Lecture 17. Bayesian regression

COMP90051 Statistical Machine Learning

Semester 2, 2020 Lecturer: Ben Rubinstein

This lecture

- Uncertainty not captured by point estimates
- Bayesian approach preserves uncertainty
- Sequential Bayesian updating
- Conjugate prior (Normal-Normal)
- Using posterior for Bayesian predictions on test

Training == optimisation (?)

Stages of learning & inference:

Formulate model

Regression

$$p(y|\mathbf{x}) = \operatorname{sigmoid}(\mathbf{x}'\mathbf{w})$$
 $p(y|\mathbf{x}) = \operatorname{Normal}(\mathbf{x}'\mathbf{w}; \sigma^2)$

Fit parameters to data

$$\hat{\mathbf{w}} = \operatorname{argmax}_{\mathbf{w}} p(\mathbf{y}|\mathbf{X},\mathbf{w}) p(\mathbf{w})$$
 ditto

Make prediction

$$p(y_*|\mathbf{x}_*) = \operatorname{sigmoid}(\mathbf{x}'_*\hat{\mathbf{w}}) \qquad E[y_*] = \mathbf{x}'_*\hat{\mathbf{w}}$$

 $\widehat{\boldsymbol{w}}$ referred to as a 'point estimate'

Bayesian Alternative

Nothing special about $\widehat{\boldsymbol{w}}$... use more than one value?

Formulate model

Regression

$$p(y|\mathbf{x}) = \operatorname{sigmoid}(\mathbf{x}'\mathbf{w})$$

$$p(y|\mathbf{x}) = \operatorname{sigmoid}(\mathbf{x}'\mathbf{w})$$
 $p(y|\mathbf{x}) = \operatorname{Normal}(\mathbf{x}'\mathbf{w}; \sigma^2)$

 Consider the space of likely parameters – those that fit the training data well

$$p(\mathbf{w}|\mathbf{X},\mathbf{y})$$

We don't want to pick a single point estimation in Baysian stats

Make 'expected' prediction

$$p(y_*|\mathbf{x}_*) = E_{p(\mathbf{w}|\mathbf{X}_{,\mathbf{y}})} [\text{sigmoid}(\mathbf{x}_*'\mathbf{w})]$$

$$p(y_*|\mathbf{x}_*) = E_{p(\mathbf{w}|\mathbf{X},\mathbf{y})} \left[\text{Normal}(\mathbf{x}_*'\mathbf{w}, \sigma^2) \right]$$

Uncertainty

From small training sets, we rarely have complete confidence in any models learned. Can we quantify the uncertainty, and use it in making predictions?

Regression Revisited

- Learn model from data
 - * minimise error residuals by choosing weights $\widehat{\mathbf{w}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$
- But... how confident are we
 - * in $\widehat{\mathbf{w}}$?
 - * in the predictions?

Linear regression: $y = w_0 + w_1 x$ (here y = humidity, x = temperature)

Do we trust point estimate $\hat{\mathbf{w}}$?

- How stable is learning?
 - * $\hat{\mathbf{w}}$ highly sensitive to noise
 - * how much uncertainty in parameter estimate?
 - * more informative if neg log likelihood objective highly peaked

* E[2nd deriv of NLL]

$$\mathcal{I} = \frac{1}{\sigma^2} \mathbf{X}' \mathbf{X}$$

* measures curvature of objective about $\hat{\mathbf{w}}$

Figure: Rogers and Girolami p81

Mini Summary

- Uncertainty not captured by point estimates (MLE, MAP)
- Uncertainty might capture range of plausible parameters
- (Frequentist) idea of Fisher information as likelihood sensitivity at point estimates

Next time: The Bayesian view (reminder)

The Bayesian View

Retain and model all unknowns (e.g., uncertainty over parameters) and use this information when making inferences.

