

Datasheet

Version: V0.09 Document No.: ILI9331DS_V0.09.pdf

ILI TECHNOLOGY CORP.

8F, No.38, Taiyuan St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C Tel.886-3-5600099; Fax.886-3-5600055 http://www.ilitek.com

Table of Contents

Se	ction			Page
1.	Introd	uction		5
2.	Featu	res		5
3.	Block	Diagran	n	5
4.	Pin D	escriptio	ns	5
5.	Pad A	rrangen	nent and Coordination	5
6.	Block	Descrip	tion	5
7.	Syste	m Interfa	ace	5
	7.1.	Interfa	ace Specifications	5
	7.2.	Input	Interfaces	5
		7.2.1.	i80/18-bit System Interface	5
		7.2.2.	i80/16-bit System Interface	5
		7.2.3.	i80/9-bit System Interface	5
		7.2.4.	i80/8-bit System Interface	5
	7.3.	Serial	l Peripheral Interface (SPI)	5
	7.4.	VSYN	NC Interface	5
	7.5.	RGB	Input Interface	5
		7.5.1.	RGB Interface	5
		7.5.2.	RGB Interface Timing	5
		7.5.3.	Moving Picture Mode	5
		7.5.4.	6-bit RGB Interface	5
		7.5.5.	16-bit RGB Interface	5
		7.5.6.	18-bit RGB Interface	5
	7.6.	MDDI	l (Mobile Display Digital Interface)	5
		7.6.1.	ILI9331 MDDI Specifications	5
		7.6.2.	MDDI Link Protocol (Packets Supported by the ILI9331)	5
		7.6.3.	MDDI Instruction Setting.	5
	7.7.	Interfa	ace Timing	5
	7.8.	CABO	C (Content Adaptive Brightness Control)	5
8.	Regis	ter Desc	criptions	5
	8.1.	Regis	sters Access	5
	8.2.	Instru	ction Descriptions	5
		8.2.1.	Index (IR)	5
		8.2.2.	ID code (R00h)	5
		8.2.3.	Driver Output Control (R01h)	5
		8.2.4.	LCD Driving Wave Control (R02h)	5
		8.2.5.	Entry Mode (R03h)	5
		8.2.6.	Display Control 1 (R07h)	5

8.2.7.	Display Control 2 (R08h)	5
8.2.8.	Display Control 3 (R09h)	5
8.2.9.	Display Control 4 (R0Ah)	5
8.2.10.	RGB Display Interface Control 1 (R0Ch)	5
8.2.11.	Frame Marker Position (R0Dh)	5
8.2.12.	RGB Display Interface Control 2 (R0Fh)	5
8.2.13.	Power Control 1 (R10h)	5
8.2.14.	Power Control 2 (R11h)	5
8.2.15.	Power Control 3 (R12h)	5
8.2.16.	Power Control 4 (R13h)	5
8.2.17.	GRAM Horizontal/Vertical Address Set (R20h, R21h)	5
8.2.18.	Write Data to GRAM (R22h)	5
8.2.19.	Read Data from GRAM (R22h)	5
8.2.20.	Power Control 7 (R29h)	5
8.2.21.	Frame Rate and Color Control (R2Bh)	5
8.2.22.	Gamma Control (R30h ~ R3Dh)	5
8.2.23.	Horizontal and Vertical RAM Address Position (R50h, R51h, R52h, R53h)	5
8.2.24.	Gate Scan Control (R60h, R61h, R6Ah)	5
8.2.25.	Partial Image 1 Display Position (R80h)	5
8.2.26.	Partial Image 1 RAM Start/End Address (R81h, R82h)	5
8.2.27.	Partial Image 2 Display Position (R83h)	5
8.2.28.	Partial Image 2 RAM Start/End Address (R84h, R85h)	5
8.2.29.	Panel Interface Control 1 (R90h)	5
8.2.30.	Panel Interface Control 2 (R92h)	5
8.2.31.	Panel Interface Control 4 (R95h)	5
8.2.32.	Panel Interface Control 5 (R97h)	5
8.2.33.	OTP VCM Programming Control (RA1h)	5
8.2.34.	OTP VCM Status and Enable (RA2h)	5
8.2.35.	OTP Programming ID Key (RA5h)	5
8.2.36.	Write Display Brightness Value (RB1h)	5
8.2.37.	Read Display Brightness Value (RB2h)	5
8.2.38.	Write CTRL Display Value (RB3h)	5
8.2.39.	Read CTRL Display Value (RB4h)	5
8.2.40.	Write Content Adaptive Brightness Control Value (RB5h)	5
8.2.41.	Read Content Adaptive Brightness Control Value (RB6h)	5
8.2.42.	Write CABC Minimum Brightness (RBEh)	5
8.2.43.	Read CABC Minimum Brightness (RBFh)	5
8.2.44.	CABC Control 1 (RC8h)	5
8.2.45.	CABC Control 2 (RC9h)	5

	8.2.46. CABC Control 3 (RCAh)	5
	8.2.47. CABC Control 4 (RCBh)	5
	8.2.48. CABC Control 5 (RCCh)	5
	8.2.49. CABC Control 6 (RCDh)	5
	8.2.50. CABC Control 7 (RCEh)	5
9. C	OTP Programming Flow	5
10. G	GRAM Address Map & Read/Write	5
11. V	Vindow Address Function	5
12. G	Samma Correction	5
13. A	Application	5
	13.1. Configuration of Power Supply Circuit	5
	13.2. Display ON/OFF Sequence	5
	13.3. Standby and Sleep Mode	5
	13.4. Power Supply Configuration	5
	13.5. Voltage Generation	5
	13.6. Applied Voltage to the TFT panel	5
	13.7. Partial Display Function	5
14. E	Electrical Characteristics	5
	14.1. Absolute Maximum Ratings	5
	14.2. DC Characteristics	5
	14.3. Reset Timing Characteristics	
	14.4. AC Characteristics	5
	14.4.1. i80-System Interface Timing Characteristics	5
	14.4.2. Serial Data Transfer Interface Timing Characteristics	5
	14.4.3. RGB Interface Timing Characteristics	5
15 0	Pavision History	5

Figures

FIGURE 1 SYSTEM INTERFACE AND RGB INTERFACE CONNECTION	5
FIGURE 218-BIT SYSTEM INTERFACE DATA FORMAT	5
FIGURE3 16-BIT SYSTEM INTERFACE DATA FORMAT	5
Figure4 9-bit System Interface Data Format	5
FIGURE5 8-BIT SYSTEM INTERFACE DATA FORMAT	5
Figure 6 Data Format of SPI Interface	5
FIGURE7 DATA TRANSMISSION THROUGH SERIAL PERIPHERAL INTERFACE (SPI)	5
FIGURE8 DATA TRANSMISSION THROUGH SERIAL PERIPHERAL INTERFACE (SPI), TRI="1" AND DFM="10")	5
FIGURE9 DATA TRANSMISSION THROUGH VSYNC INTERFACE)	5
FIGURE 10 MOVING PICTURE DATA TRANSMISSION THROUGH VSYNC INTERFACE	5
FIGURE 11 OPERATION THROUGH VSYNC INTERFACE	5
FIGURE 12 TRANSITION FLOW BETWEEN VSYNC AND INTERNAL CLOCK OPERATION MODES	5
FIGURE 13 RGB INTERFACE DATA FORMAT	5
FIGURE 14 GRAM ACCESS AREA BY RGB INTERFACE	5
FIGURE 15 TIMING CHART OF SIGNALS IN 18-/16-BIT RGB INTERFACE MODE	5
FIGURE 16 TIMING CHART OF SIGNALS IN 6-BIT RGB INTERFACE MODE	5
FIGURE 17 EXAMPLE OF UPDATE THE STILL AND MOVING PICTURE	5
FIGURE 18 INTERNAL CLOCK OPERATION/RGB INTERFACE MODE SWITCHING	5
FIGURE 19 GRAM ACCESS BETWEEN SYSTEM INTERFACE AND RGB INTERFACE	5
Figure 20 MDDI architecture	5
FIGURE 21 RELATIONSHIP BETWEEN RGB I/F SIGNALS AND LCD DRIVING SIGNALS FOR PANEL	5
Figure 22 Register Setting with Serial Peripheral Interface (SPI)	5
FIGURE 23 REGISTER SETTING WITH 180 SYSTEM INTERFACE	5
Figure 24 Register Read/Write Timing of 180 System Interface	5
FIGURE 25 GRAM Access Direction Setting	5
FIGURE 26 16-BIT MPU SYSTEM INTERFACE DATA FORMAT	5
FIGURE 27 8-BIT MPU SYSTEM INTERFACE DATA FORMAT	5
Figure 28 Data Read from GRAM through Read Data Register in 18-/16-/9-/8-bit Interface Mode	5
Figure 29 GRAM Data Read Back Flow Chart	5
Figure 30 GRAM Access Range Configuration	5
FIGURE 31 GRAM READ/WRITE TIMING OF 180-SYSTEM INTERFACE	5
FIGURE 32 180-SYSTEM INTERFACE WITH 18-/16-/9-BIT DATA BUS (SS=""0", BGR=""0")	5
FIGURE 33 180-SYSTEM INTERFACE WITH 8-BIT DATA BUS (SS=""0", BGR=""0")	5
FIGURE 34 180-SYSTEM INTERFACE WITH 18-/9-BIT DATA BUS (SS="1", BGR="1")	5
FIGURE 35 GRAM ACCESS WINDOW MAP	5
Figure 36 Grayscale Voltage Generation	5
Figure 37 Grayscale Voltage Adjustment	5
FIGURE 38 GAMMA CURVE ADJUSTMENT	5

Figure 39 Example of RMP(N)0~5 definition	5
FIGURE 40 RELATIONSHIP BETWEEN SOURCE OUTPUT AND VCOM	
FIGURE 41 RELATIONSHIP BETWEEN GRAM DATA AND OUTPUT LEVEL	
Figure 42 Power Supply Circuit Block	
Figure 43 Display On/Off Register Setting Sequence	
FIGURE 44 STANDBY/SLEEP MODE REGISTER SETTING SEQUENCE	
FIGURE 45 POWER SUPPLY ON/OFF SEQUENCE	5
Figure 46 Voltage Configuration Diagram	
FIGURE 47 VOLTAGE OUTPUT TO TFT LCD PANEL	5
Figure 48 Partial Display Example	5
Figure 49 i80-System Bus Timing	5
Figure 50 SPI System Bus Timing	5
FIGURE 51 RGR INTERFACE TIMING	5

1. Introduction

ILI9331 is a 262,144-color one-chip SoC driver for a-TFT liquid crystal display with resolution of 240RGBx320 dots, comprising a 720-channel source driver, a 320-channel gate driver, 172,800 bytes RAM for graphic data of 240RGBx320 dots, and power supply circuit.

ILI9331 has five kinds of system interfaces which are i80-system MPU interface (8-/9-/16-/18-bit bus width), VSYNC interface (system interface + VSYNC, internal clock, DB[17:0]), serial data transfer interface (SPI), RGB 6-/16-/18-bit interface (DOTCLK, VSYNC, HSYNC, ENABLE, DB[17:0]) and MDDI.

In RGB interface and VSYNC interface mode, the combined use of high-speed RAM write function and widow address function enables to display a moving picture at a position specified by a user and still pictures in other areas on the screen simultaneously, which makes it possible to transfer display the refresh data only to minimize data transfers and power consumption.

ILI9331 can operate with 1.65V I/O interface voltage, and an incorporated voltage follower circuit to generate voltage levels for driving an LCD. The ILI9331 also supports a function to display in 8 colors and a sleep mode, allowing for precise power control by software and these features make the ILI9331 an ideal LCD driver for medium or small size portable products such as digital cellular phones, smart phone, PDA and PMP where long battery life is a major concern.

Page 7 of 133

2. Features

- Single chip solution for a liquid crystal QVGA TFT LCD display
- 240RGBx320-dot resolution capable with real 262,144 display color
- Support MVA (Multi-domain Vertical Alignment) wide view display
- Incorporate 720-channel source driver and 320-channel gate driver
- Internal 172,800 bytes graphic RAM
- CABC (Content Adaptive Brightness Control)
- System interfaces
 - > i80 system interface with 8-/ 9-/16-/18-bit bus width
 - Serial Peripheral Interface (SPI)
 - > RGB interface with 6-/16-/18-bit bus width (VSYNC, HSYNC, DOTCLK, ENABLE, DB[17:0])
 - VSYNC interface (System interface + VSYNC)
 - MDDI (Mobile Display Digital Interface)
- Internal oscillator and hardware reset
- Reversible source/gate driver shift direction
- Window address function to specify a rectangular area for internal GRAM access
- Bit operation function for facilitating graphics data processing
 - > Bit-unit write data mask function
 - Pixel-unit logical/conditional write function
- Abundant functions for color display control
 - γ-correction function enabling display in 262,144 colors
 - Line-unit vertical scrolling function
- Partial drive function, enabling partially driving an LCD panel at positions specified by user
- Incorporate step-up circuits for stepping up a liquid crystal drive voltage level up to 6 times (x6)
- Power saving functions
 - > 8-color mode
 - standby mode
 - sleep mode
- Low -power consumption architecture
 - Low operating power supplies:
 - IOVcc = 1.65V ~ 3.3 V (interface I/O)
 - VCI = 2.5V ~ 3.3 V (analog)
- LCD Voltage drive:
 - Source/VCOM power supply voltage
 - DDVDH GND = 4.5V ~ 6.0
 - VCL GND = -2.0V ~ -3.0V
 - $VCI VCL \le 6.0V$
 - Gate driver output voltage
 - VGH GND = 10V ~ 20V

- VGL GND = -5V ~ -15V
- $VGH VGL \le 30V$
- VCOM driver output voltage
 - VCOMH = (VCI+0.2)V ~ (DDVDH-0.2)V
 - VCOML = (VCL+0.2)V ~ 0V
 - VCOMH-VCOML $\leq 6.0 \text{V}$
- ◆ a-TFT LCD storage capacitor: Cst only

Page 9 of 133

Version: 0.09

3. Block Diagram

4. Pin Descriptions

Pin Name	I/O	Туре	Descriptions									
				ln	put Inte	erface						
			Select	the MP	U syst	em inte	rface mode					
			IM3	IM2	IM1	IMO	MPU-Interface Mode	DB Pin in use				
			0	0	0	0	Setting invalid					
			0	0	0	1	Setting invalid					
			0	0	1	0	i80-system 16-bit interface	DB[17:10], DB[8:1]				
			0	0	1	1	i80-system 8-bit interface	DB[17:10]				
IM3,			0	1	0	ID	Serial Peripheral Interface (SPI)	SDI, SDO				
IM2,	١,	IOVcc	0	1	1	*	Setting invalid	02., 02.0				
IM1, IM0/ID			1	0	0	0	MDDI					
IIVIO/ID				0	0	1						
							Setting invalid	DD147.01				
			1	0	1	0	i80-system 18-bit interface	DB[17:0]				
			1	0	1	1	i80-system 9-bit interface	DB[17:9]				
			1	1	*	*	Setting invalid					
					ial peri	pheral	interface is selected, IM0 pin is use	ed for the device code ID				
			setting A chip		sinnal							
		MPU			_	s selec	ted and accessible					
nCS	I	IOVcc	High: the ILI9331 is not selected and not accessible									
			Fix to the GND level when not in use.									
	1	MBU	A register select signal.									
RS		MPU IOVcc	Low: select an index or status register									
		10 VCC	High: select a control register Fix to either IOVcc or GND level when not in use.									
			A write strobe signal and enables an operation to write data when the signal is low.									
		MPU	Fix to either IOVcc or GND level when not in use.									
nWR/SCL	I	IOVcc										
			SPI Mode: Synchronizing clock signal in SPI mode.									
		MPU					ables an operation to read out data	a when the signal is low.				
nRD	I	IOVcc			-		level when not in use.					
		MPU	A rese	t pin.								
nRESET	I	IOVcc	Initializes the ILI9331 with a low input. Be sure to execute a power-on reset after									
			supplying power. SPI interface input pin.									
SDI	ı	MPU IOVcc					ising edge of the SCL signal.					
		.0.00	SPI int									
SDO	0	MPU			•	•	e falling edge of the SCL signal.					
300		IOVcc										
							ot used.	inco mode				
			An 18-bit parallel bi-directional data bus for MPU system interface mode 8-bit I/F: DB[17:10] is used.									
					_	:9] is us						
					_	_	d DB[8:1] is used.					
DB[17:0]		MPU			_	:0] is u						
-[]	I/O	IOVcc					data bus for RGB interface operati	on				
						_	12] are used. 13] and DB[11:1] are used.					
							0] are used.					
						_	to GND level.					

Pin Name	I/O	Туре	Descriptions
		,	Data ENEABLE signal for RGB interface operation.
			Low: Select (access enabled)
		MPU	High: Not select (access inhibited)
ENABLE	I	IOVcc	The EPL bit inverts the polarity of the ENABLE signal.
			Fix to either IOVcc or GND level when not in use.
			Dot clock signal for RGB interface operation.
DOTCLK	١,	MPU	DPL = "0": Input data on the rising edge of DOTCLK
DOTOLK	'	IOVcc	DPL = "1": Input data on the falling edge of DOTCLK
			Fix to the GND level when not in use
			Frame synchronizing signal for RGB interface operation.
VSYNC	1	MPU	VSPL = "0": Active low.
		IOVcc	VSPL = "1": Active high.
			Fix to the GND level when not in use.
		MDII	Line synchronizing signal for RGB interface operation.
HSYNC	I	MPU IOVcc	HSPL = "0": Active low. HSPL = "1": Active high.
		IOVCC	Fix to the GND level when not in use
			Output a frame head pulse signal.
FMARK	0	MPU	The FMARK signal is used when writing RAM data in synchronization with frame. Leave
		IOVcc	the pin open when not in use.
			MDDI data signal lines.
			Data+ (MDDI_DATA_P) and data- (MDDI_DATA_M) are differential small swing
MDDI_DATA_P		MDDI	signals. Make the wiring as short as possible so that the COG resistance
MDDI_DATA_M	I/O		becomes less 60 ohm.
			The specifications of interface must be compliant with the MDDI specification.
			NOTE: these pins are used the same pin in CPU mode.
		MDDI	MDDI strobe signal lines.
			Stb+ (MDDI_STB_P) and Stb- (MDDI_STB_M) are differential small swing
MDDI_STB_P	1		signals. Make the wiring as short as possible so that the COG resistance
MDDI_STB_M			becomes less 100ohm.
			The specifications of interface must be compliant with the MDDI specification.
			NOTE: these pins are used the same pin in CPU mode. When MDDI interface is selected, connect this pin to GND or leave it open.
MDDI_GNDDUM	ı	GND	NOTE: these pins are used the same pin in CPU mode.
	ı	I	LCD Driving signals
			Source output voltage signals applied to liquid crystal.
			To change the shift direction of signal outputs, use the SS bit.
	_		SS = "0", the data in the RAM address "h00000" is output from S1.
S720~S1	0	LCD	SS = "1", the data in the RAM address "h00000" is output from S720. S1, S4, S7,
			display red (R), S2, S5, S8, display green (G), and S3, S6, S9, display blue (B) (SS
			= 0).
			Gate line output signals.
G320~G1	0	LCD	VGH: the level selecting gate lines
			VGL: the level not selecting gate lines
VCOM	0	TFT common	A supply voltage to the common electrode of TFT panel.
	+	electrode	VCOM is AC voltage alternating signal between the VCOMH and VCOML levels.
VCOMH	0	Stabilizing	The high level of VCOM AC voltage. Connect to a stabilizing capacitor.
	 	capacitor	
VCOML	0	Stabilizing	The low level of VCOM AC voltage. Adjust the VCOML level with the VDV bits.
		capacitor	Connect to a stabilizing capacitor.
V00		GND or	Reference level for the grayscale voltage generating circuit. The VGS level can be
VGS		external	changed by connecting to an external resistor.
	-	resistor	
LEDPWM	0	IOVcc	PWM signal output to control LED driver for LED brightness dimming.
			Charge-pump and Regulator Circuit

Pin Name	I/O	Туре	Descriptions
\ (O)		Power	A supply voltage to the analog circuit. Connect to an external power supply of 2.5 ~
VCI	ı	supply	3.3V.
VCC	ı	Power supply	A supply voltage to the digital circuit. Connect to an external power supply of 2.5 \sim 3.3V.
		23,44.7	An internal reference voltage for the step-up circuit1.
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Stabilizing	The amplitude between VCI and GND is determined by the VC[2:0] bits.
VCI1	0	capacitor	Make sure to set the VCI1 voltage so that the DDVDH, VGH and VGL voltages are set
			within the respective specification.
DDVDH	0	Stabilizing capacitor	Power supply for the source driver and Vcom drive.
VGH	0	Stabilizing capacitor	Power supply for the gate driver.
VGL	0	Stabilizing capacitor	Power supply for the gate driver.
			VCOML driver power supply.
VCL	0	Stabilizing	
		capacitor	VCL = 0.5 ~ –VCI . Place a stabilizing capacitor between GND
C11A, C11B	I/O	Step-up	Capacitor connection pins for the step-up circuit 1.
C12A, C12B	1/0	capacitor	Capacitor connection pins for the step-up circuit 1.
C13A, C13B		Step-up	
C21A, C21B	I/O	capacitor	Capacitor connection pins for the step-up circuit 2.
C22A, C22B		capacitoi	
			Output voltage generated from the reference voltage.
VREG1OUT	I/O	Stabilizing	The voltage level is set with the VRH bits.
		capacitor	VREG1OUT is (1) a source driver grayscale reference voltage, (2) VcomH level
			reference voltage, and (3) Vcom amplitude reference voltage. Connect to a stabilizing
			capacitor. VREG10UT = 3.0 ~ (DDVDH – 0.5)V.
	I		Power Pads
			A supply voltage to the interface pins:
			IM[3:0], nRESET, nCS, nWR, nRD, RS, DB[17:0], VSYNC, HSYNC, DOTCLK,
			ENABLE, SCL, SDI, SDO. IOVcc = 1.65 ~ 3.3V. In case of COG, connect to Vcc on the FPC if IOVcc=Vcc, to
IOVCC		Power	prevent noise.
10 000	'	supply	A supply voltage to the MDDI interface pins:
			MDDI_STB_M, MDDI_STB_P, MDDI_DATA_P and MDDI_DATA_M
			IOVcc = 2.5 ~ 3.3V. In case of COG, connect to Vcc on the FPC if IOVcc=Vcc, to
			prevent noise.
	_	_	Digital circuit power pad.
VDD	0	Power	Connect these pins with the 1uF capacitor.
DOND		Power	DGND for the digital side: DGND = 0V. In case of COG, connect to GND on the FPC
DGND	I	supply	to prevent noise.
ACND		Power	AGND for the analog side: AGND = 0V. In case of COG, connect to GND on the FPC
AGND	I	supply	to prevent noise.
VGMMA1 62	0		Test pad.
VGMMA1, 62		-	Leave these pins as open
VGLDMY1~4	0	Unused gate lines	Connect unused gate lines to fix the level at VGL
			Test Pads
DUMMY3, 5~27,30,			Dummy pad.
31.	_	-	Leave these pins as open
			Short circuited within the chip for COG contact resistance measurement. DUMMYR
DUMMVP1 2 29 20	_		pins are short circuited as below:
DUMMYR1,2, 28, 29.	-	_	DUMMYR1 and DUMMYR29
			DUMMYR2 and DUMMYR28
IOVCCDUM	0		Connect unused interface and test pins to these pins on the glass to fix voltage

The information contained herein is the exclusive property of ILI Technology Corp. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of ILI Technology Corp.

Page 13 of 133

Version: 0.09

Pin Name	I/O	Туре	Descriptions
AGNDDUM1~6	0	-	levels. Leave open when not used.
DGNDDUM1~7	0	-	
TESTO1~16	0	Open	Test pins. Leave them open.
TEST1, 2, 3	_	IOGND	Test pins (internal pull low). Connect to GND or leave these pins as open.
TS0~8	Į	OPEN	Test pins (internal pull low). Leave them open.
TSO	0	OPEN	Test pins. Leave it open or short to ground.
TEST_EN I OPEN		OPEN	Test pins. Leave it open or short to ground.

