Practice using MapReduce

"Let the wild rumpus begin!"

- Maurice Sendak

Key points from the last lecture

Name nodes know everything about the data (metadata, FS images)

- data nodes are dumb
- blocks are BIG 128 M
- block contents are unstructured

Writing HDFS data is distributed and efficient

- pipelines are created for replication
- writes are thoroughly verified

The NameNode

- manages the "metadata" for data stored on the cluster
- monitor the health of Datanodes

The ResourceManager schedules Jobs and monitors their health

Advanced: References for HDFS

• HDFS in more depth:

<u>Hadoop: The Definitive Guide</u>, 4rd Edition, by Tom White, Chapter 3.

File system shell guide

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html

Namenode startup

http://hortonworks.com/blog/understanding-namenode-startup-operations-in-hdfs/

Namenode availability: checking-pointing explained
 http://blog.cloudera.com/blog/2014/03/a-guide-to-checkpointing-in-hadoop/

HDFS Metadata directories explained

http://hortonworks.com/blog/hdfs-metadata-directories-explained/

Agenda

- In-class practice 1: setup VM and work with HDFS
- What is Map Reduce
- Intro to Spark
- In-class practice 2: running Map Reduce jobs
 - Learn to run both Spark and MR2 jobs in Eclipse
 - Learn to submit Spark and MR2 jobs to a cluster

Practice 1

Setup and use the VM

Flash drive

- Contains a file called "fall2016.ova"
- Practice 1 see install directions for fall2016.ova
 - For the cowboys:
 - Don't unzip or try to open this file.
 - Don't try to create a "new" VM, use the import function as described in *Practice 1*.

Important: copy the .ova to your computer before you import it!

- Flashdrives have a limited number of "writes"
- If you try to run the fall2016.ova from your flashdrive it will be intolerably SLOW
- These flashdrives get HOT. Really hot.

The next 45 - 60 minutes ...

Import the VM

- time to copy fall2016 to your computer: 5-10 minutes
- time to import fall2016.ova to your VM: 10-15 minutes
- time to boot VM: 5-10 minutes

Do some things in the VM:

- get comfortable with using the VM
- work with HDFS

FOLLOW THE PRACTICE 1 instructions closely and in order...

Deep dive MapReduce

APIs and job submission

The 3 phases of a Map-Reduce job in MR2

Map phase

- MapTask sets up the Mapper by running Mapper's
 - setup() method
 - o run() method
 - cleanup method
- The Mapper's run() method executes map() for each record in a "split"

Shuffle-sort - buckets up the mapped data, sorts and ships to the reducers

Reduce phase

- ReduceTask merges the data buckets fetched from the Mappers
- ReduceTask runs Reducer's set-up, run and tear-down methods
- Output of each Reducer is saved as a file in HDFS

The MapReduce API for traditional MR2

Developers customize MapReduce jobs by extending:

These classes are exposed as part of MR2's API.

- Every **Split** is readable by a **RecordReader**
 - RecordReaders turn Splits into a iterable list of Records
- Every MapTask uses the RecordReader to feed Records to a Mapper
- Each Mapper processes one Split

- Mapper outputs are given a partition index
- Shuffle-sort (in the MapTask):
 - Mapper results are sorted and partitioned into files
 - The partitioned files are available for HTTP fetch by Reducer Tasks

- ShuffleSort (In the ReduceTask) The ReducerTask fetches and merges partitioned files into a mergeFile
- The Reducer reads and processes the mergeFile

Review: MapTask steps

For each block of data, create a MapTask. Each MapTask does the following:

- 1. **InputFormat:** convert blocks into input splits that respect record boundaries.
- 2. **RecordReader:** parse split into records, write record as <k,v> pair.
- 3. **Mapper:** run function on each <k,v> pair and write <k',v'>, as desired.
- 4. **Partitioner:** assigns an index, p, to each <k, v> pair => {p, k, v}
- 5. In the background, MapTask runs the spill-thread:
 - aggregates all the values for a key into a list
 - partitions map output into buckets
 - writes each bucket to a different file, one for each reducer

map-side shuffle-sort

Review: ReduceTask steps

reduce-side shuffle-sort

- 1. **Network phase:** ReduceTasks fetch MapTask output files
 - Each ReduceTask is assigned a partition
 - A ReduceTask fetches the buckets for its partition from the MapTasks
 - Reduce tasks do not start 'reducing' until all the MapTasks are done.
- 2. **Merge-sort:** The ReduceTask merge-sorts all fetched buckets into one file
- 3. **Reducer:** processes each <k, {v1, v2, v3...}> and outputs results: <key, result>
- 4. **OutputFormat:** determines format and writes the output. Usually, each Reducer produces a separate file.

