

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aula 27

Markus Stein

11 June 2019

• ... aula passada...: Como encontrar um ENVVUM usando a Desigualdade de Crámer-Rao?

Exemplo 1: Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Poisson(\lambda)$. Verifique se $T(\boldsymbol{X}) = \overline{X}$ é ENVVUM para λ usando a Desigualdade de Crámer-Rao.

Exemplo 2: Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Uniforme(0, \theta)$. Encontre o Limite Inferior de Crámer-Rao. Verifique se $T(\mathbf{X}) = X_{(n)}$ é ENVVUM para θ .

• Obs. 1: Nem sempre o limite é atingido! Se não for atingido, como podemos encontrar um ENVVUM?

Estimadores baseados em Estatísticas Suficientes

Seja X_1, \ldots, X_n uma amostra aleatória de X tal que $f(\boldsymbol{x}; \theta)$ seja sua f.d.p (ou f.m.p). Considere $W = W(\boldsymbol{X})$ um estimador para $\tau(\theta)$ e $S = S(\boldsymbol{X})$ uma estatística suficiente para θ . Note que

$$\widehat{\theta} = E\left(W|S\right)$$

é um estimador para $\tau(\theta)$ ($\widehat{\theta}$ é função de S que não depende de θ).

• Teorema de Rao-Blackwell: (Notas de Aula, pg. 70) Se W(X) é um estimador não viesado para $\tau(\theta)$, então $\widehat{\theta} = E(W|S)$ é não viesado para $\tau(\theta)$, $E(\widehat{\theta}) = \tau(\theta)$, e $Var(\widehat{\theta}) \leq Var(W)$.

Prova: Use o fato de que para duas variáveis aleatórias X e Y, E(X) = E(E(X|Y)) e Var(X) = Var(E(X|Y)) + E(Var(X|Y)).

- Obs. 2: Dizemos que $\widehat{\theta}$ é uniformemente melhor do que W.
- Obs. 3: Qualquer estimador W que não é função de umas estatística suficiente S pode ser melhorado utilizando o teorema acima.

Exemplo 3: Para os dados do exemplo 1 acima, considere que queremos estimar $\tau(\theta) = P(X = 0) = e^{-\theta}$. Defina a estatística $S(X) = \sum_{i=1}^{n} X_i$ e o estimador W tal que W(X) = 1, se $X_1 = 0$ ou W(X) = 0, caso contrário. Encontre um estimador melhor do que W baseado em S.

Estimadores baseados em Estatísticas Suficientes e Completas

• Teorema de Lehmann-Scheffé: (Notas de Aula, pg. 71) Seja X_1, \ldots, X_n uma amostra aleatória de X tal que $f(\boldsymbol{x}; \theta)$ seja sua f.d.p (ou f.m.p). Considere $W = W(\boldsymbol{X})$ um estimador não viesado para $\tau(\theta)$ e $C = C(\boldsymbol{X})$ uma estatística suficiente e completa para $\tau(\theta)$, então $\hat{\theta} = E(W|C)$ é um ENVVUM para $\tau(\theta)$. Prova?

Exemplo 4: Para os dados do exemplo 1 acima, utilize o teorema de Lehmann-Scheffé para mostrar que \overline{X} é ENVVUM para λ .

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

_		
Tarefa 1: Fazer a lista de	e exercícios 6 para entregar.	
Tarefa 2: Ler páginas 68 a 72 das "Notas de Aula".		
_		