Universidad Carlos III de Madrid

1er curso Grado en Telemática Electrónica Digital (1^{er} parcial)

18 de Mayo de 2009

Apellidos	Nombre	Grupo
11peniuos		Grupo

NOTAS IMPORTANTES:

Cada problema o cuestión se entregan por separado. No mezcle las soluciones en una misma hoja.

En cada hoja que entregue debe figurar el nombre y el grupo al que pertenece

Cuestión 1 (0.75 punto)

Sean $A = 11000001_2$ y $B = 001111110_2$. Se pide:

- a) Represente A en Octal, Hexadecimal y código BCD natural
- b) Suponga que A y B representan números sin signo.
 - 1. Determine los valores decimales de A y B
 - 2. Realice en binario la operación A+B.
 - 3. Indique si se produce desbordamiento al realizar la operación anterior. Razone su respuesta
- c) Suponga ahora que A y B son números representados en complemento a 2
 - 1. Determine los valores enteros de A y B
 - 2. Realice en binario la operación A+B
 - 3. Indique si se produce desbordamiento al realizar la operación anterior. Razone su respuesta

Problema 1 (1.75 punto)

Un circuito tiene 4 entradas (A, B, C y D) de un bit y 1 salida S de un bit. S vale '1' cuando el nº codificado en binario natural con ABCD es 0, 1 o un número primo, en caso contrario es '0'.

- a) Obtenga las dos formas canónicas para la función S
- b) Obtenga expresiones simplificadas de S en forma de suma de productos y de productos de sumas
- c) Implemente la función lógica que expresa S utilizando únicamente puertas NOR de dos entradas.
- d) Implemente la función lógica que expresa S utilizando un decodificador 4:16 con salidas activas a nivel alto.
- e) Implemente la función lógica que expresa S utilizando un MUX4 y lógica adicional.
- f) Implemente la función lógica que expresa S utilizando un MUX8 y lógica adicional

No se permitirá calculadora

Tiempo: 1h15'

Universidad Carlos III de Madrid

1er curso Grado en Telemática Electrónica Digital (2º parcial)

18 de Mayo de 2009

Apellidos	Nombre	Grupo

Cuestión 1.- (1 punto, 20 min)

Dado el circuito de la figura:

- a) Rellenar el cronograma adjunto, utilizando las variables intermedias necesarias.
- b) Razonar si se trata de un circuito de Moore o de Mealy

Cuestión 2- (1,25 puntos, 25 min)

Se quiere diseñar un contador de coches a la entrada de un parking para encender el aviso de "Completo" cuando se ocupan todas las plazas. Para ello de instala un sistema de dos fotodetectores horizontales, A y B situados como se ve en la figura.

Cuando un coche entra al parking se activa el detector A antes que el B. Las señales que se generan en AB son => 10...11...01...00 considerando que el fotodetector genera un '0' lógico cuando no tiene obstáculo, y un '1' cuando tiene un coche delante. Cuando un coche sale, en AB se genera la secuencia => 01...11...10...00, como se ve en la figura.

Asumir que el camino de entrada y de salida del aparcamiento es el mismo, y por tanto no pueden entrar y salir coches a la vez.

Se dispone de un contador síncrono de 4 bits, como el de la figura, con dos entradas de control, C1 y C2. El comportamiento de dicho contador según el valor de las entradas de control es el siguiente:

C1	C2	
0	0	No cuenta
0	1	Cuenta descendente
1	0	Cuenta ascendente
1	1	No cuenta

- a) Dibuje el diagrama de estados de Mealy del circuito de control que controla las señales C1 y
 C2 del contador. Dicho circuito debe detectar las secuencias correctas de las entradas A y B
 del sensor. En caso de que se dé una secuencia incorrecta, se volverá al estado inicial.
- b) Diseñar el circuito que hay que poner a la salida del contador para que se encienda el aviso de "Completo" cuando hayan pasado 5 coches o más.

Cuestión 3- (1,25 puntos, 35 min)

A partir del diagrama de estados de la figura, construir un circuito secuencial síncrono utilizando biestables D y puertas lógicas. Se considerará que el estado de reset del circuito es E1. El circuito tiene una entrada E y salidas A, B y C. Realizar la asignación de estados ordenada en binario natural. Asumir que las los estados no utilizados son imposibles, y por tanto, sus transiciones son indiferentes.

