## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-280987

(43)Date of publication of application: 15.10.1999

(51)Int.CI.

F16L 59/06 B32B 5/18 F25D 23/06

(21)Application number: 10-079032

(71)Applicant: SUMITOMO CHEM CO LTD

(22)Date of filing:

26.03.1998

(72)Inventor: KURODA TOSHIYA

SAKATANI TAIICHI

### (54) VACUUM INSULATION MATERIAL

#### (57)Abstract:

PROBLEM TO BE SOLVED: To keep good heat insulation over a long period of time by evacuating a core material contained hollow part covered with a laminated body having at least each one layer of aromatic resin with a specified oxygen permeability and a gas barrier resin composite composed of resin and an inorganic layer compound.

SOLUTION: A core material contained hollow part covered with a laminated body having at least each one layer of aromatic resin and gas barrier resin composite is evacuated. The aromatic resin layer is formed of aromatic epoxy with the oxygen permeability of 200 cc/m².day.atm (thickness of 25  $\mu$ m) at 23° C and 50% RH (relative humidity). As an inorganic layer compound, preferably the spect ratio is from 50 to 5000 both inclusive, and as the gas barrier resin composite layer, preferably the oxygen permeability is 0.1 cc/m².day.atm or less at 23° C and 50% RH. Thus, good insulation is attained and the heat insulation can be kept over a long period of time.

#### **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

# THIS PAGE BLANK (USPTO)

#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-280987

(43)公開日 平成11年(1999)10月15日

| (51) Int.Cl. |       | 饑別記号 | ΡI      |       |   |
|--------------|-------|------|---------|-------|---|
| F16L         | 59/06 |      | F16L    | 59/06 |   |
| B 3 2 B      | 5/18  |      | B 3 2 B | 5/18  |   |
| F 2 5 D      | 23/06 |      | F 2 5 D | 23/06 | v |

### 審査請求 未請求 請求項の数7 OL (全 9 頁)

| (21)出願番号 | 特願平10-79032        | (71) 出願人 000002093      |  |  |
|----------|--------------------|-------------------------|--|--|
|          |                    | 住友化学工業株式会社              |  |  |
| (22)出顧日  | 平成10年(1998) 3 月26日 | 大阪府大阪市中央区北浜4丁目5番33号     |  |  |
|          |                    | (72)発明者 黒田 俊也           |  |  |
| •        |                    | 大阪府高槻市塚原2丁目10番1号 住化フ    |  |  |
|          |                    | ラステック株式会社内              |  |  |
| •        |                    | (72) 発明者 阪谷 泰一          |  |  |
|          |                    | 大阪府高槻市塚原2丁目10番1号 住化ス    |  |  |
|          |                    | ラステック株式会社内              |  |  |
|          |                    | (74)代理人 弁理士 久保山 隆 (外1名) |  |  |

#### (54) 【発明の名称】 真空断熱材

## (57)【要約】

【課題】 優れた断熱性かつ長期にわたって断熱性が維持される真空断熱材を提供すること。

【解決手段】 23℃、50%RH (相対湿度)における酸素透過度が200cc/m²·day·atm(厚み25μm) 以下である芳香族系樹脂層と、樹脂と無機層状化合物とからなるガスパリア性樹脂組成物層とをそれぞれ少なくとも1層有する積層体で覆われたコア材含有中空部を真空排気してなる真空断熱材。

#### 【特許請求の範囲】

【請求項1】23℃、50%RH(相対遷度)における 酸素透過度が200cc/m²·day·atm(厚み25μm)以下 である芳香族系樹脂層と、樹脂と無機屬状化合物とから なるガスパリア性樹脂組成物層とをそれぞれ少なくとも 1層有する積層体で覆われたコア材含有中空部を真空排 気してなる真空断熱材。

【請求項2】 芳香族系樹脂が芳香族エポキシ、ポリエチレンナフタレート(PEN)、芳香族ポリエステルのいずれかであることを特徴とする請求項1に記載の真空断熱材。

【請求項3】ガスパリア性樹脂組成物層の23℃、50%RHにおける酸素透過度が0.1cc/m²·day·atm以下であることを特徴とする請求項1に記載の真空断熱材。

【請求項4】無機層状化合物のアスペクト比が50~5 000である請求項1または2配載の真空断熱材。

【請求項5】無機層状化合物のアスペクト比が200~ 3000である請求項1または2に記載の真空断熱材。

【請求項6】冷蔵または冷凍用途に用いる請求項1から 5のいずれか1項に記載の真空断熱材。

【請求項7】建材用途に用いる請求項1から5のいずれか1項に記載の真空断熱材。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は真空断熱材に関する。

#### [0002]

【従来の技術】ガスバリア性材料で形成された容器また は外包材等で密閉された構造体の内部を真空排気し断熱 効果を高める方法は従来より知られており、さらに断熱 効果を高めるために、該構造体の内部にコア材を充填し 真空排気した真空断熱材も知られている。このような真 空断熱材においては、内部を高真空度に保持することに より気体伝熱を小さくして断熱性を向上させているた め、その断熱性を長期にわたって維持するためには、例 えば上記構造体には極めて優れたガスバリア性能を有す る材質を使用する必要がある。

