

## [12] 发明专利申请公开说明书

[21]申请号 94113982.4

[51]Int.Cl<sup>6</sup>

|43|公开日 1996年5月22日

C07D493 / 18

|22|申请日 94.11.9

|71|申请人 中国科学院上海药物研究所

地址 200031上海市太原路294号

[72]发明人 李 英 杨永华 梁 洁

山 峰 吴光韶

[74]专利代理机构 中国科学院上海专利事务所 代理人 孙粹芳

//C07D493:18,311:00,323:00, 323:00

权利要求书 2 页 说明书 14 页 附图页数 0 页

[54] 世明名称 含苯基和杂环基的青嵩素衍生物及其制备方法

## [57]摘要

一类含苯基和杂环基的青蒿素衍生物及其刺各方法。它们可由二氢青蒿素类化合物与苯胺类(或苯酚类,取代苯基化合物,杂环类等)化合物在酸性催化剂作用下反应生成。经初步药理筛选发现它们有明显的抗原虫作用,免疫调节作用,抗病毒(包括艾进病毒)及抗癌作用等。

(BJ)第 1456 号

1. 一类含苯基和杂环基的青蒿素衍生物, 其特征在于这类青蒿素衍生物的通式如下:

式中 X=0, NU;

R=苯基, R。取代的苯基, 有2个相同或不相同R。和R。取代的苯基; XR=R。取代的苯基, 有2个相同或不相同R。和R。取代的苯基, 杂环基是碱基(腺嘌呤基, 胸腺嘧啶基, 胞嘧啶基, 尿嘧啶基以及它们具有B。取代的基和三氮唑基以及它们具有CONH。或R。取代的基);

R<sub>3</sub>=R<sub>4</sub>=羟基, 烷氧基(C<sub>1</sub>-C<sub>4</sub>), 烷基(C<sub>1</sub>-C<sub>4</sub>), 羧基, 酯基(C00CH<sub>3</sub>), C00C<sub>2</sub>H<sub>5</sub>), 乙酰胺基(NHCOCH<sub>3</sub>), 硝基, 卤素(F, C1, Br, I)和二氢青蒿素基。

- 2. 按权利要求1所述的一类含苯基和杂环基的青蒿素衍生物的制备方法,其特征在于由二氢青蒿素(或二氢青蒿素乙酸酯,二氢青蒿素三氟乙酸酯)与苯胺类(或苯酚类,取代苯基化合物,杂环类化合物或其硅醚衍生物)化合物在酸性催化剂作用下,于极性溶剂中反应生成一类含苯基和杂环基的青蒿素衍生物,前三者的克分子比为1:1-2:0.1-2,反应温度是-10℃至40℃。
- 3. 按权利要求2所述的青蒿素衍生物的制备方法, 其特征在于所述苯胺类是苯胺上有R。(同权利要求1所述)取代基的化合物。

- 5. 按权利要求2所述的青蒿素衍生物的制备方法, 其特征在于所述取代苯基化合物是苯上有R。取代基或2个相同或不相同的R。和R。(同权利要求1所述)取代基的化合物。
- 6. 按权利要求2所述的青蒿素衍生物的制备方法, 其特征在于所述杂环类化合物(或其硅醚衍生物)是碱基化合物[腺嘌呤、胸腺嘧啶、胞嘧啶, 尿嘧啶以及它们R。(同权利要求1所述)取代物] 和三氮唑类化合物以及它们具有CONH。基和R。(同权利要求1所述)取代基的化合物。
- 7. 按权利要求2所述的青蒿素衍生物的制备方法, 其特征在于所用酸性催化剂是三氟化硼乙醚络合物, 四氯化锡, 四氯化钛, 三氟乙酸, 对甲苯磺酸, 三氟甲磺酸三甲基硅酯, 硫酸和磷酸。
- 8. 按权利要求2所述的青蒿素衍生物的制备方法, 其特征在于所述极性溶剂是卤代烷, 乙醚, 乙腈, 四氢呋喃, 吡啶, 三乙胺和二甲亚砜。

## 含苯基和杂环基的青蒿素衍生物及其制备方法

本发明涉及稠环系含有氧原子作为环杂原子的杂环化合物, 具体地说是含有苯基和杂环基的青蒿素衍生物及其制备方法,

青蒿素(I)是中药青蒿(植物黄花蒿Artemisia annua L)的抗疟有效成份,有治疗抗药性疟疾和速效、低毒的特点。国内外科学家制备了大量青蒿素的12位衍生物(II),可参见下列文献,中国专利CN89109562.4(1989),CN93112454.9(1993),和CN89107547.X(1989).

