Lecture 4. Unit Root Tests for Stationarity

Narek Ohanyan

American University of Armenia

February 20, 2024

Outline

Non-stationary Processes

Spurious Regressions

Unit Root Tests

Integrated Processes

Trend-stationary processes

The time series y_t is called **trend stationary** if it is stationary around a deterministic trend.

Consider the following time series model

$$y_t = \alpha + \beta t + x_t$$

$$x_t = \phi x_{t-1} + e_t \qquad e_t \sim \text{WN}(0, \sigma^2)$$

In other words, y_t is trend stationary if after removing the trend $\alpha + \beta t$, the resulting series x_t is stationary.

We can also write the model as

$$y_t = \gamma_0 + \phi y_{t-1} + \gamma_1 t + e_t$$

where $\gamma_0 = \alpha (1 - \phi) + \phi \beta$ and $\gamma_1 = \beta (1 - \phi)$.

An example of a trend-stationary process

Random-walk processes

The time series y_t is called a **random walk** if it has the following form

$$y_t = y_{t-1} + e_t$$
 $e_t \sim WN(0, \sigma^2)$

The random walk process may be written as

$$y_t = y_0 + \sum_{i=1}^t e_i$$

The term $\sum_{i=1}^{t} e_i$ is called the **stochastic trend**.

Random walk process has the following properties

$$\mathrm{E}\left(y_{t}\right)=y_{0}$$
 $\mathrm{Var}\left(y_{t}\right)=t\sigma^{2}$ $\mathrm{Cov}\left(y_{t},y_{t-k}\right)=\left(t-k\right)\sigma^{2}$

An example of a random walk process

Random-walk with drift

The time series y_t is called a **random walk with drift** if it has the following form

$$y_t = \alpha + y_{t-1} + e_t$$
 $e_t \sim WN(0, \sigma^2)$

The random walk process may be written as

$$y_t = y_0 + \alpha t + \sum_{i=1}^t e_i$$

The term αt is called the **deterministic trend**.

Random walk process has the following properties

$$\mathrm{E}\left(y_{t}\right)=y_{0}+\alpha t$$
 $\mathrm{Var}\left(y_{t}\right)=t\sigma^{2}$ $\mathrm{Cov}\left(y_{t},y_{t-k}\right)=\left(t-k\right)\sigma^{2}$

An example of a random walk with drift process

Outline

Non-stationary Processes

Spurious Regressions

Unit Root Tests

Integrated Processes

Spurious regressions

Regressions of non-stationary time series may produce spurious results.

Consider two independent random walks

$$y_t = y_{t-1} + e_t$$
 $e_t \sim WN(0, \sigma^2)$
 $x_t = x_{t-1} + u_t$ $u_t \sim WN(0, \sigma^2)$

The regression of y_t on x_t will likely produce a high R^2 and significant t-statistics.

The problem is that both y_t and x_t are non-stationary, and the regression is spurious.

Example of two independent random walks

Scatter plot of two independent random walks

Outline

Non-stationary Processes

Spurious Regressions

Unit Root Tests

Integrated Processes

Unit root tests

Recall that an AR(1) process is given by

$$y_t = \phi y_{t-1} + e_t$$
 $e_t \sim \mathsf{WN}\left(0, \sigma^2\right)$

When $\phi = 1$, the process is called a **unit root** process.

The most popular test for unit root is the Dickey-Fuller test for the hypothesis

$$H_0: \phi = 1$$
 vs. $H_1: \phi < 1$

Other tests include the **Phillips-Perron test**, the **Kwiatkowski-Phillips-Schmidt-Shin test**, and the **Elliott-Rothenberg-Stock test**.

