



# Mehrad Ansari



Email: mehrad.ansari@utoronto.ca



Personal website: https://mehradans92.github.io

Summary:

A detail-oriented chemical engineer with a strong background in computational modeling, machine learning and scientific software development, supported by academic research and professional work experience.

#### Education



(May 2023)

(Oct 2021)

#### **Doctor of Philosophy in Chemical Engineering**

Master of Science in Chemical Engineering

University of Rochester, Rochester, NY

Thesis: "Applications of Physics-informed Machine Learning in Chemical Engineering". Advisor: Andrew D White

#### Master of Science in Environmental Engineering

(May 2018)

Missouri University of Science and Technology (UMR), Rolla, MO

Thesis: "Numerical Modeling of Capillary-driven Flow in Open Microchannels: An Implication of Optimized Wicking Fabric Design"

#### **Bachelor of Science in Chemical Engineering**

(July 2015)

(June 2023)

University of Tehran, Iran

Thesis: "Experimental Setup and Optimization for Electro-catalytical Generation of Hydroxyl Radicals in Wastewater Treatment"



# **Work Experience and Practical Training**



**Acceleration Consortium Research Fellow** Acceleration Consortium, Toronto, ON

Developing agent-based chemistry plugins via large language models to accelerate design of materials for CO<sub>2</sub> reduction

Research Assistant (2019 - 2023)

University of Rochester, Rochester, NY

- Developed a HuggingFace app that answers questions from scientific papers using OpenAl's large language models
- Developed a <u>edge-computing cheminformatics tool</u> for semi-supervised classification of the activity of antimicrobial peptides via positive-unlabeled learning using recurrent neural networks
- Developed a <u>disease modeling tool</u> to predict future disease spreads and infer location of patient-zero
- Developed an automated tool in CFD modeling that reduces the number of simulations using active learning and generates a symbolic equation for the system of interest via symbolic regression
- Contributed to development of a simulation-based inference tool via maximum entropy reweighting
- Contributed to development of a plugin with TensorFlow GPU-accelerated operations combined with HOOMD-Blue molecular dynamics simulation engine (HOOMD-TF)
- Developed a web-app for peptide-based gelator transparency classification using Kernel ridge regression
- Developed an automated tool on a Raspberry-Pi for real-time monitoring of HPC using Python, JS and HTML
- Implemented finite difference analysis in Python to study 2D shallow water dynamics
- Implemented Monte Carlo simulations in MATLAB to study evolution of spin configurations of a ferromagnet using the Ising model

#### **Energy & Materials Intern and Research Engineer**

(May 2022 - Mar 2023)

Toyota Research Institute, Los Altos, CA

Developed a deep learning software to predict degradation of used batteries with unknown cycling histories. US Patent pending

# Teaching Assistant of "Advanced Transport Phenomena"

(Jan - Dec 2020)

University of Rochester, Rochester, NY

Tutored students on homework related problems and organized laboratory experiments

# Lead CFD Analyst at Missouri S&T Solar Car Design Team

(2016 - 2018)

Missouri University of Science and Technology, Rolla, MO

- Developed validated wind tunnel simulations in STAR-CCM+ for aerodynamic optimization of the solar car
- Improved aerodynamic design efficiency prior to manufacturing

# **Manufacturing Process Modeling Intern**

(May-Dec 2017)

The Goodyear Tire & Rubber Company, Akron, OH

- Phase-change heat transfer modeling and optimization of tire vulcanization process in ANSYS
- Model verification based on plant data and analytical solution
- Utilized assets more efficiently through MATLAB post processing and automating the simulation process using OPTIMUS
- Provided faster simulation results using Adaptive Mesh Refinement and High-Performance Computing
- GUI development and coupling ANSYS with MATLAB for time-effective post processing

#### Teaching Assistant of "Applied Numerical Methods in CFD"

(Jan-May 2017)

Missouri University of Science and Technology, Rolla, MO

Organized CFD and programming workshops for ANSYS and Star-CCM +





# **Mehrad Ansari**





Personal website: https://mehradans92.github.io

Fmail: mehrad.ansari@utoronto.ca



# **Work Experience and Practical Training**



Research Assistant Missouri University of Science and Technology, Rolla, MO

- Numerical modeling of multiphase flow in open microfluidics using ANSYS and STAR-CCM +
- Reduced simulation run-time by developing an algorithm for adaptive mesh refinement (AMR)

