85741: Energieeffiziente Antriebsregelungen Regelung im Zustandsraum

Prof. Dr. Raphael Pfaff

Fachhochschule Aachen

9. Januar 2019

Lernziele

• Teil 1:

- Die Studierenden kennen die Zustandsraumbeschreibung, die Bedeutung von Polstellen und die Begriffe Steuerbarkeit und Beobachtbarkeit.
- Die Studierenden kennen die Normalformen der Zustandsbeschreibung und zugehörige Blockdiagramme.
- Die Studierenden kennt die Blockdiagramme und resultierenden Systemmatrizen der Regelung im Zustandsraum sowie den Unterschied zwischen Zustands- und Ausgangsrückführung.

Teil 2:

- Die Studierenden kennen Schätzfunktionen und deren wünschenswerte Eigenschaften.
- Die Studierenden kennen den grundsätzlichen Aufbau der Prediction Error Methods (PEM) und ihre Eigenschaften.
- Die Studierenden können den Kalman Filter als Zustandsschätzer sowie den RLS als Parameterschätzer anwenden und ihre Grenzen aufzeigen.

Teil 3 (Rechnerpraktikum/Selbststudium):

- Die Studierenden können dynamische Systeme im Zustandsraum simulieren.
- Die Studierenden k\u00f6nnen Zustands- und Parametersch\u00e4tzer in Scicos oder C implementieren.

Struktur des Kurses

Section 1

Einführung Zustandsraum

Der Zustandsraum ist eine zunehmend an Bedeutung gewinnende Darstellung eines dynamischen Systems.

- Zustandsvariablen $x_i(t)$:
 - Energiegehalt der Speichersysteme
 - Bilden Zustandsvektor x(t)
- $ullet \ x(t_0)$ enthält alle Informationen über System zum Zeitpunkt t_0
- Uberführung der DGL n-ter
 Ordnung in n DGL 1. Ordnung
- Hier betrachtet: single-input-single-output (SISO) System

Zustandsraumdarstellung:

Zeitkontinuierlich

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

$$y(t) = Cx(t) + Du(t)$$
 (2)

Zeitdiskret

$$x_{k+1} = Ax_k + Bu_k \tag{3}$$

$$y_k = Cx_k + Du_k \tag{4}$$

Größen der Variablen und Parameter für SISO System der Ordnung $n, \cdot (t)$ beschreibt Variablen, d.h. \cdot_k bzw. $\cdot (t)$.

- $A \in \mathbb{R}^{n \times n}$: Systemmatrix
 - Systeminformationen, z.B.
 Polstellen, Beobachtbarkeit,

. . .

- $B \in \mathbb{R}^{n \times 1}$: Eingangsvektor
 - Wirkung von u auf System
- $C \in \mathbb{R}^{1 \times n}$: Ausgangsvektor • Wirkung von x auf Ausgang
- $D \in \mathbb{R}$: Feedforward term
 - Direkte Wirkung von u auf Ausgang

$$\dot{x}(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
x_{k+1} = Ax_k + Bu_k
y_k = Cx_k + Du_k$$

- $x(t) \in \mathbb{R}^{n \times 1}$: Zustandsvektor
 - Zustand der Energiespeicher
- $u(t) \in \mathbb{R}$: Eingangswert in System
- $y(t) \in \mathbb{R}$: Ausgangswert des Systems

- $+\,$ Vollständige Abbildung des Systemzustands durch die x_i
- + Digitale Regler im Zustandsraum performanter
- + Für Energieeffizienz: Energiegehalt des System wird modelliert
- Zustand hat häufig physikalische Bedeutung
- Zustandsraumdarstellung nicht eindeutig
- Teils numerisch/analytisch aufwendig

Zustandsraumdarstellung RLC-System

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & \frac{-R}{L} \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$
 (5)
$$y(t) = u_C(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$
 (6)

$$y(t) = u_C(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$
 (6)

