Chapter 4 Digital Hardware

[4.1]
$$P = (5V)(125mA) = 625 mW$$
.

$$[4.2] I = (10W) / (3V) = 3.33A$$

[4.3] (a)
$$P = (5V)(210mA) = 1.05W$$

(b) $P = (3.1V)(1.4A) = 4.34W$
(c) $I = (15W) / (2.6V) = 5.77A$

(b)
$$f_{\text{max}} = 1/t_{\text{min}} = 1/(t_{\text{HL}} + t_{\text{LH}}) = 1/(1.5ns)$$

= 666.67 MHz

For the discussion purpose in (c), let's assume the following voltage range to represent logic "1" and "0":

$$0.0v - 1.5v \Leftrightarrow "0"$$

As shown by the sketch above, $V_{out}(t)$ does return the correct logic values with certain delay.

(c) The sketch below shows $V_{out}(t)$ when the input is driven at twice f_{max} .

The reason that this inverter will not operate properly at this high frequency because there is not enough time for V_{out} to settle down in the right logic value as clearly shown by the sketch.

[4.5]
$$t_{p,total} = 3 \times (t_{p0,NOT} + t_{pL,NOT})$$

= $3 \times (0.5 + 0.5) = 3 \text{ ns.}$

[4.6]
$$t_{p,total} = 3 \times (t_{p0,NOT} + 2t_{pL,NOT}) + (t_{p0,NOT} + t_{pL,NOT})$$

= $3 \times (0.5 + 0.8) + (0.5 + 0.4) = 4.8 \text{ ns.}$

[4.7]
$$t_{p,total} = (t_{p0,NOR} + t_{pL,NOT}) + (t_{p0,NOT} + t_{pL,NOT})$$

= $(0.75 + 0.5) + (0.5 + 0.5) = 2.25 \text{ ns.}$

[4.8]
$$t_{p,total} = 5 \times (t_{p0,NOT} + t_{pL,NOT}) + (t_{p0,NOT} + t_L)$$

= $5 \times (1.0 + 0.25) + (1.0 + t_L) = 7.25 \text{ ns.}$
If the load at the output is an inverter,
 $t_L = 0.25 \text{ ns.}$ and thus $t_{p,total} = 7.5 \text{ ns.}$

[4.9]
$$V = IR = (25mA)(500\Omega) = 12.5V$$
.

[4.10]
$$I = V/R = 0.86V / 1500\Omega = 0.57 mA$$
.

[4.11]
$$t_{p,total} = (t_{p0,NAND} + t_{pL,NOT} + t_{pL,NOR}) + (t_{p0,NOR} + t_{pL,NOT} + t_{pL,NOR}) + (t_{p0,NOT} + t_{pL,NOT}) = (0.85 + 0.4 + 0.9) + (0.75 + 0.4 + 0.9) + (0.5 + 0.4) = 5.1 ns.$$

[4.12]
$$P = V^2 / R = (0.35V)^2 / (1200\Omega) = 0.1 \text{ mW}$$

[4.13] (a)
$$R_{xz} = R_1 + R_2 = 200 + 450 = 650\Omega$$

(b) $R_{yw} = R_2 + R_3 = 450 + 80 = 530\Omega$
(c) $R_{xw} = R_1 + R_2 + R_3 = 200 + 450 + 80 = 730\Omega$

[4.14] (a)
$$I(t=2ns) = V_R(t=2ns) / R$$

= 3.03V / 1200 Ω = 2.53 mA
(b) $I(t=4ns) = V_R(t=4ns) / R$
= 1.84V / 1200 Ω = 1.53 mA
(c) $I(t=6ns) = V_R(t=6ns) / R$
= 1.12V / 1200 Ω = 0.93 mA

The plot on the next page shows the exponential decline of current with time.

ABODE FIFICE) F2	i	F3(E)	F4 F4(E) 1 E+E	F5 F5(E) Exte
1 00001	0 d	TE	X EX+E	X \
3 00011 0	~ ·	TE .	X EX+E	X EX+E
(00101 1	Ī		0 0	0 0
7001110	E 0	· · · · · · · · · · · · · · · · · · ·	0 6	c O
8 01000 O E	EtĒ 0		6	0
10 01010 0 E	E) 0	ē 0	o_ o_
11 01011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EtĒ	Ē	E+EX X	Y E+EX
13 01 101 1	E	I EtĒ	0 EX	° EX
10 01111 0		1 =	Y I E+EX	*
16 10000 0 0	E+Ē	1 6	*	EX X
18 10010 0 0	E	OE	O E	E
10100 1 E+E	Ē	IĒ	0 €	0 0
21 10110 0 0	Ē	IE	××	X X
23 1000 0 0	0	0 0	0 0	O EX
25 11010 1 EXE		0 0	I E	Ī Ē+€
Q7 11100 \1 = =	1 0	0 0	0 0	0 0
29	C E + E	0 EtE	V E+Ex	I E tex
31		1	X	X

FI

 $F3 = \overline{A}\overline{D}\overline{E} + \overline{B}\overline{E} + BCD$

F4

FS= ABC+ABE + ABO+ ACD