Cálculo Integral em ${\rm I\!R}$

(Primitivação e Integração)

Miguel Moreira e Miguel Cruz

Conteúdo

1	Primitivação		
	1.1	Noção de primitiva	2
	1.2	Algumas primitivas imediatas	3
	1.3	Propriedades das primitivas	3
	1.4		4
		1.4.1 Primitivação por partes	4
		1.4.2 Primitivação por mudança de variável (ou substituição)	5
		1.4.3 Primitivação por decomposição	9
2	O I	ntegral de Riemann	13
	2.1	Partições de intervalos e somas de Riemann	13
	2.2	Integrabilidade à Riemann	
3	Propriedades do Integral de Riemman		
	3.1	Propriedades elementares	16
	3.2	Teorema Fundamental do Cálculo Integral	19
	3.3	Integração por partes	22
	3.4	Integração por mudança de variável	
4	Alg	umas aplicações do integral definido	23
	4.1	Cálculo de áreas	23
	4.2	Cálculo de volumes de sólidos de revolução	
	4.3	Cálculo do comprimento de linha	25
5	Integrais Impróprios		
		Limites de integração infinitos	26
	5.2		
	5.3	Critérios de convergência	

1 05/Janeiro/2001

1 Primitivação

1.1 Noção de primitiva

Definição 1 Se f e F são funções definidas no intervalo [a,b], F é diferenciável em todos os pontos de [a,b] e se para todo o $x \in [a,b]$,

$$F'(x) = f(x),$$

diz-se que F é uma primitiva de f em [a, b].

Observação 1 Nestas circunstâncias diz-se que f é **primitivável** em [a, b].

Observação 2 Questões de notação: para denotar a primitiva F de uma função y = f(x) é habitual utilizar a notação, $F(x) = P_x f(x)$, F(x) = Pf(x) ou $F(x) = \int f(x) dx$.

Naturalmente $(P_x f(x))' = f(x)$.

Exemplo 1 As funções $F(x) = \sin x \in G(x) = \sin x + 3$ são primitivas de $\cos x$ em \mathbb{R} pois $(\sin x)' = (\sin x + 3)' = \cos x$.

Como se pode verificar, se F for uma primitiva de f, também F+C (em que C é uma constante) é uma primitiva de f. Mas será que todas as primitivas de uma dada função diferem entre si de uma constante? O seguinte teorema responde afirmativamente a esta questão (mas só se F for uma primitiva de f num intervalo).

Proposição 1 Sejam F e G duas primitivas de f no **intervalo** [a,b]. Então, F(x) - G(x) = C (em que C é uma constante), isto é, F e G diferem entre si de uma constante.

Dem. Reparando que,

$$(F(x) - G(x))' = F'(x) - G'(x)$$

= $f(x) - f(x)$
= 0,

deduz-se que F-G é constante no intervalo [a,b], em resultado de um corolário do teorema de Lagrange.

Função	Primitiva
$\sin x$	$-\cos x + C$
$\cos x$	$\sin x + C$
$x^{\alpha}, (\alpha \neq -1, x > 0)$	$\frac{x^{\alpha+1}}{\alpha+1} + C$
$\frac{1}{x}$	$\ln x + C$
$\frac{1}{1+x^2}$	$\arctan x + C$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + C$

Tabela 1: Tabela de primitivas elementares

Função	Primitiva
$\varphi'(x)\sin\varphi(x)$	$-\cos\varphi\left(x\right) + C$
$\varphi'(x)\cos\varphi(x)$	$\sin\varphi\left(x\right) + C$
$\varphi'(x)\varphi(x)^{\alpha}, (\alpha \neq -1, \varphi(x) > 0)$	$\frac{\left[\varphi(x)\right]^{\alpha+1}}{\alpha+1} + C$
$\frac{\varphi'(x)}{\varphi(x)}$	$\ln\left \varphi\left(x\right)\right + C$
$\frac{\varphi'(x)}{1+[\varphi(x)]^2}$	$\arctan \varphi (x) + C$
$\frac{\varphi'(x)}{\sqrt{1-[\varphi(x)]^2}}$	$\arcsin \varphi (x) + C$

Tabela 2: Tabela de primitivas imediatas

1.2 Algumas primitivas imediatas

Na tabela 1 apresentamos algumas primitivas imediatas. Reparando que

$$(F(\varphi(x)))' = \varphi'(x) F'(\varphi(x))$$

atendendo à regra de derivação da função composta concluí-se facilmente que $F(\varphi(x))$ é uma primitiva de $\varphi'(x) F'(\varphi(x))$.

Na tabela 2 apresentamos a versão mais geral da tabela 1.

1.3 Propriedades das primitivas

Daqui em diante, tendo em vista simplificar a notação utilizada, a igualdade Pf(x) = Pg(x) deverá ser entendida verificando-se a menos de uma constante, isto é, significando

$$Pf(x) - Pg(x) = C,$$

com $C \in \mathbb{R}$.

Proposição 2 Sejam f e g funções primitiváveis no intervalo [a,b] e $\alpha \in \mathbb{R}$. Então, no intervalo [a,b]:

1.
$$P(f(x) + g(x)) = Pf(x) + Pg(x)$$
;

2.
$$P(\alpha f(x)) = \alpha Pf(x)$$
;

Proposição 3 Seja f uma função diferenciável no intervalo [a,b]. Então, no intervalo [a,b],

$$P_x f'(x) = f(x) + C.$$

Dem.
$$(f(x) + C)' = f'(x)$$
.

Proposição 4 Toda a função contínua num intervalo é primitivável nesse intervalo.

Dem. Ver a parte 1 do teorema fundamental do cálculo integral (proposição 21).

1.4 Técnicas de Primitivação

1.4.1 Primitivação por partes

Proposição 5 Sejam f e g são funções com derivada contínua no intervalo [a, b]. Então, neste mesmo intervalo

$$P(f'(x) g(x)) = f(x) g(x) - P(f(x) g'(x)).$$

Dem. Da fórmula de derivação do produto,

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x),$$

resulta

$$f'(x) g(x) = (f(x) g(x))' - f(x) g'(x).$$

Notando que estas funções são todas primitiváveis pois são contínuas (proposição 4), deduz-se

$$P(f'(x) g(x)) = P((f(x) g(x))') - P(f(x) g'(x))$$

= $f(x) g(x) - P(f(x) g'(x)),$

tendo em conta algumas das propriedades, já assinaladas, da primitivação.

Exemplo 2 Calcule $P \sin^2 x$.

Fazendo $f'(x) = \sin x$ e $g(x) = \sin x$, resulta $f(x) = -\cos x$ e $g'(x) = \cos x$. Aplicando a fórmula de primitivação por partes,

$$P(\sin x \sin x) = -\cos x \sin x - P(-\cos^2 x)$$
$$= -\cos x \sin x + P(1 - \sin^2 x)$$
$$= -\cos x \sin x + x - P \sin^2 x.$$

Então,

$$P\sin^2 x = \frac{-\cos x \sin x + x}{2} + C.$$

Exemplo 3 Calcule $P \ln x$.

Fazendo f'(x) = 1 e $g(x) = \ln x$ resulta f(x) = x e $g'(x) = \frac{1}{x}$. Assim,

$$P \ln x = x \ln x - Px \frac{1}{x} = x (\ln x - 1) + C.$$

Exemplo 4 Calcule Pxe^x .