Liquid crystal power supply specifications Table 1

No.	Item		Description					
1	TFT Source Driver		720 pins (240 x RGB)					
2	TFT Gate Driver		320 pins					
3	TFT Display's Capacitor Structu	re	Cst structure only (Common VCOM)					
		S1 ~ S720	V0 ~ V63 grayscales					
4	Liquid Crystal Drive Output	G1 ~ G320	VGH - VGL					
		VCOM	VCOMH - VCOML: Amplitude = electronic volumes					
5	Innut Valtage	IOVcc	1.65 ~ 3.30V					
5	Input Voltage	VCI	2.50 ~ 3.30V					
		DDVDH	4.5V ~ 6.0V					
		VGH	10V ~ 20V					
6	Liquid Crystal Drive Veltages	VGL	-5V ~ -15V					
О	Liquid Crystal Drive Voltages	VCL	-1.9V ~ -3.0V					
		VGH - VGL	Max. 30V					
		VCI - VCL	Max. 6.0V					
		DDVDH	VCI1 x2					
_	Internal Stan un Cirquita	VGH	VCI1 x4, x5, x6					
7	Internal Step-up Circuits	VGL	VCI1 x-3, x-4, x-5					
		VCL	VCI1 x-1					

Page 14 of 133

5. Pad Arrangement and Coordination

1 DONDOLIM1 9965 281 61 JOVCC	NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ
2 DUMMYR1 8995 281 82 IOVCC					_				-			
3 DUMMYR2 8925 281 63 IOVCC 4475 281 123 AGND 455 281 55 TESTO[2] 8785 281 65 IOVCC 4455 281 125 AGND 345 381 38									-			
4 TESTO(1)	_				\vdash				_			
5 TESTO 2 9776 28785 281 65 IOVCC 4485 281 126 AGND 335 281 7 TESTO 4 9845 281 67 IOVCC 4445 281 126 AGND 245 281 88 TESTO 5 9875 281 88 IOVCC 4445 281 127 AGND 245 281 9 TESTO 6 9875 281 88 IOVCC 4445 281 127 AGND 245 281 9 TESTO 6 9875 281 88 IOVCC 4445 281 127 AGND 245 281 9 TESTO 6 9875 281 70 DE 71/MDD DATA, P 4235 281 120 AGND 4155 281 11 TESTO 8 4835 281 70 DE 71/MDD DATA, P 4235 281 131 VCOMH 35 281 131 LEDPWM 4225 281 73 TESTO 6 14805 281 74 DE 61/MDD GNDDUM 4485 281 131 VCOMH 35 281 131 LEDPWM 4225 281 73 TESTO 6 GNDDUM 4396 281 132 VCOMH 105 281 14 TESTO 9 9155 281 74 DE 61/MDD GNDDUM 3985 281 133 VCOMH 105 281 16 TESTO 10 9805 281 75 DE 61/MDD GNDDUM 3985 281 134 VCOMH 126 281 16 TESTO 10 9805 281 75 DE 61/MDD GNDDUM 3985 281 35 VCOMH 35 281 36 VCOMH 36 281 37 TESTO 10 9805 281 75 DE 61/MDD GNDDUM 3985 281 39 VCOM 385 281 38 VCOMH 36 281 38 VCOMH 38 28 38 VCOMH 38 28				-	_							
FESTO(3)	_			-			1	-				
TESTO(4 8465 281 67				-	_			1	1			
8 TESTO[5]				-				_	1			
9				-					1			
TESTO[7]					-			1	1			_
TESTO				-			1					
LEDPWM								1	-			
14				-					_			
TESTO(19)	_								1			
TESTO(10 -8085 -281 76	_								1			
16								_	1			
TESTO 12					-		1	-	1			
18				-				1	1			
19				-				_	-			
DOUD				-								
21					_			_	1			_
Column C				-	-		1		1			
23					_			1	1			
24												
25					-							
26								_	1			
Testo Test				-	-	<u>-</u>		-	1			
TESTO(13]					_		1	-	1			
TESTO[14]				-		_		1	1			
30 DGNDDUM2 -7035 -281 31 IM0/ID -6965 -281 32 IM1 -6895 -281 32 IM1 -6895 -281 33 IM2 -6825 -281 34 IM3 -6755 -281 35 IOVCCDUM -6685 -281 36 TESTO[15] -6615 -281 37 TESTO[16] -6545 -281 38 TEST3 -6475 -281 39 DUMMY6 -2555 -281 39 TEST2 -6405 -281 40 TEST1 -6335 -281 40 TEST1 -6335 -281 41 DGNDDUM3 -6265 -281 42 FMARK -6195 -281 43 VSYNC -6125 -281 44 HSYNC -6055 -281 44 HSYNC -6055 -281 44 HSYNC -6055 -281 44 HSYNC -6055 -281 44 DGNDDUM7 -2275 -281 44 HSYNC -6055 -281 45 DOTCLK -5985 -281 46 ENABLE -5915 -281 48 DB[17] -5775 -281 48 DB[17] -5775 -281 49 DB[16] -5655 -281 41 DGNDD -1565 -281 42 TS[8] -5565 -281 110 VDD -1435 -281 167 C12A -2485 -281 167 C12A -2485 -281 168 C12A -2485 -281 169 C12A -2485 -281 160 C12B -2625 -281 160 C12B				-				_	1			
31				-			1					
32				_				_	1			
33 IM2							1		-			
34								1	1			
35 IOVCCDUM -6685 -281 36 TESTO[15] -6615 -281 36 TESTO[15] -6615 -281 37 TESTO[16] -6545 -281 38 TEST3 -6475 -281 38 TEST3 -6475 -281 38 TEST2 -6405 -281 39 VCC -2205 -281 157 C118 1955 -281 40 TEST1 -6335 -281 100 VCC -2205 -281 159 C12B 1995 -281 41 DGNDDUM3 -6265 -281 101 VCC -2065 -281 160 C12B 2065 -281 42 FMARK -6195 -281 102 VCC -1995 -281 162 C12B 2005 -281 43 VSYNC -6125 -281 103 VCC -1925 -281 162 C12B 2205 -281 44 HSYNC -6055 -281 104 VCC -1925 -281 162 C12B 2205 -281 44 HSYNC -6055 -281 104 VCC -1925 -281 164 C12B 2275 -281 48 DB[17] -5775 -281 106 VDD -1785 -281 166 C12A 2415 -281 48 DB[17] -5775 -281 108 VDD -1575 -281 166 C12A 2455 -281 48 DB[17] -5775 -281 108 VDD -1575 -281 166 C12A 2455 -281 108 VDD -1575 -281 166 C12A 2455 -281 108 VDD -1505 -281 167 C12A 2555 -281 108 VDD -1505 -281 169 DDVDH 2695 -281 171 DDVDH 2695 -281 172 DDVDH 2695 -281 173 DDVDH 2695 -281 174 DDVDH 2695 -281 175 DDVDH 2695 -281 2605												
TESTO[15] -6615 -281 96 DUMMY8 -2415 -281 156 C11B 1785 -281 37 TESTO[16] -6545 -281 97 DUMMY9 -2345 -281 157 C11B 1855 -281 38 TEST3 -6475 -281 98 DGNDDUM7 -2275 -281 158 C11B 1925 -281 140 TEST1 -6335 -281 100 VCC -2205 -281 159 C12B 1995 -281 141 DGNDDUM3 -6265 -281 100 VCC -2065 -281 160 C12B 2065 -281 141 DGNDDUM3 -6265 -281 100 VCC -2065 -281 161 C12B 2135 -281 142 FMARK -6195 -281 102 VCC -1995 -281 162 C12B 2205 -281 143 VSYNC -6125 -281 103 VCC -1925 -281 162 C12B 2205 -281 164 C12B 2275 -281 164 C12A 2345 -281 165 C12A 2415 -281 166 C12A 2415 -281 167 C12A 2345 -281 167 C12A 234	_			_					1			1
37 TESTO[16] -6545 -281 97 DUMMY9 -2345 -281 157 C11B 1855 -281 38 TEST3 -6475 -281 98 DGNDDUM7 -2275 -281 158 C11B 1925 -281 40 TEST1 -6335 -281 100 VCC -2215 -281 159 C12B 1995 -281 41 DGNDDUM3 -6265 -281 101 VCC -2065 -281 160 C12B 2065 -281 42 FMARK -6195 -281 102 VCC -1995 -281 162 C12B 2055 -281 43 VSYNC -6125 -281 103 VCC -1995 -281 162 C12B 2205 -281 44 HSYNC -6055 -281 104 VCC -1925 -281 163 C12B 2275 -281 44 HSYNC -6055 -281 104 VCC -1925 -281 163 C12B 2275 -281 46 ENABLE -5915 -281 106 VDD -1785 -281 166 C12A 2345 -281 47 TEST_EN -5845 -281 106 VDD -1785 -281 166 C12A 2485 -281 48 DB[17] -5775 -281 108 VDD -1575 -281 166 C12A 2485 -281 49 DB[16] -5705 -281 109 VDD -1505 -281 167 C12A 2555 -281 109 VDD -1435 -281 167 C12A 2555 -281 109 VDD -1435 -281 167 C12A 2555 -281 109 VDD -1435 -281 170 DDVDH 2765 -281 157 C11B 1855 -281 158 C11B 1925 -281 159 C12B 1925 -281 160 C12B 205 -281 160 C12B 2275 -				_					1			
38 TEST3 -6475 -281 98 DGNDDUM7 -2275 -281 158 C11B 1925 -281 39 TEST2 -6405 -281 99 VCC -2205 -281 159 C12B 1995 -281 40 TEST1 -6335 -281 100 VCC -2135 -281 160 C12B 2065 -281 41 DGNDDUM3 -6265 -281 101 VCC -2065 -281 161 C12B 2055 -281 42 FMARK -6195 -281 102 VCC -1995 -281 162 C12B 2205 -281 43 VSYNC -6125 -281 103 VCC -1995 -281 162 C12B 2275 -281 44 HSYNC -6055 -281 105 VDD -1785 -281 166 C12A 2415 -281 45 DOTCLK -5985<				_				-				
TEST2				-			1	1	1			1
40 TEST1 -6335 -281 100 VCC -2135 -281 160 C12B 2065 -281 41 DGNDDUM3 -6265 -281 101 VCC -2065 -281 161 C12B 2135 -281 42 FMARK -6195 -281 102 VCC -1995 -281 162 C12B 2205 -281 43 VSYNC -6125 -281 102 VCC -1995 -281 162 C12B 2205 -281 44 HSYNC -6055 -281 104 VCC -1855 -281 163 C12B 2205 -281 45 DOTCLK -5985 -281 105 VDD -1785 -281 166 C12A 2415 -281 46 ENABLE -5915 -281 106 VDD -1645 281 166 C12A 2485 -281 48 DB[16] -5705 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>				-				-				
41 DGNDDUM3 -6265 -281 101 VCC -2065 -281 161 C12B 2135 -281 42 FMARK -6195 -281 102 VCC -1995 -281 162 C12B 2205 -281 43 VSYNC -6125 -281 103 VCC -1925 -281 162 C12B 2205 -281 44 HSYNC -6055 -281 104 VCC -1855 -281 163 C12B 2275 -281 45 DOTCLK -5985 -281 105 VDD -1785 -281 166 C12A 2415 -281 46 ENABLE -5915 -281 106 VDD -1715 -281 166 C12A 2485 -281 47 TEST_EN -5845 -281 107 VDD -1645 -281 166 C12A 2485 -281 49 DB[16] -5705				_				_	1			
42 FMARK -6195 -281 102 VCC -1995 -281 162 C12B 2205 -281 43 VSYNC -6125 -281 103 VCC -1925 -281 163 C12B 2275 -281 44 HSYNC -6055 -281 104 VCC -1855 -281 164 C12A 2345 -281 45 DOTCLK -5985 -281 105 VDD -1785 -281 166 C12A 2415 -281 46 ENABLE -5915 -281 106 VDD -1715 -281 166 C12A 2485 -281 47 TEST_EN -5845 -281 107 VDD -1645 -281 166 C12A 2485 -281 48 DB[16] -5705 -281 109 VDD -1505 -281 166 C12A 2485 -281 50 DB[15] -5635 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>-281</td>							1		1			-281
43 VSYNC -6125 -281 103 VCC -1925 -281 163 C12B 2275 -281 44 HSYNC -6055 -281 104 VCC -1855 -281 164 C12A 2345 -281 45 DOTCLK -5985 -281 105 VDD -1785 -281 165 C12A 2415 -281 46 ENABLE -5915 -281 106 VDD -1715 -281 166 C12A 2485 -281 47 TEST_EN -5845 -281 107 VDD -1645 -281 166 C12A 2485 -281 48 DB[17] -5775 -281 108 VDD -1575 -281 168 C12A 2485 -281 49 DB[16] -5705 -281 109 VDD -1505 -281 169 DDVDH 2695 -281 51 TS[8] -5656<				_				_	1			-281
44 HSYNC -6055 -281 104 VCC -1855 -281 164 C12A 2345 -281 45 DOTCLK -5985 -281 105 VDD -1785 -281 165 C12A 2415 -281 46 ENABLE -5915 -281 106 VDD -1715 -281 166 C12A 2485 -281 47 TEST_EN -5845 -281 107 VDD -1645 -281 166 C12A 2485 -281 48 DB[17] -5775 -281 108 VDD -1575 -281 166 C12A 2555 -281 49 DB[16] -5705 -281 109 VDD -1505 -281 168 C12A 2625 -281 50 DB[15] -5635 -281 110 VDD -1435 -281 170 DDVDH 2695 -281 51 TS[8] -5565							1		1		_	-281
45 DOTCLK -5985 -281 105 VDD -1785 -281 165 C12A 2415 -281 46 ENABLE -5915 -281 106 VDD -1715 -281 166 C12A 2485 -281 47 TEST_EN -5845 -281 107 VDD -1645 -281 166 C12A 2485 -281 48 DB[16] -5705 -281 108 VDD -1575 -281 168 C12A 2555 -281 49 DB[16] -5705 -281 109 VDD -1505 -281 168 C12A 2625 -281 50 DB[15] -5635 -281 109 VDD -1505 -281 170 DDVDH 2695 -281 51 TS[8] -5565 -281 110 VDD -1365 -281 170 DDVDH 2765 -281 52 TS[7] -549				-			1		1			-281
46 ENABLE -5915 -281 106 VDD -1715 -281 166 C12A 2485 -281 47 TEST_EN -5845 -281 107 VDD -1645 -281 167 C12A 2555 -281 48 DB[17] -5775 -281 108 VDD -1575 -281 168 C12A 2625 -281 49 DB[16] -5705 -281 109 VDD -1575 -281 168 C12A 2625 -281 50 DB[15] -5635 -281 109 VDD -1505 -281 169 DDVDH 2695 -281 51 TS[8] -5565 -281 110 VDD -1435 -281 170 DDVDH 2765 -281 51 TS[8] -5545 -281 111 VDD -1365 -281 171 DDVDH 2765 -281 52 TS[7] -549				-	-			1				
47 TEST_EN -5845 -281 107 VDD -1645 -281 167 C12A 2555 -281 48 DB[17] -5775 -281 108 VDD -1575 -281 168 C12A 2625 -281 49 DB[16] -5705 -281 109 VDD -1505 -281 169 DDVDH 2695 -281 50 DB[15] -5635 -281 110 VDD -1435 -281 170 DDVDH 2765 -281 51 TS[8] -5565 -281 111 VDD -1365 -281 171 DDVDH 2765 -281 52 TS[7] -5495 -281 111 VDD -1295 -281 171 DDVDH 2835 -281 53 DB[14] -5425 -281 112 VDD -1225 -281 172 DDVDH 2905 -281 54 DB[13] -	_				-				1			-281
48 DB[17] -5775 -281 108 VDD -1575 -281 168 C12A 2625 -281 49 DB[16] -5705 -281 109 VDD -1505 -281 169 DDVDH 2695 -281 50 DB[15] -5635 -281 110 VDD -1435 -281 170 DDVDH 2765 -281 51 TS[8] -5565 -281 111 VDD -1365 -281 171 DDVDH 2765 -281 52 TS[7] -5495 -281 1112 VDD -1295 -281 172 DDVDH 2835 -281 53 DB[14] -5425 -281 112 VDD -1295 -281 172 DDVDH 2905 -281 54 DB[13] -5355 -281 114 DGND -1155 -281 174 DDVDH 2975 -281 55 DB[12] <td< td=""><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>-281</td></td<>	_			_					1			-281
49 DB[16] -5705 -281 109 VDD -1505 -281 169 DDVDH 2695 -281 50 DB[15] -5635 -281 110 VDD -1435 -281 170 DDVDH 2765 -281 51 TS[8] -5565 -281 111 VDD -1365 -281 171 DDVDH 2835 -281 52 TS[7] -5495 -281 112 VDD -1295 -281 172 DDVDH 2905 -281 53 DB[14] -5425 -281 112 VDD -1225 -281 172 DDVDH 2905 -281 54 DB[13] -5355 -281 114 DGND -1155 -281 174 DDVDH 2975 -281 55 DB[12] -5285 -281 115 DGND -1085 -281 175 DDVDH 3115 -281 56 TS[6] <td< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>-281</td></td<>					_				1			-281
50 DB[15] -5635 -281 110 VDD -1435 -281 170 DDVDH 2765 -281 51 TS[8] -5565 -281 111 VDD -1365 -281 171 DDVDH 2835 -281 52 TS[7] -5495 -281 112 VDD -1295 -281 172 DDVDH 2905 -281 53 DB[14] -5425 -281 113 DGND -1225 -281 173 DDVDH 2905 -281 54 DB[13] -5355 -281 114 DGND -1155 -281 174 DDVDH 2975 -281 55 DB[12] -5285 -281 115 DGND -1085 -281 174 DDVDH 3045 -281 56 TS[6] -5215 -281 116 DGND -1015 -281 176 DDVDH 3185 -281 57 TS[5] <t< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td>-281</td></t<>					_		1		1			-281
51 TS[8] -5565 -281 111 VDD -1365 -281 171 DDVDH 2835 -281 52 TS[7] -5495 -281 112 VDD -1295 -281 172 DDVDH 2905 -281 53 DB[14] -5425 -281 113 DGND -1225 -281 173 DDVDH 2975 -281 54 DB[13] -5355 -281 114 DGND -1155 -281 174 DDVDH 3045 -281 55 DB[12] -5285 -281 115 DGND -1085 -281 175 DDVDH 3045 -281 56 TS[6] -5215 -281 116 DGND -1015 -281 176 DDVDH 3185 -281 57 TS[5] -5145 -281 117 DGND -945 -281 177 DDVDH 3255 -281 58 DB[10] <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td>_</td><td>-281</td></t<>							1	1	1		_	-281
52 TS[7] -5495 -281 112 VDD -1295 -281 172 DDVDH 2905 -281 53 DB[14] -5425 -281 113 DGND -1225 -281 173 DDVDH 2975 -281 54 DB[13] -5355 -281 114 DGND -1155 -281 174 DDVDH 3045 -281 55 DB[12] -5285 -281 115 DGND -1085 -281 175 DDVDH 3115 -281 56 TS[6] -5215 -281 116 DGND -1015 -281 176 DDVDH 3185 -281 57 TS[5] -5145 -281 117 DGND -945 -281 177 DDVDH 3255 -281 58 DB[10] -5005 -281 118 DGND -875 -281 178 DDVDH 3325 -281 59 DB[10] <				-				1	-			-281
53 DB[14] -5425 -281 113 DGND -1225 -281 173 DDVDH 2975 -281 54 DB[13] -5355 -281 114 DGND -1155 -281 174 DDVDH 3045 -281 55 DB[12] -5285 -281 115 DGND -1085 -281 175 DDVDH 3115 -281 56 TS[6] -5215 -281 116 DGND -1015 -281 176 DDVDH 3185 -281 57 TS[5] -5145 -281 117 DGND -945 -281 177 DDVDH 3255 -281 58 DB[11] -5075 -281 118 DGND -875 -281 178 DDVDH 3325 -281 59 DB[10] -5005 -281 119 DGND -805 -281 179 DUMMY10 3395 -281				_	-		1	1	-			-281
54 DB[13] -5355 -281 114 DGND -1155 -281 174 DDVDH 3045 -281 55 DB[12] -5285 -281 115 DGND -1085 -281 175 DDVDH 3115 -281 56 TS[6] -5215 -281 116 DGND -1015 -281 176 DDVDH 3185 -281 57 TS[5] -5145 -281 117 DGND -945 -281 177 DDVDH 3255 -281 58 DB[11] -5075 -281 118 DGND -875 -281 178 DDVDH 3325 -281 59 DB[10] -5005 -281 119 DGND -805 -281 179 DUMMY10 3395 -281								_	1 1			-281
55 DB[12] -5285 -281 115 DGND -1085 -281 175 DDVDH 3115 -281 56 TS[6] -5215 -281 116 DGND -1015 -281 176 DDVDH 3185 -281 57 TS[5] -5145 -281 117 DGND -945 -281 177 DDVDH 3255 -281 58 DB[11] -5075 -281 118 DGND -875 -281 178 DDVDH 3325 -281 59 DB[10] -5005 -281 119 DGND -805 -281 179 DUMMY10 3395 -281					_				1		_	-281
56 TS[6] -5215 -281 116 DGND -1015 -281 176 DDVDH 3185 -281 57 TS[5] -5145 -281 117 DGND -945 -281 177 DDVDH 3255 -281 58 DB[11] -5075 -281 118 DGND -875 -281 178 DDVDH 3325 -281 59 DB[10] -5005 -281 119 DGND -805 -281 179 DUMMY10 3395 -281				-					-			-281
57 TS[5] -5145 -281 117 DGND -945 -281 177 DDVDH 3255 -281 58 DB[11] -5075 -281 118 DGND -875 -281 178 DDVDH 3325 -281 59 DB[10] -5005 -281 119 DGND -805 -281 179 DUMMY10 3395 -281									1			-281
58 DB[11] -5075 -281 118 DGND -875 -281 178 DDVDH 3325 -281 59 DB[10] -5005 -281 119 DGND -805 -281 179 DUMMY10 3395 -281				-			1	_	1			-281
59 DB[10] -5005 -281 119 DGND -805 -281 179 DUMMY10 3395 -281				_				1	1			-281
					_			_	1			-281
, , ==,-, .000 =0. m .=0 .001 Z01	60	DB[9]	-4935	-281	120	DGND	-735	-281	180	VREG10UT	3465	-281

NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ
181	DUMMY11	3535	-281	241	AGND	7735	-281	301	G[71]	8576	279
182	DUMMY12	3605	-281	242	AGND	7805	-281	302	G[73]	8560	166
183	AGNDDUM1	3675	-281	243	C21B	7875	-281	303	G[75]	8544	279
184	AGNDDUM2	3745	-281	244	C21B	7945	-281	304	G[77]	8528	166
185	VCI1	3815	-281	245	C21B	8015	-281	305	G[79]	8512	279
186	VCI1	3885	-281	246	C21A	8085	-281	306	G[81]	8496	166
187	VCI1	3955	-281	247	C21A	8155	-281	307	G[83]	8480	279
188	VCI1	4025	-281	248	C21A	8225	-281	308	G[85]	8464	166
189	VCI1	4095	-281	249	C22B	8295	-281	309	G[87]	8448	279
190	VCI1	4165	-281	250	C22B	8365	-281	310	G[89]	8432	166
191	VCI1	4235	-281	251	C22B	8435	-281	311	G[91]	8416	279
192	VCI1	4305	-281	252	C22A	8505	-281	312	G[93]	8400	166
193	VCI	4375	-281	253	C22A	8575	-281	313	G[95]	8384	279
194	VCI	4445	-281	254	C22A	8645	-281	314	G[97]	8368	166
195	VCI	4515	-281	255	DUMMY13	8715	-281	315	G[99]	8352	279
196	VCI	4585	-281	256	DUMMY14	8785	-281	316	G[101]	8336	166
197	VCI	4655	-281	257	DUMMY15	8855	-281	317	G[103]	8320	279
198	VCI	4725	-281	258	DUMMY16	8925	-281	318	G[105]	8304	166
199	VCI	4795	-281	259	DUMMY17	8995	-281	319	G[107]	8288	279
200	VCI	4865	-281	260	AGNDDUM6	9065	-281	320	G[109]	8272	166
201	VCI	4935	-281	261	DUMMY18	9216	279	321	G[111]	8256	279
202	AGNDDUM3	5005	-281	262	DUMMY19	9200	166	322	G[113]	8240	166
203	VGH	5075	-281	263	DUMMY20	9184	279	323	G[115]	8224	279
204	VGH	5145	-281	264	DUMMY21	9168	166	324	G[117]	8208	166
205	VGH	5215	-281	265	VGLDMY1	9152	279	325	G[119]	8192	279
206	VGH	5285	-281	266	G[1]	9136	166	326	G[121]	8176	166
207	VGH	5355	-281	267	G[3]	9120	279	327	G[123]	8160	279
208	VGH	5425	-281	268	G[5]	9104	166	328	G[125]	8144	166
209	AGNDDUM4	5495	-281	269	G[7]	9088	279	329	G[127]	8128	279
210	VGL	5565	-281	270	G[9]	9072	166	330	G[129]	8112	166
211	VGL	5635	-281	271	G[11]	9056	279	331	G[131]	8096	279
212 213	VGL VGL	5705 5775	-281 -281	272 273	G[13]	9040 9024	166 279	332	G[133] G[135]	8080 8064	166 279
214	VGL	5845	-281	274	G[15] G[17]	9024	166	334	G[137]	8048	166
215	VGL	5915	-281	274	G[17]	8992	279	335	G[137] G[139]	8032	279
216	VGL	5985	-281	276	G[21]	8976	166	336	G[141]	8016	166
217	VGL	6055	-281	277	G[23]	8960	279	337	G[143]	8000	279
218	VGL	6125	-281	278	G[25]	8944	166	338	G[145]	7984	166
219	VGL	6195	-281	279	G[27]	8928	279	339	G[147]	7968	279
220	AGNDDUM5	6265	-281	280	G[29]	8912	166	340	G[149]	7952	166
221	VCL	6335	-281	281	G[31]	8896	279	341	G[151]	7936	279
222	VCL	6405	-281	282	G[33]	8880	166	342	G[153]	7920	166
223	VCL	6475	-281	283	G[35]	8864	279	343	G[155]	7904	279
224	VCL	6545	-281	284	G[37]	8848	166	344	G[157]	7888	166
225	C13B	6615	-281	285	G[39]	8832	279	345	G[159]	7872	279
226	C13B	6685	-281	286	G[41]	8816	166	346	G[161]	7856	166
227	C13B	6755	-281	287	G[43]	8800	279	347	G[163]	7840	279
228	C13B	6825	-281	288	G[45]	8784	166	348	G[165]	7824	166
229	C13A	6895	-281	289	G[47]	8768	279	349	G[167]	7808	279
230	C13A	6965	-281	290	G[49]	8752	166	350	G[169]	7792	166
231	C13A	7035	-281	291	G[51]	8736	279	351	G[171]	7776	279
232	C13A	7105	-281	292	G[53]	8720	166	352	G[173]	7760	166
233	AGND	7175	-281	293	G[55]	8704	279	353	G[175]	7744	279
234	AGND	7245	-281	294	G[57]	8688	166	354	G[177]	7728	166
235	AGND	7315	-281	295	G[59]	8672	279	355	G[179]	7712	279
236	AGND	7385	-281	296	G[61]	8656	166	356	G[181]	7696	166
237	AGND	7455	-281	297	G[63]	8640	279	357	G[183]	7680	279
238	AGND	7525	-281	298	G[65]	8624	166	358	G[185]	7664	166
239	AGND	7595	-281	299	G[67]	8608	279	359	G[187]	7648	279
240	AGND	7665	-281	300	G[69]	8592	166	360	G[189]	7632	166

NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ
361	G[191]	7616	279	421	G[311]	6656	279	481	S[669]	5520	166
362	G[193]	7600	166	422	G[313]	6640	166	482	S[668]	5504	279
363	G[195]	7584	279	423	G[315]	6624	279	483	S[667]	5488	166
364	G[197]	7568	166	424	G[317]	6608	166	484	S[666]	5472	279
365	G[199]	7552	279	425	G[319]	6592	279	485	S[665]	5456	166
366	G[201]	7536	166	426	VGLDMY2	6576	166	486	S[664]	5440	279
367	G[203]	7520	279	427	DUMMY22	6560	279	487	S[663]	5424	166
368	G[205]	7504	166	428	DUMMY23	6368	279	488	S[662]	5408	279
369	G[207]	7488	279	429	DUMMY24	6352	166	489	S[661]	5392	166
370	G[209]	7472	166	430	S[720]	6336	279	490	S[660]	5376	279
371	G[211]	7456	279	431	S[719]	6320	166	491	S[659]	5360	166
372	G[213]	7440	166	432	S[718]	6304	279	492	S[658]	5344	279
373	G[215]	7424 7408	279	433	S[717]	6288	166 279	493	S[657]	5328 5312	166
374 375	G[217] G[219]	7392	166 279	434 435	S[716] S[715]	6272 6256	166	494 495	S[656] S[655]	5296	279 166
376	G[221]	7376	166	436	S[714]	6240	279	496	S[654]	5280	279
377	G[223]	7360	279	437	S[713]	6224	166	497	S[653]	5264	166
378	G[225]	7344	166	438	S[712]	6208	279	498	S[652]	5248	279
379	G[227]	7328	279	439	S[711]	6192	166	499	S[651]	5232	166
380	G[229]	7312	166	440	S[710]	6176	279	500	S[650]	5216	279
381	G[231]	7296	279	441	S[709]	6160	166	501	S[649]	5200	166
382	G[233]	7280	166	442	S[708]	6144	279	502	S[648]	5184	279
383	G[235]	7264	279	443	S[707]	6128	166	503	S[647]	5168	166
384	G[237]	7248	166	444	S[706]	6112	279	504	S[646]	5152	279
385	G[239]	7232	279	445	S[705]	6096	166	505	S[645]	5136	166
386	G[241]	7216	166	446	S[704]	6080	279	506	S[644]	5120	279
387	G[243]	7200	279	447	S[703]	6064	166	507	S[643]	5104	166
388	G[245]	7184	166	448	S[702]	6048	279	508	S[642]	5088	279
389	G[247]	7168	279	449	S[701]	6032	166	509	S[641]	5072	166
390	G[249]	7152	166	450	S[700]	6016	279	510	S[640]	5056	279
391	G[251]	7136	279	451	S[699]	6000	166	511	S[639]	5040	166
392	G[253]	7120	166	452	S[698]	5984	279	512	S[638]	5024	279
393	G[255]	7104	279	453	S[697]	5968	166	513	S[637]	5008	166
394	G[257]	7088	166	454	S[696]	5952	279	514	S[636]	4992	279
395	G[259]	7072	279	455	S[695]	5936	166	515	S[635]	4976	166
396	G[261]	7056	166	456	S[694]	5920	279	516	S[634]	4960	279
397	G[263]	7040 7024	279	457	S[693]	5904	166	517	S[633]	4944 4928	166
398 399	G[265] G[267]	7024	166 279	458 459	S[692] S[691]	5888 5872	279 166	518 519	S[632] S[631]	4926	279 166
400	G[267] G[269]	6992	166	460	S[690]	5856	279	520	S[630]	4896	279
401	G[271]	6976	279	461	S[689]	5840	166	521	S[629]	4880	166
402	G[273]	6960	166	462	S[688]	5824	279	522	S[628]	4864	279
403	G[275]	6944	279	463	S[687]	5808	166	523	S[627]	4848	166
404	G[277]	6928	166	464	S[686]	5792	279	524	S[626]	4832	279
405	G[279]	6912	279	465	S[685]	5776	166	525	S[625]	4816	166
406	G[281]	6896	166	466	S[684]	5760	279	526	S[624]	4800	279
407	G[283]	6880	279	467	S[683]	5744	166	527	S[623]	4784	166
408	G[285]	6864	166	468	S[682]	5728	279	528	S[622]	4768	279
409	G[287]	6848	279	469	S[681]	5712	166	529	S[621]	4752	166
410	G[289]	6832	166	470	S[680]	5696	279	530	S[620]	4736	279
411	G[291]	6816	279	471	S[679]	5680	166	531	S[619]	4720	166
412	G[293]	6800	166	472	S[678]	5664	279	532	S[618]	4704	279
413	G[295]	6784	279	473	S[677]	5648	166	533	S[617]	4688	166
414	G[297]	6768	166	474	S[676]	5632	279	534	S[616]	4672	279
415	G[299]	6752	279	475	S[675]	5616	166	535	S[615]	4656	166
416	G[301]	6736	166	476	S[674]	5600	279	536	S[614]	4640	279
417	G[303]	6720	279	477	S[673]	5584	166	537	S[613]	4624	166
418	G[305]	6704	166	478	S[672]	5568	279	538	S[612]	4608	279
419	G[307]	6688	279	479	S[671]	5552	166	539	S[611]	4592	166
420	G[309]	6672	166	480	S[670]	5536	279	540	S[610]	4576	279

NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ
541	S[609]	4560	166	601	S[549]	3600	166	661	S[489]	2640	166
542	S[608]	4544	279	602	S[548]	3584	279	662	S[488]	2624	279
543	S[607]	4528	166	603	S[547]	3568	166	663	S[487]	2608	166
544	S[606]	4512	279	604	S[546]	3552	279	664	S[486]	2592	279
545	S[605]	4496	166	605	S[545]	3536	166	665	S[485]	2576	166
546	S[604]	4480	279	606	S[544]	3520	279	666	S[484]	2560	279
547	S[603]	4464	166	607	S[543]	3504	166	667	S[483]	2544	166
548	S[602]	4448	279	608	S[542]	3488	279	668	S[482]	2528	279
549	S[601]	4432	166	609	S[541]	3472	166	669	S[481]	2512	166
550	S[600]	4416	279	610	S[540]	3456	279	670	S[480]	2496	279
551	S[599]	4400	166	611	S[539]	3440	166	671	S[479]	2480	166
552	S[598]	4384	279	612	S[538]	3424	279	672	S[478]	2464	279
553	S[597]	4368 4352	166	613	S[537]	3408	166 279	673 674	S[477]	2448 2432	166
554 555	S[596] S[595]	4336	279 166	614 615	S[536] S[535]	3392 3376	166	675	S[476] S[475]	2432	279 166
556	S[594]	4320	279	616	S[534]	3360	279	676	S[474]	2400	279
557	S[593]	4304	166	617	S[533]	3344	166	677	S[474]	2384	166
558	S[592]	4288	279	618	S[532]	3328	279	678	S[472]	2368	279
559	S[592] S[591]	4272	166	619	S[532]	3312	166	679	S[472]	2352	166
560	S[590]	4256	279	620	S[530]	3296	279	680	S[470]	2336	279
561	S[589]	4240	166	621	S[529]	3280	166	681	S[469]	2320	166
562	S[588]	4224	279	622	S[528]	3264	279	682	S[468]	2304	279
563	S[587]	4208	166	623	S[527]	3248	166	683	S[467]	2288	166
564	S[586]	4192	279	624	S[526]	3232	279	684	S[466]	2272	279
565	S[585]	4176	166	625	S[525]	3216	166	685	S[465]	2256	166
566	S[584]	4160	279	626	S[524]	3200	279	686	S[464]	2240	279
567	S[583]	4144	166	627	S[523]	3184	166	687	S[463]	2224	166
568	S[582]	4128	279	628	S[522]	3168	279	688	S[462]	2208	279
569	S[581]	4112	166	629	S[521]	3152	166	689	S[461]	2192	166
570	S[580]	4096	279	630	S[520]	3136	279	690	S[460]	2176	279
571	S[579]	4080	166	631	S[519]	3120	166	691	S[459]	2160	166
572	S[578]	4064	279	632	S[518]	3104	279	692	S[458]	2144	279
573	S[577]	4048	166	633	S[517]	3088	166	693	S[457]	2128	166
574	S[576]	4032	279	634	S[516]	3072	279	694	S[456]	2112	279
575	S[575]	4016	166	635	S[515]	3056	166	695	S[455]	2096	166
576	S[574]	4000	279	636	S[514]	3040	279	696	S[454]	2080	279
577	S[573]	3984	166	637	S[513]	3024	166	697	S[453]	2064	166
578 579	S[572] S[571]	3968 3952	279 166	638 639	S[512] S[511]	3008 2992	279 166	698 699	S[452] S[451]	2048	279 166
580	S[571]	3936	279	640	S[511]	2976	279	700	S[451] S[450]	2016	279
581	S[570] S[569]	3920	166	641	S[510] S[509]	2960	166	700	S[449]	2000	166
582	S[568]	3904	279	642	S[508]	2944	279	702	S[448]	1984	279
583	S[567]	3888	166	643	S[507]	2928	166	703	S[447]	1968	166
584	S[566]	3872	279	644	S[506]	2912	279	704	S[446]	1952	279
585	S[565]	3856	166	645	S[505]	2896	166	705	S[445]	1936	166
586	S[564]	3840	279	646	S[504]	2880	279	706	S[444]	1920	279
587	S[563]	3824	166	647	S[503]	2864	166	707	S[443]	1904	166
588	S[562]	3808	279	648	S[502]	2848	279	708	S[442]	1888	279
589	S[561]	3792	166	649	S[501]	2832	166	709	S[441]	1872	166
590	S[560]	3776	279	650	S[500]	2816	279	710	S[440]	1856	279
591	S[559]	3760	166	651	S[499]	2800	166	711	S[439]	1840	166
592	S[558]	3744	279	652	S[498]	2784	279	712	S[438]	1824	279
593	S[557]	3728	166	653	S[497]	2768	166	713	S[437]	1808	166
594	S[556]	3712	279	654	S[496]	2752	279	714	S[436]	1792	279
595	S[555]	3696	166	655	S[495]	2736	166	715	S[435]	1776	166
596	S[554]	3680	279	656	S[494]	2720	279	716	S[434]	1760	279
597	S[553]	3664	166	657	S[493]	2704	166	717	S[433]	1744	166
598	S[552]	3648	279	658	S[492]	2688	279	718	S[432]	1728	279
599	S[551]	3632	166	659	S[491]	2672	166	719	S[431]	1712	166
600	S[550]	3616	279	660	S[490]	2656	279	720	S[430]	1696	279

NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ
721	S[429]	1680	166	781	S[369]	720	166	841	S[311]	-1376	166
722	S[428]	1664	279	782	S[368]	704	279	842	S[310]	-1392	279
723	S[427]	1648	166	783	S[367]	688	166	843	S[309]	-1408	166
724	S[426]	1632	279	784	S[366]	672	279	844	S[308]	-1424	279
725	S[425]	1616	166	785	S[365]	656	166	845	S[307]	-1440	166
726	S[424]	1600	279	786	S[364]	640	279	846	S[306]	-1456	279
727	S[423]	1584	166	787	S[363]	624	166	847	S[305]	-1472	166
728	S[422]	1568	279	788	S[362]	608	279	848	S[304]	-1488	279
729	S[421]	1552	166	789	S[361]	592	166	849	S[303]	-1504	166
730 731	S[420] S[419]	1536 1520	279 166	790 791	VGMMA62 VGMMA1	576 -576	279 166	850 851	S[302]	-1520 -1536	279 166
731	S[418]	1504	279	791	S[360]	-592	279	852	S[301] S[300]	-1552	279
733	S[417]	1488	166	793	S[359]	-608	166	853	S[299]	-1568	166
734	S[416]	1472	279	794	S[358]	-624	279	854	S[298]	-1584	279
735	S[415]	1456	166	795	S[357]	-640	166	855	S[297]	-1600	166
736	S[414]	1440	279	796	S[356]	-656	279	856	S[296]	-1616	279
737	S[413]	1424	166	797	S[355]	-672	166	857	S[295]	-1632	166
738	S[412]	1408	279	798	S[354]	-688	279	858	S[294]	-1648	279
739	S[411]	1392	166	799	S[353]	-704	166	859	S[293]	-1664	166
740	S[410]	1376	279	800	S[352]	-720	279	860	S[292]	-1680	279
741	S[409]	1360	166	801	S[351]	-736	166	861	S[291]	-1696	166
742	S[408]	1344	279	802	S[350]	-752	279	862	S[290]	-1712	279
743	S[407]	1328	166	803	S[349]	-768	166	863	S[289]	-1728	166
744	S[406]	1312	279	804	S[348]	-784	279	864	S[288]	-1744	279
745	S[405]	1296	166	805	S[347]	-800	166	865	S[287]	-1760	166
746	S[404]	1280	279	806 807	S[346]	-816	279	866	S[286]	-1776 -1792	279
747 748	S[403] S[402]	1264 1248	166 279	808	S[345] S[344]	-832 -848	166 279	867 868	S[285] S[284]	-1792	166 279
749	S[402] S[401]	1232	166	809	S[343]	-864	166	869	S[283]	-1824	166
750	S[400]	1216	279	810	S[342]	-880	279	870	S[282]	-1840	279
751	S[399]	1200	166	811	S[341]	-896	166	871	S[281]	-1856	166
752	S[398]	1184	279	812	S[340]	-912	279	872	S[280]	-1872	279
753	S[397]	1168	166	813	S[339]	-928	166	873	S[279]	-1888	166
754	S[396]	1152	279	814	S[338]	-944	279	874	S[278]	-1904	279
755	S[395]	1136	166	815	S[337]	-960	166	875	S[277]	-1920	166
756	S[394]	1120	279	816	S[336]	-976	279	876	S[276]	-1936	279
757	S[393]	1104	166	817	S[335]	-992	166	877	S[275]	-1952	166
758	S[392]	1088	279	818	S[334]	-1008	279	878	S[274]	-1968	279
759	S[391]	1072	166	819	S[333]	-1024	166	879	S[273]	-1984	166
760	S[390]	1056	279	820	S[332]	-1040	279	880	S[272]	-2000	279
761 762	S[389] S[388]	1040 1024	166 279	821 822	S[331] S[330]	-1056 -1072	166 279	881 882	S[271] S[270]	-2016 -2032	166
763	S[387]	1024	166	823	S[329]	-1072	166	883	S[270] S[269]	-2032	279 166
764	S[386]	992	279	824	S[328]	-1104	279	884	S[268]	-2046	279
765	S[385]	976	166	825	S[327]	-1120	166	885	S[267]	-2080	166
766	S[384]	960	279	826	S[326]	-1136	279	886	S[266]	-2096	279
767	S[383]	944	166	827	S[325]	-1152	166	887	S[265]	-2112	166
768	S[382]	928	279	828	S[324]	-1168	279	888	S[264]	-2128	279
769	S[381]	912	166	829	S[323]	-1184	166	889	S[263]	-2144	166
770	S[380]	896	279	830	S[322]	-1200	279	890	S[262]	-2160	279
771	S[379]	880	166	831	S[321]	-1216	166	891	S[261]	-2176	166
772	S[378]	864	279	832	S[320]	-1232	279	892	S[260]	-2192	279
773	S[377]	848	166	833	S[319]	-1248	166	893	S[259]	-2208	166
774	S[376]	832	279	834	S[318]	-1264	279	894	S[258]	-2224	279
775	S[375]	816	166	835	S[317]	-1280	166	895	S[257]	-2240	166
776 777	S[374] S[373]	800 784	279 166	836 837	S[316] S[315]	-1296 -1312	279 166	896 897	S[256] S[255]	-2256 -2272	279 166
778	S[373] S[372]	784 768	279	837	S[315] S[314]	-1312	279	897	S[255] S[254]	-2272 -2288	279
779	S[372] S[371]	752	166	839	S[314]	-1344	166	899	S[254] S[253]	-2200	166
780	S[370]	736	279	840	S[312]	-1344	279	900	S[253]	-2320	279
100	<u> ပ</u> ုပ႑ပ၂	130	213	040	ી <u>ં</u> ગ 12]	-1300	213	900	<u>ال</u> كاكا	-2320	213

NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ
901	S[251]	-2336	166	961	S[191]	-3296	166	1021	S[131]	-4256	166
902	S[250]	-2352	279	962	S[190]	-3312	279	1022	S[130]	-4272	279
903	S[249]	-2368	166	963	S[189]	-3328	166	1023	S[129]	-4288	166
904	S[248]	-2384	279	964	S[188]	-3344	279	1024	S[128]	-4304	279
905	S[247]	-2400	166	965	S[187]	-3360	166	1025	S[127]	-4320	166
906	S[246]	-2416	279	966	S[186]	-3376	279	1026	S[126]	-4336	279
907	S[245]	-2432	166	967	S[185]	-3392	166	1027	S[125]	-4352	166
908	S[244] S[243]	-2448	279	968 969	S[184]	-3408	279 166	1028	S[124] S[123]	-4368	279
909 910	S[243] S[242]	-2464 -2480	166 279	969	S[183] S[182]	-3424 -3440	279	1029 1030	S[123] S[122]	-4384 -4400	166 279
911	S[242]	-2496	166	971	S[181]	-3456	166	1031	S[121]	-4416	166
912	S[240]	-2512	279	972	S[180]	-3472	279	1032	S[120]	-4432	279
913	S[239]	-2528	166	973	S[179]	-3488	166	1033	S[119]	-4448	166
914	S[238]	-2544	279	974	S[178]	-3504	279	1034	S[118]	-4464	279
915	S[237]	-2560	166	975	S[177]	-3520	166	1035	S[117]	-4480	166
916	S[236]	-2576	279	976	S[176]	-3536	279	1036	S[116]	-4496	279
917	S[235]	-2592	166	977	S[175]	-3552	166	1037	S[115]	-4512	166
918	S[234]	-2608	279	978	S[174]	-3568	279	1038	S[114]	-4528	279
919	S[233]	-2624	166	979	S[173]	-3584	166	1039	S[113]	-4544	166
920	S[232]	-2640	279	980	S[172]	-3600	279	1040	S[112]	-4560	279
921	S[231]	-2656	166	981	S[171]	-3616	166	1041	S[111]	-4576	166
922	S[230]	-2672	279	982	S[170]	-3632	279	1042	S[110]	-4592	279
923	S[229]	-2688	166	983	S[169]	-3648	166	1043	S[109]	-4608	166
924	S[228]	-2704	279	984	S[168]	-3664	279	1044	S[108]	-4624	279
925	S[227]	-2720	166	985	S[167]	-3680	166	1045	S[107]	-4640	166
926	S[226]	-2736	279	986	S[166]	-3696	279	1046	S[106]	-4656	279
927	S[225]	-2752	166	987	S[165]	-3712	166	1047	S[105]	-4672	166
928 929	S[224]	-2768 -2784	279 166	988	S[164]	-3728	279 166	1048 1049	S[104]	-4688 -4704	279 166
930	S[223] S[222]	-2764	279	989 990	S[163] S[162]	-3744 -3760	279	1049	S[103] S[102]	-4704 -4720	279
931	S[222] S[221]	-2816	166	990	S[162] S[161]	-3776	166	1050	S[102] S[101]	-4720	166
932	S[220]	-2832	279	992	S[160]	-3792	279	1051	S[101]	-4752	279
933	S[219]	-2848	166	993	S[159]	-3808	166	1053	S[99]	-4768	166
934	S[218]	-2864	279	994	S[158]	-3824	279	1054	S[98]	-4784	279
935	S[217]	-2880	166	995	S[157]	-3840	166	1055	S[97]	-4800	166
936	S[216]	-2896	279	996	S[156]	-3856	279	1056	S[96]	-4816	279
937	S[215]	-2912	166	997	S[155]	-3872	166	1057	S[95]	-4832	166
938	S[214]	-2928	279	998	S[154]	-3888	279	1058	S[94]	-4848	279
939	S[213]	-2944	166	999	S[153]	-3904	166	1059	S[93]	-4864	166
940	S[212]	-2960	279	1000	S[152]	-3920	279	1060	S[92]	-4880	279
941	S[211]	-2976	166	1001	S[151]	-3936	166	1061	S[91]	-4896	166
942	S[210]	-2992	279	1002	S[150]	-3952	279	1062	S[90]	-4912	279
943	S[209]	-3008	166	1003	S[149]	-3968	166	1063	S[89]	-4928	166
944	S[208]	-3024	279	1004	S[148]	-3984	279	1064	S[88]	-4944	279
945	S[207]	-3040 3056	166	1005	S[147]	-4000 4016	166 279	1065	S[87]	-4960 -4976	166
946 947	S[206] S[205]	-3056 -3072	279 166	1006 1007	S[146] S[145]	-4016 -4032	166	1066 1067	S[86] S[85]	-4976 -4992	279 166
947	S[205] S[204]	-3072	279	1007	S[145] S[144]	-4032 -4048	279	1067	S[84]	-4992	279
949	S[204]	-3104	166	1008	S[144] S[143]	-4046	166	1069	S[83]	-5024	166
950	S[202]	-3120	279	1010	S[142]	-4080	279	1070	S[82]	-5040	279
951	S[201]	-3136	166	1011	S[141]	-4096	166	1071	S[81]	-5056	166
952	S[200]	-3152	279	1012	S[140]	-4112	279	1072	S[80]	-5072	279
953	S[199]	-3168	166	1013	S[139]	-4128	166	1073	S[79]	-5088	166
954	S[198]	-3184	279	1014	S[138]	-4144	279	1074	S[78]	-5104	279
955	S[197]	-3200	166	1015	S[137]	-4160	166	1075	S[77]	-5120	166
956	S[196]	-3216	279	1016	S[136]	-4176	279	1076	S[76]	-5136	279
957	S[195]	-3232	166	1017	S[135]	-4192	166	1077	S[75]	-5152	166
958	S[194]	-3248	279	1018	S[134]	-4208	279	1078	S[74]	-5168	279
959	S[193]	-3264	166	1019	S[133]	-4224	166	1079	S[73]	-5184	166
960	S[192]	-3280	279	1020	S[132]	-4240	279	1080	S[72]	-5200	279

NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ	NO.	Pad Name	Х	Υ
1081	S[71]	-5216	166	1141	S[11]	-6176	166	1201	G[230]	-7312	166
1082	S[70]	-5232	279	1142	S[10]	-6192	279	1202	G[228]	-7328	279
1083	S[69]	-5248	166	1143	S[9]	-6208	166	1203	G[226]	-7344	166
1084	S[68]	-5264	279	1144	S[8]	-6224	279	1204	G[224]	-7360	279
1085	S[67]	-5280	166	1145	S[7]	-6240	166	1205	G[222]	-7376	166
1086	S[66]	-5296	279	1146	S[6]	-6256	279	1206	G[220]	-7392	279
1087	S[65]	-5312	166	1147	S[5]	-6272	166	1207	G[218]	-7408	166
1088	S[64]	-5328	279	1148	S[4]	-6288	279	1208	G[216]	-7424	279
1089	S[63]	-5344	166	1149	S[3]	-6304	166	1209	G[214]	-7440	166
1090	S[62]	-5360	279	1150	S[2]	-6320	279	1210	G[212]	-7456	279
1091	S[61]	-5376	166	1151	S[1]	-6336	166	1211	G[210]	-7472	166
1092	S[60]	-5392	279	1152	DUMMY25	-6352	279	1212	G[208]	-7488	279
1093	S[59]	-5408	166	1153	DUMMY26	-6368	166	1213	G[206]	-7504	166
1094	S[58]	-5424	279	1154	DUMMY27	-6560	279	1214	G[204]	-7520	279
1095	S[57]	-5440	166	1155	VGLDMY3	-6576	166	1215	G[202]	-7536	166
1096	S[56]	-5456	279	1156	G[320]	-6592	279	1216	G[200]	-7552	279
1097	S[55]	-5472	166	1157	G[318]	-6608	166	1217	G[198]	-7568	166
1098	S[54]	-5488	279	1158	G[316]	-6624	279	1218	G[196]	-7584	279
1099	S[53]	-5504	166	1159	G[314]	-6640	166	1219	G[194]	-7600	166
1100	S[52]	-5520	279	1160	G[312]	-6656	279	1220	G[192]	-7616	279
1101	S[51]	-5536	166	1161	G[310]	-6672	166	1221	G[190]	-7632	166
1102	S[50]	-5552	279	1162	G[308]	-6688	279	1222	G[188]	-7648	279
1103	S[49]	-5568	166	1163	G[306]	-6704	166	1223	G[186]	-7664	166
1104	S[48]	-5584	279	1164	G[304]	-6720	279	1224	G[184]	-7680	279
1105	S[47]	-5600	166	1165	G[302]	-6736	166	1225	G[182]	-7696	166
1106	S[46]	-5616	279	1166	G[300]	-6752	279	1226	G[180]	-7712	279
1107	S[45]	-5632	166	1167	G[298]	-6768	166	1227	G[178]	-7728	166
1108	S[44]	-5648	279	1168	G[296]	-6784	279	1228	G[176]	-7744	279
1109	S[43]	-5664	166	1169	G[294]	-6800	166	1229	G[174]	-7760	166
1110	S[42]	-5680	279	1170	G[292]	-6816	279	1230	G[172]	-7776	279
1111	S[41]	-5696	166	1171	G[290]	-6832	166	1231	G[170]	-7792	166
1112	S[40]	-5712	279	1172	G[288]	-6848	279	1232	G[168]	-7808	279
1113	S[39]	-5728	166	1173	G[286]	-6864	166	1233	G[166]	-7824	166
1114	S[38]	-5744	279	1174	G[284]	-6880	279	1234	G[164]	-7840	279
1115	S[37]	-5760	166	1175	G[282]	-6896	166	1235	G[162]	-7856	166
1116	S[36]	-5776	279	1176	G[280]	-6912	279	1236	G[160]	-7872	279
1117	S[35]	-5792	166	1177	G[278]	-6928	166	1237	G[158]	-7888	166
1118	S[34]	-5808	279	1178	G[276]	-6944	279	1238	G[156]	-7904	279
1119 1120	S[33]	-5824 -5840	166	1179	G[274]	-6960 -6976	166	1239 1240	G[154]	-7920	166
1120	S[32]	-5856	279	1180	G[272]	-6992	279 166	1	G[152]	-7936 -7952	279
1121	S[31]	-5872	166 279	1181 1182	G[270]		279	1241	G[150] G[148]	-7952 -7968	166
1122	S[30] S[29]	-5888	166	1183	G[268] G[266]	-7008 -7024	166	1242 1243	G[146] G[146]	-7984	279 166
1123	S[28]	-5904	279	1184	G[264]	-7024	279	1243	G[144]	-8000	279
1124	S[27]	-5920	166	1185	G[262]	-7040	166	1244	G[142]	-8016	166
1125	S[26]	-5936	279	1186	G[262]	-7030	279	1245	G[142] G[140]	-8032	279
1127	S[25]	-5952	166	1187	G[258]	-7072	166	1240	G[138]	-8048	166
1128	S[24]	-5968	279	1188	G[256]	-7104	279	1247	G[136]	-8064	279
1129	S[23]	-5984	166	1189	G[254]	-7104	166	1248	G[134]	-8080	166
1130	S[22]	-6000	279	1190	G[254]	-7126	279	1250	G[132]	-8096	279
1131	S[21]	-6016	166	1191	G[250]	-7152	166	1251	G[130]	-8112	166
1132	S[20]	-6032	279	1192	G[248]	-7168	279	1252	G[128]	-8128	279
1133	S[19]	-6048	166	1193	G[246]	-7184	166	1253	G[126]	-8144	166
1134	S[18]	-6064	279	1194	G[244]	-7200	279	1254	G[124]	-8160	279
1135	S[17]	-6080	166	1195	G[242]	-7216	166	1255	G[122]	-8176	166
1136	S[16]	-6096	279	1196	G[240]	-7232	279	1256	G[120]	-8192	279
1137	S[15]	-6112	166	1197	G[238]	-7248	166	1257	G[118]	-8208	166
1138	S[14]	-6128	279	1198	G[236]	-7264	279	1258	G[116]	-8224	279
1139	S[13]	-6144	166	1199	G[234]	-7280	166	1259	G[114]	-8240	166
1140	S[12]	-6160	279	1200	G[232]	-7296	279	1260	G[112]	-8256	279
+0	∪[1 <u>~</u>]	0.00	0	.200	المان		2.0	00	⊃[112]	5200	

NO.	Pad Name	X	Υ	NO.	Pad Name	Χ	Υ	NO.	Pad Name	X	Υ
1261	G[110]	-8272	166	1281	G[70]	-8592	166	1301	G[30]	-8912	166
1262	G[108]	-8288	279	1282	G[68]	-8608	279	1302	G[28]	-8928	279
1263	G[106]	-8304	166	1283	G[66]	-8624	166	1303	G[26]	-8944	166
1264	G[104]	-8320	279	1284	G[64]	-8640	279	1304	G[24]	-8960	279
1265	G[102]	-8336	166	1285	G[62]	-8656	166	1305	G[22]	-8976	166
1266	G[100]	-8352	279	1286	G[60]	-8672	279	1306	G[20]	-8992	279
1267	G[98]	-8368	166	1287	G[58]	-8688	166	1307	G[18]	-9008	166
1268	G[96]	-8384	279	1288	G[56]	-8704	279	1308	G[16]	-9024	279
1269	G[94]	-8400	166	1289	G[54]	-8720	166	1309	G[14]	-9040	166
1270	G[92]	-8416	279	1290	G[52]	-8736	279	1310	G[12]	-9056	279
1271	G[90]	-8432	166	1291	G[50]	-8752	166	1311	G[10]	-9072	166
1272	G[88]	-8448	279	1292	G[48]	-8768	279	1312	G[8]	-9088	279
1273	G[86]	-8464	166	1293	G[46]	-8784	166	1313	G[6]	-9104	166
1274	G[84]	-8480	279	1294	G[44]	-8800	279	1314	G[4]	-9120	279
1275	G[82]	-8496	166	1295	G[42]	-8816	166	1315	G[2]	-9136	166
1276	G[80]	-8512	279	1296	G[40]	-8832	279	1316	VGLDMY4	-9152	279
1277	G[78]	-8528	166	1297	G[38]	-8848	166	1317	DUMMYR28	-9168	166
1278	G[76]	-8544	279	1298	G[36]	-8864	279	1318	DUMMYR29	-9184	279
1279	G[74]	-8560	166	1299	G[34]	-8880	166	1319	DUMMY30	-9200	166
1280	G[72]	-8576	279	1300	G[32]	-8896	279	1320	DUMMY31	-9216	279

Alignment mark

Alignment Mark: 1

Alignment Mark: 2

Alignment mark	Х	Υ
1	-9266	-251
2	9266	-251

Version: 0.09

6. Block Description

MPU System Interface

ILI9331 supports three system high-speed interfaces: i80-system high-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports and serial peripheral interface (SPI). The interface mode is selected by setting the IM[3:0] pins.

ILI9331 has a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data register (RDR). The IR is the register to store index information from control registers and the internal GRAM. The WDR is the register to temporarily store data to be written to control registers and the internal GRAM. The RDR is the register to temporarily store data read from the GRAM. Data from the MPU to be written to the internal GRAM are first written to the WDR and then automatically written to the internal GRAM in internal operation. Data are read via the RDR from the internal GRAM. Therefore, invalid data are read out to the data bus when the ILI9331 read the first data from the internal GRAM. Valid data are read out after the ILI9331 performs the second read operation.

Registers are written consecutively as the register execution time.

Registers selection by system interface (8-/9-/16-/18-bit bus width)		18	30
Function	RS	nWR	nRD
Write an index to IR register	0	0	1
Write to control registers or the internal GRAM by WDR register.	1	0	1
Read from the internal GRAM by RDR register.	1	1	0

Registers selection by the SPI system interface		
Function	R/W	RS
Write an index to IR register	0	0
Write to control registers or the internal GRAM by WDR register.	0	1
Read from the internal GRAM by RDR register.	1	1

Parallel RGB Interface

ILI9331 supports the RGB interface and the VSYNC interface as the external interface for displaying a moving picture. When the RGB interface is selected, display operations are synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface mode, data (DB17-0) are written in synchronization with these signals according to the polarity of enable signal (ENABLE) to prevent flicker on display while updating display data.

In VSYNC interface mode, the display operation is synchronized with the internal clock except frame synchronization, where the operation is synchronized with the VSYNC signal. Display data are written to the internal GRAM via the system interface. In this case, there are constraints in speed and method in writing data to the internal RAM. For details, see the "External Display Interface" section. The ILI9331 allows for switching between the external display interface and the system interface by instruction so that the optimum interface is selected for the kind of picture to be displayed on the screen (still and/or moving picture(s)). The RGB interface, by writing all display data to the internal RAM, allows for transferring data only when updating the frames of a moving picture, contributing to low power requirement for moving picture display.

