Основная теорема алгебры

Основная теорема алгебры. Всякий многочлен с комплексными коэффициентами, отличный от константы, имеет по крайней мере один комплексный корень.

Следствие. Ненулевой многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней с учётом кратности.

Ясно, что достаточно доказать теорему для приведённого многочлена. Пусть наш многочлен имеет вид $P(z)=z^n+a_{n-1}z^{n-1}+a_{n-2}z^{n-2}+\ldots+a_1z+a_0$. Далее будем считать, что $a_0\neq 0$ (иначе утверждение очевидно).

Определения. Точку z^n на комплексной плоскости назовём Дамой, а точку P(z) — Собачкой. Пусть R — некоторое положительное число. Дама держит Собачку на поводке, причём длиной поводка назовём следующее выражение: $L=R^n$. Число R_0 определим как $R_0=|a_{n-1}|+|a_{n-2}|+\ldots+|a_1|+|a_0|+1$. Точка O — центр комплексной плоскости.

- 1. (a) Число z начинает свой путь по комплексной плоскости в точке R, проходит один раз по окружности с центром в O радиуса R против часовой стрелки и возвращается в ту же точку. Докажите, что Дама движется по окружности радиуса L и обходит её ровно n раз.
 - (6) Пусть $R = R_0$. Докажите, что расстояние между Дамой и Собачкой $|P(z) z^n|$ меньше, чем длина поводка.

Траектория Собачки — непрерывная линия, начинающаяся и заканчивающаяся в точке $P(R_0)$. Из предыдущего пункта следует, что на своём пути Собачка, как и Дама, n раз обходит вокруг точки O. Начнём стягивать радиус начальной окружности от R_0 до нуля. Радиус окружности, по которой гуляет Дама, уменьшается, но она по-прежнему будет проходить n раз вокруг точки O. Траектория движения Собачки меняется непрерывно, и при радиусе, близком к нулю, она близка к точке a_0 .

- **2.** Рассмотрев функцию от переменной R, равную числу обходов Собачки вокруг точки O, докажите, что при некотором значении радиуса Собачка будет вынуждена пройти через O. Выведите отсюда OTA.
- **3.** Докажите, что для любого многочлена P(x) с вещественными коэффициентами существует набор многочленов с вещественными коэффициентами $Q_i(x)$, deg $Q_i \leq 2$ такой, что $P(x) = Q_1(x) \cdot Q_2(x) \cdot \ldots \cdot Q_n(x)$.
- **4.** Пусть P(x) многочлен с вещественными коэффициентами, такой что для любого вещественного x выполняется $P(x) \geqslant 0$. Докажите, что найдутся многочлены A(x) и B(x) с вещественными коэффициентами такие, что $P(x) = A(x)^2 + B(x)^2$.
- **5.** Докажите, что многочлен $x^{44} + x^{33} + x^{22} + x^{11} + 1$ делится на многочлен $x^4 + x^3 + x^2 + x + 1$ в смысле делимости многочленов с вещественными коэффициентами.
- **6.** Дан приведённый многочлен P(x) с вещественными коэффициентами такой, что |P(i)| < 1. Докажите, что существуют вещественные числа a,b, такие что P(a+bi) = 0 и $(a^2+b^2+1)^2 < 4b^2+1$.
- 7. Найдите все многочлены P(x) с вещественными коэффициентами, такие что $P(x)P(2x^2) = P(2x^3 + x)$.