- (1) METRISCHE TEILRAUMTOPOLOGIE: Sei (X, d) ein metrischer Raum, \mathcal{T}_d die von der Metrik d erzeugte Topologie und $Y \subset X$ eine Teilmenge. Zeigen Sie, dass $\mathcal{T}|_Y$ mit der von $d|_{Y \times Y}$ auf Y erzeugten Topologie übereinstimmt.
- (2) PRODUKTTOPOLOGIE: Es sei $(X_i)_{i \in I}$ eine Familie topologischer Räume.
 - (a) Für $i \in I$ sei $Y_i \subset X_i$ versehen mit der Unterraumtopologie. Zeigen Sie, dass auf $\prod_{i \in I} Y_i$ die Produkttopologie mit der von $\prod_{i \in I} X_i$ induzierten Unterraumtopologie übereinstimmt.
 - (b) Zeigen Sie, dass das Produkt abgeschlossener Mengen abgeschlossen ist.
 - (c) Zeigen Sie, dass für endliches I das Produkt offener Mengen offen ist.
 - (d) Geben Sie ein Beispiel eines Produkts offener Mengen an, das nicht offen ist.
- (3) QUOTIENTENTOPOLOGIE UND EINHEITSKREIS: Wir betrachten \mathbb{R} mit der natürlichen Topologie und die Äquivalenzrelation $x \sim y :\Leftrightarrow x-y \in \mathbb{Z}$ sowie $\mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 : x^2+y^2=1\}$ versehen mit der von \mathbb{R}^2 induzierten Topologie. Zeigen Sie, dass \mathbb{R}/\sim homöomorph zu \mathbb{S}^1 ist.
- (4) Erstes Abzählbarkeitsaxiom: Beweisen Sie folgende Aussagen:
 - (a) Sei (X, \mathcal{T}) ein topologischer Raum, der das erste Abzählbarkeitsaxiom erfüllt. Dann gibt es für jedes $x \in X$ eine Umgebungsbasis $\mathcal{B}(x) = \{U_k : k \in \mathbb{N}\}$ so, dass $U_1 \supset U_2 \supset U_3 \supset \ldots$ gilt.
 - (b) Jeder metrische Raum erfüllt das erste Abzählbarkeitsaxiom.
- (5) Sei X ein topologischer Raum, der das erste Abzählbarkeitsaxiom erfüllt. Beweisen Sie folgende Aussagen:
 - (a) Sei $A \subset X$ eine Teilmenge. Es ist $x \in \overline{A}$ genau dann, wenn eine Folge $(x_n)_{n \in \mathbb{N}}$ in A existiert mit $x_n \to x$.
 - (b) Sei Y ein topologischer Raum und $f:X\to Y$ eine Abbildung. Ist f folgenstetig, dann ist f stetig.

Hinweis: (4a)