```
import os
import pandas as pd #pandas import
import numpy as np #numpy import
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
%pylab inline
df = pd.read_csv("data.csv", index_col = None )
df.head()
```

Populating the interactive namespace from numpy and matplotlib

Out[1]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
	1	NaN	NaN	NaN	NaN	NaN	NaN
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215
	3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001

Cleaning Data

```
In [2]: #Finding out/listing the rows with null values
    df_nan = df[df.isna().any(axis=1)]
    df_nan.head()
```

Out[2]:	Order ID		Product	Quantity Ordered	Price Each	Order Date	Purchase Address
	1	NaN	NaN	NaN	NaN	NaN	NaN
	356	NaN	NaN	NaN	NaN	NaN	NaN
	735	NaN	NaN	NaN	NaN	NaN	NaN
	1433	NaN	NaN	NaN	NaN	NaN	NaN
	1553	NaN	NaN	NaN	NaN	NaN	NaN

```
df=df.dropna(how='all')
In [3]:
         df.head()
Out[3]:
            Order ID
                                       Product Quantity Ordered Price Each
                                                                             Order Date
                                                                                                        Purchase Address
             176558
                           USB-C Charging Cable
                                                             2
                                                                     11.95 04/19/19 08:46
                                                                                                 917 1st St, Dallas, TX 75001
                     Bose SoundSport Headphones
                                                                     99.99 04/07/19 22:30
                                                                                          682 Chestnut St, Boston, MA 02215
         3
             176560
                                  Google Phone
                                                             1
                                                                      600 04/12/19 14:38 669 Spruce St, Los Angeles, CA 90001
             176560
                              Wired Headphones
                                                                     11.99 04/12/19 14:38 669 Spruce St, Los Angeles, CA 90001
         5
             176561
                              Wired Headphones
                                                             1
                                                                     11.99 04/30/19 09:27
                                                                                           333 8th St, Los Angeles, CA 90001
         #nunique() gives the number of unique values on specified column
In [4]:
         #unique() only list the unique values themselve
         df['Product'].nunique()
         df['Product'].unique()
        array(['USB-C Charging Cable', 'Bose SoundSport Headphones',
Out[4]:
                 'Google Phone', 'Wired Headphones', 'Macbook Pro Laptop',
                 'Lightning Charging Cable', '27in 4K Gaming Monitor',
                 'AA Batteries (4-pack)', 'Apple Airpods Headphones',
                 'AAA Batteries (4-pack)', 'iPhone', 'Flatscreen TV',
                 '27in FHD Monitor', '20in Monitor', 'LG Dryer', 'ThinkPad Laptop',
                 'Vareebadd Phone', 'LG Washing Machine', '34in Ultrawide Monitor',
                 'Product'], dtype=object)
         #Count the number of value in each category
         df['Product'].value counts()
```

Out[5]:

USB-C Charging Cable

21903

```
Lightning Charging Cable
                                       21658
        AAA Batteries (4-pack)
                                       20641
        AA Batteries (4-pack)
                                       20577
        Wired Headphones
                                       18882
                                       15549
        Apple Airpods Headphones
        Bose SoundSport Headphones
                                       13325
        27in FHD Monitor
                                        7507
        iPhone
                                        6842
        27in 4K Gaming Monitor
                                        6230
        34in Ultrawide Monitor
                                        6181
        Google Phone
                                        5525
        Flatscreen TV
                                        4800
        Macbook Pro Laptop
                                        4724
        ThinkPad Laptop
                                        4128
        20in Monitor
                                        4101
        Vareebadd Phone
                                        2065
        LG Washing Machine
                                         666
        LG Dryer
                                         646
        Product
                                         355
        Name: Product, dtype: int64
        df= df[df['Order Date'].str[0:2]!='Or']
In [6]:
        #Changing the data type of the two column
        df['Quantity Ordered']=pd.to numeric(df['Quantity Ordered'])
```

Checking Data Normality

df['Price Each']=pd.to numeric(df['Price Each'])

```
In [7]: #df['Price Each']=pd.to_numeric(df['Price Each'])
df['Price Each'].plot(kind='density')
Out[7]: <AxesSubplot:ylabel='Density'>
```


Seprating Columns for Dates

```
In [13]: #Creating seprate column for month

df['Month']=df['Order Date'].str[0:2]
    df['Month']=df['Month'].astype('int32')

df.tail()
```

