CMG UNIVERSE — Unified Compendium of Annexes

Magnetogravitational Cosmology (CMG–LCE)

Eugenio Oliva Sánchez

October 2025

This document unifies, in a single PDF, the key contents of the CMG-LCE framework annexes and appendices.

Contents

1	Analysis of Annex XIII — The Solar Node in the CMG-LCE Framework	3
	1.1 Key relations	3
	1.2 Implications and testability	3
2	Annex IX — The Big Memory Transition (From Plasma to Geometry)	3
	2.1 Coherence–Energy Law (LCE)	3
	2.2 Meaning	4
3	Annex X — Stellar Coherence Nodes and the Dynamic Architecture	
	of the Universe	4
	3.1 LCE and phases	4
	3.2 Node typology	4
	3.3 Magnetogravitational couplings	4
4	Annex XV — Hierarchical Coherence Sources in the Universe	5
	4.1 Coherent structures	5
	4.2 Hierarchical equation	5
5	Appendix III — Rapid Check: Magnetism and Galactic Rotation	5
6	Annex II — Dark Matter and Black Holes in CMG–LCE	6
7	Annex III — Red Dwarfs and Brown Dwarfs	6
8	Annex IV — Big Bang vs. the CMG–LCE Solution	6
9	Annex V — Supernovae and Coherence Dynamics	6
10	Annex VII — Contracting Universe: Coherence Reabsorption	6

1. Analysis of Annex XIII — The Solar Node in the CMG–LCE Framework

Annex XIII ("The Solar Node: Stellar Coherence and Its Terrestrial Implications in the CMG-LCE Framework") presents the **Solar Node** as a coherence resonator, linking the stellar Ψ field with planetary magnetism and gravity. The Sun is not only a thermal source but a coherence center of the electromagnetic vacuum.

1.1 Key relations

$$\Psi_{\text{sun}}(t) = \Psi_0 e^{-t/\tau_{\text{sun}}} + \alpha R_{\text{sun}}(t) + \beta \Omega_{\text{sun}}(t)$$
 (1)

$$\frac{\partial \Psi}{\partial t} + \mathbf{v}_{\text{wind}} \cdot \nabla \Psi = D \, \nabla^2 \Psi - \lambda \Psi \tag{2}$$

$$G_{\text{eff}} = g_0 \left(1 - \eta B_{\oplus}^2 \right) \tag{3}$$

1.2 Implications and testability

Proposed tests include paleomagnetic–solar correlations (10 Be and geomagnetic reversals), comparative biomechanics under $0.83\,g$, and satellite series (Swarm, Parker Solar Probe) for Sun–Earth coupled variations. The Solar System is interpreted as a *coherence subnetwork*:

$$\Psi_{\rm total} = \Psi_{\rm gal} + \Psi_{\rm sun} + \Psi_{\rm plan}. \label{eq:psi}$$

2. Annex IX — The Big Memory Transition (From Plasma to Geometry)

CMG–LCE replaces the Big Bang with the **Big Memory**: the vacuum goes from maximum coherence to relaxation, inverting the energy flow between matter and geometry.

2.1 Coherence-Energy Law (LCE)

$$\dot{\rho}_{\Psi} = -\,\mu\,\dot{\Psi}\,\ddot{\Psi} \tag{4}$$

During expansion, the vacuum releases coherence (magnetism/plasma). During contraction, plasma loses coherence and energy returns to curvature:

$$\Delta \rho_{\rm grav} \simeq -\Delta \rho_{\rm plasma} = \mu \,\dot{\Psi} \,\ddot{\Psi}.$$
 (5)

It can be read as an effective conversion:

$$F_{EM}^{(\mathrm{coh})} \longrightarrow R_{\mu\nu}.$$

2.2 Meaning

The universe alternates between *remembering* and *forgetting*: when the vacuum remembers, light and plasma reappear; when it forgets, coherence is written into geometry.

3. Annex X — Stellar Coherence Nodes and the Dynamic Architecture of the Universe

Stars and remnants are **resonant nodes** where vacuum memory condenses, oscillates, and recycles. Each stellar object acts as a *coherence valve* between vacuum and space—time.