【0003】かかる材質としては、成形性の観点から樹脂、特に熱可塑性樹脂の使用が好ましいが、ガスパリア性に優れる樹脂の代表例であるPVDC(ポリ塩化ピニリデン)またはEVOH(エチレン一酢酸ピニル共重合体の酸化物)等でもそのガスパリア性は真空断熱材としては不十分であり、得られる構造体の断熱性を長期にわたって維持することは困難であった。そこで樹脂のガスパリア性を改良する目的で、例えば特開昭63-279083号公報、特開昭63-233284号公報には、アルミニウム箱を熱可塑性樹脂フィルムに積層した金属積層体が記載されている。

【0004】しかしながら、上記金属積層体からなる真空断熱材は、長期にわたって高真空度を維持することは

できるが、アルミニウム等の金属は熱伝導率が大きいため(例えばアルミニウムの熱伝導率は約200W/m·K であるのに対し、ポリプロピレン樹脂は約0.23W/m·K、空気で約0.02W/m·K)、熱が金属部分を伝って移動する所謂ヒートブリッジが発生し、断熱性能は大幅に低下する結果となった。

【0005】ヒートブリッジを抑制する目的で、金属層の厚みを薄くすることも考えられてはいるが、一般に金属を熱可塑性樹脂層に積層する場合、アルミニウム等の金属を高温で一旦気化させ樹脂層の表面に蒸着させたり、圧延等により金属箔を別途作成した後、樹脂層に積層したりするため、これらの方法では金属層の厚みを薄くすると多くのピンホールが生じ、金属層を設けたにもかかわらずガスバリア性が低下し、長期にわたる断熱性能が低下する結果となった。

#### [0006]

【課題を解決するための手段】本発明者らは、上記課題を解決するため鋭意検討した結果、樹脂と無機層状化合物とからなる樹脂組成物層が高いガスパリア性を有することを見出し、かつ当該ガスパリア層と芳香族系樹脂層とを併用することにより、優れた熱断性かつ長期にわたって断熱性が維持される真空断熱材が得られることを見出し、本発明に至った。

【0007】すなわち本発明は、23℃、50%RH (相対程度)における酸素透過度が200cc/m²·day·at m(厚み25μm) 以下である芳香族系樹脂層と、樹脂と無機層状化合物とからなるガスパリア性樹脂組成物層とをそれぞれ少なくとも1層有する積層体で覆われたコア材含有中空部を真空排気してなる真空断熱材を提供するものである。以下本発明を詳細に説明する。

#### 【発明の実施の形態】

【0008】本発明において、芳香族系樹脂層は23 ℃、50%RH (相対湿度) における酸素透過度が20 0 cc/m²·day·atm(厚み23μm厚み)以下であり、例えば、バラヒドロキシ安息香酸ーテレフタル酸ーp,p'ーピスフェノールを縮合してなる芳香族ポリエステル、バラヒドロキシ安息香酸ーテレフタル酸ーエチレングライコールを縮合してなる芳香族ポリエステル、パラヒドロキシ安息香酸ーエチレンテレフタレートを縮合してなる芳香族ポリエステル等のサーモトロピック型芳香族ポリエステル等のサーモトロピック型芳香族ポリエステル等の芳香族ポリエステル、ポリエチレンナフタレート(PEN)、芳香族エポキシ等の芳香族系樹脂からなる層が例示できる。

【0009】 芳香族系樹脂層の厚みは特に制限はないが、通常、 $1\sim200\,\mu\,\mathrm{m}$ であり、効果の観点から $10\,\mu\,\mathrm{m}$ 以上が好ましく、積層体を製造する際の操作性の観点から $50\,\mu\,\mathrm{m}$ 以下がより好ましい。

【0010】また、芳香族系樹脂層には、本発明の効果を損なわない範囲で、可塑剤、紫外線防止剤、架橋剤、などさまざまな添加剤を配合してもよい。

【0011】本発明で用いられる無機層状化合物とは、単位結晶層が互いに積み重なって層状構造を有している無機化合物をいう。層状構造とは、原子が共有結合等によって強く結合して密に配列した面が、ファンデルワールス力等の弱い結合力によってほぼ平行に積み重なった構造をいう。無機層状化合物としては、得られるフィルム積層体のガスバリア性、経済性および入手のしやすさの観点から、後述する方法により測定したアスペクト比が50以上500以下が好ましく、100以上がより好ましく、200以上3000以下が特に好ましい。また、後述するフィルム積層体の成形性の点からは、後述する方法により測定した粒径が5μm以下であることが好ましく、3μm以下がより好ましい。

