І. ДИФФУЗНОЕ РАССТОЯНИЕ

Рассмотрим следующее семейство случайных блужданий: начинаем из стартовой вершины V_0 , делаем $K \in [1,K_{\max}]$ шагов k блуждающими, в итоге получаем kK_{\max} вершин размеченных некоторым значением K. Конечно же в одну и ту же вершину можно прийти разными случайными блужданиями разной длительности, однако интересно посмотреть на зависимость $\partial u \phi \phi y$ зного расстояния D(V):

$$D(V) = \sum_{K=1}^{K_{\text{max}}} K \tilde{p}_K(V), \quad \tilde{\boldsymbol{p}} = \boldsymbol{p}/\|\boldsymbol{p}\|_1,$$

где $\boldsymbol{p}=(p_1(V),p_2(V),\ldots)$ — вектор из вероятностей находиться в вершине V на шаге K. Изначально нормировка такая, что $\sum_V p_K(V)=1$. Стоит заметить, что D(V) зависит от выбора K_{\max} .

Стоит заметить, что D(V) зависит от выбора K_{\max} . Более того, при $K_{\max} \to \infty$ мы увидим расходимость D(V) для конечных графов. Это легко увидеть, если вспомнить, что $p_{\infty}(V) \sim 1/N$, где N это размер графа. Тогда в сумме можем оценить $p_{\infty}(V) \sim 1/K_{\max}$ и

$$\lim_{K_{\max} \to \infty} D(V) \sim K_{\max}/2 \to \infty.$$

Где наступает этот момент, когда D(V) теряет информативность? Пока не могу явно оценить, но например для кубика 222 можно заметить, когда $p_K(V_0)$ выходит на константу по K (fig. 1).

Figure 1. Вероятность оказаться в V_0 после K случайных шагов, каждая точка получена по $k=10^8$ блуждающим

Посмотрим для меньших значений на зависимость D(d), где d это истинная дистанция до V_0 (fig. 2). Для удобства переопределим $D(V_0) \stackrel{\mathrm{def}}{=} 0$. В данном случае диаметр кубика равен 14. Видно, что для K_{max} сильно превыщающем диаметр (однако при $p_K(V) \neq \mathrm{const}$) диффузное расстояние остаётся информативным и монотонно зависит от K (за исключением последних двух колец d=13,14, что не принципиально во время сборки кубика).

Figure 2. Зависимость диффузного расстояния D от истинного d, каждая точка получена по $k=10^9$ блуждающим

Table I. Количество верщин в колце d для кубика 222, QTM

d	counts
0	1
1	6
2	27
3	120
4	534
5	2256
6	8969
7	33058
8	114149
9	360508
10	930588
11	1350852
12	782536
13	90280
14	276

II. CODE

Код для получения диффузного расстояния на кубике 222. Для $K_{\rm max}=30$ кривая с fig. 1 считается за 2 минуты, для $K_{\rm max}=50$ за 9 минут. В примере $k=10^8$ и резудьтат усредняется rep = 10 раз.

```
1 import torch
3 neighbors = ... # torch.tensor
4 distance = ... # torch.tensor
5 ds
            = torch.unique(distance)
            = neighbors.size(0)
6 N
  def get_pilgrims_position(L, k=100_000):
      pilgrims_position = torch.zeros(k, dtype=torch.int64, device=device)
9
      for j in range(L):
10
           pilgrims_position = torch.gather(
11
               neighbors[pilgrims_position],
13
               torch.randint(6, (k,), device=device).view(k, 1)
14
           ).squeeze(1)
15
16
      return pilgrims_position
17
18
  def get_D(Kmax, k=100_000_000, rep=10):
      Ks = torch.arange(1, Kmax+1, device=device)
19
20
      visited = torch.zeros((neighbors.size(0), Kmax), dtype=torch.int64, device=device)
21
      for R in tqdm(range(rep)):
22
           for (j, K) in enumerate(Ks):
23
               pilgrims_position = get_pilgrims_position(K, k)
24
25
               vs, counts = torch.unique(pilgrims_position, return_counts=True)
               visited[vs, j] += counts
26
      clear_output()
27
28
      probs = visited / torch.sum(visited, dim=1).unsqueeze(1)
29
30
      D = torch.sum(probs * Ks, dim=1)
      D[0] = 0 \#D(V_0) != 0, so it is convinient just redefine it
31
      return D
32
```