(I) 式中X;=0, S

试验(鼠疟)时,显示无效。

为发掘一类含有苯基和杂环基取代的背蒿素衍生物潜在的生

本发明一类含有苯基和杂环基取代的青蒿素衍生物可用下列通式表示。

式中X=0, NH,

R=苯基, R<sub>3</sub>取代的苯基, 有2个相同或不相同R<sub>3</sub>和R<sub>4</sub>取代的苯基, XR=R<sub>3</sub>取代的苯基, 有2个相同或不相同R<sub>3</sub>和R<sub>4</sub>取代的苯基,

杂环基如碱基(腺嘌呤基、胸腺嘧啶基、胞嘧啶基、 尿嘧啶基以及它们具有R₃取代的基)和三氮唑( \_\_\_\_\_\_\_\_)基

以及它们具有CONH。或R。取代的基,

 $R_3$ =  $R_4$ = 羟基,烷氧基( $C_1$ — $C_4$ ),烷基( $C_1$ — $C_4$ ),羧基,酯基( $C_0$ OCH<sub>3</sub>,  $C_0$ OCC<sub>2</sub>H<sub>3</sub>),乙酰胺基( $NHCOCH_3$ ),硝基,卤素( $F_1$ C1、 $Br_1$ 1)和二氢青蒿素基等。

以下结构式中Q代表

波纹线(~)代表β取代或α取代 直线(一)代表β取代 虚线(···)代表α取代

本发明一类含苯基和杂环基取代的青蒿素衍生物的制备方法。 是将二氢青蒿素 IV (或二氢青蒿素乙酸酯 V,二氢青蒿素三氟乙酸 酯 V)与苯胺类(或苯酚类,取代苯基化合物,杂环类化合物或其硅 醚衍生物)化合物在酸性催化剂作用下,于极性溶剂中反应而生成。

制备方法可用下列反应式表示。

## 或杂环类化合物(或其硅醚衍生物)

式中R<sub>4</sub>, R<sub>4</sub>与XR含意如前所述。

苯胺类是苯胺上有R<sub>3</sub>取代基的化合物。

苯酚类是苯酚上有 $R_3$ 取代基或二个相同或不相同的 $R_3$ 和 $R_3$ 取代基的化合物。

取代苯基化合物是苯上有R。取代基或二个相同或不相同的R。 和R、取代基的化合物。

杂环类化合物(或其硅醚衍生物)是碱基化合物(腺嘌呤,胸腺嘧啶,胞嘧啶,尿嘧啶以及它们R₃取代物)和三氮唑( \_\_\_\_\_) →

类化物以及它们具有CONH。或R,取代基的化合物。

化合物(N)(或N, N)与苯胺类(或苯酚类, 取代苯基化合物,杂环类化合物或其硅醚衍生物)与酸性催化剂三者的克分子比为1:1-2:0.1-2. 所用酸性催化剂是三氟化硼乙醚络合物,四氟化锡,四氟化钛,三氟乙酸,对甲苯磺酸,三氟甲磺酸三甲基硅酯(TMSOTf),硫酸和磷酸等。

所用极性溶剂是卤代烷(如二氯甲烷,二氯乙烷和氯仿)、乙醚、乙腈、四氢呋喃、吡啶、三乙胺和二甲亚砜等。每0.1克分子二氢青蒿素类化合物(Ⅳ、Ⅴ、Ⅵ)用溶剂量300—3000m1, 反应温度是-10℃至40℃。用薄层层析跟踪,待反应完全, 倒人冰水,如有沉淀析出,则过滤,固体物用水洗涤后,再溶人溶剂(氯仿,二氟甲烷,乙酸乙酯等),如无沉淀析出。 则用上述同样溶剂提取,分出的有机层用碳酸氢钠水溶液洗,再水洗,干燥、浓缩后得的残留物经硅胶柱层析纯化,即得所需的产物。

