

# BLL514E: WHAT MAKES A MOVIE SUCCESSFUL

**AHMET DROBI** 

#### **OUTLINE**:

Introduction

• Introduce the subject of the study

**Collecting Data** 

Dataset description

Statistical Analysis

Study of the overall dataset

Testing Hypotheses

**ML Models** 

ML predictions

Accuracy of ML model

**Summary** 

Final Findings

#### Introduction:

- This study was based on movies data-set which includes 8,000 movies meta-data.
- The original data-set had missing values, in order to do feature engineering, we had to clean the data-set.
- The second step was statistical analysis the data so we can test 9 hypothesis with the aim of finding what effects the revenue of a movie.
- The last step was creating a machine model to predict the revenue based on multiple factors.

#### Collecting Dataset

- To create the dataset we collected the movie data from 2 sources:
  - The Movie Database API
  - OMDb API
- From The Movie Database API we used an endpoint that allowed us to receive a random list of 10,000 movies from the top 100,000 by revenue.
- Then we used OMDb API to fill the meta-data of those movies.
- The resulting dataset columns were as follows:
  - 1) Title 2) Budget 3) Revenue 4)Run-time
  - 5) Motion Picture Association of America rating 6) Genre
  - 7) Top100 Actors in Movie 8) Language 9) Country
  - 10) Meta-score 11) IMDb Rating 12) IMDb-Votes
  - 13) Production-Company 14) Year of Release

# Dataset before any alterations:

|            |          |          |           |         |      |       |          |              |              |            |             |           |            |           |           |           |             | -           |
|------------|----------|----------|-----------|---------|------|-------|----------|--------------|--------------|------------|-------------|-----------|------------|-----------|-----------|-----------|-------------|-------------|
| Title      | Budget   | Revenue  | Date      | Runtime | Year | Rated | Genre    | Director     | Writer       | Actors     | Language    | Country   | Awards     | Metascore | imdbRatir | imdbVote  | Production  | 1           |
| Avengers:  | 3.56E+08 | 2.8E+09  | ######### | 181     | 2019 | PG-13 | Action,  | Ac Anthony   | F Christoph  | Robert Do  | English, Ja | USA       | N/A        | 78        | 8.5       | 589,503   | Marvel Stu  | dios        |
| Avatar     | 2.37E+08 | 2.79E+09 | ########  | 162     | 2009 | PG-13 | Action,  | Ac James Ca  | r James Car  | Sam Wort   | English, S  | USA       | Won 3 Os   | 83        | 7.8       | 1,064,516 | 20th Centu  | iry Fox     |
| Star Wars: | 2.45E+08 | 2.07E+09 | ########  | 136     | 2015 | N/A   | News     | N/A          | Scott Bron   | J.J. Abram | English     | USA       | N/A        | N/A       | 6         | 8         | N/A         |             |
| Avengers:  | 3E+08    | 2.05E+09 | ########  | 149     | 2018 | PG-13 | Action,  | Ac Anthony   | F Christoph  | Robert Do  | English     | USA       | N/A        | 68        | 8.5       | 717,106   | Walt Disne  | y Pictures  |
| Titanic    | 2E+08    | 1.85E+09 | ########  | 194     | 1997 | PG-13 | Drama, I | Rc James Ca  | r James Car  | Leonardo   | English, S  | USA       | Won 11 0   | 75        | 7.8       | 978,848   | Paramount   | Pictures    |
| Jurassic W | 1.5E+08  | 1.67E+09 | 6/6/2015  | 124     | 2015 | PG-13 | Action,  | Ac Colin Tre | v Rick Jaffa | Chris Prat | English     | USA       | 14 wins &  | 59        | 7         | 549,286   | Universal F | Pictures    |
| The Lion K | 2.6E+08  | 1.65E+09 | ########  | 118     | 1994 | G     | Animati  | or Roger All | e Irene Med  | Rowan At   | English, S  | USA       | Won 2 Os   | 88        | 8.5       | 869,323   | Buena Vist  | a           |
| The Aven   | 2.2E+08  | 1.52E+09 | ######### | 143     | 2012 | PG-13 | Action,  | Ac Joss Whe  | Joss Whe     | Robert Do  | English, R  | USA       | Nominate   | 69        | 8         | 1,204,899 | Walt Disne  | y Pictures  |
| Furious 7  | 1.9E+08  | 1.51E+09 | 4/1/2015  | 137     | 2015 | PG-13 | Action,  | Ac James W   | Chris Mor    | Vin Diese  | English, T  | USA, Chin | Nominate   | 67        | 7.2       | 341,279   | Universal F | Pictures    |
| Avengers:  | 2.8E+08  | 1.41E+09 | ########  | 141     | 2015 | PG-13 | Action,  | Ac Joss Whe  | Joss Whe     | Robert Do  | English, K  | USA       | 7 wins & 4 | 66        | 7.3       | 685,405   | Walt Disne  | y Pictures  |
| Black Pant | 2E+08    | 1.35E+09 | ########  | 134     | 2018 | PG-13 | Action,  | Ac Ryan Coo  | g Ryan Coo   | Chadwick   | English, S  | USA       | 14 nomina  | 88        | 7.3       | 545,565   | Marvel Stu  | dios        |
| Harry Pott | 1.25E+08 | 1.34E+09 | 7/7/2011  | 130     | 2011 | PG-13 | Adventu  | ır David Yat | Steve Klo    | Ralph Fier | English     | USA, UK   | Nominate   | 87        | 8.1       | 704,107   | Warner Bro  | os. Picture |
| Star Wars: | 2E+08    | 1.33E+09 | ########  | 152     | 2008 | N/A   | Short, A | ct N/A       | N/A          | Taylor Cla | English     | USA       | N/A        | N/A       | 8.3       | 87        | N/A         |             |
| Jurassic W | 1.7E+08  | 1.3E+09  | 6/6/2018  | 129     | 2018 | PG-13 | Action,  | Ac J.A. Bayo | n Derek Cor  | Chris Prat | English, R  | USA       | N/A        | 51        | 6.2       | 231,869   | Universal F | Pictures    |
|            |          |          |           |         |      |       |          |              |              |            |             |           |            |           |           |           |             | 7           |