		Order ID	Pr	oduct	Quantity Ordered	i Price Eaci	n Order Date	Pur	chase Address	M	onth
	186845	259353	AAA Batteries (4	-pack)	3	3 2.9	9 09/17/19 20:56	840 Highland St, Los Ang	geles, CA 90001		9
	186846	259354	i	Phone	1	700.0	0 09/01/19 16:00	216 Dogwood St, San Franc	cisco, CA 94016	,	9
	186847	259355	i	Phone	1	700.0	0 09/23/19 07:39	220 12th St, San Franc	cisco, CA 94016	,	9
	186848	259356	34in Ultrawide M	onitor	1	379.9	9 09/19/19 17:30	511 Forest St, San Franc	cisco, CA 94016	,	9
	186849	259357	USB-C Charging	Cable	1	11.9	5 09/30/19 00:18	250 Meadow St, San Franc	cisco, CA 94016	j	9
[14]:	_			red']*(df['Price Each	']					
[14]:	Order	ID	Р	roduct	Quantity Ordere	d Price Eac	h Order Date	Purchase	Address Mo	nth	Sal
	0 1765	,58	USB-C Charging	g Cable		2 11.9	95 04/19/19 08:46	917 1st St, Dallas,	TX 75001	4	23.9
	2 1765	59 Bose S	SoundSport Head	phones		1 99.9	9 04/07/19 22:30	682 Chestnut St, Boston, N	ИА 02215	4	99.9
[15]:		df.group	est month for oby('Month').		How much was o	earned tho	t year?				
[15]:	(Ouantitu O	rdered Price E	ach	Sale						
		Quantity O									
[+ 2] •	Month	Quantity O									
.[17].	Month 1		10903 1811768	3.38 18	22256.73						
-[].											
[16]:	1 2 #What ti #Changir df['Date	ime shuld ng order e'] = df[10903 1811768 13449 2188884 1 we advertise date column	1.72 22 2 to ma to data	02022.42 aximize sale?	plit(' ')	[0])				
	1 2 #What ti	ime shuld ng order e'] = df[10903 1811768 13449 2188884 1 we advertise date column	1.72 22 2 to ma to data	02022.42 aximize sale? e and time	plit(' ')	[0])				
	1 2 #What ti #Changir df['Date	ime shuld ng order e'] = df[(1)	10903 1811768 13449 2188884 1 we advertise date column 1	1.72 22 to mo to date].appl	02022.42 aximize sale? e and time		[0]) Order Date	Purchase Address Mon	nth Sale	Date	è

Which Month has the highest sale?

```
In [63]: months = range(1,13)
    plt.bar(months,results['Sale'], color='cyan')
    plt.plot(results['Sale'], 'r-.', color='red')
    plt.xticks(months)
    #plt.yticks(results['Sale'])
    plt.ylabel("Sales in USD($)")
    plt.show()
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_20056\2168574099.py:3: UserWarning:

color is redundantly defined by the 'color' keyword argument and the fmt string "r-." (-> color='r'). The keyword argument will take precedence.


```
df['Order Date']=pd.to datetime(df['Order Date'])
In [18]:
         # what city has the hieghst number of sale?
In [19]:
          #First create a city column
          #.apply --> Let us to run function on our dataframe
          def get city(address):
              return address.split(',')[1]
          def get_state(address):
              return address.split(',')[2].split(' ')[1]
          df['City']= df['Purchase Address'].apply(lambda x: get_city(x)+' '+get_state(x))
          df.head(3)
Out[19]:
               Order
                                               Quantity
                                                           Price
                                  Product
                                                                    Order Date
                                                                                     Purchase Address Month
                                                                                                                Sale
                                                                                                                         Date
                                                                                                                                     City
                  ID
                                               Ordered
                                                           Each
                                                                    2019-04-19
                                                                                    917 1st St, Dallas, TX
             176558 USB-C Charging Cable
                                                     2
                                                           11.95
                                                                                                               23.90 04/19/19
                                                                                                                                 Dallas TX
                                                                       08:46:00
                                                                                                75001
                           Bose SoundSport
                                                                    2019-04-07
                                                                                 682 Chestnut St, Boston,
          2 176559
                                                     1
                                                           99.99
                                                                                                               99.99 04/07/19
                                                                                                                               Boston MA
                              Headphones
                                                                       22:30:00
                                                                                            MA 02215
                                                                     2019-04-12
                                                                                      669 Spruce St, Los
                                                                                                                               Los Angeles
                                                                                                           4 600.00 04/12/19
          3 176560
                             Google Phone
                                                     1
                                                          600.00
                                                                       14:38:00
                                                                                     Angeles, CA 90001
                                                                                                                                      CA
          city=df.groupby("City").sum()
In [20]:
          city
```

Sale

Out[20]:

City				
Atlanta GA	16602	2779908.20	104794	2795498.58
Austin TX	11153	1809873.61	69829	1819581.75
Boston MA	22528	3637409.77	141112	3661642.01
Dallas TX	16730	2752627.82	104620	2767975.40
Los Angeles CA	33289	5421435.23	208325	5452570.80
New York City NY	27932	4635370.83	175741	4664317.43
Portland ME	2750	447189.25	17144	449758.27
Portland OR	11303	1860558.22	70621	1870732.34
San Francisco CA	50239	8211461.74	315520	8262203.91
Seattle WA	16553	2733296.01	104941	2747755.48

Quantity Ordered Price Each Month

Which City has the highest Sale?

