POEL C6, C7: Obwody nieliniowe prądu stałego. Składanie charakterystyk elementów.

Zadanie 1. Wyznaczyć analitycznie prądy płynące przez opory nieliniowe. Rozwiązanie wyznaczyć dla oporu nieliniowego R_N o charakterystyce: i = au|u| oraz u = bi|i| (a > 0 i b > 0). Założyć $I_N > 0$.

 ${f Zadanie}$ 2. Wyznaczyć analitycznie prąd płynący przez opór R_N i napięcie na tym oporze. Wykorzystać twierdzenia o źródłach zastępczych. Dla podanych danych liczbowych wyznaczyć prąd I_N graficznie korzystając z metody: prostej oporu i charakterystyki łącznej.

Dane: $E = 6 \,\text{V}, J = 12 \,\text{mA},$ $R_1 = 0.5 \,\mathrm{k}\Omega, \, R_2 = 2 \,\mathrm{k}\Omega, \, R_3 = 0.6 \,\mathrm{k}\Omega,$ $R_N: i = au + bu^3,$ $a = 1 \,\text{mS}, b = 1 \,\text{mA/V}^3.$

Dane: $E = 10 \text{ V}, R_1 = \frac{1}{2} \text{ k}\Omega,$ $R_2 = \frac{1}{4} k\Omega, R_3 = 1 k\Omega, \tilde{R}_4 = \frac{1}{3} k\Omega,$ $R_N: i = au + bu^2 \operatorname{sign}(u),$ $a = 1 \,\text{mS}, b = 1 \,\text{mA/V}^2$.

(b)

Dane: $E = 4 \,\text{V}, J = 6 \,\text{A},$ $R_1 = \frac{1}{2}\Omega, r = 1\frac{1}{2}\Omega,$ $R_N: \vec{u} = \alpha i + \beta i^3,$ $\alpha = 2\Omega, \beta = 1 \text{ V/A}^3.$

(c)

(a)

 Zadanie 3. Obliczyć prąd I_N dla $R_2=0.5\,\mathrm{k}\Omega$, przyjmując, że opór nieliniowy R_N ma charakterystykę pokazaną na rysunku. Jaki warunek musi spełniać opór R_2 , aby rozwiązanie było jednoznaczne? Dane: $J=5\,\mathrm{mA},~\beta=2,$ $R_1 = 100 \,\Omega.$

i [mA]0.4 0.2 0.1 0.2 0.3 0.4

Zadanie 4. Wyznaczyć graficznie charakterystykę i = f(u) pokazanych niżej dwójników. Przyjąć, że dioda D ma charakterystykę zwarciowo-rozwarciową.

Zadanie 5. Wyznaczyć graficznie charakterystykę dwójnika na prawo od zacisków AB. Charakterystyka oporu nieliniowego R_N jest dana graficznie na rys. (c). Dla zadanego punktu pracy wyznaczyć: przewodność statyczną, przewodność dynamiczną, oraz moc traconą w dwójniku na prawo od zacisków AB. Dane: (a) $J=3\,\mathrm{mA},\,R=0.5\,\mathrm{k}\Omega,$ (b) $E=5\,\mathrm{V},\,R=2\,\mathrm{k}\Omega.$

Zadanie 6. Wiedząc, że energia zgromadzona w obwodzie wynosi $3\,\mu\mathrm{J}$ wyznaczyć: E, moc pobieraną ze źródła, punkt pracy oporu nieliniowego R_N (charakterystyka pokazana na rysunku), oraz przewodność statyczną i dynamiczną oporu R_N w jego punkcie pracy. Dane: $L=0.5\,\mathrm{H},\,C=1\,\mu\mathrm{F},\,R=1\,\mathrm{k}\Omega$.