Regelungsnormalform (control canonical form)

$$\frac{d^{n} y}{d t^{n}} + a_{n-1} \frac{d^{n-1} y}{d t^{n-1}} + \dots + a_{1} \frac{d y}{d t} + a_{0} y$$

$$= b_{n} \frac{d^{n} u}{d t^{n}} + b_{n-1} \frac{d^{n-1} u}{d t^{n-1}} + \dots + b_{1} \frac{d u}{d t} + b_{0} u$$

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{pmatrix} \qquad B = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

Beobachtungsnormalform (observer canonical form)

$$\frac{d^{n} y}{d t^{n}} + a_{n-1} \frac{d^{n-1} y}{d t^{n-1}} + \dots + a_{1} \frac{d y}{d t} + a_{0} y$$

$$= b_{n} \frac{d^{n} u}{d t^{n}} + b_{n-1} \frac{d^{n-1} u}{d t^{n-1}} + \dots + b_{1} \frac{d u}{d t} + b_{0} u$$

$$A = \begin{pmatrix} 0 & \cdots & 0 & 0 & -a_0 \\ 1 & \cdots & 0 & 0 & -a_1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix} \qquad B = \begin{pmatrix} b_0 - b_n a_0 \\ b_1 - b_n a_1 \\ b_2 - b_n a_2 \\ \vdots \\ b_{n-1} - b_n a_{n-1} \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \qquad D = b_n$$

IVERSITY OF APPLIED SCI

Jordan Normalform (modal canonical form)

- Für System mit Polstellen λ_i
- \bullet Transferfunktion $G(s) = \sum_{i=1}^n \frac{c_i}{s \lambda_i}$

$$A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \qquad B = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

$$C = \begin{pmatrix} c_1 & c_2 & \cdots & c_n \end{pmatrix}$$

• Eigenwerte:

- Können Polstellen des Systems sein
- Ggf. Kürzung gegen Nullstellen des Systems
- ullet Bestimmung mittels charakterischem Polynom $\chi_A(\lambda)$
- Polstellen reell oder paarweise komplex

$$\chi_{A}(\lambda) = \det \left(\lambda \operatorname{Id} - A \right)$$

$$= \det \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix} - \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} = 0$$

$$(7)$$

• Definiere für $A \in \mathbb{R}^{n \times n}$ die unendliche Reihe

$$\exp(At) = \operatorname{Id} + At + A^{2} \frac{t^{2}}{2!} + A^{3} \frac{t^{3}}{3!} + \dots$$
 (8)

Dann erfüllt

$$x(t) = \exp(At) x_0 + \exp(At) \int_0^t \exp(-At) Bu(\tau) d\tau \qquad (9)$$

die Differentialgleichung

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = Ax(t) + Bu(t) \tag{10}$$

• Für diagonalisierbare Matrizen $A=UDU^{-1}$, d.h. χ_A hat n komplexe Nullstellen $\lambda_i\in\mathbb{C}$:

$$\exp(A) = U \exp(D) U^{-1} =$$

$$U \begin{pmatrix} \exp(\lambda_1 t) & 0 & \cdots & 0 \\ 0 & \exp(\lambda_2 t) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \exp(\lambda_n t) \end{pmatrix} U^{-1}$$
(11)

Zustandssteuerbarkeit (state controllability)

Zustandssteuerbarkeit bewertet, ob alle x_i über u beeinflusst werden können.

Definition (Zustandssteuerbarkeit)

Ein System (1), (2) bzw. (3),(4) ist dann vollständig zustandssteuerbar, wenn es für jeden Anfangszustand $x\left(t_{0}\right)$ eine Steuerfunktion u(t) gibt, die das System innerhalb einer endlichen Zeitspanne $t_{0}\leq t\leq t_{1}$ in den Endzustand $x\left(t_{1}\right)=0$ überführt.

