Problem Environments Properties (not related to agents):

Fully/Partially observable Deterministic/Stochastic Episodic/Sequential Discrete/Continuous Single/Multi agent Known/Unknown Static/Dynamic

Uninformed Search

State (initial): s_i/s_0 Goal test: $\mathrm{isGoal}: s_i o \{0,1\}$ Action: $\mathrm{actions}: s_i o A$

Action cost: $\mathrm{cost}:(s_i,a_j,s_i')
ightarrow v$ Transition model: $\mathrm{T}:(s_i,a_j)
ightarrow s_i'$

Performance Criteria: Time / Space / Completeness / Optimality

```
frontier = {initial state} # data structure
while frontier:
    current = frontier.pop()
    if isGoal(current): return True
    for a in actions(current): frontier.push(T(current, a))
return False
```

b: branch factor d: depth for sol m: max depth ℓ : depth limit e: $1+|C^*/\epsilon|$

Algo	Time	Space	Complete	Optimal
BFS(Q)	b^d	b^d	$ ightharpoonup$ if b finite && (d finite $ \ $ has sol)	unless unif cost
UCS(PQ)	b^e	b^e		V
DFS(S)	b^m	bm	☑ if finite	×
DLS(S)	b^ℓ	$b\ell$	×	×
IDS(S)	b^d/b^m no sol	bd/bmno sol	▼ (BFS)	⊠ (BFS)

Informed Search

Heuristic Function:

Admissibility: $orall n, h(n) \leq h^*(n), \ h(G) = 0$, consistency o admissibility

Consistency: monotonically increasing, $\forall n, h(n) \leq \cot(n, a, n') + h(n')$

Dominance: $\forall n, h_1(n) \geq h_2(n)$

Greedy Best-First Search: f(n) = h(n), not optimal, time and space $O(b^m)$

Tree search not complete can stuck in loop, graph search complete if finite

A* Search:
$$f(n) = g(n) + h(n)$$

 $\underline{\mathsf{Tree}}\ \mathsf{search}\ \mathsf{optimal}\ \mathsf{if}\ h(n)\ \mathsf{admissible},\ \mathsf{g}\underline{\mathsf{raph}}\ \mathsf{search}\ \mathsf{optimal}\ \mathsf{if}\ h(n)\ \mathsf{consistent}$

Local Search

O(b) space, applicable to large/infinite state space, but incomplete

1. Hill-Climbing Search

```
current = initial state
while True:
  neighbour = highest-valued successor of current
  if value(neighbour) <= value(current): return current
  current = neighbour</pre>
```

value: f(n) = -h(n), can use f(n) = h(n) by replacing <= with >=

Issues: can get stuck at local maxima / ridges / plateaus / shoulders

Variants:

Sideways move: value(nb) < value(curr) in hope that plateau is a shoulder

Stochastic: Choose uphill moves at random

First-choice: Generate successors randomly until better value

Random restart: Keep attempting from random initial states until goal is found

Computation: steps for success $+\frac{1-p}{p} \times$ steps for failure

2. Local Beam Search Performs better than k random restarts in parallel

Variants: Stochastic beam search

Constraint Satisfaction Problems

Formulation:

 \mathcal{X} : variables \mathcal{D} : domains, $D_i=\{v_1,\ldots,v_k\}$ \mathcal{C} : constraints, $C_j=\langle \mathrm{scope},\mathrm{rel}
angle$

Initial state: all variables unassigned Goal state: complete and consistent

Complete: all variables assigned Consistent: no constraint violated

Constraint Graph: Vertex: variable Link: global constraint Edge: relation **Search Tree Size**:

Assume D same for all domains, order of assignment not important

Branching factor at depth ℓ : $(|\mathcal{X}| - \ell) \cdot |D|$ states

#leaf: $nm imes (n-1)m imes \cdots imes m = n!m^n$, where $n = |\mathcal{X}|$ and m = |D|

AC-3:

Art-consistency: X_i AC w X_j iff $\forall x \in D_i \ \exists \ y \in D_j$ s.t. (X_i, X_j) satisfied Maintains queue of arcs, pops arbitrary (X_i, X_j) to check arc consistency If D_i unchanged, move onto the next arc If D_i revised, enqueue all (X_k, X_i) where X_k is a neighbour of X_i $|\mathcal{X}| = n \to O(n^2)$ arcs, $|\mathcal{D}| = d \to (X_i, X_j)$ enqueued d times as $|D_j| = d$ Checking consistency: $O(d^2)$ Time: $O(n^2d^3)$

Backtracking Search:

- I. select-unassigned-variable: variable-order heuristics
 - a. $\underline{\text{most-remaining-values}}$ / $\underline{\text{most-constrained-variable}}$ / $\underline{\text{fail-first}}$ Pick X with smallest |D|
 - b. $\underline{\mathsf{degree}}$: Tie-breaker for MRV, pick X that restricts most # unassigned X
- II. order-domain-values: value-order heuristics
 - a. $\underline{\mathsf{least\text{-}constraining\text{-}value}}$ / fail-last Pick value that rules out fewest choices for neighbouring X
- III. inference: determine if it leads to terminal state
 - a. forward checking: terminate when any X has ert Dert = 0, no early detection
 - b. maintaining arc consistency

