Детерминанта - определение, основни свойства, транспониране на детерминанта.

Твърдение 1. Нека F е числово поле, V е линайно пространство над F с базис e_1, \ldots, e_n ,

$$f: \underbrace{V \times \ldots \times V}_{n} \longrightarrow F$$

е полилинейна анти-симетрична функция на п аргумента, а

$$a_i = \sum_{j=1}^n a_{i,j} e_j, \quad 1 \le i \le n$$

 $ca\ n\ вектора\ c\ координати\ a_{i,1},\ldots,a_{i,n}\ cnрямо\ базиса\ e_1,\ldots,e_n.$ Тогава

$$f(a_1, \dots, a_n) = \left(\sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} a_{1, i_1} \dots a_{n, i_n}\right) f(e_1, \dots, e_n),$$

където сумирането е по всички пермутации i_1, \ldots, i_n на числата $1, \ldots, n$, а $[i_1, \ldots, i_n]$ е броят на инверсиите в пермутацията i_1, \ldots, i_n .

$$f(a_1, \dots, a_n) = f\left(\sum_{j_1=1}^n a_{1,j_1} e_{j_1}, \dots, \sum_{j_n=1}^n a_{n,j_n} e_{j_n}\right) =$$

$$= \sum_{j_1=1}^n \dots \sum_{j_n=1}^n a_{1,j_1} \dots a_{n,j_n} f(e_{j_1}, \dots, e_{j_n}).$$

Анти-симетричната функция f над числово поле F се анулира при равни аргументи, така че е достатъчно да сумираме

$$f(a_1, \dots, a_n) = \sum_{i_1, \dots, i_n} a_{1,i_1} \dots a_{n,i_n} f(e_{i_1}, \dots, e_{i_n})$$

по пермутациите i_1,\ldots,i_n на $1,\ldots,n$. Понеже

$$f(e_{i_1}, \dots, e_{i_n}) = (-1)^{[i_1, \dots, i_n]} f(e_1, \dots, e_n)$$

за броя $[i_1,\ldots,i_n]$ на инверсиите в пермутация i_1,\ldots,i_n , получаваме

$$f(a_1, \dots, a_n) = \left(\sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} a_{1, i_1} \dots a_{n, i_n}\right) f(e_1, \dots, e_n).$$

Твърдение 2. Нека V е линейно пространство над числово поле F с базис e_1, \ldots, e_n . Тогава съществува единствена полилинейна анти-симетрична функция

$$f: \underbrace{V \times \ldots \times V}_{n} \longrightarrow F$$

на n аргумента c $f(e_1,\ldots,e_n)=1$.

Доказателство. Ако

$$f: \underbrace{V \times \ldots \times V}_{n} \longrightarrow F$$

е полилинейна анти-симетрична функция на n аргумента върху n-мерно линейно пространство V над числово поле F и $f(e_1,\ldots,e_n)=1$, то за произволни вектори $a_i=\sum_{j=1}^n a_{i,j}e_j, \ 1\leq i\leq n$ е в сила

$$f(a_1, \dots, a_n) = f\left(\sum_{j_1=1}^n a_{1,j_1} e_{j_1}, \dots, \sum_{j_n=1}^n a_{n,j_n} e_{j_n}\right) =$$

$$= \left(\sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} a_{1,i_1} \dots a_{n,i_n}\right) f(e_1, \dots, e_n) = \sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} a_{1,i_1} \dots a_{n,i_n},$$

където сумирането е по всички пермутации i_1, \ldots, i_n на $1, \ldots, n$, а $[i_1, \ldots, i_n]$ е броят на инверсиите в пермутация i_1, \ldots, i_n . Това доказва единствеността на f.