Dies gilt genau dann, wenn

$$\operatorname{rg}\left[B|AB|\cdots|A^{n-1}B\right] = n \tag{12}$$

Es wird $[B|AB|\cdots|A^{n-1}B]$ die Steuerbarkeitsmatrix genannt.

Ausgangssteuerbarkeit (controllability)

Ausgangssteuerbarkeit bewertet, ob y über u beeinflusst werden können.

Definition (Ausgangssteuerbarkeit)

Ein System (1), (2) bzw. (3),(4) ist dann vollständig ausgangssteuerbar, wenn es für jeden Anfangswert $y(t_0)$ eine Steuerfunktion u(t) gibt, die das System innerhalb einer endlichen Zeitspanne $t_0 \leq t \leq t_1$ in den Endwert $y(t_1)$ überführt.

Dies gilt für ein System mit m Ausgangswerten genau dann, wenn

$$\operatorname{rg}\left[CB|CAB|CA^{2}B|\cdots|CA^{n-1}B|D\right] = m \tag{13}$$

Zu jedem Systemverhalten der Vergangenheit (Zustand) lässt sich ein Funktional u(t) so finden, dass ab t^\prime das gewünschte Verhalten herrscht.

Beobachtbarkeit (observability)

Beobachtbarkeit bewertet, ob alle x_i den Ausgang y beeinflussen und somit beobachtet werden können.

Definition (Beobachtbarkeit)

Ein System (1), (2) bzw. (3),(4) ist dann vollständig beobachtbar, wenn bei bekannter äußerer Beeinflussung Bu(t) und bekannten Matrizen A und C aus dem Ausgangsvektor y(t) über einem endlichen Zeitintervall $t_0 \le t \le t_1$ den Anfangszustand $x(t_0)$ eindeutig bestimmen kann.

Dies gilt genau dann, wenn

$$\operatorname{rg}\begin{pmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{pmatrix} = n \tag{14}$$

wird $\left(C^T \quad (CA)^T \quad \cdots \quad \left(CA^{n-1}\right)^T\right)^T$ die Bobachtbarkeitsmatrix genannt.

Section 2

Regelung im Zustandsraum

Regelkreis mit Zustandsrückführung

Zustandsraumdarstellung für D=0:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = (A - BF)x + Bu$$

$$y = Cx$$
(15)

$$y = Cx (16)$$

Regelkreis mit Ausgangsrückführung

Zustandsraumdarstellung für D=0:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = (A - BF'C)x + Bu$$

$$y = Cx$$
(17)

$$y = Cx (18)$$

Vor- und Nachteile Regelung im Zustandsraum

Vorteile

- (Fast) vollständige Systembeeinflussung:
 - A überführt in (A BF) bzw. (A BF'C)
- Weitestgehend algebraische Rechenoperationen
- Einfache Implementierung im Controller
- Intuitive Modellierung des Energiegehalts

Nachteile

- Reglervorgabe (Eigenwerte) unüblich
- Zustandsmessung oder Beobachter nötig
- Genaue Kenntnis der Systemparameter notwendig

Schätzfunktionen

Eine Schätzfunktion (Schätzer) dient zur Ermittlung eines Parameter-Schätzwertes bzw. zur Ermittlung eines wahrscheinlichen rauschfreien Zustands aus empirischen Daten

- Grundlage: endlich viele Beobachtungen (Stichprobe)
 - Schätzer selbst fehlerbehaftet
 - Häufig Zufallsvariable
- Schluß auf Grundgesamtheit
- Schätzen einzelner Parameter der Verteilung
 - Mittelwert
 - Median
 - Standardabweichung

Definition (Zufallsvariable)

Als Zufallsvariable bezeichnet man eine messbare Funktion von einem Wahrscheinlichkeitsraum in einen Messraum.

Definition (Schätzfunktion)

Eine Schätzfunktion dient dazu, aufgrund von empirischen Daten einer Stichprobe einen Schätzwert zu ermitteln und dadurch Informationen über unbekannte Parameter einer Grundgesamtheit zu erhalten.