【0013】本発明で用いられる無機層状化合物のアスペクト比(Z)とは、Z=L/aの関係から求められる比である。ここに、Lは、分散液中、上記した回折/散乱法による粒径測定法により求めた無機層状化合物の粒径(体積基準のメジアン径)であり、aは、無機層状化合物の単位厚みである。この「単位厚みa」は、後述する粉末X線回析法等によって、無機層状化合物単独の測定に基づいて決められる値である。より具体的には、横軸に20、縦軸にX線回折ピークの強度を取った図1のグラフに模式的に示すように、観測される回折ピークのうち最も低角側のピークに対応する角度のから、Braggの式(n λ=2Dsin θ、n=1, 2, 3・・

・)に基づいて求められる間隔を、「単位厚み a」とする (粉末 X 線回析法の詳細については、例えば、塩川二 朗監修「機器分析の手引き (a)」69頁(1985 年)化学同人社発行を参照することができる)。

【0014】分散液から溶媒を取り除いてなる樹脂組成物を粉末 X線回折した際には、通常、該樹脂組成物における無機層状化合物の面間隔 d を求めることが可能である。より具体的には、横軸に 2  $\theta$ 、縦軸に X線回折ピークの強度を取った図 2 のグラフに模式的に示すように、上記した「単位厚み a」に対応する回折ピーク位置より、低角(間隔が大きい)側に観測される回折ピークのうち、最も低角側のピークに対応する間隔を「面間隔 d」(a < d)とする。図 3 のグラフに模式的に示すように、上記「面間隔 d」に対応するピークがハロー(ないしバックグラウンド)と重なって検出することが困難な場合においては、 2  $\theta$  d より低角側のペースラインを除いた部分の面積を、「面間隔 d」に対応するピークとしている。ここに、「 $\theta$  d」は、「(単位長さ a) +

(樹脂1本鎖の幅)」に相当する回折角である(この面間隔 d の決定法の詳細については、例えば、岩生周一ら編、「粘土の事典」、35頁以下および271頁以下、1985年、(株)朝倉書店を参照することができる)。

【0015】このように樹脂組成物の粉末X線回析において観測される回折ピーク(面間隔 d に対応)の「積分強度」は、基準となる回折ピーク(「面間隔 d」に対応)の積分強度に対する相対比で2以上(更には10以上)であることが好ましい。通常は、上記した面間隔 d と「単位厚みa」との差、すなわちk=(d-a)の値(「長さ」に換算した場合)は、樹脂組成物を構成する樹脂1本鎖の幅に等しいかこれより大である(k=(d-a)≧樹脂1本鎖の幅)。このような「樹脂1本鎖の幅」は、シミュレーション計算等により求めることが可能であるが(例えば、「高分子化学序論」、103~110頁、1981年、化学同人を参照)、ポリビニルアルコールの場合には4~5オングストロームである(水分子では2~3オングストローム)。

【0016】樹脂組成物中の無機層状化合物の「真のアスペクト比」は直接測定がきわめて困難である。 上記したアスペクト比Z=L/aは、必ずしも、樹脂組成物中の無機層状化合物の「真のアスペクト比」と等しいとは限らないが、下記の理由により、このアスペクト比Zをもって「真のアスペクト比」を近似することには妥当性がある。

【0017】樹脂組成物の粉末X線回析法により求められる面間隔dと、無機層状化合物単独の粉末X線回析測定により求められる「単位厚みa」との間にa<dなる関係があり、且つ(d-a)の値が該組成物中の樹脂1本鎖の幅以上である場合には、樹脂組成物中において、無機層状化合物の層間に樹脂が挿入されていることとなる。したがって、樹脂組成物中の無機層状化合物の厚みを上記「単位厚みa」で近似すること、すなわち樹脂組成物中の「真のアスペクト比」を、上記した無機層状化合物の分散液中での「アスペクト比Z」で近似することには、充分な妥当性がある。

【0018】上述したように、樹脂組成物中での真の粒径測定はきわめて困難であるが、樹脂中での無機層状化合物の粒径は、分散液中(樹脂/無機層状化合物/溶媒)の無機層状化合物の粒径とかなり近いと考えることができる。但し、回折/散乱法で求められる分散液中での粒径しは、無機層状化合物の長径しmaxを越える可能性はかなり低いと考えられるため、真のアスペクト比(Lmax/a)が、本発明で用いる「アスペクト比 て」を下回る(Lmax/aやよく2)可能性は、理論的にはかなり低い。 上述した2つの点から、本発明で用いるアスペクト比の定義とは、充分な妥当性を有するものと考えられる。本明細書において、「アスペクト比」または「粒径」とは、上記で定義した「アスペクト比

Z」、または「回折/散乱法で求めた粒径L」を意味する。

【0019】上述したようなアスペクト比の観点から、無機層状化合物としては溶媒に膨潤またはへき関する無機層状化合物が好ましく用いられる。本発明に用いる無機層状化合物の溶媒への膨潤またはへき開の程度は、以下の膨潤およびへき開試験により評価することができる。該無機層状化合物の膨潤の程度は、下記膨潤性試験において約5以上(さらには約20以上)の程度であることが好ましい。ただしこれらの測定においては、溶媒として、無機層状化合物の密度より小さい密度を有する溶媒を用いる。例えば、無機層状化合物が天然の膨潤性粘土鉱物である場合、該溶媒としては、水を用いることが好ましい。