```
In [77]: cityindex=[city for city, df in df.groupby("City")]
    plt.bar(cityindex,city['Sale'], color='orange')
    plt.xticks(cityindex, rotation=90)
    #plt.yticks(results['Sale'])
    plt.ylabel("Sales in USD($)")
    plt.show()
```


In [22]: df['Hour']= df['Order Date'].dt.hour
 df['Minute']= df['Order Date'].dt.minute
 df.head(1)

Out[22]:		Order ID	Product	Quantity Price Order Ordered Each		Order Date	Purchase Address	Month	Sale	Date	City	Hour	Minute	
	0 1	176558	USB-C Charging	2	11.95	2019-04-19 08:46:00	917 1st St, Dallas, TX 75001	4	23.9	04/19/19	Dallas TX	8	46	

Out[23]

```
In [23]: df['Date']= pd.to_datetime(df['Date'])
    df.head()
```

•	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sale	Date	City	Hour	Minute
0	176558	USB-C Charging Cable	2	11.95	2019-04-19 08:46:00	917 1st St, Dallas, TX 75001	4	23.90	2019- 04-19	Dallas TX	8	46
2	176559	Bose SoundSport Headphones	1	99.99	2019-04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	99.99	2019- 04-07	Boston MA	22	30
3	176560	Google Phone	1	600.00	2019-04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	600.00	2019- 04-12	Los Angeles CA	14	38
4	176560	Wired Headphones	1	11.99	2019-04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	11.99	2019- 04-12	Los Angeles CA	14	38
5	176561	Wired Headphones	1	11.99	2019-04-30 09:27:00	333 8th St, Los Angeles, CA 90001	4	11.99	2019- 04-30	Los Angeles CA	9	27

Which hour of the day has the highest number of sale?

```
In [69]: hours=[hour for hour, df in df.groupby('Hour')]
    plt.plot(hours, df.groupby(['Hour']).count())
    plt.xticks(hours)
    plt.xlabel("Hour")
    plt.ylabel("Number of Orders")
    plt.grid()
    plt.show()
```



```
In [25]: #What products were sold together?
    df.head()
    dfDuplicate =df[df['Order ID'].duplicated(keep=False)]

dfDuplicate['Grouped'] = dfDuplicate.groupby('Order ID')['Product'].transform(lambda x:','.join(x))
    dfDuplicate.head(2)

C:\Users\DELL\AppData\Local\Temp\ipykernel_20056\2876416605.py:5: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a
    -view-versus-a-copy
    dfDuplicate['Grouped'] = dfDuplicate.groupby('Order ID')['Product'].transform(lambda x:','.join(x))
```

```
Out[25]:
                Order
                                       Quantity
                                                   Price
                                                             Order
                                                                         Purchase
                            Product
                                                                                   Month
                                                                                             Sale
                                                                                                     Date
                                                                                                                City Hour Minute
                                                                                                                                           Grouped
                   ID
                                       Ordered
                                                   Each
                                                              Date
                                                                          Address
                                                          2019-04-
                                                                     669 Spruce St,
                                                                                                                Los
                                                                                                                                             Google
                                                                                                    2019-
                             Google
           3 176560
                                                 600.00
                                                                12
                                                                      Los Angeles,
                                                                                        4 600.00
                                                                                                            Angeles
                                                                                                                        14
                                                                                                                                 38
                                                                                                                                        Phone,Wired
                                                                                                    04-12
                             Phone
                                                           14:38:00
                                                                         CA 90001
                                                                                                                 CA
                                                                                                                                        Headphones
                                                          2019-04-
                                                                     669 Spruce St,
                                                                                                                Los
                                                                                                                                             Google
                              Wired
              176560
                                                  11.99
                                                                12
                                                                      Los Angeles,
                                                                                           11.99
                                                                                                            Angeles
                                                                                                                        14
                                                                                                                                 38
                                                                                                                                        Phone,Wired
                        Headphones
                                                           14:38:00
                                                                         CA 90001
                                                                                                                 CA
                                                                                                                                        Headphones
```