Mittelwert

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Varianz

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$\hat{\sigma}^2 = s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

- Erwartungstreue:
 - Erwartungswert der Schätzfunktion gleich wahrem Parameter
 - Kein systematischer Fehler (Bias).
- Konsistenz:
 - Unsicherheit des Schätzers nimmt für $n \to \infty$ ab
- Effizienz:
 - Minimale Varianz des Schätzers
- BLUE: Best Linear Unbiased Estimator

AutoRegressive Model with eXogenous inputs (ARX)

Für Parameterschätzer häufig eingesetzte Modellstruktur.

Das Modell eines Eingrößensystems sei beschrieben durch

$$y_k + a_1 y_{k-1} + \dots + a_{n_a} y_{k-n_a} = b_1 u_{k-1} + \dots + b_{n_b} u_{k-n_b} + e_k$$
 (19)

mit

- $n_b \leq n_a$,
- Parametervektor $\theta = \begin{pmatrix} a_1 & a_2 & \cdots & a_{n_a} & b_1 & b_2 & \cdots & b_{n_b} \end{pmatrix}$,
- Eingangswert u_k ,
- Ausgangswert y_k sowie
- ullet additivem weißen Rauschen e_k

Beobachtungsmatrix (Observation matrix)

Die Beobachtungmatrix H sammelt N Beobachtungen eines ARX Systems.

$$H = \begin{pmatrix} -y_{k-1} & \cdots & -y_{k-n_a} & u_{k-1} & \cdots & u_{k-n_b} \\ -y_{k-2} & \cdots & -y_{k-n_a-1} & u_{k-2} & \cdots & u_{k-n_b-1} \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ -y_{(k-N-1)} & \cdots & -y_{(k-n_a-N)} & u_{(k-N-1)} & \cdots & u_{(k-n_b-N)} \end{pmatrix} \in \mathbb{R}^{N \times (n_a+n_b)}$$

$$(20)$$

Mit einem Bobachtungsvektor
$$h=\begin{pmatrix} -y_{k-1} & \cdots & -y_{k-n_a} & u_{k-1} & \cdots & u_{k-n_b} \end{pmatrix} \text{ gilt:}$$

$$y_k=h\theta$$

$$y_k = h\theta$$

Das Optimierungsziel für Parameterschätzer wird über die Summe der Fehlerquadrate des Ausgangs definiert.

Sei die Summe der Fehlerquadrate (Sum of Square Errors, SSE) für einen Parametervektor θ und eine Indexmenge $I \subset \mathbb{N}$ definiert als

$$E(\theta) = \sum_{k \in I} (y_k - \hat{y}_{k|\theta})^2$$
 (21)

Hierbei beschreibt $\hat{y}_{k|\theta}$ den geschätzten Ausgangswert für einen Parametervektor $\theta.$

Das Optimierungsziel ist damit

$$\hat{\theta} = \arg\min_{\theta} \sum_{k \in I} (y_k - \hat{y}_{k|\theta})^2 \tag{22}$$

Lineare Rekursion (Linear Least Squares)

- Häufig eingesetzt
- Kein Online-Schätzer
- In vielen Software-Produkten implementiert
- Optimal im Sinne des Optimierungsziels
- Stabil
- Variante: Block Least Squares

Formuliere (22) als

$$E(\theta) = (\operatorname{Id} - H\theta)^{T} (\operatorname{Id} - H\theta)$$
 (23)

Damit ist

$$\frac{\mathrm{d}E(\theta)}{\mathrm{d}\theta} = -2H^T \mathrm{Id} + 2H^T H\theta \qquad (24)$$

und der Least Squares Estimator für θ , bezeichnet als $\hat{\theta}$, ist

$$\hat{\theta} = (H^T H)^{-1} H^T \operatorname{Id} \tag{25}$$

Hierbei ist $(H^TH)^{-1}H^T$ die Moore-Penrose Pseudoinverse einer nichtquadratischen Matrix.