Example: Average word length

(Covered in more detail in Practice 3)

- Read in Shakespeare plays
- Mapper: find the first letter of each word
 - write out the first letter as key
 - write out the length of the word as value
- Reducer: read in the letter and list of lengths
 - iterate through the list, summing
 - calculate the average
 - output the key (letter) and the average length

AvgWordLength - main method

```
public static void main(String[] args) throws Exception {
    Job job = Job.getInstance();
                                                        Create and name the job
                                                        Find the jar containing this class
    job.setJobName("Average Word Length");
    job.setJarByClass(AvgWordLength.class);
    FileInputFormat.setInputPaths(job, new Path(args[0]));
                                                                    Define input and
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
                                                                    output locations
    job.setMapperClass(LetterMapper.class);
                                                       Set the Mapper and
    job.setReducerClass(AverageReducer.class);
                                                       Reducer classes
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(IntWritable.class);
                                                           Set the output classes for
                                                           the Mapper and Job
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(DoubleWritable.class);
    System.exit(job.waitForCompletion(true) ? 0 : 1);
```

LetterMapper

```
package averageWordLength.solution;
public class LetterMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
    @Override
    public void map(LongWritable key, Text value, Context context) throws IOException,
    InterruptedException {
         String line = value.toString();
         for (String word : line.split("\\W+")) {
              if (word.length() > 0) {
                  String letter = word.substring(0, 1);
                  context.write(new Text(letter), new IntWritable(word.length()));
```

Letter Mapper in action

map output

Input split

Four score and seven years ago our fathers brought forth on this continent a new nation, conceived in liberty and dedicated to the proposition that all men are created equal

Key, value inputs

Key	Value
0	Four score and seven years ago our
34	fathers brought forth on this continent
74	a new nation, conceived in liberty
109	and dedicated to the proposition that

Letter Mapper

		n		3		
	Я	n		5	i	
	4	С		9		
	5	i	i		2	
1	3	1		7	,	
i	5	а	f		7	
,	5	C	b		7	
l	3		f		5	
)	3		0		2	
			t		4	
			С		10	
			а		1	

Map-side shuffle-sort partition key values index 1,3,3,3,3 а 3 n mapper а 1,3,3,3,3 0 output b 5 n partition 0 b 0 9,7 9 C part-m-00000 9,7 0 C 4 d 2 d 9 0 5 S 5 е 5 0 3 е а merge-sort f 4,7 4,7 0 add partition index b 7 5 7 part-m-00001 f 5 partition 1 3 9 9 2 0 3 3 m m t 4 3, 5 n 3, 5 n 10 С 3 0 0 а р 11 11 p

AverageReducer

```
public class AverageReducer extends Reducer<Text, IntWritable, Text, DoubleWritable>
 @Override
  public void reduce(Text key, Iterable<IntWritable> values, Context context)
     throws IOException, InterruptedException {
    long sum = 0, count = 0;
    for (IntWritable value : values) {
     sum += value.get();
     count++;
    if (count != 0) {
     double result = (double)sum / (double)count;
     context.write(key, new DoubleWritable(result));
```


OVERVIEW: map-reduce data flow

Creating and Running a MapReduce Job

Development

- Write the code in Eclipse
- Let Eclipse compile the code (automatic)
- Test the code by running it in Eclipse (use Run Configurations)

Submitting to the cluster

- Create a jar file from the compiled code
- Use the 'hadoop jar' command to submit

