CHAPTER 5:

MULTIVARIATE METHODS

Multivariate Data

- Multiple measurements (sensors)
- □ *d* inputs/features/attributes: *d*-variate
- N instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} X_1^1 & X_2^1 & \cdots & X_d^1 \\ X_1^2 & X_2^2 & \cdots & X_d^2 \\ \vdots & & & & \\ X_1^N & X_2^N & \cdots & X_d^N \end{bmatrix}$$

Multivariate Parameters

Mean : $E[\mathbf{x}] = \boldsymbol{\mu} = [\mu_1, ..., \mu_d]^T$

Covariance:
$$\sigma_{ij} = \text{Cov}(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)^T] = E[X_i X_j^T] - \mu_i \mu_j$$

Correlation:
$$Corr(X_i, X_j) = \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$

Covariance Matrix:

$$\Sigma = \text{Cov}(\mathbf{X}) = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & & & \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix}$$

Parameter Estimation from data

sample X

Sample mean **m**:
$$m_i = \frac{\sum_{t=1}^{N} x_i^t}{N}, i = 1,...,d$$

Covariance matrix
$$\mathbf{S} : s_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$$

Correlation matrix
$$\mathbf{R} : r_{ij} = \frac{S_{ij}}{S_i S_j}$$

Estimation of Missing Values

- What to do if certain instances have missing attribute values?
- Ignore those instances. This is not a good idea if the sample is small
- Use 'missing' as an attribute: may give information
- Imputation: Fill in the missing value
 - Mean imputation: Use the most likely value (e.g., mean)
 - Imputation by regression: Predict based on other attributes

Multivariate Normal Distribution

$$\mathbf{x} \sim \mathbf{N}_{d}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]$$

Multivariate Normal Distribution

- □ Mahalanobis distance: $(x \mu)^T \sum^{-1} (x \mu)$ measures the distance from x to μ in terms of \sum (normalizes for difference in variances and correlations)
- □ Bivariate: *d* = 2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$p(x_{1},x_{2}) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \exp\left[-\frac{1}{2(1-\rho^{2})}(z_{1}^{2}-2\rho z_{1}z_{2}+z_{2}^{2})\right]$$

$$z_{i} = (x_{i} - \mu_{i})/\sigma_{i} \quad \text{z-normalization}$$

Bivariate Normal

Isoprobability [i.e.,
$$(x - \mu)^T \sum^{-1} (x - \mu) = c^2$$
]

when covariance is 0, ellipsoid axes are parallel to coordinate axes

Independent Inputs: Naive Bayes

□ If x_i are independent, offdiagonal values of \sum are 0, Mahalanobis distance reduces to weighted (by $1/\sigma_i$) Euclidean distance:

$$p(\mathbf{x}) = \prod_{i=1}^{d} p_i(x_i) = \frac{1}{(2\pi)^{d/2} \prod_{i=1}^{d} \sigma_i} \exp\left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right]$$

If variances are also equal, reduces to
Fuelidoan distance

Euclidean distance
The use of the term "Naïve Bayes" in this chapter is somewhat wrong
Naïve Bayes assumes independence in the probability sense,
not in the linear algebra sense

Parametric Classification

$$p(\mathbf{x} \mid C_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

$$p(\mathbf{x} \mid C_i) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}_i|^{1/2}} exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) \right]$$

Discriminant functions

$$g_i(\mathbf{x}) = \log p(\mathbf{x} \mid C_i) + \log P(C_i)$$

$$= -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_i| - \frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) + \log P(C_i)$$

Estimation of Parameters from data

sample X

$$\hat{P}(C_i) = \frac{\sum_t r_i^t}{N}$$

$$\mathbf{m}_i = \frac{\sum_t r_i^t \mathbf{x}^t}{\sum_t r_i^t}$$

$$\mathbf{S}_i = \frac{\sum_t r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^T}{\sum_t r_i^t}$$

$$g_i(\mathbf{x}) = -\frac{1}{2} \log |\mathbf{S}_i| - \frac{1}{2} (\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}_i^{-1} (\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

Assuming a different **S**_i for each C_i

Quadratic discriminant. Expanding the formula on previous slide:

$$g_{i}(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_{i}| - \frac{1}{2}(\mathbf{x}^{\mathsf{T}}\mathbf{S}_{i}^{-1}\mathbf{x} - 2\mathbf{x}^{\mathsf{T}}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} + \mathbf{m}_{i}^{\mathsf{T}}\mathbf{S}_{i}^{-1}\mathbf{m}_{i}) + \log\hat{P}(C_{i})$$

$$= \mathbf{x}^{\mathsf{T}}\mathbf{W}_{i}\mathbf{x} + \mathbf{w}_{i}^{\mathsf{T}}\mathbf{x} + \mathbf{w}_{i0}$$
where

has the form of a quadratic formula

$$\mathbf{W}_{i} = -\frac{1}{2}\mathbf{S}_{i}^{-1}$$

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1}\mathbf{m}_{i}$$

$$\mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{\mathsf{T}}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} - \frac{1}{2}\log|\mathbf{S}_{i}| + \log\hat{P}(C_{i})$$

