IBMC

Grupos funcionales, isómeros lípidos y proteínas.

Grupos funcionales

Cadena o conjunto unido a una cadena carbonada

 Son responsables de la reactividad y propiedades químicas de los compuestos orgánicos

 Se asocian siempre con enlaces covalentes al resto de la molécula

Grupos funcionales

Alcoholes

Ácidos

carboxílicos

Aldehídos y Cetonas

Grupos funcionales en macromoléculas

Esqueletos carbonados (R)

(c) Double bonds. The skeleton may have double bonds, which can vary in location.

Isómeros

• Compuestos que tienen la misma fórmula química pero diferente disposición de los átomos dentro de las moléculas

Pueden tener distintas propiedades físicas y químicas

Isómeros estructurales

Isómeros geométricos

Enantiómeros

Isómeros estructurales

Misma composición química pero distintas estructuras

(Isobutano)

Misma composición química pero distintas disposición alrededor de un doble enlace

1,2-Dicloroeteno
C₂H₂Cl₂

Isómeros geométricos

Imágenes especulares

 $C_6H_{12}O_6$

 $C_4H_8N_2O_3$

Enantiómeros

Misma composición química pero distintas disposición alrededor de un carbono asimétrico (quiral)

Isómeros del ibuprofeno

Este tiene acción farmacológica

Lípidos

Reserva energética

Estructura

LÍPIDOS

Comunicación intercelular

HO' Carboxilo

Ácido graso

Estructura

Triglicéridos

Glicerol

Triglicérido

ISOMEROS GEOMÉTRICOS

Ácido graso saturado

¿Cuál es la diferencia entre la manteca y el aceite?

Manteca

Aceite

Saturación de los ácidos grasos

FORMA GRASAS TRANS

Saturación de ácidos grasos

Nomenclatura

Ácidos grasos esenciales

Nuestro cuerpo no puede sintetizarlos, deben ser incorporados en la dieta

Ácido linoleico (18:2, n-6)

$$\frac{1}{10}$$
HO $\frac{1}{1}$
 $\frac{9}{12}$
 $\frac{1}{15}$
 $\frac{1}{15}$

Ácido alfa-linoleico (18:3, n-3)

¿Por qué lava el jabón?

Una propiedad interesante de los ácidos grasos

Mancha polar se solubiliza en agua

Mancha no polar queda aislada por las cadenas no polares y la parte polar se solubiliza en agua

Fosfolípidos

Lípido que forma estructuras

Membrana celular

Bicapa fosfolipídica semipermeable

Colesterol

Lípido que forma estructuras

Colesterol

Cholesterol Fits Between Phospholipids

Interviene en la fluidez de la membrana (a mayor concentración menos fluidez). A menor temperatura le da mas fluidez.

Precursor de hormonas sexuales

Glicolípidos

$$OH - C - CH = CH - \left(CH_2 + \frac{1}{12} + CH_3 - CH_2 - CH_2 + CH_3 - CH_2 - CH_$$

A QUÉ SE PARECE ESTO???

Ejercicios de la clase:

¿Con cuál de los siguientes compuestos armaría una grasa, y con cuál un aceite? Justificar su respuesta. ¿Qué otra molécula debería agregar para ello?

Ejercicios de la clase:

¿Qué tienen en común y de diferente las siguientes moléculas?

c) El trioleato de glicerilo es un triglicérido formado por tres unidades de ácido oleico (18:1 ω9) y una unidad de glicerol. Las isomerías geométricas de los dobles enlaces de las tres cadenas carbonadas del trioleato de glicerilo pueden ser:

> cis-cis-cis cis-trans-trans cis-cis-trans trans-cis-trans cis-trans-cis trans-trans-trans

- i) Ordene los isómeros del trioleato de glicerilo según su punto de fusión* creciente. (0,5 punto)
- ii) ¿Por qué los isómeros trans-cis-cis y trans-trans-cis se omitieron de la lista? (0,3 punto)

Proteínas

Seres vivos: aminoácidos "L"

Los seres vivos usan estos exclusivamente

Aminoácidos

Toma protones del medio (baja el pH)

Grupos funcionales

Libera protones al medio (sube el pH)

Zwitterion

AMINO ACID			SIDE CHAIN
Aspartic acid	Asp	D	negative
Glutamic acid	Glu	Е	negative
Arginine	Arg	R	positive
Lysine	Lys	Κ	positive
Histidine	His	Н	positive
Asparagine	Asn	Ν	uncharged polar
Glutamine	Gln	Q	uncharged polar
Serine	Ser	S	uncharged polar
Threonine	Thr	Т	uncharged polar
Tyrosine	Tyr	Υ	uncharged polar

AIVIINO AC	SIDE CHAIN		
Alanine	Ala	Α	nonpolar
Glycine	Gly	G	nonpolar
Valine	Val	٧	nonpolar
Leucine	Leu	L	nonpolar
Isoleucine	lle	1	nonpolar
Proline	Pro	Р	nonpolar
Phenylalanine	Phe	F	nonpolar
Methionine	Met	М	nonpolar
Tryptophan	Trp	W	nonpolar
Cysteine	Cys	С	nonpolar

SIDE CHAIN

VIVINO VCID

POLAR AMINO ACIDS ——

—— NONPOLAR AMINO ACIDS —

Aminoácidos esenciales (solo se incorporan en la dieta, nuestro cuerpo no los sintetiza)

Aminoácidos básicos

aspartic acid

(Asp, or D)

glutamic acid

(Glu, or E)

Aminoácidos ácidos

Aminoácidos polares sin carga

Aminoácidos no polares

Aminoácido básico y ácido

Unión peptídica

Cadena peptídica

Niveles de organización de las proteínas

Levels of protein organization

Primary protein structure is sequence of a chain of amino acids

Estructura primaria

Secondary protein structure occurs when the sequence of amino acids are linked by hydrogen bonds

Estructura secundaria

Tertiary protein structure occurs when certain attractions are present between alpha helices and pleated sheets.

Estructura terciaria

Quaternary protein structure is a protein consisting of more than one amino acid chain.

Estructura cuaternaria

Estructuras secundarias

Estructuras terciarias

Puentes disulfuro

UNION COVALENTE (NO ES UNA INTERACCION)

¿Cómo se pliegan las proteínas?

folded conformation in aqueous environment

Estructura terciaria

Estructura cuaternaria

Proteínas de membrana

Estructura cuaternaria

Algunos ejemplos de proteínas

Cápside viral

Anticuerpos

Desnaturalización

Se rompe todo (interacciones y puentes disulfuro) excepto el enlace peptídico

Terciaria

Primaria

Desnaturalización

37) ¿Por qué les parece que una proteína desnaturalizada coagula y precipita en una solución acuosa?

