Problem 2.3.1

Let T be a linear transformation on $V_3(\mathbb{R})$ defined by T(a,b,c)=(3a,a-b,2a+b+c) $\forall (a,b,c) \in V_3(\mathbb{R})$. Is T invertible?. If so, find a rule for T^{-1} as the one which defines T.

For proving T is invertible, we need to show only T is one-one and onto. To prove one-one:

Let

$$\alpha = (a_1, b_1, c_1) \in V_3(\mathbb{R})$$

$$\beta = (a_2, b_2, c_2) \in V_3(\mathbb{R})$$

Then,

$$T(\alpha) = T(\beta)$$

$$T(a_1, b_1, c_1) = T(a_2, b_2, c_2)$$

$$(3a_1, a_1 - b_1, 2a_1 + b_1 + c_1) = (3a_2, a_2 - b_2, 2a_2 + b_2 + c_2)$$

$$VI$$
BHO

$$3a_{1} = 3a_{2}$$

$$a_{1} = a_{2}$$

$$a_{1} - b_{1} = a_{2} - b_{2}$$

$$a_{2} = b_{2}$$

$$c_{1} = c_{2}$$

$$(a_{1}, b_{1}, c_{1}) = (a_{2}, b_{2}, c_{2})$$

$$\alpha = \beta$$

T is one-one.

To prove onto:

T is linear transformation on a finite dimensional vector space $V_3(\mathbb{R})$, where dimension in 3.

 \Rightarrow Also T is one-one

 \Rightarrow T must be onto

 \Rightarrow T is invertible

If
$$T(a,b,c) = (p,q,r)$$

then, $T^{-1}(p,q,r) = (a,b,c)$
 $T(a,b,c) = (p,q,r)$
 $(3a,a-b,2a+b+c) = (p,q,r)$
 $3a = p$
 $p = 3a$
 $a = \frac{p}{3}$
 $a-b=q$
 $\frac{p}{3}-b=q$
 $\frac{p}{3}-q=b$

$$2a + b + c = r$$

$$2\frac{p}{3} + \left(\frac{p}{3} - q\right) + c = r$$

$$c = r - p + q$$

$$T^{-1}(p,q,r) = (a,b,c)$$
$$= \left(\frac{p}{3}, \frac{p}{3} - q, r - p + q\right)$$

Example 2.3.2

Let T be a linear map on $V_3(R)$ defined by T(a, b, c) = [3a, a - b, 2a + b + c] $\forall a, b, c \in \mathbb{R}$. Is T invertible? If so find a rule for T^{-1} like one which define T.

For proving T is invertible, we need to show that T is one-one and onto. To prove one-one:

Let $\alpha = (a_1, b_1, c_1), \beta - (a_2, b_2, c_2)$ be any two elements of $V_3(\mathbb{R})$.

$$T(\alpha) = T(\beta)$$

$$T(a_1, b_1, c_1) = T(a_2, b_2, c_2)$$

$$(3a_1, a_1 - b_1, 2a_1 + b_1 + c_1) = (3a_2, a_2 - b_2, 2a_2 + b_2 + c_2)$$

$$3a_{1} = 3a_{2}$$

$$a_{1} - b_{1} = a_{2} - b_{2} + c_{2}$$

$$2a_{1} + b_{1} + c_{1} = 2a_{2} + b_{2} + c_{2}$$

$$a_{1} = a_{2}$$

$$a_{1} - b_{1} = a_{2} - b_{2}$$

$$-b_{1} = -b_{2}$$

$$b_{1} = b_{2}$$

$$a_{1} + b_{1} + c_{1} = 2a_{2} + b_{2} + c_{2}$$

$$a_{1} = b_{1}$$

$$b_{1} = b_{2}$$

$$c_{1} = c_{2}$$

$$(a_{1}, b_{1}, c_{1}) = (a_{2}, b_{2}, c_{2})$$

$$\alpha = \beta$$

$$T(\alpha) = T(\beta)$$

$$\alpha = \beta$$

$$T := A \to B$$

Hence *T* is one-one.

To find onto:

Since, *T* is a linear one-one map on a finite dimensional vector space.

