Pre-Comp Review - Trig Equations

- 1. Solve for x algebratically. Show your work.
- (e) $2\sin^2 x + 5\sin x = 3$, $0 \le x < 2\pi$

- (a) $4\sin x + 5 = 0$, $0 \le x < 2\pi$
- (b) $4 \sec x + 8 = 0$, $0 \le x < 2\pi$
- (f) $4\sec^2\frac{x}{2} 7\sec\frac{x}{2} 2 = 0, 0^\circ \le x < 360^\circ$

(c) $\cot x - \sqrt{3} = 0$, $0 \le x < 2\pi$

(g) $3\csc^2\frac{x}{2} - 2\csc\frac{x}{2} - 1 = 0, 0^{\circ} \le x < 360^{\circ}$

- (d) $3\cot^2 x 1 = 0$, $0 \le x < 2\pi$
- (h) $4\sin^2 x 3 = 0$, $0^{\circ} \le x < 360^{\circ}$

- 2. Solve for x algebraically. Show your work.
 - (a) $\cos 2x = -\frac{1}{\sqrt{2}}$ (i) if $0 \le x < 2\pi$ (ii) if $-\pi \le x < \pi$

- (b) $\cos 2x = -\frac{1}{\sqrt{2}}$ (i) if $0 \le x < 2\pi$ (ii) Give the general solution

- (c) $\cos^2 x \cos x 2 = 0$ (i) if $-\pi \le x < \pi$ (ii) if $-\frac{\pi}{2} < x < \frac{\pi}{2}$

3. Solve $2\sin^2 x - 1 = 0$ algebraically. Give the general solutions.

- 4. How many solutions are there in the interval $0 \le x < 2\pi$ to the following:
 - (a) $\cos 5x = 0$
 - (b) $\sin 4x = 1$
 - (c) $(2\sin 3x 1)(\cos 2x + 1) = 0$