本发明含苯基和杂环基的青蒿素衍生物经初步药理筛选,发现它们有明显的抗原虫作用和免疫调节作用,而且具有青蒿素母体化合物(I)没有的抗病毒(包括抗艾滋病毒),抗癌作用等,本发明青蒿素衍生物可直接利用青蒿素作原料,制备方法简便,反应条件温和。

本发明通过以下的实施例作进一步阐述,但并不限制本发明的范围。

实施例1,制备 Q-NH-(下)

将二氢青蒿素(化合物 N)20mmol和苯胺30mmol溶解于50ml吡

析跟踪,至反应基本完全,倒人冰水中,滤出白色沉淀物,用水洗涤后,溶人二氯甲烷,用碳酸氢钠水液洗,再用水洗,干燥、浓缩,残余物经硅胶柱层析,用乙酸乙酯/石油醚(1:8)洗脱,得到产物6.7g,产率93.2%,其物理常数见表1序号1.

将二氢青蒿素(化合物 IV) 20 mmol和间氯苯胺40 mmol溶入40 ml 二甲亚砜中,然后滴加三氟化硼乙醚络合物3 mmol, 使溶液呈酸性. 余下操作同实施例1. 得产物4.78g, 产率62.4%。 其物理常数见表1序号2.

将二氢青蒿素(化合物 N) 20mmol和对氨基苯甲酸30mmol溶于50ml三乙胺中,然后用硫酸10mmol使溶液呈酸性,余下操作同实施例1,得产物5.24g,产率61.6%。其物理常数见表1序号10。

将二氢青蒿素(化合物 N)10 mmol加人200ml二氯甲烷中, 再加人三氟乙酸酐20 mmol,于0-5℃反应。制成二氢青蒿素三氟乙酸酯(化合物 N)后,加人间硝基苯酚14 mmol,用薄层层析跟踪、继续反应至完全。倒人冰水中,分出有机层,用NaHCO<sub>3</sub>水液洗、水洗、干燥、浓缩、残留物经硅胶柱层析纯化得产物1.86g、产率46%。其物理常数见表1序号12。

实施例5. 制备 a-o-(-)-och,

将二氢青蒿素乙酸酯(化合物 V) 2mmol 和对甲氧基苯酚2.5 mmol 溶于30ml 乙醚中,在0-5℃时滴人三氟乙酸2.5mmol, 用薄层层析跟踪,搅拌反应至完全,后处理同实施例4,得产物355mg,产率45%,其物理常数见表1序号14.

将二氢青蒿素(化合物N)3mmol和对羟基苯甲酸甲酯3.3mmol 溶于80ml四氢呋喃中,室温加人催化剂对甲苯磺酸0.5mmol, 搅拌反应至反应完全。倒人冰水中,分出有机层,用NaHCO,水液洗,加乙酸乙酯,水洗,干燥,浓缩后残留物经硅胶柱层析纯化,得产物251mg,产率20%。其物理常数见表1序号17。

将二氢青蒿素乙酸酯(化合物 V) 2mmol 和对羟基乙酰苯胺3 mmol溶于40ml二氯甲烷中,加人四氯化钛催化剂0.4mmol, 然后在30-35℃反应。反应结束后,后处理同实施例4.得275mg产物,产率33%。其物理常数见表1序号18。

将二氢青蒿素(化合物 N)4mmol和间苯三酚4.5mmol溶于40ml二氯甲烷中,滴人三氟化硼乙醚络合物1mmol,在-5-0℃搅拌反应至反应完全。后处理同实施例4、硅层析时先流出化合物22、