A Bayesian View

- Could we reason over all parameters that are consistent with the data?
 - * weights with a better fit to the training data should be more probable than others
 - * make predictions with all these weights, scaled by their probability
- This is the idea underlying Bayesian inference

Uncertainty over parameters

- Many reasonable solutions to objective
 - * why select just one?
- Reason under all possible parameter values
 - weighted by their posterior probability
- More robust predictions
 - less sensitive to overfitting, particularly with small training sets
 - can give rise to more
 expressive model class
 (Bayesian logistic regression becomes non-linear!)

Frequentist vs Bayesian "divide"

- Frequentist: learning using point estimates, regularisation, p-values ...
 - * backed by sophisticated theory on simplifying assumptions
 - mostly simpler algorithms, characterises much practical machine learning research
- Bayesian: maintain uncertainty, marginalise (sum) out unknowns during inference
 - some theory
 - often more complex algorithms, but not always
 - * often (not always) more computationally expensive

Mini Summary

- Frequentist's central preference of point estimates don't capture uncertainty
- Bayesian view is to quantify belief in prior, update it to posterior using observations

Next time: Bayesian approach to linear regression

Bayesian Regression

Application of Bayesian inference to linear regression, using Normal prior over **w**

Revisiting Linear Regression

Recall probabilistic formulation

Likelihood of our data

w in out model

Identity matrix since we normally have D number of

 $I_D = D \times D$ identity matrix

$$i \in \{1, \dots, n\}$$

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

$$\max_{\mathbf{w}} p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \max_{\mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

Gives rise to penalised objective (ridge regression)

point estimate taken here, avoids computing marginal likelihood term

Bayesian Linear Regression

Rewind one step, consider full posterior

We are not only considering the point estimation but considering the w in a distribution context

$$p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2) = rac{p(\mathbf{y}|\mathbf{X},\mathbf{w},\sigma^2)p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X},\sigma^2)}$$

Here we assume noise var. known

$$= \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})}{\int p(\mathbf{y}, |\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})d\mathbf{w}}$$

- Can we compute the denominator (marginal likelihood or evidence)?
 - * if so, we can use the full posterior, not just its mode

Bayesian Linear Regression (cont)

- We have two Normal distributions
 - * normal likelihood x normal prior

$$\frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X}, \sigma^2)}$$

Their product is also a Normal distribution

- * conjugate prior: when product of likelihood x prior results in the same distribution as the prior
- * evidence can be computed easily using the normalising constant of the Normal distribution

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \text{Normal}(\mathbf{w}|\mathbf{0}, \gamma^2 \mathbf{I}_D) \text{Normal}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}_N)$$

 $\propto \text{Normal}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$

closed form solution for posterior!

Bayesian Linear Regression (cont)

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \text{Normal}(\mathbf{w}|\mathbf{0}, \gamma^2 \mathbf{I}_D) \text{Normal}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}_N)$$

 $\propto \text{Normal}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$

where

$$\mathbf{w}_N = rac{1}{\sigma^2} \mathbf{V}_N \mathbf{X}' \mathbf{y}$$

 $\mathbf{w}_N = rac{1}{\sigma^2} \mathbf{V}_N \mathbf{X'y}$ This represent multiple mean in a array where each one represent the mean of the distribution for that weight

$${f V}_N=\sigma^2({f X}'{f X}+rac{\sigma^2}{\gamma^2}{f I}_D)^{-1}$$
 This is a multi-dimensional covariance that represent the corresponding variance of each weights

When new data come, we are updating the distribution on each dimension simultaneously

Advanced: verify by expressing product of two Normals, gathering exponents together and 'completing the square' to express as squared exponential (i.e., Normal distribution).

$$P(\theta|X=1) = \frac{P(X=1|\theta)P(\theta)}{P(X=1)}$$
Name of the game is to get posterior into a recognisable form.
$$\propto P(X=1|\theta)P(\theta)$$
Piscard constants w.r.t
$$\theta = \left[\frac{1}{\sqrt{2\pi}}exp\left(-\frac{(1-\theta)^2}{2}\right)\right]\left[\frac{1}{\sqrt{2\pi}}exp\left(-\frac{\theta^2}{2}\right)\right]$$
Collect exp's $\leq e \times p\left(-\frac{(1-\theta)^2+\theta^2}{2}\right)$

$$\leq e p \left(-\frac{2\theta^2-2\theta+1}{2}\right)$$
Want leading numerator term to be θ^2 by moving coefficient to denominator coefficient to denominator excess constants
$$\leq e p \left(-\frac{\theta^2-\theta^2-2\theta+1}{2}\right)$$
Factorise = $e^{(1)}p\left(-\frac{\theta^2-\theta^2-\theta^2+1}{2}\right)$
Recognise as (unnormalized) Normall

