Fast and Accurate Entity Recognition with Iterated Dilated Convolutions - Strubell et al.

M Saiful Bari

Research Assistant School of Computer Science and Engineering Nanyang Technological University

March 12, 2018

Outline

- Task
 - Problem Description
 - Model
 - Problems
 - Intuitions

- Proposed Method
 - Dilated Convolutions
 - Model Architecture
 - Results
- 3 Analysis

Problem Description

Task Name: Named-entity recognition.

Example: identify different kinds of noun in a sentence.

EU rejects German call to boycott British lamb B-ORG O I-MISC O O O I-MISC O

Model: SOTA given by **lample** et al. in NAACL-2016. Later by **Strubell** et al in EMNLP 2017 (only speed gain).

- Lample et al : Bi-directional RNN at character and Word Level.
- Strubell et al: CNN at character(?) and ID-CNN at Word Level.

Model

Softmax:

$$tag[i] = \frac{e^{logit[i]}}{\sum_{j=1}^{NumberOfClass} e^{logit[j]}}$$

where tag[i] is the **local probability**.

• Linear-chain CRF: Calculates a global score C.

$$C(y_1,\ldots,y_m) = b[y_1] + \sum_{t=1}^m s_t[y_t] + \sum_{t=1}^{m-1} T[y_t,y_{t+1}] + e[y_m]$$

$$= \text{begin} + \text{scores} + \text{transitions} + \text{end}$$

T is a trainable parameter.

Probability Calculation

• Linear-chain CRF: Calculates a global score C.

$$C(y_1, \dots, y_m) = b[y_1] + \sum_{t=1}^m s_t[y_t] + \sum_{t=1}^{m-1} T[y_t, y_{t+1}] + e[y_m]$$

$$= \text{begin} + \text{scores} + \text{transitions} + \text{end}$$

Figure: Taking local probability won't help

Problems

- Training time is quite long (ConLL dataset(english) training time: 8-12 HOUR)
- Structurally RNN does not support better distributed computing (compared to CNN).
- ullet Training with CRF layer is costly. $O(Number Of Class^2 * seqLen)$ (Need Dynamic Programming)

$$\tilde{s}_t(y_t) = \operatorname{argmax}_{y_t, \dots, y_m} C(y_t, \dots, y_m)$$

$$= \operatorname{argmax}_{y_{t+1}} s_t[y_t] + T[y_t, y_{t+1}] + \tilde{s}_{t+1}(y^{t+1})$$

$$\mathbb{P}(y_1, \dots, y_m) = \frac{e^{C(y_1, \dots, y_m)}}{Z}$$

$$Z = \sum_{y_1, \dots, y_m} e^{C(y_1, \dots, y_m)}$$

• It takes lower time to train CRF layer in CPU than GPU

Intuitions

Original model trained by **lample** et al.: Number of parameter is not so high.

Average sentence length (According to PENN TreeBank) is around 23. (not so high)

Can we set an end-to-end training method with a CNN.

Outline

- Task
 - Problem Description
 - Model
 - Problems
 - Intuitions

- 2 Proposed Method
 - Dilated Convolutions
 - Model Architecture
 - Results
- 3 Analysis

Dilated Convolutions

For sequence label training we can use **Dilated Convolutional** Neural Network (Fisher et al).

- Broader view of the input to capture more contextual information.
- Works better with less parameters.

Dilated Convolutions for image, according to original author

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Dilated Convolutions for language model

Figure: A dilated CNN block with maximum dilation width 4 and filter width 3.

$$r = l(w - 1) + 1$$

where , r number of node covered at layer l with filter width w. total number of node at layer l is, $2^{l+1}-1$ (exponential growth).

Dilated Convolutions for language model

$$r = l(w-1) + 1$$

where , r number of node covered at layer l with filter width w. total number of node at layer l is, $2^{l+1} - 1$ (exponential growth).

Just four stacked dilated convolutions of width 3 produces token representations with a n effective input width of 31 tokens.

greater than the average sentence length of PENN TreeBank(23) Regular convolution,

$$c_t = W_c \bigoplus_{k=0}^r x_{t \pm k}$$

Dilated Convolution,

$$c_t = W_c \bigoplus_{k=0}^r x_{t \pm k\delta}$$

Output Resolution

- To avoid this scaling, one could pool representations across the sequence, but this is not appropriate for sequence labeling
- it reduces the output resolution of the representation.

Model Architecture

We denote the i^{th} dilated convolutional layer of dilation width δ as $D_{\delta}(i)$ The first layer in the network is a dilation-1 convolution $D_1^{(0)}$).

$$i_t = D_1^{(0)} x_t$$

Next, L_c layers of dilated convolutions of exponentially increasing dilation width are applied to i_t .

$$c_t^{(0)} = i_t$$

$$c_t^{(j)} = relu(D_{2^L C^{-1}}^{(j-1)} c_t^{(j-1)})$$

add a final dilation-1 layer to the stack

$$c_t^{L_c+1} = relu(D_1^{(L_C)}c_t^{(L_C)})$$

Model Architecture

We refer to this stack of dilated convolutions as a block B(). To avoid overfitting we stack the block on top of another so that the number of parameter does not increase.

We iteratively apply B() L_b times

$$b_t^{(1)} = B(i_t)$$

$$b_t^k = B(b_t^{(k-1)})$$

$$h_t^{(L_b)} = W_0 b_t^{(L_b)}$$

loss calculation

Cross-entropy loss,

$$\frac{1}{T} \sum_{t=1}^{T} \log P(y_t | h_t^{(L_b)})$$

Iterative-dialated loss,

$$\frac{1}{L_b} \sum_{k=1}^{L_b} \frac{1}{T} \sum_{t=1}^{T} \log P(y_t | h_t^{(k)})$$

By rewarding accurate predictions after each application of the block, we learn a model where later blocks are used to refine initial predictions.

Results

Model	F1
Ratinov and Roth (2009)	86.82
Collobert et al. (2011)	86.96
Lample et al. (2016)	90.33
Bi-LSTM	89.34 ± 0.28
4-layer CNN	89.97 ± 0.20
5-layer CNN	90.23 ± 0.16
ID-CNN	90.32 ± 0.26
Collobert et al. (2011)	88.67
Passos et al. (2014)	90.05
Lample et al. (2016)	90.20
Bi-LSTM-CRF (re-impl)	90.43 ± 0.12
ID-CNN-CRF	$\textbf{90.54} \pm \textbf{0.18}$

Figure: F1 Score comparison with existing model. (Without character level model)

Results

Model	Speed
Bi-LSTM-CRF	1×
Bi-LSTM	$9.92 \times$
ID-CNN-CRF	$1.28 \times$
5-layer CNN	$12.38 \times$
ID-CNN	$14.10 \times$

Figure: Time comparison to get results.

Adding document-level context improves every model.

Outline

- Task
 - Problem Description
 - Model
 - Problems
 - Intuitions

- 2 Proposed Method
 - Dilated Convolutions
 - Model Architecture
 - Results
- 3 Analysis

Analysis

- Sequence information can be learned by ID-CNN.
- Experiment setup is not clear in the paper.
- They didn't specify the improvement of iterative training in the result section.
- They didn't specify what is document-level context (may be char level model).
- Follow up: Training RNNs as Fast as CNNs Lei et al.
- Link to the code.