# **USRR235**

24GHz 人体存在感应雷达传感器 应用手册

# 目录

| 1 | 产品简介1                                       |
|---|---------------------------------------------|
| 2 | 接口定义2                                       |
| 4 | 2.1 A 款 ·······2                            |
| 4 | 2.2 B 款 ······3                             |
| 4 | 2.3 C 款 ·······4                            |
| 3 | 接口说明 · · · · · · · · · · · · · · · · · · ·  |
| - | 3.1 UART 接口 ········5                       |
| - | 3.2 GPIO □ ······· 13                       |
| 4 | 快速使用指南14                                    |
| 5 | 安装与探测范围 · · · · · · · · · 17                |
|   | 5.1 吊顶安装                                    |
|   | 5.2 挂壁安装                                    |
| 6 | 常见错误 QA ··································· |

#### 1 产品简介

USRR235 是一款 24GHz 人体存在感应雷达 传感器,用于感知环境内是否有运动、微动或者 静止的人体,监测距离最远可达 6 米,采用 FMCW 调制模式,天线一发一收,可检测目标的距离和 相对能量。

该产品功耗低,外观小巧,可将检测结果通过串口或者 GPIO 口输出,易于二次开发与集成。







#### 产品特性

- 宽电压设计, +3.0V~+5.0V
- 微型化设计
  - A 款尺寸为 28mm×7.3mm×2.5mm
  - B 款尺寸为 20mm×13mm×2.5mm
  - C 款尺寸为 25mm×10mm×2.5mm
- 多接口设计,满足各类应用接口需求
  - 通讯接口: UART, TTL 电平
  - GPIO 接口
- 基于测距原理检测目标,杜绝环境扰动带来的误报

#### 应用场景

- 人体存在感知
- 智能家居、酒店、办公室、会议室
- 节能、节电控制器等

## 2 接口定义

## 2.1 A款



单位: mm

注: 以上视图为天线面视图。

| 引脚 | USRR235_A 接口定义 |        | 义         |
|----|----------------|--------|-----------|
| 序号 | 引脚名称           | 说明     | 电压范围      |
| 1  | GPIO           | 通用IO   | 0V/3.0V   |
| 2  | TXD            | UART发送 | 0V/3.0V   |
| 3  | RXD            | UART接收 | 0V/3.0V   |
| 4  | GND            | 地      | 0V        |
| 5  | VCC            | 电源     | +3.0~5.0V |

## 2.2 B款



单位: mm

注: 以上视图为天线面视图。

| 引脚    | 引脚 USRR235_B 接口定义 |        | 义         |
|-------|-------------------|--------|-----------|
| 序号    | 引脚名称              | 说明     | 电压范围      |
| 1/6   | VCC               | 电源     | +3.0~5.0V |
| 2/8   | GND               | 地      | 0V        |
| 3/7   | GPIO              | 通用IO   | 0V/3.0V   |
| 4/9   | RXD               | UART接收 | 0V/3.0V   |
| 5/10  | TXD               | UART发送 | 0V/3.0V   |
| 11/12 | NC                | /      | /         |

## 2.3 C款



单位: mm

#### 注: 1、以上视图为天线面视图;

2、接插件J1可兼容间距2.54mm和2.00mm两种类型连接器。

| 引脚 | 引脚 USRR235_C 接口定 |        | 义         |  |  |
|----|------------------|--------|-----------|--|--|
| 序号 | 引脚名称             | 说明     | 电压范围      |  |  |
|    | J1               |        |           |  |  |
| 1  | VCC              | 电源     | +3.0~5.0V |  |  |
| 2  | GPIO             | 通用IO   | 0V/3.0V   |  |  |
| 3  | GND              | 地      | 0V        |  |  |
|    | J2               |        |           |  |  |
| 1  | VCC              | 电源     | +3.0~5.0V |  |  |
| 2  | RXD              | UART接收 | 0V/3.0V   |  |  |
| 3  | TXD              | UART发送 | 0V/3.0V   |  |  |
| 4  | GND              | 地      | 0V        |  |  |