Да разгледаме функцията

$$f: \underbrace{V \times \dots \times V}_{n} \longrightarrow F,$$

$$f(a_{1}, \dots, a_{n}) = f\left(\sum_{j_{1}=1}^{n} a_{1, j_{1}} e_{j_{1}}, \dots, \sum_{j_{n}=1}^{n} a_{n, j_{n}} e_{j_{n}}\right) = \sum_{i_{1}, \dots, i_{n}} (-1)^{[i_{1}, \dots, i_{n}]} a_{1, i_{1}} \dots a_{n, i_{n}},$$

$$(1)$$

където сумирането е по всички пермутации i_1, \ldots, i_n на $1, \ldots, n$ и $[i_1, \ldots, i_n]$ е броят на инверсиите в пермутация i_1, \ldots, i_n . Достатъчно е да докажем, че (1) е полилинейна анти-симетрична функция с $f(e_1, \ldots, e_n) = 1$, за да установим съществуването на f и да докажем твърдението. Следващите разглеждания не използват, че полето F е числово и (1) е полилинейна анти-симетрична функция над произволно поле F.

За произволно
$$1 \leq j \leq n$$
, ако $a'_j = \sum_{i_j=1}^n a'_{j,i_j} e_{i_j}$ и $a''_j = \sum_{i_j=1}^n a''_{i,i_j} e_{i_j}$, то
$$f(a_1,\ldots,a'_j+a''_j,\ldots,a_n) = \sum_{i_1,\ldots,i_n} (-1)^{[i_1,\ldots,i_n]} a_{1,i_1}\ldots (a'_{j,i_j}+a''_{j,i_j})\ldots a_{n,i_n} =$$

$$= \sum_{i_1,\ldots,i_n} (-1)^{[i_1,\ldots,i_n]} a_{1,i_1}\ldots a'_{j,i_j}\ldots a_{n,i_n} + \sum_{i_1,\ldots,i_n} (-1)^{[i_1,\ldots,i_n]} a_{1,i_1}\ldots a''_{j,i_j}\ldots a_{n,i_n} =$$

$$= f(a_1,\ldots,a'_j,\ldots,a_n) + f(a_1,\ldots,a''_j,\ldots,a_n).$$

За произволни $1 \leq j \leq n$ и $\lambda \in F$ е изпълнено

$$f(a_1, \dots, \lambda a_j, \dots, a_n) = \sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} a_{1, i_1} \dots (\lambda a_{j, i_j}) \dots a_{n, j_n} =$$

$$= \lambda \left(\sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} a_{1, i_1} \dots a_{j, i_j} \dots a_{n, i_n} \right) = \lambda f(a_1, \dots, a_j, \dots, a_n).$$

Това доказва линейността на f относно j-тия аргумент, а оттам и полилинейността на функцията f.

Ако
$$1 \le p < q \le n, \, a_q = a_p, \,$$
то

$$f(a_1, \dots, a_p, \dots, a_p, \dots, a_n) = \sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_p, \dots, i_q, \dots, i_n]} a_{1, i_1} \dots a_{p, i_p} \dots a_{p, i_q} \dots a_{n, i_n} = 0,$$

защото за произволни фиксирани $1 \leq i_p < i_q \leq n$ събираемите

$$\alpha = (-1)^{[i_1, \dots, i_p, \dots, i_q, \dots, i_n]} a_{1, i_1} \dots a_{p, i_p} \dots a_{p, i_q} \dots a_{n, i_n}$$

И

$$\beta = (-1)^{[i_1, \dots, i_q, \dots, i_p, \dots, i_n]} a_{1, i_1} \dots a_{p, i_q} \dots a_{p, i_p} \dots a_{n, i_n}$$

се унищожават. Причина за това е, че прилагането на транспозиция (i_p,i_q) променя четността на пермутация, така че

$$(-1)^{[i_1,\dots,i_q,\dots,i_p,\dots,i_n]} = -(-1)^{[i_1,\dots,i_p,\dots i_q,\dots,i_n]}.$$

Комутативността на умножението в F гарантира

$$a_{1,i_1} \dots a_{p,i_p} \dots a_{p,i_q} \dots a_{n,i_n} = a_{1,i_1} \dots a_{p,i_q} \dots a_{p,i_p} \dots a_{n,i_n}$$

и доказва, че $\beta = -\alpha$. Полилинейната функция f, анулираща се за два равни аргумента е анти-симетрична.