【0020】〈膨潤性試験〉:無機層状化合物2gを溶媒100mL(例えば100mLのメスシリンダーを容器として用い)に加え攪拌し、23℃で1日程度静置後、無機層状化合物分散層と上澄みとの界面の目盛りから前者(無機層状化合物分散層)の体積を読む。この数値が大きいほど膨潤性が高いといえる。

【0021】〈へき閉性試験〉:無機層状化合物30gを溶媒1500mLにゆっくり加え、分散機にて充分分散した後(23℃)、分散液100mLをとり1時間程度静置後、上記と同様に上澄みとの界面の目盛りから無機層状化合物分散層の体積を読む。この数値が大きいほどへき開性が高いといえる。

【0022】溶媒に膨潤またはへき関する無機層状化合物としては、溶媒に膨潤またはへき関性を有する粘土鉱物が好適に使用できる。粘土系鉱物は、一般に、シリカの四面体層の上部に、アルミニウムやマグネシウム等を中心金属にした8面体層を有する2層構造よりなるタイプと、シリカの4面体層が、アルミニウムやマグネシウム等を中心金属にした8面体層を両側から挟んだ3層構造よりなるタイプに分類される。

【0023】前者としてはカオリナイト族、アンチゴライト族等を挙げることができ、後者としては層間カチオンの数によってスメクタイト族、バーミキュライト族、マイカ族等を挙げることができる。

【0024】具体的には、カオリナイト、ディッカイト、ナクライト、ハロイサイト、アンチゴライト、クリソタイル、パイロフィライト、モンモリロナイト、ヘクトライト、テトラシリリックマイカ、ナトリウムテニオライト、白雲母、マーガライト、タルク、パーミキュライト、金雲母、ザンソフィライト、緑泥石等をあげることができる。

【0025】無機層状化合物を膨潤させる溶媒は、例えば天然の膨潤性粘土鉱物の場合、水、メタノール等のアルコール類、ジメチルホルムアミド、ジメチルスルホキ

シド、アセトン等が挙げられ、水やメタノール等のアル コール類がより好ましい。

【0026】本発明の樹脂と上記無機層状化合物とからなるガスパリア性樹脂組成物層において用いられる樹脂としては例えば、ポリピニルアルコール(PVA)、変性ポリピニルアルコール(変性PVA)、エチレンーピニルアルコール共重合体(EVOH)、変性エチレンーピニルアルコール共重合体(変性EVOH)、ポリ塩化ピニリデン(PVDC)、ポリアクリロニトリル(PAN)、多糖類、ポリアクリル酸およびそのエステル類などが好ましい。

【0027】また、好ましい例としては、樹脂単位重量当りの水素結合性基またはイオン性基の重量百分率が20%~60%の割合を満足する高水素結合性樹脂があげられる。さらに好ましい例としては、高水素結合性樹脂の樹脂単位重量当りの水素結合性基またはイオン性基の重量百分率が30%~50%の割合を満足するものがあげられる。高水素結合性樹脂の水素結合性基としては水酸基、アミノ基、チオール基、カルボキシル基、スルホン酸基、燐酸基、などが挙げられ、イオン性基としてはカルボキシレート基、スルホン酸イオン基、燐酸イオン基、アンモニウム基、ホスホニウム基などが挙げられる。

【0028】高水素結合性樹脂の水素結合性基またはイオン性基のうち、さらに好ましいものとしては、水酸基、アミノ基、カルボキシル基、スルホン酸基、カルボキシレート基、スルホン酸イオン基、アンモニウム基、などが挙げられる。

【0029】具体例としては、例えば、ポリビニルアルコール、ピニルアルコール分率が41モル%以上のエチレンーピニルアルコール共重合体、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、アミロース、アミロース、ブルラン、ガードラン、ザンタン、キチン、キトサン、セルロース、ブルラン、キトサンなどのような多糖類、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリベンゼンスルホン酸、ポリベンゼンスルホン酸、ポリベンゼンスルホン酸、ポリベンゼンスルホン酸、ポリベンゼンスルホン酸ナトリウム、ポリエチレンイミン、ポリアリルアミン、そのアンモニウム塩ポリビニルチオール、ポリグリセリンなどが挙げられる。

【0030】高水素結合性樹脂のさらに好ましいものとしては、ポリビニルアルコール、多糖類があげられる。ポリビニルアルコールとは、酢酸ビニル重合体の酢酸エステル部分を加水分解(けん化)して得られるものであり、正確にはビニルアルコールと酢酸ビニルの共重合体となったものである。ここで、けん化の割合はモル百分率で70%以上が好ましく、特に85%以上のものがさらに好ましい。また、重合度は100以上5000以下が好ましい。

【0031】多糖類とは、種々の単糖類の縮重合によっ

て生体系で合成される生体高分子であり、ここではそれ ちをもとに化学修飾したものも含まれる。たとえば、セ ルロースおよびヒドロキシメチルセルロース、ヒドロキ シエチルセルロース、カルボキシメチルセルロースなど のセルロース誘導体、アミロース、アミロベクチン、プ ルラン、カードラン、ザンタン、キチン、キトサン、な どが挙げられる。