## 3 接口说明

## 3.1 UART接口

串口采用TTL接口通讯,通讯协议采用类AT指令,指令结束会带0x0A(\n)。

#### 3.1.1 通讯测试指令

| AT 测试指令 |           |
|---------|-----------|
| 执行命令    | 回应        |
| AT      | OK        |
|         | 如果有错误, 回应 |
|         | AT+ERR    |

#### 3.1.2 通讯波特率

| AT+BAUD 通讯波特率   |                                        |  |
|-----------------|----------------------------------------|--|
| 设置命令            | 回应                                     |  |
| AT+BAUD= < num> | AT+OK                                  |  |
|                 | 如果有错误,回应                               |  |
|                 | AT+ERR                                 |  |
| 查询命令            | 回应                                     |  |
| AT+ BAUD?       | AT+ BAUD = <num></num>                 |  |
|                 | 如果有错误,回应                               |  |
|                 | AT+ERR                                 |  |
| < num >:波特率序号   | $1 \leqslant \text{num} \leqslant 8$ , |  |
| (此参数掉电保存)       | 1: 波特率 9600;                           |  |
|                 | 2: 波特率 19200;                          |  |
|                 | 3: 波特率 38400;                          |  |
|                 | 4: 波特率 57600;                          |  |
|                 | 5: 波特率 115200 (默认值);                   |  |
|                 | 6: 波特率 230400;                         |  |
|                 | 7: 波特率 256000;                         |  |
|                 | 8: 波特率 460800。                         |  |

#### 3.1.3 GPIO 输出电平设置

| AT+GPIO 输出电平设置           |                     |
|--------------------------|---------------------|
| 设置命令                     | 回应                  |
| AT+GPIO= <level></level> | AT+OK               |
|                          | 如果有错误,回应            |
|                          | AT+ERR              |
| 查询命令                     | 回应                  |
| AT+GPIO?                 | AT+GPIO = < level > |
|                          | 如果有错误,回应            |

|                 | AT+ERR                 |  |
|-----------------|------------------------|--|
| < level>:输出电平设置 | 0 (默认值): 无目标触发时输出低电平,有 |  |
| (此参数掉电保存)       | 目标触发时输出高电平;            |  |
|                 | 1: 无目标触发时输出高电平,有目标触发时  |  |
|                 | 输出低电平。                 |  |

#### 3.1.4 目标输出使能

| AT+ TAGOUT 目标输出使能                        |                               |  |
|------------------------------------------|-------------------------------|--|
| 设置命令                                     | 回应                            |  |
| AT+TAGOUT= <targetout_en></targetout_en> | AT+OK                         |  |
|                                          | 如果有错误, 回应                     |  |
|                                          | AT+ERR                        |  |
| 查询命令                                     | 回应                            |  |
| AT+ TAGOUT?                              | AT+ TAGOUT = < targetout_en > |  |
|                                          | 如果有错误, 回应                     |  |
|                                          | AT+ERR                        |  |
| <targetout_en>: 目标输出使能</targetout_en>    | 0: 串口不输出任何信息;                 |  |
| (此参数掉电保存)                                | 1: 只输出是否报警信息;                 |  |
|                                          | 2 (默认值): 输出检测到的目标信息 (包括       |  |
|                                          | 距离、能量和微动静止的标志)及是否报警           |  |
|                                          | 信息。                           |  |