将二氢青蒿素乙酸酯(化合物 V)2mmol溶于20ml无水乙腈中, 加人腺嘌呤2mmol, 滴人四氯化锡0.2mmol, 室温搅拌。反应结束 后,减压蒸去溶剂,加入氯仿溶解,余下操作同实施例4. 硅胶 柱层析后得产品547mg,产率70.8%。其物理常数见表1序号30。

实施例10,制备

将5一氟脲嘧啶4mmol与六甲基二硅胺(HMDS) 10ml在5ml干燥 吡啶中回流4小时,减压蒸干,然后加人二氢青蒿素乙酸酯(化合 物 V )1.5mmol的乙腈(5ml)溶液, 再加人三氟甲磺酸三甲基硅酯 的乙腈溶液(8ml的1M溶液), 室温搅拌至反应完全。 后处理同实 施例9, 得产物190mg, 产率36%. 其物理常数见表1序号31.

实施例11、制备

将二氢青蒿素(化合物 N )2mmol和3-乙酰胺基三氮唑2.6mmol 溶解于5ml吡啶中, 滴人浓硫酸3mmol使溶液呈酸性, 在30-35℃ 反应至完全。后处理同实施例1. 得产物154mg. 产率23%。 其物 理常数见表1序号32.

实施例12. 制备

将二氢青蒿素乙酸酯(化合物 V) 2mmol 和间二甲氧基苯2.5

mmol容于20ml氯仿中,滴入三氟化硼乙醚络合物0.2mmol, 室温搅拌至反应完全,后处理同实施例4,得产物176mg,产率16.7%. 其物理常数见表1序号27.

表」含苯基和杂环基的青蒿素衍生物

·

| ት<br>ኮ | 4                  |                 | _        |                                        |                                                                              |                                                                               |
|--------|--------------------|-----------------|----------|----------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|        | <b>元</b><br>中<br>重 | を<br>(C)<br>東   | ₩<br>(%) | IR (cm <sup>-1</sup> )                 | <sup>1</sup> НЛЫВ ( б , ррш)                                                 | 元 素 分 析实测值(理论值)                                                               |
|        | 0-M-               | 121. 6 –<br>122 | 93. 2    | 3000 – 3590,<br>1600, 880,<br>826      | 4. 82 (1H, d, J=9. 7Hz),<br>5. 42 (1H, s), 6. 75 - 7. 18 (6H, m)             | C 69.80 (70.17)<br>H 8.33 (8.13)<br>N 3.89 (3.90)                             |
|        | O-NH -O            | 146 –<br>146. 6 | 62.4     | 3360, 1600,<br>1600, 882,<br>830       | 4. 75 (1H, d, J = 9. 9H <sub>2</sub> ), 5. 43 (1H, s), 6. 63 - 8. 98 (4H, m) | C 64. 14 (64. 03)<br>H 7. 13 (7. 16)<br>N 3. 68 (3. 66)<br>C1 8. 99 (9. 00)   |
|        | O-NH               | 144.6-          | 72. 4    | 3360, 1600,<br>1500, 880,<br>330       | 4. 73 (1H, d, J = 9. 5Hz),<br>6. 39 (1H, s), 6. 65 – 7. 09 (4H, m)           | C 63. 91 (64. 03)<br>H 7. 16 (7. 16)<br>N 3. 34 (3. 56)<br>CI 8. 83 (9. 00)   |
|        | B,                 | 137. 6 –        | 62. 1    | 3420, 1696,<br>1510, 1482,<br>880, 828 | 4. 76 (1H, d, J = 9. 9Hz),<br>6. 42 (1H, s), 6. 62 - 6. 99 (4H, m)           | C 67. 61 (67. 64)<br>H 6. 38 (6. 44)<br>N 2. 83 (3. 20)<br>Br 18. 37 (18. 20) |
| · 9    | O-NH Br            | 162 – 153       | 75. 3    | 3360, 1590,<br>1500, 880,<br>825       | 4. 75 (111, d, J = 10. 1Hz),<br>5. 42 (1H, s), 6. 62 – 7. 31 (4H, m)         | C 57. 31 (57. 54) H 6. 42 (6. 44) N 2. 98 (3. 20) Br 18 60 (18. 20)           |

