UNIVERSIDAD AUTONOMA GABRIEL RENE MORENO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIAS

Carrera de Ingeniería Informática

Materia: Estructura de Datos I INF 220

"Tema 1. Introducción a las Estructuras de Datos"

Docente: Ing. Ubaldo Pérez Ferreira

E-mail: ubaperez@gmail.com

<wrd>
<crd title = "TV interface">
<crd title = "TV interface">
<chrd title = "TV interface">
<chrd title = "thannell word"> bit Core: Wireless Ture
 orricono beldess 2003
 back
 back
 back
<a

Santa Cruz de la Sierra – Bolivia © 2021

En el campo de la ciencia de la computación, hallamos la definición como el "estudio de algoritmos", sin embargo, no se hace referencia a la palabra "dato".

Si el computador es considerado como un medio y su fin.

El algoritmo es el medio, pero la transformación de datos es su objetivo.

Es muy frecuente definir un computador como una maquina que procesa datos, es decir, datos crudos son ingresados y se utiliza un algoritmo para transformarlo en datos refinados

Por lo tanto, alternativamente diremos que la Ciencia de la Computación es el estudio de "dato".

- i. Maquinas que almacenan datos.
- ii. Fundamento que describen que clase de datos son producidos a partir de datos crudos.
- iii. Representación de Estructuras de Datos.

Datos

Algoritmos

Información

www.miles.com

</www.

Es así que, la Ciencia de la Computación puede ser definida como:

El estudio del dato, su representación y transformación mediante computadores digitales

Esto implica conocer:

Las diferentes Estructuras de Datos.

Las operaciones que operan sobre las mismas y de que manera se las puede representar

Esto implica dominar dos técnicas:

•Habilidad para representar las diferentes formas de datos.

•Habilidad para analizar los algoritmos que operan sobre los datos.

Aclarando conceptos.

Tipos de Datos. Conjunto de Valores + Conjunto de Funciones definidas sobre los Valores.

Tipos Abstractos de Datos (TAD). Colección de Valores y Operaciones Definidas mediante una especificación independiente de cualquier representación.

Estructura de Datos. Colección de variables interconectadas de formas diversas para "dar servicio" al TAD que implementa.

Abstracción

- Abstraer: Eliminar lo irrelevante y quedarnos con lo realmente importante.
- ¿Qué es lo importante?
 - En cada parte del trabajo puede serlo cosas distintas
- Para llevar a cabo la abstracción los lenguajes nos proporcionan mecanismos:
 - Módulos, clases, genericidad, ocultación, encapsulación, ...

- Un TAD es definido por el programador.
- Están conformado por: Datos (Estructura de Datos) y Operaciones (Funciones y Procedimientos) que se realizan sobres esos datos.
- El conjunto de Operaciones debe ser Cerrado, es decir solo se debe acceder a los datos mediante estas operaciones.

<wrd>
< card title = "TV interface"> Br Coro: Wireless Tune
< a heaf = "channel" word" > Br Coro: Wireless Tune
< a heaf = "card word" > cord condited does 2003
< a heaf = "back word" > back
< factor</p>

Un TAD se compone de dos partes

Interfaz. Se declaran los Datos y sus operaciones

Implementación. Contiene el código fuente de las operaciones y lo mantiene oculto al usuario.

cond>
 cond title = "TV interface">
 cond title = "TV interface">
 cond title = "thermell wmf"> Bit Cond Windows Tune
 call had = "back wmf"> back
 call had = "back wmf"> back

Ventajas de un TAD

- 1. Mejoran la conceptualización y hacen más claro y comprensible el código.
 - 2. Hacen que el sistema sea más robusto.
 - 3. Reducen el tiempo de compilación.
 - 4. Permiten modificar la implementación sin que afecte al interfaz público.
 - 5. Facilitan la extensibilidad.

Construcción de un TAD

La construcción de un TAD consta de dos fases bien diferenciadas entre ellas:

- la especificación (formal e informal)
- implementación.

