ФИО _		
пришно		
группа		

$\mathbf{1A}_1$	$2A_1$	$3A_1$	$4A_1$	$\mathbf{5A}_1$	$6A_1$	Σ

го

29 декабря 2016 г.

Вариант \mathbf{A}_1

- 1A₁. (1) Мужской спортивный молот представляет собой небольшой металлический шар массой m=7,3 кг, соединенный с ручкой стальной проволокой. Перед броском шар движется по окружности радиусом R=1,6 м в плоскости, наклоненной под углом $\varphi=30^\circ$ к горизонту. Найти силу, с которой спортсмен удерживает снаряд, если его дальность полета равна L=86,74 м (мировой рекорд 1986 г.). Пренебречь сопротивлением воздуха и весом молота по сравнению с искомой силой. Найти также относительную деформацию проволоки, если её диаметр равен d=3 мм. Модуль Юнга стали E=200 ГПа.
- **2A**₁. (1,5) Лифт поднимается вверх с постоянной скоростью. К потолку лифта подвешен груз на пружине, покоящийся относительно лифта. Начальное растяжение пружины равно x_0 . В некоторый момент лифт начинает замедляться с ускорением a=2g до полной остановки. Найти амплитуду колебаний груза после остановки лифта, если период колебаний груза T и время торможения лифта τ связаны соотношением $T/\tau=6$.
- ${\bf 3A_1.}$ (1,5) На гладком столе лежит тонкое кольцо радиусом R и массой M. Точечное тело массой m=M движется со скоростью v_0 в плоскости кольца по касательной к нему. На кольце имеется небольшой выступ, о который тело ударяется упруго, не меняя направления движения. Определить угловую скорость вращения кольца после удара.

4A₁. (2) На ось гироскопа, закреплённого в кардановом подвесе, вешают небольшой груз m=100 г на расстоянии l=12 см от центра системы, и гироскоп начинает совершать регулярную прецессию с угловой скоростью $\Omega=1$ рад/с. Определить время, за которое ось гироскопа опустится из-за трения в креплениях подвеса на угол $\Delta\alpha=\pi/3$. Вертикальная ось карданова подвеса имеет радиус r=5 мм и укреплена сверху и снизу в муфтах высотой h=1 см каждая. Зазор между муфтой и осью, равный $\delta=0,1$ мм, заполнен смазкой с вязкостью $\eta=1$ Па · с.

6A₁. (2,5) Подводящая труба фонтана состоит из двух участков: горизонтального длиной L=50 м, и вертикального высотой h=1 м. Внутренний диаметр трубы $d_1=10$ мм. На конце трубы имеется короткое сопло, сужающееся до диаметра $d_2=2$ мм. Оценить избыточное (по сравнению с атмосферным) давление, создаваемое насосом в основании трубы, если струя воды из фонтана поднимается на высоту H=2 м. Вязкость воды принять равной $\eta=1,6\cdot 10^{-3}$ Па · с. Возможность возникновения турбулентности не рассматривать.

ФИО _		
Physica		
группа		

$\mathbf{A}_2 \mid 3\mathbf{A}_2$	$4A_2$	$5A_2$	$6A_2$	Σ
	$egin{array}{c c} \mathbf{A}_2 & 3\mathbf{A}_2 \\ \hline & & \end{array}$	$egin{array}{c c c c} \mathbf{A}_2 & 3\mathbf{A}_2 & 4\mathbf{A}_2 \\ \hline & & & \end{array}$	$egin{array}{c c c c c} \mathbf{A}_2 & 3\mathbf{A}_2 & 4\mathbf{A}_2 & 5\mathbf{A}_2 \\ \hline & & & & & \end{array}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$

Ітого

29 декабря 2016 г.

