Section 4: Gaussian processes

4.1 Non-linear functions

4.1.1 Regression view

So far, we've assumed our latent function is a linear function of our data – which is obviously limiting. One way of circumventing this is to project our inputs into some high-dimensional space using a set of basis functions $\phi : \mathbb{R}^d \to \mathbb{R}^N$, and then performing linear regression in that space, so that

$$y_i = \phi(x)^T \beta + \epsilon_i$$

For example, we could project x into the space of powers of x, i.e. $\phi(x) = (1, x, x^2, x^3, \dots)$ to obtain polynomial regression.

Exercise 4.1 Let \mathbf{y} and \mathbf{X} be set of observations and corresponding covariates, and y_* be the unknown value we wish to predict at covariate \mathbf{x}_* . Assume that

$$\begin{split} \beta \sim & N(0, \Sigma) \\ \begin{bmatrix} f_* \\ \mathbf{f} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\phi}_T^T \\ \boldsymbol{\Phi}^T \end{bmatrix}^T \beta \\ \begin{bmatrix} y_* \\ \mathbf{y} \end{bmatrix} \sim & N\left(\begin{bmatrix} f_* \\ \mathbf{f} \end{bmatrix}, \sigma^2 \mathbf{I}\right) \end{split}$$

where $\phi := \phi(\mathbf{x})$ and $\Phi := \phi(\mathbf{X})$.

What is the predictive distribution $p(f_*|\mathbf{y},\mathbf{x}_*,\mathbf{X})$? Note: this is very similar to questions we did in Section 1.

If (as here) we only ever access ψ via this inner product, we can choose to work instead with $k(\cdot,\cdot)$. This may be very convenient if the dimensionality of $\psi(x)$ is very high (or even infinite... see later). $k(\cdot,\cdot)$ is often referred to as the kernel, and this replacement is referred to as the kernel trick.

Exercise 4.2 Let's look at a concrete example, using the old faithful dataset on R

- data("faithful",package="datasets") in R
- or available as faithful.csv on github if you're not using R.

Let $\phi(x) = (1, x, x^2, x^3)$. Using appropriate priors on β and σ^2 , obtain a posterior distribution over $f := \phi(x)^T \beta$. Plot the function (with a 95% credible interval) by evaluating this on a grid of values.

Note that, in the solution to Exercise 1, we only ever see ϕ or Φ in a form such as $\Phi^T \Sigma \Phi$. We will define $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}^T \Sigma \phi(\mathbf{x}'))$. Since Σ is positive definite, we can write:

$$k(\mathbf{x}, \mathbf{x}') = \psi(\mathbf{x})^T \psi(\mathbf{x})$$

where $\psi(\mathbf{x}) = \phi(\mathbf{x}) \Sigma^{1/2}$

4.1.2 Function space view

Look back at the plot from Exercise 2. We specified a prior distribution over regression parameters, which we can use to obtain a posterior distribution over those regression parameters. But, what we calculated (and plotted) was a posterior distribution over functions. Similarly, we can think of our prior on β as specifying a prior distribution on the space of cubic functions. Evaluated at a finite number of input locations – as you did in Exercise 2 – this posterior distribution is multivariate Gaussian. This is in fact the definition of a Gaussian process: A distribution over functions, such that the marginal distribution evaluated at any finite set of points is multivariate Gaussian.

A priori, the covariance of f is given by

$$cov(x, x') = E[(f(x) - m(x))(f(x^{T}) - m(x^{T}))] = k(x, x')$$

. For this reason, our kernel k is often referred to as the covariance function (note, it is a function since we can evaluate it for any pairs x, x'). In the above example, where β had zero mean, the mean of f is zero; more generally, we will assume some mean function m(x).

Rather than putting a prior distribution over β , we can specify a covariance function – remember that our covariance function can be written in terms of the prior covariance of β . For example, we might let

$$k(x, x') = \exp\left\{-\frac{1}{2\ell}|x - x'|^2\right\}$$

- this is known as a squared exponential covariance function, for obvious reasons. This prior encodes the following assumptions:
 - The covariance between two datapoints decreases monotonically as the distance between them increases.
 - The covariance function is stationary it only depends on the distance between x and x', not their locations
 - Even more than being stationary, it is isotropic: It depends only on |x-x'|.

Exercise 4.3 Let's explore the resulting distribution over functions. Write some code to sample from a Gaussian process prior with squared exponential covariance function, evaluated on a grid of 200 inputs between 0 and 100. For $\ell = 1$, sample 5 functions and plot them on the same plot. Repeat for $\ell = 0.1$ and $\ell = 10$. Why do we call ℓ the lengthscale of the kernel?

Exercise 4.4 Let $\mathbf{f}_* := f(\mathbf{X}_*)$ be the function f evaluated at test covariate locations \mathbf{X}_* . Derive the posterior distribution $p(\mathbf{f}_*|\mathbf{X}_*,\mathbf{X},\mathbf{y})$, where \mathbf{y} and \mathbf{X} comprise our training set. (You can start from the answer to Exercise 1 if you'd like).

Exercise 4.5 Return to the faithful dataset. Evaluate the posterior predictive distribution $p(\mathbf{f}_*|\mathbf{X}_*,\mathbf{X},\mathbf{y})$, for some reasonable choices of parameters (perhaps explore a few length scales if you're not sure what to pick), and plot the posterior mean plus a 95% credible interval on a grid of 200 inputs between 0 and 100, overlaying the actual data.