Prototypical networks DOKUMENTACJA KOŃCOWA

Zespół 12: Kamil Dąbrowski, 285629 Łukasz Pietraszek, 323581

1. Przyjęte założenia projektowe

Sieci prototypowe opierają się na założeniu, że istnieje osadzanie, w którym kilka punktów skupia się wokół pojedynczej reprezentacji prototypu dla każdej klasy. Jego celem jest nauka prototypów dla poszczególnych klas na podstawie uśredniania próbek w przestrzeni cech.

2. Krótki opis wybranych lub przydzielonych zbiorów danych

2.1. Omniglot

Zestaw danych Omniglot jest przeznaczony do opracowywania podobnych do ludzkiego uczenia się algorytmów uczenia się. Zawiera 1623 różnych odręcznych znaków z 50 różnych alfabetów. Każda z 1623 symboli został narysowany online przez 20 różnych ludzi.

2.2. Mini-imagenet

Zestaw danych mini-ImageNet został zaproponowany przez Vinyals et al. do oceny uczenia się za pomocą kilku strzałów. Jego złożoność jest wysoka ze względu na użycie obrazów ImageNet, ale wymaga mniej zasobów i infrastruktury niż praca na pełnym zestawie danych ImageNet. W sumie istnieje 100 klas z 600 próbkami kolorowych obrazów 84×84 na klasę. Te 100 klas podzielono odpowiednio na 64, 16 i 20 klas dla zadań próbkowania do meta-treningu, meta-walidacji i meta-testu.

3. Krótki opis wybranych lub przydzielonych architektur

Uczenie się kilku strzałów to rodzaj meta-uczenia się. W przeciwieństwie do tradycyjnych modeli, które wymagają dużej ilości danych, aby uzyskać dobre wyniki, modele z funkcją uczenia się kilku strzałów wymagają tylko niewielkiej ilości danych uczących z ograniczoną ilością informacji. W nauce za pomocą kilku strzałów model jest uczony w zakresie różnych powiązanych zadań podczas fazy meta-treningu, aby uogólnić dobrze na zadania niewidoczne z zaledwie kilkoma wystąpieniami w fazie meta-testowania. Klasyfikacja kilku strzałów to metoda, w której klasyfikator musi zostać dostosowany do nowych klas, których nie widać na treningu i podać tylko kilka przykładów każdej z tych klas. Sieci prototypowe uczą się

przestrzeni metrycznej, w której klasyfikację można przeprowadzić przez obliczenie odległości do prototypowych reprezentacji każdej klasy.

4. Biblioteki wybrane do realizacji projektu

Do rozwiązania zadania wykorzystano język programowania Python w wersji 3.9 wraz z bibliotekami:

- conda-forge::jupyterlab
- conda-forge::jupyterlab-lsp
- conda-forge::python-language-server
- conda-forge::nodejs
- numpy
- pandas
- pip
- scikit-learn
- scipy
- scikit-build
- opency-python
- tqdm
- Gdown
- cudatoolkit=11.1

5. Przeprowadzone eksperymenty

Eksperymenty przeprowadzono dla datasetów Omniglot i Mini-imagenet zgodnie z opisanymi w artykule parametrami. Architektura składa się z czterech bloki konwolucyjne. Każdy blok zawiera 64-filtrową konwolucję 3 × 3, warstwę normalizacji wsadowej, nieliniowość ReLU i warstwę max-pooling 2 × 2. Modele porównano pod względem skuteczności treningu dla 1-shot (5-way Acc.), 5-shot (5-way Acc.), 1-shot (20-way Acc.), 5-shot (20-way Acc.). Do treningu modelu dla zbioru danych Omniglot wykorzystano 600 epok, każdy epizod trenujący zawierał 60 klas i po 5 query points na każdą klasę. Natomiast dla zbioru Mini-imagenet wybrano 64 klasy trenujące, 16 klas walidacyjne i 20 klas testujących.