Detailed instructions in Practice 2

Important MapReduce Classes

Job configuration in the main method

The main method submits a job

- The main method creates a <u>Job</u>.
- The Job wraps a <u>Configuration</u> object.
- We define a Job using setters in the Job class.
 - set configuration properties
 - define the MR classes the developer has extended
 - define IO paths and IO types

Going deeper: The Job implements MRJobConfig (see org.apache.hadoop.mapreduce.MRJobConfig)

The simplest job driver

```
public static void main(String[] args) throws Exception {
    Job job = Job.getInstance();
    job.setJobName("Identity Job");
    job.setJarByClass(IdentityDriver.class);
    FileInputFormat.setInputPaths(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
}
```

Note: No Mapper or Reducer classes defined → Top-level Mapper and Reducers are used:

- the top-level Mapper and Reducer do not change the data.
- result is the same as the input data except it is sorted (it went through shuffle-sort)

Job setters and their defaults

Setter	Default value		
setInputFormatClass	TextInputFormat		
setMapperClass	Mapper		
setMapOutputKeyClass	LongWritable		
setMapOutputValueClass	Text		
setPartitionerClass	HashPartitioner		
setNumReduceTasks	1		
setReducerClass	Reducer		
setOutputKeyClass	LongWritable		
setOutputValueClass	Text		
setOutputFormatClass	TextOutputFormat		

If you do <u>not</u> use the setter, then the default is used.

Finding and formatting input data

Specifying input locations

Set the input location using InputFormat.

```
FileInputFormat.setInputPaths(job, new Path(<dir>))
```

- This will read the files in <dir> and execute them in MapReduce.
 - Won't read files that start with "." or "_" (hidden files)
 - Can use wildcards to restrict input: /2010/*/Jan/*
 - <dir> can be a directory or a file
- To add multiple paths:

```
FileInputFormat.addInputPath(job, new Path(<file>))
```

What is an InputFormat?

- Holds the location of the input, usually a file or directory.
- Formats data blocks into splits and ten splits into records.
- InputFormats and OutputFormats are part of Hadoop IO
 - Hadoop IO is used by both MR2 and Spark
 - Details on InputFormats are covered in a later lecture

For now, we'll just be using the default TextInputFormat

Format type	Structured	Comments
Text files	No	Plain old text files. Records are assumed to be one per line.
Key-value text	Semi	Format for key-value pairs. Delimiters can be configured.
Whole file input		Processes one file per split.
Sequence File	Yes	A compressible format for binary data. Header holds metadata about contents. Has sync points for splitting.
Avro File	Yes	A flexible, compressible format with associate schema for handling complex, structured, evolving data.
DB (SQL statement)	Yes	A format for SQL statements from databases. (Most database tables are loaded using Sqoop)
Other: JSON, CSV, XML	Semi	Read in using TextFileFormat; parse in map using json/XML/csv specific libraries. May also use Hadoop streaming.

Mappers

The Mapper runs on every MapTask

- Hadoop attempts to ensure that Mappers run on nodes which hold their portion of the data locally, to avoid network traffic
 - Multiple Mappers run in parallel, each processing a portion of the input data
- The Mapper reads data in the form of key/value pairs
 - The Mapper may use or completely ignore the input key
 - For example, a standard pattern is to read one line of a file at a time
 - The key is the byte offset into the file at which the line starts
 - The value is the contents of the line itself
 - Typically the key is considered irrelevant
- If the Mapper writes anything out, the output must be in the form of key/value pairs

Example Mapper: Upper Case Mapper

Turn input into upper case (pseudo-code):

```
let map(k, v) =
  emit(k.toUpper(), v.toUpper())
```

bugaboo	an object of fear or alarm	map()	BUGABOO	AN OBJECT OF FEAR OR ALARM
mahout	an elephant driver	map()	MAHOUT	AN ELEPHANT DRIVER
bumbershoot	umbrella	map()	BUMBERSHOOT	UMBRELLA

UpperCaseMapper

```
public class UpperCaseMapper extends Mapper<Text, Text, Text> {
    private Text uKey = new Text();
    private Text uValue = new Text();
    @Override
    public void map(Text key, Text value, Context context) {
         uKey.set(key.toString().toUpperCase());
         uValue.set(value.toString().toUpperCase());
         context.write(ukey, uvalue);
```