Fazendo $f'(x) = e^x$ e g(x) = x resulta $f(x) = e^x$ e g'(x) = 1. Assim,

$$Pxe^{x} = xe^{x} - P1e^{x} = e^{x}(x-1) + C.$$

1.4.2 Primitivação por mudança de variável (ou substituição)

Comecemos por apresentar a seguinte notação para representar f(g(t)):

$$f\left(g\left(t\right)\right) = \left.f\left(x\right)\right|_{x=q\left(t\right)}.$$

Proposição 6 Seja f uma função contínua no intervalo [a,b] e $x = \varphi(t)$ uma aplicação com derivada contínua e que não se anula. Então,

$$P_x f(x) = P_t f(\varphi(t)) \varphi'(t)|_{t=\varphi^{-1}(x)}.$$

Dem. Claramente y = f(x) e $z = f(\varphi(t))\varphi'(t)$ são funções primitiváveis no intervalo [a,b] relativamente às variáveis x e t, respectivamente. Seja, $H(t) = P_t f(\varphi(t))\varphi'(t)$ e

$$H\left(\varphi^{-1}\left(x\right)\right) = P_{t}f\left(\varphi\left(t\right)\right)\varphi'\left(t\right)|_{t=\varphi^{-1}\left(x\right)},$$

mostremos que $\frac{d(H(\varphi^{-1}(x)))}{dx} = f(x)$. Da regra de derivação da função composta e da função inversa deduz-se sucessivamente,

$$\frac{d\left(H\left(\varphi^{-1}\left(x\right)\right)\right)}{dx} = \frac{d\left(H\left(t\right)\right)}{dt} \Big|_{t=\varphi^{-1}\left(x\right)} \frac{d\left(\varphi^{-1}\left(x\right)\right)}{dx}$$

$$= f\left(\varphi\left(t\right)\right) \varphi'\left(t\right) \Big|_{t=\varphi^{-1}\left(x\right)} \frac{1}{\varphi'\left(t\right)} \Big|_{t=\varphi^{-1}\left(x\right)}$$

$$= f\left(x\right) \varphi'\left(\varphi^{-1}\left(x\right)\right) \frac{1}{\varphi'\left(\varphi^{-1}\left(x\right)\right)}$$

$$= f\left(x\right).$$

Observação 3 Seguidamente apresentamos uma demonstração alternativa da proposição anterior.

Dem. Seja F uma primitiva de f e $H(t) = F(\varphi(t))$. Então

$$H'(t) = F'_x(\varphi(t)) \varphi'(t)$$

= $f(\varphi(t)) \varphi'(t)$,

o que mostra que $H(t) = F(\varphi(t))$ é uma primitiva de $f(\varphi(t)) \varphi'(t)$. Assim, se em H substituirmos $\varphi(t)$ por x (ou seja fizermos $t = \varphi^{-1}(x)$) obteremos F(x).

Observação 4 Utilizando outra notação para representar o conceito de primitiva a fórmula de primitivação por substituição pode ser apresentada da forma seguinte:

$$\int f(x) dx = \int f(\varphi(t)) \varphi'(t) dt \Big|_{t=\varphi^{-1}(x)}$$
$$= \int f(\varphi(t)) \frac{d\varphi}{dt} dt \Big|_{t=\varphi^{-1}(x)}.$$

Exemplo 5 Calcule $P\frac{1}{(2x+1)^2}$.

Seja t=2x+1, isto é, façamos $x=\varphi\left(t\right)=\frac{t-1}{2}$. Da fórmula de primitivação por substituição,

$$P_{x} \frac{1}{(2x+1)^{2}} = P_{t} \frac{\varphi'(t)}{(2\varphi(t)+1)^{2}} \Big|_{t=2x+1}$$

$$= P_{t} \frac{\frac{1}{2}}{t^{2}} \Big|_{t=2x+1}$$

$$= -\frac{1}{2} t^{-1} \Big|_{2x+1}$$

$$= -\frac{1}{2} \frac{1}{(2x+1)} + C.$$

Exemplo 6 Calcule $Pe^{\sqrt{2-x}}$.

Façamos
$$\sqrt{2-x}=t$$
, isto é, $x=\varphi\left(t\right)=2-t^{2}$. Assim, $\varphi'\left(t\right)=-2t$ e

$$P_{x}e^{\sqrt{2-x}} = P_{t}\varphi'(t) e^{\sqrt{2-\varphi(t)}}\Big|_{t=\varphi^{-1}(x)}$$

$$= P_{t}(-2t) e^{t}\Big|_{t=\varphi^{-1}(x)}$$

$$= -2Pte^{t}\Big|_{t=\varphi^{-1}(x)}$$

$$= -2 \left(e^{t}(t-1)\right)\Big|_{t=\varphi^{-1}(x)}$$

$$= -2 \left(e^{\sqrt{2-x}}\left(\sqrt{2-x}-1\right)\right) + C.$$

Exemplo 7 Calcule $P\sqrt{4-x^2}$.

Seja $x = \varphi(t) = 2\sin t$. Então, $\varphi'(t) = 2\cos t$ e

$$P_{x}\sqrt{4-x^{2}} = P_{t}\varphi'(t)\sqrt{4-\varphi(t)^{2}}\Big|_{t=\varphi^{-1}(x)}$$

$$= P_{t}2\cos t\sqrt{4-(2\sin t)^{2}}\Big|_{t=\varphi^{-1}(x)}$$

$$= 4P_{t}\cos^{2}t\Big|_{t=\arcsin\frac{x}{2}}.$$

Mas,

$$P_t \cos^2 t = P_t (1 - \sin^2 t) =$$

$$= t - \frac{-\cos t \sin t + t}{2}$$

$$= \frac{t + \cos t \sin t}{2}.$$

Então,

$$P_x\sqrt{4-x^2} = 4\frac{t+\cos t \sin t}{2} \Big|_{t=\arcsin\frac{x}{2}}$$

$$= 2\left(\arcsin\frac{x}{2} + \cos \arcsin\frac{x}{2}\sin \arcsin\frac{x}{2}\right)$$

$$= 2\left(\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{1-\frac{x^2}{4}}\right) + C$$

Uma das principais dificuldades na primitivação por substituição reside na escolha da mudança de variável adequada. Em numerosas situações encontram-se estudadas substituições aconselhadas, tais como as que se apresentam na tabela 3, na qual f é uma função racional dos argumentos indicados. A utilização destas substituições permite transformar a função a primitivar numa função racional que pode ser primitivada por decomposição.

Primitiva	Substituição
$Pf\left(x,\sqrt{ax^2+bx+c}\right), a>0$	$\sqrt{ax^2 + bx + c} = t + x\sqrt{a}$
$Pf\left(x,\sqrt{ax^2+bx+c}\right),c>0$	$\sqrt{ax^2 + bx + c} = tx + \sqrt{c}$
$Pf\left(x,\sqrt{ax^2+bx+c}\right),$	$\sqrt{ax^2 + bx + c} = (x - \alpha)t,$
$b^2 - 4ac > 0$	α raíz de $ax^2 + bx + c$
$Pf\left(e^{x}\right)$	$x = \ln t$

Tabela 3: Primitivação por substituição

Exemplo 8 Calcule $P\frac{1}{\sqrt{x^2+c}}$. Notemos que a>0 em x^2+c . Utilizemos por isso a primeira das substituições recomendada na tabela 3,

$$\sqrt{x^2 + c} = t + x.$$

Assim, $x = \varphi(t) = \frac{c-t^2}{2t} e \varphi'(t) = -\frac{t^2+c}{2t^2} e$

$$P_{x} \frac{1}{\sqrt{x^{2} + c}} = -P_{t} \frac{1}{t + \frac{c - t^{2}}{2t}} \frac{t^{2} + c}{2t^{2}} \bigg|_{t = \sqrt{x^{2} + c} - x}$$

$$= -P_{t} \frac{1}{t} \bigg|_{t = \sqrt{x^{2} + c} - x}$$

$$= -\ln \left| \sqrt{x^{2} + c} - x \right| + C.$$

Exemplo 9 Calcule $P^{\frac{e^x+2e^{-x}}{e^{2x}}}$.

Notemos que

$$\frac{e^x + 2e^{-x}}{e^{2x}} = \frac{e^{2x} + 2}{e^{3x}}$$

e façamos $x = \varphi(t) = \ln t$. Assim, $\varphi'(t) = \frac{1}{t}$ e

$$P_x \frac{e^x + 2e^{-x}}{e^{2x}} = P_t \frac{t^2 + 2}{t^3} \frac{1}{t} \bigg|_{t=e^x}$$

Exemplo 10 Calcule $P^{\frac{1+\sqrt{x^2-3x-2}}{x-1}}$. Notemos que a>0 e que x^2-3x-2 tem duas raízes reais distintas pois $b^2 - 4ac > 0$. Podemos recorrer à primeira ou última das substituições assinaladas na tabela 3. Utilizando a primeira das substituições, façamos

$$\sqrt{x^2 - 3x - 2} = t + x.$$

Assim,

$$x = \varphi(t) = -\frac{2+t^2}{3+2t}$$

e

$$\varphi'(t) = -\frac{2t^2 + 6t - 4}{(3 + 2t)^2}.$$

Resultando,

$$P_x \frac{1 + \sqrt{x^2 - 3x - 2}}{x - 1} = P_t \frac{1 + t - \frac{2 + t^2}{3 + 2t}}{-\frac{2 + t^2}{3 + 2t} - 1} \left(-\frac{2t^2 + 6t - 4}{(3 + 2t)^2} \right) \bigg|_{t = \varphi^{-1}(x)}$$

No próximo ponto iremos ver como primitivar funções racionais.