#### Cleaning data-set:

The original data-set contained 10,000 movies, after filtering the data-set lt reduced to 8,000 movies, because of the problems in the following features:

- 1-) The Year column: the OMDB API provided a lot of missing values, whereas the data from "The Movie Database" API was almost complete, so we extracted only the year and then renamed it into "Year of Release"
- 2-) The Language column: we changed the missing values of this column to English.

## Cleaning data-set: (cont'd)

- 3-) The Country column: the missing value in this columns were assigned the value USA
- 4-) The IMDB Rating and Votes columns: we assigned Zero to the missing values, so the missing values will not effect data-set
- 5-) The Actors column: The main goal of this column to check how many famous actors/actress in these movies, so we generated a list that contains 100 famous actor/actress, and compered each movie with this list.

#### Cleaning data-set: (cont'd)

- 6) The Production column: The missing values in this columns has been changed from null to others, and there were some production companies that only produced a few movies we also added them to others
- 7) The Run-time column: we assigned the mean to the missing value in this column.
- 8) The Genre column: we only took the first value in this column to be able to use label encoding on it.

## Cleaning data-set: (cont'd)

9) The Awards column: Had a lot of null/missing values and also unusable values, so we found a better alternative in a data-set called "academy-awards" from "Kaggle" and cross referenced our movies data-set with it and counted how many awards each movie have and added it to a column called "Number of Awards" in our data-set.

10) The Released Outside USA column: we add this column to indicate if the movies were released inside USA only or not.



#### Collecting Dataset:

- Some Notes on the dataset:
  - Top 100 Actors in Movie column holds the number of top 100 actors (according to IMDb) that acted in the movie.
  - Motion Picture Association of America rating column is the age rating of the movie. We used this matric because it's the most used metric in the world.