Вземайки предвид, че координатите на базисните вектори e_p спрямо базиса e_1,\dots,e_n са

$$\delta_{p,j} = \begin{cases} 1 & \text{ sa } 1 \le p = j \le n, \\ 0 & \text{ sa } 1 \le p \ne j \le n, \end{cases}$$

пресмятаме, че

$$f(e_1, \dots, e_n) = \sum_{i_1, \dots, i_n} (-1)^{[i_1, \dots, i_n]} \delta_{1, i_1} \dots \delta_{n, i_n} = (-1)^{[1, \dots, n]} \delta_{1, 1} \dots \delta_{n, n} = 1$$

и установяваме съществуването на f с необходимите свойства.

Определение 3. Ако $A=(a_{i,j})_{i,j=1}^n\in M_{n\times n}(F)$ е квадратна матрица n реда и n стълба, то детерминантата на A е

$$\det(A) = \sum_{i_1,\dots,i_n} (-1)^{[i_1,\dots,i_n]} a_{1,i_1} a_{2,i_2} \dots a_{n,i_n},$$

където сумирането е по всички пермутации i_1,\ldots,i_n на $1,\ldots,n$ и $[i_1,\ldots,i_n]$ е броят на инверсиите в i_1,\ldots,i_n .

Съгласно Твърдение 2, ако F е числово поле, то детерминантата е единствената полилинейна анти-симетрична функция на вектор-редовете $a_i = (a_{i,1}, a_{i,2}, \dots, a_{i,n})$ на

$$A = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix}$$

със стойност 1 за

$$a_i = e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}), \quad 1 \le i \le n.$$

Ако полето F не е числово, то детерминантата на матрица $A \in M_{n \times n}(F)$ е също полилинейна анти-симетрична функция на редовете си със стойност 1 за $a_i = e_i$, $1 \le i \le n$, но това не е единствената функция с тези свойства.

За да илюстрираме с пример, да напомним полилинейната анти-симетрична функция

$$f_0: \mathbb{Z}_2^2 \times \mathbb{Z}_2^2 \longrightarrow \mathbb{Z}_2,$$

 $f_0((a_{11}, a_{12}), (a_{21}, a_{22}) = a_{11}a_{21}$

от Пример 7 на предишната лекция. Детерминантата

$$\det : \mathbb{Z}_2^2 \times \mathbb{Z}_2^2 \longrightarrow \mathbb{Z}_2,$$

$$\det((a_{11}, a_{12}), (a_{21}, a_{22})) = \sum_{i_1, i_2} (-1)^{[i_1, i_2]} a_{1, i_1} a_{2, i_2} = a_{11} a_{22} - a_{12} a_{21}$$

на матрицата

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

е също полилинейна анти-симетрична функция на $a_1 = (a_{11}, a_{12}), a_2 = (a_{21}, a_{22}).$ За произволни функции

$$f: \underbrace{V \times \ldots \times V}_n \longrightarrow F \quad \text{if} \quad g: \underbrace{V \times \ldots \times V}_n \longrightarrow F$$

сумата

$$f+g: \underbrace{V \times \ldots \times V}_{n} \longrightarrow F$$

се определя поточково, т.е.

$$(f+g)(v_1,\ldots,v_n):=f(v_1,\ldots,v_n)+g(v_1,\ldots,v_n), \quad \forall (v_1,\ldots,v_n)\in\underbrace{V\times\ldots\times V}_n.$$

Сумата $f = f_0 + \det$ на две полилинейни анти-симетрични функции е полилинейна антисиметрична функция. Полагаме $f_1 := \det$ и забелязваме, че

$$(f_o + f_1)(a_1, \dots, a_j + a'_j, \dots, a_n) =$$

$$= f_0(a_1, \dots, a_j + a'_j, \dots, a_n) + f_1(a_1, \dots, a_j + a'_j, \dots, a_n) =$$

$$= f_0(a_1, \dots, a_j, \dots, a_n) + f_0(a_1, \dots, a'_j, \dots, a_n) +$$

$$+ f_1(a_1, \dots, a_j, \dots, a_n) + f_1(a_1, \dots, a'_j, \dots, a_n) =$$

$$= (f_0 + f_1)(a_1, \dots, a_j, \dots, a_n) + (f_0 + f_1)(a_1, \dots, a'_j, \dots, a_n)$$