1.4.3 Primitivação por decomposição

A decomposição é uma técnica de primitivação de funções racionais que consiste em decompor em fracções elementares de primitivação imediata ou quase imediata a função racional que se pretende primitivar.

Proposição 7 Seja F(x) uma função racional. É possível escrever F na forma

$$F(x) = H(x) + \frac{P(x)}{Q(x)}$$

em que H, P e Q representam polinómios tais que o grau de P é inferior ao grau do polinómio mónico Q.

Exemplo 11 Escreva na forma anteriormente indicada a função racional $F\left(x\right)=\frac{x^4-3x^2+x}{3x^3+x}$.

Apliquemos o algoritmo da divisão ao quociente F. Facilmente se verifica que

$$F(x) = \frac{x}{3} + \frac{-\frac{10}{3}x + 1}{3x^2 + 1}$$
$$= \frac{x}{3} + \frac{-\frac{10}{9}x + \frac{1}{3}}{x^2 + \frac{1}{3}}.$$

¹um polinómio é mónico se o coeficiente do termo de maior grau é 1.

função	Primitiva
$\frac{a}{(x-r)^k}, k \ge 1, \ k \in \mathbb{N}$	$\begin{cases} a \ln (x-k) + C, \text{ se } k = 1\\ \frac{a(x-r)^{-k+1}}{-k+1}, \text{ se } k > 1 \end{cases}$
$\frac{bx+d}{\left[(x-\alpha)^2+\beta^2\right]}$	$\frac{b\ln((x-\alpha)^2+\beta^2)}{2} + \frac{(b\alpha+d)}{\beta}\arctan\left(\frac{x-\alpha}{\beta}\right) + C$
$\frac{bx+d}{\left[(x-\alpha)^2+\beta^2\right]^k}, k>1, k\in\mathbb{N}$	$\frac{b(1+t^2)^{-k+1}}{2\beta^{2k-2}(1-k)} + \frac{b\alpha+d}{\beta^{2k-1}} \int \frac{1}{(1+t^2)^k} dt, \ t = \frac{x-\alpha}{\beta}$
$\frac{1}{(1+t^2)^k}, k > 1, k \in \mathbb{N}$	por partes fazendo, $\frac{1}{(1+t^2)^k} = \frac{1}{(1+t^2)^{k-1}} - \frac{t}{2} \frac{2t}{(1+t^2)^k}$

Tabela 4: Primitivação por decomposição

Assim, o cálculo da primitiva de F fica reduzido ao cálculo da primitiva elementar do polinómio H e da primitiva da fracção racional P/Q com as características atrás indicadas:

$$\int F(x) dx = \int H(x) dx + \int \frac{P(x)}{Q(x)} dx.$$

Proposição 8 Sejam P e Q polinómios tais que o grau de P é inferior ao grau do polinómio mónico Q. Então P/Q pode decompor-se numa soma de termos elementares dos tipos seguintes:

1.
$$\frac{a}{(x-r)^k}$$
, $a, r \in \mathbb{R}$, $k \in \mathbb{N}$ $e \ k \ge 1$

$$\mathcal{Z}. \ \frac{bx+d}{\left[(x-\alpha)^2+\beta^2\right]^k}, \ \alpha, \ \beta, \ b, \ d \in {\rm I\!R}, \ k \in {\rm I\!N} \ \ e \ k \geq 1.$$

Desta forma conhecendo as primitivas dos termos elementares $\frac{a}{(x-r)^k}$ e $\frac{bx+d}{\left[(x-\alpha)^2+\beta^2\right]^k}$ o problema do cálculo de $\int \frac{P(x)}{Q(x)} dx$ fica resolvido. Na tabela 4 apresentamos as primitivas indicadas.

Seguidamente vamos verificar como podemos decompor P/Q.

Proposição 9 Consideremos o polinómio mónico Q e todas as suas raízes reais r_k $(1 \le k \le s)$ e complexas $c_l = \alpha_l + \beta_l i$ $(1 \le l \le t)$ assim como as respectivas multiplicidades μ_k $(1 \le k \le s)$ das raízes reais e da raízes complexas ν_l $(1 \le l \le t)$.

Raízes:	Multiplicidade:
r_1	μ_1
:	:
r_s	μ_s
$c_1 = \alpha_1 \pm \beta_1 i$	ν_1
:	::
$c_t = \alpha_t \pm \beta_t i$	$ u_t$

Então o polinómio Q pode ser escrito da seguinte forma,

$$Q(x) = (x - r_1)^{\mu_1} \dots (x - r_s)^{\mu_s} \left((x - \alpha_1)^2 + \beta_1^2 \right)^{\nu_1} \dots \left((x - \alpha_t)^2 + \beta_t^2 \right)^{\nu_t}$$

Dem. Omitida.

Exemplo 12 Decomponha na forma indicada o polinómio $Q(x) = x^3 - x^2 + x - 1$.

Comecemos por observar que as raízes de Q são r=1 e $c=\pm i,$ qualquer delas de multiplicidade um. Então,

$$Q(x) = (x-1)(x^2+1).$$

Proposição 10 Consideremos a função racional P/Q tal que o grau de P é menor do que o grau do polinómio mónico Q e todas as raízes reais r_k $(1 \le k \le s)$ e complexas $c_l = \alpha_l + \beta_l i$ $(1 \le l \le t)$, **deste último polinómio**, assim como as respectivas multiplicidades μ_k $(1 \le k \le s)$ das raízes reais e da raízes complexas ν_l $(1 \le l \le t)$. Então,

$$\frac{P(x)}{Q(x)} = \sum_{k=1}^{s} \sum_{n=1}^{\mu_k} \frac{a_k^{(n)}}{(x - r_k)^n} + \sum_{l=1}^{t} \sum_{m=1}^{\nu_l} \frac{b_l^{(m)} x + d_l^{(m)}}{\left((x - \alpha_l)^2 + \beta_l^2\right)^m}$$

Dem. Omitida.

De referir que os coeficientes desconhecidos na decomposição anterior podem ser calculados pelo método dos coeficientes indeterminados.

Exemplo 13 Decomponha da maneira indicada as funções racionais

1.
$$F_1(x) = \frac{x^2 + 2x - 1}{(x+1)^3(x-1)}$$

$$\frac{x^2 + 2x - 1}{(x+1)^3 (x-1)} = \frac{a_1}{(x+1)} + \frac{a_2}{(x+1)^2} + \frac{a_3}{(x+1)^3} + \frac{a_4}{(x-1)}.$$

2.
$$F_2(x) = \frac{x^3 - 1}{x(x^2 + 1)^2}$$

$$\frac{x^3 - 1}{x(x^2 + 1)^2} = \frac{a_1}{x} + \frac{b_1 x + d_1}{(x^2 + 1)} + \frac{b_2 x + d_2}{(x^2 + 1)^2}.$$

3.
$$F_3(x) = \frac{x+2}{(x^2-1)(x^2+1)^2}$$

$$\frac{x+2}{(x^2-1)(x^2+1)^2} = \frac{x+2}{(x-1)(x+1)(x^2+1)^2}$$
$$= \frac{a_1}{(x-1)} + \frac{a_2}{(x+1)} + \frac{b_1x+d_1}{(x^2+1)} + \frac{b_2x+d_2}{(x^2+1)^2}.$$

4.
$$F_4(x) = \frac{x^2 + 2x - 1}{x^3 - x^2 + x - 1}$$

$$\frac{x^2 + 2x - 1}{x^3 - x^2 + x - 1} = \frac{x^2 + 2x - 1}{(x - 1)(x^2 + 1)}$$
$$= \frac{a_1}{(x - 1)} + \frac{b_1 x + d_1}{(x^2 + 1)}.$$

Exemplo 14 Decomponha em fracções elementares a função racional

$$F(x) = \frac{x^2 + 2x - 1}{x^3 - x^2 + x - 1}$$

e calcule os coeficientes indeterminados.