#### Filtered movies data-set

| Title      | Budget    | Revenue    | Runtime | Rated   | Genre     | Actors | Language | Country | Metascore | imdbRating | imdbVotes | Production        | Year of Release | ReleasedOutsi | Number of Awards |
|------------|-----------|------------|---------|---------|-----------|--------|----------|---------|-----------|------------|-----------|-------------------|-----------------|---------------|------------------|
| Avengers:  | 356000000 | 2797800564 | 181     | PG-13   | Action    | 3      | English  | USA     | 78        | 8.5        | 589503    | Marvel Studios    | 2019            | 0             | 0                |
| Avatar     | 237000000 | 2787965087 | 162     | PG-13   | Action    | 0      | English  | USA     | 83        | 7.8        | 1064516   | 20th Century Fox  | 2009            | 0             | 0                |
| Star Wars: | 245000000 | 2068223624 | 136     | Unrated | News      | 0      | English  | USA     | 0         | 6          | 8         | Others            | 2015            | 0             | 0                |
| Avengers:  | 300000000 | 2046239637 | 149     | PG-13   | Action    | 3      | English  | USA     | 68        | 8.5        | 717106    | Walt Disney Pictu | 2018            | 0             | 0                |
| Titanic    | 200000000 | 1845034188 | 194     | PG-13   | Drama     | 2      | English  | USA     | 75        | 7.8        | 978848    | Paramount Pictur  | 1997            | 0             | 2                |
| Jurassic W | 150000000 | 1671713208 | 124     | PG-13   | Action    | 0      | English  | USA     | 59        | 7          | 549286    | Universal Picture | 2015            | 0             | 0                |
| The Lion K | 260000000 | 1649676757 | 118     | G       | Animation | 0      | English  | USA     | 88        | 8.5        | 869323    | Buena Vista       | 2019            | 0             | 0                |
| The Aveng  | 220000000 | 1519557910 | 143     | PG-13   | Action    | 3      | English  | USA     | 69        | 8          | 1204899   | Walt Disney Pictu | 2012            | 0             | 0                |
| Furious 7  | 190000000 | 1506249360 | 137     | PG-13   | Action    | 0      | English  | USA     | 67        | 7.2        | 341279    | Universal Picture | 2015            | 1             | 0                |
| Avengers:  | 280000000 | 1405403694 | 141     | PG-13   | Action    | 3      | English  | USA     | 66        | 7.3        | 685405    | Walt Disney Pictu | 2015            | 0             | 0                |
| Black Pant | 200000000 | 1346739107 | 134     | PG-13   | Action    | 0      | English  | USA     | 88        | 7.3        | 545565    | Marvel Studios    | 2018            | 0             | 0                |
| Harry Pott | 125000000 | 1342000000 | 130     | PG-13   | Adventure | 0      | English  | USA     | 87        | 8.1        | 704107    | Warner Bros. Pict | 2011            | 1             | 0                |
| Star Wars: | 200000000 | 1332459537 | 152     | Unrated | Short     | 0      | English  | USA     | 0         | 8.3        | 87        | Others            | 2017            | 0             | 0                |
| Jurassic W | 170000000 | 1303459585 | 129     | PG-13   | Action    | 0      | English  | USA     | 51        | 6.2        | 231869    | Universal Picture | 2018            | 0             | 0                |

#### Statistical Analysis:

- Firstly we found the statistical data for the numerical features as follows:
  - For IMDb Votes the mean is: 79283.1397 vote
  - For Production Company the mode is "Others" which indicates that no one production company had their movie be in top 100,000 movie by revenue.
  - For Revenue, the mean is: 7.099426e+07.
- Then using the correlation heat diagram Figure 1 we noticed the features that had a likely significant relation to revenue. Those features were: the budget and IMDb votes.

#### Statistical Analysis: Correlation Heatmap

#### • Figure 1



- Figure 2: Actors vs IMDB rating
  - This shows that generally the more famous actors in a movie the higher the rating



- Figure 3: Actors vs Revenue
  - This shows that generally the more famous actors in a movie the higher the revenue is (note however that it goes down at 4 which could be interesting if we higher values for actors to check for a trend)



- Figure 4: Count of movies depending on number of famous actors in it
  - This shows that there are almost no movies with more than 1 famous actors in them



- Figure 5: Awards vs Revenue
  - This shows that generally number of awards doesn't effect the revenue much



Figure 6: Count of movies depending on rating



- Figure 7: Revenue difference between named companies and others.
  - Red is others
  - Blue is named companies



- Figure 8: Revenue difference between movies released inside USA only or world-wide
  - Red is inside of USA only
  - Blue is outside of USA too.



• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 1:

H0

 The lower the number of famous actors in a movie, the lower the revenue is

H1

• The higher the number of famous actors in a movie, the higher the revenue is.

Method of Testing

 using bar plot and checking the Peterson's Correlation Coefficient which was 0.187.

Result

• We rejected the alternative hypothesis.

• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 2:

H<sub>0</sub>

 The budget of a movie doesn't effect the number of famous actors in it.

H1

 The budget of a movie does effect the number of actors in it.

Method of Testing

 the Peterson's Correlation Coefficient which was 0.141.

Result

• We rejected the alternative hypothesis.

• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 3:

H0

 If a movie's genre is Action, it has a lower average revenue, than if it was of another genre.

H1

• If a movie's genre is Action, it has a higher average revenue, than if it was of another genre.

Method of Testing

 calculating the overall mean and comparing it with the mean of action genre movies.

Result

 The alternative hypothesis passed, and we reject the null hypothesis

• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 4:

H0

 If a movie is released outside of USA, it's revenue will be lower than revenue if released in USA only.

H1

 If a movie is released outside USA, it's revenue will be higher than revenue if released in USA only.