3.1 LCE and phases

$$\dot{\rho}_{\Psi} = -\,\mu\,\dot{\Psi}\,\ddot{\Psi}\tag{6}$$

With sign($\dot{\Psi}\ddot{\Psi}$), the direction of the energy flow between vacuum and matter inverts.

3.2 Node typology

- Supernovae: emitters of coherent plasma; they seed Ψ fields.
- Pulsars/NS: oscillators between magnetism and curvature; vacuum clocks.
- Red dwarfs: slow coherence loss; intermittent magnetic activity.
- Brown dwarfs: frozen memory; residual plasma.
- Black holes: final memory/curvature archive.

3.3 Magnetogravitational couplings

Coherence bridges appear when

$$\nabla_{\mu}\Psi_{A}\approx\nabla_{\mu}\Psi_{B}$$

enabling energy/information transfer with no mass exchange. Apparent dark matter is reinterpreted as latent magnetic coherence with acceleration

$$A_{\Psi} \propto B^2$$
,

and a unified equation of state

$$P_{\Psi} = w_{\Psi} \rho_{\Psi}, \quad w_{\Psi} = -1 + \frac{1}{3\mu} \left(\frac{\dot{\Psi}}{H}\right)^2.$$

4. Annex XV — Hierarchical Coherence Sources in the Universe

From laboratory plasmas to cosmic filaments, the universal condition is

$$\langle \mathbf{E} \cdot \mathbf{B} \rangle_{\mathrm{coh}} \neq 0,$$

activating the coupling between electromagnetism and gravity via Ψ .

4.1 Coherent structures

- AGN: maximum engines of coherent plasma (accretion disks, reconnection).
- Spiral arms/HII regions: extended Ψ reservoirs due to magnetic organization.
- Cosmic filaments: magnetogravitational highways on Mpc scales.
- Magnetars: extreme Ψ foci ($B \sim 10^{10}$ – 10^{11} T), with possible coherent gravitational emissions.

4.2 Hierarchical equation

$$\Psi_{\text{univ}} = \sum_{i=1}^{N} \alpha_i \, \Psi_i,$$

defining the multi-scale *Vacuum Memory Network* and its experimental analogue (PLAS-MANT) in the laboratory.

5. Appendix III — Rapid Check: Magnetism and Galactic Rotation

The most direct and near-zero-cost test: correlate magnetic field maps with galactic rotation curves (ALMA, LOFAR, Gaia, JWST, VLT, Keck). Falsifiable prediction:

$$a_{\Psi} \propto B^2$$
.

If no correlation is found, the CMG-LCE hypothesis is falsified at this scale.

6. Annex II — Dark Matter and Black Holes in CMG-LCE

"Dark matter" is reinterpreted as coherent vacuum polarization around baryonic matter (magnetogravitational halos). Black holes are memory cores where Ψ reaches extreme values; Hawking radiation is seen as a partial release of coherence.

7. Annex III — Red Dwarfs and Brown Dwarfs

They are **coherence archives**: environments with $\dot{\Psi}_{local} < 0$ even when $\dot{\Psi}_{global} > 0$, explaining longevity, magnetic stability, and their role as *anchors* during the universal contraction phase.

8. Annex IV — Big Bang vs. the CMG-LCE Solution

CMG-LCE addresses the singularity, horizon, dark energy, arrow of time, and vacuum problems by treating the vacuum as a *medium with memory*. The beginning is not a point but a *coherent state* governed by:

$$\dot{\rho}_{\Psi} = -\,\mu\,\dot{\Psi}\,\ddot{\Psi}.$$

9. Annex V — Supernovae and Coherence Dynamics

Supernovae act as resonators modulating Ψ and the local metric, potentially mimicking signals of cosmic acceleration. The LCE describes the release $(\dot{\Psi} > 0)$ and reabsorption $(\dot{\Psi} < 0)$ of coherence during the explosion.

10. Annex VII — Contracting Universe: Coherence Reabsorption

Contraction is not collapse; it is *memory returning*. When the sign of Ψ flips at the point of maximum dispersion, the vacuum recovers coherence, reduces coherence entropy, and moves toward the final $Big\ Memory$ state.

Closing

This compendium unifies the physical and observational pillars of the CMG–LCE framework: the universe as an electromagnetic memory network where gravity, light, and magnetism are *phases* of a single coherence principle.