

Σωματίδιο μάζας m=2 mg με ηλεκτρικό φορτίο q=+2 μC, τη χρονική στιγμή $t_0=0$, αφήνεται σε ένα σημείο O της περιοχής (I), στην οποία υπάρχει οριζόντιο ηλεκτροστατικό πεδίο με ένταση μέτρου $E_1=1$ V/m. Τη χρονική στιγμή $t_1=2$ s, το σωματίδιο αφού έχει διανύσει απόσταση L μέσα στην περιοχή (I), έχει αποκτήσει ταχύτητα \vec{v}_1 και εισέρχεται αμέσως στην περιοχή (II), στην οποία υπάρχει οριζόντιο ηλεκτροστατικό πεδίο έντασης \vec{E}_2 , αντίθετης κατεύθυνσης από το πεδίο έντασης \vec{E}_1 (όπως φαίνεται στο παραπάνω σχήμα). Το σωματίδιο τη χρονική στιγμή $t_2=4$ s βρίσκεται στη θέση Σ, έχοντας διανύσει μια απόσταση d στην περιοχή (II) και έχει ταχύτητα μέτρου $\upsilon_2=1$ m/s.

4.1. Να υπολογίσετε το μέτρο της επιτάχυνσης του σωματιδίου στην περιοχή (Ι).

Μονάδες 5

4.2. Να υπολογίσετε την απόσταση L και το μέτρο της ταχύτητας v_1 του σωματιδίου τη χρονική στιγμή t_1 .

Μονάδες 6

4.3. Να υπολογίσετε το μέτρο της έντασης \vec{E}_2 και την απόσταση d που διανύει το σωματίδιο στην περιοχή (II).

Μονάδες 8

4.4. Αν το δυναμικό του σημείου Ο είναι $V_0=10~V$ να υπολογίσετε το δυναμικό στο σημείο Σ.

Μονάδες 6