Вариант A_2

- $1A_2$. (1) Женский спортивный молот представляет собой небольшой металлический шар массой m=4 кг, соединенный с ручкой стальной проволокой длиной l=1 м. Перед броском шар движется по окружности радиусом R=1,5 м в плоскости, наклоненной под углом $\varphi=30^\circ$ к горизонту. Найти силу, с которой спортсменка удерживает снаряд, если его дальность полета равна L=82,29 м (мировой рекорд 2016 г.). Пренебречь сопротивлением воздуха и весом молота по сравнению с искомой силой. Какого диаметра должна быть проволока, если её максимальное допустимое удлинение составляет $\Delta l=3$ мм? Модуль Юнга стали E=200 ГПа.
- **2A**₂. (1,5) Лифт опускается вниз с постоянной скоростью v_0 . К потолку лифта подвешен груз на пружине, покоящийся относительно лифта. При приближении к месту назначения лифт начинает равномерно замедляться и за время τ останавливается. Найти амплитуду колебаний груза после остановки лифта, если период колебаний груза равен $T = 4\tau$.
- ${\bf 3A_2.}$ (1,5) На гладком столе лежит однородный плоский диск радиусом R и массой M. Точечное тело массой m=M движется со скоростью v_0 в плоскости диска по касательной к нему. На диске имеется небольшой выступ, о который тело ударяется упруго, не меняя направления движения. Определить результирующую угловую скорость вращения диска.

- $4{\bf A}_2$. (2) На ось гироскопа, закреплённого в кардановом подвесе, вешают небольшой груз m=100 г на расстоянии l=12 см от центра системы, и гироскоп начинает совершать регулярную прецессию с угловой скоростью $\Omega=1$ рад/с. Определить время, за которое ось гироскопа опустится из-за трения в креплениях подвеса на угол $\Delta\alpha=\pi/3$. Вертикальная ось карданова подвеса имеет радиус r=5 мм и укреплена сверху и снизу в муфтах высотой h=1 см каждая. Зазор между муфтой и осью, равный $\delta=0,1$ мм, заполнен смазкой с вязкостью $\eta=1$ Па \cdot с.
- $\mathbf{5A_2}$. (2) По внутренней поверхности неподвижно закрепленной трубы радиусом R катается без проскальзывания тонкостенная трубка радиусом r. Найти период малых колебаний трубки относительно положения равновесия. Определить также максимальную амплитуду φ , при которой колебания без проскальзывания возможны, если коэффициент трения равен $\mu=0,1$.
- $6A_2$. (2,5) Подводящая труба фонтана состоит из двух участков: горизонтального длиной L=50 м, и вертикального высотой h=1 м. Внутренний диаметр трубы $d_1=10$ мм. На конце трубы имеется короткое сопло, сужающееся до диаметра $d_2=2$ мм. Оценить избыточное (по сравнению с атмосферным) давление, создаваемое насосом в основании трубы, если струя воды из фонтана поднимается на высоту H=2 м. Вязкость воды принять равной $\eta=1,6\cdot 10^{-3}$ Па \cdot с. Возможность возникновения турбулентности не рассматривать.

ФИО		
группа		

$1\mathbf{B}_1$	$2\mathbf{B}_1$	$3\mathbf{B}_1$	$\mathbf{4B}_1$	$\mathbf{5B}_1$	$\mathbf{6B}_1$	Σ

0	Итог	2 зад.	1 зад.

29 декабря 2016 г.

Вариант \mathbf{B}_1

- **1Б**₁. (1) Медный стержень длиной l=1,0 м вращают вокруг оси, проходящей через его середину перпендикулярно стержню. Определить угловую скорость вращения ω_{\max} , при которой стержень разорвётся. Предел прочности меди $\sigma_{\max}=200$ МПа, плотность $\rho=8,8$ г/см³. Деформацию стержня считать малой даже при достижении предела прочности.
- **2Б**₁. (1,5) На гладкой горизонтальной поверхности стола удерживается брусок массой M. С одной стороны брусок с помощью пружины прикреплен к неподвижной стойке, а с другой к нему с помощью нити и гладкого блока подвешен груз массой m. В начальном состоянии пружина не деформирована. После того, как брусок отпускают, возникают колебания циклической частотой ω . Найти кинетическую энергию системы и натяжение нити в момент, когда отклонение от начального положения равно половине амплитуды колебаний.
- **3Б**₁. (1,5) На гладком столе лежит тонкое кольцо радиусом R и массой M. Точечное тело массой m=M/2 движется со скоростью v_0 в плоскости кольца по касательной к нему. При соприкосновении с кольцом тело прилипает к нему. Определить угловую скорость вращения, которую в результате приобретёт система.