After each assignment only enqueue unassigned neighbours

IV. backtrack: restore previous state

Adversarial Search

 $\begin{array}{ll} \operatorname{toMove}: s \to p \text{: next player to move} & \operatorname{isTerminal}: s \to \{0,1\} \text{: terminal test} \\ \operatorname{actions}: s_i \to A \text{: legal moves} & \operatorname{utility}: (s,p) \to v \text{: for player } p \text{ at terminal } s \\ \mathbf{MiniMax}(s) \text{: DFS, complete if game tree finite, } O(b^m) \text{ time, } O(bm) \text{ space} \\ \left\{ \begin{array}{ll} \operatorname{utility}(s, \operatorname{toMove}(s)) & \text{if isTerminal}(s) \\ \max_{a \in \operatorname{actions}(s)} \operatorname{MiniMax}(\operatorname{result}(s,a)) & \text{if toMove}(s) = \operatorname{MAX} \\ \min_{a \in \operatorname{actions}(s)} \operatorname{MiniMax}(\operatorname{result}(s,a)) & \text{if toMove}(s) = \operatorname{MIN} \\ \end{array} \right. \\ \end{array}$

α-β Pruning: additional layer for MiniMax

Maintain α of \max initially $-\infty$, β of \min initially $+\infty$, prune if $\alpha \geq \beta$ Perfect ordering: $O(b^{\frac{m}{2}})$ Random ordering: $O(b^{\frac{3}{4}m})$

 $\mathbf{Heuristic}$ - $\mathbf{MiniMax}(s)$: cut off search early and apply eval function

 $\begin{cases} \operatorname{eval}(s,\operatorname{toMove}(s)) & \operatorname{if} \operatorname{isCutoff}(s,d) \\ \operatorname{max}_{a \in \operatorname{actions}(s)} \operatorname{H-MiniMax}(\operatorname{result}(s,a),d+1) & \operatorname{if} \operatorname{toMove}(s) = \operatorname{MAX} \\ \operatorname{min}_{a \in \operatorname{actions}(s)} \operatorname{H-MiniMax}(\operatorname{result}(s,a),d+1) & \operatorname{if} \operatorname{toMove}(s) = \operatorname{MIN} \end{cases}$

Logical Agents

KB-based agents tell KB percept, ask KB for action, tell KB chosen action

Entailment: $\alpha \models \beta \Leftrightarrow M(\alpha) \subseteq M(\beta)$

Inference Algorithm: $KB \vdash_{\mathcal{A}} \alpha$: α derived from KB by algorithm \mathcal{A}

- I. Soundness: KB $dash_{\mathcal{A}} lpha \Rightarrow$ KB dash lpha, \mathcal{A} will not infer nonsense
- II. Completeness: KB $\models \alpha \Rightarrow$ KB $\vdash_{\mathcal{A}} \alpha$, \mathcal{A} infers any sentence KB entails

Truth Table Enumeration: n variables, 2^n assignments

Enumerate all models, check if $M(\operatorname{KB})\subseteq M(lpha)$, DFS, $O(2^n)$ time, O(n) space

Sound since follow entailment definition, complete as finite models to check

CNF:
$$\Leftrightarrow \rightarrow (\Rightarrow) \land (\Rightarrow) \mid \Rightarrow \rightarrow \neg \lor \mid \text{move } \neg \text{ inwards } \mid \lor (\land) \rightarrow (\lor) \land (\lor)$$

Validity: true for all assignments Satisfiability: true for some assignments

Inference Rules: Modus Ponens, $\alpha \wedge \beta \Rightarrow \alpha$, 1231, resolution

Resolution Algorithm: show $KB \land \neg \alpha$ is unsatisfiable to prove $KB \models \alpha$

- I. Convert $KB \wedge \neg \alpha$ into CNF
- II. Resolve clauses until empty clause (KB $\models \alpha$) or no more resolution (KB $\not\models \alpha$) Sound as steps use sound inference rules, complete resolution closure

Uncertainty

W/O cond indep: 2^n-1 entries $\,$ W cond indep: n+1 entries

Bayes' Rule: $P(\text{Cause}|E_1,\ldots,E_k) = \alpha \cdot \prod_i P(E_i|\text{Cause}) \cdot P(\text{Cause})$

Bayesian Network:

- I. Nodes represent random variables
- II. DAG, $X o Y \Rightarrow X$ directly influences Y
- III. $P(X|\mathrm{Parents}(X))$ for each node in conditional probability table

Relationships:

Indep events: $P(A \wedge B \wedge C) = P(A) \cdot P(B) \cdot P(C)$

Indep causes: $P(A \wedge B \wedge C) = P(C|A,B) \cdot P(A) \cdot P(B)$

Cond indep effects: $P(A \wedge B \wedge C) = P(C|A) \cdot P(B|A) \cdot P(A)$

Casual chain: $P(A \wedge B \wedge C) = P(C|B) \cdot P(B|A) \cdot P(A)$

Bayes Net Construction Algorithm:

- I. Choose an ordering $\{X_1,\ldots,X_n\}$
- II. For $i=1,\ldots,n$:
 - a. Select minimal parent set s.t. $P(X_i| ext{Parents}(X_i)) = P(X_i|X_1,\ldots,X_i-1)$
 - b. Link every parent to X_i
 - c. Write down CPT for $P(X_i|\mathrm{Parents}(X_i))$

Network constructed is acyclic, contains no redundant probability values