

The DS-130 is a member of the DS series of Electric Encoders™. based on Netzer Precision proprietary technology. The Electric Encoder™ offers many advantages- some unparalleled

Low profile (10mm).

Hollow, floating shaft.

No bearings or other contacting elements.

High resolution and precision.

High tolerance to temperature extremes, shock, moisture, EMI, RFI and Magnetic fields.

Very low weight.

Holistic signal generation

Absolute Position over digital interfaces.

Mechanical			
Allowable mour			

Vibration endurance

Protection

Allowable mounting eccentricity	±0.1 mm
Allowable rotor axial motion	±0.1 mm
Rotor inertia	12.378 gr · mm²
Total weight	65 gr
Outer Ø /Inner Ø/ Height	130 / 90 / 10 mm
Material (stator, rotor)	Ultem [™] polymer

Electrical		
Supply voltage	5V ± 5%	
Interconnection	Shielded cable or	
Cable Length 1,500 mm MAX		
Environmental		
EMC	IEC 6100-6-2, IEC 6100-6-4	
Operating temperature range	Digital: -40°C to +85°C	
Relative humidity	98% Non condensing	
Shock endurance	100 g for 11 ms	

Characteristics			
Angular resolution	19 bits ; 524,288 CPR		
Static error < 10 mDeg			
Maximum operational speed	750 rpm		
Measurement range	Unlimited rotation		
Power On- Max. operational speed	3.3 RPM , <=20°/sec		
Build In Test BIT	Optional		

20 g 10 - 2000 Hz

IP 40

The Electric Encoder[™] is unique in being holistic, i.e., its output reading is the averaged outcome of the whole area of the rotor, This feature makes the Electric Encoder™ forgiving to mounting tolerances, ball bearing wander etc.

The absence of components such as ball bearings , flexible couplers, glass disc, light sources and detectors, along with very low power consumption makes the Electric Encoder™ virtually failure free.

The internally shielded, DC operated Electric Encoder™ includes an electric field generator, a field receiver, a sinusoidal shaped dielectric rotor, and processing electronics.

The output signals of Electric Encoder™ are analog Sine / Cosine representing the rotation angle. The digital outputs are obtained by further processing- which may be either internal or external to the encoder.

The combination of precision, low profile, low weight and high reliability have made Netzer Precision encoders particularly suitable to a wide variety of critical applications including, but not limited to medical equipment and aerospace.

Digital SSi Interface

Synchronous Serial Interface (**SSI)** is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

	Description	Recommendations		
n	Total number of data bits			
Т	Clock period (sec)	User defined		
1/T	Clock frequency 0.5 ÷ 2.0 MHz (user defined)	2.0 MHz		
t1	Minimum time required for the encoder to freeze data and preset the shift registers before receiving the first rising edge to prompt the MSB	Т/2		
t2	Data transmission delay (increases with cable length)	"0" on standard cable length		
t3	Required delay to refresh position data between subsequent position	>25 μSec		

SSi / BiSS Output signal parameters			
Signal latency	~250 µSec		
Output code	Binary		
Serial output	Differential RS-422		
Clock	Differential RS-422		
Clock Frequency	0.5 ÷ 2.0 MHz		
Position update rate (Max)	30 KHz		
Current consumption	180 mA		
SSi			
Monoflop time	25 μSec		

SSi / BiSS interface wires color code			
Clock +	Grey	Clock	
Clock-	Blue	CIOCK	
Data-	Yellow	Data	
Data +	Green	Data	
GND	Black	Ground	
+5V	Red	Power supply	

Software tools: (SSi / BiSS- C)

Advanced calibration and monitoring options are available by using the factory supplied **Electric Encoder Explorer** software, This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

Digital BiSS-C Interface

BiSS – C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode) .The BiSS-C interface as the SSi is based on RS-422 standards.

BiSS-C data transmission timing diagram

bit #		Description	De- fault	Length
27	Ack	Period during which the encoder calculates the absolute position, one clock cycle	0	1/clock
26	Start	Encoder signal for "start" data transmit	1	1 bit
25	"0"	"start" bit follower	0	1 bit
624	AP	Absolute Position encoder data		
05	CRC	The CRC polynomial for position, error and warning data is: $x^6 + x^1 + x^0$. It is transmitted MSB first and inverted. The start bit and "0" bit are omitted from the CRC calculation.		
	Time- out	Elapse between the sequential "start" request cycle's.		25 μs

Related documents:

DS-130 User Manual: Mechanical, Electrical and calibration setup.

Demonstration Kit:

DS-130DKIT-01: Includes ,mounted encoder on rotary jig ,

and RS-422 to USB converter.