【0032】本発明において、無機層状化合物と樹脂との組成比(重量比)は、断熱効果および成形性の観点から、(無機層状化合物/樹脂)が重量比で5/95~90/10の範囲が好ましく、5/95~50/50の範囲であることがより好ましい。

【0033】また得られる真空断熱材の長期にわたる断熱性の維持の観点から、ガスバリア性樹脂組成物層の23℃、50%RHにおける酸素透過度は0.2cc/m²·day·atm以下が好ましく、0.1cc/m²·day·atm以下がより好ましく、0.0001cc/m²·day·atm以下が特に好ましい。23℃の酸素透過度は直接測定してもよいし、高温での酸素透過度を測定し、アレニウスプロットで23℃に外挿して求めてもよい。

【0034】上記した無機層状化合物と樹脂よりなる樹脂組成物層の製造方法は、特に限定されないが、得られるガスパリア性樹脂組成物層中の無機層状化合物の分散性、および操作容易性の観点から、例えば、樹脂を溶解させた分散液とを混合後、溶媒を除く方法(方法1)、無機層状化合物を膨潤またはへき開させた分散液を除く方法(方法2)、樹脂を溶解させた液に無機層状化合物を加え膨潤またはへき開させた分散液を除く方法(方法2)、樹脂を溶解させた液に無機層状化合物を加え膨潤またはへき開させた分散液とし溶媒を除く方法(方法3)、また樹脂と無機層状化合物を熱混練する方法(方法4)などの方法が例示できる。無機層状化合物の大きなアスペクト比が容易に得られる点からは、前3者が好ましく用いられる。また、前3者においては、高圧分散装置を用いて処理するほうが無機層状化合物の分散性の観点から好ましい。

【0035】高圧分散装置としては、例えばMicrofluidicsCorporation社製超高圧ホモジナイザー(商品名マイクロフルイダイザー)あるいはナノマイザー社製ナノマイザーがあり、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ製ホモゲナイザー等が挙げられる。

【0036】さらに、本発明の効果を損なわない範囲で、上記樹脂組成物中には、架橋剤、紫外線吸収剤、着色剤、酸化防止剤等のさまざまな添加剤を配合してもよい。

【0037】本発明の真空断熱材は、上記芳香族系樹脂層とガスパリア性樹脂組成物層をそれぞれ少なくとも1層有する積層体で覆われたコア材含有中空部を有しており、該中空部内を真空排気することにより、断熱効果をより高めたものである。

【0038】また、該中空部は積層体でその全体が覆われていてもよいし、該積層体で覆われていない領域を有していてもよいが、中空部が該積層体で覆われていない領域を有している場合、該領域を他のガスバリア性の材質で覆うか、または該領域の面積が積層体が覆っている面積に対してガスバリア性の観点から無視できる程度であることが断熱性の持続の観点から好ましい。

【0039】用いられるコア材としては、断熱性を有する物であれば特に制限はないが、例えば、JIS R 2618により測定した時の熱伝導率が0.1W/m・K未満のものが好ましい。コア材の具体例としては、バーライト粉末、シリカ粉末、沈降シリカ粉末、ガラスウール、ロックウール、連通樹脂発泡体等が例示できる。特に100%連通ウレタン発泡体が軽量性の観点からより好ましい。

【0040】また必要に応じて所謂ゲッター材と呼ばれる気体等に対して吸着性を有するものを併用してもよいし、ゲッター材をコア材として代用してもよい。

【0041】また本発明の真空断熱材の中空部内には、中空構造体を有していてもよい。中空構造体の形状は特に制限はなく、直方体、立方体、球等が挙げられるが、断熱性の観点から、該中空構造体を形成する壁の厚みは10mm以下が好ましく、5mm以下がより好ましく、1mm以下が特に好ましい。また、その構成材料は特に制限はないが、得られる真空断熱体の断熱性の観点から、樹脂製が好ましい。

【0042】かかる樹脂としては、例えば、低密度また は高密度ポリエチレン、エチレンープロピレン共重合 体、エチレンープテン共重合体、エチレン-ヘキセン共 重合体、エチレンーオクテン共重合体、ポリプロピレ ン、エチレン一酢酸ピニル共重合体、エチレンーメチル メタクリレート共重合体、アイオノマー樹脂などのポリ オレフィン系樹脂、ポリエチレンテレフタレート、ポリ プチレンテレフタレート、ポリエチレンナフタレートな どのポリエステル系樹脂、ナイロン-6、ナイロン-6, 6、メタキシレンジアミン-アジピン酸縮重合体、 ポリメチルメタクリルイミドなどのアミド系樹脂、ポリ メチルメタクリレートなどのアクリル系樹脂、ポリスチ レン、スチレン-アクリロニトリル共重合体、スチレン ーアクリロニトリループタジエン共重合体、ポリアクリ ロニトリルなどのスチレンおよびアクリロニトリル系樹 脂、トリ酢酸セルロース、ジ酢酸セルロースなどの疎水 化セルロース系樹脂、ポリ塩化ビニル、ポリ塩化ビニリ デン、ポリフッ化ピニリデン、テフロンなどのハロゲン 含有樹脂、ポリピニルアルコール、エチレンーピニルア ルコール共重合体、セルロース誘導体などの水素結合性 樹脂、液晶ポリエステル樹脂などの液晶性ポリマー、ポ リカーボネート樹脂、ポリサルホン樹脂、ポリエーテル サルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ フェニレンオキシド樹脂、ポリメチレンオキシド樹脂、