Idee: Rekursives Update der Beobachtungsmatrix bzw. der Moore-Penrose Pseudoinversen

Lemma (Matrix Inversion)

Let A, C and A+BCD be nonsingular square matrices, then the following identity holds:

$$(\mathbf{A} + \mathbf{BCD})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}.$$
 (26)

Aktualisierte Bebachtungsmatrix:

$$H_{n+1} = \left(\frac{H_n}{h_{n+1}}\right) \tag{27}$$

Aktualisierter Ausgangsvektor:

$$\mathbf{y}_{n+1} = \left(\frac{\mathbf{y}_n}{y_{n+1}}\right)$$

(28)

IVERSITY OF APPLIED SI

RLS ohne forgetting factor

Es ist möglich, $\hat{\theta}$ zu schreiben als

$$\hat{\theta}_{n+1} = \Phi_{n+1} H_{n+1}^T \mathbf{y}_{n+1}, \tag{29}$$

wobei $\hat{\theta}_{n+1}$ geschätzter Parametervektor für Daten einschließlich n+1 und $\Phi=\left(H^TH\right)^{-1}$ bedeutet. Es gilt

$$\Phi_{n+1} = \left(\left(\frac{H_n}{h_{n+1}^T} \right)^T \left(\frac{H_n}{h_{n+1}^T} \right)^{-1} = \left(H_n^T H_n + h_{n+1} h_{n+1}^T \right)^{-1} \\
= \left(\Phi_n^{-1} + h_{n+1} h_{n+1}^T \right)^{-1} .$$
(30)

Mit dem Matrix Inversion Lemma:

$$\Phi_{n+1} = \Phi_n - \Phi_n h_{n+1} \left(\operatorname{Id} + h_{n+1}^T \Phi_n h_{n+1} \right)^{-1} h_{n+1}^T \Phi_n.$$
 (31)

Da $(\operatorname{Id} + h_{n+1}^T \Phi_n h_{n+1})$ ein Skalar ist, gilt:

$$\Phi_{n+1} = \Phi_n - \frac{\Phi_n h_{n+1} h_{n+1}^T \Phi_n}{1 + h_{n+1}^T \Phi_n h_{n+1}}$$
(32)

RLS Algorithmus

$$\phi_n = \Phi_{n-1} h_n \left(1 + h_n^T \Phi_{n-1} h_n \right) \tag{33}$$

$$\hat{\theta}_n = \hat{\theta}_{n-1} + \phi_n h_n \left(i_n - h_n^T \hat{\theta}_{n-1} \right) \tag{34}$$

$$\Phi_n = \left(\operatorname{Id} - \phi_n h_n^T \right) \Phi_{n-1}, \tag{35}$$

Initialisierung:

- ullet Anfangswerte Φ_0 and $\hat{ heta}_0$ gemäß a priori Wissen
 - Kein a priori Wissen: $\hat{\theta}_0 = \mathbf{0}$ und $\Phi_0 = 10^3 \, \mathrm{Id}$
 - ullet a priori Wissen vorhanden: $ar{ heta}_0$ auf bekannte Werte, Φ_0 reduzieren
- Kovarianz Matrix Φ ist für normalverteiltes weißes Rauschen mit Standardabweichung σ proportional zur Fehlerkovarianzmatrix

$$\Phi_n = \frac{1}{\sigma^2} \operatorname{cov} \left(\hat{\theta}_n - \theta_n \right) = \frac{1}{\sigma^2} \operatorname{E} \left(\left(\hat{\theta}_n - \theta_n \right) \left(\hat{\theta}_n - \theta_n \right)^T \right).$$
 (36)

I AACHEN VIVERSITY OF APPLIED SC

RLS Algorithmus: Probleme

- Covariance Blow Up:
 - Verursacht durch fast linear abhängige Beobachtungen
 - Abhilfe: Kleine Störung hinzufügen (An der Startbasis rütteln!)
 - Alternativ: Forgetting factors
- Numerische Instabilität:
 - ullet Die Einträge in Φ werden klein für eingeschwungene Systeme
 - ullet Φ muss positive definit sein
 - Abhilfe: Kleine Störung hinzufügen (An der Startbasis rütteln!)