维表1

| <b></b>  | O-NH                     | 156. 6 –<br>158 | 60. 7      | 3370, 1590,<br>1500, 883,<br>828                             | 4. 75 (1H, d, J=9. 2Hz),<br>5. 40 (1H, s), 5. 51 – 7. 39 (4H, m)                           | C 52.06 (51.97) H 5.78 (5.81) N 2.91 (2.89)             |
|----------|--------------------------|-----------------|------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|
|          | Q-NH (_)-CH <sub>3</sub> | 149 - 160       | 88<br>8. 6 | 3360, 1616,<br>1618, 880,<br>826                             | 2. 22 (3H, s), 4. 98 (1H, d, J=<br>9. 9Hz), 5. 40 (1H, s),<br>6. 65 - 6. 98 (4H, m)        | C 70. 36 (70. 76)<br>H 8. 38 (8. 36)<br>N 3. 67 (3. 76) |
| <b>∞</b> | Q-NH-(-)-OCH,            | 144. 5 –        | 85. 0      | 3360, 1618,<br>1693, 1613,<br>880, 826                       | 3. 73 (3H, s), 4. 72 (1H, d, J= 10. 0Hz), 5. 39 (1H, s), 6. 70 (4H, m)                     | C 67. 69 (67. 84)<br>H 7. 94 (8. 02)<br>N 3. 41 (3. 60) |
| 6        | 0-NH (2004               | 163 – 166       | 17. 4      | 3400 - 3500,<br>3370, 1650,<br>1605, 1520,<br>1500, 882, 825 | 4. 96 (1H, d, J=9. 8Hz),<br>5. 66 (1H, s), 6. 89 – 7. 43 (4H, m)                           | C 62. 60 (62. 64)<br>H 7. 57 (7. 36)<br>N 3. 31 (3. 37) |
| 01       | H000{-}-NH0              | 165 - 157       | 61.6       | 3490, 3390,<br>1655, 1610,<br>1520, 1600,<br>884, 825        | 4. 90 (I.H. d, J = 9. 7Hz),<br>5. 58 (IH, 8), 6. 83 - 7. 73 (4H, m)                        | C 62. 77 (62. 64)<br>H 7. 39 (7. 36)<br>N 3. 27 (3. 37) |
| =        | (oo                      | 162             | 65         | 1600, 1590,<br>1085, 890,<br>765                             | 5. 54 (1H, s), 5. 78 (1H, d, J=<br>6. 4Hz), 6. 97 (1H, t),<br>7. 14 (2H, d), 7. 26 (2H, t) | C 69.58 (69.98)<br>H 7.83 (7.83)                        |
|          |                          |                 | 1          |                                                              |                                                                                            |                                                         |

