Feuille 4 : Groupes, groupe Symétrique

Exercice 1. Montrer qu'il n'existe pas de morphisme de groupes non nul de $\mathbb{Z}/2\mathbb{Z}$ vers $\mathbb{Z}/3\mathbb{Z}$.

Exercice 2. Montrer qu'il existe un unique morphisme f de $\mathbb{Z}/10\mathbb{Z}$ vers $\mathbb{Z}/15\mathbb{Z}$ tel que $f(\bar{1}) = \bar{3}$. Déterminer Im f et ker f. f est il injectif? surjectif?

Exercice 3. Soit $f: G \longrightarrow H$ un morphisme entre deux groupes finis. Montrer que $\forall x \in G$, l'ordre de f(x) divise l'ordre de x. En déduire que si l'ordre de x est premier avec le cardinal de H, alors $x \in \ker f$.

Exercice 4. Calculer le cardinal de $(\mathbb{Z}/30\mathbb{Z})^{\times}$. Quel est l'ordre multiplicatif de $\overline{11}$?

Exercice 5. On se place dans S_6 . Soit $\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 3 & 6 & 2 \end{pmatrix}$ et $\tau := (1, 2, 3)(2, 5)$.

Calculer σ^{-1} , σ^2 , τ^2 et la signature de chacune de ces permutations.

Calculer de deux manières différentes $\sigma^{-1}\tau\sigma$.

Exercice 6. Écrire le cycle (1, 2, ..., n) de S_n comme un produit de transpositions. Quelle est sa signature?

Exercice 7. On considère dans S_{16} l'élément

Donner le support, les orbites, la décomposition en cycles disjoints, l'ordre et la signature de S. Cette permutation appartient-elle à \mathcal{A}_{16} ?

Exercice 8.

Soit σ et τ les éléments du groupe symétrique \mathcal{S}_6

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 3 & 2 & 5 \end{pmatrix} \text{ et } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix}$$

Déterminer l'ensemble des entiers n tels que $\sigma^n = \tau^n$.

Exercice 9. On se place dans le groupe symétrique \mathcal{S}_{11} et on considère les permutations :

- 1. Ecrire π , σ et $\pi \circ \sigma$ comme produit de cycles à supports disjoints.
- 2. Déterminer l'ordre de π , de σ et de $\pi \circ \sigma$ dans \mathcal{S}_{11} .
- 3. Quel est l'ordre de S_{11} ?
- 4. Existe-t-il dans le groupe S_{11} un élément d'ordre 13 ou d'ordre 30?

Exercice 10. Soit σ l'élément de S_{11} suivant : $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 5 & 8 & 11 & 3 & 1 & 2 & 9 & 6 & 4 & 10 & 7 \end{pmatrix}$.

- 1. Montrer que σ se décompose en produit de 3 cycles à supports disjoints σ_2 , σ_3 , σ_5 de longueur respective 2, 3 et 5. Donner l'ordre et la signature de σ .
- 2. Caractériser H, le sous-groupe de S_{11} engendré par σ_2 , σ_3 , σ_5 . Est-il commutatif?
- 3. On pose

$$\varphi: \begin{tabular}{cccc} $\varphi:$ & $\mathbb{Z}\times\mathbb{Z}\times\mathbb{Z}$ & \longrightarrow & H \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

Montrer que φ est un homomorphisme de groupes surjectif. Caractériser $\ker \varphi$. Quel est l'ordre de H? Montrez que H est cyclique et donner un générateur. Combien existe-t-il de générateurs distincts de H?