4В₁. (2) Ротор гироскопа, закреплённого в кардановом подвесе, имеет осевой момент инерции $I=5\cdot 10^{-4}~{\rm kr\cdot m^2}$ и вращается с частотой $\nu=400~{\rm \Gamma II}$. На ось гироскопа, расположенную исходно горизонтально, вешают небольшой груз. После того, гироскоп совершил один оборот вокруг вертикали, оказалось, что его ось отклонилась от горизонтальной плоскости на угол $\alpha=0.1^\circ$. Определить коэффициент вязкости η смазки в креплениях карданова подвеса. Вертикальная ось подвеса имеет радиус $r=5~{\rm km}$ и укреплена сверху и снизу в муфтах высотой $h=1~{\rm cm}$ каждая, так что зазор между муфтой и осью равен $\delta=0.1~{\rm km}$.

 ${\bf 5B_1.}$ (2,5) На горизонтальном столе закреплён полуцилиндр радиусом R. На нём перпендикулярно образующей лежит однородная тонкая доска длиной $L=\pi R.$ Найти период малых колебаний доски около положения равновесия, считая, что проскальзывание отсутствует. Для колебаний без проскальзывания с угловой амплитудой

- $\varphi_0 = \pi/6$ определить угловое ускорение доски в крайнем положении и найти, при каком коэффициенте трения μ такие колебания возможны.
- **6Б**₁. (2) К шприцу диаметром $d_0=1$ см присоединена игла диаметром $d_1=0.7$ мм и длиной $l_1=2$ см. Оценить, какое давление нужно приложить к поршню вертикально расположенного шприца, чтобы струя жидкости поднималась до высоты H=1 м. Расчёт провести для теплой воды, вязкость которой равна $\eta_{\rm B}=0.8\cdot 10^{-3}$ Па · с, и для масла с вязкостью $\eta_{\rm M}=0.5$ Па · с и плотностью $\rho_{\rm M}=0.8$ г/см³. Возможность возникновения турбулентности не рассматривать.

ФИО.			
PRIMA	_		

2 зад.	Итого
	2 зад.

29 декабря 2016 г.

Вариант \mathbf{F}_2

- **1Б**₂. (1) Стальной стержень плотностью $\rho = 7800 \text{ кг/м}^3$ длиной l = 50 см вращают вокруг оси, проходящей через один из его концов. При достижении частоты вращения $\nu=100~{
 m of/c}$ стержень разрывается. Определить предел прочности стали $\sigma_{\rm max}$. Деформацию стержня считать малой даже при достижении предела прочности.
- $2\mathbf{E}_{2}$. (1,5) На гладкой горизонтальной поверхности стола удерживается брусок массой М. С одной стороны брусок с помощью пружины прикреплен к неподвижной стойке, а с другой к нему с помощью нити и гладкого блока подвешен груз массой т. В начальном состоянии пружина не деформирована. Брусок отпускают и в результате возникают колебания. Определить значения силы натяжения нити в моменты, когда кинетическая энергия системы составляет 5/9 от максимальной: $K = \frac{5}{9} K_{\text{max}}$.

 ${\bf 3B_2.}$ (1,5) На гладком столе лежит однородный плоский диск радиусом R и массой M. Точечное тело массой m=2M движется со скоростью v_0 в плоскости диска по касательной к нему. При соприкосновении с боковой поверхностью диска тело прилипает к диску. Определить угловую скорость вращения, которую в результате приобретёт система.

 $4\mathbf{E}_{2}$. (2) Ротор гироскопа, закреплённого в кардановом подвесе, имеет осевой момент инерции $I = 5 \cdot 10^{-4} \ \mathrm{kr} \cdot \mathrm{m}^2$ и вращается с частотой $\nu = 400~\Gamma$ ц. На ось гироскопа, расположенную исходно горизонтально, вешают небольшой груз. После того, гироскоп совершил один оборот вокруг вертикали, оказалось, что его ось отклонилась от горизонтальной плоскости на угол $\alpha = 0.1^{\circ}$. Определить коэффициент вязкости η смазки в креплениях карданова подвеса. Вертикальная ось подвеса имеет радиус r = 5 мм и укреплена сверху и снизу в муфтах высотой h=1 см каждая, так что зазор между муфтой и осью равен $\delta = 0.1$ мм.

