

Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT Departamento de Engenharia de Computação e Automação DCA0800 - Algoritmos e Lógica de Programação

Docente: Mário Sérgio Freitas Ferreira Cavalcante

Senha Fixa

Escreva um programa que repita a leitura de uma senha até que ela seja válida. Para cada leitura de senha incorreta informada, escreva a mensagem "Senha Invalida". Quando a senha for informada corretamente deve ser impressa a mensagem "Acesso Permitido" e o algoritmo encerrado. Considere que a senha correta é o valor 2022.

Entrada

A entrada é composta por vários casos de testes contendo valores inteiros.

Saída

Para cada valor lido mostre a mensagem correspondente à descrição do problema.

Exemplo de Entrada	Exemplo de Saída
2200	Senha Invalida
1020	Senha Invalida
2020	Senha Invalida
2022	Acesso Permitido

Fatorial Simples

Ler um valor N. Calcular e escrever seu respectivo fatorial. Fatorial de N = N * (N-1) * (N-2) * (N-3) * ... * 1.

Entrada

A entrada contém um valor inteiro N (0 < N < 13).

Saída

A saída contém um valor inteiro, correspondente ao fatorial de N.

Exemplo de Entrada	Exemplo de Saída
4	24

Entrevista: Power-up

Foi realizada uma entrevista entre todos os jogadores de Super Mario World sobre qual o power-up preferido entre as seguintes opções: Flor, Pena, Cogumelo, Estrela, Martelo. Escreva um algoritmo para ler o tipo de power-up preferido dos entrevistados codificado da seguinte forma:

Power-up	Opção:
Flor	1
Pena	2
Estrela	3
Cogumelo	4
Martelo	5
Sair	6

Caso o usuário informe um código inválido (fora da faixa de 1 a 6) deve ser solicitado um novo código (até que seja válido). O programa será encerrado quando o código informado for o número 6.

Entrada:

A entrada contém apenas valores inteiros e positivos.

Saída:

A saída deve ter o seguinte formato:

Nome da opção: Total de pessoas que escolherem - Percentual de pessoas que escolherem:

Exemplo:

```
Digite:
  - Flor
   - Pena
  - Estrela
  - Cogumelo
  - Martelo
  - Sair
Digite:
1 - Flor
2 - Pena
  - Estrela
  - Cogumelo
  - Martelo
  - Sair
Digite:
1 - Flor
2 - Pena
  - Estrela
  - Cogumelo
  - Martelo
  - Sair
Digite:
1 - Flor
  - Pena
 - Estrela
  - Cogumelo
 - Martelo
  - Sair
Total de escolhas: Flor: 0 - 0 %
Pena: 1 - 33.3333 %
Estrela: 2 - 66.6667 %
Cogumelo: 0 - 0 %
Martelo: 0 - 0 %
```

Cálculo do IRA

A CogumelosBook é uma empresa muito famosa de redes sociais no reino dos cogumelos. Aparentemente eles estão contratando e é a sua chance de conseguir um estágio nessa empresa renomada. Porém, para se inscrever no seu processo seletivo, você deve enviar algumas informações para empresa, que irá usá-las para decidir quem será contemplado com a vaga.

Você já enviou algumas informações necessárias, porém o IRA (Índice de Rendimento Acadêmico) ainda não foi submetido. Para piorar, o SIGAA está fora do ar. Felizmente, você baixou seu histórico e, com ele, você consegue calcular o seu IRA e mandar para o seu futuro empregador. Abrindo o arquivo, você consegue reparar as notas em todas as M disciplinas que você cursou, além de suas respectivas cargas horárias. Você também lembra que o IRA é calculado da seguinte maneira:

$$IRA = \frac{\sum_{i=1}^{M} (N_i \times C_i)}{100 \times \sum_{i=1}^{M} (C_i)}$$

No qual N_1 , N_2 , ... N_m são as notas em cada disciplina, C_1 , C_2 , ..., C_m são as cargas horárias das respectivas disciplinas e M é a quantidade de disciplinas. Dada a nota obtida e a carga horária de cada disciplina, determine seu IRA para enviá-lo para o CogumelosBook o mais breve possível.

Entrada

A primeira linha de cada caso contém o inteiro, o número de disciplinas cursadas. As próximas linhas descrevem uma disciplina cada. Cada linha contém dois valores indicando a nota obtida na disciplina e a carga horária da mesma, respectivamente.

