```
Inf • ]:= (*定义第一个数据数组*)
data1 = {1.4, 1.4, 1.8, 3.4, 6.3, 8.9, 11.7, 28.3, 53.7, 81.4, 109.8, 117.1, 123.2, 128.9,
   131.0, 135.9, 140.2, 143.2, 145.6, 147.2, 147.5, 151.2, 152.0, 153.6, 153.7};
(*理论最大值*)
maxValue = 154;
(*将第一个数据数组中的所有数除以最大值并转换为百分数*)
normalizedData1 = (data1 / maxValue) * 100;
(*定义第二个数据数组*)
data2 = {0.14, 0.74, 1.14, 1.24, 1.29, 1.32, 1.34, 1.44, 1.54, 1.64, 1.74, 1.84,
   1.89, 1.92, 1.94, 1.99, 2.04, 2.09, 2.12, 2.15, 2.17, 2.27, 2.33, 2.35, 2.37};
(*找到最接近 10% 和 90% 的索引*)
index10 = First@FirstPosition[normalizedData1, _?(# ≥ 10 &)];
        第一个 第一个匹配的位置
index90 = First@FirstPosition[normalizedData1, ? (# ≥ 90 &) ];
        第一个 第一个匹配的位置
(*获取对应的 data2 值*)
data2At10Percent = data2[index10];
data2At90Percent = data2[index90];
(*样条拟合*)
splineFit = Interpolation[Transpose[{data2, normalizedData1}],
          内插
                       转置
   Method → "Spline", InterpolationOrder → 3];
                    内插阶数
   方法
(*确保曲线保持在正值范围*)
positivesplineFit[x_] := Max[0, splineFit[x]]
                       最大值
(*绘制数据点和样条拟合曲线*)
plot = Show[
     显示
   ListPlot Transpose [{data2, normalizedData1}], PlotStyle → {Red, PointSize[Large]},
                                              绘图样式
    AxesLabel → {"U(V)", "透光率 (%)"}, PlotLegends → {"数据点"}],
                                     绘图的图例
   Plot[positivesplineFit[x], {x, Min[data2], Max[data2]}, PlotStyle → Blue,
                                L最小值
                                           一最大值
                                                       | 绘图样式
    PlotLabel → "非负样条拟合曲线", PlotLegends → {"拟合曲线"}]];
    绘图标签
                                绘图的图例
(*输出结果表格*)
table = TableForm[Transpose[{data2, normalizedData1}],
      表格形式
   TableHeadings → {None, {"U(V)", "透光率 (%) "}}];
   表格标头
```

table plot

{"当 data1 达到 10% 时对应的 data2 值: "<> ToString[data2At10Percent], **L转换为字符串**

"当 data1 达到 90% 时对应的 data2 值: " <> ToString[data2At90Percent] }

转换为字符串

Out[•]//TableForm=

U(V)	透光率 (%)
0.14	0.909091
0.74	0.909091
1.14	1.16883
1.24	2.20779
1.29	4.09091
1.32	5.77922
1.34	7.5974
1.44	18.3766
1.54	34.8701
1.64	52.8571
1.74	71.2987
1.84	76.039
1.89	80.
1.92	83.7013
1.94	85.0649
1.99	88.2468
2.04	91.039
2.09	92.987
2.12	94.5455
2.15	95.5844
2.17	95.7792
2.27	98.1818
2.33	98.7013
2.35	99.7403
2.37	99.8052

Out[*]= {当 data1 达到 10% 时对应的 data2 值: 1.44, 当 data1 达到 90% 时对应的 data2 值: 2.04}

Out[•]= **1.41667**