- $5\mathbf{E}_{2}$. (2,5) На горизонтальном столе закреплён полуцилиндр радиусом R. На нём перпендикулярно образующей лежит однородная тонкая доска длиной $L = \pi R$. Найти период малых колебаний доски около положения равновесия, считая, что проскальзывание отсутствует. Для колебаний без проскальзывания с угловой амплитудой $\varphi_0 = \pi/6$ определить угловое ускорение доски в крайнем положении и найти, при каком коэффициенте трения μ такие колебания возможны.
- ${f 6B_2}$. (2) K шприцу диаметром $d_0=1$ см присоединена игла диаметром $d_1=0.7$ мм и длиной $l_1 = 2$ см. Оценить, какое давление нужно приложить к поршню вертикально расположенного шприца, чтобы струя жидкости поднималась до высоты H=1 м. Расчёт провести для тёплой воды, вязкость которой равна $\eta_{\scriptscriptstyle \rm B} = 0.8 \cdot 10^{-3} \; \Pi {\rm a} \cdot {\rm c}, \; {\rm u} \; {\rm для} \; {\rm масла} \; {\rm c} \; {\rm вязкостью}$ $\eta_{\rm m} = 0.5~{\rm Ha\cdot c}$ и плотностью $\rho_{\rm m} = 0.8~{\rm r/cm^3}$. Возможность возникновения турбулентности не рассматривать.

РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ 29 декабря 2016 г.

- 1**A**₁. Дальность полета тела, выпущенного под углом φ к горизонту: $L = 2v^2 \sin \varphi \cos \varphi/g, \ v^2 = gL/\sin(2\varphi).$ Центробежная сила $F = \frac{mv^2}{R} = \frac{mgL}{R\sin(2\varphi)} = \frac{4483 \text{ H}}{2} \approx 457 \text{ к}$ С. Относительное удлинение $\varepsilon = \frac{F}{\frac{1}{4}\pi d^2 E} \approx 3.2 \cdot 10^{-3}$.
- **1A**₂. $F = 2486 \text{ H}, d = \sqrt{4Fl/(\pi E\Delta l)} \approx \boxed{2,3 \text{ mm}}.$
- 2A₁. Направим ось x вниз и будем отсчитывать координату от положения груза, в котором пружин не растянута. При включении ускорения a=-2g положение равновесия смещается в точку $x_1=-x_0$ ($x_0=mg/k$). Возникнут колебания по закону $x(t)=-x_0+2x_0\cos\omega t$. К моменту остановки лифта имеем $\omega\tau=\pi/3$, так что смещение равно $x_2=-x_0+2x_0\frac{1}{2}=0$ (пружина не деформирована), и скорость $v_2=-2x_0\omega\sin\frac{\pi}{3}=-\sqrt{3}x_0\omega$. Затем положение равновесия возвращается в точку $x=x_0$. Тогда из закона сохранения энергии находим $\frac{1}{2}mv_2^2=\frac{1}{2}k(A-x_0)^2+mg(A-x_0)=\frac{1}{2}kA^2-\frac{1}{2}kx_0^2$, откуда $A=\sqrt{x_0^2+3x_0^2}=\boxed{2x_0}$. Альтернативно: $\mathrm{tg}\,\varphi=\frac{\omega\Delta x_2}{v_2}=\frac{1}{\sqrt{3}}$, где φ фаза колебаний. Тогда $\varphi=\frac{4\pi}{3}+2\pi n$, $\sin\varphi=\frac{1}{2}$ и $A=\frac{|\Delta x_2|}{\sin\varphi}=\boxed{2x_0}$.