Dickey-Fuller test

The Dickey-Fuller test is based on the following alternative models

▶ No constant, no trend

$$\Delta y_t = \gamma y_{t-1} + e_t$$

Constant, no trend

$$\Delta y_t = \alpha + \gamma y_{t-1} + e_t$$

Constant and trend

$$\Delta y_t = \alpha + \gamma y_{t-1} + \lambda t + e_t$$

The hypothesis of the tests is

$$H_0: \gamma = 0 \iff H_0: \phi = 1$$

 $H_1: \gamma < 0 \iff H_1: \phi < 1$

AR processes and the Dickey-Fuller tests

AR processes: $ \rho < 1$	Setting $\rho = 1$	Dickey Fuller Tests	
$y_t = \rho y_{t-1} + u_t$	$y_t = y_{t-1} + u_t$	Test with no constant and no trend	
$y_t = \alpha + \rho y_{t-1} + v_t$ $\alpha = \mu(1-\rho)$	$y_t = y_{t-1} + v_t$ $\alpha = 0$	Test with constant and no trend	
$y_t = \alpha + \rho y_{t-1} + \lambda t + \nu_t$ $\alpha = (\mu(1 - \rho) + \rho \delta)$ $\lambda = \delta(1 - \rho)$	$y_t = \delta + y_{t-1} + \nu_t$ $\alpha = \delta$ $\lambda = 0$	Test with constant and trend	

Distribution of the test statistic

The Dickey-Fuller test equation is estimated by OLS, and the test statistic is

$$\tau = \frac{\hat{\gamma}}{\operatorname{se}(\hat{\gamma})}$$

where $\hat{\gamma}$ is the OLS estimate of γ , and $\operatorname{se}(\hat{\gamma})$ is the standard error of the estimate.

Under the null hypothesis, the test statistic has a non-standard distribution.

The null hypothesis is rejected if $\tau < \tau_c$, where τ_c depends on the type of the model used.

Critical values of the Dickey-Fuller test

Model	1%	5%	10%
$\Delta y_t = \gamma y_{t-1} + \nu_t$	-2.56	-1.94	-1.62
$\Delta y_t = \alpha + \gamma y_{t-1} + v_t$	-3.43	-2.86	-2.57
$\Delta y_t = \alpha + \lambda t + \gamma y_{t-1} + \nu_t$	-3.96	-3.41	-3.13
Standard critical values	-2.33	-1.65	-1.28

Note: These critical values are taken from R. Davidson and J. G. MacKinnon (1993), Estimation and Inference in Econometrics, New York: Oxford University Press, p. 708.

Augmented Dickey-Fuller test

The Augmented Dickey-Fuller (ADF) test is a generalization of the Dickey-Fuller test.

The ADF test includes additional lags of the dependent variable in the regression equation

$$\Delta y_t = \alpha + \gamma y_{t-1} + \sum_{i=1}^p \delta_i \Delta y_{t-i} + e_t$$

Inclusion of additional lags aims to eliminate the serial correlation in the error term.

The number of lags p is chosen based on the AIC or BIC criteria.

Outline

Non-stationary Processes

Spurious Regressions

Unit Root Tests

Integrated Processes

Integrated processes

Recall that if y_t follows a random walk, then Δy_t is

$$\Delta y_t = y_t - y_{t-1} = e_t$$

which is stationary.

A time series y_t is called **integrated** of order one, denoted as I(1), if its first difference is stationary.

In general, a time series y_t is called *integrated* of order d, denoted as I(d), if its d-th difference is stationary

$$\Delta^d y_t = \Delta \left(\Delta^{d-1} y_t \right)$$

The order of integration d is the number of times the series must be differenced to obtain a stationary series.

ARIMA models

The Autoregressive Integrated Moving Average (ARIMA) model is a generalization of the ARMA model.

The ARIMA(p, d, q) model is given by

$$x_t = \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + e_t + \theta_1 e_{t-1} + \ldots + \theta_q e_{t-q} \qquad e_t \sim \mathsf{WN}\left(0, \sigma^2\right)$$

where $x_t = \Delta^d y_t$.

ARIMA models are estimated by Maximum Likelihood Estimation (MLE).

Prior to estimation, d must be determined by the ADF test, and the p and q are chosen based on the AIC or BIC criteria.