| -  | 1 |
|----|---|
| ıф | į |
| ₩  | ۴ |
| ₩  | K |

| . : |              |     |       |                                              |                                                                                                           |                                                |
|-----|--------------|-----|-------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 救   | <b>续表</b> 1  |     |       |                                              |                                                                                                           |                                                |
| 13  | 0-0-0        | 108 | 9}    | 1620, 1680,<br>1620, 876,<br>826             | 6. 43 (1H, s), 6. 56 (1H, d, J=3. 1Hz), 7. 44 - 7. 91 (4H, m)                                             | C 62.34 (62<br>H 5.86 (6.7                     |
| £ 1 | 0-0-(_)-NO2  | 162 | 23. 3 | 1690, 1610,<br>1096, 875,<br>830, 760        | 6. 40 (1H, s), 6. 58 (1H, d, J = 3. 4Hz), 7. 16 $\sim$ 7. 19 (2H, m) 8. 17 $\sim$ 8. 19 (2H, m)           | C 62. 49 (62<br>H 6. 84 (6. 7<br>N 3. 36 (3. 4 |
| =   | 0-0 () OCH,  | 126 | 46    | 1510, 1370,<br>1100, 980,<br>880, 830        | 3. 76 (3H, s) 6. 36 (1H, d, J = 3. 3Hz), 6. 51 (1H, s), 8. 79 - 6. 81 (2H, m), 7. 00 - 7. 04 (2H, m)      | C 87.87 (67<br>H 7.70 (7.7                     |
| 9   | 0-0-4,       | 106 | 62    | 1640, 1360,<br>1100, 880,<br>830             | 0.90 (3H, t), 6.38 (1H, d, J=3.3Hz), 5.52 (1H, s), 6.77 - 6.80 (2H, m), 7.00 - 7.06 (2H, m)               | C 68.83 (68.<br>H 8.09 (8.1                    |
| 9   | H005         | 182 | 11. 3 | 3400 – 3500,<br>1700, 1605<br>1100, 880, 780 | 5. 43 (1H, s), 5. 68 (1H, d, J=<br>3. 2Hz), 7. 16 (2H, d),<br>8. 04 (2H, d)                               | C 55.40 (65.<br>H 5.89 (6.9;                   |
| 11  | а—о———соосн, | 145 | 30    | 1720, 1600,<br>1605, 1100,<br>880, 780, 700  | 3. 87 (3H, s), 5. 43 (1H, s)<br>6. 56 (1H, d, J = 3. 4Hz), 7. 10~<br>7. 13 (2H, m), 7. 95 – 7. 98 (2H, m) | C 65.96 (66.<br>H 7.21 (7.3:                   |
|     |              |     |       |                                              |                                                                                                           |                                                |

.

**续表**1

|           |             |           | -          |                                |                        |                                                                                                                                         |                                                   |
|-----------|-------------|-----------|------------|--------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| <b>20</b> | Q-O-        | <b>49</b> | ee ee      | 3410,<br>1610,<br>880,         | 1670,<br>1100,<br>840  | 2. 13 (3H, s), 6. 41 (1H, d, J=3. 3Hz), 6. 47 (1H, s), 7. 04 (2H, d), 7. 36 (2H, d), 7. 16 (1H, s, D <sub>2</sub> 0交换时消失)               | C 65.96 (66.16)<br>H 7.64 (7.48)<br>N 3.34 (3.36) |
| 19        | Q-m-O-()-Br | 86        | 4.1        | 1485,<br>1096,<br>830          | 1375,<br>880,          | 6.42, $6.71$ (1H, d, d, $J=3.3Hz$ , $6.4Hz$ ), $6.44$ , $6.61$ (1H, s, s), $6.97-7.04$ (2H, $m$ ), $7.34-7.37$ (2H, d)                  | C 67.44 (67.41)<br>H 6.21 (6.19)                  |
| 30        | HO -0-0     | 143       | 18<br>8. 8 | 3400,<br>1600,<br>1040,<br>830 | 1600,<br>1100,<br>880, | 5. 45 (1H, d, J=3. 1H2), 5. 47 (1H, s) 6. 45-6. 48 (1H, m), 6. 63-5. 67 (2H, m), 7. 08-7. 12 (1H, m), 1. 65 (1H, D <sub>2</sub> 0交换时消失) | C 66.81 (67.00)<br>H 7.36 (7.51)                  |
| 12        | °           | 146       | 13. 6      | 1600,<br>980,<br>780           | 1100,<br>880,          | 5. 48 (2H, s), 5. 49 (2H, d, J = 3. 3Hz), 6. 75 - 6. 79 (2H, m) 7. 14 ~ 7. 19 (1H, m)                                                   | C 67.60(67.77)<br>H 7.96(7.84)                    |
| 22        | 8           | 138       | 25. 3      | 1600,                          | 1100,                  | 5.48 (1H, s), 5.49 (2H, d, J=3.3Hz), 7.16 (3H, s)                                                                                       | C 66.31 (66.21)<br>H 7.78 (7.85)                  |
| 23        | 8<br>2<br>4 | 151       | 28. 1      | 3400,<br>1100,<br>880,         | 1600,<br>900,<br>830   | 1.60(1H, D <sub>2</sub> 0交换时消失),<br>6.43(2H, s) 6.46(2H, d, J=<br>3.3Hz), 6.91-6.94(2H, m)<br>7.18(1H, m)                               | C 65. 50 (65. 83)<br>H 7. 68 (7. 66)              |
|           |             |           |            |                                |                        |                                                                                                                                         |                                                   |