Bayesian Linear Regression example

Step 1: select prior, here spherical about **0**

8 6 4 2 0 -2 -4 -6 0 2 4 6 8 10

Step 2: observe training data

Samples from posterior

Step 3: formulate posterior, from prior & likelihood

Sequential Bayesian Updating

- Can formulate $p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2)$ for given dataset
- What happens as we see more and more data?
 - 1. Start from prior $p(\mathbf{w})$
 - 2. See new labelled datapoint
 - 3. Compute posterior $p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2)$
 - 4. The posterior now takes role of prior& repeat from step 2

Sequential Bayesian Updating

- Initially know little, many regression lines licensed
- Likelihood constrains possible weights such that regression is close to point
- Posterior becomes more refined/peaked as more data introduced
- Approaches a point mass

Bishop Fig 3.7, p155

Stages of Training

- 1. Decide on model formulation & prior
- 2. Compute *posterior* over parameters, $p(\mathbf{w}|\mathbf{X},\mathbf{y})$

MAP

approx. Bayes

exact Bayes

- Find *mode* for **w** 3. Sample many **w**
- Use to make prediction on test
- 4. Use to make ensemble average prediction on test
- Use all **w** to make *expected* prediction on test

Prediction with uncertain w

- Could predict using sampled regression curves
 - * sample S parameters, $\mathbf{w}^{(s)}$, $s \in \{1, ..., S\}$
 - * for each sample compute prediction $y_*^{(s)}$ at test point \mathbf{x}_*
 - * compute the mean (and var.) over these predictions
 - * this process is known as Monte Carlo integration
- For Bayesian regression there's a simpler solution
 - * integration can be done analytically, for

$$p(\hat{y}_* \mid X, y, x_*, \sigma^2) = \int p(w \mid X, y, \sigma^2) p(y_* \mid x_*, w, \sigma^2) dw$$
posterior likelihood

Prediction (cont.)

Pleasant properties of Gaussian distribution means integration is tractable

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}, \sigma^2) = \int p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) p(y_*|\mathbf{x}_*, \mathbf{w}, \sigma^2) d\mathbf{w}$$

$$= \int \text{Normal}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N) \text{Normal}(y_*|\mathbf{x}_*'\mathbf{w}, \sigma^2) d\mathbf{w}$$

$$= \text{Normal}(y_*|\mathbf{x}_*'\mathbf{w}_N', \sigma_N^2(\mathbf{x}_*))$$

$$\sigma_N^2(\mathbf{x}_*) = \sigma^2 + \mathbf{x}_*'\mathbf{V}_N\mathbf{x}_*$$

- * additive variance based on x* match to training data
- * cf. MLE/MAP estimate, where variance is a fixed constant

Bayesian Prediction example

Point estimate

MLE (blue) and MAP (green) point estimates, with fixed variance

Data: $y = x \sin(x)$; Model = cubic

Bayesian inference

Caveats

- Assumptions
 - * known data noise parameter, σ^2
 - * data was drawn from the model distribution
- In real settings, σ^2 is unknown
 - has its own conjugate prior
 Normal likelihood × InverseGamma prior
 results in InverseGamma posterior
 - * closed form predictive distribution, with student-T likelihood (see Murphy, 7.6.3)

Mini Summary

- Uncertainty not captured by point estimates (MLE, MAP)
- Bayesian approach preserves uncertainty
 - care about predictions NOT parameters
 - choose prior over parameters, then model posterior
- New concepts:
 - sequential Bayesian updating
 - conjugate prior (Normal-Normal)
- Using posterior for Bayesian predictions on test

Next time: Bayesian classification, then PGMs