Do exemplo anterior,

$$\frac{x^2 + 2x - 1}{x^3 - x^2 + x - 1} = \frac{a_1}{(x - 1)} + \frac{b_1 x + d_1}{(x^2 + 1)}$$

$$= \frac{a_1 (x^2 + 1) + (x - 1) (b_1 x + d_1)}{(x - 1) (x^2 + 1)}$$

$$= \frac{(a_1 + b_1) x^2 + (d_1 - b_1) x + (a_1 - d_1)}{(x - 1) (x^2 + 1)}.$$

Então,

$$\begin{cases} a_1 + b_1 = 1 \\ d_1 - b_1 = 2 \\ a_1 - d_1 = -1 \end{cases} \Rightarrow \begin{cases} a_1 = 1 \\ b_1 = 0 \\ d_1 = 2 \end{cases}$$
$$\Rightarrow \frac{x^2 + 2x - 1}{x^3 - x^2 + x - 1} = \frac{1}{(x - 1)} + \frac{2}{(x^2 + 1)}$$

2 O Integral de Riemann

2.1 Partições de intervalos e somas de Riemann

Definição 2 Seja [a,b] um intervalo com b > a.

1. Uma **partição**² de [a,b] é um conjunto de pontos $P = \{x_0, x_1, \dots, x_n\}$ tal que

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b.$$

2. A **norma** da partição $P = \{x_0, x_1, \dots, x_n\}$ é o número (que é sempre maior ou igual a zero),

$$||P|| = \max_{1 \le j \le n} |x_j - x_{j-1}|.$$

3. Um refinamento da partição $P = \{x_0, x_1, \dots, x_n\}$ é uma partição Q de [a, b] tal que $P \subseteq Q$. Nesta situação diz-se que Q é mais fina do que P.

Exemplo 15 Sejam I = [0,1], $P = \{0,0.1,0.3,0.5,1\}$ e $Q = P \cup \{0.7\}$. P e Q são duas partições de I tais que ||P|| = 0.5 e ||Q|| = 0.3. Q é um refinamento da partição P pois $P \subseteq Q$. Naturalmente Q é mais fina do que P.

Definição 3 Seja [a,b] um intervalo fechado limitado, $P = \{x_0, x_1, \ldots, x_n\}$ uma partição de [a,b] e $f:[a,b] \to \mathbb{R}$ uma função limitada. Chama-se **soma** de **Riemann** de f relativamente à partição P ao número

$$S(f, P) = \sum_{j=1}^{n} f(t_j) (x_j - x_{j-1})$$

com

$$t_j \in [x_{j-1}, x_j] \ com \ 1 \le j \le n.$$

Exemplo 16 Represente e interprete geometricamente uma soma de Riemann de $f(x) = x^2$ em [0,1] e $P = \{0,0.25,0.5,0.75,1\}$.

Proposição 11 Sejam P e Q partições de [a,b] tal que $P \subseteq Q$ então $||P|| \ge ||Q||$.

 $^{^{2}}$ ou decomposição de vértices P.

Definição 4 (Convergência de uma soma de Riemann) Seja $P = \{x_0, x_1, \dots, x_n\}$ uma partição de [a, b] e $f : [a, b] \to \mathbb{R}$ uma função limitada. **Diz-se** que a soma de Riemann de f converge para o número I(f) quando $||P|| \to 0$ se para todo $\delta > 0$ existe uma partição P_{δ} de [a, b] tal que

$$P_{\delta} \subseteq P \Rightarrow \left| \sum_{j=1}^{n} f(t_j) (x_j - x_{j-1}) - I(f) \right| < \delta$$

para todas as escolhas de $t_j \in [x_{j-1}, x_j]$, $1 \le j \le n$. Nestas circunstâncias

$$I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) (x_j - x_{j-1})$$

2.2 Integrabilidade à Riemann

Definição 5 Seja [a,b] um intervalo com b > a. Diz-se que $f : [a,b] \to \mathbb{R}$ é integrável à Riemann em [a,b] se f é limitada em [a,b] e se o limite

$$I(f) = \lim_{\|P\| \to 0} \sum_{j=1}^{n} f(t_j) (x_j - x_{j-1}),$$

existe. Nestas circunstâncias escreve-se

$$I(f) = \int_{a}^{b} f(x) dx,$$

e diz-se que $\int_a^b f(x) dx$ é o **integral definido** de f entre a e b.

Na definição anterior f representa a chamada função integranda, x a variável de integração, dx o acréscimo infinitésimal associado a

$$\lim_{\|P\| \to 0} (x_j - x_{j-1})$$

e a e b os limites de integração.

Observação 5 No presente contexto e se nada for dito em contrário a expressão "função integrável" deverá entender-se "função integrável à **Riemann**".

Exemplo 17 As funções constantes f(x) = k, são integráveis à Riemann pois são limitadas, e $f(t_j) = k$ para todas as escolhas de $t_j \in [x_{j-1}, x_j]$, $j = 1, 2, \ldots, n$ para toda a partição P de [a, b],

$$\sum_{j=1}^{n} k (x_j - x_{j-1}) = k \sum_{j=1}^{n} (x_j - x_{j-1})$$
$$= k (b - a).$$

O seguinte resultado mostra que todas as funções contínuas são integráveis à Riemann.

Proposição 12 As funções contínuas em intervalos fechados e limitados [a, b], são integráveis à Riemann.

Dem. Omitida.

O integral de Riemann de uma função positiva entre a e b pode interpretarse geometricamente como a área da região do plano limitada superiormente pelo gráfico de f, inferiormente pelo eixo dos xx e lateralmente pelas rectas x=a e x=b.

Exemplo 18 Consideremos a função f(x) = x e o intervalo [0,1]. Calculemos $\int_0^1 f(x) dx$.

Consideremos a partição diádica do intervalo indicado,

$$P_n = \{j/2^n : j = 0, 1, 2, 3, \dots, 2^n\}$$

e a soma de Riemann,

$$S(f,P) = \sum_{j=1}^{j=2^n} f\left(\frac{j}{2^n}\right) \left(\frac{j}{2^n} - \frac{j-1}{2^n}\right) = \sum_{j=1}^{j=2^n} \frac{j}{2^n} \frac{1}{2^n}$$

$$= \sum_{j=1}^{j=2^n} \frac{j}{4^n}$$

$$= \frac{1+2+4+\ldots+2^n}{4^n}$$

$$= \frac{(1+2^n)2^n}{2\times 4^n}$$

$$= \frac{\left(\frac{1}{2^n} + 1\right)}{2}.$$

Então,

$$\int_{0}^{1} f(x) dx = \lim_{n \to \infty} \frac{\left(\frac{1}{2^{n}} + 1\right)}{2}$$
$$= \frac{1}{2}.$$

3 Propriedades do Integral de Riemman

3.1 Propriedades elementares

Vamos ver agora algumas propriedades importantes do integral de Riemann.

Proposição 13 (Linearidade do Integral) Sejam f e g integráveis em [a,b] e $\alpha \in \mathbb{R}$, então f+g e αf são integráveis em [a,b] e

$$\int_{a}^{b} \left(f\left(x \right) + g\left(x \right) \right) dx = \int_{a}^{b} f\left(x \right) dx + \int_{a}^{b} g\left(x \right) dx$$

e

$$\int_{a}^{b} (\alpha f(x)) dx = \alpha \int_{a}^{b} f(x) dx.$$

Dem. Deixemos a demonstração da segunda igualdade como exercício e demonstremos a primeira. Comecemos por observar que f + g é limitada em [a,b]. Seja $\delta > 0$ e $\delta_1 \leq \frac{\delta}{2}$. Existem partições P_{δ_1} e R_{δ_1} tais que

$$P_{\delta_1} \subseteq P \Rightarrow \left| \sum_{j=1}^n f(t_j) (x_j - x_{j-1}) - I(f) \right| < \delta_1 = \frac{\delta}{2}$$

e

$$R_{\delta_1} \subseteq P \Rightarrow \left| \sum_{j=1}^n g(t_j) (x_j - x_{j-1}) - I(g) \right| < \delta_1 = \frac{\delta}{2}$$

para todas as escolhas de $t_j \in [x_{j-1}, x_j]$, j = 1, 2, ..., n (porquê?). Consideremos a partição de [a, b], $Q_{\delta} = P_{\delta_1} \cup R_{\delta_1}$. Então,

