北京师范大学 2016 ~ 2017 学年第二学期期末考试试卷 (A卷)

课程名称:	复变函数		_1,6	任调	果老师姓名:			
卷面总分:	100分	考试时长:	120 分	钟	考试类别:	闭卷⊠	开卷口	其他 🗆
院 (系):	数学科学学	上院	专业:	数当	学与应用数学		年级:	2015级
姓名:		学	号:					

题号	-	=	三	四	五	六	总分
得分							

阅卷老师 (签字): _____

- 一. (15分) 叙述函数f(z) = u(x,y) + iv(x,y) 在一点的(复)可微和解析的定义且讨论函数 $f(z) = x^3y + iy^3x$ 的(复)可微性和解析性(在何处(复)可微和解析).
- 二. (25分) 将下列函数在指定圆环内展为罗朗级数:

(1)
$$\frac{1}{z^2(z^2-9)}$$
, $3<|z|<+\infty$; (2) $\cos(\frac{1}{z-1})$, $0<|z-1|<+\infty$,

(3)
$$\frac{f(z)}{z^5}$$
, $0 < |z| < 1$, $f(z)$ 为 $\text{Ln}(1-z)$ 在 $|z| < 1$ 中满足 $f(0) = 0$ 的解析分支.

三 (25分) (1)求函数(a) $\frac{z^2-4}{z(z^2-1)^2}$ 和(b) $\frac{1}{z^4\sin z}$ 在复平面 $\mathbb{C}($ 不含 ∞ 点)中的孤立奇点,孤立奇点各属于哪一种类型(极点要指明阶数). (2)求函数 $\frac{1}{\sin z}$, $\frac{1}{z^2\sin z}$ 和 $\frac{1}{z^4\sin z}$ 在0处的留数(Res $\left(\frac{1}{\sin z},0\right)$ =?, Res $\left(\frac{1}{z^2\sin z},0\right)$ =?, Res $\left(\frac{1}{z^4\sin z},0\right)$ =?).

四 (10分) 分式线性 $w = T(z) = \frac{z+i}{z-i}$ 将指定区域 $\Omega = \{z : \text{Re } z < 0, \text{Im } z < 0\}$ 映射为什么区域? ($T(\Omega) =$? 作草图标明原像区域和像区域, 并说明理由.)

五 (15分)计算积分

(1)
$$\int_{-\infty}^{+\infty} \frac{x^2 \cos x}{x^4 + 1} dx$$
; (2) $\int_{0}^{+\infty} \frac{x^{\alpha} dx}{4 + x^2}$ (-1 < \alpha < 1).

六 (10分) 说明多值函数 $(z^2(1+z)^3)^{\frac{1}{6}}$ 在割去线段[-1,0]的z平面上可以分出五个单值连续分支. 求出在[-1,0]的上沿取正值的那个单值解析分支 $g_0(z)$ 在点z=1处的值 $(g_0(1)=?)$ 和在点z=i处的值 $(g_0(i)=?)$.