- Fast Fourier transform (FFT) is an efficient algorithm to compute the DFT with reduced computations.
- Due to the efficiency offered by FFT, the DFT is widely used for the spectrum analysis, convolutions, correlations, and for linear filtering.
- FFT is only a computational algorithm and not another transform.
- FFT algorithm is developed by Cooley and Tukey in 1965.
- Two FFT algorithms are known as decimation-in-time (DIT) and decimation-in-frequency (DIF) algorithms.

196

Number of Calculations in N-point DFT

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn} \qquad 0 \le k \le N-1$$

$$W_N = e^{-j\frac{2\pi}{N}}$$

The number of calculation to calculate X(k) for one value of k are

N number of complex multiplications

(N-1) number of additions

The number of calculations to calculate all the X(k) are

 $N \times N = O(N^2)$ number of complex multiplications

 $\mathbf{N} \times (\mathbf{N} - \mathbf{1}) = \mathbf{O}\left(\mathbf{N}(\mathbf{N} - \mathbf{1})\right)$ number of complex additions.

Number of Caculation in Radix-2 FFT

- ❖ The simplest and perhaps best-known method for computing the FFT is the Radix-2 Decimation in Time algorithm.
- ***** The main limitation of the radix-2 method is that it only works if $N=2^m$, where m is an integer. If N = 37 (for example), this method cannot be used.
- \diamond In decimation in time (DIT) algorithm, time sequence x(n) is decimated and smaller point DFTs are combined to get the result of N point DFT.
- \bullet In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- **The decimation can be performed up to** m **times, where** $N = 2^m$ **and** $m = \log_2(N)$

198

Number of Caculation in Radix-2 FFT

In radix-2 FFT, $N = 2^{m}$, and so there will be m stages of computations where $m = \log_{2}(N)$ with each stage having N/2 butterflies $A = a + bw_N^k$ $b \longrightarrow B = a - bw_N^k$

The number of calculation in one butterflies are

- 1 number of complex multiplication
- 2 number of complex additions

There are N/2 butterflies in each stage

$$\frac{N}{2} \times 1 = O\left(\frac{N}{2}\right)$$
 number of complex multiplications

$$\frac{N}{2} \times 2 = O(N)$$
 number of complex additions

The N-point DFT involves m stages of computations.

$$\frac{N}{2} \times m = O\left(\frac{N}{2} \times log_2(N)\right)$$
 number of complex multiplications

$$N \times m = O(N \times log_2(N))$$
 number of complex additions

	Direct Computation		Radix-2 FFT			
Number of points	Complex additions N(N-1)	Complex Multiplications N2	Complex additions Nlog ₂ N	Complex Multiplications (N/2)log,N		
4 (= 22)	12	16	$4 \times \log_2 2^2 = 4 \times 2 = 8$	$\frac{4}{2} \times \log_2 2^2 = \frac{4}{2} \times 2 = 4$		
8 (= 23)	56	64	$8 \times \log_2 2^3 = 8 \times 3 = 24$	$\frac{8}{2} \times \log_2 2^3 = \frac{8}{2} \times 3 = 1$		
16 (= 24)	240	256	$16 \times \log_2 2^4 = 16 \times 4 = 64$	$\frac{16}{2} \times \log_2 2^4 = \frac{16}{2} \times 4 =$		
32 (= 25)	992	1,024	$32 \times \log_2 2^5 = 32 \times 5 = 160$	$\frac{32}{2} \times \log_2 2^5 = \frac{32}{2} \times 5 =$		
64 (= 26)	4,032	4,096	$64 \times \log_2 2^6 = 64 \times 6 = 384$	$\frac{64}{2} \times \log_2 2^6 = \frac{64}{2} \times 6 = \frac{64}{2}$		
128 (= 27)	16,256	16,384	$128 \times \log_2 2^7 = 128 \times 7 = 896$	$\frac{128}{2} \times \log_2 2^7 = \frac{128}{2} \times \log_2 2^7 $		

200

Use of FFT

802.11a OFDM Physical Parameters

Keysight OFDM Overview

- ❖ Wi-Fi
- LTE
- **❖** 5G
- Wi-Max
- ❖ DVB-T
- Digital Audio Broadcasting

202

Decimation in Time (DIT) Radix-2 FFT

There are N/2 butterflies in each stage

If N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

There are N/2 butterflies in each stage

• If N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

204

- **\stackrel{*}{\bullet}** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- * If N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

- **\Leftrightarrow** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- **If** N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

206

- **\stackrel{*}{\bullet}** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- * If N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

- **\Leftrightarrow** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- **If** N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

208

- **\stackrel{*}{\bullet}** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- * If N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

- **\Leftrightarrow** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- **If** N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

210

- **\stackrel{*}{\bullet}** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- * If N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

- **\Leftrightarrow** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- **If** N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

212

- **\stackrel{*}{\bullet}** In general, we can say that N point DFT can be realized from N/2 points DFT. Similarly, N/2 points DFT can be calculated by N/4 points DFT and so on.
- * If N=8, the decimation can be performed up to $m=\log_2(N)=\log_2(8)=3$

Figure 7.5 Three stages of computation in 8-point DFT.