Example Mapper: 'Explode' Mapper

Output each input character separately (pseudo-code):

```
let map(k, v) =
  foreach char c in v:
  emit (k, c)
pi 3
```

3.14	map()

145

kale

map()

145	k	
145	a	
145	1	
145	е	

4

pi pi

pi

ExplodeMapper

```
public class ExplodeMapper extends Mapper<Text, Text, Text> {
    private Text c = new Text();
    @Override
    public void map(Text key, Text value, Context context) {
         char[] array = value.toString().toCharArray();
         for (int i = 0; i < array.length; i++)</pre>
              context.write(key, c.set(array[i]);
```

Example Mapper: 'Filter' mapper

 Only output key/value pairs where the input value is a prime number (pseudo-code):

```
let map(k, v) =
if (isPrime(v)) then emit(k, v)
```


FilterMapper

```
public class FilterMapper extends Mapper<Text, IntWritable, Text, IntWritable> {
    @Override
    public void map(Text key, IntWritable value, Context context) {
         if (isPrime(value))
              context.write(key, value);
    private boolean isPrime(IntWritable value) {
    ... your sieves here ...
```

Example Mapper: Changing Keyspaces

- The key output by the Mapper does not need to be identical to the input key
- Example: output the word length as the key (pseudo-code):

Changing Key spaces: LengthMapper

```
public class LengthMapper extends Mapper<IntWritable, Text, IntWritable, Text> {
    IntWritable lengthKey = new IntWritable();
    @Override
    public void map(IntWritable key, Text value, Context context) {
         lengthKey.set(value.toString().length());
         context.write(lengthKey, value);
```

Example Mapper: Identity Mapper

Emit the key,value pair (pseudo-code):

```
let map(k, v) = \\ emit(k, v)
```

bugaboo	an object of fear or alarm	map()	bugaboo	an object of fear or alarm
mahout	an elephant driver	map()	mahout	an elephant driver
bumbershoot	umbrella	map()	bumbershoot	umbrella

Reducers

For each input key, the Reducer *reduces* the list of values to a smaller set of values.

The Reducer

- After the Map phase is over, all intermediate values for a given intermediate key are combined together into a list
- This list is given to a Reducer
 - There may be a single Reducer, or multiple Reducers
 - All values associated with a particular intermediate key are guaranteed to go to the same Reducer
 - The intermediate keys, and their value lists, are passed to the Reducer in sorted key order
- The Reducer outputs zero or more final key/value pairs
 - These are written to HDFS
 - In practice, the Reducer usually emits a single key/value pair for each input key

Example Reducer: Sum Reducer

 Add up all the values associated with each intermediate key (pseudocode):

```
let reduce(k, vals) =
    sum = 0
    foreach int i in vals:
        sum += i
    emit(k, sum)
```


SumReducer code

public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

```
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)
    throws IOException, InterruptedException {
  int sum = 0;
  for (IntWritable val : values) {
    sum += val.get();
  context.write(key, new IntWritable(sum));
```

Example Reducer: Average Reducer

 Find the mean of all the values associated with each intermediate key (pseudo-code):

```
let reduce(k, vals) =
   sum = 0; counter = 0;
   foreach int i in vals:
       sum += i; counter += 1;
   emit(k, sum/counter)
```


Average Reducer code

```
public class AvgReducer extends Reducer<IntWritable, IntWritable, IntWritable, DoubleWritable> {
    @Override
     protected void reduce(IntWritable key, Iterable<IntWritable> values, Context context)
          throws IOException, InterruptedException {
          int sum = 0;
          int count = 0;
          for (IntWritable value : values) {
                                                    Iterate through the values in the list, adding to
               sum += value.get();
                                                    the sum and incrementing the counter.
               count++;
                                                    value.get() retrieves the integer.
                                                    average.set() sets the double.
          average.set(sum / (double) count);
          context.write(key, average);
```

Example Reducer: Identity Reducer

The Identity Reducer is very common (pseudo-code):

```
let reduce(k, vals) =
  foreach v in vals:
    emit(k, v)
```

	a knot with two loops and two loose ends			
bow	a weapon for shooting arrows			
	a bending of the head or body in respect			