Method of Testing

• the Mann-Whitney U test with p-value = 2.44e-10

Result

We reject the alternative hypothesis

• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 5:

H<sub>0</sub>

 The Higher the budget of a movie the Lower the revenue is.

H1

 The Higher the budget of a movie the Higher the revenue is.

Method of Testing

 Method of testing: the Peterson's Correlation Coefficient which was 0.51.

Result

 The alternative hypothesis passed, and we reject the null hypothesis

• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 6:

H<sub>0</sub>

 The Higher number of famous actors in a movie, the Lower its rating is.

H1

 The Higher the number of famous actors in a movie, the Higher its rating is.

Method of Testing

• bar plot.

Result

 The alternative hypothesis passed, and we reject the null hypothesis

• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 7:

H<sub>0</sub>

 The Higher the number of people who voted for a movie, the higher its rating is.

H1

 The Higher the number of people who voted for a movie, the lower its rating is.

Method of Testing

• the Peterson's Correlation Coefficient which was 0.34.

Result

We reject the alternative hypothesis.

• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 7:

H<sub>0</sub>

• If a movie is produced by "others", then it will have higher than average revenue.

H1

• If a movie is produced by "others", then it will have lower than average revenue.

Method of Testing

• the Mann-Whitney U test with p-value = 2.44e-10.

Result

We reject the alternative hypothesis.

• we tested 9 hypotheses which are (each with its NULL hypothesis, method of testing and result): Hypothesis 7:

H0

• If a movie has more than 1 award, it has a lower revenue.

H1

 If a movie has more than 1 award, it will have a higher revenue.

Method of Testing

 using bar plot and checking the Peterson's Correlation Coefficient which was 0.04.

Result

We reject the alternative hypothesis.

#### Machine Learning Model: Logistic Regression

For the machine learning we conclude that a movie is successful if the revenue is double the budget.

For the string type columns (Genre, Country,...) we changed them to category type and used label encoding

```
data["Genre"] = data["Genre"].astype('category')
data['Genre_cat'] = data["Genre"].cat.codes
```

We used Logistic Regression to build the model. Firstly, we started with all the features to see how much accuracy they give us, and we kept iterating the model until we got an acceptable accuracy. The features we were using at that point were the budget and imdb-votes.

The final accuracy of the model was 0.77

#### Machine Learning Model: Checking for Overfitting

We used cross validation to try to avoid overfitting problem.

```
accuracy = cross_val_score(logreg_x_y_scoring="accuracy", cv=10)
print(accuracy)
print("Accuracy of the model with cross validation is: ", accuracy.mean() * 100)_# => 76.099
```

The resulting accuracy is 76.099, which indicates that it's likely we didn't fall in overfitting trap.

#### Logistic Regression Confusion Matrix

| Accuarcy of l | ogistic regre | ession cla | ssifier on | test set: | 0.77 |  |  |  |  |  |  |  |  |
|---------------|---------------|------------|------------|-----------|------|--|--|--|--|--|--|--|--|
| [[ 497 366]   |               |            |            |           |      |  |  |  |  |  |  |  |  |
| [ 173 1318]]  |               |            |            |           |      |  |  |  |  |  |  |  |  |
|               | precision     | recall     | f1-score   | support   |      |  |  |  |  |  |  |  |  |
|               |               |            |            |           |      |  |  |  |  |  |  |  |  |
| 0.0           | 0.74          | 0.58       | 0.65       | 863       |      |  |  |  |  |  |  |  |  |
| 1.0           | 0.78          | 0.88       | 0.83       | 1491      |      |  |  |  |  |  |  |  |  |
|               |               |            |            |           |      |  |  |  |  |  |  |  |  |
| accuracy      |               |            | 0.77       | 2354      |      |  |  |  |  |  |  |  |  |
| macro avg     | 0.76          | 0.73       | 0.74       | 2354      |      |  |  |  |  |  |  |  |  |
| weighted avg  | 0.77          | 0.77       | 0.76       | 2354      |      |  |  |  |  |  |  |  |  |
|               |               |            |            |           |      |  |  |  |  |  |  |  |  |

#### Logistic Regression ROC Curve



#### Conclusion

We set out in this study to answer the question of what affects the revenue of a movie and to build a ML model to classify/predict whether a movie is successful or not. We found out that the budget and the number of IMDB-votes of a movie are the main effecting forces on its revenue. The budget in this case is predictable, however, the IMDB-votes could indicate that the more successful the movie is the more the audience are inclined To vote for it on IMDB — needs further studying.

For the ML model we used Logistic Regression to create a model that can classify/predict whether a movie is successful with an accuracy of 0.73 using 2 features which are budget and IMDB-votes.

#### THANKS FOR LISTING