И

$$(f_0 + f_1)(a_1, \dots, \lambda a_j, \dots, a_n) =$$

$$= f_0(a_1, \dots, \lambda a_j, \dots, a_n) + f_1(a_1, \dots, \lambda a_j, \dots, a_n) =$$

$$= \lambda f_0(a_1, \dots, a_j, \dots, a_n) + \lambda f_1(a_1, \dots, a_j, \dots, a_n) =$$

$$= \lambda (f_0 + f_1)(a_1, \dots, a_j, \dots, a_n),$$

за да получим линейността на $f_0 + f_1$ относно всеки аргумент, а оттам и полилинейността на $f_0 + f_1$. За произволни $1 \le i < j \le n$ е в сила

$$(f_0 + f_1)(a_1, \dots, a_j, \dots, a_i, \dots, a_n) =$$

$$= f_0(a_1, \dots, a_j, \dots, a_i, \dots, a_n) + f_1(a_1, \dots, a_j, \dots, a_i, \dots, a_n) =$$

$$= -f_0(a_1, \dots, a_i, \dots, a_j, \dots, a_n) - f_1(a_1, \dots, a_i, \dots, a_j, \dots, a_n) =$$

$$= -(f_0 + f_1)(a_1, \dots, a_i, \dots, a_j, \dots, a_n),$$

така че f_0+f_1 е анти-симетрична за анти-симетрични f_0 и f_1 . Полилинейната анти-симетрична функция $f_o+\det:\mathbb{Z}_2^2\times\mathbb{Z}_2^2\to\mathbb{Z}_2$ има стойност

$$(f_0 + \det)(e_1, e_2) = f_0((1, 0), (0, 1)) + \det(e_1, e_2) = \overline{1}.\overline{0} + \overline{1},$$

но не съвпада с детерминантата det.

Задача 4. Да се пресметне детерминантата

$$\Delta = \begin{vmatrix} a_{1,1} & 0 & 0 & \dots & 0 & 0 \\ a_{2,1} & a_{2,2} & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n-1,1} & a_{n-1,2} & a_{n-1,3} & \dots & a_{n-1,n-1} & 0 \\ a_{n,1} & a_{n,2} & a_{n,3} & \dots & a_{n,n-1} & a_{n,n} \end{vmatrix}.$$

Доказателство. Събираемо $(-1)^{[i_1,\dots,i_n]}a_{1,i_1}\dots a_{p,i_p}\dots a_{n,i_n}$ на Δ се анулира за всички $2\leq i_1\leq n$. Затова

$$\Delta = \sum_{i_2,\dots,i_n} (-1)^{[i_2,\dots,i_n]} a_{1,1} a_{2,i_2} \dots a_{n,i_n},$$

където сумирането е по всички пермутации i_2,\dots,i_n на $2,\dots,n$. Ако $3\leq i_2\leq n,$ то $a_{2,i_2}=0,$ така че

$$\Delta = \sum_{i_3,\dots,i_n} (-1)^{[i_3,\dots,i_n]} a_{1,1} a_{2,2} a_{3,i_3} \dots a_{n,i_n}.$$

Продължавайки по същия начин получаваме, че детерминантата

$$\Delta = a_{1,1}a_{2,2}a_{3,3}\dots a_{n,n}$$

на диагонална матрица е равна на произведението на елементите от диагонала.