$$\left| \sum_{j=1}^{n} \left(f\left(t_{j}\right) + g\left(t_{j}\right) \right) \left(x_{j} - x_{j-1} \right) - \left(I\left(f\right) + I\left(g\right) \right) \right| =$$

$$\left| \sum_{j=1}^{n} f\left(t_{j}\right) \left(x_{j} - x_{j-1} \right) - I\left(f\right) + \sum_{j=1}^{n} g\left(t_{j}\right) \left(x_{j} - x_{j-1} \right) - I\left(g\right) \right| \leq$$

$$\left| \sum_{j=1}^{n} f\left(t_{j}\right) \left(x_{j} - x_{j-1} \right) - I\left(f\right) \right| + \left| \sum_{j=1}^{n} g\left(t_{j}\right) \left(x_{j} - x_{j-1} \right) - I\left(g\right) \right| < \frac{\delta}{2} + \frac{\delta}{2} = \delta$$

se $Q_{\delta} \subseteq P$, para todas as escolhas de $t_j \in [x_{j-1}, x_j]$, $j = 1, 2, \ldots, n$ (porquê?). O que mostra que,

$$\int_{a}^{b} \left(f\left(x \right) + g\left(x \right) \right) dx = \int_{a}^{b} f\left(x \right) dx + \int_{a}^{b} g\left(x \right) dx$$

Proposição 14 Se f é integrável em [a,b] então f é integrável em todo o subintervalo [c,d] de [a,b] e

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx,$$

para todo o $c \in [a, b[$.

Dem. Omitida.

Proposição 15 (Comparação de Integrais) Sejam f e g integráveis em [a,b] e $f(x) \leq g(x)$ para todo $x \in [a,b]$, então

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx. \tag{1}$$

Em particular se $m \leq f(x) \leq M$,

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a). \tag{2}$$

Dem. Seja h(x) = f(x) - g(x). Então, $h(x) \le 0$ para todo $x \in [a, b]$, com h e a função constante 0 integráveis à Riemann (porquê?). Por outro lado,

$$S(h, P) < S(0, P) = 0$$

para toda a partição de P de [a, b]. Então,

$$\lim_{\|P\| \to 0} \sum_{j=1}^{n} h(t_j) (x_j - x_{j-1}) \le 0.$$

Da linearidade do integral (proposição 15), conclui-se

$$\int_{a}^{b} h(x) dx = \int_{a}^{b} (f(x) - g(x)) dx$$
$$= \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx \le 0,$$

o que mostra que

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$$

como se pretendia.

Proposição 16 Seja f integrável em [a,b], então |f| \acute{e} integrável em [a,b], e

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx.$$

Dem. Omitida.

Proposição 17 Seja f e g integráveis em [a,b], então fg é integrável em [a,b].

Dem. Omitida.

Proposição 18 Se f é integrável em [a, b] então

$$\int_{c}^{c} f(x) \, dx = 0$$

para todo o $c \in [a, b]$.

Dem. Seja $c \in [a, b[, h > 0 \text{ tal que } c + h \in [a, b[e M \text{ o máximo de } f \text{ em } [a, b]. Então, das proposições 16 e 15,$

$$\left| \int_{c}^{c+h} f(x) dx \right| \leq \int_{c}^{c+h} |f(x)| dx$$
$$\leq M(c+h-c)$$
$$< Mh.$$

Fazendo $h \to 0$ resulta $\left| \int_c^{c+h} f(x) dx \right| \to 0$. Deste facto resulta a tese. Análogamente se demonstra a situação c = b.

Definição 6 Seja f integrável em [a, b], então

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

Esta definição pode justificar-se recorrendo à noção de Integral de Riemann e permite generalizar algumas das propriedades já estudadas.

Proposição 19 (Teorema da média) Seja f contínua em [a,b], então existe $c \in [a,b]$ tal que

$$\int_{a}^{b} f(x) dx = f(c) (b - a).$$
 (3)

Dem. Naturalmente f é integrável (porquê?). Seja m e M o mínimo e o máximo de f em [a,b], respectivamente. Do **teorema de Bolzano** (porque

f é contínua) para todo μ entre m e M existe $c \in [a,b]$ tal que $f(c) = \mu$. Da equação (2) como,

$$m \le \frac{\int_a^b f(x) \, dx}{b-a} \le M,$$

fazendo $\mu = \frac{\int_a^b f(x)dx}{b-a}$ resulta a tese.

3.2 Teorema Fundamental do Cálculo Integral

Comecemos por definir o que se entende por integral indefinido.

Definição 7 Seja f integrável em [a, b]. Então a função

$$F(x) = \int_{a}^{x} f(t) dt$$

 $com \ x \in [a, b] \ diz\text{-se} \ integral \ indefinido \ de \ f.$

Proposição 20 Seja f integrável em [a, b], então

$$F(x) = \int_{a}^{x} f(t) dt$$

existe e é contínua em [a,b].

Dem. Seja $\delta > 0$, $x_0 \in [a,b]$, $M = \sup_{x \in [a,b]} f(x)$ $e \varepsilon = \frac{\delta}{M}$. Então, recorrendo às propriedades atrás indicadas,

$$|F(x) - F(x_0)| = \left| \int_a^x f(t) dt - \int_a^{x_0} f(t) dt \right|$$

$$= \left\{ \left| \int_{x_0}^x f(t) dt \right|, se \ x_0 \le x \right.$$

$$\left| \int_x^{x_0} f(t) dt \right|, se \ x_0 > x \right.$$

$$\le \left\{ \left| \int_x^x f(t) dt \right|, se \ x_0 \le x \right.$$

$$\le M |x - x_0|.$$

Este facto mostra, como se pretendia, que

$$|x - x_0| < \varepsilon \Rightarrow |F(x) - F(x_0)| < \delta.$$

Proposição 21 (Teorema fundamental do Cálculo Integral) Seja [a, b] um intervalo $com \ b > a \ e \ f : [a, b] \to \mathbb{R}$.

1. Se f é contínua em [a,b] então $F(x) = \int_a^x f(t) dt$ tem derivada contínua em [a,b] e

$$\frac{d\left(\int_{a}^{x} f\left(t\right) dt\right)}{dx} = F'\left(x\right) = f\left(x\right). \tag{4}$$

2. (Fórmula de Barrow) Se f é contínua em [a,b] e G uma primitiva de f em [a,b]. $Ent\~ao$

$$\int_{a}^{b} f(t) dt = G(x)|_{a}^{b}$$

$$= G(b) - G(a).$$
(5)

Dem.

1. Seja $F(x) = \int_a^x f(t) dt$. Calculemos a razão incremental de F em $x_0 \in]a,b[$:

$$\frac{F(x_0 + h) - F(x_0)}{h} = \frac{\int_a^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt}{h}$$
$$= \frac{\int_{x_0}^{x_0 + h} f(t) dt}{h},$$

das propriedades elementares do integral. Por outro lado, como f é contínua em [a,b], da proposição 19 (teorema da média) existe ξ_h entre x_0 e $x_0 + h$ tal que

$$\int_{x_0}^{x_0+h} f(t) dt = f(\xi_h) (x_0 + h - x_0)$$
$$= f(\xi_h) h.$$

Assim, notando que $\xi \to x_0$ quando $h \to 0$, (porquê?),

$$\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = \lim_{h \to 0} \frac{\int_{x_0}^{x_0 + h} f(t) dt}{h}$$
$$= \lim_{h \to 0} \frac{f(\xi_h) h}{h}$$
$$= f(x_0).$$

Este facto demonstra que F'(x) = f(x) e que F' é contínua em]a,b[. A demonstração de que F'(a) = f(a) (derivada de F à direita de a) e F'(b) = f(b) (derivada de F à esquerda de b) poderia ser realizada de forma idêntica recorrendo à noção de derivada lateral direita e esquerda respectivamente.

2. Seja G(x) uma primitiva de f em [a,b]. Então, da proposição 1, já que $\int_a^x f(t) dt$ também é uma primitiva de f em [a,b],

$$G(x) - \int_{a}^{x} f(t) dt = k.$$

Fazendo x = a resulta G(a) = k. Assim,

$$G(b) - \int_{a}^{b} f(t) dt = G(a),$$

o que demonstra a validade da equação (5).

