IN THE SPECIFICATION

Please replace paragraph [0024] with the following amended paragraph:

[0024]	In a next step, a flowable dielectric layer 220 is formed over the resultant
structure by usin	ng a spin on dielectric (SOD) such as a silicate, a siloxane, a methyl
SilsesQuioxane	(MSQ), a hydrogen SisesQuioxane(HSQ), an MSQ/HSQ, a perhydrosilazane
(TCPS) or a pol	ysilazane. Alternatively, the flowable dielectric layer 220 can be formed by
using a low tem	perature undoped dielectric at a temperature in a range of about -10 °C [[_]] to
about 150 °C [[]] under a pressure ranging from about 10 mTorr to about 100 Torr, wherein a
reaction source	uses a mixture gas of $SiH_x(CH_3)_y$ ($0 \le x \le 4$, $0 \le y \le 4$), H_2O_2 , O_2 , H_2O and N_2O .
It is preferable t	hat the thickness of the flowable dielectric layer 220 is in the range of about
1,000 <u>Å</u> °€ to ab	out 20,000 Act in consideration of heights of the gates 216 and a gap space
between the gate	es 216.

Please replace paragraph [0029] with the following amended paragraph:

[0029] Thereafter, referring to Fig. 3D, a barrier layer 226 is formed on bottom faces and sidewalls of the patterned flowable dielectrics 220A and the bottom faces of the contact holes 201 with a thickness in the range of about 20 $\text{\r{A}} \stackrel{\circ}{\leftarrow}$ to about 300 $\text{\r{A}} \stackrel{\circ}{\leftarrow}$ preventing a gas or a solution infiltrating into the micro-pores in the patterned flowable dielectrics 220A. Herein, the barrier layer 226 uses a material such as a silicon nitride, a silicon oxide, a silicon carbide or the like.