TD6

Félix Yvonnet

19 octobre 2023

Ex1 : Sous espaces fermés de C([0,1]) formés de fonctions régulières.

- 1. Soit $D: F \longrightarrow E$ $f \longmapsto f'$. T est linéaire et $(f_n, Tf_n) \to (f, y) \in (F \times E)$. $f_n \to f$ unif et $f'_n \to y$ unif. On a alors y = f' = Tf et $(f_n, Tf_n) \to (f, Tf)$. Donc le graphe de T est fermé par caractérisation séquentielle. On applique le thm du graphe fermé cat T linéaire, E de Banach et F aussi car fermé $\Rightarrow T$ est continue!
- 2. $\mathcal{A} = \{f \in F \mid \|f\|_{\infty} \leq 1\}$ les fonctions de \mathcal{A} sont C-Lipschitziennes par la question précédente car elles vérifient $\|f'\|_{\infty} \leq C(AF)$ ponctuellement relativement compact. On peut appliquer Ascoli $\Rightarrow A$ est relativement compact dans E. A est fermé car c'est la boule unité fermée de F qui est fermé.
- 3. Par Riesz, F est de dimension finie.

Ex2: Application du théorème de Stone-Weierstrass.

- 1. On applique Stone Weierstrass et ça marche
- 2. Les polynômes à d variables forment une algèbre unitaire. $y \neq z \Rightarrow X(y) \neq X(z)$ pour le poly P = X sépare y et z. K compact de \mathbb{R}^d donc par Stone Weierstrass les polynômes à d variables sont denses. $\exists (a_n) \in K$ dense donc $\theta_n : x \mapsto d(x,a_n)$ est continue. \mathcal{A} est une \mathbb{R} sous algèbre engendrée par les θ_n et \mathbb{K} . De plus \mathcal{A} sépare les points car $x,y \in K$ tq f(x) = f(y) pour tout $f \in \mathcal{A}$, alors pour $a_n \to x$, $d(x,a_n) = d(y,a_n) \Rightarrow x = y$ d(x,y)

Ex3: Autour de Stone Weierstrass.

On note $\mathcal{A}_n = \{f_{K_n} \mid f \in \mathcal{A}\}$. Par Stone Weierstrass, \mathcal{A}_n est de,se da,s $\mathcal{C}(K_n, \mathbb{R})$. Soit $f \in \mathcal{C}(X, \mathbb{R})$ par densité de \mathcal{A}_n , $\exists f_n \in \mathcal{A}_n$ tq $\|f_{n|K_n} - f_{|K_n}\|_{\infty, K_n} \le \frac{1}{n+1}$. Soit K compact alors $\exists N \in \mathbb{N}$ to $K \subset K_n$. $K \subset \bigcup_{n \ge 0} K_n \subset \bigcup_{n \ge 1} \mathring{K_n} \subset \bigcup_{n \ge 0} \mathring{K_n}$. Donc $f_n \to f$ uniformément sur tout compact car $\|f_{n|K} - f_{|K}\| \le \|f_{n|K_n} - f_{|K_n}\| \le \frac{1}{n+1}$.

Ex4: Annulation en un point.

1.