#### 串口默认的输出信息如下图所示。



图 3-1 串口输出信息示例

#### 3.1.5 保持帧数

| AT+ HOLD 保持帧数                      |                            |  |
|------------------------------------|----------------------------|--|
| 设置命令                               | 回应                         |  |
| AT+HOLD= <holdperiod></holdperiod> | AT+OK                      |  |
|                                    | 如果有错误, 回应                  |  |
|                                    | AT+ERR                     |  |
| 查询命令                               | 回应                         |  |
| AT+ HOLD?                          | AT+ HOLD = < holdperiod >  |  |
|                                    | 如果有错误,回应                   |  |
|                                    | AT+ERR                     |  |
| <b>&lt; holdperiod &gt;: 保持帧数</b>  |                            |  |
| (此参数掉电保存)                          | 在报警状态下连续 holdperiod 帧都检测不到 |  |
|                                    | 目标,则转为无报警状态,默认值为 100。      |  |

#### 3.1.6 动目标检测距离

动目标检测分为三个距离段分别进行检测,距离点依次为 MR1、MR2、MR3,数值依次增加,即  $0 \leq MR1 \leq MR2 \leq MR3$ 。

| AT+MR1 动目标检测距离 1       |                                         |  |
|------------------------|-----------------------------------------|--|
| 设置命令                   | 回应                                      |  |
| AT+MR1= <mr1></mr1>    | AT+OK                                   |  |
|                        | 如果有错误,回应                                |  |
|                        | AT+ERR                                  |  |
| 查询命令                   | 回应                                      |  |
| AT+MR1?                | AT+MR1= <mr1></mr1>                     |  |
|                        | 如果有错误,回应                                |  |
|                        | AT+ERR                                  |  |
| <mr1>: 动目标检测距离 1</mr1> | $0 \leqslant \text{mr1} \leqslant 2000$ |  |
| (此参数掉电保存)              | mr1 默认值为 200, 单位: cm。                   |  |

| AT+MR2 动目标检测距离 2    |                     |  |
|---------------------|---------------------|--|
| 设置命令                | 回应                  |  |
| AT+MR2= <mr2></mr2> | AT+OK               |  |
|                     | 如果有错误,回应            |  |
|                     | AT+ERR              |  |
| 查询命令                | 回应                  |  |
| AT+MR2?             | AT+MR2= <mr2></mr2> |  |
|                     | 如果有错误,回应            |  |
|                     | AT+ERR              |  |

| <mr2>: 动目标检测距离 2</mr2> | $0 \le \text{mr} 2 \le 2000$ |
|------------------------|------------------------------|
| (此参数掉电保存)              | mr2 默认值为 400, 单位: cm。        |

| AT+MR3 动目标检测距离 3       |                                         |
|------------------------|-----------------------------------------|
| 设置命令                   | 回应                                      |
| AT+MR3= <mr3></mr3>    | AT+OK                                   |
|                        | 如果有错误,回应                                |
|                        | AT+ERR                                  |
| 查询命令                   | 回应                                      |
| AT+MR3?                | AT+MR3= <mr3></mr3>                     |
|                        | 如果有错误,回应                                |
|                        | AT+ERR                                  |
| <mr3>: 动目标检测距离 3</mr3> | $0 \leqslant \text{mr}3 \leqslant 2000$ |
| (此参数掉电保存)              | mr3 默认值为 600, 单位: cm。                   |

#### 3.1.7 动目标检测门限

每个距离段的动目标检测门限可以单独设置,依次对应为 MR1TH、MR2TH、MR3TH。MR1TH 对应的是[0, MR1]距离内的动目标检测门限,MR2TH 对应的是(MR1, MR2]距离内的动目标检测门限,MR3TH 对应的是(MR2, MR3]距离内的动目标检测门限。

| AT+MR1TH 距离 1 动目标检测门限       |                                           |
|-----------------------------|-------------------------------------------|
| 设置命令                        | 回应                                        |
| AT+MR1TH= <mr1th></mr1th>   | AT+OK                                     |
|                             | 如果有错误,回应                                  |
|                             | AT+ERR                                    |
| 查询命令                        | 回应                                        |
| AT+ MR1TH?                  | AT+MR1TH = < mr1th >                      |
|                             | 如果有错误,回应                                  |
|                             | AT+ERR                                    |
| <mr1th>: 距离1动目标检测门限</mr1th> | $1 \leqslant \text{mr1th} \leqslant 1000$ |
| (此参数掉电保存)                   | mrlth 默认值为 16,数值越小,灵敏度越                   |
|                             | 高。                                        |