Las características de un TAD no deben depender de su realización concreta, sino solamente de cómo queremos que sea su comportamiento, lo cual llamamos especificación.

Especificaciones informales.

La descripción de una abstracción se realiza con un lenguaje natural (ambiguas e imprecisas).

Notación de espeficicación:

Partes que debe tener la especificación,

Significado y tipo de cada parte,

Partes que pueden ser opcionales, ...

Kerditte

<cord title = "TV interface">
 Br Cord: Wreless Ture
 britonic beiden 2003
 britonic beiden 2003
 britonic beiden 2003

Especificaciones informales.

Ejemplo: concatenar dos cadenas.

- Operación concat (ent a, b: cadena; sal c: cadena)
- <u>Calcula</u>: la cadena de salida <u>c</u> es una nueva cadena que contiene los caracteres de <u>a</u> (en el mismo orden) seguidos de los caracteres de <u>b</u> (en el mismo orden).

Especificaciones Formales - Tipo Abstracto de Datos (TAD).

Notación

La descripción formal constará de cuatro partes:

NOMBRE. Nombre genérico del TAD.

CONJUNTOS. Conjuntos de datos que intervienen en la definición.

SINTAXIS. Signatura de las operaciones definidas.

<nombre_operación> : <conj_dominio> → <conj_resultado>

SEMÁNTICA. Indica el significado de las operaciones.

Especificaciones Formal – TAD Natural (Números Naturales)

NOMBRE natural (desde 0 hasta n)

CONJUNTOS N conjunto de naturales, B conjunto de valores booleanos **SINTAXIS**

- 1. cero: \rightarrow N
- 2. sucesor(N) \rightarrow N
- 3. escero(N) \rightarrow B
- 4. igual(N , N) \rightarrow B
- 5. suma(N , N) \rightarrow N
- 6. EsPar(N) \rightarrow B

SEMANTICA
$$\forall$$
 m, n \in N

- 6. escero (cero) = true
- 7. escero (sucesor (n)) = false
- 8. igual (cero, n) = escero (n)
- 9. igual (sucesor (n), cero) = false
- 10. igual (sucesor (n), sucesor (m)) = igual (n, m)
- 11. suma (cero, n) = n
- 12. suma (sucesor (m), n) = sucesor (suma <math>(m, n))

Funciones

Axiomas

 in href="ami.wm"> om/condbeldess 2003 La lavel = "back semi" > back

Especificaciones Formal – TAD Natural Números Naturales

 \forall m, n \in N, cual es el resultado de aplicar las siguientes expresiones.

- 1. escero (cero) = escero (sucesor (n)) = ?
- 2. suma(cero, n) = ?
- 3. sucesor (sucesor (cero))) = ?
- 4. igual (sucesor (n), cero)= ?
- 5. suma(sucesor(n), cero) = ?

Que funciones y axiomas podemos adicionar al TAD Natural?

Ejercicios, hacer la Especificación Informal y Formal para TAD Cadena

Implementación – TAD Natural Números Naturales

Implementación del TAD Natural en el Lenguaje de Programación C#, definiendo la clase clsNatu dentro del Proyecto de Clases denominado cApp

```
Nombre de la clase
   public class clsNatu <del><</del>
                             del TAD Naturales
   public int Cero()
   public bool esCero(int x)
   public int Sucesor(int x)
                                   Funciones
   public bool Igual(int x, int y)
   public int Suma(int a,int b)
```

Implementación – TAD Natural Números Naturales

Detalle de las Funciones de la clase clsNatu.

```
public int Cero()
      return 0;
public bool esCero(int x)
        if (x==0)
            return true;
       return false;
public int Sucesor(int x)
        x = x + 1;
        return x;
```

```
public bool Igual(int x, int y)
{
    if (EsCero(x) == true || EsCero(y) == false)
        return false;

    if (EsCero(x) == false || EsCero(y) == true)
        return false;

    if (x == y)
        return true;
    return false;
}
```