```
In [26]: #Dropping duplicated columns
    dfDuplicated = dfDuplicate[['Order ID','Grouped']].drop_duplicates()
    dfDuplicated.head(2)
```

```
Out[26]: Order ID Grouped

3 176560 Google Phone,Wired Headphones

18 176574 Google Phone,USB-C Charging Cable
```

```
('iPhone', 'Lightning Charging Cable') 1005
('Google Phone', 'USB-C Charging Cable') 987
('iPhone', 'Wired Headphones') 447
('Google Phone', 'Wired Headphones') 414
('Vareebadd Phone', 'USB-C Charging Cable') 361
('iPhone', 'Apple Airpods Headphones') 360
('Google Phone', 'Bose SoundSport Headphones') 220
('USB-C Charging Cable', 'Wired Headphones') 160
('Vareebadd Phone', 'Wired Headphones') 92
('Lightning Charging Cable', 'Wired Headphones') 92
```

Which products were mostly sold together?

```
In [72]: #What product sold the most?
productGrp=df.groupby('Product')
quantityOrd= productGrp.sum()['Quantity Ordered']

products=[product for product, df in productGrp]
plt.bar(products, quantityOrd ,color='lightblue')

plt.xticks(rotation=90, size=8)
plt.xlabel('Product')
plt.ylabel('Quantity Ordered')
plt.show()
```


Which Produsts were sold together (number of product sold vs. sale amount)

```
In [29]: prices = df.groupby('Product').mean()['Price Each']
```

```
fig, ax1= plt.subplots()
ax2=ax1.twinx()
ax1.bar(products,quantityOrd,color='g' )
ax2.plot(products, prices, 'b-')

ax1.set_xticklabels(products,rotation='vertical', size=8)
ax1.set_xlabel('Product Name')
ax2.set_ylabel('Price($)',color='b')
ax1.set_ylabel('Quantity Ordered',color='g')
plt.show()
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_20056\2917419474.py:9: UserWarning: FixedFormatter should only be used toget
her with FixedLocator
 ax1.set_xticklabels(products,rotation='vertical', size=8)

Some Cleaning and adding changes to columns

Adding an specific amount to the price of all the products

```
def add(x):
In [30]:
               return(x//2)
          df['Added lambda']=df['Price Each'].apply(add)
          df.head(1)
                                                                                                                                   Added
Out[30]:
               Order
                                       Quantity
                                                  Price
                                                                           Purchase
                           Product
                                                         Order Date
                                                                                    Month Sale
                                                                                                    Date
                                                                                                            City Hour Minute
                  ID
                                       Ordered
                                                  Each
                                                                           Address
                                                                                                                                  lambda
                            USB-C
                                                                          917 1st St,
                                                         2019-04-19
                                                                                                   2019-
                                                                                                           Dallas
             176558
                          Charging
                                             2
                                                 11.95
                                                                                         4 23.9
                                                                                                                            46
                                                                                                                                      5.0
                                                            08:46:00
                                                                     Dallas, TX 75001
                                                                                                   04-19
                                                                                                             TX
                             Cable
In [31]: #We can do the same using the Lambda function
          df['Added lambda']=df['Price Each'].apply(lambda x: x//2)
          df.head(1)
Out[31]:
               Order
                                       Quantity
                                                  Price
                                                                           Purchase
                                                                                                                                   Added
                           Product
                                                         Order Date
                                                                                    Month Sale
                                                                                                    Date
                                                                                                            City Hour Minute
                  ID
                                       Ordered
                                                  Each
                                                                           Address
                                                                                                                                  lambda
                            USB-C
                                                         2019-04-19
                                                                          917 1st St,
                                                                                                   2019-
                                                                                                           Dallas
                                             2
                                                                                         4 23.9
                                                                                                                     8
             176558
                          Charging
                                                  11.95
                                                                                                                            46
                                                                                                                                      5.0
                                                            08:46:00
                                                                                                   04-19
                                                                                                             TX
                                                                    Dallas, TX 75001
                             Cable
          for index, row in df.iterrows():
In [32]:
              if row['Quantity Ordered'] == 1 or row['Quantity Ordered'] == 4:
                   df.loc[index, 'Gender'] = 'M'
               else:
                   df.loc[index, 'Gender'] = 'F'
          df.drop(columns='Added lambda', axis=1, inplace=True)
In [33]:
          df.head(2)
In [34]:
```