| AT+MR2TH 距离 2 动目标检测门限     |          |
|---------------------------|----------|
| 设置命令                      | 回应       |
| AT+MR2TH= <mr2th></mr2th> | AT+OK    |
|                           | 如果有错误,回应 |
|                           | AT+ERR   |

| 查询命令                        | <b>回应</b>                                 |
|-----------------------------|-------------------------------------------|
| AT+ MR2TH?                  | AT+MR2TH = < mr2th >                      |
|                             | 如果有错误,回应                                  |
|                             | AT+ERR                                    |
| <mr1th>: 距离2动目标检测门限</mr1th> | $1 \leqslant \text{mr2th} \leqslant 1000$ |
| (此参数掉电保存)                   | mr2th 默认值为 10,数值越小,灵敏度越                   |
|                             | 高。                                        |

| AT+MR3TH 距离 3 动目标检测门限         |                                           |
|-------------------------------|-------------------------------------------|
| 设置命令                          | 回应                                        |
| AT+MR3TH= <mr3th></mr3th>     | AT+OK                                     |
|                               | 如果有错误,回应                                  |
|                               | AT+ERR                                    |
| 查询命令                          | 回应                                        |
| AT+ MR3TH?                    | AT+ MR3TH = < mr3th >                     |
|                               | 如果有错误,回应                                  |
|                               | AT+ERR                                    |
| <mr1th>: 距离 3 动目标检测门限</mr1th> | $1 \leqslant \text{mr3th} \leqslant 1000$ |
| (此参数掉电保存)                     | mr3th 默认值为 8,数值越小,灵敏度越                    |
|                               | 高。                                        |

#### 动目标检测距离和动目标检测门限的对应关系如下:

| 动目标检测距离范围 | 对应的检测门限 |
|-----------|---------|
| 0~MR1     | MR1TH   |
| MR1~MR2   | MR2TH   |
| MR2~MR3   | MR3TH   |

## 3.1.8 触发灵敏度

| AT+TRITH 触发灵敏度              |                              |
|-----------------------------|------------------------------|
| 设置命令                        | 回应                           |
| AT+ TRITH = <level></level> | AT+OK                        |
|                             | 如果有错误,回应                     |
|                             | AT+ERR                       |
| 查询命令                        | 回应                           |
| AT+ TRITH?                  | AT+ TRITH = < level>         |
|                             | 如果有错误,回应                     |
|                             | AT+ERR                       |
| < level >: 触发灵敏度            | $1 \leq \text{level} \leq 5$ |
| (此参数掉电保存)                   | 运动目标触发报警的灵敏度,数值越小灵           |

| 敏度越高,默认值为2。 |
|-------------|
|             |

#### 3.1.9 静止目标检测距离

静止目标检测分为三个距离段分别进行检测,距离点依次为 R1、R2、R3,数值依次增加,即  $0 \leq R1 \leq R2 \leq R3$ 。

| AT+R1 静止目标检测距离 1      |                                 |
|-----------------------|---------------------------------|
| 设置命令                  | 回应                              |
| AT+R1= <r1></r1>      | AT+OK                           |
|                       | 如果有错误,回应                        |
|                       | AT+ERR                          |
| 查询命令                  | 回应                              |
| AT+R1?                | AT+R1= <r1></r1>                |
|                       | 如果有错误,回应                        |
|                       | AT+ERR                          |
| <rl>: 静止目标检测距离 1</rl> | $0 \leqslant r1 \leqslant 1000$ |
| (此参数掉电保存)             | rl 默认值为 150, 单位: cm。            |