Observação 6 É possível enfraquecer ligeiramente as hipóteses do número 2 da proposição 21:

(Fórmula de Barrow) Se F' é integrável em [a, b] então

$$\int_{a}^{b} F'(t) dt = F(x)|_{a}^{b}$$
$$= F(b) - F(a).$$

A demonstração deste caso pode encontrar-se em [6].

Observação 7 A equação (5) fornece-nos um método de cálculo do integral definido e é conhecida por f**órmula de Barrow** ou **fórmula de Newton-Leibniz**.

Exemplo 19 Seja f é contínua em [a, b], $F(y) = \int_a^y f(t) dt$ e y = g(x) uma função diferenciável em [a, b]. Calcule, a derivada de

$$H(x) = \int_{a}^{g(x)} f(t) dt,$$

em a, b.

1. Comecemos por observar que (H(x))' = (F(g(x)))'. Pela regra de derivação da função composta

$$(H(x))' = F'_y(g(x))g'(x).$$

2. Mas, do número 1 da proposição 21, $F_{y}^{\prime}\left(y\right)=f\left(y\right),$ então

$$(H(x))' = f(g(x))g'(x).$$

Exemplo 20 Calcule $\int_0^\pi \sin x dx$. Seja $-\cos x$ uma primitiva de $\sin x$. Então, do número 2 da proposição 21,

$$\int_0^{\pi} \sin x dx = -\cos x \Big|_0^{\pi}$$

$$= -\cos \pi - (-\cos 0)$$

$$= -(-1) - (-1) = 2.$$

3.3 Integração por partes

Proposição 22 (Fórmula de integração por partes) Sejam f e q diferenciáveis em [a, b] com f' e q' integráveis em [a, b]. Então,

$$\int_{a}^{b} f'(x) g(x) dx = f(x) g(x)|_{a}^{b} - \int_{a}^{b} f(x) g'(x) dx.$$

Dem. Da regra de derivação do produto,

$$f'(x) g(x) = (f(x) g(x))' - f(x) g'(x).$$
(6)

Tendo presente a fórmula de Barrow, notando que f(x) g(x) é uma primitiva de(f(x), q(x))' e que os restantes termos da equação anterior são integráveis em [a, b], deduz-se o resultado pretendido, integrando membro a membro a equação (6).

Exemplo 21 Calcule $\int_0^{\pi/2} x \sin x dx$. Seja g(x) = x e $f'(x) = \sin x$. Nestas circunstâncias g'(x) = 1 e f(x) = 1 $-\cos x$. Assim,

$$\int_0^{\pi/2} x \sin x dx = -x \cos x \Big|_0^{\pi/2} - \int_0^{\pi/2} 1 (-\cos x) dx$$
$$= 0 + \int_0^{\pi/2} \cos x dx$$
$$= \sin x \Big|_0^{\pi/2} = 1.$$

Integração por mudança de variável

Proposição 23 (Mudança de variável) Seja $x = \varphi(t)$ uma função com derivada contínua em [a,b], intervalo fechado e limitado, tal que $\varphi(a) < 0$ $\varphi(b)$. Se,

1. f for continua em $\varphi([a,b])$, ou se,

2. φ for estritamente crescente em [a,b] e f for integrável em $[\varphi(a),\varphi(b)]$, então,

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt.$$

Dem. Demonstremos apenas o primeiro resultado (a demonstração do número 2 pode encontrar-se em [6]). Suponha-se f contínua em φ ([a,b]) = $[\varphi(a), \varphi(b)]$. Seja, $F(x) = \int_{\varphi(a)}^{x} f(\xi) d\xi$ uma primitiva de f. Note-se que F é uma primitiva de f em resultado do número 1 da proposição 21. Por outro lado $H(t) = F(\varphi(t))$ é uma primitiva da função contínua $f(\varphi(t))\varphi'(t)$. Assim pela fórmula de Barrow resulta sucessivamente,

$$\int_{a}^{b} f(\varphi(t)) \varphi'(t) dt = H(b) - H(a)$$

$$= F(\varphi(b)) - F(\varphi(a))$$

$$= \int_{\varphi(a)}^{\varphi(b)} f(x) dx$$

Exemplo 22 Calcule $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$.

Seja $x=\varphi(t)=\sin t$ e $\varphi'(t)=\cos t$. Assim, quando x=1 e x=0, $t=\arcsin 1=\frac{\pi}{2}$ e t=0. Então,

$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos t}{\sqrt{1-(\sin t)^{2}}} dt$$
$$= \int_{0}^{\frac{\pi}{2}} 1 dt$$
$$= \frac{\pi}{2}.$$

4 Algumas aplicações do integral definido

4.1 Cálculo de áreas

A área A, limitada pelas curvas (correspondentes a funções integráveis) y = f(x) e y = g(x) e pelas rectas verticais x = a e x = b ($a \le b$), pode calcular-se recorrendo à seguinte expressão:

$$A = \int_{a}^{b} |f(x) - g(x)| dx$$

Note-se que

$$\int_{a}^{b} |f(x) - g(x)| dx = \lim_{\|P\| \to 0} \sum_{j=1}^{n} |f(t_{j}) - g(t_{j})| (x_{j} - x_{j-1})$$

facto que interpretado geometricamente justifica a afirmação.

Exemplo 23 Cálcule a área limitada pelas curvas $y = \sin x$ e o eixo dos xx entre x = 0 e $x = \pi$.

Seja então

$$A = \int_0^{\pi} |\sin x - 0| dx = \int_0^{\pi} \sin x dx$$
$$= -\cos \pi + \cos 0 = 2.$$

Exemplo 24 Cálcule a área limitada pelas curvas y=xe $y=x^2$ entre x=0e x=1. Seja então

$$A = \int_0^1 |x - x^2| dx = \int_0^1 (x - x^2) dx$$
$$= \frac{x^2}{2} - \frac{x^3}{3} \Big|_0^1 = \frac{1}{6}.$$

4.2 Cálculo de volumes de sólidos de revolução

O volume V de um sólido de revolução gerado pela rotação em torno do eixo dos xx da área limitada pelas curvas (correspondentes a funções integráveis não negativas) y = f(x) e y = g(x) e as rectas x = a e x = b ($a \le b$), pode ser calculado pela seguinte expressão:

$$V = \int_{a}^{b} \pi \left| f^{2}(x) - g^{2}(x) \right| dx$$

Note-se que

$$\int_{a}^{b} \pi \left| f^{2}(x) - g^{2}(x) \right| dx = \lim_{\|P\| \to 0} \sum_{j=1}^{n} \pi \left| f^{2}(t_{j}) - g^{2}(t_{j}) \right| (x_{j} - x_{j-1})$$

facto que interpretado geometricamente justifica a afirmação.

Exemplo 25 Cálcule o volume de uma esfera de raio igual a um.

Seja então $y = \sqrt{1 - x^2}$,

$$V = \int_{-1}^{1} \pi \left| \left(\sqrt{1 - x^2} \right)^2 - 0^2 \right| dx$$

$$= \pi \int_{-1}^{1} \left(1 - x^2 \right) dx$$

$$= \pi \left(x - \frac{x^3}{3} \right) \Big|_{-1}^{1}$$

$$= \pi \frac{4}{3}.$$

Exemplo 26 Cálcule o volume do sólido de revolução gerado pela rotação da superfície limitada pelas curvas y = kx e o eixo dos xx entre x = 0 e x = h (k > 0 e h > 0).

Seja então

$$V = \int_0^h \pi \left| (kx)^2 - 0^2 \right| dx$$
$$= \pi k^2 \int_0^h x^2 dx$$
$$= \frac{\pi k^2 h^3}{3}.$$

4.3 Cálculo do comprimento de linha

O comprimento l da linha associada ao gráfico da função y = f(x) (com derivada contínua) entre x = a e x = b (isto é entre os pontos (a, f(a)) e b, f(b)), pode calcular-se recorrendo ao seguinte integral definido por

$$l = \int_{a}^{b} \sqrt{1 + \left(\frac{df}{dx}(x)\right)^{2}} dx$$

Note-se que

$$\int_{a}^{b} \sqrt{1 + \left(\frac{df}{dx}\left(x\right)\right)^{2}} dx = \lim_{\|P\| \to 0} \sum_{j=1}^{n} \sqrt{1 + \left(\frac{df}{dx}\left(t_{j}\right)\right)^{2}} \left(x_{j} - x_{j-1}\right)$$

facto que interpretado geometricamente justifica a afirmação.