28	2	
	2	
	7	

reduce()	1
----------	---

bow	a knot with two loops and two loose ends
bow	a weapon for shooting arrows
bow	a bending of the head or body in respect

	V	
	2	

28	2	
28	2	
28	7	

Caveat: keep track of types

the output types of the mapper must match the input types of the reducer

Mapper and Reducer outputs must match main settings

```
public static void main(String[] args) throws Exception {
                 job.setMapOutputKeyClass(Text.class);
                                                                                 job defined in main
                 job.setMapOutputValueClass(IntWritable.class);
                 job.setOutputKeyClass(Text.class);
                 job.setOutputValueClass(FloatWritable:class);
 public class MaxTempMapper extends Mapper<LongWritable, Text, Text, IntWritable>
public class MaxTempReducer extends Reducer<Text, IntWritable, Text, FloatWritable>
```

Mapper output must match Reducer input

public class MaxTempMapper extends Mapper<LongWritable, Text, Text, IntWritable> Map outputs must match Reducer inputs. public class MaxTempReducer extends Reducer<Text, IntWritable, Text, IntWritable>

Writing formatted output data

Specifying output locations

define the output location using OutputFormat:

```
FileOutputFormat.setOutputPath(job, new Path(<dir>))
```

- This defines the directory that receive the final (reduced) results.
- This directory must not exist MapReduce will create it.

Output formats

For now, we will use the default for the OutputFormat.

```
TextOutputFormat.class;
```

- Regardless of the output classes used, it will write out the results as Text (String)
- Very forgiving...

Spark

https://cwiki.apache.org/confluence/display/SPARK/Committers

Spark Analytics

- Founded in late 2013
- by the creators of Apache Spark (Matei Zaharia's PhD dissertation)
- Original team from UC Berkeley AMPLab
- Raised \$47 million in 2 rounds
- <100 employees, 100% recommend on Glassdoor
- They're hiring! (https://databricks.com/company/careers)
- Contributed more than 75% of the code in Spark

The course of sentiment

Cascades "heats" up early and then cool off

There's change: Spark growth

- 2016: 70,000+ LOC
 - including new libraries: 300,000+ LOC

What is Spark?

- A distributed in-memory compute system
- Can use Hadoop/YARN
- Uses the Map Reduce paradigm

Load -> Split -> Map -> Partition -> Shuffle-sort -> Reduce -> Output

- Read/write to HDFS
- Uses Hadoop IO (input and output formats, writables)

What is Spark?

- High-level functionality (joins, aggregates, group by, filter)
- Amazing job choreography
 - MR2 can only execute two tasks, in order: Map and Reduce
 - Spark can create a jobs executing many data transformations
 - While a complex problem might require several MR2 jobs, Spark can execute the same problem in one job.
- Spark's succinct code can represents complex jobs
 - No need for Cascading or Oozie

MR2 tasks vs Spark transformations

MR2 executes each job with just two tasks: MapTask and ReduceTask

Spark executes a job with many transformations.

- Narrow transformations are like MapTasks they do not involve shuffle-sort
- Wide transformations are like ReduceTasks they trigger a shuffle before the transformation begins.

Use case - Twitter

The processing pipeline for a Spark application with transformations (T) and Actions.

More about Spark's allure

- Solves the hard problems
 - Easily moves data from one MR job to another
 - Shuffles in-memory
 - Caches variables and recycles JVMs for tasks
- Solves user problems
 - Multiple languages
 - Python and Scala shell
 - Applications in Java, Python and Scala
 - Well-integrated with Spark R, Spark SQL, MLlib and GraphX
 - Easy data loads, powerful keywords, concise

Example: Word count (written in Scala)

```
val text = sparkContext.textFile("file:///...")
val words = text.flatMap(line => line.split(" "))
val wordPairs = words.map(word => (word, 1))
val counts = wordPairs.reduceByKey( + )
counts.saveAsTextFile("hdfs:/...")
```