RLS Algorithmus: Forgetting Factors etc.

Ohne Maßnahmen konvergiert der RLS gegen das Ergebnis des LLS.

- Standard-RLS: Konvergenz gegen LLS-Schätzung
 - Keine optimale Schätzung für zeitabhängige Systeme
- Abhilfe:
 - Forgetting factor: Koeffizient zur exponentiellen Abwertung der Daten aus der Vergangenheit
 - Fixed forgetting factor: $\lambda < 1$, üblich: $\lambda = 0.95 \dots 0.99$
 - Faustregel: RLS mit fixed forgetting betrachtet $M=\frac{1}{1-\lambda}$ Beobachtungen h_i
 - Variable forgetting: Verschiedene Verfahren in der Regel abhängig von der Prediktionsgüte
 - ullet Covariance reset: Φ wird bei Vorliegen gewisser Kriterien zurückgesetzt
 - Für abrupte System-Veränderungen
 - Rücksetzwert bestimmt Stärke der Wirkung

RLS mit forgetting factor

Cost function angepasst:

$$J_N(\theta) = (\operatorname{Id} - H\theta)^T \begin{pmatrix} \lambda^N & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \lambda^2 & 0 \\ 0 & \cdots & 0 & \lambda \end{pmatrix} (\operatorname{Id} - H\theta)$$
 (37)

Möglich durch Änderung von (35) in

$$\Phi_n = \frac{1}{\lambda} \left(\mathbf{1} - \phi_n \mathbf{x}_n^T \right) \Phi_{n-1}. \tag{38}$$

ullet Mit abnehmendem M steigt die Empfindlichkeit für Rauschen

Kalman Filter - Grundlagen

Grundlage: Diskrete Zustandsraumbeschreibung

$$x_{k+1} = Ax_k + Bu_k + Ew_k (39)$$

$$y_{k+1} = Cx_{k+1} + r_{k+1} (40)$$

- Process Noise Vector w_k , Output Noise Vector r_{k+1}
 - Weiß, d.h. $E(w_k) = E(r_{k+1}) = 0$
 - Wechselseitig unkorreliert
 - Bekannte Varianz $Var(w) = R_w$ bzw. $Var(r) = r_v$
- Systemparameter konstant und bekannt

Kalman Filter I

- 7iel des Kalman Filters:
 - Vorhersage für x_k
 - Minimierung des Vorhersagefehlers $\hat{x}_k x_k$ nur mittels Messung des Eingangs u_k und des Ausgangs y_k
- Beste Vorhersage für bekanntes x_{k-1} ist der rauschfreie Zustand (wg. $E(w_k) = E(r_{k+1}) = 0$

$$\hat{x}_{k|k-1} = A\hat{x}_{k-1} + Bu_{k-1},\tag{41}$$

Der Vorhersagefehler wird damit

$$e_{k|k-1} = \hat{x}_{k|k-1} - x_k, \tag{42}$$

Aufgrund der Linearität des Systems und der Wahl des Schätzers

$$e_{k|k-1} = A\hat{x}_{k-1} + Bu_{k-1} - Ax_{k-1} - Bu_{k-1} - Dw_{k-1}$$

$$= A\left(\hat{x}_{k-1} - x_{k-1}\right) - Dw_{k-1}. \quad (43)$$

$$= A\left(\hat{x}_{k-1} - x_{k-1}\right) - Dw_{k-1}. \quad (43)$$
ment SFV-14031, Rev. D) 85741: Energieeffiziente Antriebsregelungen 9. Januar 2019 40/52