- **2A**₂. Аналогично 2A₁: $\Delta x_1 = x_1 x_0 = \frac{ma}{k} = \frac{aT^2}{4\pi^2}$ смещение положения равновесия. Колебания по закону $x(t) = x_1 \Delta x_1 \cos \omega t, \ v(t) = \Delta x_1 \omega \sin \omega t.$ В момент $\tau = T/4 \ (\omega \tau = \pi/2)$ имеем $x_2 = x_1, \ v_2 = \Delta x_1 \omega.$ После остановки лифта это соответствует фазе колебаний $\varphi = \pi/4 + 2\pi n$ и, соответственно, амплитуда равна $A = \sqrt{2}\Delta x_1 = \frac{\sqrt{2}aT^2}{4\pi^2} = \left\lceil \frac{4\sqrt{2}}{\pi^2} v_0 \tau \right\rceil$.
- $\mathbf{3A_2}$. Аналогично $3A_1$: $v_0=v_1+u,\ v_0=v_1=\frac{1}{2}\omega R,\ v_0^2=v_1^2+u^2+\frac{1}{2}\omega^2 R^2,$ откуда $u=v_1=\frac{v_0}{2},$ $\omega=\frac{v_0}{R}$.
- 4А₁. Момент силы трения $M_{\rm Tp}=2\cdot\eta\frac{\Omega r}{\delta}\cdot2\pi rh\cdot r=4\pi\eta\Omega r^3h/\delta\approx 1,57\cdot 10^{-4}$ Н·м, где скорость прецессии вокруг вертикальной оси: $\Omega=\frac{mgl\cos\alpha}{L\cos\alpha}=\frac{mgl}{L}$. Прецессия из-за трения: $\Omega_{\rm Tp}=\frac{M_{\rm Tp}}{L}=\frac{M_{\rm Tp}}{mgl}\Omega\approx 1,34\cdot 10^{-3}\ll\Omega$. Поэтому $t=\frac{\Delta\alpha}{\Omega_{\rm Tp}}=\frac{mgl\Delta\alpha}{M_{\rm Tp}\Omega}\approx 800~{\rm c}$. Замечание: В авторском решении допущена ошибка при использовании модуля соотношения $\vec{M}_{\rm Tp}=\vec{\Omega}_{\rm Tp}\times\vec{L}$. В действительности, нам известна только проекция момента на ось z: $M_{\rm Tp}=[\vec{\Omega}_{\rm Tp}\times\vec{L}]_z=\Omega_{\rm Tp}L_z=\Omega_{\rm Tp}L\sin\alpha$. Время опускания $t=\frac{mgl}{M_{\rm Tp}\Omega}\int_{\alpha_0}^{\alpha_0+\Delta\alpha}\sin\alpha\,d\alpha$. зависит от начального угла, не заданного в условии. Этот же ответ может быть получен из ЗСЭ.
- 6A₁. Скорость истечения жидкости из сопла $v_2 = \sqrt{2gH} \approx 6.3 \text{ м/c}$, расход $Q = v_2\pi r_2^2 = 2\cdot 10^{-5} \text{ м}^3/\text{с}$. Средняя скорость течения в трубе $v_1 = Q/\pi r_1^2 = v_2\left(\frac{d_2}{d_1}\right)^2 \approx 0.25 \text{ м/c}$. Длину, на которой устанавливается пуазейлевское течение, найдём из отношения кинетической энергии к потенциальной: $\frac{K}{A} \sim \frac{\frac{1}{2}\rho v^2\pi r^2 l}{\eta \frac{v}{r} 2\pi r l^2} = \frac{\rho v r^2}{4\eta l}$ (в зависимости от способа оценки численный коэффициент может варьироваться в 2–4 раза), откуда