Parametry eksperymentów:

GENERAL PARAMS

- ★ LERNING RATE szybkość uczenia, domyślnie 0.001,
- ★ GAMMA gamma harmonogramu nauki modelu, domyślnie 0.5,
- ★ DECAY EVERY krok harmonogramu tempa nauki, domyślnie 20,
- ★ MAX_EPOCH maksymalna liczba epok do wytrenowania domyślnie 500,

NETWORK PARAMS

- ★ X_DIM wymiar X sieci neuronowej, domyślnie (3, 84, 84),
- ★ HID_DIM wymiar HID sieci neuronowej, domyślnie 64,

- ★ Z_DIM wymiar Z sieci neuronowej, domyślnie 64,
- ★ N TEST liczba uruchomień zbioru testowego, domyślnie 25,

ALGORITHM PARAMS

- ★ *NUM_WAY* droga, wykorzystane w eksperymentach 5 lub 20, domyślnie 20,
- ★ *NUM_SHOT* strzały, wykorzystane w eksperymentach 1 lub 5, <u>domyślnie 1</u>,
- ★ NUM_QUERY liczba próbek do wykorzystania na klasę w postaci zapytań walidacyjnych wykorzystane w eksperymentach 5 lub 15, domyślnie 5,
- ★ EPOCH_SIZE liczba epok, domyślnie 100,
- ★ EPOCH_SIZE_TEST liczba epok testującej, domyślnie 1000.

6. Wyniki eksperymentów

6.1. Skuteczność modelu dla datasetu Omniglot.

	5-way		20-way	
	1-shot	5-shot	1-shot	5-shot
Osiągnięte wyniki	96,48 ± 0,08%	98,92 ± 0,03%	93,92 ± 0,05%	98,29 ± 0,02%
Wyniki w artykule	98,8%	99,7%	96,0%	98,9%

Powyżej zamieszczono tabelę z porównaniem osiągniętych przez nas wyników oraz wyników osiągniętych w artykule. Na wykresie kolorem niebieskim oznaczono nasze wyniki, natomiast kolorem pomarańczowym wyniki osiągnięte w artykule.

Niestety nie udało się osiągnąć identycznych ani tym bardziej lepszych rezultatów niż te przedstawione w artykule, niemniej jednak są one bardzo zbliżone. W przypadku 1-shot zarówno dla 5-way, jak i dla 20-way różnica wynosi około 2 punktów procentowych precyzji na korzyść wyników z artykułu, natomiast w przypadku 5-shot jest to różnica zaledwie niecałego 1 punktu procentowego uzyskanej precyzji na korzyść rezultatów z artykułu.

6.2. Skuteczność modelu dla datasetu Mini-imagenet.

	5-way		
	1-shot	5-shot	
Osiągnięte wyniki	39,63 ± 0,17%	60,15 ± 0,11%	
Wyniki w artykule	49,42 ± 0,78%	68,20 ± 0,66%	

Powyżej zamieszczono tabelę z porównaniem osiągniętych przez nas wyników oraz wyników osiągniętych w artykule. Na wykresie kolorem niebieskim oznaczono nasze wyniki, natomiast kolorem pomarańczowym wyniki osiągnięte w artykule.

Niestety w przypadku zbioru danych Mini-imagenet również nie udało się osiągnąć identycznych ani tym bardziej lepszych rezultatów niż te przedstawione w artykule, niemniej jednak są one zbliżone. W przypadku 1-shot dla 5-way różnica wynosi około 10 punktów procentowych precyzji na korzyść wyników z artykułu, natomiast w przypadku 5-shot jest to różnica około 8 punktów procentowych uzyskanej precyzji na korzyść rezultatów z artykułu.

7. Wnioski

Zaproponowany przez autorów artykułu pomysł, aby wykorzystać sieci prototypowe do uczenia kilku strzałów okazał się skutecznym i działającym poprawnie pomysłem. Wyuczone sieci za pomocą treningu epizodycznego potrafią z dość dobrą skutecznością ustawić wspomniane strzały.

Uzyskane rezultaty są zadawalające. Udało nam się odtworzyć zaproponowany przez autorów model uczenia za pomocą sieci prototypowych i uzyskać zbliżone wyniki. Rezultaty na zbiorze danych Omniglot są bardziej zbliżone do tych uzyskanych w artykule, jednakże wynika to z tego, że na omawianych danych precyzja wynosi blisko 100% dla 5-way i około 98% dla 20-way. Dataset Mini-imagenet daje nieco gorsze wyniki zarówno w naszych eksperymentach, jak i w artykule (przedział 40-70% precyzji po wytrenowaniu). Przekłada się to na większe różnice na niekorzyść uzyskanych przez nas precyzji w procentach (strata do precyzji osiągniętych w artykule to kolejno około 10 i 8 punktów procentowych dla 1-shot i 5-shot.