

Trabajo Fin de Grado

Detección de anomalías en tráfico de red con machine learning

Alba Ramos Pedroviejo

Tutor: Manuel Antonio Sánchez-Montañés Isla

Escuela Politécnica Superior

ÍNDICE DE CONTENIDOS

- Justificación
 - ¿Estamos protegidos?
 - ¿Por qué otro trabajo? ¿No funciona lo que hay?
- Objetivos
- Desarrollo
- Resultados
- Conclusiones

¿ESTAMOS PROTEGIDOS?

Ataques de red en %

Fuente: Statista (2019)

Distribución de ataques relacionados con la COVID-19

Fuente: Interpol (2020)

Ciberataque SEPE

AVISO IMPORTANTE

OA.

Actualmente se está trabajando con el objetivo de restaurar los servicios prioritarios lo antes posible, entre los que se encuentra la Sede Electrónica del Servicio Público de Empleo Estatal. En estos momentos se encuentran disponibles:

Servicios de protección por desempleo excepto:

Fuente: Xataka (2021)

¿POR QUÉ NO FUNCIONA LO QUE HAY?

- Continua investigación
- Falta de metodología impide comparar [1]
- Datasets
 - Obsoletos
 - Poco representativos
 - Poco realistas
- Métodos de ML supervisados
 - Desequilibrio del dataset
 - Ataques zero-day

Malware conocido

[1] Magán-Carrión et al, 2020, p. 6

Fuente: AV-TEST (2021)

OBJETIVOS

- Alertar ante ataques:
 - Conocidos
 - Zero-day
 - No alertar ante tráfico benigno novedoso
- Métodos supervisados + desequilibrio = problemas
- Metodología

Dataset ideal:

- Reciente
- Representativo
- Tráfico real

UGR'16

Dataset	Año	Registros	Tráfico
KDD-99	1999	4.9 M	Generado Obsoleto
UNSW-NB15	2015	2.5 M	Generado
UGR'16	2016	16.9 M	Real + generado
CIC-IDS 2017	2017	3.1 M	Generado.
CSE-CIC-IDS 2018	2018	15.4 M	Generado.
MAWI	1999 - actual.	Creciente	Real Errores

Extracción de atributos: FaaC [1]

- Contadores
- Flujos de 2 minutos [2]

- [1] Pérez-Villegas, García-Jiménez, Camacho, 2017
- [2] Magán-Carrión et al, 2020, p. 6

Fuente: [2]

Preprocesamiento de datos:

- Partición train-test + reequilibrado SMOTE
- Normalización
- PCA: reducción dimensionalidad

Métricas de rendimiento:

- Entrenamiento:
 - F1, Accuracy 1
 - GridSearch
- Pruebas
 - FP y FN sobre test
 - Accuracy sobre ataques

Modelos no supervisados	Modelos supervisados
KNN	LogisticRegression
LOF	SVC
OCSVM	MLPClassifier
COPOD	DecisionTree
IsolationForest	
EllipticEnvelope	

RESULTADOS

FP y FN en test

- Normalidad aprendida
- Supervisados: más FN

Accuracy ante ataques

- No supervisados: 0x1
- Supervisados: 0x1/2

RESULTADOS

Accuracy acumulado por aprendizaje

- Dificultad DoS
- Facilidad Botnet

Accuracy acumulado por modelo

- No supervisados: IsolationForest 97%
- Supervisados: MLP 97%

RESULTADOS

CONCLUSIONES

- Problema: detección de anomalías en tráfico de red con ML
 - Ataques conocidos y zero-day
 - Fuentes heterogéneas
- Solución:
 - Dataset real, actual y representativo (UGR'16)
 - Análisis temporal del tráfico (FaaC)
 - Modelos de ML
 - IsolationForest
 - MLP (reequilibrado, rapidez)

Gracias por su atención

Alba Ramos Pedroviejo

alba.ramosp@estudiante.uam.es