$$\Phi_{k|k-1} = E\left\{ e_{k|k-1} e_{k|k-1}^T \right\}$$
 (44)

mit

$$\begin{aligned} e_{k|k-1}e_{k|k-1}^{T} &= \left(A\left(\hat{x}_{k-1} - x_{k-1}\right) - Ew_{k-1}\right) \left(\left(\hat{x}_{k-1} - x_{k-1}\right)^{T} A^{T} - w_{k-1}^{T} E^{T}\right) \\ &= A\left(\hat{x}_{k-1} - x_{k-1}\right) \left(\hat{x}_{k-1} - x_{k-1}\right)^{T} A^{T} - A\left(\hat{x}_{k-1} - x_{k-1}\right) w_{k-1}^{T} E^{T} \\ &+ Ew_{k-1} \left(\hat{x}_{k-1} - x_{k-1}\right)^{T} A^{T} + Ew_{k-1} w_{k-1}^{T} E^{T} \end{aligned} \tag{45}$$

ERSITY OF APPLIED SCIENCE

Kalman Filter III

 Auf Grund der Linearität des Erwartungswertes können die Erwartungswerte der einzelnen Terme berechnet werden

$$E\left\{A\left(\hat{x}_{k-1} - x_{k-1}\right)\left(\hat{x}_{k-1} - x_{k-1}\right)^{T} A^{T}\right\} = A\Phi_{k-1}A^{T}$$
(46)

$$E\left\{A\left(\hat{x}_{k-1} - x_{k-1}\right)w_{k-1}^{T} E^{T}\right\} = 0$$
(47)

$$E\left\{Ew_{k-1}\left(\hat{x}_{k-1} - x_{k-1}\right)^{T} A^{T}\right\} = 0$$
(48)

$$E\left\{Ew_{k-1}(\hat{x}_{k-1} - x_{k-1})^T A^T\right\} = 0$$
 (48)

$$\mathrm{E}\left\{Ew_{k-1}w_{k-1}^{T}E^{T}\right\} = ER_{w}E^{T}, \quad (49)$$

damit folgt

$$\Phi_{k|k-1} = A\Phi_{n-1}A^T + ER_w E^T \tag{50}$$

Kalman Fiter als Rekursion

Vorhersage (prediction stage)

$$\hat{x}_{k|k-1} = A\hat{x}_{k-1} + Bu_{k-1} \tag{51}$$

$$\Phi_{k|k-1} = A\Phi_{k-1}A^T + DR_wD^T \tag{52}$$

Korrektur (correction stage)

$$\phi_k = \Phi_{k|k-1} C^T \left(r_v + C_k \Phi_{k|k-1} C_k^T \right)^{-1}$$
 (53)

$$\hat{x}_k = \hat{x}_{k|k-1} + \phi_k \left(y_k - C_k \hat{x}_{k|k-1} \right)$$
 (54)

$$\Phi_k = (\operatorname{Id} -\phi_k C_k) \, \Phi_{k|k-1}. \tag{55}$$

- Durch Überführung $x \to \theta$, $C^T \to x$ kann das Kalman Filter für Parameterschätzung genutzt werden:
- Vorhersage

$$\hat{\theta}_{k|k-1} = \hat{\theta}_{k-1} \tag{56}$$

$$\Phi_{k|k-1} = \Phi_{k-1} + R_w \tag{57}$$

Korrektur

$$\phi_k = \Phi_{k|k-1} x_k \left(r_v + x_k^T \Phi_{k|k-1} x_k \right)^{-1}$$
 (58)

$$\hat{\theta}_k = \hat{\theta}_{k|k-1} + \phi_k \left(y_k - x_k^T \hat{\theta}_{k|k-1} \right)$$
 (59)

$$\Phi_k = \left(1 - \phi_k x_k^T\right) \Phi_{k|k-1}. \tag{60}$$

Kalman Filter: Initialisierung

Übliche Werte für die Initialisierung eines KF in der Praxis

$$\bullet \ R_w = \begin{pmatrix} \sigma_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_n^2 \end{pmatrix}$$