アラミド樹脂等のエンジニアリングプラスチック系樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂など があげられる。

【0043】さらに上記中空構造体は上述したようなコア材および/またはゲッター材をその内部に有していてもよい。

【0044】本発明における積層体は、芳香族系樹脂層 とガスパリア性樹脂組成物層以外に、熱融着層や基材層 を有していてもよく、例えば、ガスパリア性樹脂組成物 層、芳香族系樹脂層、熱融着層からなる積層体が例示で きるが、その層構成は特に制限はない。

【0045】積層体で覆われた中空部の真空排気の方法 も特に制限はないが、例えば、積層体を熱融着等により 袋状物とし、該袋状物内にコア材等を入れ、袋状物内を 真空排気した後密閉する方法、積層体で覆われた中空構 造体に真空吸引孔を設け、真空排気後、当該吸引孔を封 止する方法等が例示できる。

【0046】本発明の積層体で覆われた中空部内の圧力は、通常1Torr以下にである。断熱効果の観点から、0.1Torr以下がより好ましく、0.01Torr以下が特に好ましい。

【0047】上述したガスベリア性樹脂組成物層および 芳香族系樹脂以外の、例えば基材層のような層を使用し てもよく、かかる層としてはアルミ箔およびスチール箔 等の金属薄膜層、無機薄膜層、樹脂層など特に限定され ない。樹脂層としては、例えば、ポリエチレン(低密 度、高密度)、エチレンープロピレン共重合体、エチレ ンープテン共重合体、エチレンーへキセン共重合体、エ チレンーオクテン共重合体、ポリプロピレン、エチレン 一酢酸ビニル共重合体、エチレンーメチルメタクリレー ト共重合体、アイオノマー樹脂などのポリオレフィン系 樹脂、ポリエチレンテレフタレート、ポリプチレンテレ フタレート、ポリエチレンナフタレートなどのポリエス テル系樹脂、ナイロン-6、ナイロン-6、6、メタキ シレンジアミンーアジピン酸縮重合体、ポリメチルメタ クリルイミドなどのアミド系樹脂、ポリメチルメタクリ レート、などのアクリル系樹脂、ポリスチレン、スチレ ンーアクリロニトリル共重合体、スチレンーアクリロニ トリループタジエン共重合体、ポリアクリロニトリルな どのスチレンおよびアクリロニトリル系樹脂、トリ酢酸 セルロース、ジ酢酸セルロースなどの疎水化セルロース 系樹脂、ポリ塩化ピニル、ポリ塩化ピニリデン、ポリフ ッ化ピニリデン、テフロンなどのハロゲン含有樹脂、ポ リピニルアルコール、エチレンーピニルアルコール共重 合体、セルロース誘導体などの水素結合性樹脂、ポリカ ーボネート樹脂、ポリサルホン樹脂、ポリエーテルサル ホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェ ニレンオキシド樹脂、ポリメチレンオキシド樹脂、液晶 ポリエステル樹脂などのエンジニアリングプラスチック 系樹脂等からなる層、二軸延伸されたポリプロピレン、

ポリエチレンテレフタレート、ナイロン等からなる層、 Kコートと呼ばれるポリ塩化ビニリデンをコートした二 軸延伸されたポリプロピレン、ポリエチレンテレフタレ ート、ナイロン等からなる層、アルミニウム蒸着フィル ム、アルミナ蒸着フィルム、シリカ蒸着フィルム等の各 種蒸着フィルムからなる層および液晶ポリエステル樹 脂、アラミド樹脂等からなる層が例示できる。

【0048】また、積層体に熱融着層を設ける場合、該 熱融着層に用いられる樹脂は、ヒートシール強度や樹脂 奥などの脱着の観点から、ポリエチレン(低密度、高密 度)、上述したエチレンーピニルアルコール共重合体、 エチレンープロピレン共重合体、エチレンープテン共重 合体、エチレンーヘキセン共重合体、エチレンー4ーメ チル-1-ペンテン共重合体、エチレンーオクテン共重 合体、ポリプロピレン、エチレン一酢酸ビニル共重合 体、エチレンーメタクリル酸メチル共重合体、エチレン - アクリル酸メチル共重合体、エチレン-アクリル酸共 重合体、アイオノマー樹脂などのポリオレフィン系樹 脂、ナイロン6、ナイロン66等のポリアミド樹脂、ア クリロニトリル・プタジエン・スチレン共重合体、アクリ ロニトリル・スチレン共重合体、アクリロニトリル共重 合体ポリメチルメタクリレート等のポリアクリレート等 が挙げられる。