Saída

Para cada caso de teste, imprima uma linha contendo o valor do seu IRA.

Saída
0.8

Sequência de Fibonnaci

Na matemática, a sequência de Fibonacci é uma sequência de números inteiros, começando normalmente por 0 e 1, na qual, cada termo subsequente corresponde à soma dos dois anteriores.

A sequência recebeu o nome do matemático italiano Leonardo de Pisa, mais conhecido por Fibonacci, que descreveu, no ano de 1202, o crescimento de uma população de coelhos, a partir desta.

A sequência de Fibonacci tem aplicações na análise de mercados financeiros, na ciência da computação e na teoria dos jogos. Também aparece em configurações biológicas, como, por exemplo, na disposição dos galhos das árvores.

Os números de Fibonacci são, portanto, os números que compõem a seguinte sequência: 0, 1, 1, 2, 3, 5, ...

Elabore um algoritmo em C++ que leia um valor, e mostre os N números de termos da sequência. Por exemplo, se o valor de k for 8, os termos serão 0, 1, 1, 2, 3, 5, 8, 13.

Entrada

A entrada é composta por apenas um valor de N.

Saída

Imprima os números da sequência de Fibonnacci.

Basquete do Mário

O jogo Mario Party é composto por vários mini-jogos em um tabuleiro que é gerado aleatoriamente, entre esses jogos, um jogo bastante conhecido é o jogo de basquete. Funciona da seguinte forma: A cada rodada, cada jogador tem a possibilidade de lançar três bolas na cesta a distâncias que são alteradas com o tempo.

Uma das medidas implementadas é a pontuação para os lançamentos de acordo com a distância do jogador para a cesta. Essa distância pode ser no máximo de 2000 cm de comprimento, como na figura.

Dada a distância D do jogador até o início da quadra, onde está a cesta, a regra é a seguinte:

- Se $0 < D \le 800$, a cesta vale 1 ponto;
- Se $800 < D \le 1400$, a cesta vale 2 pontos;
- Se 1400 < D ≤ 2000, a cesta vale 3 pontos.
- Se D = 0, o jogador errou a cesta.

A Nintendo precisa de ajuda para automatizar o placar do jogo. Dado o valor da distância **D**, você deve escrever um programa para calcular o número de pontos do lançamento.

Entrada:

A entrada contém **três** inteiros **D**, em cada linha, indicando a distância do jogador na hora do arremesso.

Saída:

A saída deve conter apenas uma mensagem indicando a quantidade de pontos totais marcados por aquele jogador.

Digite a distancia do 1o. arremesso: 1700 Digite a distancia do 2o. arremesso: 800 Digite a distancia do 3o. arremesso: 2000 O total de pontos marcados: 7

Tecido de Cedro: Classificação

Luigi é dono de uma empresa de fabricação de tecidos de cedro. Após produzir muitos rolos de tecido, um fiscal foi à sua empresa para averiguar a qualidade do tecido produzido. Curioso, Luigi perguntou como é feita a classificação da qualidade dos tecidos. O fiscal respondeu: "Fácil, utilizo como base na ABNT NBR 13484".

Após o fiscal ir embora, Luigi resolveu pesquisar para avaliar ele mesmo os tecidos produzidos na fábrica. Então ele se deparou com a seguinte tabela a pontuação dos defeitos - **N**:

Extensão do defeito	Pontos
Até 7,5 cm	1
De 7,6 a 15,0 cm	2
De 15,1 a 23,0 cm	3
Acima 23,1 cm	4

Com isso, Luigi montou uma tabela com base na pontuação total - N:

Classificação	Pontos
Indigo	Até 5 pontos
Colours	Até 10 pontos
Profissional	Até 15 pontos
Defeituoso	Acima de 25 pontos

Luigi sabendo da sua experiência com programação pediu para você fazer um software para classificar os tecidos fabricados.

Entrada:

A entrada contém várias linhas. A primeira linha contém um inteiro que informa o número total de defeitos encontrados - **J**. A seguir, seguem **J-linhas** indicando a dimensão do defeito em cm.

Saída:

A saída é composta por duas linhas. Na primeira a pontuação **N** do tecido avaliado (Pontuação dos defeitos); Na segunda linha, a classificação do tecido com base na tabela 2.