#### **Engineering Intern**

Emden-Leer University of Applied Sciences, Emden, Germany

(July-Sept 2014)

(2016 - 2018)

Design of experiments in advanced oxidation process (AOP) for wastewater treatment

### Computer Skills



| Scientific | <b>Softwares</b> | Devel | oned |
|------------|------------------|-------|------|
|            |                  |       |      |

- MaxEnt AL-CFD
- Pv0 Peptide.bio
- HOOMD-TF • GTP
- Decode-ELM • Bye-Cycle

Other tools: AWS, TensorFlow, PyTorch, Scikit-learn, JAX, Pandas

Languages: Python, JavaScript, HTML, CSS



### **Honors and Awards**



| Acceleration Consortium Research Fellowship University of Toronto, Toronto                                                              | (May 2023) |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1 <sup>st</sup> place winner at <u>Battery Informatics &amp; ML Kaggle Competition</u> Materials Research Society, Boston, MA           | (Dec 2022) |
| Kwang-Yu and Lee-Chien Wang Fellowship Department of Chemical Engineering, University of Rochester                                      | (Nov 2021) |
| Earl W. Costich Graduate Fellowship Department of Chemical Engineering, University of Rochester                                         | (May 2020) |
| 1 <sup>st</sup> place winner: 2017 Mike Alizadeh Scholarship  American Society of Civil Engineers (ASCE)                                | (Aug 2017) |
| Recognized reviewer: Journal of Environmental Chemical Engineering                                                                      | (May 2016) |
| MATLAB Programming Contest Sharif Computer-Aided Chemical Engineering Contest (SC <sub>3</sub> ), Sharif University of Technology, Iran | (Mar 2014) |

# Publications and Patents (Google Scholar)

Agent-based Learning of Materials Datasets from Scientific Literature (preprint available upon request)



|    | M Ansari, SM Moosavi                                                                                          | (,         |
|----|---------------------------------------------------------------------------------------------------------------|------------|
| 2. | Learning Peptide Properties with Positive Examples Only Digital Discovery (Pending review) M Ansari, AD White | (Oct 2023) |
| 3. | History-agnostic Battery Degradation Inference and US Patent Pending                                          | (Mar 2023) |

Journal of Applied Energy (Pending review) M Ansari, S Torrisi, A Trewartha, S Sun

(Oct 2023)

Serverless Prediction of Peptide Properties with Recurrent Neural Networks Journal of Chemical Information and Modeling M Ansari, AD White

(Apr 2023)

Assessment of Chemistry Knowledge in Large Language Models that Generate Code

(Jan 2023)

Digital Discovery AD White, GM Hocky, HA Gandhi, **M Ansari**, S Cox, GP Wellawatte, S Sasmal, Z Yang, K Liu, Y Singh, WJ Peña Ccoa **Book chapter:** Hyper-parameter Optimization in Deep Learning

(July 2022)

Deep Learning for Molecules and Materials, Living Journal of Computational Molecular Science **M Ansari**, AD White Inferring Spatial Source of Disease Outbreaks using Maximum Entropy

(July 2022)

American Physical Society, Physical Review E M Ansari, D Soriano-Paños, G Ghoshal, AD White

(Mar 2022)

**Iterative Symbolic Regression for Learning Transport Equations** AIChE Journal, Special Edition for AI M Ansari, HA Gandhi, DG Foster, AD White

Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy Machine Learning in Science and Technology R Barrett, **M Ansari**, G Ghoshal, AD White

(Apr 2022)

#### **■**

# **Presentations and Talks**



| 1. | Positive Unlabeled Learning of Peptide Properties Accelerate Conference, Toronto, ON                       | (Aug 2023)  |
|----|------------------------------------------------------------------------------------------------------------|-------------|
| 2. | Maximum Entropy Inference in Chemical Reaction Networks with Unknown Kinetic Parameters AIChE, Phoenix, AZ | (Nov 2022)  |
| 3. | Rescuing Physics-based Models with Maximum Entropy Reweighting                                             | (Sept 2022) |

Wang Lecture, University of Rochester, NY

Serverless Prediction of Peptide Properties with Recurrent Neural Networks Middle Atlantic Regional Meeting of the American Chemical Society, Ewing Township, NJ

(June 2022)

Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy

Advances in Neural Information Processing Systems 33: Workshop on Machine Learning for Structural Biology

(Dec 2020)