CSE 122/222C; WES 269 IEEE 802.15.4

Pat Pannuto, UC San Diego

ppannuto@ucsd.edu

IEEE 802.15.4 Goals

Introduction to 802.15.4

- Overview of physical layer details
- Exploration of link layer
 - Network topologies
 - Communication structure
 - Access control
 - Packet structure

References

- 802.15.4 Specification [2006]
 - "Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
 Specifications for Low-Rate Wireless Personal Area Networks (WPANs)"

Other helpful references:

- Paper introducing the 802.15.4 draft
- NXP 802.15.4 Stack User Guide
- 2005 presentation on 802.15.4

Outline

Overview

Physical Layer

Link Layer

Packet Structure

There are some missing qualities here.

Why be closer to the origin?

IEEE 802....

- Anyone heard "Eight-Oh-Two Dot"?
 - Where?
 - What is it?

IEEE 802

- Network standards for variable-sized packets
 - Ethernet
 - WiFi
 - WPANs
- E.g. not networks that send periodic constant-sized packets
- Specify PHY Layer and Link Layer
 [MAC+LLC]
- Another example standard:
 - IEEE 754: Floating Point

Name	Description	Status
IEEE 802.1	Higher Layer LAN Protocols Working Group	Active
IEEE 802.2	LLC	Disbanded
IEEE 802.3	Ethernet	Active
IEEE 802.4	Token bus	Disbanded
IEEE 802.5	Token Ring MAC layer	Disbanded
IEEE 802.6	MANs (DQDB)	Disbanded
IEEE 802.7	Broadband LAN using Coaxial Cable	Disbanded
IEEE 802.8	Fiber Optic TAG	Disbanded
IEEE 802.9	Integrated Services LAN (ISLAN or isoEthernet)	Disbanded
IEEE 802.10	Interoperable LAN Security	Disbanded
IEEE 802.11	Wireless LAN (WLAN) & Mesh (Wi-Fi certification)	Active
IEEE 802.12	100BaseVG	Disbanded
IEEE 802.13	Unused ^[2]	reserved for Fast Ethernet development ^[3]
IEEE 802.14	Cable modems	Disbanded
IEEE 802.15	Wireless PAN	Active
IEEE 802.16	Broadband Wireless Access (WiMAX certification)	hibernating
IEEE 802.17	Resilient packet ring	Disbanded
IEEE 802.18	Radio Regulatory TAG	?
IEEE 802.19	Wireless Coexistence Working Group	?
IEEE 802.20	Mobile Broadband Wireless Access	Disbanded
IEEE 802.21	Media Independent Handoff	hibernating
IEEE 802.22	Wireless Regional Area Network	hibernating
IEEE 802.23	Emergency Services Working Group	Disbanded
IEEE 802.24	Vertical Applications TAG	?

IEEE 802.15

IEEE 802.15	Wireless PAN	Active
IEEE 802.15.1	Bluetooth certification	Disbanded
IEEE 802.15.2	IEEE 802.15 and IEEE 802.11 coexistence	Hibernating ^[4]
IEEE 802.15.3	High-Rate wireless PAN (e.g., UWB, etc.)	?
IEEE 802.15.4	Low-Rate wireless PAN (e.g., ZigBee, WirelessHART, MiWi, etc.)	Active
IEEE 802.15.5	Mesh networking for WPAN	?
IEEE 802.15.6	Body area network	Active
IEEE 802.15.7	Visible light communications	?

- Wireless Personal-Area Networks (WPAN)
 - All the things within the workspace of a person
 - Conceptually smaller domain that the Local Area Network
 - Realistically about the same thing as a LAN (or really a WLAN)
- Formerly included a Bluetooth spec
 - Bluetooth SIG took over governance

802.15.4 (LR-WPANs) Overview

"Low-Rate Wireless Personal Area Networks"

Goals

 "The IEEE 802.15 TG4 was chartered to investigate a low data rate solution with multi-month to multi-year battery life and very low complexity." [TG4]

Applications

- "Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation." [TG4]
- Ultimately home automation, industrial control/monitoring, vehicular sensing, agriculture; really most M2M sensor applications you might imagine
- Other contemporary technologies
 - WiFi 802.11b and Bluetooth Classic
 - Too complex in specification and overachieving in capability