Seguir los siguientes pasos:

- a) Asignación de estados
- b) Tabla de transiciones
- c) Simplificación de funciones de estado y de salida.
- d) Esquema de biestables y puertas, incluyendo las señales de reloj y reset.

arestion 1

- a) A=110000012 = 3018 = C116 = 19310 = 0001.1001.0011000
- b) $A = 1100000 |_{1} = 128+64+1 = 193$ $B = 00111110_2 = 32+16+8+4+2=62$

+ 00111110 11111111 = 255 Nohay desbordamiento, el nametado ne puede representar con 8 bits

C) A=11000001 = -128+64+1=-63 B=06111110= 32+16+8+4+2=62

El resultado de la suma es el mismo salvoque re interpreta en C2:

1111111 = -128+64+32+16+8+4+2+1=-128+127=-1 No hay desbordamiento. No puede haberlo sumando dos números de distrato signo.

Problema 1

a)
$$S = \frac{\sum_{4} (0,1,2,3,5,7,11,13)}{(4,6,8,9,10,12,14,16)}$$

$$f = (\vec{a} + D)(\vec{A} + D)(\vec{A} + \vec{B} + \vec{c})(\vec{A} + \vec{B} + \vec{c})$$

* También se puede hacer siguiendo el otro convenio para maxitérminos

$$f = (\overline{8} + \overline{0})(\overline{A} + \overline{0})(\overline{A} + \overline{8} + \overline{c})(\overline{A} + \overline{8} + \overline{c})$$

c) Para hacer el circuito con puntas NOR, partimos de la expresion SOP.

$$S = (\overline{B} + 0)(\overline{A} + 0)(\overline{A} + 0)(\overline{A} + \overline{B} + \overline{C}) = \overline{(\overline{B} + 0) + (\overline{A} + 0) + (\overline{A} + 0) + (\overline{A} + 0) + (\overline{A} + \overline{B} + \overline{C})}} \right) \text{ De Horgan}$$

Para los inversores:

Para usar puertos NOR de 2 entradas:

e)	ABCD	5	5(0)	s(c,o)
4)	0000		1	1
	0100	0101	0	0
	1000	0001	0	CO
	1100	1	0	- Ēn

Universidad Carlos III de Madrid

1er curso Grado en Telemática

Electrónica Digital (2º parcial)

18 de Mayo de 2009

			~	
Apellidos		Nombre	Grupo	
Threeways		1101101,0	Gi mpo	

Cuestión 1.- (1 punto, 20 min)

Dado el circuito de la figura:

- a) Rellenar el cronograma adjunto, util izando las variables intermedias necesarias.
- b) Razonar si se trata de un circuito de Moore o de Mealy

El circuito es de Healy, y a que la salida depende de la entrada, además del estado.

Cuestron 2

a) El arcuito pedido es un detector de las secuencias 10,11,01,00 y 01,11,10,00. Grando se detecta la primera hay que incrementar el contador (CxCz=10) ya que ha entrado un coche, y ri se detecta la segunda hay que decrementar (C1Cz=01)

b) Hay que diseñar un detector >5

Completo = Q3+ Q2Q0+Q2Q,

Chastion 3

a) Asignación de estados 3 estados = 2 biestables

Estado	0,00
Es	00
E2	01
EB	10

5) Table de transiciones

Estado	Q, Q,	SE	Estado!	Q', Q'	ABC
EA	00	0	El E2	00	001
E2	01	0	E3 E1	00	111
E3	10	0	E1 E3	00	100
Resto	11	X	×	××	XXX

	•			
c)	a.E	0001	11 10	
	0	00	0	D 05.05
		0	NE	D1= Q,E+Q0E
	0	6 (I)	00	00 = Q, Qs E
	1	00	XX	Vo - W, WS C
	C	10	0/1	h- 0 1 5
	<u> </u>	01	$\times \varnothing$	$A = Q, + \overline{E}$
	0	Do	DO	B= QIE+QIE
	<u> </u>	00	\times	
	· ()	1	D	C=Q,+E
	1	101	XX	1 - 01,1 C