mean 0 and variance 1. We recall that $\mathbf{E}(e^{\beta G}) = \exp(\beta^2/2)$.

Compute using simulation $\mathbf{E}(e^{\beta G})$ for $\beta=2,4,6,8,10\ldots$ Give a confidence intervall in each case. For whihe value of β can you safely use a Monte-Carlo method ?

Correction

The Black et Scholes model We consider the Black et Scholes model:

$$S_t = S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

In what follows, we will assume that $S_0 = 100$, $\sigma = 0.3$ (annual volatility) and r = 0.05 (exponential riskless interest rate).

1. Draw an histogram of the law of W_T and S_T ($T=1, \sigma=0.3, r=0.05$).

Correction

2. We want to compute the price of a call with strike K=100. Compute this price using a Monte-Carlo method with a number of drawing equal to N=1000,1000,10000. Give a confidence interval in each cases.

Correction

3. We will now use the random variable S_T as a control variate. Check that $\mathbf{E}(S_T) = e^{rt}$ (give a financial argument for this result ?).

Write a program using S_T as a control variate. Compare the precision of this method with the previous one using various values for K and S_0 .

How is this method related to the call-put arbitrage formula?

Correction

4. We assume that we want to compute a call option with strike K where S_0 is small with respect to K.

Show that the relative precision of the computation decrease whith S_0/K . Take $S_0=100$ and $K=100,\,150,\,200,\,250$. What happen when K=400?

Correction

5. Prove either directly or by using Girsanov theorem that

$$\mathbf{E}\left(f(W_T)\right) = \mathbf{E}\left(e^{-\lambda W_T - \frac{\lambda^2 T}{2}} f(W_T + \lambda T)\right).$$

In the case of a call option where $S_0 = 100$ and K = 150, propose a value for λ which possibly reduce the simulation variance.

Correction