See figure on next slide

Assuming Common Covariance Matrix **S**

- Shared common sample covariance \$
- Discriminant reduces to $\sum_{i} \hat{P}(C_i) \mathbf{S}_i$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$
 which is a linear discriminant

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

where

$$\mathbf{w}_{i} = \mathbf{S}^{-1}\mathbf{m}_{i} \quad \mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{\mathsf{T}}\mathbf{S}^{-1}\mathbf{m}_{i} + \log \hat{P}(C_{i})$$

Common Covariance Matrix S

Arbitrary covariances but shared by classes

Assuming Common Covariance Matrix **S** is Diagonal

□ When $x_j j = 1,...d$, are independent, \sum is diagonal $p(x|C_i) = \prod_{j \mid i} p_d(x_j \mid C_i) m_{ij}$ (Naive Bayes' assumption) $\sum_{i=1}^{j} \left(\frac{x_j \mid C_i}{s_i}\right) + \log \hat{P}(C_i)$

Classify based on weighted Euclidean distance (in s_i units) to the nearest mean

Assuming Common Covariance Matrix **S** is Diagonal

Covariances are 0, so ellipsoid axes are parallel to coordinate axes

Assuming Common Covariance Matrix **S** is Diagonal and variances are equal

Nearest mean classifier: Classify based on Euclidean distance to the nearest mean

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{m}_i\|^2}{2s^2} + \log \hat{P}(C_i)$$
$$= -\frac{1}{2s^2} \sum_{i=1}^d (x_i^t - m_{ij})^2 + \log \hat{P}(C_i)$$

 Each mean can be considered a prototype or template and this is template matching

Assuming Common Covariance Matrix **S** is Diagonal and

variances are equa

Covariances are 0, so ellipsoid axes are parallel to coordinate axes Variances are the same, so ellipsoids become circles.

Model Selection

Assumption	Covariance matrix	No of parameters
Shared, Hyperspheric	$S_i = S = S^2$	1
Shared, Axis-aligned	\mathbf{S}_{i} = \mathbf{S} , with s_{ij} = 0	d
Shared, Hyperellipsoidal	S _i =S	d(d+1)/2
Different, Hyperellipsoidal	S _i	K d(d+1)/2

- As we increase complexity (less restricted S), bias decreases and variance increases
- Assume simple models (allow some bias) to control variance (regularization)

Population likelihoods and posteriors > 2Arbitrary covar. 0 Diag. covar.

0

Х

Different cases of covariance matrices fitted to the same data lead to different decision boundaries

Discrete Features

□ Binary features: $p_{ii} = p(x_i = 1 | C_i)$ if x_i are independent (Naive Bayes')

$$p(x \mid C_i) = \prod_{j=1}^{d} p_{ij}^{x_j} (1 - p_{ij})^{(1 - x_j)}$$
 the discriminant is linear

$$g_i(\mathbf{x}) = \log p(\mathbf{x} | C_i) + \log P(C_i)$$

$$= \sum_{j} \left[x_j \log p_{ij} + (1 - x_j) \log (1 - p_{ij}) \right] + \log P(C_i)$$

Estimated parameters

$$\hat{p}_{ij} = \frac{\sum_{t} x_{j}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$$

Discrete Features

□ Multinomial (1-of- n_i) features: x_i in $\{v_1, v_2, ..., v_{n_i}\}$ $p_{ijk} = p(z_{jk} = 1 | C_i) = p(x_i = V_k | C_i)$ where $z_{ik} = 1$ if $x_i = v_k$; or 0 otherwise if x_i are independent $p(\mathbf{x} \mid C_i) = \prod_{i=1}^d \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$ $g_i(\mathbf{x}) = \sum_i \sum_k z_{jk} \log p_{ijk} + \log P(C_i)$ $\hat{p}_{ijk} = \frac{\sum_{t} z_{jk}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$

Multivariate Regression

$$r^t = g(x^t | w_0, w_1, ..., w_d) + \varepsilon$$

Multivariate linear model
$$w_0 + w_1 x_1^t + w_2 x_2^t + \dots + w_d x_d^t$$

$$E(\mathbf{w}_0, \mathbf{w}_1, ..., \mathbf{w}_d \mid \mathbf{X}) = \frac{1}{2} \sum_{t} [r^t - \mathbf{w}_0 - \mathbf{w}_1 \mathbf{x}_1^t - \cdots - \mathbf{w}_d \mathbf{x}_d^t]^2$$

Multivariate polynomial model:

Define new higher-order variables

$$z_1 = x_1, z_2 = x_2, z_3 = x_1^2, z_4 = x_2^2, z_5 = x_1 x_2$$

and use the linear model in this new z space (basis functions, kernel trick: Chapter 13)