

CLAIMS

5 1. A method for estimating the selectivity of queries in a relational database,
comprising the steps of:

constructing a probabilistic relational model (PRM) from said database;

and

performing online selectivity estimation for a particular query.

10

2. The method of Claim 1, wherein said PRM is constructed automatically,
based solely on a data and space allocated to said PRM.

15 3. The method of Claim 1, wherein said selectivity estimation step further
comprises the step of:

said selectivity estimator receiving as inputs both said query and said
PRM, and outputting an estimate for a result size of said query.

20 4. The method of Claim 1, wherein the same PRM is used to estimate the size
of a query over any subset of attributes in said database; and wherein prior
information about a query workload is not required.

25 5. The method of Claim 1, wherein selectivity estimation is performed for
select queries over a single table; and wherein a Bayesian network is used to
approximate joint distribution over an entire set of attributes in said table.

6. The method of Claim 1, wherein selectivity estimation is performed for queries over multiple tables; and wherein one or more PRMs are used to accomplish both select and join selectivity estimation in a single framework.

5 7. The method of Claim 1, further comprising the step of:
learning PRMs with link uncertainty with a heuristic search algorithm.

8. The method of Claim 7, wherein said search algorithm comprises a greedy hill-climbing search, using random restarts to escape local maxima.

10 9. A method for learning probabilistic relational models (PRM) having attribute uncertainty, comprising the steps of:
providing a parameter estimation task by:
inputting a relational schema that specifies a set of classes, having
15 attributes associated with said classes and having relationships between objects in different classes;
providing a fully specified instance of said schema in the form of a training database; and
performing a structure learning task to extract an entire PRM solely
20 from said training database,

10. The method of Claim 9, said structure learning task comprising the step of specifying which structures are candidate hypotheses.

25 11. The method of Claim 10, said structure learning task comprising the step of evaluating different candidate hypotheses relative to input data.

12. The method of Claim 11, said structure learning task comprising the step
of searching hypothesis space for a structure having a high score.
- 5 13. A method for learning probabilistic relational models having link
uncertainty, comprising the steps of:
 providing a mechanism for modeling link uncertainty; and
 said mechanism computing sufficient statistics that include existence
attributes without adding all nonexistent entities into a database.
- 10
14. The method of claim 10, said mechanism comprising:
 let μ be a particular instantiation of $\text{Pa}(X.E)$;
 to compute $C_{X.E}[\text{true}, \mu]$, use a standard database query to compute
how many objects $x \in O^o(X)$ have $\text{Pa}(x.E)$;
- 15 to compute $C_{X.E}[\text{false}, \mu]$, compute the number of *potential* entities
without explicitly considering each $(x_1, \dots, x_k) \in O'(Y_1) \times \dots \times O'(Y_k)$ by
decomposing the computation as follows:
 let ρ be a reference slot of X with $\text{Range}[\rho] = Y$;
 let $\text{Pa}(X.E)$ be the subset of parents of $X.E$ along slot ρ ; and
- 20 let μ_ρ be a corresponding instantiation;
 count a number of y consistent with μ_ρ ;
 if $\text{Pa}_\rho(X.E)$ is empty, this count is the $|O'(Y)|$;
 wherein the product of these counts is the number of potential entities;
 to compute $C_{X.E}[\text{false}, \mu]$, subtract $C_{X.E}[\text{true}, \mu]$ from said number.
- 25

15. A method for learning probabilistic relational models having link uncertainty, comprising the steps of:
- providing a mechanism for modeling link uncertainty; and
- said mechanism computing sufficient statistics that include reference
- 5 uncertainty, comprising the steps of:
- fixing a set partition attributes $\psi[\rho]$; and
- treating a variable S_ρ as any other attribute in a PRM;
- wherein scoring success in predicting a value of said attribute given a value of its parents is performed using standard Bayesian methods.

10

add p3