Exemplo 27 Calcule o perímetro de uma circunferência de raio igual a um.

Seja
$$f(x) = \sqrt{1 - x^2}$$
 e $f'(x) = -\frac{x}{\sqrt{1 - x^2}}$. Então,
$$l = 4 \int_0^1 \sqrt{1 + \left(-\frac{x}{\sqrt{1 - x^2}}\right)^2} dx$$
$$= 4 \int_0^1 \sqrt{\frac{1}{1 - x^2}} dx$$
$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{\frac{1}{1 - \sin^2 t}} \cos t dt$$
$$= 4 \frac{\pi}{2}$$
$$= 2\pi.$$

fazendo a mudança de variável $x = \sin t$.

5 Integrais Impróprios

A operação de integração pode ser extendida a intervalos não limitados e/ou funções não limitadas recorrendo à noção de **integral impróprio** que podem, assim, ocorrer em duas situações diferentes:

- 1. quando os limites de integração são infinitos, isto é, quando o intervalo de integração não é limitado (**Integrais impróprios de 1**^a **espécie**);
- 2. quando a função integranda é não limitada no intervalo de integração.(Integrais impróprios de 2^a espécie)

5.1 Limites de integração infinitos

Definição 8 Seja f uma função integrável para todo o α sempre que $[a, \alpha] \subset [a, +\infty[$. O integral impróprio, da função f em $[a, +\infty]$, \acute{e} o limite

$$\int_{a}^{+\infty} f(x) dx = \lim_{\alpha \to +\infty} \int_{a}^{\alpha} f(x) dx$$

caso exista e seja finito. Nesta situação diz-se que $\int_a^{+\infty} f(x) dx$ existe ou converge.

Se $\lim_{\alpha \to +\infty} \int_a^{\alpha} f(x) dx$ não existir nem for finito diz-se que $\int_a^{+\infty} f(x) dx$ não existe ou diverge.

Define-se de maneira análoga,

$$\int_{-\infty}^{a} f(x) dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{a} f(x) dx,$$

$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{a} f(x) dx + \lim_{\beta \to +\infty} \int_{a}^{\beta} f(x) dx.$$

Exemplo 28 Calculemos $\int_0^{+\infty} \frac{1}{1+x^2} dx$.

$$\int_0^{+\infty} \frac{1}{1+x^2} dx = \lim_{\alpha \to +\infty} \int_0^{\alpha} \frac{1}{1+x^2} dx$$
$$= \lim_{\alpha \to +\infty} \arctan x \Big|_0^{\alpha}$$
$$= \lim_{\alpha \to +\infty} \arctan \alpha$$
$$= \frac{\pi}{2}.$$

Exemplo 29 Calculemos $\int_1^{+\infty} \frac{1}{x^2} dx$.

$$\int_{1}^{+\infty} \frac{1}{x^{2}} dx = \lim_{\alpha \to +\infty} \int_{1}^{\alpha} \frac{1}{x^{2}} dx$$

$$= \lim_{\alpha \to +\infty} -x^{-1} \Big|_{1}^{\alpha}$$

$$= \lim_{\alpha \to +\infty} \left(-\alpha^{-1} - (-1) \right)$$

$$= 1.$$

Exemplo 30 Calculemos $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$.

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{0} \frac{1}{1+x^2} dx + \lim_{\beta \to +\infty} \int_{0}^{\beta} \frac{1}{1+x^2} dx$$
$$= \lim_{\alpha \to -\infty} \arctan x \Big|_{\alpha}^{0} + \frac{\pi}{2}$$
$$= -\lim_{\alpha \to -\infty} \arctan \alpha + \frac{\pi}{2}$$
$$= \pi.$$

Exemplo 31 Mostre que $\int_1^{+\infty} \frac{1}{x} dx$ diverge.

$$\int_{1}^{+\infty} \frac{1}{x} dx = \lim_{\alpha \to +\infty} \int_{1}^{\alpha} \frac{1}{x} dx$$
$$= \lim_{\alpha \to +\infty} \ln |x||_{1}^{\alpha}$$
$$= \lim_{\alpha \to +\infty} \ln (\alpha)$$
$$= +\infty.$$

Exemplo 32 Estude quanto à convergência o integral impróprio $\int_1^{+\infty} \frac{1}{x^k} dx$. Seja k=1, do exemplo anterior verifica-se que o integral impróprio referido não converge. Suponha-se $k \neq 1$. Então

$$\int_{1}^{+\infty} \frac{1}{x^{k}} dx = \lim_{\alpha \to +\infty} \left(\frac{x^{-k+1}}{-k+1} \right) \Big|_{1}^{\alpha}$$
$$= \frac{1}{(1-k)} \lim_{\alpha \to +\infty} \left(\frac{1}{\alpha^{k-1}} \right) - \frac{1}{(1-k)}.$$

O que mostra que $\int_1^{+\infty} \frac{1}{x^k} dx$ converge, quando k > 1, pois $\lim_{\alpha \to +\infty} \left(\frac{1}{\alpha^{k-1}}\right) = 0$ e diverge quando $0 \le k < 1$ pois $\lim_{\alpha \to +\infty} \left(\frac{1}{\alpha^{k-1}}\right) = +\infty$. Em resumo,

$$k \leq 1 \Rightarrow \int_{1}^{+\infty} \frac{1}{x^{k}} dx$$
 diverge e
$$k > 1 \Rightarrow \int_{1}^{+\infty} \frac{1}{x^{k}} dx \text{ converge.}$$
 (7)

5.2 Funções integrandas não limitadas

Definição 9 Seja f uma função integrável para todo o α sempre que $[a, \alpha] \subset [a, c[$ e não limitada em $\alpha = c$. O integral impróprio, da função f em [a, c], \acute{e} o limite

$$\int_{a}^{c} f(x) dx = \lim_{\alpha \to c^{-}} \int_{a}^{\alpha} f(x) dx$$

caso exista e seja finito. Nesta situação diz-se que $\int_a^c f(x) dx$ existe ou converge.

Se $\lim_{\alpha\to c^-}\int_a^\alpha f\left(x\right)dx$ não existir nem for finito diz-se que $\int_a^c f\left(x\right)dx$ não existe ou diverge.

Define-se de maneira análoga, $\int_a^b f(x) dx$ quando a não limitação de f se verifica em x = a, limite inferior de integração, ou x = c, pertencente ao interior do intervalo [a, b]:

$$\int_{a}^{b} f(x) dx = \lim_{\alpha \to a^{+}} \int_{\alpha}^{b} f(x) dx,$$

$$\int_{a}^{b} f(x) dx = \lim_{\alpha \to c^{-}} \int_{a}^{\alpha} f(x) dx + \lim_{\beta \to c^{+}} \int_{\beta}^{b} f(x) dx.$$

Exemplo 33 Calculemos $\int_0^1 \frac{1}{\sqrt{1-x}} dx$.

$$\int_{0}^{1} \frac{1}{\sqrt{1-x}} dx = \lim_{\alpha \to 1^{-}} \int_{\alpha}^{\alpha} \frac{1}{\sqrt{1-x}} dx$$

$$= \lim_{\alpha \to 1^{-}} \frac{-(1-x)^{1/2}}{1/2} \Big|_{0}^{\alpha}$$

$$= -2 \lim_{\alpha \to 1^{-}} (1-x)^{1/2} \Big|_{0}^{\alpha}$$

$$= -2 \left(\lim_{\alpha \to 1^{-}} (1-x)^{1/2} - 1 \right)$$

$$= 2.$$

Exemplo 34 Calculemos $\int_0^1 \frac{1}{x^2} dx$.

$$\int_0^1 \frac{1}{x^2} dx = \lim_{\alpha \to 0^+} \int_0^1 \frac{1}{x^2} dx$$
$$= \lim_{\alpha \to 0^+} -x^{-1} \Big|_\alpha^1$$
$$= +\infty$$

Exemplo 35 Estude quanto à convergência o integral impróprio $\int_0^1 \frac{1}{x^k} dx$. Seja k=1, então

$$\int_0^1 \frac{1}{x} dx = \lim_{\alpha \to 0^+} \ln|x||_{\alpha}^1 = +\infty$$

O que mostra que $\int_0^1 \frac{1}{x^k} dx$ não converge, quando k=1. Suponha-se que $k \neq 1.$ Então

$$\int_{0}^{1} \frac{1}{x^{k}} dx = \lim_{\alpha \to 0^{+}} \left(\frac{x^{-k+1}}{-k+1} \right) \Big|_{\alpha}^{1}$$
$$= \frac{1}{(1-k)} - \frac{1}{(1-k)} \lim_{\alpha \to 0^{+}} \left(\frac{1}{\alpha^{k-1}} \right).$$

o que mostra que $\int_0^1 \frac{1}{x^k} dx$ diverge se k>1 (pois $\lim_{\alpha\to 0^+} \left(\frac{1}{\alpha^{k-1}}\right)=+\infty$) e converge se $0\leq k<1$. Em resumo,

$$k < 1 \Rightarrow \int_0^1 \frac{1}{x^k} dx$$
 converge e
$$k \geq 1 \Rightarrow \int_0^1 \frac{1}{x^k} dx$$
 diverge. (8)

Exemplo 36 Seja $f(x) = x^{-3/4}$. Mostre que $\int_0^1 f(x) dx$ converge e que $\int_0^1 \pi (f(x))^2 dx$ não converge. Interprete o resultado geometricamente.