| AT+R2 静止目标检测距离 2      |                                 |
|-----------------------|---------------------------------|
| 设置命令                  | 回应                              |
| AT+R2= <r2></r2>      | AT+OK                           |
|                       | 如果有错误,回应                        |
|                       | AT+ERR                          |
| 查询命令                  | 回应                              |
| AT+R2?                | AT+R2= <r2></r2>                |
|                       | 如果有错误,回应                        |
|                       | AT+ERR                          |
| <r2>: 静止目标检测距离 2</r2> | $0 \leqslant r2 \leqslant 1000$ |
| (此参数掉电保存)             | r2 默认值为 300, 单位: cm。            |

| AT+R3 静止目标检测距离 3 |                  |
|------------------|------------------|
| 设置命令             | 回应               |
| AT+R3= <r3></r3> | AT+OK            |
|                  | 如果有错误,回应         |
|                  | AT+ERR           |
| 查询命令             | 回应               |
| AT+R3?           | AT+R3= <r3></r3> |
|                  | 如果有错误,回应         |
|                  | AT+ERR           |

| <r3>: 静止目标检测距离 3</r3> | $0 \leqslant r3 \leqslant 1000$ |
|-----------------------|---------------------------------|
| (此参数掉电保存)             | r3 默认值为 450, 单位: cm。            |

#### 3.1.10 静止目标检测门限

每个距离段的静止目标检测门限可以单独设置,依次对应为R1TH、R2TH、R3TH。R1TH 对应的是[0,R1]距离内的静止目标检测门限,R2TH 对应的是(R1,R2]距离内的静止目标检测门限,R3TH 对应的是(R2,R3]距离内的静止目标检测门限。

| AT+R1TH 距离 1 静止目标检测门限   |                                   |
|-------------------------|-----------------------------------|
| 设置命令                    | 回应                                |
| AT+R1TH= <r1th></r1th>  | AT+OK                             |
|                         | 如果有错误,回应                          |
|                         | AT+ERR                            |
| 查询命令                    | 回应                                |
| AT+R1TH?                | AT + R1TH = < r1th >              |
|                         | 如果有错误,回应                          |
|                         | AT+ERR                            |
| < r1th >: 距离 1 静止目标检测门限 | $1 \leqslant r1th \leqslant 1000$ |
| (此参数掉电保存)               | rlth 默认值为 8,数值越小,灵敏度越高。           |

| AT+R2TH 距离 2 静止目标检测门限   |                                   |
|-------------------------|-----------------------------------|
| 设置命令                    | 回应                                |
| AT+R2TH= <r2th></r2th>  | AT+OK                             |
|                         | 如果有错误,回应                          |
|                         | AT+ERR                            |
| 查询命令                    | 回应                                |
| AT+ R2TH?               | AT + R2TH = < r2th >              |
|                         | 如果有错误,回应                          |
|                         | AT+ERR                            |
| < r2th >: 距离 2 静止目标检测门限 | $1 \leqslant r2th \leqslant 1000$ |
| (此参数掉电保存)               | r2th 默认值为 8,数值越小,灵敏度越高。           |

| AT+R3TH 距离 3 静止目标检测门限  |          |
|------------------------|----------|
| 设置命令                   | 回应       |
| AT+R3TH= <r3th></r3th> | AT+OK    |
|                        | 如果有错误,回应 |
|                        | AT+ERR   |

| 查询命令                    | 回应                                |
|-------------------------|-----------------------------------|
| AT+R3TH?                | AT+R3TH = < r3th >                |
|                         | 如果有错误,回应                          |
|                         | AT+ERR                            |
| < r3th >: 距离 3 静止目标检测门限 | $1 \leqslant r3th \leqslant 1000$ |
| (此参数掉电保存)               | r3th 默认值为 8,数值越小,灵敏度越高。           |