Counting the number of times "love" appears in Shakespeare's poetry

```
> val lines = sc.textFile("file:///home/cloudera/datasets/shakespeare/poetry")
> val words = lines.flatMap(line => line.split("\\W+"))
                                                                     we could write
> val loveWords = words.filter(word=> word.contains("love"))
                                                                      this in one
                                                                      Mapper in MR2
> val wordCount = loveWords.map(lword=> (lword, 1))
> val counts = wordCount.reduceByKey(_+_)
                                                     this requires a
                                                     shuffle before we
                                                     start
> counts.collect()
```

Spark workflow for "love" count

At home practice

- Start your VM
- 2. Open a terminal
- 3. Start the spark REPL:
 - \$ spark-shell

4. Run the example by typing this

```
scala> val lines = sc.textFile("file:///home/cloudera/datasets/shakespeare/poetry")
scala> val words = lines.flatMap(line => line.split("\\W+"))
scala> val loveWords = words.filter(word => word.contains("love"))
scala> val wordCount = loveWords.map(word => (word, 1))
scala> val counts = wordCount.reduceByKey(_+_)
scala> counts.collect()
```

Stopping

5. stop the context

6. stop the REPL

RDD - the core class of Spark

- compile-time type-safe
- lazy...
 - <u>transform</u> operations describe how to change the data
 - map, filter, join, reduceByKey
 - o <u>action</u> operations actually start the processing and produce output
 - take, count, first, foreach, collect
- based on the Scala collections API
- most Spark RDD operations == Hive and MapReduce functionality

RDDs in the example

> val lines = sc.textFile("file:///home/cloudera/datasets/shakespeare/poetry")

lines is a file-backed RDD

- > val words = lines.flatMap(line => line.split("\\W+"))
- > val loveWords = words.filter(word => word.contains("love"))
- > val wordCount = loveWords.map(word => (word, 1))
- > val counts = wordCount.reduceByKey(_+_)

words, loveWords, wordCount and counts are RDDs derived from lines

> counts.collect()

collect() is an action - it starts processing and prints out counts

RDD operations

Two types of RDD operations

- Actions - return values

Transformations – define a new RDD based on the current one(s)

Pop quiz:

- Which type of operation is count()?

Learning Spark

- Learn RDDs focus on depth, learn the "how" of the processing
- Learn DataFrames and Datasets focus on "use", best for analysis
- Focus on Spark and Spark Streaming for dataops
- Focus on Spark ecosystem (MLlib, SparkR, SparkSQL) for analysis

Job execution

How the "count love words" example is processed

Job scheduling and execution

Very broad overview

Much more detail here - current, free book

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-dagscheduler.html

Spark has a planning and execution engine

- Creates a plan for the job
- The job is executed in stages
- Narrow transformations are optimized (chained)
 - run on the same executor
 - use the same data
 - o process the data line-by-line through the whole chain

Execution is managed by the DAGScheduler

Spark execution(1)

Spark execution(2)

So, Spark jobs run in stages?

Stage 1: a chain of narrow transforms: textFile -> flatmap -> filter -> map

- Assign an executor to each input split
 - o executes the chain of transforms
 - o each line in a split is processed thru the chain
 - o optimizes to chain to look/act like a single task
- Intermediate results (RDDs) are NOT stored
 - Records process consecutively
 - Each record is fed through all transforms
 - This is called "pipelining"
- At the end of a stage, the data is cached.
 - If we want to "save" an intermediate RDDs, use <name of rdd>.cache()

Stage 2:

- a wide transformation: reduceByKey
 - performs shuffle-sort
 - o runs the ReduceByKey function
- at end, collect prints results:
 - outputs an iterator (e.g. for an array)
 - used for small results

Summary

That collect() action - huh?