【0049】ガスバリア性樹脂層、芳香族系樹脂層および必要に応じて基材層等の他の層を積層する方法としては、芳香族系樹脂層や他の層をあらかじめフィルムやシートとし、該フィルムやシートに樹脂と無機層状化合物とからなる組成物を上述したような無機層状化合物を膨潤するような溶媒に溶解または分散させた登工液を塗布乾燥し、熱処理を行うコーティング方法や、該組成物からなるフィルムを後からラミネートする方法などが例示でき、このようにしてガスパリア性樹脂層と芳香族系樹脂層とをそれぞれ少なくとも1層有する積層体とすることができる。

【0050】ガスバリア性樹脂層を積層する層は、芳香族系樹脂層であっても基材層等の他の層であってもよい。芳香族系樹脂層と他の層とを積層する方法も通常の共押出し方法や、押出しラミネート方法、ドライラミネート方法等が例示できる。

【0051】コーティング方法としては、ダイレクトグラビア法やリバースグラビア法及びマイクログラビア法、2本ロールピートコート法、ボトムフィード3本リパースコート法等のロールコーティング法、及びドクターナイフ法やダイコート法、ディップコート法、バーコーティング法やこれらを組み合わせたコーティング法などの方法が挙げられる。

【0052】熱融着層を積層する場合もその方法は特に 限定はされないが、たとえば上記他の層、芳香族系樹脂 層またはガスパリア性樹脂組成物層の上にドライラミネ ートする方法などが好ましい例として挙げられる。ま た、各層は、層間の密着強度の観点から、コロナ処理、 オゾン処理、電子線処理やアンカーコート剤などの処理 がされていてもよい。

【0053】また、本発明の真空断熱材には、必要に応 じて内部の真空度を調べるための検知体を設けてもよ い。

【0054】また、各層には本発明の効果を損なわない 範囲で、紫外線吸収剤、架橋剤、着色剤、酸化防止剤等 の通常、樹脂に配合される市販の種々添加剤等を配合し てもよい。

【0055】本発明の真空断熱材は、断熱性能に優れ、冷蔵(10℃以下)庫または冷蔵室や冷凍(0℃以下)庫または冷蔵室や冷凍(0℃以下)庫または冷凍室等の壁等の断熱材とする、冷蔵または冷凍用途に用いることができる。またさらに本発明の真空断熱材は天井、壁、床等の断熱材として用いる建材用途に用いることもできる。

#### [0056]

【発明の効果】本発明の真空断熱材は従来のものと比較して断熱性に優れ、かつ長期にわたり断熱性が維持されるものである。さらに本発明の真空断熱材は、保冷、保温等断熱を必要とする各種用途(例えば、冷蔵庫、冷凍庫、保冷車、車の天井部、バッテリー、冷凍または冷蔵船、保温コンテナー、冷凍または保冷用ショーケース、携帯用クーラー、料理用保温ケース、自動販売機、太陽熱温水器、床暖房、床下、壁または壁内、天井部、屋根裏部屋等の連材、熱水または冷却水の配管、低温流体を移送する導管その他プラント機器類、衣料、寝具等)の断熱材として好適に用いることができる。

#### [0057]

【実施例】以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。

【0058】各種物性の測定方法を以下に記す。[熱伝導度測定] JIS A1412で測定を行った。

【0059】[酸素透過度測定]酸素透過度測定装置(OX-TRAN100、MOCON社製) にて23℃、55℃、80℃での条件で酸素透過度を測定した。なお、55℃および80℃での酸素透過度は、所定の温度に設定された恒温室内に測定サンブルを入れて測定した。

【0060】 [ヒートシール条件] 温度208℃、時間 0.5秒、ヒートシール幅10mm (ヒートシーラー: FUJI IMPULSE T230:FUJI IM PULSE CO. LTD) で行った。

【0061】 [厚み測定] 0.5 μ m以上はデジタル厚み計により測定した。0.5 μ m未満は重量分析法 (一定面積のフィルムの重量測定値をその面積で除し、さらに組成物比重で除した)、または、ガスバリア性樹脂組成物層と基材層との積層体の場合などは、元素分析法

(積層体の特定無機元素分析値(組成物層由来)と無機 層状化合物単独の特定元素分率の比から本発明の樹脂組 成物層と基材の比を求める方法)によった。 【0062】 [粒径測定] 超微粒子粒度分析計(B1-90, ブルックヘブン社製)、温度25℃、水溶媒の条件で測定した。動的光散乱法による光子相関法から求めた中心径を粒径しとした。

【0063】 [アスペクト比計算] X線回折装置 (XD-5A、(株)島津製作所製)を用い、無機層状化合物単独と樹脂組成物の粉末法による回折測定を行った。これにより無機層状化合物の面間隔 (単位厚み) aを求め、さらに樹脂組成物の回折測定から、無機層状化合物の面間隔が広がっている部分があることを確認した。上述の方法で求めた粒径Lをもちいて、アスペクト比2は、Z=L/aの式により決定した。