Version: 0.09

Bit Operation

The ILI9331 supports a write data mask function for selectively writing data to the internal RAM in units of bits and a logical/compare operation to write data to the GRAM only when a condition is met as a result of comparing the data and the compare register bits. For details, see "Graphics Operation Functions".

Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of the register for setting a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As writing data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only in the rectangular area arbitrarily set by users on the GRAM.

Graphics RAM (GRAM)

GRAM is graphics RAM storing bit-pattern data of 172,800 (240 x 320x 18/8) bytes with 18 bits per pixel.

Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates a liquid crystal drive voltage according to grayscale data set in the γ -correction register to display in 262,144 colors. For details, see the " γ -Correction Register" section.

Timing Controller

The timing generator generates a timing signal for operation of internal circuits such as the internal GRAM. The timing for the display operation such as RAM read operation and the timing for the internal operation such as access from the MPU are generated in the way not to interfere each other.

Oscillator (OSC)

ILI9331 generates RC oscillation with an internal oscillation resistor. The frame rate is adjusted by the register setting.

LCD Driver Circuit

The LCD driver circuit of ILI9331 consists of a 720-output source driver (S1 \sim S720) and a 320-output gate driver (G1 \sim G320). Display pattern data are latched when the 720th bit data are input. The latched data control the source driver and generate a drive waveform. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720 source outputs from the source driver is set with the SS bit and the shift direction of gate outputs from the gate driver is set with the GS bit. The scan mode by the gate driver is set with the SM bit. These bits allow setting an appropriate scan method for an LCD module.

LCD Driver Power Supply Circuit

The LCD drive power supply circuit generates the voltage levels VREG1OUT, VGH, VGL and Vcom for driving an LCD

7. System Interface

7.1. Interface Specifications

ILI9331 has the system interface to read/write the control registers and display graphics memory (GRAM), and the RGB Input Interface for displaying a moving picture. User can select an optimum interface to display the moving or still picture with efficient data transfer. All display data are stored in the GRAM to reduce the data transfer efforts and only the updating data is necessary to be transferred. User can only update a sub-range of GRAM by using the window address function.

ILI9331 also has the RGB interface and VSYNC interface to transfer the display data without flicker the moving picture on the screen. In RGB interface mode, the display data is written into the GRAM through the control signals of ENABLE, VSYNC, HSYNC, DOTCLK and data bus DB[17:0].

In VSYNC interface mode, the internal display timing is synchronized with the frame synchronization signal (VSYNC). The VSYNC interface mode enables to display the moving picture display through the system interface. In this case, there are some constraints of speed and method to write data to the internal RAM.

ILI9331 operates in one of the following 4 modes. The display mode can be switched by the control register. When switching from one mode to another, refer to the sequences mentioned in the sections of RGB and VSYNC interfaces.

Operation Mode	RAM Access Setting (RM)	Display Operation Mode (DM[1:0])
Internal operating clock only (Displaying still pictures)	System interface (RM = 0)	Internal operating clock (DM[1:0] = 00)
RGB interface (1) (Displaying moving pictures)	RGB interface (RM = 1)	RGB interface (DM[1:0] = 01)
RGB interface (2) (Rewriting still pictures while displaying moving pictures)	System interface (RM = 0)	RGB interface (DM[1:0] = 01)
VSYNC interface (Displaying moving pictures)	System interface (RM = 0)	VSYNC interface (DM[1:0] = 01)

Note 1) Registers are set only via the system interface.

Note 2) The RGB-I/F and the VSYNC-I/F are not available simultaneously.

Page 27 of 133

Figure1 System Interface and RGB Interface connection

7.2. Input Interfaces

The following are the system interfaces available with the ILI9331. The interface is selected by setting the IM[3:0] pins. The system interface is used for setting registers and GRAM access.

11.40	11.40	10.44	11.40.41	1.6	DD D:
IM3	IM2	IM1	IM0/ID	Interface Mode	DB Pin
0	0	0	0	Setting invalid	
0	0	0	1	Setting invalid	
0	0	1	0	i80-system 16-bit interface	DB[17:10], DB[8:1]
0	0	1	1	i80-system 8-bit interface	DB[17:10]
0	1	0	ID	Serial Peripheral Interface (SPI)	SDI, SDO (DB[1:0])
0	1	1	*	Setting invalid	
1	0	0	0	MDDI	
1	0	0	1	Setting invalid	
1	0	1	0	i80-system18-bit interface	DB[17:0]
1	0	1	1	i80-system 9-bit interface	DB[17:9]
1	1	*	*	Setting invalid	

Page 28 of 133

7.2.1. i80/18-bit System Interface

The i80/18-bit system interface is selected by setting the IM[3:0] as "1010" levels.

Figure 218-bit System Interface Data Format

Page 29 of 133

7.2.2. i80/16-bit System Interface

The i80/16-bit system interface is selected by setting the IM[3:0] as "0010" levels. The 262K or 65K color can be display through the 16-bit MPU interface. When the 262K color is displayed, two transfers (1st transfer: 2 bits, 2nd transfer: 16 bits or 1st transfer: 16 bits, 2nd transfer: 2 bits) are necessary for the 16-bit CPU interface.

Figure 316-bit System Interface Data Format

Page 30 of 133

7.2.3. i80/9-bit System Interface

The i80/9-bit system interface is selected by setting the IM[3:0] as "1011" and the DB17~DB9 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (9 bits) and lower byte, and the upper byte is transferred first. The unused DB[8:0] pins must be tied to GND.

Figure 49-bit System Interface Data Format

7.2.4. i80/8-bit System Interface

The i80/8-bit system interface is selected by setting the IM[3:0] as "0011" and the DB17~DB10 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (8 bits) and lower byte, and the upper byte is transferred first. The written data is expanded into 18 bits internally (see the figure below) and then written into GRAM. The unused DB[9:0] pins must be tied to GND.

Page 31 of 133

Figure 5 8-bit System Interface Data Format

7.3. Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) is selected by setting the IM[3:0] pins as "010x" level. The chip select pin (nCS), the serial transfer clock pin (SCL), the serial data input pin (SDI) and the serial data output pin (SDO) are used in SPI mode. The ID pin sets the least significant bit of the identification code. The DB[17:0] pins, which are not used, must be tied to GND.

The SPI interface operation enables from the falling edge of nCS and ends of data transfer on the rising edge of nCS. The start byte is transferred to start the SPI interface and the read/write operation and RS information are also included in the start byte. When the start byte is matched, the subsequent data is received by ILI9331.

The seventh bit of start byte is RS bit. When RS = "0", either index write operation or status read operation is executed. When RS = "1", either register write operation or RAM read/write operation is executed. The eighth bit of the start byte is used to select either read or write operation (R/W bit). Data is written when the R/W bit is "0" and read back when the R/W bit is "1".

After receiving the start byte, ILI9331 starts to transfer or receive the data in unit of byte and the data transfer starts from the MSB bit. All the registers of the ILI9331 are 16-bit format and receive the first and the second byte datat as the upper and the lower eight bits of the 16-bit register respectively. In SPI mode, 5 bytes dummy read is necessary and the valid data starts from 6th byte of read back data.

Start Byte Format

Transferred bits	S	1	2	3	4	5	6	7	8
Start byte format	Transfer start			Device	ID code			RS	R/W
		0	1	1	1	0	ID	1/0	1/0

Note: ID bit is selected by setting the IMO/ID pin.

RS and R/W Bit Function

RS	R/W	Function
0	0	Set an index register
0	1	Read a status
1	0	Write a register or GRAM data
1	1	Read a register or GRAM data

Page 33 of 133 Version: 0.09

Figure 6 Data Format of SPI Interface

Page 34 of 133

Figure 7 Data transmission through serial peripheral interface (SPI)

Page 35 of 133

Figure8 Data transmission through serial peripheral interface (SPI), TRI="1" and DFM="10")

7.4. VSYNC Interface

ILI9331 supports the VSYNC interface in synchronization with the frame-synchronizing signal VSYNC to display the moving picture with the i80 system interface. When the VSYNC interface is selected to display a moving picture, the minimum GRAM update speed is limited and the VSYNC interface is enabled by setting DM[1:0] = "10" and RM = "0".

Figure Data transmission through VSYNC interface)

In the VSYNC mode, the display operation is synchronized with the internal clock and VSYNC input and the frame rate is determined by the pulse rate of VSYNC signal. All display data are stored in GRAM to minimize total data transfer required for moving picture display.

Figure 10 Moving picture data transmission through VSYNC interface

Page 37 of 133

Figure 11 Operation through VSYNC Interface

The VSYNC interface has the minimum speed limitation of writing data to the internal GRAM via the system interface, which are calculated from the following formula.

Internal clock frequency (fosc.) [Hz] = FrameFrequency x (DisplayLine (NL) + FrontPorch (FP) + BackPorch (BP)) x ClockCyclePerLines (RTN) x FrequencyFluctuation.

Note: When the RAM write operation does not start from the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account.

An example of minimum GRAM writing speed and internal clock frequency in VSYNC interface mode is as below.

[Example]

Display size: 240 RGB × 320 lines Lines: 320 lines (NL = 1000111) Back porch: 14 lines (BP = 1110) Front porch: 2 lines (FP = 0010)

Frame frequency: 60 Hz Frequency fluctuation: 10%

Internal oscillator clock (fosc.) [Hz] = $60 \times [320+2+14] \times 16$ clocks $\times (1.1/0.9) = 394$ KHz

When calculate the internal clock frequency, the oscillator variation is needed to be taken into consideration. In the above example, the calculated internal clock frequency with ±10% margin variation is considered and ensures to complete the display operation within one VSYNC cycle. The causes of frequency variation come from fabrication process of LSI, room temperature, external resistors and VCI voltage variation.

Minimum speed for RAM writing [Hz] > $240 \times 320 \times 394 \text{K} / \text{[(14 + 320 - 2)lines x 16clocks]} = 5.7 \text{ MHz}$

The above theoretical value is calculated based on the premise that the ILI9331 starts to write data into the internal GRAM on the falling edge of VSYNC. There must at least be a margin of 2 lines between the physical display line and the GRAM line address where data writing operation is performed. The GRAM write speed of 5.7MHz or more will guarantee the completion of GRAM write operation before the ILI9331 starts to display the GRAM data on the screen and enable to rewrite the entire screen without flicker.

Notes in using the VSYNC interface

- 1. The minimum GRAM write speed must be satisfied and the frequency variation must be taken into consideration.
- 2. The display frame rate is determined by the VSYNC signal and the period of VSYNC must be longer than the scan period of an entire display.
- 3. When switching from the internal clock operation mode (DM[1:0] = "00") to the VSYNC interface mode or inversely, the switching starts from the next VSYNC cycle, i.e. after completing the display of the frame.
- 4. The partial display, vertical scroll, and interlaced scan functions are not available in VSYNC interface mode and set the AM bit to "0" to transfer display data.

Page 39 of 133

Figure 12 Transition flow between VSYNC and internal clock operation modes

Page 40 of 133

7.5. RGB Input Interface

The RGB Interface mode is available for ILI9331 and the interface is selected by setting the RIM[1:0] bits as following table.

RIM1	RIM0	RGB Interface	DB pins
0	0	18-bit RGB Interface	DB[17:0]
0	1	16-bit RGB Interface	DB[17:13], DB[11:1]
1	0	6-bit RGB Interface	DB[17:12]
1	1	Setting prohibited	

Figure 13 RGB Interface Data Format

7.5.1. RGB Interface

The display operation via the RGB interface is synchronized with the VSYNC, HSYNC, and DOTCLK signals. The RGB interface transfers the updated data to GRAM and the update area is defined by the window address function. The back porch and front porch are used to set the RGB interface timing.

Figure14 GRAM Access Area by RGB Interface

Page 42 of 133

7.5.2. RGB Interface Timing

The timing chart of 18-/16-bit RGB interface mode is shown as follows.

Figure 15 Timing Chart of Signals in 18-/16-bit RGB Interface Mode

Page 43 of 133

ILI9331

The timing chart of 6-bit RGB interface mode is shown as follows.

Figure 16 Timing chart of signals in 6-bit RGB interface mode

Page 44 of 133

7.5.3. Moving Picture Mode

ILI9331 has the RGB interface to display moving picture and incorporates GRAM to store display data, which has following merits in displaying a moving picture.

- The window address function defined the update area of GRAM.
- Only the moving picture area of GRAM is updated.
- When display the moving picture in RGB interface mode, the DB[17:0] can be switched as system interface to update still picture area and registers, such as icons.

RAM access via a system interface in RGB-I/F mode

ILI9331 allows GRAM access via the system interface in RGB interface mode. In RGB interface mode, data are written to the internal GRAM in synchronization with DOTCLK and ENABLE signals. When write data to the internal GRAM by the system interface, set ENABLE to terminate the RGB interface and switch to the system interface to update the registers (RM = "0") and the still picture of GRAM. When restart RAM access in RGB interface mode, wait one read/write cycle and then set RM = "1" and the index register to R22h to start accessing RAM via the RGB interface. If RAM accesses via two interfaces conflicts, there is no guarantee that data are written to the internal GRAM.

The following figure illustrates the operation of the ILI9331 when displaying a moving picture via the RGB interface and rewriting the still picture RAM area via the system interface.

Figure 17 Example of update the still and moving picture

Page 45 of 133

7.5.4. 6-bit RGB Interface

The 6-bit RGB interface is selected by setting the RIM[1:0] bits to "10". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal GRAM in synchronization with the display operation via 6-bit RGB data bus (DB[17:12]) according to the data enable signal (ENABLE). Unused pins (DB[11:0]) must be fixed at GND level. Registers can be set by the system interface (i80/SPI).

Data transfer synchronization in 6-bit RGB interface mode

ILI9331 has data transfer counters to count the first, second, third data transfers in 6-bit RGB interface mode. The transfer counter is always reset to the state of first data transfer on the falling edge of VSYNC. If a mismatch arises in the number of each data transfer, the counter is reset to the state of first data transfer at the start of the frame (i.e. on the falling edge of VSYNC) to restart data transfer in the correct order from the next frame. This function is expedient for moving picture display, which requires consecutive data transfer in light of minimizing effects from failed data transfer and enabling the system to return to a normal state.

Note that internal display operation is performed in units of pixels (RGB: taking 3 inputs of DOTCLK). Accordingly, the number of DOTCLK inputs in one frame period must be a multiple of 3 to complete data transfer correctly. Otherwise it will affect the display of that frame as well as the next frame.

Page 46 of 133

7.5.5. 16-bit RGB Interface

The 16-bit RGB interface is selected by setting the RIM[1:0] bits to "01". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 16-bit RGB data bus (DB17-13, DB11-1) according to the data enable signal (ENABLE). Registers are set only via the system interface.

7.5.6. 18-bit RGB Interface

The 18-bit RGB interface is selected by setting the RIM[1:0] bits to "00". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 18-bit RGB data bus (DB[17:0]) according to the data enable signal (ENABLE). Registers are set only via the system interface.

Notes in using the RGB Input Interface

1. The following are the functions not available in RGB Input Interface mode.

Function	RGB interface	I80 system interface
Partial display	Not available	Available
Scroll function	Not available	Available
Interlaced scan	Not available	Available
Graphics operation function	Not available	Available

- 2. VSYNC, HSYNC, and DOTCLK signals must be supplied throughout a display operation period.
- 3. The periods set with the NO[1:0] bits (gate output non-overlap period), STD[1:0] bits (source output delay period) and EQ[1:0] bits (equalization period) are not based on the internal clock but based on DOTCLK in

Version: 0.09

RGB interface mode.

- 4. In 6-bit RGB interface mode, each of RGB dots is transferred in synchronization with a DOTCLK input. In other words, it takes 3 DOTCLK inputs to transfer one pixel. Be sure to complete data transfer in units of 3 DOTCLK inputs in 6-bit RGB interface mode.
- 5. In 6-bit RGB interface mode, data of one pixel, which consists of RGB dots, are transferred in units of 3 DOTCLK. Accordingly, set the cycle of each signal in 6-bit interface mode (VSYNC, HSYNC, ENABLE, DB[17:0]) to contain DOTCLK inputs of a multiple of 3 to complete data transfer in units of pixels.
- 6. When switching from the internal operation mode to the RGB Input Interface mode, or the other way around, follow the sequence below.
- 7. In RGB interface mode, the front porch period continues until the next VSYNC input is detected after drawing one frame.
- 8. In RGB interface mode, a RAM address (AD[15:0]) is set in the address counter every frame on the falling edge of VSYNC.

Figure 18 Internal clock operation/RGB interface mode switching

Figure19 GRAM access between system interface and RGB interface

Page 49 of 133

7.6. MDDI (Mobile Display Digital Interface)

MDDI (Mobile display digital interface) is a differential small amplitude serial interface for high-speed data transfer via following 4 lines: Stb+/- (MDDI_STB_P, MDDI_STB_M), Data+/- (MDDI_DATA_P, MDDI_DATA_M).

The specifications of MDDI supported by the ILI9331 are compatible to the MDDI specifications disclosed by VESA, Video Electronics Standards Association. The following are the specifications particular to the ILI9331's MDDI.

7.6.1. ILI9331 MDDI Specifications

- MDDI Type-I
- ➤ High-speed, differential, small-amplitude data transfer via Stb+/-, Data+/- lines
- > MDDI client: the ILI9331 enables direct connection to the base band (BB) chip without bridge chip
- Cost-performance optimized interface for mobile display systems
 - 1. Only internal mode (one client) and Forward Link are supported
 - 2. Hibernation mode to save power consumption
 - 3. Tearing-free moving picture display via FMARK/VSYNC interface
 - 4. Moving picture display with low power consumption, realized by the features 2 ~ 3
 - 5. Shutdown mode for saving power consumption in the standby state

Incorporates an output port for sub-display interface or peripheral control

Providing single-chip solution for MDDI mobile display systems

Figure 20 MDDI architecture

Notes:

- 1. An external end resistor of 100 ohm is necessary between Data+ and Data- lines
- 2. Make the COG wiring resistances of Data+/-, Stb+/- lines as small as possible (RCOG < 60 ohm).

7.6.2. MDDI Link Protocol (Packets Supported by the ILI9331)

The MDDI Link Protocol of the ILI9331 is in line with the MDDI specifications disclosed by VESA. See the MDDI specifications by VESA for details on the MDDI Link Protocol.

The MDDI packets supported by the ILI9331 are as follows. Do not send packets not supported by the ILI9331 in the system incorporating the ILI9331.

Sub-Frame Header Packet

Video Stream Packet

The ILI9331 writes image data to RAM via Video Stream Packet. The window and RAM addresses are set via Register Access Packet.

Note: The parameters colored in gray are not supported by the ILI9331.

CRC

Video Data Format Descriptor: sets the pixel data format. The ILI9331 supports only the following format. Set the same pixel format (bpp) as selected by DSS[1:0] in Video Data Format Descriptor.

[15:13]	[12]	[11:8]	[7:4]	[3:0]	
010	1	0x5	0x6	0x5	Packed 16bpp RGB format (R:G:B=5:6:5)
010	1	0x6	0x6	0x6	Packed 18bpp RGB format (R:G:B=6:6:6)
Others					Setting disabled

	MDDI Bytes n					MDDI Bytes (n+1)					MDDI Bytes (n+2)													
	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
Packet	0	1	2	3	4	0	1	2	3	4	5	0	1	2	3	4	0	1	2	3	4	0	1	2
16bpp		Pix	el 1 E	lue			Pixel 1 Green			Pixel 1 Red			Pixel 2 Blue				ı	Pixel 2						
Packet	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5
18bpp	Pixel 2 Blue			Pixel 2 Green				Pixel 2 Red				Pixel 2 Blue												

Pixel Data Attributes: the image data sent vial Video Stream Packet is recognized as either the data for the main-panel or for the sub-panel according to the setting in [1:0] bits in this field.

Pixel Data	Bits[1:0]	Description
Attributes		
0x0000	00	ILI9331 doesn't support the sub-panel display.
0x0001	01	Setting disabled
0x0002	10	
0x0003	11	The Video Stream Packet data is recognized as the data written in the ILI9331. The Video Stream
		Packet data is written in the ILI9331 and not outputted via sub-display interface.
Others		

Register Access Packet

Register Access Packet is used when setting instruction to the ILI9331. Do not use this packet for RAM access.

	0	1	2	3	4	5	6	7
1				Packe	t Length			
2								
3				Packe	et Type			
4				(0x0	0092)			
5				bCli	ent ID			
6				(0x0	0000)			
7				Read/V	/rite Info.			
8								
9				Registe	Address			
10								-
11								
12								
13				Parame	eter CRC			
14								
					l Data			
			(P	acket Lenç	gth - 14 byt	es)		
				Register	Dara CRC			

Note: The parameters colored in gray are not supported by the ILI9331.

Version: 0.09

Read/Write Info: Read or Write information in register access. The ILI9331 supports only the following access setting

Bits[15:14]	Bits[13:0]	Function
00	0x0001	Single Access mode, in which one instruction is set via one register access packet
00	0xn	In multi random access mode, the number of Register Data (index+instruction) is set.
Others		Setting disabled.

Register Address

The index of the register to be accessed is set in Register Address area. Also, the register access mode, i.e. single or multi random access mode, and whether the Register Address Packet is directed to the ILI9331 or the sub display are determined by the setting in Register Address area.

Bits[31]	Description
0	Single Access mode. The index of the register to be accessed (ID[11:0]) is set in bits[11:0] in Register Address. The instruction set (IB[15:0]) to be written in the register is stored in the Register Data area in Register Access Packet.
1	Multi Random Access mode. The index of the register to be accessed (ID[11:0]) is stored in the upper 2 bytes in the Register Data area in Register Access Packet. The instruction set (IB[15:0]) to be written in the register is stored in the lower 2 bytes in the Register Data area in Register Access Packet. In Multi Random Access mode, both index and instruction set are stored in the Register Data area and instruction set can be transferred consecutively without setting the index in Register Address in each time transferring instruction.

Bits[30:12]	Description
19'h00000	The Register Access Packet is directed to the ILI9331 via main-display interface.
19'h00001	The Register Access Packet is directed to the sub display via sub-display interface.
19'h00002 ~ 19'h7FFFF	Setting disabled

Bits[11:0]	Description
Single Access	Bits [11:0] are used as index [11:0].
Multi Random Access	In Multi Random Access mode, bits [11:0] are not used. Set "0" to all bits.

0x00000000		Main LCD Area (ILI9331)
0x00001000	Single Access	Reserved
0x80000000	cess	Main LCD Area (ILI9331)
0x80001000	Multi-Random Access	Reserved
UXFFFFFFF		

Register Data

The data for register access is written in Register Data. Four bytes are allocated for one instruction.

Bits[31:16]	Bits[15:0]	Description
A II O	Instruction	In Single access mode, the instruction set written in bits[15:0] is set in the register, which is specified in the
All 0	IB[15:0]	bits[11:0] in Register Address.
4h0 +	Instruction	In Multi Random Access mode, both index and instruction set are stored in Register Data to allow
IndexID[11:0]	:0] Instruction IB[15:0]	consecutive instruction setting without setting the index in Register Address in each time transferring
		instruction.

Example of Register Access Packet in Single Access mode (e.g. write to the ILI9331)

	0	1	2	3	4	5	6	7						
1	Packet L	.ength				(0x	12)							
2						(0x	00)							
3	Packet T	уре				(0x	92)							
4						(0x	00)							
5	bClient I	D				(0x	00)	<u>-</u>						
6						(0x	00)							
7	Read/Wi	rite Info.				(0x	01)							
8						(0x	00)							
9	Register	Address				(index I	D[7:0])							
10	(index iD[7:0]) (0x0, upper index iD[11:8])													
11						(0x00)								
12						(0x								
13				Parame	eter CRC									
14														
15	Register	Data List			(le	ower instru	ction IB[7:	0])						
16					(U)	pper instruc	ction IB[15	5:8])						
17						(0x	00)	-						
18						(0x	00)							
19				Parame	eter CRC									
20														

Note: The parameters colored in gray are not supported by the ILI9331.

Example of Register Access Packet in Multi Random Access mode (e.g. write 4 instructions to the ILI9331)

0	11	2	3	4	5	6	7
Packet Ler	ngth				(0x1	1E)	
					(0x0)	00)	
Packet Typ	oe				(0x9	92)	
					(0x0)	00)	
bClient ID					(0x0)	00)	
					(0x0)	00)	
Read/Write	e Info.				(0x0	04)	
					(0x0	00)	
Register A	ddress				(0x0)	00)	
,					(0x0)	00)	
					(0x0)	00)	
					3x0)	30)	
			Param	eter CRC			
Register D	ata List 1 st in	dex + instru	ction	(Lower instruc	tion IB1[7:0	D
				(Upper instruc	tion IB1[15:8	3)
					(Lower Inde	x ID1[7:0])	
					(Upper inde	xID1[15:8)	
Register D	ata List 2 nd ir	ndex + instru	uction	(Lower instruc	tion IB2[7:0]	D
				(Upper instruc	tion IB2[15:8	3)
					(Lower Inde	x ID2 [7:0])	
					(Upper inde	xID2 [15:8)	
Register D	ata List 3 rd	index + inst	ruction	(Lower instruc	tion IB3[7:0	D
,				(Upper instruc	tion IB3[15:8	3)
,					(Lower Inde	x ID3 [7:0])	
					(Upper inde	xID3[15:8)	
Register D	ata List 4 th in	idex + instru	ıction	(Lower instruc	tion IB4[7:0]	D
,				(Upper instruc	tion IB4[15:8	3)
					(Lower Inde	ex ID4[7:0])	
					(Upper inde	xID4[15:8)	
			Dorom	eter CRC			

Note: The parameters colored in gray are not supported by the ILI9331.

Register Access Packet Restrictions

The ILI9331's internal RAM is accessible via Video Stream Packet. RAM access data is not included in Register Access Packet.

Link Shutdown Packet

This packet is used to bring Link to the Hibernation state.

	0	1	2	3	4	5	6	7							
1	Packet Length														
2	(0X0014)														
3	Packet Type														
4				(0x0	0045)										
5	Parameter CRC														
6															
7															
				All 2	Zeros										
				(Type-I:	16 bytes)										

22

Note: The parameters colored in gray are not supported by the ILI9331.

Filler Packet

	0	1	2	3	4	5	6	7
1				Packet	Length			
2								
3				Packe	t Type			
4				(0x0)	000)			
				Filler bytes	(all zeros)			
			(F	Packet Len	gth: 4 bytes	s)		
				CF	RC			

Version: 0.09

7.6.3. MDDI Instruction Setting

Instruction Setting in Single Access Mode

In Single Access mode, one instruction set is transferred in one Register Access Packet. When transferring multiple numbers of instruction sets, they must be transferred in the same number of Register Access Packets.

Register Access Packet Parameter	Register Setting
Read/Write Info[15:0]	0x0001
Register Address[31:0]	20'h0000000+ID[11:0]
Register Data[31:0]	16'h0000+IB[15:0]

Page 58 of 133

Instruction Setting via Multi Random Access Mode

In Multi Random Register Access operation, both index and instruction set are stored in one field of Register Data List in the Register Access Packet to allow random instruction setting. In this mode, a multiple number of instruction sets can be transferred in one Register Access Packet.

Register Access Packet Parameter	Register Setting
Read/Write Info [15:0]	0 x n (n: Number of Register List)
Register Address [31:0]	32'h8000_0000
Register Data List [31:0]	ID[15:0]+IB[15:0]

MDDI Packet

sRAP(x,y) = Multi-random Register Access Packet (ID[15:0], IB[15:0])

Page 59 of 133

RAM Access Setting Example

The following are examples of RAM access via Video Stream Packet and register access via Register Access Packet in Single and Multi Random Access modes.

Example: 240RGB x 320 panel, full screen rewrite, 18bpp data

MDDI Packet: Single Access Mode

sRAP (x, y) = Register Access Packet (ID[15:0], IB[15:0]) in Single Access Mode VSP (p, n) = Video Stream Packet (pixel data)

Page 60 of 133

Version: 0.09

MDDI Packet: Multi Random Access Mode

mRAP (x, y) = Register Access Packet (ID[15:0], IB[15:0]) in Multi Random Access mode. VSP (p, n) = Video Stream Packet (pixel data)

Video Stream Access Packet Restriction											
AM	0 (Horizontal write)										
Data write transfer to RAM	Transfer data for each line at a time within the window address area.										
RAM start address											
RAM window address	Set them via register access packet										

Register Packet Restriction										
DAM	The ILI9331's internal RAM is accessible via Video Stream Packet. RAM access data is not									
RAM access	included in Register Access Packet.									