IEEE 802.15.4

- Low-Rate Wireless PAN
 - 250 kbps, ~100 m range
 - Radio hardware available with low-power and low-cost
- Specification: 2003
 - Also 2006, 2007 [UWB!], 2009, 2011, 2015, and 2020 revisions [and frankly probably others]
 - Mostly various added capabilities such as extra PHY layers
 - Also define optional security, scheduling, and larger frame sizes
- We'll mostly work off of the <u>2006 version</u>
 - Thread is based on 2006 version
 - Zigbee is based on the original 2003 version
 - Roughly 200 pages of meaningful specification (100 of appendices)
 - Compare to 3000 pages of Bluetooth/BLE

Outline

Overview

Physical Layer

Link Layer

Packet Structure

802.15.4 Physical Layers

- Multiple options of physical layers are supported
 - We'll focus on 2.4 GHz (2400 MHz)

Table 1—Frequency bands and data rates

PHY (MHz)	Frequency band (MHz)	Spreading parameters		Data parameters		
		Chip rate (kchip/s)	Modulation	Bit rate (kb/s)	Symbol rate (ksymbol/s)	Symbols
0.001015	868-868.6	300	BPSK	20	20	Binary
868/915	902-928	600	BPSK	40	40	Binary
868/915 (optional)	868-868.6	400	ASK	250	12.5	20-bit PSSS
	902-928	1600	ASK	250	50	5-bit PSSS
868/915 (optional)	868-868.6	400	O-QPSK	100	25	16-ary Orthogonal
	902-928	1000	O-QPSK	250	62.5	16-ary Orthogonal
2450	2400-2483.5	2000	O-QPSK	250	62.5	16-ary Orthogonal

Physical Layer

- O-QPSK modulation
 - Offset Quadrature Phase-Shift Keying
 - Twice the data rate of BPSK for same BER
 - Cost: most complicated design of receivers
 - Which is pretty minimal with all the transistors we've got
 - Plus the ability to reuse previous designs
 - 4 bits per symbol
- Symbols versus bits
 - A symbol is the unit of data transfer for a modulated signal
 - Does not necessarily correspond 1:1 with bits
 - The rate of symbols per second is a baudrate
- 802.15.4 bit rate at 2.4 GHz: 2000 chips/s, which is 250 kbps, which is 62.5 kBaud

802.15.4 Modulation (@2.4 GHz f_c)

O-QPSK with half-sine shaping is MSK!

Broken into 4-bit symbols

802.15.4 Modulation (@2.4 GHz f_c) O-QPSK with half-sine shaping is MSK!

Input bit stream

Each bit of the PN code is called a *chip*

Each *chip* encodes half a sine wine

Chips alternate in-phase and quadrature

Quadrature component is offset $\pi/2$

Each symbol maps to a 32-bit pseudo-noise code (PN-code) or sometimes pseudorandom sequence

I and Q half-sines are baseband, which are mixed with the carrier

I and Q carriers are combined to create the final on-air signal

Signal is MSK, which is a special, optimal case of FSK!

802.15.

O-QPSK w

Input bit st

Each bit of PN code is called a *chip*

Each *chip* encodes half a sine wine

Chips alternate in-phase and quadrature

Final detail:

This shows a f_b :: f_c ratio of 1:: 10 so you can see the impact on the carrier. In reality, it's closer to 1:: 1200 (2,000 chips / s:: 2,400,000 Hz)

h symbol maps to 2-bit pseudo-noise le (PN-code) or netimes pseudodom sequence

symbols

I and Q half-sines are baseband, which are mixed with the carrier

I and Q carriers are combined to create the final on-air signal

Signal is MSK, which is a special, optimal case of FSK!

CSE 122/222C; WES 269 [WI25]

CC BY-NC-ND Pat Pannuto - Content developed in coordination with Branden Ghena and Brad Campbe

O-QPSK results in continuous wave

Standard BPSK

The magic of I and Q channels are that we get two dimensions

- This is called a "constellation diagram"
 - We'll talk about these more with cellular

Constellation Diagrams give 'at-a-glance' understanding of modulation schemes

- Constellation diagrams for On-Off-Keying (OOK),
 Frequency Shift Keying (FSK)?
 - And what does that tell us about how the two modulation schemes compare?

Obligatory EE Disclaimer

Many FSK frontends are implemented via IQ modulation internally...

