

Advance Fluid Dynamics

MAT514

Prof. Dr Shamsun Naher Begum Shahjalal University of Science and Technology

> EDITED BY MEHEDI HASAN

Preface

This is a compilation of lecture notes with some books and my own thoughts. If there are any mistake/typing error or, for any query mail me at mehedi12@student.sust.edu.

Contents

Ι	Sheet	1
1	Fuzzy Sets	2
	1.1 Fuzzy Set Operations	3

Part I Sheet

Chapter 1

Fuzzy Sets

Definition 1 (Characteristic function). Let X be a universal set and $A \subseteq X$. Then the function¹

$$\chi_A(x) = \begin{cases} 1; & x \in A \\ 0; & x \notin A \end{cases}$$

is characteristic function of A in X.

Definition 2 (Fuzzy Set). A fuzzy set² $A \subseteq X$ is a mapping $A: X \to [0,1]$, where, $A(x) = y \in [0,1]$ is called the membership function or, grade of membership of x in A. The collection of all fuzzy sets of X is denoted by $\mathcal{F}(x)$.

Definition 3 (Fuzzy subset). A fuzzy set A is called a fuzzy subset of another fuzzy set B if $A(x) \leq B(x)$ $\forall x \in X$. We denote it by $A \leq B$.

Definition 4 (Empty fuzzy set). A fuzzy set A is called empty fuzzy set if $\forall x \in X \ A(x) = 0$. The empty fuzzy set is denoted by $\underline{0}$. Thus, $\underline{0}(x) = 0 \ \forall x \in X$.

Definition 5 (Total fuzzy set). The total fuzzy set $\underline{1}$ is defined by $\underline{1}(x) = 1 \ \forall x \in X$.

Definition 6 (Equality of two fuzzy sets). Two fuzzy sets A and B of X is said to be equal iff $A \leq B$ and $B \leq A$.

Example (Empty and Total fuzzy set). Suppose, $A: X \to [0,1]$ where X = [20,80]. Then,

$$\underline{0}(x) = \begin{cases} 0 & \text{if } 15 < x < 90 \\ 1 & \text{otherwise} \end{cases} \quad \text{and} \quad \underline{1}(x) = \begin{cases} 1 & \text{if } 20 \le x < 90 \\ 0 & \text{otherwise} \end{cases}$$

Example (Fuzzy subset). Suppose, $A: X \to [0,1]$ where, X = [0,100] defined by

$$A(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{75}; & \text{if } 40 \le x < 75\\ 1; & \text{if } 75 \le x \le 100 \end{cases}$$

and $B: X = [0, 100] \to [0, 1]$ defined by

$$B(x) = \begin{cases} 0; & \text{if } 0 \le x < 40\\ \frac{x}{95}; & \text{if } 40 \le x < 95\\ 1; & \text{if } 95 \le x \le 100 \end{cases}$$

Then, B(x) is a subset of A(x). Since, $B(x) \le A(x) \ \forall x \in X$.

¹Some authors use μ as characteristic function.

²Sometimes fuzzy set is denoted by A.

1.1 Fuzzy Set Operations

Definition 7 (Union of Fuzzy Sets). Let $A, B \in \mathcal{F}(x)$. Then the union of A and B is denoted and defined by, $(A \vee B)(x) = \max\{A(x), B(x)\}, \forall x \in X$.

Definition 8 (Intersection of Fuzzy Sets). Let $A, B \in \mathcal{F}(x)$. Then the intersection of A and B is denoted and defined by, $(A \wedge B)(x) = \min \{A(x), B(x)\}, \forall x \in X$.

Definition 9 (Complement of Fuzzy Set). Let A be a fuzzy set of X. Then, the complement of A is denoted by A^c and defined by $A^c(x) = 1 - A(x)$, $\forall x \in X$.

Example. Given,

$$A_1 = \begin{cases} 1; & \text{if } 40 \le x < 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x < 60 \\ 0; & \text{if } 60 \le x \le 100 \end{cases} \quad \text{and} \quad A_2 = \begin{cases} 0; & \text{if } 40 \le x < 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x < 60 \\ 1 - \frac{x - 60}{10}; & \text{if } 60 \le x < 70 \\ 0; & \text{if } 70 \le x \le 100 \end{cases}$$

- 1. Find the complement of A_1 and A_2 .
- 2. Find $(A_1 \wedge A_2)(x)$ and $(A_1 \vee A_2)(x)$

Solution:

1. Complement of

$$A_1, A_1^c = \begin{cases} 0; & \text{if } 40 \le x < 50\\ \frac{x - 50}{10}; & \text{if } 50 \le x < 60\\ 1; & \text{if } 60 \le x \le 100 \end{cases}$$

Complement of

$$A_2, A_2^c = \begin{cases} 1; & \text{if } 40 \le x < 50\\ \frac{60 - x}{10}; & \text{if } 50 \le x < 60\\ \frac{x - 60}{10}; & \text{if } 60 \le x < 70\\ 1; & \text{if } 70 < x < 100 \end{cases}$$

2.

$$(A_1 \wedge A_2)(x) = \begin{cases} 0; & \text{if } 40 \le x < 50 \\ \frac{x - 50}{10}; & \text{if } 50 \le x \le 55 \\ 1 - \frac{x - 50}{10}; & \text{if } 55 \le x \le 60 \\ 0; & \text{if } 60 \le x \le 100 \end{cases}$$

$$(A_1 \vee A_2)(x) = \begin{cases} 1; & \text{if } 40 \le x \le 50 \\ 1 - \frac{x - 50}{10}; & \text{if } 50 \le x \le 55 \\ \frac{x - 50}{10}; & \text{if } 55 \le x < 60 \\ 1 - \frac{x - 60}{10}; & \text{if } 60 \le x < 70 \\ 0; & \text{if } 70 \le x < 100 \end{cases}$$