Skiladæmi 1 - Stærðfræði 2

Munið að rökstyðja öll svör og sýna útreikninga.

Teiknið alla ferla og yfirborð í Geogebru til að sannreyna að ferlarnir séu réttir.

Dæmi 1. Látum \mathcal{D} vera þann helming skífunnar $x^2 + y^2 \le 18$ þar sem $y \le x$. Stikið ferilinn sem umlykur svæðið \mathcal{D} rangsælis. Látið upphafs- og endapunkt stikunarinnar vera í (-3,-3).

Ábending: Teiknið mynd af svæðinu til að sjá það betur fyrir ykkur.

Best er að teikna mynd af skífunni og línunni y=x til finna svæðið \mathcal{D} . Ljóst er að ferillinn er tvískiptur: línustrik og hálfhringur. Við stikum þá í sitt hvoru lagi en byrjum á hringboganum. Athugum að skurðpunktar línunnar y=x og hringsins fást með því að setja y=x inní jöfnu hringins:

$$x^2 + x^2 = 18 \Rightarrow x^2 = 9 \Rightarrow x = \pm 3$$

og eru því (-3, -3) og (3, 3).

• Stikum hringbogann rangsælis. Upphafspunktur er þá (-3, -3) er endapunktur (3, 3). Sjáum að stefnuhorn fer þá frá $-3\pi/4$ til $\pi/4$ milli þessa punkta þ.a. hringboginn er t.d. stikaður með

$$\mathbf{r}_1(t) = \begin{pmatrix} \sqrt{18}\cos(t) \\ \sqrt{18}\sin(t) \end{pmatrix}, t \in [-3\pi/4, \pi/4]$$

• Við ætlum að stika línustrikið í kjölfarið á þessu þ.e. í áttina niður og til vinstri. Þetta er vegna þess að hringboginn endar í (3,3) og seinni stikunin tekur þá við í þeim punkti. Strikið er þá frá (3,3) til (-3,-3). Dæmi um stikun er þá

$$\mathbf{r}_2(t) = \begin{pmatrix} 3 \\ 3 \end{pmatrix} + t \begin{pmatrix} -6 \\ -6 \end{pmatrix} = \begin{pmatrix} 3 - 6t \\ 3 - 6t \end{pmatrix}, t \in [0, 1]$$

Athugum einmitt að lokapunktur ferilsins þegar t = 1 er einmitt (-3, -3).

Eftir stendur að líma þessar tvær stikanir saman svo þær séu skilgreindar á einu samfelldu tímabili. Til dæmis getur við hliðrað t í \mathbf{r}_2 :

$$\mathbf{r}(t) = \begin{cases} \mathbf{r}_1(t) & \text{ef } t \in [-3\pi/4, \pi/4] \\ \mathbf{r}_2(t - \pi/4) & \text{ef } t \in [\pi/4, \pi/4 + 1] \end{cases}$$

Athugið að þetta dæmi hefur mjög margar mismunandi lausnir. Til dæmis væri hægt að líma stikanirnar saman á annan hátt t.d.

$$\mathbf{r}(t) = \begin{cases} \mathbf{r}_1(t + \pi/4) & \text{ef} \quad t \in [-\pi, 0] \\ \mathbf{r}_2(t) & \text{ef} \quad t \in [0, 1] \end{cases}$$

Einnig væri upplagt að stika línustrikið með

$$\mathbf{r}_2(t) = \begin{pmatrix} t \\ t \end{pmatrix}, t \in [-3, 3]$$

Dæmi 2. Kúlan $x^2 + y^2 + z^2 = 5$ og sívalningurinn $x^2 + z^2 = 2$ skerast í tveimur ótengdum ferlum. Stikið þann þeirra þar sem y < 0. Stikið aðeins þann hluta ferilsins þar sem $z \le 0$.

Lausn: Látum $x=\sqrt{2}\cos(t),\,z=\sqrt{2}\sin(t),$ þá er seinni jafnan uppfyllt. Setjum $x^2+z^2=2$ inn í fyrri jöfnuna og fáum $y^2+2=5$ sem gefur okkur $y=\pm\sqrt{3}$. Veljum þannig að y<0. Setjum saman stikunina

$$\mathbf{r}(t) = \begin{bmatrix} \sqrt{2}\cos(t) \\ -\sqrt{3} \\ \sqrt{2}\sin(t) \end{bmatrix}, \quad t \in [\pi, 2\pi]$$

Þar sem t er valið til að fá bara þann hluta ferilsins þar sem $z \leq 0$.

Sjá í Geogebru.

Dæmi 3. Stikið skurðferil kúlunnar $x^2 + y^2 + z^2 = 10$ við planið z = x - 4.

Lausn: Setjum z = x - 4 inní fyrri jöfnuna og umskrifum í

$$(x-2)^2 + (\frac{y}{\sqrt{2}})^2 = 1$$

Sem við getum þá stikað með

$$\mathbf{r}(t) = \begin{bmatrix} \cos(t) + 2\\ \sqrt{2}\sin(t)\\ \cos(t) - 2 \end{bmatrix}, \quad t \in [0, 2\pi]$$

Sjá í Geogebru.