Information Theory Prof. Mário S. Alvim

SOLUTION OF HOMEWORK

STREAM CODES (MACKAY - CHAPTER 6)

Necessary reading for this assignment:

- Information Theory, Inference, and Learning Algorithms (MacKay):
 - Chapter 6.1: The guessing game
 - Chapter 6.2: Arithmetic codes
 - Chapter 6.4: Lempel-Ziv coding
 - Chapter 6.6: Summary

Note: The exercises are labeled according to their level of difficulty: [Easy], [Medium] or [Hard]. This labeling, however, is subjective: different people may disagree on the perceived level of difficulty of any given exercise. Don't be discouraged when facing a hard exercise, you may find a solution that is simpler than the one the instructor had in mind!

Exercises.

- 1. The following exercises regard stream codes.
 - (a) (MacKay 6.5) [Medium]

Instructor's solution: Given in the textbook.

(b) (MacKay 6.6) [Medium]

Instructor's solution: Given in the textbook.

The following may help. To decode the string 00101011101100100100011010101000011 we use the table below that tells us to break the string into 0/01/010/111/0110/0100/1000/1101/01010/00011 (corresponding to the pairs of pointer, bit).

s(n) using 1 bit	0	1	-	-	-	-	-	-	-	-	-
s(n) using 2 bits	00	01	10	11	-	-	-	-	-	-	-
s(n) using 3 bits	000	001	010	011	100	101	110	111	-	-	-
s(n) using 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010
(pointer, bit)	-	(-,0)	(0,1)	(01, 0)	(11, 1)	(011, 0)	(010, 0)	(100, 0)	(110, 1)	(0101, 0)	(0001, 1)
source substrings	λ	0	1	00	001	000	10	0010	101	0000	01

This gives us the decoding 0100001000100010101000001.

2. (The entropy of a compressed file) This exercise regards compression algorithms in general.

An information-theory student wants to check whether she can beat Shannon's compression limit of H(X) bits per symbol for an optimal code C applied to a source ensemble $X = (x, \mathcal{A}_X, \mathcal{P}_X)$.

She envisions a lossless compression method in two steps as follows:

- **Step 1.** Apply an optimal lossless code C to the source X, obtaining a compressed binary file Y.
- **Step 2.** Consider the new file Y as a new source ensemble, in which each symbol of Y is a bit. Apply a new optimal lossless code C' to compress Y into a new binary file Z.

Recalling Shannon's Source Coding Theorem, the student makes the following claims about her newly proposed compressing method:

- Claim 1: Since code C is optimal for the source X, file Y uses approximately H(X) bits to represent each symbol of X.
- Claim 2: Since code C' is optimal for the source Y, file Z uses approximately H(Y) bits to represent each bit of Y (note that each symbol of Y is itself a bit).
- Claim 3: File Z represents each symbol of X using approximately H(X)H(Y) bits.
- (a) [Easy] Discuss whether or not each of the student's three claims are correct.

Instructor's solution: Claims 1 and 2 are direct consequences of Shannon's Source Coding Theorem. ¹

Claim 3 follows immediately from Claims 1 and 2: since each symbol of X is represented in Y using H(X) bits, and each bit of Y (note that each symbol of Y is itself a bit) is represented in Z using H(Y) bits, we have that each symbol of X is represented using H(X)H(Y) bits in Z.

(b) [Medium] What can we say about the size of file Y in comparison to the size of file Z? Is Z gonna be smaller, larger, or of equal size to Y? (Hint: Recall that Shannon's Source Coding Theorem must be valid for the compression from X to Z.)

Instructor's solution: Shannon's Source Coding Theorem must be valid for the compression from X to Z, no matter whether the algorithm runs in one step (compressing X directly into X), or in two steps (first compressing X into Y, then compressing Y into Z), or in whatever number of steps. Hence, Z cannot be smaller than Y, otherwise we would have a compression method that beats Shannon limit by producing an output file using less than H(X) bits per symbol of the source file. That means that the size of Z must be approximately the same size of Y.

(c) [Medium] Using your answers to the previous items, what would be an accurate estimation for the value of H(Y)?

Instructor's solution: From Claim 3 we know that Z uses H(X)H(Y) bits per symbol of X, and from (2b) we know that Z uses H(X) bits per symbol of X. Hence, we must conclude that $H(Y) \approx 1$.

(d) [Medium] Using your answers to the previous items, what can the student conclude about the frequency of bits 0 and 1 in any optimally compressed file? How does that relate to the title of this assignment: "Compression and redundancy"?

Instructor's solution: From (2c) we know that $H(Y) \approx 1$ bit per bit, which means that bits 0 and 1 must occur approximately with equal frequency in Y.

This is a general characteristic of optimal compressors: they remove all redundancy from the source file, producing a compressed file in which the frequency of 0's and 1's is uniform.

¹Recall that Shannon's Source Coding Theorem states that any compression algorithm C for an ensemble X must satisfy $L(C,X) \ge H(X)$ (where L(C,X) is the average length per symbol of the code C for ensemble X), and that for a long enough sequence of symbols of X, an optimal code C uses only $L(C,X) \approx H(X)$ bits per symbol of X.