1. Direkte Verbindung zweier Rechner über eine Switch

Auf den Rechnern A und B die gewünschten Pfade einstellen (route-Befehl)

nicht nötig, da auf MAC-Ebene → ARP-Protokoll

Auf dem Rechner B netserver starten.

netserver

Auf den Rechner A den Sniffer wireshark starten und capture aktivieren.

Auf dem Rechner A netperf starten. Mittels Parameter die gewünschte Datenmenge einstellen, z.B. 500.000 Bytes.

netperf -H 192.168.18.X -I 10 -- -S X

In wireshark capture stoppen. Die aufgezeichneten Daten abspeichern.

Daten an TCPAnalyser übertragen und analysieren. Grafik (GIF-Format) kann gespeichert und in das Protokoll übernommen werden.

RTTI: Ping 192.168.18.X -s {100;1000;100000;1000000;10000000;}

Erwartung: RTTI nahezu unabhängig von der Paketgröße

Max Transferrate: siehe netperf

Erwartung: Transferrate maximal ~min(Netzwerkgeschwindigkeit,Routergeschwindigkeit)

Aussagen zur Arbeitsweise der Switch: ARP-Request der MAC-Adressen per sniffer aufnehmen?

TCP-WindowSize Einfluss: verschiedene WindowSizes ausprobieren {100;10000;1000000}

Erwartung: aufgrund kleiner Entfernung kein merkbarer Einfluss

2. Verbindung über einen Router

Auf den Rechnern A und B die gewünschten Pfade einstellen (route-Befehl)

sudo /sbin/route add -net 192.168.18.0/24 gw 192.168.18.2

Auf dem Rechner B netserver starten.

netserver

Auf den Rechner A den Sniffer wireshark starten und capture aktivieren.

Auf dem Rechner A netperf starten. Mittels Parameter die gewünschte Datenmenge einstellen, z.B. 500.000 Bytes.

netperf -H 192.168.18.X -I -1000000 -- -S 8192

In wireshark capture stoppen. Die aufgezeichneten Daten abspeichern.

Daten an TCPAnalyser übertragen und analysieren. Grafik (GIF-Format) kann gespeichert und in das Protokoll übernommen werden.

RTTI: Ping 192.168.18.X -s {100;1000;10000;100000;1000000;10000000;} - vergleichen mit Ergebnissen von 1.

Erwartung: RTTI etwas abgeschwächt

Transferrate siehe netperf – Vergleichen mit Ergebnissen von 1.

Erwartung: Transferrate etwas abgeschwächt, da Routing geschehen muss

Eigenschaften der Schnittstellen

?

3. WAN-Verbindung

Auf den Rechnern A und B die gewünschten Pfade einstellen (route-Befehl)

1.	sudo /sbin/route add -net 192.168.17.0/24 gw 192.168.17.240	Α
	sudo /sbin/route add -net 192.168.18.0/24 gw 192.168.18.240	В
2.	sudo /sbin/route add -net 192.168.17.0/24 gw 192.168.17.241	Α
	sudo /sbin/route add -net 192.168.18.0/24 gw 192.168.18.241	В
3.	sudo /sbin/route add -net 192.168.17.0/24 gw 192.168.17.242	Α
	sudo /sbin/route add -net 192.168.18.0/24 gw 192.168.18.242	В
4.	sudo /sbin/route add -net 192.168.17.0/24 gw 192.168.17.243	Α
	sudo /sbin/route add -net 192.168.18.0/24 gw 192.168.18.243	В

Auf dem Rechner B netserver starten.

netserver

Auf den Rechner A den Sniffer wireshark starten und capture aktivieren.

Auf dem Rechner A netperf starten. Mittels Parameter die gewünschte Datenmenge einstellen, z.B. 500.000 Bytes.

netperf -H 192.168.18.X -I -1000000 -- -S 8192

In wireshark capture stoppen. Die aufgezeichneten Daten abspeichern.

Daten an TCPAnalyser übertragen und analysieren. Grafik (GIF-Format) kann gespeichert und in das Protokoll übernommen werden.

Jeweils für alle WANs:

RTTI: Ping 192.168.18.X -s {100;1000;10000;100000;1000000;10000000;}

Länge: L = RTTI / c

Transferrate siehe netperf

Mindestgröße des TCP-Fensters für vollständige Ausnutzung

(Kennzeichnen der verschiedenen Phasen der Stauvermeidung)