Survey of Materials. Lecture 4

Structural motifs

Andriy Zhugayevych

September 30, 2016

Outline

- Coordination, voids, packing
- Metallic lattices
- Ionic lattices
- Covalent crystals
- Molecular crystals
- Most common structural types
- Structural transitions

Coordination polyhedron/number and voids

See here

Atomic packing factor

Atomic packing factor = "occupied volume" / "unit cell volume" Relative packing factor $\delta = V_1^{\rm max}/V_1$

Structural type notations

- Common name (fcc, bcc)
- Prototype (rocksalt NaCl, rutile TiO2)
- Strukturbericht
- Incomplete specification: lattice type, space group, and Z

Metals

- Maximize density of electron gas + ionic lattice \implies close-packed lattices ($z \gtrsim 12$, $\delta \gtrsim 3/4$)
- Details of band structure differentiate close-packed lattices
- Consider phonon dispersion at nonzero temperatures

Close-packed lattices: notations

Metals: examples

- most of metals fcc, hcp, bcc
- α -Fe (bcc), γ -Fe (fcc), δ -Fe (bcc), melt \implies tempering
- Hg close-packed hR lattice (A10) at P>12 kbar
- In fct (A6), α -Ga A11, α -Pa tcp, α -La A', α -Mn
- β -Sn (A5) not close-packed (best dia-deform.) \implies poor metal
- α -As (A7) not close-packed, secondary bonding \implies semimetal
- B semiconductor

Ionic crystals

Maximize eletrostatic energy, e.g. for binary compound $A_{n_A}X_{n_X}$:

$$M\frac{n_A + n_X}{2} \frac{Z_A Z_X e^2}{r_{AX}}$$

Here M is Madelung constant, which depends only on lattice geometry \implies closely copacked lattices, i.e. lattices with high Madelung constant

See two classes here

Covalent crystals

Satisfy coordination of atoms \implies locally coordinated lattices

Often disordered if there is a competition between local coordination and long range order (B, SiO₂, As₂Se₃)

Molecules

Valence shell electron pair repulsion (VSEPR) theory:

- 1. Distribute electrons between atoms according to octet rule
- 2. Pair them and minimize steric repulsion between pairs (including dihedrals as in CH₃–CH₃)

Molecular crystals

- Close packing under steric constraints
- Electrostatics
- Secondary bonding (Br₂), hydrogen bonding (H₂O)

See also here

Surfaces

- Binding energy of surface atoms grows with number of "bonds"
- Covalent bonds prefer to be passivated
- Depends on environment

Structural transitions and polymorphism

Functional materials: Exploring structure-property relationships

- electronic conductors metals
- ionic conductors some ionic crystals
- high-T superconductors layered t-metal pnictides/chalcogenides
- electrical insulators wide-gap ionic-covalent solids
- field effect transistors tetrahedral semiconductors
- flexible/printable electronics conjugated polymers
- ferroelectrics and pyroelectrics polar crystals
- optical rotation chiral crystals
- phase change memory some average valence 5 compounds
- photosensitive materials pnictide/chalcogenide glass-formers
- lubricants layered solids
- nanoporous materials zeolites, clathrates
- anode/cathode materials for batteries

Summary and Resources

See summary here

- Wikipedia
- Crystal structures
- Crystallography Open Database
- R W G Wyckoff, Crystal structures (1963, 1964)
- References: structure, bonding, specific materials
- Textbooks