802.15.4

(MSK)

Why do we map symbols to chips?

We took the 4 bits we want to send...... and sent 32 bits instead??

Why?

Direct Sequence Spread Spectrum (DSSS)

- Increases the <u>signal</u> bandwidth of a transmission beyond <u>information</u> bandwidth
 - Send sequences of chips, which are a translation of one symbol to a pattern of many bits
 - Chips are transmitted much faster than symbols, essentially increasing the data rate
- Enables better interference avoidance
 - Received bits are correlated against codes to see which is most likely
 - 802.15.4 tolerates 13-15 bit flips (almost half!)

Table 1. Zigbee symbol to chip mapping.

Zigbee Symbol	Chip Values (c ₀ c ₁ c ₃₀ c ₃₁)
0000	11011001110000110101001000101110
1000	1110110110011100001101010010010
0100	00101110110110011100000110101010
1100	00100010111011011001110000110101
0010	01010010001011101101100111000011
1010	00110101001000101110110110011100
0110	11000011010100100010111011011001
1110	10011000011010100100010111011101

DSSS example

- Data sent is **101**
 - Code is longer than data, so we replicate bits
 - Data is recoverable, even with noise

Show me the money: What is the actual **bit rate** of 802.15.4 (2.4 GHz)?

- Chip rate: 2000 kchips/sec
- "Bit rate" is the term for rate of meaningful digital bits over the PHY
 - i.e. link layer bits
 - (n.b., sometimes also called "data rate", but sometimes people use "data rate" for goodput; bit rate is unambiguous)

802.15.4 RF channels

- 27 channels across three bands
- 5 MHz channel separation at 2.4 GHz
 - Compare to 2 MHz for BLE
 - (or to 1 MHz for BT Classic)

Regional bands

- Different RF bands have different regional availability
- Also have different rules
 - 915 MHz: 400 ms dwell time
 - 868 MHz: 1% duty cycle

	Channel	Center Frequency (MHz)	Availability
868 MHz Band	0	868.3	Europe
	1	906	
	2	908	
	3	910	
	4	912	
915 MHz	5	914	7.
Band	6	916	*
	7	918	
	8	920	7
	9	922	Americas
	10	924	Americas
	11	2405	
	12	2410	
	13	2415	
	14	2420	
	15	2425	
	16	2430	
	17	2435	
2.4 GHz	18	2440	ALC: U
Band	19	2445	7 12
	20	2450	1
	21	2455	7 7' 7 ,
	22	2460]
	23	2465	
	24	2470	1
	25	2475	World Wide
	26	2480	World Wide

Bringing it back together—what does all this mean for communication in practice?

- Transmit power
 - Typical: 0 dBm
- Receiver sensitivity
 - nRF52840 802.15.4: -100 dBm
 - Compare to BLE sensitivity of -95 dBm
 - Minimum acceptable per-spec: -85 dBm
 - Circa-2006 radios (CC2420): -95 dBm
- Which has longer range, 802.15.4 or BLE? Why?
 - 802.15.4, for our boards with +5 dBm more margin; lower bit rate plays into this

Outline

Overview

Physical Layer

Link Layer

Packet Structure

802.15.4 network topologies

Only specifies PHY and MAC, but has use cases in mind

Star and Tree topologies

- PAN Coordinator
 - Receives and relays all messages
 - Most capable and power-intensive
- Coordinators (a.k.a. Routers)
 - Control "clusters"
 - Receives and relays to its children
 - Communicates up to parent coordinator
- End Devices
 - Only communicate with single parent coordinator
 - Least capable and power intensive

Figure 1: Star Topology

Break + Mesh networks

- Most devices are capable of communicating with multiple neighbors
- What are advantages of mesh?

PAN Co-ordinator

• What are disadvantages of mesh?

Figure 4: Mesh Topology

Mesh networks

Most devices are capable of communicating with multiple neighbors

What are advantages of mesh?

- Devices can communicate over longer distances
- Device failures less likely to collapse the entire network

What are disadvantages of mesh?

