Tools and Algorithms for Deciding Relations on Timed Automata

B Tech project, supervised by S Arun-Kumar, verification group

Mihir Mehta

Department of Computer Science and Engineering Indian Institute of Technology, Delhi cs1090197

May 12, 2013

Outline

Automata without timing and relations on them

Timed automata and relations on them

Algorithms

Labeled transition systems

Definition

Labelled Transition System: A labelled transition system (LTS) [1] is an automaton which is described by

- ▶ *S*, a set of *states*
- Act. a set of actions
- $ightharpoonup \to \subseteq S \times Act \times S$, a transition relation.
- ▶ optionally, $I \subseteq S$,a set of initial states. If there is exactly one initial state, then the LTS is said to be *rooted*.

Relations on LTS I

Definition

Strong bisimulation: A binary relation R on the states of an LTS is a strong bisimulation if and only if, for all (s_1, s_2) ϵ R and a ϵ Act. $\forall s_1'(s_1 \stackrel{a}{\to} s_1' \Rightarrow \exists s_2'.(s_2 \stackrel{a}{\to} s_2' \land (s_1', s_2') \epsilon R)) \land \forall s_2'(s_2 \stackrel{a}{\to} s_2' \Rightarrow \exists s_1'.(s_1 \stackrel{a}{\to} s_1' \land (s_1', s_2') \epsilon R))$

Definition

It can be shown that the union of all strong bisimulations over the set of states is a strong bisimulation. This binary relation is called strong bisimilarity, denoted by \sim .

Outline

Automata without timing and relations on them

Timed automata and relations on them

Algorithms

Timed Automata

Definition

Timed Automaton: A timed automaton [2] over a finite set of clocks C and a finite set of actions Act is a 4-tuple (L, I_0, E, I) .

- L is a finite set of locations.
- ▶ l₀ is the initial location.
- ▶ $E \subseteq L \times B(C) \times Act \times 2^C \times L$ is a finite set of edges.
- ▶ $I: L \rightarrow B(C)$ assigns invariants to each edge location.
- ▶ B(C) is the set of clock constraints over C.

Outline

Automata without timing and relations on them

Timed automata and relations on them

Algorithms

Creating the zone valuation graph

Initialise the queue Q with a single element $(null, null, l_0)$; Initialise the graph $zone_graph$ with a single node $(l_0, v_0 \uparrow)$ with an ϵ self-loop;

```
while Q is not empty do
 Dequeue (I_{parent}, t, I_{child}) from Q;
if I_{parent} \neq null then
     foreach zone Z_{parent} of I_{parent} do
         Add new zones to the zones of I_{child} so that all zones
         reachable from Z_{parent} are represented;
         Abstract if necessary;
         Update edges from Z_{parent} to the new zones of I_{child} if
         new zones are created in l_{child} or l_{parent} is null then
             foreach outgoing transition t' of l<sub>child</sub> do
                 Enqueue (I_{child}, t', t'.target) in Q;
             end
         end
```

$$0 \qquad X \geq 1 \land Y = 1, \text{ a, } Y := 0$$

Figure: Timed automaton. Here, the states are $\{0\}$, the actions are $\{a\}$, and the clocks are $\{X, Y\}$.

Figure: Zones after one iteration.

Figure: Zones after two iterations.

Figure: Zones after three iterations.

Figure: Zones after three iterations.

References I

References II

Keller, R.M.:

Formal verification of parallel programs. Commun. ACM **19**(7) (July 1976) 371–384

Alur, R., Dill, D.L.:

A theory of timed automata.

Theoretical Computer Science 126 (1994) 183-235