- \Rightarrow *T* is onto.
- \Rightarrow T is one-one and onto.
- \Rightarrow T is invertible.

Second part:

Let
$$T(a, b, c) = (p, q, r)$$
 (10)
Then $T^{-1}(p, q, r) = (a, b, c)$

Now

$$T(a,b,c) = (p,q,r)$$

$$(3a,a-b,2a+b+c) = (p,q,r)$$

$$3a = p$$

$$a = \frac{p}{3}$$

$$\therefore a-b=q$$

$$\frac{p}{3}-b=q$$

$$\frac{p}{3}-q=b$$

$$\therefore 2a + b + c = r$$

$$2\frac{p}{3} + \left(\frac{p}{3} - q\right) + c = r$$

$$c = r - p + q$$

Put the value of a, b, c in equation (??)

$$T^{-1}(p, q, r) = \left(\frac{p}{3}, \frac{p}{3} - a, r - p + q\right)$$

or

$$T^{-1}(x, y, z) = \left(\frac{x}{3}, \frac{x}{3} - y, z - x + y\right)$$

which is the rule which defines T^{-1} .

Definition 2.3.3 (Wronskian)

Let f and g be differentiable on [a,b]. If Wronskian $W(f,g)(t_0)$ is nonzero for some t_0 in [a,b] then f and g are linearly independent on [a,b]. If f and g are linearly dependent then the Wronskian is zero for all t in [a,b].

Problem 2.3.4

Using Wronskian method prove that $\{e^{3x}, e^{5x}\}$ *is a linearly independent set on* \mathbb{R} .

Set $f(x) = e^{3x}$, $g(x) = e^{5x}$. Then,

$$W(f(x), g(x)) = \begin{vmatrix} f(x) & g(x) \\ f'(x) & f''(x) \end{vmatrix}$$
$$= \begin{vmatrix} e^{3x} & e^{5x} \\ 3e^{3x} & 5e^{5x} \end{vmatrix}$$
$$= 5e^{8x} - 3e^{8x}$$
$$= 2e^{8x}$$
$$\neq 0 \quad (\forall x \in \mathbb{R})$$

The given set $\{e^{3x}, e^{5x}\}$ is linearly independent.

Problem 2.3.5

Using Wronskian method prove that $\{e^{2x}, \cos(x), 2e^{2x}\}$ is a linearly dependent set on \mathbb{R} .

Set
$$f(x) = e^{2x}$$
, $g(x) = \cos x h(x) = 2e^{2x}$. Then,

$$W(f(x), g(x), h(x))$$

$$= \begin{vmatrix} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{vmatrix}$$

$$= \begin{vmatrix} e^{2x} & \cos x & 2e^{2x} \\ 2e^{2x} & -\sin x & 4e^{2x} \\ 4e^{2x} & -\cos x & 8e^{2x} \end{vmatrix}$$

$$= e^{2x} \begin{vmatrix} -\sin x & 4e^{e}2x \\ -\cos x & 8e^{2x} \end{vmatrix} - 2e^{2x} \begin{vmatrix} \cos x & 2e^{2x} \\ -\cos x & 8e^{2x} \end{vmatrix} + 4e^{2x} \begin{vmatrix} \cos x & 2e^{2x} \\ -\sin t & 4e^{2x} \end{vmatrix}$$

$$= e^{2x} \left(-8e^{2x}\sin x + 4e^{2x}\cos x \right) - 2e^{2x} \left(8e^{2x}\cos x + 2e^{2x}\cos x \right)$$

$$+ 4e^{2x} \left(4e^{2x}\cos x + 2e^{2x}\sin x \right)$$

$$= e^{2x} (-8 \sin x + 4 \cos x - 20 \cos x + 16 \cos x + 8 \sin x)$$

= $e^{4x}(0)$
= $0 \ (\forall x \in \mathbb{R})$

Example 2.3.6

Using Wronskian method prove that $\{1, x, x^2\}$ is a linearly dependent set on \mathbb{R} .

Ans: $W(f(x), g(x), h(x)) = 2 \neq 0$, So the set is linearly independent.