- Some nodes have to spend more energy communicating
- Network protocol becomes more complicated to manage routing

Figure 4: Mesh Topology

Reminder: CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance

- 0. Set wait range to [0, short)
- 1. First, wait a random amount (collision avoidance part)
- 2. Then, listen and determine if anyone is transmitting (carrier sense part)
 - If idle, you can transmit
 - If busy, increase wait time min/max, and repeat step 1
- Can be combined with notion of slotting
 - Synchronize to slots (smaller than transmit times)
 - Wait for a number of slots
 - Listen for idle slots

Modes of operation

- Beacon-enabled PAN
 - Slotted CSMA/CA
 - Structured communication patterns
 - Optionally with some TDMA scheduled slots
- Non-beacon-enabled PAN
 - Unslotted CSMA/CA
 - No particular structure for communication
 - Could be defined by other specifications, like Thread or Zigbee

Beacon-enabled superframe structure

- Beacons occur periodically [15 ms 245 seconds]
 - Devices must listen to each beacon
- Contention Access Period
 - Slotted CSMA/CA synchronized by beacon start time
- Inactive Period
 - No communication occurring. Assumes sleepy devices

Guaranteed Time Slots (GTS)

- PAN Coordinator may create a Contention Free Period with Guaranteed Time Slots
 - TDMA schedule assigned to specific devices
 - Slots eat up part of the Contention Access Period
 - No CSMA/CA within a slot

Handling tree-based topologies

- All coordinators listen to beacon from PAN coordinator
 - And can participate in that contention period
- Send their own beacons to child devices during inactive period
 - Children participate in that contention period

Non-beacon-enabled PAN

Contention Access Period

- Same idea, just no beacons
 - Which removes synchronization benefit (and slotted CSMA/CA)
 - Also removes beacon listening cost
 - Devices only need to check for activity before transmitting
 - Still need an algorithm to determine when it should receive data
 - All the time is a huge energy drain
 - Algorithms can get complicated here
 - Does BLE mechanism of listen-after-send apply?

Non-beacon-enabled PAN

Contention Access Period

- Same idea, just no beacons
 - Which removes synchronization benefit (and slotted CSMA/CA)
 - Also removes beacon listening cost
 - Devices only need to check for activity before transmitting
 - Still need an algorithm to determine when it should receive data
 - All the time is a huge energy drain
 - Algorithms can get complicated here
 - Does BLE mechanism of listen-after-send apply?
 - Only if sending to a high-power device, not among equals

Receiving messages

- 1. Listen during entire contention period
 - Can receive direct messages from any other device
 - Can immediately respond to messages as well

Figure 4: Mesh Topology

- 2. Request messages from Coordinator
 - Make all communication go through Coordinator
 - Send a request-for-data packet to coordinator to get information
 - Coordinator can include list of devices with pending data in beacon
- More complicated listening algorithms are possible

Clear Channel Assessment (CCA)

- The "listen" part of CSMA/CA
- Variety of implementations are acceptable
- 1. Energy above threshold?
 - Energy for 8 symbol durations above threshold (RSSI)
- 2. Carrier present?
 - Valid 802.15.4 carrier signal
- 3. Energy AND/OR Carrier

Slotted CSMA/CA operation

- Have data to send
- Wait for next backoff slot (synchronized from beacon)
- Wait for 0-7 backoff slots (slot is 20 symbol durations: 320 us)
- Listen for two empty slots
 - Idle: Transmit
 - Occupied: wait 0-15 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat (upper limit configurable)
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Timeout

Unslotted CSMA/CA operation

- Have data to send
- Wait for next backoff slot (synchronized from beacon)
- Wait for 0-7 backoff slots (slot is 20 symbol durations: 320 us)
- Listen for two empty slots
 - Idle: Transmit
 - Occupied: wait 0-15 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat (upper limit configurable)
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Timeout

Break + Question

What are benefits/costs of using or not using beacons?

Break + Question

- What are benefits/costs of using or not using beacons?
 - Beacons
 - Enable energy savings by designating period with radios off
 - Enable structured communication like Guaranteed Slots
 - Require some central coordinator within range of all devices
 - Tradeoff in inactive period:
 - communication latency vs beacon-listening costs
 - No beacons
 - Enable all devices to be identical (no coordinator needed)
 - Require custom communication scheme
 - Could be better or worse for various qualities... (always-on radios?)

Outline

Overview

Physical Layer

Link Layer

Packet Structure

Base packet format

- Synchronization
 - Preamble: four bytes of zeros
 - Start-of-Packet: 0xA7
- PHY Header
 - One field: length 0-127
 - Why still 8 bits?

