Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 28.11.2014

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
	Aufgabe	1	2	3	4	\sum	
	erreichbare Punkte	11	8	9	12	40	
	erreichte Punkte						
Bitte							
ыше							
tragen Sie	e Name, Vorname und	Matrik	ælnumr	ner auf	dem I	eckblat	t ein,
rochnon S	ie die Aufgaben auf se	narata	n Blätt	orn ni	cht ouf	dom A	ngabablatt
recimen b	ie die Aufgaben auf se	parate	n Diato	erii, iii	ciii aui	uem A	ngabebiatt,
beginnen	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Vamen	sowie d	lie Mat	rikelnu	mmer ai	n
geben ble	auf jedem Diatt den 1	vamen	SOWIE C	ne ma	HIKCHIU		· · · · · · · · · · · · · · · · · · ·
begründer	n Sie Ihre Antworten a	ausführ	lich und	d			
krouzon S	ie hier an, an welchem	der fol	randan	Tormi	ne Sie z	ur mün	dlichen Prüfun
antreten l	•	Fr., 05.1	_	1011111		i., 09.12	

1. Bearbeiten Sie die folgenden Teilaufgaben.

11 P.|

a) Gegeben ist ein nichtlineares System in impliziter Form durch

$$a\cos(x) - \dot{x}\sqrt{x} - \ddot{x} - \int_{0}^{t} \cos(x(\tau))u(\tau)d\tau = 0$$

und die Ausgangsgleichung

$$y - x - gu^2 = 0.$$

i. Geben Sie das System in Zustandsdarstellung der Form

1.5 P.

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u) = \tilde{\mathbf{f}}(\mathbf{x}) + \tilde{\mathbf{g}}(\mathbf{x})u$$

$$u = h(\mathbf{x}, u)$$

an.

- ii. Bestimmen Sie alle Ruhelagen des Systems für $u=u_s\neq 0.$ 1.5 P.|
- iii. Linearisieren Sie das System um die Ruhelage, für die $0 \le x_i \le \pi$ gilt, und geben Sie das linearisierte System an. 1.5 P.
- iv. Welche Aussage können Sie für $u_s = 0$ und a > 0 über die Stabilität der 1.5 P.| Ruhelage des linearisierten Systems treffen?
- b) Gegeben ist das lineare System

$$\dot{\mathbf{x}} = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}.$$

- i. Für das angegebene System gilt $(\mathbf{A} \lambda_1 \mathbf{E})\mathbf{b} = 0$. Begründen Sie anhand 1.5 P.| dieser Tatsache, ob das System vollständig erreichbar ist.
- ii. Für u(t) = 0 ergibt sich ein autonomes System der Form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$. Berechnen Sie die Lösung $\mathbf{x}(t)$ des Systems ausgehend vom Anfangszustand $\mathbf{x}(0) = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^T$.
- c) Für ein System der Form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ ist die Transitionsmatrix $\mathbf{\Phi}(t)$ durch 2 P.

$$\begin{bmatrix} 2e^t + \frac{3}{2}\sin(2t) - \cos(2t) & -2\cos(2t) - \frac{7}{2}\sin(2t) + 2e^t & -\cos(2t) + \frac{3}{2}\sin(2t) + e^t \\ -\frac{1}{2}\sin(2t) & \cos(2t) + \frac{1}{2}\sin(2t) & -\frac{1}{2}\sin(2t) \\ -2\sin(2t) + 2\cos(2t) - 2e^t & 2\cos(2t) - 2e^t + 6\sin(2t) & -e^t + 2\cos(2t) - 2\sin(2t) \end{bmatrix}$$

gegeben. Bestimmen Sie die Matrix A.

- 2. Die Teilaufgaben (a) und (b) können unabhängig voneinander gelöst werden.
 - a) Zeigen Sie die Existenz und Eindeutigkeit des nichtlinearen Differentialglei- 2 P.| chungssystems

$$\frac{\mathrm{d}}{\mathrm{d}t}x = \arctan(x), \quad x(0) = x_0$$

und geben Sie eine geeignete Lipschitz Konstante $0 < L < \infty$ an. Ist die Existenz und Eindeutigkeit global gewährleistet? Begründen Sie ihre Antworten ausführlich.

b) Gegeben ist die Übertragungsfunktion

6 P.

8 P.|

$$G(s) = \frac{1}{s(\frac{s}{10}\sqrt{3} + 1)(\frac{s}{10\sqrt{3}} + 1)}.$$

Entwerfen Sie mithilfe des Frequenzkennlinien-Verfahrens einen Regler minimaler Ordnung so, dass die Sprungantwort des geschlossenen Kreises folgende Eigenschaften aufweist:

- i. Anstiegszeit $t_r = 0.15 \text{ s}$
- ii. Überschwingen $\ddot{u}=25\%$
- iii. bleibende Regelabweichung $e_{\infty}|_{r(t)=\sigma(t)}=0$.