#### 静止目标检测距离和静止目标检测门限的对应关系如下:

| 静止目标检测距离范围 | 对应的检测门限 |
|------------|---------|
| 0~R1       | R1TH    |
| R1~R2      | R2TH    |
| R2~R3      | R3TH    |

#### 3.1.11 CFAR 系数

| AT+CFAR CFAR 系数            |                                            |
|----------------------------|--------------------------------------------|
| 设置命令                       | 回应                                         |
| AT+CFAR= <factor></factor> | AT+OK                                      |
|                            | 如果有错误,回应                                   |
|                            | AT+ERR                                     |
| 查询命令                       | 回应                                         |
| AT+CFAR?                   | AT+CFAR = < factor >                       |
|                            | 如果有错误,回应                                   |
|                            | AT+ERR                                     |
| <factor>: CFAR 系数</factor> | $0 \leqslant \text{factor} \leqslant 1000$ |
| (此参数掉电保存)                  | 在静止目标检测中集成了 SO-CFAR 检测                     |
|                            | 功能,默认值为15。数值越大,杂波的抑                        |
|                            | 制能力越强, 但弱目标的漏检概率也会变                        |
|                            | 大。数值的精度为 0.1, 若 factor=70, 实               |
|                            | 际用到的 CFAR 系数为 70*0.1=7。                    |

#### 3.1.12 环境校准

| AT+CALI 环境校准                  |                    |
|-------------------------------|--------------------|
| 设置命令                          | 回应                 |
| AT+CALI = <cali_en></cali_en> | AT+OK              |
|                               | 如果有错误,回应           |
|                               | AT+ERR             |
| < num >: 环境校准使能               | 0——不进行环境校准(默认值);   |
| (写入后自动开始环境校准,校准完成后清           | 1——环境校准使能,雷达自行进行环境 |

| 零) | 校准,持续约 10s 左右。主要校准的是静 |
|----|-----------------------|
|    | 止目标检测门限。              |

#### 3.1.13 出厂参数恢复

| AT+INIT 出厂参数恢复 |                    |
|----------------|--------------------|
| 设置命令           | 回应                 |
| AT+INIT = 0    | AT+OK              |
|                | 将所有的参数恢复为出厂默认的参数值, |
|                | 然后软件复位,用恢复的参数重新运行。 |

#### 3.1.14 软件复位指令

| AT+RESET 软件复位指令 |                    |
|-----------------|--------------------|
| 执行命令            | 回应                 |
| AT+RESET        | 返回当前的参数值;          |
|                 | 参数配置完成后发送该指令,软件复位, |
|                 | 用新配置的参数重新运行        |

#### 3.1.15 场景配置

| AT+NMF 场景配置     |                       |
|-----------------|-----------------------|
| 设置命令            | 回应                    |
| AT+NMF = < nmf> | AT+OK                 |
|                 | 如果有错误,回应              |
|                 | AT+ERR                |
| < nmf >: 场景参数   | 0—— (默认值)室内吊顶 3 米高的人存 |
| (此参数掉电保存)       | 检测;                   |
|                 | 1——近距离(约2米)的挂壁人存检测;   |
|                 | 2——挂壁安装,运动目标检测距离8米;   |

#### 3.2 GPIO □

雷达模块有一个 GPIO 口,默认为低电平,当在检测范围内有满足条件的目标出现时,GPIO 输出高电平,电压 3.0V。

#### 4 快速使用指南

使用串口调试助手可以快速获取并解析雷达数据,可以直观的观察结果,为 后续再开发提供便利。

- 1、将雷达通过 USB 转串口模块与带串口调试助手的主机连接,雷达传感器可用 USB 转串口模块的 3.3V 端口供电;
  - 2、打开串口调试助手,选择对应串口号:
- 3、串口调试助手配置如图 4-1。勾选"ASCII 发送"与"ASCII 显示",选择波特率为 115200,数据位为 8,停止位为 1,校验位与流控制为"NONE";
- 4、点击"打开串口",可以观察到串口调试助手上有返回值,返回值为雷达输出的 ASCII 码格式目标信息(默认状态),显示当前是否告警。