Hibernation Setting

The ILI9331's Client MDDI supports Hibernation setting. There are two ways to cancel the Hibernation setting, which can be selected according to the condition of use.

Hibernation Cancellation											
Host-initiated wake up	In power-saving mode such as standby										
FMARK-initiated wake up	Save power consumption in transferring moving picture data Host-initiated wake up triggered by the output from FMARK.										

The Hibernation setting and cancellation sequence must be compatible with the VESA-MDDI specifications.

Page 62 of 133

7.7. Interface Timing

The following are diagrams of interfacing timing with LCD panel control signals in internal operation and RGB interface modes.

Figure 21 Relationship between RGB I/F signals and LCD Driving Signals for Panel

Page 63 of 133

7.8. CABC (Content Adaptive Brightness Control)

ILI9331 provide a dynamic backlight control function as CABC (Content adaptive brightness control) to reduce the power consumption of the luminance source. ILI9331 will refer the gray scale content of display image to output a PWM waveform to LED driver for backlight brightness control. Content adaptation means that the content of gray sale can be increased while simultaneously lowering brightness of the backlight to achieve the same perceived brightness. The adjusted gray level scale and thus the power consumption reduction depend on the content of the image.

LIL9331 can calculate the backlight brightness level and send a PWM pulse to LED driver via LEDPWM pin for backlight brightness control purpose. The figure in the following is the basic timing diagram which is applied ILI9331 to control LED driver.

The period T_{period} of PWM pulse can be changed by the PWM_DIV[7:0] bits of the command "PWM_DIV (F2h)". The LED-on time T_{on} and the LED-off time T_{off} are decided by the backlight brightness level which is calculated with CABC in ILI9331. If CABC is off, then LEDPWM will forced to "H" level.

The PWM period value will be calculated via the equation as below.

$$f_{PWM_OUT} = \frac{5.8MHz}{(PWM_DIV[7:0]+1) \times 255}$$

Page 64 of 133

8. Register Descriptions

8.1. Registers Access

ILI9331 adopts 18-bit bus interface architecture for high-performance microprocessor. All the functional blocks of ILI9331 starts to work after receiving the correct instruction from the external microprocessor by the 18-, 16-, 9-, 8-bit interface. The index register (IR) stores the register address to which the instructions and display data will be written. The register selection signal (RS), the read/write signals (nRD/nWR) and data bus D17-0 are used to read/write the instructions and data of ILI9331. The registers of the ILI9331 are categorized into the following groups.

- 1. Specify the index of register (IR)
- 2. Read a status
- 3. Display control
- 4. Power management Control
- 5. Graphics data processing
- 6. Set internal GRAM address (AC)
- 7. Transfer data to/from the internal GRAM (R22)
- 8. Internal grayscale γ-correction (R30 ~ R39)

Normally, the display data (GRAM) is most often updated, and in order since the ILI9331 can update internal GRAM address automatically as it writes data to the internal GRAM and minimize data transfer by using the window address function, there are fewer loads on the program in the microprocessor. As the following figure shows, the way of assigning data to the 16 register bits (D[15:0]) varies for each interface. Send registers in accordance with the following data transfer format.

Figure 22 Register Setting with Serial Peripheral Interface (SPI)

Page 65 of 133

Figure 23 Register setting with i80 System Interface

Page 66 of 133

Figure 24 Register Read/Write Timing of i80 System Interface

8.2. Instruction Descriptions

<u> </u>	o.z. instruction descriptions																		
No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
IR	Index Register	W	0	_	-	-	-	-	-	-	-	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
00h	Driver Code Read	RO	1	1	0	0	1	0	0	1	1	0	0	1	1	0	0	0	1
01h	Driver Output Control 1	W	1	0	0	0	0	0	SM	0	SS	0	0	0	0	0	0	0	0
02h	LCD Driving Control	W	1	0	0	0	0	0	0	B/C	0	0	0	0	0	0	0	0	0
03h	Entry Mode	W	1	TR	DFM	0	BGR	0	0	0	0	ORG	0	I/D1	I/D0	AM	0	0	0
07h	Display Control 1	W	1	0	0	PTDE1	PTDE0	0	0	0	BASEE	0	0	GON	DTE	CL	0	D1	D0
08h	Display Control 2	W	1	0	0	0	0	FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0
09h	Display Control 3	W	1	0	0	0	0	0	PTS2	PTS1	PTS0	0	0	PTG1	PTG0	ISC3	ISC2	ISC1	ISC0
0Ah	Display Control 4	W	1	0	0	0	0	0	0	0	0	0	0	0	0	FMARKOE	FMI2	FMI1	FMI0
0Ch	RGB Display Interface Control 1	W	1	0	ENC2	ENC1	ENC0	0	0	0	RM	0	0	DM1	DM0	0	0	RIM1	RIM0
0Dh	Frame Maker Position	W	1	0	0	0	0	0	0	0	FMP8	FMP7	FMP6	FMP5	FMP4	FMP3	FMP2	FMP1	FMP0
0Fh	RGB Display Interface Control 2	W	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSPL	0	EPL	DPL
10h	Power Control 1	W	1	0	0	0	SAP	0	BT2	BT1	BT0	APE	AP2	AP1	AP0	0	0	SLP	STB
11h	Power Control 2	W	1	0	0	0	0	0	DC12	DC11	DC10	0	DC02	DC01	DC00	0	VC2	VC1	VC0
12h	Power Control 3	W	1	0	0	0	0	0	0	0	0	VCIRE	0	0	0	VRH3	VRH2	VRH1	VRH0
13h	Power Control 4	W	1	0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
20h	Horizontal GRAM Address Set	W	1	0	0	0	0	0	0	0	0	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
21h	Vertical GRAM Address Set	W	1	0	0	0	0	0	0	0	AD16	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
22h	Write Data to GRAM	W	1	RAM	write data (WD17-0) /	read data	(RD17-0) bi	ts are tran	sferred via	different o	data bus li	nes accor	ding to the	selected ir	nterfaces.			
29h	Power Control 7	W	1	0	0	0	0	0	0	0	0	0	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
2Bh	Frame Rate and Color Control	W	1	0	0	0	0	0	0	0	0	0	0	0	0	FRS[3]	FRS[2]	FRS[1]	FRS[0]
30h	Gamma Control 1	W	1	0	0	0	0	0	KP1[2]	KP1[1]	KP1[0]	0	0	0	0	0	KP0[2]	KP0[1]	KP0[0]
31h	Gamma Control 2	W	1	0	0	0	0	0	KP3[2]	KP3[1]	KP3[0]	0	0	0	0	0	KP2[2]	KP2[1]	KP2[0]
32h	Gamma Control 3	W	1	0	0	0	0	0	KP5[2]	KP5[1]	KP5[0]	0	0	0	0	0	KP4[2]	KP4[1]	KP4[0]
35h	Gamma Control 4	W	1	0	0	0	0	0	RP1[2]	RP1[1]	RP1[0]	0	0	0	0	0	RP0[2]	RP0[1]	RP0[0]
36h	Gamma Control 5	W	1	0	0	0	VRP1[4]	VRP1[3]	VRP1[2]	VRP1[1]	VRP1[0]	0	0	0	0	VRP0[3]	VRP0[2]	VRP0[1]	VRP0[0]
37h	Gamma Control 6	W	1	0	0	0	0	0	KN1[2]	KN1[1]	KN1[0]	0	0	0	0	0	KN0[2]	KN0[1]	KN0[0]
38h	Gamma Control 7	W	1	0	0	0	0	0	KN3[2]	KN3[1]	KN3[0]	0	0	0	0	0	KN2[2]	KN2[1]	KN2[0]
39h	Gamma Control 8	W	1	0	0	0	0	0	KN5[2]	KN5[1]	KN5[0]	0	0	0	0	0	KN4[2]	KN4[1]	KN4[0]
3Ch	Gamma Control 9	W	1	0	0	0	0	0	RN1[2]	RN1[1]	RN1[0]	0	0	0	0	0	RN0[2]	RN0[1]	RN0[0]
3Dh	Gamma Control 10	W	1	0	0	0	VRN1[4]	VRN1[3]	VRN1[2]	VRN1[1]	VRN1[0]	0	0	0	0	VRN0[3]	VRN0[2]	VRN0[1]	VRN0[0]
50h	Horizontal Address Start Position	W	1	0	0	0	0	0	0	0	0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0

NI.	Davistana Nassa	D 444	БО.	D45	D44	D40	D40	D44	D40	DO	D0	D.7	DO	DE	D4	DO	DO	D4	D0		
No.	Registers Name	R/W W	1	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		
51h	Horizontal Address End Position		-	0	0	0	0	0	0	0	0	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0		
52h	Vertical Address Start Position	W	1	0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0		
53h	Vertical Address End Position	W	1	0	0	0	0	0	0	0	VEA8	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0		
60h	Driver Output Control 2	W	1	GS	0	NL5	NL4	NL3	NL2	NL1	NL0	0	0	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0		
61h	Base Image Display Control	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	NDL	VLE	REV		
6Ah	Vertical Scroll Control	W	1	0	0	0	0	0	0	0	VL8	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0		
80h	Partial Image 1 Display Position	W	1	0	0	0	0	0	0	0	PTDP08	PTDP07	PTDP06	PTDP05	PTDP04	PTDP03	PTDP02	PTDP01	PTDP00		
81h	Partial Image 1 Area (Start Line)	W	1	0	0	0	0	0	0	0	PTSA08	PTSA07	PTSA06	PTSA05	PTSA04	PTSA03	PTSA02	PTSA01	PTSA00		
82h	Partial Image 1 Area (End Line)	W	1	0	0	0	0	0	0	0	PTEA08	PTEA07	PTEA06	PTEA05	PTEA04	PTEA03	PTEA02	PTEA01	PTEA00		
83h	Partial Image 2 Display Position	W	1	0	0	0	0	0	0	0	PTDP18	PTDP17	PTDP16	PTDP15	PTDP14	PTDP13	PTDP12	PTDP11	PTDP10		
84h	Partial Image 2 Area (Start Line)	W	1	0	0	0	0	0	0	0	PTSA18	PTSA17	PTSA16	PTSA15	PTSA14	PTSA13	PTSA12	PTSA11	PTSA10		
85h	Partial Image 2 Area (End Line)	W	1	0	0	0	0	0	0	0	PTEA18	PTEA17	PTEA16	PTEA15	PTEA14	PTEA13	PTEA12	PTEA11	PTEA10		
90h	Panel Interface Control 1	W	1	0	0	0	0	0	0	DIVI1	DIVI00	0	0	0	RTNI4	RTNI3	RTNI2	RTNI1	RTNI0		
92h	Panel Interface Control 2	W	1	0	0	0	0	0	NOWI2	NOWI1	NOWI0	0	0	0	0	0	0	0	0		
95h	Panel Interface Control 4	W	1	0	0	0	0	0	0	DIVE1	DIVE0	0	0	0	0	0	0	0	0		
97h	Panel Interface Control 5	W	1	0	0	0	0	NOWE3	NOWE2	NOWE1	NOWE0	0	0	0	0	0	0	0	0		
A1h	OTP VCM Programming Control	W	1	0	0	0	0	OTP_ PGM_EN	0	0	0	0	0	VCM_ OTP5	VCM_ OTP4	VCM_ OTP3	VCM_ OTP2	VCM_ OTP1	VCM_ OTP0		
A2h	OTP VCM Status and Enable	W	1	PGM_ CNT1	PGM_ CNT0	VCM_ D5	VCM_ D4	VCM_ D3	VCM_ D2	VCM_ D1	VCM_ D0	0	0	0	0	0	0	0	VCM_ EN		
A5h	OTP Programming ID Key	W	1	KEY 15	KEY 14	KEY 13	KEY 12	KEY 11	KEY 10	KEY 9	KEY 8	KEY 7	KEY 6	KEY 5	KEY 4	KEY 3	KEY 2	KEY 1	KEY 0		
B1h	Write Display Brightness	W	1	Х	Х	Х	Х	Х	Х	Х	Х	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		
B2h	Read Display Brightness	R	1	Х	Х	Х	Х	Х	Х	Х	Х	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		
B3h	Write CTRL Display value	W	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	BCTRL	Х	DD	BL	Х	Х		
B4h	Read CTRL Display value	R	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	BCTRL	Х	DD	BL	Х	Х		
B5h	Write Content Adaptive Brightness Control value	W	1	х	Х	x	Х	Х	Х	×	х	Х	×	Х	х	Х	х	C[1:0]		
B6h	Read Content Adaptive Brightness Control value	R	1	х	Х	Х	Х	Х	Х	Х	х	Х	Х	X	х	Х	х	C[1:0]		
BEh	Write CABC Minimum Brightness	W	1	х	Х	х	Х	Х	Х	Х	х				СМ	B[7:0]	1				
BFh	Read CABC Minimum Brightness	R	1	Х	Х	Х	Х	Х	Х	Х	х				СМ	CMB[7:0]					
C8h	CABC Control 1	W	1	Х	Х	Х	Х	Х	Х	Х	Х	PWM_DIV[7:0]									
C9h	CABC Control 2	W	1	Х	Х	Х	Х	Х	Х	Х	Х		THRES_	ES_MOV[3:0] THRES_STILL[3:0]							
CAh	CABC Control 3	W	1	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0		THRES_	_UI[3:0]			

The information contained herein is the exclusive property of ILI Technology Corp. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of ILI Technology Corp.

Page 69 of 133

Ve

No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2 D1	D0		
CBh	CABC Control 4	W	1	Х	Х	X	Х	Х	X	X	Х		DTH_N	/IOV[3:0]		DTH_STILL[3:0]				
CCh	CABC Control 5	W	1	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0		DTH_UI[3:0]			
CDh	CABC Control 6	W	1	Х	Х	Х	Х	Х	Х	Х	Х		DIM_O	PT2[3:0]		0	0 DIM_OPT1[2:0]			
CEh	CABC Control 7	W	1	Х	Х	Х	Х	Х	Х	Х	SCD_VLINE[8:0]									

8.2.1. Index (IR)

R	/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
,	W	0	-	-	-	-	-	-	-	-	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

The index register specifies the address of register (R00h ~ RFFh) or RAM which will be accessed.

8.2.2. ID code (R00h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
RO	1	1	0	0	1	0	0	1	1	0	0	1	1	0	0	0	1

The device code "9331"h is read out when read this register.

8.2.3. Driver Output Control (R01h)

R	/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
٧	>	1	0	0	0	0	0	SM	0	SS	0	0	0	0	0	0	0	0
	Default		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SS: Select the shift direction of outputs from the source driver.

When SS = 0, the shift direction of outputs is from S1 to S720

When SS = 1, the shift direction of outputs is from S720 to S1.

In addition to the shift direction, the settings for both SS and BGR bits are required to change the assignment of R, G, B dots to the source driver pins.

To assign R, G, B dots to the source driver pins from S1 to S720, set SS = 0.

To assign R, G, B dots to the source driver pins from S720 to S1, set SS = 1.

When changing SS or BGR bits, RAM data must be rewritten.

SM: Sets the gate driver pin arrangement in combination with the GS bit (R60h) to select the optimal scan mode for the module.

Page 71 of 133 Version: 0.09

SM	GS	Scan Direction	Gate Output Sequence
0	0	G319 G320 G317 G318	G1, G2, G3, G4,,G316 G317, G318, G319, G320
0	1	G319 G320 G317 G318 TFT Panel	G320, G319, G318,, G6, G5, G4, G3, G2, G1
1	0	Odd-number G1 TFT Panel G319 Even-number G2 G320 G320 ILI9331	G1, G3, G5, G7,,G311 G313, G315, G317, G319 G2, G4, G6, G8,,G312 G314, G316, G318, G320
1	1	Odd-number G1 TFT Panel G2 G319 G2 G320 G320 G320 ILI9331	G320, G318, G316,, G10, G8, G6, G4, G2 G319, G317, G315,, G9, G78, G5, G3, G1

8.2.4. LCD Driving Wave Control (R02h)

R/W	RS
W	1
Def	ault

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	B/C	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

.B/C 0 : Frame/Field inversion

1 : Line inversion

8.2.5. Entry Mode (R03h)

R/W	RS
W	1
Def	ault

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
TRI	DFM	0	BGR	0	0	0	0	ORG	0	I/D1	I/D0	AM	0	0	0
0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0

AM Control the GRAM update direction.

When AM = "0", the address is updated in horizontal writing direction.

When AM = "1", the address is updated in vertical writing direction.

When a window area is set by registers R50h ~R53h, only the addressed GRAM area is updated based on I/D[1:0] and AM bits setting.

I/D[1:0] Control the address counter (AC) to automatically increase or decrease by 1 when update one pixel display data. Refer to the following figure for the details.

	I/D[1:0] = 00 Horizontal: decrement Vertical: decrement	I/D[1:0] = 01 Horizontal: increment Vertical: decrement	I/D[1:0] = 10 Horizontal: decrement Vertical: increment	I/D[1:0] = 11 Horizontal: increment Vertical: increment
AM = 0 Horizontal	E	B	B	B
AM = 1 Vertical				B

Figure 25 GRAM Access Direction Setting

ORG Moves the origin address according to the ID setting when a window address area is made. This function is enabled when writing data with the window address area using high-speed RAM write.

ORG = "0": The origin address is not moved. In this case, specify the address to start write operation according to the GRAM address map within the window address area.

ORG = "1": The original address "00000h" moves according to the I/D[1:0] setting.

Notes: 1. When ORG=1, only the origin address address"00000h" can be set in the RAM address set registers R20h, and R21h.

2. In RAM read operation, make sure to set ORG=0.

BGR Swap the R and B order of written data.

BGR="0": Follow the RGB order to write the pixel data.

BGR="1": Swap the RGB data to BGR in writing into GRAM.

TRI When TRI = "1", data are transferred to the internal RAM in 8-bit x 3 transfers mode via the 8-bit interface. It is also possible to send data via the 16-bit interface or SPI in the transfer mode that realizes display in 262k colors in combination with DFM bits. When not using these interface modes, be sure to set TRI = "0".

DFM Set the mode of transferring data to the internal RAM when TRI = "1". See the following figures for details.

Figure 26 16-bit MPU System Interface Data Format

Page 74 of 133 Version: 0.09

Figure 27 8-bit MPU System Interface Data Format

8.2.6. Display Control 1 (R07h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	PTDE1	PTDE0	0	0	0	BASEE	0	0	GON	DTE	CL	0	D1	D0
Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

D[1:0] Set D[1:0]="11" to turn on the display panel, and D[1:0]="00" to turn off the display panel.

A graphics display is turned on the panel when writing D1 = "1", and is turned off when writing D1 = "0".

When writing D1 = "0", the graphics display data is retained in the internal GRAM and the ILI9331 displays the data when writing D1 = "1". When D1 = "0", i.e. while no display is shown on the panel, all source outputs becomes the GND level to reduce charging/discharging current, which is generated within the LCD while driving liquid crystal with AC voltage.

When the display is turned off by setting D[1:0] = "01", the ILI9331 continues internal display operation. When the display is turned off by setting D[1:0] = "00", the ILI9331 internal display operation is halted completely. In combination with the GON, DTE setting, the D[1:0] setting controls display ON/OFF.

D1	D0	BASEE	Source, VCOM Output	ILI9331 internal operation
0	0	0	GND	Halt
0	1	1	GND	Operate
1	0	0	Non-lit display	Operate
1	1	0	Non-lit display	Operate
1	1	1	Base image display	Operate

Note: 1. data write operation from the microcontroller is performed irrespective of the setting of D[1:0] bits.

- 2. The D[1:0] setting is valid on both 1st and 2nd displays.
- 3. The non-lit display level from the source output pins is determined by instruction (PTS).

Version: 0.09

CL When CL = "1", the 8-color display mode is selected.

CL	Colors
0	262,144
1	8

GON and DTE Set the output level of gate driver G1 ~ G320 as follows

GON	DTE	G1 ~G320 Gate Output
0	0	VGH
0	1	VGH
1	0	VGL
1	1	Normal Display

BASEE

Base image display enable bit. When BASEE = "0", no base image is displayed. The ILI9331 drives liquid crystal at non-lit display level or displays only partial images. When BASEE = "1", the base image is displayed. The D[1:0] setting has higher priority over the BASEE setting.

PTDE[1:0]

Partial image 2 and Partial image 1 enable bits

PTDE1/0 = 0: turns off partial image. Only base image is displayed.

PTDE1/0 = 1: turns on partial image. Set the base image display enable bit to 0 (BASEE = 0).

8.2.7. Display Control 2 (R08h)

R/	/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
V	<	1	0	0	0	0	FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0
Default		0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	

FP[3:0]/BP[3:0]

The FP[3:0] and BP[3:0] bits specify the line number of front and back porch periods respectively. When setting the FP[3:0] and BP[3:0] value, the following conditions shall be met:

BP + FP ≤ 16 lines

FP ≥ 2 lines

BP ≥ 2 lines

Set the BP[3:0] and FP[3:0] bits as below for each operation modes

Operation Mode	BP	FP	BP+FP
I80 System Interface Operation Mode	BP ≥ 2 lines	FP ≥ 2 lines	FP +BP ≤ 16 lines
RGB interface Operation	BP ≥ 2 lines	FP ≥ 2 lines	FP +BP ≤ 16 lines
VSYNC interface Operation	BP ≥ 2 lines	FP ≥ 2 lines	FP +BP = 16 lines

8.2.8. Display Control 3 (R09h)

I	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ı	W	1	0	0	0	0	0	PTS2	PTS1	PTS0	0	0	PTG1	PTG0	ISC3	ISC2	ISC1	ISC0
	Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ISC[3:0]: Specify the scan cycle interval of gate driver in non-display area when PTG[1:0]="10" to select interval scan. Then scan cycle is set as odd number from 0~29 frame periods. The polarity is inverted every scan cycle.

ISC3	ISC2	ISC1	ISC0	Scan Cycle	f _{FLM} =60 Hz				
0	0	0	0	0 frame	-				
0	0	0	1	0 frame	-				
0	0	1	0	3 frame	50ms				
0	0	1	1	5 frame	84ms				
0	1	0	0	7 frame	117ms				
0	1	0	1	9 frame	150ms				
0	1	1	0	11 frame	184ms				
0	1	1	1	13 frame	217ms				
1	0	0	0	15 frame	251ms				
1	0	0	1	17 frame	284ms				
1	0	1	0	19 frame	317ms				
1	0	1	1	21 frame	351ms				
1	1	0	0	23 frame	384ms				
1	1	0	1	25 frame	418ms				
1	1	1	0	27 frame	451ms				
1	1	1	1	29 frame	484ms				

PTG[1:0] Set the scan mode in non-display area.

PTG1	PTG0	Gate outputs in non-display area	Source outputs in non-display area	Vcom output
0	0	Normal scan	Set with the PTS[2:0] bits	VcomH/VcomL
0	1	Setting Prohibited	-	-
1	0	Interval scan	Set with the PTS[2:0] bits	VcomH/VcomL
1	1	Setting Prohibited	-	-

PTS[2:0]

Set the source output level in non-display area drive period (front/back porch period and blank area between partial displays).

When PTS[2] = 1, the operation of amplifiers which generates the grayscales other than V0 and V63 are halted.

PTS[2:0]	Source ou	utput level	Grayscale amplifier				
F 13[2.0]	Positive polarity	Negative polarity	in operation				
000	V63	V0	V63 to V0				
001	Setting Prohibited	Setting Prohibited	-				
010	GND	GND	V63 to V0				
011	Hi-Z	Hi-Z	V63 to V0				
100	V63	V0	V63 and V0				
101	Setting Prohibited	Setting Prohibited	-				
110	GND	GND	V63 and V0				
111	Hi-Z	Hi-Z	V63 and V0				

Notes: 1. The power efficiency can be improved by halting grayscale amplifiers only in non-display drive period.

8.2.9. Display Control 4 (R0Ah)

R/W	V RS		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		0	0	0	0	0	0	0	0	0	0	0	0	FMARKOE	FMI2	FMI1	FMI0
Default			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FMI[2:0] Set the output interval of FMARK signal according to the display data rewrite cycle and data transfer rate.

FMARKOE When FMARKOE=1, ILI9331 starts to output FMARK signal in the output interval set by FMI[2:0] bits.

FMI[2:0]	Output Interval
000	1 frame
001	2 frame
011	4 frame
101	6 frame
Others	Setting disabled

8.2.10. RGB Display Interface Control 1 (R0Ch)

									•									
ı	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ı	W	1	0	ENC2	ENC1	ENC0	0	0	0	RM	0	0	DM1	DM0	0	0	RIM1	RIM0
ı	Default		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

RIM[1:0] Select the RGB interface data width.

RIM1	RIM0	RGB Interface Mode
0	0	18-bit RGB interface (1 transfer/pixel), DB[17:0]
0	1	16-bit RGB interface (1 transfer/pixel), DB[17:13] and DB[11:1]
1	0	6-bit RGB interface (3 transfers/pixel), DB[17:12]
1	1	Setting disabled

Note1: Registers are set only by the system interface.

Note2: Be sure that one pixel (3 dots) data transfer finished when interface switch.

^{2.} The gate output level in non-lit display area drive period is determined by PTG[1:0].

DM[1:0] Select the display operation mode.

DM1	DM0	Display Interface
0	0	Internal system clock
0	1	RGB interface
1	0	VSYNC interface
1	1	Setting disabled

The DM[1:0] setting allows switching between internal clock operation mode and external display interface operation mode. However, switching between the RGB interface operation mode and the VSYNC interface operation mode is prohibited.

RM Select the interface to access the GRAM.

Set RM to "1" when writing display data by the RGB interface.

RM	Interface for RAM Access
0	System interface/VSYNC interface
1	RGB interface

Display State	Operation Mode	RAM Access (RM)	Display Operation Mode (DM[1:0]				
Still pictures	Internal clock operation	System interface (RM = 0)	Internal clock operation (DM[1:0] = 00)				
Moving pictures	RGB interface (1)	RGB interface (RM = 1)	RGB interface (DM[1:0] = 01)				
Rewrite still picture Displaying moving	e area while RGB interface pictures.	System interface (RM = 0)	RGB interface (DM[1:0] = 01)				
Moving pictures	VSYNC interface	System interface (RM = 0)	VSYNC interface (DM[1:0] = 10)				

Note 1: Registers are set only via the system interface or SPI interface.

Note 2: Refer to the flowcharts of "RGB Input Interface" section for the mode switch.

ENC[2:0] Set the GRAM write cycle through the RGB interface

ENC[2:0]	GRAM Write Cycle (Frame periods)
000	1 Frame
001	2 Frames
010	3 Frames
011	4 Frames
100	5 Frames
101	6 Frames
110	7 Frames
111	8 Frames

8.2.11. Frame Marker Position (R0Dh)

							•											
I	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
I	W	1	0	0	0	0	0	0	0	FMP8	FMP7	FMP6	FMP5	FMP4	FMP3	FMP2	FMP1	FMP0
I	Default		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

EMP[8:0] Sets the output position of frame cycle (frame marker).

When FMP[8:0]=0, a high-active pulse FMARK is output at the start of back porch period for one display line period (1H).

Make sure the 9'h000 $\,\leq\,\,$ FMP $\,\leq\,\,$ BP+NL+FP

FMP[8:0]	FMARK Output Position
9'h000	O th line
9'h001	1 st line
9'h002	2 nd line
9'h003	3 rd line
•	
-	
9'h175	373 rd line
9'h176	374 th line
9'h177	375 th line

8.2.12. RGB Display Interface Control 2 (R0Fh)

		_							•									
R/W	RS		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		0	0	0	0	0	0	0	0	0	0	0	VSPL	HSPL	0	EPL	DPL
Defa	ault		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DPL: Sets the signal polarity of the DOTCLK pin.

DPL = "0" The data is input on the rising edge of DOTCLK

DPL = "1" The data is input on the falling edge of DOTCLK

EPL: Sets the signal polarity of the ENABLE pin.

EPL = "0" The data DB17-0 is written when ENABLE = "0". Disable data write operation when ENABLE = "1".