- $x = x_{\text{true}} \text{ oder } x = 0$
- $\Phi = 10^4 \, \text{Id}$
- $r_v = 1$

Kalman Filter: Erweiterungen

- Extended Kalman Filter (EKF):
 - Schätzung von Parametern und Zustand
 - Berücksichtigung von Nichtlinearitäten
- Errors-In-Variables Kalman Filter (EIV-KF):
 - Orthogonale Schätzung (Fehler in beiden Variablen)
- Errors-In-Variables Kalman Filter (EIV-EKF):
 - Orthogonale Schätzung (Fehler in beiden Variablen)
 - Schätzung von Parametern und Zustand
 - Berücksichtigung von Nichtlinearitäten
- Unscented Kalman Filter (UKF):
 - Statistische Berücksichtigung von Nichtlinearitäten

Luenberger-Beobachter: Zustandsraumbeschreibung

Zustandsgleichung des Beobachters:

$$\dot{x} = A\hat{x} + Bu + H\left(y - \hat{y}\right) \tag{61}$$

Ausgangswert des Beobachters

$$\hat{y} = C\hat{x} \tag{62}$$

Damit folgt für den Schätzwert des Zustands

$$\hat{x} = A\hat{x} + Bu + HC(x - \hat{x}) \tag{63}$$

ullet Der Schätzfehler $e=x-\hat{x}$ genügt damit der Zustandsgleichung

$$\dot{e} = (A - HC) e \tag{64}$$

- Ist (A HC) stabil, gilt $\lim_{t \to \infty} e(t) = 0$
- ullet Eigenwerte von (A-HC) sollten links von den Eigenwerten von A liegen, damit ist der Beobachter schneller als das System

Literatur I

G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic Systems. Pearson, 2010.

T. C. Hsia.

System identification. Lexington Books, 1977.

L. Ljung.

System Identification: Theory for the User. Upper Saddle River, NJ: PTR Prentice Hall, 1999.

J. Lunze.

Regelungstechnik 1-Systemtheorietische Grundlagen, Analyse und Entwurf einschleifiger Regelungen.
Springer, 2014.

Literatur II

J. Lunze.

Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung. Springer, 2014.

H. Unbehauen.

Regelungstechnik II.

Friedr. Vieweg und Sohn, 2007.

Proof Matrix Inversion Lemma

Proof The proof follows [2]. Pre-multiplying (26) by A + BCD results in

$$1 = (\mathbf{A} + \mathbf{BCD}) \left(\mathbf{A}^{-1} - \mathbf{A}^{-1} \mathbf{B} \left(\mathbf{C}^{-1} + \mathbf{D} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \mathbf{D} \mathbf{A}^{-1} \right)$$
 (65)

and the objective of the proof is to show that the right hand side of (65) is the identity. By direct manipulation it is possible to obtain

$$\begin{split} & (\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D}) \left(\mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B} \right)^{-1}\mathbf{D}\mathbf{A}^{-1} \right) \\ = & \mathbf{1} + \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} - \mathbf{B} \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B} \right)^{-1}\mathbf{D}\mathbf{A}^{-1} \\ & - \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1}\mathbf{B} \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B} \right)^{-1}\mathbf{D}\mathbf{A}^{-1} \\ = & \mathbf{1} + \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} - \mathbf{B} \left(\mathbf{1} + \mathbf{C}\mathbf{D}\mathbf{A}^{-1}\mathbf{B} \right) \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B} \right)^{-1}\mathbf{D}\mathbf{A}^{-1} \\ = & \mathbf{1} + \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} - \mathbf{B}\mathbf{C} \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B} \right) \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B} \right)^{-1}\mathbf{D}\mathbf{A}^{-1} \\ = & \mathbf{1} + \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} - \mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}^{-1} \end{split}$$

=1