**续表1** 

| 34 | 0-0-CH3     | 油状物             | 84.3  | 84. 3 1610, 1510, 1100, 940, 820 | 1610,<br>940,<br>820  | 2. 26 (3H, 8), 6. 49 (1H, 8),<br>6. 43 (1H, 8, $J = 3.3Hz$ ),<br>6. 97 ~ 7. 07 (4H, m)                                                      | C 70. 66 (70. 59)<br>H 8. 02 (8. 02) |
|----|-------------|-----------------|-------|----------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 36 | Q—0—()—c,H, | 油状物             | 70. 2 | 1600,<br>1100,<br>830            | 1620.<br>880,         | 0. 98 (3H, t), 6. 50 (1H, s),<br>6. 44 (1H, s, J = 3. 2Hz),<br>6. 98 ~ 7. 09 (4H, m)                                                        | C 71. 63 (71. 54)<br>H 8. 46 (8. 46) |
| 98 | а{он        | 138             | 14.0  | 3445,<br>1585,<br>880,           | 1630,<br>1100,<br>830 | 1. 68 (1H, s, D <sub>2</sub> 0交换时消失),<br>4. 41 (1H, d, J=11. 2Hz),<br>5. 41 (1H, s), 6. 31 - 6. 33 (1H, q),<br>6. 47 (1H, d), 6. 76 (1H, d) | C 67.69 (67.67)<br>H 7.74 (7.74)     |
| 27 | och,        | 134             | 26. 7 | 1616,<br>1100,<br>830            | 1590,<br>880,         | 3. 74 (3H, s), 3. 78 (3H, s)<br>4. 92 (1H, d, J = 10. 5Hz),<br>5. 38 (1H, s), 6. 37 (1H, d)<br>6. 51 - 6. 54 (1H, q), 7. 52 (1H, d)         | C 68. 36 (68. 29)<br>H 8. 00 (7. 97) |
| 88 | O           | 141 – 143       | 33.0  | 33. 0 1710,<br>1100, 8           | 1620,<br>880,         | 3.85 (3H, s), 4.94 (1H, d, J=<br>10.8Hz), 6.48 (1H, s),<br>6.40 (1H, m), 7.55 - 7.59 (3H, m)                                                | C 65.89 (66.01)<br>H 7.08 (7.23)     |
| 50 | <b>₩</b>    | 118 - 119 28. 3 | 28. 3 | 3450, 1<br>1100, 8               | 1610,<br>880,         | 1.63(1H, s, D <sub>2</sub> 0交换时消失),<br>4.51(1H, d, J=10.8Hz),<br>6.43(1H, s), 6.33-6.80(4H, m),                                             | C 69. 88 (69. 97)<br>H 7. 76 (7. 83) |

| 30 | Z Z Z Z | 221 – 234    | 70. 7 | 221 - 224 70. 7 3000 - 3410,<br>1630, 1600,<br>1650, 880,<br>830 | 6. 62 (1H, d, J=10. 7Hz),<br>6. 62 (1H, s), 7. 98 (1H, s),<br>8. 44 (1H, s)  | C 66. 19 (66. 12)<br>H 6. 41 (6. 41)<br>N 16. 36 (16. 63) |
|----|---------|--------------|-------|------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|
| 31 | 311Z    | 311 - 213 36 | 36    | 3350, 1750,<br>1100, 880,<br>820                                 | 4. 85 (1H, d, J = 10. 3Hz),<br>6. 66 (1H, s), 7. 86 (1H, s),                 | C 57.48 (57.56)<br>H 6.21 (6.36)<br>N 6.87 (7.07)         |
| 32 | CONH    | 203 - 206    | 23    | 3510 - 3420,<br>1700, 1600,<br>1100, 890, 820                    | 3510-3420,<br>1700, 1600,<br>1100, 890, 820<br>5. 53 (1H, s), 8. 25 (1H, s), | C 56. 88 (57. 13)<br>H 6. 90 (6. 93)<br>N 14. 73 (14. 81) |