Задача 5. Нека e_1, e_2, e_3 е базис на линейно пространство V над полето $\mathbb Q$ на рационалните числа, а $f: V \times V \to \mathbb Q$ е полилинейна анти-симетрична функция. Да се докаже, че за произволни вектори

$$a_1 = \sum_{j_1=1}^{3} a_{1,j_1} e_{j_1}$$
 u $a_2 = \sum_{j_2=1}^{3} a_{2,j_2} e_{j_2}$

om V e в cuлa

$$f(a_1, a_2) = A_{3,1}f(e_2, e_3) + A_{3,2}f(e_3, e_1) + A_{3,3}f(e_1, e_2),$$

където $A_{3,i}$ са адюнгираните количества на елементите от третия ред на матрицата

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}.$$

$$f(a_1, a_2) = f\left(\sum_{j_1=1}^3 a_{1,j_1} e_{j_1}, \sum_{j_2=1}^3 a_{2,j_2} e_{j_2}\right) = \sum_{j_1=1}^3 \sum_{j_2=1}^3 a_{1,j_1} a_{2,j_2} f(e_{j_1}, e_{j_2}).$$

Анти-симетричността на функцията f над числовото поле $\mathbb Q$ води до анулиране на f при равни аргументи, така че

$$f(a_1, a_2) = \sum_{1 \le j_1 < j_2 \le 3} a_{1,j_1} a_{2,j_2} f(e_{j_1}, e_{j_2}) + a_{1,j_2} a_{2,j_1} f(e_{j_2}, e_{j_1}) =$$

$$= \sum_{1 \le j_1 < j_2 \le 3} (a_{1,j_1} a_{2,j_2} - a_{1,j_2} a_{2,j_1}) f(e_{j_1}, e_{j_2}),$$

вземайки предвид $f(e_{j_2},e_{j_1})=-f(e_{j_1},e_{j_2})$. По-подробно,

$$f(a_1, a_2) =$$

$$= (a_{1,1}a_{2,2} - a_{1,2}a_{2,1})f(e_1, e_2) + (a_{1,2}a_{2,3} - a_{1,3}a_{2,2})f(e_2, e_3) + (a_{1,1}a_{2,3} - a_{1,3}a_{2,1})f(e_1, e_3).$$

От друга страна,

$$A_{3,i} = (-1)^{3+i} \Delta_{3,i}$$

за детерминантата $\Delta_{3,i}$ на матрицата, получена от A чрез премахване на третия ред и i-тия стълб. Това дава

$$A_{3,1} = (-1)^{3+1} \begin{vmatrix} a_{1,2} & a_{1,3} \\ a_{2,2} & a_{2,3} \end{vmatrix} = a_{1,2}a_{2,3} - a_{1,3}a_{2,2},$$

$$A_{3,2} = (-1)^{3+2} \begin{vmatrix} a_{1,1} & a_{1,3} \\ a_{2,1} & a_{2,3} \end{vmatrix} = -(a_{1,1}a_{2,3} - a_{1,3}a_{2,1}),$$

$$A_{3,3} = (-1)^{3+3} \begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}.$$

Прилагайки $f(e_1,e_3) = -f(e_3,e_1)$ завършваме решението на задачата.

Задача 6. Нека e_1, e_2 е базис на линейно пространство V над полето \mathbb{Z}_2 на остатъчите при деление на 2 и $a_i = a_{i,1}e_1 + a_{i,2}e_2 \in V$, $1 \leq i \leq 2$. Да се докаже, че:

- (i) $f: V \times V \to \mathbb{Z}_2$, $f(a_1, a_2) = a_{1,2}a_{2,2}$ е полилинейна анти-симетрична функция;
- $(ii)\ f(a_1,a_2)=\overline{0}\in \mathbb{Z}_2$ тогава и само тогава, когато a_1 или a_2 принадлежи на правата през началото $l(e_1).$