 $K \ll A$ при $l \gg \frac{\rho v_1 r_1^2}{4\eta} \approx 1$ м. Таким образом, на горизонтальном участке существенна вязкость, а на вертикальном достаточно уравнения Бернулли. Тогда $\Delta P \approx Q \frac{8\eta L}{\pi r_1^2} + \rho g h + \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2 \approx \sqrt{2gH} \frac{8\eta L}{r_1^2} \frac{r_2^2}{r_1^2} + \rho g (h+H) \approx 0.65 \cdot 10^4 + 2.94 \cdot 10^4 = \boxed{3.6 \cdot 10^4 \ \Pi a}.$

- 1**Б**₁. $F = \frac{1}{2}m\omega^2\frac{l}{2} = \frac{1}{8}\rho Sl^2\omega^2$, где $m = \frac{1}{2}\rho Sl$. Откуда $\sigma_{\max} = \frac{1}{8}\rho l^2\omega^2$, $\omega = \frac{2}{l}\sqrt{\frac{2\sigma_{\max}}{\rho}} \approx \frac{1}{8}\rho l^2\omega^2$, где $m = \frac{1}{2}\rho Sl$. Откуда $\sigma_{\max} = \frac{1}{8}\rho l^2\omega^2$, $\omega = \frac{2}{l}\sqrt{\frac{2\sigma_{\max}}{\rho}} \approx \frac{1}{8}\rho l^2\omega^2$, где $m = \frac{1}{2}\rho Sl$. Откуда $\sigma_{\max} = \frac{1}{8}\rho l^2\omega^2$, $\omega = \frac{2}{l}\sqrt{\frac{2\sigma_{\max}}{\rho}} \approx \frac{1}{8}\rho l^2\omega^2$.
- ${f 1B_2}$. $F=m\omega^2 rac{l}{2}=rac{1}{2}
 ho Sl^2\omega^2$, где m=
 ho Sl. Откуда $\sigma_{
 m max}=rac{1}{2}
 ho l^2\omega^2=2\pi^2
 ho l^2
 u^2pprox 3.8\cdot 10^8~{
 m \Pia}$.
- 2Б₂. Аналогично 2Б₁: $x_0 = A = x_{\max}/2 = mg/k$, $\omega = \sqrt{\frac{k}{m+M}} = \sqrt{\frac{m}{m+M}} \frac{g}{A}$. Кинетическая энергия $K = \frac{1}{2}(m+M)\dot{x}^2 = mgx \frac{1}{2}kx^2 = mgx \left(1-\frac{x}{2A}\right)$. Максимальное значение: $K_{\max} = \frac{1}{2}mgA$. Решая квадратное уравнение $\frac{x}{A}(1-\frac{x}{2A}) = \frac{5}{18}$, находим, что соотношение $K = \frac{5}{9}K_{\max}$ достигается при $x_1 = \frac{A}{3}$ или $x_2 = \frac{5A}{3}$. Силы натяжения: $F_1 = m\left(g + \omega^2 \cdot (-\frac{2}{3}A)\right) = \left[\frac{mg}{3}\frac{3M+m}{M+m}\right]$.
- **3Б**₁. (Желтоухов A.A.*) В системе центра инерции момент импульса $L=m(v_0-V_C)r_1+MV_Cr_2=$ $=\mu v_0R$, где $\mu=M/3$ приведенная масса. ЗСМИ: $\omega=\frac{\mu v_0R}{I}$, где $I=mr_1^2+Mr_2^2+MR^2=$ $=(M+\mu)R^2=\frac{4}{3}MR^2$, откуда $\omega=\frac{v_0}{4R}$. Альтернативно: $mv_0=mv_1+Mu$, где $v_1=u+\omega R$ — условие прилипания (u — скорость центра кольца). ЗСМИ относительно исходного положения центра кольца: $L=mv_0R=mv_1R+MR^2\omega$. Откуда $v_1=v_0/2,\ u=v_0/4,\$ и $\omega=v_0/4R$.
- **3Б**₂. Аналогично 3Б₁: $\mu=2M/3,\,I=\frac{1}{2}MR^2+\mu R^2=\frac{7}{6}MR^2,\,\overline{\omega=\frac{4v_0}{7R}}$. $(v_1=\frac{6}{7}v_0,u=\frac{2}{7}v_0)$.
- **4Б**₁. Ввиду малости угла $|\Delta \vec{L}| = \alpha L = \alpha 2\pi \nu I = M_{\rm Tp} \frac{2\pi}{\Omega}$, где аналогично 4А $M_{\rm Tp} = 4\pi \eta \Omega r^3 h/\delta$, откуда $\eta = \frac{\alpha I \nu \delta}{4\pi r^3 h} \approx \boxed{2,2 \; \Pi {\rm a} \cdot {\rm c}}$.
- 5Б₁. При повороте доски на угол φ возникает момент $M=mgx\cos\varphi$, где $x=R\varphi$ расстояние от точки касания A до центра масс доски C. Момент инерции относительно точки A: $I_A=I_C+mx^2$, где $I_C=\frac{1}{12}mL^2$. Для малых колебаний ($\varphi\ll 1$): $I_C\ddot{\varphi}=-mgR\varphi$, откуда $T=2\pi\sqrt{\frac{I_C}{mgR}}=\left[\pi^2\sqrt{\frac{R}{3g}}\right]$. Угловое ускорение в крайнем положении $\varepsilon=\frac{M}{I_A}=\frac{mgR\varphi\cos\varphi}{\frac{1}{12}mL^2+mR^2\varphi^2}=\left[\frac{3\sqrt{3}g}{4\pi R}\right]$. При этом точка опоры и центр масс неподвижны, поэтому центр масс имеет уско ение, направленное по нормали к доске, равное $a=\varepsilon x$. Сила трения $F=mg\sin\varphi=m$ /2, сила реакции $N=mg\cos\varphi-m\varepsilon x=\frac{3\sqrt{3}mg}{8}$. коэффициент трения $\mu=\frac{F}{N}=\frac{4}{3\sqrt{3}}\approx \boxed{0.77}$.
- 6Б₁. Максимальная скорость истечения из иглы $v_1 = \sqrt{2gH} \approx 4.4$ м/с. Аналогично 6А оценим отношение кинетической энергии к работе сил трения: $\frac{K}{A} \sim \frac{\frac{1}{2}\rho v^2\pi r^2 l}{\eta_v^2 2\pi r l^2} = \frac{\rho v r^2}{4\eta l}$. Поскольку при вязком течении перепад давления пропорционален l/r^4 , достаточно оценить характер течения в игле. Для воды имеем $\frac{K}{A} \sim 8.4$, т.е. для оценки достаточно закона Бернулли: $\Delta P_{\rm B} \approx \frac{1}{2}\rho v_2^2 = \rho g H \approx 10^4~{\rm Ha}$. Для масла $\frac{K}{A} \sim 10^{-2}$ и требуется использовать формулу Пуазейля: $\Delta P_{\rm M} \approx \frac{4\eta l_1 v_1}{r_1^2} \approx 14 \cdot 10^5~{\rm Ha}$.