Base packet format

- Synchronization
 - Preamble: four bytes of zeros
 - Start-of-Packet: 0xA7
- PHY Header
 - One field: length 0-127
 - Why still 8 bits? Because computers depend on bytes

MAC header

- control
 - Header
- Sequence number
 - 8-bit monotonically increasing
- Addressing fields
 - PAN and addresses
 - Varies based on frame type

- Frame payload
 - Depends on frame type
- Frame check sequence
 - 16-bit CRC

MAC

payload

MAC footer

Frame control

Octets:2	1	0/2	0/2	/8	0/2	0	/2/8	variable	2
Frame control	Sequence number	Destination PAN identifier	Destina	222	Source PAN identifier		ource dress	Frame payload	Frame check sequence
			Addressing fields						ocquorioc
MAC header								MAC payload	MAC footer
Bits: 0-2	3	4	5	6	7-9	9	10-11	12-13	14-15
Frame type	Security enabled	Frame pending	Ack. Req.	PAN III compress	Reser	rved	Dest. addressin mode	g Frame version	Source addressing mode

- Frame type
 - Type of payload included
- Security enabled
 - Packet is encrypted
 - (extra 0-14 byte header)
- Frame pending
 - Fragmented packet

- Acknowledgement required
- PAN ID compression
 - No PAN ID if intra-network
- Addressing modes
 - Which fields to expect

Why no length field?

Frame control

Octets:2	1	0/2	0/2/	/8	0/2	0,	/2/8	variable	2
Frame control	Sequence number	Destination PAN identifie	Destina	ation ess	Source PAN entifier		ource dress	Frame payload	Frame check sequence
			Addressing fields						ooquonoo
MAC header							MAC payload	MAC footer	
Bits: 0-2	3	4	5	6	7-9	9	10-11	12-13	14-15
Frame type	Security enabled	Frame pending	Ack. Req.	PAN ID compression	Reser	rved	Dest. addressir mode	Frame version	Source addressing mode

- Frame type
 - Type of payload included
- Security enabled
 - Packet is encrypted
 - (extra 0-14 byte header)
- Frame pending
 - Fragmented packet

- Acknowledgement required
- PAN ID compression
 - No PAN ID if intra-network
- Addressing modes
 - Which fields to expect

Why no length field?

Already in prior header

Frame types - Beacon

Beacon

- Information about the communication structure of this network
- Sent in response to requests from scanning devices
- Sent periodically at start of Superframes (if in use)
 - Sent without CSMA/CA

MAC Header

Source address only, broadcast to everyone

Packet contents

- Superframe details, including Guaranteed Time Slots (if any)
- Pending addresses lists devices for which Coordinator has data

2	variable	variable	variable
Superframe Specification	GTS fields (Figure 45)	Pending address fields (Figure 46)	Beacon Payload
MAC Payload			

Frame types - Data

- Data
 - Data from higher-layer protocols
- MAC Header
 - Source and/or Destination addresses as necessary
- Packet Contents
 - Whatever bytes are desired (122 bytes address sizes)
 - May be fragmented across packets

Frame types – MAC Command

MAC Command

- Various commands for supporting link layer
 - Join/leave network
 - Change coordinator within network
 - Request data from coordinator
 - Request Guaranteed Time Slot

MAC Header

Source and/or Destination addresses as necessary

1	variable			
Command Frame Identifier	Command Payload			
MAC Payload				

Frame types - Acknowledgement

- Acknowledgement
 - Acknowledges a Data or MAC Command packet
 - Don't send ack's for beacons or other acknowledgements
 - What happens if an acknowledgement isn't received?
 - Packet will be re-transmitted
- MAC Header Contents
 - Repeats Sequence Number of acknowledged packet
 - No Source or Destination addresses (short packet)
- Sent T_{IFS} after the packet it is acknowledging (immediately)

Quick Analysis: Maximum goodput?

- Assume best possible case for data transmission
 - 122 Bytes per packet
 - At 250 kbps -> 3.904 ms
 - Plus Inter-frame spacing of 40 symbols
 - At 62.5 kBaud -> 0.640 ms
 - 122 Bytes / 4.544 ms -> 214 kbps
 - Compare to BLE advertisements: 9.92 kbps
 - Compare to BLE connections: 520 kbps

Next time: Meshing and Low Power MACs

