Assignment Assignment7-Momentum due 03/11/2022 at 11:59pm PST

1. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

A particle of mass $m_1 = 5.51$ kg initially travels with velocity $\vec{v}_{1,i} = 26.4 \frac{\text{m}}{c} \hat{i}$.

A second particle of mass $m_2 = 7.69$ kg initially travels with velocity $\vec{v}_{2,i} = 11.1 \frac{\text{m}}{\text{s}} \hat{j}$.

The two particles collide; their interaction takes t = 2.71s. After the collision m_1 travels with velocity $\vec{v}_{1,f} = 13.3 \frac{\text{m}}{\text{s}} \hat{j}$.

(The input below will accept answers with no more than 1 How fast is m_2 moving after the collision?

____ <u>m</u>

What was the magnitude of the average force on m_2 during the collision?

____ N

UVic Problem ID: 48301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

• 18.981

• 60.104

2. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

A lump of clay of mass $m_1 = 5.47$ kg is suspended against gravity by a light rope of length $\ell = 4.27$ m.

A second lump of clay of mass $m_2 = 0.70$ kg is shot at the first lump.

Immediately before they collide m_1 is stationary, hanging straight down, and m_2 is travelling horizontally at speed $|\vec{v}| = 32\frac{m}{a}$.

The lumps of clay stick together and swing on the rope.

(The input below will accept answers with no more than 1 How fast does the combined clay lump move immediately after the collision?

_____ <u>m</u>

What is the tension in the rope immediately after the collision?

____ N

UVic Problem ID: 48301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

• 3.630

• 79.511

3. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

A particle of mass m = 6.44kg is initially travelling at $\vec{v} = 24.1 \frac{\text{m}}{\text{s}} \hat{i} - 25.1 \frac{\text{m}}{\text{s}} \hat{j}$.

The particle is then subject to a constant force $\vec{F} = 8.99\text{N}\hat{i} + 8.17\text{N}\hat{j}$ which acts for exactly 2.23s.

(The input below will accept answers with no more than 1 After the constant force has acted what is the particle's momentum?

$$\vec{p} =$$
 kg $\frac{m}{s}\hat{i} +$ kg $\frac{m}{s}\hat{j}$

UVic Problem ID: 48301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

• 175.252

-143.425

4. (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

A lump of clay of mass $m_1 = 6.23$ kg initially travels with velocity $\vec{v}_1 = 23.3 \frac{\text{m}}{\text{s}} \hat{i} + 9.4 \frac{\text{m}}{\text{s}} \hat{j}$.

The lump of clay m_1 collides with a second lump of clay of mass $m_2 = 3.35$ kg which was travelling with an unknown velocity \vec{v}_2 . After the collision the combined lump travels with velocity $\vec{v}_f = -12.7 \frac{\text{m}}{\text{s}} \hat{i} + 4.7 \frac{\text{m}}{\text{s}} \hat{j}$.

(The input below will accept answers with no more than 1

What was \vec{v}_2 ?

$$\vec{v}_2 = \underline{\qquad} \frac{\mathbf{m}}{\mathbf{s}} \hat{i} + \underline{\qquad} \frac{\mathbf{m}}{\mathbf{s}} \hat{j}$$

UVic Problem ID: 48301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826

Correct Answers:

−79.649

• -4.041 **5.** (1 point)

Student Name: Arfaz Hossain

Student ID: V00984826

Masses $m_1 = 2.67$ kg and $m_2 = 6.07$ kg are initially held at rest on a horizontal frictionless surface.

A massless spring of spring constant $k = 929 \frac{\text{N}}{\text{m}}$ is compressed by some amount between them.

The masses are released, and the spring expands pushing them apart.

(The input below will accept answers with no more than 1

The final velocity of m_1 is $\vec{v}_1 = -23.96 \frac{\text{m}}{\text{s}} \hat{i}$. What is the final velocity of m_2 ?

$$\vec{v}_2 = \underline{\qquad} \frac{\mathrm{m}}{\mathrm{s}} \hat{i}$$

UVic Problem ID: 48301611324924130

Student Name: Arfaz Hossain

Student ID: V00984826 Correct Answers:

• 10.539

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America