EMPLOYEE CHURN PREDICTION USING ML MODELS By AFIYA AFSHEEN

TABLE OF CONTENTS

- Introduction
- Project Flow
- About Dataset
- Basic Cleaning
- Methodology-wise Basic DataFrame
- Visualization
- Correlation Matrix
- Class Imbalnce ,Outliers,Skewness.
- DataFrame_2
- Dataframe_1 (v/s) DataFrame_2
- Feature Selection
- Conclusion

INTRODUCTION

Employee turnover, or the rate at which employees leave a company and are replaced by new hires, is a critical metric for organizations across industries.

In this model we will be deplloying supervised Machine learning techniques to prefict the turnover

ABOUT DATASET

DataSet: Real dataset shared from Edward Abushkin's blog used to predict an Employee's risk of quitting.

Columns: 10

Features	"department" , "promoted" ,"review" ,"projects" ,"salary","tenure","satisfaction" ,"bonus" ,"avg_hrs_month" , "left"
Target	"Left"
O No.of Rows	9540

Problem Statement

Predict if employee will leave company.

BASIC CLEANING:

Null Values					
DATA TYPE OBJECT	"department","salary","left","Promoted","bonus				
DATA TYPE NUMERIC	"review","projects","tenure",satisfaction","avg_hrs_month".				

DATA TYPE CONVERSION USING LABEL ENCODER

BASIC DATAFRAME

Model	Accuracy	Precision	Recall	F1-Score	
Logistic Regression	72.327044	0.726810	0.966165	0.264624	
Decision Tree	81.813417	0.860844	0.874436	0.694811	
Random Forest	85.691824	0.872702	0.927820	0.747456	
KNN	73.322851	0.772757	0.874436	0.481142	
SVM	69.706499	0.697065	1.000000	0.00000	
XGBoost	85.534591	0.879683	0.918045	0.748634	

02 VISUALIZATION

CLASS IMBALANCE

TARGET COLUMN "LEFT "

HAD CLASS IMBALANCE

ACTION TAKEN: APPLIED SMOTE TECHNIQUE

"LEFT" - "YES" IF THE EMPLOYEE ENDED UP LEAVING, "NO" OTHERWISE.

Instance	No.of "NO"	No.of"YES"
Before	6756	2784
After	6756	6756

04

OUTLIERS

NUMERICAL COLUMNS WHICH REQUIRE OUTLIERS

TREATMENT:

'REVIEW','PROJECTS','TENURE",'AVG_HRS_MONTH'

Type of Distribution	Method Used	Columns
Normal	Standard Deviation	"review","proj ect","tenure"," avg_hrs_mon th"
Skewed	IQR	NA

Column	Skewness	Skewness Treatment Required		
department	-0.526152	NO		
promoted	6.533033	NO		
review	0.153407	NO		
projects	0.023403	NO		
salary	-1.237002	NO		
tenure	-0.099847	NO		
satisfaction	0.099041	NO		
bonus	1.554054	NO		
avg_hrs_month	-0.119797	NO		

DATAFRAME_2

Model	Accuracy	Precision	Recall	F1-Score
Logistic Regression	53.015168	0.691834	0.664693	0.558414
Decision Tree	80.096189	0.842502	0.827535	0.802496
Random Forest	85.423603	0.884384	0.871947	0.85482
KNN	74.953755	0.797524	0.667654	0.764522
SVM	49.981502	0.498144	0.993338	0.00000
XGBoost	83.3518	0.862324	0.874625	0.834680
AdaBoost	69.367370	0.811979	0.792746	0.675549

DATAFRAME_1 V/S DATAFRAME_2

F1-Score

0.558414

0.802496

0.85482

0.764522

0.000000

0.834680

0.675549

1								
Model	Accuracy	Precisio n	Recall	F1-Score	Model	Accura cy	Precis ion	Recall
Logistic Regressi on	72.327044	0.72681 O	0.966165	0.264624	Logistic Regression	53.01516 8	0.69183 4	0.66469 3
Decision Tree	81.813417	0.8608 44	0.874436	0.694811	Decision Tree	80.0961 89	0.8425 02	0.82753 5
					Random Forest	85.4236 O3	0.8843 84	0.871947
Random Forest	85.691824	0.87270 2	O.92782 O	0.747456	KNN	74.9537 55	0.7975 24	0.66765 4
KNN	73.322851	0.77275 7	0.874436	0.481142	SVM	49.9815 O2	0.49814 4	0.99333 8
SVM	69.706499	0.6970 65	1.00000 O	0.000000	XGBoost	83.3518	0.8623 24	0.87462 5
XGBoost	85.534591	0.87968 3	0.918045	0.748634	AdaBoost	69.3673 70	O.81197 9	0.79274 6

FEATURE SELECTION

We see promoted Salary projects and Bonus are least important

Importance	Column
0.049497	department
0.003577	promoted
0.260457	review
0.021433	projects
0.018584	salary
0.065972	tenure
0.301302	satisfaction
0.012011	bonus
0.267167	avg_hrs_month

DATA FRAME AFTER FEATURE SELECTION

Model	Accuracy	Precision	Recall	F1-Score
Logistic Regression	53.570107	0.530918	0.629164	0.487127
Decision Tree	78.727340	0.794852	0.777202	0.789454
Random Forest	83.980762	O.848187 O.831236		0.841450
KNN	80.133185	0.821853	0.768320	0.808556
SVM	46.281909	0.495896	0.983716	0.004115
XGBoost	83.166852	0.829756	0.834077	0.833150
AdaBoost	68.183500	0.693796	0.769800	0.661684

Model	BEFOR Accu racy	E Precisi on	Recall	F1- Score	AFTER Accuracy	Precisio n	Recall	F1-Score
Logistic Regression	53.01 5168	0.69183 4	0.66469 3	0.558 414	53.570107	0.530918	0.629164	0.487127
Decision Tree	80.09 6189	0.8425 02	0.827535	0.802 496	78.727340	0.794852	0.777202	0.789454
Random Forest	85.42 3603	0.88438 4	0.871947	0.854 82	83.980762	0.848187	0.831236	0.841450
KNN	74.95 3755	0.79752 4	0.667654	0.7645 22	80.133185	0.821853	0.768320	0.808556
SVM	49.981 502	0.49814 4	0.993338	0.000	46.281909	0.495896	0.983716	0.004115
XGBoost	83.351 8	0.86232 4	0.874625	0.8346 80	83.166852	0.829756	0.834077	0.833150
AdaBoost	69.36 7370	0.811979	0.792746	0.6755 49	68.183500	0.693796	0.769800	0.661684

PROJECT

- Error Chances
- Dependence on Data Quality

FACTS

The Accurecy which ever atmost we get we cannot tell it 100% that employee will leave or stay as this thing have much more dimensions in reality

BASED ON DATASET

Conclusion:

Random Forest is model which is giving the best accurecy outof Linear, Decison tree , Random forest , SVM,KNN,,XGBoost and Ada boost

THANK YOU!