Find N=2 DFT with DIT FFT method $m = log_2(N) = log_2(2) = 1$

214

Number of computation in DFT and FFT

Find N=2 DFT with DIT FFT method $m = log_2(N) = log_2(2) = 1$

Step1: write twidel factor \boldsymbol{w}_{N}^{k} at the begning of arrow going up

Find N=2 DFT with DIT FFT method $m = log_2(N) = log_2(2) = 1$

Step1: write twidel factor \boldsymbol{w}_{N}^{k} at the begning of arrow going up

Step2: write -1 before the point where arrow is comming down

216

Number of computation in DFT and FFT

Find N=2 DFT with DIT FFT method $m = log_2(N) = log_2(2) = 1$

Step1: write twidel factor w_N^k at the begning of arrow going up

Step2: write -1 before the point where arrow is comming down

Find DFT with DIT FFT for $x(n)=\{1, 2\}$

218

Number of computation in DFT and FFT

Find DFT with DIT FFT for $x(n)=\{1, 2\}$

Step1: write twidel factor \boldsymbol{w}_{N}^{k} at the begning of arrow going up

Step2: write -1 infront of the point where arrow is comming down

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

220

Number of computation in DFT and FFT

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

222

Number of computation in DFT and FFT

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

224

Number of computation in DFT and FFT

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

226

Number of computation in DFT and FFT

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

228

Number of computation in DFT and FFT

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

230

Number of computation in DFT and FFT

Find N=4 DFT with DIT FFT method $m = log_2(N) = log_2(4) = 2$

X0)

Number of computation in DFT and FFT

 $\mathbf{x}(3) \xrightarrow{\qquad \qquad \mathbf{V_2^{\prime}} \qquad \qquad \mathbf{X}(3)$

232

 $\mathbf{x}(\mathbf{0})$

Number of computation in DFT and FFT

234

Number of computation in DFT and FFT

236

Number of computation in DFT and FFT

238

Number of computation in DFT and FFT

240

Number of computation in DFT and FFT

Find N=8 DFT with DIT FFT method $m = log_2(N) = log_2(8) = 3$

	Original	Binary Form	Reversed Form	Final
1)	0	000	000	0
2)	1	001	100	4
6)	. 2	010	010	2
	3	011	110	6
1)	. 4	100	001	1
	5	101	101	5
5)	6	110	011	3
3)	7	111	111	7

Find N=8 DFT with DIT FFT method $m = log_2(N) = log_2(8) = 3$

Find N=8 DFT with DIT FFT method $m = log_2(N) = log_2(8) = 3$

Find N=8 DFT with DIT FFT method $m = log_2(N) = log_2(8) = 3$

Find N=8 DFT with DIT FFT method $m = log_2(N) = log_2(8) = 3$

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm. $x(n) = \{2, 1, 2, 1, 2, 1, 2, 1\}$

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

 $x(n) = \{2, 1, 2, 1, 2, 1, 2, 1\}$

248

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

 $x(n) = \{2, 1, 2, 1, 2, 1, 2, 1\}$

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.13 Find the 8-point DFT by radix-2 DIT FFT algorithm.

EXAMPLE 7.14 Compute the DFT for the sequence $x(n) = \{1, 1, 1, 1, 1, 1, 1, 1, 1\}$.

EXAMPLE 7.14 Compute the DFT for the sequence $x(n) = \{1, 1, 1, 1, 1, 1, 1, 1, 1\}$.

EXAMPLE 7.14 Compute the DFT for the sequence $x(n) = \{1, 1, 1, 1, 1, 1, 1, 1, 1\}$.

EXAMPLE 7.14 Compute the DFT for the sequence $x(n) = \{1, 1, 1, 1, 1, 1, 1, 1, 1\}$.

EXAMPLE 7.14 Compute the DFT for the sequence $x(n) = \{1, 1, 1, 1, 1, 1, 1, 1, 1\}$.

EXAMPLE 7.14 Compute the DFT for the sequence $x(n) = \{1, 1, 1, 1, 1, 1, 1, 1, 1\}$.

