БЛОКИ КОМПЬЮТЕРА И ИХ НАЗНАЧЕНИЕ

Принципы фон Неймана

1.Принцип двоичного кодирования.

Для представления данных и команд используется двоичная система счисления.

2.Принцип однородности памяти.

Как программы (команды), так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления — чаще всего двоичной). Над командами можно выполнять такие же действия, как и над данными.

3.Принцип адресуемости памяти.

Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.

4. Принцип последовательного программного управления.

Все команды располагаются в памяти и выполняются последовательно, одна после завершения другой.

5.Принцип условного перехода.

Команды из программы не всегда выполняются одна за другой. Возможно присутствие в программе команд условного перехода, которые изменяют последовательность выполнения команд в зависимости от значений данных.

6.принцип хранимой программы.

Реализуемая компьютером функция целиком определяется хранимой в памяти программой; замена программы полностью изменяет функцию компьютера.

Основные блоки системы Неймановской архитектуры

Функции процессора

Выполнение операций, заданных инструкциями хранимой в памяти программы и управление всеми компонентами системы.

Процессор всегда выполняет одну и ту же последовательность действий:

- Выборка команды из памяти;
- Декодирование команды;
- Выборка операндов команды;
- Выполнение команды;
- Запись результатов.

Представление программы в памяти

- **Программа** последовательность управляющих слов (команд) с явным или неявным порядком выполнения.
- **Команда** содержит код операции и информацию об операндах
- **Операция** действие, выполняемое на уровне аппаратуры процессора
- **Операнды** единицы информации, над которыми выполняется операция

Структура команды:

Архитектура процессоров - CISC

Complex Instruction Set Computer
Процессоры со «сложной» системой команд
Большое количество команд, различающихся:

- длиной;
- формами адресации операндов;
- временем выполнения.

выполнение команд плохо конвейеризуется Команды выполняются строго последовательно - пока одна не закончит выполнение — другая исполняться не будет

Архитектура процессоров - RISC

Reduced Instruction Set Computer
Процессоры с «сокращённым» набором команд

Набор команд унифицирован:

- команды имеют одинаковую длину;
- однотипные методы адресации операндов;
- одинаковое время исполнения;
- операции выполняются в регистрах процессора;
- большой объём регистровой памяти;
- отсутствие микропрограмм;

Команды хорошо конвейеризуются, обеспечивается параллелизм на уровне отдельных команд, упрощается структура процессора.

Использование конвейера

Порядковый номер инструкции в конвейере

RISC-подобные архитектуры

- MISC Minimum Instruction Set Computer Компьютер с минимальным набором команд
- OISC (URISC) One Instruction Set Computer
 - MIPS <u>Microprocessor</u> without <u>Interlocking</u> <u>Pipeline</u> <u>S</u>tagies
 - ARM <u>A</u>corn <u>R</u>isc <u>M</u>achine (<u>A</u>dvanced <u>R</u>ISC <u>M</u>achine)

Архитектура процессоров - VLIW

Very Long Instruction Word
Процессоры с «очень длинным» словом команды

Характеристики процессоров

- Архитектура процессора;
- Длина машинного слова;
- Объём адресуемой памяти;
- Объём и организация кэш-памяти;
- Быстродействие (MIPS, FLOPS);
- Тактовая частота;
- Потребляемая мощность;
- Термохарактеристика (TDP);
- Технология изготовления.

Виды памяти вычислительной системы

По функционалу:

- Основная (оперативная память) (RAM Randomy Access Memory);
- Постоянные запоминающие устройства (ПЗУ, ROM Read Only Memory);
- Кэш-память (Cache Memory);

По технологии изготовления:

- Динамическая память (DRAM);
- Статическая память (SRAM);

Организация оперативной памяти

Слово 0 Адрес 0

Слово 1 Адрес 4

. .

Слово N Адрес (N-1)*4

Байт 0	Байт 1	Байт 2	Байт 3

Организация оперативной памяти (порядок байтов)

Порядок Little-endian

Байт 0 Байт 1	Байт 2	Байт 3
---------------	--------	--------

Порядок Big-endian

Байт 3 Байт 2	Байт 1	Байт 0
---------------	--------	--------

Использование ПЗУ

Состав ROM-памяти РС-компьютера

- <u>POST</u> Power-On-Self-Test самотестирование при включении питания;
- **Setup** установка параметров системы;
- <u>IPL</u> Initial Program Loader процедура начальной загрузки системы;
- **BIOS** Basic Input/Output System базовый набор процедур ввода/вывода;

UEFI — Unified Extensible Firmware Interface - современная замена BIOS и IPL

Технология «теневой» памяти

Организация Cache Memory

Иерархия кэш памяти

