CS 613 - Machine Learning

Assignment 1 - Dimensionality Reduction & Clustering Alex Lapinski Fall 2016

10/01/2016

Part 1 - Answers to Theory Questions

1. Why do we like to use quadratic error functions (say over a 4th degree polynomial function) (2pts)?

The primary reason for using a quadratic error function is that there can only be one maximum or minum.

2. Consider the following data:

$$\begin{bmatrix} -2 & 1 \\ -5 & -4 \\ -3 & 1 \\ 0 & 3 \\ -8 & 11 \\ -2 & 5 \\ 1 & 0 \\ 5 & -1 \\ -1 & -3 \\ 6 & 1 \end{bmatrix}$$

(a) Find the principle components of the data (you must show the math, including how you compute the eigenvectors and eigenvalues). Make sure you standardize the data first and that your principle components are normalized to be unit length (5pts).

$$Mean_{col1} = \mu_1 = (-2 + -5 + -3 + 0 + -8 + -2 + 1 + 5 + -1 + 6)/10 = -0.9$$

 $Mean_{col2} = \mu_2 = (1 + -4 + 1 + 3 + 11 + 5 + 0 + -1 + -3 + 1)/10 = 1.4$
 $Mean = \mu = [-0.91.4]$
 $StandardDeviation_{col1} = \sigma_1 = 4.22821213$
 $StandardDeviation_{col2} = \sigma_2 = 4.27395211$
 $StandardDeviation = \sigma = 4.22821213 - 4.27395211$
 $StandardDeviation = (Data - \mu)/\sigma$

(b)	Project the found in the	data onto the previous part	principal (3pts).	component	corresponding	to the	largest	eigenvalue

3. Consider the following data:

Class
$$1 = \begin{bmatrix} -2 & 1 \\ -5 & -4 \\ -3 & 1 \\ 0 & 3 \\ -8 & 11 \end{bmatrix}$$
, Class $2 = \begin{bmatrix} -2 & 5 \\ 1 & 0 \\ 5 & -1 \\ -1 & -3 \\ 6 & 1 \end{bmatrix}$

(a) Compute the information gain for each feature. You could standardize the data overall, although it won't make a difference. (5pts).

(b)	Which feature is more discriminating based on results in part a (1pt)?

(c) Using LDA, find the direction of projection (you must show the math). Normalize this vector to be unit length.

Note: You don't not have to standardize the data since your computations should take into account the mean and standard deviations of the classes separately. (5pts).

(d) Project the data onto the principal component found in the previous part (3pts).

(e)	Does the projection you performed in the previous part seem to provide good class separation? Why or why not (1pt)?

Part 2 - PCA Result

TODO: Include graph of visualization of the PCA Result

Part 3 - Visualization of k-means

Initial Setup

TODO: Insert Graph of initial setup visualization

Initial Cluster Assignment

TODO: Insert graph of initial cluster assignment visualization

Final Cluster Assignment

TODO: Insert graph of final cluster assignment visualization

Results

TODO: Report how many iterations it took for the algorithm to terminate

Raw Graphs

Figure 1: Raw Data 1

Figure 2: Raw Data 2

Figure 3: Raw Data 3