CS506: Quiz #1

Due on Monday, February 11, 2022

Siddharth Charan 190101085

## Question 1: Give an algorithm for squaring a matrix. Analyse its I/O Complexity. You are required to type your answers and submit a pdf file of your work. LaTeXgenerated pdfs are preferred.

We will try to give an algorithm for squaring of a matrix.

Let's say we have a mxm square matrix A.

To calculate square of it. We can use divide and conquor algorithm. It will be a cache oblivious algorithm. We will break the square matrix in 4 parts. Top left A1, top right A2, bottom left A3 and bottom right A4 of size  $m/2 \times m/2$ . (Like in below diagram)



Let's say B is squared matrix and corresponding to A1 sub-matrix, B has B1, corresponding to A2, we have B2 and so on...

Then

B= A x A We can calculate matrix multiplication of those 4 smaller - matrices.

And then, we can get B by calculating, B1, B2, B3, B4...

B1 = A1\*A1+ A2\* A3

B2 = A1\*A2 + A2 \* A3

B3 = A3\*A3 = A1 \* A4

B4 = A4\*A3 + A4\*A2

We will take 2 sub-matrices at any time(except the cases when we require A1\*A1 and A3\*A3) and move them to main memory. We will divide matrix till, we have sub matrix of size smaller or equal to of M/2(Main memory size/2) and then, we will move that sub-matrix in main memory, calculate the multiplication and then, we will follow above steps to get the final square.

## Complexity analysis:

## Case1

We need to do 8 operations(2 operations for each B1, B2, B3 and B4) plus some work on half size matrices. If matrix size is greater than block size:

So, we have

T(m) = 8\*T(m/2)

## Case 2

If matrix is smaller, such that both sub-matrices in operation can fit in main memory, than we need to do only  $O(m^2/B)$  I/O operation.

$$T(m) = O(m^2/B)$$

It is very similar to calculating transpose of matrix. And we have done calculation for that already.

If we calculate time complexity it comes to  $O(n^2/B)$  for nxn matrix.