【0064】 [塗工液1] 分散釜 (商品名:デスパMH -L、浅田鉄工(株)製) に、イオン交換水 (0.7 μ S/cm 以下)を3551g入れ、さらにポリビニルアルコール (PVA117H; (株)クラレ製, ケン化度;99.6%, 重 合度1700) を200g入れ、低速攪拌下(1500rp m, 周速度 4. 10 m/m i n) で95℃に昇温し、1 時間攪拌し、溶解させた。次に、攪拌したまま60℃に 温度を下げた後、天然モンモリロナイト (クニピアG: クニミネ工業(株)製)を粉末のまま100g添加し、モ ンモリロナイトが液中にほぼ沈殿したことを確認後、高 速攪拌 (3100rpm, 周速度8.47m/min) を90分行い、トータル固形分濃度8wt%の樹脂組成 物混合液(A)を得た。混合液(A)をフィルム状にキャ ストして、X線解析を行い、ピークから底面間隔を求め ると41. 2オングストロームであり、充分にへき開さ れていた。動的光散乱方で求めた当該天然モンモリロナ イト(クニピアF)の粒径は560nm、粉末X線回折 から得られたa値は1. 2156 nmであり、アスペク ト比(Z)は461であった。

【0065】 さらに、シリコーン系界面活性剤SH3746(東レ・ダウコーニング(株)製)を0.38g 添加した液を塗工液1とした。

【0066】 [実施例1] 厚さ25μmのポリエチレンナフタレート(テオネックスフィルム,帝人(株)製)上にアンカコート剤(アドコートAD335/CAT10=15/1(重量比):東洋モートン(株)製)をグラビア詮工(テストコーター;康井精機(株)製:マイクログラビア詮工法、 盗工速度3m/分、乾燥温度80℃)した。当該アンカーコート層の乾燥厚みは0.15μmであった。 盗工液1をグラビア塗工方法(テストコーター;康井精機製(株):マイクログラビア塗工法、盗工速度6m/分、乾燥温度100℃)により、アンカーコート層の上に盗工した。 盗工層の乾燥厚みは0.5μmであった。

【0067】そして、上記で得られた塗工層に、ウレタン系接着剤(ユーノフレックス J 3:三洋化成製)を用いて、表面コロナ処理したLLDPE(関フィル(株)製:KF101:厚み40μm)を塗工層の上にドライ

ラミネートし積層フィルムを得た。そして、当該積層フィルムのガスバリア性を測定した(表1)。

【0068】上記得られた積層フィルム2枚を用い、内層であるLLDPE層の3方を熱融着して250mm×250mmの袋状物を作製する。次いで、袋状物の中にコア材として100%連通ウレタン発泡体(平均セル径75μ,クラボウ(株)製)を充填し、さらに袋内を真空シーラー(NPC(株)製)により内部圧力が0.01Torrになるように袋状物の残りの1方を熱融着して真空断熱材を得る。得られる真空断熱材の熱伝導率は極めて低く、かつエージング時の断熱性の低下の極めて少ないものとなる。

【0069】 [比較例1] エチレンピニルアルコールフ

イルム(E V O H-F, クラレ(株)製, 15μ) を2軸延伸ポリプロピレンフィルム(20μ)にウレタン系接着剤(ユーノフレックス J 3:三洋化成製)を用いて、ドライラミネートを行い、さらにエチレンピニルアルコールフィルムを積層したと反対側の面に、表面コロナ処理したLLDPE(関フィル(株)製: KF101:厚み40μm)をドライラミネートし積層フィルムを得た。当該積層フィルムの酸素透過度を測定した。(表1)

【0070】さらに実施例1と同様の条件で真空断熱材が得られるが、エージングにより断熱性が著しく低下するものである。

[0071]

【表1】

|       | 酸素透過度<br>28℃ | ∞/atm·m²·day<br>55°C | 80%   |
|-------|--------------|----------------------|-------|
| 実施例 1 | 0. 1以下       | 0.1以下                | 0.1以下 |
| 比較例1  | 0.3          | 12                   | 3 1   |

#### 【図面の簡単な説明】

【図1】図1は、無機層状化合物のX線回折ピークと、 該化合物の「単位厚さa」との関係を模式的に示すグラ フである。

【図2】図2は、無機層状化合物を含む樹脂組成物のX 練回折ピークと、該組成物の「面間隔d」との関係を模 式的に示すグラフである。 【図3】図3は、「面間隔d」に対応するピークがハロー(ないしバックグラウンド)と重なって検出することが困難な場合における樹脂組成物のX線回折ピークと、該組成物の「面間隔d」との関係を模式的に示すグラフである。この図においては、2 θ d より低角側のベースラインを除いた部分の面積を、「面間隔d」に対応するピークとしている。

【図1】





θd→「単位厚さα+樹脂1本線の幅」に相当する回折角

【図3】



# THIS PAGE BLANK (USPTO)