Доказателство. (i) Ако
$$a_1' = \sum_{j_1=1}^2 a_{1,j_1}' e_{j_1}, a_1'' = \sum_{j_1=1}^2 a_{1,j_1}'' e_{j_1}$$
, то

$$f(a'_{1} + a''_{1}, a_{2}) = f\left(\sum_{j_{1}=1}^{2} (a'_{1,j_{1}} + a''_{1,j_{1}})e_{j_{1}}, \sum_{j_{2}=1}^{2} a_{2,j_{2}}e_{j_{2}}\right) = (a'_{1,2} + a''_{1,2})a_{2,2} =$$

$$= a'_{1,2}a_{2,2} + a''_{1,2}a_{2,2} = f\left(\sum_{j_{1}=1}^{2} a'_{1,j_{1}}e_{j_{1}}, \sum_{j_{2}=1}^{2} a_{2,j_{2}}e_{j_{2}}\right) + f\left(\sum_{j_{1}=1}^{2} a''_{1,j_{1}}e_{j_{1}}, \sum_{j_{2}=1}^{2} a_{2,j_{2}}e_{j_{2}}\right) =$$

$$= f(a'_{1}, a_{2}) + f(a''_{1}, a_{2}).$$

Аналогично, за $a_2'=\sum\limits_{j_2=1}^2a_{2,j_2}'e_{j_2}$ и $a_2''=\sum\limits_{j_2=1}^2a_{2,j_2}''e_{j_2}$ е изпълнено

$$f(a_1, a_2' + a_2'') = f\left(\sum_{j_1=1}^2 a_{1,j_1} e_{j_1}, \sum_{j_2=1}^2 (a_{2,j_2}' + a_{2,j_2}'') e_{j_2}\right) = a_{1,2}(a_{2,2}' + a_{2,2}'') =$$

$$= a_{1,2}a_{2,2}' + a_{1,2}a_{2,2}'' = f\left(\sum_{j_1=1}^2 a_{1,j_1} e_{j_1}, \sum_{j_2=1}^2 a_{2,j_2}' e_{j_2}\right) + f\left(\sum_{j_1=1}^2 a_{1,j_1} e_{j_1}, \sum_{j_2=1}^2 a_{2,j_2}'' e_{j_2}\right) =$$

$$= f(a_1, a_2') + f(a_1, a_2'').$$

3а $\lambda = \overline{1} \in \mathbb{Z}_2$ е в сила

$$f(\overline{1}a_1, a_2) = f(a_1, a_2) = \overline{1}f(a_1, a_2)$$

И

$$f(a_1, \overline{1}a_2) = f(a_1, a_2) = \overline{1}f(a_1, a_2).$$

Ако $\lambda = \overline{0} \in \mathbb{Z}_2$, то

$$f(\overline{0}a_1, a_2) = f(\overline{0}e_1 + \overline{0}e_2, a_2) = \overline{0}a_{2,2} = \overline{0} = \overline{0}f(a_1, a_2)$$

И

$$f(a_1, \overline{0}a_2) = f(a_1, \overline{0}e_1 + \overline{0}e_2) = a_{1,2}\overline{0} = \overline{0} = \overline{0}f(a_1, a_2).$$

Това доказва полилинейността на f.

За $a_{i,j}$ от полето \mathbb{Z}_2 на остатъците при деление с 2 е изпълнено $a_{2,2}a_{1,2}+a_{1,2}a_{2,2}=2a_{1,2}a_{2,2}=\overline{0}$. (Тук използваме, че $2.\overline{0}=\overline{0}+\overline{0}=\overline{0}$ и $2.\overline{1}=\overline{1}+\overline{1}=\overline{0}$.) Следователно

$$f(a_2, a_1) = a_{2,2}a_{1,2} = -a_{1,2}a_{2,2} = -f(a_1, a_2)$$

и функцията f е анти-симетрична.

(ii) Понеже \mathbb{Z}_2 е поле, произведението $f(a_1,a_2)=a_{1,2}a_{2,2}=\overline{0}\in\mathbb{Z}_2$ се анулира само ако единият множител се анулира. Ако $a_{1,2}=\overline{0}$, то $a_1=a_{1,1}e_1\in l(e_1)$. За $a_{2,2}=\overline{0}$ е изпълнено $a_2=a_{2,1}e_1\in l(e_1)$.