Ve492: Introduction to Artificial Intelligence

Bayesian Networks: Independence

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Bayes' Net

- A directed, acyclic graph, one node per random variable
- * A conditional probability table (CPT) for each node
 - * A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - * To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Size of a Bayes' Net

* How big is a joint distribution over N Boolean variables?

 2^{N}

* How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

* Both give you the power to calculate

$$P(X_1, X_2, \dots X_n)$$

- * BNs: Huge space savings!
- * Also easier to elicit local CPTs
- * Also faster to answer queries (coming)

Bayes' Nets

A Bayes' net is an
 efficient encoding
 of a probabilistic
 model of a domain

- * Questions we can ask:
 - * Inference: given a fixed BN, what is $P(X \mid e)$?
 - * Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes' Nets

Conditional Independences

* Probabilistic Inference

Conditional Independence

* X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) ---- X \perp\!\!\!\perp Y$$

* X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \times X \perp \!\!\!\perp Y|Z$$

- (Conditional) independence is a property of a joint distribution
- * Example: $Alarm \perp Fire | Smoke$

Bayes' Nets: Assumptions

* Assumptions we are required to make to define the Bayes' net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond the above conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes' net graph

Example

 Conditional independence assumptions directly from simplifications in chain rule:

* Additional implied conditional independence assumptions?

Independence in a BN

- * Important question about a BN:
 - * Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - * If no, can prove with a counter example
 - * Example:

- * Question: are X and Z necessarily independent?
 - * Answer: No, e.g., low pressure causes rain, which causes traffic.
 - * X can influence Z, Z can influence X (via Y)
 - * Addendum: they *could* be independent: how?

D-separation: Outline

D-separation: Outline

Study independence properties for triples

Analyze complex cases in terms of member triples

 D-separation: a condition / algorithm for answering such queries

Serial Chains

* This configuration is a "serial chain"

X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- * Is X always independent of Z?
 - * No!
 - * One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - * Counter-example:
 - * Low pressure => rain => traffic, high pressure => no rain => no traffic
 - * In numbers:

$$P(+y \mid +x) = 1, P(-y \mid -x) = 1,$$

 $P(+z \mid +y) = 1, P(-z \mid -y) = 1$

Serial Chains

- This configuration is a "serial chain"
- * Is X always independent of Z given Y?

 $P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$ $= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$ = P(z|y)Yes!

X: Low pressure

Y: Rain

Z: Traffic

P(x, y, z) = P(x)P(y|x)P(z|y)

Evidence along the chain "blocks" the influence

Divergent Chain

This configuration is a "divergent chain"
Is X always independent of Z?

Z: OH busy

$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

- - * No!
 - * One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - * Counter-example:
 - * Project due => Piazza busy and OH busy
 - * In numbers:

$$P(+x \mid +y) = 1, P(-x \mid -y) = 1,$$

 $P(+z \mid +y) = 1, P(-z \mid -y) = 1$

Divergent Chain

* This configuration is a "divergent chain" * Guaranteed X and Z independent

Z: Lab full

* Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

P(x, y, z) = P(y)P(x|y)P(z|y)

 Observing the cause blocks influence between effects.

Convergent Chain

 Last configuration: "convergent chain" (v-structures)

X: Raining Y: Ballgame

Z: Traffic

- * Are X and Y independent?
 - * *Yes*: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- * Are X and Y independent given Z?
 - * *No*: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - * Observing an effect activates influence between possible causes.

The General Case

The General Case

* General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases

Reachability

- * **Recipe**: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - * Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - * Yes, if X and Y "d-separated" by Z
 - * Consider all (undirected) paths from X to Y
 - No active paths = independence!
- * A path is active if each triple is active:
 - * Serial chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - * Divergent chain $A \leftarrow B \rightarrow C$ where B is unobserved
 - Convergent chain (aka v-structure)
 - $A \rightarrow B \leftarrow C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

D-Separation

- * Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- * Check all (undirected!) paths between X_i and X_j
 - * If one or more active, then independence not guaranteed

$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

* Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Example

 $R \perp \!\!\! \perp B$ Yes

 $R \perp \!\!\! \perp B | T$ No

Example

 $L \perp \!\!\! \perp T' | T$ Yes

 $L \perp \!\!\! \perp B$ Yes

 $L \! \perp \! \! \perp \! \! B | T$

 $L \perp \!\!\! \perp B | T'$ No

 $L \perp \!\!\! \perp B | T, R$ Yes

Quiz: Conditional Independence

* Variables:

- R: Raining
- * T: Traffic
- * D: Roof drips
- * S: I'm sad
- * Questions:

Structure Implications

* Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

* This list determines the set of probability distributions that can be represented

Computing All Independences

Topology Limits Distributions

- * Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- * (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- * Full conditioning can encode any distribution

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- * D-separation gives precise conditional independence guarantees from graph alone
- * A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- **✓**Representation
- **✓**Conditional Independences
 - * Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Approximate inference (sampling)