EPL = "1" The data DB17-0 is written when ENABLE = "1". Disable data write operation when ENABLE = "0".

HSPL: Sets the signal polarity of the HSYNC pin.

HSPL = "0" Low active

HSPL = "1" High active

VSPL: Sets the signal polarity of the VSYNC pin.

VSPL = "0" Low active

VSPL = "1" High active

8.2.13. Power Control 1 (R10h)

R/V	V	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W		1	0	0	0	SAP	0	BT2	BT1	BT0	APE	AP2	AP1	AP0	0	0	SLP	STB
D	efaul	lt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- **SLP:** When SLP = 1, ILI9331 enters the sleep mode and the display operation stops except the RC oscillator to reduce the power consumption. In the sleep mode, the GRAM data and instructions cannot be updated except the following instruction.
 - a. Exit sleep mode (SLP = "0")
- **STB:** When STB = 1, ILI9331 enters the standby mode and the display operation stops except the GRAM power supply to reduce the power consumption. In the STB mode, the GRAM data and instructions cannot be updated except the following instruction.
 - a. Exit standby mode (STB = "0")

Version: 0.09

AP[2:0]: Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current enhances the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off into account between the display quality and the current consumption. In no-display period, set AP[2:0] = "000" to halt the operational amplifier circuits and the step-up circuits to reduce current consumption.

AP[2:0]	Gamma driver amplifiers	Source driver amplifiers
000	Halt	Halt
001	1.00	1.00
010	1.00	0.75
011	1.00	0.50
100	0.75	1.00
101	0.75	0.75
110	0.75	0.50
111	0.50	0.50

SAP: Source Driver output control

SAP=0, Source driver is disabled.

SAP=1, Source driver is enabled.

When starting the charge-pump of LCD in the Power ON stage, make sure that SAP=0, and set the SAP=1, after starting up the LCD power supply circuit.

APE: Power supply enable bit.

Set APE = "1" to start the generation of power supply according to the power supply startup sequence.

BT[3:0]: Sets the factor used in the step-up circuits.

Select the optimal step-up factor for the operating voltage. To reduce power consumption, set a smaller factor.

BT[2:0]	DDVDH	VCL	VGH	VGL
3'h0	VCI1 x 2	- VCI1	- VCI1 x 5	
3'h1	VCI1 x 2	\/OI4	VCI1 x 6	- VCI1 x 4
3'h2	VCIT X 2	- VCI1		- VCI1 x 3
3'h3				- VCI1 x 5
3'h4	VCI1 x 2	- VCI1	VCI1 x 5	- VCI1 x 4
3'h5				- VCI1 x 3
3'h6	1/014	\/CI4	V(C)4 × 4	- VCI1 x 4
3'h7	VCI1 x 2	- VCI1	VCI1 x 4	- VCI1 x 3

Notes: 1. Connect capacitors to the capacitor connection pins when generating DDVDH, VGH, VGL and VCL levels.

2. Make sure DDVDH = 6.0V (max.),

8.2.14. Power Control 2 (R11h)

R/W	RS				
W	1				
Defa	ault				

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	DC12	DC11	DC10	0	DC02	DC01	DC00	0	VC2	VC1	VC0
0	0	0	0	0	1	1	1	0	1	1	1	0	0	0	0

VC[2:0] Sets the ratio factor of VCI to generate the reference voltages VCI1.

VC2	VC1	VC0	VCI1 voltage
0	0	0	0.95 x VCI
0	0	1	0.90 x VCI
0	1	0	0.85 x VCI
0	1	1	0.80 x VCI
1	0	0	0.75 x VCI
1	0	1	0.70 x VCI
1	1	0	Disabled
1	1	1	1.0 x VCI

DC0[2:0]: Selects the operating frequency of the step-up circuit 1. The higher step-up operating frequency enhances the drivability of the step-up circuit and the quality of display but increases the current consumption. Adjust the frequency taking the trade-off between the display quality and the current consumption into account.

DC1[2:0]: Selects the operating frequency of the step-up circuit 2. The higher step-up operating frequency enhances the drivability of the step-up circuit and the quality of display but increases the current consumption. Adjust the frequency taking the trade-off between the display quality and the current consumption into account.

DC02	DC01	DC00	Step-up circuit1 step-up frequency (f _{DCDC1})						
0	0	0	Fosc						
0	0	1	Fosc / 2						
0	1	0	Fosc / 4						
0	1	1	Fosc / 8						
1	0	0	Fosc / 16						
1	0	1	Fosc / 32						
1	1 1 0		Fosc / 64						
1	1	1	Halt step-up circuit 1						

DC12	DC11	DC10	Step-up circuit2 step-up frequency (f _{DCDC2})
0	0	0	Fosc / 4
0	0	1	Fosc / 8
0	1	0	Fosc / 16
0	1	1	Fosc / 32
1	0	0	Fosc / 64
1	0	1	Fosc / 128
1	1	0	Fosc / 256
1	1	1	Halt step-up circuit 2

Note: Be sure $f_{DCDC1} \ge f_{DCDC2}$ when setting DC0[2:0] and DC1[2:0].

8.2.15. Power Control 3 (R12h)

R/W	RS									
W	1									
Default										

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	VCIRE	0	0	0	VRH3	VRH2	VRH1	VRH0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VRH[3:0] Set the amplifying rate (1.6 ~ 1.9) of VCI applied to output the VREG1OUT level, which is a reference level for the VCOM level and the grayscale voltage level.

VCIRE: Select the external reference voltage VCI or internal reference voltage VCIR.

VCIRE=0	External reference voltage VCI (default)
VCIRE =1	Internal reference voltage 2.5V

		VCIRE	E =0					
VRH3	VRH2	VRH1	VRH0	VREG10UT				
0	0	0	0	Halt				
0	0	0	1	VCI x 2.00				
0	0	1	0	VCI x 2.05				
0	0	1	1	VCI x 2.10				
0	1	0	0	VCI x 2.20				
0	1	0	1	VCI x 2.30				
0	1	1	0	VCI x 2.40				
0	1	1	1	VCI x 2.40				
1	0	0	0	VCI x 1.60				
1	0	0	1	VCI x 1.65				
1	0	1	0	VCI x 1.70				
1	0	1	1	VCI x 1.75				
1	1	0	0	VCI x 1.80				
1	1	0	1	VCI x 1.85				
1	1	1	0	VCI x 1.90				
1	1	1	1	VCI x 1.95				

		V	CIRE =1	
VRH3	VRH2	VRH1	VRH0	VREG10UT
0	0	0	0	Halt
0	0	0	1	2.5V x 2.00 = 5.000V
0	0	1	0	2.5V x 2.05 = 5.125V
0	0	1	1	2.5V x 2.10 = 5.250V
0	1	0	0	2.5V x 2.20 = 5.500V
0	1	0	1	2.5V x 2.30 = 5.750V
0	1	1	0	2.5V x 2.40 = 6.000V
0	1	1	1	2.5V x 2.40 = 6.000V
1	0	0	0	2.5V x 1.60 = 4.000V
1	0	0	1	2.5V x 1.65 = 4.125V
1	0	1	0	2.5V x 1.70 = 4.250V
1	0	1	1	2.5V x 1.75 = 4.375V
1	1	0	0	2.5V x 1.80 = 4.500V
1	1	0	1	2.5V x 1.85 = 4.625V
1	1	1	0	2.5V x 1.90 = 4.750V
1	1	1	1	2.5V x 1.95 = 4.875V

When VCI<2.5V, Internal reference voltage will be same as VCI.

Make sure that VC and VRH setting restriction: $VREG1OUT \leq (DDVDH - 0.2)V$.

8.2.16. Power Control 4 (R13h)

R/W	RS
W	1
Defa	ult

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VDV[4:0] Select the factor of VREG1OUT to set the amplitude of Vcom alternating voltage from 0.70 to 1.24 x VREG1OUT.

VDV4	VDV3	VDV2	VDV1	VDV0	VCOM amplitude
0	0	0	0	0	VREG1OUT x 0.70
0	0	0	0	1	VREG1OUT x 0.72
0	0 0 0		1	0	VREG1OUT x 0.74
0	0 0 0		1	1	VREG1OUT x 0.76
0	0	1	0	0	VREG1OUT x 0.78
0	0	1	0	1	VREG1OUT x 0.80
0	0	1	1	0	VREG1OUT x 0.82
0	0	1	1	1	VREG1OUT x 0.84
0	1	0	0	0	VREG1OUT x 0.86
0	1	0	0	1	VREG1OUT x 0.88
0	1	0	1	0	VREG1OUT x 0.90
0	1	0	1	1	VREG1OUT x 0.92
0	1	1	0	0	VREG1OUT x 0.94
0	0 1 1		0	1	VREG1OUT x 0.96
0	1	1	1	0	VREG1OUT x 0.98
0	0 1 1		1	1	VREG1OUT x 1.00

VDV4	VDV3	VDV2	VDV1	VDV0	VCOM amplitude
1	0	0	0	0	VREG1OUT x 0.94
1	0	0	0	1	VREG1OUT x 0.96
1	0	0	1	0	VREG1OUT x 0.98
1	0	0	1	1	VREG1OUT x 1.00
1	0	1	0	0	VREG1OUT x 1.02
1	0	1	0	1	VREG1OUT x 1.04
1	0	1	1	0	VREG1OUT x 1.06
1	0	1	1	1	VREG1OUT x 1.08
1	1	0	0	0	VREG1OUT x 1.10
1	1	0	0	1	VREG1OUT x 1.12
1	1	0	1	0	VREG1OUT x 1.14
1	1	0	1	1	VREG1OUT x 1.16
1	1	1	0	0	VREG1OUT x 1.18
1	1	1	0	1	VREG1OUT x 1.20
1	1	1	1	0	VREG1OUT x 1.22
1	1	1	1	1	VREG1OUT x 1.24

Version: 0.09

Set VDV[4:0] to let Vcom amplitude less than 6V.

Version: 0.09

8.2.17. GRAM Horizontal/Vertical Address Set (R20h, R21h)

R/W	RS								
W	1								
W	1								
Default									

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
0	0	0	0	0	0	0	AD16	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AD[16:0] Set the initial value of address counter (AC).

The address counter (AC) is automatically updated in accordance to the setting of the AM, I/D bits as data is written to the internal GRAM. The address counter is not automatically updated when read data from the internal GRAM.

AD[16:0]	GRAM Data Map
17'h00000 ~ 17'h000EF	1 st line GRAM Data
17'h00100 ~ 17'h001EF	2 nd line GRAM Data
17'h00200 ~ 17'h002EF	3 rd line GRAM Data
17'h00300 ~ 17'h003EF	4 th line GRAM Data
17'h13D00 ~ 17' h13DEF	318 th line GRAM Data
17'h13E00 ~ 17' h13EEF	319 th line GRAM Data
17'h13F00 ~ 17'h13FEF	320 th line GRAM Data

Note1: When the RGB interface is selected (RM = "1"), the address AD[16:0] is set to the address counter every frame on the falling edge of VSYNC.

8.2.18. Write Data to GRAM (R22h)

R/W	RS	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		RAM write data (WD[17:0], the DB[17:0] pin assignment differs for each interface.																

This register is the GRAM access port. When update the display data through this register, the address counter (AC) is increased/decreased automatically.

8.2.19. Read Data from GRAM (R22h)

							•													
	R/W	RS	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ſ	R	1		RAM Read Data (RD[17:0], the DB[17:0] pin assignment differs for each interface.																

RD[17:0] Read 18-bit data from GRAM through the read data register (RDR).

Figure 28 Data Read from GRAM through Read Data Register in 18-/16-/9-/8-bit Interface Mode

Page 85 of 133

Version: 0.09

Figure 29 GRAM Data Read Back Flow Chart

Page 86 of 133

8.2.20. Power Control 7 (R29h)

ı	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1	0	0	0	0	0	0	0	0	0	0	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
	Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VCM[5:0] Set the internal VcomH voltage.

Tom[oro] eet the internal veeling veitage.											
VCM5	VCM4	VCM3	VCM2	VCM1	VCM0	VCOMH					
0	0	0	0	0	0	VREG1OUT x 0.685					
0	0	0	0	0	1	VREG1OUT x 0.690					
0	0	0	0	1	0	VREG1OUT x 0.695					
0	0	0	0	1	1	VREG1OUT x 0.700					
0	0	0	1	0	0	VREG1OUT x 0.705					
0	0	0	1	0	1	VREG1OUT x 0.710					
0	0	0	1	1	0	VREG1OUT x 0.715					
0	0	0	1	1	1	VREG1OUT x 0.720					
0	0	1	0	0	0	VREG1OUT x 0.725					
0	0	1	0	0	1	VREG1OUT x 0.730					
0	0	1	0	1	0	VREG1OUT x 0.735					
0	0	1	0	1	1	VREG1OUT x 0.740					
0	0	1	1	0	0	VREG1OUT x 0.745					
0	0	1	1	0	1	VREG1OUT x 0.750					
0	0	1	1	1	0	VREG1OUT x 0.755					
0	0	1	1	1	1	VREG1OUT x 0.760					
0	1	0	0	0	0	VREG1OUT x 0.765					
0	1	0	0	0	1	VREG10UT x 0.770					
0	1	0	0	1	0	VREG10UT x 0.775					
0	1	0	0	1	1	VREG1OUT x 0.780					
0	1	0	1	0	0	VREG1OUT x 0.785					
0	1	0	1	0	1	VREG1OUT x 0.790					
0	1	0	1	1	0	VREG1OUT x 0.795					
0	1	0	1	1	1	VREG1OUT x 0.800					
0	1	1	0	0	0	VREG1OUT x 0.805					
0	1	1	0	0	1	VREG1OUT x 0.810					
0	1	1	0	1	0	VREG1OUT x 0.815					
0	1	1	0	1	1	VREG1OUT x 0.820					
0	1	1	1	0	0	VREG1OUT x 0.825					
0	1	1	1	0	1	VREG1OUT x 0.830					
0	1	1	1	1	0	VREG1OUT x 0.835					
0	1	1	1	1	1	VREG1OUT x 0.840					

VCM5	VCM4	VCM3	VCM2	VCM1	VCM0	VCOMH
1	0	0	0	0	0	VREG10UT x 0.845
1	0	0	0	0	1	VREG1OUT x 0.850
1	0	0	0	1	0	VREG1OUT x 0.855
1	0	0	0	1	1	VREG1OUT x 0.860
1	0	0	1	0	0	VREG1OUT x 0.865
1	0	0	1	0	1	VREG1OUT x 0.870
1	0	0	1	1	0	VREG1OUT x 0.875
1	0	0	1	1	1	VREG1OUT x 0.880
1	0	1	0	0	0	VREG1OUT x 0.885
1	0	1	0	0	1	VREG1OUT x 0.890
1	0	1	0	1	0	VREG1OUT x 0.895
1	0	1	0	1	1	VREG1OUT x 0.900
1	0	1	1	0	0	VREG1OUT x 0.905
1	0	1	1	0	1	VREG1OUT x 0.910
1	0	1	1	1	0	VREG1OUT x 0.915
1	0	1	1	1	1	VREG1OUT x 0.920
1	1	0	0	0	0	VREG1OUT x 0.925
1	1	0	0	0	1	VREG1OUT x 0.930
1	1	0	0	1	0	VREG1OUT x 0.935
1	1	0	0	1	1	VREG1OUT x 0.940
1	1	0	1	0	0	VREG1OUT x 0.945
1	1	0	1	0	1	VREG1OUT x 0.950
1	1	0	1	1	0	VREG1OUT x 0.955
1	1	0	1	1	1	VREG1OUT x 0.960
1	1	1	0	0	0	VREG1OUT x 0.965
1	1	1	0	0	1	VREG1OUT x 0.970
1	1	1	0	1	0	VREG1OUT x 0.975
1	1	1	0	1	1	VREG1OUT x 0.980
1	1	1	1	0	0	VREG1OUT x 0.985
1	1	1	1	0	1	VREG1OUT x 0.990
1	1	1	1	1	0	VREG1OUT x 0.995
1	1	1	1	1	1	VREG1OUT x 1.000

8.2.21. Frame Rate and Color Control (R2Bh)

R/\	W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	/	1	0	0	0	0	0	0	0	0	0	0	0	0	FRS3	FRS2	FRS1	FRS0
[Defa	ıult	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1

FRS[4:0] Set the frame rate when the internal resistor is used for oscillator circuit.

FRS[3:0]	FRS[3:0]	Frame Rate
0000	4'h0	30
0001	4'h1	31
0010	4'h2	33
0011	4'h3	35
0100	4'h4	38
0101	4'h5	40
0110	4'h6	43
0111	4'h7	47
1000	4'h8	51
1001	4'h9	56
1010	4'hA	62
1011	4'hB	70
1100	4'hC	80
1101	4'hD	93
1110	4'hE	Setting Prohibited
1111	4'hF	Setting Prohibited

8.2.22. **Gamma Control (R30h ~ R3Dh)**

	R/W	RS
R30h	W	1
R31h	W	1
R32h	W	1
R35h	W	1
R36h	W	1
R37h	W	1
R38h	W	1
R39h	W	1
R3Ch	W	1
R3Dh	W	1

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	KP1[2]	KP1[1]	KP1[0]	0	0	0	0	0	KP0[2]	KP0[1]	KP0[0]
0	0	0	0	0	KP3[2]	KP3[1]	KP3[0]	0	0	0	0	0	KP2[2]	KP2[1]	KP2[0]
0	0	0	0	0	KP5[2]	KP5[1]	KP5[0]	0	0	0	0	0	KP4[2]	KP4[1]	KP4[0]
0	0	0	0	0	RP1[2]	RP1[1]	RP1[0]	0	0	0	0	0	RP0[2]	RP0[1]	RP0[0]
0	0	0	VRP1[4]	VRP1[3]	VRP1[2]	VRP1[1]	VRP1[0]	0	0	0	0	VRP0[3]	VRP0[2]	VRP0[1]	VRP0[0]
0	0	0	0	0	KN1[2]	KN1[1]	KN1[0]	0	0	0	0	0	KN0[2]	KN0[1]	KN0[0]
0	0	0	0	0	KN3[2]	KN3[1]	KN3[0]	0	0	0	0	0	KN2[2]	KN2[1]	KN2[0]
0	0	0	0	0	KN5[2]	KN5[1]	KN5[0]	0	0	0	0	0	KN4[2]	KN4[1]	KN4[0]
0	0	0	0	0	RN1[2]	RN1[1]	RN1[0]	0	0	0	0	0	RN0[2]	RN0[1]	RN0[0]
0	0	0	VRN1[4]	VRN1[3]	VRN1[2]	VRN1[1]	VRN1[0]	0	0	0	0	VRN0[3]	VRN0[2]	VRN0[1]	VRN0[0]

KP5-0[2:0] : γ fine adjustment register for positive polarity

RP1-0[2:0]: γ gradient adjustment register for positive polarity

VRP1-0[4:0]: γ amplitude adjustment register for positive polarity

KN5-0[2:0]: γ fine adjustment register for negative polarity

RN1-0[2:0]: γ gradient adjustment register for negative polarity

VRN1-0[4:0]: γ amplitude adjustment register for negative polarity

For details " γ -Correction Function" section.

8.2.23. Horizontal and Vertical RAM Address Position (R50h, R51h, R52h, R53h)

	R/W	RS
R50h	W	1
R51h	W	1
R52h	W	1
R53h	W	1
R50h		
R51h	Defa	sul#
R52h	Dela	auit
R53h		

									•		•	•	•		
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
0	0	0	0	0	0	0	0	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
0	0	0	0	0	0	0	VEA8	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	1	1	1	1	1	1

HSA[7:0]/HEA[7:0] HSA[7:0] and HEA[7:0] represent the respective addresses at the start and end of the window address area in horizontal direction. By setting HSA and HEA bits, it is possible to limit the area on the GRAM horizontally for writing data. The HSA and HEA bits must be set before starting RAM write operation. In setting these bits, be sure "00"h ≤ HSA[7:0] < HEA[7:0] ≤ "EF"h. and "04"h ≤ HEA-HAS.</p>

VSA[8:0]/VEA[8:0] VSA[8:0] and VEA[8:0] represent the respective addresses at the start and end of the window address area in vertical direction. By setting VSA and VEA bits, it is possible to limit the area on the GRAM vertically for writing data. The VSA and VEA bits must be set before starting RAM write operation. In setting, be sure "000"h ≤ VSA[8:0] < VEA[8:0] ≤ "13F"h.

Page 88 of 133

Version: 0.09

Figure 30 GRAM Access Range Configuration

"00"h ≤HSA[7:0] ≤HEA[7:0] ≤"EF"h "00"h ≤VSA[8:0] ≤VEA[8:0] ≤"13F"h

Note1. The window address range must be within the GRAM address space.

Note2. Data are written to GRAM in four-words when operating in high speed mode, the dummy write operations should be inserted depending on the window address area. For details, see the High-Speed RAM Write Function section.

8.2.24. Gate Scan Control (R60h, R61h, R6Ah)

	R/W	RS
R60h	W	1
R61h	W	1
R6Ah	W	1
R60h		
R61h	Defa	ault
R6Ah		

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
GS	0	NL5	NL4	NL3	NL2	NL1	NL0	0	0	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
0	0	0	0	0	0	0	0	0	0	0	0	0	NDL	VLE	REV
0	0	0	0	0	0	0	VL8	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0
0	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SCN[5:0] The ILI9331 allows to specify the gate line from which the gate driver starts to scan by setting the SCN[5:0] bits.

		Scanning S	tart Position	
SCN[5:0]	SM		SM	1=1
	GS=0	GS=1	GS=0	GS=1
00h	G1	G320	G1	G320
01h	G9	G312	G17	G304
02h	G17	G304	G33	G288
03h	G25	G296	G49	G272
04h	G33	G288	G65	G256
05h	G41	G280	G81	G240
06h	G49	G272	G97	G224
07h	G57	G264	G113	G208
08h	G65	G256	G129	G192
09h	G73	G248	G145	G176
0Ah	G81	G240	G161	G160
0Bh	G89	G232	G177	G144
0Ch	G97	G224	G193	G128
0Dh	G105	G216	G209	G112
0Eh	G113	G208	G2	G96
0Fh	G121	G200	G18	G80
10h	G129	G192	G34	G64
11h	G137	G184	G50	G48
12h	G145	G176	G66	G32
13h	G153	G168	G82	G16
14h	G161	G160	G98	G319
15h	G169	G152	G114	G303
16h	G177	G144	G130	G287
17h	G185	G136	G146	G271
18h	G193	G128	G162	G255
19h	G201	G120	G178	G239
1Ah	G209	G112	G194	G223
1Bh	G217	G104	G114	G207
1Ch	G225	G96	G130	G191
1Dh	G233	G88	G146	G175
1Eh	G241	G80	G162	G159
1Fh	G249	G72	G178	G143
20h	G257	G64	G194	G127
21h	G265	G56	G210	G111
22h	G273	G48	G226	G95
23h	G281	G40	G242	G79
24h	G289	G32	G258	G63
25h	G297	G24	G274	G47
26h	G305	G16	G290	G31
27h	G313	G8	G306	G15
28h ~ 3Fh	Setting disabled	Setting disabled	Setting disabled	Setting disabled

Note: When SM=1, it is a interlacing scanning. Please reference page 72!

NL[5:0]: Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel.

NL[5:0]	LCD Drive Line
6'h00	8 lines
6'h01	16 lines
6'h02	24lines
6'h1D	240 lines
6'h1E	248 lines
6'h1F	256 lines
6'h20	264 lines
6'h21	272 lines
6'h22	280 lines
6'h23	288 lines
6'h24	296 lines
6'h25	304 lines
6'h26	312 line
6'h27	320 line
Others	Setting inhibited

NDL: Sets the source driver output level in the non-display area.

NDL	Non-Display Area								
NDL	Positive Polarity	Negative Polarity							
0	V63	V0							
1	V0	V63							

GS: Sets the direction of scan by the gate driver in the range determined by SCN[4:0] and NL[4:0]. The scan direction determined by GS = 0 can be reversed by setting GS = 1.

When GS = 0, the scan direction is from G1 to G320.

When GS = 1, the scan direction is from G320 to G1

REV: Enables the grayscale inversion of the image by setting REV=1.

REV	GRAM Data	Source Output in Display Area						
NL V	GRAW Data	Positive polarity	negative polarity					
	18'h00000	V63	V0					
		-						
0	•	-	-					
	-	•	•					
	18'h3FFFF	V0	V63					
	18'h00000	V0	V63					
		-						
1	·	•	·					
	-	•						
	18'h3FFFF	V63	V0					

VLE: Vertical scroll display enable bit. When VLE = 1, the ILI9331 starts displaying the base image from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling, which is the

number of lines to shift the start line of the display from the first line of the physical display. Note that the partial image display position is not affected by the base image scrolling.

The vertical scrolling is not available in external display interface operation. In this case, make sure to set VLE = "0".

VLE	Base Image Display
0	Fixed
1	Enable Scrolling

VL[8:0]: Sets the scrolling amount of base image. The base image is scrolled in vertical direction and displayed from the line determined by VL[8:0]. Make sure that VL[8:0] ≤ 320 .

8.2.25. Partial Image 1 Display Position (R80h)

R/W	RS							
W	1							
Default								

D1	5 D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	PTD								
						-	P0[8]	P0[7]	P0[6]	P0[5]	P0[4]	P0[3]	P0[2]	P0[1]	P0[0]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PTDP0[8:0]: Sets the display start position of partial image 1. The display areas of the partial images 1 and 2 must not overlap each another.

8.2.26. Partial Image 1 RAM Start/End Address (R81h, R82h)

R/W	RS							
W	1							
W	1							
Default								

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
٥	0	0	0	0	0	0	PTS								
U	U	O	U	U	0	0	A0[8]	A0[7]	A0[6]	A0[5]	A0[4]	A0[3]	A0[2]	A0[1]	A0[0]
0	0	0	0	0	0	0	PTE								
U	U	O	U	U	0	0	A0[8]	A0[7]	A0[6]	A0[5]	A0[4]	A0[3]	A0[2]	A0[1]	A0[0]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PTSA0[8:0] PTEA0[8:0]: Sets the start line address and the end line address of the RAM area storing the data of partial image 1. Make sure PTSA0[8:0] ≤ PTEA0[8:0].

8.2.27. Partial Image 2 Display Position (R83h)

R/W	RS							
W	1							
Default								

D1	5 D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	PTD P1[8]	PTD P1[7]	PTD P1[6]	PTD P1[5]	PTD P1[4]	PTD P1[3]	PTD P1[2]	PTD P1[1]	PTD P1[0]
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PTDP1[8:0]: Sets the display start position of partial image 2 The display areas of the partial images 1 and 2 must not overlap each another.

8.2.28. Partial Image 2 RAM Start/End Address (R84h, R85h)

I	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
I	W	1	0	0	0	0	0	0	0	PTS								
L	VV	1	O	U	U	U	U	U	U	A1[8]	A1[7]	A1[6]	A1[5]	A1[4]	A1[3]	A1[2]	A1[1]	A1[0]
I	W	1	0	0	0	0	0	0	_	PTE								
ı	VV	1	U	U	U	U	U	0	0	A1[8]	A1[7]	A1[6]	A1[5]	A1[4]	A1[3]	A1[2]	A1[1]	A1[0]
	Defa	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	Dela	auit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PTSA1[8:0] PTEA1[8:0]: Sets the start line address and the end line address of the RAM area storing the data of partial image 2 Make sure PTSA1[8:0] ≤ PTEA1[8:0].

8.2.29. Panel Interface Control 1 (R90h)

R/W	RS							
W	1							
Default								

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	DIVI1	DIVI0	0	0	0	RTNI4	RTNI3	RTNI2	RTNI1	RTNI0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

RTNI[4:0]: Sets 1H (line) clock number of internal clock operating mode. In this mode, ILI9331 display operation is synchronized with internal clock signal.

RTNI[4:0]	Clocks/Line
00000~01111	Setting Disabled
10000	16 clocks
10001	17 clocks
10010	18 clocks
10011	19 clocks
10100	20 clocks
10101	21 clocks
10110	22 clocks
10111	23 clocks

RTNI[4:0]	Clocks/Line
11000	24 clocks
11001	25 clocks
11010	26 clocks
11011	27 clocks
11100	28 clocks
11101	29 clocks
11110	30 clocks
11111	31 clocks

DIVI[1:0]: Sets the division ratio of internal clock frequency.

