- **S1.** $(\mathbb{Z},+)$ The integers under addition is a group, here is how it satisfies the axioms of a group
 - (a) Given any two integers $x, y \in \mathbb{Z}$, their sum, x+y is bound to be within the set of integers. Therefore the set \mathbb{Z} is closed under addition
 - (b) 0 is the identity element, as, given e = 0, x + e = e + x = x where e = 0 holds true.
 - (c) For every $x \in \mathbb{Z}$ there exists $y \in \mathbb{Z}$ such that x + y = y + x = 0. In this specific instance y = -x. Therefore, each element in the set has an inverse within the set.
 - (d) Given any $x, y, z \in \mathbb{Z}$. The assoicative statement x + (y + z) = z + (x + y) holds true.

Therefore, as all of the axioms of a group are met, $(\mathbb{Z}, +)$, the set of integers under addition, is a group.

- **S2.** (\mathbb{Q}, \times) The rations under multiplication, is this a Group?
 - (a) Given any two $x, y \in \mathbb{Q}$, the product of their multiplication $x \times y$ will always result in a rational number. Therefore, the set \mathbb{Q} is closed under multiplication
 - (b) The identity element of \mathbb{Q} under multiplication is 1 as, for all $x \in \mathbb{Q}$, where e = 1, the identity $x \times e = e \times x = x$ holds true.
 - (c) Multiplication is associative, same as addition, therefore, for any $x, y, z \in \mathbb{Q}$, the equation $x \times (y \times z) = z \times (x \times y)$ is true.
 - (d) Now, (\mathbb{Q}, \times) fails to meet the criteria of a group when it comes to inverses. For an element $x \in \mathbb{Q}$ to have an inverse under multiplication there must exist $y \in \mathbb{Q}$ such that $x \times y = y \times x = 1$.

As the set of rational integers \mathbb{Q} includes the element 0, which does not have an inverse, it means that the inverse axiom, stating that each element in the set must have an inverse such that $x \times y = y \times x = 1$ is not met. Therefore, \mathbb{Q} is not a group under multiplication

Presentation Question Solutions

- **S3.** $(\mathbb{Q}, +, \times)$ is the ring of rationals closed under addition and multiplication, how does it satisfy the axioms of a ring?
 - (a) It is a group under addition, meaning
 - Closure: For all $x, y \in \mathbb{Q}$, $x + y \in \mathbb{Q}$ holds true
 - Identity: For any $x \in \mathbb{Q}$ given e = 0, x + e = e + x = x holds true
 - **Inverse:** For any $x \in \mathbb{Q}$ there exists $y \in \mathbb{Q}$ such that y = -x and x + y = y + x = e where e = 0
 - Associativity: As addition is associative, for all $x, y, z \in \mathbb{Q}$, the equation x + (y + z) = z + (x + y) holds true
 - (b) When it comes to the associativity of \times , for every $x,y,z\in\mathbb{Q},\,x\times(y\times z)=z\times(x\times y)$ holds true.
 - (c) For the distributive properties, it is the exact same scenario. Given $x, y, z \in \mathbb{Q}$, the following properties

$$x \times (y+z) = (x \times y) + (x \times z)$$

and

$$(y+z) \times x = y \times x + z \times x$$

Both hold true, meaning that the axiom of distributive properties holds true in this case.

Therefore, $(\mathbb{Q}, +, \times)$ is a ring.

- **S4.** Using what was just learnt, decide whether $(\mathbb{O}^+, +, \times)$, the set of positive odd integers, is a ring. Why or why not?
 - (a) This set under addition and multiplication is not a ring as the axiom of being a group under addition is not met, here is why:
 - To start, for any $x, y \in \mathbb{O}^+$, their product x + y, will not always be in the set of odd positive integers as, for example, 1 + 3 = 4. Therefore, the set \mathbb{O}^+ is not closed under addition
 - Given $x \in \mathbb{O}^+$ there must exist an identity element e such that x + e = e + x = x. Although 0 is usually the identity element under addition, as $0 \notin \mathbb{O}^+$, there is no element in the set that can satisfy this axiom.
 - For any $x \in \mathbb{O}^+$ there must exist $y \in \mathbb{O}^+$ such that x + y = y + x = 0. But, as the set \mathbb{O}^+ does not include any negative numbers, no elements within the set have an inverse within it.

- **S5.** Is the set of rational numbers \mathbb{Q} a field?
 - (a) As discussed in S2, \mathbb{Q} is a valid group under addition, therefore the first axiom is satisfied.
 - (b) This is where it gets interesting. The second axiom to define a field states that a set without the identity set 0 (i.e $\mathbb{Q} \{0\}$) must be a valid group under multiplication. We know that \mathbb{Q} satisfies all of the conditions of a group under multiplication, save for the fact that 0 does not have inverse within the set.

Therefore, as 0 is no longer within the set, for any $x \in \mathbb{Q}$ there exists $y \in \mathbb{Q}$ such that $x \times y = y \times x = e$ where e = 1

Therefore, as both field axioms are obeyed, the set \mathbb{Q} is a field.

- **S6.** Is the set of complex numbers \mathbb{C} a field?
 - (a) $(\mathbb{C}, +)$ is a valid group
 - For all $x, y \in \mathbb{C}$, $x + y \in \mathbb{C}$ holds true
 - For any $x \in \mathbb{C}$, x + 0 = 0 + x = x, therefore the identity element is 0
 - For all $x \in \mathbb{C}$, there exists $y \in \mathbb{C}$ such that x + y = y + x = 0
 - For all $x, y, z \in \mathbb{C}$, x + (y + z) = z + (x + y) is true
 - (b) (S, \times) is also a valid group where $S = \mathbb{C} \{0\}$
 - For all $x, y \in \mathbb{S}$, $x \times y \in \mathbb{S}$ holds true
 - Given any $x \in \mathbb{S}$, $x \times 1 = 1 \times x = x$, therefore the identity element is 1
 - For any $x \in \mathbb{S}$ there exists $y \in \mathbb{S}$ such that $x \times y = y \times x = e$ where e is the identity element 1
 - For all $x, y, z \in \mathbb{S}$, $x \times (y \times z) = z \times (x \times y)$

Therefore, as all of the field axioms are satisfied, \mathbb{C} is a field.