SIT744 Lecture 2 Math Review

Nayyar Zaidi

Learning objectives

• Be familiar with the math behind deep learning theory

Plan

- Linear Algebra
- Derivatives and gradients

Reading

This lecture is based on chapters in these books (click to view):

- Mathematics for Machine Learning
 - Sections 5.1, 5.2, and 5.6
- Deep Learning Book
 - Chapter 2

Linear algebra

Why linear algebra?

Linear algebra studies vector spaces and matrices

Tensors for efficient computing

- Data are represented as vectors, matrices, and tensors
- Model parameters are represented as vectors, matrices, and tensors

Scalars, Vectors, Matrices and Tensors

Scalar

A single number

Vector

An array of numbers

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Matrices

A 2-D array

$$\left|\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right|$$

Tensors

An array with more than two axes

Data as vectors

Learning activity

Think about a machine learning problem. How is the data represented in the problem?

Data as vectors

Figure 1: From text to tokens to vectors

Words represented as vectors

Data as vectors

Figure 2: MNIST sample digits

Images are matrices

Dot product

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i$$

Euclidean norm

$$\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\mathbf{x}^\top \mathbf{x}}$$

Other norms

Figure 3: unit circle for different p-norms (src: wikipedia)

• Manhattan norm (L1 norm)

$$\|\boldsymbol{x}\|_1 := \sum_{i=1}^n |x_i|$$

• Lp-norm (if $p \ge 1$)

$$\|\mathbf{x}\|_{p} := \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

Nayyar Zaidi

Lengths and distance

 $\|x\|_2$ is one way to measure the length of x.

Distance between vectors

$$d(\mathbf{x}, \mathbf{y}) := \|\mathbf{x} - \mathbf{y}\| = \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle}$$

Angle between vectors

$$\cos \omega = \frac{\langle x, y \rangle}{\|x\| \|y\|}$$

It is a way to measure similarity of two vectors.

Transpose of a matrix

The transpose of A, denoted A^{\top} , is defined by

$$\left(A^{\top}\right)_{i,j} = A_{j,i}$$

example

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,3} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow A^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

Sum of two matrices

If A and B have the same shape, C = A + B is defined by

$$C_{i,j} = A_{i,j} + B_{i,j}$$

Scalar multiplication and sum

 $\mathbf{D} = a \cdot \mathbf{B} + c$ is defined by

$$D_{i,j} = a \cdot B_{i,j} + c$$

A confusing notation common in deep learning

 $\mathbf{C} = \mathbf{A} + \mathbf{b}$ is defined by

$$C_{i,j} = A_{i,j} + b_j$$

Matrix product

Figure 4: Matrix product

 $\mathbf{C} = \mathbf{A}\mathbf{B}$ is defined by

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

Matrix product is not commutative

$$AB \neq BA$$

However,

$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$

It is easier to think of matrix product as the composition of two functions.

Identity and Inverse Matrices

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}_n$$

Here A^{-1} is the matrix inverse of A.

If $\mathbf{A}\mathbf{x} = \mathbf{b}$ and \mathbf{A}^{-1} exist, then

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Norms

The L^p norm of a vector x is defined by

$$\|x\|_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$

Common Lp norms

- $||x||_2$
- $\bullet \|x\|_1$
- $\bullet \|x\|_{\infty} = \max_{i} |x_{i}|$

Eigendecomposition

Let ${\bf A}$ be a square matrix. A nonzero vector ${\bf v}$ is an **eigenvector** of ${\bf A}$ if

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
.

Here λ is a scalar and is called the **eigenvalue** for ν .

The **eigendecomposition** of \boldsymbol{A} is then given by

$${\pmb A}={\pmb V}\operatorname{diag}({\pmb \lambda}){\pmb V}^{-1}.$$

Eigendecomposition for real symmetric matrix

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$$

optimize quadratic expressions

$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$
 subject to $\|\mathbf{x}\|_2 = 1$

- max f is the maximum eigenvalue
- min f is the minimum eigenvalue

Machine learning and optimisation

Figure 5: Learning as optimisation

Most machine learning algorithms are optimisation algorithms

• Find an x to minimise f(x), the loss function.

Other names for the loss function

- Cost function
- Error function

Global minimum

Figure 6: Global minimum (src: wikipedia)

Global minimum is realised at

$$\mathbf{x}^* = \arg\min f(\mathbf{x})$$

Derivative and gradient

Figure 7: Derivative

Derivative $\frac{df(x)}{dx}$ (or f'(x)) measures the slope of f at x.

Derivative

$$\frac{\mathrm{d}f}{\mathrm{d}x} := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Gradient

Gradient is for multi-variate functions

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{bmatrix}$$

Partial derivative

$$\frac{\partial f(\mathbf{x})}{\partial x_1} = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \dots, x_n) - f(\mathbf{x})}{h}$$

Stationary points

Consider a single variable. If x^* renders a global minimum, then the derivative $f'(x^*) = 0$.

Gradient-Based optimisation

Figure 8: Method of steepest descent

Iteratively update a guess until converging to a stationary point

$$x' = x - \epsilon f'(x)$$

 \bullet ϵ is the learning rate.

Gradient descent

Figure 9: Steepest descent with two variables

$$\mathbf{x}' = \mathbf{x} - \epsilon \nabla_{\mathbf{x}} f(\mathbf{x})$$

Differentiation Rules

Figure 10: Chain rule

Chain rule

$$(g(f(x)))' = (g \circ f)'(x) = g'(f(x))f'(x)$$

Differentiation Rules

Figure 11: Sum rule

Sum rule

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Differentiation Rules

Figure 12: Product rule

Product rule

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

Derivatives of common functions

•

$$\frac{d}{dx}123 = 0$$

•

$$\frac{d}{dx}x = 1$$

•

$$\frac{\partial}{\partial w}wx = x$$

•

$$\frac{\partial}{\partial b}(wx+b)=1$$

•

$$\frac{d}{dx}e^{x}=e^{x}$$

What is

$$\frac{d}{dx}x^2$$

• Hint: Product rule

$$\frac{d}{dx}x^2 = \frac{d}{dx}(x \cdot x) = x\frac{d}{dx}x + x\frac{d}{dx}x = 2x$$

How about

$$\frac{d}{dx}x^n$$

$$\frac{d}{dx}x^n = n\frac{d}{dx}x^{n-1}$$

Special case

$$\frac{d}{dx}x^{-1} = -\frac{d}{dx}x^{-2}$$

What is

$$\frac{d}{dx}(\frac{e^x}{e^x+1})$$

$$\frac{d}{dx}(\frac{e^x}{e^x+1}) = \frac{e^x}{(e^x+1)^2}$$

Vanishing Gradients Problem

 $\frac{d}{dx}(\frac{e^x}{e^x+1})$ is getting very small with a moderately sized x.

Chain rule implies that the gradient quickly vanishes with more than one layers with the sigmoid activation function.

Chain rule with computational graph

Figure 13: Backpropagation (src:colah.github.io)

Backpropagation is the default algorithm for computing gradients in deep learning.

Backpropagation is simply applying chain-rule on the computational graph.

Summary

- Linear algebra and multivariable differential calculus are fundamental math tools for deep learning
- Linear algebra is useful for representing data and transformations
- Differential calculus is useful for training deep learning models