DIVI1	DIVI0	Division Ratio	Internal Operation Clock Frequency					
0	0	1	fosc / 1					
0	1	2	fosc / 2					
1	0	4	fosc / 4					
1	1	8	fosc / 8					

8.2.30. Panel Interface Control 2 (R92h)

R/W	RS					
W	1					
Default						

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	NOWI[2]	NOWI[1]	NOWI[0]	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0

NOWI[2:0]: Sets the gate output non-overlap period when ILI9331 display operation is synchronized with internal clock signal.

NOWI[2:0]	Gate Non-overlap Period
000	0 clocks
001	1 clocks
010	2 clocks
011	3 clocks
100	4 clocks
101	5 clocks
110	6 clocks
111	7 clocks

Note: The gate output non-overlap period is defined by the number of frequency-divided internal clocks, the frequency of which is determined by instruction (DIVI), from the reference point.

8.2.31. Panel Interface Control 4 (R95h)

R/W	RS
W	1
Defa	ault

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	DIVE1	DIVE0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

DIVE[1:0]: Sets the division ratio of DOTCLK when ILI9331 display operation is synchronized with RGB interface signals.

D1

0

Version: 0.09

D0

0

DIVE[1:0]	Division Ratio	18/16-bit RGB Interface	DOTCLK=5MHz	6-bit x 3 Transfers RGB Interface	DOTCLK=5MHz
00	Setting Prohibited	Setting Prohibited	-	Setting Prohibited	-
01	1/4	4 DOTCLKS	0.8 µs	12 DOTCLKS	0.8 μs
10	1/8	8 DOTCLKS	1.6 <i>μ</i> s	24 DOTCLKS	1.6 <i>µ</i> s
11	1/16	16 DOTCLKS	3.2 µs	48 DOTCLKS	3.2 µs

8.2.32. Panel Interface Control 5 (R97h)

							<u> </u>								
R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D
W	1	0	0	0	0	NOWE3	NOWE2	NOWE1	NOWE0	0	0	0	0	0	(
Defa	ault	0	0	0	0	1	1	0	0	0	0	0	0	0	

NOWE[3:0]: Sets the gate output non-overlap period when the ILI9331 display operation is synchronized with RGB interface signals.

NOWE[3:0]	Gate Non-overlap Period					
0000	0 clocks					
0001	1 clocks					
0010	2 clocks					
0011	3 clocks					
0100	4 clocks					
0101	5 clocks					
0110	6 clocks					
0111	7 clocks					

NOWE[3:0]	Gate Non-overlap Period
1000	8 clocks
1001	9 clocks
1010	10 clocks
1011	11 clocks
1100	12 clocks
1101	13 clocks
1110	14 clocks
1111	15 clocks

Note: 1 clock = (number of data transfer/pixel) x DIVE (division ratio) [DOTCLK]

8.2.33. OTP VCM Programming Control (RA1h)

		 <u> </u>			- 9	······		٠٠٠,		•••,							
R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	0	0	0	0	OTP_ PGM_EN	0	0	0	0	0	VCM_ OTP5	VCM_ OTP4	VCM_ OTP3	VCM_ OTP2	VCM_ OTP1	VCM_ OTP0
De	fault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OTP_PGM_EN: OTP programming enable. When program OTP, must set this bit. OTP data can be programmed 3 times.

VCM_OTP[5:0]: OTP programming data for VCOMH voltage, the voltage refer to VCM[5:0] value.

8.2.34. OTP VCM Status and Enable (RA2h)

Ī	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1	PGM_ CNT1	PGM_ CNT0	VCM_ D5	VCM_ D4	VCM_ D3	VCM_ D2	VCM_ D1	VCM_ D0	0	0	0	0	0	0	0	VCM_ EN
	Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PGM_CNT[1:0]: OTP programmed record. These bits are read only.

OTP_PGM_CNT[1:0]	Description
00	OTP clean
01	OTP programmed 1 time
10	OTP programmed 2 times
11	OTP programmed 3 times

VCM_D[5:0]: OTP VCM data read value. These bits are read only.

VCM_EN: OTP VCM data enable.

'1': Set this bit to enable OTP VCM data to replace R29h VCM value.

'0': Default value, use R29h VCM value.

Version: 0.09

8.2.35. OTP Programming ID Key (RA5h)

R/W	RS
W	1
Defa	ault

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
KEY															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

KEY[15:0]: OTP Programming ID key protection. Before writing OTP programming data RA1h, it must write RA5h with 0xAA55 value first to make OTP programming successfully. If RA5h is not written with 0xAA55, OTP programming will be fail. See OTP Programming flow.

8.2.36. Write Display Brightness Value (RB1h)

					•	•			•	,							
R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0

Description

This command is used to adjust the brightness value of the display.

DBV[7:0]: 8 bit, for display brightness of manual brightness setting and CABC in ILI9331. There is a PWM output signal, LEDPWM pin, to control the LED driver IC in order to control display brightness.

8.2.37. Read Display Brightness Value (RB2h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0

Description

This command is used to return the brightness value of the display.

DBV[7:0] is reset when display is in sleep-in mode.

DBV[7:0] is '0' when bit BCTRL of "Write CTRL Display (B3h)" command is '0'.

DBV[7:0] is manual set brightness specified with "Write CTRL Display (B3h)" command when BCTRL bit is '1'.

When bit BCTRL of "Write CTRL Display (B3h)" command is '1' and C1/C0 bit of "Write Content Adaptive Brightness Control (B5h)" command are '0', DBV[7:0] output is the brightness value specified with "Write

Display Brightness (B1h)" command.

Restriction

ILI9331 is sending 2nd parameter value on the data lines if the MCU wants to read more than one parameter (= more than 2 RDX cycle) on parallel MCU interface.

Only 2nd parameter is sent on DSI (The 1st parameter is not sent).

8.2.38. Write CTRL Display Value (RB3h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	BCTRL	Χ	DD	BL	Χ	Χ

Description

This command is used to control display brightness.

BCTRL: Brightness Control Block On/Off, This bit is always used to switch brightness for display.

BCTRL	Description
0	Brightness Control Block OFF (DBV[7:0]=00h)
1	Brightness Control Block ON (DBV[7:0] is active)

DD: Display Dimming Control. This function is only for manual brightness setting.

DD	Description
0	Display Dimming OFF
1	Display Dimming ON

BL: Backlight Control On/Off

BL	Description
0	Backlight Control OFF
1	Backlight Control ON

Dimming function is adapted to the brightness registers for display when bit BCTRL is changed at DD=1, e.g. BCTRL: $0 \rightarrow 1$ or $1 \rightarrow 0$.

When BL bit change from "On" to "Off", backlight is turned off without gradual dimming, even if dimming-on (DD=1) are selected

X: don't care

8.2.39. Read CTRL Display Value (RB4h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	X	Χ	BCTRL	Χ	DD	BL	Χ	Χ

Description

This command is used to control display brightness.

BCTRL: Brightness Control Block On/Off, This bit is always used to switch brightness for display.

BCTRL	Description
0	Brightness Control Block OFF (DBV[7:0]=00h)
1	Brightness Control Block ON (DBV[7:0] is active)

DD: Display Dimming Control. This function is only for manual brightness setting.

DD	Description
0	Display Dimming OFF
1	Display Dimming ON

BL: Backlight Control On/Off

BL	Description
0	Backlight Control OFF
1	Backlight Control ON

X = Don't care

8.2.40. Write Content Adaptive Brightness Control Value (RB5h)

		-																
R/W	RS		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		X	X	X	X	X	Х	Х	X	Х	X	X	Х	X	Х	C[1	1:0]

Description

This command is used to set parameters for image content based adaptive brightness control functionality.

There is possible to use 4 different modes for content adaptive image functionality, which are defined on a table below.

C[1	1:0]	Description
0	0	CABC OFF
0	1	User Interface Image
1	0	Still Picture
1	1	Moving Image

X = Don't care

8.2.41. Read Content Adaptive Brightness Control Value (RB6h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R	1	Χ	Χ	X	X	Χ	Χ	X	X	Χ	Χ	Χ	X	Χ	X	C[1	1:0]

Description

This command is used to set parameters for image content based adaptive brightness control functionality.

There is possible to use 4 different modes for content adaptive image functionality, which are defined on a table below.

C[´	1:0]	Description
0	0	CABC OFF
0	1	User Interface Image
1	0	Still Picture
1	1	Moving Image

X = Don't care

8.2.42. Write CABC Minimum Brightness (RBEh)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ				CME	3[7:0]			

Description

This command is used to set the minimum brightness value of the display for CABC function.

CMB[7:0]: CABC minimum brightness control, this parameter is used to avoid too much brightness reduction.

When CABC is active, CABC can not reduce the display brightness to less than CABC minimum brightness setting. Image processing function is worked as normal, even if the brightness can not be changed.

This function does not affect to the other function, manual brightness setting. Manual brightness can be set the display brightness to less than CABC minimum brightness. Smooth transition and dimming function can be worked as normal.

When display brightness is turned off (BCTRL=0 of "Write CTRL Display (B3h)"), CABC minimum brightness setting is ignored.

In principle relationship is that 00h value means the lowest brightness for CABC and FFh value means the highest brightness for CABC.

Page 97 of 133

8.2.43. Read CABC Minimum Brightness (RBFh)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R	1	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ				CMB	3[7:0]			

Description

This command is used to set the minimum brightness value of the display for CABC function.

CMB[7:0]: CABC minimum brightness control, this parameter is used to avoid too much brightness reduction.

When CABC is active, CABC can not reduce the display brightness to less than CABC minimum brightness setting. Image processing function is worked as normal, even if the brightness can not be changed.

This function does not affect to the other function, manual brightness setting. Manual brightness can be set the display brightness to less than CABC minimum brightness. Smooth transition and dimming function can be worked as normal.

When display brightness is turned off (BCTRL=0 of "Write CTRL Display (B3h)"), CABC minimum brightness setting is ignored.

In principle relationship is that 00h value means the lowest brightness for CABC and FFh value means the highest brightness for CABC.

Restriction

ILI9331 is sending 2nd parameter value on the data lines if the MCU wants to read more than one parameter (= more than 2 RDX cycle) on parallel MCU interface.

Only 2nd parameter is sent on DSI (The 1st parameter is not sent).

8.2.44. CABC Control 1 (RC8h)

I	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1	Х	Х	Х	Х	Х	Х	Х	Х			F	_MW	DIV[7:0]		

Description

PWM_DIV[7:0]: PWM_OUT output period control. This command is used to adjust the PWM waveform period of PWM OUT. The PWM period can be calculated using the equation in the following.

$$f_{PWM_OUT} = \frac{5.8MHz}{\left(PWM_DIV[7:0]+1\right) \times 255}$$

		Р	WM_[DIV[7:	0]			f
D7	D6	D5	D4	D3	D2	D1	D0	f _{PWM_OUT}
0	0	0	0	0	0	0	0	22.74 KHz
0	0	0	0	0	0	0	1	11.37 KHz
0	0	0	0	0	0	1	0	7.58KHz
0	0	0	0	0	0	1	1	5.68 KHz
0	0	0	0	0	1	0	0	4.54 KHz
								:
			;					:
1	1	1	1	1	0	1	1	90.26 Hz
1	1	1	1	1	1	0	0	89.9Hz
1	1	1	1	1	1	0	1	89.53Hz
1	1	1	1	1	1	1	0	89.17 Hz
1	1	1	1	1	1	1	1	88.81 Hz

Note : The output frequency tolerance of internal frequency divider in CABC is $\pm 10\%$

Restriction

EXTC should be high to enable this command

Version: 0.09

8.2.45. CABC Control 2 (RC9h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	THRE	ES_MC	V[3:0]		TH	RES_S	STILL[3	3:0]

Description

THRES_MOV[3:0]: This parameter is used to set the ratio (percentage) of the maximum number of pixels that makes display image white (data="63) to the total of pixels by image process in MOVING image mode. After this parameter sets the number of pixels that makes display image white, threshold grayscale value (DTH) that makes display image white is set so that the number of the pixels set by this parameter does not change.

TH	RES_	Description		
D3	D2	D1	D0	Description
0	0	0	0	99 %
0	0	0	1	98 %
0	0	1	0	96 %
0	0	1	1	94 %
0	1	0	0	92 %
0	1	0	1	90 %
0	1	1	0	88 %
0	1	1	1	86 %

TH	RES_	MOV[3:0]	Description
D3	D2	D1	D0	Description
1	0	0	0	84 %
1	0	0	1	82 %
1	0	1	0	80 %
1	0	1	1	78 %
1	1	0	0	76 %
1	1	0	1	74 %
1	1	1	0	72 %
1	1	1	1	70 %

THRES_STILL[3:0]: This parameter is used to set the ratio (percentage) of the maximum number of pixels that makes display image white (data="63) to the total of pixels by image process in STILL mode. After this parameter sets the number of pixels that makes display image white, threshold grayscale value (DTH) that makes display image white is set so that the number of the pixels set by this parameter does not change.

THE	RES_S	Description		
D3	D2	D1	D0	Description
0	0	0	0	99 %
0	0	0	1	98 %
0	0	1	0	96 %
0	0	1	1	94 %
0	1	0	0	92 %
0	1	0	1	90 %
0	1	1	0	88 %
0	1	1	1	86 %

THE	RES_S	STILL[3:0]	Description
D3	D2	D1	D0	Description
1	0	0	0	84 %
1	0	0	1	82 %
1	0	1	0	80 %
1	0	1	1	78 %
1	1	0	0	76 %
1	1	0	1	74 %
1	1	1	0	72 %
1	1	1	1	70 %

Restriction

EXTC should be high to enable this command

Version: 0.09

8.2.46. CABC Control 3 (RCAh)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	Х	Х	Х	Х	Х	X	X	Χ	0	0	0	0	Т	HRES	_UI[3:0)]

Description

THRES_UI[3:0]: This parameter is used to set the ratio (percentage) of the maximum number of pixels that makes display image white (data="63) to the total of pixels by image process in USER INTERFACE mode. After this parameter sets the number of pixels that makes display image white, threshold grayscale value (DTH) that makes display image white is set so that the number of the pixels set by this parameter does not change.

TI	HRES	Description				
D3	D2	D1	Description			
0	0	0	0	99 %		
0	0	0	1	98 %		
0	0	1	0	96 %		
0	0	1	1	94 %		
0	1	0	0	92 %		
0	1	0	1	90 %		
0	1	1	0	88 %		
0	1	1	1	86 %		

TI	HRES.	_UI[3:	0]	Description
D3	D2	D1	D0	Description
1	0	0	0	84 %
1	0	0	1	82 %
1	0	1	0	80 %
1	0	1	1	78 %
1	1	0	0	76 %
1	1	0	1	74 %
1	1	1	0	72 %
1	1	1	1	70 %

Restriction

EXTC should be high to enable this command

Page 101 of 133

Version: 0.09

8.2.47. CABC Control 4 (RCBh)

_																		
ľ	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
I	W	1	Χ	Х	X	Χ	X	Х	Χ	Χ		DTH_M	OV[3:0]		TH_S	ΓILL[3:0	[[

Description

DTH_MOV[3:0]: This parameter is used set the minimum limitation of grayscale threshold value in MOVING image mode.

D	TH_M	Description		
D3	D2	D1	Description	
0	0	0	0	224
0	0	0	1	220
0	0	1	0	216
0	0	1	1	212
0	1	0	0	208
0	1	0	1	204
0	1	1	0	200
0	1	1	1	196

D	TH_M	OV[3:	0]	Description
D3	D2	D1	D0	Description
1	0	0	0	192
1	0	0	1	188
1	0	1	0	184
1	0	1	1	180
1	1	0	0	176
1	1	0	1	172
1	1	1	0	168
1	1	1	1	164

DTH_STILL[3:0]: This parameter is used to set the minimum limitation of grayscale threshold value in STILL image mode.

Dī	TH_ST	Description		
D3	D2	D1	Description	
0	0	0	0	224
0	0	0	1	220
0	0	1	0	216
0	0	1	1	212
0	1	0	0	208
0	1	0	1	204
0	1	1	0	200
0	1	1	1	196

D ⁻	TH_S1	ΓILL[3	DTH_STILL[3:0]										
D3	D2	D1	D0	Description									
1	0	0	0	192									
1	0	0	1	188									
1	0	1	0	184									
1	0	1	1	180									
1	1	0	0	176									
1	1	0	1	172									
1	1 1		0	168									
1	1	1	1	164									

Restriction

EXTC should be high to enable this command

8.2.48. CABC Control 5 (RCCh)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	Χ	X	X	Χ	Χ	Χ	Χ	Χ	0	0	0	0		DTH_	UI[3:0]	

Description

DTH_UI[3:0]: This parameter is used set the minimum limitation of grayscale threshold value in USER INTERFACE mode.

	DTH_	UI[3:0]		Description
D3	D2	D1	D0	Description
0	0	0	0	252
0	0	0	1	248
0	0	1	0	244
0	0	1	1	240
0	1	0	0	236
0	1	0	1	232
0	1	1	0	228
0	1	1	1	224

	DTH_	UI[3:0]		Description
D3	D2	D1	D0	Description
1	0	0	0	220
1	0	0	1	216
1	0	1	0	212
1	0	1	1	208
1	1	0	0	2-4
1	1	0	1	200
1	1	1	0	196
1	1	1	1	192

Restriction

EXTC should be high to enable this command

Page 103 of 133

8.2.49. CABC Control 6 (RCDh)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	Х	Х	Х	Χ	Х	Х	Х	Х		O_MIC	PT2[3:0)]	0	DIM	_OPT1	[2:0]

Description

DIM_OPT1[2:0]: This parameter is used set the transition time of brightness level change to avoid the sharp brightness change on vision.

DI	M_OPT1[2	2:0]	Description
D2	D1	D0	Description
0	0	0	1 frame
0	0	1	1 frame
0	1	0	2 frames
0	1	1	4 frames
1	0	0	8 frames
1	0	1	16 frames
1	1	0	32 frames
1	1	1	64 frames

DIM_OPT2[3:0]: This parameter is used to set the imitation of minimum brightness change. If this parameter is large than the difference between target brightness and current brightness, then the brightness will not change.

Restriction

EXTC should be high to enable this command

Page 104 of 133

Version: 0.09

8.2.50. CABC Control 7 (RCEh)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	Х	X	Х	Х	Х	Х	Х	X	SCD_VLINE[7:0]							
W	1	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Χ	Χ	Χ	Χ	SCD_VLINE[8]

Description

SCD_VLINE[8:0]: This parameter is used set the display line per frame while partial mode ON.

			SCD	_VLINE	[8:0]				Display line
D8	D7	D6	D5	D4	D3	D2	D1	D0	Display lifte
0	0	0	0	0	0	0	0	0	0 line
0	0	0	0	1	1 line				
0	0	0	2 lines						
0	0	0	0	0	0	0	1	1	3 lines
0	0	0	0	0	0	1	0	0	4 lines
				:					:
				:					:
1	0	0	1	1	1	1	0	1	317 lines
1	0	0	1	1	1	1	1	0	318 lines
1	0	0	1	1	1	1	1	1	319lines
1	0	0	320 lines						
				Others					Setting prohibited

Restriction

EXTC should be high to enable this command

Page 105 of 133

Version: 0.09

9. OTP Programming Flow

VCOMH OTP programming Flow

Page 106 of 133

10. GRAM Address Map & Read/Write

ILI9331 has an internal graphics RAM (GRAM) of 172,800 bytes to store the display data and one pixel is constructed of 18 bits. The GRAM can be accessed through the i80 system, SPI and RGB interfaces.

Figure31 GRAM Read/Write Timing of i80-System Interface

GRAM address map table of SS=0, BGR=0

SS=0,	BGR=0	S1S3	S4S6	S7S9	S10S12	 S517S519	S520S522	S523S525	S526S720
GS=0	GS=1	DB170	DB170	DB170	DB170	 DB170	DB170	DB170	DB170
G1	G320	"00000h"	"00001h"	"00002h"	"00003h"	 "000ECh"	"000EDh"	"000EEh"	"000EFh"
G2	G319	"00100h"	"00101h"	"00102h"	"00103h"	"001ECh"	"001EDh"	"001EEh"	"001EFh"
G3	G318	"00200h"	"00201h"	"00202h"	"00203h"	"002ECh"	"002EDh"	"002EEh"	"002EFh"
G4	G317	"00300h"	"00301h"	"00302h"	"00303h"	"003ECh"	"003EDh"	"003EEh"	"003EFh"
G5	G316	"00400h"	"00401h"	"00402h"	"00403h"	 "004ECh"	"004EDh"	"004EEh"	"004EFh"
G6	G315	"00500h"	"00501h"	"00502h"	"00503h"	 "005ECh"	"005EDh"	"005EEh"	"005EFh"
G7	G314	"00600h"	"00601h"	"00602h"	"00603h"	 "006ECh"	"006EDh"	"006EEh"	"006EFh"
G8	G313	"00700h"	"00701h"	"00702h"	"00703h"	 "007ECh"	"007EDh"	"007EEh"	"007EFh"
G9	G312	"00800h"	"00801h"	"00802h"	"00803h"	 "008ECh"	"008EDh"	"008EEh"	"008EFh"
G10	G311	"00900h"	"00901h"	"00902h"	"00903h"	 "009ECh"	"009EDh"	"009EEh"	"009EFh"
-	-	-	-				-	•	•
-	-	-	•		•	-	-	-	
	-								
G311	G10	"13600h"	"13601h"	"13602h"	"13603h"	 "136ECh"	"136EDh"	"136EEh"	"136EFh"
G312	G9	"13700h"	"13701h"	"13702h"	"13703h"	 "137ECh"	"137EDh"	"137EEh"	"137EFh"
G313	G8	"13800h"	"13801h"	"13802h"	"13803h"	 "138ECh"	"138EDh"	"138EEh"	"138EFh"
G314	G7	"13900h"	"13901h"	"13902h"	"13903h"	 "139ECh"	"139EDh"	"139EEh"	"139EFh"
G315	G6	"13A00h"	"13A01h"	"13A02h"	"13A03h"	 "13AECh"	"13AEDh"	"13AEEh"	"13AEFh"
G316	G5	"13B00h"	"13B01h"	"13B02h"	"13B03h"	 "13BECh"	"13BEDh"	"13BEEh"	"13BEFh"
G317	G4	"13C00h"	"13C01h"	"13C02h"	"13C03h"	 "13CECh"	"13CEDh"	"13CEEh"	"13CEFh"
G318	G3	"13D00h"	"13D01h"	"13D02h"	"13D03h"	 "13DECh"	"13DEDh"	"13DEEh"	"13DEFh"
G319	G2	"13E00h"	"13E01h"	"13E02h"	"13E03h"	 "13EECh"	"13EEDh"	"13EEEh"	"13EEFh"
G320	G1	"13F00h"	"13F01h"	"13F02h"	"13F03h"	 "13FECh"	"13FEDh"	"13FEEh"	"13FEFh"

Figure 32 i 80-System Interface with 18-/16-/9-bit Data Bus (SS="0", BGR="0")

Page 109 of 133

Figure 33 i80-System Interface with 8-bit Data Bus (SS="0", BGR="0")

Page 110 of 133

GRAM address map table of SS=1, BGR=1

SS=1, I	BGR=1	S720S718	S717S715	S714S712	S711S709	 S12S10	S9S7	S6S4	S3S1
GS=0	GS=1	DB170	DB170	DB170	DB170	 DB170	DB170	DB170	DB170
G1	G320	"00000h"	"00001h"	"00002h"	"00003h"	 "000ECh"	"000EDh"	"000EEh"	"000EFh"
G2	G319	"00100h"	"00101h"	"00102h"	"00103h"	"001ECh"	"001EDh"	"001EEh"	"001EFh"
G3	G318	"00200h"	"00201h"	"00202h"	"00203h"	 "002ECh"	"002EDh"	"002EEh"	"002EFh"
G4	G317	"00300h"	"00301h"	"00302h"	"00303h"	 "003ECh"	"003EDh"	"003EEh"	"003EFh"
G5	G316	"00400h"	"00401h"	"00402h"	"00403h"	 "004ECh"	"004EDh"	"004EEh"	"004EFh"
G6	G315	"00500h"	"00501h"	"00502h"	"00503h"	 "005ECh"	"005EDh"	"005EEh"	"005EFh"
G7	G314	"00600h"	"00601h"	"00602h"	"00603h"	 "006ECh"	"006EDh"	"006EEh"	"006EFh"
G8	G313	"00700h"	"00701h"	"00702h"	"00703h"	 "007ECh"	"007EDh"	"007EEh"	"007EFh"
G9	G312	"00800h"	"00801h"	"00802h"	"00803h"	 "008ECh"	"008EDh"	"008EEh"	"008EFh"
G10	G311	"00900h"	"00901h"	"00902h"	"00903h"	 "009ECh"	"009EDh"	"009EEh"	"009EFh"
-		•	•	•	•				
-	-	-	·	·	·				
						•	•		
G311	G10	"13600h"	"13601h"	"13602h"	"13603h"	 "136ECh"	"136EDh"	"136EEh"	"136EFh"
G312	G9	"13700h"	"13701h"	"13702h"	"13703h"	 "137ECh"	"137EDh"	"137EEh"	"137EFh"
G313	G8	"13800h"	"13801h"	"13802h"	"13803h"	 "138ECh"	"138EDh"	"138EEh"	"138EFh"
G314	G7	"13900h"	"13901h"	"13902h"	"13903h"	 "139ECh"	"139EDh"	"139EEh"	"139EFh"
G315	G6	"13A00h"	"13A01h"	"13A02h"	"13A03h"	 "13AECh"	"13AEDh"	"13AEEh"	"13AEFh"
G316	G5	"13B00h"	"13B01h"	"13B02h"	"13B03h"	 "13BECh"	"13BEDh"	"13BEEh"	"13BEFh"
G317	G4	"13C00h"	"13C01h"	"13C02h"	"13C03h"	 "13CECh"	"13CEDh"	"13CEEh"	"13CEFh"
G318	G3	"13D00h"	"13D01h"	"13D02h"	"13D03h"	 "13DECh"	"13DEDh"	"13DEEh"	"13DEFh"
G319	G2	"13E00h"	"13E01h"	"13E02h"	"13E03h"	 "13EECh"	"13EEDh"	"13EEEh"	"13EEFh"
G320	G1	"13F00h"	"13F01h"	"13F02h"	"13F03h"	 "13FECh"	"13FEDh"	"13FEEh"	"13FEFh"

Figure 34 i80-System Interface with 18-/9-bit Data Bus (SS="1", BGR="1")

11. Window Address Function

The window address function enables writing display data consecutively in a rectangular area (a window address area) made on the internal RAM. The window address area is made by setting the horizontal address register (start: HSA[7:0], end: HEA[7:0] bits) and the vertical address register (start: VSA[8:0], end: VEA[8:0] bits). The AM bit sets the transition direction of RAM address (either increment or decrement). These bits enable the ILI9331 to write data including image data consecutively not taking data wrap positions into account.

The window address area must be made within the GRAM address map area. Also, the GRAM address bits (RAM address set register) must be an address within the window address area.

[Window address setting area]

(Horizontal direction) $00H \le HSA[7:0] \le HEA[7:0] \le "EF"H$ (Vertical direction) $00H \le VSA[8:0] \le VEA[8:0] \le "13F"H$ [RAM address, AD (an address within a window address area)]] (RAM address) $HSA[7:0] \le AD[7:0] \le HEA[7:0]$ $VSA[8:0] \le AD[15:8] \le VEA[8:0]$

Window address setting area

HSA[7:0] = 10h, HEA[7:0] = 3Fh, I/D = 1 (increment) VSA[8:0] = 20h, VEA[8:0] = 4Fh, AM = 0 (horizontal writing)

Figure 35 GRAM Access Window Map

Page 112 of 133

12. Gamma Correction

ILI9331 incorporates the γ -correction function to display 262,144 colors for the LCD panel. The γ -correction is performed with 3 groups of registers determining eight reference grayscale levels, which are gradient adjustment, amplitude adjustment and fine-adjustment registers for positive and negative polarities, to make ILI9331 available with liquid crystal panels of various characteristics.