图 4-1 串口调试助手配置

模块上电后处于工作状态,需发送低电平持续时间大于 500us 的低脉冲,才能保证雷达模块进入"STOP"状态,此时雷达将等待接收指令;再次输入通讯测试指令"AT\n",返回"OK",表明串口通信正常。

输入复位指令"AT+RESET\n",返回当前的配置参数,同时雷达内部代码重

#### 新运行。



图 4-2 配置示例 1

以配置静止目标检测距离 1 指令"AT + R1=<r1>\n"为例,说明配置过程。

- 1、雷达模块初始默认 R1=200。
- 2、首先输入"AT+R1=200\n"指令, 雷达由工作状态进入"STOP"状态等待接收配置指令。
  - 3、再次输入"AT+R1=150\n"指令,返回"AT+OK",表示配置成功。
  - 4、发送复位指令"AT+RESET\n",模块返回当前的配置参数并重新运行。



图 4-3 配置示例 2

#### 5 安装与探测范围

模块支持吊顶和挂壁两种安装方式,推荐的方式为吊顶安装。

#### 5.1 吊顶安装

推荐吊顶安装高度为 2.5m~3 m。吊顶安装的雷达在默认参数配置下最大运动感应范围为底部半径为 6m 的圆锥形立体空间,如图 5-1 所示。



图5-1 雷达检测范围示意图(吊顶)

以 B 款雷达模块为例,吊顶安装高度为 3m 时,运动目标和静止目标的感应范围如图 5-2 所示。其他两款模块的感应范围可参考该范围。



图 5-2 吊顶安装感应范围

### 5.2 挂壁安装

推荐挂壁安装高度为 1.5m~2 m。挂壁安装时,挂壁安装的雷达在默认配置下最大运动感应范围为半径 6m、水平和俯仰方向夹角±45°的立体扇形空间,如图 5-3 所示。



图 5-3 雷达检测范围示意图(挂壁)

以 B 款雷达为例,挂壁安装高度为 1.5 m 时,运动目标和静止目标的感应范围如图 5-4 所示。其他两款模块的感应范围可参考该范围。



图 5-4 挂壁安装感应范围

#### 6 常见错误 QA

以下列出了在使用串口调试助手进行通讯时常见的错误。

- Q1:串口调试助手无法发送大于 500us 的低脉冲,导致无法进入"STOP"状态。
- **A1:**当波特率为 9600bps 时发送任意帧即可进入"STOP"状态,当波特率为 115200bps 时发送任意帧则有概率不被检测从而无法使雷达进入"STOP"状态,用户可通过发送""(**7 个空格**)模拟低脉冲信号,经测试可稳定使雷达进入"STOP"状态。
  - Q2:雷达处于"STOP"状态,串口调试助手发送帧后无回复。
- **A2:**大概率为末尾无换行符(\n),体现在串口调试助手上为输入框应有换行(如图 6-1)。因 AT 指令以换行为结尾,当未收到换行符时雷达将认为 AT 指令未完成,不对该指令进行处理,现象为雷达没有回复。



图 6-1 指令格式示例

- Q3:雷达处于"STOP"状态,串口调试助手发送一帧后收到回复"AT+ERR\n"。 A3:比较常见的错误原因有:
- 1、输入框中的通讯帧有多余的空格。
- 2、输入框中的通讯帧有多个换行,需要且仅需一个换行即可。
- 3、检查帧格式错误,如查询指令需要有"?";配置指令的配置值需要在取值范围。
- 4、上一帧错误导致两帧拼接,如上一帧发送了无换行的"AT",此时再发送"AT\n",由于上一帧无换行所以两帧会被拼接为一帧"ATAT\n"被认为为错误帧,回复"AT+ERR\n"。