- collect() is an action
 - starts the processing by contacting DAGScheduler
 - acts like: job.waitForCompletion() in MapReduce
 - DAGScheduler is an event planner
 - everything is planned and ready to go
 - just needs to be told when to start the party
 - Example: "counts.collect()" was the action that started the job
 - Remember, you saw processing after "counts.collect()"

Important differences: traditional MR and Spark

- Multiple stages not just Map and then Reduce
 - Example: Map (stage 0), Reduce (stage 1), Map (stage 2)
- Memory cache
- Container (JVM) reuse
- Intermediate data contains serialized RDDs on disk

Yet another coding example

Another pass at computing in Spark

Find number of distinct names per "first letter"

sc.textFile("hdfs:/names")

.map(name=>(name.charAt(0), name))

.groupByKey()

.mapValues(names=>names.toSet.size)

.collect()

Spark Execution Model

- Create DAG of RDDs to represent computation
- 2. Create logical execution plan for DAG
- 3. Schedule and execute individual tasks

Step 1: DAG for job

Step 2: Execution plan

- Pipeline as much as possible
- Split into "stages" based on need to reorganize data

Step 3: Scheduling

- Split stages into tasks
- A task is data + computation
- Execute each task in a stage before moving on

Shuffle

- 1. Bucket up the data: Hash by key into buckets
- 2. Write buckets to disk
- 3. Pull bucket files to nodes used for stage 2

Optimizations

Problem: Ran the toSet() operation, to remove duplicates, at end

probably want to cull the data earlier

Problem: May not be enough concurrency

- Need "reasonable number" of data partitions
- Commonly between 100 and 10,000 partitions
- Lower bound: At least ~2x number of cores in cluster
- Upper bound: Ensure tasks take at least 100ms

Revised code with optimizations

```
sc.textFile("hdfs:/names")
  .distinct(numPartitions = 6)
  .map(name => (name.charAt(0), 1))
  . reduceRyKey ( + ) ----- this is the SumReducer, in scala.
  .collect(
Original:
sc.textFile("hdfs: /names")
  .map(name => (name.charAt(0), name))
  .groupByKey()
  .mapValues { names => names.toSet.size
  .collect()
```

Using Mapper setup and cleanup methods is a story for another day...

Hadoop Streaming

The MaxTemp MapReducer written in Python

Special Practice

On your VM's Desktop, there is a folder called "hadoop-streaming".

This contains a SpecialPractice to help you learn

Hadoop Streaming

- Features
- Example using Python
 - python mapper
 - python reducer
- How to run

Hadoop Streaming: features

 Run MapReduce using any language that can read from standard input and write to standard output.

- An important difference:
 - Hadoop MapReduce functions process one record at a time
 - Hadoop Streaming functions read from stdin and control the read process.

How it works: Streaming calls code from Mapper or Reducer

hadoop streaming: Python mapper

```
import re
import sys
for line in sys.stdin:
    val = line.strip()
    (year,temp,q)=val[15:19], val[87:92], val[92:93])
    if (temp != "+9999 and re.match("[01459]", q)):
        print "%s\t%s" % (year, temp)
```

hadoop streaming: Python Reducer

import sys

```
(last key, max val) = (None, -sys.maxint)
for line in sys.stdin:
     (key,val) = line.strip().split("\t")
     if last key and last key != key:
           print "%s \t %s" % (last key, max val)
           (last key, max val) = (key, int(val))
     else:
           (last key, max val) = (key, max(max val, int(val)))
if last_key:
     print "%s \t%s" % (last key, max val)
```

hadoop streaming: running the job

```
$ hadoop jar /usr/lib/hadoop-<version>-mapreduce/\
contrib/streaming/hadoop-streaming-<version>.jar \
-input inputDir -output outputDir \
-file pathToMapScript -file pathToReduceScript \
-mapper mapBasename -reducer reduceBasename
Hadoop supplies the jar for streaming
```

```
Example: running hadoop streaming with Python in the studentVM

hadoop jar /usr/lib/hadoop-0.20-mapreduce/\
contrib/streaming/hadoop-streaming-2.0.0-mr1-cdh4.2.1.jar \
-input shakespeare -output avgwordstreaming \
-file mapper.py \
-file reducer.py \
-mapper mapper.py -reducer reducer.py
```

Key Points

- To write a Mapper and a Reducer
 - can use any language that reads and writes to stdio
 - code must iterate through input data
- To run with "hadoop jar":
 - use the hadoop-*-streaming.jar
 - use the -mapper and -reducer flags

Extra slides

job launch details