Инструкция для проверяющих

За задачу ставится **полный балл** x (указан в скобках), если задача решена верно: приведено обоснованное решение и даны ответы на все вопросы задачи. Возможно наличие арифметических ошибок, не влияющих на ход решения и не приводящих к ошибке в порядке или знаке величины. В противном случае вычитаются баллы, кратные 0.5, согласно таблице:

x -0,5	Ход решения в целом верен и получены ответы на все вопросы задачи, но реше-
	ние содержит ошибки, не касающиеся физического содержания (арифметические
	ошибки, влияющие на порядок или знак величины; ошибки в размерности; ошибки
	в выкладках, не влияющие на ход решения и т.п.).
x-1,0	Решение содержит грубые ошибки (имеются вычислительные ошибки, влияющие
	на ход решения; отсутствуют необходимые промежуточные доказательства и т. п.),
	либо задача решена лишь частично, но основные законы корректно применены к
	задаче.
x-1,5	Задача не решена, но есть некоторые подвижки в её решении (сформулированы
	физические законы, на основе которых задача может быть решена).
0	Задача не решена: основные физические законы применены с грубыми ошибками,
	перечислены не полностью или использованы законы, не имеющие отношения к
	задаче / решение задачи не соответствует условию / попытки решить задачу не
	было.

К баллам за письменную работу добавляются баллы за сданные задания:

отлично: +2 б./задание хорошо: +1 б./задание удовл.: +0 б./задание не сдано: -3 б./задание

Итоговая сумма округляется до целых в большую сторону. Результат определяет максимальную оценку на устном экзамене (минимальная оценка всегда «неуд(1)»).

Примеры заполнения:

$1A_1$	$2A_1$	$3A_1$	$4A_1$	$5A_1$	$6A_1$	Σ	1 з	ъд.	2 зад.	Итого	$1A_1$	$2A_1$	$3A_1$	$4A_1$	$5A_1$	$6A_1$	Σ	[1 зад.	2 зад.	Итого
1,0	1	0,5	2	1	0	5,5	1		-3	4	1,0	1,5	1,5	2	2	0,5	9,5		1	2	13

В примере слева максимально возможная оценка на устном экзамене — уд(4), справа — отл(10).

Обсуждение замечаний, критериев проверки и результатов — на форуме кафедры board.physics.mipt.ru. Итоговое обсуждение — 9 января в 8:45 в Гл. физ. ауд.. Явка всех участвующих в экзамене обязательна.

Дополнительные рекомендации:

- Задачу 4А оценивать из 2,5 баллов. За решение, совпадающее с исходным авторским, ставить 2 балла.
- В задачах 5 за нахождение только периода малых колебаний ставить 1 балл.
- В задачах 6 полный балл ставится только при наличии обоснованного выбора модели (Бернулли/Пуазейль). Способы оценки режима течения могут быть отличны от авторских (см. учебники Сивухина, Кириченко и Крымского и др.). За правильное решение без обоснования вычитать 1 балл от стоимости задачи.