Hinweis: Sie können einen möglichen Realisierungsterm im Nenner des Reglers bei der Auslegung vernachlässigen.

3. Bearbeiten Sie die folgenden Teilaufgaben.

9 P.|

a) Betrachtet wird das Abtastsystem

$$2.5\,\mathrm{P.}$$

$$\mathbf{x}_{k+1} = \begin{bmatrix} -\frac{1}{2} & 0 & 0 \\ \beta & \gamma & 0 \\ 0 & \alpha & 1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x}_k.$$

- i. Für welche Wertebereiche von α , β und γ ist das System vollständig beobachtbar?
- ii. Für welche Wertebereiche von α , β und γ hat der **nicht beobachtbare** Unterraum die Dimension 2 und besitzt eine stabile Dynamik?
- b) Nehmen Sie für die folgenden Aufgaben an, dass $\alpha = 1$, $\beta = 0$ und $\gamma = 2$ gilt.
 - i. Für das System soll nun ein vollständiger Luenberger Beobachter entworfen 1.5 P.| werden. Zeigen Sie, dass dadurch nicht alle Eigenwerte der Schätzfehlerdynamik beliebig wählbar sind.
 - ii. Bestimmen Sie den Rückführungsvektor $\hat{\mathbf{k}}$ eines vollständigen Beobachters 2 P.| so, dass sämtliche Eigenwerte der Fehlerdynamik bei $\lambda_i = -\frac{1}{2}$ zu liegen kommen.
 - iii. Geben Sie die Dynamik des Schätzfehlers an. Kann diese durch die Wahl 1 P.| der Eingangsgröße u_k destabilisiert werden?
- c) Ist für das Abtastsystem

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & -2 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x}_k$$

ein Simulator einsetzbar, um alle Zustände zu schätzen? Begründen Sie Ihre Antwort ausführlich.

- 4. Die Teilaufgaben (a)-(c) können unabhängig voneinander gelöst werden.
 - (a) Gegeben sei die Verschaltung von LTI-Systemen nach Abbildung 1. 4 P.|

12 P.

Abbildung 1: Zusammenschaltung von Übertragungsfunktionen.

- i. Berechnen Sie die Übertragungsfunktionen $T_{u,y}(s)$, $T_{d,y}(s)$ und $T_{w,y}(s)$ vom 1.5 P.| Eingang u, von der Störung d sowie vom Messrauschen w zum Ausgang y.
- ii. Nachfolgend sei $G_1(s) = \frac{V_1}{1+sT}$, $G_2(s) = V_2$ und $G_3(s) = \frac{V_3}{s}$ mit positiven 1.5 P. Verstärkungen V_1, V_2, V_3 . Ermitteln Sie den Wertebereich von T so, dass die Übertragungsfunktion $T_{u,y}(s)$ BIBO-stabil ist.
- iii. Bestimmen Sie das Verhältnis von V_1 zu V_2 so, dass sich die stationäre Ausgangsgröße infolge einer Störung $d(t)=2+\frac{-7t^2+t^3}{5-8t+11t^2-2t^3}-5t\cos{(3t)}\exp{(-8t)}$ zu $y_\infty=-1$ ergibt.
- (b) Abbildung 2 zeigt das Ausgangsverhalten eines zeitdiskreten LTI-Systems auf 5 P.| bestimmte Eingangsfolgen (u_k) .
 - i. Bestimmen Sie einen Ausdruck für die Impulsfolge (g_k) und stellen Sie die 2 P.| Impulsfolge in der entsprechenden Vorlage in Abbildung 2 graphisch dar.
 - ii. Die Eingangs-, Ausgangs-, und Durchgriffsvektoren sind durch $\Gamma = [1,0,\beta]^T$, 3 P.| $\boldsymbol{c}^T = [1,1,1]$ und d=0 gegeben. Bestimmen Sie β und geben Sie eine mögliche Dynamikmatrix $\boldsymbol{\Phi}$ an.
- (c) Gegeben ist ein zeitkontinuierliches LTI-System mit dem Pol-Nullstellen Dia- 3 P. gramm nach Abbildung 3.
 - i. Bestimmen Sie die Übertragungsfunktion G(s) und beurteilen Sie das System hinsichtlich BIBO-Stabilität, Phasenminimalität und Sprungfähigkeit. Begründen Sie Ihre Antworten ausführlich.
 - ii. Berechnen Sie die zugehörige z-Übertragungsfunktion G(z) für eine Abtastzeit von $T_a = \frac{1}{2} \ln(2)$ und stellen Sie das resultierende System als Differenzengleichungssystem mit einer minimalen Anzahl von Zuständen dar.

Abbildung 2: Eingangs-Ausgangsverhalten eines zeitdiskreten LTI-Systems.

Abbildung 3: Pol-Nullstellen Diagramm eines zeitkontinuierlichen LTI-Systems.