Figure 36 Grayscale Voltage Generation

Page 113 of 133

Figure 37 Grayscale Voltage Adjustment

1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient of the curve representing the relationship between the grayscale and the grayscale reference voltage level. To adjust the gradient, the resistance values of variable resistors in the middle of the ladder resistor are adjusted by registers PRP0[2:0]/PRN0[2:0], PRP1[2:0]/PRN1[2:0]. The registers consist of positive and negative polarity registers, allowing asymmetric drive.

2. Amplitude adjustment registers

The amplitude adjustment registers, VRP0[3:0]/VRN0[3:0], VRP1[4:0]/VRN1[4:0], are used to adjust the amplitude of grayscale voltages. To adjust the amplitude, the resistance values of variable resistors at the top and bottom of the ladder resistor are adjusted. Same as the gradient registers, the amplitude adjustment registers consist of positive and negative polarity registers.

3. Fine adjustment registers

The fine adjustment registers are used to fine-adjust grayscale voltage levels. To fine-adjust grayscale voltage levels, fine adjustment registers adjust the reference voltage levels, 8 levels for each register generated from the ladder resistor, in respective 8-to-1 selectors. Same with other registers, the fine adjustment registers consist of positive and negative polarity registers.

Figure 38 Gamma Curve Adjustment

Register Groups	Positive Polarity	Negative Polarity	Description
Gradient	PRP0 [2:0]	PRN0 [2:0]	Variable resistor VRCP0, VRCN0
adjustment	PRP1 [2:0]	PRN1 [2:0]	Variable resistor VRCP1, VRCN1
Amplitude	VRP0 [3:0]	VRN0 [3:0]	Variable resistor VROP0, VRON0
adjustment	VRP1 [4:0]	VRN1 [4:0]	Variable resistor VROP1, VRON1
	KP0 [2:0]	KN0 [2:0]	8-to-1 selector (voltage level of grayscale 1)
	KP1 [2:0]	KN1 [2:0]	8-to-1 selector (voltage level of grayscale 8)
Cin a nadicustus aust	KP2 [2:0]	KN2 [2:0]	8-to-1 selector (voltage level of grayscale 20)
Fine adjustment	KP3 [2:0]	KN3 [2:0]	8-to-1 selector (voltage level of grayscale 43)
	KP4 [2:0]	KN4 [2:0]	8-to-1 selector (voltage level of grayscale 55)
	KP5 [2:0]	KN5 [2:0]	8-to-1 selector (voltage level of grayscale 62)

Ladder resistors and 8-to-1 selector Block configuration

The reference voltage generating block consists of two ladder resistor units including variable resistors and 8-to-1 selectors. Each 8-to-1 selector selects one of the 8 voltage levels generated from the ladder resistor unit to output as a grayscale reference voltage. Both variable resistors and 8-to-1 selectors are controlled according to the γ -correction registers. This unit has pins to connect a volume resistor externally to compensate differences in various characteristics of panels.

Variable resistors

ILI9331 uses variable resistors of the following three purposes: gradient adjustment (VRCP(N)0/VRCP(N)1); amplitude adjustment (1) (VROP(N)0); and the amplitude adjustment (2) (VROP(N)1). The resistance values of these variable resistors are set by gradient adjustment registers and amplitude adjustment registers as follows.

Gradient adjustment					
PRP(N)0/1[2:0]	VRCP(N)0/1				
Register	Resistance				
000	0R				
001	4R				
010	8R				
011	12R				
100	16R				
101	20R				
110	24R				
111	28R				

Amplitude adjustment (1)					
VRP(N)0[3:0]	VROP(N)0				
Register	Resistance				
0000	0R				
0001	2R				
0010	4R				
:	:				
:	:				
1101	26R				
1111	28R				
1111	30R				

Amplitude adjustment (2)						
VRP(N)1[4:0]	VROP(N)1					
Register	Resistance					
00000	0R					
00001	1R					
00010	2R					
:	:					
:	:					
11101	29R					
11110	30R					
11111	31R					

Version: 0.09

8-to-1 selectors

The 8-to-1 selector selects one of eight voltage levels generated from the ladder resistor unit according to the fine adjustment register and output the selected voltage level as a reference grayscale voltage (VgP(N)1~6). The table below shows the setting in the fine adjustment register and the selected voltage levels for respective reference grayscale voltages.

Fine adjustment registers and selected voltage									
Register		Selected Voltage							
KP(N)[2:0]	VgP(N)1 VgP(N)8 VgP(N)20 VgP(N)43 VgP(N)55								
000	VP(N)1	VP(N)9	VP(N)17	VP(N)25	VP(N)33	VP(N)41			
001	VP(N)2	VP(N)10	VP(N)18	VP(N)26	VP(N)34	VP(N)42			
010	VP(N)3	VP(N)11	VP(N)19	VP(N)27	VP(N)35	VP(N)43			
011	VP(N)4	VP(N)12	VP(N)20	VP(N)28	VP(N)36	VP(N)44			
100	VP(N)5	VP(N)13	VP(N)21	VP(N)29	VP(N)37	VP(N)45			
101	VP(N)6	VP(N)14	VP(N)22	VP(N)30	VP(N)38	VP(N)46			
110	VP(N)7	VP(N)15	VP(N)23	VP(N)31	VP(N)39	VP(N)47			
111	VP(N)8	VP(N)16	VP(N)24	VP(N)32	VP(N)40	VP(N)48			

Fine adjustment registers and selected resistor								
Register		Selected Resistor						
KP(N)[2:0]	RMP(N)0	RMP(N)1	RMP(N)2	RMP(N)3	RMP(N)4	RMP(N)5		
000	0R	0R	0R	0R	0R	0R		
001	4R	1R	1R	1R	1R	4R		
010	8R	2R	2R	2R	2R	8R		
011	12R	3R	3R	3R	3R	12R		
100	16R	4R	4R	4R	4R	16R		
101	20R	5R	5R	5R	5R	20R		
110	24R	6R	6R	6R	6R	24R		
111	28R	7R	7R	7R	7R	28R		

Figure 39 Example of RMP(N)0~5 definition

Page 117 of 133

Gamma correction resister ratio

Data		Positive polarity output voltage		Negative polarity output voltage
00h	VP0	(VgP0)	VN0	(VgN0)
01h	VP1	(VgP1)	VN1	(VgN1)
02h	VP2	(VP8+(VP1-VP8)*(30/48))	VN2	(VN8+(VN1-VN8)*(30/48))
03h	VP3	(VP8+(VP1-VP8)*(23/48))	VN3	(VN8+(VN1-VN8)*(23/48))
04h	VP4	(VP8+(VP1-VP8)*(16/48))	VN4	(VN8+(VN1-VN8)*(16/48))
05h	VP5	(VP8+(VP1-VP8)*(12/48))	VN5	(VN8+(VN1-VN8)*(12/48))
06h	VP6	(VP8+(VP1-VP8)*(8/48))	VN6	(VN8+(VN1-VN8)*(8/48))
07h	VP7	(VP8+(VP1-VP8)*(4/48))	VN7	(VN8+(VN1-VN8)*(4/48))
08h	VP8	(VgP8)	VN8	(VgN8)
09h	VP9	VP20+(VP8-VP20)*(22/24)	VN9	VN20+(VN8-VN20)*(22/24)
0Ah	VP10	VP20+(VP8-VP20)*(20/24)	VN10	VN20+(VN8-VN20)*(20/24)
0Bh	VP11	VP20+(VP8-VP20)*(18/24)	VN11	VN20+(VN8-VN20)*(18/24)
0Ch	VP12	VP20+(VP8-VP20)*(16/24)	VN12	VN20+(VN8-VN20)*(16/24)
0Dh	VP13	VP20+(VP8-VP20)*(14/24)	VN13	VN20+(VN8-VN20)*(14/24)
0Eh	VP14	VP20+(VP8-VP20)*(12/24)	VN14	VN20+(VN8-VN20)*(12/24)
0Fh	VP15	VP20+(VP8-VP20)*(10/24)	VN15	VN20+(VN8-VN20)*(10/24)
10h	VP16	VP20+(VP8-VP20)*(8/24)	VN16	VN20+(VN8-VN20)*(8/24)
11h	VP17	VP20+(VP8-VP20)*(6/24)	VN17	VN20+(VN8-VN20)*(6/24)
12h	VP18	VP20+(VP8-VP20)*(4/24)	VN18	VN20+(VN8-VN20)*(4/24)
13h	VP19	VP20+(VP8-VP20)*(2/24)	VN19	VN20+(VN8-VN20)*(2/24)
14h	VP20	(VgP20)	VN20	(VgN20)
15h	VP21	(VP43+(VP20-VP43)*(22/23))	VN21	(VN43+(VN20-VN43)*(22/23))
16h	VP22	(VP43+(VP20-VP43)*(21/23))	VN22	(VN43+(VN20-VN43)*(21/23))
17h	VP23	(VP43+(VP20-VP43)*(20/23))	VN23	(VN43+(VN20-VN43)*(20/23))
18h	VP24	(VP43+(VP20-VP43)*(19/23))	VN24	(VN43+(VN20-VN43)*(19/23))
19h	VP25	(VP43+(VP20-VP43)*(18/23))	VN25	(VN43+(VN20-VN43)*(18/23))
1Ah	VP26	(VP43+(VP20-VP43)*(17/23))	VN26	(VN43+(VN20-VN43)*(17/23))
1Bh	VP27	(VP43+(VP20-VP43)*(16/23))	VN27	(VN43+(VN20-VN43)*(16/23))
1Ch	VP28	(VP43+(VP20-VP43)*(15/23))	VN28	(VN43+(VN20-VN43)*(15/23))
1Dh	VP29	(VP43+(VP20-VP43)*(14/23))	VN29	(VN43+(VN20-VN43)*(14/23))
1Eh	VP30	(VP43+(VP20-VP43)*(13/23))	VN30	(VN43+(VN20-VN43)*(13/23))
1Fh	VP31	(VP43+(VP20-VP43)*(12/23))	VN31	(VN43+(VN20-VN43)*(12/23))

Data		Positive polarity output voltage		Negative polarity output voltage
20h	VP32	(VP43+(VP20-VP43)*(11/23))	VN32	(VN43+(VN20-VN43)*(11/23))
21h	VP33	(VP43+(VP20-VP43)*(10/23))	VN33	(VN43+(VN20-VN43)*(10/23))
22h	VP34	(VP43+(VP20-VP43)*(9/23))	VN34	(VN43+(VN20-VN43)*(9/23))
23h	VP35	(VP43+(VP20-VP43)*(8/23))	VN35	(VN43+(VN20-VN43)*(8/23))
24h	VP36	(VP43+(VP20-VP43)*(7/23))	VN36	(VN43+(VN20-VN43)*(7/23))
25h	VP37	(VP43+(VP20-VP43)*(6/23))	VN37	(VN43+(VN20-VN43)*(6/23))
26h	VP38	(VP43+(VP20-VP43)*(5/23))	VN38	(VN43+(VN20-VN43)*(5/23))
27h	VP39	(VP43+(VP20-VP43)*(4/23))	VN39	(VN43+(VN20-VN43)*(4/23))
28h	VP40	(VP43+(VP20-VP43)*(3/23))	VN40	(VN43+(VN20-VN43)*(3/23))
29h	VP41	(VP43+(VP20-VP43)*(2/23))	VN41	(VN43+(VN20-VN43)*(2/23))
2Ah	VP42	(VP43+(VP20-VP43)*(1/23))	VN42	(VN43+(VN20-VN43)*(1/23))
2Bh	VP43	(VgP43)	VN43	(VgN43)
2Ch	VP44	(VP55+(VP43-VP55)*(22/24))	VN44	(VN55+(VN43-VN55)*(22/24))
2Dh	VP45	(VP55+(VP43-VP55)*(20/24))	VN45	(VN55+(VN43-VN55)*(20/24))
2Eh	VP46	(VP55+(VP43-VP55)*(18/24))	VN46	(VN55+(VN43-VN55)*(18/24))
2Fh	VP47	(VP55+(VP43-VP55)*(16/24))	VN47	(VN55+(VN43-VN55)*(16/24))
30h	VP48	(VP55+(VP43-VP55)*(14/24))	VN48	(VN55+(VN43-VN55)*(14/24))
31h	VP49	(VP55+(VP43-VP55)*(12/24))	VN49	(VN55+(VN43-VN55)*(12/24))
32h	VP50	(VP55+(VP43-VP55)*(10/24))	VN50	(VN55+(VN43-VN55)*(10/24))
33h	VP51	(VP55+(VP43-VP55)*(8/24))	VN51	(VN55+(VN43-VN55)*(8/24))
34h	VP52	(VP55+(VP43-VP55)*(6/24))	VN52	(VN55+(VN43-VN55)*(6/24))
35h	VP53	(VP55+(VP43-VP55)*(4/24))	VN53	(VN55+(VN43-VN55)*(4/24))
36h	VP54	(VP55+(VP43-VP55)*(2/24))	VN54	(VN55+(VN43-VN55)*(2/24))
37h	VP55	(VgP55)	VN55	(VgN55)
38h	VP56	(VP62+(VP55-VP62)*(44/48))	VN56	(VN62+(VN55-VN62)*(44/48))
39h	VP57	(VP62+(VP55-VP62)*(40/48))	VN57	(VN62+(VN55-VN62)*(40/48))
3Ah	VP58	(VP62+(VP55-VP62)*(36/48))	VN58	(VN62+(VN55-VN62)*(36/48))
3Bh	VP59	(VP62+(VP55-VP62)*(32/48))	VN59	(VN62+(VN55-VN62)*(32/48))
3Ch	VP60	(VP62+(VP55-VP62)*(25/48))	VN60	(VN62+(VN55-VN62)*(25/48))
3Dh	VP61	(VP62+(VP55-VP62)*(18/48))	VN61	(VN62+(VN55-VN62)*(18/48))
3Eh	VP62	(VgP62)	VN62	(VgN62)
3Fh	VP63	(VgP63)	VN63	(VgN63)

Figure 40 Relationship between Source Output and VCOM

Figure 41 Relationship between GRAM Data and Output Level

Page 120 of 133

13. Application

13.1. Configuration of Power Supply Circuit

Figure 42 Power Supply Circuit Block

The following table shows specifications of external elements connected to the ILI9331's power supply circuit.

Items	Recommended Specification	Pin connection		
Capacity	6.3V	VREG1OUT, VCI1, VDD, VCL, VCOMH, VCOML, C11A/B, C12 A/B, C13 A/B,		
1 μF (B characteristics)	10V	DDVDH, C21 A/B, C22 A/B		
	25V	VGH, VGL		
Schottky diode VF<0.4V/20mA at 25°C, VR ≥30V (Recommended diode: HSC226)		(VCL – VGL), (DDVDH – VGH), (VCI – DDVDH)		

13.2. Display ON/OFF Sequence

Page 121 of 133 Version: 0.09

Figure 43 Display On/Off Register Setting Sequence

Page 122 of 133

13.3. Standby and Sleep Mode

Figure 44 Standby/Sleep Mode Register Setting Sequence

Page 123 of 133

13.4. Power Supply Configuration

When supplying and cutting off power, follow the sequence below. The setting time for step-up circuits and operational amplifiers depends on external resistance and capacitance.

Figure 45 Power Supply ON/OFF Sequence

Page 124 of 133

13.5. Voltage Generation

The pattern diagram for setting the voltages and the waveforms of the voltages of the ILI9331 are as follows.

Figure 46 Voltage Configuration Diagram

Note: The DDVDH, VGH, VGL, and VCL output voltage levels are lower than their theoretical levels (ideal voltage levels) due to current consumption at respective outputs. The voltage levels in the following relationships (DDVDH - VREG1OUT) > 0.2V and (VCOML - VCL) > 0.5V are the actual voltage levels. When the alternating cycles of VCOM are set high (e.g. the polarity inverts every line cycle), current consumption is large. In this case, check the voltage before use.

Page 125 of 133

13.6. Applied Voltage to the TFT panel

Figure 47 Voltage Output to TFT LCD Panel

13.7. Partial Display Function

The ILI9331 allows selectively driving two partial images on the screen at arbitrary positions set in the screen drive position registers.

The following example shows the setting for partial display function:

	Base Image Display Setting				
BASEE	0				
NL[5:0]	6'h27				
	Partial Image 1 Display Setting				
PTDE0	1				
PTSA0[8:0]	9'h000				
PTEA0[8:0]	9'h00F				
PTDP0[8:0]	9'h080				
	Partial Image 2 Display Setting				
PTDE1	1				
PTSA1[8:0]	9'h020				
PTEA1[8:0]	9'h02F				
PTDP1[8:0]	9'h0C0				

Page 126 of 133 Version: 0.09

Figure 48 Partial Display Example

Page 127 of 133

14. Electrical Characteristics

14.1. Absolute Maximum Ratings

The absolute maximum rating is listed on following table. When ILI9331 is used out of the absolute maximum ratings, the ILI9331 may be permanently damaged. To use the ILI9331 within the following electrical characteristics limit is strongly recommended for normal operation. If these electrical characteristic conditions are exceeded during normal operation, the ILI9331 will malfunction and cause poor reliability.

Item	Symbol	Unit	Value	Note
Power supply voltage (1)	IOVCC	V	-0.3 ~ + 4.6	1, 2
Power supply voltage (1)	VCI – GND	V	-0.3 ~ + 4.6	1, 4
Power supply voltage (1)	DDVDH – GND	V	-0.3 ~ + 6.0	1, 4
Power supply voltage (1)	GND -VCL	V	-0.3 ~ + 4.6	1
Power supply voltage (1)	DDVDH – VCL	V	-0.3 ~ + 9.0	1, 5
Power supply voltage (1)	VGH – VGL	V	0.3 ~ + 30	1, 5
Input voltage	Vt	V	-0.3 ~ VCC+ 0.3	1
Operating temperature	Topr	°C	-40 ~ + 85	8, 9
Storage temperature	Tstg	°C	-55 ~ + 110	8, 9

Notes:

- 1. GND must be maintained
- 2. (High) (VCC = VCC) \geq GND (Low), (High) IOVCC \geq GND (Low).
- 3. Make sure (High) VCI ≥ GND (Low).
- 4. Make sure (High) DDVDH ≥ GND (Low).
- 5. Make sure (High) DDVDH ≥ VCL (Low).
- 6. Make sure (High) VGH ≥ GND (Low).
- 7. Make sure (High) GND ≥ VGL (Low).
- 8. For die and wafer products, specified up to 85°C.
- 9. This temperature specifications apply to the TCP package

Page 128 of 133

14.2. DC Characteristics

 $(VCC = VCI=2.40 \sim 3.0V, IOVCC = 1.65 \sim 3.30V, Ta = -40 \sim 85 °C)$

(VCC - VCI-2.70 · 3.		1100	- 3.30 V, 1a + 0 - 03 C)				
Item	Symbol	Unit	Test Condition	Min.	Тур.	Max.	Note
Input high voltage	V _{IH}	>	IOVCC= 1.8 ~ 3.3V	0.8*IOV CC	ı	IOVCC	ı
Input low voltage	V_{IL}	V	IOVCC= 1.8 ~ 3.3V	-0.3	ı	0.2*IOVCC	ı
Output high voltage(1) (DB0-17 Pins)	V _{OH1}	٧	IOH = -0.1 mA	0.8*IOV CC	-	-	1
Output low voltage (DB0-17 Pins)	V_{OL1}	V	IOVCC=1.65~3.3V	-	1	0.2*IOVCC	1
I/O leakage current	I _{LI}	μA	Vin = 0 ~ VCC	-0.1	1	0.1	-
Current consumption during normal operation (V _{cc} – GND)	I _{OP}	μΑ	VCC=2.8V , Ta=25°C , fOSC = 512KHz (Line) GRAM data = 0000h	-	100 (VCC)	-	ı
Current consumption during standby mode $(V_{CC} - GND)$	I _{ST}	μΑ	VCI=2.8V , Ta=25 °C	-	30	50	-
LCD Drive Power Supply Current (DDVDH-GND)	ILCD	mA	VCI=2.8V , VREG1OUT =4.8V DDVDH=5.2V , Frame Rate: 70Hz, line-inversion, Ta=25 °C, GRAM data = 0000h,	-	5.5	-	1
LCD Driving Voltage (DDVDH-GND)	DDVDH	٧	-	4.5	-	6	-
Output deviation voltage	V_{DEV}	mV	-	-	-	20	-
Output offset voltage	V _{OFFSET}	mV	Note1	-	-	35	-

Note1: The Max. value is between with measure point and Gamma setting value.

14.3. Reset Timing Characteristics

Reset Timing Characteristics (IOVCC = 1.65 ~ 3.3 V)

Item	Symbol	Unit	Min.	Тур.	Max.
Reset low-level width	t _{RES_L}	ms	1	-	-
Reset rise time	$t_{\sf rRES}$	μs	-	-	10
Reset high-level width	t _{RES H}	ms	50	-	_

Page 129 of 133

14.4. AC Characteristics

14.4.1. i80-System Interface Timing Characteristics

Normal Write Mode (IOVCC = 1.65~3.3V)

	Symbol	Unit	Min.	Тур.	Max.	Test Condition	
Due evele time	Write	t _{CYCW}	ns	TBD	-		-
Bus cycle time	Read	t _{CYCR}	ns	300	-	-	-
Write low-level pulse	width	PW_{LW}	ns	TBD	-	500	-
Write high-level pulse	width	PW _{HW}	ns	TBD	-	-	-
Read low-level pulse	Read low-level pulse width			150	-	-	-
Read high-level pulse	Read high-level pulse width			150	-	-	
Write / Read rise / fall	Write / Read rise / fall time		ns	-	-	25	
Catua tima	Write (RS to nCS, E/nWR)		ns	10	-	-	
Setup time	Read (RS to nCS, RW/nRD)	t _{AS}		5	-	-	
Address hold time		t _{AH}	ns	5	-	-	
Write data set up time	t _{DSW}	ns	10	-	-		
Write data hold time	t _H	ns	15	-	-		
Read data delay time	t _{DDR}	ns	-	-	100		
Read data hold time	t _{DHR}	ns	5	-	-		

Figure 49 i80-System Bus Timing

Page 130 of 133

14.4.2. Serial Data Transfer Interface Timing Characteristics (IOVCC= 1.65 ~ 3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition	
0	Write (received)	t _{scyc}	μs	TBD	-	-	
Serial clock cycle time	Read (transmitted)	t _{scyc}	μs	200	-	-	
Serial clock high – level	Write (received)	t _{sch}	ns	40	-	-	
pulse width	Read (transmitted)	t _{sch}	ns	100	-	-	
Serial clock low – level pulse	Write (received)	t _{scl}	ns	40	-	-	
width	Read (transmitted)	t _{scl}	ns	100	-	-	
Serial clock rise / fall time	Serial clock rise / fall time			ı	-	5	
Chip select set up time		t _{csu}	ns	10	-	-	
Chip select hold time		t _{CH}	ns	50	-	-	
Serial input data set up time	t _{sisu}	ns	20	-	-		
Serial input data hold time	t _{sıн}	ns	20	-	-		
Serial output data set up time	t _{SOD}	ns	-	-	100		
Serial output data hold time	t _{soн}	ns	5	-	-		

Figure 50 SPI System Bus Timing

14.4.3. RGB Interface Timing Characteristics

18/16-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	t _{SYNCS}	ns	0	-	-	-
ENABLE setup time	t _{ENS}	ns	10	-	-	1
ENABLE hold time	t _{ENH}	ns	10	-	-	-
PD Data setup time	t _{PDS}	ns	10	-	-	-
PD Data hold time	t_{PDH}	ns	40	-	-	-
DOTCLK high-level pulse width	PWDH	ns	40	-	-	-
DOTCLK low-level pulse width	PWDL	ns	40	-	-	-
DOTCLK cycle time	t_{CYCD}	ns	TBD	-	-	-
DOTCLK, VSYNC, HSYNC, rise/fall time	t_{rghr} , t_{rghf}	ns	-	-	25	-

6-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	t _{SYNCS}	ns	0	-	-	-
ENABLE setup time	t _{ENS}	ns	10	-	-	-
ENABLE hold time	t _{ENH}	ns	10	-	-	-
PD Data setup time	t _{PDS}	ns	10	-	-	-
PD Data hold time	t_{PDH}	ns	30	-	-	-
DOTCLK high-level pulse width	PWDH	ns	30	-	1	-
DOTCLK low-level pulse width	PWDL	ns	30	-	ı	-
DOTCLK cycle time	t _{CYCD}	ns	80	-	ı	-
DOTCLK, VSYNC, HSYNC, rise/fall time	t_{rghr} , t_{rghf}	ns	ı	-	25	-

Figure 51 RGB Interface Timing

Page 132 of 133

15. Revision History

Version No.	Date	Page	Description
V0.00	2008/03/25	all	new built
V0.01	2008/04/16	42/ 43/ 44	P42, remove high speed write. P43, remove note 1. P44, remove note 1
		13 / 15/ 16	Change pin name : DUMMY4→TSO. (P13, 15, 16)
		117	Change SCD_VLINE format
		14/15	Pad swapped. C11A and C11B
V0.02	2008/05/06	76	R02h, D10 data, 1→0
		84	Remove b. Start Oscillation in stand by and sleep mode
		13,14,15	Change pad name from DGNDDUM4→ TEST_EN
		71, 85, 86	Remove PON function. R12h, D4 change from PON→0
		13	TSO Change I/O type from I→O
		98~116	Remove description (Register availability, default, and flow chart) of CABC related register!
	2008/05/19	121	VRP0[4:0], VRN0[4:0]→ VRP0[3:0], VRN0[3:0]
		81	Delete PTS[2] half frequency at non display area!
		72/96/97	Delete RTNE[5:0]
		71/76	Delete EOR
		64/65	Remove shutdown mode setting
	2008/06/03	75	Exchange drawing of even and old number of gate output
	2008/06/04	73	Modify drawing at SM=1
V0.03	2008/06/09	78	Modify ISC[3:0]=[0,0,0,1] scan cycle setting
	2008/06/27	50	External resistance 60→100Ω
V0.04	2008/07/01	109	VPP1→DDVDH, VPP3→DGND. And the flow modified
		1	Company address
V0.05	2008/07/03	14	Coordinate center change
V0.06	2008/07/12	15	Pad 149, C11BA→C11A
		117,118	Add formula for gamma voltage!
		83	$VREG1OUT \le (DDVDH - 0.5)V \rightarrow VREG1OUT \le (DDVDH - 0.2)V.$
		106	Add destruction rate
		114	VRCP0→VRCN0
V0.07	2008/07/18	32	Delete "Data transfer synchronization in 8/9-bit bus interface mode" function
		68, 71	R00h ID code change
		81	Delete "VGH = 15.0V (max.), VGL = – 12.5V (max) and VCL= -3.0V (max.)"
		127	Modify VGH-VGL rating
		90	Add one note
		71~95	Add initial code default setting
		87	FRS[3:0]=1110→ setting prohibited
		8	CABC (Brightness Adaptive Brightness Control) → CABC (Content Adaptive Brightness Control)
		26	172,820→172800
		68	02h, BC0→B/C. 0Fh EPL→DPL. DPL→EPL
		69	90h, add RTNI4
		77	ISC3/ISC3/ISC3/ISC3→ ISC3/ISC2/ISC1/ISC0
		89	"00"h ≤VSA[7:0] ≤VEA[7:0] ≤"13F"h→"00"h ≤VSA[8:0] ≤VEA[8:0] ≤"13F"h
		102	DTH_OPT[2:0] →DTH_STILL[3:0]
		106	87120 bytes→172800 bytes
	+	109,110,111	N=0 to 175->N=0 to 239
1/0.00	2000/02/24	112	HAS[7:0]=3Fh→HEA[7:0]=3Fh, VSA[8:0]=4Fh→VEA[8:0]=4Fh
V0.08	2008/08/04	114	PKP(N)0[2:0]→KP(N)0[2:0], PKP(N)1[2:0]→KP(N)1[2:0], PKP(N)2[2:0]→KP(N)2[2:0], PKP(N)3[2:0]→KP(N)3[2:0],
			$PKP(N)4[2:0] \rightarrow KP(N)4[2:0], PKP(N)5[2:0] \rightarrow KP(N)5[2:0],$
		4	Modify resistor description
1/0.00	0000/00/07	117	Add one table to describe RMP(N)0~5
V0.09	2008/08/05	117	Add one figure to describe RMP(N)0~5

Page 133 of 133