Out[34]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sale	Date	City	Hour	Minute	Gender
	0	176558	USB-C Charging Cable	2	11.95	2019-04-19 08:46:00	917 1st St, Dallas, TX 75001	4	23.90	2019- 04-19	Dallas TX	8	46	F
	2	176559	Bose SoundSport Headphones	1	99.99	2019-04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	99.99	2019- 04-07	Boston MA	22	30	М

In [35]: #Listing the products and price each of female customer only
df[df['Gender']=='F'][['Product','Price Each']]

0 1	
()	1 25 1
Out	

	Product	Price Each
0	USB-C Charging Cable	11.95
28	AAA Batteries (4-pack)	2.99
32	AAA Batteries (4-pack)	2.99
40	Lightning Charging Cable	14.95
42	Wired Headphones	11.99
•••		
186829	AAA Batteries (4-pack)	2.99
186830	USB-C Charging Cable	11.95
186831	AA Batteries (4-pack)	3.84
186835	AAA Batteries (4-pack)	2.99
186845	AAA Batteries (4-pack)	2.99

16592 rows × 2 columns

```
In [36]: #The isin function will do the same
df[df['Gender'].isin(['F'])][['Product','Price Each']]
```

Out[36]:		Product	Price Each
	0	USB-C Charging Cable	11.95
	28	AAA Batteries (4-pack)	2.99
	32	AAA Batteries (4-pack)	2.99
	40	Lightning Charging Cable	14.95
	42	Wired Headphones	11.99
	•••		
	186829	AAA Batteries (4-pack)	2.99
	186830	USB-C Charging Cable	11.95
	186831	AA Batteries (4-pack)	3.84
	186835	AAA Batteries (4-pack)	2.99
	186845	AAA Batteries (4-pack)	2.99

16592 rows × 2 columns

Heatmap

In [37]: df.head(2)

Out[37]:

:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sale	Date	City	Hour	Minute	Gender
	0	176558	USB-C Charging Cable	2	11.95	2019-04-19 08:46:00	917 1st St, Dallas, TX 75001	4	23.90	2019- 04-19	Dallas TX	8	46	F
	2	176559	Bose SoundSport Headphones	1	99.99	2019-04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	99.99	2019- 04-07	Boston MA	22	30	М

```
In [38]: #df_m = df.groupby(["Quantity Ordered", "Price Each"]).size().unstack(level=0)
    df_m = df[['Month', 'Price Each', 'Sale']]
    df_m= df_m[df_m['Price Each']>20]
```

```
In [39]: #corr(df_m)
#np.corrcoef(df_m)

correlation=df.corr()
df.corr()
```

Out[39]: **Quantity Ordered** Price Each Month Sale Hour Minute **Quantity Ordered** 1.000000 -0.148272 0.000791 -0.139417 -0.002218 0.001225 -0.148272 1.000000 -0.003375 0.001721 -0.002163 **Price Each** 0.999203 Month 0.000791 -0.003375 1.000000 -0.003466 0.001731 -0.002075 Sale -0.139417 0.999203 -0.003466 1.000000 0.001668 -0.002162 0.001668 Hour -0.002218 0.001721 0.001731 1.000000 -0.015345 -0.002163 -0.002075 -0.002162 -0.015345 Minute 0.001225 1.000000

```
In [40]: plt.figure(figsize=(8,4), dpi=100)
    sns.heatmap(correlation, cmap='Blues', annot=True, linewidth=0.5, vmin=-1, vmax=1)

#A high correlation between sale and price of each product
#Moderate positive and negative correlation between other variables
```

Out[40]: <AxesSubplot:>


```
df.groupby('Month')['Sale'].value_counts()
In [41]:
         Month Sale
Out[41]:
                 11.95
                            1074
                 14.95
                             995
                 11.99
                             934
                 150.00
                             808
                 3.84
                             758
          12
                 26.88
                               1
                 59.80
                               1
                 450.00
                               1
                 779.98
                               1
                 1200.00
          Name: Sale, Length: 508, dtype: int64
```

```
In [42]: months=(df.groupby('Month')
    ['Product']
    .value_counts()
    .unstack()
    .fillna(0))
    months

#months.transpose()
months.T
#Change/convert the matrix
```