Antendendo ao resultado (8) concluí-se imedia
tamente que $\int_0^1 \frac{1}{x^{3/4}} dx$ é convergente e

$$\int_0^1 \pi \left(x^{-3/4}\right)^2 dx = \pi \int_0^1 \frac{1}{x^{3/2}} dx$$

é divergente. Este facto mostra que a área limitada superiormente pela curva f e inferiormente pelo eixo dos xx, entre x=0 e x=1, é finita enquanto que o volume do sólido de revolução, gerado pela mesma, é infinito.

5.3 Critérios de convergência

Antes de apresentarmos alguns importantes critérios de convergência iremos referir a definição de convergência absoluta de um integral impróprio.

Definição 10 Seja

$$\int_{a}^{b} f(x) dx$$

um integral impróprio de 1ª ou de 2ª espécie. Este integral diz-se absolutamente convergente se o integral impróprio

$$\int_{a}^{b} |f(x)| dx$$

convergir.

O seguinte resultado relaciona a convergência absoluta de um integral impróprio com a sua convergência, dita, simples.

Proposição 24 Seja $\int_a^b f(x) dx$ um integral impróprio de 1^a ou de 2^a espécie. Se $\int_a^b |f(x)| dx$ é um integral impróprio convergente então $\int_a^b f(x) dx$ também é convergente.

Proposição 25 (Primeiro critério de comparação) Sejam $\int_a^b f(x) dx$ e $\int_a^b g(x) dx$ dois integrais impróprios, ambos da mesma espécie e relativamente ao mesmo limite de integração, tais que $0 \le f(x) \le g(x)$, $\forall x \in]a,b[$. Então

1. $\int_{a}^{b} f(x) dx$ divergente $\Rightarrow \int_{a}^{b} g(x) dx$ divergente.

2. $\int_a^b g(x) dx$ convergente $\Rightarrow \int_a^b f(x) dx$ convergente.

Dem. Omitida.

Proposição 26 (Segundo critério de comparação) $Sejam \int_a^b f(x) dx$ e $\int_a^b g(x) dx$ dois integrais impróprios de 1^a ou de 2^a espécie relativamente ao limite superior x=b (respectivamente, limite inferior x=a) tais que $\lim_{x\to b^-} \frac{f(x)}{g(x)} = \lambda \in \mathbb{R}^+$ (respectivamente, $\lim_{x\to a^+} \frac{f(x)}{g(x)} = \lambda \in \mathbb{R}^+$. Então,

$$\int_{a}^{b} f(x) dx \ e \int_{a}^{b} g(x) dx$$

são da mesma natureza, isto é, são ambos convergentes ou ambos divergentes. **Dem.** Omitida.

Na utilização dos critérios de convergência atrás enunciados os resultados de convergência (7) e (8) são frequentemente utilizados.

Exemplo 37 Estude quanto à convergência o seguinte integral

$$\int_{1}^{+\infty} \frac{1}{x^2 \left(1 + e^x\right)} dx.$$

Comecemos por observar que $0 \le \frac{1}{x^2(1+e^x)} \le \frac{1}{x^2}, \forall x \in [1,+\infty[$. e que $\int_1^{+\infty} \frac{1}{x^2} dx$ converge como vimos anteriormente. Então do primeiro critério de comparação resulta a convergência de $\int_1^{+\infty} \frac{1}{x^2(1+e^x)} dx$.

Exemplo 38 Estude quanto à convergência o seguinte integral

$$\int_0^1 \frac{1}{\sqrt{x} + 4x^3} dx.$$

Comecemos por observar que $0 \le \frac{1}{\sqrt{x} + 4x^3} \le \frac{1}{\sqrt{x}}, \forall x \in]0,1]$. Tendo em conta que $\int_0^1 \frac{1}{\sqrt{x}} dx$ converge, concluí-se que $\int_0^1 \frac{1}{\sqrt{x} + 4x^3} dx$ também converge, pelo primeiro critério de comparação.

Exemplo 39 Estude quanto à convergência o seguinte integral

$$\int_{1}^{+\infty} \frac{\sin x}{x^3} dx.$$

Comecemos por observar que $0 \le \left|\frac{\sin x}{x^3}\right| \le \frac{1}{x^3}, \forall x \in [1, +\infty[$. Tendo em conta que $\int_1^{+\infty} \frac{1}{x^3} dx$ converge, concluí-se que $\int_1^{+\infty} \left|\frac{\sin x}{x^3}\right| dx$ também converge pelo primeiro critério de comparação. Da proposição 24 concluí-se a convergência de $\int_1^{+\infty} \frac{\sin x}{x^3} dx$.

Exemplo 40 Mostre que $\int_2^{+\infty} \frac{1}{x\sqrt{x^2-1}} dx$ converge. Seja $f(x) = \frac{1}{x^2}$ e $g(x) = \frac{1}{x\sqrt{x^2-1}}$, reparando que

$$\lim_{x \to +\infty} \frac{\frac{1}{x\sqrt{x^2 - 1}}}{\frac{1}{x^2}} = \lim_{x \to +\infty} \frac{x^2}{x\sqrt{x^2 - 1}}$$
$$= 1 \in \mathbb{R}^+,$$

deduz-se pelo segundo critério de comparação a convergência de $\int_2^{+\infty} \frac{1}{x\sqrt{x^2-1}} dx$, já que $\int_2^{+\infty} \frac{1}{x^2} dx$ também converge.

Exemplo 41 Mostre que $\int_1^3 \frac{1}{x\sqrt{x^2-1}} dx$ converge. Seja $f(x) = \frac{1}{\sqrt{x-1}}$ e $g(x) = \frac{1}{x\sqrt{x^2-1}}$, reparando que

$$\lim_{x \to 1^{+}} \frac{\frac{1}{x\sqrt{x^{2}-1}}}{\frac{1}{\sqrt{x-1}}} = \lim_{x \to 1^{+}} \frac{\sqrt{x-1}}{x\sqrt{x^{2}-1}}$$

$$= \lim_{x \to 1^{+}} \frac{1}{x} \sqrt{\frac{x-1}{(x-1)(x+1)}}$$

$$= \frac{1}{\sqrt{2}} \in \mathbb{R}^{+},$$

deduz-se pelo segundo critério de comparação a convergência de $\int_1^3 \frac{1}{x\sqrt{x^2-1}} dx$, já que $\int_1^3 \frac{1}{\sqrt{x-1}} dx$ também converge. Note que (8) permite concluír que $\int_{1}^{3} \frac{1}{\sqrt{x-1}} dx$ converge já que

$$\frac{1}{\sqrt{x-1}} = \frac{1}{(x-1)^{1/2}}.$$

Referências

- [1] Apostol, T. M., Calculus, Reverté, 1977;
- [2] zenha, Acilina e Jerónimo, M. A., Cálculo Diferencial Integral em IR e \mathbb{R}^n , McGraw-Hill, 1995;
- [3] Lima, Elon Lages, Curso de Análise (Vol 1 e 2), IMPA, Projecto Euclides, 1995;
- [4] Piskounov, N., Calcul Différentiel et Intégral, MIR, 1976;

- [5] Taylor, A. E., Advanced Calculus, Xerox College Publishing, Massachusetts, 1972;
- [6] Wade, W. R., An Introduction to Analysis, Prentice Hall, 1995;