Out[42]:	Month	1	2	3	4	5	6	7	8	9	10	11	12
	Product												
	20in Monitor	215	245	324	388	338	321	324	258	274	428	419	567
	27in 4K Gaming Monitor	313	425	478	564	541	451	483	438	380	719	575	863
	27in FHD Monitor	421	471	606	733	688	561	603	485	480	790	710	959
	34in Ultrawide Monitor	313	416	521	651	543	454	460	380	378	670	549	846
	AA Batteries (4-pack)	1038	1276	1674	2063	1822	1543	1556	1357	1315	2241	1971	2721
	AAA Batteries (4-pack)	1084	1321	1647	1991	1892	1452	1558	1341	1282	2239	2003	2831
	Apple Airpods Headphones	813	1010	1313	1509	1354	1154	1212	999	965	1662	1502	2056
	Bose SoundSport Headphones	659	831	1184	1279	1167	973	1051	872	824	1440	1238	1807
	Flatscreen TV	244	312	359	459	399	366	396	331	291	523	457	663
	Google Phone	318	379	463	580	479	391	411	359	341	597	493	714
	LG Dryer	39	38	49	78	76	43	55	46	30	50	56	86
	LG Washing Machine	42	40	64	61	64	55	52	48	46	61	53	80
	Lightning Charging Cable	1071	1395	1753	2203	1930	1564	1695	1357	1328	2422	2047	2893
	Macbook Pro Laptop	235	276	379	452	464	355	368	299	288	525	440	643
	ThinkPad Laptop	218	275	345	390	371	314	319	274	249	460	374	539
	USB-C Charging Cable	1174	1514	1770	2078	1883	1534	1668	1344	1454	2442	2062	2980
	Vareebadd Phone	125	129	174	220	185	155	146	141	126	203	177	284
	Wired Headphones	1006	1183	1513	1889	1730	1335	1435	1193	1174	2095	1783	2546
	iPhone	381	439	537	691	640	533	501	439	396	715	664	906

Finding out max sold based on month of the years

```
In [43]: #With no decimal place
  plt.figure(figsize=(15,6), dpi=100)
  sns.heatmap(months, cmap="viridis", annot=True, linewidth=0.5, fmt=".0f", linecolor="black", square=False)
```

Out[43]. <AxesSubplot:xlabel='Product', ylabel='Month'>

Treemap

In [44]: df.head(2)

Out[44]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sale	Date	City	Hour	Minute	Gender
	0	176558	USB-C Charging Cable	2	11.95	2019-04-19 08:46:00	917 1st St, Dallas, TX 75001	4	23.90	2019- 04-19	Dallas TX	8	46	F
	2	176559	Bose SoundSport Headphones	1	99.99	2019-04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	99.99	2019- 04-07	Boston MA	22	30	М

```
In [45]: bins=[0,500,1000,float(inf)]
  labels= ['Cheap', 'Middle-priced', 'Expensive']
  df['Price Category']= pd.cut(df['Price Each'], bins=bins, labels=labels)
  df.head(2)
```

Out[45]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sale	Date	City	Hour	Minute	Gender	Price Category
	0	176558	USB-C Charging Cable	2	11.95	2019-04- 19 08:46:00	917 1st St, Dallas, TX 75001	4	23.90	2019- 04-19	Dallas TX	8	46	F	Cheap
	2	176559	Bose SoundSport Headphones	1	99.99	2019-04- 07 22:30:00	682 Chestnut St, Boston, MA 02215	4	99.99	2019- 04-07	Boston MA	22	30	М	Cheap

Sales amount of each product

```
In [46]: px.treemap(data_frame=df, path=['Product'], values='Sale', color='Sale', color_continuous_scale='deep')
```


Categorizing based on Price (Cheap/Middle-Priced/Expensive)

```
In [47]: px.treemap(data_frame=df, path=['Price Category','Product'], values='Sale',color='Sale', color_continuous_scale='magma'
```


Percentage of Sales in each Category

```
In [61]: explode = (0.05, 0.05, 0.05)
df.groupby("Price Category").size().plot(kind="pie",explode=explode, autopct='%1.0f%%',label="", title='% of Sales in e
Out[61]: <AxesSubplot:title={'center':'% of Sales in each Category'}>
```

% of Sales in each Category

